$12n_{0142} \ (K12n_{0142})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 2.35580 \times 10^{24} u^{34} + 5.23556 \times 10^{24} u^{33} + \dots + 1.45032 \times 10^{25} b - 1.44449 \times 10^{25}, \\ &\quad 2.40552 \times 10^{24} u^{34} + 8.47444 \times 10^{24} u^{33} + \dots + 7.25161 \times 10^{24} a + 1.23374 \times 10^{25}, \ u^{35} + 2u^{34} + \dots + 2u - 1 \\ I_2^u &= \langle b^4 + 4b^3 u - 4b^3 - 4b^2 u + u - 1, \ a - u + 1, \ u^2 - u + 1 \rangle \\ I_3^u &= \langle b^3 - 3b^2 u - 3b^2 + 3bu + 1, \ a + u + 1, \ u^2 + u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 49 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle 2.36 \times 10^{24} u^{34} + 5.24 \times 10^{24} u^{33} + \dots + 1.45 \times 10^{25} b - 1.44 \times 10^{25}, \ 2.41 \times 10^{24} u^{34} + 8.47 \times 10^{24} u^{33} + \dots + 7.25 \times 10^{24} a + 1.23 \times 10^{25}, \ u^{35} + 2u^{34} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.331722u^{34} - 1.16863u^{33} + \dots - 6.30773u - 1.70134 \\ -0.162433u^{34} - 0.360993u^{33} + \dots + 0.130097u + 0.995980 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.494155u^{34} - 1.52962u^{33} + \dots - 6.17763u - 0.705356 \\ -0.162433u^{34} - 0.360993u^{33} + \dots + 0.130097u + 0.995980 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.593442u^{34} + 0.968496u^{33} + \dots - 3.97361u + 2.63388 \\ -0.474317u^{34} - 1.15537u^{33} + \dots + 1.27477u + 0.0691574 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1.46457u^{34} + 3.18756u^{33} + \dots - 3.14002u + 2.39592 \\ -0.396812u^{34} - 1.06370u^{33} + \dots - 0.108352u + 0.168805 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{6} + u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1.03514u^{34} + 2.01243u^{33} + \dots - 4.19611u + 2.30630 \\ -0.466022u^{34} - 1.17415u^{33} + \dots + 0.0947758u - 0.147474 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.214267u^{34} - 0.843549u^{33} + \dots - 2.91396u + 3.23369 \\ -0.447509u^{34} - 0.903401u^{33} + \dots + 3.98711u - 0.173391 \end{pmatrix}$$

(ii) Obstruction class = -1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{35} + 54u^{34} + \dots + 132u - 1$
c_2, c_4	$u^{35} - 6u^{34} + \dots - 4u + 1$
c_3	$u^{35} + 2u^{34} + \dots + 2u - 1$
c_5, c_9	$u^{35} + 3u^{34} + \dots - 83u + 13$
<i>c</i> ₆	$u^{35} + 2u^{34} + \dots + 178664u + 28669$
c_7, c_{11}	$u^{35} + u^{34} + \dots + 4u + 4$
c ₈	$u^{35} - 2u^{34} + \dots + 342120u + 112661$
c_{10}	$u^{35} - u^{34} + \dots - 1020u + 404$
c_{12}	$u^{35} - 15u^{34} + \dots - 80u + 16$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{35} - 138y^{34} + \dots + 4900y - 1$
c_2, c_4	$y^{35} + 54y^{34} + \dots + 132y - 1$
<i>c</i> ₃	$y^{35} + 6y^{34} + \dots - 4y - 1$
c_5, c_9	$y^{35} - 55y^{34} + \dots - 1795y - 169$
<i>C</i> ₆	$y^{35} + 42y^{34} + \dots - 5590382760y - 821911561$
c_7, c_{11}	$y^{35} + 15y^{34} + \dots - 80y - 16$
<i>c</i> ₈	$y^{35} - 90y^{34} + \dots - 117701124860y - 12692500921$
c_{10}	$y^{35} + 15y^{34} + \dots - 4334416y - 163216$
c_{12}	$y^{35} + 15y^{34} + \dots + 768y - 256$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.604506 + 0.837594I		
a = -0.448438 - 0.357846I	-0.48340 + 2.36916I	1.57611 - 4.50521I
b = 0.689783 + 0.188000I		
u = -0.604506 - 0.837594I		
a = -0.448438 + 0.357846I	-0.48340 - 2.36916I	1.57611 + 4.50521I
b = 0.689783 - 0.188000I		
u = 0.390242 + 0.879154I		
a = 0.310445 - 0.133927I	2.56414 - 5.90559I	4.16775 + 8.40016I
b = -0.23755 + 1.43913I		
u = 0.390242 - 0.879154I		
a = 0.310445 + 0.133927I	2.56414 + 5.90559I	4.16775 - 8.40016I
b = -0.23755 - 1.43913I		
u = 0.291312 + 0.893061I		
a = -0.518425 + 1.133840I	-0.669990 - 1.198850I	0.589488 - 0.204869I
b = 1.01576 - 1.21326I		
u = 0.291312 - 0.893061I		
a = -0.518425 - 1.133840I	-0.669990 + 1.198850I	0.589488 + 0.204869I
b = 1.01576 + 1.21326I		
u = 0.201059 + 0.882276I		
a = 0.570013 - 0.061429I	3.35367 + 0.99605I	6.08668 + 0.22244I
b = -1.146370 + 0.781662I		
u = 0.201059 - 0.882276I		
a = 0.570013 + 0.061429I	3.35367 - 0.99605I	6.08668 - 0.22244I
b = -1.146370 - 0.781662I		
u = -0.396959 + 0.761909I		
a = 0.353852 - 0.098553I	0.24170 + 1.75473I	-0.43635 - 4.44927I
b = -0.252788 - 0.797693I		
u = -0.396959 - 0.761909I		
a = 0.353852 + 0.098553I	0.24170 - 1.75473I	-0.43635 + 4.44927I
b = -0.252788 + 0.797693I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.985569 + 0.598689I		
a = -1.338090 + 0.075762I	-5.47439 - 0.97053I	-6.95717 + 0.21297I
b = 0.543514 - 1.234170I		
u = 0.985569 - 0.598689I		
a = -1.338090 - 0.075762I	-5.47439 + 0.97053I	-6.95717 - 0.21297I
b = 0.543514 + 1.234170I		
u = -0.975167 + 0.760910I		
a = -1.202040 + 0.021054I	-4.82985 + 6.52855I	-5.30987 - 5.93880I
b = 1.02372 + 1.38759I		
u = -0.975167 - 0.760910I		
a = -1.202040 - 0.021054I	-4.82985 - 6.52855I	-5.30987 + 5.93880I
b = 1.02372 - 1.38759I		
u = -0.704227 + 1.101200I		
a = -0.164791 - 1.088000I	-3.55483 - 0.18354I	-5.27168 + 1.44891I
b = -0.89159 + 1.41508I		
u = -0.704227 - 1.101200I		
a = -0.164791 + 1.088000I	-3.55483 + 0.18354I	-5.27168 - 1.44891I
b = -0.89159 - 1.41508I		
u = 0.581677 + 1.185630I		
a = -0.272346 + 1.132270I	-3.30526 - 4.99735I	-4.49983 + 4.97284I
b = -0.42884 - 2.03294I		
u = 0.581677 - 1.185630I		
a = -0.272346 - 1.132270I	-3.30526 + 4.99735I	-4.49983 - 4.97284I
b = -0.42884 + 2.03294I		
u = -0.574590 + 0.262572I		
a = 0.828257 - 0.616246I	-0.98087 + 1.09493I	-5.80678 - 3.92220I
b = 0.014775 - 0.612549I		
u = -0.574590 - 0.262572I		
a = 0.828257 + 0.616246I	-0.98087 - 1.09493I	-5.80678 + 3.92220I
b = 0.014775 + 0.612549I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.978178 + 0.990	06721	
a = 0.991907 + 0.903	1079I -10.30070 + 3.59687I	-2.12620 - 2.06254I
b = -0.57751 - 1.4679	991	
u = -0.978178 - 0.990	06721	
a = 0.991907 - 0.903	1079I - 10.30070 - 3.59687I	-2.12620 + 2.06254I
b = -0.57751 + 1.4679		
u = -1.12687 + 0.8770	02I	
a = 1.01739 + 0.9958	$53I \qquad -15.7264 - 5.1315I$	-4.99224 + 2.26947I
b = 0.581005 - 1.088		
u = -1.12687 - 0.8770	02I	
a = 1.01739 - 0.9958	53I -15.7264 + 5.1315I	-4.99224 - 2.26947I
b = 0.581005 + 1.088		
u = 0.553000 + 0.079		
a = 1.19162 - 0.955	$12I \qquad 0.51946 - 3.30014I$	-3.55846 + 2.28251I
b = 0.541286 - 0.64		
u = 0.553000 - 0.079		
a = 1.19162 + 0.9555		-3.55846 - 2.28251I
b = 0.541286 + 0.64		
u = 1.11285 + 0.953		
a = 1.03608 - 0.968		-6.65030 + 1.84113I
b = 0.35648 + 1.52		
u = 1.11285 - 0.953		
a = 1.03608 + 0.962		-6.65030 - 1.84113I
b = 0.35648 - 1.52		
u = -0.93478 + 1.1303		
a = 1.030020 + 0.817		-3.98580 - 6.37716I
b = -1.15562 - 2.3032		
u = -0.93478 - 1.1303		2.00500
a = 1.030020 - 0.81		-3.98580 + 6.37716I
b = -1.15562 + 2.3032	281	

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.98846 + 1.10575I		
a = 1.042800 - 0.852917I	-16.9917 - 6.5550I	-6.22803 + 2.34101I
b = -0.75564 + 2.24982I		
u = 0.98846 - 1.10575I		
a = 1.042800 + 0.852917I	-16.9917 + 6.5550I	-6.22803 - 2.34101I
b = -0.75564 - 2.24982I		
u = -0.002637 + 0.401944I		
a = -0.40921 - 2.57831I	0.99468 + 3.59879I	-0.61353 - 4.534061
b = 1.287540 + 0.119160I		
u = -0.002637 - 0.401944I		
a = -0.40921 + 2.57831I	0.99468 - 3.59879I	-0.61353 + 4.534061
b = 1.287540 - 0.119160I		
u = 0.387505		
a = -3.03811	-1.97384	-5.96760
b = 0.784090		

II.
$$I_2^u = \langle b^4 + 4b^3u - 4b^3 - 4b^2u + u - 1, \ a - u + 1, \ u^2 - u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} b + u - 1 \\ b \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} b^{2}u - 2b - u + 1 \\ b^{2}u - b + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u + 1 \\ -b + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} b^{3}u - b^{3} - b^{2}u - b^{2} - 2bu + b + u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4b^2u + 4b^2 + 8bu + 4u 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4	$(u^2 - u + 1)^4$
c_2	$(u^2+u+1)^4$
c_5	$(u+1)^8$
	$u^8 + 4u^7 + 12u^6 + 16u^5 + 15u^4 - 8u^3 - 4u^2 + 1$
c_7, c_{11}	$(u^4 + 2u^2 + 2)^2$
c_8	$u^8 - 4u^7 + 12u^6 - 16u^5 + 15u^4 + 8u^3 - 4u^2 + 1$
c_9	$(u-1)^8$
c_{10}	$(u^4 - 2u^2 + 2)^2$
c_{12}	$(u^2 - 2u + 2)^4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4	$(y^2 + y + 1)^4$
c_5, c_9	$(y-1)^8$
c_6, c_8	$y^8 + 8y^7 + 46y^6 + 160y^5 + 387y^4 - 160y^3 + 46y^2 - 8y + 1$
c_7, c_{11}	$(y^2 + 2y + 2)^4$
c_{10}	$(y^2 - 2y + 2)^4$
c_{12}	$(y^2+4)^4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I		
a = -0.500000 + 0.866025I	0.82247 - 5.69375I	-2.00000 + 7.46410I
b = 0.344777 + 0.313008I		
u = 0.500000 + 0.866025I		
a = -0.500000 + 0.866025I	0.82247 + 1.63398I	-2.00000 - 0.53590I
b = -0.443461 - 0.142082I		
u = 0.500000 + 0.866025I		
a = -0.500000 + 0.866025I	0.82247 + 1.63398I	-2.00000 - 0.53590I
b = 1.44346 - 1.58997I		
u = 0.500000 + 0.866025I		
a = -0.500000 + 0.866025I	0.82247 - 5.69375I	-2.00000 + 7.46410I
b = 0.65522 - 2.04506I		
u = 0.500000 - 0.866025I		
a = -0.500000 - 0.866025I	0.82247 + 5.69375I	-2.00000 - 7.46410I
b = -0.443461 + 0.142082I		
u = 0.500000 - 0.866025I		
a = -0.500000 - 0.866025I	0.82247 - 1.63398I	-2.00000 + 0.53590I
b = 0.344777 - 0.313008I		
u = 0.500000 - 0.866025I		
a = -0.500000 - 0.866025I	0.82247 - 1.63398I	-2.00000 + 0.53590I
b = 1.44346 + 1.58997I		
u = 0.500000 - 0.866025I		
a = -0.500000 - 0.866025I	0.82247 + 5.69375I	-2.00000 - 7.46410I
b = 0.65522 + 2.04506I		

III.
$$I_3^u = \langle b^3 - 3b^2u - 3b^2 + 3bu + 1, \ a + u + 1, \ u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} b - u - 1 \\ b \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} b^{2}u + 2b - u - 1 \\ b^{2}u + b + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u - 1 \\ b + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} b - u - 1 \\ -bu + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -b^{2} + 2bu + 2b \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes $= -2b^2u 2b^2 + 4bu 4u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^2 - u + 1)^3$
c_2, c_3, c_6 c_8	$(u^2 + u + 1)^3$
<i>C</i> ₅	$(u-1)^6$
$c_7, c_{10}, c_{11} \\ c_{12}$	u^6
<i>c</i> ₉	$(u+1)^6$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_6, c_8	$(y^2+y+1)^3$
c_{5}, c_{9}	$(y-1)^6$
$c_7, c_{10}, c_{11} \\ c_{12}$	y^6

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = -0.500000 - 0.866025I	-1.64493 + 2.02988I	-6.00000 - 3.46410I
b = 0.500000 + 0.866025I		
u = -0.500000 + 0.866025I		
a = -0.500000 - 0.866025I	-1.64493 + 2.02988I	-6.00000 - 3.46410I
b = 0.500000 + 0.866025I		
u = -0.500000 + 0.866025I		
a = -0.500000 - 0.866025I	-1.64493 + 2.02988I	-6.00000 - 3.46410I
b = 0.500000 + 0.866025I		
u = -0.500000 - 0.866025I		
a = -0.500000 + 0.866025I	-1.64493 - 2.02988I	-6.00000 + 3.46410I
b = 0.500000 - 0.866025I		
u = -0.500000 - 0.866025I		
a = -0.500000 + 0.866025I	-1.64493 - 2.02988I	-6.00000 + 3.46410I
b = 0.500000 - 0.866025I		
u = -0.500000 - 0.866025I		
a = -0.500000 + 0.866025I	-1.64493 - 2.02988I	-6.00000 + 3.46410I
b = 0.500000 - 0.866025I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 - u + 1)^7)(u^{35} + 54u^{34} + \dots + 132u - 1)$
c_2	$((u^2 + u + 1)^7)(u^{35} - 6u^{34} + \dots - 4u + 1)$
c_3	$((u^{2}-u+1)^{4})(u^{2}+u+1)^{3}(u^{35}+2u^{34}+\cdots+2u-1)$
c_4	$((u^2 - u + 1)^7)(u^{35} - 6u^{34} + \dots - 4u + 1)$
<i>C</i> 5	$((u-1)^6)(u+1)^8(u^{35}+3u^{34}+\cdots-83u+13)$
c_6	$(u^{2} + u + 1)^{3}(u^{8} + 4u^{7} + 12u^{6} + 16u^{5} + 15u^{4} - 8u^{3} - 4u^{2} + 1)$ $\cdot (u^{35} + 2u^{34} + \dots + 178664u + 28669)$
c_7, c_{11}	$u^{6}(u^{4} + 2u^{2} + 2)^{2}(u^{35} + u^{34} + \dots + 4u + 4)$
C ₈	$(u^{2} + u + 1)^{3}(u^{8} - 4u^{7} + 12u^{6} - 16u^{5} + 15u^{4} + 8u^{3} - 4u^{2} + 1)$ $\cdot (u^{35} - 2u^{34} + \dots + 342120u + 112661)$
<i>c</i> ₉	$((u-1)^8)(u+1)^6(u^{35}+3u^{34}+\cdots-83u+13)$
c_{10}	$u^{6}(u^{4} - 2u^{2} + 2)^{2}(u^{35} - u^{34} + \dots - 1020u + 404)$
c_{12}	$u^{6}(u^{2} - 2u + 2)^{4}(u^{35} - 15u^{34} + \dots - 80u + 16)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2 + y + 1)^7)(y^{35} - 138y^{34} + \dots + 4900y - 1)$
c_2, c_4	$((y^2 + y + 1)^7)(y^{35} + 54y^{34} + \dots + 132y - 1)$
c_3	$((y^2 + y + 1)^7)(y^{35} + 6y^{34} + \dots - 4y - 1)$
c_5,c_9	$((y-1)^{14})(y^{35} - 55y^{34} + \dots - 1795y - 169)$
<i>c</i> ₆	$(y^{2} + y + 1)^{3}$ $\cdot (y^{8} + 8y^{7} + 46y^{6} + 160y^{5} + 387y^{4} - 160y^{3} + 46y^{2} - 8y + 1)$ $\cdot (y^{35} + 42y^{34} + \dots - 5590382760y - 821911561)$
c_7, c_{11}	$y^{6}(y^{2} + 2y + 2)^{4}(y^{35} + 15y^{34} + \dots - 80y - 16)$
c_8	$(y^{2} + y + 1)^{3}$ $\cdot (y^{8} + 8y^{7} + 46y^{6} + 160y^{5} + 387y^{4} - 160y^{3} + 46y^{2} - 8y + 1)$ $\cdot (y^{35} - 90y^{34} + \dots - 117701124860y - 12692500921)$
c_{10}	$y^{6}(y^{2} - 2y + 2)^{4}(y^{35} + 15y^{34} + \dots - 4334416y - 163216)$
c_{12}	$y^{6}(y^{2}+4)^{4}(y^{35}+15y^{34}+\cdots+768y-256)$