Millikanov poskus

Samo Krejan

maj 2025

1 Uvod

Millikanov poskus je zgodovinsko zelo pomemben, saj je prvi določil vrednost osnovnega naboja e_0 . To je dosegel tako, da je obravnaval nabite oljne kapljice v zraku pod uplivom električnega polja E. Ko kaplica neha pospeševati, nanjo delujejo tri sile, katerih vsota je enaka 0. Te sile so; gravitacijska sila, sila upora (Stokesova sila) in električna sila. Električno polje lahko kaže v smeri gravitacijskega pospeška (+) ali pa proti njemu (-). Ravnovesje sil se izrazi kot 1:

$$\frac{4\pi r^3}{3}(\rho_0 - \rho_z)g \pm ne_0 E = 6\pi r \eta v_{\pm}$$
 (1)

Tu je ρ_0 gostota olja, ρ_z gostota zraka, E = U/d jakost električnega polja, e_0 osnovni naboj, n število osnovnih nabojev v kapljici in η viskoznost zraka. Če za posamezno kaplico izmerimo hitrost v polju, usmerjenem dol in gor, lahko določimo radij kapljice 2, ter naboj kapljice 3 kot:

$$r = \sqrt{\frac{9\eta(v_+ + v_-)}{4g(\rho_0 - \rho_z)}} \tag{2}$$

$$ne_0 = \frac{3\pi r\eta}{E}(v_+ - v_-) \tag{3}$$

2 Potrebščine

- Millikanov aparat: kondenzator, razpršilec z oljem, LED za osvetljevanje,
- mikroskop s kamero, ki je priključena na računalnik,
- usmernik za 300V,
- preklopnik smeri napetosti,
- voltmeter.

3 Naloga

- 1. Izmeri hitrosti gibanja kapljiv v električnem in gravitacijskem polju,
- 2. iz meritve izračunaj hitrost kapljic in njihov naboj, ter določi osnovni naboj.

4 Rezultati in analiza

Najprej smo izmerili napetost na kondenzatorju, ki smo ji nato le preklapljali smer. Napetost je bila $250 \pm 1~V$, razmak med elektrodama kondenzatorja pa $5.0 \pm 0.1~mm$ kar nam da električno polje v kondenzatorju E = 5.0~pm1~V/m. Za gostoto olja smo uporabili $\rho_0 = 973kg/m^3$, za gostoto zraka pa $\rho_z = 1.3kg/m^3$. Viskoznost zraka je $\eta = 1.83 \cdot 10^{-5}~Pas$. V tabelo smo nato zapisali preračunane vrednosti za r in ne, ter nato določili še posamezne vrednosti za n in e_0 . Glej tabelo 1:

V-	v+	r	ne	$\mid n \mid$	e_0
29.0+/-2.0	33.0+/-2.0	0.518 + / -0.012	(7+/-5)e-21	0	NaN
40.0 + / -2.0	43.0 + / -2.0	0.599 + / -0.010	(6+/-6)e-21	0	NaN
60.0 + / -2.0	58.0 + / -2.0	0.714 + / -0.009	(5+/-7)e-21	0	NaN
30.0 + / -2.0	35.0 + / -2.0	0.530 + / -0.012	(9+/-5)e-21	0	NaN
64.0 + / -2.0	69.0 + / -2.0	0.758 + / -0.008	(1.3+/-0.7)e-20	0	NaN
133.0 + / -2.0	138.0 + / -2.0	1.082 + / -0.006	(1.9+/-1.1)e-20	0	NaN
35.0 + / -2.0	45.0 + / -2.0	0.588 + / -0.010	(2.0 + / -0.6)e-20	0	NaN
60.0 + / -2.0	-11.0+/-2.0	0.460 + / -0.013	(1.13 + /-0.06)e-19	0	NaN
54.0 + / -2.0	120.0 + / -2.0	0.867 + / -0.007	(1.97 + /-0.09)e-19	1	(1.97 + / -0.09)e-19
42.0 + / -2.0	112.0 + / -2.0	0.816 + / -0.007	(1.97 + /-0.09)e-19	1	(1.97 + / -0.09)e-19
28.0 + / -2.0	105.0 + / -2.0	0.758 + / -0.008	(2.01+/-0.09)e-19	1	(2.01 + / -0.09)e-19
90.0 + / -2.0	-48.0+/-2.0	0.426 + / -0.014	(2.03+/-0.09)e-19	1	(2.03 + / -0.09)e-19
101.0 + / -2.0	20.0 + / -2.0	0.723 + / -0.008	(2.02 + /-0.08)e-19	1	(2.02 + / -0.08)e-19
92.0 + / -2.0	-15.0+/-2.0	0.577 + / -0.011	(2.13+/-0.08)e-19	1	(2.13 + / -0.08)e-19
60.0 + / -2.0	129.0 + / -2.0	0.904+/-0.007	(2.15 + /-0.10)e-19	1	(2.15 + / -0.10)e-19
96.0 + / -2.0	-58.0+/-2.0	0.405 + / -0.015	(2.15 + /-0.10)e-19	1	(2.15 + / -0.10)e-19
-84.0 + / -2.0	109.0 + / -2.0	0.329 + / -0.019	(2.19+/-0.14)e-19	1	(2.19+/-0.14)e-19
95.0 + / -2.0	-20.0+/-2.0	0.569 + / -0.011	(2.26 + /-0.08)e-19	1	(2.26 + / -0.08)e-19
-10.0 + / -2.0	98.0+/-2.0	0.617 + / -0.010	(2.30 + /-0.08)e-19	1	(2.30 + / -0.08)e-19
-23.0 + / -2.0	97.0 + / -2.0	0.565 + / -0.011	(2.34+/-0.09)e-19	1	(2.34 + / -0.09)e-19
-7.0 + / -2.0	102.0 + / -2.0	0.641 + / -0.010	(2.41 + /-0.09)e-19	1	(2.41 + / -0.09)e-19
6.0 + / -2.0	108.0 + / -2.0	0.702 + / -0.009	(2.47 + /-0.09)e-19	1	(2.47 + / -0.09)e-19
-40.0 + / -2.0	$\mid 101.0 + / \text{-}2.0 \mid$	0.513 + / -0.012	(2.50 + /-0.09)e-19	1	(2.50 + / -0.09)e-19
-8.0 + / -2.0	104.0 + / -2.0	0.644 + / -0.009	(2.49+/-0.09)e-19	1	(2.49 + / -0.09)e-19
-50.0 + / -2.0	106.0 + / -2.0	0.492 + / -0.012	(2.65 + /-0.10)e-19	1	(2.65 + / -0.10)e-19
-97.0 + / -2.0	129.0 + / -2.0	0.372 + / -0.016	(2.90+/-0.15)e-19	1	(2.90 + / -0.15)e-19
-132.0+/-2.0	$\mid 153.0 + / \text{-}2.0 \mid$	0.301 + / -0.020	(2.96+/-0.21)e-19	1	(2.96 + / -0.21)e-19
-66.0 + / -2.0	123.0 + / -2.0	0.496 + / -0.012	(3.23+/-0.11)e-19	1	(3.23 + / -0.11)e-19
-104.0 + / -2.0	150.0 + / -2.0	0.446 + / -0.014	(3.91+/-0.15)e-19	1	(3.91 + / -0.15)e-19
-62.0 + / -2.0	$\mid 153.0 + / \text{-}2.0 \mid$	$\mid 0.627 + / \text{-}0.010 \mid$	(4.65 + /-0.13)e-19	1	(4.65 + / -0.13)e-19

Tabela 1: Tabela z izmerjenimi in preračunanimi vrednostmi glede na enačbe 2, 3

Iz vrednosti e_0 določimo osnovni naboj kot:

$$e_0 = (2.53 \pm 0.05)10^{-19} As$$

Vrednosti n smo določili iz komulativnega grafa N(e), kjer vidimo velik preskok, ki nam govori o za eno večjem osnovnem naboju. Glej 1:

Slika 1: Komulativen prikaz razporeditve naboja po kapljicah