UINE FINE, THANKYOU

좋은 와인을 찾아드립니다

- 주제 선정 이유
- 2 설계
- ③ 분석 및 결과
- **4** 결론
- 5 발전방향

뉴스홈 | 최신기사

홈술·혼술에 작년 와인 수입 사상 최대...1위 칠레산

송고시간 | 2021-03-04 06:30

김계리 인턴 / 20210304 트위터 @yonhap_graphics 페이스북 tuney.kr/LeYN1

주제 선정 이유

주제 선정 이유

Zilliken 2019 Rausch Auslese Riesling (Mosel) GERMANY

98 Point S

This zippy, laser-edged auslese offsets luminous tangerine, white peach and honeydew flavors ...

\$104

Editors' Choice SEE FULL REVIEW

Dr. Loosen 2014 Erdener Prälat Réserve Alte Reben Dry GG Riesling (Mosel) GERMANY

97

This remarkable wine displays breathtaking power and elegance. Sourced from the sun-drenched ...

Point

Editors' Choice SEE FULL REVIEW >

\$162

Maximin Grünhäuser 2019 Abtsberg GG Riesling (Mosel)

GERMANY

97

Struck flint and river rocks introduce this brilliantly steely dry Riesling. Compared ...

Point S

SEE FULL REVIEW >

\$70

97

S

Schäfer-Fröhlich 2018 Bockenauer Stromberg GG Dry Gold

Cap Riesling (Nahe) GERMANY

Sourced from volcanic soils, this is a smoldering, intensely mineral wine highlighted ...

\$125

Point

Cellar Selection

SEE FULL REVIEW ▶

와인의 퀄리EI에 영향을 TIİL는 요인의 분석, 인사이트 도출

리뷰 데이터에서 자연어 분석을 통해 와인 특징에 대한 단어들을 얻음

취향 군집화 시도

검색엔진 서비스 개발

♥ 분석 및 결과 1. II도학습

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5

AdaBoost

```
my_max_depth = 9
                                                            #고정해 둔다.
my_learn_rate = 0.01
                                                            #고정해 둔다.
n_estimators_grid = np.arange(50, 81, 2)
parameters = {'n_estimators': n_estimators_grid}
AB = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=my_max_depth), learning_rate=my_learn_rate)
#Instantiate an estimator.
gridCV = GridSearchCV(AB, param_grid=parameters, cv=10, n_jobs = -1)
gridCV.fit(X_train, Y_train)
best_n_estim = gridCV.best_params_['n_estimators']
print("AdaBoost best n estimator : " + str(best_n_estim))
AdaBoost best n estimator : 76
AB_best = gridCV.best_estimator_
                                                                 # 교차검증의 결과인 최적의 학습객체 사용.
Y_pred = AB_best.predict(X_test)
print( "AdaBoost best accuracy : " + str(np.round(metrics.accuracy_score(Y_test,Y_pred),3)))
AdaBoost best accuracy: 0.64
```

xg boost

```
#xg boost
                                                                #고정해 둔다.
my_max_depth = 4
                                                               #고정해 둔다.
my_learn_rate = 0.1
n_estimators_grid = np.arange(300, 601, 100)
parameters = {'n_estimators': n_estimators_grid}
XGBC = XGBClassifier(max_depth=my_max_depth, learning_rate=my_learn_rate)
#Instantiate an estimator.
gridCV = GridSearchCV(XGBC, param_grid=parameters, cv=10, n_jobs = -1)
gridCV.fit(X_train, Y_train)
best_n_estim = gridCV.best_params_['n_estimators']
print("XGBoost best n estimator : " + str(best_n_estim))
XGBoost best n estimator : 400
XGBC = XGBClassifier(n_estimators = best_n_estim, learning_rate = 0.1, max_depth = 4, random_state=123)
XGBC.fit(X_train, Y_train)
Y_pred = XGBC.predict(X_test)
print( "XGBoost accuracy : " + str(np.round(metrics.accuracy_score(Y_test,Y_pred),3)))
XGBoost accuracy: 0.638
```


분석 및 결과 1. 지도학습

분석 및 결과 2. 자연어 분석

```
herb bake f
               pepper blend sawori
                  - miner earths tannic
fine
                  sauvignon bit
```

['aroma', 'balanc', 'blend', 'bodi', 'chocol', 'dark', 'dri', 'firm', 'full', 'herb', 'nose', 'note', 'oak', 'palat', 'pepper', 'rich', 'ripe', 'soft', 'spice', 'structur', 'tannin']

분석 및 결과 3. 권화

```
my_km = KMeans(n_clusters = 3, random_state = 123)
my_km.fit(X)
my_centroids = my_km.cluster_centers_
                                                   # 개개 군집의 중심점.
my_cluster_labels = my_km.labels_
for i in range(len(my_centroids)):
    print(i)
   print([my_vectorizer.get_feature_names()[x] for x in np.argsort(my_centroids[i])[-5:]])
['spice', 'note', 'palat', 'aroma', 'fruit']
['acid', 'aroma', 'tannin', 'fruit', 'dri']
['rich', 'ripe', 'acid', 'tannin', 'fruit']
# PCA 차원축소 (2차원).
my_pca = PCA(n_components = 2)
transformed_comps = my_pca.fit_transform(X)
                                                   # Transformed 된 좌표.
df_transformed_comps = pd.DataFrame(data = transformed_comps, columns = ['PC1', 'PC2'])
df_transformed_comps=df_transformed_comps.join(pd.Series(my_cluster_labels, name='cluster_label'))
my_names = {0: 'Spice', 1: 'Dry' ,2: 'Rich'}
plt.figure(figsize = (6,6))
for a_cluster_n, df_small in df_transformed_comps.groupby('cluster_label'):
    plt.scatter('PC1', 'PC2', data = df_small, label = my_names[a_cluster_n], s = 10, alpha=0.6)
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.title('Clusters')
plt.legend(loc=4)
plt.show()
```


분석 및 결과 4. BOW

	country	description	numFt	designation	points	price	province	region	taster_name	title	variety	numCb	winery
123013	Austria	Grassy notes of green conference pear with inc	3	Gamlitzer	90	31.0	Südsteiermark	NaN	Anne Krebiehl MW	Sattlerhof 2014 Gamlitzer Sauvignon Blanc (Süd	Sauvignon Blanc	0	Sattlerhof
53565	Italy	Fruity aromas of ripe orchard fruit and citrus	3	Nadin Dry	89	31.0	Veneto	Valdobbiadene Prosecco Superiore	Kerin O'Keefe	Foss Marai 2015 Nadin Dry (Valdobbiadene Pros	Glera	0	Foss Marai
34986	US	Blue fruit, raspberry, violet, dark chocolate,	3	NaN	92	32.0	Washington	Walla Walla Valley (WA)	Sean P. Sullivan	Trust 2014 Syrah (Walla Walla Valley (WA))	Syrah	0	Trust
46432	US	Blended with 4% Viognier and 1% Grenache, this	3	8 Clones Red Willow Vineyard	92	32.0	Washington	Yakima Valley	Sean P. Sullivan	Eight Bells 2012 8 Clones Red Willow Vineyard	Syrah	0	Eight Bells
89836	US	Blended with 4% Viognier and 1% Grenache, this	3	8 Clones Red Willow Vineyard	92	32.0	Washington	Yakima Valley	Sean P. Sullivan	Eight Bells 2012 8 Clones Red Willow Vineyard	Syrah	0	Eight Bells

와인의 맛에 영향을 주는 요소에 대한 인사이트 도출

● 소믈리에들의 맛표현을 참고해 와인 특징 귀워드 제공

- 딥러닝 활용: 와인 리뷰 분석을 통한 점수 예측
- 딥러닝 활용: n-gram을 통한 와인 특성에 대한 감성 예측

lemmatize 에서 유용한 단어 선별(Tfidf)

['aroma-flavor', 'bake-spice', 'berri-flavor', 'berri-fruit', 'black-cherri', 'black-currant', 'black-fruit', 'black-pepper', 'black-plum', 'bodi-wine', 'bright-acid', 'cabernet-franc', 'cabernet-sauvignon', 'che rri-flavor', 'cherri-fruit', 'crisp-acid', 'drink-2017', 'drink-2018', 'drink-2020', 'easi-drink', 'finish-drink', 'firm-tannin', 'flavor-finish', 'french-oak', 'fresh-acid', 'fruit-aroma', 'fruit-flavor', 'fruit-wine', 'full-bodi', 'green-appl', 'medium-bodi', 'nose-palat', 'palat-deliv', 'palat-offer', 'petit-verdo t', 'pinot-noir', 'readi-drink', 'red-berri', 'red-cherri', 'red-currant', 'red-fruit', 'ripe-fruit', 'sau vignon-blanc', 'stone-fruit', 'tropic-fruit', 'white-peach', 'white-pepper', 'wine-offer', 'wine-show', 'wood-age']

들어주셔서 감사합니다