TC 2006B Interconexión de dispositivos

Subnetting

Longitud fija

Agenda de esta sesión

- Direccionamiento IPv4
- Subnetting
- Creación de máscaras de subred
- Dirección de broadcast
- Creación de subredes
- Identificar la primera y última dirección IP válida, y la dirección de broadcast de una subred

Direccionamiento IPv4

Clases de redes

	Primer octeto	Segundo octeto	Tercer octeto	Cuarto octeto	Máscara de subred
Clase A	Network	Host	Host	Host	255.0.0.0
Clase B	Network	Network	Host	Host	255.255.0.0
Clase C	Network	Network	Network	Host	255.255.255.0

Direccionamiento IPv4

Clases de redes

Clase	Rango primer octeto	Númer	ro de redes Número de hosts			Dirección de muestra
A	1-126	2 ⁷ – 1 *	127	2 ²⁴ - 2	16,777,214	10.15.121.5 0 0001010 00001111 01111001 00000101
В	128 - 191	214	16,384	2 ¹⁶ - 2	65,534	130.13.44.52 10000010 00001101 00101100 00110100
C	192 - 223	221	2,097,152	2 ⁸ - 2	254	200.15.23.8 11001000 00001111 00010111 00001000
D	224 - 239					
E	240 - 255					

^{*} La red 127 no se usa está reservada

Direccionamiento IP v4

La longitud de los campos varia dependiendo de la clase de la dirección IP.

Direccionamiento IP con subnetting

Algunos bits son prestados del campo Host Id.

El número máximos de bits que pueden ser prestados es la longitud del Host Id – 2.

Bits prestados	Decimal	Binario
1	128	1000 0000
2	192	1100 0000
3	224	1110 0000
4	240	1111 0000
5	248	1111 1000
6	252	1111 1100
7	254	1111 1110

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1

Dirección IP y prefijo de red

En esquemas de subneteo el prefijo de red es un número entero (cuando mucho igual a 30) que da información valiosa del esquema utilizado

10. 25. 96. 2 / 22

El prefijo indica la posición del **Byte Crítico** (**BC**). Este Byte nos da información para calcular el **desplazamiento entre subredes**, nos permite construir **máscaras de subneto** y nos da información del **número de bits** que se han utilizado **para crear subredes** y, por consecuencia, el **número de bits de la sección de hosts**.

Subredes y máscaras de subred

¿Qué tendrías que hacer para encontrar la máscara de subred en notación punto decimal?

10. 25. 96. 2 / 22

¿Qué tendrías que hacer para encontrar la dirección de red y la dirección de broadcast?

Bits prestados	Decimal	Binario
1	128	1000 0000
2	192	1100 0000
3	224	1110 0000
4	240	1111 0000
5	248	1111 1000
6	252	1111 1100
7	254	1111 1110

10. 25. 96. 2 / 21

1. Las direcciones IPv4 están compuestas de 32 bits.

2. El **prefijo de red** es la suma de los bits de **Reserva** de la clase y los bits utilizados para crear **subredes** (R+s).

10. 25. 96. 2 / 21

3. Los bits de **host** son la resta de 32 y el valor del prefijo.

Prefijo = **/21**

4. El **Byte Crítico** (**BC**) es aquel en donde está ubicado el último bit de subneteo.

10. 25. 96. 2 / 21

3. Para **calcular la máscara**, recuerda que los bits de red y subred se rellenan con unos y luego se convierte a decimal. Un tip importante es que los bytes que se encuentran a la izquierda del **Byte Crítico** les corresponde un valor de 255 y los que se encuentran a la derecha un valor de 0.

Binario

1000 0000

1100 0000

1110 0000

1111 0000

1111 1000

1111 1100

1111 1110

Byte Crítico
4. Para calcular el desplazamiento en el Byte Crítico, al valor de 256 le restas
el valor de la máscara en el Byte Critico (decimal) y este es el valor del
desplazamiento de cada subred.

256 – 248 = 8 El desplazamiento es de 8 en el Byte crítico.

Creación de máscaras

Método base 10

En el **Byte crítico**, los bits que faltan para completar el byte o llegar a la siguiente frontera se denomina por la literal **k**.

Elevar **2**^k representa el desplazamiento entre subredes.

$$2^3 = 8$$

Creación de máscaras

Método base 10

El valor en la posición del **Byte Crítico** resulta al restar al valor **256** el valor del desplazamiento.

Los bytes que se encuentran a la izquierda del **Byte Crítico** les corresponde un valor de 255 y los que se encuentran a la derecha un valor de 0.

Ejercicio de creación de máscaras

Método de CISCO

Con base en la información de la IP y el prefijo de red, determina la máscara de subred.

Dir IP / prefijo red	Máscara de subred
135. 21. 0. 0 / 19	255.255.1110 0000 255.255.224.0
1. 0. 0. 0 / 26	
145. 0. 0. 0 / 22	
10. 0. 0. 0 / 13	

Bits prestados	Decimal	Binario
1	128	1000 0000
2	192	1100 0000
3	224	1110 0000
4	240	1111 0000
5	248	1111 1000
6	252	1111 1100
7	254	1111 1110

Ejercicio de creación de máscaras

Método base 10

Con base en la información de la IP y el prefijo de red, determina: (a) la posición del BC, (b) el valor de k y (c) la máscara de subred.

Dir IP / prefijo red	Pos BC	k	Máscara de subred
135. 21. 0. 0 / 19	135. 21. 0 . 0	5 2^5 =32	255.255. 256-32 .0 255.255 .224. 0
1. 0. 0. 0 / 26			
145. 0. 0. 0 / 22			
10. 0. 0. 0 / 13			

A la izquierda del byte crítico corresponde el valor de 255. A la derecha del byte crítico corresponde el valor de 0.

Direcciones de broadcast

La dirección broadcast de una dirección IPv4 se forma al copiar, dependiendo la clase a la que pertenece la dirección IP, los valores de los **Bytes de reserva** y asignar el valor de 255 a los Bytes que se encuentran a la derecha de los de reserva.

Dirección IP Red	Clase	Máscara de subred	Dirección de broadcast
129. 10. 0. 0	В	255.255.0.0	129. 10. 255. 255
68. 0. 0. 0			
195. 79. 1. 0			
130. 0. 0. 0			
221. 0. 0. 0			

NOTA: Identificar el valor de la red o clase (los bits de reserva se copian)

Direccionamiento IPv4

Creación de subredes

Para crear subredes se toman bits prestados de la porción Host de la dirección IP de la red o clase (izquierda a derecha).

Los bits restantes son utilizados para numerar cada host dentro de cada subred.

Ejemplo

Desarrolla el esquema de direccionamiento apropiado utilizando la dirección 112.0.0.0 y 13 bits prestados para crear subredes.

1) Identificar la clase, los bytes reservados por clase y la porción original de bits para hosts

2) Identificar los bits para subredes y los bits para hosts

Ejemplo

Desarrolla el esquema de direccionamiento apropiado utilizando la dirección 112.0.0.0 y 13 bits prestados para crear subredes.

3) Identificar el Byte Crítico.

Byte Crítico

Ejemplo

Desarrolla el esquema de direccionamiento apropiado utilizando la dirección 112.0.0.0 y 13 bits prestados para crear subredes.

4) Calcular la **máscara** en decimal: 255.255.248.0

5) Calcular el valor del desplazamiento en el Byte crítico. Al valor de 256 le restas el valor de la máscara en el Byte Critico (decimal) y este es el valor del desplazamiento de cada subred.

256 – 248 = 8 El desplazamiento es de 8 en el byte crítico

Ejemplo

6) Utilizar el desplazamiento calculado en el paso 2 y crear la información de las primeras cuatro subredes. Recuerda que el desplazamiento se da en el **Byte Crítico**. Dirección de red: **112.0.0.0** y máscara de subred: 255.**255.248**.0

#	Dirección	Primera IP	Última IP	Dirección de
Subred	de subred	válida	válida	broadcast
0	112.0. 0 .0	112.0.0.1	112.0.7.254	112.0. 0+7 .255
1	112.0. 8 .0	112.0.8.1	112.0.15.254	112.0. 8+7 .255
2				
3				
•				
31	112.0. 248 .0	112.0. 248 .1	112.0. 255 .254	112.0. 255 .255

Dirección de broadcast: Los valores a la izquierda del byte crítico no cambian, lo que cambia es el byte crítico y lo que se encuentra a la derecha. Todo lo que se encuentre a la derecha del byte crítico le corresponde el valor numérico de 255. Al byte crítico le corresponde el valor inicial del byte crítico + desplazamiento – 1.

Identificar la primera y última dirección IP válida y la dirección de broadcast de una subred?

Dirección de red: 19.0.0.0 / 28

• Máscara de subred:

• Posición del **byte crítico**:

• Desplazamiento en el byte crítico:

Dirección de subred	Primera IP válida	Última IP válida	Dirección de broadcast
19. 0 .0 .48	19. 0 .0 .49	19. 0 .0 .62	19. 0 .0 .48 + 15 19.0.0. 63
19. 0. 13.48			
19. 0. 18.128			
19. 0. 60.160			
19. 0. 119.144			