Spis treści

Wstęp	3
Cel i zakres pracy	3
Struktura pracy	3
Ogólne założenia i wymagania funkcjonalne	3
Podstawowe zagadnienia dotyczące robotów mobilnych	3
Algorytmy i metody używane przy badaniu otoczenia	3
Metody określania dokładnej pozycji robota	3
Sposoby reprezentacji badanego obszaru	3
Przegląd narzędzi i urządzeń wykorzystywanych do opomiarowania pomieszczeń	3
Platformy sprzętowe	3
Arduino	3
RaspberryPi	3
STM32	3
Czujniki i sensory używane w robotyce	3
Enkodery i silniki krokowe	3
Czujniki ultradźwiękowe	3
Czujniki na podczerwień	3
Czujniki i skanery laserowe	3
Czujniki ToF	3
Kamery	3
Realizacja prototypu pojazdu autonomicznego do pomiarowania pomieszczeń wewnątrz budynku	3
Konstrukcja mechaniczna	3
Płytka Nucleo STM32F103RB	3
Magnetometr i akcelerometr Pololu LSM303D	3
Czujniki ultradźwiękowe HC-SR04	3
Dwukanałowy sterownik silników Pololu DRV8835	3
Komunikacja bezprzewodowa: moduł Bluetooth HC-06 ZS-040	3
Moduł zasilania: ogniwa Li-ion 2600mAh	3
Stabilizacja zasilania: kondensator 1000µF 25V	3
Wykorzystanie algorytmu DFS w połączeniu z algorytmem Trémauxa	3
Reprezentacja pomieszczenia: dyskretyzacja pomieszczenia i macierz zajętości	3
Problemy dotyczące poprawnego działania magnetometru w pomieszczeniach	3
Weryfikacja wskazań magnetometru: Nucleo STM32F411E Discovery wraz z układem LSM303D	LHC
	3

Magnetometr: kalibracja i kompensacja przechyłu	4
Zmiana położenia modułu z magnetometrem i wykorzystanie serwomechanizmu	4
Niestabilność pola magnetycznego przy badaniu pomieszczeń	4
Źródła i przyczyny niepoprawnych wskazań magnetometru	4
Opracowanie alternatywnego sposobu opomiarowania pomieszczeń	4
Badanie otoczenia na podstawie przejazdu robota wzdłuż ścian	4
Przebudowa robota	4
Wykorzystanie odeometrii i czujników odległości	4
Określenie kierunku i położenia robota	4
Korekta błędów	4
Peryferia i spis wyprowadzeń	4
Aplikacja do komunikacji pomiędzy robotem a komputerem (środowisko .NET)	4
Tryb autonomiczny	4
Tryb zdalnego sterowania	4
Testy robota i zaprojektowanego algorytmu oraz aplikacji do komunikacji w warunkach rzeczywistyc	
Stopień realizacji wymagań funkcjonalnych i pierwotnych założeń	4
Wady i zalety metod opomiarowania zaproponowanych w projekcie	4
Dalsze prace	4
Podsumowanie i wnioski	4

1 A	,		
$\Lambda \Lambda \Lambda$	C	$\Gamma \triangle$	n
vv	0	·	v

Cel i zakres pracy

Struktura pracy

Ogólne założenia i wymagania funkcjonalne

Podstawowe zagadnienia dotyczące robotów mobilnych

Algorytmy i metody używane przy badaniu otoczenia

Metody określania dokładnej pozycji robota

Sposoby reprezentacji badanego obszaru

Przegląd narzędzi i urządzeń wykorzystywanych do opomiarowania pomieszczeń

Platformy sprzętowe

Arduino

RaspberryPi

STM32

Czujniki i sensory używane w robotyce

Enkodery i silniki krokowe

Czujniki ultradźwiękowe

Czujniki na podczerwień

Czujniki i skanery laserowe

Czujniki ToF

Kamery

Realizacja prototypu pojazdu autonomicznego do pomiarowania pomieszczeń wewnątrz budynku

Konstrukcja mechaniczna

Płytka Nucleo STM32F103RB

Magnetometr i akcelerometr Pololu LSM303D

Czujniki ultradźwiękowe HC-SR04

Dwukanałowy sterownik silników Pololu DRV8835

Komunikacja bezprzewodowa: moduł Bluetooth HC-06 ZS-040

Moduł zasilania: ogniwa Li-ion 2600mAh

Stabilizacja zasilania: kondensator 1000µF 25V

Wykorzystanie algorytmu DFS w połączeniu z algorytmem Trémauxa

Reprezentacja pomieszczenia: dyskretyzacja pomieszczenia i macierz zajętości

Problemy dotyczące poprawnego działania magnetometru w pomieszczeniach

Weryfikacja wskazań magnetometru: Nucleo STM32F411E Discovery wraz z układem LSM303DLHC

Magnetometr: kalibracja i kompensacja przechyłu

Zmiana położenia modułu z magnetometrem i wykorzystanie serwomechanizmu

Niestabilność pola magnetycznego przy badaniu pomieszczeń

Źródła i przyczyny niepoprawnych wskazań magnetometru

Opracowanie alternatywnego sposobu opomiarowania pomieszczeń

Badanie otoczenia na podstawie przejazdu robota wzdłuż ścian

Przebudowa robota

Wykorzystanie odeometrii i czujników odległości

Określenie kierunku i położenia robota

Korekta błędów

Peryferia i spis wyprowadzeń

Aplikacja do komunikacji pomiędzy robotem a komputerem

(środowisko .NET)

Tryb autonomiczny

Tryb zdalnego sterowania

Testy robota i zaprojektowanego algorytmu oraz aplikacji do

komunikacji w warunkach rzeczywistych

Stopień realizacji wymagań funkcjonalnych i pierwotnych założeń

Wady i zalety metod opomiarowania zaproponowanych w projekcie

Dalsze prace

Podsumowanie i wnioski