This summarizes work done in February 2014. Sudelbuch around page 900. The problem is that we have an $m \times n$ joint prior probability matrix p_{ij} with some zeroes in it (Wagner's constraints) that we want to transform into a joint posterior probability matrix (q_{ij}) .

- (A) For p_{ij} , we use the constraints and MAXENT. (B) For q_{ij} , we use the observation and *Infomin*.
- (A) Let $K = K_{\omega} \times K_{\theta} \subset \{1, \dots, m\} \times \{1, \dots, n\}$ be the set for which $p_{ij} = 0$ (iff $(i, j) \in K$). First let $K = \emptyset$.

Then leonbloy on page 914 in Sudelbuch, using Cover and Thomas theorems 2.2.1. and 2.6.5., shows that $p_{ij} = P(\omega_i)P(\theta_i)$.

To show this manually let $\alpha_i = P(\omega_i)$ and $\beta_j = P(\theta_j)$. Then the maximum entropy for (p_{ij}) is

$$-H = \sum_{i=1}^{m-1} \sum_{j=1}^{n-1} x_{ij} \log x_{ij} + \sum_{i=1}^{m-1} \left(\alpha_i - \sum_{j=1}^{n-1} x_{ij} \right) \log \left(\alpha_i - \sum_{j=1}^{n-1} x_{ij} \right) + \sum_{j=1}^{n-1} \left(\beta_j - \sum_{i=1}^{m-1} x_{ij} \right) \log \sum_{j=1}^{n-1} \left(\beta_j - \sum_{i=1}^{m-1} x_{ij} \right) + X \log X$$
 (1)

with

$$X = \left(1 - \sum_{i=1}^{m-1} \alpha_i - \sum_{j=1}^{n-1} \beta_j + \sum_{i=1}^{m-1} \sum_{j=1}^{n-1} x_{ij}\right)$$
(2)

To find the extremum we differentiate with respect to x_{ij} (*i* and *j* now fixed) and set to 0 (no Lagrange multipliers necessary, page 919).

$$0 = \log x_{ij} - \log \left(\alpha_i - \sum_{j=1}^{n-1} x_{ij} \right) - \log \left(\beta_j - \sum_{i=1}^{m-1} x_{ij} \right) + \log \left(1 - \sum_{i=1}^{m-1} \alpha_i - \sum_{j=1}^{n-1} \beta_j + \sum_{i=1}^{m-1} \sum_{j=1}^{n-1} x_{ij} \right)$$
(3)

It is easy to see that $x_{ij} = \alpha_i \beta_j$ solves this. Therefore, $p_{ij} = P(\omega_i)P(\theta_i)$ is the maximum entropy solution for $K = \emptyset$.