CPU Performance Evaluation: Cycles Per Instruction (CPI)

• Most computers run synchronously utilizing a CPU clock running at a constant clock rate: Or clock frequency: f

where: Clock rate = 1/clock grequency f = 1/C

- The CPU clock rate <u>depends</u> on the <u>specific CPU organization (design)</u> and hardware implementation technology (VLSI) used.
- A computer machine (ISA) instruction is comprised of a number of elementary or <u>micro operations</u> which vary in number and complexity depending on the the <u>instruction</u> and the <u>exact CPU organization (Design).</u>
 - A <u>micro operation</u> is an elementary hardware operation that can be performed during one CPU clock cycle.
 - This corresponds to one micro-instruction in microprogrammed CPUs.
 - Examples: register operations: shift, load, clear, increment, ALU operations: add , subtract, etc.
- Thus: A single machine instruction may take one or more CPU cycles to complete termed as the Cycles Per Instruction (CPI).

 Instructions Per Cycle = IPC = 1/CPI
- <u>Average (or effective) CPI of a program:</u> The average CPI of all instructions executed in the program on a given CPU design.

4th Edition: Chapter 1 (1.4, 1.7, 1.8)

3rd Edition: Chapter 4

Cycles/sec = Hertz = Hz $MHz = 10^6 Hz$ $GHz = 10^9 Hz$

Generic CPU Machine Instruction Processing Steps

CPI = Cycles per instruction

Computer Performance Measures: Program Execution Time

- For <u>a specific program</u> compiled to run on <u>a specific machine</u> (CPU) "A", has the following parameters:
 - The total executed instruction count of the program.
 - The average number of cycles per instruction (average CPI).
 - Clock cycle of machine "A" C

Or effective CPI

- How can one measure the performance of this machine (CPU) running this program?
 - Intuitively the machine (or CPU) is said to be faster or has better performance running this program if the total execution time is shorter.
 - Thus the inverse of the total measured program execution time is a possible performance measure or metric:

Programs/second Performance_A = 1 / Execution Time_A Seconds/program

How to compare performance of different machines?

What factors affect performance? How to improve performance?

Comparing Computer Performance Using Execution Time

• To compare the performance of two machines (or CPUs) "A", "B" running a given specific program:

 $Performance_A = 1 / Execution Time_A$ $Performance_B = 1 / Execution Time_B$

• Machine A is n times faster than machine B means (or slower? if n < 1):

$$Speedup = n = \frac{Performance_{A}}{Performance_{B}} = \frac{Execution Time_{B}}{Execution Time_{A}}$$

• Example:

(i.e Speedup is ratio of performance, no units)

For a given program:

Execution time on machine A: Execution_A = 1 second

Execution time on machine B: Execution_B = 10 seconds

Speedup= Performance_A / Performance_B = Execution Time_B / Execution Time_A = 10 / 1 = 10

The performance of machine A is 10 times the performance of machine B when running this program, or: Machine A is said to be 10 times faster than machine B when running this program.

The two CPUs may target different ISAs provided the program is written in a high level language (HLL)

CPU Execution Time: The CPU Equation

- A program is comprised of a number of instructions executed, I
 - Measured in: instructions/program

AKA Dynamic Instruction Count

- The average instruction executed takes a number of cycles per instruction (CPI) to be completed.
 - Measured in: cycles/instruction, CPI

Or Instructions Per Cycle (IPC): IPC = 1/CPI

• CPU has a fixed clock cycle time C = 1/clock rate

C = 1/f

- Measured in: seconds/cycle
- CPU execution time is the product of the above three parameters as follows:

 [Executed]

CPU time=Seconds=InstructionsxCyclesxSecondsProgramProgramInstructionCycle

T =

 $\mathbf{I} \mathbf{x}$

CPI

 \mathbf{X}

CPU Clock Cycle

execution Time per program in seconds Number of instructions executed

Average CPI for program

EECC550 - Shaaban

(This equation is commonly known as the **CPU performance equation**)

#5 Lec # 3 Winter 2011 12-6-2011

CPU Average CPI/Execution Time

For a given program executed on a given machine (CPU):

CPI = Total program execution cycles / Instructions count
(i.e average or effective CPI)

Executed (I)

 \rightarrow CPU clock cycles = Instruction count x CPI

CPU execution time =

= ĆPU clock cycles x Clock cycle

= Instruction count x CPI x Clock cycle

 $\Gamma = I \quad x \quad CPI \quad x \quad C$

execution Time per program in seconds Number of instructions executed

Average or effective CPI for program

(executed, I)

CPU Clock Cycle

(This equation is commonly known as the <u>CPU performance equation</u>)

CPU Execution Time: Example

- A Program is running on a specific machine (CPU) with the following parameters:
 - Total executed instruction count: 10,000,000 instructions
 - Average CPI for the program: 2.5 cycles/instruction.
 - CPU clock rate: 200 MHz. (clock cycle = $C = 5x10^{-9}$ seconds)

i.e 5 nanoseconds

• What is the execution time for this program:

```
CPU time
           = Seconds
                         = Instructions x Cycles
                                                   x Seconds
             Program
                           Program
                                         Instruction
                                                       Cycle
```

CPU time = Instruction count x **CPI** x **Clock** cycle

10,000,000 x 2.5 x 1 / clock rate

10,000,000 x 2.5 x $5x10^{-9}$

0.125 seconds

Nanosecond = $nsec = ns = 10^{-9} second$ $MHz = 10^6 Hz$

 $T = I \times CPI \times C$

Factors Affecting CPU Performance

CPU time=Seconds=InstructionXSecondsProgramProgramInstructionCycle

 $T = I \quad x \quad \stackrel{Average}{CPI} \quad x \quad C$

		Instruction Count	Cycles per Instruction	Clock Rate (1/C)
		Count	111Struction	(1/C)
-	Program			
	Compiler			
	truction Set cture (ISA)			
O	rganization (CPU Design)			
,	Technology (VLSI)			

 $T = I \times CPI \times C$

Aspects of CPU Execution Time

CPU Time = Instruction count executed x **CPI** x **Clock** cycle

Performance Comparison: Example

- From the previous example: A Program is running on a specific machine (CPU) with the following parameters:
 - Total executed instruction count, I: 10,000,000 instructions
 - Average CPI for the program: 2.5 cycles/instruction.
 - CPU clock rate: 200 MHz. Thus: $C = 1/(200 \times 10^6) = 5 \times 10^{-9}$ seconds
- Using the same program with these changes:
 - A new compiler used: New executed instruction count, I: 9,500,000

New CPI: 3.0

- Faster CPU implementation: New clock rate = 300 MHz
- What is the speedup with the changes?

Thus: $C = 1/(300x10^6) = 3.33x10^{-9}$ seconds

```
Speedup = Old Execution Time = I_{old} x CPI_{old} x Clock cycle_{old}
New Execution Time I_{new} x CPI_{new} x Clock Cycle_{new}
```

Speedup =
$$(10,000,000 \times 2.5 \times 5 \times 10^{-9}) / (9,500,000 \times 3 \times 3.33 \times 10^{-9})$$

= $.125 / .095 = 1.32$
or 32 % faster after changes.

Clock Cycle = C = 1/ Clock Rate

 $T = I \times CPI \times C$

Instruction Types & CPI

• Given a program with *n* types or classes of instructions executed on a given CPU with the following characteristics:

e.g ALU, Branch etc.

 C_i = Count of instructions of type_i executed

 CPI_i = Cycles per instruction for type_i

i = 1, 2, n

Depends on CPU Design

Then:

CPI = CPU Clock Cycles / Instruction Count I

i.e average or effective CPI

Where:

Executed

$$CPU \ clock \ cycles = \sum_{i=1}^{n} (CPI_{i} \times C_{i})$$

Executed Instruction Count $I = \sum C_i$

 $T = I \times CPI \times C$

EECC550 - Shaaban

#11 Lec # 3 Winter 2011 12-6-2011

Instruction Types & CPI: An Example

• An instruction set has three instruction classes:

	Instruction class	CPI •	
	A	1	For a specific
e.g ALU, Branch etc. —	B	2	CPU design
	C	3	

• Two code sequences have the following instruction counts:

Program	Instruction cou	Instruction counts for instruction cla					
Code Sequen	ce A	В	\mathbf{C}				
1	2	1	2				
2	4	1	1				

CPU cycles for sequence 1 = 2 x 1 + 1 x 2 + 2 x 3 = 10 cycles
 CPI for sequence 1 = clock cycles / instruction count

i.e average or effective CPI
$$= 10/5 = 2$$

• CPU cycles for sequence $2 = 4 \times 1 + 1 \times 2 + 1 \times 3 = 9$ cycles CPI for sequence 2 = 9 / 6 = 1.5

$$CPU \ clock \ cycles = \sum_{i=1}^{n} (CPI_i \times C_i)$$
 CPI = CPU Cycles / I EECC550 - Shaaban

Instruction Frequency & CPI

• Given a program with *n* types or classes of instructions with the following characteristics:

 C_i = Count of instructions of type_i executed

i = 1, 2, n

 CPI_i = Average cycles per instruction of type_i

 F_i = Frequency or fraction of instruction type_i executed

= C_i / total executed instruction count = C_i / I

Then:

Where: Executed Instruction Count $I = \sum C_i$

$$CPI = \sum_{i=1}^{n} (CPI_i \times F_i)$$
i.e average or effective CPI

Fraction of total execution time for instructions of type $i = \frac{CPI_i \times F_i}{CPI}$

 $T = I \times CPI \times C$

Instruction Type Frequency & CPI: A RISC Example

Program Profile or Executed Instructions Mix

CPI_i x F_i

CPI

	Base I	Machine	(Reg /	Reg)
--	--------	---------	--------	------

Op /	Freq, F _i	CPI
ALU	50%	1
Load	20%	5
Store	10%	3
Branch	20%	2

Depends on CPU Design

CPI_i x F_i % Time

$$.5$$
 $23\% = .5/2.2$
 1.0 $45\% = 1/2.2$

$$14\% = .3/2.2$$

Typical Mix

$$CPI = \sum_{i=1}^{n} (CPI_{i} \times F_{i})$$

i.e average or effective CPI

Given

CPI =
$$.5 \times 1 + .2 \times 5 + .1 \times 3 + .2 \times 2 = 2.2$$

= $.5 + 1 + .3 + .4$

Sum = 2.2

T = I x CPI x C

EECC550 - Shaaban

#14 Lec #3 Winter 2011 12-6-2011

Metrics of Computer Performance

(Measures)

Each metric has a purpose, and each can be misused.

Choosing Programs To Evaluate Performance

Levels of programs or benchmarks that could be used to evaluate performance:

- Actual Target Workload: Full applications that run on the target machine.
- Real Full Program-based Benchmarks:
 - Select a specific mix or suite of programs that are typical of targeted applications or workload (e.g SPEC95, SPEC CPU2000).
- Small "Kernel" Benchmarks: Also called synthetic benchmarks
 - Key computationally-intensive pieces extracted from real programs.
 - Examples: Matrix factorization, FFT, tree search, etc.
 - Best used to test specific aspects of the machine.
- Microbenchmarks:
 - Small, specially written programs to isolate a specific aspect of performance characteristics: Processing: integer, floating point, local memory, input/output, etc.

Types of Benchmarks

Pros

Cons

Representative

Actual Target Workload

- Very specific.
- Non-portable.
- Complex: Difficult to run, or measure.

- Portable.
- Widely used.
- Measurements useful in reality.

Full Application Benchmarks

 Less representative than actual workload.

• Easy to run, early in the design cycle.

 Identify peak performance and potential bottlenecks. Small "Kernel" Benchmarks

Microbenchmarks

- Easy to "fool" by designing hardware to run them well.
- Peak performance results may be a long way from real application performance

SPEC: System Performance Evaluation Corporation

The most popular and industry-standard set of CPU benchmarks.

SPECmarks, 1989:

Programs application domain: Engineering and scientific computation

10 programs yielding a single number ("SPECmarks").

SPEC92, 1992:

- SPECInt92 (6 integer programs) and SPECfp92 (14 floating point programs).

SPEC95, 1995:

- SPECint95 (8 integer programs):
 - go, m88ksim, gcc, compress, li, ijpeg, perl, vortex
- SPECfp95 (10 floating-point intensive programs):
 - tomcaty, swim, su2cor, hydro2d, mgrid, applu, turb3d, apsi, fppp, wave5
- Performance relative to a Sun SuperSpark I (50 MHz) which is given a score of SPECint95 = SPECfp95 = 1

SPEC CPU2000, 1999:

- CINT2000 (11 integer programs). CFP2000 (14 floating-point intensive programs)
- Performance relative to a Sun Ultra5_10 (300 MHz) which is given a score of SPECint2000 = SPECfp2000 = 100

SPEC CPU2006, 2006:

- CINT2006 (12 integer programs). CFP2006 (17 floating-point intensive programs)
- Performance relative to a Sun Ultra Enterprise 2 workstation with a 296-MHz UltraSPARC II processor which is given a score of SPECint2006 = SPECfp2006 = 1

SPEC95 Programs

Programs application domain: Engineering and scientific computation

	Benchmark	Description
	go	Artificial intelligence; plays the game of Go
	m88ksim	Motorola 88k chip simulator; runs test program
	gcc	The Gnu C compiler generating SPARC code
Integer	compress	Compresses and decompresses file in memory
	li	Lisp interpreter
	ijpeg	Graphic compression and decompression
	perl	Manipulates strings and prime numbers in the special-purpose programming language Perl
	vortex	A database program
	tomcatv	A mesh generation program
	swim	Shallow water model with 513 x 513 grid
	su2cor	quantum physics; Monte Carlo simulation
T21 4°	hydro2d	Astrophysics; Hydrodynamic Naiver Stokes equations
Floating	mgrid	Multigrid solver in 3-D potential field
Point	applu	Parabolic/elliptic partial differential equations
	trub3d	Simulates isotropic, homogeneous turbulence in a cube
	apsi	Solves problems regarding temperature, wind velocity, and distribution of pollutant
	fpppp	Quantum chemistry
	wave5	Plasma physics; electromagnetic particle simulation

Resulting Performance relative to a Sun SuperSpark I (50 MHz) which is given a score of SPECint95 = SPECfp95 = 1

Sample SPECint95 (Integer) Results

Source URL: http://www.macinfo.de/bench/specmark.html

 $T = I \times CPI \times C$

Sample SPECfp95 (Floating Point) Results

Sun SuperSpark I (50 MHz) score = 1

 $T = I \times CPI \times C$

EECC550 - Shaaban

#21 Lec # 3 Winter 2011 12-6-2011

	SPEC	CPU2000	Programs
	Benchmark	Language	Descriptions
	164.gzip	C	Compression
	175.vpr	C	FPGA Circuit Placement and Routing
	176.gcc	C	C Programming Language Compiler
	181.mcf	C	Combinatorial Optimization
	186.crafty	C	Game Playing: Chess
CINT2000	197.parser	C	Word Processing
(Integer)	252.eon	C++	Computer Visualization
(Integer)	253.perlbmk	C	PERL Programming Language
11 programs	254.gap	C	Group Theory, Interpreter
	255.vortex	C	Object-oriented Database
	256.bzip2	C	Compression
	300.twolf	C	Place and Route Simulator
	168.wupwise	Fortran 77	Physics / Quantum Chromodynamics
	171.swim	Fortran 77	Shallow Water Modeling
	172.mgrid	Fortran 77	Multi-grid Solver: 3D Potential Field
	173.applu	Fortran 77	Parabolic / Elliptic Partial Differential Equation
	177.mesa	C	3-D Graphics Library
CFP2000	178.galgel	Fortran 90	Computational Fluid Dynamics
(Floating	179.art	C	Image Recognition / Neural Networks
Point)	183.equake	C	Seismic Wave Propagation Simulation
1 Onit)	187.facerec	Fortran 90	Image Processing: Face Recognition
14 nnograms	188.ammp	C	Computational Chemistry
14 programs	189.lucas	Fortran 90	Number Theory / Primality Testing
	191.fma3d	Fortran 90	Finite-element Crash Simulation
	200.sixtrack	Fortran 77	High Energy Nuclear Physics Accelerator Design
	301.apsi	Fortran 77	Meteorology: Pollutant Distribution

Source: http://www.spec.org/cpu2000/

Programs application domain: Engineering and scientific computation

Integer SPEC CPU2000 Microprocessor Performance 1978-2006

Performance relative to VAX 11/780 (given a score = 1)

Top 20 SPEC CPU2000 Results (As of March 2002)

Top 20 SPECint2000			Top 20 SPECfp20			
D.,,,,,,,,,,,	:m4 m a a 1z	int boss	MII	Dussessen	£	

	100 20 81 20 11 20 00				1 op 20 51 LC1p2000			
#	MHz	Processor	int peak	int base	MHz	Processor	fp peak	fp base
1	1300	POWER4	814	790	1300	POWER4	1169	1098
2	2200	Pentium 4	811	790	1000	Alpha 21264C	960	776
3	2200	Pentium 4 Xeon	810	788	1050	UltraSPARC-III Cu	827	701
4	1667	Athlon XP	724	697	2200	Pentium 4 Xeon	802	779
5	1000	Alpha 21264C	679	621	2200	Pentium 4	801	779
6	1400	Pentium III	664	648	833	Alpha 21264B	784	643
7	1050	UltraSPARC-III Cu	610	537	800	Itanium	701	701
8	1533	Athlon MP	609	587	833	Alpha 21264A	644	571
9	750	PA-RISC 8700	604	568	1667	Athlon XP	642	596
10	833	Alpha 21264B	571	497	750	PA-RISC 8700	581	526
11	1400	Athlon	554	495	1533	Athlon MP	547	504
12	833	Alpha 21264A	533	511	600	MIPS R14000	529	499
13	600	MIPS R14000	500	483	675	SPARC64 GP	509	371
14	675	SPARC64 GP	478	449	900	UltraSPARC-III	482	427
15	900	UltraSPARC-III	467	438	1400	Athlon	458	426
16	552	PA-RISC 8600	441	417	1400	Pentium III	456	437
17	750	POWER RS64-IV	439	409	500	PA-RISC 8600	440	397
18	700	Pentium III Xeon	438	431	450	POWER3-II	433	426
19	800	Itanium	365	358	500	Alpha 21264	422	383
20	400	MIPS R12000	353	328	400	MIPS R12000	407	382
						<u> </u>		L

Performance relative to a Sun Ultra5_10 (300 MHz) which is given a score of SPECint2000 = SPECfp2000 = 100

Source: http://www.aceshardware.com/SPECmine/top.jsp

Top 20 SPEC CPU2000 Results (As of October 2006)

Top 20 SPECint2000				Top 20 SPECfp2000				
<u>#</u>	MHz	Processor	int peak	int base	MHz	Processor	fp peak	fp base
1	2933	Core 2 Duo EE	3119	3108	2300	POWER5+	3642	3369
2	3000	Xeon 51xx	3102	3089	1600	DC Itanium 2	3098	3098
3	2666	Core 2 Duo	2848	2844	3000	Xeon 51xx	3056	2811
4	2660	Xeon 30xx	2835	2826	2933	Core 2 Duo EE	3050	3048
5	3000	Opteron	2119	1942	2660	Xeon 30xx	3044	2763
6	2800	Athlon 64 FX	2061	1923	1600	Itanium 2	3017	3017
7	2800	Opteron AM2	1960	1749	2667	Core 2 Duo	2850	2847
8	2300	POWER5+	1900	1820	1900	POWER5	2796	2585
9	3733	Pentium 4 E	1872	1870	3000	Opteron	2497	2260
10	3800	Pentium 4 Xeon	1856	1854	2800	Opteron AM2	2462	2230
11	2260	Pentium M	1839	1812	3733	Pentium 4 E	2283	2280
12	3600	Pentium D	1814	1810	2800	Athlon 64 FX	2261	2086
13	2167	Core Duo	1804	1796	2700	PowerPC 970MP	2259	2060
14	3600	Pentium 4	1774	1772	2160	SPARC64 V	2236	2094
15	3466	Pentium 4 EE	1772	1701	3730	Pentium 4 Xeon	2150	2063
16	2700	PowerPC 970MP	1706	1623	3600	Pentium D	2077	2073
17	2600	Athlon 64	1706	1612	3600	Pentium 4	2015	2009
18	2000	Pentium 4 Xeon LV		1663	2600	Athlon 64	1829	1700
19	2160	SPARC64 V	1620	1501	1700	POWER4+	1776	1642
20	1600	Itanium 2	1590	1590	3466	Pentium 4 EE	1724	1719
							l .	1

Performance relative to a Sun Ultra5_10 (300 MHz) which is given a score of SPECint2000 = SPECfp2000 = 100

Source: http://www.aceshardware.com/SPECmine/top.jsp

	SPE	C CPU200	6 Programs
	Benchmark	Language	Descriptions
	400.perlbench	C	PERL Programming Language
	401.bzip2	\mathbf{C}	Compression
	403.gcc	\mathbf{C}	C Compiler
	429.mcf	\mathbf{C}	Combinatorial Optimization
	445.gobmk	\mathbf{C}	Artificial Intelligence: go
CINT2006	456.hmmer	\mathbf{C}	Search Gene Sequence
	458.sjeng	\mathbf{C}	Artificial Intelligence: chess
(Integer)	462.libquantum	\mathbf{C}	Physics: Quantum Computing
12 nnognoms	464.h264ref	\mathbf{C}	Video Compression
12 programs	471.omnetpp	C++	Discrete Event Simulation
	473.astar	C++	Path-finding Algorithms
	483.Xalancbmk	C++	XML Processing
	410.bwaves	Fortran	Fluid Dynamics
	416.gamess	Fortran	Quantum Chemistry
	433.milc	C	Physics: Quantum Chromodynamics
	434.zeusmp	Fortran	Physics/CFD
CFP2006	435.gromacs	C/Fortran	Biochemistry/Molecular Dynamics
	436.cactusADM	C/Fortran	Physics/General Relativity
(Floating	437.leslie3d	Fortran	Fluid Dynamics
Point)	444.namd	C++	Biology/Molecular Dynamics
,	447.dealII	C++	Finite Element Analysis
17	450.soplex	C++	Linear Programming, Optimization
17 programs	453.povray	C++	Image Ray-tracing
	454.calculix	C/Fortran	Structural Mechanics
	459.GemsFDTD	Fortran	Computational Electromagnetics
	465.tonto	Fortran	Quantum Chemistry
	470.lbm	C	Fluid Dynamics
	481.wrf	C/Fortran	Weather Prediction
	482.sphinx3	C	Speech recognition

Source: http://www.spec.org/cpu2006/

Programs application domain: Engineering and scientific computation

Example Integer SPEC CPU2006 Performance Results

For 2.5 GHz AMD Opteron X4 model 2356 (Barcelona)

						(speedup)
Nam e	Inst ruct ion Count × 10 ⁹	СРІ	Cloc k cy cle t ime (seco nds ×10 °)	Execut ion Time (seco nds)	Reference Time (seco nds)	SPE Crat io
perl	2,11 8	0.75	0.4	637	9,770	15.3
bzip2	2,389	0.85	0.4	817	9,650	11.8
gcc	1,050	1.72	0.4	724	8,050	11.1
mcf	336	10.00	0.4	1,345	9,120	6.8
go	1,658	1.09	0.4	721	10,490	14.6
hmmer	2,783	0.80	0.4	890	9,330	10.5
sjeng	2,176	0.96	0.4	837	12,100	14.5
libquantum	1,623	1.61	0.4	1,047	20,720	19.8
h264a vc	3,102	0.80	0.4	993	22,130	22.3
omnetpp	587	2.94	0.4	690	6,250	9.1
astar	1,082	1.79	0.4	773	7,020	9.1
xalancbmk	1,058	2.70	0.4	1,1 43	6,900	6.0
						11.7
	perl bzip2 gcc mcf go hmmer sjeng libquantum h264a vc omnetpp astar	Nam e Count × 10 9 perl 2,11 8 bzip2 2,389 gcc 1,050 mcf 336 go 1,658 hmmer 2,783 sjeng 2,176 libquantum 1,623 h264a vc 3,102 omnetpp 587 astar 1,082	Nam e Coun t × 10 ° CPI perl 2,11 8 0.75 bzip2 2,389 0.85 gcc 1,050 1.72 mcf 336 10.00 go 1,658 1.09 hmmer 2,783 0.80 sjeng 2,176 0.96 libquantum 1,623 1.61 h264a vc 3,102 0.80 omnetpp 587 2.94 astar 1,082 1.79	Nam e Coun t × 10 ° CPI (seco nds × 10 °) perl 2,11 8 0.75 0.4 bzip2 2,389 0.85 0.4 gcc 1,050 1.72 0.4 mcf 336 10.00 0.4 go 1,658 1.09 0.4 hmmer 2,783 0.80 0.4 sjeng 2,176 0.96 0.4 libquantum 1,623 1.61 0.4 h264a vc 3,102 0.80 0.4 omnetpp 587 2.94 0.4 astar 1,082 1.79 0.4	Nam e Inst ruct ion Count × 10 ° CPI Cloc k cy cle t ime (seco nds × 10 °) Time (seco nds) perI 2,11 8 0.75 0.4 637 bzip2 2,389 0.85 0.4 817 gcc 1,050 1.72 0.4 724 mcf 336 10.00 0.4 1,345 go 1,658 1.09 0.4 721 hmmer 2,783 0.80 0.4 890 sjeng 2,176 0.96 0.4 837 libquantum 1,623 1.61 0.4 1,047 h264a vc 3,102 0.80 0.4 993 omnetpp 587 2.94 0.4 690 astar 1,082 1.79 0.4 773	Name Inst ruction Count × 10 ° CPI Cloc k cy cle t ime (seco nds) Time (seco nds) Time (seco nds) perl 2,11 8 0.75 0.4 637 9,770 bzip2 2,389 0.85 0.4 817 9,650 gcc 1,050 1.72 0.4 724 8,050 mcf 336 10.00 0.4 1,345 9,120 go 1,658 1.09 0.4 721 10,490 hmmer 2,783 0.80 0.4 890 9,330 sjeng 2,176 0.96 0.4 837 12,100 libquantum 1,623 1.61 0.4 1,047 20,720 h264a vc 3,102 0.80 0.4 993 22,130 omnetpp 587 2.94 0.4 690 6,250 astar 1,082 1.79 0.4 773 7,020

Performance relative to Base Processor a 296-MHz UltraSPARC II which is given a score of SPECint2006 = SPECfp2006 = 1

EECC550 - Shaaban

Score

Computer Performance Measures: MIPS (Million Instructions Per Second) Rating

• For a specific program running on a specific CPU the MIPS rating is a measure of how many millions of instructions are executed per second:

MIPS Rating = Instruction count / (Execution Time $\times 10^6$)

- = Instruction count / (CPU clocks x Cycle time x 10^6)
- = (Instruction count x Clock rate) / (Instruction count x CPI x 10^6)
- = Clock rate / (CPI $\times 10^6$)
- <u>Major problem with MIPS rating:</u> As shown above the MIPS rating does not account for the count of instructions executed (I).
 - A higher MIPS rating in many cases may not mean higher performance or better execution time. i.e. due to compiler design variations.
- In addition the MIPS rating:
 - Does not account for the instruction set architecture (ISA) used.
 - Thus it cannot be used to compare computers/CPUs with different instruction sets.
 - Easy to abuse: Program used to get the MIPS rating is often omitted.
 - Often the <u>Peak MIPS rating</u> is provided for a given CPU which is obtained using a program comprised entirely of <u>instructions with the lowest CPI</u> for the given CPU design which <u>does not represent real programs.</u>

 $T = I \times CPI \times C$

Computer Performance Measures: MIPS (Million Instructions Per Second) Rating

- Under what conditions can the MIPS rating be used to compare performance of different CPUs?
- The MIPS rating is <u>only valid</u> to compare the performance of different CPUs <u>provided that the following conditions are satisfied</u>:
 - 1 The same program is used

(actually this applies to all performance metrics)

- 2 The same ISA is used
- 3 The same compiler is used
 - ⇒ (Thus the resulting programs used to run on the CPUs and obtain the MIPS rating are <u>identical</u> at the machine code level including the <u>same instruction count</u>)

Compiler Variations, MIPS & Performance: An Example

• For a machine (CPU) with instruction classes:

	Instruction class	CPI	
	\mathbf{A}	1 –	For a specific
e.g ALU, Branch etc. —	B	2	CPU design
	\mathbf{C}	3	

• For a given high-level language program, two compilers produced the following executed instruction counts:

	Instruction counts (in millions) for each instruction class				
Code from:	${f A}$	В	\mathbf{C}		
Compiler 1	5	1	1		
Compiler 2	10	1	1		

• The machine is assumed to run at a clock rate of 100 MHz.

Compiler Variations, MIPS & Performance: An Example (Continued)

 $MIPS = Clock rate / (CPI x 10^6) = 100 MHz / (CPI x 10^6)$

CPI = CPU execution cycles / Instructions count

$$CPU \ clock \ cycles = \sum_{i=1}^{n} (CPI_{i} \times C_{i})$$

CPU time = Instruction count x **CPI** / Clock rate

- For compiler 1:
 - $CPI_1 = (5 \times 1 + 1 \times 2 + 1 \times 3) / (5 + 1 + 1) = 10 / 7 = 1.43$
 - MIPS Rating₁ = $100 / (1.428 \times 10^6) = 70.0 \text{ MIPS}$
 - CPU time₁ = $((5 + 1 + 1) \times 10^6 \times 1.43) / (100 \times 10^6) = 0.10$ seconds
- For compiler 2:
 - $CPI_2 = (10 \times 1 + 1 \times 2 + 1 \times 3) / (10 + 1 + 1) = 15 / 12 = 1.25$
 - MIPS Rating₂ = $100 / (1.25 \times 10^6) = 80.0 \text{ MIPS}$
 - CPU time₂ = $((10 + 1 + 1) \times 10^6 \times 1.25) / (100 \times 10^6) = 0.15$ seconds

MIPS rating indicates that compiler 2 is better while in reality the code produced by compiler 1 is faster

MIPS (The ISA not the metric) Loop Performance Example

For the loop:

for (i=0; i<1000; i=i+1){

$$x[i] = x[i] + s;$$
}

MIPS assembly code is given by:

```
lw $3, 0($1) ; load s in $3
    addi $6, $2, 4000 ; $6 = address of last element + 4
loop: lw $4, 0($2) ; load x[i] in $4
    add $5, $4, $3 ; $5 has x[i] + s
    sw $5, 0($2) ; store computed x[i]
    addi $2, $2, 4 ; increment $2 to point to next x[] element
    bne $6, $2, loop ; last loop iteration reached?
```

The MIPS code is executed on a specific CPU that runs at 500 MHz ($C = clock\ cycle = 2ns = 2x10^{-9}\ seconds$) with following instruction type CPIs:

For this MIPS code running on this CPU find:

Instruction type	CPI	1- Fraction of total instructions executed for each instruction type
ALU	4	2- Total number of CPU cycles
Load	5	3- Average CPI
	_	4- Fraction of total execution time for each instructions type
Store	7	5- Execution time
Branch	3	6- MIPS rating, peak MIPS rating for this CPU

X[] array of words in memory, base address in \$2, s a constant word value in memory, address in \$1

EECC550 - Shaaban

High Memory

← Last element to

←First element to

compute

X[999]

X[998]

\$6 points here →

\$2 initially

points here \rightarrow X[0]

MIPS (The ISA) Loop Performance Example (continued)

- The code has 2 instructions before the loop and 5 instructions in the body of the loop which iterates 1000 times,
- Thus: Total instructions executed, I = 5x1000 + 2 = 5002 instructions
- 1 Number of instructions executed/fraction F_i for each instruction type:
- 2 $CPU \ clock \ cycles = \sum_{i=1}^{n} (CPI_i \times C_i)$ = 2001x4 + 1001x5 + 1000x7 + 1000x3 = 23009 cycles
- 3 Average CPI = CPU clock cycles / I = 23009/5002 = 4.6
- 4 Fraction of execution time for each instruction type:
 - Fraction of time for ALU instructions = $CPI_{ALU} \times F_{ALU} / CPI = 4x0.4/4.6 = 0.348 = 34.8\%$
 - Fraction of time for load instructions = CPI_{load} x F_{load} / CPI= 5x0.2/4.6 = 0.217 = 21.7%
 - Fraction of time for store instructions = $CPI_{store} \times F_{store} / CPI = 7x0.2/4.6 = 0.304 = 30.4\%$
 - Fraction of time for branch instructions = CPI_{branch} x F_{branch} / CPI= 3x0.2/4.6 = 0.13 = 13%
- 5 Execution time = I x CPI x C = CPU cycles x C = $23009 \times 2 \times 10^{-9} =$ = 4.6×10^{-5} seconds = 0.046 msec = 46 usec
- 6 MIPS rating = Clock rate / (CPI x 10^6) = 500 / 4.6 = 108.7 MIPS
 - The CPU achieves its peak MIPS rating when executing a program that only has instructions of the type with the lowest CPI. In this case branches with $CPI_{Branch} = 3$
 - Peak MIPS rating = Clock rate / $(CPI_{Branch} \times 10^6) = 500/3 = 166.67 \text{ MIPS}$

EECC550 - Shaaban

Instruction type

ALU

Load

Store

Branch

CPI

4

5

7

3

Computer Performance Measures: MFLOPS (Million FLOating-Point Operations Per Second)

- A floating-point operation is an addition, subtraction, multiplication, or division operation applied to numbers represented by a single or a double precision floating-point representation.
- MFLOPS, for a specific program running on a specific computer, is a measure of millions of floating point-operation (megaflops) per second:

MFLOPS = Number of floating-point operations / (Execution time $\times 10^6$)

- MFLOPS rating is a better comparison measure between different machines (applies even if ISAs are different) than the MIPS rating.
 - Applicable even if ISAs are different
- Program-dependent: Different programs have different percentages of floating-point operations present. i.e compilers have no floating-point operations and yield a MFLOPS rating of zero.
- Dependent on the type of floating-point operations present in the program.
 - Peak MFLOPS rating for a CPU: Obtained using a program comprised entirely of the <u>simplest floating point instructions</u> (with the lowest CPI) for the given CPU design which <u>does not represent real floating point programs.</u>

Current peak MFLOPS rating: 8,000-20,000 MFLOPS (8-20 GFLOPS) per processor core

Quantitative Principles of Computer Design

Amdahl's Law:

The performance gain from improving some portion of a computer is calculated by:

i.e using some enhancement

Speedup = Performance for entire task using the enhancement

Performance for the entire task without using the enhancement

or Speedup = Execution time without the enhancement Execution time for entire task using the enhancement

After Enhancement

Before Enhancement

Here: Task = Program | Recall: Per

Recall: Performance = 1 /Execution Time

4th Edition: Chapter 1.8 3rd Edition: Chapter 4.5

EECC550 - Shaaban

#35 Lec # 3 Winter 2011 12-6-2011

Performance Enhancement Calculations: Amdahl's Law

- The performance enhancement possible due to a given design improvement is limited by the amount that the improved feature is used
- Amdahl's Law:

Performance improvement or speedup due to enhancement E:

original -

Suppose that enhancement E accelerates a fraction F of the
 execution time by a factor S and the remainder of the time is unaffected then:

Execution Time with E = ((1-F) + F/S) X Execution Time without E Hence speedup is given by:

F (Fraction of execution time enhanced) refers to original execution time before the enhancement is applied

Pictorial Depiction of Amdahl's Law

Enhancement E accelerates fraction F of original execution time by a factor of S

Before:

Execution Time without enhancement E: (Before enhancement is applied)

• shown normalized to 1 = (1-F) + F = 1

After:

Execution Time with enhancement E:

what if the fraction given is after the enhancement has been applied? How would you solve the problem? (i.e find expression for speedup)

Performance Enhancement Example

For the RISC machine with the following instruction mix given earlier:

Op	Freq	Cycles	CPI(i)	% Time	
ALU	50%	1	.5	23%	
Load	20%	5	1.0	45%	$\mathbf{CPI} = 2.2$
Store	10%	3	.3	14%	From a previous example
3ranch	20%	2	_4	18%	

• If a CPU design enhancement improves the CPI of load instructions from 5 to 2, what is the resulting performance improvement from this enhancement:

Fraction enhanced = F = 45% or .45

Unaffected fraction = 1- F = 100% - 45% = 55% or .55

Factor of enhancement = S = 5/2 = 2.5

Using Amdahl's Law:

Speedup(E) =
$$\frac{1}{(1 - F) + F/S}$$
 $\frac{1}{.55 + .45/2.5}$

An Alternative Solution Using CPU Equation

Ор	Freq	Cycles	CPI(i)	% Time	
ALU	50%	1	.5	23%	
Load	20%	5	1.0	45%	$\mathbf{CPI} = 2.2$
Store	10%	3	.3	14%	
Branch	20%	2	.4	18%	

• If a CPU design enhancement improves the CPI of load instructions from 5 to 2, what is the resulting performance improvement from this enhancement:

Old CPI = 2.2

New CPI of load is now 2 instead of 5

New CPI =
$$.5 \times 1 + .2 \times 2 + .1 \times 3 + .2 \times 2 = 1.6$$

Speedup(E) = Original Execution Time

New Execution Time

Instruction count x old CPI x clock cycle

Instruction count x new CPI x clock cycle

Which is the same speedup obtained from Amdahl's Law in the first solution.

 $T = I \times CPI \times C$

Performance Enhancement Example

• A program runs in 100 seconds on a machine with multiply operations responsible for 80 seconds of this time. By how much must the speed of multiplication be improved to make the program four times faster?

Execution time with enhancement = 100/4 = 25 seconds 25 seconds = (100 - 80 seconds) + 80 seconds / S 25 seconds = 20 seconds + 80 seconds / S \Rightarrow 5 = 80 seconds / S \Rightarrow S = 80/5 = 16

Alternatively, it can also be solved by finding enhanced fraction of execution time:

$$F = 80/100 = .8$$

and then solving Amdahl's speedup equation for desired enhancement factor S

Speedup(E) =
$$\frac{1}{(1 - F) + F/S}$$
 = $\frac{1}{(1 - .8) + .8/S}$ $\frac{1}{.2 + .8/S}$

Hence multiplication should be 16 times faster to get an overall speedup of 4.

Solving for S gives S = 16

Performance Enhancement Example

• For the previous example with a program running in 100 seconds on a machine with multiply operations responsible for 80 seconds of this time. By how much must the speed of multiplication be improved to make the program five times faster?

 \rightarrow Execution time with enhancement = 100/5 = 20 seconds

 \rightarrow 0 = 80 seconds /s

No amount of multiplication speed improvement can achieve this.

Extending Amdahl's Law To Multiple Enhancements

n enhancements each affecting a different portion of execution time

• Suppose that enhancement E_i accelerates a fraction F_i of the original execution time by a factor S_i and the remainder of the time is unaffected then:

$$Speedup = \frac{\text{Original Execution Time}}{\left((1 - \sum_{i} F_{i}) + \sum_{i} \frac{F_{i}}{S_{i}}\right) X \text{Original Execution Time}}$$

Speedup=
$$\frac{1}{\left((1-\sum_{i} \mathbf{F}_{i})+\sum_{i} \frac{\mathbf{F}_{i}}{\mathbf{S}_{i}}\right)}$$

Unaffected fraction

What if the fractions given are after the enhancements were applied? How would you solve the problem? (i.e find expression for speedup)

Note: All fractions $\mathbf{F}_{\mathbf{i}}$ refer to original execution time before the enhancements are applied.

Amdahl's Law With Multiple Enhancements: Example

• Three CPU performance enhancements are proposed with the following speedups and percentage of the code <u>original</u> execution time affected:

$$Speedup_1 = S_1 = 10$$

$$Speedup_2 = S_2 = 15$$

$$Speedup_3 = S_3 = 30$$

$$Percentage_1 = F_1 = 20\%$$

$$Percentage_1 = F_2 = 15\%$$

$$Percentage_1 = F_3 = 10\%$$

- While all three enhancements are in place in the new design, each enhancement affects a different portion of the code and only one enhancement can be used at a time.
- What is the resulting overall speedup?

Speedup =
$$\frac{1}{\left(\left(1 - \sum_{i} \mathbf{F}_{i}\right) + \sum_{i} \frac{\mathbf{F}_{i}}{\mathbf{S}_{i}}\right)}$$

Pictorial Depiction of Example

Before:

Execution Time with no enhancements: 1

i.e normalized to 1

$$S_1 = 10$$

$$S_2 = 15$$

$$S_3 = 30$$

Unaffected, fraction: .55

$$F_1 = .2$$

/ 10

$$F_2 = .15$$

/ 15

 $\mathbf{F}_3 = .1$

Unchanged

Unaffected, fraction: .55

After:

Execution Time with enhancements: .55 + .02 + .01 + .00333 = .5833

Speedup = 1 / .5833 = 1.71

What if the fractions given are after the enhancements were applied? How would you solve the problem?

Note: All fractions F_i refer to original execution time.

"Reverse" Multiple Enhancements Amdahl's Law

- Multiple Enhancements Amdahl's Law assumes that the fractions given refer to original execution time.
- If for each enhancement S_i the fraction F_i it affects is given as a fraction of the <u>resulting</u> execution time after the enhancements were applied then:

$$Speedup = \frac{\left((1 - \sum_{i} F_{i}) + \sum_{i} F_{i} \times S_{i}\right) X \text{Resulting ExecutionTime}}{\text{Resulting ExecutionTime}}$$

Unaffected fraction

$$Speedup = \underbrace{\frac{(1 - \sum_{i} F_{i}) + \sum_{i} F_{i} \times S_{i}}{1}}_{\text{i.e as if resulting execution time is normalized to 1}} + \sum_{i} F_{i} \times S_{i}$$

• For the previous example assuming fractions given refer to resulting execution time after the enhancements were applied (not the original execution time), then:

Find original fractions?