TI mmWave Sensors AWR1x Family Device Overview

Agenda

- Device Overview
 - TI mmWave sensor portfolio
 - AWR1x Signal processing chain
 - Example System topologies
- Functional Blocks
 - Device Block Diagram
 - RF and Analog Subsystem
 - Radar Subsystem (aka BSS or BIST Subsystem)
 - Master Subsystem (MSS)
 - DSP Subsystem (DSS: AWR16xx only)
 - Radar Hardware accelerator
- Boot modes
- Software Platform

Automotive mmWave Sensors 76 – 81 GHz

AWR12433

Radar Sensor

Use Cases

- Imaging Radar Sensor
 - 2x AWR12 (cascade) + External DSP
 - 4x AWR12 (cascade) + External DSP

AWR1443

Radar Sensor + HW Accelerator

- Use Cases
 - -Entry-level Single-chip Radar
 - Proximity warning, Blind spot

AWR1642

Radar Sensor + DSP

- Use Cases
 - -USRR Single Chip Radar
 - •160 Degree, 40m
 - -SRR Single chip Radar
 - 120m Cross traffic Alert

Key Features

- FMCW Radar transceiver with 76-81 GHz operating frequency and 4 GHz chirp bandwidth
- Scaling from Front-end only to complete Single Chip Radar solution
- MIMO: Up to three transmitter and four receiver chains
- Programmable, flexible chirp profiles for both long and short range sensing in the same radar frame
- 200MHz ARM Cortex R4F MCU for user application processing
- Radar Hardware accelerator for FFT and CFAR processing (AWR14xx only)
- C674x DSP for advanced tracking, clustering and object classification (AWR16xx only)
- Continuous monitoring and calibration of Analog/RF through a second dedicated Cortex R4F MCU
- CAN and CAN-FD (AR1W6xx only) support for ECU Interface
- QSPI Serial Flash support for autonomous boot
- MIBSPI, SPI, I2C, and UART Serial Interfaces Support
- CSI2 (AWR12xx only) interface for high speed raw data transfer
- LVDS/Debug interface for measurements.
- ASIL-B Capable

AWR1243

AWR1443

AWR1642

AWR1x mmWave Signal Processing

Example System Topologies

Example System Topologies

Functional Blocks

Block Diagram: AWR12xx/AWR14xx/AWR16xx Master SS STC **CANFD** →ECU Interface ADC CAN **Decimation Filters** Cortex R4F SPI/I2C Safety MCU/PMIC RX x4 **QSPI** *Flash Interface PRAM DRAM SPI Safety MCU **Boot ROM** Development Interfaces DMAx2 Uart1,2,3 MailBox RTI/WD, TIMER Sync Ф PA AGC/DC est. →High speed raw data **CRC** CSI2 (AWR12xx) TX x2 ф **ESM** –nError Cryptography PA X4 Synth Chirp Gen Radar Acc (AWR14xx) Cleanup PLL Handshake RAM1 C674x Handshake RAM2 Oscillator **GPADC** DSP SS L1P L1D Crystal CRC Radar-S EMC UMC DFE RTI/WD, TIMER RTI/WD, TIMER Ramp gen ADC buffers PRAM L2 RAM **GPADC** Buf Cortex HIL DMM L3 RAM R4F MDO **LVDS** EDMAx4 DRAM Test/Debug **DMA** IOs Ctl Registers Uart4 Temp **VMON** nReset 13 **Development Interface** JTAG/Trace **TEXAS INSTRUMENTS**

RF and Analog Subsystem

RF and Analog: Clock Subsystem

- Supports 40MHz crystal.
- Clean-up PLL provides high-frequency reference for modulated synthesizer and clocks to digital, ADCs.
- FMCW waveforms synthesized in a 19-20.25GHz closed loop frequency synthesizer.

RF and Analog: Transmit Subsystem

- Single-ended antenna interface matched to a 50 ohm GCPW on the PCB at the edge of the package.
- Power/impedance monitors at the edge of the die.
- Binary (0/180) phase modulation for MIMO radar and interference mitigation.

RF and Analog: Receive Subsystem

- Complex (I/Q) baseband.
- Programmable high pass filters to compensate for channel loss.
- CTSDM ADC supports IF bandwidths up to 15MHz.

Radar Subsystem (aka BSS)

Radar Subsystem (BSS)

- Also known as the BSS, includes the DFE (digital front-end) and Ramp Generator
- Includes a dedicated Cortex R4F MCU for configuration, monitoring, and calibration of the low-level RF/Analog components
- Access to the Radar subsystem provided through hardware mailboxes and a well defined API

Radar Subsystem

Master Subsystem (MSS)

Block Diagram: AWR12xx/AWR14xx/AWR16xx Master SS STC **CANFD** →ECU Interface ADC CAN **Decimation Filters** Cortex R4F SPI/I2C Safety MCU/PMIC RX x4 **QSPI** *Flash Interface PRAM DRAM SPI Safety MCU **Boot ROM** Development Interfaces DMAx2 Uart1,2,3 MailBox RTI/WD, TIMER Sync Ф PA AGC/DC est. →High speed raw data CRC CSI2 (AWR12xx) TX x2 ф **ESM** –nError Cryptography PA X4 Synth Chirp Gen Radar Acc (AWR14xx) Cleanup PLL Handshake RAM1 C674x Handshake RAM2 Oscillator **GPADC** SS L1P L1D DSP Crystal CRC Radar-S EMC UMC DFE RTI/WD, TIMER RTI/WD, TIMER Ramp gen ADC buffers PRAM L2 RAM **GPADC** Buf Cortex HIL DMM L3 RAM R4F MDO **LVDS** EDMAx4 DRAM Test/Debug **DMA** IOs Ctl Registers Uart4 Temp **VMON** nReset 24 **Development Interface** JTAG/Trace **TEXAS INSTRUMENTS**

Master (Control) Subsystem

- The MSS includes an ARM Cortex R4F processor clocked at 200 MHz for running application code.
- User application running on MSS controls overall operation of the device, including Radar subsystem (BSS) control via well-defined API messages and perform radar signal processing.
- This subsystem also includes the various external interfaces available on the 14 or 16xx devices.

Master Subsystem

DSP Subsystem (DSS)

DSP Subsystem (DSS): AWR16xx only

- C674x DSP clocked at 600 MHz for advanced Radar signal processing
- High bandwidth interconnect for high performance (128-bit, 200MHz)
- 256 KB L2 and 1 MB of L3 memory
- Four DMAs for data transfer, LVDS interface for Measurement data output, ADC buffers, CRC engine and data handshake memory

DSP Subsystem (DSS)

Radar Hardware Accelerator

Radar Hardware Accelerator

- Accelerates FFT and CFAR detection operations
- Simple pre-FFT processing and Magnitude and Log-Magnitude computation capability
- Flexible data flow and data sample arrangement to support efficient multi-dimensional FFT operations and transpose accesses
- Chaining and Looping mechanism to sequence accelerator operations with minimal intervention from the main processor
- CFAR-CA detector support (linear and logarithmic)

Radar Hardware Accelerator

Boot Modes

Boot Modes

Flashing Mode:

- Bootloader enables the UART driver
- Expects a data stream comprising of User Application (Binary Image)
- Loads data to appropriate sections of the serial FLASH

Functional Mode:

- Bootloader looks for a valid image in the serial flash memory, interfaced over the QSPI port.
- Bootloader transfers the same to Master System's memory sub-system

Software Platform

mmWave Software Simplified evaluation and development

mmWave SDK

Includes:

- TI RTOS
- Drivers
 - SPI
 - CAN/CANFD
 - LVDS / CSI-2
 - EDMA
 - UART
 - 12C
 - GPIO
 - Timers
 - FFT HW
- Signal Processing Library
 - On DSP
 - On HW Accelerator
- mmWaveAPI
- mmWaveLink
- mmWaveLib

mmWave Examples

- TI Designs:
 - AWR14xx Proximity Sensor
 - AWR16xx Short-Range Radar
- Examples:
 - mmWaveDemo (OOB)

mmWave Studio

Includes:

- Visualizer visualize output (point-cloud and proximity grid) from the sensor on the PC
- System Estimator define chirp configuration through abstracted parameters like max range, minimum range, etc
- Capture capture raw ADC data from capture HW onto the PC

mmWave Sensing Estimator

- Sensing Estimator enables prototyping chirp configuration through scene parameters
- Error checking and tips provide a convenient check on any out of bound or impossible values
- Helps customers jump start evaluation of their usecase for the mmWave sensors

mmWave SDK – The TI components

TI code

Partner code

Customer code

ISO 26262 enabled code

mmWave SDK

- Modular design
- Well defined APIs
- Documentation doxygen, release notes, user guide
- MISRA-C compatibility for all foundational components

Application mmWave mmWave Processing mmWave API Studio mmWaveLib mmWaveLink **RTOS** MSS Custom MCAL **AUTOSA** TI **Drivers RTOS** RTOS R RTE **BSS** Firmware /OSAL **Firmware** (mmWave **Front End) MSS Bootloader (ROM)**

RTOS Drivers

- Encapsulate the functionality of the hardware IPs in the SOC
- Provide a well defined API to the higher layers.
- OS-agnostic via the OSAL layer

OSAL

- An abstraction layer for some of the common OS services. (Semaphore, Interrupts, Clock)
- Sample TI RTOS based port in mmWaveSDK
- Customers can port the OSAL for their custom OS, as per their requirements

BSS Firmware

- ROM Firmware for mmWave Front End
- Provides well defined APIs to configure, start and monitor mmWave Front End
- Communicates with MSS via Mailbox and proprietary protocol

mmWaveLink

- Low level control for mmWave Front End
- Communicates over Mailbox to BSS (front end)
- Implements the communication protocol between the BIST subsystem and Master subsystem

mmWave API

- Simple APIs for application to perform the task of radar sensing
- High level control for mmWave Front End and DSS
- Runs on top of mmWaveLink/IPC and Drivers.

mmWaveLib

- Provides functions for elements or sub functions of typical radar processing chain
- Optimized for C674x
- Speed customer development and reduce the SW effort to achieve a working radar processing chain

mmWave SDK - Packaging

- Uses TI compiler tools (Cortex-R4F, C674X) provided as part of CCS
- Demo built over TI RTOS
- Simple makefile based build system

Learn more about TI Automotive mmWave Sensors

- Learn more about AWR1x devices, please visit the product pages
 - AWR1243: http://www.ti.com/product/AWR1243
 - AWR1443: http://www.ti.com/product/AWR1443
 - AWR1642: http://www.ti.com/product/AWR1642
- Get started evaluating the platform with AWR1x EVMs, purchase EVM at
 - AWR1243 EVM: http://www.ti.com/tool/AWR1243BOOST
 - AWR1443 EVM: http://www.ti.com/tool/AWR1443BOOST
 - AWR1642 EVM: http://www.ti.com/tool/AWR1642BOOST
- Download mmWave SDK @ http://www.ti.com/tool/MMWAVE-SDK
- Ask question on TI's E2E forum @ http://e2e.ti.com