#### Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

# «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Кафедра автоматизации обработки информации (АОИ)

# ОЦЕНИВАНИЕ СИСТЕМЫ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

Отчет по практической работе №6 по дисциплине «Теория систем и системный анализ»

| Выполнил:     |                  |
|---------------|------------------|
| Студент гр. 4 | 22-3             |
|               | К. Л. Захаров    |
| «»            | 2014 г.          |
| Проверил:     |                  |
| преподавател  | Ъ                |
|               | _ В. Н. Щербаков |
| «»            | 2014 г.          |
| профессор ка  | ф. АОИ, д.т.н.   |
|               | М. П. Силич      |
| // \          | <br>2014 г       |

# Оценивание системы в условиях неопределенности

# Описание

**Цель работы** Получить практические навыки в выборе управления системами в условиях риска, а также в «расплывчатом» оценивании систем на основе методологии нечетких множеств.

**Формируемые компетенции** Способность находить организационноуправленческие решения в не-стандартных ситуациях и готовность нести за них ответственность (OK-4).

## Самостоятельная работа

- Изучение методов выбора управления в условиях риска (критериев среднего выигрыша, Лапласа, Вальда, максимакса, Гурвица, Сэвиджа)
- Изучение понятия нечеткого множества, видов и способов построе-ния функций принадлежности, процедуры получения нечеткой оценки.

# Ход работы

Описание задачи выбора управления в условиях риска Цель - наилучший результат по задаче на соревновании по спортивному программированию.

Варианты:  $u_1$  - прочитать за 5 минут,  $u_2$  - подумать 10 минут,  $u_3$  - писать код 20 минут.

Ситуации:  $w_1$  - понять, что пока надо перейти к другой,  $w_2$  - придумать решение,  $w_3$  - решить (сдать).

Критерий - эффективность использования компьютерного времени.

# Определение значений критериев и вероятностей ситуаций

| Возможные | Вероятность | Эффективность вариантов управления |       |       |  |
|-----------|-------------|------------------------------------|-------|-------|--|
| ситуации  | Вероліноств | $ u_1 $                            | $u_2$ | $u_3$ |  |
| $w_1$     | 0.35        | 20                                 | -50   | -100  |  |
| $w_2$     | 0.15        | 90                                 | 70    | 50    |  |
| $w_3$     | 0.5         | 250                                | 200   | 100   |  |

Таблица 1. Матрица эффективности вариантов управления

### Оценка вариантов по различным критериям

| Критерий          | Эффективность по критериям |         |       | Лучший вариант    |
|-------------------|----------------------------|---------|-------|-------------------|
| тритерии          | $u_1$                      | $ u_2 $ | $u_3$ | ory minin baphani |
| Среднего выигрыша | 145.5                      | 93      | 22.5  | $u_1$             |
| Лапласа           | 120                        | 73.3    | 16.7  | $u_1$             |
| Максимина         | 20                         | -50     | -100  | $u_1$             |
| Максимакса        | 250                        | 200     | 100   | $u_1$             |
| Гурвица           | 135                        | 75      | 0     | $u_1$             |
| Сэвиджа           | 0                          | 70      | 150   | $u_1$             |

Таблица 2. Результаты оценки эффективности вариантов управления

Описание задачи нечеткого оценивания Объекты - языки программирования.

Свойство - удобство для научных расчетов/прототипирования.

Базовое множество - длина (в символах без пробелов) читаемой заготовки для 2D геометрии.

Лингвистическая переменная - «Длина» («длинная», «сносная», «нормальная», «короткая»).





# Задание функций принадлежности в виде формул

$$\mu_{\mathcal{K}OP} = 1 \text{ при } x \leq 1500$$

$$\mu_{\mathcal{K}OP} = \frac{1500 - x}{500} \text{ при } 1500 \leq x \leq 2000$$

$$\mu_{\mathcal{H}OP} = \frac{x - 1500}{1500} \text{ при } 1500 \leq x \leq 3000$$

$$\mu_{\mathcal{H}OP} = \frac{3000 - x}{2000} \text{ при } 3000 \leq x \leq 5000$$

$$\mu_{\mathcal{C}\mathcal{H}} = \frac{x - 4000}{2000} \text{ при } 4000 \leq x \leq 6000$$

$$\mu_{\mathcal{C}\mathcal{H}} = \frac{6000 - x}{2000} \text{ при } 6000 \leq x \leq 8000$$

$$\mu_{\mathcal{O}\mathcal{H}} = \frac{x - 7000}{3000} \text{ при } 7000 \leq x \leq 10000$$

$$\mu_{\mathcal{O}\mathcal{H}} = 1 \text{ при } 10000 \leq x$$

# Нечеткое оценивание объектов

| Объект | Четкое значение | Нечеткие значения |         |            |          |
|--------|-----------------|-------------------|---------|------------|----------|
|        |                 | Длинная           | Сносная | Нормальная | Короткая |
| C++    | 6512            | 0                 | 0.25    | 0          | 0        |
| Python | 3247            | 0                 | 0       | 0.9        | 0        |
| JS     | 4103            | 0                 | 0.05    | 0.55       | 0        |

Таблица 3. Нечеткие значения переменной «Длина»