Laplace transforms

Akshay Aym

Intro to haplad transforms:
from signals and systems we have a bransform that transforms from him domain to fuguency domain Fourier transform: $\chi(w) = \int \chi(t) e^{-iwt}$
Fourier tours form: $\chi(w) = \int \chi(t) e^{-jwt}$ assume there is a signal $e^{-at} = \chi(t)$
=> x(w)= \ e^{-(a+jw)+} dt
$= \left[\frac{-e^{-(\alpha+j\omega)t}}{a+j\omega} \right]_{0}^{a} = \left[\frac{1}{a+j\omega} \right]_{0}^{a}$
$ \chi(\omega) = \frac{1}{\sqrt{a^2 + \omega^2}} \qquad \phi = \tan^{-1} \left[\frac{\omega}{a} \right]$
now assume a signal eat = x(1)
$= \chi(\omega) = \int_{0}^{\infty} e^{(\alpha - 1\omega)} dt$
$= \left[\begin{array}{c} e^{(a-j\omega)t} \end{array}\right]^{0} = \text{this fine doesn't conveye}$
hence we add a component et such that at emits the toanstoken from going out of bound.

$$\chi(s) = \begin{cases} \chi(t) e \\ 0 \end{cases} = (\sigma + j\omega)$$

Some laplace transforms:

$$= \chi(s) = \int_{0}^{\infty} u(s) e^{-st} \int_{0}^{\infty} e^{-st} dt$$

$$= \begin{bmatrix} -\frac{e^{st}}{s} \end{bmatrix}_{0}^{\infty} = \frac{1}{s}$$

$$z = \frac{e^{\pm at} uu e^{-st}}{e} = \frac{e^{\pm at} uu}{e}$$

$$= \begin{bmatrix} -e & -(s \neq a) + a \\ (s \neq a) & -(s \neq a) \end{bmatrix} = \begin{bmatrix} 1 \\ s \neq a \end{bmatrix}$$

haplau toansform Table

f (1)	FU)
<u> </u>	
fets = 1	FUS) = 1/5
1 c() = 6"	Fus) = n!
<u> </u>	5 ⁽ⁿ⁺¹⁾
$f(1) = \dot{\bar{e}}^{at}$	FCS) = 1 S 7a
	S 7a
fcs = sin (at)	F(5) = <u>a</u> 54 + a ²
· · · · · · · · · · · · · · · · · · ·	8c + a 2
$f(t) = \log(at)$	$F(3) = \frac{3^2}{a^3 + 3^2}$
fct) = Sinh (al)	FU) = <u>a</u> s'-a2
	s a2
f(1) = cosh (at)	rus) = 3 s1-a2
ficts = tneat	F(S) = <u>P</u>
	(s-a)" 11

Laplace Propules: f(1) fcs) propuly au Fics) + az Fais) Linearity aufict) + aztz(+) Scaling frats $\frac{1}{a}F(\frac{s}{a})$ e-as F(s) time shift 1ct-as e-at fet) FIStal freq shift SF(8) - f(0-) time diff 81 F(1) - 5'f(0) d4 (0) 5 (F15)) - 5 f10) -5 -1/1... d to 3fn - 100) line Inkaction Spenj dt lm sfu) s->00 fco) tutial value Final value f(**~**) him SF(s) = FO)FO f, * f2 Convolution