

Introduction to Robot Intelligence [Spring 2023]

Control

March 21, 2023

Lerrel Pinto

What have we learned so far?

Gradient Descent Algorithm

Credits: Stanley Chan

Gradient Descent Algorithm

- Given: cost / loss/ objective function $f(\overrightarrow{\theta})$. Where $\overrightarrow{\theta} \in \mathbb{R}^d$.
- Goal: find $\overrightarrow{\theta}^*$ such that $f(\overrightarrow{\theta}^*) = \min_{\overrightarrow{\theta}} f(\overrightarrow{\theta})$.
- Gradient descent solution:
 - Start from initial guess $\overrightarrow{\theta}^0$ and learning rate α

Robot as a collection of rigid bodies + transformations!

Forward Kinematics

$$A_1 = \left[egin{array}{cccc} c_1 & -s_1 & 0 & a_1c_1 \ s_1 & c_1 & 0 & a_1s_1 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight].$$

$$A_2 = egin{bmatrix} c_2 & -s_2 & 0 & a_2c_2 \ s_2 & c_2 & 0 & a_2s_2 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ \end{bmatrix}$$

$$T_2^0 \; = \; A_1 A_2 = \left[egin{array}{cccc} c_{12} & -s_{12} & 0 & a_1 c_1 + a_2 c_{12} \ s_{12} & c_{12} & 0 & a_1 s_1 + a_2 s_{12} \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight]$$

Inverse Kinematics

Lets go a step deeper

List of ideas

How does the robot know where it is?

Incremental Encoders

Absolute Encoders

How does the robot know where it is?

Incremental Encoders

Absolute Encoders

Robot Control

- Input: encoder position, (velocity, acceleration etc.)
- Output: motor toques, forces, (voltages etc.)
- One instance of the control problem:
 - Achieve desired position by controlling motor torques.

How can you achieve this?