10

15

20

25

Express Mail No.:

EE327623033US

Date of Deposit:

July 9, 1999

PATENT

Attorney Docket No: 17999-001 (BURF-001)

HIV VACCINE CANDIDATE PEPTIDES

CLAIM OF PRIORITY

This application claims priority under 35 U.S.C. § 119(e) to United States provisional patent applications 60/092,346, filed July 10, 1998; 60/115,145, filed January 8, 1999; and 60/130,677, filed April 23, 1999.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with United States Government support from the National Institutes of Health. The Government may have certain rights in the invention.

TECHNICAL FIELD OF THE INVENTION

This invention relates generally to vaccines, particularly to vaccines to human immunodeficiency virus 1 (HIV-1).

BACKGROUND OF THE INVENTION

The need for an effective vaccine against human immunodeficiency virus type 1 (HIV-1), one that takes into consideration the variability of HIV strains, remains urgent. Researchers have yet to achieve the development of an HIV vaccine that will stimulate effective immune responses to most of the many different strains ("clades") of HIV now being transmitted in course of the global HIV epidemic. At the root of the problem is the great diversity of HIV itself, and the restriction of human cytotoxic T cell (CTL) response to variant strains of HIV.

In the course of developing HIV vaccines, most researchers have focused on defining immune responses against a particular vaccine candidate. Most of these candidate

20

25

vaccines in Phase I through Phase III trials at present belong to the group of clade B strains of HIV. Some of these vaccine candidates are derived from lab strains of HIV, others are derived from clade B patient isolates. "Challenge" strains of HIV, to which immunized individuals may be exposed, may be 10 to 15% different at the level of their sequences. Challenge strains in other regions of the world, and new strains arriving in the US from other regions of the world may be even more dramatically divergent. These variations may allow the challenge strains to elude the vaccine-mediated CTL responses. In other words, due to strain variations, immune responses raised against one vaccine strain may not protect against other strains of HIV.

10

5

The root of this problem is the interaction between viral protein sequences and the molecules of the immune system (the human leukocyte antigens; HLA), whose duty it is to present peptides derived from the proteins of the challenge virus to the immune system and to engage vaccine-trained T cells to respond. Due to the tight-fit nature of the interaction between virus-derived peptides and the HLA, changes in amino acid sequence of a challenge strain may interfere with the ability of a given peptide to bind to the HLA molecule, preventing recognition of the challenge strain by T cell clones raised against a clade B vaccine construct. Sequence modifications at the amino acid level may affect the recognition of the epitope in three ways: (1) by affecting intracellular processing, (2) by interfering with binding (of the peptide) to major histocompatibility (such as major histocompatibility complex (MHC) or HLA) molecules and presentation of the peptide-HLA complex at the antigen presenting-cell surface, and (3) by interfering with binding of the epitope to the T cell receptor (TCR) (Germain & Margulies, 11 Ann. Rev. Immunol. 403 (1993); Falk et al., 351 Nature 290 (1991)). Thus, the impact of HIV variation at the molecular level may be to diminish cross-clade protection by a vaccine that does not contain CTL epitopes that are conserved across strains of HIV, or epitopes that are more representative of non-B clades.

Many studies of cross-clade recognition of HIV epitopes have been carried out (see, Wilson et al., 14(11) AIDS Res. Hum. Retroviruses 925-37 (1998); McAdam et al.,

10

15

20

25

12(6) AIDS .571-9 (1998); Lynch et al., 178(4) J Infect Dis. 1040-6 (1998); Boyer et al., 95 Dev. Biol. Stand. 147-53 (1998); Cao et al., 71(11) J. Virol. 8615-23 (1997); Durali et al., 72(5) Virol. 3547 53 (1998)). In general, these studies often used whole-gene, vaccinia-expressed constructs to probe CTL lines from HIV-1 infected or HIV-1 vaccinated volunteers for CTL responses. What appeared to be cross-clade recognition by CTL in these experiments, may have been recognition of CTL epitopes that are conserved within the large gene constructs cloned into the vaccinia constructs and into the vaccine strain (or the autologous strain). Where responses to specific peptides, and their altered sequences in other HIV strains, have been tested, and the peptides have been mapped, some studies have shown a lack of cross-strain recognition (Dorrel et al., HIV Vaccine Development Opportunities And Challenges Meeting, Abstract 109 (Keystone, Colorado, January 1999)). Studies of virus escape from CTL recognition carried out on HIV-1 infected individuals have also shown that viral variation at the amino acid level may abrogate effective CTL responses (Koup, 180 J. Exp. Med. 779 (1994); Dai et al., 66 J. Virol. 3151 (1992); Johnson et al., 175 J. Exp. Med. 961 (1992)).

As yet, no single HIV strain has been found that will stimulate effective HLA-restricted immune response against a wide range of HIV strains. Thus, a need remains in the art for a "world clade" vaccine.

SUMMARY OF THE INVENTION

The invention provides HIV vaccine candidate peptides, including the HIV peptides shown in any of FIG. 2 (SEQ ID NO:1-27), TABLES 6-31 (SEQ ID NO: 28-626); and FIGS. 6-9 and TABLE 1-4 (SEQ ID NO:627-672). The invention also provides an HIV vaccine, which is an HIV peptide in an immunologically acceptable excipient, such as any of the vaccine carriers known in the medical arts. In one aspect of the invention, the HIV vaccine candidates have "evolved" due to gene shuffling *in vitro* for inclusion of "cross-clade" characteristics.

20

25

5

10

The invention also provides a method for identifying HIV vaccine candidates that could be presented in the context of more than one HLA, due to the creation of promiscuous epitopes by gene shuffling. Cross-clade HIV peptides are identified. A "cross-clade" HIV peptides is an HIV peptide conserved across several HIV strains having different MHC binding potential. The HIV strains are likely to be presented by MHC molecules representing the most prevalent human HLA alleles. Next, the identified HIV peptides are analyzed for being putative ligands for HLA alleles. Then, HIV peptides that are putative ligands for highly prevalent HLA are as being HIV vaccine candidates. In one embodiment, the cross-clade HIV peptides belong to a consensus sequence obtained from the Los Alamos HIV Sequence Database.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a histogram showing the distribution of the number of HIV-1 isolates in which 8-mer to 11-mer peptides predicted to bind (A) and (b) HLA-B27 are exactly conserved.

FIG. 2 is a table showing the results for the 8-mer to 11-mer peptides for analysis. The second and third columns shows the estimated binding probability for peptides with EpiMatrix scores at least as high as these peptides. The fourth and fifth columns give the highest fold-change in MFI at any concentrations if over 1.3. The sixth column indicates whether the peptide has been published as a known epitope restricted to the appropriate allele. Parentheses indicate that the peptide is contained within an epitope of unknown restriction. The seventh column indicates the protein of origin. The eighth column indicates the number of isolate sequences containing this exact amino acid sequence. The ninth column indicates the approximate position of this ligand relative to the LAI reference strain. The tenth through fifteenth columns indicate whether any of the sequences in which the peptide is conserved are designated as belonging to clades A-E or other clade.

FIG. 3 is a description of the project outline for identifying regional HIV vaccine candidate peptides.

10

15

20

25

FIG. 4 is a pie chart showing the results of methods for HLA-A allele selection.

FIG. 5 is a pie chart showing the results of methods for HLA-B allele selection.

FIG. 6 is a table showing EpiMatrix predictions and binding results for B7.

FIG. 7 is a table showing EpiMatrix predictions and binding results for B37.

FIG. 8 is a table showing EpiMatrix predictions and binding results for A2.

FIG. 9 is a table showing EpiMatrix predictions and binding results for A11.

FIG. 10 is a description of the methods T2 binding assay.

FIG. 11 is a bar graph showing the clustering of putative MHC ligands in env. At left, the number of putative ligands discovered to be both conserved across clades and likely to bind to at least one human class I MHC is shown by location in a "consensus" sequence obtained from the Los Alamos HIV Sequence Database. This analysis demonstrates regions of distinct clustering. Such regions will be analyzed for representation of HLA alleles. Regions that contain clusters of putative ligands representing highly prevalent HLA were of interest for vaccine development.

DETAILED DESCRIPTION OF THE INVENTION

Vaccines can include any one of the HIV vaccine candidate peptides disclosed below, either alone, in combination with suitable carriers, linked to carrier proteins, or expressed from a polynucleotide, such as a "naked DNA" vaccine. The peptides can be administered to a host for treatment of HIV. The peptides can also be used to enhance immunologic function.

Peptides. The HIV vaccine candidate peptides can be produced by well known chemical procedures, such as solution or solid-phase peptide synthesis, or semi-synthesis in solution beginning with protein fragments coupled through conventional solution methods, as described by Dugas & Penney, Bioorganic Chemistry, 54-92 (Springer-Verlag, New York, 1981). For example, peptides can be synthesized by solid-phase methodology utilizing an PE-Applied Biosystems 430A peptide synthesizer (commercially available from Applied Biosystems, Foster City, CA) and synthesis cycles

20

25

5

10

supplied by Applied Biosystems. Boc amino acids and other reagents are commercially available from PE-Applied Biosystems and other chemical supply houses. Sequential Boc chemistry using double couple protocols are applied to the starting p-methyl benzhydryl amine resins for the production of C-terminal carboxamides. After synthesis and cleavage, purification is accomplished by reverse-phase C18 chromatography (Vydac) column in 0.1% TFA with a gradient of increasing acetonitrile concentration. The solid phase synthesis could also be accomplished using the FMOC strategy and a TFA/scavenger cleavage mixture.

When produced by conventional recombinant means, (described below) the HIV vaccine candidate peptide can be isolated either from the cellular contents by conventional lysis techniques or from cell medium by conventional methods, such as chromatography (see, e.g., Sambrook et al., Molecular Cloning. A Laboratory Manual., 2d Edition (Cold Spring Harbor Laboratory, New York (1989).

The general construction and use of synthetic HIV peptides is disclosed in United States patents 5,817,318 and 5,876,731, the contents of which are incorporated by reference.

In one embodiment, the HIV vaccine candidate peptide has a maximum size of 50 amino acids in length and a minimum size of 8 amino acids (for the relevant SEQ ID NOS) to 11 amino acids (for other relevant SEQ ID NOS). The peptide can be any size between the minimum to maximum size, and one HIV vaccine candidate peptide can be of a given size independently of another HIV vaccine candidate peptide. For example one HIV vaccine candidate peptide is 45 amino acids in length while another HIV vaccine candidate peptide is 45 amino acids in length.

Peptides as antigens. The HIV vaccine candidate peptides are useful as antigens for raising anti-HIV immune responses, such as T cell responses (cytotoxic T cells or T helper cells). An "antigen" is a molecule or a portion of a molecule capable of stimulating an immune response, which is additionally capable of inducing an animal or human to produce antibody capable of binding to an epitope of that antigen. An "epitope" is that

10

15

20

25

portion of any molecule capable of being recognized by and bound by an MHC molecule and recognized by a T cell or bound by an antibody. An antigen can have one or more than one epitope. The specific reaction indicates that the antigen will react, in a highly selective manner, with its corresponding MHC and T cell, or antibody and not with the multitude of other antibodies which can be evoked by other antigens.

A peptide is "immunologically reactive" with an T cell or antibody when it binds to an MHC and is recognized by a T cell or binds to an antibody due to recognition (or the precise fit) of a specific epitope contained within the peptide. Immunological reactivity can be determined by measuring T cell response *in vitro* or by antibody binding, more particularly by the kinetics of antibody binding, or by competition in binding using as competitors a known peptides containing an epitope against which the antibody or T cell response is directed. The techniques for determining whether a peptide is immunologically reactive with an T CELL or with an antibody are known in the art. The peptides can be screened for efficacy by *in vitro* and *in vivo* assays. Such assays employ immunization of an animal, *e.g.*, a rabbit or a primate, with the peptide, and evaluation of titers antibody to HIV-1 or to synthetic detector peptides corresponding to variant HIV sequences (*see*, EXAMPLE 3, and FIG. 10). Methods of determining the spatial conformation of amino acids are known in the art, and include, for example, x-ray crystallography and 2-dimensional nuclear magnetic resonance.

Polynucleotides encoding the peptides. Polynucleotides can encode HIV vaccine candidate peptides, including peptides fused to carrier proteins. HIV vaccine candidate peptides can be encoded by either a synthetic or recombinant polynucleotide. The term "recombinant" refers to the molecular biological technology for combining polynucleotides to produce useful biological products, and to the polynucleotides and peptides produced by this technology. The polynucleotide can be a recombinant construct (such as a vector or plasmid) which contains the polynucleotide encoding the HIV vaccine candidate peptide or fusion protein under the operative control of polynucleotides encoding regulatory elements such as promoters, termination signals, and the like. "Operatively

10

15

20

25

linked" refers to a juxtaposition wherein the components so described are in a relationship permitting them to function in their intended manner. A control sequence operatively linked to a coding sequence is ligated such that expression of the coding sequence is achieved under conditions compatible with the control sequences. "Control sequence" refers to polynucleotide sequences which are necessary to effect the expression of coding and non-coding sequences to which they are ligated. Control sequences generally include promoter, ribosomal binding site, and transcription termination sequence. In addition, "control sequences" refers to sequences which control the processing of the peptide encoded within the coding sequence; these can include, but are not limited to sequences controlling secretion, protease cleavage, and glycosylation of the peptide. The term "control sequences" is intended to include, at a minimum, components whose presence can influence expression, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences. A "coding sequence" is a polynucleotide sequence which is transcribed and translated into a polypeptide. Two coding polynucleotides are "operably linked" if the linkage results in a continuously translatable sequence without alteration or interruption of the triplet reading frame. A polynucleotide is operably linked to a gene expression element if the linkage results in the proper function of that gene expression element to result in expression of the HIV vaccine candidate coding sequence. "Transformation" is the insertion of an exogenous polynucleotide (i.e., a "transgene") into a host cell. The exogenous polynucleotide is integrated within the host genome. A polynucleotide is "capable of expressing" a HIV vaccine candidate peptide if it contains nucleotide sequences which contain transcriptional and translational regulatory information and such sequences are "operably linked" to polynucleotide which encode the HIV vaccine candidate peptide. A polynucleotide that encodes a peptide coding region can be then amplified, for example, by preparation in a bacterial vector, according to conventional methods, for example, described in the standard work Sambrook et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Press 1989). Expression vehicles include plasmids or other

10

15

20

25

vectors. Prokaryotic vectors known in the art include plasmids such as those capable of replication in E. coli (such as, for example, pBR322, ColE1, pSC101, pACYC184, π VX).

The polynucleotide encoding the HIV vaccine candidate peptide can be prepared by chemical synthesis methods or by recombinant techniques. The polypeptides can be prepared conventionally by chemical synthesis techniques, such as described by Merrifield, 85 J. Amer. Chem. Soc. 2149-2154 (1963) (see, Stemmer et al, 164 Gene 49 (1995)). Synthetic genes, the *in vitro* or *in vivo* transcription and translation of which will result in the production of the protein can be constructed by techniques well known in the art (see Brown et al., 68 Methods in Enzymology 109-151 (1979)). The coding polynucleotide can be generated using conventional DNA synthesizing apparatus such as the Applied Biosystems Model 380A or 380B DNA synthesizers (commercially available from Applied Biosystems, Inc., 850 Lincoln Center Drive, Foster City, Calif. 94404).

Alternatively, systems for cloning and expressing HIV vaccine candidate peptides include various microorganisms and cells which are well known in recombinant technology. These include, for example, various strains of *E. coli, Bacillus, Streptomyces*, and *Saccharomyces*, as well as mammalian, yeast and insect cells. Suitable vectors are known and available from private and public laboratories and depositories and from commercial vendors. *See*, Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual* (Cold Spring Harbor Press 1989). *See*, *also* PCT International patent application WO 94/01139). These vectors permit infection of patient's cells and expression of the synthetic gene sequence in vivo or expression of it as a peptide or fusion protein *in vitro*.

Polynucleotide gene expression elements useful for the expression of cDNA encoding peptides include, but are not limited to (a) viral transcription promoters and their enhancer elements, such as the SV40 early promoter, Rous sarcoma virus LTR, and Moloney murine leukemia virus LTR; (b) splice regions and polyadenylation sites such as those derived from the SV40 late region; and (c) polyadenylation sites such as in SV40. Recipient cells capable of expressing the HIV vaccine candidate gene product are then transfected. The transfected recipient cells are cultured under conditions that permit

10

15

20

25

expression of the HIV vaccine candidate gene products, which are recovered from the culture. Host mammalian cells, such as Chinese Hamster ovary cells (CHO) or COS-1 cells, can be used. These hosts can be used in connection with poxvirus vectors, such as vaccinia or swinepox. Suitable non-pathogenic viruses which can be engineered to carry the synthetic gene into the cells of the host include poxviruses, such as vaccinia, adenovirus, retroviruses and the like. A number of such non-pathogenic viruses are commonly used for human gene therapy, and as carrier for other vaccine agents, and are known and selectable by one of skill in the art. The selection of other suitable host cells and methods for transformation, culture, amplification, screening and product production and purification can be performed by one of skill in the art by reference to known techniques (see, e.g., Gething & Sambrook, 293 Nature 620-625 (1981)). Another preferred system includes the baculovirus expression system and vectors.

The general construction and use of polynucleotides encoding for non-infectious, replication-defective, self-assembling HIV-1 viral particles containing HIV antigenic markers is disclosed in United States patent 5,866,320, the contents of which are incorporated by reference.

The polynucleotide encoding the HIV vaccine candidate peptide can be used in a variety of ways. For example, a polynucleotide can express the HIV vaccine candidate peptide *in vitro* in a host cell culture. The expressed HIV vaccine candidate peptide immunogens, after suitable purification, can then be incorporated into a pharmaceutical reagent or vaccine (*described below*).

Alternatively, the polynucleotide encoding the HIV vaccine candidate peptide immunogen can be administered directly into a human as so-called "naked DNA" to express the peptide immunogen *in vivo* in a patient. (see, Cohen, 259 Science 1691-1692 (1993); Fynan et al., 90 Proc. Natl. Acad. Sci. USA, 11478-82 (1993); and Wolff et al., 11 BioTechniques 474-485 (1991). The polynucleotide encoding the HIV vaccine candidate peptide immunogen can be used for direct injection into the host. This results in

20

25

5

10

expression of the HIV vaccine candidate peptide by host cells and subsequent presentation to the immune system to induce anti-HIV antibody formation in vivo.

Determinations of the sequences for the polynucleotide coding region that codes for the HIV vaccine candidate peptides described herein can be performed using commercially available computer programs, such as DNA Strider and Wisconsin GCG. Owing to the natural degeneracy of the genetic code, the skilled artisan will recognize that a sizable yet definite number of DNA sequences can be constructed which encode the claimed peptides (see, Watson et al., Molecular Biology of the Gene, 436-437 (the Benjamin/Cummings Publishing Co. 1987)).

Involves exposing a human to a HIV vaccine candidate peptides, actively inducing antibodies that react with HIV-1, and impairing the multiplication of the virus in vivo. This method is appropriate for an HIV-1 infected subject with a competent immune system, or an uninfected or recently infected subject. The method induces antibodies which react with HIV-1, which antibodies reduce viral multiplication during any initial acute infection with HIV-1 and minimize chronic viremia leading to AIDS. This method also lowers chronic viral multiplication in infected subjects, minimizing progression to AIDS. In other words, in already infected patients, this method of reduction of viral levels can reduce chronic viremia and progression to AIDS. In uninfected humans, this administration of the peptides of the invention can reduce acute infection and thus minimize chronic viremia leading to progression to AIDS.

The terms "treating," "treatment," and the like are used herein to mean obtaining a desired pharmacologic or physiologic effect. The effect can be prophylactic in terms of completely or partially preventing a disorder or sign or symptom thereof, or can be therapeutic in terms of a partial or complete cure for a disorder and/or adverse effect attributable to the disorder. "Treating" as used herein covers any treatment and includes:

(a) preventing a disorder from occurring in a subject that can be predisposed to a disorder, but has not yet been diagnosed as having it; (b) inhibiting the disorder, i.e., arresting its

20

25

5

10

development; or (c) relieving or ameliorating the disorder, e.g., cause regression of HIV infection or AIDS. An "effective amount" or "therapeutically effective amount" is the amount sufficient to obtain the desired physiological effect, e.g., treatment of HIV. An effective amount of the HIV vaccine candidate peptide or vector expressing HIV vaccine candidate peptides is generally determined by the physician in each case on the basis of factors normally considered by one skilled in the art to determine appropriate dosages, including the age, sex, and weight of the subject to be treated, the condition being treated, and the severity of the medical condition being treated. Among such patients suitable for treatment with this method are HIV-1 infected patients who are immunocompromised by disease and unable to mount a strong immune response. In later stages of HIV infection, the likelihood of generating effective titers of antibodies is less, due to the immune impairment associated with the disease. Also among such patients are HIV-1 infected pregnant women, neonates of infected mothers, and unimmunized patients with putative exposure (e.g., a human who has been inadvertently "stuck" with a needle used by an HIV-1 infected human).

Method of administration. HIV vaccine candidate peptides can be administered in a variety of ways, orally, topically, parenterally e.g. subcutaneously, intraperitoneally, by viral infection, intravascularly, etc. Depending upon the manner of introduction, the HIV vaccine candidate peptides can be formulated in a variety of ways. The concentration of HIV vaccine candidate peptides in the formulation can vary from about 0.1-100 wt.%.

The amount of the HIV vaccine candidate peptide or polynucleotides of the invention present in each vaccine dose is selected with regard to consideration of the patient's age, weight, sex, general physical condition and the like. The amount of HIV vaccine candidate peptide required to induce an immune response, preferably a protective response, or produce an exogenous effect in the patient without significant adverse side effects varies depending upon the pharmaceutical composition employed and the optional presence of an adjuvant. Generally, for the compositions containing HIV vaccine candidate peptide, each dose will comprise between about 50 µg to about 1 mg of the

10

15

20

25

HIV vaccine candidate peptide immunogens/ml of a sterile solution. A more preferred dosage can be about 200 µg of HIV vaccine candidate peptide immunogen. Other dosage ranges can also be contemplated by one of skill in the art. Initial doses can be optionally followed by repeated boosts, where desirable. The method can involve chronically administering the HIV vaccine candidate peptide composition. For therapeutic use or prophylactic use, repeated dosages of the immunizing compositions can be desirable, such as a yearly booster or a booster at other intervals. The dosage administered will, of course, vary depending upon known factors such as the pharmacodynamic characteristics of the particular agent, and its mode and route of administration; age, health, and weight of the recipient; nature and extent of symptoms, kind of concurrent treatment, frequency of treatment, and the effect desired. Usually a daily dosage of active ingredient can be about 0.01 to 100 mg/kg of body weight. Ordinarily 1.0 to 5, and preferably 1 to 10 mg/kg/day given in divided doses 1 to 6 times a day or in sustained release form is effective to obtain desired results.

The HIV vaccine candidate peptide can be employed in chronic treatments for subjects at risk of acute infection due to needle sticks or maternal infection. A dosage frequency for such "acute" infections may range from daily dosages to once or twice a week i.v. or i.m., for a duration of about 6 weeks. The peptides can also be employed in chronic treatments for infected patients, or patients with advanced HIV. In infected patients, the frequency of chronic administration can range from daily dosages to once or twice a week i.v. or i.m., and may depend upon the half-life of the immunogen (e.g., about 7-21 days). However, the duration of chronic treatment for such infected patients is anticipated to be an indefinite, but prolonged period.

For such therapeutic uses, the HIV vaccine candidate peptide formulations and modes of administration are substantially identical to those described specifically above and can be administered concurrently or simultaneously with other conventional therapeutics for the viral infection.

10

15

20

25

Immunologically acceptable carrier. HIV vaccine candidate peptides can be administered either as individual therapeutic agents or in combination with other therapeutic agents. HIV vaccine candidate peptides can be administered alone, but are generally administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice. The vaccine can further comprise suitable, *i.e.*, physiologically acceptable, carriers--preferably for the preparation of injection solutions--and further additives as usually applied in the art (stabilizers, preservatives, etc.), as well as additional drugs. The patients can be administered a dose of approximately 1 to 10 μg/kg body weight, preferably by intravenous injection once a day. For less threatening cases or long-lasting therapies the dose can be lowered to 0.5 to 5 μg/kg body weight per day. The treatment can be repeated in periodic intervals, *e.g.*, two to three times per day, or in daily or weekly intervals, depending on the status of HIV-1 infection or the estimated threat of an individual of getting HIV infected.

For parenteral administration, peptides of the invention can be formulated as a solution, suspension, emulsion or lyophilized powder in association with a pharmaceutically acceptable parenteral vehicle. Examples of such vehicles are water, saline, Ringer's solution, dextrose solution, and 5% human serum albumin. Liposomes and nonaqueous vehicles such as fixed oils can also be used. The vehicle or lyophilized powder can contain additives that maintain isotonicity (e.g., sodium chloride, mannitol) and chemical stability (e.g., buffers and preservatives). The formulation is sterilized by commonly used techniques. Suitable pharmaceutical carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in this field of art. For example, a parenteral composition suitable for administration by injection is prepared by dissolving 1.5% by weight of active ingredient in 0.9% sodium chloride solution. The preparation of these pharmaceutically acceptable compositions, having appropriate pH isotonicity, stability and other conventional characteristics is within the skill of the art.

20

25

5

10

The vaccine composition can include as the active agents, one of the following above-described components: (a) a HIV vaccine candidate peptide immunogen (These immunogens can be in the form of recombinant proteins. Alternatively, they can be in the form of a mixture of carrier protein conjugates.); (b) a polynucleotide encoding a HIV vaccine candidate; (c) a recombinant virus carrying the synthetic gene or molecule; and (d) a bacteria carrying the HIV vaccine candidate. The selected active component is present in a pharmaceutically acceptable carrier, and the composition can contain additional ingredients.

Formulations containing the HIV vaccine candidate peptide can contain other active agents, such as adjuvants and immunostimulatory cytokines, such as IL-12 and other well-known cytokines, for the peptide compositions.

Suitable pharmaceutically acceptable carriers for use in an immunogenic composition are well known to those of skill in the art. Such carriers include, for example, saline, a selected adjuvant, such as aqueous suspensions of aluminum and magnesium hydroxides, liposomes, oil in water emulsions, and others.

Carrier protein. HIV vaccine candidate peptide immunogens can be linked to a suitable carrier in order to improve the efficacy of antigen presentation to the immune system. Such carriers can be, for instance, organic polymers. A carrier protein can enhance the immunogenicity of the peptide immunogen. Such a carrier can be a larger molecule which has an adjuvant effect. Exemplary conventional protein carriers include, keyhole limpet hemocyan, *E. coli* DnaK protein, galactokinase (galK, which catalyzes the first step of galactose metabolism in bacteria), ubiquitin, α-mating factor, β-galactosidase, and influenza NS-1 protein. Toxoids (*i.e.*, the sequence which encodes the naturally occurring toxin, with sufficient modifications to eliminate its toxic activity) such as diphtheria toxoid and tetanus toxoid can also be employed as carriers. Similarly a variety of bacterial heat shock proteins, *e.g.*, mycobacterial hsp-70 can be used. Glutathione reductase (GST) is another useful carrier. One of skill in the art can readily select an appropriate carrier.

5

10

Viruses can be modified by recombinant DNA technology such as, e.g. rhinovirus, poliovirus, vaccinia, or influenzavirus, etc. The peptide can be linked to a modified, i.e., attenuated or recombinant virus such as modified influenza virus or modified hepatitis B virus or to parts of a virus, e.g., to a viral glycoprotein such as, e.g., hemagglutinin of influenza virus or surface antigen of hepatitis B virus, in order to increase the immunological response against HIV-1 viruses and/or infected cells.

The HIV vaccine candidate peptides can be in fusion proteins, wherein they are linked to a suitable carrier which might be a recombinant or attenuated virus or a part of a virus such as, e.g., the hemagglutinin of influenza virus or the surface antigen of hepatitis B virus, or another suitable carrier including other viral surface proteins, e.g., surface proteins of rhinovirus, poliovirus, sindbis virus, coxsackievirus, etc., for efficient presentation of the antigenic site(s) to the immune system. In some cases, the antigenic fragments might, however, also be purely, i.e., without attachment to a carrier, applied in an analytical or therapeutical program.

Naked DNA vaccine. Alternatively, polynucleotides can be designed for direct administration as "naked DNA". Suitable vehicles for direct DNA, plasmid polynucleotide, or recombinant vector administration include, without limitation, saline, or sucrose, protamine, polybrene, polylysine, polycations, proteins, calcium phosphate, or spermidine. See e.g, PCT International patent application WO 94/01139. As with the immunogenic compositions, the amounts of components in the DNA and vector compositions and the mode of administration, e.g., injection or intranasal, can be selected and adjusted by one of skill in the art. Generally, each dose will comprise between about 50 µg to about 1 mg of immunogen-encoding DNA per ml of a sterile solution.

For recombinant viruses containing the coding polynucleotide, the doses can range from about 20 to about 50 ml of saline solution containing concentrations of from about 1×10^{10} pfu/ml recombinant virus of the invention. One human dosage is about 20 ml saline solution at the above concentrations. However, it is understood that one of skill

10

15

20

25

in the art can alter such dosages depending upon the identity of the recombinant virus and the make-up of the immunogen that it is delivering to the host.

The amounts of the commensal bacteria carrying the synthetic gene or molecules to be delivered to the patient will generally range between about 10³ to about 10¹² cells/kg. These dosages, will of course, be altered by one of skill in the art depending upon the bacterium being used and the particular composition containing immunogens being delivered by the live bacterium.

Antibodies. An antibody directed against a HIV vaccine candidate peptide is also an aspect of this invention. Polyclonal antibodies are produced by immunizing a mammal with a peptide immunogen. Suitable mammals include primates, such as monkeys; smaller laboratory animals, such as rabbits and mice, as well as larger animals, such as horse, sheep, and cows. Such antibodies can also be produced in transgenic animals. However, a desirable host for raising polyclonal antibodies to a composition of this invention includes humans. The polyclonal antibodies raised are isolated and purified from the plasma or serum of the immunized mammal by conventional techniques. Conventional harvesting techniques can include plasmapheresis, among others. Such polyclonal antibodies can themselves be employed as pharmaceutical compositions of this invention. Alternatively, other forms of antibodies can be developed using conventional techniques, including monoclonal antibodies, chimeric antibodies, humanized antibodies and fully human antibodies (see, e.g., United States patent 4,376,110; Ausubel et al., Current Protocols in Molecular Biology (Greene Publishing Assoc. and Wiley Interscience, N.Y., 1992); Harlow & Lane, Antibodies: a Laboratory Manual, (Cold Spring Harbor Laboratory, 1988); Queen et al., 86 Proc. Nat'l. Acad. Sci. USA 10029-10032 (1989); Hodgson et al., 9 Bio/Technology 421 (1991); PCT International patent application WO 92/04381 and PCT International patent application WO 93/20210. Other antibodies can be developed by screening hybridomas or combinatorial libraries, or antibody phage displays (Huse et al., 246 Science 1275-1281 (1988) using the polyclonal or monoclonal antibodies produced

20

25

5

10

according to this invention and the amino acid sequences of the primary or optional immunogens.

The term "antibody" includes polyclonal antibodies, monoclonal antibodies (mAbs), chimeric antibodies, anti-idiotypic (anti-Id) antibodies to antibodies that can be labeled in soluble or bound form, as well as fragments, regions or derivatives thereof, provided by any known technique, such as, but not limited to enzymatic cleavage, peptide synthesis or recombinant techniques. An "antigen binding region" is that portion of an antibody molecule which contains the amino acid residues that interact with an antigen and confer on the antibody its specificity and affinity for the antigen. The antibody region includes the framework amino acid residues necessary to maintain the proper conformation of the antigen-binding residues.

Computer Implementation. Aspects of the invention may be implemented in hardware or software, or a combination of both. However, preferably, the algorithms and processes of the invention are implemented in one or more computer programs executing on programmable computers each comprising at least one processor, at least one data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. Program code is applied to input data to perform the functions described herein and generate output information. The output information is applied to one or more output devices, in known fashion.

Each program may be implemented in any desired computer language (including machine, assembly, high level procedural, or object oriented programming languages) to communicate with a computer system. In any case, the language may be a compiled or interpreted language.

Each such computer program is preferably stored on a storage media or device (e.g., ROM, CD-ROM, tape, or magnetic diskette) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. The inventive system may also be considered to be implemented as a computer-

10

15

20

25

readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.

The details of one or more embodiments of the invention are set forth in the accompanying description. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the preferred methods and materials are now described. Other features, objects, and advantages of the invention will be apparent from the description and from the claims. In the specification and the appended claims, the singular forms include plural referents unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. All patents and publications cited in this specification are incorporated by reference.

The following EXAMPLES are presented in order to more fully illustrate the preferred embodiments of the invention. These examples should in no way be construed as limiting the scope of the invention, as defined by the appended claims.

EXAMPLE 1 PREDICTION OF WELL-CONSERVED HIV-1 LIGANDS USING A MATRIX-BASED ALGORITHM, EPIMATRIX

Summary. This EXAMPLE was undertaken to identify new human leukocyte antigens (HLA) ligands from human immunodeficiency virus type 1 (HIV-1) which are highly conserved across HIV-1 clades and which may serve to induce cross-reactive cytotoxic T lymphocytes (CTLs). EpiMatrix was used to predict putative ligands from HIV-1 for HLA-A2 and HLA-B27. Twenty-six peptides that were both likely to bind and also highly conserved across HIV-1 strains in the Los Alamos HIV sequence database were selected for binding assays using the T2 stabilization assay. Two peptides that were also highly likely to bind (for A2 and B27, as determined by EpiMatrix) and well conserved

10

15

20

25

across HIV-1 strains, and had previously been described to bind in the publicized literature, were also selected to serve as positive controls for the assays. Ten new major histocompatibility complex (MHC) ligands were identified among the 26 study peptides. The control peptides bound, as expected. These data confirm that EpiMatrix can be used to screen HIV-1 protein sequences for highly conserved regions that are likely to bind to MHC and may prove to be highly conserved HIV-1 CTL epitopes.

Introduction. This EXAMPLE is a prospective design of multivalent HIV immunogens tailored to reflect the diversity of HIV isolates and to promote cross-clade protection in settings where more than one HIV strain and more than one HIV clade is being transmitted. This EXAMPLE explored the use of EpiMatrix, a matrix-based algorithm for T-cell epitope prediction, to prospectively identify conserved class I-restricted MHC ligands and potential CTL epitopes. EpiMatrix and other computer-driven algorithms that predict putative MHC ligands and CTL epitopes (Davenport et al., 42 Immunogenetics 392-7 (1995); Hammer et al., 180 J. Exp. Med. 2353-8 (1994); Flackenstein et al., 240 Eur. J. Biochem. 71-7 (1996)) place the prospective design of a novel HIV-1 vaccine with these critically important characteristics within reach.

Such prospectively designed vaccines are based on the central role of CTL in the host immune response to HIV-1, and the understanding that the first step in the search for HIV-1 CTL epitopes may be to identify peptides that bind to the host major histocompatibility complex (MHC). Recognition of such MHC ligands by CTL is dependent on the presentation of the T-cell epitope to the T cells in the context of MHC molecules. Peptides presented in conjunction with class I MHC molecules (to T cells) are derived from foreign or self-protein antigens that have been processed in the cytoplasm. The peptides bind to MHC molecules in a linear fashion; the binding is determined by the interaction of the peptide's amino acid side-chains with binding pockets in the MHC molecule. Binding of peptides to MHC molecules is constrained by the nature of the

20

25

5

10

side-chains; only selected peptides will fit the constraints of any given MHC molecule's binding pockets.

The characteristics of peptides that are likely to bind to a given MHC can be directly deduced from pooled sequencing data (from peptides bulk-eluted off MHC molecules), from MHC binding peptide libraries. The TB/HIV Research Lab has developed a method to describe the relative promotion or inhibition of binding afforded by each position in a peptide to the MHC of interest.

EpiMatrix ranks all 10 amino acid long segments from any protein sequence by estimated probability of binding to a given MHC, by comparing the sequence to a matrix. The estimated binding probability (EBP) is derived by comparing the EpiMatrix score to those of known binders and presumed non-binders. Retrospective studies have demonstrated that EpiMatrix accurately predicts MHC Ligands (DeGroot et al., 7 Human Retroviruses 139 (1997); Jesdale et al., in Vaccines '97. (Cold Spring Harbor Press, Cold Spring Harbor, 1997).

In this EXAMPLE, we implemented EpiMatrix to examine the sequences of HIV-1 strains published on the 1995 version of the Los Alamos National Laboratory HIV Sequence database. We identified conserved regions and then examined these for their potential to bind to one of two MHC alleles (A2 and B27). We prospectively identified conserved MHC ligands which may be useful for HIV-1 vaccine development.

Generation of an MHC binding matrix motif. Various methods were used in the generation of MHC binding matrix motifs. Briefly, independent sources of information on the relative promotion or inhibition of each amino acid in each position are identified. For each source of information, an estimation of the relative promotion or inhibition of binding is quantified. In a generic sense, this quantification is based on a relative rate calculation, the rate of an amino acid in a given position relative to its median rate across all positions. These matrix motifs, based on single sources of information (such as a list of known ligands (Huczko et al., 151 J. Immunol. 2572 (1993)); pooled sequencing of naturally elated peptides (Kubo et al., 152 J. Immunol. 3913-24 (1993)) peptide side-chain scanning

10

15

20

25

techniques (Hammer et al., 180 J. Exp. Med. 2353-8 (1994)), or the identification of ligands with specific characteristics through random phage techniques (Flackenstein et al., 240 Eur. J. Biochem. 71-7 (1996)), are then combined in a way which attempts to maximize the resultant matrix motif's ability to separate a list of known ligands from the other peptides contained within their original sequences. The two matrix motifs based on single datasets with the best individual predictive power (assessed using the Kruskal—Wallis non-parametric test) are first combined with each other. The best resultant of these two was then combined with the third most individually predictive, and so on. The result of this process was then combined with the method of Parker et al., 152 J. Immunol. 163-75 (1994) to achieve a final predictive matrix motif for each MHC allele.

Generating an EpiMatrix score. Each putative MHC binding region within a given protein sequence is scored by estimating the relative promotion or inhibition of binding for each amino acid, and summing these to create a summary score for the entire peptide. Higher EpiMatrix scores indicate greater MHC binding potential. After comparing the score to the scores of known MHC ligands, an "estimated binding probability" or EBP, is estimated. The EBP describes the proportion of peptides with EpiMatrix scores as high or higher that will bind to a given MHC molecule.

EBP is derived from the EpiMatrix score by determining how many published ligands for the allele would earn that same score or a higher score (a measure of sensitivity). EBPs range from 100% (highly likely to bind) to less than 1% (very unlikely to bind). The majority of 10mers in any one protein sequence fall below the 1% estimated binding probability for any given MHC binding matrix.

Selection of peptides. For each protein, env, pol, nef, and tat was analyzed independently. The sequence for each HIV-1 isolate in the Los Alamos HIV sequence database (Korber & Meyers, eds, HIV Sequence Database, Los Alamos HIV Database, 1995. (Los Alamos National Laboratories, New Mexico, 1995) was divided into ten amino acid long strings which overlapped by nine. These 10-mer strings were then compared to the A2 and B7 MHC binding matrix motifs (EpiMatrix version 1.0). Peptides

20

25

5

10

that scored higher than 50% EBP were selected. Each of these putative ligands was compared to all the others using a spreadsheet and command macro which orders the strings from those which are common to many of the sequences to those which were unique (FIG 1). Strings that were present in "more" HIV-1 isolates (the exact number depended on the number of isolates available in the LANL database) were selected for the next phase of the analysis. Twenty-eight peptides were selected using this method. One of the selected peptides corresponded to a published CTL epitope, and was selected to serve as a control. An additional peptide selected to serve as a positive control as for this study, KRWIILGLNK, scored lower on the B27 matrix than 50%, however, it was the only available HIV-1 B27 ligand that had been fine-mapped.

The T2 *in vitro* peptide binding assay was performed as recently described by Nijman et al., 23 Eur. J. Immunol. 1215-9 (1993). This assay relies on the ability of exogenously added peptides to stabilize the Class I/β2 microglobulin structure on the surface of TAP-defective cell lines. For these assays, we used the antigen processing mutant cell line T2 transfected with the HLA B27 gene (T2/B27). These cells were cultured in Iscove Modified Dulbecco's Medium (IMDM), 10% fetal bovine serum, and 20 μg/ml gentamycin. A monoclonal antibody to HLA-827 produced by the ATCC 1-HB-119. MEI hybridoma (Ellis *et al.*, 5 Hum. Immunol. 49-59 (1982) was used to assess HLA-B27 expression at the cell surface (indicating peptide binding and stabilization of the B27 molecule). The monoclonal antibody produced by the ATCC HB-82, BB7.2 hybridoma (Parham & Brodsky, 3 Hum. Immunol. 277-99 (1981)) was used to assess

Three hundred thousand cells in 100 µl of IMDM, 10% FBS, and 20 µg/ml gentamycin medium were incubated with no peptide, or 100 µl synthetic peptide solution overnight at 37°C, in an atmosphere of 5% CO₂. The T2 cell/peptide suspension was pelleted at 1000 rpm. the supernatant was discarded, and the suspension was stained with 100 µl of BB7.2, an HLA-A2 specific mouse monoclonal primary antibody (1 hr at 4°C). Two wells per peptide did not receive the primary antibody, but only the PBS staining

10

15

20

buffer. The cells were washed 3x with cold (4°C) staining butter PBS, 0.5% FBS, 0.02% NaN₃, and stained for 30 min at 4°C with 100 µl FITC-labeled goat anti-mouse immunoglobulin (Pharmingen, 12064-D). The cells were again washed three times and fixed in 1% paraformaldehyde. Fluorescence of viable T2 cells was measured at 488 nm on a FACScan flow cytometer (Becton-Dickinson, NJ).

A total of 12 wells was assayed per peptide (one well each with peptide at 0, 2, 20, and 200 μ g/ml were repeated using primary antibody for the molecule the peptide is predicted to bind to, the primary antibody to the molecule the peptide was not predicted to bind to, and no primary antibody).

Analysis and interpretation of binding assays. Peptide binding to MHC molecules stabilizes MHC expression at the cell surface, and can be measured by FACS sorting the cells. The data produced by the FACS analysis represented the mean linear fluorescence (MLF) of 10000 events. We used a cut-off of 1.3-fold greater MFI in any of the three wells with peptide than the control well as the criterion for positive binding.

Results. Twenty-eight peptides were tested in binding assays. Two of the 28 were previously published ligands. Ten peptides induced an increase in the MFI of 1.3-fold or greater (FIG. 2). The published controls bound as expected. Peptides shown here were selected because they were predicted to bind to A2 and not to B27, or vice versa. None of the peptides predicted to bind to A2 bound to B27 and vice versa.

Conclusion. We performed prospective definition of conserved HIV-1 regions using EpiMatrix version 1.0. Rapid identification of MHC ligands, which can then be tested in T-cell assays, is desirable for HIV-1 vaccine development. Computer-driven analysis of HIV sequences will permit the prospective identification of such conserved CTL epitopes.

Determination of peptides that bind to major history compatibility (MHC) molecules (MHC ligands) can be the first step in the process of identifying T-cell epitopes. Identification of MHC ligands from primary HIV-1 sequences as particularly relevant for HIV vaccine development and immunopathogenesis research. Matrix-based motifs have

25

20

25

5

10

been developed to improve on the specificity of anchor-based motifs. The advantage of matrix motifs is that peptides can be given a score that represents the sum of the potential for each ammo acid in the sequence to promote or inhibit binding.

Predicting regions of immunological interest is only the first step to determining whether the region is likely to be recognized by primed T cells, and to be defined as a CTL epitope. Predictions must be confirmed by binding assays, so as to determine whether a peptide representing that region indeed binds to the MHC for which it was predicted (e.g., T2 cell binding assay). Immunogencity of the peptides must also be confirmed by measuring whether CTL recognize the peptide in T-cell assays.

Methods of analysis developed in the TB/HIV Research Lab also permit the comparison of putative MHC ligands across HIV-1 clades and permit the weighting of predictions for the prevalence of HLA alleles in human populations. Utilization of these computer-driven methods will put the prospective identification of cross-clade (cross-reactive) and promiscuous epitopes for HIV-1 vaccine development within reach.

EXAMPLE 2 A REGIONAL HIV VACCINE FOR INDIA

Introduction. India has one of the highest burdens of HIV infection of any country in the world: 4.1 million individuals are already thought to be infected and the epidemic will accelerate over the next decade. The prevalence of selected clades on the Indian sub-continent and the unique genetic make-up (HLA distribution) of the Indian population led to the concept of a region-specific HIV vaccine.

We selected HIV peptides for conservation across HIV-1 strains that have been isolated in India. We then evaluated these peptides for their projected binding capability to selected MHC Class I molecules, using the computer-driven modeling program, EpiMatrix. Twenty eight peptides were identified as highly conserved in the Indian HIV-1 sequences and predicted to bind to MHC Class I (HLA-A0201, -A1101, -B35, -B7) that are prevalent HLA alleles in India.

5

10

Analysis. Sixty six HIV-1 sequences from India (55 env, 6 gag, 5 pol) were identified from published literature as having been isolated in India or from individuals who acquired their HIV infection in India. The amino acid sequences were examined for regions conserved in ~50% of the sequences. These peptides were synthesized and tested in vitro using an MHC binding assay protocol. CTL assays were also performed. Fluorescence data was analyzed using: (1) a two-factor ANOVA to determine treatment or plate effect, and (2) a multiple comparison to find significant differences between treatment means.

Results. Twenty out of the 28 predicted peptides (71 %) stabilized the MHC Class I molecule for which they were predicted to bind. (p-values < 0.001). The predictive accuracy of the B7 (86%) and B35 (100%) matrices for the EpiMatrix algorithm were slightly better, in this EXAMPLE, than the accuracies of the A11(42%) and A2(57%) matrices. B7 peptides predicted to bind to B35 as well were able to stabilize B35 in vitro. B7 Peptides predicted to be unlikely to bind to B35 did not stabilize B35 in vitro. The reverse (B35/B7) was also true.

The following TABLES correspond to FIGS. 6-9.

	TABLE 1 B7					
peptide #	peptide	seq. Used	SEQ ID NO:			
1	RPNNNTRKSI	RPNNNTRKSI	627			
3	NPYNTPIFAL	NPYNTPIFAL	628			
4	RAIEAQQHLL	RAIEAQQHLL	629			
5	TCKSNITGLL	TCKSNITGLL	630			
9	KPVVSTQLL	KPVVSTQLL	631			
10	KPCVKLTPL	KPCVKLTPLC	632, 633			
11	GPKVKQWPL	GPKVKQWPLT	634, 635			
12	YPGIKVRQL	YPGIKVRQLC	636, 637			

TABLE 2 B37				
peptide #	peptide	seq. Used	SEQ ID NO:	
2	TVLDVGDAYF	TVLDVGDAYF	638	
6	EPPFLWMGY	EPPFLWMGYE	639, 640	
7	VPVKLKPGM	VPVKLKPGMD	641, 642	
8	CPKVTFDPI	CPKVTFDPIP	643, 644	
9.	KPVVSTQLL	KPVVSTQLL	645	
10	KPCVKLTPL	KPCVKLTPLC	646, 647	
11	GPKVKQWPL	GPKVKQWPLT	648, 649	
12	YPGIKVRQL	YPGIKVRQLC	650, 651	

		TABLE 3	
		A2	
peptide #	peptide	seq. Used	SEQ ID NO:
13	ILKEPVHGV	ILKEPVHGVY	652, 653
14	QLPEKDSWTV	QLPEKDSWTV	654
15	NLWTVYYGV	NLWTVYYGV	655
16	QMHEDVISL	QMHEDVISLW	656, 657
17	KIEELREHLL	KIEELREHLL	658
18	DMVNQMHEDV	DMVNQMHEDV	659
19	GLKKKKSVTV	GLKKKKSVTV	660
20	ELHPDKWTV	ELHPDKWTVQ	661

10

15

	TABLE 4 All					
peptide#	peptide	seq. Used	SEQ ID NO:			
21	IYQEPFKNLK	IYQEPFKNLK	662			
22	VTFDPIPIHY	VTFDPIPIHY	663			
23	TVQCTHGIK	TVQCTHGIKP	664, 665			
24	NTPIFALKKK	NTPIFALKKK	666			
25	LVDFRELNK	LVDFRELNKR	667, 668			
26	PGMDGPKVK	PGMDGPKVKQ	669, 670			
27	GIPHPAGLKK	GIPHPAGLKK	671			
28	FTTPDKKHQK	FTTPDKKHQK	672			

Conclusion. Regionalized CTL epitopes can be incorporated into a range of existing vaccine strategies, e.g. vectored vaccines, DNA vaccines, and recombinant protein vaccines. This approach also permit the development of novel regionalized HIV vaccines and therapeutic interventions. Alternatively, such regional CTL epitopes, collectively covering virtually all regionally-transmitted strains and prevalent HLA types could be combined into a universal HIV vaccine.

EXAMPLE 3 A "WORLD CLADE" HIV VACCINE

HLA Variation in Populations. The distribution of MHC alleles varies from population to population. In general, the MHC-peptide (epitope) interaction is governed by the sequence of the peptide: each MHC has its own constraints, which can be described as a pattern, or motif, characterizing the set of peptides that can bind in the binding groove of the MHC. While the distribution of MHC in populations inhabiting different regions of the world may restrict, to some extent, the relevance of selected epitopes in different human populations, means to surmount this difficulty have been proposed. For example, identification of CTL epitopes that may be recognized in the context of more than one

10

15

20

25

MHC, such as "promiscuous" or "clustered" MHC binding regions, may permit the development of vaccines that effectively protect genetically diverse human populations. For example, if an HIV-1 peptide could be identified that would bind and be presented by A2, A1, and A20, it is likely that it would be presented in the context of MHC of approximately 25% of Zaireans (Congolese) and greater than 50% of North American Caucasians. We and others have proposed that prospectively identifying and including such "promiscuous" CTL and Th epitopes in novel HIV-1 vaccines may enhance the utility of these vaccines in a wide range of HIV-1 endemic countries (Haynes, 348 Lancet 933-937 (1996); Cease & Berzofsky, 12 Annu. Rev. Immunol. 923-989 (1994); Bona et al., 126(19) Immunology Today 126-130 (1998); Brander & Walker, in HIV Immunology Database 1995, Korber & Meyers, eds. (Los Alamos National Laboratories, New Mexico, 1996); Berzofsky et al., 88(3) J. Clin. Invest. 876-84 (1991); Ward et al., in HIV Immunology Database 1995, Korber & Meyers, eds. (Los Alamos National Laboratories, New Mexico, 1996)).

Database of Conserved HIV-1 MHC Ligands. We have prospectively identified regions that are conserved across the maximum number of strains ("cross-clade") of MHC binding potential that are likely to be presented by MHC molecules representing the most prevalent HLA alleles ("promiscuous"), and has selected, or weighted, the selection of potential CTL epitopes for the final vaccine construct such that HLA alleles prevalent in HIV-endemic regions of the world are adequately represented.

These are highly conserved, promiscuous peptides. Eighty peptides have been synthesized, and binding studies have been intitiated for peptides representing the following alleles: A2, A11, B35, and B7. Studies of peptides representing the following alleles: A1, A3, A24, A31, A33, B12 (44), B17, B53, Cw3, and Cw4 are next in order of priority.

Research Lab Tools; EpiMatrix. EpiMatrix is a matrix-based algorithm that ranks 10 amino acid long segments, overlapping by 9 amino acids, from any protein sequence by estimated probability of binding to a selected MHC molecule. The procedure for

10

15

20

25

developing matrix motifs was published by Schafer et al, 16 Vaccine 1998 (1998). We have constructed matrix motifs for 32 HLA class I alleles, one murine allele (H-2 Kd) and several human class II alleles. Putative MHC ligands are selected by scoring each 10-mer frame in a protein sequence. This score, or estimated binding probability (EBP), is derived by comparing the sequence of the 10-mer to the matrix of 10 amino acid sequences known to bind to each MHC allele. Retrospective studies have demonstrated that EpiMatrix accurately predicts published MHC ligands (Jesdale et al., in Vaccines '97 (Cold Spring Harbor Press, Cold Spring Harbor, NY, 1997)).

An additional feature of EpiMatrix is that it can measure the MHC binding potential of each 10 amino acid long snapshot to a number of human HLA, and therefore can be used to identify regions of MHC binding potential clustering. Other laboratories have confirmed cross-presentation of peptides within HLA "superfamilies" (A11, A3, A31, A33 and A68) (Jesdale *et al.*, in *Vaccines '97* (Cold Spring Harbor Press, Cold Spring Harbor, NY, 1997)). Presumably, vaccines containing such "clustered" or promiscuous epitopes will have an advantage over vaccines composed of epitopes that are not "clustered. In work performed in the TB/HIV Research Lab, we have confirmed cross-MHC binding that was predicted by EpiMatrix.

Peptides Selected for Conservation Across Clades and for CTL Response. The staff of the Los Alamos National Laboratory HIV-1 Sequence Database has compiled a list of HIV-1 sequences which are believed to be representative of currently available HIV-1 sequences. Such representative lists are available for each of the HIV genes/proteins (gag, pol, gag, vpu, env, nef, vif, vpr), although the more heavily sequenced genes (particularly env) have considerably longer lists. It is from these lists that well-conserved putative ligands have been defined.

The list for each protein was analyzed independently. We used a program called Conservatrix, developed in the TB/HIV Research Laboratory, to find conserved regions. The sequence for each isolate was divided into ten amino acid-long strings that overlapped by nine. Each of these strings was compared to all of the others using a spreadsheet

20

25

5

10

program that orders the strings from those which were in many of the sequences to those which were unique (Conservatrix). These ordered lists represent the first step in the analysis. Strings that were present in "more" (>50 for env, >25 for gag, etc.) HIV-1 isolates were selected for the next phase of the analysis. For example, in the case of env, 478 strings were conserved in more than 50 HIV-1 isolates and were analyzed, using EpiMatrix, for MHC binding potential clustering.

The next step was to identify which of the conserved sequences were likely to be MHC ligands (and putatively, CTL epitopes). EpiMatrix yields a "score" for each of the strings it analyzes. The somewhat arbitrary score of 20% estimated binding probability (EBP) was defined as the cut-off for this step in the analysis. This cut-off is probably too high (too specific, not sensitive enough). The complete list of conserved sequences has been archived.

To continue using *env* as an example, of the 478 conserved env strings, any peptide with an EBP of greater than 20% for any of the HLA for which EpiMatrix predictions were available was defined as being a putative ligand. 206 of the 478 well conserved strings (43%) met this criterion.

The next step was to select strings that were likely to be ligands for more than one MHC type (MHC binding potential clustering). Histograms have been constructed which indicate which regions stimulate the most HLA types (see, TABLE 5 below).

The list of peptides to be tested has been selected from among those regions that might bind to more than 3 different MHC molecules, paying particular attention to selecting regions that bind to HLA representative of world populations and sequences that were representative of global HIV-1 isolates. A method for weighting predictions by the prevalence of HLA alleles in populations has already been developed in the laboratory. We have performed the first two steps of the peptide selection analysis for env, pol, and gag. Twenty-eight of the peptides selected in this manner are shown in TABLE 5 below, with an abbreviated listing of the strains for which they were identified. Binding studies were also performed.

15

20

5

Reviewing the data shown below, it is clear that we have been able to select from a number of different peptides that are conserved in a wide range of HIV-1 clades and strains. The listing of strains for which each peptide is conserved is limited by space for this application; however, it is should be apparent that there is good cross-clade coverage of different HIV-1 clades.

The following TABLE 5 provides a sample list of peptides that are conserved across HIV-1 clades (only env is shown).

protein	conserved in # of HIV-1 strains	reference strain	strains for which sequence is conserved (partial listing)	number predicted >20%	Publitive ligands for these affects
907	70	SF1703	Z321 D18 92UG037 8 D177 TZ017 D10 L414 B5I C1211 B0I UG273A D211 DJ264A D131 DJ263A D171 DJ		A*6901, B*39011, B*5901
	-	5F2	LAI [705] HX82R [700] HLA3 [696] BRVA [696] 91US005.11 [706] MH [701] 0Z4589 [703] JFL [695] SIM84 [7	Š	A*3302, A*6801, B*39011
-	117	U455	SF1703 (224) 2321 (219) 92RW020.5 (205) 92RW009.14 (217) TZD17 (210) D887 (105) UG275A (216) UG275	3	B*39011, B*5101, Ow/0102
-	108	U456	SF1703 H231 82RW020.5 H001 82UG037.8 H101 UG275A H131 UG273A H171 C13271 [146] LBV2310 [153]	3	8"2705, 8"39011, 8"5801
-	50	Z321	0687 [296] K114 [164] L414 [152] P104 [145] P281 [143] C(211 [145] DJ264A [406] DJ263A [416] DJ258A [4	3	B*2705, B*39011, B*5801
	95	8F2	SF2813 M401 LAI M501 HXB2R M451 J802 11691 HY5CG M371 HLA3 M431 JRCSF (4371 JRFL M361 ALA1 M3	3	87, B*39011, B*5601
-	114	SF1703	92RW020.5 [283] 92UG037.9 [296] PZ61 [26] DJ264A [292] DJ263A [296] CI31 [29] CH51 [29] CI3301 [29] L	3	A*0301, A*1101, B*5801
en.	106	USI	USZ 5587 CM237X (515) 91HT952,11 5567 92UG005 (283) 3202A12 (564) 3202A21 (567) MANC (565) CA20	3	B*39011, B*5101, B*5801
-	59	92UG021.16	8 HESTHOSTA (749) YUZ (753) JRFL (757) JRCSF (758) ALA (759) FB 93BR019.10 (760) NYSCG (760) AD	3	B14, B*39011, B*5801
9074	62	U455	SF1703 (695) Z321 (690) 92RW020.5 (671) 92UQ037.8 (685) D687 (572) UG275A (685) V1191A (688) DJ2634	3	8"39011, 8"5101, 8"5801
env	98	Z321	A GA1LBV23 (276) SF2 (547) SF2813 (545) LAI (553) HXB2R (548) JB02 (275) NLA3 (549) JRCSF (540) JRF	4	A'3101, A'3302, A'6801, 8'39011
en/	74	U455	\$F1703 5631 92RW020 5 5281 92UG031.7 5471 92UG037.8 5411 92RW009.14 5431 P104 [277] CI211 [277	4	A'3101, A'3302, A'6801, B'39011
907	145	SF1703	92UG031,7 N 19 TZ017 N 20 D687 N 2 UG275A N 20 UG273A N 20 KENYA N 20 CAR4054 N 20 CAR402	3	A*0201, A*0301, B*39011
en/	202	U455	SF1703 [116] Z321 [116] 92RW020.5 [114] 92UG031.7 [115] TZ017 [116] D697 [8] UG275A [116] UG273A [1	5	B7, B35, B*39011, B*5101, B*5801
977	128	U455	92UG031.7 (252) 92RW009.14 (251) D687 (139) K114 (I) UG08 (4) UG276A (250) V1191A (253) DJ264A (248)	5	B7, B35, B*39011, B*5101, B*5801
-	50	W	HX82R [794] GP160EN [792] NLAS [792] JRCSF [796] JRFL [785] ALAI [787] JH32 [805] BALI [794] YUZ [78	3	A*0301, 8*5801, Cur0702
env	64	SF2	SF2813 (656) LAJ (666) HXB2R (661) GP160EN (658) NYSCG (655) NLAS (659) JRCSF (653) JRFL (652) ALA	3	840, 8*4403, B*5801
-	92	SF1703	Z321 (687) 92RWQ20,5 (668) 92UGQ31,7 (686) 92UGQ37,8 (690) D687 (569) UG276A (682) UG273A (686) V1	3	A'3101, A'3302, B'39011
	54	SF1703	CARSAS (285) 23 (277) (_GM4 (131) 938R029.2 (281) F_H938R029A (282) 92UG048.8 (283) 92UG038.1 (24	5	88, 835, 8*5101, 8*5801, Ow*0102
•~	134	T2017	CARSAS 1971 CAR4054 1971 AD K124A2 1991 AD UG266A2 1971 CA ZAM194 1971 GX VIS25A2 1971 EA CA	3	A*0301, A*1101, A*6801
	117	U455	UGZ75A [102] DJ264A [101] DJ263A [101] DJ258A [101] CAR4054 [102] CAR423A [103] LAI [103] HXB2R [1	4	A*0201, A*0301, B*39011, B*5801
977V	117	U455	SF1703 [562] 2321 [557] 92UG031.7 [556] 92UG037.8 [550] 92RW009.14 [552] CI211 [284] UG273A [556] D	5	A*0201, 87, 835, 8*39011, 8*5801
	54	W	HX82R H44] JB02 (168) NY5CG H36) NLA3 H42] JRCSF H36] JRFL H35] ALA1 H37] JH32 H56) BAL1 H42	3	B7, B*39011, B*5801
	94	Z321	92UG037.8 (252) T2017 (244) UG273A (256) CARSAS (257) A_MLY10A (133) LAI (257) HX82R (252) GP160(5	B7, B35, B*39011, B*5101, B*5801
env	53	CAR4054	FB 93BR019.10 H75 BZ126A H66 RJI03 347 93BR020.17 H69 93BR029.2 H66 AR16 208 AR18 200	3	840, 8'4006, 8'4006
en.	129	U455	SF1703 [486] Z321 [481] 92RW020.5 [462] 92UG031.7 [480] 92RW009.14 [476] P104 [210] PZ61 [211] UG0	3	840, 8'4006, 8'4006
	53	92RW009.14	BF_RJI01.5 (162) CD_DI2ACD (262) CAR4081 (265) U_BU91009A (262) RU570 (226) 931H966.9 (264) E_92	3	A'0301, A'3101, B'39011
	55	DJ264A	0./263A (264) B H93TH067A (257) C86 (141) C87 (165) C89 (141) US2 (265) 24612 (237) 26807 (253) 4995 (3	A'0301, A'3101, B'39011
667 /	66	92UG037.8	92RW009.14 K10 DA_MAL K15 CA_ZAM184 D97 BF_RJI01.5 D06 FB_AR16 [133 HV1UG3621 K06 R	3	B8, B*39011, Cw*0102
9679/	157	U455	SF1703 D61 Z321 D61 97UG031,7 D51 97UG037,8 D41 97RW009,14 D41 T7017 D61 KENYA D61 CARGAN D	3	A*0301, A*1101, A*6801

For example, the env peptide KLTPLCVTLN, conserved in 145 different strains on the LANL HIV sequence database, was selected from SF1703 (a clade B strain) and was conserved in SF2, SF2B13, 92UG031.7, TZ017, D687, UG275A, UG273A, CAR4054, CAR4023, CAR423A, A_MLY10A, NY5CG, JRCSF, JRFL, JH32, BAL1, YU2, BRVA, and more, representing several different clades. The HLA class I alleles for which the string is predicted to be a good (greater than 20%) ligand were A2, A0301, and B39.

Prior to selecting peptides for synthesis, we have analyzed the peptides for (1) representation of clade A, C, D and E strains, and (2) adequate representation of potential binding to HLA alleles that are prevalent in countries where clades A, C, D, and E are transmitted. Results from assays performed in the lab to date have shown that a very high

proportion of the peptides we selected for our studies bound to T2 cells expressing the appropriate MHC in vitro.

		4 AA1A1 D	TABLE 6							
A^0101 PEPTIDE SEQUENCES										
protein	conser-	sequence	ref. strain	ref. start	A^0101	SEQ ID.				
	vation					NO:				
env	107	SFEPIPIHYC	U455	207	30.25%	30				
env	55	ELDKWASLWN	US1	665	2.91%	31				
env	114	CTRPNNNTRK	SF1703	302	1.31%	332				
env	61	GVAPTKAKRR	Z321	495	0.89%	33				
env	126	SFNCGGEFFY	U455	373	0.83%	34				
env	102	ITLPCRIKQI	92UG037.8	406	0.73%	35				
env	93	SSNITGLLLT	AD_K124A2	448	0.70%	36				
gag	57	RLRPGGKKKY	BNG	20	11.73%	37				
gag	51	AISPRTLNAW	BZ126B	144	2.23%	38				
gag	32	AWEKIRLRPG	BZ126B	15	2.16%	39				
gag	53	FRDYVDRFYK	TN243	293	2.03%	40				
pol	40	LKEPVHGVYY	IBNG	465	29.32%	41				
pol	44	ETVPVKLKPG	IBNG	161	12.68%	42				
pol	39	ETPGIRYQYN	IBNG	293	9.40%	43				
pol	46	QKEPPFLWMG	U455	376	8.33%	44				
pol	39	NNETPGIRYQ	IBNG	291	3.29%	45				
pol	46	TPDKKHQKEP	U455	370	3.19%	46				
pol	38	IPHPAGLKKK	IBNG	249	2.61%	47				
pol	43	LVDFRELNKR	U455	228	2.23%	48				
rev	13	SAEPVPLQLP	SF2	:67	22.60%	49				
tat	7	RGDPTGPKE\$	TH475A	78	30.49%	50				
vif	17	LADQLIHLYY	IBNG	102	43.60%	51				
vif	10	QVDPGLADQL	SF2	97	8.75%	52				
vpr	7	LHSLGQHIYE	D31	39	0.60%	53				
vpu	35	RAEDSGNESE	CM240X	49	1.38%	54				

TABLE 7 A^0201 PEPTIDE SEQUENCES							
protein	conser-	sequence	ref. strain	ref. start	A^0201	SEQ ID.	
	vation					NO:	
env	91	NLWVTVYYGV	Z321	32	82.51%	55	
env	110	GIKQLQARVL	U455	565	72.16%	·56	
env	91	QLQARVLAVE	U455	568	63.81%	57	
env	145	KLTPLCVTLN	SF1703	120	50.93%	58	
env	67	NMWQEVGKAM	CA16	147	49.55%	59	
env	117	QMHEDIISLW	U455	101	47.82%	60	
env	154	DMRDNWRSEL	CA20	193	44.72%	61	
gag	31	SLYNTVATLY	UG268	77	76.09%	62	
gag	25	ELRSLYNTVA	U455	74	69.48%	63	
gag	88	EMMTACQGVG	U455	341	63.81%	64	
gag	58	DLNTMLNTVG	BZ126B	181	63.81%	65	
pol	30	LLWKGEGAVV	U455	955	99.50%	66	
pol	40	ILKEPVHGVY	IBNG	464	96.43%	67	
pol	27	KLLWKGEGAV	U455	954	88.23%	68	
pol	28	HLKTAVQMAV	U455	885	80.90%	69	
pol	39	GLKKKKSVTV	U455 -	253	74.16%	70	
pol	48	ELHPDKWTVQ	U455	387	70.39%	71	
pol	31	KIEELRQHLL	SF2	356	69.18%	72	
pol	33	KLLRGTKALT	SF2	436	61.17%	73	
rev	8	QILVESPTVL	LAI	101	67.94%	74	
tat	7	FLNKGLGISY	UG275A	38	10.68%	75	
vif	10	DLADQLIHLY	IBNG	101	54.04%	76	
vif	12	HIPLGDARLV	IBNG	56	46.44%	77	
vpr	9	LLEELKNEAV	LAI	22	87.89%	78	
vpu	7	ILAIVVWTIV	U455	17	89.70%	79	

			TABLE 8			
		A^0301 PE	EPTIDE SEQU	ENCES		
protein	conser-	sequence	ref. strain	ref. start		SEQ ID
	vation					NO:
env	129	HSFNCGGEFF	U455	372	60.47%	80
env	138	TLFCASDAKA	U455	49	58.33%	81
env	86	HSFNCRGEFF	D687	259	55.44%	82
env	174	SLWDQSLKPC	U455	108	49.09%	83
env	157	TVYYGVPVWK	U455	35	48.61%	84
env	93	VSFEPIPIHY	U455	206	48.61%	85
env	114	CTRPNNNTRK	SF1703	302	43.25%	86
gag	31	SLYNTVATLY	UG268	77	49.34%	87
gag	31	LARNCRAPRK	BZ126B	399	32.34%	88
gag	57	RLRPGGKKKY	BNG	20	32.12%	89
gag	73	ILDIRQGPKE	U455	278	29.11%	90
pol	43	LVDFRELNKR	U455	228	52.52%	91
pol	27	QLDCTHLEGK	U455	776	50.32%	92
pol	27	AVFIHNFKRK	U455	893	43.98%	93
pol	38	QIIEQLIKKE	SF2	675	43.01%	94
pol	40	GIPHPAGLKK	IBNG	248	41.81%	95
pol	39	KVYLAWVPAH	SF2	685	36.86%	96
pol	35	AIFQSSMTKI	SF2	313	34.57%	97
pol	46	KLVDFRELNK	U455	227	33.45%	98
rev	6	KILYQSNPYP	UG273A	20	23.70%	99
tat	7	TACNNCYCKK	SF2	20	62.35%	100
vif	6	ALTALITPKK	MN	149	37.32%	101
vif	31	KLTEDRWNKP	U455	168	35.02%	102
vpr	27	WTLELLEELK	IBNG	18	22.76%	103
vpu	9	RLIDRIRERA	SC	42	37.32%	104

TABLE 9 A^1101 PEPTIDE SEQUENCES ref. strain ref. start SEQ ID protein conservsequence ation NO: **TVQCTHGIKP** 242 101 **U455** 52.33% 105 env 51 **FAILKCNDKK BF RJI01.5** 121 45.11% 106 env 87 134 **NVTENFNMWK** TZ017 38.39% 107 env 92UG037.8 405 62 38.05% 108 TITLPCRIKQ env 157 **TVYYGVPVWK U455** 35 33.47% 109 env 302 114 CTRPNNNTRK SF1703 33.05% 110 env 88 32.62% 135 VTENFNMWKN TZ017 111 env 19 57.42% 57 **BNG** 112 IRLRPGGKKK gag 18 47.32% 64 KIRLRPGGKK **BZ126B** 113 gag 91 LVQNANPDCK **U455** 318 33.37% 114 gag 43 BZ126B 400 25.16% ARNCRAPRKK 115 gag 38 **IBNG** 369 64.26% 116 pol **FTTPDKKHQK** 40 **IBNG** 248 63.28% 117 **GIPHPAGLKK** pol 43 TTPDKKHQKE **IBNG** 370 62.39% 118 pol pol 38 **IPHPAGLKKK IBNG** 249 58.91% 119 27 **U455** 893 57.99% 120 **AVFIHNFKRK** pol 40 **NTPVFAIKKK U455** 211 57.88% 121 pol pol 45 169 57.65% 122 **PGMDGPKVKQ IBNG** 27 **QVRDQAEHLK IBNG** 879 55.58% 123 pol 9 **LAI** 107 31.68% 124 **PTVLESGTKE** rev 7 SF₂ 20 70.97% 125 tat TACNNCYCKK vif 6 159 51.98% 126 **IKPPLPSVKK** MN vif 6 44.77% 127 **ALTALITPKK** MN 149 vpr 27 WTLELLEELK **IBNG** 18 21.41% 128 23 31.58% 129 8 WTIVFIEYRK CDC42 vpu

	TABLE 10 A^2401PEPTIDE SEQUENCES								
protein	conser- vation	sequence	ref. strain	ref. start	A^2401	SEQ ID NO:			
env	67	RYLKDQQLLG	SF1703	590	58.82%	130			
env	58	SYHRLRDLLL	DA MAL	770	0.18%	131			
pol	38	IYQEPFKNLK	U455	495	15.49%	132			
pol	27	VYYDPSKDLI	LAI	484	0.01%	133			
vif	17	YYFDCFSESA	JRCSF	110	0.02%	134			
vpr	18	PYNEWTLELL	SF2	14	0.01%	135			

TABLE 11 A^3101 PEPTIDE SEQUENCES								
protein	conser- vation	sequence	ref. strain	ref. start	A^3101 (10-mers)	SEQ ID NO:		
env	92	MIVGGLIGLR	SF1703	692	71.89%	136		
env	53	SLAEEEIIIR	92RW009.14	263	71.89%	137		
env	98	IVQQQNNLLR	Z321	548	39.79%	137		
env	74	IVQQQSNLLR	U455	541	39.79%	139		
env	 55	SLAEEEVVIR	DJ264A	260	39.79%	140		
env	101	STVQCTHGIR	SF1703	249	13.63%	141		
env	83	LQARVLAVER	U455	569	13.63%	142		
gag	42	LVWASRELER	BNG	34	85.94%	143		
gag	37	IVWASRELER	K98	34	85.94%	144		
gag	89	IILGLNKIVR	U455	262	71.89%	145		
gag	44	QMVHQAISPR	BZ126B	139	71.89%	146		
pol	27	KIQNFRVYYR	U455	933	99.88%	147		
pol	43	LVDFRELNKR	U455	228	39.79%	148		
pol	46	KLVDFRELNK	U455	227	18.66%	149		
pol	40	SMTKILEPFR	U455	317	13.63%	150		
pol	29	SINNETPGIR	SF2	289	13.63%	151		
pol	26	GIGGYSAGER	U455	904	13.63%	152		
pol	39	TFYVDGAANR	U455	593	11.15%	153		
pol	30	SQIIEQLIKK	SF2	674	8.24%	154		
rev	34	GTRQARRNRR	SF2	33	2.65%	155		
tat	10	KTACTNCYCK	HXB2R	19	7.36%	156		
vif	6	AILGHIVSPR	JRCSF	123	71.89%	157		
vif	33	QVMIVWQVDR	U455	6	59.46%	158		
vpr	27	LQQLLFIHFR	U455	64	39.79%	159		
vpu	21	KILRQRKIDR	CM240X	32	97.23%	160		

TABLE 12 A^3302 PEPTIDE SEQUENCES A*3302 SEQ ID ref. start protein consersequence ref. strain vation (10-mers) NO: 93 UG23 76.02% 161 51 **EITTHSFNCR** env 98 Z321 548 23.98% 162 **IVQQQNNLLR** env 92 **MIVGGLIGLR** SF1703 692 23.98% 163 env 91 **ASITLTVQAR** U455 526 23.98% 164 env 23.98% 165 82 **AIAVAEGTDR** SF2B13 816 env 74 23.98% 166 **IVQQQSNLLR** U455 541 env 699 23.98% 69 **AVLSIVNRVR** SF2 167 env 89 **IILGLNKIVR** U455 262 23.98% 168 gag 62 **GVGGPGHKAR U455** 348 23.98% 169 gag 52 **ELI** 240 23.98% 170 **YVDRFYKTLR** gag 23.98% 48 **YSPVSILDIR** ZAM19 157 171 gag 27 871 52.05% 172 **ELKKIIGQVR** U455 pol 43 LVDFRELNKR **U455** 228 23.98% 173 pol 23.98% 174 42 **GSDLEIGQHR** U455 344 pol 40 **SMTKILEPFR** U455 317 23.98% 175 pol 29 23.98% 176 **SINNETPGIR** SF2 289 pol 26 **GIGGYSAGER** U455 904 23.98% 177 pol 8.65% pol 45 **EAELELAENR** U455 452 178 **U455** 1.22% 179 27 KIONFRVYYR 933 pol 32 8.65% 32 SF2 180 **EGTRQARRNR** rev 47 **GISYGRKKRR DJ263A** 44 23.98% 181 tat 54 vif 12 **EVHIPLGDAR IBNG** 76.02% 182 33 **U455** 6 23.98% 183 vif .QVMIVWQVDR 7 **HSRIGITRQR JRCSF** 78 23.98% 184 vpr 6 **DSGNESEGDR** ELI 52 76.02% 185 vpu

			TABLE 13			
		A^6801 PE	EPTIDE SEQUE	ENCES		
protein	conser-	sequence	ref. strain	ref. start	A*6801	SEQ ID
	vation	-			(10-mers)	NO:
env	61	GVAPTKAKRR	Z321	495	65.96%	186
env	69	AVLSIVNRVR	SF2	699	54.21%	187
env	98	IVQQQNNLLR	Z321	548	34.15%	188
env	74	IVQQQSNLLR	U455	541	34.15%	189
env	157	TVYYGVPVWK	U455	35	21.52%	190
env	134	NVTENFNMWK	TZ017	87	21.52%	191
env	101	STVQCTHGIR	SF1703	249	17.62%	192
gag	62	GVGGPGHKAR	U455	348	54.21%	193
gag	26	GVGGPSHKAR	VI310	351	54.21%	194
gag	42	LVWASRELER	BNG	34	45.90%	195
gag	37	IVWASRELER	K98	34	45.90%	196
pol	27	AVFIHNFKRK	U455	893	39.20%	197
pol	43	LVDFRELNKR	U455	228	34.15%	198
pol	32	LVEICTEMEK	SF2	189	31.46%	199
pol	27	QVRDQAEHLK	IBNG	879	31.46%	200
pol	42	LVKLWYQLEK	U455	576	21.52%	201
pol	38	FTTPDKKHQK	IBNG	369	6.44%	202
pol	35	DSWTVNDIQK	U455	404	5.56%	203
pol	40	NTPVFAIKKK	U455	211	3.41%	204
rev	34	GTRQARRNRR	SF2	33	7.44%	205
tat	10	KTACTNCYCK	HXB2R	19	9.51%	206
vif	12	EVHIPLGDAR	IBNG	54	65.96%	207
vif	33	QVMIVWQVDR	U455	6	54.21%	208
vpr	27	WTLELLEELK	IBNG	18	15.76%	209
vpu	6	DSGNESEGDR	ELI	52	24.23%	210
vpu	6	DSGNESEGDR	ELI	52	24.23%	21

		B7 PEP	TABLE 14 TIDE SEQUEN	CES		
protein	conser- vation	sequence	ref. strain	ref. start	В7	SEQ ID NO:
env	128	KPVVSTQLLL	U455	250	67.23%	211
env	94	RPVVSTQLLL	Z321	253	62.56%	212
env	202	KPCVKLTPLC	U455	115	43.65%	213
env	54	RCSSNITGLL	LAI	449	32.95%	214
env	84	APTKAKRRVV	Z321	497	30.13%	215
env	117	RAIEAQQHLL	U455	550	28.51%	216
env	72	GPCKNVSTVQ	SF1703	243	25.30%	217
gag	58	TPQDLNTMLN	UG268	175	50.10%	218
gag	30	TPQDLNMMLN	AD K124	180	49.09%	219
gag	60	GPGHKARVLA	U455	351	45.50%	220
gag	74	APRKKGCWKC	U455	401	38.60%	221
pol	32	QPDKSESELV	SF2	664	55.70%	222
pol	43	GPKVKQWPLT	U455	172	43.22%	223
pol	34	SPAIFQSSMT	SF2	311	21.23%	224
pol	44	SPIETVPVKL	U455	157	18.90%	225
pol	31	KIEELRQHLL	SF2	356	17.10%	226
pol	27	QVRDQAEHLK	IBNG	879	16.74%	227
pol	28	LVSQIIEQLI	SF2	672	11.11%	228
pol	29	IPAETGQETA	U455	803	11.04%	229
rev	23	LPPLERLTLD	SF2	75	68.27%	230
tat	8	GPKE\$KKKVE	TH475A	83	14.25%	231
vif	7	KPPLPSVTKL	LAI	160	43.22%	232
vif	10	KPPLPSVKKL	U455	160	38.19%	233
vpr	11	FPRIWLHSLG	JRCSF	34	65.66%	234
vpu	6	LVILAIVALV	TZ012	4	8.00%	235
-						

			TABLE 15	•	•	
		B8 PEP	TIDE SEQUEN	CES		
protein	conser-	sequence	ref. strain	ref. start	B8	SEQ ID
	vation	•				NO:
env	54	NAKTIIVQLN	SF1703	286	36.95%	236
env	56	PTKAKRRVVQ	SF2	496	36.67%	237
env	119	LYKYKVVKIE	U455	476	32.46%	238
env	66	TLPCRIKQII	92UG037.8	407	24.36%	239
env	105	VPVWKEATTT	SF2	41	23.42%	240
env	131	VWGIKQLQAR	U455	563	21.82%	241
env	64	DAKAYDTEVH	92RW020.5	54	20.93%	242
gag	43	FNCGKEGHLA	U455	387	26.43%	243
gag	39	NAWVKVVEEK	BZ126B	151	20.49%	244
gag	47	DCKTILKALG	SF2	331	19.96%	245
gag	49	NAWVKVIEEK	BNG	150	19.32%	246
pol	39	GLKKKKSVTV	U455	253	73.44%	247
pol	43	GPKVKQWPLT	U455	172	72.05%	248
pol	46	AIKKKDSTKW	U455	216	51.14%	249
pol	46	FAIKKKDSTK	U455	215	49.32%	250
pol	36	QHRTKIEELR	SF2	352	43.87%	251
pol	27	ELKKIIGQVR	U455	871	35.67%	252
pol	38	AGLKKKKSVT	U455	252	25.94%	253
pol	26	GIKVKQLCKL	U455	427	25.33%	254
rev	7	IIKILYQSNP	UG273A	18	7.75%	255
tat	16	ESKKKVERET	SF2	86	65.88%	256
vif	9	TPKKIKPPLP	LAI	155	22.95%	257
vif	27	AGHNKVGSLQ	U455	137	22.95%	258
vpr	22	EAIIRILQQL	U455	58	19.22%	259
vpu	7	WLIDRIRERA	TZ023	41	6.13%	260
<u> </u>	· · · · · · · · · · · · · · · · · · ·					

TABLE 16 **B14 PEPTIDE SEQUENCES** sequence ref. strain ref. start **B14 SEQ ID** protein conser-NO: vation US₂ 582 97.12% 261 68 **ERYLKDQQLL** env 20.43% 59 **FSYHRLRDLL** 92UG021.16 749 262 env 9.22% 562 263 106 **EAQQHLLQLT** US1 env SF1703 480 0.35% 264 178 **MRDNWRSELY** env 50 Z321 418 0.28% 265 CRIKQIVNMW env 0.16% SF2 496 266 56 **PTKAKRRVVQ** env 92UG037.8 407 0.13% 267 66 TLPCRIKQII env 44.20% 37 U455 294 268 DRFFKTLRAE gag 52 **DRFYKTLRAE** TN243 298 36.29% 269 gag 5.50% 270 26 **ERFAVNPGLL** SF2 42 gag 77 0.25% 271 31 **UG268** SLYNTVATLY gag 0.40% 272 U455 598 32 GAANRETKLG pol 601 0.08% 273 31 **NRETKLGKAG** U455 pol 45 KLVGKLNWAS U455 413 0.03% 274 pol 0.01% 275 30 SF2 324 pol **EPFRKQNPDI** 0.01% 33 LTEEKIKALV SF2 181 276 pol 406 0.01% 277 44 **U455** WTVNDIQKLV pol 4.66% 278 35 TROARRNRRR SF2 34 rev 279 SF2 48 2.30% tat 35 GRKKRRQRRR 53.54% 280 27 SF2 172 vif DRWNKPQKTK 6.68% 281 IFA86 76 vif 22 **ERDWHLGQGV** 6 **OREPHNEWTL** LAI 11 1.91% 282 vpr 33 283 vpu 19 LRQRKIDRLI LAI 4.71%

TABLE 17 B^1501 (10-mers) PEPTIDE SEQUENCES ref. strain ref. start B^1501 SEQ ID protein consersequence NO: vation (10-mers) 93 **DLRSLCLFSY DJ259A** 735 66.56% 284 env 0.47% 285 101 QQHLLQLTVW SF2 561 env 20 36.98% 286 57 **BNG** RLRPGGKKKY gag 2.43% **UG268** 77 287 31 **SLYNTVATLY** gag 0.38% 71 DIRQGPKEPF U455 280 288 gag 83 **U455** 423 0.13% 289 RQANFLGKIW gag **IBNG** 464 53.38% 290 40 ILKEPVHGVY pol 488 42.73% 291 33 SF2 pol **GQGQWTYQIY** 890 42.73% 292 28 **U455 VQMAVFIHNF** pol 411 4.02% 293 44 U455 pol **IQKLVGKLNW** 1.83% 294 38 **EQLIKKEKVY** SF2 678 pol 0.13% 295 47 U455 298 pol YQYNVLPQGW 0.01% 296 375 46 **U455 HQKEPPFLWM** pol MN 12 75.68% 297 11 **LLKTVRLIKF** rev 17.27% 298 7 **FLNKGLGISY UG275A** 38 tat 101 1.83% 299 10 DLADQLIHLY **IBNG** vif 0.30% 300 23 **HLGQGVSIEW** IFA86 80 vif 63 28.91% 301 23 ILQQLLFIHF **U455** vpr

TABLE 18 **B^2705 PEPTIDE SEQUENCES** protein consersequence ref. strain ref. start B^2705 SEQ ID NO: vation 108 **CRIKQIINMW** U455 411 94.41% 302 env 50 **CRIKQIVNMW** 418 85.77% 303 Z321 env 82 SF1703 508 16.62% 304 RRVVQREKRA env SF1703 507 13.63% 305 88 KRRVVQREKR env 496 12.89% 306 103 **RRVVEREKRA U455** env CI3301 5 env 51 **IRSENLTNNA** 12.89% 307 495 7.04% 90 U455 308 KRRVVEREKR env 261 25.12% 309 81 KRWIILGLNK BZ126B gag U455 281 14.39% 310 71 **IRQGPKEPFR** gag 57 **BNG** 19 12.19% 311 **IRLRPGGKKK** gag 8.94% 43 BZ126B 400 312 gag ARNCRAPRKK **U455** 900 33.92% 313 26 KRKGGIGGYS pol **U455** 236 5.76% 314 pol 38 KRTQDFWEVQ 0.61% 30 HRTKIEELRQ SF2 353 315 pol 27 SF2 328 0.37% **KQNPDIVIYQ** 316 pol 880 0.30% 26 VRDQAEHLKT **IBNG** 317 pol 40 **IBNG** 297 0.13% 318 **IRYQYNVLPQ** pol 29 **KALTEVIPLT** SF2 442 0.11% 319 pol 37 367 0.09% 320 WGFTTPDKKH **IBNG** pol 13 **GRSAEPVPLQ** SF2 65 47.75% 321 rev 9 56 13.07% 322 **RRAPODSOTH** SF2 tat vif 32 NRWQVMIVWQ **U455** 3 10.24% 323 vif 11 LAI 62 8.14% 324 **ARLVITTYWG** 79 97.28% 325 6 **SRIGIIQQRR** SF2 vpr 0.63% 19 33 326 LRQRKIDRLI LAI vpu

TABLE 19 **B35 PEPTIDE SEQUENCES** ref. strain ref. start **B35** SEQ ID protein consersequence NO: vation **KPCVKLTPLC** 202 U455 115 94,43% 327 env 250 94.43% 328 128 **KPVVSTQLLL** U455 env 253 94.43% 329 94 **RPVVSTQLLL** Z321 env U455 203 83.30% 330 100 **CPKVSFEPIP** env 53.09% 117 **RAIEAQQHLL U455** 550 331 env 54 **NAKTIIVQLN** SF1703 286 39.25% 332 env 85 SF1703 421 34.07% 333 LPCRIKQIIN env 284 99.99% 334 92 **GPKEPFRDYV** U455 gag 94.57% 335 32 LBV2310 335 **GPAATLEEMM** gag 334 94.57% 336 31 U455 **GPGATLEEMM** gag 58 **TPQDLNTMLN UG268** 175 94.43% 337 gag 43 **GPKVKQWPLT** U455 172 98.24% 338 pol **IBNG** 163 94.57% 339 46 **VPVKLKPGMD** pol U455 378 94.57% 340 46 **EPPFLWMGYE** pol 44 TPPLVKLWYO **U455** 573 94.57% 341 pol SF2 94.57% 342 34 311 pol **SPAIFQSSMT** 28 SF2 587 76.68% 343 **EPIVGAETFY** pol 27 SF2 330 54.09% 344 pol **NPDIVIYQYM** pol 45 KPGMDGPKVK **IBNG** 168 53.59% 345 23 SF2 75 89.28% 346 rev LPPLERLTLD 14 SF170 83 82.99% 347 **GPKESKKKVE** tat 9 155 LAI 98.24% 348 vif TPKKIKPPLP vif 12 **KSLVKHHMYI** SF2 22 76.68% 349 34 98.24% 350 11 **FPRIWLHSLG JRCSF** vpr 2 TZ023 9.91% 6 **QPLVILAIVA** 351 vpu

	TABLE 20 B38 PEPTIDE SEQUENCES								
protein	conser-	sequence	ref. strain	ref. start	B38	SEQ ID			
	vation					NO:			
env	121	IHYCAPAGFA	U455	213	55.70%	352			
env	115	MHEDIISLWD	U455	102	46.23%	353			
env	59	YHRLRDLLLI	LAI	773	23.31%	354			
env	101	QHLLQLTVWG	SF2	562	9.57%	355			
env	119	THGIKPVVST	U455	246	9.29%	356			
env	97	THGIRPVVST	Z321	249	9.19%	357			
env	129	VHNVWATHAC	U455	63	9.01%	358			
gag	95	GHQAAMQMLK	U455	189	57.48%	359			
gag	35	SHKGRPGNFL	SM145	436	38.92%	360			
gag	28	LHPVHAGPIA	BZ167	216	23.66%	361			
gag	45	VHQAISPRTL	SM145	140	12.44%	362			
pol	34	AHTNDVKQLT	U455	514	50.97%	363			
pol	46	KHQKEPPFLW	U455	374	47.58%	364			
pol	36	QHRTKIEELR	SF2	352	25.26%	365			
pol	28	EHLKTAVQMA	U455	884	19.21%	366			
pol	31	KIEELRQHLL	SF2	356	14.26%	367			
pol	32	QPDKSESELV	SF2	664	13.64%	368			
pol	35	LTEEAELELA	U455	449	13.51%	369			
pol	33	LTEEKIKALV	SF2	181	10.36%	370			
rev	13	SAEPVPLQLP	SF2	67	13.03%	371			
tat	21	KHPGSQPKTA	TH475A	12	22.79%	372			
vif	18	IHLYYFDCFS	LAI	107	48.94%	373			
vif	8	IHLHYFDCFS	U455	107	48.94%	374			
vpr	6	PHNEWTLELL	LAI	14	17.41%	375			
vpu	19	ESEGDQEELS	SF2	56	10.36%	376			

	TABLE 21 B^39011 PEPTIDE SEQUENCES								
protein	conser-	sequence	ref. strain	ref. start	B*39011	SEO ID			
protein	vation	sequence	iei. Strain	iei. Start	D.33011	SEQ ID NO:			
env	115	MHEDIISLWD	U455	102	58.82%	377			
env	178	MRDNWRSELY	SF1703	480	56.02%	378			
env	108	CRIKQIINMW	U455	411	49.57%	379			
env	93	IRPVVSTQLL	Z321	252	49.57%	380			
env	50	CRIKQIVNMW	Z321	418	49.57%	381			
env	68	ERYLKDQQLL	US2	582	49.57%	382.			
env	59	YHRLRDLLLI	LAI	773	48.00%	383			
gag	95	GHQAAMQMLK	U455	189	80.51%	384			
gag	28	LHPVHAGPIA	BZ167	216	60.35%	385			
gag	26	ERFAVNPGLL	SF2	42	60.35%	386			
gag	38	SRELERFALN	SM145	38	56.02%	387			
pol	34	AHTNDVKQLT	U455	514	80.51%	388			
pol	46	KHQKEPPFLW	U455	374	75.73%	389			
pol	28	EHLKTAVQMA	U455	884	70.38%	390			
pol	36	QHRTKIEELR	SF2	352	64.99%	391			
pol	33	LTEEKIKALV	SF2	181	58.82%	392			
pol	27	VYYDPSKDLI	LAI	484	45.95%	393			
pol	44	WTVNDIQKLV	U455	406	41.59%	394			
pol	43	GGNEQVDKLV	U455	697	41.59%	395			
rev	13	GRSAEPVPLQ	SF2	65	49.57%	396			
tat	6	ERETETDPVH	BAL1	92	49.57%	397			
vif	23	WHLGQGVSIE	IFA86	79	70.38%	398			
vif	9	THPRISSEVH	MN	47	60.35%	399			
vpr	27	WTLELLEELK	IBNG	18	52.41%	400			
vpu	19	LRQRKIDRLI	LAI	33	56.02%	401			

		B40 PE	TABLE 22 PTIDE SEQUEN	ICES		
protein	conser- vation	sequence	ref. strain	ref. start	B40	SEQ ID
env	85	QEVGKAMYAP	SF2	425	60.96%	402
env	69	VELLGRRGWE	LAI	787	48.24%	403
env	64	LELDKWASLW	SF2	660	48.24%	404
env	51	GEFFYCNTSG	U455	378	44.21%	405
env	100	TEVHNVWATH	92UG037.8	60	32.15%	406
env	129	SELYKYKVVK	U455	474	21.60%	407
env	101	KEATTTLFCA	SF2	45	21.60%	408
gag	29	IEVKDTKEAL	BZ126B	92	60.96%	409
gag	58	EEAAEWDRLH	U455	203	48.24%	410
gag	51	GEIYKRWIIL	BZ126B	257	44.21%	411
gag	95	REPRGSDIAG	U455	225	35.87%	412
pol	43	WEFVNTPPLV	U455	568	60.96%	413
pol	44	AETFYVDGAA	U455	591	48.24%	414
pol	27	TELQAIHLAL	SF2	632	48.24%	415
pol	35	LEVNIVTDSQ	SF2	646	32.15%	416
pol	48	YELHPDKWTV	U455	386	27.53%	417
pol	38	NDVKQLTEAV	SF2	518	24.83%	418
pol	36	TEEAELELAE	U455	450	24.83%	419
pol	40	GDAYFSVPLD	U455	266	24.68%	420
rev	11	EELLKTVRLI	MN	10	48.24%	421
tat	31	LEPWKHPGSQ	U455	8	13.49%	422
vif	15	IEWRKKRYST	LAI	87	21.60%	423
vif	8	IEWRKRRYST	HAN	88	21.60%	424
vpr	19	YETYGDTWAG	SF2	47	35.87%	425
vpu	17	VEMGHHAPWD	LAI	68	48.24%	426

	TABLE 23 B^40012 PEPTIDE SEQUENCE							
protein	conser- vation	sequence	ref. strain	ref. start	B*40012	SEQ ID NO:		
rev	11	EELLKTVRLI	MN	10	71.53%	427		

	TABLE 24								
B^4006 (8mers) PEPTIDE SEQUENCES									
protein	conser-	sequence	ref. strain	ref. start	B*4006	SEQ ID			
	vation				(8-mers)	NO:			
env	53	SELYKYKVVE	CAR4054	476	65.30%	428			
env	129	SELYKYKVVK	U455	474	65.30%	429			
env	100	TEVHNVWATH	92UG037.8	60	23.25%	430			
env	· 5 1	GEFFYCNTSG	U455	378	8.34%	431			
env	106	IEAQQHLLQL	SF2	558	8.00%	432			
env	73	REKRAVGIGA	SF1703	513	5.40%	433			
env	96	VEQMHEDIIS	UG275A	100	5.16%	434			
gag	28	RELERFAVNP	SF2	39	66.12%	435			
gag	93	KEPFRDYVDR	U455	286	61.06%	436			
gag	27	AEQASQEVKN	IC144	303	56.69%	437			
gag	25	AEQATQEVKN	BZ126B	304	56.69%	438			
pol	28	GEAMHGQVDC	U455	761	66.12%	439			
pol	41	REILKEPVHG	IBNG	462	66.12%	440			
pol	32	NEQVDKLVSA	SF2	700	56.69%	441			
pol	28	AEHLKTAVQM	U455	883	56.69%	442			
pol	33	EEKIKALVEI	SF2	183	56.69%	443			
pol	35	PEKDSWTVND	U455	401	48.66%	444			
pol	29	IEAEVIPAET	U455	798	30.65%	445			
pol	36	RETKLGKAGY	U455	602	23.95%	446			
rev	9	DEELLKTVRL	MN	9	56.69%	447			
tat	18	MEPVDPRLEP	TH475A	1	5.16%	448			
vif	11	SESAIRNAIL	JRCSF	116	16.97%	449			
vif	32	MENRWQVMIV	U455	1	5.16%	450			
vpr	13	EELKSEAVRH	NL43	24	65.30%	451			
vpu	13	QEELSALVEM	SF2	61	56.69%	452			

TABLE 25 B^4006 (9mers) PEPTIDE SEQUENCES								
protein	conser-	sequence	ref. strain	ref. start	B*4006	SEQ ID		
•	vation	•			(9-mers)	NO:		
env	53	SELYKYKVVE	CAR4054	476	55.16%	453		
env	129	SELYKYKVVK	U455	474	55.16%	454		
env	85	QEVGKAMYAP	SF2	425	27.31%	455		
env	64	LELDKWASLW	SF2	660	5.69%	456		
env	117	FEPIPIHYCA	A MLY10A	91	1.03%	457		
env	101	KEATTTLFCA	SF2	45	1.03%	458		
env	100	TEVHNVWATH	92UG037.8	60	1.03%	459		
gag	48	AEWDRLHPVH	U455	206	55.16%	460		
gag	79	EEKAFSPEVI	BZ126B	158	27.31%	461		
gag	76	TETLLVQNAN	ZAM18	261	27.31%	462		
gag	43	KETINEEAAE	TN243	202	27.31%	463		
pol	27	TELQAIHLAL	SF2	632	55.16%	464		
pol	44	AETFYVDGAA	U455	591	27.31%	465		
pol	33	TEEKIKALVE	SF2	182	27.31%	466		
pol	39	KEKVYLAWVP	SF2	683	27.31%	467		
pol	43	WEFVNTPPLV	U455	568	12.60%	468`		
pol	. 36	TEEAELELAE	U455	450	9.06%	469		
pol	38	TEMEKEGKIS	IBNG	194	5.69%	470		
pol	44	LELAENREIL	U455	455	5.69%	471		
rev	11	EELLKTVRLI	MN	10	5.69%	472		
vif	22	RDWHLGQGVS	IFA86	77	2.42%	473		
vif	32	MENRWQVMIV	U455	1	1.03%	474		
vpr	19	YETYGDTWAG	SF2	47	27.31%	475		
vpu	18	EELSALVEMG	SF2	62	5.69%	476		

TABLE 26 B^4403 PEPTIDE SEQUENCES								
protein	conser- vation	sequence	ref. strain	ref. start	B*4403	SEQ ID NO:		
env	64	LELDKWASLW	SF2	660	22.60%	477		
env	67	LEITTHSFNC	SF1703	373	15.03%	478		
env	229	DNWRSELYKY	CA20	196	11.08%	479		
env	101	KEATTTLFCA	SF2	45	10.03%	480		
env	68	GDLEITTHSF	SF1703	371	8.52%	481		
env	106	IEAQQHLLQL	SF2	558	6.99%	482		
env	82	QARVLAVERY	U455	570	5.31%	483		
gag	51	GEIYKRWIIL	BZ126B	257	15.03%	484		
gag	94	LGLNKIVRMY	U455	264	13.83%	485		
gag	26	EEQNKSKKKA	SF2	106	7.87%	486		
gag	49	QEVKNWMTET	BNG	308	6.99%	487		
pol	46	KEPPFLWMGY	U455	377	48.34%	488		
pol	39	NETPGIRYQY	IBNG	292	48.34%	489		
pol	29	AETGQETAYF	U455	805	43.01%	490		
pol	43	RELNKRTQDF	U455	232	43.01%	491		
pol	36	RETKLGKAGY	U455	602	35.46%	492		
pol	35	LEIGQHRTKI	SF2	348	26.06%	493		
pol	28	EPIVGAETFY	SF2	587	12.02%	494		
pol	38	TEMEKEGKIS	IBNG	194	10.03%	495		
rev	11	EELLKTVRLI	MN	10	17.14%	496		
tat	10	QPKTACTNCY	HXB2R	17	4.01%	497		
vif	9	GDARLVITTY	LAI	60	19.96%	498		
vif	7	GDAKLVITTY	SF2	60	19.96%	499		
vpr	20	EDQGPQREPY	U455	6	12.02%	500		
vpu	15	IAIVVWTIVF	CDC42	18	6.61%	501		

			TABLE 27				
B^5101 PEPTIDE SEQUENCES							
protein	conser- vation	sequence	ref. strain	ref. start	B*5101	SEQ ID NO:	
env	85	LPCRIKQIIN	SF1703	421	90.57%	502	
env	100	CPKVSFEPIP	U455	203	86.77%	503	
env	53	VAEGTDRVIE	SF2B13	819	78.20%	504	
env	84	APTKAKRRVV	Z321	497	74.67%	505	
env	58	APTRAKRRVV	U455	490	72.16%	506	
env	72	GPCKNVSTVQ	SF1703	243	69.54%	507	
env	56	GPCTNVSTVQ	KENYA	235	66.81%	508	
gag	54	NPPIPVGEIY	BZ126B	251	83.21%	509	
gag	26	NPPIPVGDIY	.U455	249	83.21%	510	
gag	63	NANPDCKTIL	VI415	325	69.27%	511	
gag	96	SPRTLNAWVK	UG268	143	66.81%	512	
pol	27	FPISPIETVP	U455	154	78.42%	513	
pol	35	LPEKDSWTVN	U455	400	76.12%	514	
pol	29	WASQIYAGIK	U455	420	66.53%	515	
pol	27	TAVQMAVFIH	U455	888	63.70%	516	
pol	43	QGWKGSPAIF	IBNG	306	63.12%	517	
pol	28	SGYIEAEVIP	U455	795	63.12%	518	
pol	32	QPDKSESELV	SF2	664	49.02%	519	
pol	43	GPKVKQWPLT	U455	172	49.02%	520	
rev	23	LPPLERLTLD	SF2	7 5	53.90%	521	
tat	14	GPKESKKKVE	SF170	83	74.67%	522	
vif	14	DPDLADQLIH	IBNG	99	94.14%	523	
vif	10	DPGLADQLIH	SF2	99	94.14%	524	
vpr	20	EAVRHFPRIW	LAI	29	81.01%	525	
vpu	6	QPLVILAIVA	TZ023	2	72.16%	526	
		<u> </u>					

TABLE 28							
B^5102 (9mers) PEPTIDE SEQUENCES							
protein	conser-	sequence	ref. strain	ref. start	B*5102	SEQ ID	
•	vation	•			(9-mers)	NO:	
env	84	APTKAKRRVV	Z321	497	17.61%	527	
env	58	APTRAKRRVV	U455	490	17.61%	528	
env	85	LPCRIKQIIN	SF1703	421	17.61%	529	
env	128	KPVVSTQLLL	U455	250	11.65%	530	
env	94	RPVVSTQLLL	Z321	253	11.65%	531	
env	72	GPCKNVSTVQ	SF1703	243	7.17%	532	
env	56	GPCTNVSTVQ	KENYA	235	7.17%	533	
gag	54	NPPIPVGEIY	BZ126B	251	13.33%	534	
gag	26	NPPIPVGDIY	U455	249	13.33%	535	
gag	63	NANPDCKTIL	VI415	325	5.91%	536	
gag	28	NANPDCKSIL	U455	321	4.92%	537	
pol	27	FPISPIETVP	U455	154	56.10%	538	
pol	27	TAVQMAVFIH	U455	888	25.48%	539	
pol	43	QGWKGSPAIF	IBNG	306	17.61%	540	
pol	28	SGYIEAEVIP	U455	795	15.37%	541	
pol	45	KPGMDGPKVK	IBNG	168	13.33%	542	
pol	26	GGIGGFIKVR	U455	103	8.21%	543	
pol	29	WASQIYAGIK	U455	420	4.92%	544	
pol	45	KGIGGNEQVD	U455	694	3.33%	545	
rev	23	LPPLERLTLD	SF2	75	1.44%	546	
tat	14	GPKESKKKVE	SF170	83	6.01%	547	
vif	9	IPLGDARLVI	LAI	57	28.77%	548	
vif	8	IPLGDAKLVI	SF2	57	28.77%	549	
vpr	20	EAVRHFPRIW	LAI	29	48.56%	550	
vpu	6	QPLVILAIVA	TZ023	2	22.94%	551	

TABLE 29 B^5801 (10mers) PEPTIDE SEQUENCES							
protein	conser-	sequence	ref. strain	ref. start	B*5801	SEQ ID	
	vation				(10-mers)	NO:	
env	189	VTVYYGVPVW	U455	34	72.75%	552	
env	109	ITQACPKVSF	U455	199	68.83%	553	
env	129	HSFNCGGEFF	U455	372	65.14%	554	
env	86	HSFNCRGEFF	D687	259	65.14%	555	
env	93	VSFEPIPIHY	U455	206	53.52%	556	
env	102	ITLPCRIKQI	92UG037.8	406	48.46%	557	
env	51	CSGKLICTTA	SF2	597	47.67%	558	
gag	53	TSTLQEQIGW	K31	184	71.24%	559	
gag	42	ETINEEAAEW	TN243	203	60.34%	560	
gag	40	DTINEEAAEW	U455	199	60.34%	561	
gag	36	PSHKGRPGNF	BZ126B	437	50.55%	562	
pol	26	VSAGIRKVLF	SF2	707	68.83%	563	
pol	41	WTYQIYQEPF	U455	491	68.83%	564	
pol	45	STKWRKLVDF	U455	222	66.78%	565	
pol	35	SSMTKILEPF	U455	316	66.78%	566	
pol	47	QATWIPEWEF	U455	561	62.44%	567	
pol	45	NTPPLVKLWY	U455	572	58.51%	568	
pol	48	MGYELHPDKW	U455	384	54.50%	569	
pol	40	ISKIGPENPY	U455	201	51.73%	570	
rev	35	QARRNRRRRW	SF2	36	65.96%	571	
tat	9	FTKKGLGISY	OYI	38	53.52%	572	
vif	9	DARLVITTYW	LAI	61	57.54%	573	
vif	7	DAKLVITTYW	SF2	61	57.54%	574	
vpr	20	EAVRHFPRIW	LAI	29	53.52%	575	
vpu	10	VAAIIAIVVW	SC	14	70.30%	576	

25

19

vpr

vpu

QAPEDQGPQR

ILRQRKIDRL

TABLE 30 Cw^0102 PEPTIDE SEQUENCES protein conserref. strain ref. start Cw*0102 SEQ ID sequence vation NO: 54 **NAKTIIVQLN** SF1703 286 42.05% 577 env 92UG037.8 407 42.05% 578 66 TLPCRIKQII env 117 **CAPAGFAILK** U455 216 19.96% 579 env U455 580 91 **QLQARVLAVE** 568 19.96% env 152 **LTVWGIKQLQ** U455 561 12.22% 581 env 106 **EAQQHLLQLT** US1 562 12.22% 582 env 142 **QLLSGIVQQQ U455** 536 12.22% 583 env 435 42.05% 36 **IWPSHKGRPG** BZ126B 584 gag 66 400 12.22% 585 RAPRKKGCWK U455 gag 50 **TLQEQIGWMT** K31 186 12.22% 586 gag 12.22% 45 FLQSRPEPTA SF₂ 450 587 gag 29 SF2 588 **KALTEVIPLT** 442 42.05% pol SF2 503 12.22% 589 28 **NLKTGKYARM** pol 12.22% 32 U455 598 590 **GAANRETKLG** pol pol 47 WVPAHKGIGG U455 689 12.22% 591 SF2 12.22% 592 32 LEPFRKQNPD 323 pol 39 **IBNG** 466 6.87% 593 **KEPVHGVYYD** pol 594 44 **ELAENREILK** U455 456 6.87% pol 697 595 43 **GGNEQVDKLV** U455 6.87% pol 9 LAI 102 6.87% 596 rev ILVESPTVLE 6 SF2 597 **DSQTHQASLS** 61 12.22% tat 598 vif 11 **PLPSVKKLTE** U455 162 42.05% vif 25 HTGERDWHLG **IBNG** 73 6.87% 599

U455

CM240X

3

33

6.87%

6.87%

600

601

TABLE 31 Cw^0702 PEPTIDE SEQUENCES protein consersequence ref. strain ref. start Cw*0702 SEQ ID vation NO: 50 KYWWNLLQYW 799 env LAI 71.91% 602 83 env LRSLCLFSYH SF1703 765 68.10% 603 81 ARVLAVERYL U455 571 59.94% env 604 58 SYHRLRDLLL DA MAL 770 env 5.24% 605 146 **FNCGGEFFYC** P104 105 4.95% 606 env 93 **IRPVVSTQLL** Z321 252 env 3.38% 607 58 **IRQGLERALL U455** env 847 3.18% 608 32 LRPGGKKKYR **BNG** 21 99.90% 609 gag **K7** 31 LYNTVATLYC 78 94.28% gag 610 74 **FSPEVIPMFS** U455 160 16.37% 611 gag 71 **IRQGPKEPFR** U455 281 9.78% gag 612 44 pol TPPLVKLWYQ **U455** 573 74.16% 613 pol 26 **KRKGGIGGYS** U455 900 70.51% 614 46 pol IYQYMDDLYV U455 334 46.95% 615 46 pol **EPPFLWMGYE U455** 378 37.86% 616 46 pol **TVLDVGDAYF** U455 261 27.09% 617 42 pol QYALGIIQAQ U455 654 25.31% 618 40 **LKEPVHGVYY** pol **IBNG** 465 19.97% 619 34 pol KQGQGQWTYQ SF2 486 17.05% 620 22 rev LOLPPLERLT SF2 73 2.99% 621 7 tat LNKGLGISYG **UG275A** 39 24.44% 622 6 vif **QYLALAALIK** NL43 146 17.40% 623 vif 6 **QYLALAALIT** SF2 146 17.40% 624 10 vpr LHGLGQHIYE **IBNG** 39 21.14% 625 11 vpu **VWTIVFIEYR** CDC42 22 1.78% 626

5

10

The details of one or more embodiments of the invention are set forth in the accompanying description above. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials have been described. Other features, objects, and advantages of the invention will be apparent from the description and from the claims. In the specification and the appended claims, the singular forms include plural referents unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. All patents and publications cited in this specification are incorporated by reference.

The foregoing description has been presented only for the purposes of illustration and is not intended to limit the invention to the precise form disclosed, but only to the claims appended hereto.