ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑ Α

- 1. Δίνεται μια συνάρτηση $f:[\alpha,\beta]\to\mathbb{R}$. Να δώσετε τον ορισμό της συνέχειας της f στο διάστημα $[\alpha,\beta]$.
- 2. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιο σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση την λέξη Σωστό αν η πρόταση ειναι σωστή ή την λέξη Λάθος εαν πρόταση είναι λανθασμένη.
 - a. Αν η f είναι συνεχής στο $[\alpha,\beta]$ και η F είναι μια παράγουσα της f, τότε ισχύει: $\int_0^\beta f(x)dx = F(\beta) F(\alpha) \tag{2 Μονάδες}$
 - το εύρος των τιμών μιας μεταβλητής δεν επηρεάζεται απο τις ακραίες τιμές της.
 (2 Μονάδες)
 - c. Αν η συνάρτηση f είναι παραγωγίσημη στο $\mathbb R$ και $c\in\mathbb R$ μια σταθερά, τότε ισχύει: $(c\cdot f)'(x)=f'(x)+c$
 - $\mathbf{d.} \ (x^{\alpha})' = \alpha \cdot x^{\alpha+1}, x > 0, \alpha \in \mathbb{R}^*$ (2 Μονάδες)
 - e. Αν η f είναι συνεχής στο $[\alpha,\beta]$, τότε ισχύει: $\int_{\alpha}^{\beta} f(x)dx = -\int_{\beta}^{\alpha} f(x)dx \tag{2 Μονάδες}$
- 3. Να μεταφέρετε και να συμπληρώσετε στο τετράδιο σας τις παρακάτω ισότητες:
 - a. Αν οι συναρτήσεις f,g είναι παραγωγίσημες στο $\mathbb R$, τότε:

$$(f-g)'(x) = \dots$$
 (3 Μονάδες)

$$b.$$
 $\int_{-\beta}^{\beta} \sigma v \nu x dx = ...$ (3 Μονάδες)

c. Αν
$$\lim_{x \to x_0} f(x) = l, l \in \mathbb{R}$$
, τότε $\lim_{x \to x_0} |f(x)| = \dots$ (3 Μονάδες)

 $\Theta{
m EMA}$ ${
m B}$ δίνετα η συνεχής συνάρτηση $f:\mathbb{R}\to\mathbb{R}$, για την οποία ισχύει: $x\cdot f(x)-2\cdot f(x)=x^2-4$ για κάθε $x\in\mathbb{R}$.

a. Να δείξετε ότι
$$f(x)=rac{x^2-4}{x-2},$$
 για $x \neq 2.$ (7 Μονάδες)

b. Να βρείτε το
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$
. (9 Μονάδες)

c. Να βρείτε το
$$f(2)$$
. (9 Μονάδες)

ΘΕΜΑ Γ

Στον παρακάτω πίνακα παρουσιάζονται οι ηλικίες των υπαλλήλων μιας εταιρίας.

	Ηλικίες	Συχνότητα	Κέντρο		Σχετική
A/A	υπαλλήλων	(αριθμός υπαλλήλων)	κλάσης		συχνότητα
		$ u_i$	x_i	$x_i \nu_i$	f_i %
1η κλάση	[25, 35)	100			
2η κλάση	[35, 45)	50			
3 ^η κλάση	[45, 55)	40			1
4η κλάση	[55, 65)	10			
ΣΥΝΟΛΑ		$\nu = 200$			

- 1. Να μεταφέρετε στο τετράδιο σας τον παραπάνω πίνακα και να τον συμπληρώσετε. (7 Μονάδες)
- 2. Να υπολογίσετε την μέση ηλικία των υπαλλήλων.

(5 Μονάδες)

- 3. Να υπολογίσετε το ποσοστό των υπαλλήλων που έχουν ηλικία τουλάχιστον σαρανταπέντε (45) ετών.
- 4. Απο την εταιρία αποχωρούν πέντε (5) υπάλληλοι της $4^{η_{\varsigma}}$ κλάσης, πέντε (5) υπάλληλοι της $2^{η_{\varsigma}}$ κλάσης και ταυτόχρονα προσλαμβάνονται δέκα (10) υπάλληλοι με ηλικίες στην $1^{η}$ κλάση. Να υπολογίσετε την νέα μέση τιμή της ηλικίας των υπαλλήλων.

ΘΕΜΑ Δ

Δίνεται η συνάρτηση $f(x) = e^x \cdot (x-1), x \in \mathbb{R}$.

1. Να αποδείξετε ότι $f'(x) = f(x) + e^x$.

6 Μονάδες)

- 2. Να μελετήσετε την συνάρτηση f ως προς την μονοτονία και να βρείτε τα τοπικά της ακρότατα. (9 Μονάδες)
- 3. An $g(x)=f(x)+e^x, x\in\mathbb{R}$, na upologisete th embadón tou cwoiou pou perinleiete apo thn grapinh parástash the sunárthshe g, ton áfona x'x hai tie eubeiet me tie exisóseie x=-1 hai x=1.

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ

ΘΕΜΑ Α

1. Ο ορισμός όπως δίδεται στο σχολικό βιβλίο σελ 138, ορισμός 2.

- 2. a. Σωστό
 - b. Λάθος
 - ς. Λάθος
 - d. Λάθος
 - e. Σωστό
- 3. a. Θεωρία, σελ 189. (f-g)'(x) = f'(x) g'(x)
 - b. Θεωρία, σελ 241. $\int_{\alpha}^{\beta} \sigma v \nu x dx = [\eta \mu]_{\alpha}^{\beta} = \eta \mu \beta \eta \mu \alpha$
 - c. Θεωρία, σελ 109. $\lim_{x \to x_0} |f(x)| = |\lim_{x \to x_0} f(x)| = |l|$

ΘΕΜΑ Β

1.
$$x \cdot f(x) - 2 \cdot f(x) = x^2 - 4 \Leftrightarrow (x - 2) \cdot f(x) = x^2 - 4 \Leftrightarrow f(x) = \frac{x^2 - 4}{x - 2}, x \neq 2$$

2.
$$\lim_{x\to 2}\frac{x^2-4}{x-2}=\frac{4-4}{2-2}=\frac{0}{0}$$
 απροσδιόριστη μορφή. Οπότε
$$\lim_{x\to 2}\frac{x^2-4}{x-2}=\lim_{x\to 2}\frac{x^2-2^2}{x-2}=\lim_{x\to 2}\frac{(x-2)(x+2)}{x-2}=\lim_{x\to 2}(x+2)=2+2=4$$

3. Επειδή η f ειναι συνεχής στο \mathbb{R} , άρα και στο $x_0=2\Rightarrow \lim_{x\to 2}f(x)=f(2)=4$ (βλέπε προηγούμενη άσκηση).

ΘΕΜΑ Γ

1. Συμπληρώνουμε τον πίνακα. Σε κάθε κλάση, παίρνουμε το μέσο, έτσι μεταξύ πχ 25 και 35 έτη, το μέσο, το νέο x_i ειναι το 30. Το $x_i\nu_i$ προκύπτει απο τον πολλαπλασιασμό. Η σχετική συχνότητα επι τοις εκατό f_i % προκύπτει απο την διαίρεση της εκάστοτε συχνότητας δια του πληθυσμού (δίνεται $\nu=200$) επι 100.

	Ηλικίες	Συχνότητα	Κέντρο		Σχετική
A/A	υπαλλήλων	(αριθμός υπαλλήλων)	κλάσης		συχνότητα
		$ u_i $	x_i	$x_i \nu_i$	f_i %
1η κλάση	[25, 35)	100	30	3000	50
2η κλάση	[35, 45)	50	40	2000	25
3η κλάση	[45, 55)	40	50	2000	20
4η κλάση	[55, 65)	10	60	600	5
ΣΥΝΟΛΑ		$\nu = 200$		7600	100

2. Η μέση τιμή προκύπτει:
$$\bar{x} = \frac{1}{\nu} \sum_{i=1}^4 x_i \nu_i = \frac{x_1 \nu_1 + x_2 \nu_2 + x_3 \nu_3 + x_4 \nu_4}{\nu} = \frac{7600}{200} = 38$$

- 3. Ποσοστο όσοι ειναι τουλάχιστον 45. Δηλαδή απο 45 έτη και πάνω. Είναι οι κλάσεις 3 και 4. Αρα παίρνουμε τις σχετικές συνχνότητες επι τοις εκατό αυτών των κλάσεων. 20+5=25%.
- 4. . Εαν κάνουμε τις αλλαγές φεύγουν 5 και 5 και έρχονται 10, και τα βάλουμε αυτά τα νούμερα στις συχνότητες στις αντίστοιχες κλάσεις έχουμε έναν νέο πίνακα ως εξής (αφού κάνουμε και τις πράξεις.

Ηλικίες	Συχνότητα	Κέντρο	
υπαλλήλων	(αριθμός υπαλλήλων)	κλάσης	
	$ u_i$	x_i	$x_i \nu_i$
[25, 35)	110	30	3300
[35, 45)	45	40	1800
[45, 55)	40	50	2000
[55, 65)	5	60	300
ΣΥΝΟΛΑ	$\nu = 200$		7400

όπως και στο προηγούμενο θέμα
$$\bar{x}=\frac{1}{\nu}\sum_{i=1}^4 x_i\nu_i=\frac{x_1\nu_1+x_2\nu_2+x_3\nu_3+x_4\nu_4}{\nu}=\frac{7400}{200}=37$$

ΘΕΜΑ Δ

1. Υπάρχουν μερικοί ελαφρά διαφορετικοί τρόποι επίλυσης. Δείχνουμε την προτεινόμενη λύση του υπουργείου.

$$f'(x) = (e^x)'(x-1) + e^x(x-1)' = e^x(x-1) + e^x \cdot 1 = x \cdot e^x - e^x + e^x = x \cdot e^x$$

$$f(x) + e^x = e^x(x-1) + e^x = x \cdot e^x - e^x + e^x = x \cdot e^x$$

$$\mathrm{Arg} \ f'(x) = f(x) + e^x$$

2. Πεδίο ορισμού όλο το \mathbb{R} . $f'(x)=xe^x$ $f'(x)=0 \Leftrightarrow xe^x=0 \Leftrightarrow x=0 \text{ γιατί } e^x\neq 0 \text{ για κάθε } x\in \mathbb{R} \text{ Αρα έχουμε μια ρίζα}$ x=0 . Ο πίνακας μεταβολών είναι:

x	$-\infty$	0	$+\infty$
$x \cdot e^x$	_	0	+
f(x)		τ.ε.	

- Η f παρουσιάζει τοπικό ελάχιστο στο σημείο x=0 και με τιμή $f(0)=e^0\cdot (0-1)=1\cdot (-1)=-1$
- Η f ειναι γνησίως φθίνουσα στο διάστημα $(-\infty,0]$ και γνησίως αύξουσα στο διάστημα $[0,+\infty)$
- 3. Για τον υπολογισμό του εμβαδού θα πρέπει:

$$E(\Omega) = \int_{-1}^{1} |g(x)| dx = \int_{-1}^{1} |f(x) + e^{x}| dx = \int_{-1}^{1} |f'(x)| dx = \int_{-1}^{1} |f'($$

εδώ θα πρέπει να πάρουμε το αρνητικό μέρος στο γράφημα με μείον για να βγεί θετικό, άρα γίνεται

$$= -\int_{-1}^{0} f'(x)dx + \int_{0}^{1} f'(x)dx = -[f(x)]_{-1}^{0} + [f(x)]_{0}1 = -[e^{0}(0-1) - e^{-1}(-1-1)] + [e^{1}(1-1) - e^{0}(0-1)] = 1 - \frac{2}{e} + 1 = \frac{2e-2}{e}$$

⁰Σάββας Παυλίδης, 2014. Δημιουργημένο μέσω Ι₄ΤΕΧ