Information of the InsDet Dataset

1. Data Description

This section introduces images of objects and scenes taken by a cellphone that is equipped with a Leica camera.

Our dataset is available on the github repository: https://github.com/insdet/instance-detection

InsDet structure:

- Objects
- Scenes
- Background

1.1 Raw data

The camera settings are illustrated in the table below.

object_id: 000~040, 052~092		object_id: 041~051, 093~099	
3072×3072 pixels	ISO: 50	3456×3456 pixels	ISO: 125
	shutter speed: 1/160		shutter speed: 1/160
	optical zoom: 0.7x		optical zoom: 1x
	simulated aperture: f/1.9		simulated aperture: f/2.2
	focus length: 2mm		focus length: 2mm

The "Objects" folder contains:

- For each of (currently) **100 objects** (object_name), we provide 1 sampling view (45° to object center) and 24 rotation position (24 total)
 - The first three digits specify the id of each object. (e.g. 000_aveda_shampoo)
 - o raw RGB image (e.g. "images/001.jpg")
 - segmentation masks for the RGB images (e.g. "masks/001.png") generated by GrabCut Annotation toolbox

The "Scenes" folder contains:

- For each of (currently) **14 test scenes** with **160** testing images in total, we provide images with different angles of sampling views and different lighting environments.
 - o raw RGB images with 6144×8192 pixels (e.g. "office001/rgb 000.jpg")

- Bounding box annotation for objects in test scenes (e.g. "office001/rgb_000.xml")
 generated by labellmg toolbox and using PascalVOC format.
- o Each bounding box is specified by [xmin, ymin, xmax, ymax].
- o Hard scenes: office_001, pantry_room_001

Easy scenes: leisure_zone, meeting_room, office_002, pantry_room_002, sink

Object categories

- "Objects" appear in "Scenes"
 - o 3072×3072 (000~040, 052~092)

```
000_aveda_shampoo
001_binder_clips_median
002_binder_clips_small
003_bombik_bucket
004_bonne_maman_blueberry
005_bonne_maman_raspberry
006_bonne_maman_strawberry
```

```
052_acnes_cream
053_aveda_conditioner
054_banana_milk_drink
055_candle_beast
056_china_persimmon
057_danisa_butter_cookies
058_effaclar_duo
```

007_costa_caramel	059_evelom_cleanser	
008 essential oil bergamot	060 glasses box blone	
009 garlic toast spread	061 handcream iris	
010 handcream avocado	062 handcream lavender	
011 hb calcium	063 handcream rosewater	
012 hb grapeseed	064 handcream summer hill	
013_hb_marine_collagen	065_hr_serum	
014_hellmanns_mayonnaise	066_japanese_chocolate	
015_illy_blend	067_kerastase_hair_treatment	
016_japanese_finger_cookies	068_kiehls_serum	
017_john_west_canned_tuna	069_korean_beef_marinade	
018_kerastase_shampoo	070_korean_doenjang	
019_kiehls_facial_cream	071_korean_gochujang	
020_kiihne_balsamic	072_korean_ssamjang	
021_kiihne_honey_mustard	073_loccitane_soap	
022_lindor_matcha	074_marvis_toothpaste_purple	
023_lindor_salted_caramel	075_mouse_thinkpad	
024_lush_mask	076_oatly_chocolate	
025_pasta_sauce_black_pepper	077_oatly_original	
026_pasta_sauce_tomato	078_ousa_grated_cheese	
027_pepsi	079_polaroid_film	
028_portable_yogurt_machine	080_skinceuticals_be	
029_selfile_stick	081_skinceuticals_cf	
030_sour_lemon_drops	082_skinceuticals_phyto	
031_sticky_notes	083_stapler_black	
032_stridex_green	084_stapler_blue	
033_thermos_flask_cream	085_sunscreen_blue	
034_thermos_flask_muji	086_tempo_pocket_tissue	
035_thermos_flask_sliver	087_thermos_flask_purple	
036_tragata_olive_oil	088_uha_matcha	
037_tulip_luncheon_meat	089_urban_decay_spray	
038_unicharm_cotton_pad	090_vitaboost_multivitamin	
039_vinda_tissue	091_watercolor_penbox	
040_wrigley_doublemint_gum	092_youthlt_bilberry_complex	

o 3456×3456 (041~051, 093~099)

041_baseball_cap_black	050_nabati_cheese_wafer
042_baseball_cap_pink	051_truffettes
043_bfe_facial_mask	093_daiso_mod_remover
044_corgi_doll	094_kaneyo_kitchen_bleach
045_dinosaur_doll	095_lays_chip_bag_blue
046_geo_mocha	096_lays_chip_bag_green
047_geo_roast_charcoal	097_lays_chip_tube_auburn
048_instant_noodle_black	098_lays_chip_tube_green
049_instant_noodle_red	099_mug_blue

2. Foreground Segmentation -- GrabCut

This section introduces the details of how we generate the segmentation masks of objects by using GrabCut algorithm on raw RGB images. The gendata codes are modified from this publicly available Github repository.

1. Resize raw images to smaller size (better fit the GrabCut Annotation Graphic Interface)

```
e.g. down-sample <lush_mask> from 3072×3072 pixels to 384×384 pixels (8x) put lush_mask folder under <base_dir>
```

2. Segment object manually by using GrabCut interactive algorithm

Note: The output folder contains an annotation folder for segmentation masks and an image folder for segmented objects.

3. Resize segmentation masks to original image size

3. Label Annotation -- labelImg

For test scenes, we adopt a publicly available annotation toolbox <u>labelImg</u> to label the bounding boxes of objects in test scenes. The <u>predefine_classes.txt</u> has been rewrite and uploaded to the aforementioned Github link. The bounding box of an object is a rectangle that includes the maximum area of the object appearing in the test scene.

4. Data Processing for Cut-Paste-Learn

This section introduces the details of how we process "Objects" data and "Background" data for Cut-Paste-Learn. Two Python files dataset_generator.py and defaults.py in the cut-paste-learn official github repository should be modified for our requirements.

```
<base_dir> = ../InsDet
<dest_dir> = ../syndata-generation/data_dir
```

1. Downsize background images to 4x smaller size

e.g. original size of 6144×4096 pixels → 768×1024 pixels

2. Get bounding box of objects

```
python getBbox.py
```

3. Center crop images and masks to an appropriate size

```
python centerCrop.py
```

4. Downsize images and masks to a smaller size (e.g. 256x256)

```
python resizeImg.py
python resizeMask.py
```

5. Invert masks (Make background as TRUE and foreground as FALSE), and generate foreground with white background

```
python invertMask.py
```

Note: Related functions of minify, resizemask, getbbox, centercrop, invertmask are packed in datautils.py. The loop_resizeImg.py, loop_resizeMask.py, loop_getBbox.py, loop_centerCrop.py, and loop_invertMask.py can be used for a set of folders.

6. Set multiple variables in defaults.py, such as (1) the numbers of objects inserted in each background image, (2) the scales of inserted object instances, (3) combination of four commonly-used blending methods, (4) the amounts of synthesized images. Then run dataset generator.py to generate synthesized images.