Cockoba: EAИ October 5, 2010

Теорема на Клини

Теорема Всеки автоматен език е регулярен.

Д-во: Даден: DFA $A = (\{1,\ldots,n\}, \Sigma, \delta, s, F)$

Резултат: регулярен израз α такъв, че $L(A) = L(\alpha)$.

За всяко $f \in F$ нека $L_f = \left\{ w \in \Sigma^* : \hat{\delta}(s, w) = f \right\}.$

Ще намерим RegExp за L_f . Тъй като $L(A) = \bigcup_{f \in F} L_f$,

теоремата ще е доказана, защото F е крайно.

Cockoba: EAИ October 5, 2010

Даден: DFA $A_f = (\{1, \dots, n\}, \Sigma, \delta, s, \{f\})$

Резултат: регулярен израз α и $L_f = L(A_f) = L(\alpha)$.

Нека $L_{ij} := L((\{1,\ldots,n\}\,,\Sigma,\boldsymbol{\delta},\underbrace{i},\{j\}))$

В частност $L_{sf} = L_f$.

Ако $i \neq j$: $L_{ii}^0 := \{a \in \Sigma : j \in \delta(i,a)\}$

Ако i=j: L^0_{ij} := $\{a \in \Sigma : j \in \delta(i,a)\} \cup \{\varepsilon\}$

 $m{L}^m_{ij} \! := \; \left\{ w \in \Sigma^* : \exists ext{pаботен път} \;\; i \stackrel{w}{\Rightarrow} j = i P j \; \text{и} \; P \in \{1, \dots, m\}^*
ight\}$

Тук преход iPj озаначава преход от i до j, с междинни състояния с номера $\leq m$.

Забележете, че $L_{ij} = L_{ij}^n$.

Ще построим реулярен израз за L^m_{ij} индуктивно, използвайки регулярните изрази за по-малките m.

Даден: регулярен израз $oldsymbol{lpha}_{ij}^k,\, k < m$ и $L(oldsymbol{lpha}_{ij}^k) = L_{ij}^k$

Резултат: $oldsymbol{lpha_{ij}^m}$ и $L(oldsymbol{lpha_{ij}^m}) = L_{ij}^m$

Ако
$$m=0, i=j$$
: $\alpha_{ii}^0=\bigcup_{a\in\Sigma:\delta(i,a)=i}a\cup\varepsilon$
Ако $m=0, i\neq j$: $\alpha_{ij}^0=\bigcup_{a\in\Sigma:\delta(i,a)=j}a$

Ako $m \rightsquigarrow m+1$:

$$\alpha_{ij}^{m+1} = \alpha_{ij}^m \cup \alpha_{i,m+1}^m \cdot (\alpha_{m+1,m+1}^m)^* \cdot \alpha_{m+1,j}^m$$

 $\alpha_{21}^{0}=1$

Cockoba: EAИ October 5, 2010

Пример

$$egin{aligned} lpha_{11}^0 &= 1 \cup arepsilon & lpha_{22}^0 &= 0 \cup arepsilon & lpha_{12}^0 &= 0 & lpha_{21}^0 &= 1 \ lpha_{12}^1 &= lpha_{12}^0 \cup lpha_{11}^0 \cdot (lpha_{11}^0)^* \cdot lpha_{12}^0 & lpha_{22}^1 &= lpha_{22}^0 \cup lpha_{21}^0 \cdot (lpha_{11}^0)^* \cdot lpha_{12}^0 \ &= 0 \cup (1 \cup arepsilon) \cdot (1 \cup arepsilon)^* \cdot 0 & = 0 \cup arepsilon \cup 1 \cdot (1 \cup arepsilon)^* \cdot 0 \ &= 1^*0 \cup arepsilon \end{aligned}$$

$$\alpha_{12}^{2} = \alpha_{12}^{1} \cup \alpha_{12}^{1} \cdot (\alpha_{22}^{1})^{*} \cdot \alpha_{22}^{1}$$

$$= 1^{*}0 \cup 1^{*}0 \cdot (1^{*}0 \cup \varepsilon)^{*} \cdot (1^{*}0 \cup \varepsilon)$$

$$= 1^{*}0(1^{*}0)^{*}$$

$$L(\alpha_{12}^2) = L_{12}^2 = L_{12} = L_2$$
, където $F = \{2\}$.