SEQUENCE LISTING

	SEQUEIN	CE DISTING
	(1) GE	NERAL INFORMATION:
5	(i)	APPLICANT: Genentech, Inc., Hsei, Vanessa Koumenis, Iphigenia Leong, Steven R. Presta, Leonard G. Shahrokh, Zahra Zapata, Gerardo A.
	(ii)	TITLE OF INVENTION: ANTIBODY FRAGMENT-POLYMER CONJUGATES AND HUMANIZED ANTI-IL-8 MONOCLONAL ANTIBODIES
15	(iii)	NUMBER OF SEQUENCES: 72
20	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Genentech, Inc. (B) STREET: 1 DNA Way (C) CITY: South San Francisco (D) STATE: California (E) COUNTRY: USA (F) ZIP: 94080
25 25 30	(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: 3.5 inch, 1.44 Mb floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: WinPatin (Genentech)
<u>.</u>	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: 20-Jan-1999 (C) CLASSIFICATION:
35 1	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 60/074330 (B) FILING DATE: 22-JAN-1998
40	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 60/094003 (B) FILING DATE: 24-JUL-1998
45	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 60/094013 (B) FILING DATE: 24-JUL-1998
50	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 60/075467 (B) FILING DATE: 20-FEB-1998
	(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: Love, Richard B.

(B) REGISTRATION NUMBER: 34,659

(C) REFERENCE/DOCKET NUMBER: P1085R4-1A

55

```
(ix) TELECOMMUNICATION INFORMATION:
              (A) TELEPHONE: 650/225-5530
              (B) TELEFAX: 650/952-9881
      (2) INFORMATION FOR SEQ ID NO:1:
  5
          (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 22 base pairs
              (B) TYPE: Nucleic Acid
              (C) STRANDEDNESS: Single
 10
              (D) TOPOLOGY: Linear
        (xi) SEQUENCE DESCRIPTION: SEO ID NO:1:
 15
       CAGTCCAACT GTTCAGGACG CC 22
      (2) INFORMATION FOR SEQ ID NO:2:
          (i) SEQUENCE CHARACTERISTICS:
 20
              (A) LENGTH: 22 base pairs
              (B) TYPE: Nucleic Acid
              (C) STRANDEDNESS: Single
              (D) TOPOLOGY: Linear
25
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
g)
M
       GTGCTGCTCA TGCTGTAGGT GC 22
LII.
30
      (2) INFORMATION FOR SEQ ID NO:3:
          (i) SEQUENCE CHARACTERISTICS:
les le
              (A) LENGTH: 23 base pairs
las la
              (B) TYPE: Nucleic Acid
35
              (C) STRANDEDNESS: Single
              (D) TOPOLOGY: Linear
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
 40
       GAAGTTGATG TCTTGTGAGT GGC 23
      (2) INFORMATION FOR SEQ ID NO:4:
 45
          (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 24 base pairs
              (B) TYPE: Nucleic Acid
              (C) STRANDEDNESS: Single
              (D) TOPOLOGY: Linear
 50
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
       GCATCCTAGA GTCACCGAGG AGCC 24
 55
      (2) INFORMATION FOR SEQ ID NO:5:
```

5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 22 base pairs(B) TYPE: Nucleic Acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
10	CACTGGCTCA GGGAAATAAC CC 22
	(2) INFORMATION FOR SEQ ID NO:6:
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: Nucleic Acid
20	<pre>(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear</pre>
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
25	GGAGAGCTGG GAAGGTGTGC AC 22
23	(2) INFORMATION FOR SEQ ID NO:7:
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 35 base pairs(B) TYPE: Nucleic Acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
	ACAAACGCGT ACGCTGACAT CGTCATGACC CAGTC 35
40	(2) INFORMATION FOR SEQ ID NO:8:
45	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 35 base pairs(B) TYPE: Nucleic Acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
50	ACAAACGCGT ACGCTGATAT TGTCATGACT CAGTC 35
	(2) INFORMATION FOR SEQ ID NO:9:
55	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 35 base pairs(B) TYPE: Nucleic Acid

```
(C) STRANDEDNESS: Single
               (D) TOPOLOGY: Linear
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
   5
        ACAAACGCGT ACGCTGACAT CGTCATGACA CAGTC 35
        (2) INFORMATION FOR SEQ ID NO:10:
   10
           (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 37 base pairs
               (B) TYPE: Nucleic Acid
               (C) STRANDEDNESS: Single
   15
               (D) TOPOLOGY: Linear
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
        GCTCTTCGAA TGGTGGGAAG ATGGATACAG TTGGTGC 37
  20
        (2) INFORMATION FOR SEQ ID NO:11:
           (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 39 base pairs
               (B) TYPE: Nucleic Acid
               (C) STRANDEDNESS: Single
               (D) TOPOLOGY: Linear
30
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
        CGATGGGCCC GGATAGACCG ATGGGGCTGT TGTTTTGGC 39
        (2) INFORMATION FOR SEQ ID NO:12:
           (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 39 base pairs
               (B) TYPE: Nucleic Acid
  40
               (C) STRANDEDNESS: Single
               (D) TOPOLOGY: Linear
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
  45
        CGATGGGCCC GGATAGACTG ATGGGGCTGT CGTTTTGGC 39
       (2) INFORMATION FOR SEQ ID NO:13:
  50
           (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 39 base pairs
              (B) TYPE: Nucleic Acid
              (C) STRANDEDNESS: Single
             . (D) TOPOLOGY: Linear
  55
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
```

14.

1,33

ŧξ s= in

ga la

	CGATGGGCCC GGATAGACGG ATGGGGCTGT TGTTTTGGC 39
5	(2) INFORMATION FOR SEQ ID NO:14:
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
15	CGATGGGCCC GGATAGACAG ATGGGGCTGT TGTTTTGGC 39
	(2) INFORMATION FOR SEQ ID NO:15:
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 39 base pairs(B) TYPE: Nucleic Acid(C) STRANDEDNESS: Single
25	(D) TOPOLOGY: Linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
30	CGATGGGCCC GGATAGACTG ATGGGGCTGT TGTTTTGGC 39
30	(2) INFORMATION FOR SEQ ID NO:16:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 369 base pairs (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
	GACATTGTCA TGACACAGTC TCAAAAATTC ATGTCCACAT CAGTAGGAGA 50
45	CAGGGTCAGC GTCACCTGCA AGGCCAGTCA GAATGTGGGT ACTAATGTAG 100
73	CCTGGTATCA ACAGAAACCA GGGCAATCTC CTAAAGCACT GATTTACTCG 150
	TCATCCTACC GGTACAGTGG AGTCCCTGAT CGCTTCACAG GCAGTGGATC 200
50	TGGGACAGAT TTCACTCTCA CCATCAGCCA TGTGCAGTCT GAAGACTTGG 250
	CAGACTATTT CTGTCAGCAA TATAACATCT ATCCTCTCAC GTTCGGTCCT 300
55	GGGACCAAGC TGGAGTTGAA ACGGGCTGAT GCTGCACCAC CAACTGTATC 350
J.J	CATCTTCCCA CCATTCGAA 369

	(2) IN	FORMAT:	ION F	FOR S	SEQ I	D NO	:17:							
5	(i)	SEQUEN (A) LI (B) TY (D) TO	ENGTH YPE:	H: 12 Amir	3 an	mino cid		Is						
10	(xi)	SEQUE	NCE E	DESCF	RIPT	ON:	SEQ	ID N	10:17	7:				
	Asp I 1	le Val	Met	Thr 5	Gln	Ser	Gln	Lys	Phe 10	Met	Ser	Thr	Ser	Val 15
15	Gly A	sp Arg	Val	Ser 20	Val	Thr	Cys	Lys	Ala 25	Ser	Gln	Asn	Val	Gly 30
	Thr A	sn Val	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ser	Pro	Lys 45
20	Ala L	eu Ile	Tyr	Ser 50	Ser	Ser	Tyr	Arg	Tyr 55	Ser	Gly	Val	Pro	Asp 60
25	Arg P	he Thr	Gly	Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75
	Ser H	is Val	Gln	Ser 80	Glu	Asp	Leu	Ala	Asp 85	Tyr	Phe	Cys	Gln	Gln 90
30	Tyr A	sn Ile	Tyr	Pro 95	Leu	Thr	Phe	Gly	Pro 100	Gly	Thr	Lys	Leu	Glu 105
	Leu L	ys Arg	Ala	Asp 110	Ala	Ala	Pro	Pro	Thr 115	Val	Ser	Ile	Phe	Pro 120
35	Pro P	he Glu 123												
	(2) IN	FORMAT	ION E	FOR S	SEQ :	ID N	D:18	:						
40	(i)	SEQUE (A) L (B) T	ENGTI YPE :	H: 4: Nuc	17 ba	ase p Aci	pair: d	5						
15		(C) S' (D) T	TRANI OPOLO				pre							
45	(xi)	SEQUE	NCE I	DESCI	RIPT	ION:	SEQ	ID I	NO:1	8:				
50	TTCTA	TTGCT .	ACAA	ACGC	GT A	CGCT	GAGG'	r GC	AGCT(GGTG	GAG'	TCTG	3GG	50
30	GAGGC	TTAGT	GCCG	CCTG	GA G	GGTC	CCTG	A AA	CTCT	CCTG	TGC	AGCC'	rct	100
	GGATI	CATAT	TCAG	ragt'	TA T	GGCA'	TGTC'	r TG	GTT(CGCC	AGA	CTCC	AGG	150
55	CAAGA	GCCTG	GAGT	rggre	ag di	AACC	ATTA	A TA	ATAA'	rggm	GAT.	AGCAG	ССТ	200

		ATTA	ATCC	AGA (CAGTO	STGA	AG GC	GCCG?	ATTC	A CC	ATCTO	CCCG	AGAC	CAATO	icc 2	:50
		AAGA	ACAC	CC 1	rgta(CTG	CA A	ATGAC	GCAGT	CTC	SAAGT	CTG	AGG <i>I</i>	CACA	AGC 3	00
	5	CATO	STTT	rac 1	rgtgo	CAAGA	AG CO	CTC	ATTAC	TTC	CGGCT	TACT	TGGT	TTG	ett 3	350
		ACTO	GGGG	CCA A	AGGG?	ACTC	rg gy	rcac	rgrci	r cro	GCAGO	CAA	AACA	ACAC	SCC 4	100
	10	CCAT	rctg	rct A	ATCC	GGG 4	117									
	10	(2)	INFO	TAMS	ION I	FOR S	SEQ I	ID NO	0:19:	:						
	15	()	(I	_	ENGTH	H: 13 Amir	30 ar 10 Ac	mino cid	ICS: ació	is						
		(xi	i) SI	EQUE	NCE I	DESCI	RIPT	ON:	SEQ	ID 1	VO:19):				
[23]	20	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Pro	Pro	Gly 15
Ann and and	25	Gly	Ser	Leu	Lys	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Ile	Phe	Ser 30
		Ser	Tyr	Gly	Met	Ser 35	Trp	Val	Arg	Gln	Thr 40	Pro	Gly	Lys	Ser	Leu 45
	30	Glu	Leu	Val	Ala	Thr 50	Ile	Asn	Asn	Asn	Gly 55	Asp	Ser	Thr	Tyr	Tyr 60
		Pro	Asp	Ser	Val	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ala 75
	35	Lys	Asn	Thr	Leu	Tyr 80	Leu	Gln	Met	Ser	Ser 85	Leu	Lys	Ser	Glu	Asp 90
100 2	40	Thr	Ala	Met	Phe	Tyr 95	Cys	Ala	Arg	Ala	Leu 100	Ile	Ser	Ser	Ala	Thr 105
		Trp	Phe	Gly	Tyr	Trp 110	Gly	Gln	Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ala 120
	45	Ala	Lys	Thr	Thr	Ala 125	Pro	Ser	Val	Tyr	Pro 130					
		(2)	INFO	RMAT:	ION I	FOR S	SEQ :	ID N	0:20	:						
	50	(:	(1	EQUEI A) LI B) T' C) S' O) T(ENGTI YPE : I'RANI	H: 3: Nuc: DEDNI	l bas leic ESS:	se pa Acio Sino	airs d							
	55	(x:	i) SI	EOUE	NCE I	DESCI	RIPT	ION:	SEO	ID i	JO:20) :				

	ACAAACGCGT ACGCTGATAT CGTCATGACA G 31
5	(2) INFORMATION FOR SEQ ID NO:21:
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 31 base pairs(B) TYPE: Nucleic Acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
15	GCAGCATCAG CTCTTCGAAG CTCCAGCTTG G 31
	(2) INFORMATION FOR SEQ ID NO:22:
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 21 base pairs(B) TYPE: DNA(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:
	CCACTAGTAC GCAAGTTCAC G 21
30	(2) INFORMATION FOR SEQ ID NO:23:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:
40	GATGGGCCCT TGGTGGAGGC TGCAGAGACA GTG 33
	(2) INFORMATION FOR SEQ ID NO:24:
45 50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 714 base pairs(B) TYPE: Nucleic Acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:
55	ATGAAGAAGA ATATCGCATT TCTTCTTGCA TCTATGTTCG TTTTTTCTAT 50
	TGCTACAAAC GCGTACGCTG ATATCGTCAT GACACAGTCT CAAAAATTCA 100

	TGTCCACATC	AGTAGGAG.	AC AGGGT	'CAGCG	TCA	CCTG	CAA	GGCC	AGTC	AG 1	L50
5	AATGTGGGTA	CTAATGTA	GC CTGGI	ATCAA	CAG	AAAC	CAG	GGCA	ATCI	CC 2	200
J	TAAAGCACTG	ATTTACTO	GT CATCO	TACCG	GTA	CAGT	GGA	GTCC	CTGA	TC 2	250
	GCTTCACAGG	CAGTGGAT	CT GGGAC	AGATT	TCA	CTCT	CAC	CATO	AGCC	AT 3	300
10	GTGCAGTCTG	AAGACTTG	GC AGACT	TATTTC	TGT	CAGC	AAT	ATAA	CATC	TA :	350
	TCCTCTCACG	TTCGGTCC	TG GGACC	AAGCT	' GGA	GCTT	CGA	AGAG	CTGT	rgg 4	400
15	CTGCACCATC	TGTCTTCA	TC TTCCC	GCCAT	CTG	ATGA	.GCA	GTTG	raaa	CT 4	450
	GGAACTGCTT	CTGTTGTG	TG CCTGC	TGAAT	' AAC	TTCT	ATC	CCAG	AGAG	GC !	500
	CAAAGTACAG	TGGAAGGT	GG ATAAC	GCCCI	CCA	ATCG	GGT	AACT	CCCA	\GG !	550
20	AGAGTGTCAC	AGAGCAGG	ac agcaa	GGACA	GCA	.CCTA	.CAG	CCTC	AGC	AGC (600
	ACCCTGACGC	TGAGCAAA	GC AGACT	ACGAG	AAA	.CACA	AAG	TCTA	CGCC	CTG	650
25	CGAAGTCACC	CATCAGGG	CC TGAGO	TCGCC	CGT	CACA	AAG	AGCT	TCA	ACA '	700
	GGGGAGAGTG	TTAA 714									
	(2) INFORMA		-								
30	(A)	JENCE CHAR LENGTH: 2	37 amino		ls						
:		TYPE: Ami TOPOLOGY:									
35	(xi) SEQU	JENCE DESC	RIPTION	: SEQ	ID N	10:25	·:				
	Met Lys Ly 1	s Asn Ile 5		e Leu	Leu	Ala 10	Ser	Met	Phe	Val	Phe 15
40	Ser Ile Al	la Thr Asn 20	_	Ala	Asp	Ile 25	Val	Met	Thr	Gln	Ser 30
45	Gln Lys Ph	ne Met Ser 35		. Val	Gly	Asp 40	Arg	Val	Ser	Val	Thr 45
45	Cys Lys Al	La Ser Gln 50		l Gly	Thr	Asn 55	Val	Ala	Trp	Tyr	Gln 60
50	Gln Lys Pr	co Gly Gln 65) Lys	Ala	Leu 70	Ile	Tyr	Ser	Ser	Ser 75
	Tyr Arg Ty	yr Ser Gly 80		Asp	Arg	Phe 85	Thr	Gly	Ser	Gly	Ser 90
55	Gly Thr As	sp Phe Thr 95		r Ile	Ser	His 100	Val	Gln	Ser	Glu	Asp 105

	Leu A	Ala	Asp	Tyr	Phe 110	Cys	Gln	Gln	Tyr	Asn 115	Ile	Tyr	Pro	Leu	Thr 120
5	Phe (Gly	Pro	Gly	Thr 125	Lys	Leu	Glu	Leu	Arg 130	Arg	Ala	Val	Ala	Ala 135
10	Pro s	Ser	Val	Phe	Ile 140	Phe	Pro	Pro	Ser	Asp 145	Glu	Gln	Leu	Lys	Ser 150
	Gly '	Phr	Ala	Ser	Val 155	Val	Cys	Leu	Leu	Asn 160	Asn	Phe	Tyr	Pro	Arg 165
15	Glu A	Ala	Lys	Val	Gln 170	Trp	Lys	Val	Asp	Asn 175	Ala	Leu	Gln	Ser	Gly 180
	Asn :	Ser	Gln	Glu	Ser 185	Val	Thr	Glu	Gln	Asp 190	Ser	Lys	Asp	Ser	Thr 195
20	Tyr :	Ser	Leu	Ser	Ser 200	Thr	Leu	Thr	Leu	Ser 205	Lys	Ala	Asp	Туг	Glu 210
1 1 25	Lys 1	His	Lys	Val	Tyr 215	Ala	Cys	Glu	Val	Thr 220	His	Gln	Gly	Leu	Ser 225
	Ser	Pro	Val	Thr	Lys 230	Ser	Phe	Asn	Arg	Gly 235	Glu	Cys 237			
30 1	(2) II						ID NO		:				•		
35	,	(F (C	A) LI 3) Ti 3) Si	ENGTI YPE :	H: 75 Nucl	66 ba leic ESS:	ase p Acid Doub	pairs 1	5						
17 T	(xi) SE	EQUEI	NCE I	DESC	RIPT:	ON:	SEQ	ID I	VO : 2	5:				
40	ATGA	AAA	AGA A	TATA	GCA.	T T	CTTC	rtgc <i>i</i>	A TC	ratg:	rtcg	TTT'	TTTC	TAT	50
	TGCT.	ACA	AAC (GCGT?	ACGC:	rg a	GTG	CAGC	r GG:	rgga	STCT	GGG	GGAG	GCT	100
45	TAGT														
	ATAT CCTG														
50	CAGA														
	ACCC														
	TTAC														
55	GCCA	AGGC	GAC :	rctg(GTCA(CT G	rctc:	rgca	G CC	rcca	CCAA	GGG	CCCA.	rcg	450

	GTCI	TCCC	CC I	'GGCA	CCCI	'C CI	CCAA	GAGC	ACC	TCTG	GGG	GCAC	AGCG	GC S	500
5	CCTG	GGCT	GC C	TGGT	'CAAG	G AC	TACT	TCCC	: CGA	ACCG	GTG	ACGG	TGTC	GT :	550
3	GGAA	ACTCA	GG C	GCCC	TGAC	C AG	CGGC	GTGC	ACA	CCTT	CCC	GGCT	GTCC	TA 6	500
	CAGI	CCTC	AG C	GACTO	TACT	e co	TCAG	CAGC	GTG	GTGA	.CCG	TGCC	CTCC	AG 6	550
10	CAGO	CTTG	GC A	ACCCA	GACC	T AC	CATCI	GCAA	CGI	GAAT	CAC	AAGC	CCAG	CA 7	700
	ACAC	CAAG	GT (GACA	AGAA	la Gi	TGAG	SCCCA	LAA A	CTTG	TGA	CAAA	ACTO	CAC	750
15		rga 7		ON E	ene c	יבים ז	רות אור	. 27.							
	(2)														
20	()	(<i>F</i>	A) LI B) T	NCE C ENGTH PE: OPOLC	H: 25 Amir	ol an	nino cid		is						
	(x:	i) SI	EQUEI	VCE I	DESCE	RIPTI	ON:	SEQ	ID N	10:27	' :				
25	Met 1	Lys	Lys	Asn	Ile 5	Ala	Phe	Leu	Leu	Ala 10	Ser	Met	Phe	Val	Phe 15
30	Ser	Ile	Ala	Thr	Asn 20	Ala	Tyr	Ala	Glu	Val 25	Gln	Leu	Val	Glu	Ser 30
50	Gly	Gly	Gly	Leu	Val 35	Pro	Pro	Gly	Gly	Ser 40	Leu	Lys	Leu	Ser	Cys 45
35	Ala	.Ala	Ser	Gly	Phe 50	Ile	Phe	Ser	Ser	Tyr 55	Gly	Met	Ser	Trp	Val 60
	Arg	Gln	Thr	Pro	Gly 65	Lys	Ser	Leu	Glu	Leu 70	Val	Ala	Thr	Ile	Asn 75
40	Asn	Asn	Gly	Asp	Ser 80	Thr	Tyr	Tyr	Pro	Asp 85	Ser	Val	Lys	Gly	Arg 90
45	Phe	Thr	Ile	Ser	Arg 95			Ala				Leu	Tyr	Leu	Gln 105
.5	Met	Ser	Ser	Leu	Lys 110	Ser	Glu	Asp	Thr	Ala 115	Met	Phe	Tyr	Cys	Ala 120
50	Arg	Ala	Leu	Ile	Ser 125	Ser	Ala	Thr	Trp	Phe 130	Gly	Tyr	Trp	Gly	Gln 135
	Gly	Thr	Leu	Val	Thr 140	Val	Ser	Ala	Ala	Ser 145	Thr	Lys	Gly	Pro	Ser 150
55	Val	Phe	Pro	Leu	Ala 155	Pro	Ser	Ser	Lys	Ser 160	Thr	Ser	Gly	Gly	Thr 165

	Ala Al	a Leu	Gly	Cys 170	Leu	Val	Lys	Asp	Tyr 175	Phe	Pro	Glu	Pro	Val 180
5	Thr Va	l Ser	Trp	Asn 185	Ser	Gly	Ala	Leu	Thr 190	Ser	Gly	Val	His	Thr 195
10	Phe Pr	o Ala	Val	Leu 200	Gln	Ser	Ser	Gly	Leu 205	Tyr	Ser	Leu	Ser	Ser 210
	Val Va	l Thr	Val	Pro 215	Ser	Ser	Ser	Leu	Gly 220	Thr	Gln	Thr	Tyr	Ile 225
15	Cys As	n Val	Asn	His 230	Lys	Pro	Ser	Asn	Thr 235	Lys	Val	Asp	Lys	Lys 240
	Val Gi	u Pro	Lys	Ser 245	Суѕ	Asp	Lys	Thr		Thr 251				
20	(2) INF	ORMAT	ION I	FOR S	SEQ :	ID NO	0:28	:						
1 1 1 25	(i)	SEQUE (A) L (B) T (C) S (D) T	ENGTI YPE : TRANI	H: 3 Nucl DEDNI	7 ba: leic ESS:	se pa Acio Sino	airs 1							
30	(xi)	SEQUE	NCE I	DESCI	RIPT	ION:	SEQ	ID 1	VO:28	3:				
50	CCAATO	CATA	CGCT	GACA'	TC G	TGAT	GACC	C AG	ACCC	37				
i L	(2) INF	ORMAT	ION I	FOR :	SEO	ID N	0:29	:						
35		SEQUE (A) L (B) T (C) S (D) T	NCE (ENGT) YPE: TRAN	CHARA H: 3' Nuc: DEDNI	ACTE 7 ba leic ESS:	RIST se pa Acid Sina	ICS: airs							
40	(xi)	SEQUE	NCE I	DESC	RIPT	ION:	SEQ	ID I	NO:25	€:				
45	CCAATO								ACTC	37				
50		SEQUE (A) L (B) T (C) S (D) T	NCE (ENGT) YPE: TRAN	CHARA H: 3' Nuc: DEDNI	ACTE 7 ba leic ESS:	RIST: se pa Acid Sind	ICS: airs	•						
55	(xi)	SEQUE	NCE 1	DESCI	RIPT	ION:	SEQ	ID I	MO:30	0:				

254

	CCAATGCATA CGCTGACATC GTGATGACAC AGACACC 37
	(2) INFORMATION FOR SEQ ID NO:31:
5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 35 base pairs(B) TYPE: Nucleic Acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:
15	AGATGTCAAT TGCTCACTGG ATGGTGGGAA GATGG 35
13	(2) INFORMATION FOR SEQ ID NO:32:
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 32 base pairs(B) TYPE: Nucleic Acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:
	CAAACGCGTA CGCTGAGATC CAGCTGCAGC AG 32
30	(2) INFORMATION FOR SEQ ID NO:33:(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: Nucleic Acid
35	(C) STRANDEDNESS: Single (D) TOPOLOGY: Linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:
40	CAAACGCGTA CGCTGAGATT CAGCTCCAGC AG 32
	(2) INFORMATION FOR SEQ ID NO:34:
45	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 391 base pairs(B) TYPE: Nucleic Acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:
	GATATCGTGA TGACACAGAC ACCACTCTCC CTGCCTGTCA GTCTTGGAGA 50
55	makaaaamaa kmamamaaa ckmamaama ckaaamama akaaamkma 100

		GAAA	CACC	TA I	TTAC	ATTG	G TA	CCTG	CAGA	AGC	CAGG	CCA	GTCT	CCAA	AG 1	.50
		СТСС	TGAT	'CT A	CAAA	GTTI	C CA	ACCG	ATTT	TCI	'GGGG	TCC	CAGA	CAGG	TT 2	00
	5	CAGT	'GGCA	GT G	GATC	:AGGG	A CA	GATT	TCAC	ACI	'CAGG	ATC	AGCA	GAGI	'GG 2	250
		AGGC	TGAG	GA 1	CTGG	GACT	T TA	TTTC	TGCT	CTC	:AAAG	TAC	ACAI	GTTC	CG 3	100
	10	CTCA	CGTI	rcg e	STGCT	GGGA	C CA	AGCT	GGAG	CTG	AAAC	:GGG	CTGA	TGCT	GC 3	50
	10	ACCA	ACTG	TA 1	rccai	CTTC	C CA	CCAT	CCAG	TGA	GCAA	TTG	A 39	1		
		(2) I	NFOR	CTAM	ON F	OR S	EQ I	D NC	35:							
	15	(i	(A	L) LE	NCE C ENGTH (PE: OPOLC	I: 13 Amir	1 an	mino cid		ls						
	20	(xi	.) SE	EQUE	NCE I	ESCF	RIPTI	ON:	SEQ	ID 1	VO:35	;				
The World William		Asp 1	Ile	Val	Met	Thr 5	Gln	Thr	Pro	Leu	Ser 10	Leu	Pro	Val	Ser	Leu 15
	25	Gly	Asp	Gln	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Glņ	Ser	Leu	Val 30
The state of the s	30	His	Gly	Ile	Gly	Asn 35	Thr	Tyr	Leu	His	Trp 40	Tyr	Leu	Gln	Lys	Pro 45
es la les la		Gly	Gln	Ser	Pro	Lys 50	Leu	Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60
	35	Ser	Gly	Val	Pro	Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75
		Phe	Thr	Leu	Arg	Ile 80	Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Leu	Gly	Leu 90
	40	Tyr	Phe	Суѕ	Ser	Gln 95	Ser	Thr	His	Val	Pro 100	Leu	Thr	Phe	Gly	Ala 105
	45	Gly	Thr	Lys	Leu	Glu 110	Leu	Lys	Arg	Ala	Asp 115	Ala	Ala	Pro	Thr	Val 120
		Ser	Ile	Phe	Pro	Pro 125	Ser	Ser	Glu	Gln		Lys 131				
	50	(2)	INFO	RMAT	ION 1	FOR :	SEQ :	ID N	0:36	:						
	55	(:	(1	A) L: B) T' C) S'	NCE (ENGT) YPE: TRAN	H: 40 Nucl	05 ba leic ESS:	ase p Acid Sing	pair: d	5						
	J J		1.8	ا خار در س	OPOL	JU 1 .	الننديد	- ಡಿಪಿ								

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

5	GAGATTCAGC TGCAGCAGTC TGGACCTGAG CTGATGAAGC CTGGGGCTTC 50)
5	AGTGAAGATA TCCTGCAAGG CTTCTGGTTA TTCATTCAGT AGCCACTACA 10	00
	TGCACTGGGT GAAGCAGAGC CATGGAAAGA GCCTTGAGTG GATTGGCTAC 15	50
10	ATTGATCCTT CCAATGGTGA AACTACTTAC AACCAGAAAT TCAAGGGCAA 20	00
	GGCCACATTG ACTGTAGACA CATCTTCCAG CACAGCCAAC GTGCATCTCA 25	50
15	GCAGCCTGAC ATCTGATGAC TCTGCAGTCT ATTTCTGTGC AAGAGGGGAC 30	00
13	TATAGATACA ACGGCGACTG GTTTTTCGAT GTCTGGGGCG CAGGGACCAC 35	50
	GGTCACCGTC TCCTCCGCCA AAACCGACAG CCCCATCGGT CTATCCGGGC 40	00
20	CCATC 405	
	(2) INFORMATION FOR SEQ ID NO:37:	
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 135 amino acids(B) TYPE: Amino Acid(D) TOPOLOGY: Linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
30	Glu Ile Gln Leu Gln Gln Ser Gly Pro Glu Leu Met Lys Pro Glu Leu Me	Gl:
35	Ala Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ser Phe 3	Se:
	Ser His Tyr Met His Trp Val Lys Gln Ser His Gly Lys Ser 1	Let
40	Glu Trp Ile Gly Tyr Ile Asp Pro Ser Asn Gly Glu Thr Thr 50 55	Ту: 6
45	Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Val Asp Thr : 65 70	Se: 7
	Ser Ser Thr Ala Asn Val His Leu Ser Ser Leu Thr Ser Asp 80	As 9
50	Ser Ala Val Tyr Phe Cys Ala Arg Gly Asp Tyr Arg Tyr Asn (95	Gl: 10
	Asp Trp Phe Phe Asp Val Trp Gly Ala Gly Thr Thr Val Thr 110 115	Va 12
55	Ser Ser Ala Lys Thr Asp Ser Pro Ile Gly Leu Ser Gly Pro : 125 130	I1 13

	(2) INFORMATION FOR SEQ ID NO:38:
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:
	CTTGGTGGAG GCGGAGGAGA CG 22
15	(2) INFORMATION FOR SEQ ID NO:39:
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 38 base pairs(B) TYPE: Nucleic Acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:
25	GAAACGGGCT GTTGCTGCAC CAACTGTATT CATCTTCC 38
	(2) INFORMATION FOR SEQ ID NC:40:
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 31 base pairs(B) TYPE: Nucleic Acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:
40	GTCACCGTCT CCTCCGCCTC CACCAAGGGC C 31
40	(2) INFORMATION FOR SEQ ID NO:41:
45	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 729 base pairs(B) TYPE: Nucleic Acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:
	ATGAAGAAGA ATATCGCATT TCTTCTTGCA TCTATGTTCG TTTTTTCTAT 50
55	TGCTACAAAT GCATACGCTG ATATCGTGAT GACACAGACA CCACTCTCCC 100
55	TGCCTGTCAG TCTTGGAGAT CAGGCCTCCA TCTCTTGCAG ATCTAGTCAG 150

	AGCCTTGTAC	ACGGTATTG	G AAACAC	CTAT T	TACATTGG	T ACCTG	CAGAA	200
5	GCCAGGCCAG	TCTCCAAAG	C TCCTGA	TCTA C	AAAGTTTC	C AACCG	ATTTT	250
,	CTGGGGTCCC	AGACAGGTT	C AGTGGC	AGTG G	ATCAGGGA	C AGATT	TCACA	300
	CTCAGGATCA	GCAGAGTGG.	A GGCTGA	GGAT C	TGGGACTT	T ATTTC	TGCTC:	350
10	TCAAAGTACA	CATGTTCCG	C TCACGT	TCGG T	CTGGGAC	C AAGCT	'GGAGC	400
	TGAAACGGGC	TGTTGCTGC	A CCAACT	GTAT T	CATCTTCC	C ACCAT	CCAGT	450
15	GAGCAATTGA	AATCTGGAA	C TGCCTC	TGTT G	TGTGCCTG	C TGAAT	AACTT	500
	CTATCCCAGA	GAGGCCAAA	G TACAGT	GGAA G	GTGGATAA	C GCCCT	CCAAT	550
	CGGGTAACTC	CCAGGAGAG'	T GTCACA	GAGC A	.GGACAGCA	A GGACA	GCACC	600
20	TACAGCCTCA	GCAGCACCC'	T GACGCT	GAGC A	AAGCAGAC	T ACGAG	BAAACA	650
	CAAAGTCTAC	GCCTGCGAA	G TCACCC	ATCA G	GGCCTGAG	C TCGCC	CGTCA	700
25	CAAAGAGCTT	CAACAGGGG	A GAGTGT	TAA 72	9			
	(2) INFORMA	TION FOR S	EQ ID NO	:42:				
		ENCE CHARAGE LENGTH: 24						
30		TYPE: Amin TOPOLOGY:						
	(xi) SEQU	ENCE DESCR	IPTION:	SEQ ID	NO:42:			
35	Met Lys Ly 1	s Asn Ile . 5	Ala Phe	Leu Le	eu Ala Se 10	er Met F	Phe Val	Phe 15
40	Ser Ile Al	a Thr Asn . 20	Ala Tyr	Ala As	sp Ile Va 25	l Met I	Thr Gln	Thr 30
	Pro Leu Se	r Leu Pro 35	Val Ser	Leu Gl	y Asp Gl 40	n Ala S	Ser Ile	Ser 45
45	Cys Arg Se	r Ser Gln 50	Ser Leu	Val Hi	s Gly Il. 55	e Gly A	sn Thr	Tyr 60
	Leu His Tr	p Tyr Leu 65	Gln Lys	Pro Gl	y Gln Se 70	r Pro L	ys Leu	Leu 75
50	Ile Tyr Ly	rs Val Ser . 80	Asn Arg	Phe Se	er Gly Va 85	l Pro A	sp Arg	Phe 90
55	Ser Gly Se	r Gly Ser	Gly Thr	Asp Ph	e Thr Le 100	u Arg I	le Ser	Arg 105
	Val Glu Al	a Glu Asp	Leu Gly	Leu Ty	r Phe Cy	s Ser G	31n Ser	Thr

		110 115 129
	5	His Val Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Ly 125 130 13
	5	Arg Ala Val Ala Ala Pro Thr Val Phe Ile Phe Pro Pro Ser Se. 140 145 15
	10	Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu As:
		Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp As 170 175 18
	15	Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln As . 185 190 19
. 22 2.	20	Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Se 200 205 21
		Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Th 215 220 22
	25	His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gl 230 235 24
THE THE THE		Glu Cys 242
15 1 ;	30	2) INFORMATION FOR SEQ ID NO:43:
E H S T S T S T S T S T S T S T S T S T S	35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 762 base pairs (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear
ing d		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:
	40	ATGAAAAAGA ATATCGCATT TCTTCTTGCA TCTATGTTCG TTTTTTCTAT 50
		TGCTACAAAC GCGTACGCTG AGATTCAGCT GCAGCAGTCT GGACCTGAGC 100
	45	TGATGAAGCC TGGGGCTTCA GTGAAGATAT CCTGCAAGGC TTCTGGTTAT 150
		TCATTCAGTA GCCACTACAT GCACTGGGTG AAGCAGAGCC ATGGAAAGAG 200
	50	CCTTGAGTGG ATTGGCTACA TTGATCCTTC CAATGGTGAA ACTACTTACA 250
		ACCAGAAATT CAAGGGCAAG GCCACATTGA CTGTAGACAC ATCTTCCAGC 300
		ACAGCCAACG TGCATCTCAG CAGCCTGACA TCTGATGACT CTGCAGTCTA 350
	55	TTTCTGTGCA AGAGGGGACT ATAGATACAA CGGCGACTGG TTTTTCGATG 400

	TCTG	GGGC	GC A	\GGGA	CCAC	G GI	CACC	GTCT	CCT	CCGC	CTC	CACC	AAGG	GC 4	150
	CCAT	CGGT	ст 1	cccc	CTGG	C AC	CCTC	CTCC	AAG	AGCA	CCT	CTGG	GGGC	CAC S	500
5	AGCG	GCCC	TG G	GCTG	CCTG	G TC	AAGG	ACTA	. CTT	cccc	GAA	CCGG	TGAC	GG 5	550
	TGTC	GTGG	AA C	CTCAG	GCGC	C CI	GACC	AGCG	GCG	TGCA	CAC	CTTC	CCGG	CT (500
10	GTCC	TACA	GT C	CTCA	.GGAC	T CI	ACTO	CCTC	AGC	AGCG	TGG	TGAC	CGTG	SCC (550
10	CTCC	AGCA	GC I	TGGG	CACC	C AG	SACCI	ACAT	CTG	CAAC	GTG	AATO	CACAA	AGC .	700
	CCAG	CAAC	AC C	CAAGG	TGGA	C AF	AGAAA	GTTG	AGC	CCAA	LATC	TTGT	GACA	AA.	750
15	ACTO	ACAC	TAC	GA 76	52										
	(2) I	NFOF	LTAM	ON F	FOR S	SEQ]	D NO):44:							
20	(i	(P	A) LE		1: 25	3 an	nino	CS: acid	Ìs						
		•	•	YPE: OPOLO											
25	(xi	L) SE	EQUE	NCE I	DESCE	RIPT	ON:	SEQ	ID N	10:44	1:				
23	Met 1	Lys	Lys	Asn	Ile 5	Ala	Phe	Leu	Leu	Ala 10	Ser	Met •	Phe	Val	Phe 15
30	Ser	Ile	Ala	Thr	Asn 20	Ala	Tyr	Ala	Glu	lle 25	Gln	Leu	Gln	Gln	Ser 30
	Gly	Pro	Glu	Leu	Met 35	Lys	Pro	Gly	Ala	Ser 40	Val	Lys	Ile	Ser	Cys 45
35	Lys	Ala	Ser	Gly	Tyr 50	Ser	Phe	Ser	Ser	His 55	Tyr	Met	His	Trp	Val
40	Lys	Gln	Ser	His	Gly 65	Lys	Ser	Leu	Glu	Trp 70	Ile	Gly	Tyr	Ile	Asr 75
	Pro	Ser	Asn	Gly	Glu 80	Thr	Thr	Tyr	Asn	Gln 85	Lys	Phe	Lys	Gly	Lys 90
45	Ala	Thr	Leu	Thr	Val 95	Asp	Thr	Ser	Ser	Ser 100	Thr	Ala	Asn	Val	His 105
	Leu	Ser	Ser	Leu	Thr 110	Ser	Asp	Asp	Ser	Ala 115	Val	Tyr	Phe	Cys	Ala 120
50	Arg	Gly	Asp	Tyr	Arg 125	Tyr	Asn	Gly	Asp	Trp 130	Phe	Phe	Asp	Val	Trp 135
55	Gly	Ala	Gly	Thr	Thr 140	Val	Thr	Val	Ser	Ser 145	Ala	Ser	Thr	Lys	Gly 150
55	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Ser	Ser	Lys	Ser	Thr	Ser	Gly

					155					160					165
5	Gly	Thr	Ala	Ala	Leu 170	Gly	Cys	Leu	Val	Lys 175	Asp	Tyr	Phe	Pro	Glu 180
3	Pro	Val	Thr	Val	Ser 185	Trp	Asn	Ser	Gly	Ala 190	Leu	Thr	Ser	Gly	Val 195
10	His	Thr	Phe	Pro	Ala 200	Val	Leu	Gln	Ser	Ser 205	Gly	Leu	Tyr	Ser	Leu 210
	Ser	Ser	Val	Val	Thr 215	Val	Pro	Ser	Ser	Ser 220	Leu	Gly	Thr	Gln	Thr 225
15	Tyr	Ile	Cys	Asn	Val 230	Asn	His	Lys	Pro	Ser 235	Asn	Thr	Lys	Val	Asp 240
20	Lys	Lys	Val	Glu	Pro 245	Lys	Ser	Cys	Asp	Lys 250	Thr	His	Thr 253		
20	(2)	INFOR	RMAT	ON I	FOR S	SEQ :	ID N	0:45	:						
25	(:	(I	A) LI 3) T	ENGTI YPE:	CHARA H: 1: Amin OGY:	l4 an	mino cid		ds						
	(x:	i) SI	EQUEI	NCE I	DESCI	RIPT	ION:	SEQ	ID I	NO:4	5:				
30	Asp 1	Ile	Val	Met	Thr 5	Gln	Thr	Pro	Leu	Ser 10	Leu	Pro	Val	Ser	Leu 15
35	Gly	Asp	Gln	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Leu	Val 30
	His	Gly	Ile	Gly	Asn 35	Thr	Tyr	Leu	His	Trp 40	Tyr	Leu	Gln	Lys	Pro 45
40	Gly	Gln	Ser	Pro	Lys 50	Leu	Leu	Ile	Tyr	Tyr 55	Lys	Val	Ser	Asn	Arg 60
	Phe	Ser	Gly	Val	Pro 65	Asp	Arg	Phe	Ser	Asp 70	Ser	Gly	Ser	Gly	Thr 75
45	Asp	Phe	Thr	Leu	Arg 80	Ile	Ser	Arg	Val	Glu 85	Ala	Glu	Asp	Leu	Gly 90
50	Leu	Tyr	Phe	Cys	Ser 95	Gln	Ser	Thr	His	Val 100	Pro	Leu	Thr	Phe	Gly 105
	Ala	Gly	Thr	Lys	Leu 110	Glu	Leu	Lys	Arg 114						
55	(2)	INFO	RMAT:	ION 1	FOR :	SEQ	ID N	0:46	:						
23	(i) SI	EQUE	NCE (CHAR	ACTE	RIST	ICS:							

	(A) LENGTH: 114 amino acids(B) TYPE: Amino Acid(D) TOPOLOGY: Linear(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:														
5	(xi	i) Si	EQUE	CE I	DESCF	RIPTI	ON:	SEQ	ID N	10:46	5:				
	Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15
10	Gly	Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ser 25	Ser	Gln	Ser	Leu	Val 30
15	His	Gly	Ile	Gly	Asn 35	Thr	Tyr	Leu	His	Trp 40	Tyr	Gln	Gln	Lys	Pro 45
	Gly	Lys	Ala	Pro	Lys 50	Leu	Leu	Ile	Tyr	Tyr 55	Lys	Val	Ser	Asn	Arg 60
20	Phe	Ser	Gly	Val	Pro 65	Ser	Arg	Phe	Ser	Gly 70	Ser	Gly	Ser	Gly	Thr 75
	qzA	Phe	Thr	Leu	Thr 80	Ile	Ser	Ser	Leu	Gln 85	Pro	Glu	Asp	Phe	Ala 90
25	Thr	Tyr	Tyr	Cys	Ser 95	Gln	Ser	Thr	His	Val 100	Pro	Leu	Thr	Phe	Gly 105
30	Gln	Gly	Thr	Lys	Val 110	Glu	Ile	Lys	Arg 114						
	(2)	INFO	RMAT:	ION 1	FOR S	SEQ :	ID NO	0:47	:						
35	(:	(1	A) LI B) T	ENGTI YPE :	CHARA H: 10 PRT OGY:	09 ar	mino		ds						
	(x:	i) S	EQUE	NCE 1	DESCI	RIPT:	ION:	SEQ	ID I	NO:47	7:				
40	Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15
45	Gly	Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Lys	Thr	Ile	Ser 30
	Lys	Tyr	Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45
50	Leu	Leu	Ile	Tyr	Tyr 50	Ser	Gly	Ser	Thr	Leu 55	Glu	Ser	Gly	Val	Pro 60
	Ser	Arg	Phe	Ser	Gly 65	Ser	Gly	Ser	Gly	Thr 70	Asp	Phe	Thr	Leu	Thr 75
55	Ile	Ser	Ser	Leu	Gln 80	Pro	Glu	Asp	Phe	Ala 85	Thr	Tyr	Tyr	Cys	Gln 90

	Gln H	is Asn	Glu	Tyr 95	Pro	Leu	Thr	Phe	Gly 100	Gln	Gly	Thr	Lys	Val 105
5	Glu I	le Lys	Arg 109											
	(2) IN	FORMAT	ION P	FOR S	SEQ I	ED NO	3:48	:						
10	(i)	SEQUE (A) L (B) T (D) T	ENGTI YPE:	H: 11 Amir	17 ar 10 Ac	nino cid		ls						
15	(xi)	SEQUE	NCE I	DESCI	RIPT	CON:	SEQ	ID 1	10:48	3:				
	Glu I 1	le Gln	Leu	Gln 5	Gln	Ser	Gly	Pro	Glu 10	Leu	Met	Lys	Pro	Gly 15
20	Ala S	er Val	Lys	Ile 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Ser	Phe	Ser 30
25	Ser H	is Tyr	Met	His 35	Trp	Val	Lys	Gln	Ser 40	His	Gly	Lys	Ser	Leu 45
23	Glu T	rp Ile	Gly	Tyr 50	Ile	Asp	Pro	Ser	Asn 55	Gly	Glu	Thr	Thr	Tyr 60
30	Asn G	ln Lys	Phe	Lys 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Val	Asp	Thr	Ser 75
	Ser S	er Thr	Ala	Asn 80	Val	His	Leu	Ser	Ser 85	Leu	Thr	Ser	Asp	Asp 90
35	Ser A	la Val	Tyr	Phe 95	Cys	Ala	Ala	Arg	Gly 100	Asp	Tyr	Arg	Tyr	Asn 105
40	Gly A	sp Trp	Phe	Phe 110	Asp	Val	Trp	Gly	Ala 115	Gly	Thr 117			
40	(2) IN	FORMAT	ION	FOR :	SEQ :	ID N	0:49	:						
45	(i)	SEQUE (A) L (B) T (D) T	ENGT	H: 1 Ami	17 ai no A	mino cid		ds						
	(xi)	SEQUE	NCE I	DESC:	RIPT	ION:	SEQ	ID I	NO:4	9:				
50	Glu V 1	al Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15
55	Gly S	er Leu	Arg	Leu 20	Ser	Суѕ	Ala	Ala	Ser 25	Gly	Tyr	Ser	Phe	Ser 30
JJ	Ser E	lis Tyr	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu

		35		40	45
5	Glu Trp Val (Gly Tyr Ile 50	Asp Pro Ser	Asn Gly Glu 55	Thr Thr Tyr 60
J	Asn Gln Lys 1	Phe Lys Gly 65	Arg Phe Thr	Ile Ser Arg 70	Asp Asn Ser 75
10	Lys Asn Thr 1	Leu Tyr Leu 80	Gln Met Asn	Ser Leu Arg 85	Ala Glu Asp 90
	Thr Ala Val	Tyr Tyr Cys 95	Ala Ala Arg	Gly Asp Tyr 100	Arg Tyr Asn 105
15	Gly Asp Trp I	Phe Phe Asp 110		Gln Gly Thr 115 117	
	(2) INFORMATIO	ON FOR SEQ I	ID NO:50:		
20	(A) LEI (B) TYI	CE CHARACTER NGTH: 116 am PE: PRT POLOGY: Line	nino acids		
25	(xi) SEQUENO	CE DESCRIPTI	ON: SEQ ID N	0:50:	
	Glu Val Gln 1 1	Leu Val Glu 5	Ser Gly Gly	Gly Leu Val 10	Gln Pro Gly 15
30	Gly Ser Leu i	Arg Leu Ser 20	Cys Ala Ala	Ser Gly Phe 25	Ser Phe Thr
35	Gly His Trp I	Met Asn Trp 35	Val Arg Gln	Ala Pro Gly 40	Lys Gly Leu 45
••	Glu Trp Val (Gly Met Ile 50	His Pro Ser	Asp Ser Glu 55	Thr Arg Tyr 60
40	Ala Asp Ser	Val Lys Gly 65	Arg Phe Thr	Ile Ser Arg 70	Asp Asn Ser 75
	Lys Asn Thr	Leu Tyr Leu 80	Gln Met Asn	Ser Leu Arg 85	Ala Glu Asp 90
45	Thr Ala Val'	Tyr Tyr Cys 95	Ala Ala Arg	Gly Ile Tyr 100	Phe Tyr Gly 105
50	Thr Thr Tyr	Phe Asp Tyr 110	Trp Gly Gln	Gly Thr 115 116	
	(2) INFORMATION (i) SEQUENCE	ON FOR SEQ I CE CHARACTER			
55	(B) TY	NGTH: 242 am PE: Amino Ac POLOGY: Line	eid		

		(xi	i) SI	EQUEN	NCE I	DESCE	RIPTI	ON:	SEQ	ID N	10:51	.:				
	5	Met 1	Lys	Lys	Asn	Ile 5	Ala	Phe	Leu	Leu	Ala 10	Ser	Met	Phe	Val	Phe 15
		Ser	Ile	Ala	Thr	Asn 20	Ala	Tyr	Ala	Asp	Ile 25	Gln	Met	Thr	Gln	Ser 30
	10	Pro	Ser	Ser	Leu	Ser 35	Ala	Ser	Val	Gly	Asp 40	Arg	Val	Thr	Ile	Thr 45
	15	Cys	Arg	Ser	Ser	Gln 50	Ser	Leu	Val	His	Gly 55	Ile	Gly	Asn	Thr	Tyr 60
	••	Leu	His	Trp	Tyr	Gln 65	Gln	Lys	Pro	Gly	Lys 70	Ala	Pro	Lys	Leu	Leu 75
,28 &	20	Ile	Tyr	Lys	Val	Ser 80	Asn	Arg	Phe	Ser	Gly 85	Val	Pro	Ser	Arg	Phe 90
		Ser	Gly	Ser	Gly	Ser 95	Gly	Thr	Asp	Phe	Thr 100	Leu	Thr	Ile	Ser	Ser 105
	25	Leu	Gln	Pro	Glu	Asp 110	Phe	Ala	Thr	Tyr	Tyr 115	Суѕ	Ser	Gln	Ser	Thr 120
	30	His	Val	Pro	Leu	Thr 125	Phe	Gly	Gln	Gly	Thr 130	Lys	Val	Glu	Ile	Lys 135
is is		Arg	Thr	Val	Ala	Ala 140	Pro	Ser	Val	Phe	Ile 145	Phe	Pro	Pro	Ser	Asp 150
Mary State	35	Glu	.Gln	Leu	Lys	Ser 155	Gly	Thr	Ala	Ser	Val 160	Val	Cys	Leu	Leu	Asn 165
		Asn	Phe	Tyr	Pro	Arg 170	Glu	Ala	Lys	Val	Gln 175	Trp	Lys	Val	Asp	Asn 180
	40	Ala	Leu	Gln	Ser	Gly 185	Asn	Ser	Gln	Glu	Ser 190	Val	Thr	Glu	Gln	Asp 195
	45	Ser	Lys	Asp	Ser	Thr 200	Tyr	Ser	Leu	Ser	Ser 205	Thr	Leu	Thr	Leu	Ser 210
		Lys	Ala	Asp	Tyr	Glu 215	Lys	His	Lys	Val	Tyr 220	Ala	Суѕ	Glu	Val	Thr 225
	50	His	Gln	Gly	Leu	Ser 230	Ser	Pro	Val	Thr	Lys 235	Ser	Phe	Asn	Arg	Gly 240
		Glu	Cys 242													
	55	(2)	INFO	RMAT:	ION 1	FOR :	SEQ :	ID N	0:52	:						

-	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 253 amino acids (B) TYPE: Amino Acid (D) TOPOLOGY: Linear 5 (xi) SEQUENCE DESCRIPTION: SEO ID NO:52:														
3	(x:	i) SI	EQUE	NCE I	DESCE	RIPT	ON:	SEQ	ID N	NO:52	2:				
10	Met 1	Lys	Lys	Asn	Ile 5	Ala	Phe	Leu	Leu	Ala 10	Ser	Met	Phe	Val	Phe 15
10	Ser	Ile	Ala	Thr	Asn 20	Ala	Tyr	Ala	Glu	Val 25	Gln	Leu	Val	Gln	Ser 30
15	Gly	Gly	Gly	Leu	Val 35	Gln	Pro	Gly	Gly	Ser 40	Leu	Arg	Leu	Ser	Cys 45
	Ala	Ala	Ser	Gly	Tyr 50	Ser	Phe	Ser	Ser	His 55	Tyr	Met	His	Trp	Val 60
20	Arg	Gln	Ala	Pro	Gly 65	Lys	Gly	Leu	Glu	Trp 70	Val	Gly	Tyr	Ile	Asp 75
1) 1] 1] 25	Pro	Ser	Asn	Gly	Glu 80	Thr	Thr	Tyr	Asn	Gln 85	Lys	Phe	Lys	Gly	Arg 90
ji Nj	Phe	Thr	Leu	Ser	Arg 95	Asp	Asn	Ser	Lys	Asn 100	Thr	Ala	Tyr	Leu	Gln 105
30 30	Met	Asn	Ser	Leu	Arg 110	Ala	Glu	Asp	Thr	Ala 115	Val	Tyr	Tyr	Суѕ	Ala 120
pr 5 pr 5	Arg	Gly	Asp	Tyr	Arg 125	Tyr	Asn	Gly	Asp	Trp 130	Phe	Phe	Asp	Val	Trp 135
35	Gly	Gln	Gly	Thr	Leu 140	Val	Thr	Val	Ser	Ser 145	Ala	Ser	Thr	Lys	Gly 150
40	Pro	Ser	Val	Phe	Pro 155	Leu	Ala	Pro	Ser	Ser 160	Lys	Ser	Thr	Ser	Gly 165
70	Gly	Thr	Ala	Ala	Leu 170	Gly	Cys	Leu	Val	Lys 175	Asp	Tyr	Phe	Pro	Glu 180
45	Pro	Val	Thr	Val	Ser 185	Trp	Asn	Ser	Gly	Ala 190	Leu	Thr	Ser	Gly	Val 195
	His	Thr	Phe	Pro	Ala 200	Val	Leu	Gln	Ser	Ser 205	Gly	Leu	Tyr	Ser	Leu 210
50	Ser	Ser	Val	Val	Thr 215	Val	Pro	Ser	Ser	Ser 220	Leu	Gly	Thr	Gln	Thr 225
55	Tyr	Ile	Cys	Asn	Val 230	Asn	His	Lys	Pro	Ser 235	Asn	Thr	Lys	Val	Asp 240
JJ	Lys	Lys	Val	Glu	Pro	Lys	Ser	Cys	Asp	Lys	Thr	His	Thr		

					245					250			253		
	(2) INFORMATION FOR SEQ ID NO:53: (i) SEQUENCE CHARACTERISTICS:														
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 159 amino acids (B) TYPE: Amino Acid (D) TOPOLOGY: Linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53: 														
10	(x:	i) SI	EQUEI	NCE I	DESC	RIPT:	ION:	SEQ	ID 1	VO:53	3:				
	Ser 1	Gly	Gly	Gly	Ser 5	Gly	Ser	Gly	Asp	Phe 10	Asp	Tyr	Glu	Lys	Met 15
15	Ala	Asn	Ala	Asn	Lys 20	Gly	Ala	Met	Thr	Glu 25	Asn	Ala	Asp	Glu	Asn 30
20	Ala	Leu	Gln	Ser	Asp 35	Ala	Lys	Gly	Lys	Leu 40	Asp	Ser	Val	Ala	Thr 45
	Asp	Tyr	Gly	Ala	Ala 50	Ile	Asp	Gly	Phe	Ile 55	Gly	Asp	Val	Ser	Gly 60
25	Leu	Ala	Asn	Gly	Asn 65	Gly	Ala	Thr	Gly	Asp 70	Phe	Ala	Gly	Ser	Ser 75
	Asn	Ser	Gln	Met	Ala 80	Gln	Val	Gly	Asp	Gly 85	Asp	Asn	Ser	Pro	Leu 90
30	Met	Asn	Asn	Phe	Arg 95	Gln	Tyr	Leu	Pro	Ser 100	Leu	Pro	Gln	Ser	Val 105
35	Glu	Cys	Arg	Pro	Phe 110	Val	Phe	Ser	Ala	Gly 115	Lys	Pro	Tyr	Glu	Phe 120
	Ser	Ile	Asp	Суѕ	Asp 125	Lys	Ile	Asn	Leu	Phe 130	Arg	Gly	Val	Phe	Ala 135
40	Phe	Leu	Leu	Tyr	Val 140	Ala	Thr	Phe	Met	Tyr 145	Val	Phe	Ser	Thr	Phe 150
	Ala	Asn	Ile	Leu			Lys		Ser 159						
45	(2)	INFO	RMAT:	ION I	FOR S	SEQ :	ID N	0:54	:						
50	((1	EQUEI A) L: B) T' C) S' D) T(ENGTI YPE : TRANI	H: 78 Nucl DEDNI	80 ba Leic ESS:	ase p Acid Sing	pair: d	5						
	(x	i) S	EQUE	NCE I	DESCI	RIPT	ION:	SEQ	ID 1	NO:5	1 :				
55	ATG	AAAA	AGA Z	TATA	CGCA:	rt ta	CTTC'	rtgc:	A TC	ratg:	rtcg	TTT	rttc:	TAT	50

5	TGTCCGCCTC	TGTGGGCG	AT AGO	GGTCACCA	TCACCT	GCAG	GTCA	AGTC	AA :	150
3	AGCTTAGTAC	ATGGTATA	GG TA	ACACGTAI	TTACAC	TGGT	ATCA	ACAG	AA :	200
	ACCAGGAAAA	GCTCCGAA	AC TAC	CTGATTTA	CAAAGT	ATCC	AATC	GATT	CT :	250
10	CTGGAGTCCC	TTCTCGCT	TC TC	rggatcco	GTTCTG	GGAC	GGAI	TTCA	CT :	300
	CTGACCATCA	GCAGTCTG	CA GC	CAGAAGAC	TTCGCA	ACTT	ATTA	CTGT	TC :	350
15	ACAGAGTACT	CATGTCCC	GC TC	ACGTTTGG	ACAGGG	TACC	AAGG	TGGA	.GA (400
1.5	TCAAACGAAC	TGTGGCTG	CA CC	ATCTGTCT	TCATCT	TCCC	GCCA	TCTG	AT ·	450
	GAGCAGTTGA	AATCTGGA	AC TG	CTTCTGTT	GTGTGC	CTGC	TGAA	TAAC	TT !	500
20	CTATCCCAGA	GAGGCCAA	AG TA	CAGTGGAA	GGTGGA	TAAC	GCCC	TCCA	AT !	550
	CGGGTAACTC	CCAGGAGA	GT GT	CACAGAGO	: AGGACA	GCAA	GGAC	AGCA	CC	600
25	TACAGCCTCA	GCAGCACC	CT GA	CGCTGAGO	AAAGCA	GACT	ACGA	GAAA	CA	650
	CAAAGTCTAC	GCCTGCGA	AG TC	ACCCATCA	A GGGCCI	GAGC	TCGC	CCGI	CA	700
	CAAAGAGCTT	CAACAGGG	GA GA	GTGTTAAC	G CTGATC	CTCT	ACGO	CCGGA	CG	750
30	CATCGTGGCC	CTAGTACO	CA AC	TAGTCGTA	A 780					
;	(2) INFORMA	TION FOR	SEQ I	D NO:55:	1					
35		ENCE CHAP			is					
	• •	TYPE: Ami TOPOLOGY:								
	(xi) SEQU	ENCE DESC	RIPTI	ON: SEQ	ID NO:5	5:				
40	Met Lys Ly			Phe Leu			Met	Phe	Val	
	1				10		_			15
45	Ser Ile Al	a Thr Asr 20		TYT ALA	Giu Vai		Leu	Val	Glu	Ser 30
	Gly Gly Gl			Pro Gly			Arg	Leu	Ser	
50	מם פוג פוג	ar Clu mus		Pho Sor	40		Mot	u: a	m~n	45
50	Ala Ala Se	5(rne sei	55 55		mer,	nis	ııp	60
	Lys Gln Al	a Pro Gl ₃ .		Gly Leu	Glu Trr		Gly	Tyr	Ile	Asp 75
55	Pro Ser As			ጥ ከተ ጥህታ			Pho	Twe	Glv	
	110 DCI NO	ory ore		1 Y L	201	. <i></i> 135	1116	LYS	GIŸ	ur A

TGCTACAAAC GCATACGCTG ATATCCAGAT GACCCAGTCC CCGAGCTCCC 100

					80					85					90
5	Phe	Thr	Leu	Ser	Arg 95	Asp	Asn	Ser	Lys	Asn 100	Thr	Ala	Tyr	Leu	Gln 105
3	Met	Asn	Ser	Leu	Arg 110	Ala	Glu	Asp	Thr	Ala 115	Val	Tyr	Tyr	Cys	Ala 120
10	Arg	Gly	Asp	Tyr	Arg 125	Tyr	Asn	Gly	Asp	Trp 130	Phe	Phe	Asp	Val	Trp 135
	Gly	Gln	Gly	Thr	Leu 140	Val	Thr	Val	Ser	Ser 145	Ala	Ser	Thr	Lys	Gly 150
15	Pro	Ser	Val	Phe	Pro 155	Leu	Ala	Pro	Ser	Ser 160	Lys	Ser	Thr	Ser	Gly 165
20	Gly	Thr	Ala	Ala	Leu 170	Gly	Cys	Leu	Val	Lys 175	Asp	Tyr	Phe	Pro	Glu 180
	Pro	Val	Thr	Val	Ser 185	Trp	Asn	Ser	Gly	Ala 190	Leu	Thr	Ser	Gly	Val 195
25	His	Thr	Phe	Pro	Ala 200	Val	Leu	Gln	Ser	Ser 205	Gly	Leu	Tyr	Ser	Leu 210
	Ser	Ser	Val	Val	Thr 215	Val	Pro	Ser	Ser	Ser 220	Leu	Gly	Thr	Gln	Thr 225
30	Tyr	Ile	Cys	Asn	Val 230	Asn	His	Lys	Pro	Ser 235	Asn	Thr	Lys	Val	Asp 240
35	Lys	Lys ·	Val	Glu	Pro 245	Lys	Ser	Cys	Asp	Lys 250	Thr	His	Thr 253		
1	(2)	INFO	RMAT:	ION 1	FOR S	SEQ :	IĎ N	0:56	:						
40	(:	()	EQUEI A) LI B) T'	ENGTI YPE :	H: 24 Amin	42 ar	mino cid		ds						
	(x.	i) S	EQUE	NCE I	DESC	RIPT:	ION:	SEQ	ID I	NO:5	5:				
45	Met 1	Lys	Lys	Asn	Ile 5	Ala	Phe	Leu	Leu	Ala 10	Ser	Met	Phe	Val	Phe 15
50	Ser	Ile	Ala	Thr	Asn 20	Ala	Tyr	Ala	Asp	Ile 25	Gln	Met	Thr	Gln	Ser 30
_ _	Pro	Ser	Ser	Leu	Ser 35	Ala	Ser	Val	Gly	Asp 40	Arg	Val	Thr	Ile	Thr 45
55	Cys	Arg	Ser	Ser	Gln 50	Ser	Leu	Val	His	Gly 55	Ile	Gly	Ala	Thr	Tyr 60

		Leu	His	Trp	Tyr	Gln 65	Gln	Lys	Pro	Gly	Lys 70	Ala	Pro	Lys	Leu	Leu 75
	5	Ile	Tyr	Lys	Val	Ser 80	Asn	Arg	Phe	Ser	Gly 85	Val	Pro	Ser	Arg	Phe 90
		Ser	Gly	Ser	Gly	Ser 95	Gly	Thr	Asp	Phe	Thr 100	Leu	Thr	Ile	Ser	Ser 105
	10	Leu	Gln	Pro	Glu	Asp 110	Phe	Ala	Thr	Tyr	Tyr 115	Cys	Ser	Gln	Ser	Thr 120
	15	His	Val	Pro	Leu	Thr 125	Phe	Gly	Gln	Gly	Thr 130	Lys	Val	Glu	Ile	Lys 135
	13	Arg	Thr	Val	Ala	Ala 140	Pro	Ser	Val	Phe	Ile 145	Phe	Pro	Pro	Ser	Asp 150
	20	Glu	Gln	Leu	Lys	Ser 155	Gly	Thr	Ala	Ser	Val 160	Val	Cys	Leu	Leu	Asn 165
These there there		Asn	Phe	Tyr	Pro	Arg 170	Glu	Ala	Lys	Val	Gln 175	Trp	Lys	Val	Asp	Asn 180
THE THE WAY	25	Ala	Leu	Gln	Ser	Gly 185	Asn	Ser	Gln	Glu	Ser 190	Val	Thr	Glu	Gln	Asp 195
THE STREET STREET	30	Ser	Lys	Asp	Ser	Thr 200	Tyr	Ser	Leu	Ser	Ser 205	Thr	Leu	Thr	Leu	Ser 210
2 12	30	Lys	Ala	Asp	Tyr	Glu 215	Lys	His	Lys	Val	Tyr 220	Ala	Cys	Glu	Val	Thr 225
Harry State	35	Hiş	Gln	Gly	Leu	Ser 230	Ser	Pro	Val	Thr	Lys 235	Ser	Phe	Asn	Arg	Gly 240
THE THE		Glu	Cys 242													
	40	(2)	INFO	RMAT:	ION I	FOR S	SEQ :	ID N	0:57	: ,						
	45	(:	(1	EQUEI A) LI B) T'	ENGTI YPE:	H: 45 Amir	o am:	ino a		5					^	
		(x:	i) Si	EQUEI	VCE I	DESC	RIPT:	ION:	SEQ	ID I	NO:5	7:				
	50	Cys 1	Pro	Pro	Cys	Pro 5	Ala	Pro	Glu	Leu	Leu 10	Gly	Gly	Arg	Met	Lys 15
		Gln	Leu	Glu	Asp	Lys 20	Val	Glu	Glu	Leu	Leu 25	Ser	Lys	Asn	Tyr	His 30
	55	Leu	Glu	Asn	Glu	Val 35	Ala	Arg	Leu	Lys	Lys 40	Leu	Val	Gly	Glu	Arg 45
											271					

	(2) INFORMATION FOR SEQ ID NO:58:
5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 780 base pairs(B) TYPE: Nucleic Acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:
	ATGAAAAAGA ATATCGCATT TCTTCTTGCA TCTATGTTCG TTTTTTCTAT 50
15	TGCTACAAAC GCATACGCTG ATATCCAGAT GACCCAGTCC CCGAGCTCCC 10
	TGTCCGCCTC TGTGGGCGAT AGGGTCACCA TCACCTGCAG GTCAAGTCAA
20	AGCTTAGTAC ATGGTATAGG TGCTACGTAT TTACACTGGT ATCAACAGAA 20
20	ACCAGGAAAA GCTCCGAAAC TACTGATTTA CAAAGTATCC AATCGATTCT 25
	CTGGAGTCCC TTCTCGCTTC TCTGGATCCG GTTCTGGGAC GGATTTCACT 30
25	CTGACCATCA GCAGTCTGCA GCCAGAAGAC TTCGCAACTT ATTACTGTTC 35
	ACAGAGTACT CATGTCCCGC TCACGTTTGG ACAGGGTACC AAGGTGGAGA 40
30	TCAAACGAAC TGTGGCTGCA CCATCTGTCT TCATCTTCCC GCCATCTGAT 45
	GAGCAGTTGA AATCTGGAAC TGCTTCTGTT GTGTGCCTGC TGAATAACTT 50
	CTATCCCAGA GAGGCCAAAG TACAGTGGAA GGTGGATAAC GCCCTCCAAT 55
35	CGGGTAACTC CCAGGAGAGT GTCACAGAGC AGGACAGCAA GGACAGCACC 60
	TACAGCCTCA GCAGCACCCT GACGCTGAGC AAAGCAGACT ACGAGAAACA 65
40	CAAAGTCTAC GCCTGCGAAG TCACCCATCA GGGCCTGAGC TCGCCCGTCA 70
	CAAAGAGCTT CAACAGGGGA GAGTGTTAAG CTGATCCTCT ACGCCGGACG 75
	CATCGTGGCC CTAGTACGCA ACTAGTCGTA 780
45	(2) INFORMATION FOR SEQ ID NO:59:
	(i) SEQUENCE CHARACTERISTICS:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

(A) LENGTH: 927 base pairs(B) TYPE: Nucleic Acid

(C) STRANDEDNESS: Single
(D) TOPOLOGY: Linear

50

55

AAAAGGGTAT CTAGAGGTTG AGGTGATTTT ATGAAAAAGA ATATCGCATT 50

	TCTTCTTGCA TCTATGTTCG TTTTTTCTAT TGCTACAAAC GCGTACGCTG 100
5	AGGTTCAGCT AGTGCAGTCT GGCGGTGGCC TGGTGCAGCC AGGGGGCTCA 150
,	CTCCGTTTGT CCTGTGCAGC TTCTGGCTAC TCCTTCTCGA GTCACTATAT 200
	GCACTGGGTC CGTCAGGCCC CGGGTAAGGG CCTGGAATGG GTTGGATATA 250
10	TTGATCCTTC CAATGGTGAA ACTACGTATA ATCAAAAGTT CAAGGGCCGT 300
	TTCACTTTAT CTCGCGACAA CTCCAAAAAC ACAGCATACC TGCAGATGAA 350
15	CAGCCTGCGT GCTGAGGACA CTGCCGTCTA TTACTGTGCA AGAGGGGATT 400
15	ATCGCTACAA TGGTGACTGG TTCTTCGACG TCTGGGGTCA AGGAACCCTG 450
	GTCACCGTCT CCTCGGCCTC CACCAAGGGC CCATCGGTCT TCCCCCTGGC 500
20	ACCCTCCTCC AAGAGCACCT CTGGGGGCAC AGCGGCCCTG GGCTGCCTGG 550
	TCAAGGACTA CTTCCCCGAA CCGGTGACGG TGTCGTGGAA CTCAGGCGCC 600
25	CTGACCAGCG GCGTGCACAC CTTCCCGGCT GTCCTACAGT CCTCAGGACT 650
	CTACTCCCTC AGCAGCGTGG TGACCGTGCC CTCCAGCAGC TTGGGCACCC 700
	AGACCTACAT CTGCAACGTG AATCACAAGC CCAGCAACAC CAAGGTCGAC 750
30	AAGAAAGTTG AGCCCAAATC TTGTGACAAA ACTCACACAT GCCCGCCGTG 800
	CCCAGCACCA GAACTGCTGG GCGGCCGCAT GAAACAGCTA GAGGACAAGG 850
35	TCGAAGAGCT ACTCTCCAAG AACTACCACC TAGAGAATGA AGTGGCAAGA 900
	CTCAAAAAGC TTGTCGGGGA GCGCTAA 927
	(2) INFORMATION FOR SEQ ID NC:60:
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 298 amino acids
	(B) TYPE: Amino Acid (D) TCPOLOGY: Linear
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:
	Met Lys Lys Asn Ile Ala Phe Leu Leu Ala Ser Met Phe Val Ph
	1 5 10 1
50	Ser Ile Ala Thr Asn Ala Tyr Ala Glu Val Gln Leu Val Gln Se 20 25 3
	Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cy
55	35 40 4
	Ala Ala Ser Gly Tyr Ser Phe Ser Ser His Tyr Met His Trp Va
	11772

					50					55					60
5	Arg	Gln	Ala	Pro	Gly 65	Lys	Gly	Leu	Glu	Trp 70	Val	Gly	Tyr	Ile	Asp 75
3	Pro	Ser	Asn	Gly	Glu 80	Thr	Thr	Tyr	Asn	Gln 85	Lys	Phe	Lys	Gly	Arg 90
10	Phe	Thr	Leu	Ser	Arg 95	Asp	Asn	Ser	Lys	Asn 100	Thr	Ala	Tyr	Leu	Gln 105
	Met	Asn	Ser	Leu	Arg 110	Ala	Glu	Asp	Thr	Ala 115	Val	Tyr	Tyr	Cys	Ala 120
15	Arg	Gly	Asp	Tyr	Arg 125	Tyr	Asn	Gly	Asp	Trp 130	Phe	Phe	Asp	Val	Trp 135
. 20	Gly	Gln	Gly	Thr	Leu 140	Val	Thr	Val	Ser	Ser 145	Ala	Ser	Thr	Lys	Gly 150
1	Pro	Ser	Val	Phe	Pro 155	Leu	Ala	Pro	Ser	Ser 160	Lys	Ser	Thr	Ser	Gly 165
25	Gly	Thr	Ala	Ala	Leu 170	Gly	Cys	Leu	Val	Lys 175	Asp	Tyr	Phe	Pro	Glu 180
	Pro	Val	Thr	Val	Ser 185	Trp	Asn	Ser	Gly	Ala 190	Leu	Thr	Ser	Gly	Val 195
30	His	Thr	Phe	Pro	Ala 200	Val	Leu	Gln	Ser	Ser 205	Gly	Leu	Tyr	Ser	Leu 210
35	Ser	Ser	Val	Val	Thr 215	Val	Pro	Ser	Ser	Ser 220	Leu	Gly	Thr	Gln	Thr 225
	Tyr	Ile	Cys	Asn	Val 230	Asn	His	Lys	Pro	Ser 235	Asn	Thr	Lys	Val	Asp 240
40	Lys	Lys	Val	Glu	Pro 245	Lys	Ser	Cys	Asp	Lys 250	Thr	His	Thr	Cys	Pro 255
	Pro	Cys	Pro	Ala	Pro 260	Glu	Leu	Leu	Gly	Gly 265	Arg	Met	Lys	Gln	Leu 270
45	Glu	Asp	Lys	Val	Glu 275	Glu	Leu	Leu	Ser	Lys 280		Tyr	His	Leu	Glu 285
50	Asn	Glu	Val	Ala	Arg 290	Leu	Lys	Lys	Leu	Val 295	Gly	Glu	Arg 298		
30	(2)	INFO	RMAT	ION :	FOR :	SEQ :	ID N	0:61	:						
55	(· (A) L B) T	NCE ENGT: YPE: TRAN:	H: 6 Nuc	563 leic	base Aci	pai d	rs						

(D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

5	GAATTCAACT	TCTCCATACT	TTGGATAAGG	AAATACAGAC	ATGAAAAATC	50
	TCATTGCTGA	GTTGTTATTT	AAGCTTGCCC	AAAAAGAAGA	AGAGTCGAAT	100
10	GAACTGTGTG	CGCAGGTAGA	AGCTTTGGAG	ATTATCGTCA	CTGCAATGCT	150
	TCGCAATATG	GCGCAAAATG	ACCAACAGCG	GTTGATTGAT	CAGGTAGAGG	200
15	GGGCGCTGTA	CGAGGTAAAG	CCCGATGCCA	GCATTCCTGA	CGACGATACG	250
15	GAGCTGCTGC	GCGATTACGT	AAAGAAGTTA	TTGAAGCATC	CTCGTCAGTA	300
	AAAAGTTAAT	CTTTTCAACA	GCTGTCATAA	AGTTGTCACG	GCCGAGACTT	350
20	ATAGTCGCTT	TGTTTTTATT	TTTTAATGTA	TTTGTAACTA	GAATTCGAGC	400
	TCGGTACCCG	GGGATCCTCT	CGAGGTTGAG	GTGATTTTAT	GAAAAAGAAT	450
	ATCGCATTTC	TTCTTGCATC	TATGTTCGTT	TTTTCTATTG	CTACAAACGC	500
1	ATACGCTGAT	ATCCAGATGA	CCCAGTCCCC	GAGCTCCCTG	TCCGCCTCTG	550
	TGGGCGATAG	GGTCACCATC	ACCTGCAGGT	CAAGTCAAAG	CTTAGTACAT	600
30	GGTATAGGTG	CTACGTATTT	ACACTGGTAT	CAACAGAAAC	CAGGAAAAGC	650
a la e la	TCCGAAACTA	CTGATTTACA	AAGTATCCAA	TCGATTCTCT	GGAGTCCCTT	700
[] [] 35	CTCGCTTCTC	TGGATCCGGT	TCTGGGACGG	ATTTCACTCT	GACCATCAGC	750
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AGTCTGCAGC	CAGAAGACTT	CGCAACTTAT	TACTGTTCAC	AGAGTACTCA	800
\$ 1. 2.5	TGTCCCGCTC	ACGTTTGGAC	AGGGTACCAA	GGTGGAGATC	AAACGAACTG	850
40	TGGCTGCACC	ATCTGTCTTC	ATCTTCCCGC	CATCTGATGA	GCAGTTGAAA	900
	TCTGGAACTG	CTTCTGTTGT	GTGCCTGCTG	AATAACTTCT	ATCCCAGAGA	950
45	GGCCAAAGTA	CAGTGGAAGG	TGGATAACGC	CCTCCAATCG	GGTAACTCCC	1000
	AGGAGAGTGT	CACAGAGCAG	GACAGCAAGG	ACAGCACCTA	CAGCCTCAGC	1050
	AGCACCCTGA	CGCTGAGCAA	AGCAGACTAC	GAGAAACACA	AAGTCTACGC	1100
50	CTGCGAAGTC	ACCCATCAGG	GCCTGAGCTC	GCCCGTCACA	AAGAGCTTCA	1150
	ACAGGGGAGA	GTGTTAAGCT	GATCCTCTAC	GCCGGACGCA	TCGTGGCCCT	1200
55	AGTACGCAAC	TAGTCGTAAA	AAGGGTATCT	AGAGGTTGAG	GTGATTTTAT	1250
	GAAAAAGAAT	ATCGCATTTC	TTCTTGCATC	TATGTTCGTT	TTTTCTATTG	1300

		CTACAAACGC	GTACGCTGAG	GTTCAGCTAG	TGCAGTCTGG	CGGTGGCCTG	1350
	5	GTGCAGCCAG	GGGGCTCACT	CCGTTTGTCC	TGTGCAGCTT	CTGGCTACTC	1400
	3	CTTCTCGAGT	CACTATATGC	ACTGGGTCCG	TCAGGCCCCG	GGTAAGGGCC	1450
		TGGAATGGGT	TGGATATATT	GATCCTTCCA	ATGGTGAAAC	TACGTATAAT	1500
	10	CAAAAGTTCA	AGGGCCGTTT	CACTTTATCT	CGCGACAACT	CCAAAAACAC	1550
		AGCATACCTG	CAGATGAACA	GCCTGCGTGC	TGAGGACACT	GCCGTCTATT	1600
	16	ACTGTGCAAG	AGGGGATTAT	CGCTACAATG	GTGACTGGTT	CTTCGACGTC	1650
	15	TGGGGTCAAG	GAACCCTGGT	CACCGTCTCC	TCGGCCTCCA	CCAAGGGCCC	1700
		ATCGGTCTTC	CCCCTGGCAC	CCTCCTCCAA	GAGCACCTCT	GGGGGCACAG	1750
·= 5;	20	CGGCCCTGGG	CTGCCTGGTC	AAGGACTACT	TCCCCGAACC	GGTGACGGTG	1800
		TCGTGGAACT	CAGGCGCCCT	GACCAGCGGC	GTGCACACCT	TCCCGGCTGT	1850
	25	CCTACAGTCC	TCAGGACTCT	ACTCCCTCAG	CAGCGTGGTG	ACCGTGCCCT	1900
	23	CCAGCAGCTT	GGGCACCCAG	ACCTACATCT	GCAACGTGAA	TCACAAGCCC	1950
		AGCAACACCA	AGGTCGACAA	GAAAGTTGAG	CCCAAATCTT	GTGACAAAAC	2000
, I J	30	TCACACATGC	CCGCCGTGCC	CAGCACCAGA	ACTGCTGGGC	GGCCGCATGA	2050
es is		AACAGCTAGA	GGACAAGGTC	GAAGAGCTAC	TCTCCAAGAA	CTACCACCTA	2100
Maria I	35	GAGAATGAAG	TGGCAAGACT	CAAAAAGCTT	GTCGGGGAGC	GCTAAGCATG	2150
	33	CGACGGCCCT	AGAGTCCCTA	ACĢCTCGGTT	GCCGCCGGGC	GTTTTTTATT	2200
26		GTTAACTCAT	GTTTGACAGC	TTATCATCGA	TAAGCTTTAA	TGCGGTAGTT	2250
	40	TATCACAGTT	AAATTGCTAA	CGCAGTCAGG	CACCGTGTAT	GAAATCTAAC	2300
		AATGCGCTCA	TCGTCATCCT	CGGCACCGTC	ACCCTGGATG	CTGTAGGCAT	2350
	45	AGGCTTGGTT	ATGCCGGTAC	TGCCGGGCCT	CTTGCGGGAT	ATCGTCCATT	2400
	73	CCGACAGCAT	CGCCAGTCAC	TATGGCGTGC	TGCTAGCGCT	ATATGCGTTG	2450
		ATGCAATTTC	TATGCGCACC	CGTTCTCGGA	GCACTGTCCG	ACCGCTTTGG	2500
	50	CCGCCGCCCA	GTCCTGCTCG	CTTCGCTACT	TGGAGCCACT	ATCGACTACG	2550
		CGATCATGGC	GACCACACCC	GTCCTGTGGA	TCCTCTACGC	CGGACGCATC	2600
	55	GTGGCCGGCA	TCACCGGCGC	CACAGGTGCG	GTTGCTGGCG	CCTATATCGC	2650
	55	CGACATCACC	GATGGGGAAG	ATCGGGCTCG	CCACTTCGGG	CTCATGAGCG	2700

		CTTGTTTCGG	CGTGGGTATG	GTGGCAGGCC	CCGTGGCCGG	GGGACTGTTG	2750
	_	GGCGCCATCT	CCTTGCACGC	ACCATTCCTT	GCGGCGGCGG	TGCTCAACGG	2800
	5	CCTCAACCTA	CTACTGGGCT	GCTTCCTAAT	GCAGGAGTCG	CATAAGGGAG	2850
		AGCGTCGTCC	GATGCCCTTG	AGAGCCTTCA	ACCCAGTCAG	CTCCTTCCGG	2900
	10	TGGGCGCGGG	GCATGACTAT	CGTCGCCGCA	CTTATGACTG	TCTTCTTTAT	2950
		CATGCAACTC	GTAGGACAGG	TGCCGGCAGC	GCTCTGGGTC	ATTTTCGGCG	3000
		AGGACCGCTT	TCGCTGGAGC	GCGACGATGA	TCGGCCTGTC	GCTTGCGGTA	3050
	15	TTCGGAATCT	TGCACGCCCT	CGCTCAAGCC	TTCGTCACTG	GTCCCGCCAC	3100
		CAAACGTTTC	GGCGAGAAGC	AGGCCATTAT	CGCCGGCATG	GCGGCCGACG	3150
	20	CGCTGGGCTA	CGTCTTGCTG	GCGTTCGCGA	CGCGAGGCTG	GATGGCCTTC	3200
		CCCATTATGA	TTCTTCTCGC	TTCCGGCGGC	ATCGGGATGC	CCGCGTTGCA	3250
	25	GGCCATGCTG	TCCAGGCAGG	TAGATGACGA	CCATCAGGGA	CAGCTTCAAG	3300
	23	GATCGCTCGC	GGCTCTTACC	AGCCTAACTT	CGATCACTGG	ACCGCTGATC	3350
4	30	GTCACGGCGA	TTTATGCCGC	CTCGGCGAGC	ACATGGAACG	GGTTGGCATG	3400
		GATTGTAGGC	GCCGCCCTAT	ACCTTGTCTG	CCTCCCCGCG	TTGCGTCGCG	3450
es à		GTGCATGGAG	CCGGGCCACC	TCGACCTGAA	TGGAAGCCGG	CGGCACCTCG	3500
	35	CTAACGGATT	CACCACTCCA	AGAATTGGAG	CCAATCAATT	CTTGCGGAGA	3550
	.,5	ACTGTGAATG	CGCAAACCAA	CCCTTGGCAG	AACATATCCA	TCGCGTCCGC	3600
22 2		CATCTCCAGC	AGCCGCACGC	GGCGCATCTC	GGGCAGCGTT	GGGTCCTGGC	3650
	40	CACGGGTGCG	CATGATCGTG	CTCCTGTCGT	TGAGGACCCG	GCTAGGCTGG	3700
		CGGGGTTGCC	TTACTGGTTA	GCAGAATGAA	TCACCGATAC	GCGAGCGAAC	3750
	45	GTGAAGCGAC	TGCTGCTGCA	AAACGTCTGC	GACCTGAGCA	ACAACATGAA	3800
		TGGTCTTCGG	TTTCCGTGTT	TCGTAAAGTC	TGGAAACGCG	GAAGTCAGCG	3850
		CCCTGCACCA	TTATGTTCCG	GATCTGCATC	GCAGGATGCT	GCTGGCTACC	3900
	50	CTGTGGAACA	CCTACATCTG	TATTAACGAA	GCGCTGGCAT	TGACCCTGAG	3950
		TGATTTTTCT	CTGGTCCCGC	CGCATCCATA	CCGCCAGTTG	TTTACCCTCA	4000
	55	CAACGTTCCA	GTAACCGGGC	ATGTTCATCA	TCAGTAACCC	GTATCGTGAG	4050
		CATCCTCTCT	CGTTTCATCG	GTATCATTAC	CCCCATGAAC	AGAAATTCCC	4100

		CCTTACACGG	AGGCATCAAG	TGACCAAACA	GGAAAAAACC	GCCCTTAACA	4150
	5	TGGCCCGCTT	TATCAGAAGC	CAGACATTAA	CGCTTCTGGA	GAAACTCAAC	4200
	5	GAGCTGGACG	CGGATGAACA	GGCAGACATC	TGTGAATCGC	TTCACGACCA	4250
		CGCTGATGAG	CTTTACCGCA	GCTGCCTCGC	GCGTTTCGGT	GATGACGGTG	4300
1	0	AAAACCTCTG	ACACATGCAG	CTCCCGGAGA	CGGTCACAGC	TTGTCTGTAA	4350
		GCGGATGCCG	GGAGCAGACA	AGCCCGTCAG	GGCGCGTCAG	CGGGTGTTGG	4400
,	.5	CGGGTGTCGG	GGCGCAGCCA	TGACCCAGTC	ACGTAGCGAT	AGCGGAGTGT	4450
1	.3	ATACTGGCTT	AACTATGCGG	CATCAGAGCA	GATTGTACTG	AGAGTGCACC	4500
		ATATGCGGTG	TGAAATACCG	CACAGATGCG	TAAGGAGAAA	ATACCGCATC	4550
. 7	20	AGGCGCTCTT	CCGCTTCCTC	GCTCACTGAC	TCGCTGCGCT	CGGTCGTTCG	4600
		GCTGCGGCGA	GCGGTATCAG	CTCACTCAAA	GGCGGTAATA	CGGTTATCCA	4650
 !!,	25	CAGAATCAGG	GGATAACGCA	GGAAAGAACA	TGTGAGCAAA	AGGCCAGCAA	4700
	23	AAGGCCAGGA	ACCGTAAAAA	GGCCGCGTTG	CTGGCGTTTT	TCCATAGGCT	4750
100 000		CCGCCCCCT	GACGAGCATC	ACAAAAATCG	ACGCTCAAGT	CAGAGGTGGC	4800
	30	GAAACCCGAC	AGGACTATAA	AGATACCAGG	CGTTTCCCCC	TGGAAGCTCC	4850
e is a is		CTCGTGCGCT	CTCCTGTTCC	GACCCTGCCG	CTTACCGGAT	ACCTGTCCGC	4900
	35	CTTTCTCCCT	TCGGGAAGCG	TGGCGCTTTC	TCATAGCTCA	CGCTGTAGGT	4950
	,,,	ATCTCAGTTC	GGTGTAGGTC	GTTCGCTCCA	AGCTGGGCTG	TGTGCACGAA	5000
2007		CCCCCGTTC	AGCCCGACCG	CTGCGCCTTA	TCCGGTAACT	ATCGTCTTGA	5050
•	40	GTCCAACCCG	GTAAGACACG	ACTTATCGCC	ACTGGCAGCA	GCCACTGGTA	5100
		ACAGGATTAG	CAGAGCGAGG	TATGTAGGCG	GTGCTACAGA	GTTCTTGAAG	5150
	45	TGGTGGCCTA	ACTACGGCTA	CACTAGAAGG	ACAGTATTTG	GTATCTGCGC	5200
	-	TCTGCTGAAG	CCAGTTACCT	TCGGAAAAAG	AGTTGGTAGC	TCTTGATCCG	5250
		GCAAACAAAC	CACCGCTGGT	AGCGGTGGTT	TTTTTGTTTG	CAAGCAGCAG	5300
	50	ATTACGCGCA	GAAAAAAAGG	ATCTCAAGAA	GATCCTTTGA	TCTTTTCTAC	5350
		GGGGTCTGAC	GCTCAGTGGA	ACGAAAACTC	ACGTTAAGGG	ATTTTGGTCA	5400
	55	TGAGATTATC	AAAAAGGATC	TTCACCTAGA	TCCTTTTAAA	TTAAAAATGA	5450
		AGTTTTAAAT	CAATCTAAAG	TATATATGAG	TAAACTTGGT	CTGACAGTTA	5500

		CCAATGCTTA	ATCAGTGAGG	CACCTATCTC	AGCGATCTGT	CTATTTCGTT	5550
	5	CATCCATAGT	TGCCTGACTC	CCCGTCGTGT	AGATAACTAC	GATACGGGAG	5600
	J	GGCTTACCAT	CTGGCCCCAG	TGCTGCAATG	ATACCGCGAG	ACCCACGCTC	5650
		ACCGGCTCCA	GATTTATCAG	CAATAAACCA	GCCAGCCGGA	AGGGCCGAGC	5700
	10	GCAGAAGTGG	TCCTGCAACT	TTATCCGCCT	CCATCCAGTC	TATTAATTGT	5750
		TGCCGGGAAG	CTAGAGTAAG	TAGTTCGCCA	GTTAATAGTT	TGCGCAACGT	5800
	15	TGTTGCCATT	GCTGCAGGCA	TCGTGGTGTC	ACGCTCGTCG	TTTGGTATGG	5850
	13	CTTCATTCAG	CTCCGGTTCC	CAACGATCAA	GGCGAGTTAC	ATGATCCCCC	5900
		ATGTTGTGCA	AAAAAGCGGT	TAGCTCCTTC	GGTCCTCCGA	TCGTTGTCAG	5950
	20	AAGTAAGTTG	GCCGCAGTGT	TATCACTCAT	GGTTATGGCA	GCACTGCATA	6000
ųį į		ATTCTCTTAC	TGTCATGCCA	TCCGTAAGAT	GCTTTTCTGT	GACTGGTGAG	6050
**************************************	25	TACTCAACCA	AGTCATTCTG	AGAATAGTGT	ATGCGGCGAC	CGAGTTGCTC	6100
Will Him	23	TTGCCCGGCG	TCAACACGGG	ATAATACCGC	GCCACATAGC	AGAACTTTAA	6150
		AAGTGCTCAT	CATTGGAAAA	CGTTCTTCGG	GGCGAAAACT	CTCAAGGATC	6200
1,2 5	30	TTACCGCTGT	TGAGATCCAG	TTCGATGTAA	CCCACTCGTG	CACCCAACTG	6250
es à les à		ATCTTCAGCA	TCTTTTACTT	TCACCAGCGT	TTCTGGGTGA	GCAAAAACAG	6300
	35	GAAGGCAAAA	TGCCGCAAAA	AAGGGAATAA	GGGCGACACG	GAAATGTTGA	6350
		ATACTCATAC	TCTTCCTTTT	TCAATATTAT	TGAAGCATTT	ATCAGGGTTA	6400
122		TTGTCTCATG	AGCGGATACA	TATTTGAATG	TATTTAGAAA	AATAAACAAA	6450
	40	TAGGGGTTCC	GCGCACATTT	CCCCGAAAAG	TGCCACCTGA	CGTCTAAGAA	6500
		ACCATTATTA	TCATGACATT	AACCTATAAA	AATAGGCGTA	TCACGAGGCC	6550
	45	CTTTCGTCTT	CAA 6563				

(2) INFORMATION FOR SEQ ID NO:62:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 242 amino acids
 - (B) TYPE: Amino Acid (D) TOPOLOGY: Linear

50

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:
- 55 Met Lys Lys Asn Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe

	Ser	Ile	Ala	Thr	Asn 20	Ala	Tyr	Ala	Asp	Ile 25	Gln	Met	Thr	Gln	Ser 30
5	Pro	Ser	Ser	Leu	Ser 35	Ala	Ser	Val	Gly	Asp 40	Arg	Val	Thr	Ile	Thr 45
10	Cys	Arg	Ser	Ser	Gln 50	Ser	Leu	Val	His	Gly 55	Ile	Gly	Glu	Thr	Tyr 60
10	Leu	His	Trp	Tyr	Gln 65	Gln	Lys	Pro	Gly	Lys 70	Ala	Pro	Lys	Leu	Leu 75
15	Ile	Tyr	Lys	Val	Ser 80	Asn	Arg	Phe	Ser	Gly 85	Val	Pro	Ser	Arg	Phe 90
	Ser	Gly	Ser	Gly	Ser 95	Gly	Thr	Asp	Phe	Thr 100	Leu	Thr	Ile	Ser	Ser 105
_20 }	Leu	Gln	Pro	Glu	Asp 110	Phe	Ala	Thr	Tyr	Tyr 115	Cys	Ser	Gln	Ser	Thr 120
.] 	His	Val	Pro	Leu	Thr 125	Phe	Gly	Gln	Gly	Thr 130	Lys	Val	Glu	Ile	Lys 135
	Arg	Thr	Val	Ala	Ala 140	Pro	Ser	Val	Phe	Ile 145	Phe	Pro	Pro	Ser	Asp 150
30	Glu	Gln	Leu	Lys	Ser 155	Gly	Thr	Ala	Ser	Val 160	Val	Cys	Leu	Leu	Asn 165
	Asn	Phe	Tyr	Pro	Arg 170	Glu	Ala	Lys	Val	Gln 175	Trp	Lys	Val	Asp	Asn 180
35	Ala	Leu	Gln	Ser	Gly 185	Asn	Ser	Gln	Glu	Ser 190	Val	Thr	Glu	Gln	Asp 195
40	Ser	Lys	Asp	Ser	Thr 200	Tyr	Ser	Leu	Ser	Ser 205	Thr	Leu	Thr	Leu	Ser 210
	Lys	Ala	Asp	Tyr	Glu 215	Lys	His	Lys	Val	Tyr 220	Ala	Cys	Glu	Val	Thr 225
45	His	Gln	Gly	Leu	Ser 230	Ser	Pro	Val	Thr	Lys 235	Ser	Phe	Asn	Arg	Gly 240
	Glu	Cys 242													
50	(2)	INFO	RMAT	ION I	FOR	SEQ	ID N	0:63	:						
	((.	EQUE A) L B) T	ENGT	H: 2	7 ba	se p	airs							
55		(C) S'	TRANI	DEDN:	ESS:	Sin								

	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:63:	
5	CATGGTATAG GTTAAACTTA TTTACAC 27	
	(2) INFORMATION FOR SEQ ID NO:64:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:	
	CATGGTATAG GTNNSACTTA TTTACAC 27	
20	(2) INFORMATION FOR SEQ ID NO:65:	
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 780 base pairs(B) TYPE: Nucleic Acid(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:	
30	ATGAAAAAGA ATATCGCATT TCTTCTTGCA TCTATGTTCG TTTTTTCTAT 50	
	TGCTACAAAC GCATACGCTG ATATCCAGAT GACCCAGTCC CCGAGCTCCC 10	0
35	TGTCCGCCTC TGTGGGCGAT AGGGTCACCA TCACCTGCAG GTCAAGTCAA	0
	AGCTTAGTAC ATGGTATAGG TGAGACGTAT TTACACTGGT ATCAACAGAA 20	0
40	ACCAGGAAAA GCTCCGAAAC TACTGATTTA CAAAGTATCC AATCGATTCT 25	0
.0	CTGGAGTCCC TTCTCGCTTC TCTGGATCCG GTTCTGGGAC GGATTTCACT 30	0
	CTGACCATCA GCAGTCTGCA GCCAGAAGAC TTCGCAACTT ATTACTGTTC 35	0
45	ACAGAGTACT CATGTCCCGC TCACGTTTGG ACAGGGTACC AAGGTGGAGA 40	0
	TCAAACGAAC TGTGGCTGCA CCATCTGTCT TCATCTTCCC GCCATCTGAT 45	0
50	GAGCAGTTGA AATCTGGAAC TGCTTCTGTT GTGTGCCTGC TGAATAACTT 50	0
	CTATCCCAGA GAGGCCAAAG TACAGTGGAA GGTGGATAAC GCCCTCCAAT 55	0
	CGGGTAACTC CCAGGAGAGT GTCACAGAGC AGGACAGCAA GGACAGCACC 60	0
55	TACAGCCTCA GCAGCACCCT GACGCTGAGC AAAGCAGACT ACGAGAAACA 65	0

CAAAGTCTAC GCCTGCGAAG TCACCCATCA GGGCCTGAGC TCGCCCGTCA 700 CAAAGAGCTT CAACAGGGGA GAGTGTTAAG CTGATCCTCT ACGCCGGACG 750 5 CATCGTGGCC CTAGTACGCA ACTAGTCGTA 780 (2) INFORMATION FOR SEQ ID NO:66: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 78 base pairs (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66: 15 CTAGTGCAGT CTGGCGGTGG CCTGGTGCAG CCAGGGGGCT CACTCCGTTT 50 20 GTCCTGTGCA GCTTCTGGCT ACTCCTTC 78 (2) INFORMATION FOR SEQ ID NO:67: uli 4. (i) SEQUENCE CHARACTERISTICS: 25 (A) LENGTH: 82 base pairs (B) TYPE: Nucleic Acid M (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67: les is nz b TCGAGAAGGA GTAGCCAGAA GCTGCACAGG ACAAACGGAG TGAGCCCCCT 50 GGCTGCACCA GGCCACCGCC AGACTGCACT AG 82 (2) INFORMATION FOR SEO ID NO:68: (i) SEQUENCE CHARACTERISTICS: 40 (A) LENGTH: 8120 base pairs (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68: TTCGAGCTCG CCCGACATTG ATTATTGACT AGAGTCGATC GACAGCTGTG 50 50 GAATGTGTGT CAGTTAGGGT GTGGAAAGTC CCCAGGCTCC CCAGCAGGCA 100 GAAGTATGCA AAGCATGCAT CTCAATTAGT CAGCAACCAG GTGTGGAAAG 150 TCCCCAGGCT CCCCAGCAGG CAGAAGTATG CAAAGCATGC ATCTCAATTA 200 55 GTCAGCAACC ATAGTCCCGC CCCTAACTCC GCCCATCCCG CCCCTAACTC 250

		CGCCCAGTTC	CGCCCATTCT	CCGCCCCATG	GCTGACTAAT	TTTTTTTATT	300
	5	TATGCAGAGG	CCGAGGCCGC	CTCGGCCTCT	GAGCTATTCC	AGAAGTAGTG	350
	J	AGGAGGCTTT	TTTGGAGGCC	TAGGCTTTTG	CAAAAAGCTA	GCTTATCCGG	400
		CCGGGAACGG	TGCATTGGAA	CGCGGATTCC	CCGTGCCAAG	AGTGACGTAA	450
	10	GTACCGCCTA	TAGAGCGATA	AGAGGATTTT	ATCCCCGCTG	CCATCATGGT	500
		TCGACCATTG	AACTGCATCG	TCGCCGTGTC	CCAAAATATG	GGGATTGGCA	550
	15	AGAACGGAGA	CCTACCCTGG	CCTCCGCTCA	GGAACGAGTT	CAAGTACTTC	600
	15	CAAAGAATGA	CCACAACCTC	TTCAGTGGAA	GGTAAACAGA	ATCTGGTGAT	650
		TATGGGTAGG	AAAACCTGGT	TCTCCATTCC	TGAGAAGAAT	CGACCTTTAA	700
4 4	20	AGGACAGAAT	TAATATAGTT	CTCAGTAGAG	AACTCAAAGA	ACCACCACGA	750
		GGAGCTCATT	TTCTTGCCAA	AAGTTTGGAT	GATGCCTTAA	GACTTATTGA	800
	25	ACAACCGGAA	TTGGCAAGTA	AAGTAGACAT	GGTTTGGATA	GTCGGAGGCA	850
	23	GTTCTGTTTA	CCAGGAAGCC	ATGAATCAAC	CAGGCCACCT	TAGACTCTTT	900
		GTGACAAGGA	TCATGCAGGA	ATTTGAAAGT	GACACGTTTT	TCCCAGAAAT	950
: - 2	30	TGATTTGGGG	AAATATAAAC	CTCTCCCAGA	ATACCCAGGC	GTCCTCTCTG	1000
ia is is in		AGGTCCAGGA	GGAAAAAGGC	ATCAAGTATA	AGTTTGAAGT	CTACGAGAAG	1050
	35	AAAGACTAAC	AGGAAGATGC	TTTCAAGTTC	TCTGCTCCCC	TCCTAAAGCT	1100
		ATGCATTTTT	ATAAGACCAT	GGGACTTTTG	CTGGCTTTAG	ATCCCCTTGG	1150
12 1		CTTCGTTAGA	ACGCAGCTAC	AATTAATACA	TAACCTTATG	TATCATACAC	1200
	40	ATACGATTTA	GGTGACACTA	TAGATAACAT	CCACTTTGCC	TTTCTCTCCA	1250
		CAGGTGTCCA	CTCCCAGGTC	CAACTGCACC	TCGGTTCTAT	CGATTGAATT	1300
	45	CCACCATGGG	ATGGTCATGT	ATCATCCTTT	TTCTAGTAGC	AACTGCAACT	1350
		GGAGTACATT	CAGAAGTTCA	GCTAGTGCAG	TCTGGCGGTG	GCCTGGTGCA	1400
		GCCAGGGGGC	TCACTCCGTT	TGTCCTGTGC	AGCTTCTGGC	TACTCCTTCT	1450
	50	CGAGTCACTA	TATGCACTGG	GTCCGTCAGG	CCCCGGGTAA	GGGCCTGGAA	1500
		TGGGTTGGAT	ATATTGATCC	TTCCAATGGT	GAAACTACGT	ATAATCAAAA	1550
	55	GTTCAAGGGC	CGTTTCACTT	TATCTCGCGA	CAACTCCAAA	AACACAGCAT	1600
		ACCTGCAGAT	GAACAGCCTG	CGTGCTGAGG	ACACTGCCGT	CTATTACTGT	1650

		GCAAGAGGGG	ATTATCGCTA	CAATGGTGAC	TGGTTCTTCG	ACGTCTGGGG	1700
	5	TCAAGGAACC	CTGGTCACCG	TCTCCTCGGC	CTCCACCAAG	GGCCCATCGG	1750
	3	TCTTCCCCCT	GGCACCCTCC	TCCAAGAGCA	CCTCTGGGGG	CACAGCGGCC	1800
		CTGGGCTGCC	TGGTCAAGGA	CTACTTCCCC	GAACCGGTGA	CGGTGTCGTG	1850
	10	GAACTCAGGC	GCCCTGACCA	GCGGCGTGCA	CACCTTCCCG	GCTGTCCTAC	1900
		AGTCCTCAGG	ACTCTACTCC	CTCAGCAGCG	TGGTGACTGT	GCCCTCTAGC	1950
	15	AGCTTGGGCA	CCCAGACCTA	CATCTGCAAC	GTGAATCACA	AGCCCAGCAA	2000
	13	CACCAAGGTG	GACAAGAAAG	TTGAGCCCAA	ATCTTGTGAC	AAAACTCACA	2050
		CATGCCCACC	GTGCCCAGCA	CCTGAACTCC	TGGGGGGACC	GTCAGTCTTC	2100
	20	CTCTTCCCCC	CAAAACCCAA	GGACACCCTC	ATGATCTCCC	GGACCCCTGA	2150
II.		GGTCACATGC	GTGGTGGTGG	ACGTGAGCCA	CGAAGACCCT	GAGGTCAAGT	2200
The Man	25	TCAACTGGTA	CGTGGACGGC	GTGGAGGTGC	ATAATGCCAA	GACAAAGCCG	2250
		CGGGAGGAGC	AGTACAACAG	CACGTACCGT	GTGGTCAGCG	TCCTCACCGT	2300
		CCTGCACCAG	GACTGGCTGA	ATGGCAAGGA	GTACAAGTGC	AAGGTCTCCA	2350
,4.# :	30	ACAAAGCCCT	CCCAGCCCCC	ATCGAGAAAA	CCATCTCCAA	AGCCAAAGGG	2400
es la es la		CAGCCCCGAG	AACCACAGGT	GTACACCCTG	CCCCCATCCC	GGGAAGAGAT	2450
	35	GACÇAAGAAC	CAGGTCAGCC	TGACCTGCCT	GGTCAAAGGC	TTCTATCCCA	2500
		GCGACATCGC	CGTGGAGTGG	GAGAGCAATG	GGCAGCCGGA	GAACAACTAC	2550
2		AAGACCACGC	CTCCCGTGCT	GGACTCCGAC	GGCTCCTTCT	TCCTCTACAG	2600
	40	CAAGCTCACC	GTGGACAAGA	GCAGGTGGCA	GCAGGGGAAC	GTCTTCTCAT	2650
		GCTCCGTGAT	GCATGAGGCT	CTGCACAACC	ACTACACGCA	GAAGAGCCTC	2700
	45	TCCCTGTCTC	CGGGTAAATG	AGTGCGACGG	CCCTAGAGTC	GACCTGCAGA	2750
		AGCTTGGCCG	CCATGGCCCA	ACTTGTTTAT	TGCAGCTTAT	AATGGTTACA	2800
		AATAAAGCAA	TAGCATCACA	AATTTCACAA	ATAAAGCATT	TTTTTCACTG	2850
	50	CATTCTAGTT	GTGGTTTGTC	CAAACTCATC	AATGTATCTT	ATCATGTCTG	2900
		GATCGATCGG	GAATTAATTC	GGCGCAGCAC	CATGGCCTGA	AATAACCTCT	2950
	55	GAAAGAGGAA	CTTGGTTAGG	TACCTTCTGA	GGCGGAAAGA	ACCATCTGTG	3000
		GAATGTGTGT	CAGTTAGGGT	GTGGAAAGTC	CCCAGGCTCC	CCAGCAGGCA	3050

	GAAGTATGCA	AAGCATGCAT	CTCAATTAGT	CAGCAACCAG	GTGTGGAAAG	3100
_	TCCCCAGGCT	CCCCAGCAGG	CAGAAGTATG	CAAAGCATGC	ATCTCAATTA	3150
5	GTCAGCAACC	ATAGTCCCGC	CCCTAACTCC	GCCCATCCCG	CCCCTAACTC	3200
	CGCCCAGTTC	CGCCCATTCT	CCGCCCCATG	GCTGACTAAT	TTTTTTTTT	3250
10	TATGCAGAGG	CCGAGGCCGC	CTCGGCCTCT	GAGCTATTCC	AGAAGTAGTG	3300
	AGGAGGCTTT	TTTGGAGGCC	TAGGCTTTTG	CAAAAAGCTA	GCTTATCCGG	3350
15	CCGGGAACGG	TGCATTGGAA	CGCGGATTCC	CCGTGCCAAG	AGTCAGGTAA	3400
13	GTACCGCCTA	TAGAGTCTAT	AGGCCCACCC	CCTTGGCTTC	GTTAGAACGC	3450
	GGCTACAATT	AATACATAAC	CTTTTGGATC	GATCCTACTG	ACACTGACAT	3500
20	CCACTTTTTC	TTTTTCTCCA	CAGGTGTCCA	CTCCCAGGTC	CAACTGCACC	3550
	TCGGTTCGCG	AAGCTAGCTT	GGGCTGCATC	GATTGAATTC	CACCATGGGA	3600
25	TGGTCATGTA	TCATCCTTTT	TCTAGTAGCA	ACTGCAACTG	GAGTACATTC	3650
شت	AGATATCCAG	ATGACCCAGT	CCCCGAGCTC	CCTGTCCGCC	TCTGTGGGCG	3700
	ATAGGGTCAC	CATCACCTGC	AGGTCAAGTC	AAAGCTTAGT	ACATGGTATA	3750
30	GGTGCTACGT	ATTTACACTG	GTATCAACAG	AAACCAGGAA	AAGCTCCGAA	3800
	ACTACTGATT	TACAAAGTAT	CCAATCGATT	CTCTGGAGTC	CCTTCTCGCT	3850
35	TCTCTGGATC	CGGTTCTGGG	ACGGATTTCA	CTCTGACCAT	CAGCAGTCTG	3900
33	CAGCCAGAAG	ACTTCGCAAC	TTATTACTGT	TCACAGAGTA	CTCATGTCCC	3950
	GCTCACGTTT	GGACAGGGTA	CCAAGGTGGA	GATCAAACGA	ACTGTGGCTG	4000
40	CACCATCTGT	CTTCATCTTC	CCGCCATCTG	ATGAGCAGTT	GAAATCTGGA	4050
	ACTGCTTCTG	TTGTGTGCCT	GCTGAATAAC	TTCTATCCCA	GAGAGGCCAA	4100
45	AGTACAGTGG	AAGGTGGATA	ACGCCCTCCA	ATCGGGTAAC	TCCCAGGAGA	4150
.5	GTGTCACAGA	GCAGGACAGC	AAGGACAGCA	CCTACAGCCT	CAGCAGCACC	4200
	CTGACGCTGA	GCAAAGCAGA	CTACGAGAAA	CACAAAGTCT	ACGCCTGCGA	4250
50	AGTCACCCAT	CAGGGCCTGA	GCTCGCCCGT	CACAAAGAGC	TTCAACAGGG	4300
	GAGAGTGTTA	AGCTTGGCCG	CCATGGCCCA	ACTTGTTTAT	TGCAGCTTAT	4350
55	AATGGTTACA	AATAAAGCAA	TAGCATCACA	AATTTCACAA	ATAAAGCATT	4400
55	TTTTTCACTG	CATTCTAGTT	GTGGTTTGTC	CAAACTCATC	AATGTATCTT	4450

	ATCATGTCTG	GATCGATCGG	GAATTAATTC	GGCGCAGCAC	CATGGCCTGA	4500
5	AATAACCTCT	GAAAGAGGAA	CTTGGTTAGG	TACCTTCTGA	GGCGGAAAGA	4550
3	ACCAGCTGTG	GAATGTGTGT	CAGTTAGGGT	GTGGAAAGTC	CCCAGGCTCC	4600
	CCAGCAGGCA	GAAGTATGCA	AAGCATGCAT	CTCAATTAGT	CAGCAACCAG	4650
10	GTGTGGAAAG	TCCCCAGGCT	CCCCAGCAGG	CAGAAGTATG	CAAAGCATGC	4700
	ATCTCAATTA	GTCAGCAACC	ATAGTCCCGC	CCCTAACTCC	GCCCATCCCG	4750
15	CCCCTAACTC	CGCCCAGTTC	CGCCCATTCT	CCGCCCCATG	GCTGACTAAT	4800
13	TTTTTTTTTT	TATGCAGAGG	CCGAGGCCGC	CTCGGCCTCT	GAGCTATTCC	4850
	AGAAGTAGTG	AGGAGGCTTT	TTTGGAGGCC	TAGGCTTTTG	CAAAAAGCTG	4900
20	TTACCTCGAG	CGGCCGCTTA	ATTAAGGCGC	GCCATTTAAA	TCCTGCAGGT	4950
	AACAGCTTGG	CACTGGCCGT	CGTTTTACAA	CGTCGTGACT	GGGAAAACCC	5000
25	TGGCGTTACC	CAACTTAATC	GCCTTGCAGC	ACATCCCCC	TTCGCCAGCT	5050
]	GGCGTAATAG	CGAAGAGGCC	CGCACCGATC	GCCCTTCCCA	ACAGTTGCGT	5100
######################################	AGCCTGAATG	GCGAATGGCG	CCTGATGCGG	TATTTTCTCC	TTACGCATCT	5150
[*] 30	GTGCGGTATT	TCACACCGCA	TACGTCAAAG	CAACCATAGT	ACGCGCCCTG	5200
<u>.</u>	TAGCGGCGCA	TTAAGCGCGG	CGGGTGTGGT	GGTTACGCGC	AGCGTGACCG	5250
] 135	CTACACTTGC	CAGCGCCCTA	GCGCCCGCTC	CTTTCGCTTT	CTTCCCTTCC	5300
	TTTCTCGCCA	CGTTCGCCGG	CTTTCCCCGT	CAAGCTCTAA	ATCGGGGGCT	5350
j	CCCTTTAGGG	TTCCGATTTA	GTGCTTTACG	GCACCTCGAC	CCCAAAAAAC	5400
40	TTGATTTGGG	TGATGGTTCA	CGTAGTGGGC	CATCGCCCTG	ATAGACGGTT	5450
	TTTCGCCCTT	TGACGTTGGA	GTCCACGTTC	TTTAATAGTG	GACTCTTGTT	5500
45	CCAAACTGGA	ACAACACTCA	ACCCTATCTC	GGGCTATTCT	TTTGATTTAT	5550
	AAGGGATTTT	GCCGATTTCG	GCCTATTGGT	TAAAAAATGA	GCTGATTTAA	5600
	CAAAAATTTA	ACGCGAATTT	ТААСААААТА	TTAACGTTTA	CAATTTTATG	5650
50	GTGCACTCTC	AGTACAATCT	GCTCTGATGC	CGCATAGTTA	AGCCAACTCC	5700
	GCTATCGCTA	CGTGACTGGG	TCATGGCTGC	GCCCGACAC	CCGCCAACAC	5750
55	CCGCTGACGC	GCCCTGACGG	GCTTGTCTGC	TCCCGGCATC	CGCTTACAGA	5800
	CAAGCTGTGA	CCGTCTCCGG	GAGCTGCATG	TGTCAGAGGT	TTTCACCGTC	5850

		ATCACCGAAA	CGCGCGAGGC	AGTATTCTTG	AAGACGAAAG	GGCCTCGTGA	5900
	5	TACGCCTATT	TTTATAGGTT	AATGTCATGA	TAATAATGGT	TTCTTAGACG	5950
	3	TCAGGTGGCA	CTTTTCGGGG	AAATGTGCGC	GGAACCCCTA	TTTGTTTATT	6000
		ТТТСТАААТА	CATTCAAATA	TGTATCCGCT	CATGAGACAA	TAACCCTGAT	6050
	10	AAATGCTTCA	ATAATATTGA	AAAAGGAAGA	GTATGAGTAT	TCAACATTTC	6100
		CGTGTCGCCC	TTATTCCCTT	TTTTGCGGCA	TTTTGCCTTC	CTGTTTTTGC	6150
	15	TCACCCAGAA	ACGCTGGTGA	AAGTAAAAGA	TGCTGAAGAT	CAGTTGGGTG	6200
	1.5	CACGAGTGGG	TTACATCGAA	CTGGATCTCA	ACAGCGGTAA	GATCCTTGAG	6250
		AGTTTTCGCC	CCGAAGAACG	TTTTCCAATG	ATGAGCACTT	TTAAAGTTCT	6300
4= 8	20	GCTATGTGGC	GCGGTATTAT	CCCGTGATGA	CGCCGGGCAA	GAGCAACTCG	6350
41		GTCGCCGCAT	ACACTATTCT	CAGAATGACT	TGGTTGAGTA	CTCACCAGTC	6400
The state	25	ACAGAAAAGC	ATCTTACGGA	TGGCATGACA	GTAAGAGAAT	TATGCAGTGC	6450
3	43	TGCCATAACC	ATGAGTGATA	ACACTGCGGC	CAACTTACTT	CTGACAACGA	6500
		TCGGAGGACC	GAAGGAGCTA	ACCGCTTTTT	TGCACAACAT	GGGGGATCAT	6550
e ^a #	30	GTAACTCGCC	TTGATCGTTG	GGAACCGGAG	CTGAATGAAG	CCATACCAAA	6600
en is en is		CGACGAGCGT	GACACCACGA	TGCCAGCAGC	AATGGCAACA	ACGTTGCGCA	6650
With the	35	AACTATTAAC	TGGCGAACTA	CTTACTCTAG	CTTCCCGGCA	ACAATTAATA	6700
24 <u>1</u>		GACTGGATGG	AGGCGGATAA	AGTTGCAGGA	CCACTTCTGC	GCTCGGCCCT	6750
## P		TCCGGCTGGC	TGGTTTATTG	CTGATAAATC	TGGAGCCGGT	GAGCGTGGGT	6800
	40	CTCGCGGTAT	CATTGCAGCA	CTGGGGCCAG	ATGGTAAGCC	CTCCCGTATC	6850
		GTAGTTATCT	ACACGACGGG	GAGTCAGGCA	ACTATGGATG	AACGAAATAG	6900
	45	ACAGATCGCT	GAGATAGGTG	CCTCACTGAT	TAAGCATTGG	TAACTGTCAG	6950
		ACCAAGTTTA	CTCATATATA	CTTTAGATTG	ATTTAAAACT	TCATTTTTAA	7000
		TTTAAAAGGA	TCTAGGTGAA	GATCCTTTTT	GATAATCTCA	TGACCAAAAT	7050
	50	CCCTTAACGT	GAGTTTTCGT	TCCACTGAGC	GTCAGACCCC	GTAGAAAAGA	7100
		TCAAAGGATC	TTCTTGAGAT	CCTTTTTTC	TGCGCGTAAT	CTGCTGCTTG	7150
	55	CAAACAAAAA	AACCACCGCT	ACCAGCGGTG	GTTTGTTTGC	CGGATCAAGA	7200
		GCTACCAACT	CTTTTTCCGA	AGGTAACTGG	CTTCAGCAGA	GCGCAGATAC	7250

CAAATACTGT CCTTCTAGTG TAGCCGTAGT TAGGCCACCA CTTCAAGAAC 7300 TCTGTAGCAC CGCCTACATA CCTCGCTCTG CTAATCCTGT TACCAGTGGC 7350 5 TGCTGCCAGT GGCGATAAGT CGTGTCTTAC CGGGTTGGAC TCAAGACGAT 7400 AGTTACCGGA TAAGGCGCAG CGGTCGGGCT GAACGGGGGG TTCGTGCACA 7450 10 CAGCCCAGCT TGGAGCGAAC GACCTACACC GAACTGAGAT ACCTACAGCG 7500 TGAGCATTGA GAAAGCGCCA CGCTTCCCGA AGGGAGAAAG GCGGACAGGT 7550 ATCCGGTAAG CGGCAGGGTC GGAACAGGAG AGCGCACGAG GGAGCTTCCA 7600 15 GGGGGAAACG CCTGGTATCT TTATAGTCCT GTCGGGTTTC GCCACCTCTG 7650 ACTTGAGCGT CGATTTTGT GATGCTCGTC AGGGGGGCGG AGCCTATGGA 7700 20 AAAACGCCAG CAACGCGGCC TTTTTACGGT TCCTGGCCTT TTGCTGGCCT 7750 TTTGCTCACA TGTTCTTTCC TGCGTTATCC CCTGATTCTG TGGATAACCG 7800 4, [1 TATTACCGCC TTTGAGTGAG CTGATACCGC TCGCCGCAGC CGAACGACCG 7850 25 AGCGCAGCGA GTCAGTGAGC GAGGAAGCGG AAGAGCGCCC AATACGCAAA 7900 M LH CCGCCTCTCC CCGCGCGTTG GCCGATTCAT TAATCCAGCT GGCACGACAG 7950 i i **30** GTTTCCCGAC TGGAAAGCGG GCAGTGAGCG CAACGCAATT AATGTGAGTT 8000 ... ACCTCACTCA TTAGGCACCC CAGGCTTTAC ACTTTATGCT TCCGGCTCGT 8050 las is ATGTTGTGTG GAATTGTGAG CGGATAACAA TTTCACACAG GAAACAGCTA 8100 TGACCATGAT TACGAATTAA 8120

- (2) INFORMATION FOR SEQ ID NO:69:
- 40 (i) SEQUENCE CHARACTERISTICS:

45

- (A) LENGTH: 800 base pairs
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:
- AAAAGGGTAT CTAGAGGTTG AGGTGATTT ATGAAAAAGA ATATCGCATT 50

 TCTTCTTGCA TCTATGTTCG TTTTTTCTAT TGCTACAAAC GCGTACGCTG 100

 AGGTTCAGCT AGTGCAGTCT GGCGGTGGCC TGGTGCAGCC AGGGGGCTCA 150

 CTCCGTTTGT CCTGTGCAGC TTCTGGCTAC TCCTTCTCGA GTCACTATAT 200

	GCACTGGGTC	CGTCAGG	CC CG	GGTA	AGGG	CCT	GGAA:	rgg	GTTG	GATA	TA 2	50
	TTGATCCTTC	CAATGGT	GAA AC	TACG'	TATA	ATC	AAAA(GTT	CAAG	GGCC	GT 3	00
5	TTCACTTTAT	CTCGCGA	CAA CT	CCAA	AAAC	ACA	GCAT	ACC	TGCA	GATG	AA 3	350
	CAGCCTGCGT	GCTGAGG	ACA CI	'GCCG'	TCTA	TTA	CTGT	GCA	AGAG	GGGA	TT 4	100
10	ATCGCTACAA	TGGTGAC	rgg Ti	CTTC	GACG	TCT	GGGG'	rca	AGGA	ACCC	TG 4	150
10	GTCACCGTCT	CCTCGGC	CTC CA	CCAA	GGGC	CCA	TCGG'	TCT	TCCC	CCTG	GC S	500
	ACCCTCCTCC	AAGAGCA	CCT CI	GGGG	GCAC	AGC	GGCC	CTG	GGCT	GCCT	GG :	550
15	TCAAGGACTA	CTTCCCC	GAA CC	GGTG	ACGG	TGT	CGTG	GAA	CTCA	.GGCG	CC (500
	CTGACCAGCG	GCGTGCA	CAC CI	TCCC	GGCT	GTC	CTAC	AGT	CCTC	'AGGA	CT (550
20	CTACTCCCTC	AGCAGCG	TGG TG	SACCG	TGCC	CTC	CAGC	AGC	TTGG	GCAC	CC .	700
20	AGACCTACAT	CTGCAAC	GTG A	ATCAC	AAGC	CCA	GCAA	CAC	CAAG	GTCG	AC '	750
	AAGAAAGTTO	G AGCCCAA	ATC T	rgtga	CAAA	ACT	ÇACA	CAT	GCCC	:GCC1	'GA	800
25	(2) INFORMA	ATION FOR	SEQ I	ED NO	:70:							
		JENCE CHA LENGTH:				ls						
30	(B)	TYPE: Am TOPOLOGY	ino A	cid								
	(xi) SEQU	JENCE DES	CRIPT	ION:	SEQ	ID N	10:70	:				
	(xi) SEQU						Ala		Met	Phe	Val	
35	Met Lys Ly 1	ys Asn Il	e Ala 5	Phe	Leu	Leu	Ala 10	Ser				15
35	Met Lys Ly	ys Asn Il la Thr As	e Ala 5	Phe	Leu	Leu	Ala 10	Ser				15
35 40	Met Lys Ly 1	ys Asn Il la Thr As 2 ly Leu Va	e Ala 5 n Ala 0	Phe Tyr	Leu Ala	Leu Glu	Ala 10 Val 25 Ser	Ser Gln	Leu	Val	Gln	Ser 30 Cys
	Met Lys Ly 1 Ser Ile A	ys Asn Il la Thr As 2 ly Leu Va 3	e Ala 5 n Ala 0	Phe Tyr Pro	Leu Ala Gly	Leu Glu Gly	Ala 10 Val 25 Ser 40	Ser Gln Leu	Leu	Val Leu	Gln	Ser 30 Cys 45
40	Met Lys Ly 1 Ser Ile A	ys Asn Il la Thr As 2 ly Leu Va 3 er Gly Ty	e Ala 5 n Ala 0	Phe Tyr Pro	Leu Ala Gly	Leu Glu Gly	Ala 10 Val 25 Ser 40	Ser Gln Leu	Leu	Val Leu	Gln	Ser 30 Cys 45
	Met Lys Ly 1 Ser Ile A	ys Asn Il la Thr As 2 ly Leu Va 3 er Gly Ty 5	e Ala 5 n Ala 0 l Gln 5 r Ser	Phe Tyr Pro	Leu Ala Gly Ser	Leu Glu Gly Ser	Ala 10 Val 25 Ser 40 His 55	Ser Gln Leu Tyr	Leu Arg Met	Val Leu His	Gln Ser Trp	Ser 30 Cys 45 Val 60
40	Met Lys Ly 1 Ser Ile Al Gly Gly Gl Ala Ala Se	ys Asn Il la Thr As 2 ly Leu Va 3 er Gly Ty 5	e Ala 5 n Ala 0 l Gln 5 r Ser 0 Lys	Phe Tyr Pro Phe Gly	Leu Ala Gly Ser Leu	Leu Glu Gly Ser Glu	Ala 10 Val 25 Ser 40 His 55	Ser Gln Leu Tyr Val	Leu Arg Met Gly	Val Leu His Tyr	Gln Ser Trp	Ser 30 Cys 45 Val 60 Asp
40	Met Lys Ly 1 Ser Ile A Gly Gly G	ys Asn Il la Thr As 2 ly Leu Va 3 er Gly Ty 5 la Pro Gl 6 sn Gly Gl	e Ala 5 n Ala 0 l Gln 5 r Ser 0 Lys	Phe Tyr Pro Phe Gly	Leu Ala Gly Ser Leu	Leu Glu Gly Ser Glu	Ala 10 Val 25 Ser 40 His 55	Ser Gln Leu Tyr Val	Leu Arg Met Gly	Val Leu His Tyr	Gln Ser Trp	Ser 30 Cys 45 Val 60 Asp
40	Met Lys Ly 1 Ser Ile Al Gly Gly Gl Ala Ala Se	ys Asn Il la Thr As 2 ly Leu Va 3 er Gly Ty 5 la Pro Gl 6 sn Gly Gl 8 eu Ser Ar	e Ala 5 n Ala 0 l Gln 5 r Ser 0 Lys 5 u Thr	Phe Tyr Pro Phe Gly Thr	Leu Ala Gly Ser Leu Tyr	Leu Glu Gly Ser Glu Asn	Ala 10 Val 25 Ser 40 His 55 Trp 70 Gln 85	Ser Gln Leu Tyr Val	Leu Arg Met Gly	Val Leu His Tyr	Gln Ser Trp Ile	15 Ser 30 Cys 45 Val 60 Asp 75

		n. g	Gly	nsp	ıyı	125	ıĀī	ASII	GIÀ	ASD	130	Pne	rne	Asp	vaı	135
	5	Gly	Gln	Gly	Thr	Leu 140	Val	Thr	Val	Ser	Ser 145	Ala	Ser	Thr	Lys	Gly 150
1	0	Pro	Ser	Val	Phe	Pro 155	Leu	Ala	Pro	Ser	Ser 160	Lys	Ser	Thr	Ser	Gly 165
•	•	Gly	Thr	Ala	Ala	Leu 170	Gly	Cys	Leu	Val	Lys 175	Asp	Tyr	Phe	Pro	Glu 180
I.	5	Pro	Val	Thr	Val	Ser 185	Trp	Asn	Ser	Gly	Ala 190	Leu	Thr	Ser	Gly	Val 195
		His	Thr	Phe	Pro	Ala 200	Val	Leu	Gln	Ser	Ser 205	Gly	Leu	Tyr	Ser	Leu 210
2	0	Ser	Ser	Val	Val	Thr 215	Val	Pro	Ser	Ser	Ser 220	Leu	Gly	Thr	Gln	Thr 225
]]] 2	5	Tyr	Ile	Cys	Asn	Val 230	Asn	His	Lys	Pro	Ser 235	Asn	Thr	Lys	Val	Asp 240
		Lys	Lys	Val	Glu	Pro 245	Lys	Ser	Cys	Asp	Lys 250	Thr	His	Thr	Cys	Pro 255
] 3	0	Pro 256														
a la a la	((2)	INFOR	RMAT:	ION I	FOR S	SEQ I	D N	0:71	:						
13 3:	5	(†)	(F	A) LI 3) T	ENGTH YPE:	CHARA H: 45 Amir DGY:	52 ar 10 Ac	mino cid		ds						
	0	(xi	i) SE	EQUE	NCE I	DESCE	RIPT	ON:	SEQ	ID 1	NO:7	l:				
41	U	Glu 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15
4:	5	Gly	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Tyr	Ser	Phe	Ser 30
		Ser	His	Tyr	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45
50	0	Glu	Trp	Val	Gly	Tyr 50	Ile	Asp	Pro	Ser	Asn 55	Gly	Glu	Thr	Thr	Туr 60
5:		Asn	Gln	Lys	Phe	Lys 65	Gly	Arg	Phe	Thr	Leu 70	Ser	Arg	Asp	Asn	Ser 75
		Lys	Asn	Thr	Ala	Tyr	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp

						80					85					90
	5	Thr	Ala	Val	Tyr	Tyr 95	Cys	Ala	Arg	Gly	Asp 100	Tyr	Arg	Tyr	Asn	Gly 105
		Asp	Trp	Phe	Phe	Asp 110	Val	Trp	Gly	Gln	Gly 115	Thr	Leu	Val	Thr	Val 120
	10	Ser	Ser	Ala	Ser	Thr 125	Lys	Gly	Pro	Ser	Val 130	Phe	Pro	Leu	Ala	Pro 135
		Ser	Ser	Lys	Ser	Thr 140	Ser	Gly	Gly	Thr	Ala 145	Ala	Leu	Gly	Cys	Leu 150
	15	Val	Lys	Asp	Tyr	Phe 155	Pro	Glu	Pro	Val	Thr 160	Val	Ser	Trp	Asn	Ser 165
	20	Gly	Ala	Leu	Thr	Ser 170	Gly	Val	His	Thr	Phe 175	Pro	Ala	Val	Leu	Gln 180
Marie West State		Ser	Ser	Gly	Leu	Tyr 185	Ser	Leu	Ser	Ser	Val 190	Val	Thr	Val	Pro	Ser 195
	25	Ser	Ser	Leu	Gly	Thr 200	Gln	Thr	Tyr	Ile	Cys 205	Asn	Val	Asn	His	Lys 210
		Pro	Ser	Asn	Thr	Lys 215	Val	Asp	Lys	Lys	Val 220	Glu	Pro	Lys	Ser	Cys 225
ië e= is	30	Asp	Lys	Thr	His	Thr 230	Cys	Pro	Pro	Cys	Pro 235	Ala	Pro	Glu	Leu	Leu 240
			•			245					250			Lys		255
						260					265			Val		270
	40					275					280			Tyr		285
						290					295			Glu		300
	45					305					310			Val		315
	50	Gln	Asp	Trp	Leu	Asn 320	Gly	Lys	Glu	Tyr	Lys 325	Cys	Lys	Val	Ser	Asn 330
						335					340			Lys		345
	55	Gly	Gln	Pro	Arg	Glu 350	Pro	Gln	Val	Tyr	Thr 355	Leu	Pro	Pro	Ser	Arg 360

	Glu	Glu	Met	Thr	Lys 365	Asn	Gln	Val	Ser	Leu 370	Thr	Cys	Leu	Val	Lys 375
5	Gly	Phe	Tyr	Pro	Ser 380	Asp	Ile	Ala	Val	Glu 385	Trp	Glu	Ser	Asn	Gly 390
	Gln	Pro	Glu	Asn	Asn 395	Tyr	Lys	Thr	Thr	Pro 400	Pro	Val	Leu	Asp	Ser 405
10	Asp	Gly	Ser	Phe	Phe 410	Leu	Tyr	Ser	Lys	Leu 415	Thr	Val	Asp	Lys	Ser 420
15	Arg	Trp	Gln	Gln	Gly 425	Asn	Val	Phe	Ser	Cys 430	Ser	Val	Met	His	Glu 435
	Ala	Leu	His	Asn	His 440	Tyr	Thr	Gln	Lys	Ser 445	Leu	Ser	Leu	Ser	Pro 450
20	Gly	Lys 452													
	(2)	INFO	RMAT:	ION I	FOR S	SEQ :	ID N	0:72	:						
25	(:	(1		ENGTI YPE:		19 ar no Ad	mino cid		ds						
30	(x:	i) SI	EQUEI	NCE I	DESCI	RIPT	IÓN:	SEQ	ID 1	NO:72	2:				
	Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15
35	Gly	Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ser 25	Ser	Gln	Ser	Leu	Val 30
	His	Gly	Ile	Gly	Ala 35	Thr	Tyr	Leu	His	Trp 40	Tyr	Gln	Gln	Lys	Pro 45
40	Gly	Lys	Ala	Pro	L уs 50	Leu	Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60
45	Ser	Gly	Val	Pro	Ser 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75
	Phe	Thr	Leu	Thr	Ile 80	Ser	Ser	Leu	Gln	Pro 85	Glu	Asp	Phe	Ala	Thr 90
50	Tyr	Tyr	Cys	Ser	Gln 95	Ser	Thr	His	Val	Pro 100	Leu	Thr	Phe	Gly	Gln 105
	Clar	mb	T	77-7	Glu	Ile	Lvs	Ara	Thr	Val	Ala	Ala	Pro	Sar	Val
	GIŞ	THI	ьуѕ	vai	110		-	5		115				Der	120

	Ser	Val	Val	Cys	Leu 140	Leu	Asn	Asn	Phe	Tyr 145	Pro	Arg	Glu	Ala	Lys 150
5	Val	Gln	Trp	Lys	Val 155	Asp	Asn	Ala	Leu	Gln 160	Ser	Gly	Asn	Ser	Gln 165
10	Glu	Ser	Val	Thr	Glu 170	Gln	Asp	Ser	Lys	Asp 175	Ser	Thr	Tyr	Ser	Leu 180
	Ser	Ser	Thr	Leu	Thr 185	Leu	Ser	Lys	Ala	Asp 190	Tyr	Glu	Lys	His	Lys 195
15	Val	Tyr	Ala	Cys	Glu 200	Val	Thr	His	Gln	Gly 205	Leu	Ser	Ser	Pro	Val 210
	Thr	Lys	Ser	Phe	Asn 215	Arg	Gly	Glu	Cys 219						