Robust principal component analysis for functional snippets

Hyunsung Kim

April 2, 2021

Department of Statistics Chung-Ang University

Outline

1 Introduction

2 Method

Simulation

Introduction

Introduction

- Functional data is collected in the form of curves or functions in various fields such as meteorology and health science.
- Functional data analysis (FDA) assumes smoothness and continuity on a common domain, but is commonly obeserved partially or on a specific subinterval.
- **Funcional snippet** is an extreme case of partially observed functional data, especially only observed on small intervals.
- For its sparsity, there is a major problem on a covariance estimation which is necessary for statistical methods such as a principal component analysis.

Introduction

- Yao et al. (2005) proposed principal analysis by conditional expectation (PACE) which is used a bivariate local smoother and more recently, Lin and Wang (2020) proposed a semiparametric method for a covariance estimation.
- But these methods have a disadvantage that easily affected by extreme spikes, and if the data are contaminated by outlieres, it may give a poor estimation for a functional principal component analysis (FPCA).
- To overcome this probelm, we study a robust covariance estimation method based on robust smoothing methods such as Huber function (Huber, 1964) and weighted repeated median (WRM) (Fried et al., 2007), and combine with a semiparametric method (Lin and Wang, 2020).
- Using the above estimation, we apply FPCA to obtain **robust FPCs**.

Functional data

Figure 1: The 5 sample trajectories of completely observed functional data.

Partially observed functional data

Figure 2: The 5 sample trajectories of partially observed functional data.

Functional snippets

Figure 3: The 30 sample trajectories of functional snippets (Left) and its design plot (Right).

Example of functional data

Figure 4: Berkely growth data of 93 individuals.

Example of functional snippets

Figure 5: Spinal bone mineral density of 280 individuals.

Assumptions

- Let X be a second-order random process defined on an interval $\mathcal{I} \subset \mathbb{R}$ with mean function $\mu(t) = E(X(t))$, and covariance function C(s,t) = cov(X(s),X(t)).
- · Assume the following model,

$$Y_{ij} = X_i(T_{ij}) + \epsilon_{ij}, \text{ for } j = 1, \dots, m_i, i = 1, \dots, n,$$

where X_i is observed at time points T_{i1}, \ldots, T_{im_i} and ϵ_{ij} is the homoscedastic random noise with $E(\epsilon_{ij}) = 0$ and $E(\epsilon_{ij}^2) = \sigma_0^2$.

ullet The mean function $\mu(t)$ is estimated by a robust local linear smoothing:

$$(\hat{b}_0, \hat{b}_1) = \underset{(b_0, b_1) \in \mathbb{R}^2}{\operatorname{arg\,min}} \sum_{i=1}^n w_i \sum_{j=1}^{m_i} K_{h_{\mu}} (T_{ij} - t) \rho_{\delta} \left\{ \frac{Y_{ij} - b_0 - b_1 (T_{ij} - t)}{s_{\mu}} \right\}$$

where $K_{h_{\mu}}(\cdot)$ is a kernel function and h_{μ} is a bandwidth,

$$\rho_{\delta}(x) = \begin{cases} \frac{x^2}{2}, & |x| \le \delta \\ \delta\left(|x| - \frac{1}{2}\delta\right), & |x| > \delta, \end{cases}$$

is the **Huber function**, a scale parameters s_{μ} is estimated by

$$\hat{s}_{\mu} = 1.4826 \times \mathsf{MAD}\left(\left\{|Y_{ij} - \hat{b}_0^* - \hat{b}_1^*(T_{ij} - t)| : i = 1, 2, \dots, n\right\}\right),$$

with \hat{b}_0^* and \hat{b}_1^* are obtained by least square estimation.

• The bandwidth h_{μ} and δ in Huber function are selected by 5-fold cross-validation.

Covariance function

- Lin and Wang (2020) proposed a semiparametric covariance estimation which is estimated nonparametrically for diagonal parts and parametrically for off-diagonal parts.
- \bullet The robust estimation of variance function $\sigma_X^2(t)$ is estimated as

$$\sigma_X^2(t) = \sigma_Y^2(t) - \sigma_0^2,$$

where $\sigma_Y^2(t)$ is a variance of the observed data and σ_0^2 is a noise variance.

• By estimating $\sigma_Y^2(t)$ using a robust local linear smoothing, $\sigma_X^2(t)$ can be esimated nonparametrically.

Covariance function

• The robust estimation of $\sigma_Y^2(t)$ is obtained from the following minimization criterion:

$$(\hat{b}_0, \hat{b}_1) = \underset{(b_0, b_1) \in \mathbb{R}^2}{\operatorname{arg \, min}} \sum_{i=1}^n w_i \sum_{j=1}^{m_i} K_{h_{\sigma}}(T_{ij} - t) \times \rho_{\delta} \left[\frac{\{Y_{ij} - \hat{\mu}(T_{ij})\}^2 - b_0 - b_1(T_{ij} - t)}{s_{\sigma}} \right],$$

where h_σ is a bandwidth and a scale parameter s_σ is estimated by

$$\hat{s}_{\sigma} = 1.4826 \times \mathsf{MAD}\left(\left\{\left|\left\{Y_{ij} - \hat{\mu}(T_{ij})\right\}^{2} - \hat{b}_{0}^{*} - \hat{b}_{1}^{*}(T_{ij} - t)\right| : i = 1, 2, \dots, n\right\}\right),\,$$

with \hat{b}_0^* and \hat{b}_1^* are obtained by least square estimation.

• The bandwidth h_{σ} and δ in Huber function are selected by 5-fold cross-validation.

Covariance function

 For off-diagonal parts of the covariance function, we use a Matérn correlation which is a popular parametric correlation structure.

$$r_{\theta}(s,t) = \frac{1}{\Gamma(\theta_1)2^{\theta_1-1}} \left(\sqrt{2\theta_1} \frac{|s-t|}{\theta_2}\right)^{\theta_1} B_{\theta_1} \left(\sqrt{2\theta_1} \frac{|s-t|}{\theta_2}\right), \quad \theta_1, \theta_2 > 0,$$

where $B_{\theta}(\cdot)$ is the modified Bessel function of the second kind of order θ .

• Given the estimate $\hat{\sigma}_X^2(t)$, the parameter θ is estimated using the following least squares criterion,

$$\arg\min_{\theta} \sum_{i=1}^{n} \frac{1}{m_{i}(m_{i}-1)} \sum_{1 \leq j \neq l \leq m_{i}} \{\hat{\sigma}_{X}(T_{ij})\hat{\sigma}_{X}(T_{il})r_{\theta}(T_{ij}, T_{il}) - C_{ijl}\}^{2},$$

where $C_{ijl} = \{Y_{ij} - \hat{\mu}(T_{ij})\}\{Y_{il} - \hat{\mu}(T_{il})\}.$

• Then, the off-diagonal of covariance function can be obtaind as

$$\hat{C}(s,t) = \hat{\sigma}_X(s)\hat{\sigma}_X(t)r_{\hat{\theta}}(s,t).$$

Noise variance estimation

- Lin and Wang (2020) proposed the noise varaince estimation without any other parameters, but if there exists outliers, the estimation is very sensitive to the scale of data.
- To obtain an estimation resistant to outliers, we substitute the average term to a robust scale estimator, median as follows:

$$\begin{split} \hat{A}_0 &= \operatorname{median} \left\{ \frac{1}{m_i(m_i-1)} \sum_{j \neq l} Y_{ij}^2 \mathbf{1}_{|T_{ij}-T_{il}| < h_0} \right\} \\ \hat{A}_1 &= \operatorname{median} \left\{ \frac{1}{m_i(m_i-1)} \sum_{j \neq l} Y_{ij} Y_{il} \mathbf{1}_{|T_{ij}-T_{il}| < h_0} \right\} \\ \hat{B} &= \operatorname{median} \left\{ \frac{1}{m_i(m_i-1)} \sum_{j \neq l} \mathbf{1}_{|T_{ij}-T_{il}| < h_0} \right\}, \end{split}$$

where h_0 is the bandwidth.

Noise variance estimation

ullet Then, the noise variance σ_0^2 can be estimated by

$$\hat{\sigma}_0^2 = (\hat{A}_0 - \hat{A}_1)/\hat{B}.$$

Here, we use the empirical bandwith as

$$h_0 = 0.29\hat{\xi} ||\hat{\sigma}_Y||_2 (nm^2)^{-1/5},$$

where $\hat{\xi} = \max_{1 \leq i \leq n} \max_{1 \leq j, l \leq m_i} |T_{ij} - T_{il}|$ with $m = n^{-1} \sum_{i=1}^n m_i$.

Parameter selection

ullet The optimal δ in the Huber function is selected by 5-fold CV with the following validation measure,

$$\begin{split} \mathsf{CV}(\delta_{\mu}) &= \sum_{k=1}^{\mathcal{K}} \sum_{i \in \mathcal{P}_k} \sum_{j=1}^{m_i} \left| Y_{ij} - \hat{\mu}_{h_{\mu},-k}(T_{ij}) \right| \\ \mathsf{CV}(\delta_{\sigma}) &= \sum_{k=1}^{\mathcal{K}} \sum_{i \in \mathcal{P}_k} \sum_{j=1}^{m_i} \left| \{ Y_{ij} - \hat{\mu}(T_{ij}) \}^2 - \hat{\sigma}_X^2(T_{ij}) \right|, \end{split}$$

where \mathcal{P}_k is a kth fold from the training set, $k = 1, \dots, 5$.

• The optimal bandwidth h_{μ} and h_{σ} are selected by 5-fold CV with the following validation measure,

$$\begin{aligned} & \mathsf{CV}(h_{\mu}) = \sum_{k=1}^{\mathcal{K}} \sum_{i \in \mathcal{P}_{k}} \sum_{j=1}^{m_{i}} \rho_{\delta_{\mu}} \left\{ Y_{ij} - \hat{\mu}_{h_{\mu},-k}(T_{ij}) \right\} \\ & \mathsf{CV}(h_{\sigma}) = \sum_{k=1}^{\mathcal{K}} \sum_{i \in \mathcal{P}_{k}} \sum_{j=1}^{m_{i}} \rho_{\delta_{\sigma}} \left[\left\{ Y_{ij} - \hat{\mu}(T_{ij}) \right\}^{2} - \hat{\sigma}_{X;h_{\sigma},-k}^{2}(T_{ij}) \right]. \end{aligned}$$

Simulation

Simulation settings

• $X_i(t_{ij}), i = 1, ..., 100$ are normally distributed with mean zero and covariance $cov\{X_i(t_{ij}), X_i(t_{ik})\} = C(t_{ij}, t_{ik})$ which is defined as

$$C(s,t) = \sum_{i=1}^{4} 0.5^{i-1} \phi_i(t) \phi_i(s),$$

where $\phi_1(t) = 1$, $\phi_2(t) = (2t-1)\sqrt{3}$, $\phi_3(t) = (6t^2 - 6t + 1)\sqrt{5}$, and $\phi_4(t) = (20t^3 - 30t^2 + 12t - 1)\sqrt{7}$.

- The observed time points are $t_{ij} \in \mathcal{I}_{D,i}$, where $\mathcal{I}_{D,i} = \mathcal{I}_i \cup \mathcal{I}_D$. Here, $\mathcal{I}_i = [A_i, B_i]$ where $A_i = \max(0, M_i l_i/2)$ and $B_i = \min(1, M_i + l_i/2)$ with $l_i \sim U(a_l, b_l)$ and $M_i \sim U(\frac{a_l}{2}, 1 \frac{a_l}{2})$ for some constants $0 < a_l < b_l < 1$.
- In this simulation, we took $a_l=0.1,\ b_l=0,3.$ $\mathcal{I}_D=\{t_1=0< t_2< \cdots < t_{50}=1\}, \text{ which are equispaced points}.$

Simulation settings

• For outliers, we assume the following models:

$$X(t) = \sigma(t)\epsilon(t) \tag{1}$$

$$X(t) = \zeta(t) \tag{2}$$

- For outlier 1, we consider the model (1) with $\epsilon(t)$ and $\sigma(t)$ are generated from t_3 , $N(2,10^2)$, respectively.
- Outlier 2 and 3 are generated from the model (2) with Cauchy processes with different scales.
- For the scale parameter in Cauchy, we consider white noise error for outlier 2, and exponential spatial correlations with unit variance for outlier 3.
- The exponential spatial correlation is ${\rm Cor}(\zeta(t_1),\zeta(t_2))=\exp(-|t_1-t_2|/d)$, and in this study, the range parameter d=0.3 is used.

Simulation settings

Figure 6: Sample trajectories for a randomly selected simulation data. It shows generated curves on whole (Left) and limited y-axes (Right).

Performance measures

• Variance estimation

$$\text{RMISE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \int_{\mathcal{T}} |\hat{\sigma}_X^2(t) - \sigma_X^2(t)|^2 dt}$$

Covariance estimation

$$\text{RMISE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \int_{\mathcal{T}} \int_{\mathcal{T}} |\hat{C}(s,t) - C(s,t)|^2 ds dt}$$

Performance measures

Intrapolation

$$\text{RMISE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \int_{\mathcal{D}_0} |\hat{C}(s,t) - C(s,t)|^2}, \label{eq:RMISE}$$

where $\mathcal{D}_0 := \bigcup_{i=1}^n (\mathcal{I}_i \times \mathcal{I}_i)$, where the computation of standard covariance estimators from the raw data is possible.

Extrapolation

$$\mathrm{RMISE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \int_{\mathcal{S}_0 \backslash \mathcal{D}_0} |\hat{C}(s,t) - C(s,t)|^2},$$

where $S_0 := \mathcal{I} \times \mathcal{I}$, where extrapolation is needed.

Estimated variance trajectories

Figure 7: Estimated variance trajectories for a randomly selected simulation data.

Estimated covariance surfaces

Figure 8: True and estimated covariance surfaces for a randomly selected simulation data.

Estimated eigenfunctions

Figure 9: Estimated first 3 eigenfunctions for a randomly selected simulation data.

Simulation results

		Yao et al. (2005)	Lin & Wang (2020)	Huber Loss	WRM
Outlier X	$\hat{\sigma}_{X}^{2}$	0.93 (0.81)	0.77 (0.44)	1.26 (0.46)	1.3 (0.41)
	\mathbf{C}	10.7 (237.78)	0.61 (0.29)	0.69 (0.20)	0.71 (0.21)
Outlier 1	$\hat{\sigma}_X^2$ $\hat{\mathbf{C}}$	30.57 (3312.96)	28.68 (2445.19)	1.07 (0.44)	1.12 (0.43)
		3475.86 (104783196.62)	14.58 (596.42)	0.60 (0.19)	0.60 (0.19)
Outlier 2	$\hat{\sigma}_X^2$ $\hat{\mathbf{C}}$	55.84 (11667.88)	43.28 (6815.43)	1.24 (0.45)	1.28 (0.41)
		6029.82 (362320272.32)	24.25 (2224.33)	0.67 (0.19)	0.70 (0.20)
Outlier 3	$\hat{\sigma}_X^2$	700.38 (4283789.80)	312.59 (685723.47)	1.27 (0.46)	1.30 (0.42)
	$\hat{\mathbf{C}}$	27689.74 (7009102945.74)	237.09 (435168.25)	0.69 (0.21)	0.70 (0.21)

Table 1: Average RMISE (standard error) of variances (\hat{c}_X^2) and covariances (\hat{C}) estimation from 100 monte carlo simulations.

Simulation results

		Yao et al. (2005)	Lin & Wang (2020)	Huber Loss	WRM
Outlier X	\mathcal{D}_0	0.58 (0.28)	0.36 (0.12)	0.65 (0.17)	0.66 (0.17)
	$\mathcal{S}_0 ackslash \mathcal{D}_0$	10.68 (237.77)	0.50 (0.20)	0.25 (0.04)	0.25 (0.04)
Outlier 1	\mathcal{D}_0	35.36 (4744.87)	13.85 (555.95)	0.54 (0.17)	0.55 (0.16)
	$\mathcal{S}_0 ackslash \mathcal{D}_0$	3475.68 (104778703.84)	4.56 (62.28)	0.26 (0.06)	0.23 (0.05)
Outlier 2	\mathcal{D}_0	85.62 (44631.45)	22.71 (1936.08)	0.63 (0.16)	0.65 (0.17)
	$\mathcal{S}_0 ackslash \mathcal{D}_0$	6029.22 (362281921.60)	8.49 (308.71)	0.24 (0.04)	0.25 (0.04)
Outlier 3	\mathcal{D}_0	1204.33 (13473841.14)	193.93 (280729.87)	0.65 (0.17)	0.65 (0.17)
	$\mathcal{S}_0 ackslash \mathcal{D}_0$	27663.54 (6995687472.30)	136.40 (154769.64)	0.25 (0.04)	0.24 (0.04)

Table 2: Average RMISE (standard error) of covariance estimation between intrapolation (\mathcal{D}_0) and extrapolation $(\mathcal{S}_0 \setminus \mathcal{D}_0)$ parts from 100 monte carlo simulations.

Simulation results

		Yao et al. (2005)	Lin & Wang (2020)	Huber Loss	WRM
Outlier X	RMISE (SE)	2.08 (0.94)	0.43 (0.19)	0.64 (0.50)	0.65 (0.64)
	PVE	69.37	93.21	83.70	84.90
Outlier 1	RMISE (SE)	2.20 (0.64)	2.00 (0.64)	0.62 (0.40)	0.61 (0.50)
	PVE	66.27	91.75	83.14	85.63
Outlier 2	RMISE (SE)	2.13 (0.87)	1.81 (1.42)	0.62 (0.44)	0.60 (0.42)
	PVE	66.50	92.16	84.63	83.95
Outlier 3	RMISE (SE)	2.12 (0.67)	1.31 (1.35)	0.60 (0.39)	0.59 (0.36)
	PVE	70.28	94.07	82.95	84.15

Table 3: Average RMISE (standard error) of first 3 eigenfunctions and its average proportion of variance explained (PVE) from 100 monte carlo simulations.

Reference

- Fried, R., Einbeck, J., & Gather, U. (2007). Weighted repeated median smoothing and filtering. Journal of the American Statistical Association, 102(480), 1300-1308.
- Huber, P. J. (1964). Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics, 73-101.
- Kraus, D. (2015). Components and completion of partially observed functional data. Journal of the Royal Statistical Society: Series B: Statistical Methodology, 777-801.
- Lin, Z., & Wang, J. L. (2020). Mean and covariance estimation for functional snippets. Journal of the American Statistical Association, 1-13.
- Yao, F., Müller, H. G., & Wang, J. L. (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100, 577-590.

Thank You!