

Neurological Prognostication of Post-Cardiac-Arrest Coma Patients Using EEG Data:

A Dynamic Survival Analysis Framework with Competing Risks

Xiaobin Shen¹, Jonathan Elmer², George H. Chen¹

¹Heinz College of Information Systems and Public Policy, Carnegie Mellon University, ²Department of Emergency Medicine, University of Pittsburgh

Funding: NSF CAREER award #2047981

Neurological Prognostication

Importance of *neurological prognostication* (forecast neurological outcome) for cardiac arrest patients in a *coma*

- Withdrawal of life-sustaining therapies (W-LST)
 → inevitable death
- Some patients who died from W-LST may have recovered if kept on life-sustaining therapies

Prior literature:

- Existing methods are not truly dynamic patients' time series must be the same; make predictions at a single time after cardiac arrest
- Issues with the common classification setup need to exclude patients who died from W-LST

Main Contributions

- Propose a framework for neurological prognostication of post-cardiac-arrest coma patients:
- works with <u>any</u> existing dynamic competing risks (DCR) model
- is <u>dynamic</u> and makes predictions for a patient over time as more time-series data becomes available
- model three competing risks simultaneously as to what happens first to a patient
- Derive a classifier from DCR model to aid decision-making
- Develop a patient-specific heat map visualization for the classifier

Dynamic Competing Risks (DCR) Model

Training data, patient i

- Feature vector with corresponding time stamp: when data collection ended, patient was stiple $Z_i := \left((X_i^{(1)}, X_i^{(2)}, \ldots, X_i^{(L_i)}), (T_i^{(1)}, T_i^{(2)}, \ldots, T_i^{(L_i)})\right)$ in a coma so true eventual earliest
- Event indicator (which event happens first): $C^{\text{outcome is unkn}}$ $K_i \in \{\text{awaken, death (not W-LST), W-LST, censoring}\},$
- Time of earliest occurring event: $Y_i \in \mathbb{R}$

Prediction target - <u>cumulative incidence function (CIF)</u>
The probability of event j happening within time duration $\Delta \geq 0$ starting from time $t \in \mathbb{R}$, given a time series observed up until time t

$$F_{j}(\Delta \mid z, t) := \mathbb{P}(Y \le t + \Delta, K = j \mid Z^{(\le t)} = z^{(\le t)}, Y > t) \quad \text{for } \Delta \ge 0$$

Examples of DCR models

- Fine and Gray (1996), using only last time step's data
- Dynamic-DeepHit (Lee et al., 2019)
- DDRSA (Venkata and Bhattacharyya, 2022), with modification
- SurvLatent ODE (Moon et al., 2022)

Generalizable Insights for Neurological Prognostication of Post-Cardiac-Arrest Coma Patients:

- The classical Fine and Gray (1999) model is highly competitive
- We recommend using a competing risks setup with the three competing events we model

Real-World Clinical Data Experiment

awaken

W-LST

censoring

death (not W-LST)

Model	Prediction time	Event	Evaluation time horizon		
Model			$\Delta = 24 \text{ hrs}$	$\Delta = 48 \text{ hrs}$	$\Delta = 72 \text{ hrs}$
	t = 6	awaken	$\textbf{0.853}\pm\textbf{0.017}$	$\textbf{0.874}\pm\textbf{0.012}$	$\textbf{0.875}\pm\textbf{0.012}$
		death (not W-LST)	0.633 ± 0.171	0.673 ± 0.081	0.684 ± 0.061
Fine and Gray		W-LST	0.691 ± 0.063	$\textbf{0.634}\pm\textbf{0.050}$	$\textbf{0.652}\pm\textbf{0.039}$
Time and Gray	t = 12	awaken	0.831 ± 0.032	0.851 ± 0.023	0.854 ± 0.023
		death (not W-LST)	$\textbf{0.751}\pm\textbf{0.110}$	$\textbf{0.709}\pm\textbf{0.040}$	0.713 ± 0.044
		W-LST	0.709 ± 0.082	$\textbf{0.675}\pm\textbf{0.035}$	$\textbf{0.681}\pm\textbf{0.024}$
	t = 6	awaken	$0.851 {\pm} 0.018$	$0.867 {\pm} 0.012$	$0.864 {\pm} 0.017$
		death (not W-LST)	$0.702 \!\pm\! 0.080$	$\bf0.684 {\pm} 0.096$	$0.697 {\pm} 0.071$
Dynamic-DeepHit		$W ext{-} ext{LST}$	$0.742 {\pm} 0.103$	$0.612{\pm}0.062$	$0.621 {\pm} 0.031$
Dynamic Deepine	t = 12	awaken	$0.847{\pm}0.038$	$0.859{\pm}0.020$	$0.858{\pm}0.024$
		death (not W-LST)	$0.701 {\pm} 0.078$	$0.699 {\pm} 0.042$	$\bf0.722 {\pm} 0.044$
		$W ext{-} ext{LST}$	$0.739 {\pm} 0.076$	$0.640{\pm}0.028$	$0.666 {\pm} 0.017$
	t = 6	awaken	$0.821 {\pm} 0.032$	$0.845 {\pm} 0.028$	0.836 ± 0.030
		death (not W-LST)	$0.599 {\pm} 0.072$	$0.615 {\pm} 0.059$	$0.633 {\pm} 0.075$
DDRSA		$W ext{-} ext{LST}$	$0.677 {\pm} 0.151$	$0.626{\pm}0.121$	0.637 ± 0.100
	t = 12	awaken	0.825 ± 0.021	0.818 ± 0.025	0.798 ± 0.027
		death (not W-LST)	$0.681 {\pm} 0.095$	$0.651 {\pm} 0.086$	$0.651 {\pm} 0.074$
		W-LST	0.663 ± 0.126	0.652 ± 0.092	0.670 ± 0.068

Figure 3: Test set ROC curve (average curve \pm standard deviation intervals across five experimental repeats). The x-axis is on a log scale to emphasize the low FPR regime.

Ablation Study with Fewer Events

- I. With two competing risks:
- awaken

Proportion of

the first event

- death (not W-LST)
- 2. With single event:
- awaken
- A/ICT)

Three competing events setup provided more information without sacrificing accuracy

Table 3: Test set c-indices (average \pm standard deviation across five experimental repeats) for the Fine and Gray model and Dynamic-DeepHit with two competing events. The entries with bold values represent the highest average c-index for each (event, t, Δ) combination

_	Model	Prediction time	Event	Evaluation time horizon		
				$\Delta = 24 \text{ hrs}$	$\Delta = 48 \text{ hrs}$	$\Delta = 72 \text{ hrs}$
	Fine and Gray	t = 6	awaken death (not W-LS)	0.835 ± 0.030 0.723 ± 0.040	$\begin{array}{c} \textbf{0.870} \pm \textbf{0.012} \\ \textbf{0.697} \pm \textbf{0.075} \end{array}$	$\begin{array}{c} \textbf{0.867} \pm \textbf{0.008} \\ \textbf{0.707} \pm \textbf{0.061} \end{array}$
		t = 12	awaken death (not W-LS)	0.822 ± 0.020 0.664 ± 0.272	0.855 ± 0.014 0.678 ± 0.146	0.851 ± 0.014 0.706 ± 0.101
	Dynamic-DeepHit	t = 6	awaken death (not W-LS)	0.852 ± 0.019 0.638 ± 0.074	0.858 ± 0.011 0.622 ± 0.073	$0.855 \pm 0.007 \\ 0.642 \pm 0.050$
		t = 12	awaken death (not W-LS)	0.842 ± 0.017 0.599 ± 0.092	0.860 ± 0.007 0.639 ± 0.095	0.857 ± 0.007 0.649 ± 0.078

Table 4: Test set c-indices (average \pm standard deviation across five experimental repeats) for the Fine and Gray model and Dynamic-DeepHit with a single event. The entries with bold values represent the highest average c-index for each (event, t, Δ) combination.

Evaluation time horizon

	Model	Prediction time	Event			
				$\Delta = 24 \text{ hrs}$	$\Delta = 48 \text{ hrs}$	$\Delta = 72 \text{ hrs}$
	Fine and Gray	t = 6	awaken	$\textbf{0.864}\pm\textbf{0.021}$	$\textbf{0.883} \pm \textbf{0.013}$	$\textbf{0.877} \pm \textbf{0.010}$
		t = 12	awaken	0.843 ± 0.023	$\textbf{0.866} \pm \textbf{0.018}$	$\textbf{0.861} \pm \textbf{0.015}$
	Dynamic-DeepHit	t = 6	awaken	0.850 ± 0.031	0.861 ± 0.019	0.855 ± 0.021
	Dynamic Deepine	t = 12	awaken	0.845 ± 0.021	0.855 ± 0.014	0.855 ± 0.018

(b) $t = 12, \Delta = 24$

Figure 4: Test set ROC curve in the case of modeling two competing events (average curve ± standard deviation intervals across five experimental repeats). The x-axis is on a log scale to emphasize the low FPR regime.

Framework with DCR Model

A Derived Classifier from DCR Model

Otherwise: predict negative (good)

Key idea: condition on the event W-LST not happening for test patient

Reason: the classifier is meant to help with deciding on whether to withdraw the test patient from life-sustaining therapies so we assume that it has not happened probability death

Three competing events, only one happens first:

- awakening
- death (not W-LST)
- W-LST

Patient-Specific Visualization

Example Patient 2: still in a coma at hour 118

Goal

Better formulate the neurological

Help clinicians interpret the information

prognostication problem

contained in the CIFs

Future Work

- New DCR model that considers events happening recurrently, not only first hitting time
- Better evaluation of the derived binary classifier with censoring data
- A decision support system that is deployment-ready

Alternative approach to deriving a binary classifier (worth investigating further) Instead of conditioning on W-LST not happening, reason about counterfactual outcome of whether

patient would have awakened or would have died (not of W-LST) if W-LST were not an option • e.g., assume that among patients who died from W-LST, a fraction $\alpha \in [0,1]$ of them would have awaken instead if W-LST were not an option

$$\widetilde{P}_{\text{awaken}}(\Delta \mid z, t) = F_{\text{awaken}}(\Delta \mid z, t) + F_{\text{W-LST}}(\Delta \mid z, t) \times \alpha$$

Note: α is unknown so we make heat maps of $\widetilde{P}_{\mathrm{awaken}}$ for different values of α

