Semantic Analysis in the Mikrokosmos Machine Translation Project

Stephen Beale, Sergei Nirenburg and Kavi Mahesh Computing Research Laboratory New Mexico State University

Seminar: Knowledge Representation and Domain Ontologies

Presented by: Praharsha Sirsi

Introduction

- Mikrokosmos (μΚ)
- Knowledge-based machine translation (KBMT) system.
- Semantic analysis
- Spanish to English
- Language independent formats
- Microtheories
- Lexical-Semantic dependency

Different components in µK

- Lexicon
 - Syntactic Parser
 - > Semantic Specification
- Ontology
 - Ontological Concepts
- Semantic Analyzer
 - Text Meaning Representation (TMR)
 - Constraint Analyzer
 - > Microtheories

NLP Architecture

Text Meaning Representations

- Language-neutral description
- Deliberately syntax neutral
- Lexical-semantic dependencies
- Information provided
 - > Stylistic factors
 - > Discourse relations
 - > Speaker attitudes
 - Pragmatic factors
- Special notations for
 - > Attitudes
 - > Relations
 - > Quantities
 - > Time

Example of a TMR

1a. El grupo Roche, a traves de su compania en Espana, adquirio Doctor Andreu, se informo hoy aqui. 1b. The Roche group, through its company in Spain, acquired Doctor Andrew, it was announced today.

Top level Ontology

Concept entries in Ontology

Semantic Lexicon

Lexicon: SYN-STRUC Zone

1a. El grupo Roche, a traves de su compania en Espana, adquirio Doctor Andreu, se informo hoy aqui. 1b. The Roche group, through its company in Spain, acquired Doctor Andrew, it was announced today.

Lexicon: SEM Zone

Filled by TMR relating to

AGENT: 'grupo Roche' (var1)

THEME: 'Dr. Andreu' (var2)

Additional information from ACQUIRE TMR 'a traves de' will add INSTRUMENT slot

```
Lex Map:

(1 (learn
(agent (value ^$var1))
(theme (value ^$var2))
```

Lexicon

- Variable bindings for interaction
- Principle of Compositionality
- SEM zone for language-specific constraints
- Example for Language Specific Semantic:
 - 'to taxi' as in 'the jet taxied to the gate'
 - Maps to GROUND-CONTACT-MOTION
 - > Specifies INSTRUMENT must be AIRCRAFT
- But, cannot define every conceivable mapping

The Semantic Analyzer

- Combine ontology and lexicon
- Apply them to get TMRs
- Find semantic constraints
- Test each constraint in context
- Further check the SEM zones
- Apply Microtheories for Core TMRs
- Construct the output TMRs

Generating Constraints

Gather all possible word sense using lexicon entries

Grupo-Roche	a-traves-de	su	compania	en	espana	adquirir	Dr. Andrew
ORGANIZATION	LOCATION	OWNER	CORPORATION	LOCATION	NATION	ACQUIRE	HUMAN
	INSTRUMENT		SOCIAL-EVENT	TEMPORAL		LEARN	ORGANIZATION

Generating Constraints

For each word sense, examine the SYN-STRUC zone

Generating Constraints

 Now examine the SEM zone of each word sense to construct a list of constraints

```
Lex Map:

(1 (acquire (agent (value ^$var1)) (theme (value ^$var2)) (aspect (ghase begin) (duration momentar (iteration single)
```

```
(1 (learn
(agent (value ^$var1))
```

(theme

(value

```
    Constraints can arise from 5 sources
```

- Semantics in Ontological Concept
- 2. Fillers in Ontological Definition
- Slots in Ontological Definition
- 4. Lexicon Entries
- 5. Other structures in the sentence

1 - Semantics in Ontological Concept

2 – Fillers in Ontological Definition

- These constraints ask about the fillers
- Type 1 Constraint :
 - > What kind of fillers do I allow?
- Type 2 Constraint :
 - > What kind of concepts can this filler modify with slot?
- Example: HAMMER
 - > filler for INSTRUMENT slot
 - > Modifies BUILD event

3 – Slots in Ontological Definition

- These constraints depend on the definition of slots
- Each slot has
 - > DOMAIN
 - > RANGE
- Example:
 - > AGENT slot requires
 - DOMAIN = EVENT
 - RANGE = HUMAN
 - > THEME slot requires
 - DOMAIN = EVENT
 - RANGE = OBJECT or EVENT
- Default values exist for the slots
- Although general constraints, but they still help

4 – Lexicon Entries

- They can have explicit constraints
 - > But in our example they don't

Entry: adquirir-V1

Entry: adquirir-v2

Lex Map:

```
(1 (learn
  (agent (value ^$var1))
  (theme (value ^$var2))
```

5 – Other structures in the sentence

 These slots and TMRs will influence other words in the Sentence

Applying the constraints

- Ontological graph search function
- Determines relevant paths between concepts
- Each path will have a cost between 0 to 1

Applying the constraints

- Returns a score based on degree of closeness
- Example:
 - > checkonto-con(ACQUIRE EVENT)
 - Returns score of 1.0 (out of 1.0)
 - Because ACQUIRE is a type of EVENT.
 - > check-onto-con(ORGANIZATION HUMAN)
 - returns a score of 0.9
 - Along with path (ORGANIZATION HAS MEMBER HUMAN).
 - Indicates ORGANIZATION can be in place of HUMAN because of HUMAN members
- Metonyms and Metaphorical meanings are derived

Determining the Best Combination

- Each combination
 - > After applying the constraints
 - > Combined to get total score
- Combination with the best total score is chosen
- This gives the Core TMR
 - > Further Microtheories are applied

Example Sentence

Will choose INSTRUMENT
As LOCATION ->
'adquirir' = physical object
But
'adquirir' ≠ physical object

Will choose LOCATION
As TEMPORAL ->
'espana' = temporal object
But
'espana' ≠ temporal object

Will choose ACQUIRE
As LEARN ->
'Dr.Andrew' = information
But
'Dr.Andrew' ≠ information

The choice is not yet defined Additional Ontological Information Statistical Information

Will choose ORGANIZATION
As HUMAN cannot be the theme of 'ACQUIRE'

THEME		
SEM	OBJECT (NOT HUMAN	1)

Advanced Computational Methods

- Finding Constraints = Lot of processing
- 'bulletin-board' processing scheme
- The scheme includes
 - Dependency Analysis
 - > Best First Processing
 - > Failure Recovery Techniques
 - > Ambiguity Resolution

Dependency Analysis

- Complex interplay of constraints.
- Choosing one sense may be optimal, but it may create problems elsewhere
- Dependency-directed analysis systematically tracks dependencies
 - Propagates related constraints forward
 - > Detects inconsistent solutions
 - > Failure processing
- Developed by Authors

Best First Processing

- Statistical data
- Word senses that are close enough
- Processing stops on satisfactory results
- Used in every aspect of processing

Failure Recovery Techniques

- Failures from
 - > Spelling errors
 - > Syntactic analysis
 - > Lexicon, Ontology errors
 - Lack of needed information
 - > Analyzer makes incorrect decisions

Failure Recovery Techniques

- μK deals with these by:
 - Using dependency analysis
 - > Checking for metonymic/metaphoric language
 - > Check for missing slot fillers
 - > Changing syntactic analysis, different attachments
 - Relaxing thresholds
 - Using sophisticated 'best first' approach

Ambiguity Resolution

- If basic semantic constraints are not enough
 - Preferences in lexicon
 - > Statistical methods
 - > Subsequent clauses combined with co-references
 - > Attachment rules
 - > Expectations in senses
 - Example: 'adquirir' sense expects INSTRUMENT slot
 - Which 'a-traves-de' adds

Conclusion

Thank you!