Symmetric DG Algebra

Michael Nelson

1 The Symmetric DG Algebra

Let A be an R-complex centered at R (thus $A_0 = R$ and $A_i = 0$ for all i < 0). In this section, we will construct the symmetric DG R-algebra of A, which we denote by $S_R(A) = S(A)$. Before we give a rigorous construction of it, we wish to describe it informally first in order to help motivate the reader. The underlying R-algebra of S(A) is the usual symmetric R-algebra $Sym(A_+)$ where we view A_+ as just an R-module. However S(A) obtains a bi-graded structure using homological degree as follows: we can decompose S(A) into R-modules as:

$$S(A) = \bigoplus_{i \ge 0} S_i(A) = \bigoplus_{m \ge 0} S^m(A) = \bigoplus_{i,m \ge 0} S_i^m(A)$$

We refer to the i in the subscript as **homological degree** and we refer to the m in the superscript as **total degree**. The R-module $S_i^m(A)$ can be described as follows: we have

$$S_0(A) = S^0(A) = S_0^0(A) = R$$
 and $S^1(A) = A_+$.

More generally, for $i, m \ge 1$, the R-module $S_i^m(A)$ is the R-span of all homogeneous elementary products of the form $a_1 \cdots a_m$ where $a_1, \ldots, a_m \in A_+$ are homogeneous such that

$$|a_1|+\cdots+|a_m|=i.$$

In particular, note that $A = S^{\leq 1}(A) = R + A_+$. We let $\iota : A \subseteq S(A)$ denote the inclusion map. The differential of S(A) extends the differential of A and is defined on homogeneous elementary products of the form $a_1 \cdots a_m$ where $a_1, \ldots, a_m \in A_+$ are homogeneous by

$$d(a_1 \cdots a_m) = \sum_{j=1}^m (-1)^{|a_1| + \cdots + |a_{j-1}|} a_1 \cdots d(a_j) \cdots a_m.$$

In the next example, we consider an R-free resolution F of a cyclic R-module and we work out what S(F) looks like.

Example 1.1. Let $R = \mathbb{k}[x,y]$, let $I = \langle x^2, xy \rangle$, and let F be Taylor resolution of R/I. Let's write down the homogeneous components of F as a graded R-module: we have

$$F_0 = R$$

 $F_1 = Re_1 + Re_2$
 $F_2 = Re_{12}$

and if $i \notin \{0,1,2\}$, then $F_i = 0$. The differential of F is defined on the homogeneous basis elements by

$$d(e_1) = x^2$$

 $d(e_2) = xy$
 $d(e_{12}) = xe_2 - ye_1$.

Note that the Taylor resolution usually comes equipped with a multiplication called the Taylor multiplication. Let us denote this by \star so as not to confuse it with the multiplication \cdot of S(F). Now let's write down the homogeneous components of S(F) as a graded R-module (with respect to homological degree): we have

$$S_0(F) = R$$

$$S_1(F) = Re_1 + Re_2$$

$$S_2(F) = Re_{12} + Re_1e_2$$

$$S_3(F) = Re_1e_{12} + Re_2e_{12}$$

$$S_4(F) = Re_{12}^2 + Re_1e_2e_{12}$$

$$\vdots$$

Note that $S_4^3(F) = Re_1e_2e_{12}$ and $S_4^2(F) = Re_{12}^2$. Also note that

$$d(e_1e_2 - e_1 \star e_2) = d(e_1e_2 - xe_{12})$$

$$= d(e_1)e_2 - e_1d(e_2) - xd(e_{12})$$

$$= x^2e_2 - xye_1 - x(xe_2 - ye_1)$$

$$= x^2e_2 - xye_1 - x^2e_2 + xye_1$$

$$= 0.$$

1.1 Construction of the Symmetric DG Algebra of A

We now provide a rigorous construction of S(A). This will occur in three steps:

Step 1: We define the **non-unital tensor algebra** of *A* to be the associative, graded, and non-unital *R*-algebra

$$U(A) = \bigoplus_{i,k,m>0} U_i^{k,m}(A).$$

The component $U_i^{k,m}(A)$ consists of all finite *R*-linear combinations of elementary tensors of the form

$$1^{\otimes k} \otimes a_1 \otimes \cdots \otimes a_m = 1 \otimes \cdots \otimes 1 \otimes a_1 \otimes \cdots \otimes a_m \tag{1}$$

where $a_1, \ldots, a_m \in A_+$ are homogeneous such that

$$|a_1|+\cdots+|a_m|=i$$

We think of (1) as being graded of total degree m by setting deg(1) = 0 and deg(a) = 1 for all $a \in A_+$ and extending this multiplicatively. The multiplication of U(A) is defined on such elementary tensors by

$$(1^{\otimes k} \otimes a_1 \otimes \cdots \otimes a_m) \otimes (1^{\otimes k'} \otimes a_1' \otimes \cdots \otimes a_{m'}') \mapsto 1^{\otimes (k+k')} \otimes a_1 \otimes \cdots \otimes a_m \otimes a_1' \otimes \cdots \otimes a_{m'}'$$

and is extended R-linearly everywhere else. In particular, note that U(A) is not unital since $a \otimes 1 = 1 \otimes a \neq a$ for all nonzero $a \in A$. We set t to be the U(A)-ideal generated by all elements of the form $1 \otimes a - a$ where $a \in A$.

Step 2: We define the **tensor algebra** of *A* to be the associative, graded, and unital *R*-algebra given by the quotient

$$T(A) := U(A)/\mathfrak{t}$$
.

The image of the elementary tensor (1) in T(A) is denoted by $a_1 \otimes \cdots \otimes a_m$ and will be referred to as a homogeneous elementary tensor. Since t is generated by elements of the form $1 \otimes a - a$, which are homogeneous with respect to the homological degree and total degree, we see that T(A) is an associative and unital R-algebra which is bi-graded with respect to homological degree and total degree. In particular, we have $T_0(A) = R = T^0(A)$, and for $m \geq 1$, the component of T(A) in total degree m is given by

$$T^m(A) = A_+^{\otimes m}$$

where the tensor product is taken over R. On the other hand, for $i \ge 1$, the component of T(A) in homological degree i consists of the R-span of all homogeneous elementary tensors of the form $a_1 \otimes \cdots \otimes a_m$ where $m \ge 1$ and where a_1, \ldots, a_m are homogeneous elements in A_+ such that

$$|a_1|+\cdots+|a_m|=i.$$

We set \mathfrak{s} to be the T(A)-ideal generated by all elements of the form

$$[a_1, a_2]_{\sigma} \colon = (-1)^{|a_1||a_2|} a_2 \otimes a_1 - a_1 \otimes a_2 \quad \text{and} \quad [a]_{\tau} := a \otimes a,$$

where $a, a_1, a_2 \in A$ are homogeneous and |a| is odd.

Step 3: We define the **symmetric algebra** of A to be the associative, strictly graded-commutative, and unital R-algebra given by the quotient

$$S(A) := T(A)/\mathfrak{s}$$
.

The image of a homogeneous elementary tensor $a_1 \otimes \cdots \otimes a_m$ in T(A) will be denoted by $a_1 \cdots a_m$ in S(A) and we refer to $a_1 \cdots a_m$ as a homogeneous elementary product. Since \mathfrak{s} is generated by elements which are homogeneous with respect to both homological degree and total degree, we see that S(A) inherits from T(A)

the structure of a bi-graded associative *R*-algebra which is also strictly graded-commutative with respect to homological degree.

We now want to show that the differential of A can be extended to a differential on S(A) giving it the structure of a DG R-algebra centered at R.

Theorem 1.1. The differential of A extends to a differential on S(A) giving it the structure of a DG R-algebra centered at R. Moreover, S(A) satisfies the following universal mapping property: for every chain map $\varphi \colon A \to B$ such that $\varphi(1) = 1$ where B is a DG R-algebra centered at R, there exists a unique DG R-algebra homomorphism $\widetilde{\varphi} \colon S(A) \to B$ such that $\widetilde{\varphi} \iota = \varphi$. We express this in terms of a commutative diagram as below:

$$A \xrightarrow{\iota} S(A)$$

$$\varphi \qquad \qquad \downarrow_{\widetilde{\varphi}}$$

$$B$$

$$(2)$$

Proof. Let d be the differential of A. We first extend d to an an R-linear map $U(A) \to U(A)$, which we denote by d again, which is graded of degree -1 with respect to homological degree as follows: for all homogeneous elementary tensors of the form (1), we set

$$d(1^{\otimes k} \otimes a_1 \otimes \cdots \otimes a_m) = 1^{\otimes k} \otimes \sum_{j=1}^m (-1)^{|a_1| + \cdots + |a_{j-1}|} a_1 \otimes \cdots \otimes da_j \otimes \cdots \otimes a_m,$$

and we extend d R-linearly everywhere else. It is clear that d is R-linear, graded of degree -1 with respect to the homological degree, and that $d|_A$ is the differential of A. Furthermore, for any elementary tensor of the form (1), we have

$$d^{2}(1^{\otimes k} \otimes a_{1} \otimes \cdots \otimes a_{m}) = 1^{\otimes k} \otimes \sum_{j=1}^{m} (-1)^{|a_{1}|+\cdots+|a_{j-1}|} d(a_{1} \otimes \cdots \otimes da_{j} \otimes \cdots a_{m})$$

$$= 1^{\otimes k} \otimes \sum_{1 \leq i < j \leq m} (-1)^{|a_{i}|+\cdots+|a_{j-1}|} (a_{1} \otimes \cdots \otimes da_{i} \otimes \cdots \otimes da_{j} \otimes \cdots a_{m})$$

$$= 1^{\otimes k} \otimes \sum_{1 \leq j < k \leq m} (-1)^{|a_{j}|+\cdots+|a_{k-1}|} (a_{1} \otimes \cdots \otimes da_{j} \otimes \cdots \otimes da_{k} \otimes \cdots a_{m})$$

$$= 0.$$

It follows that $d^2 = 0$, and thus d is indeed a differential. Observe that the differential maps t to itself since if $a \in A$, then we have

$$d(1 \otimes a - a) = 1 \otimes da - da \in \mathfrak{t}.$$

Thus d induces a differential on T(A), which we again denote by d. Similarly, observe that d maps $\mathfrak s$ to itself since if $a, a_1, a_2 \in A_+$ are homogeneous with |a| odd, then we have

$$d[a_1, a_2]_{\sigma} = [da_1, a_2]_{\sigma} + (-1)^{|a_1|} [a_1, da_2]_{\sigma} \in \mathfrak{s} \text{ and } d[a]_{\tau} = [da, a]_{\sigma} \in \mathfrak{s}$$

Thus the differential d induces a differential on S(A), which we again denote by d, giving S(A) the structure of a DG R-algebra centered at R.

Now suppose that $\varphi: A \to B$ is a chain map such that $\varphi(1) = 1$ where B is a DG R-algebra centered at R. We define $\widetilde{\varphi}: S(A) \to B$ by setting $\widetilde{\varphi}(1) = 1$ and

$$\widetilde{\varphi}(a_1 \cdots a_m) = \varphi(a_1) \cdots \varphi(a_m)$$
 (3)

for all homogeneous elementary products $a_1 \cdots a_m$ in S(A) and then extending it R-linearly everywhere else. By construction, $\widetilde{\varphi}$ is multiplicative and satisfies $\widetilde{\varphi}(1) = 1$. It also clearly extends $\varphi \colon A \to B$. Furthermore, $\widetilde{\varphi}$ is a chain map since it is a graded R-linear map which commutes with the differential. Indeed, we clearly have

 $\widetilde{\varphi}$ d(1) = 0 = d $\widetilde{\varphi}$ (1), and for all homogeneous elementary products $a_1 \cdots a_m$ in S(A), we have

$$\widetilde{\varphi}d(a_1 \cdots a_m) = \sum_{j=1}^m (-1)^{|a_1| + \cdots + |a_{j-1}|} \widetilde{\varphi}(a_1 \cdots d(a_j) \cdots a_m)$$

$$= \sum_{j=1}^m (-1)^{|a_1| + \cdots + |a_{j-1}|} \varphi(a_1) \cdots \varphi d(a_j) \cdots \varphi(a_m)$$

$$= \sum_{j=1}^m (-1)^{|a_1| + \cdots + |a_{j-1}|} \varphi(a_1) \cdots d\varphi(a_j) \cdots \varphi(a_m)$$

$$= d(\varphi(a_1) \cdots \varphi(a_m))$$

$$= d\widetilde{\varphi}(a_1 \cdots a_m).$$

Finally, if $\widetilde{\varphi}': S(A) \to B$ were another DG *R*-algebra homomorphism which extended $\varphi: A \to B$, then we'd have

$$\widetilde{\varphi}'(a_1\cdots a_m)=\widetilde{\varphi}'(a_1)\cdots\widetilde{\varphi}'(a_m)=\varphi(a_1)\cdots\varphi(a_m)=\widetilde{\varphi}(a_1\cdots a_m)$$

for all homogeneous elementary products $a_1 \cdots a_m$ in S(A), which implies $\widetilde{\varphi}' = \widetilde{\varphi}$.

1.2 A Presentation of the Maximal Associative Quotient

We now equip A with a multiplication (μ, \star) giving it the structure of an MDG R-algebra. In particular, note that if $a_1, a_2 \in A_1$, then

$$a_1a_2 \in S_2^2(A)$$
, $a_1 \star a_2 \in S_2^1(A)$, and $a_1a_2 - a_1 \star a_2 \in S_2(A)$

Also note that the multiplicator of the inclusion ι : $A \subseteq S(A)$ has the form

$$[a_1, a_2]_{\iota} = \iota(a_1 \star a_2) - \iota(a_1)\iota(a_2) = a_1 \star a_2 - a_1 a_2$$

for all $a_1, a_2 \in A$. Let \mathfrak{b} be the S(A)-ideal generated by the multiplicator complex $[S(A)]_t$. Since S(A) is associative, we have

$$\mathfrak{b} = \operatorname{span}_{B}\{[a_{1}, a_{2}]_{\iota} \mid a_{1}, a_{2} \in A\}.$$

Finally let

$$\rho_1 \colon A \to A/\langle A \rangle$$
 and $\rho_2 \colon S(A) \to S(A)/\mathfrak{b}$

denote the corresponding quotient maps.

Theorem 1.2. With the notation as above, we have $\langle A \rangle = A \cap \mathfrak{b}$. In particular, the composite $\rho_2 \iota \colon A \to S(A) \to S(A)/\mathfrak{b}$ induces an isomorphism

$$A/\langle A \rangle \simeq S(A)/\mathfrak{b}$$

of DG R-algebras which is natural in A.

Proof. Note that the composite map $\rho_2\iota: A \to S(A) \to S(A)/\mathfrak{b}$ is a surjective MDG R-algebra homomorphism. Since $S(A)/\mathfrak{b}$ is associative, it follows from the universal mapping property of the maximal associative quotient of A that $\ker(\rho_2\iota) = A \cap \mathfrak{b}$ contains $\langle A \rangle$. Conversely, since $A/\langle A \rangle$ is associative, it follows from the universal mapping property of the symmetric DG R-algebra of A that there exists a unique DG R-algebra homomorphism $\widetilde{\rho}_1: S(A) \to A/\langle A \rangle$ which extends $\rho_1: A \to A/\langle A \rangle$. In particular, note that for $a_1, a_2 \in A$ we have

$$\begin{split} \widetilde{\rho}_1[a_1, a_2]_{\iota} &= \widetilde{\rho}_1(a_1 \star a_2 - a_1 a_2) \\ &= \rho_1(a_1 \star a_2) - \widetilde{\rho}_1(a_1 a_2) \\ &= \rho_1(a_1) \star \rho_1(a_2) - \rho_1(a_1) \star \rho_1(a_2) \\ &= 0. \end{split}$$

since ρ_1 : $A \to A/\langle A \rangle$ is multiplicative. It follows that $\mathfrak{b} \subseteq \ker \widetilde{\rho}_1$, and since $A \cap \ker \widetilde{\rho}_1 = \ker \rho_1 = \langle A \rangle$, it follows that $A \cap \mathfrak{b} \subseteq \langle A \rangle$.

Finally, the ismorphism is natural in A in the sense that if R' is and R-algebra and $\varphi: A \to A'$ is an MDG R-algebra homomorphism where A' is an MDG R'-algebra centered at R'. Then we obtain a commutative diagram:

where we set \mathfrak{b}' to be the DG $S_{R'}(A')$ -ideal generated by the multiplicator complex $[S_{R'}(A')]_{\iota'}$. Indeed, the map $\widetilde{\varphi} \colon S_R(A) \to S_{R'}(A')$ is the unique DG R-algebra which extends the composite $\iota' \varphi \colon A \to S_{R'}(A')$. Since $\widetilde{\varphi}$ is multiplicative, it takes $[S_R(A)]_{\iota}$ to $[S_{R'}(A')]_{\iota'}$ and thus takes \mathfrak{b} to \mathfrak{b}' . In particular, it induces a well-defined map

$$A/\langle A \rangle \simeq \mathrm{S}_R(A)/\mathfrak{b} \xrightarrow{\overline{\varphi}} \mathrm{S}_{R'}(A')/\mathfrak{b}' \simeq A'/\langle A' \rangle.$$

. \Box

1.3 The Symmetric DG Algebra of a Finite Free Resolution

Throughout this subsection, we assume that R is an integral domain with quotient field K. Let F be an R-free resolution of a cyclic R-module with $F_0 = R$ such that the underlying graded R-module of F is a finite and free as an R-module. Let e_1, \ldots, e_n be an ordered homogeneous basis of F_+ as a graded R-module which is ordered in such a way that if $|e_{i'}| > |e_i|$, then i' > i. We denote by $R[e] = R[e_1, \ldots, e_n]$ to be the free *non-strict* graded-commutative R-algebra generated by e_1, \ldots, e_n . In particular, if e_i and e_j are distinct, then we have

$$e_i e_j = (-1)^{|e_i||e_j|} e_j e_i$$

in R[e], however elements of odd degree do not square to zero in R[e]. The reason we do not allow elements of odd degree to square to zero is because we will want to calculate the Gröbner basis of an ideal in K[e], and the theory of Gröbner bases for K[e] is simpler when we don't have any zerodivisors. In any case, it is straightforward to check that

$$R[e]/\langle \{e_i^2 \mid |e_i| \text{ is odd}\} \rangle \simeq S(F).$$

Finally, let (μ, \star) be a multiplication of F. Our goal is to compute the maximal associative quotient of F using the presentation given in Theorem (1.2) as well as the theory of Gröbner bases in K[e]. We need to introduce some notation for Gröbner basis applications in K[e]. Our notation mostly follows [GPo2] however we introduce some of our own notation as well.

1.3.1 Monomials and Monomial Orderings in K[e]

A **monomial** in K[e] is an element of the form

$$e^{\alpha} = e_1^{\alpha_1} \cdots e_n^{\alpha_n} \tag{4}$$

where $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$ is called the **multidegree** of e^{α} and is denoted multideg $(e^{\alpha}) = \alpha$. Similarly we define its **total degree**, denoted $\deg(e^{\alpha})$, and its **homological degree** denoted $|e^{\alpha}|$, by

$$\deg(e^{\alpha}) = \sum_{i=1}^{n} \alpha_i$$
 and $|e^{\alpha}| = \sum_{i=1}^{n} \alpha_i |e_i|$.

By convention we set $e^0 = 1$ where $\mathbf{0} = (0, ..., 0)$ is the zero vector in \mathbb{N}^n . We define the **support** of e^{α} , denoted supp (e^{α}) , to be the set

$$\operatorname{supp}(e^{\alpha}) = \{e_i \mid e_i \text{ divides } e^{\alpha}\} = \{e_i \mid \alpha_i \neq 0\}.$$

Note that if the support of e^{α} is empty if and only if $e^{\alpha} = 1$. If e^{α} has non-empty support, then we define its **initial variable** and **terminal variable** to be the elements e_i and e_k where

$$i = \inf\{j \mid e_j \in \operatorname{supp}(e^{\alpha})\}\$$
and $\max\{j \mid e_j \in \operatorname{supp}(e^{\alpha})\}.$

For instance, suppose that supp $(e^{\alpha}) = \{e_{i_1}, \dots, e_{i_k}\}$ where $1 \le i_1 < \dots < i_k \le n$, then can express (4) as

$$e^{\boldsymbol{\alpha}}=e_{i_1}^{\alpha_{i_1}}\cdots e_{i_k}^{\alpha_k}.$$

Then e_{i_1} is the initial variable of e^{α} and e_{i_k} is the terminal variable of e^{α} . Note how the ordering matters. In particular, if i < j and both $|e_i|$ and $|e_j|$ are odd, then $e_j e_i$ is not a monomial in K[e] since it can be expressed as a non-trivial coefficient times a monomial:

$$e_i e_i = -e_i e_i$$
.

On the other hand, if one of the e_i or e_j is even, then e_je_i is a monomial in K[e] since $e_je_i=e_ie_j$. We equip K[e] with a weighted lexicographical ordering > with respect to the weighted vector $w=(|e_1|,\ldots,|e_n|)$ (the notation for this monomial ordering in Singular is Wp(w)). More specifically, given two monomials e^{α} and e^{β} in K[e], we say $e^{\beta} > e^{\alpha}$ if either

- 1. $|e^{\beta}| > |e^{\alpha}|$ or;
- 2. $|e^{\beta}| = |e^{\alpha}|$ and $\beta_1 > \alpha_1$ or;
- 3. $|e^{\beta}| = |e^{\alpha}|$ and there exists $1 < j \le n$ such that $\beta_i > \alpha_i$ and $\beta_i = \alpha_i$ for all $1 \le i < j$.

Given a nonzero polynoimal $f \in K[e]$, there exists unique $c_1, \ldots, c_m \in K \setminus \{0\}$ and unique $\alpha_1, \ldots, \alpha_m \in \mathbb{N}^n$ where $\alpha_i \neq \alpha_j$ for all $1 \leq i < j \leq m$ such that

$$f = c_1 e^{\alpha_1} + \dots + c_m e^{\alpha_m} = \sum c_i e^{\alpha_i}$$
 (5)

The $c_i e^{\alpha_i}$ in (5) are called the **terms** of f, and the e^{α_i} in (5) are called the **monomials** of f. By reindexing the α_i if necessary, we may assume that $e^{\alpha_1} > \cdots > e^{\alpha_m}$. In this case, we call $c_1 e^{\alpha_1}$ the **lead term** of f, we call e^{α_1} the **lead monomial** of f, and we call c_1 the **lead coefficient** of f. We denote these, respectively, by

$$LT(f) = c_1 e^{\alpha_1}$$
, $LM(f) = e^{\alpha_1}$, and $LC(f) = c_1$.

The **multidegree** of f is defined to be the multidegree of its lead monomial e^{α_1} and is denoted multideg $(f) = \alpha_1$. The **total degree** of f is defined to be the maximum of the total degrees of its monomials and is denoted

$$\deg(f) = \max_{1 \le i \le m} \{\deg(e^{\alpha_i})\}.$$

We say f is **homogeneous** of homological degree i if each of its monomials is homogeneous of homological degree i. In this case, we say f has **homological degree** i and we denote this by |f| = i.

Proposition 1.1. For each $1 \le i, j \le n$, let $f_{ij} = -[e_i, e_j] = e_i e_j - e_i \star e_j$. We have

$$LT(f_{ij}) = e_i e_j$$
.

Proof. If $e_i \star e_j = 0$, then this is clear, otherwise term of $e_i \star e_j$ has the form $r_{i,j}^k e_k$ for some k where $r_{i,j}^k \neq 0$. Since \star respects homological degree, we have $|e_k| = |e_i| + |e_j| = |e_i e_j|$. It follows that $|e_k| > |e_i|$ and $|e_k| > |e_j|$ since $|e_i|, |e_j| \geq 1$. This implies k > i and k > j by our assumption on the ordering of e_1, \ldots, e_n . Therefore since $|e_i e_j| = |e_k|$ and k > i, we see that $e_i e_j > e_k$.

1.3.2 Gröbner Basis Calculations

The inclusion map $R \subseteq K$ induces an inclusion map $F \to F_K$ where $F_K = \{a/r \mid a \in F \text{ and } r \in R \setminus \{0\}\}$. For each $1 \le i, j \le n$, let $f_{i,j}$ be the polynomial in $R[e] \subseteq K[e]$ defined by $f_{i,j} := -[e_i, e_j]$. Thus we have

$$f_{i,j} = e_i e_j - e_i \star e_j = e_i e_j - \sum_k r_{i,j}^k e_k,$$

where the $r_{i,j}^k$ are the entries of the matrix representation of μ with respect to the ordered homogeneous basis e_1, \ldots, e_n . Let $\mathcal{F} = \{f_{i,j} \mid 1 \leq i, j \leq n\}$, let \mathfrak{b} be the R[e]-ideal generated by \mathcal{F} , and let \mathfrak{b}_K be the K[e]-ideal generated by \mathcal{F} . Note that if e_i is odd, then $f_{i,i} = e_i^2$ since \star is strictly graded-commutative, thus $R[e]/\mathfrak{b} \simeq F/\langle F \rangle$ and $K[e]/\mathfrak{b}_K \simeq F_K/\langle F_K \rangle$ by Theorem (1.2).

Recall that K[e] comes equipped with a monomial ordering which we defined earlier. We wish to construct a left Gröbner basis for \mathfrak{b}_K (which will turn out to be a two-sided Gröbner basis) using this monomial ordering via Buchberger's algorithm (as described in [GPo2]). Suppose f,g are two nonzero polynomials in K[e] with $LT(f) = re^{\alpha}$ and $LT(g) = se^{\beta}$. Set $\gamma = lcm(\alpha, \beta)$ and the left S-**polynomial** of f and g to be

$$S(f,g) = e^{\gamma - \alpha} f \pm (r/s) e^{\gamma - \beta} g \tag{6}$$

where the \pm in (6) is chosen to be + or -, depending on which sign will cancel out the lead terms. We begin Buchberger's algorithm by calculating the S-polynomials of all pairs of polynomials in \mathcal{F} . In other words, we calculate all S-polynomials of the form $S(f_{k,l},f_{i,j})$ where $1 \le i,j,k,l \le n$. Note that if k > l, then

$$f_{l,k} = (-1)^{|e_k||e_l|} f_{k,l},$$

which implies

$$S(f_{l,k}, f_{i,j}) = (-1)^{|e_k||e_l|} S(f_{k,l}, f_{i,j}) = \pm S(f_{i,j}, f_{k,l}).$$

Similarly, if $i \ge k$, then

$$S(f_{i,i}, f_{l,k}) = \pm S(f_{k,l}, f_{i,i}).$$

Thus we may assume that $j \ge i$ and $l \ge k \ge i$. Obviously we have $S(f_{i,j}, f_{i,j}) = 0$ for each i, j, however something interesting happens when we calculate the S-polynomial of $f_{j,k}$ and $f_{i,j}$ where j > i and then divide this by \mathcal{F} (where division by \mathcal{F} means taking the left normal form of $S(f_{j,k}, f_{i,j})$ with respect to \mathcal{F} using the left normal form described in [GPo₂]). We have

$$\begin{split} S(f_{j,k},f_{i,j}) &= e_i(e_je_k - e_j \star e_k) - (e_ie_j - e_i \star e_j)e_k \\ &= (e_i \star e_j)e_k - e_i(e_j \star e_k) \\ &= \sum_l r_{i,j}^l e_l e_k - \sum_l r_{j,k}^l e_i e_l \\ &\to \sum_l r_{i,j}^l e_l \star e_k - \sum_l r_{j,k}^l e_i \star e_l \\ &= (e_i \star e_j) \star e_k - e_i \star (e_j \star e_k) \\ &= [e_i, e_j, e_k], \end{split}$$

where in the fourth line we did division by \mathcal{F} (note that if $[e_i, e_j, e_k] \neq 0$, then $\deg([e_i, e_j, e_k]) = 1$, so we cannot divide this anymore by \mathcal{F}). Finally if j > i, l > k, and $j \neq k$, then we have

$$S(f_{k,l}, f_{i,j}) = e_i e_j f_{k,l} - f_{i,j} e_k e_l$$

$$= (e_i \star e_j) e_k e_l - e_i e_j (e_k \star e_l)$$

$$\rightarrow (e_i \star e_j) \star (e_k \star e_l) - (e_i \star e_l) \star (e_k \star e_l)$$

$$= 0$$

where in the third line we did division by \mathcal{F} . Next, suppose that

$$f = re_k + r'e_{k'} + \dots + r''e_{k''} \in \langle F \rangle$$

where $r, r', r'' \in R$ with $r \neq 0$ and where $LM(f) = e_k$. Then we have

$$S(f, f_{j,k}) = e_{j}f - rf_{j,k}$$

$$= r'e_{j}e_{k'} + \cdots + r''e_{j}e_{k''} + re_{j} \star e_{k}$$

$$\rightarrow r'e_{j} \star e_{k'} + \cdots + r''e_{j} \star e_{k''} + re_{j} \star e_{k}$$

$$= e_{j} \star (re_{k} + r'e_{k'} + \cdots + r''e_{k''})$$

$$= e_{j} \star f$$

$$\in \langle F \rangle$$

where in the third line we did division by \mathcal{F} . Similarly, we have if $i \neq k \neq j$, then we have

$$S(f, f_{i,j}) = e_i e_j f - r f_{i,j} e_k$$

$$= r'(e_i e_j) e_{k'} + \dots + r''(e_i e_j) e_{k''} + r(e_i \star e_j) e_k$$

$$\rightarrow r'(e_i \star e_j) \star e_{k'} + \dots + r''(e_i \star e_j) \star e_{k''} + r(e_i \star e_j) \star e_k$$

$$= (e_i \star e_j) \star (r e_k + r' e_{k'} + \dots + r'' e_{k''})$$

$$= (e_i \star e_j) \star f$$

$$\in \langle F \rangle.$$

where in the third line we did division by \mathcal{F} . Finally suppose that

$$g = se_m + s'e_{m'} + \dots + s''e_{m''} \in \langle F \rangle$$

where $s, s', s'' \in R$ with $s \neq 0$ and where $LM(g) = e_m$. If k = m, then we have

$$sS(f,g) = sf - rg \in \langle F \rangle.$$

On the other hand, if $k \neq m$, then we have

$$sS(f,g) = se_m f - rge_k$$

$$= sr'e_m e_{k'} + \dots + sr''e_m e_{k''} - rs'e_{m'}e_k - \dots - rs''e_{m''}e_k$$

$$\rightarrow sr'e_m \star e_{k'} + \dots + sr''e_m \star e_{k''} - rs'e_{m'} \star e_k - \dots - rs''e_{m''} \star e_k$$

$$= se_m \star (r'e_{k'} + \dots + r''e_{k''}) - r(s'e_{m'} + \dots + s''e_{m''}) \star e_k$$

$$= se_m \star (f - re_k) - r(g - se_m) \star e_k$$

$$= se_m \star f + rg \star e_k - sre_m \star e_k + rse_m \star e_k$$

$$= se_m \star f + rg \star e_k$$

$$= se_m \star f + rg \star e_k$$

$$\in \langle F \rangle.$$

It follows that we can construct a Gröbner basis

$$\mathcal{G} := \mathcal{F} \cup \{g_1, \ldots, g_m\}$$

of \mathfrak{b}_K such that the g_i all belong to $\langle F \rangle$.

References

[GPo2] Gert-Martin Greuel and Gerhard Pfister, A Singular Introduction to Commutative Algebra, second ed.