Exercise: BFS and UCS

Path finding from S to G

- 1. What is the solution using BFS?
 - A) $S \rightarrow X \rightarrow Y \rightarrow V \rightarrow G$ cost=14
 - B) $S \rightarrow X \rightarrow Y \rightarrow Z \rightarrow W \rightarrow G$ cost=13
 - C) $S \rightarrow G \checkmark cost=12$
 - D) $S \rightarrow P \rightarrow Q \rightarrow G$ *cost=11*
- 2. Is BFS cost-optimal in this example? No
- 3. What is the solution using uniform-cost search (UCS)?
 - A) $S \rightarrow X \rightarrow Y \rightarrow V \rightarrow G$
 - B) $S \rightarrow X \rightarrow Y \rightarrow Z \rightarrow W \rightarrow G$
 - $\mathsf{C}) \mathsf{S} \to \mathsf{G}$
 - D) $S \rightarrow P \rightarrow Q \rightarrow G \checkmark$
- 4. Is uniform-cost search (UCS) cost-optimal? Yes

COMP7015 (HKBU) L2: Search II September 13, 2024 19 / 69

- Variables: $\mathcal{X} = \{ V_1, V_2, V_3 \}.$
- Domains: $\mathcal{D}_1 = \{R,G,B\}, \mathcal{D}_2 = \{R,G\}, \mathcal{D}_3 = \{R,G\}.$
- Constraints: adjacent variables must have different colors.

step 1: assign V_1 =R $\{\}$ V_1 =R

step 2: forward checking

step 3: assign $V_2 = G$

step 4: forward checking

$$\{\}$$
 $V_1 = \mathbb{R}$
 $V_2 = \mathbb{G}$

 $\mathcal{D}_3 = \emptyset$, terminate. September 13, 2024 50

- Variables: $\mathcal{X} = \{ V_1, V_2, V_3 \}.$
- Domains: $\mathcal{D}_1 = \{R,G,B\}, \mathcal{D}_2 = \{R,G\}, \mathcal{D}_3 = \{R,G\}.$
- Constraints: adjacent variables must have different colors.

step 5: assign $V_1 = G$

$$V_1 = R$$
 $V_1 = G$

step 6: forward checking

step 7: assign $V_1 = G$

step 8: forward checking

$$V_1 = R$$
 $V_1 = G$
 $V_2 = R$

 $\mathcal{D}_3 = \emptyset$, terminate.

- Variables: $\mathcal{X} = \{V_1, V_2, V_3\}.$
- Domains: $\mathcal{D}_1 = \{R,G,B\}, \mathcal{D}_2 = \{R,G\}, \mathcal{D}_3 = \{R,G\}.$
- Constraints: adjacent variables must have different colors.

step 9: assign $V_1 = B$

step 10: forward checking

step 11: assign $V_2 = \mathbb{R}$

step 12: forward checking

- Variables: $\mathcal{X} = \{ V_1, V_2, V_3 \}.$
- Domains: $\mathcal{D}_1 = \{R,G,B\}$, $\mathcal{D}_2 = \{R,G\}$, $\mathcal{D}_3 = \{R,G\}$.
- Constraints: adjacent variables must have different colors.

step 13: assign
$$V_3=G$$

$$V_1=R \quad V_1=G \quad V_1=B$$

$$X \quad X \quad V_2=R$$

$$V_3=G$$

Solution found: $\{V_1:B, V_2:R, V_3:G\}$

In Australian map coloring problem, can we assign WA=red, Q=green, and V=blue? Apply forward checking and show the steps.

 $\mathcal{D}_{SA} = \emptyset$, we cannot have such an assignment.

COMP7015 (HKBU) L2: Search II September 13, 2024 57 / 69