Query languages with structural and analytic properties

Thomas Muñoz, Cristian Riveros, Domagoj Vrgoč

1 MATLANG syntax and semantics

We assume that we have a supply of matrix variables. The definition of an instance I on MATLANG is a function defined on a nonempty set $var(I) = \{A, B, M, C, \ldots\}$, that assigns a concrete matrix to each element (matrix name) of var(I).

Every expression e is a matrix, either a matrix of var(I) (base matrix, if you will) or a result of an operation over matrices.

The syntax of MATLANG expressions is defined by the following grammar. Every sentence is an expression itself.

$$e = M \quad \text{(matrix variable)}$$

$$\text{let } M = e_1 \text{ in } e_2 \quad \text{(local binding)}$$

$$e^* \quad \text{(conjugate transpose)}$$

$$\mathbf{1}(e) \quad \text{(one-vector)}$$

$$\text{diag}(e) \quad \text{(diagonalization of a vector)}$$

$$e_1 \cdot e_2 \quad \text{(matrix multiplication)}$$

$$\text{apply } [f] (e_1, \dots, e_n) \quad \text{(pointwise application of } f)$$

The operations used in the semantics of the language are defined over complex numbers.

- Transpose: if A is a matrix then A^* is its conjugate transpose.
- One-vector: if A is a $n \times m$ matrix then $\mathbf{1}(A)$ is the $n \times 1$ column vector full of ones.
- Diag: if v is a $m \times 1$ column vector then diag(v) is the matrix

$$\begin{bmatrix} v_1 & 0 & 0 & \dots & 0 \\ 0 & v_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & v_m \end{bmatrix}$$

- Matrix multiplication: if A is a $n \times m$ matrix and B is a $m \times p$ matrix then $A \cdot B$ is the $n \times p$ matrix with $(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$.
- Pointwise application: if $A^{(1)}, \ldots, A^{(n)}$ are $m \times p$ matrices, then apply $[f](A^{(1)}, \ldots, A^{(n)})$ is the $m \times p$ matrix C where $C_{ij} = f(A_{ij}^{(1)}, \ldots, A_{ij}^{(n)})$.

The formal semantics have a set of rules for an expression e to be valid on an instance I, this is, e successfully evaluates to a matrix A on the instance I. This success is denoted as e(I) = A. Here I[M := A] denotes the instance that is equal to I except that maps M to the matrix A.

Expression	Condition for validity
$(let M = e_1 in e_2)(I) = B$	$e_1(I) = A, \ e_2(I[M := A]) = B$
$e^*(I) = A^*$	e(I) = A
1 (e)(I) = 1 (A)	e(I) = A
$\operatorname{diag}(e)(I) = \operatorname{diag}(A)$	e(I) = A, A is a column vector
$e_1 \cdot e_2(I) = A \cdot B$	# columns of $A = #$ rows of B
$\operatorname{apply}[f](e_1,\ldots,e_n)(I) = \operatorname{apply}[f](A_1,\ldots,A_n)$	$\forall k, e_k(I) = A \text{ and all } A_k \text{ have the same dimentions}$

For example,

let
$$N = \mathbf{1}(M)^*$$
 in apply $[c](\mathbf{1}(N))$,

is an expression, where c denotes the constant function $c: x \to c$. The result is a 1×1 matrix with c as its entry. This expression is equivalent to $\operatorname{apply}[c](\mathbf{1}(\mathbf{1}(M)^*))$.

An example of what can be computed in MATLANG is the mean of a vector:

let
$$N = \mathbf{1}(v)^* \cdot \mathbf{1}(v)$$
 in
let $S = v^* \cdot \mathbf{1}(v)$ in
let $R = \text{apply}[\div](S, N)$ in R .

Here, N is the 1×1 matrix with the dimention of v as its entry. S computes the sum of all the entries of v. Finally, in R we store the result of the sum divided by the dimention.

One thing that is worth keeping in mind is that pointwise function application is powerful. With the expression apply $[f](\cdot)$ one can compute other elemental operations over matrices that can be studied separately, such as:

• Scalar multiplication: we compute $c \cdot A$ as

let
$$C = \operatorname{apply}[c](\mathbf{1}(\mathbf{1}(A)^*))$$
 in let $M = \mathbf{1}(A) \cdot C \cdot \mathbf{1}(A^*)^*$ in $\operatorname{apply}[\times](M, A)$.

• Addition: we compute A + B as

let apply
$$[+](A, B)$$
.

• Trace: let

$$m(x,y) = \begin{cases} x \text{ if } x - y > 0\\ 0 \text{ if } x - y \le 0 \end{cases}$$

Then we compute the trace of A, tr(A), as

let
$$I = \operatorname{diag}(\mathbf{1}(A))$$
 in
let $B = \operatorname{apply}[-](A, I)$ in
let $C = \operatorname{apply}[m](A, B)$ in
let $T = \operatorname{apply}[+](A, I)$ in $\mathbf{1}(A)^* \cdot T \cdot \mathbf{1}(A)$

2 Adding canonical vectors to MATLANG

One thing that we cannot do in MATLANG is to obtain a specific entry of a matrix. This entry is expected to be a 1×1 matrix. We can do this by adding the standard unit vectors e_i where

$$e_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \rightarrow i\text{-th position}$$

We know show some examples of what can we express with this new feature. For ilustrative reasons, we asume that all the dimentions are well suited for the corresponding operation.

- Get A_{ij} with $e_i^* \cdot A \cdot e_j$.
- The expression $e_i \cdot e_j^*$ is the matrix that has a 1 in the position i, j and zero everywhere else.
- Given a vector v, the expression $v \cdot e_i^*$ is the matrix

$$\begin{bmatrix} 0 & \cdots & v_1 & \cdots & 0 \\ 0 & \cdots & v_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & v_n & \cdots & 0 \end{bmatrix}$$

- Replace column j of A with zeros: $A(I e_j \cdot e_i^*)$.
- Replace column j of A with a vector v: $A(I e_j \cdot e_j^*) + v \cdot e_j^*$.

Note that $I = \operatorname{diag}(\mathbf{1}(A))$ and the sum of matrices can be implemented as apply [+](A, B).

3 Connection with logic

4 Expressions as functions

Another way of looking at expressions in MATLANG is as functions between matrix spaces, this is

$$e:(M_1,\ldots,M_k)\to M,$$

where M, M_1, \dots, M_k are matrix spaces, i.e., $M, M_1, \dots, M_k \in \{\mathcal{M}^{n \times m} : n, m \in \mathbb{N}^+\}$.

Some examples:

• If A is $n \times m$ then

$$e(A) = t(A) : \mathcal{M}_{n \times m} \to \mathcal{M}_{m \times n}$$

 $A \to A^*$

• If A is $n \times m$ then

$$e(A) = \mathbf{1}(A) : \mathcal{M}_{n \times m} \to \mathcal{M}_{n \times 1}$$

$$A \to n \text{ times} \begin{cases} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \\ \vdots \\ 1 \end{cases}$$

• If v is $n \times 1$ then

$$e(v) = \operatorname{diag}(v) : \mathcal{M}_{n \times 1} \to \mathcal{M}_{n \times n}$$

$$v \to \begin{bmatrix} v_1 & 0 & 0 & \dots & 0 \\ 0 & v_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & v_n \end{bmatrix}$$

• If A is $n \times m$ and B is $m \times p$ then

$$e(A, B) = A \cdot B : \mathcal{M}_{n \times m} \times \mathcal{M}_{m \times p} \to \mathcal{M}_{n \times p}$$

 $(A, B) \to A \cdot B$

• If $A^{(1)}, \ldots, A^{(n)}$ are $m \times p$ matrices then

$$e(A^{(1)}, \dots, A^{(n)}) = \text{apply}[f](A^{(1)}, \dots, A^{(n)})$$

has domains

$$\mathcal{M}_{m \times p}^{n} \to \mathcal{M}_{m \times p}$$

 $(A^{(1)}, \dots, A^{(n)}) \to C : C_{ij} = f(A_{ij}^{(1)}, \dots, A_{ij}^{(n)}).$

We can start to analyze if this functions are increasing, decreasing, boolean, etc. Also, we can study the effects of disturbances on the input in the output of these functions.

5 Core of Matlab and R

MATLAB

The basic operations of MATLAB over matrices are:

- mldivide(A, B): returns x such that Ax = B.
- descomposition(A): returns a decomposition or factorization LU, LDL, QR, Cholesky, etc.
- inv(A): returns A^{-1} .
- multiplication: compute $A \cdot B$.

- transpose(A): returns A^T .
- conjugate transpose(A): returns A'.
- matrix power(A, k): returns A^k .
- eigen(A): returns the eigenvectors and the eigenvectors matrices of A.
- funm(A, f): returns matrix B with elements $b_{ij} = f(a_{ij})$.
- **crossprod**(a, b): vectorial product, returns c such that $c \perp a, b$.
- dotprod(a,b): returns $a \cdot b$.
- \bullet $\mathbf{diag}(\mathbf{v}) : \ v \ \mathrm{vector}.$ Returns the following matrix:

$$\begin{bmatrix} v_1 & 0 & 0 & \dots & 0 \\ 0 & v_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & v_n \end{bmatrix}$$

• diag(A): given matrix A, it returns

$$\begin{bmatrix} a_{11} \\ a_{22} \\ \vdots \\ a_{nn} \end{bmatrix}$$

- det(A): returns the determinant of A.
- **zeros**(n, m): returns a $n \times m$ matrix full of zeros.
- ones(n, m): returns a $n \times m$ matrix full of ones.
- $\mathbf{A}[\mathbf{i}, \mathbf{j}]$: you can get A_{ij} .

\mathbf{R}

The basic operations of the language R over matrices are:

- A%*%B: matrix multiplication.
- A*B: pointwise multiplication.
- t(A): transpose.
- diag(v): returns the matrix

$$\begin{bmatrix} v_1 & 0 & 0 & \dots & 0 \\ 0 & v_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & v_n \end{bmatrix}$$

• diag(A): Returns the vector

$$\begin{bmatrix} a_{11} \\ a_{22} \\ \vdots \\ a_{nn} \end{bmatrix}$$

- $\operatorname{diag}(\mathbf{k})$: k scalar. It creates the $k \times k$ identity matrix.
- matrix(k, n, m): returns the $n \times m$ matrix, where every entry is equal to k.
- solve(A, b): returns x such that Ax = b.
- solve(A): returns A^{-1} .
- $\det(\mathbf{A})$: determinant of A.
- y < -eigen(A): stores de eigenvalues of A in y\$val and the eigenvectors in y\$vec.
- y < -svd(A): it computes and stores the following:
 - y\$d: vector of the singular values of A.
 - y\$u: matrix of the left singular vectors of A.
 - y\$v: matrix of the right singular vectors of A.
- $\mathbf{R} < -\mathbf{chol}(\mathbf{A})$: Cholesky fatorization, R'R = A.
- $\mathbf{y} < -\mathbf{qr}(\mathbf{A})$: QR decomposition, strong in y\$qr.
- cbind(A,B, v, ...): joins matrices and vector horizontally, returns a matrix.
- rbind(A,B, v, ...): joins matrices and vector vertically, returns a matrix.
- rowMeans(A): returns the vector of the averages over the rows of A.
- colMeans(A): returns the vector of the averages over the columns of A.
- rowSums(A): returns the vector of the sums over the rows of A.
- colSums(A): returns the vector of the sums over the columns of A.
- outer(A, B, f): applies $f(\cdot, \cdot)$. Returns matrix C of entries $c_{ij} = f(a_{ij}, b_{ij})$.
- A[i, j]: you can get A_{ij} .