Aprendizado Profundo para Classificação de Imagens

Explorando o uso conjunto de redes neurais para classificação e remoção de ruído em imagens de dígitos manuscritos

Autor: Gabriel Eduardo Lima

Orientador: Ricardo de la Rocha Ladeira, Me. Coorientador: Eder Augusto Penharbel, Me.

IFC - Campus Blumenau

28 de novembro de 2023

Sumário

- 1. Introdução
- 2. Desenvolvimento

3. Conclusão

4. Referências

Introdução

- 1. Introdução
 - 1.1. Apresentação do Tema
 - 1.2. Objetivos
 - 1.3. Metodologia
 - 1.4. Justificativas e Contribuições
 - 1.5. Trabalhos Correlatos
- Desenvolvimento
- 3. Conclusão
- 4. Referências

1.1 Apresentação do Tema

Inteligência Artificial

Machine Learning

Deep Learning

Visão Computacional Classificação de Imagens Reconhecimento Óptico de Caracteres

Problema: Redes neurais e dados ruidosos [4].

Abordagem: Pre-processamento e autoencoders [12, 13].

1.2 Objetivos

Objetivo geral: **explorar** o incremento na acurácia de um classificador de imagens por meio do uso e da adaptação de uma rede *autoencoder* para remoção de ruído.

Adaptação: introduzir o erro da classificação no algoritmo de treino do modelo para remoção de ruído.

1.3 Metodologia

Classificação da pesquisa [14]:

- Quanto à natureza: primária;
- Quanto aos objetivos: exploratória;
- Quanto aos procedimentos: bibliográfica e experimental.

Pesquisa experimental:

- Experimento I: Classificação de imagens;
- Experimento II: Imagens com ruído;
- Experimento III: Remoção de ruído;
- Experimento IV: Adaptação.

1.3 Metodologia

Materiais e ferramentas:

- Redes neurais: Multilayer Perceptron MLP;
- Dados: Modified National Institute of Standards and Technology (MNIST) [2];
- Ruído: Ruído Gaussiano Estacionário Aditivo;
- Métrica: Acurácia;
- Linguagem: Python (3.11.5)¹.

¹Códigos disponíveis em: http://bit.ly/lima001-bcc-tcc. Acessível também pelo código QR.

1.4 Justificativas e Contribuições

Justificativas:

- Relevância do tema;
- Aplicação prática;
- Método científico.

Contribuições:

- Exploração de ideias (teoria e prática);
- Trabalhos futuros.

1.5 Trabalhos Correlatos

Classificação de imagens de dígitos manuscritos [1, 2, 7].

Classificação de imagens na presença de dados ruidosos [8-11, 16].

Treino de redes neurais em conjunto para solucionar problemas relacionados [6, 15].

Desenvolvimento

- 1. Introdução
- 2. Desenvolvimento
 - 2.1. Fundamentação Teórica
 - 2.2. Detalhamento dos Experimentos
 - 2.3. Resultados e Discussões
- 3. Conclusão
- 4. Referências

2.1.1 Redes Neurais Artificiais

Rede neural artificial: modelar a maneira que o cérebro humano executa uma tarefa. Desenvolvida em hardware ou software. Processo adaptativo (aprendizagem) [5].

2.1.2 Modelo de Neurônio Artificial

Figura: Modelo teórico de neurônio artificial. Adaptado de Haykin [5, p. 11].

2.1.2 Modelo de Neurônio Artificial

$$\vec{\mathbf{x}} = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$$

(2)

$$\vec{v}_k = W \vec{x}$$

(3)

$$\mathbf{W} = \begin{bmatrix} w_{k0} & w_{k1} & w_{k2} & \dots & w_{km} \end{bmatrix}$$

$$\vec{\mathbf{v}}_{\mathbf{k}} = \mathbf{W} \vec{\mathbf{x}}$$

(4)

(5)

13 / 34

$$ec{\mathbf{v}}_{\mathbf{k}} = \mathbf{W} \, \overrightarrow{\mathbf{x}}$$
 $ec{\mathbf{y}}_{\mathbf{k}} = \mathbf{\phi}(\, \overrightarrow{\mathbf{v}}_{\mathbf{k}})$

$$\vec{v}_k = \vec{W}\vec{x}$$

 $\varphi(\overrightarrow{\mathbf{v}}_{\mathbf{k}}) = (\varphi(v_1))$

$$\vec{x} =$$

$$ec{\mathbf{x}} = egin{pmatrix} 1 \ x_1 \ x_2 \ dots \end{pmatrix}$$

(1)

2.1.3 Arquiteturas de Redes Neurais Artificiais

Figura: Modelo teórico de rede neural Multilayer Feedforward. Elaboração própria.

2.1.4 Aprendizagem

Processo de Aprendizagem:

- Supervisionado;
- Não supervisionado.

Generalização e Treino.

Validação e Inferência (predição).

2.1.5 Multilayer Perceptron

Arquitetura: Multilayer Feddforward.

Treinamento: Algoritmo backpropagation. Otimização da função de erro - descida do gradiente.

$$MSE = \frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n} (y_j^i - \hat{y}_j^i)^2$$
 (6)

$$E[k] = \sum_{i=1}^{n} (y_j^k - \hat{y}_j^k)^2$$
 (7)

$$\hat{w}_{i,j}^{m} = w_{i,j}^{m} - \alpha \frac{\partial E}{\partial w_{i,j}^{m}} \tag{8}$$

2.1.5 Multilayer Perceptron

Figura: Gráfico indicando vetor de maior incremento para três pontos de uma função em \mathbb{R}^3 [3].

2.1.6 Modelo de Ruído Estacionário Aditivo Gaussiano

Estacionário: ruídos gerados não variam com o tempo. Aditivo: ruído é somado ao valor original de cada pixel. Gaussiano: ruído são amostrados de uma distribuição de probabilidade normal.

Figura: Efeito visual da degradação de uma imagem. Elaboração própria.

2.2.1 Experimento I: Classificação de Imagens

Figura: Exemplos de imagens pertencentes ao conjunto de dados MNIST e suas respectivas legendas. Elaboração própria.

2.2.2 Experimento II: Ruído

Figura: Imagem (dígito 4) do conjunto de validação para diferentes níveis de ruído. Elaboração própria.

2.2.3 Experimento III: Pré-processamento

Figura: Arquitetura autoencoder. Elaboração própria.

2.2.3 Experimento III: Pré-processamento

Figura: Saída dos removedores de ruído (10 épocas) para entrada ruidosa referente ao dígito 4. Elaboração própria.

2.2.4 Experimento IV: Adaptação

Figura: Esquemático da adaptação explorada para treinar um modelo de remoção de ruído. Elaboração própria.

23 / 34

2.2.4 Experimento IV: Adaptação

Termo de erro (última camada):

$$eN_i = (-y_i + \hat{y}_i).logsig'(v_i)$$
(9)

Termo de erro adaptado (última camada):

$$e\hat{N}_i = (\phi(-y_i + \hat{y}_i) + \omega E^c[k]).logsig'(v_i)$$
 (10)

Configurações φ e ω exploradas:

$$\begin{pmatrix}
(+1.0; -1.0), (+0.8; -0.2), (+0.5; -0.5), \\
(+1.0; -0.5), (+1.0; +1.0), (+0.5; 0.5), \\
(+1.0; +0.5), (+0.8; +0.2), (+1.0; \pm 0.5)
\end{pmatrix}$$
(11)

2.3.1 Análise dos resultados do experimento I

Tabela: Acurácia (treino e validação) de classificação em relação às épocas de treino. Elaboração própria.

Época	Acurácia média — treino (%)	Acurácia média — validação (%)
1	85,63	91,57
2	92,03	92,40
3	92,74	92,46
4	93,20	92,95
5	93,56	92,97
6	93,84	93,32
7	94,06	93,50
8	94,20	93,46
9	94,40	93,67
10	94,57	93,61

2.3.2 Análise dos resultados do experimento II

Tabela: Acurácia média de classificação para conjuntos de validação com diferentes níveis de ruído. Elaboração própria.

Nível de ruído (std)	Acurácia média de classificação (%)
0,1	88,18
0,2	81,66
0,3	71,96
0,4	61,38
0,5	52,15
0,6	44,58
0,7	38,31
0,8	33,72
0,9	29,85
1,0	27,02

2.3.3 Análise dos resultados do experimento III

Tabela: Acurácia média de classificação para conjuntos de validação pré-processados pelos respectivos modelos de remoção de ruído treinados em diferentes épocas. Elaboração própria.

Nível de ruído (std)	Acurácia média de clas- sificação (%) - remove- dor de ruído 1 época	Acurácia média de clas- sificação (%) - remove- dor de ruído 5 épocas	Acurácia média de classificação (%) - removedor de ruídos 10 épocas
0,1	76,92	81,56	86,73
0,2	73,71	82,51	84,76
0,3	73,35	76,49	82,38
0,4	61,69	73,09	77,47
0,5	56,57	62,58	68,24
0,6	55,89	56,94	63,71
0,7	48,24	58,75	58,08
0,8	52,85	56,53	54,58
0,9	44,37	53,11	53,17
1,0	39,70	43,75	50,85

2.3.4 Análise dos resultados do experimento IV

Tabela: Acurácia média de classificação para conjuntos de validação (com diferentes níveis de ruído) pré-processados pelos respectivos modelos de remoção de ruído treinados com configurações (ϕ,ω) . Elaboração própria.

Configuração (φ,ω)	Acurácia média de classificação (%) por nível de ruído (std)									
J . (//)	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
$(\phi = +1, 0, \omega = -1, 0)$	75,80	73,96	72,72	68,29	68,22	66,31	59,35	52,64	49,42	41,46
$(\phi = +0, 8, \omega = -0, 2)$	80,38	79,62	72,01	65,84	68,09	61,36	55,32	52,40	45,95	42,91
$(\phi = +0,5, \omega = -0,5)$	70,05	74,12	71,20	69,86	69,85	68,78	62,67	54,77	49,79	42,14
$(\phi = +1, 0, \omega = -0, 5)$	82,66	80,82	80,29	75,75	70,28	67,75	62,88	60,69	52,65	48,26
$(\phi = +1, 0, \omega = +1, 0)$	66,17	63,33	52,09	26,90	42,85	15,07	15,03	28,58	19,56	15,91
$(\phi = +0,5, \omega = +0,5)$	57,30	60,60	34,15	42,93	15,64	9,74	9,72	24,91	9,72	9,74
$(\phi = +1, 0, \omega = +0, 5)$	69,82	70,55	55,74	51,29	47,94	33,60	30,57	29,64	31,84	28,24
$(\phi = +0, 8, \omega = +0, 2)$	72,49	72,57	56,75	54,69	54,26	46,16	38,73	39,24	34,13	34,13
$(\phi = +1, 0, \omega = \pm 0, 5)$	73,64	74,81	60,12	60,66	57,10	51,35	50,44	42,90	43,33	37,73

Conclusão

- 1. Introdução
- 2. Desenvolvimento
- 3. Conclusão
- 4. Referências

3. Conclusão

A introdução de ruído reduz as classificações corretas.

Usar modelos para remoção de ruídos incrementa as classificações corretas, principalmente para ruido intenso.

O uso do erro da classificação para auxiliar o aprendizado dos removedores de ruído incrementa as classificações corretas.

A adaptação do algoritmo backpropagation demonstra indícios de redução das épocas necessárias para obtenção de bons resultados.

3. Conclusão

Trabalhos futuros:

- Reprodução e ampliação dos experimentos conduzidos para testificar e formalizar os indícios observados;
- Estudar cenários similares ao apresentado na pesquisa.

Com o desenvolvimento dos indícios, os conceitos explorados podem ser usados para desenvolver soluções de *Deep Learning* eficientes voltadas para aplicações reais.

Referências I

- Alejandro Baldominos, Yago Saez e Pedro Isasi. "A survey of handwritten character recognition with MNIST and EMNIST". Em: Applied sciences 9.15 (ago. de 2019), p. 16. DOI: 10.3390/app9153169. URL: http://dx.doi.org/10.3390/app9153169.
- [2] L. Bottou et al. "Comparison of classifier methods. a case study in handwritten digit recognition". Em: IAPR. Vol. 3. IEEE, 1994, pp. 77–82.
- [3] Magnus Ekman. Learning deep learning. Theory and practice of neural networks, computer vision, natural language processing, and transformers using TensorFlow. en. 1^a ed. Boston, MA: Addison Wesley, 2021, p. 752.
- [4] Ian Goodfellow, Yoshua Bengio e Aaron Courville. Deep Learning. London, England: MIT Press, 2016, p. 775.
- [5] Simon O. Haykin. Neural Networks and Learning Machines. 3ª ed. Upper Saddle River, NJ: Pearson, 2008, p. 936.
- [6] Ya Li et al. "Classification and representation joint learning via deep networks". Em: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017.
- [7] Cheng-Lin Liu et al. "Handwritten digit recognition. benchmarking of state-of-the-art techniques". Em: Pattern recognition 36.10 (2003), pp. 2271–2285. Doi: 10.1016/s0031-3203(03)00085-2. URL: http://dx.doi.org/10.1016/s0031-3203(03)00085-2.
- [8] Mohammad Momeny et al. "A noise robust convolutional neural network for image classification". Em: Results in engineering 10 (2021), p. 100225. DOI: 10.1016/j.rineng.2021.100225. URL: http://dx.doi.org/10.1016/j.rineng.2021.100225.
- [9] Tiago S. Nazaré et al. "Deep convolutional neural networks and noisy images". Em: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Vol. 10657. Springer International Publishing, fev. de 2018, pp. 416–424.
- [10] Sudipta Singha Roy, Mahtab Ahmed e Muhammad Aminul Haque Akhand. "Classification of massive noisy image using auto-encoders and convolutional neural network". Em: International Conference on Information Technology (ICIT). IEEE, out. de 2017, pp. 971–979.

Referências II

- [11] Sudipta Singha Roy, Mahtab Ahmed e Muhammad Aminul Haque Akhand. "Noisy image classification using hybrid deep learning methods". Em: Journal of Information and Communication Technology 17.2 (abr. de 2018). DOI: 10.32890/jict2018.17.2.8253. URL: http://dx.doi.org/10.32890/jict2018.17.2.8253.
- [12] Pascal Vincent et al. "Extracting and Composing Robust Features with Denoising Autoencoders". Em: International Conference on Machine Learning. Helsinki, Finland: Association for Computing Machinery, 2008, pp. 1096–1103. DOI: 10.1145/1390156.1390294. URL: https://doi.org/10.1145/1390156.1390294.
- [13] Pascal Vincent et al. "Stacked Denoising Autoencoders. Learning Useful Representations in a Deep Network with a Local Denoising Criterion". Em: J. Mach. Learn. Res. 11 (dez. de 2010), pp. 3371–3408.
- [14] Raul Sidnei Wazlawick. Metodologia de Pesquisa para Ciência da Computação. pt. 3ª ed. Rio de Janeira, RJ: GEN LTC, 2020, p. 152.
- [15] Qiang Xu et al. "Multi-Task Joint learning model for segmenting and classifying tongue images using a deep neural network". Em: Journal of biomedical and health informatics 24.9 (2020), pp. 2481–2489. DOI: 10.1109/JBHI. 2020.2986376. URL: http://dx.doi.org/10.1109/JBHI.2020.2986376. IEEE.
- [16] Yiren Zhou, Sibo Song e Ngai-Man Cheung. "On classification of distorted images with deep convolutional neural networks". Em: International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017.

Aprendizado Profundo para Classificação de Imagens

Explorando o uso conjunto de redes neurais para classificação e remoção de ruído em imagens de dígitos manuscritos

Autor: Gabriel Eduardo Lima

Orientador: Ricardo de la Rocha Ladeira, Me. Coorientador: Eder Augusto Penharbel, Me.

IFC - Campus Blumenau

28 de novembro de 2023

