Neural Processes

ICML 2018, ICML 2018 workshop

Introduction

4

Introduction

A neural network (NN) is a parameterized function that approximates a dataset with high accuracy, but can't easily switch to an unknown function.

Gaussian process (GP) has the flexibility to infer the shape of new functions at test time based on **prior** knowledge, but GP is computationally intensive.

Ŋ

Introduction

Therefore, this study proposes a new meta learning method called Neural Process, which combines the advantages of both.

as NNs during training and evaluation, but also as GPs This method is not only as computationally efficient can effectively utilize prior knowledge to quickly adapt to newly observed functions.

Conditional/Latent Neural Processes

Observation and Target Dataset

Supervised Learning

VS.

Neural Processes

CNP Forward Pass

Conditional Neural Processes

Conditional Neural Processes

Conditional Neural Processes

$$log \ p_{\theta}(Y_T|\{X_O,Y_O\},X_T)$$

$$\mu_O, \sigma_O \leftarrow (MLP \circ mean \circ Enc)(X_O, Y_O)$$

$$z_T \sim \mathcal{N}(\mu_O, \sigma_O)$$

 $log \int p_{\theta}(Y_T|z, X_T)q_{\omega}(z|\{X_O, Y_O\})dz$

Not in Frocesses
$$q_{\omega(z)}$$
 $-log \, p_{ heta}(Y_T|z,X_T) + log rac{q_{\omega(z)}}{q_{\omega(z|\{X_O,Y_O\})}}$

$$-\log p_{\theta}(Y_{T}|z,X_{T}) + \log \frac{q_{\omega}(z)}{q_{\omega}(z|\{X_{O},Y_{O}\})}$$

$$\begin{split} \mathcal{L} &= -\log p_{\theta}(Y_T|z,X_T) \\ &+ KLD(\mathcal{N}(\mu_T,\sigma_T),\mathcal{N}(\mu_O,\sigma_O)) \end{split}$$

Experiments

	Ran	Random Context	ıtext	Ord	Ordered Context	ıtext
#	10	100	1000	10	100	1000
kNN	0.215	0.052	0.007	0.370	0.273	0.007
GP	0.247	0.137	0.001	0.257	0.220	0.002
CNP	0.039	0.016	0.00	0.057	0.047	0.021

Pixel-wise mean squared error of CNP on the CelebA.

	5-wa	5-way Acc	20-wa	20-way Acc	Runtime
	1-shot	5-shot	1-shot	5-shot	
MANN	82.8%	94.9%	1	1	O(nm)
MN	98.1%	98.9%	93.8%	98.5%	$\mathcal{O}(nm)$
CNP	95.3%	98.5%	%6.68	%8.96	$\mathcal{O}(n+m)$

Classification results of CNP on Omniglot.

red, black and green regions, are actions 2, 3, 4 and 5, The wheel bandit problem. Optimal action for yellow, respectively.

8	0.5	0.7	6.0	0.95	0.99
Cumulative regret					
Uniform LinGreedy ($\epsilon = 0.0$) Dropout	$100.00 \pm 0.08 \\ 65.89 \pm 4.90 \\ 7.89 \pm 1.51$	100.00 ± 0.09 71.71 ± 4.31 9.03 ± 2.58	100.00 ± 0.25 108.86 ± 3.10 36.58 ± 3.62	100.00 ± 0.37 102.80 ± 3.06 63.12 ± 4.26	100.00 ± 0.78 104.80 ± 0.91 98.68 ± 1.59
LinGreedy ($\epsilon = 0.05$) Bayes by Backprob (Blundell et al., 2015) NeuralLinear	7.86 \pm 0.27 1.37 \pm 0.07 0.95 \pm 0.02	9.58 ± 0.35 3.32 ± 0.80 1.60 ± 0.03	19.42 ± 0.78 34.42 ± 5.50 4.65 ± 0.18	33.06 ± 2.06 59.04 ± 5.59 9.56 ± 0.36	74.17 ± 1.63 97.38 ± 2.66 49.63 ± 2.41
MAML (Finn et al., 2017) Neural Processes	$2.95 \pm 0.12 \\ 1.60 \pm 0.06$	$3.11 \pm 0.16 \\ 1.75 \pm 0.05$	4.84 ± 0.22 3.31 ± 0.10	7.01 ± 0.33 5.71 ± 0.24	22.93 ± 1.57 22.13 ± 1.23
Simple regret					
Uniform LinGreedy ($\epsilon = 0.0$) Dropout	100.00 ± 0.45 66.59 ± 5.02 6.57 ± 1.48	100.00 ± 0.78 73.06 ± 4.55 6.37 ± 2.53	100.00 ± 1.18 108.56 ± 3.65 35.02 ± 3.94	100.00 ± 2.21 105.01 ± 3.59 59.45 ± 4.74	100.00 ± 4.21 105.19 ± 4.14 102.12 ± 4.76
Linguisedy ($\epsilon = 0.05$) Bayes by Backprob (Blundell et al., 2015) NeuralLinear	0.53 ± 0.19 0.60 ± 0.09 0.33 ± 0.04	0.07 ± 0.24 1.45 ± 0.61 0.79 ± 0.07	8.49 ± 0.47 27.03 ± 6.19 2.17 ± 0.14	12.03 \pm 1.12 56.64 \pm 6.36 4.08 \pm 0.20	37.02 ± 3.57 102.96 ± 5.93 35.89 ± 2.98
MAML (Finn et al., 2017) Neural Processes	2.49 ± 0.12 1.04 ± 0.06	$3.00 \pm 0.35 \\ 1.26 \pm 0.21$	4.75 ± 0.48 2.90 ± 0.35	$7.10 \pm 0.77 \\ 5.45 \pm 0.47$	22.89 \pm 1.41 21.45 \pm 1.3

Results of LNP on the wheel bandit problem.

Conclusion

efficiency of neural networks with the flexibility of Neural Processes combines the computational stochastic processes.

- Efficiently extract prior knowledge from $\{X_O, Y_O\}$ (neural networks)
- Change strategies based on prior knowledge (stochastic processes)

Thanks for your attention.

Q&A