

C-SKY FMX7A 开发板用户手册

版本更新记录

版本号	说明	更新时间	作者
1.0	初稿完成	2017-05-16	xiangwenyang
2.0		2018-05-30	huanghuanhuan

1 认识开发板

FMX7A FPGA 开发板为 C-SKY 设计,主要用于验证和评估 C-SKY 系列 CPU 核,并用以开发和验证 C-SKY MCU 系统软硬件环境,以及演示 C-SKY 软件应用生态。板上集成 ARTIX-7 系列最高容量 FPGA 芯片: XC7A200T-FBG484-2,集成了 NOR-FLASH 和 PSRAM 存储芯片,扩展了 8 个 YoC 接口,并集成一些用户可用的按键、LED 等外设。

高能效 FPGA 芯片

- 215K Logic Cells
- 740 个 DSP48E1 Slice
- 13Mb 的 Block RAM
- 10 个 CMT,每个 CMT 包括 MMCM x1 + PLL x1

大容量板子存储

- 32MByte 并行 NOR-FLASH, 32 位数据宽度
- 16MByte 并行 PSAM, 32 位数据宽度
- 数据总线和地址总线分离
- NOR-FLASH 和 PSRAM 复用地址线和数据线

方便的 C-SKY 嵌入式软件调试环境

- 板上集成 CPU 调试器,适配 CDK 集成开发环境
- 也可使用外置其它 C-SKY 调试器

灵活的 FPGA 配置方式

- 使用板上 Micro-SD 卡, 通过 PS 模式配置
- 板载 SD 卡读卡器功能可直接连电脑复制文件
- 使用板上 SPI-FLASH 存储器, 通过 AS 模式配置
- 使用 Xilinx JTAG 接口,通过 Xilinx 调试器配置

大量用户可用的 IO

- 两个时钟源 20MHz + 48MHz, 两个按键复位源
- 4个4个用户按键,8位个拨码开关
- 1 个 RGB LED
- 3组 UART 专用引脚,连接 TTL 串口线
- 8 组连接方式完全一致的 YoC 接口

完整的 C-SKY SoC 参考设计

- SoC 平台可覆盖板上所有外设,提供 RTL 源码
- 完整的配套软件测试例程

图 1 开发板功能框图

C-Sky Confidential

The information contained herein is confidential and proprietary and is not to be disclosed outside of Hangzhou C-Sky Microsystems except under a Non-Disclosure Agreement (NDA).

1.1订货信息

型号	FMX7A
外包装	25x20x7cm 纸盒包装
	开发板 1块
	YoC IO 接口自测试子板 1块
	Micro-SD 卡 1 张
	5V@3A 电源适配器 1 台
装箱单	Type-A 转 Type-B USB 延长线 1条
	USB 转 TTL 串口线 1条
	亚克力板 1块
	尼龙螺柱+尼龙螺丝 13 对
	黄色长柄跳线帽 1 枚

2 安装开发板

按照上图所示方法,将配件安装到开发板上。具体步骤为:

- 1. 在开发板上的 8 个 M3 规格的机械孔下方安装 8 个尼龙螺柱,上方用尼龙螺丝拧紧;
- 2. 如图所示, 在开发板上与亚克力板对应的 5 个孔位再各安装一个尼龙螺柱, 拧紧;
- 3. 安装黄色长柄跳线帽;
- 4. 安装亚克力板,注意方向和正反面,安装亚克力板之前,请先将其表面保护膜揭下;
- 5. 在亚克力板上面 5 个孔位,使用 5 个尼龙螺丝安装到第 2 步中的 5 个尼龙螺柱上,拧紧;
- 6. 安装 SD 卡到开发板背面 SD 卡槽上。
- 7. 完成安装。

3 给开发板上电

按照上图所示:

- 1. 连接电源适配器到开发板上的电源接口;
- 2. 接通电源之后,可以看到开发板上的 D7 绿色 LED 会成为呼吸灯,一直渐明渐暗的变化;
- 3. 然后轻按一下开发板上的 K8- "Power" 按键;
- 4. 板上 D3 LED 会绿灯常亮,表示 FPGA 已供电

4 使用 Micro-SD 卡配置 FPGA

在配置 FPGA 之前,首先按照上一章所述**给开发板上电**。然后按照如下步骤配置 FPGA:

) 文件夹 (7)

~ 设备和驱动器 (7)

- 1. 将开发板上靠近电源接口的 方口 USB 口连接到电脑上
- 2. 黄色长柄跳线帽必须连接到 J15 接口的 PS 模式

搜索"此电脑"

本地磁盘 (D:)

- 3. 在"我的电脑"上会多出一 个可移动存储设备,容量就是 Micro-SD 卡的容量
- 4. 将编译好的 bit 文件重命名为 "cfg.bit" 并复制到上述可移动 存储设备中。文件名一定要是: cfg.bit
- 5. 等待复制完成,速度较普通 读卡器要慢,请耐心等待
- 54.4 GB 可用 共 200 GB 44.1 GB 可用, 共 300 GB 本地磁盘 (E:) CD 驱动器 (F:) 279 GB 可用, cfg.bit U盘(G:) DVD RW 驱动器 (I:) 473 MB 可用, 共 482 + 复制到 U 盘 (G:)
- 6. 轻按开发板上 "K6-RE-PROG" 按键:
- 7. 板上 D7 LED 等开始快速闪 烁,表示正在配置 FPGA
- 8. 配置完成之后, D7 LED 停止 闪烁, D1 LED 常亮绿色, 表示配 置正确

5 板上外设资源

5.1时钟源和复位源

板上集成了两个有源晶振,作为 FPGA 逻辑的时钟源;两个按键作为复位源,与 FPGA 连接关系如下表所示:

时钟源	值	FPGA 引脚		
OSC2	20MHz	B17		
OSC3	48MHz	E19		
复位源	值	FPGA 引脚		
K1	按下低电平	W11		
K2	按下低电平	Y11		

5.2存储器

板上集成了 2 片 NOR-FLASH 芯片: S29GL128S,和 2 片 PSRAM 芯片: EM7644SU16ASZP。FLASH 和 PSRAM 的数据总线都是 32 位宽,并且数据总线复用,地址总线也是复位的。FPGA 可输出两路 CS 芯片分别控制 FLASH 和 PSRAM。FLASH 与 PSRAM 和 FPGA 的连接关系如下表所示:

信号名	FLASH U4	FLASH U5	PSRAM U6	PSRAM U7	FPGA 引脚
FLASH_NWP	U4. 16	U5. 16			U1. L6
FLASH_NRST	U4. 14	U5. 14	_	_	U1. L5
FLASH_NCE	U4. 32	U5. 32	_	_	U1.M1
MEM_NOE	U4. 34	U5. 34	U6. A2	U7. A2	U1. G1
MEM_NWE	U4. 13	U5. 13	U6. G5	U7. G5	U1.L3
PSRAM_NCE	-7		U6. B5	U 7. B5	U1. D2
PSRAM_NZZ			U6. A6	U7. A6	U1. D1
PSRAM_BSELO	-		U6. A1		U1.B1
PSRAM_BSEL1	-		U6. B2		U1. C2
PSRAM_BSEL2				U7. A1	U1. A1
PSRAM_BSEL3				U7. B2	U1.B2
DATA[0]	U4. 35		U6. B6		U1. T1
DATA[1]	U4. 37		U6. C5		U1. T4
DATA[2]	U4. 39		U6. C6		U1. T3
DATA[3]	U4. 41		U6. D5		U1. T5
DATA[4]	U4. 44		U6. E5		U1. T6
DATA[5]	U4. 46		U6. F5		U1. R2

DATA[6]	U4. 48		U6. F6		U1. R3
DATA[7]	U4. 50		U6. G6		U1. R6
DATA[8]	U4. 36		U6. B1		U1. U6
DATA[9]	U4. 38		U6. C1		U1. U3
DATA[10]	U4. 40		U6. C2		U1. U5
DATA[11]	U4. 42		U6. D2		U1. U2
DATA[12]	U4. 45		U6. E2		U1. U1
DATA[13]	U4. 47		U6. F2		U1. V3
DATA[14]	U4. 59		U6. F1	-	U1. V4
DATA[15]	U4. 51		U6. G1	- /	U1. V2
DATA[16]		U5. 35		U7. B6	U1. Y3
DATA[17]		U5. 37		U7. C5	U1. Y4
DATA[18]		U5. 39	//	U7. C6	U1. Y6
DATA[19]		U5. 41	-	U7. D5	U1. W1
DATA[20]		U5. 44	/	U7. E5	U1. W4
DATA[21]		U5. 46		U7. F5	U1. W5
DATA[22]		U5. 48		U7. F6	U1. W6
DATA[23]		U5. 50		U7. G6	U1. W7
DATA[24]		U5. 36		U7. B1	U1. Y2
DATA[25]		U5. 38		U7. C1	U1. Y1
DATA[26]	-	U5. 40		U7. C2	U1. AA4
DATA[27]	-	U5. 42		U7. D2	U1. AA3
DATA[28]	-	U5. 45		U7. E2	U1. AA1
DATA[29]	-	U5. 47		U7. F2	U1. AB3
DATA[30]		U5. 59		U7. F1	U1. AB2
DATA[31]	-///	U5. 51		U7. G1	U1. AB1
ADDR[0]	U4. 31	U5. 31	U6. A3	U7. A3	U1. G2
ADDR[1]	U4. 26	U5. 26	U6. A4	U7. A4	U1. E1
ADDR[2]	U4. 25	U5. 25	U6. A5	U7. A5	U1. E3
ADDR[3]	U4. 24	U5. 24	U6. B3	U7. B3	U1. H5
ADDR[4]	U4. 23	U5. 23	U6. B4	U7. B4	U1. E2
ADDR[5]	U4. 22	U5. 22	U6. C3	U7. C3	U1. G3
ADDR[6]	U4. 21	U5. 21	U6. C4	U7. C4	U1. F4
ADDR[7]	U4. 20	U5. 20	U6. D4	U7. D4	U1. F1
ADDR[8]	U4. 10	U5. 10	U6. H2	U7. H2	U1. H2

ADDR[9]	U4.9	U5. 9	U6. H3	U 7. H3	U1. J5
ADDR[10]	U4.8	U5.8	U6. H4	U7. H4	U1. K3
ADDR[11]	U4. 7	U5. 7	U6. H5	U7. H5	U1. K1
ADDR[12]	U4.6	U5.6	U6. G3	U 7. G3	U1. J6
ADDR[13]	U4. 5	U5. 5	U6. G4	U7. G4	U1. K2
ADDR[14]	U4. 4	U5. 4	U6. F3	U7. F3	U1. J2
ADDR[15]	U4.3	U5.3	U6. F4	U7. F4	U1. K4
ADDR[16]	U4. 54	U5. 54	U6. E4	U7. E4	U1. K6
ADDR[17]	U4.19	U5. 19	U6. D3	U7. D3	U1. G4
ADDR[18]	U4.18	U5. 18	U6. H1	U7. H1	U1. H4
ADDR[19]	U4.11	U5. 11	U6. G2	U7. G2	U1. H3
ADDR[20]	U4.12	U5. 12	U6. H6	U7. H6	U1. L1
ADDR[21]	U4.15	U5. 15	U6. E3	U7. E3	U1. J1
ADDR[22]	U4.2	U5.2	- ///		U1. L4

5.3 YoC 接口

开发板带有 8 个 YoC(YUN-on-Chip)接口,可连接用户自己设计的子板。YoC 接口是 C-SKY 定义的子板扩展接口标准,每个 YoC 接口都可以向外提供 5V 电源,3.3V 电源,19 个 FPGA IO,每个 YoC 接口中的引脚分布完全一致。

YOC1	FPGA 引脚	YOC2	FPGA 引脚	YOC3	FPGA 引脚	YOC4	FPGA 引脚
J2. 1	T15	J3. 1	AB17	J24. 1	M21	J23. 1	L18
J2. 2	GND	J3. 2	GND	J24. 2	GND	J23. 2	GND
J2. 3	P15	J3. 3	AB18	J24. 3	N17	J23. 3	L15
J2. 4	U15	J3. 4	Y18	J24. 4	N13	J23. 4	L21
J2. 5	AA16	J3. 5	V18	J24. 5	N19	J23. 5	L19
J2. 6	Y16	J3. 6	AA18	J24. 6	N18	J23. 6	K18
J2. 7	R16	J3. 7	AA19	J24. 7	N14	J23. 7	K16
J2. 8	AB16	J3. 8	W19	J24. 8	N20	J23. 8	K13
J2. 9	P16	J3. 9	AA20	J24. 9	N22	J23. 9	K17
J2. 10	GND	J3. 10	GND	J24. 10	GND	J23. 10	GND
J2. 11	R17	J3. 11	W20	J24. 11	N15	J23. 11	K14
J2. 12	U16	J3. 12	V19	J24. 12	M15	J23. 12	K19
J2. 13	V17	J3. 13	U20	J24. 13	M17	J23. 13	J14
J2. 14	T16	J3. 14	AB20	J24. 14	M13	J23. 14	K22
J2. 15	P17	J3. 15	T20	J24. 15	M18	J23. 15	J16

J2. 16	W16	J3. 16	V20	J24. 16	M16	J23. 16	K21
J2. 17	Y17	J3. 17	U21	J24. 17	M22	J23. 17	J15
J2. 18	U17	J3. 18	W21	J24. 18	L13	J23. 18	J22
J2. 19	GND	J3. 19	GND	J24. 19	GND	J23. 19	GND
J2. 20	VDD3V3	J3. 20	VDD3V3	J24. 20	VDD3V3	J23. 20	VDD3V3
J2. 21	T18	J3. 21	Y22	J24. 21	M20	J23. 21	Ј19
J2. 22	VDD5V0	J3. 22	VDD5V0	J24. 22	VDD5V0	J23. 22	VDD5V0
J2. 23	R18	J3. 23	W22	J24. 23	L14	J23. 23	Ј17
J2. 24	W17	J3. 24	Y21	J24. 24	L20	J23. 24	J21

YOC5	FPGA 引脚	YOC6	FPGA 引脚	YOC7	FPGA 引脚	YOC8	FPGA 引脚
J22. 1	H14	J5. 1	B22	J4. 1	A16	J7. 1	AB8
J22. 2	GND	J5. 2	GND	J4. 2	GND	J7. 2	GND
J22. 3	H18	J5. 3	B21	J4. 3	B16	J7. 3	V9
J22. 4	H15	J5. 4	C22	J4. 4	A14	J7. 4	AA8
J22. 5	J20	J5. 5	C20	J4. 5	F16	J7. 5	ү9
J22. 6	H19	J5. 6	A21	J4. 6	E16	J7. 6	W9
J22. 7	G13	J5. 7	B20	J4. 7	A15	J7. 7	V10
J22. 8	H22	J5. 8	A20	J4. 8	D16	J7. 8	AA9
J22. 9	H20	J5. 9	A19	J4. 9	D15	J7. 9	AA10
J22. 10	GND	J5. 10	GND	J4. 10	GND	J7. 10	GND
J22. 11	G16	J5. 11	F20	J4. 11	F15	J7. 11	AA11
J22. 12	G15	J5. 12	D20	J4. 12	B15	J7. 12	AB10
J22. 13	G18	J5. 13	C18	J4. 13	D14	J7. 13	AB12
J22. 14	G17	J5. 14	C19	J4. 14	C15	J7. 14	AB11
J22. 15	G21	J5. 15	F19	J4. 15	F14	J7. 15	AA13
J22. 16	G22	J5. 16	F18	J4. 16	C14	J7. 16	AB13
J22. 17	F21	J5. 17	A18	J4. 17	B13	J7. 17	AA14
J22. 18	E22	J5. 18	E18	J4. 18	A13	J7. 18	Y13
J22. 19	GND	J5. 19	GND	J4. 19	GND	J7. 19	GND
J22. 20	VDD3V3	J5. 20	VDD3V3	J4. 20	VDD3V3	J7. 20	VDD3V3
J22. 21	E21	J5. 21	D17	J4. 21	C13	J7. 21	W14
J22. 22	VDD5V0	J5. 22	VDD5V0	J4. 22	VDD5V0	J7. 22	VDD5V0
J22. 23	D22	J5. 23	E17	J4. 23	F13	J7. 23	T14
J22. 24	D21	J5. 24	C17	J4. 24	E13	J7. 24	Y14

5.4用户安全扩展接口

安全扩展接口用于连接 ISO-7816 协议的安全扩展子板。该接口各引脚信号定义及与 FPGA 的连接关系如下:

安全扩展接口	信号名	FPGA 引脚	安全扩展接口	信号名	FPGA 引脚
J12.1	GND		J12.2	NC	
J12.3	SE_IO	AB22	J12.4	NC	
J12.5	NC		J12.6	CLK	AA21
J12.7	RST	AB21	J12.8	VDD3V3	

5.5调试串口

开发板上有 3 组排针,用于连接调试串口,可使用串口终端与 FPGA 中的逻辑进行数据交互。这 3 组排针 定义和连接如下:

排针 J9	信号名	FPGA 引脚	排针 J10	信号名	FPGA 引脚	排针 J11	信号名	FPGA 引脚
J9.1	TXD1	N3(输出)	J10.1	TXD2	N5(输出)	J11.1	TXD3	M5(输出)
J9.2	RXD1	N4 (输入)	J10.2	RXD2	M2(输入)	J11.2	RXD3	M6(输入)
К9.3	GND		J10.3	GND	-	J11.3	GND	

5.6备用的 C-SKY JTAG 调试接口

开发板上已经集成了 C-SKY 调试电路,用户无需外接 C-SKY 调试器,直接使用一条 USB 线连接到开发板的 "J18-CK-LINK" USB 接口就可实现 C-SKY 嵌入式软件程序的调试。但是板上同时将 C-SKY 的 JTAG 接口连接 到了一个 2.54mm 间距简易牛角座上,让用户可以有选择的使用其它的 C-SKY 调试设备。

JTAG 接口	信号名	FPGA 引脚	JTAG 接口	信号名	FPGA 引脚
J18.1	CSKY_TDI	V13	J18.2	GND	
J18.3	CSKY_TDO	V14	J18.4	GND	
J18.5	CSKY_TCK	AA15	J18.6	GND	
J18.7	NC		J18.8	NC	
J18.9	CSKY_NRST	AB15	J18.10	CSKY_TMS	P14
J18.11	NC		J18.12	NC	
J18.13	VDD3V3		J18.14	CSKY_TRST	W15

5.7按键拨码开关和 LED

开发板上集成有 4 个按键,8 位拨码开关,1 个 RGB 3 色 LED,这些外设都是用户可以使用的。他们与 FPGA 的连接关系如下:

按键	信号名	FPGA 引脚
К3	KEY1	AB7
K4	KEY2	Y8
K5	KEY3	AB6
K6	KEY4	V8
拨码开关	信号名	FPGA 引脚
S1. 1	SW1	P2
S1. 2	SW2	P1
S1. 3	SW3	R1
S1. 4	SW4	U7
S2. 1	SW5	V7
S2. 2	SW6	AA5
S2. 3	SW7	AB5
S2. 4	SW8	Y7
RGB LED	信号名	FPGA 引脚
D2. 2	LED_B	P4
D2. 4	LED_G	P5
D2. 6	LED_R	N2

6 使用其他方式配置 FPGA

6.1使用 Xilinx JTAG 接口配置 FPGA

使用 Xilinx JTAG 接口配置 FPGA 时,J15 跳线帽接在什么位置或者不接都没有关系。 使用 Xilinx JTAG 接口配置 FPGA 时,具体步骤如下所示,需要:

- 1. 启动 vivado 软件
- 2. 点击"Open Hardware Manager"
- 3. 在 Hardware Manager 窗口中,点击"Tools"-> "Auto Connect"
- 4. 连接成功之后,会在 Hardware 面板中看到器件型号,然后右键器件->Program Device
- 5. 在"Bitstream file" 中选择用于配置 FPGA 的 bit 文件,"Debug probes file:" 不需要设置
- 6. 点击 "Program" 开始配置 FPGA

配置完成之后,板上的 D1 LED 会亮绿灯,说明配置成功。

更详细的介绍,请参考"UG-FPGA-JTAG-HOW-TO"

6.2使用板上的 SPI-FLASH 配置 FPGA

使用板上 SPI-FLASH 配置 FPGA 时,J15 跳线需要接到"AS"模式。

1. 首先需要在 FPGA 综合约束文件中添加以下约束语句:

set_property CONFIG_VOLTAGE 3.3 [current_design]

set_property CFGBVS VCC0 [current_design]

set_property CONFIG_MODE SPIx4 [current_design]

set property BITSTREAM.CONFIG.SPI BUSWIDTH 4 [current design]

set property BITSTREAM.CONFIG.CONFIGRATE 40 [current design]

set_property BITSTREAM.CONFIG.EXTMASTERCCLK_EN DIV-2 [current_design]

在生成 bit 文件之后:

- 2. 在 Vivado 的 Tcl Console 窗口中执行以下命令生成 mcs 文件:
- cd /your/bit/file/location/

write_cfgmem -format mcs -interface spix4 -size 128 -loadbit "up 0 xxxx.bit"
-file mcs_file_name.mcs -force

- 3. 点击"Open Hardware Manager"
- 4. 在 Hardware Manager 窗口中,点击"Tools"-> "Auto Connect"
- 5. 连接成功之后, 会在 Hardware 面板中看到器件型号, 然后右键器件->Add Configuration Memory Device...
- 6. 选择正确的 memory 型号: Micro->128->SPI->x1_x2_x4->n25q128-3.3
- 7. 选择 mcs 文件, 然后开始编程

等待编程结束之后,这样每次给 FPGA 新上电, FPGA 自动会从 SPI-FLASH 中读取数据配置自己。

配置完成之后,板上的 D1 LED 会亮绿灯,说明配置成功。

更详细的介绍,请参考"UG-FPGA-MCS-HOW-TO"