UDACITY DEEP REINFORCMENT LEARNING – PROJECT 3 REPORT "COLLABORATION AND COMPETITION; TENNIS ENVI"

Mahmoud Adel Nour m.adel.nour@gmail.com

Report

1. Learning Algorithm

- Building DDPG network using 3 hidden full connected layers for the actor and 4 hidden full connected layers for the critic, with ReLu activations ending with tanh and the optimizer is ADAM
- Using Experience replay with batch size 1024 and buffer size 1,000,000 which is shared between actor and critic
- Using different values of gamma
- Creating target weights and current(local) weights knowing that the target weights changes with small steps from the current weights to keep soft update concept
- I tried to use add on noise and it gives better values without noise
- I tried all the combination of the hidden layer numbers of actor (3,4,5) and critic(3,4) and neurons(64,32,16) and finally reached the best combination for the actor with 3 layers and (64,32,2) neurons and critic with 4 layers and (64,64,32,1) neurons,
- The current implementation achieved mean score over 100 episodes greater than 0.5 after 1257 episodes of training
- Hyper parameters:
 - o BUFFER_SIZE = 1,000,000 : replay buffer size
 - o BATCH SIZE = 1024 : batch size to start learning over the stored replays
 - o GAMMA = 0.99 : discount factor
 - o TAU = 0.001 : soft update factor which control the change of the weights
 - o LR ACTOR = 0.0001 : learning rate for the optimizer "ADAM" of the Actor
 - o LR_CRITIC = 0.001 : learning rate for the optimizer "ADAM" of the Critic

2. Plot of Rewards

 Ideas for Future Work Increase the number of layers and agents to learn faster Change the model of the actor and critic To try PPO algorithm 	