for Basic Principles of Operating Systems 2023 Wolfgang J. Paul & Markus Neuhauser

Exercises for week 1

1 A simple grammar

Consider the grammar G with:

$$N = \{S\}$$

$$T = \{a, e, m\}$$

$$S \rightarrow m \mid aSee$$

- 1. Draw derivation trees for all words in L(G) which can be derived with at most 3 steps (derivation trees with at most 3 inner nodes)? (20 credit points)
- 2. Prove:

$$a^n m e^{2n} \in L(G)$$
 for all $n \ge 0$.

(10 credit points)

3. Prove:

$$L(G) = \left\{ a^n m e^{2n} \middle| n \ge 0 \right\}.$$

(20 bonus credit points)

2 Getting familiar with the C0 grammar

This follows the pattern of the first and second week's slides (they are uploaded). Draw derivation trees—if there is one—showing derivations.

- 1. Constants: from $\langle C \rangle$ to 324.
- 2. Names: from $\langle Na \rangle$ to G680.
- 3. Expressions: from $\langle E \rangle$ to 8/X-989. Compress subtrees with roots $\langle C \rangle$ and $\langle N \rangle$.
- 4. Statements: from $\langle StS \rangle$ to Y = Y 1; P = new OLD*.Compress subtrees with roots $\langle Na \rangle$ and $\langle E \rangle$. Do not worry about the effect of the new-statement. This is only about syntax.
- 5. Function calls: from $\langle St \rangle$ to v = ge(60, t * 8).

- 6. Type declarations: from $\langle TyD \rangle$ to typedef uint [0] $empty_arr$. Compress subtrees with roots $\langle Na \rangle$.
- 7. Type declarations: from $\langle TyD \rangle$ to typedef bool [N] parametrized_arr. Compress subtrees with roots $\langle Na \rangle$.
- 8. Function declarations: from $\langle FuD \rangle$ to char $main()\{t=t/8; \mathtt{return}\ A\}$. Compress subtrees with roots $\langle Na \rangle$ or $\langle E \rangle$.

Do not show pointed brackets in the trees. If there is no tree, explain why. (Each item 10 credit points)