

CH15 in brief

- Wave velocity:
- Wave number:
- Angular frequency:
- Wave function:
- Transverse wave speed:
- Wave power:
- Intensity:
- Intensity inverse square law:

$$v = \lambda f$$

$$k = 2\pi/\lambda$$

$$\omega = 2\pi f = vk$$

$$y(x,t) = A\cos(kx - \omega t)$$

$$v = \sqrt{F/}$$

$$P_{av} = \frac{1}{2} \sqrt{\mu F} \, \omega^2 A^2$$

$$I = \frac{Power}{area} = \frac{\frac{Energy}{time}(Watts)}{(m^2)}$$

$$\frac{I_1}{I_2} = \frac{r_2^2}{r_1^2}$$

Introduction

- Earthquake waves carry enormous power as they travel through the earth.
- Other types of mechanical waves, such as sound waves or the vibration of the strings of a piano, carry far less energy.
- Overlapping waves interfere, which helps us understand musical instruments.

Types of Mechanical Waves (1 of 3)

- A wave on a string is a type of mechanical wave.
- The hand moves the string up and then returns, producing a transverse wave that moves to the right.

Types of Mechanical Waves (2 of 3)

- A pressure wave in a fluid is a type of mechanical wave.
- The piston moves to the right, compressing the gas or liquid, and then returns, producing a longitudinal wave that moves to the right.

Types of Mechanical Waves (3 of 3)

- A surface wave on a liquid is a type of mechanical wave.
- The board moves to the right and then returns, producing a combination of longitudinal and transverse waves.

Mechanical Waves

- Doing the wave" at a sports stadium is an example of a mechanical wave.
- The **disturbance** propagates through the crowd, but there is no transport of matter.
- None of the spectators moves from one seat to another.

Periodic Waves (1 of 2)

- For a periodic wave, each particle of the medium undergoes periodic motion.
- The wavelength λ of a periodic wave is the length of one complete wave pattern.
- The **speed** of any periodic wave of frequency *f* is:

Wave speed
$$v = \lambda f_{v}$$
. Wavelength For a **periodic wave:**

Periodic Transverse Waves

 A mass attached to a spring undergoes simple harmonic motion, producing a sinusoidal wave that travels to the right on the string.

Periodic Waves (2 of 2)

- A series of drops falling into water produces a periodic wave that spreads radially outward.
- The wave crests and troughs are concentric circles.
- The wavelength λ is the radial distance between adjacent crests or adjacent troughs.

Periodic Longitudinal Waves

- Consider a long tube filled with a fluid, with a piston at the left end.
- If we push the piston in, we compress the fluid near the piston, and this region then pushes against the neighboring region of fluid, and so on, and a wave pulse moves along the tube.

Forward motion of the plunger creates a compression (a zone of high density); backward motion creates a rarefaction (a zone of low density).

Wavelength λ is the distance between corresponding points on successive cycles.

Mathematical Description of a Wave

• The wave function for a sinusoidal wave moving in the +x-direction is given by Equation (15.7):

Wave function for a sinusoidal wave
$$y(x, t) = A\cos(kx - \omega t)$$

propagating in $y(x, t) = A\cos(kx - \omega t)$

Have number $y(x, t) = A\cos(kx - \omega t)$

Angular frequency $y(x, t) = A\cos(kx - \omega t)$

- In this function, y is the displacement of a particle at time t and position x.
- The quantity A is the amplitude of the wave.
- The quantity k is called the wave number, and is defined as:

$$k=\frac{2\pi}{\lambda}.$$

• The quantity ω is called the **angular** frequency, and is defined as:

$$\omega=2\pi f=\frac{2\pi}{T},$$

Graphing the Wave Function (1 of 2)

If we use Eq. (15.7) to plot y as a function of x for time t = 0, the curve shows the *shape* of the string at t = 0.

Graphing the Wave Function (2 of 2)

If we use Eq. (15.7) to plot y as a function of t for position x = 0, the curve shows the displacement y of the particle at x = 0 as a function of time.

Particle Velocity and Acceleration in a Sinusoidal Wave (1 of 2)

Particle Velocity and Acceleration in a Sinusoidal Wave (2 of 2)

The same wave at t = 0 and t = 0.05T

The Speed of a Wave on a String (1 of 2)

- One of the key properties of any wave is the wave speed.
- Consider a string in which the tension is F and the linear mass density (mass per unit length) is μ .
- We expect the speed of transverse waves on the string ν should increase when the tension F increases, but it should decrease when the mass per unit length μ increases.
- It is shown in your text that the wave speed is:

Speed of a transverse wave
$$\cdots$$
 $v = \sqrt{\frac{F}{\mu}}$ Tension in string on a string on a string

The Speed of a Wave on a String (2 of 2)

- These transmission cables have a relatively large amount of mass per unit length, and a low tension.
- If the cables are disturbed—say, by a bird landing on them—transverse waves will travel along them at a slow speed.

Power in a Wave (1 of 2)

- Shown is the instantaneous power in a sinusoidal wave.
- The power is never negative, which means that energy never flows opposite to the direction of wave propagation.

Power in a Wave (2 of 2)

- A wave transfers power along a string because it transfers energy.
- The average power is proportional to the square of the amplitude and to the square of the frequency.
- This result is true for all waves.
- For a transverse wave on a string, the average power is:

Average power, sinusoidal wave
$$P_{av} = \frac{1}{2} \sqrt{\mu F} \dot{\omega}^2 A^2$$
. Wave amplitude on a string Mass per unit length $T_{av} = \frac{1}{2} \sqrt{\mu F} \dot{\omega}^2 A^2$. Tension in string

Wave Intensity

- The **intensity** of a wave is the average power it carries per unit area.
- If the waves spread out uniformly in all directions and no energy is absorbed, the intensity I at any distance r from a wave source is inversely proportional to r².

$$\frac{I_1}{I_2} = \frac{{r_2}^2}{{r_1}^2}$$

Reflection of a Wave Pulse at a Fixed End of a String (1 of 4)

- What happens when a wave pulse or a sinusoidal wave arrives at the end of the string?
- If the end is fastened to a rigid support, it is a fixed end that cannot move.
- The arriving wave exerts a force on the support (drawing 4).

Reflection of a Wave Pulse at a Fixed End of a String (2 of 4)

 The reaction to the force of drawing 4, exerted by the support on the string, "kicks back" on the string and sets up a reflected pulse or wave traveling in the reverse direction.

Reflection of a Wave Pulse at a Fixed End of a String (3 of 4)

- A free end is one that is perfectly free to move in the direction perpendicular to the length of the string.
- When a wave arrives at this free end, the ring slides along the rod, reaching a maximum displacement, coming momentarily to rest (drawing 4).

Reflection of a Wave Pulse at a Fixed End of a String (4 of 4)

• In drawing 4, the string is now stretched, giving increased tension, so the free end of the string is pulled back down, and again a reflected pulse is produced.

Superposition (1 of 2)

- **Interference** is the result of overlapping waves.
- Principle of superposition: When two or more waves overlap, the total displacement is the sum of the displacements of the individual waves.
- Shown is the overlap of two wave pulses—one right side up, one inverted—traveling in opposite directions.
- Time increases from top to bottom.

As the pulses overlap, the displacement of the string at any point is the algebraic sum of the displacements due to the individual pulses.

Superposition (2 of 2)

- Overlap of two wave pulses—both right side up—traveling in opposite directions.
- Time increases from top to bottom.

Standing Waves on a String (1 of 3)

- Waves traveling in opposite directions on a taut string interfere with each other.
- The result is a standing wave pattern that does not move on the string.
- Destructive interference occurs where the wave displacements cancel, and constructive interference occurs where the displacements add.
- At the nodes no motion occurs, and at the antinodes the amplitude of the motion is greatest.

Standing Waves on a String (2 of 3)

- This is a time exposure of a standing wave on a string.
- This pattern is called the second harmonic.

N = **nodes:** points at which the string never moves

A = antinodes: points at which the amplitude of string motion is greatest

Standing Waves on a String (3 of 3)

- As the frequency of the oscillation of the righthand end increases, the pattern of the standing wave changes.
- More nodes and antinodes are present in a higher frequency standing wave.

The Mathematics of Standing Waves

- We can derive a wave function for the standing wave by adding the wave functions for two waves with equal amplitude, period, and wavelength traveling in opposite directions.
- The wave function for a standing wave on a string in which x = 0 is a fixed end is:

```
Standing wave on a string, y(x, t) = (A_{SW} \sin kx) \sin \omega t Time fixed end at x = 0:

Wave function Standing-wave amplitude

Yes in kx Sin kx
```

• The standing-wave amplitude A_{SW} is twice the amplitude A of either of the original traveling waves: $A_{SW} = 2A$.

Normal Modes

 For a taut string fixed at both ends, the possible wavelengths

ar
$$\lambda_n = \frac{2L}{n}$$
 and the possible frequencies are $f_n = n \frac{V}{2L} = n f_1$, where $n = 1, 2, 3, ...$

- f_1 is the **fundamental frequency**, f_2 is the second harmonic (first overtone), f_3 is the third harmonic (second overtone), etc.
- The figure illustrates the first four harmonics.

(b) n = 2: second harmonic, f_2 (first overtone)

(c) n = 3: third harmonic, f_3 (second overtone)

(d) n = 4: fourth harmonic, f_4 (third overtone)

Standing Waves and String Instruments

 When a string on a musical instrument is plucked, bowed or struck, a standing wave with the fundamental frequency is produced:

Fundamental frequency,
$$f_1 = \frac{1}{2L} \sqrt{\frac{F}{\mu}}$$
 Tension in string string fixed at both ends

Length of string

- This is also the frequency of the sound wave created in the surrounding air by the vibrating string.
- Increasing the tension F increases the frequency (and the pitch).