Lecture 08 Analog Input

CE346 – Microcontroller System Design Branden Ghena – Spring 2025

Some slides borrowed from: Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Administrivia

- Labs continue as normal
 - This week: Breadboarding

- Next week: Design Presentations
 - Details posted to Piazza
 - Schedule will be up in the next day or two

- Quiz today
 - Tell your friends

Today's Goals

- Explore methods for sensing analog signals
 - Comparators
 - Analog-to-Digital Converters
- Discuss nRF implementation of these peripherals

Outline

Comparators (and nRF implementations)

General ADC Design

nRF ADC Implementation

Analog signals

- Exist in infinite states
 - From a maximum to a minimum
- Often used for interactions with the real world
 - Sensors usually generate analog signals
- Microbit example: microphone

Interacting with analog signals

Microcontrollers are inherently digital

Need a method for translating analog signal into a digital one

Options:

- 1. Determine if signal is higher or lower than some amount (Boolean)
- 2. Determine voltage value of signal (N-bit number)

Interacting with analog signals

Microcontrollers are inherently digital

Need a method for translating analog signal into a digital one

- Options:
 - 1. Determine if signal is higher or lower than some amount (Boolean)
 - 2. Determine voltage value of signal (N-bit number)

Determination is done by a Comparator

General comparator design

 Compares an analog input signal to a reference voltage

V_{OUT} digital signal

• High: $V_{IN} > V_{REF}$

• Low: $V_{IN} < V_{REF}$

- Advantages:
 - Simple
 - Low power

Comparator design questions

- What reference voltages are available?
 - A few internal voltages
 - Usually also allows external references from input pins
- When is an output generated?
 - Usually when status changes
 - Low-to-high, High-to-low, Both (like GPIO interrupts)

Hysteresis

 A window added around signal state changes to prevent small amounts of noise from changing the output

Input: one of eight analog input pins

- Reference: one of two analog inputs or selection of VDD * N/16
 - VDD: Input voltage of the system

• Hysteresis: +/- 50 mV range around VIN- when enabled

• Events: transition signals + ready (~150 µs startup time)

Can also request what the current comparison state is (high/low)

• Can be used for low-power wakeup of microcontroller

nRF COMP peripheral

- Analog Comparator (not low power)
 - More advanced version of a comparator (otherwise similar)
- What advantages would a more capable comparator have?
 - Configurable hysteresis
 - LPCOMP: +/- 50 mV COMP: any of the N/64 voltage levels
 - Faster detection
 - LPCOMP: 5 μs COMP: 0.1-0.6 μs (depending on power mode)
 - More possible reference voltages
 - LPCOMP: VDD or input COMP: VDD, 1.2v, 1.8v, 2.4v, or input
 - LPCOMP: 16 levels COMP: 64 levels

Break + Question: Internal reference voltages

 Why have internal voltage references other than the system voltage (VDD)?

Break + Question: Internal reference voltages

- Why have internal voltage references other than the system voltage (VDD)?
 - What if want you want to measure is VDD?
 - Battery voltage
 - Did someone just unplug me?
 - etc.
 - What if VDD isn't stable?
 - Battery voltage
 - Energy-harvesting system
 - Hard to know what any particular value means...

Outline

Comparators (and nRF implementations)

General ADC Design

nRF ADC Implementation

Interacting with analog signals

Microcontrollers are inherently digital

Need a method for translating analog signal into a digital one

Options:

- 1. Determine if signal is higher or lower than some amount (Boolean)
- 2. Determine voltage value of signal (N-bit number)

Translation is done by an Analog-to-Digital Converter (ADC)

Quantization

- Analog voltages are represented by discrete voltage levels
- Comparators are 1-bit ADCs
 - Split into two regions
 - Good ADCs split into 4000-16000 regions
- More levels gives a more accurate representation of the signal

Translating voltage and ADC counts

$$Value = \frac{V_{IN}}{V_{REF}} * (2^{Resolution})$$

- V_{REF} selects maximum range
- Ground is usually minimum range
- Resolution depends on hardware
 - Either hardcoded or a selection

Analog to digital translation process

Two steps:

1. Acquisition

- Read in signal for some amount of time
- Signal connected to a capacitor
- Fills capacitor up to voltage level
- Speed depends on input resistance
 - 1-100 µs is common

2. Conversion

Determine which digital value the read signal corresponds to

Direct-conversion ADC

- Chain comparators together
 - Each with a separate reference voltage
- Digital value determined immediately
 - Also known as "Flash" ADCs
- Downside: needs 2ⁿ-1 comparators
 - Reserved for expensive applications

Successive-Approximation ADC

- Method: Binary Search
 - Compare signal to generated reference
 - Increase or decrease reference as needed
 - Repeat
- DAC creates reference (Digital-to-Analog Converter)
 - Final value of DAC is the ADC value

4-bit ADC with an input signal V_{IN}

- 1. Compare $\frac{1}{2}$ V_{REF} (0b????) to V_{IN}
 - If V_{IN} is greater, bit is 1. Else zero

- 1. Compare $\frac{1}{2}$ V_{REF} (0b**0**???) to V_{IN}
 - If V_{IN} is greater, bit is 1. Else zero
 - V_{IN} is less. So set that bit to zero

- 2. Compare 1/4 V_{REF} (0b**0**???) to V_{IN}
 - If V_{IN} is greater, bit is 1. Else zero

- 2. Compare $1/4 V_{REF} (0b$ **01** $??) to <math>V_{IN}$
 - If V_{IN} is greater, bit is 1. Else zero
 - V_{IN} is greater. So set that bit to one

- 3. Compare $3/8 V_{REF} (0b$ **01** $??) to <math>V_{IN}$
 - If V_{IN} is greater, bit is 1. Else zero

- 3. Compare $3/8 V_{REF} (0b$ **010** $?) to <math>V_{IN}$
 - If V_{IN} is greater, bit is 1. Else zero
 - V_{IN} is less. So set that bit to zero

- 4. Compare 5/16 V_{REF} (0b**010**?) to V_{IN}
 - If V_{IN} is greater, bit is 1. Else zero

- 4. Compare $5/16 V_{REF} (0b$ **0101** $) to <math>V_{IN}$
 - If V_{IN} is greater, bit is 1. Else zero
 - V_{IN} is greater. So bit is one

Successive Approximation Example

5. Output is $5/16 V_{REF}$ (0b0101)

- Slight underestimate of the real value, but as close as we can get
- More bits would get us even closer

Successive Approximation – example of a 4-bit ADC

Successive Approximation Example

 Performs a binary search to determine correct reference signal value

Tradeoffs in ADC design

- Direct-Conversion: more expensive (more silicon)
- SAADC: more time consuming (more binary search time)

- Most microcontrollers land on successive-approximation designs
 - The slowdown isn't an issue for slowly changing signals
 - Quickly changing signals probably need special hardware anyways

Break + Critical Thinking

How much ADC resolution is needed?

Break + Critical Thinking

How much ADC resolution is needed?

- Resolution requirement depends on signal being sensed
- Temperature sensor probably doesn't need 16-bit ADC
 - Difference between 30.001°C and 30.002°C is usually irrelevant

- Microphone might though!
 - Differences are audible until they are small enough
 - 16-bit or 24-bit tend to be common choices for audio data

Outline

Comparators (and nRF implementations)

General ADC Design

nRF ADC Implementation

nRF SAADC (Successive Approximation ADC)

- Only one actual ADC peripheral in the chip
 - One measurement at any given time
- However, provides 8 different "channels" with unique configurations
 - Virtualization in hardware!
 - Typical setup is to sample each channel one-after-the-other

SAADC Resolution and Sampling

- Resolution is selectable (for the whole peripheral)
 - 8, 10, 12, or 14 bits
 - Result stored as 16-bit value regardless

- Sampling time is selectable (for each channel)
 - 3-40 µs
 - Longer sampling time is important for very low-current signals

nRF SAADC Inputs

Can read the system voltage directly

- Or read one of 8 different analog input pins
 - These pins ARE fixed and not totally reconfigurable
 - Analog signals are more susceptible to interference
- Need to make sure that you're connecting to an analog input pin

Analog inputs on the Microbit

- Of the 8 analog input pins
 - One for microphone
 - One is not connected
 - Three are repurposed for the LED matrix
 - Three are available as external inputs
- For projects, students sometimes end up with external ADCs

Triggering sample collection

- Can be triggered with TASK_START on demand
 - Including through EVENT->TASK chaining

- Includes a timer within itself to automatically trigger sampling
 - Rate = $16 \text{ MHz} / (2^{\text{Scale}})$ where scale is 11 bits
 - Maximum rate is 7.8 kHz

EasyDMA on the SAADC

- There is no register to read ADC results from
- Instead, you must use DMA to collect samples
- At configuration time, provide:
 - Pointer to RAM
 - Must be RAM, not Flash
 - Maximum count of 16-bit samples to be written starting at address
 - Up to 32768
- When complete, a register tells you the amount of samples written to RAM

Analog signal monitoring

- Includes two comparators for each channel
 - High and Low limits
- Generates events whenever transitioning above High or below Low
 - Events can generate interrupts if desired

Design question

How many analog samples can the Microbit hold?

Design question

- How many analog samples can the Microbit hold?
 - Available: 128 kB RAM, 512 kB Flash
 - 64000 samples in RAM
 - Questions
 - Are they packed or padded to 16-bit?
 - How much memory are you using for other things?
 - Are you moving them into Flash periodically? (or external storage)

Outline

Comparators (and nRF implementations)

General ADC Design

nRF ADC Implementation