

PHYSICS

CHAPTER 3

5th SECONDARY

MPCL

MOTIVATING STRATEGY

¿Para dar en el blanco realmente se debe apuntar al blanco?

¿QUÉ ES UN MOVIMIENTO PARABÓLICO DE CAIDA LIBRE?

Es un movimiento de trayectoria PARABÓLICA, a causa de la acción de la gravedad sin resistencia alguna. (Se desprecia la resistencia del aire)

MOVIMIENTO PARABOLICO DE CAÍDA

Un MPCL lo podemos analizar como si fuera la composición de:

CONSIDERACIONES:

- La componente horizontal de la velocidad: V_{χ} : constante
- \cdot En la posición de altura máxima: $V_y=0$ (cuidado
- $V=V_{\chi}$. En todo instante su RAPIDEZ (V)

$$V = \sqrt{V_x^2 + V_x^2}$$

1.Desde el borde de un edificio se lanza una pelota tal como se muestra. Determine la distancia d_x si la pelota empleó 5 s hasta chocar en el piso. (g=10 m/s²)

Resolución

2.Determine la distancia d_x si la pelota es lanzada horizontalmente con $V_x = 30$ m/s. (g = 10 m/s²)

Resolución

En la dirección horizontal

$$d_{(x)} = V_x \cdot t \dots (1)$$

En la dirección vertical

$$H = V_0 t + \frac{gt^2}{2}$$

$$80 \text{ m} = (5 \text{ m/s}^2) \cdot t^2$$

$$t = 4 s$$
 en (I)

$$d_{(x)} = (30 \text{ m/s}) (4 \text{ s})$$

∴ $d_{(x)} = 120 \text{ m}$

3.Desde el borde de un acantilado se lanza una piedra en forma horizontal y con 40 m/s. Determine el módulo de la velocidad de la piedra luego de 3 s de lanzamiento. $(g = 10 \text{ m/s}^2)$

Resolución

Del grafico

$$V^2 = 40^2 + 30^2$$

$$V_B = 50 \text{ m/s}$$

4. Desde el piso se lanza una piedra tal como se muestra. Determine el módulo de la velocidad de la piedra luego de 1 s. $(g = 10 \text{ m/s}^2)$

RESOLUCIÓN

 $Vx = 30\sqrt{2} \text{ m/s}$

RESOLUCIÓN

01

5. Una pelota desarrolla un MPCL tal como se muestra. Determine la distancia d y la altura H. $(g=10 \text{ m/s}^2)$

Determinación del tiempo

$$V_f = V_o - g t$$

 $Om/s = 40 \text{ m/s} - 10(\text{m/s}^2) \text{ t}$

$$t = 4s$$

Determinación de la altura h

$$H=(\frac{V_0+V_f}{2}) t$$

$$H = (\frac{40m/s + 0m/s}{2})$$
 4s

$$H = 80m$$

Cálculo de la distancia d

$$d = V.t$$

$$d = 30 (m/s) 4s$$

$$d = 120 \, \text{m}$$

HELICO | PRACTICE

RESOLUCIÓN

01

6. Si la pelota realiza un MPCL. determine la distancia d y la altura de H. (g=10 m/s²)

 $V_f = V_o - g t$

$$30m/s = 40 m/s - 10(m/s^2) t$$

Determinación del tiempo

$$t = 1s$$

Determinación de la altura h

$$H=(\frac{V_0+V_f}{2}) t$$

$$H = (\frac{40m/s + 0m/s}{2})$$
 4s

$$H = 80m$$

Cálculo de la distancia d

$$d = Vt$$

$$d = 30 (m/s) 4s$$

$$d = 120 \text{ m}$$

7. Si la pelota realiza un MPCL. determine a qué distancia d choca en el piso. $(g = 10 \text{ m/s}^2)$

RESOLUCIÓN

Determinación del tiempo bc

$$H = V_0 t + \frac{g}{2} t^2$$

$$80 = 30t + \frac{10}{2}t^2$$

$$t_{BC}$$
= 2 s

$$t_{AB}$$
= 6s

Cálculo de la distancia d

$$d = Vt$$

$$d = 30 (m/s) 4s$$

d = 120 m

RESOLUCIÓN

01

- 8. Cuando se realiza lanzamiento de proyectiles tal como se muestra su alcance horizontal máximo está expresado por la ecuación $d_x = (v^2/g)$ sen2q. donde
- > v: es la rapidez de lanzamiento
- > g: magnitud de la aceleración de la gravedad
- > q: ángulo de lanzamiento respecto a la horizontal

Si se realiza un lanzamiento con un ángulo $q = 15^{\circ}$. ¿cuál es la rapidez de lanzamiento para un alcance horizontal de 20 m? (Desprecie la resistencia del aire. $g = 10 \text{ m/s}^2$).

Del texto
$$d = \frac{V^2 sen 2\theta}{g}$$

Datos: d= 20m $q = 15^{\circ}$ $g = 10 \text{ m/s}^{2}$

Remplazando:

20 m=
$$\frac{V^2 sen (2x15^\circ)}{10 m/s^2}$$

$$V^2 = 400(m^2/s^2)$$

V=20(m/s)