Mandatory assignment 2 MAT2400

Ivar Stangeby

April 28, 2015

Problem 1

a) We want to show that h(A, B) = 0 implies that A = B. We assume that A and B are two non-empty closed subsets of X. In other words, $A, B \in P(X)$. If we can show the contrapositive, then the original implication must hold. We therefore assume that $A \neq B$ and we want to show that then $h(A, B) \neq 0$.

Let $x \in X$ be such that $x \in A$ and $x \ne B$. By the definition of dist(x, A) and dist(x, B) we see that since $x \in A$, dist(x, A) = 0 and since x is not in B we have dist(x, B) > 0 by the definition of d. Since we take the supremum of all of these values we must have that

$$\sup_{x \in X} |\operatorname{dist}(x, A) - \operatorname{dist}(x, B)| \ge \operatorname{dist}(x, B) > 0.$$

Hence, h(A, B) = 0 implies that A = B.

b) We now want to show that h is a metric on P(X). Positivity and symmetry follows directly from the absolute values in the expression for h(A, B). We therefore need to show that h obeys the triangle inequality.

$$\begin{split} h(A,B) &= \sup_{x \in X} |\operatorname{dist}(x,A) - \operatorname{dist}(x,B)| \\ &= \sup_{x \in X} |\operatorname{dist}(x,A) - \operatorname{dist}(x,C) + \operatorname{dist}(x,C) - \operatorname{dist}(x,B)| \\ &\leq \sup_{x \in X} (|\operatorname{dist}(x,A) - \operatorname{dist}(x,C)| + |\operatorname{dist}(x,C) - \operatorname{dist}(x,B)|) \\ &\leq \sup_{x \in X} |\operatorname{dist}(x,A) - \operatorname{dist}(x,C)| + \sup_{x \in X} |\operatorname{dist}(x,C) - \operatorname{dist}(x,B)| \\ &= h(A,C) + h(C,B) \end{split}$$

Hence h is a metric on P(X).

c) We want to show the two inequalities

$$h(A,B) \ge \hat{h}(A,B),\tag{1}$$

$$\hat{h}(A,B) \ge h(A,B). \tag{2}$$

Problem 2

a)

Convergence

We want to show that the series

$$\Upsilon = \sum_{n=-\infty}^{\infty} r^{|n|} e^{inx}$$

converges uniformly for all $x \in \mathbb{R}$ and that its sum equals $P_r(x)$. We observe that we can split Υ into three subseries:¹

$$\Upsilon = 1 + \sum_{n=1}^{\infty} r^n e^{inx} + \sum_{n=1}^{\infty} r^n e^{-inx}.$$

Applying Eulers formula, we can simplify this to the series²

$$\Upsilon = 1 + \sum_{n=1}^{\infty} r^n \cos(nx) + \sum_{n=1}^{\infty} r^n \cos(nx) = 1 + 2\sum_{n=1}^{\infty} r^n \cos(nx).$$

We know that since we have 0 < r < 1 and $\cos(nx) \le 1$ that

$$\Upsilon \le 1 + 2 \sum_{n=1}^{\infty} r^n,$$

but since this series converges, so must Υ .

Sum

We want to show that the sum of Υ is equal to

$$P_r(x) = \frac{1 - r^2}{1 - 2r\cos(x) + r^2}.$$

We rewrite Υ to the following form, in order for us to be able to apply the formula for finite geometric series:³

$$\Upsilon = \lim_{N \to \infty} \left(\sum_{n=0}^{N} \left(e^{ix} r \right)^n + \sum_{n=0}^{N} \left(e^{-ix} r \right)^n - 1 \right).$$

We then get that the sum of Υ is equal to

$$\Upsilon = \lim_{N \to \infty} \left(\frac{1 - (e^{ix}r)^{N+1}}{1 - e^{ix}r} + \frac{1 - \left(e^{-ix}r\right)^{N+1}}{1 - e^{-ix}r} - 1 \right).$$

Applying Eulers formula again which yields⁴

$$\Upsilon = \frac{1 - r^2}{1 - 2r\cos(x) + r^2} = P_r(x).$$

¹Note the change of summation index and the removal of absolute values

²The imaginary terms cancel out

 $^{^3}$ Notice again the change of summation index. That is where the -1 originates from.

⁴Some algebra required

b) We want to show that $P_r(x)$ is positive or zero for all x. We have

$$\begin{split} P_r(x) &= \frac{1 - r^2}{1 - r2\cos(x) + r^2} \\ &\geq \frac{1 - r^2}{1 - 2r + r^2} \\ &= \frac{(1 - r)(1 + r)}{(1 - r)^2} = \frac{1 + r}{1 - r} > 1. \end{split}$$

Therefore, we can conclude that no matter what x is, P(x) is greater or equal to zero.

c) We want to show that $P_r(x) \to 0$ as $r \uparrow 1$ on the interval $X = [-\pi, -\delta] \cup [\delta, \pi]$. We first state the definition of uniform convergence.⁵

A sequence $\{f_n\}$ of functions converges uniformly to a function f if and only if for all $\varepsilon > 0$ there exists an N > 0 such that $|f_n(x) - f(x)| < \varepsilon$ for all $x \in X$ and for all $n \ge N$.

In our case, we need to rewrite $P_r(x)$ to a form which we can express in terms of a natural number n. We want to create the sequence $\{r_n\}$ of rational numbers defined as

$$r_n = \frac{n-1}{n}.$$

This series converges to 1 as $n \to \infty$. We now want to show that for all $\varepsilon > 0$ there exists an N > 0 such that what was stated above holds. That is

$$|P_{r_n}(x)-0|<\varepsilon$$
,

for all $x \in X$ and for all n > N. Writing it out and taking the limit we see that

$$\lim_{n \to \infty} \frac{1 - \left(\frac{n-1}{n}\right)^2}{1 - \left(\frac{n-1}{n}\right)\cos(x) + \left(\frac{n-1}{n}\right)^2} = \frac{0}{2 - 2\cos(x)} = 0 < \varepsilon.$$

We have $cos(x) \neq 1$ for all $x \in X$ since $0 \notin X$, therefore our proof is done.

d) We want to show that

$$\int_{-\pi}^{\pi} P_r(x) \, dx = 2\pi.$$

Recall that

$$P_r(x) = 1 + 2\sum_{n=1}^{\infty} r^n \cos(nx).$$

We can therefore write the integral as follows

$$\int_{-\pi}^{\pi} \left(1 + 2 \sum_{n=1}^{\infty} r^n \cos(nx) \right) dx = \int_{-\pi}^{\pi} 1 dx + 2 \int_{-\pi}^{\pi} \left(\sum_{n=1}^{\infty} \left(r^n \cos(nx) \right) \right) dx$$

⁵This is a bit informal, but used just as a reminder

We know that since $P_r(x)$ converges uniformly on all of \mathbb{R} the sum and integrals are interchangeable.⁶ Therefore we can rewrite this expression as

$$\int_{-\pi}^{\pi} 1 \, dx + 2 \sum_{n=1}^{\infty} \left(\int_{-\pi}^{\pi} r^n \cos(nx) \, dx \right).$$

The integral contained in the sum evaluates to zero, therefore we are left with

$$\int_{-\pi}^{\pi} P_r(x) \, dx = \int_{-\pi}^{\pi} 1 \, dx = 2\pi,$$

and we are done.

e) We want to show that

$$\Omega = \lim_{r \uparrow 1} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - y) P_r(y) \, dy = f(x).$$

Taking the limit as $r \uparrow 1$, our expression for $P_r(y)$ turns into something we recognise as the Dirichlet kernel, $D_N(y) = \sum_{n=-N}^N e^{iny}$.

$$\lim_{r \uparrow 1} P_r(y) = \lim_{N \to \infty} \sum_{n = -N}^{N} e^{iny} = \lim_{N \to \infty} D_N(y).$$

We can now look at the partial sums of Ω :

$$s_N(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - y) D_N(y) \, dy.$$

If we can show that these partial sums converge to f(x) we're done. Using Dirichlet's Theorem we know that if f has a finite number of minima and maxima, then the Fourier series of f converges pointwise to f. Since f is 2π periodic, it has a finite number of min and max. Therefore, we have

$$\Omega = \lim_{N \to \infty} s_N(x) = \lim_{r \to 1} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - y) P_r(y) \, dy = f(x).$$

This holds because we actually looking at partial sums s_N of the Fourier series for f,

$$s_N(x) = \sum_{n=-N}^{N} \langle f, e_n \rangle e_n(x).$$

⁶Corollary 4.2.3

⁷I am here following the derivation at page 138 and 139 in the compendium