Minus total k-subdomination in graphs

DUAN Zhu-rong (段铸荣)¹, SHAN Er-fang (单而芳)^{1,2}, LI Ming-song (李明松)¹, WU Wei-guo (吴卫国)¹

- 1. College of Sciences, Shanghai University, Shanghai 200444, P. R. China
- 2. Department of Logistics, The Hong Kong Polytechnic University, Hong Kong, P. R. China

Abstract Let G = (V, E) be a simple graph without isolated vertices. For positive integer k, a 3-valued function $f: V \to \{-1, 0, 1\}$ is said to be a minus total k-subdominating function (MTkSF) if $\sum_{u \in N(v)} f(u) \geqslant 1$ for at least k vertices v in G,

where N(v) is the open neighborhood of v. The minus total k-subdomination number $\gamma_{kt}^-(G)$ equals the minimum weight of an MTkSF on G. In this paper, the values on the minus total k-subdomination number of some special graphs are investigated. Several lower bounds on γ_{kt}^- of general graphs and trees are obtained.

Keywords minus total k-subdomination, path, complete graph, complete bipartite graph, bound **2000** Mathematics Subject Classification 05C69

Introduction

All graphs considered here are finite, undirected, simple, and without isolated vertices. For standard graph theory terminology not given here, one can refer to [1–2]. Specifically, let G = (V, E) be a graph with the vertex set V and edge set E. The open neighborhood of v is $N(v) = \{u \in V | uv \in E\}$ and the closed neighborhood of v is $N[v] = \{v\} \cup N(v)$. The degree of a vertex v in G is d(v) = |N(v)|. Let f be a real valued function on V. For a non-empty subset S of V, we define

$$f(S) = \sum_{v \in S} f(v),$$

and the weight of a minus total k-subdominating function (MTkSF) f on G is f(V). G[S] denotes the subgraph of G induced by S. $\Delta(G)$ and $\delta(G)$ denote the maximum degree and the minimum degree of vertices of G, respectively. When no ambiguity can occur, we often simply write Δ and δ instead. Next we give some basic definitions.

A signed total dominating function (STDF) of G is defined in [3–4] as a function $f:V\to \{-1,1\}$ such that $f(N(v))\geqslant 1$ for every $v\in V$. The signed total domination number (STDN) of G, denoted by $\gamma_t^s(G)$, is the minimum weight of an STDF.

Let
$$G = (V, E)$$
 be a graph. For $k \in \mathbf{Z}^+$, $1 \leq k \leq |V|$,

a function $f:V\to \{-1,0,1\}$ is said to be an MTkSF on G in [5] if $f(N(v))\geqslant 1$ for at least k vertices v in G. The minus total k-subdomination number (MTkSN) of G, denoted by $\gamma_{kt}^-(G)$, is equal to $\min\{f(V)\mid f$ is an MTkSF on $G\}$. Especially, if k=|V|, then the minus total k-subdomination number is the minus total domination number (MTDN) $\gamma_t^-(G)$ of G. Minus total domination has been studied in, for example, [6–9]. When we simply change "open" neighborhood N(v) in the definition of minus total k-subdomination to "closed" neighborhood N[v], we can define the minus k-subdomination number of a graph. Minus k-subdomination has been studied in, for example, [10–13].

Harris, et al. [6] showed that the decision problems for the minus total k-subdomination number of a graph are NP-complete respectively, even when the graph is restricted to a bipartite graph or a chordal graph. Hence it is of interest to determine values and bounds on the minus total k-subdomination number of a graph. In this paper, we obtain the values of γ_{kt}^- of some special graphs and establish several lower bounds on γ_{kt}^- of general graphs and trees.

1 Minus total k-subdomination numbers of some graphs

Let f be an MTkSF of G = (V, E). We say that $v \in V$ is covered by f if $f(N(v)) \ge 1$, and denote by C_f the

Received Jun.28, 2008; Revised Nov.5, 2008

Project supported by the National Natural Science Foundation of China (Grant No.10571117), and the Development Foundation of Shanghai Municipal Education Commission (Grant No.05AZ04)

Corresponding author SHAN Er-fang, PhD, Prof, E-mail: efshan@shu.edu.cn

set of vertices covered by f. Let $P_f = \{v \in V | f(v) = 1\},$ $M_f = \{v \in V | f(v) = -1\}, Q_f = \{v \in V | f(v) = 0\}, \text{ and }$ $B_f = \{ v \in V | f(N(v)) = 1 \}.$

Theorem 1.1 For any path $P_n(n \ge 2)$, $1 \le k \le$

$$\gamma_{kt}^-(P_n) = \begin{cases} -\left\lfloor \frac{k}{2} \right\rfloor, & \text{if } n \text{ is odd and } k = \frac{n+1}{2}, \\ \frac{3k}{2} + 1 - n, & \text{if } n \text{ is odd, } k \text{ is even,} \\ 2k \geqslant n + 3 \text{ and } 2k - n \equiv 3 \pmod{4}, \\ \left\lceil \frac{3k}{2} \right\rceil - n, & \text{otherwise.} \end{cases}$$

Proof Let $P_n: v_1v_2v_3\cdots v_n$ be a path on n vertices, and f be a minimum MTkSF assigning the value -1 to the vertices of $P_n = (V, E)$ as many as possible. Thus $\gamma_{kt}^-(P_n) = |P_f| - |M_f|$. Let I denote the set of all isolated vertices in $P_n[C_f]$. We first prove that f(v) = -1for each $v \in I$. If not, there exists at least a vertex $v' \in I$ such that $f(N(v')) \ge 1$, but $f(v') \ne -1$. We define another function f' by f'(v') = -1 and f'(v) = f(v) for all $v \in V/\{v'\}$. Obviously, f' is also an MTkSF, but f'(V) < f(V) is a contradiction.

Case 1.1 $I = C_f$.

This is to say, all vertices in $P_n[C_f]$ are isolated vertices, and the vertices not adjacent to the vertices of Iare assigned the value of -1. If n is odd, $k \leq |C_f| \leq$ $\frac{n+1}{2}$; if n is even, $k \leqslant |C_f| \leqslant \frac{n}{2}$. Clearly, for any $v \in C_f, N(v) \subseteq P_f \cup Q_f \text{ and } |N(v)| = 1 \text{ or } 2.$

Subcase 1.1.1 *n* is even. Obviously, $|P_f| + |Q_f| \ge$ $|C_f| \geqslant k$, and $|P_f| \geqslant |Q_f|$. Then $|M_f| \leqslant n - k$. Thus $\gamma_{kt}^-(P_n) \geqslant \frac{k}{2} - (n - k) = \frac{3k}{2} - n$, and then $\gamma_{kt}^-(P_n) \geqslant \lceil \frac{3k}{2} \rceil - n$.

Subcase 1.1.2 *n* is odd. If $k = \frac{n+1}{2}$, then $|P_f| + |Q_f| = |C_f| - 1 = k - 1$, and $|P_f| \geqslant |Q_f| + 1$. In this case, the number of isolated vertices in $P_n[C_f]$ is $\frac{n+1}{2}$, and $I = C_f$. So $|M_f| = \frac{n+1}{2} = k$. Thus $\gamma_{kt}(P_n) \geqslant \frac{k}{2} - k = -\frac{k}{2}$, by the integrity of $\gamma_{kt}(P_n)$, we have $\gamma_{kt}(P_n) \geqslant -\lfloor \frac{k}{2} \rfloor$. If $k < \frac{n+1}{2}$, similar to Subcase 1.1.1, we can obtain $\gamma_{kt}(P_n) \geqslant \lceil \frac{3k}{2} \rceil - n$.

Case 1.2 $I \subset C_f$.

In this case, we have

$$C_f - I \subset P_f \cup Q_f. \tag{1}$$

Furthermore, for every vertex $v \in I$, we have

$$N(v) \subseteq P_f \cup Q_f \text{ and } |N(v)| \in \{1, 2\}.$$
 (2)

It follows from (1) and (2) that $|P_f| + |Q_f| \ge |C_f| \ge k$. Obviously, $|P_f| \ge |Q_f|$, otherwise we can find another minimum MTkSF f' with more vertices of -1. Then $|M_f| \leq n - k$. In a way similar to that in Subcase 1.1.1, we can obtain $\gamma_{kt}^-(P_n) \geqslant \lceil \frac{3k}{2} \rceil - n$. Consequently,

$$\gamma_{kt}^-(P_n) \geqslant \begin{cases} -\left\lfloor \frac{k}{2} \right\rfloor, & \text{if } n \text{ is odd and } k = \frac{n+1}{2}, \\ \left\lceil \frac{3k}{2} \right\rceil - n, & \text{otherwise.} \end{cases}$$

On the other hand, define a function $g:V\to$ $\{-1,0,1\}$ in different cases as follows:

(i) $k \leqslant \frac{n}{2}$. Define

$$g(v_i) = \begin{cases} 1, & \text{if } 2 \leq i \leq 2k, \text{ and } i = 4j - 2, j \in \mathbf{Z}^+ \\ & \text{and } 1 \leq j \leq \frac{k+1}{2}, \\ 0, & \text{if } 2 \leq i \leq 2k, \text{ and } i = 4j, j \in \mathbf{Z}^+ \\ & \text{and } 1 \leq j \leq \frac{k}{2}, \\ -1, & \text{otherwise.} \end{cases}$$

Then g is an MTkSF of P_n with weight $g(V) = \lceil \frac{k}{2} \rceil$ $\begin{array}{c} (n-\lceil\frac{k}{2}\rceil-\lfloor\frac{k}{2}\rfloor)=\lceil\frac{3k}{2}\rceil-n.\\ \text{(ii) } n \text{ is odd and } k=\frac{n+1}{2}. \text{ Define} \end{array}$

$$g(v_i) = \begin{cases} 1, & \text{if } i = 4j - 2, \text{ and the vertex } v_{n-1}, \\ & j \in \mathbf{Z}^+ \text{ and } 1 \leqslant j \leqslant \frac{n-1}{4}, \\ 0, & \text{if } i = 4j, \ j \in \mathbf{Z}^+ \text{ and } 1 \leqslant j \leqslant \frac{n-3}{4}, \\ -1, & \text{otherwise.} \end{cases}$$

Then g is an MTkSF of P_n with weight $g(V) = \lceil \frac{k}{2} \rceil - k =$

(iii) n is even and $\frac{n}{2} < k \leqslant n - 1$. In the following subcases, we define an MTkSF g with the number of -1 being n-k, and the number of vertices in C_f being n - k + n - 2(n - k) = k.

(a) k is odd, and then n-k is odd. If $2k-n \equiv 0 \pmod{m}$ 4), then defining g by

$$(g(v_1), \dots, g(v_n)) = (\underbrace{-1, 1, -1, 0}, \dots, -1, 1, -1, 0,$$

 $\underbrace{1, 1, 0, 0}, \dots, 1, 1, 0, 0, 1, -1),$

we can check that g is an MTkSF of weight $g(V)=\frac{n-k+1}{2}+\frac{2k-n}{2}-(n-k)=\frac{3k+1}{2}-n.$ If $2k-n\equiv 2$ (mod 4), then defining g by

$$(g(v_1), \dots, g(v_n)) = (\underbrace{-1, 1, -1, 0, \dots, -1, 1, -1, 0}, \underbrace{0, 1, 1, 0, \dots, 0, 1, 1, 0, 0, 1, 1, -1),$$

we can check that g is an MTkSF of weight $g(V)=\frac{n-k+1}{2}+\frac{2k-n-2}{2}+1-(n-k)=\frac{3k+1}{2}-n.$

(b) k is even, and then n-k is even. If $2k-n\equiv 0$ $\pmod{4}$, then defining g by

$$(g(v_1), \dots, g(v_n)) = (\underbrace{-1, 1, -1, 0, \dots, -1, 1, -1, 0}_{0, 1, 1, 0, \dots, 0, 1, 1, 0}),$$

then the weight $g(V) = \frac{n-k}{2} + \frac{2k-n}{2} - (n-k) = \frac{3k}{2} - n$. If $2k - n \equiv 2 \pmod 4$, then defining g by

$$(g(v_1), \dots, g(v_n)) = (\underbrace{-1, 1, -1, 0, \dots, -1, 1, -1, 0}, \underbrace{-1, 1, \underbrace{0, 0, 1, 1}, \dots, 0, 0, 1, \underbrace{1, 0, 0, 1, -1}, 0}, \underbrace{-1, 1, \underbrace{0, 0, 1, 1}, \dots, 0, 0, \underbrace{1, 1, 0, 0, 1, -1}, \underbrace{-1, \underbrace{0, 0, 1, 1}, \dots, 0, 0, \underbrace{1, 1, 0, 0, 1, -1}, \underbrace{-1, \underbrace{0, 0, 1, 1}, \dots, 0, 0, \underbrace{1, 1, 0, 0, 1, -1}, \underbrace{-1, \underbrace{0, 0, 1, 1}, \dots, \underbrace{0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{-1, \underbrace{0, 0, 1, 1}, \dots, \underbrace{0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 1, 1}, \dots, \underbrace{0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 1, 1}, \dots, \underbrace{0, \underbrace{0, 1, 1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 1, 1}, \dots, \underbrace{0, \underbrace{0, 1, 1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 1, 1, \dots, 0, 0, 1, \underbrace{1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 1, 1, \dots, 0, 0, 1, \underbrace{1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 1, 1, \dots, 0, 0, 1, \underbrace{1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, -1}, \underbrace{0, \underbrace{0, 1, 0, 0, 1, 0, 1$$

we can check that g is an MTkSF with weight $g(V)=\frac{n-k-2}{2}+2+\frac{2k-n-2}{2}-(n-k)=\frac{3k}{2}-n.$ (iv) n is odd and $\frac{n+1}{2}< k\leqslant n-1.$ In the following

- subcases, we also define an MTkSF g with the number of -1 being n-k, and the number of vertices in C_f is n - k + n - 2(n - k) = k.
- (a) k is odd. Then n k is even. If $2k n \equiv 1 \pmod{n}$ 4), then defining g by

$$(g(v_1), \dots, g(v_n)) = (\underbrace{-1, 1, -1, 0}, \dots, -1, 1, -1, 0,$$

-1, 1, -1, 1, $\underbrace{0, 0, 1, 1}, \dots, 0, 0, 1, 1, 0),$

we can check that g is an MTkSF of weight $g(V)=\frac{n-k}{2}+1+\frac{2k-n-1}{2}-(n-k)=\frac{3k+1}{2}-n.$ If $2k-n\equiv 3 \pmod{n}$

$$(g(v_1), \dots, g(v_n)) = (\underbrace{-1, 1, -1, 0, \dots, -1, 1, -1, 0}_{0, 1, 1, 0, \dots, 0, 1, 1, 0, 0, 1, 1),$$

we can check that g is an MTkSF with weight $g(V)=\frac{n-k}{2}+\frac{2k-n+1}{2}-(n-k)=\frac{3k+1}{2}-n.$ (b) k is even. Then n-k is odd. If $2k-n\equiv 1$ (mod

4), then defining g by

$$(g(v_1), \dots, g(v_n)) = (\underbrace{-1, 1, -1, 0}, \dots, -1, 1, -1, 0,$$
$$-1, 1, \underbrace{0, 0, 1, 1}, \dots, 0, 0, 1, 1, 0),$$

we can check that g is an MTkSF of weight g(V) = $\frac{n-k+1}{2} + \frac{2k-n-1}{2} - (n-k) = \frac{3k}{2} - n$. If $2k - n \equiv 3 \pmod{2}$ 4), then defining g by

$$(g(v_1), \dots, g(v_n)) = (\underbrace{-1, 1, -1, 0, \dots, -1, 1, -1, 0}, \underbrace{-1, 1, \underbrace{0, 0, 1, 1}, \dots, 0, 0, 1, 1, 0, 1, 1}).$$

It is easy to check that g is an MTkSF of weight $g(V) = \frac{n-k+1}{2} + \frac{2k-n-3}{2} + 2 - (n-k) = \frac{3k}{2} + 1 - n.$ Next, we will prove that g is a minimum MTkSF in this subcase. Denote S as one component in $P_n[C_f] - I$. Supposing there exist components with consecutive -1in P_n , we can put them together as one component T. Let us consider the component $R = S \bigcup \{v_i\} \bigcup T$ in P_n , where v_i is the vertex linking S and T. Then $f(v_i) \ge 0$, so f(R) is at least $\frac{|S|}{2} - |T|$. On the other hand, we denote |R| = n' = |S| + |T| + 1 and k' = |S|. Through the above analysis, we can find an MTkSF g' with the number of -1 being |T|+2 or $n'-k'=|T|+1\geqslant |T|$ and the weight at most $\frac{3k'}{2}+1-n'=\frac{|S|}{2}-|T|\leqslant \frac{|S|}{2}-|T|$, a contradiction. Using the same method, we can also deduce that there do not exist vertices in I between Sand T. So there is not a component with consecutive -1in P_n . Consequently, we can check that g is a minimum MTkSF with the number of -1 large enough, and then $\gamma_{kt}^-(P_n) = \frac{3k}{2} + 1 - n$ in this subcase.

Finally, according to $\gamma_{kt}^-(P_n) \leqslant g(V)$, consequently,

$$\gamma_{kt}^-(P_n) = \begin{cases} -\left\lfloor \frac{k}{2} \right\rfloor, & \text{if } n \text{ is odd and } k = \frac{n+1}{2}, \\ \frac{3k}{2} + 1 - n, & \text{if } n \text{ is odd, } k \text{ is even, and} \\ 2k - n \equiv 3 \pmod{4}, \\ \left\lceil \frac{3k}{2} \right\rceil - n, & \text{otherwise.} \end{cases}$$

Next we will discuss the value of $\gamma_t^-(P_n)$, i.e., the case of $\gamma_{kt}^-(P_n)$ with k=n. When k=n, no vertices in P_n are assigned the values of -1. Otherwise, at least one vertex v of P_n adjacent to the vertex with the value of -1 does not satisfy $f(N(v)) \ge 1$. So we can easily obtain the following proposition.

Proposition 1.1 For any path P_n $(n \ge 2)$,

$$\gamma_t^-(P_n) = \begin{cases} \frac{n}{2} & \text{for } n \equiv 0 \pmod{4}, \\ \frac{n+1}{2} & \text{for } n \equiv 1 \pmod{4}, \\ \frac{n+2}{2} & \text{for } n \equiv 2 \pmod{4}, \\ \frac{n+1}{2} & \text{for } n \equiv 3 \pmod{4}. \end{cases}$$

Theorem 1.2 For any complete graph $K_n(n \ge 2)$,

$$\gamma_{kt}^{-}(K_n) = \begin{cases} 0, & 1 \leqslant k \leqslant \frac{n}{2}, \\ 1, & \frac{n}{2} < k \leqslant n - 1, \\ 2, & k = n. \end{cases}$$

Proof Let f be a minimum MTkSF on K_n .

Subcase 1.2.1 $1 \leqslant k \leqslant \frac{n}{2}$

Since there exists at least one vertex $v \in V$ with $f(N(v)) = f(V) - f(v) \ge 1$, it follows that $f(V) \ge f(v) + 1 \ge 0$. If n is even, we define $g_1 : V \to \{-1, 0, 1\}$ by

$$g_1(x) = \begin{cases} 1, & \frac{n}{2} \text{ vertices in } V, \\ -1, & \text{otherwise.} \end{cases}$$

And if n is odd, we define $g_2: V \to \{-1, 0, 1\}$ by

$$g_2(x) = \begin{cases} 1, & \frac{n-1}{2} \text{ vertices in } V, \\ 0, & \text{one vertex in } V, \\ -1, & \text{otherwise.} \end{cases}$$

Then g_1 and g_2 are MTkSFs of K_n of weight $g_1(V) = g_2(V) = 0$, so $\gamma_{kt}^-(K_n) \leq g_1(V)$ or $g_2(V)$. Consequently, in this case $\gamma_{kt}^-(K_n) = 0$.

Subcase 1.2.2 $\frac{n}{2} < k \leqslant n$

Similar to Subcase 1.2.1, $|P_f| - |M_f| = f(V) \ge 0$. Since $|P_f| + |M_f| + |Q_f| = n$, $|P_f| + |Q_f| \ge (n + |Q_f|)/2 \ge n/2$. Since there exist at least k vertices $v \in V$ such that $f(N(v)) \ge 1$, $|C_f| \ge k > \frac{n}{2}$. Then there exists at least one vertex $u \in Q_f \cup P_f$ such that $f(N(u)) = f(V) - f(u) \ge 1$, so $f(V) \ge 1$ or 2. Especially, when k = n, then $f(V) \ge 2$. Supposing $n/2 < k \le n - 1$, we define $g_1: V \to \{-1, 0, 1\}$ by

$$g_1(x) = \begin{cases} 1, & \text{any one vertex in } V, \\ 0, & \text{otherwise.} \end{cases}$$

Then g_1 is an MTkSF of K_n of weight $g_1(V)=1$, so $\gamma_{kt}^-(K_n) \leqslant g_1(V)=1$. Therefore, in this subcase, $\gamma_{kt}^-(K_n)=1$. Supposing k=n, we define $g_2:V\to \{-1,0,1\}$ by

$$g_2(x) = \begin{cases} 1, & \text{any two vertices in } V, \\ 0, & \text{otherwise.} \end{cases}$$

Then g_2 is an MTkSF of K_n of weight $g_2(V) = 2$, so $\gamma_{kt}^-(K_n) \leq g_2(V) = 2$. Therefore, in this subcase, $\gamma_{kt}^-(K_n) = 2$.

Theorem 1.3 For any complete bipartite graph $K_{m,n}(n \ge m \ge 1)$,

$$\gamma_{kt}^{-}(K_{m,n}) = \begin{cases} 1 - n, & \text{if } 1 \leqslant k \leqslant n, \\ 2, & \text{if } n < k \leqslant m + n. \end{cases}$$

Proof Let $K_{m,n} = (V, E)$, X and Y be the bipartite sets of $K_{m,n}$ with |X| = m and |Y| = n. Among all the minimum MTkSFs on $K_{m,n}$, let f be one that assigns the value -1 to vertices of Y as many as possible. Denote $X^+ = \{v \in X \mid f(v) = 1\}, X^- = \{v \in X \mid f(v) = 0\}$. Denote

 $Y^{+} = \{v \in Y \mid f(v) = 1\}, Y^{-} = \{v \in Y \mid f(v) = -1\},$ and $Y^{0} = \{v \in Y \mid f(v) = 0\}.$ Then $\gamma_{kt}^{-}(K_{m,n}) = f(V) = f(X) + f(Y) = |X^{+}| - |X^{-}| + |Y^{+}| - |Y^{-}|.$

Case 1.3 $1 \le k \le n$

We show that in this case $Y = Y^-$, *i.e.*, each vertex of Y is assigned the value -1 under f. Assume to the contrary that $Y^0 \cup Y^+ \neq \emptyset$.

If $f(X) \ge 1$, then let $f_1: V \to \{-1,0,1\}$ be defined as follows: $f_1(v) = -1$ if $v \in Y^0 \cup Y^+$ and $f_1(v) = f(v)$ if $v \notin Y^0 \cup Y^+$. Since $f_1(N(\omega)) = f(X) \ge 1$ for each $\omega \in Y$, it follows that f_1 is an MTkSF on $K_{m,n}$ of weight less than that of f, which is a contradiction.

If $f(X) \leq 0$, then $|X^+| \leq |X^-|$. Since there exist k vertices v of V such that $f(N(v)) \geq 1$, it follows that $f(Y) \geq 1$, i.e., $|Y^+| > |Y^-|$. Then $|Y^+| > \frac{1}{2}(|Y| - |Y^0|)$, so $|Y^+| + |Y^0| > \frac{1}{2}(|Y| + |Y^0|) \geq \frac{1}{2}|Y| \geq \frac{1}{2}|X|$. Let $f_2: V \to \{-1,0,1\}$ be defined as follows: $f_2(v) = -1$ for $\lceil (|X|+1)/2 \rceil$ vertices v of Y^+ or Y^0 , $f_2(v) = 1$ for $\lceil (|X|-|X^0|+1)/2 \rceil$ vertices v of V, and $f_2(v) = f(v)$ for all remaining vertices v of V. Since $f_2(N(y)) = f_2(X) \geq 1$ for each $y \in Y$, it follows that f_2 is an MTkSF on $K_{m,n}$ of weight $f_2(V) \leq f(V)$. However, f_2 assigns the value -1 to more vertices of Y than f does, contrary to our choice of f. We deduce, therefore, that $Y = Y^-$.

Let y be a vertex in Y for which $f(N(y)) \ge 1$. Then $|X^+| - |X^-| = f(X) = f(N(y)) \ge 1$. Thus $\gamma_{kt}^-(K_{m,n}) = |X^+| - |X^-| + |Y^+| - |Y^-| \ge 1 - n$.

Next we define an MTkSF $g: V \to \{-1, 0, 1\}$ by

$$g(x) = \begin{cases} 1, & \text{one vertex in } X, \\ 0, & \text{other vertices in } X, \\ -1, & \text{otherwise.} \end{cases}$$

Then g is an MTkSF of $K_{m,n}$ with weight g(V) = 1 - n, and $\gamma_{kt}^-(K_{m,n}) \leq g(V) = 1 - n$. Consequently, if $k \leq n$, $\gamma_{kt}^-(K_{m,n}) = 1 - n$.

Case 1.4 $n < k \le m + n$

In this case, there exist $y \in Y$ and $x \in X$ such that $f(N(y)) \ge 1$ and $f(N(x)) \ge 1$. Then $f(X) = f(N(y)) \ge 1$ and $f(Y) = f(N(x)) \ge 1$. Thus $\gamma_{kt}(K_{m,n}) = f(X) + f(Y) \ge 2$. We now define an MTkSF $g: V \to \{-1, 0, 1\}$ as follows:

$$g(x) = \begin{cases} 1, & \text{one vertex in } X \text{ and one vertex in } Y, \\ 0, & \text{otherwise.} \end{cases}$$

Then g is an MTkSF of $K_{m,n}$ with weight 2, so $\gamma_{kt}^-(K_{m,n}) \leq g(V) = 2$. Consequently, if $n < k \leq m+n$, $\gamma_{kt}^-(K_{m,n}) = 2$.

Corollary 1.1 For any star $K_{1,n-1}(n \ge 2)$,

$$\gamma_{kt}^{-}(K_{1,n-1}) = \begin{cases} 2-n, & \text{if } 1 \leqslant k \leqslant n-1, \\ 2, & \text{if } k=n. \end{cases}$$

2 Lower bounds on γ_{kt}^-

Lemma 2.1 For any tree T=(V,E) on n vertices $(n \ge 2), \ \gamma_t^-(T) \ge 2$, and the equality holds if only if each vertex v of T is an odd vertex and v is at least adjacent to $\frac{d_T(v)-1}{2}$ leaves of T.

Proof Let f be any minimum minus total daminating function (MTDF) of T. If $M_f = \emptyset$, obviously, $\gamma_t^-(G) \geqslant 2$. So we may assume there exists a vertex $v \in M_f$. Let T be rooted at v. Since $f(N(v)) \geqslant 1$, at least one adjacent vertex x of v is assigned +1 under f. On the other hand, $f(N(x)) \geqslant 1$ and f(v) = -1, so at least two adjacent vertices x_1, x_2 of x are assigned +1 under f. If $M_f = \{v\}$, we have $\gamma_t^-(T) = |P_f| - |M_f| \geqslant 3 - 1 = 2$. If $M_f - \{v\} \neq \emptyset$, let $y_1 \in M_f - \{v\}$, and y_1 be a child of vertex y. Since $f(N(y)) \geqslant 1$, there exists at least one brother y_2 of y_1 that belongs to the set P_f . Consequently, we have $|P_f| \geqslant |M_f| + 2$. Thus $\gamma_t^-(T) = |P_f| - |M_f| \geqslant 2$.

From the definitions of STDN and MTDN, it is easily seen that $\gamma_t^s(G) \geqslant \gamma_t^-(G)$ for a graph G. Also, we know from [3] that $\gamma_t^s(T) = 2$ if and only if each vertex v of T is an odd vertex and v is at least adjacent to $(d_T(v) - 1)/2$ leaves of T. So, in this case, we obtain $\gamma_t^-(T) \leqslant \gamma_t^s(G) = 2$, and then $\gamma_t^-(G) = 2$. Consequently, the bound is sharp.

Theorem 2.1 For any tree T on n vertices $(n \ge 2)$,

$$\gamma_{kt}^{-}(T) \geqslant \begin{cases} 2-n, & \text{if } 1 \leqslant k \leqslant n-1, \\ 2, & \text{if } k=n, \end{cases}$$

with equality for $T = K_{1,n-1}$.

Proof Let f be any minimum MTkSF on T. By the definition of MTkSF, we know that $f(N(v)) \ge 1$ for at least one vertex v of T. Then at least one adjacent vertex x of v is assigned +1 under f, so we have $\gamma_{kt}^-(T) \ge 1 - (n-1) = 2 - n$. Thus, by Lemma 2.1 and Corollary 1.1, the result is true.

Theorem 2.2 For any graph G of order n with maximum degree Δ and minimum degree $\delta \geqslant 1$,

$$\gamma_{kt}^{-}(G) \geqslant \frac{(\delta - 3\Delta)n + 2(\Delta + 1)k}{\Delta + \delta}n.$$

Proof Let f be a minimum MTkSF on G = (V, E). Then $P_f = P_\Delta \cup P_\delta \cup P_\Theta$, where P_Δ and P_δ are sets of all vertices of P_f with degree equal to Δ and δ , respectively, and P_Θ contains all other vertices in P_f . We define $M_f = M_\Delta \cup M_\delta \cup M_\Theta$ and $Q_f = Q_\Delta \cup Q_\delta \cup Q_\Theta$ similarly to P_f . Further, for $i \in \{\Delta, \delta, \Theta\}$, let V_i be defined by $V_i = P_i \cup M_i \cup Q_i$. Then $n = |V_\Delta| + |V_\delta| + |V_\Theta|$. Since for at least k vertices $v \in V$, $f(N(v)) \geqslant 1$, we have

$$\sum_{v \in V} f(N(v)) \geqslant k - \Delta(n - k) = (\Delta + 1)k - \Delta n.$$

The sum $\sum_{v \in V} f(N(v))$ counts the value f(v) exactly d(v) times for each vertex $v \in V$, *i.e.*, $\sum_{v \in V} f(N(v)) = \sum_{v \in V} f(v)d(v)$. Thus

$$\sum_{v \in V} f(v)d(v) \geqslant (\Delta + 1)k - \Delta n.$$

Dividing the sum up into the six summations and replacing f(v) with the corresponding value of 1, -1 and 0 yield

$$\begin{split} \sum_{v \in P_{\Delta}} d(v) + \sum_{v \in P_{\delta}} d(v) + \sum_{v \in P_{\Theta}} d(v) - \sum_{v \in M_{\Delta}} d(v) \\ - \sum_{v \in M_{\delta}} d(v) - \sum_{v \in M_{O}} d(v) \geqslant (\Delta + 1)k - \Delta n. \end{split}$$

Thus we have

$$\Delta |P_{\Delta}| + \delta |P_{\delta}| + (\Delta - 1)|P_{\Theta}| - \Delta |M_{\Delta}|$$
$$-\delta |M_{\delta}| - (\delta + 1)|M_{\Theta}| \geqslant (\Delta + 1)k - \Delta n.$$

For $i \in \{\Delta, \delta, \Theta\}$, we replace $|P_i|$ with $|V_i| - |M_i| - |Q_i|$ in the above inequality.

Therefore,

$$\Delta |V_{\Delta}| + \delta |V_{\delta}| + (\Delta - 1)|V_{\Theta}|$$

$$\geqslant (\Delta + 1)k - \Delta n + 2\Delta |M_{\Delta}| + 2\delta |M_{\delta}| + (\Delta + \delta)|M_{\Theta}| + \Delta |Q_{\Delta}| + \delta |Q_{\delta}| + (\Delta - 1)|Q_{\Theta}|.$$

It follows that

$$\begin{split} 2\Delta n - (\Delta + 1)k \\ &\geqslant 2\Delta |M_{\Delta}| + 2\delta |M_{\delta}| + (\Delta + \delta)|M_{\Theta}| + (\Delta - \delta)|V_{\delta}| \\ &+ |V_{\Theta}| + \Delta |Q_f| - (\Delta - \delta)|Q_{\delta}| - |Q_{\Theta}| \\ &= 2\Delta |M_{\Delta}| + 2\delta |M_{\delta}| + (\Delta + \delta)|M_{\Theta}| + (\Delta - \delta)(|P_{\delta}| \\ &+ |M_{\delta}|) + (|P_{\Theta}| + |M_{\Theta}|) + \Delta |Q_f|. \\ &= 2\Delta |M_{\Delta}| + (\Delta + \delta)|M_{\delta}| + (\Delta + \delta + 1)|M_{\Theta}| \\ &+ (\Delta - \delta)|P_{\delta}| + |P_{\Theta}| + \Delta |Q_f| \\ &\geqslant (\Delta + \delta)|M_{\Delta}| + (\Delta + \delta)|M_{\delta}| + (\Delta + \delta)|M_{\Theta}| + \Delta |Q_f| \\ &= (\Delta + \delta)|M_f| + \Delta |Q_f|. \end{split}$$

Therefore,

$$|M_f| \leqslant \frac{2\Delta n - (\Delta + 1)k - \Delta|Q_f|}{\Delta + \delta}.$$

So

$$\begin{split} \gamma_{kt}^-(G) &= |P_f| - |M_f| = n - 2|M_f| - |Q_f| \\ &\geqslant n - 2\frac{2\Delta n - (\Delta + 1)k - \Delta|Q_f|}{\Delta + \delta} - |Q_f| \\ &\geqslant \frac{(\delta - 3\Delta)n + 2(\Delta + 1)k}{\Delta + \delta}. \end{split}$$

By Theorem 2.2, we immediately obtain the following result:

Theorem 2.3 For every r-regular graph G of order n.

$$\gamma_{kt}^-(G) \geqslant \frac{(r+1)k - rn}{r}.$$

In particular, if k = n, then we have

Corollary 2.1 For every r-regular graph G = (V, E) of order n,

$$\gamma_t^-(G) \geqslant \frac{n}{r}$$

and this bound is sharp.

Note The lower bound is sharp by considering a complete bipartite graph $K_{r,r}$. According to Theorem 1.3, we know $\gamma_{kt}^-(K_{r,r}) = 2 = (r+r)/r = n/r$.

Acknowledgment

The authors would like to thank the referees for their valuable comments.

References

- HAYNES T W, HEDETNIEMI S T, SLATER P J. Fundamentals of domination in graphs [M]. New York: Marcel Dekker, 1998.
- [2] HAYNES T W, HEDETNIEMI S T, SLATER P J. Domination in graphs: Advanced topics [M]. New York: Marcel Dekker, 1998.

- [3] XING H M, SUN L, CHEN X. On a generalization of signed total dominating functions of graphs [J]. Ars Combin, 2005, 77: 205–215.
- [4] ZELINKA B. Signed total domination number of a graph [J]. Czechoslovak Math J, 2001, 51(2): 225–229.
- [5] HARRIS L, HATTINGH J H, HENNING M A. Algorithmic aspects of minus total k-subdomination in graphs [J]. Australas J Combin, 2006, 36: 101–111.
- [6] HARRIS L, HATTINGH J H. The algorithm complexity of certain functional variations of total domination in graphs [J]. Australas J Combin, 2004, 29: 143–156.
- [7] KANG L Y, SHAN E F, CACCETT L. Total minus domination in k-partite graphs [J]. Discrete Math, 2006, 306(15): 1771–1775.
- [8] WANG H C, SHAN E F. Upper minus total domination of a 5-regular graph [J]. Ars Combin, 2009, 91: 429–438.
- [9] YAN H, YANG X Q, SHAN E F. Upper minus total domination in small-degree regular graphs [J]. Discrete Math, 2007, 307(21): 2453–2463.
- [10] BROERE I, DUNBAR J E, HATTINGH J H. Minus k-subdomination in graphs [J]. Ars Combin, 1998, 50: 177–186.
- [11] HATTINGH J H, MCRAE A A, UNGERER E. Minus k-subdomination in graphs III [J]. Australas J Combin, 1998, 17: 69–76.
- [12] HATTINGH J H, UNGERER E. Minus k-subdomination in graphs II [J]. Discrete Math, 1997, 171(1): 141–151.
- [13] HATTINGH J H, UNGERER E. The signed and minus k-subdomination numbers of comets [J]. Discrete Math, 1998, 183(1): 141–152.