

Heat Transfer and Fire Models in OpenSEES

Dr Mustesin Ali Khan

A typical heat transfer problem in structure

Development for Heat Transfer Analysis


```
wipe;

HeatTransfer 2D;

2D section analysis

HTMaterial CarbonSteelEC3 1;

HTMaterial ConcreteEC2 2;

HTMaterial $\$\$materialType $\$\$materialTag <\$\par_1...$\$\par_n>
```



```
HTEntity Isection 1 0.0 0.2 0.2 0.40 0.02 0.02;
HTEntity Block 2 0.0 0.45 0.6 0.1;
```

```
HTEntity $EntityType $EntityTag $centre_x $centre_y $dim_1 <$dim_2..$dim_n>
```


HTEntity Definition

Table A.1: Commands for creating a heat transfer ε

Type	HTEntity	Centroid	Dimension
1D	Line	x_c	l
2D	Block	x_c,y_c	b, d
	Isection	x_c, y_c	b_f,h_b,t_w,t_f
	IsectionPro	x_c,y_c	b_f, h_b, t_w, t_f, co
	Composite	x_c, y_c	b_f,h_b,t_w,t_f,b
3D	Brick	x_c, y_c	\mathbf{b} , d ,
	Isection3D	x_c, y_c, z_c	b_f,h_b,t_w,t_f
	Composite3D	x_c, y_c, z_c	b_f,h_b,t_w,t_f

HTMesh 1 1 1 -phaseChange 0 -MeshCtrls 0.01 0.005 0.005 0.014 Mesh definition HTMesh 2 2 1 -phaseChange 1 -MeshCtrls 0.02 0.02 Refine mesh to HTRefineMesh -Entity 2 -SeedTag 1 4 -space 0.02 10 0.01 9 0.005 4 0.01 9 0.02 10; match the interface nodes Do the mesh now HTMeshAll; Initialise temperature SetInitialT 293.15; 0.1m 0.4m HTNodeSet 1 -Entity 1 -face 12; -----HTNodeSe^{*} HTNodeSet 2 -Entity 2 -face 1 -locx -0.1 0.1; 0.2m Coupling nodal temperature HTCoupleT -NodeSet 1 2;


```
HTConstants 1 4.0 293.15 0.7 5.67e-8 0.7;

HTConstants 2 25.0 293.15 0.7 5.67e-8 0.7;

HTPattern AmbientBC 1 {

HeatFluxBC -HTEntity 2 -faceTag 4 -type ConvecAndRad -HTConstants 1;

}

Heat flux BC for the unexposed surface
```


FireModel standard 1; Heat transfer coefficients HTNodeSet 3 -Entity 2 -Locx -0.3 -0.1; 0.1m HTEleSet 1 -Entity 2 -NodeSet 3 -face 1; Nodal selection 0.4m HTNodeSet 4 -Entity 2 -Locx 0.1 0.3; Element selection HTEleSet 2 -Entity 2 -NodeSet 4 -face 1; 0.2m HTPattern fire 2 model 1 { HeatFluxBC -HTEntity 1 -face 1 4 5 6 7 8 9 -type ConvecAndRad -HTConstants 2; HeatFluxBC -HTEleSet 1 -face 1 -type ConvecAndRad -HTConstants 2; HeatFluxBC -HTEleSet 2 -face 1 -type ConvecAndRad -HTConstants 2; Heat flux BC for exposed surfaces


```
HTNodeSet 5 -Entity 1 -face 6;
HTNodeSet 6 -Entity 2 -Locx [expr 0] -Locy [expr -0.05] [expr 0.05];

#Recorder
HTRecorder -file temp0.out -NodeSet 5;
HTRecorder -file temp1.out -NodeSet 6;

HTAnalysis HeatTransfer

HTAnalyze 100 30;

Heat transfer analysis control
(100 steps, 30s each step)
```


Temperature history

Fire Models in OpenSEES

- Standard Fire Model
- Hydrocarbon Fire Model
- Parametric Fire Model
- Travelling Fire Model
- Used Defined Fire Models

Thank You

