TA: Kyle Hansen (kylehansen@math.ucsb.edu)

Office: South Hall 6431 V OH: M. 11-12 / ML: Th. 1-3

3A: Week 2 Limits and Continuity

Name:

Collaborators:

Section Day/Time:

Limits and Continuity

$$\lim_{x\to a}[f(x)+g(x)] = \lim_{x\to a}[f(x)+g(x)] = \lim_{x\to a}[f(x)+f(x)+\lim_{x\to a}g(x)] = \lim_{x\to a}[f(x)+g(x)] = \lim_{x\to a$$

1. Compute the following limits:

a)
$$\lim_{z \to 3} \left(z^2 e^z + \frac{z}{2e^z} \right)$$

 $3^2 e^3 + \frac{3}{2e^3} = 9e^3 + \frac{3}{2e^3}$

b)
$$\lim_{b\to 0} \frac{\cos(b) - \sin(b)}{b^2 + 1} = \frac{1-0}{l^2 + l}$$

= $\frac{1}{2}$

c)
$$\lim_{x \to 1} \frac{1}{x^2 - 2x + 1} \frac{X - 1}{X^2 - 1}$$

= $\lim_{X \to 1} \frac{X - 1}{(X - 1)(X + 1)}$
= $\lim_{X \to 1} \frac{1}{X + 1} = \frac{1}{2}$

a)
$$\lim_{z \to 3} \left(z^{2}e^{z} + \frac{z}{2e^{z}}\right)$$

 $3^{2}e^{3} + \frac{3}{2e^{3}} = 9e^{3} + \frac{3}{2e^{3}}$
b) $\lim_{b \to 0} \frac{\cos(b) - \sin(b)}{b^{2} + 1} = \frac{1 - 0}{1^{2} + 1}$
a) Suppose $\lim_{y \to 2} g(y) = 3$ and $\lim_{y \to 2} g(y) = 2$. Find $\lim_{y \to 2} [g(y^{2}) \cdot g(y)^{2}] = \lim_{y \to 2} g(y^{2}) \cdot \lim$

c)
$$\lim_{x \to 1} \frac{1}{x^2 - 2x + 1} \frac{X - 1}{X^2 - 1}$$

f) Use the Squeeze Theorem to determine $\lim_{x \to 0} x^4 \sin(\pi/x)$.

$$-X^4 \le X^4 \sin(\pi/x)$$

$$-X^4 \le X^4 \sin(\pi/x)$$

$$-X^4 \le X^4 \sin(\pi/x)$$

So $\lim_{x \to 1} X^4 \sin(\pi/x)$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

So $\lim_{x \to 0} X^4 \sin(\pi/x)$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

So $\lim_{x \to 0} X^4 \sin(\pi/x)$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x + 1)}$$

$$= \lim_{x \to 1} \frac{X - 1}{(x - 1)(x$$

OH: M. 11-12 / ML: Th. 1-3

Determine where f(x), graphed above, is discontinuous. Classify each type of discontinuity, and calculate $\lim_{x\to -8} f(f(x))$.

At
$$x = -8$$
, removable discontinuity $\lim_{x \to -8} f(f(x))$
 $x = -2$, vertical asymptote $\lim_{x \to -8} f(f(x))$
 $\lim_{x \to -8} f(f(x))$

$$\lim_{x \to -8} f(f(x))$$

= $f(\lim_{x \to -8} f(x))$
= $f(-6) = -4$

Asymptotes

Let $a \neq \pm \infty$. A function f has a

at
$$x = a$$
 if $\lim_{x \to a^{+/-}} f(x) = \pm \infty$.

Discuss: By looking at a function of the form $f(x) = \frac{g(x)}{h(x)}$ where p(x) and q(x) are polynomials, how do you think we can find where the vertical asymptotes are?

Vertical asymptotes at x = 5and x = -2

MEANT TO BE

4. Suppose a function g is continuous, and suppose that you know the following about g:

1.
$$g(-3) = -4$$

2.
$$g(3) = \pi$$

3.
$$g(5) < -2$$

What is the least number of roots (zeros) that g must have? Where must they be located?

2

By the 1.V. T., g must have at least 2 noots.: One within the interval from (-3, 3), and one in (3,5).