МГТУ им. Н.Э. Баумана

Дисциплина электроника
Лабораторный практикум №7
по теме: «Полевые транзисторы»

Работу выполнил: студент группы ИУ7-31Б Палладий Евгений Игоревич Работу проверил: Оглоблин Дмитрий Игоревич

Москва, 2024 г.

Цель работы:

Получить навыки в использовании базовых возможностей программы Microcap и знания при исследовании и настройке усилительных, ключевых и логических устройств на биполярных и полевых транзисторах.

Эксперимент 7

1) Построю схему для получения переходных характеристик pJFET транзистора по варианту (2N5116)

2) В режиме DC определю переходные характеристики транзистора

3) pJFET запирается при напряжении, при котором значение тока составляет примерно 0.1 от максимального значения тока. Для напряжения -10 В это значение составляет 3.467 В.

4) Начальный ток стока составляет -15.467 мА для напряжения 10 В. Напряжение отсечки возьмем в точке, где значение тока стало примерно в 100 раз меньше изначального. Получим напряжение 4.568 В.

5) Вычислю максимальное значение крутизны характеристики, выберу две точки близко к нулевому напряжению и найду отношение тока к напряжению, учитывая, что в нуле сила тока составляет -15.467 мА: Smax = dIc/dUзи = (15.467 - 15.386) мА / (13.812)) мВ = 5.86 мА/В

- 6) Рассчитаю теоретически максимальное значение крутизны характеристики Smax = 2 * Ihau / Uotc = 2 * 15.467 мA / 4.568 В = 6.772 мA/В. Данное значение отличается от вычисленного по схеме на 16 процентов.
- 7) Выведу выходные характеристик pJFET

8) Проведу нагрузочную прямую и выберу рабочую точку посередине: Upт = 5 B, Ipт = 7.5 мA. Определю сопротивление стока в рабочей точке: Rd = (Епит — Upт) / Rd = $(10 - 5) / 0.0075 = \sim 667$ Ом.

9) Соберу схему усилителя на транзисторе pJFET

10) Настрою генератор по варианту

✓ Help Bar✓ Show Data on Exit		File Link Source: Local page 'Models'		
PH	0	RP 0	RS 1m	
TAU	0			·

11) Запущу Transient Analysis и получу следующие графики (время 1 мс было выбрано как 3 / 3000 (количество импульсов на частоту генератора)

12) В данном случае каскад усиления pJFET будет равен 0.340 / 0.02 = 17 (считаем высоту нижней синусоиды и делим на высоту верхней)

13) Построю схему для получения переходных характеристик nMOS

14) В режиме DC определю переходные характеристики транзистора

15) Выведу выходные характеристик транзистора

16) Проведу нагрузочную прямую и выберу рабочую точку посередине: Upт = 10 B, Ipт = 45 A. Определю сопротивление стока в рабочей точке: Rd = Eпит / Rd = 10 / 45 = \sim 0.22 Om.

17) Соберу схему ключа на транзисторе nMOS, подам импульс амплитудой -7 В и длительностью 2 мкс и получу графики характеристики полученного ключа, сопротивление было увеличено до 0.5 В для более корректной работы ключа.

18) Напряжение открытого транзистора на приведенных выше схемах соответствует уровню «0» <= 1.5 В.

Эксперимент 8

1) Соберу схему КМОП цифрового ключа

2) Построю графики прямоугольных импульсов

IRF542

3) Рассчитаю задержку перехода t01 = 1.031 - 1.020 = 11 нс

4) Рассчитаю задержку перехода t10 = 2.029 - 2.011 = 18 нс

- 5) Итого задержка Тзад = (t01 + t10) / 2 = (18 + 11) / 2 = 14.5 нс.
- 6) Изменим напряжение до 10 В

7) Получу передаточную характеристику

8) Комплементарные схемы потребляют электрическое напряжение исключительно во время переключения, а в статическом состоянии их потребление практически нулевое. Эти схемы находят применение в мобильных устройствах благодаря низкому энергопотреблению, что позволяет размещать больше логических элементов на одном чипе. Кроме того, они функционируют в широком диапазоне напряжений и обладают высокой устойчивостью к помехам.

9) Соберу логический элемент 2И-НЕ, получу напряжения на входах 4 и 6 и выходе 3 в режиме Transient. Для согласования уровней сигнала цифрового генератора и аналоговой схемы добавлю Digital To Analog (DToA):

10) В итоге получаем, что 1 на входе тогда, когда хотя бы на одном входу будет

0. В схемотехнике данная функция обозначается следующим образом

Эксперимент 9

1) Соберу схему учебного триггера на элементах NMOS с последовательностями импульсов на входах S и R.

2) Запущу анализ Transient и получу следующие графики

