学习目标

- 1. 了解假设检验的基本思想
- 2. 掌握假设检验的步骤
- 3. 对实际问题作假设检验
- 4. 利用置信区间进行假设检验
- 5. 利用P 值进行假设检验

假设问题的提出

什么是假设(hypothesis)

- → 对总体参数的的数值所作的一种陈述
 - 总体参数包括总体均值、比例、方差等
 - 分析之前必需陈述

什么是假设检验?

(hypothesis testing)

- 1.事先对总体参数或分布形式作出某种假设,然后 利用样本信息来判断原假设是否成立
- 2.有参数假设检验和非参数假设检验
- 3.采用逻辑上的反证法,依据统计上的小概率原理

提出原假设和备择假设

- 什么是原假设?(null hypothesis)
- 1. 待检验的假设,又称"0假设"
- 2. 研究者想收集证据予以反对的假设
- 3. 总是有等号 =, ≤或≥
- 4. 表示为 H₀
 - $H_0: \mu = 某一数值$
 - 指定为 = 号,即 ≤或 ≥
 - · 例如, H₀: μ = 3190(克)

提出原假设和备择假设

- → 什么是备择假设?(alternative hypothesis)
- 1. 与原假设对立的假设,也称"研究假设"
- 研究者想收集证据予以支持的假设总是有不等号: ≠, < 或 >
- 3. 表示为 H₁
 - H₁: μ <某一数值,或μ>某一数值
 - 例如, $H_1: \mu < 3910(克)$, 或 $\mu > 3910(克)$

假设检验中的两类错误

(决策风险)

假设检验中的两类错误

・1.第一类错误(弃真错误)

- 原假设为真时拒绝原假设
- 会产生一系列后果
- 第一类错误的概率为a
 - 被称为显著性水平

・2.第二类错误(取伪错误)

- 原假设为假时接受原假设
- 第二类错误的概率为β (Beta)

假设检验的流程

- 提出假设
- 确定适当的检验统计量
- 规定显著性水平α
- 计算检验统计量的值
- 作出统计决策

确定适当的检验统计量

→ 什么是检验统计量?

- 1. 用于假设检验决策的统计量
- 2. 选择统计量的方法与参数估计相同,需考虑
 - 是大样本还是小样本
 - 总体方差已知还是未知
- 3. 检验统计量的基本形式为

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

规定显著性水平α

(significant level)

→ 什么是显著性水平?

- 1. 是一个概率值
- 2. 原假设为真时,拒绝原假设的概率
 - 被称为抽样分布的拒绝域
- 3. 表示为 α (alpha)
 - 常用的 α 值有0.01, 0.05, 0.10
- 4. 由研究者事先确定

作出统计决策

- 1. 计算检验的统计量
- 2. 根据给定的显著性水平 α ,查表得出相应的临界值 z_{α} 或 $z_{\alpha/2}$, t_{α} 或 $t_{\alpha/2}$
- 3. 将检验统计量的值与 α 水平的临界值进行比较
- 4. 得出拒绝或不拒绝原假设的结论

举个栗子

例:某食品厂要求生产食品的装袋重量为100克。作为质检部门,现需要检验新生产出的一批食品装袋重量是否合格。于是抽取其中50袋作为样本,计算得到样本均值为80克,样本均值的标准差为5克。问若取95%置信水平,这批食品装袋重量是否合格?

利用P值进行决策

什么是P值?

(P-value)

- 1. 是一个概率值
- 2. 如果原假设为真 , *P*-值是抽样分布中大于或小 于样本统计量的概率
 - 左侧检验时,*P*-值为曲线上方**小于等于**检验统计量 部分的面积
 - 右侧检验时,*P*-值为曲线上方*大于等于*检验统计量 部分的面积
- 3. 被称为观察到的(或实测的)显著性水平
 - H₀ 能被拒绝的最小值

双侧检验的P值

左侧检验的P值

右侧检验的P值

利用 P值进行检验

(决策准则)

1. 单侧检验

- 若p-值 > α, 不拒绝 H₀
- 若p-值 $< \alpha$, 拒绝 H_0

2. 双侧检验

- 若p-值 > α/2, 不拒绝 H₀
- 若p-值 < $\alpha/2$, 拒绝 H₀

一个总体参数的检验

总体均值检验

总体均值的检验

(检验统计量)

σ² 未知小样本均值的检验

(例题分析)

·【例】某机器制造出的肥皂厚度为5cm,今欲了所以多数,今然是否良好,随时,以是不是不是一个,随时,是一个,这是一个,这是一个。3cm,标准是为0.3cm,标准是的显著性水平检验机器性能良好的假设。

σ² 未知小样本均值的检验

(例题分析)

•Ho: $\mu = 5$

•H1: μ ≠ 5

$$\cdot \alpha = 0.05$$

 $\cdot df = 10 - 1 = 9$

·临界值(s):

检验统计量:

$$t = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} = \frac{5.3 - 5}{0.3/\sqrt{10}} = 3.16$$

决策:

在 $\alpha = 0.05$ 的水平上拒绝 H_0

结论:

说明该机器的性能不好

两个正态总体参数的检验

匹配样本的 t 检验

<u>(例题分析)</u>

•【例】一个以减肥为主要目标的健美俱乐部声称,参加其训练班至少可以使减肥者平均体重减重 8.5kg以上。为了验证该宣称是否可信,调查人员 随机抽取了10名参加者,得到他们的体重记录如下 表:

训练前	94.5	101	110	103.5	97	88.5	96.5	101	104	116.5
训练后	85	89.5	101.5	96	86	80.5	87	93.5	93	102

在 $\alpha = 0.05$ 的显著性水平下,调查结果是否支持该俱乐部的声称? $\alpha = 0.05$

配对样本的 t 检验

(例题分析)

样本差值计算表								
训练前	训练后	差值D _i						
94.5	85	9.5						
101	89.5	11.5						
110	101.5	8.5						
103.5	96	7.5						
97	86	11						
88.5	80.5	8						
96.5	87	9.5						
101	93.5	7.5						
104	93	11						
116.5	102	14.5						
合计	_	98.5						

配对样本的 t 检验

(例题分析)

$$\overline{X}_{D} = \frac{\sum_{i=1}^{n} D_{i}}{n_{D}} = \frac{98.5}{10} = 9.85$$

$$S_D = \sqrt{\frac{\sum_{i=1}^{n} (D_i - \bar{X}_D)^2}{n_D - 1}} = \sqrt{\frac{43.525}{10 - 1}} = 2.199$$

配对样本的 t 检验

(例题分析)

•Ho: $\mu_1 - \mu_2 \ge 8.5$

•H1:
$$\mu_1 - \mu_2 < 8.5$$

$$\cdot \alpha = 0.05$$

$$\cdot df = 10 - 1 = 9$$

·临界值(s):

检验统计量:

$$t = \frac{\overline{X}_D - D_0}{S_D / \sqrt{n_D}} = \frac{9.85 - 8.5}{2.199 / \sqrt{10}} = 1.9413$$

决策:

在 $\alpha = 0.05$ 的水平上不拒绝 H_0

结论:

不能认为该俱乐部的宣称不可信