Characteristic	Lower , $N = 2,358^{7}$	Upper , N = 2,066 ¹
X	2,194 (1,086, 3,296)	2,224 (1,129, 3,341)
previous_qualification		
1	2,100 (89%)	1,617 (78%)
2	12 (0.5%)	11 (0.5%)
3	27 (1.1%)	99 (4.8%)
4	4 (0.2%)	4 (0.2%)
5	0 (0%)	1 (<0.1%)
6	11 (0.5%)	5 (0.2%)
9	10 (0.4%)	1 (<0.1%)
10	2 (<0.1%)	2 (<0.1%)
12	24 (1.0%)	21 (1.0%)
14	1 (<0.1%)	0 (0%)
15	2 (<0.1%)	0 (0%)
19	110 (4.7%)	52 (2.5%)
38	4 (0.2%)	3 (0.1%)
39	36 (1.5%)	183 (8.9%)
40	12 (0.5%)	28 (1.4%)
42	3 (0.1%)	33 (1.6%)
43	0 (0%)	6 (0.3%)
previous_qualification_grade_	127 (120, 133)	140 (132, 147)
mother_s_qualification		
1	563 (24%)	506 (24%)
2	39 (1.7%)	44 (2.1%)
¹ Median (IQR); n (%)		

	table.html	
Characteristic	Lower , $N = 2,358^{7}$	Upper , N = 2,066 ¹
3	211 (8.9%)	227 (11%)
4	27 (1.1%)	22 (1.1%)
5	5 (0.2%)	16 (0.8%)
6	2 (<0.1%)	2 (<0.1%)
9	3 (0.1%)	5 (0.2%)
10	1 (<0.1%)	2 (<0.1%)
11	2 (<0.1%)	1 (<0.1%)
12	29 (1.2%)	13 (0.6%)
14	1 (<0.1%)	1 (<0.1%)
18	0 (0%)	1 (<0.1%)
19	525 (22%)	428 (21%)
22	0 (0%)	1 (<0.1%)
26	0 (0%)	1 (<0.1%)
27	1 (<0.1%)	0 (0%)
29	1 (<0.1%)	2 (<0.1%)
30	2 (<0.1%)	1 (<0.1%)
34	75 (3.2%)	55 (2.7%)
35	1 (<0.1%)	2 (<0.1%)
36	1 (<0.1%)	2 (<0.1%)
37	545 (23%)	464 (22%)
38	311 (13%)	251 (12%)
39	1 (<0.1%)	7 (0.3%)
40	1 (<0.1%)	8 (0.4%)
41	5 (0.2%)	1 (<0.1%)
¹ Median (IQR); n (%)		

	table.html	
Characteristic	Lower , $N = 2,358^{7}$	Upper , N = 2,066 ¹
42	2 (<0.1%)	2 (<0.1%)
43	3 (0.1%)	1 (<0.1%)
44	1 (<0.1%)	0 (0%)
father_s_qualification		
1	464 (20%)	440 (21%)
2	34 (1.4%)	34 (1.6%)
3	120 (5.1%)	162 (7.8%)
4	15 (0.6%)	24 (1.2%)
5	12 (0.5%)	6 (0.3%)
6	2 (<0.1%)	0 (0%)
9	2 (<0.1%)	3 (0.1%)
10	0 (0%)	2 (<0.1%)
11	4 (0.2%)	6 (0.3%)
12	22 (0.9%)	16 (0.8%)
13	1 (<0.1%)	0 (0%)
14	2 (<0.1%)	2 (<0.1%)
18	0 (0%)	1 (<0.1%)
19	552 (23%)	416 (20%)
20	0 (0%)	1 (<0.1%)
22	3 (0.1%)	1 (<0.1%)
25	0 (0%)	1 (<0.1%)
26	0 (0%)	2 (<0.1%)
27	0 (0%)	1 (<0.1%)
29	3 (0.1%)	0 (0%)
¹ Median (IQR); n (%)		

	table.num				
Characteristic	Lower , N = 2,358 ⁷	Upper , N = 2,066 ¹			
30	2 (<0.1%)	2 (<0.1%)			
31	1 (<0.1%)	0 (0%)			
33	0 (0%)	1 (<0.1%)			
34	69 (2.9%)	43 (2.1%)			
35	0 (0%)	2 (<0.1%)			
36	3 (0.1%)	5 (0.2%)			
37	660 (28%)	549 (27%)			
38	377 (16%)	325 (16%)			
39	6 (0.3%)	14 (0.7%)			
40	2 (<0.1%)	3 (0.1%)			
41	0 (0%)	2 (<0.1%)			
42	1 (<0.1%)	0 (0%)			
43	0 (0%)	2 (<0.1%)			
44	1 (<0.1%)	0 (0%)			
mother_s_occupation					
0	82 (3.5%)	62 (3.0%)			
1	42 (1.8%)	60 (2.9%)			
2	152 (6.4%)	166 (8.0%)			
3	199 (8.4%)	152 (7.4%)			
4	415 (18%)	402 (19%)			
5	300 (13%)	230 (11%)			
6	42 (1.8%)	49 (2.4%)			
7	163 (6.9%)	109 (5.3%)			
8	20 (0.8%)	16 (0.8%)			
¹ Median (IQR); n (%)					

Characteristic	Lower , $N = 2,358^7$	Upper , N = 2,066 ¹
9	835 (35%)	742 (36%)
10	2 (<0.1%)	2 (<0.1%)
90	42 (1.8%)	28 (1.4%)
99	11 (0.5%)	6 (0.3%)
122	1 (<0.1%)	1 (<0.1%)
123	4 (0.2%)	3 (0.1%)
125	0 (0%)	1 (<0.1%)
131	1 (<0.1%)	0 (0%)
132	2 (<0.1%)	1 (<0.1%)
134	1 (<0.1%)	3 (0.1%)
141	4 (0.2%)	4 (0.2%)
143	0 (0%)	3 (0.1%)
144	5 (0.2%)	1 (<0.1%)
151	0 (0%)	3 (0.1%)
152	1 (<0.1%)	1 (<0.1%)
153	1 (<0.1%)	1 (<0.1%)
171	1 (<0.1%)	0 (0%)
173	1 (<0.1%)	0 (0%)
175	3 (0.1%)	2 (<0.1%)
191	18 (0.8%)	8 (0.4%)
192	2 (<0.1%)	3 (0.1%)
193	3 (0.1%)	1 (<0.1%)
194	5 (0.2%)	6 (0.3%)
father_s_occupation		
¹ Median (IQR); n (%)		

Characteristic	Lower , N = 2,358 ¹	Upper , N = 2,066
0	71 (3.0%)	57 (2.8%)
1	65 (2.8%)	69 (3.3%)
2	82 (3.5%)	115 (5.6%)
3	204 (8.7%)	180 (8.7%)
4	190 (8.1%)	196 (9.5%)
5	279 (12%)	237 (11%)
6	114 (4.8%)	128 (6.2%)
7	385 (16%)	281 (14%)
8	162 (6.9%)	156 (7.6%)
9	551 (23%)	459 (22%)
10	149 (6.3%)	117 (5.7%)
90	40 (1.7%)	25 (1.2%)
99	14 (0.6%)	5 (0.2%)
101	1 (<0.1%)	0 (0%)
102	0 (0%)	2 (<0.1%)
103	3 (0.1%)	1 (<0.1%)
112	0 (0%)	2 (<0.1%)
114	0 (0%)	1 (<0.1%)
121	1 (<0.1%)	0 (0%)
122	1 (<0.1%)	1 (<0.1%)
123	3 (0.1%)	0 (0%)
124	0 (0%)	1 (<0.1%)
131	0 (0%)	1 (<0.1%)
132	1 (<0.1%)	0 (0%)
¹ Median (IQR); n (%)		

Characteristic	Lower , $N = 2,358^7$	Upper , $N = 2,066^{1}$
134	0 (0%)	1 (<0.1%)
135	1 (<0.1%)	2 (<0.1%)
141	0 (0%)	1 (<0.1%)
143	1 (<0.1%)	0 (0%)
144	5 (0.2%)	3 (0.1%)
151	0 (0%)	2 (<0.1%)
152	1 (<0.1%)	2 (<0.1%)
153	1 (<0.1%)	0 (0%)
154	1 (<0.1%)	0 (0%)
161	0 (0%)	1 (<0.1%)
163	3 (0.1%)	2 (<0.1%)
171	6 (0.3%)	2 (<0.1%)
172	1 (<0.1%)	1 (<0.1%)
174	1 (<0.1%)	0 (0%)
175	3 (0.1%)	1 (<0.1%)
181	3 (0.1%)	0 (0%)
182	2 (<0.1%)	0 (0%)
183	2 (<0.1%)	1 (<0.1%)
192	3 (0.1%)	3 (0.1%)
193	6 (0.3%)	9 (0.4%)
194	1 (<0.1%)	1 (<0.1%)
195	1 (<0.1%)	0 (0%)
admission_grade	118 (112, 122)	136 (130, 144)
educational_special_needs		
¹ Median (IQR); n (%)		

	table.html	
Characteristic	Lower , $N = 2,358^7$	Upper , N = 2,066 ⁷
0	2,324 (99%)	2,049 (99%)
1	34 (1.4%)	17 (0.8%)
gender		
0	1,539 (65%)	1,329 (64%)
1	819 (35%)	737 (36%)
age_at_enrollment	20 (19, 25)	20 (18, 25)
international		
0	2,308 (98%)	2,006 (97%)
1	50 (2.1%)	60 (2.9%)
unemployment_rate	11.10 (9.40, 12.70)	11.10 (9.40, 13.90)
inflation_rate		
-0.8	272 (12%)	261 (13%)
-0.3	186 (7.9%)	204 (9.9%) 179 (8.7%) 204 (9.9%)
0.3	183 (7.8%)	
0.5	241 (10%)	
0.6	259 (11%)	155 (7.5%)
1.4	478 (20%)	415 (20%)
2.6	306 (13%)	265 (13%)
2.8	220 (9.3%)	177 (8.6%)
3.7	213 (9.0%)	206 (10.0%)
gdp	0.32 (-1.70, 1.79)	0.32 (-1.70, 1.78)
target		
Dropout	809 (34%)	612 (30%)
Enrolled	471 (20%)	323 (16%)
¹ Median (IQR); n (%)		

Characteristic	Lower , N = 2,358 ¹	Upper , N = 2,066 ⁷	
Graduate	1,078 (46%)	1,131 (55%)	
¹ Median (IQR); n (%)			

Unnamed: 0	Marital.status	Application.mode	Application.order	Course	Daytime.evening.attendance.
4424.000000	4424.000000	4424.000000	4424.000000	4424.000000	4424.000000
2212.500000	1.178571	18.669078	1.727848	8856.642631	0.890823
1 1277.243125	0.605747	17.484682	1.313793	2063.566416	0.311897
1.000000	1.000000	1.000000	0.000000	33.000000	0.000000
1106.750000	1.000000	1.000000	1.000000	9085.000000	1.000000
2212.500000	1.000000	17.000000	1.000000	9238.000000	1.000000
3318.250000	1.000000	39.000000	2.000000	9556.000000	1.000000
4424.000000	6.000000	57.000000	9.000000	9991.000000	1.000000
1	0 t 4424.000000 1 2212.500000 1 1277.243125 1 1.000000 1 106.750000 2 2212.500000 3 3318.250000	Marital.status t 4424.000000 4424.000000 n 2212.500000 1.178571 d 1277.243125 0.605747 n 1.000000 1.000000 6 1106.750000 1.000000 6 2212.500000 1.000000 6 3318.250000 1.000000	Marital.status Application.mode t 4424.000000 4424.000000 t 2212.500000 1.178571 18.669078 d 1277.243125 0.605747 17.484682 t 1.000000 1.000000 1.000000 6 2212.500000 1.000000 17.000000 6 2212.500000 1.000000 39.000000	Marital.status Application.mode Application.order t 4424.000000 4424.000000 4424.000000 t 2212.500000 1.178571 18.669078 1.727848 t 1277.243125 0.605747 17.484682 1.313793 t 1.000000 1.000000 0.000000 6 1106.750000 1.000000 1.000000 6 2212.500000 1.000000 17.000000 1.000000 3318.250000 1.000000 39.000000 2.000000	Marital.status Application.mode Application.order Course t 4424.000000 4424.000000 4424.000000 4424.000000 a 2212.500000 1.178571 18.669078 1.727848 8856.642631 a 1277.243125 0.605747 17.484682 1.313793 2063.566416 a 1.000000 1.000000 0.000000 33.000000 a 1106.750000 1.000000 1.000000 9085.000000 a 2212.500000 1.000000 39.00000 2.000000 9556.000000

8 rows × 37 columns

```
df.columns
In [4]:
        Index(['Unnamed: 0', 'Marital.status', 'Application.mode', 'Application.order',
Out[4]:
               'Course', 'Daytime.evening.attendance.', 'Previous.qualification',
               'Previous.qualification..grade.', 'Nacionality',
               'Mother.s.qualification', 'Father.s.qualification',
               'Mother.s.occupation', 'Father.s.occupation', 'Admission.grade',
               'Displaced', 'Educational.special.needs', 'Debtor',
               'Tuition.fees.up.to.date', 'Gender', 'Scholarship.holder',
               'Age.at.enrollment', 'International',
               'Curricular.units.1st.sem..credited.',
               'Curricular.units.1st.sem..enrolled.',
               'Curricular.units.1st.sem..evaluations.',
               'Curricular.units.1st.sem..approved.',
               'Curricular.units.1st.sem..grade.',
               'Curricular.units.1st.sem..without.evaluations.',
               'Curricular.units.2nd.sem..credited.',
               'Curricular.units.2nd.sem..enrolled.',
               'Curricular.units.2nd.sem..evaluations.',
               'Curricular.units.2nd.sem..approved.',
               'Curricular.units.2nd.sem..grade.',
               'Curricular.units.2nd.sem..without.evaluations.', 'Unemployment.rate',
               'Inflation.rate', 'GDP', 'Target'],
              dtype='object')
```

Run t-tests against admission grade to check if these are confounders

Marital Status Daytime Evening Attendance GDP Inflation Rate Unemployment Rate Debtor

Drop:

Appl Mode Appl Order Course Nationality Displaced Tuition Scholarship

```
"Previous.qualification..grade.",
                  "Mother.s.qualification",
                  "Father.s.qualification",
                  "Mother.s.occupation",
                  "Father.s.occupation",
                  "Admission.grade",
                  "Educational.special.needs",
                  "Gender",
                  "Age.at.enrollment",
                  "International",
                  "Unemployment.rate",
                  "Inflation.rate",
                  "GDP",
                  "Target"
              ]
          ]
         df confounders.columns = list(map(lambda c: c.lower().replace(".", " ").replace(" ",
In [18]:
          df confounders
               previous_qualification previous_qualification_grade_ mother_s_qualification father_s_qualification mother_s_
Out[18]:
            1
                                1
                                                      122.0
                                                                             19
                                                                                                12
            2
                                1
                                                       160.0
                                                                              1
                                                                                                 3
            3
                                1
                                                                             37
                                                                                                37
                                                      122.0
                                                                                                37
                                1
                                                       122.0
                                                                             38
            5
                                1
                                                       100.0
                                                                             37
                                                                                                38
          4420
                                1
                                                       125.0
                                                                              1
                                                                                                 1
          4421
                                                       120.0
          4422
                                1
                                                                             37
                                                                                                37
                                                       154.0
          4423
                                                                                                37
                                                       180.0
                                                                             37
                                                                                                37
         4424
                                1
                                                       152.0
                                                                             38
         4424 rows × 15 columns
         df confounders.to csv("dat.csv")
In [19]:
         df["GDP"].describe()
In [10]:
         count
                   4424.000000
Out[10]:
         mean
                     0.001969
         std
                      2.269935
         min
                     -4.060000
                     -1.700000
         25%
         50%
                      0.320000
         75%
                      1.790000
                      3.510000
         Name: GDP, dtype: float64
         df["Debtor"].value counts()
In [12]:
               3921
Out[12]:
         Name: Debtor, dtype: int64
```

"Previous.qualification",

```
df["Nacionality"].value_counts()
In [11]:
                 4314
Out[11]:
                   38
          26
                   14
          22
                   13
          6
                   13
          24
                    5
                     3
          100
          11
                     3
          103
                    3
          21
                     2
                     2
          101
                     2
          62
          25
                     2
          2
                     2
          105
          32
                    1
          13
                     1
          109
                     1
          108
                     1
          14
                     1
          17
                     1
          Name: Nacionality, dtype: int64
         len(df.columns)
 In [8]:
          38
 Out[8]:
          df.shape
 In [9]:
          (4424, 38)
 Out[9]:
          df[['Curricular.units.1st.sem..credited.',
In [21]:
                  'Curricular.units.1st.sem..enrolled.',
                  'Curricular.units.1st.sem..evaluations.',
                  'Curricular.units.1st.sem..approved.',
                  'Curricular.units.1st.sem..grade.',
                  'Curricular.units.1st.sem..without.evaluations.', 'Target']]
Out[21]:
               Curricular.units.1st.sem..credited. Curricular.units.1st.sem..enrolled. Curricular.units.1st.sem..evaluations. Curri
             0
                                          0
                                                                       0
                                                                                                      0
                                          0
                                                                       6
             2
                                          0
                                                                       6
                                                                                                      0
                                          0
                                                                       6
                                          0
                                                                       6
             4
          4419
                                          0
                                                                       6
                                                                                                      7
          4420
                                                                       6
                                                                       7
          4421
                                          0
                                                                       5
          4422
                                          0
          4423
                                          0
                                                                       6
                                                                                                      8
```

4424 rows × 7 columns

```
In [5]: | df["Nacionality"].value_counts()
                4314
Out[5]:
         41
                  38
         26
                  14
         22
                  13
         6
                  13
         24
                  5
        100
                  3
                  3
         11
                  3
         103
        21
                  2
        101
                  2
         62
                   2
         25
                  2
         2
                  2
                  2
        105
         32
                   1
        13
                   1
        109
                  1
        108
                   1
                   1
         14
                   1
         17
        Name: Nacionality, dtype: int64
In [25]: df["Course"].value counts()
         12
               766
Out[25]:
               380
               355
         10
         6
               337
         15
               331
         14
               268
         17
               268
         11
               252
         5
               226
         2
               215
         3
               215
         4
               210
         16
              192
         7
               170
         8
               141
        13
              86
                12
         1
        Name: Course, dtype: int64
In [19]: df.groupby("Target")["Curricular.units.1st.sem..credited."].mean()
         Target
Out[19]:
         Dropout
                     0.609430
                     0.507557
         Enrolled
                     0.847442
         Graduate
         Name: Curricular.units.1st.sem..credited., dtype: float64
         df["Target"].value counts()
In [13]:
         Graduate
                     2209
Out[13]:
         Dropout
                     1421
         Enrolled
                     794
         Name: Target, dtype: int64
In [22]: g = df.groupby("Target")
         gg = g.get group("Graduate")
         gd = g.get group("Dropout")
         ge = g.get group("Enrolled")
```

import scipy.stats as stats
stats f_oneway functions takes the groups as input and returns ANOVA F and p value
fvalue, pvalue = stats.f_oneway(gg['Admission.grade'], gd['Admission.grade'], ge['Admiss
print(fvalue, pvalue)

35.64860425750162 4.380466113389808e-16

In []:

```
In [2]: # Loading the dataset and changing categorical variables to factors
    df = read.csv("dat.csv")
    df["previous_qualification"] = as.factor(df$previous_qualification)
    df["mother_s_qualification"] = as.factor(df$mother_s_qualification)
    df["father_s_qualification"] = as.factor(df$father_s_qualification)
    df["mother_s_occupation"] = as.factor(df$mother_s_occupation)
    df["father_s_occupation"] = as.factor(df$father_s_occupation)
    df["educational_special_needs"] = as.factor(df$educational_special_needs)
    df["gender"] = as.factor(df$gender)
    df["international"] = as.factor(df$international)
    df["target"] = as.factor(df$target)
    head(df)
```

	Х	previous_qualification	previous_qualification_grade_	mother_s_qualification	father_s_qualification	moth€
	<int></int>	<fct></fct>	<dbl></dbl>	<fct></fct>	<fct></fct>	
1	1	1	122.0	19	12	
2	2	1	160.0	1	3	
3	3	1	122.0	37	37	
4	4	1	122.0	38	37	
5	5	1	100.0	37	38	
6	6	19	133.1	37	37	

```
In [19]: # Loading libraries
    library(twangContinuous)
    library(cobalt)
    library(survey)
    library(gtsummary)
    library(dplyr)
```

In [4]: # Summary of the dataset
summary(df)

```
previous qualification previous qualification grade
Min. : 1 1 :\overline{3717} Min. : 95.0
1st Qu.:1107 39
                : 219
                             1st Qu.:125.0
Median :2212 19
                : 162
                             Median :133.1
                            Mean :132.6
3rd Qu.:140.0
Mean :2212 3
                : 126
3rd Qu.:3318 12 : 45
Max. :4424 40 : 40
                             Max. :190.0
           (Other): 115
mother s qualification father s qualification mother s occupation
1 :1069 37 :1209 9 :1577
37
    :1009
                 19
                       : 968
                                          : 817
                 1 : 904
38 : 702
    : 953
                                   5
                                          : 530
19
     : 562
                                    3
38
                                          : 351
                                   2
     : 438
                 3
                       : 282
3
                                          : 318
                 34 : 112
34 : 130
                                    7
(Other): 263 (Other): 247 (Other): 559
father s occupation admission grade educational special needs gender
9 :1010 Min. : 95.0 0:4373
                                                 0:2868
7
     : 666
               1st Qu.:117.9 1: 51
                                                  1:1556
              Median :126.1
     : 516
     : 386
              Mean :127.0
4
     : 384
              3rd Qu.:134.8
8 : 318
               Max. :190.0
(Other):1144
```

```
age at enrollment international unemployment rate inflation rate
Min. :17.00 0:4314 Min. : 7.60 Min. :-0.800
                    1: 110
1st Qu.:19.00
                                     1st Qu.: 9.40
                                                           1st Qu.: 0.300

      Median :11.10
      Median : 1.400

      Mean :11.57
      Mean : 1.228

      3rd Qu::13.90
      3rd Qu:: 2.600

      Max. :16.20
      Max. : 3.700

Median :20.00
Mean :23.27
3rd Qu.:25.00
Max. :70.00
                  target
     gdp
Min. :-4.060000 Dropout :1421
1st Qu.:-1.700000 Enrolled: 794
Median: 0.320000 Graduate:2209
Mean : 0.001969
3rd Qu.: 1.790000
Max. : 3.510000
```

```
In [8]: # Column names
    colnames(df)
```

'X' · 'previous_qualification' · 'previous_qualification_grade_' · 'mother_s_qualification' · 'father_s_qualification' · 'mother_s_occupation' · 'father_s_occupation' · 'admission_grade' · 'educational_special_needs' · 'gender' · 'age_at_enrollment' · 'international' · 'unemployment_rate' · 'inflation_rate' · 'gdp' · 'target'

ps.cont is a way of getting propensity scores for a continuous treatment variables (admission_grade in our case). Propensity scores are a probability of how likely a particular observation is to have that value of the treatment (check this definition)

A matrix: 2×6 of type dbl

	n	ess	max.wcor	mean.wcor	rms.wcor	iter
unw	4424	4424.000	0.5804442	0.02516172	0.05686047	NA
AAC	4424	3556.534	0.2525825	0.02312257	0.03952497	45

```
In [10]: head(df$admission_grade)
```

 $127.3 \cdot 142.5 \cdot 124.8 \cdot 119.6 \cdot 141.5 \cdot 114.8$

w are the weights, and there is one for each observation of the data. We use this to perform the survey weighted glm.

```
In [11]: head(psc.out$w)
```

1: 0.905988619974881 **2:** 0.638202184695573 **3:** 0.881982325873705 **4:** 0.854787073872639 **5:** 1.4351401335233 **6:** 0.891158171133763

```
In [18]: # Running the model
         library(svyVGAM)
         design <- svydesign(ids=~1, weights=psc.out$w, data=df)</pre>
         mmodel <- svy vglm(target ~ admission grade, family=multinomial, design=design)</pre>
In [13]: Z# Summary of the model
         summary(mmodel)
        svy vglm.survey.design(target ~ admission grade, family = multinomial,
            design = design)
        Independent Sampling design (with replacement)
        svydesign(ids = ~1, weights = psc.out$w, data = df)
                                 Coef
                                            SE
         (Intercept):1
                           1.8325499 0.4079344 4.4923 7.047e-06
                           1.1172709 0.4504119 2.4806
                                                         0.01312
         (Intercept):2
        admission grade:1 -0.0175567 0.0032498 -5.4024 6.574e-08
        admission grade: 2 -0.0167687 0.0035593 -4.7113 2.462e-06
```

Interpretation: With 1 point increase in admission_grade, chance of dropout (admission_grade:1) goes down by 1.8% and chance of still being enrolled (failed to graduate in stipulated time) goes down by 1.7%

```
In [15]: # Plotting the figure
    library(ggplot2)
    options(repr.plot.width = 15, repr.plot.height =10)
    ggplot(df, aes(x = admission_grade)) +
        geom_density(aes(color = target), size=2) +
        xlab("Admission Grade") +
        ylab("Probability Density") + theme_linedraw() +
        labs("Density Plot for Admission Grade across Graduation Status")
```



```
In [16]: # Descriptive statistics for our dataset using admission grade as two groups
   data = df
   data$group = with(df, ifelse(admission_grade > 127, 'Upper', 'Lower'))
   glimpse(data)
```

```
Rows: 4,424
         Columns: 17
         $ X
                                         <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1...
                                         <fct> 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 1, ...
         $ previous qualification
         $ previous qualification grade <dbl> 122.0, 160.0, 122.0, 122.0, 100.0, 133.1...
                                        <fct> 19, 1, 37, 38, 37, 37, 19, 37, 1, 1, 38,...
         $ mother s qualification
                                        <fct> 12, 3, 37, 37, 38, 37, 38, 37, 1, 19, 19...
         $ father s qualification
                                         <fct> 5, 3, 9, 5, 9, 9, 7, 9, 9, 4, 5, 9, 4, 4...
         $ mother s occupation
                                         <fct> 9, 3, 9, 3, 9, 7, 10, 9, 9, 7, 7, 9, 9, ...
        $ father s occupation
        $ admission grade
                                         <dbl> 127.3, 142.5, 124.8, 119.6, 141.5, 114.8...
         $ educational special needs
                                         <fct> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
                                         <fct> 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0...
         $ gender
        $ age at enrollment
                                         <int> 20, 19, 19, 20, 45, 50, 18, 22, 21, 18, ...
                                         <fct> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0...
        $ international
                                         <dbl> 10.8, 13.9, 10.8, 9.4, 13.9, 16.2, 15.5,...
         $ unemployment rate
                                         <dbl> 1.4, -0.3, 1.4, -0.8, -0.3, 0.3, 2.8, 2...
         $ inflation rate
                                         <dbl> 1.74, 0.79, 1.74, -3.12, 0.79, -0.92, -4...
         $ gdp
         $ target
                                         <fct> Dropout, Graduate, Dropout, Graduate, Gr...
                                         <chr> "Upper", "Upper", "Lower", "Lower", "Upp...
         $ group
In [17]: t = tbl_summary(data, by = group)
         dat1 = data[c(3,11,13,14,15,17)]
         t2 = dat1 %>%
          tbl summary(by = group, type = list(where(is.numeric) ~ "continuous2")) %>%
          add p(all continuous() ~ "t.test")
```