Kevin Dunn

4511W HW # 3

1.

2. (1) no pure Nash equilibrium

Expected 4.625

Player 2, P = 37.5%

Expected 2.75

(3) (9,1), (2,8)

(4)

```
3. (1) 0k: {(t = 0 \lor t = 120)}
     4k: \{(10 \le t \le 110) \land (t > 0k_t + 10) \land (t > 8k_t - 10) \}
     8k: \{(20 \le t \le 100) \land (t > 4k_t + 10) \land (t > 12k_t - 10)\}
     12k: \{(30 \le t \le 90) \land (t > 8k_t + 10) \land (t > 16k_t - 10)\}
     16k: \{(40 \le t \le 80) \land (t > 12k_t + 10)\}
(2) 0k: {(t = 0 \lor t = 120)}
     4k: \{(10 \le t \le 110) \land (t > 0k_t + 10) \land (t > 8k_t - 10) \land (t \ne t + 20)\}
     8k: (20 \le t \le 100) \land (t > 4k_t + 10) \land (t > 12k_t - 10) \land (t \ne t + 20)
     12k: \{(30 \le t \le 90) \land (t > 8k_t + 10) \land (t > 16k_t - 10) \land (t \ne t + 20)\}
     16k: \{(40 \le t \le 80) \land (t > 12k_t + 10) \land (\neg 50 \lor \neg 60) \land (t \ne t + 20)\}
 (3) 0k: {0, <del>10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110,</del> 120}
     4k: {<del>0</del>, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, <del>120</del>}
     8k: {<del>0</del>, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, <del>120</del>}
      12k: {<del>0</del>, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, <del>120</del>}
      16k: {<del>0</del>, 10, 20, 30, 40<del>, 50, 60</del>, 70, 80, 90, 100, 110, <del>120</del>}
  (4) 0k: {0, <del>10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110,</del> 120}
      4k: {<del>0</del>, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, <del>120</del>}
      8k: {<del>0, 10, </del>20, 30, 40, 50, 60, 70, 80, 90, 100, <del>110, 120</del>}
      12k: {<del>0, 10, 20, 30,</del> 40, 50, 60, 70, 80, 90<del>, 100, 110, 120</del>}
      16k: {<del>0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120</del>}</del>
 (5) 0k: {0, <del>10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110,</del> 120}
      4k: {<del>0</del>, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, <del>120</del>}
      8k: {<del>0, 10,</del> 20, 30, 40, 50, 60, 70, 80, 90, 100, <del>110, 120</del>}
      12k: {<del>0, 10, 20, 30,</del> 40, 50, 60, 70, 80, 90<del>, 100, 110, 120</del>}
      16k: {<del>0, 10, 20, 30, 40, 50, 60</del>, 70, 80<del>, 90, 100, 110, 120</del>}
 (6)
```

Time	0	10	20	30	40	50	60	70	80	90	100	110	120
Height	0k	4k	8k	12k	12k	12k	12k	16k	16k	12k	8k	4k	0k

4. At each level there are 2^d nodes. On each level you can eliminate 1 branch out of every pair except for the first 2 branches on each level. This means you can eliminate $\frac{2^{d-1}-1}{2^d}$ branches from each level. There are d levels in a tree, so $\sum_{k=1}^d \frac{2^{k-1}-1}{2^k} = \frac{d}{2} + 2^{-d} - 1$.

5. (1) 10 cheaters 15 simpletons

(2)

Mistake	0%	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%
Dominant	S	S	C	C	С	C	С	С	С	С	С