DS1553 FPGA Framework

Version 15.1 – 7/2015

How to Contact dSPACE

Mail: dSPACE GmbH

Rathenaustraße 26 33102 Paderborn Germany

Tel.: ++49 5251 1638-0
Fax: ++49 5251 16198-0
E-mail: info@dspace.de
Web: http://www.dspace.com

How to Contact dSPACE Support

There are different ways to contact dSPACE Support:

- Visit our Web site at http://www.dspace.com/goto?support
- · Send an e-mail or phone:
 - General Technical Support:

support@dspace.de

+49 5251 1638-941

· SystemDesk Support:

support.systemdesk@dspace.de

+49 5251 1638-996

· TargetLink Support:

support.tl@dspace.de

+49 5251 1638-700

- Use the dSPACE Installation Manager:
 - On your dSPACE DVD at \Tools\InstallationManager.exe
 - Via Start Programs dSPACE Installation Manager (after installation of the dSPACE software)
 - At http://www.dspace.com/goto?im

You can always find the latest version of the dSPACE Installation Manager here.

dSPACE recommends that you use the dSPACE Installation Manager to contact dSPACE Support.

Software Updates and Patches

dSPACE strongly recommends that you download and install the most recent patches for your current dSPACE installation. Visit http://www.dspace.de/goto?support for software updates and patches.

Important Notice

This document contains proprietary information that is protected by copyright. All rights are reserved. Neither the documentation nor software may be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of dSPACE GmbH.

© Copyright 2013 by: dSPACE GmbH Rathenaustraße 26 33102 Paderborn Germany

This publication and the contents hereof are subject to change without notice.

AutomationDesk, CalDesk, ConfigurationDesk, ControlDesk, SCALEXIO, SystemDesk and TargetLink are registered trademarks of dSPACE GmbH in the United States or other countries, or both. Other brand names or product names are trademarks or registered trademarks of their respective companies or organizations

Contents

About This Guide	4
Document Symbols and Conventions	4
I/O Read Functions	5
Status In	
Digital In	
ADC	
RS485 In	
Resolver IC	
FPGA Temperature	
I/O Write Functions	
LED Out	15
Digital Out	15
DAC	
RS485 Out	18
Pin-Out	20

About This Guide

Document Symbols and Conventions

Symbols

The following symbols may be used in this document:

Indicates a general hazard that may cause personal injury of any kind if you do not avoid it by following the instructions given.

Indicates the danger of electric shock which may cause death or serious injury if you do not avoid it by following the instructions given.

Indicates a hazard that may cause material damage if you do not avoid it by following the instructions given.

Indicates important information that should be kept in mind, for example, to avoid malfunctions.

Indicates tips containing useful information to make your work easier.

Naming Conventions

The following abbreviations and formats are used in this document:

%name% Names enclosed in percent signs refer to environment variables for file and path names, for example, %DSPACE_PYTHON25% specifies the location of your dSPACE installation in the file system.

- Angle brackets contain wildcard characters or placeholders for variable file and path names, etc.
- Precedes the document title in a link that refers to another document.

Indicates that a link refers to another document, which is available in dSPACE HelpDesk.

I/O Read Functions

Overview

The DS1553 provides the following I/O read functions:

- 1x Status In
- 8x Digital In
- 8x ADC
- 4x RS485 In
- 1x Resolver IC
 - 1x FPGA Temperature

.

Status In

Block

This block provides the internal status of the hardware initialization to the model.

Figure 1: FPGA_IO_READ block (Status In)

Output

The main block has the following outputs:

Name	Unit	Description	Format
Init Done	-	Signals that the hardware is	UFix_1_0
		initialized	

Digital In

Block

The 8 digital inputs provide a signal level of V_{H} =5V and are configurable between single-ended or differential input signal in groups.

Figure 2: FPGA_IO_READ block (Digital In)

Block Dialog

The block provides the following dialog:

Figure 3: FPGA_IO_READ dialog (Digital In)

The blockset dialog has the following parameters:

Name	Unit	Description	Range
Input type	-	Set the digital input group	single ended
		to single ended or	differential
		differential input. For the	
		1 st group (1,2,3) this	
		option is set in the block	
		mask of Digital In 1, for	
		the 2 nd group (4,5,6) this	
		option is set in the block	
		mask of Digital In 4 and	
		for the 3 rd group (7,8) this	
		option is set in the block	
		mask of Digital In 7.	
Enable	-	Creates a stimulus input	on off
simulation port		port for offline simulation	
		of the I/O. The stimulus	
		data has to be a Simulink	
		input scaled in V.	

Output

The main block has the following outputs:

Name	Unit	Description	Format
Data	-	The logical signal level at the	UFix_1_0
		digital input	

For single-ended digital inputs, please connect the corresponding DigIn (-) pin to ground.

ADC

Block

The 8 differential ADCs provide a resolution of 14 bit, a sample rate of 10 MHz and a configurable voltage range.

Figure 4: FPGA_IO_READ block (ADC)

Block Dialog

The block provides the following dialog:

Figure 5: FPGA_IO_READ dialog (ADC)

The blockset dialog has the following parameters:

Name	Unit	Description	Range
Input voltage	V	Set the ADC input voltage	±5V ±15V ±30V
range		range to ±5V, ±15V or	
		±30V.	
Scaling	-	Select if the output is	Bit mV
		scaled in ADC LSBs (bit)	
		or mV.	
Enable	-	Creates a stimulus input	on off
simulation port		port for offline simulation	
		of the I/O. The stimulus	
		data has to be a Simulink	
		input scaled in V.	

Output

The main block has the following outputs:

Name	Unit	Description	Format
Data	Bit mV	The signal level at the analog input	Fix_16_0
		scaled in ADC LSBs	
		(-8192+8191) or mV.	

RS485 In

Block

RS485 ports are bidirectional digital differential drivers with a signal low level of -2.5V and a signal high level of +2.5V. The ports RS485 In and RS485 out share the same physical driver.

Figure 6: FPGA_IO_READ block (RS485 In)

Block Dialog

The block provides the following dialog:

Figure 7: FPGA_IO_READ dialog (RS485 In)

The blockset dialog has the following parameters:

Name	Unit	Description	Range
Enable	-	Creates a stimulus input	on off
simulation port		port for offline simulation	
		of the I/O. The stimulus	
		data has to be a Simulink	
		input scaled in V.	

Output

The main block has the following outputs:

Name	Unit	Description	Format
Data	-	The digital signal level at the	UFix_1_0
		RS485 input.	

Resolver IC

Block

The DS1553 I/O board provides an integrated resolver processing IC. The IC provides position information of a resolver connected the FPGA model. It also provides warnings concerning signal quality. The update rate of the resolver IC is 500 kHz.

Figure 8: FPGA_IO_READ block (Resolver IC)

Block Dialog

The block provides the following dialog:

Figure 9: FPGA_IO_READ dialog (Resolver IC)

The blockset dialog has the following parameters:

Name	Unit	Description	Range
Sine / cosine	V	Selection of the input	1.5V 3.5V 5V
RMS voltage		voltage range of the sine	
		and cosine signal.	
Excitation RMS	V	Selection of the RMS	3V 7V 10V
voltage		voltage of the generated	
		excitation.	
Excitation	Hz	Selection of the frequency	Range:2kHz20kHz
Frequency		for the generated	Resolution: 250Hz
		excitation.	
Resolution	Bit	Resolution of the resolver	10bit 12bit 14 bit
		processing. The	16 bit
		resolution effects the	
		maximum trackable	
		velocity as followed:	
		10 bit: 150000 rpm	
		12 bit: 60000 rpm	
		14 bit: 30000 rpm	
		16 bit: 7500 rpm	
Enable	-	Creates a stimulus input	on off
simulation port		port for offline simulation	
		of the I/O. The stimulus	
		data (position) has to be a	
		Simulink input scaled in	
		degrees.	

Input

The main block has the following inputs:

Name	Unit	Description	Format
Cl.Warn.	-	Resets warnings raised by the	UFix_1_0
		resolver IC.	

Output

The main block has the following outputs:

Name	Unit	Description	Format
Position	-	The position output of the resolver	UFix_16_16
		IC. The position range (0360°) is	
		scaled to 01.	
Warnings	-	The warnings raised by the	UFix_5_0
		resolver IC. The warnings are as	
		followed:	
		Bit 0 – Input amplitude low:	
		The sine/cosine input amplitude is	
		more than ~20% lower than	
		specified. Once this warning	
		occurs it can only be cleared	
		manually.	
		Bit 1 – Input amplitude high:	
		The sine/cosine input amplitude is	
		more than ~20% higher than	
		specified. Once this warning	
		occurred it can only be cleared	
		manually.	
		Bit 2 – Loss of tracking:	
		The position could not be tracked.	
		This warning will disappear if the	
		position tracking could be	
		successfully resynchronized.	
		Bit 3 – Velocity over-range:	
		The current velocity is higher than	
		the resolver processing is able to	
		track. This warning will disappear	
		if the velocity is low enough again	
		to be tracked.	
		Bit 4 – Phase lock error:	
		The phase of the sine/cosine input	
		does not match the phase of the	
		excitation output. Check if the	
		resolver is plugged and correctly	
		working. This warning will	
		disappear once the sine/cosine	
		phase matches the excitation	
Data Na		phase again.	LIEW 4.0
Data New	-	Flag indicating that the position	UFix_1_0
		data is updated.	

FPGA Temperature

Block

The DS1514 base board contains an integrated FPGA temperature measurement. The raw value of the temperature measurement is provided to the user model.

Figure 10: FPGA_IO_READ block (FPGA Temperature)

Block Dialog

The block provides the following dialog:

Figure 11: FPGA_IO_READ dialog (FPGA Temperature)

The blockset dialog has the following parameters:

Enable	-	Creates a stimulus input	on off
simulation port		port for offline simulation	
		of the I/O. The stimulus	
		data (temperature) has to	
		be a Simulink input scaled	
		in °C.	

Output

The main block has the following outputs:

Name	Unit	Description	Format
RAW_TEMP	-	The raw temperature sensor	UFix_16_0
		output. The scaling is 130 LSB/K.	
High	-	Flag indicating that the FPGA	UFix_1_0
		temperature is >125°C.	

I/O Write Functions

Overview

The DS1553 provides the following I/O write functions:

- 1x LED Out
- 24x Digital Out
- 2x DAC
- 4x RS485 Out

LED Out

Block

This block controls the status LED of the DS1514 FPGA board.

Figure 12: FPGA_IO_WRITE block (LED Out)

Input

The main block has the following Inputs:

Name	Unit	Description	Format
Data -		Sets the color of the FPGA	UFix_1_0
		LED to orange (1) or green (0).	

Digital Out

Block

The 24 digital outputs provide a signal level of $V_H=5V$.

Figure 13: FPGA_IO_WRITE block (Digital Out)

Block Dialog

The block provides the following dialog:

Figure 14: FPGA_IO_WRITE dialog (Digital Out)

The blockset dialog has the following parameters:

Name	Unit	Description	Range
Enable	-	Creates a stimulus output	on off
simulation port		port for offline simulation	
		of the I/O. The stimulus	
		data is a Simulink output	
		scaled in V.	

Input

The main block has the following inputs:

Name	Unit	Description	Format
Data	-	The logical signal level to set at	UFix_1_0
		the digital output.	

DAC

Block

The 2 differential DACs (referenced to ground) provide a resolution of 12 bit, an update rate of 20MHz and voltage range of -20V...+20.

Figure 15: FPGA_IO_WRITE block (DAC)

Block Dialog

The block provides the following dialog:

Figure 16: FPGA_IO_WRITE dialog (DAC)

The blockset dialog has the following parameters:

Name	Unit	Description	Range
Scaling	-	Select if the input is	Bit mV
		scaled in DAC LSBs (bit)	
		or mV.	
Enable	-	Creates a stimulus output	on off
simulation port		port for offline simulation	
		of the I/O. The stimulus	
		data is a Simulink output	
		scaled in V.	

Input

The main block has the following Inputs:

Name	Unit	Description	Format
Data	Bit mV	The signal level set at the analog	Fix_16_0
		output scaled in DAC LSBs	
		(-2048+2047) or mV.	

The DAC (+) and DAC (-) pins are both referenced to ground. To change the voltage range to -10V...+10V connect to ground instead of DAC (-). The scaling in mV is not valid in this case, so it is recommended to use scaling in bit when applying the -10V...+10V range.

RS485 Out

Block

RS485 ports are bidirectional digital differential drivers with a signal low level of -2.5V and a signal high level of +2.5V. The ports RS485 In and RS485 out share the same physical driver.

Figure 17: FPGA_IO_WRITE block (RS485 Out)

Block Dialog

The block provides the following dialog:

Figure 18: FPGA_IO_WRITE dialog (RS485 Out)

The blockset dialog has the following parameters:

Name	Unit	Description	Range
Enable	-	Creates a stimulus output	on off
simulation port		port for offline simulation	
		of the I/O. The stimulus	
		data is a Simulink output	
		scaled in V.	

Input

The main block has the following inputs:

Name	Unit	Description	Format
Data	-	The digital signal level set at the RS485 output.	UFix_1_0
Enable	-	Sets the direction of the RS485 driver to output (1) or input (0).	UFix_1_0

Pin-Out

Layout

The pin-out of ZIF connector on the DS1553 ACMC I/O module is shown in the table on the next page. The layout of the ZIF connector (upper connector of the MicroAutoBox) is illustrated in the figure below. The location of ground pins can be seen in this figure as well.

Figure 19: Layout of the DS1553 ZIF connector

Group	Pin	Signal	Dir.	Group	Pin	Signal	Dir.
	D3	DigIn 1 (+)	in		A6	ADC 1 (+)	in
E6	DigIn 1 (-)	in		A2	ADC 1 (-)	in	
	DigIn 2 (+)	in		A5	ADC 2 (+)	in	
	D5	DigIn 2 (-)	in		A4	ADC 2 (-)	in
	E5	DigIn 3 (+)	in		А3	ADC 3 (+)	in
	E4	DigIn 3 (-)	in		В6	ADC 3 (-)	in
Ħ	U3	DigIn 4 (+)	in	ont	B5	ADC 4 (+)	in
n d	U5	DigIn 4 (-)	in	lu f	B4	ADC 4 (-)	in
Digital Input	Т3	DigIn 5 (+)	in	Analog Input	c2	ADC 5 (+)	in
ِيَّة ق	U4	DigIn 5 (-)	in	An	сЗ	ADC 5 (-)	in
	V6	DigIn 6 (+)	in		b2	ADC 6 (+)	in
	V5	DigIn 6 (-)	in		с4	ADC 6 (-)	in
	T5	DigIn 7 (+)	in		a2	ADC 7 (+)	in
	U6	DigIn 7 (-)	in		Z2	ADC 7 (-)	in
	F6	DigIn 8 (+)	in		с5	ADC 8 (+)	in
	E3	DigIn 8 (-)	in		Y2	ADC 8 (-)	in
	R3	DigOut 1	out		a4	Excitation (+)	out
	R5	DigOut 2	out	ಲ	b6	Excitation (-)	out
	S5	DigOut 3	out	ver	а5	Sine (+)	in
	R4	DigOut 4	out	Resolver IC	а6	Sine (-)	in
	R6	DigOut 5	out		с6	Cosine (+)	in
	S4	DigOut 6	out		b5	Cosine (-)	in
	H3	DigOut 7	out		W3	RS485 1 (+)	in/out
	H4	DigOut 8	out		X4	RS485 1 (-)	in/out
	G3	DigOut 9	out		V4	RS485 2 (+)	in/out
	G4	DigOut 10	out	RS485	V3	RS485 2 (-)	in/out
tbut	S3	DigOut 11	out	RS	W6	RS485 3 (+)	in/out
Digital Output	F5	DigOut 12	out		W4	RS485 3 (-)	in/out
jital	F3	DigOut 13	out		Х3	RS485 4 (+)	in/out
ΟjO	T4	DigOut 14	out		Y4	RS485 4 (-)	in/out
	F4	DigOut 15	out		C3	DAC 1 (+)	out
	G6	DigOut 16	out	Analog Output	D6	DAC 1 (-)	out
	X6	DigOut 17 *	out	Ang	C5	DAC 2 (+)	out
	C6	DigOut 18 *	out		C4	DAC 2 (-)	out
	H6	DigOut 19 *	out		E2	Supply +5V	out
	X5	DigOut 20 *	out	Sensor Supply	F2	Supply +5V	out
	G5	DigOut 21 *	out		C2	Supply +12V	out
	H5	DigOut 22 *	out		D2	Supply +12V	out
	S6	DigOut 23 *	out				
	W5	DigOut 24 *	out				

The pins marked with an asterisk (*) are only available if the DS1514 base board hardware is reconfigured. Please inquire about hardware reconfiguration if these digital outputs are required. The use of additional IP modules will not be possible after modification!