PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2000-017352

(43) Date of publication of application: 18.01.2000

(51)Int.Cl.

C22C 1/10 C22C 1/00

C22C 1/02 C22C 47/08 C22C 23/00

(21)Application number : 10-180635

(71)Applicant: TOYOTA CENTRAL RES & DEV LAB

INC

(22)Date of filing:

26.06.1998

(72)Inventor: NISHINO NAOHISA

KAWAHARA HIROSHI SHIMIZU YOSHIHIRO

(54) MAGNESIUM BASE COMPOSITE MATERIAL

(57)Abstract:

PROBLEM TO BE SOLVED: To improve the mechanical properties of the material by incorporating spherical and/or ellipsoidal Mg2Si particles having specified average particle size dispersed into a matrix composed of Mg or an Mg alloy.

SOLUTION: This composite material is produced preferably by producing a performed body having Si particles of 3 to 100 μ m average particle size blended so as to be contained by 1 to 15 wt.% therein and a carrier and next press- impregnating the preformed body with the molten metal of Mg or an Mg alloy. Moreover, the preheating temp. of the preformed body is controlled to 400 to 800° C. In this way, only by the addition of a small amt. of the Si particles and casting at a low temp., a composite material having a high volume ratio in which fine spherical Mg Si particles are relatively uniformly dispersed can easily be obtd. This composite material is the one in which the spherical or ellipsoidal Mg2Si particles are uniformly dispersed in a volume ratio of 3 to 50%, particularly excellent in high temp. strength, rigidity and wear resistance and exhibiting low thermal expansibility.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特期2000-17352 (P2000-17352A)

(43)公開日 平成12年1月18日(2000,1.18)

(54) 【発明の名称】 マグネシウム基複合材料

(57)【要約】

【課題】マグネシウム合金溶湯の取扱える鋳造条件で、 微細、球状および/または精球状のMg2Si粒子がマ トリックス中に均一に分散し、物性および機械的性質の 優れたマグネシウム基複合材料とすること。

【解決手段】マグネシウムまたはマグネシウム合金からなるマトリックスと、前記マトリックス中に分散してなる粒径が 10μ m未満の球状および/または精球状のMg2Si粒子と、を有することを特徴とするマグネシウム基複合材料。球状および/または精球状のMg2Si粒子がマトリックス中に均一に分散し、優れた物性および機械的性質を示す。

1

【特許請求の範囲】

【請求項1】マグネシウムまたはマグネシウム合金からなるマトリックスと、

前記マトリックス中に分散してなる平均粒径が10μm 未満の球状および/または構球状のMg2Si粒子と、 を有することを特徴とするマグネシウム基複合材料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、マグネシウム基複合材料に関する。

[0002]

【従来技術】従来、高体積率のMg:Si粒子を微細均一に分散させたマグネシウム合金あるいはマグネシウム基複合材料は、優れた機械的性質を示すことが知られている (M. MABUCHI, KUBOTA, K. HIGASHI: J. Mater. Sci. 31 (1996) 1529-1535、特開平06-81068号公報等)。

【0003】鋳造によって高体積率のMg2Si粒子分散マグネシウム合金を得るためには、Si量の多いマグネシウム合金の鋳造を行わなければならない。マグネシウム合金のSiの添加量を増すとマグネシウム合金の融 20点が著しく上昇するため、溶湯の取り扱いが非常に危険(爆発、燃焼)となる。加えて、溶湯の流動性が悪化するため健全な鋳物の製造が困難である。そこで、Φ特開昭50-115617号公報では、高Si含有のマグネシウム合金を低温で加圧鋳造することによって鋳物を製造することが提案されている。また、特開平06-81068号公報では、高Si含有のマグネシウム合金を半溶融状態で射出成形することが示されている。また、②Mg2Si粒子を微細均一に分散させるために、文献E.E.SCHMID:Z.Met allkde.81(1990)11、特開平06-81068号公報では、リン 30(P)の添加が有効であることが示されている。

【0004】一方、③特開昭55-50447号公報では、炭化 珪紫ウイスカ、シリカ系、アルミナ系またはシリカーア ルミナ系繊維成形体中に、高圧鋳造法によってマグネシ ウム合金を含浸させて、マトリックス中にマグネシウム ー珪素化合物、マグネシウムーアルミニウム化合物を反 応析出させることが提案されている。

[0005]

【発明が解決しようとする課題】上記の方法では、以下の理由によってMg.Si分散によるマグネシウム基複合材料の十分な特性向上は得られない。①の高Siのマグネシウム合金を鋳造した場合、低温で高圧鋳造を行っても、半溶融状態で射出成形を行っても、Siは共晶のMg.Si、あるいは初晶のMg.Siとして晶出する。この共晶のMg.Siは層状、一方、初晶Mg.Siは粗大な塊状で、ともに角張った形状の化合物として晶出する。加えて、晶出したMg.Siは粗大化しやすい。角張った粗大なMg.Siは破壊が生じやすく、マグネシウム合金、マグネシウム基複合材料の特性向上は十分には得られない。

【0006】②のP添加によるMg,Siの微細化は、 平均粒径が10~15μm程度が限界である。③の炭化 珪素ウイスカ、シリカ系、アルミナ系またはシリカーア ルミナ系繊維とマグネシウム合金をin-situ 反応させ て、マトリックス中にマグネシウム一珪素化合物、マグ ネシウムーアルミニウム化合物を折出させた場合には、 反応生成物は、反応に寄与した繊維周辺に比較的粗大に 生成する。繊維周辺に生成した金属間化合物は、繊維と 金属間化合物との接触部でのノッチ効果により破壊が生 じやすく、強化効果にあまり寄与しない。加えて、反応 による繊維の特性劣化をもたらすために、繊維による強 化効果も低下するという不具合がある。

【0007】本発明は上記の事情に鑑みてなされたもので、マグネシウム合金溶湯の取り扱いが十分安全に行える通常の鋳造条件で、しかも、鋳造のみで、微細、球状、しかも高体積率のMg:Si粒子がマトリックス中に均一に分散し、そのMg:Siの分布状態を制御することで優れた機械的性質を有するマグネシウム基複合材料とすることを課題とする。

[0008]

【課題を解決するための手段】本発明のマグネシウム基複合材料は、マグネシウムまたはマグネシウム合金からなるマトリックスと、前記マトリックス中に分散してなる平均粒径が10μm未満の球状および/または構球状のMg.Si粒子と、を有することを特徴とする。

【0009】本発明のマグネシウム基複合材料は、平均粒径が 10μ m未満の球状および/または棺球状のMg2Si粒子をマトリックス中に含んでいる。このMg2Si粒子は、マグネシウム基複合材料形成時に、予備成形体中のSi粒子とマグネシウムおよび/またはマグネシウム合金の溶湯がin-situ反応してSi粒子の存在した場所で微細粒径のMg2Si粒子となって生成してマトリックス中に分散したものである。このためMg2Si粒子は、球状および/または棺球状を保持してマトリックス中に存在している。

【0010】マトリックス中に分布するMg2Si粒子の平均粒径を10μm未満と微細にしたことによって、従来のMg2Si粒子を含む複合材料に比べて靱性、加工性の向上、および強度が向上する。また、Mg2Si 粒子は、マトリックスの溶湯とin-situ反応で形成されるため球状および/または棛球状となり、従来技術のようにデンドライト状に形成されたMg2Siを機械的に粉砕した場合のように角張ったり、鋭角なエッジを持たないため(図6(A)のグレー状の粒子がMg2Si、矢印で示した粒子が箱球状)、ノッチ効果等による応力集中が生じることがない。一般に強化材の粒子は図7に示すように平均粒径が微細であるほど、複合材の靱性が向上することが知られている。したがって、本発明の複合材では、Mg2Si粒子の平均粒径を10μm未満と50することによって、従来材に比べて靱性、加工性の向

上、および強度の向上が期待できる。また、マトリックス中に棒状の共晶Mg2Siや塊状の初晶Mg2Siが分散している場合と比べても、ノッチ効果等による応力集中が生じにくく機械的性質の向上が得られる。

【0011】さらに従来例のPの添加等の処理では達成できないMgzSi粒子の微細化が可能となる。

[0012]

【発明の実施の形態】本発明のマグネシウム基複合材料のマトリックスに分散するMg2Si粒子は、それぞれ単独でマトリックス中に存在し、かつ比較的均一に分散 10していることが望ましい。本発明のマグネシウム基複合材料は、マグネシウム基複合材料中に1~15重量%含有されるように配合された平均粒径が3~100μmのSi粒子と担持体とを有する予備成形体を作製する工程と、前配予備成形体中にマグネシウムまたはマグネシウム合金溶湯を加圧含浸させる工程と、により製造するのが好ましい。

【0013】前記担持体は、マトリックスであるマグネシウム、マグネシウム合金、あるいはマグネシウム合金の合金元素であるアルミニウム、亜鉛、ジルコニウム等、または、優れた特性を有しMg.Siとの複合強化効果が発現される金属あるいはセラミックス等の繊維や粒子で構成するのが好ましい。前記予備成形体中に添加するSi粒子の添加量は、マグネシウム基複合材料中に重量%で1~15%含まれるように予備成形体中に添加するのが好ましい。より望ましい添加量は2~10%である。

【0014】前記予備成形体中に添加するSi粒子の平均粒子径は、3~100μm程度のものが利用でき、望ましくは10~75μmの範囲である。前記予備成形体 30中のSi粒子の分布は、複合材料において特定のMg2Si粒子の分布を得るために均一、あるいは偏在した分布とするのが好ましい。前記予備成形体中にマグネシウムまたはマグネシウム合金溶湯を加圧含浸させる際の溶湯温度は、800℃以下であることが好ましい。

【0015】前記予備成形体の予熱温度は400~800℃の範囲が好ましい。本発明のMgzSi粒子の分散状態は、組織の写真図(図6(A)のグレー状の粒子)に示すように個々のMgzSiは比較的単独にマトリックス中に存在し、かつ比較的均一に分布している。これ40により、強度および靱性の向上が期待できる。従来法による高Si含有Mg合金の鋳造ではMgzSiは、図6(B)の通常の重力等法の場合は知また地状となり。予

(B)の通常の重力鋳造の場合は粗大な塊状となり、予備成形体への高圧鋳造の場合は図6(C)に示すように繊維周辺や繊維を取り囲むように塊状のMg2Siが晶出しており、これが、接触部での応力集中や破壊の伝播を容易にしていると推定される。

【0016】担持体をアルミナ短繊維またはホウ酸アルミウィスカを用いて形成した本発明のMg2Si粒子分散マグネシウム基複合材料と、従来法によるMg2Si

分散マグネシウム基複合材料の機械的性質を比較したのが図5である。図5の本発明はいずれも従来法より引張強さが向上していることを示している。本発明のマグネシウム基複合材料は、以下に述べる方法で製造することができる。

【0017】すなわち、マグネシウム合金基複合材とし たときに重量%で1~15%の平均粒径が3~100μ mのSi粒子と、担持体とからなる予備成形体を作製す る第一の工程と、この予備成形体中にマグネシウム合金 溶湯を加圧含浸させて複合材とする第二の工程により製 造できる。前記Si粒子の添加量は、重量%で1~15 %、望ましくは2~10%である。Si粒子の添加量が 少ない場合は、マトリックス中のMg2Siの生成量も 少なく、複合材の十分な特性向上が望めない。一方、S i 粒子の添加量が多い場合、Siに対して体積率で約3 倍のMg₂Si粒子の生成により、図1(Si量と引張 強さの関係)、図2(Si量と弾性率の関係)、図3 (Si量と熱膨脹係数との関係) に示したように複合材 の靱性等が著しく低下して十分な強度が得られないので 好ましくない。適正な強度と靱性を得るためには、生成 したMg2Siの量は、体積率で3~50%の範囲が望

【0018】添加するSi粒子の粒子径は、3~100 μ m程度、望ましくは $10~75\mu$ mである。Si粒子 の平均粒径が小さい場合は、Si粒子が予備成形体中に 担持されにくく、予備成形体作製時に成形体下部に集ま ってしまうので好ましくない。したがって、成形体中に 均一にSi粒子を分散させることが困難である。また、 Si粒子の平均粒径が小さい場合には鋳造時にin-situ 反応せず、Mg溶湯中に溶け込んで共晶あるいは初晶の MgzSiとしてマトリックス中に晶出する。この共晶 あるいは初品として晶出したMgzSiは、層状あるい は塊状であり、複合材の強度向上への寄与が小さく好ま しくない。一方、Si粒子の平均粒径が大きい場合、鋳 造時にSi粒子の反応が完了せず、未反応のSiがMg 2Siに取り囲まれたような状態で残ってしまうので好 ましくない。未反応のSiが存在するとSiとそれを取 り囲むMgzSiの界面では破壊が生じやすく、複合材 の強度は著しく低下するので好ましくない。図4には成 形体の予熱温度とSi粒子径との関係においてSiの未 反応分が残存した領域を示した。これによりマトリック スの溶湯温度との要請からSiの粒子径の好ましい範囲 が規定される。

【0019】前記担持体は、マグネシウム合金との複合化によって反応等による強度低下の要因とならない金属、あるいはセラミクスの繊維、粒子等が使用できる。マトリックスを形成するマグネシウム、マグネシウム合金、あるいはマグネシウム合金の合金元素であるA1、2n、Zr等、または、優れた特性を有し、Mg.Siとの複合強化効果が発現される金属あるいはセラミクス等の繊

継や粒子等で構成することが望ましい。

【0020】前記予備成形体はSi粒子、あるいはSi粒子とSi粒子量を調整するための担持体、バインダー等からなる多孔体、または、ケース、金型等にSi粒子、担持体等を充填したものとすることが望ましい。前記予備成形体中に分散させるSi粒子の分布は、複合材料において特定のMg2Si粒子の分布を得るために均一、あるいは偏在した分布とすることが望ましい。

【0021】また、予備成形体はSi粒子量の制御が可能であれば、担持体を用いず、バインダ等のみによって 10成形されたものであってもよい。担持体の量は後工程でのハンドリングが可能であれば、成形体の空隙率が大きくなるので、少量であることが望ましい。第二の工程として、上記予備成形体中にマグネシウム合金溶湯を加圧含浸させる。このときin-situ 反応によって微細で球状のMg2Siが生成する。

【0022】高温でのMg溶湯の取り扱いは、爆発、燃焼の危険性が高いことから、注湯温度は、比較的安全に取り扱いが可能な800℃以下とすることが望ましい。このため、成形体を予熱して鋳造に用いる必要がある。予備成形体は400~800℃に予熱することが望ましい。予備成形体の予熱がこれより低温であると、予備成形体の予熱がこれより低温であると、予備成形体の容湯の含浸が困難になり、成形体の変形やせず、未反応のSiが複合材中に残ってしまうので好ましくない。また、予備成形体の予熱温度が高すぎると、Mg溶湯の注湯が危険であるとともに、生成したMg2Siの部分的な粗大化が起こるので好ましくない。予備成形体の予熱温度を400~800℃の範囲とすることにより、マグネシウム合金溶湯の含浸がスムースになり、反応も容易に生じる。

【0023】Si粒子の大きさ、予備成形体の予熱温度を調整することにより、マグネシウム合金の注湯温度を800℃以下としても、未反応のSiがない、健全なMg2Si粒子分散マグネシウム基複合材料の製造が可能である。即ち、少量のSi粒子の添加、低温での鋳造のみで、微細な球状のMg2Si粒子が比較的均一に分散した高体積率のMg2Si粒子分散Mg基複合材料が容易に得られる。

【0024】反応生成した Mg_2Si は、もとのSi粒子が存在した部位を中心に分布するため、成形体作製時にSi粒子の分布を制御すれば、 Mg_2Si 粒子の分布状態を制御することができる。したがって、 Mg_2Si による部分強化を行いたい場合には、必要部位にSi粒子を多く分布させた予備成形体を作製すればよい。上記製造方法によって、直径が 10μ m程度以下の球状、あるいは棉球状の微細な Mg_2Si 粒子が、比較的単独にマトリックス中に存在し、かつ比較的均一に分布した、 Mg_2Si 粒子の体積率 $3\sim50$ %のマグネシウム基複合材料が得られる。

【0025】本発明によって機械的性質、靱性の優れた Mg2Si粒子分散マグネシウム基複合材料が得られる。特に、高温強度、剛性、耐摩耗性に優れた、低熱膨張のマグネシウム合金複合材料である。これは、得られたマグネシウム合金複合材料が、微細で球状のMg2Si粒子がマトリックス中に比較的均一に分散し、しかも高体積率であるためである。また、成形体作製時にSi粒子の分布を偏在させることによりMg2Si粒子をマトリックス中に偏在させることもできる。

[0026]

【実施例】以下、実施例により具体的に説明する。

(実施例1) 本発明のマグネシウム基複合材は、以下の 製造方法により製造した。まず、第一の工程として、S i 粒子を分散させた多孔体の予備成形体を準備した。本 実施例では、Si 粒子の担持体としてアルミナ短繊維を 用いた。複合材としたときにアルミナ短繊維の体積率が 15%、Si の重量%が5%となるように(その他0 %、1%、2%、3%、10%の各試料)アルミナ短繊維とSi 粒子を秤量後、水中で攪拌混合した。このとき アルミナ短繊維とSi 粒子の分散状態が向上するよう に、微量の界面活性剤を添加した。さらに、微量のアル ミナバインダを添加後、それらを吸引濾過し、プレスし てアルミナ短繊維の体積率が15%となるように成形した。成形体を室温で乾燥後、1000℃で2時間焼成して予備成形体(上記の各試料)を得た。

【0027】マグネシウム溶湯を加圧含浸する第二の工程は、予備成形体を大気中で700℃に予熱後、250℃に予熱した金型に収め、マグネシウム合金溶湯を安全に取り扱いができる750℃で注湯した。次いで、900kg/cm²で60秒加圧を行い複合化した。複合化後、型から取り出して空冷した。これにより、未反応のSiがない、健全なマグネシウム基複合材料が作製できた。即ち、少量のSi粒子の添加、低温での鋳造条件のみで、図6(A)の組織の写真図に示すように微細な球状のMg2Si粒子が比較的均一にかつ高体積率で分散したマグネシウム基複合材料が得られた。

【0028】図1には上記の方法で得たマグネシウム基複合材と純マグネシウム材のSi量と引張強さの関係のグラフを示した。図1の黒印に示したようにマトリックスに純マグネシウムおよびマグネシウム合金(AM50合金)共Siの添加量が3%、5%、10%の試料は、未添加のものより室温、250℃共に引張強さが向上していることを示している。

【0029】図2は上記の方法で得たマグネシウム基複合材のSi量と弾性率および硬さの関係を示したグラフである。図2に示すようにSi量の添加量を増すと弾性率と硬さが高くなっている。図3は上記の方法で得たマグネシウム基複合材のSi量と熱膨張係数との関係を示すグラフである。熱膨脹係数は、Si量の添加量の増加50と共に低下している。

【0030】図4には、Siの反応性に及ぼすSi粒子径と成形体予熱温度との関係を示した。〇印は製造複合体中に未反応Siが無い場合であり、×印は未反応Siが存在する場合である。本実施例では、予備成形体として上記の方法による繊維成形体を準備したが、溶湯の含浸が可能なもので、Si粒子が分散した多孔体であれば、その製法、構造等はいかなるものでもよい。

【0031】本実施例では、アルミナ短繊維によるマグネシウム基複合材料の強化効果も加味し、Mg2Si粒子のハイブリッド複合強化を期待してアルミナ短繊維の10体積率を15%とした。図6(A)に本実施例の複合材料組織の写真図を示した。これは、Si粒子とマグネシウム合金溶湯を、比較的低温の鋳造条件で、しかも、短時間の高圧鋳造によってin-situ反応させたことにより得られたものである。また、本法は高圧鋳造による液相反応であるため、反応による体積膨張、収縮による欠陥が生じにくく、加えて冷却が比較的速いため、生成したMg2Si粒子の粗大化も生じにくい。

【0032】強化粒子は図7に示すように微細であるほど複合材の靱性が向上するため、本発明のように微細な 20 Mg2Si粒子は強度の向上が期待できる。したがって本複合材の機械的性質の向上は、従来法のPの添加等では達成できないものである。Mg2Si粒子の平均粒径を10μm以下とすることによって、従来材に比べて靱性、加工性の向上、および強度の向上が期待できる。また、Mg2Si粒子は球状、あるいは棺球状であり、角張っておらず、鋭角なエッジを持たないため、棒状の共晶Mg2Siや塊状の初晶Mg2Siに比べて(図6

(B) および(C))、ノッチ効果等による応力集中が生じにくい。このことも、複合材の靱性および強度向上 30の大きな要因となる。さらに、従来法による共晶、あるいは初晶のMg.Siは、繊維周辺や繊維を取り囲むように晶出しており、これが、接触部での応力集中や破壊の伝播を容易にしていた。

【0033】本複合材では、平均粒径が $2\sim3\mu$ mのM g₂S_iは比較的単独にマトリックス中に存在し、かつ比較的均一に分布していた(図6(A))。これにより、複合材の強度および靱性の向上が期待できる。本方法によって得られたMg₂S_i分散マグネシウム基複合材料と、比較例である従来法によるMg₂S_i分散マグネシウム基複合材料の機械的性質の比較を示す(図5)。

【0034】比較例のマグネシウム合金複合材は、アルミナ短繊維予備成形体 (Vſ15%)にMg-3%Si合金を、本法と同様の鋳造条件で高圧鋳造したものである。その組織を図6 (C)に示す。比較例では塊状のMg.Siが繊維を取り囲むように晶出している。本実施例で得られた複合材は、図5に示した比較例の従来の複合材に比べて機械的性質、靱性の優れたMg.Si分散マグネシウム基複合材料である。特に、高温強度、剛

性、耐摩耗性に優れた、低熱膨張のマグネシウム合金複合材料であった。これは、得られたマグネシウム合金複合材料が、微細で球状のMg2Si粒子が比較的均一に分散し、しかも高体積率であるためである。

【0035】(実施例2)担持体としてホウ酸アルミニウムウイスカを用いた。ホウ酸アルミニウムウイスカの直径は約 1μ m、長さが約 10μ mと微細であるため、より微細なSi粒子の担持が可能であった。そこで、平均粒径 10μ mのSi粒子を用い、実施例1と同様に成形体を作製し、加圧鋳造により複合材を得たこの複合材の組織の写真図を図8に示した。

【0036】得られた複合材では、図6(A)の実施例 1の場合より均一にMg2Siが分散しており、優れた 機械的性質(図5)を示した。

(実施例3) 担持体としてMg粉末とAl合金粉末を4:1で混合した混合粉を用いた。これに、Si粒子を3wt%添加し、混粉した後、圧粉成形して空隙率40%の圧粉成形体を作製した。MgおよびAl合金粉末の表面酸化、窒化を防止するために、アルゴン雰囲気中にて500℃で予熱した。金型温度300℃、注湯温度800℃で加圧鋳造して、複合材を得た。

【0037】得られた複合材は図9の組織写真図に示すようにマグネシウム粉末周辺のマグネシウム合金中に平均粒径 $3\sim5~\mu$ mのM g $_1$ S $_1$ が分散していた。また、A1 合金粉末の周囲にはA1-M g 化合物が生成していた。この複合材はセラミクスを含まないことから、後加工の容易な高性能なマグネシウム合金基複合材である。【0038】

【発明の効果】本発明のマグネシウム基複合材は、マトリックス中に平均粒径 10μ m未満の微細で球状および/または棺球状の Mg_2Si 粒子が分散しているので、この Mg_1Si 粒子により材料の靱性・強度がより向上した。特に、高温強度、剛性、耐摩耗性に優れた、低熱膨張のマグネシウム合金複合材料である。これは、得られたマグネシウム合金複合材料においては、微細で球状および/または棺球状の Mg_2Si 粒子を比較的均一に分散し、しかも高体積率であるためである。

【図面の簡単な説明】

【図1】実施例の複合材の引張強さに及ぼすSi量の影響を示すグラフである。

【図2】実施例の複合材の弾性率と硬さに及ぼすSi量の影響を示すグラフである。

【図3】実施例の複合材の熱膨張係数に及ぼすSi量の 影響を示すグラフである。

【図4】実施例の複合材のSiの反応性に及ぼす成形体 50 予熱温度とSi粒子径との関係を示すグラフである。 【図5】実施例および比較例の複合材の引張強さを比較した棒グラフである。

【図6】(A)本実施例複合材の組織中のMg.Si粒子分散を示す写真図である。(B)従来例の高Si含有Mg合金を重力鋳造した場合のMg.Siの分散を示す組織の写真図である。(C)従来例のアルミナ繊維予備成形体に高Si含有Mg合金を高圧鋳造した場合のMg*

*2Si粒子の分散状態を示す組織写真図である。

【図7】複合材における強化材粒子径と引張強さとの関係を示すグラフである。

【図8】ホウ酸アルミニウムウィスカを担持休としたときの複合材の組織の写真図である。

【図9】マグネシウム粉末を担持体としたときの複合材 の組織の写真図である。

(B) 20μm

(B) 20μm

[⊠9] 20µm

【手続補正書】

【提出日】平成10年8月18日 (1998.8.1

8)

【手続補正1】

【補正対象書類名】図面

【補正対象項目名】図6 【補正方法】変更 【補正内容】 【図6】

【手続補正2】 【補正対象書類名】図面 【補正対象項目名】図8

【補正方法】変更 【補正内容】 【図8】

図面代用写真

10 µm

【手続補正3】 【補正対象書類名】図面

【補正対象項目名】図9

. 図面代用写真

*【補正方法】変更 【補正内容】 【図9】

20 µm

フロントページの続き

(72)発明者 清水 吉広

愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 Fターム(参考) 4K020 AA21 AA25 AC02

Family list 1 application(s) for: JP2003211260 (A)

METHOD FOR INJECTING LIGHT METAL MATERIAL AND INJECTING UNIT IN LIGHT METAL INJECTION-FORMING

MACHINE

Inventor: FUJIKAWA MISAO ; FUJIWARA NARIYUKI

Applicant: SODICK PLASTECH CO LTD; KATAYAMA SEIKO KK IPC: B22D21/04; B22D17/00; B22D17/20; (+12)

Publication info: JP2003211260 (A) — 2003-07-29

Data supplied from the esp@cenet database — Worldwide