Lecture 3A

Energy Resources, Economics and Environment

Rangan Banerjee

Department of Energy Science and Engineering

IIT Bombay

Quality of Life

General well being of individuals and societies

What parameters matter?

Where do you think Quality of Life would be best?

Where would you like to live? Why?

GDP/ capita (Source: Times of India)

GDP/ capita (Source: Times of India)

GDP per capita 2013-15

http://epaperbeta.timesofindia.com/Article.aspx?eid=31808&articlexml=STATOISTICS-DELHI-IS-CHINA-AND-BIHAR-IS-MALI-20042017009028

Quality of Life Indices

- Human Development Index UNDP
- Physical Quality of Life Index David Morris Literacy, Infant mortality, life expectancy
- Happy Planet Index
- Popsicle Index
- Gross National Happiness (difficult to quantify)
- Livability index for cities
- Gender related Development Index
- Multi Dimensional Poverty Index
- Gender Inequality Index

Illiteracy vs Energy Use

ENERGY USE (toe / capita/ year)
127 Countries-averages for groups of 10 countries

Life Expectancy vs Energy Use

Infant Mortality vs Energy Use

Human Development Index

Dimensions

healthy life

Long and

Knowledge

A decent standard of living

Indicators

Dimension

Index

Life expectancy at birth

> Health Index

Mean Years of Schooling

Expected years of Schooling **GNI** per capita (PPP\$)

Education Index

Income Index

HUMAN DEVELOPMENT INDEX

Energy and Quality of Life

- Energy needed for development & improved quality of life
- Life Expectancy at birth
- Education/Literacy
- Infant Mortality Rate
- Income (GDP/capita)

Human Development Index

Life expectancy at birth

Education – adult literacy, enrolment

Real GDP per capita (purchasing power parity)

Index = (Actual – Min)/(Max-Min)

HDI = Average of above indices

HDI - Calculation

	Life Exp	Education	Adjust	HDI
	Index	Attainm	GDP	=Sum/3
		Index	index	
Germany	0.87	0.954	0.895	0.906
China	0.747	0.782	0.575	0.701

Source: Human Development Report UNDP 2000

HDI - Calculation

	Life Exp	Adult Lit	Enrolment ratio	GDP/capit a PPP
Min	25 years	0%	0%	\$100
Max	85 years	100%	100%	\$40000
Germany	77.2	99.0	88.1	21260
China	69.8	82.9	68.9	3130

2013 HDI calculation

Goalposts for the Human Development Index in this Report

Indicator	Observed maximum	Minimum
Life expectancy (years)	83.6	20.0
, , , ,	(Japan, 2012)	
Mean years of schooling	13.3	0
	(United States, 2010)	
Expected years of schooling	18.0	0
	(capped at)	
Combined education index	0.971	0
	(New Zealand, 2010)	
GNI per capita (PPP \$)	87,478	100
	(Qatar, 2012)	

Human Development Indicator

Rank	Country	Human Developm ent Index (HDI) Value, 2013	Life expectancy at birth (years), 2013	Mean years of schooling (years), 2012 a	Expected years of schooling (years), 2012 a	Gross national income (GNI) per capita (2011 PPP \$), 2013	Human Development Index (HDI) Value, 2012
135	India	0.586	66.4	4.4	11.7	5150	0.583

HDI calculation

Example - 2013 Ghana

Indicator	Value
Life expectancy at birth (years)	64.6
Mean years of schooling	7.0
Expected years of schooling	11.4
GNI per capita (PPP \$)	1,684
Note: Values are rounded	

2013 HDI calculation

Goalposts for the Human Development Index in this Report

Indicator	Observed Maximum	Minimum
Life expectancy (years)	83.6 (Japan, 2012)	20.0
Mean years of schooling	13.3 (United States, 2010)	0
Expected years of schooling	18.0 (capped)	0
Combined education index	0.971 (New Zealand, 2010)	0
GNI per capita (PPP\$)	87,478 (Qatar, 2012)	100

Example - HDI calculation

Life expectancy index =
$$\frac{64.6 - 20}{83.6 - 20}$$
 = 0.701

Mean years of schooling index =
$$\frac{7.0 - 0}{13.3 - 0}$$
 = 0.527

Expected years of schooling index =
$$\frac{11.4 - 0}{18.0 - 0}$$
 = 0.634

Education index =
$$\frac{\sqrt{0.527 \cdot 0.634} - 0}{0.971 - 0} = 0.596$$

Income index =
$$\frac{\ln(1,684) - \ln(100)}{\ln(87,478) - \ln(100)} = 0.417$$

Human Development Index =
$$\sqrt[3]{0.701 \cdot 0.596 \cdot 0.417} = 0.558$$

Energy consumption vs HDI

	Table 1. Human Development Index and its components					
			SDG 3	SDG 4.3		SDG 4.6
		Human Development Index (HDI)	Life expectancy at birth	Expected years of schooling		Mean years of schooling
HDI rank	Country	Value	(years)	(years)		(years)
		2017	2017	2017	а	2017
	VERY HIGH HUMAN DEVELOPMENT					
1	Norway	0.953	82.3	17.9		12.6
2	Switzerland	0.944	83.5	16.2		13.4
3	Australia	0.939	83.1	22.9	b	12.9
4	Ireland	0.938	81.6	19.6	b	12.5
5	Germany	0.936	81.2	17.0		14.1
6	Iceland	0.935	82.9	19.3	b	12.4
7	Hong Kong, China (SAR)	0.933	84.1	16.3		12.0
7	Sweden	0.933	82.6	17.6		12.4
9	Singapore	0.932	83.2	16.2	d	11.5
10	Netherlands	0.931	82.0	18.0		12.2
11	Denmark	0.929	80.9	19.1	b	12.6
12	Canada	0.926	82.5	16.4	С	13.3
13	United States	0.924	79.5	16.5		13.4
14	United Kingdom	0.922	81.7	17.4		12.9
15	Finland	0.920	81.5	17.6		12.4
16	New Zealand	0.917	82.0	18.9	b	12.5
17	Belgium	0.916	81.3	19.8	b	11.8
17	Liechtenstein	0.916	80.4	14.7		12.5
19	Japan	0.909	83.9	15.2		12.8

▶ Download Data ▶ Download Country Explanatory Note ▶ Embec

Human Development Indicators

Human Development Index 0.640 Rank

Region and HDI group	HDI	Life expectancy at birth (years)	Mean years of schooling (years)	Expected years of schooling (years)	Gross national income per capita (2005 PPP \$)
Region					
Arab States	0.652	71.0	6.0	10.6	8,317
East Asia and the Pacific	0.683	72.7	7.2	11.8	6,874
Europe and Central Asia	0.771	71.5	10.4	13.7	12,243
Latin America and the Caribbean	0.741	74.7	7.8	13.7	10,300
South Asia	0.558	66.2	4.7	10.2	3,343
Sub-Saharan Africa	0.475	54.9	4.7	9.3	2,010
HDI group					
Very high human development	0.905	80.1	11.5	16.3	33,391
High human development	0.758	73.4	8.8	13.9	11,501
Medium human development	0.640	69.9	6.3	11.4	5,428
Low human development	0.466	59.1	4.2	8.5	1,633
World	0.694	70.1	7.5	11.6	10,184

Note: Data are weighted by population and calculated based on HDI values for 187 countries. PPP is purchasing power parity. Source: HDRO calculations. See statistical table 1 for detailed data sources.

HDI – Indian states

India - Human Development Report 2011

Table 4.8 Hunger Index of Selected Indian States, 2008							
States	Prevalence of Calorie Under Nourishment (per cent)	Proportion of Underweight Children Less than 5 years of Age (per cent)	Under Five Mortality Rate (Per 100)	Hunger Index (HI)	Rank as Per HI		
Punjab	11.1	24.6	5.2	13.63	1		
Kerala	28.6	22.7	1.6	17.63	2		
Andhra Pradesh	19.6	32.7	6.3	19.53	3		
Assam	14.6	36.4	8.5	19.83	4		
Haryana	15.1	39.7	5.2	20.00	5		
Tamil Nadu	29.1	30.0	3.5	20.87	6		
Rajasthan	14.0	40.4	8.5	20.97	7		
West Bengal	18.5	38.5	5.9	20.97	8		
Uttar Pradesh	14.5	42.3	9.6	22.13	9		
Maharashtra	27.0	36.7	4.7	22.80	10		
Karnataka	28.1	37.6	5.5	23.73	11		
Orissa	21.4	40.9	9.1	23.80	12		
Gujarat	23.3	44.7	6.1	24.70	13		
Chhattisgarh	23.3	47.6	9.0	26.63	14		
Bihar	17.3	56.1	8.5	27.30	15		
Jharkhand	19.6	57.1	9.3	28.67	16		
Madhya Pradesh	23.4	59.8	9.4	30.87	17		
India	20.0	42.5	7.4	23.30			

India - Human Development Report 2011

Maharashtra Districts HDI

http://www.in.undp.org/content/dam/india/docs/human-development/MHDR%20English-2012.pdf

Employment (2007-10)

HDI of districts

http://www.in.undp.org/content/dam/india/docs/human-development/MHDR%20English-2012.pdf

HDI vs Primary Energy supply

Steinberger, Roberts, 2009

HDI vs Per capita Carbon emissions

Steinberger, Roberts, 2009

HDI Improvement 1990-2012

Gender Inequality Index

Gender Gap Index

Subindex	Variable
Economic Participation and Opportunity	Ratio: female labour force participation over male value
	Wage equality between women and men for similar work (survey data, normalized on a 0-to-1 scale)
	Ratio: female estimated earned income over male value
	Ratio: female legislators, senior officials and managers over male value
	Ratio: female professional and technical workers over male value
Educational Attainment	Ratio: female literacy rate over male value
	Ratio: female net primary enrolment rate over male value
	Ratio: female net secondary enrolment rate over male value
	Ratio: female gross tertiary enrolment ratio over male value
Health and Survival	Sex ratio at birth (converted to female-over-male ratio)
	Ratio: female healthy life expectancy over male value
Political Empowerment	Ratio: females with seats in parliament over male value
	Ratio: females at ministerial level over male value
	Ratio: number of years with a female head of state (last 50 years) over male value

Gender Gap Index- India 2018

		2006		2018
	rank	score	rank	score
Global Gender Gap score	98	0.601	108	0.665
Economic participation and opportunity	110	0.397	142	0.385
Educational attainment	102	0.819	114	0.953
Health and survival	103	0.962	147	0.940
Political empowerment	20	0.227	19	0.382
rank out of	115		149	

http://www3.weforum.org/docs/WEF_GGGR_2018.pdf

Gender Gap Index- Iceland

		2006		2018
	rank	score	rank	score
Global Gender Gap score	4	0.781	1	0.858
Economic participation and opportunity	17	0.711	16	0.793
Educational attainment	50	0.991	39	0.999
Health and survival	92	0.968	121	0.968
Political empowerment	4	0.456	1	0.674
rank out of	115		149	

Variations in Male Survival rate by region

Variations in Female Survival rate by region

References

- A. Sen, From Income Inequality to Economic Inequality, Southern Economic Journal, 1997, 64(2), 384-401.
- Human Development Report 2013, UNDP, 2013, New York.
- Human Development Report 2014, UNDP, 2014, New York.
- Human Development Report 2000, UNDP, 2000, New York.
- India Human Development Report 2011, Oxford University Press, New Delhi, 2011.
- A.D Pasternak, Global Energy Futures and Development, UCRL-ID-140773, 2000.
- J K. Steinberger, J. T Roberts(2009): Across a Moving Threshold: energy, carbon and the efficiency of meeting global human development needs, Vienna.
- Dias et al, The limits of human development and the use of energy and natural resources, Energy Policy 34 (2006) 1026–1031.

Lecture – 3B

Energy Resources, Economics and Environment

Rangan Banerjee

Department of Energy Science and Engineering

IIT Bombay

Energy Inequality

How do we measure inequality? Why is it important?

Top 10% Income share

https://wir2018.wid.world/files/download/wir2018-full-report-english.pdf

RANGAN BANERJEE, IIT Bombay

Share of top 10% Income share

https://wir2018.wid.world/files/download/wir2018-full-report-english.pdf

Global Inequality and growth 1980-2016

https://wir2018.wid.world/files/download/wir2018-full-report-english.pdf

Lorentz Curve

- L(x) Proportion of income earned by the lowest x proportion of population
- L(0) = 0 L(1) = 1, L increasing function
- Extreme Cases

L(x) = x + 45% line Absolute equality – all earn the same

Absolute Inequality

$$L(x) = 0 \ 0 \le x < 1, L(1) = 1$$

Nobody earns any income except one person

Lorentz Curve - Inequality

Gini Co-efficient

- Gini coefficient = A/(A+B)
- A + B = 0.5
- Gini coefficient = 2 A

$$=2\int (x-L(x))dx$$

$$= 1-2B = 1-2 \int L(x)dx$$

$$G_c = 1 - \sum_{i} (Y_{i+1} + Y_i) (X_{i+1} - X_i)$$

Lorenz Curves

Gini Coefficient - 2009

Data set: US Household Electricity consumption

Table 1: Deciles of U.S. Household Electricity Consumption

Proportion of Population	Cumulative Proportion of
	Electricity Consumption
0.0	0.000
0.1	0.023
0.2	0.060
0.3	0.110
0.4	0.175
0.5	0.254
0.6	0.345
0.7	0.459
0.8	0.588
0.9	0.754
1.0	1.000

Energy and Equity

Residential Electricity Gini (Select countries)

Source: Jacobsen, Energy Policy, 2005

Electricity Lorenz Curves India

Carbon Gini

Teng et al, 2011

Carbon Gini

Teng et al, 2011

References

- Catalano, Michael T.; Leise, Tanya L.; and Pfaff, Thomas J. (2009): Measuring Resource Inequality: The Gini Coefficient, Numeracy: Volume 2, Issue 2, Article 4.

 DOI: http://dx.doi.org/10.5038/1936-4660.2.2.
- Fei Teng, Jiankun He, Xunzhang Pan Chi Zhang, (2011) Metric of Carbon Equity: Carbon Gini Index Based on Historical Cumulative Emission per Capita, Advances in Climate Change Research, Volume 2, Issue 3, 134-140.
- Ketav Mehta, (2014): Analyzing Household Electricity Use and Its Inequalities, Dual Degree Thesis, IIT Bombay.
- Arne Jacobsen, Anita Milman, D. M. Kammen, (2005): Letting the (energy) Gini out of the bottle: Lorenz curves of cumulative electricity consumption and Gini coefficients as metrics of energy distribution and equity, Energy Policy, 33(14):1825-1832 · September 2005.
- GEA 2012: Cherp, A., A. et al, (2012): Chapter 5 Energy and Security. In *Global Energy Assessment Toward a Sustainable Future*, Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria, pp. 325-384.
- World Inequality Report (2018) available online: https://wir2018.wid.world/files/download/wir2018-full-report-english.pdf

Lecture - 3C

Energy Resources, Economics and Environment

Rangan Banerjee

Department of Energy Science and Engineering

IIT Bombay

Energy Security

Energy Security

What is Energy Security?

 What are the parameters that affect Energy Security?

What are the options to enhance energy security?

Perspectives On Energy Security

Energy Security - Parameters

Energy Security Definition

- Energy Security Uninterrupted provision of vital energy services priority for every country
- Robustness
- Sovereignty
- Resilience

Energy Security Definition

- Energy Security Uninterrupted provision of vital energy services - priority for every country
- Robustness Sufficiency of resources, Reliability of infrastructure, Stable and Affordable prices
- Sovereignty- Protection from potential threats from external agents
- Resilience Ability to withstand diverse disruptions

Perspectives On Energy Security

Oil Prices 1970-2011

Energy Prices and World Events

Oil Price variation 1869-2011

Oil Price Variation and Events (1947-2011)

Oil Price Variation and Events (1970-2011)

http://www.wtrg.com/oil_graphs/oilprice1970.gif

http://www.macrotrends.net/1369/crude-oil-price-history-chart'>Crude Oil Price History Chart

Energy security perspectives	Robu	istness	Sovereig	Sovereignty		Resilience			
Globally traded fuels									
	Global R/P ratio	Projected demand growth 2008–2035*	Share of international trade in global production in 2009	Number of people (billions) in countries with import dependencies over 25/50/75%		Diversity of global producers by region, SWDI			
Oil	30 yr.	15%	66%	5.3/3.6/3.1		1.63			
Gas	80 yr.	44%	29%	2.2/0.75/0.65		1.84			
Coal	150 yr.	19%	14%	1.3/1.1/0.70		1.92			
Other energy sources									
Nuclear	Aging of nuclear pow political interventions	er plants; sensitivity to	sensitivity to Concentration of enriched uranium and reactor manufacturing technologies; nuclear fuel cycle controlled for non-proliferation reasons		Generally large facilities; difficult to substitute in case of failure				
Hydro	Sensitivity to water av to climate change in s	railability; vulnerability ome regions.	Hydroelectric facilities located on internationally shared rivers		In certain cases extremely large facilities providing majority of electricity of certain countries				
NRES	High initial costs; intermittency of supply Technological dependencies; potential impo		otential import	Generally assumed to be higher than in the case of traditional sources due to distributed generation and more diverse energy mix					

Share of Energy Imports - India

Crude Oil and Oil Products - Trade

References

- GEA 2012: Cherp, A., A. et al, (2012): Chapter 5 Energy and Security. In Global Energy Assessment - Toward a Sustainable Future, Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria, pp. 325-384.
- Aleh Cherp, Jessica Jewell (2011) The three perspectives on energy security: intellectual history, disciplinary roots and the potential for integration, Current Opinion in Environmental Sustainability, Volume 3, Issue 4, September 2011, Pages 202-212.
- http://www.wtrg.com/prices.htm
- http://www.wtrg.com/oil_graphs/oilprice1970.gif
- http://www.macrotrends.net/1369/crude-oil-price-historychart'>Crude Oil Price History Chart