Possibly true things i'd like to prove

March 7, 2011

First the main motivating conjectures for the study of graphs with $\chi = \Delta$.

Conjecture 1 (Borodin & Kostochka). Every graph satisfying $\chi \geq \Delta \geq 9$ contains a K_{Δ} .

It is easy to show that the following conjecture of Grünbaum holds for $\chi \ge \Delta \ge 7$, so the 5 and 6 cases remain. The 6 case should be easier – the 5 case implies the 6.

Conjecture 2 (Grünbaum). There are no triangle free graphs with $\chi \geq \Delta \geq 5$.

The following with 8 replaced by 9 is equivalent to Borodin-Kostochka – i think the stronger statement is true. One idea for proving Borodin-Kostochka is to try to find a more general statement that holds for $\Delta = 7$, $\Delta = 6$, etc and get down to a manageable max degree base case.

Conjecture 3. Every graph satisfying $\chi \geq \Delta \geq 8$ contains a $K_3 \vee H$ where H is some graph on $\Delta - 3$ vertices.

Conjecture 4. In the complement of any k-mule with $k \geq 8$ the only minimum cardinality vertex cuts are neighborhoods. i think the bound on k might be reduced if we allow a finite list of exceptions.

Conjecture 5. No k-mule with $k \geq 8$ contains a K_{k-1} .

Conjecture 6. The Borodin-Kostochka conjecture holds for circular interval graphs, quasiline graphs, and claw-free graphs – in order of class containment.

Conjecture 7. The only connected counterexample to Borodin-Kostochka with $\Delta=8$ that is the line graph of a multigraph is $L(3C_5)$. Is this also the only circular interval graph counterexample with $\Delta=8$? quasi-line? claw-free?

The following can be viewed as an improvement of Vizing's theorem.

Conjecture 8. If G is the line graph of a multigraph H, then

$$\chi(G) \le \max \left\{ \omega(G), \frac{\Delta(G) + 2}{2} + \mu(H) \right\}.$$

This is motivated in that if true so would be the following tight bound.

Conjecture 9. If G is the line graph of a multigraph, then

$$\chi(G) \le \max \left\{ \omega(G), \frac{5\Delta(G) + 8}{6} \right\}.$$

i think this next one might be false, but i'd like to know. It is false for claw-free graphs; in fact, no bound like this at all can hold for claw-free since $C_5 \vee K_t$ has $\omega = t+2$, $\chi = t+3$, and $\Delta = t+4$.

Conjecture 10. If G is a quasi-line graph then

$$\chi(G) \le \max \left\{ \omega(G), \frac{5\Delta(G) + 8}{6} \right\}.$$