

Advanced Computer Vision Week 05

Sep. 30, 2022 Seokju Lee

No Lectures Next Week (Oct. 4th & 7th) X

1) Instead, we will have classes for reviewing programming assignments.

So far we have tried:

- Image Processing Puzzle
- Camera Calibration (+ calibration of your mobile phone camera)
- Geometric Transformation
- Corner Detection (this week)

Contents that were not possible due to lack of time will be covered next week.

2) Online Graduate Seminar (10/6) by **Dr. Hyojin Park (Qualcom AI Research @ San Diego)**

Title: "Energy-Efficient AI for Image and Video Processing"

Prepare at least one question and ask her. Summarize the Q&A and submit them to LMS.

Notice of Paper Reviews

Link: https://docs.google.com/spreadsheets/d/1S9z QkqnSqy92P-fvhyggx-lJQwMPH1im3EvzNh3 cw/edit?usp=sharing

Rules:

- 1. 페이퍼는 최소 3편 이상을 리뷰(각 구역에서 1편 이상)
- 2. 페이퍼 포인트의 합은 최소 12포인트 이상을 원칙으로 함
- 3. 신청 가능 링크는 10/28 수요일 오후 5시 공지
- 4. 추가 페이퍼 리뷰를 원한다면 조율 가능(포인트 추가 가능)
- 5. 페이퍼 리스트는 업데이트 될 수 있음
- 6. 모든 페이퍼 리뷰는 발표 3일 전까지 개별 면담을 통해 검토 받는 것을 권장
- 7. 이해가 어려운 페이퍼의 경우 개별 면담 가능
- 8. 20분 영어발표 + 5분 한국어 Q&A

Notice of Paper Reviews

Topics	Papers	Conference	Point	Links	Reserve	Expected Date
CNN architectures	AlexNet	NIPS'12	3	https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf	jaiyong	10/17~
	VGG	ICLR'15	3	https://arxiv.org/abs/1409.1556	gwsur	
	ResNet	CVPR'16	3	https://arxiv.org/abs/1512.03385	yglee	
	Spatial Transformer Network	NIPS'15	3	https://arxiv.org/abs/1506.02025	sohee kim	
	Convolutional Bottleneck Attention Module	ECCV'18	4	https://arxiv.org/abs/1807.06521	Lee Tae Hong	
Samantia Sammantatian	Decemblet	CVDD145	2	https://arvir.org/aha/MEGE 042CC	iairana	10/21
Semantic Segmentation	DeconvNet	CVPR'15	3	https://arxiv.org/abs/1505.04366	jaiyong	10/31~
	DeepLab-v2	T-PAMI'15	4	https://arxiv.org/abs/1606.00915		
	VPGNet	ICCV'17	4	https://github.com/SeokjuLee/VPGNet	yglee	
Deep generative models	Conditional Variational Auto-Encoder	NIPS'15	3	https://papers.nips.cc/paper/2015/hash/8d55a249e6baa5c06772297520da2051-Abstract.html	jaiyong	
	Pix2Pix	CVPR'17	4	https://phillipi.github.io/pix2pix/		
	Cycle-GAN	ICCV'17	4	https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix	Lee Tae Hong	
Representation learning	Context encoders	CVPR'16	4	https://arxiv.org/abs/1604.07379		
	Damaged puzzle	WACV'18	5	https://arxiv.org/abs/1802.01880	gwsur	
	Contrastive learning	ICML'20	4	https://arxiv.org/abs/2002.05709	sohee kim	
Optical flow	UnFlow	AAAI'18	4	https://arxiv.org/abs/1711.07837	jaiyong	11/21~
Stereo matching	PSMNet	CVPR'18	4	https://github.com/JiaRenChang/PSMNet		
Structure-from-Motion	MonoDepth2	ICCV'19	4	https://github.com/nianticlabs/monodepth2	gwsur	
	Insta-DM	AAAI'21	5	https://github.com/SeokjuLee/Insta-DM		
	Unsupervised SfM in Dynamic Scenes	CoRL'20	5	https://arxiv.org/abs/2010.16404	sohee kim	
	Neural Ray Surfaces	3DV'20	5	https://arxiv.org/abs/2008.06630		
NeRF	Neural Scene Flow Fields	CVPR'21	5	https://www.cs.cornell.edu/~zl548/NSFF/	yglee	
	Self-Calibrating NeRF	ICCV'21	5	https://github.com/POSTECH-CVLab/SCNeRF	, ,	

Parts of slides are by Prof. In So Kweon and Prof. Shree Nayar

Image Features

Why Detecting Image Features?

- ✓ Feature points are used for:
 - Image alignment (*e.g.*, image stitching, video stabilization)
 - 3D reconstruction
 - Motion tracking
 - Object recognition
 - Indexing & database retrieval
 - Robot navigation (e.g., SLAM)
 - etc.

Pyimagesearch

Image Matching

Slide by R. Szeliski.

Image Matching

Salient Features

- ✓ Generic features:
 - Independent of the lens and the CCD.
 - Independent of the lighting conditions.
 - Independent of the pose and scale.
- ✓ The human visual system can interpret images using a small amount of feature (e.g., edge and corner) data.
- ✓ Two main issues:
 - What good features that show **robustness** independent of **variations**?
 - How can we **automatically** and **efficiently** extract features in images?

Invariant Local Features

- ✓ Find features that are **invariant** to transformations:
 - **Geometric** invariance: translation, rotation, scale
 - **Photometric** invariance: brightness, exposure, ...

Slide by D. Lowe.

Parts of slides are by Prof. In So Kweon and Prof. Shree Nayar

Edges

Edges

- ✓ Motivation
 - Sharp changes in image intensity (edges) are a **key** indicator of image content
- ✓ Why important?
 - Extracting meaningful edges from images amounts to a **dramatic reduction** in the amount of data.

Types of Edges

Edge Detector

- ✓ We want an edge operator that produces:
 - Edge position
 - Edge magnitude (strength)
 - Edge orientation (direction)

- ✓ Performance requirements:
 - High detection rate
 - Good localization
 - Low noise sensitivity

What Causes Edges?

→ We need differentiation to find discontinuity!

Gradient (∇)

✓ Gradient (partial derivatives) represents the direction of most rapid change in intensity:

$$\nabla I = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right]$$

Pronounced as "Del I"

$$\nabla I = \left[\frac{\partial I}{\partial x}, 0 \right]$$

$$\nabla I = \left[0, \frac{\partial I}{\partial y}\right]$$

$$\nabla I = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right]$$

Gradient (∇) as Edge Detector

Gradient Magnitude
$$S = \|\nabla I\| = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2}$$

Gradient Orientation
$$\theta = \tan^{-1} \left(\frac{\partial I}{\partial y} / \frac{\partial I}{\partial x} \right)$$

Differentiating the Image → Convolution

✓ Why differentiate? The derivative tells us about how sharp an edge is.

$$\nabla I = \left[\frac{\partial I}{\partial x}, 0\right]$$

$$\nabla I = \left[0, \frac{\partial I}{\partial y}\right]$$

$$\nabla I = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right]$$

✓ Differentiation can be approximated by **finite differences**...

✓ ... which can be implemented as a convolution filter!

Differentiating the Image → Convolution

$$\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$df(x) = \int_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\frac{df(x)}{dx} \cong \frac{f(x+1) - f(x-1)}{2}$$

→ Convolve with:

Or:
$$\Delta_x I = I(x, y) - I(x - 1, y)$$
$$\Delta_y I = I(x, y) - I(x, y - 1)$$

Comparing Gradient Operators

Gradient	Roberts	Prewitt	Sobel (3x3)	Sobel (5x5)		
$\frac{\partial I}{\partial x}$	0 1 -1 0	-1 0 1 -1 0 1 -1 0 1	-1 0 1 -2 0 2 -1 0 1	-1 -2 0 2 1 -2 -3 0 3 2 -3 -5 0 5 3 -2 -3 0 3 2 -1 -2 0 2 1		
$\frac{\partial I}{\partial y}$	1 0 0 -1	1 1 1 0 0 0 -1 -1 -1	1 2 1 0 0 0 -1 -2 -1	1 2 3 2 1 2 3 5 3 2 0 0 0 0 0 -2 -3 -5 -3 -2 -1 -2 -3 -2 -1		

Good Localization
Noise Sensitive
Poor Detection

Poor Localization Less Noise Sensitive Good Detection

Gradient Using Sobel Filter

Image (I)

 $\partial I/\partial x$

 $\partial I/\partial y$

Gradient Magnitude

Real Edges

Problems: Noisy Images and Discrete Images

Smoothing the Image

✓ We generally want to smooth the image to get rid of noise that causes false edge detections.

→ Where is the edge?

Smoothing the Image

✓ Gaussian filter for smoothing

Smoothing + Detecting Edge: Derivative of Gaussian Filter

✓ If you want to **smooth** with a gaussian, then **differentiate**, this is **equivalent** to <u>convolving with a derivative of gaussian</u>.

"Derivative Theorem of Convolution"

$$\frac{\partial}{\partial x}(h*f) = \left(\frac{\partial}{\partial x}h\right)*f$$

Example

$$h * f$$

$$\frac{\partial}{\partial x}(h*f)$$

Example

Slide from UC Davis

Derivative of Gaussian Filter: Visualization

Canny Edge Detector

✓ The most widely used edge detector in computer vision [1]

→ fine features

✓ Effects of σ (Gaussian kernel spread/size) $\rightarrow \pm \frac{\pi}{2}$

→ Large scale edges

Parts of slides are by Prof. In So Kweon and Prof. Shree Nayar

Corners

Corners

2 mins video - about the aperture problem

The Aperture Problem

Corners

✓ Aperture problem:

✓ Corner features are useful to compute the correspondence.

✓ Intensity discontinuities in **two** directions.

Corners

✓ Point where two edges meet.

i.e., rapid changes of image intensity in two directions within a small region

Why is it useful to find correspondence?

Corner Detection

✓ Intuitive understanding, let's try to use **flat** region to match two images.

Slide by F. Rameau.

Corner Detection

✓ Intuitive understanding, let's try to use **edge** region to match two images.

Slide by F. Rameau.

37

Corner Detection

✓ Intuitive understanding, let's try to use **corner** region to match two images.

Slide by F. Rameau.

Image Gradients

Distribution of Image Gradients

 \rightarrow Distribution of I_x and I_y is different for all three regions.

Fitting Elliptical Disk to Distribution

Interpretation of λ_1 and λ_2

Harris Corner Response Function

Flat: $\lambda_1 \sim \lambda_2$ λ_1 and λ_2 are small.

where: $0.04 \le k \le 0.06$

Shi-Tomasi Corner Detector

- \checkmark Only considers the smaller λ
 - Key points are defined, where $min(\lambda_1, \lambda_2) > k$ is satisfied.

What are the differences between them?

Which one is better?

Experiments: Harris Corner Detection

Updated codes (for python3) are uploaded in https://view.kentech.ac.kr/f088fa7f-874e-44bc-bd6d-6084b42dfdf7

\$ cd OpenCV-Python-Tutorials/Src/FeatureDetectionAndDescription/HarrisCornerDetection

\$ python Harris.py

[Q] What are the **limitations** of Harris corner detector?

[A] we need to set **different threshold values** for every image in order to detect the most prominent interest points. **Slow** to compute exactly for each pixel and each offset (u, v).

FAST Corner Detector

- ✓ Harris corner detector is mathematically elegant, but is **not** the most efficient detector in term of **speed**.
- ✓ Features from Accelerated Segment Test (FAST)
 - FAST is a very **efficient** key point detector
- ✓ If <u>a set of **N** (e.g., 12) contiguous pixels in a ring</u> (of radius 3 around p) are all brighter (darker) than the intensity of candidate pixel $p \pm t$ (<u>threshold</u>), then p is classified as a corner.

