АСТРАДЬ

Содержание

1	He6	есная механика	2
	1.1	Закон сохранения энергии и типы орбит	2

1 Небесная механика

1.1 Закон сохранения энергии и типы орбит

Для движения тела с массой m в гравитационном в поле тела с массой $M\gg m$ со скорость v на расстоянии r от гравитационного центра справедливо следующее соотношение:

$$\frac{mv^2}{2} - \frac{GMm}{r} = E_0, \tag{1}$$

где E_0 — постоянная величина, если на тело не действуют внешние силы кроме силы притяжения к центральному телу, равная сумме кинетической и потенциальной энергии тела.

Если $E_0 > 0$, то траектория тела — $\it eunep6ona$, ветви которой асимптотически приближаются к двум прямым.

Если $E_0=0$, то траектория тела — napaбола. При параболической и гиперболический траекториях движение не ограничено (инфинитно).

Если $E_0 < 0$, то траектория тела — эмлипс. При эллиптической траектории движение ограничено (финитно).

Параболическая скорость — минимальная, при которой тело покидает центральное тело. Она также называется *вторая космическая скорость*. Выражение для нее имеет следующий вид:

$$v_2 = \sqrt{\frac{2GM}{r}} \tag{2}$$

На Рис. 1 представлены примеры возможных траекторий тела относительно центрального (точка C). При $v_0>v_2$ — тело движется по гиперболе, при $v_0=v_2$ — по параболе, а при $v_0< v_2$ — по эллипсу.

 $Первая\ космическая\ скорость$ — минимальная скорость, необходимая для того, чтобы маломассивное тело стало искусственным спутником центрального тела.

$$v_1 = \sqrt{\frac{GM}{R}} \tag{3}$$

Где M — масса массивного тела.

Вторая космическая скорость — минимальная скорость, необходимая для того, чтобы маломассивное тело преодолело гравитационное притяжение центрального тела и покинуло замкнутую орбиту вокруг последнего.

$$v_2 = v_p = \sqrt{2gR} = \sqrt{\frac{2GM}{R}} = \sqrt{2}v_1$$
 (4)

Рис. 1: Возможные траектории тела

Планета	v_1 , $\kappa m/c$	v_2 , $\kappa m/c$
Солнце	436,8	617,7
Меркурий	3,0	4,3
Венера	7,4	10,5
Земля	7,9	11,2
Луна	1,7	2,4
Mapc	3,5	5,0
Юпитер	42,0	59,5
Сатурн	25,1	35,5
Уран	15,0	21,3
Нептун	16,6	23,5

Таблица 1: v_1 и v_2 на некоторых телах Солнечной системы

Скорость искусственного небесного тела на высоте h.

$$v_h = \sqrt{\frac{G}{R+h}} = \sqrt{\frac{gR^2}{R+h}} \tag{5}$$

Третья космическая скорость — минимальная скорость, которую необходимо придать находящемуся вблизи поверхности Земли телу, что-бы оно могло преодолеть гравитационное притяжение Земли и Солнца и покинуть пределы Солнечной системы.

$$v_3 = \sqrt{(\sqrt{2} - 1)^2 v_1^2 + v_2^2} \tag{6}$$