Лабораторная работа № 8

TCP/AQM

Королёв Иван

Содержание

1	Цел	ь работы	6
2	Зад	ание	7
3	Вып	олнение лабораторной работы 5	8
	3.1	Реализация модели эпидемии в xcos	8
	3.2	Реализация модели с помощью блока Modelica в xcos	12
	3.3	Выполнение упражнени построения модели эпидемии в OpenModelica	15
	3.4	Задание для самостоятельного выполнения. Реализация с помощью	
		xcos	16
	3.5	Задание для самостоятельного выполнения. Реализация с помощью	
		блока Modelica в xcos	18
	3.6	Задание для самостоятельного выполнения. Реализация в	
		OpenModelica	21
	3.7	Результаты на различных параметрах	23
4	Вып	олнение лабораторной работы 6	26
	4.1	Реализация модели в xcos	26
		Реализация модели с помощью блока Modelica в xcos	29
	4.3	Реализация модели в OpenModelica	32
5	Вып	олнение лабораторной работы 7	35
6	Вып	олнение лабораторной работы 8	39
	6.1	Реализация в xcos	39
	6.2	Реализация модели в OpenModelica	42
7	Выв	оды	44

Список иллюстраций

3.1	beta, nu	8
3.2	Реализованная модель эпидемии	9
3.3	Начальные значения для верхнего блока интегрирования	10
3.4	Начальные значения для среднего блока интегрирования	10
3.5	Конечное время интегрирования	11
3.6	Модель эпидемии при beta=1, nu=0.3	11
3.7	Модель эпидемии	12
3.8	Параметры блока реализации	13
3.9	Параметры блока реализации	14
3.10	Модель эпидемии Modelica	14
3.11	Реализация модели эпидемии в OpenModelica	15
3.12	Модель эпидемии в OpenModelica	16
3.13	Переменные окружения	17
3.14	Реализация модели эпидемии с учетом процесса рождения / гибели	
	особей с помощью xcos	17
3.15	Модель эпидемии при beta=1, nu=0.1, mu=0.1	18
3.16	Реализация модели эпидемии с учетом процесса рождения / гибели	
	особей с помощью блока Modelica в хсоз	18
3.17	Параметры блока реализации	19
3.18	Параметры блока реализации	20
	Модель эпидемии при beta=1, nu=0.1, mu=0.1	21
	Реализация модели с учетом процесса рождения / гибели особей	
	эпидемии в OpenModelica	22
3.21	Модель эпидемии с учетом процесса рождения / гибели особей в	
	OpenModelica	23
3.22	Результаты на различных параметрах	23
3.23	Результаты на различных параметрах	24
3.24	Результаты на различных параметрах	24
3.25	Результаты на различных параметрах	24
4.1	Константы	26
4.2	Реализация модели	27
4.3	Начальные значения	27
4.4	Начальные значения	28
4.5	конечное время интегрирования	28
4.6	Фазовый портрет	29
47	Линамика изменения численности хишников и жертв	29

4.8	Реализация модели	30
4.9	Параметры блока моделирования	30
4.10	Параметры блока моделирования	31
	Фазовый портрет	31
	график изменения численности популяций	32
	Реализация модели	33
	Фазовый портрет	33
	график изменения численности популяций	34
5.1	Установка контекста моделирования	35
5.2	Суперблок, моделирующий поступление заявок	36
5.3	Суперблок, моделирующий обработку заявок	36
5.4	$M M 1 \infty$	37
5.5	График поступления и обработки заявок	37
5.6	График динамики размера очереди	38
6.1	Установка контекста	39
6.2	Модель TCP/AQM в xcos	40
6.3	Динамика изменения размера TCP окна W (t) и размера очереди Q(t)	40
6.4	Фазовый портрет (W, Q)	41
6.5	Динамика изменения размера TCP окна W (t) и размера очереди Q(t)	
	при С = 0.9	41
6.6	Фазовый портрет (W, Q) при C = 0.9	42
6.7	Динамика изменения размера TCP окна W (t) и размера очереди Q(t).	
	OpenModelica	43
6.8	Фазовый портрет (W, Q). OpenModelica	43

Список таблиц

1 Цель работы

Реализовать модель TCP/AQM в xcos и OpenModelica.

2 Задание

- 1. Построить модель TCP/AQM в xcos;
- 2. Построить графики динамики изменения размера TCP окна W(t) и размера очереди Q(t);
- 3. Построить модель TCP/AQM в OpenModelica;

3 Выполнение лабораторной работы 5

3.1 Реализация модели эпидемии в хсоѕ

Зафиксируем начальные данные: $\beta = 1$, $\nu = 0$, 3, s(0) = 0, 999, i(0) = 0, 001, r(0) = 0. В меню моделирования устанавливаем переменные окружения (рис. 3.1)

Рис. 3.1: beta. nu

Для реализации модели потребуется: * CLOCK_c — запуск часов модельного времени; * CSCOPE — регистрирующее устройство для построения графика; * $TEXT_f$ — задаёт текст примечаний; * MUX — мультиплексер, позволяющий в данном случае вывести на графике сразу несколько кривых; * $INTEGRAL_m$ — блок интегрирования * $GAINBLK_f$ — в данном случае позволяет задать значения коэффициентов β и ν ; * SUMMATION — блок суммирования; * $PROD_f$ — поэлементное

произведение двух векторов на входе блока.

Добавляем эти блоки из палитры инструментов и строим с их помощью данную систему дифференциальных уравнений:

$$\begin{cases} \dot{s} = -\beta s(t)i(t); \\ \dot{i} = \beta s(t)i(t) - \nu i(t); \\ \dot{r} = \nu i(t), \end{cases}$$

где β – скорость заражения, ν – скорость выздоровления.

Реализованная модель эпидемии. Выходы трёх блоков интегрирования соединяем с мультиплексором.(рис. 3.2)

Рис. 3.2: Реализованная модель эпидемии

В параметрах верхнего блока интегрирования задаем значения s(0) = 0, 999, который отвечает за здоровых особей. (рис. 3.3)

Рис. 3.3: Начальные значения для верхнего блока интегрирования

В параметрах среднего блока интегрирования задаем значения i(0) = 0, 001, который отвечает за переносчиков болезни. (рис. 3.4)

Рис. 3.4: Начальные значения для среднего блока интегрирования

В нижнем блоке интегрирования начальные значения по умолчанию заданы нулю, как в нашем условии. Данная часть отвечает за тех, кто имеет иммунитет. Далее, устанавливаем конечное время интегрирования. Оно равно 30 (рис. 3.5)

Рис. 3.5: Конечное время интегрирования

Результат моделирования представлен на (рис. 3.6), где черной линией обозначен график s(t) (динамика численности уязвимых к болезни особей), красная линия r(t) — динамику численности выздоровевших особей, наконец, зеленая линия i(t) — динамику численности заражённых особей. Пересечение трёх линий определяет порог эпидемии.

Рис. 3.6: Модель эпидемии при beta=1, nu=0.3

3.2 Реализация модели с помощью блока Modelica в xcos

В данном задании необходимо было реализовать такую же модель эпидемии при beta=1, nu=0.3, только с помощью блока Modelica в xcos. Для начала добавляем новый блок констант и блок реализации кода на Modelica. Таким образом выглядит наша модель (рис. 3.7)

Рис. 3.7: Модель эпидемии

Указываем параметры для блока реализации. Переменные на входе ("beta", "nu") и выходе ("s", "i", "r") блока заданы как внешние ("E"). (рис. 3.8)

Рис. 3.8: Параметры блока реализации

Код на языке Modelica. Задаем переменные beta, nu. Указываем начальные значения для s, i, r и пишем систему уравнения. (рис. 3.9)

Рис. 3.9: Параметры блока реализации

Результат работы модели. Он идентичен с реализацией в хсоз. (рис. 3.10)

Рис. 3.10: Модель эпидемии Modelica

3.3 Выполнение упражнени построения модели эпидемии в OpenModelica

Код реализации модели эпидемии в OpenModelica. Задаем все начальные параметры с помощью parameter Real, как было в реализациях хсоз. Записываем систему уравнения, реализация очень сильно схожа с реализацией с помощью блока Modelica в хсоз (рис. 3.11)

```
Acciding and a service model and react lab money ope
  1 model lab
  parameter Real ss = 0.999;
      parameter Real ii = 0.001;
parameter Real rr = 0;
      parameter Real beta = 1;
  5
       parameter Real nu = 0.3;
  6
  7
       Real s(start=ss);
  8
       Real i(start=ii);
  9
        Real r(start=rr);
  10 equation
 11
         der(s)=-beta*s*i;
 12
13
         der(i)=beta*s*i-nu*i;
         der(r)=nu*i;
  14 end lab;
```

Рис. 3.11: Реализация модели эпидемии в OpenModelica

Результат модели. Результат идентичен с построением с помощью других способов, значит все выполнено правильно. (рис. 3.12)

Рис. 3.12: Модель эпидемии в OpenModelica

3.4 Задание для самостоятельного выполнения.

Реализация с помощью хсоѕ

Необходимо реализовать такую же модель эпидемии, только с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica.

Так выглядит система уравнения:

$$\begin{cases} \dot{s} = -\beta s(t)i(t) + \mu(N - s(t)); \\ \dot{i} = \beta s(t)i(t) - \nu i(t) - \mu i(t); \\ \dot{r} = \nu i(t) - \mu r(t), \end{cases}$$

где μ — константа, которая равна коэффициенту смертности и рождаемости.

Реализуем эту модель в *xcos*. Тут нам понадобятся три блока суммирования и 4 блока констант (добавляется константа ν).

В меню моделирования устанавливаем переменные окружения. (рис. 3.13) Реализация с помощью хсоs. (рис. 3.14)

Рис. 3.13: Переменные окружения

Рис. 3.14: Реализация модели эпидемии с учетом процесса рождения / гибели особей с помощью xcos

В параметрах блоков интегрирования нет изменений, указываем все начальные значения из предыдущих этапов выполнения.

Результат моделирования представлен на (рис. 3.15), где черной линией обозначен график s(t) (динамика численности уязвимых к болезни особей), красная линия r(t) — динамику численности выздоровевших особей, наконец, зеленая линия i(t) — динамику численности заражённых особей. Пересечение трёх линий

определяет порог эпидемии.

Рис. 3.15: Модель эпидемии при beta=1, nu=0.1, mu=0.1

3.5 Задание для самостоятельного выполнения.

Реализация с помощью блока Modelica в xcos

Реализация с помощью блока Modelica в xcos. (рис. 3.16)

Рис. 3.16: Реализация модели эпидемии с учетом процесса рождения / гибели особей с помощью блока Modelica в xcos

Указываем параметры для блока реализации. Переменные на входе ("beta", "nu", "mu") и выходе ("s", "i", "r") блока заданы как внешние ("E"). (рис. 3.17)

Рис. 3.17: Параметры блока реализации

Код на языке Modelica. Задаем переменные beta, nu, mu. Указываем начальные значения для s, i, r и пишем систему уравнения. (рис. 3.18)

Рис. 3.18: Параметры блока реализации

Результат моделирования представлен на (рис. 3.19), где черной линией обозначен график s(t) (динамика численности уязвимых к болезни особей), красная линия r(t) — динамику численности выздоровевших особей, наконец, зеленая линия i(t) — динамику численности заражённых особей. Пересечение трёх линий определяет порог эпидемии.

Рис. 3.19: Модель эпидемии при beta=1, nu=0.1, mu=0.1

3.6 Задание для самостоятельного выполнения.

Реализация в OpenModelica

Код реализации модели эпидемии в OpenModelica. Задаем все начальные параметры с помощью parameter Real, как было в реализациях хсоз. Записываем систему уравнения, реализация очень сильно схожа с реализацией с помощью блока Modelica в хсоз (рис. 3.20)

```
1
    model lab
 2
      parameter Real ss = 0.999;
 3
      parameter Real ii = 0.001;
4
      parameter Real rr = 0;
5
      parameter Real beta = 1;
6
      parameter Real nu = 0.1;
7
      parameter Real mu = 0.1;
8
      Real s(start=ss);
9
      Real i(start=ii);
10
      Real r(start=rr);
11
    equation
12
       der(s)=-beta*s*i+mu*i+mu*r;
       der(i)=beta*s*i-nu*i-mu*i;
13
14
       der(r)=nu*i-mu*r;
15
    end lab;
```

Рис. 3.20: Реализация модели с учетом процесса рождения / гибели особей эпидемии в OpenModelica

Результат модели. Результат идентичен с построением с помощью других способов, значит все выполнено правильно. (рис. 3.21)

Рис. 3.21: Модель эпидемии с учетом процесса рождения / гибели особей в OpenModelica

3.7 Результаты на различных параметрах.

При mu=0.6, nu=0.1, beta=1 (рис. 3.22), (рис. 3.23)

```
🖶 🚜 🧧 🕦 🛮 Доступный на запись 🛮 Model 🔻 Вид Текст 🔻 lab 🗸 /home/openmodelica/Dc
      model lab
        parameter Real ss = 0.999;
  2
        parameter Real ii = 0.001;
        parameter Real rr = 0;
  5
        parameter Real beta = 1;
  6
        parameter Real nu = 0.1;
  7
        parameter Real mu = 0.6
  8
        Real s(start=ss);
  9
        Real i(start=ii);
 10
        Real r(start=rr);
 11
     equation
 12
         der(s)=-beta*s*i+mu*i+mu*r;
 13
         der(i)=beta*s*i-nu*i-mu*i;
         der(r)=nu*i-mu*r;
 14
 15
     end lab;
```

Рис. 3.22: Результаты на различных параметрах.

Рис. 3.23: Результаты на различных параметрах.

При mu=0.6, nu=0.6, beta=1 (рис. 3.24), (рис. 3.25)

```
🖶 🚜 🗐 🚺 Доступный на запись 🛮 Model 🔻 Вид Текст 🔻 lab 🗸 /home/openmodelica/Documents/test1.mo
     model lab
       parameter Real ss = 0.999;
       parameter Real ii = 0.001;
       parameter Real rr = 0;
       parameter Real beta = 1;
       parameter Real nu = 0.6;
       parameter Real mu = 0.6;
       Real s(start=ss);
       Real i(start=ii);
       Real r(start=rr);
     equation
        der(s)=-beta*s*i+mu*i+mu*r;
        der(i)=beta*s*i-nu*i-mu*i;
 13
        der(r)=nu*i-mu*r;
     end lab:
```

Рис. 3.24: Результаты на различных параметрах.

Рис. 3.25: Результаты на различных параметрах.

Исходя из анализа графиков, можно сделать вывод, что чем выше значение любого из параметров, тем быстрее система достигает стационарного состояния.

При высоком коэффициенте заражения \square система быстро проходит через пик развития эпидемии и достигает стационарного состояния.

4 Выполнение лабораторной работы 6

4.1 Реализация модели в хсоѕ

Для начала фиксируем начальные данные a=2,b=1,c=0.3,d=1.(рис. 4.1).

Рис. 4.1: Константы

Реализуем модель хищник-жертва с помощью блоков. Все блоки идентичны с предыдущей лабораторной, блок времени, блок произведение, интегрирования, суммы и тд. Только дополнительно потребуется блок регистрирующее устройство для построения фазового портрета. (CSCOPXY). Первое уравнение модели задано верхним блоком интегрирования, блоком произведения и блоками задания коэффициентов а и b. Второе уравнение модели задано нижним блоком интегрирования и блоками задания коэффициентов. (рис. 6.2).

Рис. 4.2: Реализация модели

Задаем начальные значения для x и y в параметрах блоков интегрирования. (рис. 4.3), (рис. 4.4)

Рис. 4.3: Начальные значения

▼	Ввод значений	+ ×
	Set Integral block parameters	
	Initial Condition	1
	With re-initialization (1:yes, 0:no)	0
	With saturation (1:yes, 0:no)	0
	Upper limit	1
	Lower limit	-1
		ОК Отменить

Рис. 4.4: Начальные значения

Устанавливаем конечное время интегрирования 30. (рис. 4.5)

▼	Ввод значений	+ ×
	Set Scope parameters	
	Color (>0) or mark (<0) vector (8 entries)	1 3 5 7 9 11 13 15
	Output window number (-1 for automatic)	-1
	Output window position	
	Output window sizes	[600;400]
	Ymin	-15
	Ymax	15
	Refresh period	30
	Buffer size	20
	Accept herited events 0/1	0
	Name of Scope (label&Id)	
		ОК Отменить

Рис. 4.5: конечное время интегрирования

Фазовый портрет. (рис. 4.6)

Рис. 4.6: Фазовый портрет.

Динамика изменения численности хищников и жертв. Черной линией обозначена динамика численности жертв. Зеленой линией обозначена динамика численности хищников. (рис. 4.7)

Рис. 4.7: Динамика изменения численности хищников и жертв

4.2 Реализация модели с помощью блока Modelica в xcos

Как и ранее, задаем значения коэффициентам a,b,c,d. Устанавливаем конечное время интегрирования. Реализуем модель. Нам понадобится блок моделирования, блок констант и регистрирующее устройство для построения фазового портрета и для построения графика. (рис. 4.8)

Рис. 4.8: Реализация модели

Параметры блока моделирования и программный код (рис. 4.9), (рис. 4.10)

Рис. 4.9: Параметры блока моделирования

Рис. 4.10: Параметры блока моделирования

Фазовый портрет и график изменения численности популяций. Результат полностью идентичен с xcos. (рис. 4.11), (рис. 4.12)

Рис. 4.11: Фазовый портрет

Рис. 4.12: график изменения численности популяций

4.3 Реализация модели в OpenModelica.

Код для реализации данной модели. Задаем начальные коэффициенты и пишем уравнения модели. Задаем конечное время интегрирования. (рис. 4.13)

```
model lab6
 1
 2
      parameter Real a = 2;
 3
      parameter Real b = 1;
 4
      parameter Real c = 0.3;
 5
      parameter Real d = 1;
 6
 7
 8
      parameter Real x0 = 2;
      parameter Real y0 = 1;
 9
10
11
      Real x(start=x0);
      Real y(start=y0);
12
13
14
    equation
15
16
      der(x) = a*x - b*x*y;
17
      der(y) = c*x*y - d*y;
18
    end lab6;
19
```

Рис. 4.13: Реализация модели

Фазовый портрет и график изменения численности популяций. Результат полностью идентичен с предыдущими реализациями. (рис. 4.14), (рис. 4.15)

Рис. 4.14: Фазовый портрет

Рис. 4.15: график изменения численности популяций

5 Выполнение лабораторной работы 7

Реализация модели системы массового обслуживания типа $M|M|1|\infty$. Для начала необходимо указать начальные параметры. (рис. 5.1).

Рис. 5.1: Установка контекста моделирования

Построение суперблока отвечающего за поступление заявок. (рис. 5.2)

Рис. 5.2: Суперблок, моделирующий поступление заявок

Построение суперблока отвечающего за обработку заявок. (рис. 5.3)

Рис. 5.3: Суперблок, моделирующий обработку заявок

Модель M|M|1|∞ (рис. 5.4)

Рис. 5.4: M|M|1|∞

График поступления и обработки заявок (рис. 5.5)

Рис. 5.5: График поступления и обработки заявок

График динамики размера очереди (рис. 5.6)

Рис. 5.6: График динамики размера очереди

6 Выполнение лабораторной работы 8

6.1 Реализация в хсоѕ

Построим схему хсоs, моделирующую нашу систему, с начальными значениями параметров N=1, R=1, K=5.3, C=1, W(0)=0.1, Q(0)=1. Для этого сначала зададим переменные окружения (рис. 6.1).

Рис. 6.1: Установка контекста

Затем реализуем модель TCP/AQM, разместив блоки интегрирования, суммирования, произведения, констант, а также регистрирующие устройства (рис. 6.2):

Рис. 6.2: Модель TCP/AQM в хсоs

В результате получим динамику изменения размера TCP окна W(t) (зеленая линия) и размера очереди Q(t) (черная линия), а также фазовый портрет, который показывает наличие автоколебаний параметров системы — фазовая траектория осциллирует вокруг своей стационарной точки (рис. 6.3, 6.4):

Рис. 6.3: Динамика изменения размера TCP окна W (t) и размера очереди Q(t)

Рис. 6.4: Фазовый портрет (W, Q)

Уменьшив скорость обработки пакетов C до 0.9 увидим, что автоколебания стали более выраженными (рис. 6.5, 6.6).

Рис. 6.5: Динамика изменения размера TCP окна W (t) и размера очереди Q(t) при C=0.9

Рис. 6.6: Фазовый портрет (W, Q) при C = 0.9

6.2 Реализация модели в OpenModelica

Перейдем к реализации модели в OpenModelica. Зададим параметры, начальные значения и систему уравнений.

```
parameter Real N=1;
parameter Real R=1;
parameter Real K=5.3;
parameter Real C=1;

Real W(start=0.1);
Real Q(start=1);

equation

der(W)= 1/R - W*delay(W, R)/(2*R)*K*delay(Q, R);
der(Q)= if (Q==0) then max(N*W/R-C,0) else (N*W/R-C);
```

Выполнив симуляцию, получим динамику изменения размера TCP окна W(t)(зеленая линия) и размера очереди Q(t)(черная линия), а также фазовый портрет, который показывает наличие автоколебаний параметров системы — фазовая траектория осциллирует вокруг своей стационарной точки (рис. 6.7, 6.8).

Рис. 6.7: Динамика изменения размера TCP окна W (t) и размера очереди Q(t). OpenModelica

Рис. 6.8: Фазовый портрет (W, Q). OpenModelica

7 Выводы

В процессе выполнения данной лабораторной работы я реализовал модель TCP/AQM в xcos и OpenModelica.