Lampiran 1. Uji Validitas dan Reliabilitas Kuesioner

1. Uji Validitas dan Reliabilitas Faktor Internal

Reliability Statistics

Cronbach's Alpha	N of Items	
.785		11

Item-Total Statistics

	Scale Mean if Item	Scale Variance if	Corrected Item-Total	Cronbach's Alpha if	
	Deleted	Item Deleted	Correlation		
Membujang Merupakan Hak	25.376	73.325	.325	.780	
Seseorang	23.370	73.323	.323	.760	
Ingin Hidup Bebas	25.566	71.327	.407	.772	
Mobilitas Sosial Mudah Dipeoleh	25.526	73.210	.358	.777	
Penampilan Kurang Menarik	26.783	71.376	.396	.773	
Cacat Fisik	26.402	68.601	.458	.766	
Penyakit Bawaan	26.283	68.886	.500	.762	
Homoseksual/lesbian	26.027	68.687	.446	.768	
Hubungan Seks Tanpa Menikah	26.316	70.370	.421	.771	
Gagal dalam Mencari Pasangan	25.943	68.103	.495	.762	
Kurang Harmonis dalam Menjalin	26 225	60 470	460	765	
Hubungan	26.235	68.478	.469	.765	
Trauma Kegagalan	26.003	66.899	.534	.757	

2. Uji Validitas dan Reliabilitas Faktor Eksternal

Reliability Statistics

Cronbach's Alpha N of Items
.851 10

Item-Total Statistics

	Scale Mean if Item	Scale Variance if	Corrected Item-Total	Cronbach's Alpha if
	Deleted	Item Deleted	Correlation	Item Deleted
Sibuk Belajar	21.721	81.779	.543	.838
Kurang Berpendidikan	22.295	82.934	.488	.842
Belum Memiliki Pekerjaan	21.975	84.691	.420	.848
Mengalami Tuntutan Ekonomi	22.101	80.770	.611	.832
Ingin Meniti Karir	22.290	82.757	.477	.844
Besarnya Kesempatan untuk	22.100	80.051	.592	.833
Meningkatkan Karir	22.100	00.031	.592	.033
Jarang Berkumpul dengan Lawan	21.974	78.950	.654	.828
Jenis	21.374	70.330	.034	.020
Tidak Ingin Memikul Tanjung Jawab	22.686	83.313	.507	.841
Keluarga	22.000	03.313	.501	.041
Masih Memiliki Tanggung Jawab	22.173	80.609	.597	.833
Keuangan	22.173	00.009	.591	.033
Kehidupan Keluarga yang Tidak	22.096	79.556	.638	.829
Bahagia	22.030	7 3.330	.030	.029

Lampiran 2. Kuesioner Penelitian

KUESIONER PENELITIAN

"DETERMINAN FAKTOR-FAKTOR PERILAKU PRIA MEMBUJANG DI KOTA DENPASAR"

Responden Yang Terhormat

Penelitian ini dilakukan oleh mahasiswa Fakultas MIPA Universitas Udayana dalam rangka menyelesaikan studi di Fakultas MIPA Universitas Udayana.

Maksud dan tujuan dari penelitian ini adalah untuk mengetahui determinan dari faktor-faktor yang mempengaruhi perilaku pria yang membujang di Kota Denpasar.

Demikian pengantar dari saya, semoga penelitian ini memberikan manfaat bagi kita semua. Pada kesempatan ini, tidak lupa saya ucapkan terima kasih kepada para responden yang telah bersedia meluangkan waktu dan memberikan data/informasi yang sebenarnya terkait dengan penelitian ini.

Denpasar, 2017

Berikan jawaban atas pertanyaan-pertanyaan di bawah ini dengan mengisi titik-titik atau dengan meletakkan simbol \checkmark jawaban yang sudah tersedia.

Α.]	dentitas Responden					
	1.	Suku	:	O Bali	O J	awa	
				O Lainnya, yaitu:			
	2.	Usia	:	tahun			
	3.	Jenis Kelamin	:	O Laki-laki	0	Perempu	ıan
	4.	Status Pernikahan	:	O Belum menikah	0	Menikah	, tanpa anak
				O Menikah, dengan anak	(O	Duda/jan	da
	5.	Tingkat Pendidikan	:	O SD sederajat O SM	MP Se	ederajat	OSMA Sederajat
				O Diploma O Sar	rjana	(O Pascasarjana
	6.	Jenis Pekerjaan					
		Pekerjaan Utama	:	O Pegawai Swasta	0	PNS	O TNI/POLRI
				O Wiraswasta	0	Pelajar/l	Mahasiswa
				O Profesional, yaitu: .			
				O Lainnya, yaitu:			
	7.	Penghasilan Keluarga	pe	r Bulan			
		Penghasilan Tetap	:	O < Rp 5.000.000,-	O Rp	5.000.00	00 – < Rp 7.500.000
				O Rp 7.500.000 – < R	p 15.	000.000	$O \ge Rp \ 15.000.000$
	8.	Status tempat tinggal		: O Milik sendiri	O M	1 engontra	ak
	Ri	la anda helum menika	h i	mohon diisi dua pertany	yaan l	nerikut s	ebelum anda menjawab
		em pernyataan nomer B		monon unor una pertuny	aum (ormut, s	coolsin undu menjuwuo
	9.	Apakah ada keluarga y		na ditangguna : O Iva		,	O Tidak
	7.	Apakan ada keluarga	yaI	ig uitanggung . O Tya			J Huak

10. Jumlah keluarga yang dibiayai :..... orang

B. Faktor-faktor Perilaku Pria Membujang

Berikan pendapat anda terkait faktor-faktor yang mempengaruhi perilaku pria membujang. Pernyataan-pernyataan berikut dijawab dengan meletakkan simbul X pada garis yang bersesuaian dengan pendapat Anda. Bila pilihan sebelumnya dianggap kurang tepat, maka simbul X dicoret (£) dan diganti dengan simbul yang sama pada posisi yang dianggap lebih tepat. Nilai yang mendekati 0 menunjukkan pendapat anda yang **paling negatif** (sangat tidak setuju) dan nilai yang mendekati 5 menunjukkan pendapat anda yang **paling positif** (sangat setuju).

Pernyataan	Persepsi Anda
Saya berpendapat, hidup membujang merupakan hak seseorang untuk memilihnya.	0 5
Saya berpendapat, hidup membujang dipilih seseorang yang ingin hidup bebas tanpa terikat dengan status perkawinan	0 <u>5</u>
Saya berpendapat, mobilitas sosial lebih mudah diperoleh dalam keadaan lajang	0 5
Saya berpendapat, penampilan yang kurang menarik mengakibatkan seseorang memilih hidup melajang	0 <u>5</u>
Saya berpendapat, mengalami cacat fisik mengakibatkan seseorang memilih hidup membujang	0 <u>5</u>
Saya berpendapat, seseorang yang memiliki penyakit bawaan sejak lahir mengakibatkan seseorang memilih hidup membujang	0 5
Saya berpendapat, perilaku homoseksual/lesbian mengakibatkan seseorang memilih hidup melajang	0 <u>5</u>
Saya berpendapat, mudahnya fasilitas untuk melakukan hubungan seksual tanpa menikah mengakibatkan seseorang memilih hidup membujang	0 ◆ 5
Saya berpendapat, sering mengalami kegagalan dalam mencari pasangan hidup mengakibatkan seseorang memilih hidup membujang	0 5

Saya berpendapat, hidup membujang dipilih oleh seseorang yang kurang harmonis selama masa pacaran	0 5
Saya berpendapat, hidup membujang dipilih seseorang yang mengalami trauma atas kegagalan yang pernah dialami saudara/ teman dekat	0 <u>5</u>
Saya berpendapat, hidup membujang dipilih seseorang yang sedang sibuk belajar demi karir	0 <u>5</u>
Saya berpendapat, hidup membujang dipilih seseorang yang minder dengan lawan jenis karena merasa kurang berpendidikan	0 <u>5</u>
Saya berpendapat, hidup membujang dipilih seseorang yang belum memiliki pekerjaan	0 <u>5</u>
Saya berpendapat, hidup membujang dipilih oleh seseorang yang mengalami tuntutan ekonomi	0 <u>5</u>
Saya berpendapat, bekerja dengan jam kerja tanpa batas dan sering pergi keluar kota mengakibatkan seseorang memilih hidup membujang	0 <u>5</u>
Saya berpendapat, memiliki kesempatan yang besar untuk meningkatkan jenjang karir mengakibatkan seseorang memilih hidup membujang	0 <u>5</u>
Saya berpendapat, seseorang yang sibuk bekerja dan jarang mempunyai waktu untuk berkumpul dengan lawan jenis mengakibatkan seseorang memilih hidup membujang	0 <u>5</u>
Saya berpendapat, hidup membujang dipilih seseorang yang tidak ingin memikul tanggung jawab keluarga dan orang tua	<u>0</u> 5
Saya berpendapat, hidup membujang dipilih seseorang yang masih memiliki tanggung jawab keuangan dan waktu untuk keluarga	0 <u>5</u>
Saya berpendapat, hidup membujang dipilih seseorang yang mengalami kekecewaan karena kehidupan keluarga yang tidak bahagia	0 <u>5</u>

Lampiran 3. Data Penelitian

			Jenis	Status	Tingkat	Jenis		Status
No	Suku	Usia	Kelamin	Pernikahan	Pendidikan	Pekerjaan	Penghasilan	Rumah
1	2	34	1	1	3	4	1	2
2	1	52	2	3	3	7		1
3	3	41	1	1	5	1	1	2
4	2	45	1	1	3	1	1	2
5	1	28	1	1	3	1	1	2
6	1	35	1	1	3	4	1	2
7	1	31	2	3	5	1	2	2
8	1	42	2	3	3	6	1	2
9	1	48	1	3	3	4	2	1
10	1	27	1	1	3	1	1	1
11	1	27	1	1	3	1	2	2
12	1	26	1	1	3	3	1	1
13	1	40	1	1	3	6	1	1
14	1	38	1	1	3	3	2	1
15	1	25	1	1	3	1	2	1
16	1	27	1	1	4	1	3	1
17	2	27	1	1	3	4	2	2
18	1	25	1	1	3	4	2	1
19	1	25	1	1	3	1	1	1
20	1	48	2	3	3	4	1	1
21	1	25	1	1	3	1	1	1
22	1	27	1	1	3	1	1	2
23	1	25	1	1	3	6	2	1
24	1	29	1	1	3	3	2	1
25	2	27	1	1	3	1	1	2
26	1	25	1	1	4	1	2	1
27	1	25	1	1	3	1	1	2
28	1	26	1	3	3	1	1	2
29	1	26	1	1	5	1	1	2
30	2	26	1	1	5	1	1	1
31	1	31	1	3	4	1	1	2
32	2	28	2	3	5	1	3	1
33	1	26	2	3	3	1	1	2
34	2	25	2	4	3	1	1	2
35	2	28	1	1	3	3	2	2

36	1	26	1	1	3	1	1	2
37	1	38	2	3	1	4	1	2
38	1	45	1	2	2	4	1	2
39	1	27	1	1	4	1	2	2
40	1	30	2	3	3	1	1	1
41	1	29	2	2	3	4	1	1
42	1	45	1	3	3	1	1	2
43	1	40	1	3	3	1	1	2
44	1	29	2	2	4	1	1	2
45	1	44	2	3	3	7	1	2
46	1	34	1	3	3	1	1	1
47	1	25	2	3	3	2	2	1
48	2	25	1	4	3	5	1	1
49	1	40	2	3	3	2	2	1
50	1	50	1	3	3	4	1	1
51	2	48	2	3	4	2	1	1
52	1	25	2	2	4	4	1	1
53	1	31	2	3	3	7		1
54	1	33	1	3	3	1	1	1
55	1	52	1	3	3	1	1	1
56	1	26	1	2	6	2	1	1
57	1	48	1	3	3	4	2	1
58	2	38	1	1	2	4	1	2
59	1	34	1	3	3	1	2	2
60	2	30	2	3	2	1	1	2
61	1	30	1	1	3	1	1	2
62	1	40	1	1	3	1	1	2
63	1	40	2	3	3	1	1	2
64	1	45	2	3	5	1	1	1
65	1	35	1	1	4	4	1	2
66	2	38	1	2	3	1	1	2
67	1	45	1	3	3	1	1	1
68	1	43	2	3	3	1	1	1
69	2	30	2	3	2	1	1	2
70	2	36	2	3	1	1	1	2
71	1	26	2	3	3	1	1	2
72	1	28	1	3	2	1	1	2
73	1	29	1	1	3	1	1	2
74	1	27	1	1	3	4	1	2
75	1	30	1	3	2	1	1	2

76	1	40	1	1	4	1	3	2
77	1	44	2	3	2	7		2
78	1	42	2	3	3	1	1	2
79	1	46	1	3	3	1	1	2
80	2	45	2	3	3	1	1	2
81	1	27	2	3	3	1	2	2
82	1	27	1	3	3	1	1	2
83	1	46	1	3	2	1	1	2
84	1	25	2	2	3	1	1	2
85	1	44	1	3	1	1	1	2
86	1	42	2	2	2	4	1	2
87	1	46	1	3	3	1	1	2
88	2	30	1	2	3	1	1	2
89	1	28	1	1	4	4	1	2
90	1	25	1	1	4	1	1	1
91	1	27	2	3	4	1	2	1
92	1	28	1	3	3	1	1	2
93	1	29	2	3	2	7		2
94	1	30	1	3	2	1	1	2
95	1	48	2	3	2	4	1	2
96	1	53	2	3	3	2	2	2
97	1	50	1	3	2	4	2	1
98	1	45	2	2	3	1	1	1
99	1	39	2	3	3	4	1	1
100	1	31	2	3	3	7		1
101	1	39	1	3	3	4	2	1
102	1	46	2	3	5	4	3	1
103	1	45	1	3	3	1	1	1
104	1	29	1	1	5	1	1	1
105	1	32	2	3	5	1	1	1
106	1	26	1	1	3	2	1	1
107	1	27	1	1	5	4	3	1
108	1	27	1	1	3	1	1	1
109	1	40	2	4	3	1	1	2
110	1	26	1	1	2	1	1	1
111	1	26	1	1	3	1	1	1
112	1	27	2	3	5	1	1	2
113	1	43	2	3	5	1	1	1
114	1	38	2	3	3	4	1	1
115	1	27	2	3	5	1	1	1

116	1	25	1	1	4	1	1	2
117	1	27	2	3	5	1	1	2
118	1	50	2	3	3	4	1	2
119	1	48	2	3	3	3	1	1
120	1	30	2	3	4	7	1	1
121	1	34	2	3	5	7	1	1
122	1	29	2	3	3	1	1	1
123	1	45	2	3	5	1	2	2
124	1	37	2	3	5	1	1	1
125	1	35	2	3	6	1	2	1
126	1	29	2	3	4	1	1	1
127	1	48	2	3	3	1	1	1
128	1	27	2	3	4	1	1	1
129	1	28	2	3	6	6	2	1
130	1	48	2	3	3	4	2	1
131	1	46	2	3	3	7		1
132	1	47	2	3	3	1	1	1
133	1	41	2	3	3	4	2	1
134	1	29	2	3	4	1	1	1
135	1	37	2	3	5	1	1	1
136	1	31	2	3	4	4	1	1
137	1	25	2	2	5	6	1	1
138	1	32	2	2	1	6	1	2
139	1	25	2	2	2	1	1	2
140	1	36	2	3	5	4	2	1
141	1	28	2	3	4	1	3	1
142	1	33	2	3	3	1	4	1
143	1	29	2	3	6	6	2	1
144	1	28	2	2	6	6	2	2
145	1	50	2	3	3	1	1	1
146	1	30	2	3	5	7	2	1
147	1	25	2	3	4	1	1	1
148	1	28	2	2	4	4	1	1
149	1	35	2	3	4	1	1	1
150	1	27	2	3	5	6	1	1

Lampiran 3. (Lanjutan)

				Ite	n Pernyata	aan				
IND11	IND12	IND13	IND21	IND22	IND23	IND31	IND32	IND41	IND42	IND43
0.6	0.7	0.6	0.8	0.8	0.9	0.5	0.7	0.7	0.5	0.5
3.7	2.4	4.5	2.3	2.2	2.3	2.5	2.6	0.7	0.4	1.8
1.5	1.6	1.7	1.4	1.3	1.4	1.3	0.4	2.3	3.1	0.9
3.8	2.8	2.8	0.7	0.7	0.8	1.8	0.9	1.8	0.9	1.8
3	4.3	2.3	0.5	0.4	0.5	2.5	4.3	0.5	0.3	2.4
4.2	1.1	2.8	0.4	0.4	0.3	0.4	0.3	0.6	0.5	0.4
4	4	3.8	0.6	2.5	2.5	4.5	2.5	4.3	2.4	4.2
0.5	0.5	1	0.4	1.3	2.3	4.2	2.3	0.5	0.4	0.4
4.2	4.1	4	2.5	0.7	0.7	0.8	0.8	0.7	0.5	0.7
2.2	3	4.1	1.1	2.1	2.6	1	2.2	1.2	0.5	1.1
3.4	1.7	3	2.5	1	1.9	4.3	1.5	3.5	1.6	3.1
3.3	2.6	2.1	2.9	3.7	4.2	1	2.7	4.1	3.5	1.6
4.1	3.9	3.7	0.9	1	2.8	0.8	0.7	0.7	1	2.4
3.1	2.2	3.9	1.2	1.1	2.2	1.1	1	1	0.7	2.4
4.3	4	4.1	1	4.5	2.5	1.6	2.2	2.1	2.2	0.9
5	3.1	3.1	2.3	3.1	3	3.1	1.1	3.9	2.8	2.3
4.1	2.5	3.9	1	1	2.6	0.6	0.7	0.8	1	2.8
5	3.8	4.3	0.9	0.9	1.7	1.4	2.6	3.6	4.2	2.2
4.6	4.5	4	0.6	2.5	2.5	1	0.3	2	0.4	2.2
4.8	4.7	4	0.2	0.5	4.5	4.6	4.6	4.7	4.6	4.5
4.5	4.5	4	0.6	2.5	0.9	1.6	0.6	0.6	1.4	1.3
4.2	4.1	4	0.3	1.1	1.3	1.5	3.5	4.6	4.4	0.3
3.6	3.6	2.1	1.4	2.6	1.4	1.3	2.5	3.5	3.9	0.5
2.3	2.3	1.4	0.5	1.7	1.8	2	3.9	2.7	4.7	0.3
4.5	4.5	3.9	0.5	4.6	2.5	1.7	0.6	2.3	3.1	2.5
2.4	4.6	2.3	3.4	1.4	2.5	4.6	4.5	4.5	3.3	4.2
2.2	2.3	3.9	2	0.2	1	3.9	3.9	4	0.9	1
1	0.5	0.4	0.5	0.4	0.5	0.6	0.5	4.5	4.1	4.1
3.4	1.4	2.4	2.5	2.5	0.9	3.5	2.3	2.5	0.9	2.6
0.7	0.6	1	5	5	5	2.5	2.8	2.5	1.8	3.2
2.3	2.3	2	0.8	0.8	0.9	0.6	0.5	0.5	0.7	0.7
0.7	0.7	0.8	0.5	0	0	2.5	1	3	0	2.7
2.3	0.8	2.1	0.6	0.6	0.6	2	2	2	2.5	0.6
4.2	4.1	4	3.9	3	2.4	1.5	3.2	4.2	3.4	4.1
4.7	2.3	3.6	1.4	3.5	2.5	4.5	4.4	0.4	4.3	4.3

3.7	2.9	3.5	2.1	1.6	2.8	1.4	2.7	3.6	1.4	1.4
4.7	2.3	4	0.4	4.5	4.5	4.3	4	2.7	2.4	0.7
2.5	3.5	3.5	3.3	3.2	3.1	3.2	1.8	1	0.9	1
4.1	4.4	3.9	1.4	3.9	2.6	4.6	4.7	4.1	0.9	5
2.6	2.4	2	2.3	2.4	2.3	1.8	1.9	2	1.9	1.9
4	4.1	4.2	4.4	4.3	4.3	4.5	2	4.2	4.1	3.3
4.4	4.4	4	0.6	0.8	4.2	1	1.1	0.8	4.5	4.2
3.9	1.8	2.5	1.4	1.6	2.3	3	1.8	4	3.8	3.6
4.1	4.1	4.1	3.1	5	4.6	3.7	3.9	4.1	4.1	4.1
1.3	0.6	0.5	0.7	4.2	4.2	2.8	4.3	0.6	4.3	0.7
4	2.6	2.5	2.4	3.3	3.5	4.5	4.4	3.3	4.2	4.3
4.1	4.1	4.2	4.3	4.4	4.4	4.4	4.3	4.4	3.3	4.3
3.7	4.1	4.6	1.1	4.1	4.1	4.5	4.6	4.7	4.7	4.4
4.3	4.3	4	4.4	4.3	3.4	4.6	4.5	2.5	4.2	4.2
3.5	3.2	3.5	2.2	1.2	1.3	3	2.1	2.5	2.4	2.7
2.3	4.4	2.3	0.3	0.4	0.4	4.4	3	1.8	2.1	2.5
0.4	1.5	1	2.5	3.8	4.5	2.7	4.9	2.2	1.3	3.3
3.9	2.7	3.2	3.6	2.7	3.2	3.2	2.5	2.9	3.3	2.9
1.9	1.5	2.6	1.3	1.4	1.7	2.6	1.9	2.4	2.5	2.4
3.2	3.9	3.4	1.1	3.3	4.2	4.2	2.6	5	5	5
2.9	3	3	3.6	2.5	1	4.4	4.1	0.7	0.5	0.6
2.1	2.2	2.5	0.8	3.5	3.2	1.1	0.8	2.4	2.4	1
4.6	4	4.6	0.5	0.5	0.5	4.7	4.6	4.8	0.5	0.4
4.7	4.8	4	0.5	0.5	0.6	4.6	2.8	4.6	4.6	4.6
5	4	4.7	0.3	4.6	4.6	0.3	0.3	1.7	0.3	4.7
0.4	0.4	0.3	0.4	0.4	0.4	0.3	0.3	0.4	0.5	0.5
4.4	2.2	4.5	4.2	0.5	2.1	0.5	0.5	0.5	0.3	4.1
4.5	4.5	4	2.8	2.9	4	4.3	4.3	4.3	4.4	4.5
3.8	4	4.2	1.2	1	1	3.6	2.1	3.6	3.2	3.2
2	2.1	3	2	2.5	1.6	3.9	2	3.4	2.2	2.1
0.9	0.8	1.5	4.4	4.5	4.1	2.5	1.5	4.4	0.6	4.5
1.1	3.1	2.6	2.2	3.8	3.4	1.6	1.8	2	2.3	1.7
2.6	4	3	2.5	3.7	4.1	2.7	3.1	2.5	2	1.5
4.6	4.6	4.5	2.5	2.6	2.7	0.6	0.6	0.7	0.6	0.5
2.3	2.5	3	2.4	2.8	0.7	0.6	0.5	0.6	0.6	0.5
1.2	0.5	0.6	0.5	0.5	4.6	4.6	4.7	0.6	0.4	0.5
0.5	0.5	1	4.5	2.5	0.5	0.5	0.5	4.5	4.5	4.5
0.5	0.3	0.4	0.4	0.5	0.5	0.4	0.3	0.5	0.3	0.4
0.4	0.5	0.4	0.4	0.3	0.4	0.4	0.3	0.2	0.3	0.3
4.6	4.7	4.8	4.7	4.7	3	0.3	1	4.8	4.6	4.6

0.5	0.3	0.4	2.5	4.6	4.6	4.5	2.7	4.5	4.6	4.6
4	3.3	4.3	2	4.1	4	4	3	2.4	4.3	2.4
4.6	4.6	4	0.5	0.5	0.5	0.5	0.6	0.5	0.4	0.5
4.6	4.6	4.2	2.5	3.1	2.5	2.5	2.3	3.8	4	4.3
1	1	1	4.5	4.6	2	0.5	1.5	4.6	4.5	0.5
1	0.5	0.5	4.5	4.5	3	4.5	4.5	4.6	0.3	0.5
4.7	4.7	4.3	4.2	4.2	3	0.4	0.4	0.4	4.6	4.7
5	5	5	0	0	0	0.5	0.5	0.5	0.5	0.6
0.3	0.5	0.9	4.8	4	2.2	1	0.3	4.5	4.1	3.9
4.2	4.3	2.1	0.4	2.3	2.3	2.3	2	0.9	0.6	2
1.2	3.3	1.2	1.1	1	3.6	3.2	1.1	3.3	1.1	0.9
3.7	3.4	1.2	2.5	2.4	2.5	1.1	2.5	4	2.4	4.5
1	1.5	1	1	2.5	3.5	4.2	2.7	0.9	0	0
2.4	1.1	2.4	1	0.5	0.5	1.8	2.1	2.6	2.3	0.8
4.5	4	4.6	0.5	0.5	0.5	2.5	1.2	0.5	0.4	0.5
3.8	4.1	3	1.8	2	1.1	3.8	2.1	1.8	2.4	3.3
2	2	1.9	0.5	0.6	0.8	2	1	4.3	2.3	4.3
4.7	4.5	4.5	0.4	0.4	2	1	0.4	0.4	1	0.5
3.8	3.8	3.9	1	1.4	3.9	3.7	1.9	1	0.8	4.4
3.6	2.4	3	1	2.4	2.3	2.4	1	3.9	1	2.3
4.6	3.9	4	3.6	3.8	3.9	4.6	2.7	4.6	2.8	3.8
4.6	4.5	4.5	0.5	0.5	0.5	4.5	4.5	4.5	0.5	4.5
2.8	2.7	2.7	1.4	3.2	3.4	3.4	1.5	1.2	1.4	1.4
4.7	4.7	3.3	0.5	0.5	0.5	4.6	4	4.5	4.4	4.5
4.6	4.7	2.6	2.3	0.5	2.5	4.4	4.5	0.5	0.5	4.5
4.6	4.7	4	1.2	0.4	2.2	4.4	4.3	0.6	0.4	4.8
4.1	4.1	4	1.3	1.1	3.8	3.8	3.8	1.4	1.5	1.4
2.3	2	2	1.1	0.6	0.6	0.5	0.5	0.7	1.8	1.6
4.5	4.5	3.8	0.3	0.4	0.6	0.6	2.3	3.7	1	0.8
4.5	2.5	3.3	0.9	0.5	1.1	1.2	1.3	2.5	2.1	1.5
1.5	1.6	1.3	2.2	2.2	3.3	3.3	2.9	4.5	3.4	4.5
4.4	3.4	3.6	0.6	0.4	0.4	0.3	2.3	2.2	2.2	2.4
4.1	4.2	4.2	0.2	0.3	0.4	0.4	0.4	0.5	4.6	4.5
3.5	2.7	3.3	2.7	3.2	1.4	3	2.9	2.5	2.6	3.4
3.2	3.7	3.7	2.8	3.6	3	3.8	2.7	3.7	3.3	2.6
4.4	3.7	4.4	4	4.2	4.2	4.2	2.5	4.3	0.7	4.3
3.8	3.9	4	1	1	1.7	1.7	0.5	1.5	4.1	2.5
3.5	3.5	3.7	1.5	3.9	1.5	3.8	1.1	1.3	3.2	3.1
4.5	4.4	4.5	0.5	0.5	1.9	1.7	0.6	2.3	2.4	4.4
4.1	3.1	4	2.7	3	1.4	2.5	3.5	3.4	3.2	2.4

2.5	4.5	4.4	0.5	1	0.1	4.4	4	2.5	1	4.1
4.6	4.5	4.6	4.4	4.5	4.4	0.7	0.5	0.5	0.5	4.5
0.4	0.4	0.5	4.5	4.5	4.6	0.7	0.5	4.5	4.6	4.5
2.5	1	0	0	5	2.3	5	0	2.6	2.5	0.6
4.1	4	3	4.2	4.3	4.3	4.3	3	4	3	2.8
4	3.2	3.9	3.8	3.9	4	3.9	2	4	4.1	4.1
3.9	3.6	4.4	4.3	4.5	4.4	0.6	0.6	0.6	0.5	0.5
4.1	0.5	2.5	0.5	0.6	3	0.6	2.8	3	2.8	2.7
4.1	3.5	4.3	3.3	3.3	4.2	4.3	4.3	4.2	3.4	2.5
5	5	5	0	0	0	0	3	4	2	0
2.8	3.5	3.1	2.9	3	3.5	2.9	3.4	3.3	2.7	3.9
4.5	4	4	0.5	0.4	0.3	0.3	0.3	4.6	0.5	4.6
4.5	4.7	4.5	1	4.4	4.5	4.5	0.5	4.4	4.5	4.4
5	5	3.8	1	0	0	5	3.7	4	1	1
3.7	1.3	4.1	0	1	2.5	4.3	4.7	4.2	3.8	3
2.4	3.3	3.2	2.2	2.4	3.7	5	5	2.4	5	2
2.4	2.5	4	1	1.1	1.1	0.5	2.4	2.5	4	3.8
4.3	4.4	5	0.4	0	2.5	2.5	2	2.5	2.5	2.4
2.8	3.5	3.1	2.9	3	3.5	2.9	3.4	3.3	2.7	3.9
4.1	3.5	4.3	3.3	3.3	4.2	4.3	4.3	4.2	3.4	2.5
4.3	4.6	4.1	4.7	4.6	3.9	4.5	4	4.4	4	4.5
3.8	5	2.8	4	4.1	4	5	5	5	4	4
3.5	3.9	4.3	2.6	3.7	4.4	2.6	2	4.3	4.4	4.6
3.4	3.6	3.6	2.3	2.3	2	2.6	2.6	0.7	0.8	0.8
4	4.3	3.5	0.8	1.6	0.7	5	4.8	5	5	5
0.4	4.4	4.5	0.6	0.4	0.4	4.5	4.5	4	4	4.5
0.7	0.5	0.6	0.7	0.8	0.8	4	4.1	4	4	4.1
3.3	2.3	3.7	1.9	1.8	1.8	2.2	2.3	3.2	3.2	2.4
1.5	2.5	1.6	2.5	3.5	2.2	3.9	1.5	3.2	3.3	3.1
4.6	4.5	4	4	4.5	4.3	0.5	0.5	4.5	4.5	4.4
4.1	4	4	2.5	2.1	2.3	2.5	2.6	2.5	2.7	2.9
3.3	2.3	2.2	2.2	1.5	1.7	2.3	2.6	1.6	1.8	1.7
3.5	3.2	3.9	3.5	3.7	3.6	4	4.3	3.5	2.9	3.2
4.5	4.6	4	4.7	4.4	4.6	4.6	4	4.4	4.4	4.3
2.9	3.4	3.5	2	1.2	2.5	1.3	2	2.5	3.1	3.2

Lampiran 3. (Lanjutan)

	Item Pernyataan										
IND51	IND52	IND53	IND54	IND55	IND56	IND57	IND61	IND62	IND63		
0.6	0.5	0.5	0.6	1.2	1.3	1.2	0.5	0.6	0.8		
1.9	2.8	3	1.8	3.1	2.2	3.5	0.8	1	2.7		
0.7	0.5	3.5	3.8	3.8	0.7	2.2	0.3	0.5	3.5		
3	2	3.1	1.9	0.8	2.8	3	0.8	1.9	3.1		
4.7	0.4	2.1	0.3	0.5	0.5	0.5	4.5	4	4.6		
0.4	0.3	0.3	0.3	0.3	0.3	0.7	0.2	0.3	0.3		
4.2	3.8	4.3	4.4	4.3	3.8	4	4	4.4	4.3		
0.4	4.5	0.3	2.3	4.7	4.6	4.5	2	1.8	2.3		
3.4	1.9	2.9	2.6	2.6	0.8	0.9	0.9	0.9	0.7		
4	2	2.1	1.1	3.5	4.2	0.4	3.4	2.7	4.5		
0.9	0.6	2	2.5	2.1	0.8	0.5	1.7	2.2	1.1		
4.5	3.9	3.6	2.1	3.6	3.8	3.2	1.5	1.5	1.1		
2.5	2.5	0.7	0.6	0.7	2.5	2.5	0.9	0.9	0.8		
2.4	2.5	1.1	1.1	0.4	0.4	2.4	2.5	0.6	0.7		
2.4	0.2	0.8	2.5	2.5	1.5	2.9	2.5	4	4.2		
3.7	1.6	3.6	3.5	2	2.6	2.5	3.6	1.7	3.3		
2.7	2.6	1.3	0.6	0.5	2.6	2.6	2.4	1	1		
4.1	0.9	2.3	2.2	4.1	4.1	4	1.1	2.6	1		
2	0.4	4.7	4.5	2.1	2.1	2.1	0.5	2	2.1		
4.6	4.6	0.4	4.7	5	0.6	4.8	2	4.8	4.8		
0.4	0.5	0.4	0.5	0.7	0.5	1.5	0.6	1.4	0.4		
4.1	2.4	0.3	2.4	0.6	3	0.2	0.3	0.4	0.4		
4.6	2.6	0.7	2.5	0.6	4.6	0.6	1.3	0.3	1.1		
4.7	0.3	2.2	2.3	1.9	2.1	2.1	0.4	0.4	1.1		
1.4	2.6	3.8	2.5	0.7	2	4.5	0.9	1.1	2.7		
3.4	2	1.3	3.3	1.9	0.3	1.1	1.5	1.7	0.3		
2.7	2.5	3.9	2.6	3.7	4.2	4.2	2.1	4	4		
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.9	4.1	2.9		
3.9	2.6	4	2.3	1	2.5	1.8	1.8	3.5	1		
5	5	0.7	2.5	0	2.5	3.8	0.2	4.3	3.8		
2.3	1.3	4.1	2.3	2.5	3.3	2.3	0.6	2.5	0.6		
5	0.6	0.6	4.1	5	5	0.9	0	3.4	2		
0.7	1	2.2	2.3	2.1	2.2	0.5	0.6	0.9	2.2		
2.5	2.5	2.5	3.1	2.3	3	2.3	2.4	3.4	2.5		
2.6	3.3	0.5	1.5	4	4.3	3.5	0.5	1.9	3.6		

2.6	1.3	2.8	3.6	2.7	1.7	1.9	1.1	2.6	1.3
0.5	1.6	2.4	0.6	0.5	0.5	0.5	0.5	0.3	2
1	1.1	3.6	1.1	1.1	1	0.9	0.8	0.9	0.9
2.5	4.1	4.3	5	2.6	4.4	4.3	2	5	5
2.3	2.3	2.3	2.1	2	2	2.2	1.9	1.3	1.5
4.5	4.5	4	4.6	4	4.1	3.6	2.9	3.5	3.9
0.5	4.4	0.6	0.6	0.7	0.8	0.8	1.8	4.2	4.4
2.4	1.6	3.8	4	2.4	2.5	1.4	1.6	1.7	3.4
4	2.9	3	3.1	3.1	3.3	3.4	1.9	2	2
0.8	4.1	0.6	0.9	0.7	0.7	0.8	1	0.8	0.8
3.3	4.6	4.5	4.4	1.5	1.8	1.8	2.9	1.6	2.7
3.1	1.2	1.1	4.2	1	3.9	3.9	2.1	4	2.5
4.5	3.2	3.1	3.1	3.4	4.4	3.4	1.5	4.1	2.6
4.3	2.6	2.7	4	4.1	1.5	3.1	0.6	3.1	2.3
2	2.2	2.9	2.5	1.6	2.9	2.2	2.2	2.5	2.9
2.3	2.7	2.5	0.4	0.5	2.2	1	0.9	1	1.1
2.3	4	2	0.8	0.4	0.5	0.3	0.4	0.4	0.4
2.8	3.2	3.2	3	2.4	2.4	2.5	2.8	2.9	2.7
2	2.5	2.3	2.3	2.3	2	2.4	2.4	2.2	2
3.5	4.5	4.5	3.2	4.2	3.8	5	3.5	3.8	3.9
0.9	0.8	4.8	2.4	0.8	0.9	1.1	0.6	0.9	0.6
1.2	0.5	2	2.3	0.8	0.7	0.5	0.5	0.8	0.5
4.6	0.5	0.4	0.5	4.7	4.6	4.7	0.3	1.8	0.5
4.6	0.5	4.6	4.6	0.5	0.5	0.5	0.6	4.6	4.5
0.5	4.5	2	2	0.5	4.5	0.5	0.5	4.5	4.4
0.5	0.5	0.5	0.6	0.5	0.3	0.3	0.3	0.4	0.4
4.3	0.5	0.7	0.6	3.7	4.3	1.1	1	4.5	4.1
4.5	4.3	4.3	4.3	0.7	4.4	4.5	1.8	4.3	4.3
3.3	1.2	4	4	4.1	0.9	2.5	0.7	0.9	0.9
4	2.1	2.1	3	2.9	3.8	2.7	1.2	3	2.5
2.5	4.3	4.3	4.2	0.6	4.6	2.7	0.3	0.4	4.6
2.4	1.6	3.9	3.8	3.2	2.5	3.2	2.4	3.3	2.5
2.1	1.7	3.6	4.1	3.3	2.6	4	3	3.5	2.2
4.6	4.3	4.3	4.5	0.5	2.4	2.5	0.6	0.6	0.5
0.5	2.6	2.6	2.5	4.1	4.3	4.4	0.6	0.6	0.8
0.5	4.5	2.5	2.4	4.7	0.5	0.6	4.5	0.5	0.5
0.5	0.4	0.5	2.5	1.6	0.5	4.7	0.5	0.5	0.7
0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.3	0.3	0.4
1.5	0.4	0.4	0.3	0.4	0.4	0.4	0.5	0.5	0.5
4.6	4.6	0.4	4.7	4.6	0.3	0.5	2	4.6	4.7

4.5	4.2	4.6	4.6	0.5	4.6	4.6	0.5	4.6	4.6
4.4	2.3	4.3	4.2	4.2	4.1	4.1	0.1	4.5	2.4
0.5	0.5	4.7	0.5	0.5	0.6	0.5	0.6	0.7	0.6
4.6	1	4.6	2.5	2.4	4.6	4.6	0.3	1.4	2.5
0.5	4.6	4.6	0.4	4.6	0.5	0.6	4.6	0.5	0.5
4.7	0.3	4.5	4.6	0.4	4.6	4.6	0.5	4.5	4.5
4.6	0.3	0.4	0.5	4.7	4.7	4.6	4.5	2.7	4.2
0.5	0.4	4.6	0.4	0.3	0.4	0.5	0.4	0.3	0.2
3	2.8	4.5	2.8	3.7	3	2.9	0.5	1	2.4
0.8	0.7	0.5	0.7	0.7	0.6	0.6	0.7	1	1
0.8	1	3.5	1.3	3.4	1	1	3.3	1.2	1.4
2.6	2.7	0.7	0.6	2.4	2.3	0.6	0.5	2.1	4.2
5	1.1	0	0.5	3.9	2.6	2.5	0.4	0	2.3
1.8	0.6	2.3	2.4	1.3	0.7	2.1	0.4	2.3	0.6
0.5	0.4	0.4	2.3	0.4	0.5	2.3	0.5	0.5	0.3
2.2	2.8	2.5	3.5	3.2	1	2.6	4.5	2.7	3.4
4.2	4.1	2.3	0.9	0.5	0.3	1.6	3.7	2	2.5
4.7	0.5	0.5	0.4	0.3	0.5	0.5	0.5	2.5	0.5
4.4	4.4	0.6	0.6	0.6	0.5	4.5	0.5	2.9	4.3
3.8	1	3.7	2.7	0.7	2.1	3.5	2.3	3.2	3.8
4	2.5	3.6	4.1	4.6	1	2.5	0.3	2.5	3.9
4.4	0.5	4.5	0.5	0.5	0.5	4.2	0.6	0.6	0.5
3.5	1.4	1.4	3.5	3.5	3.4	3.1	3.3	3.4	3.5
0.5	0.4	0.5	0.5	0.6	0.5	0.5	0.4	0.4	0.6
4.4	0.3	4.6	0.4	0.3	4.5	4.5	4.5	0.5	4.4
4.8	0.4	4.7	0.4	0.5	4.8	4.8	4.7	0.4	4.8
1.3	1.1	1	3.5	1.1	1.2	3.7	3.6	1	3.6
0.9	1.6	2	1.5	1	1.9	1.7	0.9	1	1.1
3.7	0.5	0.4	0.5	3.3	3.5	3.8	0.7	3.7	0.5
2.7	2.2	3.3	1	3	4.1	2.2	1.3	3	1.1
2.4	1.1	2.3	3.5	1	2	0.8	2.8	3.8	3.8
1.5	2.5	2.6	2.3	2.4	2.4	2.5	2.5	2.6	2.6
4.4	0.3	4.5	0.5	0.5	0.5	0.5	4.1	4.1	4.1
2.9	2.9	3.7	3	2.4	2.3	2.2	3.2	2.7	2.7
3.6	2.9	3.9	2.6	3.7	2.5	3.6	2.4	3.6	2.6
0.6	4.5	0.5	4.5	4.3	0.7	0.6	0.5	4.5	0.5
3	0.5	1.5	1.3	4	4	4.1	4.1	2.5	2.4
1.2	3.5	3.5	3.4	1	1.5	3.3	3.3	3.2	3
0.5	1.9	0.5	4.4	0.5	1.7	4.3	4.1	2.3	4.5
3.1	4.9	2.5	3.4	3.4	4.2	3.5	2	2.4	2.5

4.4	2.3	0.4	0.7	2.3	4.5	4.2	2.5	4.1	3.5
4.5	4.5	4.6	4.5	4.5	4.4	4.6	2.9	4.6	4.6
4.5	4.5	4.5	4.5	0.6	4.5	4.5	4.5	4.5	4.5
0.5	0	2.5	2.4	0	0	0	1	5	0
3.4	2.4	2.4	3	2.2	3.2	2.4	2.4	3.4	3
4.5	4.5	4.3	4.5	5	5	5	5	5	3.8
0.4	0.5	0.5	0.4	0.4	0.4	0.4	0.5	0.5	0.5
2.6	4.5	2.6	2.6	2.7	2.9	4.6	4.4	0.7	4.6
4.3	4.1	4.2	4.1	4.2	4.3	4.1	2.5	3.3	3.4
4	0	0	3	5	5	3	0	2	3
2.8	3.8	2.6	3.7	2.5	3.5	2.4	2.8	2.7	3.2
0.5	4.6	4.6	4.5	4.6	0.5	4.4	4.5	4.5	4.5
4.6	4.3	4.5	4.5	4.5	4.5	4.7	4.5	4.3	4.2
3.8	2.7	2.5	2.5	4	3.9	2.5	1.1	1.1	1.1
4.3	1.2	4	1.3	1.2	4.1	4.4	4.6	4.4	3.9
5	0.9	4	2.5	4.6	2.5	2.5	0.5	3.8	0.5
5	2.4	5	5	5	5	5	5	5	4
2.3	0	0	0	0.5	2.4	4.4	2.5	2.5	4.2
2.8	3.8	2.6	3.7	2.5	3.5	2.4	2.8	2.7	3.2
4.3	4.1	4.2	4.1	4.2	4.3	4.1	2.5	3.3	3.4
4.3	4.7	4	4.1	4.8	4.3	4.7	1.6	1	1.2
5	4.3	4	2.8	2.9	2.8	4	3.9	4	4.1
4.7	4.6	4	3.9	0.9	0.4	4.5	4	4.7	4.3
2.2	2.2	3.1	0.8	0.9	0.9	1	1	1.1	2.4
3.8	3.7	3	4.2	4.5	4.2	5	4	5	5
4.5	4.4	4	4.4	3.9	3.8	4.3	4.5	4.4	4.3
4.2	3.8	3.5	4	4	3.9	4	3.9	4.2	4.1
3.7	2.4	2.2	3.7	3.6	3.5	3.6	1.3	2.8	2.3
3	2.3	1.5	1.5	3.2	2.8	1.7	1.4	1.5	2.4
4	4.5	4.5	4.5	4.5	4.5	4.5	4.4	4.5	4.3
2.9	3	3.2	3.1	3.3	3.3	3.5	3.3	3.2	3.1
2.6	1.6	5	2.3	2.1	2.5	2.5	2.5	2.6	1.2
3.4	3	4	2.5	2.6	4	2.7	3.4	2.3	3.6
4.4	4.4	4.5	4.4	4.5	4.5	4.5	4.6	4.3	4.5
3.3	3.4	3.4	1	1.1	3	3.4	1.2	1.3	3.1

Lampiran 4. Hasil Analisis Faktor dengan SPSS

1. Analisis Faktor Berdasarkan Persepsi Laki-laki dan Perempuan

a Faktor Internal

b Correlation Matrix^a

a. Determinant = .004

KMO and Bartlett's Test

.707	Kaiser-Meyer-Olkin Measure of Sampling Adequacy.					
806.041	Bartlett's Test of Sphericity Approx. Chi-Square					
55	df					
.000	Sig.					

Anti-image Matrices

		IND11	IND12	IND13	IND21	IND22	IND23	IND31	IND32	IND41	IND42	IND43
Anti-image	IND11	.299	102	153	.044	005	021	.010	.014	013	002	.006
Covariance	IND12	102	.324	129	.012	016	.029	027	029	.018	003	058
	IND13	153	129	.269	030	.018	010	.020	009	.010	.008	016
	IND21	.044	.012	030	.501	202	020	.086	064	067	.080	116
	IND22	005	016	.018	202	.325	217	068	.093	027	088	.080
	IND23	021	.029	010	020	217	.431	019	069	.072	006	085
	IND31	.010	027	.020	.086	068	019	.432	288	065	.076	092
	IND32	.014	029	009	064	.093	069	288	.442	065	069	.086
	IND41	013	.018	.010	067	027	.072	065	065	.555	222	128
	IND42	002	003	.008	.080	088	006	.076	069	222	.581	173
	IND43	.006	058	016	116	.080	085	092	.086	128	173	.600
Anti-image	IND11	.755 ^a	328	538	.113	017	059	.029	.037	031	004	.015
Correlation	IND12	328	.799 ^a	436	.029	051	.077	072	077	.042	007	132
	IND13	538	436	.730 ^a	083	.060	029	.059	027	.025	.019	040
	IND21	.113	.029	083	.702 ^a	501	042	.184	136	127	.148	212
	IND22	017	051	.060	501	.623 ^a	580	181	.245	064	203	.182
	IND23	059	.077	029	042	580	.730 ^a	043	157	.147	013	168

IND3	1 .029	072	.059	.184	181	043	.619 ^a	660	133	.151	181
IND3	2 .037	077	027	136	.245	157	660	.587ª	131	137	.167
IND4	1 031	.042	.025	127	064	.147	133	131	.783ª	391	222
IND4	2 004	007	.019	.148	203	013	.151	137	391	.726ª	293
IND4	3 .015	132	040	212	.182	168	181	.167	222	293	.751 ^a

a. Measures of Sampling Adequacy(MSA)

Communalities

	Initial		Extraction
IND11		1.000	.853
IND12		1.000	.838
IND13		1.000	.875
IND21		1.000	.689
IND22		1.000	.846
IND23		1.000	.764
IND31		1.000	.850
IND32		1.000	.849
IND41		1.000	.722
IND42		1.000	.718
IND43		1.000	.627

Extraction Method: Principal Component

Analysis.

Total Variance Explained

Component	Initial Eige	envalues		Extraction	Sums of Square	ed Loadings	Rotation S	Sums of Squared	Loadings
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.519	31.990	31.990	3.519	31.990	31.990	2.604	23.673	23.673
2	2.494	22.674	54.664	2.494	22.674	54.664	2.270	20.636	44.309
3	1.508	13.713	68.376	1.508	13.713	68.376	1.991	18.100	62.409
4	1.110	10.087	78.463	1.110	10.087	78.463	1.766	16.054	78.463
5	.566	5.144	83.607						
6	.531	4.829	88.437						
7	.379	3.442	91.879						
8	.301	2.738	94.616						
9	.233	2.119	96.736						
10	.185	1.682	98.418						
11	.174	1.582	100.000						

Component Matrix^a

	Compo				
	1	2	3	4	
IND43		.666	.010	044	425
IND23		.646	316	.380	.319
IND41		.642	210	310	411
IND22		.624	419	.496	.190
IND42		.620	178	118	536
IND31		.583	108	575	.410
IND21		.555	394	.467	.088
IND11		.381	.825	.165	.031
IND13		.407	.823	.172	.041
IND12		.463	.785	.071	.053
IND32		.546	049	629	.391

Extraction Method: Principal Component Analysis.

Rotated Component Matrix^a

	Compon	ent			
	1	2	3	4	
IND13		.934	.013	.049	.015
IND11		.923	010	.044	.003
IND12		.902	.000	.102	.120
IND22		021	.902	.172	.052
IND23		.066	.841	.098	.207
IND21		038	.801	.213	014
IND42		.020	.172	.826	.068
IND41		029	.116	.791	.287
IND43		.229	.204	.725	.083
IND32		.072	.054	.168	.902
IND31		.045	.140	.172	.894

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. 4 components extracted.

a. Rotation converged in 5 iterations.

Component Transformation Matrix

Component	1	2	3	4	
1		.390	.563	.588	.431
2		.897	412	146	074
3		.198	.638	221	711
4		.071	.327	764	.551

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

b. Faktor Eksternal

Correlation

Matrix^a

a. Determinant = .027

KMO and Bartlett's Test

.813	Kaiser-Meyer-Olkin Measure of Sampling Adequacy.			
525.087	Approx. Chi-Square	Bartlett's Test of Sphericity		
45	df			
.000	Sig.			

Anti-image Matrices

		IND51	IND52	IND53	IND54	IND55	IND56	IND57	IND61	IND62	IND63
Anti-image	IND51	.615	.011	077	.024	031	163	067	.041	112	045
Covariance	IND52	.011	.711	016	151	060	016	015	096	.016	059
	IND53	077	016	.700	218	.106	042	029	169	.055	.044
	IND54	.024	151	218	.491	162	.039	066	.116	148	048
	IND55	031	060	.106	162	.637	154	046	118	045	.123
	IND56	163	016	042	.039	154	.498	183	.071	.007	073
	IND57	067	015	029	066	046	183	.506	086	.035	073
	IND61	.041	096	169	.116	118	.071	086	.591	058	183
	IND62	112	.016	.055	148	045	.007	.035	058	.511	181
	IND63	045	059	.044	048	.123	073	073	183	181	.436

Anti-image	IND51	.879 ^a	.017	118	.043	05029	5120	.068	200	088
Correlation	IND52	.017	.900 ^a	023	256	09002	7025	149	.027	105
	IND53	118	023	.743 ^a	372	.15907	2049	262	.091	.080
	IND54	.043	256	372	.764 ^a	290 .07	8133	.215	295	103
	IND55	050	090	.159	290	.768 ^a 27	4082	193	079	.232
	IND56	295	027	072	.078	274 .809	o ^a 364	.131	.014	156
	IND57	120	025	049	133	08236	4 .880 ^a	158	.069	156
	IND61	.068	149	262	.215	193 .13	1158	.752 ^a	106	360
	IND62	200	.027	.091	295	079 .01	4 .069	106	.830 ^a	383
	IND63	088	105	.080	103	.23215	6156	360	383	.803ª

a. Measures of Sampling Adequacy(MSA)

Communalities

	Initial		Extraction
IND51		1.000	.581
IND52		1.000	.445
IND53		1.000	.373
IND54		1.000	.519
IND55		1.000	.445
IND56		1.000	.749
IND57		1.000	.619
IND61		1.000	.541
IND62		1.000	.519
IND63		1.000	.597

Extraction Method: Principal Component

Analysis.

Total Variance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared			Rotation Sums of Squared Loadings		
				Loadings					
	Total	% of Variance	Cumulative %	Total	% of	Cumulative	Total	% of Variance	Cumulative %
					Variance	%			
1	4.321	43.205	43.205	4.321	43.205	43.205	2.807	28.070	28.070
2	1.067	10.667	53.873	1.067	10.667	53.873	2.580	25.803	53.873

3	.956	9.563	63.436
4	.831	8.314	71.750
5	.742	7.425	79.174
6	.620	6.200	85.374
7	.513	5.128	90.502
8	.376	3.759	94.261
9	.307	3.072	97.333
10	.267	2.667	100.000

Extraction Method: Principal Component Analysis.

Component Matrix^a

	Com	ponent	
	1	2	
IND57		.748	242
IND63		.742	.214
IND62		.704	.150
IND54		.699	.173
IND56		.694	518
IND51		.650	398
IND61		.608	.414
IND52		.588	.314
IND55		.580	328
IND53		.518	.324

Extraction Method: Principal Component

Analysis.

a. 2 components extracted.

Rotated Component Matrix^a

	Component						
	1	2					
IND61		.727	.111				
IND63		.689	.349				
IND52		.644	.172				
IND54		.630	.350				
IND62		.617	.371				

IND53	.600	.117
IND56	.154	.852
IND51	.204	.734
IND57	.382	.688
IND55	.200	.636

Extraction Method: Principal Component

Analysis.

Rotation Method: Varimax with Kaiser

Normalization

a. Rotation converged in 3 iterations.

Component Transformation Matrix

Component	1	2	
1		.731	.682
2		.682	731

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser

Normalization.

2. Analisis Faktor Berdasarkan Persepsi Laki-laki

a. Faktor Internal

Correlation Matrix^a

a. Determinant = .003

KMO and Bartlett's Test^a

Kaiser-Meyer-Olkin Measure of S	ampling Adequacy.	.669
Bartlett's Test of Sphericity	Approx. Chi-Square	397.383
	df	55
	Sig.	.000

a. Only cases for which Jenis Kelamin = Laki-laki are used in the analysis phase.

Anti-image Matrices^a

		IND11	IND12	IND13	IND21	IND22	IND23	IND31	IND32	IND41	IND42	IND43
Anti-image	IND11	.274	089	138	.028	.009	.002	.020	.003	.006	040	026
Covariance	IND12	089	.270	119	.092	059	.018	.054	093	.023	.001	055
	IND13	138	119	.248	066	.028	007	051	.042	001	.038	.020
	IND21	.028	.092	066	.542	177	012	.061	030	065	.108	169
	IND22	.009	059	.028	177	.333	229	052	.042	030	099	.105
	IND23	.002	.018	007	012	229	.398	011	018	.051	001	114
	IND31	.020	.054	051	.061	052	011	.335	245	052	.117	140
	IND32	.003	093	.042	030	.042	018	245	.353	090	040	.093
	IND41	.006	.023	001	065	030	.051	052	090	.560	227	063
	IND42	040	.001	.038	.108	099	001	.117	040	227	.569	191
	IND43	026	055	.020	169	.105	114	140	.093	063	191	.543
Anti-image	IND11	.766 ^b	328	529	.073	.030	.006	.065	.010	.015	100	069
Correlation	IND12	328	.714 ^b	460	.239	195	.055	.181	300	.058	.003	143
	IND13	529	460	.697 ^b	179	.096	023	175	.141	002	.102	.056
	IND21	.073	.239	179	.657 ^b	417	025	.143	068	118	.194	312
	IND22	.030	195	.096	417	.625 ^b	628	154	.122	070	227	.246
	IND23	.006	.055	023	025	628	.719 ^b	031	048	.108	002	245
	IND31	.065	.181	175	.143	154	031	.573 ^b	711	120	.268	328
	IND32	.010	300	.141	068	.122	048	711	.582 ^b	202	090	.211
	IND41	.015	.058	002	118	070	.108	120	202	.788 ^b	402	114
	IND42	100	.003	.102	.194	227	002	.268	090	402	.595 ^b	343
	IND43	069	143	.056	312	.246	245	328	.211	114	343	.653 ^b

a. Only cases for which Jenis Kelamin = Laki-laki are used in the analysis phase.

Communalities^a

	Initial		Extraction	
IND11		1.000		872
IND12		1.000		853
IND13		1.000		872
IND21		1.000		645
IND22		1.000		795
IND23		1.000		765

b. Measures of Sampling Adequacy(MSA)

IND31	1.000	.874
IND32	1.000	.858
IND41	1.000	.719
IND42	1.000	.831
IND43	1.000	.551

Extraction Method: Principal Component

Analysis.

a. Only cases for which Jenis Kelamin = Laki-

laki are used in the analysis phase.

Total Variance Explained^a

Component	Component Initial Eigenvalues				Sums of Square	ed Loadings	Rotation Sums of Squared Loadings		
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.452	31.384	31.384	3.452	31.384	31.384	2.640	23.999	23.999
2	2.650	24.089	55.473	2.650	24.089	55.473	2.302	20.923	44.922
3	1.435	13.049	68.522	1.435	13.049	68.522	1.925	17.500	62.422
4	1.098	9.981	78.503	1.098	9.981	78.503	1.769	16.081	78.503
5	.669	6.082	84.585						
6	.558	5.070	89.655						
7	.349	3.175	92.830						
8	.245	2.230	95.060						
9	.231	2.096	97.156						
10	.180	1.637	98.794						
11	.133	1.206	100.000						

Extraction Method: Principal Component Analysis.

Component Matrix^{a,b}

	Compone	Component							
	1	2	3	4					
IND43		.685	072	.094	.259				
IND22		.665	390	.362	262				
IND23		.663	355	.334	296				
IND31		.639	.020	625	275				
IND41		.638	217	291	.425				
IND21		.496	462	.327	281				
IND11		.333	.838	.240	.041				

a. Only cases for which Jenis Kelamin = Laki-laki are used in the analysis phase.

IND13	.357	.831	.206	109
IND12	.411	.815	.143	020
IND32	.600	.135	673	164
IND42	.522	178	.168	.706

Extraction Method: Principal Component Analysis.

Rotated Component Matrix^{a,b}

	Compon	ent			
	1	2	3	4	
IND13		.929	.009	.086	036
IND11		.929	060	.005	.078
IND12		.910	024	.139	.069
IND22		.008	.865	.093	.194
IND23		.032	.850	.126	.158
IND21		125	.786	.038	.101
IND31		.074	.186	.909	.083
IND32		.142	.039	.904	.137
IND42		.036	.145	081	.896
IND41		077	.132	.429	.716
IND43		.190	.366	.193	.586

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

Component Transformation Matrix^a

Component	1	2	3	4	
1	_:	351	.595	.504 .	.518
2	-	888 -	.428	.052	.160
3		293	.499 -	.815 .	.021
4		055 -	.461 -	.280 .	.840

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Only cases for which Jenis Kelamin = Laki-laki are used in the analysis phase.

a. 4 components extracted.

b. Only cases for which Jenis Kelamin = Laki-laki are used in the analysis phase.

a. Rotation converged in 5 iterations.

b. Only cases for which Jenis Kelamin = Laki-laki are used in the analysis phase.

b. Faktor Eksternal

Correlation Matrix^a

a. Determinant = .045

KMO and Bartlett's Test^a

.668	Kaiser-Meyer-Olkin Measure of Sampling Adequacy.				
207.890	Approx. Chi-Square	Bartlett's Test of Sphericity			
45	df				
.000	Sig.				

a. Only cases for which Jenis Kelamin = Laki-laki are used in the analysis phase.

Anti-image Matrices^a

		IND51	IND52	IND53	IND54	IND55	IND56	IND57	IND61	IND62	IND63
Anti-image	IND51	.619	057	022	.044	015	176	049	107	055	042
Covariance	IND52	057	.691	.144	220	.118	052	087	023	074	069
	IND53	022	.144	.585	313	.180	056	125	167	.055	022
	IND54	.044	220	313	.506	186	.038	.078	.165	078	033
	IND55	015	.118	.180	186	.612	187	089	087	136	.078
	IND56	176	052	056	.038	187	.469	199	.052	.066	090
	IND57	049	087	125	.078	089	199	.624	.050	.011	011
	IND61	107	023	167	.165	087	.052	.050	.651	053	186
	IND62	055	074	.055	078	136	.066	.011	053	.545	226
	IND63	042	069	022	033	.078	090	011	186	226	.475
Anti-image	IND51	.852 ^b	087	036	.079	024	327	079	169	094	077
Correlation	IND52	087	.687 ^b	.226	373	.182	092	133	035	121	120
	IND53	036	.226	.432 ^b	576	.301	107	207	271	.098	042
	IND54	.079	373	576	.467 ^b	334	.078	.139	.288	149	066
	IND55	024	.182	.301	334	.579 ^b	349	144	138	235	.144
	IND56	327	092	107	.078	349	.721 ^b	368	.094	.130	191
	IND57	079	133	207	.139	144	368	.761 ^b	.079	.019	020
	IND61	169	035	271	.288	138	.094	.079	.638 ^b	089	335

IND62	094	121	.098	149	235 .130	.019	089	.746 ^b	444
IND63	077	120	042	066	.144191	020	335	444	.758 ^b

a. Only cases for which Jenis Kelamin = Laki-laki are used in the analysis phase.

Communalities^a

	Initial		Extraction
IND51		1.000	.600
IND52		1.000	.509
IND53		1.000	.903
IND54		1.000	.858
IND55		1.000	.608
IND56		1.000	.773
IND57		1.000	.683
IND61		1.000	.749
IND62		1.000	.736
IND63		1.000	.736

Extraction Method: Principal Component

Analysis.

a. Only cases for which Jenis Kelamin = Laki-

laki are used in the analysis phase.

Total Variance Explained^a

Component	Initial Eigenvalues			Extraction	traction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	3.462	34.619	34.619	3.462	34.619	34.619	2.184	21.843	21.843	
2	1.374	13.736	48.355	1.374	13.736	48.355	1.829	18.291	40.134	
3	1.260	12.597	60.952	1.260	12.597	60.952	1.828	18.282	58.417	
4	1.060	10.602	71.554	1.060	10.602	71.554	1.314	13.137	71.554	
5	.822	8.217	79.771							
6	.557	5.566	85.337							
7	.519	5.186	90.523							
8	.403	4.028	94.551							
9	.300	3.001	97.552							
10	.245	2.448	100.000							

b. Measures of Sampling Adequacy(MSA)

Extraction Method: Principal Component Analysis.

a. Only cases for which Jenis Kelamin = Laki-laki are used in the analysis phase.

Component Matrix^{a,b}

Co			

	1	2	3	4	
IND63		.738	.191	394	.022
IND56		.703	455	.257	.072
IND51		.677	323	125	.151
IND62		.655	.253	337	360
IND57		.583	421	.360	.188
IND52		.541	.294	.065	354
IND55		.535	312	.221	420
IND54		.456	.627	.488	138
IND61		.499	.035	612	.352
IND53		.401	.454	.338	.649

Extraction Method: Principal Component Analysis.

Rotated Component Matrix^{a,b}

Component

	1	2	3	4	
IND56		.852	.128	.156	.078
IND57		.801	.015	.051	.194
IND55		.604	.433	049	231
IND51		.603	.082	.479	.023
IND54		.048	.712	160	.568
IND52		.147	.682	.133	.071
IND62		.089	.678	.507	111
IND61		.077	024	.857	.092
IND63		.186	.429	.712	.106
IND53		.121	.054	.169	.926

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. 4 components extracted.

b. Only cases for which Jenis Kelamin = Laki-laki are used in the analysis phase.

- a. Rotation converged in 8 iterations.
- b. Only cases for which Jenis Kelamin = Laki-laki are used in the analysis phase.

Component Transformation Matrix^a

Component	1	2		3	4
1		.630	.534	.517	.225
2	-	.669	.508	.056	.539
3		.388	.120	794	.452
4		.065	665	.315	.674

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

c. Faktor Eksternal (Setelah IND53 dan IND54 Dikeluarkan)

Correlation

Matrix^a

KMO and Bartlett's Test^a

.750	Kaiser-Meyer-Olkin Measure of Sampling Adequacy.					
154.958	Approx. Chi-Square	Bartlett's Test of Sphericity				
28	df					
.000	Sig.					

a. Only cases for which Jenis Kelamin = Laki-laki are used in the analysis phase.

Anti-image Matrices^a

		IND51	IND52	IND55	IND56	IND57	IND61	IND62	IND63
Anti-image	IND51	.623	044	.001	182	058	135	049	039
Covariance	IND52	044	.802	.048	041	063	.064	129	097
	IND55	.001	.048	.703	195	057	020	195	.085
	IND56	182	041	195	.474	223	.038	.075	094
	IND57	058	063	057	223	.652	.014	.026	015

a. Only cases for which Jenis Kelamin = Laki-laki are used in the analysis phase.

a. Determinant = .101

	IND61	135	.064	020	.038	.014	.723	030206
	IND62	049	129	195	.075	.026	030	.558239
	IND63	039	097	.085	094	015	206	239 .482
Anti-image	IND51	.844 ^b	062	.001	335	091	201	084072
Correlation	IND52	062	.843 ^b	.064	067	087	.085	193156
	IND55	.001	.064	.705 ^b	337	084	028	311 .146
	IND56	335	067	337	.709 ^b	401	.065	.145196
	IND57	091	087	084	401	.795 ^b	.020	.043026
	IND61	201	.085	028	.065	.020	.757 ^b	047349
	IND62	084	193	311	.145	.043	047	.698 ^b 461
	IND63	072	156	.146	196	026	349	461 .726 ^b

a. Only cases for which Jenis Kelamin = Laki-laki are used in the analysis phase.

Communalities^a

	Initial		Extraction
IND51		1.000	.525
IND52		1.000	.299
IND55		1.000	.435
IND56		1.000	.764
IND57		1.000	.647
IND61		1.000	.499
IND62		1.000	.627
IND63		1.000	.737

Extraction Method: Principal Component

Analysis.

a. Only cases for which Jenis Kelamin =

Laki-laki are used in the analysis phase.

Total Variance Explained^a

Component	Initial Eige	nvalues		Extraction	Sums of Square	ed Loadings	Rotation S	ums of Squared	Loadings
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.227	40.338	40.338	3.227	40.338	40.338	2.288	28.595	28.595
2	1.306	16.320	56.658	1.306	16.320	56.658	2.245	28.064	56.658

b. Measures of Sampling Adequacy(MSA)

3	.890	11.119	67.777
4	.818	10.225	78.002
5	.556	6.950	84.952
6	.517	6.467	91.420
7	.403	5.042	96.462
8	.283	3.538	100.000

Extraction Method: Principal Component Analysis.

a. Only cases for which Jenis Kelamin = Laki-laki are used in the analysis phase.

Component Matrix^{a,b}

	Component				
	1	2			
IND63		.740	.435		
IND56		.729	483		
IND51		.715	116		
IND62		.656	.443		
IND57		.597	539		
IND55		.553	358		
IND61		.527	.470		
IND52		.516	.183		

Extraction Method: Principal Component

Analysis.

a. 2 components extracted.

b. Only cases for which Jenis Kelamin =

Laki-laki are used in the analysis phase.

Rotated Component Matrix^{a,b}

	Component				
	1	2			
IND63		.833	.207		
IND62		.779	.142		
IND61		.706	.032		
IND52		.496	.230		
IND56		.183	.855		
IND57		.050	.802		

IND55	.145	.643	
IND51	.431	.583	

Extraction Method: Principal Component

Analysis.

Rotation Method: Varimax with Kaiser

Normalization.

- a. Rotation converged in 3 iterations.
- b. Only cases for which Jenis Kelamin =

Laki-laki are used in the analysis phase.

Component Transformation Matrix^a

Component	1	2	
1		.715	.699
2		.699	715

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser

Normalization.

a. Only cases for which Jenis Kelamin = Laki-laki

are used in the analysis phase.

3. Analisis Faktor Berdasarkan Persepsi Perempuan

a. Faktor Internal

Correlation Matrix^a

a. Determinant = .003

KMO and Bartlett's Test^a

.642	Kaiser-Meyer-Olkin Measure of Sampling Adequacy.			
410.760	Approx. Chi-Square	Bartlett's Test of Sphericity		
55	df			
.000	Sig.			

a. Only cases for which Jenis Kelamin = Perempuan are used in the analysis phase.

Anti-image Matrices^a

		IND11	IND12	IND13	IND21	IND22	IND23	IND31	IND32	IND41	IND42	IND43
Anti-image	IND11	.303	085	148	.047	019	039	009	.015	049	.049	.034
Covariance	IND12	085	.300	128	083	.049	.022	119	.057	.025	.028	087
	IND13	148	128	.243	.019	003	007	.097	048	.029	058	018
	IND21	.047	083	.019	.407	211	004	.138	125	075	.040	036
	IND22	019	.049	003	211	.290	198	094	.144	.002	071	.033
	IND23	039	.022	007	004	198	.473	010	107	.076	.014	064
	IND31	009	119	.097	.138	094	010	.439	286	054	019	008
	IND32	.015	.057	048	125	.144	107	286	.463	022	069	.039
	IND41	049	.025	.029	075	.002	.076	054	022	.522	211	170
	IND42	.049	.028	058	.040	071	.014	019	069	211	.517	145
	IND43	.034	087	018	036	.033	064	008	.039	170	145	.570
Anti-image	IND11	.733 ^b	283	546	.134	064	103	025	.039	123	.125	.082
Correlation	IND12	283	.694 ^b	472	238	.166	.058	327	.153	.062	.070	210
	IND13	546	472	.668 ^b	.060	011	022	.298	142	.081	164	049
	IND21	.134	238	.060	.582 ^b	614	010	.328	287	163	.087	074
	IND22	064	.166	011	614	.538 ^b	534	265	.394	.004	184	.082
	IND23	103	.058	022	010	534	.695 ^b	021	229	.152	.029	124
	IND31	025	327	.298	.328	265	021	.477 ^b	635	113	039	015
	IND32	.039	.153	142	287	.394	229	635	.467 ^b	044	142	.077
	IND41	123	.062	.081	163	.004	.152	113	044	.732 ^b	405	312
	IND42	.125	.070	164	.087	184	.029	039		405		266
	IND43	.082	210	049	074	.082	124	015		312		.791 ^b

a. Only cases for which Jenis Kelamin = Perempuan are used in the analysis phase.

Communalities^a

	Initial		Extraction	
IND11		1.000		.842
IND12		1.000		.827
IND13		1.000		.875
IND21		1.000		.721
IND22		1.000		.864
IND23		1.000		.760
IND31		1.000		.819

b. Measures of Sampling Adequacy(MSA)

IND32	1.000	.809
IND41	1.000	.753
IND42	1.000	.711
IND43	1.000	.683

Extraction Method: Principal Component

Analysis.

a. Only cases for which Jenis Kelamin =

Perempuan are used in the analysis phase.

Total Variance Explained^a

Component Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings			
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.287	29.883	29.883	3.287	29.883	29.883	2.592	23.562	23.562
2	2.469	22.449	52.332	2.469	22.449	52.332	2.247	20.427	43.989
3	1.724	15.671	68.003	1.724	15.671	68.003	2.115	19.230	63.219
4	1.183	10.756	78.760	1.183	10.756	78.760	1.709	15.541	78.760
5	.518	4.711	83.471						
6	.491	4.462	87.933						
7	.428	3.887	91.820						
8	.368	3.345	95.165						
9	.227	2.060	97.225						
10	.168	1.524	98.749						
11	.138	1.251	100.000						

Extraction Method: Principal Component Analysis.

a. Only cases for which Jenis Kelamin = Perempuan are used in the analysis phase.

Component Matrix^{a,b}

	Compone	ent			
	1	2	3	4	
IND43		.686	.056	.151	432
IND42		.671	235	.269	365
IND41		.639	208	.320	446
IND23		.554	328	451	.378
IND21		.553	371	527	019
IND13		.464	.800	129	.053
IND11		.439	.779	136	.156
IND12		.522	.736	021	.109

IND22	.527	463	603	.094
IND32	.428	232	.580	.486
IND31	.453	255	.558	.487

Extraction Method: Principal Component Analysis.

Rotated Component Matrix^{a,b}

Component .928 .001 .094 -.063 IND13 IND11 .917 .026 .008 -.003 -.005 .075 IND12 .896 .137 -.063 .916 .144 -.025 IND22 .094 .834 -.005 .238 IND23 -.001 .809 .249 -.065 IND21 -.003 .088 .846 .169 IND41 .171 .009 .799 .209 IND42 .270 .771 .031 .121 IND43 -.001 .174 .069 .885 IND31 .005 .030 .163 .884 IND32

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

Component Transformation Matrix^a

Component	1	2	3	4	
1		.459	.517	.634	.347
2		.862	428	153	224
3		129	701	.326	.621
4		.171	.240	685	.666

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Only cases for which Jenis Kelamin = Perempuan are used in the analysis phase.

a. 4 components extracted.

b. Only cases for which Jenis Kelamin = Perempuan are used in the analysis phase.

a. Rotation converged in 5 iterations.

b. Only cases for which Jenis Kelamin = Perempuan are used in the analysis phase.

b. Faktor Internal (Setelah IND31 dan IND32 Dikeluarkan)

Correlation Matrix^a

a. Determinant = .010

KMO and Bartlett's Test^a

Kaiser-Meyer-Olkin Measure of S	.713	
Bartlett's Test of Sphericity	335.658	
	df	36
	Sig.	.000

a. Only cases for which Jenis Kelamin = Perempuan are used in the analysis phase.

Anti-image Matrices^a

		IND11	IND12	IND13	IND21	IND22	IND23	IND41	IND42	IND43
Anti-image	IND11	.303	098	162	.058	028	040	050	.054	.033
Covariance	IND12	098	.338	124	061	.039	.014	.007	.019	098
	IND13	162	124	.268	012	.018	.001	.050	057	021
	IND21	.058	061	012	.461	229	020	077	.042	033
	IND22	028	.039	.018	229	.343	218	.008	063	.026
	IND23	040	.014	.001	020	218	.525	.059	023	056
	IND41	050	.007	.050	077	.008	.059	.541	250	171
	IND42	.054	.019	057	.042	063	023	250	.543	143
	IND43	.033	098	021	033	.026	056	171	143	.575
Anti-image	IND11	.713 ^b	307	568	.154	087	099	124	.134	.080
Correlation	IND12	307	.783 ^b	412	156	.115	.032	.016	.045	223
	IND13	568	412	.714 ^b	035	.058	.004	.132	150	052
	IND21	.154	156	035	.693 ^b	576	040	153	.085	065
	IND22	087	.115	.058	576	.630 ^b	514	.020	146	.058
	IND23	099	.032	.004	040	514	.729 ^b	.110	043	102
	IND41	124	.016	.132	153	.020	.110	.678 ^b	461	307

IND42	.134	.045	150	.085	146	043461	.706 ^b 255
IND43	.080	223	052	065	.058	102307	255 .793 ^b

a. Only cases for which Jenis Kelamin = Perempuan are used in the analysis phase.

Communalities^a

	Initial		Extraction
IND11		1.000	.841
IND12		1.000	.823
IND13		1.000	.870
IND21		1.000	.702
IND22		1.000	.856
IND23		1.000	.715
IND41		1.000	.754
IND42		1.000	.719
IND43		1.000	.668

Extraction Method: Principal Component

Analysis.

a. Only cases for which Jenis Kelamin =

Perempuan are used in the analysis phase.

Total Variance Explained^a

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.085	34.279	34.279	3.085	34.279	34.279	2.592	28.798	28.798
2	2.407	26.741	61.021	2.407	26.741	61.021	2.248	24.979	53.777
3	1.457	16.184	77.205	1.457	16.184	77.205	2.109	23.429	77.205
4	.539	5.983	83.188						
5	.491	5.461	88.649						
6	.381	4.237	92.886						
7	.256	2.849	95.735						
8	.213	2.372	98.108						
9	.170	1.892	100.000						

Extraction Method: Principal Component Analysis.

b. Measures of Sampling Adequacy(MSA)

a. Only cases for which Jenis Kelamin = Perempuan are used in the analysis phase.

Component $\mathsf{Matrix}^{\mathsf{a},\mathsf{b}}$

	Component				
	1	2	3	3	
IND43		.687	.041	440	
IND42		.600	.294	523	
IND21		.560	.533	.324	
IND23		.522	.447	.493	
IND13		.603	693	.161	
IND11		.565	685	.230	
IND12		.620	654	.105	
IND22		.524	.626	.435	
IND41		.570	.259	602	

Extraction Method: Principal Component Analysis.

b. Only cases for which Jenis Kelamin = Perempuan are used in the analysis phase.

Rotated Component Matrix^{a,b}

	Component			
	1	2	3	
IND13	.929)	.001	.082
IND11	.917	•	.028	.009
IND12	.896	;	.000	.144
IND22	064		.913	.134
IND23	.086	i	.840	.046
IND21	.002	2	.809	.217
IND41	004		.091	.863
IND42	.006	i	.175	.830
IND43	.272	!	.121	.761

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

b. Only cases for which Jenis Kelamin = Perempuan are used in the analysis phase.

a. 3 components extracted.

a. Rotation converged in 4 iterations.

Component Transformation Matrix^a

Component	1	2	3	
1		.595	.527	.607
2		767	.598	.233
3		.240	.604	760

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

 a. Only cases for which Jenis Kelamin = Perempuan are used in the analysis phase.

c. Faktor Eksternal

Correlation

Matrix^a

a. Determinant = .010

KMO and Bartlett's Test^a

Kaiser-Meyer-Olkin Measure of Sar	.807	
Bartlett's Test of Sphericity	334.967	
	df	45
	Sig.	.000

a. Only cases for which Jenis Kelamin = Perempuan are used in the analysis phase.

Anti-image Matrices^a

		IND51	IND52	IND53	IND54	IND55	IND56	IND57	IND61	IND62	IND63
Anti-image	IND51	.499	.047	156	032	045	121	073	.122	105	018
Covariance	IND52	.047	.675	149	124	112	008	.035	102	.081	064
	IND53	156	149	.709	038	.060	015	014	155	023	.091
	IND54	032	124	038	.367	154	.055	096	.091	166	028
	IND55	045	112	.060	154	.625	132	034	103	.031	.135
	IND56	121	008	015	.055	132	.543	124	.084	045	043

	_										
	IND57	073	.035	014	096	034	124	.308	104	.060	129
	IND61	.122	102	155	.091	103	.084	104	.507	080	131
	IND62	105	.081	023	166	.031	045	.060	080	.431	113
	IND63	018	064	.091	028	.135	043	129	131	113	.336
Anti-image	IND51	.846 ^b	.081	263	075	080	232	187	.243	227	043
Correlation	IND52	.081	.804 ^b	215	249	172	013	.078	174	.151	135
	IND53	263	215	.782 ^b	075	.090	024	030	259	041	.185
	IND54	075	249	075	.812 ^b	322	.123	284	.211	418	079
	IND55	080	172	.090	322	.738 ^b	226	078	183	.059	.294
	IND56	232	013	024	.123	226	.852 ^b	302	.160	093	100
	IND57	187	.078	030	284	078	302	.835 ^b	264	.165	402
	IND61	.243	174	259	.211	183	.160	264	.726 ^b	171	316
	IND62	227	.151	041	418	.059	093	.165	171	.820 ^b	297
	IND63	043	135	.185	079	.294	100	402	316	297	.800 ^b

a. Only cases for which Jenis Kelamin = Perempuan are used in the analysis phase.

Communalities^a

	Initial		Extraction
IND51		1.000	.701
IND52		1.000	.708
IND53		1.000	.404
IND54		1.000	.670
IND55		1.000	.691
IND56		1.000	.626
IND57		1.000	.746
IND61		1.000	.771
IND62		1.000	.649
IND63		1.000	.834

Extraction Method: Principal Component

Analysis.

a. Only cases for which Jenis Kelamin =

Perempuan are used in the analysis phase.

b. Measures of Sampling Adequacy(MSA)

Total Variance Explained^a

Component	Initial Eige	envalues		Extraction	Sums of Square	of Squared Loadings Rotation Sums of Squared Loadings			Loadings
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	4.604	46.038	46.038	4.604	46.038	46.038	2.855	28.545	28.545
2	1.147	11.467	57.505	1.147	11.467	57.505	2.116	21.155	49.701
3	1.050	10.498	68.003	1.050	10.498	68.003	1.830	18.302	68.003
4	.826	8.256	76.260						
5	.654	6.540	82.799						
6	.555	5.552	88.351						
7	.386	3.862	92.214						
8	.357	3.569	95.783						
9	.234	2.339	98.122						
10	.188	1.878	100.000						

Extraction Method: Principal Component Analysis.

a. Only cases for which Jenis Kelamin = Perempuan are used in the analysis phase.

Component Matrix^{a,b}

	Compone	Component						
	1	2	3	<u> </u>				
IND57		.845	052	172				
IND54		.802	076	.146				
IND63		.769	.080	487				
IND62		.749	154	254				
IND51		.689	467	.093				
IND56		.669	415	.074				
IND61		.596	.576	292				
IND53		.514	.274	.254				
IND52		.524	.557	.351				
IND55		.529	034	.640				

Extraction Method: Principal Component Analysis.

in the analysis phase.

a. 3 components extracted.

b. Only cases for which Jenis Kelamin = Perempuan are used

Rotated Component Matrix^{a,b}

Component

	1	2		3
IND51		.821	.091	.135
IND56		.770	.117	.141
IND54		.628	.297	.433
IND57		.618	.554	.239
IND62		.617	.512	.082
IND61	-	.009	.796	.372
IND63		.449	.794	.049
IND52		.000	.299	.787
IND55		.442	176	.682
IND53		.186	.230	.563

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

b. Only cases for which Jenis Kelamin = Perempuan are used in the analysis phase.

Component Transformation Matrix^a

Component	1	2		3
1		.703	.542	.460
2		708	.467	.530
3		.072	698	.712

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

 a. Only cases for which Jenis Kelamin = Perempuan are used in the analysis phase.

Lampiran 5. Hasil Anlalisis Faktor dengan Excel

1. Analisis Faktor Berdasarkan Persepsi Laki-laki dan Perempuan

Kode	Faktor Internal	1	2	3	4	Communality
IND13	Mobilitas Sosial Mudah Dipeoleh	0.934	0.013	0.049	0.015	0.875
IND11	Membujang Merupakan Hak Seseorang	0.923	-0.010	0.044	0.003	0.854
IND12	Ingin Hidup Bebas	0.902	0.000	0.102	0.120	0.838
IND22	Cacat Fisik	-0.021	0.902	0.172	0.052	0.846
IND23	Penyakit Bawaan	0.066	0.841	0.098	0.207	0.764
IND21	Penampilan Kurang Menarik	-0.038	0.801	0.213	-0.014	0.689
IND42	Kurang Harmonis dalam Menjalin Hubungan	0.020	0.172	0.826	0.068	0.717
IND41	Gagal dalam Mencari Pasangan	-0.029	0.116	0.791	0.287	0.722
IND43	Trauma Kegagalan	0.229	0.204	0.725	0.083	0.627
IND32	Hubungan Seks Tanpa Menikah	0.072	0.054	0.168	0.902	0.850
IND31	Homoseksual/lesbian	0.045	0.140	0.172	0.894	0.850
	NII ALEIGEN	2.605	2.270	1.991	1.767	8.633
NILAI EIGEN		23.68%	20.64%	18.10%	16.06%	11
						78.48%
NITT	ALEICEN (PANDA ADII ADII)	2.538	2.162	1.834	1.613	
NIL	AI EIGEN (TANDA ABU-ABU)	97.42%	95.27%	92.11%	91.27%	

Lampiran 5. (Lanjutan)

Kode	Faktor Eksternal	1	2	Communality
IND61	Tidak Ingin Memikul Tanjung Jawab Keluarga	0.727	0.111	0.541
IND63	Kehidupan Keluarga yang Tidak Bahagia	0.689	0.349	0.597
IND52	Kurang Berpendidikan	0.644	0.172	0.444
IND54	Mengalami Tuntutan Ekonomi	0.630	0.350	0.519
IND62	Masih Memiliki Tanggung Jawab Keuangan	0.617	0.371	0.518
IND53	Belum Memiliki Pekerjaan	0.600	0.117	0.374
IND56	Besarnya Kesempatan untuk Meningkatkan Karir	0.154	0.852	0.750
IND51	Sibuk Belajar	0.204	0.734	0.580
IND67	Jarang Berkumpul dengan Lawan Jenis	0.382	0.688	0.619
IND55	Jam Kerja Tanpa Batas dan Sering Pergi ke Luar Kota	0.200	0.636	0.444
	NILAI EIGEN	2.807	2.580	5.387
	NILAI EIGEN	28.07%	25.80%	10
				53.87%
	NII ALEICEN (TANDA ADU ADU)			
	NILAI EIGEN (TANDA ABU-ABU)	91.05%	83.04%	

Lampiran 5 (Lanjutan)

2. Analisis Faktor Berdasarkan Persepsi Laki-laki

Kode	Faktor Internal	1	2	3	4	Communality
IND13	Mobilitas Sosial Mudah Dipeoleh	0.929	0.009	0.086	-0.036	0.872
IND11	Membujang Merupakan Hak Seseorang	0.929	-0.060	0.005	0.078	0.873
IND12	Ingin Hidup Bebas	0.910	-0.024	0.139	0.069	0.853
IND22	Cacat Fisik	0.008	0.865	0.093	0.194	0.795
IND23	Penyakit Bawaan	0.032	0.850	0.126	0.158	0.764
IND21	Penampilan Kurang Menarik	-0.125	0.786	0.038	0.101	0.645
IND31	Homoseksual/lesbian	0.074	0.186	0.909	0.083	0.873
IND32	Hubungan Seks Tanpa Menikah	0.142	0.039	0.904	0.137	0.858
IND42	Kurang Harmonis dalam Menjalin Hubungan	0.036	0.145	-0.081	0.896	0.832
IND41	Gagal dalam Mencari Pasangan	-0.077	0.132	0.429	0.716	0.720
IND43	Trauma Kegagalan	0.190	0.366	0.193	0.586	0.551
	NII ALEICEN	2.640	2.301	1.924	1.769	8.635
NILAI EIGEN		24.00%	20.92%	17.49%	16.09%	11
						78.50%
NIT AT	EICEN (TANDA ADII ADII)	2.554	2.089	1.643	1.659	
NILAI	EIGEN (TANDA ABU-ABU)	96.75%	90.75%	85.42%	93.75%	

Kode	Faktor Eksternal	1	2	Communality
IND63	Kehidupan Keluarga yang Tidak Bahagia	0.833	0.207	0.737
IND62	Masih Memiliki Tanggung Jawab Keuangan	0.779	0.142	0.627
IND61	Tidak Ingin Memikul Tanjung Jawab Keluarga	0.706	0.032	0.499
IND52	Kurang Berpendidikan	0.496	0.230	0.299
IND56	Besarnya Kesempatan untuk Meningkatkan Karir	0.183	0.855	0.765
IND57	Jarang Berkumpul dengan Lawan Jenis	0.05	0.802	0.646
IND55	Jam Kerja Tanpa Batas dan Sering Pergi ke Luar Kota	0.145	0.643	0.434
IND51	Sibuk Belajar	0.431	0.583	0.526
NILAI EIGEN		2.288	2.245	4.532
		28.60%	28.06%	8
				56.66%
NILAI EIGEN (TANDA ABU-ABU)		2.045	2.128	
		89.39%	94.79%	

3. Analisis Faktor Berdasarkan Persepsi Perempuan

Faktor Internal	1	2	3	Communality
Mobilitas Sosial Mudah Dipeoleh	0.929	0.001	0.082	0.870
Membujang Merupakan Hak Seseorang	0.917	0.028	0.009	0.842
Ingin Hidup Bebas	0.896	0.000	0.144	0.824
Cacat Fisik	-0.064	0.913	0.134	0.856
Penyakit Bawaan	0.086	0.840	0.046	0.715
Penampilan Kurang Menarik	0.002	0.809	0.217	0.702
Gagal dalam Mencari Pasangan	-0.004	0.091	0.863	0.753
Kurang Harmonis dalam Menjalin Hubungan	0.006	0.175	0.830	0.720
Trauma Kegagalan	0.272	0.121	0.761	0.668
NILAI EIGEN	2.592	2.248	2.107	6.948
NILAI EIGEN	28.80%	24.98%	23.42%	9
		-		77.20%
NILAI EIGEN (TANDA ABU-ABU)	2.507	2.194	2.013	
NILAI EIGEN (IANDA ABU-ABU)	96.70%	97.58%	95.51%	

Faktor Eksternal	1	2	3	Communality
Sibuk Belajar	0.821	0.091	0.135	0.701
Besarnya Kesempatan untuk Meningkatkan				
Karir	0.770	0.117	0.141	0.626
Mengalami Tuntutan Ekonomi	0.628	0.297	0.433	0.670
Jarang Berkumpul dengan Lawan Jenis	0.618	0.554	0.239	0.746
Masih Memiliki Tanggung Jawab Keuangan	0.617	0.512	0.082	0.650
Tidak Ingin Memikul Tanjung Jawab Keluarga	-0.009	0.796	0.372	0.772
Kehidupan Keluarga yang Tidak Bahagia	0.449	0.794	0.049	0.834
Kurang Berpendidikan	0.000	0.299	0.787	0.709
Ingin Meniti Karir	0.442	-0.176	0.682	0.691
Belum Memiliki Pekerjaan	0.186	0.230	0.563	0.404
NILAI EIGEN	2.856	2.117	1.832	6.804
NILAI EIGEN	28.56%	21.17%	18.32%	10
				68.04%
NILAI EIGEN (TANDA ABU-ABU)	2.424	1.264	1.401	
NILAI EIGEN (IANDA ADU-ADU)	84.88%	59.72%	76.51%	