

MECH366: Modeling of Mechatronic Systems

L19: Bode diagram of first-order and second-order systems

Dr. Ryozo Nagamune
Department of Mechanical Engineering
University of British Columbia

a place of mind

Today's topic & class schedule

- L18: Nov 15 (Fri): Frequency response
- L19: Nov 18 (Mon): Bode diagram (Lab 4 report content, report due Nov 25, 6pm)
- L20: Nov 22 (Fri): Simulink, overdamped system
- L21: Nov 25 (Mon): Stability, course summary

G(s)	$\frac{K}{Ts+1}$	$\frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
Step response t	(L16) t	(L17) underdamped (L20) overdamped t t
Frequency response (L18)	(L19) Slide 13	(L19) Slide 16

MECH 366

Frequency response (review)

- We would like to analyze a system property by applying a *sinusoidal input r(t)* and observing a response y(t).
- Steady state response yss(t) (after transient dies out) of a system to sinusoidal inputs is called frequency response.

4

Response to sinusoidal input (review)

 What is the steady state output of a stable linear system when the input is sinusoidal?

- Steady state output $y_{ss}(t) = A |G(j\omega)| \sin(\omega t + \angle G(j\omega))$
 - ullet Frequency is same as the input frequency ω
 - Amplitude is that of input (A) multiplied by $|G(j\omega)|$
 - Phase shifts $\angle G(j\omega)$

Gain

a place of mind

Phase shift (review)

$$\frac{T_{shift}}{T_{period}} = \frac{-\angle G(j\omega)}{360^{\circ}} \longrightarrow \angle G(j\omega) = -\frac{T_{shift}}{T_{period}} \times 360^{\circ}$$

Bode plot (Bode diagram) of $G(j\omega)$

Bode diagram consists of gain plot & phase plot

Bode plot of a constant gain

$$G(s) = K \Rightarrow |G(j\omega)| = K, \ \angle G(j\omega) = 0^{\circ}, \ \forall \omega$$
for all)

K	$20\log_{10}K$
100	40 dB
10	20 dB
2	pprox 6 dB
1	0 dB
0.1	-20 dB
0.01	−40 dB

Bode plot of a differentiator

$$G(s) = s \Rightarrow |G(j\omega)| = \omega, \ \angle G(j\omega) = \angle j\omega = 90^{\circ}, \ \forall \omega$$

MECH 366

Bode plot of an integrator

$$G(s) = \frac{1}{s} \Rightarrow |G(j\omega)| = \frac{1}{\omega}, \ \angle G(j\omega) = \angle \frac{1}{j\omega} = -90^{\circ}, \ \forall \omega$$

Mirror image of the Bode plot of G(s)=s

Bode plot of a double integrator

$$G(s) = \frac{1}{s^2} \Rightarrow |G(j\omega)| = \frac{1}{\omega^2}, \ \angle G(j\omega) = \angle \frac{1}{(j\omega)^2} = -180^\circ, \ \forall \omega$$

MECH 366

Bode plot of a 1st order system

Exercises of sketching Bode plot

$$G(s) = \frac{1}{s+1}$$

$$G(s) = \frac{1}{s+1}$$
 $G(s) = \frac{1}{0.1s+1}$ $G(s) = \frac{1}{10s+1}$

$$G(s) = \frac{1}{10s+1}$$

MECH 366 13

Bode plot of an inverse system

$$G(s) = Ts + 1 = \left(\frac{1}{Ts + 1}\right)^{-1}$$

Mirror image of the original Bode plot with respect to ω -axis.

14

a place of mind

Bode plot of a 2nd order system

- Bode plot of a series connection $G_1(s)G_2(s)$ is the addition of each Bode plot of G_1 and G_2 .
 - Gain

$$20\log_{10}|G_1(j\omega)G_2(j\omega)| = 20\log_{10}|G_1(j\omega)| + 20\log_{10}|G_2(j\omega)|$$

• Phase

$$\angle G_1(j\omega)G_2(j\omega) = \angle G_1(j\omega) + \angle G_2(j\omega)$$

• Later, we use this property to design *C(s)* so that *G(s)C(s)* has a "desired" shape of Bode plot. (in Controls course MECH467)

Use polar representation

$$G_1(j\omega) = |G_1(j\omega)|e^{j\angle G_1(j\omega)}$$
 $G_2(j\omega) = |G_2(j\omega)|e^{j\angle G_2(j\omega)}$

Then,
$$G_1(j\omega)G_2(j\omega) = |G_1(j\omega)||G_2(j\omega)|e^{j\langle G_1(j\omega)e^{j\langle G_2(j\omega)\rangle}|}$$

$$= |G_1(j\omega)||G_2(j\omega)|e^{j\langle G_1(j\omega)+\langle G_2(j\omega)\rangle}|$$

Therefore,

$$20 \log_{10} |G_1(j\omega)G_2(j\omega)| = 20 \log_{10} |G_1(j\omega)| \cdot |G_2(j\omega)| = 20 \log_{10} |G_1(j\omega)| + 20 \log_{10} |G_2(j\omega)|$$
$$\angle G_1(j\omega)G_2(j\omega) = \angle G_1(j\omega) + \angle G_2(j\omega)$$

Sketch the Bode plot of a transfer function

$$G(s) = \frac{10}{s}$$

1. Decompose G(s) into a product form:

$$G(s) = 10 \cdot \frac{1}{s}$$

- 2. Sketch a Bode plot for each component on the same graph.
- 3. Add them all on both gain and phase plots.

Example 1 (cont'd)

$$G(s) = 10$$

X

$$G(s) = \frac{1}{s}$$

$$G(s) = \frac{10}{s}$$

Example 2

$$G(s) = 0.1$$

$$G(s) = \frac{1}{s}$$

$$G(s) = \frac{0.1}{s}$$

Example 3

$$G(s) = \frac{1}{2s+1}$$

 \times

$$G(s) = \frac{1}{s}$$

$$G(s) = \frac{1}{s(2s+1)}$$

Summary

- How to sketch/draw Bode diagram (bode.m)
- Next,
 - Simulink
 - Step response of overdamped systems
- Project: Fridays Nov 22, 29 (presentation)
- Lab 4 report: Due Nov 25 (Monday), 6pm