Cello Ensemble PCA

This notebook reproduces the results related to ensemble PCA.

```
In [1]: | %matplotlib inline
       %load_ext autoreload
       %autoreload 2
       from pathlib import Path
        # Enter the locations of the sample directories
       CELLO_PATH = Path("/home/lukas/BA/philharmonia-samples/cello")
       GUITAR_PATH = Path("/home/lukas/BA/philharmonia-samples/guitar")
       # Output directories for figures and wavfiles
                  = Path("/home/lukas/BA/report/gfx/")
       WAVS_PATH = Path("/home/lukas/BA/report/wavs/")
In [2]: | # Initialization
       import pandas as pd
       import numpy as np
       import matplotlib.pyplot as plt
       from sklearn.decomposition import PCA
       import librosa
       import pya
       import random
       import principal_harmonics as ph
       for path in [GFX_PATH, WAVS_PATH]:
            if path.exists() and not path.is_dir():
               raise NotADirectoryError(path)
           if not path.exists():
                path.mkdir()
```

Let's open the dataset. As discussed in the report, we will ignore samples with an (R^2) score less than 0.5.

```
In [4]: cello_df = ph.dataset.open_dataset(CELLO_PATH)
    cello_df = cello_df[cello_df.harmonic_r2 > 0.5]
    cello_df = ph.dataset.expand_ndarrays(cello_df, ['freqs', 'coefs'])
```

We use the sample pipeline as before:

```
In [6]: ampls = np.abs(cello_df.loc[:, "coefs-0":"coefs-39"].to_numpy())
trans = cello_pipeline.fit_transform(ampls)
```

The next plot shows the explained variance and the eigenvectors of the analysis

```
In [7]: | def plot_ensemble_pca(pca, instrument_name):
            fig, (var_ax, vec_ax) = plt.subplots(1, 2, figsize=(8.2, 3))
            fig.suptitle(f"{instrument_name} Ensemble analysis")
            var_ax.plot(pca.explained_variance_ratio_, ds='steps-post')
            var_ax.set_title("Explained Variance Ratio")
           var_ax.set_xlabel("Eigenvector index $i$")
           var_ax.set_ylabel("$\landa_i$")
           vec_ax.set_title("Eigenvectors")
           vec_ax.set_xlabel("Vector component index $j$")
           vec_ax.set_ylabel("$u_{i,j}$")
            for i, vec in enumerate(pca.components_[:4]):
               vec_ax.plot(vec, label=f'$u_{i}$', ds='steps-post')
           vec_ax.legend(loc='right')
           fig.tight_layout()
       pca = cello_pipeline[-1]
       plot_ensemble_pca(pca, "Cello")
       plt.savefig(GFX_PATH / "4-cello-ensemble.eps")
```

The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.

Cello Ensemble analysis

Let's look at the trajectories of some randomly chosen samples. X axes denote the analysis frame index, Y axis the control parameter value. We show the trajectories of the 3 most significant control parameters for 10 samples.

Empty plots mean that the analysis failed in preprocessing: When performing timbre filtering, we discard timbre vectors that have at least one hole in the *reliable* partials. If an audio sample contains no values at all for a partial that was deemed reliable, all timbre vectors are discarded and the PCA analysis will fail.

```
In [8]: fig, axs = plt.subplots(10, 3, figsize=(20, 30))
for sample_ix, filename in enumerate(cello_df.index.unique('filename').to_series().sample(10, random_state=42)):
    sample_df = cello_df.loc[filename]
    try:
        sample_trans = cello_pipeline.transform(np.abs(sample_df.loc[:, "coefs-0":"coefs-39"].to_numpy()))
    except NoCompleteTimbreError:
        continue
    for j, ax in enumerate(axs[sample_ix]):
        ax.plot(sample_trans[:, j])
```


Let's see what each eigenvector does to the timbre: (We'll look at the four most significant eigenvectors)

```
In [9]: | def make_axis_asig_oscillating(mean, ui, scale, note, f=0.5) -> pya.Asig:
            ts = np.linspace(0, 4, 4*int(44100 // 256))
            dbs = mean.reshape(1, -1) + ui.reshape(1, -1) * scale * np.sin(2*np.pi * ts * f).reshape(-1, 1)
            ampls = pya.dbamp(dbs)
            ampls = ampls / ampls.sum(axis=1).reshape(-1, 1) * 0.1
            return ph.pvoc.additive_resynth(librosa.note_to_hz(note), ampls)
        cello_axis_asigs = []
        for i in range(4):
             scale = np.std(trans[:, i])
            ui = pca.components_[i]
            mean = pca.mean_
            asig = make_axis_asig_oscillating(mean, ui, 2*scale, 'G3')
            asig.save_wavfile(str(WAVS_PATH / f'ch4_cello-ensemble-pca-u{i}.wav'))
            cello_axis_asigs.append(asig)
        (1, 1) (1, 1) (688, 39)
        (1, 1) (1, 1) (688, 39)
        (1, 1) (1, 1) (688, 39)
        (1, 1) (1, 1) (688, 39)
In [10]: # Uncomment for playback
         # u0
         # cello_axis_asig[0].play()
         # cello_axis_asig[1].play()
        # u2
         # cello_axis_asig[2].play()
        # u3
         # cello_axis_asig[3].play()
```

Let's see if we can find some corellations between control parameters and sample labels. Since the sample labels do not change the course of the sample, we compute corellation between the *mean* of the control parameters and the labels.

We will add some more features:

- dynamic_int is just a mapping from the dynamic (i.e. the loudness the instrument was played) to an integer, so that we can use it in corellation analysis.
- minimum_fret: A note on the guitar can be played on different strings, resulting in different timbres. For this dataset, we might expect that each note was played on the string that allowed to use the lowest fret possible, resulting in the richest timbre. Assuming this is true, we can calculate minimum fret to perform corellation analysis between the timbre and the fret index.

```
In [11]: # lets load the dataset without expanding ndarrays. This way, the
         # this analysis is more convenient.
        cello_sample_df = ph.dataset.open_dataset(CELLO_PATH)
         # First, let's add some more inferred fields:
         # Integer representation of dynamic
        dynamics_ints = {
             'pianissimo': 0,
             'piano':
                        1,
             'mezzo-piano': 2,
             'mezzo-forte': 3,
             'forte':
             'fortissimo': 5
        cello_sample_df['dynamic_int'] = cello_sample_df.dynamic.apply(lambda d: dynamics_ints[d])
        # Guess the fret index that the note was played on
        cello_empty_string_midis = librosa.note_to_midi(['C2', 'G2', 'D3', 'A3'])
        possible_frets = cello_sample_df.midi.to_numpy().reshape(-1, 1) - cello_empty_string_midis.reshape(1, -1)
        possible_frets[possible_frets < 0] = np.inf</pre>
        minimum_fret = np.amin(possible_frets, axis=1)
        cello_sample_df['minimum_fret'] = minimum_fret
         # Compute mean control parameters
         for fname, row in cello_sample_df.iterrows():
            ampls = np.abs(row.coefs)
                 sample_trans = cello_pipeline.transform(ampls)
             except NoCompleteTimbreError:
                 continue
            means = np.mean(sample trans, axis=0)
            cello_sample_df.loc[fname, ["mean-alpha0", "mean-alpha1", "mean-alpha2", "mean-alpha3"]] = means[:4]
In [12]: cello_sample_df.loc[:, ['midi', 'dynamic_int', 'minimum_fret', 'harmonic_r2', 'mean-alpha0',
                                'mean-alpha1', 'mean-alpha2', 'mean-alpha3']].corr()
```

Out[12]:		midi	dynamic_int	minimum_fret	harmonic_r2	mean-alpha0	mean-alpha1	mean-alpha2	mean-alpha3
	midi	1.000000	0.051510	0.885666	0.375403	0.454891	-0.018490	-0.083263	-0.198994
	dynamic_int	0.051510	1.000000	0.039716	0.028761	-0.434111	-0.081852	0.052683	-0.219672
	minimum_fret	0.885666	0.039716	1.000000	0.204056	0.386444	0.261909	-0.071388	-0.248922
	harmonic_r2	0.375403	0.028761	0.204056	1.000000	-0.134295	-0.073507	-0.125083	-0.104903
	mean-alpha0	0.454891	-0.434111	0.386444	-0.134295	1.000000	0.043800	-0.039556	-0.088681
	mean-alpha1	-0.018490	-0.081852	0.261909	-0.073507	0.043800	1.000000	0.012992	-0.030416
	mean-alpha2	-0.083263	0.052683	-0.071388	-0.125083	-0.039556	0.012992	1.000000	-0.012045
	mean-alpha3	-0.198994	-0.219672	-0.248922	-0.104903	-0.088681	-0.030416	-0.012045	1.000000

Guitar Ensemble PCA

Moving on to the guitar, we'll perform the same steps as above. The only difference is that we have to take the preprocessing steps for each sample separately.

Explained variance and eigenvector plots:

```
pca = guitar_pipeline[-1]
plot_ensemble_pca(pca, "Guitar")
plt.savefig(GFX_PATH / "4-guitar-ensemble.eps")
```

The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.

Guitar Ensemble analysis

Again, plotting the trajectories of the first three control parameters for 10 random samples:

```
fig, axs = plt.subplots(10, 3, figsize=(20, 30))
for sample_ix, filename in enumerate(guitar_df.index.unique('filename').to_series().sample(10, random_state=1337)):
    sample_df = guitar_df.loc[filename]
    sample_trans = guitar_pipeline.transform(np.abs(sample_df.loc[:, "coefs-0":"coefs-39"].to_numpy()))
    for j, ax in enumerate(axs[sample_ix]):
        ax.plot(sample_trans[:, j])
```



```
In [16]: colors = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red']
         fig, axs = plt.subplots(4, 3, figsize=(10, 4), constrained_layout=True, sharex='col')
         for sample_ix, filename in enumerate(guitar_df.index.unique('filename').to_series().sample(3, random_state=42)):
              axs[0, sample_ix].set_title(filename)
              sample_df = guitar_df.loc[filename]
              sample_trans = guitar_pipeline.transform(np.abs(sample_df.loc[:, "coefs-0":"coefs-39"].to_numpy()))
              for j, (ax, color) in enumerate(zip(axs[:, sample_ix], colors)):
                  ax.plot(sample_trans[:, j], color=color)
                  ax.set_ylabel(f"$\\alpha_{j}[n]$")
         for ax in axs[-1]:
              ax.set_xlabel("Sample index $n$")
         fig.align_ylabels()
         plt.savefig(GFX_PATH / '4-guitar-ensemble-control-parameters.eps')
             guitar_Cs3_very-long_forte_normal.mp3 guitar_A2_very-long_forte_normal.mp3 guitar_F4_very-long_forte_normal.mp3
                                               600
             600
         \alpha_0[n]
                                                                            \alpha_0[n]
                                           \alpha_0[n]
                                               400
                                                                                400
             400
         \alpha_1[n]
                                                                            \alpha_1[n]
                                           \alpha_1[n]
            -500
                                              -500
                                               200
                                                                                200
         α<sub>2</sub>[n]
                                                                            \alpha_2[n]
                                           α<sub>2</sub> η
             250
             500
         \alpha_3[n]
                                           \alpha_3[n]
                                               250
                                                                            \alpha_3[n]
                                                                                250
               0 -
                                                                 600
                                                                                             200
                                                                                                 300
                                                                                                      400
                       200
                             400
                                   600
                                                       200
                                                            400
                                                                      800
                        Sample index n
                                                         Sample index n
                                                                                           Sample index n
In [17]:
         guitar_axis_asigs = []
         for i in range(4):
              scale = np.std(trans[:, i])
              ui = pca.components_[i]
             mean = pca.mean_
             asig = make_axis_asig_oscillating(mean, ui, 2*scale, 'A4')
             asig.save_wavfile(str(WAVS_PATH / f'ch4_guitar-ensemble-pca-u{i}.wav'))
              guitar_axis_asigs.append(asig)
         (1, 1) (1, 1) (688, 39)
         (1, 1) (1, 1) (688, 39)
         (1, 1) (1, 1) (688, 39)
         (1, 1) (1, 1) (688, 39)
In [18]: # Uncomment for playback
         # cello_axis_asig[0].play()
         # cello_axis_asig[1].play()
         # cello_axis_asig[2].play()
         # cello_axis_asig[3].play()
In [19]: # lets load the dataset without expanding ndarrays. This way, the
         # this analysis is more convenient.
         guitar_sample_df = ph.dataset.open_dataset(GUITAR_PATH)
         # First, let's add some more inferred fields:
         # Integer representation of dynamic
         dynamics_ints = {
              'piano': 0,
              'forte': 1,
         guitar_sample_df['dynamic_int'] = guitar_sample_df.dynamic.apply(lambda d: dynamics_ints[d])
         # Guess the fret index that the note was played on
         guitar_empty_string_midis = librosa.note_to_midi(['E2', 'A2', 'D3', 'G3', 'B3', 'E4'])
         possible_frets = guitar_sample_df.midi.to_numpy().reshape(-1, 1) - guitar_empty_string_midis.reshape(1, -1)
         possible_frets[possible_frets < 0] = np.inf</pre>
         minimum_fret = np.amin(possible_frets, axis=1)
         guitar_sample_df['minimum_fret'] = minimum_fret
         # Compute mean control parameters
         for fname, row in guitar_sample_df.iterrows():
              ampls = np.abs(row.coefs)
              sample_trans = quitar_pipeline.transform(ampls)
              means = np.mean(sample_trans, axis=0)
              guitar_sample_df.loc[fname, ["mean-alpha0", "mean-alpha1", "mean-alpha2", "mean-alpha3"]] = means[:4]
```

7 von 8 16.08.22, 11:28

'mean-alpha1', 'mean-alpha2', 'mean-alpha3']].corr()

In [20]: | guitar_sample_df.loc[:, ['midi', 'dynamic_int', 'minimum_fret', 'harmonic_r2', 'mean-alpha0',

Out[20]:		midi	dynamic_int	minimum_fret	harmonic_r2	mean-alpha0	mean-alpha1	mean-alpha2	mean-alpha3
	midi	1.000000	0.026958	0.718109	-0.147222	0.472524	-0.473341	0.473970	0.476116
	dynamic_int	0.026958	1.000000	0.010100	0.518304	-0.102497	0.099994	-0.097764	-0.100630
	minimum_fret	0.718109	0.010100	1.000000	-0.294816	0.024170	-0.027748	0.030559	0.031780
	harmonic_r2	-0.147222	0.518304	-0.294816	1.000000	-0.049477	0.049055	-0.047590	-0.049926
	mean-alpha0	0.472524	-0.102497	0.024170	-0.049477	1.000000	-0.999520	0.998722	0.999119
	mean-alpha1	-0.473341	0.099994	-0.027748	0.049055	-0.999520	1.000000	-0.999765	-0.999872
	mean-alpha2	0.473970	-0.097764	0.030559	-0.047590	0.998722	-0.999765	1.000000	0.999867
	mean-alpha3	0.476116	-0.100630	0.031780	-0.049926	0.999119	-0.999872	0.999867	1.000000
In [21]:	guitar_samp	le_df.lo	c[:, ['mean	-alpha0', 'n	nean-alpha1	', 'mean-alp	oha2', 'mea	n-alpha3']]	

Out[21]: mean-alpha0 mean-alpha1 mean-alpha2 mean-alpha3

	moun aipilao	moun aipiiai	ou u.pu_	moun aipilao
filename				
guitar_A2_very-long_forte_normal.mp3	352.686488	-50.638363	0.921082	14.607563
guitar_A2_very-long_piano_normal.mp3	352.654770	-48.061947	-1.532717	12.133728
guitar_A3_very-long_forte_normal.mp3	442.622773	-233.967155	108.087241	166.507185
guitar_A3_very-long_piano_normal.mp3	442.076904	-233.090403	107.333268	166.323256
guitar_A4_very-long_forte_normal.mp3	463.915644	-276.738789	131.049455	201.448053
guitar_Gs3_very-long_forte_normal.mp3	346.580745	-40.275697	-3.809051	6.943206
guitar_Gs3_very-long_piano_normal.mp3	390.671918	-130.780321	48.214163	82.179157
guitar_Gs4_very-long_forte_normal.mp3	470.976603	-291.935479	140.293271	214.795348
guitar_Gs4_very-long_piano_normal.mp3	445.643865	-240.463458	110.584798	172.257796
guitar_Gs5_very-long_forte_normal.mp3	396.709920	-142.535462	54.771870	91.745823

71 rows × 4 columns