

Comparativo de Regressão Logística e Redes Neurais para classificação do XOR

Marcos Treviso Sharbell Kemel

03 de outubro de 2015

Aprendizado de Máquina - Universidade Federal do Pampa

Roteiro

- Ambiente de Teste
- Resultados
- Conclusão

Roteiro

- Ambiente de Teste
- Resultados
- Conclusão

Ambiente de Teste

• Dell Inspiron 7348

Processador	Intel i7-5500U 2.40GHz - 4 cores
Memória Principal	8 GB RAM DDR3 1600 MHz
Cache	L3 Cache 4 MB

- Python 3.4.3
- Numpy 1.9.2

Ambiente de Teste

- Regressão Logística:
 - Número de iterações, tempo de execução e acurácia
 - Precisão de 10⁻⁶
 - Sem regularização
 - Média de 10 execuções
 - Otmizador: gradiente descendente

Redes Neurais

- Uma camada oculta com 10 neurônios
- Número de iterações, tempo de execução e acurácia
- Precisão de 10⁻⁶
- Sem regularização
- Sem momentum
- 10 épocas
- Otmizador: gradiente descendente com backpropagation

Roteiro

- Ambiente de Teste
- Resultados
- Conclusão

- Com taxa de aprendizagem igual a 3.0
- $\bullet\,$ Diferentes graus do polinômio $\left(\!\!\left[{n\atop k}\right]\!\!\right)$
- Para k = 2 e n = 1, ..., 60
- Então, $\frac{n \times (n+1)}{2}$ features adicionais

- Variar taxa de aprendizado (α)
 - (0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 6.0, 12.0, 24.0, 48.0)
- Variar grau do polinômio (novas features)
 - de 1 até 60
- Analisar custo: J(W)
- Analisar tempo de execução
- Analisar número de iterações
- Analisar acurácia

• Com grau do polinômio igual a 2

 \bullet Com α igual a 3.0

 \bullet Com α igual a 3.0

- Variar taxa de aprendizado (α)
 - (0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 6.0, 12.0, 24.0, 48.0)
- Variar número de unidades ocultas
 - de 1 até 6
- Analisar custo: J(W)
- Analisar tempo de execução
- Analisar número de iterações
- Analisar acurácia

• Com 6 unidades ocultas

 \bullet Com α igual a 1.0

 \bullet Com α igual a 1.0

Conclusão

- Regressão logística generaliza melhor que redes neurais
- Regressão logística é mais rápida para convergir para o problema do XOR
- Regressão logística tem o custo extra de calcular features polinomiais
- Regressão logística precisa de pelo menos um polinômio de grau 2 para classificar corretamente
- Redes neurais começa a divergir após um determinado valor de taxa de aprendizado
- Redes neurais teve boa acurácia com 3+ unidades ocultas
- É importante testar os hiper parâmetros!

Comparativo de Regressão Logística e Redes Neurais para classificação do XOR

Marcos Treviso Sharbell Kemel

Aprendizado de Máquina

3 de outubro de 2015

Universidade Federal do Pampa