Download all python codes from

https://github.com/Anjalibagade/Assignment1/tree/master/Codes

and latex codes from

https://github.com/Anjalibagade/Assignment1

Assignment1

Anjali Atul Bagade, EE21MECH11001

1 Problem

Find the coordinates of the point which divides, internally and externally, the line joining (-3,-4) to (-8,7) in the ratio 7:5

Explanation:

The coordinates of point when (x_1,y_1) and (x_2,y_2) are divided in m:n

- (i)Formula to find internally divided coordinate is $(\frac{mx_1+nx_2}{m+n}, \frac{my_1+ny_2}{m+n})$
- (ii)Formula to find externally divided coordinate is $(\frac{mx_1-nx_2}{m-n}, \frac{my_1-ny_2}{m-n})$

let the point be S(a, b)

Internal division is taking place at point S(a, b)Substitute all the values in the equation given

below
$$S(a, b) = (\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n})$$

 $a = (\frac{7(-8) + 5(-3)}{7 + 5}) = (\frac{-56 - 15}{12})$
 $a = (\frac{-71}{12})$
 $b = (\frac{7(7) + 5(-4)}{7 + 5}) = (\frac{49 - 20}{12})$
 $b = (\frac{29}{12})$

Hence internal division is taking place at point $S(a, b)=S(\frac{-71}{12}, \frac{29}{12})$

Similarly, Finding external division point T Let the point be T(p,q)

Substitute all the values in the equation given below

$$T(p,q) = \left(\frac{mx_2 - nx_1}{m - n}, \frac{my_2 - ny_1}{m - n}\right)$$

$$p = \left(\frac{7(-8) - 5(-3)}{7 - 5}\right) = \left(\frac{-56 + 15}{2}\right)$$

$$p = \left(\frac{-41}{2}\right)$$

$$q = \left(\frac{7(7) - 5(-4)}{7 - 5}\right) = \left(\frac{49 + 20}{2}\right)$$

$$q = \left(\frac{69}{2}\right)$$

Hence external division is taking place at point $T(p,q)=T(\frac{-41}{2},\frac{69}{2})$

2 Result

Plot of coordinate of the points obtained from Python code is shown below.

Fig. 0: Plot of coordinate of the point which divides internally and externally