Ludwig-Maximilians-Universität München Institut für Informatik Lehrstuhl für Mobile und Verteilte Systeme Prof. Dr. Linnhoff-Popien Prof. Dr. Thomas Gabor

Probeklausurblatt 1 Rechnerarchitektur im Sommersemester 2024

Zu den Modulen A, B

Abgabetermin: 28.04.24, 18:00 Uhr **Besprechung:** 29.04.24 - 03.05.24

Ankündigungen: Herzlich willkommen zum Übungsbetrieb zur Vorlesung Rechnerarchitektur. Bitte

melden Sie sich zu den Übungsgruppen auf Moodle an. Beachten Sie dazu auch die Hinweise auf dem Merkblatt. Um kurzfristige Ankündigungen nicht zu verpassen, bitten wir Sie auch regelmäßig Moodle und die Kurswebsite zu besuchen.

Aufgabe P1: Adressdarstellung

(9 Pkt.)

Viele Rechner besitzen einen Hauptspeicher, in dem 4-Byte-Worte gespeichert werden können. Das bedeutet, dass mit einer einzigen Operation 4 Bytes zwischen Speicher und Prozessor ausgetauscht werden können. Jedes Wort besitzt eine *Adresse* (wie eine Raumnummer). Adressen selbst sind binäre Zahlen, d.h. Bitfolgen einer gegebenen Länge. Die Bitfolge 0...00 adressiert das erste Wort, die Bitfolge 0...01 adressiert das zweite Wort, etc.

- a. Nehmen Sie an, dass
 - (i) für die Adressen eine Bitfolge von 1 Byte verwendet wird;
 - (ii) für die Adressen eine Bitfolge von 2 Byte verwendet wird;

Geben Sie für jeden Fall die Adresse des letzten Speicherwortes an, das mit der gegebenen Anzahl von Bytes adressiert werden kann:

a) in binärer Notation (i) 11111111 (ii) 11111111 11111111

b) in oktaler Notation¹ (i) 377 (ii) 177777 c) in hexadezimaler Notation (i) 0xfff (ii) 0xffff d) in dezimaler Notation (i) 255 (ii) 65535

(Hinweis: die Adresse des ersten Wortes ist 0)

b. Nehmen Sie an die Wortlänge sei 4 Bytes, und 2 Bytes werden für den Adressen-Bitstring verwendet. Nehmen Sie weiterhin an, dass 380 Bytes im Speicher abgelegt werden sollen. Die ersten 4 Bytes werden an der Adresse $123A_{16}$ gespeichert. Der Rest wird ohne Lücken in den

¹Das Oktalsystem ist ein Stellenwertsystem zur Basis 8 mit den Ziffern {0, 1, 2, 3, 4, 5, 6, 7} zur Darstellung einer Zahl.

²Wenn die Wortlänge 4 Bytes beträgt, dann ist die Adresse normalerweise auch 4 Bytes breit. Für diese Übung nehmen wir jedoch an, dass die Adresse 2 Bytes breit ist.

folgenden Speicherzellen abgelegt. Bestimmen Sie die Adresse des letzten Speicherwortes, das noch verwendet wird, um die 380 Bytes zu speichern.

Geben Sie die Antwort als i) binäre Zahl, ii) oktale Zahl, iii) dezimale Zahl und iv) als hexadezimale Zahl an.

```
(i) 0001001110110110 (ii) 11666 (iii) 5046 (iv) 0x13b6
```

Aufgabe P2: Übertragungsgeschwindigkeiten

(10 Pkt.)

Die meisten Laserdrucker können mit einer Auflösung von 1200 dpi (hier synonym zu Pixel pro Zoll, oder kurz ppi) drucken.

a. Wenn die Datenübertragung zum Drucker Pixel für Pixel bei 3*8-Bit Farben erfolgt, wie lange dauert dann die Übertragung einer DIN A4 Farbseite (21 cm x 29,7 cm) zum Drucker bei Verwendung folgender Übertragungsmöglichkeiten?

Hinweis: Sie können davon ausgehen, dass die hier angegebenen Übertragungsraten verlustlos ohne Protokoll-Overhead ausgenutzt werden können. Rechnen Sie die cm zunächst in Zoll um und runden Sie dieses Ergebnis auf 2 Nachkommastellen! Der Rechenweg muss ersichtlich und nachvollziehbar sein!

Aus historischen Gründen wird bei der Angabe von Datenmengen in KByte, MByte, ... der Umrechnungsfaktor 1024 verwendet; bei Angaben in KBit/s, MBit/s, ... wird der Umrechnungsfaktor 1000 verwendet. Sie können die folgende Umrechnungstabelle benutzen:

```
1 GBit/s = 10^9 Bit/s 1 MBit/s = 10^6 Bit/s 1 KBit/s = 10^3 Bit/s 1 GByte = 2^{30} Byte 1 MByte = 2^{20} Byte 1 KByte = 2^{10} Byte
```

- (i) Wireless LAN (IEEE 802.11n) mit 600 MBit/s
- (ii) Ethernet mit 1 GBit/s
- b. Nehmen Sie nun an, dass anstatt von Pixeln eine 16-Bit Codierung jedes Zeichens (ein Zeichen wird durch 16 Bit dargestellt) zusammen mit seinen Koordinaten auf der Seite übertragen wird. Dabei können die Zeichen frei auf der Seite positioniert werden indem der Ankerpunkt eines Zeichens eine Koordinate erhält.
 - (i) Wie viele Bits werden für die Koordinaten benötigt, wenn man die volle Auflösung von 1200 dpi ausnutzen will (d.h. wenn die horizontalen und vertikalen Koordinaten aller Pixel binär kodiert werden müssen)?
 - (ii) Wie lange dauert es jeweils, 100 Seiten mit 1800 Zeichen an den Drucker zu übertragen, wenn das Adressierungsschema aus Aufgabe bi und die gleichen Übertragungsmöglichkeiten wie aus Aufgabe a zur Verfügung stehen? Runden Sie ihr Ergebnis auf 4 Nachkommastellen!

```
a) 1200 dpi = 3048 dpcm -> 21cm * 29,7cm * 3048 dpcm = 1901037,6 dots -> 1.901.038 Pixel * 3 Byte = 5.703.114 Byte i) 600 MBits/s = 75 MByte/s -> t = (5.703.114 Byte) / (75 * 2^20 Byte) = 0.0725188446044922s = 72,51ms il) 1GBit/s = 125 MByte/s -> t = (6.703.114 Byte) / (125 * 2^20 Byte) = 0.0435113067626953s = 43,51ms
```

- b) i) $21 \text{cm} * 3048 \text{ dpcm} = 64.008 \text{ pixel } \& 29,7 * 3048 \text{ dpcm} = 90.525,6 \text{ pixel} \rightarrow 16 \text{ Bit } (2^16 = 65.536) \text{ für die Breite und } 17 \text{ Bit } (2^17 = 131.072) \text{ für die Höhe}$
- ii) 100 Seiten * 1800 Zeichen * (16 Bit + 16 Bit + 17 Bit) = 180.000 * 49 Bit = 8.820.000 Bit = 1.102.500 Byte
- => Mit 600 MBit/s oder 75 MByte/s: t = 0.0140190124511719s = 14,01ms => Mit 1GBit/s oder 125MByte/s: t = 0.0084114074707031s = 8,41ms

Aufgabe P3: Zahlensysteme

(9 Pkt.)

Bearbeiten Sie folgende Fragen zu Zahlensystemen:

a. Geben sie zu jeder der folgenden Dezimalzahlen ihre Binär-, Oktal- und Hexadezimaldarstellung an.

 $\begin{array}{lll} \text{(i)} & (17)_{10} & & 00001001; \ 21; \ 0x11 \\ \text{(ii)} & (42)_{10} & & 00101010; \ 52; \ 0x2a \\ \text{(iii)} & (255)_{10} & & 11111111; \ 377; \ 0xff \end{array}$

b. Geben Sie zu folgenden Dualzahlen die Oktal-, Dezimal- und Hexadezimaldarstellung an:

 $\begin{array}{lll} \text{(i)} & (10001111)_2 & 217; \ 143; \ 0x8f \\ \text{(ii)} & (11010101)_2 & 325; \ 213; \ 0xD5 \\ \text{(iii)} & (00011110)_2 & 36; \ 30; \ 0x1e \end{array}$

Aufgabe P4: Einfachauswahlaufgabe: Einführung

(5 Pkt.)

Für jede der folgenden Fragen ist eine korrekte Antwort auszuwählen ("1 aus n"). Nennen Sie dazu in Ihrer Abgabe die jeweils ausgewählte Antwortnummer ((i), (ii), (iii) oder (iv)). Eine korrekte Antwort ergibt jeweils einen Punkt. Mehrfache Antworten oder eine falsche Antwort werden mit 0 Punkten bewertet.

a) Wie viele Bit enthält ein Byte?			
(i) 16	(ii) 8	(iii) 64	(iv) 32
	×		
b) Welche Binärzahl entspricht dem hexadezimalen Wert C?			
(i) 1110	(ii) 0111	(iii) 0110	(iv) 1100
			X
c) Welche Komponente ist gewöhnlich nicht an die South Bridge eines			
Mainboard-Chipsatzes angebunden?			
(i) USB-	(ii) Audio-Ausgang	(iii) Hauptspeicher	(iv) Festplatten
Schnittstellen			
		×	
d) Wie lautet die höchste Speicheradresse bei einer Adressbreite von n Bit?			
(i) $2+n-1$	(ii) $2^n - 1$	(iii) $2/n - 1$	(iv) $2 * n - 1$
	×		
e) Was ist keine Komponente der Prozessorgrundstruktur?			
(i) Drucker	(ii) Operanden-	(iii) Arithmetisch-	(iv) Befehlsregister
	register	logische Einheit	
×			