1 4 .			
OIP E			
-6 \ ' WI		NT AND TRADEMARK (OFFICE
Ca	se No. M	IBHB 01-099)	TO TO A LOT
CEPTA AMERICA		PA	TENT
In the Phication of:)		
)		
Rudger Rubbert)	Group Art Unit: 2621	
•)		
Serial No. 09/834,593)		
)		
Filed: April 13, 2001)		
)		
For: Scanning System and Calibration)		-WED
Method for Capturing Precise)		BECEIVED
Three-Dimensional Information)		RECEIVED
of Objects)		LEB " " " " " " " " " " " " " " " " " " "
Confirmation no. 4535)		FEB & 2 2000
			18CIII ionas
TRA	NSMIT	TAL LETTER	
Box Non-fee amendment			

Commissioner of Patents Washington DC 20231

In regard to the above identified application:

- We are transmitting herewith the attached:
 - Submission of Formal Drawings
 - 51 sheets of formal drawings 2.
 - Return Postcard 3.
- With respect to additional fees: 2.
 - A. X No additional fee is required.

B. __Attached is a check in the amount of \$ ____.

C. ___ Charge the total additional fee of \$ ____ to our Deposit Account No.

13-2490.

- Please charge any additional fees or credit overpayment to Deposit Account No. 13-2490. A duplicate copy of this sheet is enclosed.
- CERTIFICATE OF MAILING UNDER 37 CFR § 1.8: The undersigned hereby certifies that this Transmittal Letter and the paper, as described in paragraph 1 hereinabove, are being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Commissioner of Patents, Box non-fee amendment, Washington,

By:

Keones a Thomas A. Fairhall

Reg. No. 34591

Rudger Rubbert

Serial No. 09/834,593

Filed: April 13, 2001

For: Scanning System and Calibration
Method for Capturing Precise
Three-Dimensional Information
of Objects

Confirmation no. 4535

PATENT

Received

Froup Art Unit: 2621

Received

FEB 2 2 2002

Technology Center 2600

SUBMISSION OF FORMAL DRAWINGS

Box Non-Fee Amendment Commissioner for Patents Washington, D.C. 20231

Date: December 3, 2001

Dear Sir:

Applicants submit herewith 51 sheets of formal drawings for the above-referenced application. Approval of the drawings is requested.

McDonnell Boehnen Hulbert & Berghoff

by: 🗲

Thomas A. Fairhal Reg. No. 34591

CERTIFICATE OF MAILING

Thomas A. Fairhall

RECEIVED

FEB 2 2 2002

Technology Center 2600

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects
Inventor: Rudger Rubbert
MBHB 01-099 09/834,593

FIG. 1

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects

Inventor: Rudger Rubbert 09/834,593 MBHB 01-099

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects Inventor: Rudger Rubbert MBHB 01-099 09/834,593

FIG. 3

FIG. 4

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects Inventor: Rudger Rubbert MBHB 01-099 09/834,593

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects

Inventor: Rudger Rubbert
MBHB 01-099 09/834,593

FIG. 6

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects Inventor: Rudger Rubbert MBHB 01-099 09/834,593

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects Inventor: Rudger Rubbert MBHB 01-099 09/834,593

7/51

FIG. 8

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects

Inventor: Rudger Rubbert
MBHB 01-099 09/834,593

FIG. 8A

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects Inventor: Rudger Rubbert
MBHB 01-099 09/8 09/834,593

9/51

FIG. 9

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects

Inventor: Rudger Rubbert MBHB 01-099 09/834,593

PIXEL COORDINATES FOR PORTIONS OF THE PATTERN ASSIGNED TO A CERTAIN Z-LEVEL

U

- X

S

Ν

0

Q

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects Inventor: Rudger Rubbert MBHB 01-099 09/834,593

Inventor: Rudger Rubbert MBHB 01-099 09/834,593

FIG. 15

FIG. 16

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects

Inventor: Rudger Rubbert
MBHB 01-099 09/834,593

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects

Laurenteen Budger Publication

Inventor: Rudger Rubbert MBHB 01-099 09/834,593

14/51

FIG. 20

FIG. 21

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects

Information of Objects
Inventor: Rudger Rubbert
MBHB 01-099 09/834,593

FIG. 23

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects Inventor: Rudger Rubbert

09/834,593

MBHB 01-099

16/51

			•		10/0	, 	•	•	·	,	
	ROW M										
LINEN	0 0 0										
	ROW 2										
	ROW 1 ROW 2										
0 0 0	ROW M										
0	000										
	ROW 4	37.1		44		46		48.2			
	ROW M ROW 1 ROW 2 ROW 3 ROW 4	30.2		36.2		43.0		31.0	,		
2	ROW 2	29.5		21.6		41.1		21.8			
LINE 2	ROW 1	27.1		11.5		34.0		13.2			
	ROW M	0 0 0									
	000										
	ROW 4	2.1		44.5		12.2		46.3			
LINE 1	ROW 3	1.5		32.8		8.9		30.4			
	ROW 1 ROW 2 ROW 3 ROW 4	1.1		20.4		4.5		21.5			
	ROW 1	1.0		10.2		3.9		12.1			
		CCD			MM DIST.	CCDX	MM DIST.	ζgoo	MM DIST.		
			,	7		22					

CALIBRATION TABLE #1

 CCD_X , $CCD_Y = PIXEL \#$, IN SUBPIXEL RESOLUTION

S

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects
Inventor: Rudger Rubbert
MBHB 01-099 09/834,593

0	- <u> </u>								, 0	•													
	<u></u>	(0, P/2) (1, P/2) • • • (Q/2, P/2)	1,279.5	1,279.4	1,256.4	1,251.5		• • (-1, P/2) (-2, P/2) • • • (-0/2, P/2)															
		0 0						0 0					1										
	ROW + P/2	(1, P/2)	0 0	0 0	0 0	0 0 0	-P/2	(-2, P/2)					0 0	o o o									
	ROW	(0, P/2)	0 0 0	0 0 0	0 0 0	0 0	ROW +P/2	-1, P/2)															
(d C)		000						0															
9		0 0 0						° °	٠														
2		(2,1)	0	0 0	0	0 0 0		(-3,1)					. ≡ .	QUADRANT IV									
ABLE #	7	(1,1)	640.1 700.2	701.2 701.5	681.2	6:089 000	ROW 1	(-2,1)															
/L NOI	ROW 1	(0,1)	640.1	701.2	000	0 0	8	(-1,1)					QUADRANT III										
CALIBRATION TABLE #2		• • • (Q/210) (0,1) (1,1) (2,1)			1,279.5 0 0	640.2		• • • (-Q/210) (-1,1) (-2,1) (-3,1) • • •					, OUA	QUA									
S	ROW 0	000					ROW	MC								-	0 0						
		(Q/2 - AQ,0)	0 0	0 0	0 0	0			• (-a/2 - AQ,0)														
		0 0 0	000				ř	0															
		(3,0)	820.5	640.4	801.6	640.1		(4,0)					o o	0									
· · · · · · · · · · · · · · · · · · ·		(0,0) (1,0) (2,0) (3,0)	9.092	640.3	741.2	ССDy 640.2 640.3 640.1 640.1	,	(-1,0) (-2,0) (-3,0) (-4,0)					Z ₁ CCD _X (-1,-1) (-2,-1) ° CCD _Y	6.									
	ANT	(1,0)	700.2	640.1	680.3	640.3		(-2,0)															
	QUADRANTI	(0,0)	CCD _X 640.1	ССБү 640.1	CCDX 640.2	640.2	=	(-1,0)					X	Z ₁ CCD _X (0,-1) CCD _Y Z ₂ CCD _Y									
		.	CCDX	CCD	Xgoo	ζсс	QUADRANT II		Xass	λαээ	CCDX	ССБү	2 ₁ CCD _X CCD _Y 2 ₂ CCD _X CCD _X CCD _X	$\begin{array}{c} Z_1 \text{ CCD}_X \\ \text{CCD}_Y \\ Z_2 \text{ CCD}_X \\ \text{CCD}_Y \end{array}$									
			7	۲-1	22		ಠ		72		22												

Scanning System & Calibration Method for Capturing Precise Three-Dimensional

Information of Objects
Inventor: Rudger Rubbert 09/834,593

MBHB 01-099

18/51

70/01											
	ROW M										
z	000										
LINE	ROW M ROW 1 ROW 2										
	ROW 1										
	ROW M										
	0 0 0								· · ·		
	ROW 4	37.1		44		46		48.2			
	ROW 3	30.2	-14.6	36.2	-14.4	43.0	-14.8	31.0	-15.8		
	ROW 2	29.5		21.6		41.1		21.8			
u LINE 2	ROW 1	27.1		11.5		34.0		13.2			
PATTERN	ROW M ROW 1 ROW 2 ROW 3 ROW 4	0 0 0		-							
	0 0 0										
	ROW 4	2.1		44.5		12.2		46.3			
LINE 1	ROW 1 ROW 2 ROW 3 ROW 4	1.5		32.8		6.8		30.4			
	ROW 2	1.1		20.4		4.5		21.5			
PATTERN	ROW 1	1.0		10.2		3.9		12.1			
		CCDX	MM DIST.	ССБү	MM DIST.	Xass	MM DIST.	λgoo	MM DIST.		
			7	1		22					

 $CCD_{X^{\circ}}$ CCD_{Y} = PIXEL #, IN SUBPIXEL RESOLUTION

CALIBRATION TABLE #1

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects
Inventor: Rudger Rubbert
MBHB 01-099 09/834,593

19/51

Fig. 27

Fig. 28

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects Inventor: Rudger Rubbert MBHB 01-099 09/834,593

Fig. 29

Fig. 30

Fig. 31

Fig. 32

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects Inventor: Rudger Rubbert MBHB 01-099 09/834,593

Fig. 33

Fig. 34

Fig. 35

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects

Inventor: Rudger Rubbert
MBHB 01-099 09/834,593

FIG. 36

Scanning System & Calibration Method Capturing Precise Three-Dimensional Information of Objects Inventor: Rudger Rubbert

MBHB 01-099

09/834,593

23/51

 Δ = POINTS OF FRAME i

+ = POINTS OF FRAME i + 1

o = POINTS OF FRAME i + 2

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects

Information of Objects
Inventor: Rudger Rubbert
MBHB 01-099 09/8

09/834,593 **24/51**

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects
Inventor: Rudger Rubbert
MBHB 01-099 09/834,593

25/51

FIG. 37D

Scanning System & Calibration Method
Capturing Precise Three-Dimensional
Information of Objects
Inventor: Rudger Rubbert
MBHB 01-099 09/834,593

26/51

FIG. 38A

FRAME i

FIG. 38B

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects Inventor: Rudger Rubbert MBHB 01-099 09/834,593

Scanning System & Calibration Method fo Capturing Precise Three-Dimensional Information of Objects Inventor: Rudger Rubbert MBHB 01-099 09/834,593

FIG. 40A

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects
Inventor: Rudger Rubbert
MBHB 01-099 09/834,593

29/51

FIG. 40B

Scanning System & Calibration Method f
Capturing Precise Three-Dimensional
Information of Objects
Inventor: Rudger Rubbert
MBHB 01-099 09/834,593

FIG. 40C

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects
Inventor: Rudger Rubbert
MBHB 01-099 09/834,593

FIG. 40D

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects Inventor: Rudger Rubbert

Inventor: Rudger Rubbert MBHB 01-099 09/834,593

FIG. 42

SUM OF NORMAL VECTORS 254

248

FIG. 43

FIG. 44

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects

Inventor: Rudger Rubbert MBHB 01-099 09/834,593

33/51

FIG. 45

0

FIG. 46

34/51

FIG. 47B

FIG. 48A

FIG. 48B

FIG. 48C

FIG. 50

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects

Inventor: Rudger Rubbert MBHB 01-099 09/834,593

39/51

FIG. 51

FIG. 53

40/51

Stationary 5 Stationary 5 Count Convergence 0.100 Number of factor Accelerate Accelerate 1.6 Count of SYX surfaces 20 Maximal iteration count 400 Overlap size 6.00 Minimum quote of 6.00 Minimum quote of 6.00 Minimum quote of 6.00 Minimum quote of 6.00 Overlap size 6.00 Overlap size 6.00 Minimum quote of 6.00 Minimum quote of 6.00 Minimum quote of 6.00 Convergence 0.100 Maximal edge length (longer 1.80 Maximal count of unsuccessful 2 files new segment is started when exceeded) Form factor distance and element size (>=0) Merging Maximal count of edge 6.500mm Minimal triangle plane 6.010 Maximal count of edge 16 Maximal edge length 1.500mr for closing gaps	© <u>S</u> ingle	Registration (raw)		Registration (line)
Y Z	<u>S</u> umulative	Distance limit [250.00y] (SYX)	Maximal iteration count 400	Distance limit 50.000y (SYX)
Count Count Count	γ 2] Jany	_	Final distance 40.000y
Convergence 0.100 Maximal edge length (longer 1.80 edges have no attraction) Number of 400 Maximal edge length (longer 1.80 missingle size treated as gaps) Count of SYX surfaces 20 Maximal count of point of size for closing gaps Maximal count of SYX surfaces 20 Maximal edge length (1.50 missing gaps for closing gaps	00:0	count Radius (SYX) 2.000mm		Stationary 10
Number of 400 files new segment is started points to register Accelerate 1.6 Form factor: Proportion of point of startace and element size (>=0) and stance and element size (>	3.00 -3.00	ergence		
Accelerate 1.6 Form factor: Proportion of point [0.7] general Count of SYX surfaces 20 Cell size 16 for animation (0= off) Merging Radius of sphere inside 0.500mm Minimal triangle plane 0.010 Which is to replace size for closing gaps	, ,,,,,,,,,,	Jo o	Maximal count of unsuccessful 2 files new segment is started when exceeded)	factor Number of 400 points to
Count of SYX surfaces 20 Cell size 16 for animation (0= off) Merging Radius of sphere inside 0.500mm Minimal triangle plane 0.010 which is to replace size for closing gaps Maximal count of edge 16 Maximal edge length 1.500mr lines for closing gaps for closing gaps		ate		register Accelerate 1.3
Radius of sphere inside 0.500mm Minimal triangle plane 0.010 which is to replace Maximal count of edge 16 Maximal edge length 1.500mm for closing gaps	,	SYX surfaces tion (0= off)	Cell size 16	 ✓ Combine frames cumulative ✓ Combine segments cumulative
Maximal count of edge 16 Maximal edge length 1.500mm lines for closing gaps		Radius of sphere inside 0.50 which is to replace	i	Minimal distance from 0.400mm point of base quantity
0.00	0.00			Maximal distance from 0.000mm edge of base quantity

FIG. 54

Scanning System & Calibration Method for Capturing Precise Three-Dimensional Information of Objects Inventor: Rudger Rubbert MBHB 01-099 09/834,593 43/51 302 DRAG AND DROP MODE LANDMARK LABEL 306

44/51

Fig. 58A

Fig. 58C

Fig. 58D

Fig. 58E

Fig. 58F

Fig. 64A

Fig. 64B

Fig. 64C

Fig. 64D

FIG. 65

