LUCRARE DE VERIFICARE ALGEBRA Varianta A

1. a) Să se definească urmatoarele noțiuni și să se dea câte un exemplu pentru fiecare: relație, element minimal, nucleu al unui morfism de grupuri.

b) Fie (G,\cdot) un grup și $H_i \leq G, \ i \in I$ o familie de subgrupuri. Să se arate că $\bigcap_{i \in I} H_i \leq G.$

c) Fie $f:A\to B$ o funcție cu proprietatea că $f\circ g_1=f\circ g_2\Rightarrow g_1=g_2$ pentru orice multime C și orice două funcții $g_1,g_2:C\to A$. Să se arate că f este injectivă.

2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$ și $g: \mathbb{R} \to [1, \infty)$ unde

$$f:\mathbb{R}\to\mathbb{R},\ f(x)=\begin{cases} 2x-1\ \text{pentru}\ x\in(-\infty,2]\\ x+1\ \text{pentru}\ x\in(2,\infty) \end{cases} \quad \text{ si } g(x)=x^2+1.$$

a) Să se verifice dacă funcție f este injectivă şi/sau surjectivă.

b) Dacă există să se determine funcția inversă f^{-1} .

c) Să se determine compunerile $f\circ g$ și/sau $g\circ f$ (dacă ele există).

d) Să se găsescă un exemplu de două submulțimi $A,B\subseteq\mathbb{R}$ pentru care

$$g(A \cap B) \neq g(A) \cap g(B)$$
.

3. a) Să se arate că relația $(\mathbb{C}, \mathbb{C}, \equiv)$ dată prin

$$\forall x, y \in \mathbb{C} : x \equiv y \text{ ddacă } x^3 = y^3$$

este o relație de echivalență.

b) Să se determine mulțimea factor $\mathbb{C}/_{\equiv}$, în raport cu relația de echivalență definită la a).

c) Să se arate că relația $(M_{n\times n}(\mathbb{R}), M_{n\times n}(\mathbb{R}), \preceq)$ definită prin

$$A \lesssim B$$
, unde $A = [a_{i,j}]_{1 \leq i,j \leq n}, B = [b_{i,j}]_{1 \leq i,j \leq n}$ ddacă $a_{i,j} \leq b_{i,j}$ în $\mathbb{R}, \forall i,j$

este o relație de ordine. Exista elemente incomparabile în mulțimea ordonată $(M_{n\times n}(\mathbb{R}), \lesssim)$?

4. a) Să se arate că formula

$$x * y = xy - 3x - 3y + 12$$

definește o operație pe $\mathbb{R} \setminus \{3\}$, iar $(\mathbb{R} \setminus \{3\}, *)$ este un grup.

b) Să se determine un izomorfism $f:(\mathbb{R}^*,\cdot)\to(\mathbb{R}\setminus\{3\},*)$ de forma f(x)=x+a.

c) Fie (G,\cdot) un grup. Să se arate că $f:G\to G, f(x)=x^{-1}$ este un morfism de grupuri ddacă G este comutativ.

LUCRARE DE VERIFICARE ALGEBRA Varianta B

1. a) Să se definească urmatoarele noțiuni și să se dea câte un exemplu pentru fiecare: funcție, infimum, subgrup.

b) Fie $f:G\to H$ un izomorfism de grupuri. Să se arate că $f^{-1}:H\to G$ este morfism de grupuri.

c) Fie $(A, A \equiv)$ o relație de echivalență. Pentru orice element $a \in A$ notăm cu $[a] = \{x \in A \mid a \equiv x\}$ clasa lui de echivalență. Să se arate că pentru $a, b \in A$ avem $[a] \cap [b] \neq \emptyset \Rightarrow [a] = [b]$.

2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$ și $g: [0, \infty) \to \mathbb{R}$ unde

$$f:\mathbb{R}\to\mathbb{R},\ f(x)=\begin{cases} x+1\ \text{pentru}\ x\in(-\infty,1]\\ 2x-3\ \text{pentru}\ x\in(2,\infty) \end{cases} \quad \text{ si } g(x)=x^2+1.$$

a) Să se verifice dacă funcție f este injectivă şi/sau surjectivă.

b) Dacă există să se determine funcția inversă f^{-1} .

c) Să se determine compunerile $f \circ g$ și/sau $g \circ f$ (dacă ele există).

d) Să se găsescă un exemplu de două funcții $h_1, h_2 : \mathbb{R} \to \mathbb{R}$ pentru care $h_1 \neq h_2$, dar $h_1 \circ g = h_2 \circ g$.

3. a) Să se arate că relația $(\mathbb{C}, \mathbb{C}, \equiv)$ dată prin

$$\forall x, y \in \mathbb{C} : x \equiv y \text{ ddacă } x^4 = z^4$$

este o relație de echivalență.

b) Să se determine mulțimea factor $\mathbb{C}/_{\equiv}$, în raport cu relația de echivalență definită la a).

c) Considerăm mulțimea $\mathbb{Z}^{\{1,2\}}=\{f:\{1,2\}\to\mathbb{Z}\mid f \text{ este funcție}\}$. Să se arate că relația $(\mathbb{Z}^{\{1,2\}},\mathbb{Z}^{\{1,2\}},\precsim)$ definită prin

$$\forall f,g \in \mathbb{Z}^{\{1,2\}}: \quad f \precsim g \text{ ddacă } f(1) \leq g(1), f(2) \leq g(2) \text{ în } \mathbb{Z}$$

este o relație de ordine. Exista elemente incomparabile în mulțimea ordonată $(\mathbb{Z}^{\{1,2\}}, \lesssim)$?

4. a) Să se arate că formula

$$x * y = xy + 2x + 2y + 2$$

definește o operație pe $\mathbb{R} \setminus \{-2\}$, iar $(\mathbb{R} \setminus \{-2\}, *)$ este un grup.

b) Să se determine un izomorfism $f:(\mathbb{R}^*,\cdot)\to(\mathbb{R}\setminus\{-2\},*)$ de forma f(x)=x+a

c) Fie (G,\cdot) un grup. Să se arate că $f:G\to G, f(x)=x^2$ este un morfism de grupuri ddacă G este comutativ.