

Entity-Relationship Model

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Lecture Overview

- Design Process
- Design Issues
- □ E-R Model

Steps in Database Design

- 1. Analyze and Characterize the information that needs to be stored, i.e., data needs of the enterprise and users.
- 2. Include functional requirements, use cases, operations, transactions on the database, etc..
- 3. Second step: the designer chooses a data model and, by applying the concepts of the chosen data model, translates these requirements into a conceptual schema of the database.
 - 1. Here, we will use the ER-model.
- 4. Translate to a form that can be input to a database system.
 - 1. Translate ER model to relational database design.

Entity Relationship Model

ER model -- Database Modeling

- ER data model facilitates database design.
- Allows specification of an enterprise schema that represents the overall logical structure of a database.
- The ER model maps meanings and interactions of real-world enterprises onto a conceptual schema.
- The ER data model employs three basic concepts:
 - entity sets,
 - Attributes,
 - relationship sets.
- ER diagram, which can express the overall logical structure of a database graphically.

Entity and Entity Sets

- An entity is an object that exists and is distinguishable from other objects.
 - □ Example: specific person, company, event, plant
- An entity set is a set of entities of the same type that share the same properties.
 - Example: set of all persons, companies, trees, holidays
- An entity is represented by a set of attributes; i.e., descriptive properties possessed by all members of an entity set.
 - Example:

```
instructor = (ID, name, street, city, salary )
course= (Cno, Cname, credits)
```

A subset of the attributes form a **primary key** of the entity set; i.e., uniquely identifying each member of the set.

Entity Sets

- Entities can be represented graphically as follows:
 - Rectangles represent entity sets.
 - Attributes listed inside entity rectangle
 - Underline indicates primary key attributes

instructor

<u>ID</u>

name

salary

student

<u>ID</u>

name

tot_cred

Entity Sets -- instructor and student

instructor_ID instructor_name

76766	Crick
45565	Katz
10101	Srinivasan
98345	Kim
76543	Singh
22222	Einstein

instructor

student-ID student_name

98988	Tanaka
12345	Shankar
00128	Zhang
76543	Brown
76653	Aoi
23121	Chavez
44553	Peltier

student

Relationship Sets

☐ A **relationship** is an association among several entities

Example:

13553 (Banta Singh) <u>advisor</u> 0007 (<u>Einstein</u>) student entity relationship set instructor entity

A **relationship set** is a mathematical relation among $n \ge 2$ entities, each taken from entity sets

$$\{(e_1, e_2, \dots e_n) \mid e_1 \in E_1, e_2 \in E_2, \dots, e_n \in E_n\}$$

where $(e_1, e_2, ..., e_n)$ is a relationship

Example:

 $(13553, 0007) \in advisor$

Relationship Set advisor

Relationship Sets

Diamonds represent relationship sets.

Relationship Sets (Cont.)

- An attribute can also be associated with a relationship set.
- ☐ For instance, the *advisor* relationship set between entity sets *instructor* and *student* may have the attribute *date* which tracks when the student started being associated with the advisor

Relationship Sets

Relationship may have descriptive attributes.

Degree of a Relationship Set

- binary relationship
 - involve two entity sets (or degree two).
 - most relationship sets in a database system are binary.
- Relationships between more than two entity sets are rare. Most relationships are binary.
- Example: students work on research projects under the guidance of an instructor.
 - relationship proj_guide is a ternary relationship between instructor, student, and project

Mapping Cardinality Constraints

- Express the number of entities to which another entity can be associated via a relationship set.
- Most useful in describing binary relationship sets.
- For a binary relationship set the mapping cardinality must be one of the following types:
 - One to one
 - One to many
 - Many to one
 - Many to many

Mapping Cardinalities

One to one

One to many

Note: Some elements in A and B may not be mapped to any elements in the other set

Mapping Cardinalities

Many to one

Many to many

Note: Some elements in A and B may not be mapped to any elements in the other set

Complex Attributes

- Attribute types:
 - Simple and composite attributes.
 - Single-valued and multivalued attributes
 - Example: multivalued attribute: phone_numbers
 - Derived attributes
 - Can be computed from other attributes
 - Example: age, given date_of_birth
- Domain the set of permitted values for each attribute

Composite Attributes

Redundant Attributes

- Suppose we have entity sets:
 - instructor, with attributes: ID, name, dept_name, salary
 - department, with attributes: dept_name, building, budget
- We model the fact that each instructor has an associated department using a relationship set inst_dept.
- The attribute dept_name appears in both entity sets.
- Since it is the primary key for the entity set department, it replicates information present in the relationship.
- dept_name is redundant in the entity set instructor and should be removed.

Weak Entity Sets

- Consider a **section** entity, identified by course_id, semester, year, sec-id
- Clearly, section entities are related to course entities.
- Suppose we create a relationship set sec_course between entity sets section and course.
- □ But the information in *sec_course* is redundant,
 - since section already has an attribute course_id, which identifies the course with which the section is related.
- This motivates the notion of weak entity set.

Weak Entity Sets (Cont.)

- Alternative: in section entity, store only section_id, year, semester.
- Entity set section does not have enough attributes to identify a particular section entity uniquely.
- Has no keys. Sections for different courses may share the same section_id, year, and semester.
- ☐ The relationship sec_course is a special relationship that provides extra information. the course_id, required to identify section entities uniquely.

Weak Entity Sets (Cont.)

- The notion of weak entity set formalizes the above intuition.
- □ A weak entity set is one whose existence is dependent on another entity, called its identifying entity;
- instead of associating a primary key with a weak entity, we use the identifying entity, along with extra attributes called **discriminator** to uniquely identify a weak entity.
- An entity set that is not a weak entity set is termed a strong entity set.

Weak Entity Sets (Cont.)

- Every weak entity must be associated with an identifying entity;
- that is, the weak entity set is said to be existence dependent on the identifying entity set.
- ☐ The identifying entity set is said to **own** the weak entity set that it identifies.
- The relationship associating the weak entity set with the identifying entity set is called the identifying relationship.

E-R Diagrams

Relationship Sets

Diamonds represent relationship sets.

Relationship Sets with Attributes

Roles

- Entity sets of a relationship need not be distinct
 - Each occurrence of an entity set plays a "role" in the relationship
- ☐ The labels "course_id" and "prereq_id" are called roles.

Cardinality Constraints

- □ We express cardinality constraints by drawing either a directed line (→), signifying "one," or an undirected line (—), signifying "many," between the relationship set and the entity set.
- One-to-one relationship between an instructor and a student:
 - A student is associated with at most one instructor via the relationship advisor
 - A student is associated with at most one department via stud_dept

One-to-Many Relationship

- one-to-many relationship between an *instructor* and a *student*
 - an instructor is associated with several (including 0) students via advisor
 - a student is associated with at most one instructor via advisor,

Many-to-One Relationships

- □ In a many-to-one relationship between an *instructor* and a *student*,
 - an instructor is associated with at most one student via advisor,
 - and a student is associated with several (including 0) instructors via advisor

Many-to-Many Relationship

- An instructor is associated with several (possibly 0) students via advisor
- A student is associated with several (possibly 0) instructors via advisor

Total and Partial Participation

☐ Total participation (indicated by double line): every entity in the entity set participates in at least one relationship in the relationship set

Notation for Expressing More Complex Constraints

- A line may have an associated minimum and maximum cardinality, shown in the form *l..h*, where *l* is the minimum and *h* the maximum cardinality
 - A minimum value of 1 indicates total participation.
 - A maximum value of 1 indicates that the entity participates in at most one relationship
 - A maximum value of * indicates no limit.

Instructor can advise 0 or more students. A student must have 1 advisor; cannot have multiple advisors

Notation to Express Entity with Complex Attributes

instructor

```
ID
name
  first_name
   middle_initial
   last_name
address
   street
     street_number
     street_name
     apt_number
   city
   state
   zip
{ phone_number }
date_of_birth
age()
```


Expressing Weak Entity Sets

- In E-R diagrams, a weak entity set is depicted via a double rectangle.
- We underline the discriminator of a weak entity set with a dashed line.
- The relationship set connecting the weak entity set to the identifying strong entity set is depicted by a double diamond.
- □ Primary key for section (course_id, sec_id, semester, year)

E-R Diagram for a University Enterprise

Reduction to Relation Schemas

Reduction to Relation Schemas

- Entity sets and relationship sets can be expressed uniformly as relation schemas that represent the contents of the database.
- A database which conforms to an E-R diagram can be represented by a collection of schemas.
- ☐ For each entity set and relationship set there is a unique schema that is assigned the name of the corresponding entity set or relationship set.
- □ Each schema has a number of columns (generally corresponding to attributes), which have unique names.

Representing Entity Sets

- A strong entity set reduces to a schema with the same attributes student(<u>ID</u>, name, tot_cred)
- A weak entity set becomes a table that includes a column for the primary key of the identifying strong entity set

section (course_id, sec_id, sem, year)

Representing Relationship Sets

- A many-to-many relationship set is represented as a schema with attributes for the primary keys of the two participating entity sets, and any descriptive attributes of the relationship set.
- Example: schema for relationship set advisor

$$advisor = (\underline{s} id, i id)$$

Representation of Entity Sets with Composite Attributes

instructor

```
ID
name
  first_name
   middle initial
   last_name
address
   street
     street number
     street_name
     apt_number
   city
   state
   zip
{ phone_number }
date_of_birth
age()
```

- Composite attributes are flattened out by creating a separate attribute for each component attribute
 - Example: given entity set instructor with composite attribute name with component attributes first_name and last_name the schema corresponding to the entity set has two attributes name_first_name and name_last_name
 - Prefix omitted if there is no ambiguity (name_first_name could be first_name)
- Ignoring multivalued attributes, extended instructor schema is
 - instructor(ID,
 first_name, middle_initial, last_name,
 street_number, street_name,
 apt_number, city, state, zip_code,
 date_of_birth)

Representation of Entity Sets with Multivalued Attributes

- A multivalued attribute M of an entity E is represented by a separate schema EM
- Schema EM has attributes corresponding to the primary key of E and an attribute corresponding to multivalued attribute M
- Example: Multivalued attribute phone_number of instructor is represented by a schema: inst_phone= (<u>ID</u>, <u>phone_number</u>)
- □ Each value of the multivalued attribute maps to a separate tuple of the relation on schema EM
 - For example, an *instructor* entity with primary key 22222 and phone numbers 456-7890 and 123-4567 maps to two tuples: (22222, 456-7890) and (22222, 123-4567)

Redundancy of Schemas

- Many-to-one and one-to-many relationship sets that are total on the many-side can be represented by adding an extra attribute to the "many" side, containing the primary key of the "one" side
- Example: Instead of creating a schema for relationship set inst_dept, add an attribute dept_name to the schema arising from entity set instructor

Redundancy of Schemas (Cont.)

- For one-to-one relationship sets, either side can be chosen to act as the "many" side
 - That is, an extra attribute can be added to either of the tables corresponding to the two entity sets
- If participation is partial on the "many" side, replacing a schema by an extra attribute in the schema corresponding to the "many" side could result in null values

Redundancy of Schemas (Cont.)

- The schema corresponding to a relationship set linking a weak entity set to its identifying strong entity set is redundant.
- Example: The section schema already contains the attributes that would appear in the sec_course schema

Keys for Relationship Sets

- The combination of primary keys of the participating entity sets forms a super key of a relationship set.
 - □ (s_id, i_id) is the super key of advisor
 - NOTE: this means a pair of entity sets can have at most one relationship in a particular relationship set.
 - E.g.. if we wish to track multiple meeting dates between a student and her advisor,
 - (s_id, i_id, date) can be super-key of advisor.
- Must consider the mapping cardinality of the relationship set when deciding what are the candidate keys
- Need to consider semantics of relationship set in selecting the primary key in case of more than one candidate key