Démarche scientifique et concepts fondamentaux 1 -

Grandeurs physiques, dimensions et unités

Grandeurs physiques

Grandeur = propriété d'un corps ou d'un phénomène (distance, durée, charge, force...) Pour mesurer une grandeur, on établit le rapport entre cette grandeur et son unité de mesure.

On marque donc $g = \frac{G}{u}$ ou G = g.u avec G la grandeur et u l'unité.

1. Grandeurs vectorielles

4 paramètres: point d'application et (direction, norme, sens) ou (x, y, z).

2. Grandeurs scalaires

Représenté par un nombre unique.

Non mesurable	Mesurable	
Classement uniquement	Extensive	Intensive
	Proportionnelle à la quantité de matière	Non proportionnelle

Dimensions

Dimension d'une grandeur : $\dim(G)$

Il y a sept dimensions fondamentales. L'équation aux dimensions exprime la dimension d'une grandeur à partir des sept dimensions fondamentales

Les angles n'ont pas de dimensions, ainsi que les arguments des fonctions sin, cos, tan, ln et exp.

Sans dimension signifie que $\dim(G) = 1$

Dimension fondamentale	Symbole
Longueur	L
Masse	M
Temps	T
Intensité électrique	I
Température	θ
Quantité de matière	N
Intensité lumineuse	J

Unités

L'unité de mesure est une grandeur scalaire, définie par convention.

On fait alors le rapport avec cette unité : $g = \frac{G}{u}$

Dimension fondamentale	Symbole Dim	Unité	Symbole unité
Longueur	L	mètre	m
Masse	M	kilogramme	kg
Temps	T	seconde	s
Intensité électrique	I	ampère	A
Température	θ	kelvin	K
Quantité de matière	N	mole	mol
Intensité lumineuse	J	candela	cd

Incertitudes

Définition erreur et incertitude

1. Qu'est-ce qu'une erreur

Erreur absolue : $\delta g = m - g$ où m est la mesure et g la valeur exacte.

Erreur relative : $\delta g_r = \frac{m-g}{q}$ où m est la mesure et g

la valeur exacte.

L'erreur n'est pas connue (sinon, on aurait la valeur exacte).

On s'intéresse donc à l'incertitude, qui a pour but d'estimer l'erreur de manière raisonnable.

2. Origine des erreurs

Type d'erreur	Description	Exemple sur la mesure du volume d'un poly	
Matière	Grandeur mal définie ou fluctuante	Coins arrondis	
Méthode Perturbation du système par		Pied à coulisse qui écrase le poly	
Methode	l'introduction d'un appareil de mesure	i ied a counsse qui ecrase le pory	
Moyens	Imperfections de l'appareil	Règle imparfaite	
Main d'œuvre	Expérimentateur	Mauvaise lecture des graduations, parallaxe	
Milieu	Influence des conditions expérimentales	Taille dépend de la température	

3. Les deux sortes d'erreurs

Erreur systématique : erreur qui se répète identiquement à chaque mesure. Peut être due à la méthode, à la main-d'oeuvre ou aux moyens.

Erreur aléatoire : erreur qui varie aléatoirement d'une mesure à l'autre. Peut être due aux 5 causes possibles.

Mesures justes : moyenne des mesures proche de la valeur vraie.

Mesures fidèles : valeurs proches lors de mesures répétées.

Résolution d'un appareil : plus petite variation décelable.

4. Incertitude

Permet d'estimer la dispersion des résultats de mesure.

Incertitude absolue Δg : limite supérieure raisonnable estimée de la valeur absolue de l'erreur $|\Delta g|$ sur la mesure. La valeur vraie appartient donc à $[g-\Delta g \; ; \; g+\Delta g]$

Estimation des incertitudes

1. Mesure directe

Essayer de changer d'instrument de mesure, de méthode, ou de mesurer une grandeur étalon.

Incertitude de type A : Série de mesure \to étude statistique. (Valeurs souvent réparties selon une loi normale).

Espérance (estimée par la limite de la moyenne) : $\mu = \lim_{n \to +\infty} = \frac{1}{n} \sum_{i=1}^{n} x_i$

Écart-type expérimental : $\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (g_i - \overline{g})^2}$

Incertitude type (estimation de l'erreur) : $\Delta g = \frac{\sigma}{\sqrt{n}}$

Incertitude de type B: Mesure unique (ou faible nombre de répétitions) \rightarrow estimation de l'erreur.

 \rightarrow Estimation des sources d'erreurs et des contributions. On obtiens l'incertitude maximale (somme).

2. Mesure indirecte

Méthode par encadrement : on applique d'une part les incertitudes de manière à minimiser le résultat, puis de manière à le maximiser :

$$\begin{split} g_{\min} &< g < g_{\max} \\ \min(f(x,y,z)) &< g < \max(f(x,y,z)) \\ \Delta g &= \frac{g_{\max} - g_{\min}}{2} \end{split}$$

Méthode par différentielle : Voir OMNI.