The "Data Mining" Specialization

Learn More

×

Feedback — Week 1 Quiz

Help Center

Thank you. Your submission for this quiz was received.

You submitted this quiz on **Wed 11 Feb 2015 2:36 AM PST**. You got a score of **9.10** out of **10.00**.

Question 1

Which of the following tasks does not fall under the scope of data mining? Select all that apply.

Your Answer		Score	Explanation
Clustering	~	0.20	
✓ Data entry	~	0.20	
Classification	~	0.20	
✓ Data cleaning	~	0.20	
☐ Pattern discovery	~	0.20	
Total		1.00 / 1.00	

Question Explanation

The correct answers are: "Data entry" and "Data cleaning".

"Data entry" and "Data cleaning" do not involve data analysis.

Question 2

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper, Nuts	
30	Beer, Diaper, Eggs	

40	Beer, Nuts, Eggs, Milk		
50	Nuts, Coffee, Diaper, Eggs, Milk		

Table 1: Transactions from a database.

Given the transactions in Table 1, minsup s = 50%, and minconf c = 50%, which of the following is an association rule? Select all that apply.

Your Answer		Score	Explanation
Nuts ⇒ Diaper	~	0.20	
Nuts ⇒ Eggs	~	0.20	
☐ Diaper ⇒ Eggs	~	0.20	
Beer ⇒ Nuts	~	0.20	
☐ Coffee ⇒ Milk	~	0.20	
Total		1.00 / 1.00	

Question Explanation

The correct answers are: "Beer ⇒ Nuts" and "Nuts ⇒ Diaper"

Beer \Rightarrow Nuts has support = $\frac{3}{5}$ and confidence $\frac{3}{4}$ Nuts \Rightarrow Diaper has support = $\frac{3}{5}$ and confidence $\frac{3}{4}$

Coffee \Rightarrow Milk has support = $\frac{1}{5}$ and confidence $\frac{1}{2}$

Nuts \Rightarrow Eggs has support = $\frac{2}{5}$ and confidence $\frac{1}{2}$ Diaper \Rightarrow Eggs has support = $\frac{2}{5}$ and confidence $\frac{1}{2}$

Question 3

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper, Nuts
30	Beer, Diaper, Eggs
40	Beer, Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Table 1: Transactions from a database.

A *strong* association rule satisfies both the *minsup* and *minconf* thresholds. Given the transactions in Table 1, *minsup* s = 50%, and *minconf* c = 50%, how many *strong* association rules are there? Note that the association rule $A \Rightarrow B$ and $B \Rightarrow A$ are distinct.

Your Answer		Score	Explanation
● 6	~	1.00	
4			
o 5			
O 2			
O 0			
Total		1.00 / 1.00	

The correct answer is: "6".

The rules are:

Beer ⇒ Diaper

Diaper ⇒ Beer

Nuts ⇒ Diaper

Diaper ⇒ Nuts

Beer ⇒ Nuts

Nuts ⇒ Beer

Question 4

Consider the database containing the transaction T_1 : $\{a_1, ..., a_5\}$, T_2 : $\{a_2, ..., a_6\}$, T_3 : $\{a_3, ..., a_7\}$, T_4 : $\{a_4, ..., a_8\}$. For what value of *minsup* do we have the most number of closed frequent patterns?

Your Answer	Score	Explanation
○ minsup = 4		
○ minsup = 2		
○ minsup = 3		

minsup = 1	✓ 1.00
There are no closed frequent patterns for the give database.	en
Total	1.00 /
	1.00

Question Explanation

The correct answer is: "minsup = 1".

minsup = 1 gives the most frequent patterns, which in turn produces the most closed frequent patterns.

Question 5

Consider the database containing the transactions T_1 : { a_1 , a_2 , a_3 , a_4 , a_5 }, T_2 : { a_2 , a_3 , a_4 , a_5 , a_6 }. Let minsup = 1. Which of the following is both a max frequent and a closed frequent pattern? Select all that apply.

Your Answer		Score	Explanation
$\{a_1, a_2, a_3, a_4, a_5\}$	×	0.00	
$ (a_2, a_3, a_4, a_5, a_6) $	×	0.00	
$\{a_1, a_2, a_3, a_4, a_5, a_6\}$	~	0.20	
$ [a_2, a_3, a_4, a_5] $	~	0.20	
{a₂, a₅}	~	0.20	
Total		0.60 / 1.00	

Question Explanation

The correct answers are: " $\{a_1, a_2, a_3, a_4, a_5\}$ " and " $\{a_2, a_3, a_4, a_5, a_6\}$ ".

Since " $\{a_2, a_3, a_4, a_5, a_6\}$ " and " $\{a_2, a_3, a_4, a_5, a_6\}$ " are frequent super patterns of " $\{a_2, a_5\}$ " and " $\{a_2, a_3, a_4, a_5\}$ " cannot be max frequent patterns. " $\{a_1, a_2, a_3, a_4, a_5, a_6\}$ " has support 0, hence it is not a frequent pattern.

Question 6

Which of the following statements is true?

Your Answer	Score	Explanation
Since both closed and max frequent patterns are a subset of all frequent patterns, we cannot recover all frequent patterns and their supports given just the closed and max frequent patterns.		
 We can recover all frequent patterns and their supports from the set of closed frequent patterns. 	✓ 1.00	
 We can recover all frequent patterns and their supports from the set of max frequent patterns. 		
 Closed frequent patterns can always be determined from the set of max frequent patterns. 		
The set of closed frequent patterns is always the same as the set of max frequent patterns.		
Total	1.00 /	
	1.00	

Question Explanation

The correct answer is "We can recover all frequent patterns and their supports from the set of closed frequent patterns."

Closed frequent patterns are a lossless compression of all frequent patterns, while max frequent patterns are a lossy compression. This means that max frequent patterns are a subset of closed frequent patterns, and we can only recover the complete set of frequent patterns and their supports from the set of closed frequent patterns.

Question 7

If we know the support of itemset $\{a, b, c\}$ is 10, which of the following numbers are the possible supports of the itemset $\{a, b\}$?

Your Answer		Score	Explanation
1 0	~	0.33	
≥ 11	~	0.33	
9	~	0.33	
Total		1.00 / 1.00	

Question Explanation

The correct answers are: "10" and "11".

The support of $\{a, b\}$ should be no less than 10, which is the support of $\{a, b, c\}$.

Question 8

If we know the support of itemset $\{a\}$ is 50, and the support of itemset $\{a, b, c\}$ is 30, which of the following numbers are the possible supports of itemset $\{a, b\}$?

Your Answer		Score	Explanation
100	~	0.20	
10	~	0.20	
5	~	0.20	
№ 30	~	0.20	
● 50	~	0.20	
Total		1.00 / 1.00	

Question Explanation

The correct answers are: "50" and "30".

The support of $\{a, b\}$ should be between the supports of $\{a\}$ and $\{a, b, c\}$, i.e. $\in [30, 50]$.

Question 9

Considering Apriori Algorithm, assume we have obtained **all** size-2 (i.e. containing 2 items, e.g. $\{A, B\}$) frequent itemsets. They are $\{A, B\}$, $\{A, C\}$, $\{A, D\}$, $\{B, C\}$, $\{B, E\}$, $\{C, E\}$. In the following size-3 itemsets, which of them should be considered, i.e. are potential to be size-3 frequent itemsets?

Your Answer		Score	Explanation
⟨B, C, E⟩	~	0.25	
⟨A, B, D⟩	×	0.00	
	×	0.00	
	~	0.25	

Total 0.50 / 1.00

Question Explanation

The correct answers are: "{A, B, C}" and "{A, B, C}".

 $\{A, C, D\}$ is impossible because $\{C, D\}$ is infrequent. $\{A, B, D\}$ is impossible because $\{B, D\}$ is infrequent.

Question 10

Figure 1: FP Tree

Given the FP-tree as shown in Figure 1, what is the support of $\{c, p\}$?

Your Answer	Score	Explanation
4		
O 5		
	1.00	
0 1		
2		
Total	1.00 / 1.00	

Question Explanation

The correct answer is: "3".

1 is in $\{c, p, m\}$ and 2 are in $\{f, c, a, m, p\}$. Therefore, 3 in total.

2/18/2015	Coursera	