Statistical Inference Course Project - part 1

Marcelo Tibau 31 de agosto de 2016

Part 1: Simulation Exercise

Overview

In this project I investigate the exponential distribution in R and compare it with the Central Limit Theorem. I also provide the explanations and codes to assure the reproducibility of the investigation.

This report is based at the distribution of averages of 40 exponentials and a thousand simulations.

Simulation

Codes to set the chosen parameters. The parameters for lambda, number of exponentials and simulations were instructed.

```
set.seed(2016)
lambda <- .2
exponumber <- 40
simunumber <- 1000
data_simulation <- matrix(rexp(simunumber*exponumber, rate = lambda), simunumber, exponumber)</pre>
```

Code to plot the exponential distribution:

```
plot(rexp(1000, lambda), pch = 20, cex = .6, main = "The exponential distribution with rate 0.2
and 1.000 observations", col = "#2e8130")
```

The exponential distribution with rate 0.2 and 1.000 observations

Code to plot the averages of 40 exponentials in a histogram:

```
averages <- rowMeans(data_simulation)
hist(averages, xlab = "Averages", ylab = "Frequence", main = "Histogram from the averages of 40
exponentials", col = "#2e8130")</pre>
```

Histogram from the averages of 40 exponentials

1. Sample Mean versus Theoretical Mean

Codes to calculate the sample mean and the theoretical mean of the distribution and to plot the comparison:

```
sample_mean <- mean(averages)
cat("Sample Mean: ", sample_mean)

## Sample Mean: 4.979186

theo_mean <- 1/lambda
cat("Theoretical Mean: ", theo_mean)

## Theoretical Mean: 5</pre>
```

```
hist(averages, col="#2e8130", main="Sample vs Theoretical Mean", breaks=20)

11 <- abline(v=mean(theo_mean), lwd="4", col="#c728c9")

12 <- abline(v=mean(sample_mean), lwd="2", col="#f3eb17")

legend(6.2, 90, c("Theoratical", "Sample"), lty = c(1, 1), lwd = c(2.5, 2.5), col = c("#c728c9", "#f3eb17"))
```

Sample vs Theoretical Mean

2. Sample Variance versus Theoretical Variance

Codes to calculate the variances (both sample and theoretical):

```
sample_var <- var(averages)
cat("Sample Variance: ", sample_var)

## Sample Variance: 0.6379013

theo_var <- (1/lambda)^2/exponumber
cat("Theoratical Variance: ", theo_var)

## Theoratical Variance: 0.625</pre>
```

As we can see above, the variances are very close.

3. Distribution analysis

Code to create an approximate normal distribution and aligns with the the sample:

```
hist(averages, density = 20, breaks = 20, prob = TRUE, xlab = "40 exponentials averages", ylab
= "Frequence", main = "Distribution Analysis", col = "#f0e8f0")
curve(dnorm(x, mean = sample_mean, sd = sqrt(sample_var)), col = "#e6b818", lwd=2, lty = "dotte
d", add = TRUE, yaxt="n")
curve(dnorm(x, mean = theo_mean, sd = sqrt(theo_var)), col = "#18aae6", lwd=2, lty = "dotted",
add = TRUE, yaxt="n")
```

Distribution Analysis

As seen above, the histogram can be approximated with the normal distribution. To be really sure, I propose to investigate if the exponential distribution is approximately normal. Due to the Central Limit Theorem, the averages of the sample mean should follow a normal distribution.

Code to plot the exponential distribution:

```
hist(averages, prob = TRUE, col = "#f0e8f0", main = "Exponential Distribution", density = 20, b
reaks = 20)
lines(density(averages), lwd = 2, col = "#e6b818")
```

Exponential Distribution

The Distribution plot and the Exponential Distribution plot are similar. Therefore, I can infer that the distribution is approximately normal.