Formulas Statistics 2 - Pivotal Variables for Confidence Intervals and Test Statistics for Hypothesis Testing

	Parameter to estimate	Population(s) type	Sample size	Is σ² known?	Test statistic	Pivotal variable	Sampling distribution
1	μ	normal	any	yes	$\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}$	$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	\cap $n(0,1)$
2	μ	any	n > 30	yes	$\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$	$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	<i>∩ n</i> (0,1)
3	μ	normal	any	no	$\frac{\bar{X} - \mu_0}{S'/\sqrt{n}}$	$\frac{\bar{X} - \mu}{S'/\sqrt{n}}$	$\cap t_{(n-1)}$
4	μ	any	n > 30	no	$\frac{\bar{X} - \mu_0}{S'/\sqrt{n}}$	$\frac{\bar{X} - \mu}{S'/\sqrt{n}}$	<i>∩ n</i> (0,1)
5	μ1 – μ2	normal	any	$(\sigma_1^2 \; ; \; \sigma_2^2)$ yes	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$\cap n(0,1)$
6	μ ₁ — μ ₂ (SPSS)	normal	any	$(\sigma_1^2 ; \sigma_2^2)$ No, but $\sigma_1^2 = \sigma_2^2$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{(n_1 - 1)S'_1^2 + (n_2 - 1)S'_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)S'_1^2 + (n_2 - 1)S'_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$\cap \left(t_{n_1+n_2-2}\right)$
7	$\mu_1 - \mu_2$	any	$n_1 > 30$ and $n_2 > 30$		$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{(n_1 - 1)S'_1^2 + (n_2 - 1)S'_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)S'_1^2 + (n_2 - 1)S'_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	∩ n(0,1)

	Parameter to estimate	Population(s) type	Sample size	ls σ² known?	Test statistic	Pivotal variable	Sampling distribution
8	μ ₁ — μ ₂ (SPSS)	normal	any	$(\sigma_1^2~;~\sigma_2^2)$ No, but $\sigma_1^2 eq \sigma_2^2$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{S'_1^2}{n_1} + \frac{S'_2^2}{n_2}}}$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1'^2}{n_1} + \frac{S_2'^2}{n_2}}}$	$v = \frac{\int_{(v)}^{v} t_{(v)}}{\left(\frac{S_{1}^{2'}}{n_{1}} + \frac{S_{2}^{2'}}{n_{2}}\right)^{2}} = \frac{\left(\frac{S_{1}^{2'}}{n_{1}} + \frac{S_{2}^{2'}}{n_{2}}\right)^{2}}{\left(n_{1} - 1\right)}$
9	$\mu_1 - \mu_2$	any	n ₁ > 30 and n ₂ > 30	$(\sigma_1^2 ; \sigma_2^2)$ No, but $\sigma_1^2 \neq \sigma_2^2$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{S_1'^2}{n_1} + \frac{S_2'^2}{n_2}}}$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1'^2}{n_1} + \frac{S_2'^2}{n_2}}}$	$\dot{\cap}n(0,\!1)$
10	σ^2	normal	any	-	$\frac{(n-1)S'^2}{\sigma_0^2}$	$\frac{(n-1)S'^2}{\sigma^2}$	$\cap \chi^2_{(n-1)}$
11	$\mu_{ ext{d}}$ (paired samples)	normal	any	no	$\frac{\overline{D} - \mu_{d0}}{S'_d / \sqrt{n}}$	$\frac{\overline{D} - \mu_d}{S_d' / \sqrt{n}}$	$\cap t_{(n-1)}$
12	P (Wald)	Bernoulli	n > 30	-	$\frac{\bar{X}_b - p_0}{\sqrt{\frac{\bar{X}_b(1-\bar{X}_b)}{n}}}$ Continuity corrected : $\frac{ n\bar{X}_b-np_0 -0.5}{\sqrt{n\bar{X}_b(1-\bar{X}_b)}}$	$\frac{\bar{X}_b - p}{\sqrt{\frac{\bar{X}_b(1 - \bar{X}_b)}{n}}}$	$\dot{\cap}n(0,1)$
13	P (Scores)	Bernoulli	n > 30	-	$\frac{\bar{X}_b-p_0}{\sqrt{\frac{p_0q_0}{n}}}$ Continuity corrected: $\frac{ n\bar{X}_b-np_0 -0.5}{\sqrt{np_0\times q_0}}$	$\frac{\overline{X}_b - p}{\sqrt{\frac{pq}{n}}}$	∩ <i>n</i> (0,1)

	Parameter to estimate	Population(s) type	Sample size	ls σ² known?	Test statistic	Pivotal variable	Sampling distribution
14	$p_1 - p_2$ (Wald H ₀) (SPSS H ₀ : $p_1 = p_2$)	Bernoulli	$n_1 > 30$ and $n_2 > 30$	-	$\frac{(\bar{X}_1 - \bar{X}_2) - (p_1 - p_2)_0}{\sqrt{\frac{[p_1(1 - p_1)]_0}{n_1} + \frac{[p_2(1 - p_2)]_0}{n_2}}}$	$\frac{(\bar{X}_1 - \bar{X}_2) - (p_1 - p_2)}{\sqrt{\frac{\bar{X}_1(1 - \bar{X}_1)}{n_1} + \frac{\bar{X}_2(1 - \bar{X}_2)}{n_2}}}$	$\dot{\cap}\ n(0,1)$
15	p ₁ — p ₂ (Wald)	Bernoulli	$\begin{cases} \bar{X}_1 \times n_1 > 10 \\ (1 - \bar{X}_1) \times n_1 > 10 \\ \bar{X}_2 \times n_2 > 10 \\ (1 - \bar{X}_2) \times n_2 > 10 \end{cases}$	-	$\frac{(\bar{X}_1 - \bar{X}_2)}{\sqrt{\bar{X}(1 - \bar{X})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \dot{\cap} n(0,1)$	$\frac{(\bar{X}_1 - \bar{X}_2) - (p_1 - p_2)}{\sqrt{\bar{X}(1 - \bar{X})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	<i>∩ n</i> (0,1)
16	σ_1^2/σ_2^2	normal	any	-	$\frac{S_1^{\prime 2}}{S_2^{\prime 2}} \times \left(\frac{\sigma_2^2}{\sigma_1^2}\right)_0$	$\frac{S_1^{\prime 2}}{S_2^{\prime 2}} \times \frac{\sigma_2^2}{\sigma_1^2}$	$\cap F_{(n_1-1.n_2-1)}$
17	$ \mu_1 = \mu_2 = \dots = \mu_k $ Oneway ANOVA	normal	any	$(\sigma_1^2; \sigma_2^2;; \sigma_k^2)$ No, but $\sigma_1^2 = \sigma_2^2 = \cdots$ $= \sigma_k^2$	$\frac{SSB/(K-1)}{SSW/(n-k)}$	-	$\cap F_{(k-1.n-k)}$
18	$\sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2$ (Levene)	normal	any	-	$\frac{SSB/(K-1)}{SSW/(n-k)}$ for the transformed variable $\left X_i-\overline{X}\right $	-	$\cap F_{(k-1.n-k)}$
19	Independence of 2 qualitative variables Chi-square test	any	any	-	$\sum_{i=1}^{c_1} \sum_{j=1}^{c_2} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$	-	$\bigcap X^2_{(c_1-1)\times(c_2-1)}$
20	Goodness of fit Chi-square test	any	any	-	$\sum_{i=1}^{c} \frac{(O_i - E_i)^2}{E_i}$	-	$\bigcap X^2_{(c-k-1)}$
21	Normality of one population K-S test	any	n > 50	-	$d_n = \max_{i=1,2,,n} \{ F(x_i) - S(x_{i-1}); F(x_i) - S(x_i) \}$	-	
22	Normality of one population Shapiro-Wilk test	any	n ≤ 50	-	$W = \left(\sum_{i=1}^{n} a_i X_i\right)^2 / \sum_{i=1}^{n} \left(X_i - \overline{X}\right)^2$	-	<i>∩ n</i> (0,1)