Relational Database Design by ERand EER-to- Relational Mapping

Design a relational database schema

- تصميممخطط قاعدة بيانات علائقية
- Based on a conceptual schema design
 - بناءعلی تصمیم مخطط مفاهیمی
- Seven-step algorithm to convert the basic ER model constructs into relations
 - خوارزمية من سبع خطوات لتحويل تركيبات نموذج ER الأساسى إلى علاقات
 - Additional steps for EER model •

Relational Database Design Using ER-to-Relational Mapping

ER-to-Relational Mapping Algorithm

- COMPANY database example •
- Assume that the mapping will create tables with simple single-valued attributes
- Step 1: Mapping of Regular Entity Types •
- For each regular entity type, create a relation *R* that includes all the simple attributes of *E*
 - Called entity relations •
 - Each tuple represents an entity instance •

- Step 2: Mapping of Weak Entity Types •
- For each weak entity type, create a relation *R* and include all simple attributes of the entity type as attributes of *E*
 - Include primary key attribute of owner as foreign key attributes of *R*

Figure 9.3

Illustration of some mapping steps.

- a. Entity relations after step 1.
- b. Additional weak entity relation after step 2.
- c. Relationship relation after step 5.
- d. Relation representing multivalued attribute after step 6.

(a) EMPLOYEE

DEPARTMENT

Dname <u>Dnumber</u>

PROJECT

(b) DEPENDENT

(c) WORKS_ON

(d) DEPT LOCATIONS

- Step 3: Mapping of Binary 1:1 Relationship
 Types
 - For each binary 1:1 relationship type •
 - Identify relations that correspond to entity types participating in *R*
 - Possible approaches: •
 - Foreign key approach •
 - Merged relationship approach •
- Crossreference or relationship relation approach •

- Step 4: Mapping of Binary 1: NRelationship Types
 - For each regular binary 1: N relationship type •
 - Identify relation that represents participating entity type at *N*-side of relationship type
 - Include primary key of other entity type as foreign key in S
- Include simple attributes of 1: N relationship type as attributes of S

- Alternative approach •
- Use the **relationship relation** (cross-reference) option as in the third option for binary 1:1 relationships

- Step 5: Mapping of Binary *M*: NRelationship Types
 - For each binary M: N relationship type
 - Create a new relation S •
 - Include primary key of participating entity types as foreign key attributes in S
 - Include any simple attributes of M: N relationship type

- Step 6: Mapping of Multivalued Attributes
 - For each multivalued attribute
 - Create a new relation
 - Primary key of R is the combination of A and K
 - If the multivalued attribute is composite, include its simple components

- Step 7: Mapping of *N*-ary Relationship Types
 - For each *n*-ary relationship type *R* •
 - Create a new relation S to represent R •
- Include primary keys of participating entity types as foreign keys
 - Include any simple attributes as attributes •

Discussion and Summary of Mapping for ER Model Constructs

Table 9.1	Correspondence	between ER and	Relational Models
-----------	----------------	----------------	-------------------

ER MODEL RELATIONAL MODEL

Entity type Entity relation

1:1 or 1:N relationship type Foreign key (or *relationship* relation)

M:N relationship type Relationship relation and two foreign keys

n-ary relationship type Relationship relation and *n* foreign keys

Simple attribute Attribute

Composite attribute Set of simple component attributes

Multivalued attribute Relation and foreign key

Value set Domain

Key attribute Primary (or secondary) key

Discussion and Summary of Mapping for ER Model Constructs (cont'd.)

- In a relational schema relationship, types are not represented explicitly
- Represented by having two attributes *A* and *B*: one a primary key and the other a foreign key

Mapping EER Model Constructs to Relations

Extending ER-to-relational mapping algorithm

Mapping of Specialization or Generalization

- Step 8: Options for Mapping Specialization or Generalization (see pages 294-295)
 - Option 8A: Multiple relations—superclass and subclasses
 - For any specialization (total or partial, disjoint or overlapping)
 - Option 8B: Multiple relations—subclass relations only
 - Subclasses are total •
 - Specialization has disjointedness constraint •

Mapping of Specialization or Generalization (cont'd.)

Option 8C: Single relation with one type attribute

- Type or discriminating attribute indicates subclass of tuple
 - Subclasses are disjoint •
 - Potential for generating many NULL values if many specific attributes exist in the subclasses

Option 8D: Single relation with multiple type attributes

- Subclasses are overlapping •
- Will also work for a disjoint specialization •

Mapping of Shared Subclasses (Multiple Inheritance)

Apply any of the options discussed in step 8 to a shared subclass

Figure 9.6

Mapping the EER specialization lattice in Figure 8.8 using multiple options.

Mapping of Categories (Union Types)

- Step 9: Mapping of Union Types (Categories)
- Defining superclasses have different keys
 - Specify a new key attribute
 - Surrogate key •

Figure 8.8
Two categories (union types): OWNER and REGISTERED_VEHICLE.

Figure 9.7

Mapping the EER categories (union types) in Figure 8.8 to relations.

(a) EMPLOYEE

SSN FName MInit LName BirthDat	te Address JobType
--------------------------------	--------------------

SECRETARY

SSN TypingSpeed

TECHNICIAN

SSN TGrade

ENGINEER

SSN EngType

VehicleId License	PlateNo Price	MaxSpeed	NoOfPassengers
-------------------	---------------	----------	----------------

TRUCK

VehicleId	LicensePlateNo	Price	NoOfAxles	Tonnage
-----------	----------------	-------	-----------	---------

