Logistic Regression

2 Labels: Survived / Lost

Number of positive nodes

2 Features: Number of + nodes, Age

Number of positive nodes

2 Features: Number of + nodes, Age

Number of positive nodes

Number of positive nodes

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

Number of positive nodes

Number of positive nodes

Number of positive nodes

Logistic regression to the rescue

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

$$P(loss) = 0.8$$

$$P(survival) = 0.2$$

Probability

$$P(loss) = 0.8$$

$$\frac{P(loss)}{P(survival)} = 4$$
 $P(survival) = 0.2$

Probability Odds

$$P(loss) = 0.05$$

$$\frac{P(loss)}{P(survival)} = 0.053$$
 $P(survival) = 0.95$

Probability Odds

$$P(loss) = 0.5$$

$$\frac{P(loss)}{P(survival)} = 1$$
 $P(survival) = 0.5$

Probability Odds

$$P(loss) = 0.5$$

$$P(survival) = 0.5$$

$$\frac{P(loss)}{P(survival)} = 1$$

Odds between 0 and inf

$$P(loss) = 0.5$$
$$P(survival) = 0.5$$

$$\log\left(\frac{P(loss)}{P(survival)}\right) = 0$$

Probability

$$P(loss) = 0.05$$

 $P(survival) = 0.95$

$$\log\left(\frac{P(loss)}{P(survival)}\right) = -2.94$$

Probability

$$P(loss) = 0.8$$

 $P(survival) = 0.2$

$$\log\left(\frac{P(loss)}{P(survival)}\right) = 1.39$$

Probability

$$P(loss) = 0.999$$
$$P(survival) = 0.001$$

$$\log\left(\frac{P(loss)}{P(survival)}\right) = 6.9$$

Probability

$$P(loss) = 0.999$$

 $1 - P(loss) = 0.001$

$$\log\left(\frac{P(loss)}{1 - P(loss)}\right) = 6.9$$

Probability

Log Odds logit function

$$P(loss) = 0.999$$

 $1 - P(loss) = 0.001$

$$\log\left(\frac{P(loss)}{1 - P(loss)}\right) = 6.9$$

Probability

Log Odds logit function

$$\frac{1}{1 + e^{-\log\left(\frac{P(loss)}{1 - P(loss)}\right)}} = P(loss)$$

Logistic FunctionLog Odds → Prob

logit(prob) = log odds

logistic(log odds) = prob

Coefficients work the same way

The "Decision Boundary"

Number of malignant nodes

Predict 1 (lost) if
$$y_{\beta} > 0.5$$

Predict 0 (survived) if $y_{\beta} < 0.5$

The "Decision Boundary"

Number of malignant nodes

The "Decision Boundary"

Number of malignant nodes

Number of malignant nodes

Number of malignant nodes

2 Features. No of malignant nodes / Age3 Labels. Healthy / Complications / Lost

2 Features. No of malignant nodes / Age3 Labels. Healthy / Complications / Lost

One vs all. Survived vs all.

One vs all. Complications vs all.

One vs all. Lost vs all.

One vs all. Winner: Complications

One vs all. Essentially, it becomes:

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

from sklearn.linear_model import LogisticRegression
#(just like LinearRegression)

from statsmodels.formula.api import Logit
#(just like OLS)