

Técnicas Tradicionais de Classificação de Imagens

Classificação: Decision Trees e Random Forest

Prof. Manoela Kohler

prof.manoela@ica.ele.puc-rio.br

www.linkedin.com/in/manoelakohler

Recapitulação

Projeto de Visão Computacional

- Desbalanceamento
- Visualização
- Medidas resumo: características
- Metadados de captura
- Metadados técnicos
- Redução de Dimensionalidade (tópico visto em maior profundidade na aula passada com o Leonardo)
- Redimensionamento x Patches x Crop
- Análise de Variância
- Data Augmentation (ainda a ser muito estudado e praticado)
- Histogram Matching vs Histogram Equalization

Treinamento/Inferência

Machine Learning

Supervisionado

Classificação Regressão Previsão de séries temporais

Não Supervisionado

Agrupamento Associação

Aprendizado Supervisionado

Aprendizado Não Supervisionado

KNN

KNN

KNN

Estudo de Caso

Classificação - Estudo de Caso KNN

- Fashion-MNIST
 - 60k imagens de treino
 - 10k imagens de teste
 - 10 classes
 - 28x28
 - o 8 bits
 - Grayscale

Curiosidades:

 Introdução de uma base de imagens 28 x28 (8 bits) grayscale com um pouco mais de complexidade que o dataset original Mnist.

Deploy com API

Deploy API

획 🖒 🖁 🕡

Deploy

- API
 - Queremos criar uma API (rodando localmente) usando o framework FastAPI com documentação e utilização através do OpenAPI (Swagger).
 - Mais pra frente faremos Deploy no Heroku ou na Oracle!

Árvores de Decisão

Árvore de Decisão

- Árvores de decisão criam modelos de classificação na forma de estruturas;
- Quebra-se um conjunto de dados em menores e menores subconjuntos enquanto simultaneamente são criadas árvores de decisão associadas;
- O resultado final é uma árvore com nós de decisão e nós folhas;
- Fáceis de serem implementadas e interpretadas;

Árvore de Decisão

- Uma árvore de decisão possui um ou mais ramos;
- Nós folhas representam uma classificação ou decisão;
- O nó mais alto da árvore corresponde ao melhor classificador, chamado de nó raiz;
- Árvores de decisão podem lidar tanto com dados numéricos quanto categóricos.

Árvore de Decisão

 Cada nó de decisão contém um teste de um atributo;

- Cada folha está associada a uma classe;
- Cada percursso na árvore (raiz à folha) corresponde a uma regra de classificação.

Árvore de Decisão

Algoritmo ID3 (J. R. Quinlan)

Busca gulosa de cima para baixo pelo espaço de possíveis ramos;

Árvore de Decisão

Algoritmo ID3 (J. R. Quinlan)

- Busca gulosa de cima para baixo pelo espaço de possíveis ramos;
- Sem backtracking;
- Pode ficar preso em um ótimo local;
- Difícil de se usar em variáveis contínuas;

Árvore de Decisão

Algoritmo ID3 (J. R. Quinlan)

• Utiliza a entropia para calcular a homogeneidade dos dados. Se os dados são completamente homogêneos, a entropia é zero. Se os dados estão divididos igualmente, a entropia é 1.

Árvore de Decisão

	Pre	dictors		Target	Decision Tre
Outlook	Temp.	Humidity	Windy	Play Golf	Outlook
Rainy	Hot	High	Falce	No	
Rainy	Hot	High	True	No	
Overoast	Hot	High	Falce	Yes	Sunny Overcast Rainy
Sunny	Mild	High	Falce	Yes	Overcast Kumy
Sunny	Cool	Normal	Falce	Yes	
Sunny	Cool	Normal	True	No	
Overoast	Cool	Normal	True	Yes	Windy Yes Humidity
Rainy	Mild	High	Falce	No	
Rainy	Cool	Normal	Falce	Yes	
Sunny	Mild	Normal	Falce	Yes	FALSE TRUE High Norma
Rainy	Mild	Normal	True	Yes	
Overoast	Mild	High	True	Yes	
Overoast	Hot	Normal	Falce	Yes	Yes No No Yes
Sunny	Mild	High	True	No	

1. Calcula-se a entropia para classe (0 = dados homogêneos; 1 = dados igualmente distribuídos).

Play Golf		
Yes	No	
9	5	

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Árvore de Decisão

2. Divide-se a base nos diferentes atributos e calcula-se a entropia para cada um deles. Calcula-se o ganho de informação (entropia para classe – entropia para atributo).

		Play Golf				
		Yes	No			
	Sunny	3	2	5		
Outlook	Overcast	4	0	4		
	Rainy	2	3	5		
				14		
		1				
ook) = P (9	Sunny)* E (3,2	2) + P (Ove	rcast)* E (4,0) + P (Rainy)* E (2,3)	٦
= (5/14)*0.971 + (4/14)*0.0 + (5/14)*0.971						
= 0.693						
	look) = P (9	Outlook Overcast Rainy Ook) = P(Sunny)*E(3,2 14)*0.971 + (4/14)*0.0	Outlook Sunny 3 Overcast 4 Rainy 2 Ook) = P(Sunny)*E(3,2) + P(Over 14)*0.971 + (4/14)*0.0 + (5/14)*	Outlook Sunny 3 2 Overcast 4 0 Rainy 2 3	Outlook Sunny 3 2 5 Overcast 4 0 4 Rainy 2 3 5 Ook) = P(Sunny)*E(3,2) + P(Overcast)*E(4,0) + P(14)*0.971	Outlook Sunny 3 2 5 Overcast 4 0 4 Rainy 2 3 5 Ook) = P(Sunny)*E(3,2) + P(Overcast)*E(4,0) + P(Rainy)*E(2,3) 14)*0.971 + (4/14)*0.0 + (5/14)*0.971

G(PlayGolf, Outlook) = E(PlayGolf) – E(PlayGolf, Outlook) = 0.940 – 0.693 = 0.247 O ganho de informação é baseado na diminuição da entropia depois que uma base de dados é subdividida em um atributo.

Árvore de Decisão

2. Divide-se a base nos diferentes atributos e calcula-se a entropia para cada um deles. Calcula-se o ganho de informação (entropia para classe – entropia para atributo).

		Play Golf			
		Yes	No		
	Sunny	3	2		
Outlook	Overcast	4	0		
	Rainy	2	3		
Gain = 0.247					

		Play Golf		
		Yes	No	
	Hot	2	2	
Temp.	Mild	4	2	
	Cool	3	1	
	Gain = 0	0.029		

		Play Golf	
		Yes	No
	High	3	4
Humidity	Normal	6	1
	Gain = 0	0.152	

			Golf	
		Yes	No	
Windy	False	6	2	
windy	True	3	3	
Gain = 0.048				

O ganho de informação é baseado na diminuição da entropia depois que uma base de dados é subdividida em um atributo.

Gain(T, X) = Entropy(T) - Entropy(T, X)

Árvore de Decisão

3. Escolhe-se atributo com maior ganho de informação como nó de decisão.

	_	Play Golf			
7		Yes	No		
	Sunny	3	2		
Outlook	Overcast	4	0		
	Rainy	2	3		
	Gain = 0.247				

Árvore de Decisão

- 3. Escolhe-se atributo com maior ganho de informação como nó de decisão.
 - a. Um ramo que tenha entropia 0 é uma folha.

	_	Play Golf			
7		Yes	No		
	Sunny	3	2		
Outlook	Overcast	4	0		
	Rainy	2	3		
	Gain = 0.247				

Árvore de Decisão

- 3. Escolhe-se atributo com maior ganho de informação como nó de decisão.
 - a. Um ramo que tenha entropia 0 é uma folha.
 - b. Um ramo com entropia maior que 0 precisa ser subdividido.

Temp.	Humidity	Windy	Play Golf				
Mild	High	FALSE	Yes			Outlook	
Cool	Normal	FALSE	Yes] .			
Mild	Normal	FALSE	Yes				
Cool	Normal	TRUE	No	Sun	ınv	Overcast	Rainy
Mild	High	TRUE	No		,		,
				FALSE	TR	UE	

	4		Golf		
7		Yes	No		
	Sunny	3	2		
Outlook	Overcast	4	0		
	Rainy	2	3		
	Gain = 0.247				

Árvore de Decisão

4. Algoritmo é rodado recursivamente para todos os ramos sem folha até que todos os dados sejam classificados.

Regras de decisão

R₁: IF (Outlook=Sunny) AND
(Windy=FALSE) THEN Play=Yes

R₂: IF (Outlook=Sunny) AND
(Windy=TRUE) THEN Play=No

R₃: IF (Outlook=Overcast) THEN
Play=Yes

R₄: IF (Outlook=Rainy) AND
(Humidity=High) THEN Play=No

R₅: IF (Outlook=Rain) AND
(Humidity=Normal) THEN
Play=Yes

Árvore de Decisão

Exemplo

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Model: Decision Tree

Árvore de Decisão

Exemplo

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Árvore de Decisão

Exemplo

Refund	Marital Status		Cheat
No	Married	80K	?

Árvore de Decisão

Exemplo

Refund	Marital Status		Cheat
No	Married	80K	?

Árvore de Decisão

• Exemplo

Refund	Marital Status	Taxable Income	Cheat
No.	Married	80K	?

Árvore de Decisão

Exemplo

Refund	Marital Status		Cheat
No	Married	80K	?

Árvore de Decisão

• Exemplo

Test Data

Refund		Taxable Income	Cheat
No	Married	80K	?
			_

Valor inferido para 'Cheat' é 'No'

Árvore de Decisão

- Árvores de decisão são fáceis de se entender;
- Elas funcionam mais eficientemente com atributos discretos;
- Extremamente rápidas em classificar dados novos;

Comitê

Comitê

- Agregar múltiplos modelos treinados com o objetivo de melhorar a desempenho do modelo conjunto.
- Intuição: simula o que fazemos quando combinamos conhecimento de especialistas em um processo de tomada de decisão.

Comitê

Conhecidos também por:

- Comitês especialistas;
- Sistemas múltiplos de classificação;
- Comitê de classificadores;
- Máquina de Comitê;
- Mistura de especialistas;
- Aprendizado em conjunto;
- Ensemble.

Diversos estudos demonstram sua utilização com sucesso em problemas onde um único especialista não funciona bem.

Comitê

Aprendizado de Comitês

- Ás vezes cada técnica de aprendizado retorna diferentes 'hipóteses' (funções), mas nenhuma hipótese perfeita.
- Poderíamos combinar várias hipóteses imperfeitas para se ter uma hipótese melhor?

Comitê

Votação:

- Maioria do votos
- Maioria ponderada dos votos
- Borda count
- Média
- Média ponderada

- 。 Soma
- Soma ponderada
- Produto
- Máximo
- Mínimo
- Mediana

Comitê

Analogias:

- Comitês combinam opiniões de especialistas para tomar decisões melhores;
- Estudantes trabalhando em conjunto em um projeto.

Intuição:

- Indivíduos cometem erros, mas a maioria é menos propensa a erros;
- Indivíduos em geral têm conhecimento parcial. Um comitê pode juntar conhecimento para tomar decisões melhores.

Comitê

Quando usar?

- o Temos um conjunto muito grande de dados;
- A região de domínio do problema é muito complexa;
- o Queremos melhorar os resultados de classificadores individuais.

Comitê

Vantagens

- A combinação de modelos pode apresentar melhor desempenho que um modelo só;
- Neutraliza ou minimiza fortemente a instabilidade inerente aos algoritmos de aprendizagem;

Desvantagens

- Não há garantia de que as estruturas modulares apresentem os melhores resultados;
- Modelos combinados são mais difíceis de analisar;
- O custo é alto.

Comitê: Técnicas

Comitê - Técnicas

Bagging vs. Boosting

Comitê - Técnicas

Bagging vs. Boosting

Comitê - Técnicas

Bagging vs. Boosting

Comitê - Técnicas

Bagging vs. Boosting

Queridinho do Kaggle: XGBoost

Comitê - Técnicas

Stacking

Comitê - Técnicas

Random Subspace Method (RSM)

- Similar ao Bagging, mas com aleatorização sobre os atributos.
- Classificadores-base aprendem nos subespaços S de mesma dimensão.
- Decisão final é por votação.

Random Forest

Random Forest

A proporção de votos diferentes da classe target em relação ao total de votos é o erro OOB (Out-Of-Bag estimate)

Random Forest

Prêmio de 1 milhão de dólares

- Melhora na acurácia do sistema de recomendação de filmes da Netflix em 10%.
- Os melhores times combinaram diversos modelos e algoritmos em um comitê.

Random Forest

Tarefa de aprendizado supervisionado

- Dados de treinamento são formados por um conjunto de usuários e as avaliações dos filmes (1,2,3,4,5 estrelas) feitas por esses usuários;
- Construir um classificador que dado um usuário e um filme não avaliado, classifique corretamente aquele filme como 1, 2, 3, 4, ou 5 estrelas;
- Prêmio de \$1 milhão para 10% em melhora na acurácia em relação ao modelo atual.

Estudo de Caso

Classificação - Estudo de Caso KNN

- CIFAR-10
 - o 50k imagens de treino
 - 10k imagens de teste
 - 10 classes
 - o 32x32x3
 - o 8 bits
 - o RGB

Curiosidades:

 Geoffrey Hinton foi um dos criadores do dataset. Não só o CIFAR-10, mas também o CIFAR-100 (combinando um total de 80M de imagem rotuladas.

Obrigada!

Prof. Manoela Kohler

prof.Manoela@ica.ele.puc-rio.br

www.linkedin.com/in/manoelakohler

