3. Поворот дерева (рии)

1 секунда

30 очков

Дано дерево, вершины которого обозначены целыми числами $1\dots N$, где вершина 1 — это корень дерева и для каждой вершины известен список её детей. 1

Найти дерево, которое получится, если новым корнем сделать лист K первоначального дерева, но оставить без изменений все рёбра и порядок рёбер, связанных с каждой вершиной.

Например, если в дереве на рисунке слева новым корнем сделать лист 3, то получится дерево на рисунке в центре. Дерево на рисунке справа было бы неверным ответом, так как перечисляя соседей вершины 1 против часовой стрелки в изначальном дереве получим 2, 3, 4, а в этом дереве -2, 4, 3.

Входные данные. На первой строке текстового файла puusis.txt дано число вершин дерева N ($1 \le N \le 10\,000$) и номер листа K ($1 \le K \le N$), который станет новым корнем. Следующие N строк описывают структуру изначального дерева. На строке i+1 сначала дано количество m_i детей вершины i, а затем m_i номера её детей слева направо.

Выходные данные. В текстовый файл puuval.txt вывести ровно N строк: структура дерева, полученного при повороте, в таком же формате, что и во входных данных.

Пример.	puusis.txt	puuval.txt
	4 3	2 4 2
	3 2 3 4	0
	0	1 1
	0	0
	0	

Объяснение выходных данных по строкам:

- 1. У вершины 1 есть 2 ребёнка, вершины 4 и 2 (в таком порядке).
- 2. У вершины 2 нет детей.
- 3. У вершины 3 есть 1 ребёнок, вершина 1.
- 4. У вершины 4 нет детей.

Оценивание. В тестах общей стоимостью 16 очков во входных данных будет двоичное дерево (в изначальном дереве у каждой вершины будет не более 2 детей).

 $^{^1\}mathrm{Cm}$. также http://ru.wikipedia.org/wiki/Дерево_(структура_данных) и http://en.wikipedia.org/wiki/Tree_(data_structure)