# Learning Social Visual-Language-Action Models

February 18th, 2025



- Extend MADRL agent with language
- Train RL and language concurrently
- Relatively small architecture (~240k params)

- → Able to learn language and task
- → Learning language helps task training



#### Issues

- Multiple separate streams of information
- Arbitrary arrangement

⇒ Can we use a Transformer as a central module?



#### ⇒ How can we extend VLAs to work in social contexts?

(i.e., with language communication)





[Ma et al., 2024]



Figure 4: Three common architectures of Transformer-based control policies are characterized by their vision-language fusion methods. FiLM layers (Hadamard product  $\odot$ ) are employed to fuse language and vision in RT-1 models. Some action decoders utilize cross-attention to condition on the instruction. Concatenation  $(\oplus)$  is the prevailing method of vision-language fusion for action decoders.



Figure 5: Different approaches to connect LLM to multi-modal modules in high-level task planner.



Figure 3: Running Gato as a control policy. Gato consumes a sequence of interleaved tokenized observations, separator tokens, and previously sampled actions to produce the next action in standard autoregressive manner. The new action is applied to the environment – a game console in this illustration, a new set of observations is obtained, and the process repeats.

[Reed et al., 2022]



Figure 1 | RT-2 overview: we represent robot actions as another language, which can be cast into text tokens and trained together with Internet-scale vision-language datasets. During inference, the text tokens are de-tokenized into robot actions, enabling closed loop control. This allows us to leverage the backbone and pretraining of vision-language models in learning robotic policies, transferring some of their generalization, semantic understanding, and reasoning to robotic control. We demonstrate examples of RT-2 execution on the project website: robotics-transformer2.github.io.

[Zitkovich et al., 2023]



Fig. 3. Overall pipeline of the proposed approach. Given the visual frames, already executed past trajectory (context map) and the textual command, the network predicts a segmentation map corresponding to the navigable region and a plausible future trajectory.

[Jain et al., 2023]

## LLM societies



Figure 1: Generative agents are believable simulacra of human behavior for interactive applications. In this work, we demonstrate generative agents by populating a sandbox environment, reminiscent of The Sims, with twenty-five agents. Users can observe and intervene as agents plan their days, share news, form relationships, and coordinate group activities.

[Park et al., 2023]

- Multi-agent
- Heavily language-based
- Complex language/tasks
- No embodiment

# Transformer-based RL agents



Figure 1. Transformer variants, showing just a single layer block (there are L layers total). Left: Canonical Transformer(-XL) block with multi-head attention and position-wise MLP submodules and the standard layer normalization (Ba et al., 2016) placement with respect to the residual connection (He et al., 2016a). Center: TrXL-I moves the layer normalization to the input stream of the submodules. Coupled with the residual connections, there is a gradient path that flows from output to input without any transformations. Right: The GTrXL block, which additionally adds a gating layer in place of the residual connection of the TrXL-I.

[Parisotto et al., 2021]



**Figure 1 (Architecture)** The Trajectory Transformer trains on sequences of (autoregressively discretized) states, actions, and rewards. Planning with the Trajectory Transformer mirrors the sampling procedure used to generate sequences from a language model.

#### [Janner et al., 2021]



Figure 1: Decision Transformer architecture States, actions, and returns are fed into modality-specific linear embeddings and a positional episodic timestep encoding is added. Tokens are fed into a GPT architecture which predicts actions autoregressively using a causal self-attention mask.

# Transformer-based RL agents



Figure 2: The encoder-decoder architecture of MAT. At each time step, the encoder takes in a sequence of agents' observations and encodes them into a sequence of latent representations, which is then passed into the decoder. The decoder generate each agent's optimal action in a sequential and auto-regressive manner. The masked attention blocks ensures agents can only access its preceding agents' actions during training. We list the full pseudocode of MAT in Appendix A and a video that shows the dynamic data flow of MAT in https://sites.google.com/view/multi-agent-transformer.

[Wen et al., 2022]

|                         | Multi-agent | Embodiment | Model type                  | Training    |
|-------------------------|-------------|------------|-----------------------------|-------------|
| VLAs                    | No          | Yes        | Transformer/LLM Pre-trained |             |
| LLM-societies           | Yes         | No         | LLM                         | Pre-trained |
| Transformer-based<br>RL | No          | Yes        | Transformer                 | End-to-end  |

## How to bridge the gap between these approaches?

→ Look at interesting edge cases

## Inputs

How multi-modal information is fed into the network?

#### Link to actions

- How (language) actions are interpreted?

## (Pre-)Training

- Do they rely on pre-trained models? Of what size?
- Is physical behaviour learnt or primitive-based?
- Is there online RL? For what purpose (high/low-level actions)?

# Taxonomy

|                   | Approach       | Model                | Actions                            | Inputs                                   | Policy learning | Multi-agent paradigm | Specificity                                                                                                    |
|-------------------|----------------|----------------------|------------------------------------|------------------------------------------|-----------------|----------------------|----------------------------------------------------------------------------------------------------------------|
| Jain2023_CARLANAV | VLA            | Transformer          | Low-level                          | Visual, language                         | Supervised      |                      | Learning a Transformer for grounding pre-trained visual and language encoders to trajectories                  |
| riess2023_PaLM-E  | VLA            | LLM (PaLM)           | Language, translated to primitives | Visual, 3D, language, embedded as tokens | Pre-trained     |                      | Learning input encoders                                                                                        |
| rohan2023_RT2     | VLA            | LLM (PaLM-E, PaLI-X) | Low-level, represented as tokens   | Visual, language, embedded as tokens     | Pre-trained     |                      | Tokenizing low-level actions and learning to generate sequences                                                |
| ark2023_LLMTown   | LLM-society    | LLM (ChatGPT)        | Language, translated to primitives | Language                                 | Pre-trained     | Distributed          |                                                                                                                |
| /en2022_MAT       | Transformer-RL | Transformer          | Low-level                          | Visual                                   | PPO             | Centralised          | Central Transformer-Encoder<br>taking observations, Transfomer-<br>Decoder generating actions of all<br>agents |

https://www.notion.so/VLAs-LLM-agents-and-societies-Transformer-RL-agents-19edbdcbd68480e58a59c50180735e19?pvs=4

# Our objective



## Requirements

- End-to-end learning of task+language
- Small architecture (max 500M)

#### Goals

- Same results as in LAMARL
- Does pre-training help?
- Does size help?
- Can we have completely distributed Social VLAs?

## Reviews

#### **VLA**

Ma2024: <a href="https://arxiv.org/pdf/2405.14093">https://arxiv.org/pdf/2405.14093</a>

## **LLM-society**

- Xi2025: https://link.springer.com/article/10.1007/s11432-024-4222-0
- Li2025: https://arxiv.org/pdf/2502.03814
- Guo2024: <a href="https://arxiv.org/pdf/2402.01680">https://arxiv.org/pdf/2402.01680</a>

#### **Transformer-RL**

- ...