

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II.

doi: 10.18637/jss.v000.i00

bartcs: Bayesian Additive Regression Trees for Confounder Selection in R

Yeonghoon Yoo SungKyunKwan University

Chanmin Kim ©
SungKyunKwan University

Abstract

This article presents an overview of the **bartcs** R package, which employs a Bayesian additive regression trees-based method for selecting confounders. It uses a Dirichlet distribution as a common variable selection probability prior, updating both the exposure and outcome models simultaneously while fitting tree priors for each. This data-driven method determines which variables (i.e., confounders) affect both models by assigning more posterior weight to them. It supports continuous and binary exposure variables, as well as continuous outcome variables, and is written in C++ for improved computational speed. Additionally, it can take advantage of multiple threads for parallel computing if OpenMP is available on the platform.

Keywords: Bayesian nonparametric, causal inference, high-dimensional confounders, continuous outcome.

1. Introduction

- In observational studies, drawing causality always relies on the ignorability assumption (Rosen-
- 2 baum and Rubin 1983) that all confounders are included in the adjustment procedure. A
- 3 confounder or confounding variable is a common cause that simultaneously affects both ex-
- 4 posure and outcome (Figure 1 (a)). Two groups with different exposure levels, distinguished
- by the distribution of the confounding variable, also experience its impact on their respective
- outcome values. Therefore, to estimate the causal relationship between exposure and out-
- 7 come, it is crucial to select this common cause in the data and adjust for it. In many recent
- 8 applications, the number of potential confounders is often enormous, making it difficult to
- 9 select the optimal set of true confounders among them. In this context, the optimal set is a
- confounder set with an appropriate level of uncertainty that reduces bias in estimating the
- 11 final causal effect.

The main distinction between confounder selection and the traditional variable selection method is that variables that meet the ignorability assumption should be chosen. Several criteria need to be met by the selected confounders in order to reduce the bias of estimated causal effects. Among them, "disjunctive cause criterion" (VanderWeele 2019) requires that the chosen variables be related to exposure and/or outcome. In Figure 1 (a), a confounder set X that satisfies the disjunctive cause criterion consists of variables that either affect exposure A, affect outcome Y, or simultaneously affect both A and Y. A better condition than this "disjunctive cause criterion without instruments" (VanderWeele 2019), which removes the variables related to exposure but not directly associated with outcome. An instrument, or instrumental variable, is a variable that influences exposure A but does not affect outcome 10 Y. It is known to amplify bias in causal effect estimation when there is an unmeasured con-11 founder (Myers, Rassen, Gagne, Huybrechts, Schneeweiss, Rothman, Joffe, and Glynn 2011). 12 In Figure 1 (b), if a certain confounder from X is unmeasured and not adjusted for (i.e., in the presence of an unmeasured confounder), conducting adjustment for instrument Z leads 14 to additional bias, known as "Z-bias" (Ding, VanderWeele, and Robins 2017). Therefore, the 15 best practice is to remove this instrument during the covariate adjustment process. However, 16 manually identifying a set of confounders that meet these criteria among a large number of 17 potential confounders is challenging. 18

Methods based on data and statistical models for performing such confounder selection have 19 recently been proposed. One such method is the Bayesian adjustment for confounding (BAC) 20 method proposed by Wang, Parmigiani, and Dominici (2012); Lefebvre, Delaney, and McClel-21 land (2014), which connects exposure and outcome models through common variable inclusion 22 indicator variables to identify confounders. Wang, Dominici, Parmigiani, and Zigler (2015) 23 later modified the BAC method to work with generalized linear outcome models. Wilson and 24 Reich (2014) suggested a method based on decision theory with a similar goal, which performs 25 well for a variety of sample sizes. In terms of selecting relevant covariates for use in propen-26 sity score, Shortreed and Ertefaie (2017) proposed the outcome-adaptive LASSO method. In addition, Häggström (2018) proposed a method for identifying the causal structure and 28 estimating the causal effect using a probability graphical model. 29

Despite the advantages of the previously mentioned methods, they each have limitations. 30 To address these shortcomings, Kim, Tec, and Zigler (2023) proposed a novel Bayesian non-31 parametric model that aims to overcome these limitations. They suggested a new method 32 that employs Bayesian additive regression trees (BART; Chipman, George, McCulloch et al. 33 (2010)) with a shared prior for the selection probabilities, which links the exposure and 34 outcome models. This approach allows for the flexibility and precision of a Bayesian non-35 parametric model, while also identifying and integrating covariates that are related to both the exposure and outcome into the final estimator. This paper introduces bartcs, a new R (R 37 Core Team 2021) package developed by Yoo (2023) that implements the Bayesian additive 38 regression trees method for confounder selection proposed by Kim et al. (2023). The package, 39 which is written in C++ and integrated into R via Rcpp for fast computation and easy use, 40 can be downloaded from the Comprehensive R Archive Network (CRAN) at https://cran.rproject.org/package=bartcs. Certain sections of the code referred to the **BART** package by 42 Sparapani, Spanbauer, and McCulloch (2021) under the GPL license, with modifications. In 43 particular, the development of efficient code involved referencing the existing **BART** package 44 algorithm in following aspects: 1) Code related to obtaining residuals in the Bayesian back-45 fitting process; 2) Code dedicated to efficiently searching for variables eligible for splitting

Figure 1: Directed Acyclic Graphs (DAGs): (a) the relationship between exposure A and outcome Y is confounded by covariates X; (b) Adjusting for instrument Z, which affects exposure A but is unrelated to outcome Y, may introduce additional bias if there is an unmeasured covariate in X.

- when proposing a splitting variable during the tree alteration process; 3) Code for calculating
- the μ parameter value of leaf nodes; 4) Code for obtaining sufficient statistics for all bottom
- 3 nodes.
- 4 In this paper, we provide an overview of the package, including installation instructions, usage
- 5 examples, and a demonstration of its performance on simulated data. We also include a com-
- 6 parison with other existing confounder selection methods. Our aim is to provide researchers
- with a useful tool for identifying relevant confounders in their causal inference studies and to
- enable them to make more accurate causal inferences.

2. Overview of model

We first express causal estimation within a potential outcome framework (Rubin 1974). For each unit $i = 1, \dots, N$, the potential outcome for the *i*-th unit is defined as $Y_i(a)$, representing the potential value of the outcome Y_i that could be observed under the binary exposure $A_i = a \in \{0,1\}$. The target causal estimand is

$$\Delta(1,0) = E[Y_i(1) - Y_i(0)],$$

- which represents the average difference between two potential outcomes under two exposure levels 0 and 1. In the later section, we will also explain the utilization of the proposed model by extending it for cases involving continuous exposure.
- However, unlike randomized trials, the exposure assignment is not randomized in observational studies, making it impossible to directly identify either $E[Y_i(1)]$ or $E[Y_i(0)]$ from observed data. With no unmeasured confounders \boldsymbol{X}_i , the following strong ignorable treatment assignment assumption (Rosenbaum and Rubin 1983) holds

$$\{Y_i(1), Y_i(0)\} \perp A_i | \mathbf{X}_i,$$

and $0 < Pr(A_i = 1 | \mathbf{X}_i = \mathbf{x}) < 1$ for all \mathbf{x} ; $i = 1, \dots, N$. The first part is also known as the unconfoundedness assumption, and the second part is referred to as the positivity or overlap assumption, which states that each unit has a non-zero probability of being assigned to each

Package	Prog. Lang.	Description
bacr (Wang <i>et al.</i> 2015)	R	Assume (generalized-) linear models (i.e., parametric models) for exposure and outcome. Supports binomial, Poisson, Gaussian exposure and outcome.
BayesPen (Wilson, Bondell, and Reich 2015)	R	Assume linear models (i.e., <i>parametric</i> models) for exposure and outcome. Support continuous outcome.
CovSelHigh (Häg- gström 2017)	R	Confounder selection performed via either Markov/Bayesian networks (Model-free selection of confounders).
BART [†] (Sparapani et al. 2021)	C++	Incorporate the Dirichlet sparse prior of Linero (2018) for variable selection in the BART outcome model. Support various outcome types (categorical, continuous, binary, survival outcome).
bcf [‡] (Hahn, Murray, and Carvalho 2020)	C++	Specify different BART models for confounding adjustment and heterogeneous effect estimation, and regularizing the treatment effect directly. Support continuous outcome.
bartCause [‡] (Hill 2011)	C++	Fit exposure and outcome models using the BART algorithm, producing estimates of treatment effects. Support continuous and binary outcome.
bartcs (Yoo 2023)	C++	Use BART outcome and exposure models with the common Dirichlet prior for confounder se- lection. Support binary and continuous expo- sure, and continuous outcome.

Table 1: Summary of different confounder selection methods. †Note that this model (BART with a Dirichlet sprase prior (DART)) does not primarily focus on confounder selection, but rather variable selection, and this variable selection functionality is enabled by setting sparse=TRUE in wbart (continuous outcome) pbart/lbart (binary outcome) mbart/mbart2 (categorical outcome) surv.bart (survival outcome) functions from the BART package. ‡ Note that these models lack the ability for both variable selection and confounder selection.

treatment condition. This strong ignorable treatment assignment assumption is sufficient to identify the target causal estimand $\Delta(1,0)$ (Rosenbaum and Rubin 1983; Ding and Li 2018; Li, Ding, and Mealli 2023). In practice, even if the true treatment assignment mechanism satisfies the above conditions, finite observed data may have only one treatment condition value for certain combinations of X. In this case, a non-overlap region occurs for that X combination, and target causal estimates in such cases inevitably rely on extrapolation dependent on the model. When non-overlap is severe, it can amplify bias in the target causal estimate. Therefore, recent research interest lies in whether estimates in such regions are provided with an appropriate level of uncertainty (Papadogeorgou and Li 2020; Oganisian and Roy 2020; Li et al. 2023). Any method based on outcome regression cannot provide accurate

- estimation in the non-overlapping region. Further discussion on this topic is available in Li $et\ al.\ (2023)$.
- Another notable aspect of this assumption is that it is untestable. Therefore, it is not possi-
- 4 ble to conduct tests based on the data to determine which confounder X satisfies the above
- $_{5}$ assumption. However, confounders X that meet the criteria presented in the introduction
- 6 (disjunctive cause criterion or disjunctive cause criterion without an instrument; (Vander-
- Weele 2019) can be considered a minimum basis for a "proper" confounder set.
- 8 With this strong ignorable treatment assignment assumption in place, we can represent the
- causal effect by the following equation of the observable quantities:

$$\Delta(1,0; \mathbf{x}) = E[Y_i | A_i = 1, \mathbf{X}_i = \mathbf{x}] - E[Y_i | A_i = 0, \mathbf{X}_i = \mathbf{x}],$$

and finally identify and estimate the target estimand $\Delta(1,0)$ by averaging over confounders \boldsymbol{X} . Thus, the two key tasks in estimating causal effects are identifying the confounders among a potentially large set of covariates, and determining the outcome model (i.e., $E[Y_i|A_i=a,\boldsymbol{X}_i=\boldsymbol{x}],\ a\in\{0,1\}$) with flexibility and precision. The **bartcs** R package was developed to address these challenges by utilizing Bayesian additive regression trees (BART) models for confounder selection and causal effect estimation.

6 2.1. Overview of BART

31

32

33

The BART model (Chipman *et al.* 2010) is an ensemble of decision trees that can be represented by the following equation:

$$y_i = \sum_{t=1}^{T} g(\boldsymbol{X}_i; \mathcal{T}_t, \mathcal{M}_t) + \epsilon_i,$$

where ϵ_i follows a normal distribution with mean 0 and variance σ^2 , and $g(X_i; \mathcal{T}_t, \mathcal{M}_t)$

is a function that maps the tree structure and parameters to the response, for all i = $1, \dots, N$. For each of T distinct trees, \mathcal{T}_t represents the structure of the t-th tree and $\mathcal{M}_t = \{\mu_{t,1}, \mu_{t,2}, \cdots, \mu_{t,n_t}\}$ represents its mean parameters at the terminal nodes. Each tree has internal nodes that are split based on a "splitting variable" X_j and "splitting value" c (Figure 2). In the Markov Chain Monte Carlo (MCMC) update, Bayesian backfitting(Hastie, Tibshirani 25 et al. 2000) is utilized within a Metropolis-within-Gibbs sampler. This involves fitting each 26 tree in the ensemble sequentially, using the residual responses: $\mathbf{R}_{-t} := \mathbf{y} - \sum_{i \neq t} g(\mathbf{X}; \mathcal{T}_i, \mathcal{M}_i)$ 27 where \mathbf{R}_{-t} denotes unexplained outcome residuals for the t-th tree. In each iteration of the 28 MCMC update, a new tree structure is proposed by randomly selecting one of three possible 29 tree alterations: 30

GROW: Choose a terminal node at random, and create two new terminal nodes. This process involves randomly selecting a predictor, X_j , and its associated "splitting value," c, to create the two new terminal nodes.

PRUNE: Pick an internal node at random where both children are terminal nodes (known as a "singly internal node" (Kapelner and Bleich 2016)) and remove both of its children (thus making it a terminal node).

Figure 2: The tree structures consist of T trees, each with nodes represented by circles. Terminal nodes, shown in blue, have μ values. The outcome estimate \hat{Y} of each observation is calculated by adding up the μ values of the terminal nodes where the observation falls within each tree. The method used to split each internal node into two different children nodes is the "splitting rule," which consists of a "splitting variable" (i.e., X_j) and a "splitting value" (i.e., c).

- 1 CHANGE: Select an internal node at random and modify its splitting variable and value according to the priors.
- Specifically, when using the grow and change alterations, a new covariate is randomly selected from a set of P available covariates as the splitting variable, according to the assumed prior. The original BART model used a uniform prior of $\{1/P, 1/P, \dots, 1/P\}$ on the selection prob-5 abilities $\mathbf{s} = (s_1, s_2, \dots, s_P)$. However, to promote sparsity, Linero (2018) proposed using a 6 Dirichlet prior $(s_1, s_2, \dots, s_P) \sim \mathcal{D}(\alpha/P, \dots, \alpha/P)$. This prior specification, as outlined in 7 Table 1, enables the variable selection functionality of the **BART** package. Through this, it can be utilized as a Bayesian variable selection method to choose important predictors in regression problems. Kim et al. (2023) have adapted this method for causal inference, proposing 10 a way to select confounders. By specifying a common Dirichlet prior on the selection proba-11 bilities of the outcome and exposure models, it allows for the selection of important variables 12 (i.e., confounders) in both models. In the following section, we will explain the specific setting 13 of this method and the steps involved in computing the posterior distributions.

5 2.2. BART confounder selection

The **bartcs** package in R is designed for selecting confounding variables, particularly when a large number of potential confounding variables are present, and for estimating the average treatment effect (ATE) given the chosen set of confounding variables. To accomplish this, the package uses the Bayesian additive regression trees (BART) model to specify the exposure

Figure 3: A shared sparsity-inducing prior for the selection probability vector connects the exposure model and outcome model, enabling the selection of the splitting variables in both models. The selection probability vector is updated based on the number of splitting variables used to describe each tree.

and outcome models as follows:

$$P(A_i = 1) = \Phi\left(\sum_{t=1}^{T} g_a(\boldsymbol{X}_i; \mathcal{T}_t, \mathcal{M}_t)\right)$$
 (1)

Separate Outcome Models:
$$Y_i = \sum_{t=1}^T g_y^a(\boldsymbol{X}_i; \mathcal{T}_t^a, \mathcal{M}_t^a) + \epsilon_i^a, \quad \epsilon_i^a \sim N(0, \sigma_a^2)$$
 (2)

Single Outcome Model:
$$Y_i = \sum_{t=1}^T g_y(A_i, \boldsymbol{X}_i; \mathcal{T}_t', \mathcal{M}_t') + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2), (3)$$

for $i=1,\cdots,N$ in Equations 1 and 3, and for $i\in\mathcal{I}_a$ where \mathcal{I}_a denotes a set of units under each exposure arm $a\in\{0,1\}$ in Equation 2. In Equation 1, $\Phi(\cdot)$ is the standard normal cumulative distribution function. Note that it is required to replace Equation 1 with $A_i=\sum_{t=1}^T g_a(\boldsymbol{X}_i;\mathcal{T}_t,\mathcal{M}_t)+\epsilon_i,\epsilon_i\sim N(0,\tau^2)$ when considering a continuous exposure (in Section 5). We incorporate a common sparsity-inducing Dirichlet prior $(s_1,s_2,\cdots,s_P)\sim\mathcal{D}(\alpha/P,\cdots,\alpha/P)$ in the exposure model (Equation 1) and the outcome model (Equation 2) resulting in a conjugate update (Figure 3).

If a particular covariate, X_j , is frequently used as a splitting variable in either the model for A or the model for Y, the model will assign more weight to the selection probability s_j through larger numbers of splits on X_j . This means that the selection probabilities will tend to favor covariates that have a relationship with A, Y, or both A and Y. The final confounders chosen for effect estimation in the model for Y will be those that were proposed for splitting through this prior and were accepted during the updating step of the model for Y, which will further prioritize variables that have a relationship with Y. This characteristic satisfies the "disjunctive cause criterion without instruments" in confounder selection.

17 Separate outcome models

For a binary exposure, we separate the outcome model into two distinct sub-models, in order to align the dimensions of the covariates in both the exposure and outcome models (note that the outcome model includes exposure A as an additional covariate if a single outcome model is

Algorithm 1 Posterior Computation (Separate Outcome Models)

```
Require: Samples from the previous iteration (\mathcal{T}_t, \mathcal{T}_t^1, \mathcal{T}_t^0, \mathcal{M}_t, \mathcal{M}_t^1, \mathcal{M}_t^0) for t = 1, \dots, T and
           (\sigma_1^2, \sigma_0^2), and data (y_i, A_i, \boldsymbol{X}_i) for i = 1, \dots, N
   1: for r = 1, \ldots, M iteration do
                    for i = 1, ..., N de
                            Z_i \sim \begin{cases} N\left(\sum_{t=1}^T g_a(\boldsymbol{X}_i; \mathcal{T}_t, \mathcal{M}_t), 1\right) I_{(Z_i > 0)} & \text{for } A_i = 1; \\ N\left(\sum_{t=1}^T g_a(\boldsymbol{X}_i; \mathcal{T}_t, \mathcal{M}_t), 1\right) I_{(Z_i \le 0)} & \text{for } A_i = 0 \end{cases}
                                                                                                                                                                                                              ▷ latent exposure
   3:
           variable
                   end for
   4:
                   for j = 1, \ldots, T do
   5:
                              for i = 1, \dots, N do
   6:
                                      R_{i,-j}^{(r)} = Z_i - \sum_{t \neq j} g_a(\boldsymbol{X}_i; \mathcal{T}_t, \mathcal{M}_t) \triangleright residual of the exposure model H_{i,-j}^{1,(r)} = y_i - \sum_{t \neq j} g_y^1(\boldsymbol{X}_i; \mathcal{T}_t^1, \mathcal{M}_t^1) \triangleright residual of the outcome model for i \in \mathcal{I}_1
   7:
   8:
                                       H_{i,-j}^{0,(r)} = y_i - \sum_{t \neq j} g_y^0(\boldsymbol{X}_i; \mathcal{T}_t^0, \mathcal{M}_t^0) \triangleright \text{residual of the outcome model for } i \in \mathcal{I}_0
   9:
 10:
                            end for \mathcal{T}_j^{(r)} \sim [\mathcal{T}_j | R_{1,-j}^{(r)}, \cdots, R_{N,-j}^{(r)}, 1]
\mathcal{T}_j^{1,(r)} \sim [\mathcal{T}_j^1 | \boldsymbol{H}_{\cdot,-j}^{1,(r)}, \sigma_1^2]
\mathcal{T}_j^{0,(r)} \sim [\mathcal{T}_j^0 | \boldsymbol{H}_{\cdot,-j}^{0,(r)}, \sigma_0^2]
                                                                                                                                 \triangleright based on one of the three acceptance ratios
11:
                                                                                                                                 ▷ based on one of the three acceptance ratios
12:
                                                                                                                                 \triangleright based on one of the three acceptance ratios
13:
                            \begin{split} &\mathcal{M}_{j}^{(r)} \sim [\mathcal{M}_{j} | \mathcal{T}_{j}^{(r)}, R_{1,-j}^{(r)}, \cdots, R_{N,-j}^{(r)}, 1] \\ &\mathcal{M}_{j}^{1,(r)} \sim [\mathcal{M}_{j}^{1} | \mathcal{T}_{j}^{1,(r)}, \boldsymbol{H}_{\cdot,-j}^{1,(r)}, \sigma_{1}^{2}] \\ &\mathcal{M}_{j}^{0,(r)} \sim [\mathcal{M}_{j}^{0} | \mathcal{T}_{j}^{0,(r)}, \boldsymbol{H}_{\cdot,-j}^{0,(r)}, \sigma_{0}^{2}] \end{split}
14:
15:
16:
                       where, for each a \in \{0,1\}, \boldsymbol{H}_{\cdot,-j}^{a,(r)} denotes \{H_{i,-j}^{a,(r)}|i \in \mathcal{I}_a\}
                    end for
17:
18:
                              \sigma_1^2 \sim \text{Inv.Gamma}\left(a_{\sigma} + \frac{|\mathcal{I}_1|}{2}, b_{\sigma} + \frac{1}{2} \left\{ \sum_{i \in \mathcal{I}_t} \left( y_i - \sum_{t=1}^T g_y^1(\boldsymbol{X}_i; \mathcal{T}_t^1, \mathcal{M}_t^1) \right) \right\} \right)
                               \sigma_0^2 \sim \text{Inv.Gamma}\left(a_\sigma + \frac{|\mathcal{I}_0|}{2}, b_\sigma + \frac{1}{2}\left\{\sum_{i \in \mathcal{I}_t} \left(y_i - \sum_{t=1}^T g_y^0(\boldsymbol{X}_i; \mathcal{T}_t^0, \mathcal{M}_t^0)\right)\right\}\right)
                   Update s^{(r)} via the Gibbs algorithm:
19:
```

$$s^{(r)} \sim \mathcal{D}\left(n_1^a + n_1^{y_1} + n_1^{y_0} + \alpha/P, \cdots, n_P^a + n_P^{y_1} + n_p^{y_0} + \alpha/P\right)$$

20: **end for**

Algorithm 2 Posterior Computation (Single Outcome Model)

```
Require: Samples from the previous iteration (\mathcal{T}_t, \mathcal{T}_t', \mathcal{M}_t, \mathcal{M}_t') for t = 1, \dots, T and (\sigma^2, s),
         and data (y_i, A_i, \mathbf{X}_i) for i = 1, \dots, N
   1: for r = 1, ..., M iteration do
                  for i = 1, \ldots, N do
                         Z_i \sim \begin{cases} N\left(\sum_{t=1}^T g_a(\boldsymbol{X}_i; \mathcal{T}_t, \mathcal{M}_t), 1\right) I_{(Z_i > 0)} & \text{for } A_i = 1; \\ N\left(\sum_{t=1}^T g_a(\boldsymbol{X}_i; \mathcal{T}_t, \mathcal{M}_t), 1\right) I_{(Z_i \le 0)} & \text{for } A_i = 0 \end{cases}
  3:
                                                                                                                                                                                           ▷ latent exposure
         variable
   4:
                  end for
                  for j = 1, \ldots, T do
   5:
                          for i = 1, \ldots, N do
  6:
                                  R_{i,-j}^{(r)} = Z_i - \sum_{t \neq j} g_a(\boldsymbol{X}_i; \mathcal{T}_t, \mathcal{M}_t)
H_{i,-j}^{(r)} = y_i - \sum_{t \neq j} g_y(\boldsymbol{X}_i; \mathcal{T}_t', \mathcal{M}_t')
                                                                                                                                                    > residual of the exposure model
   7:
                                                                                                                                                     \triangleright residual of the outcome model
  8:
  9:
                         \mathcal{T}_{j}^{(r)} \sim [\mathcal{T}_{j}|R_{1,-j}^{(r)}, \cdots, R_{N,-j}^{(r)}, 1] \qquad \triangleright \text{ based on one of the three acceptance ratios}
\mathcal{T}_{j}^{\prime,(r)} \sim [\mathcal{T}_{j}^{\prime}|H_{1,-j}^{(r)}, \cdots, H_{N,-j}^{(r)}, \sigma^{2}] \qquad \triangleright \text{ based on one of the three acceptance ratios}
 10:
11:
                         \mathcal{M}_{j}^{(r)} \sim [\mathcal{M}_{j} | \mathcal{T}_{j}^{(r)}, R_{1,-j}^{(r)}, \cdots, R_{N,-j}^{(r)}, 1]
\mathcal{M}_{j}^{\prime,(r)} \sim [\mathcal{M}_{j}' | \mathcal{T}_{j}^{\prime,(r)}, H_{1,-j}^{(r)}, \cdots, H_{N,-i}^{(r)}, \sigma^{2}]
12:
13:
                  end for
14:
15:
                    (\sigma^2)^{(r)} \sim \text{Inv.Gamma}\left(a_{\sigma} + \frac{N}{2}, b_{\sigma} + \frac{1}{2}\left\{\sum_{i=1}^{N}\left(y_i - \sum_{i=1}^{T}g_y(\boldsymbol{X}_i; \mathcal{T}_t'^{,(r)}, \mathcal{M}_t'^{,(r)})\right)\right\}\right)
                  Update s^{(r)} based on the M-H algorithm:
16:
17:
                              Proposal: s^{(r)} \sim \mathcal{D}\left(n_0^y + c + \alpha/P, n_1^a + n_1^y + \alpha/P, \cdots, n_P^a + n_P^y + \alpha/P\right)
18:
                             Acceptance Ratio: P_{AR}(\boldsymbol{s} \to \boldsymbol{s}^{(r)}) = \min \left\{ 1, \left( \frac{1 - \sum_{j=1}^{P} s_j}{1 - \sum_{j=1}^{P} s_j^{(r)}} \right)^{\sum_{j=1}^{J} n_j^y} \right\}
```

19: **end for**

- specified). For Equations 1 and 2, a sparsity-inducing prior is applied to (s_1, s_2, \cdots, s_P) , which
- is shared among three models: one for exposure and two for outcomes. The resulting update
- based on this prior is $(s_1, s_2, \dots, s_P) \sim \mathcal{D}(\alpha/P + n_1^a + n_1^{y_1} + n_1^{y_0}, \dots, \alpha/P + n_P^a + n_P^{y_1} + n_P^{y_0})$, where $n_j^{y_1}$ and $n_j^{y_0}$ represent the numbers of splits on the confounder X_j in two separate
- outcome models, and n_i^a represents the number of splits on X_i in the exposure model.

We use "Bayesian backfitting" (Hastie et al. 2000) to obtain posterior samples for the exposure and outcome models. For the exposure model, this involves a Metropolis-within-Gibbs sampler, where we fit each tree \mathcal{T}_t iteratively using residual responses:

$$R_{i,-t} = Z_i - \sum_{j \neq t} g_a(\boldsymbol{X}_i; \mathcal{T}_j, \mathcal{M}_j)$$

for $i = 1, \dots, N$ where Z_i is a latent variable for the binary exposure constructed with

$$Z_i \sim \begin{cases} N\left(\sum_{t=1}^T g_a(\boldsymbol{X}_i; \mathcal{T}_t, \mathcal{M}_t), 1\right) I_{(Z_i > 0)} & \text{for } A_i = 1; \\ N\left(\sum_{t=1}^T g_a(\boldsymbol{X}_i; \mathcal{T}_t, \mathcal{M}_t), 1\right) I_{(Z_i \le 0)} & \text{for } A_i = 0. \end{cases}$$

Note that the variance parameter (σ^2) is assigned a value of 1 as a result of the construction of the latent variable. For each tree \mathcal{T}_t for the exposure model, we propose a new tree structure \mathcal{T}_t from the full conditional $[\mathcal{T}_t|R_{1,-t},\cdots,R_{n,-t}]$ (i.e., grow, prune or change alterations), and update the parameters within the tree through the full conditional $[\mathcal{M}_t | \mathcal{T}_t, R_{1,-t}, \cdots, R_{n,-t}]$. To draw samples for \mathcal{M}_t , we assume a prior $\mu \sim N(\mu_{\mu}/T, \sigma_{\mu}^2)$ on each of the leaf parameters $\mathcal{M}_t = \{\mu_1, \mu_2, \cdots, \mu_{t_b}\}\$, where t_b is the number of terminal nodes in tree \mathcal{T}_t . The range center of latent variable Z_i 's is set as the mean, μ_{μ} , and σ_{μ}^2 is empirically determined to satisfy $T\mu_{\mu} - 2\sqrt{T}\sigma_{\mu} = Z_{\min}$ and $T\mu_{\mu} + 2\sqrt{T}\sigma_{\mu} = Z_{\max}$ where Z_{\min} and Z_{\max} represent the minimum and maximum values of Z_i 's (Kapelner and Bleich 2016).

We generate a sample μ_{η} from the posterior distribution for the η -th terminal node in tree \mathcal{T}_t by using the following equation:

$$\mu_{\eta} \sim N \left(\frac{1}{1/\sigma_{\mu}^2 + n_{\eta}/\sigma^2} \left(\frac{\mu_{\mu}/T}{\sigma_{\mu}^2} + \frac{\sum_{i \in \mathcal{O}_{\eta}} R_{i,-t}}{\sigma^2} \right), \left(\frac{1}{\sigma_{\mu}^2} + \frac{n_{\eta}}{\sigma^2} \right)^{-1} \right),$$

where \mathcal{O}_{η} and n_{η} correspond to the observation indices and the number of observations, respectively, for the η -th terminal node. In our implementation, we set the μ_{μ} value to 0, and consequently, the bartes package is constructed to shift the Y and Z variables to have a mean value of 0. For separate outcome models, we also perform a backfitting step to draw samples from $P(\mathcal{T}_1^a, \dots, \mathcal{T}_T^a, \mathcal{M}_1^a, \dots, \mathcal{M}_T^a, \sigma_a^2 | \mathbf{D})$ for each $A = a \in \{0, 1\}$ by computing the residual re-

sponses iteratively as follows:

$$H_{i,-t}^a = y_i - \sum_{i \neq t} g_y^a(\boldsymbol{X}_i; \mathcal{T}_j^a, \mathcal{M}_j^a) \text{ for } i \in \mathcal{I}_a,$$

where \mathcal{I}_a represents the set of observations corresponding to $A = a \in \{0,1\}$. Afterwards, a process is undertaken to update each tree based on $[\mathcal{T}^a_t|\bar{H}^a_{\cdot,-t},\sigma^2_a]$ and the parameters of its corresponding terminal nodes from $[\mathcal{M}_t^a|\mathcal{T}_t^a, H_{\cdot,-t}, \sigma_a^2]$ for each exposure level $a \in \{0,1\}$. This process is analogous to the one described earlier for the exposure model.

For each MCMC iteration, once all the tree structures and corresponding parameters have been updated, we proceed to update the variance parameter (σ_a^2 in each outcome model (2)) using the Gibbs sampler. This is achieved by sampling from the inverse gamma distribution given by:

$$\sigma_a^2 \sim \text{Inv.Gamma}\left(a_\sigma + \frac{|\mathcal{I}_a|}{2}, b_\sigma + \frac{1}{2}\left\{\sum_{i \in \mathcal{I}_a} \left(y_i - \sum_{t=1}^T g_y^a(\boldsymbol{X}_i; \mathcal{T}_t^a, \mathcal{M}_t^a)\right)\right\}\right),$$

where $a_{\sigma} = b_{\sigma} = 3$.

Next, we update the parameter α in the prior distribution of selection probabilities $s \sim \mathcal{D}(\alpha/P,\cdots,\alpha/P)$ based on a prior of the form $\alpha/(\alpha+P) \sim \mathrm{Beta}(a_0,b_0)$, where $a_0=0.5$ and $b_0=1$ (Linero 2018). The Metropolis-Hastings algorithm is then used to update the parameter. Finally, we update s using a conjugate sampling update as follows: $s \sim \mathcal{D}(\alpha/P+n_1^a+n_1^{y_1}+n_1^{y_0},\cdots,\alpha/P+n_P^a+n_P^{y_1}+n_P^{y_0})$, where $n_j^{y_1}$ and $n_j^{y_0}$ represent the numbers of splits on the confounder X_j in two separate outcome models, and n_j^a represents the number of splits on X_j in the exposure model.

The posterior computation process for the approach employing the separate outcome models strategy is outlined in Algorithm 1 through pseudocode.

11 Single outcome model

Using two separate outcome models for two exposure levels, as outlined in Hill (2011) and Hahn et al. (2020), can result in biased estimates if there is a lack of common support in confounders. While a single outcome model can be a viable alternative, it can be challenging to apply a shared sparsity-inducing prior to (s_1, s_2, \dots, s_P) due to differences in covariate dimensions between the exposure and outcome models. Let $\mathbf{s} = (s_0, s_1, s_2, \dots, s_P)$ represent the selection probabilities, with s_0 denoting the probability of exposure A used in the outcome model. To apply this vector to the exposure model, s is transformed to $\mathbf{s}' = (s_1/(1-s_0), s_2/(1-s_0), \dots, s_P/(1-s_0))$. Then, updating \mathbf{s} is based on the following equation (likelihood \times prior):

$$Q = \left(\frac{1}{1 - s_0}\right)^{\sum_{j=1}^{P} n_j^a} s_0^{n_j^y + \alpha/P - 1} s_1^{n_j^y + n_1^a + \alpha/P - 1} \cdots s_P^{n_P^y + n_P^a + \alpha/P - 1},$$

using the Metropolis-Hastings algorithm. The proposal distribution for s is designed to follow

the full conditional in the separate outcome model, $\mathcal{D}(n_0^y + c + \alpha/P, n_1^a + n_1^y + \alpha/P, n_2^a + n_2^y + \alpha/P, \dots, n_P^a + n_P^y + \alpha/P)$, and a positive value c is added to prevent proposals for infrequent exposure.

All posterior computation steps are identical to the separate outcome models method, except for the difference that there is only one outcome model. Therefore, updates for the trees and parameters of the outcome model are based on one $[\mathcal{T}_t'|\mathbf{H}_{\cdot,-t},\sigma^2]$ and one $[\mathcal{M}_t'|\mathcal{T}_t',\mathbf{H}_{\cdot,-t},\sigma^2]$ for each tree t. Subsequently, sampling for σ^2 is carried out based on the following inverse gamma distribution:

$$\sigma^2 \sim \text{Inv.Gamma}\left(a_{\sigma} + \frac{N}{2}, b_{\sigma} + \frac{1}{2} \left\{ \sum_{i=1}^{N} \left(Y_i - \sum_{t=1}^{T} g_y(\boldsymbol{X}_i; \mathcal{T}'_t, \mathcal{M}'_t) \right) \right\} \right),$$

- where $a_{\sigma} = b_{\sigma} = 3$. The posterior computation process for the approach employing the single
- outcome model strategy is outlined in Algorithm 2 through pseudocode.
- Given the M set of posterior samples for BART parameters, the causal effect estimand $\Delta(1,0)$
- 4 can be estimated using either the separate model or the single model. For the separate
- 5 outcome model, the estimate is obtained by

$$\hat{\Delta}(1,0) = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{1}{M} \sum_{m=1}^{M} \left\{ \sum_{t=1}^{T} g_{y}^{1,(m)}(\boldsymbol{X}_{i}; \mathcal{T}_{t}^{1}, \mathcal{M}_{t}^{1}) - \sum_{t=1}^{T} g_{y}^{0,(m)}(\boldsymbol{X}_{i}; \mathcal{T}_{t}^{0}, \mathcal{M}_{t}^{0}) \right\} \right],$$

- where $g_y^{a,(m)}$ is the m-th posterior samples for $A = a \in \{0,1\}$. For the single outcome model,
- 7 the estimate is obtained by

$$\hat{\Delta}(1,0) = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{1}{M} \sum_{m=1}^{M} \left\{ \sum_{t=1}^{T} g_{y}^{(m)}(1, \boldsymbol{X}_{i}; \mathcal{T}_{t}, \mathcal{M}_{t}) - \sum_{t=1}^{T} g_{y}^{(m)}(0, \boldsymbol{X}_{i}; \mathcal{T}_{t}, \mathcal{M}_{t}) \right\} \right],$$

where $g_y^{(m)}$ is the *m*-th posterior samples.

3. Simulated example

The bartes R package makes it easy to implement the confounder selection process described in the previous section. It includes two main functions, separate_bart() for the separate outcome model and single_bart() for the single outcome model. The package not only offers a summary of the estimated causal effects but also includes visualizations of posterior inclusion probabilities and convergence.

bartcs offers multi-threading support through Open Multi-Processing (OpenMP), an API for shared memory parallel programming that manages thread creation, management, and synchronization for efficient data and computation division among different threads. This allows bartcs to specify intensive computations as parallel regions, leading to improved computational efficiency through parallel computing.

The package **bartcs** is available under the general public license (GPL \geq 3) from the Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/package=bartcs and can be installed and loaded into the current R session as follows:

R> install.packages("bartcs", dependencies=TRUE)
R> library("bartcs")

We will showcase the practical usage of the features in the **barcs** package using simulated examples and the Infant Health and Development Program (IHDP) data.

As a simple example of the **bartcs** package, we use a simulated dataset from Scenario 1 in Kim et al. (2023) to illustrate its features. The data-generating model incorporates both the non-linear propensity score and outcome models, and serves to evaluate the ability to detect 5 true confounding variables out of a huge set of possible covariates, along with the precision of the model's estimation. The dataset consists of 300 observations with 100 potential confounders $(X_1 - X_{100})$, each generated from a normal distribution with mean 0 and variance 1. Of the 100 possible confounders, $X_1 - X_5$ are true confounders. The outcome model includes the five true confounders and two additional predictors, X_6 and X_7 as follows:

```
P(A_i = 1) = \Phi(0.5 + 0.5h_1(X_{i,1}) + 0.5h_2(X_{i,2}) - 0.5|X_{i,3} - 1| + 1.5X_{i,4}X_{i,5})
Y_i \sim N(\mu(\boldsymbol{X}_i), 0.3^2)
\mu(\boldsymbol{X}_i) = h_1(X_{i,1}) + 1.5h_2(X_{i,2}) - A_i + 2|X_{i,3} + 1| + 2X_{i,4} + \exp(0.5X_{i,5})
-0.5A_i|X_{i,6}| - A_i|X_{i,7} + 1|
```

where $h_1(x) = (-1)^{I(x<0)}$ and $h_2(x) = (-1)^{I(x\geq0)}$ for $i = 1, \dots, 300$. The data was generated with the following code:

```
R> set.seed(42)
R> N <- 300
R> P <- 100
R> cov <- list()
R> for (i in 1:P) {
     cov[[i]] <- rnorm(N, 0, 1)</pre>
R> X <- do.call(cbind, cov)
R > h1 \leftarrow ifelse(X[, 1] < 0, 1, -1)
R > h2 < -ifelse(X[, 2] < 0, -1, 1)
R > prob <- pnorm(0.5 + h1 + h2 - 0.5 * abs(X[, 3] - 1) +
                   1.5 * X[, 4] * X[, 5])
R> Trt <- rbinom(N, 1, prob)</pre>
R> mu1 <-1 * h1 + 1.5 * h2 - 1 + 2 * abs(X[, 3] + 1) +
     2 * X[, 4] + exp(0.5 * X[, 5]) -
     0.5 * 1 * abs(X[, 6]) - 1 * 1 * abs(X[, 7] + 1)
R > mu0 < -1 * h1 + 1.5 * h2 - 0 + 2 * abs(X[, 3] + 1) +
     2 * X[, 4] + exp(0.5 * X[, 5]) -
     0.5 * 0 * abs(X[, 6]) - 1 * 0 * abs(X[, 7] + 1)
R> Y1 <- rnorm(N, mu1, 0.3)
R> YO <- rnorm(N, mu0, 0.3)
R> Y <- Trt * Y1 + (1 - Trt) * Y0
```

- 3 Examining the standardized mean differences (SMD) of the (potential) confounders gener-
- 4 ated through the data generating process above, the following observations can be made.
- 5 The Standardized Mean Differences (SMD) values presented below were computed using the
- tableone R package (Yoshida and Bartel 2022), which can be installed from CRAN.

```
0.28 (0.96) -0.39 (0.90)
X1 (mean (SD))
                                             0.718
X2 (mean (SD))
                -0.25 (0.99)
                               0.24(0.92)
                                             0.517
X3 (mean (SD))
                -0.14(1.02)
                               0.03 (0.90)
                                             0.178
X4 (mean (SD))
                 0.06 (1.08) -0.07 (1.04)
                                             0.118
X5 (mean (SD))
                -0.08(0.86)
                               0.01 (1.05)
                                             0.091
X6 (mean (SD))
                -0.03 (1.06)
                               0.15(0.98)
                                             0.177
X7 (mean (SD))
                -0.04 (1.03)
                               0.01 (0.94)
                                             0.050
                               0.20 (1.00)
X8 (mean (SD))
                -0.11 (0.99)
                                             0.312
X9 (mean (SD))
                 0.07 (1.04)
                               0.05 (1.02)
                                             0.017
X10 (mean (SD)) -0.04 (1.13) -0.13 (0.96)
                                             0.087
                 0.05 (1.02) -0.12 (0.98)
X11 (mean (SD))
                                             0.169
X12 (mean (SD))
                 0.13 (1.01) -0.23 (0.99)
                                             0.363
```

- When looking at the results for the first 12 X variables, it is noted that for true confounders
- $_2$ X_1 and X_2 , SMD values greater than 0.1, indicative of inadequate covariate balance between
- 3 the groups, are observed. Similar lack of covariate balance between the groups is also noticed
- for X_3 and X_4 . However, due to randomness, differences between the groups are observed for
- some covariates other than the true confounders. In this simulation scenario, with the partial
- 6 presence of the signal from some covariates other than true confounders, the goal is to assess
- 7 the performance of the model under consideration.
- 8 With a generated data set, we fit the BART confounder selection model (the separate outcome
- 9 model) using separate_bart().

- 10 The following are the main arguments used in the separate bart() function call:
- Y represents a vector of observed outcome values.
- trt denotes a vector of exposure(treatment) values, which can be either binary or continuous depending on the function. Binary treatment values need to be either 0 or 1.
 - X is a data frame of potential confounders.

15

20

21

- The following are the remaining settings for the fit: 4 MCMC chains (num_chain) with 200 trees (num_tree) are used. Each MCMC chain runs 20000 iterations, with 10000 burn-in iterations (num_burn_in) and a thinning factor of 5 (num_thin). There are other optional arguments available for hyper-parameter settings with the following default values:
 - $\alpha = 0.95$ (alpha) and $\beta = 2$ (beta): these govern the probability that a node at depth d is nonterminal as follows

$$\alpha(1+d)^{-\beta}$$
.

- $\nu = 3$ (nu) and q = 0.95 (q): to set a conjugate prior for the variance σ^2 with $\sigma^2 \sim \nu \lambda / \chi^2_{\nu}$, we use the following equation to determine the values $P(\sigma < \hat{\sigma}) = q$, where $\hat{\sigma}$ represents the residual standard deviation obtained from a linear regression of Y on X.
- $P_{\text{GROW}} = 0.28, P_{\text{PRUNE}} = 0.28, P_{\text{CHANGE}} = 0.44 \text{ (step_prob = c(0.28, 0.28, 0.44))}$: probabilities of three tree alteration steps.
- dir_alpha = 5: this is an initial value for hyperparameter α in the sparsity inducing Dirichlet prior $\mathcal{D}(\alpha/P, \alpha/P, \dots, \alpha/P)$.

R> separate_fit

`bartcs` fit by `separate_bart()`

```
mean 2.5% 97.5%

ATE -2.2851546 -2.6022894 -1.9692134

Y1 0.7195622 0.4663024 0.9833689

Y0 3.0047169 2.8116436 3.1946016
```

- 8 The separate_bart() returns a S3 bartcs object. A bartcs object includes the posterior
- 9 means and 95% credible intervals for the sample average treatment effect (ATE), and the
- potential outcomes Y(1) and Y(0). It is important to note that the true values for the ATE,
- E[Y(1)], and E[Y(0)] are -2.55, 0.64, and 3.19 respectively, and the 95% credible intervals
- produced by the separate_bart() function include these values.
- For a more in-depth understanding of the output, the summary() function can be used. It
- provides details regarding the treatment values, tree structure, MCMC chain, and outcomes
- 15 for each of the chains.

R> summary(separate_fit)

`bartcs` fit by `separate_bart()`

Treatment Value

Treated group : 1 Control group : 0

Tree Parameters

Number	of	Tree	:	200	Value	of	alpha	:	0.95
Prob.	of	Grow	:	0.28	Value	of	beta	:	2
Prob.	of	Prune	:	0.28	Value	of	nu	:	3
Prob.	of	Change	:	0.44	Value	of	q	:	0.95

Chain Parameters

Number of Chains: 4 Number of burn-in: 10000 Number of Iter: 20000 Number of thinning: 5 Number of Sample: 2000

- (a) Plotting PIP with top_n argument
- (b) Plotting PIP with threshold argument

Figure 4: Posterior inclusion probability (PIP) plots

```
Outcome
 estimand chain
                       2.5%
                                     1Q
                                              mean
                                                        median
                                                                        30
                                                                                 97.5%
              1 -2.6070044 -2.3892357 -2.2830389 -2.2800555 -2.1765359 -1.9757766
      ATE
      ATE
              2 -2.6013548 -2.4017854 -2.2877997 -2.2877071 -2.1798863 -1.9611401
      ATE
              3 -2.5961329 -2.3952700 -2.2794876 -2.2793208 -2.1609143 -1.9644475
      ATE
              4 -2.6090523 -2.4001084 -2.2902924 -2.2923171 -2.1812900 -1.9761443
      ATE
                -2.6022894 -2.3965077 -2.2851546 -2.2842764 -2.1748201 -1.9692134
                                                                 0.8027479
       Υ1
                  0.4705203
                             0.6322748
                                         0.7174467
                                                     0.7174147
                                                                             0.9668359
       Υ1
              2
                  0.4707973
                             0.6305094
                                         0.7223111
                                                     0.7213076
                                                                 0.8153911
                                                                             0.9851455
       Υ1
              3
                  0.4653391
                             0.6277828
                                         0.7190511
                                                     0.7194586
                                                                 0.8080547
                                                                             0.9804701
       Υ1
              4
                  0.4614500
                             0.6273396
                                         0.7194400
                                                     0.7175295
                                                                 0.8087480
                                                                            0.9920899
       Υ1
                  0.4663024
                             0.6292846
                                         0.7195622
                                                     0.7185828
                                                                 0.8087121
                                                                             0.9833689
            agg
       Y0
                  2.8082437
                             2.9361088
                                         3.0004857
                                                     2.9998629
                                                                 3.0664869
                                                                             3.1897135
              1
       Y0
              2
                  2.8189069
                             2.9442181
                                         3.0101107
                                                     3.0107896
                                                                 3.0778268
                                                                             3.2013420
       Y0
              3
                  2.8002284
                             2.9362280
                                         2.9985387
                                                     2.9972708
                                                                 3.0646989
                                                                             3.1920314
       Υ0
              4
                  2.8210957
                             2.9427012
                                         3.0097324
                                                     3.0133450
                                                                 3.0772579
                                                                             3.1960383
       Y0
                  2.8116436
                             2.9404458
                                         3.0047169
                                                     3.0053406
                                                                 3.0713420
                                                                             3.1946016
            agg
```

- 1 For each estimand category, there are five results (rows) that represent the output from each
- of the 4 MCMC chains and an aggregated output.
- 3 For visualization purposes, there are two options available as S3 methods for the bartcs
- 4 object. The first option is the posterior inclusion probability (PIP) plot. PIP is the probability
- 5 that a variable is used as a splitting variable, and can be interpreted as the importance of a
- of variable. The inclusion_plot() function is a wrapper for the bar_chart() function from the
- ggcharts package, allowing the use of its arguments to customize the plot. The recommended
- 8 arguments to use are top n and threshold.

```
R> plot(separate_fit, method = "pip", top_n = 10)
R> plot(separate_fit, method = "pip", threshold = 0.5)
```

- In Figure 4, the argument top_n allows us to select variables with the top_n highest
- 10 PIPs. The argument threshold displays variables with PIP greater than threshold. From a

Figure 5: Traceplots for multiple MCMC chains

- decision-theoretical perspective (Barbieri and Berger 2004; Linero 2018), variables with PIPs
- 2 larger than 0.5 can be considered chosen confounders. It is worth noting that the five true
- confounders $X_1 X_5$ are all correctly selected as true confounders with PIPs of 1, along with
- one extra predictor X_7 in the outcome model.
- 5 The second option for visualization is the traceplot, which is mainly used to check MCMC
- 6 convergence. The function provides a traceplot of the average treatment effect (ATE) for
- each MCMC chain. Traceplots of other parameters such as dir_alpha (the hyperparameter
- α in the sparsity-inducing Dirichlet prior $\mathcal{D}(\alpha/P,\cdots,\alpha/P)$ and sigma2_out (the variance
- parameter in the outcome model) are also available by using the argument parameter.

```
R> plot(separate_fit, method = 'trace')
R> plot(separate_fit, method = 'trace', parameter = 'dir_alpha')
```

In Figure 5, the traceplots of the ATE and dir_alpha parameters are shown for four different MCMC chains. Regarding the dir_alpha parameter (α) , the actual value used as the 11 hyper-parameter for the Dirichlet prior is obtained by dividing the total number of potential 12 confounders, denoted as P (i.e., α/P). Considering the simulation data setting where P=10013 is used, the hyper-parameter to be estimated is a significantly small value, which is $\alpha/100$. 14 Therefore, compared to the variation observed in the traceplot, the variation of the actual α/P can be interpreted as considerably smaller. While visual inspection using traceplots is convenient, it is advised to utilize the gelman-rubin diagnostics offered by the gelman.diag() 17 function in the coda R package (Plummer, Best, Cowles, Vines, Sarkar, Bates, Almond, and 18 Magnusson 2020) for a more thorough evaluation of convergence, as demonstrated in the 19 following section. 20

We evaluated the performance of **bartcs** in comparison to other models, including those generated by the **bacr** R package (Wang *et al.* 2015) that inspired our model development. The **bacr** package is easily installed via CRAN and loaded into the current R session as follows:

```
R> install.packages("bacr", dependencies=TRUE)
R> library("bacr")
```

- To fit the model of this package, we used the bac() function where the input data needs to
- be provided in the form of a data frame. To fit the exposure and outcome models in this
- case, a generalized linear model is used, and it is necessary to specify the family of the model
- based on the data type (e.g., familyX="binomial" and familyY="gaussian"). The MCMC
- ⁵ algorithm was run for 10000 iterations after discarding the first 10000 iterations as burn-ins.
- 6 Additionally, no interaction between the exposure and each confounder was assumed.

The result can be checked through the summary() function as follows:

```
R> summary(fit.bac)
```

BAC objects:

```
Exposure effect estimate:
```

```
posterior mean 95% posterior interval (-2.1, -1.3)
```

Covariates with posterior inclusion probability > 0.5:

```
posterior inclusion probability
VЗ
                               1.00000
۷4
                               1.00000
۷5
                               1.00000
۷6
                               1.00000
۷7
                               1.00000
V99
                               0.92100
V14
                               0.70305
V54
                               0.67480
V90
                               0.62345
```

- The posterior mean of the ATE was estimated to be -1.6, which was significantly different from the true ATE value of -2.55. Moreover, the 95% credible interval (-2.1, -1.3) did not include the true value. When considering the importance of selected confounders based on the posterior inclusion probability, **bacr** included all important confounders $X_1 X_5$ (that is, V3-V7 in the summary), but also added X_{12}, X_{52}, X_{88} , and X_{97} (that is, V14, V54, V90, V99 in the summary) with high PIPs, which were not true confounders. Notably, X_6 and X_7 , which are additional predictors of the outcome model, were not included. This result may be attributed to the fact that **bacr** relies on a parametric model and therefore may struggle to
 - account for the non-linear and complex data structure.

1 3.1. Connection to coda package

- To summarize the results, generic functions such as summary() and plot() were adapted to
- work on the bartcs objects. Additionally, mcmc.list objects were included as components
- 4 in the bartcs object to allow for the use of functions from the coda R package (Plummer
- et al. 2020). The mcmc_list component of the bartcs object can produce summary statistics
- for each of E[Y(1)], E[Y(0)], ATE using the summary function and generate trace plots and
- posterior densities for parameters using the plot function. Figure 6 displays plot of mcmc_list
- 8 based on **coda** package.

```
R> summary(separate_fit$mcmc_list)
```

```
Iterations = 10005:20000
Thinning interval = 5
Number of chains = 4
Sample size per chain = 2000
```

 Empirical mean and standard deviation for each variable, plus standard error of the mean:

```
Mean
                              SD
                                 Naive SE Time-series SE
ATE
            -2.285155 0.1639173 1.833e-03
                                                2.489e-03
Υ1
             0.719562 0.1328857 1.486e-03
                                                2.122e-03
Y0
             3.004717 0.0977850 1.093e-03
                                                1.790e-03
             1.576421 0.7317213 8.181e-03
                                                6.836e-02
dir alpha
sigma2 out1
             0.001731 0.0003359 3.756e-06
                                                5.533e-06
sigma2_out0
             0.001310 0.0002334 2.609e-06
                                                3.784e-06
```

2. Quantiles for each variable:

```
2.5%
                             25%
                                       50%
                                                  75%
                                                          97.5%
ATE
            -2.6022894 -2.396508 -2.284276 -2.174820 -1.969213
Y1
             0.4663024 0.629285
                                 0.718583
                                            0.808712 0.983369
YΟ
             2.8116436
                        2.940446
                                  3.005341
                                            3.071342
                                                      3.194602
                                            2.003651
dir_alpha
             0.5772667
                        1.024000
                                  1.423480
                                                      3.390765
sigma2_out1
             0.0011718
                        0.001490
                                  0.001698
                                            0.001935
                                                      0.002483
sigma2_out0
             0.0009263
                        0.001146 0.001289
                                            0.001446
                                                      0.001845
```

R> plot(separate_fit\$mcmc_list)

- The convergence of the MCMC object can be assessed by utilizing the convergence diagnostics offered by the **coda** package. To examine the convergence of six parameters. we can employ the
- 11 gelman.diag() function on the mcmc.list object, specifically on separate fit\$mcmc list.

```
R> library("coda")
R> gelman.diag(separate_fit$mcmc_list)
```


Figure 6: Plot of mcmc_list using the coda R package

Potential scale reduction factors:

	${\tt Point}$	est.	Upper	C.I.
ATE		1.00		1.00
Y1		1.00		1.00
YO		1.00		1.01
dir_alpha		1.02		1.07
sigma2_out1		1.00		1.00
sigma2 out0		1.00		1.00

Multivariate psrf

1.02

- Based on the convergence diagnostics, it can be concluded that there are no issues with the
- convergence of the MCMC chain, similar to the visual inspection.

4. Real data example

- In the previous section, the separate_bart() function was used to demonstrate a sepa-
- 4 rate outcome model scheme. In this section, a single outcome model is tested using the
- 5 single_bart() function, based on the Infant Health and Development Program (IHDP)
- 6 dataset as an example. This dataset was collected from a longitudinal study that tracked the

```
development of low-birth-weight premature infants. The study participants in the treatment
   group received intensive care and home visits from trained providers and their cognitive test
   scores were evaluated at the end of the intervention period. The dataset includes a variety of
   pretreatment variables, including 6 continuous and 19 binary covariates. The original IHDP
   data is generated from a randomized experiment setting. However, the IHDP data used by
   Hill (2011) and Louizos, Shalit, Mooij, Sontag, Zemel, and Welling (2017) was manipulated
   to induce covariate imbalance between treatment groups by removing a subset of the treated
   group. Specifically, all children with nonwhite mothers were removed from the treated group.
   We utilize a synthesized variant of the IHDP data as presented in Louizos et al. (2017). This
   version was created employing the NPCI package (Dorie 2016) to ascertain the true counter-
10
   factual values. As seen in Figure 7, the data generated in this manner significantly violates
11
   the overlap assumption for estimating the Average Treatment Effect (ATE). This figure de-
12
   picts the degree of overlap between two groups (Treated vs Control) for selected covariates.
   Red crosses represent the control group, and blue triangles represent the treated group. In
14
   certain intervals of extreme values for each covariate, there are regions where only control
15
   group data exists, or very few data points from the treated group are present. For example,
16
   in the interval where the X_5 covariate is less than -4, there is no data from the treated group.
17
   Non-overlap occurs in these regions. In the case of the binary covariate X_{18}, there is only
18
   one data point from the treated group at the value of 0. Therefore, technically speaking,
19
   situations like non-overlap can occur in the estimation process. In such a scenario, one of the
20
   objectives is to investigate whether a single outcome model can properly estimate the true
21
   ATE.
22
   This data can be loaded by
23
   R> data("ihdp", package = "bartcs")
   and Table 2 displays the summary statistics of the variables. In the dataset, y_factual is
   the observed outcome Y (i.e., Y(A)) and y_cfactual is the counterfactual outcome Y (i.e.,
   Y(1 - A)).
26
   We fit the single outcome model using the single_bart() function.
   R> single_fit <- single_bart(</pre>
      Y
                         = ihdp$y_factual,
                         = ihdp$treatment,
      trt
                         = ihdp[, 6:30],
     Χ
                         = 50.
     num_tree
     num_chain
                        = 4,
     num_post_sample = 2000,
     num thin
                         = 5,
     num_burn_in
                        = 10000
   R> single_fit
   `bartcs` fit by `single_bart()`
```

mean

2.5%

ATE 3.964842 3.747028 4.180764

97.5%

Figure 7: A plot illustrating the degree of overlap between two groups (Treated vs Control) for selected covariates. Red crosses represent the control group, and blue triangles represent the treated group. In certain intervals for each covariate, there are regions where only control group data exists, or very few data points from the treated group are present. Non-overlap occurs in these regions.

	\mid Treatment = 1 (n=139)		Treatment = 0 (n=608)			
Variable	Mean	IQR	Mean	IQR		
\overline{Y}	6.43	(5.83, 7.34)	2.41	(1.45, 3.08)		
X_1^{\star}	0.21	(-0.40, 0.95)	-0.05	(-0.75, 0.79)		
X_2^{\star}	0.18	(-0.20, 0.60)	-0.04	(-0.60, 0.60)		
X_3^{\star}	-0.04	(-0.73, 0.38)	0.01	(-0.73, 0.76)		
X_4^{\star}	-0.22	(-0.88, 0.16)	0.05	(-0.88, 0.16)		
X_5^{\star}	-0.14	(-0.69, 0.56)	0.03	(-0.50, 0.68)		
X_6^{\star}	0.21	(-0.53, 0.96)	-0.05	(-0.86, 0.63)		
X_7	0.52	(0.00, 1.00)	0.51	(0.00, 1.00)		
X_8	0.09	(0.00, 0.00)	0.1	(0.00, 0.00)		
X_9	0.68	(0.00, 1.00)	0.49	(0.00, 1.00)		
X_{10}	0.29	(0.00, 1.00)	0.38	(0.00, 1.00)		
X_{11}	0.25	(0.00, 0.50)	0.27	(0.00, 1.00)		
X_{12}	0.22	(0.00, 0.00)	0.22	(0.00, 0.00)		
X_{13}	0.38	(0.00, 1.00)	0.35	(0.00, 1.00)		
X_{14}	1.58	(1.00, 2.00)	1.44	(1.00, 2.00)		
X_{15}	0.14	(0.00, 0.00)	0.14	(0.00, 0.00)		
X_{16}	0.94	(1.00, 1.00)	0.97	(1.00, 1.00)		
X_{17}	0.69	(0.00, 1.00)	0.57	(0.00, 1.00)		
X_{18}	0.99	(1.00, 1.00)	0.96	(1.00, 1.00)		
X_{19}	0.15	(0.00, 0.00)	0.13	(0.00, 0.00)		
X_{20}	0.06	(0.00, 0.00)	0.15	(0.00, 0.00)		
X_{21}	0.17	(0.00, 0.00)	0.15	(0.00, 0.00)		
X_{22}	0.04	(0.00, 0.00)	0.09	(0.00, 0.00)		
X_{23}	0.01	(0.00, 0.00)	0.09	(0.00, 0.00)		
X_{24}	0.06	(0.00, 0.00)	0.14	(0.00, 0.00)		
X_{25}	0.27	(0.00, 1.00)	0.13	(0.00, 0.00)		

Table 2: Summary statistics for the IHDP data set. \star denotes a continuous potential confounder.

```
Y1 6.382810 6.188199 6.581852
Y0 2.417969 2.338264 2.496962
```

- 1 The function single_bart() returns a bartcs object, which displays the posterior means and
- 2 95% credible intervals for the average treatment effect (ATE), and the potential outcomes
- Y(1) and Y(0). The summary() and plot() functions can also be used with this bartes object
- 4 generated by single_bart().

```
R> summary(single_fit)
```

```
`bartcs` fit by `single_bart()`
```

Treatment Value

Treated group : 1 Control group : 0

```
Tree Parameters
 Number of Tree
                         50
                                           Value of alpha
                                                                  0.95
 Prob. of Grow
                       0.28
                                           Value of beta
                                                              :
                                                                     2
 Prob. of Prune :
                      0.28
                                           Value of nu
                                                                     3
 Prob. of Change:
                       0.44
                                           Value of q
                                                                  0.95
Chain Parameters
 Number of Chains :
                          4
                                           Number of burn-in : 10000
 Number of Iter
                      20000
                                           Number of thinning:
 Number of Sample:
                       2000
Outcome
 estimand chain
                    2.5%
                                             median
                                                                97.5%
                               10
                                      mean
                                                          30
              1 3.758373 3.894465 3.969119 3.968867 4.042380 4.183131
              2 3.744731 3.886575 3.957434 3.956101 4.026455 4.165961
      ATE
              3 3.760480 3.905973 3.980315 3.980162 4.054086 4.206488
      ATE
              4 3.730287 3.879606 3.952498 3.953050 4.028315 4.158430
      ATE
      ATE
            agg 3.747028 3.891543 3.964842 3.965384 4.038288 4.180764
             1 6.196530 6.318675 6.387760 6.387443 6.453303 6.589611
      Y1
       Υ1
              2 6.181788 6.310026 6.376027 6.376233 6.439727 6.573960
       Υ1
              3 6.196317 6.329945 6.396885 6.397153 6.464297 6.601299
       Υ1
              4 6.169429 6.303404 6.370570 6.371514 6.435679 6.562172
            agg 6.188199 6.314489 6.382810 6.382215 6.449542 6.581852
       Υ1
       Υ0
             1 2.339020 2.391137 2.418640 2.418824 2.446414 2.498677
       ΥO
              2 2.336131 2.392407 2.418593 2.418124 2.446167 2.495229
       Υ0
              3 2.337997 2.388738 2.416570 2.416414 2.444457 2.495583
              4 2.340288 2.389536 2.418073 2.418218 2.446018 2.497264
       Y0
            agg 2.338264 2.390199 2.417969 2.418042 2.445718 2.496962
       Y0
```

We also fitted a separate outcome model to the ihdp data and compared the results from the single outcome model.

```
R> separate_fit <- separate_bart(</pre>
+
     Y
                      = ihdp$y_factual,
                      = ihdp$treatment,
     trt
     Χ
                      = ihdp[, 6:30],
     num_tree
                      = 50,
     num_chain
                      = 4.
+
     num_post_sample = 2000,
                      = 5,
     num_thin
+
     num_burn_in
                      = 10000
R> separate_fit
`bartcs` fit by `separate_bart()`
```


Figure 8: Traceplot of ATE for IHDP dataset

```
2.5%
                          97.5%
        mean
ATE 3.924013 3.702316 4.148937
    6.342504 6.134043 6.550242
    2.418491 2.340920 2.497081
```

- Similar to the separate outcome model, in single_bart(), the plot() function for the bartcs
- object can also be employed to check the convergence of the MCMC chain. The traceplots
- for the ATE is presented in Figure 8 with the following line.

R> plot(single_fit, method = 'trace')

- As this is a simulated version of the IHDP data, the true values are known and are 4.02 for
- the average treatment effect (ATE), 6.45 for E[Y(1)], and 2.43 for E[Y(0)]. The outputs
- from the two models accurately reflect these true values within their 95% credible intervals.
- Additionally, the PIP plots (Figure 9) depict chosen confounders with PIP values larger than 0.5.
- The important aspect here is that in the case of the single outcome model, the exposure 9 variable (trt) is also incorporated into the selection process. As indicated in Equation 2, 10
- because the exposure variable is included as one of the covariates in the outcome model, it 11
- is subject to variable selection. This means that in the computation of PIP, it is treated 12
- similarly to other confounders, producing the following plot (a) in Figure 9. In Figure 9, plot
- (a) displays the potential confounders for the single outcome model, which have a posterior
- 14 inclusion probability of 0.5 or more, while plot (b) illustrates the confounders with a posterior
- 15
- inclusion probability of 0.5 or more when the separate outcome model is used. It is notewor-16
- thy that X_4 , X_6 , and X_{15} were consistently chosen as confounders with posterior inclusion 17
- probability 1. 18

8

4.1. Computation speed 19

In Figure 10, the computational speed of two models, the separate and single models, is 20 depicted for two different settings of the number of trees (100 vs. 200) based on the scenario in

15

16

Figure 9: PIP plot for IHDP dataset

Section 3. The speed was assessed using 20000 MCMC iterations across various combinations of N and P. We considered three values of N (100, 500, and 1000) and three values of P (circle for $N \times 0.3$, triangle for $N \times 0.5$, and cross for $N \times 1$). For 100 BART trees, the separate model required 34 to 393 seconds (70 to 761 seconds for 200 BART trees) for computation, while the single model took 30 to 343 seconds (58 to 670 5 seconds for 200 BART trees), depending on the (N, P) combination. Both models exhibited 6 similar computational speeds overall, considering the MCMC iterations. However, the single model, which fits two BART models (exposure and one outcome model), was found to be more efficient with slightly smaller biases and mean square errors (MSEs) across various scenarios (Kim et al. 2023). Therefore, it is recommended to utilize the single model (single_bart() 10 function), especially when N is large, due to its faster computational speed. 11 Additionally, depending on the number of trees used, a significant improvement in computa-12 tion speed can be observed. It is generally suggested to start with 50 trees as a "good starting 13 value," (Kapelner and Bleich 2016) so using a smaller number of trees is also advised to gain 14

5. Continuous exposure example

computational advantages in terms of speed. Details about the computer used to obtain the

results are provided in the final computational details section.

 17 When it comes to a continuous exposure variable, the formula in Equation 1 is changed as 18 follows:

$$A_i = \sum_{t=1}^{T} g_a(\boldsymbol{X}_i; \mathcal{T}_t, \mathcal{M}_t) + \epsilon_i, \epsilon_j \sim N(0, \tau^2).$$

This altered formula is used in conjunction with the single outcome model to perform confounder selection. However, the separate outcome model, which fits two distinct outcome models based on the two exposure levels, is not suitable for the continuous exposure variable. The bartes has an advantage in handling continuous exposure through its single_bart() function. This function has the versatility to handle both binary and continuous treatments, and automatically identifies the binary treatment when there are only two unique values. To demonstrate this, we generate a data set similar to the previous example.

Figure 10: The computation times for both the single outcome model (red) and separate outcome model (black) based on the number of observations (N) under two different numbers of trees. A cross symbol (+) represents the scenario where the number of potential confounders (P) is equal to the number of observations (N), a triangle (\triangle) represents the scenario where $P = N \times 0.5$ and a circle (\bigcirc) represents the scenario where $P = N \times 0.3$. These results are obtained from 20000 MCMC iterations based on the scenario in Section 3.

```
R> set.seed(42)
R> N <- 300
R> P <- 100
R> cov <- list()
R> for (i in 1:P) {
     cov[[i]] \leftarrow rnorm(N, 0, 1)
R> X <- do.call(cbind, cov)</pre>
R > h1 < - ifelse(X[, 1] < 0, 1, -1)
R > h2 < - ifelse(X[, 2] < 0, -1, 1)
R> mu_trt <- 0.5 + h1 + h2 - 0.5 * abs(X[, 3] - 1) + 0.5 * X[, 4] * X[, 5]
R> Trt <- rnorm(N, mu_trt, 0.3)
R> mu_y <-1*h1+1*h2-Trt+1*abs(X[, 3]+1)+
     1 * X[, 4] + exp(0.5 * X[, 5]) -
     0.5 * Trt * abs(X[, 6]) - 0.5 * Trt * abs(X[, 7] + 1)
R> Y <- rnorm(N, mu_y, 0.3)
R> treatment <- quantile(Trt, 0.75)</pre>
R> control <- quantile(Trt, 0.25)</pre>
```

We use the function single_bart() to fit the generated data. The first and third quantile values of Trt will serve as the basis for comparing two different exposure levels. As arguments in

single_bart(), we need to provide these two pre-specified exposure levels ($a = \text{trt_treated}$)

and $a' = \text{trt_control}$. In the this case, the causal estimand is $\Delta(a, a') = E[(Y(a) - Y(a'))]$.

```
R> single_fit <- single_bart(
+         Y = Y, trt = Trt, X = X,</pre>
```


- (a) Plotting PIP with top_n argument
- (b) Plotting PIP with threshold = 0.5 argument

Figure 11: PIP plot for continuous exposure

```
trt_treated = treatment, trt_control = control,
     num tree = 200, num chain = 4,
     num_burn_in = 10000, num_thin = 5, num_post_sample = 2000
   )
R>
  single_fit
`bartcs` fit by `single_bart()`
                      2.5%
                               97.5%
          mean
ATE -2.8097339 -4.2581469 -1.732448
                0.2753606
Y1
     0.9982417
                            1.677726
Y0
     3.8079756
                3.0967180
                            4.740133
```

- Similar to other bartes objects, the summary() and plot() functions can be applied to the
- 2 continuous exposure scenario. Figure 11 displays a PIP plot, which demonstrates that out
- of 100 possible confounders, all of the true confounders except X_1 , X_2 , and two additional
- predictors were captured effectively, with high PIP values.

6. Summary and discussion

- 5 In conclusion, the bartes R package is a powerful tool for causal inference using BART. It
- 6 allows users to adjust for confounders and estimate treatment effects using a flexible non-
- 7 parametric method. The package's ability to handle high-dimensional and non-linear con-
- 8 founding, binary exposure, and continuous exposure makes it a versatile tool for a wide range
- 9 of applications. Additionally, the package's support for parallel computing and visualization
- of results make it a user-friendly and easy-to-interpret tool. The bartcs package is a valuable
- 11 resource for researchers in various fields.
- 12 In this paper, we assessed the performance of the proposed method in a scenario where all
- true confounders are included in the potential confounder pool, and additional predictors for
- the outcome model are also present within the potential confounder pool. In this scenario,
- the proposed method demonstrated precise Average Treatment Effect (ATE) estimation and

- accurately identified the true confounders. Moreover, in the study by Kim et al. (2023).
- 2 the proposed method exhibited accurate confounder selection performance and reliable es-
- 3 timation of ATEs even in scenarios involving instrumental variables in the data generating
- 4 process. This success is attributed to the satisfaction of the disjunctive cause criterion without
- instruments by the proposed method, as outlined in the introduction section (VanderWeele
- 6 2019). Additionally, the method demonstrated outstanding results in simulation scenarios
- 7 with diverse effect sizes and varying numbers of true confounders.
- 8 The single outcome model and separate outcome model proposed in this paper both demon-
- 9 strate excellent performance in confounder selection and average treatment effect estimation.
- 10 However, in cases where a continuous treatment variable is required, the single outcome model
- should be applied. Additionally, as indicated in Section 4.1, the single outcome model has a
- slightly faster computation speed than the separate outcome model when the sample size is
- large because it uses one less BART model. On the other hand, the separate outcome model
- 14 has the advantage of relatively faster convergence of the MCMC chain during the process of
- updating the selection probability vector of the BART prior using a simple Gibbs update.
- 16 Therefore, it is necessary to selectively choose between the two models based on the context
- of the data being applied.
- 18 While not currently integrated into the bartcs package, the confounder selection method
- 19 presented here using BART holds potential for extension to various data types. For count
- or categorical outcomes, it might be feasible to substitute the proposed outcome model with
- the log-linear BART model suggested by Murray (2021). Similarly, for survival outcomes, the
- ²² survival BART model proposed by Sparapani, Logan, McCulloch, and Laud (2016) could serve
- 23 as the outcome model. Exploring the specific computation algorithms for these extensions
- 24 could be a fruitful avenue for future research.
- One limitation of the proposed method is its lack of consideration for correlation and tem-
- 26 poral relationships among potential confounders. Currently, no research has explored the
- 27 distribution of weights in the selection probability vector when high correlation exists among
- 28 covariates in the potential confounder pool. An approach worth investigating may involve
- 29 leveraging a causal Directed Acyclic Graph (DAG) to constrain the selection of certain co-
- variates in the prior setting of the selection probability vector. This too presents a promising
- 31 direction for future research.

Computational details

- The results in this paper were obtained using R 4.3.0 on a Mac Studio with a M1 chip
- and 128 GB of memory. bartcs 1.2.0 and bacr 1.0.1 were used for the analysis. R itself
- and all packages used are available from the Comprehensive R Archive Network (CRAN) at
- https://CRAN.R-project.org/.

Acknowledgments

- 36 This work is supported by the National Research Foundation of Korea (NRF) grant funded
- by the Korea government (NRF-2022R1F1A1062904).

References

- Barbieri MM, Berger JO (2004). "Optimal Predictive Model Selection." The Annals of Statistics, **32**(3), 870–897.
- ³ Chipman HA, George EI, McCulloch RE, et al. (2010). "BART: Bayesian Additive Regression
- Trees." The Annals of Applied Statistics, 4(1), 266–298.
- 5 Ding P, Li F (2018). "Causal inference." Statistical Science, 33(2), 214–237.
- Ding P, VanderWeele T, Robins JM (2017). "Instrumental variables as bias amplifiers with
 general outcome and confounding." Biometrika, 104(2), 291–302.
- Borie V (2016). NPCI: Non-parametrics for Causal Inference. URL https://github.com/
 vdorie/npci.
- Häggström J (2017). CovSelHigh: Model-Free Covariate Selection in High Dimensions.

 R package version 1.1.1, URL https://CRAN.R-project.org/package=CovSelHigh.
- Häggström J (2018). "Data-Driven Confounder Selection via Markov and Bayesian networks."
 Biometrics, 74(2), 389–398.
- Hahn PR, Murray JS, Carvalho CM (2020). "Bayesian Regression Tree Models for Causal
 Inference: Regularization, Confounding, and Heterogeneous Effects." Bayesian Analysis,
 15(3), 965–1056. doi:10.1214/19-BA1195.
- Hastie T, Tibshirani R, et al. (2000). "Bayesian Backfitting (with Comments and a Rejoinder by the Authors)." Statistical Science, 15(3), 196–223.
- Hill JL (2011). "Bayesian Nonparametric Modeling for Causal Inference." *Journal of Computational and Graphical Statistics*, **20**(1), 217–240. doi:10.1198/jcgs.2010.08162.
- Kapelner A, Bleich J (2016). "bartMachine: Machine Learning with Bayesian Additive Regression Trees." Journal of Statistical Software, **70**(4), 1–40. doi:10.18637/jss.v070.i04.
- Kim C, Tec M, Zigler CM (2023). "Bayesian Nonparametric Adjustment of Confounding."

 Biometrics, 79(4), 3252–3265. doi:10.1111/biom.13833.
- Lefebvre G, Delaney JA, McClelland RL (2014). "Extending the Bayesian Adjustment for
 Confounding Algorithm to Binary Treatment Covariates to Estimate the Effect of Smoking
 on Carotid Intima-Media Thickness: the Multi-ethnic Study of Atherosclerosis." Statistics
- in Medicine, **33**(16), 2797–2813.
- Li F, Ding P, Mealli F (2023). "Bayesian causal inference: a critical review." *Philosophical*Transactions of the Royal Society A, **381**(2247), 20220153.
- Linero AR (2018). "Bayesian Regression Trees for High-Dimensional Prediction and Variable Selection." Journal of the American Statistical Association, 113(522), 626–636.
- Louizos C, Shalit U, Mooij JM, Sontag D, Zemel R, Welling M (2017). "Causal Effect Inference
- with Deep Latent-Variable Models." Advances in Neural Information Processing Systems,
- 35 **30**. doi:10.48550/arXiv.1705.08821. URL https://github.com/AMLab-Amsterdam/ 36 CEVAE.

- ¹ Murray JS (2021). "Log-linear Bayesian additive regression trees for multinomial logistic
- and count regression models." Journal of the American Statistical Association, 116(534),
- з 756–769.
- ⁴ Myers JA, Rassen JA, Gagne JJ, Huybrechts KF, Schneeweiss S, Rothman KJ, Joffe MM,
- 5 Glynn RJ (2011). "Effects of adjusting for instrumental variables on bias and precision of
- effect estimates." American journal of epidemiology, 174(11), 1213–1222.
- Oganisian A, Roy JA (2020). "Invited discussion for Bayesian regression tree models for
- causal inference: regularization, confounding, and heterogeneous effects." Bayesian Anal,
- 9 **15**(3), 998–1006.
- Papadogeorgou G, Li F (2020). "Invited discussion for Bayesian regression tree models for
- causal inference: regularization, confounding, and heterogeneous effects." Bayesian Anal,
- **15**(3), 1007–1013.
- 13 Plummer M, Best N, Cowles K, Vines K, Sarkar D, Bates D, Almond R, Magnusson A
- (2020). coda: Output Analysis and Diagnostics for MCMC. R package version 0.19-4, URL
- https://CRAN.R-project.org/package=coda.
- 16 R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foun-
- dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Rosenbaum PR, Rubin DB (1983). "The Central Role of the Propensity Score in Observational
- Studies for Causal Effects." *Biometrika*, **70**(1), 41–55. ISSN 00063444.
- 20 Rubin DB (1974). "Estimating Causal Effects of Treatments in Randomized and Nonran-
- domized Studies." Journal of Educational Psychology, 66(5), 688.
- 22 Shortreed SM, Ertefaie A (2017). "Outcome-Adaptive Lasso: Variable Selection for Causal
- 23 Inference." Biometrics, **73**(4), 1111–1122.
- ²⁴ Sparapani R, Spanbauer C, McCulloch R (2021). "Nonparametric Machine Learning and
- 25 Efficient Computation with Bayesian Additive Regression Trees: The BART R Package."
- Journal of Statistical Software, 97(1), 1-66. doi:10.18637/jss.v097.i01.
- 27 Sparapani RA, Logan BR, McCulloch RE, Laud PW (2016). "Nonparametric survival analysis
- using Bayesian additive regression trees (BART)." Statistics in medicine, 35(16), 2741–
- 29 2753.
- 30 VanderWeele TJ (2019). "Principles of Confounder Selection." European Journal of Epidemi-
- ology, **34**(3), 211–219.
- Wang C, Dominici F, Parmigiani G, Zigler CM (2015). "Accounting for Uncertainty in Con-
- founder and Effect Modifier Selection when Estimating Average Causal Effects in General-
- ized Linear Models." *Biometrics*, **71**(3), 654–665.
- Wang C, Parmigiani G, Dominici F (2012). "Bayesian Effect Estimation Accounting for
- Adjustment Uncertainty." Biometrics, 68(3), 661–671.
- Wilson A, Bondell HD, Reich BJ (2015). BayesPen: Bayesian Penalized Credible Regions.
- R package version 1.2, URL https://anderwilson.github.io/BayesPen.

- Wilson A, Reich BJ (2014). "Confounder Selection via Penalized Credible Regions." *Biometrics*, **70**(4), 852–861.
- Yoo Y (2023). bartcs: Bayesian Additive Regression Trees for Confounder Selection. R package version 1.2.0, URL https://CRAN.R-project.org/package=bartcs.
- ⁵ Yoshida K, Bartel A (2022). *tableone*: Create 'Table 1' to Describe Baseline Characteristics
- with or without Propensity Score Weights. R package version 0.13.2, URL https://CRAN.
- 7 R-project.org/package=tableone.

1 Affiliation:

- ² Chanmin Kim (corresponding author)
- 3 Department of Statistics
- 4 SungKyunKwan University
- 5 25-2 SungKyunKwan-ro, Jongno-gu
- 6 Seoul 03063, Korea
- 7 E-mail: chanmin.kim@skku.edu
- 8 URL: https://lit777.github.io/
- and
- 10 Yeonghoon Yoo
- Department of Statistics
- 12 SungKyunKwan University
- 13 25-2 SungKyunKwan-ro, Jongno-gu
- 14 Seoul 03063, Korea

http://www.jstatsoft.org/ http://www.foastat.org/

> Submitted: yyyy-mm-dd Accepted: yyyy-mm-dd

Journal of Statistical Software

published by the Foundation for Open Access Statistics

¹⁷ MMMMMM YYYY, Volume VV, Issue II

doi:10.18637/jss.v000.i00