

Aprendizagem 2023

Lab 3: Bayesian learning

Practical exercises

I. Probability theory

 Consider the following registry where an experiment is repeated six times and four events (A, B, C and D) are detected.
Considering frequentist estimates, compute:

	Α	В	C	D
X 1	1	1	0	0
\mathbf{X}_2	1	1	1	0
\mathbf{X}_3	0	0	0	1
\mathbf{X}_4	0	0	0	1
X 5	0	0	0	0
X 6	0	0	0	0

class

1

0

1

1

p(A)p(A,B)

p(B|A)

p(A,B,C)

p(A|B,C)

p(A, B, C, D)

p(D|A,B,C)

- 2. Considering the following two-dimensional measurements {(-2,2),(-1,3),(0,1),(-2,1)}.
 - a) What are the maximum likelihood parameters of a multivariate Gaussian distribution for this set of points?
 - b) What is the shape of the Gaussian? Draw it approximately using a contour map.

II. Bayesian learning

 \mathbf{X}_1

 \mathbf{x}_2 1 \mathbf{x}_3 0

X6

 \mathbf{x}_4 0

1

0

1

1

0

0 0

1

1

1

1

0

1

1

1 1

0

1

0

3. Consider the following dataset where:

0: False and 1: True

y1: Fast processing

y2: Decent Battery

y3: Good Camera

y4: Good Look and Feel

y5: Easiness of Use

class: iPhone

And the query vector $\mathbf{x}_{\text{new}} = [1 \ 1 \ 1 \ 1]^T$

a) Using Bayes' rule, without making any assumptions, compute the posterior probabilities for the query vector. How is it classified?

- b) What is the problem of working without assumptions?
- c) Compute the class for the same query vector under the naive Bayes assumption.
- d) Consider the presence of missings. Under the same naive Bayes assumption, how do you classify $\mathbf{x}_{\text{new}} = [1 ? 1 ? 1]^T$

4. Consider the following dataset

	weight (kg)	height (cm)	NBA player
X 1	170	160	0
\mathbf{x}_2	80	220	1
X 3	90	200	1
\mathbf{X}_4	60	160	0
X 5	50	150	0
X 6	70	190	1

And the query vector $\mathbf{x}_{\text{new}} = [100 \ 225]^T$

- a) Compute the most probable class for the query vector assuming that the likelihoods are 2-dimensional Gaussians
- b) Compute the most probable class for the query vector, under the Naive Bayes assumption, using 1-dimensional Gaussians to model the likelihoods
- **5.** Assuming training examples with m Boolean features.
 - a) How many parameters do you have to estimate considering features are Boolean and:
 - i. no assumptions about how the data is distributed
 - ii. naive Bayes assumption
 - b) How many parameters do you have to estimate considering features are numeric and:
 - iii. multivariate Gaussian assumption
 - iv. naive Bayes with Gaussian assumption

Programming quests

Resources: Classification and Evaluation notebooks available at the course's webpage

- **6.** Reuse the **sklearn** code from last lab where we learnt a decision tree in the *breast.w* data:
 - a) apply the naïve Bayes classifier with default parameters
 - b) compare the accuracy of both classifiers using a 10-fold cross-validation