

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

Thesis and Dissertation Collection

1976-03

Satellite-tuned fleet numerical weather central radiation model applied to the 1973-1974 data year over oceanic gridpoints

Woods, Robert Deane

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/27252

Downloaded from NPS Archive: Calhoun

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

SATELLITE-TUNED FLEET NUMERICAL WEATHER CENTRAL RADIATIONAL MODEL APPLIED TO THE 1973-1974 DATA YEAR OVER OCEANIC GRIDPOINTS

Robert Deane Woods

DUDLEY KNOX L L2 IF Y
NAVAL POSTGRADUA E SCHOOL
WONTEREY, CALIFORNIA 93940

NAVAL POSTGRADUATE SCHOOL Monterey, California

SATELLITE-TUNED FLEET NUMERICAL WEATHER CENTRAL RADIATIONAL MODEL APPLIED TO THE 1973-1974 DATA YEAR OVER OCEANIC GRIDPOINTS

Ъу

Robert Deane Woods

March 1976

Thesis Advisor:

F. L. Martin

Approved for public release; distribution unlimited.

T173105

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

	REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM		
1.	REPORT NUMBER	2. GOVY ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
4.	Satellite-tuned Fleet Numerical Radiational Model Applied to the Year over Oceanic Gridpoints	March 1976 6. PERFORMING ORG. REPORT NUMBER		
7.	Robert Deane Woods	8. CONTRACT OR GRANT NUMBER(a)		
9.	Naval Postgraduate School Monterey, CA 93940	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
11.	CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School Monterey, CA 93940	March 1976 13. NUMBER OF PAGES 127		
14	Naval Postgraduate School Monterey, CA 93940	t from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified 13a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16.	Approved for public release; dis	stribution unlimi	ited.	

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

20. ABSTRACT (Continue on reverse side it necessary and identify by block manibes)

This is a final study of a radiational model for use in the \underline{FNWC} prediction system. This model utilizes original \underline{FNWC} data over oceanic gridpoints which were adapted to the \underline{FNWC} five-layer initial data analysis in four mid-seasonal studies for the data year 16 January 1974, 16 April 1974, 16 July 1974 and 16 October 1973.

The radiational model parameterizes the large-scale cloud amounts in two layers. The primary objective was to tune model albedo values

DD 1 JAN 73 1473 (Page 1)

EDITION OF 1 NOV 68 IS OBSOLETE S/N 0102-014-6601 | SECURITY CLASSIFICATION OF THIS PAGE (47 on Date Entered

to those taken from satellite climatology by changing the cloud-reflectance coefficients used in previous studies. The albedo values were tuned for least squares deviation relative to satellite climatology albedos. The present model using tuned albedos better verified the radiational balance at the top of the atmosphere against satellite climatology than did pre-existing untuned models, both on a seasonal and annual basis.

Satellite-tuned Fleet Numerical Weather Central Radiational Model Applied to the 1973-1974 Data Year over Oceanic Gridpoints

by

Robert Deane Woods Commander, United States Navy B.S., University of Kansas, 1965

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN METEOROLOGY

from the
NAVAL POSTGRADUATE SCHOOL
March 1976

ABSTRACT

This is a final study of a radiational model for use in the <u>FNWC</u> prediction system. This model utilizes original <u>FNWC</u> data over oceanic gridpoints which were adapted to the <u>FNWC</u> five-layer initial data analysis in four mid-seasonal studies for the data year 16 January 1974, 16 April 1974, 16 July 1974 and 16 October 1973.

The radiational model parameterizes the large-scale cloud amounts in two layers. The primary objective was to tune model albedo values to those taken from satellite climatology by changing the cloud-reflectance coefficients used in previous studies. The albedo values were tuned for least squares deviation relative to satellite climatology albedos. The present model using tuned albedos better verified the radiational balance at the top of the atmosphere against satellite climatology than did pre-existing untuned models, both on a seasonal and annual basis.

TABLE OF CONTENTS

I.	INT	PRODUCTION	13				
II.	DATA PREPARATION 1						
	Α.	DATA FIELDS	16				
		1. General Considerations	16				
		2. Data Treatment	18				
		a. Original Soundings and Modifications	18				
		b. Radiative Temperature Profiles	21				
		c. Radiative Moisture Profiles	21				
		d. Pressure-Scaled Absorber Masses	21				
	В.	CLOUD PARAMETERIZATION	21				
	С.	CLOUD-AREA COVERAGES	22				
III.	TER	RESTRIAL RADIATION	24				
	A.	THEORETICAL AND EMPIRICAL BASIS	24				
	в.	NET FLUX FORMULATIONS	25				
	c.	TROPOSPHERIC COOLING BY LAYERS; F ₁₀ * COOLING	31				
	D.	OUTGOING IR NET FLUX TO SPACE	34				
		1. Parameterization Formula for Top-of-Atmosphere IR Net Flux	34				
		2. Comparisons of F with Mid-Seasonal Satellite Climatology	35				
IV.	SOL	AR RADIATION	39				
	Α.	COMPOSITION OF SOLAR INSOLATION	39				
	В.	DISPOSITION OF F(S) INSOLATION	42				
		1. Clear-Sky Case	42				
		2. Cloudy-Sky Case	43				

		3.	Composite F(S) Insolation at Earth 44
	c.	DIS	POSITION OF F(A) INSOLATION 46
		1.	Clear-Sky Case 46
		2.	Overcast in Both High- and Low-cloud Layers 47
		3.	Disposition of F(A) Insolation with an Upper Overcast Only 51
		4.	Disposition of F(A) Insolation with a Low Overcast Only 54
		5.	Composite F(A) Layer-Absorptions and Surface-Absorption Insolation 56
		6.	Absorptivity (ABA) by Layers 58
	D.	ALBI	EDO (ALB) OF THE EARTH-TROPOSPHERE SYSTEM 58
	E.		POSITE ABSORPTIVITY (ABG) BY THE EARTH-SURFACE; POSITE ATMOSPHERIC TRANSMISSIVITY (ATRAN) 59
		1.	Absorptivity (ABG) of Earth 59
		2.	Transmissivity (ATRAN) of the Troposphere 59
	F.		EDO TUNING BY COMPARISONS WITH SATELLITE MATOLOGY
		1.	General Remarks Concerning a Need for Tuning Albedos 60
		2.	Method of Tuning ALBMOD to ALBRAS 61
V.			NAL CROSS-SECTIONAL DEPICTION OF THE VE-BALANCE COMPUTATIONS 65
	Α.	GENE	ERAL 65
	В.		GRAPHICAL REPRESENTATION OF THE RADIATIVE-ANCE DISTRIBUTION 65
	c.	EXPI	LANATION OF SYMBOLIC TERMS 66
		1.	Cross-Section at Level k=2 66
		2.	Cross-Sections in Layers (2,4), (4,6), (6,8) and (8,10) 68
		3.	Cross-Section at Air-Sea Interface (k=10) 86

	D.	MERIDIONAL CROSS-SECTIONS OF THE VERTICAL RADIATION BALANCE 86						
	Ε.	COMPARISON OF THE FOUR-LAYER WITH THE TWO-LAYER FLUX DIVERGENCE MODEL 87						
VI.	THE TER	HE ZONAL DISTRIBUTION OF RADIATIONAL BALANCE ERMS OF THE OCEAN-ATMOSPHERE SYSTEM 90						
	Α.	GENERAL INTRODUCTION: ZONAL CROSS-SECTIONS 90						
	В.	ANNUAL RADIATIVE BALANCE FOR THE EARTH- TROPOSPHERE SYSTEM 99						
	C.	CROSS-SEASONAL EFFECTS IN THE NORTHERN HEMISPHERE 105						
		1. On the Net Flux Across the Tropopause, R_t^- 105						
		2. On the Sea-surface Model Balance, R 107						
	D.	TOP OF THE ATMOSPHERE COMPARISON OF MODEL WITH SATELLITE DATA 107						
		1. Net Radiative Transfer Rate at Top of the Atmosphere 107						
		2. Zonally-Averaged Computations of R_N^- 108						
	E.	STRATOSPHERIC MODEL RADIATIVE BALANCE 110						
	F.	ZONAL-ANNUAL NORTHERN HEMISPHERE HEAT BUDGET 111						
		1. Tropospheric Radiation Budget 111						
		2. Zonal-annual Heat Budget of the Ocean 113						
VII.	CON	CLUSIONS 115						
APPENI	DIX Z	A: Computer Program 117						
LIST	OF R	EFERENCES 125						
INITI	AL D	ISTRIBUTION LIST 127						

LIST OF SYMBOLS AND ABBREVIATIONS

Amn solar insolation absorbed in the layer (m,n)

a (m,n) Manabe-Möller absorptivity function

ABA absorptivity of the troposphere

ABG fractional absorptivity of solar insolation by

earth's surface

ALB earth-atmosphere system albedo

ATRAN transmissivity of the troposphere

 B_k Stefan-Boltzmann blackbody flux at T_k

BALB 24-hour averaged radiational balance at earth's

surface

BALk₁k₂ 24-hour averaged radiational balance for layer

 (k_{1}, k_{2})

BALT 24-hour averaged radiational balance at tropopause

C carbon dioxide layer absorber mass

cal cm min calories per centimeter squared per minute

CL total opaque cloud cover

CL_T fractional cloud amount for layer:

I = 1 in 600 to 400 mb; I = 2 in 900 to 800 mb

E East longitude

e vapor pressure at top of constant flux layer

F(A) solar insolation subject to water vapor absorption

only

F(2) effective solar insolation at tropopause

FADJ total incoming insolation at top of atmosphere

 $Fk_1^k_2$ net infrared flux divergence in layer (k_1, k_2)

 F_k net infrared flux at level k

FNWC Fleet Numerical Weather Central

F(S) solar insolation subject to Rayleigh scattering only

 $\mathbf{F}_{\mathbf{T}}$ net IR flux to space

g gravity = 9.8067 m sec^2

f multiplicative factor for tuning cloud reflectances

h hour angle

H height of homogeneous atmosphere; 24-hour averaged

hour angle

HL population of gridpoints north of 25N

I abscissa grid location

IA10(m,n) solar insolation absorbed at surface with cloud

condition (m,n)

IS10(m,n) solar insolation at surface subject to Rayleigh

scatter with cloud condition (m,n)

J ordinate grid location

k pressure level used in this study equal to 100

ly min langleys per minute

N North latitude

P pressure

 P_k pressure in millibars (mb) at level k

 q_k mixing ratio at level k

 Qk_1k_2 24-hour averaged solar warming in layer (k_1,k_2)

QAVE 24-hour averaged insolation at the tropopause

 Q_{N} solar net insolation at level k = 0

r Bowen ratio; actual earth-sun distance

 $\begin{array}{ccc} \textbf{r} & & \text{mean earth-sun distance} \\ \end{array}$

R net radiation balance at the surface

R mean radiative cooling rate in troposphere

R universal gas constant

REF total insolation reflected back to space

REFA F(A) insolation reflected back to space

REFS F(S) insolation reflected back to space

RH relative humidity

R₊ mean radiative energy gain (loss) rate at ocean-

troposphere system

 R_{N} radiative net flux at level k = 0

S South latitude; effective solar constant

S heat storage in oceanic water mass

S heat storage term for the troposphere

Study A Spaeth's Thesis; using winter data (see references)

Study B Meyers' Thesis; using spring data (see references)

Study C Beahan's Thesis; using summer data (see references)

Study D Warner's Thesis; using autumn data (see references)

 T_k temperature at level k

TR population of gridpoints 20S-to-25N inclusive

TRAN total insolation incident at the earth's surface

 $T_{\mathbf{x}}$ temperature at the top of constant flux layer

U water-vapor layer absorber mass

W West latitude

W(m,n) cloud fractional weight for cloud condition (m,n)

Z Zenith angle

α(G) surface albedo

Rayleigh clear sky albedo $\alpha(R)$ δ solar declination angle difference between ALBMOD and ALBRAS Δ (ALB) emissivity due to water and carbon dioxide absorber ε_{wc} mass at indicated layer $\theta_{\mathbf{k}}$ potential temperature at level k Λ longitude surface pressure; pi = 3.1416 π density ρ sigma pressure level used by FNWC, normalized σ to surface pressure

latitude

φ

ACKNOWLEDGEMENT

The author wishes to express his appreciation to his wife, Sheryn, for her patience, encouragement and support.

Appreciation is also expressed to the author's thesis advisor, Professor F. L. Martin, for his suggestions, advice, guidance and support in this research.

Further appreciation is expressed to Mr. Russell D. Schwanz for his programming assistance.

I. INTRODUCTION

This thesis is a refinement of previous radiational models described by (A) Spaeth (1975), (B) Meyers (1975), (C) Beahan (1975) and (D) Warner (1974) for use in the Fleet Numerical Weather Central (FNWC) prediction system. This study has as a primary objective, the comprehensive re-examination of the radiational physics in layers comprising the ocean-atmosphere system. FNWC atmospheric soundings defined at constant pressure levels for the four mid-seasonal dates of the "data year" 1973-74 as previously examined in studies (A,B,C,D) were utilized in this study.

The application of the FNWC radiative model may be made to any scale of analysis for which there is adequate resolution of the temperature and moisture data in the vertical. In the horizontal, the reliability of the data used here is consistent with that of the FNWC interpolation to gridpoints in the analysis procedure. Temperature and dew-point data in radiative soundings are typically reported to the nearest tenth of a degree. The radiative computations made here are applied to FNWC gridpoints and are designed to make a one-hour forward-time step at gridpoints in the FNWC primitive equation forecast model, with special adaptions to σ -levels.

The specification of cloud amounts in two designated layers, one at a mid-level and the other at a low-level, has an important influence on the radiative-model dispositions, both in the short- and long-wave spectral regions. Initially in (A,B,C,D), the specification of the fractional amounts of CL₁ and CL₂ had been based on large-scale formulations developed by Smagorinsky (1960), but during the course of these

studies it was found more realistic to modify initial CL-values to CL' = 2/3 CL. This reduction in cloud amount was also used here as it had been chosen to prevent CL' from exceeding unity and to afford better agreement with satellite climatology, such as planetary albedo, for compatible data periods.

With the reduced cloud coverages CL₁' and CL₂' from the earlier studies (A,B,C,D), it was possible to obtain reasonably close agreement in the computed terrestrial net flux at the top of the atmosphere and that observed for comparable NIMBUS III subsatellite points and data periods (Raschke, Von der Haar, Bandeen and Pasternak, 1973). However even with the reduced cloud coverages CL₁' and CL₂' the computed planetary albedo remained generally excessive, particularly in tropical latitudes. Hence it became a major objective of this particular study to modify empirically the reflective capability of the cloud layers. This was done by defining a general factor f so that the initial choices (after Rodgers, 1967) of cloud reflectances R were modified to R' where

R' = fR.

Systematic substitution of the cloud reflectances R, wherever they entered the solar disposition equations, by R' then led to a relation-ship between the global albedo and f. Utilization of the least squares technique to minimize the differences between satellite and model albedos over a geographic sample of points led to best-fit value of the "tuning-factor" f. Separate values of f were deduced by least squares for each season, and subselections were deduced for the tropical and extratropical areas, respectively.

The modified solar cloud-reflectances improved the agreement between satellite and radiative model albedos in both geographic areas insofar as net incoming insolation was concerned. The terrestrial net flux at the top of the atmosphere was unaffected by the choice of f, while the use of CL₁' and CL₂' as specified gave good agreement with satellite terrestrial net flux data over the geographic range and the time-scales concerned.

II. DATA PREPARATION

A. DATA FIELDS

1. General Considerations

The initial temperature and humidity data used in this study were arranged in the form of soundings taken along four oceanic meridians (Fig. 1) of the Fleet Numerical Weather Central (FNWC) Northern Hemisphere mid-seasonal analyses for 16 October 1973, 16 January 1974, 16 April 1974 and 16 July 1974. Oceanic locations for these computations were chosen because:

- (a) constant σ -surfaces (where $\sigma = \frac{P}{\pi}$) of the FNWC primitive equation system are nearly identical constant pressure levels.
- (b) The maritime-area soundings are more likely to be systematically representative of the set of zonally-distributed gridpoints than over land.

The three meridians selected over the Pacific Ocean were located at 125W (25 soundings), 170W (25 soundings) and 145E (17 soundings). The Atlantic Ocean meridian was located at 35W (26 soundings). This method of selecting "soundings" along the indicated meridians of the FNWC polar stereographic map made it unnecessary to employ spatial interpolation between original data gridpoints along the meridians. Data along line 3 in the Pacific was not extended southward of gridpoint (9,55) because they fell over land masses (New Guinea and Northern Australia) where the surface temperatures and other sounding features were unrepresentative of the oceanic values.

Figure 1. FNWC polar stereographic grid and meridians (lines 1, 2, 3, and 4) selected for study. The longitudes Λ are shown for each meridian as well as the extent considered of each meridian.

2. Data Treatment

a. Original Soundings and Modifications

The gridpoint soundings were taken from the original FNWC 63-by-63 Northern Hemisphere analyses of T(p) and of $T-T_D$ (the dew point depression) at standard pressure levels up to and including $p \approx 100$ mb. Examples of such original soundings were shown as Table I(a) in Meyers (1975, p. 24). Subsequently each original FNWC sounding was transformed —in previous studies (A, B, C, D) of this series —into what has been termed the <u>radiative sounding</u> having the format shown in Table I. The data levels of the radiative sounding contains essentially the five FNWC predictive σ -levels (dotted levels in Fig. 2).

At each gridpoint selected, the original FNWC humidity soundings were given in the form of five dew point depressions over the analyses levels from 925 mb to 400 mb. At the surface (level k=10) the standard instrument level vapor pressure, e_{air} , was transformed into the surface mixing ratio, q_{10} , by means of

$$q_{10} = 621.97 (e_{air}/1000)$$
 (2-1)

To obtain radiative soundings as in Table I, it is necessary to have water vapor and ${\rm CO}_2$ absorber masses at certain required k-level boundaries (Fig. 2). All radiative soundings in this study start at sea level with the approximation of surface pressure $\pi \doteq 1000$ mb. Therefore, the eleven k-levels correspond closely to the FNWC levels $P_k = 1000$., 900., 800., ..., 200., 100., 0.0 mb and in turn to $\sigma_k = 1.0$, 0.9, ..., 0.1, 0.0.

TABLE I. Example of a radiative sounding at gridpoint (1,1) for 16 April 1974 with mixing ratio listed at odd k-levels (Fig. 2). Additionally, water-vapor and ${\rm CO}_2$ absorber masses are also listed as these parameters have been modeled in the radiative theory presented in this study.

Pressure (mb)	Temp (°C)	Mixing Ratio (g/kg)	Absorber Water Vapor (gm/cm ²)	Masses CO ₂ (cm/cm ²)
1000	25.60	17.10		
900	16.09	12.08		
800	11.21		2.26	45.53
700	5.00	6.21		
600	-2.10		3.23	83.53
500	-11.50	2.57		
400	-23.20	1.35	3.55	113.35
300	-38.00	0.65		
200	-56.60		3.61	133.99
100	-80.70	0.03	3.61	138.67
0	-80.70		3.61	143.35

Figure 2. Five-layer radiative sounding used in this study. Levels are identified by their values on the k-scale, while layers are identified by their level boundary indices in parentheses, e.g. (8,10). Pressure-scaled water vapor and ${\rm CO}_2$ mass increments ΔU and ΔC , respectively are integrated relative to the surface and the resulting U and C are carried at even levels. The temperature T is retained at all levels. Amounts of clouds ${\rm CL}_1$ and ${\rm CL}_2$ in the layers shown have been parameterized for consideration of their radiative effects.

b. Radiative Temperature Profiles

The gridpoint temperatures were listed at each mandatory level of Table I between 1000.,..., 100 mb (i.e., between k=10,..., 1). The temperature was assumed to be isothermal from 100 mb to 0.0 mb. The temperature at level k=10 was set equal to the FNWC listed sea-surface temperature. The radiative sounding temperatures for the remaining k-levels were obtained from either their corresponding listed temperature-level or by a three-point Lagrangian interpolation scheme [Eq. (2-1), Spaeth, 1975], to level k when the listed FNWC temperature profile did not include the value T_k .

c. Radiative Moisture Profiles

Similarly, the moisture profiles of Table I have been obtained by an interpolative procedure over the original-level FNWC mixing ratios to those required at k-levels in a manner analogous to that discussed by Spaeth (1975, pp. 29-31).

d. Pressure-Scaled Absorber Masses

The pressure-scaled water vapor and the carbon-dioxide scaled absorber masses were calculated for the six even numbered k-levels (Fig. 2) using Eqs. (2-8, 2-9, 2-10 and 2-11) respectively as outlined by Spaeth (1975, pp. 31-33). These equations use essentially the mixing ratios of water vapor and of CO₂ at odd k-levels.

B. CLOUD PARAMETERIZATION

The relative humidities (RH) at levels k=5 and k=9 are used in the calculations of the fractional cloud covers ${\rm CL}_1$ and ${\rm CL}_2$ in layers (4,6) and (8,9) respectively (Fig. 2). The equations for

parameterization of the two fractional cloud amounts are as follows:

$$CL_1 = 2/3 [2.0 (RH(5)) - 0.7]$$
 (2-2a)

$$CL_2 = 2/3 [3.33(RH(9)) - 2.0]$$
 (2-2b)

The bracketed part of the equations (after Smagorinsky, 1960) were reduced by the 1/3 factor in an attempt to tune cloud amounts to obtain albedo values in closer agreement with the recent satellite radiational climatology of Raschke et al., (1973). The "2/3 CL" parameterization set forth in Eq. (2-2) is used here for estimating large scale radiational effects only. Thus small-scale convective activity and a priori climatological effects were not considered in specifying the form of Eq. (2-2). Tuning of the model-albedo values of this study by varying cloud reflectance coefficients with respect to season and latitude will be discussed in Section IV.

C. CLOUD-AREA COVERAGES

Fractional cloud amounts, CL_1 and CL_2 , were computed at each grid-point for levels k=5 and k=9 by Eqs. (2-2a,b). In addition the gridpoint area may be thought of as broken into random fractional segments of size

$$W(0,0) = (1-CL_1) (1-CL_2)$$
 (2-3a)

wherein there is a combination of clear-over-clear segments in the layers. Similarly, the gridpoint area has the fractional area of cloud coverage

$$W(1,1) = CL_1 *CL_2$$
 (2-3b)

of an upper overcast amount overlying a lower overcast. Likewise the area-combinations of overcast over clear, and clear over overcast areas in two layers, may be visualized as occurring with the weights

$$W(1,0) = CL_1 * (1-CL_2)$$
 (2-3c)

and

$$W(0,1) = (1-CL_1) *CL_2$$
 (2-3d)

respectively.

For radiational computations it was useful to carry the relative weights or fractions of the gridpoint area exposed to the specified cloud-layer combinations. Henceforth, the symbols denoted by W(0,0), W(1,1), W(1,0) or W(0,1) indicate the fractionally overcast (1) or clear (0) cloud-area combinations in the indicated layers (Fig. 2), with the first index 1 or 0 referring to layer CL_1 , k=5, and the second to CL_2 , k=9.

The usefulness of the cloud-area weighting device will be clarified in Sections III and IV, where the procedures for the terrestrial and solar radiational computations are discussed and the results are summarized over the set of soundings.

A measure of the effective cloud-cover area which has been found useful in previous radiational studies has been the total opaque cloud cover, CL, referring to the amount of thick cloud cover overhead regardless of the level. For the cloud model presented here CL may be expressed as

$$CL = CL_1 + CL_2 - CL_1 * CL_2 .$$
 (2-4)

III. TERRESTRIAL RADIATION

A. THEORETICAL AND EMPIRICAL BASIS

Empirical formulas were developed by Sasamori (1968) for flux emissivities in the atmosphere associated with computations for the radiative balance requirements of the NCAR General Circulation Model. Sasamori derived the empirical emissivity formulas for water vapor and CO₂ by comparison with the theoretical values built into the Yamamoto Radiation Chart (1952). The Yamamoto chart has proved to be quite accurate for numerical checks of the Sasamori emissivities. This chart was also used in the previous studies (A, B, C, D) as a systematic guide for integration of the radiative transfer formulas developed by Martin (1972, 1975), who adapted the Sasamori emissivity formulas to the particular layers of interest in the gridpoint computations of the FNWC primitive equation model (Fig. 2).

The essential long-wave (IR) net-flux parameters required for use in this study are the following:

 F_{10} = IR net flux at earth, k = 10

 F_{Ω} = IR net flux at level k = 8

 F_c^* = IR net flux at level k = 6

 F_{A}^{\star} = IR net flux at level k = 4

 F_2 = IR net flux at level k = 2

In addition the IR net-flux divergence coolings to be computed at each gridpoint are

F810 = IR net-flux divergence in the layer (8,10)

F68 = IR net-flux divergence in the layer (6,8)

F46 = IR net-flux divergence in the layer (4,6)

F24 = IR net-flux divergence in the layer (2,4).

In the Radiation Balance Studies in the series A, B, C, D only F610 and F26 were computed because time restraints in the present FNWC operational heating package have prevented the use of greater resolution in the vertical. Here, four flux divergences are computed in order to examine more closely the variability of the flux divergences over the layer thicknesses reduced to approximately 200 mb each. To compute these four flux divergences it was necessary to utilize additional formulas for F_8^* and F_4^* as developed by Martin (1975).

In order to make IR net-flux calculations along the path of integration, there must be a physically sound representation of the emissivity ($\varepsilon_{\rm wc}$) as a function of both water vapor and CO₂ absorber masses in layers along the sounding. For a complete discussion of the emissivity formulas used in the quadrature scheme, refer to Spaeth's Appendix A (1975).

B. NET FLUX FORMULATIONS

The radiative sounding as depicted in Table I was computed as the combination of parameters U(k,10), C(k,10) and T_k for each required level, k=10, 8, ... 1,0. Cloud parameters CL_1 and CL_2 were also computed by Eq. (2-2) at each gridpoint and in general are both non-zero. The grid area was then considered to be composed of areal fractions (weights) defined in Eqs. (2-3a,b,c,d) and denoted by the symbols W(0,0), W(1,1), W(1,0), W(0,1).

The composite net flux F_{10}^{*} (CL₁, CL₂) at level k = 10 at each gridpoint is then constructed by using the appropriate weight factors

to multiply the reference net flux F_{10} computations defined for the four special cloud-cover cases already defined in Section II.C:

$$F_{10}^{*}(0,0), F_{10}^{*}(1,0), F_{10}^{*}(0,1), F_{10}^{*}(1,1)$$

It therefore follows that

$$F_{10}^{*}(CL_{1}, CL_{2}) = W(0,0)F_{10}^{*}(0,0) + W(1,0)F_{10}^{*}(1,0) + W(0,1)F_{10}^{*}(0,1) + W(1,1)F_{10}^{*}(1,1).$$
 (3-1)

The reference net fluxes F_{10}^{*} of Eq. (3-1) are associated with (1) clear skies in both layers, (2) overcast in the upper layer only, (3) overcast in the lower layer only and (4) overcast in both layers respectively.

Spaeth (1975) has listed these reference net flux formulations in his Eqs. (3-6), (3-7) and (3-8). Using the definitions of W(0,0), W(1,0), W(0,1) and W(1,1), F_{10}^* (CL₁, CL₂) can be shown to assume the form

$$F_{10}^{*}(CL_{1}, CL_{2}) = [1-CL_{2}] \{ (B_{10}^{-}B_{6}^{-}) - .5[\varepsilon_{wc}(8,10) (B_{10}^{-}B_{8}^{-}) + (\varepsilon_{wc}(8,10) + \varepsilon_{wc}(6,10)) (B_{8}^{-}B_{6}^{-})] \}$$

$$+ (1-CL_{2}) (1-CL_{1}) \{ B_{6}^{-} - .5[(\varepsilon_{wc}(6,10) + \varepsilon_{wc}(4,10)) (B_{6}^{-}B_{4}^{-}) + (\varepsilon_{wc}(4,10) + \varepsilon_{wc}(2,10)) (B_{4}^{-}B_{2}^{-}) + (\varepsilon_{wc}(2,10) + \varepsilon_{wc}(1,0)) (B_{2}^{-}B_{1}^{-}) + \widetilde{\varepsilon}_{wc}((0,10),T_{1}^{-}) *B_{1}^{-}] \}$$

$$+ CL_{2} \{ (B_{10}^{-}B_{9}^{-}) [1.5\varepsilon_{wc}(9,10)] \} .$$

$$(3-2)$$

Here

$$B_{k} = 1.170403 \times 10^{-7} T_{k}^{4}$$
 (3-3)

is the Stefan-Boltzmann blackbody flux in langlies per day.

Further, $\varepsilon_{\rm wc}$ (U_k,C_k,10) is the combined water-vapor and CO₂ emissivity along the path from level 10 to level k. This emissivity is considered by Sasamori to be temperature independent for T \geq 210K, whereas $\widetilde{\varepsilon}_{\rm wc}$ represents the temperature dependent emissivity applicable for T < 210K. [See pp. 136-137, Spaeth (1975); Sasamori (1968)].

The formulas for $F_k^*(CL_1, CL_2)$, k = 2,4,6, and 8 have been developed by Martin (1975) in a manner analogous to the derivation of the weighted F_{10}^* . The results are reproduced as the following equations:

$$\begin{split} \mathbf{F_8}^* &= [1-\text{CL}_1] \ \{\mathbf{B_8}^-.5[\epsilon_{\text{wc}}(6,8) \ (\mathbf{B_8}^-\mathbf{B_6}) \\ &+ \ (\epsilon_{\text{wc}}(6,8) + \epsilon_{\text{wc}}(4,8)) \ (\mathbf{B_6}^-\mathbf{B_4}) \\ &+ \ (\epsilon_{\text{wc}}(4,8) + \epsilon_{\text{wc}}(2,8)) \ (\mathbf{B_4}^-\mathbf{B_2}) \\ &+ \ (\epsilon_{\text{wc}}(2,8) + \epsilon_{\text{wc}}(1,8)) \ (\mathbf{B_2}^-\mathbf{B_1}) + \tilde{\epsilon}_{\text{wc}}((0,8),\mathbf{T_1}) \ ^*\mathbf{B_1}] \} \\ &+ \ C\mathbf{L_1} \ [1-.5\epsilon_{\text{wc}}(6,8)] \ (\mathbf{B_8}^-\mathbf{B_6}) + \ C\mathbf{L_1} \ (1-\mathbf{CL_2}) \ [1-.5\epsilon_{\text{wc}}(8,10)] \ (\mathbf{B_10}^-\mathbf{B_8}) \\ &+ \ (1-\mathbf{CL_1}) \ (1-\mathbf{CL_2}) \ [1-.5\epsilon_{\text{wc}}(8,10)] \ (\mathbf{B_{10}}^-\mathbf{B_8}) \end{split}$$

$$F_{6}^{*} = [1-CL_{1}] \{B_{8}^{-.5}[\varepsilon_{wc}(6,8)(B_{8}^{-B}B_{6}) + \varepsilon_{wc}(4,6)(B_{6}^{-B}A_{4}) + (\varepsilon_{wc}(4,6) + \varepsilon_{wc}(2,6))(B_{4}^{-B}B_{2}) + (\varepsilon_{wc}(2,6) + \varepsilon_{wc}(1,6))(B_{2}^{-B}B_{1}) + \widetilde{\varepsilon}_{wc}((0,6),T_{1})*B_{1}]\}$$

$$+ (1-CL_{1})(1-CL_{2})\{(B_{10}^{-B}B_{8})[1.-.5(\varepsilon_{wc}(6,8) + \varepsilon_{wc}(6,10))]\} + CL_{1} \{(B_{8}^{-B}B_{6})* + (1-.5\varepsilon_{wc}(6,8))\} + CL_{1} (1-CL_{2}) \{(B_{10}^{-B}B_{8})* + (1-.5\varepsilon_{wc}(6,8))\} + \varepsilon_{wc}(6,10))]\} . \tag{3-5}$$

$$\begin{split} \mathbf{F_4}^* &= [1-\text{CL}_1] \; \{\mathbf{B_8}^-.5[\varepsilon_{\text{wc}}(4,6) \; (\mathbf{B_6}^-\mathbf{B_4}) \\ &+ \; (\varepsilon_{\text{wc}}(4,6) \; + \; \varepsilon_{\text{wc}}(4,8)) \; (\mathbf{B_8}^-\mathbf{B_6}) \; + \; \varepsilon_{\text{wc}}(2,4) \; (\mathbf{B_4}^-\mathbf{B_2}) \\ &+ \; (\varepsilon_{\text{wc}}(2,4) \; + \; \varepsilon_{\text{wc}}(1,4)) \; (\mathbf{B_2}^-\mathbf{B_1}) \; + \; \widetilde{\varepsilon}_{\text{wc}}((0,4),\mathbf{T_1})^*\mathbf{B_1}] \} \\ &+ \; \mathbf{CL_1} \; \{\mathbf{B_4}^-.5[\varepsilon_{\text{wc}}(2,4) \; (\mathbf{B_4}^-\mathbf{B_2}) \; & (3-6) \\ &+ \; (\varepsilon_{\text{wc}}(2,4) \; + \; \varepsilon_{\text{wc}}(1,4)) \; (\mathbf{B_2}^-\mathbf{B_1}) \; + \; \widetilde{\varepsilon}_{\text{wc}}((0,4),\mathbf{T_1})^*\mathbf{B_1}] \} \\ &+ \; (1-\text{CL}_1) \; (1-\text{CL}_2) \; \{ \; (\mathbf{B_{10}}^-\mathbf{B_8}) \; [1-.5(\varepsilon_{\text{wc}}(4,8) \; + \; \varepsilon_{\text{wc}}(4,10))] \} \end{split}$$

$$\mathbf{F_2}^* = \; [1-\text{CL}_1] \; \{\mathbf{B_8}^-.5[\varepsilon_{\text{wc}}(2,4) \; (\mathbf{B_4}^-\mathbf{B_2}) \; + \; (\varepsilon_{\text{wc}}(2,4) \\ &+ \; \varepsilon_{\text{wc}}(2,6)) \; (\mathbf{B_6}^-\mathbf{B_4}) \; + \; (\varepsilon_{\text{wc}}(2,6) \; + \; \varepsilon_{\text{wc}}(2,8))^* \\ &+ \; (\mathbf{B_8}^-\mathbf{B_6}) \; + \; \varepsilon_{\text{wc}}(1,2) \; (\mathbf{B_2}^-\mathbf{B_1}) \; + \; \widetilde{\varepsilon}_{\text{wc}}((0,2),\mathbf{T_1})^*\mathbf{B_1}] \} \\ &+ \; (1-\text{CL}_1) \; (1-\text{CL}_2) \; \{ \; (\mathbf{B_{10}}^-\mathbf{B_8}) \; [1-.5(\varepsilon_{\text{wc}}(2,8) \\ &+ \; \varepsilon_{\text{wc}}(2,10))] \} \; + \; \text{CL}_1 \; \; \{\mathbf{B_4}^-.5[\varepsilon_{\text{wc}}(2,4) \; (\mathbf{B_4}^-\mathbf{B_2}) \\ &+ \; \varepsilon_{\text{wc}}(1,2) \; (\mathbf{B_2}^-\mathbf{B_1}) \; + \; \widetilde{\varepsilon}_{\text{wc}}((0,2),\mathbf{T_1})^*\mathbf{B_1}] \} \; . \end{split}$$

As was described by Spaeth (1975, Section III.B.5.) concerning the use of the composite case, Eq. (3-2) can be reduced to give expressions for $F_{10}^{}$ for the various reference cloud-cover cases (0,0), (1,1), (1,0) and (0,1). The resulting schematics in the case of $F_8^{}$ and $F_4^{}$ are depicted as the unhatched area in Figs. 3(a,b,c,d) and 4(a,b,c,d), respectively below. Similar graphs for $F_{10}^{}$, $F_6^{}$ and $F_2^{}$ can be found on pp. 41-43 of Spaeth (1975), and are not reproduced here.

A typical gridpoint listing of the IR net-flux computations, F_k^* (k = 10,8,...2), has been reproduced in Table II for gridpoint (1,1) based upon the radiative sounding of 16 April 1974 (see Table I). The printout procedure involves computation of the reference net-flux values

Terrestrial net flux F_8^* with (a) clear skies (case (0,0)); (b) high overcast only case (1,0); (c) low overcast only (case (0,1)); (d) both high and low overcast (case (1,1)). Unhatched area in each case depicts F ** Figure 3.

Terrestrial net flux F_4^* with (a) clear skies (case),0); (b) high overcast only (case (1,0)); (c) low overcast only (case (0,1)); (d) both high and low overcast (case (1,1)). Unhatched area in each case depicts F_4^* . Figure 4.

from each of Eqs. (3-2), (3-4), (3-5), (3-6) and (3-7) for level $k=10,\ 8,\ldots 2$ respectively. Then Eq. (3-1) with the appropriate weight-factors of Eqs. (2-3a,b,c,d) has been utilized to derive the composite F_k^* (CL₁, CL₂) values that are listed on the bottom line of Table II.

TABLE II. A sample listed of IR net-flux computations, weighting factors and composite values, F_k^* (CL₁, CL₂), as computed for grid-point (1,1) for 16 April 1974. Net flux values in ly min⁻¹.

Cloud Case	Weight					
(CL ₁ CL ₂)	W(CL ₁ , CL ₂)	* F ₁₀	F ₈ *	* 6	F ₄ *	F ₂ *
(0,0)	.1002	.1664	.2288	.2649	.3160	.3487
(1,0)	.1497	.0943	.1331	.0915	.1706	.2338
(0,1)	.3007	.0512	.1563	.2341	.2871	.3202
(1,1)	.4494	.0512	.0586	.0607	.1706	.2338
F, *-composit	te values	.0692	.1171	.1379	.2202	.2713

C. TROPOSPHERIC COOLING BY LAYERS; F₁₀ COOLING

For each mid-seasonal day listed and at each gridpoint, an IR netflux computation in the format of Table II is easily converted into four sets of layer cooling effects.

$$F810 = F_{8} + F_{10}$$

$$F68 = F_{6} + F_{8}$$

$$F46 = F_{4} + F_{6}$$

$$F24 = F_{2} + F_{4}$$
(3-8)

These layer cooling rates (ly min⁻¹ have then been collected in meridional cross-section format for each longitude under study (see Section V) and by season.

The overall tropospheric cooling rate by IR net flux is then given simply by F_2 * * at each gridpoint for the date of the radiational sounding. The tropospheric cooling rates computed are then identical to

$$F_2^* - F_{10}^* = F24 + F46 + F68 + F810$$
 (3-9)

The values of F_2^* - F_{10}^* so deduced are discussed on both a seasonal and a zonally-averaged basis in Section V.

It will suffice to discuss here the zonally-averaged values of $F_{10}^{}$ (CL₁, CL₂) as computed by the long-wave radiational model previously presented in this section. These results, listed simply as $F_{10}^{}$ in Table III, will be discussed as a function of seasons, latitudes and CL (total opaque cloud cover given by Eq. (2-4)). The listings of $F_{10}^{}$ in Table III are essentially as extracted from computations in the format of Table II followed by meridional-averaging of $F_{10}^{}$ across constant latitude lines. Finally the zonally-averaged annual values of both $F_{10}^{}$ and CL have been computed by arithmetic-averaging over the four mid-seasonal results at each five-degree increment of latitude from 20S to 65N (cf., Eq. (5-1)).

The model-annual values of $F_{10}^{}$ presented in Table III are presented with those derived from Budyko (1956), which in turn are listed in the final column of Table III. Corresponding values of total opaque cloud cover, CL, for the Budyko climatology were not available so that only a general comparison of the two annual $F_{10}^{}$ zonally-averaged distributions is possible.

1 Budyko	F10*	.091	.092	.083	.085	.084	980.	980.	.094	.102	860.	660.	.102	.109	860.	660.	.102	.104	.095	.0957
Annua Values	占	°626	.625	.563	.637	.523	,528	.463	.450	.421	.386	.437	.445	.423	.531	.572	.637	.559	.558	。482
Model V	F10*	6860.	.0903	.0930	.0781	.0904	.0905	.0994	.1023	.1000	.1046	.1014	.1088	.1081	.0860	.0789	.0768	.0827	.0677	• 0929
ber	ij	.629	.629	.604	°707	.489	.471	.459	.486	.437	.383	.448	.484	.325	,301	.381	.452	.451	.885	.435
16 October	F10*	.0927	.0823	.0807	.0747	.0952	.1011	.1015	.0988	.1011	.1056	.1037	.1087	.1218	,1188	.1037	.0921	.0856	.0346	.1029
*	占	°267	.304	.256	.496	.444	.533	.459	.428	.429	.373	.424	.381	.386	.564	.474	.818	,458	.591	•464
16 July	F10*	.1510	.1330	.1348	.0937	,1016	.0947	.1024	.1035	.0943	.0985	.0920	.0925	.0863	.0586	.0634	.0370	.0853	.0613	.0881
i.1	J J	.842	.827	.750	.727	.629	.590	.567	.547	.534	.471	.445	.519	.466	.466	.674	.554	.814	.795	.547
16 April	F10*	.0738	6990.	.0712	.0692	.0781	.0804	.0865	.0921	.0850	.0941	.0982	11116	.1163	9660.	.0794	.1083	.0539	.0817	.0921
ıary	CT CT	.766	.744	.639	.619	.529	.518	.367	.337	.283	,318	.432	.397	.516	.781	.760	.723	.514	000.	.480
16 January	F10*	.0782	.0789	.0852	。0748	.0867	.0859	.1071	.1147	1198	.1199	,1116	.1222	.1080	.0672	.0688	.0683	.1058	.0934	.1004
LAT.		208	158	108	5.8	0	SN	TON	15N	20N	25N	3 ON	35N	40N	45N	50N	55N	009	65N	Wt. Avg.
				•																Z

TABLE III. A listing of IR net-flux (F $_{10}^{*}$) at level k = 10 and total opaque cloud cover (CL) by season and latitude and listed are the annually averaged model-values of F $_{10}^{*}$ and CL including Budyko-values of F $_{10}^{*}$. Also listed are the Northern Hemisphere cosine-weighted means of the above parameters. All F $_{10}^{*}$ values in ly min .

Table III depicts the zonally-distributed values of $F_{10}^{}$ and of CL at the earth's surface. In a seasonal comparison of the model-computed $F_{10}^{}$ values it is clearly shown that $F_{10}^{}$ (CL) is a decreasing function of cloud cover. There is a clear-cut tendency in each season for a maximum value of $F_{10}^{}$ to be located in the subtropics (latitudes 15N-25N). Also there is evidence of a high latitude (55N-60N) minimum $F_{10}^{}$ associated with a concentration of maximum cloud cover CL. An outstanding variation is the transition in the Southern Hemisphere latitudes (20S - 10S), which has small cloud cover in local winter and comparitively large cloud cover during the other three data periods. This cloud-cover variation corresponds in general to the ITCZ behavior in these latitudes across the indicated seasons; so that, $F_{10}^{}$ is a maximum in mid-July and a relative minimum in the period January-April.

D. OUTGOING IR NET FLUX TO SPACE

1. Parameterization Formula for Top-of-Atmosphere IR Net Flux

In the four previous radiation studies (A, B, C, D), an approximation to the IR net flux to space, designated as FF2, was computed from the radiative sounding at each gridpoint. FF2 was essentially an extrapolation of F_2^* to the top of the atmosphere obtained by deleting the downward IR flux due to stratospheric water-vapor and CO_2 . A

more precise expression for the net IR flux to space was introduced here after Martin (1975). The development is analogous to the quadrature summations

$$F_{T} = \int_{B_{10}}^{B=0} \varepsilon_{wc} dB$$
 (3-10)

for the various reference-cloud combinations (0,0), (1,0), (0,1) and (1,1) of Fig. 5(a,b,c,d) respectively. The final quadrature-formula is then obtained as the weighted net-flux result as was also done in Eqs. (3-4), (3-5), (3-6), (3-7) and is listed below.

$$\begin{split} \mathbf{F}_{\mathbf{T}} &= [1-\mathrm{CL}_{1}]\{\mathbf{B}_{8}-.5[(\varepsilon_{\mathrm{wc}}(0,1) + \varepsilon_{\mathrm{wc}}(0,2))(\mathbf{B}_{2}-\mathbf{B}_{1}) \\ &+ (\varepsilon_{\mathrm{wc}}(0,2) + \varepsilon_{\mathrm{wc}}(0,4))(\mathbf{B}_{4}-\mathbf{B}_{2}) \\ &+ (\varepsilon_{\mathrm{wc}}(0,4) + \varepsilon_{\mathrm{wc}}(0,6))(\mathbf{B}_{6}-\mathbf{B}_{4}) + (\varepsilon_{\mathrm{wc}}(0,6) + \varepsilon_{\mathrm{wc}}(0,8))(\mathbf{B}_{8}-\mathbf{B}_{6})]\} \\ &+ \mathrm{CL}_{1}\{\mathbf{B}_{4}-.5[(\varepsilon_{\mathrm{wc}}(0,1) + \varepsilon_{\mathrm{wc}}(0,2))(\mathbf{B}_{2}-\mathbf{B}_{1}) \\ &+ (\varepsilon_{\mathrm{wc}}(0,2) + \varepsilon_{\mathrm{wc}}(0,4))(\mathbf{B}_{4}-\mathbf{B}_{2})]\} \\ &+ (1-\mathrm{CL}_{1})(1-\mathrm{CL}_{2})\{[1-.5(\varepsilon_{\mathrm{wc}}(0,8) + \varepsilon_{\mathrm{wc}}(0,10))][\mathbf{B}_{10}-\mathbf{B}_{8}]\} \end{split}$$

where ${\rm CL}_1$, ${\rm CL}_2$ are given by Eq. (2-2). Note that ${\rm F}_{\rm T}$ of Eq. (3-11) is representable by the unhatched areas of Figs. 5(a,b,c,d) for the various reference-cloud cases and that ${\rm F}_{\rm T}$ has no downward IR flux corresponding to the level k = 0.

2. Comparisons of $\mathbf{F}_{\mathbf{T}}$ with Mid-Seasonal Satellite Climatology

Comparison was made of computed-model values of $F_{\rm T}$ with satellite measurements of total long-wave flux to space (after Raschke et al., 1973) for the Nimbus III mid-seasonal periods most nearly comparable to that of the FNWC data. $F_{\rm T}$ for each mid-seasonal date was computed over the

Outgoing terrestrial net flux to space F_T with (a) clear skies [case (0,0)]; (b) high overcast only [case (1,0)]; (c) low overcast only (0,1); (d) both high and low overcast [case (1,1)]. Unhatched area in each case depicts F Figure 5.

four meridians considered. These \boldsymbol{F}_{T} values were then averaged across the four meridians to get a mean zonal distribution of the type shown in Table IV.

Table IV shows the zonally-averaged model values compared with those extracted from Raschke. Raschke's results were obtained by averaging across the same oceanic meridians as those used in this study. Again, in the bottom line of each column in Table IV is listed the cosine-weighted mean of each set of column values for the Northern Hemisphere only.

The zonally-averaged values computed by the F_T-model are very close to those reported by Raschke, especially between 0-65N and in the Northern Hemispheric means. The limitations of the comparisons made here are obvious, when it is recalled that between latitudes 20S-5S and between 60N-65N there are fewer than four meridional lines available for computing the listed zonal values in Table IV. For all other zonally-averaged values, four meridional lines were used in the averaging.

The close comparison between model-values of F_{T} from (3-11) and those essentially derived from satellite climatology tend to support the cloud parameterization, Eq. (2-2), insofar as IR net flux is concerned.

al RAS	.3900	.4089	.3822	.3761	.3581	.3569	.3727	.3884	.3878	.3708	.3535	.3379	.3247	.3112	.3019	.3000	.3025	
Annual MOD R	3292	.3480	,3338	.3514	.3585	.3688	.3722	.3785	.3768	,3602	.3593	.3515	.3360	.3206	.2933	.2981	.2703	
ober RAS	.3791	.4248	.4182	.4096	.3687	.3409	.3535	.3893	.3974	.3879	.3666	.3459	,3238	.3005	.2951	.2896	.3101	
16 October MOD RAS	.3194	.3216	,3016	.3364	.3473	.3537	.3574	.3649	.3762	.3673	.3519	.3621	.3564	.3398	.3106	.3020	.2543	
RAS	.4005	.4257	.3966	.3776	.3538	.3360	.3500	.3743	.3947	.3922	.3769	.3630	.3560	.3497	.3274	.3304	.3300	
16 July MOD R	.3795																	
il RAS	.4100	.4100	.3681	.3646	.3414	.3616	.3899	.3956	.3867	.3613	.3542	.3400	.3300	.3221	.3151	.3103	.3000	
16 April MOD RA	. 2992	.3270	.3263	.3431	.3609	.3750	.3755	.3779	.3794	.3621	.3514	.3404	.3268	.3121	.3125	.2889	.2651	
lary RAS	.3703	.3750	.3457	.3527	.3685	.3892	.3952	.3943	.3724	.3418	.3163	.3026	.2891	.2727	.2701	.2696	.2700	
16 January MOD RAS	.3188	.3485	,3306	.3611	.3712	.3799	.3843	.3870	.3645	.3345	.3491	.3291	.3042	. 2999	.2643	.2720	.2681	
LAT	20S	101	2	0	5N	10	15	20	25	30	35	40	45	50	55	09	65	

TABLE IV. Comparison of total outgoing IR radiation between computed-model values and satellite climatology from Raschke et al (1973) as zonally averaged over four oceanic meridians. The weighted averages are derived from cosine-weighting values from 0-65N latitude. All ${\rm F_T}$ -values in ly min-1.

.3535 .3552

.3511 .3592

.3634 .3627

.3523 .3567

.3472 .3431

Wt. Avg.

IV. SOLAR RADIATION

A. COMPOSITION OF SOLAR INSOLATION

At the top of the atmosphere (k=0) this study assumed a solar constant of 2.00 ly min⁻¹ (Joseph, 1971). Furthermore, this constant was assumed subject to a four percent attenuation above the tropopause due to ozone and oxygen. Thus the effective solar constant at level k=2 in this study is 1.92 ly min⁻¹.

To compute the effective solar insolation at the tropopause the following formula was used

$$F(2) = S\left[\frac{r}{r_m}\right]^{-2} \cos Z \tag{4-1}$$

where S is the effective solar constant at level k=2 and

 r/r_m = ratio of the actual earth-sun distance to the mean earth-sun distance, a function of the Julian date

Cos Z= cosine of the zenith angle, a function of the Julian date determined by

$$Cos Z = Sin \phi Sin \delta + Cos \phi Cos \delta Cos h .$$
 (4-2)

The symbols on the right side of Eq. (4-2) are defined as follows:

 ϕ = latitude

 δ = solar declination

h = hour angle

The Smithsonian Meteorological Tables (List, 1958) list the ratio of r/r and the solar declination, δ , for the mid-seasonal dates applicable to this study and reproduced in Table V.

TABLE V. Values of the ratio of the earth-sun radius vector, r/r_m , and of the solar declination angle, δ , used in this study for yea" 1973 - 1974.

Date	r/r _m	δ
16 January	0.98372	21.07917°s
16 April	1.00333	8.48333°N
16 July	1.01644	21.50000°N
16 October	0.99717	8.22500°S

The value of $\sin \phi$ was calculated using one of two different formulas, depending on the data-line used for the computations, in terms of the FNWC map coordinates (I,J) as in Eq. (4-3a,b). Conversely for these lines one may solve for I in terms of $\sin \phi$ as in (4-3c,d):

Lines 1,3,4 Sin
$$\phi = \frac{973.752 - 2(32-1)^2}{973.752 + 2(32-1)^2}$$
 (4-3a)
Line 2 Sin $\phi = \frac{973.752 - (32-1)^2}{973.752 + (32-1)^2}$ (4-3b)

Line 2 Sin
$$\phi = \frac{973.752 - (32-1)^2}{973.752 + (32-1)^2}$$
 (4-3b)

Lines 1,3,4 I = 32 - 22.065
$$\left[\frac{\cos \phi}{1 + \sin \phi}\right]$$
 (4-3c)

Here I is the abscissa distance on the FNWC grid (Fig. 1) and varies by line as described in Section II. The soundings for lines 1, 2, and 3 were all taken at 0000GMT with the solar noon existing at the 180th meridian; therefore the hour angles for these three lines were 55°, 10°, and 35°, respectively. For line 4, the soundings were taken 12 hours earlier with solar noon at the Greenwich meridian, giving an hour angle for line 4 of 35°.

A very simple partition of solar insolation was utilized in this study after Joseph (1971). It consisted of dividing the insolation F(2) into two parts at level k=2. One part was considered to include all wavelengths $\lambda > .9$ µm where absorption by water vapor and carbon dioxide bands are the most prevalent attenuation processes in clear air. This part of the solar spectrum was termed the F(A) energy and considered subject to water-vapor absorption but not to Rayleigh scattering. For shorter wavelengths, $\lambda \le .9$ µm, absorption of the solar insolation energy by water vapor was considered negligible. This part of the solar insolation was denoted F(S) suggestive of the fact that it was subject only to Rayleigh scattering attenuation in clear air. The two partitions are formulated after Joseph (1971) as follows:

$$F(A) = .349 F(2)$$
 (4-4)

$$F(S) = .651 F(2).$$
 (4-5)

In this study, the introduction of two cloud decks produced cloud-reflectivity effects upon both the F(A) and F(S) solar energy insolations. However, in the clear areas around any gridpoint only the absorption-attenuation applies to the F(A) insolation, while only Rayleigh scattering-attenuation applies to the F(S) insolation.

B. DISPOSITION OF F(S) INSOLATION

In the disposition of the F(S) insolation, Joseph (1971) determined that Rayleigh scattering reflectance to space by clear skies (after Coulson, 1959) could be effectively approximated by least squares in the following form

$$\alpha(R) = .085 + .25074 [log (\frac{\pi}{P_O}) Sec z)]$$
 (4-6)

where $P_{O} = 1013.25$ mb. In Eq. (4-6), $\pi/P_{O} = 1$ in view of the fact that mean sea level pressure π is close to 1000 mb. Also

Sec
$$z = (\cos z)^{-1}$$

with Cos z given by Eq. (4-2).

The surface albedo $\alpha(G)$ is another reflective parameter utilized in this study. Over oceanic areas the following formula for $\alpha(G)$ after Gates et al (1971), was utilized:

$$\alpha(G) = \max \{.06, .06 + .54 (.7 - \cos z)\}.$$
 (4-7)

As described in Section III, four combinations of reference-cloud cases are possible with a two-layer cloud model. The disposition of F(S) under each of these cases will be discussed in the remainder of this subsection.

1. Clear Sky Case

In the clear sky (0,0) case the F(S) insolation was subjected to both Rayleigh scattering reflectance $\alpha(R)$ and the surface reflectance $\alpha(G)$. Considering the likelihood of a succession of multiple reflections

between earth and atmosphere, the F(S) insolation actually penetrating the earth's surface after scattering is given by

IS10(0,0) = F(S) [1-
$$\alpha$$
(R)] [1+ α (R) α (G)+...(α (R) α (G))ⁿ
+ ...]*(1- α (G)) (4-8a)

that is, by

$$IS10(0,0) = F(S)[1-\alpha(R)][1-\alpha(G)]/[1-\alpha(R)\alpha(G)]$$
 (4-8b)

2. Cloudy-Sky Cases

In the three cases in which clouds were present, F(S) insolation absorbed by the ground at each gridpoint was computed using the following equation (after Arakawa, 1972):

$$IS10(1,1) = F(S) (1-R(1)) (1-R(2)) (1-\alpha(G))$$

$$*\{1-[R(1)R(2) + R(2)\alpha(G)^{-} + R(1)\alpha(G)$$

$$-2R(1)R(2)\alpha(G)]\}^{-1}.$$
(4-9)

As indicated by the notation (1,1), denoted $\operatorname{CL}_1 = \operatorname{CL}_2 = 1.0$, Eq. (4-9) is the formula used in calculating F(S) insolation absorbed by the ground in the case where overcast clouds are present at both levels of Fig. 2. Also in Eq. (4-9), initial values of cloud-reflectance were chosen, namely R(1) = .54 for the mid-level clouds between k=4 and 6, and R(2) = .66 for the low-level clouds between k=8 and 9. Both cloud-reflectance values are as suggested by C. D. Rodgers (1967).

For all the other cloud cases, the following changes were applied to Eq. (4-9). In the (1,0) case (${\rm CL}_1$ = 1.0, ${\rm CL}_2$ = 0.0), the

desired earth-absorbed insolation is obtained by setting R(2) = 0.0 in (4-9), from which it follows that

$$IS10(1,0) = F(S)(1-R(1))(1-\alpha(G))/[1-R(1)\alpha(G)]. \tag{4-10}$$

In the case (0,1), one sets R(1) = 0.0 in (4-9) so that (4-9) simplifies to

$$IS10(0,1) = F(S)(1-R(2))(1-\alpha(G))/[1-R(2)\alpha(G)]. \tag{4-11}$$

Note that with a cloud overcast present, the Rayleigh clear-sky scattering $\alpha(R)$ does not appear in Eqs. (4-9), (4-10) or (4-11), but is included empirically in the cloud reflectances R(1) and R(2).

3. Composite F(S) Insolation at Earth

Equations (4-8), (4-9), (4-10) and (4-11) were utilized in the computation of the cloud-weighted F(S) insolation penetrating the earth's surface considering the areal-weights of the cloud combinations denoted by (0,0), (1,1), (1,0) and (0,1) about a gridpoint. The resultant F(S) insolation penetrating the earth's surface denoted by IS10 is therefore expressible as

$$IS10(CL_{1}, CL_{2}) = IS10(0,0) W(0,0)$$

$$+ IS10(1,1) W(1,1)$$

$$+ IS10(1,0) W(1,0)$$

$$+IS10(0,1) W(0,1) . \qquad (4-12)$$

Here the weighting factors W(0,0), W(1,1), W(1,0) and W(0,1) are computed in Eqs. (2-3a,b,c,d) respectively. Note finally that the part of F(S) insolation reflected to space is found by subtracting IS10 (CL_1 , CL_2) from F(S).

Table VI lists the F(S)-disposition resulting from a particular radiative sounding at gridpoint (1,1) on 16 April 1974. The individual computations of IS10 as they apply for the possible overcast-clear layer cases are made under the heading "IS10." The difference

$$REFS = F(S) - IS10 \tag{4-13}$$

in each case represents F(S)-insolation reflected to space while

$$STRAN = \frac{IS10}{1-\alpha(G)}$$
 (4-14)

has been computed as that portion of the F(S)-insolation incident at the sea surface just prior to transmission by the surface. Note that no absorption in air has been included in the computations of Table VI, and that the only absorption permitted is that implicit in IS10. Finally at the bottom of each column, e.g., IS10, the composite value has been computed by means of the weighting scheme of Eq. (4-12).

TABLE VI. A sample listing of values of F(S) insolation (ly min⁻¹) computed at gridpoint (l,l) for 16 April 1974 using Eqs. (4-6,..., 4-14).

Cloud-case (CL ₁ , CL ₂)	Weight W(CL ₁ , CL ₂)	IS10	REFS	STRAN
1, -2,	1, -2,			
(0,0)	.0993	.4305	.1751	.5216
(1,0)	.1484	.2539	.3517	.3076
(0,1)	.3016	.1921	.4135	.2327
(1,1)	.4507	.1340	.4716	.1696
Composite-F(S)	values	.2014	.4041	.2441

C. DISPOSITION OF F(A) INSOLATION

The fractional portion of the solar insolation subject to absorption by atmospheric water-vapor and carbon dioxide is covered in the following subsections.

Clear-sky Case (0,0)

The Manabe-Möller absorptivity function provided the necessary absorptivity values for the key layers in this case. The form of this absorptivity function is

$$\underline{a}(2,k) = .271[U(2,k) \text{ Sec z}]^{.303}$$
 (4-15)

Here <u>a</u> is the absorptivity applied to the pressure-scaled water vapor mass between levels 2 and k (Fig. 2) along the zenith slant-path angle z. The resultant <u>absorbed insolational energy</u> in the particular layer (2,4) is then given by the Manabe-Möller relation

$$A24 = 0.271F(A)[U(2,4) Sec z]^{.303}$$
 (4-16)

In the same manner A26, A28 and A210 are found. Then the absorbed insolation in the layers (4,6), (6,8) and (8,10) are computed by

$$A46 = A26 - A24$$
 (4-17)

$$A68 = A28 - A26$$
 (4-18)

Water-vapor mass above level 2 was assumed negligible in the F(A) disposition of the solar insolation.

By subtracting A210 from F(A), the direct transmission of F(A) insolation impinging at the earth's surface was determined. The transmission of F(A) insolation is then further reduced by the transmissivity

 $(1-\alpha(G))$ after surface-reflectance, which leads to the earth-absorbed insolation

IA10(0,0) =
$$F(A)\{1-.271[U(2,10)Sec z]^{.303}\}(1-\alpha(G)).$$
 (4-20)

The transmitted energy impinging upon the earth just prior to absorption is

TRANA
$$(0,0) = IA10(0,0)/[1-\alpha(G)]$$
 (4-21)

In the remainder of this subsection, which discusses the cloudy layer cases, representative cloud reflectivities and cloud absorptivities were initially adopted, after C. D. Rodgers (1967), for the two possible cloud layers. These initial cloud reflectivities were RA(1) = .46 and RA(2) = .50 while the cloud absorptivities were A(1) = .20 and A(2) = .30. Note that the reflectivities for the F(A) wavelengths are somewhat smaller than those adopted for the F(S) wavelengths. The procedure of considering the cloud conditions to be overcast whenever they appear and then applying the appropriate weighting factors in the composite summation will again be followed as in Sec. IV.B.

To simplify the discussion for the cloud-covered cases, the (1,1) case will be presented first as it contains representative type equations for the remaining two cases, (1,0) and (0,1).

2. Overcast in Both High- and Low-cloud Layers

The following set of formulas illustrate the model disposition of incoming solar insolation (F(A)) from level k=2 to the earth's surface and permits determination of the amount of insolation absorbed by the atmospheric layers and by the earth's surface. The dashed separation lines are introduced to subdivide the absorption and reflection

physics of the model into subsections which permit the analysis to proceed more or less within successive 200 mb layers. The equations relate to the parameters in Fig. 6 where the insolations, A24, A46, A68, A89 and A910, etc., represent the contributions to the insolation absorbed in the layers involved. Symbols F2, F4, F6, F8 and F9, etc., depict the streams of insolation passing through the indicated level. A vertical arrow implies the direction of insolation passage, i.e., \(\psi\$ denotes downward insolation, \(\phi\$ upward-reflected insolation, and \(\psi\$ downward-reflected insolation. Terms involving the symbols "TD", as expressed by the functions of Eq. (4-22), indicate the Manabe-Möller transmissivities for diffuse insolation in the layer beneath an existing cloud. In the latter situation, the term Sec Z in Eq. (4-15) is effectively replaced by the mean slant-path, Sec Z = 5/3 (Katayama, 1966), e.g.,

TD68 = 1-.271[U(6,8) 5/3].
303
TD910 = 1-.271[U(9,10)5/3]. 303 (4-22)

In accordance with the above definitions and as described by Fig. 6, the formulas for the (1,1) case are listed:

$$F4 \downarrow = F(A) (1-.271[U(2,4) Sec z]^{.303})$$

$$F4 \uparrow = F4 \downarrow (RA(1))$$

$$F2 \uparrow = F4 \uparrow (1-.271[U(2,4) Sec z]^{.303})$$

$$A24 = F(A) - F4 \downarrow + F4 \uparrow - F2 \uparrow \qquad (4-23a)$$

48

A46 = F4 + (A(1)) (4-23b)

```
F6 \downarrow = F4 \downarrow - F4 \uparrow - A46

F8 \downarrow = F6 \downarrow (TD68)

F8 \uparrow = F8 \downarrow (RA(2))

F6 \uparrow = F8 \uparrow (TD68)

F6 \downarrow \downarrow = F6 \uparrow (RA(1))

F8 \downarrow \downarrow = F6 \downarrow \downarrow (TD68)

A68 = F6 \downarrow - F8 \downarrow + F8 \uparrow - F6 \uparrow + F6 \downarrow \downarrow - F8 \downarrow \downarrow (4-23c)
```

Note that the effect of multiple reflections between clouds or between the earth's surface and the lower cloud has been incorporated to include only the effect of two reflections, with the lowermost reflecting surface absorbing the remaining impinging insolation. Computations indicated that the insolation remaining after two reflections was

Figure 6. Schematic representation of F(A) insolation disposition in the case of two overcast layers.

too small to warrant the consideration of further reflections. Also insolation reflected upward from a lower interface (cloud or ground) to the base of an upper cloud deck has not been subjected to upper cloud absorption. This tends to reduce very slightly the secondary cloud-absorption.

From Eq. (4-23d), the impinging F(A) insolation at the earth's surface can be expressed

$$TRANA(1,1) = F10\downarrow + F10\downarrow \downarrow \qquad (4-24)$$

The F(A) insolation which is actually absorbed by the earth's surface (see Fig. 6) may be written as

IA10(1,1) =
$$F10\sqrt{(1-\alpha(G))} + F10\sqrt{(4-25)}$$

3. Disposition of F(A) Insolation with an Upper Overcast Only
With a single cloud layer present only at the upper level (Fig.
7) the equations depicting the model-disposition of incoming insolation becomes a simplified subset of the previous case:

$$F4 = F(A) (1-.271[U(2,4) Sec z]^{.303})$$

$$F4 = F4 + (RA(1))$$

$$F2 = F4 + (1-.271[U(2,4) Sec z]^{.303})$$

$$A24 = F(A) - F4 + F4 + F2 + (4-26a)$$

$$A46 = F4 \downarrow (A1)) \tag{4-26b}$$

0 _____

Figure 7. Schematic representation at F(A) insolation disposition with an upper overcast layer only.

$$F6 \downarrow = F4 \downarrow - F4 \uparrow - A46$$

 $F8\downarrow = F6\downarrow (TD68)$

 $F10 \downarrow = F6 \downarrow (TD610)$

 $F10\uparrow = F10\downarrow(\alpha(G))$

 $F8\uparrow = F10\uparrow (TD810)$

 $F6\uparrow = F10\downarrow (TD610)$

 $F6\downarrow\downarrow$ = $F6\uparrow(RA(1))$

 $F8\downarrow\downarrow$ = $F6\downarrow\downarrow$ (TD68)

 $F10\downarrow\downarrow = F8\downarrow\downarrow (TD810)$

$$A68 = F6 \downarrow - F8 \downarrow + F8 \uparrow - F6 \uparrow + F6 \downarrow \downarrow - F8 \downarrow \downarrow$$
 (4-26c)

$$A810 = F8 \downarrow - F10 \downarrow + F10 \uparrow - F8 \uparrow + F8 \downarrow \downarrow - F10 \downarrow \downarrow$$
 (4-26d)

The variables used above are defined in a similar manner to those in the (1,1) case. The impinging insolation at the earth's surface may be formulated as follows

$$TRANA(1,0) = F10 + F10 + F10$$
 (4-27)

while the F(A) insolation absorbed by the earth in this case is given by

$$IA10(1,0) = F10 \downarrow (1-\alpha(G)) + F10 \downarrow \downarrow$$
 (4-28)

4. Disposition of F(A) Insolation with a Low Overcast Only

With an overcast lower cloud layer the model-disposition symbols are as depicted in Fig. 8 and are physically related as follows:

$$F4 \downarrow = F(A) (1-.271[U(2,4) Sec z]^{.303})$$

$$F6 \downarrow = F(A) (1-.271[U(2,6) Sec z]^{.303})$$

$$F8 \downarrow = F(A) (1-.271[U(2,8) Sec z]^{.303})$$

$$F8 \uparrow = F8 \downarrow (RA(2))$$

$$F6 \uparrow = F8 \uparrow (1-.271[U(6,8) Sec z]^{.303})$$

$$F4 \uparrow = F8 \uparrow (1-.271[U(4,8) Sec z]^{.303})$$

$$F2 \uparrow = F8 \uparrow (1-.271[U(2,8) Sec z]^{.303})$$

$$A24 = F(A) - F4 \downarrow + F4 \uparrow - F2 \uparrow \qquad (4-29a)$$

$$A46 = F4 \downarrow - F6 \downarrow + F6 \uparrow - F4 \uparrow \qquad (4-29b)$$

$$A68 = F6 \downarrow - F8 \downarrow + F8 \uparrow - F6 \uparrow \qquad (4-29c)$$

$$A89 = F8 \downarrow (A(2))$$

$$F9 \downarrow = F8 \downarrow - F8 \uparrow - A89$$

$$F10 \downarrow = F9 \downarrow (TD910)$$

$$F10 \uparrow = F10 \downarrow (\alpha(G))$$

$$F9 \downarrow + F9 \uparrow (RA(2))$$

$$F10 \downarrow + F9 \downarrow + (TD910)$$

$$A910 = F9 \downarrow - F10 \downarrow + F10 \uparrow - F9 \uparrow + F9 \downarrow + F10 \downarrow +$$

$$A810 = A89 + A910 \qquad (4-29d)$$

0 _____

Figure 8. Schematic representation of F(A) insolation disposition with a lower overcast layer only.

Again the variables are defined as stated before in the (1,1) case. Likewise the incident flux is defined at the earth's surface as

$$TRANA(0,1) = F10\downarrow + F10\downarrow\downarrow$$
 (4-30)

while that portion which is absorbed by the earth (Fig. 8) is

IAlO(0,1) = Fl0
$$\sqrt{(1-\alpha(G))}$$
 + Fl0 $\sqrt{4}$. (4-31)

In Eqs. (4-25), (4-28), and (4-31), the quantity $F10^{\downarrow\downarrow}$ is small enough in each case so that no further reflections from the earth were considered.

5. Composite F(A) Layer-Absorptions and Surface-Absorption Insolation

As has been previously discussed, the standard grid-area weighting scheme of this study was applied to obtain composite values of the absorbed F(A)-insolation in key layers and also within the earth's surface. The weighting factors applied to the corresponding overcast-combination absorption quantities provided the following composite results:

$$A24(CL_1,CL_2) = A24(0,0) W(0,0) + A24(1,0) W(1,0)$$

+ $A24(0,1) W(0,1) + A24(1,1) W(1,1)$ (4-32)

$$A46(CL_1, CL_2) = A46(0,0) W(0,0) + A46(1,0) W(1,0)$$

+ $A46(0,1) W(0,1) + A46(1,1) W(1,1)$ (4-33)

$$A46(CL_1,CL_2) = A68(0,0) W(0,0) + A68(1,0) W(1,0)$$

+ $A68(0,1) W(0,1) + A68(1,1) W(1,1)$ (4-34)

$$A810(CL_{1},CL_{2}) = A810(0,0) W(0,0) + A810(1,0) W(1,0) + A810(0,1) W(0,1) + A810(1,1) W(1,1)$$
(4-35)

$$IA10(CL_1, CL_2) = IA10(0,0) W(0,0) + IA10(1,0) W(1,0)$$

+ $IA10(0,1) W(0,1) + IA10(1,1) W(1,1)$. (4-36)

The weighting factors W(0,0),...,(Wl,1) were listed in Eqs. (2-3a,b,c,d), and A24(0,0), A46(0,0), A68(0,0), A810(0,0) and IA10(0,0) are given in each clear sky case (0,0) about each gridpoint by Eqs. (4-15),(4-16),(4-17) (4-18), (4-19) and (4-20) respectively.

The results for the absorption in layers (2,4), (4,6), (6,8), (8,10) and at the surface, level k=10, are shown in the following table:

TABLE VII. A sample listed of F(A) insolation values (ly min) computed at gridpoint (1,1) for the 16 April case.

Cloud-Case CL ₁ , CL ₂	Weight W(CL ₁ ,CL ₂)	A24	A46	A68	A810	IAlO	REFA	TRANA
(0,0)	.0993	.0454	.0356	.0386	.0418	.1348	.0285	.1634
(1,0)	.1484	.0633	.0559	.0280	.0156	.0482	.1137	.0581
(0,1)	.3016	.0464	.0381	.0728	.0771	.0239	.0664	.0286
(1,1)	.4507	.0633	.0559	.0432	.0285	.0104	.1233	.0126
Composite-F	(A) values	.0564	.0485	.0494	.0425	.0324	.0953	.0391

In the computational scheme indicated by the entries of Table VII, the reflected F(A) insolation to space has been depicted by the symbol REFA, and its values follow from

$$REFA = F(A) - A24 - A46 - A68 - A810 - IA10$$
 (4-37)

whereas the TRANA dispositions are given by Eqs. (4-21), (4-24), (4-27) and (4-30) or by its weighted-mean value in the case of TRANA-composite.

6. Absorptivity (ABA) by Layers

Here the (fractional) absorptivity as well as the actual insolation values absorbed in the layers are considered. In the computation of absorptivity, which is fractional absorption, the total undepleted insolation at the top (k=0) is used as a base. The following equation was utilized in this calculation:

$$FADJ = 2.00(r/r_m)^{-2} Cos z$$
 (4-38)

The absorptivity of the troposphere ABA was computed from the ratio of the insolation absorbed in the troposphere to the insolation incident at the top of the atmosphere rather than at k=2:

$$ABA = \frac{A24 + A46 + A68 + A810}{FADJ} \tag{4-39}$$

D. ALBEDO (ALB) OF THE EARTH-TROPOSPHERE SYSTEM

In considering the planetary albedo, the reflected insolations of the earth-troposphere systems in both the F(A) and F(S) insolational regions must be recalled by the program. Thus REF is computed at each gridpoint as the sum of the reflected insolation energy in F(A), denoted REFA in Eq. (4-37) and the reflected part of F(S) denoted REFS in Eq. (4-13):

$$REF = REFS + REFA$$
 (4-40)

Finally the planetary albedo is related to FADJ through

$$ALB = \frac{REF}{FADJ} . (4-41)$$

E. COMPOSITE ABSORPTIVITY (ABG) BY THE EARTH-SURFACE; COMPOSITE ATMOSPHERIC TRANSMISSIVITY (ATRAN)

1. Absorptivity (ABG) of Earth

By summing the weighted values of F(S) and F(A) portions of the incoming insolation entering the earth, the total insolation absorbed at the earth's surface was computed. This quantity when divided by the extraterrestrial insolation gave the fractional absorptivity (ABG) of the earth's surface. The equation for ABG was

$$ABG = \frac{IA10 + IS10}{FADJ} \tag{4-42}$$

where IA10, IS10, and FADJ were defined previously by Eqs. (4-36), (4-12) and (4-38) respectively.

2. Transmissivity (ATRAN) of the Troposphere

Also computed was the total insolational energy TRAN, incident at the earth's surface just before absorption by the surface. This calculation is given by

$$TRAN = TRANA + STRAN$$
 (4-43)

Here STRAN = [IS10/(1- α (G)] was previously defined in Eq. (4-14) and α (G) was given in Eq. (4-7). TRANA has also been defined as the weighted value of TRANA (0,0), TRANA (1,1), TRANA (1,0) and TRANA (0,1) given by Eqs. (4-21), (4-24), (4-27) and (4-30). Note also in justification of STRAN that the four cases for IS10 of (4-8), (4-9), (4-10), and (4-11) each have the common factor (1- α (G)) in the numerator and therefore each transmitted F(S) insolation component available at the earth just before absorption needs only be divided by (1- α (G)). TRAN may thus be viewed as the total insolational energy incident at a pyrheliometer located at

earth. The (fractional) transmissivity of the troposphere (ATRAN) is then computed from

 $ATRAN \equiv TRAN/FADJ$. (4-44)

Note finally that the major dispositions of the total insolation at the indicated map times have now been identified by the fractional values, ALB, ABA or ABG, and ATRAN, representing the reflectivity (albedo), absorptivity of air or earth, or atmospheric transmissivity as the case may be.

F. ALBEDO TUNING BY COMPARISONS WITH SATELLITE CLIMATOLOGY

1. General Remarks Concerning a Need for Tuning Albedos

In the four previous radiational studies (A, B, C, D) comparisons were made between the solar-insolation albedo-model (ALBMOD) computations and the satellite-climatology albedo (ALBRAS) of Raschke et al. (1973). The results of these comparisons indicated excessively high values of ALBMOD especially in the tropical and subtropical oceanic areas. The question was raised by the previous investigators as to whether vertically-structured convective cloud elements in the tropics would have as high a reflective capability as attributed to the large-scale cloud masses existing primarily in horizontal layers as indicated by the parameterization of Eq. (2-2). It should be recalled that the initial cloud-reflectances used were as suggested by C. D. Rodgers (1967) and are listed in Secs. IV.B.2. and IV.C.1.

For the purpose of tuning the model solar dispositions, and in particular ALBMOD with ALBRAS, the initial values of Rodgers' cloud-reflectances were simply adjusted by a multiplicative factor (f) which

turns out by the least-squares fitting to be smaller than unity. This device allows a greater fraction of solar radiation to penetrate downward through the cloud-types in both the tropical and subtropical areas, and provides better agreement between ALBMOD and ALBRAS.

2. Method of Tuning ALBMOD to ALBRAS

The model-tuning process involved several steps. First, the new variable f was defined and allowed to range in value from 1.2 to 0.25 by 0.05 intervals. The f-values were then multiplied by the initially used cloud-reflectance values (after Rodgers, 1967) giving twenty sets of new cloud-reflectivity values. For each set of new values, ALBMOD and subsequently the difference Δ (ALB) between ALBMOD and ALBRAS; i.e.,

$$\Delta$$
 (ALB) = ALBMOD - ALBRAS (4-45)

was recomputed at each gridpoint for the four midseasonal dates.

Because cloud-types differ in structure over tropical and extratropical oceanic areas the resulting Δ (ALB) data, from (4-45), were divided into two populations denoted TR and HL. The population TR included the set of gridpoints located south of and including 25N, while HL included the set of gridpoints located north of 25N over all four meridians.

Only those gridpoints where the value of at least one of ${\rm CL}_1$ and ${\rm CL}_2$ was greater than 0.1 were included in those populations. The gridpoints so excluded were considered climatologically unrepresentative for the purpose of cloud-tuning the albedo. The $\Delta({\rm ALB})$ data was additionally divided by season giving a total of eight separate cases

further defined in sequence as WIN-TR, WIN-HL, SPR-TR, SPR-HL, SUM-TR, SUM-HL, AUT-TR and AUT-HL.

The Bimedical set of programs (Dixon, 1973) was utilized to compute the root-mean-square (RMS) of Δ (ALB) values corresponding to a wide range of f-values for each of the seasons and regions. Values of f leading to the minimum RMS of Δ (ALB) were isolated and appear in Table VIII, along with the RMS difference of Δ (ALB).

TABLE VIII. Values of f and corresponding minimum RMS values of Δ (ALB).

	f	Minimum RMS of Δ (ALB)
WIN-TR	.40	.069
WIN-HL	.80	.073
SPR-TR	.35	.067
SPR-HL	.65	.082
SUM-TR	.60	.079
SUM-HL	.70	.109
AUT-TR	.40	.052
AUT-HL	.60	.073

As can be seen from Table VIII, the listed values of f in winter indicates the largest difference between the tropical and extratropical cloud-types. The evenly layered cloud formations of the northern latitudes in mid-January seems more closely to approximate those considered by C. D. Rodgers (1967). On the other hand, the smallest difference in f-values occurs between SUM-TR and SUM-HL indicating a less significant difference in cloud types over the

complete latitude range during mid-July. As would be expected the Spring and Autumn f-ranges fall in between the Winter and Summer cases. A full listing of zonally-averaged ALBMOD values, after tuning at all gridpoints, and of zonally-averaged ALBRAS values, generated from identical gridpoints, can be found in Table IX.

Upon examination of Table IX it is apparent that the tuned model-albedo values compare closely with the satellite albedos derived from Raschke. Table IX includes the annual averages and the Northern Hemisphere cosine-weighted means as well as the mid-seasonal averages.

Further inspection of the weighted means shows that ALBMOD is somewhat smaller than ALBRAS for each of the four seasons and annual average. However most of this underestimate seems to occur in the HL-population where the result of minimizing Δ (ALB) led to values of f substantially less than unity (Table VIII). This result was unexpected and is probably due to a mismatch between the model clouds (Eq. (2-2)) and those averaged in the satellite climatology particularly in the higher latitudes.

The conclusion is that reflectance-tuning to satellite albedo appears valid in the tropics and subtropics where cloud-formations on a given day tend to be persistent. However tuning by this method in high latitudes is less conclusive because interdiurnal cloud variability is much greater.

In any case, all further computations of solar dispositions in this study will utilize the appropriate cloud-reflectance tuning factors as listed in Table VIII, depending upon season and latitude.

. 1	ALBRAS	.202	.180	.179	.181	.212	.213	.222	.213	.208	.210	.230	.267	.285	.312	.357	. 389	.410	.421
NUA	ALBMOD A	.229	.223	.209	.214	.190	.192	.184	.186	.187	.216	.245	.251	.251	.281	.292	.338	.296	•309
MIN	ALBRAS	.228	.176	.183	.201	.175	.196	.233	.215	.207	.199	.204	.267	.280	.263	.348	.374	.416	.331
AUTUMN	ALBMOD	.208	.207	.204	.213	.177	.178	.178	.185	.183	.209	.247	.271	.259	.274	. 299	.330	,333	.393
ER	ALBRAS	.195	.175	.166	.183	.236	.217	.247	.239	.215	.207	.213	,233	.256	.314	.345	.367	.395	390
SUMMER	ALBMOD	.252	.243	.221	.245	.218	.232	.211	.203	.200	.202	.218	.208	.209	.260	.242	.352	.230	.250
NG	ALBRAS	.169	.170	.179	.191	.210	.221	.202	.185	.182	.203	.247	.272	.279	. 296	.322	.397	.421	.500
SPRING	ALBMOD	.238	.231	.212	.201	.181	.174	.169	.169	.166	.217	.230	.247	.248	.253	.309	. 299	.359	.363
rer	ALBRAS	.205	.195	.185	.151	.229	.219	.205	.211	.237	.237	.268	.338	.384	.436	.511	.528	.473	.486
WINTER	ALBMOD	.224	.220	.203	.201	.184	.185	.176	.188	.199	.249	.319	.327	.371	.441	.447	.456	.437	.429
	LAT.	208	158	108	58	0	SN	TON	15N	20N	25N	30N	35N	40N	45N	20N	55N	009	65N

albedo values as computed utilizing the appropriate reflectance tuning factors listed in Table VIII. TABLE IX. A comparison of zonally-averaged albedo values of Raschke et al. (1973) with model-

.247

.230

.228

.215

.256

.225

.243

.215

.260

.239

Wt. Avg.

V. MERIDIONAL CROSS-SECTIONAL DEPICTION OF THE RADIATIVE-BALANCE COMPUTATIONS

A. GENERAL

The general design of this section is to utilize all of the computational concepts discussed in Sections III and IV in the computations for a single time-step in the radiative heating package developed for use in the FNWC prediction model. After testing ALBMOD with the corresponding values of Raschke et al. (1973), it was decided that only the computations by the appropriate cloud-reflectance tuning factors (Table VIII) would be displayed in the meridional cross-sections (Figs. 10... 17) and in the comparisons of the four-layer versus the two-layer cooling rates summarized in Table X.

The radiative calculations were performed at each gridpoint of the four meridians for each of the four mid-seasonal days considered; how-ever, only the winter and summer cases, as illustrating the two extreme situations, are presented in this section.

B. GEOGRAPHICAL REPRESENTATION OF THE RADIATIVE-BALANCE DISTRIBUTION

The FNWC gridpoint processed analyses for 0000GMT were used at the three Pacific cross-sections, while that for 1200GMT were used for the single Atlantic meridian. This was done so that the set of gridpoints was considered to be subject to the actual radiative-transfer calculations involved for these specific times. Figure 9 depicts in symbolic language the key to the computational entries in Figs. 10, 11,...16, 17. This symbolic list presents the computations made at each radiative sounding gridpoint (I,J)having data in the form of Table I. The

computations proceed from the tropopause (approximately level k=2) to the ocean surface. For purposes of climatological data comparison, Figs. 10, 11,...16, 17 were developed by interpolating gridpoint results to integral multiples of 5-degree latitudinal increments. The interpolation routine to this gridpoint spacing made use of the Lagrangian cubic interpolation scheme (after Spaeth, 1975).

$$Q(I) = Q_{1} \frac{(I-2)(I-3)(I-4)}{(I-2)(I-3)(I-4)} + Q_{2} \frac{(I-1)(I-3)(I-4)}{(2-1)(2-3)(2-4)}$$

$$+ Q_{3} \frac{(I-1)(I-2)(I-4)}{(3-1)(3-2)(3-4)} + Q_{4} \frac{(I-1)(I-2)(I-3)}{(4-1)(4-2)(4-3)}$$
(5-1)

Finally for ease in reconciling the magnitudes of all radiative-transfer rates, the time-dependent solar disposition rates have been averaged to 24-hourly rates.

C. EXPLANATION OF SYMBOLIC TERMS

1. Cross-Section at Level k=2

The discussion of all insolation parameters discussed previously in Section IV dealt with the specific time of day that corresponded to the hour angle h for the instantaneous time t under consideration. The incident solar insolation dealt with is then

$$F(2) = S(\frac{r}{r_m})^{-2} \cos z$$
 (5-2)

In order to avoid reference to specific map times t, the instantaneous solar hour-angles were h = 35, 10, 55, and 35 degrees, respectively for cross-sections 1,2,3 and 4 as depicted in Figs. 10, 11, 12 and 13 for winter, and in Figs. 14, 15, 16, and 17 for summer.

QAVE represents the 24-hour average of F(2) and appears as the first input symbol in Fig. 9. Its value is considered to be more representative climatologically for the data day under consideration than F(2).

QAVE is derived by the formula

$$QAVE = F(2) \frac{\frac{Cos z}{Cos z}}{cos z}$$
 (5-3)

where

$$Cos z = [H Sin\phi Sin\delta + Cos\phi Cos\delta SinH]/\pi$$
 (5-4)

$$H = \operatorname{ArcCos} \left[-\operatorname{Tan} \phi \operatorname{Tan} \delta \right] \tag{5-5}$$

Here δ is the appropriate solar declination angle as listed in Table V, and H is the appropriate hour angle at local sunset at latitude ϕ . The value of H also depends upon which mid-seasonal date is being considered.

Cos z in Eq. (5-4) is equal to the 24-hour average cosine of the zenith angle, Eq. (4-2). The 24-hour time averaging period for QAVE gives heating results consistent in magnitude with the terrestrial flux divergences, which change only slightly with the time of day. The conversion to expected daily averaged solar disposition quantities is compatible with the determination of a hemispheric radiative balance for the given midseasonal dates (Sec. IV.A.).

Other parameters needed for level k=2 are

$$QREF = REF(t) \left(\frac{\overline{Cos z}}{Cos z} \right)$$
 (5-6)

where

REF(t) =
$$F(2)$$
 - $A24$ - $A46$ - $A68$ - $A810$ - (IA10 + IS10) (5-7)

REF(t) is the instantaneous solar reflected insolation at a gridpoint and QREF is its 24-hour average, assuming that the instantaneous planetary albedo remains constant for the 24-hour period. This assumption requires that the cloud amounts computed at the indicated synoptic times are representative of the entire day.

The same principle will be used with regard to all other solar parameters in the conversion from time-dependent values at solar time t to 24-hour averaged values. Superior bars () are not used in the symbolism for the averaged values shown in the cross-sections key, Fig. 9, but are implied by the use of QAVE, etc. in the solar-disposition terms. The 24-hour average tropopause balance, BALT, is computed from

$$BALT = QAVE - (QREF + F2*)$$
 (5-8)

for the level k=2 at the indicated latitude. Net terrestrial fluxes, such as F_2^* , were considered to be constant throughout the 24-hour period, a valid assumption if the cloud cover remains quasi-constant for the period.

2. Cross-Sections in Layers (2,4),(4,6),(6,8) and (8,10)

The following definitions apply for the four layers identified in the present section heading and are further identified in Fig. 9.

All of the heat transfers shown in these layers are assumed to be of radiative character only. The daily-averaged radiative heating (cooling) rate in layer (2,4) is given by

BAL
$$24 = 024 - F24$$
 (5-9)

a) QAVE b) QREF c) F ₂ * d) BÂLT	nour averaged insolation at level k=2 lected average insolation at level k= outgoing long-wave flux at level k=2 raged earth-tropospheric gain or loss
e) Q24 f) F24 g) BAL24	Averaged solar insolation absorbed by layer (2,4), positive for heating IR flux loss by layer (2,4) Averaged radiative cooling in layer (2,4) (e-f)
ct_1	Upper layer (4,6) cloud amount
h) <u>0</u> 46 i) F46 j) BAL46	ged solar insolation absorbed by ux loss by layer (4,6) ged radiative cooling in layer (4
k) Q68 l) F68 m) BAL68	Averaged solar insolation absorbed by layer (6,8) IR flux loss by layer (6,8) Averaged radiative cooling in layer (6,8) $(k-l)$
CL_2	Lower layer (8,9) cloud amounts
n) Q810 o) F810 p) BAL810	Averaged solar insolation absorbed by layer (8,10) IR flux loss by layer (8,10) Averaged radiative cooling in layer (8,10) (n-o)
q) QABG r) Plo s) BALB	Averaged solar insolation absorbed by surface Net long-wave flux at earth's surface Averaged warming or cooling at earth's surface (q-r)

Figure 9. Key to radiative cross-sections for Figs. 10,...,17. All radiative values (ly min⁻¹) for the levels or layers considered are computed utilizing the appropriate reflectance tuning factor as listed in Table VIII for the 16 January and 16 July cases.

25.0	0.3920 0.1274 3276 0630	0.0209 0387 0178	(.224)	0.0171	0.0190	(0.)	0.0119	0.1955 -1203 0.0752
20.0	0.4372 0.1167 3918 0712	0.0145	(0.)	0.0164	0.0292	(.034)	0.0182	0.2421 -1446 0.3975
15.0	0.4799 0.1224 3942 0568	0.0147 0383 0236	(0.)	0.0178 0681 0502	0.0334 0859 0526	(.204)	0.0266	0.2649 -1254 0.1395
10.0	0.5197 0.1277 3847 0.0073	0.0177 0386 0210	(9000)	0.0196	0.0350	(.358)	0.0345 0879 0534	0.2853 -1063 0.1784
5.0	0.5563 0.1370 3724 0.0468	0.0199	(.054)	0.0213 0688 0470	0.0380	(.555)	0.0436 0990 0554	0.2959 -0823 0.2137
0 • 0	0.5893 0.1414 3531 0.0949	0.0230 0412 0180	(.139)	0.0240	0.0370	(.503)	0.0429 0935 0505	0.3210 0785 0.2425
-5.0	0.6184 0.1482 3322 0.1381	0.0266 0428 0162	(.246)	0.0265 0726 0462	0.0352 0511 0159	(+64.)	0.0430 0840 0411	0.3390 -0816 0.2574
-10.0	0.6437 0.1604 3111 0.1721	0.0293 0453 0161	(.358)	0.0292	0.0359 0385 0026	(.580)	0.0457 0740 0283	0.3433
-15.0	0.6646 0.17546 0.19538 0.19538	0.0309	(-434)	0.0312	0.0378 0348 0.0025	(.722)	0.0505	0.3389 0706 0.2682
-20.0	0.6812 0.1793 2943 0.2075	0.0314	(.435)	0.0321	0.0388 -03598 0.0027	(.753)	0.0531	0.3469 0683 0.2785

Figure 10(a). 125W Longitudinal cross-section, tropical section. Refer to Fig. 9 for key. Values computed from data for 16 January 1974.

	544	040		∞~v	<i>₽\</i> 0.4	_	www.	m0r
55.0	0.098 0.047 180	0.014	(.881	0.004	000	(.238	0.001	0.027
5 C. O	0.1462 0.0765 2337 1510	0.01.20 05.65 04.45	(.652)	0.00 83 07 39 05 58	0.00 78 01 92 01 13	(.852)	0.00 71 04 64 03 94	0.0345 0347 0001
45.0	0.1958 0.1000 2398 1441	0.0155 0491 0336	(.711)	0.0106	0.0107	(.738)	0.0086 0601 0514	0.0504 0.0302 0.0203
40.0	0.2459 0.1173 2045 0760	0.0253	(*888)	0.0130 0963 0833	0.0090 0.0054 0.0145	(.327)	0.0075	0.0738
35.0	0.2957 0.1239 2645	0.0219	(.526)	0.0142	0.0083	(.238)	0.0124	0.1148 0768 0.0380
30.0	0.3446 0.1250 2941 0751	0.0216 0396 0180	(.357)	0.0159	0.0121	(0.)	0.0100	0.1594

Figure 10(b). 125W Longitudinal cross-section, higher latitude section. Refer to Fig. 9 for key. Values computed from data for 16 January 1974.

25.0	0.8919 0.0847 -08576 -0503	0.0149 0438 0290	(.124)	0.0155	0.0256 0786 0529	(665.)	0.0297 1028 0731	0.2216
20.0	0.4372 0.00754 03933 0315	0.0137 0404 0267	(0.)	0.0148 0740 0593	0.0241 0869 0628	(.495)	0.0347	0.2746 0887 0.1858
15.0	0.4799 0.0765 -4003 0.0030	0.0145 0382 0238	(0.)	0.0149	0.0164 0663 0499	(.372)	0.0379 1076 0696	0.3196 1155 0.2041
10.0	0.5198 0.0767 - 3992 0.0437	0.0167 0375 0208	(0.)	0.0169 0688 0519	0.0238 0810 0572	(.312)	0.0365	0.3491 1079 0.2413
5.0	0.5563 0.0501 0.0563 0.0965	0.0209 0393 0184	(.111)	0.0203	0.0273	(.351)	0.0372 0962 059C	0.3604 0964 0.2640
0.0	0.5892 0.0964 0.3502 0.1426	0.0242	(.201)	0.0228 0715 0486	0.0279	(-294)	0.0349 0859 -0510	0.3830 -0991 0.2839

Figure 11(a). 170W longitudinal cross-section, tropical section. Refer to Fig. 9 for key. Values computed from data for 16 January 1974.

0.59	0000 2220 2255 2555 0000	0.00007	(0.)	0.00004 0298 0294	0.0005	(0.)	6.0003 0297 0294	0.0076 0934 0853
0.09	0.0542 0.0237 -1673 -1368	0.0039	(.564)	0.0023	0.0015	(0.)	0000 0065 0064	0.0229
55.0	0.0984 0.0451 2445 1913	0.0044 0333 0290	(• 293)	0.0038	0.0046	(, 574)	0.0053 0314 0261	0.0351 0871 0521
50.0	0.1462 0.0653 3280 2477	0.0023	(0.)	0.0035	0.0109	(698.)	0.0130	0.0506
45°C	0.1558 0.0864 3241 2148	0.0029 0286 0257	(0.)	0.0046	0.0119 0847 0728	(.851)	0.0183	0.0716
40.0	0.2459 0.1038 3478 2057	0.0025 0163 0138	(0-)	0.0055	0.0210	(198.)	0.0223	0.0907
35.0	0.2957 0.1081 3450 1573	0.0087 0440 0354	(990.)	0.0098	0.0200	(.661)	0.0221 0992 0771	0.1270
30.0	0.3446 0.1372 2783 0708	0.0190 0506 0317	(.521)	0.0169	0.0192 0297 0104	(.559)	0.0165	0.1358 0451 0.0907

Figure 11(b). 170W longitudinal cross-section, higher latitude section. Refer to Fig. 9 for key. Values computed from data for 16 January 1974.

25.0	0.3920 0.0922 4074 1077	0.0098	(0 •)	0.0109	0.0081 0214 0133	(.140)	0.0243 0860 0617	0.2467
20.0	0.4372 0.0896 4062 0585	0.0112	(0.)	0.0143 0759 0616	0.0219	(.415)	0.0350	0.2652 -1114 0.1538
15.0	0.4799 0.0966 3931 0147	0.0149 0410 0261	(0 -)	0.0173	0.0295 0909 0614	(565.)	0.0428 1132 0704	0.2787 0791 0.1998
10.0	0.5197 0.0910 4070 0.0218	0.0158	(0.)	0.0182	0.0322 0911 0589	(.480)	0.0415 1031 0616	0.3210 0967 0.2243
5.0	0.5563 0.1036 4018 0.0509	0.0172	(0.)	0.0201	0.0380 1004 0624	(.641)	0.0497	0.3277 0668 0.2608
0.0	0.5893 0.1000 0.3939 0.0954	0.0202 0393 0190	(.021)	0.0215	0.0368 0877 0508	(.475)	0.0450 1030 0580	0.3658
-5.0	0.6188 0.1334 -2799 0.2054	0.0349	(• 544)	0.0336	0.0380	(.445)	0.0317	0.3477
	_							

Figure 12(a). 145E Longitudinal cross-section, tropical section. Refer to Fig. 9 for key. Values computed from data for 16 January 1974.

55.0	0.0984 0.0498 2011	0.0053	(.518)	0.0051	0.0041	(165.)	0.0041	0.0299
50.0	0.1462 0.0702 2122 1362	0.0062 0528 0466	(.612)	0.0072 0470 0398	0.0057	(.403)	0.0055	0.0513
40.0	0.1958 0.1026 2206	0.000	(959.)	0.0098	0.0086 0.0189 0.0102	(028.)	0.01110	0.0570
40.0	0.2459 0.0831 3330 1703	0.0040 0369 0329	(0.)	0.0053	0.0103 0449 0346	(.220)	0.0114	0.1318 -1668 -0350
35.0	0.2957 0.0877 -3612 -1531	0.0057 0408 0351	(0.)	0.0030	0.0162 0510 0548	(.189)	0.0115	0.1667
30.0	0.3446 0.0919 -3612 -1084	0.01111	(0.)	0.0105	0.0144	(.166)	0.0149	0.2018

Refer to Fig. 9 for key. Figure 12(b). 145E Longitudinal cross-section, higher latitude section. Values computed from data for 16 January 1974.

-20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 20.0 20.0 25.0 10.0 15.0 20.0 25.0 25.0 20.0 13.80 0.13.80 0.13.80 0.124 0.1456 0.1527 0.1055 0.0843 0.03.80 0.03.80 0.3.205 0.13.80 0.13.80 0.1454 0.1450 0.1227 0.1055 0.0843 0.03.80 0.03.205 0.13.80 0.1450 0.1227 0.1055 0.0843 0.03.80 0.03.80 0.3.205 0.1450 0.1227 0.1055 0.0843 0.03.80 0.03.205 0.0043 0.00.03.80 0.00.02.80 0.00.0									
6812 0.6646 0.6437 0.6184 0.5893 0.5563 0.5197 0.4759 0.437 0.1289 0.1124 0.1068 0.1146 0.0570 0.0858 0.0869 0.0869 0.0869 0.1286 0.1887 0.1461 0.1227 0.1053 0.0843 0.0868 0.1887 0.1887 0.1887 0.1989 0.1124 0.1068 0.1146 0.0570 0.0858 0.0875 0.0889 0.0888 0.0875 0.0128 0.0139 0.0875 0.0139 0.0875 0.0139 0.0875 0.0139 0.013	5		0.13 040 026	.105	.014 .065 .050	.020 .054 .033	. 1 60	.017 .066 .069	.1223
20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 15.0 15.0 15.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 15.0 -15.0 -10.0 -5.0 0.0 5893 0.5563 0.5197 0.479 -3246 0.3469 0.1289 0.1289 0.1289 0.1289 0.1289 0.1289 0.1494 0.1401 0.1227 0.1059 0.0863 0.0863 0.0028 0.0028 0.0254 0.0209 0.0221 0.0223 0.0225 0.0843 0.033 0.04490046200172017501920192019501950215 0.017 0.01490162017201750192019201950215 0.0218 0.0228 0.0229 0.0229 0.0241 0.0225 0.0219 0.017 0.022 0.0229 0.0241 0.0223 0.0210 0.017 0.022 0.0229 0.0241 0.0223 0.0210 0.017 0.022 0.0229 0.0241 0.0223 0.0210 0.017 0.022 0.0229 0.0241 0.0223 0.0210 0.017 0.045804740480049105200576047705010576067705760677 0.0220 0.0289 0.0278 0.02	0	.080 .080 .081 .022	013	900.	014 062 048	.020 .066 .046	.184	.024 .080 .080	25.00 20.04 20.04
6812 0.6646 0.6437 0.6184 0.5893 0.5563 0.519 1380 0.1289 0.1124 0.1068 0.1146 0.09770 0.085 13846 0.1289 0.1124 0.1068 0.1146 0.09770 0.085 12846 0.1887 0.1494 0.1401 0.1227 0.1059 0.0849 0.0288 0.0254 0.0209 0.0221 0.0233 0.0225 0.0841 0.1494 0.175 0.0192 0.0221 0.0233 0.0225 0.021 0.0434 0.0162 0.0172 0.0172 0.0192 0.021 0.0223 0.0221 0.0434 0.0149 0.0172 0.0172 0.0136 0.021 0.0229 0.0221 0.0223 0.0223 0.0221 0.0223	5	40%0 780%0 000%	.017 .058 .021	. 101	.017 .065 .048	0000	.104	022 071 049	32.1
20.0 -15.0 -10.0 -5.0 0.0 5.0 0.0 5.0 0.0 5.0 1380 0.1246 0.184 0.5893 0.556 1380 0.1289 0.1124 0.1068 0.1146 0.0997 0.1246 0.1289 0.1124 0.1068 0.1146 0.0997 0.0997 0.1286 0.1289 0.1124 0.1227 0.1257 0.1053 0.0288 0.0254 0.0299 0.0229 0.0223 0.0229 0.0229 0.0241 0.0233 0.022 0.0459 0.0356 0.0378 0.037	0	0.0000	.021 .041 .019	.203	0000	.026 .047 .021	.187	025	222
20.0 -15.0 -10.0 -5.0 0.0 -1380 0.6646 0.6437 0.6184 0.589 -1386 0.1124 0.1124 0.1168 0.1122 -3246 -3469 0.1124 0.1401 0.1222 -3246 -3469 0.1124 0.1401 0.1222 -0434 -0162 -0172 -0175 -0192 -0149 -0172 -0172 -0192 -0149 -0172 -0172 -0192 -0149 -0172 -0192	•	0000 0000 0000	022	.183	022	031.	.343	0000	2005
20.0 -15.0 -10.0 -5.0 -6812 0.6646 0.6437 0.6186 -1380 0.1289 0.1124 0.1066 -2186 0.1887 0.1124 0.1066 -0186 0.0254 0.0209 0.0227 -0149016201720177 -0149016201720177 -0149016201720177 -0149016201720177 -0149016201720177 -0149016201720177 -0149016201720177 -0149016201720177 -0149016201720177 -0149016201720177 -0149016201720177 -0149016201720177 -0149016201720177 -0149016201720177 -0149016201720177 -0149017201720177 -0149017201720177 -0149017201720177 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -014901720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -0149017201720172 -01490172 -	•		023	.194	.024 .076 .052	.037	.538	.042 .091 .049	.347 .076 .270
20.0 -15.0 -10.0 -6812 0.6646 0.643 -1380 0.1289 0.112 -2186 0.1289 0.112 -2186 0.1887 0.1149 -0288 0.0254 0.020 -0434 -01416 -017 -0149 -01616 -017 -0149 -01616 -017 -0149 -0162 -017 -0149 -0163 -017 -0149 -0163 -017 -0149 -0163 -017 -0149 -0163 -017 -0149 -0163 -017 -0169 -017 -0169 -017 -0169 -017 -0169 -017 -0169 -017 -017 -0189 -017 -0189 -017 -0189 -017 -0189 -017 -0189 -017 -0189 -017 -0189 -017 -0189 -017 -0189 -017 -0189	رن	. 618 . 106 . 140	022	•095	0.22	.038 .074 .035	.438	.042 .089 .047	. 286 286 289
20.0 1380 1380 1380 1384 2186 0.128 0.028 0.028 0.028 0.028 0.028 0.028 0.029 0.039 0	10.	.112 .381 .149	020	.033	.022 .070 .048	.043 .087 .044	. 522	048 094 045	305
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15.	.128 346 188	.025 .041 .016	.205	0.73	037	.525	0.00 848 0.00 0.00 0.00	. 3.98 3.84 3.40
			.028 .043 .014	.318	029 074 045	036	•	045	400 000 000 0000

Figure 13(a). 35W Longitudinal cross-section, tropical section. Refer to Fig. 9 for key. Values computed from data for 16 January 1974.

	-							•
0.09	0.0541 0.0256 -2751 -2465	0.00020	(-265)	0.0024 0411 0388	0.0027	(.341)	000370000000000000000000000000000000000	0.0183
55.0	0.0984 0.0447 2813 2276	0.0036 0410 0374	(.254)	0.0043	0.0056	(.427)	0.0053 0615 0562	0.0349 0905 0556
50.0	0.1462 0.0595 3354 2486	0.0333 -0313 -0286	(0.)	0.0047 0531 0484	0.01 09 07 81 05 72	(+ 5 4)	0.0092	0.0586 -1023 -0435
45.0	0.1958 0.0709 3489	0.00047 0.0386 0.386	(.012)	0.0061 0548 0486	0.0120	(.264)	0.0096	0.0924
40.0	0.2459 0.0762 3534 1837	0.0067 0383	(.061)	0.0077	0.0093	(.054)	0.0087	0.1374 1704 0329
35.0	0.2957 0.0825 -3729 -1597	0.0079 0378 0299	(.032)	0.0088	0.0090	(.052)	0.0122 0681 0560	0.1755
30.0	0.3446 0.1038 -33844 -0917	C.0124 0421 0297	(.162)	0.0133	0.0171	(.207)	0.0151	0.1827 -1277 0.0550

Figure 13(b). 35W Longitudinal cross-section, higher latitude section. Refer to Fig. 9 for key. Values computed from data for 16 January 1974.

0.6512 0.1224 3558 0.1330	0.0182 0393 0211	(0.)	0.0210 0596 0487	0.0352 0963 0611	(-165)	0.0358 0901 0544	0.4186 1004 0.3182
0.6890 0.13890 0.13659	0.0242 0384 0142	(720.)	0.0237 0681 0444	0.0364	(.283)	0.0370	0.3798 0398 0.2899
0.6227 0.1619 3402 0.1207	0.0284 0429 0146	(.247)	0.0272	0.0384 0538 0151	(.372)	0.0346 0810 0464	0.3323
0.6025 0.1639 0.1045	0.0289 0436 0148	(.288)	0.0270	0.0362 0453 0091	(•374)	0.0331 0763 0431	0.3134 0.0935 0.2199
0.05783	0.0267	(.220)	0.0245 0709 0463	0.0297 0460 0103	(.241)	0.0304	0.3210 1114 0.2097
0.5504 0.1237 3630 0.0636	0.0234	(.121)	0.0215	0.0240 0516 0275	(.062)	0.0255	0.3322 0.1365 0.1958
0.5189 0.1131 0.0171	0.0193	(.011)	0.0183 0616 0433	6.0209 1.0568 1.0350	(•002)	0.0242 0729 0486	0.3232 -1617 0.1614
0.4842 0.1147 3967	0.0167 0360 0193	(0.)	0.0167	0.0193 0541 0349	(.023)	0.0242	0.2927 -1689 0.1238
0.4465 0.1209 3917 0661	0.0151	(0.)	0.0158	0.0192	(-155)	0.0265 0830 0554	0.2488 1575 0.0913
0.4062 0.1197 3853 1032	0.0130	(0.)	0.0142 0590 0447	0.0175 0454 0319	(.195)	0.0246 0303 0555	0.2165 -1663 0.0499
	.4062 0.4465 0.4842 0.5189 0.5504 0.5783 0.6025 0.6227 0.6390 0.651 0.1197 0.1209 0.1147 0.1131 0.1237 0.1459 0.1639 0.1619 0.1389 0.122 0.3853 -3917 -3967 -3887 -3650 -3451 -3345 -3402 -3653 -3555 0.1032 -0661 -0272 0.0171 0.0636 0.0873 0.1041 0.1207 0.1357 0.133	.4062 0.4465 0.4842 0.5189 0.5504 0.5783 0.6025 0.6227 0.6390 0.651 .1197 0.1209 0.1147 0.1131 0.1237 0.1459 0.1639 0.1619 0.1389 0.122 .3893391739673837363034513345340236533553 .103206610272 0.0171 0.0636 0.0873 0.1041 0.1207 0.1357 0.133 .0130 0.0151 0.0167 0.0193 0.0234 0.0267 0.0289 0.0284 0.0242 0.0163 .034203620360035601430142014801460142029	.4062 0.4465 0.4842 0.5189 0.5504 0.5783 0.6025 0.6227 0.6390 0.651 .1197 0.1209 0.1147 0.1131 0.1237 0.1459 0.1639 0.1619 0.1389 0.122 .3853391739673837365034513345340236533553 .103206610272 0.0171 0.0636 0.02873 0.1041 0.1207 0.1357 0.133 .0130 0.0151 0.0167 0.0193 0.0234 0.0267 0.0289 0.0284 0.0242 0.016 .034203600356037704090436042903840387 .021002100193016301430142014801460142021	.4062 0.4465 0.4842 0.5189 0.5504 0.5783 0.6025 0.6227 0.6390 0.651 .1897 0.1209 0.1147 0.1131 0.1237 0.1459 0.1639 0.1619 0.3653 0.3653 .3893391739673883736303451334534023653 0.3553 .103206610272 0.0171 0.0636 0.0873 0.1041 0.1207 0.1357 0.133 .0130 0.0151 0.0167 0.0183 0.0234 0.0267 0.0289 0.0284 0.0242 0.018 .0342036203600356014301420148014601460142021 .0) (.0) (.0) (.011) (.121) (.220) (.288) (.247) (.077) (.0 .0142 0.0158 0.0167 0.0183 0.0215 0.0245 0.0277 0.0277 0.0237 0.021 .0590065906130618065707690757075706810681 .0447045104450433044304630487048504440468	.0130 0.0151 0.0167 0.1131 0.1537 0.5783 0.6025 0.6227 0.6390 0.651 .1097 0.1265 0.1147 0.1131 0.1237 0.1559 0.1639 0.1619 0.1380 0.651 .38933917396738373650 0.3451334534623653 0.6536 .103206610272 0.0171 0.0636 0.0345 0.0289 0.0284 0.0242 0.0133 .0130 0.0151 0.0167 0.0193 0.0234 0.0267 0.0289 0.0284 0.0242 0.0183 .0210021001930163014301420148014601420214 .0) (.0) (.0) (.011) (.121) (.220) (.288) (.247) (.077) (.0 .0142 0.0158 0.0167 0.0183 0.0215 0.0245 0.0270 0.0272 0.0237 0.021 .0447045104450433044304430453048704850444048 .0175 0.0192 0.0193 0.0240 0.0240 0.0297 0.0362 0.0384 0.0364 0.0356 .045405620541056805160463045306510453045507780564 .03590554056102750216009101530155044507780568		

Figure 14(a). 125W Longitudinal cross-section, tropical section. Refer to Fig. 9 for key. Values computed from data for 16 July 1974.

55.0	0.6460 0.2131 -2784 0.1546	0.0185	(.400)	0.0274 0460 0186	0.0255 0287 0032	(.388)	0.0337 0879 0843	0.3278
50.0	0.6544 0.2128 -2347 0.1469	0.01 93 0515 0+22	(• 23 6)	0.0256	0.03 07 03 91 03 84	(+64.)	0.0381 0526 0245	0.3278 0788 0.2491
45.0	0.6606 0.2344 0.03357	0.0173	(.002)	0.0186	0.0316 0316 0396	(148.)	0.0621 -0924 -0303	0.2965 0.2936 0.2336
40.0	0.6638 0.0931 0.1915	0.0184 0323 0139	(0.)	0.0164 0638 0475	0.0198 0785 0587	(0.)	0.0087 -0476 -0389	0.5073
35.0	0.6634 0.0989 -4038	0.0141	. 0.)	0.0173	0.0227	. 0.)	0.0225 0768 0543	0.4879 -1322 0.3557
30.0	0.6599 0.1095 0.14020 0.1478	0.0158 0396 0238	• 0•)	0.0198	0.0317	(*014)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.4492

Figure 14(b). 125W Longitudinal cross-section, higher latitude section. Refer to Fig. 9 for key. Values computed from data for 16 July 1974.

25.0	0.6511 0.1100 4065 0.1347	0.0133	(0.)	0.0183	0.0414 0918 0503	(.295)	0.0356 0746 0390	0.4326 -1302 0.3023
20.0	0.6390 0.1173 4018 0.1199	0.0145 0388 0243	(0.)	0.0185 0746 0561	0.0364 0831 0468	(.363)	0.0402 0795 0395	0.4122 -1257 0.2864
15.0	0.6228 0.1117 3934 0.1177	0.0175	(0.)	0.0183 0740 0557	0.0268 0669 0401	(.337)	0.0402 0837 0435	0.4083 -1295 0.2788
10.0	0.6024 0.0846 4036 0.1143	0.0176 0371 0196	(0.)	0.0182 0679 0496	0.0250	(.166)	1.00892 0.0890 0.0890 0.0890	0.4240 1371 0.2868
5.0	0.5783 0.0823 0.1059	0.0155	(.033)	0.0187 0661 0473	0.0243 0654 0411	(.144)	0.0254 0840 0546	0.4040 1378 0.2663
0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0192	(.053)	0.0184 0666 0482	0.0224 0609 0386	(.115)	0.0268 0813 0545	0.3856 -1404 0.2453

Figure 15(a). 170W longitudinal cross-section, tropical section. Refer to Fig. 9 for key. Values computed from data for 16 July 1974.

65.0	0.6308 0.1642 2194 0.2471	0.0328 0387 00587	(.569)	0.0299	0.0251	(050)	0.0094 0264 0170	0.3693
0.09	0.6371 0.1552 0.1552 0.1697	0.0189	(-135)	0.0000000000000000000000000000000000000	0.0178	(.373)	0.0354 0817 0463	0.3898 0791 0.3107
55.0	0.5460 0.2848 -2304 0.1309	0.0293	(.629)	0.0322	0.0349 0245 0.0105	(.911)	0.0405	0.2243 0149 0.2094
50.0	0.6544 0.1650 3413 0.1480	0.0172 0453 0295	(.022)	0.0134 0692 0508	0.0371	(.512)	0.0443	C.3723 -0455 0.3268
45.0	0.6696 0.1026 -3705 0.1874	0.0172	(0.)	0.0188	0.0360 -1083 -0724	(.182)	0.0310	0.4550 0670 0.3880
40.0	0.6638 0.1207 3576 0.1855	0.0219	(690.)	0.0220	0.0370 -0891 -0520	(.234)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.4297 0714 0.3583
35.0	0.6634 0.1176 3901 0.1557	0.0173	(0.)	0.0197	000 000 0000 0000 0000	(.278)	0.03 0.03 0.03 0.04 0.04 0.04 0.04	0.4344 -1066 0.3279
30.0	0.6593 0.1115 0.1425 0.1425	0.0142 0378 0236	(0.)	0.0189	0.0392 0896 0504	(.245)	0.0340	0.4415 0.3140

Figure 15(b). 170W longitudinal cross-section, higher latitude section. Refer to Fig. 9 for key. Values computed from data for 16 July 1974.

25.0	0.05512 0.1653 0.0953 0.0953	0.0234	(*101)	0.0233	0.0390	(.572)	0.0502	0.3450
20.0	0.6390 0.1570 3992 0.0828	0.0197	0.)	0.0223 0762 0538	0.3434	(.652)	0.0561	0.3436
15.0	0.6227 0.1487 3935 0.0805	0.0188 0423 0235	(0.)	0.0210 0780 0570	0.0365 0831 0464	(009.)	0.0521	0.3456 -0876 0.2580
10.0	0.1513 0.1513 0.3655 0.0855	0.0231 0422 0191	(.123)	0.0223	0.0349 0666 0319	(.577)	0.0450	0.3254 -0872 0.2381
5.0	0.5783 0.1781 3178 0.0824	0.0296 0488 0192	(904.)	0.0273 0840 0568	0.0363 0419 0056	(999")	0.0379	0.2691 0587 0.2104
0.0	0.000 0.000 0.000 0.000 0.000 0.000	0.0269 0469 0201	(.336)	0.0251 0812 0560	0.0358 0495 0137	(.551)	0.034C 0874 0533	0.2762 -0667 0.2095
-5.0	0.5193 0.1269 0.3531 0.0395	0.0223	(.232)	0.0229	0.0334	(.451)	0.0323	0.2867

Figure 16(a). 145E Longitudinal cross-section, tropical section. Refer to Fig. 9 for key. Values computed from data for 16 July 1974.

55.0	0.6460 0.2522 -1899	0.0450 0429 0.0320	(.914)	0.0367 0794 0428	0.0285 0.033 0.0319	(.375)	0.0221 0520 0299	0.2616 -0187 0.2429
50.0	0.6544 0.0938 3197 0.2410	0.0198 0447 0249	(080)	0.0190 0573 0583	0.0262 0768 0506	(.020)	0.0167	0.4790 0899 0.3891
45.0	C.6606 0.2374 3135	0.0202	(.113)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0357	(.855)	0.0578 0961 0384	0.2890 0412 0.2478
40.0	0.6638 0.2209 3156 0.1273	0.0258	(-231)	0.0262	0.0377	(-705)	0.0482 0591 0508	0.3051 0326 0.2724
35.0	0.26534 0.2653 -3479 0.1103	0.0284 0488 0204	(-155)	0.0255 0804 0549	0.0430 0710 0280	(.681)	0.0491 1369 0578	0.3123
30.0	0.6593 0.2274 3177 0.1142	0.0355	(.362)	0.0302	0.0395	(969°)	0.0428 0869	0.2839 0.2388 0.2381

Figure 16(b). 145E Longitudinal cross-section, higher latitude section. Refer to Fig. 9 for key. Values computed from data for 16 July 1974.

		•						
25.0	0.6512 0.1475 0.3852 0.1183	0.0185 0386 0202	(0.)	0.0210 0679 0473	0.0406	(.450)	0.0443	0.3793 -0865 0.2528
20.0	0.6390 0.1209 -3915 0.1266	0.0178 0381 0202	(0 •)	0.0201 0673 0477	0.0355 -0890 -0890 -0550	(.374)	0.0429 1011 0582	0.4019 0956 0.3063
15.0	0.6227 0.1041 3795 0.1392	0.0207 0381 0175	(050.)	0.0239 0675 0466	0.0309	(.226)	0.0342 0881 0539	0.4120 1098 0.3022
10.0	0.12899 0.12899 0.13655	0.0218 0402 0184	(.116)	0.0225 0719 0493	0.0337 0689 0353	(068.)	0.0379	0.3577 0915 0.2662
ر 0	0.5783 0.1517 -3621 0.0644	0.0208 0411 0204	(-127)	0.0223	0.0369 0742 0372	(.627)	0.0444 1019 0575	0.3021 0710 0.2311
0.0	0.5504 0.1451 0.0206	0.0171 0384 0213	(-005)	0.0190 0598 0508	0.0383 0958 0575	(.720)	0.0486 1178 0692	0.2823 0629 0.2195
0	0.5189 0.1566 4105 0481	0.0103	(0.)	0.0161	0.0423 1234 0810	(006")	0.0532 1315 0782	0.2403 0450 0.1955
-10.0	0.4842 0.1085 4102 -0345	0.0099	(0.)	0.0148 0729 0581	0.0356	(.489)	0.0359	0.2794 1006 0.1788
-15.0	0.4465 0.1047 3889 0471	0.0127	(0.)	0.0146	0.0232	(.453)	0.0338	0.2574 1085 0.1489
-20.0	0.4062 0.0933 3747 0620	0.0127 0367 0242	(080)	0.0136 -0626 -0491	0.0189 0589 0398	(.317)	0.0253	0.2420 1357 0.1061

Figure 17(a). 35W Longitudinal cross-section, tropical section. Refer to Fig. 9 for key. Values computed from data for 16 July 1974.

30.0 35.0 40.0 45.0 50.0 55.0 55.0 55.0 55.0 5	0.09	0.6370 0.1499 2591 0.2281	0.0264 0548 0284	(•446)	0.0271 0539 0267	0.0213 0174 0.0039	(.035)	0.0152-0415-	0.3973 0916 0.3058
30.0 35.0 40.0 45.0 50.0 50.0	5	646 197 217 230	050	. 770	034	025	. 071	014	. 0334 038 298
30.0 35.0 40.0 45.0 -6593 0.6634 0.6638 0.660 -3874 0.1213 0.1314 0.189 -0601 -0393 -0622 -0328 -0701 -0224 -0258 -017 -0221 0.0204 0.0199 0.026 -0493 -0692 -0695 -077 -0493 -0669 -0698 0.027 -0493 -0669 -0698 -077 -0493 -0669 -0698 -077 -0493 -0669 -0698 -077 -0493 -0669 -0698 -077 -0493 -0669 -0698 -077 -0499 -0698 -0698 -077 -0499 -0698 -0698 -077 -0688 -0698 -0698 -077 -0688 -0698 -068	0	455 23.88 23.44 23.44	03 9	0 29.	03 2 20 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	00.00 00.00 00.00 00.00	.105	0000	346.039
30.0 35.0 40.0 36.0 40.0 35.0 40.0 35.0 40.0 36.0 40.0 35.0 40.0 36.3 4 0.0 66.3 4 0.0 66.3 4 0.0 66.3 3.1 4.2 3.3 4.2 5.2 5.0 6.3 4 0.0 5.3 5.0 4.2 1.0 5.2 5.0 6.3 5	٠ •	0.000 0.000 0.000 0.000 0.000	026	.187	024 071 047	0033	-237	030	
30.0 31.0 32.0 32.0 35.0	0	9000 9000 9000	0.42	0	. 019 . 069 . 049	0.42 0.09 0.77 0.77	. 403	0042 0055 052	400 000 1000 1000
0 000 0 000 4 000 000 000 000 000 000 0	50	100 100 100 100 100 100 100 100 100 100	039	0	020	097	. 466	044	382 090 292
	0	10000	018	0	.021 069 048	0000	.449	000 000 000 000 000	2083

Figure 17(b). 35W Longitudinal cross-section, higher latitude section. Refer to Fig. 9 for key. Values computed from data for 16 July 1974.

where

Q24 = daily-averaged solar absorption in layer (2,4)

and is defined relative to A24(t) by a cosine transformation similar to Eq. (5-3), and

F24 = terrestrial cooling rate in (2,4).

Similarly the daily-averaged radiative heating (cooling) rates in layers (4,6), (6,8) and (810) are given by

$$BAL46 = Q46 - F46$$
 (5-10)

$$BAL68 = Q68 - F68$$
 (5-11)

respectively.

3. Cross-Section at Air-Sea Interface (k=10)

The radiative balance at the earth's surface (BALB) is as defined in the following equation:

BALB = QABG -
$$F_{10}$$
 . (5-13)

QABG is the 24-hour average solar insolation absorbed by the surface as follows:

$$QABG = QABG(t) (Cos z/Cos z) .$$
 (5-14)

D. MERIDIONAL CROSS-SECTIONS OF THE VERTICAL RADIATION BALANCE

Figs. 10, 11,...16, 17 as previously explained represent the single time step of heating computations for each of the four meridians

used in this study. The eight figures have been divided into (a) tropical results and (b) mid-to-high-latitude results for the mid-winter and mid-summer cases respectively. While the results depicted in these cross-sections are exhibited as representing daily-averaged values, they are actually based upon radiation-computations at the specific map times of 0000GMT and 1200GMT on 16 January and 16 July 1974. Therefore, for these results to be meaningful as a stepwise part of the heat package subroutine of FNWC, the solar radiative absorption and reflectance terms would have to be recoverable as a function of GMT, i.e.,

$$F(2,t) = QAVE* (Cos z/Cos z)$$
 (5-15)

$$REF(t) = QREF^* (Cos z/Cos z)$$
 (5-16)

etc. Thus solar disposition terms may then be utilized in connection with the one-hour stepwise application of the thermodynamic equation of the set of primitive equations used in the FNWC prediction process, assuming the "2/3-CL" parameterization of Eq. (2-2).

E. COMPARISON OF THE FOUR-LAYER WITH THE TWO-LAYER FLUX DIVERGENCE MODEL

In previous studies (A, B, C, D) which considered only the two-layer flux-divergence model [layers (2,6) and (6,10)] it was assumed that the radiative-cooling rate in layer (2,6), BAL26, was uniformly distributed over layers (2,4) and (4,6). A similar remark is applicable to BAL610 relative to the sublayers (6,8) and (8,10). In an effort to determine the vertical resolution of the atmospheric flux-divergences separately, the four values of BAL24, BAL46, BAL68 and BAL810 have been averaged over all gridpoints for the four computational dates.

The computed values of BAL24 and BAL68 were then compared with one-half of BAL26 and BAL610 respectively to determine the relative percentage of heating (cooling) in these layers, as depicted in Table X for the mid-seasonal winter and summer dates. It is noted that the values of BAL46 and BAL810 are identical in magnitude but of opposite algebraic sign to BAL24 and BAL68 respectively.

The results of these four-layer computations (Table X) indicates that in layer (2,4) there is approximately thirty percent less cooling than would have been deduced in the simpler two-layer model. This implies less radiationally induced instability in the upper troposphere than that originally estimated. In the layer (4,6) there is compensating increased radiative de-stabilization. This radiative difference in the layer (4,6) appears to be primarily a result of the placement of clouds in both models. For instance, the upper clouds have tops at k=4, and IR net flux acts as the chief source of increased de-stabilization in layer (2,4)). Likewise the lower clouds have tops at k=8; so, it follows that IR net flux acts as the chief source of increased de-stabilization in layer (8,10), and finally, of reduced de-stabilization in layer (6,8).

The tuning of solar reflectances has not introduced a significant radiative influence on the results of the de-stabilization differences just outlined. Rather it was the placement of clouds relative to layer boundaries that affected primarily the IR net-flux calculations. The results summarized in Table X are then to be considered valid if the cloud-parameterization model approaches climatological reality.

		d)			1			
ULTS	4-Layer model	Cooling rate deviations (1y min ⁻¹)	+.0143		0143	+°0075		0075
SUMMER RESULTS	2-Layer model	Mean cooling rate (ly min ⁻ l)		0567	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.0770	
SULTS	4-Layer model	Cooling rate deviations (1y min-1)	+.0133		0133			0070
WINTER RESULTS	2-Layer model	Mean cooling rate (ly min ⁻ l)		0397			0442	
_	Layers		(2,4)	(2,6)	(4,6)	(8,8)	(6,10)	(8,10)

TABLE X. Average values of cooling rates as computed in 200 mb layers by the two-layer model (studies A, B, C, D) and the layer-cooling deviations from the two-layer means as computed by the four-layer model.

VI. THE ZONAL DISTRIBUTION OF RADIATIONAL BALANCE TERMS OF THE OCEAN-ATMOSPHERE SYSTEM

A. GENERAL INTRODUCTION: ZONAL CROSS-SECTIONS

The zonally distributed cross-sections of the radiation contributions over the ocean-troposphere system are presented in Figs. 18, 19, 20 and 21 for winter, spring, summer and autumn seasons, respectively. The cross-sections, show the results after averaging over the four meridians on the mid-seasonal dates considered in this study. The results are displayed in the format of Fig. 9.

In obtaining zonally distributed seasonal means of radiative heating rates, denoted $\overline{Q(\phi)}$, at each five-degree multiple of latitude ϕ in the range 20S,... 65N, values of each radiative parameter listed in Fig. 9 were arithmetically averaged over the four meridians. At ϕ = 65N there was only one contribution to the zonal average, while in the Southern Hemisphere latitudes 20S, 15S and 10S, only two values (on λ = 125W and λ = 35W) of each parameter contributed to the means. At 5S, there were three meridional sets of radiative parameters entering into $\overline{Q(\phi)}$. Otherwise, there were four seasonal values of each radiative parameter entering into the arithmetic mean $\overline{Q(\phi)}$ at each latitude ϕ of the cross-sections, Figs. 18,...,21.

Consequently, near the northern and southern boundaries of Figs. 18, ..., 21, the listed seasonal values may not be as representative as in mid-latitudes. Nevertheless, the general equatorial-to-polar trend in the radiative-change terms appears reliable in both hemispheres.

25.0	0.3919 0.1016 3623 0720	0.0148	(-113)	0.0145	0.0184 0508 0324	(.231)	0.0209	0.2217 -1199 0.1018
20.0	0.4372 0.0907 -3931 -0465	0.0133	(.001)	0.0150	0.0238 0791 0552	(.282)	0.0280 0861 0581	0.2665
15.0	0.4799 0.0939 - 38989 - 0038	0.0154 0390 0236	(.025)	0.00 0010 0010 0010 	0.0251	(.320)	0.0324 0921 0598	0.2962 -1147 0.1815
10.0	0.5197 0.0953 -3851 0.0393	0.0179	(.052)	0.0189	0.0293	(-334)	0.0345	0.3238 -1071 0.2166
5.0	0.5563 0.1069 -3743 0.0751	0.0201	(190-)	0.0211	0.0336 0768 0432	(.472)	0.0411	0.3335 0859 0.2475
0.0	0.5893 0.1131 0.1131 0.1139	0.0227 0409 0182	(•139)	0.0231 0727 0496	0.0349 0686 0337	(.453)	0.0412	0.3543 0867 0.2676
-5.0	0.6185 0.1295 0.3279 0.1612	0.0279	(.2951	0.0277	0.0372	(.459)	0.0389 0841 0452	0.3576 0748 0.2826
-10.0	0.6437 0.1364 -3465 0.1608	0.0251	(.196)	0.0257	0.0395	(-551)	0.0470	0.3701
-15.0	0.6646 0.1522 3213 0.1911	0.0281	(•319)	0.0288	0.0377	(*624)	0.0494	0.3685 0789 0.2896
-20.0	0.6812 0.1586 3094 0.2131	0.0301	(1.377)	0.0307 0763 0455	0.0377 0384 0008	(.625)	0.0494 0713 0220	0.3750

Figure 18(a). Zonally-averaged radiational cross-section for tropical latitudes. Refer to Fig. 9 for key. All values listed are daily averages in ly min⁻¹ and are computed from data for 16 January

65.0	000000000000000000000000000000000000000	0.0007	(0.)	0.0004 0298 0294	0.0005	(0.)	0.0003 0297 0294	0.0076 0934 0858
0.09	0.0541 0.0246 2212 1917	0.0030	(.414)	0.0023	0.0021 0108 0088	(.170)	0.0016	0.0206 1058 0853
55.0	0.0984 0.0467 2268 1752	0.0071	(.512)	0.0045	0.0043	(.432)	0.0040	0.0318 0683 0365
50.0	0.1462 0.0680 2766 1984	0.0060	(*319)	0.0059	0.0083	(1,647)	0.0087 0585 0498	0.0488 0688 0200
45.0	0.1958 0.0900 2834 1776	C.0074 0431 0353	(.345)	0.0078 0610 0532	0.0108	(.681)	0.0119 0661 0543	0.0679
40.0	0.2459 0.0551 -3097	0.0096 0330 0234	(.237)	0.0079	0.0124	(-366)	0.0125	0.1084 -1080 0.0004
35.0	0.2957 0.1006 3355	0.01111 0403 0292	(.156)	0.0102	0.0134	(.285)	0.0145	0.146C 1222 0.0238
30.0	0.3446 0.1146 3180 0880	0.0160 0452 0291	(.200)	0.0142	0.0157	(,233)	0.0141	0.1699 1116 0.0583

Figure 18(b). Zonally-averaged radiational cross-section for higher latitudes. Refer to Fig. 9 for key. All values listed are daily averages in ly \min^{-1} and are from data for 16 January 1974.

5.0	66649 1365 3817 0867	0146 0346 0200	018)	0177 0675 0498	0028 0082 00834 00834	4613	0459 1029 0570	3615 0941 2674
N	0010	011	÷	011	011	÷	011	010
20.0	0.6132 0.10632 0.12815	0.0169 0382 0212	(.013)	0.0189	00290	(.528)	0.0528 	0.3394
15.0	0.6163 0.1037 38037 0.1277	0.0179	(.054)	0.0201	0.0322 0791 0470	(.521)	0.0505	0.5876
10.0	0.6160 0.1087 3802 0.1272	0.0193 0286 0193	(• 065)	0.0210	0.0345 0827 0482	(.537)	0.0507	0.3819 0865 0.2954
5.0	0.6105 0.1108 3614 0.1382	0.0230 0410 0180	(-138)	0.0234	0.0341 0589 0348	(.524)	0.0476 0984 0508	0.3716 0804 0.2911
0.0	0.6005 0.1135 3401 0.1469	0.0255 0440 0184	(.269)	0.0254	0.0359	(.493)	0.0413	0.3588 0781 0.2806
-5.0	0.5859 0.1225 0.31933 0.1441	0.0278	(1961)	0.0274 0806 0532	0.0379	(.568)	0.0401 0790 0386	0.3304
-10.0	0.5671 0.1254 -3203 0.1214	0.0264 0461 0198	(•360)	0.0258 0788 0531	0.0355	(.610)	0.0467 0769 0561	0.3133
-15.0	0.5441 0.1367 2943 0.1190	0.0276 0492 0216	(164.)	0.0266 0814 0548	0.0331	(959.)	0.0383 0665 0.281	0.2876 0565 0.2207
-20.0	0.5169 0.1283 0.12854 0.1033	0.0264	(.534)	0.0257	0.0308	(099.)	0.0359	0.2698 C738 0.1960

Figure 19(a). Zonally-averaged radiational cross-section for tropical latitudes. Refer to Fig. 9 for key. All values listed are daily averages in ly min⁻¹ and are computed from data for 16 April 1974.

0.50	0.3944 0.1493 2086 0.0365	0.0133	(.531)	0.0173	0.0100 0082 0.0018	(.563)	0.0194	0.1851 0817 0.1034
0.09	0.4321 0.1618 0.0172	0.0129	(.327)	0.0151	0.0180 0402 0222	(-724)	0.0314	0.1930 0539 0.1391
55.0	0.4675 0.1455 -2793 0.0427	0.0128 0420 0292	(.259)	0.0153	0.0164	(*398)	0.0236 0487 0251	0.2539 0.1456 0.1456
50.0	0.4999 0.1608 2894 0.0496	0.0114	(.181)	0.0151 0528 0378	0.0196	(.600)	0.0346 0679 0332	0.2584 -0796 0.1787
45.0	000000000000000000000000000000000000000	0.0120	(.207)	0.0147 0588 0441	0.0258 0669 0411	(.327)	0.0257	0.3110
40.0	0.5540 0.1406 -3206 0.0927	0.0144 0311 0168	(.191)	0.0162 0627 0465	0.0195 0498 0303	(.340)	0.0279	0.3354 0.2163 0.2191
35.0	0.5752 0.1481 3374 0.0898	0.0167	(•179)	0.0175	0.0232 -00536 -0364	(.414)	0.0307 0664 0356	0.3391
30.0	0.10 0.10 0.10 0.00 0.00 0.00 0.00 0.00	0.0174 0384 0210	(*106)	0.0187	0.0243	(375)	0.0366	0 8832 0 2582 0 2550

Figure 19(b). Zonally-averaged radiational cross-section for higher latitudes. Refer to Fig. 9 for key. All values listed are daily averages in ly min $^{-1}$ and are from data for 16 April 1974.

25.0	0.6512 0.1373 -3933 0.1206	0.0184 0396 0213	(• 00 2)	0.0209 -0726 -0518	0.0390	(026.)	0.0414	0.3941 0985 0.2956
20.0	0.6390 3893 3895 0.1163	0.0190	(•019)	0.0212	0.0371	(.418)	0.0440 0984 0544	0.3843 -0943 0.2901
15.0	0.6227 0.1316 3766 0.1146	0.0214 0407 0194	(.072)	0.0213	0.0332 0699 0356	(.384)	0.04 0.0388 0.03888	0.3745
10.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0228 0403 0180	(.131)	0.0226	0.0324 0632 0308	(1.377)	0.0373	0.3551
5.0	0.5783 0.1395 0.08537	0.0242	(961.)	0.0232	0.0318	(.419)	0.0355	0.3241
0.0	0.5504 0.1247 -3664 0.0591	0.0216 0401 0184	(.128)	0.0210 0708 0498	0.0301	(.362)	0.0337 0895 0557	0.3191 -1016 0.2175
-5.0	0.5191 0.1322 0.0029	0.0173	(.081)	0.0191	0.0322	(.452)	0.0366 0995 0631	0.2814 0937 0.1877
-10.0	0.4842 0.1116 4034 0308	0.0133	(0 •)	0.0157	0.0274 0802 0528	(.256)	0.0301	0.2861 1348 0.1513
-15.0	0.4465 0.1128 3903 0566	0.0135	(0°)	0.0152	0.0212	(-304)	0.0302 0915 0616	0.2531
-20.0	0.4062 0.1065 3820 0826	0.0129	(.015)	0.0139	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(.256)	0 0250	0.2292 0.1510 0.0780

Figure 20(a). Zonally-averaged radiational cross-section for tropical latitudes. Refer to Fig. 9 for key. All values listed are daily averages in ly min⁻¹ and are computed from data for 16 July 1974.

65.0	0.6308 0.1642 -2194 0.2471	0.0328 0387 00587	(-569)	0.0299	0.0251	(.050.)	0.0094 0264 0170	0.3693 -0613 0.3080
0.09	0.6371 0.1526 -2856 0.1989	0.0227	(.319)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0195	(-204)	0.0253 0616 0363	0 - 0
55.0	0.6460 0.2369 2291 0.1800	0.0332 0523 0192	(*678)	0.0326 0701 0376	0.0289 0155 0.0134	(.436)	0.0276 0541 0266	0.2870 0370 0.2500
50.0	0.6544 0.1651 2976 0.1917	0.0240 0500 0259	(.267)	0.0239 0638 0399	0.0309	(.283)	0.0289	0.3815 0634 0.3181
45.0	0.6606 0.1791 3371 0.1444	C.0202 0441 0239	(9200)	0.0207 0663 0456	0.0343 0807 0465	(•526)	0.0453	0.3610 0586 0.3024
40.0	0.6628 0.1443 3606 0.1589	0.0206 0418 0212	(-075)	0.C211 0683 0472	0.0341 0824 0483	(.336)	0.0329 0818 0489	C.4108 - C863 0.3244
35.0	0.6634 0.1440 3825 0.1370	0.0192 0407 0215	(• 03 8)	0.02C7 0708 0501	0.0372	(-356)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.4044 0925 0.3119
30.0	0.6593 0.1495 3781 0.1317	0.0209 0421 0212	(.091)	0.0225	0.0386 0815 0429	(.366)	0.0384 0868 0484	0.3895 -0920 0.2975

Figure 20(b). Zonally-averaged radiational cross-section for higher latitudes. Refer to Fig. 9 for key. All values listed are daily averages in ly \min^{-1} and are from data for 16 July 1974.

25.0	0.4942 0.1075 3753 0.0113	0.0176	(040)	0.0173	0.0238 0717 0480	(-357)	0.0338 0940 0603	0.2941 -1056 0.1885
20.0	0.5252 0.1001 0.3627 0.0624	0.0204 0390 0186	(-128)	0.0197	0.0250 0619 0369	(.354)	0.0361 0904 0542	0.3238 - 1011 0.2227
15.0	0.5523	0.0226 0411 0185	(-176)	0.0216	000000000000000000000000000000000000000	(.376)	0.0369	0.3367 0.2380
10.0	0.5753 0.1067 0.1183	0.0251 0414 0163	(.205)	0.0231 0725 0498	0.0279	(.320)	0.0359	0.3567 0.2551 0.2551
رب 0	0.5940 0.1103 3432 0.1405	0.0269 0418 0149	(.251)	0.0244 0724 0480	0.0279 0464 0185	(-294)	0.0352 0814 0463	0.3693 1011 0.2682
0.0	0.6083 0.1124 3298 0.1661	0.0290	(.311)	0.0259 0742 0482	0.0300	(.258)	0.0328	0.3782 -0952 0.2830
-5.0	0.6181 0.1370 2901 0.1911	0.0345	(.551)	0.0309 0815 0509	0.0366 -0212 0.0156	(.347)	0.0297 0621 0326	0.3492 0747 0.2745
-10.0	0.6232 0.1324 0.1324 0.1781	0.0315	1865.)	0.0286 0767 0481	0.0337	(956.)	0.0351	0.3621 0807 0.2814
-15.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0305	(.402)	0.0285	0.0334 0.03255 0.0008	(.380)	0.0358	0.3611 0823 0.2789
-20.0	0.6197 0.1344 -3071 0.1781	0.0285 0449 0164	(168.)	0.0279	0.0318 0292 0.0025	(068.)	0.0358	0.3613 0927 0.2686

Figure 21(a). Zonally-averaged radiational cross-section for tropical latitudes. Refer to Fig. 9 for key. All values listed are daily averages in ly min-l and are computed from data for 16 October 1973.

5.0	11443 1852 1852 0999	0110	8161	0076 0727 0650	000 000 000 000 000	377)	00000 0366 0314	0563 0346 0217
9	0011	211	-	011	010	٠	011	010
0.09	0.1941 0.0674 2671 1405	0.010.00.00.00.00.00.00.00.00.00.00.00.0	(.325)	0.0077	0.0086 0378 0293	(.186)	0.0068	0.0933
55.0	0.2432 0.0837 2743 1148	0.0112	(-256)	0.0090	0.0093	(.263)	0.0109	0.1191 0921 0.0269
50.0	0.2910 0.0905 3193	0.0091	(.126)	0.0093 0607 0514	0.0133	(-292)	0.0153	0.1535 -1037 0.0458
45.0	0.3370 0.0961 -3384 -0976	C.0106 0359 0254	(620:)	0.0104 0590 0485	0.0121	(-241)	0.0188	0.1888 1188 C.0701
40.0	0.1026 0.1026 -3501 -0720	0.0118	(-115)	0.0118	0.0133 0525 0525	(.237)	0.0210 0817 0607	0.2200
35.0	0.4216 0.1152 3434 0410	0.0151	(.195)	0.0155 - 0683 - 0527	0.0195	(*359)	0.0245	0.2278 -1037 0.1191
30.0	0.4596 0.1184 3640 0228	0.0165 0359 0234	(*063)	0.0166	0.0225 0651 0426	(198.)	C. C298 C870 0572	0.2558

Figure 21(b). Zonally-averaged radiational cross-section for higher latitudes. Refer to Fig. 9 for key. All values listed are daily averages in ly min-l and are from data for 16 October 1973.

A zonal cross-section depicting the mean annual radiative distribution has been constructed, Fig. 22, by arithmetic averaging over the four mid-seasonal sets of results (Figs. 18,...,21).

It has also been convenient in earlier sections (cf. Tables III, IV, VIII) to compute "weighted averages" with respect to latitudes in the Northern Hemisphere. Thus a definition of a weighted-average parameter which takes into account the number of observations k, available at each latitude has been given (Meyers, 1975) as

$$\bar{Q} \equiv Q_{\text{wt. avg.}} = \frac{\sum_{i=1}^{14} \frac{k_i}{4} \left(\sum_{j=1}^{4} \frac{Q_{ji}}{k_i}\right) \cos \phi_i}{\sum_{i=1}^{14} \frac{k_i}{4} \cos \phi_i}$$
(6-1)

Here Q_{ji} is the Q-value on meridian j at latitude ϕ_i and $k_i = 1, \dots, 4$ is the number of meridional observations available for the arithmetic average $\overline{Q(\phi_i)}$. Note that $i = 1, \dots, 14$ corresponds to the 14 latitudes, $\phi_i = 0, \dots, 65N$.

B. ANNUAL RADIATIVE BALANCE FOR THE EARTH-TROPOSPHERE SYSTEM

For purposes of this summary, the term BALT (at k=2) in Fig. 9 has been redesignated for simplicity as $R_{t}(\phi)$, and annual values of R_{t} have been plotted in Fig. 23 as a function of latitude. R_{t} represents the net radiative-transfer rate across the tropopause, that is at the top of the troposphere-ocean system considered here. Similarly, the net flux at the surface previously denoted BALB in the key, Fig. 9, is

25.0	0.5356 0.1208 -3781 0.0367	0.0154 0385 0221	(*044)	0.0176	0.0275	(.355)	0.0355	0.2179	
20.0	0.5536 0.1076 -3817 0.0644	0.0174 0339 0214	(.041)	0.0187 0699 0512	0.0287	(968.)	0.0402 0957 0555	0.3410 -1000 0.2410	
15.0	0.5679 0.1101 -3753 0.0826	0.0193 0400 0207	(.082)	0.0201	0.0297	(005.)	0.0400 0906 0506	0.3488 -1023 0.2465	
10.0	0.5784 0.1107 3707 0.0969	0.0213 0401 0188	(-113)	0.0214	0.0310	(.392)	0.0396 0907 0511	0.3544 -0954 0.2550	
5.0	0.5848 0.1169 3582 0.1097	0.0236	(.168)	0.0230	0.0318	(,427)	0.0398	0.3496 0905 0.2591	
0.0	0.5871 0.1159 -3497 0.1215	0.0247	(.212)	0.0238 0736 0497	0.0327 0572 0245	(.391)	0.0373 0864 0491	0.3526 -0904 0.2622	
-5-0	0.5854 0.1303 3304 0.1248	0.0269	(.324)	0.0263	0.0360 0481 0121	(.457)	0.0363 0812 0449	0.3296 -0781 0.2515	
-10.0	C.5796 0.1264 3458 0.1074	0.0240	(-238)	0.0239 0737 6498	0.0340 0561 0221	(.441)	0.0382	0.0330	
-15.0	0.5697 0.13257 0.1085	0.0251 0439 0189	(.305)	0.0248 074C 0492	0.0313 0436 0122	(.491)	0.0384 0765 0385	0.3176	
-20.0	0.5560 0.1320 3210 0.1030	0.0245 0438 0194	(-329)	0.0245	0.0296 0365 0069	(.483)	0.0365 0689 0324	0.3088 0989 0.2099	

Figure 22(a). Zonal-annual radiational cross-section for tropical latitudes. Refer to Fig. 9 for key. All values listed are daily averages in ly min⁻¹ and are computed by arithmetic averaging over the four midseasonal results (Figs. 18,...,21).

65.0	0.2966 0.0951 2121 0106	0.0144	(624.)	0.0138 0543 0405	0.0102 0214 0112	(.247)	0.0086 0291 0206	0.1546 -0677 0.0868
0.09	0.3294 0.1016 2567 0290	0.0122	(-346)	0.0121	0.0121	(.321)	0.0163 0495 0333	0.1751
55.0	0.3638 0.1282 25524 0168	0.0161 0432 0271	(.426)	0.0153	0.0147	(.382)	0.0165	0.1729 0764 0.0955
50.0	0.3979 0.1211 2957	0.0126 0420 0294	(.223)	0.0136	0.0182 0538 0357	(.455)	0.0219	0.2105
45.0	0.4306 0.1262 3150	0.0125 0367 0241	(921.)	0.0134	0.0207	(+44)	C.0254 0701 0447	0.2322 0860 0.1461
. 0.04	0.4611 0.1206 -33552 0.0052	0.0141 0348 0206	(.154)	0.0142 0638 0495	0.0198	(.320)	0.0236	0.2687 1081 0.1606
35.0	0.4890 0.1279 5498 0.0113	0.0155 0387 0232	(.142)	0.0160 0668 0508	0.0233 0621 0387	(.353)	0.0269 -0735 -0465	0.2753 0.17088 0.1705
30.0	000 000 000 000 000 000 000 000 000 00	0.0177	(.137)	0.0180	0.0253	(.342)	C C C S S S S C S C S S C S C S C S C S	0.2921 -1014 0.1907

Figure 22(b). Zonal-annual radiational cross-section for higher latitudes. Refer to Fig. 9 for key. All values listed are daily averages in ly min-1 and are computed by arithmetic averaging over the four midseasonal results (Figs. 18,...,21).

redesignated here following Malkus (1962) as $R(\phi)$ and its annual distribution has been graphed against latitude in Fig. 23. Finally, the relationship between R_+ and R in any column is given by

$$R_{t} = R + R_{a} \tag{6-2}$$

where R_a is the <u>overall</u> net cooling rate or flux-divergence of the tropospheric column, e.g.,

$$R_a = BAL24 + BAL46 + BAL68 + BAL810$$
 (6-3)

In Fig. 23, values of R $_{a}(\phi)$ have also been plotted against latitude; however, a simpler method of obtaining R $_{a}$ from (6-2), namely,

$$R_{a} = R_{+} - R \tag{6-4}$$

has been employed. The resulting zonal annual distributions of each of the three parameters, R_t , R and R_a , are shown as functions of latitude in Fig. 23, where they are superimposed against similar functions drawn from Sellers (1965).

The comparison which follows focuses on the annual distribution in the Northern Hemisphere only. It should also be noted that Sellers' radiative parameters were taken from climatology at the top of the mean zonal atmosphere, whereas this radiative model gives corresponding results for level k=2, based upon tropospheric soundings over an oceanic surface only.

Throughout the latitude range (0-65N), the radiative net flux R at the ocean surface is substantially greater than the climatological amount

Figure 23. Radiative net fluxes at the tropopause (R_t) at the ocean surface (R); and net-flux divergence for the tropospheric column (R_a) from the zonal annual results (Fig. 22(a,b)). Solid lines indicate values of R_t, R and R_a after Sellers (1965).

of Sellers. This is attributable to the reduced model-albedo values of Sec. IV.F. This in turn allowed more insolational-absorption in the ocean thereby increasing R over all latitudes as compared to Sellers' values (Fig. 23). The term R-R_t (which equals -R_a) may be regarded as an atmospheric "greenhouse effect" in contributing to warming of the surface both for the model and for Sellers' climatology. For each latitude, Fig. 23 indicates that the "model greenhouse" is in close agreement with that of Sellers.

The R_a -distributions of both Sellers and of the present model are in good agreement across the entire range of Fig. 23, both representing cooling rates in the troposphere for all ϕ . A minimum value of R_a at latitude 20N appears on both curves and is presumably due to a local maximum of IR net-flux divergence $F_2^* - F_{10}^*$ (resulting from the minimum opaque cloud cover) in subtropical latitudes. From 50N to 65N, an increase in the model values of R_a appears in Fig. 23 and seems to indicate a reduced IR net-flux loss associated with high CL-values (Table III) at these northerly latitudes. Sellers' results indicate the opposite trend, i.e., increasingly negative R_a -values from 50-60N, but his climatology may not include the kind of detail that would indicate reasonable oceanic cloudiness over these latitudes.

The radiative model gives R_t -values which are generally larger, both over tropical latitudes as well as over the northern latitudes, than the R_t -values of Sellers. As in the $R(\phi)$ comparison this is a result primarily of the reduced model-albedo. In the mid-latitude zone 25-40N of Fig. 23, close agreement occurs between the two R_t -curves presumably due to such similar climatological effects as for example, the mean polar

front. The positive-to-negative R_t crossover-point occurs very near to 40N for both R_t -distributions of Fig. 23. The model weighted-average is $\overline{R_t(\phi)} = 0.048$ ly min⁻¹ if averaging is considered only to 65N. If negative R_t annual values exist in latitudes $\phi \geq 65N$, an ocean-troposphere radiative balance should very nearly be established over the Northern Hemisphere. However data for the model were not analyzed over ice-covered regions poleward of 65N, where presumably higher surface albedos and cooler drier soundings would enable R_t to assume larger negative values.

The radiative-model values of $R_t(\phi)$, $R(\phi)$ and $R_a(\phi)$ are in agreement with present albedo and IR net-flux observations from recent satellite climatology. It should be noted that Sellers' radiative results are based on climatology of London (1957), and include also data from the land areas of the Northern Hemisphere; on the other hand the radiative model values have been based only upon soundings over the ocean.

C. CROSS-SEASONAL EFFECTS IN THE NORTHERN HEMISPHERE

1. On the Net Flux Across the Tropopause, R

The seasonal distribution of the tropospheric net flux is presented as a function of latitude in Table XI(a) where the listed R_t -values correspond to the tropopause, level k=2. One may discern two geographic regimes of annual waves in Table XI(a); a polar zone (25-65N) and a tropical-subtropical zone (0-25N).

The cross-seasonal variation of $R_{\rm t}$ in the northern regime has the following property: $R_{\rm t}$ -values are a minimum in winter increasing to a maximum in summer followed by a decrease in autumn. In the tropical zone (0-10N), $R_{\rm t}$ -values have positive peaks in spring and autumn. The summer minimum of $R_{\rm t}$ in 0-10N is presumably attributable to increased

	16 Oct	, 269	°279	。281	。275	.283	.268	.255	,238	.223	0.189	,152	0119	°098	0000	050°	.027	• 008	022	.173
(b) R (ly min ⁻¹)	16 Jul	0.078	0120	.151	,188	,218	,229	.253	。271	°290	,296	.298	,312	。324	。302	.318	.250	308°	308°	.279
(b) R (J	16 Apr	,196	,221	.242	.261	。281	.291	.295	, 296	。304	.267	.255	,228	,219	.217	.178	.146	0.139	°103	.251
	16 Jan	.297	.290	。285	.283	° 268	。248	.217	.182	。147	0.102	058	0.024	000°	000°	021	-°037	-°085	980°-	0.108
	16 Oct	.178	.181	°178	.191	,166	.141	。118	.092	°062	011	023	041	072	860° -	119	115	141	100	020°
(ly min ⁻¹)	16 Jul 16 Oct	083 .178	057 .181	031 .178	.003 .191	,059 ,166	.085 .141	.103 .118	.115 .092	.116 .062	.121 .011	'	.137041	1	.144098	.192119	.180115	.199141	。247 - 100	.126 ° 020
(a) $R_{\rm t}$ (ly min ⁻¹)				031					,115		。121	'	•	1	1	- 192 -			'	
(a) R_{t} (ly min ⁻¹)	16 Jul	.103083	.119057	.121031	•003	。147 。059	.138 .085	.103	,115	,116	.087 .121	,132 -	-137 -	- 159	-144 -	- 192 -	.180	001.	- 247 -	.126

TABLE XI. Seasonal and latitudinal distribution of (a) averaged earth-troposphere net radiative flux (R_t); (b) averaged radiative net flux at earth's surface (R).

cloudiness associated with the ITCZ in this latitude zone. The subtropical region 15-25N does not have a minimum in midsummer, and may be simply classified as intermediate in behavior between that exhibited by $R_{\rm t}$ in the polar and the tropical regimes. These geographic cross-sectional effects (Table XI(a)) tend to confirm the general validity of the radiative model.

2. On the Sea-surface Model Balance, R

The seasonal distribution of the net radiative flux R at the earth's surface is listed as a function of latitude in Table XI(b). Again a polar zone (25-65N) and a tropical-subtropical zone (0-25N) are defined for discussing cross-seasonal effects on R.

The model results for R are analogous to those just specified for $\ensuremath{R_{\scriptscriptstyle +}}$, namely:

- (i) in the polar latitudes there is a single sine wave with annual periodicity and maximum in midsummer;
- (ii) in tropical latitudes 0-10N, the double peaked character with maximum in spring and autumn appears;
- (iii) there exists an intermediate subtropical zone of R-values which no longer exhibits a minimum in summer.

D. TOP OF THE ATMOSPHERE COMPARISON OF MODEL WITH SATELLITE DATA

1. Net Radiative Transfer Rate at Top of the Atmosphere

The three parameters that describe the radiative flux at level $\label{eq:k} k \,=\, 0 \text{ are associated in the following way:}$

$$R_{N} = Q_{N} - F_{T} \tag{6-5}$$

 $\boldsymbol{Q}_{N}\text{,}$ the daily averaged incoming solar flux, can be related to QAVE and

QREF (Fig. 9) by the relationship

$$Q_{N} = \frac{2.00}{1.92} \text{ QAVE (1-ALB)} = \frac{2.00}{1.92} \text{ QAVE - QREF}$$
 (6-6)

where QAVE and QREF have already been evaluated according to Eqs. (5-3) and (5-6) respectively and the factor 2.00/1.92 has the effect of deriving the mean daily solar insolation at level k=0 before ozone-oxygen absorption. F_T , the IR net flux to space, was previously discussed in Sec. III.D. [Eq. (3-11)], and R_N , the difference between Q_N and F_T , represents the daily-averaged radiative net flux at the top of the atmosphere. In order to more easily distinguish between model-values of R_N and the same parameter from satellite climatology of Raschke et al. (1973), R_N is further identified as R_N MOD or R_N RAS, respectively. QAVE is assumed identical both for the model and for the treatment of the Raschke data in this study.

2. Zonally-Averaged Computations of R_N

With the use of Eqs. (6-6) and (6-5), values of $Q_{\rm N}$, $F_{\rm T}$ and $R_{\rm N}$ for each of the four mid-seasonal dates and by five-degree latitude intervals have been computed both for the model-parameters and the satellite-observed (RAS) parameters. The results of the computations both seasonally and for the annual mean case are presented in Table XII.

A comparison of $R_N^{\rm MOD}$ with $R_N^{\rm RAS}$ from the zonal-annual results at the bottom of Table XII shows that the crossover from positive-to-negative values of $R_N^{\rm RAS}$ occurs near 40N for both model- and Raschke-results.

A statistical accuracy check of $R_N^{\ MOD}$ as against $R_N^{\ RAS}$ data is conducted using the standard deviations of the difference parameter $(R_N^{\ MOD}-R_N^{\ RAS}) \ \text{over all Northern Hemisphere latitudes.} \ \ \text{A summary of }$

Lat.	-20.0	-15.0	-10.0	-5.0	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	0.09	65.0
MOD (2)	0.5510 0.3188 0.2322	0.5401 0.3280 0.2121	C.5341 0.3485 0.1856	0.3306 0.3306 0.1841	0.5008 0.3611 0.1396	0.4726 0.3712 0.1013	0.4461	0.4060	0.3648	0.3645	0.2443	0.2C75 0.3491 1416	0.1610 0.3291 1681	0.1140	0.0843	0.0557	0.0315	0.010
RAS	0.5639 0.3703 0.1936	0.5574	0.5467 0.3750 0.1717	0.5467 0.3457 0.2010	0.4727	0.4525 0.3685 0.0841	0.4306 0.3892 0.0414	0.3945	0.3475 0.3943 0468	0.3113	0.2629 0.3418 0789	0.2038	0.3026	0.1151	0.0743	0.0484 0.2731 2216	0.0297	0.2700
MOD (A)	0.4103 0.2992 0.1111	0.4360	0.4653	3 0.4878 0.3263 0.1615	0.5120	0.5251 0.3609 0.1642	0.5330 0.3750 0.1580	0.5339	0.5324	0.4937	0.4750 0.3621 0.1129	0.4511 0.3514 0.0998	0.4365	0.4113 0.3268 0.0844	0.3598 0.3121 0.0477	0.3415 0.3125 0.0289	0.2884	0.261
RAS	0.4472 0.4100 0.0372	0.4733 0.4150 0.0553	0.4846	5 0.4939 0.3681 5 0.1258	0.3646	0.4953 0.3414 0.1539	0.5122 0.3616 0.1505	0.5237 0.3899 0.1339	0.5222 0.3956 0.1266	0.5022 0.3867 0.1155	0.4646 0.3613 0.1033	0.4364 0.3542 0.0822	0.4156 0.3400 0.0756	0.3878 0.3300 0.0578	0.3476 0.3221 0.0255	0.2934 0.3151 0218	0.2606 C.3103 0497	0.205
KOD (C)	0.3163	0.3523 0.3523 0.3358	0.3928	3 0.4085 9 0.3769 1 0.0316	0.4485 0.3649 0.0836	0.4629 0.3547 0.1082	0.4954 0.3666 0.1288	0.5171 0.3754 0.1417	0.5323 0.3841 0.1482	0.5410 0.3872 0.1538	0.5373 0.3768 0.1606	0.5471 0.3845 0.1622	0.5472	0.5090 0.3564 0.1526	0.5166 0.3306 0.1860	0.4361 0.2857 0.1504	0.5111	0.293
RAS	0.3404 0.40C5 0601	0.3837	0.4207	7 0.4419 7 0.3966 5 0.0453	0.4378 0.3776 0.0602	0.4719 0.3538 0.1132	0.4726 0.3360 .0.1365	0.4933	0.5223 0.3743 0.1483	0.3947	0.5401 0.3922 0.1479	0.5299 0.3765 0.1530	0.5145 0.3630 0.1515	0.4718 0.3560 C.1159	0.4460 0.3497 0.0964	0.4258 0.3274 0.0983	0.4015 0.3304 0.0711	0.4007 0.3300 3.0708
dow (F)	0.5110 0.3194 0.1916	0.5153 0.3154 0.1959	0.5168 0.3216 0.1953	0.5069 0.3016 0.2053	0.5213 0.3364 0.1849	0.5084 0.3473 0.1612	0.4926 0.3537 0.1389	0.4691	0.4470 0.3649 0.0821	0.4072	0.3604	0.3519	0.2939 0.3621 0683	0.2549	0.2126 0.3398 1271	0.1696	0.1347 0.3020 1673	0.091
RAS	0.4980 0.3791 0.1189	0.5353 0.4006 0.1348	0.5306 0.4248 0.1057	0.5143	0.5228 0.4096 0.1131	0.4973 0.3587 0.1286	0.4594 0.3409 0.1185	0.4516 0.3555 0.0961	0.4346	0.3974	0.3811 0.3879 0068	0.3220	0.2854 0.3459 0605	0.2589	0.3005	0.1587 0.2951 1364	0.1180 0.2896 1716	0.1006
MOD (4)	0.4471	0.1260	0.4773 0.3480 0.1293	0.4794 0.3338 0.1456	0.4956 0.3514 0.1443	0.4923 0.3585 0.1337	0.4918 0.3688 0.1230	0.4815 0.3732 0.1084	0.4691 0.3785 0.0907	0.4571 0.3768 0.0603	0.4043 0.3602 0.0441	0.3814 0.3553 0.0221	0.3596 0.3515 0.0081	0.3223 0.3360 0137	0.2934	0.2933	0.2981 0.2981 0566	0.2735
RAS	0.4624 0.3900 0.0724	0.4867 0.4037 0.085C	0.4956 0.4089 0.0868	0.4992	0.4818 0.3761 0.1057	0.4793 0.3581 0.1212	0.4687	0.4658 0.3727 0.0931	0.4567 0.3884 0.0683	0.4409 0.3878 0.0531	0.4122 0.3708 0.0414	0.3730 0.3535 0.0195	0.3433 0.3379 0.0054	0.3084	0.2664 0.3112 0448	0.2316 0.3019 0704	0.2 C24 0.3000 0975	0.1789

Zonally averaged net-flux parameters at the top of the atmosphere. At each latitude the radiative parameters Q_N , F_{T} , R_N are listed (ly min⁻¹) for both the model- and Raschke-calculations. The letter code (a), (b), (c), (d) indicates the distribution over seasons while (e) denotes annual distribution of the same parameters as a function of latitude. TABLE XII.

the mean and standard deviations of this parameter over the latitude range of these five cross-sections (Table XII) follows:

	16 Jan.	16 Apr.	16 Jul.	16 Oct.	Annual
R _N MOD-R _N RAS	.004	.024	.019	.014	.015 ly min^{-1}
Std. Dev.	.028	.037	.053	.039	$.039 \text{ ly min}^{-1}$

The zonally-averaged mean $(R_N \text{MOD-}R_N \text{RAS})$ is positive for each season as well as for the annual distribution (whose mean is 0.015 ly min⁻¹). This small positive difference was anticipated from consideration of Sec. IV.F. (Table IX) where the middle-to-high latitude albedos were tuned slightly too small.

The overall standard deviation in $(R_N^{MOD-R}_N^{RAS})$ of 0.039 ly min⁻¹ is of the same order of magnitude as that of $Q_N^{MOD-Q}_N^{RAS}$. This comparatively small difference in the case of model versus satellite climatology was a considerable improvement over (A,B,C,D) where untuned albedos were used.

E. STRATOSPHERIC MODEL RADIATIVE BALANCE

It is clear that the flux-convergence in the stratosphere is given by

$$R_N - R_t$$

where R is given by Eq. (6-5). Note that R is identical to BALT of Fig. 9 which reduces to

$$R_{t} = \Omega AVE - QREF - F_{2}^{*} . \qquad (6-7)$$

Forming the difference, $R_N - R_+$, leads to

$$R_N - R_t = .04 \text{ QAVE} - (F_T - F_2^*)$$
 (6-8)

The stratospheric flux-convergence, $R_N^-R_t$, is displayed in zonalannual format in Table XIII. Based on the Northern Hemisphere weighted results (bottom line), it appears that a positive net-flux convergence exists between 0-65N. However the trend in $R_N^-R_t$ at higher latitudes is towards increasingly negative radiative values in the stratosphere poleward of 65N such that an annual mean radiative balance may be inferred. For instance, assuming that in the latitude range 65-90N, an average zonal-annual value of $R_N^-R_t^- = -0.0502$ ly min⁻¹ exists at 77.5N, then, the cosine-weighted mean is -0.0126 ly min⁻¹ in the region poleward of 65N. Thus the summed Northern Hemisphere weighted mean would be zero and a radiative balance would exist in the stratosphere.

F. ZONAL-ANNUAL NORTHERN HEMISPHERE HEAT BUDGET

1. Tropospheric Radiation Budget

The radiative heating rate of a tropospheric column may be expressed as a function of R $_{a}(\phi)$ by the right side of Eq. (6-9)

$$Q_{va} + S_a = R_a + (E + H_{\Gamma})$$
 (6-9)

 S_a is the storage heating rate of the column and Q_{Va} is the required flux-convergence of sensible and latent heat energies compatible with the heat balance at latitude ϕ . R_a is the tropospheric radiative net cooling rate and is depicted in Fig. 23. (E + H_{Γ}) includes the latent and sensible heat parameters respectively, but these parameters are not part of this study and will be considered to be contained in Q_{Va} of Eq. (6-9) for simplicity.

Lat.	R _N	R _t	$R_N - R_t$
20S	.1179	.1030	.0149
15	.1260	.1085	.0175
10	.1293	.1074	.0219
5	.1456	.1248	.0208
0	.1443	.1215	.0228
5	.1337	.1097	.0240
10	.1230	.0969	.0261
15	.1084	.0826	.0258
20	.0907	.0644	.0236
25	.0603	.0367	.0236
30	.0441	.0293	.0148
35	.0221	.0113	.0108
40	.0081	.0052	。0029
45	0137	0107	0030
50	0273	0190	0083
55	0426	0168	0258
60	0566	0290	0256
65N	 0563	 0106	0457
Wt. Avg.	.0602	.0476	.0126

TABLE XIII. Computed radiative net fluxes at the top of the atmosphere (R_N) at the tropopause (R_t); and the stratospheric absorption (R_N-R_t). All parameters are listed in the zonal-annual format in ly min⁻¹.

The Northern Hemisphere cosine-weighted R turns out to be

$$\frac{1}{R_a} = -0.1551 \text{ ly min}^{-1}$$

and if it is temporarily attributable to mean storage-cooling \overline{S}_a of the troposphere alone, the mean storage rate corresponds to a temperature-change rate given by

$$(\frac{\delta T}{\delta t}) = 4.1 \frac{1440(\overline{R})}{\Delta P_{mb}} \circ C/day$$
 (6-10)

with ΔP_{mb} = 800 mb in the troposphere. The resultant cooling rate (6-10) over the tropospheric depth, 800 mb, with zero lateral flux divergence, is approximately -1.14°C per day averaged over the mean cm² tropospheric column.

Thus the general circulation of the atmosphere would have to function to bring about the atmospheric heat balance. This process would require the proper flux-convergence $Q_{\rm va}$ to offset the annual radiative loss of the average cm² column of the troposphere.

2. Zonal-annual Heat Budget of the Ocean

An equation similar to (6-9) may be written for the zonal-annual heat budget for the ocean as a function of $R(\phi)$.

$$Q_{VO} + S_{O} = R - (E + H_{\Gamma})$$
 (6-11)

Here, $S_{_{
m O}}$ is the storage rate of the ocean water mass and $Q_{_{
m VO}}$ is the required mean oceanic heat flux divergence for a balance at latitude ϕ . The primary ocean mass heating parameter is the net radiative heating flux at the ocean surface, R (Fig. 23), and (E + H $_{\Gamma}$) is for convenience considered part of $Q_{_{
m VO}}$.

The Northern Hemisphere annual weighted mean value of \bar{R} is

$$\bar{R} = 0.2027 \text{ ly min}^{-1}$$

which corresponds (Table XI) to a mean radiative heating rate in the water-mass column. It should be noted that this mean heating rate is noticeably larger than \bar{R}_a and of opposite sign to the corresponding tropospheric radiative cooling effect ($\bar{R}_a = -0.1551$ ly min⁻¹). However, if the three-dimensional oceanic flux divergence of both sensible and latent heat is considered, the oceanic heat balance should result.

VII. CONCLUSIONS

The major change in this radiative model from the model evolving from (A,B,C,D) was the introduction of tuned cloud reflectances. This innovation brought the resultant model-albedos into agreement with satellite climatology for comparable data dates.

Gridpoint comparisons at the top of the atmosphere of model net flux F_T and of the net incoming model insolation \mathcal{Q}_N were made with similar parameters from Raschkes' satellite climatology (1973). Closer agreement was obtained between \mathcal{Q}_N^{MOD} and \mathcal{Q}_N^{RAS} than in any of the preceding studies (A,B,C,D). Similarly, close agreement in a least-squares sense was achieved here between F_T^{MOD} and F_T^{RAS} primarily because of an improved formulation for the F_T^{-1} -computation than was used in earlier studies. Finally the ocean-atmosphere system net flux

$$R_N = Q_N - F_T$$

has only a small least-square error when model and satellite results are compared with properly stratified gridpoint and time cross-sections.

In this study, mid-latitude cloud reflectances were also tuned to obtain closer agreement between the global albedo and corresponding values from satellite climatology. The result was to systematically increase $Q_{\rm N}$ relative to Raschke's values. This result was undoubtedly due to a mismatch between the model clouds and those involved in the climatological average. The conclusion reached is that if tuning of cloud reflectances of this nature is to be attempted in mid-latitudes

using FNWC soundings, more accurate cloud-parameterization formulas should be established against observed cloud-cover amounts for identical experiment-periods similar to GATE. If then further cloud-reflectance tuning is necessary, it could proceed from a more certain knowledge of the "ground truth" provided by these experiments.

```
20000
                                        THE FOLLOWING READ STATEMENT APPLIES TO THE CLIMATOLOGY DATA OF RASCHKE ET AL. AS USED ROUTINE REFT.
                                                                        TITINE REFT.

DC 9 ISC=1,92
READ(5,502) ALBR4S(ISO),F2RAS(ISO)
CCNTINUE
DC 66 ISO=1,93
DU 10 I=1,11
FEAD(17,500,END=99) (DATA(I,K),K=1,2),O(I),QS(I),
(CONTINUE
IF(ISEA-EQ.*AND.*ISC.*EQ.*25) LABI=24
CALL ANGLE(CZ,SECZ,ISO,LABI,DEC)
IF(ISEA-EQ.*AND.*ALAT.*E.*25.) RASVAL =.4
IF(ISEA-EQ.*AND.*ALAT.*E.*25.) RASVAL =.8
IF(ISEA-EQ.*AND.*ALAT.*E.*25.) RASVAL =.65
IF(ISEA-EQ.*AND.*ALAT.*E.*25.) RASVAL =.66
IF(ISEA-EQ.*AND.*ALAT.*E.*25.) RASVAL =.66
IF(ISEA-EQ.*A.*AND.*ALAT.*E.*25.) RASVAL =.67
IF(ISEA-EQ.*AND.*ALAT.*E.*25.) RASVAL =.67
IF(ISEA-EQ.*A.*AND.*ALAT.*E.*25.) RASVAL =.67
IF(ISEA-EQ.*AND.*ALAT.*E.*25.) RASVAL =.67
IF(ISEA-EQ.*A
                                           20
66
68
99
     C
                                                                               SLERDUTINE ABSORB(C1,C2,WT)
CCMMCN/ABS/ FA2,ALPHAG,CZ,SECZ,FS,FADJ
CCMMON/RASKC/RASVAL
IF(C1.GT..5.OR.C2.GT..5) GO TO 20
ALPHAR=(.085+(.25074*ALOG10(SECZ)))
IF(ALPHAR.GT.1.000) ALPHAR=1.000
```

```
A=((1.-ALPHAR)*(1.-ALPHAG))/(1.-(ALPHAR*ALPHAG))
                                   SOL=A*FS
GC TO 21
                                 GC TO 21
R1=.54*RASVAL
R2=.66*RASVAL
IF(C1.LT..5) R1=0.0
IF(C2.LT..5) R2=0.0
A=(1.-R1)*(1.-R2)*(1.-ALPHAG)
C=1.0-((R1*R2)+(R2*ALPHAG)+(R1*ALPHAG))
C=2.6*R1*R2*ALPHAG
SCL=(A*FS)/(D+C)
IF(C1.LT..1.AND.C2.LT..1) CALL ABOO(WT,
IF(C1.LT..9.AND.C2.LT..1) CALL ABOO(WT,
IF(C1.LT..9.AND.C2.LT..9) CALL ABOO(WT,
IF(C1.LT..9.AND.C2.LT..9) CALL ABOO(WT,
IF(C1.LT..9.AND.C2.LT..9) CALL ABOO(WT,
                                                                                                                                                                                                                    ABOO(WT, SQL)
ABOO(WT, SQL)
ABOO(WT, SQL)
                  21
                                                                                                                                                                                                                      ABII(WT, SCL)
                                   RETURN
                                   END
C
                                 SUBROUTINE TD(ANS,IND,N1,N2,SEC,C)
CCMMGN ET(11),DATA(11,5),CL(2)
U=DATA(N1,4)- DATA(N2,4)
A=.303
ANS=C*((U*SEC)**A)
IF(IND.GT.10.) ANS=1.0-ANS
RETURN
ENC
C
                                  SUBROUTINE BBB
COMMEN BT(11), DATA(11,5), CL(2)
SIGMA=1.170403
                                SIGMA=1.170403

E=1.E-7

DO 10 I=1,11

A=CATA(I,2)+273.16

BT(I)=(A**4)*SIGMA*E

CONTINUE

CATA(2,4)=(DATA(1,4)+DATA(3,4))/2.00

DATA(2,5)=(DATA(1,5)+DATA(3,5))/2.00

RETURN
                                   END
                                SLPROUTINE ANGLE(CZ, SECZ, IS, L2, D)

CCMMON/TRIG/ST, CT, SD, CD, ALAT

R=57.29578

H=35.0/R

IF(IS.LE.25) H=55.0/R

IF(IS.GE.26.AND.IS.LE.50) H=10.0/R

A=973.752

S=2.0

IF(IS.GE.26.AND.IS.LE.50) S=1.0

AK=L2+1

IF(IS.GE.68) AK=63-L2

B=(S*((32.-AK)**2))

ST=(A-B)/(A+B)

CT=(A-B)/(A+B)

SC=SIN(D)

CC=COS(D)

CH=COS(H)

CZ=(ST*SD)+(CT*CD*CH)

SECZ=1.00/CZ

TANT=ST/CT

ALAT=(ATAN(TANT))*57.29578

RETURN
C
                                   RETURN
                                   END
C
                                 SLBROUTINE ABOO(WT,SOL)
COMMON/ABS/FA2,ALPHAG,CZ,SECZ,FS,FADJ
CALL TD(U24,0,9,7,SECZ,.271)
CALL TC(U26,0,9,5,SECZ,.271)
CALL TC(U28,0,9,3,SECZ,.271)
CALL TC(U210,0,9,1,SECZ,.271)
CALL TD(U10,12,9,1,SECZ,.271)
A24=FA2*U24
```

```
A46=FA2*(U26-U24)
A68=FA2*(U28-U26)
A610=FA2*(U210-U28)
TRANA=FA2*U10
                        ATTO=TRANA*(1.-ALPHAG)
REFA=FA2-A24-A46-A68-A810-ATTO
CALL REFT(1,A24,446,A68,A810,ATTO,TRANA,REFA,SUL,WT)
                         RETURN
                         END
C
                        SUBROUTINE ABIO(WT,SOL)
CCMMON/ABS/FA2,ALPHAG,CZ,SECZ,FS,FADJ
CCMMON/RASKC/RASVAL
R1=.46*RASVAL
                       A1=.20

CALL TD(TD24,12,9,7,SECZ,.271)

CALL TD(TD08,12,5,3,1.6667,.271)

CALL TD(TD610,12,5,1,1.66667,.271)

CALL TD(TD810,12,3,1,1.6667,.271)

F4D=FA2*TD24

F4U=R1*F4D

F2L=F4U*TD24

A24=FA2+F4D*F4U+F2U

A46=F4D*A1

F6D=F4D*(1.-R1-A1)

F8D=F6D*TD68

F10D=F6D*TD68

F10D=F6D*TD610

F10U=F10D*ALPHAG

F8U=F10U*TD610

F6U=F10U*TD610

F6U=F10U*TD610
                         Al=.20
CALL T
                         FEDD=FEU*RI
                        F8DD=F6DD*TD68
F10DC=F6DD*TD610
A68=F6D-F8D+F8U-F6U+F6DD-F8DD
A810=F8D-F10D+F10U-F8U+F8DD-F10DD
                         AIIO=(F10D*(1.-ALPHAG))+F10DD
TRANA=F10D+F10DD
                        REFA=FA2-A24-A46-A68-A810-AI10
CALL REFT(2,A24,A46,A68,A810,AI10,TRANA,REFA,SOL,WT)
                         RETURN
                         ENC
C
                       SUBROUTINE ABO1(WT, SOL)
CCMMCN/ABS/FA2, ALPHAG, CZ, SECZ, FS, FADJ
CCMMON/RASKC/RASVAL
R2=.50*RASVAL
A2=.30
CALL TD(TD24:12,9,7,SFCZ...271)
                       A2=.30
CALL TD(TD24:12,9,7,SFCZ:271)
CALL TD(TD26;12,9,5,SECZ:271)
CALL TD(TD28;12,9,3,SECZ:271)
CALL TD(TD910;12,2,1,1.66667:271)
CALL TD(TD48;12,7,3;SECZ:271)
CALL TD(TD48;12,7,3;SECZ:271)
CALL TD(TD48;12,7,3;SECZ:271)
F4D=FA2*TD26
F6D=FA2*TD26
F6D=FA2*TD28
F8U=F8D*R2
F6U=F8D*R2
F6U=F8U*TD48
F2L=F8U*TD48
F2L=F8U*TD48
F2L=F8U*TD48
F2L=F8U*TD48
F2L=F8U*TD48
F2L=F8U*TD48
F2L=F8U*TD910
F10U=F10D*ALPH46
F9U=F10U*TD910
F10U=F10D*ALPH46
F9U=F10U*TD910
F10D=F9C*TD910
                         F9DD=F9U*R2
F10DC=F9DD*TD910
                         A810=(F80*A2)+F9D-F10D+F10U-F9U+F9DD-F10DD
TRANA=F10D+F10DD
                         AI10=(F10D*(1.-ALPHAG))+F10DD
```

```
REFA= FA2-424-446+A68-A810-A110
                CALL REFT (3, A24, A46, A68, A810, A110, TRANA, REFA, SOL, WT)
                RETURN
                END
C
               SUBROUTINE ABI1(WT,SQL)
CCMMON/ABS/FA2.ALPHAG,CZ,SECZ,FS,FADJ
CCMMCN/RASKC/RASVAL
R1=.46*RASVAL
R2=.50*RASVAL
               A1=.20

A2=.30

CALL TD(TD24,12,9,7,S5CZ,.271)

CALL TD(TD68,12,5,3,1.6667,.271)

CALL TD(TD910,12,2,1,1.6667,.271)

F4D=FA2*TD24
                F4U=R1*F4D
               F2U=F4U*TD24
A24=FA2-F4D+F4U-F2U
A46=F4D*A1
               F6D=F4D*(1.-R1-A1)
F8C=F6D*TD68
F8U=F8C*R2
F6CD=F6U*R1
F8DD=F6DD*TD68
               A68=F6D-F8D+F8U-F6U+F6DD-F8DD
F9D=F8D*(1.-R2-A2)+F8DD*(1.-A2)
F1GD=F9D*TD910
                F10U=F10D*ALPHAG
               F$L=F10U*TD910
F$DD=F$U*R2
F10DD=F9DD*TD910
               A810=((F8D+F8DD)*A2)+F9D-F10D+F10U-F9U+F9DD-F10DD
AI10=(F10D*(1.-ALPHAG))+F10DD
TRANA=F10D+F10DD
REFA=FA2-A24-A46-A68-A810-AI10
                CALL REFT(4, A24, A46, A68, A810, A110, TRANA, REFA, SOL, WT)
                RETURN
                END
C
                SUBPOUTINE REFT(NSUB, A24, A46, A68, A810, AI10, TRANA,
             IREFA, SOL, WT)
C
               CCMMON BT(11), DATA(11,5), CL(2)
COMMON/ABS/ FA2, ALPHAG, CZ, SECZ, FS, FADJ
CEMMEN/TRIG/ ST, CT, SD, CD, ALAT
CEMMEN/ARM/ RM
COMMON/RASK/ ALBRAS(93), F2RAS(93), ISO
CEMMEN/PASKC/ RASVAL
CEMMEN/FACT/ K, ISEA
IF(NSUB.GT.1) GO TO 10
CA24=0.0
CA24=0.0
       CA24=0.0

CA46=0.0

CA610=0.0

CA110=0.0

CSI10=0.0

CREF=0.0

10 CA24=CA24+A24*WT

CA46=CA46+A46*WT

CA68=CA68+A68*WT

CA610=CA810+A810
               CA68=CA68+A68*WT

CA810=CA810+A810*WT

CA110=CA110+A110*WT

CSI10=CSI10+SDL*WT

CREF=CREF+((FS-SDL)*WT)+REFA*WT

CALL IR(NSUB, A10, A8, A6, A4, A2, F10, F8, F6, F4, F2, WT, FT)

IF(NSUB, LT.4) RETURN

AEG=(CA110+CSI10)/FADJ

TAND=SC/CD

TANT=ST/CT

TAN=-TAND*TANT
                TAN=-TAND*TANT
```

```
SINH=SIN(H)
BARCOS= ((ST*SD*H)+(CD*CT*SINH))/3.14159
F200=1.92/RM
QAVE=F200*BARCOS
                          AF2=-F2

GREF=(CREF*QAVE)/(FADJ*.9600)

BALT= GAVE-QREF-F2

G24=(CA24*QAVE)/(FADJ*.9600)
                          AF24=-(F2-F4)
BAL24=G24+AF24
Q46=(CA46*QAVE)/(FADJ*.9600)
AF46=-(F4-F6)
                        Q4E=(CA46*QAVE)/(FADJ*.9600)
AF46=-(F4-F6)
BAL46=C46+AF46
Q6E=(CA68*QAVE)/(FADJ*.9600)
AF68=-(F6-F8)
BAL68=G68+AF68
Q6E=(CA68*QAVE)/(FADJ*.9600)
AF610=-(F8-F10)
BAL810=C810+AF810
CA26=(ABG*QAVE)/.9600
BAL8=-GA8G-F10
CA26=CA24+CA46
Q26=(.5*CA26*QAVE)/(FADJ*.9600)
AF10=-F10
CA26=CA24+CA46
CA26=CA24+CA46
CA26=CA24+CA46
CA26=CA24+CA46
Q26=(.5*CA26*QAVE)/(FADJ*.9600)
AFA126=CA68+CA810
Q610=-.5*(F6-F10)
BAL610=Q610+AF610
CIF24=BAL24-BAL26
DIF68-BAL68-BAL610
DIF88-BAL68-BAL610
AL8=CREF/FADJ
ALBDIF=-F1-F2RAS(ISO)
RNRAS=(CAVE*1.041667*(1.-ALB))-FT
DIFRN=RNMOD-RNRAS
RETURN
BND
                          RETURN
                          END
C
                          SUBROUTINE IR(NSUB, F10, F8, F6, F4, F2, E10, E8, E6, E4, E2,
                      1 NT, ET)
C
                          IF(NSUB.GT.1) GD TO 10
                          OFF=1.0
                          E10=0.0
EE=0.0
                        EE=C.0

E6=0.0

E4=0.0

E2=0.0

E7=0.0

CALL FF8(F8,0FF)

CALL FF6(F6,0FF)

CALL FF6(F4,0FF)

CALL FF4(F2,0FF)

CALL FF70P(F7,0FF)

CALL FFT0P(F7,0FF)

E10=E10+WT*F10

E8=E8+WT*F8

E6=E6+WT*F6

E4=E4+WT*F4
                         E6=E6+WT*F6
E4=E4+WT*F4
E2=E2+WT*F2
ET=ET+WT*FT
IF(NSUB.LT.4)
E10=E10/1440.
E8=E8/1440.
E6=E6/1440.
E4=E4/1440.
                                                                                       RETURN
```

H=ARCOS (TAN)

```
E2=E2/1440.
ET=ET/1440.
RETURN
                                        END
                                      €
                                                                                                                                                                                                                                                                        TO 10
                               A1=((BT(1)-BT(5))-.5*(B1+B2))
B1=BT(10)*WAVE
B2=(BT(9)-BT(10))*(EW2+EW1)
B3=(BT(7)-BT(9))*(EW4+EW2)
B4=(BT(5)-BT(7))*(EW6 +EW4)
A2= (BT(5)-(.5*(B1+B2+B3+B4)))
B1=(1.-(.5*EW9))
A3=(BT(1)-BT(2))*B1
F10=((1.-CL(2))*A1)+((1.-CL(2))*(1.-CL(1))*A2)+
1(CL(2)*A3)
EFTURN
ENC
                                        END
                               SUBROUTINE FF8(F8,OFF)
CCMMCN BT(11),DATA(11,5),CL(2)
IF(CL(1).GT..5.OR.CL(2).GT..5) GC TO 10
CALL EWC(EW68,OFF,5,3)
CALL EWC(EW48,OFF,7,3)
CALL EWC(EW48,OFF,9,3)
CALL EWC(EW18.OFF,10,3)
CALL EWC(EW18.OFF,11,3)
CALL BCUND(WAVE,OFF,11,3)
B1=EW68*(BT(3)-BT(5))
B2=(EW68+EW48)*(BT(5)-BT(7))
E3=(EW48+EW28)*(BT(7)-BT(9))
B4=(EW28+EW18)*(BT(7)-BT(10))
B5=W68+EW18)*(BT(9)-BT(10))
B5=W68+EW18)*(BT(9)-BT(10))
A1=BT(3)-(.5*(B1+B2+B3+B4+B5))
A2=(BT(1)-BT(3))*(1.-(.5*EW810))
A3=(BT(3)-BT(5))*(1.-(.5*EW810))
F8=((1.-CL(1))*A1)+((1.-CL(1))*(1.-CL(2))*A2)+(CL(1))*(A3)+(CL(1))*(A1-CL(2))*A2)
RETURN
C
                                        RÉTURN
END
                               SLBRCUTINE FF6(F6, OFF)
CCMMON BT(11),DATA(11,5),CL(2)
IF(CL(1).GT..5.OR.CL(2).GT..5) GO TO 10
CALL EWC(EW68,OFF,5,3)
CALL EWC(EW46,OFF,7,5)
CALL EWC(EW26,OFF,9,5)
CALL EWC(EW16,OFF,10,5)
CALL EWC(EW16,OFF,10,5)
CALL EWC(EW16,OFF,11,5)
B1=WAVE*BT(10)
CALL BCUND(WAVE,OFF,11,5)
B1=WAVE*BT(10)
B2=(BT(9)-BT(10))*(EW26+EW16)
B3=(BT(7)-BT(9))*(EW46+EW26)
34=EW46*(BT(5)-BT(7))
B5=EW68*(BT(3)-BT(7))
A1=(BT(3)-(.5*EW68)-BT(5))
A2=(BT(1)-BT(3))*(1.-(.5*(EW68+EW610)))
A3=(1.-(.5*EW68))*(BT(3)-BT(5))
F6=((1.-CL(1))*A1)+((1.-CL(1))*(1.-CL(2))*A2)+(CL(1))*(A1)+(CL(1))*(A2)
C
                                         RETURN
```

```
END
                                                                                                     SUBROUTINE FF4 (F4,OFF)
COMMON BT(11),DATA(11,5),CL(2)
IF(CL(1).GT...5.OR.CL(2).GT...5) GO TO 10
CALL EWC(EW48,OFF,7,5)
CALL EWC(EW48,OFF,7,3)
CALL EWC(EW44,OFF,9,7)
CALL EWC(EW14,OFF,10,7)
CALL EWC(EW14,OFF,10,7)
CALL EWC(EW14,OFF,11,7)
WAVE=WAVE*BT(10)
B1=(BT(5)-BT(7))*EW46
B2=(BT(3)-BT(5))*(EW46+EW48)
B3=(BT(7)-BT(9))*EW24
B4=(BT(9)-BT(9))*(EW14+EW24)
A1=BT(3)-(.5*(B1+B2+B3+B4+WAVE))
A2=BT(7)-(.5*(B3+B4+WAVE))
A2=BT(7)-(.5*(B3+B4+WAVE))
A3=(BT(1)-BT(3))*(1.-(.5*(EW48+EW410)))
F4=((1.-CL(1))*A1)+(CL(1)*A2)+((1.-CL(1))*(1.-CL(2))
C
                                                                                          1*A3)
RETURN
ENC
                                                                                SUBROUTINE FF2(F2,OFF)
CCMMONN BT(11),DATA(11,5),CL(2)
IF(CL(1),GT...5..OR.CL(2).GT...5) GG TO 10
CALL EWC(EW24,OFF,9,7)
CALL EWC(EW26,OFF,9,5)
CALL EWC(EW28,OFF,9,3)
CALL EWC(EW210,OFF,10,9)
CALL EWC(EW210,OFF,9,1)
CALL EWC(EW210,OFF,9,1)
CALL BCUND(WAVE,OFF,11,9)
C1=(BT(1)-BT(3))
C2=(1.-((EW28+EW210)/2.0))
A3=C1*-((EW28+EW210)/2.0))
B3=(EW24+8BT(10)
B2=EW12*(BT(9)-BT(10))
B3=(EW24+8BT(10))
B3=(EW24+8W26)*(BT(5)-BT(7))
B5=(EW24+8W26)*(BT(5)-BT(7))
B5=(EW24+8B1)
B5=(EW24+8B1)
B5=(EW24+8B1)
B5=(EW24+8B1)
B5=(EW24+8B1)
B5=(EW24+8B1)
B5=(EW24+8B1)
B7=(BT(7)-BT(9))
A1=(BT(7)-CL(2))*(1.-CL(1))+(A1*(1.-CL(1)))+(A2*(11))
B7=(A3*(1.-CL(2))*(1.-CL(1)))+(A1*(1.-CL(1)))+(A2*(11))
B7=(A3*(1.-CL(2))*(1.-CL(1)))+(A1*(1.-CL(1)))+(A2*(11))
B7=(A3*(1.-CL(2))*(1.-CL(1)))+(A1*(1.-CL(1)))+(A2*(11))
B7=(A3*(1.-CL(2))*(1.-CL(1)))+(A1*(1.-CL(1)))+(A2*(11))
B7=(A3*(1.-CL(2))*(1.-CL(1)))+(A1*(1.-CL(1)))+(A2*(11))
B7=(A3*(1.-CL(2))*(1.-CL(1)))+(A1*(1.-CL(1)))+(A2*(11))
B7=(A3*(1.-CL(2))*(1.-CL(1)))+(A1*(1.-CL(1)))+(A2*(11))
B7=(A3*(1.-CL(2))*(1.-CL(1)))+(A1*(1.-CL(1)))+(A2*(11))
B7=(A3*(1.-CL(1)))+(A1*(1.-CL(1)))+(A2*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(A1*(11))+(
C
                                                                                  SUBROUTINE FFTOP (FT,OFF)
CCMMON BT(11),DATA(11,5),CL(2)
1F(CL(1).GT...5..QR.CL(2).GT...5) GO TO 10
CALL EWC(EWO1,JFF,11,10)
CALL EWC(EWO2,JFF,11,7)
CALL EWC(EWO3,JFF,11,7)
CALL EWC(EWO3,JFF,11,3)
CALL EWC(EWO3,JFF,11,1)
B1=(EWO1+EWO3,JFF,11,1)
B1=(EWO1+EWO2)*(BT(9)-BT(10))
B2=(EWO2+EWO4)*(BT(7)-BT(9))
B3=(EWO2+EWO4)*(BT(7)-BT(7))
B4=(EWO4+EWO4)*(BT(3)-BT(7))
B4=(EWO4+EWO4)*(BT(3)-BT(5))
A1=(BT(3)-(.5*(EWO8+EWO10)))
A2=B3*(BT(1)-BT(3))
A2=(BT(7)-(.5*(EWO8+EWO10)))
FT=(A1*(1.-CL(1)))+(A2*(1.-CL(1))*(1.-CL(2)))+(A3*
END
C
C
```

```
SUBROUTINE BOUND (WAVE, CFF, N1, N2)
COMMON BT(11), DATA(11, 5), CL(2)
T=EATA(10, 2) +273.16
U=CATA(N1, 4) -DATA(N2, 4)
IF(U.LT..00001) U=.000005
AL=ALOGIO(U)
                     AL=ALOG10(U)
D=.353*AL-.44
A1=8.34*T**D
D=-.03455*AL-.705
A2=U**D
A3=(8.00/(.353*AL+3.56))
MAVE=A1*A2*A3
IF(OFF.GT.1G.) RETURN
C=CATA(N1,5)-DATA(N2,5)
D=( U+.0286)**.26
B1=.07262*(1.-(.62556*D))
B2= ALOG10(C)+(1.064)
MAVE=WAVE+B1*B2
RETURN
END
C
                     SUBROUTINE EWC(EW,OFF,M1,M2)
COMMON BT(11),DATA(11,5),CL(2)
U=DATA(M1,4)-DATA(M2,4)
D=ALOGIO(U+.010)
A1=(.240*D)+.622
                      AT=(.240~07+.022

EW=A1

IF(DFF.GT.10.) RETURN

C=CATA(M1,5)-DATA(M2,5)

B1=1.-(.62556*((U+.0286)**.26))

B2=ALDGIO(C)+1.064

Eh=Al+(.07262*81*B2)
                       RETURN
                       END
           CONTROL CARD FORMAT FOR 2/3 CLOUD DATA AND "RADIATIVE SCUNDING" DATA ON NPS-304
//GO.FT17F001 DD UNIY=3400-4, VOL=SER=NPS204, DISP=(GLO, KEFP),
// DCB=(DEN=2, RECFM=FB, LRECL=77, BLKSIZE=847), LABEL=(1, SL),
// DSN=WODSET
```

LIST OF REFERENCES

- Arakawa, A., 1972: <u>Design of the UCLA General Circulation Model</u>, Numerical Simulation of Weather and Climate Tech. Rpt. No. 7, Department of Meteorology, University of California.
- 2. Beahan, T. W., 1975: Radiational Parameterization for the FNWC Primitive Equation Model Using Data over the Oceans for 16 July 1974, M. S. Thesis, Department of Meteorology, Naval Postgraduate School, Monterey, California.
- 3. Budyko, M. I., 1956: The Heat Balance of the Earth's Surface, Leningrad, pp. 255 (Translated by N. A. Slepanova; translation distributed by U. S. Weather Bureau, Washington, D. C.)
- 4. Coulson, K. L., 1959: Radiative Flux from the Top of Rayleigh Atmosphere, Ph.D. Dissertation, Department of Meteorology, University of California, pp. 60.
- 5. Dixon, W. J., 1973: Biomedical Computer Programs, University of California Press, pp. 773.
- 6. Joseph, J. H., 1971: "On the Calculation of Solar Radiation Fluxes in the Troposphere," <u>Solar Energy</u>, Vol. 13, Pergamon Press, London, pp. 251-161.
- 7. Malkus, J. S., 1962: "Large Scale Interactions," The Sea, Vol. 1, Interscience Publishers.
- 8. Martin, F. L., 1972: Description of a Radiation Package for the Naval Postgraduate School General Circulation Model, Department of Meteorology, Naval Postgraduate School, Monterey, California.
- 9. Martin, F. L., 1975: Unpublished manuscript, Department of Meteorology, Naval Postgraduate School, Monterey, California.
- 10. Meyers, W. T., 1975: Radiational Parameterization for the FNWC Primitive Equation Model Using Data over the Oceans for 16 April 1974, M. S. Thesis, Department of Meteorology, Naval Postgraduate School, Monterey, California.
- 11. Raschke, E., Vonder Haar, T., Bandeen, W., Pasternak, M., 1973:
 "The Annual Radiation Balance of the Earth-Atmosphere System during
 1969-1970 from NIMBUS III Measurements," Journal of the Atmospheric
 Sciences, Vol. 30, No. 3, pp. 341-364.

- 12. Rodgers, C. D., 1967: "The Radiative Heat Budget of the Troposphere and Lower Stratosphere," Planetary Circulation Project Report N.A2, Department of Meteorology, Massachusetts Institute of Technology, pp. 99.
- 13. Sasamori, T., 1968: "The Radiative Cooling Calculation for Application to General Circulation Experiments," <u>Journal of Applied Meteorology</u>, Vol. 7, No. 5, pp. 721-729.
- 14. Sellers, W. D., 1965: <u>Physical Climatology</u>, University of Chicago Press, pp. 272.
- 15. Smagorinsky, J., 1960: "On the Dynamical Prediction of Large Scale Condensation by Numerical Methods," Geophysical Monograph, No. 5, American Geophysical Union, Washington, D. C., pp. 71-78.
- 16. Spaeth, W. T., Jr., 1974: Heat Budget Parameterization for the FNWC Primitive Equation Model Using Data for 16 January 1974, M. S. Thesis, Department of Meteorology, Naval Postgraduate School, Monterey, California.
- 17. Vonder Haar, T. H., Oort, A. H., 1973: "New Estimate of Annual Poleward Energy Transport by Northern Hemisphere Oceans," <u>Journal of Physical Oceanography</u>, Vol. 3, No. 2, pp. 169-172.
- 18. Warner, D. W., 1974: Heat Budget Parameterization for the FNWC Primitive Equation Model Using Data for 16 October 1973, M. S. Thesis, Department of Meteorology, Naval Postgraduate School, Monterey, California.
- 19. Yamamoto, G., 1952: "On a Radiation Chart," Science Reports of the Tohoku University, Series No. 5, pp. 9-23.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0212 Naval Postgraduate School Monterey, California 93940		2
3.	Professor F. L. Martin, Code 51Mr Department of Meteorology Naval Postgraduate School Monterey, California 93940		2
4.	CDR. Robert D. Woods 55289 N. Berry Avenue South Bend, Indiana		1
5.	Department Chairman, Code 51 Department of Meteorology Naval Postgraduate School Monterey, California 93940		1
6.	Director, Naval Oceanography and Meteorology Building 200 Washington Navy Yard Washington, D. C. 20374		1
7.	Fleet Numerical Weather Centra 1 Attn: Mr. Leo Clarke Monterey, California 93940		1

Thesis W84352 Woods tuned flee

Satellite-tuned fleet numerical weather central radiational model applied to the 1973-1974 data year over oceanic gridpoints.

185137

Thesis W84352 c.1

c.1

Woods

Satellite-tuned fleet numerical weather central radiational model applied to the 1973-1974 data year over oceanic gridpoints. 3 2768 001 90620 9 DUDLEY KNOX LIBRARY