

<1	110>	Hough McNe Dill Lode	d, St ghtor eill, lon, es, M	ever n, Ra Pat Davi licha	n aymor crici in C. ael L	a D.											ובח (פטט/2900
<1	20>	Fusi	on P	rote	ins	of M	iycob	acte	rium	ı Tub	ercu	losi	s				
<1	30>	0140	58-0	0904	1US									•			
					2												
					8												
					5								<u>~</u>				
<16	50>	202											<i>;</i>				
<17	70>	Pate	ntIn	Ver	. 2.	L											
<21 <21 <21	12> 1 .2> 1 .3> 1	2220 DNA Mycol	pacte	erium	n tuk	perci	ılosi	is									
<22	2>	(1)		(0)													
act Thr	gat Asp	cgc	gtg Val	Ser	vai	Gly	aac Asn	ttg Leu	Arg	Ile	gct Ala	cgg Arg	gtg Val	Leu	Tyr	/	48
gac Asp	ttc Phe	gtg Val	aac Asn 20	Asn	gaa Glu	gcc Ala	ctg Leu	Pro	Gly	Thr	Asp	Ile	Asp	Pro	gac Asp		96
agc Ser	ttc Phe	tgg Trp 35	gcg Ala	ggc	gtc Val	gac Asp	aar Lys 40	gtc Val	gtc Val	gcc Ala	gac Asp	ctg Leu 45	acc Thr	ccg Pro	cag Gln		144
aac Asn	caa Gln 50	gct Ala	ctg Leu	ttg Leu	aac Asn	gcc Ala 55	cgc Arg	gac Asp	gag Glu	ctg Leu	cag Gln 60	gcg Ala	cag Gln	atc Ile	gac Asp		192
aag Lys 65	tgg Trp	cac His	cgg Arg	cgt Arg	cgg Arg 70	gtg Val	atc Ile	gag Glu	ccc Pro	atc Ile 75	gac Asp	atg Met	gat Asp	gcc Ala	tac Tyr 80	:	240
cgc Arg	cag Gln	ttc Phe	ctc Leu	acc Thr 85	gag Glu	atc Ile	ggc Gly	tac Tyr	ctg Leu 90	ctt Leu	ccc Pro	gaa Glu	cct Pro	gat Asp 95	gac Asp	2	288
	<pre><1 <1 <1 <1 <1 <1 <1 <21 <21 <22 <22 <22</pre>	<120> <130> <140> <141> <150> <151> <150> <151> <150> <151> <210> <2210 <2212 <213> If act gat Thr Asp I gac ttc Asp Phe agc ttc Ser Phe aac caa Asn Gln 50 aag tgg Lys Trp 65 cgc cag cag	Reed House McNe Dill Lode Cori (120) Fusi (130) 0140 (140) US (141) 2000 (150) US (151) 1999 (150) US (150)	Reed, St Houghtor McNeill, Dillon, Lodes, M Corixa C <120> Fusion F <130> 014058-0 <140> US 09/68 <141> 2000-10- <150> US 60/15 <151> 1999-10- <150> US 60/15 <151> 1999-10- <160> 202 <170> PatentIn <210> 1 <211> 2220 <212> DNA <213> Mycobacte <220> <221> CDS <222> (1)(222 <223> Mtb81 <400> 1 act gat cgc gtg Thr Asp Arg Val 1 gac ttc gtg aac Asp Phe Val Asn 20 agc ttc tgg gcg Ser Phe Trp Ala 35 aac caa gct ctg Asn Gln Ala Leu 50 aag tgg cac cgg Lys Trp His Arg 65 cgc cag ttc ctc	Reed, Stever Houghton, RamcNeill, Path Dillon, Davi Lodes, Michal Corixa Corports (120) Fusion Protes (130) 014058-00904 (140) US 09/688,67 (141) 2000-10-10 (150) US 60/158,33 (151) 1999-10-07 (150) US 60/158,42 (151) 1999-10-07 (160) 202 (170) PatentIn Verically (21) 2220 (212) DNA (213) Mycobacterium (220) (222) (1)(2220) (223) Mtb81 (400) 1 act gat cgc gtg tcg Thr Asp Arg Val Ser 1 5 gac ttc gtg aac aat Asp Phe Val Asn Asn 20 agc ttc tgg gcg ggc Ser Phe Trp Ala Gly 35 aac caa gct ctg ttg Asn Gln Ala Leu Leu 50 aag tgg cac cgg cgt Lys Trp His Arg Arg 65 acgc cag ttc ctc acc Arg Gln Phe Leu Thr	McNeill, Patricis Dillon, Davin C. Lodes, Michael I Corixa Corporati <120> Fusion Proteins <130> 014058-009041US <140> US 09/688,672 <141> 2000-10-10 <150> US 60/158,338 <151> 1999-10-07 <150> US 60/158,425 <151> 1999-10-07 <160> 202 <170> PatentIn Ver. 2.3 <210> 1 <211> 2220 <212> DNA <213> Mycobacterium tub <220> <221> CDS <222> (1)(2220) <223> Mtb81 <400> 1 act gat cgc gtg tcg gtg Thr Asp Arg Val Ser Val 1 5 gac ttc gtg aac aat gaa Asp Phe Val Asn Asn Glu 20 agc ttc tgg gcg ggc gtc Ser Phe Trp Ala Gly Val 35 aac caa gct ctg ttg aac Asn Gln Ala Leu Leu Asn 50 aag tgg cac cgg cgt cgg Lys Trp His Arg Arg Arg 65 70 cgc cag ttc ctc acc gag Arg Gln Phe Leu Thr Glu	Reed, Steven Houghton, Raymond L McNeill, Patricia D Dillon, Davin C. Lodes, Michael L. Corixa Corporation <120> Fusion Proteins of M <130> 014058-009041US <140> US 09/688,672 <141> 2000-10-10 <150> US 60/158,338 <151> 1999-10-07 <150> US 60/158,425 <151> 1999-10-07 <160> 202 <170> PatentIn Ver. 2.1 <210> 1 <211> 2220 <212> DNA <213> Mycobacterium tubercu <220> <221> CDS <222> (1)(2220) <223> Mtb81 <400> 1 act gat cgc gtg tcg gtg ggc Thr Asp Arg Val Ser Val Gly 1	Reed, Steven Houghton, Raymond L. McNeill, Patricia D. Dillon, Davin C. Lodes, Michael L. Corixa Corporation <120> Fusion Proteins of Mycob <130> 014058-009041US <140> US 09/688,672 <141> 2000-10-10 <150> US 60/158,338 <151> 1999-10-07 <150> US 60/158,425 <151> 1999-10-07 <160> 202 <170> PatentIn Ver. 2.1 <210> 1 <211> 2220 <212> DNA <213> Mycobacterium tuberculosi <220> <221> CDS <222> (1)(2220) <223> Mtb81 <400> 1 act gat cgc gtg tcg gtg ggc acc Thr Asp Arg Val Ser Val Gly Asn 1 5 gac ttc gtg aac aat gaa gcc ctg Asp Phe Val Asn Asn Glu Ala Leu 20 agc ttc tgg gcg ggc gtc gac aar Ser Phe Trp Ala Gly Val Asp Lys 35 aac caa gct ctg ttg aac gcc cgc Asn Gln Ala Leu Leu Asn Ala Arg 50 aag tgg cac cgg cgt cgg gtg gtg atc Lys Trp His Arg Arg Arg Val Ile 65 cgc cag ttc ctc acc gag atc ggc Arg Gln Phe Leu Thr Glu Ile Gly	Reed, Steven Houghton, Raymond L. McNeill, Patricia D. Dillon, Davin C. Lodes, Michael L. Corixa Corporation <120> Fusion Proteins of Mycobacte <130> 014058-009041US <140> US 09/688,672 <141> 2000-10-10 <150> US 60/158,338 <151> 1999-10-07 <150> US 60/158,425 <151> 1999-10-07 <160> 202 <170> PatentIn Ver. 2.1 <210> 1 <211> 2220 <212> DNA <213> Mycobacterium tuberculosis <220> <222> (1) (2220) <223> Mtb81 <400> 1 act gat cgc gtg tcg gtg ggc aac ttg Thr Asp Arg Val Ser Val Gly Asn Leu 1 5 gac ttc gtg aac aat gaa gcc ctg cct Asp Phe Val Asn Asn Glu Ala Leu Pro 20 25 agc ttc tgg gcg ggc gtc gac aar gtc Ser Phe Trp Ala Gly Val Asp Lys Val 35 aac caa gct ctg ttg aac gcc cgc gac Asn Gln Ala Leu Leu Asn Ala Arg Asp 50 aag tgg cac cgg cgt cgg gtg atc gag Lys Trp His Arg Arg Arg Val Ile Glu 70 cgc cag ttc ctc acc gag atc ggc tac Arg Gln Phe Leu Thr Glu Ile Gly Tyr	Reed, Steven Houghton, Raymond L. McNeill, Patricia D. Dillon, Davin C. Lodes, Michael L. Corixa Corporation <120> Fusion Proteins of Mycobacterium <130> 014058-009041US <140> US 09/688,672 <141> 2000-10-10 <150> US 60/158,338 <151> 1999-10-07 <150> US 60/158,425 <151> 1999-10-07 <160> 202 <170> PatentIn Ver. 2.1 <210> 1 <211> 2220 <212> DNA <213> Mycobacterium tuberculosis <220> <221> CDS <222> (1)(2220) <222> (1)(2220) <223> Mtb81 <400> 1 act gat cgc gtg tcg gtg ggc aac ttg cgc Thr Asp Arg Val Ser Val Gly Asn Leu Arg 1 gac ttc gtg aac aat gaa gcc ctg cct ggc Asp Phe Val Asn Asn Glu Ala Leu Pro Gly 20 agc ttc tgg gcg gcg gtc gac aar gtc gtc Ser Phe Trp Ala Gly Val Asp Lys Val Val 35 aac caa gct ctg ttg aac gcc cgc gac gag Asn Gln Ala Leu Leu Asn Ala Arg Asp Glu 50 aag tgg cac cgg cgt cgg gtg gtg atc gac ccc Lys Trp His Arg Arg Arg Val Ile Glu Pro 65 acg cag ttc ctc acc gag atc ggc tac ctg Arg Gln Phe Leu Thr Glu Ile Gly Tyr Leu	Reed, Steven Houghton, Raymond L. McNeill, Patricia D. Dillon, Davin C. Lodes, Michael L. Corixa Corporation <120> Fusion Proteins of Mycobacterium Tut. <130> 014058-009041US <140> US 09/688,672 <141> 2000-10-10 <150> US 60/158,338 <151> 1999-10-07 <150> US 60/158,425 <151> 1999-10-07 <160> 202 <170> PatentIn Ver. 2.1 <210> 1 <211> 2220 <212> DNA <213> Mycobacterium tuberculosis <220> <221> CDS <221> CDS <222> (1)(2220) <223> Mtb81 <400> 1 act gat cgc gtg tcg gtg ggc aac ttg cgc atc Thr Asp Arg Val Ser Val Gly Asn Leu Arg Ile 1 5 gac ttc gtg aac aat gaa gcc ctg ctg ggc acc Asp Phe Val Asn Asn Glu Ala Leu Pro Gly Thr 20 agc ttc tgg ggg ggc gtc gac aar gtc gtc gcc Ser Phe Trp Ala Gly Val Asp Lys Val Val Ala 35 aac caa gct ctg ttg aac gcc cgc gac gag ctg Asn Gln Ala Leu Leu Asn Ala Arg Asp Glu Leu 50 aag tgg cac cgg cgt cgg gtg atc gac catc Asn Gln Ala Leu Leu Asn Ala Arg Asp Glu Leu 50 aag tgg cac cgg cgt cgg gtg atc gac catc Asn Gln Ala Leu Leu Asn Ala Arg Asp Glu Leu 50 aag tgg cac cgg cgt cgg gtg atc gac catc Asn Gln Ala Leu Leu Asn Ala Arg Asp Glu Leu 50 aag tgg cac cgg cgt cgg gtg atc gac catc Lys Trp His Arg Arg Arg Val Ile Glu Pro Ile 65 70 acg cag ttc ctc acc gag atc ggc tac ctg ctt Arg Gln Phe Leu Thr Glu Ile Gly Tyr Leu Leu	Reed, Steven Houghton, Raymond L. McNeill, Patricia D. Dillon, Davin C. Lodes, Michael L. Corixa Corporation <120> Fusion Proteins of Mycobacterium Tubercu <130> 014058-009041US <140> US 09/688,672 <141> 2000-10-10 <150> US 60/158,338 <151> 1999-10-07 <150> US 60/158,425 <151> 1999-10-07 <160> 202 <170> PatentIn Ver. 2.1 <210> 1 <211> 2220 <212> DNA <213> Mycobacterium tuberculosis <220> <221> CDS <221> CDS <221> CDS <222> (1)(2220) <223> Mtb81 <400> 1 act gat cgc gtg tcg gtg ggc aac ttg cgc atc gct Thr Asp Arg Val Ser Val Gly Asn Leu Arg Ile Ala 1	Reed, Steven Houghton, Raymond L. McNeill, Patricia D. Dillon, Davin C. Lodes, Michael L. Corixa Corporation <120> Fusion Proteins of Mycobacterium Tuberculosi <130> 014058-009041US <140> US 09/688,672 <141> 2000-10-10 <150> US 60/158,338 <151> 1999-10-07 <150> US 60/158,425 <151> 1999-10-07 <160> 202 <170> PatentIn Ver. 2.1 <210> 1	Reed, Steven Houghton, Raymond L. McNeill, Patricia D. Dillon, Davin C. Lodes, Michael L. Corixa Corporation <120> Fusion Proteins of Mycobacterium Tuberculosis <130> 014058-009041US <140> US 09/688,672 <141> 2000-10-10 <150> US 60/158,338 <151> 1999-10-07 <150> US 60/158,425 <151> 1999-10-07 <160> 202 <170> PatentIn Ver. 2.1 <210> 1 <211> 2220 <212: DNA <221> DNA <221> DNA <222) Mb81 <400> 1 act gat cgc gtg tcg gtg ggc aac ttg cgc atc gct cgg gtg Thr Asp Arg Val Ser Val Gly Asn Leu Arg Ile Ala Arg Val 1 gac ttc gtg aac aat gaa gcc ctg ctg ggc acc gat cgc acc Asp Phe Val Asn Asn Glu Ala Leu Pro Gly Thr Asp Ile Asp 20 agc ttc tgg gcg ggc gtc gac aar gtc gtc gcc gac gac Ser Phe Trp Ala Gly Val Asp Lys Val Val Ala Asp Leu Thr 35 aac caa gct ctg ttg aac gcc cgc gac gac ctg cag gcc cag Asn Gln Ala Leu Leu Asn Ala Arg Asp Glu Leu Gln Ala Gln 50 aag tgg cac cgg cgt cgg gtg atc gac cac gat atc gac Asp Phe Sap Arg Val Ile Glu Pro Ile Asp Met Asp 10 agc cac ggc ccc gcg cgg gtc gta ccc ctc ccc gac ccc Arg Gln Phe Leu Thr Glu Ile Gly Tyr Leu Leu Pro Glu Pro	Reed, Steven Houghton, Raymond L. McNeill, Patricia D. Dillon, Davin C. Lodes, Michael L. Corixa Corporation <120> Fusion Proteins of Mycobacterium Tuberculosis <130> 014058-009041US <140> US 09/688,672 <141> 2000-10-10 <150> US 60/158,338 <151> 1999-10-07 <150> US 60/158,425 <151> 1999-10-07 <160> 202 <170> PatentIn Ver. 2.1 <210> 1 <211> 2220 <212> DNA <213> Mycobacterium tuberculosis <220> <221> DNA <213> Mycobacterium tuberculosis <100	Reed, Steven Houghton, Raymond L. McNeill, Patricia D. Dillon, Davin C. Lodes, Michael L. Corixa Corporation <120> Fusion Proteins of Mycobacterium Tuberculosis <130> 014058-009041US <140> US 09/688,672 <141> 2000-10-10 <150> US 60/158,338 <151> 1999-10-07 <150> US 60/158,425 <151> 1999-10-07 <160> 202 <170> PatentIn Ver. 2.1 <210> 1 <211> 2220 <212> DNA -213> Mycobacterium tuberculosis <220> <221> CDS <222> (1) (2220) <222> (212) DNA -223> Mth81 <440> 1 act gat cgc gtg tcg gtg ggc aac ttg cgc atc gct cgg gtg ctc tac Thr Asp Arg Val Ser Val Gly Asn Leu Arg Ile Ala Arg Val Leu Tyr 1	Reed, Steven Houghton, Raymond L. McNeill, Patricia D. Dillon, Davin C. Lodes, Michael L. Corixa Corporation <120> Fusion Proteins of Mycobacterium Tuberculosis <130> 014058-009041US 140> US 09/688,672 <141> 2000-10-10 <150> US 60/158,338 <151> 1999-10-07 <150> US 60/158,425 <151> 1999-10-07 <160> 202 <170> Patentin Ver. 2.1 <211> 2210

ttc Phe	acc Thr	atc Ile	acc Thr 100	Thr	tcc Ser	ggt Gly	gtc Val	gac Asp 105	gct Ala	gag Glu	atc Ile	acc Thr	acg Thr 110	Thr	gcc Ala	336
										gcg Ala					aac Asn	384
gcg Ala	gcc Ala 130	aac Asn	gct Ala	cgc Arg	tgg Trp	ggc Gly 135	tcc Ser	ctc Leu	tac Tyr	gac Asp	gcc Ala 140	ttg Leu	tat Tyr	ggc	acc Thr	432
gat Asp 145	gtc Val	atc Ile	ccc Pro	gag Glu	acc Thr 150	gac Asp	ggc Gly	gcc Ala	gaa Glu	aaa Lys 155	ggc	ccc Pro	acg Thr	tac Tyr	aac Asn 160	480
										gcc Ala						528
										ggc Gly						576
aca Thr	gtg Val	cag Gln 195	gat Asp	ggc Gly	cag Gln	ctc Leu	gtg Val 200	gtt Val	gcc Ala	ttg Leu	ccg Pro	gat Asp 205	aag Lys	tcc Ser	acc Thr	624
ggc Gly	ctg Leu 210	gcc Ala	aac Asn	ccc Pro	ggc Gly	cag Gln 215	ttc Phe	gcc Ala	ggc Gly	tac Tyr	acc Thr 220	ggc Gly	gca Ala	gcc Ala	gag Glu	672
										ggt Gly 235						720
ctg Leu	atc Ile	gat Asp	ccg Pro	gag Glu 245	tcg Ser	cag Gln	gtc Val	ggc Gly	acc Thr 250	acc Thr	gac Asp	cgg Arg	gcc Ala	ggc Gly 255	gtc Val	768
										acg Thr						816
gac Asp	tcg Ser	gtg Val 275	gcc Ala	gcc Ala	gtg Val	gac Asp	gcc Ala 280	gcc Ala	gac Asp	aag Lys	gtg Val	ctg Leu 285	ggt Gly	tat Tyr	cgg Arg	864
aac Asn	tgg Trp 290	ctc Leu	ggc Gly	ctg Leu	aac Asn	aag Lys 295	ggc Gly	gac Asp	ctg Leu	gca Ala	gca Ala 300	gcg Ala	gta Val	gac Asp	aag Lys	912
										agg Arg 315						960
gca Ala								Leu								1008

gto Val	cgo Arg	c aad g Asr	gto Val 340	l Gly	cac His	ttg Leu	atg Met	acc Thr 345	Asn	gad Asp	gco Ala	ato lle	gto Val	Asp	act Thr	1056
gac Asp	ggc Gly	ago Ser 355	Gli	g gtg 1 Val	ttc Phe	gaa Glu	ggc Gly 360	Ile	atg Met	gat Asp	gco Ala	cta Leu 365	Phe	acc Thr	ggc	1104
ctg Leu	ato Ile 370	: Ala	ato Ile	cac His	ggg	cta Leu 375	Lys	gcc Ala	agc Ser	gac	gto Val	Asn	ggg	ccg Pro	ctg Leu	1152
atc Ile 385	Asn	ago Ser	cgc Arg	acc Thr	ggc Gly 390	tcc Ser	atc Ile	tac Tyr	atc Ile	gtc Val 395	Lys	ccg Pro	aag Lys	atg Met	cac His 400	1200
ggt Gly	ccg Pro	gcc Ala	gag Glu	gtg Val 405	Ala	ttt Phe	acc Thr	tgc Cys	gaa Glu 410	ctg Leu	ttc Phe	agc Ser	cgg Arg	gtt Val 415	Glu	1248
gat Asp	gtg Val	ctg Leu	999 Gly 420	ttg Leu	ccg Pro	caa Gln	aac Asn	acc Thr 425	atg Met	aag Lys	atc Ile	ggc Gly	atc Ile 430	atg Met	gac Asp	1296
gag Glu	gaa Glu	cgc Arg 435	Arg	acc Thr	acg Thr	gtc Val	aac Asn 440	ctc Leu	aag Lys	gcg Ala	tgc Cys	atc Ile 445	aaa Lys	gct Ala	gcc Ala	1344
gcg Ala	gac Asp 450	cgc Arg	gtg Val	gtg Val	ttc Phe	atc Ile 455	aac Asn	acc Thr	gly aaa	ttc Phe	ctg Leu 460	gac Asp	cgc Arg	acc Thr	ggc Gly	1392
gat Asp 465	gaa Glu	atc Ile	cac His	acc Thr	tcg Ser 470	atg Met	gag Glu	gcc Ala	ggc Gly	ccg Pro 475	atg Met	gtg Val	cgc Arg	aag Lys	ggc Gly 480	1440
acc Thr	atg Met	aag Lys	agc Ser	cag Gln 485	ccg Pro	tgg Trp	atc Ile	ttg Leu	gcc Ala 490	tac Tyr	gag Glu	gac Asp	cac His	aac Asn 495	gtc Val	1488
gat Asp	gcc Ala	ggc Gly	ctg Leu 500	gcc Ala	gcc Ala	gly ggg	ttc Phe	agc Ser 505	ggc Gly	cga Arg	gcc Ala	cag Gln	gtc Val 510	ggc Gly	aag Lys	1536
ggc Gly	atg Met	tgg Trp 515	aca Thr	atg Met	acc Thr	gag Glu	ctg Leu 520	atg Met	gcc Ala	gac Asp	atg Met	gtc Val 525	gag Glu	aca Thr	aaa Lys	1584
atc Ile	gcc Ala 530	cag Gln	ccg Pro	cgc Arg	gcc Ala	999 61y 535	gcc Ala	agc Ser	acc Thr	gcc Ala	tgg Trp 540	gtt Val	ccc Pro	tct Ser	ccc Pro	1632
act Thr 545	gcg Ala	gcc Ala	acc Thr	ctg Leu	cat His 550	gcg Ala	ctg Leu	cac His	Tyr	cac His 555	cag Gln	gtc Val	gac Asp	gtc Val	gcc Ala 560	1680
gcg Ala	gtg Val	caa Gln	caa Gln	gga Gly 565	ctg Leu	gcg Ala	ggg Gly	Lys	cgt Arg 570	cgc Arg	gcc Ala	acc Thr	atc Ile	gaa Glu 575	caa Gln	1728

tto Lei	g ctg 1 Leu	acc Thr	att Ile 580	Pro	ctg Leu	gcc	aag Lys	gaa Glu 585	Let	g gcc ı Ala	tgg Trp	gct Ala	Pro	Asp	gag Glu	1776
ato Ile	cgc Arg	gaa Glu 595	Glu	gtc Val	gac Asp	aac Asn	aac Asn 600	Cys	caa Gln	tcc Ser	ato Ile	ctc Leu 605	ggc	tac Tyr	gtg Val	1824
gtt Val	cgc Arg 610	tgg Trp	gtt Val	gat Asp	caa Gln	ggt Gly 615	gtc Val	ggc Gly	tgc Cys	tcg Ser	aag Lys 620	gtg Val	ccc Pro	gac	atc Ile	1872
cac His 625	Asp	gtc Val	gcg Ala	ctc Leu	atg Met 630	gag Glu	gac Asp	cgg Arg	gcc Ala	acg Thr 635	ctg Leu	cga Arg	atc Ile	tcc Ser	agc Ser 640	1920
caa Gln	ttg Leu	ttg Leu	gcc Ala	aac Asn 645	tgg Trp	ctg Leu	cgc Arg	cac His	ggt Gly 650	gtg Val	atc Ile	acc Thr	agc Ser	gcg Ala 655	gat Asp	1968
gtg Val	cgg Arg	gcc Ala	agc Ser 660	ttg Leu	gag Glu	cgg Arg	atg Met	gcg Ala 665	ccg Pro	ttg Leu	gtc Val	gat Asp	cga Arg 670	caa Gln	aac Asn	2016
gcg Ala	ggc Gly	gac Asp 675	gtg Val	gca Ala	tac Tyr	cga Arg	ccg Pro 680	atg Met	gca Ala	ccc Pro	aac Asn	ttc Phe 685	gac Asp	gac Asp	agt Ser	2064
atc Ile	gcc Ala 690	ttc Phe	ctg Leu	gcc Ala	gcg Ala	cag Gln 695	gag Glu	ctg Leu	atc Ile	ttg Leu	tcc Ser 700	gly aaa	gcc Ala	cag Gln	cag Gln	2112
ccc Pro 705	aac Asn	ggc Gly	tac Tyr	acc Thr	gag Glu 710	ccg Pro	atc Ile	ctg Leu	cac His	cga Arg 715	cgt Arg	cgt Arg	cgg Arg	gag Glu	ttt Phe 720	2160
aag Lys	gcc Ala	cgg Arg	Ala	gct Ala 725	gag Glu	aag Lys	ccg Pro	gcc Ala	cca Pro 730	tcg Ser	gac Asp	agg Arg	gcc Ala	ggt Gly 735	gac Asp	2208
	gcg Ala															2220
<212	> 2 > 74 > PR' > My	Т	cter	ium	tube	rcul	osis									
<400 Thr		Arg V	Val s	Ser '	Val (∃ly /	Asn 1	Leu i	Arg 10	Ile i	Ala i	Arg V	Val :	Leu 15	Tyr	
Asp	Phe V	/al /	Asn A	Asn (3lu <i>A</i>	Ala 1	Leu 1	Pro (25	Gly '	Thr 1	Asp :	Ile A	Asp 1	Pro .	Asp	
Ser	Phe 1	Trp <i>I</i> 35	Ala (Gly V	/al /	Asp I	ys V 40	/al V	/al /	Ala <i>A</i>	Asp I	eu 1 45	Thr 1	Pro (Gln	

- Asn Gln Ala Leu Leu Asn Ala Arg Asp Glu Leu Gln Ala Gln Ile Asp 50 55 60
- Lys Trp His Arg Arg Val Ile Glu Pro Ile Asp Met Asp Ala Tyr
 65 70 75 80
- Arg Gln Phe Leu Thr Glu Ile Gly Tyr Leu Leu Pro Glu Pro Asp Asp 85 90 95
- Phe Thr Ile Thr Thr Ser Gly Val Asp Ala Glu Ile Thr Thr Ala
 100 105 110
- Gly Pro Gln Leu Val Val Pro Val Leu Asn Ala Arg Phe Ala Leu Asn 115 120 125
- Ala Ala Asn Ala Arg Trp Gly Ser Leu Tyr Asp Ala Leu Tyr Gly Thr 130 135 140
- Asp Val Ile Pro Glu Thr Asp Gly Ala Glu Lys Gly Pro Thr Tyr Asn 145 150 155 160
- Lys Val Arg Gly Asp Lys Val Ile Ala Tyr Ala Arg Lys Phe Leu Asp 165 170 175
- Asp Ser Val Pro Leu Ser Ser Gly Ser Phe Gly Asp Ala Thr Gly Phe 180 185 190
- Thr Val Gln Asp Gly Gln Leu Val Val Ala Leu Pro Asp Lys Ser Thr 195 200 205
- Gly Leu Ala Asn Pro Gly Gln Phe Ala Gly Tyr Thr Gly Ala Ala Glu 210 215 220
- Ser Pro Thr Ser Val Leu Leu Ile Asn His Gly Leu His Ile Glu Ile 225 230 235 240
- Leu Ile Asp Pro Glu Ser Gln Val Gly Thr Thr Asp Arg Ala Gly Val 245 250 255
- Lys Asp Val Ile Leu Glu Ser Ala Ile Thr Thr Ile Met Asp Phe Glu 260 265 270
- Asp Ser Val Ala Ala Val Asp Ala Ala Asp Lys Val Leu Gly Tyr Arg 275 280 285
- Asn Trp Leu Gly Leu Asn Lys Gly Asp Leu Ala Ala Ala Val Asp Lys 290 295 300
- Asp Gly Thr Ala Phe Leu Arg Val Leu Asn Arg Asp Arg Asn Tyr Thr 305 310 315 320
- Ala Pro Gly Gly Gln Phe Thr Leu Pro Gly Arg Ser Leu Met Phe 325 330 335
- Val Arg Asn Val Gly His Leu Met Thr Asn Asp Ala Ile Val Asp Thr 340 345 350
- Asp Gly Ser Glu Val Phe Glu Gly Ile Met Asp Ala Leu Phe Thr Gly 355 360 365

Leu Ile Ala Ile His Gly Leu Lys Ala Ser Asp Val Asn Gly Pro Leu 375 Ile Asn Ser Arg Thr Gly Ser Ile Tyr Ile Val Lys Pro Lys Met His 395 Gly Pro Ala Glu Val Ala Phe Thr Cys Glu Leu Phe Ser Arg Val Glu 405 Asp Val Leu Gly Leu Pro Gln Asn Thr Met Lys Ile Gly Ile Met Asp 425 Glu Glu Arg Arg Thr Thr Val Asn Leu Lys Ala Cys Ile Lys Ala Ala 440 Ala Asp Arg Val Val Phe Ile Asn Thr Gly Phe Leu Asp Arg Thr Gly 455 Asp Glu Ile His Thr Ser Met Glu Ala Gly Pro Met Val Arg Lys Gly 470 Thr Met Lys Ser Gln Pro Trp Ile Leu Ala Tyr Glu Asp His Asn Val 490 Asp Ala Gly Leu Ala Ala Gly Phe Ser Gly Arg Ala Gln Val Gly Lys , 500 505 Gly Met Trp Thr Met Thr Glu Leu Met Ala Asp Met Val Glu Thr Lys 520 Ile Ala Gln Pro Arg Ala Gly Ala Ser Thr Ala Trp Val Pro Ser Pro 530 535 Thr Ala Ala Thr Leu His Ala Leu His Tyr His Gln Val Asp Val Ala 550 Ala Val Gln Gln Gly Leu Ala Gly Lys Arg Arg Ala Thr Ile Glu Gln 565 Leu Leu Thr Ile Pro Leu Ala Lys Glu Leu Ala Trp Ala Pro Asp Glu Ile Arg Glu Glu Val Asp Asn Asn Cys Gln Ser Ile Leu Gly Tyr Val Val Arg Trp Val Asp Gln Gly Val Gly Cys Ser Lys Val Pro Asp Ile His Asp Val Ala Leu Met Glu Asp Arg Ala Thr Leu Arg Ile Ser Ser Gln Leu Leu Ala Asn Trp Leu Arg His Gly Val Ile Thr Ser Ala Asp Val Arg Ala Ser Leu Glu Arg Met Ala Pro Leu Val Asp Arg Gln Asn 665 670 Ala Gly Asp Val Ala Tyr Arg Pro Met Ala Pro Asn Phe Asp Asp Ser 680 685

Ile Ala Phe Leu Ala Ala Gln Glu Leu Ile Leu Ser Gly Ala Gln Gln Pro Asn Gly Tyr Thr Glu Pro Ile Leu His Arg Arg Arg Glu Phe 710 Lys Ala Arg Ala Ala Glu Lys Pro Ala Pro Ser Asp Arg Ala Gly Asp Asp Ala Ala Arg <210> 3 <211> 1278 <212> DNA <213> Mycobacterium tuberculosis <220> <221> CDS <222> (1)..(1272) <223> Mo2 <400> 3 gtg cag aag tac ggc gga tcc tcg gtg gcc gac gcc gaa cgg att cgc 48 Val Gln Lys Tyr Gly Gly Ser Ser Val Ala Asp Ala Glu Arg Ile Arg cgc gtc gcc gaa cgc atc gtc gcc acc aag aag caa ggc aat gac gtc 96 Arg Val Ala Glu Arg Ile Val Ala Thr Lys Lys Gln Gly Asn Asp Val gtc gtc gtc tct gcc atg ggg gat acc acc gac gac ctg ctg gat 144 Val Val Val Ser Ala Met Gly Asp Thr Thr Asp Asp Leu Leu Asp 40 ctg gct cag cag gtg tgc ccg gcg ccg cct cgg gag ctg gac atg 192 Leu Ala Gln Gln Val Cys Pro Ala Pro Pro Pro Arg Glu Leu Asp Met 55 ctg ctt acc gcc ggt gaa cgc atc tcg aat gcg ttg gtg gcc atg gcc 240 Leu Leu Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu Val Ala Met Ala atc gag tcg ctc ggc gcg cat gcc cgg tcg ttc acc ggt tcg cag gcc 288 Ile Glu Ser Leu Gly Ala His Ala Arg Ser Phe Thr Gly Ser Gln Ala ggg gtg atc acc acc ggc acc cac ggc aac gcc aag atc atc gac gtc 336 Gly Val Ile Thr Thr Gly Thr His Gly Asn Ala Lys Ile Ile Asp Val 105 acg ccg ggg cgg ctg caa acc gcc ctt gag gag ggg cgg gtc gtt ttg 384 Thr Pro Gly Arg Leu Gln Thr Ala Leu Glu Glu Gly Arg Val Val Leu 120 gtg gcc gga ttc caa ggg gtc agc cag gac acc aag gat gtc acg acg 432 Val Ala Gly Phe Gln Gly Val Ser Gln Asp Thr Lys Asp Val Thr Thr 135

ttg Leu 145	ı Gly	cgo Arg	ggo g Gly	ggo Gly	tcg Sei 150	Asp	aco Thi	acc Thi	gco Ala	gte a Val	l Ala	c ato a Met	g gc	c gcc a Ala	gcg Ala 160	480
ctg Leu	ggt Gly	gcc Ala	gat Asp	gto Val	. Суз	gag Glu	g ato	tac Tyr	acc Thr	: Asp	gtg Val	g gac L Asp	gg Gly	c ato Y Ile 175	ttc Phe	528
agc Ser	gcc Ala	gac Asp	e ccg Pro 180	Arg	ato Ile	gtg Val	cgc Arg	aac Asn 185	Ala	c cga a Arg	a aag g Lys	g cto Leu	gad Asp 190	Thr	gtg Val	576
acc Thr	ttc Phe	gag Glu 195	Glu	atg Met	ctc Leu	gag Glu	atg Met 200	Ala	gcc Ala	tgo Cys	ggc Gly	gcc Ala 205	Lys	g gtg s Val	ctg Leu	624
atg Met	ctg Leu 210	cgc Arg	tgc Cys	gtg Val	gaa Glu	tac Tyr 215	gct Ala	cgc Arg	cgc Arg	cat His	aat Asn 220	Ile	ccc	g gtg Val	cac His	672
gtc Val 225	cgg Arg	tcg Ser	tcg Ser	tac Tyr	tcg Ser 230	gac Asp	aga Arg	ccg Pro	ggc Gly	acc Thr 235	Val	gtt Val	gto Val	gga Gly	tcg Ser 240	720
atc Ile	aag Lys	gac Asp	gta Val	ccc Pro 245	atg Met	gaa Glu	gac Asp	ccc Pro	atc Ile 250	Leu	acc Thr	gga Gly	gtc Val	gcg Ala 255	cac His	768
gac Asp	cgc Arg	agc Ser	gag Glu 260	gcc Ala	aag Lys	gtg Val	acc Thr	atc Ile 265	gtc Val	gj aaa	ctg Leu	ccc Pro	gac Asp 270	atc Ile	ccc Pro	816
Gly aaa	tat Tyr	gcg Ala 275	gcc Ala	aag Lys	gtg Val	ttt Phe	agg Arg 280	gcg Ala	gtg Val	gcc Ala	aga Arg	cgc Arg 285	cga Arg	cgt Arg	caa Gln	864
cat His	cga Arg 290	cat His	ggt Gly	gct Ala	gca Ala	gaa Glu 295	cgt Arg	ctc Leu	caa Gln	ggt Gly	cga Arg 300	gga Gly	cgg Arg	caa Gln	gac Asp	912
cga Arg 305	cat His	cac His	ctt Leu	cac His	ctg Leu 310	ctc Leu	ccg Pro	cag Gln	acg Thr	tcg Ser 315	ggc Gly	ccg Pro	ccg Pro	ccg Pro	tgg Trp 320	960
aaa Lys	aac Asn	tgg Trp	act Thr	cgc Arg 325	tca Ser	gaa Glu	acg Thr	aga Arg	tcg Ser 330	gct Ala	tct Ser	aca Thr	cag Gln	ctg Leu 335	ctg Leu	1008
tac Tyr	gac Asp	gac Asp	cac His 340	atc Ile	ggc Gly	aag Lys	gta Val	tcg Ser 345	ctg Leu	atc Ile	ggt Gly	gcc Ala	ggc Gly 350	atg Met	cgc Arg	1056
agc Ser	His	ccc Pro 355	ggg Gly	gtc Val	acc Thr	Ala	acg Thr 360	ttc Phe	tgt Cys	gag Glu	gcg Ala	ctg Leu 365	gcg Ala	gcg Ala	gtg Val	1104
Gly ggg	gtc Val 370	aac Asn	atc Ile	gag Glu	Leu	atc Ile 375	tcc Ser	acc Thr	tcg Ser	gaa Glu	gat Asp 380	cag Gln	aga Arg	tct Ser	cgg Arg	1152

tgt tgt gcc gcg aca ccg aac tgg aca agg ccg tgg tcg cgc tgc atg Cys Cys Ala Ala Thr Pro Asn Trp Thr Arg Pro Trp Ser Arg Cys Met	1200
385 390 395 400	
aag cgt tcg ggc tcg gcg gcg acg agg agg cca cgg tgt acg cgg gga Lys Arg Ser Gly Ser Ala Ala Thr Arg Arg Pro Arg Cys Thr Arg Gly 405 410 415	1248
cgg gac ggt aga tgg gcc tgt caa tagtga Arg Asp Gly Arg Trp Ala Cys Gln 420	1278
<210> 4 <211> 424 <212> PRT <213> Mycobacterium tuberculosis	
<400> 4 Val Gln Lys Tyr Gly Gly Ser Ser Val Ala Asp Ala Glu Arg Ile Arg 1 5 10 15	
Arg Val Ala Glu Arg Ile Val Ala Thr Lys Lys Gln Gly Asn Asp Val 20 25 30	
Val Val Val Ser Ala Met Gly Asp Thr Thr Asp Asp Leu Leu Asp 35 40 45	
Leu Ala Gln Gln Val Cys Pro Ala Pro Pro Pro Arg Glu Leu Asp Met 50 55 60	
Leu Leu Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu Val Ala Met Ala 65 70 75 80	
Ile Glu Ser Leu Gly Ala His Ala Arg Ser Phe Thr Gly Ser Gln Ala 85 90 95	
Gly Val Ile Thr Thr Gly Thr His Gly Asn Ala Lys Ile Ile Asp Val	
Thr Pro Gly Arg Leu Gln Thr Ala Leu Glu Glu Gly Arg Val Val Leu 115 120 125	
Val Ala Gly Phe Gln Gly Val Ser Gln Asp Thr Lys Asp Val Thr Thr 130 135 140	
Leu Gly Arg Gly Gly Ser Asp Thr Thr Ala Val Ala Met Ala Ala Ala 145 150 155 160	
Leu Gly Ala Asp Val Cys Glu Ile Tyr Thr Asp Val Asp Gly Ile Phe 165 170 175	
Ser Ala Asp Pro Arg Ile Val Arg Asn Ala Arg Lys Leu Asp Thr Val 180 185 190	
Thr Phe Glu Glu Met Leu Glu Met Ala Ala Cys Gly Ala Lys Val Leu 195 200 205	
Met Leu Arg Cys Val Glu Tyr Ala Arg Arg His Asn Ile Pro Val His 210 215 220	

Val Arg Ser Ser Tyr Ser Asp Arg Pro Gly Thr Val Val Val Gly Ser 225 230 Ile Lys Asp Val Pro Met Glu Asp Pro Ile Leu Thr Gly Val Ala His 250 Asp Arg Ser Glu Ala Lys Val Thr Ile Val Gly Leu Pro Asp Ile Pro 260 Gly Tyr Ala Ala Lys Val Phe Arg Ala Val Ala Arg Arg Arg Gln 280 His Arg His Gly Ala Ala Glu Arg Leu Gln Gly Arg Gly Arg Gln Asp 295 Arg His His Leu His Leu Leu Pro Gln Thr Ser Gly Pro Pro Pro Trp 305 310 315 Lys Asn Trp Thr Arg Ser Glu Thr Arg Ser Ala Ser Thr Gln Leu Leu 325 Tyr Asp Asp His Ile Gly Lys Val Ser Leu Ile Gly Ala Gly Met Arg Ser His Pro Gly Val Thr Ala Thr Phe Cys Glu Ala Leu Ala Val Gly Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Asp Gln Arg Ser Arg Cys Cys Ala Ala Thr Pro Asn Trp Thr Arg Pro Trp Ser Arg Cys Met 385 390 400 Lys Arg Ser Gly Ser Ala Ala Thr Arg Arg Pro Arg Cys Thr Arg Gly 410 415 Arg Asp Gly Arg Trp Ala Cys Gln 420 <210> 5 <211> 542 <212> DNA <213> Mycobacterium tuberculosis <220> <223> TbRa3 <220> <221> modified base <222> (1)..(542) <223> n = g, a, c or t<400> 5 gaatteggea egagaggtga tegacateat egggaceage eccacateet gggaacagge 60 ggcggcggag gcggtccagc gggcgcggga tagcgtcgat gacatccgcg tcgctcgggt 120 cattgagcag gacatggccg tggacagcgc cggcaagatc acctaccgca tcaagctcga 180 agtgtcgttc aagatgaggc cggcgcaacc gcgctagcac gggccggcga gcaagacgca 240 aaatcgcacg gtttgcggtt gattcgtgcg attttgtgtc tgctcgccga ggcctaccag 300 gegeggeeca ggteegetg etgeegtate eaggegtgea tegegattee ggeggeeaeg 360

ccggagttaa tgcttcgcgt cgacccgaac tgggcgatcc gccggngagc tgatcgatga 420

```
agcgtccgta ggcggcggtg ctgaccggct ctgcctgcgc cctcagtgcg gccagcgagc 540
 <210> 6
 <211> 66
 <212> PRT
 <213> Mycobacterium tuberculosis
 <220>
 <223> TbRa3
 <400> 6
Val Ile Asp Ile Ile Gly Thr Ser Pro Thr Ser Trp Glu Gln Ala Ala
Ala Glu Ala Val Gln Arg Ala Arg Asp Ser Val Asp Asp Ile Arg Val
                                  25
Ala Arg Val Ile Glu Gln Asp Met Ala Val Asp Ser Ala Gly Lys Ile
Thr Tyr Arg Ile Lys Leu Glu Val Ser Phe Lys Met Arg Pro Ala Gln
                         55
Pro Arg
 65
<210> 7
<211> 1993
<212> DNA
<213> Mycobacterium tuberculosis
<220>
<223> 38kD
<400> 7
tgttcttcga cggcaggctg gtggaggaag ggcccaccga acagctgttc tcctcgccga 60
agcatgcgga aaccgcccga tacgtcgccg gactgtcggg ggacgtcaag gacgccaagc 120
gcggaaattg aagagcacag aaaggtatgg cgtgaaaatt cgtttgcata cgctgttggc 180
cgtgttgacc gctgcgccgc tgctgctagc agcggcgggc tgtggctcga aaccaccgag 240
cggttcgcct gaaacgggcg ccggcgcgg tactgtcgcg actacccccg cgtcgtcgcc 300
ggtgacgttg gcggagaccg gtagcacgct gctctacccg ctgttcaacc tgtggggtcc 360
ggcctttcac gagaggtatc cgaacgtcac gatcaccgct cagggcaccg gttctggtgc 420
cgggatcgcg caggccgccg ccgggacggt caacattggg gcctccgacg cctatctgtc 480
ggaaggtgat atggccgcgc acaaggggct gatgaacatc gcgctagcca tctccgctca 540
gcaggtcaac tacaacctgc ccggagtgag cgagcacctc aagctgaacg gaaaagtcct 600
ggcggccatg taccagggca ccatcaaaac ctgggacgac ccgcagatcg ctgcgctcaa 660
ccccggcgtg aacctgcccg gcaccgcggt agttccgctg caccgctccg acgggtccgg 720
tgacacette ttgtteacce agtacetgte caagcaagat eeegaggget ggggcaagte 780
gcccggcttc ggcaccaccg tcgacttccc ggcggtgccg ggtgcgctgg gtgagaacgg 840
caacggcggc atggtgaccg gttgcgccga gacaccgggc tgcgtggcct atatcggcat 900
cagetteete gaccaggeca gteaacgggg acteggegag geccaactag geaatagete 960
tggcaatttc ttgttgcccg acgcgcaaag cattcaggcc gcggcggctg gcttcgcatc 1020
gaaaaccccg gcgaaccagg cgatttcgat gatcgacggg cccgccccgg acggctaccc 1080
gatcatcaac tacgagtacg ccatcgtcaa caaccggcaa aaggacgccg ccaccgcgca 1140
gaccttgcag gcatttctgc actgggcgat caccgacggc aacaaggcct cgttcctcga 1200
ccaggttcat ttccagccgc tgccgcccgc ggtggtgaag ttgtctgacg cgttgatcgc 1260
gacgatttcc agctagcctc gttgaccacc acgcgacagc aacctccgtc gggccatcgg 1320
```

ccgtggccag cccgtcgatg cccgagttgc ccgaggaaac gtgctgccag gccggtagga 480

gctgctttgc ggagcatgct ggcccgtgcc ggtgaagtcg gccgcgctgg cccggccatc 1380 cggtggttgg gtgggatagg tgcggtgatc ccgctgcttg cgctggtctt ggtgctggtg 1440 gtgctggtca tcgaggcgat gggtgcgatc aggctcaacg ggttgcattt cttcaccgcc 1500 accgaatgga atccaggcaa cacctacggc gaaaccgttg tcaccgacgc gtcgccatc 1560 cggtcggcgc ctactacggg gcgttgccgc tgatcgtcgg gacgctggcg acctcggcaa 1620 tcgccctgat catcgcggtg ccggtctctg taggagcggc gctggtgatc ggtggaacggc 1680 tgccgaaacg gttggccga gctgtgggaa tagtcctgga gttgcccca 1740 cgcgtggtct cggtttgtgg ggggcaatga cgttcgggcc gttcatcgc gacacaccg ggggcaacg ggggcaatg ttggtgtcc ggtcggtgtt ggcggtgatc ggcggcgacc 1860 cgggcaacgg ggaggcatg ttggtgtccg gtctggtgtt ggcggtgatg gtcgttccca 1920 tatcgcgaa ttc

<210> 8 <211> 374

<212> PRT

<213> Mycobacterium tuberculosis

<220>

<223> 38kD

<400> 8

Met Lys Ile Arg Leu His Thr Leu Leu Ala Val Leu Thr Ala Ala Pro 1 5 10 15

Leu Leu Leu Ala Ala Gly Cys Gly Ser Lys Pro Pro Ser Gly Ser 20 25 30

Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro Ala Ser 35 40 45

Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr Pro Leu
50 60

Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn Val Thr 65 70 75 80

Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln Ala Ala 85 90 95

Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser Glu Gly
100 105 110

Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser 115 120 125

Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His Leu Lys 130 135 140

Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr Ile Lys Thr 145 150 155 160

Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly Val Asn Leu Pro 165 170 175

Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr 180 185 190

Phe Leu Phe Thr Gln Tyr Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly 195 200 205

```
Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val Pro Gly
 Ala Leu Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys Ala Glu
                                         235
 Thr Pro Gly Cys Val Ala Tyr Ile Gly Ile Ser Phe Leu Asp Gln Ala
                                     250
 Ser Gln Arg Gly Leu Gly Glu Ala Gln Leu Gly Asn Ser Ser Gly Asn
                                 265
 Phe Leu Leu Pro Asp Ala Gln Ser Ile Gln Ala Ala Ala Gly Phe
                             280
 Ala Ser Lys Thr Pro Ala Asn Gln Ala Ile Ser Met Ile Asp Gly Pro
                         295
 Ala Pro Asp Gly Tyr Pro Ile Ile Asn Tyr Glu Tyr Ala Ile Val Asn
                     310
Asn Arg Gln Lys Asp Ala Ala Thr Ala Gln Thr Leu Gln Ala Phe Leu
                 325
His Trp Ala Ile Thr Asp Gly Asn Lys Ala Ser Phe Leu Asp Gln Val
His Phe Gln Pro Leu Pro Pro Ala Val Val Lys Leu Ser Asp Ala Leu
                             360
Ile Ala Thr Ile Ser Ser
    370
<210> 9
<211> 327
<212> DNA
<213> Mycobacterium tuberculosis
<220>
<223> Mtb11 (Tb38-1)
<400> 9
cggcacgaga gaccgatgcc gctaccctcg cgcaggaggc aggtaatttc gagcggatct 60
ccggcgacct gaaaacccag atcgaccagg tggagtcgac ggcaggttcg ttgcagggcc 120
agtggcgcgg cgcggggg acggccgccc aggccgcggt ggtgcgcttc caagaagcag 180
ccaataagca gaagcaggaa ctcgacgaga tctcgacgaa tattcgtcag gccggcgtcc 240
aatactcgag ggccgacgag gagcagcagc aggcgctgtc ctcgcaaatg ggcttctgac 300
ccgctaatac gaaaagaaac ggagcaa
                                                                   327
<210> 10
<211> 95
<212> PRT
<213> Mycobacterium tuberculosis
<220>
<223> Mtb11 (Tb38-1)
```

```
<400> 10
 Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly Asn Phe Glu Arg Ile
 Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala Gly
 Ser Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln Ala
 Ala Val Val Arg Phe Gln Glu Ala Ala Asn Lys Gln Lys Gln Glu Leu
 Asp Glu Ile Ser Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg
 Ala Asp Glu Glu Gln Gln Ala Leu Ser Ser Gln Met Gly Phe
 <210> 11
 <211> 702
 <212> DNA
 <213> Mycobacterium tuberculosis
<220>
<223> TbH4
<220>
<221> modified base
<222> (1)..(702)
<223> n = g, a, c or t
<400> 11
cggcacgagg atcggtaccc cgcggcatcg gcagctgccg attcgccggg tttccccacc 60
cgaggaaagc cgctaccaga tggcgctgcc gaagtagggc gatccgttcg cgatgccggc 120
atgaacgggc ggcatcaaat tagtgcagga acctttcagt ttagcgacga taatggctat 180
agcactaagg aggatgatcc gatatgacgc agtcgcagac cgtgacggtg gatcagcaag 240
agattttgaa cagggccaac gaggtggagg ccccgatggc ggacccaccg actgatgtcc 300
ccatcacacc gtgcgaactc acggnggnta aaaacgccgc ccaacagntg gtnttgtccg 360
ccgacaacat gcgggaatac ctggcggccg gtgccaaaga gcggcagcgt ctggcgacct 420
cgctgcgcaa cgcggccaag gngtatggcg aggttgatga ggaggctgcg accgcgctgg 480
acaacgacgg cgaaggaact gtgcaggcag aatcggccgg ggccgtcgga ggggacagtt 540
cggccgaact aaccgatacg ccgagggtgg ccacggccgg tgaacccaac ttcatggatc 600
tcaaagaagc ggcaaggaag ctcgaaacgg gcgaccaagg cgcatcgctc gcgcactgng 660
gggatgggtg gaacacttnc accetgacge tgcaaggega eg
                                                                   702
<210> 12
<211> 286
<212> PRT
<213> Mycobacterium tuberculosis
<220>
<223> TbH4
<220>
<221> MOD RES
<222> (1)..(286)
<223> Xaa = any amino acid
```

<400> 12

Gly Asp Ser Phe Trp Ala Ala Ala Asp Gln Met Ala Arg Gly Phe Val 1 5 10 15

Leu Gly Ala Thr Ala Gly Arg Thr Thr Leu Thr Gly Glu Gly Leu Gln
20 25 30

His Ala Asp Gly His Ser Leu Leu Leu Asp Ala Thr Asn Pro Ala Val 35 40 45

Val Ala Tyr Asp Pro Ala Phe Ala Tyr Glu Ile Gly Tyr Ile Xaa Glu 50 60

Ser Gly Leu Ala Arg Met Cys Gly Glu Asn Pro Glu Asn Ile Phe Phe 65 70 75 80

Tyr Ile Thr Val Tyr Asn Glu Pro Tyr Val Gln Pro Pro Glu Pro Glu 85 90 95

Asn Phe Asp Pro Glu Gly Val Leu Gly Gly Ile Tyr Arg Tyr His Ala 100 105 110

Ala Thr Glu Gln Arg Thr Asn Lys Xaa Gln Ile Leu Ala Ser Gly Val 115 120 125

Ala Met Pro Ala Ala Leu Arg Ala Ala Gln Met Leu Ala Ala Glu Trp 130 135 140

Asp Val Ala Ala Asp Val Trp Ser Val Thr Ser Trp Gly Glu Leu Asn 145 150 155 160

Arg Asp Gly Val Val Ile Glu Thr Glu Lys Leu Arg His Pro Asp Arg 165 170 175

Pro Ala Gly Val Pro Tyr Val Thr Arg Ala Leu Glu Asn Ala Arg Gly
180 185 190

Pro Val Ile Ala Val Ser Asp Trp Met Arg Ala Val Pro Glu Gln Ile 195 200 205

Arg Pro Trp Val Pro Gly Thr Tyr Leu Thr Leu Gly Thr Asp Gly Phe 210 215 220

Gly Phe Ser Asp Thr Arg Pro Ala Gly Arg Arg Tyr Phe Asn Thr Asp 225 230 235 240

Ala Glu Ser Gln Val Gly Arg Gly Phe Gly Arg Gly Trp Pro Gly Arg 245 250 255

Arg Val Asn Ile Asp Pro Phe Gly Ala Gly Arg Gly Pro Pro Ala Gln 260 265 270

Leu Pro Gly Phe Asp Glu Gly Gly Leu Arg Pro Xaa Lys 275 280 285

<210> 13

<211> 1200

<212> DNA

<213> Mycobacterium tuberculosis

```
caggcatgag cagagcgttc atcatcgatc caacgatcag tgccattgac ggcttgtacg 60
 accttctggg gattggaata cccaaccaag ggggtatcct ttactcctca ctagagtact 120
 tcgaaaaagc cctggaggag ctggcagcag cgtttccggg tgatggctgg ttaggttcgg 180
 ccgcggacaa atacgccggc aaaaaccgca accacgtgaa ttttttccag gaactggcag 240
 acctcgatcg tcagctcatc agcctgatcc acgaccaggc caacgcggtc cagacgaccc 300
 gcgacatcct ggagggcgcc aagaaaggtc tcgagttcgt gcgcccggtg gctgtggacc 360
 tgacctacat cccggtcgtc gggcacgccc tatcggccgc cttccaggcg ccgttttgcg 420
 cgggcgcgat ggccgtagtg ggcggcgcgc ttgcctactt ggtcgtgaaa acgctgatca 480
 acgcgactca actcctcaaa ttgcttgcca aattggcgga gttggtcgcg gccgccattg 540
 cggacatcat ttcggatgtg gcggacatca tcaagggcac cctcggagaa gtgtgggagt 600
 tcatcacaaa cgcgctcaac ggcctgaaag agctttggga caagctcacg gggtgggtga 660
 ccggactgtt ctctcgaggg tggtcgaacc tggagtcctt ctttgcgggc gtccccggct 720
 tgaccggcgc gaccagcggc ttgtcgcaag tgactggctt gttcggtgcg gccggtctgt 780
 ccgcatcgtc gggcttggct cacgcggata gcctggcgag ctcagccagc ttgcccgccc 840
 tggccggcat tgggggcggg tccggttttg ggggcttgcc gagcctggct caggtccatg 900
 ccgcctcaac tcggcaggcg ctacggcccc gagctgatgg cccggtcggc gccgctgccg 960
 agcaggtcgg cgggcagtcg cagctggtct ccgcgcaggg ttcccaaggt atgggcggac 1020
 ccgtaggcat gggcggcatg cacccctctt cgggggcgtc gaaagggacg acgacgaaga 1080
 agtactcgga aggcgcggcg gcgggcactg aagacgccga gcgcgcgcca gtcgaagctg 1140
acgcgggcgg tgggcaaaag gtgctggtac gaaacgtcgt ctaacggcat ggcgagccaa 1200
<210> 14
<211> 392
<212> PRT
<213> Mycobacterium tuberculosis
<220>
<223> HTCC#1 (Mtb40)
<400> 14
Met Ser Arg Ala Phe Ile Ile Asp Pro Thr Ile Ser Ala Ile Asp Gly
                                                          15
Leu Tyr Asp Leu Leu Gly Ile Gly Ile Pro Asn Gln Gly Gly Ile Leu
Tyr Ser Ser Leu Glu Tyr Phe Glu Lys Ala Leu Glu Glu Leu Ala Ala
Ala Phe Pro Gly Asp Gly Trp Leu Gly Ser Ala Ala Asp Lys Tyr Ala
Gly Lys Asn Arg Asn His Val Asn Phe Phe Gln Glu Leu Ala Asp Leu
 65
Asp Arg Gln Leu Ile Ser Leu Ile His Asp Gln Ala Asn Ala Val Gln
Thr Thr Arg Asp Ile Leu Glu Gly Ala Lys Lys Gly Leu Glu Phe Val
            100
                                105
Arg Pro Val Ala Val Asp Leu Thr Tyr Ile Pro Val Val Gly His Ala
Leu Ser Ala Ala Phe Gln Ala Pro Phe Cys Ala Gly Ala Met Ala Val
    130
                                            140
Val Gly Gly Ala Leu Ala Tyr Leu Val Val Lys Thr Leu Ile Asn Ala
145
                                        155
```

<400> 13

```
Thr Gln Leu Leu Lys Leu Ala Lys Leu Ala Glu Leu Val Ala Ala
165 170 175
```

- Ala Ile Ala Asp Ile Ile Ser Asp Val Ala Asp Ile Ile Lys Gly Thr 180 185 190
- Leu Gly Glu Val Trp Glu Phe Ile Thr Asn Ala Leu Asn Gly Leu Lys 195 200 205
- Glu Leu Trp Asp Lys Leu Thr Gly Trp Val Thr Gly Leu Phe Ser Arg 210 215 220
- Gly Trp Ser Asn Leu Glu Ser Phe Phe Ala Gly Val Pro Gly Leu Thr 225 230 235 240
- Gly Ala Thr Ser Gly Leu Ser Gln Val Thr Gly Leu Phe Gly Ala Ala 245 250 255
- Gly Leu Ser Ala Ser Ser Gly Leu Ala His Ala Asp Ser Leu Ala Ser 260 265 270
- Ser Ala Ser Leu Pro Ala Leu Ala Gly Ile Gly Gly Ser Gly Phe 275 280 285
- Gly Gly Leu Pro Ser Leu Ala Gln Val His Ala Ala Ser Thr Arg Gln 290 295 300
- Ala Leu Arg Pro Arg Ala Asp Gly Pro Val Gly Ala Ala Ala Glu Gln 305 310 315 320
- Val Gly Gln Ser Gln Leu Val Ser Ala Gln Gly Ser Gln Gly Met 325 330 335
- Gly Gly Pro Val Gly Met Gly Gly Met His Pro Ser Ser Gly Ala Ser 340 345 350
- Lys Gly Thr Thr Thr Lys Lys Tyr Ser Glu Gly Ala Ala Ala Gly Thr 355 360 365
- Glu Asp Ala Glu Arg Ala Pro Val Glu Ala Asp Ala Gly Gly Gln 370 380
- Lys Val Leu Val Arg Asn Val Val 385 390
- <210> 15
- <211> 726
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence:HTCC#1 (1-232)
- <220>
- <221> CDS
- <222> (1)..(720)

	0> 1															
atg Met 1	His	His	cat His	cac His	His	cac His	ato Met	g ago Ser	aga Arg 10	, Alá	g tto a Phe	ato Elle	ato : Ile	gat Asp 15	cca Pro	48
acg Thr	atc Ile	agt Ser	gcc Ala 20	Ile	gac Asp	ggc Gly	ttg Leu	tac Tyr 25	Asp	ctt Leu	ctg Lev	ggg Gly	att Ile 30	e Gly	ata Ile	96
ccc Pro	aac Asn	caa Gln 35	Gly	ggt Gly	atc Ile	ctt Leu	tac Tyr 40	Ser	tca Ser	cta Leu	ı gagı ı Glu	tac Tyr 45	Phe	gaa Glu	aaa Lys	144
gcc Ala	ctg Leu 50	gag Glu	gag Glu	ctg Leu	gca Ala	gca Ala 55	gcg Ala	ttt Phe	ccg Pro	ggt Gly	gat Asp		tgg Trp	tta Leu	ggt Gly	192
tcg Ser 65	gcc Ala	gcg Ala	gac Asp	aaa Lys	tac Tyr 70	Ala	ggc Gly	aaa Lys	aac Asn	cgc Arg 75	Asn	cac His	gtg Val	aat Asn	ttt Phe 80	240
ttc Phe	cag Gln	gaa Glu	ctg Leu	gca Ala 85	gac Asp	ctc Leu	gat Asp	cgt Arg	cag Gln 90	ctc Leu	atc Ile	agc Ser	ctg Leu	atc Ile 95	cac His	288
gac Asp	cag Gln	gcc Ala	aac Asn 100	gcg Ala	gtc Val	cag Gln	acg Thr	acc Thr 105	cgc Arg	gac Asp	atc Ile	ctg Leu	gag Glu 110	ggc	gcc Ala	336
aag Lys	aaa Lys	ggt Gly 115	ctc Leu	gag Glu	ttc Phe	gtg Val	cgc Arg 120	ccg Pro	gtg Val	gct Ala	gtg Val	gac Asp 125	ctg Leu	acc Thr	tac Tyr	384
Ile	ccg Pro 130	gtc Val	gtc Val	Gly 999	cac His	gcc Ala 135	cta Leu	tcg Ser	gcc Ala	gcc Ala	ttc Phe 140	cag Gln	gcg Ala	ccg Pro	ttt Phe	432
tgc Cys 145	gcg Ala	ggc Gly	gcg Ala	atg Met	gcc Ala 150	gta Val	gtg Val	ggc Gly	ggc Gly	gcg Ala 155	ctt Leu	gcc Ala	tac Tyr	ttg Leu	gtc Val 160	480
gtg Val	aaa Lys	acg Thr	ctg Leu	atc Ile 165	aac Asn	gcg Ala	act Thr	caa Gln	ctc Leu 170	ctc Leu	aaa Lys	ttg Leu	ctt Leu	gcc Ala 175	aaa Lys	528
ttg (gcg Ala	gag Glu	ttg Leu 180	gtc Val	gcg Ala	gcc Ala	gcc Ala	att Ile 185	gcg Ala	gac Asp	atc Ile	att Ile	tcg Ser 190	gat Asp	gtg Val	576
gcg (Ala <i>i</i>	Asp	atc Ile 195	atc Ile	aag Lys	ggc Gly	Ile	ctc Leu 200	gga Gly	gaa Glu	gtg Val	tgg Trp	gag Glu 205	ttc Phe	atc Ile	aca Thr	624
aac q Asn A	gcg Ala 210	ctc Leu	aac Asn	ggc Gly	Leu	aaa Lys 215	gag Glu	ctt Leu	tgg Trp	gac Asp	aag Lys 220	ctc Leu	acg Thr	Gly 999	tgg Trp	672

Va]	Thi	gga Gly	/ Lei	ı Phe	230	Arg	g Gly	g tgg / Trp	g tcg Ser	g aad Asr 235	ı Lei	g gag ı Glı	g tco	c tto	240	
gaa	ttc															
<21 <21	.0> 1 .1> 2 .2> F .3> A	239 PRT	icia	ıl Se	quen	ıce										
<22 <22		escr	ipti	on o	f Ar	tifi	cial	Seq	uenc	e:HT	CC#1	. (1-	232)			
			His	His 5		His	Met	Ser	Arg		Phe	Ile	: Ile	Asp	Pro	
Thr	Ile	Ser	Ala 20		Asp	Gly	Leu	Tyr 25		Leu	Leu	Gly	Ile 30	_	Ile	
Pro	Asn	Gln 35	Gly	Gly	Ile	Leu	Tyr 40		Ser	Leu	Glu	Tyr 45		Glu	Lys	
Ala	Leu 50		Glu	Leu	Ala	Ala 55	Ala	Phe	Pro	Gly	Asp 60	Gly	Trp	Leu	Gly	
Ser 65	Ala	Ala	Asp	Lys	Tyr 70	Ala	Gly	Lys	Asn	Arg 75	Asn	His	Val	Asn	Phe 80	
Phe	Gln	Glu	Leu	Ala 85	Asp	Leu	Asp	Arg	Gln 90	Leu	Ile	Ser	Leu	Ile 95	His	
Asp	Gln	Ala	Asn 100	Ala	Val	Gln	Thr	Thr 105	Arg	Asp	Ile	Leu	Glu 110	Gly	Ala	
Lys	Lys	Gly 115	Leu	Glu	Phe	Val	Arg 120	Pro	Val	Ala	Val	Asp 125	Leu	Thr	Tyr	
Ile	Pro 130	Val	Val	Gly	His	Ala 135	Leu	Ser	Ala	Ala	Phe 140	Gln	Ala	Pro	Phe	
Cys 145	Ala	Gly	Ala	Met	Ala 150	Val	Val	Gly	Gly	Ala 155	Leu	Ala	Tyr	Leu	Val 160	
Val	Lys	Thr	Leu	Ile 165	Asn	Ala	Thr	Gln	Leu 170	Leu	Lys	Leu	Leu	Ala 175	Lys	
Leu	Ala	Glu	Leu 180	Val	Ala	Ala	Ala	Ile 185	Ala	Asp	Ile	Ile	Ser 190	Asp	Val	
Ala	Asp	Ile 195	Ile	Lys	Gly	Ile	Leu 200	Gly	Glu	Val	Trp	Glu 205	Phe	Ile	Thr	
Asn	Ala 210	Leu	Asn	Gly	Leu	Lys 215	Glu	Leu	Trp	Asp	Lys 220	Leu	Thr	Gly	Trp	
Val	Thr	Gly	Leu	Phe	Ser	Arg	Gly	Trp	Ser	Asn	Leu	Glu	Ser	Phe		

```
<210> 17
 <211> 661
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: HTCC#1
       (184 - 392)
<220>
 <221> CDS
 <222> (1)..(651)
<400> 17
atg cat cac cat cac gat gtg gcg gac atc atc aag ggc atc
                                                                   48
Met His His His His His Asp Val Ala Asp Ile Ile Lys Gly Ile
ctc gga gaa gtg tgg gag ttc atc aca aac gcg ctc aac ggc ctg aaa
                                                                   96
Leu Gly Glu Val Trp Glu Phe Ile Thr Asn Ala Leu Asn Gly Leu Lys
gag ctt tgg gac aag ctc acg ggg tgg gtg acc gga ctg ttc tct cga
                                                                   144
Glu Leu Trp Asp Lys Leu Thr Gly Trp Val Thr Gly Leu Phe Ser Arg
                             40
ggg tgg tcg aac ctg gag tcc ttc ttt gcg ggc gtc ccc ggc ttg acc
                                                                   192
Gly Trp Ser Asn Leu Glu Ser Phe Phe Ala Gly Val Pro Gly Leu Thr
ggc gcg acc agc ggc ttg tcg caa gtg act ggc ttg ttc ggt gcg gcc
                                                                   240
Gly Ala Thr Ser Gly Leu Ser Gln Val Thr Gly Leu Phe Gly Ala Ala
                     70
ggt ctg tcc gca tcg tcg ggc ttg gct cac gcg gat agc ctg gcg agc
                                                                   288
Gly Leu Ser Ala Ser Ser Gly Leu Ala His Ala Asp Ser Leu Ala Ser
tca gcc agc ttg ccc gcc ctg gcc ggc att ggg ggc ggg tcc ggt ttt
                                                                  336
Ser Ala Ser Leu Pro Ala Leu Ala Gly Ile Gly Gly Ser Gly Phe
ggg ggc ttg ccg agc ctg gct cag gtc cat gcc gcc tca act cgg cag
                                                                  384
Gly Gly Leu Pro Ser Leu Ala Gln Val His Ala Ala Ser Thr Arg Gln
gcg cta cgg ccc cga gct gat ggc ccg gtc ggc gcc gct gcc gag cag
                                                                  432
Ala Leu Arg Pro Arg Ala Asp Gly Pro Val Gly Ala Ala Ala Glu Gln
gtc ggc ggg cag tcg cag ctg gtc tcc gcg cag ggt tcc caa ggt atg
                                                                  480
Val Gly Gln Ser Gln Leu Val Ser Ala Gln Gly Ser Gln Gly Met
                                        155
ggc gga ccc gta ggc atg ggc ggc atg cac ccc tct tcg ggg gcg tcg
                                                                  528
Gly Gly Pro Val Gly Met Gly Gly Met His Pro Ser Ser Gly Ala Ser
                                    170
aaa ggg acg acg acg aag aag tac tcg gaa ggc gcg gcg ggc act
Lys Gly Thr Thr Lys Lys Tyr Ser Glu Gly Ala Ala Gly Thr
           180
                                185
                                                    190
```

gaa gac gcc gag cgc gcg cca gtc gaa gct gac gcg ggc ggt ggg caa Glu Asp Ala Glu Arg Ala Pro Val Glu Ala Asp Ala Gly Gly Gln 200 aag gtg ctg gta cga aac gtc gtc taa cggcgaattc 661 Lys Val Leu Val Arg Asn Val Val <210> 18 <211> 216 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:HTCC#1 (184 - 392)<400> 18 Met His His His His His Asp Val Ala Asp Ile Ile Lys Gly Ile Leu Gly Glu Val Trp Glu Phe Ile Thr Asn Ala Leu Asn Gly Leu Lys Glu Leu Trp Asp Lys Leu Thr Gly Trp Val Thr Gly Leu Phe Ser Arg Gly Trp Ser Asn Leu Glu Ser Phe Phe Ala Gly Val Pro Gly Leu Thr Gly Ala Thr Ser Gly Leu Ser Gln Val Thr Gly Leu Phe Gly Ala Ala 70 Gly Leu Ser Ala Ser Ser Gly Leu Ala His Ala Asp Ser Leu Ala Ser Ser Ala Ser Leu Pro Ala Leu Ala Gly Ile Gly Gly Ser Gly Phe Gly Gly Leu Pro Ser Leu Ala Gln Val His Ala Ala Ser Thr Arg Gln 115 Ala Leu Arg Pro Arg Ala Asp Gly Pro Val Gly Ala Ala Ala Glu Gln Val Gly Gly Gln Ser Gln Leu Val Ser Ala Gln Gly Ser Gln Gly Met 145 Gly Gly Pro Val Gly Met Gly Gly Met His Pro Ser Ser Gly Ala Ser Lys Gly Thr Thr Lys Lys Tyr Ser Glu Gly Ala Ala Gly Thr Glu Asp Ala Glu Arg Ala Pro Val Glu Ala Asp Ala Gly Gly Gln Lys Val Leu Val Arg Asn Val Val

210

```
<210> 19
 <211> 411
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence:HTCC#1 (1-129)
 <220>
 <221> CDS
 <222> (1)..(411)
 <400> 19
 atg cat cac cat cac cat atg agc aga gcg ttc atc atc gat cca
                                                                    48
 Met His His His His His Met Ser Arg Ala Phe Ile Ile Asp Pro
                                                           15
 acg atc agt gcc att gac ggc ttg tac gac ctt ctg ggg att gga ata
                                                                    96
 Thr Ile Ser Ala Ile Asp Gly Leu Tyr Asp Leu Leu Gly Ile Gly Ile
              20
                                  25
ccc aac caa ggg ggt atc ctt tac tcc tca cta gag tac ttc gaa aaa
                                                                    144
Pro Asn Gln Gly Gly Ile Leu Tyr Ser Ser Leu Glu Tyr Phe Glu Lys
         35
                              40
gcc ctg gag gag ctg gca gca gcg ttt ccg ggt gat ggc tgg tta ggt
                                                                    192
Ala Leu Glu Glu Leu Ala Ala Ala Phe Pro Gly Asp Gly Trp Leu Gly
     50
                          55
tog goo gog gao aaa tao goo ggo aaa aac ogo aac cao gtg aat ttt
                                                                    240
Ser Ala Ala Asp Lys Tyr Ala Gly Lys Asn Arg Asn His Val Asn Phe
 65
                      70
ttc cag gaa ctg gca gac ctc gat cgt cag ctc atc agc ctg atc cac
                                                                    288
Phe Gln Glu Leu Ala Asp Leu Asp Arg Gln Leu Ile Ser Leu Ile His
                 85
gac cag gcc aac gcg gtc cag acg acc cgc gac atc ctg gag ggc gcc
                                                                   336
Asp Gln Ala Asn Ala Val Gln Thr Thr Arg Asp Ile Leu Glu Gly Ala
            100
aag aaa ggt ctc gag ttc gtg cgc ccg gtg gct gtg gac ctg acc tac
                                                                   384
Lys Lys Gly Leu Glu Phe Val Arg Pro Val Ala Val Asp Leu Thr Tyr
        115
                             120
atc ccg gtc gtc ggg cac gcc cta tag
                                                                   411
Ile Pro Val Val Gly His Ala Leu
    130
<210> 20
<211> 136
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:HTCC#1 (1-129)
<400> 20
Met His His His His His Met Ser Arg Ala Phe Ile Ile Asp Pro
                                     10
```

Thr Ile Ser Ala Ile Asp Gly Leu Tyr Asp Leu Leu Gly Ile Gly Ile Pro Asn Gln Gly Gly Ile Leu Tyr Ser Ser Leu Glu Tyr Phe Glu Lys Ala Leu Glu Glu Leu Ala Ala Ala Phe Pro Gly Asp Gly Trp Leu Gly Ser Ala Ala Asp Lys Tyr Ala Gly Lys Asn Arg Asn His Val Asn Phe Phe Gln Glu Leu Ala Asp Leu Asp Arg Gln Leu Ile Ser Leu Ile His Asp Gln Ala Asn Ala Val Gln Thr Thr Arg Asp Ile Leu Glu Gly Ala 105 Lys Lys Gly Leu Glu Phe Val Arg Pro Val Ala Val Asp Leu Thr Tyr 120 Ile Pro Val Val Gly His Ala Leu <210> 21 <211> 1225 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:HTCC#1 (TM-1) <220> <221> CDS <222> (4)..(1215) <400> 21 cat atg cat cac cat cac atg agc aga gcg ttc atc atc gat 48 Met His His His His His Met Ser Arg Ala Phe Ile Ile Asp cca acg atc agt gcc att gac ggc ttg tac gac ctt ctg ggg att gga 96 Pro Thr Ile Ser Ala Ile Asp Gly Leu Tyr Asp Leu Leu Gly Ile Gly ata ccc aac caa ggg ggt atc ctt tac tcc tca cta gag tac ttc gaa 144 Ile Pro Asn Gln Gly Gly Ile Leu Tyr Ser Ser Leu Glu Tyr Phe Glu aaa gcc ctg gag gag ctg gca gca gcg ttt ccg ggt gat ggc tgg tta 192 Lys Ala Leu Glu Glu Leu Ala Ala Phe Pro Gly Asp Gly Trp Leu ggt tcg gcc gcg gac aaa tac gcc ggc aaa aac cgc aac cac gtg aat 240 Gly Ser Ala Ala Asp Lys Tyr Ala Gly Lys Asn Arg Asn His Val Asn ttt ttc cag gaa ctg gca gac ctc gat cgt cag ctc atc agc ctg atc 288 Phe Phe Gln Glu Leu Ala Asp Leu Asp Arg Gln Leu Ile Ser Leu Ile 80 85 90

cac His	c gad s Asp	caç Glr	g gco n Ala	a Asr 100	ı Ala	g gto a Val	cag Gln	aco Thr	g acc Thr 105	Arg	gad g Asp	ato Ile	cto Lei	g gag 1 Glu 110	g ggc 1 Gly	336
gco Ala	aag Lys	g aaa Lys	ggt Gly	/ Leu	gag Glu	j tto Phe	gtg Val	Arg 120	, Pro	gtg Val	gct Ala	gtg Val	gad Asp 125	Let	g acc 1 Thr	384
tac Tyr	ato Ile	Pro	val	gtc Val	ggg Gly	cac His	gcc Ala 135	Leu	tcg Ser	gcc Ala	gcc Ala	tto Phe 140	Glr	geg Ala	ccg Pro	432
ttt Phe	tgc Cys 145	Ala	ggc	gcg Ala	atg Met	gcc Ala 150	Val	gtg Val	ggc Gly	ggc	gcg Ala 155	Leu	aag Lys	ctt Leu	gcc Ala	480
tac Tyr 160	Leu	gtc Val	gtg Val	aaa Lys	acg Thr 165	Leu	atc Ile	aac Asn	gcg Ala	aag Lys 170	Leu	act Thr	caa Gln	ctc Leu	ctc Leu 175	528
aaa Lys	ttg Leu	ctt Leu	gcc Ala	aaa Lys 180	ttg Leu	gcg Ala	gag Glu	ttg Leu	gtc Val 185	gcg Ala	gcc Ala	gcc Ala	att Ile	gcg Ala 190	gac Asp	576
atc Ile	att Ile	tcg Ser	gat Asp 195	gtg Val	gcg Ala	gac Asp	atc Ile	atc Ile 200	aag Lys	ggc Gly	atc Ile	ctc Leu	gga Gly 205	gaa Glu	gtg Val	624
tgg Trp	gag Glu	ttc Phe 210	atc Ile	aca Thr	aac Asn	gcg Ala	ctc Leu 215	aac Asn	ggc Gly	ctg Leu	aaa Lys	gag Glu 220	ctt Leu	tgg Trp	gac Asp	672
aag Lys	ctc Leu 225	acg Thr	ggg ggg	tgg Trp	gtg Val	acc Thr 230	gga Gly	ctg Leu	ttc Phe	tct Ser	cga Arg 235	Gly 333	tgg Trp	tcg Ser	aac Asn	720
ctg Leu 240	gag Glu	tcc Ser	ttc Phe	ttt Phe	gcg Ala 245	ggc Gly	gtc Val	ccc Pro	ggc Gly	ttg Leu 250	acc Thr	ggc Gly	gcg Ala	acc Thr	agc Ser 255	768
ggc Gly	ttg Leu	tcg Ser	caa Gln	gtg Val 260	act Thr	ggc Gly	ttg Leu	ttc Phe	ggt Gly 265	gcg Ala	gcc Ala	ggt Gly	ctg Leu	tcc Ser 270	gca Ala	816
tcg Ser	tcg Ser	ggc Gly	ttg Leu 275	gct Ala	cac His	gcg Ala	gat Asp	agc Ser 280	ctg Leu	gcg Ala	agc Ser	tca Ser	gcc Ala 285	agc Ser	ttg Leu	864
ccc Pro	gcc Ala	ctg Leu 290	gcc Ala	ggc Gly	att Ile	gly ggg	ggc Gly 295	Gly aaa	tcc Ser	ggt Gly	ttt Phe	300 GJA aaa	ggc Gly	ttg Leu	ccg Pro	912
agc Ser	ctg Leu 305	gct Ala	cag Gln	gtc Val	cat His	gcc Ala 310	gcc Ala	tca Ser	act Thr	Arg	cag Gln 315	gcg Ala	cta Leu	cgg Arg	ccc Pro	960
cga Arg 320	gct Ala	gat Asp	ggc Gly	Pro	gtc Val 325	ggc Gly	gcc Ala	gct Ala	Ala	gag Glu 330	cag Gln	gtc Val	ggc Gly	Gly ggg	cag Gln 335	1008

tc <u>g</u> Ser	g caq c Glr	g cte	g gte u Vai	tco l Ser 340	c Ala	g cag Glr	ggt Gly	tco Ser	Caa Gl: 345	ı Gly	ato Met	g ggd	gga Gly	a cco / Pro 350	gta Val	1056
ggc Gly	ato Met	: Gl	gg gg g gg gg g gg gg gg gg gg gg gg gg	/ Met	g cac His	e ccc	tct Ser	Ser 360	Gly	g gcg ⁄ Ala	g tcc a Ser	g aaa Lys	365	/ Thi	g acg Thr	1104
acg Thr	aag Lys	aag Lys 370	з Туз	tcg Ser	gaa Glu	ggc	gcg Ala 375	Ala	gcg Ala	g ggc	act Thr	gaa Glu 380	Asp	gco Ala	gag Glu	1152
cgc Arg	gcg Ala 385	Pro	gto Val	gaa Glu	gct Ala	gac Asp 390	Ala	ggc	ggt Gly	ggg Gly	caa Gln 395	Lys	gtg Val	g ctg Leu	gta Val	1200
	Asn		gto Val		cgg	cgaa	ttc									1225
<21 <21 <21	0 >	03 RT rtif			quen		cial	Seq	uenc	e : HT	CC#1	(TM	-1)			
Met	0> 2 His		His	His	His	His	Met	Ser	Arg	Ala	Phe	Ile	Ile	Asp	Pro	
1				5	Asp				10					15		
			20					25					30			
Pro	Asn	Gln 35	Gly	Gly	Ile	Leu	Tyr 40	Ser	Ser	Leu	Glu	Tyr 45	Phe	Glu	Lys	
Ala	Leu 50	Glu	Glu	Leu	Ala	Ala 55	Ala	Phe	Pro	Gly	Asp 60	Gly	Trp	Leu	Gly	
Ser 65	Ala	Ala	Asp	Lys	Tyr 70	Ala	Gly	Lys	Asn	Arg 75	Asn	His	Val	Asn	Phe 80	
Phe	Gln	Glu	Leu	Ala 85	Asp	Leu	Asp	Arg	Gln 90	Leu	Ile	Ser	Leu	Ile 95	His	
Asp	Gln	Ala	Asn 100	Ala	Val	Gln	Thr	Thr 105	Arg	Asp	Ile	Leu	Glu 110	Gly	Ala	
Lys	Lys	Gly 115	Leu	Glu	Phe	Val	Arg 120	Pro	Val	Ala	Val	Asp 125	Leu	Thr	Tyr	
Ile	Pro 130	Val	Val	Gly	His	Ala 135	Leu	Ser	Ala	Ala	Phe 140	Gln	Ala	Pro	Phe	
Cys 145	Ala	Gly	Ala	Met	Ala 150	Val	Val	Gly	Gly	Ala 155	Leu	Lys	Leu	Ala	Tyr 160	

```
Leu Val Val Lys Thr Leu Ile Asn Ala Lys Leu Thr Gln Leu Leu Lys
165 170 175
```

Leu Leu Ala Lys Leu Ala Glu Leu Val Ala Ala Ala Ile Ala Asp Ile 180 185 190

Ile Ser Asp Val Ala Asp Ile Ile Lys Gly Ile Leu Gly Glu Val Trp 195 200 205

Glu Phe Ile Thr Asn Ala Leu Asn Gly Leu Lys Glu Leu Trp Asp Lys 210 215 220

Leu Thr Gly Trp Val Thr Gly Leu Phe Ser Arg Gly Trp Ser Asn Leu 225 230 235 240

Glu Ser Phe Phe Ala Gly Val Pro Gly Leu Thr Gly Ala Thr Ser Gly 245 250 255

Leu Ser Gln Val Thr Gly Leu Phe Gly Ala Ala Gly Leu Ser Ala Ser 260 265 270

Ser Gly Leu Ala His Ala Asp Ser Leu Ala Ser Ser Ala Ser Leu Pro 275 280 285

Ala Leu Ala Gly Ile Gly Gly Gly Ser Gly Phe Gly Gly Leu Pro Ser 290 295 300

Leu Ala Gln Val His Ala Ala Ser Thr Arg Gln Ala Leu Arg Pro Arg 305 310 315 320

Ala Asp Gly Pro Val Gly Ala Ala Glu Gln Val Gly Gln Ser

Gln Leu Val Ser Ala Gln Gly Ser Gln Gly Met Gly Gly Pro Val Gly 340 345 350

Met Gly Gly Met His Pro Ser Ser Gly Ala Ser Lys Gly Thr Thr Thr 355 360 365

Lys Lys Tyr Ser Glu Gly Ala Ala Ala Gly Thr Glu Asp Ala Glu Arg 370 375 380

Ala Pro Val Glu Ala Asp Ala Gly Gly Gly Gln Lys Val Leu Val Arg 385 390 395 400

Asn Val Val

<210> 23

<211> 1225

<212> DNA. <213> Artificial Sequence

<220~

<223> Description of Artificial Sequence:HTCC#1 (TM-2)

<220>

<221> CDS

<222> (4)..(1215)

< 40	00> 2	:3														
	ato	cat His	cac His	c cat s His	cac His	His	cac His	ato Met	g ago	aga Arg	g Ala	tto Phe	ato E Ile	ato e Ile	gat Asp 15	48
cca Pro	acg Thr	ato Ile	agt Ser	gcc Ala 20	ılle	gac Asp	ggc Gly	ttg Leu	tac Tyr 25	Asp	ctt Leu	ctg Leu	Gly ggg	g att / Ile 30	gga Gly	96
ata Ile	ccc Pro	aac Asn	caa Gln 35	Gly	ggt Gly	atc Ile	ctt Leu	tac Tyr 40	Ser	tca Ser	cta Leu	gag Glu	tac Tyr 45	Phe	gaa Glu	144
aaa Lys	gcc Ala	ctg Leu 50	Glu	gag Glu	ctg Leu	gca Ala	gca Ala 55	Ala	ttt. Phe	ccg Pro	ggt Gly	gat Asp 60	Gly	tgg Trp	tta Leu	192
ggt Gly	tcg Ser 65	gcc Ala	gcg Ala	gac Asp	aaa Lys	tac Tyr 70	gcc Ala	ggc	aaa Lys	aac Asn	cgc Arg 75	aac Asn	cac His	gtg Val	aat Asn	240
ttt Phe 80	ttc Phe	cag Gln	gaa Glu	ctg Leu	gca Ala 85	gac Asp	ctc Leu	gat Asp	cgt Arg	cag Gln 90	ctc Leu	atc Ile	ago Ser	ctg Leu	atc Ile 95	288
cac His	gac Asp	cag Gln	gcc Ala	aac Asn 100	gcg Ala	gtc Val	cag Gln	acg Thr	acc Thr 105	cgc Arg	gac Asp	aag Lys	ctt Leu	atc Ile 110	ctg Leu	336
gag Glu	ggc Gly	gcc Ala	aag Lys 115	aaa Lys	ggt Gly	ctç Leu	gag Glu	ttc Phe 120	gtg Val	cgc Arg	ccg Pro	gtg Val	gct Ala 125	gtg Val	gac Asp	384
ctg Leu	acc Thr	tac Tyr 130	atc Ile	ccg Pro	gtc Val	gtc Val	999 Gly 135	cac His	gcc Ala	cta Leu	tcg Ser	gcc Ala 140	gcc Ala	ttc Phe	cag Gln	432
gcg Ala	ccg Pro 145	ttt Phe	tgc Cys	gcg Ala	ggc Gly	gcg Ala 150	atg Met	gcc Ala	gta Val	gtg Val	ggc Gly 155	ggc Gly	gcg Ala	ctt Leu	gcc Ala	480
tac Tyr 160	ttg Leu	gtc Val	gtg Val	aaa Lys	acg Thr 165	ctg Leu	atc Ile	aac Asn	gcg Ala	act Thr 170	caa Gln	ctc Leu	ctc Leu	aaa Lys	ttg Leu 175	528
ctt Leu	gcc Ala	aaa Lys	ttg Leu	gcg Ala 180	gag Glu	ttg Leu	gtc Val	gcg Ala	gcc Ala 185	gcc Ala	att Ile	gcg Ala	gac Asp	atc Ile 190	att Ile	576
tcg Ser	gat Asp	gtg Val	gcg Ala 195	gac Asp	atc Ile	atc Ile	Lys	ggc Gly 200	atc Ile	ctc Leu	gga Gly	gaa Glu	gtg Val 205	tgg Trp	gag Glu	624
ttc Phe	IIe	aca Thr 210	aac Asn	gcg Ala	aag Lys	Leu	ctc Leu 215	aac Asn	ggc Gly	ctg Leu	Lys	gag Glu 220	ctt Leu	tgg Trp	gac Asp	672
aag (Lys)	ctc Leu 225	acg Thr	ggg Gly	tgg Trp	Val	acc Thr 230	gga Gly	ctg Leu	ttc Phe	Ser	cga Arg 235	ggg Gly	tgg Trp	tcg Ser	aac Asn	720

cto Leu 240	gag Glu	tcc Ser	ttc Phe	ttt Phe	gcg Ala 245	Gly	gtc Val	ccc Pro	ggc Gly	ttg Leu 250	acc Thr	ggc	gcg Ala	acc Thr	agc Ser 255	768
ggc Gly	ttg Leu	tcg Ser	caa Gln	gtg Val 260	act Thr	ggc Gly	ttg Leu	ttc Phe	ggt Gly 265	gcg Ala	gcc Ala	ggt Gly	ctg Leu	tcc Ser 270	gca Ala	816
tcg Ser	tcg Ser	ggc	ttg Leu 275	gct Ala	cac His	gcg Ala	gat Asp	agc Ser 280	ctg Leu	gcg Ala	agc Ser	tca Ser	gcc Ala 285	agc Ser	ttg Leu	864
ccc Pro	gcc Ala	ctg Leu 290	gcc Ala	ggc Gly	att Ile	ggg Gly	ggc Gly 295	ggg Gly	tcc Ser	ggt Gly	ttt Phe	300 GJÀ aaa	ggc Gly	ttg Leu	ccg Pro	912
agc Ser	ctg Leu 305	gct Ala	cag Gln	gtc Val	cat His	gcc Ala 310	gcc Ala	tca Ser	act Thr	cgg Arg	cag Gln 315	gcg Ala	cta Leu	cgg Arg	ccc Pro	960
cga Arg 320	gct Ala	gat Asp	ggc Gly	ccg Pro	gtc Val 325	ggc Gly	gcc Ala	gct Ala	gcc Ala	gag Glu 330	cag Gln	gtc Val	ggc Gly	Gly 333	cag Gln 335	1008
tcg Ser	cag Gln	ctg Leu	gtc Val	tcc Ser 340	gcg Ala	cag Gln	ggt Gly	tcc Ser	caa Gln 345	ggt Gly	atg Met	ggc Gly	gga Gly	ccc Pro 350	gta Val	1056
ggc	atg Met	ggc Gly	ggc Gly 355	atg Met	cac His	ccc Pro	tct Ser	tcg Ser 360	ggg ggg	gcg Ala	tcg Ser	aaa Lys	999 Gly 365	acg Thr	acg Thr	1104
acg Thr	aag Lys	aag Lys 370	tac Tyr	tcg Ser	gaa Glu	ggc Gly	gcg Ala 375	gcg Ala	gcg Ala	ggc Gly	act Thr	gaa Glu 380	gac Asp	gcc Ala	gag Glu	1152
cgc Arg	gcg Ala 385	cca Pro	gtc Val	gaa Glu	gct Ala	gac Asp 390	gcg Ala	ggc Gly	ggt Gly	gly aaa	caa Gln 395	aag Lys	gtg Val	ctg Leu	gta Val	1200
	aac Asn			taa	cggc	gaat	tc									1225
<211 <212	> 24 .> 40 .> PR .> Ar	3 T	cial	Seq	uenc	e										
<220 <223	> > De	scri	ptio	n of	Art	ific	ial :	Sequ	ence	: HTC	C#1	(TM-	2)			
	> 24 His :	His 1	His :	His :	His :	His I	Met :	Ser .	Arg i	Ala i	Phe :	Ile :	Ile /	Asp 1	Pro	
Thr	Ile	Ser i	Ala 20	Ile A	Asp (Gly 1	Leu '	Fyr 2	Asp 1	Leu 1	Leu (Gly :	11e (Gly :	Ile	

- Pro Asn Gln Gly Gly Ile Leu Tyr Ser Ser Leu Glu Tyr Phe Glu Lys 35 40 45
- Ala Leu Glu Glu Leu Ala Ala Ala Phe Pro Gly Asp Gly Trp Leu Gly 50 55 60
- Ser Ala Ala Asp Lys Tyr Ala Gly Lys Asn Arg Asn His Val Asn Phe 65 70 75 80
- Phe Gln Glu Leu Ala Asp Leu Asp Arg Gln Leu Ile Ser Leu Ile His
 85 90 95
- Asp Gln Ala Asn Ala Val Gln Thr Thr Arg Asp Lys Leu Ile Leu Glu 100 105 110
- Gly Ala Lys Lys Gly Leu Glu Phe Val Arg Pro Val Ala Val Asp Leu 115 120 125
- Thr Tyr Ile Pro Val Val Gly His Ala Leu Ser Ala Ala Phe Gln Ala 130 135 140
- Leu Val Val Lys Thr Leu Ile Asn Ala Thr Gln Leu Leu Lys Leu Leu 165 170 175
- Ala Lys Leu Ala Glu Leu Val Ala Ala Ile Ala Asp Ile Ile Ser 180 185 190
- Asp Val Ala Asp Ile Ile Lys Gly Ile Leu Gly Glu Val Trp Glu Phe
 195 200 205
- Ile Thr Asn Ala Lys Leu Leu Asn Gly Leu Lys Glu Leu Trp Asp Lys 210 215 220
- Leu Thr Gly Trp Val Thr Gly Leu Phe Ser Arg Gly Trp Ser Asn Leu 225 230 235 240
- Glu Ser Phe Phe Ala Gly Val Pro Gly Leu Thr Gly Ala Thr Ser Gly 245 250 255
- Leu Ser Gln Val Thr Gly Leu Phe Gly Ala Ala Gly Leu Ser Ala Ser 260 265 270
- Ser Gly Leu Ala His Ala Asp Ser Leu Ala Ser Ser Ala Ser Leu Pro 275 280 285
- Ala Leu Ala Gly Ile Gly Gly Gly Ser Gly Phe Gly Gly Leu Pro Ser 290 295 300
- Leu Ala Gln Val His Ala Ala Ser Thr Arg Gln Ala Leu Arg Pro Arg 305 310 315 320
- Ala Asp Gly Pro Val Gly Ala Ala Ala Glu Gln Val Gly Gln Ser 325 330 335
- Gln Leu Val Ser Ala Gln Gly Ser Gln Gly Met Gly Gly Pro Val Gly 340 345 350

Met Gly Gly Met His Pro Ser Ser Gly Ala Ser Lys Gly Thr Thr 365 Lys Lys Tyr Ser Glu Gly Ala Ala Gly Thr Glu Asp Ala Glu Arg 380 Ala Pro Val Glu Ala Asp Ala Gly Gly Gly Gln Lys Val Leu Val Arg 385 Asn Val Val <210> 25 <211> 3058 <212> DNA <213> Mycobacterium tuberculosis <220> <223> TbH9 (Mtb39A) <400> 25 gatcgtaccc gtgcgagtgc tcgggccgtt tgaggatgga gtgcacgtgt ctttcgtgat 60 ggcataccca gagatgttgg cggcggcggc tgacaccctg cagagcatcg gtgctaccac 120 tgtggctagc aatgccgctg cggcggcccc gacgactggg gtggtgcccc ccgctgccga 180 tgaggtgtcg gcgctgactg cggcgcactt cgccgcacat gcggcgatgt atcagtccgt 240 gagegetegg getgetgega tteatgacea gttegtggee accettgeea geagegeeag 300 ctcgtatgcg gccactgaag tcgccaatgc ggcggcggcc agctaagcca ggaacagtcg 360 gcacgagaaa ccacgagaaa tagggacacg taatggtgga tttcggggcg ttaccaccgg 420 agatcaactc cgcgaggatg tacgccggcc cgggttcggc ctcgctggtg gccgcggctc 480 agatgtggga cagcgtggcg agtgacctgt tttcggccgc gtcggcgttt cagtcggtgg 540 tetggggtet gaeggtgggg tegtggatag gttegtegge gggtetgatg gtggeggegg 600 cctcgccgta tgtggcgtgg atgagcgtca ccgcggggca ggccgagctg accgccgccc 660 aggtccgggt tgctgcggcg gcctacgaga cggcgtatgg gctgacggtg cccccgccgg 720 tgatcgccga gaaccgtgct gaactgatga ttctgatagc gaccaacctc ttggggcaaa 780 acacccegge gategeggte aacgaggeeg aatacggega gatgtgggee caagacgeeg 840 ccgcgatgtt tggctacgcc gcggcgacgg cgacggcgac ggcgacgttg ctgccgttcg 900 aggaggcgcc ggagatgacc agcgcgggtg ggctcctcga gcaggccgcc gcggtcgagg 960 aggecteega caeegeegeg gegaaceagt tgatgaacaa tgtgeeceag gegetgeaac 1020 agctggccca gcccacgcag ggcaccacgc cttcttccaa gctgggtggc ctgtggaaga 1080 cggtctcgcc gcatcggtcg ccgatcagca acatggtgtc gatggccaac aaccacatgt 1140 cgatgaccaa ctcgggtgtg tcgatgacca acaccttgag ctcgatgttg aagggctttg 1200 ctccggcggc ggccgcccag gccgtgcaaa ccgcggcgca aaacggggtc cgggcgatga 1260 gctcgctggg cagctcgctg ggttcttcgg gtctgggcgg tggggtggcc gccaacttgg 1320 gtcgggcggc ctcggtcggt tcgttgtcgg tgccgcaggc ctgggccgcg gccaaccagg 1380 cagtcacccc ggcggcgcgg gcgctgccgc tgaccagcct gaccagcgcc gcggaaagag 1440 ggcccgggca gatgctgggc gggctgccgg tggggcagat gggcgccagg gccggtggtg 1500 ggctcagtgg tgtgctgcgt gttccgccgc gaccctatgt gatgccgcat tctccggcgg 1560 ccggctagga gagggggcgc agactgtcgt tatttgacca gtgatcggcg gtctcggtgt 1620 ttccgcggcc ggctatgaca acagtcaatg tgcatgacaa gttacaggta ttaggtccag 1680 gttcaacaag gagacaggca acatggcctc acgttttatg acggatccgc acgcgatgcg 1740 ggacatggcg ggccgttttg aggtgcacgc ccagacggtg gaggacgagg ctcgccggat 1800 gtgggcgtcc gcgcaaaaca tttccggtgc gggctggagt ggcatggccg aggcgacctc 1860 gctagacacc atggcccaga tgaatcaggc gtttcgcaac atcgtgaaca tgctgcacgg 1920 ggtgcgtgac gggctggttc gcgacgccaa caactacgag cagcaagagc aggcctccca 1980 gcagatcctc agcagctaac gtcagccgct gcagcacaat acttttacaa gcgaaggaga 2040 acaggttcga tgaccatcaa ctatcaattc ggggatgtcg acgctcacgg cgccatgatc 2100 cgcgctcagg ccgggttgct ggaggccgag catcaggcca tcattcgtga tgtgttgacc 2160 gcgagtgact tttggggcgg cgccggttcg gcggcctgcc aggggttcat tacccagttg 2220 ggccgtaact tccaggtgat ctacgagcag gccaacgccc acgggcagaa ggtgcaggct 2280 gccggcaaca acatggcgca aaccgacagc gccgtcggct ccagctgggc ctgacaccag 2340 gccaaggcca gggacgtggt gtacgagtga agttcctcgc gtgatccttc gggtggcagt 2400

```
ctaagtggtc agtgctgggg tgttggtggt ttgctgcttg gcgggttctt cggtgctggt 2460
 cagtgctgct cgggctcggg tgaggacctc gaggcccagg tagcgccgtc cttcgatcca 2520
 ttcgtcgtgt tgttcggcga ggacggctcc gacgaggcgg atgatcgagg cgcggtcggg 2580
 gaagatgeee acgaegtegg tteggegteg tacetetegg ttgaggegtt eetgggggtt 2640
 gttggaccag atttggcgcc agatctgctt ggggaaggcg gtgaacgcca gcaggtcggt 2700
 gcgggcggtg tcgaggtgct cggccaccgc ggggagtttg tcggtcagag cgtcgagtac 2760
 ccgatcatat tgggcaacaa ctgattcggc gtcgggctgg tcgtagatgg agtgcagcag 2820
 ggtgcgcacc cacggccagg agggcttcgg ggtggctgcc atcagattgg ctgcgtagtg 2880
 ggttctgcag cgctgccagg ccgctgcggg cagggtggcg ccgatcgcgg ccaccaggcc 2940
 ggcgtgggcg tcgctggtga ccagcgcgac cccggacagg ccgcgggcga ccaggtcgcg 3000
 gaagaacgcc agccagccgg ccccgtcctc ggcggaggtg acctggatgc ccaggatc
 <210> 26
 <211> 391
 <212> PRT
 <213> Mycobacterium tuberculosis
 <220>
 <223> TbH9 (Mtb39A)
 <400> 26
Met Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met
Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Gln Met Trp
Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser
Val Val Trp Gly Leu Thr Val Gly Ser Trp Ile Gly Ser Ser Ala Gly
Leu Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr
 65
                     70
Ala Gly Gln Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala
Ala Tyr Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro Val Ile Ala
                                                     110
Glu Asn Arg Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly
                            120
Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met
    130
                        135
Trp Ala Gln Asp Ala Ala Ala Met Phe Gly Tyr Ala Ala Ala Thr Ala
                    150
Thr Ala Thr Ala Thr Leu Leu Pro Phe Glu Glu Ala Pro Glu Met Thr
                165
Ser Ala Gly Gly Leu Leu Glu Gln Ala Ala Ala Val Glu Glu Ala Ser
Asp Thr Ala Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu
        195
                            200
                                                205
```

```
Gln Gln Leu Ala Gln Pro Thr Gln Gly Thr Thr Pro Ser Ser Lys Leu
    210
                        215
Gly Gly Leu Trp Lys Thr Val Ser Pro His Arg Ser Pro Ile Ser Asn
                    230
Met Val Ser Met Ala Asn Asn His Met Ser Met Thr Asn Ser Gly Val
Ser Met Thr Asn Thr Leu Ser Ser Met Leu Lys Gly Phe Ala Pro Ala
                                265
Ala Ala Gln Ala Val Gln Thr Ala Ala Gln Asn Gly Val Arg Ala
                            280
Met Ser Ser Leu Gly Ser Ser Leu Gly Ser Ser Gly Leu Gly Gly
                        295
Val Ala Ala Asn Leu Gly Arg Ala Ala Ser Val Gly Ser Leu Ser Val
305
                    310
Pro Gln Ala Trp Ala Ala Ala Asn Gln Ala Val Thr Pro Ala Ala Arg
                325
                                    330
Ala Leu Pro Leu Thr Ser Leu Thr Ser Ala Ala Glu Arg Gly Pro Gly
            340
Gln Met Leu Gly Gly Leu Pro Val Gly Gln Met Gly Ala Arg Ala Gly
                            360
Gly Gly Leu Ser Gly Val Leu Arg Val Pro Pro Arg Pro Tyr Val Met
                                            380
Pro His Ser Pro Ala Ala Gly
385
<210> 27
<211> 447
<212> DNA
<213> Mycobacterium tuberculosis
<223> TbRa12
<400> 27
cggtatgaac acggccgcgt ccgataactt ccagctgtcc cagggtgggc agggattcgc 60
cattccgatc gggcaggcga tggcgatcgc gggccagatc cgatcgggtg gggggtcacc 120
caccgttcat atcgggccta ccgccttcct cggcttgggt gttgtcgaca acaacggcaa 180
cggcgcacga gtccaacgcg tggtcgggag cgctccggcg gcaagtctcg gcatctccac 240
cggcgacgtg atcaccgcgg tcgacggcgc tccgatcaac tcggccaccg cgatggcgga 300
cgcgcttaac gggcatcatc ccggtgacgt catctcggtg aactggcaaa ccaagtcggg 360
cggcacgcgt acagggaacg tgacattggc cgagggaccc ccggcctgat ttcgtcgygg 420
ataccacccg ccggccggcc aattgga
                                                                  447
<210> 28
<211> 132
<212> PRT
```

<213> Mycobacterium tuberculosis

<220> <223> TbRa12 <400> 28 Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser 25 Gly Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val 55 Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala 90 Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp 100 105 Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu 120 Gly Pro Pro Ala 130 <210> 29 <211> 1872 <212> DNA <213> Mycobacterium tuberculosis <220> <223> TbRa35 (Mtb32A) <220> <221> modified base <222> (1)..(1872) <223> n = g, a, c or t<400> 29 gactacgttg gtgtagaaaa atcctgccgc ccggaccctt aaggctggga caatttctga 60 tagctacccc gacacaggag gttacgggat gagcaattcg cgccgccgct cactcaggtg 120 gtcatggttg ctgagcgtgc tggctgccgt cgggctgggc ctggccacgg cgccggccca 180 ggcggccccg ccggccttgt cgcaggaccg gttcgccgac ttccccgcgc tgcccctcga 240 cccgtccgcg atggtcgccc aagtggcgcc acaggtggtc aacatcaaca ccaaactggg 300 ctacaacaac gccgtgggcg ccgggaccgg catcgtcatc gatcccaacg gtgtcgtgct 360 gaccaacaac cacgtgatcg cgggcgccac cgacatcaat gcgttcagcg tcggctccgg 420 ccaaacctac ggcgtcgatg tggtcgggta tgaccgcacc caggatgtcg cggtgctgca 480 gctgcgcggt gccggtggcc tgccgtcggc ggcgatcggt ggcggcgtcg cggttggtga 540 gcccgtcgtc gcgatgggca acagcggtgg gcagggcgga acgccccgtg cggtgcctgg 600 cagggtggtc gcgctcggcc aaaccgtgca ggcgtcggat tcgctgaccg gtgccgaaga 660 gacattgaac gggttgatcc agttcgatgc cgcaatccag cccggtgatt cgggcgggcc 720 cgtcgtcaac ggcctaggac aggtggtcgg tatgaacacg gccgcgtccg ataacttcca 780 gctgtcccag ggtgggcagg gattcgccat tccgatcggg caggcgatgg cgatcgcggg 840

ccaaatccga tcgggtgggg ggtcacccac cgttcatatc gggcctaccg ccttcctcgg 900

```
cttgggtgtt gtcgacaaca acggcaacgg cgcacgagtc caacgcgtgg tcggaagcgc 960
 tccggcggca agtctcggca tctccaccgg cgacgtgatc accgcggtcg acggcgctcc 1020
 gatcaactcg gccaccgcga tggcggacgc gcttaacggg catcatcccg gtgacgtcat 1080
 ctcggtgaac tggcaaacca agtcgggcgg cacgcgtaca gggaacgtga cattggccga 1140
 gggacccccg gcctgatttg tcgcggatac cacccgccgg ccggccaatt ggattggcgc 1200
 cagccgtgat tgccgcgtga gcccccgagt tccgtctccc gtgcgcgtgg cattgtggaa 1260
 gcaatgaacg aggcagaaca cagcgttgag caccctcccg tgcagggcag ttacgtcgaa 1320
 ggcggtgtgg tcgagcatcc ggatgccaag gacttcggca gcgccgccgc cctgcccgcc 1380
 gatccgacct ggtttaagca cgccgtcttc tacgaggtgc tggtccgggc gttcttcgac 1440
 gccagcgcgg acggttccgn cgatctgcgt ggactcatcg atcgcctcga ctacctgcag 1500
 tggcttggca tcgactgcat ctgttgccgc cgttcctacg actcaccgct gcgcgacggc 1560
 ggttacgaca ttcgcgactt ctacaaggtg ctgcccgaat tcggcaccgt cgacgatttc 1620
 gtcgccctgg tcgacaccgc tcaccggcga ggtatccgca tcatcaccga cctggtgatg 1680
 aatcacacct cggagtcgca cccctggttt caggagtccc gccgcgaccc agacggaccg 1740
 tacggtgact attacgtgtg gagcgacacc agcgagcgct acaccgacgc ccggatcatc 1800
 ttcgtcgaca ccgaagagtc gaactggtca ttcgatcctg tccgccgaca gttnctactg 1860
 gcaccgattc tt
 <210> 30
 <211> 355
 <212> PRT
 <213> Mycobacterium tuberculosis
 <220>
 <223> TbRa35 (Mtb32A)
<400> 30
Met Ser Asn Ser Arg Arg Ser Leu Arg Trp Ser Trp Leu Leu Ser
Val Leu Ala Ala Val Gly Leu Gly Leu Ala Thr Ala Pro Ala Gln Ala
Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe Ala Asp Phe Pro Ala Leu
Pro Leu Asp Pro Ser Ala Met Val Ala Gln Val Ala Pro Gln Val Val
Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn Ala Val Gly Ala Gly Thr
 65
Gly Ile Val Ile Asp Pro Asn Gly Val Val Leu Thr Asn Asn His Val
Ile Ala Gly Ala Thr Asp Ile Asn Ala Phe Ser Val Gly Ser Gly Gln
            100
Thr Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Gln Asp Val Ala
Val Leu Gln Leu Arg Gly Ala Gly Gly Leu Pro Ser Ala Ala Ile Gly
    130
Gly Gly Val Ala Val Gly Glu Pro Val Val Ala Met Gly Asn Ser Gly
Gly Gln Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val Ala Leu
                165
                                    170
```

```
Gly Gln Thr Val Gln Ala Ser Asp Ser Leu Thr Gly Ala Glu Glu Thr
                                 185
 Leu Asn Gly Leu Ile Gln Phe Asp Ala Ala Ile Gln Pro Gly Asp Ser
                             200
 Gly Gly Pro Val Val Asn Gly Leu Gly Gln Val Val Gly Met Asn Thr
 Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gly Phe Ala
                     230
 Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser Gly
                 245
                                     250
 Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu
                                 265
 Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val
                             280
 Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile
                         295
Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp
 305
                     310
                                                             320
Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp Gln
                325
Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly
            340
                                 345
Pro Pro Ala
        355
<210> 31
<211> 1441
<212> DNA
<213> Mycobacterium tuberculosis
<220>
<223> MTCC#2 (Mtb41)
<400> 31
gaggttgctg gcaatggatt tcgggctttt acctccggaa gtgaattcaa gccgaatgta 60
ttccggtccg gggccggagt cgatgctagc cgccgcggcc gcctgggacg gtgtggccgc 120
ggagttgact tccgccgcgg tctcgtatgg atcggtggtg tcgacgctga tcgttgagcc 180
gtggatgggg ccggcggcgg ccgcgatggc ggccgcggca acgccgtatg tggggtggct 240
ggccgccacg gcggcgctgg cgaaggagac ggccacacag gcgagggcag cggcggaagc 300
gtttgggacg gcgttcgcga tgacggtgcc accatccctc gtcgcggcca accgcagccg 360
gttgatgtcg ctggtcgcgg cgaacattct ggggcaaaac agtgcggcga tcgcggctac 420
ccaggccgag tatgccgaaa tgtgggccca agacgctgcc gtgatgtaca gctatgaggg 480
ggcatctgcg gccgcgtcgg cgttgccgcc gttcactcca cccgtgcaag gcaccggccc 540
ggccgggccc gcggcgcag ccgcggcgac ccaagccgcc ggtgcgggcg ccgttgcgga 600
tgcacaggcg acactggccc agctgccccc ggggatcctg agcgacattc tgtccgcatt 660
ggccgccaac gctgatccgc tgacatcggg actgttgggg atcgcgtcga ccctcaaccc 720
gcaagtcgga tccgctcagc cgatagtgat ccccaccccg ataggggaat tggacgtgat 780
cgcgctctac attgcatcca tcgcgaccgg cagcattgcg ctcgcgatca cgaacacggc 840
cagaccetgg cacateggee tataegggaa egeeggeggg etgggacega egeagggeea 900
```

```
tccactgagt tcggcgaccg acgagccgga gccgcactgg ggccccttcg ggggcgcggc 960
 gccggtgtcc gcgggcgtcg gccacgcagc attagtcgga gcgttgtcgg tgccgcacag 1020
 ctggaccacg gccgcccgg agatccagct cgccgttcag gcaacaccca ccttcagctc 1080
 cagcgccggc gccgacccga cggccctaaa cgggatgccg gcaggcctgc tcagcgggat 1140
 ggctttggcg agcctggccg cacgcggcac gacgggcggt ggcggcaccc gtagcggcac 1200
 cagcactgac ggccaagagg acggccgcaa acccccggta gttgtgatta gagagcagcc 1260
 gccgcccgga aaccccccgc ggtaaaagtc cggcaaccgt tcgtcgccgc gcggaaaatg 1320
 cctggtgagc gtggctatcc gacgggccgt tcacaccgct tgtagtagcg tacggctatg 1380
 gacgacggtg tctggattct cggcggctat cagagcgatt ttgctcgcaa cctcagcaaa 1440
 <210> 32
 <211> 423
 <212> PRT
 <213> Mycobacterium tuberculosis
 <223> MTTC#2 (Mtb41)
 <400> 32
Met Asp Phe Gly Leu Leu Pro Pro Glu Val Asn Ser Ser Arg Met Tyr
Ser Gly Pro Gly Pro Glu Ser Met Leu Ala Ala Ala Ala Trp Asp
Gly Val Ala Ala Glu Leu Thr Ser Ala Ala Val Ser Tyr Gly Ser Val
Val Ser Thr Leu Ile Val Glu Pro Trp Met Gly Pro Ala Ala Ala
Met Ala Ala Ala Thr Pro Tyr Val Gly Trp Leu Ala Ala Thr Ala
Ala Leu Ala Lys Glu Thr Ala Thr Gln Ala Arg Ala Ala Ala Glu Ala
Phe Gly Thr Ala Phe Ala Met Thr Val Pro Pro Ser Leu Val Ala Ala
Asn Arg Ser Arg Leu Met Ser Leu Val Ala Ala Asn Ile Leu Gly Gln
Asn Ser Ala Ala Ile Ala Ala Thr Gln Ala Glu Tyr Ala Glu Met Trp
                        135
Ala Gln Asp Ala Ala Val Met Tyr Ser Tyr Glu Gly Ala Ser Ala Ala
145
Ala Ser Ala Leu Pro Pro Phe Thr Pro Pro Val Gln Gly Thr Gly Pro
Ala Gly Pro Ala Ala Ala Ala Ala Thr Gln Ala Ala Gly Ala Gly
            180
Ala Val Ala Asp Ala Gln Ala Thr Leu Ala Gln Leu Pro Pro Gly Ile
```

200

195

```
Leu Ser Asp Ile Leu Ser Ala Leu Ala Ala Asn Ala Asp Pro Leu Thr
 Ser Gly Leu Leu Gly Ile Ala Ser Thr Leu Asn Pro Gln Val Gly Ser
                     230
                                         235
 Ala Gln Pro Ile Val Ile Pro Thr Pro Ile Gly Glu Leu Asp Val Ile
                                     250
 Ala Leu Tyr Ile Ala Ser Ile Ala Thr Gly Ser Ile Ala Leu Ala Ile
                                 265
 Thr Asn Thr Ala Arg Pro Trp His Ile Gly Leu Tyr Gly Asn Ala Gly
                             280
 Gly Leu Gly Pro Thr Gln Gly His Pro Leu Ser Ser Ala Thr Asp Glu
                         295
 Pro Glu Pro His Trp Gly Pro Phe Gly Gly Ala Ala Pro Val Ser Ala
                     310
Gly Val Gly His Ala Ala Leu Val Gly Ala Leu Ser Val Pro His Ser
                                     330
Trp Thr Thr Ala Ala Pro Glu Ile Gln Leu Ala Val Gln Ala Thr Pro
            340
Thr Phe Ser Ser Ser Ala Gly Ala Asp Pro Thr Ala Leu Asn Gly Met
                             360
Pro Ala Gly Leu Leu Ser Gly Met Ala Leu Ala Ser Leu Ala Ala Arg
    370
                        375
Gly Thr Thr Gly Gly Gly Thr Arg Ser Gly Thr Ser Thr Asp Gly
                    390
Gln Glu Asp Gly Arg Lys Pro Pro Val Val Val Ile Arg Glu Gln Pro
                405
Pro Pro Gly Asn Pro Pro Arg
            420
<210> 33
<211> 1742
<212> DNA
<213> Mycobacterium tuberculosis
<220>
<223> Mtb9.9A (MTI-A)
<220>
<221> modified_base
<222> (1)..(1742)
<223> n = g, a, c or t
<400> 33
ccgctctctt tcaacgtcat aagttcggtg ggccagtcgg ccgcgcgtgc atatggcacc 60
aataacgcgt gtcccatgga tacccggacc gcacgacggt agagcggatc agcgcagccg 120
gtgccgaaca ctaccgcgtc cacgctcagc cctgccgcgt tgcggaagat cgagcccagg 180
```

ttctcatggt cgttaacgcc ttccaacact gcgacggtgc gcgccccggc gaccacctga 240

```
gcaacgeteg geteeggeae eeggegegeg getgecaaca eeceaegatt gagatggaag 300
 ccgatcaccc gtgccatgac atcagccgac gctcgatagt acggcgcgcc gacaccggcc 360
 agatcateet tgagetegge cageeggegg teggtgeega acagegeeag eggegtgaae 420
 cgtgaggcca gcatgcgctg caccaccagc acaccctcgg cgatcaccaa cgccttgccg 480
 gtcggcagat cgggacnacn gtcgatgctg ttcaggtcac ggaaatcgtc gagccgtggg 540
 tegtegggat egeagaegte etgaacateg aggeegtegg ggtgetggge acaaeggeet 600
 teggteacgg getttegteg accagageea geateagate ggeggegetg egeaggatgt 660
 cacgeteget geggtteage gtegegagee geteageeag ceaetettge agagageegt 720
 tgctgggatt aattgggaga ggaagacagc atgtcgttcg tgaccacaca gccggaagcc 780
 ctggcagctg cggcggcgaa cctacagggt attggcacga caatgaacgc ccagaacgcg 840
 gccgcggctg ctccaaccac cggagtagtg cccgcagccg ccgatgaagt atcagcgctg 900
 accgcggete agtttgetge geacgegeag atgtaceaaa eggteagege eeaggeegeg 960
 gccattcacg aaatgttcgt gaacacgctg gtggccagtt ctggctcata cgcggccacc 1020
 gaggcggcca acgcagccgc tgccggctga acgggctcgc acgaacctgc tgaaggagag 1080
 ggggaacatc cggagttete gggteagggg ttgcgceage geceageega ttcagntate 1140
 ggcgtccata acagcagacg atctaggcat tcagtactaa ggagacaggc aacatggcct 1200
 cacgttttat gacggatccg catgcgatgc gggacatggc gggccgtttt gaggtgcacg 1260
 cccagacggt ggaggacgag gctcgccgga tgtgggcgtc cgcgcaaaac atttccggtg 1320
 cgggctggag tggcatggcc gaggcgacct cgctagacac catgacctag atgaatcagg 1380
cgtttcgcaa catcgtgaac atgctgcacg gggtgcgtga cgggctggtt cgcgacgcca 1440
acaantacga acagcaagag caggcctccc agcagatcct gagcagntag cgccgaaagc 1500
cacagetgng tacgntttet cacattagga gaacaccaat atgacgatta attaccagtt 1560
cggggacgtc gacgctcatg gcgccatgat ccgcgctcag gcggcgtcgc ttgaggcgga 1620
gcatcaggcc atcgttcgtg atgtgttggc cgcgggtgac ttttggggcg gcgccggttc 1680
ggtggcttgc caggagttca ttacccagtt gggccgtaac ttccaggtga tctacgagca 1740
gg
<210> 34
<211> 94
<212> PRT
<213> Mycobacterium tuberculosis
<220>
<223> Mtb9.9A (MTI-A)
<400> 34
Met Thr Ile Asn Tyr Gln Phe Gly Asp Val Asp Ala His Gly Ala Met
Ile Arg Ala Leu Ala Gly Leu Leu Glu Ala Glu His Gln Ala Ile Ile
             20
Ser Asp Val Leu Thr Ala Ser Asp Phe Trp Gly Gly Ala Gly Ser Ala
Ala Cys Gln Gly Phe Ile Thr Gln Leu Gly Arg Asn Phe Gln Val Ile
     50
                         55
Tyr Glu Gln Ala Asn Ala His Gly Gln Lys Val Gln Ala Ala Gly Asn
Asn Met Ala Gln Thr Asp Ser Ala Val Gly Ser Ser Trp Ala
                 85
                                     90
<210> 35
<211> 585
<212> DNA
<213> Mycobacterium tuberculosis
```

```
<220>
 <223> Mtb9.8 (MSL)
 tggattccga tagcggtttc ggcccctcga cgggcgacca cggcgcgcag gcctccgaac 60
 ggggggccgg gacgctggga ttcgccggga ccgcaaccaa agaacgccgg gtccgggcgg 120
 tegggetgae egeactggee ggtgatgagt teggeaaegg ceeeeggatg eegatggtge 180
 cggggacctg ggagcagggc agcaacgagc ccgaggcgcc cgacggatcg gggagagggg 240
 gaggcgacgg cttaccgcac gacagcaagt aaccgaattc cgaatcacgt ggacccgtac 300
 gggtcgaaag gagagatgtt atgagccttt tggatgctca tatcccacag ttggtggcct 360
 cccagtcggc gtttgccgcc aaggcggggc tgatgcggca cacgatcggt caggccgagc 420
 aggeggegat gteggeteag gegttteace agggggagte gteggeggeg ttteaggeeg 480
 cccatgcccg gtttgtggcg gcggccgcca aagtcaacac cttgttggat gtcgcgcagg 540
 cgaatctggg tgaggccgcc ggtacctatg tggccgccga tgctg
 <210> 36
 <211> 97
 <212> PRT
 <213> Mycobacterium tuberculosis
 <223> Mtb9.8 (MSL)
<400> 36
Met Ser Leu Leu Asp Ala His Ile Pro Gln Leu Val Ala Ser Gln Ser
Ala Phe Ala Ala Lys Ala Gly Leu Met Arg His Thr Ile Gly Gln Ala
Glu Gln Ala Ala Met Ser Ala Gln Ala Phe His Gln Gly Glu Ser Ser
Ala Ala Phe Gln Ala Ala His Ala Arg Phe Val Ala Ala Ala Lys
Val Asn Thr Leu Leu Asp Val Ala Gln Ala Asn Leu Gly Glu Ala Ala
Gly Thr Tyr Val Ala Ala Asp Ala Ala Ala Ser Thr Tyr Thr Gly
                 85
                                     90
Phe
<210> 37
<211> 500
<212> DNA
<213> Mycobacterium tuberculosis
<220>
<223> Mtb8.4 (DPV)
<400> 37
cgtggcaatg tcgttgaccg tcggggccgg ggtcgcctcc gcagatcccg tggacgcggt 60
cattaacacc acctgcaatt acgggcaggt agtagctgcg ctcaacgcga cggatccggg 120
ggctgccgca cagttcaacg cctcaccggt ggcgcagtcc tatttgcgca atttcctcgc 180
cgcaccgcca cctcagcgcg ctgccatggc cgcgcaattg caagctgtgc cgggggggc 240
acagtacate ggeettgteg agteggttge eggeteetge aacaactatt aageeeatge 300
gggccccatc ccgcgacccg gcatcgtcgc cggggctagg ccagattgcc ccgctcctca 360
```

caacgggccg catctcgtgc cgaattcctg caqcccqqqq qatccactaq ttctaqaqcq 480 gccgccaccg cggtggagct <210> 38 <211> 96 <212> PRT <213> Mycobacterium tuberculosis <220> <223> Mtb8.4 (DPV) <400> 38 Val Ala Met Ser Leu Thr Val Gly Ala Gly Val Ala Ser Ala Asp Pro Val Asp Ala Val Ile Asn Thr Thr Cys Asn Tyr Gly Gln Val Val Ala 25 Ala Leu Asn Ala Thr Asp Pro Gly Ala Ala Ala Gln Phe Asn Ala Ser Pro Val Ala Gln Ser Tyr Leu Arg Asn Phe Leu Ala Ala Pro Pro Pro Gln Arg Ala Ala Met Ala Ala Gln Leu Gln Ala Val Pro Gly Ala Ala Gln Tyr Ile Gly Leu Val Glu Ser Val Ala Gly Ser Cys Asn Asn Tyr <210> 39 <211> 999 <212> DNA <213> Mycobacterium tuberculosis <220> <223> DPEP <400> 39 atgcatcacc atcaccatca catgcatcag gtggacccca acttgacacg tcgcaaggga 60 cgattggcgg cactggctat cgcggcgatg gccagcgcca gcctggtgac cgttgcggtg 120 ccegcgaceg ccaacgccga tceggagcca gcgcccccgg tacccacaac ggccgcctcg 180 ccgccgtcga ccgctgcagc gccacccgca ccggcgacac ctgttgcccc cccaccaccg 240 geogeegeea acaegeegaa tgeceageeg ggegateeea acgeageace teegeeggee 300 gaccegaacg cacegoegec acetgteatt geceeaaacg caceecaace tgteeggate 360 gacaaccogg ttggaggatt cagcttcgcg ctgcctgctg gctgggtgga gtctgacgcc 420 gcccacttcg actacggttc agcactcctc agcaaaacca ccggggaccc gccatttccc 480 ggacageege egeeggtgge caatgacace egtategtge teggeegget agaccaaaaq 540 ctttacgcca gcgccgaagc caccgactcc aaggccqcgq cccqqttqqq ctcqqacatq 600 ggtgagttct atatgcccta cccgggcacc cggatcaacc aggaaaccgt ctcgctcgac 660 gccaacgggg tgtctggaag cgcgtcgtat tacgaagtca agttcagcga tccgagtaag 720 cegaacggcc agatetggac gggcgtaate ggctegeeeg eggcgaacge aceggacgce 780 gggccccctc agcgctggtt tgtggtatgg ctcgggaccg ccaacaaccc ggtggacaag 840 ggcgcggcca aggcgctggc cgaatcgatc cggcctttgg tcgccccgcc gccggcgccg 900 gcaccggctc ctgcagagcc cgctccggcg ccggcgccgg ccggggaagt cgctcctacc 960 ccgacgacac cgacaccgca gcggacctta ccggcctga 999

acgggccgca tecegegace eggcategte geeggqqcta qgccaqattq ceeeqeteet 420

<210> 40

<211> 332

<212> PRT

<213> Mycobacterium tuberculosis

<220>

<223> DPEP

<400> 40

Met His His His His His Met His Gln Val Asp Pro Asn Leu Thr 1 5 10 15

Arg Arg Lys Gly Arg Leu Ala Ala Leu Ala Ile Ala Ala Met Ala Ser 20 25 30

Ala Ser Leu Val Thr Val Ala Val Pro Ala Thr Ala Asn Ala Asp Pro 35 40 45

Glu Pro Ala Pro Pro Val Pro Thr Thr Ala Ala Ser Pro Pro Ser Thr 50 55 60

Ala Ala Pro Pro Ala Pro Ala Thr Pro Val Ala Pro Pro Pro 65 70 75 80

Ala Ala Ala Asn Thr Pro Asn Ala Gln Pro Gly Asp Pro Asn Ala Ala 85 90 95

Pro Pro Pro Ala Asp Pro Asn Ala Pro Pro Pro Pro Val Ile Ala Pro 100 105 110

Asn Ala Pro Gln Pro Val Arg Ile Asp Asn Pro Val Gly Gly Phe Ser 115 120 125

Phe Ala Leu Pro Ala Gly Trp Val Glu Ser Asp Ala Ala His Phe Asp 130 135 140

Tyr Gly Ser Ala Leu Leu Ser Lys Thr Thr Gly Asp Pro Pro Phe Pro 145 150 155 160

Gly Gln Pro Pro Pro Val Ala Asn Asp Thr Arg Ile Val Leu Gly Arg 165 170 175

Leu Asp Gln Lys Leu Tyr Ala Ser Ala Glu Ala Thr Asp Ser Lys Ala 180 185 190

Ala Ala Arg Leu Gly Ser Asp Met Gly Glu Phe Tyr Met Pro Tyr Pro
195 200 205

Gly Thr Arg Ile Asn Gln Glu Thr Val Ser Leu Asp Ala Asn Gly Val 210 215 220

Ser Gly Ser Ala Ser Tyr Tyr Glu Val Lys Phe Ser Asp Pro Ser Lys 225 230 235 240

Pro Asn Gly Gln Ile Trp Thr Gly Val Ile Gly Ser Pro Ala Ala Asn 245 250 255

Ala Pro Asp Ala Gly Pro Pro Gln Arg Trp Phe Val Val Trp Leu Gly 260 265 270

```
Thr Ala Asn Asn Pro Val Asp Lys Gly Ala Ala Lys Ala Leu Ala Glu
         275
                              280
 Ser Ile Arg Pro Leu Val Ala Pro Pro Pro Ala Pro Ala Pro Ala Pro
                         295
 Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala Gly Glu Val Ala Pro Thr
                     310
                                          315
                                                              320
 Pro Thr Thr Pro Thr Pro Gln Arg Thr Leu Pro Ala
                 325
 <210> 41
 <400> 41
 000
 <210> 42
 <400> 42
 000
<210> 43
<211> 339
<212> DNA
<213> Mycobacterium tuberculosis
<220>
<223> DPPD
<400> 43
atgaagttga agtttgctcg cctgagtact gcgatactgg gttgtgcagc ggcgcttgtg 60
tttcctgcct cggttgccag cgcagatcca cctgacccgc atcagccgga catgacgaaa 120
ggctattgcc cgggtggccg atggggtttt ggcgacttgg ccgtgtgcga cggcgagaag 180
taccccgacg gctcgttttg gcaccagtgg atgcaaacgt ggtttaccgg cccacagttt 240
tacttcgatt gtgtcagcgg cggtgagccc ctccccggcc cgccgccacc gggtggttgc 300
ggtggggcaa ttccgtccga gcagcccaac gctccctga
                                                                    339
<210> 44
<211> 112
<212> PRT
<213> Mycobacterium tuberculosis
<220>
<223> DPPD
<400> 44
Met Lys Leu Lys Phe Ala Arg Leu Ser Thr Ala Ile Leu Gly Cys Ala
Ala Ala Leu Val Phe Pro Ala Ser Val Ala Ser Ala Asp Pro Pro Asp
             20
                                                      30
Pro His Gln Pro Asp Met Thr Lys Gly Tyr Cys Pro Gly Gly Arg Trp
```

45

40

Gly Phe Gly Asp Leu Ala Val Cys Asp Gly Glu Lys Tyr Pro Asp Gly Ser Phe Trp His Gln Trp Met Gln Thr Trp Phe Thr Gly Pro Gln Phe 75 Tyr Phe Asp Cys Val Ser Gly Gly Glu Pro Leu Pro Gly Pro Pro Pro Gly Gly Cys Gly Gly Ala Ile Pro Ser Glu Gln Pro Asn Ala Pro 105 <210> 45 <211> 154 <212> DNA <213> Mycobacterium tuberculosis <220> <223> ESAT-6 <400> 45 atgacagage ageagtggaa tttcgcgggt atcgaggecg cggcaagege aatccaggga 60 aatgtcacgt ccattcattc cctccttgac gaggggaagc agtccctgac caagctcgca 120 gcggcctggg gcggtagcgg ttcggaagcg tacc <210> 46 <211> 51 <212> PRT <213> Mycobacterium tuberculosis <220> <223> ESAT-6 <400> 46 Met Thr Glu Gln Gln Trp Asn Phe Ala Gly Ile Glu Ala Ala Ser Ala Ile Gln Gly Asn Val Thr Ser Ile His Ser Leu Leu Asp Glu Gly Lys Gln Ser Leu Thr Lys Leu Ala Ala Ala Trp Gly Gly Ser Gly Ser 35 Glu Ala Tyr 50 <210> 47 <211> 2310 <212> DNA <213> Mycobacterium tuberculosis <220> <223> Mtb82 <400> 47 ccagcccccg ccccgcccac gccgaggtat gtggactgat ggccaaagcg tcagagaccg 60 aacgtteggg ecceggeace caaceggegg acgeecagae egegaegtee gegaeggtte 120 gacccctgag cacccaggcg gtgttccgcc ccgatttcgg cgatgaggac aacttccccc 180

```
atccgacget cggcccggac accgagccgc aagaccggat ggccaccacc agccgggtgc 240
 gcccgccggt cagacggctg ggcggcggcc tggtggaaat cccgcgggcg cccgatatcg 300
 atccgcttga ggccctgatg accaacccgg tggtgccgga gtccaagcgg ttctgctgga 360
 actgtggacg tecegtegge eggteegact eggagaceaa gggagettea gagggetggt 420
 gtccctattg cggcagcccg tattcgttcc tgccgcagct aaatcccggg gacatcgtcg 480
 ccggccagta cgaggtcaaa ggctgcatcg cgcacggcgg actgggctgg atctacctcg 540
 ctctcgaccg caatgtcaac ggccgtccgg tggtgctcaa gggcctggtg cattccggtg 600
 atgccgaagc gcaggcaatg gcgatggccg aacgccagtt cctggccgag gtggtgcacc 660
cgtcgatcgt gcagatcttc aactttgtcg agcacaccga caggcacggg gatccggtcg 720
gctacatcgt gatggaatac gtcggcgggc aatcgctcaa acgcagcaag ggtcagaaac 780
tgcccgtcgc ggaggccatc gcctacctgc tggagatcct gccggcgctg agctacctgc 840
attccatcgg cttggtctac aacgacctga agccggaaaa catcatgctg accgaggaac 900
agctcaagct gatcgacctg ggcgcggtat cgcggatcaa ctcgttcggc tacctctacg 960
ggaccccagg cttccaggcg cccgagatcg tgcggaccgg tccgacggtg gccaccgaca 1020
tctacaccgt gggacgcacg ctcgcggcgc tcacgctgga cctgcccacc cgcaatggcc 1080
gttatgtgga tgggctaccc gaagacgacc cggtgctgaa aacctacgac tcttacggcc 1140
ggttgctgcg cagggccatc gaccccgatc cgcggcaacg gttcaccacc gccgaagaga 1200
tgtccgcgca attgacgggc gtgttgcggg aggtggtcgc ccaggacacc ggggtgccgc 1260
ggccagggct atcaacgatc ttcagtccca gtcggtcgac atttggagtg gacctgctgg 1320
tggcgcacac cgacgtgtat ctggacgggc aggtgcacgc ggagaagctg accgccaacg 1380
agatogtgac ogogotgtog gtgoogotgg togatoogac ogacgtogca gottoggtoo 1440
tgcaggccac ggtgctctcc cagccggtgc agaccctaga ctcgctgcgc gcggcccgcc 1500
acggtgcgct ggacgccgac ggcgtcgact tctccgagtc agtggagctg ccgctaatgg 1560
aagtccgcgc gctgctggat ctcggcgatg tggccaaggc cacccgaaaa ctcgacgatc 1620
tggccgaacg cgttggctgg cgatggcgat tggtctggta ccgggccgtc gccgagctgc 1680
tcaccggcga ctatgactcg gccaccaaac atttcaccga ggtgctggat acctttcccg 1740
gcgagctggc gcccaagctc gccctggccg ccaccgccga actagccggc aacaccgacg 1800
aacacaagtt ctatcagacg gtgtggagca ccaacgacgg cgtgatctcg gcggctttcg 1860
gactggccag agcccggtcg gccgaaggtg atcgggtcgg cgccgtgcgc acgctcgacg 1920
aggtaccgcc cacttctcgg catttcacca cggcacggct gaccagcgcg gtgactctgt 1980
tgtccggccg gtcaacgagt gaagtcaccg aggaacagat ccgcgacgcc gcccgaagag 2040
tggaggcgct gcccccgacc gaaccacgcg tgctgcagat ccgcgccctg gtgctgggtg 2100
gcgcgctgga ctggctgaag gacaacaagg ccagcaccaa ccacatcctc ggtttcccgt 2160
teaceagtea egggetgegg etgggtgteg aggegteaet gegeageetg geeegggtag 2220
ctcccactca acggcatcgc tacacgctgg tggacatggc caacaaggtc cggcccacca 2280
gcacgttcta agccgcccga gtgtgaatcg
<210> 48
<211> 750
<212> PRT
<213> Mycobacterium tuberculosis
<220>
<223> Mtb82
<400> 48
Met Ala Lys Ala Ser Glu Thr Glu Arg Ser Gly Pro Gly Thr Gln Pro
Ala Asp Ala Gln Thr Ala Thr Ser Ala Thr Val Arg Pro Leu Ser Thr
             20
                                 25
Gln Ala Val Phe Arg Pro Asp Phe Gly Asp Glu Asp Asn Phe Pro His
Pro Thr Leu Gly Pro Asp Thr Glu Pro Gln Asp Arg Met Ala Thr Thr
     50
                         55
Ser Arg Val Arg Pro Pro Val Arg Arg Leu Gly Gly Gly Leu Val Glu
```

75

70

- Ile Pro Arg Ala Pro Asp Ile Asp Pro Leu Glu Ala Leu Met Thr Asn 85 90 95
- Pro Val Val Pro Glu Ser Lys Arg Phe Cys Trp Asn Cys Gly Arg Pro 100 105 110
- Val Gly Arg Ser Asp Ser Glu Thr Lys Gly Ala Ser Glu Gly Trp Cys 115 120 125
- Pro Tyr Cys Gly Ser Pro Tyr Ser Phe Leu Pro Gln Leu Asn Pro Gly 130 135 140
- Asp Ile Val Ala Gly Gln Tyr Glu Val Lys Gly Cys Ile Ala His Gly
 145 150 155 160
- Gly Leu Gly Trp Ile Tyr Leu Ala Leu Asp Arg Asn Val Asn Gly Arg 165 170 175
- Pro Val Val Leu Lys Gly Leu Val His Ser Gly Asp Ala Glu Ala Gln 180 185 190
- Ala Met Ala Met Ala Glu Arg Gln Phe Leu Ala Glu Val Val His Pro 195 200 205
- Ser Ile Val Gln Ile Phe Asn Phe Val Glu His Thr Asp Arg His Gly 210 215 220
- Asp Pro Val Gly Tyr Ile Val Met Glu Tyr Val Gly Gly Gln Ser Leu 225 230 235 240
- Lys Arg Ser Lys Gly Gln Lys Leu Pro Val Ala Glu Ala Ile Ala Tyr 245 250 255
- Leu Leu Glu Ile Leu Pro Ala Leu Ser Tyr Leu His Ser Ile Gly Leu 260 265 270
- Val Tyr Asn Asp Leu Lys Pro Glu Asn Ile Met Leu Thr Glu Glu Gln 275 280 285
- Leu Lys Leu Ile Asp Leu Gly Ala Val Ser Arg Ile Asn Ser Phe Gly 290 295 300
- Tyr Leu Tyr Gly Thr Pro Gly Phe Gln Ala Pro Glu Ile Val Arg Thr 305 310 315 320
- Gly Pro Thr Val Ala Thr Asp Ile Tyr Thr Val Gly Arg Thr Leu Ala 325 330 335
- Ala Leu Thr Leu Asp Leu Pro Thr Arg Asn Gly Arg Tyr Val Asp Gly 340 345 350
- Leu Pro Glu Asp Asp Pro Val Leu Lys Thr Tyr Asp Ser Tyr Gly Arg 355 360 365
- Leu Leu Arg Arg Ala Ile Asp Pro Asp Pro Arg Gln Arg Phe Thr Thr 370 380
- Ala Glu Glu Met Ser Ala Gln Leu Thr Gly Val Leu Arg Glu Val Val 385 390 395 400

Ala Gln Asp Thr Gly Val Pro Arg Pro Gly Leu Ser Thr Ile Phe Ser Pro Ser Arg Ser Thr Phe Gly Val Asp Leu Leu Val Ala His Thr Asp 425 Val Tyr Leu Asp Gly Gln Val His Ala Glu Lys Leu Thr Ala Asn Glu 440 Ile Val Thr Ala Leu Ser Val Pro Leu Val Asp Pro Thr Asp Val Ala 455 Ala Ser Val Leu Gln Ala Thr Val Leu Ser Gln Pro Val Gln Thr Leu 470 475 Asp Ser Leu Arg Ala Ala Arg His Gly Ala Leu Asp Ala Asp Gly Val 490 Asp Phe Ser Glu Ser Val Glu Leu Pro Leu Met Glu Val Arg Ala Leu 500 505 Leu Asp Leu Gly Asp Val Ala Lys Ala Thr Arg Lys Leu Asp Asp Leu 520 Ala Glu Arg Val Gly Trp Arg Trp Arg Leu Val Trp Tyr Arg Ala Val 530 535 Ala Glu Leu Leu Thr Gly Asp Tyr Asp Ser Ala Thr Lys His Phe Thr 550 Glu Val Leu Asp Thr Phe Pro Gly Glu Leu Ala Pro Lys Leu Ala Leu 565 Ala Ala Thr Ala Glu Leu Ala Gly Asn Thr Asp Glu His Lys Phe Tyr 585 Gln Thr Val Trp Ser Thr Asn Asp Gly Val Ile Ser Ala Ala Phe Gly 595 Leu Ala Arg Ala Arg Ser Ala Glu Gly Asp Arg Val Gly Ala Val Arg 615 Thr Leu Asp Glu Val Pro Pro Thr Ser Arg His Phe Thr Thr Ala Arg 625 630 Leu Thr Ser Ala Val Thr Leu Leu Ser Gly Arg Ser Thr Ser Glu Val 645 Thr Glu Glu Gln Ile Arg Asp Ala Ala Arg Arg Val Glu Ala Leu Pro 660 Pro Thr Glu Pro Arg Val Leu Gln Ile Arg Ala Leu Val Leu Gly Gly Ala Leu Asp Trp Leu Lys Asp Asn Lys Ala Ser Thr Asn His Ile Leu 690 Gly Phe Pro Phe Thr Ser His Gly Leu Arg Leu Gly Val Glu Ala Ser 705 710 715

```
Leu Arg Ser Leu Ala Arg Val Ala Pro Thr Gln Arg His Arg Tyr Thr
                 725
                                     730
 Leu Val Asp Met Ala Asn Lys Val Arg Pro Thr Ser Thr Phe
             740
                                 745
 <210> 49
 <211> 1920
 <212> DNA
 <213> Mycobacterium tuberculosis
 <220>
 <223> Mtb59
 <400> 49
 cacgactgcc cgactgaacc cgaactagtc agcacaaacc gaagtaggaa gacgaaaagc 60
 tatggctgag ttgacaatcc ccgctgatga catccagagc gcaatcgaag agtacgtaag 120
 ctctttcacc gccgacacca gtagagagga agtcggtacc gtcgtcgatg ccggggacgg 180
 catcgcacac gtcgagggtt tgccatcggt gatgacccaa gagctgctcg aattcccggg 240
 cggaatcctc ggcgtcgccc tcaacctcga cgagcacagc gtcggcgcgg tgatcctcgg 300
 tgacttcgag aacatcgaag aaggtcagca ggtcaagcgc accggcgaag tcttatcggt 360
tccggttggc gacgggtttt tggggcgggt ggttaacccg ctcggccagc cgatcgacgg 420
gcgcggagac gtcgactccg atactcggcg cgcgctggag ctccaggcgc cctcggtggt 480
gcaccggcaa ggcgtgaagg agccgttgca gaccgggatc aaggcgattg acgcgatgac 540
cccgatcggc cgcggccagc gccagctgat catcggcgac cgcaagaccg gcaaaaccgc 600
cgtctgcgtc gacaccatcc tcaaccagcg gcagaactgg gagtccggtg atcccaagaa 660
gcaggtgcgc tgtgtatacg tggccatcgg gcagaaggga actaccatcg ccgcggtacg 720
ccgcacactg gaagagggcg gtgcgatgga ctacaccacc atcgtcgcgg ccgcggcgtc 780
ggagtccgcc ggtttcaaat ggcttgcgcc gtacaccggt tcggcgatcg cccagcactg 840
gatgtacgag ggcaagcatg tgctgatcat cttcgacgac ctgactaagc aggccgaggc 900
ataccgggcg atctcgctgc tgctgcgccg tccgcccggc cgtgaggcct accccggcga 960
tgtgttctat ctgcattcgc ggcttttgga gcgctgcgcc aaactgtccg acgatctcgg 1020
tggcggctcg ctaacgggtc tgccgatcat cgagaccaag gccaacgaca tctcggccta 1080
catcccgacc aacgtcatct cgatcaccga cgggcaatgt ttcctggaaa ccgacctgtt 1140
caaccagggc gtccggccgg ccatcaacgt cggtgtgtcg gtgtcccgag tcggcggcgc 1200
ggcgcagatc aaggctatga aagaggtcgc cggaagcctc cgcttggacc tttcgcaata 1260
ccgcgagcta gaagctttcg ccgctttcgc ttctgatttg gacgccgcat cgaaggcgca 1320
gttggagcgc ggcgcccggc tggtcgagct gctcaagcag ccgcaatccc agcccatgcc 1380
cgttgaggag caagtggttt cgatcttcct gggcaccggc ggtcacctgg actcggtgcc 1440
cgtcgaggac gtccggcggt tcgaaaccga attactggac cacatgcggg cctccgaaga 1500
agagattttg actgagatcc gggacagcca aaagctcacc gaggaggccg ccgacaagct 1560
caccgaggtc atcaagaact tcaagaaggg cttcgcggcc accggtggcg gctctgtggt 1620
gcccgacgaa catgtcgagg ccctcgacga ggataagctc gccaaggaag ccgtgaaggt 1680
caaaaagccg gcgccgaaga agaagaaata gctaaccatg gctgccacac ttcgcgaact 1740
acgcgggcgg atccgctcgg cagggtcgat caaaaagatc accaaggccc aggagctgat 1800
tgcgacatcg cgcatcgcca gggcgcaggc tcggctcgag tccgctcggc cctacgcttt 1860
tgagatcacc cggatgctta ccaccctggc cgctgaagcc gcactggacc atccgttgct 1920
<210> 50
<211> 549
<212> PRT
<213> Mycobacterium tuberculosis
<220>
<223> Mtb59
<400> 50
Met Ala Glu Leu Thr Ile Pro Ala Asp Asp Ile Gln Ser Ala Ile Glu
                                     10
```

- Glu Tyr Val Ser Ser Phe Thr Ala Asp Thr Ser Arg Glu Glu Val Gly
 20 25 30
- Thr Val Val Asp Ala Gly Asp Gly Ile Ala His Val Glu Gly Leu Pro
 35 40 45
- Ser Val Met Thr Gln Glu Leu Leu Glu Phe Pro Gly Gly Ile Leu Gly
 50 60
- Val Ala Leu Asn Leu Asp Glu His Ser Val Gly Ala Val Ile Leu Gly 65 70 75 80
- Asp Phe Glu Asn Ile Glu Glu Gly Gln Gln Val Lys Arg Thr Gly Glu
 85 90 95
- Val Leu Ser Val Pro Val Gly Asp Gly Phe Leu Gly Arg Val Val Asn 100 105 110
- Pro Leu Gly Gln Pro Ile Asp Gly Arg Gly Asp Val Asp Ser Asp Thr 115 120 125
- Arg Arg Ala Leu Glu Leu Gln Ala Pro Ser Val Val His Arg Gln Gly 130 135 140
- Val Lys Glu Pro Leu Gln Thr Gly Ile Lys Ala Ile Asp Ala Met Thr 145 150 155 160
- Pro Ile Gly Arg Gly Gln Arg Gln Leu Ile Ile Gly Asp Arg Lys Thr 165 170 175
- Gly Lys Thr Ala Val Cys Val Asp Thr Ile Leu Asn Gln Arg Gln Asn 180 185 190
- Trp Glu Ser Gly Asp Pro Lys Lys Gln Val Arg Cys Val Tyr Val Ala 195 200 205
- Ile Gly Gln Lys Gly Thr Thr Ile Ala Ala Val Arg Arg Thr Leu Glu 210 215 220
- Glu Gly Gly Ala Met Asp Tyr Thr Thr Ile Val Ala Ala Ala Ala Ser 225 230 235 240
- Glu Ser Ala Gly Phe Lys Trp Leu Ala Pro Tyr Thr Gly Ser Ala Ile 245 250 255
- Ala Gln His Trp Met Tyr Glu Gly Lys His Val Leu Ile Ile Phe Asp 260 265 270
- Asp Leu Thr Lys Gln Ala Glu Ala Tyr Arg Ala Ile Ser Leu Leu 275 280 285
- Arg Arg Pro Pro Gly Arg Glu Ala Tyr Pro Gly Asp Val Phe Tyr Leu 290 295 300
- His Ser Arg Leu Leu Glu Arg Cys Ala Lys Leu Ser Asp Asp Leu Gly 305 310 315
- Gly Gly Ser Leu Thr Gly Leu Pro Ile Ile Glu Thr Lys Ala Asn Asp 325 330 335

```
Ile Ser Ala Tyr Ile Pro Thr Asn Val Ile Ser Ile Thr Asp Gly Gln
             340
Cys Phe Leu Glu Thr Asp Leu Phe Asn Gln Gly Val Arg Pro Ala Ile
                             360
Asn Val Gly Val Ser Val Ser Arg Val Gly Gly Ala Ala Gln Ile Lys
Ala Met Lys Glu Val Ala Gly Ser Leu Arg Leu Asp Leu Ser Gln Tyr
                    390
                                         395
Arg Glu Leu Glu Ala Phe Ala Ala Phe Ala Ser Asp Leu Asp Ala Ala
                                     410
Ser Lys Ala Gln Leu Glu Arg Gly Ala Arg Leu Val Glu Leu Leu Lys
                                 425
Gln Pro Gln Ser Gln Pro Met Pro Val Glu Glu Gln Val Val Ser Ile
        435
                            440
Phe Leu Gly Thr Gly Gly His Leu Asp Ser Val Pro Val Glu Asp Val
                        455
Arg Arg Phe Glu Thr Glu Leu Leu Asp His Met Arg Ala Ser Glu Glu
                    470
Glu Ile Leu Thr Glu Ile Arg Asp Ser Gln Lys Leu Thr Glu Glu Ala
                                    490
Ala Asp Lys Leu Thr Glu Val Ile Lys Asn Phe Lys Lys Gly Phe Ala
            500
                                                    510
Ala Thr Gly Gly Ser Val Val Pro Asp Glu His Val Glu Ala Leu
Asp Glu Asp Lys Leu Ala Lys Glu Ala Val Lys Val Lys Pro Ala
    530
                        535
Pro Lys Lys Lys
545
<210> 51
<211> 3523
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TbF14 fusion
     protein
<400> 51
atgcagcatc accaccatca ccacactgat cgcgtgtcgg tgggcaactt gcgcatcgct 60
cgggtgctct acgacttcgt gaacaatgaa gccctgcctg gcaccgatat cgacccggac 120
agcttctggg cgggcgtcga caaggtcgtc gccgacctga ccccgcagaa ccaagctctg 180
ttgaacgccc gcgacgagct gcaggcgcag atcgacaagt ggcaccggcg tcgggtgatc 240
gageceateg acatggatge etacegecag tteeteaceg agateggeta cetgetteec 300
gaacctgatg acttcaccat caccacgtcc ggtgtcgacg ctgagatcac cacgaccgcc 360
ggcccccagc tggtggtgcc ggtgctcaac gcgcggtttg ctctgaacgc qqccaacqct 420
cgctggggct ccctctacga cgccttgtat ggcaccgatg tcatccccga qaccqacqqc 480
```

```
gccgaaaaag gccccacgta caacaaggtt cgtggcgaca aggtgatcgc gtatgcccgc 540
 aagtteeteg aegaeagtgt teegetgteg tegggtteet ttggegaege caeeggttte 600
 acagtgcagg atggccagct cgtggttgcc ttgccggata agtccaccgg cctggccaac 660
 cccggccagt tcgccggcta caccggcgca gccgagtcgc cgacatcggt gctgctaatc 720
 aatcacggtt tgcacatcga gatcctgatc gatccggagt cgcaggtcgg caccaccgac 780
 cgggccggcg tcaaggacgt gatcctggaa tccgcgatca ccacgatcat ggacttcgag 840
 gactcggtgg ccgccgtgga cgccgccgac aaggtgctgg gttatcggaa ctggctcggc 900
 ctgaacaagg gcgacctggc agcagcggta gacaaggacg gcaccgcttt cctgcgggtg 960
 ctcaataggg accggaacta caccgcaccc ggcggtggcc agttcacgct gcctggacgc 1020
 ageeteatgt tegteegeaa egteggteae ttgatgaega atgaegeeat egtegaeaet 1080
 gacggcagcg aggtgttcga aggcatcatg gatgçcctat tcaccggcct gatcgccatc 1140
 cacgggctaa aggccagcga cgtcaacggg ccgctgatca acagccgcac cggctccatc 1200
 tacatcgtca agccgaagat gcacggtccg gccgaggtgg cgtttacctg cgaactgttc 1260
agccgggttg aagatgtgct ggggttgccg caaaacacca tgaagatcgg catcatggac 1320
gaggaacgcc ggaccacggt caacctcaag gcgtgcatca aagctgccgc ggaccgcgtg 1380
gtgttcatca acaccgggtt cctggaccgc accggcgatg aaatccacac ctcgatggag 1440
gccggcccga tggtgcgcaa gggcaccatg aagagccagc cgtggatctt ggcctacgag 1500
gaccacaacg tcgatgccgg cctggccgcc gggttcagcg gccgagccca ggtcggcaag 1560
ggcatgtgga caatgaccga gctgatggcc gacatggtcg agacaaaaat cgcccagccg 1620
cgcgccgggg ccagcaccgc ctgggttccc tctcccactg cggccaccct gcatgcgctg 1680
cactaccacc aggtcgacgt cgccgcggtg caacaaggac tggcggggaa gcgtcgcgcc 1740
accatcgaac aattgctgac cattccgctg gccaaggaat tggcctgggc tcccgacgag 1800
atccgcgaag aggtcgacaa caactgtcaa tccatcctcg gctacgtggt tcgctgggtt 1860
gatcaaggtg teggetgete gaaggtgeee gacatecaeg aegtegeget catggaggae 1920
cgggccacgc tgcgaatctc cagccaattg ttggccaact ggctgcgcca cggtgtgatc 1980
accagegegg atgtgeggge cagettggag eggatggege egttggtega tegacaaaac 2040
gcgggcgacg tggcataccg accgatggca cccaacttcg acgacagtat cgccttcctg 2100
gccgcgcagg agctgatctt gtccggggcc cagcagccca acggctacac cgagccgatc 2160
ctgcaccgac gtcgtcggga gtttaaggcc cgggccgctg agaagccggc cccatcggac 2220
agggccggtg acgatgcggc cagggtgcag aagtacggcg gatcctcggt ggccgacgcc 2280
gaacggattc gccgcgtcgc cgaacgcatc gtcgccacca agaagcaagg caatgacgtc 2340
gtcgtcgtcg tctctgccat gggggatacc accgacgacc tgctggatct ggctcagcag 2400
gtgtgcccgg cgccgccc tcgggagctg gacatgctgc ttaccgccgg tgaacgcatc 2460
tcgaatgcgt tggtggccat ggccatcgag tcgctcggcg cgcatgcccg gtcgttcacc 2520
ggttcgcagg ccggggtgat caccaccggc acccacggca acgccaagat catcgacgtc 2580
acgccggggc ggctgcaaac cgcccttgag gaggggcggg tcgttttggt ggccggattc 2640
caaggggtca gccaggacac caaggatgtc acgacgttgg gccgcggcgg ctcggacacc 2700
accgccgtcg ccatggccgc cgcgctgggt gccgatgtct gtgagatcta caccgacgtg 2760
gacggcatct tcagcgccga cccgcgcatc gtgcgcaacg cccgaaagct cgacaccgtg 2820
gtggaatacg ctcgccgcca taatattccg gtgcacgtcc ggtcgtcgta ctcggacaga 2940
ccgggcaccg tcgttgtcgg atcgatcaag gacgtaccca tggaagaccc catcctgacc 3000
ggagtcgcgc acgaccgcag cgaggccaag gtgaccatcg tcgggctgcc cgacatcccc 3060
gggtatgcgg ccaaggtgtt tagggcggtg gccagacgcc gacgtcaaca tcgacatggt 3120
gctgcagaac gtctccaagg tcgaggacgg caagaccgac atcaccttca cctgctcccg 3180
cagacgtcgg gcccgccgcc gtggaaaaac tggactcgct cagaaacgag atcggcttct 3240
acacagetge tgtacgaega ceacategge aaggtatege tgateggtge eggeatgege 3300
agccaccccg gggtcaccgc gacgttctgt gaggcgctgg cggcggtggg ggtcaacatc 3360
gagctgatct ccacctcgga agatcagaga tctcggtgtt gtgccgcgac accgaactgg 3420
acaaggeegt ggtegegetg catgaagegt tegggetegg eggegaegag gaggeeaegg 3480
tgtacgcggg gacgggacgg tagatgggcc tgtcaatagt gaa
                                                                 3523
```

```
<210> 52
<211> 1172
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:TbF14 fusion protein
```

	0> 5 Gln		s His	s His		. His	s His	. Thr	Asp		, Val	. Sei	r Val	l Gly	/ Asn
Leu	Arg	, Ile	e Ala 20	Arg	y Val	. Leu	ı Tyr	Asp 25	Phe		Asn	ı Asr	ı Glu 30	ı Ala	Leu
Pro	Gly	Th:) Ile	a Asp	Pro	Asp 40		Phe	Trp	Ala	Gl _y		Asp	Lys
Val	Val 50	Ala	Asp	Leu	Thr	Pro 55		Asn	Gln	Ala	Leu 60		Asn	a Ala	Arg
Asp 65	Glu	Leu	Gln	Ala	Gln 70		Asp	Lys	Trp	His 75	Arg	Arg	Arg	y Val	Ile 80
Glu	Pro	Ile	Asp	Met 85		Ala	Tyr	Arg	Gln 90		Leu	Thr	Glu	Ile 95	Gly
Tyr	Leu	Leu	Pro 100		Pro	Asp	Asp	Phe 105	Thr	Ile	Thr	Thr	Ser 110		Val
Asp	Ala	Glu 115	Ile	Thr	Thr	Thr	Ala 120	Gly	Pro	Gln	Leu	Val 125	Val	Pro	Val
Leu	Asn 130	Ala	Arg	Phe	Ala	Leu 135	Asn	Ala	Ala	Asn	Ala 140	Arg	Trp	Gly	Ser
Leu 145	Tyr	Asp	Ala	Leu	Tyr 150	Gly	Thr	Asp	Val	Ile 155	Pro	Glu	Thr	Asp	Gly 160
Ala	Glu	Lys	Gly	Pro 165	Thr	Tyr	Asn	Lys	Val 170	Arg	Gly	Asp	Lys	Val 175	Ile
Ala	Tyr	Ala	Arg 180	Lys	Phe	Leu	Asp	Asp 185	Ser	Val	Pro	Leu	Ser 190	Ser	Gly
		195					200			Gln		205			
Val	Ala 210	Leu	Pro	Asp	Lys	Ser 215		Gly	Leu	Ala	Asn 220	Pro	Gly	Gln	Phe
Ala 225					230					235					240
Asn :				245					250					255	
Gly '			260					265					270		
Ile 1		275					280					285			
	290					295					300				
Asp 1	Leu 1	Ala	Ala		Val 310	Asp	Lys	Asp		Thr 315	Ala	Phe	Leu	Arg	Val 320

- Leu Asn Arg Asp Arg Asn Tyr Thr Ala Pro Gly Gly Gly Gln Phe Thr 325 330 335
- Leu Pro Gly Arg Ser Leu Met Phe Val Arg Asn Val Gly His Leu Met 340 345 350
- Thr Asn Asp Ala Ile Val Asp Thr Asp Gly Ser Glu Val Phe Glu Gly 355 360 365
- Ile Met Asp Ala Leu Phe Thr Gly Leu Ile Ala Ile His Gly Leu Lys 370 375 380
- Ala Ser Asp Val Asn Gly Pro Leu Ile Asn Ser Arg Thr Gly Ser Ile 385 390 395 400
- Tyr Ile Val Lys Pro Lys Met His Gly Pro Ala Glu Val Ala Phe Thr 405 410 415
- Cys Glu Leu Phe Ser Arg Val Glu Asp Val Leu Gly Leu Pro Gln Asn 420 425 430
- Thr Met Lys Ile Gly Ile Met Asp Glu Glu Arg Arg Thr Thr Val Asn 435 440 445
- Leu Lys Ala Cys Ile Lys Ala Ala Ala Asp Arg Val Val Phe Ile Asn 450 455 460
- Thr Gly Phe Leu Asp Arg Thr Gly Asp Glu Ile His Thr Ser Met Glu 465 470 475 480
- Ala Gly Pro Met Val Arg Lys Gly Thr Met Lys Ser Gln Pro Trp Ile 485 490 495
- Leu Ala Tyr Glu Asp His Asn Val Asp Ala Gly Leu Ala Ala Gly Phe 500 505 510
- Ser Gly Arg Ala Gln Val Gly Lys Gly Met Trp Thr Met Thr Glu Leu 515 520 525
- Met Ala Asp Met Val Glu Thr Lys Ile Ala Gln Pro Arg Ala Gly Ala 530 540
- Ser Thr Ala Trp Val Pro Ser Pro Thr Ala Ala Thr Leu His Ala Leu 545 550 555 560
- His Tyr His Gln Val Asp Val Ala Ala Val Gln Gln Gly Leu Ala Gly 565 570 575
- Lys Arg Arg Ala Thr Ile Glu Gln Leu Leu Thr Ile Pro Leu Ala Lys 580 585 590
- Glu Leu Ala Trp Ala Pro Asp Glu Ile Arg Glu Glu Val Asp Asn Asn 595 600 605
- Cys Gln Ser Ile Leu Gly Tyr Val Val Arg Trp Val Asp Gln Gly Val 610 620
- Gly Cys Ser Lys Val Pro Asp Ile His Asp Val Ala Leu Met Glu Asp 625 630 635 640

- Arg Ala Thr Leu Arg Ile Ser Ser Gln Leu Leu Ala Asn Trp Leu Arg 650 His Gly Val Ile Thr Ser Ala Asp Val Arg Ala Ser Leu Glu Arg Met 665 Ala Pro Leu Val Asp Arg Gln Asn Ala Gly Asp Val Ala Tyr Arg Pro Met Ala Pro Asn Phe Asp Asp Ser Ile Ala Phe Leu Ala Ala Gln Glu 695 Leu Ile Leu Ser Gly Ala Gln Gln Pro Asn Gly Tyr Thr Glu Pro Ile Leu His Arg Arg Arg Glu Phe Lys Ala Arg Ala Ala Glu Lys Pro 730 Ala Pro Ser Asp Arg Ala Gly Asp Asp Ala Ala Arg Val Gln Lys Tyr Gly Gly Ser Ser Val Ala Asp Ala Glu Arg Ile Arg Arg Val Ala Glu 760 Arg Ile Val Ala Thr Lys Lys Gln Gly Asn Asp Val Val Val Val Ser Ala Met Gly Asp Thr Thr Asp Asp Leu Leu Asp Leu Ala Gln Gln 790 Val Cys Pro Ala Pro Pro Pro Arg Glu Leu Asp Met Leu Leu Thr Ala 805 810 Gly Glu Arg Ile Ser Asn Ala Leu Val Ala Met Ala Ile Glu Ser Leu 825 Gly Ala His Ala Arg Ser Phe Thr Gly Ser Gln Ala Gly Val Ile Thr 835 Thr Gly Thr His Gly Asn Ala Lys Ile Ile Asp Val Thr Pro Gly Arg 855 Leu Gln Thr Ala Leu Glu Glu Gly Arg Val Val Leu Val Ala Gly Phe 865
- Gln Gly Val Ser Gln Asp Thr Lys Asp Val Thr Thr Leu Gly Arg Gly 885 890 895
- Gly Ser Asp Thr Thr Ala Val Ala Met Ala Ala Leu Gly Ala Asp 900 905 910
- Val Cys Glu Ile Tyr Thr Asp Val Asp Gly Ile Phe Ser Ala Asp Pro 915 920 925
- Arg Ile Val Arg Asn Ala Arg Lys Leu Asp Thr Val Thr Phe Glu Glu 930 935 940
- Met Leu Glu Met Ala Ala Cys Gly Ala Lys Val Leu Met Leu Arg Cys 945 950 955 960

```
Val Glu Tyr Ala Arg Arg His Asn Ile Pro Val His Val Arg Ser Ser
965 970 975
```

Tyr Ser Asp Arg Pro Gly Thr Val Val Val Gly Ser Ile Lys Asp Val 980 985 990

Pro Met Glu Asp Pro Ile Leu Thr Gly Val Ala His Asp Arg Ser Glu
995 1000 1005

Ala Lys Val Thr Ile Val Gly Leu Pro Asp Ile Pro Gly Tyr Ala Ala 1010 1015 1020

Lys Val Phe Arg Ala Val Ala Arg Arg Arg Gln His Arg His Gly 1025 1030 1035 1040

Ala Ala Glu Arg Leu Gln Gly Arg Gly Arg Gln Asp Arg His His Leu 1045 1050 1055

His Leu Leu Pro Gln Thr Ser Gly Pro Pro Pro Trp Lys Asn Trp Thr
1060 1065 1070

Arg Ser Glu Thr Arg Ser Ala Ser Thr Gln Leu Leu Tyr Asp Asp His 1075 1080 1085

Ile Gly Lys Val Ser Leu Ile Gly Ala Gly Met Arg Ser His Pro Gly 1090 1095 1100

Val Thr Ala Thr Phe Cys Glu Ala Leu Ala Ala Val Gly Val Asn Ile 1105 1110 1115 1120

Glu Leu Ile Ser Thr Ser Glu Asp Gln Arg Ser Arg Cys Cys Ala Ala 1125 1130

Thr Pro Asn Trp Thr Arg Pro Trp Ser Arg Cys Met Lys Arg Ser Gly 1140 1145 1150

Ser Ala Ala Thr Arg Arg Pro Arg Cys Thr Arg Gly Arg Asp Gly Arg 1155 1160 1165

Trp Ala Cys Gln 1170

<210> 53

<211> 2952

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:TbF15 fusion protein

<400> 53

atgggccatc atcatcat tcacgtgatc gacatcatcg ggaccagccc cacatcctgg 60 gaacaggcgg cggcggaggc ggtccagcgg gcgcgggata gcgtcgatga catccgcgtc 120 gctcgggtca ttgagcagga catggccgtg gacagcgcg gcaagatcac ctaccgcatc 180 aagctcgaag tgtcgttcaa gatgaggccg gcgcaaccga ggtgtggctc gaaaccaccg 240 agcggttcgc ctgaaacggg cgccggcgcc ggtactgtcg cgctgtcaa ccggtcgtcg 300 ccggtgacgt tggcggagac cggtagcacg ctgctctacc cgctgttcaa cctgtggggt 360 ccggcctttc acgaaggta tccgaacgtc acgatcaccg ctcagggcac cggttctggt 420 gccgggatcg cgcaggccgc cgccgggacg gtcaacattg gggcctccga cgcctatctg 480

```
teggaaggtg atatggeege geacaagggg etgatgaaca tegegetage cateteeget 540
cagcaggtca actacaacct gcccggagtg agcgagcacc tcaagctgaa cggaaaagtc 600
ctggcggcca tgtaccaggg caccatcaaa acctgggacg acccgcagat cgctgcgctc 660
aaccccggcg tgaacctgcc cggcaccgcg gtagttccgc tgcaccgctc cgacgggtcc 720
ggtgacacct tettgtteac ceagtacetg tecaageaag atecegaggg etggggeaag 780
tegecegget teggeaceae egtegaette eeggeggtge egggtgeget gggtgagaac 840
ggcaacggcg gcatggtgac cggttgcgcc gagacaccgg gctgcgtggc ctatatcggc 900
atcagettee tegaceagge cagteaacgg ggaeteggeg aggeecaact aggeaatage 960
tetggcaatt tettgttgee egaegegeaa ageatteagg eegeggegge tggettegea 1020
tcgaaaaccc cggcgaacca ggcgatttcg atgatcgacg ggcccgcccc ggacggctac 1080
ccgatcatca actacgagta cgccatcgtc aacaaccggc aaaaggacgc cgccaccgcg 1140
cagacettge aggeatttet geactgggeg ateacegaeg geaacaagge etegtteete 1200
gaccaggttc atttccagcc gctgccgccc gcggtggtga agttgtctga cgcgttgatc 1260
gcgacgattt ccagcgctga gatgaagacc gatgccgcta ccctcgcgca ggaggcaggt 1320
aatttegage ggateteegg egacetgaaa acceagateg accaggtgga gtegaeggea 1380
ggttcgttgc agggccagtg gcgcggcgcg gcggggacgg ccgcccaggc cgcggtggtg 1440
cgcttccaag aagcagccaa taagcagaag caggaactcg acgagatctc gacgaatatt 1500
cgtcaggccg gcgtccaata ctcgagggcc gacgaggagc agcagcaggc gctqtcctcq 1560
caaatgggct ttactcagtc gcagaccgtg acggtggatc agcaagagat tttgaacagg 1620
gccaacgagg tggaggccc gatggcggac ccaccgactg atgtccccat cacaccgtgc 1680
gaactcacgg cggctaaaaa cgccgcccaa cagctggtat tgtccgccga caacatgcgg 1740
gaatacctgg cggccggtgc caaagagcgg cagcgtctgg cgacctcgct gcgcaacgcg 1800
gccaaggcgt atggcgaggt tgatgaggag gctgcgaccg cgctggacaa cgacggcgaa 1860
ggaactgtgc aggcagaatc ggccggggcc gtcggagggg acagttcggc cgaactaacc 1920
gatacgccga gggtggccac ggccggtgaa cccaacttca tggatctcaa agaagcggca 1980
aggaagctcg aaacgggcga ccaaggcgca tcgctcgcgc actttgcgga tgggtggaac 2040
actttcaacc tgacgctgca aggcgacgtc aagcggttcc gggggtttga caactgggaa 2100
ggcgatgcgg ctaccgcttg cgaggcttcg ctcgatcaac aacggcaatg gatactccac 2160
atggccaaat tgagcgctgc gatggccaag caggctcaat atgtcgcgca gctgcacgtg 2220
tgggctaggc gggaacatcc gacttatgaa gacatagtcg ggctcgaacg gctttacgcg 2280
gaaaaccctt cggcccgcga ccaaattctc ccggtgtacg cggagtatca gcagaggtcg 2340
gagaaggtgc tgaccgaata caacaacaag gcagccctgg aaccggtaaa cccgccgaag 2400
cctcccccg ccatcaagat cgacccgcc ccgcctccgc aagagcaggg attgatcct 2460
ggcttcctga tgccgccgtc tgacggctcc ggtgtgactc ccggtaccgg gatgccagcc 2520
gcaccgatgg ttccgcctac cggatcgccg ggtggtggcc tcccggctga cacggcggcg 2580
cagctgacgt cggctgggcg ggaagccgca gcgctgtcgg gcgacgtggc ggtcaaagcg 2640
gcatcgctcg gtggcggtgg aggcggcggg gtgccgtcgg cgccgttggg atccgcgatc 2700
gggggcgccg aatcggtgcg gcccgctggc gctggtgaca ttgccggctt aggccaggga 2760
agggccggcg gcggcgccgc gctgggcggc ggtggcatgg gaatgccgat gggtgccgcg 2820
catcagggac aagggggcgc caagtccaag ggttctcagc aggaagacga ggcgctctac 2880
accgaggatc gggcatggac cgaggccgtc attggtaacc gtcggcgcca ggacagtaag 2940
                                                                  2952
gagtcgaagt ga
<210> 54
<211> 983
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TbF15 fusion
     protein
<400> 54
Met Gly His His His His His Val Ile Asp Ile Ile Gly Thr Ser
```

Pro Thr Ser Trp Glu Gln Ala Ala Ala Glu Ala Val Gln Arg Ala Arg

Asp Ser Val Asp Asp Ile Arg Val Ala Arg Val Ile Glu Gln Asp Met Ala Val Asp Ser Ala Gly Lys Ile Thr Tyr Arg Ile Lys Leu Glu Val Ser Phe Lys Met Arg Pro Ala Gln Pro Arg Cys Gly Ser Lys Pro Pro Ser Gly Ser Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro Ala Ser Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu 100 Tyr Pro Leu Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro 120 Asn Val Thr Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala 130 135 Gln Ala Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu 150 Ser Glu Gly Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His Leu Lys Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr 200 Ile Lys Thr Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly Val Asn Leu Pro Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser 225 Gly Asp Thr Phe Leu Phe Thr Gln Tyr Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val Pro Gly Ala Leu Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys Ala Glu Thr Pro Gly Cys Val Ala Tyr Ile Gly Ile Ser Phe Leu Asp Gln Ala Ser Gln Arg Gly Leu Gly Glu Ala Gln Leu Gly Asn Ser 315 Ser Gly Asn Phe Leu Leu Pro Asp Ala Gln Ser Ile Gln Ala Ala Ala 330

Ala Gly Phe Ala Ser Lys Thr Pro Ala Asn Gln Ala Ile Ser Met Ile

345

340

335

Asp Gly Pro Ala Pro Asp Gly Tyr Pro Ile Ile Asn Tyr Glu Tyr Ala Ile Val Asn Asn Arg Gln Lys Asp Ala Ala Thr Ala Gln Thr Leu Gln 375 380 Ala Phe Leu His Trp Ala Ile Thr Asp Gly Asn Lys Ala Ser Phe Leu Asp Gln Val His Phe Gln Pro Leu Pro Pro Ala Val Val Lys Leu Ser 410 Asp Ala Leu Ile Ala Thr Ile Ser Ser Ala Glu Met Lys Thr Asp Ala 425 Ala Thr Leu Ala Gln Glu Ala Gly Asn Phe Glu Arg Ile Ser Gly Asp 440 Leu Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln Ala Ala Val Val 470 Arg Phe Gln Glu Ala Ala Asn Lys Gln Lys Gln Glu Leu Asp Glu Ile 485 Ser Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg Ala Asp Glu Glu Gln Gln Ala Leu Ser Ser Gln Met Gly Phe Thr Gln Ser Gln 520 Thr Val Thr Val Asp Gln Gln Glu Ile Leu Asn Arg Ala Asn Glu Val 535 Glu Ala Pro Met Ala Asp Pro Pro Thr Asp Val Pro Ile Thr Pro Cys 545 550 560 Glu Leu Thr Ala Ala Lys Asn Ala Ala Gln Gln Leu Val Leu Ser Ala Asp Asn Met Arg Glu Tyr Leu Ala Ala Gly Ala Lys Glu Arg Gln Arg Leu Ala Thr Ser Leu Arg Asn Ala Ala Lys Ala Tyr Gly Glu Val Asp 600 Glu Glu Ala Ala Thr Ala Leu Asp Asn Asp Gly Glu Gly Thr Val Gln 610 Ala Glu Ser Ala Gly Ala Val Gly Gly Asp Ser Ser Ala Glu Leu Thr Asp Thr Pro Arg Val Ala Thr Ala Gly Glu Pro Asn Phe Met Asp Leu 645 Lys Glu Ala Arg Lys Leu Glu Thr Gly Asp Gln Gly Ala Ser Leu

670

665

- Ala His Phe Ala Asp Gly Trp Asn Thr Phe Asn Leu Thr Leu Gln Gly 675 680 685
- Asp Val Lys Arg Phe Arg Gly Phe Asp Asn Trp Glu Gly Asp Ala Ala 690 695 700
- Thr Ala Cys Glu Ala Ser Leu Asp Gln Gln Arg Gln Trp Ile Leu His 705 710 715 720
- Met Ala Lys Leu Ser Ala Ala Met Ala Lys Gln Ala Gln Tyr Val Ala 725 730 735
- Gln Leu His Val Trp Ala Arg Arg Glu His Pro Thr Tyr Glu Asp Ile 740 745 750
- Val Gly Leu Glu Arg Leu Tyr Ala Glu Asn Pro Ser Ala Arg Asp Gln
 755 760 765
- Ile Leu Pro Val Tyr Ala Glu Tyr Gln Gln Arg Ser Glu Lys Val Leu 770 775 780
- Thr Glu Tyr Asn Asn Lys Ala Ala Leu Glu Pro Val Asn Pro Pro Lys
 785 790 795 800
- Pro Pro Pro Ala Ile Lys Ile Asp Pro Pro Pro Pro Pro Gln Glu Gln 805 810 815
- Gly Leu Ile Pro Gly Phe Leu Met Pro Pro Ser Asp Gly Ser Gly Val 820 825 830
- Thr Pro Gly Thr Gly Met Pro Ala Ala Pro Met Val Pro Pro Thr Gly 835 840 845
- Ser Pro Gly Gly Leu Pro Ala Asp Thr Ala Ala Gln Leu Thr Ser 850 855 860
- Ala Gly Arg Glu Ala Ala Ala Leu Ser Gly Asp Val Ala Val Lys Ala 865 870 875 880
- Ala Ser Leu Gly Gly Gly Gly Gly Gly Val Pro Ser Ala Pro Leu 885 890 895
- Gly Ser Ala Ile Gly Gly Ala Glu Ser Val Arg Pro Ala Gly Ala Gly 900 905 910
- Asp Ile Ala Gly Leu Gly Gln Gly Arg Ala Gly Gly Ala Ala Leu 915 920 925
- Gly Gly Gly Met Gly Met Pro Met Gly Ala Ala His Gln Gly Gln 930 935 940
- Gly Gly Ala Lys Ser Lys Gly Ser Gln Gln Glu Asp Glu Ala Leu Tyr 945 950 955 960
- Thr Glu Asp Arg Ala Trp Thr Glu Ala Val Ile Gly Asn Arg Arg Arg . 965 970 975
- Gln Asp Ser Lys Glu Ser Lys 980

```
<210> 55
<400> 55
000
<210> 56
<400> 56
000
<210> 57
<211> 2232
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: fusion protein
      HTCC#1(184-392)-TbH9-HTCC#1(1-129)
<220>
<221> CDS
<222> (4)..(2226)
<400> 57
cat atg cat cac cat cac cat gtg gcg gac atc atc aag ggc
    Met His His His His His Asp Val Ala Asp Ile Ile Lys Gly
acc ctc gga gaa gtg tgg gag ttc atc aca aac gcg ctc aac ggc ctg
Thr Leu Gly Glu Val Trp Glu Phe Ile Thr Asn Ala Leu Asn Gly Leu
                                     25
aaa gag ctt tgg gac aag ctc acg ggg tgg gtg acc gga ctg ttc tct
                                                                   144
Lys Glu Leu Trp Asp Lys Leu Thr Gly Trp Val Thr Gly Leu Phe Ser
cga ggg tgg tcg aac ctg gag tcc ttc ttt gcg ggc gtc ccc ggc ttg
                                                                   192
Arg Gly Trp Ser Asn Leu Glu Ser Phe Phe Ala Gly Val Pro Gly Leu
acc ggc gcg acc agc ggc ttg tcg caa gtg act ggc ttg ttc ggt gcg
                                                                   240
Thr Gly Ala Thr Ser Gly Leu Ser Gln Val Thr Gly Leu Phe Gly Ala
gcc ggt ctg tcc gca tcg tcg ggc ttg gct cac gcg gat agc ctg gcg
                                                                  288
Ala Gly Leu Ser Ala Ser Ser Gly Leu Ala His Ala Asp Ser Leu Ala
age tea gee age ttg eec gee etg gee gge att ggg gge ggg tee ggt
                                                                  336
Ser Ser Ala Ser Leu Pro Ala Leu Ala Gly Ile Gly Gly Ser Gly
                                    105
ttt ggg ggc ttg ccg agc ctg gct cag gtc cat gcc gcc tca act cgg
                                                                  384
Phe Gly Gly Leu Pro Ser Leu Ala Gln Val His Ala Ala Ser Thr Arg
            115
                                120
                                                    125
```

cag Gln	gcg Ala	cta Leu 130	Arg	ccc Pro	cga Arg	gct Ala	gat Asp 135	Gly	ccg Pro	gtc Val	ggc Gly	gcc Ala 140	gct Ala	gcc Ala	gag Glu	432
cag Gln	gtc Val 145	Gly	gly aaa	cag Gln	tcg Ser	cag Gln 150	Leu	gtc Val	tcc Ser	gcg Ala	cag Gln 155	ggt Gly	tcc Ser	caa Gln	ggt Gly	480
atg Met 160	ggc	gga Gly	ccc Pro	gta Val	ggc Gly 165	atg Met	ggc	ggc Gly	atg Met	cac His 170	ccc Pro	tct Ser	tcg Ser	Gly 393	gcg Ala 175	528
tcg Ser	aaa Lys	Gly aaa	acg Thr	acg Thr 180	acg Thr	aag Lys	aag Lys	tac Tyr	tcg Ser 185	gaa Glu	ggc Gly	gcg Ala	gcg Ala	gcg Ala 190	ggc Gly	576
act Thr	gaa Glu	gac Asp	gcc Ala 195	gag Glu	cgc Arg	gcg Ala	cca Pro	gtc Val 200	gaa Glu	gct Ala	gac Asp	gcg Ala	ggc Gly 205	ggt Gly	Gly 999	624
caa Gln	aag Lys	gtg Val 210	ctg Leu	gta Val	cga Arg	aac Asn	gtc Val 215	gtc Val	gaa Glu	ttc Phe	atg Met	gtg Val 220	gat Asp	ttc Phe	G1y 999	672
gcg Ala	tta Leu 225	cca Pro	ccg Pro	gag Glu	atc Ile	aac Asn 230	tcc Ser	gcg Ala	agg Arg	atg Met	tac Tyr 235	gcc Ala	ggc Gly	ccg Pro	ggt Gly	720
tcg Ser 240	gcc Ala	tcg Ser	ctg Leu	gtg Val	gcc Ala 245	gcg Ala	gct Ala	cag Gln	atg Met	tgg Trp 250	gac Asp	agc Ser	gtg Val	gcg Ala	agt Ser 255	768
gac Asp	ctg Leu	ttt Phe	tcg Ser	gcc Ala 260	gcg Ala	tcg Ser	gcg Ala	ttt Phe	cag Gln 265	tcg Ser	gtg Val	gtc Val	tgg Trp	ggt Gly 270	ctg Leu	816
acg Thr	gtg Val	gly aaa	tcg Ser 275	tgg Trp	ata Ile	ggt Gly	tcg Ser	tcg Ser 280	gcg Ala	ggt Gly	ctg Leu	atg Met	gtg Val 285	gcg Ala	gcg Ala	864
gcc Ala	tcg Ser	ccg Pro 290	tat Tyr	gtg Val	gcg Ala	tgg Trp	atg Met 295	agc Ser	gtc Val	acc Thr	gcg Ala	999 300	cag Gln	gcc Ala	gag Glu	912
ctg Leu	acc Thr 305	gcc Ala	gcc Ala	cag Gln	gtc Val	cgg Arg 310	gtt Val	gct Ala	gcg Ala	gcg Ala	gcc Ala 315	tac Tyr	gag Glu	acg Thr	gcg Ala	960
tat Tyr 320	gly aaa	ctg Leu	acg Thr	gtg Val	ccc Pro 325	ccg Pro	ccg Pro	gtg Val	atc Ile	gcc Ala 330	gag Glu	aac Asn	cgt Arg	gct Ala	gaa Glu 335	1008
ctg Leu	atg Met	att Ile	ctg Leu	ata Ile 340	gcg Ala	acc Thr	aac Asn	ctc Leu	ttg Leu 345	999 999	caa Gln	aac Asn	acc Thr	ccg Pro 350	gcg Ala	1056
atc Ile	gcg Ala	gtc Val	aac Asn 355	gag Glu	gcc Ala	gaa Glu	tac Tyr	ggc Gly 360	gag Glu	atg Met	tgg Trp	gcc Ala	caa Gln 365	gac Asp	gcc Ala	1104

gcc Ala	gcg Ala	atg Met 370	Phe	ggc	tac Tyr	gcc Ala	gcg Ala 375	gcg Ala	acg Thr	gcg Ala	acg Thr	gcg Ala 380	acg Thr	gcg Ala	acg Thr	1152
											agc Ser 395					1200
											gac Asp					1248
											caa Gln					1296
											ggt Gly					1344
											atg Met					1392
aac Asn	aac Asn 465	cac His	atg Met	tcg Ser	atg Met	acc Thr 470	aac Asn	tcg Ser	ggt Gly	gtg Val	tcg Ser 475	atg Met	acc Thr	aac Asn	acc Thr	1440
											gcg Ala					1488
											atg Met					1536
											gtg Val					1584
				_	_		_	_	_		ccg Pro	_	_		-	1632
											gcg Ala 555					1680
											cag Gln					1728
											ggt Gly					1776
											ccg Pro					1824

gcc ggc gat atc atg agc aga gcg ttc atc atc gat cca acg atc agt Ala Gly Asp Ile Met Ser Arg Ala Phe Ile Ile Asp Pro Thr Ile Ser 610 615 620	1872
gcc att gac ggc ttg tac gac ctt ctg ggg att gga ata ccc aac caa Ala Ile Asp Gly Leu Tyr Asp Leu Leu Gly Ile Gly Ile Pro Asn Gln 625 630 635	1920
ggg ggt atc ctt tac tcc tca cta gag tac ttc gaa aaa gcc ctg gag Gly Gly Ile Leu Tyr Ser Ser Leu Glu Tyr Phe Glu Lys Ala Leu Glu 640 645 650	1968
gag ctg gca gcg ttt ccg ggt gat ggc tgg tta ggt tcg gcc gcg Glu Leu Ala Ala Ala Phe Pro Gly Asp Gly Trp Leu Gly Ser Ala Ala 660 665 670	2016
gac aaa tac gcc ggc aaa aac cgc aac cac gtg aat ttt ttc cag gaa Asp Lys Tyr Ala Gly Lys Asn Arg Asn His Val Asn Phe Phe Gln Glu 675 680 685	2064
ctg gca gac ctc gat cgt cag ctc atc agc ctg atc cac gac cag gcc Leu Ala Asp Leu Asp Arg Gln Leu Ile Ser Leu Ile His Asp Gln Ala 690 695 700	2112
aac gcg gtc cag acg acc cgc gac atc ctg gag ggc gcc aag aaa ggt Asn Ala Val Gln Thr Thr Arg Asp Ile Leu Glu Gly Ala Lys Lys Gly 705 710 715	2160
ctc gag ttc gtg cgc ccg gtg gct gtg gac ctg acc tac atc ccg gtc Leu Glu Phe Val Arg Pro Val Ala Val Asp Leu Thr Tyr Ile Pro Val 720 725 730 735	2208
gtc ggg cac gcc cta taa gatatc Val Gly His Ala Leu 740	2232
<210> 58 <211> 740 <212> PRT <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: fusion protein HTCC#1(184-392)-TbH9-HTCC#1(1-129)	
<pre><400> 58 Met His His His His His Asp Val Ala Asp Ile Ile Lys Gly Thr 1 5 10 15</pre>	
Leu Gly Glu Val Trp Glu Phe Ile Thr Asn Ala Leu Asn Gly Leu Lys 20 25 30	
Glu Leu Trp Asp Lys Leu Thr Gly Trp Val Thr Gly Leu Phe Ser Arg 35 40 45	
Gly Trp Ser Asn Leu Glu Ser Phe Phe Ala Gly Val Pro Gly Leu Thr 50 55 60	
Gly Ala Thr Ser Gly Leu Ser Gln Val Thr Gly Leu Phe Gly Ala Ala 65 70 75 80	

- Gly Leu Ser Ala Ser Ser Gly Leu Ala His Ala Asp Ser Leu Ala Ser 85 90 95
- Ser Ala Ser Leu Pro Ala Leu Ala Gly Ile Gly Gly Gly Ser Gly Phe
 100 105 110
- Gly Gly Leu Pro Ser Leu Ala Gln Val His Ala Ala Ser Thr Arg Gln 115 120 125
- Ala Leu Arg Pro Arg Ala Asp Gly Pro Val Gly Ala Ala Ala Glu Gln 130 135 140
- Val Gly Gly Gln Ser Gln Leu Val Ser Ala Gln Gly Ser Gln Gly Met 145 150 155 160
- Gly Gly Pro Val Gly Met Gly Gly Met His Pro Ser Ser Gly Ala Ser 165 170 175
- Lys Gly Thr Thr Lys Lys Tyr Ser Glu Gly Ala Ala Gly Thr 180 185 190
- Glu Asp Ala Glu Arg Ala Pro Val Glu Ala Asp Ala Gly Gly Gln 195 200 205
- Lys Val Leu Val Arg Asn Val Val Glu Phe Met Val Asp Phe Gly Ala 210 215 220
- Leu Pro Pro Glu Ile Asn Ser Ala Arg Met Tyr Ala Gly Pro Gly Ser 225 230 235 240
- Ala Ser Leu Val Ala Ala Ala Gln Met Trp Asp Ser Val Ala Ser Asp 245 250 255
- Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser Val Val Trp Gly Leu Thr 260 265 270
- Val Gly Ser Trp Ile Gly Ser Ser Ala Gly Leu Met Val Ala Ala 275 280 285
- Ser Pro Tyr Val Ala Trp Met Ser Val Thr Ala Gly Gln Ala Glu Leu 290 295 300
- Thr Ala Ala Gln Val Arg Val Ala Ala Ala Ala Tyr Glu Thr Ala Tyr 305 310 315 320
- Gly Leu Thr Val Pro Pro Pro Val Ile Ala Glu Asn Arg Ala Glu Leu 325 330 335
- Met Ile Leu Ile Ala Thr Asn Leu Leu Gly Gln Asn Thr Pro Ala Ile 340 345 350
- Ala Val Asn Glu Ala Glu Tyr Gly Glu Met Trp Ala Gln Asp Ala Ala 355 360 365
- Ala Met Phe Gly Tyr Ala Ala Ala Thr Ala Thr Ala Thr Ala Thr Leu 370 380
- Leu Pro Phe Glu Glu Ala Pro Glu Met Thr Ser Ala Gly Gly Leu Leu 385 390 395 400

- Glu Gln Ala Ala Val Glu Glu Ala Ser Asp Thr Ala Ala Asn 405 410 415
- Gln Leu Met Asn Asn Val Pro Gln Ala Leu Gln Gln Leu Ala Gln Pro 420 425 430
- Thr Gln Gly Thr Thr Pro Ser Ser Lys Leu Gly Gly Leu Trp Lys Thr 435 440 445
- Val Ser Pro His Arg Ser Pro Ile Ser Asn Met Val Ser Met Ala Asn 450 455 460
- Asn His Met Ser Met Thr Asn Ser Gly Val Ser Met Thr Asn Thr Leu 465 470 475 480
- Ser Ser Met Leu Lys Gly Phe Ala Pro Ala Ala Ala Ala Gln Ala Val 485 490 495
- Gln Thr Ala Ala Gln Asn Gly Val Arg Ala Met Ser Ser Leu Gly Ser
- Ser Leu Gly Ser Ser Gly Leu Gly Gly Gly Val Ala Ala Asn Leu Gly 515 520 525
- Arg Ala Ala Ser Val Gly Ser Leu Ser Val Pro Gln Ala Trp Ala Ala 530 540
- Ala Asn Gln Ala Val Thr Pro Ala Ala Arg Ala Leu Pro Leu Thr Ser 545 550 555 560
- Leu Thr Ser Ala Ala Glu Arg Gly Pro Gly Gln Met Leu Gly Gly Leu 565 570 575
- Pro Val Gly Gln Met Gly Ala Arg Ala Gly Gly Gly Leu Ser Gly Val 580 585 590
- Leu Arg Val Pro Pro Arg Pro Tyr Val Met Pro His Ser Pro Ala Ala 595 600 605
- Gly Asp Ile Met Ser Arg Ala Phe Ile Ile Asp Pro Thr Ile Ser Ala 610 620
- Ile Asp Gly Leu Tyr Asp Leu Leu Gly Ile Gly Ile Pro Asn Gln Gly 625 630 635 640
- Gly Ile Leu Tyr Ser Ser Leu Glu Tyr Phe Glu Lys Ala Leu Glu Glu 645 650 655
- Leu Ala Ala Phe Pro Gly Asp Gly Trp Leu Gly Ser Ala Ala Asp 660 665 670
- Lys Tyr Ala Gly Lys Asn Arg Asn His Val Asn Phe Phe Gln Glu Leu 675 680 685
- Ala Asp Leu Asp Arg Gln Leu Ile Ser Leu Ile His Asp Gln Ala Asn 690 695 700
- Ala Val Gln Thr Thr Arg Asp Ile Leu Glu Gly Ala Lys Lys Gly Leu 705 710 715 720

Gly His Ala Leu <210> 59 <211> 2365 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: fusion protein HTCC#1(1-149)-TbH9-HTCC#1(161-392) <220> <221> CDS <222> (4)..(2355) <400> 59 cat atg cat cac cat cac cat cac atg agc aga gcg ttc atc atc gat Met His His His His His Met Ser Arg Ala Phe Ile Ile Asp cca acg atc agt gcc att gac ggc ttg tac gac ctt ctg ggg att gga Pro Thr Ile Ser Ala Ile Asp Gly Leu Tyr Asp Leu Leu Gly Ile Gly 20 ata ccc aac caa ggg ggt atc ctt tac tcc tca cta gag tac ttc gaa Ile Pro Asn Gln Gly Gly Ile Leu Tyr Ser Ser Leu Glu Tyr Phe Glu 35 40 45 aaa gcc ctg gag gag ctg gca gca gcg ttt ccg ggt gat ggc tgg tta 192 Lys Ala Leu Glu Glu Leu Ala Ala Ala Phe Pro Gly Asp Gly Trp Leu 50 55 ggt tcg gcc gcg gac aaa tac gcc ggc aaa aac cgc aac cac gtg aat 240 Gly Ser Ala Ala Asp Lys Tyr Ala Gly Lys Asn Arg Asn His Val Asn 65 70 ttt ttc cag gaa ctg gca gac ctc gat cgt cag ctc atc agc ctg atc 288 Phe Phe Gln Glu Leu Ala Asp Leu Asp Arg Gln Leu Ile Ser Leu Ile 80 85 cac gac cag gcc aac gcg gtc cag acg acc cgc gac atc ctg gag ggc His Asp Gln Ala Asn Ala Val Gln Thr Thr Arg Asp Ile Leu Glu Gly 100 gcc aag aaa ggt ctc gag ttc gtg cgc ccg gtg gct gtg gac ctg acc Ala Lys Lys Gly Leu Glu Phe Val Arg Pro Val Ala Val Asp Leu Thr 115 tac atc ccg gtc gtc ggg cac gcc cta tcg gcc gcc ttc cag gcg ccg 432 Tyr Ile Pro Val Val Gly His Ala Leu Ser Ala Ala Phe Gln Ala Pro 130 ttt tgc gcg ggc gcg atg gcc gta gtg ggc ggc gcg ctt aag ctt atg Phe Cys Ala Gly Ala Met Ala Val Val Gly Gly Ala Leu Lys Leu Met 145

Glu Phe Val Arg Pro Val Ala Val Asp Leu Thr Tyr Ile Pro Val Val

				tta Leu 165										528
				gcc Ala				Ala						576
				ctg Leu										624
				gtg Val										672
				tcg Ser										720
				acc Thr 245										768
				Gly ggg										816
				atg Met										864
				gcg Ala										912
				gcg Ala										960
 _		_	_	ctg Leu 325	_			 	-		-		_	1008
 				gag Glu	_	_	_	 _			_		_	1056
_	_			cag Gln	_	_				_		_		1104
				acg Thr										1152
 _		_	_	gtc Val	_	_		 _	_		_		_	1200

				aac Asn 405											1248
				agc Ser											1296
				caa Gln											1344
				tcg Ser											1392
				cgg Arg											1440
				gcc Ala 485											1488
				ctg Leu											1536
				ccg Pro											1584
	_			ctg Leu	_	_	_	_	_				_	_	1632
	_	_	_	ggc Gly	_							_		_	1680
				gtc Val 565											1728
 	_			aag Lys					_						1776
				ggc Gly	_					_	_		_		1824
				ttc Phe											1872
		_		ggc Gly	_					_		_	_		1920

gtg Val 640	act Thr	ggc Gly	ttg Leu	ttc Phe	ggt Gly 645	gcg Ala	gcc Ala	ggt Gly	ctg Leu	tcc Ser 650	gca Ala	tcg Ser	tcg Ser	ggc	ttg Leu 655	1968
gct Ala	cac His	gcg Ala	gat Asp	agc Ser 660	ctg Leu	gcg Ala	agc Ser	tca Ser	gcc Ala 665	agc Ser	ttg Leu	ccc Pro	gcc Ala	ctg Leu 670	gcc Ala	2016
	att Ile															2064
gtc Val	cat His	gcc Ala 690	gcc Ala	tca Ser	act Thr	cgg Arg	cag Gln 695	gcg Ala	cta Leu	cgg Arg	ccc Pro	cga Arg 700	gct Ala	gat Asp	ggc Gly	2112
ccg Pro	gtc Val 705	ggc Gly	gcc Ala	gct Ala	gcc Ala	gag Glu 710	cag Gln	gtc Val	ggc Gly	Gly 999	cag Gln 715	tcg Ser	cag Gln	ctg Leu	gtc Val	2160
tcc Ser 720	gcg Ala	cag Gln	ggt Gly	tcc Ser	caa Gln 725	ggt Gly	atg Met	ggc Gly	gga Gly	ccc Pro 730	gta Val	ggc Gly	atg Met	ggc Gly	ggc Gly 735	2208
atg Met	cac His	ccc Pro	tct Ser	tcg Ser 740	gly aaa	gcg Ala	tcg Ser	aaa Lys	999 Gly 745	acg Thr	acg Thr	acg Thr	aag Lys	aag Lys 750	tac Tyr	2256
	gaa Glu															2304
	gct Ala															2352
taa	cggc	gaat	tc													2365
<212	0> 60 1> 78 2> PR 3> Ar	3 T	.cial	Sec	_{[uenc}	e										
<220 <223	3> De		ptio (1-1								sion	prot	ein			
)> 60 His		His	His 5	His	His	Met	Ser	Arg 10	Ala	Phe	Ile	Ile	Asp 15	Pro	
Thr	Ile	Ser	Ala 20	Ile	Asp	Gly	Leu	Tyr 25	Asp	Leu	Leu	Gly	Ile 30	Gly	Ile	
Pro	Asn	Gln 35	Gly	Gly	Ile	Leu	Tyr 40	Ser	Ser	Leu	Glu	Tyr 45	Phe	Glu	Lys	
Ala	Leu 50	Glu	Glu	Leu	Ala	Ala 55	Ala	Phe	Pro	Gly	Asp 60	Gly	Trp	Leu	Gly	

Ser Ala Ala Asp Lys Tyr Ala Gly Lys Asn Arg Asn His Val Asn Phe Phe Gln Glu Leu Ala Asp Leu Asp Arg Gln Leu Ile Ser Leu Ile His 90 Asp Gln Ala Asn Ala Val Gln Thr Thr Arg Asp Ile Leu Glu Gly Ala 105 Lys Lys Gly Leu Glu Phe Val Arg Pro Val Ala Val Asp Leu Thr Tyr 120 Ile Pro Val Val Gly His Ala Leu Ser Ala Ala Phe Gln Ala Pro Phe 130 Cys Ala Gly Ala Met Ala Val Val Gly Gly Ala Leu Lys Leu Met Val 150 155 Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met Tyr Ala 170 Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Gln Met Trp Asp Ser 185 Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser Val Val 200 Trp Gly Leu Thr Val Gly Ser Trp Ile Gly Ser Ser Ala Gly Leu Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr Ala Gly Gln Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala Tyr Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro Pro Val Ile Ala Glu Asn 260 Arg Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met Trp Ala 290 Gln Asp Ala Ala Met Phe Gly Tyr Ala Ala Ala Thr Ala Thr Ala Thr Ala Thr Leu Leu Pro Phe Glu Glu Ala Pro Glu Met Thr Ser Ala 330 Gly Gly Leu Leu Glu Gln Ala Ala Ala Val Glu Glu Ala Ser Asp Thr Ala Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu Gln Gln 360 Leu Ala Gln Pro Thr Gln Gly Thr Thr Pro Ser Ser Lys Leu Gly Gly 370 375 380

Leu Trp 385	Lys	Thr	Val	Ser 390	Pro	His	Arg	Ser	Pro 395	Ile	Ser	Asn	Met	Val 400
Ser Met	Ala	Asn	Asn 405	His	Met	Ser	Met	Thr 410	Asn	Ser	Gly	Val	Ser 415	Met
Thr Asn	Thr	Leu 420	Ser	Ser	Met	Leu	Lys 425	Gly	Phe	Ala	Pro	Ala 430	Ala	Ala
Ala Gln	Ala 435	Val	Gln	Thr	Ala	Ala 440	Gln	Asn	Gly	Val	Arg 445	Ala	Met	Ser
Ser Leu 450	Gly	Ser	Ser	Leu	Gly 455	Ser	Ser	Gly	Leu	Gly 460	Gly	Gly	Val	Ala
Ala Asn 465	Leu	Gly	Arg	Ala 470	Ala	Ser	Val	Gly	Ser 475	Leu	Ser	Val	Pro	Gln 480
Ala Trp	Ala	Ala	Ala 485	Asn	Gln	Ala	Val	Thr 490	Pro	Ala	Ala	Arg	Ala 495	Leu
Pro Leu		500					505					510		
Leu Gly	515					520					525			
Leu Ser 530	-				535					540				
Ser Pro 545	Ala	Ala	Gly	Lys 550	Leu	Thr	Gln	Leu	Leu 555	Lys	Leu	Leu	Ala	Lys 560
Leu Ala			565					570					575	
Ala Asp		580	-				585					590		
Asn Ala	595		_		_	600					605			
Val Thr 610					615					620				
Ala Gly 625				630					635					640
Thr Gly			645					650					655	
His Ala		660					665					670		
Ile Gly	675					680					685			
His Ala 690	Ala	Ser	Thr	Arg	Gln 695	Ala	Leu	Arg	Pro	Arg 700	Ala	Asp	Gly	Pro

Val Gl 705	y Ala	Ala	Ala	Glu 710	Gln	Val	Gly	Gly	Gln 715	Ser	Gln	Leu	Val	Ser 720	
Ala Gl	n Gly	Ser	Gln 725	Gly	Met	Gly	Gly	Pro 730	Val	Gly	Met	Gly	Gly 735	Met	
His Pr	o Ser	Ser 740	Gly	Ala	Ser	Lys	Gly 745	Thr	Thr	Thr	Lys	Lys 750	Tyr	Ser	
Glu Gl	y Ala 755		Ala	Gly	Thr	Glu 760	Asp	Ala	Glu	Arg	Ala 765	Pro	Val	Glu	
Ala As		Gly	Gly	Gly	Gln 775	Lys	Val	Leu	Val	Arg 780	Asn	Val	Val		
<210><211><212><212><213>	2445 DNA	icia	l Se	quen	ce										
<220> <223>	Descr HTCC#									sion	pro	tein			
<220> <221> <222>		(243	9)												
<400> cat at Me															48
atc ct Ile Le															96
aaa ga Lys Gl	g ctt u Leu	tgg Trp 35	gac Asp	aag Lys	ctc Leu	acg Thr	999 Gly 40	tgg Trp	gtg Val	acc Thr	gga Gly	ctg Leu 45	ttc Phe	tct Ser	144
cga gg Arg Gl	g tgg y Trp 50	Ser	aac Asn	ctg Leu	gag Glu	tcc Ser 55	ttc Phe	ttt Phe	gcg Ala	ggc Gly	gtc Val 60	ccc Pro	ggc Gly	ttg Leu	192
acc gg Thr Gl	y Ālā														240
gcc gg Ala Gl 80															288
agc to Ser Se															336
ttt gg Phe Gl	g ggc y Gly	ttg Leu 115	ccg Pro	agc Ser	ctg Leu	gct Ala	cag Gln 120	gtc Val	cat His	gcc Ala	gcc Ala	tca Ser 125	act Thr	cgg Arg	384

		cta Leu 130													432
		ggc Gly													480
		gga Gly													528
_		Gly 999	_	_	_	_	_		_	_			 		576
		gac Asp													624
		gtg Val 210													672
		cca Pro													720
_	_	tcg Ser	_		_		_	_	_		_	_	 	_	768
		ttt Phe													816
		Gl aaa													864
		ccg Pro 290													912
		gcc Ala													960
		ctg Leu													1008
		att Ile													1056
		gtc Val													1104

gco Ala	gcg Ala	a Met	: Phe	ggo Gly	tao Tyi	gco Ala	gcg Ala 375	a Ala	g acg	g gcg	g acq a Thi	g gcg r Ala 380	a Thi	g gcg r Ala	g acg a Thr	1152
ttg Lev	cto Leu 385	ı Pro	tto Phe	gag Glu	gag Glu	g gcg Ala 390	Pro	g gag o Glu	g ato Met	g aco	ago Ser 395	c Ala	g ggt a Gly	/ Gl	g ctc / Leu	1200
cto Leu 400	Glu	g cag ı Gln	gcc Ala	gcc Ala	gcg Ala 405	. Val	gag Glu	g gag Glu	gco Ala	tco Ser 410	Asp	aco Thr	gco Ala	gcg Ala	g gcg Ala 415	1248
aac Asn	cag Gln	ttg Leu	atg Met	aac Asn 420	Asn	gtg Val	Pro	cag Gln	gcg Ala 425	Leu	g caa Gln	cag Glr	g ctg Leu	gcc Ala 430	cag Gln	1296
ccc Pro	acg Thr	cag Gln	ggc Gly 435	Thr	acg Thr	cct Pro	tct Ser	ser 440	Lys	ctg Leu	ggt Gly	ggc Gly	ctg Leu 445	Trp	aag Lys	1344
acg Thr	gtc Val	tcg Ser 450	ccg Pro	cat His	cgg Arg	tcg Ser	ccg Pro 455	atc Ile	agc Ser	aac Asn	atg Met	gtg Val 460	Ser	atg Met	gcc Ala	1392
aac Asn	aac Asn 465	cac His	atg Met	tcg Ser	atg Met	acc Thr 470	aac Asn	tcg Ser	ggt Gly	gtg Val	tcg Ser 475	Met	acc Thr	aac Asn	acc Thr	1440
ttg Leu 480	agc Ser	tcg Ser	atg Met	ttg Leu	aag Lys 485	ggc Gly	ttt Phe	gct Ala	ccg Pro	gcg Ala 490	gcg Ala	gcc Ala	gcc Ala	cag Gln	gcc Ala 495	1488
gtg Val	caa Gln	acc Thr	gcg Ala	gcg Ala 500	caa Gln	aac Asn	gly ggg	gtc Val	cgg Arg 505	gcg Ala	atg Met	agc Ser	tcg Ser	ctg Leu 510	ggc Gly	1536
agc Ser	tcg Ser	ctg Leu	ggt Gly 515	tct Ser	tcg Ser	ggt Gly	ctg Leu	ggc Gly 520	ggt Gly	Gly	gtg Val	gcc Ala	gcc Ala 525	aac Asn	ttg Leu	1584
ggt Gly	cgg Arg	gcg Ala 530	gcc Ala	tcg Ser	gtc Val	ggt Gly	tcg Ser 535	ttg Leu	tcg Ser	gtg Val	ccg Pro	cag Gln 540	gcc Ala	tgg Trp	gcc Ala	1632
gcg Ala	gcc Ala 545	aac Asn	cag Gln	gca Ala	gtc Val	acc Thr 550	ccg Pro	gcg Ala	gcg Ala	cgg Arg	gcg Ala 555	ctg Leu	ccg Pro	ctg Leu	acc Thr	1680
agc Ser 560	ctg Leu	acc Thr	agc Ser	gcc Ala	gcg Ala 565	gaa Glu	aga Arg	gly aaa	ccc Pro	999 Gly 570	cag Gln	atg Met	ctg Leu	ggc Gly	999 Gly 575	1728
ctg Leu	ccg Pro	gtg Val	ggg ggg	cag Gln 580	atg Met	ggc Gly	gcc Ala	agg Arg	gcc Ala 585	ggt Gly	ggt Gly	ggg Gly	ctc Leu	agt Ser 590	ggt Gly	1776
gtg Val	ctg Leu	Arg	gtt Val 595	ccg Pro	ccg Pro	cga Arg	Pro	tat Tyr 600	gtg Val	atg Met	ccg Pro	cat His	tct Ser 605	ccg Pro	gca Ala	1824

gcc Ala	ggc Gly	gat Asp 610	Ile	atg Met	g ago : Ser	aga Arg	gcg Ala 615	Phe	ato : Ile	ato : Ile	gat Asp	cca Pro 620	Thr	ato Ile	agt Ser	1872
gcc Ala	att Ile 625	Asp	ggc	ttg Leu	tac Tyr	gac Asp 630	Leu	ctg Leu	Gly ggg	att Ile	gga Gly 635	Ile	ccc Pro	aac Asn	caa Gln	1920
999 Gly 640	Gly	atc Ile	ctt Leu	tac Tyr	tcc Ser 645	Ser	cta Leu	gag Glu	tac Tyr	ttc Phe 650	Glu	aaa Lys	gcc Ala	ctg Leu	gag Glu 655	1968
gag Glu	ctg Leu	gca Ala	gca Ala	gcg Ala 660	Phe	ccg Pro	ggt Gly	gat Asp	ggc Gly 665	tgg Trp	tta Leu	ggt Gly	tcg Ser	gcc Ala 670	gcg Ala	2016
gac Asp	aaa Lys	tac Tyr	gcc Ala 675	ggc Gly	aaa Lys	aac Asn	cgc Arg	aac Asn 680	cac His	gtg Val	aat Asn	ttt Phe	ttc Phe 685	cag Gln	gaa Glu	2064
ctg Leu	gca Ala	gac Asp 690	ctc Leu	gat Asp	cgt Arg	cag Gln	ctc Leu 695	atc Ile	agc Ser	ctg Leu	atc Ile	cac His 700	gac Asp	cag Gln	gcc Ala	2112
aac Asn	gcg Ala 705	gtc Val	cag Gln	acg Thr	acc Thr	cgc Arg 710	gac Asp	atc Ile	ctg Leu	gag Glu	ggc Gly 715	gcc Ala	aag Lys	aaa Lys	ggt Gly	2160
ctc Leu 720	gag Glu	ttc Phe	gtg Val	cgc Arg	ccg Pro 725	gtg Val	gct Ala	gtg Val	gac Asp	ctg Leu 730	acc Thr	tac Tyr	atc Ile	ccg Pro	gtc Val 735	2208
gtc Val	gjà aaa	cac His	gcc Ala	cta Leu 740	tcg Ser	gcc Ala	gcc Ala	ttc Phe	cag Gln 745	gcg Ala	ccg Pro	ttt Phe	tgc Cys	gcg Ala 750	ggc Gly	2256
gcg Ala	atg Met	gcc Ala	gta Val 755	gtg Val	ggc Gly	ggc Gly	gcg Ala	ctt Leu 760	gcc Ala	tac Tyr	ttg Leu	gtc Val	gtg Val 765	aaa Lys	acg Thr	2304
ctg Leu	atc Ile	aac Asn 770	gcg Ala	act Thr	caa Gln	ctc Leu	ctc Leu 775	aaa Lys	ttg Leu	ctt Leu	gcc Ala	aaa Lys 780	ttg Leu	gcg Ala	gag Glu	2352
ttg Leu	gtc Val 785	gcg Ala	gcc Ala	gcc Ala	att Ile	gcg Ala 790	gac Asp	atc Ile	att Ile	tcg Ser	gat Asp 795	gtg Val	gcg Ala	gac Asp	atc Ile	2400
atc Ile 800	aag Lys	ggc Gly	atc Ile	ctc Leu	gga Gly 805	gaa Glu	gtg Val	tgg Trp	gag Glu	ttc Phe 810	atc Ile	taa	gata	tc		2445
<210	> 62															

<211> 811

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:fusion protein HTCC#1(184-392)-TbH9-HTCC#1(1-200)

- Gly Trp Ser Asn Leu Glu Ser Phe Phe Ala Gly Val Pro Gly Leu Thr 50 55 60
- Gly Ala Thr Ser Gly Leu Ser Gln Val Thr Gly Leu Phe Gly Ala Ala 65 70 75 80
- Gly Leu Ser Ala Ser Ser Gly Leu Ala His Ala Asp Ser Leu Ala Ser
- Ser Ala Ser Leu Pro Ala Leu Ala Gly Ile Gly Gly Gly Ser Gly Phe
 100 105 110
- Gly Gly Leu Pro Ser Leu Ala Gln Val His Ala Ala Ser Thr Arg Gln 115 120 125
- Ala Leu Arg Pro Arg Ala Asp Gly Pro Val Gly Ala Ala Ala Glu Gln 130 135 140
- Val Gly Gln Ser Gln Leu Val Ser Ala Gln Gly Ser Gln Gly Met 145 150 155 160
- Gly Gly Pro Val Gly Met Gly Gly Met His Pro Ser Gly Ala Ser 165 170 175
- Lys Gly Thr Thr Lys Lys Tyr Ser Glu Gly Ala Ala Ala Gly Thr 180 185 190
- Glu Asp Ala Glu Arg Ala Pro Val Glu Ala Asp Ala Gly Gly Gln
 195 200 205
- Lys Val Leu Val Arg Asn Val Val Glu Phe Met Val Asp Phe Gly Ala 210 215 220
- Leu Pro Pro Glu Ile Asn Ser Ala Arg Met Tyr Ala Gly Pro Gly Ser 225 230 235 240
- Ala Ser Leu Val Ala Ala Ala Gln Met Trp Asp Ser Val Ala Ser Asp 245 250 255
- Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser Val Val Trp Gly Leu Thr
 260 265 270
- Val Gly Ser Trp Ile Gly Ser Ser Ala Gly Leu Met Val Ala Ala Ala 275 280 285
- Ser Pro Tyr Val Ala Trp Met Ser Val Thr Ala Gly Gln Ala Glu Leu 290 295 300
- Thr Ala Ala Gln Val Arg Val Ala Ala Ala Ala Tyr Glu Thr Ala Tyr 305 310 315 320

Gly Leu Thr Val Pro Pro Pro Val Ile Ala Glu Asn Arg Ala Glu Leu 325 330 Met Ile Leu Ile Ala Thr Asn Leu Leu Gly Gln Asn Thr Pro Ala Ile 345 Ala Val Asn Glu Ala Glu Tyr Gly Glu Met Trp Ala Gln Asp Ala Ala Ala Met Phe Gly Tyr Ala Ala Ala Thr Ala Thr Ala Thr Leu 375 380 Leu Pro Phe Glu Glu Ala Pro Glu Met Thr Ser Ala Gly Gly Leu Leu 390 395 Glu Gln Ala Ala Ala Val Glu Glu Ala Ser Asp Thr Ala Ala Ala Asn 410 Gln Leu Met Asn Asn Val Pro Gln Ala Leu Gln Gln Leu Ala Gln Pro 420 425 Thr Gln Gly Thr Thr Pro Ser Ser Lys Leu Gly Gly Leu Trp Lys Thr 440 Val Ser Pro His Arg Ser Pro Ile Ser Asn Met Val Ser Met Ala Asn 450 455 Asn His Met Ser Met Thr Asn Ser Gly Val Ser Met Thr Asn Thr Leu 470 Ser Ser Met Leu Lys Gly Phe Ala Pro Ala Ala Ala Ala Gln Ala Val 485 490 Gln Thr Ala Ala Gln Asn Gly Val Arg Ala Met Ser Ser Leu Gly Ser Ser Leu Gly Ser Ser Gly Leu Gly Gly Val Ala Ala Asn Leu Gly 515 Arg Ala Ala Ser Val Gly Ser Leu Ser Val Pro Gln Ala Trp Ala Ala Ala Asn Gln Ala Val Thr Pro Ala Ala Arg Ala Leu Pro Leu Thr Ser 545 550 560 Leu Thr Ser Ala Ala Glu Arg Gly Pro Gly Gln Met Leu Gly Gly Leu Pro Val Gly Gln Met Gly Ala Arg Ala Gly Gly Leu Ser Gly Val 580 Leu Arg Val Pro Pro Arg Pro Tyr Val Met Pro His Ser Pro Ala Ala

635

640

Gly Asp Ile Met Ser Arg Ala Phe Ile Ile Asp Pro Thr Ile Ser Ala

Ile Asp Gly Leu Tyr Asp Leu Leu Gly Ile Gly Ile Pro Asn Gln Gly

610

625

Gly Ile Leu Tyr Ser Ser Leu Glu Tyr Phe Glu Lys Ala Leu Glu Glu 645 650 Leu Ala Ala Ala Phe Pro Gly Asp Gly Trp Leu Gly Ser Ala Ala Asp Lys Tyr Ala Gly Lys Asn Arg Asn His Val Asn Phe Phe Gln Glu Leu 680 Ala Asp Leu Asp Arg Gln Leu Ile Ser Leu Ile His Asp Gln Ala Asn 695 Ala Val Gln Thr Thr Arg Asp Ile Leu Glu Gly Ala Lys Lys Gly Leu 710 Glu Phe Val Arg Pro Val Ala Val Asp Leu Thr Tyr Ile Pro Val Val 725 730 Gly His Ala Leu Ser Ala Ala Phe Gln Ala Pro Phe Cys Ala Gly Ala Met Ala Val Val Gly Gly Ala Leu Ala Tyr Leu Val Val Lys Thr Leu 760 Ile Asn Ala Thr Gln Leu Leu Lys Leu Ala Lys Leu Ala Glu Leu 775 Val Ala Ala Ala Ile Ala Asp Ile Ile Ser Asp Val Ala Asp Ile Ile Lys Gly Ile Leu Gly Glu Val Trp Glu Phe Ile 805 <210> 63 <211> 1629 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: fusion protein TbRa12-HTCC#1 <220> <221> CDS <222> (4)..(1623) <400> 63 cat atg cat cac cat cac acg gcc gcg tcc gat aac ttc cag 48 Met His His His His His Thr Ala Ala Ser Asp Asn Phe Gln ctg tcc cag ggt ggg cag gga ttc gcc att ccg atc ggg cag gcg atg 96 Leu Ser Gln Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met 20 25 gcg atc gcg ggc cag atc cga tcg ggt ggg ggg tca ccc acc gtt cat 144 Ala Ile Ala Gly Gln Ile Arg Ser Gly Gly Ser Pro Thr Val His 35 40

ato Ile	ggg Gly	g cct Pro) Thr	gcc Ala	tto Phe	cto Lev	ggc Gly 55	Leu	ggt Gly	gtt Val	gto Val	gac Asp	Asr	aac Asr	ggc Gly	192
aac Asn	ggc Gly 65	Ala	cga Arg	gto Val	caa Glm	cgc Arg 70	Val	gto Val	ggg Gly	g ago ⁄ Ser	gct Ala 75	Pro	gcg Ala	gca Ala	agt Ser	240
cto Leu 80	Gly	ato Ile	tcc Ser	acc Thr	ggc Gly 85	Asp	gtg Val	ato Ile	acc Thr	gcg Ala 90	Val	gac	ggc	gct Ala	ccg Pro 95	288
atc Ile	aac Asn	tcg Ser	gcc Ala	acc Thr 100	gcg Ala	atg Met	gcg Ala	gac Asp	gcg Ala 105	ctt Leu	aac Asn	ggg	cat His	cat His	Pro	336
ggt Gly	gac Asp	gtc Val	atc Ile 115	tcg Ser	gtg Val	acc Thr	tgg Trp	caa Gln 120	acc Thr	aag Lys	tcg Ser	ggc Gly	ggc Gly 125	Thr	cgt	384
aca Thr	gly aaa	aac Asn 130	Val	aca Thr	ttg Leu	gcc Ala	gag Glu 135	gga Gly	ccc Pro	ccg Pro	gcc Ala	gaa Glu 140	ttc Phe	cta Leu	gta Val	432
cct Pro	aga Arg 145	ggt Gly	tca Ser	atg Met	agc Ser	aga Arg 150	gcg Ala	ttc Phe	atc Ile	atc Ile	gat Asp 155	cca Pro	acg Thr	atc Ile	agt Ser	480
gcc Ala 160	att Ile	gac Asp	ggc	ttg Leu	tac Tyr 165	gac Asp	ctt Leu	ctg Leu	Gly aaa	att Ile 170	gga Gly	ata Ile	ccc Pro	aac Asn	caa Gln 175	528
Gly 999	ggt Gly	atc Ile	ctt Leu	tac Tyr 180	tcc Ser	tca Ser	cta Leu	gag Glu	tac Tyr 185	ttc Phe	gaa Glu	aaa Lys	gcc Ala	ctg Leu 190	gag Glu	576
gag Glu	ctg Leu	gca Ala	gca Ala 195	gcg Ala	ttt Phe	ccg Pro	ggt Gly	gat Asp 200	ggc Gly	tgg Trp	tta Leu	ggt Gly	tcg Ser 205	gcc Ala	gcg Ala	624
gac Asp	aaa Lys	tac Tyr 210	gcc Ala	ggc Gly	aaa Lys	aac Asn	cgc Arg 215	aac Asn	cac His	gtg Val	aat Asn	ttt Phe 220	ttc Phe	cag Gln	gaa Glu	672
ctg Leu	gca Ala 225	gac Asp	ctc Leu	gat Asp	cgt Arg	cag Gln 230	ctc Leu	atc Ile	agc Ser	ctg Leu	atc Ile 235	cac His	gac Asp	cag Gln	gcc Ala	720
aac Asn 240	gcg Ala	gtc Val	cag Gln	acg Thr	acc Thr 245	cgc Arg	gac Asp	atc Ile	ctg Leu	gag Glu 250	ggc Gly	gcc Ala	aag Lys	aaa Lys	ggt Gly 255	768
ctc Leu	gag Glu	ttc Phe	gtg Val	cgc Arg 260	ccg Pro	gtg Val	gct Ala	gtg Val	gac Asp 265	ctg Leu	acc Thr	tac Tyr	atc Ile	ccg Pro 270	gtc Val	816
gtc Val	G]À aaa	cac His	gcc Ala 275	cta Leu	tcg Ser	gcc Ala	Ala	ttc Phe 280	cag Gln	gcg Ala	ccg Pro	Phe	tgc Cys 285	gcg Ala	ggc Gly	864

gcg	g ato Met	g gcc : Ala 290	ı Val	gtg Val	ggc Gly	ggc Gly	gcg Ala 295	Let	gcc Ala	tac Tyr	ttg Lev	g gto Val 300	. Va]	g aaa Lys	acg Thr	912
cto Lev	ato Ile 305	: Asn	gcg Ala	act Thr	caa Gln	ctc Leu 310	Leu	aaa Lys	ttg Leu	ctt Leu	gcc Ala 315	Lys	ttg Lev	gcg Ala	g gag Glu	960
ttg Lev 320	ı Val	geg Ala	gcc Ala	gcc Ala	att Ile 325	Ala	gac Asp	ato Ile	att Ile	tcg Ser 330	Asp	gtg Val	gcg Ala	gac Asp	atc Ile 335	1008
ato Ile	aag Lys	ggc	atc Ile	ctc Leu 340	Gly	gaa Glu	gtg Val	tgg Trp	gag Glu 345	ttc Phe	ato	aca Thr	aac Asn	gcg Ala 350	ctc Leu	1056
aac Asn	ggc	ctg Leu	aaa Lys 355	Glu	ctt Leu	tgg Trp	gac Asp	aag Lys 360	Leu	acg Thr	gly ggg	tgg Trp	gtg Val 365	Thr	gga Gly	1104
ctg Leu	ttc Phe	tct Ser 370	cga Arg	gly ggg	tgg Trp	tcg Ser	aac Asn 375	ctg Leu	gag Glu	tcc Ser	ttc Phe	ttt Phe 380	Ala	ggc Gly	gtc Val	1152
ccc Pro	ggc Gly 385	ttg Leu	acc Thr	ggc Gly	gcg Ala	acc Thr 390	agc Ser	ggc Gly	ttg Leu	tcg Ser	caa Gln 395	gtg Val	act Thr	ggc Gly	ttg Leu	1200
ttc Phe 400	ggt Gly	gcg Ala	gcc Ala	ggt Gly	ctg Leu 405	tcc Ser	gca Ala	tcg Ser	tcg Ser	ggc Gly 410	ttg Leu	gct Ala	cac His	gcg Ala	gat Asp 415	1248
agc Ser	ctg Leu	gcg Ala	agc Ser	tca Ser 420	gcc Ala	agc Ser	ttg Leu	ccc Pro	gcc Ala 425	ctg Leu	gcc Ala	ggc Gly	att Ile	999 Gly 430	ggc Gly	1296
gly aaa	tcc Ser	ggt Gly	ttt Phe 435	ggg Gly	ggc Gly	ttg Leu	ccg Pro	agc Ser 440	ctg Leu	gct Ala	cag Gln	gtc Val	cat His 445	gcc Ala	gcc Ala	1344
tca Ser	act Thr	cgg Arg 450	cag Gln	gcg Ala	cta Leu	cgg Arg	ccc Pro 455	cga Arg	gct Ala	gat Asp	ggc Gly	ccg Pro 460	gtc Val	ggc Gly	gcc Ala	1392
gct Ala	gcc Ala 465	gag Glu	cag Gln	gtc Val	ggc Gly	999 Gly 470	cag Gln	tcg Ser	cag Gln	ctg Leu	gtc Val 475	tcc Ser	gcg Ala	cag Gln	ggt Gly	1440
tcc Ser 480	caa Gln	ggt Gly	atg Met	ggc Gly	gga Gly 485	ccc Pro	gta Val	ggc Gly	atg Met	ggc Gly 490	ggc Gly	atg Met	cac His	ccc Pro	tct Ser 495	1488
tcg Ser	Gly aaa	gcg Ala	tcg Ser	aaa Lys 500	gly aaa	acg Thr	acg Thr	acg Thr	aag Lys 505	aag Lys	tac Tyr	tcg Ser	gaa Glu	ggc Gly 510	gcg Ala	1536
gcg Ala	gcg Ala	ggc Gly	act Thr 515	gaa Glu	gac Asp	gcc Ala	gag Glu	cgc Arg 520	gcg Ala	cca Pro	gtc Val	gaa Glu	gct Ala 525	gac Asp	gcg Ala	1584

<210> 64 <211> 539

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:fusion protein
 TbRa12-HTCC#1

<400> 64

Met His His His His His Thr Ala Ala Ser Asp Asn Phe Gln Leu 1 5 10 15

Ser Gln Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala 20 25 30

Ile Ala Gly Gln Ile Arg Ser Gly Gly Gly Ser Pro Thr Val His Ile
35 40 45

Gly Pro Thr Ala Phe Leu Gly Leu Gly Val Val Asp Asn Asn Gly Asn 50 55 60

Gly Ala Arg Val Gln Arg Val Val Gly Ser Ala Pro Ala Ala Ser Leu 65 70 75 80

Gly Ile Ser Thr Gly Asp Val Ile Thr Ala Val Asp Gly Ala Pro Ile 85 90 95

Asn Ser Ala Thr Ala Met Ala Asp Ala Leu Asn Gly His His Pro Gly
100 105 110

Asp Val Ile Ser Val Thr Trp Gln Thr Lys Ser Gly Gly Thr Arg Thr 115 120 125

Gly Asn Val Thr Leu Ala Glu Gly Pro Pro Ala Glu Phe Leu Val Pro 130 135 140

Arg Gly Ser Met Ser Arg Ala Phe Ile Ile Asp Pro Thr Ile Ser Ala 145 150 155 160

Ile Asp Gly Leu Tyr Asp Leu Leu Gly Ile Gly Ile Pro Asn Gln Gly 165 170 175

Gly Ile Leu Tyr Ser Ser Leu Glu Tyr Phe Glu Lys Ala Leu Glu Glu 180 185 190

Leu Ala Ala Phe Pro Gly Asp Gly Trp Leu Gly Ser Ala Ala Asp 195 200 205

Lys Tyr Ala Gly Lys Asn Arg Asn His Val Asn Phe Phe Gln Glu Leu 210 215 220

Ala Asp Leu Asp Arg Gln Leu Ile Ser Leu Ile His Asp Gln Ala Asn 225 230 235 240

Ala Val Gln Thr Thr Arg Asp Ile Leu Glu Gly Ala Lys Lys Gly Leu Glu Phe Val Arg Pro Val Ala Val Asp Leu Thr Tyr Ile Pro Val Val 265 Gly His Ala Leu Ser Ala Ala Phe Gln Ala Pro Phe Cys Ala Gly Ala 280 Met Ala Val Val Gly Gly Ala Leu Ala Tyr Leu Val Val Lys Thr Leu Ile Asn Ala Thr Gln Leu Leu Lys Leu Ala Lys Leu Ala Glu Leu 310 Val Ala Ala Ile Ala Asp Ile Ile Ser Asp Val Ala Asp Ile Ile 325 330 Lys Gly Ile Leu Gly Glu Val Trp Glu Phe Ile Thr Asn Ala Leu Asn Gly Leu Lys Glu Leu Trp Asp Lys Leu Thr Gly Trp Val Thr Gly Leu 360 Phe Ser Arg Gly Trp Ser Asn Leu Glu Ser Phe Phe Ala Gly Val Pro 370 Gly Leu Thr Gly Ala Thr Ser Gly Leu Ser Gln Val Thr Gly Leu Phe Gly Ala Ala Gly Leu Ser Ala Ser Ser Gly Leu Ala His Ala Asp Ser Leu Ala Ser Ser Ala Ser Leu Pro Ala Leu Ala Gly Ile Gly Gly Ser Gly Phe Gly Gly Leu Pro Ser Leu Ala Gln Val His Ala Ala Ser Thr Arg Gln Ala Leu Arg Pro Arg Ala Asp Gly Pro Val Gly Ala Ala Ala Glu Gln Val Gly Gln Ser Gln Leu Val Ser Ala Gln Gly Ser 465 475 Gln Gly Met Gly Gly Pro Val Gly Met Gly Gly Met His Pro Ser Ser 490 Gly Ala Ser Lys Gly Thr Thr Lys Lys Tyr Ser Glu Gly Ala Ala 500 505 510 Ala Gly Thr Glu Asp Ala Glu Arg Ala Pro Val Glu Ala Asp Ala Gly 520 Gly Gly Gln Lys Val Leu Val Arg Asn Val Val 530 535

<400> 65

000

<210> 66

<400> 66

000

·<210> 67

<400> 67

000

<210> 68

<400> 68

000

<210> 69

<400> 69

000

<210> 70

<400> 70

000

<210> 71

<400> 71

000

<210> 72

<400> 72

000

<210> 73

<400> 73

000

<400> 74

000

<210> 75

<400> 75

000

<210> 76

<400> 76

000

<210> 77

<400> 77

000

<210> 78

<400> 78

000

<210> 79

<400> 79

000

<210> 80

<400> 80

000

<210> 81

<400> 81

000

<210> 82

<400> 82

000

<400> 83

000

<210> 84

<400> 84

000

<210> 85

<400> 85

000

<210> 86

<400> 86

000

<210> 87

<400> 87

000

<210> 88

<400> 88

000

<210> 89

<400> 89

000

<210> 90

<400> 90

000

<210> 91

<211> 8794

<212> DNA

<213> Artificial Sequence

<400> 91 tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60 cagogtgaco gotacacttg coagogocot agogocogot cotttogott tottocotto 120 etttetegee aegttegeeg gettteeeeg teaageteta aateggggge teeetttagg 180 gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240 acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300 ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360 ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420 acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480 tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540 teegeteatg aattaattet tagaaaaaet categageat caaatgaaae tgeaatttat 600 tcatatcagg attatcaata ccatattttt gaaaaagccg tttctgtaat gaaggagaaa 660 actcaccgag gcagttccat aggatggcaa gatcctggta tcggtctgcg attccgactc 720 gtccaacatc aatacaacct attaatttcc cctcgtcaaa aataaggtta tcaagtgaga 780 aatcaccatg agtgacgact gaatccggtg agaatggcaa aagtttatgc atttctttcc 840 agacttgttc aacaggccag ccattacgct cgtcatcaaa atcactcgca tcaaccaaac 900 cgttattcat tcgtgattgc gcctgagcga gacgaaatac gcgatcgctg ttaaaaggac 960 aattacaaac aggaatcgaa tgcaaccggc gcaggaacac tgccagcgca tcaacaatat 1020 tttcacctga atcaggatat tcttctaata cctggaatgc tgttttcccg gggatcgcag 1080 tggtgagtaa ccatgcatca tcaggagtac ggataaaatg cttgatggtc ggaagaggca 1140 taaattccgt cagccagttt agtctgacca tctcatctgt aacatcattg gcaacgctac 1200 ctttgccatg tttcagaaac aactctggcg catcgggctt cccatacaat cgatagattg 1260 tegeacetga ttgeeegaca ttategegag cecatttata eccatataaa teageateea 1320 tgttggaatt taatcgcggc ctagagcaag acgtttcccg ttgaatatgg ctcataacac 1380 cccttgtatt actgtttatg taagcagaca gttttattgt tcatgaccaa aatcccttaa 1440 cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 1500 gatcettttt ttetgegegt aatetgetge ttgeaaacaa aaaaaccace getaceageg 1560 gtggtttgtt tgccggatca agagctacca actettttte cgaaggtaac tggcttcage 1620 agagogoaga taccaaatac tgtccttcta gtgtagoogt agttaggoca ccacttcaag 1680 aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc 1740 agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 1800 cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 1860 accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 1920 aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt 1980 ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag 2040 cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg 2100 gcctttttac ggttcctggc cttttgctgg ccttttgctc acatgttctt tcctgcgtta 2160 teccetgatt etgtggataa eegtattace geetttgagt gagetgatae egetegeege 2220 agccgaacga ccgagcgcag cgagtcagtg agcgaggaag cggaagagcg cctgatgcgg 2280 tattttctcc ttacgcatct gtgcggtatt tcacaccgca tatatggtgc actctcagta 2340 caatctgctc tgatgccgca tagttaagcc agtatacact ccgctatcgc tacgtgactg 2400 ggtcatggct gcgccccgac acccgccaac acccgctgac gcgccctgac gggcttgtct 2460 gctcccggca tccgcttaca gacaagctgt gaccgtctcc gggagctgca tgtgtcagag 2520 gttttcaccg tcatcaccga aacgcgcgag gcagctgcgg taaagctcat cagcgtqqtc 2580 gtgaagcgat tcacagatgt ctgcctgttc atccgcgtcc agctcgttqa gtttctccaq 2640 aagcgttaat gtctggcttc tgataaagcg ggccatgtta agggcggttt tttcctqttt 2700 ggtcactgat gcctccgtgt aagggggatt tctgttcatg ggggtaatga taccgatgaa 2760 acgagagag atgctcacga tacgggttac tgatgatgaa catgcccggt tactggaacg 2820 ttgtgagggt aaacaactgg cggtatggat gcggcgggac cagagaaaaa tcactcaggg 2880 tcaatgccag cgcttcgtta atacagatgt aggtgttcca cagggtagcc agcagcatcc 2940 tgcgatgcag atccggaaca taatggtgca gggcgctgac ttccgcgttt ccagacttta 3000 cgaaacacgg aaaccgaaga ccattcatgt tgttgctcag gtcgcagacg ttttgcagca 3060 gcagtcgctt cacgttcgct cgcgtatcgg tgattcattc tgctaaccag taaggcaacc 3120 ccgccagcct agccgggtcc tcaacgacag gagcacgatc atgcgcaccc gtggggccgc 3180

catgccggcg ataatggcct gcttctcgcc gaaacgtttg gtggcgggac cagtgacgaa 3240 ggcttgagcg agggcgtgca agattccgaa taccgcaagc gacaggccga tcatcgtcgc 3300 gctccagcga aagcggtcct cgccgaaaat gacccagagc gctgccggca cctqtcctac 3360

```
gagttgcatg ataaagaaga cagtcataag tgcggcgacg atagtcatgc cccgcgccca 3420
ccggaaggag ctgactgggt tgaaggctct caagggcatc ggtcgagatc ccggtgccta 3480
atgagtgagc taacttacat taattgcgtt gcgctcactg cccgctttcc agtcgggaaa 3540
cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat 3600
tgggcgccag ggtggttttt cttttcacca gtgagacggg caacagctga ttgcccttca 3660
ccgcctggcc ctgagagagt tgcagcaagc ggtccacgct ggtttgcccc agcaggcgaa 3720
aatcctgttt gatggtggtt aacggcggga tataacatga gctgtcttcg gtatcgtcgt 3780
atcccactac cgagatatcc gcaccaacgc gcagcccgga ctcggtaatg gcgcgcattg 3840
cgcccagcgc catctgatcg ttggcaacca gcatcgcagt gggaacgatg ccctcattca 3900
gcatttgcat ggtttgttga aaaccggaca tggcactcca gtcgccttcc cgttccgcta 3960
teggetgaat ttgattgega gtgagatatt tatgeeagee ageeagaege agaegegeeg 4020
agacagaact taatgggccc gctaacagcg cgatttgctg gtgacccaat gcgaccagat 4080
gctccacgcc cagtcgcgta ccgtcttcat gggagaaaat aatactgttg atgggtgtct 4140
ggtcagagac atcaagaaat aacgccggaa cattagtgca ggcagcttcc acagcaatgg 4200
catcctggtc atccagcgga tagttaatga tcagcccact gacgcgttgc gcgagaagat 4260
tgtgcaccgc cgctttacag gcttcgacgc cgcttcgttc taccatcgac accaccacgc 4320
tggcacccag ttgatcggcg cgagatttaa tcgccgcgac aatttgcgac ggcgcgtgca 4380
gggccagact ggaggtggca acgccaatca gcaacgactg tttgcccgcc agttgttgtg 4440
ccacgcggtt gggaatgtaa ttcagctccg ccatcgccgc ttccactttt tcccgcgttt 4500
tcgcagaaac gtggctggcc tggttcacca cgcgggaaac ggtctgataa gagacaccgg 4560
catactetge gacategtat aacgttactg gtttcacatt caccaccetg aattgactet 4620
cttccgggcg ctatcatgcc ataccgcgaa aggttttgcg ccattcgatg gtgtccggga 4680
tetegaeget etecettatg egaeteetge attaggaage ageceagtag taggttgagg 4740
ccgttgagca ccgccgccgc aaggaatggt gcatgcaagg agatggcgcc caacagtccc 4800
ccggccacgg ggcctgccac catacccacg ccgaaacaag cgctcatgag cccgaagtgg 4860
cgagcccgat cttccccatc ggtgatgtcg gcgatatagg cgccagcaac cgcacctgtg 4920
gcgccggtga tgccggccac gatgcgtccg gcgtagagga tcgagatctc gatcccgcga 4980
aattaatacg actcactata ggggaattgt gagcggataa caattcccct ctagaaataa 5040
ttttgtttaa ctttaagaag gagatataca tatgcagcat caccaccatc accacactga 5100
tcgcgtgtcg gtgggcaact tgcgcatcgc tcgggtgctc tacgacttcg tgaacaatga 5160
agccctgcct ggcaccgata tcgacccgga cagcttctgg gcgggcgtcg acaargtcgt 5220
cgccgacctg accccgcaga accaagctct gttgaacgcc cgcgacgagc tgcaggcgca 5280
gatcgacaag tggcaccggc gtcgggtgat cgagcccatc gacatggatg cctaccgcca 5340
gttcctcacc gagatcggct acctgcttcc cgaacctgat gacttcacca tcaccacgtc 5400
cggtgtcgac gctgagatca ccacgaccgc cggcccccag ctggtggtgc cggtgctcaa 5460
cgcgcggttt gctctgaacg cggccaacgc tcgctggggc tccctctacg acgccttgta 5520
tggcaccgat gtcatccccg agaccgacgg cgccgaaaaa ggccccacgt acaacaaggt 5580
tegtggegae aaggtgateg egtatgeeeg caagtteete gaegaeagtg tteegetgte 5640
gtcgggttcc tttggcgacg ccaccggttt cacagtgcag gatggccagc tcgtggttgc 5700
cttgccggat aagtccaccg gcctggccaa ccccggccag ttcgccggct acaccggcgc 5760
agccgagtcg ccgacatcgg tgctgctaat caatcacggt ttgcacatcg agatcctgat 5820
cgatccggag tcgcaggtcg gcaccaccga ccgggccggc gtcaaggacg tgatcctgga 5880
atccgcgatc accacgatca tggacttcga ggactcggtg gccgccgtgg acgccgccga 5940
caaggtgctg ggttatcgga actggctcgg cctgaacaag ggcgacctgg cagcagcggt 6000
agacaaggac ggcaccgctt tcctgcgggt gctcaatagg gaccggaact acaccgcacc 6060
eggeggtgge cagtteacge tgeetggaeg cageeteatg ttegteegea acgteggtea 6120
cttgatgacg aatgacgcca tcgtcgacac tgacggcagc gaggtgttcg aaggcatcat 6180
ggatgcccta ttcaccggcc tgatcgccat ccacgggcta aaggccagcg acgtcaacgg 6240
gccgctgatc aacagccgca ccggctccat ctacatcgtc aagccgaaga tgcacggtcc 6300
ggccgaggtg gcgtttacct gcgaactgtt cagccgggtt gaagatgtgc tggggttgcc 6360
gcaaaacacc atgaagatcg gcatcatgga cgaggaacgc cggaccacgg tcaacctcaa 6420
ggcgtgcatc aaagctgccg cggaccgcgt ggtgttcatc aacaccgggt tcctggaccg 6480
caccggcgat gaaatccaca cctcgatgga ggccggcccg atggtgcgca agggcaccat 6540
gaagagccag ccgtggatct tggcctacga ggaccacaac gtcgatgccg gcctggccgc 6600
cgggttcagc ggccgagccc aggtcggcaa gggcatgtgg acaatgaccg agctgatggc 6660
cgacatggtc gagacaaaaa tcgcccagcc gcgcgcggg gccagcaccg cctgggttcc 6720
ctctcccact gcggccaccc tgcatgcgct gcactaccac caggtcgacg tcgccgcggt 6780
gcaacaagga ctggcgggga agcgtcgcgc caccatcgaa caattgctga ccattccgct 6840
ggccaaggaa ttggcctggg ctcccgacga gatccgcgaa gaggtcgaca acaactgtca 6900
atccatcctc ggctacgtgg ttcgctgggt tgatcaaggt gtcggctgct cgaaggtgcc 6960
cgacatccac gacgtcgcgc tcatggagga ccgggccacg ctgcgaatct ccagccaatt 7020
```

```
gttggccaac tggctgcgcc acggtgtgat caccagcgcg gatgtgcggg ccagcttgga 7080
gcggatggcg ccgttggtcg atcgacaaaa cgcgggcgac gtggcatacc gaccgatggc 7140
acccaacttc gacgacagta tcgccttcct ggccgcgcag gagctgatct tgtccggggc 7200
ccagcagccc aacggctaca ccgagccgat cctgcaccga cgtcgtcggg agtttaaggc 7260
ccgggccgct gagaagccgg ccccatcgga cagggccggt gacgatgcgg ccagggtgca 7320
gaagtacggc ggatcctcgg tggccgacgc cgaacggatt cgccgcgtcg ccgaacgcat 7380
cgtcgccacc aagaagcaag gcaatgacgt cgtcgtcgtc gtctctgcca tgggggatac 7440
caccgacgac ctgctggatc tggctcagca ggtgtgcccg gcgccgccgc ctcgggagct 7500
ggacatgctg cttaccgccg gtgaacgcat ctcgaatgcg ttggtggcca tggccatcga 7560
gtcgctcggc gcgcatgccc ggtcgttcac cggttcgcag gccggggtga tcaccaccgg 7620
cacccacggc aacgccaaga tcatcgacgt cacgccgggg cggctgcaaa ccgcccttga 7680
ggaggggggg gtcgttttgg tggccggatt ccaaggggtc agccaggaca ccaaggatgt 7740
cacgacgttg ggccgcggcg gctcggacac caccgccgtc gccatggccg ccgcgctggg 7800
tgccgatgtc tgtgagatct acaccgacgt ggacggcatc ttcagcgccg acccgcgcat 7860
cgtgcgcaac gcccgaaagc tcgacaccgt gaccttcgag gaaatgctcg agatggcggc 7920
ctgcggcgcc aaggtgctga tgctgcgctg cgtggaatac gctcgccgcc ataatattcc 7980
ggtgcacgtc cggtcgtcgt actcggacag accgggcacc gtcgttgtcg gatcgatcaa 8040
ggacgtaccc atggaagacc ccatcctgac cggagtcgcg cacgaccgca gcgaggccaa 8100
ggtgaccatc gtcgggctgc ccgacatccc cgggtatgcg gccaaggtgt ttagggcggt 8160
ggccagacgc cgacgtcaac atcgacatgg tgctgcagaa cgtctccaag gtcgaggacg 8220
gcaagaccga catcaccttc acctgctccc gcagacgtcg ggcccgccgc cgtggaaaaa 8280
ctggactege teagaaacga gateggette tacacagetg etgtacgaeg accaeategg 8340
caaggtatcg ctgatcggtg ccggcatgcg cagccacccc ggggtcaccg cgacgttctg 8400
tgaggcgctg gcggcggtgg gggtcaacat cgagctgatc tccacctcgg aagatcagag 8460
atctcggtgt tgtgccgcga caccgaactg gacaaggccg tggtcgcgct gcatgaagcg 8520
ctgtcaatag tgaattcatc gatgtgcaga tatccatcac actggcggcc gctcgagcac 8640
caccaccacc accactgaga tccggctgct aacaaagccc gaaaggaagc tgagttggct 8700
gctgccaccg ctgagcaata actagcataa ccccttgggg cctctaaacg ggtcttgagg 8760
ggttttttgc tgaaaggagg aactatatcc ggat
                                                                 8794
<210> 92
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:region encoding
     His tag
<400> 92
atgcagcatc accaccatca ccac
                                                                 24
<210> 93
<211> 8217
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: vector encoding
     TbF15
<400> 93
tggcgaatgg gacgcgcct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60
cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120
ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240
acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360
```

```
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
 acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480
 tcggggaaat gtgcgcggaa cccctatttg tttattttc taaatacatt caaatatgta 540
 teegeteatg aattaattet tagaaaaact categageat caaatgaaac tgeaatttat 600
 tcatatcagg attatcaata ccatatttt gaaaaagccg tttctgtaat gaaggagaaa 660
 actcaccgag gcagttccat aggatggcaa gatcctggta tcggtctgcg attccgactc 720
 gtccaacatc aatacaacct attaatttcc cctcgtcaaa aataaggtta tcaagtgaga 780
 aatcaccatg agtgacgact gaatccggtg agaatggcaa aagtttatgc atttctttcc 840
 agacttgttc aacaggccag ccattacgct cgtcatcaaa atcactcgca tcaaccaaac 900
 cgttattcat tcgtgattgc gcctgagcga gacgaaatac gcgatcgctg ttaaaaggac 960
 aattacaaac aggaatcgaa tgcaaccggc gcaggaacac tgccagcgca tcaacaatat 1020
 tttcacctga atcaggatat tcttctaata cctggaatgc tgttttcccg gggatcgcag 1080
 tggtgagtaa ccatgcatca tcaggagtac ggataaaatg cttgatggtc ggaagaggca 1140
 taaattccgt cagccagttt agtctgacca tctcatctgt aacatcattg gcaacgctac 1200
ctttgccatg tttcagaaac aactctggcg catcgggctt cccatacaat cgatagattg 1260
togcacotga ttgcccgaca ttatogcgag cocatttata cocatataaa tcagcatoca 1320
tgttggaatt taatcgcggc ctagagcaag acgtttcccg ttgaatatgg ctcataacac 1380
cccttgtatt actgtttatg taagcagaca gttttattgt tcatgaccaa aatcccttaa 1440
cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 1500
gatcettttt ttetgegegt aatetgetge ttgeaaacaa aaaaaceace getaceageg 1560
gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc 1620
agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag 1680
aactetgtag cacegeetae ataceteget etgetaatee tgttaceagt ggetgetgee 1740
agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 1800
cageggtegg getgaaeggg gggttegtge acaeageeca gettggageg aaegaeetae 1860
accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 1920
aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt 1980
ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag 2040
cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg 2100
gcctttttac ggttcctggc cttttgctgg ccttttgctc acatgttctt tcctgcgtta 2160
tcccctgatt ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgccgc 2220
agccgaacga ccgagcgcag cgagtcagtg agcgaggaag cggaagagcg cctgatgcgg 2280
tattttctcc ttacgcatct gtgcggtatt tcacaccgca tatatggtgc actctcagta 2340
caatctgctc tgatgccgca tagttaagcc agtatacact ccgctatcgc tacgtgactg 2400
ggtcatggct gcgccccgac acccgccaac acccgctgac gcgccctgac gggcttgtct 2460
gctcccggca tccgcttaca gacaagctgt gaccgtctcc gggagctgca tgtgtcagag 2520
gttttcaccg tcatcaccga aacgcgcgag gcagctgcgg taaagctcat cagcgtggtc 2580
gtgaagcgat tcacagatgt ctgcctgttc atccgcgtcc agctcgttga gtttctccag 2640
aagcgttaat gtctggcttc tgataaagcg ggccatgtta agggcggttt tttcctgttt 2700
ggtcactgat gcctccgtgt aagggggatt tctgttcatg ggggtaatga taccgatgaa 2760
acgagagagg atgctcacga tacgggttac tgatgatgaa catgcccggt tactggaacg 2820
ttgtgagggt aaacaactgg cggtatggat gcggcgggac cagagaaaaa tcactcaggg 2880
tcaatgccag cgcttcgtta atacagatgt aggtgttcca cagggtagcc agcagcatcc 2940
tgcgatgcag atccggaaca taatggtgca gggcgctgac ttccgcgttt ccagacttta 3000
cgaaacacgg aaaccgaaga ccattcatgt tgttgctcag gtcgcagacg ttttgcagca 3060
gcagtcgctt cacgttcgct cgcgtatcgg tgattcattc tgctaaccag taaggcaacc 3120
ccgccagcct agccgggtcc tcaacgacag gagcacgatc atgcgcaccc gtggggccgc 3180
catgccggcg ataatggcct gcttctcgcc gaaacgtttg gtggcgggac cagtgacgaa 3240
ggcttgagcg agggcgtgca agattccgaa taccgcaagc gacaggccga tcatcgtcgc 3300
gctccagcga aagcggtcct cgccgaaaat gacccagagc gctgccggca cctgtcctac 3360
gagttgcatg ataaagaaga cagtcataag tgcggcgacg atagtcatgc cccgcgccca 3420
ccggaaggag ctgactgggt tgaaggctct caagggcatc ggtcgagatc ccggtgccta 3480
atgagtgagc taacttacat taattgcgtt gcgctcactg cccgctttcc agtcgggaaa 3540
cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat 3600
tgggcgccag ggtggttttt cttttcacca gtgagacggg caacagctga ttgcccttca 3660
ccgcctggcc ctgagagagt tgcagcaagc ggtccacgct ggtttgcccc agcaggcgaa 3720
aatcctgttt gatggtggtt aacggcggga tataacatga gctgtcttcg gtatcgtcgt 3780
atcccactac cgagatatcc gcaccaacgc gcagcccgga ctcggtaatg gcgcgcattg 3840
cgcccagcgc catctgatcg ttggcaacca gcatcgcagt gggaacgatg ccctcattca 3900
gcatttgcat ggtttgttga aaaccggaca tggcactcca gtcgccttcc cgttccgcta 3960
teggetgaat ttgattgega gtgagatatt tatgeeagee ageeagaege agaegegeeg 4020
```

```
agacagaact taatgggccc gctaacagcg cgatttgctg gtgacccaat gcgaccagat 4080
 gctccacgcc cagtcgcgta ccgtcttcat gggagaaaat aatactgttg atgggtgtct 4140
 ggtcagagac atcaagaaat aacgccggaa cattagtgca ggcagcttcc acagcaatgg 4200
 catcctggtc atccagcgga tagttaatga tcagcccact gacgcgttgc gcgagaagat 4260
 tgtgcaccgc cgctttacag gcttcgacgc cgcttcgttc taccatcgac accaccacgc 4320
 tggcacccag ttgatcggcg cgagatttaa tcgccgcgac aatttgcgac ggcgcgtgca 4380
gggccagact ggaggtggca acgccaatca gcaacgactg tttgcccgcc agttgttgtg 4440
ccacgcggtt gggaatgtaa ttcagctccg ccatcgccgc ttccactttt tcccgcgttt 4500
tcgcagaaac gtggctggcc tggttcacca cgcgggaaac ggtctgataa gagacaccgg 4560
catactetge gacategtat aacgttactg gtttcacatt caccaccetg aattgactet 4620
cttccgggcg ctatcatgcc ataccgcgaa aggttttgcg ccattcgatg gtgtccggga 4680
tetegaeget etecettatg egaeteetge attaggaage ageceagtag taggttgagg 4740
ccgttgagca ccgccgccgc aaggaatggt gcatgcaagg agatggcgcc caacagtccc 4800
ccggccacgg ggcctgccac catacccacg ccgaaacaag cgctcatgag cccgaagtgg 4860
cgagcccgat cttccccatc ggtgatgtcg gcgatatagg cgccagcaac cgcacctgtg 4920
gcgccggtga tgccggccac gatgcgtccg gcgtagagga tcgagatctc gatcccgcga 4980
aattaatacg actcactata ggggaattgt gagcggataa caattcccct ctagaaataa 5040
ttttgtttaa ctttaagaag gagatataca tatgggccat catcatcatc atcacgtgat 5100
cgacatcatc gggaccagcc ccacatcctg ggaacaggcg gcggcggagg cggtccagcg 5160
ggcgcgggat agcgtcgatg acatccgcgt cgctcgggtc attgagcagg acatggccgt 5220
ggacagegee ggeaagatea cetacegeat caagetegaa gtgtegttea agatgaggee 5280
ggcgcaaccg aggtgtggct cgaaaccacc gagcggttcg cctgaaacgg gcgccggcgc 5340
cggtactgtc gcgactaccc ccgcgtcgtc gccggtgacg ttggcggaga ccggtagcac 5400
gctgctctac ccgctgttca acctgtgggg tccggccttt cacgagaggt atccgaacgt 5460
cacgatcacc gctcagggca ccggttctgg tgccgggatc gcgcaggccg ccgccgggac 5520
ggtcaacatt ggggcctccg acgcctatct gtcggaaggt gatatggccg cgcacaaggg 5580
gctgatgaac atcgcgctag ccatctccgc tcagcaggtc aactacaacc tgcccggagt 5640
gagcgagcac ctcaagctga acggaaaagt cctggcggcc atgtaccagg gcaccatcaa 5700
aacctgggac gacccgcaga tcgctgcgct caaccccggc gtgaacctgc ccggcaccgc 5760
ggtagttccg ctgcaccgct ccgacgggtc cggtgacacc ttcttgttca cccagtacct 5820
gtccaagcaa gatcccgagg gctggggcaa gtcgcccggc ttcggcacca ccgtcgactt 5880
cccggcggtg ccgggtgcgc tgggtgagaa cggcaacggc ggcatggtga ccggttgcgc 5940
cgagacaccg ggctgcgtgg cctatatcgg catcagcttc ctcgaccagg ccagtcaacg 6000
gggactcggc gaggcccaac taggcaatag ctctggcaat ttcttgttgc ccgacgcgca 6060
aagcattcag gccgcggcgg ctggcttcgc atcgaaaacc ccggcgaacc aggcgatttc 6120
gatgatcgac gggcccgccc cggacggcta cccgatcatc aactacgagt acgccatcgt 6180
caacaaccgg caaaaggacg ccgccaccgc gcagaccttg caggcatttc tgcactgggc 6240
gatcaccgac ggcaacaagg cctcgttcct cgaccaggtt catttccagc cgctgccgcc 6300
cgcggtggtg aagttgtctg acgcgttgat cgcgacgatt tccagcgctg agatgaagac 6360
cgatgccgct accetegege aggaggeagg taatttegag eggateteeg gegaeetgaa 6420
ggcggggacg gccgcccagg ccgcggtggt gcgcttccaa gaagcagcca ataagcagaa 6540
gcaggaactc gacgagatct cgacgaatat tcgtcaggcc ggcgtccaat actcgagggc 6600
cgacgaggag cagcagcagg cgctgtcctc gcaaatgggc tttactcagt cgcagaccgt 6660
gacggtggat cagcaagaga ttttgaacag ggccaacgag gtggaggccc cgatggcgga 6720
cccaccgact gatgtcccca tcacaccgtg cgaactcacg gcggctaaaa acgccgccca 6780
acagctggta ttgtccgccg acaacatgcg ggaatacctg gcggccggtg ccaaagagcg 6840
gcagcgtctg gcgacctcgc tgcgcaacgc ggccaaggcg tatggcgagg ttgatgagga 6900
ggctgcgacc gcgctggaca acgacggcga aggaactgtg caggcagaat cggccggggc 6960
cgtcggaggg gacagttcgg ccgaactaac cgatacgccg agggtggcca cggccggtga 7020
acccaacttc atggatctca aagaagcggc aaggaagctc gaaacgggcg accaaggcgc 7080
atcgctcgcg cactttgcgg atgggtggaa cactttcaac ctgacgctgc aaggcgacgt 7140
caageggtte egggggtttg acaactggga aggegatgeg getacegett gegaggette 7200
gctcgatcaa caacggcaat ggatactcca catggccaaa ttgagcgctg cgatggccaa 7260
gcaggctcaa tatgtcgcgc agctgcacgt gtgggctagg cgggaacatc cgacttatga 7320
agacatagtc gggctcgaac ggctttacgc ggaaaaccct tcggcccgcg accaaattct 7380
cccggtgtac gcggagtatc agcagaggtc ggagaaggtg ctgaccgaat acaacaacaa 7440
ggcagccctg gaaccggtaa acccgccgaa gcctccccc gccatcaaga tcgacccgcc 7500
cccgcctccg caagagcagg gattgatccc tggcttcctg atgccgccgt ctgacggctc 7560
cggtgtgact cccggtaccg ggatgccagc cgcaccgatg gttccgccta ccggatcgcc 7620
gggtggtggc ctcccggctg acacggcggc gcagctgacg tcggctgggc gggaagccgc 7680
```

```
agegetgteg ggegaegtgg eggteaaage ggeategete ggtggeggtg gaggeggegg 7740
 ggtgccgtcg gcgccgttgg gatccgcgat cgggggcgcc gaatcggtgc ggcccgctgg 7800
 cgctggtgac attgccggct taggccaggg aagggccggc ggcggcgccg cgctgggcgg 7860
 cggtggcatg ggaatgccga tgggtgccgc gcatcaggga caagggggcg ccaagtccaa 7920
 gggttctcag caggaagacg aggcgctcta caccgaggat cgggcatgga ccgaggccgt 7980
 cattggtaac cgtcggcgcc aggacagtaa ggagtcgaag tgaattctgc agatatccat 8040
 cacactggcg gccgctcgag caccaccacc accaccactg agatccggct gctaacaaag 8100
 cccgaaagga agctgagttg gctgctgcca ccgctgagca ataactagca taaccccttg 8160
gggcctctaa acgggtcttg aggggttttt tgctgaaagg aggaactata tccggat
 <210> 94
 <211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:nucleic acid
      sequence of HTCC#1 peptide 1 for T-cell epitope
      mapping
<400> 94
atgagcagag cgttcatcat cgatccaacg atcagtgcca ttgacggctt gtacgacctt 60
<210> 95
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:nucleic acid
      sequence of HTCC#1 peptide 2 for T-cell epitope
      mapping
<400> 95
attgacggct tgtacgacct tctggggatt ggaataccca accaaggggg tatcctttac 60
<210> 96
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: nucleic acid
      sequence of HTCC#1 peptide 3 for T-cell epitope
      mapping
<400> 96
aaccaagggg gtatccttta ctcctcacta gagtacttcg aaaaagccct ggaggagctg 60
<210> 97
<211> 60
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Description of Artificial Sequence:nucleic acid
       sequence of HTCC#1 peptide 4 for T-cell epitope
       mapping
 <400> 97
 gaaaaagccc tggaggagct ggcagcagcg tttccgggtg atggctggtt aggttcggcc 60
 <210> 98
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:nucleic acid
      sequence of HTCC#1 peptide 5 for T-cell epitope
      mapping
<400> 98
gatggctggt taggttcggc cgcggacaaa tacgccggca aaaaccgcaa ccacgtgaat 60
<210> 99
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: nucleic acid
      sequence of HTCC#1 peptide 6 for T-cell epitope
      mapping
aaaaaccgca accacgtgaa ttttttccag gaactggcag acctcgatcg tcagctcatc 60
<210> 100
<211> 60
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:nucleic acid
      sequence of HTCC#1 peptide 7 for T-cell epitope
      mapping
<400> 100
gacctcgatc gtcagctcat cagcctgatc cacgaccagg ccaacgcggt ccagacgacc 60
<210> 101
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:nucleic acid
      sequence of HTCC#1 peptide 8 for T-cell epitope
     mapping
```

```
<400> 101
gccaacgcgg tccagacgac ccgcgacatc ctggagggcg ccaagaaagg tctcqagttc 60
<210> 102
<211> 60
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: nucleic acid
      sequence of HTCC#1 peptide 9 for T-cell epitope
      mapping
<400> 102
gccaagaaag gtctcgagtt cgtgcgcccg gtggctgtgg acctgaccta catcccggtc 60
<210> 103
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:nucleic acid
      sequence of HTCC#1 peptide 10 for T-cell epitope
      mapping
<400> 103
gacctgacct acateceggt egtegggeac geectategg ceqeetteea ggegeegttt 60
<210> 104
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: nucleic acid
      sequence of HTCC#1 peptide 11 for T-cell epitope
      mapping
<400> 104
geogeettee aggogeegtt ttgegeggge gegatggeeg tagtgggegg egegettgee 60
<210> 105
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:nucleic acid
      sequence of HTCC#1 peptide 12 for T-cell epitope
      mapping
<400> 105
gtagtgggcg gcgcgcttgc ctacttggtc gtgaaaacgc tgatcaacgc gactcaactc 60
```

```
<210> 106
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: nucleic acid
       sequence of HTCC#1 peptide 13 for T-cell epitope
       mapping
 <400> 106
 ctgatcaacg cgactcaact cctcaaattg cttgccaaat tggcggagtt ggtcgcggcc 60
 <210> 107
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence:nucleic acid
       sequence of HTCC#1 peptide 14 for T-cell epitope
      mapping
 <400> 107
 ttggcggagt tggtcgcggc cgccattgcg gacatcattt cggatgtggc ggacatcatc 60
<210> 108
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:nucleic acid
      sequence of HTCC#1 peptide 15 for T-cell epitope
      mapping
<400> 108
tcggatgtgg cggacatcat caagggcatc ctcggagaag tgtgggagtt catcacaaac 60
<210> 109
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:nucleic acid
      sequence of HTCC#1 peptide 16 for T-cell epitope
      mapping
<400> 109
gtgtgggagt tcatcacaaa cgcgctcaac ggcctgaaag agctttggga caagctcacg 60
<210> 110
<211> 60
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Description of Artificial Sequence:nucleic acid
       sequence of HTCC#1 peptide 17 for T-cell epitope
       mapping
 <400> 110
 gagetttggg acaageteac ggggtgggtg accggactgt tetetegagg gtggtegaac 60
 <210> 111
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence:nucleic acid
       sequence of HTCC#1 peptide 18 for T-cell epitope
      mapping
 ttetetegag ggtggtegaa eetggagtee ttetttgegg gegteeeegg ettgaeegge 60
<210> 112
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: nucleic acid
      sequence of HTCC#1 peptide 19 for T-cell epitope
      mapping
<400> 112
ggcgtccccg gcttgaccgg cgcgaccagc ggcttgtcgc aagtgactgg cttgttcggt 60
<210> 113
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:nucleic acid
      sequence of HTCC#1 peptide 20 for T-cell epitope
      mapping
<400> 113
caagtgactg gettgttegg tgeggeeggt etgteegeat egtegggett ggeteaegeg 60
<210> 114
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:nucleic acid
      sequence of HTCC#1 peptide 21 for T-cell epitope
     mapping
```

```
<400> 114
 tcgtcgggct tggctcacgc ggatagcctg gcgagctcag ccagcttgcc cgccctggcc 60
 <210> 115
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence:nucleic acid
       sequence of HTCC#1 peptide 22 for T-cell epitope
       mapping
 <400> 115
gccagcttgc ccgccctggc cggcattggg ggcgggtccg gttttggggg cttgccgagc 60
<210> 116
 <211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:nucleic acid
      sequence of HTCC#1 peptide 23 for T-cell epitope
      mapping
<400> 116
ggttttgggg gcttgccgag cctggctcag gtccatgccg cctcaactcg gcaggcgcta 60
<210> 117
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:nucleic acid
      sequence of HTCC#1 peptide 24 for T-cell epitope
      mapping
<400> 117
gcctcaactc ggcaggcgct acggccccga gctgatggcc cggtcggcgc cgctgccgag 60
<210> 118
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:nucleic acid
      sequence of HTCC#1 peptide 25 for T-cell epitope
      mapping
<400> 118
ccggtcggcg ccgctgccga gcaggtcggc gggcagtcgc agctggtctc cgcgcagggt 60
```

```
<210> 119
 <211> 57
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: nucleic acid
       sequence of HTCC#1 peptide 26 for T-cell epitope
       mapping
<400> 119
cagctggtct ccgcgcaggg ttcccaaggt atgggcggac ccgtaggcat gggcggc
                                                                   57
<210> 120
<211> 60
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:nucleic acid
      sequence of HTCC#1 peptide 27 for T-cell epitope
      mapping
<400> 120
cccgtaggca tgggcggcat gcacccctct tcgggggcgt cgaaagggac gacgacgaag 60
<210> 121
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: nucleic acid
      sequence of HTCC#1 peptide 28 for T-cell epitope
      mapping
<400> 121
tcgaaaggga cgacgacgaa gaagtactcg gaaggcgcgg cggcgggcac tgaagacgcc 60
<210> 122
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:nucleic acid
      sequence of HTCC#1 peptide 29 for T-cell epitope
     mapping
<400> 122
gcggcgggca ctgaagacgc cgagcgcgcg ccagtcgaag ctgacgcggg cggtgggcaa 60
<210> 123
<211> 60
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Description of Artificial Sequence:nucleic acid
       sequence of HTCC#1 peptide 30 for T-cell epitope
       mapping
 <400> 123
cgcgcgccag tcgaagctga cgcgggcggt gggcaaaagg tgctggtacg aaacgtcgtc 60
<210> 124
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:HTCC#1 peptide
     · 1 for T-cell epitope mapping
<400> 124
Met Ser Arg Ala Phe Ile Ile Asp Pro Thr Ile Ser Ala Ile Asp Gly
                                      10
Leu Tyr Asp Leu
              20
<210> 125
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:HTCC#1 peptide
      2 for T-cell epitope mapping
<400> 125
Ile Asp Gly Leu Tyr Asp Leu Leu Gly Ile Gly Ile Pro Asn Gln Gly
                                      10
Gly Ile Leu Tyr
<210> 126
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: HTCC#1 peptide
      3 for T-cell epitope mapping
<400> 126
Asn Gln Gly Gly Ile Leu Tyr Ser Ser Leu Glu Tyr Phe Glu Lys Ala
                                      10
                                                          15
Leu Glu Glu Leu
             20
```

```
<210> 127
<211> 20
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:HTCC#1 peptide
      4 for T-cell epitope mapping
Glu Lys Ala Leu Glu Glu Leu Ala Ala Phe Pro Gly Asp Gly Trp
Leu Gly Ser Ala
<210> 128
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:HTCC#1 peptide
      5 for T-cell epitope mapping
<400> 128
Asp Gly Trp Leu Gly Ser Ala Ala Asp Lys Tyr Ala Gly Lys Asn Arg
                                     10
Asn His Val Asn
             20
<210> 129
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: HTCC#1 peptide
      6 for T-cell epitope mapping
<400> 129
Lys Asn Arg Asn His Val Asn Phe Phe Gln Glu Leu Ala Asp Leu Asp
                  5
Arg Gln Leu Ile
<210> 130
<211> 20
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:HTCC#1 peptide
      7 for T-cell epitope mapping
```

```
<400> 130
Asp Leu Asp Arg Gln Leu Ile Ser Leu Ile His Asp Gln Ala Asn Ala
                                      10
Val Gln Thr Thr
             20
<210> 131
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:HTCC#1 peptide
      8 for T-cell epitope mapping
<400> 131
Ala Asn Ala Val Gln Thr Thr Arg Asp Ile Leu Glu Gly Ala Lys Lys
                                      10
Gly Leu Glu Phe
<210> 132
<211> 20
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: HTCC#1 peptide
      9 for T-cell epitope mapping
Ala Lys Lys Gly Leu Glu Phe Val Arg Pro Val Ala Val Asp Leu Thr
                                      10
Tyr Ile Pro Val
             20
<210> 133
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:HTCC#1 peptide
      10 for T-cell epitope mapping
<400> 133
Asp Leu Thr Tyr Ile Pro Val Val Gly His Ala Leu Ser Ala Ala Phe
                                                          15
 1
                  5
                                      10
Gln Ala Pro Phe
             20
```

```
<210> 134
<211> 20
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:HTCC#1 peptide
      11 for T-cell epitope mapping
<400> 134
Ala Ala Phe Gln Ala Pro Phe Cys Ala Gly Ala Met Ala Val Val Gly
                  5
Gly Ala Leu Ala
<210> 135
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: HTCC#1 peptide
      12 for T-cell epitope mapping
<400> 135
Val Val Gly Gly Ala Leu Ala Tyr Leu Val Val Lys Thr Leu Ile Asn
                                      10
Ala Thr Gln Leu
             20
<210> 136
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:HTCC#1 peptide
      13 for T-cell epitope mapping
<400> 136
Leu Ile Asn Ala Thr Gln Leu Leu Lys Leu Ala Lys Leu Ala Glu
                  5
                                      10
                                                          15
Leu Val Ala Ala
             20
<210> 137
<211> 20
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: HTCC#1 peptide
      14 for T-cell epitope mapping
```

```
<400> 137
Leu Ala Glu Leu Val Ala Ala Ala Ile Ala Asp Ile Ile Ser Asp Val
                                     10
Ala Asp Ile Ile
<210> 138
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:HTCC#1 peptide
      15 for T-cell epitope mapping
<400> 138
Ser Asp Val Ala Asp Ile Ile Lys Gly Ile Leu Gly Glu Val Trp Glu
                  5
                                     10
Phe Ile Thr Asn
<210> 139
<211> 20
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:HTCC#1 peptide
      16 for T-cell epitope mapping
Val Trp Glu Phe Ile Thr Asn Ala Leu Asn Gly Leu Lys Glu Leu Trp
                                      10
Asp Lys Leu Thr
             20
<210> 140
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:HTCC#1 peptide
      17 for T-cell epitope mapping
<400> 140
Glu Leu Trp Asp Lys Leu Thr Gly Trp Val Thr Gly Leu Phe Ser Arg
                  5
Gly Trp Ser Asn
             20
```

```
<210> 141
<211> 20
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: HTCC#1 peptide
      18 for T-cell epitope mapping
Phe Ser Arg Gly Trp Ser Asn Leu Glu Ser Phe Phe Ala Gly Val Pro
Gly Leu Thr Gly
<210> 142
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:HTCC#1 peptide
      19 for T-cell epitope mapping
<400> 142
Gly Val Pro Gly Leu Thr Gly Ala Thr Ser Gly Leu Ser Gln Val Thr
Gly Leu Phe Gly
             20
<210> 143
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: HTCC#1 peptide
      20 for T-cell epitope mapping
<400> 143
Gln Val Thr Gly Leu Phe Gly Ala Ala Gly Leu Ser Ala Ser Ser Gly
Leu Ala His Ala
             20
<210> 144
<211> 20
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:HTCC#1 peptide
      21 for T-cell epitope mapping
```

```
<400> 144
Ser Ser Gly Leu Ala His Ala Asp Ser Leu Ala Ser Ser Ala Ser Leu
Pro Ala Leu Ala
<210> 145
<211> 20
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: HTCC#1 peptide
      22 for T-cell epitope mapping
<400> 145
Ala Ser Leu Pro Ala Leu Ala Gly Ile Gly Gly Gly Ser Gly Phe Gly
                                      10
Gly Leu Pro Ser
<210> 146
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: HTCC#1 peptide
      23 for T-cell epitope mapping
<400> 146
Gly Phe Gly Gly Leu Pro Ser Leu Ala Gln Val His Ala Ala Ser Thr
                                      10
Arg Gln Ala Leu
             20
<210> 147
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:HTCC#1 peptide
      24 for T-cell epitope mapping
<400> 147
Ala Ser Thr Arg Gln Ala Leu Arg Pro Arg Ala Asp Gly Pro Val Gly
                  5
                                      10
Ala Ala Ala Glu
             20
```

```
<210> 148
 <211> 20
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence:HTCC#1 peptide
       25 for T-cell epitope mapping
 Pro Val Gly Ala Ala Ala Glu Gln Val Gly Gln Ser Gln Leu Val
Ser Ala Gln Gly
<210> 149
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:HTCC#1 peptide
      26 for T-cell epitope mapping
<400> 149
Gln Leu Val Ser Ala Gln Gly Ser Gln Gly Met Gly Gly Pro Val Gly
Met Gly Gly
<210> 150
<211> 20
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:HTCC#1 peptide
      27 for T-cell epitope mapping
<400> 150
Pro Val Gly Met Gly Gly Met His Pro Ser Ser Gly Ala Ser Lys Gly
                                      10
Thr Thr Thr Lys
             20
<210> 151
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:HTCC#1 peptide
      28 for T-cell epitope mapping
```

```
<400> 151
 Ser Lys Gly Thr Thr Lys Lys Tyr Ser Glu Gly Ala Ala Ala Gly
                                      10
 Thr Glu Asp Ala
              20
 <210> 152
 <211> 20
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence:HTCC#1 peptide
       29 for T-cell epitope mapping
 Ala Ala Gly Thr Glu Asp Ala Glu Arg Ala Pro Val Glu Ala Asp Ala
 Gly Gly Gln
<210> 153
 <211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:HTCC#1 peptide
      30 for T-cell epitope mapping
<400> 153
Arg Ala Pro Val Glu Ala Asp Ala Gly Gly Gly Gln Lys Val Leu Val
Arg Asn Val Val
             20
<210> 154
<211> 84
<212> PRT
<213> Mycobacterium tuberculosis
<220>
<223> secreted form of DPPD
<400> 154
Asp Pro Pro Asp Pro His Gln Pro Asp Met Thr Lys Gly Tyr Cys Pro
Gly Gly Arg Trp Gly Phe Gly Asp Leu Ala Val Cys Asp Gly Glu Lys
             20
                                                     30
Tyr Pro Asp Gly Ser Phe Trp His Gln Trp Met Gln Thr Trp Phe Thr
         35
                                                 45
```

```
Gly Pro Gln Phe Tyr Phe Asp Cys Val Ser Gly Glu Pro Leu Pro
     50
Gly Pro Pro Pro Pro Gly Gly Cys Gly Gly Ala Ile Pro Ser Glu Gln
Pro Asn Ala Pro
<210> 155
<211> 2836
<212> DNA
<213> Mycobacterium tuberculosis
<220>
<223 > Mtb9.9A (MTI-A)
<220>
<221> modified base
<222> (1)..(2836)
<223> n = g, a, c or t
<400> 155
gttgatteeg ttegeggege egeegaagae eaceaactee getggggtgg tegeacagge 60
ggttgcgtcg gtcagctggc cgaatcccaa tgattggtgg ctcngtgcgg ttgctgggct 120
cgattacccc cacggaaagg acgacgatcg ttcgtttgct cggtcagtcg tacttggcga 180
cgggcatggc gcggtttctt acctcgatcg cacagcagct gaccttcggc ccagggggca 240
caacggctgg ctccggcgga gcctggtacc caacgccaca attcgccggc ctgggtqcaq 300
gcccggcggt gtcggcgagt ttggcgcggg cggagccggt cgggaggttg tcqqtqccqc 360
caagttgggc cgtcgcggct ccggccttcg cggagaagcc tgagqcgqqc acqccqatqt 420
ccgtcatcgg cgaagcgtcc agctgcggtc agggaggcct gcttcgagqc ataccqctqq 480
cgagagcggg gcggcgtaca ggcgccttcg ctcaccgata cgggttccqc cacaqcqtqa 540
ttacceggte teegteggeg ggatagettt egateeggte tgegeggeeg eeggaaatge 600
tgcagatagc gatcgaccgc gccggtcggt aaacqccqca cacqqcacta tcaatqcqca 660
cggcgggcgt tgatgccaaa ttgaccgtcc cgacggggct ttatctgcgg caagatttca 720
tccccagccc ggtcggtggg ccgataaata cgctggtcag cgcgactctt ccggctgaat 780
tegatgetet gggegeeege tegaegeega gtatetegag tgggeegeaa acceggteaa 840
acgctgttac tgtggcgtta ccacaggtga atttgcggtg ccaactggtg aacacttgcg 900
aacgggtggc atcgaaatca acttgttgcg ttgcagtgat ctactctctt gcagagagcc 960
gttgctggga ttaattggga gaggaagaca gcatgtcgtt cgtgaccaca cagccggaag 1020
ccctggcagc tgcggcggcg aacctacagg gtattggcac gacaatgaac gcccagaacg 1080
eggeegegge tgeteeaace aceggagtag tgeeegeage egeegatgaa gtateagege 1140
tgaccgcggc tcagtttgct gcgcacgcgc agatgtacca aacggtcagc gcccagqccq 1200
cggccattca cgaaatgttc gtgaacacgc tggtggccag ttctggctca tacgcggcca 1260
ccgaggcgc caacgcagcc gctgccggct gaacgggctc gcacgaacct gctgaaggag 1320
agggggaaca tccggagttc tcgggtcagg ggttgcgcca gcgcccagcc gattcagcta 1380
teggegteea taacageaga egatetagge atteagtact aaggagacag geaacatgge 1440
ctcacgtttt atgacggatc cgcatgcgat gcgggacatg gcgggccgtt ttgaggtgca 1500
cgcccagacg gtggaggacg aggctcgccg gatgtgggcg tccgcgcaaa acatttccgg 1560
tgcgggctgg agtggcatgg ccgaggcgac ctcgctagac accatgacct agatgaatca 1620
ggcgtttcgc aacatcgtga acatgctgca cggggtgcgt gacgggctgg ttcgcgacgc 1680
caacaactac gaacagcaag agcaggcctc ccagcagatc ctgagcagct agcgccgaaa 1740
gccacagctg cgtacgcttt ctcacattag gagaacacca atatgacgat taattaccag 1800
ttcggggacg tcgacgctca tggcgccatg atccgcgctc aggcggcgtc gcttgaggcg 1860
gagcatcagg ccatcgttcg tgatgtgttg gccgcgggtg acttttgggg cggcgcggt 1920
teggtggett geeaggagtt cattacecag ttgggeegta acttecaggt gatetacgag 1980
caggccaacg cccacgggca gaaggtgcag gctgccggca acaacatggc gcaaaccgac 2040
agegeegteg getecagetg ggeetaaaac tgaactteag tegeggeage acaccaacca 2100
gccggtgtgc tgctgtgtcc tgcagttaac tagcactcga ccgctgaggt agcgatggat 2160
caacagagta cccgcaccga catcaccgtc aacgtcgacg gcttctggat gcttcaggcg 2220
ctactggata tccgccacgt tgcgcctgag ttacgttgcc ggccgtacgt ctccaccgat 2280
```

```
tccaatgact ggctaaacga gcaccegggg atggcggtca tgcgcgagca gggcattgtc 2340
gtcaacgacg cggtcaacga acaggtcgct gcccggatga aggtgcttgc cgcacctgat 2400
cttgaagtcg tcgccctgct gtcacgcggc aagttgctgt acggggtcat agacgacgag 2460
aaccagcege egggttegeg tgacatecet gacaatgagt teegggtggt gttggeeegg 2520
cgaggccagc actgggtgtc ggcggtacgg gttggcaatg acatcaccgt cgatgacgtg 2580
acggtctcgg atagcgcctc gatcgccgca ctggtaatgg acggtctgga gtcgattcac 2640
cacgccgacc cagccgcgat caacgcggtc aacgtgccaa tggaggagat ctcgtgccga 2700
attcggcacg aggcacgagg cggtgtcggt gacgacggga tcgatcacga tcatcgaccg 2760
gccgggatcc ttggcgatct cgttgagcac gacccgggcc cgcgggaagc tctgcgacat 2820
ccatgggttc ttcccg
<210> 156
<211> 15
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: MtB9.9A (MTI-A)
      ORF peptide
<400> 156
Met Thr Ile Asn Tyr Gln Phe Gly Asp Val Asp Ala His Gly Ala
                  5
                                      10
<210> 157
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: MtB9.9A (MTI-A)
      ORF peptide
<400> 157
Gln Phe Gly Asp Val Asp Ala His Gly Ala Met Ile Arg Ala Gln
  1
                  5
<210> 158
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: MtB9.9A (MTI-A)
      ORF peptide
<400> 158
Asp Ala His Gly Ala Met Ile Arg Ala Gln Ala Ala Ser Leu Glu
                  5
                                     10
                                                          15
<210> 159
<211> 15
<212> PRT
<213> Artificial Sequence
```

```
<220>
 <223> Description of Artificial Sequence: MtB9.9A (MTI-A)
      ORF peptide
 <400> 159
 Met Ile Arg Ala Gln Ala Ala Ser Leu Glu Ala Glu His Gln Ala
                  5
                                     10
 <210> 160
 <211> 15
 <212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: MtB9.9A (MTI-A)
      ORF peptide
<400> 160
Ala Ala Ser Leu Glu Ala Glu His Gln Ala Ile Val Arg Asp Val
                 5
                                      10
<210> 161
<211> 15
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: MtB9.9A (MTI-A)
      ORF peptide
<400> 161
Ala Glu His Gln Ala Ile Val Arg Asp Val Leu Ala Ala Gly Asp
                                     10
<210> 162
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:MtB9.9A (MTI-A)
      ORF peptide
<400> 162
Ile Val Arg Asp Val Leu Ala Ala Gly Asp Phe Trp Gly Gly Ala
                5
<210> 163
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: MtB9.9A (MTI-A)
     ORF peptide
```

```
<400> 163
Leu Ala Ala Gly Asp Phe Trp Gly Gly Ala Gly Ser Val Ala Cys Gln
<210> 164
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:MtB9.9A (MTI-A)
      ORF peptide
<400> 164
Phe Trp Gly Gly Ala Gly Ser Val Ala Cys Gln Glu Phe Ile Thr
<210> 165
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: MtB9.9A (MTI-A)
      ORF peptide
<400> 165
Gly Ser Val Ala Cys Gln Glu Phe Ile Thr Gln Leu Gly Arg Asn
<210> 166
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: MtB9.9A (MTI-A)
      ORF peptide
<400> 166
Gln Glu Phe Ile Thr Gln Leu Gly Arg Asn Phe Gln Val Ile Tyr Glu
                                      10
                                                           15
Gln Ala
<210> 167
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: MtB9.9A (MTI-A)
      ORF peptide
```

```
<400> 167
 Arg Asn Phe Gln Val Ile Tyr Glu Gln Ala Asn Ala His Gly Gln
                  5
 <210> 168
 <211> 15
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: MtB9.9A (MTI-A)
      ORF peptide
<400> 168
 Ile Tyr Glu Gln Ala Asn Ala His Gly Gln Lys Val Gln Ala Ala
                                      10
<210> 169
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:MtB9.9A (MTI-A)
      ORF peptide
<400> 169
Asn Ala His Gly Gln Lys Val Gln Ala Ala Gly Asn Asn Met Ala
<210> 170
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: MtB9.9A (MTI-A)
      ORF peptide
<400> 170
Lys Val Gln Ala Ala Gly Asn Asn Met Ala Gln Thr Asp Ser Ala
                5
<210> 171
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:MtB9.9A (MTI-A)
     ORF peptide
<400> 171
Gly Asn Asn Met Ala Gln Thr Asp Ser Ala Val Gly Ser Ser Trp Ala
 1
                  5
                                     10
                                                          15
```

```
<210> 172
 <211> 15
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Mtb9.8 ORF
       peptide
 <400> 172
 Met Ser Leu Leu Asp Ala His Ile Pro Gln Leu Val Ala Ser Gln
                                       10
 <210> 173
 <211> 15
 <212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Mtb9.8 ORF
      peptide
<400> 173
Ala His Ile Pro Gln Leu Val Ala Ser Gln Ser Ala Phe Ala Ala
                   5
                                      10
<210> 174
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Mtb9.8 ORF
      peptide
<400> 174
Leu Val Ala Ser Gln Ser Ala Phe Ala Ala Lys Ala Gly Leu Met
                  5
                                      10
                                                           15
<210> 175
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Mtb9.8 ORF
      peptide
<400> 175
Ser Ala Phe Ala Ala Lys Ala Gly Leu Met Arg His Thr Ile Gly
                  5
                                      10
                                                           15
<210> 176
<211> 14
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Mtb9.8 ORF
      peptide
<400> 176
Lys Ala Gly Leu Met His Thr Ile Gly Gln Ala Glu Gln Ala
       . 5
<210> 177
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Mtb9.8 ORF
      peptide
<400> 177
Arg His Thr Ile Gly Gln Ala Glu Gln Ala Ala Met Ser Ala Gln
<210> 178
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Mtb9.8 ORF
      peptide
<400> 178
Gln Ala Glu Gln Ala Ala Met Ser Ala Gln Ala Phe His Gln Gly
                                      10
<210> 179
<211> 15
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Mtb9.8 ORF
      peptide
<400> 179
Ala Met Ser Ala Gln Ala Phe His Gln Gly Glu Ser Ser Ala Ala
                                     10
<210> 180
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Mtb9.8 ORF
     peptide
```

```
<400> 180
Ala Phe His Gln Gly Glu Ser Ser Ala Ala Phe Gln Ala Ala His
                 5
                                      10
<210> 181
<211> 15
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Mtb9.8 ORF
      peptide
<400> 181
Glu Ser Ser Ala Ala Phe Gln Ala Ala His Ala Arg Phe Val Ala
<210> 182
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Mtb9.8 ORF
      peptide
<400> 182
Phe Gln Ala Ala His Ala Arg Phe Val Ala Ala Ala Ala Lys Val
                  5
<210> 183
<211> 15
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Mtb9.8 ORF
      peptide
<400> 183
Ala Arg Phe Val Ala Ala Ala Lys Val Asn Thr Leu Leu Asp
                                      10
<210> 184
<211> 15
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Mtb9.8 ORF
      peptide
<400> 184
Ala Ala Ala Lys Val Asn Thr Leu Leu Asp Val Ala Gln Ala Asn
                  5
                                     10
```

```
<210> 185
<211> 15
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Mtb9.8 ORF
      peptide
<400> 185
Asn Thr Leu Leu Asp Val Ala Gln Ala Asn Leu Gly Glu Ala Ala
<210> 186
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Mtb9.8 ORF
      peptide
<400> 186
Val Ala Gln Ala Asn Leu Gly Glu Ala Ala Gly Thr Tyr Val Ala Ala
                  5
                                      10
Asp Ala
<210> 187
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PCR
      amplification primer PDM-294
<400> 187
cgtaatcacg tgcagaagta cggcggatc
                                                                    29
<210> 188
<211> 31
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PCR
      amplification primer PDM-295
<400> 188
ccgactagaa ttcactattg acaggcccat c
                                                                    31
<210> 189
<211> 30
<212> DNA
<213> Artificial Sequence
```

<220> <223>	Description of Artificial Sequence: PCR amplification primer PDM-268	
<400>		
ctaag	tagta ctgatcgcgt gtcggtgggc	30
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR amplification primer PDM-296	
<400>	190	
catcg	atagg cetggeegea tegteace	28
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:PCR amplification primer PDM-157	
<400>	191	
ctagt	tagta ctcagtcgca gaccgtg	27
<210>	102	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR	
	amplification primer PDM-160	
<400>	192	
gcagto	gacga attcacttcg actcc	25
-210 -	102	
<210>		
<211>		
<212>		
<21 3 >	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR amplification primer PDM-69	
<400>	193	
	cagcg ctgagatgaa gaccgatgcc gct	33

<210> <211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR	
	amplification primer PDM-83	
<400>	194	
ggatat	ctgc agaattcagg tttaaagccc atttgcga	38
<210>	195	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR amplification primer PDM-192	
	amplification primer FDM-192	
<400>	195	
tgtgg	ctcga aaccaccgag cggttc	26
<210>	196	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR	
	amplification primer PDM-60	
<400>	196	
	mattc tcagaagccc atttgcgagg aca	33
<210>	197	
<211>	51	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:PCR	
	oligonucleotide 5' primer	
<400>	197	
	acata tgcatcacca tcaccatcac atgagcagag cgttcatcat c	51
<210>	198	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: PCR	
	oligonucleotide 3' primer	

	00> tgga		gcc	gtta	gac	gacg	tttc	gt a								31
<2:	10> 1 11> 1 12> 1 13> 1	51 DNA	ficia	al So	eque	nce										
<22 <22	23 > I	Desci	ript:	ion o	of An	rtif: igon	icia: ucleo	l Sec	quenc	ce:P0 prin	CR ner					
	00> 1 ittad	-	tgca	atcad	cca t	tcaco	catca	ac ac	egged	egegt	c cc	gataa	actt	С		51
<21 <21	.0 > 2 .1 > 3 .2 > E	3 NA		.1. 0.												•
<21	.3> A	rcli	1018	ıl S∈	equer	ıce										
<22 <22	3 > D	escr mpli	ipti fica	on c	of Ar	tifi gonu	cial	. Seq otide	uenc 3'	e:PC prim	R ner					
	0> 2 atcg		tcgg	ccgg	igg g	ıtccc	tcgg	jc ca	.a							33
<21 <21	0 > 2 1 > 1 2 > D 3 > M	179 NA	acte	rium	tub	ercu	losi	s								
<22	1> C 2> ((117 1	9)												
	0 > 2															
atg Met 1	agc Ser	aga Arg	gcg Ala	ttc Phe 5	atc Ile	atc Ile	gat Asp	cca Pro	acg Thr 10	atc Ile	agt Ser	gcc Ala	att Ile	gac Asp 15	ggc Gly	48
ttg Leu	tac Tyr	gac Asp	ctt Leu 20	ctg Leu	ggg ggg	att Ile	gga Gly	ata Ile 25	ccc Pro	aac Asn	caa Gln	ggg Gly	ggt Gly 30	atc Ile	ctt Leu	96
cac Tyr	tcc Ser	tca Ser 35	cta Leu	gag Glu	tac Tyr	ttc Phe	gaa Glu 40	aaa Lys	gcc Ala	ctg Leu	gag Glu	gag Glu 45	ctg Leu	gca Ala	gca Ala	144
gcg Ala	ttt Phe 50	ccg Pro	ggt Gly	gat Asp	ggc Gly	tgg Trp 55	tta Leu	ggt Gly	tcg Ser	gcc Ala	gcg Ala 60	gac Asp	aaa Lys	tac Tyr	gcc Ala	192
gc Sly 65	aaa Lys	aac Asn	cgc Arg	aac Asn	cac His 70	gtg Val	aat Asn	ttt Phe	ttc Phe	cag Gln 75	gaa Glu	ctg Leu	gca Ala	gac Asp	ctc Leu 80	240

gat Asp	cg	t cag	g cta n Le	c at u Il 8	e Se	c cto	g ato u Ilo	c cad	c gad s As _l 90	p Gl	g gce n Ala	c aad a Asi	c gc	g gt a Va 9	c cag l Gln 5	288
acg Thr	Thi	c cgo	g Ası 100	5 TT6	c ct e Le	g gaq u Glu	g ggo	gco y Ala 105	a Lys	g aaa s Lys	a ggt s Gly	t cto / Lei	gaq 1 Gli 110	ı Ph	c gtg e Val	336
cgc Arg	Pro	g gtg Val	LAla	gte a Val	g gad l Ası	c cto p Lei	g aco 1 Thi 120	Tyr	ato Ile	c cce Pro	g gto Val	gto Val	Gly	g cad	c gcc s Ala	384
cta Leu	tcg Ser 130	. ATS	gco Ala	tto Phe	c cag e Glr	g gcg n Ala 135	Pro	ttt Phe	tgc Cys	gcg Ala	g ggc a Gly 140	/ Ala	ato Met	g gco	gta a Val	432
gtg Val 145	ggc	ggc	gcg Ala	g ctt Lei	gco Ala 150	ı Tyr	ttg Leu	g gto Val	gtg Val	aaa Lys 155	Thr	ctg Leu	ato Ile	aac Asr	gcg Ala 160	480
act Thr	caa Gln	cto Leu	cto Leu	aaa Lys 165	Leu	g ctt I Leu	gcc Ala	aaa Lys	ttg Leu 170	Ala	gag Glu	ttg Leu	gtc Val	gcg Ala	gcc Ala	528
gcc Ala	att Ile	gcg Ala	gac Asp 180	Ile	att Ile	tcg Ser	gat Asp	gtg Val 185	gcg Ala	gac Asp	atc Ile	atc Ile	aag Lys 190	Gly	atc Ile	576
ctc Leu	gga Gly	gaa Glu 195	gtg Val	tgg Trp	gag Glu	ttc Phe	atc Ile 200	aca Thr	aac Asn	gcg Ala	ctc Leu	aac Asn 205	ggc Gly	ctg Leu	aaa Lys	624
gag Glu	ctt Leu 210	tgg Trp	gac Asp	aag Lys	ctc Leu	acg Thr 215	gly 999	tgg Trp	gtg Val	acc Thr	gga Gly 220	ctg Leu	ttc Phe	tct Ser	cga Arg	672
ggg Gly 225	tgg Trp	tcg Ser	aac Asn	ctg Leu	gag Glu 230	tcc Ser	ttc Phe	ttt Phe	gcg Ala	ggc Gly 235	gtc Val	ccc Pro	ggc Gly	ttg Leu	acc Thr 240	720
ggc Gly	gcg Ala	acc Thr	agc Ser	ggc Gly 245	ttg Leu	tcg Ser	caa Gln	gtg Val	act Thr 250	ggc Gly	ttg Leu	ttc Phe	ggt Gly	gcg Ala 255	gcc Ala	768
ggt Gly	ctg Leu	tcc Ser	gca Ala 260	tcg Ser	tcg Ser	ggc Gly	ttg Leu	gcț Ala 265	cac His	gcg Ala	gat Asp	agc Ser	ctg Leu 270	gcg Ala	agc Ser	816
tca Ser	gcc Ala	agc Ser 275	ttg Leu	ccc Pro	gcc Ala	ctg Leu	gcc Ala 280	ggc Gly	att Ile	ggg Gly	ggc Gly	999 Gly 285	tcc Ser	ggt Gly	ttt Phe	864
Gly (ggc Gly 290	ttg Leu	ccg Pro	agc Ser	ctg Leu	gct Ala 295	cag Gln	gtc Val	cat His	gcc Ala	gcc Ala 300	tca Ser	act Thr	cgg Arg	cag Gln	912
gcg (Ala 1 305	cta Leu	cgg Arg	ccc Pro	cga Arg	gct Ala 310	gat Asp	ggc Gly	ccg Pro	Val	ggc Gly 315	gcc Ala	gct : Ala :	gcc Ala	gag Glu	cag Gln 320	960

gt Va	c gg l Gl	c gg y Gl	g ca y Gl	g to n Se: 32!	r Gli	g cto	g gt ı Va	c tc l Se	c gc r Al 33	a Gl	g gg n Gl	t tc y Se	c ca r Gl	a gg n Gl 33	t atg y Met 5	1008
gg Gl	c gg y Gl	a cc y Pr	c gt. o Va 34	l Gly	c ato / Met	Gl)	gg(c at / Me 34!	t Hi	c cc s Pr	c tc o Se:	t tc r Se:	g ggg r Gl _j 35	y Al	g tcg a Ser	1056
aa: Ly:	a ggg	g acg y Th: 35	r Th	g aco	g aag Lys	g aag Lys	tao Ty: 360	Se	g ga c Gl	a gg u Gl	c gcg	g gcg a Ala 369	a Ala	g gg a Gl	c act y Thr	1104
gaa Glu	a gad 1 Asp 370	O Ala	c gag a Glu	g cgo ı Arg	geg JAla	p cca Pro 375	Va]	gaa Glu	a gci	t gad a As _l	gcg Ala 380	a Gly	ggt Gl	ggg Gly	g caa / Gln	1152
aag Lys 385	Va]	g cto Lei	g gta ı Val	a cga L Arg	aac Asn 390	Val	gto Val	taa	ı							1179
<21 <21	.0> 2 .1> 3 .2> F	92 PRT	acte	rium	tub	ercu	losi	s								
	0 > 2			_,												
мес	ser	Arg	Ala	Phe 5	He	Ile	Asp	Pro	Thr 10		Ser	Ala	Ile	Asp 15	Gly	
Leu	Tyr	Asp	Leu 20	Leu	Gly	Ile	Gly	Ile 25	Pro	Asn	Gln	Gly	Gly 30		Leu	
Tyr	Ser	Ser 35	Leu	Glu	Tyr	Phe	Glu 40	Lys	Ala	Leu	Glu	Glu 45	Leu	Ala	Ala	
Ala	Phe 50	Pro	Gly	Asp	Gly	Trp 55	Leu	Gly	Ser	Ala	Ala 60	Asp	Lys	Tyr	Ala	
Gly 65	Lys	Asn	Arg	Asn	His 70	Val	Asn	Phe	Phe	Gln 75	Glu	Leu	Ala	Asp	Leu 80	
Asp	Arg	Gln	Leu	Ile 85	Ser	Leu	Ile	His	Asp 90	Gln	Ala	Asn	Ala	Val 95	Gln	
Thr	Thr	Arg	Asp 100	Ile	Leu	Glu	Gly	Ala 105	Lys	Lys	Gly	Leu	Glu 110	Phe	Val	
Arg	Pro	Val 115	Ala	Val	Asp	Leu	Thr 120	Tyr	Ile	Pro	Val	Val 125	Gly	His	Ala	
Leu	Ser 130	Ala	Ala	Phe	Gln	Ala 135	Pro	Phe	Cys	Ala	Gly 140	Ala	Met	Ala	Val	
Val 145	Gly	Gly	Ala	Leu	Ala 150	Tyr	Leu	Val	Val	Lys 155	Thr	Leu	Ile	Asn	Ala 160	
Thr	Gln	Leu	Leu	Lys 165	Leu	Leu .	Ala	Lys	Leu 170	Ala	Glu	Leu	Val	Ala 175	Ala	

- Ala Ile Ala Asp Ile Ile Ser Asp Val Ala Asp Ile Ile Lys Gly Ile 180 185 190
- Leu Gly Glu Val Trp Glu Phe Ile Thr Asn Ala Leu Asn Gly Leu Lys 195 200 205
- Glu Leu Trp Asp Lys Leu Thr Gly Trp Val Thr Gly Leu Phe Ser Arg 210 215 220
- Gly Trp Ser Asn Leu Glu Ser Phe Phe Ala Gly Val Pro Gly Leu Thr 225 230 235 240
- Gly Ala Thr Ser Gly Leu Ser Gln Val Thr Gly Leu Phe Gly Ala Ala 245 250 255
- Gly Leu Ser Ala Ser Ser Gly Leu Ala His Ala Asp Ser Leu Ala Ser 260 265 270
- Ser Ala Ser Leu Pro Ala Leu Ala Gly Ile Gly Gly Gly Ser Gly Phe 275 280 285
- Gly Gly Leu Pro Ser Leu Ala Gln Val His Ala Ala Ser Thr Arg Gln 290 295 300
- Ala Leu Arg Pro Arg Ala Asp Gly Pro Val Gly Ala Ala Ala Glu Gln 305 310 315 320
- Val Gly Gln Ser Gln Leu Val Ser Ala Gln Gly Ser Gln Gly Met 325 330 335
- Gly Gly Pro Val Gly Met Gly Gly Met His Pro Ser Ser Gly Ala Ser 340 345 350
- Lys Gly Thr Thr Thr Lys Lys Tyr Ser Glu Gly Ala Ala Ala Gly Thr 355 360 365
- Glu Asp Ala Glu Arg Ala Pro Val Glu Ala Asp Ala Gly Gly Gln 370 375 380
- Lys Val Leu Val Arg Asn Val Val 385 390