3D PLOTS

--> wxplot3d (%e ^ (- x ^ 2 - y ^ 2) , [x , - 2 , 2] , [y , - 2 , 2]) ;

(%t1)

%e^((-y^2)-x^2)

(%o1)

--> wxplot3d (%e $^(-x^2-y^2)$, [x, -2, 2], [y, -2, 2], [grid, 50, 50]);

(%t2)

 $%e^{(-y^2)-x^2}$

 $--> \ wxplot3d \ (\ atan \ (\ -x ^2 + y ^3 / 4\)\ , \ [\ x\ , -4\ , 4\]\ , \ [\ y\ , -4\ , 4\]\ , \ [\ grid\ , 50\ , 50\]\ , \ [\ mesh_lines_color\ , red\]\)\ ;$

(%t3)

(%o3)

Sphere Parametric function

--> wxplot3d ([$x ^2 + y ^2 , -x ^2 - y ^2 , x ^2 - y ^2 , [x , -2 , 2] , [y , -2 , 2]]);$

(%t5)

(%05)

```
--> wxplot3d ( x ^2 + y ^2 , [ x , -2 , 2 ] , [ y , -2 , 2 ] , [ xlabel , "time (sec)" ] , [ ylabel , "Velocity (cm/sec)" ] , [ zlabel , "area" ] ) ;
```

(%t6)

(%06)