

Quality Predictions In The Mining Process

ML 3253 - Group # 21 - University Of Toronto - August 2019

THE TEAM

Adam Gregg

Physics, University Of Toronto

Nisarg Patel

Mechatronics Eng. McMaster University

Omar Hamdy

Chemical Eng. University Of Toronto

Khurram Shafiq

Computer Eng. University Of Ottawa

(3) UFT - ML 3253 - Group # 21

AGENDA

4 UFT - ML 3253 - Group # 21

PROBLEM STATEMENT

Predicting % Silica (Impurity) present in the Iron Ore concentrate

5 UFT - ML 3253 - Group # 21

BACKGROUND PROCESS

-(6) UFT - ML 3253 - Group # 21

DATASET

# of Instances	737,453	
# of columns	24	
Target Variable	% Silica Concentrate	
Data Collection Period	20 seconds	
Output Update Period	2 hours	
Range	6 months	
Missing Values	None	
Problem Type	Supervised - Regression	

Dataset retrieved from: https://www.kaggle.com/edumagalhaes/quality-prediction-in-a-mining-process

UFT - ML 3253 - Group # 21 8/20/2019 ○---

DATA PREPARATION

ltem	Approach # I	Approach # 2		
Sampling Period	20 seconds	I hour		
Outlier Detection & Removal	Z Score	Box-plots & IQR Score		
Feature Selection	Manual	Semi-automatic		
Output				
Total Features	6 (2 – engineered)	8 (2 – engineered)		
Target Variable				
# of Instances	346,000	1,817		

8) UFT - ML 3253 - Group # 21

ML Modelling Journey

Split Data

Built Pipeline

Scaling

ML Model

Train Model

Evaluate Base Model

Hyperparameter Tuning

Re-evaluate Model

Finalize

9

UFT - ML 3253 - Group # 21

8/20/2019 🔾

ML MODELLING

ltem	Model # I	Model # 2	
Base Algorithms Used	RandomFore	LinearRegression,, KNeighborsRegressor, RandomForestRegressor, GradientBoostingRegressor, SGDRegressor	
Other Algorithms Used	Decision Tree Regressor, Ridge, Lasso	SVR	
Scaling Data	Min_Max Scaler	Standard Scaler	
Test Train Split	75% (train) - 25% (test)	70% (train) - 30% (test)	
Cross Validation	K-folds	K-folds 10 split	
Hyperparameter Tuning	Grid S	Grid Search	
Scoring Methods	RMSE, R^2	RMSE, R^2, Accuracy	

10) UFT - ML 3253 - Group # 21 8/20/2019 ○—

RESULTS

Model # 1: RMSE Score

RESULTS

Before Tuning				
Scoring	Model # I - Random Forest Regressor	Model # 2 – Gradient Boosting Regressor		
RMSE	0.282	0.913		
R^2	0.897	0.221		
Accuracy	93.64 %	62.24 %		
After Tuning				
RMSE	0.282	0.907		
R^2	0.908	0.232		
Accuracy	93.80 %	62.89 %		

UFT - ML 3253 - Group # 21 8/20/2019 🔾

KEY OUTCOMES

Produced a generalized model that predicts % Silica (Impurity) present in the Iron Ore concentration with accuracy of:

93.80 %

Full Dataset

62.90 %

Resampled Dataset

NEXT STEPS

Revisit and align on sampling period

Perform in-depth hyper-parameter tuning on cloud computer (GCP, AWS, Azure)

Consult with business to enhance the understanding of the data

Experiment with different ML Packages
/ Libraries (Spark Mllib, TensorFlow)

Use time series forecast to Predict Features (X) at a given time to Predict % Silica (Y)

THANK YOU

https://github.com/nishp763/SCS-ML-3253---Final-Project.git

15 UFT - ML 3253 - Group # 21 8/20/2019 O

APPENDIX: Model # 1

APPENDIX: MODEL # 2

APPENDIX: ACCURACY FUNCTION

```
def evaluate(predictions, test data):
    errors = abs(predictions - test data)
    mape = 100 * np.mean(errors / test data)
    accuracy = 100 - mape
    print('Model Performance')
    print('Average Error: {:0.4f}'.format(np.mean(errors)))
    print('Accuracy = {:0.2f}%'.format(accuracy))
    return accuracy
base accuracy = evaluate(y pred, y test)
Model Performance
Average Error: 0.1234
Accuracy = 93.64\%
```

)UFT - ML 3253 - Group # 21 8/20/2019 ○