Аппроксимация функций

Тема 3

Среднеквадратическое приближения функций

Среднеквадратичные аппроксимация функций используются обычно в случаях, когда

- приближаемая функция не обладает достаточной гладкостью и для нее не удается построить подходящего интерполяционного многочлена,
- или же значения функции известны в достаточно большом числе точек, но со случайными ошибками.

Мерой отклонения при среднеквадратичном приближении является <u>евклидова норма</u>:

1. Если функция f(x) задана в некоторых точках x_j (j = 0,1, 2,...,m) отрезка [a,b] (причем m > n), то норма разности значений функций на дискретном множестве $\{x_j\}$ определяется формулой

$$||f(x_k) - \varphi(x_k, c_0, c_1, ..., c_n)||_E = \left(\sum_{k=1}^m (f(x_k) - \varphi(x_k, c_0, c_1, ..., c_n)^2)^{1/2}\right)$$

(«сумма квадратов отклонений во всех узлах»)

2. Если f(x) задана во всех точках некоторого отрезка [a,b] и обе функции f(x) и $\varphi(x)$ интегрируемы с квадратом на [a,b], то норма разности значений функций определяется формулой:

$$||f(x) - \varphi(x, c_0, c_1, ..., c_n)||_E = (\int_a^b (f(x) - \varphi(x, c_0, c_1, ..., c_n))^2 dx)^{1/2}$$

Задача о наилучшем среднеквадратичном приближении состоит в нахождении параметров c_i , минимизирующих норму

$$\| f(x) - \varphi(x, c_0, c_1, ..., c_n) \|_{E}$$

для функции φ (x), принадлежащей некоторому классу функций.

Обычно этот класс достаточно узок - его выбирают по ряду соображений профессионально-теоретического характера, либо исходя из формы графика исходной «табличной» функции $(x_i, f(x_i))$ j = 0,1,2,...,n

Такую задачу можно графически интерпретировать как минимизацию длин отрезков отклонений заданных точек $(x_j, f(x_j))$ j = 0,1,2,...,n от кривой $y = \varphi(x)$, принадлежащей некоторому классу функций:

При линейной аппроксимации многочлен наилучшего среднеквадратичного приближения

$$\sum_{k=0}^{n} c_k \varphi_k(x)$$

существует при условии <u>линейной независимости</u> <u>системы функций</u> $\{\varphi_k(x)\}, k=0,1,...,n$

На практике чаще применяют среднеквадратичное приближение алгебраическими многочленами в дискретном варианте.

При этом желательно, чтобы число m узлов, в которых известны значения функции было больше степени многочлена n хотя бы в полтора-два раза.

Способ решения задачи среднеквадратичного приближения называется *методом наименьших* квадратов (МНК), и заключается в построении такого многочлена $P_n^*(x)$, для которого сумма квадратов отклонений его значений в узлах от табличных значений была бы минимальной –

$$\min_{c_0, c_1, c_2, \dots, c_n} S(c_0, c_1, c_2, \dots, c_n) =
= \min_{c_0, c_1, c_2, \dots, c_n} \left(\sum_{k=0}^{m} (P_n(x_k, c_0, c_1, c_2, \dots, c_n) - f(x_k))^2 \right)$$

Необходимое условие локального экстремума функции имеет вид:

$$\frac{\partial S}{\partial c_i} = \sum_{k=0}^{m} 2(c_0 + c_1 x_k + c_2 x_k^2 + \dots + c_n x_k^n - f(x_k)) \cdot x_k^i = 0, \qquad i = 0, 1, n$$

что приводит к следующей системе линейных уравнений (нормальной системе) для нахождения коэффициентов многочлена наилучшего среднеквадратичного приближения $P_n(x)$ в степенной форме

$$P_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

$$\begin{cases}
c_0 \sum_{i=0}^{m} 1 + c_1 \sum_{i=0}^{m} x_i + c_2 \sum_{i=0}^{m} x_i^2 + \dots + c_n \sum_{i=0}^{m} x_i^n = \sum_{i=0}^{m} f(x_i) \\
c_0 \sum_{i=0}^{m} x_i + c_1 \sum_{i=0}^{m} x_i^2 + c_2 \sum_{i=0}^{m} x_i^3 + \dots + c_n \sum_{i=0}^{m} x_i^{n+1} = \sum_{i=0}^{m} x_i \cdot f(x_i)
\end{cases}$$

$$c_0 \sum_{i=0}^{m} x_i + c_1 \sum_{i=0}^{m} x_i^2 + c_2 \sum_{i=0}^{m} x_i^3 + \dots + c_n \sum_{i=0}^{m} x_i^{n+1} = \sum_{i=0}^{m} x_i \cdot f(x_i)$$

$$\begin{cases}
c_0 \sum_{i=0}^{m} x_i^2 + c_1 \sum_{i=0}^{m} x_i^3 + c_2 \sum_{i=0}^{m} x_i^4 + \dots + c_n \sum_{i=0}^{m} x_i^{n+2} = \sum_{i=0}^{m} x_i^2 \cdot f(x_i)
\end{cases}$$

$$c_0 \sum_{i=0}^m x_i^n + c_1 \sum_{i=0}^m x_i^{n+1} + c_2 \sum_{i=0}^m x_i^{n+2} + \dots + c_n \sum_{i=0}^m x_i^{2n} = \sum_{i=0}^m x_i^n \cdot f(x_i)$$

Коэффициентами системы являются суммы степеней чисел \mathcal{X}_i , а правыми частями – суммы произведений значений функции в узлах и степеней \mathcal{X}_i .

Для формирования матрицы этой системы достаточно вычислить только элементы первой строки и последнего столбца, остальные элементы заполняются с помощью циклического сдвига элементов предыдущей строки.

Можно доказать, что если среди узлов нет совпадающих и $n \le m$, то определитель системы не равен нулю и решение системы единственно.

Если m=n, многочлен наилучшего среднеквадратичного приближения равен интерполяционному многочлену Лагранжа: $P_n(x) = L_n(x)$

Выбор степенных функций в качестве не является оптимальным с точки зрения решения нормальной системы, т.к. в этом случае матрица системы часто плохо обусловлена.

Для отрезка [0,1], например, элементами матрицы являются величины $a_{ij} = \frac{1}{i+j+1}$

Напомним, что такая матрица называется матрицей Гильберта, ее число обусловленности $condG \approx e^{3.5n}$

при n=5 оно имеет порядок 10^7 , при n=9 – превышает 10^{13} . т.е. система $\{x^k\}$ почти линейно зависима на отрезке [0,1].

Поэтому на практике для построения многочленов наилучшего среднеквадратичного приближения не рекомендуется использовать степенные функции для n > 4, т.к. добавление новых функции \mathcal{X}^k будет ухудшать качество аппроксимации. При этом желательно, чтобы число точек m было больше степени многочлена n хотя бы в полтора-два раза.

Для того чтобы найти коэффициенты многочлена наилучшего среднеквадратичного приближения с высокой точностью рекомендуется для решения системы применять методы, использующие ортогональные преобразования, либо воспользоваться системами ортогональных многочленов в качестве $\{x^k\}$.

Пример 1. Постройте для функции $f(x) = \exp\left(-\frac{1}{15}x^2 + \frac{1}{5}\right)$ заданной в m=10 узлах, многочлен наилучшего среднеквадратичного приближения степени n=1. Сравните результат с полученным командой $FindFit[\]$.

```
      МаtrixForm [N[XDT]]

      матричная ф··· [численное

      atrixForm=

      0.

      0.6

      1.2

      1.8

      2.4

      3.

      3.6

      4.2

      4.8

      5.4

      6.
```

```
Матричная ф· · · [ЧОТ]]

[матричная ф· · · [ЧИСЛЕННОЕ

ItrixForm=

( 1.2214
  1.19244
  1.1096
  0.984127
  0.831936
  0.67032
  0.514788
  0.376815
  0.262895
  0.17482
  0.110803
```

Вычисляем аппроксимирующую линейную функцию:

```
g[x]:=a+bxx;
g[x]
1.29978 - 0.207505 x
```

```
      Сlear[a, b]; rules = FindFit[data, a + b x x, {a, b}, x]; y = a + b x x /. rules

      очистить
      найти параметры соответствия

      1.29978 - 0.207505 x
```

Выведем график предлагаемой функции, узловые точки и график полученной прямой:

gr1 := Plot $\left[N \left[Exp \left[-\frac{x^2}{2} + \frac{1}{2} \right] \right], \{x, 0, 6\} \right];$


```
gr2 := ListPlot[Table[{N[xdata[i]], N[ydata[i]]}, {i, 0, n}]];

| лиаграмма··· | таблин··· | численное приб··· | численное приближение
gr3 := Plot[y, {x, 0, 6}]
| график функции
```


Пример 2. Используйте метод наименьших квадратов для построения параболы по четырем точкам

Парабола и ее график:

(-3,3), (0,1), (2,1), (4,3)

Функция задана в 41 узле с погрешностями

Интерполяционный многочлен 40-й степени

MHK:

$$P_1(x) = 1.04588 - 0.537899x$$

MHK: $P_2(x) = 1.01912 - 0.962667x + 0.353974x^2$

Основные функции пакета Mathematica, используемые для приближения функций.

InterpolatingPolinomial [data, x]

строит интерполяционный многочлен по формуле Hьютона от переменной \mathbf{x} для функции, заданной таблицей значений data.

В общем случае $\frac{data}{data}$ представлен списком $\{\{x1, y1\}, \{x2, y2\}, ...\}$. Список $\{\{1, y1\}, \{2, y2\}, ...\}$ можно задать как $\{y1, y2, ...\}$.

FindFit [data, expr, pars, vars]

применяется при интерполировании экспериментальных данных методом наименьших квадратов.

Интерполирующая функция строится в виде выражения *expr* от переменных *vars*. Аргумент *pars* – список параметров, значения которых нужно найти. Исходные данные *data* могут быть заданы списком $\{x_1, y_1\}$, $\{x_2, y_2\}$, ... $\}$.

Interpolation[data, Method->"Spline"]

Результат возвращает в виде объекта InterpolatingFunction, который в системе Mathematica может быть использован как любая другая обычная функция.

SplineFit[data,Cubic]

Возвращает интерполяционный кубический сплайн в виде объекта SplineFunction[type, domain, interval], который дает параметрическое представление интерполяционной кривой в виде $\{x[t], y[t]\}$. Параметр принимает значения из области domain. Если дать определенное значение параметра в качестве аргумента этого объекта, то он возвращает координаты соответствующей точки кривой.