	Project 8: Numerical Integration (e.g., Large Amplitude Pendulum) Abstract In this lab, we were investigating the period of a pendulum, how the period of the pendulum varies with amplitude. We did this by using the
	energy principle, integrating a function, that is not integrable, numerically so that it's integral can be used as part of the analysis of a problem. We also applied curve fitting skills to get experimental values for period. We produced a plot of T/T_0 vs θ_{max} for: The small angle approximation (horizontal line), the Taylor series expansion (a quadratic), the exact integral (using simpson, or quad), the experimental data. We compared this together and found out that for smalla angles, the ratio was almost the exact value for all of them but as angles became larger, the ratio differed by a max of 2% when all other approximations were compared to the small angle approximation.
	Any pendulum undergoes simple harmonic motion when the amplitude of oscillation is small. What happens for large amplitudes? The pendulum still oscillates, but the motion is no longer simple harmonic motion because the angular acceleration is not proportional to the negative of the angular displacement. An ideal simple pendulum consists of a particle of mass m suspended by a massless rigid rod of length L that is fixed at the upper end such that the particle moves in a vertical circle. This simple mechanical system oscillates with a symmetric restoring force (in the absence of dissipative forces) due to gravity. For small angle oscillations, the approximation $\sin\theta\approx\theta$ is valid. In this regime the pendulum oscillates with a period $T=2\pi\sqrt{\frac{L}{g}}$, a well-known textbook relation. This relation underestimates the exact period for any amplitude, but the difference is almost imperceptible for small angles. For larger angles T0 becomes more and more inaccurate for describing the exact period. An integral expression for the exact pendulum period may be derived from energy considerations, without a detailed discussion of differential equations. If we take the zero of potential energy at the lowest point of the trajectory. One can obtain a numerical solution from this method. We end up with an integral $T=4\sqrt{\frac{L}{g}}\int_0^{\pi/2}\frac{d\theta}{\sqrt{1-k^2\sin^2\theta}}$
	where $k \equiv sin(\theta_0/2)$. The definite integral is called the complete elliptic integral of the first kind. Algorithm and Discussion First, we read the csv files of our experimental data, using slicing concepts, we collect the range of experimental data that is valid to use. We apply cruve fit methods and fit this data to a wave function model: $Asin(\omega t + \phi)$ + offset. When doing this we give the compiler a hint of where to look at while fitting the data. From our fit we can obtain, Amplitude, angular frequency. The amplitude represents the angle we are dealing with. From the omega gotten from our fit, we can find period. Using the omega of the lowest amplitude as ω_0 We can find the ratio:
In [43]:	T/T_0 and plot this against θ_{max} for all experimental data values, Taylor series expansion of the integral, Simpson's rule approximation, and small angle approximation. We compare this approximations from the graph. Implementation and Code *matplotlib inline import pandas as pd import matplotlib.pyplot as pl import numpy as np
<pre>In [44]: Out[44]:</pre>	<pre>from scipy.integrate import quad from scipy.optimize import curve_fit</pre>
	<pre>1 0.001 0.0 2 0.002 0.0 3 0.003 0.0 4 0.003 0.0 pl.plot(df_alex.time, df_alex.angle, 'b-') [<matplotlib.lines.line2d 0x27edfe57908="" at="">]</matplotlib.lines.line2d></pre>
	40 - 20 - 0 - 20 - 20 -
In [46]:	-40 - 0.0 2.5 5.0 7.5 10.0 12.5 15.0
	A, omega, phi, off = par dA, dOm, dPhi, dOff = np.sqrt(np.diag(cov)) print("A = {0:3.4f}+/-{1:3.4f} degrees, omega = {2:3.4f} +/- {3:3.4f} rad/sec".format(A, dA, omega, dOm)) pl.plot(time, angle, 'b.', label='data') pl.plot(time, model(time, A, omega, phi, off), 'r-', label="fit") pl.grid() pl.title("Fit at around 50 degrees")
Out[46]:	pl.xlabel('time (sec)') pl.ylabel('angle (deg)') pl.legend() A = 49.6569+/-0.0853 degrees, omega = 3.4957 +/- 0.0008 rad/sec <matplotlib.legend.legend 0x27edff78208="" at=""> Fit at around 50 degrees Output</matplotlib.legend.legend>
In [47]:	df_dim = pd.read_csv('dimitris1.csv') df_dim.head()
Out[47]: In [48]: Out[48]:	<pre>time angle 0 0.000 0.0 1 0.001 0.0 2 0.002 0.0 3 0.002 0.0 4 0.003 0.0 pl.plot(df_dim.time, df_dim.angle, 'b-') [<matplotlib.lines.line2d 0x27edffba5c8="" at="">]</matplotlib.lines.line2d></pre>
	20 - 1010 -
In [49]:	good_time1 = (df_dim.time > 7.5) & (df_dim.time < 20.0) time1 = df_dim[good_time1].time angle1 = df_dim[good_time1].angle pl.plot(time1, angle1, 'b.') pl.grid() T1 = 2 A1 = 23
	<pre>def model1(t1, A1, omegal, phi1, off1): return A1*np.sin(omegal*t1 + phi1) + off1 par1, cov1 = curve_fit(model1, time1, angle1, p0 = (A1, 2*np.pi/T1, 0, 0)) A1, omega1, phi1, off1 = par1 dA1, dOm1, dPhi1, dOff1 = np.sqrt(np.diag(cov)) print("A = {0:3.4f}+/-{1:3.4f} degrees, omega = {2:3.4f} +/- {3:3.4f} rad/sec".format(A1, dA1, omega1,</pre>
	<pre>dOm1)) pl.plot(time1, angle1 ,'b.', label='data') pl.plot(time1, model1(time1, A1, omega1, phi1, off1), 'r-', label="fit") pl.grid() pl.title("Fit at around 25 degrees") pl.xlabel('time (sec)') pl.ylabel('angle (deg)') pl.legend() A = 23.8094+/-0.0853 degrees, omega = 3.6396 +/- 0.0008 rad/sec</pre>
Out[49]:	Fit at around 25 degrees 20 10 -10 -20
<pre>In [50]: Out[50]:</pre>	8 10 12 14 16 18 20 df_dimit = pd.read_csv('dimitris2.csv') df_dimit.head() time angle 0 0.000 0.0 1 0.001 0.0
<pre>In [51]: Out[51]:</pre>	1 0.001 0.0 2 0.002 0.0 3 0.003 0.0 4 0.004 0.0 pl.plot(df_dimit.time, df_dimit.angle, 'b-') [<matplotlib.lines.line2d 0x27ee12e2a88="" at="">]</matplotlib.lines.line2d>
	40 - 20 - 0 - -20 -
In [52]:	0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
	<pre>def model2(t2, A2, omega2, phi2, off2): return A2*np.sin(omega2*t2 + phi2) + off2 par2, cov2 = curve_fit(model2, time2, angle2, p0 = (A2, 2*np.pi/T2, 0, 0)) A2, omega2, phi2, off2 = par2 dA2, dOm2, dPhi2, dOff2 = np.sqrt(np.diag(cov))</pre>
	<pre>print("A = {0:3.4f}+/-{1:3.4f} degrees, omega = {2:3.4f} +/- {3:3.4f} rad/sec".format(A2, dA2, omega2, dOm2)) pl.plot(time2, angle2 ,'b.', label='data') pl.plot(time2, model2(time2, A2, omega2, phi2, off2), 'r-', label="fit") pl.grid() pl.title("Fit at around 45 degrees") pl.xlabel('time (sec)') pl.ylabel('angle (deg)') pl.legend()</pre>
Out[52]:	A = 50.0725+/-0.0853 degrees, omega = 3.4925 +/- 0.0008 rad/sec <matplotlib.legend.legend 0x27ee136a2c8="" at=""> Fit at around 45 degrees 40 20 20</matplotlib.legend.legend>
	(b) 0 -20 -40 -11 12 13 14 15 16 17
<pre>In [53]: Out[53]:</pre>	<pre>df_sor = pd.read_csv('soren1.csv') df_sor.head() time angle 0 0.000</pre>
	4 0.003 0.0 pl.plot(df_sor.time, df_sor.angle, 'b-') [<matplotlib.lines.line2d 0x27ee13beb88="" at="">] 10.0</matplotlib.lines.line2d>
	5.0 - 2.5 - 0.0 - -7.5 - 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
In [55]:	<pre>good_time3 = (df_sor.time > 8.0) & (df_sor.time < 17.5) time3 = df_sor[good_time3].time angle3 = df_sor[good_time3].angle pl.plot(time3, angle3,'b.') pl.grid() T3 = 1.5 A3 = 10 def model3(t3, A3, omega3, phi3, off3):</pre>
	<pre>return A3*np.sin(omega3*t3 + phi3) + off3 par3, cov3 = curve_fit(model3, time3, angle3, p0 = (A3, 2*np.pi/T3, 0, 0)) A3, omega3, phi3, off3 = par3 dA3, dOm3, dPhi3, dOff3 = np.sqrt(np.diag(cov)) print("A = {0:3.4f}+/-{1:3.4f} degrees, omega = {2:3.4f} +/- {3:3.4f} rad/sec".format(A3, dA3, omega3, dOm3)) pl.plot(time3, angle3 ,'b.', label='data')</pre>
Out[55]:	<pre>pl.plot(time3, model3(time3, A3, omega3, phi3, off3), 'r-', label="fit") pl.grid() pl.title("Fit at around 10 degrees") pl.xlabel('time (sec)') pl.ylabel('angle (deg)') pl.legend() A = 9.3050+/-0.0853 degrees, omega = 3.6767 +/- 0.0008 rad/sec <matplotlib.legend.legend 0x27ee144d1c8="" at=""> Fit at around 10 degrees</matplotlib.legend.legend></pre>
	10.0 - 7.5 - 5.0 - (a) 2.5 - (b) 0.0 - (c) -2.5 - (c) -5.0 -
<pre>In [56]: Out[56]:</pre>	df_sorr = pd.read_csv('soren2.csv') df_sorr.head() time angle
In [57]:	
	[<matplotlib.lines.line2d 0x27ee14af088="" at="">] 60 40 20 -20 -20</matplotlib.lines.line2d>
In [58]:	good_time4 = (df_sorr.time > 18.0) & (df_sorr.time < 26.0) time4 = df_sorr[good_time4].time angle4 = df_sorr[good_time4].angle pl.plot(time4, angle4, 'b.') pl.grid()
	T4 = 2 A4 = 60 def model4(t4, A4, omega4, phi4, off4): return A4*np.sin(omega4*t4 + phi4) + off4 par4, cov4 = curve_fit(model4, time4, angle4, p0 = (A4, 2*np.pi/T4, 0, 0)) A4, omega4, phi4, off4 = par4 dA4, dOm4, dPhi4, dOff4 = np.sqrt(np.diag(cov))
	<pre>print("A = {0:3.4f}+/-{1:3.4f} degrees, omega = {2:3.4f} +/- {3:3.4f} rad/sec".format(A4, dA4, omega4, dOm4)) pl.plot(time4, angle4 ,'b.', label='data') pl.plot(time4, model4(time4, A4, omega4, phi4, off4), 'r-', label="fit") pl.grid() pl.title("Fit at around 60 degrees") pl.xlabel('time (sec)') pl.ylabel('angle (deg)') pl.legend()</pre>
Out[58]:	A = 63.7811+/-0.0853 degrees, omega = 3.3837 +/- 0.0008 rad/sec <matplotlib.legend.legend 0x27ee15314c8="" at=""> Fit at around 60 degrees 60 40 20</matplotlib.legend.legend>
In [59]:	df stev = pd.read csv('steve1.csv')
<pre>In [59]: Out[59]:</pre>	time angle 0 0.000 0.0 1 0.001 0.0 2 0.002 0.0 3 0.003 0.0
<pre>In [60]: Out[60]:</pre>	<pre>4 0.004 0.0 pl.plot(df_stev.time, df_stev.angle, 'b-') [<matplotlib.lines.line2d 0x27ee1599788="" at="">] 40 -</matplotlib.lines.line2d></pre>
	0 -20 -40 -0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
In [61]:	<pre>time5 = df_stev[good_time5].time angle5 = df_stev[good_time5].angle pl.plot(time5, angle5,'b.') pl.grid() T5 = 2 A5 = 45 def model5(t5, A5, omega5, phi5, off5): return A5*np.sin(omega5*t5 + phi5) + off5</pre>
	<pre>par5, cov5 = curve_fit(model5, time5, angle5, p0 = (A5, 2*np.pi/T5, 0, 0)) A5, omega5, phi5, off5 = par5 dA5, dOm5, dPhi5, dOff5 = np.sqrt(np.diag(cov)) print("A = {0:3.4f}+/-{1:3.4f} degrees, omega = {2:3.4f} +/- {3:3.4f} rad/sec".format(A5, dA5, omega5, dOm5)) pl.plot(time5, angle5 ,'b.', label='data') pl.plot(time5, model5(time5, A5, omega5, phi5, off5), 'r-', label="fit") pl.grid()</pre>
Out[61]:	
	40 - data
<pre>In [62]: Out[62]:</pre>	df_mit = pd.read_csv('mitchell1.csv') df_mit.head() time angle 0 0.000 0.0
<pre>In [63]: Out[63]:</pre>	1 0.000 0.0 2 0.001 0.0 3 0.002 0.0 4 0.003 0.0 pl.plot(df_mit.time, df_mit.angle, 'b-')
J[80]:	30 - 20 - 10 - 0 - -10 -
In [64]:	good_time6 = (df_mit.time > 4.5) & (df_mit.time < 13.0) time6 = df_mit[good_time6].time angle6 = df_mit[good_time6].angle pl.plot(time6, angle6,'b.') pl.grid()
	<pre>dA6, dOm6, dPn16, dOff6 = np.sqrt(np.diag(cov)) print("A = {0:3.4f}+/-{1:3.4f} degrees, omega = {2:3.4f} +/- {3:3.4f} rad/sec".format(A6, dA6, omega6, dOm6)) pl.plot(time6, angle6 ,'b.', label='data') pl.plot(time6, model6(time6, A6, omega6, phi6, off6), 'r-', label="fit") pl.grid() pl.title("Fit at around 30 degrees") pl.xlabel('time (sec)') pl.ylabel('angle (deg)') pl.legend()</pre>
Out[64]:	P1.legend() A = 31.5824+/-0.0853 degrees, omega = 3.6094 +/- 0.0008 rad/sec <matplotlib.legend.legend 0x27ee16feb08="" at=""> Fit at around 30 degrees 30 20 10 E -20 -20 -20 -20 -20 -20 -20 -20 -20 -20</matplotlib.legend.legend>
In [74]:	-30 - 6 8 10 12 time (sec)
	<pre>thetArr = np.linspace(0.0, 70, 150) # range of theta values for theta in thetArr: thetaRad=theta*np.pi/180.0 m=np.sin(thetaRad/2.0)**2 simpresult = K(m) quadResult = quad(K_int, 0, np.pi/2, args=(m,)) smallAngle = (np.pi/2)*(1.0+m/4) srList.append(2*simpresult/np.pi) siList.append(2*quadResult[0]/np.pi)</pre>
	<pre>saList.append(2*smallAngle/np.pi) pl.title("Compare integration results") pl.xlabel("\$\\theta_{\\rm max}\$ (degrees)") pl.ylabel("T/To") pl.ylabel("T/To") pl.plot(angle, ratio,'k.', label="experiment") pl.plot(thetArr, srList, 'b-', label="Simpson's Rule (N=1000)") pl.plot(thetArr, siList, 'r-', label="scipy integrate.quad") pl.plot(thetArr, saList, 'g-', label="Small Angle") pl.legend(loc=2)</pre>
Out[74]:	<pre>Compare integration results 110</pre>
	, בייני ביי