×

Página Principal / Mis cursos / GRADUADO-A EN INGENIERÍA INFORMÁTICA (2010) (296)

/ FUNDAM. FÍSICOS Y TE (2021)-296\_11\_13\_2021\_E / SEMANA 10 (23 - 29 nov)

/ Cuestionario sobre los contenidos de la semana 9

Comenzado el sábado, 30 de enero de 2021, 22:50

Estado Finalizado

Finalizado en sábado, 30 de enero de 2021, 22:59

Tiempo 8 minutos 8 segundos

empleado

Calificación 8,20 de 10,00 (82%)

Pregunta 1

Incorrecta

Puntúa 0,00 sobre 1,00

Considere el circuito de la figura en el cual la fuente de corriente cuyo fasor es  $I_1$  viene dada por  $i_1(t) = I_0 \cos(\omega t + \frac{\pi}{4})$ 



¿Qué desfase habrá entre la corriente que circula por el condensador y la caída de potencial en sus extremos?

 $\bigcirc$  a.  $\frac{\pi}{2}$ 

b.  $\frac{\pi}{4}$ 

c. dependerá de los valores del resto de elementos del circuito

d. cero

La respuesta correcta es:

 $\frac{\pi}{2}$ 

| $\neg$ |            | 1     | 1              | 1 . | . 1           | •  | D /       | 1 7 |        |
|--------|------------|-------|----------------|-----|---------------|----|-----------|-----|--------|
|        | uesmonario | sonre | los contenidos | ae  | e ia semana y | ı. | Revision. | aei | intent |

| Pregunta | 2 |
|----------|---|
|----------|---|

Correcta

Puntúa 1,00 sobre 1,00

¿Qué afirmaciones son válidas para dos condensadores de capacidades  $C_1$  y  $C_2$  conectados en serie?

(Cada respuesta errónea resta el 30 % del valor de la pregunta)

- $\square$  Su capacidad equivalente es  $C_{eq}=C_1+C_2$
- Su impedancia equivalente es  $Z_{eq} = \frac{Z_{C_1}Z_{C_2}}{Z_{C_1} + Z_{C_2}}$
- $^{\sim}$  Su capacidad equivalente es  $C_{eq}=rac{C_{1}C_{2}}{C_{1}+C_{2}}$
- ightarrow Su impedancia equivalente es  $Z_{eq}=Z_{C_1}+Z_{C_2}$

# Las respuestas correctas son:

Su capacidad equivalente es  $C_{eq}=rac{C_1C_2}{C_1+C_2}$ 

Su impedancia equivalente es  $Z_{eq} = Z_{C_1} + Z_{C_2}$ 

Pregunta 3

Correcta

Puntúa 1,00 sobre 1,00

Sea un condensador cuya capacidad vale C. En corriente continua, la impedancia de dicho condensador

vale infinito ✓ . De ahí que si lo usamos en un circuito con este tipo de corriente, se comportará

impidiendo el paso de corriente

entre los puntos donde se coloque.

### La respuesta correcta es:

Sea un condensador cuya capacidad vale C. En corriente continua, la impedancia de dicho condensador [vale infinito]. De ahí que si lo usamos en un circuito con este tipo de corriente, se comportará [impidiendo el paso de corriente] entre los puntos donde se coloque.

| Pregunta 4 Parcialmente correcta                                                                                                                                          |                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Puntúa 0,20 sobre 1,00                                                                                                                                                    |                              |
| ¿Cúal o cuáles de las siguientes afirmaciones son ciertas con respecto al fasor de una determ tiempo $v(t)=V_0\cos(\omega t+\alpha_v)$ ?                                  | nada tensión periodica en el |
| (Cada respuesta errónea resta el 30 % del valor de la pregunta)                                                                                                           |                              |
| ${\Bbb Z}$ Es un número complejo cuyo módulo es siempre la amplitud $V_0$ de $v(t)$                                                                                       | ~                            |
| Es un número complejo cuyo valor es independiente de cuál sea la frecuencia angular de                                                                                    | v(t)                         |
| Es un número complejo cuya parte imaginaria siempre será distinta de cero                                                                                                 |                              |
| Es un número complejo que varía con el tiempo                                                                                                                             |                              |
| ightharpoons Es un número complejo cuyo valor depende de cuál sea la frecuencia angular de $v(t)$                                                                         | ×                            |
|                                                                                                                                                                           |                              |
| Es un número complejo cuyo valor es independiente de cuál sea la frecuencia angular de $v(t)$ ,  Es un número complejo cuyo módulo es siempre la amplitud $V_0$ de $v(t)$ |                              |
| Pregunta <b>5</b> Correcta Puntúa 1,00 sobre 1,00                                                                                                                         |                              |
| Sea una resistencia de valor <i>R</i> . En corriente continua, la impedancia de dicha resistencia val                                                                     | e justamente R 🗸 .           |
| De ahí que si la usamos en un circuito con este tipo de corriente, se comportará                                                                                          |                              |
| dificultando pero no impidiendo el paso de corriente   ✓ entre los puntos donde se col                                                                                    | oque.                        |
|                                                                                                                                                                           |                              |
|                                                                                                                                                                           |                              |
| La respuesta correcta es:  Sea una resistencia de valor <i>R</i> . En corriente continua, la impedancia de dicha resistencia [vale                                        | ustamente R1. De ahí que si  |
|                                                                                                                                                                           |                              |
| la usamos en un circuito con este tipo de corriente, se comportará [dificultando pero no impid                                                                            | endo el paso de corrientel   |

| - |           | •    | 1 .   | 1   | 1            | 1 1   |          | $\sim$ | D '  | ,      | 1 1 | •       |
|---|-----------|------|-------|-----|--------------|-------|----------|--------|------|--------|-----|---------|
|   | ilection: | aria | cohre | nc. | contenidos o | de la | cemana ! | ų٠     | RAVI | ICIÓN. | del | intenta |
|   |           |      |       |     |              |       |          |        |      |        |     |         |

| Pregunta | 6 |
|----------|---|
|          |   |

Correcta

Puntúa 1,00 sobre 1,00

¿Qué afirmaciones son válidas para dos resistencias de valores R<sub>1</sub> y R<sub>2</sub> conectadas en paralelo?

(Cada respuesta errónea resta el 30 % del valor de la pregunta)

 $ilde{\mathbb{Z}}$  Su resistencia equivalente es  $R_{eq}=rac{R_1R_2}{R_1+R_2}$ 

~

- Su resistencia equivalente es  $R_{eq} = R_1 + R_2$
- $^{\prime\prime}$  Su impedancia equivalente es  $Z_{eq}=rac{R_{1}R_{2}}{R_{1}+R_{2}}$

~

Su impedancia equivalente es  $Z_{eq} = R_1 + R_2$ 

## Las respuestas correctas son:

Su resistencia equivalente es  $(R_{eq}=\frac{R_1R_2}{R_1+R_2})$ 

Su impedancia equivalente es  $(Z_{eq}=\frac{R_{1}R_{2}}{R_{1}+R_{2}})$ 

### Pregunta 7

Correcta

Puntúa 1,00 sobre 1,00

¿En qué situación resulta obligatorio resolver un circuito de corriente alterna mediante el método de superposición?

- a. Cuándo alguna de las fuentes presentes en el circuito tenga una frecuencia angular distinta a alguna otra fuente del circuito.
- b. Siempre es obligatorio aplicar el método de superposición para resolver circuitos en corriente alterna.
- c. Cuando todas las fuentes presentes en el circuito tienen la misma frecuencia angular.
- d. No es obligatorio nunca. Puede ser más o menos recomendable en función de la forma del circuito, pero nunca obligatorio.

#### La respuesta correcta es:

Cuándo alguna de las fuentes presentes en el circuito tenga una frecuencia angular distinta a alguna otra fuente del circuito.



