

Pokemon Battle Analysis

DATA1030 Final Presentation

Taemin Huh Brown University DSI

https://github.com/taemin-huh/data1030-project/

Introduction

- Target variable: Nin Rate (regression problem)
- 12 features: pkmn dataset (800 Pokemon info datapoints Kaggle)
 - ID: Pokedex Number, Pokemon Name
 - Type: Type 1, Type 2
 - 6 stats: HP, Attack, Defense, Sp. Atk, Sp. Def, Speed
 - Class: Generation, Legendary
- 3 features: battle dataset (50,000 Pokemon battle datapoints Kaggle)
 - First Pokemon, Second Pokemon, Winner

Exploratory Data Analysis

Scatter Plot: Speed vs. Win Rate

Strong correlation (~0.94)

Scatter Plot: Attack vs. Win Rate

Some correlation (~0.50)

Pre-Processing

- Basic split (IID, large # of datapoints)
 - -60%/20%/20% for train/test/split
- Pre-processors
 - OneHotEncoder: Type1(18), Type2(19), Generation (6), Legendary(2).
 - MinMaxScaler: HP, Attack, Defense, Sp. Atk, Sp. Def, Speed (0-255 each)
- 51 features after pre-processing (15-5+17+18+5+1)

X_train shape: (469, 15)
X_train_prep shape: (469, 51)

Cross-Validation

- Attempted supervised ML algorithms
 - Multiple linear regression, SVM, decision tree, random forest, XGBoost
- GridSearchCV w/5-fold CV to tune hyperparameters.
- Tuned hyperparameters
 - Linear regression: fit_intercept
 - SVM: kernel, C, gamma
 - XGBoost: n_estimators, learning_rate, max_depth, subsample, colsample_bytree
 - Decision tree: max_depth, min_samples_split
 - Random forest: n_estimators, max_depth
- Repeated 5-fold CV w/ 10 repeats for uncertainty estimation

Results

Table: Performance & Uncertainty Evaluation

	Model	Test MAE	Std Dev from Baseline	Splitting Uncertainty	Non-Deterministic Uncertainty
0	LinearRegression	0.048137	41.005280	0.004128	NaN
1	SVM	0.052230	33.929851	0.004868	NaN
2	DecisionTree	0.046020	39.797189	0.004306	NaN
3	RandomForest	0.040605	43.177033	0.004095	0.000253
4	XGBoost	0.038758	44.898587	0.003979	0.000278

Primary Evaluation Metric

Best Performing Model

Baseline MAE

Baseline prediction (mean of y_train): 0.4994157900730197 R^2 Score: -0.001114365822402652

MAE: 0.2173976676130286

Scatter Plot: Actual vs. XGBoost Predicted Win Rate

Line Plot: Actual vs. XGBoost Predicted Win Rate

Both plots show meaningfully close predictions vs. actual

Global Feature Importances

Permutation Importance (Linear Models)

Lin	earRegres	sion	Global	Feature	Importance:
	Featı	ıre	Import	tance	
50	Feature	50	2.18427	7e-01	
46	Feature	46	2.034551	le-02	
43	Feature	43	7.043117	7e-03	

SVM Global Feature Importance:				
	Feature	Importance		
		2.088433e-01		
46	Feature 46	2.335917e-02		
10	Feature 10	2.566417e-03		

Gini Importance (Tree-Based Models)

DecisionTree Global Feature Importance:	
Feature Importance	
50 Feature 50 0.955395	3
46 Feature 46 0.042320	
26 Feature 26 0.001248	
RandomForest Global Feature Importance:	

········		
	Feature	Importance
50	Feature 50	0.922071
	Feature 46	
45	Feature 45	0.010574

```
XGBoost Global Feature Importance:
Feature Importance
50 Feature 50 0.424124
43 Feature 43 0.111956
25 Feature 25 0.073364
```

Feature 50 (Speed) has the highest importance score across all regressions

Global Feature Importances: SHAP Summary Plots

Feature 50 (Speed) has the highest absolute SHAP values across all regressions

Local Feature Importances: SHAP Force Plots

Linear Regression: Typical Case (Above) & Edge Case (Below)

SVM: Typical Case (Above) & Edge Case (Below)

Local Feature Importances: SHAP Force Plots

Decision Tree: Typical Case (Above) & Edge Case (Below)

Random Forest: Typical Case (Above) & Edge Case (Below)

Local Feature Importances: SHAP Force Plots

XGBoost: Typical Case (Above) & Edge Case (Below)

Outlook

- Additional data
 - 25 Pokemon natures
 - Level
 - Held items & abilities
 - Movesets
 - Competitive play pick rate
- Combining multiple models through stacking
- Creating partial dependence plots (PDP's)
- Implementing neural networks given enough data

Thank You

