Zadania przykładowe z NAI

S. Hoa Nguyen

Zakres materiału:

- 1. Sieci neuronowe jednokierunkowe:
 - a. Model perceptronu: zdolność klasyfikacji; reguły uczenia perceptronowa, reguła delta.
 - b. Model sieci jednowarstwowej: zdolność klasyfikacji; metody kodowania klas decyzyjnych; reguły uczenia.
 - c. Model sieci wielowarstwowe: algorytm propagacji wstecznej błędu.
- 2. Sieci Kohonena: Architechtura; algorytm uczenia.
- 3. Klasyfikator Bayesowski: Algorytm klasyfikujący.
- 4. Drzewo decyzyjne: Rodzaje testu, miara jakości testu (entropia, przyrost informacji).

Zadanie 1: a) Zaprojektować sieć neuronową klasyfikującą punkty podane na rysunku obok podając architekturę sieci, funkcja aktywacji, wagi neuronów i odchylenia.

b) Do której klasy należy wektor X = [0, 0]?

Zadanie 2: a) Zaprojektować sieć neuronową klasyfikującą punkty podane na rysunku obok podając architekturę sieci, kodowanie klas decyzyjnych, funkcję aktywacji, wagi neuronów, odchylenia.

b) Jakie są sygnały wyjściowe jeśli wektor wejściowy jest X = [0, 0]?

Zadanie 3: a) Zaprojektować sieć neuronową klasyfikującą punkty podane na rysunku obok podając architekturę sieci, funkcję aktywacji, wagi neuronów, odchylenia.

b) Jakie są sygnały wyjściowe jeśli wektor wejściowy jest X = [0, 0]?

Zadanie 4: Macierze wag pewnej sieci neuronowej są następujące:

pierwsza warstwa:
$$W_1 = \begin{bmatrix} -1 & 3 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$$
, druga warstwa: $W_2 = \begin{bmatrix} -1 & 0 & -2 \\ 2 & -3 & 1 \end{bmatrix}$, odchylenia wynoszą 0.

- a) Podać architekturę sieci.
- b) Jeśli sygnały wyjściowe z sieci należą do przedziału (0, 1), jaka może być funkcja aktywacji drugiej warstwy?
- c) Zakładając, że funkcja aktywacji jest identyczna dla wszystkich neuronów sieci. Wyznaczyć wektor wyjściowy, jeśli wektor wejściowy X = [-1 2].

Zadanie 5: Neuronu z dyskretną funkcją bipolarną użyto do klasyfikacji punktów w przestrzeni R^2 . Przykłady uczące są następujące $\{\begin{bmatrix} 1 \\ -1 \end{bmatrix}, d = 1\}, \{\begin{bmatrix} -1 \\ 1 \end{bmatrix}, d = -1\}$. Zakładając, że początkowe wagi $W_0 = [-1, 1]$ oraz odchylenie ma wartość 0.

- a) Wyznaczyć błąd sieci przed uczeniem.
- b) Używając *perceptronowej reguły* uczenia (współczynnik uczenia $\eta=0.5$) przeprowadź jeden cykl uczenia dla przykładów uczących.

Zadanie 6: Stosując naiwny klasyfikator Bayesa na podstawie zbioru treningowego przedstawionego w tablicy obok wyznacz klasy decyzyjne następujących modeli samochodu:

x [klasa cena osiągi niezawodność]

- 1) [mały, umiarkowana, –, mała]
- 2) [miejski, –, dobre, duża]
- 3) [kompakt, umiarkowana, dobre, duża]
- 4) [duży, umiarkowana, słabe, przeciętna]

x	Klasa	Cena	Osiągi	Niezawodność	Akceptacja
1	miejski	niska	słabe	mała	1
2	duży	niska	słabe	mała	1
3	kompakt	niska	dobre	przeciętna	1
4	mały	niska	przeciętne	mała	1
5	mały	umiarkowana	przeciętne	przeciętna	1
6	kompakt	umiarkowana	przeciętne	przeciętna	1
7	miejski	umiarkowana	przeciętne	przeciętna	0
8	mały	umiarkowana	dobre	duża	0
9	kompakt	wysoka	dobre	duża	0
10	duży	wysoka	przeciętne	przeciętna	0
11	duży	wysoka	przeciętne	duża	0

Zadanie 7: W celu klasyfikacji modeli samochodu stworzono drzewo decyzyjne dla tablicy treningowej wyżej podanej.

- a) Zaproponuj formy testu dla atrybutów w tej tablicy.
- b) Wyznaczyć najlepszy test wyznaczony na atrybucie "niezawodność".