PSI - BI-SPOL-23

ISO/OSI a TCP/IP model. Protokoly linkové vrstvy. Potvrzovací metody. Přepínání a směrování. Principy fungování propojovacích síťových prvků.

Obsah

1	ISO/OSI model					
	1.1 Fyzická vrstva					
	1.2 Linková vrstva					
	1.3 Sítová vrstva					
	1.4 Transportní vrstva					
	1.5 Relační vrstva					
	1.6 Prezenční vrstva					
	1.7 Aplikační vrstva					
2	TCP/IP model					
3	Protokoly linkové vrstvy					
4	Potvrzovací metody					
	4.1 Pozitivní potvrzování					
	4.2 Číslování rámců (frame numbering)					
	4.3 Klouzavé okénko (sliding window)					
5	Přepínání (switching)					
6	Směrování (routing)					
	6.1 Záplavové					
	6.2 Náhodné					
	6.3 Statické					
	6.4 Dynamické					
7	Principy fungování propojovacích síťových prvků					

1 ISO/OSI model

Tento model se osvědčil pro popis sítí a protokolů, ovšem univerzálním standardem pro reálné sítě se nestal. Přišel ve špatnou dobu, nebyly vhodné technologie a není žádná úspěšná implementace.

#	Jméno vrstvy	Data	Funkce/protokol
7	Aplikační	Data	Komunikace s aplikací - SMTP, HTTP
6	Prezenční	Data	Reprezentace dat, komprese, šifrování
5	Relační (session)	Data	Udržování relace
4	Transportní	Segments	End-to-end spojení - UDP, TCP
3	Sítová	Packets	IP (logické adresování) - IP, IPX
2	Linková (data-link)	Frames	MAC (fyzické adresování) - Ethernet
1	Fyzická	Bits	Bitový přenos - RS232, ADSL

Figure 1: Architektura ISO/OSI

1.1 Fyzická vrstva

- zajišťuje přenos bitů kanálem
- definuje způsob přenosu 0 a 1 (napěťové vlastnosti, modulace)
- definuje elektrické a mechanické vlastnosti média

1.2 Linková vrstva

- funkce spolehlivého spojení (detekce případně korekce chyb)
- řízený přístup k lince (MAC Medium Access Control)
- řízení toku na lince
- jednoznačná adresa v segmentu sítě (např. MAC v Ethernetu)
- na této vrstvě pracují všechny bridge a switche

1.3 Síťová vrstva

- adresace a směřování dat přes mezilehlé prvky
- sítová adresa jednoznačná adresa v rámci celé sítě (např. IP adresa)
- na této vrstvě pracují routery

1.4 Transportní vrstva

- rozklad dat na pakety
- uspořádání paketů podle pořadí
- multiplexuje a demultiplexuje data mezi jednotlivými spoji
- transportní adresy (adresa, port)

1.5 Relační vrstva

- vytváření logického rozhraní pro aplikace
- synchronizace spojení (transakce)
- přihlášení, udržování relace
- např. sdílení disků

1.6 Prezenční vrstva

- formátování a prezentace dat
- transformace (komprese/dekomprese)
- kódování (např. různé jazyky)
- šifrování
- např. ASCII/EBCDIC

1.7 Aplikační vrstva

- způsob komunikace aplikací protokoly
- podpůrné funkce aplikacím
- představuje interface pro uživatele

2 TCP/IP model

Vznikl na akademické půdě, bez podílu komunikačních firem. Úspěšný hlavně díky internetu. Model vnikl dodatečně, nejprve existovaly protokoly.

Rozdíly oproti ISO/OSI: vynechány vrstvy prezenční a relační. A proběhlo sloučení fyzické a linkové vrstvy.

Vrstvy:

#	Jméno vrstvy	Jednotka na vrstvě
4	Aplikační	TCP segment
3	Transportní	IP datagram
2	Sítová	Ethernet frame
1	Síťové rozhraní	bity

3 Protokoly linkové vrstvy

Zodpovídají za přenos dat mezi propojenými systémy a mohou také zajišťovat spolehlivost přenosu či adresaci v rámci segmentu - MAC. MAC = Medium access control. Unikátní ID zařízení. Přiděleno výrobcem. 6 oktetů. Obsahuje doplňkový znak (byte stuffing), je to flag, který udává začátek a konec rámce. Také obsahuje doplňkový bit (bit stuffing).

• HDLC - bitově orientovaný protokol

• SLIP

- definuje pouze zapouzdření paketů seriové lince
- rámec označen znaky END
- speciální znaky: END a ESC

PPP

- Point to point protocol
- podmnožina HDLC
- bitové spoje bit stuffing

4 Potvrzovací metody

4.1 Pozitivní potvrzování

- každý rámec musí být potvrzen (ACK)
- pokud nedojde potvrzení do určitého času (timeout) je rámec odeslán znova

Negativní potvrzování - přijímací strana potvrzuje - lze odeslat i negativní potvrzení (NAK) - paket nedošel nebo je poškozen - nepřijde-li ACK ani NAK uplatní se timeout

4.2 Číslování rámců (frame numbering)

- pakety jsou cyklicky číslovány (0-n)
- přijímací strana potvrdí číslem paketu, který očekává jako další
- snadná identifikace duplicit

4.3 Klouzavé okénko (sliding window)

• stejné jako u "frame numbering", ale lze odeslat více rámců bez potvrzení

5 Přepínání (switching)

- switche nahrazují "hloupé" huby
- pamatují si přiřazení MAC k fyzickým portům (časem záznamy maže)
 - tabulka dvojic (fyzický port, MAC adresa)
- pokud má záznam, tak odešle pouze na daný fyzický port
- pokud nemá, tak odešle na všechny porty, stejně jako broadcast (adresa FF:FF:FF:FF:FF:FF)
- snížení zátěže linek a zvýšení bezpečnosti (omezení odposlouchávání)
- 2 různé metody:
 - store-and-forward přijme, analyzuje a odešle (zahodí neplatné)
 - cut-throught odešle hned a průběžně analyzuje (je rychlejší)

6 Směrování (routing)

Existuje několik přístupů.

6.1 Záplavové

- doručení v nejkratším možném čase
- omezená životnost paketu (TTL v hlavičce)

- paket se duplikuje exponenciálně (lze zapamatovat a zpracovávat jen jednou)
- velmi neefektivní

6.2 Náhodné

- paket odeslán náhodnou výstupní linkou
- nezaručuje konečnou dobu doručení
- lze využít jako doplněk k jiným algoritmům (např. při zahlcení výstupní linky)

6.3 Statické

- směrovací tabulka dána konfigurací
- nereaguje na stav sítě (včetně poruch)
- př.: počítač v lokální síti (2 hodnoty lokální sít a GW)

6.4 Dynamické

- mění se v závislosti na stavu sítě
- způsoby aktualizace
 - izolovaně
 - centralizovaně
 - necentralizovaně
 - * např. algoritmus LSA (Link State Algorithm) routery si předávají info. o stavu linek, všichni znají komplet. topologii, pomocí Dijkstrova algoritmu se hledají nejkratší cesty

7 Principy fungování propojovacích síťových prvků

Pro propojení se používají tyto prvky:

- · Repeater: zesiluje signál, pracuje na fyzické vrstvě
- Hub (rozbočovač): rozešle přijatý paket na všechny své porty, pracuje na fyzické vrstvě
- Bridge: propojuje dvě sítě, pracuje na linkové vrstvě, odděluje kolizní segmenty
- Switch: linková vrstva, narozdíl od hubu pamatuje si přiřazení adres MAC k portům (tabulka [MAC, port]), přepíná pakety mezi porty, v podstatě bridge s více než 2mi porty
- Router: propojuje sítě na síťové vrstvě, provádí směrování paketů po sítí, není závislý na fyzické technologii, směruje po různých technologiích

Síťová spojení

Architektura TCP/IP

Figure 2: Architektura TCP/IP