Solving Quadratic Equation

	Solving Quadratic Equation
Intro	$ax^2 + bx + c = 0$
	a is the coefficient of x^2 (Quadratic term)
	b is the coefficient of x^1 (Linear term)
	c is the coefficient of x^0 (Constant value)
1	Type 1: No linear term
	e.g. 1
	$Mth \ 1: \ x^2 - 9 = 0$
	$x^2 = 9$
	$x = \pm 3$
	$Mth \ 2: \ x^2 - 9 = 0$
	(x+3)(x-3) = 0
	$x = \pm 3$
	e.g. 2
	$\frac{v}{8} = \frac{18}{v}$
	8 v
	$v^2 = 144$
	, , , , ,
	$v = \pm 12$
2	Type 2: No constant term
2	Type 2: No constant term (Note: Do not divide by x, as it will becomes a linear equation instead)
	e.g. 1
	$2x^2 = 7x$
	x(2x-7)=0
	$x(2x-7) = 0$ $x = 0, x = \frac{7}{2}$
	2
3	Type 3: Solve by Factorization
	e.g. 1
	$3x^2 - 5x - 8 = 0$
	(3x - 8)(x + 1) = 0
	$x=\frac{8}{3}$, $x=-1$
	$x = \frac{1}{3}, x = -1$
4	Type 4: Completed Square form $(x + a)^2 = b$
	e.g. 1
	$(x+2)^2 = 16$
	$x+2 = \pm 4$
	x=2, $x=-6$
	·

	e.g. 2
	$(3x+2)^2=43$
	$3x + 2 = \pm \sqrt{43}$
	$x = \frac{\sqrt{43} - 2}{3}$, $x = \frac{-\sqrt{43} - 2}{3}$
	$x = \frac{1}{3}$, $x = \frac{1}{3}$
5	Type 5: Solve by completing Square
	e.g. 1
	$x^2 + 8x + 9 = 0$
	$x^2 + 8x + 4^2 = -9 + 4^2$
	$(x+4)^2 = 7$
	$x + 4 = \pm \sqrt{7}$
	$x = \sqrt{7} - 4 , \qquad x = -\sqrt{7} - 4$
	Condition:
	1. Coefficient of x^2 must be 1
	2. Add coefficient of $x \to \left(\frac{\text{coefficient of } x^1}{2}\right)^2$
	3. Works for negative coefficient too.
6	Type 6: Solve by Formulae
	$ax^2 + bx + c = 0$
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	Prove (Solve by Type 5 Completing square):
	2
	$ax^2 + bx + c = 0$
	$x^2 + \frac{b}{a}x = -\frac{c}{a}$
	a a
	$b \qquad (b)^2 \qquad (b)^2 \qquad c$
	$x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a}$

$$x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}} = \frac{b^{2}}{4a^{2}} - \frac{4ac}{4a^{2}}$$
$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2}}{4a^{2}} - \frac{4ac}{4a^{2}}$$

$$x + \frac{b}{2a} = \pm \sqrt{\frac{b^2}{4a^2} - \frac{4ac}{4a^2}}$$

$$x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}}$$

$$x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \text{ (#proved)}$$