Power Budget Analysis for Raspberry Pi 4B Host Nodes over PoE/PoE+

Date: 10 July 2025

1 Introduction

This report provides an updated power-budget calculation for four deployment scenarios involving headless Raspberry Pi 4B Host Nodes fitted with the official PoE or PoE+ HATs. Each node runs Raspberry Pi OS 64-bit Lite and hosts OctoPrint and MJPG-streamer services. Web-cams stream at 720 p, 10 fps. No on-board AI processing is planned.

2 Key Assumptions

Item Design-centre Value

Pi 4 B (heavy load, fan on) $\approx 7 \text{ W}$ at 5 V

Web-cam (720 p @ 10 fps) 2.5 W (0.5 A @ 5 V)

PoE+ HAT efficiency 85 %

PoE-af HAT efficiency 90 %

PoE delivery limits 25.5 W (802.3at), 12.95 W (802.3af)

3 Scenario Breakdown

Scenario 1 – 11 Nodes, 2 Cams per Node, PoE+

Parameter Value

Number of Host Nodes 11

Web-cams per Node 2

PoE Standard IEEE 802.3at (Type 2, PoE+)

PoE-HAT Efficiency (η) 85 %

Node Load (5 V rail) 12 W

Port Draw (incl. PoE losses) 14.1 W

Total Switch Budget $\approx 155 \text{ W}$

Recommended Switch ≥ 170 W, 16-port PoE+

Scenario 2 – 11 Nodes, 2 Cams per Node, PoE-af

Parameter Value

Number of Host Nodes 11

Web-cams per Node 2

PoE Standard IEEE 802.3af (Type 1, PoE)

PoE-HAT Efficiency (η) 90 %

Node Load (5 V rail) 12 W

Port Draw (incl. PoE losses) 13.3 W

Total Switch Budget $\approx 147 \text{ W}$

Recommended Switch ≥ 160 W, 16-port PoE-af

Scenario 3 – 22 Nodes, 1 Cam per Node, PoE+

Parameter Value

Number of Host Nodes 22

Web-cams per Node 1

PoE Standard IEEE 802.3at (Type 2, PoE+)

PoE-HAT Efficiency (η) 85 %

Node Load (5 V rail) 9.5 W

Port Draw (incl. PoE losses) 11.2 W

Total Switch Budget ≈ 246 W

Recommended Switch ≥ 300 W, 24-port PoE+

Scenario 4 – 22 Nodes, 1 Cam per Node, PoE-af

Parameter	Value
Number of Host Nodes	22
Web-cams per Node	1
PoE Standard	IEEE 802.3af (Type 1, PoE)
PoE-HAT Efficiency (η)	90 %
Node Load (5 V rail)	9.5 W
Port Draw (incl. PoE losses)	10.6 W
Total Switch Budget	≈ 232 W
Recommended Switch	≥ 260 W, 24-port PoE-af

4 Recommendations

- \bullet Budget roughly 15 W per two-camera node and 11 W per single-camera node at the switch, then add at least 15 % head-room to accommodate boot surges and future peripherals.
- For Scenario 1 an off-the-shelf 16-port PoE+ switch rated \geq 170 W is adequate; Scenarios 3 & 4 require a 24-port chassis with \geq 260–300 W.
- Although all ports remain under the IEEE limits, choose switches whose usable PSE budget meets or exceeds the figures in Section 3, not just their theoretical maximum.

Scenario	Practical PSE choice
1 (11 dual-cam PoE+)	A 16-port PoE+ switch rated ≥ 170 W gives ~10 % headroom.
2 (11 dual-cam PoE)	A 16-port PoE-af switch with a 160 W (or higher) budget works, but make sure advertised power is "usable", not "theoretical".
3 (22 single-cam PoE+)	A 24-port PoE+ switch rated ≥ 300 W keeps load under 85 % and leaves room for one spare port.
4 (22 single-cam PoE)	A 24-port PoE-af switch rated for ≥ 260 W (many enterprise af switches are 250 - 370 W) will suffice.

5 Assumptions

Item	Value used	Why this figure?
Raspberry Pi 4 Model B, PoE(H)AT fan running, both CPUs & GPUs moderately loaded (multiple USB, two Python services)	≈7W@5V	Stress-test measurements report 7–7.6 W at the Pi's 5 V rail when all cores are busy and HDMI is off (Raspberry Pi Forums, Core Electronics)
UVC webcam streaming 720 p @ 10 fps	2.5 W (0.5 A @ 5 V)	Vendor data sheets for HD webcams list 5 V × 0.5 A typical; that is 2.5 W (EMEET, Cable Society)
PoE HAT conversion efficiency	85 % (PoE+) / 90 % (PoE-af)	As before; the newer PoE+ HAT runs a little less efficient than the original model
PoE power limits	12.95 W to PD (af / Type 1), 25.5 W to PD (at / Type 2)	IEEE 802.3af / 802.3at tables (Wikipedia, Biamp Cornerstone)

6 Load Model

Dual-camera node: 7 W + 2 × 2.5 W = 12 W @ 5 V

Single-camera node: $7 \text{ W} + 1 \times 2.5 \text{ W} = 9.5 \text{ W} @ 5 \text{ V}$

Power draw at switch port = node load ÷ efficiency

7 Scenarios Summarized

Scenario	Nodes	Web-cams / node	PoE flavour	η (efficiency)	Node load (5 V)	Port draw (W)	Total switch budget
1	11	2	PoE + (802.3at)	0.85	12 W	14.1 W	≈ 155 W
2	11	2	PoE (802.3af)	0.90	12 W	13.3 W	≈ 147 W
3	22	1	PoE + (802.3at)	0.85	9.5 W	11.2 W	≈ 246 W
4	22	1	PoE (802.3af)	0.90	9.5 W	10.6 W	≈ 232 W

8 Key Considerations

- For Scenario 2 and 4, our 12W is operating at \sim 93% of the 12.95 W PoE delivery limit
- Long-term stability running near maximum sustained draw increases the likelihood of instability if workloads change or USB power draw fluctuates.
- For peace of mind and future flexibility, use PoE+ (802.3at) for these nodes. The 12 W load is easily handled by PoE+, and you gain operational margin with minimal extra cost per port.