1. Run the EM algorithm based on data2 provided by hw5em2.mat with m = 2, 3, 4, 5 components. Select the appropriate model (number of components) and give reasons for your choice.

Note that you may have to rerun the algorithm a few times (and select the model with the highest log-likelihood) for each choice of m as EM can sometimes get stuck in a local minimum.

Is the model selection result sensible based on what you would expect visually? Why or why not?

选用 1e-8 作为 eps 的收敛阈值

m=2 时:

[param, hist, II]=em_mix(data2, 2, 1e-8) 对数似然收敛到-4.2309*1e3

参数估计结果如下:

字段	*	mean	9	cov	\blacksquare	р	6	prior_cov	<u> </u>	prior_p	prior_n
1	[4.6627,0.4	186]	[1.8399,-0.2811;-	0.2811,3.0010]		0.3561	[5.3268	3,0;0,5.3268]		0.5000	
2	[0.0576,1.6	325]	[0.9593,0.1952;0.	1952,4.8342]		0.6439	[5.3268	3,0;0,5.3268]		0.5000	

m=3 时:

[param, hist, II]=em_mix(data2, 3, 1e-8) 对数似然收敛到-4.1289*1e3

参数估计结果如下:

字段	0	mean	· ·	cov	р	0	prior_cov	Ш	prior_p		prior_n	
1	[0.1081,4	4.0268]	[0.8357,0	.0800;0.0800,0.9186]	0.2493	[5.326	8,0;0,5.3268]		0.333	3		1
2	[4.6538,0	0.4949]	[1.8588,-	0.4654;-0.4654,3.3825]	0.3571	[5.326	88,0;0,5.3268]		0.333	3		1
3	[0.0194,0	0.0508]	[1.0338,-	0.0098;-0.0098,1.0195]	0.3935	[5.326	8,0;0,5.3268]		0.333	3		1

m=4 时:

[param, hist, II]=em_mix(data2, 4, 1e-8) 对数似然收敛到-4.0885*1e3

参数估计结果如下:

字段	6 mean	⊎ cov		💾 prior_p 냂 prior_n
1	[0.0818,4.0011]	[0.7767,0.0231;0.0231,0.8928]	0.2447 [5.3268,0;0,5.3268]	0.2500 1
2	[0.0037,0.0531]	[1.0092,-0.0134;-0.0134,1.0329]	0.3914[5.3268,0;0,5.3268]	0.2500 1
3	[3.8584,4.1824]	[2.4285,-0.4470;-0.4470,3.7825]	0.0447 [5.3268,0;0,5.3268]	0.2500 1
4	[4.7102,0.0448]	[1.8198,-0.2019;-0.2019,1.5116]	0.3191 [5.3268,0;0,5.3268]	0.2500 1

m=5 时:

[param, hist, II]=em_mix(data2, 4, 1e-8) 对数似然收敛到-4.0912*1e3

参数估计结果如下:

字段	6	mean	÷	cov	Ш	р	9	prior_cov	prior_p		prior_n
1	[0.081	8,4.0011]	[0.7767,0	.0231;0.0231,0.8928]		0.2447	[5.326	8,0;0,5.3268]	0.2500)	1
2	[0.003	7,0.0531]	[1.0092,-	0.0134;-0.0134,1.0329]		0.3914	[5.326	88,0;0,5.3268]	0.2500)	1
3	[3.8584	4,4.1824]	[2.4285,-	0.4470;-0.4470,3.7825]		0.0447	[5.326	88,0;0,5.3268]	0.2500)	1
4	[4.710]	2,0.0448]	[1.8198,-	0.2019;-0.2019,1.5116]		0.3191	[5.326	88,0;0,5.3268]	0.2500)	1

模型的选择

计算这四个模型的 BIC

BIC=In(PointsCount)*ParameterCount-2*In(Likelihood)

m=2, BIC= In(1000)*(2*3) -2*(1e3*-4.2309)= 8503.246531673894

m=3, BIC= In(1000)*(3*3) -2*(1e3*-4.1289)= 8319.96979751084

m=4, BIC= In(1000)*(4*3) -2*(1e3*-4.0885)= 8259.893063347785

m=5, BIC= In(1000)*(5*3) -2*(1e3*-4.0912)= 8286.016329184731

当 m=4 时, BIC 最小,所以我们有理由认为四个高斯分量是最好的选择。 这个结果与视觉上的结果是一致的,四个高斯分量时,右上角的较为稀疏的一坨点能够被较好 地覆盖到。 2. Modify the M-step of the EM code so that the covariance matrices of the Gaussian components are constrained to be equal. Give detailed derivation. Rerun the code and then select a appropriate model. **Would we select a different number of components** in this case?

等方差情形推导见纸质文件。

m=2 时,

对数似然为-4.2583*1e3

参数估计结果如下:

字段	⊙ mean	COV	<u> </u>	p	0	prior_cov	Ш	prior_p	Ш	prior_n
1	[0.1347,1.6082]	[1.2378,0.0203;0.0203,4.1836]	C).6669	[5.326	8,0;0,5.3268]		0.5000		1
2	[4.8263,0.3834]	[1.2378,0.0203;0.0203,4.1836]	C).3331	[5.326	8,0;0,5.3268]		0.5000		1

m=3 时, 对数似然为-4.1725*1e3

参数估计结果如下:

字段	⊕ mean	⊕ cov	<u></u> р	prior_cov	H prior_p	🔠 prior_n
1	[4.8631,0.1468]	[1.4543,0.1006;0.1006,1.4088]	0.3172	[5.3268,0;0,5.3268]	0.3333	1
2	[0.4042,4.0838]	[1.4543,0.1006;0.1006,1.4088]	0.2721	[5.3268,0;0,5.3268]	0.3333	1
3	[0.1075,0.1040]	[1.4543,0.1006;0.1006,1.4088]	0.4106	[5.3268,0;0,5.3268]	0.3333	1

m=4 时, 对数似然为-4.1768*1e3

参数估计结果如下:

字段	8	mean	땅	cov	H	р	9	prior_cov	prior_p		prior_n
1	[0.404	5,4.0840]	[1.4549,0	.1008;0.1008,1.4083]		0.2721	[5.326	8,0;0,5.3268]	0.250	0	
2	[0.109	0,0.1037]	[1.4549,0	.1008;0.1008,1.4083]		0.2263	[5.326	8,0;0,5.3268]	0.250	0	
3	[4.863	3,0.1465]	[1.4549,0	.1008;0.1008,1.4083]		0.3171	[5.326	8,0;0,5.3268]	0.250	0	
4	[0.106	4,0.1045]	[1.4549,0	.1008;0.1008,1.4083]		0.1846	[5.326	8,0;0,5.3268]	0.250	0	

m=5 时, 对数似然为-4.1139*1e3

参数估计结果如下:

字段	⊕ mean	cov	\blacksquare	р	6	prior_cov	prior_p		prior_n	
1	[4.2132,5.0585]	[1.0429,0.0865;0.0865,1.1562]		0.0253	[5.3268	3,0;0,5.3268]	0.2000)		1
2	[0.1403,3.9933]	[1.0429,0.0865;0.0865,1.1562]		0.2562	[5.3268	3,0;0,5.3268]	0.2000)		1
3	[0.0452,0.0621]	[1.0429,0.0865;0.0865,1.1562]		0.3968	[5.3268	3,0;0,5.3268]	0.2000)		1
4	[5.7663,-0.5613]	[1.0429,0.0865;0.0865,1.1562]		0.1112	[5.3268	3,0;0,5.3268]	0.2000)		1
5	[4.2577,0.4177]	[1.0429,0.0865;0.0865,1.1562]		0.2105	[5.3268	3,0;0,5.3268]	0.2000)		1

模型的选择

计算这四个模型的 BIC

BIC=In(PointsCount)*ParameterCount-2*In(Likelihood)

m=2, BIC= In(1000)*(2*3) -2*(-4.2583*1e3)= 8558.046531673894

m=3, BIC= In(1000)*(3*3) -2*(-4.1725*1e3)= 8407.16979751084

m=4, BIC= In(1000)*(4*3) -2*(-4.1768*1e3)= 8436.493063347785

m=5, BIC= In(1000)*(5*3) -2*(-4.1139*1e3)= 8331.416329184733

在等方差假设下, 当 m=5 时, BIC 最小, 根据 BIC 准则应该选取五个高斯分量。