MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas- hatóan** javítsa ki.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy a hiba jelzése mellett az egyes részpontszámokat is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányiel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. Egy feladatra adott többféle megoldási próbálkozás közül a vizsgázó által megjelölt változat értékelhető. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A gondolatmenet kifejtése során **a zsebszámológép használata további matematikai indoklás nélkül a következő műveletek elvégzésére fogadható el:** összeadás, kivonás, szorzás, osztás, hatványozás, gyökvonás, n!, $\binom{n}{k}$ kiszámítása, a függvénytáblázatban fellelhető téhlézetek helvettesítése (sin egg teg log és ezek inverzei), a π és ez

lázatban fellelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek az átlag és a szórás kiszámítására abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. **Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, így azokért nem jár pont.**

- 11. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 12. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 13. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 14. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

1712 írásbeli vizsga 3 / 16 2017. október 17.

I.

1. a)		
A kör középpontja (a téglalap átlóinak felezőpontja): <i>K</i> (15; 24).	1 pont	
A kör sugara $KA = \sqrt{15^2 + 24^2} = \sqrt{801} \ (\approx 28,3).$	1 pont	
A kör egyenlete így $(x-15)^2 + (y-24)^2 = 801$.	1 pont	
Összesen:	3 pont	

1. b)		
A díszteret alkotó kör egyenletét átalakítva:	1 pont	
$(x-18)^2 + (y-24)^2 = 81(=9^2).$	- P	
A kör sugara 9 egység, területe $9^2\pi$ ($\approx 254,5$) terület-	1 pont	<i>kb</i> . 25 447 m ²
egység.	- P	
A park területe 30 · 48 (= 1440) területegység.	1 pont	144 000 m ²
A dísztér területe ennek		
kb. $\left(\frac{9^2\pi}{30\cdot 48}\cdot 100\approx\right)$ 17,7 százaléka.	1 pont	
Összesen:	4 pont	

1. c)		
A sétaút egyenesének (egyik) normálvektora $\mathbf{n}(2;-1)$.	1 pont	
Az egyenes egyenlete $2x - y = 12$.	1 pont	
(Az egyenletbe $y = 0$ -t helyettesítve kapjuk, hogy) a sétaút egyenese a park határának AB oldalegyenesét az $M(6; 0)$ pontban metszi.	1 pont	
A sétaút parkbeli szakaszának hossza $CM = \sqrt{24^2 + 48^2} = \sqrt{2880} \approx 53,7$ egység,	1 pont	
ami a valóságban 537 méter.	1 pont	
Összesen:	5 pont	

2. a)		
A nagyobbik testet három (6 cm oldalú) négyzet, két egybevágó derékszögű trapéz és két (nem egybevágó) egyenlő szárú háromszög határolja.	1 pont*	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A három négyzet és az EGH egyenlő szárú derékszögű háromszög területe együtt $(3,5 \cdot 36 =) 126 \text{ (cm}^2)$.	1 pont*	
A derékszögű trapézok alapjának hossza (cm-ben mérve) 6 és 3, magassága 6, területe 27 (cm ²).	1 pont*	A derékszögű trapéz területe a négyzetlap területének $\frac{3}{4}$ része, tehát 27 (cm ²).

Az <i>EGP</i> egyenlő szárú háromszög <i>EG</i> alapjának hossza $6\sqrt{2}$ (≈ 8.5) (cm),	1 pont	
szárainak hossza (Pitagorasz-tétellel) $\sqrt{6^2 + 3^2} = \sqrt{45} = 3\sqrt{5} \ (\approx 6.7) \ (\text{cm}),$	1 pont	az alapjához tartozó ma- gassága (középvonal a BFH háromszögben, így)
az alapjához tartozó magassága (Pitagorasz-tétellel) $\sqrt{(3\sqrt{5})^2 - (3\sqrt{2})^2} = \sqrt{27} = 3\sqrt{3} \ (\approx 5,2) \ (\text{cm}).$	1 pont	a BH testátló fele, tehát $\frac{6\sqrt{3}}{2} = 3\sqrt{3} \text{ (cm) hosszú.}$
Az EGP háromszög területe $\frac{6\sqrt{2} \cdot 3\sqrt{3}}{2} = 9\sqrt{6} \ (\approx 22,0) \ (\text{cm}^2).$	1 pont	
A nagyobbik test felszíne kb. $(126 + 2 \cdot 27 + 22,0 =) 202,0 \text{ cm}^2$.	1 pont*	
Összesen:	8 pont	

A *-gal megjelölt 4 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó:

A nagyobbik test felszínét megkapjuk, ha a kocka felszínéből elvesszük három derékszögű háromszög területét, és hozzáadjuk a síkmetszetháromszög (az <i>EGP</i> háromszög) területét.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Az <i>EFG</i> derékszögű háromszög (a kocka egy lapjának a fele) területe 18 (cm ²).	1 pont	
A másik két derékszögű háromszög (az <i>EFP</i> és a <i>FGP</i> háromszög) egybevágó, egy ilyen háromszög területe $\left(\frac{6\cdot 3}{2}\right) = 9$ (cm ²).	1 pont	
A megmaradt test felszíne kb. $(6 \cdot 36 - 18 - 2 \cdot 9 + 22,0 =) 202,0 \text{ cm}^2$.	1 pont	

2. b)		
Ha az EG lapátló felezőpontját O -val jelöljük, akkor a keresett szög az $FOP \angle$ (mert FO és PO is merőleges a két sík EG metszésvonalára).	1 pont	G F P
Az FOP háromszög $(F$ -nél) derékszögű, $FP = 3$ (cm) és $FO = 3\sqrt{2}$ (cm).	1 pont	$PO = 3\sqrt{3} \text{ (cm)}$
$ tg FOP \angle = \frac{3}{3\sqrt{2}} \ (\approx 0.7071) $	1 pont	$\sin FOP \angle = \frac{3}{3\sqrt{3}} \left(= \frac{\sqrt{3}}{3} \right)$ (≈ 0.5774)
<i>FOP</i> ∠ ≈ 35,3°	1 pont	
Összesen:	4 pont	_

3. a)		
0+1+2+3+4+5+6=21, így a kimaradó három számjegy összege 6.	1 pont	15 = 6 + 5 + 4 + 0 = $= 6 + 5 + 3 + 1 =$
Kimaradhat a 0, 1, 5, vagy a 0, 2, 4, vagy az 1, 2, 3.	1 pont	=6+4+3+2
A 2, 3, 4, 6 és az 1, 3, 5, 6 számnégyesből is 4! = 24 darab megfelelő szám képezhető.	1 pont	
A 0, 4, 5, 6 számnégyesből 3·3!=18 szám képezhető.	1 pont	
Összesen (24+24+18 =) 66 megfelelő négyjegyű szám van.	1 pont	
Összesen:	5 pont	

3. b)		
Az n elemű halmaz 4 elemű részhalmazainak száma		Ez a pont akkor is jár, ha
$\binom{n}{4}$, a 2 eleműeké pedig $\binom{n}{2}$,	1 pont	ez a gondolat csak a meg- oldásból derül ki.
tehát megoldandó az $\binom{n}{4} = 11 \cdot \binom{n}{2}$ egyenlet.	1 pont	
$\frac{n(n-1)(n-2)(n-3)}{4 \cdot 3 \cdot 2 \cdot 1} = 11 \cdot \frac{n(n-1)}{2 \cdot 1}$	2 pont	
$(n(n-1) \neq 0$, tehát) egyszerűsítések után:		
$\frac{(n-2)(n-3)}{4\cdot 3} = 11.$	1 pont	
$n^2 - 5n - 126 = 0$	1 pont	
Ennek pozitív gyöke a 14 (másik gyöke a –9), tehát a halmaznak 14 eleme van.	1 pont	
Ellenőrzés: a 14 elemű halmaz 2 elemű részhalmazai-		
nak száma 91, a 4 elemű részhalmazainak száma pe-	1 pont	
dig 1001, és $1001 = 11 \cdot 91$.		
Összesen:	8 pont	

Megjegyzés: Ha a vizsgázó igazolja, hogy az n = 14 megoldása a feladatnak, akkor ezért 4 pontot kapjon. Ha azt is bizonyítja, hogy a feladatnak más megoldása nincs, akkor maximális pontszámot kapjon.

1712 írásbeli vizsga 6 / 16 2017. október 17.

4. a)		
$g(x) = \frac{1}{6}x^2(3-2x)$		$\frac{x^2}{2} < \frac{x^3}{3}$
A szorzatban csak a $3 - 2x$ tényező lehet negatív (ha $x > 1,5$).	1 pont	(x = 0 nem megoldás) $x^2 > 0$, ezért $\frac{1}{2} < \frac{x}{3}$.
Egy megfelelő intervallum (az]1,5; ∞[valamely részhalmazának) megadása.	1 pont	Bármely helyes megadási mód elfogadható.
Összesen:	3 pont	

4. b)		
$\int_{0}^{c} g(x) dx = \left[-\frac{x^{4}}{12} + \frac{x^{3}}{6} \right]_{0}^{c} =$	1 pont	
$= -\frac{c^4}{12} + \frac{c^3}{6}$	1 pont	
$-\frac{c^4}{12} + \frac{c^3}{6} = 0 - b\'{o}l \ c = 0,$	1 pont	
vagy c = 2.	1 pont	
Összesen:	4 pont	

4. c)		
(Csak ott lehet szélsőértékhelye f-nek, ahol f'-nek		
zérushelye van:)	1 pont	
$f'(x) = -x^2 + x + 12 (-4 < x < -1)$		
$-x^2 + x + 12 = 0$	1 pont	
Az egyenlet valós gyökei –3 és 4,	1 pont	
de a 4 az értelmezési tartományon kívül esik.	1 pont	
Az $f'(x) < -3$ esetén negatív, x > -3 esetén pedig pozitív,	1 pont	f''(x) = -2x+1, tehát f'' a teljes értelmezési tartományán (és így $x = -3$ -ban is) pozitív.
tehát $x = -3$ (abszolút) minimumhely.	1 pont	
A minimum értéke $f(-3) = -2.5$.	1 pont	
Összesen:	7 pont	

Megjegyzés: Ha a vizsgázó nem veszi figyelembe az f függvény megadott értelmezési tartományát, de helyes eredményre jut a vizsgált függvény –3 helyen felvett (helyi) minimumáról, akkor legfeljebb 5 pontot kaphat.

II.

5. a)		
Minden töltési ciklus után az akkumulátor töltéskapacitása a megelőző értékének kb. 0,9994-szeresére (99,94%-ára) változik.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
350 teljes töltés után kapacitásának 0,9994³⁵°≈	1 pont	
≈ 0.8105 része marad meg,	1 pont	
a csökkenés tehát körülbelül 19%-os.	1 pont	
Összesen:	4 pont	

5. b) első megoldás		
Az akkumulátor kapacitása <i>n</i> töltési ciklus után a 0,9994 ⁿ -szeresére változik.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Megoldandó tehát a $0,9994^n = 0,5$ egyenlet.	1 pont	
$n = \log_{0.9994} 0.5 \approx$	1 pont	$n \cdot \lg 0,9994 = \lg 0,5$
≈ 1155	1 pont	$n = \frac{\lg 0.5}{\lg 0.9994} \approx 1155$
Az 1155 töltési ciklushoz $\frac{1155}{200} = 5,775$ év kell,	1 pont	
a felezési idő tehát körülbelül 5,8 év.	1 pont	
Összesen:	6 pont	

5. b) második megoldás		
Az akkumulátor kapacitása minden évben a meg-	1 nont	
előző évi értékének 0,9994 ²⁰⁰ ≈	1 pont	
pprox 0,8869 részére csökken.	1 pont	
A csökkenés mértéke n év után $0,8869^n$,	1 pont	
innen $0.8869^n = 0.5$ a megoldandó egyenlet.	1 pont	
$n = \log_{0.8869} 0.5 \left(= \frac{\lg 0.5}{\lg 0.8869} \right) \approx 5,775,$	1 pont	
a felezési idő tehát körülbelül 5,8 év.	1 pont	
Összesen:	6 pont	

Megjegyzés: Más, észszerűen és helyesen kerekített érték (pl. 6 év) is elfogadható.

5. c)		
Annak a valószínűségét keressük, hogy a vevő		Ez a pont akkor is jár, ha
0 vagy 1 darab 70%-nál kisebb töltéskapacitású	1 pont	ez a gondolat csak a meg-
akkumulátort vásárol.		oldásból derül ki.
3 akkumulátort összesen $\binom{25}{3}$ (= 2300)-féleképpen	1 pont	
vásárolhat (összes eset száma).		
70%-nál kisebb töltéskapacitású akkumulátorból		
0 darabot $\binom{15}{3}$ (= 455)-féleképpen,	1 pont	
1 darabot $\binom{10}{1}$ · $\binom{15}{2}$ (= 1050)-féleképpen vásárolhat.	1 pont	
A kérdezett valószínűség (a kedvező esetek számának és az összes eset számának hányadosa): $\frac{455+1050}{2300} =$	1 pont	
$\left(=\frac{301}{460}\right)\approx 0,654.$	1 pont	
Összesen:	6 pont	

Megjegyzés: Ha a vizsgázó visszatevéses modellel dolgozik, akkor legfeljebb 3 pontot kaphat.

6. a)		
Az állítás megfordítása: Ha $a b^2$ igaz, akkor $a b$ is teljesül (a és b pozitív egész számok).	1 pont	Ha egy (pozitív egész) szám osztója egy másik (pozitív egész) szám négyzetének, akkor a má- sik számnak is osztója.
Az állítás hamis.	1 pont	
Megfelelő ellenpélda (például $a = 4$ és $b = 2$).	1 pont	
Összesen:	3 pont	

6. b) első megoldás		
$n^2 - pn = n(n-p)$	1 pont	
Ez a szorzat csak akkor lehet prím, ha az egyik tényező 1, a másik pedig prím.	1 pont	
$(n-p \le n, \text{ ezért}) n-p=1, \text{ és } n \text{ prím}.$	1 pont	
Mivel $n = p + 1$, így két szomszédos prímszámot $(p \text{ és } p + 1)$ keresünk.	2 pont	
(Mivel ekkor az egyik közülük páros, ezért) csak egy ilyen számpár van: a 2 és a 3 (tehát $p = 2$).	1 pont	
Tehát egyetlen olyan pozitív egész n szám van $(n = 3)$, amely eleget tesz a követelményeknek.	1 pont	
Összesen:	7 pont	

6. b) második megoldás		
$n^2 - pn = n(n - p)$	1 pont	
Ha $p = 2$, akkor $n(n - 2)$ csak úgy lehet prím, ha (a kisebbik tényező) $n - 2 = 1$ (és a nagyobbik tényező, n prím).	1 pont	
Innen $n = 3$ megoldást ad (hiszen ekkor $n^2 - pn = 3$, ami valóban prím).	1 pont	
Ha $p > 2$, akkor p páratlan. Ekkor n és $n - p$ különböző paritású, szorzatuk tehát páros.	1 pont	
Ha a szorzat páros prímszám, akkor csak 2 lehet, ekkor $n = 2$ és $p = 1$, ami viszont nem prím, tehát innen nem kapunk megoldást.	2 pont	
Tehát egyetlen olyan pozitív egész n szám van $(n = 3)$, amely eleget tesz a követelményeknek.	1 pont	
Összesen:	7 pont	

6. c)		
Mivel mindegyik szám önmagának is osztója, ezért a gráf mindegyik csúcsát önmagával is "összekötöttük".	1 pont	Ez a pont jár egy megfe- lelő ábráért vagy ábra- részletért is.
A gráfban van hurokél, tehát a gráf nem egyszerű.	1 pont	
Összesen:	2 pont	

6. d)		
Minden négyzetszámnak páratlan sok osztója van,	1 pont*	
és minden nem négyzetszámnak páros sok osztója van.	1 pont*	
1-től 10-ig három darab négyzetszám van (1, 4, 9).	1 pont*	
(Egy adott szám osztói legfeljebb akkorák, mint maga a szám, emiatt a lapon megadott tíz szám mindegyik osztója szerepel a lapon. Ezért) három páratlan számot és hét páros számot kell összeadni, tehát az összekötő vonalak (élek) száma valóban páratlan.	1 pont	A gráf éleinek száma (1+2+2+3+2+4+ +2+4+3+4=) 27, ami valóban páratlan.
Összesen:	4 pont	

Megjegyzések:

- 1. A *-gal jelölt 3 pont akkor is jár, ha a vizsgázó helyesen felrajzolja a gráfot, vagy felsorolja a 10 pozitív egész számot, majd mindegyik esetben helyesen adja meg az osztók számát. Ha ebben a részben egy hibát vét, akkor 1 pontot veszítsen, ha 2 hibát vét, akkor 2 pontot veszítsen. Három vagy több hiba esetén erre a részre 0 pontot kapjon.
- 2. Ha a vizsgázó a 10 hurokél nélkül határozza meg a gráf éleinek számát, akkor legfeljebb 3 pontot kapjon.

7. a) első megoldás		
P(nem nyerő csoki) = 0,8	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
P(legalább egy nyerő) = 1 - P(egyik sem nyerő) = = 1-0,8 ⁵ (= 1 - 0,32768) ≈	2 pont	
≈ 0,672	1 pont	
Összesen:	4 pont	_

7. a) második megoldás		
P(nem nyerő csoki) = 0,8	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
P(legalább egy nyerő) = P(1 nyerő) + P(2 nyerő) +		
+P(3 nyero) + P(4 nyero) + P(5 nyero) =		
$= {5 \choose 1} \cdot 0.2 \cdot 0.8^4 + {5 \choose 2} \cdot 0.2^2 \cdot 0.8^3 + {5 \choose 3} \cdot 0.2^3 \cdot 0.8^2 +$	2 pont	
$+ {5 \choose 4} \cdot 0.2^4 \cdot 0.8 + {5 \choose 5} \cdot 0.2^5 (= 0.4096 + 0.2048 +$		
$+0,0512+0,0064+0,00032) \approx$		
≈ 0,672	1 pont	
Összesen:	4 pont	

7. b)		
$P(2 \text{ nyerő csoki}) = {5 \choose 2} \cdot 0,2^2 \cdot 0,8^3 = 0,2048$	1 pont	
Annak a valószínűsége, hogy a két megnyert csoki egyike sem nyer: $0.8^2 = 0.64$.	1 pont	
(A két esemény független, így) az I. esemény valószínűsége $p_1 = 0.2048 \cdot 0.64 \approx 0.131$.	1 pont	
$P(1 \text{ nyerő csoki}) = {5 \choose 1} \cdot 0.2 \cdot 0.8^4 = 0.4096$	1 pont	
Annak a valószínűsége, hogy a megnyert csokival nyer egy hetedik csokit, amelyik viszont már nem nyer többet: $0.2 \cdot 0.8 = 0.16$.	1 pont	
(A két esemény független, így) a II. esemény valószínűsége $p_2 = 0,4096 \cdot 0,16 \approx 0,066$.	1 pont	
Az I. esemény valószínűsége a nagyobb.	1 pont	$p_1 = 2p_2$
Összesen:	7 pont	

7. c)		
A csokiszelet térfogatának 20%-os növekedése azt jelenti, hogy a térfogata 1,2-szeresére változott.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
(Hasonló testek térfogatának aránya a hasonlóság arányanak köbe, így) a hasonlóság aránya $\sqrt[3]{1,2} \approx 1,063$.	1 pont	
(Az eredeti szelet hosszúságát x -szel jelölve) $1,063x \approx x + 1,$	1 pont	$\sqrt[3]{1,2} \ x = x+1$
ahonnan $x \approx 15,9$.	1 pont	$x = \frac{1}{\sqrt[3]{1,2} - 1} \approx 15,96$
Az eredeti szelet hossza (a kért kerekítéssel) 16 cm.	1 pont	Ez a pont nem jár, ha a vizsgázó nem kerekít, vagy rosszul kerekít.
Összesen:	5 pont	

8. a) első megoldás		
(A társaság eredetileg x fős volt, a 9 fő csatlakozása után $x + 9$ fős lett. A feladat szövege szerint:) $0.25x + 5 = 0.36(x + 9)$.	2 pont	
0.11x = 1.76 x = 16	1 pont	
Ellenőrzés: A 16 fős társaságban 4 nő volt, a 25 fős társaságban pedig 9 nő, és a 9 valóban 36%-a a 25-nek.	1 pont	
Tehát a társaság eredetileg 16 fős volt.	1 pont	
Összesen:	5 pont	

8. a) második megoldás		
(A nők száma a társaságban eredetileg <i>n</i> fő volt,		70 5
a 9 fő csatlakozása után $n + 5$ fő lett.	2 pont	$\frac{n}{0.25} + 9 = \frac{n+5}{0.36}$
A feladat szövege szerint:)	•	0,25 0,36
0.36(4n+9) = n+5		
0.44n = 1.76	1 pont	
n=4.	1	
Ha a társaságban eredetileg 4 nő volt,	1 pont	
akkor a társaság $(4 \cdot 4 =) 16$ fős volt.	- r	
Ellenőrzés: A 9 fő csatlakozása után 9 nő lett a 25 fős	1 pont	
társaságban. A 9 valóban 36%-a a 25-nek.	1 pont	
Összesen:	5 pont	

8. b)		
Vegyünk fel egy alkalmas derékszögű koordinátarendszert, amelyben legyen $A(0; 0)$ és $F(4; 0)$. Ekkor $C(4; 6)$, $D(2; 0)$ és $E(2; 2,5)$ (a tengelyeken az egységeket méterben mérjük). Az A , E , C pontokon átmenő, az y tengellyel párhuzamos tengelyű parabola egyenletét keressük $y = ax^2 + bx + c$ alakban.	1 pont	Ha a koordináta-rendszer origója az F pontban van: F(0; 0), A(-4; 0), C(0; 6), D(-2; 0), E(-2; 2,5)
A parabolán rajta van az A pont, tehát $c = 0$,	1 pont	A parabolán rajta van a C pont, tehát $c = 6$,
rajta van a C pont, ezért $6 = 16a + 4b$,	1 pont	rajta van az A pont, ezért $0 = 16a - 4b + 6$,
és rajta van az E pont is, ezért $2,5 = 4a + 2b$.	1 pont	és rajta van az E pont is, ezért $2,5 = 4a - 2b + 6$.
A $\begin{cases} 16a+4b=6\\ 4a+2b=2.5 \end{cases}$ egyenletrendszer megoldása: $a=0,125, b=1.$	2 pont	A 16a - 4b = -6 $Aa - 2b = -3.5$ $egyenletrendszer megoldása: a = 0.125, b = 2.$
A parabola egyenlete: $y = 0.125x^2 + x$ ($y = \frac{1}{8}(x+4)^2 - 2$).	1 pont	$y = 0.125x^{2} + 2x + 6$ $(y = \frac{1}{8}(x+8)^{2} - 2)$
Az AFC parabolikus háromszög területe: $\int_{0}^{4} (0.125x^{2} + x) dx =$	1 pont	$\int_{-4}^{0} (0.125x^2 + 2x + 6) dx =$
$= \left[\frac{0.125x^3}{3} + \frac{x^2}{2} \right]_0^4 =$	1 pont	$= \left[\frac{0,125x^3}{3} + x^2 + 6x \right]_{-4}^{0} =$
$=\frac{32}{3}.$	1 pont	$=\frac{32}{3}$
A homlokzat területe (ennek a kétszerese, azaz) $\frac{64}{3} \text{ m}^2 \ (\approx 21.3 \text{ m}^2).$	1 pont	
Összesen:	11 pont	

9. a)		
A 99 az 50. páratlan szám.	1 pont	
Az első 9 oszlopban összesen $(1 + 2 + + 9 =) 45$ szám van,	1 pont	
ezért a 99 a 10. oszlop 5. helyén áll.	1 pont	
Összesen:	3 pont	

Megjegyzés: Ha a vizsgázó felírja az első 10 oszlopban álló számokat, és ez alapján helyes választ ad, akkor teljes pontszámot kapjon.

9. b)		
Az első 2016 oszlopban $1 + 2 + 3 + + 2016 =$	1 pont	
$= \frac{2017 \cdot 2016}{2} = 2033136 \text{ darab szám van.}$	1 pont	
(A k -adik páratlan szám értéke $2k - 1$ ($k \in \mathbb{Z}^+$), ezért) a 2017. oszlop első száma a 2033 137. páratlan szám,	1 pont	
ami a $2 \cdot 2033137 - 1 = 4066273$.	1 pont	
Összesen:	4 pont	

9. c) első megoldás		
Az első $(n-1)$ oszlopban $1 + 2 + 3 + + (n-1) =$	1 pont	
$=\frac{n\cdot(n-1)}{2}$ darab szám van.	1 pont	
Az n-edik oszlop első száma az		
$\frac{n \cdot (n-1)}{2} + 1 = \frac{n^2 - n + 2}{2}$ -edik páratlan szám,	1 pont	
ennek értéke $2 \cdot \frac{n^2 - n + 2}{2} - 1 = n^2 - n + 1$.	1 pont	
Az n -edik oszlop utolsó száma ennél $(n-1) \cdot 2$ -vel több,	1 pont	
azaz $n^2 + n - 1$.	1 pont	
(A számtani sorozat összegképletét alkalmazva) az n -edik oszlopban álló számok összege: $\frac{(n^2 - n + 1) + (n^2 + n - 1)}{2} \cdot n =$	2 pont	
$= n^3$. Ezzel az állítást igazoltuk.	1 pont	
Összesen:	9 pont	

9. c) második megoldás		
Az első n oszlopban $1 + 2 + 3 + + n =$	1 pont	
$=\frac{n(n+1)}{2}$ darab szám van.	1 pont	
Az <i>n</i> -edik oszlop utolsó száma az $\frac{n(n+1)}{2}$ -edik páratlan szám,	1 pont	
ennek értéke $2 \cdot \frac{n(n+1)}{2} - 1 = n^2 + n - 1$.	1 pont	
(A számtani sorozat összegképletét alkalmazva) az első n oszlopban álló számok összege: $\frac{1+(n^2+n-1)}{2} \cdot \frac{n(n+1)}{2} = \frac{(n^2+n)n(n+1)}{4} =$	1 pont	
$=\frac{n^2(n+1)^2}{4}.$	1 pont	
Ehhez hasonlóan az első $(n-1)$ oszlopban álló számok összege: $\frac{(n-1)^2 n^2}{4}$.	1 pont*	
Az <i>n</i> -edik oszlopban álló számok összege tehát $\frac{n^2(n+1)^2}{4} - \frac{n^2(n-1)^2}{4} = \frac{n^2 \cdot 2n \cdot 2}{4} =$	1 pont*	
$= n^3$. Ezzel az állítást igazoltuk.	1 pont*	
Összesen:	9 pont	

Megjegyzés: A *-gal jelölt 3 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó:

Megjegyzes. A -gai jeioti 5 pontot az atabbi gonablatin	eneren is i	πεξκαρπαίμα α νι28ξα20.
Ismert tétel, hogy az első n pozitív egész szám köbé-		
nek összege $\frac{n^2(n+1)^2}{4}$, tehát az első <i>n</i> oszlopban	1 pont	
álló számok összege az első n pozitív egész szám kö-		
bének összegével egyenlő.		
Az n tetszőleges, ezért az első $n-1$ oszlopban álló		
számok összege az első $n-1$ pozitív egész szám kö-	1 pont	
bének összegével egyenlő.		
Az n-edik oszlopban álló számok összege az előbbi	1 mant	
két szám különbsége, tehát valóban n^3 .	1 pont	

9. c) harmadik megoldás		
Az első n oszlopban $1 + 2 + 3 + + n =$	1 pont	
$= \frac{n(n+1)}{2} \text{ darab szám van.}$	1 pont	
Az n-edik oszlopban álló utolsó szám az		
$\frac{n(n+1)}{2}$ -edik páratlan szám,	1 pont	
ennek értéke $2 \cdot \frac{n(n+1)}{2} - 1 = n^2 + n - 1$.	1 pont	
(Teljes indukciót alkalmazunk.) Ha $n=1$, akkor a feladat állítása igaz, mert az első oszlopban a számok "összege" $S_1=1=1^3$. Tegyük fel, hogy valamely $k \in \mathbb{N}^+$ esetén igaz az állítás, tehát $S_k = k^3$. Ekkor elég igazolnunk, hogy $S_{k+1} = (k+1)^3$.	1 pont	
A $(k+1)$ -edik oszlop első k darab elemének mindegyike a k -adik oszlop azonos sorszámú eleménél $2k$ -val több (mert a k -adik oszlopban k darab egymást követő páratlan szám van),	1 pont	
a $(k+1)$ -edik oszlopban álló utolsó szám pedig: $(k+1)^2 + (k+1) - 1 = k^2 + 3k + 1$.	1 pont	
Ezért (az $S_k = k^3$ indukciós feltevés felhasználásával)		
$S_{k+1} = S_k + 2k \cdot k + (k^2 + 3k + 1) =$	1 pont	
$= k^3 + 3k^2 + 3k + 1 =$		
$=(k+1)^3$. Ezzel az állítást igazoltuk.	1 pont	
Összesen:	9 pont	