

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 99/47497 (11) International Publication Number: A2C07C 315/00 (43) International Publication Date: 23 September 1999 (23.09.99)

PCT/CA99-00212

(21) International Application Number:

12 March 1999 (12.03.99) (22) International Filing Date:

(30) Priority Data:

13 March 1998 (13.03.98) US 60-077,990 9815856.1 21 July 1998 (21.07.98) GB

(71) Applicant (for all designated States except US): MERCK FROSST CANADA & CO. [CA/CA]: 16711 Trans-Canada Highway, Kirkland, Quebec H9H 3L1 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GAREAU, Yves [CA/CA], (CA), LABELLE, Marc [CA/CA]; JUTEAU, Helene [CA/CA]; (CA), GALLANT, Michel [CA CA]: (CA): LACHANCE, Nicolas [CA/CA]: (CA): BELLEY, Michel [CA.CA]: 16711 Trans-Canada Highway, Kirkland, Quebec H9H 3L1 (CA).

(74) Agent: MURPHY, Kevin, P.: Swabey Ogilvy Renault, Suite 4600, 1981 McGill College, Montreal, Quebec H3A 2Y3 (CA).

(81) Designated States: AE, AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IN. IS, JP, KG, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: CARBOXYLIC ACIDS AND ACYLSULFONAMIDES, COMPOSITIONS CONTAINING SUCH COMPOUNDS AND METHODS OF TREATMENT

(57) Abstract

Compounds of formula (I), as well as pharmaceutically acceptable salts, hydrates and esters thereof, are disclosed. The compounds are useful for treating or preventing prostaglandin mediated diseases. Pharmaceutical compositions containing such compounds and methods of treatment are also included.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	St	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
λί	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
37.	Azerbanan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barhados	GH	Ghana	MG	Madagascar	T.J	Tajikistan
BE	Belgium	GN	Guinea	MK	The termer Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	110	Hungary	MI.	Mali	TT	Trinidad and Tobago
BJ	Benn	ÜE.	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	11,	Israel	MR	Mauritania	UG	Uganda
BY	Betarus	18	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE.	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL.	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon	•••	Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuha	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Li	Liechtenstein	SD	Sudan		
DK.	Denmark	LK	Sri Lanka	SE	Sweden		
EE.	Estonia	LR	Liberia	SG	Singapore		

10

15

20

25

30

CARBOXYLIC ACIDS AND ACYLSULFONAMIDES, COMPOSITIONS CONTAINING SUCH COMPOUNDS AND METHODS OF TREATMENT

BACKGROUND OF THE INVENTION

The present invention relates to compounds which are useful for treating or preventing prostaglandin mediated diseases, methods of treatment and pharmaceutical compositions containing such compounds. The compounds are structurally different from conventional NSAIDs and opiates, and are antagonists of the pain and inflammatory effects of E-type prostaglandins.

Two review articles describe the characterization and therapeutic relevance of the prostanoid receptors as well as the most commonly used selective agonists and antagonists: *Eicosanoids: From Biotechnology to Therapeutic Applications*, Folco, Samuelsson, Maclouf, and Velo eds. Plenum Press, New York, 1996, chap. 14, 137-154 and Journal of Lipid Mediators and Cell Signalling, 1996, 14, 83-87. An article from *The British Journal of Pharmacology* (1994, 112, 735-740) suggests that Prostaglandin E₂ (PGE₂) exerts allodynia through the EP₁ receptor subtype and hyperalgesia through EP₂ and EP₃ receptors in the mouse spinal cord.

Thus, selective prostaglandin ligands, agonists or antagonists, depending on which prostaglandin E receptor subtype is being considered, have anti-inflammatory, antipyretic and analgesic properties, and in addition inhibit hormone-induced uterine contractions. Moreover, the compounds have anti-cancer effects.

The compounds have a reduced potential for gastrointestinal toxicity, a reduced potential for renal side effects, a reduced effect on bleeding times and a lessened ability to induce asthma attacks in aspirin-sensitive asthmatic subjects.

35

25

35

5 SUMMARY OF THE INVENTION

The present invention relates to compounds represented by formula I:

as well as pharmaceutically acceptable salts, hydrates and esters thereof, wherein:

HET represents a 5-12 membered monocyclic or bicyclic aromatic ring system containing 0-3 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$ wherein m is 0 or 1 and n is 0, 1 or 2;

A is a one or two atom moiety and is selected from the group consisting of: -W-, -C(O)-, -C(R^7)_2-W-, -W-C(R^7)_2-, -CR^7(OR^{20})-, -C(R^7)_2-, -C(R^7)_2-C(OR^{20})R^7-, -C(R^7)_2-C(R^7)_2- or -CR^7=CR^7-, wherein W represents O, S(O)_n or NR17, with n as previously defined and R^{17} as defined below;

X represents a 5-10 membered monocyclic or bicyclic aryl or heteroaryl group having 1-3 heteroatoms selected from $O,\,S(O)_n$ and $N(O)_m$, and optionally substituted with R14 and R15, and A and B are attached to the aryl or heteroaryl group ortho relative to each other;

Y represents O, $S(O)_n$, NR17, a bond or -CR18 = CR18.;

B represents $-\left(C(R18)_2\right)_p\text{-Y-}\left(C(R18)_2\right)_q\text{ -}$

wherein p and q are independently 0-3, such that when Y represents O, $S(O)_n$, NR17 or $\ \ -CR18=CR18$, p + q = 0-6, and when Y represents a bond, p + q is 1-6;

Z is OH or NHSO $_{\scriptscriptstyle 2}$ R $^{\scriptscriptstyle 19}$,

 $R^1\ R^2\ and\ R^3\ independently\ represent\ H,\ halogen,\ lower alkyl,\ lower\ alkenyl,\ lower\ alkenyl,\ lower\ alkenyl-HET(R^a)_{4-9}\ ,\ -(C(R^4)_2)_pSR^5,\ -(C(R^4)_2)_pOR^8,\ -(C(R^4)_2)_pN(R^6)_2,\ CN,\ NO_2,\ -(C(R^4)_2)_pC(R^7)_3,\ -CO_2R^9,\ -CON(R^6)_2\ or\ -(C(R^4)_2)_pS(O)_nR^{10},\ wherein\ n\ and\ p\ are\ as\ previously\ defined;$

each R4 is independently H, F, CF3 or lower alkyl,

15

20

25

30

35

or two R^4 groups are taken in conjunction and represent a ring of up to six atoms, optionally containing one heteroatom selected from O, $S(O)_n$ or $N(O)_m$;

each R^{5} is independently lower alkyl, lower alkenyl, lower alkynyl, $CF_{3},$ lower alkyl-HET, lower alkenyl-HET or -(C(R^{18})_{2})_{p}Ph(R^{11})_{0-2}

each R^6 is independently H, lower alkyl, lower alkenyl, lower alkynyl, CF_3 , Ph, Bn and when two R^6 groups are attached to N they may be taken in conjunction and represents a ring of up to 6 atoms, optionally containing an additional heteroatom selected from O. $S(O)_n$ or $N(O)_m$;

each R^7 is independently H, F, CF_3 or lower alkyl, and when two R^7 groups are presents, they may be taken in conjunction and represent an aromatic or aliphatic ring of 3 to 6 members containing from 0-2 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$;

each R^8 represents H or R^5 ; each R^9 is independently H, lower alkyl, lower alkenyl, lower alkynyl, Ph or Bn;

each R^{10} is independently lower alkyl, lower alkenyl, lower alkynyl, CF_3 , $Ph(R^{11})_{0-3}$, $CH_2Ph(R^{11})_{0-3}$ or $N(R^6)_2$;

each R^{11} is independently lower alkyl, $SR^{20},\,OR^{20},\,N(R^6)_2,$ -CO $_2R^{12},\,$ -CON($R^6)_2,\,$ -C(O)R $^{12},\,$ CN, CF $_3,\,$ NO $_2$ or halogen;

each R¹² is independently H, lower alkyl or benzyl; each R¹³ is independently H, halo, lower alkyl, O-lower alkenyl, S-lower alkyl, N(R⁶)₂, CO₂R¹², CN, CF₃ or NO₂;

 R^{14} and R^{15} are independently lower alkyl, halogen, $CF_3,$ $OR^{16},$ $S(O)_nR^{16}$ or $C(R^{16})_2OR^{17}$;

each R^{16} is independently H, lower alkyl, lower alkenyl, Ph. Bn or ${\rm CF}_{3,}$

each R¹⁷ is independently H, lower alkyl or Bn;

each R¹⁸ is independently H, F or lower alkyl, and when two R¹⁸ groups are present, they may be taken in conjunction and represent a ring of 3 to 6 members comprising carbon atoms and optionally one heteroatom chosen from O, S(O)_n or N;

25

35

each R^{19} is lower alkyl, lower alkenyl, lower alkynyl, CF_3 , $HET(R^a)_{4-9}$, lower alkyl- $HET(R^a)_{4-9}$ or lower alkenyl- $HET(R^a)_{4-9}$; each R^{20} is independently H, lower alkyl, lower alkenyl, lower alkynyl, CF_3 or $Ph(R^{13})_2$ and

each Ra is independently selected from the group consisting of:
H. OH, halo, CN, NO2, amino, C1-6alkyl, C2-6alkenyl, C2-6alkynyl,
C1-6 alkoxy, C2-6alkenyloxy, C2-6alkynyloxy, C1-6alkylamino,
di-C1-6alkylamino, CF3, C(O)C1-6alkyl, C(O)C2-6alkenyl, C(O) C26alkynyl, CO2H, CO2C1-6alkyl, CO2C2-6alkenyl, and CO2C2-6alkynyl,

said alkyl, alkenyl, alkynyl and the alkyl portions of alkylamino and dialkylamino being optionally substituted with 1-3 of: hydroxy, halo, aryl, C₁₋₆ alkoxy, C₂₋₆alkenyloxy, C₂₋₆alkynyloxy, CF₃, C(O)C₁₋₆alkyl, C(O)C₂₋₆alkenyl, C(O)C₂₋₆alkynyl, CO₂H, CO₂C₁₋₆alkyl, CO₂C₂₋₆alkenyl, NH₂, NHC₁₋₆alkyl and N(C₁₋₆alkyl)₂.

Pharmaceutical compositions are also included which are comprised of a compound of formula I in combination with a pharmaceutically acceptable carrier.

A method of treating or preventing a prostaglandin mediated disease is also included which is comprised of administering to a mammalian patient in need thereof, a compound of formula I in an amount which is effective for treating or preventing a prostaglandin mediated disease.

30 DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to carboxylic acids and acylsulfonamides, which are ligands at prostaglandin receptors, as well as a method for treating or preventing a prostaglandin mediated disease comprising administering to a patient in need of such a treatment of an amount of compound of Formula I which is effective for treating or preventing a prostaglandin mediated disease.

The invention described in this patent application is described using the following definitions unless otherwise indicated.

20

25

30

35

5 HET represents a 5-12 membered aromatic ring system containing 0-3 heteroatoms selected from O, S(O)_n and N wherein n is 0, 1 or 2. HET may be substituted with up to three substituents on the aromatic ring system, R1, R2 and R3, "Aromatic ring systems" as used herein includes aryl and heteroaryl groups such as benzene, naphthalene, biphenyl, pyridine, quinoline, isoquinoline, furan. 10 benzofuran, thiophene, benzothiophene, oxazole, thiazole, imidazole, benzothiazole, triazole, 1,2,5-thiadiazole, thienopyridine, indole, tetrazole, imidazole, benzoxazole, 1,2-methylenedioxybenzene and pvrrole.

HET2 is a subset of HET and represents a member selected from the group consisting of: phenyl, thienyl, naphthyl, furanyl, thiazolyl, imidazolyl and indolyl.

Aryl refers to aromatic 6-10 membered groups having 1-2 rings and alternating (resonating) double bonds. Examples include phenyl, biphenyl and naphthyl.

Heteroarvl refers to aromatic 5-12 membered groups having alternating (resonating) double bonds and containing from 1-4 heteroatoms selected from O, S(O)_n and N. Examples include the following: quinoline, furan, benzofuran, thiophene, benzothiophene, thiazole, benzothiazole, 1,2,5-thiadiazole, thienopyridine, oxazole, indole, isoindole, pyridine, isoquinoline, imidazole, thiazole, triazole, 1.3methylene dioxobenzene, pyrrole and naphthyridine.

Heterocyclyl refers to non-aromatic 5-12 membered cyclic groups having 1-4 heteroatoms selected from O, S(O)_n and N. Examples of heterocyclic groups are piperidine, piperazine, pyrrolidine, tetrahydrofuran, tetrahydropyran and morpholine.

X represents a 5-10 membered monocyclic or bicyclic aryl or heteroaryl group having 1-3 heteroatoms selected from O, S(O)n and N(O)m, and optionally substituted with R14 and R15, and A and B are attached to the aryl or heteroaryl group X in positions which are orthorelative to each other. Examples are selected from the group consisting of: phenyl, naphthyl, biphenyl, quinoline, furan, benzofuran, pyridyl, pyrrole, thiophene, benzothiophene, thiazole, benzothiazole, 1.2.5-

15

20

25

5 thiadiazole, triazole, 1.2-methylenedioxybenzene, thienopyridine, oxazole and indole.

The terms alkyl, alkenyl, and alkynyl mean linear, branched, and cyclic structures and combinations thereof.

"Lower alkyl" means alkyl groups of from 1 to 7 carbon atoms. Examples of lower alkyl groups include methyl, ethyl, propyl, cyclopropyl, isopropyl, butyl, s- and t-butyl, pentyl, cyclopentyl, hexyl, cyclohexyl, heptyl, and the like. When propyl and butyl are recited without the isomeric form being specified, these include all isomers thereof.

"Lower alkenyl" means alkenyl groups of 2 to 7 carbon atoms. Examples of lower alkenyl groups include vinyl, allyl, isopropenyl, pentenyl, hexenyl, heptenyl, 1-propenyl, 2-butenyl, 2-methyl-2-butenyl, cyclopropen-1-yl, cyclohexen-3-yl and the like. When cis or trans is not specified, both are intended in pure form as well as in the form of a mixture of isomers.

"Lower alkynyl" means alkynyl groups of 2 to 7 carbon atoms. Examples of lower alkynyl groups include ethynyl, propargyl, 3-methyl-1-pentynyl, 2-heptynyl, 2-(cyclopropyl)ethenyl, 3-(cyclobutyl)-1-propynyl and the like.

Halogen (halo) includes F, Cl, Br and I.

The following abbreviations have the indicated meanings:

	1110 101101		or extractions make the intalcated meanings.
	AIBN	=	2.2'-azobisisobutyronitrile
	B.P.	=	benzoyl peroxide
	Bn	=	benzyl
30	CCl_4	=	carbon tetrachloride
	D	=	-O(CH ₂) ₃ O-
	DAST	=	diethylamine sulfur trifluoride
	DCC	=	dicyclohexyl carbodiimide
	DCI	=	1-(3-dimethylaminopropyl)-3-ethyl
35			carbodiimide
	DEAD	=	diethyl azodicarboxylate
	DIBAL	=	diisobutyl aluminum hydride
	DME	=	ethylene glycol dimethylether
	DMAP	=	4-(dimethylamino)pyridine
40	DMF	=	N,N-dimethylformamide
	DMSO	=	dimethyl sulfoxide
	Et3N	=	triethylamine
	LDA	=	lithium diisopropylamide

PCT/CA99/00212

WO 99/47497

40

5	m-CPBA	=	metachloroperbenzoic acid
	NBS	=	N-bromosuccinimide
	NSAID	=	non-steroidal anti-inflammatory drug
	PCC	=	pyridinium chlorochromate
	PDC	=	pyridinium dichromate
10	Ph	=	phenyl
	1,2- P h	=	1,2-benzenediyl
	Pyr	=	pyridinediyl
	Qn	=	7-chloroquinolin-2-yl
	Rs	=	-CH ₂ SCH ₂ CH ₂ Ph
15	r.t.	=	room temperature
	rac.	=	racemic
	THF	=	tetrahydrofuran
	THP	=	tetrahydropyran-2-yl
00	All I manipai		
20	Alkyl group abbreviation		mother!
20	Me	=	methyl
20	Me Et	= =	ethyl
20	Me Et n-Pr	= = =	ethyl normal propyl
	Me Et n-Pr i-Pr	= = = =	ethyl normal propyl isopropyl
2025	Me Et n-Pr i-Pr n-Bu	= = =	ethyl normal propyl isopropyl normal butyl
	Me Et n-Pr i-Pr n-Bu i-Bu	= = = = =	ethyl normal propyl isopropyl normal butyl isobutyl
	Me Et n-Pr i-Pr n-Bu i-Bu s-Bu	= = = = = = = = = = = = = = = = = = = =	ethyl normal propyl isopropyl normal butyl isobutyl secondary butyl
	Me Et n-Pr i-Pr n-Bu i-Bu s-Bu t-Bu	= = = = = = = = = = = = = = = = = = = =	ethyl normal propyl isopropyl normal butyl isobutyl secondary butyl tertiary butyl
25	Me Et n-Pr i-Pr n-Bu i-Bu s-Bu t-Bu c-Pr	= = = = = = = = = = = = = = = = = = = =	ethyl normal propyl isopropyl normal butyl isobutyl secondary butyl tertiary butyl cyclopropyl
	Me Et n-Pr i-Pr n-Bu i-Bu s-Bu t-Bu c-Pr c-Bu	= = = = = = = = = = = = = = = = = = = =	ethyl normal propyl isopropyl normal butyl isobutyl secondary butyl tertiary butyl cyclopropyl cyclobutyl
25	Me Et n-Pr i-Pr n-Bu i-Bu s-Bu t-Bu c-Pr	= = = = = = = = = = = = = = = = = = = =	ethyl normal propyl isopropyl normal butyl isobutyl secondary butyl tertiary butyl cyclopropyl

It is intended that the definition of any substituent (e.g., R^5 , R^6 , etc.) in a particular molecule be independent of its definition elsewhere in the molecule. Thus, $-N(R^6)_2$ represents -NHH, -NHCH₃, -NHC₂H₂, and the like.

In one aspect of the invention, the invention relates to a compound represented by formula I:

as well as pharmaceutically acceptable salts, hydrates and esters thereof, wherein:

10

15

20

30

35

HET represents a 5-12 membered monocyclic or bicyclic aromatic ring system containing 0-3 heteroatoms selected from O, $S(O)_n$ and $N(O)_m$ wherein m is 0 or 1 and n is 0, 1 or 2;

A is a one or two atom moiety and is selected from the group consisting of: -W-, -C(O)- , -C(R^7)_2-W- , -W-C(R^7)_2- , -CR^7(OR^{20})- , -C(R^7)_2- , -C(R^7)_2-C(OR^{20})R^7- , -C(R^7)_2-C(R^7)_2 or $CR^7=CR^7$, wherein W represents O, S(O)n or NR17, with n as previously defined and R17 as

defined below;

X represents a 5-10 membered monocyclic or bicyclic aryl or heteroaryl group having 1-3 heteroatoms selected from $O,\,S(O)_n$ and $N(O)_m$, and optionally substituted with R^{14} and $R^{15},$ and A and B are

attached to the aryl or heteroaryl group ortho relative to each other;

Y represents O, $S(O)_n$, NR^{17} , a bond or $-CR^{18} = CR^{18}$.; B represents $-(C(R^{18})_2)_p$ -Y- $(C(R^{18})_2)_q$ -

wherein p and q are independently 0-3, such that when Y represents O, $S(O)_n$, NR^{17} or $-CR^{18} = CR^{18}$, p+q=0-6, and when Y represents a bond, p+q is 1-6;

Z is OH or NHSO₂R¹⁹;

 $R^1\ R^2$ and R^3 independently represent H, halogen, lower alkyl, lower alkenyl, lower alkynyl, lower alkenyl-HET(R^a)_{4-9} , -

 $25 \qquad (C(R^4)_2)_p SR^5, \ -(C(R^4)_2)_p OR^8, \ -(C(R^4)_2)_p N(R^6)_2, \ CN, \ NO_2, \ -(C(R^4)_2)_p C(R^7)_3, \ -CO_2 R^9, \ -CON(R^6)_2 \ or \\ -(C(R^4)_2)_p S(O)_n R^{10}, \ wherein \ n \ and \ p \ are \ as \ previously \ defined;$

each R^4 is independently H, F, CF_3 or lower alkyl, or two R^4 groups are taken in conjunction and represent a ring of up to six atoms, optionally containing one heteroatom selected from O, $S(O)_n$ or $N(O)_m$;

each R^{5} is independently lower alkyl, lower alkenyl, lower alkynyl, CF_3 , lower alkyl-HET, lower alkenyl-HET or -(C(R^{18})_2)_pPh(R^{11})_{0-2}

each R^6 is independently H, lower alkyl, lower alkenyl, lower alkynyl, CF_3 , Ph, Bn and when two R^6 groups are attached to N they may be taken in conjunction and represents a ring of up to 6 atoms,

15

R ¹ R ² R ³ -Het	A	X	В	Cpd
2-(benzo[b]thiophenyl)	CH ₂	4-F-1,2-Ph	CH=CH	539
5-(1-benzyl)indolyl	CH ₂	4-F-1,2-Ph	CH=CH	540
1-(6-(4-chloro)phenyl) indolyl	CH_2	4-F-1,2-Ph	CH=CH	541
1-(5-chloro)indolyl	CH_2	3,2-Pyr	CH=CH	542

wherein $D = -O(CH_2)_3-O$, Qn = 7-chloroquinolin-2-yl, 1,2-Ph = 1,2-benzenediyl, $Rs = -CH_2SCH_2CH_2Ph$, Pyr = pyridinediyl, c-pr = cyclopropyl and Bn = benzyl.

- 19. A pharmaceutical composition which is
 10 comprised of a compound in accordance with any one of claims 1 to 18 in combination with a pharmaceutically acceptable carrier.
 - 20. A method of treating or preventing a prostaglandin mediated disease which is comprised of administering to a mammalian patient in need of such treatment a compound in accordance with claim 1 in an amount which is effective for treating or preventing a prostaglandin mediated disease.
- 30 cellular neoplastic transformations or metastic tumor growth;

diabetic retinopathy, tumor angiogenesis;

PCT/CA99/00212

15

5 prostanoid-induced smooth muscle contraction associated with dysmenorrhea, premature labor, asthma or eosinophil related

Alzheimer's disease;

glaucoma;

10 bone loss;

disorders:

osteoporosis;

promotion of bone formation;

Paget's disease;

cytoprotection in peptic ulcers, gastritis, regional enteritis,

ulcerative colitis, diverticulitis or other gastrointestinal lesions; GI bleeding and patients undergoing chemotherapy;

coagulation disorders selected from hypoprothrombinemia, haemophilia and other bleeding problems;

kidney disease;

20 thrombosis;

occlusive vascular disease;

presurgery;

and anti-coagulation.

- 25. A method in accordance with claim 20 wherein the prostaglandin mediated disease is selected from the group consisting of: pain, fever or inflammation.
- 23. A method in accordance with claim 20 wherein the prostaglandin mediated disease is dysmenorrhea.
 - 24. A method in accordance with claim 20, wherein the compound is co-administered with other agents or ingredients.
- 25. A method in accordance with claim 24 wherein the compound I is co-administered with another agent or ingredient selected from the group consisting of: an analgesic selected from acetaminophen, phenacetin, aspirin, a narcotic;

20

5 a COX-2 selective NSAID and a conventional NSAID;

caffeine;

an H₂-antagonist;

aluminum or magnesium hydroxide;

simethicone;

a decongestant selected from phenylephrine,
phenylpropanolamine, pseudophedrine, oxymetazoline, ephinephrine,
naphazoline, xylometazoline, propylhexedrine, or levo-desoxyephedrine;
an antiitussive selected from codeine, hydrocodone,
caramiphen, carbetapentane and dextramethorphan;

another prostaglandin ligand selected from misoprostol, enprostil, rioprostil, ornoprostol and rosaprostol; a diuretic; and a sedating or non-sedating antihistamine.

- 26. Use of a compound, salt, hydrate or ester as defined in any one of claims 1 to 18 in the manufacture of a medicament for treatment or prevention of a prostaglandin mediated disease.
- 27. A compound, salt, hydrate or ester as defined in any one of claims 1 to 18 for use in the treatment or prevention of a prostaglandin mediated disease.
- 28. A prostaglandin antagonist pharmaceutical composition comprising an acceptable prostaglandin antagonistic amount of a compound, salt, hydrate or ester as defined in any one of claims 1 to 18, in association with a pharmaceutically acceptable carrier.