STATISTIQUE EN GRANDE DIMENSION

Feuille d'exercices 3

Date limite le 23/11/2018

Exercice 8.

Montrer que si $\hat{\theta}$ et $\hat{\theta}'$ sont deux solutions du problème de minimisation

$$\min_{\theta \in \mathbb{R}^p} \left(\|y - X\theta\|^2 + h(\theta) \right),\,$$

où $h: \mathbb{R}^p \to \mathbb{R}$ est une fonction convexe, alors $X\hat{\theta} = X\hat{\theta}'$.

Exercice 9.

Soit le cône $\mathcal{C}_J = \{\Delta \in \mathbb{R}^p : |\Delta_{J^c}|_1 \le c_0 |\Delta_J|_1\}$, où $c_0 > 0$. Pour $s \in \{1, \dots, p\}$, posons

$$\kappa(s, c_0) = \inf\left(\frac{\|X\Delta\|}{|\Delta|_2} : \Delta \in \mathcal{C}_J, \ J : |J| \le s\right),$$

$$\kappa'(s, c_0) = \inf\left(\frac{\|X\Delta\|}{|\Delta_J|_2} : \Delta \in \mathcal{C}_J, \ J : |J| \le s\right).$$

Le but de cet exercice est de établir que $\kappa'(s, c_0) \ge \kappa(s, c_0) \ge a\kappa'(s, c_0)$, où a > 0 est une constante ne dépendant que de c_0 .

- 1. Noter que $\kappa'(s, c_0) \ge \kappa(s, c_0)$
- 2. Monter que

$$\kappa'(s, c_0) = \inf_{\Delta \in \mathcal{C}^*} \frac{\|X\Delta\|}{|\Delta_{J_*}|_2},$$

où $J_* = J_*(\Delta)$ est l'ensemble des indices des s plus grandes en valeur absolue composantes de Δ , et

$$\mathcal{C}^* = \{ \Delta \in \mathbb{R}^p : |\Delta_{J_*^c}|_1 \le c_0 |\Delta_{J_*}|_1 \}.$$

3. Monter que, pour tout $\Delta \in \mathcal{C}^*$,

$$|\Delta_{J_*^c}|_2^2 \le c_0 |\Delta_{J_*}|_2^2.$$

4. En déduire que $\kappa(s, c_0) \ge a\kappa'(s, c_0)$ avec une constante a > 0 est ne dépendant que de c_0 que l'on précisera.