Ficha 3- Ex. 4 Para cada alínea do Ex 3. diga, justificando, se a transformação linear é injetiva, sobrejetiva, bijetiva.

(a)
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (x-3y,0)$

Do Ex. 3 sabemos que dim $\operatorname{Ker}(T)=1\neq 0$. Logo T não é injetiva e já podemos dizer que não é bijetiva.

Também sabemos (do Ex. 3) que $\dim \operatorname{Im}(T) = 1$. Como $\dim(\mathbb{R}^2) = 2$ e $\dim \operatorname{Im}(T) < 2$, concluimos que T não é sobrejetiva.

Nota: usando o Teorema da dimensão, a alinea correspondente do Ex 3 pode ser resolvida com os seguintes passos:

- dim Ker(T) = 1, com base (3, 1), como fizemos na resolução do Ex 3.
- Pelo teorema da dimensão, vem dim $\operatorname{Im}(T) = \dim \mathbb{R}^2 \dim \operatorname{Ker}(T) = 1$.
- Como $\text{Im}(T) = \langle T(1,0), T(0,1) \rangle$, $\dim \text{Im}(T) = 1$ e T(1,0) = (1,0) é um vetor linearmente independente $(\neq \vec{0})$ de Im(T) podemos concluir que este vetor forma uma base de Im(T).

(b)
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (x+y,2x)$

- Ker $(T) = \{(0,0)\}$, de dimensão 0. Logo T é injetiva
- dim $\operatorname{Im}(T) = 2 = \dim \mathbb{R}^2$. Logo T é sobrejetiva.

Como é injetiva e sobrejetiva, concluímos que T é bijetiva.

Alternativamente, podemos dizer que T é bijetiva porque os espaços de partida e chegada têm a mesma dimensão e T é injetiva.

(c)
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

 $(x,y) \longmapsto (x+y,2y,0)$

- $Ker(T) = \{(0,0)\},$ de dimensão 0. Logo T é injetiva.
- dim $\operatorname{Im}(T) = 2 < \dim \mathbb{R}^3$. Logo T não é sobrejetiva nem bijetiva.

$$\begin{array}{cccc} \text{(d)} & T: & \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ & & (x,y,z) & \longmapsto & (x-2y+z,y-2z) \end{array}$$

- dim Ker(T) = 1. Logo T não é injetiva e portanto não é bijetiva.
- dim $\operatorname{Im}(T) = 2 = \dim \mathbb{R}^2$. Logo T é sobrejetiva.

Ficha
3-Ex. 8 Seja $T:\mathbb{R}^n \to \mathbb{R}^p$ uma transformação linear e seja

$$C = A + \langle v_1, \cdots, v_k \rangle$$
 $(A, v_1, \cdots, v_k \in \mathbb{R}^n)$

um subespaço afim de \mathbb{R}^n . Mostre que a imagem de \mathcal{C} pela transformação T é o subespaço afim de \mathbb{R}^p dado por

$$T(\mathcal{C}) = T(A) + \langle T(v_1), \cdots, T(v_k) \rangle.$$

Tem-se

$$T(\mathcal{C}) = \{T(\mathbf{x}) : \mathbf{x} \in \mathcal{C}\}$$

$$= \{T(A + \alpha_1 v_1 + \dots + \alpha_k v_k) : \alpha_1, \dots, \alpha_k \in \mathbb{R}\}$$

$$= \{T(A) + \alpha_1 T(v_1) + \dots + \alpha_k T(v_k) : \alpha_1, \dots, \alpha_k \in \mathbb{R}\} \quad \text{(por linearidade)}$$

$$= T(A) + \langle T(v_1), \dots, T(v_k) \rangle.$$

Ficha3-Ex. 9 Usando o exercício anterior, determine e represente graficamente a imagem das seguintes retas de \mathbb{R}^2

$$\mathcal{R}_1 = \langle (1,2) \rangle$$
 $\mathcal{R}_2 = (0,1) + \langle (1,2) \rangle$

por cada uma das seguintes transformações lineares.

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \to (x, -y)$$

$$T(\mathcal{R}_1) = \langle T(1,2) \rangle = \langle (1,-2) \rangle$$
 $T(\mathcal{R}_2) = T(0,1) + \langle T(1,2) \rangle = (0,-1) + \langle (1,-2) \rangle$

(b)
$$T: \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \to (2x - y, 0)$$

$$T(\mathcal{R}_1) = \{(0,0)\}$$
 $T(\mathcal{R}_2) = \{(-1,0)\}$

Representação gráfica ao cuidado do leitor.

Ficha 3 Ex. 10

Seja $T:V\to W$ uma transformação linear e sejam $v_1,\cdots,v_k\in V$ vetores linearmente independentes. Mostre que, se T é injetiva, então $T(v_1),\cdots,T(v_k)$ são linearmente independentes.

Sejam $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ tais que

$$\alpha_1 T(v_1) + \dots + \alpha_k T(v_k) = 0_W.$$

Como T é linear, temos

$$T(\alpha_1 v_1 + \dots + \alpha_k v_k) = 0_W = T(0_V).$$

Como T é injetiva, a linha anterior implica que

$$\alpha_1 v_1 + \dots + \alpha_k v_k = 0_V.$$

Como v_1, \cdots, v_k são linearmente independentes, podemos concluir que

$$\alpha_1 = \dots = \alpha_k = 0$$

o que significa que $T(v_1), \dots, T(v_k)$ são linearmente independentes.

Ficha 4 Ex. 6(b)

Uma matriz quadrada $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ é dita simétrica se $A^t = A$ e anti-simétrica se $A^t = -A$.

(b) Mostre que o conjunto das matrizes simétricas de ordem 2×2 é um subespaço vectorial de $\mathcal{M}_{2\times 2}(\mathbb{R})$ e determine a sua dimensão.

Denota-se por W o conjunto das matrizes simétricas de ordem 2×2 , isto é

$$W = \{ A \in \mathcal{M}_{2 \times 2}(\mathbb{R}) : A^t = A \}.$$

Vamos verificar que W é um s.e.v de $\mathcal{M}_{2\times 2}(\mathbb{R})$.

• O vetor nulo de $\mathcal{M}_{2\times 2}(\mathbb{R})$, isto é a matriz nula de ordem 2×2 , pertence a W pois

$$\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]^t = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]$$

• Sejam $A, B \in W$. Tem-se $A^t = A$ e $B^t = B$. Logo, pelas propriedades da transposta, tem-se

$$(A+B)^t = A^t + B^t = A + B$$

o que significa que $A + B \in W$.

• Sejam $A \in W$ e $\alpha \in \mathbb{R}$. Tem-se $A^t = A$. Logo, pelas propriedades da transposta, tem-se

$$(\alpha A)^t = \alpha(A^t) = \alpha A$$

o que significa que $\alpha A \in W$.

Sendo estas três condições verificadas podemos dizer que W é um s.e.v de $\mathcal{M}_{2\times 2}(\mathbb{R})$.

Para determinar a dimensão de W precisamos de terminar uma sua base.

Seja
$$A = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R})$$
. Tem-se

$$A \in W \Leftrightarrow A = A^t \Leftrightarrow \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Leftrightarrow b = c$$

Disso podemos concluir que

$$W = \{ A \in \left[\begin{array}{cc} a & b \\ b & d \end{array} \right] : a, b, d \in \mathbb{R} \}$$

Escrevendo

$$\left[\begin{array}{cc} a & b \\ b & d \end{array}\right] = a \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right] + b \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] + d \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right]$$

vemos que as três matrizes simétricas $E=\begin{bmatrix}1&0\\0&0\end{bmatrix},\,F=\begin{bmatrix}0&1\\1&0\end{bmatrix}$ e G=

 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ são geradores de W. Para podermos concluir que E, F, e G formam uma base de W ainda precisamos de verificar que são linearmente independentes. Sejam $\alpha, \beta, \gamma \in \mathbb{R}$ tais que $\alpha E + \beta F + \gamma G = 0_{2\times 2}$ (onde $0_{2\times 2}$ representa a matriz nula de ordem 2×2). Tem-se

$$\alpha \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] + \beta \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] + \gamma \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right] \Leftrightarrow \left[\begin{array}{cc} \alpha & \beta \\ \beta & \gamma \end{array} \right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$$

donde podemos concluir que $\alpha=\beta=\gamma=0$. Logo $E,\,F,\,$ e G são linearmente independentes.

Em conclusão, E, F, e G formam uma base de W pelo que a dimensão de W é 3.