

Balancing between Holistic and Cumulative Sentiment Classification

Pantelis Agathangelou, Ioannis Katakis

University of Nicosia

Extends: A Hybrid Deep Learning Network for Modelling Opinionated Content

CUMULATIVE VS HOLISTIC SENTIMENT ASSIGNMENT

MODEL ARCHITECTURE

COMPONENT'S ANALYSIS

EXPERIMENTAL EVALUATION

CONCLUSION

Cumulative vs Holistic Sentiment Assignment "The location is excellent (+). The food is mediocre, and milder than they advertise (-). The wait staff is polite and bland (+). At several opportunities, they were missing for more than 5 mins (\pm) . The bill will be higher than anyone expects (-)."

Exploring Sentiment Patterns

Vector Element $b_i^k = w^k \cdot e_{i:i+h-1}$	(1)	Feature Map Vector (length Z) $b_{F_i}^k = [b_1^k; \cdots; b_i^k; \cdots; b_z^k]$	(2)
Array of Feature Map Vectors $b^k_{F_{1:m}} = [b^k_{F_1}; \cdots; b^k_{F_i} \cdots; b^k_{F_m}]$	(3)	Non-Linearity $c^k = f^{nl}\left(b_{F_{1:m}}^k,eta^k ight)$	(4)
$p^k = k \text{-}max[c^k]$	(5)	Sentence Embedding $x_i = [p^1; \cdots; p^k]$	(6)

single-max pooling VS k-max pooling in a Convolution Layer

Single max-pooling

wasatisfied with the food which was fairly

(a)

K-max-pooling

Encoding Opinion – Augmenting Features – Grasping Sentiment Assignment Strategy

Pantelis Agathangelou, Balancing Between Holistic and Cumulative Sentiment Classification

Balancing Factor and Sentiment Assigning Strategy

Cumulative Strategy Holistic Strategy Local Local Local Local Global Global Global Global balancing factor = 0 balancing factor = 1

		SUBJ	YELP-bin	SEMEVAL	SST-bin	MR	YELP	SST
	HolCmax	94.80%	91.16%	84.96%	86.27%	84.01%	52.75%	49.28%
	HolC	94.11%	90.00%	84.64%	85.48%	79.78%	50.75%	48.62%
HolC can better	HolC w/o Att	93.54%	89.54%	84.10%	84.51%	79.69%	49.46%	47.52%
grasp sentiment	CNN-static (*)	50.51%	77.82%	71.23%	83.51%	78.30%	31.19%	43.28%
Fluctuations	BLSTM (*)	49.87%	75. <mark>5</mark> 7%	70.19%	84.34%	77.48%	31.03%	43.52%
	BiLSTM-Max	92.40%		-	84.60%	81.10%		-
	DAN				86 30%	_		47.70%
	DCNN	-	-	-	86.80%	-	-	48.50%
	CNN	93.40%	-	-	87.20%	81.50%	-	48.00%
Attention,	RecNTN	-	-	-	85.40%	-	-	45.70%
improved the	CT-LSTM	-	-	-	88.00%	-	-	51.00%
generalization in	C-LSTM	-	-	-	87.80%	-	-	49.20%
all benchmark	SWEM-concat	93.00%	-	-	84.30%	78.20%	-	46.10%
datasets	RNN-Capsule	-	-	-	-	83.80%	-	49.30%
datasets	MEAN	-	-	-	-	84.50%	-	51.40%
	AdaSent	95.50%	-	-	-	83.10%	-	-
	USE	93.90%	-	-	87.21%	81.59%	-	-
	Fast Dropout	93.60%	-	-	-	-	-	-
	SDAE	90.80%	-	-	-	74.60%	-	-
	GRU-RNN	91.85%	-	-	-	78.26%	-	45.02%
	Capsule-B	93.80%	-	-	86.80%	82.30%	-	-
	Emo2Vec	-	-	-	82.30%	-	-	43.60%
Sentiment	BiLSTM-CRF & CNN	-	-	-	88.30%	82.30%	-	48.50%
Classification	SwissCheese	-	-	82.00%	-	-	-	-
Classification	CUFE	-	-	83.40%	-	-	-	-
	ECNU	-	-	84.30%	-	-	-	-
	UNIMELB	-	-	87.00%	-	-	-	-
	Thecerealkiller	-	-	82.30%	-	-	-	-
	TwiSE	-	-	82.60%	-	-	-	-
	Finki	-	-	84.80%	-	-	-	-

Pantelis Agathangelou, Balancing Between Holistic and Cumulative Sentiment Classification

TREC dataset

	Acc	Best Acc
HolC	<u>98.64%</u>	99.00%
HolC w/o Att	98.48%	98.80%
CNN-static (*)	98.60%	98.80%
BLSTM (*)	97.84%	98.80%
CNN	93.60%	-
AdaSent	92.40%	-
BiLSTM-Max	88.20%	-
DCNN	93.00%	-
USE	98.07%	-
SDAE	78.40%	-
GRU-RNN	93.00%	-
Capsule-B	92.80%	-
SWEM-aver	92.20%	-

The Contribution of the k-max Pooling Operation

Pantelis Agathangelou, Balancing Between Holistic and Cumulative Sentiment Classification

$\overline{ m BF}$	SUBJ	YELP-bin	SEMEVAL	SST-bin	MR	YELP	SST	TREC
0	94.11%	89.67%	84.64%	85.48%	79.78%	50.75%	48.62%	98.60%
0.25	93.38%	89.66%	84.09%	84.95%	79.47%	50.19%	47.13%	98.44%
0.5	92.23%	89.80%	84.28%	84.63%	79.03%	49.16%	47.65%	98.52%
0.75	93.28%	89.52%	84.19%	85.10%	78.73%	$\underline{50.65\%}$	47.78%	98.64%
1.00	93.50%	$\boldsymbol{90.00\%}$	84.31%	84.96%	79.22%	49.85%	47.04%	98.60%

Holistic/Cumulative content identification over a set of different datasets & balancing factor (BF)

Conclusion

Novelties of the Proposed Method

The introduction of a sentence embedding via a Convolution Neural Network (1) A bi-directional recurrent neural network for encoding semantic content sequentially (2) Classical layer that exploits both local and global information (3) A hyperparameter that balances mixed content motifs named **Balancing Factor** (4) An improved convolution operation that better exploits the input information (5) A k-max-pooling operation over the single max-pooling after the convolution layer (6) An improved design of the attention layer capable of improving the

The utilization of pre-trained word vectors over the randomly

generalization task and

initialized ones

(8)

