

Universidade de Brasília

Departamento de Ciência da Computação

Disciplina: CIC 116394 - Organização e Arquitetura de Computadores - Turma A Prof. Marcus Vinicius Lamar

2013/2

d0 d1 /d2 d3 d4 d5 d6 d7 d8

GABAR: +0

1)(7.0) O mouse, inventado em 1963 e patenteado em 1967 por Douglas Engelbart, tornou-se um dos dispositivos para iteração humano computador mais populares. Os modernos sistemas operacionais Windows e Linux permitem a utilização simultânea de até 255 desses dispositivos. Projete uma interface que permita o uso "simultâneo" de até 256 mouses no processador MIPS Multiciclo desenvolvido em aula. Cada mouse registra as variações nas direções X, Y, com resolução de 8 bits cada em complemento de 2, e os cliques de 8 botões individuais (8 bits, 1 pressionado e 0 solto), de acordo com a tabela abaixo. Valores positivos indicam movimentos para direita ou para baixo, e valores negativos movimentos para a esquerda ou para cima. O protoloco de comunicação é muito simples e a interface física é composta de um conector de 32 pinos de dados e um de clock, que recebe 8 bits com o número do mouse e, após 2 ciclos de clock do processador, retorna os 24 bits de dados:

bits	23-16	15-8	7-0
Mouse	Botões	Desloc Y	Desloc X

- (2.0) Modifique adequadamente o Caminhos de Dados e o Bloco Controlador do MIPS Multiciclo fornecido em anexo mouse \$rt, \$rs. # Imm=0 Tipo-I OPCODE 0x2C de forma a implementar a instrução: que coloca no registrador \$rt da CPU MIPS a word correspondente às informações fornecidas pelo mouse número \$rs.
- (2.0) Modifique adequadamente o Caminho de Dados e o Bloco Controlador do MIPS Multiciclo fornecido em anexo de forma a detectar a instrução syscall, executando-a similarmente à instrução jal 0x0800 0000.
- (2.0) Modifique adequadamente o Caminho de Dados e o Bloco Controlador do MIPS Multiciclo fornecido em anexo de forma a detectar a instrução eret, executando-a similarmente à instrução jr \$ra.
- (1.0) Escreva um programa exemplo em Assembly MIPS que seja executável nesse processador modificado, e apresente continuamente na tela as informações dos mouses 0 a 3, de acordo com a formatação:

"Mouse:%d \t X:%d \t Y:%d \t Botoes: b7b6b5b4b3b2b1b0\n"

Mouse:0 X:10 Y:-10 Botoes:00000001

Dica: Considere que a as rotinas que processam as chamadas syscalls padrões do MARS já estão implementadas no segmento .ktext localizado a partir do endereço 0x08000 0000.

2) (4.0) Dada uma estrutura hierárquica de N níveis de memória cache de dados. Cada nível n possui um tempo de acesso dado por ta(n,N), e é capaz de obter uma taxa de falhas (%) tf(n) com bits(n) de memória. O custo por bit da memória de nível n é de dada por custo(n). O sistema possui 4GiB de memória RAM DDR3 com tempo de acesso de 800 ciclos de clock.

$$ta(n, N) = 2 + 3n^{N} [ciclos]$$
 $tf(n) = \frac{10 \cdot 2^{10}}{bits(n)}$ [%] $custo(n) = \frac{e^{-n^{2}}}{120}$ [R\$/bit]

Considere que a taxa de falhas na memória cachê de instruções seja 0% e um workload composto de 1.000.000 de instruções, onde apenas 25% acessam a memória de dados.

- (1.0) Calcule o tempo de execução do workload por um processador pipeline ideal com frequência de clock de 2.8GHz que não use qualquer tipo de memória cache.
- (1.0) Qual o tamanho, em bits, que uma memória cache de dados de apenas 1 nível deve ter para que o acesso aos dados fique 10 vezes mais rápido? Qual o custo em R\$ dessa memória?
- (2.0) Defina o número de níveis N e o tamanho em KiB que cada nível da estrutura da memória cache de dados deve ter de modo a reduzir o tempo a 1% do tempo de acesso original, com um aumento do custo do sistema de no máximo R\$200,00.

Boa Sorte!!!

	DAC-A 2013/9
	2º Pro Va
	Gabanito

***************************************	11g) ra Folha
	b)
:	.(7)
Control of the second	d) inflerestation of APDI considerando
	deta PErpher d' dx 000 1000
	mouse: . 98017 "noise;" } & caso
	X5: .05Git "Xi" (LABRUS C/ 165/15) Y5: .55(6) 7:" (U50 Odd; a)
	85. 55(6)7 "Y:" USD Oddi ad BOTO ascriz "BOTORS" inves of La.
,	TAB: , 95(); ? " \ 1"
	NL; asciiz "h"
-	rorsipleonia
	NEXT ABORDES WX0000000
	Prysprogres - utilizaças car
	grainugues -
-	
-	
(-1	
4	
s.	1

	2) a) t= IXCPTXT MEMBARIS MEM INSTRUCTED &
	2) a) t=1xc7x1 1 mer 1751 mocae 6
	t= 1.000.000 (4,25 X800 +800) / 2.8 G
	t=0,35714 seg/
	n) 10x ngis rapion of carche L1
	+5 ta=2+3.1 = 5 ciass
	+5 1 = 2+301 = 9 Crass ty = 800 + 5 = 800 by endo Adagso 21
	IO
	11= 80-5 = 0,09375 %
	800
,	800 1050: Bits = 10x2' = 109,227 x103 Bits / 009375
	0 09375 G= 13 33KiB
	(USTO= E x 109.22AK = R& 334,83/
	120
-	c) 100 x mais Rapipo of carhe LN
	O renor tempo de Acesso é n=1
	independente mente de repriveis No
E .	Logio A esTrutha + Raping e con Afellas 1 rivel
	52 1/10 x m3 rapin y = e R\$ 334 33
-	Logo propounin Airon mais a cogra varion + on To
	ty.800+5=802 - ty-0,0037570
	100
	BITT = 1012'0 - 273×106 Bits - 3333XiB
	0,00375
	CUSTO = E' XZ73X106 - R\$ 8.371,3
	2000 8N/ R\$2200,00 N/100X + 10/P.00
,	