Examenul național de bacalaureat 2022 Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$5(1+2i)-2i(5-i)=5+10i-10i+2i^2=$	3 p
	$=5+2\cdot(-1)=3$	2 p
2.	$f(a) = a^2 - 2a - 3$, deci $a^2 - 2a - 3 = 1 + a^2$	3 p
	-2a = 4, de unde obținem $a = -2$	2p
3.	$2x^2 + 1 = 3^2 \Rightarrow x^2 - 4 = 0$	3 p
	x = -2 sau $x = 2$, care convin	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 20 de numere care au cifrele impare și distincte, deci sunt 20 de cazuri favorabile, de unde obținem $p = \frac{20}{90} = \frac{2}{9}$	3 p
5.	$\overrightarrow{AB} = \overrightarrow{DC} \Rightarrow ABCD$ este paralelogram, deci segmentele AC și BD au același mijloc	2p
	Mijlocul segmentului AC are coordonatele $(3,1)$, de unde obținem $D(5,-4)$	3 p
6.	$\sin B = \frac{AC}{BC}$, $\sin C = \frac{AB}{BC}$, deci $AC = 2AB$	2p
	Cum $AB^2 + AC^2 = 100$, obţinem $AB = 2\sqrt{5}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} =$	2p
	= 0 + 0 + 0 - 0 - 0 - (-1) = 1	3 p
b)	$A(x) - I_3 = \begin{pmatrix} x & -x & 0 \\ x & -x & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{ pentru orice număr real } x$	2p
	$ (A(x) - I_3)(A(x) - I_3) = \begin{pmatrix} x^2 - x^2 & -x^2 + x^2 & 0 \\ x^2 - x^2 & -x^2 + x^2 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = O_3, \text{ pentru orice număr } $ real x	3р
c)	$A(x) \cdot A(x) = 2A(x) - I_3$, pentru orice număr real x	2p
	$2A(x)-I_3 = xA(x)-(x-1)I_3 \Leftrightarrow (x-2)(A(x)-I_3)=O_3$, de unde obţinem $x=0$ sau $x=2$	3р

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

$=(0+2)^2-2(0-2)-3=$	3 p
4 - 3 = 5	2p
$+1$) = $4x^2 + 4x$, pentru orice număr real x	2p
$4x = 8 \Leftrightarrow x^2 + x - 2 = 0$, de unde obținem $x = -2$ sau $x = 1$	3 p
$(n)^2 - 2(m-n) - 3 = 2mn \Leftrightarrow m^2 + n^2 - 2m + 2n - 3 = 0$	2p
$\binom{n}{2} + (n+1)^2 = 5$ şi, cum m şi n sunt numere naturale, obţinem perechile $(0,1)$, $(2,1)$	3 p
1	4-3=5 $+1$) = $4x^2 + 4x$, pentru orice număr real x $4x = 8 \Leftrightarrow x^2 + x - 2 = 0$, de unde obținem $x = -2$ sau $x = 1$ x = 2 sau $x = 1x = 2$ sau $x = 1$

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = (2x-5)\sqrt{x} + (x^2-5x+10)\cdot\frac{1}{2\sqrt{x}} =$	3p
	$= \frac{5x^2 - 15x + 10}{2\sqrt{x}} = \frac{5(x^2 - 3x + 2)}{2\sqrt{x}}, \ x \in (0, +\infty)$	2p
b)	$f'(x) = 0 \Leftrightarrow x = 1 \text{ sau } x = 2$	2p
	$f'(x) \ge 0$, pentru orice $x \in (0,1]$, deci f este crescătoare pe $(0,1]$, $f'(x) \le 0$, pentru orice	
	$x \in [1,2]$, deci f este descrescătoare pe $[1,2]$ și $f'(x) \ge 0$, pentru orice $x \in [2,+\infty)$, deci	3 p
	f este crescătoare pe $[2,+\infty)$	
c)	$\lim_{x \to +\infty} \left(\frac{f(x)}{x^2 \sqrt{x}} \right)^{\frac{x}{5}} = \lim_{x \to +\infty} \left(\frac{x^2 - 5x + 10}{x^2} \right)^{\frac{x}{5}} = \lim_{x \to +\infty} \left(\left(1 + \frac{-5x + 10}{x^2} \right)^{\frac{-5x + 10}{x^2} \cdot \frac{x}{5}} \right)^{\frac{-5x + 10}{x^2} \cdot \frac{x}{5}} = $	3 p
	$=e^{\lim_{x\to +\infty} \frac{-5x+10}{5x}} = e^{-1} = \frac{1}{e}$	2 p
2.a)	$\int_{0}^{2} \left(f(x) - \frac{1}{e^{x} + 1} \right) dx = \int_{0}^{2} \left(x + e^{x} \right) dx = \left(\frac{x^{2}}{2} + e^{x} \right) \Big _{0}^{2} =$	3 p
	$=2+e^2-1=e^2+1$	2p
b)	$= 2 + e^{2} - 1 = e^{2} + 1$ $\int_{-1}^{1} e^{x} (f(x) - x - e^{x}) dx = \int_{-1}^{1} \frac{e^{x}}{e^{x} + 1} dx = \int_{-1}^{1} \frac{(e^{x} + 1)'}{e^{x} + 1} dx = \ln(e^{x} + 1) \Big _{-1}^{1} =$	3 p
	$= \ln\left(e+1\right) - \ln\frac{1+e}{e} = \ln e = 1$	2p
c)	$\int_{0}^{1} x(f(x) + f(-x)) dx = \int_{0}^{1} x(e^{x} + e^{-x} + 1) dx = \int_{0}^{1} x(e^{x} - e^{-x} + x)' dx = x(e^{x} - e^{-x} + x) \Big _{0}^{1} - \int_{0}^{1} (e^{x} - e^{-x} + x) dx = e^{-\frac{1}{e}} + 1 - \left(e^{x} + e^{-x} + \frac{x^{2}}{2}\right) \Big _{0}^{1} = \frac{5}{2} - \frac{2}{e}$	3p
	$\frac{5}{2} - \frac{2}{e} = \frac{m}{2} - \frac{2}{e}$, de unde obţinem $m = 5$	2p