ME361 – Manufacturing Science Technology

Bulk deformation processes Forging

Dr. Mohit Law

<u>mlaw@iitk.ac.in</u>

Bulk deformation processes

- Forging
- Rolling
- Drawing
- Extrusion (if time permits)

Forging

Forging

https://www.youtube.com/watch?v=TX3uJxB1j8Q

Forging, the Chinese way

https://www.youtube.com/watch?v=r41dcYUvNLk

Forging, the German way

https://www.youtube.com/watch?v=KwNwN4eRQOA

Types of mechanisms for moving forging die

Forging

FORGING 15 THE OLDEST MECHANICAL METHOD OF METALWORKING KNOWN TO MAN.

https://www.youtube.com/watch?v=QwKaKP53HDI

Forging analysis

Preliminaries. Stress-strain behavior.

(a) Perfectly elastic

(b) Rigid, perfectly plastic

(c) Elastic, perfectly plastic

(d) Rigid, linearly strain hardening

(e) Elastic, linearly strain hardening

Forging. The ideal case.

Barreling in forging

https://www.youtube.com/watch?v=MSWYbb5vWu4

Barreling, caused by friction

Grain flow:

Forging analysis: objectives and assumptions

- Objective: To determine the forging force
- Assumptions:
 - Max. force is attained at the end of the operation
 - Friction between workpiece and dies is constant
 - Thickness is small compared to other dimensions,
 and hence variation in stress field along thickness
 is negligible
 - Problem is of plane strain type (length >> width)
 - Workpiece is in plastic state during the process

Forging analysis – the ideal case (no barreling)

- Consider a cylindrical specimen with initial diameter d_0
- Ideal case: friction at the interfaces is zero, i.e. no barreling
- Material is perfectly plastic with a yield stress of Y

Forging force at any height h_1 :

$$F = YA_1$$

Cross sectional area A_1 from volume constancy:

$$A_1 = \frac{A_0 h_0}{h_1}$$

Forging analysis: with barreling (with friction)

- Consider a rectangular workpiece
- Simple case of compression with friction
- Deformation in plane strain, i.e. no flow in the z-direction (no flow out of plane)
- Use slab method for analysis

Balance horizontal forces in this element:

$$(\sigma_x + d\sigma_x)h + 2\mu\sigma_y dx - \sigma_x h = 0$$

or

$$d\sigma_x + \frac{2\mu\sigma_y}{h}dx = 0$$

One equation, two unknowns. Need another equation.

Forging analysis contd. with a digression for plane strain

Recalling Hooke's law equations:

$$\varepsilon_{x} = \frac{1}{E} \left[\sigma_{x} - \nu (\sigma_{y} + \sigma_{z}) \right]$$

$$\varepsilon_{y} = \frac{1}{E} \left[\sigma_{y} - \nu (\sigma_{x} + \sigma_{z}) \right]$$

$$\varepsilon_{z} = \frac{1}{E} \left[\sigma_{z} - \nu (\sigma_{x} + \sigma_{y}) \right]$$

For plane strain, $\varepsilon_z=0$; $\sigma_z=\frac{\sigma_x+\sigma_y}{2}$;

since $v = \frac{1}{2}$ in plastic deformation

Use a yield criterion (Distortion energy/von-Mises):

$$(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 = 2Y^2$$

 σ_x , σ_y , σ_z — principle stresses; Y — the uniaxial yield stress

$$\sigma_y - \sigma_x = \frac{2}{\sqrt{3}}Y = Y'$$
 or $d\sigma_y = d\sigma_x$ (2)

 $^*\sigma_x$ and σ_y are assumed to be principle stresses, even though there is a shear component of $\mu\sigma_y$. However, since μ is usually small, this is reasonable

Forging analysis contd.

One equation, two unknowns. Need another equation.

$$d\sigma_x + \frac{2\mu\sigma_y}{h}dx = 0 \tag{1}$$

Element is subjected to triaxial compression. Using distortion energy criterion for plane strain:

$$\sigma_y - \sigma_x = \frac{2}{\sqrt{3}}Y = Y'$$

or

$$d\sigma_y = d\sigma_x \tag{2}$$

Forging analysis contd.

From force balance and yield criterion for plane strain:

$$d\sigma_{x} + \frac{2\mu\sigma_{y}}{h}dx = 0$$

$$d\sigma_{y} = d\sigma_{x}$$

$$d\sigma_{y} = d\sigma_{x}$$
(1)
$$\frac{d\sigma_{y}}{\sigma_{y}} = \frac{2\mu}{h}dx$$
Integrate
$$\sigma_{y} = Ce^{\frac{-2\mu x}{h}}$$

$$d\sigma_y = d\sigma_x \tag{2}$$

$$\frac{d\sigma_y}{\sigma_y} = \frac{2\mu}{h}dx$$

$$\sigma_y = Ce^{\frac{-2\mu x}{h}}$$

At
$$x = a$$
, $\sigma_x = 0 \rightarrow \sigma_y = Y'$
 $(\sigma_y - \sigma_x = Y')$ at workpiece $C = Y'e^{\frac{2\mu a}{h}}$

$$C = Y'e^{\frac{2\mu a}{h}}$$

Thus, the stresses are:
$$p = \sigma_y = Y' e^{(2\mu(a-x))/h}$$

and

$$\sigma_x = \sigma_y - Y' = Y' [e^{(2\mu(a-x))/h} - 1]$$

Forging analysis contd.

Distribution of die pressure in dimensionless form:

$$\frac{p}{Y'} = e^{(2\mu(a-x))/h}$$

Source: Kalpakjian and Schmid

- Pressure increases exponentially towards the center
- Pressure also increases with the a/h ratio, and friction
- Area under pr. curve is the upsetting (forging) force per unit width of the workpiece. Can integrate to obtain exact force.
- Alternatively, forging force, is a product of average pressure and contact area:

$$F = (p_{av})(2a)(width)$$

$$p_{av} \simeq Y' \left(1 + \frac{\mu a}{h}\right)$$

Force at any h during continuous forging is different, being a $f(p_{av}) \rightarrow f(h)$

Transition from sliding to sticking friction

- In plane-strain forging, product of μ and p is the frictional stress at a location x from the center.
- Since p increases towards the center, so does μp
- However, $\mu p > k$, the yield stress of the material
- Limiting case, $\mu p = k$, i.e. sticking is taking place
- At what distance does the transition from sticking to sliding take place?

Transition from sliding to sticking friction

- Shear stress at interface due to friction: $\tau = \mu p$
- Since $\mu p > k$, the limiting case is $\mu p = k$, i.e. sticking is taking place
- For plane strain, k = Y'/2
- From pressure $(p = Y' e^{(2\mu(a-x))/h})$ in the limit, we get:

$$\mu Y' e^{(2\mu(a-x))/h} = \frac{Y'}{2} \longrightarrow 2\mu \frac{(a-x)}{h} = \ln\left(\frac{1}{2\mu}\right)$$
 i.e., the location from sliding to sticking is
$$x = a - \left(\frac{h}{2\mu}\right) \ln\left(\frac{1}{2\mu}\right)$$

• Follows that as magnitude of μ decrease, x decreases

Pressure in sliding and in sticking

 Recalling normal pressure (stress) in sliding

$$p = Y'e^{\frac{2\mu(a-x)}{h}}$$

 Similarly, normal stress in sticking can be shown to be

$$p = Y' \left(1 + \frac{a - x}{h} \right)$$

Forging of a cylindrical specimen

Isolate a segment of $d\theta$

Follow the same approach as for the plane strain case, the pressure p, at any radius x is:

$$p = Ye^{\frac{2\mu(r-x)}{h}}$$

And, the forging force can be approximated as:

$$F = (p_{av})(\pi r^2)$$
 wherein

$$p_{av} \simeq Y \left(1 + \frac{2\mu r}{3h} \right)$$

Pressure in sliding and in sticking for a cylindrical specimen

 Recalling normal pressure (stress) in sliding

$$p = Ye^{\frac{2\mu(r-x)}{h}}$$

 Similarly, normal stress in sticking can be shown to be

$$p \simeq Y' \left(1 + \frac{r - x}{h} \right)$$

Forging, closed die

https://www.youtube.com/watch?v=E8YozBTvw3Q

Load-stroke curve for impression-die forging

Impression-die forging (closed die forging)

Forging force: $F = K_p Y_f A$

TABLE 6.2 Range of K_p values in Eq. (6 impression-die forging.	5.22) for
Simple shapes, without flash	3-5
Simple shapes, with flash	5-8
Complex shapes, with flash	8-12

Closed die forging: numerical analysis

Analysis numerical (FE)

Steel: C30 Germany Werkstoffnummer: 1.0528

Volume: 495511 mm^3

Weight: 3,8 kg. forging part

https://www.youtube.com/watch?v=G5x3s1pYrVQ

Connecting rod forging: numerical analysis

https://www.youtube.com/watch?v=bZLNKnAENbY

Rotary forging (swing/orbital/rocking-die)

Rotary forging

https://www.youtube.com/watch?v=i7lWtWe2Kr8

Heading

Can be used for making fasters such as bolts, rivets, etc.

Forging bolts

https://www.youtube.com/watch?v=4HCQnGcSqhg

