# Fonction dérivée

## 1<sup>ère</sup> STMG

## Table des matières

| 1 | Fon  | ction dérivée                                                                                         | 2 |
|---|------|-------------------------------------------------------------------------------------------------------|---|
|   | 1.1  | Définition : Fonction dérivée                                                                         | 2 |
|   | 1.2  | Formules de dérivation de fonctions usuelles :                                                        | 2 |
|   | 1.3  | Formules d'opération sur les fonctions dérivées :                                                     | 2 |
|   | 1.4  | Méthode : Calculer des fonctions dérivées                                                             | 2 |
| 2 | Fon  | ction dérivée d'une fonction polynôme                                                                 | 3 |
|   | 2.1  | Définition : Dérivée d'une fonction polynôme de degré 2                                               | 3 |
|   | 2.2  | Méthode : Déterminer la fonction dérivée d'une fonction polynôme de degré 2                           | 3 |
|   | 2.3  | Définition : Dérivée d'une fonction polynôme de degré 3                                               | 4 |
|   | 2.4  | Méthode : Déterminer la fonction dérivée d'une fonction polynôme de degré $3 \ \dots \ \dots \ \dots$ | 4 |
| 3 | Vari | iations d'une fonction polynôme                                                                       | 5 |
|   | 3.1  | Théorème : Signe de la dérivée et variation d'une fonction                                            | 5 |
|   | 3.2  | Méthode : Étudier les variations d'une fonction polynôme de degré 2                                   |   |
|   | 3.3  | Méthode : Étudier les variations d'une fonction polynôme de degré 3                                   |   |
|   |      |                                                                                                       |   |

### 1 Fonction dérivée

#### 1.1 Définition : Fonction dérivée

La fonction qui à tout réel x associe le nombre dérivé de f en x est appelée **fonction dérivée** de f et se note f'.

#### 1.2 Formules de dérivation de fonctions usuelles :

| Fonction $f$                                                                         | Dérivée $f^{'}$                                       |
|--------------------------------------------------------------------------------------|-------------------------------------------------------|
| $f(x) = a, a \in \mathbb{R}$ $f(x) = ax, a \in \mathbb{R}$ $f(x) = x^2$ $f(x) = x^3$ | $f'(x) = 0$ $f'(x) = a$ $f'(x) = 2x$ $f'(x) = 3x^{2}$ |

### 1.3 Formules d'opération sur les fonctions dérivées :

| $\overline{(f+g)^{'}=f^{'}+g^{'}}$  |      |                    |
|-------------------------------------|------|--------------------|
| $(k \times f)^{'} = k \times f^{'}$ | avec | $k \in \mathbb{R}$ |

#### 1.4 Méthode : Calculer des fonctions dérivées

Dans chaque cas, calculer la fonction dérivée de la fonction f:

- a) f(x) = 3x
- b)  $f(x) = x^2 + 5$
- c)  $f(x) = 5x^3$
- d)  $f(x) = 3x^2 + 4x$

(a) 
$$f(x) = 3x$$

$$f'(x) = 3 \times (x)'$$
$$= 3 \times 1$$
$$= 3$$

$$f\left(x\right) = 3x \Rightarrow f'\left(x\right) = 3$$

(b) 
$$f(x) = x^2 + 5$$

$$f'(x) = (x^2)' + (5)'$$
$$= 2x + 0$$
$$= 2x$$

$$f(x) = x^{2} + 5 \Rightarrow f'(x) = 2x$$

(c) 
$$f(x) = 5x^3$$

$$f'(x) = 5 \times (x^3)'$$
$$= 5 \times 3x^2$$
$$= 15x^2$$

$$f(x) = 5x^3 \Rightarrow f'(x) = 15x^2$$

(d) 
$$f(x) = 3x^2 + 4x$$

$$f'(x) = 3 \times (x^2)' + 4 \times (x)'$$
$$= 3 \times 2x + 4 \times 1$$
$$= 6x + 4$$

$$f(x) = 3x^2 + 4x \Rightarrow f'(x) = 6x + 4$$

## 2 Fonction dérivée d'une fonction polynôme

#### 2.1 Définition : Dérivée d'une fonction polynôme de degré 2

Soit f une fonction polynôme du second degré définie sur  $\mathbb{R}$  par  $f\left(x\right)=ax^{2}+bx+c$ .

On appelle fonction dérivée de f, notée f', la fonction définie sur  $\mathbb{R}$  par f'(x) = 2ax + b.

#### Remarque:

Soit f une fonction polynôme du second degré définie par  $f(x) = 5x^2 - 3x + 2$ .

Pour déterminer la fonction dérivée f', on applique la technique suivante :

$$f(x) = 5x^2 - 3x + 2$$

$$f'(x) = 2 \times 5x - 3$$

FIGURE 1 – "Technique" pour dériver une fonction polynôme de degré 2

#### 2.2 Méthode : Déterminer la fonction dérivée d'une fonction polynôme de degré 2

Déterminer les fonctions dérivées des fonctions suivantes :

a) 
$$f(x) = 4x^2 - 6x + 1$$

b) 
$$g(x) = x^2 - 2x + 6$$

c) 
$$h(x) = -3x^2 + 2x + 8$$

d) 
$$k(x) = x^2 + x + 1$$

e) 
$$l(x) = 5x^2 + 5$$

f) 
$$m(x) = -x^2 + 7x$$

(a) 
$$f(x) = 4x^2 - 6x + 1$$

$$f'(x) = (4x^{2})' - (6x)' + (1)'$$

$$= 4 \times 2x - 6 \times 1 + 0$$

$$= 8x - 6$$

(b) 
$$g(x) = x^2 - 2x + 6$$

$$g'(x) = (x^{2})' - (2x)' + (6)'$$

$$= 2 \times x - 2 \times 1 + 0$$

$$= 2x - 2$$

$$= 2(x - 1)$$

Avec la même méthode on trouve :

| Fonction                           | Dérivée                                |
|------------------------------------|----------------------------------------|
| $h\left(x\right) = -3x^2 + 2x + 8$ | $h'(x) = -3 \times (2x) + 2 = -6x + 2$ |
| $k\left(x\right) = x^2 + 1x + 1$   | k'(x) = 2x + 1                         |
| $l\left(x\right) = 5x^2 + 5$       | $l'(x) = 5 \times 2x = 10x$            |
| $m\left(x\right) = -x^2 + 7x$      | m'(x) = -2x + 7                        |

#### 2.3 Définition : Dérivée d'une fonction polynôme de degré 3

Soit f une fonction polynôme de degré 3 définie sur  $\mathbb{R}$  par  $f(x) = ax^3 + bx^2 + cx + d$ .

On appelle fonction dérivée de f, notée f', la fonction définie sur  $\mathbb{R}$  par

$$f'(x) = 3ax^2 + 2bx + c$$

.

#### Remarque

Soit f une fonction polynôme du troisième degré définie par :  $f(x) = 2x^3 - 3x^2 + 5x - 1$ .

Pour déterminer la fonction dérivée  $f^{\prime},$  on applique la technique suivante :

$$f(x) = 2x^{2} - 3x^{2} + 5x$$

$$f'(x) = 3 \times 2x^{2} - 2 \times 3x + 5$$

Figure 2 – "Technique" pour dériver une fonction polynôme de degré 3

### 2.4 Méthode : Déterminer la fonction dérivée d'une fonction polynôme de degré 3

Déterminer les fonctions dérivées des fonctions suivantes :

a) 
$$f(x) = x^3 - 3x^2 + 2x - 5$$

b) 
$$g(x) = 5x^3 + 2x^2 + 2x - 7$$

c) 
$$h(x) = -2x^3 - 3x^2 - 7x + 8$$

d) 
$$k(x) = -x^3 + x^2 + 1$$

e) 
$$l(x) = 4x^3 + 1$$

f) 
$$m(x) = -x^3 + 7x$$

a) 
$$f(x) = x^3 - 3x^2 + 2x - 5$$

$$f'(x) = (x^3)' - (3x^2)' + (2x)' - (5)'$$

$$= 3 \times x^2 - 3 \times 2x + 2 - 0$$

$$= 3x^2 - 6x + 2$$

b) 
$$g(x) = 5x^3 + 2x^2 + 2x - 7$$

$$g'(x) = (5x^{3})' + (2x^{2})' + (2x)' - (7)'$$

$$= 5 \times 3x^{2} + 2 \times 2x + 2 - 0$$

$$= 15x^{2} + 4x + 2$$

c) 
$$h(x) = -2x^3 - 3x^2 - 7x + 8$$

$$h'(x) = (-2x^3)' - (3x^2)' - (7x)' + (8)'$$
$$= -2 \times 3x^2 - 3 \times 2x - 7 + 0$$
$$= -6x^2 - 6x - 7$$

Avec la même méthode on trouve :

| Fonction                                                             | Dérivée                                                                                                 |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| $k(x) = -x^{3} + x^{2} + 1$ $l(x) = 4x^{3} + 1$ $m(x) = -x^{3} + 7x$ | $k'(x) = -3x^{2} + 2 \times x = -3x^{2} + 2x$ $l'(x) = 3 \times 4x^{2} = 12x^{2}$ $m'(x) = -3x^{2} + 7$ |

## 3 Variations d'une fonction polynôme

## 3.1 Théorème : Signe de la dérivée et variation d'une fonction

- Si  $f'(x) \leq 0$ , alors f est **décroissante**.
- Si  $f'(x) \ge 0$ , alors f est **croissante**.

## 3.2 Méthode : Étudier les variations d'une fonction polynôme de degré 2

Soit la fonction f définie sur  $\mathbb{R}$  par  $f(x) = 2x^2 - 8x + 1$ .

- a) Calculer la fonction dérivée de f.
- b) Déterminer le signe de f' en fonction de x.
- c) Dresser le tableau de variations de f.
- (a) On a :  $f'(x) = 2 \times 2x 8 = 4x 8$ .

(b) On commence par résoudre l'équation f'(x) > 0.

$$f'(x) > 0$$

$$4x - 8 > 0$$

$$4x > 8$$

$$x > 2$$

La fonction f' est une fonction affine représentée par une droite dont le coefficient directeur 4 est positif. Elle est donc d'abord négative (avant x = 2) puis ensuite positive (après x = 2).

(c) On dresse alors le tableau de variations en appliquant le théorème :

| x                      | $-\infty$ 2 $+\infty$ |
|------------------------|-----------------------|
| f'(x) = 4x - 8         | - 0 +                 |
| $f(x) = 2x^2 - 8x + 1$ | f(2) = -7             |

On a : 
$$f(2) = 2 \times 2^2 - 8 \times 2 + 1 = -7$$
.

La fonction f admet un minimum égal à -7 en x=2.

Vérification :



FIGURE 3 – Représentation graphique  $f(x) = 2x^2 - 8x + 1$  et de sa dérivée

## 3.3 Méthode : Étudier les variations d'une fonction polynôme de degré 3

Soit la fonction f définie sur  $\mathbb{R}$  par  $f(x) = x^3 + \frac{9}{2}x^2 - 12x + 5$ .

- a) Calculer la fonction dérivée de f.
- b) Démontrer que f'(x) = 3(x+4)(x-1).
- c) Déterminer le signe de f' en fonction de x.
- d) Dresser le tableau de variations de f.
- e) À l'aide de la calculatrice, représenter graphiquement la fonction f.
- (a) On a :  $f(x) = x^3 + \frac{9}{2}x^2 12x + 5$

$$f'(x) = (x^3)' + (\frac{9}{2}x^2)' - (12x)' + (5)'$$
$$= 3 \times x^2 + \frac{9}{2} \times 2x - 12 + 0$$
$$= 3x^2 + 9x - 12$$

(b) Développons 3(x+4)(x-1):

$$3(x+4)(x-1) = (3x+12)(x-1)$$

$$= (3x \times x) - (3 \times x) + (12 \times x) - (12 \times 1)$$

$$= 3x^{2} + 9x - 12$$

$$= f'(x)$$

Donc f'(x) = 3(x+4)(x-1).

(c) Commençons par résoudre l'équation f'(x) = 0:

$$3(x+4)(x-1) = 0$$

$$x+4=0$$

$$x=-4$$

$$x-1=0$$

$$x=1$$

La dérivée s'annule en -4 et 1.

Le coefficient de  $x^2$ , égal à 3, est **positif**, donc la parabole est tournée dans le sens **cuvette**. La dérivée est donc **positive** à l'extérieur de ses racines -4 et 1.



FIGURE 4 – Représentation graphique de la dérivée de f(x)

## (d) On en déduit le tableau de variations de f :

| x                                       | $-\infty$ |   | -4       |   | 1        |               | $+\infty$ |
|-----------------------------------------|-----------|---|----------|---|----------|---------------|-----------|
| f'(x) = 3(x+4)(x-1)                     |           | + | 0        | _ | 0        | +             |           |
| $f(x) = x^3 + \frac{9}{2}x^2 - 12x + 5$ | $+\infty$ | f | (-4) = 6 |   | f(1) = - | $\frac{3}{2}$ | +∞        |

On a :

- 
$$f(-4) = (-4)^3 + \frac{9}{2} \times (-4)^2 - 12 \times (-4) + 5 = 61$$
  
-  $f(1) = 1^3 + \frac{9}{2} \times 1^2 - 12 \times 1 + 5 = -\frac{3}{2}$ 

#### Vérification :



FIGURE 5 – Représentation graphique f(x) et  $f^{'}(x)$ 

## (e) Représentation à l'aide de la calculatrice



FIGURE 6 – Représentation de f(x) avec la Casio Graph 85



FIGURE 7 – Représentation de f(x) avec la TI-83