Sistemas Distribuidos

Félix García Carballeria

Objetivos del curso

- Presentar una visión global del estado del arte y los aspectos más novedosos del diseño y construcción de sistemas distribuidos.
- Desarrollar ejemplos prácticos que permitan consolidar los conceptos teóricos.

mas Distribuidos

Félix García Carballeira (1999)

Contenido

Introducción

- Características de los sistemas distribuidos. Modelos
- Objetivos y problemas de diseño Ejemplos de sistemas distribuidos

Redes e interconexión

- Conceptos y propiedades de los sistemas de comunicación
- Tipos de dispositivos de comunicación y tendencias futuras
- Protocolos de comunicación. Rendimiento y fiabilidad

· Comunicación en sistemas distribuidos

- Mecanismos básicos de comunicación entre procesos
- Modelo cliente/servidor y comunicación en grupos
 Colas de Mensajes POSIX. Sockets en Unix y Java
 Llamadas a procedimientos remotos (RPC)
 Entornos orientados a objetos. CORBA, RMI

- Comunicación en aplicaciones paralelas. MPI

Sistemas Distribuidos

Félix García Carballeira (1999)

Contenido

Sistemas operativos distribuidos

- Sistemas operativos en red y distribuidos
- Objetivos y aspectos de diseño
- Asignación de procesadores y algoritmos de reparto de carga
- Middlewares
- Ejemplos

· Sistemas de ficheros distribuidos

- Conceptos básicos y estructura
- Servicio de directorio
- Servicio de ficheros
- Implementación. Semántica de coutilización, métodos de acceso, cache, coherencia de cache
- Incremento de prestaciones. Paralelismo
- Ejemplos

Sistemas Distribuidos

Félix García Carballeira (1999)

Contenido

· Memoria global distribuida

- Conceptos básicos
- Modelos de consistencia
- Aspectos de implementación
- Ejemplos

· Sincronización y coordinación distribuida

- Mecanismos de sincronización entre procesos
- Modelos de sistemas distribuidos
- Relojes lógicos, relojes vectoriales
- Entrega causal. Estados globales consistentes
- Sincronización de relojes físicos
- Exclusión mutua distribuida y algoritmos de elección

Sistemas Distribuidos Félix García Carballeira (1999)

Contenido

Fiabilidad en sistemas distribuidos

- Distintos aspectos de la fiabilidad
- Replicación
- Protocolos de consenso
- Comunicación en grupos
- Compromiso distribuido
- Transacciones

Seguridad

- Requisitos de seguridad
- Métodos para conseguir seguridad
- Cifrado. Firmas digitales
- Autenticación
- Kerberos
- Cortafuegos

Sistemas Distribuidos Félix García Carballeira (1999)

Contenido

- Diseño de aplicaciones distribuidas
 - Elementos de una aplicación distribuida
 - Diseño de aplicaciones cliente/servidor
 - Uso de WWW en el diseño de aplicaciones distribuidas
 - Herramientas para construir aplicaciones distribuidas
 - Web, Java, CORBA, JDBC, ...

• Trabajos prácticos

- Desarrollo y evaluación de pequeñas aplicaciones distribuidas utilizando diferentes esquemas
- Estudio de aspectos relacionados con los sistemas distribuidos

Sistemas Distribuidos

6

Félix García Carballeira (1999

Bibliografía

- Distributed Systems. Concepts and Design. 2° edición G. Coulouris, J. Dollimore, T. Kindberg. Addison-Wesley, 1994 http://www.dcs.qmw.ac.uk/research/distrib/book.html
- Building Secure and Reliable Network Applications K. P. Birman Manning Publications Co., 1996
- Distributed Operating Systems
 A. S. Tanenbaum
 Prentice-Hall, 1995

Sistemas Distribuidos

Félix García Carballeira (1999)

Bibliografía

- Distributed Systems. 2º edición S. Mullender (Editor) Addison-Wesley, 1993
- Client/Server Computing for Technical Professionals. Conpcets and Soltuions.
 - J. M. Hart, B. Rosenberg Addison-Wesley, 1995
- Client/Server Programming with Java and Corba (2° ed.)
 R. Orfali, D. Harkey
 Wiley Computer Publishing, 1998
- Cursos sobre sistemas distribuidos y paralelos
 - http://joda.cis.temple.edu/courses-para.html

Sistemas Distribuidos

F

Félix García Carballeira (1999)

Revistas

- IEEE Concurrency, Parallel, Distributed and Mobile Computig
- Journal of Parallel and Distributed Computing
- · Distributed Computing
- · Communications of the ACM
- IEEE Computer
- ACM Computing Surveys

Sistemas Distribuidos 9 Félix García Carballeira (1999)

Introducción

Contenido

- Introducción y conceptos previos
- Ejemplos de aplicaciones distribuidas
- · Características de los sistemas distribuidos
- Desventajas
- · Sistemas paralelos
- · Principales aspectos de diseño

Sistemas Distribuidos

Félix García Carballeira (1999)

Evolución de la informática

- En los 70
 - Mainframes centrales
 - Sistemas de tiempo compartido
 - · Recursos centralizados
 - Interfaces de usuario poco amigables
 - Aparecen las primeras redes
- En los 80:
 - PCs y estaciones de trabajo
 - Interfaces amigables
 - Redes de área local
 - Aparecen los primeros sistemas operativos distribuidos
 - · Mach, Sprite, Chorus, ...

Sistemas Distribuidos

12

Félix García Carballeira (1999

Evolución de la informática

- En los 90:
 - Despegue de las aplicaciones cliente/servidor
 - Mas descentralización
 - Enorme difusión de internet gracias al Web
 - Nuevas necesidades y aplicaciones basadas en el Web
 - · Comercio electrónico
 - · Multimedia
 - · Sistemas de control
 - · Aplicaciones médicas

emas Distribuidos

Félix García Carballeira (1999)

Conceptos previos

- Un programa es un conjunto de instrucciones.
- Un proceso es un programa en ejecución.
- Una red de computadores es un conjunto de computadores concectados por una red de interconexión.
- Un sistema distribuido (SD)
 - Modelo físico: conjunto de nodos (procesadores sin memoria ni reloj común) conectados por una red.
 - Modelo lógico: conjunto de procesos que ejecutan concurrentemente en uno o más computadores que colaboran y comunican intercambiando mensajes.
- Un protocolo es un conjunto de reglas e instrucciones que gobiernan la comunicación en un sistema distribuido, es decir, el intercambio de mensajes.

Sistemas Distribuidos

Félix García Carballeira (1999)

Otras definiciones

 "Un sistema distribuido es aquél en el que no puedes trabajar con tu máquina por el fallo de otra máquina que ni siquiera sabías que existía"

-Leslie Lamport

Sistemas Distribuidos 15 Félix García Carballeira (1999)

Modelos de sistemas distribuidos

- Sistema distribuido asíncrono:
 - Tiempo de entrega de un mensaje no está acotado.
 - Relojes no sincronizados.
- Sistema distribuido síncrono:
 - Tiempo de entrega de un mensaje está acotado.
 - Desviación de los relojes acotada.
 - Ventaja: se pueden utilizar el esquema de timeout para detectar fallos o pérdidas de mensajes.

Sistemas Distribuidos

-

Félix García Carballeira (1999)

Ejemplos: red de área local

Sistemas Distribuidos 17

Félix García Carballeira (1999)

Ejemplos de aplicaciones distribuidas

- · Correo electrónico, transferencia de ficheros
- · Servicios de News
- World Wibe Web
- Sistemas de control de tráfico áreo
- · Aplicaciones bancarias
- · Comercio electrónico
- Aplicaciones multimedia (vídeoconferencias, video bajo demanda, etc.)
 - El ancho de banda en estas aplicaciones es un orden de magnitud mayor que en otras
- · Aplicaciones médicas (transferencia de imágenes)

Sistemas Distribuidos

18

Félix García Carballeira (1999

Características de los SD

- · Compartir recursos (HW, SW, datos).
 - Acceso a recursos remotos.
 - · Modelo cliente-servidor
 - · Modelo basado en objetos
- · Ofrecen una buena relación coste/rendimiento
- · Capacidad de crecimiento
- · Tolerancia a fallos, disponibilidad
- Replicación
- Concurrencia
- Velocidad
 - Paralelismo

Sistemas Distribuidos

Félix García Carballeira (1999)

Características de los SD

- · Sistemas abiertos
 - Se caracterizan por emplear unas interfaces públicas estandarizadas.
 - Pueden construirse sobre HW y SW heterogéneo de diferentes vendedores.
 - Independiente de los vendedores.
 - Puede extenderse facilmente:
 - Hardware: nuevos computadores
 - Sosftware: nuevos servicios
- Transparencia
 - Un SD se percibe como un sistema único, no como un conjunto de componenetes independientes

Sistemas Distribuidos

20

Félix García Carballeira (1999)

Transparencia

- · Acceso: acceso a recursos remotos y locales de igual forma
- Posición: acceso a los recursos sin necesidad de conocer su situación
- Concurrencia: acceso concurrente a recursos compartidos sin interferencias
- Replicación: Acceso a recursos replicados sin conocimiento de que lo son
- Fallos: mantenimiento del servicio en presencia de fallos.
- *Migración*: permite que los recursos y objetos se muevan sin afectar a la operación de los programas.
- Capacidad de crecimiento: facilidad para crecer sin afectar a la estructura del sistema

Sistemas Distribuidos

21 Félix García Carballeira (1999)

Desventajas de los sistemas distribuidos

- Interconexión
 - Coste
 - Fiabilidad, pérdida de mensajes
 - Saturación
- · Comunicaciones inseguras
- Software más complejo
- Potencia de cada nodo no adecuada

Sistemas paralelos

· Sistemas distribuidos

Objetivo: ejecutar un programa muy rápido (speedup).

Sistemas distribuidos y paralelos

- Máquinas paralelas (arquitecturas dedicadas)

- Objetivo: compartir recursos y colaborar.

Multiprocesadores

- Redes de computadores

- Multicomputadores
- Redes de estaciones de trabajo trabajando como un multicomputador (cluster)

Sistemas Distribuidos 22 Félix García Carballeira (1999)

Sistemas Distribuidos 23 Félix García Carballeira (1999)

Objetivos de diseño

- Rendimiento
- · Capacidad de crecimiento
- Transparencia
- Consistencia
- · Fiabilidad:
 - Tolerancia a fallos
 - Disponibilidad
 - Recuperación
 - Consistencia
 - Seguridad
 - Confidencialidad
 - Rendimiento predecible, calidad de servicio

Sistemas Distribuidos

2

Félix García Carballeira (1999

Problemas de diseño

- Nombrado
- · Comunicación y sincronización entre procesos
- · Estructura software
- · Reparto de la carga
- · Coherencia
- Calidad de servicio
 - Rendimiento
 - Fiabilidad

stemas Distribuidos 25 Félix García Carballeira (1999)

Nombrado

- Los usuarios designan a los objetos mediante un nombre.
- Los programas designan a los objetos mediante un identificador.
- Resolver un nombre implica obtener el identificador a partir del nombre.
- Objetivo importante: nombres independientes de la posición
- · Consideraciones de diseño a tener en cuenta:
 - El espacio de nombres (tamaño, estructura, jerarquía, ...)
 - El servicio de nombres que realiza la resolución

Sistemas Distribuidos

26

Félix García Carballeira (1999)

Comunicación y sincronización (C y S)

- Forma básica de C y S: paso de mensajes.
 - Mecanismos síncronos
 - Mecanismos asíncronos
- Comunicación cliente-servidor
 - Primitivas de comunicación básicas (send, receive)
 - Llamadas a procedimientos remotos
 - Invocación de objetos remotos
- Comunicación en grupos
 - Multicast, broadcast
 - Útil para localizar un objeto, tolerancia a fallos, mejorar el rendimiento (replicación), asegurar consistencia

27

Sistemas Distribuidos

Félix García Carballeira (1999)

Estructura software

• Estructura software típica de un sistema centralizado

Aplicaciones Lenguajes de programación Sistema operativo Hardware

- · El sistema operativo
 - Gestiona los recursos
 - Ofrece servicios

Sistemas Distribuidos 28 Félix García Carballeira (1999)

Estructura software

- Existen tres posibilidades para estructurar el software de un sistema distribuido
 - Emplear sistemas operativos en red
 - Utilizar un sistema operativo distribuido
 - Utilizar middlewares o entornos distribuidos
- Lo importante es ofrecer un soporte para la programación de aplicaciones distribuidas fácil y transparente

Sistemas Distribuidos 29 Félix García Carballeira (1999)

Aplicaciones Lenguajes de programación Sistema operativo Hardware Red de interconexión • El usuario ve un conjunto de máquinas independientes - No hay transparencia

- Se debe acceder de forma explícita a los recursos de otras máquinas
- Difíciles de utilizar para desarrollar aplicaciones distribuidas

Sistemas Distribuidos

30

Félix García Carballeira (1999

Sistema operativo distribuido (SOD)

- Se comporta como un SO único
 - Distribución. Transparencia
- Se construyen normalmente como micronúcleos que ofrecen servicios básicos de comunicación
 - Mach, Amoeba, Chorus.
- · Todos los computadores deben ejecutar el mismo SOD

Sistemas Distribuidos 31 Félix García Carballeira (1999)

Middleware y entornos distribuidos

- Servicios y protocolos estándarizados: Sistemas abiertos
- Ofrecen servicios no incluidos en el SO (servicios de ficheros distribuidos, servicios de nombres, ...)
- Facilitan el desarrollo de aplicaciones distribuidas
- Independientes del HW y del SO subyacente.
- DCE, CORBA, DCOM, Legion, Globe, Globus

Sistemas Distribuidos

32

Félix García Carballeira (1999)

Félix García Carballeira (1999)

Reparto de la carga

- ¿Cómo se asigna memoria y procesador a las aplicaciones?
- Modelos
 - Estaciones de trabajo: modelo típico
 - Modelo del pool de procesadores (Amoeba)
 - Permiten paralelismo a lo usuarios
 - Uso de una estación de trabajo libre

Sistemas Distribuidos 33 Félix García Carballeira (1999)

Asegurar la coherencia

- El problema de la coherencia surge cuando varios procesos acceden y actualizan datos de forma concurrente
 - Coherencia de las actualizaciones
 - Coherencia de la replicación
 - Coherencia de caches
 - Coherencia ante fallos
 - Relojes consistentes

Sistemas Distribuidos

Calidad de servicio

- Rendimiento
 - Tiempo de respuesta adecuado
 - El rendimiento viene determinado por
 - La red de comunicación
 - Los servicios de comunicación empleados
 - El sistema operativo
 - El soporte para la programación de sistemas distribuidos
- Fiabilidad
 - Disponibilidad
 - Consistencia
 - Seguridad

Confidencialidad

Sistemas Distribuidos 35 Félix García Carballeira (1999)