Määrittelydokumentti

Tietorakenteiden harjoitustyö

Ratkaistava ongelma

 Ongelmana on löytää labyrintistä lyhin polku lähtöpisteestä maaliin. Ongelman ratkaisuun tarvitaan algoritmeja jotta sen saisi ratkaistua mahdollisimman tehokkaasti, käyttämällä mahdollisimman vähän aikaa ja muistia.

Toteutettavat algoritmit

Dijkstra, A star, Bellman-Ford. Dijkstra ja A star toimivat pitkälti samaan tyyliin.
Dijkstra etsii parhaat reitit valitsemalla aina parhaalta vaikuttavan vaihtoehdon (sen solmun jonka etäisyysarvio alkuun on pienin), A star puolestaan käyttää hyväkseen arvioita siitä mikä tutkimattomista solmuista näyttää olevan osa lyhintä polkua lähdön ja maalin välillä. Bellman-Ford ei etsi parhaalta vaikuttavia tapauksia vaan käy läpi kaikki polut järjestyksessä kunnes tulos on valmis.

Syötteet

– Syötteenä annetaan matriisi jossa polut merkitty ykkösillä, poluttomat ruudut nollalla.

Algoritmien aika-/tilavaativuus

- Yleisesti tiedetyt pahimman tapauksen aika- ja tilavaativuudet (V solmujen määrä ja E kaarien joukko):
 - Dijkstra: aikavaativuus $O((|E| + |V|) \log |V|)$, tilavaativuus O(|V|)
 - A star: samat kuin Dijkstralla
 - Bellman-Ford: aikavaativuus O(|V||E|), tilavaativuus O(|V|)

Lähteet

- Tietorakenteet ja algoritmit-kurssin luentomateriaali
- Wikipedia