

Segunda lei de newton – parte 1

Carlos Henrique 11521ECV001

Uberlândia – MG 02 de Junho de 2016

Introdução

Pretendemos estudar a segunda lei de newton, para estuda-la existem diferentes caminhos a seguir, trabalharemos apartir de um planador que percorre uma distancia fixa e um objeto que esta preso a uma corda, que cai pela ação da gravidade apartir de um ponto dado.

Sabemos que se aplicamos uma determinada força em um copo , essa força provoca uma aceleração que pode ser ou não diferente de zero se considerarmos todas as forças que atuam nesse corpo. Por exemplo , se tivermos um carro de mão , aplicarmos uma força manual sobre ele , tal que a resultante de todas as forças que atuam nesse mesmo corpo seja diferente de zero teremos um deslocamento x .

A segunda lei nos fiz que a força é proporcional a aceleração sendo calculada como F=m.a, e podemos relaciona-la com as outras leis do movimento, como por exemplo as leis utilizadas para queda livre de corpos. Quando um corpo cai de uma altura ho e percorre uma altura h podemos relacionar essa altura com o tempo que ela cai.

Objetivos

Determinar a aceleração em função do tempo medido e da distância percorrida e sua respectiva incerteza .

Calcular g.

Verificar que o coeficiente R de regressão linear seja perto de 1.

Procedimento experimental

Foi utilizado um sistema de trilho ar com dois sensores para a medida do tempo com o cronometro digital . No sistema de trilho ar é colocado uma corda que passa por uma polia e que tem na sua extremidade um corpo onde sera colocado os pesos . Também no sistema de trilho ar há um planador que será solto apartir de um ima preso na extremidade. A descrição dos modelos dos experimentos não será colocada .

Materiais utilizados no experimento

Fonte: facip-ufu - (www.facip.ufu.br)

primeiro teremos uma massa iniciar do planador M e uma massa inicial do objeto m ,em cada carrinho há a possibilidade de adicionar quantas massas quisermos assim , inicialmente colocaremos uma quantidade x de massa em cada lado e manteremos essa quantidade fixa até o final do experimento , por exemplo temos as massas fixas M e m com 212g e 5 g respectivamente , adicionamos 50 g no planador e 60 g no objeto . Assim temos uma massa total fixa de 327 g , mudaremos os 50 e os 60 mantendo os 327 fixo , no próximo colocaremos 70 e 40 , 90 e 20 e assim sucessivamente .

Para cada variação de massa teremos 10 medidas de tempo , que sera medido quando o planador passa pelos dois sensores . Mantemos também uma distancia fixa de 70 cm entre os dois sensores.

Resultados e discussões

Segue abaixo a tabela com os dados experimentais , em que , M = massa do carro = 212 gramas . M = massa do corpo que cai sem nenhum peso = 5 gramas .

Tempo (seg)	M +50+60+m	M+70+40+m	M+90+20+m	M+30+80+m	M+10+100+m
1	0,9255	0,7754	0,7032	1,1478	1,8621
2	0,9279	0,7794	0,6826	1,662	1,8552
3	0,9287	0,7827	0,6934	1,1536	1,8070
4	0,9264	0,7799	0,6836	1,1579	1,8040
5	0,9381	0,7788	0,7121	1,1533	1,8125
6	0,9313	0,7942	0,6923	1,1643	1,8147
7	0,9383	0,8042	0,6873	1,1600	1,8266
8	0,9310	0,8046	0,6840	1,1676	1,8095
9	0,9283	0,8109	0,7012	1,1447	1,8106
10	0,9134	0,8015	0,7166	1,1633	1,8412

Fonte: Autor

Tempo médio, erro estatístico e erro total

$ar{t}$	1,82434	1,20745	0,92889	0,79116	0,69563
$\begin{array}{c} \sigma_{\bar{x}} \\ (\times 10^{-3}) \end{array}$	6,3	2,3	2,1	4	3,6
$\begin{array}{c} \Delta y_{total} \\ (\times 10^{-3}) \end{array}$	6,3	2,3	2,1	4	3,6

Fonte: Autor

Utilizando a função horaria do movimento $S=So+Vo+\frac{at^2}{2}$, podemos determinar a aceleração de cada medida , pois como vo=0 e so=0 temos $a=\frac{2S}{t^2}$.

Temos que t é o valor médio de cada coluna assim teremos 5 valores para a aceleração . Para a primeira coluna temos $a=\frac{2(0,17)}{0,69^2}$ e assim sucessivamente determinaremos os

outros valores. Também é necessário calcular o erro sobre a , dado pela sua propagação

$$\sigma_a^2 = \left(\frac{\partial a}{\partial t}\right)^2 \sigma_t^2 + \left(\frac{\partial a}{\partial s}\right)^2 \sigma_s^2$$

$$\sigma_a^2 = \left(\frac{-4s}{t^3}\right)^2 \sigma_r^2 + \left(\frac{2}{t^2}\right)^2 (0,0005)^2$$

$$\Rightarrow \sqrt{\frac{16s^2}{t^6} \sigma_t^2 + \frac{4}{t^4} (0,0005)^2}$$

Onde s é fixo e igual a 70 cm . Temos também a força do planador dado por P=mg , tendo portanto 5 pesos diferentes com seus respectivos erros . A tabela Apresenta os valores do peso do porta peso, aceleração e sua respectiva incerteza.

Porta Peso (kg) Erro ± 0,00005	Força (N) Erro ± 0,00005	Aceleração	Erro da Aceleração ($ imes 10^{-3}$)
0,015	0,147	0,42	2,92
0,035	0,343	0,96	23
0,055	0,539	1,62	7,4
0,075	0,735	2,24	22
0,095	0,931	2,89	30

Fonte: Autor

O gráfico 1 mostra a relação entre a Força e a Aceleração

Gráfico 1- Relação Força/Aceleração

Fonte: Autor

O erro é mínimo e ele não aparece na tabela

Linearização

Para descrever os dados com base na equação geral da reta y = ax + b e descobrir o coeficiente angular a, e o coeficiente linear b, deve-se realizar regressão linear. As constantes a e b são obtidas segunda a relação 4.5.1

$$a = \frac{(\sum_{i=1}^{n} w_i)(\sum_{i=1}^{n} w_i y_i x_i) - (\sum_{i=1}^{n} w_i y_i)(\sum_{i=1}^{n} w_i x_i)}{\Delta}$$

$$b = \frac{(\sum_{i=1}^{n} w_i y_i)(\sum_{i=1}^{n} w_i x_i^2) - (\sum_{i=1}^{n} w_i x_i y_i)(\sum_{i=1}^{n} w_i x_i)}{\Delta}$$

$$Onde: w_i = \frac{1}{\sigma_i^2} \quad e \quad \Delta = \left(\sum_{i=1}^{n} w_i\right) \left(\sum_{i=1}^{n} w_i x_i^2\right) - \left(\sum_{i=1}^{n} w_i x_i\right)$$

A tabela abaixo mostra o resultado obtido dos somatórios.

$\sum_{i=1}^{n} w_{i}$	$\sum_{i=1}^{n} w_i x_i y_i$	$\sum_{i=1}^{n} w_i y_i$	$\sum_{i=1}^{n} w_i x_i$	$\sum_{i=1}^{n} w_i x_i^2$
140611,883	3081,660726	88496,36554	3090,30145	105,5950487

Fonte: Autor

A partir dos cálculos obteve-se que a= 30,1696887

e b = -0,03369 formando a reta y = ax+b

erro de a = 0,162914

erro de b = 0,176219

Temos que gravidade = coef a * massa total

Coeficiente de Regressão Linear:

$$R^{2} = \frac{\widehat{\beta}_{1} \sum_{i=1}^{n} (x_{i} - \bar{x}) Y_{i}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) Y_{i} \sum_{i=1}^{n} (x_{i} - \bar{x}) Y_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} = \frac{\left(\sum_{i=1}^{n} (x_{i} - \bar{x}) Y_{i}\right)^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}.$$

Conclusão

Concluímos que determinamos os valores necessários para a analise da segunda lei , pois achamos o valor de g , e valores de a diretamente proporcionais com a força aplicada. Portanto a segunda lei de newton é valida para esse tipo de experimento.

Bibliografia

AKIRA, Wellington. Guias e roteiros para laboratórios de física experimental 1. 1ª ed.Uberlandia 2014.

HENRIQUE, Vuolo. Fundamentos da Teoria de Erros. 2ª ed. Editora Edgard blusher Itda : São Paulo 1996.