TD 1 suite Techniques de Modélisation

Exercice 1

Résoudre les EDP suivantes en faisant le changement de variable proposé :

1.
$$\partial_x f - \partial_y f = a$$
 en posant $u = x + y$ et $v = x - y$ où a est une constante réelle

2.
$$x\partial_x f = y\partial_y f$$
 en posant $u = xy$ et $v = x/y$

3.
$$x\partial_x f = -y\partial_y f$$
 en posant $x = \rho\cos(\theta)$ et $y = \rho\sin(\theta)$

4.
$$y\partial_x f - x\partial_y f = 2f$$
 en posant $x = \rho\cos(\theta)$ et $y = \rho\sin(\theta)$

5.
$$2xy\partial_x f + (1+y^2)\partial_y f = 0$$
 en posant $x = (u^2 + v^2)/2$ et $y = u/v$.

Exercice 2

Considérons l'EDP suivante (équation des ondes unidimensionnel) :

$$\frac{\partial^2 u}{\partial t^2} = c_0^2 \frac{\partial^2 u}{\partial x^2} \quad \text{pour } x \in]0, L[\text{ et } t > 0]$$

$$u(0,t) = u(L,t) = 0 \quad \text{pour } t > 0$$

$$u(x,0) = f(x)$$

$$\frac{\partial u}{\partial x}(x,0) = g(x)$$

- 1. Résoudre cette EDP en utilisant la méthode de séparation de variables. On pourra introduire des notations qu'il faudra préciser sur votre copie.
- 2. Donner la solution pour les conditions suivantes :

$$-L = \pi$$

$$- f(x) = \sin(3x) - 4\sin(10x)$$

$$--g(x) = 2\sin(4x) + \sin(6x)$$