COMP 550 Algorithms and Analysis Spring 2020 Pop Quiz 8 Thursday, April 9, 2020

Don't forget to write your name on the quiz sheet. This quiz continues on the back.

- 1. What is an asymptotic bound for the time taken by the dynamic programming longest common subsequence algorithm on sequences of length m and n? Choose the best answer.
 - a) $\Theta(2^{m*n})$ b) $\Theta(2^{m+n})$ c) $\Theta(m*n)$ d) $\Theta(m+n)$
- 2. What is an asymptotic bound on the time taken to find the longest common subsequence of two sequences X and Y of length m and n by exhaustively considering all subsequences of X and checking which of them are subsequences of Y? Choose the best answer.

a)
$$\Theta(2^m * n)$$

b) $\Theta(2^m + n)$
c) $\Theta(m * n)$
d) $\Theta(m + n)$

Consider a binary search tree where the probabilities of searching for each key are as indicated:

- 3. What is the expected number of nodes visited in a random successful search operation on this tree? _____2.25____
- 4. Is this an optimal binary search tree? _____No____

Consider the following table:

	a	b	a	С	b
c					
b					
a			A	В	С
b			D	Е	F
a			G	Н	I

6. Fill in the blanks A through I with the numbers c[i,j] used in the longest common subsequence algorithm for those squares. A $\underline{ 2}$ B $\underline{ 2}$ C $\underline{ 2}$ D $\underline{ 2}$ E $\underline{ 2}$ F $\underline{ 3}$ G $\underline{ 3}$ H $\underline{ 3}$ I $\underline{ 3}$ Show a longest common subsequence. $\underline{ bab}$