Probability Review

Klein carlj.klein@gmail.com

1 Cards

Question1:

Inclusion-Exclusion ID

Hint: $P(A \cup B) = ?$

Answer1:

 $P(A \cup B) = P(A) + P(B) - P(AB)$

Question2:

Define Mutually Exclusive

Answer2:

If $AB = \emptyset \rightarrow A$ and B are mutually exclusive

Question3:

Conditional Probability and Corollary

Answer3:

Definition: $P(E|F) = \frac{P(EF)}{P(F)}$ Corollary: P(EF) = P(E) * P(F|E)

Question4:

Multiplication Rule

Hint: extension of conditional probability: $\rightarrow P(E_1 * * * E_n) = ?$

Answer4:

 $P(E_1 * * * E_n) = P(E_1) * P(E_2 \mid E_1) * P(E_3 \mid E_2 * E_1) * * P(E_n \mid E_{n-1} * * E_1)$

Question5:

Law of Total Probability

Hint: Given a mutually exclusive and exhaustive set A, $P(A_1) + ... + P(A_k) =$ 1, what can be deduced about the probability of an event B occurring?

Answer5:

P(B)

$$= P(BA_1) + ... + P(BA_k)$$

= P(A_1) * P(B | A_1) + ... + P(A_k) * P(B | A_k)
= $\sum_{i=1}^{k} P(A_i) * P(B | A_i)$

Question6:

Bayes' Theorem

Answer6:

Given a mutually exclusive and exhaustive set A, $P(A_1) + ... + P(A_k) = 1$, then

$$\begin{aligned} &P(A_j \mid B) = \\ &\frac{P(A_j B)}{P(B)} = \\ &\frac{P(A_j) * P(B \mid A_j)}{\sum_{i=1}^k P(A_i) * P(B \mid A_i)} \end{aligned}$$