CS 228 : Logic in Computer Science

Krishna. S

Basic Rules So Far

- $ightharpoonup \land i, \land e_1, \land e_2$ (and introduction and elimination)
- $\rightarrow \neg \neg e, \neg \neg i$ (double negation elimination and introduction)
- ► MP (Modus Ponens)
- $ightharpoonup \rightarrow i$ (Implies Introduction : remember opening boxes)
- \lor $\lor i_1, \lor i_2, \lor e$ (Or introduction and elimination)

▶
$$\vdash p \rightarrow (q \rightarrow p)$$

1. true

premise

$$\blacktriangleright \vdash p \rightarrow (q \rightarrow p)$$

1.	true	premise
2.	р	assumption
3.		

▶
$$\vdash p \rightarrow (q \rightarrow p)$$

1.	true	premise
2.	р	assumption
3.	q	assumption
4.		

▶
$$\vdash p \rightarrow (q \rightarrow p)$$

	true	premise
2.	р	assumption
3.	q	assumption
ŀ.	р	copy 2

▶
$$\vdash p \rightarrow (q \rightarrow p)$$

1.	true	premise
2.	р	assumption
3.	q	assumption
4.	p	copy 2
5.	$oldsymbol{q} ightarrow oldsymbol{p}$	<i>→ i</i> 3-4

6.

▶
$$\vdash p \rightarrow (q \rightarrow p)$$

1.	true	premise
2.	р	assumption
3.	q	assumption
4.	р	copy 2
5.	$oldsymbol{q} ightarrow oldsymbol{p}$	→ <i>i</i> 3-4
6.	$p \rightarrow (q \rightarrow p)$	\rightarrow i 2-5

▶ We have seen $\neg \neg e$ and $\neg \neg i$, the elimination and introduction of double negation.

- ▶ We have seen $\neg \neg e$ and $\neg \neg i$, the elimination and introduction of double negation.
- ▶ How about introducing and eliminating single negations?

- We have seen ¬¬e and ¬¬i, the elimination and introduction of double negation.
- How about introducing and eliminating single negations?
- ▶ We use the notion of contradictions, an expression of the form $\varphi \land \neg \varphi$, where φ is any propositional logic formula.

- We have seen ¬¬e and ¬¬i, the elimination and introduction of double negation.
- How about introducing and eliminating single negations?
- ▶ We use the notion of contradictions, an expression of the form $\varphi \land \neg \varphi$, where φ is any propositional logic formula.
- Any two contradictions are equivalent : $p \land \neg p$ is equivalent to $\neg r \land r$. Contradictions denoted by \bot .

- ▶ We have seen $\neg \neg e$ and $\neg \neg i$, the elimination and introduction of double negation.
- How about introducing and eliminating single negations?
- ▶ We use the notion of contradictions, an expression of the form $\varphi \land \neg \varphi$, where φ is any propositional logic formula.
- Any two contradictions are equivalent : $p \land \neg p$ is equivalent to $\neg r \land r$. Contradictions denoted by \bot .
- $ightharpoonup \perp \to \varphi$ for any formula φ .

Rules with \bot

The \perp elimination rule $\perp e$

$$\frac{\perp}{\psi}$$

The \perp introduction rule $\perp i$

$$\frac{\varphi \qquad \neg \varphi}{\bot}$$

- 1. $\neg p \lor q$ premise
- 2.

▶
$$\neg p \lor q \vdash p \rightarrow q$$

- 1. $\neg p \lor q$ premise
- 2. $\neg p \lor e(1)$
- 3.

▶
$$\neg p \lor q \vdash p \rightarrow q$$

1. $\neg p \lor q$ premise

2. $\neg p \lor e(1)$

3. p

4.

p assumption

▶
$$\neg p \lor q \vdash p \rightarrow q$$

▶
$$\neg p \lor q \vdash p \rightarrow q$$

▶
$$\neg p \lor q \vdash p \rightarrow q$$

▶
$$\neg p \lor q \vdash p \rightarrow q$$

▶
$$\neg p \lor q \vdash p \rightarrow q$$

1.	$\neg p \lor q$	premise
2.	$\neg p$	∨ <i>e</i> (1)
3.	р	assumption
4.		<i>⊥i</i> 2,3
5.	q	⊥ <i>e</i> 4
6.	p o q	→ <i>i</i> 3-5
7.	q	∨ e (2)
8.	р	assumption
9.	q	copy 7
0.	p o q	→ <i>i</i> 8-9
1.	$oldsymbol{ ho} ightarrow oldsymbol{q}$	∨ <i>e</i> 1, 2-6, 7-10

Introducing Negations (PBC)

- In the course of a proof, if you assume φ (by opening a box) and obtain \bot in the box, then we conclude $\neg \varphi$
- ▶ This rule is denoted $\neg i$ and is read as \neg introduction.
- ► Also known as Proof By Contradiction

- 1. $p \rightarrow \neg p$ premise
- 2.

- 1. $p \rightarrow \neg p$ premise
- 2. *p* assumption
- 3.

$$\blacktriangleright \ p \to \neg p \vdash \neg p$$

1.	p ightarrow eg p	premise
2.	р	assumption
3.	eg p	MP 1,2
4.		

1.	p ightarrow eg p	premise
2.	р	assumption
3.	$\neg p$	MP 1,2
4.		<i>⊥i</i> 2,3
5.	$\neg p$	¬ <i>i</i> 2-4

The Last One

Law of the Excluded Middle (LEM)

Summary of Basic Rules

- \blacktriangleright $\land i$, $\land e_1$, $\land e_2$,
- ¬¬e
- ► MP
- $\rightarrow i$
- $\triangleright \forall i_1, \forall i_2, \forall e$
- ▶ Copy, $\neg i$ or PBC
- ► *⊥e*, *⊥i*

Derived Rules

- ▶ MT (derive using MP, $\perp i$ and $\neg i$)
- $ightharpoonup \neg \neg i$ (derive using $\bot i$ and $\neg i$)
- ▶ LEM (derive using $\forall i_1, \bot i, \neg i, \forall i_2, \neg \neg e$)

The Proofs So Far

➤ So far, the "proof" we have seen is purely syntactic, no true/false meanings were attached

The Proofs So Far

- ➤ So far, the "proof" we have seen is purely syntactic, no true/false meanings were attached
- ▶ Intuitively, $p \rightarrow q \vdash \neg p \lor q$ makes sense because you think semantically. However, we never used any semantics so far.

The Proofs So Far

- So far, the "proof" we have seen is purely syntactic, no true/false meanings were attached
- ▶ Intuitively, $p \rightarrow q \vdash \neg p \lor q$ makes sense because you think semantically. However, we never used any semantics so far.
- Now we show that whatever can be proved makes sense semantically too.

Semantics

▶ Each propositional variable is assigned values true/false. Truth tables for each of the operators $\lor, \land, \neg, \rightarrow$ to determine truth values of complex formulae.

Semantics

- ▶ Each propositional variable is assigned values true/false. Truth tables for each of the operators ∨, ∧, ¬, → to determine truth values of complex formulae.
- $\varphi_1, \dots, \varphi_n \models \psi$ iff whenever $\varphi_1, \dots, \varphi_n$ evaluate to true, so does ψ . \models is read as semantically entails
 - ► Recall ⊢, and compare with ⊨

Semantics

- ► Each propositional variable is assigned values true/false. Truth tables for each of the operators ∨, ∧, ¬, → to determine truth values of complex formulae.
- $\varphi_1, \dots, \varphi_n \models \psi$ iff whenever $\varphi_1, \dots, \varphi_n$ evaluate to true, so does ψ . \models is read as semantically entails
 - ▶ Recall ⊢, and compare with ⊨
- ▶ Formulae φ and ψ are provably equivalent iff $\varphi \vdash \psi$ and $\psi \vdash \varphi$

Semantics

- ► Each propositional variable is assigned values true/false. Truth tables for each of the operators ∨, ∧, ¬, → to determine truth values of complex formulae.
- $\varphi_1, \dots, \varphi_n \models \psi$ iff whenever $\varphi_1, \dots, \varphi_n$ evaluate to true, so does ψ . \models is read as semantically entails
 - ▶ Recall ⊢, and compare with ⊨
- ▶ Formulae φ and ψ are provably equivalent iff $\varphi \vdash \psi$ and $\psi \vdash \varphi$
- Formulae φ and ψ are semantically equivalent iff $\varphi \models \psi$ and $\psi \models \varphi$

Soundness of Propositional Logic

$$\varphi_1, \ldots, \varphi_n \vdash \psi \Rightarrow \varphi_1, \ldots, \varphi_n \models \psi$$

Whenever ψ can be proved from $\varphi_1, \dots, \varphi_n$, then ψ evaluates to true whenever $\varphi_1, \dots, \varphi_n$ evaluate to true

▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.

15/1

- ▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.
- ▶ There is some proof (of length k lines) that yields ψ . Induct on k.

15/1

- ▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.
- ▶ There is some proof (of length k lines) that yields ψ . Induct on k.
- ▶ When k=1, there is only one line in the proof, say φ , which is the premise. Then we have $\varphi \vdash \varphi$, since φ is given. But then we also have $\varphi \models \varphi$.

- ▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.
- ▶ There is some proof (of length k lines) that yields ψ . Induct on k.
- ▶ When k=1, there is only one line in the proof, say φ , which is the premise. Then we have $\varphi \vdash \varphi$, since φ is given. But then we also have $\varphi \models \varphi$.
- Assume that whenever $\varphi_1, \dots, \varphi_n \vdash \psi$ using a proof of length $\leq k 1$, we have $\varphi_1, \dots, \varphi_n \models \psi$.

- ▶ Assume $\varphi_1, \ldots, \varphi_n \vdash \psi$.
- ▶ There is some proof (of length k lines) that yields ψ . Induct on k.
- ▶ When k=1, there is only one line in the proof, say φ , which is the premise. Then we have $\varphi \vdash \varphi$, since φ is given. But then we also have $\varphi \models \varphi$.
- Assume that whenever $\varphi_1, \dots, \varphi_n \vdash \psi$ using a proof of length $\leq k 1$, we have $\varphi_1, \dots, \varphi_n \models \psi$.
- ► Consider now a proof with *k* lines.

▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?

- ▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?
- Assume ψ was obtained using $\wedge i$. Then ψ is of the form $\psi_1 \wedge \psi_2$.

- ▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?
- Assume ψ was obtained using $\wedge i$. Then ψ is of the form $\psi_1 \wedge \psi_2$.
- ψ_1 and ψ_2 were proved earlier, say in lines $k_1, k_2 < k$.

- ▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?
- ▶ Assume ψ was obtained using $\wedge i$. Then ψ is of the form $\psi_1 \wedge \psi_2$.
- ψ_1 and ψ_2 were proved earlier, say in lines $k_1, k_2 < k$.
- ▶ We have the shorter proofs $\varphi_1, \ldots, \varphi_n \vdash \psi_1$ and $\varphi_1, \ldots, \varphi_n \vdash \psi_2$

- ▶ How did we arrive at ψ ? Which proof rule gave ψ as the last line?
- ▶ Assume ψ was obtained using $\wedge i$. Then ψ is of the form $\psi_1 \wedge \psi_2$.
- ψ_1 and ψ_2 were proved earlier, say in lines $k_1, k_2 < k$.
- ▶ We have the shorter proofs $\varphi_1, \ldots, \varphi_n \vdash \psi_1$ and $\varphi_1, \ldots, \varphi_n \vdash \psi_2$
- ▶ By inductive hypothesis, we have $\varphi_1, \dots, \varphi_n \models \psi_1$ and $\varphi_1, \dots, \varphi_n \models \psi_2$. By semantics, we have $\varphi_1, \dots, \varphi_n \models \psi_1 \land \psi_2$.

▶ Assume ψ was obtained using \rightarrow i. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.

- ▶ Assume ψ was obtained using \rightarrow i. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.

- Assume ψ was obtained using \rightarrow *i*. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.
- ▶ The last line in the box was ψ_2 .

- Assume ψ was obtained using \rightarrow *i*. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.
- ▶ The last line in the box was ψ_2 .
- ▶ The line just after the box was ψ .

- Assume ψ was obtained using \rightarrow *i*. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.
- ▶ The last line in the box was ψ_2 .
- ▶ The line just after the box was ψ .
- ▶ Consider adding ψ_1 in the premises along with $\varphi_1, \ldots, \varphi_n$. Then we will get a proof $\varphi_1, \ldots, \varphi_n, \psi_1 \vdash \psi_2$, of length k-1. By inductive hypothesis, $\varphi_1, \ldots, \varphi_n, \psi_1 \models \psi_2$. By semantics, this is same as $\varphi_1, \ldots, \varphi_n \models \psi_1 \rightarrow \psi_2$

- Assume ψ was obtained using \rightarrow *i*. Then ψ is of the form $\psi_1 \rightarrow \psi_2$.
- ▶ A box starting with ψ_1 was opened at some line $k_1 < k$.
- ▶ The last line in the box was ψ_2 .
- ▶ The line just after the box was ψ .
- ▶ Consider adding ψ_1 in the premises along with $\varphi_1, \ldots, \varphi_n$. Then we will get a proof $\varphi_1, \ldots, \varphi_n, \psi_1 \vdash \psi_2$, of length k-1. By inductive hypothesis, $\varphi_1, \ldots, \varphi_n, \psi_1 \models \psi_2$. By semantics, this is same as $\varphi_1, \ldots, \varphi_n \models \psi_1 \rightarrow \psi_2$
- ▶ The equivalence of $\varphi_1, \ldots, \varphi_n \vdash \psi_1 \rightarrow \psi_2$ and $\varphi_1, \ldots, \varphi_n, \psi_1 \vdash \psi_2$ gives the proof.

Soundness: Other cases

Do this as homework

18/18