

## PRACOWNIA FIZYCZNA 1

Instytut Fizyki Centrum Naukowo Dydaktyczne



# SPRAWOZDANIE Z ĆWICZENIA LABORATORYJNEGO

| Tem      | nat: Wyznaczanie | maksymalnej ener      | rgii promieniowania l    | beta metodą absorpcyjną |  |  |  |
|----------|------------------|-----------------------|--------------------------|-------------------------|--|--|--|
| Wydział  |                  | AEil                  | Kierunek                 | Informatyka             |  |  |  |
| Nr grupy |                  | 1                     | Rok akademicki           | 2023/2024               |  |  |  |
| Rok      | studiów          | 2                     | Semestr                  | 3                       |  |  |  |
|          |                  |                       | kowicie moim/naszym d    |                         |  |  |  |
|          |                  |                       | ny z cudzej pracy. Oświa |                         |  |  |  |
| świado   | ma/świadom odpow | iedzialności karnej z | a naruszenie praw autors | skich osób trzecich.    |  |  |  |
| L.P.     | lmię i nazwisko  |                       |                          |                         |  |  |  |
| 1.       | Karol Pitera     |                       |                          |                         |  |  |  |
| 2        | Dominik Kłanut   |                       |                          |                         |  |  |  |

| Data namiaráw | 00 11 2022 |
|---------------|------------|
| Data pomiarów | 08.11.2023 |

Ocena poprawności elementów sprawozdania

| data<br>oceny | wstęp i cel<br>ćwiczenia | struktura<br>sprawozdania | obliczenia | rachunek<br>niepewności | wykres | zapis<br>końcowy | wnioski |
|---------------|--------------------------|---------------------------|------------|-------------------------|--------|------------------|---------|
|               |                          |                           |            |                         |        |                  |         |
|               |                          |                           |            |                         |        |                  |         |
|               |                          |                           |            |                         |        |                  |         |
|               |                          |                           |            |                         |        |                  |         |
|               |                          |                           |            |                         |        |                  |         |

#### Ocena końcowa:

3.

| Ocena lub<br>liczba punktów |  |  |
|-----------------------------|--|--|
| Data i podpis               |  |  |

#### Wstęp teoretyczny

Efekt fotoelektryczny zewnętrzny, zachodzi, gdy na metalową powierzchnię pada monochromatyczna fala elektromagnetyczna o wystarczająco małej długości. Padające fale są absorbowane w konsekwencji czego emitowane są elektrony (nazywane też fotoelektronami)(Rys 1.1).



Rys 1.1 Schemat efektu fotoelektrycznego

Na potrzebę badania oświetlona powierzchnia pełni rolę anody i emituje elektrony, które pochłaniane są przez katodę o niższym potencjale. Podczas wykonywania badań zmieniamy różnicę potencjałów między anodą a katodą. Zarówno anoda jak i katoda umieszczone są w próżniowej rurze ze źródłem światła, którego odległość od anody można modyfikować (Rys 1.2).



Rys 1.2 Układ badawczy dla efektu fotoelektrycznego

## Opracowanie pomiarów



Rys.2 Wykres zależności natężenia prądu anodowego fotokomórki od jej napięcia.



Rys.3 Wykres zależności natężenia prądu anodowego fotokomórki od napięcia żarówki



Rys.4 Wykres zależności natężenia prądu anodowego fotokomórki od mocy pobieranej przez żarówkę.



Rys.5 Wykres zależności natężenia prądu anodowego fotokomórki od odległości pomiędzy żarówką a fotokomórką



Rys.6 Wykres zależności natężenia prądu anodowego fotokomórki od odwrotności kwadratu odległości żarówki od fotokomórki  $I = f(d^{-2})$ .

### Komentarz do wyników

Doświadczenie potwierdziło, że przepływ prądu a co za tym idzie, intensywność zjawiska fotoelektrycznego, zależy od różnicy potencjałów między anodą a katodą, oraz od natężenia fal świetlnych padających na anodę.

Podczas pracy korzystaliśmy z informacji zawartych na stronie openstax.org