Table: Summary of statistical features computed from an image.

1 - minimum	2 - maximum	3 -median
$x_{max} = min\{x[n,m]\}$	$x_{min} = max\{x[n,m]\}$	$x_m = median\{x[n,m]\}$
4 - mean	5 - variance	6 - standard deviation
$\mu_x = \frac{1}{NM} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} x[n, m]$	$\sigma_x^2 = \frac{1}{NM} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} (x[n, m] - \mu_x)^2$	$\sigma_{\scriptscriptstyle \chi} = \sqrt{\sigma_{\scriptscriptstyle \chi}^2}$
S7 - skewness	8 -kurtosis	9 - squared range: $S_r = \left(\frac{x_{max}}{x_{max}}\right)^2$
$S_x^3 = E\left[\left(\frac{X - \mu_x}{\sigma_x}\right)^3\right] = \frac{E\left[(X - \mu_x)^3\right]}{(\sigma_x)^3}$	$k_x^4 = E\left[\left(\frac{X - \mu_x}{\sigma_x}\right)^4\right] = \frac{E\left[(X - \mu_x)^4\right]}{(\sigma_x^2)^2}$	\\ min'
10 - Shannon entropy: $0 \le x \le 255$	11 - bins entropy: $0 \le x \le number \ of \ bins$	12 - normalized energy
$H_x = E[-\log_2 p(x)] = -\sum_{n=0}^{N-1} p(x)\log_2 p(x)$	$H_b = E[-\log_2 p_b(x)] = -\sum_{n=0}^{N-1} p_b(x) \log_2 p_b(x)$	$E_n = \frac{1}{NM} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} (x[n, m])^2$
13 - rms value	14- absolute deviation	15 - image uniformity: $x_{min} \le x \le x_{max}$
$E_{rms} = \sqrt{E_n}$	$\tau_{x} = \frac{1}{NM} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} x[n, m] - \mu_{x} $	$\varepsilon_{x} = \sum_{x=x_{min}}^{x_{max}} \{p(x)\}^{2}$
16 - robust mean absolute deviation	μ_{10-90} is used to compute feature 16.	17 - 7.5 th percentile
$\mu_{rmad} = \frac{1}{(NM)_{10-90}} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} (x[n,m])_{10-90} - \mu_{10-90} $	$\mu_{10-90} = \frac{1}{(NM)_{10-90}} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} (x[n,m])_{10-90}$	$x_{7.5} = percentile_{7.5}\{x[n,m]\}$
18 - 15.0 th percentile	19 - 85.0 th percentile	20 - 92.5 th percentile
$x_{15} = percentile_{15}\{x[n,m]\}$	$x_{85} = percentile_{85}\{x[n,m]\}$	$x_{92.5} = percentile_{92.5}\{x[n,m]\}$
21 - interquartile range	22 - number of pixels at 7.5 th percentile – null values	23 - number of pixels at 15.0 th percentile – null values
$x_{ir} = percentile_{75}\{x[n,m]\} - percentile_{25}\{x[n,m]\}$	$\beta_{7.5} = pixels_percentile_{7.5}\{x[n, m]\}$	$\beta_{15} = pixels_percentile_{15}\{x[n,m]\}$
24 - number of pixels at 85.0 th percentile – null values	25 - number of pixels 92.5 th percentile – null values	26 - number of pixels in the interquartile range
$\beta_{85} = pixels_percentile_{85}\{x[n,m]\}$	$\beta_{92.5} = pixels_percentile_{92.5}\{x[n, m]\}$	$\begin{split} \beta_{ir} &= pixels_percentile_{75}\{x[n,m]\} \\ &- pixels_percentile_{25}\{x[n,m]\} \end{split}$
27 - probability of range 1: given x_1 and x_2 compute	28 - probability of range 2: given x_1 and x_2 compute	29 - probability of range 3: given x_1 and x_2 compute
$\rho_1 = p(X \ge x_{min}, X \le x_1) = F(x = x_1) - F(x = x_{min})$	$\rho_2 = p(X \ge x_1, X \le x_2) = F(x = x_2) - F(x = x_1)$	$\rho_3 = p(X \ge x_2, X \le x_{max}) = F(x = x_{max}) - F(x = x_2)$
30 - range of probability 1: given $p(X \le x_1)$ compute $\lambda_1 = x_1 - x_{min} = F_X^{-1} \{ p(X \le x_1) \} - x_{min}$	31 - range of probability 2: given $p(X \le x_1)$ and $p(X \le x_2)$ compute $\lambda_2 = x_2 - x_1 = F_X^{-1}\{p(X \le x_2)\} - F_X^{-1}\{p(X \le x_1)\}$	32 - range of probability 3: given $p(X \le x_2)$ compute $\lambda_3 = x_{max} - x_2 = x_{max} - F_X^{-1} \{ p(X \le x_2) \}$