Proposal

March 6, 2022

1 Project Proposal

1.0.1 1. Introduction

The video game industry began in the 1950s as simple games and simulations. Pixelated screens and limited sound has become a distant memory as video games are offering photorealistic graphics and pushing the frontier of stimulational reality. Video games have become one of the largest sectors in the entertainment market. With the fast growing market, the gaming industry requires marketing data to help predict the sales for their new games. However, in recent years, the emergence of social networks and the developments of mobile games have greatly impacted traditional video games. Careful marketing planning is crucial when a new game is introduced to the market. Therefore, our research question is to predict the sales in the European market for a new video game given North America and other regional sales. To achieve this, we used a dataset generated by scraping of vgchartz.com. It contains a list of video games with sales greater than 100,000 copies from 1980 to 2017.

Dataset: Our dataset can be found at this link. Dataset is scraped from Vgchartz website. List of the fields included in the data are: * Name: name of the game * Platform: platform of the game release * Year: year that the game is released * Genre: genre of the game * Publisher: publisher of the game * NA_Sales: sales in North America (in millions) * EU_Sales: sales in Europe (in millions) * JP_Sales: sales in Japan (in millions) * Other_sales: sales in other countries (in millions) * Global_sales: total worldwide sales

Reference can be found here.

```
[1]: library(tidyverse)
    library(dplyr)
    library(RColorBrewer)
    library(tidyr)
    library(tidymodels)
    library(repr)
```

```
Attaching packages tidyverse 1.3.0
```

```
      ggplot2
      3.3.2
      purrr
      0.3.4

      tibble
      3.0.3
      dplyr
      1.0.2

      tidyr
      1.1.2
      stringr
      1.4.0

      readr
      1.3.1
      forcats
      0.5.0
```

```
Warning message:
"package 'ggplot2' was built under R version 4.0.1"
Warning message:
"package 'tibble' was built under R version 4.0.2"
Warning message:
"package 'tidyr' was built under R version 4.0.2"
Warning message:
"package 'dplyr' was built under R version 4.0.2"
  Conflicts
tidyverse_conflicts()
 dplyr::filter() masks stats::filter()
 dplyr::lag()
                 masks stats::lag()
Warning message:
"package 'tidymodels' was built under R version 4.0.2"
  Attaching packages
                                          tidymodels
0.1.1
 broom 0.7.0
                        recipes
0.1.13
 dials
          0.0.9
                        rsample
                                  0.0.7
 infer 0.5.4
                                  0.1.1
                        tune
 modeldata 0.0.2
                        workflows 0.2.0
 parsnip 0.1.3
                        yardstick 0.0.7
Warning message:
"package 'broom' was built under R version 4.0.2"
Warning message:
"package 'dials' was built under R version 4.0.2"
Warning message:
"package 'infer' was built under R version 4.0.3"
Warning message:
"package 'modeldata' was built under R version 4.0.1"
Warning message:
"package 'parsnip' was built under R version 4.0.2"
Warning message:
"package 'recipes' was built under R version 4.0.1"
Warning message:
"package 'tune' was built under R version 4.0.2"
Warning message:
"package 'workflows' was built under R version 4.0.2"
Warning message:
"package 'yardstick' was built under R version 4.0.2"
  Conflicts
tidymodels_conflicts()
 scales::discard() masks
purrr::discard()
 dplyr::filter()
                   masks
```

```
stats::filter()
  recipes::fixed()    masks
stringr::fixed()
  dplyr::lag()    masks stats::lag()
  yardstick::spec()  masks readr::spec()
  recipes::step()    masks stats::step()
```

Load data onto Jyputer notebook

```
[37]: ovg <- read_csv("vgsales.csv")
summary(ovg)

Parsed with column specification:
cols(
   Rank = col_double(),
   Name = col_character(),
   Platform = sol_sharacter()</pre>
```

Name = col_character(),
Platform = col_character(),
Year = col_character(),
Genre = col_character(),
Publisher = col_character(),
NA_Sales = col_double(),
EU_Sales = col_double(),
JP_Sales = col_double(),
Other_Sales = col_double(),
Global_Sales = col_double()
)

Rank	Name	Platform	Year	
Min. : 1	Length:16598	Length:16598	Length: 16598	
1st Qu.: 4151	Class :character	Class :character	Class :character	
Median: 8300	Mode :character	Mode :character	Mode :character	
Mean : 8301				
3rd Qu.:12450				
Max. :16600				
Genre	Publisher	NA_Sales	EU_Sales	
Length:16598	Length:16598	Min. : 0.0000	Min. : 0.0000	
Class :character	Class :characte	r 1st Qu.: 0.0000	1st Qu.: 0.0000	
Mode :character	Mode :characte	r Median : 0.0800	Median : 0.0200	
		Mean : 0.2647	Mean : 0.1467	
		3rd Qu.: 0.2400	3rd Qu.: 0.1100	
		Max. :41.4900	Max. :29.0200	
JP_Sales	Other_Sales	Global_Sales		
Min. : 0.00000	Min. : 0.0000	0 Min. : 0.0100		
1st Qu.: 0.00000	1st Qu.: 0.0000	0 1st Qu.: 0.0600		
Median : 0.00000	Median : 0.0100	0 Median : 0.1700		
Mean : 0.07778	Mean : 0.0480	6 Mean : 0.5374		
3rd Qu.: 0.04000	3rd Qu.: 0.0400	0 3rd Qu.: 0.4700		

```
Max. :10.22000 Max. :10.57000 Max. :82.7400
```

Dataset is in tidy format, therefore, no additional cleaning and wrangling is necessary. However, missing data (NAs) is removed by using omit.na function assuming they are missing at random. Moreover, we focused on games published prior to 2017 since the sales data is incomplete in 2017.

	Rank	Name	Platform	Year	Genre	Publisher	NA_S
	<dbl $>$	<chr></chr>	<chr $>$	<chr $>$	<chr $>$	<chr $>$	<dbl></dbl>
_	1	Wii Sports	Wii	2006	Sports	Nintendo	41.49
A tibble: 6×11	2	Super Mario Bros.	NES	1985	Platform	Nintendo	29.08
A tibble, 0×11	3	Mario Kart Wii	Wii	2008	Racing	Nintendo	15.85
	4	Wii Sports Resort	Wii	2009	Sports	Nintendo	15.75
	5	Pokemon Red/Pokemon Blue	GB	1996	Role-Playing	Nintendo	11.27
	6	Tetris	GB	1989	Puzzle	Nintendo	23.20

Split Training/Testing Tests

```
[4]: set.seed(9999)

vg_split <- initial_split(vg, prop = 0.75, strata = EU_Sales)
vg_train <- training(vg_split)
vg_test <- testing(vg_split)</pre>
```

1.0.2 Exploratory Data Analysis

Visualization

```
theme(axis.text.x = element_text(angle = 60, vjust = 0.6, hjust=0.5),
          text = element_text(size = 10))+
theme(plot.title = element_text(hjust = 0.5))

vg_genre_plot
```

`summarise()` ungrouping output (override with `.groups` argument)

	Genre	n
	<chr $>$	<int $>$
-	Action	2433
	Sports	1723
	Misc	1286
	Role-Playing	1090
A tibble: 12×2	Adventure	979
A tibble: 12×2	Shooter	965
	Racing	928
	Platform	665
	Simulation	634
	Fighting	619
	Strategy	492
	Puzzle	430

`summarise()` regrouping output by 'Year' (override with `.groups` argument)

	Year	Genre	$total_sales$
	<chr $>$	<chr $>$	<dbl $>$
•	1980	Action	0.34
A grouped df: 6 × 2	1980	Shooter	7.07
A grouped_df: 6×3	1980	Sports	0.49
	1981	Action	11.86
	1981	Racing	0.48
	1981	Shooter	7.91

Exploratory Analysis

```
[34]: vg_genre <- vg_train %>%
    group_by(Genre) %>%
    summarise(n=n())%>%
    arrange(desc(n))
```

`summarise()` ungrouping output (override with `.groups` argument)

```
[35]: vg_action <- filter(vg_train, Genre == "Action")
    vg_action_test <- filter(vg_test, Genre == "Action")

    nrow(vg_action)
    nrow(vg_action_test)

    vg_action_sp <- filter(vg_train, Genre == "Sports" | Genre == "Action")
    vg_action_sp_test <- filter(vg_test, Genre == "Sports" | Genre == "Action")

    nrow(vg_action_sp)
    nrow(vg_action_sp_test)

    vg_action_shooter <- filter(vg_train, Genre == "Shooter" | Genre == "Action")
    vg_action_shooter_test <- filter(vg_test, Genre == "Shooter" | Genre == "Action")
    vg_action_shooter_test <- filter(vg_test, Genre == "Shooter" | Genre == "Action")</pre>
```

2433

819

4156

1400

Based on the filter above, we proved that there are enough data points.

```
[38]: vg_cor2<- vg_action_sp %>%
    select(-(Rank:Publisher))

sales_cor_2 <- round(cor(vg_cor2),2)%>%
    as.matrix()

sales_cor_2

vg_cor3<- vg_action_shooter %>%
    select(-(Rank:Publisher))

sales_cor_3 <- round(cor(vg_cor3),2)%>%
```

as.matrix() sales_cor_3

		NA_Sales	$\mathrm{EU_Sales}$	${\rm JP_Sales}$	$Other_Sales$	$Global_Sales$
A matrix: 5×5 of type dbl	NA_Sales	1.00	0.86	0.40	0.73	0.96
	EU_Sales	0.86	1.00	0.41	0.70	0.94
	JP_Sales	0.40	0.41	1.00	0.30	0.51
	$Other_Sales$	0.73	0.70	0.30	1.00	0.80
	$Global_Sales$	0.96	0.94	0.51	0.80	1.00
		NA_Sales	EU_Sales	JP_Sales	Other_Sales	$Global_Sales$
-	NA_Sales	NA_Sales 1.00	EU_Sales 0.68	JP_Sales 0.23	Other_Sales 0.57	Global_Sales 0.93
A matrix 5 x 5 of type dbl	NA_Sales EU_Sales					
A matrix: 5×5 of type dbl	_	1.00	0.68	0.23	0.57	0.93
A matrix: 5×5 of type dbl	EU_Sales	1.00 0.68	0.68 1.00	0.23 0.26	0.57 0.64	0.93 0.87

We chose to filter sports and action after proving that action and sports game had a high correlation value in terms of total global sales.

1.1 Methods

Three most popular games are action, adventure and fighting. If the gamemaker tries to maximize the revenue, choosing the most liked genre will increase the chance of maximizing the genre.

1.2 Expected Outcomes

What do you expect to find? Our goal for this project is to predict the sales in Europe for a new video game using sales in NA and other regional sales over years. Based on the NA and other regional sales, we expect to predict the European sales using the regression model.

What impact could such findings have? Using the prediction of our model, it might be useful for video game publishers to predict the sales of new video games in certain regions. This could help gaming companies to focus their advertisements in one specific region, ultimately maximizing their revenue.

What future questions could this lead to? But the salesing value is different in different years. The value of unit money may change over time. But in this project we are mainly focusing on the trending of the game sales

[]:

^{**} Those two genres still look popular in lasst 10 years