Quantifiers (II)

Contents

• Generalized De Morgan's Laws and Distributive Laws

Order of Quantifiers

Generalized De Morgan's Laws and Distributive Laws

Generalized De Morgan's Laws

Recall De Morgan's laws:

- $\neg (P_1 \land P_2) \equiv \neg P_1 \lor \neg P_2$
- $\bullet \neg (Q_1 \bigvee_{\bullet} Q_2) \equiv \neg Q_1 \bigcirc \neg Q_2$

Theorem 1 (The Generalized De Morgan's Laws)

Let P(x) and Q(x) be statements about x and let A be a subcollection of the universe of discourse. Then:

Generalized De Morgan's Laws (cont')

Read.

Proof of 1.

```
\neg(\forall x\in A)P(x) \text{ is true} \qquad \text{iff} \qquad (\forall x\in A)P(x) \text{ is false} \\ \qquad \qquad \text{iff} \qquad P(x) \text{ is false for at least one value of } x \text{ in } A \\ \qquad \qquad \text{iff} \qquad \neg P(x) \text{ is true for at least one value of } x \text{ in } A \\ \qquad \qquad \text{iff} \qquad (\exists x\in A)P(x) \text{ is true.} \qquad \Box
```

Note: proved by a series of bicandit's sentences.

Examples

For each of the following, write down a sentence that is logically equivalent to the given.

$$\begin{array}{lll}
\mathbf{1} \neg (\forall x \in \mathbb{R})(x^2 - 6x + 12 > 0) & \equiv & (\exists x \in \mathbb{R}) \neg (x^2 - 6x + 12 > 0) \\
& \equiv & (\exists x \in \mathbb{R}) (x^2 - 6x + 12 < 0)
\end{array}$$

$$= (\exists x) \neg (\exists y) R(x, y)$$

$$= (\exists x) \neg (\exists y) R(x, y)$$

$$= (\exists x) (\forall y) \neg R(x, y)$$

$$\exists \neg (\exists x) (\forall y) S(x, y) \text{ (See next page for an example.)}$$

$$\equiv (\forall x) \neg (\forall y) S(x,y)$$

$$\equiv (\forall x) (\exists y) \neg S(x,y)$$

Example: Upper Bound

Let S be a subset of \mathbb{R} . To say that S is bounded above means that there exists $b \in \mathbb{R}$ such that for each $x \in S$, $x \leq b$. That is,

$$S$$
 is bounded above $\Leftrightarrow (\exists b \in \mathbb{R})(\forall x \in S)(x \leq b)$.

Then to say that S is *not* bounded above means that for each $b \in \mathbb{R}$, there exists $x \in S$ such that x > b. That is,

S is not bounded above $\Leftrightarrow (\forall b \in \mathbb{R})(\exists x \in S)(x > b)$.

Generalized Distributive Laws

Recall the distributive laws:

•
$$P \wedge (Q_1 \vee Q_2) \equiv (P \wedge Q_1) \vee (P \wedge Q_2)$$

•
$$P \lor (Q_1 \land Q_2) \equiv (P \lor Q_1) \land (P \lor Q_2)$$

Theorem 2 (The Generalized Distributive Laws)

Let Q(x) be a statement about x, let P be a sentence that is not a statement about x, and let A be a subcollection of the universe of discourse. Then:

Note. P is not a statement about x!

Generalized Distributive Laws (cont')

Proof of 2. Suppose $P \vee (\forall x \in A)Q(x)$ is true. Then P is true or $(\forall x \in A)Q(x)$ is true.

- Case 1. Suppose P is true. Consider any $x_0 \in A$. Then $P \vee Q(x_0)$ is true, because P is true. Since $x_0 \in A$ was chosen arbitrarily, it follows that $(\forall x \in A)[P \vee Q(x)]$ is true.
- Case 2. Suppose $(\forall x \in A)Q(x)$ is true. Consider any $x_0 \in A$. Then $Q(x_0)$ is true, so $P \vee Q(x_0)$ is true. Since $x_0 \in A$ was chosen arbitrarily, $(\forall x \in A)[P \vee Q(x)]$ is true.

Thus in either case, $(\forall x \in A)[P \lor Q(x)]$ is true.

(Continued on the next page.)

Generalized Distributive Laws (cont')

Conversely, suppose $(\forall x \in A)[P \lor Q(x)]$ is true. Now either P is true or P is false.

- Case 1. Suppose P is true. Then $P \vee (\forall x \in A)Q(x)$ is true.
- Case 2. Suppose P is false. Consider any $x_0 \in A$. Then $P \vee Q(x_0)$ is true, because $(\forall x \in A)[P \vee Q(x)]$. But P is false, so $Q(x_0)$ must be true. Since $x_0 \in A$ was chosen arbitrarily, it follows that $(\forall x \in A)Q(x)$ is true. Hence $P \vee (\forall x \in A)Q(x)$ is true.

Thus in either case, $P \lor (\forall x \in A)Q(x)$ is true.

Variations to GDL

Note that

- $P \wedge (Q_1 \wedge Q_2) \equiv (P \wedge Q_1) \wedge (P \wedge Q_2)$
- $P \lor (Q_1 \lor Q_2) \equiv (P \lor Q_1) \lor (P \lor Q_2)$

which can be generalized as follows:

Theorem 3

Let Q(x) be a statement about x, let P be a sentence that is not a statement about x, and let A be a subcollection of the universe of discourse. Then:

Order of Quantifiers

Overview

Let P(x,y) be a sentences that depends of x and y.

In a statement involving two identical quantifiers, such as in

$$(\forall x)(\forall y)P(x,y) \quad \text{or} \quad (\exists x)(\exists y)P(x,y),$$

the order of the quantifiers does not matter.

However, the order of quantifiers matters in a statement with $\underline{\textit{mixed}}$ quantifiers such as

$$(\forall x)(\exists y)P(x,y) \quad \text{or} \quad (\exists x)(\forall y)P(x,y).$$

Order Matters in Mixed Quantifiers

Example. Suppose the universe of discourse is the set of all student in the classroom. Let P(x, y) be the sentence "x and y are friends.". Then

• $(\forall x)(\exists y)P(x,y)$ says that

• $(\exists x)(\forall y)P(x,y)$ says that

Example. Determine the truth value of each of the following.

• $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x+y=0)$ is a ______ statement.

• $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x+y=0)$ is a ______ statement.

Examples: Order Matters in Mixed Quantifiers

Example. Moving quantifiers within a statement can make difference as well.

• $(\forall x \in \mathbb{R})[(\forall y \in \mathbb{R})(y > 0) \Rightarrow x > 0]$ is true.

• $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})[y > 0 \Rightarrow x > 0]$ is false.

Homeworth (1/24; due Wed 2/2)

Section 3: # 6,7,9,10