Data Cleaning

CSC2621 Introduction to Data Science

Data Science Process

- Application of the scientific method to data
- Data Science vs Machine Learning
 - Data Science: Understand the data and its Relationships better. Uses machine learning to explore data and validate those relationships
 - Machine Learning: Goal is to build a predictive model. Data Science is used to identify variables for the models and evaluate the models by creating an experimental framework

Data Cleaning Steps

- Parse the file format to read in the data. At the end of this stage, for each record, you should be able to separate the values belonging to each field
- 2. Convert data to consistent representations (e.g., spelling of state names, format of dates)
- 3. Convert values to the right types (e.g., floats, datetimes, categorical)
- 4. Convert values to the right units (e.g., everything in inches)
- 5. Remove outlier records

Structuring Data

Properly Structured Data

- After we acquire the data, we need to clean it
- A clean data set is organized into a table such that:
 - Each sample is one row
 - Each variable is one column
 - All values are represented by their proper type (e.g., datetime, float, categorical)
 - All values in each column have the same types (e.g., int, float)
 - All values in each column have the same units (e.g., inches)

Representing Data as a Table

df.head(10)

	CHROM	POS	N_ALLELES	N_CHR	FREQ_1	FREQ_2
0	2R	808	2	2	1.0	0.0
1	2R	810	2	2	1.0	0.0
2	2R	821	2	2	1.0	0.0
3	2R	1297	2	4	0.5	0.5
4	2R	2124	2	2	0.5	0.5
5	2R	2400	2	2	1.0	0.0
6	2R	2740	2	4	0.0	1.0
7	2R	4485	2	2	0.0	1.0
8	2R	4800	2	2	0.0	1.0
9	2R	4803	2	2	0.0	1.0

Observations are in Rows

Variables are in Columns

df.head(10)

	HROM	POS	N_ALLELES	N_CHR	FREQ_1	FREQ_2
0	2R	808	2	2	1.0	0.0
1	2R	810	2	2	1.0	0.0
2	2R	821	2	2	1.0	0.0
3	2R	1297	2	4	0.5	0.5
4	2R	2124	2	2	0.5	0.5
5	2R	2400	2	2	1.0	0.0
6	2R	2740	2	4	0.0	1.0
7	2R	4485	2	2	0.0	1.0
8	2R	4800	2	2	0.0	1.0
9	2R	4803	2	2	0.0	1.0

Loading Data

Loading Data with Pandas

- Before we can access the data in a file, we need to be able to read it
- Generally, you can use:
 - df = pd.read_csv() read a CSV or TSV file
 - df = pd.read_json() read a JSON file
 - df = pd.read_excel() read an Excel file
 - df = pd.read_sql() read a result of a SQL query or table
- This only works if the file formats are properly formatted or the data is available in common file formats

Bad or Uncommon File Formats

- Files may have bad formats for multiple reasons
 - Excel spreadsheet doesn't strictly organize data into a single table of columns and rows
 - Someone wrote a custom JSON writer and didn't escape newlines and quote
 (") marks in Strings properly
 - Data is from multiple sources and written in a mix of encodings (e.g., UTF-8) in the same file
- Files may also be in uncommon file formats
 - e.g., domain-specific file formats like FASTA and VCF for genomic data

Loading Data (incorrectly)

Incorrectly Read Data

df.head(10)

	CHROM	POS	N_ALLELES	N_CHR	{FREQ}
2R	808	2	2	1.0	0.0
2R	810	2	2	1.0	0.0
2R	821	2	2	1.0	0.0
2R	1297	2	4	0.5	0.5
2R	2124	2	2	0.5	0.5
2R	2400	2	2	1.0	0.0
2R	2740	2	4	0.0	1.0
2R	4485	2	2	0.0	1.0
2R	4800	2	2	0.0	1.0
2R	4803	2	2	0.0	1.0

Raw Text File

rnowling@parker:/scratch1/rnowling/pedigree-linkage-mapping/linkage_mapping/data/mafs\$ head 1997_BP02.freq

CHROM	POS	N_AL	LELES	N_CHR	{FREQ}	<u>)</u> }
2R	217	2	2	0.5	0.5	
2R	356	2	2	1	0	
2R	371	2	2	1	0	
2R	1222	2	2	1	0	
2R	1236	2	2	1	0	
2R	1473	2	4	0	1	
2R	3670	2	8	0	1	
2R	3937	2	6	0.66666	57	0.333333
2R	4584	2	6	0	1	

Loading Data (correctly)

Correctly Read Data

df.head(10)

	CHROM	POS	N_ALLELES	N_CHR	FREQ_1	FREQ_2
0	2R	808	2	2	1.0	0.0
1	2R	810	2	2	1.0	0.0
2	2R	821	2	2	1.0	0.0
3	2R	1297	2	4	0.5	0.5
4	2R	2124	2	2	0.5	0.5
5	2R	2400	2	2	1.0	0.0
6	2R	2740	2	4	0.0	1.0
7	2R	4485	2	2	0.0	1.0
8	2R	4800	2	2	0.0	1.0
9	2R	4803	2	2	0.0	1.0

Custom Parsers

- In some cases, you will need to write custom code to read a file format and create the DataFrame yourself
- Store the data in lists (one per column)
- And create a DataFrame yourself:

Custom Parsers

You can also create DataFrames from a list of tuples

Basic Data Exploration

Look at Your Data!

- Look at the first few records (head() on the table)
- Use Pandas' info() method to get column info (e.g., name, type, nulls)
- Use Pandas' describe() method to get descriptive / summary statistics:
 - Average / mean
 - Standard deviation
 - Min, Max
 - Count, unique, mode for categorical types

Head

df.head(10)

	CHROM	POS	N_ALLELES	N_CHR	FREQ_1	FREQ_2
0	2R	808	2	2	1.0	0.0
1	2R	810	2	2	1.0	0.0
2	2R	821	2	2	1.0	0.0
3	2R	1297	2	4	0.5	0.5
4	2R	2124	2	2	0.5	0.5
5	2R	2400	2	2	1.0	0.0
6	2R	2740	2	4	0.0	1.0
7	2R	4485	2	2	0.0	1.0
8	2R	4800	2	2	0.0	1.0
9	2R	4803	2	2	0.0	1.0

Info

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3191955 entries, 0 to 3191954
Data columns (total 6 columns):
           object
CHROM
POS int64
N ALLELES int64
N CHR int64
FREQ 1 float64
FREQ 2 float64
dtypes: float64(2), int64(3), object(1)
memory usage: 146.1+ MB
```

Describe

df.describe()

	POS	N_ALLELES	N_CHR	FREQ_1	FREQ_2
count	3.191955e+06	3191955.0	3.191955e+06	3.191955e+06	3.191955e+06
mean	2.463528e+07	2.0	5.155352e+00	3.823677e-01	6.176323e-01
std	1.364909e+07	0.0	3.966836e+00	4.028822e-01	4.028822e-01
min	7.100000e+01	2.0	2.000000e+00	0.000000e+00	0.000000e+00
25%	1.365195e+07	2.0	2.000000e+00	0.000000e+00	2.500000e-01
50%	2.414605e+07	2.0	4.000000e+00	2.500000e-01	7.500000e-01
75%	3.490815e+07	2.0	6.000000e+00	7.500000e-01	1.000000e+00
max	6.154446e+07	2.0	4.000000e+01	1.000000e+00	1.000000e+00

Unification

Data Representation Unification

- Data of the same type might not be stored in a consistent format
- A common example are dates and times. Dates follow a number of patterns:
 - YYYY-MM-DD
 - MM-DD-YY
- We need to convert these to a single representation before we can parse them
- We call this unification

Data Representation Unification

- Another example are state names:
 - Mississippi
 - MS
 - Miss.
- People can easily misspell or use different abbreviations for state names
- We call this name unification

Handling Varying Data Representations

- Your goal is to convert every representation to a single, canonical representation for each piece of information (e.g., single state name)
- For example, with dates, you would need to write a custom function to guess the date format for each String and parse it to produce a DateTime object accordingly
- In many cases, the various representations do not belong to a standard so you need to use a guess-and-check approach
 - Look at the data by eye!

Example: Parsing Date and Times

```
def parse_date(date_string):
  Parse datetimes like
  'Tue, 10 Apr 2007 19:25:38 +0000'
  'Fri, 18 May 2007 12:15:02 -0700 (PDT)'
  '14 May 2007 04:27:55 +0000'
  '2007-06-02 17:35:21'
  if date string is None:
    return None
  # remove trailing "(GMT)"
  if date string.endswith(")"):
    idx = date string.rfind(" ")
    date string = date string[:idx]
  # remove preceding day of the week
  if "," in date string:
    idx = date string.find(",") + 2
    date string = date string[idx:]
```

```
# remove timezone offset
idx = date_string.rfind(" ")
date_string = date_string[:idx]

try:
    fmt = "%d %b %Y %H:%M:%S"
    return dt.datetime.strptime(date_string, fmt)
except:
    try:
        fmt = "%Y-%m-%d %H:%M:%S"
        return dt.datetime.strptime(date_string, fmt)
except:
    return dt.datetime.strptime(date_string, fmt)
except:
    return None
```

Choosing the Right Types

- Text (String)
- Numerical
 - Integer (int32, int64)
 - Float (float32, float64)
- Boolean (bool)
- Categorical

- Date / Times
 - timedelta64[ns]
 - datetime64[ns]
 - Timestamp

Choosing the Right Types

- Pandas tries to infer the data types when using load_csv() or similar
- Is it is likely that Pandas will guess incorrectly at times
- You can change types using astype():

```
df["at_bats"] = df["at_bats"].astype(np.float32)
df["state"] = df["state names"].astype("category")
```

Should It Be Categorical?

- Some data sets encoded categorical data as integers
 - 1 Red
 - 2 Green
 - 3 Blue
- This data is mis-encoded. Integers imply an ordering. Categories do not have orderings.
- Similarly, Strings are not usable for plots, statistical tests, or machine learning.
- If the values of a String field contains many duplicated values (e.g., state names), it should probably be categorical.

Text Data

- If String data is complex (e.g., street addresses, email bodies, or comments), it cannot be used directly
- Variables can be extracted from text
- For example, given addresses like "1234 Madison St.", we can extract:
 - Home numbers
 - Street names
 - Street types (street, court, way, etc.)

Unit Conversions

- All of the values in a single field should be in the same unit (e.g., inches, dollars)
- Date times and currencies are usually the most common problems:
 - Times may be in different time zones. Time zones are very complicated (based on geography, time of year)
 - International data will use different currencies. Currency exchange rates vary in time.

Bad or Missing Values

Errors vs Artifacts

- Fields can contain bad values:
 - Dates outside of expected ranges (e.g., in the future)
 - NaNs
 - Missing values
- We can classify causes into two categories:
 - Errors
 - Artifacts

Errors vs Artifacts

Errors

- Information fundamentally lost in acquisition
- E.g., Missing logs because a server crashed
- Information cannot be recovered

Artifacts

- Systematic problems arising from processing
- e.g., bad date formats
- Cannot be corrected so long as the original data is still available

Missing Values

- Fields may contain missing values
- Statistical and machine learning methods do not work with nulls
- We can check for missing values (represented as nulls):

```
In [6]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 61097 entries, 0 to 61096
        Data columns (total 7 columns):
       bodies
                         61097 non-null object
                         61097 non-null int64
        spam
        to
                        60709 non-null object
                     61097 non-null object
        from
       message number 61097 non-null int64
       user agent 61097 non-null object
        date
                         61096 non-null object
        dtypes: int64(2), object(5)
        memory usage: 3.3+ MB
```

Missing Values: Meaningful

- Missing values have multiple causes
- Missing value has a structural meaning:
 - "Prior activity" field in glucose notebook. Missing value means no prior activity was performed.
 - Survey questions. A survey may have a question that should only be answered if a previous question was answered.
 - These missing values should be instead represented by a placeholder categorical value ("no activity", "not applicable")

Missing Values: Data Cleaning Errors

- Missing values may be present because of badly-formatted data
- Data cleaning processes are often "guess and check"
 - Fail on edge cases and needs to be updated
 - To keep the data cleaning process from crashing, bad values are skipped and replaced with nulls
 - Need to fix the data cleaning process and re-process the data

Missing Values: Just Missing

- In the third case, missing values are just missing
 - e.g., server crashed and logs are lost for a period of time
- Remove records with missing values across many fields
- Impute the values
 - Replace the missing values with an estimated value
 - Need to think carefully about which imputation strategies make sense

Imputation: Mean or Mode

- A simple imputation strategy
 - Calculate the mean, median, or mode of known values
 - Replace missing values with calculated value
- Tends to be safe in that imputed values will not bias ML models
- Most common practice
- May not be appropriate:
 - e.g., using an average birth year for for historical figures

Imputation: Nearest Neighbor

- More complex strategy
 - Find similar records using other fields with known values
 - Use known values from similar records to impute missing value
- Not many good (robust) implementations available
 - May fail when a large number of records have missing values
- Complex
 - Requires transforming data (feature engineering, scaling) to work well
 - Basically doing machine learning at that point

When to Impute

- When in the data science process should you impute?
- Many resources describe imputation during the exploratory data analysis process; I disagree
- The goal of many analyses is to use data we have to make predictions about data we haven't seen yet
 - Imputing missing values using all data will violate our experimental setup (train / test split) for machine learning
 - Better to impute using the training set
- EDA is generally concerned with one or two variables at a time easier to just ignore missing values in those columns when making plots
- Most plotting libraries ignoring missing values by default