# Deep Networks - VGGNet, GoogLeNet



Pattern Recognition & Machine Learning Laboratory
Ji-Sang Hwang, Aug 3, 2021



## VGGNet & GoogLeNet

## Introduction

- Improvement in object classification and detection capabilities with deep learning and convolutional networks (ConvNets)
- Progress is a consequence of new ideas, algorithms and improved network architectures

## Discussion

- Receptive smaller window size and smaller stride of the first convolutional layer [Zeiler & Fergus, 2013; Sermanet et al., 2014]
- > Training and testing networks densely over the whole image and over multiple scales [Sermanet et al., 2014; Howard, 2014]
- These papers,
  - Address another important aspect of ConvNet architecture design
  - Deep / Depth
    - Increased network depth
    - A new level of organization in the form of the "Inception module"



Meme of the Inception





## **Related Work**

## Contributions

- LeNet-5 [LeCun et al., 1989]
  - Standard structure of Convolution Neural Networks (CNN)
    - Stacked convolution layers (optionally followed by contrast normalization and max-pooling)
    - One or more fully-connected layers
    - For large datasets,
      - » Increase the number of layers
      - » Increase layer size
      - » Using dropout to address overfitting



Architectures of LeNet-5

- Network-in-Network [Lin et al., 2013]
  - Increase the representational power of neural networks
  - Add Additional convolutional layers to the network for increasing its depth and adding non-linearity
- Regions with Convolution Neural Networks (R-CNN) [Girshick et al., 2014]
  - Utilizing low-level cues in order to generate object location proposals in a category-agnostic fashion
  - Using CNN classifiers to identify object categories at those location



# Very Deep Convolutional Networks for Large-Scale Image Recognition [*K. Simonyan et al.*] (1/2)

#### Architecture of VGGNet

- Use convolution filter (smallest size to capture the notion of left/right, up/down, center)
  - Reason of using convolution filter
    - » 3 non-linear rectification layers make the decision function more discriminative
    - » Decrease the number of parameters
      - 3-layer convolution stack:,: Channel
      - 1-layer convolution stack :
- A stack of convolutional layers is followed by 3 Fully-Connected layers
- Hidden layers are equipped with rectification (Rectified Linear Unit (ReLU))



Architectures of VGGNet-13 (Top) and AlexNet (Bottom)



# Very Deep Convolutional Networks for Large-Scale Image Recognition [K. Simonyan et al.] (2/2)

- Differ only in the depth
  - From 11 weight layers in the network A to 19 weight layers in the network E
  - Using Local response normalization (LRN) does not improve on the model a without any normalization layer
  - convolution filter is a way to increase the non-linearity of decision function without affecting the receptive fields of the convolutional layers
  - Using pre-initialized layers to prohibit stalling learning due to instability of gradient in deep nets
    - Initialized first 4 convolutional layers and the last 3 fully-connected layers of network A
    - Did not decrease the learning rate for pre-initialized layers when training another networks

#### Table of number of parmaters (in millions)

| Network              | A, A-LRN | В    | С    | D    | Е    |
|----------------------|----------|------|------|------|------|
| Number of parameters | 133M     | 133M | 134M | 138M | 144M |

#### Table of ConvNet configurations

| -                           |           |           |           |           |           |  |  |  |
|-----------------------------|-----------|-----------|-----------|-----------|-----------|--|--|--|
| ConvNet Configuration       |           |           |           |           |           |  |  |  |
| Α                           | A-LRN     | В         | C         | D         | E         |  |  |  |
| 11 weight                   | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight |  |  |  |
| layers                      | layers    | layers    | layers    | layers    | layers    |  |  |  |
| input (224 × 224 RGB image) |           |           |           |           |           |  |  |  |
| conv3-64                    | conv3-64  | conv3-64  | conv3-64  | conv3-64  | conv3-64  |  |  |  |
|                             | LRN       | conv3-64  | conv3-64  | conv3-64  | conv3-64  |  |  |  |
|                             | Fah.      |           | pool      |           |           |  |  |  |
| conv3-128                   | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 |  |  |  |
|                             |           | conv3-128 | conv3-128 | conv3-128 | conv3-128 |  |  |  |
| maxpool                     |           |           |           |           |           |  |  |  |
| conv3-256                   | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 |  |  |  |
| conv3-256                   | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 |  |  |  |
|                             | 100       | 1 21      | conv1-256 | conv3-256 | conv3-256 |  |  |  |
| -                           |           |           |           | 11        | conv3-256 |  |  |  |
|                             |           | max       | pool      | 1         |           |  |  |  |
| conv3-512                   | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |  |  |  |
| conv3-512                   | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |  |  |  |
| N.                          |           | 1         | conv1-512 | conv3-512 | conv3-512 |  |  |  |
|                             |           | 100       | A Carl    | ĺ         | conv3-512 |  |  |  |
| maxpool                     |           |           |           |           |           |  |  |  |
| conv3-512                   | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |  |  |  |
| conv3-512                   | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |  |  |  |
| - 6                         | 100       |           | conv1-512 | conv3-512 | conv3-512 |  |  |  |
|                             |           |           |           | ĺ         | conv3-512 |  |  |  |
|                             |           | max       | pool      |           |           |  |  |  |
|                             |           | FC-4      | 4096      |           |           |  |  |  |
|                             |           |           | 4096      |           |           |  |  |  |
| 1                           |           | FC-       | 1000      |           |           |  |  |  |
|                             |           | soft-     | ·max      |           |           |  |  |  |
|                             |           |           |           |           |           |  |  |  |



## **Going Deeper with Convolutions** [C. Szegedy et al.] (1/2)

## Method

- **Architecture of The Inception** 
  - Consider how an optimal local sparse structure of a convolutional network can be approximated and covered by readily available dense components
  - Problems of Naïve Version
    - A modest number of convolutions can be prohibitively expensive
    - Leading to a computational blow up within a few stage
  - Solving problems with convolutional layer
    - Using 'bottleneck' layers to compute reductions before the expensive and convolutions
    - Including the use of rectified linear activation for adding non-linearity







3x3 convolutions 5x5 convolutions 1x1 convolutions 1x1 convolutions 1x1 convolutions 1x1 convolutions 3x3 max poolin Previous laver

5x5 convolution with 1x1 convolution

Image of inception module(Dimension reduction)



# Going Deeper with Convolutions [C. Szegedy et al.] (2/2)

## Architecture of GoogLeNet

- 22 layers deep when counting only layers with parameters
- The use of 'average pooling' before the classifier enables to easily adapt networks to other label sets
- Adding 'auxiliary classifiers' to combat the vanishing gradient problems while providing regularization
  - An average pooling layer with filter size and stride 3
  - A convolution with 128 filters for dimension reduction and rectified linear activation
  - A fully connected layer with 1024 units and rectified linear activation
  - A linear layer with softmax loss as the classifier



GoogLeNet architecture



## **Training Models**

## Method

- Training VGGNet
  - Using stochastic gradient descent (SGD) with momentum
    - Batch size: 256 / momentum: 0.9
  - Regularized by weight decay and dropout
    - L2 penalty multiplier :
    - Dropout ratio: 0.5 (First 2 fully-connected layers)
  - Randomly cropped from rescaled training images
    - 1 crop per image per SGD iteration
    - Single-scale training
      - » Fix Scale (): and
      - » Pretrained with and trained with initial learning rate of
    - Multi-scale training (Called scale jittering)
      - » Rescaled by randomly sampling from a certain range
- Training GoogLeNet
  - Using asynchronous stochastic gradient descent with momentum
    - Momentum : 0.9
  - Regularized by fixed learning rate schedule
    - Decreasing the learning rate by 4% every 8 epochs



512x512

**Example of Multi-scale training** 



## Conclusion

## Result

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014 Classification Challenge Result

Table of classification performance in ILSVRC 2014

| Team      | Year | Place           | Error (top-5) | Uses external data | Layers    | Parms |
|-----------|------|-----------------|---------------|--------------------|-----------|-------|
| GoogLeNet | 2014 | 1 <sup>st</sup> | 6.67%         | No                 | 22 layers | 5 M   |
| VGG       | 2014 | 2 <sup>nd</sup> | 7.32%         | No                 | 19 layers | 144 M |

## Setup of GoogLeNet

- Trained independently 7 versions of same GoogLeNet model and performed ensemble prediction with them
- Aggressive cropping approach during testing (Resize 256, 288, 320, 352)

The softmax probabilities are averaged over multiple crops and all individual classifiers to obtain the final prediction

### Conclusion

- GoogLeNet
  - Significant quality gain at a modest increase of computational requirements to shallower and narrower architectures
- VGGNet
  - Importance of dept in visual representations

16.4

11.7

22 layers 19 layers
6.7 7.3

8 layers 8 layers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10 AlexNet

Result of classification performance in ILSVRC