Identifying Customers

Xichen Tang QUT

January 16, 2020

Subject Introduce

Naive Bayes

Forecasts

Thanks and Question

Directory

Introduce

Directory
Subject Introduce
Naive Bayes
Forecasts
Thanks and Question

Directory
Subject Introduce
Naive Bayes
Forecasts
Thanks and Question

Subject Introduce

Data

Avg and Std

Naive Bayes

Forecasts

Thanks and Question

Subject Introduce

Introduce

Directory

Subject Introduce

Data

Avg and Std

Naive Bayes

Forecasts

Thanks and Question

■ The kaggle subject:Santander Customer Transaction Prediction

In this challenge, we need to identify which customers will make a specific transaction in the future, irrespective of the amount of money transacted.

Data

Directory

Subject Introduce

Data

Avg and Std

Naive Bayes

Forecasts

Thanks and Question

■ train_data

ID_code	target	var_0	var_1	•••	var_198	var_199
train_0	0	8.9255	-6.7863	• • •	12.7803	-1.0914
train_1	0	11.5006	-4.1473	• • •	18.3560	1.9518

■ test.csv

ID_code	var_0	var_1	•••	var_198	var_199
test_0	8.9255	-6.7863	• • •	12.7803	-1.0914
test_1	11.5006	-4.1473	• • •	18.3560	1.9518

■ train_data.info

RangeIndex:	200000 entries	0 to 199999
Columns:	202 entries	ID_code to var_199

Avg and Std

Directory

Subject Introduce

Data

Avg and Std

Naive Bayes

Forecasts

Thanks and Question

■ by describe()

Subject Introduce

Naive Bayes

Statistical Functions

AUC

Result

Decomposition of the graphics

Test for stationarity

Remove Seasonalization

Remove Seasonalization

Forecasts

Thanks and Question

Naive Bayes

Statistical Functions

Directory

Subject Introduce

Naive Bayes

Statistical Functions

AUC

Result

Decomposition of the graphics

Test for stationarity

Remove Seasonalization

Remove Seasonalization

Forecasts

Thanks and Question

Calculate Prob $P(A \mid B) = \frac{P(AB)}{P(B)}$

Smoothing

If the probability value to be estimated is 0, the calculation result of posterior probability will be affected. The solution to this problem is to use smoothing

Subject Introduce

Naive Bayes

Statistical Functions

AUC

Result

Decomposition of the graphics

Test for stationarity

Remove Seasonalization

Remove Seasonalization

Forecasts

Thanks and Question

Validation AUC

Validation AUC = 0.905571412599524

Result

Directory

Subject Introduce

Naive Bayes

Statistical Functions

AUC

Result

Decomposition of the graphics

Test for stationarity

Remove Seasonalization

Remove Seasonalization

Forecasts

Thanks and Question

1. Probability

Decomposition of the graphics

Directory

Subject Introduce

Naive Bayes

Statistical Functions

AUC

Result

Decomposition of the graphics

Test for stationarity

Remove Seasonalization

Remove Seasonalization

Forecasts

Thanks and Question

Result

We can get Raw data, trend data, periodic data, random variables

Test for stationarity

Directory

Subject Introduce

Naive Bayes

Statistical Functions

AUC

Result

Decomposition of the graphics

Test for stationarity

Remove Seasonalization

Remove Seasonalization

Forecasts

Thanks and Question

- The Measure seasonal_decompose
- The Result

 There is a 15% probability that the sequence is non-stationary

Remove Seasonalization

Directory

Subject Introduce

Naive Bayes

Statistical Functions

AUC

Result

Decomposition of the graphics

Test for stationarity

Remove Seasonalization

Remove Seasonalization

Forecasts

Thanks and Question

remove seasonalization

Remove Seasonalization

Directory

Subject Introduce

Naive Bayes

Statistical Functions

AUC

Result

Decomposition of the graphics

Test for stationarity

Remove Seasonalization

Remove Seasonalization

Forecasts

Thanks and Question

Result

The p value is very small, and the sequence after the difference is considered stable Now after the transformations, our p-value for the DF test is well within 5 %. Hence we can assume Stationarity of the series

Subject Introduce

Naive Bayes

Forecasts

Modle

Thanks and Question

Forecasts

Modle

Directory
Subject Introduce
Naive Bayes
Forecasts
Modle

Thanks and Question

- modle
- result sm.tsa.arma_order_select_ic get the best p and q values (time-consuming) by passing in the qualified maximum,It takes too long
- get result
 Input the start time and end time for data prediction then Restore the predicted value

Directory

Subject Introduce

Naive Bayes

Forecasts

Thanks and Question

Thanks and Question

