Lecture 2: Foundation Deep Generative Models

Sajjad Amini

Department of Electrical Engineering Sharif University of Technology

Contents

- Color Codes
- 2 Notation
- 3 Probability and Statistics
 - Probability Mass/Density Function
 - Expectation
 - Distance Metrics

4 Conclusions

Sajjad Amini DGM-L2 2 / 40

Section 1

Color Codes

Color Coded Blocks

Definition Block	
Result Block	
Note Block	
Example Block	
Remember Block	

Section 2

Notation

Scalars, Vctors and Matrices

Type	Non-random	Random
Scalar	x or X	X
Vector	$oldsymbol{x}$	X
Matrix	\boldsymbol{X}	X
i-th element of a vector	x_i or $[\boldsymbol{x}]_i$	X_i or $[\mathbb{X}]_i$
(i, j)-th element of a matrix	x_{ij} or $[\boldsymbol{X}]_{ij}$	X_{ij} or $[\mathbb{X}]_{ij}$
i-th row of a matrix	$oldsymbol{x}_{i:}$ or $[oldsymbol{X}]_{i:}$	$\mathbb{X}_{i:}$ or $[\mathbb{X}]_{i:}$
j-th column of a matrix	$oldsymbol{x}_{:j}$ or $[oldsymbol{X}]_{:j}$	$\mathbb{X}_{:j}$ or $[\mathbb{X}]_{:j}$

^{*}The element index appears at the end of subscript i-th element of vector \boldsymbol{x}_k : $x_{k,i}$ or $[\boldsymbol{x}_k]_i$

Sajjad Amini DGM-L2 Notation 6 / 46

Operators

• Element-wise product: Assume $x, y, x \in \mathbb{R}^D$, then:

$$z = x \odot y \Leftrightarrow z_i = x_i \times y_i, i = 1, \dots, D$$

• Element-wise product: Assume $x, y, x \in \mathbb{R}^D$, then:

$$z = x \odot y \Leftrightarrow z_i = x_i \times y_i, i = 1, \dots, D$$

• Vectorization: Assume $X \in \mathbb{R}^{m \times n}$, then:

$$oldsymbol{x} = ext{vec}(oldsymbol{X}) \Leftrightarrow oldsymbol{x} = egin{bmatrix} [oldsymbol{X}]_{:1} \ [oldsymbol{X}]_{:2} \ \dots \ [oldsymbol{X}]_{:n} \end{bmatrix}$$

Sajjad Amini DGM-L2 Notation 7 / 46

Operators

• Element-wise product: Assume $x, y, x \in \mathbb{R}^D$, then:

$$z = x \odot y \Leftrightarrow z_i = x_i \times y_i, i = 1, \dots, D$$

• Vectorization: Assume $X \in \mathbb{R}^{m \times n}$, then:

$$oldsymbol{x} = \mathrm{vec}(oldsymbol{X}) \Leftrightarrow oldsymbol{x} = egin{bmatrix} [oldsymbol{X}]_{:1} \ [oldsymbol{X}]_{:2} \ \dots \ [oldsymbol{X}]_{:n} \end{bmatrix}$$

• Trace: The trace of a square matrix $X \in \mathbb{R}^{n \times n}$, denoted $\operatorname{tr}(X)$, is the sum of diagonal elements in the matrix as:

$$\operatorname{tr}(\boldsymbol{X}) \triangleq \sum_{i=1}^{n} x_{ii}$$

Sajjad Amini DGM-L2 Notation 7 / 46

Operators

• Norm: The ℓ_p norm for vector $\boldsymbol{x} \in \mathbb{R}^n$ is defined as:

$$\|\boldsymbol{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}, p \ge 1 \Rightarrow \begin{cases} \ell_{1} : \|\boldsymbol{x}\|_{1} = \sum_{i=1}^{n} |x_{i}| \\ \ell_{2} : \|\boldsymbol{x}\|_{2} = \sqrt{\sum_{i=1}^{n} x_{i}^{2}} \\ \ell_{\infty} : \|\boldsymbol{x}\|_{\infty} = \max_{i} |x_{i}| \end{cases}$$

• Norm: The ℓ_p norm for vector $\boldsymbol{x} \in \mathbb{R}^n$ is defined as:

$$\|\boldsymbol{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}, p \ge 1 \Rightarrow \begin{cases} \ell_{1} : \|\boldsymbol{x}\|_{1} = \sum_{i=1}^{n} |x_{i}| \\ \ell_{2} : \|\boldsymbol{x}\|_{2} = \sqrt{\sum_{i=1}^{n} x_{i}^{2}} \\ \ell_{\infty} : \|\boldsymbol{x}\|_{\infty} = \max_{i} |x_{i}| \end{cases}$$

• Transpose: The transpose of matrix $X \in \mathbb{R}^{n \times m}$, denoted by X^T , is:

$$[\boldsymbol{X}^T]_{ji} = [\boldsymbol{X}]_{ij}, \begin{cases} i = 1, \dots, n \\ j = 1, \dots, m \end{cases}$$

Sajjad Amini DGM-L2 Notation 8 / 46

• Diag:

$$\boldsymbol{x} \in \mathbb{R}^n \Rightarrow \boldsymbol{X} = \operatorname{diag}(\boldsymbol{x}) = \begin{bmatrix} [\boldsymbol{x}]_1 & 0 & \dots & 0 & 0 \\ 0 & [\boldsymbol{x}]_2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & [\boldsymbol{x}]_{n-1} & 0 \\ 0 & 0 & \dots & 0 & [\boldsymbol{x}]_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Sajjad Amini DGM-L2 Notation 9 / 46

• Diag:

$$\boldsymbol{x} \in \mathbb{R}^n \Rightarrow \boldsymbol{X} = \operatorname{diag}(\boldsymbol{x}) = \begin{bmatrix} [\boldsymbol{x}]_1 & 0 & \dots & 0 & 0 \\ 0 & [\boldsymbol{x}]_2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & [\boldsymbol{x}]_{n-1} & 0 \\ 0 & 0 & \dots & 0 & [\boldsymbol{x}]_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$m{X} \in \mathbb{R}^{n imes n} \Rightarrow m{x} = ext{diag}(m{X}) = egin{bmatrix} [m{X}]_{11} \ [m{X}]_{22} \ dots \ [m{X}]_{(n-1)(n-1)} \ [m{X}]_{nn} \end{bmatrix}$$

Sajjad Amini DGM-L2 Notation 9 / 46

Matrix Calculus

• Gradient vector: The gradient vector for $f: \mathbb{R}^n \to \mathbb{R}$ at point x is:

$$\frac{\partial f}{\partial \boldsymbol{x}} = \nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

Matrix Calculus

• Gradient vector: The gradient vector for $f: \mathbb{R}^n \to \mathbb{R}$ at point \boldsymbol{x} is:

$$\frac{\partial f}{\partial \boldsymbol{x}} = \nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

• Jacobian matrix: The Jacobian matrix for $f: \mathbb{R}^n \to \mathbb{R}^m$ at point x is:

$$m{J_f}(m{x}) = rac{\partial m{f}}{\partial m{x}^T} riangleq egin{bmatrix} rac{\partial f_1}{\partial x_1} & \dots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \dots & rac{\partial f_m}{\partial x_n} \end{bmatrix} = egin{bmatrix}
abla f_1(m{x})^T \ dots \
abla f_m(m{x})^T \end{bmatrix}$$

Sajjad Amini DGM-L2 Notation 10 / 46

Definitions

• LHS and RHS: Left Hand Side (LHS) and Right Hand Side (RHS) refer to:

$$\overrightarrow{z} = \overrightarrow{x \odot y}$$

Section 3

Probability and Statistics

Subsection 1

Probability Mass/Density Function

Discrete Random Variable

Figure: Probabilistic experiment: an experiment where the result is NOT certain a priori

Discrete Random Variable

Figure: Sample space Ω : set of all possible outcomes

Discrete Random Variable

Figure: Numeric numbers x

Figure: Random variable X: a function which maps every sample in Ω to a numeric number x

Figure: Sample space Ω , random variable X and numeric number x

Figure: Event definition

Figure: A typical event

PMF
$$p(X=x) \xrightarrow{\text{Equivalent}} p(\{w \in \Omega : X(w) = x\})$$

Figure: Probability mass function p(X = x)

Probability Mass Function

Properties

PMF assigns a mass to each event corresponding to the event probability, so it must satisfy the following properties:

$$p(X = x) \ge 0$$
$$\sum_{x} p(X = x) = 1$$

Bernoulli

Assume $x \in \{0, 1\}$, then random variable X is Bernoulli, dented by:

$$X \sim \mathrm{Ber}(\theta)$$

Bernoulli

Assume $x \in \{0, 1\}$, then random variable X is Bernoulli, dented by:

$$X \sim \mathrm{Ber}(\theta)$$

or

$$p_{\theta}(X) = \text{Ber}(X|\theta)$$

Bernoulli

Assume $x \in \{0, 1\}$, then random variable X is Bernoulli, dented by:

$$X \sim \mathrm{Ber}(\theta)$$

or

$$p_{\theta}(X) = \operatorname{Ber}(X|\theta)$$

And we have:

$$p_{\theta}(X = x) = \begin{cases} \theta & x = 1\\ 1 - \theta & x = 0 \end{cases}$$

Note that θ must satisfy $0 \le \theta \le 1$.

Categorical

Assume $x \in \{1, 2, \dots, L\}$, then random variable X is Categorical, dented by:

$$X \sim \mathrm{Cat}(\boldsymbol{\theta})$$

Categorical

Assume $x \in \{1, 2, \dots, L\}$, then random variable X is Categorical, dented by:

$$X \sim \mathrm{Cat}(\boldsymbol{\theta})$$

or

$$p_{\theta}(X) = \operatorname{Cat}(X|\boldsymbol{\theta})$$

Categorical

Assume $x \in \{1, 2, ..., L\}$, then random variable X is Categorical, dented by:

$$X \sim \mathrm{Cat}(\boldsymbol{\theta})$$

or

$$p_{\theta}(X) = \operatorname{Cat}(X|\boldsymbol{\theta})$$

And we have:

$$p_{\theta}(X=l) = \theta_l$$

Note that θ must satisfy $0 \le \theta \le 1$ and $\sum_{l} \theta_{l} = 1$.

Extension to Random Vector

Figure: Rolling two dice experiment

Extension to Random Vector

Figure: Sample space Ω

Extension to Random Vector

Figure: Random vector $\mathbb X$ and numeric vector \boldsymbol{x}

Probability Mass Function

Properties

PMF properties for a random variable can be easily extended to random vectors. Assume we have:

$$\mathbb{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix},$$

then we have:

$$p(X = \mathbf{x}) = p(X_1 = x_1, X_2 = x_2) \ge 0$$
$$\sum_{\mathbf{x}} p(X = \mathbf{x}) = \sum_{x_1} \sum_{x_2} p(X_1 = x_1, X_2 = x_2) = 1$$

To have PMF over only X_1 random variable, we can use Marginalization as:

$$p(X_1 = x_1) = \sum_{x_2} p(X_1 = x_1, X_2 = x_2)$$

Figure: First random variable: Tossing a coin

Figure: Second random variable: Rolling a die based on coin experiment

Figure: The distribution for each die (the dice are not fair)

Figure: Two dimensional random variable X and corresponding numeric vectors

Figure: The PMF over random vector X

Unconditional Event

Unconditional Event

Unconditional Probability

Assume we are interested in calculating the probability for event $X_1 = 0$, then using marginalization we have:

$$p(X_1 = 0) = \sum_{x_2=1}^{6} p(X_1 = 1, X_2 = x_2)$$

=0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.25 = 0.5

Conditional Event

Conditional Event

Conditional Probability

Assume we are interested in calculating the probability for event $X_1 = 1$ conditioned on the fact that $X_2 = 6$, then using marginalization we have:

$$p(X_1 = 0|X_2 = 6)$$

$$= \sum_{x_2=1}^{6} p(X_1 = 0, X_2 = x_2|X_2 = 6)$$

$$= 0 + 0 + 0 + 0 + 0 + \frac{0.25}{0.30} \approx 0.83$$

Conditional Probability Mass Function

Conditional PMF

Conditional PMF is a principled way of updating a PMF given the information that some events happened. Conditional PMF is defined as:

$$p(X_1 = x_1 | X_2 = x_2) = \frac{p(X_1 = x_1, X_2 = x_2)}{p(X_2 = x_2)}$$

Properties

$$P(a \leq X \leq b) = \sum_{x: a \leq x \leq b} p(X = x)$$

where
$$p(X = x) \ge 0$$
 and $\sum_{x} p(X = x) = 1$

Properties

$$P(a \le X \le b) = \sum_{x: a \le x \le b} p(X = x)$$

where
$$p(X = x) \ge 0$$
 and $\sum_{x} p(X = x) = 1$

Figure: Probability Density

Function

Figure: Probability Density Function

Properties

$$P(a \leq X \leq b) = \sum_{x: a \leq x \leq b} p(X = x)$$

where $p(X = x) \ge 0$ and $\sum_{x} p(X = x) = 1$

Properties

$$P(a \le X \le b) = \int_a^b p(x) dx$$

where

$$p(x) \ge 0$$
 and $\int_{-\infty}^{\infty} p(x) dx = 1$

Sample Probability Density Function

Gaussian

Gaussian random variable is an example of a continuous random variable denoted by

$$X \sim \mathcal{N}(\mu, \sigma^2) \text{ or } p(x) = \mathcal{N}(x|\mu, \sigma^2)$$

Sample Probability Density Function

Gaussian

Gaussian random variable is an example of a continuous random variable denoted by

$$X \sim \mathcal{N}(\mu, \sigma^2)$$
 or $p(x) = \mathcal{N}(x|\mu, \sigma^2)$

 μ is the mean and σ^2 is the variance of random variable. The probability density function (PDF) is defined as:

$$p(x) = \triangleq \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Sample Probability Density Function

Figure: Mean μ effect (left) and Variance σ^2 (right) on the Gaussian PDF

Notation

PMF and PDF Notation

Throughout this course, we use the following notation:

Definition	Distribution	Numeric Probability
PMF/PDF	p(X) or $p(X)$	$p(x) \text{ or } p(\boldsymbol{x})$
Conditional PMF/PDF	p(X y) or $p(X y)$	$p(x y)$ or $p(\boldsymbol{x} \boldsymbol{y})$
${\bf Model~PMF/PDF}$	$p_{\theta}(\mathbb{X})$ or $p_{\theta}(\mathbb{X} y)$	$p_{\theta}(\boldsymbol{x}) \text{ or } p_{\theta}(\boldsymbol{x} \boldsymbol{y})$
Data PMF/PDF	$p_{\mathrm{data}}(\mathbb{X})$ or $p_{\mathrm{data}}(\mathbb{X} y)$	$p_{\mathrm{data}}(\boldsymbol{x}) \text{ or } p_{\mathrm{data}}(\boldsymbol{x} \boldsymbol{y})$

Subsection 2

Expectation

Figure: Probability density function for the time one can walk in 6 hours

Figure: PDF with energy consumption function $\epsilon(x)$

Figure: Probability density function for the time one can walk in 6 hours

Figure: A sample high probable point x_0

Expectation

In the general case, expectation can be interpreted as the average for the function $\epsilon(x)$ in a large number of *independent* repetitions of the experiment. This value is determined by:

$$\mathbb{E}_{x \sim p(X)} \left[\epsilon(x) \right]$$

Expectation

In the general case, expectation can be interpreted as the average for the function $\epsilon(x)$ in a large number of *independent* repetitions of the experiment. This value is determined by:

$$\mathbb{E}_{x \sim p(X)} \left[\epsilon(x) \right]$$

and is calculated as:

$$\mathbb{E}_{x \sim p(X)} [\epsilon(x)] = \int_{-\infty}^{\infty} p(x) \epsilon(x) dx$$

Expectation

In the general case, expectation can be interpreted as the average for the function $\epsilon(x)$ in a large number of *independent* repetitions of the experiment. This value is determined by:

$$\mathbb{E}_{x \sim p(X)} \left[\epsilon(x) \right]$$

and is calculated as:

$$\mathbb{E}_{x \sim p(X)} [\epsilon(x)] = \int_{-\infty}^{\infty} p(x) \epsilon(x) dx$$

Equivalently in the case of discrete a random variable, we have:

$$\mathbb{E}_{x \sim p(X)} \left[\epsilon(x) \right] = \sum_{x} p(x) \epsilon(x)$$

Sample Expectations

Consider $\mathbb{E}_{x \sim p(X)}[f(x)]$, then:

Sample Expectations

Consider $\mathbb{E}_{x \sim p(X)}[f(x)]$, then:

• If f(x) = x, then the resulting expectation is mean and denoted by μ .

Sample Expectations

Consider $\mathbb{E}_{x \sim p(X)}[f(x)]$, then:

- If f(x) = x, then the resulting expectation is mean and denoted by μ .
- If $f(x) = (x \mu)^2$, then the resulting expectation is *variance* and denoted by σ^2 .

Sample Expectations

Consider $\mathbb{E}_{x \sim p(X)}[f(x)]$, then:

- If f(x) = x, then the resulting expectation is mean and denoted by μ .
- If $f(x) = (x \mu)^2$, then the resulting expectation is *variance* and denoted by σ^2 .
- If $f(x) = x^n$, then the resulting expectation is *n*-th raw moment and denoted by μ'_n .

Monte Carlo Estimation

Consider random variable \mathbb{X} with distribution $p(\mathbb{X})$. The expectiation of function $f(\boldsymbol{x})$ can be calculated as:

$$\mathbb{E}_{\boldsymbol{x} \sim p(\mathbb{X})} \big[f(\boldsymbol{x}) \big] = \int p(\boldsymbol{x}) f(\boldsymbol{x}) d\boldsymbol{x}$$

Monte Carlo Estimation

Consider random variable \mathbb{X} with distribution $p(\mathbb{X})$. The expectiation of function $f(\boldsymbol{x})$ can be calculated as:

$$\mathbb{E}_{\boldsymbol{x} \sim p(\mathbb{X})} \big[f(\boldsymbol{x}) \big] = \int p(\boldsymbol{x}) f(\boldsymbol{x}) d\boldsymbol{x}$$

Now assume that instead of p(X), we just have access to N independent samples of random variable X as x_1, \ldots, x_N .

Monte Carlo Estimation

Consider random variable X with distribution p(X). The expectiation of function f(x) can be calculated as:

$$\mathbb{E}_{\boldsymbol{x} \sim p(\mathbb{X})} \big[f(\boldsymbol{x}) \big] = \int p(\boldsymbol{x}) f(\boldsymbol{x}) d\boldsymbol{x}$$

Now assume that instead of p(X), we just have access to N independent samples of random variable X as x_1, \ldots, x_N . Then we define $f_N(\{x_i\})$ as:

$$f_N(\{x_i\}) = \frac{1}{N} \sum_n f(x_n)$$
 # Monte Carlo Estimation (MCE)

Monte Carlo Estimation

Consider random variable \mathbb{X} with distribution $p(\mathbb{X})$. The expectiation of function $f(\boldsymbol{x})$ can be calculated as:

$$\mathbb{E}_{\boldsymbol{x} \sim p(\mathbb{X})} \big[f(\boldsymbol{x}) \big] = \int p(\boldsymbol{x}) f(\boldsymbol{x}) d\boldsymbol{x}$$

Now assume that instead of p(X), we just have access to N independent samples of random variable X as x_1, \ldots, x_N . Then we define $f_N(\{x_i\})$ as:

$$f_N(\{\boldsymbol{x}_i\}) = \frac{1}{N} \sum_n f(\boldsymbol{x}_n)$$
 # Monte Carlo Estimation (MCE)

Then using the weak law of large numbers, for arbitrary small positive ϵ :

$$\lim_{n \to \infty} P\Big(\Big|f_N(\{\boldsymbol{x}_i\}) - \mathbb{E}_{\boldsymbol{x} \sim p(\mathbb{X})} \big[f(\boldsymbol{x})\big]\Big| \ge \epsilon\Big) = 0$$

Estimation Variance

Assume $X \sim N(1,4)$, then:

•
$$\mathbb{E}_{x \sim p(X)} [(x-1)^2] = \sigma^2 = 4$$

Estimation Variance

Assume $X \sim N(1,4)$, then:

- $\mathbb{E}_{x \sim p(X)} [(x-1)^2] = \sigma^2 = 4$
- The figure below shows the result of MCE for different values of n.

Subsection 3

Distance Metrics

Kullback-Leibler Divergence

$$\mathrm{KL}\left(p(X)\|q(X)\right) \triangleq \mathbb{E}_{x \sim p(X)}\left[\log \frac{p(x)}{q(x)}\right] = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

Kullback-Leibler Divergence

Kullback-Leibler divergence (KLD) is a metric to calculate the distance between two distributions. KLD for two distributions p and q defined over discrete random variable X is:

$$\mathrm{KL}\left(p(X)\|q(X)\right) \triangleq \mathbb{E}_{x \sim p(X)}\left[\log \frac{p(x)}{q(x)}\right] = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

• KL $(p(X)||q(X)) \neq$ KL $(q(X)||p(X)) \Rightarrow$ KLD is not symmetric

Kullback-Leibler Divergence

$$\mathrm{KL}\left(p(X)\|q(X)\right) \triangleq \mathbb{E}_{x \sim p(X)}\left[\log \frac{p(x)}{q(x)}\right] = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- $\mathrm{KL}\left(p(X)\|q(X)\right) \neq \mathrm{KL}\left(q(X)\|p(X)\right) \Rightarrow \mathrm{KLD}$ is not symmetric
- $\mathrm{KL}\left(p(X)\|q(X)\right) \geq 0 \Rightarrow \mathrm{KLD}$ is non-negative

Kullback-Leibler Divergence

$$\mathrm{KL}\left(p(X)\|q(X)\right) \triangleq \mathbb{E}_{x \sim p(X)}\left[\log \frac{p(x)}{q(x)}\right] = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- KL $(p(X)||q(X)) \neq \text{KL}(q(X)||p(X)) \Rightarrow \text{KLD}$ is not symmetric
- $\mathrm{KL}\left(p(X)\|q(X)\right) \geq 0 \Rightarrow \mathrm{KLD}$ is non-negative
- KL $(p(X)||q(X)) = 0 \Leftrightarrow p(x) = q(x) \ \forall x$

Kullback-Leibler Divergence

$$\mathrm{KL}\left(p(X)\|q(X)\right) \triangleq \mathbb{E}_{x \sim p(X)}\left[\log \frac{p(x)}{q(x)}\right] = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- KL $(p(X)||q(X)) \neq \text{KL}(q(X)||p(X)) \Rightarrow \text{KLD}$ is not symmetric
- KL $(p(X)||q(X)) \ge 0 \Rightarrow$ KLD is non-negative
- KL $(p(X)||q(X)) = 0 \Leftrightarrow p(x) = q(x) \ \forall x$
- KLD is not upper-bounded in general.

Kullback-Leibler Divergence

$$\operatorname{KL}\left(p(X) \| q(X)\right) \triangleq \mathbb{E}_{x \sim p(X)} \left[\log \frac{p(x)}{q(x)}\right] = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- KL $(p(X)||q(X)) \neq \text{KL}(q(X)||p(X)) \Rightarrow \text{KLD}$ is not symmetric
- KL $(p(X)||q(X)) \ge 0 \Rightarrow$ KLD is non-negative
- KL $(p(X)||q(X)) = 0 \Leftrightarrow p(x) = q(x) \ \forall x$
- KLD is not upper-bounded in general.
- KLD is not a distance metric.

Kullback-Leibler Divergence

$$\operatorname{KL}\left(p(X) \| q(X)\right) \triangleq \mathbb{E}_{x \sim p(X)} \left[\log \frac{p(x)}{q(x)}\right] = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- KL $(p(X)||q(X)) \neq \text{KL}(q(X)||p(X)) \Rightarrow \text{KLD}$ is not symmetric
- KL $(p(X)||q(X)) \ge 0 \Rightarrow$ KLD is non-negative
- KL $(p(X)||q(X)) = 0 \Leftrightarrow p(x) = q(x) \ \forall x$
- KLD is not upper-bounded in general.
- KLD is not a distance metric.
 - It is not symmetric.

Kullback-Leibler Divergence

$$\operatorname{KL}\left(p(X) \| q(X)\right) \triangleq \mathbb{E}_{x \sim p(X)} \left[\log \frac{p(x)}{q(x)}\right] = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- KL $(p(X)||q(X)) \neq \text{KL}(q(X)||p(X)) \Rightarrow \text{KLD}$ is not symmetric
- KL $(p(X)||q(X)) \ge 0 \Rightarrow$ KLD is non-negative
- KL $(p(X)||q(X)) = 0 \Leftrightarrow p(x) = q(x) \ \forall x$
- KLD is not upper-bounded in general.
- KLD is not a distance metric.
 - It is not symmetric.
 - It does not satisfy the triangle inequality.

(b) p(X) and log likelihood ratio

(b) p(X) and log likelihood ratio

KLD Between Two Categorical Distributions

$$\begin{split} \mathrm{KL}(p(X) \| q(X)) = & 0.5 \times \log 5 + 0.1 \times 0 + 0.1 \times 0 + 0.1 \times 0 + 0.1 \times 0 + 0.1 \times \log \frac{1}{5} \\ = & 0.5 \times log5 - 0.1 \times log5 = 0.4 \times \log 5 \simeq 0.64 \end{split}$$

Kullback-Leibler divergence

KLD is similarly defined for consituuous random variables as:

$$\mathrm{KL}\left(p(X)\|q(X)\right) \triangleq \mathbb{E}_{x \sim p(X)}\left[\log\frac{p(x)}{q(x)}\right] = \int_{x} p(x)\log\frac{p(x)}{q(x)}\mathrm{d}x$$

Jensen-Shanon Divergence

Jensen-Shanon Divergence (JSD) is a symmetric and smoothed version of the KLD. To define JSD for two distributions p and q, first we should define new distribution m(X) as:

$$m(X) \triangleq \frac{p(X) + q(X)}{2} \Leftrightarrow m(X = x) = \frac{p(X = x) + q(X = x)}{2} \ \forall x$$

Then JSD is defined as:

$$JS (p(X)||q(X)) \triangleq \frac{1}{2} \left(KL (p(X)||m(X)) + KL (q(X)||m(X)) \right)$$
$$= \frac{1}{2} \left(\mathbb{E}_{x \sim p(X)} \left[\log \frac{p(x)}{m(x)} \right] + \mathbb{E}_{x \sim q(X)} \left[\log \frac{q(x)}{m(x)} \right] \right)$$

$$JS(p(X)||q(X)) \triangleq \frac{1}{2} \left(KL(p(X)||m(X)) + KL(q(X)||m(X)) \right)$$

Jensen-Shanon Divergence

$$JS (p(X)||q(X)) \triangleq \frac{1}{2} \left(KL (p(X)||m(X)) + KL (q(X)||m(X)) \right)$$

• $JS(p(X)||q(X)) = JS(q(X)||p(X)) \Rightarrow JSD$ is symmetric

$$\operatorname{JS}\left(p(X)\|q(X)\right) \triangleq \frac{1}{2} \left(\operatorname{KL}\left(p(X)\|m(X)\right) + \operatorname{KL}\left(q(X)\|m(X)\right)\right)$$

- JS $(p(X)||q(X)) = JS(q(X)||p(X)) \Rightarrow JSD$ is symmetric
- $0 \le JS(p(X)||q(X)) \le 1 \Rightarrow JSD$ is non-negative and upper-bounded.

$$JS (p(X)||q(X)) \triangleq \frac{1}{2} \left(KL (p(X)||m(X)) + KL (q(X)||m(X)) \right)$$

- JS $(p(X)||q(X)) = JS(q(X)||p(X)) \Rightarrow JSD$ is symmetric
- $0 \le JS(p(X)||q(X)) \le 1 \Rightarrow JSD$ is non-negative and upper-bounded.
- JS $(p(X)||q(X)) = 0 \Leftrightarrow p(x) = q(x) \ \forall x$

$$JS (p(X)||q(X)) \triangleq \frac{1}{2} \left(KL (p(X)||m(X)) + KL (q(X)||m(X)) \right)$$

- $JS(p(X)||q(X)) = JS(q(X)||p(X)) \Rightarrow JSD$ is symmetric
- $0 \le JS(p(X)||q(X)) \le 1 \Rightarrow JSD$ is non-negative and upper-bounded.
- JS $(p(X)||q(X)) = 0 \Leftrightarrow p(x) = q(x) \ \forall x$
- JSD is not a distance metric.

$$JS (p(X)||q(X)) \triangleq \frac{1}{2} \left(KL (p(X)||m(X)) + KL (q(X)||m(X)) \right)$$

- JS $(p(X)||q(X)) = JS(q(X)||p(X)) \Rightarrow JSD$ is symmetric
- $0 \le JS(p(X)||q(X)) \le 1 \Rightarrow JSD$ is non-negative and upper-bounded.
- JS $(p(X)||q(X)) = 0 \Leftrightarrow p(x) = q(x) \ \forall x$
- JSD is not a distance metric.
 - It does not satisfy the triangle inequality.

Jensen-Shanon Divergence

$$JS (p(X)||q(X)) \triangleq \frac{1}{2} \left(KL (p(X)||m(X)) + KL (q(X)||m(X)) \right)$$

- JS $(p(X)||q(X)) = JS(q(X)||p(X)) \Rightarrow JSD$ is symmetric
- $0 \le JS(p(X)||q(X)) \le 1 \Rightarrow JSD$ is non-negative and upper-bounded.
- JS $(p(X)||q(X)) = 0 \Leftrightarrow p(x) = q(x) \ \forall x$
- JSD is not a distance metric.
 - It does not satisfy the triangle inequality.

Square Root of JSD

The square root of JSD $\sqrt{\text{JS}(p(X)||q(X))}$ is a distance metric.

Comparing Divergences

Figure: Distance between p(X) = Ber(X|0.4) and $q(X) = \text{Ber}(X|\theta)$ as a function of θ

Section 4

Conclusions

Sajjad Amini DGM-L2 Conclusions 43 / 46

Conclusions

Our Foundation

- Notation
- Probability and Statistics
 - Probability Mass/Density Function
 - expectation
 - Distance measurement between densities

List of Abbreviations

Complete	Abbreviation
Jensen-Shanon Divergenc	JSD
Kullback-Leibler divergence	KLD
Left Hand Side	LHS
Monte Carlo Estimation	MCE
Probability Density Function	PDF
Probability Mass Function	PMF
Right Hand Side	RHS

Sajjad Amini DGM-L2 Conclusions 45 / 46

References I

John Tsitsiklis and Patrick Jaillet,

"Mit res.6-012 introduction to probability, spring 2018," Spring 2018.