Homework #2

Poisson's equation simulation EECS, GIST College Seungcheol Han, 20165190

1. Si - SiO₂ structure.

Figure 1. Structure of Si - SiO₂

The characteristics of the structure are shown in the following table.

Layer	Silicon	Silicon dioxide
Thickness (m)	2.5×10^{-9}	2.5×10^{-9}
Relative permittivity	11.7	3.9
Capacitance per area (F/cm²)	4.144×10^{-6}	1.381×10^{-6}

Table 1. The characteristics of Si - SiO₂ structure.

The analytic solution is derived as the following equation.

$$\varphi_1(\mathbf{x}) = \frac{2\varepsilon_2}{a(\varepsilon_1 + \varepsilon_2)} x \ , \ \varphi_2(\mathbf{x}) = \frac{2\varepsilon_1}{a(\varepsilon_1 + \varepsilon_2)} (x - a) + 1 \ [2], \ [3]$$

6.00E-013 4.00E-013 0.00E+000

2.00E-009

Distance (m)

Figure 2. Electrostatic potential of Si - SiO₂ (V)

Figure 3. Error of Figure 2 (%)

2. Ge - SiO₂ structure.

Figure 4. Structure of Ge - SiO₂

The characteristics of the structure are shown in the following table.

Layer	Germanium	Silicon dioxide
Thickness (m)	2.5×10^{-9}	2.5×10^{-9}
Relative permittivity	16	3.9
Capacitance per Area (F/cm²)	5.67×10^{-6}	1.38×10^{-6}

Table 2. The characteristics of Ge - SiO₂ structure.

Also, we can use analytic solution [2], [3].

Figure 5. Electrostatic potential of Ge - SiO₂ (V)

Figure 6. Error of Figure 5 (%)

In two simulations for both structures, the error is sufficiently small that a reliable value can be obtained.