Overheads: - Today's Outline

Recap Thursday: Rearrangements

1) Pinacol

- a) OH leaves to give most stable C+
- b) $H > aryl > alkyl (3^{\circ} > 2^{\circ} > 1^{\circ}) \Rightarrow$ neighboring group participation

semi-pinacol: $R-N_2^+ = LG \rightarrow can be used for ring expansion$

2) <u>Favorskii</u>

3) <u>Baeyer-Villiger Oxidation</u>

Also involves rearrangement

more easily than CH₃

Migratory Aptitude (for Baeyer-Villiger)

 $3^{\circ} > 2^{\circ} \approx \text{phenyl} > 1^{\circ} > \text{methyl}$

Most substituted moves more easily

Good way to oxidize ketone → ester

MCPBA was most common reagent, but it is shock-sensitive and raises health concerns, so price \uparrow , availability \downarrow

Can also use $Oxone^{TM} = KHSO_5$

- most sub. "R" moves

- since concerted, stereochemistry of migrating center is <u>retained</u> (stays the same)

an example from Nola's past: ©

Carbonyl Reactions

Chem 242:

1 R C LG + Nu - R C Nu + LG (via R C LG)

shortcut used to combine 2 steps

2 R C R' + Nu - R C R' - acetals R C C R'

Nu - imines NR''

$$R = C - R'$$
 $R = C - R'$
 $R = C - R'$

More about Enolates

$$+ OH^{\Theta} \longrightarrow + H_2O$$

$$\uparrow pKa = 15$$

pKa = 17-20 .: only small amount @ eqm (<1% enolate) depends if ketone/ aldehyde/ester etc.) (dicarbonyls much more acidic - pKa = 8-10)

→ to deprotonate <u>completely</u> need stronger base

e.g.
$$N \rightarrow N \ominus$$
 :: much stronger base - gives 100% enolate $PKa \sim 35$

LDA - lithium diisopropylamide $PN \ominus Li \oplus N \ominus Li$

Alkylation of Enolates

usually formed =

but must consider both resonance forms

enol ether

C-alkylation

 \downarrow

favored by enolate close to cation (blocks O)

- Li⁺ enolate
- less polar solvents (THF, ether)
- LG = halides <u>always</u> <u>gives C-alkylation</u>

O-alkylation

favored by "free" enolate (separation of RO from M⁺)

- K⁺ or Na⁺ enolate
- $\begin{array}{l} \text{-} \underbrace{\text{very}} \text{ polar solvents} \\ \text{e.g. } DME = \text{ H}_3\text{CO} \\ \text{TMEDA} = \\ \text{N} \end{array} \\ \begin{array}{l} \text{OCH}_3 \\ \text{Na}^+/\text{K}^+ \end{array}$
- LG = sulfonate \circ O- \circ R

What if ketone is unsymmetrical?

BUT - heat up to 25°C, get equilibrium = thermo!

- → to get kinetic enolate (harder!) need to avoid equilibrium:
 - strong, bulky base \rightarrow 100% deprotonation (if any ketone left, will get to eq'm)
 - cold