Christchurch Inventory of Total Emissions

Prepared by NIWA

Report No. R98/20 ISBN 1-86937-353-7

Amends and supersedes: Report No. R97/7 (June 1997) Report No. R97/5 (May 1997)

Revised edition including aircraft emissions

Report No. R98/20

58 Kilmore Street P O Box 345 CHRISTCHURCH Phone: (03) 3653828

Fax:

(03) 365 3194

75 Church Street P O Box 550

TIMARU

Phone: (0 Fax: (0

(03) 688 9069

(03) 688 9067

Prepared by: G. Fisher, S. Kingsland, G. Kuschel - NIWA TD 883.7 N52 C5

CHRISTCHURCH EMISSIONS INVENTORY (R98/20) REPRINT INCORPORATING ADDITIONS AND CORRECTIONS JUNE 1998

This report (R98/20) amends and supersedes report no. R97/7 – Christchurch Inventory of Total Emissions. (Also superseded is report R97/5 – Christchurch Inventory of Home Heating and Motor Vehicle Emissions).

Additions and corrections to report R97/7 are as follows:

1. ADDITIONS

- (i) Emissions Inventory Report, Context, p1.- Addition of notes (1) and (2).
 Note (1) explains contents of the first stage of the emissions inventory (Report R97/5 referred to above and now superseded).
 Note (2) references Technical Report R98(1) which incorporates the emissions inventory data contained in this report with monitoring data and identifies reductions required in suspended particulate concentrations to meet the ambient air quality target for this contaminant.
- (ii) Table 6.5 Section 6.3 Aircraft Emissions (p.90) and combined estimated pollutant emissions for various times of a typical winter's day across the total study area including aircraft emissions (pp.91, 92)

This addition discusses the Aircraft Emissions data in Appendix VI. Table 6.5 incorporates Aircraft Emissions with data from Table 6.3 — "Combined estimated pollutant emissions for various times of a typical winter's day across the total study area." (Note: Adjustments have not been made to other tables or sections of the report because of the minor impact of aircraft emissions on the total study area).

2. CORRECTIONS

- (i) Section 3.3 (P31)

 Deleted Paras 1 to 3 and Table 3.7. (Explanation: Because of the methodology used for estimating domestic emissions, the <u>statistical analysis</u> applied to the relationship between emissions and domestic heating appliances is not valid in the context presented in the superseded report. The same comment applies to reference to this analysis in the Executive Summary, P3).
- (ii) Appendix III Individual Suburb Results. Fendalton Home Heating, P140 in R97/7 (P143 in R98/20). Table replaced with correct table. (Explanation: Table contained in superseded report R97/7 inadvertently repeated preceding table for Inner City Home Heating. Other data and data analyses not affected).

3. GENERAL

An independent assessment has been undertaken of the statistical reliability of the survey method used for calculating 'Home Heating Methods' and Home Heating Emissions. (Report – C Lamb August 1997). This report indicates that the home heating survey methodology is statistically reliable both for the "total study area" and for the "inner suburb study area". However the report indicates that a high error level exists on a suburb by suburb basis and 'care should be taken in making statistical comparisons between suburbs'. The subsequent use of data from this report for estimating the relative contribution of different sources of suspended particulate emissions to monitored concentrations and reductions required in emissions to meet the ambient air quality target are based on emissions for the "total study area" and "inner suburb study area".

Emissions Inventory Report - Context

This report describes the second stage¹ of an emissions inventory for Christchurch, which is one of several investigations being carried out for the Canterbury Regional Council to assist the development of an air quality management strategy for Christchurch.

The data obtained from the emissions inventory are being integrated with air quality monitoring and meteorological data to:

- model the overall reductions required in emissions to achieve an acceptable level of air quality based on health effects and;
- establish the boundaries of the area within which reductions in emissions are required to achieve the purposes of the Resource Management Act.

Related studies² being carried out include investigations of projections for emissions from each major sector; options for the allocation of emission reduction measures among the industrial, transport and domestic sectors; methods for the reduction of emissions within each of the above sectors and associated costs; the potential impact of emissions from the burning of rubbish in the central, suburban, and outer areas of Christchurch City; and surveys of the public perception of nuisance effects associated with emissions from combustion processes.

When the above studies have been completed, a summary report will be prepared integrating the results of each of these studies. This report will address the advantages and disadvantages of different management options (including time-frames) for reducing existing pollution levels and for maintaining acceptable standards of air now and in the future. This and other reports will be used in the preparation of a consultative draft air plan; it will be presented to the public for review and comment in July 1997.

¹ The first stage of the emissions inventory – emissions from domestic fires and motor vehicles – is included in this report

² The relationship between emissions inventory data, ambient air quality monitoring data and reductions in suspended particulate concentrations is discussed in Technical Report R98(1), ISBN 1-86937-334-0 "Reductions in Suspended Particulate Concentrations in Christchurch".

Executive Summary

The reliable assessment of the air polluting loads generated by each source, or a group of similar sources, within a study area is essential for the identification of the nature, magnitude and origin of the existing pollution problem, and for the formulation of rational pollution abatement strategies.

This research makes up one of the most detailed studies ever undertaken on the emissions to air of the more important air pollutants across Christchurch. The results are consistent with expectations and with previous studies but several significant new factors have been identified (such as what causes emissions to vary from area to area and the relative contribution to air pollution of home heating, motor vehicles and industry).

Key Results

Methods of Home Heating:

- Multiple methods of home heating occur within the main living area of the same household on a typical winter's day.
- Electricity is used by 68% and 71% of households in the total study area and within the inner suburb study area respectively to heat the main living area on a typical winter's day while 28% and 23% of households use woodburners.
- Across the total study area approximately 13240 households use an open fire on a typical winter's day to heat the main living area. This equates to approximately 14% of the total number of households in the total study area, and nearly 31% of solid fuel burning appliances in use.
- Within the total study area there are approximately 26160 households using woodburners to heat the main living area on a typical winter's day (approximately 28% of the total number of households in the total study area and nearly 61% of solid fuel burning appliances in use).
- 50% of the households that use woodburners, had them installed prior to 1989, approximately 23% were installed between 1989 and 1992 while over 25% have been installed since 1993.

Wood and Coal Use:

- By weight, the use of wood on a typical winter's day within the total study area is approximately
 four and a half times greater that the use of coal (590 tonnes of wood compared to 132 tonnes of
 coal). Within the inner suburb area 69 tonnes of coal are burnt per day compared to 288 tonnes of
 wood
- Across the total study area approximately 65% of the daily firewood consumption is burnt on woodburners, 31% on open fires, 2% on enclosed coal burners and 1% on incinerators. Nearly 60% of the daily coal consumption is burnt on open fires, 33% on enclosed coal burners, 5% on woodburners, 1% each on incinerators and pot bellies.
- Within the inner suburb study area, 59% of the daily wood consumption is burnt on woodburners compared with 38% on open fires. 64% of the daily coal consumption is burnt on open fires, 29% on enclosed coal burners, 3% on woodburners and 3% on incinerators.

Home Heating Emissions:

- The burning of wood and coal on open fires in the total study area is estimated to produce 48% of the home heating PM₁₀ emissions while the burning of wood on woodburners produces 34%. 15% of PM₁₀ emissions stem from the burning of wood and coal on enclosed coal burners.
- Within the inner suburb study area, 56% of PM₁₀ emissions stem from the burning of wood and coal on open fires, 31% from woodburners, and 12% from enclosed coal burners.

- Across the total study area, open fires are responsible for approximately 43% of CO emissions, 45% of NO_x emissions, 57% of SO_x emissions, 43% of VOC emissions, and 39% of CO₂ emissions. Of those emissions, wood burning on an open fire produces 36% of CO emissions, 33% of NO_x emissions, 1% of SO_x emissions, 36% of VOC emissions, and 23% of CO₂ emissions. Coal burning on an open fire makes up the difference.
- The burning of wood on woodburners across the total study area produces approximately 49% of CO emissions, 45% of NO_x emissions, 4% of SO_x emissions, 49% of VOC emissions, and 49% of CO₂ emissions. Coal burning on woodburners contributes to a small percentage of CO₂ emissions (2%) and to over half of the SO_x emissions (5%).
- Within the inner suburb study area, the burning of wood and coal on an open fires produces 51% of CO emissions, 53% of NO_x emissions, 63% of SO_x emissions, 51% of VOC emissions, and 46% of CO₂ emissions. Of those emissions, wood burning on an open fire produces 43% of CO, 39% of NO_x, 2% of SO_x, 43% of VOC, and 28% of CO₂ emissions. Coal burning on an open fire makes up the difference (61% in the case of SO_x).
- The burning of wood and coal on woodburners produces approximately 43% of CO emissions, 39% of NO_x emissions, 6% of SO_x emissions, 43% of VOC emissions, and 44% of CO₂ emissions. Coal burning on woodburners contributes to a small percentage of CO₂ emissions (1%) and to half of the SO_x emissions (3%).
- Across the total study area, 32% of SO_x, 7% of NO_x, 9% of CO₂ comes from the burning of coal on enclosed coal burners. Within the inner suburb study area, 28% of SO_x, 6% of NO_x, 8% of CO₂ comes from the coal burning on these appliances.
- At the 95% confidence level, PM₁₀ emissions are positively correlated with the use of open fires and to the use of enclosed coal burners. The relationship between PM₁₀ and woodburners is significant at the 99% confidence level. CO is positively correlated to open fires and to woodburners at the 99% confidence level. SO_x emissions are positively correlated with the use of open fires, oil fires, pot bellies, and gas at the 95% confidence level and are correlated with the use of enclosed coal burners at the 99% confidence level
- The total study area is estimated to produce approximately 10971 kilograms of PM₁₀ per day or 618 gram per hectare per day whereas the inner suburb study area is estimated to produce 51% of the total PM₁₀ emissions (5585 kg/day). On a grams per hectare basis, the PM₁₀ emissions from home heating within the inner suburb study area are 1.5 times greater than the total study area (928 g/ha/day compared to 618 g/ha/day).
- The inner suburb study area is estimated to produce 50% of the total CO, NO_x, VOC, and CO₂ emissions and 52% of the total SO_x. On a grams per hectare basis, the inner suburb study area produces 1.5 times more CO, NO_x, SO_x, VOC, and CO₂ than the total study area.
- On an individual suburb basis, PM₁₀ emissions per hectare in Burnside/Bryndwr can be as much as 41 times larger than those in New Avonhead. CO and NO_x can be as much as 30 times larger, VOC 28 times larger, CO₂ 20 times larger, and SO_x 450 times greater.
- Across the total study area, ~78% of PM₁₀, CO, NO_x, SO_x, VOC, and CO₂ are emitted between 4pm and 6am on a typical winter's night. The next highest period of emissions occurs between 10am and 4pm across all pollutants (15% of each pollutant released during this time).
- Within the inner suburb study area, ~80% of pollutants are emitted between 4pm and 6am on a typical winter's night. The next highest period of emissions occurs from 10am to 4pm across all pollutants (with 12%-14% released during this time).
- Both in the total study area and the inner suburb study area estimated PM₁₀, CO, NO_x, SO_x, VOC, and CO₂ emissions are lowest between the hours of 6am and 10am when ~7% of the total daily emissions are released

Motor Vehicle Emissions:

- Suburbs with larger vehicle kilometers travelled (VKT) values and more major traffic routes display higher emissions of the six pollutants than suburbs with lower VKT's values.
- Light duty petrol vehicles are the main emitters of CO (~90%), VOC (83%), and CO₂ (~70%). Heavy duty diesel vehicles tend to emit larger quantities of PM₁₀ (65%) and SO_x (87%). A further 20% of CO₂ emissions stem from heavy duty diesel vehicles while nearly 30% of PM₁₀ emissions are derived from light duty petrol vehicles. Both light duty petrol vehicles and heavy duty diesel vehicles release similar quantities of NO_x (50% and 46% respectively).
- On average, the inner suburb area produces 1.5-1.75 times the amount of all six pollutants per hectare per day when compared to the quantities produced by the total study area.
- The total study area is estimated to produce approximately 1365 kilograms of PM₁₀ per day or 77 gram per hectare per day from motor vehicles whereas the inner suburb study area is estimated to produce 55% of the total PM₁₀ emissions (747 kg/day). On a grams per hectare basis, the PM₁₀ emissions from motor vehicles within the inner suburb study area are 1.6 times greater than the total study area (124 g/ha/day compared to 77 g/ha/day).
- The inner suburb study area is estimated to produce nearly 60% of the total CO and NO_x emissions from motor vehicles, 54% of the total SO_x and CO₂ emissions and 51% of the total NO_x emissions. On a grams per hectare basis, the inner suburb study area produces 1.5 times more NO_x than the total study area, 1.6 times the SO_x and CO₂, and 1.7 times the CO and VOC.
- On an individual suburb basis, PM₁₀ emissions per hectare in the Inner City are approximately 230 times larger than those in New Avonhead. CO and CO₂ can be as much as 350 times larger, NO_x and VOC 340 times larger, and SO_x 190 times greater.
- On average, approximately 45% of all motor vehicle emissions of PM₁₀, CO, NO_x, SO_x, VOC and CO₂ are released between the hours of 10am-4pm across the total study area. A secondary peak occurs between 4pm-10pm, during which ~30% of contaminants are emitted. A further 22% of pollutants are emitted between 6am-10am. Only 4-5% of all pollutants are emitted overnight (between 10pm-6am). This pattern is also a similar feature of the inner suburb area across all six pollutants, as well as in the majority of individual suburbs.
- The average estimated emissions per hectare from motor vehicles within the inner suburb area are 1.5-1.75 times the emissions of the total study area for all six pollutants.

Industrial Emissions:

- Across the total study area, Part A industries are the main emitters of PM₁₀ (44%) and VOC (47%), while Part B industries emit larger quantities of CO (50%), NO_x (40%), and SO_x (39%). Part C industries emit nearly half the CO₂ (46%).
- Within the inner suburb study area, Part A industries are the main emitters of PM₁₀ (46%), while Part B industries emit larger quantities of CO (37%), NO_x (37%), and SO_x (39%). Part C industries emit approximately 80% of VOC and over half the CO₂ (51%).
- On average, Part A industries within the inner suburb area produce approximately half of the kilogram per day figure for all pollutants except VOC (which produces approximately 20 times more per day). However on a per hectare basis, the inner suburb study area produces 1.6 times more PM₁₀ per hectare than the total study area, 1.7 times the CO₂, 1.8 times the CO and NO_x and 1.3 times the SO_x. The total study area however, produces 7 times more VOC than the inner suburb study area.
- On a kilogram per day basis, Part B industries within the inner suburb area emit 40%-50% of the kg/day figure, yet on a per hectare basis they produce 1.3 times more PM_{10} and CO_2 than the total study area, 1.5 times the NO_x and SO_x , 1.2 times the VOC, and equal quantities of CO.
- Part C industries within the inner suburb area produce 1.8 times more PM₁₀ per hectare than the total study area, 1.7 times the NO_x and SO_x, 1.9 times the VOC and CO, and 1.1 times the

- quantities of CO₂. On a kilogram per day basis they produce approximately half to a third of the total study area.
- The total study area is estimated to produce approximately 1018 kilograms of PM₁₀ per day or 57 grams per hectare per day whereas the inner suburb study area is estimated to produce half the total PM₁₀ emissions (512 kg/day). On a grams per hectare basis, the PM₁₀ emissions from industry within the inner suburb study area are 1.5 times greater than the total study area (85 g/ha/day compared to 57 g/ha/day).
- The inner suburb study area is estimated to produce nearly 50% of the total CO emissions, ~55% of the total NO_x and CO₂ emissions, 51% of the total SO_x emissions, and 35% of the VOC emissions. On a grams per hectare basis, the inner suburb study area produces 1.4 times more CO than the total study area, 1.6 times the NO_x and CO₂, and 1.5 times the SO_x. VOC emissions per hectare are the same in both the total study area and the inner suburb study area.
- On an individual suburb basis, industrial emissions vary considerably from suburb to suburb. For example, when comparing the suburb of Racecourse with the Inner, PM₁₀ emissions per hectare in the Inner City are approximately 450 times larger than those in the Racecourse. CO₂ can be as much as 350000 times larger, NO_x nearly 900 times larger, SO_x 1700 times greater, CO and VOC around 200 times larger.
- Pollutant concentrations are largely determined by the number and type of industries within a study area. Suburb areas with few or no industries tend to exhibit lower pollutant emissions per day whereas suburbs with a larger number of industries displayed higher pollutant concentrations.
- Across the total study area, ~40% of PM₁₀, CO, NO_x, and SO_x, and ~45% of VOC and CO₂ are released between the hours of 10am and 4pm on a typical winter's day. The remaining emissions are evenly spread between the three other time periods.
- Within the inner suburb study area, 34% to 39% of PM₁₀, CO, NO_x, and SO_x, 60% of VOC and 46% of CO₂ emissions are released between the hours of 10am and 4pm on a typical winter's day. With the exception of VOC, the remaining emissions are evenly spread between the three other time periods. For VOC, 25% of the emissions are released between 6am and 10am while 14% are emitted from 4pm to 10pm. 1% of VOC emissions are released from 10pm and 6am.
- On an individual suburb basis, PM₁₀, CO, NO_x, SO_x, VOC, and CO₂ emissions tended to peaked between the hours of 4pm and 10pm. In the suburbs where the peak was not between 4pm and 10pm, it occurred between 10pm an 6am.
- In ~70% of the suburbs, the next highest period of PM₁₀, CO, NO_x, SO_x, and CO₂ emissions occurred between 6am and 10am. For VOC, ~85% of the suburbs also displayed a secondary peak between 6am and 10am. Low PM₁₀, CO, and SO_x emissions were displayed between 10pm and 6am in ~75% of the suburbs. Over 80% of the suburbs displayed low NOx, CO₂, and VOC between 10pm and 6am.

Combined Emissions:

- In the total study area and the inner suburb study area, 82% of PM₁₀ emissions to the air on a typical winter's day result from domestic solid fuel heating. Approximately 90% of nitrogen oxide emissions, ~65%-70% of CO and VOC, and nearly 60% of CO₂ emissions are derived from motor vehicles. Almost 50% of SO_x emissions stem from industry and a further third is derived from home heating.
- In 96% of the suburbs, more PM₁₀ emissions to the air on a typical winter's day result from domestic solid fuel heating than from motor vehicles or industry. Motor vehicles emit more CO, NO_x, VOC, and CO₂ than home heating or industry in 80%, 96%, 76%, and 88% of the suburbs respectively. In 13 of the 25 suburbs (52%), more SO_x is emitted from home heating than from motor vehicles or industry.
- Across the total study area, combined home heating, motor vehicle and industrial PM₁₀, CO, SO_x, VOC, and CO₂ emissions peak between the hours of 4pm-10pm. Combined NO_x emissions peak between 10am and 4pm. Combined PM₁₀ emissions are at their lowest between 6am-10am while combined CO, NO_x, SO_x, VOC and CO₂ emissions drop off between 10pm-6am.

- Within the inner suburb study area, combined PM₁₀ emissions are at their lowest between the hours of 6am and 10am. All other pollutants are at their lowest between 10pm and 6am. Combined PM₁₀, CO, SO_x, VOC and CO₂ emissions all peak between 4pm and 10pm. Combined NO_x peaks between 10am and 4pm.
- Across the individual suburbs, combined motor vehicle, solid fuel heating and industrial PM₁₀, CO, SO_x and VOC emissions peak between the hours of 4pm-10pm in over 60% of suburbs. Furthermore, for PM₁₀ the peak period between 4pm and 10pm is recorded in all suburbs but the Airport (96%). Combined CO₂ emissions peak between 4pm and 10pm in 56% of the suburbs while NO_x peaks between 10am and 4pm in all suburbs. Combined CO, NO_x, VOC and CO₂ emissions drop off between 10pm-6am in over 85% of the suburbs. 60% of the suburbs record the low period for SO_x between 10pm and 6am while 40% record it between 6am-10am. For PM₁₀ the low period for emissions is almost even between 6am-10am and 10pm-6am in 52% and 48% of the suburbs respectively.

Table of Contents

Emiss	sions Inventory Report - Context		1
Execu	utive Summary	•••••	2
	e of Contents		7
List o	of Figures	•••••	8
List o	of Tables	•••••	8
1.	Introduction	11	
	Purpose of Study What Suburb Areas were Studied?	13	
2.	Home Heating Methods		
	Appliance Use Wood and Coal Consumption	19	
3.	Home Heating Emissions		
	 3.1. Home Heating Emission Factors, Calculation Techniques and Assumptions 3.2. Home Heating Emissions on a Typical Winter's Day by Fuel Use and Appliance Type	26	
	3.3. Comparison of Average PM ₁₀ , CO and SO _x Emissions Per Household with Methods of Home Heating on a Household Basis		
	3.4. Home Heating Emissions on a Typical Winter's Day on a Suburb and Area Basis	33	
	3.5. Home Heating Emissions by Time of Day	35	
4.	Motor Vehicle Emissions		
	 4.1. Motor Vehicle Emission Factors, Calculation Techniques and Assumptions 4.2. Motor Vehicle Emissions on a Typical Winter's Day by Vehicle Type	47 49	
5.	Industrial Emissions	60	
	5.1. Christchurch Industry - Background	63 6 6	4
	 5.3. Industrial Emissions on a Typical Winter's Day by Industry Type 5.4. Industrial Emissions on a Typical Winter's Day - Total 5.5. Industrial Emissions by Time of Day 	66 71	
6.	Combined Emissions	83	
	6.1. How do Industrial Emissions Compare with Motor Vehicle Emissions and Home Heating Emissions?	83 86	
7.	Key Findings	93	
Refer	rences	•••••	99
Appe	ndices		99-201
I II IV V	Suburb Boundaries Survey Questionnaires Individual Suburb Results Industry Definitions. Process Emission Factors Aircraft Emissions	•••••	100 102 119 194 198 200

List of Figures

Figure 1	1.1	Maximum 24 hour concentrations of PM ₁₀ , NO ₂ , SO ₂ and CO, averaged monthly for the years 1988-1996 at St Albans monitoring site	.11
Figure 1	.2	Typical average hourly concentrations of SO ₂ , CO and PM ₁₀ on high pollution days in 1995 at St Albans.	.12
Figure 1	.3	Map showing the location of the various study areas across Christchurch	
Figure 2	2.1	Woodburner age breakdown for the total study area and the inner suburb study areas.	.17
Figure 2	.2	Wood and coal consumption across the total study area	.20
Figure 2	.3	Wood and coal consumption across the inner suburb study area	.20
Figure 3	3.1	Percentage of PM ₁₀ emissions from the burning of wood and coal on various appliances within the total study area and the inner suburb study area	.27
Figure 3	.2	Time distribution of home heating emissions across the total study area	.35
Figure 3	3.3	Time distribution of home heating emissions across the inner suburb area of Christchurch.	.37
		Emissions by vehicle type for the total study area and the inner suburb study area	.47
Figure 4	.2	Breakdown of motor vehicle emissions for different times of a typical winter's day for the total study area and the inner suburb study area	.52
Figure 5	.1	Christchurch industry breakdown	.60
•		Christchurch manufacturing industry breakdown	
•		Christchurch community service breakdown.	
•		Emissions by industry type for the total study area.	
Figure 5	.5	Emissions by industry type for the inner suburb study area	.67
Figure 5		Breakdown of industrial emissions for different times of a typical winter's day for the total study area	.74
Figure 5		Breakdown of industrial emissions for different times of a typical winter's day for the inner suburb study area	.75
Figure 6	.1	Comparison of home heating and motor vehicle emissions of PM_{10} , CO , NO_x , SO_x , VOC , and CO_2 for a typical winter's day for (a) the total study area and (b) the inner suburb study area	.85
Figure 6		Comparison of home heating, motor vehicle and industrial PM_{10} , CO , NO_x , SO_x , VOC and CO_2 emissions for various times of a typical winter's day for (a) the total study area and (b) the inner suburb study area	.89
		List of Tables	
		Sampling details of the various study areas across Christchurch	
		Methods of home heating across various study areas of Christchurch	16
Table 2.:	2	Number and percentage of households using electricity or gas, solid fuel burners (open fires/visors, woodburners, enclosed coal burners, pot bellies, incinerators), and oil burners across various study areas of Christchurch	.17
Table 2.3	3 D	Differences in age of woodburners by suburb	18
Table 2.4	1 V	Vood and coal consumption by appliance type for the total study area and the inner suburb study area.	19
Table 2.5	5 (Coal use on various appliances (in the main living area) across various study areas of Christchurch.	21
Table 2.6	<u> </u>	Vood use on various appliances (in the main living area) across various study areas of Christchurch.	22

Christchurch Inventory-of Total Emissions

Table 2.7	Source of firewood	.23
Table 3.1	The fuel factors used to calculate home heating emissions.	.24
Table 3.2	The appliance factors used to calculate home heating emissions	.24
Table 3.3	Percentage of PM ₁₀ emissions from the burning of wood and coal on various appliances within the total study area and the inner suburb study area	.26
Table 3.4	Estimated pollutant emissions from various fuels and appliances across the total study area.	.28
Table 3.5	Estimated pollutant emissions from various fuels and appliances across the inner suburb study area	.29
Table 3.6	Relative contribution of open fires, woodburners and other burning appliances to pollutant emissions within the total study area and the inner suburb study area	.30
Table 3.7	Pearson analysis of pollutant emissions and appliance use	.31
Table 3.8	Average emissions per household from home heating in descending order of PM ₁₀ for the individual suburb areas of Christchurch - Typical winter's day	.32
Table 3.9	Typical winter's day emissions from home heating for various suburb areas of Christchurch.	.34
Table 3.10	Estimated home heating emissions for various times of a typical winter's day across the total study area.	.36
Table 3.11	Estimated home heating emissions for various times of a typical winter's day across the inner suburb study area of Christchurch.	.36
Table 3.12	2 PM ₁₀ emissions produced at different times of a typical winter's day from home heating across various suburb areas of Christchurch	.38
Table 3.13	CO emissions produced at different times of a typical winter's day from home heating across various suburb areas of Christchurch	.39
	•	.40
Table 3.15	5 SO _x emissions produced at different times of a typical winter's day from home heating across various suburb areas of Christchurch	.41
Table 3.10	6 VOC emissions produced at different times of a typical winter's day from home heating across various suburb areas of Christchurch	.42
Table 3.17	7 CO ₂ emissions produced at different times of a typical winter's day from home heating across various suburb areas of Christchurch	.43
	Vehicle distribution and emission factors per kilometre driven - Urban	
	Vehicle distribution and emission factors per km driven - Suburban.	
	Vehicle distribution and emission factors per km driven - Highway	.44
	Average speed and vehicle kilometres travelled at different times of a typical winter's day for various study areas of Christchurch	
	Emissions by vehicle type for the total study area.	
	Emissions by vehicle type for the inner suburb study area.	.48
	Typical winter's day emissions from motor vehicles for various study areas of Christchurch.	.50
		.51
	•	.53
	Estimated motor vehicle emissions for various times of a typical winter's day across the inner suburb study area.	.53
Table 4.11	PM ₁₀ emissions produced at different times of a typical winter's day by motor vehicles across various suburb areas of Christchurch	.54

Christchurch Inventory-of Total Emissions

Table 4.12	CO emissions produced at different times of a typical winter's day by motor vehicles across various suburb areas of Christchurch.	55
Table 4.13	NO _x emissions produced at different times of a typical winter's day by motor vehicles across various suburb areas of Christchurch.	.56
Table 4.14	SO _x emissions produced at different times of a typical winter's day by motor vehicles across various suburb areas of Christchurch	.57
Table 4.15	VOC emissions produced at different times of a typical winter's day by motor vehicles across various suburb areas of Christchurch	.58
	CO ₂ emissions produced at different times of a typical winter's day by motor vehicles across various suburb areas of Christchurch	
Table 5.1 N	Number and type of industry within various study areas of Christchurch	.62
Table 5.2 E	Boiler emission factors per unit of fuel burnt.	.63
Table 5.3 E	Emissions by industry type for the total study area	.69
	Emissions by industry type for the inner suburb study area	.70
Table 5.5	Typical winter's day emissions from industry for various study areas of Christchurch.	.72
	Typical winter's day emissions from industry in descending order of PM ₁₀ for the 25 suburb areas of Christchurch.	.73
	Estimated industry emissions for various times of a typical winter's day across the total study area.	.76
	Estimated industry emissions for various times of a typical winter's day across the inner suburb study area.	.76
	PM ₁₀ emissions produced at different times of a typical winter's day by industry across various suburb areas of Christchurch	.77
Table 5.10	CO emissions produced at different times of a typical winter's day by industry across various suburb areas of Christchurch.	.78
Table 5.11	NO _x emissions produced at different times of a typical winter's day by industry across various suburb areas of Christchurch	.79
Table 5.12	${\sf SO}_{\sf x}$ emissions produced at different times of a typical winter's day by industry across various suburb areas of Christchurch	.80
Table 5.13	VOC emissions produced at different times of a typical winter's day by industry across various suburb areas of Christchurch	.81
Table 5.14	CO ₂ emissions produced at different times of a typical winter's day by industry across various suburb areas of Christchurch	.82
Table 6.1 H	lome heating, motor vehicle and industry emissions for the total study area	.84
Table 6.2 H	lome heating, motor vehicle and industry emissions for the inner suburb study area	.84
Table 6.3	Combined estimated pollutant emissions for various times of a typical winter's day across the total study area	.87
Table 6.4	Combined estimated pollutant emissions for various times of a typical winter's day within the inner suburb study area.	.88
Table 6.5	Combined estimated pollutant emissions for various times of a typical winter's day across the total study area including aircraft emissions.	.91

1. Introduction

1.1. Purpose of Study

The main objective of the Christchurch emissions inventory is to provide information on various emission sources across the main urban and industrial areas of Christchurch. This information will then be used to develop management strategies to reduce present contaminant concentrations in the ambient air which exceed acceptable levels, and provide for longer-term management of air contaminants within acceptable concentrations.

Data collected from the St Albans monitoring site since 1988 indicates that the majority of Christchurch's air pollution problems occur over the winter months (from May-August) between the hours of 4pm and midnight (Figure 1.1 and Figure 1.2 with Figure 1.2 as an example of high pollution days in 1995). High pollution days are characterised by still clear days and frosty nights. Under these conditions, temperature inversions tend to form over the city in the evenings, thus trapping air and pollutants underneath. The problem is further compounded over the winter months by increased solid fuel burning for domestic home heating (especially in the evenings).

Figure 1.1 Maximum 24 hour concentrations of PM₁₀, NO₂, SO₂ and CO, averaged monthly for the years 1988-1996 at St Albans monitoring site.

The contaminants of immediate concern are fine particulates (PM_{10}) and carbon monoxide (CO). Under "worst case" conditions on a high pollution night, PM_{10} levels have reached as high as $700\mu g/m^3$ over a two-hour period (compared to a 24-hour national ambient air quality guideline of $120~\mu g/m^3$). However, other contaminants that also require addressing are nitrogen oxides (NO_x), sulphur oxides (SO_x), carbon dioxide (CO_2) and volatile organic compounds (VOC_3).

Previous research conducted in Christchurch (Brady and Pullen, 1985) identify domestic fires and motor vehicles as significant sources of the above emissions during temperature inversion conditions. However, from the air quality management perspective more detailed information is required on the relative contribution from various sources at different periods of the day, including times of likely temperature inversion.

To assess the impact of potential management options on various methods of domestic heating, information is also required on the use of wood, coal, oil, gas and electricity, and any variations in the use of these energy sources in different areas of the city relative to different types and age of residential development.

Figure 1.2 Typical average hourly concentrations of SO₂, CO and PM₁₀ on high pollution days in 1995 at St Albans.

To gather all the necessary information, this study has been designed to examine:

- Variations in emissions from home heating on a suburb-by-suburb basis for subsequent integration with emissions from motor vehicles and industrial processes.
- Typical winter's day emissions resulting from the burning of wood and coal on the various solid fuel-burning appliances in use for domestic heating.
- Variations in home heating emissions from solid fuel burning for different time periods during the day.
- Variations in different methods of home heating and in fuel use (including sources of wood fuel) for different areas of the city.
- Variations in exhaust emissions from motor vehicles on a suburb-by-suburb basis for subsequent integration with emissions from home heating and industrial processes.
- Typical winter's day exhaust emissions from motor vehicles for different classes of diesel and petrol-fuelled vehicles.
- Variations in motor vehicle emissions for different time periods during the day.
- Variations in industrial emissions on a suburb-by-suburb basis for subsequent integration with emissions from home heating and motor vehicles.
- Typical winter's day emissions from different industry types.
- Variations in industrial emissions for different time periods during the day.

This information will then be used to:

- compare estimated pollutant concentrations to actual monitored pollutant levels;
- identify the relative contribution of the emissions from various sources;
- examine the possible effect of various management scenarios to reduce pollutant concentrations and:
- aid in the maintenance of future air quality at an acceptable level.

1.2. What Suburb Areas were Studied?

Between June 1995 and June 1996, over 800 Christchurch households were surveyed about their home space heating habits. In order to assess the relative contributions of motor vehicles and industry to home heating, information on traffic density and industry operation were required. VKT (vehicle kilometres travelled) data were obtained for all twenty-five suburb areas of Christchurch from CRC - Transport. Christchurch industry information was gathered from CRC resource consent records and survey questionnaires of Part A and B industries. From all of this information, particulate (PM₁₀), carbon monoxide (CO), nitrogen oxide (NO_x), sulphur oxide (SO_x) volatile organic compounds (VOC) and carbon dioxide (CO₂) emissions to the air from home heating appliances, motor vehicles and industry were estimated for a typical winter's day.

The home space heating surveys were primarily conducted in Parklands, Fendalton, New Brighton, Shirley, Burnside/Bryndwr, Avonhead, St Albans, New Avonhead, Riccarton, Spreydon/Addington, Opawa/Woolston, Linwood, Hornby, Hoon Hay, Beckenham/Sydenham, and the Inner City. For the remaining suburbs (Redwood, Bishopdale, Wigram, Sockburn, Redwood, Marshlands, Addington Industrial, Airport, Bishopdale, Bromley and the Racecourse), estimates were made based on demographic factors and on similarities between unsurveyed and surveyed areas.

The various study areas are shown in Figure 1.3, and their sampling details presented in Table 1.1. Suburb boundaries are identified on a 1991 census map contained in Appendix I. Survey questionnaires can be found in Appendix II.

Figure 1.3 Map showing the location of the various study areas across Christchurch.

Information was collected on a suburb-by-suburb basis so that variations in emission sources and methods of home heating could be identified. Results were also grouped into two additional areas (the total study area and the inner suburb study area). These two larger study areas have been included to provide a more representative basis for the comparison of emissions and monitored air quality than that available on an individual suburb basis.

Table 1.1 Sampling details of the various study areas across Christchurch.

Suburb Area	Area (ha)	Total Number of Households	Housing Density (houses/ha)	Total Households Surveyed	Household Survey Method	Average Daily VKT (km)	Number of Industries
Inner Suburbs							
Beckenham/Sydenham	555	4551	8	50	phone	409153	6
Fendalton	745	6033	8	46	door	336525	13
Inner City	635	2715	4	50	phone	741166	156
Linwood	754	8364	11	50	phone	490425	20
Opawa/Woolston	798	4380	5	50	phone	414450	47
Riccarton	349	3309	9	50	phone	318300	9
Shirley	572	4377	8	68	door	200837	11
Spreydon/Addington	745	6744	9	50	phone	414892	28
St Albans	864	9948	12	40	door	443360	21
Sub-total - Inner Suburb Study Area	6016	50421	8	454		3769108	311
Outer Suburbs							
Addington Industrial ^{SD}	230	273	1		estimate	124767	7
Airport ^{AV}	2088	198	0	-	estimate	223749	9
Avonhead	727	6315	9	50	phone	512839	15
Bishopdale ^{SA}	887	3453	4	-	estimate	164128	22
Bromley ^{NB}	764	930	1	-	estimate	172335	47
Burnside/Bryndwr	460	4808	10	50	phone	200212	2
Hoon Hay	421	3144	7	50	phone	176651	10
Hornby	498	2679	5	50	phone	180516	32
Marshlands ^{BK}	1135	1254	1	-	estimate	262311	8
New Avonhead	230	777	3	43	door	773	3
New Brighton	1942	11520	6	50	phone	430819	29
Parklands	312	1572	5	54	door	58669	6
Racecourse ^{HB}	247	717	3	-	estimate	34232	0
Redwood ^{BK}	752	4533	6	-	estimate	259875	17
Sockburn ^{HB}	264	1812	7	-	estimate	202527	13
Wigram ^{HB}	786	450	1	-	estimate	247019	35
Sub-total	11741	44435	4	347		3251422	254
Total - Total Study Area	17757	94856	5	801 Beckenham		7020530	565

AV Based on Avonhead results

Note: % Sampled = (Sampled No.of Households ÷ Total No.of Households) x 100%

The body of this report consists of six main sections. The first section (Section 2) examines various methods of domestic space heating used in households across Christchurch. The results of home heating, motor vehicle, and industrial emissions for a typical winter's day, and for various times of the day, are addressed in Sections 3, 4 and 5 respectively.

Within Section 6, home heating, motor vehicle and industrial emissions are combined and results presented for a typical winter's day and for various times of the day. Finally, key results are outlined in Section 7.

HB Based on Hornby results

SA Based on St Albans results

Based on Beckenham results

NB Based on New Brighton results

SD Based on Spreydon/Addington results

2. Home Heating Methods

2.1. Appliance Use

The breakdown of home heating methods used by households within the total study area, the inner suburb study area and across the individual suburbs are provided in Table 2.1 over.

These figures (Table 2.1) do not include households which, at the time of the survey may have used solid fuel burning appliances 'occasionally' or which used solid fuel burning appliances to heat other areas of the dwelling. (Multiple methods of home heating, and the time of day of appliance use, are taken into account in calculating emissions.)

Survey results indicate that multiple methods of home heating occur within the main living area of the same household on a typical winter's day. This occurs both for the use of gas and electricity (some heater models are combined gas/electricity) and for the use of solid fuel burning appliances together with gas or electricity, and also with other solid fuel burning appliances. Therefore, while many households use non or low polluting methods of home heating, such as electricity or gas, many of the households also use an open fire, woodburner, or other solid fuel burning appliance in the main living area. Results also indicate that some households use multiple solid fuel burning appliances within the main living area on a typical winter's day. For example this is reflected in differences between tables 2.1 and 2.2.

The suburbs with the greatest percentage of households using solid fuel burning appliances are Burnside/Bryndwr and Hoon Hay (64%), followed by St Albans, Spreydon/Addington, Addington Industrial, Bromley, New Brighton, Hornby, Sockburn, Racecourse, and Wigram (52% - 58%) (Table 2.1). The suburb with the lowest percentage of households using solid fuel burning appliances is New Avonhead (9%) followed by Beckenham/Sydenham, Marshlands, Redwood, Airport and Avonhead at 24%. Suburbs which fall between the two above extremes are Fendalton, Shirley, Riccarton, Inner City, Bishopdale, Linwood, Opawa/Woolston and Parklands (32% - 46%).

Across the total study area, approximately 13240 households use an open fire on a typical winter's day to heat the main living area. This equates to approximately 14% of the total number of households in the total study area, and nearly 31% of solid fuel burning appliances in use (Table 2.1).

The suburbs with the greatest percentage of households using open fires on a typical winter's day to heat the main living area are Fendalton and the Inner City (28%), followed by St Albans (23%), Addington Industrial (22%) and Spreydon/Addington (20%). No households in New Avonhead use an open fire. 2% of the households in Parklands, Airport and Avonhead use an open fire. Suburbs which fall between are Beckenham/Sydenham, Linwood, Opawa/Woolston, Riccarton, Shirley, Bishopdale, Bromley, Burnside/Bryndwr, Hoon Hay, Hornby, Marshlands, New Brighton, Racecourse, Redwood, Sockburn and Wigram (6% - 18% of households).

Across the total study area there are approximately 26160 households using woodburners to heat the main living area on a typical winter's day (28% of the total number of households in the total study area and nearly 61% of solid fuel burning appliances in use) (Table 2.1). Approximately half of these appliances were installed before the upgrade of 'approval criteria' for solid fuel burning appliances in 1988. 23% of the appliances were installed between 1989 and 1992 and over 25% have been installed since 1993 (Figure 2.1).

The age distribution of pre 1988 appliances across the individual suburb areas range between 38% (Parklands) and 63% (Riccarton) (Table 2.3). An exception to this is Addington Industrial where 20% of woodburners were installed before 1988. In approximately 70% of the suburbs, between 50% and 60% of the woodburners were installed before 1988, while 40% to 50% were installed after 1988.

				2								Frofond	1000	+00			
Suburb Area	Total Number	Electricity		(LPG)		fire		fire/Visor	_ 5	Woodburne	rner	Enclosed Coal Burner	- Coa	Belly		Incinerator	ator
	of Households	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%
Inner Suburb Study Area Beckenham/Sydenham	4551	3277	72	1183	26	182	4	546	12	546	12	0	0	0	0	0	0
Fendalton	6033	4984	83	393	7	131	2	1705	28	1180	20	131	2	0	0	0	0
Inner City	2715	2172	80	652	24	0	0	092	28	272	10	0	0	0	0	0	0
Linwood	8364	5855	70	1506	8	502	9	1004	12	1338	91	335	4	0	0	0	0
Opawa/Woolston	4380	3066	70	964	22	175	4	526	12	1402	32	88	2	0	0	175	4
Riccarton	3309	2713	82	132	4	132	4	463	14	529	91	99	2	0	0	0	0
Shirley	4377	3540	81	257	9	0	0	257	9	1352	31	64	_	0	0	322	7
Spreydon/Addington	6744	3912	58	1484	22	540	· ·	1349	20	6191	24	674	10	0	0	0	0
St Albans	9948	6218	63	995	01	0	0	2238	23	3482	35	0	0	0	0	0	0
Sub-total - Inner Suburb Study Area	50421	35736	71	7566	15	1662	3	8848	-81	11719	23	1358	3	0	0	497	_
Outer Suburbs																	
Addington Industrial	273	158	58	09	22	22	00	09	22	09	22	27	10	0	0	0	0
Airport	198	170	98	28	4	24	12	4	2	28	14	12	9	4	2	0	0
Avonhead	6315	5431	98	884	4	758	12	126	7	884	14	379	9	126	7	0	0
Bishopdale	3453	1727	50	276	∞	0	0	622	<u>%</u>	<i>L</i> 96	28	0	0	0	0	0	0
Bromley	930	539	58	167	81	74	∞	74	∞	428	46	19	2	0	0	0	0
Burnside/Bryndwr	4808	3077	64	673	4	192	4	865	8	1923	40	288	9	0	0	0	0
Hoon Hay	3144	1446	46	755	24	63	2	314	01	1698	54	0	0	0	0	0	0
Hornby	2679	1991	62	804	30	214	∞	321	12	911	34	214	∞	54	2	0	0
Marshlands	1254	903	72	326	26	20	4	150	12	150	12	0	0	0	0	0	0
New Avonhead	777	723	93	126	91	0	0	0	0	72	6	0	0	0	0	0	0
New Brighton	11520	6682	58	2074	8	922	∞	922	∞	5299	46	230	7	0	0	0	0
Parklands	1572	844	54	233	15	0	0	29	2	466	30	58	4	0	0	0	0
Racecourse	717	445	62	215	30	57	∞	98	12	244	34	27	∞	14	2	0	0
Redwood	4533	3264	72	1179	26	181	4	544	12	544	12	0	0	0	0	0	0
Sockburn	1812	1123	62	544	30	145	00	217	12	919	34	145	∞	36	7	0	0
Wigram	450	279	62	135	30	36	∞	54	12	153	34	36	∞	6	2	0	0
Sub-total	44435	28472	64	8478	19	2739	9	4390	10	14443	33	1466	3	243	-	0	0
Total - Total Study Area	94856	64208	89	16044	17	4401	5	13239	14	26162	28	2825	3	243	0	497	-
NID THE LAST	11 0 11 1											1 . 1 . 1			-		

The number of households with solid fuel burning appliances can be found in Table 2.2. It is not appropriate to add the heating method totals in this table as multiple methods of home heating can be used within the same household. NB

Table 2.2 Number and percentage of **households** using electricity or gas, solid fuel burners (open fires/visors, woodburners, enclosed coal burners, pot bellies, incinerators), and oil burners across various study areas of Christchurch.

	Total Number	Electi or C	-	Solid Burn		Oi Burn	
Suburb Area	of Households		%	Number	%	Number	%
Inner Suburb Study Area							
Beckenham/Sydenham	4551	4005	88	1092	24	182	4
Fendalton	6033	5115	85	2623	43	131	2
Inner City	2715	2552	94	1032	38	0	0
Linwood	8364	6691	80	2676	32	502	6
Opawa/Woolston	4380	3679	84	1927	44	175	4
Riccarton	3309	2780	84	1059	32	132	4
Shirley	4377	3540	81	1931	44	0	0
Spreydon/Addington	6744	5125	76	3507	52	540	8
St Albans	9948	6466	65	5720	58	0	0
Sub-total - Inner Suburb Study Area	50421	39954	79	21568	43	1662	3
Outer Suburbs							
Addington Industrial	273	207	76	142	52	22	8
Airport	198	182	92	48	24	24	12
Avonhead	6315	5810	92	1516	24	758	12
Bishopdale	3453	1796	52	1588	46	0	0
Bromley	930	688	74	521	56	74	8
Burnside/Bryndwr	4808	3558	74	3077	64	192	4
Hoon Hay	3144	1886	60	2012	64	63	2
Hornby	2679	1982	74	1500	56	214	8
Marshlands	1254	1104	88	301	24	50	4
New Avonhead	777	741	95	72	9	0	0
New Brighton	11520	8525	74	6451	56	922	8
Parklands	1572	1048	67	553	35	0	0
Racecourse	717	531	74	402	56	57	8
Redwood	4533	3989	88	1088	24	. 181	4
Sockburn	1812	1341	74	1015	56	145	8
Wigram	450	333	74	252	56	36	8
Sub-total	44435	33721	76	20537	46	2739	6
Total - Total Study Area	94856	73674	78	42105	44	4401	5

Figure 2.1 Woodburner age breakdown for the total study area and the inner suburb study areas.

Table 2.3 Differences in age of woodburners by suburb.

	Total Number of	Pre 1 Woodb	urner	1989-1 Woodburn	er (incl)	Post 1 Woodb	urner
Suburb Area	Households using	House	holds	Housel	nolds	House	nolds
	a Woodburner	Number	%	Number	%	Number	%
Inner Suburb Study Area							
Beckenham/Sydenham	546	273	50	91	17	182	33
Fendalton	1180	525	44	262	22	393	33
Inner City	272	109	40	54	20	109	40
Linwood	1338	669	50	335	25	335	25
Opawa/Woolston	1402	701	50	350	25	350	25
Riccarton	529	331	63	66	13	132	25
Shirley	1352	708	52	322	24	322	24
Spreydon/Addington	1619	809	50	405	25	405	25
St Albans	3482	1741	50	746	21	995	29
Sub-total - Inner Suburb Study Area	11719	5865	50	2631	22	3223	27
Outer Suburbs							
Addington Industrial	60	11	18	27	45	22	36
Airport	28	12	43	4	14	12	43
Avonhead	884	505	57	126	14	253	. 29
Bishopdale	967	552	57	207	21	207	21
Bromley	428	223	52	93	22	112	26
Burnside/Bryndwr	1923	1058	55	385	20	481	25
Hoon Hay	1698	943	56	377	22	377	22
Hornby	911	536	59	214	24	161	18
Marshlands	150	75	50	25	17	50	33
New Avonhead	72	36	50	18	25	18	25
New Brighton	5299	2534	48	1382	26	1382	26
Parklands	466	175	38	146	31	146	31
Racecourse	244	115	47	57	24	72	29
Redwood	544	272	50	91	17	181	33
Sockburn	616	362	59	109	18	145	24
Wigram	153	72	47	27	18	54	35
Sub-total	14443	7482	52	3289	23	3672	25
Total - Total Study Area	26162	13347	51	5920	23	6895	26

In addition to open fires and woodburners, there are 2825 households across the total study area using enclosed coal burners to heat the main living area on a typical winter's day, 243 households using pot bellies, and 497 households using incinerators. This equates to 3%, under 1% and 1% of the total number of households in the total study area respectively, and to 6.5%. 0.6%, and 1% of solid fuel burning appliances in use respectively (Table 2.1).

Newer suburbs, such as New Avonhead, tend to use electricity and have more modern woodburners, primarily because open fire installations are no longer permitted in Christchurch. With regard to the other suburbs, it is difficult to determine if the variation in solid fuel burning appliance use is related to the average age of the dwellings.

2.2. Wood and Coal Consumption

Wood and coal consumption for the total study area and the inner suburb study area, and their use on different types of solid fuel burning appliances, are contained in Table 2.4 below.

Table 2.4 Wood and coal consumption by appliance type for the total study area and the inner suburb study area.

		ly Fuel Qu			ly Fuel Qu	
Appliance & Fuel	kg/day	otal Study t/day	% of Fuel Use	Inner kg/day	Suburb St t/day	udy Area % of Fuel Use
	kg/day	budy	70 01 1 001 030	ngrady	- cooy	70 011 007 000
Open fire - Wood	184754	184.8	31	110619	110.6	38
	77112	77.1	59	43832	43.8	64
- Coal Pre 1989 Woodburner	//112	,,	37	13032	13.0	•
	198421	198.4	33	86387	86.4	30
- Wood	2935	2.9	2	1012	1.0	1
- Coal	2933	4.9	2	1012	1.0	•
1989-1992 (incl) Woodburner	00400	00.4	15	38734	20.7	13
- Wood	88400	88.4	1		38.7	
- Coal	186	0.2	0	0	0.0	0
Post 1992 Woodburner						
- Wood	101708	101.7	17	46886	46.9	16
- Coal	4427	4.4	3	1642	1.6	2
Enclosed Coal Burner						
- Wood	14113	14.1	2	2752	2.8	1
- Coal	43866	43.9	33	20232	20.2	29
Pot Belly						
- Wood	2495	2.5	0	0	0.0	0
- Coal	1303	1.3	1	0	0.0	0
Incinerator						
- Wood	2418	2.4	0	2418	2.4	1
- Coal	1931	1.9	1	1931	1.9	3
Total Wood	592310	592.3	82	287796	287.8	81
Total Coal	131760	131.8	18	68649	68.6	19
Total Gas	45461	45.5	1	21226	21.2	
Total Oil	12343	12.3		10058	10.1	
Total (Wood and Coal only)	724069	724		356445	356	

By weight, the use of wood on a typical winter's day within the total study area is approximately four and a half times greater than the use of coal (590 tonnes of wood compared to 132 tonnes of coal). Within the inner suburb area, ~69 tonnes of coal are burnt per day compared to 288 tonnes of wood (Table 2.4).

59% of the daily coal consumption within the total study area is burnt on open fires and 33% on enclosed coal burners. 5% of the daily coal consumption is burnt on woodburners, 1% each on incinerators and pot bellies. 65% of the daily firewood consumption is burnt on woodburners, 31% on open fires, 2% on enclosed coal burners, and less than 1% on incinerators and pot bellies (Table 2.4 and Figure 2.2).

Within the inner suburb study area, 59% of the daily wood consumption is burnt on woodburners compared with 38% on open fires. 64% of the daily coal consumption is burnt on open fires, 29% on enclosed coal burners, 3% on woodburners and 3% on incinerators. Survey results indicate that no wood or coal is burnt on pot bellies (Table 2.4 and Figure 2.3).

Figure 2.2 Wood and coal consumption across the total study area.

Figure 2.3 Wood and coal consumption across the inner suburb study area.

On an individual suburb basis (Table 2.5 and Table 2.6), fuel and appliance use can vary considerably from suburb to suburb. No households in New Avonhead that have a solid fuel burning appliance burn coal whereas ~40% of households in Spreydon/Addington, Addington Industrial, Racecourse, Marshlands and Beckenham/Sydenham do. Likewise, the appliance that this coal is burnt on can also vary. Coal consumption on open fires/visors and on enclosed coal burners ranges from 0% to 100% across the suburbs, 0% to 25% on woodburners and pot bellies, and 0% to 67% on incinerators.

85% - 100% of households across Christchurch that have and use a solid fuel burning appliance burn wood (Table 2.6). Wood consumption on open fires/visors ranges from 0% of households to 74%, 26% to 100% on woodburners, 0% to 18% on enclosed coal burners and 0% to ~10% on pot bellies and on incinerators.

The only fuel that can be burnt on a Clean Air Approved appliance are those which the appliance has been specifically approved for. In the majority of cases this applies to wood only. Survey results suggest that coal is burnt on appliances approved for the burning of wood only (5% of the daily coal consumption across the total study area and 3% in the inner suburb study area is on woodburners). However, prior to 1988 there were some appliances approved to burn coal.

Table 2.5 Coal use on various appliances (in the main living area) across various study areas of Christchurch.

Suburb Area Solid Field Burring Coal Use Open free/Vision Mondbur Area Fine location of the selection														
Solid Fuel Burning Households Households <th< th=""><th></th><th>Number of Households using</th><th>Coal Us</th><th>e e</th><th>Open fire</th><th>/visor</th><th>Woodb</th><th>urner</th><th>Enclose</th><th>ed Coal ner</th><th>Pot b</th><th>elly</th><th>Incinerator</th><th>rator</th></th<>		Number of Households using	Coal Us	e e	Open fire	/visor	Woodb	urner	Enclose	ed Coal ner	Pot b	elly	Incinerator	rator
Appliances Number % % % % % </th <th>Suburb Area</th> <th>Solid Fuel Burning</th> <th>Househol</th> <th>ds</th> <th>Househo</th> <th>splo</th> <th>House</th> <th>sploi</th> <th>House</th> <th>holds</th> <th>House</th> <th>polds</th> <th>Households</th> <th>holds</th>	Suburb Area	Solid Fuel Burning	Househol	ds	Househo	splo	House	sploi	House	holds	House	polds	Households	holds
1092 455 42 455 100 0 <th< th=""><th></th><th>Appliances</th><th>Number</th><th>%</th><th>Number</th><th>%</th><th>Number</th><th>%</th><th>Number</th><th>%</th><th>Number</th><th>%</th><th>Number</th><th>%</th></th<>		Appliances	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%
1092 455 42 455 100 0 <th< th=""><th>Inner Suburb Study Area</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Inner Suburb Study Area													
2623 1180 39 918 78 131 11 131 11 131 11 0 1032 380 37 380 100 0 <td< th=""><th>Beckenham/Sydenham</th><th>1092</th><th>455</th><th>42</th><th>455</th><th>100</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th></td<>	Beckenham/Sydenham	1092	455	42	455	100	0	0	0	0	0	0	0	0
1032 380 37 380 100 0 <th< th=""><th>Fendalton</th><th>2623</th><th>1180</th><th>39</th><th>816</th><th>78</th><th>131</th><th>=</th><th>131</th><th>=</th><th>0</th><th>0</th><th>0</th><th>0</th></th<>	Fendalton	2623	1180	39	816	78	131	=	131	=	0	0	0	0
2676 669 25 335 50 0 0 335 50 0 1927 350 16 263 75 0 0 88 25 0 1059 397 38 265 67 66 17 66 17 66 17 66 17 66 17 66 17 66 17 66 17 66 17 60 0	Inner City	1032	380	37	380	100	0	0	0	0	0	0	0	0
1927 350 16 263 75 0 0 88 25 0 11059 397 38 265 67 66 17 66 17 0 1931 193 10 0 0 0 0 0 0 35207 1484 41 674 49 135 9 674 45 0 21568 6352 28 4533 71 332 5 138 21 0 21568 6352 28 4533 71 332 5 138 9 674 45 0 21568 63 20 0	Linwood	2676	699	25	335	50	0	0	335	50	0	0	0	0
1059 397 38 265 67 66 17 66 17 6 17 6 17 6 17 6 17 6 17 6 17 6 17 6 17 6 17 6 17 6 17 6 17 6 17 6 17 6 17 6 17 6 17 9 6 17 9 6 17 9 0	Opawa/Woolston	1927	350	91	263	75	0	0	88	25	0	0	0	0
1931 193 10 0 0 0 64 33 0 3507 1484 41 674 45 135 9 674 45 0 21568 6352 28 4533 71 332 5 1358 21 0 122 44 4 43 45 100 0 <td< th=""><th>Riccarton</th><th>1059</th><th>397</th><th>38</th><th>265</th><th>29</th><th>99</th><th>17</th><th>99</th><th>17</th><th>0</th><th>0</th><th>0</th><th>0</th></td<>	Riccarton	1059	397	38	265	29	99	17	99	17	0	0	0	0
3507 1484 41 674 45 135 9 674 45 0 21568 6352 28 4533 71 332 5 1358 21 0 21568 6352 28 4533 71 332 5 1358 21 0 48 16 33 0 0 0 0 12 45 0 1516 505 33 0 0 0 0 12 75 44 1518 345 22 345 100 0	Shirley	1931	193	10	0	0	0	0	64	33	0	0	129	19
5720 1244 22 1244 100 <	Spreydon/Addington	3507	1484	41	674	45	135	6	674	45	0	0	0	0
21568 6352 28 4533 71 332 5 138 21 0 142 60 41 33 55 0 0 27 45 0 48 16 33 0 0 0 12 75 4 1516 505 33 0 0 0 12 75 4 1588 345 22 345 100 0 <td< th=""><th>St Albans</th><th>5720</th><th>1244</th><th>22</th><th>1244</th><th>100</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th></td<>	St Albans	5720	1244	22	1244	100	0	0	0	0	0	0	0	0
142 60 41 33 55 0 0 27 45 0 48 16 33 0 0 0 12 75 4 1516 505 33 0 0 0 12 75 4 1588 345 22 345 100 <	Sub-total - Inner Suburb Study Area		6352	28	4533	71	332	5	1358	21	0	0	129	2
trial 142 60 41 33 55 0 0 27 45 0 48 16 33 0 0 0 12 75 4 1516 505 33 0 0 0 12 75 4 1516 505 33 0 0 0 0 12 75 4 521 505 33 0	Outer Suburbs													
VT 48 16 33 0 0 0 12 75 4 1516 505 33 0 0 0 0 12 75 4 1588 345 22 345 100 0 <th>Addington Industrial</th> <th>142</th> <th>09</th> <th>41</th> <th>33</th> <th>55</th> <th>0</th> <th>0</th> <th>27</th> <th>45</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th>	Addington Industrial	142	09	41	33	55	0	0	27	45	0	0	0	0
VT 505 33 0 0 0 0 379 75 126 521 345 22 345 100 0	Airport	48	91	33	0	0	0	0	12	75	4	25	0	0
vr 1588 345 22 345 100 0 <t< th=""><th>Avonhead</th><th>1516</th><th>505</th><th>33</th><th>0</th><th>0</th><th>0</th><th>0</th><th>379</th><th>75</th><th>126</th><th>25</th><th>0</th><th>0</th></t<>	Avonhead	1516	505	33	0	0	0	0	379	75	126	25	0	0
VT 521 93 18 56 60 19 20 19 20 19 20 0 0 3077 769 25 288 38 192 25 288 38 0 1500 482 25 80 63 20 0	Bishopdale	1588	345	22	345	100	0	0	0	0	0	0	0	0
vr 3077 769 25 288 38 192 25 288 38 0 2012 252 13 252 80 63 20 0	Bromley	521	93	81	99	09	61	20	19	20	0	0	0	0
2012 252 13 252 80 63 20 0 <t< th=""><th>Burnside/Bryndwr</th><th>3077</th><th>692</th><th>25</th><th>288</th><th>38</th><th>192</th><th>25</th><th>288</th><th>38</th><th>0</th><th>0</th><th>0</th><th>0</th></t<>	Burnside/Bryndwr	3077	692	25	288	38	192	25	288	38	0	0	0	0
1500 482 32 321 67 0 0 161 33 0 301 125 42 125 100 0	Hoon Hay	2012	252	13	252	80	63	20	0	0	0	0	0	0
301 125 42 125 100 0	Hornby	1500	482	32	321	29	0	0	191	33	0	0	0	0
72 0	Marshlands	301	125	42	125	100	0	0	0	0	0	0	0	0
6451 1152 18 691 60 230 20 20 20 0 553 58 11 0 0 0 0 58 100 0 402 129 32 86 67 0 0 43 33 0 1018 453 42 453 100 0 0 0 0 0 0 1015 326 32 217 67 0 <	New Avonhead	72	0	0	0	0	0	0	0	0	0	0	0	0
553 58 11 0 0 0 58 100 0 402 129 32 86 67 0 0 43 33 0 1088 453 42 453 100 0 0 0 0 0 1015 326 32 217 67 0 0 0 0 0 252 81 32 54 67 0 0 27 33 0 20537 4848 24 2923 60 504 10 1353 28 130 42105 11200 26 7456 66 836 7 2712 24 130	New Brighton	6451	1152	81	169	09	230	20	230	20	0	0	0	0
402 129 32 86 67 0 0 43 33 0 1088 453 42 453 100 0	Parklands	553	58	=	0	0	0	0	58	100	0	0	0	0
1088 453 42 453 100 0 <th< th=""><th>Racecourse</th><th>402</th><th>129</th><th>32</th><th>98</th><th>19</th><th>0</th><th>0</th><th>43</th><th>33</th><th>0</th><th>0</th><th>0</th><th>0</th></th<>	Racecourse	402	129	32	98	19	0	0	43	33	0	0	0	0
1015 326 32 217 67 0 0 109 33 0 252 81 32 54 67 0 0 27 33 0 20537 4848 24 2923 60 504 10 1353 28 130 42105 11200 26 7456 66 836 7 2712 24 130	Redwood	1088	453	42	453	100	0	0	0	0	0	0	0	0
252 81 32 54 67 0 0 27 33 0 20537 4848 24 2923 60 504 10 1353 28 130 42105 11200 26 7456 66 836 7 2712 24 130	Sockburn	1015	326	32	217	29	0	0	601	33	0	0	0	0
20537 4848 24 2923 60 504 10 1353 28 42105 11200 26 7456 66 836 7 2712 24	Wigram	252	81	32	54	67	0	0	27	33	0	0	0	0
42105 11200 26 7456 66 836 7 2712 24	Sub-total	20537	4848	24	2923	09	504	10	1353	28	130	3	0	0
	Total - Total Study Area	42105	11200	26	7456	99	988	7	2712	24	130	1	129	-

Table 2.6 Wood use on various appliances (in the main living area) across various study areas of Christchurch.

					-								
	Total Number of	Wood Use	es Se	Open fire/visor	e/visor	Woodburner	urner	Enclosed Coal Burner	d Coal	Pot belly	elly	Incinerator	rator
Suburb Area	Solid Fuel Burning	Households	sp	Households	splou	Households	splot	Households	splou	Households	sploi	Households	holds
	Appliances	Number	%	Number	%	Number	%	Number	%	Number	%	Number	%
Inner Suburb Study Area													
Beckenham/Sydenham	1092	1001	92	455	45	546	55	0	0	0	0	0	0
Fendalton	2623	2754	16	1574	57	1180	43	0	0	0	0	0	0
Inner City	1032	1032	001	092	74	272	26	0	0	0	0	0	0
Linwood	2676	2676	100	1004	38	1338	20	335	13	0	0	0	0
Opawa/Woolston	1927	1927	88	526	27	1402	73	0	0	0	0	0	0
Riccarton	1059	927	88	397	43	529	57	0	0	0	0	0	0
Shirlev	1931	1738	87	193	=	1352	78	0	0	0	0	193	=
Spreydon/Addington	3507	3102	85	1349	43	6191	52	135	4	0	0	0	0
St Albans	5720	5720	100	2238	39	3482	19	0	0	0	0	0	0
Sub-total - Inner Suburb Study Area	21568	20878	93	8496	41	11719	56	469	2	0	0	193	_
Outer Suburbs													
Addington Industrial	142	126	85	09	48	09	48	2	4	0	0	0	0
Airport	48	44	92	4	6	28	64	8	18	4	6	0	0
Avonhead	1516	1389	92	126	6	884	64	253	18	126	6	0	0
Bishopdale	1588	1588	100	622	39	196	19	0	0	0	0	0	0
Bromley	521	521	100	74	14	428	82	61	4	0	0	0	0
Burnside/Bryndwr	3077	2885	94	692	27	1923	19	192	7	0	0	0	0
Hoon Hay	2012	2012	100	314	91	1698	84	0	0	0	0	0	0
Hornby	1500	1447	96	321	22	911	63	191	=	54	4	0	0
Marshlands	301	276	92	125	45	150	55	0	0	0	0	0	0
New Avonhead	72	72	100	0	0	72	100	0	0	0	0	0	0
New Brighton	6451	6451	001	922	4	5299	82	230	4	0	0	0	0
Parklands	553	495	68	29	9	466	94	0	0	0	0	0	0
Racecourse	402	387	96	98	22	244	63	43	1	14	4	0	0
Redwood	1088	266	92	453	45	544	55	0	0	0	0	0	0
Sockburn	1015	826	96	217	22	919	63	109	=	36	4	0	0
Wigram	252	243	96	54	22	153	63	27	=	6	4	0	0
Sub-total	20537	11661	26	4178	21	14443	73	1047	5	243	-	0	0
Total - Total Study Area	42105	40789	95	12674	31	26162	64	1516	4	243	1	193	0

In ten of the 25 suburbs surveyed, householders were also questioned about their wood supply (Table 2.7). On average, 51% of households burn wood obtained from wood merchants. The wood used in the remaining 49% of households was collected from other sources (self-collected etc). Any cost that may have been associated with wood from other sources was not established. Furthermore, a comparison of estimated wood weights from merchants vs other sources concluded that households burn similar quantities of wood regardless of the collection source.

Table 2.7 Source of firewood.

	Merchant (%)	Other Source (%)
Riccarton	24	76
Hornby	56	44
Linwood	60	40
New Brighton	56	44
Burnside/Bryndwr	48	52
Avonhead	50	50
Opawa/Woolston	43	57
Beckenham/Sydenha	80	20
Spreydon/Addington	55	45
Hoon Hay	52	48
Average	51	49

3. Home Heating Emissions

3.1. Home Heating Emission Factors, Calculation Techniques and Assumptions

The home heating emission factors used in this inventory (Table 3.1 and Table 3.2) were developed from a literature survey (United States Environmental Protection Agency (USEPA) (1994), Economopoulos (1993), Brady & Pullen (1985) and Todd (1994)) and through consultation with CRC staff.

The factors in Table 3.1 below outline the differing pollutant emissions for various fuel sources. For example, when comparing the emissions from one kilogram of gas to those from one kilogram of wood, wood produces 100 times the quantity of PM_{10} and VOC, 200 times the amount of CO, 20 times the amount of SO_x , just over half the amount of NO_x (55%) and about two thirds the amount of CO_2 (68%).

Compared to the burning one kilogram of wood, the burning of one kilogram of coal produces over two times the emissions of PM_{10} , nearly twice the emissions of CO_2 , is responsible for almost all of the SO_x emissions (90%) and emits only half the VOCs and CO. Yet to produce the same degree of heat from a given quantity of wood only about half the amount of coal is required (e.g. wood releases approximately 10 MJ/kg whereas sub-bitumnal coal releases approximately 20 MJ/kg).

Table 3.1 The fuel factors used to calculate home heating emissions.

Fuel Factor	PM ₁₀	СО	NOx	SOx	VOC	CO ₂
gas (g/kg)	0.1	0.4	2.0	0.01	0.2	2500
oil (g/l)	1.3	0.6	2.2	3.8	0.25	3200
wood (g/kg)	10.0	80.0	1.1	0.2	20.0	1700
coal (g/kg)	22.0	40.0	1.0	18.0	10.0	2800

Table 3.1 however, does not take into account the age and type of appliance on which various solid fuels are being burnt. To compensate for differing appliances (i.e. a typical coal-burning appliance, which is more polluting, compared to a typical woodburner) and incorrect operation, the emissions produced by various fuels need to be multiplied by an 'appliance factor' (Table 3.2).

Table 3.2 The appliance factors used to calculate home heating emissions.

Appliance Factor	PM ₁₀	CO	NOx	SOx	VOC	CO ₂
open fire	1.50	1.50	1.50	1.00	1.50	1.00
woodburner pre 89	1.28	1.28	1.28	1.00	1.28	1.00
woodburner 90-92 (incl)	0.69	0.69	0.69	1.00	0.69	1.00
woodburner 93+	0.59	0.59	0.59	1.00	0.59	1.00
enclosed coal burner	1.43	1.43	1.43	1.00	1.43	1.00
pot belly	1.43	1.43	1.43	1.00	1.43	1.00
incinerator	1.56	1.56	1.56	1.00	1.56	1.00

Generally, typical open fires, incinerators, pot bellies and enclosed coal burners produce approximately 1.2 times the emissions of PM_{10} , CO, NO_x and VOCs of pre 1989 woodburners for a given fuel. This value is even greater when compared to later model woodburners (approximately 2.5 times compared to a post-1993 woodburner).

With the exception of CO₂, the emissions from the burning of gas and oil are relatively minor and are not subject to 'appliance' factors.

The following assumptions have been made:

- 1. typical coal is 1.0 wt% sulphur
- 2. <u>daily</u> winter fuel consumption in <u>solid fuel appliances</u> e.g. woodburners etc. = a typical winter's night fuel consumption
- 3. <u>daily</u> winter fuel consumption for <u>natural gas and fuel oil</u> = total weekly fuel consumption /7 days
- 4. a "log" of wood = 1.6kg
- 5. a "bucket" of coal = 10kg

Overall, home heating emissions were calculated for a typical winter's day and aggregated to a total using the following formula:

Home Heating Emissions (g) = Fuel Factor * Appliance Factor * Daily Fuel Use

So, to determine the total PM_{10} emissions from the burning of 20kg of wood on an open fire the equation would look like:

$$PM_{10}$$
 Emissions (g) = 10.0 g/kg * 1.5 * 20 kg.

The aggregated total home heating emissions for each pollutant were then divided by the number of hectares within each suburb (1 hectare = 10000m²). This gave a "normalised" weight per area value (e.g. grams per hectare) and allowed fair comparison of home heating emissions with emissions from other sources.

The Canterbury Regional Council supplied a woodburner age breakdown for each suburb area. These statistics, which are based on building consent records from the Christchurch City Council, indicate that the majority of woodburner installations are in existing dwellings but give no detail as to what the woodburner installations replace.

3.2. Home Heating Emissions on a Typical Winter's Day by Fuel Use and Appliance Type

The main contaminant emissions from the burning of solid fuels on different types of appliances (as applicable) within the total study area and from the inner suburb study area are outlined in Table 3.4 and Table 3.5.

As previously mentioned, the contaminant of main concern in Christchurch is fine particulates (PM_{10}). Across the total study area of Christchurch, the burning of wood and coal on open fires is estimated to produce 48% of the home heating PM_{10} emissions (25% from wood, 23% from coal) while the burning of wood on woodburners produces 34% (Table 3.3 and Figure 3.1). Of the latter, PM_{10} emissions from pre 1989 woodburners are twice those of the later models combined. 15% of PM_{10} emissions stem from the burning of wood and coal on enclosed coal burners (2% from wood, 13% from coal). The remaining emissions from the burning of coal (3%) are divided evenly between incinerators, pre 1989 woodburners and post 1993 woodburners.

Within the inner suburb study area, the burning of wood and coal on open fires/visors contributes to approximately 56% of PM_{10} emissions while wood and coal burning on woodburners and enclosed coal burners contribute slightly less (31% and 12% respectively). The burning of wood and coal on incinerators produces around 2% of PM_{10} emissions (Table 3.3 and Figure 3.1).

Table 3.3 Percentage of PM₁₀ emissions from the burning of wood and coal on various appliances within the total study area and the inner suburb study area.

Fuel and Appliance	Total Study Area	Inner Suburb Study Area
Open fire		
- Wood	25	30
- Coal	23	26
Pre 1989 Woodburner		
- Wood	23	20
- Coal	1	1
1989-1992 (incl) Woodburner		
- Wood	6	5
- Coal	0	0
Post 1993 Woodburner		
- Wood	5	5
- Coal	1	0
Enclosed Coal Burner		
- Wood	2	1
- Coal	13	11
Pot Belly		
- Wood	0	0
- Coal	0	0
Incinerator		
- Wood	0	1
- Coal	1	1

Figure 3.1 Percentage of PM₁₀ emissions from the burning of wood and coal on various appliances within the total study area and the inner suburb study area.

Pre 1989 Woodburner - Wood

1993+ Woodburner - Wood

III Incinerator - Wood

Enclosed Coal Burner - Wood

1989-1992 (incl) Woodburner - Wood

Pre 1989 Woodburner - Coal

1993+ Woodburner - Coal

Incinerator - Coal

Enclosed Coal Burner - Coal

Table 3.4 Estimated pollutant emissions from various fuels and appliances across the total study area.

	Daily Firel Organity	Close	vitingi		DM			5			2			S			207			Š	
	kg/day	t/day	t/day Use (%)	kg	g/ha %	% Total	kg		% Total	kg	g/ha %	% Total	kg		% Total	kg	g/ha % Total	Total	ķĝ	_	% Total
Open fire																					
- Wood	184754	184.8	31	2771	156	25	22171	1249	36	305	17	33	37	2	_	5543	312	36	314083	17688	23
- Coal	77112	77.1	59	2545	143	23	4627	261	7	911	7	12	1388	78	99	1157	9	7	215913	12159	91
Pre 1989 Woodburner																					
- Wood	198421	198.4	33	2540	143	23	20318	1144	33	279	91	30	40	2	7	2080	286	33	337316	96681	25
- Coal	2935	2.9	2	83	2	_	150	∞	0	4	0	0	53	3	7	38	2	0	8217	463	-
1989-1992 (incl) Woodburner																					
- Wood	88400	88.4	15	019	34	9	4880	275	∞	29	4	7	18	_	_	1220	69	00	150279	8463	=
- Coal	186	0.2	0	3	0	0	2	0	0	0	0	0	3	0	0	-	0	0	521	29	0
Post 1993 Woodburner																					
- Wood	101708	101.7	17	009	34	5	4801	270	∞	99	4	7	20	_	_	1200	89	∞	172904	9737	13
- Coal	4427	4.4	3	57	3	-	104	9	0	3	0	0	80	4	3	56	_	0	12396	869	_
Enclosed Coal Burner				1																	
- Wood	14113	14.1	2	202	=	2	1615	16	3	22	_	2	3	0	0	404	23	3	23993	1351	2
- Coal	43866	43.9	33	1380	78	13	2509	141	4	63	4	7	190	44	32	627	35	4	122826	2169	, 6
Pot Belly																					
- Wood	2495	2.5	0	36	2	0	285	91	0	4	0	0	0	0	0	11	4	0	4242	239	0
- Coal	1303	1.3	_	41	2	0	75	4	0	7	0	0	23	_	_	16	-	0	3647	205	0
Incinerator																					
- Wood	2418	2.4	0	38	2	0	302	17	0	4	0	0	0	0	0	75	4	0	4110	231	0
- Coal	1931	1.9	-	99	4	_	120	7	0	3	0	0	35	7	_	30	7	0	5407	304	0
Total Wood	592310	592.3	82	9619	383		_	3062	88	748	42	80	118	7	2	13593	765	88	1006926	90299	73
Total Coal	131760	131.8	81	4175	235	38	7591	427	12	190	=	20	2372	134	95	8681	107	12	368927	20776	27
Total Gas	45461	45.5		2	0		18	-		16	2		0	0		6	_		113653	6400	
Total Oil	12343	12.3		91	_		7	0		27	2		47	3		3	0		39497	2224	
Total (Wood and Coal)	724069	724		10971	819	100	61962	3489	100	937	53	100	2490	140	001	15490	872	100	1375853	77482	100

Table 3.5 Estimated pollutant emissions from various fuels and appliances across the inner suburb study area.

	De	Daily Fuel	lel		PM ₁₀			္ပ			Š			Sox			VOC			$\frac{7}{2}$	
	Q kg/day	Quantity / t/day U	ty Use (%)	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Open fire	110619	1106	38	0591	376	30	13274	2206	43	183	30	30	22	4	2	3319	552	43	188052	31258	28
	42027	43.0	27	1446	240	36	0630	127	. 0	77	2 -		700	121	17	153	1001	. 0	122720	20400	01
- Coal	42027	42.0	40	1440	740	07	7020	40/	0	00	_	<u>+</u>	60/	151	0	027	109	0	177/20	70400	0
Pre 1989 Woodburner																					
- Wood	86387	86.4	30	1106	184	20	8846	1470	28	122	20	26	17	3	_	2212	368	28	146858	24411	22
- Coal	1012	1.0	_	28	2	_	52	6	0		0	0	18	3	-	13	2	0	2832	471	0
1989-1992 (incl) Woodburner																					
- Wood	38734	38.7	13	267	44	5	2138	355	7	29	5	9	00		_	535	68	7	65848	10945	10
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	46886	46.9	91	277	46	5	2213	368	7	30	2	9	6	7	_	553	92	7	79707	13249	12
- Coal	1642	9.1	2	21	4	0	39	9	0	_	0	0	30	2	7	10	2	0	4599	764	-
Enclosed Coal Burner																					
- Wood	2752	2.8	-	39	7	-	315	52	_	4	_	_	_	0	0	79	13	-	4678	778	_
- Coal	20232	20.2	29	989	901	=	1157	192	4	29	5	9	364	19	28	289	48	4	56649	9416	∞
Pot Belly																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood	2418	2.4	_	38	9	_	302	50	-	4	_	_	0	0	0	75	13	_	4110	683	-
- Coal	1931	1.9	3	99	Ξ		120	20	0	3	_	-	35	9	3	30	2	0	5407	668	-
,	Control	t	·	0		,			ţ	0	,	Č	9					1	4000	200	ç
Total Wood	96//87	8./87	 	2380	263	19	2/088	4503	/8	315	79	6/	28	0	4	7//9	1170	/8	489233	81324	7/
Total Coal	68649	9.89	61	2199	366	39	3998	999	13	100	17	21	1236	205	96	1000	991	13	192217	31950	28
Total Gas	21226	21.2		2	0		∞	_		42	7		0	0		4	-		53065	8821	
Total Oil	10058	10.1		13	2		9			22	4		38	9		3	0		32184	5350	
Total (Wood and Coal)	356445	356		5885	928	001	31086	2167	100	472	79	001	1293	215	001	7772	1292	100	681470	113274	100

For the other contaminants, the relative contribution of open fires, woodburners and other appliances to pollutant emissions in the total study area and the inner suburb study area are shown in Table 3.4 and Table 3.5, and also summarised in Table 3.6. Like PM₁₀, most of the CO, NO_X, SO_X, VOC and CO₂ emissions are produced from the burning of wood and coal (primarily wood) on open fires and woodburners.

Table 3.6 Relative contribution of open fires, woodburners and other burning appliances to pollutant emissions within the total study area and the inner suburb study area.

		en Fires % Inner Suburb Area	Woo Total Area	dburners %		ning Appliances %
	Total Area	inner Suburb Area	Total Area	Inner Suburb Area	Total Area	Inner Suburb Area
PM_{10}	48	56	35	30	16	14
CO	43	51	49	43	8	6
NOx	45	53	45	39	10	9
SOx	57	63	9	6	34	31
VOC	43	51	49	43	8	6
CO ₂	39	46	50	44	12	10

Across the total study area, open fires are responsible for approximately 43% of CO emissions, 45% of NO_x emissions, 57% of SO_x emissions, 43% of VOC emissions and 39% of CO_2 emissions (Table 3.6). Of those emissions, wood burning on an open fire produces 36% of CO emissions, 33% of NO_x emissions, 1% of SO_x emissions, 36% of VOC emissions and 23% of CO_2 emissions. Coal burning on an open fire makes up the difference (Table 3.4).

The burning of wood on woodburners across the total study area produces approximately 49% of CO emissions, 45% of NO_x emissions, 4% of SO_x emissions, 49% of VOC emissions and 49% of CO_2 emissions (Table 3.6). Coal burning on woodburners contributes to a small percentage of CO_2 emissions (2%) and to over half of the SO_x emissions (5%) (Table 3.4).

Within the inner suburb study area, the burning of wood and coal on open fires produces 51% of CO emissions, 53% of NO_x emissions, 63% of SO_x emissions, 51% of VOC emissions and 46% of CO_2 emissions (Table 3.6). Of those emissions, wood burning on an open fire produces 43% of CO emissions, 39% of NO_x emissions, 2% of SO_x emissions, 43% of VOC emissions and 28% of CO_2 emissions. Coal burning on open fires makes up the difference (61% in the case of SO_x) (Table 3.5).

The burning of wood and coal on woodburners produces approximately 43% of CO emissions, 39% of NO_x emissions, 6% of SO_x emissions, 43% of VOC emissions and 44% of CO_2 emissions. (Table 3.6). Coal burning on woodburners contributes to a small percentage of CO_2 emissions (1%) and to half of the SO_x emissions (3%) (Table 3.5).

Across the total study area, 32% of SO_x , 7% of NO_x and 9% of CO_2 comes from the burning of coal on enclosed coal burners (Table 3.4). Within the inner suburb study area, 28% of SO_x , 6% of NO_x and 8% of CO_2 comes from coal burning on these appliances (Table 3.5).

Individual suburb results can be found in Appendix III

3.3. Comparison of Average PM_{10} , CO and SO_x Emissions Per Household with Methods of Home Heating on a Household Basis

Table 3.8 displays PM₁₀, CO and SO_X emissions per household in descending order of PM₁₀ for each suburb.

Statistical analysis of Table 3.8 indicates that pollutant emissions are dependent on the methods of home heating in the main living area on a typical winter's day (Table 3.7). At the 95% confidence level, PM₁₀ emissions are positively correlated with the use of open fires (0.54) and enclosed coal burners (0.50). The relationship between PM₁₀ and woodburner use is significant at the 99% confidence level (0.64). PM₁₀ emissions per household are not statistically related to the use of gas, oil burners, pot bellies and incinerators, and are negatively correlated to electricity use (0.59).

Table 3.7 Pearson analysis of pollutant emissions and appliance use

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Open	A Second	Enclosed Coal		
	Electricity	Gas (LPG)	Oil fire	fire/Visor	Woodburner	Burner	Pot Belly	Incinerator
PM ₁₀	-0.59	0.37	0.27	0.54	0.64	0.50	0.22	-0.14
CO	-0.67	0.21	-0.01	0.46	0.82	0.09	-0.03	0.00
SO _*	-0.32	0.41	0.52	0.45	0.24	0.83	0.43	-0.26

CO emissions are positively correlated to the use of open fires (0.46) and woodburners (0.82) at the 99% confidence level. Again, the use of electricity is negatively correlated with CO levels (-0.67). CO is released when gas, oil fires, enclosed coal burners, pot bellies and incinerators are used. Statistical analysis of the results indicates that the relationship between CO is not significant with gas (0.21), oil fires (-0.01), enclosed coal burners (0.09), pot bellies (-0.03) and incinerators (0.00).

SO_{*} emissions are positively correlated with the use of open fires, oil fires, pot bellies and gas at the 95% confidence level (0.45, 0.52, 0.43, and 0.41 respectively) and are correlated with the use enclosed coal burners at the 99% confidence level (0.83). SO_{*} is released when woodburners and incinerators are used but statistically the relationship is not significant (woodburners (0.24) and incinerators (0.26)). SO_{*} emissions are not statistically related to electricity (0.32).

As would be expected the suburbs with the highest PM₁₀ emissions on a per household basis are those with the greatest percentage of solid fuel burning methods of home heating. Burnside/Bryndwr, for example, recorded the highest PM₁₀ emissions per household whereas New Avonhead recorded the lowest PM₁₀, CO and SO_x emissions. 40% of the households in Burnside/Bryndwr use a woodburner to heat the main living area on a typical winter's day whereas woodburners are used in 9% of New Avonhead households. In addition to this, 18% of households in Burnside/Bryndwr use an open fire. In contrast, there are not open fires in use in New Avonhead. Furthermore, 95% of the households use electricity. Only 64% of households used electricity in Burnside/Bryndwr.

A similar pattern emerges when looking at the suburbs that display high CO and SO_x emissions per household. Hoon Hay recorded the highest CO emissions per household. 54% of the households use a woodburner and 10% use open fires to heat the main living area on a typical winter's day. Furthermore, 46% of the households use electricity.

Spreydon/Addington and Addington Industrial recorded the highest SO_x emissions per household. In these suburbs 22% and 24% of households respectively use woodburners, 20% and 22% use open fires, 10% of households in each suburb use enclosed coal burners. Electricity was used in 58% of households.

With the exception of New Avonhead, no apparent variation in emissions or home heating methods is evident relative to the age of the dwellings in an area. An additional study would be required to establish whether there are any relationships between the socio-economic structure of households, heating methods and emissions.

Table 3.8 Average emissions per household from home heating in descending order of PM10 for the individual suburb areas of Christchurch - Typical winter's day.

bit bit frames frames control Grams frames Grams frames Grams frames Grams frames Grams frames		Total No	Housing	Individual		Households			0%	of Hous	% of Households Using	sing		
Households (households) (houses) (households) (house		ō	Density		-			,		Open		Enclosed		
4808 10.5 174 957 43 64 14 4 18 40 6 2679 5.4 166 775 51 62 30 8 12 34 8 1812 6.9 165 773 51 62 30 8 12 34 8 717 2.9 162 743 51 62 30 8 12 34 8 450 0.6 161 741 51 62 30 8 12 34 8 450 0.6 161 741 51 62 30 8 12 34 8 6033 8.1 12 62 30 8 12 34 8 6033 8.1 18 46 22 8 20 22 10 6033 8.1 149 78 48 46 24 10 8	Suburb Area	Households	(houses/ha)	PM ₁₀	8	SOx	Electricity	Gas (LPG)	Oil fire	fire/Visor	Woodburner		Pot Belly	Incinerator
1812 6.9 165 773 51 62 30 8 12 34 8 8 14 15 14 165 773 51 62 30 8 12 34 8 8 14 4 5 16 743 51 62 30 8 12 34 8 8 14 4 5 16 743 51 62 30 8 12 34 8 8 8 14 4 5 15 150 1018 18 46 24 22 22 24 10 10 10 10 10 10 10 1	Burnside/Bryndwr	4808	10.5	174	957	43	64	14	4	18	40	9	0	0
1812 6.9 165 773 51 62 30 8 12 34 8 450 0.6 162 743 51 62 30 8 12 34 8 450 0.6 161 741 51 62 30 8 12 34 8 6744 9.1 162 741 51 62 30 8 12 34 8 1 273 1.2 155 634 59 58 22 8 10 8 10 8 9344 7.5 150 1018 18 46 24 2 10 54 8 9348 1.15 142 886 26 58 18 8 46 23 28 10 8 46 24 2 10 8 10 9 11520 5.12 4.3 88 4 4	Hornby	2679	5.4	991	775	51	62	30	∞	12	34	00	2	0
450 66 10 74 51 62 30 8 12 34 8 450 06 161 741 51 62 30 8 12 34 8 450 06 161 741 51 62 30 8 12 34 8 1 273 1.2 155 694 59 58 22 8 20 24 10 34 8 6033 8.1 1.5 150 1018 18 8 22 22 10 50 10 930 1.2 142 886 26 58 18 8 46 2 10 50 2 10 50 2 10 50	Sockburn	1812	6.9	165	773	51	62	30	∞	12	34	80	2	0
450 0.6 161 741 51 62 30 8 12 34 8 6744 9.1 159 634 59 58 22 8 20 24 10 1 273 1.2 155 634 59 58 22 8 20 24 10 6034 7.1 150 1018 18 46 22 8 20 24 10 990 1.2 149 748 43 8 4 6 20 20 20 10 9948 1.1.2 142 886 26 58 18 8 46 2 2715 4.3 11.5 12.5 823 17 63 10 0 23 36 0 2715 4.3 11.5 12.5 82 14 50 8 6 12 10 2715 6.0 <t< th=""><th>Racecourse</th><th>717</th><th>2.9</th><th>162</th><th>743</th><th>51</th><th>62</th><th>30</th><th>∞</th><th>12</th><th>34</th><th>00</th><th>2</th><th>0</th></t<>	Racecourse	717	2.9	162	743	51	62	30	∞	12	34	00	2	0
Math 9.1 159 634 59 58 22 8 20 24 10 1344 7.5 150 108 18 8 22 8 22 20 24 10 6033 8.1 1.5 150 1018 18 46 24 2 10 54 0 20 6033 8.1 149 748 43 88 26 58 18 8 60 20 20 10 60 20 20 10 60 20 20 10 60 20 20 10 60 20 20 20 10 60 20	Wigram	450	9.0	191	741	51	62	30	∞	12	34	00	2	0
I 273 1.2 155 599 59 58 22 8 22 20 10 3144 7.5 150 1018 18 46 24 2 10 54 0 6033 8.1 149 748 43 83 7 2 28 20 5 0 930 1.2 142 886 26 58 18 8 46 2 0 2 11520 5.9 139 870 26 58 18 8 46 2 2715 4.3 118 650 27 63 10 6 2 10 6 2 2715 4.3 118 650 27 80 2 8 46 2 10 6 2 4380 5.5 118 6.0 24 0 28 46 2 2 2 2 <t< th=""><th>Spreydon/Addington</th><th>6744</th><th>9.1</th><th>159</th><th>634</th><th>59</th><th>58</th><th>22</th><th>∞</th><th>20</th><th>24</th><th>10</th><th>0</th><th>0</th></t<>	Spreydon/Addington	6744	9.1	159	634	59	58	22	∞	20	24	10	0	0
inton 3144 7.5 150 1018 18 46 24 2 10 54 0 inton 6033 8.1 149 748 43 83 7 2 28 20 2 inton 1152 1.2 142 886 26 58 18 8 8 46 2 inton 1152 1.2 142 886 26 58 18 8 8 46 2 c 2715 4.3 11.5 1.2 820 26 18 8 46 2 c 2715 4.3 11.8 650 27 80 24 10 23 35 0 colston 4.3 1.1 1.2 1.2 1.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	Addington Industrial	273	1.2	155	599	59	58	22	80	22	22	10	0	0
tion 6033 8.1 149 748 43 83 7 2 28 20 2 tion 930 1.2 142 886 26 58 18 8 46 2 tion 1150 5.9 139 870 26 58 18 8 46 2 tion 230 1.15 125 823 17 63 18 8 8 46 2 obston 231 1.15 125 823 17 63 18 8 46 2 obston 3453 1.15 125 823 17 63 8 9 46 2 obston 4377 7.6 89 589 14 70 2 26 4 12 32 2 ds 1254 1.1 82 479 16 72 26 4 12 12 12	Hoon Hay	3144	7.5	150	1018	81	46	24	2	10	54	0	0	0
titon 11520 5.9 142 886 26 58 18 8 46 2 titon 11520 5.9 139 870 26 58 18 8 46 2 e 9948 11.5 125 823 17 63 10 0 23 35 0 e 3453 11.5 125 823 17 63 10 0 23 35 0 colston 3453 3.9 102 675 14 50 8 6 28 10 0 23 35 0 colston 4380 5.5 99 658 14 70 22 4 12 32 2 ds 8 8 8 9 8 9 6 31 1 ds 135 8 14 70 22 4 12 32 3	Fendalton	6033	8.1	149	748	43	83	7	2	28	20	2	0	0
tión 11520 5.9 139 870 26 58 18 8 46 2 t 9948 11.5 125 823 17 63 10 0 23 35 9 e 3453 4.3 118 650 27 80 24 0 28 10 0 23 35 0 oolston 3453 3.9 102 675 14 50 8 0 18 28 10 0 23 35 0 oolston 4380 5.5 99 658 14 70 22 4 12 28 0 0 as 85 89 18 6 0 6 31 1 1 ds 82 89 16 72 26 4 12 12 1 ds 13 11 12 12 12 12	Bromley	930	1.2	142	988	56	58	18	8	00	46	2	0	0
e 9948 11.5 125 823 17 63 10 0 23 35 0 e 3453 4.3 118 650 27 80 24 0 28 10 0 28 10 28 10 0 28 10 28 10 28 10 10 0 28 10 10 0 28 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 28 10 0 10 </th <th>New Brighton</th> <th>11520</th> <th>5.9</th> <th>139</th> <th>870</th> <th>79</th> <th>58</th> <th>18</th> <th>8</th> <th>00</th> <th>46</th> <th>2</th> <th>0</th> <th>0</th>	New Brighton	11520	5.9	139	870	79	58	18	8	00	46	2	0	0
e 3453 4.3 118 650 27 80 24 0 28 10 0 oolston 4386 5.5 99 658 14 70 22 4 12 32 2 oolston 4377 7.6 89 658 14 70 22 4 12 32 2 4531 6.0 82 479 16 72 26 4 12 32 2 ds 1.1 82 479 16 72 26 4 12 12 1 ds 1.1 82 479 16 72 26 4 12 12 1 ds 1.1 82 479 16 72 26 4 12 12 1 ds 1.1 82 479 16 72 26 4 12 12 1 ss 1.1	St Albans	9948	11.5	125	823	17	63	10	0	23	35	0	0	0
e 3453 3.9 102 675 14 50 8 0 18 28 0 oolston 4380 5.5 99 658 14 70 22 4 12 32 2 oolston 4377 7.6 89 589 12 81 6 0 6 31 1 4531 6.0 82 479 16 72 26 4 12 12 1 18 1.3 8.2 87 16 72 26 4 12 12 0 18 1.1 82 479 16 72 26 4 12 12 0 18 1.1 82 479 16 72 26 4 12 12 12 0 18 1.1 72 4 12 12 12 12 12 12 12 12 12	Inner City	2715	4.3	118	650	27	80	24	0	28	10	0	0	0
Woolston 4380 5.5 99 658 14 70 22 4 12 32 2 1 4377 7.6 89 589 12 81 6 6 31 1 am/Sydenham 4551 8.2 82 479 16 72 26 4 12 12 1 nds 124 1.1 82 479 16 72 26 4 12 12 0 nds 134 1.1 82 479 16 72 26 4 12 12 0 nds 135 1.1 82 479 16 72 26 4 12 12 12 0 d 8364 11.1 72 419 15 16 6 16 6 16 6 16 6 d 6315 87 47 18 12 12 12 </th <th>Bishopdale</th> <td>3453</td> <td>3.9</td> <td>102</td> <td>675</td> <td>14</td> <td>20</td> <td>∞</td> <td>0</td> <td>18</td> <td>28</td> <td>0</td> <td>0</td> <td>0</td>	Bishopdale	3453	3.9	102	675	14	20	∞	0	18	28	0	0	0
4377 7.6 89 589 12 81 6 0 6 31 1 am/Sydenham 4551 8.2 8.2 479 16 72 26 4 12 12 0 nds 1254 1.1 82 479 16 72 26 4 12 12 0 n 3309 9.5 74 366 22 82 4 4 12 12 0 d 63 8.7 67 302 22 86 14 12 2 4 d 198 0.1 65 288 22 86 14 12 2 14 6 1s 152 5.0 59 363 11 54 15 2 14 6 nhead 777 3.4 13 16 0 0 9 0 9 0 3309	Opawa/Woolston	4380	5.5	66	859	14	70	22	4	12	32	2	0	4
am/Sydenham 4531 6.0 82 479 16 72 26 4 12 12 0 nds 12451 1.1 82 479 16 72 26 4 12 12 0 nds 1246 1.1 82 479 16 72 26 4 12 12 0 nd 8364 1.1.1 72 419 15 70 18 6 12 16 4 d 6315 8.7 67 302 22 86 14 12 2 14 6 s 1.98 0.1 65 288 22 86 14 12 2 14 6 s 5.0 5.0 5.0 36 15 16 0 2 14 6 s 1.57 3.4 1.5 1.5 2 14 6 s 1.5 <th>Shirley</th> <th>4377</th> <th>7.6</th> <th>68</th> <th>589</th> <th>12</th> <th>81</th> <th>9</th> <th>0</th> <th>9</th> <th>31</th> <th>-</th> <th>0</th> <th>7</th>	Shirley	4377	7.6	68	589	12	81	9	0	9	31	-	0	7
am/Sydenham 4551 8.2 8.2 479 16 72 26 4 12 12 0 nds 124 1.1 82 479 16 72 26 4 12 12 0 n 8364 11.1 72 419 15 70 18 6 12 16 2 d 6315 8.7 67 302 22 86 14 12 2 14 6 1s 6315 5.0 59 363 11 54 15 2 14 6 1s 777 3.4 13 104 0 93 16 0 9 0 9 0 3309 5.9 118 650 22 64 18 4 12 2 14 6	Redwood	4533	6.0	82	479	91	72	26	4	12	12	0	0	0
nds 1254 1.1 82 479 16 72 26 4 12 12 12 0 n 3309 9.5 74 366 22 82 4 4 14 16 2 d 8364 11.1 72 419 15 70 18 6 12 16 4 d 6315 8.7 67 302 22 86 14 12 2 14 6 15 15 65 288 22 86 14 12 2 14 6 15 15 50 59 363 11 54 15 0 2 30 4 nnhead 777 3.4 13 104 0 93 16 0 0 9 0 3794 5.8 114 617 28 64 18 4 12 2 4<	Beckenham/Sydenham	4551	8.2	82	479	91	72	26	4	12	12	0	0	0
n 3309 9.5 74 366 22 82 4 4 14 16 2 d 8364 11.1 72 419 15 70 18 6 12 16 4 d 6315 8.7 67 302 22 86 14 12 2 14 6 1s 6.0 59 363 11 54 15 0 2 14 6 nhead 777 3.4 13 104 0 93 16 0 0 9 0 3794 5.8 114 617 28 64 18 4 12 28 4 3309 5.9 118 650 22 64 18 4 12 2 4	Marshlands	1254	=	82	479	91	72	56	4	12	12	0	0	0
d 8364 11.1 72 419 15 70 18 6 12 16 4 d 6315 8.7 67 302 22 86 14 12 2 14 6 1s 198 0.1 65 288 22 86 14 12 2 14 6 1s 152 5.0 59 363 11 54 15 0 2 30 4 nhead 777 3.4 13 104 0 93 16 0 0 9 0 3794 5.8 114 617 28 68 19 5 13 26 4 3309 5.9 118 650 22 64 18 4 12 28 2	Riccarton	3309	9.5	74	366	22	82	4	4	14	91	2	0	0
d 6315 8.7 67 302 22 86 14 12 2 14 6 158 0.1 65 288 22 86 14 12 2 14 6 15 5.0 5.0 363 11 54 15 0 2 30 4 nnhead 777 3.4 13 104 0 93 16 0 0 9 0 3794 5.8 114 617 28 68 19 5 13 26 4 3309 5.9 118 650 22 64 18 4 12 28 2	Linwood	8364	==	72	419	15	70	18	9	12	91	4	0	0
Is 0.1 65 288 22 86 14 12 2 14 6 Is 5.0 5.0 5.0 363 11 54 15 0 2 30 4 Inhead 777 3.4 13 104 0 93 16 0 0 9 0 3794 5.8 114 617 28 68 19 5 13 26 4 3309 5.9 118 650 22 64 18 4 12 28 2	Avonhead	6315	8.7	19	302	22	98	14	12	2	14	9	2	0
Is 50 50 363 11 54 15 0 2 30 4 onhead 777 3.4 13 104 0 93 16 0 0 9 0 3794 5.8 114 617 28 68 19 5 13 26 4 3309 5.9 118 650 22 64 18 4 12 28 2	Airport	861	0.1	65	288	22	98	14	12	2	14	9	2	0
withead 777 3.4 13 104 0 93 16 0 0 9 0 3794 5.8 114 617 28 68 19 5 13 26 4 3309 5.9 118 650 22 64 18 4 12 28 2	Parklands	1572	5.0	59	363	=	54	15	0	2	30	4	0	0
3794 5.8 114 617 28 68 19 5 13 26 4 3309 5.9 118 650 22 64 18 4 12 28 2	New Avonhead	777	3.4	13	104	0	93	91	0	0	6	0	0	0
3309 5.9 118 650 22 64 18 4 12 28 2	Average	3794	5.8	114	617	28	89	19	5	13	26	4	0	0
	Median	3309	5.9	81	650	22	64	18	4	12	28	2	0	0

Canterbury Regional Council Technical Report

3.4. Home Heating Emissions on a Typical Winter's Day on a Suburb and Area Basis

Home heating emissions to the air on a typical winter's day for various study areas of Christchurch are presented in Table 3.9 over.

In addition to emissions per household, other factors contribute to variations in the volume and concentration of home heating emissions on a suburb-by-suburb basis. These factors include variations in suburb size, the number of dwellings and the density of housing. For example, the areas included in Addington Industrial, Bromley and Wigram are among the areas with the higher emissions on a per household basis (Table 3.8) but fall within the areas with low emissions on a suburb basis. The above example reflects how low housing density within a study area can influence area based results (i.e. g/ha/day) even though housing, and associated emissions, may be concentrated in particular locations within the suburb.

The total study area is estimated to produce approximately 10971 kilograms of PM_{10} per day or 618 gram per hectare per day whereas the inner suburb study area is estimated to produce 51% of the total PM_{10} emissions (5585 kg/day) (Table 3.9). On a grams per hectare basis, the PM_{10} emissions from home heating within the inner suburb study area are 1.5 times greater than the total study area (928 g/ha/day compared to 618 g/ha/day).

A similar pattern emerges when examining the CO, NO_x , SO_x , VOC and CO_2 emissions from home heating (Table 3.9). The inner suburb study area is estimated to produce 50% of the total CO, NO_x , VOC and CO_2 emissions, and 52% of the total SO_x . On a grams per hectare basis, the inner suburb study area produces 1.5 times more CO, NO_x , SO_x , VOC and CO_2 than the total study area.

On an individual suburb basis (Table 3.9), home heating emissions vary considerably from suburb to suburb. For example, when comparing New Avonhead (the suburb with the lowest total and grams per hectare pollutant emissions) with Burnside/Bryndwr (the suburb with the highest grams per hectare pollutant emissions), PM_{10} emissions per hectare in Burnside/Bryndwr can be as much as 41 times larger than those in New Avonhead. CO and NO_x can be as much as 30 times larger, VOC 28 times larger, CO_2 20 times larger and SO_x 450 times greater.

			PM ₁₀			00			Ň			SOx			VOC			S	
Suburb Area	Area (ha)	kg		g/ha	kg %	% Total	g/ha	kg	% Total	g/ha	kg	% Total	g/ha	kg	% Total	g/ha	kg	% Total	g/ha
Inner Suburb Study Area Rockenham/Sydenham	555	371	۳.	699	2178	4	3927	33	۳	65	73	"	132	545	4	082	43019	~	77554
Decreamann's yacmann	202	000	, 0	1200	4512	. 1	6057	5 -	0	50	350	. 5	370	1130		1517	102340	3 0	12071
rentanton	Ct /	200	5 6	0071	0101	- (1000	- 0	0 (5	607	2 (010	0711	- (101	0+6601	0 (11/001
Inner City	635	321	m	909	1764	3	2780	27	3	42	74	m	117	441	3	695	35211	3	55486
Linwood	754	604	9	801	3507	9	4651	53	9	70	127	2	168	877	9	1163	73506	5	97501
Opawa/Woolston	862	435	4	545	2881	5	3609	42	4	52	09	2	75	720	5	905	61045	4	76469
Riccarton	349	246	2	705	1211	7	3468	19	2	55	73	3	211	303	7	867	28248	2	80941
Shirlev	572	389	4	089	2577	4	4504	37	4	65	52	7	16	644	4	1126	54586	4	95380
Spreydon/Addington	745	1074	10	1442	4273	7	5739	73	∞	86	401	91	539	1068	7	1435	116677	∞	156697
St Albans	864	1245	=	1441	8182	13	9474	118	13	137	173	7	201	2046	13	2368	165838	12	192009
Sub-total - Inner Suburb Study Area	9109	5885	51	826	31086	50	5167	472	50	61	1293	52	215	7772	20	1292	681470	50	113274
Outer Suburbs																			
Addington Industrial	230	45	0	185	163	0	712	3	0	12	91	_	71	41	0	178	4730	0	20609
Airport	2088	13	0	9	27	0	27	-	0	0	4	0	2	14	0	7	1524	0	730
Avonhead	727	423	4	582	1907	3	2625	31	3	43	140	9	192	477	3	959	48598	4	66884
Bishopdale	887	353	3	398	2331	4	2629	34	4	38	48	2	54	583	4	657	46051	3	51947
Bromley	764	132	_	173	824		1078	12	_	91	24	_	32	206	-	569	18250	-	23888
Burnside/Bryndwr	460	838	~	1824	4603	7	10018	70	7	153	208	8	452	1151	7	2504	103195	8	224582
Hoon Hay	421	472	4	1121	3202	2	7598	46	2	109	58	2	137	800	5	1900	67028	5	159060
Hornby	498	444	4	168	2077	3	4169	33	4	29	136	5	272	519	3	1042	51094	4	102579
Marshlands	1135	102	_	06	009	-	529	6	-	00	20	_	18	150	-	132	11854	-	10441
New Avonhead	230	10	0	44	81	0	351	-	0	2	0	0		20	0	88	1789	0	7778
New Brighton	1942	1607	15	828	10023	16	5162	147	91	92	301	12	155	2506	91	1291	226068	16	116434
Parklands	312	93	_	297	571	_	1828	8	-	27	17	-	55	143	_	457	14536	-	46561
Racecourse	247	116	-	468	533	_	2154	6	_	35	36	-	147	133	_	539	13675	_	55274
Redwood	752	369	3	492	2170	4	2887	32	3	43	73	3	6	542	4	722	42849	3	57018
Sockburn	264	300	3	1134	1400	2	5301	23	2	85	92	4	347	350	2	1325	34559	3	130806
Wigram	786	73	_	92	333	-	424	5	-	7	23	_	29	83	-	106	8582	-	10925
Sub-total	11741	5386	49	459	30875	50	2630	465	50	40	1197	48	102	6177	50	657	694383	20	59142
Total - Total Study Area	17757	10971	100	819	61062	100	2490	027	100	63	0010	100	140	15400	100	070	107201	100	201100

Canterbury Regional Council Technical Report

3.5. Home Heating Emissions by Time of Day

Across the total study area, \sim 78% of PM₁₀, CO, NO_x, SO_x, VOC and CO₂ are emitted between 4pm and 6am on a typical winter's night (Table 3.10 and Figure 3.2). The next highest period of emissions occurs between 10am and 4pm across all pollutants (15% of each pollutant released during this time).

Within the inner suburb study area, ~80% of pollutants are emitted between 4pm and 6am on a typical winter's night (Table 3.11 and Figure 3.3). Like the total study area, the next highest period of emissions occurs from 10am to 4pm across all pollutants (with 12%-14% released during this time).

In the total study area and the inner suburb study area, estimated PM_{10} , CO, NO_x , SO_x , VOC and CO_2 emissions are lowest between the hours of 6am and 10am when ~7% of the total daily emissions are released.

Figure 3.2 Time distribution of home heating emissions across the total study area.

Table 3.10 Estimated home heating emissions for various times of a typical winter's day across the total study area.

)											-	
		PM ₁₀			္ပ			ŇOx			SOx			VOC			CO2	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
6am-10am	788	44	7	4388	247	7	19	4	7	187	=	∞	1097	62	7	103073	5805	7
10am-4pm	1623	91	15	9606	512	15	138	∞	15	377	21	15	2274	128	15	205651	11581	15
4pm-10pm	7201	406	99	40485	2280	9	613	35	65	1640	92	99	10121	570	99	887048	49955	64
10pm-6am	1360	11	12	7992	450	13	119	7	13	286	91	=	8661	113	13	180081	10141	13
Total	10971	819	100	61962	3489	100	937	53	100	2490	140	001	15490	872	100	1375853	77482	100

Table 3.11 Estimated home heating emissions for various times of a typical winter's day across the inner suburb study area of Christchurch.

		PM ₁₀			ဗ			Ň			so _x			VOC			CO ₂	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
6am-10am	384	64	7	2117	352	7	32	5	7	93	15	7	529	88	7	49614	8247	7
10am-4pm	751	125	13	4378	728	14	99	=	41	191	27	12	1094	182	14	95681	15904	14
4pm-10pm	3922	652	70	21414	3559	69	327	54	69	932	155	72	5353	890	69	463559	77053	89
10pm-6am	528	88	6	3177	528	10	47	∞	10	107	18	8	794	132	10	72616	12070	Ξ
Total	5885	928	100	31086	2167	100	472	79	100	1293	215	100	7772	1292	100	681470	113274	100

Canterbury Regional Council Technical Report

Figure 3.3 Time distribution of home heating emissions across the inner suburb area of Christchurch.

On an individual suburb basis, PM_{10} , CO, VOC, SO_x , NO_x and CO_2 emissions peaked between 4pm and 10pm (Table 3.12 through to Table 3.17). In approximately 65% of the suburbs, the next highest period of emissions occurs between 10am and 4pm. In the suburbs where the secondary peak did not occur between 10am and 4pm it tended to be highest between 10pm and 6am. For SO_x and NO_x , 60% and 68% of the suburbs respectively displayed a low period between 6am and 10am. For PM_{10} , the low period occurred between 6am and 10am for 72% of the suburbs while in over 80% of the suburbs the CO_2 , CO and VOC emissions recorded the lowest emissions between 6am and 10am.

Table 3.12 PM₁₀ emissions produced at different times of a typical winter's day from home heating across various suburb areas of Christchurch.

		9	6am-10am	-	_	0am-4pm	E	4	na01-mc	_	¥	10pm-6am	_	Õ	Daily Total	
Suburb Area	Area (ha)	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg g	g/ha % Daily Total	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total
Inner Suburb Study Area																
Beckenham/Sydenham	555	28	20	7	96	173	56	230	414	62	8	32	5	371	699	100
Fendalton	745	69	93	∞	78	105	6	702	943	78	20	<i>L</i> 9	9	006	1208	100
Inner City	635	4	9	_	41	64	13	266	420	83	10	91	3	321	206	100
Linwood	754	17	22	3	94	125	91	434	575	72	59	62	10	604	801	100
Opawa/Woolston	862	24	30	9	49	62	=	294	368	29	89	85	16	435	545	100
Riccarton	349	15	43	9	32	92	13	185	530	75	14	40	9	246	705	100
Shirley	572	37	65	10	99	26	14	228	398	59	69	120	18	389	089	100
Spreydon/Addington	745	9/	102	7	133	178	12	713	958	99	152	204	14	1074	1442	100
St Albans	864	115	133	6	172	200	14	870	1007	70	88	101	7	1245	1441	100
Sub-total - Inner Suburb Study Area	9109	384	64	7	751	125	13	3922	652	70	528	88	6	5885	928	100
Outer Suburbs																
Addington Industrial	230	3	13	7	5	22	12	28	123	19	9	56	14	42	185	100
Airport	2088	_		6	3	2	25	7	3	55	-	_	10	13	9	100
Avonhead	727	39	54	6	104	143	25	237	326	99	43	59	10	423	582	100
Bishopdale	887	32	36	6	48	54	14	245	277	69	28	31	∞	353	398	100
Bromley	764	=	14	∞	10	13	∞	85	Ξ	9	26	34	20	132	173	100
Burnside/Bryndwr	460	48	104	9	119	259	14	516	1122	62	156	339	19	838	1824	100
Hoon Hay	421	36	84	∞	92	219	20	263	624	99	82	194	17	472	1121	100
Hornby	498	25	46	9	901	214	24	247	496	99	99	132	15	444	891	100
Marshlands	1135	00	7	7	56	23	26	63	99	62	2	4	5	102	06	100
New Avonhead	230	0	_	3	0	2	4	6	39	88	_	2	2	10	44	100
New Brighton	1942	133	89	∞	124	64	∞	1026	528	64	325	167	20	1607	828	100
Parklands	312	15	46	91	20	65	22	53	170	57	2	15	S	93	297	100
Racecourse	247	9	25	2	28	113	24	64	260	99	17	69	15	911	468	100
Redwood	752	27	36	7	96	127	26	229	304	62	18	24	S	369	492	100
Sockburn	264	91	62	9	72	272	24	167	631	99	44	891	15	300	1134	100
Wigram	786	4	5	5	18	22	24	40	51	99	11	14	15	73	92	100
Sub-total	11741	403	34	7	872	74	16	3279	279	19	832	71	15	5386	459	100
Total - Total Study Area	17757	788	44	7	1623	16	15	7201	406	99	1360	77	12	10971	819	100

Table 3.13 CO emissions produced at different times of a typical winter's day from home heating across various suburb areas of Christchurch.

Inner Suburb Study Area Beckenham/Sydenham Fendalton Inner City 635										•		-)	Dally lotal	=
	K G	g/ha %	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total
	162	292	7	089	1226	31	1193	2151	55	143	258	7	2178	3927	100
	298	399	7	399	536	6	3453	4635	77	363	487	«	4513	6057	100
	30	47	2	274	432	91	1377	2170	78	83	131	2	1764	2780	100
Linwood 754	134	178	4	497	629	14	2401	3185	89	474	629	14	3507	4651	100
Opawa/Woolston 798	192	240	7	360	451	12	1832	2294	64	498	623	17	2881	3609	100
Riccarton 349	42	121	3	129	369	=	1014	2905	84	25	72	2	1211	3468	100
Shirley 572	230	401	6	345	602	13	1585	2770	62	418	730	16	2577	4504	100
Spreydon/Addington 745	236	317	9	504	<i>LL</i> 12	12	3060	4109	72	473	635	=	4273	5739	100
St Albans 864	793	816	01	1189	1377	15	5499	6367	19	701	812	6	8182	9474	100
Sub-total - Inner Suburb Study Area 6016	2117	352	7	4378	728	14	21414	3559	69	3177	528	01	31086	5167	100
Outer Suburbs															
Addington Industrial 230	6	40	9	18	42	=	118	514	72	18	79	=	163	712	100
Airport 2088	5	3	6	=	2	20	35	17	19	9	3	10	57	27	100
Avonhead 727	170	234	6	371	510	19	1187	1634	62	180	247	6	1907	2625	100
Bishopdale 887	220	248	6	330	373	14	1557	1756	19	223	252	10	2331	2629	100
Bromley 764	09	78	7	57	74	7	549	719	19	158	206	61	824	1078	100
Burnside/Bryndwr 460	230	501	2	689	1499	15	2926	6367	64	759	1651	91	4603	10018	100
Hoon Hay 421	236	999	7	602	1429	61	1784	4234	99	579	1374	81	3202	7598	100
Hornby 498	150	302	7	459	921	22	1129	2268	54	338	629	91	2077	4169	100
Marshlands 1135	45	39	7	187	165	31	329	290	55	39	35	7	009	529	100
New Avonhead 230	7	6	3	3	13	4	72	311	88	4	18	2	8	351	100
New Brighton 1942	746	384	7	712	367	7	6604	3401	99	1962	1010	20	10023	5162	100
Parklands 312	74	236	13	66	316	17	362	1160	63	36	911	9	571	1828	100
Racecourse 247	38	153	7	119	482	22	289	1168	54	87	351	91	533	2154	100
Redwood 752	162	215	7	<i>LL</i> 9	905	31	1188	1581	55	142	190	7	2170	2887	100
Sockburn 264	101	381	7	309	8911	22	762	2886	54	229	998	91	1400	5301	100
Wigram 786	24	30	7	75	95	22	180	230	54	54	69	16	333	424	100
Sub-total 11741	2271	193	7	4718	402	15	19072	1624	62	4815	410	16	30875	2630	100
Total - Total Study Area 17757	4388	247	7	9606	512	15	40485	2280	65	7992	450	13	61962	3489	100

Table 3.14 NO_x emissions produced at different times of a typical winter's day from home heating across various suburb areas of Christchurch.

Area (ha) kg g/ha % Daily kg g/ha % Daily kg g/ha % Daily kg mha % Daily kg g/ha % Daily kg mha	6am-10am 10am-4pm 4pm-10pm 10pm-6am Dai			6am-10am	E	7	0am-4pm	L	4p	4pm-10pm		10	10pm-6am	_	۵	Daily Tota	al
Area 555 2 4 7 10 17 30 19 33 57 2 fdam 745 5 7 6 8 9 55 73 77 5 fdam 6535 0 1 2 4 6 15 21 34 80 17 5 fton 754 2 2 4 6 15 21 34 80 17 5 fton 778 3 6 9 5 9 14 15 44 80 17 5 fton 745 4 6 11 15 2 6 11 15 44 80 17 bStudy Area 6016 3 6 9 12 12 12 14 80 9 17 trial 8 7 66 11 14 80 9 17	Suburb Area	Area (ha)	kg	g/ha	% Daily Total		g/ha	% Daily Total		g/ha	% Daily Total		g/ha	% Daily Total	kg	g/ha	% Daily Total
Name 555 2	Inner Suburb Study Area																
745 5 7 7 6 8 9 55 73 77 5 554 2 2 4 6 15 21 34 80 1 778 3 5 5 5 6 12 27 34 80 1 798 3 3 6 5 6 12 27 34 80 1 798 3 3 6 9 5 9 14 23 39 61 6 770 864 11 13 10 17 20 14 80 93 61 6 PSINDAyArea 6016 32 5 7 66 11 14 327 54 69 47 PSINDAyArea 6016 32 7 66 11 14 327 54 69 7 PSINDAyArea 6016 32 7 66 11 14 327 54 69 70 0 PSINDAyArea 6016 32 7 66 11 14 327 54 69 70 PSINDAyArea 6016 32 7 66 11 14 327 54 69 70 PSINDAyArea 6016 32 7 66 11 14 327 54 69 70 PSINDAyArea 6016 32 7 66 11 14 23 26 68 3 PSINDAyArea 6016 32 4 4 60 60 10 PSINDAYAREA 6016 32 4 4 60 60 10 PSINDAYAREA 6016 32 4 7 8 10 PSINDAYAREA 6016 6 7 8 10 65 PSINDAYAREA 6016 6 7 8 10 60 PSINDAYAREA 6016 6 7 8 10 60 PSINDAYAREA 6016 7 8 10 60 PSINDAYAREA 7 8 10 7 8 10 PSINDAYAREA 7 8 10 10 13 10 13 PSINDAYAREA 7 8 10 10 13 10 PSINDAYAREA 7 8 10 12 10 PSINDAYAREA 7 8 10 10 13 10 PSINDAYAREA 7 8 10 10 PSINDAYAREA	Beckenham/Sydenham	555	2	4	7	10	17	30	19	33	57	2	4	9	33	59	100
Color Colo	Fendalton	745	2	7	7	9	∞	6	55	73	17	5	7	7	71	95	100
754 2 2 4 8 10 15 37 48 69 7 788 3 3 6 5 6 12 27 34 65 7 349 1 2 4 5 6 11 15 34 65 7 572 3 6 9 5 9 14 23 39 61 6 584 11 13 10 17 20 14 80 93 68 10 584 11 13 10 17 20 14 80 93 68 10 584 11 13 10 17 20 14 80 93 68 10 69 10 17 20 14 80 93 68 10 727 3 4 9 7 9 21 19 26 60 3 748 3 4 9 7 9 21 19 26 60 3 749 498 7 8 15 23 15 44 96 65 740 498 7 8 15 23 18 37 55 740 1 1 7 3 2 30 5 44 57 741 3 7 7 3 2 30 5 44 57 742 3 7 7 8 11 6 8 11 6 7 743 3 7 10 13 30 18 25 57 744 1 4 14 2 2 30 5 44 55 752 24 1 6 7 5 19 23 12 47 55 754 1 6 7 5 19 23 12 47 55 755 756 757 757 757 757 757 756 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757 757	Inner City	635	0	-	2	4	9	15	21	34	80	_	2	4	27	42	100
798 3 3 6 5 6 12 27 34 65 7 349 1 2 4 2 6 11 15 44 81 1 372 3 6 9 5 9 14 23 39 61 6 464 11 13 10 17 20 14 80 93 68 10 584 11 13 10 17 20 14 80 93 68 10 598 0 0 0 0 0 0 0 22 1 0 69 10 727 3 4 9 7 9 21 19 26 68 3 728 3 4 9 7 9 21 19 26 68 3 740 4 8 5 10 23 15 44 96 63 12 741 498 5 10 23 18 37 54 55 14 742 498 5 10 23 18 37 54 55 14 743 7 7 8 7 7 8 15 56 69 744 7 7 7 7 7 7 7 7 752 7 7 7 7 7 7 7 754 7 7 7 7 7 7 7 755 7 7 7 7 7 7 756 7 7 7 7 7 757 7 7 7 7 7 757 7 7 7 7 757 7 7 7 7 758 7 7 7 759 7 7 750 7 7 750 7 7 750 7 7 750 7 7	Linwood	754	7	2	4	8	10	15	37	48	69	7	6	12	53	70	100
title 1349 1 2 4 2 6 11 15 44 81 1 ton 572 3 6 9 5 9 14 23 39 61 6 bSundvArea 6016 32 6 9 12 12 81 81 1 bSundvArea 6016 32 6 11 13 10 17 20 14 83 61 6 bSundvArea 6016 32 7 66 11 14 327 54 81 10 rial 864 11 14 32 5 14 32 6 9 47 vr 460 0 0 0 0 22 1 0 59 4 4 8 1 rial 48 5 1 1 4 8 1 1 4 8 1	Opawa/Woolston	798	3	3	9	5	9	12	27	34	65	7	6	17	42	52	100
trial 572 3 6 9 5 9 14 23 39 61 6 th Study Area 864 11 13 10 17 20 14 83 99 61 6 9 trial 864 11 13 10 17 20 14 80 93 61 9 trial 864 11 13 66 11 14 327 54 69 47 727 3 4 9 0 0 22 1 0 59 47 887 3 4 9 7 9 21 19 26 60 3 887 3 4 9 5 5 14 23 26 68 3 764 1 8 1 1 7 8 10 26 66 12 10 8 12 <th>Riccarton</th> <th>349</th> <th>-</th> <th>2</th> <th>4</th> <th>2</th> <th>9</th> <th>=</th> <th>15</th> <th>44</th> <th>81</th> <th>_</th> <th>2</th> <th>3</th> <th>19</th> <th>55</th> <th>100</th>	Riccarton	349	-	2	4	2	9	=	15	44	81	_	2	3	19	55	100
trial 745 4 6 6 9 12 12 12 51 68 70 9 bStudyArea 6016 32 5 7 66 11 14 327 54 69 47 trial 230 0 1 66 11 14 327 54 69 47 rial 208 0 0 0 0 22 1 0 59 0 rial 887 3 4 9 7 9 21 19 26 60 3 rial 887 3 4 9 7 9 21 19 26 68 3 rial 1 1 7 9 21 19 26 68 3 rial 4 8 5 10 23 14 8 10 66 11 1 4 8 <	Shirley	572	3	9	6	5	6	14	23	39	19	9	=	17	37	65	100
k64 11 13 10 17 20 14 80 93 68 10 bStudy Area 6016 32 5 7 66 11 14 327 54 69 47 trial 230 0 1 66 11 14 327 54 69 47 727 3 4 9 0 0 22 1 0 59 0 747 3 4 9 7 9 21 19 26 60 3 748 3 4 9 7 9 21 19 26 68 3 744 460 4 8 7 9 21 19 26 68 12 1135 1 1 7 8 15 23 18 37 55 1 230 1 4 1 4 1<	Spreydon/Addington	745	4	9	9	6	12	12	51	89	70	6	12	12	73	86	100
trial 230 5 7 66 11 14 327 54 69 47 trial 230 0 1 6 1 11 2 9 70 0 trial 2308 0 0 0 22 1 0 59 0 0 9 70 9 20 1 0 59 0 0 59 70 0 0 9 0 0 59 70 0 0 9 70 90 90 9 70 0 90<	St Albans	864	Ξ	13	01	17	20	14	80	93	89	10	=	∞	811	137	001
trial 230 0 1 6 0 1 11 2 9 70 0 727 3 4 9 7 9 21 19 26 60 3 74 3 4 9 7 9 21 19 26 60 3 74 460 4 8 5 10 23 14 23 26 68 3 44 460 4 8 5 10 23 15 44 96 63 2 441 3 8 7 9 21 19 26 61 56 8 1135 1 7 8 15 23 18 37 55 5 1942 1 4 1 4 8 1 4 8 0 1942 1 2 3 1 4 3	Sub-total - Inner Suburb Study Area		32	5	7	99	=	14	327	54	69	47	~	01	472	79	100
trial 230 0 1 6 0 1 11 2 9 70 0 727 3 4 9 7 9 21 19 26 60 3 vr 460 4 8 7 9 21 19 26 60 3 47 450 4 9 7 9 21 19 26 60 3 48 1 1 7 8 10 66 2 498 2 1 7 8 10 66 2 498 2 10 23 15 23 12 44 96 63 12 498 2 4 7 8 15 23 18 37 55 5 1135 1 4 8 15 2 3 4 57 1 1942 1 <th>Outer Suburbs</th> <th></th>	Outer Suburbs																
VIX 3 4 9 0 0 22 1 0 59 0 727 3 4 9 7 9 21 19 26 60 3 887 3 4 9 7 9 21 19 26 60 3 764 1 1 1 7 8 1 4 96 68 3 764 1 1 7 8 1 7 8 10 66 2 450 4 8 5 10 23 15 24 96 63 12 498 2 4 7 8 15 23 18 37 55 5 1135 1 1 7 3 2 30 5 4 57 1 1942 1 1 4 1 4 1 4 <th< th=""><th>Addington Industrial</th><th>230</th><th>0</th><th>-</th><th>9</th><th>0</th><th>-</th><th>11</th><th>2</th><th>6</th><th>70</th><th>0</th><th>2</th><th>12</th><th>3</th><th>12</th><th>100</th></th<>	Addington Industrial	230	0	-	9	0	-	11	2	6	70	0	2	12	3	12	100
Vr 3 4 9 7 9 21 19 26 60 3 887 3 4 9 5 5 14 23 26 68 3 764 1 1 7 8 1 7 8 10 66 2 450 4 8 5 10 23 15 26 61 56 8 498 2 4 7 8 15 23 18 37 55 12 498 2 4 7 8 15 23 18 37 55 8 1135 1 1 7 8 15 23 18 37 55 9 230 0 0 3 0 0 4 1 4 88 0 247 1 2 3 1 4 1 4	Airport	2088	0	0	6	0	0	22	_	0	59	0	0	10	-	0	100
vr 887 3 4 9 5 5 14 23 26 68 3 764 1 1 8 1 1 7 8 10 66 2 460 4 8 5 10 23 15 44 96 68 12 421 3 8 7 9 21 19 26 61 56 2 498 2 4 7 8 15 23 18 37 56 8 12 1135 11 6 8 11 6 7 96 49 65 29 1942 11 6 8 11 6 7 96 49 65 29 1942 1 4 1 4 18 0 6 7 96 49 65 29 175 2 3 7 </th <th>Avonhead</th> <th>727</th> <th>3</th> <th>4</th> <th>6</th> <th>7</th> <th>6</th> <th>21</th> <th>16</th> <th>26</th> <th>09</th> <th>3</th> <th>4</th> <th>10</th> <th>31</th> <th>43</th> <th>100</th>	Avonhead	727	3	4	6	7	6	21	16	26	09	3	4	10	31	43	100
vr 460 4 8 1 1 7 8 10 66 2 460 4 8 5 10 23 15 44 96 63 12 451 3 8 7 9 21 19 26 61 56 8 12 498 2 4 9 21 19 26 61 56 8 12 1135 1 1 7 8 15 23 18 37 55 8 1306 0 0 0 4 1 4 88 0 1942 11 6 8 11 6 7 96 49 65 29 247 1 2 5 19 5 17 6 0 252 2 3 7 10 13 30 18 25 1 <t< th=""><th>Bishopdale</th><th>887</th><th>3</th><th>4</th><th>6</th><th>2</th><th>5</th><th>14</th><th>23</th><th>26</th><th>89</th><th>3</th><th>3</th><th>6</th><th>34</th><th>38</th><th>100</th></t<>	Bishopdale	887	3	4	6	2	5	14	23	26	89	3	3	6	34	38	100
VF 460 4 8 5 10 23 15 44 96 63 12 421 3 8 7 9 21 19 26 61 56 8 498 2 4 7 8 15 23 18 37 55 8 1135 1 1 7 3 2 30 5 4 57 1 230 0 0 3 0 0 4 1 4 88 0 1 4 88 0 1 4 88 0 0 49 65 29 <t< th=""><th>Bromley</th><th>764</th><th>_</th><th>_</th><th>∞</th><th>-</th><th></th><th>7</th><th>∞</th><th>10</th><th>99</th><th>2</th><th>3</th><th>19</th><th>12</th><th>91</th><th>100</th></t<>	Bromley	764	_	_	∞	-		7	∞	10	99	2	3	19	12	91	100
421 3 8 7 9 21 19 26 61 56 8 498 2 4 7 8 15 23 18 37 55 5 1135 1 1 7 3 2 30 5 4 57 1 230 0 0 3 0 0 4 1 4 88 0 1942 11 6 8 11 6 7 96 49 65 29 312 1 4 14 2 5 19 5 17 62 0 247 1 2 7 2 8 23 5 19 55 1 752 3 7 10 13 30 18 25 5 4 55 1 786 0 0 7 1 2 23	Burnside/Bryndwr	460	4	∞	5	10	23	15	44	96	63	12	56	17	70	153	100
498 2 4 7 8 15 23 18 37 55 5 1135 1 1 7 3 2 30 5 4 57 1 230 0 0 3 0 0 4 1 4 88 0 1942 11 6 8 11 6 7 96 49 65 29 312 1 4 14 2 5 19 5 17 62 0 247 1 2 5 19 5 17 62 0 752 2 3 7 10 13 30 18 25 5 1 764 1 6 7 5 19 23 1 4 55 1 775 6 16 286 24 61 7 7	Hoon Hay	421	3	∞	7	6	21	16	26	19	99	8	19	81	46	109	100
1135 1 1 7 3 2 30 5 4 57 1 230 0 0 3 0 0 4 1 4 88 0 1942 11 6 8 11 6 7 96 49 65 29 312 1 4 14 2 5 19 5 17 62 0 247 1 2 7 2 8 23 5 19 55 1 752 2 3 7 10 13 30 18 25 5 1 264 1 6 7 5 19 23 12 47 55 4 786 0 0 7 1 2 23 3 4 55 1 777 6 16 286 24 61 7 7 </th <th>Hornby</th> <th>498</th> <th>2</th> <th>4</th> <th>7</th> <th>∞</th> <th>15</th> <th>23</th> <th>81</th> <th>37</th> <th>55</th> <th>5</th> <th>=</th> <th>91</th> <th>33</th> <th>19</th> <th>100</th>	Hornby	498	2	4	7	∞	15	23	81	37	55	5	=	91	33	19	100
230 0 0 3 0 0 4 1 4 88 0 1942 11 6 8 11 6 7 96 49 65 29 312 1 4 14 2 5 19 5 17 62 0 247 1 2 7 2 8 23 5 19 55 1 752 2 3 7 10 13 30 18 25 5 1 264 1 6 7 5 19 23 12 47 55 4 786 0 0 7 1 2 23 3 4 55 1 11741 34 3 7 72 6 16 286 24 61 72	Marshlands	1135	-	_	7	3	2	30	5	4	57	_	0	9	6	∞	100
1942 11 6 8 11 6 49 65 29 312 1 4 14 2 5 19 5 17 62 0 247 1 2 7 2 8 23 5 19 55 1 752 2 3 7 10 13 30 18 25 5 1 264 1 6 7 5 19 23 12 47 55 4 786 0 0 7 1 2 23 3 4 55 1 11741 34 3 7 72 6 16 286 24 61 72	New Avonhead	230	0	0	3	0	0	4	_	4	88	0	0	2	_	2	100
312 1 4 14 2 5 19 5 17 62 0 247 1 2 7 2 8 23 5 19 55 1 752 2 3 7 10 13 30 18 25 57 2 264 1 6 7 5 19 23 12 47 55 4 786 0 0 7 1 2 23 3 4 55 1 11741 34 3 7 72 6 16 286 24 61 72	New Brighton	1942	Ξ	9	∞	Ξ	9	7	96	49	65	29	15	20	147	9/	100
247 1 2 7 2 8 23 5 19 55 1 752 2 3 7 10 13 30 18 25 57 2 264 1 6 7 5 19 23 12 47 55 4 786 0 0 7 1 2 23 3 4 55 1 11741 34 3 7 72 6 16 286 24 61 72	Parklands	312	-	4	14	7	5	19	5	17	62	0	2	9	∞	27	100
752 2 3 7 10 13 30 18 25 57 2 264 1 6 7 5 19 23 12 47 55 4 786 0 0 7 1 2 23 3 4 55 1 11741 34 3 7 72 6 16 286 24 61 72	Racecourse	247	-	2	7	2	∞	23	5	61	55		5	91	6	35	100
264 1 6 7 5 19 23 12 47 55 4 786 0 0 7 1 2 23 3 4 55 1 11741 34 3 7 72 6 16 286 24 61 72	Redwood	752	2	3	7	10	13	30	81	25	57	2	3	9	32	43	100
786 0 0 7 1 2 23 3 4 55 1 11741 34 3 7 72 6 16 286 24 61 72	Sockburn	264	-	9	7	2	61	23	12	47	55	4	14	91	23	85	100
11741 34 3 7 72 6 16 286 24 61 72	Wigram	786	0	0	7	1	2	23	3	4	55	-	1	91	2	7	100
000 000	Sub-total	11741	34	3	7	72	9	91	286	24	19	72	9	91	465	40	100
1//5/ 6/ 4 / 138 8 15 613 35 65 119	Total - Total Study Area	17757	19	4	7	138	8	15	613	35	65	119	7	13	937	53	100

41

Table 3.15 SO_x emissions produced at different times of a typical winter's day from home heating across various suburb areas of Christchurch.

cuorecure man la francoure variante

				-			_	٢		=	-	100-III00	=	1		=
	Area (ha)	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total
Inner Suburb Study Area																
	555	5	10	7	6	91	12	59	901	80	0	-	-	73	132	100
	745	56	35	01	24	33	6	200	569	77	6	12	3	259	348	100
	635	0	0	0	2	∞	7	69	108	93	0	0	0	74	117	100
	754	0	0	0	23	31	81	102	136	81		-	_	127	168	100
Voolston	862	-	_	_	4	5	7	50	62	83	5	7	6	09	75	100
Riccarton	349	7	20	10	14	39	19	45	129	19	8	23	=	73	211	100
	572	9	=	12	6	91	81	24	41	46	13	22	24	52	91	100
Spreydon/Addington	745	35	47	6	52	70	13	245	328	19	69	93	17	401	539	100
St Albans	864	13	15	7	61	22	=	140	162	80	2	2	_	173	201	100
Sub-total - Inner Suburb Study Area	9109	93	15	7	191	27	12	932	155	72	107	81	8	1293	215	100
Outer Suburbs																
ndustrial	230	_	9	6	2	6	13	10	43	19	3	12	17	91	7.1	100
	2088	0	0	01	-	_	31	2	_	48	0	0	=	4	2	100
ad	727	14	61	01	43	59	31	29	93	48	15	21	=	140	192	100
Bishopdale	887	4	4	7	2	9	=	39	44	80	0	-	_	48	54	100
Bromley	764	7	3	01	2	3	6	15	19	09	2	9	20	24	32	100
/Bryndwr	460	17	38	~	28	62	14	114	247	55	48	105	23	208	452	100
Hoon Hay	421	5	=	∞	13	31	23	32	9/	99	∞	18	13	58	137	100
Hornby	498	4	6	3	36	72	56	78	157	28	17	34	13	136	272	100
Marshlands	1135	-	_	7	2	7	12	91	14	80	0	0	_	20	18	100
New Avonhead	230	0	0	4	0	0	9	0	_	81	0	0	8	0		100
New Brighton	1942	30	16	10	28	14	6	182	94	09	19	32	20	301	155	100
Parklands	312	4	13	24	9	20	36	7	22	39	0	0	_	17	55	100
Racecourse	247	-	5	3	10	39	56	21	85	58	2	19	13	36	147	100
	752	5	7	7	6	12	12	59	78	80	0	_	-	73	26	100
Sockburn	264	3	11	3	24	92	56	53	201	58	12	44	13	92	347	100
Wigram	982	_	-	3	9	∞	56	13	11	58	3	4	13	23	29	100
Sub-total	11741	94	8	8	216	18	18	208	09	59	178	15	15	1197	102	100
tal Study Area	17757	187	=	~	377	21	15	1640	92	99	286	91	=	2490	140	100

		9	6am-10am	ш	_	0am-4pm	E	4	4pm-10pm	E	7	10pm-6am	٦.	۵	Daily Tota	lal
Suburb Area	Area (ha)	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total
Inner Suburb Study Area												:				
Beckenham/Sydenham	555	41	73	7	170	307	31	298	538	55	36	64	7	545	982	100
Fendalton	745	74	100	7	100	134	6	863	1159	17	91	122	∞	1128	1514	100
Inner City	635	∞	12	2	69	108	16	344	542	78	21	33	2	441	695	100
Linwood	754	34	44	4	124	165	14	009	961	89	119	157	14	877	1163	100
Opawa/Woolston	798	48	09	7	06	113	12	458	574	64	124	156	17	720	905	100
Riccarton	349	=	30	3	32	92	=	254	726	84	9	8	7	303	298	100
Shirley	572	57	100	6	98	151	13	396	693	62	104	182	91	644	1126	100
Spreydon/Addington	745	59	79	9	126	169	12	765	1027	72	118	159	=	1068	1435	100
St Albans	864	198	230	10	297	344	15	1375	1592	19	175	203	6	2046	2368	100
Sub-total - Inner Suburb Study Area	ea 6016	529	88	7	1094	182	14	5353	890	69	794	132	10	7772	1292	100
Outer Suburbs																
Addington Industrial	230	2	10	9	5	20	=	29	128	72	5	20	=	4	178	100
Airport	2088	-	-	6	3	-	20	6	4	19	-	-	10	14	7	100
Avonhead	727	42	58	6	93	128	19	297	408	62	45	62	6	477	959	100
Bishopdale	887	55	62	6	83	93	14	389	439	19	99	63	10	583	657	100
Bromley	764	15	20	7	4	61	7	137	180	19	39	52	19	206	569	100
Burnside/Bryndwr	460	58	125	5	172	375	15	731	1592	64	190	413	91	1151	2504	100
Hoon Hay	421	59	140	7	151	357	16	446	1059	99	145	344	18	800	1900	100
Hornby	498	38	75	7	115	230	22	282	292	54	85	170	91	519	1042	100
Marshlands	1135	Ξ	10	7	47	41	31	82	72	55	10	6	7	150	132	100
New Avonhead	230	_	2	3		3	4	81	78	88	_	4	5	20	88	100
New Brighton	1942	186	96	7	178	92	7	1651	850	99	490	253	20	2506	1291	100
Parklands	312	18	59	13	25	79	17	16	290	63	6	29	9	143	457	100
Racecourse	247	6	38	7	30	121	22	72	292	54	22	88	91	133	539	100
Redwood	752	40	54	7	691	225	31	297	395	55	36	47	7	542	722	100
Sockburn	264	25	95	7	11	292	22	161	721	54	57	217	91	350	1325	100
Wigram	786	9	∞	7	61	24	22	45	57	54	14	17	91	83	106	100
Sub-total	11741	895	48	7	1180	100	15	8924	406	62	1204	103	91	7719	657	100
Total - Total Study Area	17757	1097	<i>C9</i>	7	2774	128	15	10121	670	59	1008	113	13	15400	073	100

Table 3.17 CO₂ emissions produced at different times of a typical winter's day from home heating across various suburb areas of Christchurch.

		9	6am-10am		10	0am-4pm	_	46	4pm-10pm	_	10	10pm-6am	_	ă	Daily Total	
Suburb Area	Area (ha)	kg	g/ha	% Daily		g/ha	% Daily	kg	g/ha	% Daily	kg	g/ha	% Daily	kg	g/ha	% Daily
Inner Cubunk Ctude: Ance				1 Otal			LOIG		1	Ota			100			300
Bookenhem/Cydenhem	555	3245	5850	×	11057	10033	90	25410	45809	65	3307	2965	~	.43019	77554	100
Fendalfon	745	8406	11283	0 00	10406	13967	9 9	75610	101490	73	8018	11970	6	103340	138711	100
Inner City	635	550	867	2	5026	7919	14	27834	43860	79	1801	2839	2	35211	55486	100
Linwood	754	2973	3943	4	10779	14297	15	51993	9868	71	7762	10296	=	73506	97501	100
Opawa/Woolston	798	4421	5538	7	1861	9848	13	38989	48840	64	9774	12243	91	61045	76469	100
Riccarton	349	1531	4387	5	4397	12598	91	21085	60417	75	1235	3540	4	28248	80941	100
Shirley	572	4797	8381	6	7195	12572	13	32528	56837	09	10066	17589	82	54586	95380	100
Spreydon/Addington	745	1176	10443	7	15088	20263	13	78262	105106	19	15551	20886	13	116677	156697	100
St Albans	864	15916	18427	10	23873	27641	14	111847	129498	29	14202	16443	6	165838	192009	100
Sub-total - Inner Suburb Study Area	9109	49614	8247	7	95681	15904	14	463559	77053	89	72616	12070	=	681470	113274	100
Outer Suburbs																
Addington Industrial	230	317	1381	7	617	2690	13	3162	13776	29	634	2762	13	4730	20609	100
Airport	2088	146	70	10	350	168	23	870	417	57	157	75	10	1524	730	100
Avonhead	727	4661	6415	01	11172	15376	23	27745	38185	57	5020	6069	10	48598	66884	100
Bishopdale	887	4420	4985	10	6629	7478	14	31058	35035	29	3944	4448	6	46051	51947	1001
Bromley	764	1363	1784	7	1526	8661	∞	12019	15732	99	3342	4374	18	18250	23888	100
Burnside/Bryndwr	460	7117	15620	7	16653	36242	91	98009	130764	58	19279	41956	19	103195	224582	100
Hoon Hay	421	4792	11373	7	11774	27939	81	38256	90782	57	12206	28966	18	67028	159060	100
Hornby	498	3419	6864	7	11891	23872	23	28233	56681	55	7552	15161	15	51094	102579	100
Marshlands	1135	894	788	~	3047	2684	56	7002	1919	59	116	803	8	11854	10441	100
New Avonhead	230	75	324	4	112	486	9	1454	6320	81	149	648	∞	1789	7778	100
New Brighton	1942	16887	2698	7	18908	9738	∞	148882	16680	99	41392	21319	18	226068	116434	100
Parklands	312	2274	7284	91	3055	9785	21	8020	25688	55	1188	3804	8	14536	46561	100
Racecourse	247	915	3699	7	3182	12863	23	7556	30542	55	2021	8170	15	13675	55274	100
Redwood	752	3232	4301	∞	11013	14655	56	25310	33679	59	3294	4383	8	42849	57018	100
Sockburn	264	2312	8753	7	8043	30441	23	96061	72278	55	5108	19333	15	34559	130806	100
Wigram	982	574	731	7	1997	2542	23	4742	6037	55	1269	1615	15	8582	10925	100
Sub-total	11741	53459	4553	8	109970	9366	91	423489	36069	61	107465	9153	15	694383	59142	100
Total - Total Study Area	17757	103073	5805	7	205651	11581	15	887048	49955	64	180081	10141	13	1375853	77482	100

4. Motor Vehicle Emissions

4.1. Motor Vehicle Emission Factors, Calculation Techniques and Assumptions

To calculate emissions from motor vehicles, it was first necessary to develop emission factors, calculate vehicle kilometres travelled (VKT's), and estimate average driving speeds for each of the study areas.

The motor vehicle emissions factors used in this inventory (Table 4.1, Table 4.2, and Table 4.3) were developed from a literature survey (United States Environmental Protection Agency (USEPA) (1994), Economopoulos (1993), International Panel on Climate Change (1995), and Gas Association of New Zealand Incorporated (1995)).

In order to account for the effect of differing driving speeds, three regimes were adopted. For suburbs with average driving speeds up to 35 km/h, an "urban" driving regime was used to calculate emissions (Table 4.1). For suburbs with average driving speeds in the range 36-70 km/h, a "suburban" driving regime was applied (Table 4.2), and for suburbs with average driving speeds over 71 km/h a "highway" driving regime was used (Table 4.3).

Table 4.1 Vehicle distribution and emission factors per kilometre driven - Urban.

		То	tal Emi	ssions	per kn	Drive	n (g)
Vehicle Type	Fleet (%)	PM ₁₀	CO	NO_x	SOx	VOC	CO ₂
Light duty <3.5t petrol vehicles	82.30	0.07	21.58	1.93	0.01	4.42	334.00
Light duty <3.5t diesel vehicles	4.10	0.15	0.85	0.55	0.20	0.40	400.00
Light duty <3.5t LPG/CNG vehicles	2.70	0.00	1.42	1.78	0.00	1.76	290.00
Heavy duty >3.5t petrol vehicles	1.60	0.40	70.00	4.50	0.03	7.00	850.00
Heavy duty >3.5t diesel vehicles	8.40	1.52	7.03	17.55	1.68	5.61	1000.00
Heavy duty >3.5t LPG/CNG vehicles	0.20	0.00	18.86	5.70	0.00	9.69	969.00
2&4 stroke petrol motorcycles	0.70	0.07	18.80	0.16	0.16	8.40	93.00
Weighted fleet emission factors	100.00	0.198	19.71	3.22	0.16	4.36	399.00

Table 4.2 Vehicle distribution and emission factors per km driven - Suburban.

		То	tal Emi	ssions	per kn	Drive	n (g)
Vehicle Type	Fleet (%)	PM ₁₀	CO	NOx	SOx	VOC	CO ₂
Light duty <3.5t petrol vehicles	82.30	0.05	9.88	2.46	0.01	2.80	334.00
Light duty <3.5t diesel vehicles	4.10	0.15	0.85	0.55	0.20	0.40	400.00
Light duty <3.5t LPG/CNG vehicles	2.70	0.00	0.84	1.80	0.00	1.68	290.00
Heavy duty >3.5t petrol vehicles	1.60	0.45	55.00	7.50	0.02	5.50	850.00
Heavy duty >3.5t diesel vehicles	8.40	1.45	3.36	21.85	1.62	2.70	1000.00
Heavy duty >3.5t LPG/CNG vehicles	0.20	0.00	18.86	5.70	0.00	9.69	969.00
2&4 stroke petrol motorcycles	0.70	0.07	18.80	0.16	0.62	8.40	93.00
Weighted fleet emission factors	100.00	0.18	9.52	4.06	0.15	2.76	399.00

Table 4.3 Vehicle distribution and emission factors per km driven - Highway.

		To	tal Emi	ssions	per kn	Drive	n (g)
Vehicle Type	Fleet (%)	PM ₁₀	CO	NOx	SOx	VOC	CO ₂
Light duty <3.5t petrol vehicles	82.30	0.05	7.05	3.37	0.01	2.20	334.00
Light duty <3.5t diesel vehicles	4.10	0.15	0.85	0.55	0.20	0.40	400.00
Light duty <3.5t LPG/CNG vehicles	2.70	0.00	0.61	2.34	0.00	1.63	290.00
Heavy duty >3.5t petrol vehicles	1.60	0.60	50.00	7.50	0.02	3.50	850.00
Heavy duty >3.5t diesel vehicles	8.40	1.15	2.72	17.55	1.47	2.13	1000.00
Heavy duty >3.5t LPG/CNG vehicles	0.20	0.00	18.86	5.70	0.00	9.69	969.00
2&4 stroke petrol motorcycles	0.70	0.07	18.80	0.16	0.62	8.40	93.00
Weighted fleet emission factors	100.00	0.15	7.05	4.47	0.14	2.18	399.00

The factors in Table 4.1, Table 4.2 and Table 4.3 reflect the differences in emissions from the various vehicle types. Take PM_{10} and NO_x for example, when compared to light duty <3.5t petrol vehicles on an <u>individual</u> basis:

- light duty <3.5t diesel vehicles produce at least twice as much PM_{10} ;
- heavy duty >3.5t petrol vehicles produce 6-12 times the quantity of PM₁₀ and 2-3 times the amount of NO_x;
- heavy duty >3.5t diesel vehicles produce 22-29 times the amount of PM₁₀ and 5-9 times the amount of NO_x;
- heavy duty >3.5t LPG/CNG vehicles produce 2-3 times more NO_x and;
- 2 & 4 stroke petrol motorcycles produce 1.4 times the amount of PM₁₀.

With the fleet composition taken into consideration, the pattern is somewhat different. For example, light duty <3.5t petrol vehicles (which represent 82% of the vehicle fleet) produce:

- \sim 9.5 times more PM₁₀ and 70-123 times more NO_x than light duty <3.5t diesel vehicles;
- 33-44 times more NO_x than light duty <3.5t LPG/CNG vehicles;
- 17-23 times more NO_x and 4-9 times more PM₁₀ than heavy duty >3.5t petrol vehicles;
- 1-2 times more NO_x than heavy duty >3.5t diesel vehicles;
- 139-243 times more NO_x than heavy duty >3.5t LPG/CNG vehicles and;
- 84-118 times more PM₁₀ and 1418-2476 times more NO_x than 2 & 4 stroke petrol motorcycles.

Likewise, heavy duty >3.5t diesel vehicles, which represent 8.4% of the vehicle fleet, produce:

- 2-3 times more PM₁₀ than light duty <3.5t petrol vehicles;
- 16-21 times more PM_{10} and 65-81 times more NO_x than light duty <3.5t diesel vehicles;
- 23-38 times more NO_x than light duty <3.5t LPG/CNG vehicles and;
- 10-20 times more PM_{10} and 12-21 times more NO_x than heavy duty >3.5t petrol vehicles.

The Canterbury Regional Council supplied the average number of vehicle kilometres travelled per day (VKT's) and the average driving speeds for each study area. From this information, driving regimes could be designated to various suburb areas (Table 4.4).

Motor vehicle emissions were then calculated for a typical winter's day and aggregated to a total using the following formula:

Motor Vehicle Emissions (g) = Driving Regime Emission Factor(g/km) * VKT (km)

So, to calculate total PM_{10} emissions from <u>all</u> vehicle types within the "urban" area of Addington Industrial the equation would look like:

 PM_{10} Emissions (g) = 0.198 g/km * 124767 km

The aggregated total motor vehicle emissions were then divided by the number of hectares within each suburb area (1 hectare = 10000m²). This gave a "normalised" weight per area value (e.g. grams per hectare) and allowed fair comparison between differently-sized study areas.

The following assumptions were also made:

1. Typical NZ fuel information is:

unleaded 91: 47.9% sales Lead (Pb)=0.001 g/l Sulphur (S)=0.005 wt% leaded 96: 52.1% sales Lead (Pb)=0.268 g/l Sulphur (S)=0.007 wt% diesel Lead (Pb)=0.000 g/l Sulphur (S)=0.240 wt%

2. Fuel technology for NZ cars is:

70% carburettors 30% fuel injectors

3. Motorcycle fleet breakdown is:

<50cc 2-stroke 20%

>50cc 2-stroke 40%

>50cc 4-stroke 40%

The emissions factors for heavy duty LPG/CNG vehicles have been developed from fewer sets of data as there is very little information currently available.

Table 4.4 Average speed and vehicle kilometres travelled at different times of a typical winter's day for various study areas of Christchurch.

	A	verage Sp	eed Regin	ne	Vehicle	Kilometres	Travelled	l (km)
Suburb Area	6am-10am	10am-4pm	4pm-10pm	10pm-6am	6am-10am	10am-4pm	4pm-10pm	10pm-6am
Inner Suburb Study Area								
Beckenham/Sydenham	urban	urban	urban	suburban	88411	183210	117750	19783
Fendalton	urban	urban	urban	urban	72921	148671	97965	16968
Inner City	urban	urban	urban	urban	163340	337974	205017	34836
Linwood	urban	urban	urban	urban	105831	215571	144353	24670
Opawa/Woolston .	urban	urban	urban	suburban	89450	185619	119317	20064
Riccarton	urban	urban	urban	urban	70289	145392	87134	15485
Shirley	urban	urban	urban	urban	42701	88431	60436	9269
Spreydon/Addington	urban	urban	urban	urban	89609	185898	119327	20059
St Albans	urban	urban	urban	urban	95434	196410	129456	22061
Sub-total -Inner Suburb Study Area	urban	urban	urban	urban	817983	1687176	1080755	183192
Outer Suburbs								
Addington Industrial	urban	urban	urban	urban	27496	57600	33690	5981
Airport	suburban	suburban	suburban	suburban	50183	97062	65149	11356
Avonhead	urban	urban	urban	suburban	112002	228402	147799	24637
Bishopdale	urban	urban	urban	urban	36519	71301	48100	8208
Bromley	suburban	suburban	suburban	suburban	37853	75324	50825	8333
Burnside/Bryndwr	urban	urban	urban	suburban	42812	88662	58855	9883
Hoon Hay	suburban	suburban	urban	suburban	37820	77757	52643	8431
Hornby	urban	urban	urban	suburban	40056	81363	50343	8755
Marshlands	suburban	suburban	suburban	suburban	56390	115341	77860	12720
New Avonhead	urban	urban	urban	urban	132	315	228	98
New Brighton	urban	urban	urban	suburban	91223	187704	130541	21351
Parklands	urban	urban	urban	suburban	12508	25494	17892	2775
Racecourse	highway	highway	highway	highway	6159	14397	10397	3280
Redwood	urban	urban	suburban	urban	56139	114444	75534	12858
Sockburn	urban	urban	urban	urban	44654	91476	56414	9983
Wigram	suburban	suburban	suburban	suburban	54308	111462	69342	11907
Sub-total	suburban	suburban	suburban	suburban	706250	1438104	945612	160553
Total - Total Study Area	urban	urban	urban	suburban	1524233	3125280	2026367	343745

4.2. Motor Vehicle Emissions on a Typical Winter's Day by Vehicle Type

In both the total study area and the inner suburb area, light duty petrol and heavy duty diesel vehicles tend to emit larger quantities of all six pollutants under study (Figure 4.1, Table 4.5, and Table 4.6).

Light duty petrol vehicles are the main emitters of CO (~90%), VOC (83%) and CO₂ (~70%). Heavy duty diesel vehicles tend to emit larger quantities of PM_{10} (65%) and SO_x (87%). A further 20% of CO_2 emissions stem from heavy duty diesel vehicles while nearly 30% of PM_{10} emissions are derived from light duty petrol vehicles. Both light duty petrol vehicles and heavy duty diesel vehicles release similar quantities of NO_x (50% and 46% respectively).

Even though the percentage of emissions by vehicle types are very similar for both the total study area and the inner suburb area, estimated quantities released (per day and per hectare) are quite different. On average, the inner suburb area produces 1.5-1.75 times the amount of all six pollutants per hectare per day when compared to the quantities produced by the total study area. Individual suburb results can be found in Appendix III.

Figure 4.1 Emissions by vehicle type for the total study area and the inner suburb study area.

Table 4.5 Emissions by vehicle type for the total study area.

		PM ₁₀			္ပ			Ŷ			SOx			VOC			CO2	
	kg	g/ha	g/ha % Total kg		g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	384	22	28	112589 6341	6341	06	11719	099	50	54	3	5	23856	1343	83	1929568	108665	69
Light duty <3.5t diesel vehicles	43	2	3	245	14	0	158	6	_	58	3	2	115	9	0	115122	6483	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	249	14	0	339	19	_	0	0	0	331	19	_	54964	3095	2
Heavy duty >3.5t petrol vehicles	46	3	3	7560	426	9	565	32	2	3	0	0	755	43	3	95467	5376	3
Heavy duty >3.5t diesel vehicles	888	50	9	3759	212	3	10786	209	46	985	55	87	3002	691	10	589648	33206	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	265	15	0	80	2	0	0	0	0	136	8	0	13604	992	0
2&4 stroke petrol motorcycles	3	0	0	924	52	-	00	0	0	30	2	3	413	23	_	4570	257	0
Total	1365 77	11	100	100 125591 70	7073	100	23655	1332	100	1130	64	100	28608	1611	100	2802943	157849	100

Table 4.6 Emissions by vehicle type for the inner suburb study area.

		PM ₁₀	•		ပ္ပ			Š			SOX			00 0			CO	
	kg	g/ha	g/ha % Total kg g/ha	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	216	36	29	66557 110	11063	06	6004	866	49	31	5	5	13658	2270	83	1036059	172214	69
Light duty <3.5t diesel vehicles	23	4	3	131	22	0	85	14	_	31	5	2	62	10	0	61813	10275	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	144	24	0	181	30	_	0	0	0	179	30	-	29512	4906	2
Heavy duty >3.5t petrol vehicles	24	4	3	4212	700	9	273	45	2	2	0	0	421	70	3	51260	8520	3
Heavy duty >3.5t diesel vehicles	481	80	64	2213	368	3	5571	926	46	533	68	87	1766	294	=	316605	52626	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	142	24	0	43	7	0	0	0	0	73	12	0	7305	1214	0
2&4 stroke petrol motorcycles	2	0	0	496	82	_	4	-	0	91	3	т	222	37	-	2454	408	0
Total	747	747 124	100	73896 122	12283	100	12162	2022	100	613	102	100	18891	2723	100	1505008	250163	100

4.3. Motor Vehicle Emissions on a Typical Winter's Day - Total

Motor vehicle emissions to the air on a typical winter's day for various study areas of Christchurch are presented in Table 4.7 over.

The total study area is estimated to produce approximately 1365 kilograms of PM_{10} per day or 77 grams per hectare per day whereas the inner suburb study area is estimated to produce 55% of the total PM_{10} emissions (747 kg/day) (Table 4.7). On a grams per hectare basis, the PM_{10} emissions from motor vehicles within the inner suburb study area are 1.6 times greater than the total study area (124 g/ha/day compared to 77 g/ha/day).

A similar pattern emerges when examining the CO, NO_x , SO_x , VOC and CO_2 emissions from motor vehicles (Table 4.7). The inner suburb study area is estimated to produce nearly 60% of the total CO and NO_x emissions, 54% of the total SO_x and CO_2 emissions and 51% of the total NO_x emissions. On a grams per hectare basis, the inner suburb study area produces 1.5 times more NO_x than the total study area, 1.6 times more SO_x and CO_2 and 1.7 times the CO and VOC.

On an individual suburb basis (Table 4.7), motor vehicle emissions vary considerably from suburb to suburb. For example, when comparing New Avonhead (the suburb with the lowest total and grams per hectare pollutant emissions) with the Inner City (the suburb with the highest total and grams per hectare pollutant emissions), PM_{10} emissions per hectare in the Inner City are approximately 230 times larger than those in New Avonhead. CO and CO_2 can be as much as 350 times larger, NO_x and VOC 340 times larger, and SO_x 190 times greater.

Results indicate that pollutant emissions are largely determined by the number of major traffic routes within a study area, the traffic density, the number of VKT's, and driving speeds. Suburb areas with little or no major traffic routes (such as New Avonhead, Parklands and the Racecourse) generally display lower VKT's and are commonly in the "urban" and/or "suburban" driving regimes (Table 4.8). As a result, these areas tend to exhibit lower pollutant emissions per day. It is likely that the traffic in these areas is primarily associated with local residents commuting to and from their homes to places of employment, recreation, education, shopping and entertainment but within their suburb boundaries. On the other hand, suburbs with greater traffic densities and hence higher VKT's (such as the Inner City, Avonhead, Linwood, and St Albans) display high emissions of all six pollutants under study. In these cases, more traffic is likely to cross suburb boundaries, and travel at slower speeds.

Motor vehicle emissions tend to be highest close to traffic routes and decrease exponentially in concentration as distance from the roading system increases. For this reason, the total daily PM_{10} , CO, NO_x , SO_x , VOC and CO_2 emissions from motor vehicles are more likely to be localised around the traffic routes instead of being uniform across the suburb area (as with home heating emissions). Emissions per hectare standardise the localised total daily emissions across the entire suburb area. It is assumed that the inner city is an exception to this in that motor vehicle emissions are expected to be relatively uniform throughout the area.

Canterbury Regional Council Technical Report

	Table 4.7		Typical winter's day emissions from motor vehicles for various study areas of Christchurch	inter's (lay emis	Sions n	om mo	tor vehi	cles for	various	study ?	reas of	Christe	hurch.					
			PM ₁₀			၀			Ň			SOx			VOC			CO	
Suburb Area	Area (ha)	kg	% Total	g/ha	kg %	% Total	g/ha	kg	% Total	g/ha	kg	% Total	g/ha	kg	% Total	g/ha	kg	% Total	g/ha
Inner Suburb Study Area																			
Beckenham/Sydenham	555	81	9	146	7864	9	14177	1333	9	2404	99	9	120	1753	9	3161	163375	9	294529
Fendalton	745	19	5	06	6634	5	8905	1083	5	1453	55	5	73	1468	5	1971	134375	2	180369
Inner City	635	147	=	232	14611	12	23024	2385	10	3758	121	=	061	3234	=	9609	295948	=	466354
Linwood	754	16	7	129	8996	00	12824	1578	7	2093	80	7	901	2140	7	2838	195827	7	259752
Opawa/Woolston	862	82	9	102	9962	9	8266	1351	9	1692	19	9	84	1776	9	2225	165490	9	207303
Riccarton	349	63	5	181	6275	5	17979	1024	4	2935	52	5	148	1389	5	3979	127098	5	364176
Shirley	572	40	3	70	3959	3	8169	646	3	1129	33	3	57	928	3	1531	80194	3	140126
Spreydon/Addington	745	82	9	Ξ	8179	7	10984	1335	9	1793	<i>L</i> 9	9	16	1810	9	2431	165667	9	222491
St Albans	864	88	9	102	8740	7	10119	1427	9	1652	72	9	83	1934	7	2240	177034	9	204972
Sub-total - Inner Suburb Study Area	9109	747	55	124	73896	59	12283	12162	51	2022	613	54	102	16381	57	2723	1505008	54	250168
Outer Suburbs																		,	
Addington Industrial	230	25	2	801	2460	2	10717	401	7	1749	20	7	88	544	7	2372	49819	7	217078
Airport	2088	40	3	61	2130	2	1020	606	4	436	34	n	91	219	2	296	89343	3	42797
Avonhead	727	101	7	139	6886	00	13568	1671	7	2300	83	7	114	2198	00	3025	204777	7	281830
Bishopdale	887	33	7	37	3236	3	3650	528	7	969	27	2	30	716	3	808	65536	7	73927
Bromley	764	30	7	40	1641	_	2147	200	3	917	27	2	35	475	2	622	68813	7	02006
Burnside/Bryndwr	460	39	3	98	3846	3	8370	653	3	1420	32	3	71	828	3	1867	79945	3	173982
Hoon Hay	421	32	2	77	2218	7	5264	673	3	1598	28	7	99	572	2	1357	70537	3	167387
Hornby	498	36	3	71	3469	3	5969	588	2	1181	29	3	59	774	3	1553	72080	3	144710
Marshlands	1135	46	3	4	2497	2	2200	9901	2	939	40	4	36	724	3	637	104741	4	92258
New Avonhead	230	0	0	_	15	0	99	7	0	=	0	0	_	3	0	15	308	0	1341
New Brighton	1942	85	9	44	8275	7	4262	1404	9	723	70	9	36	1845	9	950	172026	9	00988
Parklands	312	12	-	37	1128	_	3614	161	-	612	10	_	30	252	-	908	23427	-	75037
Racecourse	247	2	0	21	241	0	926	153	_	819	2	0	20	75	0	302	13669	0	55250
Redwood	752	20	4	99	4335	3	6925	897	4	1194	41	4	55	1009	4	1342	103409	4	137603
Sockburn	264	40	3	152	3992	3	15112	652	3	2467	33	3	125	884	3	3345	69808	3	306090
Wigram	786	44	3	99	2352	2	2994	1004	4	1278	38	3	48	682	2	868	98635	4	125553
Sub-total	11741	819	45	53	51695	41	4403	11494	49	626	518	46	44	12227	43	1041	1297935	46	110547
Total - Total Study Area	17757	1365	100	77	125591	100	7073	23655	100	1332	1130	100	64	28608	100	1191	2802943	100	157850

Table 4.8 Typical winter's day emissions from motor vehicles in descending order of PM_{10} for the 25 suburb areas of Christchurch.

				Pollutan	t (g/day)		
Suburb Area	Daily VKT's	PM ₁₀	CO	NO _x	SO _x	VOC	CO ₂
Inner City	741166	146995	14610880	2384865	120534	3233707	295948325
Avonhead	512840	101181	9858674	1671015	83185	2198005	204777325
Linwood	490425	97266	9667920	1578049	79757	2139722	195826993
St. Albans	443360	87932	8740120	1426608	72103	1934380	177034091
New Brighton	430819	84984	8275253	1404315	69875	1845417	172026258
Spreydon/Addington	414892	82286	8178920	1335006	67473	1810174	165666790
Opawa/Woolston	414450	81766	7965683	1350555	67224	1776063	165490100
Beckenham/Sydenham	409153	80721	7864141	1333274	66365	1753406	163375202
Fendalton	336525	66743	6634032	1082842	54728	1468256	134374569
Riccarton	318300	63128	6274766	1024200	51764	1388743	127097508
Redwood	258975	49735	4335339	897204	41451	1008760	103408777
Marshlands	262311	46374	2497283	1065938	40347	723751	104740845
Wigram	247019	43670	2351698	1003797	37994	681559	98634734
Sockburn	202527	40167	3992480	651674	32936	883623	80869034
Shirley	200837	39832	3959164	646236	32662	876250	80194215
Airport	223749	39557	2130164	909238	34415	617355	89343199
Burnside/Bryndwr	200212	39495	3846115	652586	32473	857674	79944852
Hornby	180516	35613	3469344	588256	29280	773550	72080219
Bishopdale	164128	32551	3235506	528116	26692	716088	65536275
Hoon Hay	176651	32364	2218368	673316	27635	571837	70536921
Bromley	172335	30467	1640681	700307	26507	475495	68813338
Addington Industrial	124767	24745	2459568	401464	20291	544356	49819388
Parklands	58669	11576	1128278	191128	9517	251522	23426590
Racecourse	34232	5271	241379	152879	4855	74766	13668872
New Avonhead	773	153	15229	2486	126	3370	308460
Average	280785	54583	5023639	946214	45208	1144313	112117715
Median	247019	43670	3959164	909238	37994	876250	98634734

4.4. Motor Vehicle Emissions by Time of Day

On average, approximately 45% of all motor vehicle emissions of PM_{10} , CO, NO_x , SO_x , VOC and CO_2 are released between the hours of 10am-4pm across the total study area (Figure 4.2 and Table 4.9). A secondary peak occurs between 4pm-10pm, during which ~30% of contaminants are emitted. A further 22% of pollutants are emitted between 6am-10am. Only 4-5% of all pollutants are emitted overnight (between 10pm-6am). This pattern is also a similar feature of the inner suburb area across all six pollutants, as well as in the majority of individual suburbs (Table 4.10, Table 4.11-Table 4.16).

Again the average estimated emissions per hectare from the inner suburb area are 1.5-1.75 times the emissions of the total study area for all six pollutants.

Actual traffic flow between 6am and 4pm may give some insight as to why the peak occurs between 10am-4pm and not 6am-10am as could be expected. Morning "rush hour" traffic is often erratic and dependent on a number of variables (e.g. weather conditions). Because of this it may only account for a portion of the 6am-10am time frame. Traffic flow between 10am-4pm is more likely to be constant. There are also an extra two hours included in the time frame.

6am-10am 10am-4pm 4pm-10pm 10pm-6am

Figure 4.2 Breakdown of motor vehicle emissions for different times of a typical winter's day for the total study area and the inner suburb study area.

Table 4.9 Estimated motor vehicle emissions for various times of a typical winter's day across the total study area.

		PM ₁₀			00			NOx			SOx			VOC			CO	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
6am-10am	297	17	22	27559	1552	22	5112	288	22	246	14	22	6257	352	22	608628	34275	22
10am-4pm	609	34	45	99595	3186	45	10478	590	44	504	28	45	12839	723	45	1247927	70278	45
4pm-10pm	394	22	29	36362	2048	53	6820	384	59	326	81	29	8275	466	29	809130	45567	59
10pm-6am	65	4	5	5104	287	4	1246	70	2	54	3	2	1236	70	4	137258	7730	2
Total	1365	77	100	125591	7073	100	23655	1332	100	1130	64	100	28608	1611	100	2802943	157849	100

Table 4.10 Estimated motor vehicle emissions for various times of a typical winter's day across the inner suburb study area.

		PM10			ပ္ပ			Š			SO			VOC			ဝ်	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
6am-10am	162	27	22	16125	2680	22	2632	437	22	133	22	22	3569	593	22	326621	54291	22
10am-4pm	335	99	45	33260	5528	45	5429	902	45	274	46	45	7361	1224	45	673691	111981	45
4pm-10pm	214	36	29	21305	3541	29	3478	578	29	176	29	29	4715	784	29	431547	71732	29
10pm-6am	35	9	5	3205	533	4	623	104	2	29	2	5	735	122	4	73149	12159	2
Total	747	124	100	73896	12283	100	12162	2022	100	613	102	100	16381	2723	100	1505008	250163	100

Table 4.11 PM₁₀ emissions produced at different times of a typical winter's day by motor vehicles across various suburb areas of Christchurch.

Area (ta) Kg g/ha % Daily Kg g/ha Kg g/ha % Daily Kg g/ha Kg g/ha Kg g/ha Kg g/ha Kg g/ha g/ha Kg g/ha Kg g/ha			9	6am-10am	E	10	10am-4pm	r.	4b	4pm-10pm	L	1	10pm-6am	_	Ď	Daily Total	al
National N	Suburb Area	Area (ha)		g/ha	% Daily Total		g/ha	% Daily Total		g/ha	% Daily Total		g/ha	% Daily Total	kg	g/ha	% Daily Total
144 14 15 15 15 16 17 17 17 18 18 18 18 18	Inner Suburb Study Area																
145 14 19 22 29 40 44 19 26 29 3 5 5 5 643 21 28 22 22 43 46 45 29 30 29 5 6 5 748 18 22 22 27 44 45 29 30 29 5 6 5 749 14 40 22 22 37 46 45 24 30 29 7 11 5 745 18 22 22 27 29 83 46 17 30 29 4 4 4 745 18 24 22 27 29 83 44 12 21 30 29 4 5 5 864 19 22 22 37 49 45 24 32 29 4 5 5 870 14 40 22 335 56 45 24 32 29 4 5 5 871 230 5 24 22 11 50 46 7 29 27 1 5 5 887 7 2 31 22 21 8 43 12 6 29 27 1 5 5 887 7 2 31 22 17 8 45 10 11 29 27 1 5 5 460 8 18 21 18 38 45 10 20 28 2 2 4 4 460 8 16 22 13 17 44 9 12 29 10 2 2 4 470 1 4 18 3 45 10 20 28 2 3 4 488 8 16 22 13 14 33 45 10 20 38 2 3 4 498 8 16 22 16 32 45 10 20 38 2 3 4 498 8 16 22 16 32 45 11 31 0 2 2 498 9 21 22 24 24 24 24 24 24	Beckenham/Sydenham	555	18	32	22	36	9	45	23	42	59	3	9	4	81	145	100
635 32 51 22 67 106 46 41 64 28 7 11 5 5 1 1 1 1 1 1	Fendalton	745	14	19	22	29	40	44	19	26	29	3	5	S	<i>L</i> 9	06	100
754 21 28 22 43 57 44 29 38 29 5 6 5 798 18 22 22 37 46 45 24 30 29 4 4 4 4 349 18 22 22 37 46 45 24 30 29 35 6 5 84 14 22 22 37 49 45 24 32 29 4 5 5 864 19 22 22 33 45 44 26 30 29 4 5 5 864 19 22 22 33 45 44 26 30 29 4 5 5 851 15 27 22 33 45 44 26 30 29 4 5 5 852 19 22 27 23 335 56 45 214 36 29 29 4 5 5 853 19 22 27 23 33 45 44 26 29 27 1 5 5 854 19 22 27 23 33 45 44 26 29 27 1 5 5 857 17 8 18 22 45 62 44 9 10 11 29 22 1 5 858 19 22 11 13 17 44 9 10 11 29 22 1 4 4 440 8 18 21 18 38 45 10 25 33 1 4 4 440 8 18 21 18 38 45 10 25 33 1 4 4 440 8 18 21 14 33 44 14 17 30 0 0 13 1942 18 9 21 37 19 44 26 13 30 4 22 4 450 10 12 22 23 30 45 11 42 28 22 3 5 544 9 34 22 18 69 45 11 42 28 23 2 786 10 12 22 274 27 24 44 27 28 786 10 12 22 274 27 24 44 27 28 786 10 13 11 13 13 14 27 28 27 3 5 787 787 780 780 780 780 780 780 780 780 786 10 12 22 23 23 24 24 24 25 24 787 787 787 780	Inner City	635	32	51	22	<i>L</i> 9	106	46	41	64	28	7	=	5	147	231	100
798 18 22 22 23 46 45 24 30 29 4 4 4 4 4 4 4 4 4	Linwood	754	21	28	22	43	57	44	29	38	29	5	9	2	26	129	100
1349 14 40 22 29 83 46 17 50 27 3 9 5 nn 572 8 15 21 18 31 44 12 21 30 27 3 9 5 bStudy Area 6016 162 27 22 22 37 44 26 44 26 30 29 4 5 5 bStudy Area 6016 162 27 22 22 22 22 23 44 26 30 29 4 5 5 bStudy Area 6016 162 27 21 24 26 45 21 26 30 29 4 5 5 bStudy Area 6016 16 27 21 26 45 21 26 44 5 5 13 20 20 45 45 12 21	Opawa/Woolston	798	18	22	22	37	46	45	24	30	59	4	4	4	82	102	100
9th 572 8 15 21 18 31 44 12 21 30 2 3 5 bStundy Area 6016 162 24 22 37 49 45 24 32 29 4 5 5 iail 230 19 25 24 32 29 4 5 5 iail 230 5 24 22 11 50 46 7 29 27 1 5 5 1ail 230 5 24 22 11 50 46 7 29 27 1 5 5 727 22 31 22 45 62 45 29 40 8 6 4 5 5 887 7 8 22 14 16 44 9 12 29 4 5 5 460 8	Riccarton	349	14	40	22	29	83	46	17	20	27	3	6	5	63	181	100
9th 745 18 24 22 37 49 45 24 32 29 4 5 5 bStundyArea 6016 162 27 22 39 45 44 26 30 29 4 5 5 fall 2006 45 24 36 45 214 36 29 4 5 5 fall 2008 9 4 22 11 50 46 7 29 29 4 5 5 777 22 31 22 45 62 45 29 40 29 1 5 5 764 7 887 7 8 22 14 16 43 10 11 29 44 6 4 5 5 440 8 12 44 44 12 44 4 4 4 4 4	Shirley	572	%	15	21	18	31	44	12	21	30	2	3	5	40	70	100
864 19 22 22 23 35 45 44 26 30 29 4 5 5 1st 208 6016 162 27 22 335 56 45 214 36 29 35 6 5 1st 2088 9 4 22 11 50 44 12 6 29 27 1 5 5 1st 22 31 22 45 62 45 12 6 29 27 1 5 5 1st 22 31 22 45 62 45 29 40 29 4 6 4 1st 22 31 22 45 62 45 29 40 29 4 6 4 1st 24 25 13 17 44 9 12 29 1 2 2 5 1st 25 24 25 13 17 44 9 12 25 30 2 4 4 440 8 18 21 14 33 42 10 25 30 2 4 4 441 7 9 22 14 33 42 10 25 30 2 4 4 448 8 16 22 16 32 45 10 25 30 0 0 13 1st 25 8 21 37 19 44 4 11 31 0 2 2 4 440 12 22 23 30 46 13 18 27 30 2 2 2 540 9 34 22 24 25 44 14 14 26 30 2 2 2 541 135 11 22 274 23 44 180 15 29 29 2 5 1st 135 11 22 274 23 24 24 24 26 30 30 4 542 543 540 54	Spreydon/Addington	745	81	24	22	37	49	45	24	32	56	4	2	5	82	110	100
ial 6016 162 27 22 335 56 45 214 36 29 35 6 5 ial 230 5 24 22 11 50 46 7 29 27 1 5 5 ial 2088 9 4 22 17 8 43 12 6 29 27 1 5 5 777 22 31 22 45 62 45 29 40 29 27 1 5 5 887 7 8 22 14 16 21 16 29 27 4 6 4 460 8 18 21 14 9 12 29 2 4 4 440 8 18 21 14 33 42 10 25 30 1 4 4 1135 18 </th <th>St Albans</th> <th>864</th> <th>19</th> <th>22</th> <th>22</th> <th>39</th> <th>45</th> <th>44</th> <th>26</th> <th>30</th> <th>29</th> <th>4</th> <th>5</th> <th>5</th> <th>88</th> <th>102</th> <th>100</th>	St Albans	864	19	22	22	39	45	44	26	30	29	4	5	5	88	102	100
ial 230 5 24 22 11 50 46 7 29 27 1 5 5 2088 9 4 22 17 8 43 12 6 29 27 1 5 5 777 22 31 22 45 62 45 62 45 62 45 62 45 62 45 62 45 62 45 6 29 27 1 5 5 764 7 9 22 14 16 43 10 11 29 2 1 5 5 460 8 18 21 18 38 45 12 29 2 1 4 4 498 8 16 22 16 44 14 12 30 2 1 4 4 1135 10 9 21	Sub-total - Inner Suburb Study Area		162	27	22	335	56	45	214	36	29	35	9	5	747	124	100
131 5 24 22 11 50 46 7 29 21 1 5 5 5 5 5 7 1 5 5 5 7 8 43 12 6 29 21 1 5 6 4 4 4 4 4 4 4	Outer Suburbs		,	;		:	(t		ţ		,	,	i,	9	00.
2088 9 4 22 17 8 43 12 6 29 2 1 5 727 22 31 22 45 62 45 29 40 29 4 6 4 887 7 8 22 14 16 43 10 11 29 2 2 5 764 7 8 22 13 17 44 9 12 29 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 4 6 4 6 4 6 4 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 7 7 7 7 7	Addington Industrial	230	2	24	22	=	20	46	-	53	7.7	_	9	0	52	108	001
727 22 31 22 45 62 45 29 40 29 4 6 4 887 7 8 22 14 16 43 10 11 29 2 5 5 764 7 8 22 14 16 43 10 11 29 2 2 5 5 460 8 18 21 18 38 45 12 25 30 2 4 4 4 4 9 12 29 4 6 4	Airport	2088	6	4	22	17	∞	43	12	9	29	7	_	2	40	61	100
887 7 8 22 14 16 43 10 11 29 2 2 5 764 7 9 22 13 17 44 9 12 29 1 2 5 460 8 18 21 18 38 45 12 25 30 2 4 4 421 7 16 21 14 33 42 10 25 32 1 4 4 498 8 16 21 14 33 42 10 20 3 4 4 4 4 4 4 14 12 30 2 4 4 4 14 12 30 2 4 4 4 14 12 30 2 4 4 4 14 12 30 2 4 4 13 4 4 14 14 <th>Avonhead</th> <th>727</th> <th>22</th> <th>31</th> <th>22</th> <th>45</th> <th>62</th> <th>45</th> <th>29</th> <th>40</th> <th>29</th> <th>4</th> <th>9</th> <th>4</th> <th>101</th> <th>139</th> <th>100</th>	Avonhead	727	22	31	22	45	62	45	29	40	29	4	9	4	101	139	100
764 7 9 22 13 17 44 9 12 29 1 2 5 460 8 18 21 18 38 45 12 25 30 1 4 4 421 7 16 21 14 33 42 10 25 32 1 4 4 498 8 16 22 16 32 45 10 25 32 1 4 4 498 8 16 22 16 32 45 10 20 28 2 3 4 4 1135 10 9 21 20 18 44 26 13 30 4 2 4 247 1 4 18 2 9 42 2 6 30 1 4 1 252 11 15 22 <	Bishopdale	887	7	00	22	14	91	43	10	=	59	2	2	5	33	37	100
460 8 18 21 18 38 45 12 25 30 2 4 4 421 7 16 21 14 33 42 10 25 32 1 4 4 498 8 16 22 16 32 45 10 20 28 2 3 4 5 1135 10 9 21 20 18 44 14 12 30 2 3 4 5 1942 18 9 21 20 44 4 11 31 0 0 13 4 2 4 4 11 31 0 0 13 4 4 11 4 13 1 2 4 4 11 31 0 0 13 4 2 4 4 11 11 11 11 11 11 1	Bromley	764	7	6	22	13	17	44	6	12	29	-	7	5	30	40	100
421 7 16 21 14 33 42 10 25 32 1 4 5 498 8 16 22 16 32 45 10 20 28 2 3 4 1135 10 9 21 20 18 44 14 12 30 2 2 3 4 230 0 0 0 41 0 0 0 13 30 4 2 5 13 30 4 2 4 4 11 31 0 0 13 4 4 14 14 12 30 4 2 4 4 11 31 0 0 11 4 4 11 31 0 4 4 11 31 11 4 4 11 31 3 3 3 4 4 11 31 3	Burnside/Bryndwr	460	∞	81	21	8	38	45	12	25	30	7	4	4	39	98	100
498 8 16 32 45 10 20 28 2 3 4 1135 10 9 21 20 18 44 14 12 30 2 2 3 4 230 0 0 0 41 0 0 0 13 5 6 13 30 4 2 5 4 13 30 4 2 4 4 11 31 0 2 4 4 11 31 0 2 4 4 11 31 0 2 4 4 11 31 0 2 4 4 11 31 0 2 4 4 10 4 4 11 31 0 4 4 11 31 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <th>Hoon Hay</th> <th>421</th> <th>7</th> <th>91</th> <th>21</th> <th>14</th> <th>33</th> <th>42</th> <th>10</th> <th>25</th> <th>32</th> <th>_</th> <th>4</th> <th>S</th> <th>32</th> <th>11</th> <th>100</th>	Hoon Hay	421	7	91	21	14	33	42	10	25	32	_	4	S	32	11	100
1135 10 9 21 20 18 44 14 12 30 2 2 5 230 0 0 0 41 0 0 0 13 1942 18 9 21 37 19 44 26 13 30 4 2 4 1942 18 2 8 21 5 16 44 4 11 31 0 2 4 247 1 4 18 2 9 42 2 6 30 1 2 4 752 11 15 22 23 30 46 13 18 27 3 3 5 786 10 12 22 23 45 11 42 28 2 7 5 774 13 12 16 23 24 18 18 2	Hornby	498	~	91	22	91	32	45	10	20	28	2	3	4	36	72	100
230 0 0 41 0 0 30 0 13 13 13 13 13 13 13 13 13 13 13 14	Marshlands	1135	10	6	21	20	81	44	14	12	30	2	2	2	46	41	100
1942 18 9 21 37 19 44 26 13 30 4 2 4 312 2 8 21 5 16 44 4 11 31 0 2 4 247 1 4 18 2 9 42 2 6 30 1 2 4 264 9 34 22 18 69 45 11 42 28 2 7 5 786 10 12 22 20 25 45 12 16 28 2 7 5 11741 135 11 22 274 23 44 180 15 29 29 2 5 17757 207 17 27 260 24 25 30 45 4 5	New Avonhead	230	0	0	17	0	0	41	0	0	30	0	0	13	0	-	100
312 2 8 21 5 16 44 4 11 31 0 2 4 247 1 4 18 2 9 42 2 6 30 1 2 10 752 11 15 22 23 30 46 13 18 27 3 3 5 264 9 34 22 18 69 45 11 42 28 2 7 5 786 10 12 22 27 45 12 16 28 2 3 5 11741 135 11 22 274 23 44 180 15 29 29 5 17757 207 17 27 26 24 25 30 45 4 5	New Brighton	1942	<u>&</u>	6	21	37	19	4	56	13	30	4	2	4	85	44	100
247 1 4 18 2 9 42 2 6 30 1 2 10 752 11 15 22 23 30 46 13 18 27 3 3 5 264 9 34 22 18 69 45 11 42 28 2 7 5 786 10 12 22 27 45 12 16 28 2 3 5 11741 135 11 22 274 23 44 180 15 29 29 2 5 17757 207 17 27 600 34 45 304 27 3 5	Parklands	312	2	œ	21	5	91	44	4	=	31	0	2	4	12	37	100
752 11 15 22 23 30 46 13 18 27 3 3 5 264 9 34 22 18 69 45 11 42 28 2 7 5 786 10 12 22 20 25 45 12 16 28 2 7 5 11741 135 11 22 274 23 44 180 15 29 29 2 5 17757 207 17 27 600 34 45 304 27 29 45 4 5	Racecourse	247	_	4	81	2	6	42	2	9	30	_	2	10	S	21	100
264 9 34 22 18 69 45 11 42 28 2 7 5 786 10 12 22 20 25 45 12 16 28 2 3 5 11741 135 11 22 274 23 44 180 15 29 29 2 5 17757 207 17 27 600 34 45 304 27 30 65 4 5	Redwood	752	Ξ	15	22	23	30	46	13	18	27	3	3	2	20	99	100
786 10 12 22 20 25 45 12 16 28 2 3 5 11741 135 11 22 274 23 44 180 15 29 2 5 17757 207 17 22 600 34 45 304 22 30 65 4 5	Sockburn	264	6	34	22	8	69	45	=	42	28	2	7	2	40	152	100
11741 135 11 22 274 23 44 180 15 29 29 5 29 17 20 17 20 20 20 20 20 20 20 2	Wigram	982	10	12	22	20	25	45	12	91	28	2	3	5	44	99	100
5 4 55 30 22 20 12 304 32 30 55 4 5	Sub-total	11741	135	=	22	274	23	44	180	15	29	29	2	5	819	53	100
C + CN	Total - Total Study Area	17757	297	17	22	609	34	45	394	22	29	65	4	5	1365	17	100

Table 4.12 CO emissions produced at different times of a typical winter's day by motor vehicles across various suburb areas of Christchurch.

Suburb Area Area (ha) kg g/ha % Daily Inner Suburb Study Area 555 1743 3140 22 Beckenham/Sydenham 745 1438 1930 22 Fendalton 745 1438 1930 22 Linwood 754 2086 2767 22 Opawa/Woolston 798 1763 2210 22 Riccarton 798 1763 2210 22 Shirley 349 1386 3970 22 Spreydon/Addington 745 1766 2371 22 St Albans 864 1881 2177 22 Outer Suburbs 6016 16125 2680 22 Addington Industrial 230 542 2357 22	kg 3612 2931 6663 4250 3659 2866 1743 3665 33260	g/ha %	% Daily k Total	kg g/ha	% Daily Total	kg	g/ha %	% Daily	kg	g/ha	% Daily
study Area 555 1743 3140 ydenham 555 1743 3140 745 1438 1930 635 3220 5071 754 2086 2767 778 1763 2210 349 1386 3970 572 842 1472 lington 745 1766 2371 864 1881 2177 Suburb Study Area 6016 16125 2680 300 542 2357		İ			3			- 550			Total
ydenham 555 1743 3140 745 1438 1930 635 3220 5071 754 2086 2767 754 1763 2210 349 1386 3970 572 842 1472 Iington 745 1766 2371 864 1881 2177 Suburb Study Area 6016 16125 2680		6508									
745 1438 1930 635 3220 5071 754 2086 2767 754 2086 2767 758 1763 2210 349 1386 3970 572 842 1472 Iington 745 1766 2371 864 1881 2177 Suburb Study Area 6016 16125 2680 6016 16125 2680 6016 2357 6016 16125 2680 6016 2357 6016 2017 6017 6			46 23		30	188	339	2	7864	14170	100
fon 635 3220 5071 754 2086 2767 fon 798 1763 2210 349 1386 3970 572 842 1472 lington 745 1766 2371 Suburb Study Area 6016 16125 2680 472 177 237 247		3934	44 19			334	449	5	6634	8905	100
iton 754 2086 2767 ston 798 1763 2210 349 1386 3970 572 842 1472 lington 745 1766 2371 Suburb Study Area 6016 16125 2680 dustrial 330 542 2357		10492	46 40			L89	1081	5	14611	23009	100
iton 798 1763 2210 349 1386 3970 572 842 1472 lington 745 1766 2371 Suburb Study Area 6016 16125 2680 dustrial 230 542 2357		5636	44 28			486	645	2	8996	12822	100
349 1386 3970 572 842 1472 1465 2371 864 1881 2177 2184 2187 2184 2187 2184 2187 2184 2187 2188		4585	46 23		30	161	239	2	9962	9982	100
state 842 1472 lington 745 1766 2371 Suburb Study Area 6016 16125 2680 dustrial 330 542 2357		8213	46 17			305	875	2	6275	17979	100
lington 745 1766 2371 864 1881 2177 Suburb Study Area 6016 16125 2680 dustrial 230 542 2357		3048	11		30	183	319	2	3959	6922	100
Suburb Study Area 6016 16125 2680 dustrial 230 542 2357		4919	45 23	2352 3157	29	395	531	2	8179	10978	100
Suburb Study Area 6016 16125 2680 dustrial 230 542 2357		4481	44 25		29	435	503	5	8740	10116	100
dustrial 230 542	22 1135	5529	45 21	21305 3541	29	3205	533	4	73896	12283	100
230 542	22 1135										
		4937	46 6	. ,	27	118	513	2	2460	10694	100
	22 924	443	43 6		29	108	52	2	2130	1020	100
Avonhead 727 2208 3037 22	22 4503	6193	46 29	914 4008	30	235	323	2	6586	13561	, 001
720 812		1585	43 9	948 1069	29	162	182	2	3236	3648	001
360	22 717	939	44 4		29	79	104	2	1641	2147	100
Burnside/Bryndwr 460 844 1835 22		3800	45			94	205	2	3846	8361	100
		1758	33 10			80	161	4	2218	5269	100
498	23 1604	3221	46 9	192 1993	29	83	167	2	3469	1969	001
537	21 1098	196	44 7		30	121	107	5	2497	2200	100
New Avonhead 230 3 11 17	9 11	27	41			7	8	13	15	99	100
New Brighton 1942 1798 926 22	22 3700	1905	45 25	573 1325	31	203	105	2	8275	4261	100
Parklands 312 247 790 22	22 503	1191	45 3	53 1130		26	85	2	1128	3616	100
Racecourse 247 43 176 18	102	411	42			23	94	01	241	716	100
Redwood 752 542 721 22	22 1135	1510	46 6	664 883	27	118	157	5	2460	3271	100
Sockburn 264 880 3334 22	22 1803	6831	45	1112 4213	28	197	745	5	3992	15123	100
Wigram 786 517 658 22	1061	1350	45 6	660 840	28	113	144	2	2352	2992	100
Sub-total 11741 10869 926 22	22 22185	1890	45 15			1763	150	4	49820	4243	001
Total - Total Study Area 17757 26994 1520 22	22 55445	3122	45 36	36307 2045	29	4968	280	4	123715	2969	100

Table 4.13 NO_x emissions produced at different times of a typical winter's day by motor vehicles across various suburb areas of Christchurch.

		9	6am-10am	E	¥	0am-4pm	=	4	4pm-10pm	E	-	10pm-6am	<u>ـ</u>	Ω	Daily Total	ā
Suburb Area	Area (ha)	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total
Inner Suburb Study Area																
Beckenham/Sydenham	555	284	513	21	290	1062	44	379	683	28	80	145	9	1333	2402	100
Fendalton	745	235	315	22	478	642	44	315	423	59	55	73	S	1083	1453	100
Inner City	635	526	828	22	1088	1713	46	099	1039	28	112	177	5	2385	3756	100
Linwood	754	341	452	22	694	920	44	464	919	59	79	105	5	1578	2093	100
Opawa/Woolston	862	288	361	21	597	748	44	384	481	28	82	102	9	1351	1692	100
Riccarton	349	226	648	22	468	1340	46	280	803	27	50	143	5	1024	2935	100
Shirley	572	137	240	21	285	497	44	194	340	30	30	52	5	949	1130	100
Spreydon/Addington	745	288	387	22	865	803	45	384	515	29	65	87	5	1335	1792	100
St Albans	864	307	355	22	632	731	44	417	482	59	7.1	82	5	1427	1651	100
Sub-total - Inner Suburb Study Area	a 6016	2632	438	22	5429	902	45	3478	578	29	623	104	5	12162	2022	100
Outer Suburbs	020	00	306		201	200	,	9	157		٥	5	,	10,	0.7.5	9
Addington Industrial	730	88	383	77	185	800	40	108	4/1	17	13	84	n	401	1/45	100
Airport	2088	204	86	22	394	189	43	265	127	29	46	22	S	606	435	100
Avonhead	727	360	496	22	735	1011	44	476	654	28	100	138	9	1671	2299	100
Bishopdale	887	118	132	22	229	259	43	155	174	29	26	30	2	528	595	100
Bromley	764	154	201	22	306	401	44	207	270	29	34	44	5	700	917	100
Burnside/Bryndwr	460	138	299	21	285	620	44	189	412	29	40	87	9	653	1419	100
Hoon Hay	421	154	365	23	316	751	47	691	402	25	34	81	5	673	1599	100
Hornby	498	129	259	22	262	526	45	162	325	28	36	71	9	588	1811	100
Marshlands	1135	229	202	21	469	413	44	316	279	30	52	46	2	9901	939	100
New Avonhead	230	0	2	17	_	4	41	_	3	30	0		13	7	Ξ	100
New Brighton	1942	294	151	21	604	311	43	420	216	30	87	45	9	1404	723	100
Parklands	312	40	129	21	82	263	43	58	185	30	Ξ	36	9	161	613	100
Racecourse	247	28	111	18	64	260	42	46	188	30	15	59	10	153	619	100
Redwood	752	88	118	22	185	246	46	108	144	27	19	26	5	401	534	100
Sockburn	264	144	544	22	294	1115	45	182	889	28	32	122	5	652	2468	100
Wigram	786	221	281	22	453	216	45	282	359	28	48	62	5	1004	1277	100
Sub-total	11741	2388	203	22	4866	-414	44	3144	268	29	009	51	5	86601	937	100
Total - Total Study Area	17757	5020	283	22	10295	580	44	6621	373	29	1223	69	5	23160	1304	100

Canterbury Regional Council Technical Report

Table 4.14 SO_x emissions produced at different times of a typical winter's day by motor vehicles across various suburb areas of Christchurch.

Suburb Area Area (ha) Kg gha % Daily Kg gha % Daily Kg gha Todal Todal Todal Todal Todal Todal Kg gha % Daily Kg gha Todal Todal	kg g/ha 30 54 24 32 55 87 35 46	kg g/ha % Daily	died % Daily		
555 14 26 22 30 54 45 19 745 12 16 22 24 32 44 16 635 27 42 22 24 32 44 16 754 17 23 22 35 87 46 44 23 798 15 18 22 30 38 45 19 349 11 33 22 24 68 46 14 23 775 16 18 22 24 68 46 14 870 4 19 22 27 44 46 16 871 16 18 22 274 46 45 17 884 4 19 22 274 46 45 17 872 4 19 22 27 44 18 8 870 </th <th>54 32 87 46</th> <th>lotal</th> <th></th> <th>Ď.</th> <th>% Daily Total</th>	54 32 87 46	lotal		Ď.	% Daily Total
555 14 26 22 30 54 45 19 745 12 16 22 24 32 44 16 635 27 42 22 55 87 46 33 754 17 23 22 36 87 46 33 77 15 18 22 24 68 46 14 23 745 11 33 22 24 68 46 14 23 745 15 20 22 30 41 45 19 864 16 18 22 24 46 44 23 864 16 18 22 24 46 44 21 864 16 18 22 27 44 41 10 887 4 19 22 27 45 17 44 10 <t< th=""><th>54 87 87</th><th></th><th></th><th></th><th></th></t<>	54 87 87				
745 12 16 22 24 32 44 16 635 27 42 22 55 87 46 33 754 17 23 22 35 87 46 33 754 17 23 22 35 46 44 23 349 15 18 22 30 38 46 19 572 7 12 21 14 25 44 10 874 16 18 22 30 41 46 44 21 874 16 18 22 274 46 45 19 870 4 19 22 274 46 45 17 887 6 7 22 27 44 10 460 7 15 21 14 46 47 10 470 6 8	32 87 46	35	3 5 5	66 120	100
635 27 42 22 55 87 46 47 23 754 17 23 22 35 46 44 23 798 15 18 22 30 38 45 19 349 11 33 22 24 68 46 14 572 7 12 21 14 25 44 10 745 15 20 22 30 41 45 19 864 16 18 22 32 37 44 10 864 16 18 22 22 274 46 45 17 2088 8 4 22 274 46 45 17 887 6 7 22 274 46 45 17 460 7 15 22 22 24 48 10 460 </th <th>87 46</th> <th></th> <th>3 4 5</th> <th>55 73</th> <th>100</th>	87 46		3 4 5	55 73	100
754 17 23 22 35 46 44 23 798 15 18 22 30 38 45 19 349 11 33 22 24 68 46 14 572 7 12 21 14 25 44 10 745 15 20 22 30 41 45 19 864 16 18 22 22 37 44 10 864 16 18 22 274 46 45 17 5016 13 22 27 46 45 176 6016 13 22 274 46 45 176 727 18 25 27 47 47 176 88 4 12 12 14 44 176 40 7 13 22 12 44 <t></t>	46	53	6 9 5		100
798 15 18 22 30 38 45 19 349 11 33 22 24 68 46 14 572 7 12 21 14 25 44 10 745 15 20 22 30 41 45 19 864 16 18 22 32 37 44 10 2006 133 22 22 274 46 45 176 2088 8 4 19 22 274 46 45 176 2088 8 4 22 274 46 45 176 2088 8 4 22 15 14 45 16 44 10 2088 6 8 22 12 14 46 45 8 44 10 44 11 44 12 12 14	00	31	4 5 5	80 106	100
349 11 33 22 24 68 46 14 572 7 12 21 14 25 44 10 745 15 20 22 30 41 45 19 864 16 18 22 32 37 44 10 2016 133 22 22 274 46 45 17 208 8 2 22 274 46 45 176 208 8 4 22 15 7 44 10 208 8 4 22 15 7 44 10 887 6 8 22 12 13 44 10 440 7 15 21 14 44 10 440 7 13 22 12 44 10 450 9 8 21 14	38		3 4 5		100
572 7 12 21 14 25 44 10 745 15 20 22 30 41 45 19 864 16 18 20 22 30 41 45 19 6016 133 22 22 37 44 46 45 17 230 4 19 22 274 46 45 176 2088 8 4 22 15 7 43 10 727 18 25 22 13 43 8 24 704 6 8 22 12 13 44 10 440 7 15 21 14 31 44 10 450 7 13 22 12 44 12 498 7 13 22 13 16 44 12 1135 9	89	41	3 7 5	52 148	100
745 15 20 22 30 41 45 19 864 16 18 22 32 37 44 21 6016 133 22 22 274 46 45 176 230 4 19 22 274 46 45 176 2088 8 4 22 15 44 46 5 727 18 25 22 37 51 45 10 887 6 7 22 12 13 43 10 460 7 15 21 14 31 44 10 440 7 15 21 14 31 44 10 450 7 13 22 12 44 10 498 7 13 22 13 44 21 1135 8 21 14 12 <th>25</th> <th>10 17 30</th> <th>2 3 5</th> <th>33 57</th> <th>100</th>	25	10 17 30	2 3 5	33 57	100
864 16 18 22 32 37 44 21 6016 133 22 22 274 46 45 176 230 4 19 22 9 41 46 5 2088 8 4 22 15 7 43 10 727 18 25 22 37 51 45 24 887 6 7 22 12 13 43 8 740 6 8 22 12 13 44 10 440 7 15 21 14 31 44 10 440 7 13 22 13 27 45 8 1135 9 8 21 18 16 44 12 230 0 0 17 0 0 41 3 247 1 4 <td< th=""><th>41</th><th>26</th><th>3 4 5</th><th></th><th>100</th></td<>	41	26	3 4 5		100
6016 133 22 22 274 46 45 176 230 4 19 22 9 41 46 5 2088 8 4 22 15 7 43 10 2088 8 4 22 15 17 43 10 727 18 25 22 37 51 45 24 887 6 7 22 12 13 43 8 764 6 8 22 12 13 44 8 460 7 15 21 14 31 44 10 421 6 14 21 12 45 45 8 1135 8 21 18 16 44 21 494 15 8 21 4 13 44 3 230 0 0 17 <t< th=""><th>37</th><th>21 24 29</th><th>4 4 5</th><th>72 83</th><th>100</th></t<>	37	21 24 29	4 4 5	72 83	100
dustrial 230 4 19 22 9 41 46 5 727 18 25 22 15 7 43 10 727 18 25 22 15 7 43 10 887 6 7 22 12 13 43 8 764 6 8 22 12 13 44 8 764 6 8 22 12 14 31 44 10 440 7 15 21 14 31 44 10 498 7 13 22 13 27 45 8 1135 9 8 21 18 16 44 12 4 13 22 13 16 44 21 312 2 7 21 4 13 44 3 247 1	46	176 29 29	29 5 5	613 102	100
230 4 19 22 9 41 46 5 2088 8 4 22 15 7 43 10 727 18 25 22 37 51 45 24 887 6 7 22 12 13 43 8 764 6 8 22 12 15 44 10 440 7 15 21 14 31 44 10 421 6 14 21 12 28 43 9 498 7 13 22 13 27 45 8 1135 9 8 21 18 16 44 12 230 0 0 17 0 0 41 0 1942 15 8 21 3 44 3 247 1 4 18 2 8 42 1 752 4 6 22 9 17 <th></th> <th></th> <th></th> <th></th> <th></th>					
Loss 8 4 22 15 7 43 10 e 727 18 25 22 37 51 45 24 Bryndwr 460 7 15 21 12 13 43 8 7 460 7 15 21 14 31 44 10 Asy 7 15 21 14 31 44 10 ds 1135 9 8 21 18 16 44 12 hton 1942 15 8 21 18 16 44 21 s 230 0 0 17 0 0 41 0 se 247 1 4 18 2 8 42 1 se 247 1 4 18 2 8 42 1 264 7 28 22 17 22 46 3 se 7 28 22 8 42 1 8 11 22 8 42 1 8 12 9 17 20 4 5 <th></th> <th>•</th> <th>1 4 5</th> <th>20 88</th> <th>100</th>		•	1 4 5	20 88	100
l 727 18 25 22 37 51 45 24 8 8 25 12 13 43 8 Bryndwr 460 7 15 21 12 13 43 8 7 460 7 15 21 14 31 44 10 Aryndwr 421 6 14 21 12 28 43 9 498 7 13 22 13 27 45 8 498 7 13 22 13 27 45 8 1135 9 8 21 18 16 44 12 hton 1942 15 8 21 4 13 44 3 se 247 1 4 18 2 8 42 1 752 4 6 22 9 17 20 45 9 786 8 11 22 17 22 45 11 78 22 17 22 45 11 78 22 17 22 45 9	7	5	2 1 5	34 16	100
e 887 6 7 22 12 13 43 8 Bryndwr 460 7 15 21 12 13 44 8 ds 421 6 14 21 12 44 8 ds 421 6 14 21 12 44 10 ds 1135 9 8 21 18 16 44 12 ds 130 0 0 17 0 0 41 0 hton 1942 15 8 21 31 16 44 21 s 247 1 4 18 2 8 42 1 se 247 1 4 18 2 8 42 1 752 4 7 28 22 17 22 45 11 786 8 11 22 77 </th <th>51</th> <th>33</th> <th>4 5 5</th> <th>83 114</th> <th>, 001</th>	51	33	4 5 5	83 114	, 001
Bryndwr 764 6 8 22 12 15 44 8 Asyl 7 15 21 14 31 44 10 ds 421 6 14 21 12 28 43 9 ds 1135 9 8 21 18 16 44 12 hton 1942 15 8 21 18 16 44 21 st 247 1 4 13 44 3 se 247 1 4 18 2 8 42 1 752 4 6 22 9 12 46 5 264 7 28 22 15 56 45 9 786 8 11 22 17 22 45 11	13		1 2 5		100
Bryndwr 460 7 15 21 14 31 44 10 / 421 6 14 21 12 28 43 9 ds 421 6 14 21 12 28 43 9 ds 1135 9 8 21 18 16 44 12 nton 1942 15 8 21 31 16 44 21 st 247 1 4 13 44 3 se 247 1 4 18 2 8 42 1 752 4 6 22 9 12 46 5 264 7 28 22 17 22 45 11 786 8 11 22 17 22 45 11	15	8 10 29	1 2 5		100
ds 421 6 14 21 12 28 43 9 ds 7 13 22 13 27 45 8 lhead 230 0 0 17 0 44 12 hton 1942 15 8 21 31 16 44 21 st 247 1 4 13 44 3 sc 247 1 4 18 2 8 42 1 sc 752 4 6 22 9 12 46 5 786 8 11 22 17 22 45 11 11 22 17 22 45 11	31	21	2 3 5	32 71	100
ds 498 7 13 22 13 27 45 8 nhead 230 0 0 17 0 0 44 12 hton 1942 15 8 21 31 16 44 12 st 247 1 4 13 44 3 se 247 1 4 18 2 8 42 1 752 4 6 22 9 12 46 5 264 7 28 22 15 56 45 9 786 8 11 22 17 22 45 11		9 20 31	1 3 5		100
ds 1135 9 8 21 18 16 44 12 ihead 230 0 0 17 0 0 41 0 hton 1942 15 8 21 31 16 44 12 st 247 1 4 18 2 8 42 1 752 4 6 22 9 12 46 5 264 7 28 22 15 56 45 9 786 8 11 22 17 22 45 11		8 16 28	1 3 5		100
hton 230 0 0 17 0 0 41 0 hton 1942 15 8 21 31 16 44 21 s 247 1 4 18 2 8 42 1 se 247 1 4 18 2 8 42 1 752 4 6 22 9 12 46 5 264 7 28 22 15 56 45 9 786 8 11 22 17 22 45 11		12 11 30	2 2 5		100
hton 1942 15 8 21 31 16 44 21 se 247 1 4 18 2 8 42 1 752 4 6 22 9 12 46 5 264 7 28 22 15 56 45 9 786 8 11 22 17 22 45 11	0 0 41	0 0 30	0 0 13		100
se 312 2 7 21 4 13 44 3 se 247 1 4 18 2 8 42 1 752 4 6 22 9 12 46 5 264 7 28 22 15 56 45 9 786 8 11 22 17 22 45 11	91	21 11 30	3 2 5	70 36	100
se 247 1 4 18 2 8 42 1 752 4 6 22 9 12 46 5 264 7 28 22 15 56 45 9 786 8 11 22 17 22 45 11	13	3 9 31	0 1 4		100
752 4 6 22 9 12 46 5 264 7 28 22 15 56 45 9 786 8 11 22 17 22 45 11	∞	1 6 30	0 2 10	5 20	100
264 7 28 22 15 56 45 9 786 8 11 22 17 22 45 11	12	5 7 27	1 1 5	20 27	100
786 8 11 22 17 22 45 11	56	9 35 28	9	33 125	100
		11 14 28	2 2 5	38 48	100
Sub-total 11741 108 9 22 220 19 44 144	61	144 12 29	24 2 5	496 42	001
Total - Total Study Area 17757 241 14 22 495 28 45 320	28	320 18 29	53 3 5	1109 62	100

Table 4.15 VOC emissions produced at different times of a typical winter's day by motor vehicles across various suburb areas of Christchurch.

Chilistennich and to the termination

Area (ha) kg and size and			9	100 t mc		T	Oam Any		Ar	10nn		1+	neg mul		٢	JIV Tot	10
Martial Mart				Jan 1 10 a	=		0a111-4pi	=		1001-111			Juli-ball			ally lote	
trudy Area 555 366 695 2 799 1440 44 427 574 29 55 98 5 1458 vdenham 745 318 427 22 649 871 44 427 574 29 55 98 5 1468 roth 653 713 1122 22 649 871 44 427 574 29 146 99 5 1468 roth 738 300 489 22 649 871 44 650 29 169 144 477 574 29 146 30 44 477 574 39 1440 487 250 1440 875 29 146 89 149 875 1440 875 29 149 875 149 875 149 875 149 875 149 875 149 875 149 875 149 87	Suburb Area	Area (ha)	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total
ydenham 555 386 695 22 799 1440 46 514 926 29 55 98 31 1753 ydenham 754 318 427 22 1490 871 44 427 52 649 871 44 427 22 1458 32 42 32 72 98 31 423 22 649 871 44 427 27 42 472 27 42 47 99 72 610 22 610 835 29 108 27 69 30 175 44 447 264 461 80 29 46 140 47 27 468 140 80 17 80 170 80 140 80 140 80 140 80 140 80 140 80 140 80 140 80 140 80 140 80 140 80 <th>Inner Suburb Study Area</th> <th></th>	Inner Suburb Study Area																
145 318 427 22 649 871 44 427 574 29 74 99 5 1468 154 462 612 22 447 244 630 845 152 29 175 2140 154 462 612 22 447 1247 44 630 845 152 29 185 193 5 1408 154 462 612 22 840 1015 46 821 652 29 658 194 5 1476 154 390 326 22 841 188 46 821 652 29 88 117 5 1819 154 391 525 22 811 1889 45 521 699 29 88 117 5 1819 154 391 525 22 811 1889 45 521 699 29 88 117 5 1819 154 318 56 52 22 811 1889 45 521 699 29 88 117 5 1819 154 318 56 52 22 281 1818 46 819 82 29 88 111 5 1819 154 318 56 52 22 281 1819 45 411 5 411 5 411 5 155 489 672 22 281 181 45 411 42 42 42 42 42 42 4	Beckenham/Sydenham	555	386	695	22	661	1440	46.	514	926	29	55	86	3	1753	3159	100
Column	Fendalton	745	318	427	22	649	871	44	427	574	29	74	66	2	1468	1971	100
ton 754 462 612 22 941 1247 44 630 835 29 163 63 29 163 63 29 163 5 164 36 176 37 68 144 5 140 36 96 39 176 37 68 144 5 180 36 31 176 38 176 38 176 38 147 46 360 98 117 5 1810 showth 364 416 482 22 811 1089 45 524 40 71 40 71 40 71 40 40 71 5 1810 showth 416 486 436 471 46 461 30 461 461 30 461 30 410 71 461 461 30 461 461 30 461 461 461 461 461	Inner City	635	713	1122	22	1475	2322	46	894	1409	28	152	239	2	3234	5092	100
ton	Linwood	754	462	612	22	941	1247	44	630	835	59	108	143	5	2140	2838	100
349 307 879 22 634 1818 46 380 1089 27 68 194 5 1389 572 186 236 21 386 675 44 264 461 30 40 71 5 876 864 416 482 22 22 837 992 44 565 634 29 96 111 5 1934 864 416 482 22 22 837 992 44 565 634 29 96 111 5 1934 864 416 482 22 22 837 992 44 565 634 29 96 111 5 1934 864 416 482 22 22 22 23 1033 46 147 639 27 26 113 5 617 871 489 672 22 288 131 45 645 887 29 68 94 3 196 887 194 194 137 22 288 131 45 44 29 246 40 23 36 972 489 672 22 311 351 44 44 44 44 44 44 44 113 446 248 18 215 210 244 244 244 244 244 244 244 244 113 446 248 18 215 210 244 246 246 246 246 246 246 114 124 124 124 44 44 44	Opawa/Woolston	862	390	489	22	810	1015	46	521	652	59	55	69	3	1776	2226	100
finglon 372 186 326 21 386 675 44 264 461 30 40 71 5 876 slightne 384 416 482 22 811 1089 45 561 699 29 88 117 5 1810 slbinrh Study Area 6016 3569 29 44 562 654 49 79 44 56 29 49 117 5 1810 dustrial 230 120 522 251 1093 46 147 639 27 36 117 5 1810 1 column 137 22 251 1093 46 147 639 27 36 117 5 1810 1 column 137 22 268 128 43 40 86 29 36 40 71 41 41 41 42 42 44 41 <	Riccarton	349	307	879	22	634	1818	46	380	1089	27	89	194	2	1389	3979	100
Hington 745 391 525 22 811 1089 45 521 699 29 88 117 5 1810 Suburb Study Area 6016 3569 593 42 45 55 654 29 46 565 654 29 4715 784 29 171 56 111 5 1810 Austrial 230 120 522 22 251 1093 46 147 639 27 26 113 5 148 Austrial 2088 138 66 22 268 128 43 180 86 29 31 15 163 Austrial 1808 138 66 22 268 128 43 180 86 29 31 15 161 Autrial 1809 32 44 43 180 86 29 31 15 41 410 184	Shirley	572	981	326	21	386	675	44	264	461	30	40	71	5	918	1532	100
Suburb Study Area 6016 3569 593 44 565 654 29 96 111 5 1934 Suburb Study Area 6016 3569 593 22 7361 1224 45 4715 784 29 735 122 4 1639 27 26 111 5 1638 dustrial 230 120 522 22 22 22 268 128 43 180 86 29 31 15 5 617 148 138 66 22 288 128 43 180 86 29 31 15 617 11 5 645 887 29 68 94 3 161 87 17 48 18 35 131 43 180 86 29 31 15 18 31 31 41 48 18 31 41 41 48 44 49	Spreydon/Addington	745	391	525	22	811	1089	45	521	669	29	88	117	5	1810	2430	100
dustrial 230 559 593 22 7361 1224 45 4715 784 29 735 122 4 1638 dustrial 230 120 522 22 251 1093 46 147 639 27 26 113 5 544 dustrial 230 138 66 22 268 128 46 180 29 31 55 49 54 48 59 49 31 150 88 59 49 31 51 20 31 20 88 29 31 51 48 59 31 51 51 51 50 31 51 51 48 50 59 30 54 49 51 41 48 50 54 49 51 41 41 48 50 54 49 51 41 41 48 50 54 45 <td< th=""><th>St Albans</th><th>864</th><th>416</th><th>482</th><th>22</th><th>857</th><th>992</th><th>44</th><th>595</th><th>654</th><th>59</th><th>96</th><th>111</th><th>2</th><th>1934</th><th>2239</th><th>100</th></td<>	St Albans	864	416	482	22	857	992	44	595	654	59	96	111	2	1934	2239	100
dustrial 230 120 522 25 1093 46 147 639 27 26 113 5 544 727 489 66 22 268 128 43 180 86 29 31 5 617 727 489 672 22 268 137 43 180 86 29 31 51 43 645 887 29 68 94 3 198 21 617 78 718 887 29 68 94 3 118 218 887 29 68 94 3 118 218 40 887 29 68 94 3 118 418 418 414 45 527 88 40 85 418 418 418 418 418 418 418 418 418 418 418 418 418 418 418 418 418	Sub-total - Inner Suburb Study Area		3569	593	22	7361	1224	45	4715	784	29	735	122	4	18891	2723	100
dustrial 230 120 522 251 1093 46 147 639 27 26 113 5 544 dustrial 2088 138 66 22 268 128 43 180 86 29 31 15 5 617 ndwr 189 66 22 268 128 43 180 86 29 31 15 5 617 ndwr 460 187 22 288 272 44 140 184 29 23 36 475 716 det 187 22 288 272 44 140 184 29 23 36 475 716 475 475 475 475 475 475 476 470 23 475 476 470 23 475 476 470 23 471 470 470 470 470 470 470	Outer Suburbs																
2088 138 66 22 268 128 43 180 86 29 31 15 5 617 727 489 672 22 997 1371 45 645 887 29 68 94 3 2198 887 159 180 22 311 351 43 210 237 29 68 94 3 2198 764 104 137 22 208 272 44 140 184 29 23 30 216 475 475 40 5 475 475 475 475 475 475 475 475 475 475 476 470 53 475 475 474 476 220 441 47 476 470 470 470 470 470 470 470 470 470 470 470 470 470 470 470	Addington Industrial	230	120	522	22	251	1093	46	147	639	27	26	113	2	544	2367	100
727 489 672 22 997 1371 45 645 887 29 68 94 3 2198 887 159 180 22 311 351 43 210 237 29 66 94 3 2198 764 104 187 22 208 272 44 140 184 29 23 30 5 475 460 187 406 22 387 841 45 257 558 30 27 59 3 475 421 104 184 21 44 140 184 29 23 3 5 475 1135 156 137 213 44 21 44 30 0 2 13 74 1348 236 175 22 111 357 44 78 250 31 84 44 144 14<	Airport	2088	138	99	22	268	128	43	180	98	59	31	15	2	617	296	100
887 159 180 22 311 351 43 210 237 29 36 40 5 716 764 104 137 22 208 272 44 140 184 29 23 30 5 475 460 187 406 22 387 841 45 558 30 27 59 3 774 421 104 248 18 215 510 38 230 57 58 30 27 59 3 888 498 175 351 23 355 713 46 220 441 28 24 49 37 74 1135 156 137 21 1 6 41 1 4 30 0 2 13 744 1942 24 27 24 47 24 24 25 13 1845 <	Avonhead	727	489	672	22	266	1371	45	645	887	56	89	94	3	2198	3023	100
764 104 137 22 208 272 44 140 184 29 23 30 5 475 460 187 466 187 466 187 526 58 30 27 59 3 858 421 104 248 18 215 510 38 230 546 40 23 55 4 572 498 175 351 23 546 40 23 55 4 572 1135 156 137 21 318 280 44 215 189 30 35 31 74 230 1 2 17 1 6 41 1 4 30 0 2 13 34 1942 38 25 13 42 44 570 293 31 8 55 13 1845 247 13 <t< th=""><th>Bishopdale</th><th>887</th><th>159</th><th>180</th><th>22</th><th>311</th><th>351</th><th>43</th><th>210</th><th>237</th><th>56</th><th>36</th><th>40</th><th>2</th><th>912</th><th>807</th><th>100</th></t<>	Bishopdale	887	159	180	22	311	351	43	210	237	56	36	40	2	912	807	100
460 187 466 22 387 841 45 257 558 30 27 59 3 858 421 104 248 18 215 510 38 230 546 40 23 55 4 572 498 175 351 23 355 713 46 220 441 28 24 49 37 774 1135 156 137 21 318 280 44 215 189 30 24 49 37 774 230 1 2 17 1 6 41 1 4 30 0 2 13 774 1942 38 20 29 31 8 25 31 1845 312 55 175 22 44 78 250 31 8 44 184 18 1845 24 46	Bromley	764	104	137	22	208	272	44	140	184	59	23	30	2	475	622	100
421 104 248 18 215 510 38 230 546 40 23 55 4 572 498 175 351 23 355 713 46 220 441 28 24 49 3 774 1135 156 137 21 318 280 44 215 189 30 35 31 774 230 1 2 17 1 6 41 1 4 30 0 2 13 774 1942 398 205 22 819 422 44 570 293 31 8 75 724 18 31 127 42 44 78 250 31 8 25 3 1845 247 13 54 18 31 127 42 44 78 250 30 7 29 10 7	Burnside/Bryndwr	460	187	406	22	387	841	45	257	558	30	27	59	3	858	1865	100
498 175 351 23 713 46 220 441 28 24 49 3 774 1135 156 137 21 318 280 44 215 189 30 35 31 5 724 230 1 2 17 1 6 41 1 4 30 0 2 13 3 724 1942 398 205 22 819 422 44 570 293 31 59 30 3 1845 247 13 54 18 31 127 42 44 78 250 30 7 29 10 75 247 13 54 18 31 127 46 147 195 27 26 35 5 844 254 19 23 246 932 28 44 165 5 682<	Hoon Hay	421	104	248	81	215	510	38	230	546	40	23	55	4	572	1358	100
1135 156 137 21 318 280 44 215 189 30 35 31 5 724 230 1 2 17 1 6 41 1 4 30 0 2 13 3 1942 398 205 22 819 422 44 570 293 31 8 25 13 1845 247 13 54 18 31 127 42 23 92 30 7 29 10 75 247 13 54 18 31 127 42 23 92 30 7 29 10 75 264 195 73 22 251 334 46 147 195 26 35 5 84 264 195 738 22 309 1512 45 191 243 28 33 42 <th>Hornby</th> <th>498</th> <th>175</th> <th>351</th> <th>23</th> <th>355</th> <th>713</th> <th>46</th> <th>220</th> <th>441</th> <th>28</th> <th>24</th> <th>49</th> <th>3</th> <th>774</th> <th>1553</th> <th>100</th>	Hornby	498	175	351	23	355	713	46	220	441	28	24	49	3	774	1553	100
230 1 2 17 1 6 41 1 4 30 0 2 13 3 1942 398 205 22 819 422 44 570 293 31 59 30 3 1845 312 55 175 22 111 357 44 78 250 31 8 25 3 1845 247 13 54 18 31 127 42 23 92 30 7 29 10 75 264 150 160 22 251 334 46 147 195 27 26 35 5 844 264 195 73 22 399 1512 45 191 243 28 34 46 165 36 36 884 786 156 1174 1264 243 28 33 42 <td< th=""><th>Marshlands</th><th>1135</th><th>156</th><th>137</th><th>21</th><th>318</th><th>280</th><th>44</th><th>215</th><th>189</th><th>30</th><th>35</th><th>31</th><th>2</th><th>724</th><th>638</th><th>100</th></td<>	Marshlands	1135	156	137	21	318	280	44	215	189	30	35	31	2	724	638	100
1942 398 205 22 819 422 44 570 293 31 59 30 3 1845 312 55 175 22 111 357 44 78 250 31 8 25 3 155 247 13 54 18 31 127 42 23 92 30 7 29 10 75 752 120 160 22 251 334 46 147 195 27 26 35 5 544 264 195 738 22 399 1512 45 191 243 28 44 165 5 884 786 150 191 22 308 391 45 191 243 28 33 42 5 682 11741 2564 218 22 5230 445 46 36 30 471	New Avonhead	230	-	2	17	-	9	41		4	30	0	7	13	3	15	100
312 55 175 22 111 357 44 78 250 31 8 25 3 55 3 252 3 252 3 3 252 3 4 75 9 10 7 29 10 75 75 7 29 10 75 75 7 29 10 75 54 75 54 75 54 75 54 75 54 75 54 75 54 75 75 76 75 75 76 75 76 75 76 75 76 75 76 75 76 77 76 76 77 76 77 76 77 76 77 76 77 77 77 77 77 77 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78	New Brighton	1942	398	205	22	819	422	44	570	293	31	59	30	3	1845	950	100
247 13 54 18 31 127 42 23 92 30 7 29 10 75 752 120 160 22 251 334 46 147 195 27 26 35 5 544 264 195 738 22 399 1512 45 246 932 28 44 165 5 884 786 150 191 22 308 391 45 191 243 28 33 42 5 682 11741 2564 218 22 5230 445 44 40 4 11763 17757 6132 345 22 12591 709 45 8214 463 29 1206 68 4 28143	Parklands	312	55	175	22	Ξ	357	44	78	250	31	∞	25	3	252	908	100
752 120 160 22 251 334 46 147 195 27 26 35 5 544 264 195 738 22 399 1512 45 246 932 28 44 165 5 884 786 150 191 24 243 28 33 42 5 682 11741 2564 218 22 5230 445 44 3498 298 30 471 40 4 11763 17757 6132 345 22 12591 709 45 8214 463 29 1206 68 4 28143	Racecourse	247	13	54	81	31	127	42	23	92	30	7	29	10	75	303	100
264 195 738 22 399 1512 45 932 28 44 165 5 884 786 150 191 22 308 391 45 191 243 28 33 42 5 682 11741 2564 218 22 5230 445 44 3498 298 30 471 40 4 11763 17757 6132 345 22 12591 709 45 8214 463 29 1206 68 4 28143	Redwood	752	120	160	22	251	334	46	147	195	27	26	35	2	544	724	100
786 150 191 22 308 391 45 191 243 28 33 42 5 682 11741 2564 218 22 5230 445 44 3498 298 30 471 40 4 11763 17757 6132 345 22 12591 709 45 8214 463 29 1206 68 4 28143	Sockburn	264	195	738	22	399	1512	45	246	932	28	44	165	2	884	3347	100
11741 2564 218 22 5230 445 44 3498 298 30 471 40 4 11763 17757 6132 345 22 12591 709 45 8214 463 29 1206 68 4 28143	Wigram	786	150	161	22	308	391	45	161	243	28	33	42	5	682	867	100
17757 6132 345 22 12591 709 45 8214 463 29 1206 68 4 28143	Sub-total	11741	2564	218	22	5230	445	44	3498	298	30	471	40	4	11763	1002	100
	Total - Total Study Area	17757	6132	345	22	12591	602	45	8214	463	29	1206	89	4	28143	1585	100

Table 4.16 CO₂ emissions produced at different times of a typical winter's day by motor vehicles across various suburb areas of Christchurch.

Suburb Alea Area (ha) kg g/ha % Daily murb Study Area 255 33322 63688 22 73156 131812 45 4018 84717 900 ilty 635 29117 39084 22 59364 7984 44 39118 5250 ilty 635 29117 39084 22 59364 7984 44 39118 5250 ilty 754 42258 6362 22 74118 97880 45 47643 5801 non/Addington 349 28066 80420 22 74118 97880 45 47643 5801 non/Addington 349 28066 80420 22 78427 46 81863 1783 non/Addington 340 32661 44105 22	% Daily kg g/ha Total			· L.		7 = 27	
555 35302 63608 22 73156 131812 45 47018 84717 445 29117 39084 22 59364 79684 44 39118 52507 635 65222 160711 22 134953 212255 46 81863 128919 754 42258 56046 22 86078 114161 44 57640 76446 798 35717 44758 22 74118 92880 46 47643 5909 745 35781 48028 22 74229 99637 45 47643 5909 745 35781 48028 22 74229 99637 45 47647 6396 864 38107 44105 22 74229 99637 45 47647 6396 864 38107 44105 22 74229 99637 45 47647 6396 864 38107 44105		kg	a % Daily Total	, g	g/ha % Daily Total	kg	g/ha % Daily Total
555 35302 63608 22 73156 131812 45 47018 84717 745 29117 39084 22 59364 79684 44 39118 52507 635 65222 102711 22 134953 212525 46 81863 128919 754 4228 56046 22 86078 114161 44 57640 76446 798 35717 44738 22 74118 92880 45 47643 59704 349 28066 80420 22 86078 14161 44 57640 76446 375 17051 29809 21 61732 44 51692 58059 6016 326621 54292 22 78279 99677 44 51692 58489 6016 326621 54292 22 78279 44 51672 51849 6016 326621 54292 22 230072 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
745 29117 39084 22 59364 79684 44 39118 52507 635 65222 102711 22 134953 212525 46 81863 128919 734 4228 56046 22 86078 114161 44 57640 76446 798 35717 44758 22 74118 92880 45 47643 58904 745 17051 29809 21 35311 61732 44 51622 58053 745 31807 44105 22 74229 99637 45 47647 63956 864 38107 44105 22 74229 99637 45 47647 63956 6016 326621 54292 22 73269 11983 45 41189 52623 2008 20038 9597 22 23007 49 44 51622 58489 777 44723 61517	22 73156 1	47018	17 29	7899	4233 5	163375 29	294370 100
635 65222 102711 22 134953 212525 46 81863 128919 754 42258 56046 22 86078 114161 44 57640 76446 798 33717 44758 22 74118 92880 45 47643 59704 349 28066 80420 22 58055 166347 46 34793 99637 572 17051 28809 21 35311 61732 44 24132 42189 572 17051 28809 21 44523 67869 111933 45 4764 53968 864 38107 44105 22 78471 90772 44 51692 59829 6016 326621 54292 22 77429 99637 45 47647 67869 230 10949 47736 61517 22 78479 44 57049 4 17439 240	22 59364	39118	07 29	6775 9	9094 5	134375 180	180369 100
754 42258 56046 22 86078 114161 44 57640 76446 798 35717 44758 22 74118 92880 45 47643 59704 349 28066 80420 22 58055 166347 46 34793 99633 745 35781 48028 22 74229 99637 45 47647 63956 864 38107 44105 22 74229 99637 45 47647 63956 864 38107 44105 22 78427 90772 44 5162 59829 6016 326621 54292 22 78427 90772 44 5163 58829 208 20038 9597 22 78427 90772 431547 71733 208 20038 9597 22 28471 32098 44 50294 51653 774 15115 1978 22	22 134953	81863	19 28	13910 2	21905 5	295948 460	466060 100
798 35717 44758 22 74118 92880 45 47643 59704 349 28066 80420 22 58055 166347 46 34793 99693 572 17051 29809 21 35311 61732 44 24132 42189 745 35781 48028 22 74229 99637 45 47647 63956 864 38107 44105 22 74229 99637 45 47647 63956 6016 326621 54292 22 74229 99637 44 51692 59829 6016 326621 54292 22 673691 111983 45 41547 71733 230 10979 47736 22 23000 99999 46 13452 58489 2088 20038 9597 22 23471 32098 43 12459 774 44723 61517 22	22 86078	57640	46 29	9851	13064 5	195827 259	259717 100
349 28066 80420 22 58055 166347 46 34793 99693 572 17051 29809 21 35311 61732 44 24132 42189 745 35781 48028 22 74229 99637 45 47647 63956 864 38107 44105 22 78427 90772 44 51692 59829 6016 326621 54292 22 78427 90772 44 51692 59829 230 10979 47736 22 23000 99999 46 13452 58489 2088 20038 9597 22 23471 32098 43 19206 21653 727 44723 61517 22 28471 32098 44 20294 26533 764 15115 19784 22 28471 32098 44 20294 26533 460 17095 37163	22 74118	47643	04 29	8012	10040 5	165490 20	207381 100
572 17051 29809 21 35311 61732 44 24132 42189 745 35781 48028 22 74229 99637 45 47647 63956 864 38107 44105 22 74229 99637 45 47647 63956 6016 326621 54292 22 673691 111983 45 471547 171733 230 10979 47736 22 23000 99999 46 13452 58489 2088 20038 9597 22 23000 99999 46 13452 58489 727 44723 61517 22 23000 99999 46 13452 58489 764 15115 19784 22 28771 12549 45 59016 81178 887 14582 15184 73749 44 21020 40364 460 17095 37163 21 32488	22 58055	34793	93 27	6183	5 71771	127098 36	364176 100
745 35781 48028 22 74229 99637 45 47647 63956 864 38107 44105 22 78427 90772 44 51692 59829 6016 326621 54292 22 673691 111983 45 413547 71733 230 10979 47736 22 23000 99999 46 13452 58489 2088 20038 9597 22 23000 99999 46 13452 58489 727 44723 61517 22 23000 99999 46 13452 58489 724 44723 61517 22 291201 125449 45 59016 81178 887 14582 16440 22 28471 32098 43 12653 764 15115 19784 22 30077 39368 44 21020 49364 41135 22516 19838 21	21 35311	24132	89 30	3701 6	6470 5	80194 14	140200 100
864 38107 44105 22 78427 90772 44 51692 59829 6016 326621 54292 22 673691 111983 45 431547 71733 230 10979 47736 22 23000 99999 46 13452 58489 2088 20038 9597 22 38757 18562 43 26014 12459 727 44723 61517 22 91201 125449 45 59016 81178 887 14582 16440 22 28471 32098 44 20294 2653 764 15115 19784 22 30077 39368 44 20294 26563 460 17095 37163 21 35403 76963 44 21020 49930 421 15102 38871 21 37488 65238 45 20102 40365 1135 22216 19838	22 74229	47647	56 29	8008	10751 5	165667 22:	222372 100
6016 326621 54292 22 673691 111983 45 431547 71733 230 10979 47736 22 23000 99999 46 13452 58489 2088 20038 9597 22 38757 18562 43 26014 12459 727 44723 61517 22 38757 18562 43 26014 12459 727 44723 61517 22 38757 18562 43 26014 12459 887 14582 16440 22 28471 32098 43 19206 21653 460 17095 37163 21 32043 44 20294 26563 461 17095 37163 21 35403 76963 44 20294 26563 481 15102 33871 21 37499 44 21020 49366 4135 22516 19838 21 46056	22 78427	51692	29 29	8809	5 56101	177034 20	204901 100
230 10979 47736 22 23000 99999 46 13452 58489 2088 20038 9597 22 38757 18562 43 26014 12459 727 44723 61517 22 91201 125449 45 59016 81178 887 14582 16440 22 28471 32098 43 19206 21653 764 15115 19784 22 28471 32098 44 20294 2663 460 17095 37163 21 35403 76963 44 20294 2663 421 15102 35871 21 31048 73749 44 21020 49930 498 15994 32117 22 32488 65238 45 20102 40365 1135 22516 19838 21 46056 40578 44 31090 27392 230 53 228 <td< th=""><th>22 673691</th><th>431547</th><th>33 29</th><th>73149 1</th><th>12159 5</th><th>1505008 25</th><th>250168 100</th></td<>	22 673691	431547	33 29	73149 1	12159 5	1505008 25	250168 100
ton Industrial 230 10979 47736 22 23000 99999 46 13452 58489 t aad 2088 20038 9597 22 38757 18562 43 26014 12459 tale 727 44723 61517 22 91201 125449 45 59016 81178 tale 887 14582 16440 22 28471 32098 43 19206 21653 th/Bryndwr 460 17095 37163 21 35403 76963 44 20294 26563 tay 421 15102 19784 22 30077 39368 44 20294 26563 tay 421 15102 37493 44 21020 49930 tay 15994 32117 22 32488 65238 45 21020 49930 vonhead 33 22516 18757 21 74950 38594 4							
t t t t t t t t t t t t t t t t t t t	22 23000	13452	89 27	2388	0383 5	49819 21	216606 100
add 727 44723 61517 22 91201 125449 45 59016 81178 falle 887 14582 16440 22 28471 32098 43 19206 21653 je/Bryndwr 764 15115 19784 22 30077 39368 44 20294 26563 lay 764 15115 19784 22 30077 39368 44 20294 26563 lay 15102 35871 21 35403 76963 44 20294 26563 ands 1135 22516 19838 21 36963 44 21020 49930 onhead 23 22516 19838 21 46056 40578 44 31090 27392 sighton 312 4994 16008 21 74950 38594 44 52125 26841 urse 247 2459 9956 18 5749 23274 <th>22 38757</th> <th>26014</th> <th>59 29</th> <th>4534 2</th> <th>2172 5</th> <th>89343 42</th> <th>42789 100</th>	22 38757	26014	59 29	4534 2	2172 5	89343 42	42789 100
dale 887 14582 16440 22 28471 32098 43 19206 21653 de/Bryndwr 764 15115 19784 22 30077 39368 44 20294 26563 day 460 17095 37163 21 35403 76963 44 20294 26563 day 421 15102 35871 21 31048 73749 44 21020 49930 nonhead 498 15994 32117 22 32488 65238 45 20102 49930 nonhead 53 228 17 126 547 41 91 396 ighton 53 228 17 126 547 41 91 396 ighton 312 4994 16008 21 74950 38594 44 52125 26841 od 247 2459 9956 18 5749 2374 42	22 91201 1	91069	78 29	9837	3531 5	204777 28	281674 100
y 764 15115 19784 22 30077 39368 44 20294 26563 lay 460 17095 37163 21 35403 76963 44 20294 26563 lay 421 15102 35871 21 31048 73749 44 21020 49930 nonhead 22 35871 22 32488 65238 45 21020 49930 conhead 230 53 228 17 126 547 41 91 396 ighton 312 4945 16008 21 74950 38594 44 52125 26841 ids 312 4994 16008 21 10180 32677 43 7144 22898 od 752 10979 14600 22 23000 30585 46 13452 1789 rn 786 17830 67539 22 44507 56625	22 28471	19206	53 29	3277 3	3695 5	65536 73	73885 100
le/Bryndwr 460 17095 37163 21 35403 76963 44 23501 51089 lay 421 15102 35871 21 31048 73749 44 21020 49930 nds 498 15994 32117 22 32488 65238 45 20102 40365 conhead 230 53 228 17 126 547 41 91 396 ighton 1942 36425 18757 21 74950 38594 44 52125 26841 ighton 312 4994 16008 21 10180 32677 43 7144 22898 urse 752 10979 14600 22 23000 30585 46 17859 17889 od 752 10879 14600 22 23000 30585 45 17889 17889 n 786 17830 67539 27589	22 30077	20294	63 29	3327 4	4355 5	68813 90	90070 100
tay 421 15102 35871 21 31048 73749 44 21020 49930 ands 498 15994 32117 22 32488 65238 45 20102 4936 vonhead 230 53 228 17 126 547 41 91 396 ighton 1942 36425 18757 21 74950 38594 44 52125 26841 ighton 312 4994 16008 21 74950 38594 44 52125 26841 urse 247 2459 9956 18 5749 2374 42 4152 16808 od 752 10979 14600 22 23000 30585 46 13452 1789 rn 786 17830 67539 22 44507 56625 45 27688 35227	21 35403	23501	89 29	3946 8	8579 5		173793 100
nands 15994 32117 22 32488 65238 45 20102 40365 ands 1135 22516 19838 21 46056 40578 44 31090 27392 ighton 230 53 228 17 126 547 41 91 396 ighton 1942 36425 18757 21 74950 38594 44 52125 26841 ids 247 4994 16008 21 10180 32627 43 7144 22898 od 752 10979 14600 22 23000 30585 46 13452 1789 rn 786 17830 67539 22 36526 138358 45 22526 85326 n 786 21685 27589 27589 27685 35227	21 31048	21020	30 30		5 9667	70537 16	167546 100
ands 1135 22516 19838 21 46056 40578 44 31090 27392 ronhead 230 53 228 17 126 547 41 91 396 ighton 1942 36425 18757 21 74950 38594 44 52125 26841 ids 312 4994 16008 21 10180 32627 43 7144 22898 urse 752 10979 14600 22 23000 30585 46 13452 17889 od 264 17830 67539 22 36526 138358 45 22526 85326 n 786 21685 27589 22 44507 56625 45 27688 35227	22 32488	20102	65 28	3496 7	7019 5	72080 14	144739 100
vonhead 230 53 228 17 126 547 41 91 396 ighton 1942 36425 18757 21 74950 38594 44 52125 26841 ids 312 4994 16008 21 10180 32627 43 7144 22898 urse 752 10979 14600 22 23000 30585 46 13452 17899 rn 786 17830 67539 22 36526 138358 45 22526 85326 n 786 21685 27589 22 44507 56625 45 27688 35227	21 46056	31090	92 30	5079 4	4475 5	104741 92	92283 100
ighton 1942 36425 18757 21 74950 38594 44 52125 26841 ids 312 4994 16008 21 10180 32627 43 7144 22898 urse 247 2459 9956 18 5749 23274 42 4152 16808 od 752 10979 14600 22 23000 30585 46 13452 17889 rn 264 17830 67539 22 36526 138358 45 22526 85326 n 786 21685 27589 22 44507 56625 45 27688 35227	17 126	91			170 13	308	1341 100
urse 312 4994 16008 21 10180 32627 43 7144 22898 urse 247 2459 9956 18 5749 2374 42 4152 16808 od 752 10979 14600 22 23000 30585 46 13452 17889 rn 264 17830 67539 22 36526 138358 45 22526 85326 n 786 21685 27589 22 44507 56625 45 27688 35227	21 74950	52125	41 30	8525 4	4390 5	172026 88	88582 100
urse 247 2459 9956 18 5749 23274 42 4152 16808 od 752 10979 14600 22 23000 30585 46 13452 17889 rn 264 17830 67539 22 36526 138358 45 22526 85326 n 786 21685 27589 22 44507 56625 45 27688 35227	21 10180	7144	98 30	1108 3	3551 5	23427 75	75085 100
od 752 10979 14600 22 23000 30585 46 13452 17889 rn 264 17830 67539 22 36526 138358 45 22526 85326 n 786 21685 27589 22 44507 56625 45 27688 35227	18 5749	4152	08 30	1310 5	5302 10	13669 55	55340 100
rn 264 17830 67539 22 36526 138358 45 22526 85326 n 786 21685 27589 22 44507 56625 45 27688 35227	22 23000	13452	89 27	2388 3	3176 5	49819 66	66249 100
n 786 21685 27589 22 44507 56625 45 27688 35227	22 36526	22526	26 28	3986	5 6605	08 69808	306322 100
	22 44507	27688	27 28	4754 6	6049 5	98635 12	125489 100
22 551538 46975 44 360875 30736	23045 22 551538 46975	44 360875 307.	36 29	61363 5	5226 5	1244346 10	105983 100
Total-Total Study Area 17757 597191 33631 22 1225230 69000 45 792422 44626	22 1225230	792422	26 29	134511 7	7575 5	2749353 15	154832 100

5. Industrial Emissions

5.1. Christchurch Industry - Background

Across the total study area of Christchurch it is estimated that there are approximately 565 industrial and commercial premises that emit various quantities of PM₁₀, CO, NO_x, SO_x, VOC and CO₂ into the air on a typical winter's day. Approximately 70% of Christchurch industries are considered commercial in nature (Figure 5.1). These industries primarily emit pollutants from the combustion of solid fuels for heating or as part of their operations. Manufacturing makes up approximately 11% of Christchurch industries while nearly 20% of industries use surface coatings or thinners (paint, varnish, lacquer or paint primer). Community services make up about 2% while wholesale and trade, and services allied to transport represent less than 1% of industries combined.

Figure 5.1 Christchurch industry breakdown

Manufacturing industries within Christchurch can be further divided into eight categories (Figure 5.2). 36% of manufacturing industries produce chemicals, rubber and plastic products while 13% produce non-metallic mineral products (i.e glass, bricks and clay products, cement, lime). 17% of manufacturing industries produce food and beverage and a further 17% manufacture basic metal (i.e foundries). Wood processing and wood product manufacturers make up 11% while producers of textiles, clothing and leather goods, as well as fabricated metal manufacturers represent 3% each.

Figure 5.2 Christchurch manufacturing industry breakdown.

Like manufacturing, community services can also be divided into four categories (Figure 5.3). Educational and medical facilities around Christchurch represent 50% of the community service industries, while recreational and cultural services represent 10%. Sanitary services (including refuse burning and pathological waste) represent 40% of community services in Christchurch while laundries and cleaning facilities represent less than 1%.

Figure 5.3 Christchurch community service breakdown.

For the purpose of this inventory, emissions have been assessed on the size of industry and not industry type primarily because the scale of process, the fuel consumption, the boiler size and control technology used can directly influence pollutant emissions to the air. As a result, three categories of industry have been adopted (Part A, Part B and Part C). The classification of Part A, B and C industries within Christchurch were based on definitions from the Clean Air Act 1972 (Appendix IV).

Based on this classification scheme, 3.5% of the 565 industries across the total study area of Christchurch are considered large scale, 14% medium sized, and over 80% are considered small commercial and industrial operations (Table 5.1).

Within the inner suburb study area, 2% of the industries are considered larger scale Part A's, 13% are considered Part B industries and 85% are smaller Part C industries (Table 5.1). Overall, 55% of industries within Christchurch are located within the inner suburb study area. Furthermore, 28% of industries are located within the inner city.

Table 5.1 Number and type of industry within various study areas of Christchurch.

	Industry Type and Number						
Suburb Area	Total Number	Α	В	С			
Inner Suburb Study Area							
Beckenham/Sydenham	6	0	0	6			
Fendalton	13	0	0	13			
Inner City	156	3	20	133			
Linwood	20	0	1	19			
Opawa/Woolston	47	3	11	33			
Riccarton	9	0	2	7			
Shirley	11	0	1	10			
Spreydon/Addington	28	0	3	25			
St Albans	21	0	2	19			
Sub-total - Inner Suburb Study Area	311	6	40	265			
Outer Suburbs							
Addington Industrial	. 7	1	2	4			
Airport	9	4	2	3			
Avonhead	15	0	2	13			
Bishopdale	22	0	2	20			
Bromley	47	2	7	37			
Burnside/Bryndwr	2	0	0	2			
Hoon Hay	10	0	1	9			
Hornby	32	3	8	21			
Marshlands	8	0	0	8			
New Avonhead	3	0	0	3			
New Brighton	29	0	3	26			
Parklands	6	2	0	4			
Racecourse	0	0	0	0			
Redwood	17	0	0	17			
Sockburn	13	0	4	9			
Wigram	35	2	7	26			
Sub-total	254	14	38	202			
Total - Total Study Area	565	20	78	467			

5.2. Industrial Emission Factors, Calculation Techniques and Assumptions

Emissions from industrial sources were considered separately under combustion and process emissions. For the calculations, data were required on the amount / nature of the fuel consumed and the amount / nature of any raw materials used and products produced for each individual industry. Much of the information was gained from existing Council resource consent files but was supplemented with information gathered from a survey of larger scale industries (designated Part A and Part B) (see Appendix II for survey questionnaire).

5.2.1 Combustion Emissions

For the calculation of combustion emissions, emission factors for various boiler sizes were developed from a literature survey of 'utility' (power generating) and 'commercial' (heat generating) boilers. (United States Environmental Protection Agency (USEPA) (1994), Economopoulos (1993), International Panel on Climate Change (1995), and Air Pollution Engineering Manual (1992)). Some fuels had more emissions factors available for the different boiler sizes and presented a range of factors depending on the control technology used. From these numbers and descriptions, emissions factors were selected that best represent 'worst', 'best' and 'typical' operation for boilers in New Zealand.

Because of the difficulty encountered when trying to obtain information on the actual control technology used for each individual industry, typical figures were adopted for this inventory as they assume average operating conditions (Table 5.2). However, it should be noted that processes using older technology or, conversely, state of the art abatement equipment may have emissions rates significantly higher or lower than the numbers shown below.

	Boiler	Typical Fuel Use	PM ₁₀	CO	NO _x	SOx	VOC	CO ₂
Fuel	Size	10 ³ m ³ /yr or T/yr	kg/U	kg/U	kg/U	kg/U	kg/U	kg/U
Natural Gas	5 MW	4380	0.086	0.560	1.300	0.010	0.100	2010
10 ³ m ³	50 MW	43800	0.096	0.640	4.550	0.010	0.092	2010
LPG	5 MW	3430	0.060	0.710	2.600	0.007	0.120	2885
Tonne	50 MW	34300	0.060	0.710	2.600	0.007	0.120	2885
Oil	40 kW	31	0.280	0.640	2.800	4.000	0.180	3010
Tonne	10 MW	7690	0.280	0.640	2.800	4.000	0.180	3010
Coal	40 kW	50	5.000	2.300	8.200	17.500	0.060	2355
Tonne	10 MW	12600	5.000	2.500	9.000	17.500	0.060	2355
Wood	40 kW	126	1.300	2.000	0.330	0.037	0.150	1100
Tonne	10 MW	31500	1.300	13.000	1.150	0.037	0.150	1100

Table 5.2 Boiler emission factors per unit of fuel burnt.

The factors in Table 5.2 reflect the differences in emissions from various industrial boilers depending on the fuel used. Take PM_{10} and NO_x emissions from the burning of coal on a 10 MW boiler for example. Coal burning can produce as much as 18 times more PM_{10} and three times more NO_x than oil burning, and approximately four times the quantity of PM_{10} , eight times more NO_x and as much as 470 times more SO_x than wood burning.

Overall, NO_x and CO emissions (but to a lesser extent) are influenced by boiler size whereas SO_x VOC, CO_2 and PM_{10} emissions are effectively fuel dependent and do not vary with the boiler size.

Using the typical emissions rates for each of the key contaminants (Table 5.2), and the actual fuel consumption information obtained from survey questionnaires and/or CRC resource consent records, the daily emissions of each contaminant from combustion processes for each industrial source were then calculated for a typical winter's day using the following formula:

Combustion Emissions (kg/day) = Actual Fuel Consumption (U/day) * Unit Emissions Rate (kg/U)

where the typical emissions rate depends on the size of the process and U is the unit of production (t or m^3 etc.).

So, to calculate CO emissions from the burning of 5 tonne of coal per day on a 40 kW boiler, the equation would look like:

$$CO\ Emissions\ (kg/day) = 5\ t/day * 2.3\ kg/t = 11.5\ kg/day$$

5.2.2 Process Emissions

For the calculation of process emissions where applicable (as not all industries produce process emissions), emissions factors were developed for each industry type from USEPA and Economopoulos. These factors are based on the amount of raw materials used or the amount of product produced and were scaled using the actual information from consent records and/or survey data to give process emissions totals for the different contaminants. Again, as in the case of the combustion emissions, the process emissions factors assume typical operation as follows:

 $Process\ Emissions\ (kg/day) = Actual\ Product\ Produced\ or\ Raw\ Materials\ Consumed\ (U/day)\ *\ Unit\ Emissions\ Rate\ (kg/U)$

where the U is the unit of production (t or m³ etc.) and the unit emissions rate depends on the nature of the process.

For example, for an industry producing 100 tonnes of resins and adhesives per day, the equation for VOC emissions would look like:

$$VOC\ Emissions\ (kg/day) = 100\ t/day*3.0\ kg/t = 300\ kg/day$$

Please note that resin / adhesive manufacture results in VOC only process emissions. Other industry processes emit other contaminants (see Appendix V).

Following calculation of both combustion and process emissions, the total industrial emissions for all industry within a suburb were then aggregated to produce daily kilogram totals. To produce a "normalised" weight per area value (e.g. grams per hectare), emissions were then divided by the number of hectares within each suburb area (1 hectare = 10000m^2). This normalisation was done to allow fair comparison between differently-sized study areas.

To establish the fuel quantities used, the product produced or the raw materials consumed on a typical winter's day, annual figures were divided into seasonal quantities based on variation in industry operation. The winter consumption for each industry was then divided by 182.5 days. This gave a daily quantity.

5.2.3 Assumptions

The following assumptions were made for the calculation of industrial emissions.

1. The amount of energy released per unit fuel (calorific value or CV) for the different fuels:

Natural gas 36 MJ/m3 LPG 46 MJ/kg Oil 41 MJ/kg Coal 25 MJ/kg Wood 10 MJ/kg

This information is used to calculate the typical annual fuel consumption figures given in Table 5.2

- 2. typical $\underline{coal} = 1.0$ wt% sulphur (range 0.4 to 2.0) (The typical sulphur content directly reflects the SO_x emission factors.)
- 3. ash content of coal = 4.0 wt% (range 3.0 to 5.0) (This reflects the amount of PM₁₀ emitted from coal burning.)
- 4. density of LPG = 0.5 kg/litre (conversion factors if different units are specified)
- 5. density of oil = 0.845 kg/litre (conversion factors if different units are specified)
- 6. "oil" refers to automotive diesel, marine diesel, and blended heating oil as the physical properties of each are almost identical. (The Ministry of Commerce Energy Data File considers these fuels together but under the classification 'diesel'.)
- 7. Hours of operation (unless specified). Used for the calculation of daily fuel, product and raw material quantities, and resultant pollutant emissions and times:

Part A industries 24 hours a day, 7 days a week
Part B industries 12 hours a day (between 6am and 6pm), 6 days a week
Part C industries 8 hours a day (between 8am and 5pm), 5 days a week

8. Boiler size emissions factor category:

Part A industries 10 MW - 50 MW Part B industries 10 MW - 50 MW Part C industries 40 kW - 5 MW

5.3. Industrial Emissions on a Typical Winter's Day by Industry Type

Emissions to the air from various industry on a typical winter's day for the total study area, and the inner suburb study area, are presented in Figure 5.4, Figure 5.5, Table 5.3 and Table 5.4.

Across the total study area, Part A industries are the main emitters of PM_{10} (44%) and VOC (47%), while Part B industries emit larger quantities of CO (50%), NO_x (40%) and SO_x (39%). Part C industries emit nearly half the CO_2 (46%) (Figure 5.4 and Table 5.3).

Figure 5.4 Emissions by industry type for the total study area.

Within the inner suburb study area, Part A industries are the main emitters of PM_{10} (46%), while Part B industries emit larger quantities of CO (37%), NO_x (37%) and SO_x (39%). Part C industries emit approximately 80% of VOC and over half the CO_2 (51%) (Figure 5.5 and Table 5.4).

Figure 5.5 Emissions by industry type for the inner suburb study area.

The estimated quantities released (per day and per hectare) from each industry type differs between the total study area and the inner suburb study (Table 5.3 and Table 5.4). On average, Part A industries within the inner suburb area produce approximately half of the kilogram per day figure for all pollutants except VOC. The total study area produces approximately 20 times more per day. However on a per hectare basis, the inner suburb study area produces 1.6 times more PM_{10} per hectare than the total study area, 1.7 times the CO_2 , 1.8 times the CO and NO_x and 1.3 times the SO_x . The total study area however, produces 7 times more VOC than the inner suburb study area.

Part B and C industries also display this pattern. On a kilogram per day basis, Part B industries within the inner suburb area emit 40%-50% of the kg/day figure, yet on a per hectare basis they produce 1.3 times more PM_{10} and CO_2 than the total study area, 1.5 times the NO_x and SO_x , 1.2 times the VOC, and equal quantities of CO.

Part C industries within the inner suburb area produce 1.8 times more PM_{10} per hectare than the total study area, 1.7 times the NO_x , SO_x and CO_2 , and 1.9 times the VOC and CO. On a kilogram per day basis, Part C industries produce approximately half to a third the quantities of the total study area.

When examining Part A, B and C industries more closely, 18 of the 20 Part A industries (90%) across Christchurch emit 20% of PM₁₀, 22% of CO, 27% of NO_x, 24% of SO_x, 1% of VOC and 19% of CO₂ emissions from the combustion of solid fuels. For Part B industries, 63 of the 78 premises (80%) contribute to 38% of PM₁₀, 50% of CO, 40% of NO_x, 39% of SO_x, 1% of VOC and 35% of CO₂ emissions from the combustion of solid fuels. Nearly 98% of Part C industries (457) across Christchurch emit 18% of PM₁₀ emissions, 28% of CO, 32% of NO_x, 27% of SO_x, 2% of VOC and 46% CO₂ emissions from the combustion of solid fuels (Table 5.3).

Within the inner suburb study area, 5 of the 6 Part A industries (83%) emit 25% of PM₁₀, 29% of CO, 30% of NO_x and SO_x, 1% of VOC and 21% of CO₂ emissions from the combustion of solid fuels. For Part B industries, 34 of the 40 premises (85%) contribute to 34% of PM₁₀, 37% of CO and NO_x, 39% of SO_x, 1% of VOC and 28% of CO₂ emissions from the combustion of solid fuels. Approximately 99% of Part C industries (262) within the inner suburb study area emit 21% of PM₁₀ emissions, 34% of CO, 33% of NO_x, 31% of SO_x, 3% of VOC and 51% CO₂ emissions from the combustion of solid fuels (Table 5.4).

Emissions from other processes are somewhat different. 40% of Part A industries (8) across Christchurch emit 24% of the total industrial PM_{10} emissions. Furthermore, 20% of Part A (4), 27% of Part B (21) and 22% of Part C industries (103) emit VOC from other processes (46%, 9% and 41% of the industrial total respectively). 10% of Part A industries (2) also emit NO_x (less than 1% of the total) and 5% emit SO_x (9% of the total).

50% of Part A industries (3) within the inner suburb study area emit 21% of the total industrial PM_{10} emissions. 17% of Part A (4), 33% of Part B (25) and 18% of Part C industries (84) emit VOC from other processes (6%, 12% and 77% of the industrial total respectively). 17% of Part A industries (4) also emit NO_x (less that 1% of the total).

These results indicate that the nature and size of the industry can influence process emissions. Within Christchurch, PM_{10} emissions from other processes are commonly released during the manufacture of concrete, bitumen, chemicals, fertilisers, food and the processing of animal by-products. VOC emissions are primarily released with the application of paints, varnishes, lacquers and thinners, as well as with the manufacture of chemicals and fertilisers (which also release SO_x).

Take VOC emissions for example. As previously mentioned, across Christchurch, Part A industries produce 46% of VOC emissions, Part B premises produce 9% and Part C's 41%. Within the inner suburb study area, 77% of VOC emissions stem from Part C industries, 12% from Part B premises and 1% from Part A industries. Approximately 107 industries (19% - Figure 5.1) within Christchurch involve the application of surface coatings and thinners (the main source of VOC emissions from other processes), approximately 80% of which are located within the inner suburb study area. The high number of industries that use surface coatings and thinners is reflected in the high percentage of process VOC emissions, especially within the inner suburb study area.

Individual suburb results can be found in Appendix III

Table 5.3 Emissions by industry type for the total study area.

							•				•							
		PM ₁₀	0		္ပ			Š			SOx			VOC			CO_2	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	203	Ξ	20	107	9	22	391	22	27	738	42	24	4	0	_	131522	131522	61
Other Processes	244	14	24	0	0	0	7	0	0	289	91	6	371	21	46	0	0	0
Sub-total	447	25	44	107	9	22	399	22	27	1027	58	34	375	21	47	131522	7407	19
Part B																		
Combustion	383	22	38	238	13	20	585	33	40	1192	<i>L</i> 9	39	12		_	238149	13411	35
Other Processes	2	0	0	0	0	0	0	0	0	0	0	0	89	4	6	0	0	0
Sub-total	385	22	38	238	13	50	585	33	40	1192	19	39	80	5	10	238149	13411	35
Part C																		
Combustion	185	10	18	132	7	28	468	26	32	835	47	27	91	-	2	319213	17977	46
Other Processes	_	0	0	0	0	0	0	0	0	0	0	0	326	18	41	0	0	0
Sub-total	186	10	18	132	7	28	468	26	32	835	47	27	342	19	43	319213	17977	46
Total																		
Combustion	171	43	9/	478	27	100	1445	8	100	2766	156	16	32	2	4	688883	162910	100
Other Processes	247	14	24	0	0	0	7	0	0	289	91	6	991	43	96	0	0	0
Total	8101	27	100	478	27	100	1452	82	100	3055	172	100	861	45	100	688883	38795	100

Table 5.4 Emissions by industry type for the inner suburb study area.

Part A kg Combustion 128 Other Processes 105 Sub-total 233 Part B	1						Š			Š				•		200	
Processes		g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Processes																	
Processes	"	21 25	19	=	29	243	40	30	463	77	30	7	0	_	77272	12844	21
		17 21	0	0	0	_	0	0	0	0	0	91	3	9	0	0	0
Part B		39 46	29	=	29	244	14	30	463	77	30	18	3	9	77272	12844	21
Combustion 172		29 34	83	14	37	298	50	37	617	103	39	3	-	_	104572	17382	28
Other Processes 0		0 0	0	0	0	0	0	0	0	0	0	34	9	12	0	0	0
Sub-total 172		29 34	83	14	37	298	50	37	617	103	39	38	9	14	104572	17382	28
Part C																	
Combustion 107		18 21	11	13	34	273	45	33	484	80	31	10	2	3	189254	31458	51
Other Processes 0		0 0	0	0	0	0	0	0	0	0	0	213	35	77	0	0	0
Sub-total 107		18 21	77	13	34	273	45	33	484	08	31	223	37	80	189254	31458	51
Total																	
Combustion 406		62 89	228	38	001	815	135	100	1564	260	100	15	3	2	371098	61684	100
Other Processes 105		17 21	0	0	0	-	0	0	0	.0	0	263	44	95	0	0	0
Total 512		85 100	228	38	100	815	136	100	1564	260	100	279	46	100	371098	61684	100

5.4. Industrial Emissions on a Typical Winter's Day - Total

Industrial emissions to the air on a typical winter's day for various study areas of Christchurch are presented in Table 5.5 over.

The total study area is estimated to produce approximately 1018 kilograms of PM_{10} per day or 57 grams per hectare per day whereas the inner suburb study area is estimated to produce half the total PM_{10} emissions (512 kg/day) (Table 5.5). On a grams per hectare basis, the PM_{10} emissions from industry within the inner suburb study area are 1.5 times greater than the total study area (85 g/ha/day) compared to 57 g/ha/day).

A similar pattern emerges when examining the CO, NO_x , SO_x , VOC and CO_2 emissions from industry (Table 5.5). The inner suburb study area is estimated to produce nearly 50% of the total CO emissions, ~55% of the total NO_x and CO_2 emissions, 51% of the total SO_x emissions and 35% of the VOC emissions. On a grams per hectare basis, the inner suburb study area produces 1.4 times more CO than the total study area, 1.6 times the NO_x and CO_2 and 1.5 times the SO_x . VOC emissions per hectare are the same in both the total study area and the inner suburb study area.

On an individual suburb basis (Table 5.5), industrial emissions vary considerably from suburb to suburb. Suburb areas with few industries (such as Burnside/Bryndwr and New Avonhead) exhibit lower pollutant emissions from industrial sources per day whereas suburbs with a greater number of industries (such as the Inner City) displayed higher pollutant concentrations. The suburb of Racecourse, having no industries, has no emissions.

Table 5.5 Typical winter's day emissions from industry for various study areas of Christchurch.

		210	Table 3:3 Typical Willest Stary Cilliss		Com a				manny for tailous study at one of contraction	200	ا مدمد								
			PM ₁₀			္ပ			Š			SO _x			VOC			CO	
Suburb Area	Area (ha)	ķ	% Total	g/ha	kg	% Total	g/ha	kg	% Total	g/ha	kg	% Total	g/ha	kg	% Total	g/ha	kg	% Total	g/ha
Inner Suburb Study Area																			
Beckenham/Sydenham	555	2	0	4	-	0	3	5	0	10	01	0	18	2	_	01	2823	0	2090
Fendalton	745	13	-	17	7		6	22	7	29	45	_	09	0	0	0	8516	-	11431
Inner City	635	296	29	466	155	33	245	558	38	088	1079	35	1701	142	18	223	220191	32	346971
Linwood	754	5	0	9	4	-	9	=	_	4	81	-	25	21	3	27	8468	_	11233
Opawa/Woolston	798	162	16	203	40	∞	50	150	10	187	276	6	346	89	6	85	94055	14	117818
Riccarton	349	9	-	91	3	-	10	13	_	37	24	-	70	2	0	9	7709	_	22085
Shirley	572	10	-	81	5	_	6	17	_	30	36	_	63	0	0	0	6130	-	10711
Spreydon/Addington	745	=	_	4	9	_	8	22	2	30	43	_	58	37	5	50	12139	2	16303
St Albans	864	7	_	6	5	-	9	17	_	20	32	_	37	3	0	4	11066	7	12813
Sub-total - Inner Suburb Study Area	9109	512	50	85	228	48	38	815	99	136	1564	51	260	279	35	46	371098	54	61683
Outer Suburbs																			
Addington Industrial	229		0	4	7	0	7	5	0	23	5	0	21	9	_	24	6023	-	26249
Airport	2088	42	4	20	2	0	_	10	-	2	14	0	7	2	_	2	11796	2	5651
Avonhead	727	135	13	981	118	25	163	155	=	213	302	10	415	7	_	10	88225	13	121417
Bishopdale	887	12		13	7	7	∞	28	2	31	49	7	55	3	0	4	17712	3	19979
Bromley	764	7	_	01	8	2	01	28	2	37	45	_	59	54	7	70	26070	4	34121
Burnside/Bryndwr	460	_	0	2	0	0	_	2	0	3	3	0	7	0	0	0	753	0	1639
Hoon Hay	421	29	7	159	31	7	74	Ξ	8	263	236	8	999	9	_	14	33159	5	78689
Hornby	498	141	14	282	29	9	57	105	7	211	484	16	972	351	44	705	44241	9	88827
Marshlands	1135	3	0	7	2	0	2	7	0	9	12	0	=	3	0	2	4217	-	3715
New Avonhead	230	-	0	4	_	0	3	3	0	Ξ	5	0	20	0	0	0	2027	0	8811
New Brighton	1942	00	_	4	7	_	3	24	2	12	41		21	34	4	81	19040	3	9086
Parklands	312	41	4	130	17	4	55	89	5	217	119	4	382	0	0	7	17389	3	55698
Racecourse	247	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Redwood	752	6	_	12	9	_	7	19	_	25	36	-	48	00	-	=	10593	2	14095
Sockburn	264	20	2	75	10	2	37	32	2	122	65	2	248	6	_	35	13152	2	49784
Wigram	982	20	2	25	12	2	15	41	3	52	75	2	95	33	4	42	23388	3	29770
Sub-total	11741	909	20	43	250	52	21	637	44	54	1491	49	127	519	65	44	317786	46	27066
Total - Total Study Area	17757	1018	100	57	478	100	27	1452	100	82	3055	100	172	862	001	45	88889	100	38794

Table 5.6 Typical winter's day emissions from industry in descending order of PM₁₀ for the 25 suburb areas of Christchurch.

	Indust	ry Type	Industry Type and Number	mber			Pollutar	Pollutant (a/dav		
Suburb Area	Total	A	В	ပ	PM ₁₀	00	NOx	SOx	VOC	CO ₂
Inner City	156	3	20	133	296025	155402	558227	1079319	141783	220190926
Opawa/Woolston	47	3	=	33	162108	40150	149519	276003	68173	94054651
Hornby	32	3	∞	21	140568	28613	105193	484014	351008	44241022
Avonhead	15	0	2	13	135498	118157	155117	301782	7176	88225003
Hoon Hay	01	0	-	6	22019	31063	110957	235996	2209	33158593
Airport	6	4	2	3	42228	2378	10270	13693	4548	11796264
Parklands	9	2	0	4	40529	17036	61819	119223	480	17389115
Sockburn	13	0	4	6	19836	9738	32116	65467	9321	13152494
Wigram	35	2	7	26	19536	99/11	40726	74756	32767	23388352
Fendalton	13	0	0	13	12512	6592	21791	44752	330	8515999
Bishopdale	22	0	2	20	11503	7283	27782	48822	3416	17712126
Spreydon/Addington	28	0	3	25	10664	6311	22464	43355	36951	12139465
Shirley	=	0	_	10	10147	5148	17197	35794	218	6130286
Redwood	17	0	0	17	8933	5630	18692	35702	8308	10593440
New Brighton	29	0	3	56	7929	0659	23914	41109	34226	19039968
Bromley	47	7	7	37	7488	7630	27951	44983	53672	26069585
St Albans	21	0	2	19	7443	5022	17336	31875	3144	11065845
Riccarton	6	0	2	7	5528	3384	12918	24317	1957	7708501
Linwood	20	0	-	61	4634	4197	10665	18471	20647	8468478
Marshlands	∞	0	0	00	2753	1748	6720	12480	2799	4217200
Beckenham/Sydenham	9	0	0	9	2461	1406	5290	10231	5324	2823428
Addington Industrial	7	-	2	4	873	1565	5199	4888	5523	6022925
New Avonhead	3	0	0	3	828	663	2635	4587	103	2026622
Burnside/Bryndwr	2	0	0	2	747	410	1527	3004	32	753180
Racecourse	0	0	0	0	0	0	0	0	0	0
Average	23	-	3	61	40715	19115	58083	122185	31919	27555339
Median	47	3		33	162108	40150	149519	276003	68173	94054651

5.5. Industrial Emissions by Time of Day

Across the total study area, \sim 40% of PM₁₀, CO, NO_x and SO_x, and \sim 45% of VOC and CO₂ are released between the hours of 10am and 4pm on a typical winter's day. The remaining emissions are evenly spread between the three other time periods (Figure 5.6 and Table 5.7).

Within the inner suburb study area, 34% to 39% of PM_{10} , CO, nd SO, 60% of VOC and 46% of CO₂ emissions are released between the hours of 10am and 4pm on a typical winter's day (Figure 5.7 and Table 5.8). With the exception of VOC, the remaining emissions are evenly spread between the three other time periods. For VOC, 25% of the emissions are released between 6am and 10am while 14% are emitted from 4pm to 10pm. 1% of VOC emissions are released from 10pm and 6am.

Figure 5.6 Breakdown of industrial emissions for different times of a typical winter's day for the total study area

Figure 5.7 Breakdown of industrial emissions for different times of a typical winter's day for the inner suburb study area

On an individual suburb basis, PM_{10} , CO, NO_x , SO_x , VOC and CO_2 emissions tended to peak between the hours of 4pm and 10pm. In the suburbs where the peak does not occur between 4pm and 10pm, it tends to be highest between 10pm and 6am (Table 5.9 - Table 5.14).

In ~70% of the suburbs, the next highest period of PM_{10} , CO, NO_x , SO_x , and CO_2 emissions occurred between 6am and 10am. For VOC, ~85% of the suburbs also displayed a secondary peak between 6am and 10am. Low PM_{10} , CO, and SO_x emissions were displayed between 10pm and 6am in ~75% of the suburbs. Over 80% of the suburbs displayed low NO_x , CO_2 , and VOC between 10pm and 6am.

Table 5.7 Estimated industry emissions for various times of a typical winter's day across the total study area.

Apm-10pm kg g/ha % Total kg kg/ha % Total kg kg kg/ha % Total kg kg/ha kg/ha <t< th=""><th></th><th></th><th>The second second second</th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>			The second second second						-										
kg g/ha % Total kg kg <th></th> <th></th> <th>PM₁₀</th> <th></th> <th></th> <th>00</th> <th></th> <th></th> <th>NOX</th> <th></th> <th></th> <th>SOx</th> <th></th> <th></th> <th>VOC</th> <th></th> <th></th> <th>CO</th> <th></th>			PM ₁₀			00			NOX			SOx			VOC			CO	
198 11 19 95 5 20 298 17 20 609 34 20 170 10 21 148132 8342 374 21 37 185 10 39 597 34 41 1188 67 39 358 20 45 314953 17736 1 230 13 23 13 22 152 9 19 133825 7536 217 12 21 93 5 20 247 14 17 584 33 19 118 7 15 91974 5179 1018 57 10 478 27 100 1452 82 100 3055 172 100 798 45 100 688883 38794		kg	g/ha		kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
n 374 21 37 185 10 39 597 34 41 1188 67 39 358 20 45 314953 17736 n 230 13 23 105 6 22 311 17 21 673 38 22 152 9 19 133825 7536 n 217 12 21 93 5 20 247 14 17 584 33 19 118 7 15 91974 5179 1018 57 100 478 27 100 1452 82 100 3055 172 100 798 45 100 688883 38794	6am-10am	198	=	61	95	5	20	298	17	20	609	34	20	170	10	21	148132	8342	22
n 230 13 23 105 6 22 311 17 21 673 38 22 152 9 19 133825 73365 736 n 217 12 21 13 33 19 118 7 15 91974 5179 1018 57 100 478 27 100 1452 82 100 3055 172 100 798 45 100 688883 38794	10am-4pm	374	21	37	185	01	39	597	34	41	1188	<i>L</i> 9	39	358	20	45	314953	17736	46
12 21 93 5 20 247 14 17 584 33 19 118 7 15 91974 5179 57 100 478 27 100 1452 82 100 3055 172 100 798 45 100 688883 38794	4pm-10pm	230	13	23	105	9	22	311	17	21	673	38	22	152	6	19	133825	7536	19
57 100 478 27 100 1452 82 100 3055 172 100 798 45 100 688883 38794	10pm-6am	217	12	21	93	5	20	247	14	17	584	33	61	811	7	15	91974	5179	13
	Total	1018	57	100	478	27	100	1452	82	100	3055	172	100	798	45	100	688883	38794	100

Table 5.8 Estimated industry emissions for various times of a typical winter's day across the inner suburb study area.

									,									
		PM ₁₀			ပ္ပ			Ň			SOx			VOC			CO_2	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
6am-10am	93	91	81	44	7	19	157	26	19	297	49	61	69	=	25	78034	12971	21
10am-4pm	175	29	34	68	15	39	318	53	39	592	86	38	168	28	09	169771	28219	46
4pm-10pm	611	20	23	49	8	22	178	30	22	348	58	22	39	9	4	71037	11808	61
10pm-6am	124	21	24	45	7	20	163	27	20	326	54	21	3	-	-	52255	9898	14
Total	512	85	100	228	38	100	815	136	100	1564	260	001	279	46	100	371098	61683	100

Table 5.9 PM₁₀ emissions produced at different times of a typical winter's day by industry across various suburb areas of Christchurch.

		9	6am-10am	5	10	10am-4pm	F	4	4pm-10pm	r	F	10pm-6am	F	۵	Daily Total	18
Suburb Area	Area (ha)	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total
Inner Suburb Study Area																
Beckenham/Sydenham	555	-	-	25	7	3	63	0	_	13	0	0	0	7	4	100
Fendalton	745	3	4	23	7	6	54	2	3	91	_	-	7	13	17	100
Inner City	635	52	82	81	76	153	33	73	115	25	74	117	25	296	466	100
Linwood	754	parted	2	25	3	4	62	-	_	13	0	0	0	5	9	100
Opawa/Woolston	862	28	35	17	46	58	28	39	49	24	49	19	30	162	203	100
Riccarton	349		4	25	3	10	62		7	13	0	0	0	9	16	100
Shirley	572	3	4	25	9	=	63	_	2	13	0	0	0	10	18	100
Spreydon/Addington	745	3	4	25	9	8	59	2	2	91	0	0	0	=	14	100
St Albans	864	2	2	25	5	2	62	-	-	13	0	0	0	7	6	100
Sub-total - Inner Suburb Study Area	9109	93	16	18	175	29	34	119	20	23	124	21	24	512	85	100
Outer Suburbs																
Addington Industrial	230	0	-	25	_	7	63	0	0	12	0	0	0	_	4	100
Airport	2088	Ξ	5	25	26	13	62	2	3	13	0	0	0	42	20	100
Avonhead	727	30	4	22	99	17	41	33	46	24	17	23	13	135	186	100
Bishopdale	887	3	3	25	7	8	63	-	2	13	0	0	0	12	13	100
Bromley	764	7	2	25	5	9	19			14	0	0	0	7	10	100
Burnside/Bryndwr	460	0	0	25	0	-	63	0	0	13	0	0	0	_	7	100
Hoon Hay	421	12	28	80	20	46	29	91	38	24	20	47	30	29	159	100
Hornby	498	27	53	16	42	83	30	34	89	24	39	78	28	141	282	100
Marshlands	1135		-	25	7	7	63	0	0	13	0	0	0	3	6	100
New Avonhead	230	0	_	25	-	2	63	0	0	13	0	0	0	-	4	100
New Brighton	1942	7	-	25	5	3	63	_	garret.	13	0	0	0	00	4	100
Parklands	312	7	24	81	12	40	31	10	32	25	Ξ	34	56	4	130	100
Racecourse	247	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
Redwood	752	2	3	25	9	7	63	_	-	13	0	0	0	6	12	100
Sockburn	264	3	13	17	5	21	27	2	<u>8</u>	24	9	23	31	20	75	100
Wigram	786	5	9	25	12	15	62	3	3	13	0	0	0	20	25	100
Sub-total	11741	105	6	21	661	17	39	111	6	22	93	8	18	909	43	100
Total - Total Study Area	17757	861	=	61	374	21	37	230	13	23	217	12	21	8101	57	100

Table 5.10 CO emissions produced at different times of a typical winter's day by industry across various suburb areas of Christchurch.

		9	6am-10am	E	-	0am-4pm	۳.	4	4pm-10pm	E	7	10pm-6am	_	Ω	Daily Total	a
Suburb Area	Area (ha)	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total
Inner Suburb Study Area																
Beckenham/Sydenham	555	0	-	25	_	2	63	0	0	13	0	0	0	_	3	100
Fendalton	745	2	2	24	4	5	55	_	_	15	0		9	7	6	100
Inner City	635	28	44	81	54	98	35	37	28	24	36	57	23	155	245	100
Linwood	754	_	-	25	3	3	62	-	-	13	0	0	0	4	9	100
Opawa/Woolston	862	∞	10	20	15	19	38	∞	10	21	6	=	21	40	20	100
Riccarton	349	_	7	25	2	9	62	0	_	13	0	0	0	3	10	100
Shirley	572	_	2	25	3	9	63	_	_	13	0	0	0	5	6	100
Spreydon/Addington	745	2	7	25	4	5	09	_	_	15	0	0	0	9	00	100
St Albans	864	-	_	25	3	4	62	_	-	13	0	0	0	S	9	100
Sub-total - Inner Suburb Study Area	9109	44	7	19	68	15	39	49	~	22	45	7	20	228	38	100
Outer Suburbs			,				,	(,	(,	(,	1	
Addington Industrial	230	0	7	25	_	4	63	0	-	12	0	0	0	7	_	100
Airport	2088	_	0	23	-	_	44	_	0	24	0	0	6	7	-	100
Avonhead	727	23	32	61	40	55	34	29	40	25	56	36	22	118	163	100
Bishopdale	887	2	2	25	2	5	63	_	_	13	0	0	0	7	00	100
Bromley	764	2	2	25	5	9	19			14	0	0	0	∞	10	100
Burnside/Bryndwr	460	0	0	25	0	-	63	0	0	13	0	0	0	0	-	100
Hoon Hay	421	5	13	81	6	22	29	7	17	24	6	22	29	31	74	100
Hornby	498	7	13	23	=	23	39	9	12	21	5	6	91	29	57	100
Marshlands	1135	0	0	25	_	-	63	0	0	13	0	0	0	7	2	100
New Avonhead	230	0	-	25	0	2	63	0	0	13	0	0	0	-	3	100
New Brighton	1942	2	_	25	4	7	63	_	0	13	0	0	0	7	3	100
Parklands	312	3	6	17	5	15	27	4	13	24	5	17	31	17	55	100
Racecourse	247	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
Redwood	752	_	2	25	4	5	63	-	_	13	0	0	0	9	7	100
Sockburn	264	2	7	81	3	12	32	2	∞	23	3	10	27	10	37	100
Wigram	982	3	4	25	7	6	09	2	2	15	0	0	0	12	15	100
Sub-total	11741	51	4	20	96	x	38	55	5	22	48	4	19	250	21	100
Total - Total Study Area	17757	95	5	20	185	10	39	105	9	22	93	5	20	478	27	100

Table 5.11 NOx emissions produced at different times of a typical winter's day by industry across various suburb areas of Christchurch.

Suburb Area Area (ha) kg g/ha Inner Suburb Study Area 555 1 2 Beckenham/Sydenham 745 5 7 Fendalton 745 5 7 Inner City 635 101 160 Linwood 754 3 4 4 Opawa/Woolston 798 30 37 8 Riccarton 349 3 9 37 Shirley 745 6 8 8 Shirley 745 6 8 8 St Albans 864 4 5 6 8 Sub-total - Inner Suburb Study Area 6016 157 26 1 Outer Suburbs Avonhead 230 1 6 8 Akleington Industrial 208 2 1 4 5 Bishopdale 887 7 8 8 Bromley 450 0 1 4	% F	5	% F	kg	g/ha % Daily Total 1 13 4 15 208 24 2 13 39 21 5 13 4 13 5 15 30 22		kg g/ha 0 0 0 0 130 204 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% Daily Total		g/ha %	% Daily Total
555 1 745 5 635 101 754 3 798 30 349 3 572 4 745 6 864 4 6016 157 2088 2 727 38 887 7 764 7 764 7 460 0 421 20 421 20 498 24 1135 2			63 62 63 60 60 63 63	132 132 132 132 2 2 2 2 2 178				0	5		
555 1 745 5 635 101 754 3 798 30 349 3 572 4 745 6 864 4 6016 157 230 1 2088 2 727 38 887 7 764 7 764 7 764 7 764 7 764 7 764 7 769 0 421 20 421 20			60 60 63 85 85 85 85 85 85 85 85 85 85 85 85 85	132 132 132 2 2 2 2 2 2 178				0 \	5		
745 5 635 101 754 3 798 30 349 3 572 4 745 6 864 4 6016 157 2088 2 727 38 887 7 764 7 764 7 460 0 421 20 421 20 421 20			55 62 63 63 63 63 63 63 64 65 65 65 65 65 65 65 65 65 65 65 65 65	3 132 1 1 1 2 2 2 2 2 3 1 178				,		10	100
635 101 754 3 798 30 349 3 572 4 745 6 864 4 6016 157 230 1 2088 2 727 38 887 7 764 7 764 7 460 0 421 20 421 20 438 24 1135 2			38 62 63 63 63 63 63 63 63 63 63 64 65 65 65 65 65 65 65 65 65 65 65 65 65	132 1 2 2 2 2 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				9	22	29	100
754 3 798 30 349 3 572 4 745 6 864 4 6016 157 2088 2 727 38 887 7 764 7 460 0 421 20 421 20 498 24 1135 2			62 63 63 63 63 63 63 64 65 65 65 65 65 65 65 65 65 65 65 65 65	1 31 2 2 2 2 3 3 3 1 1 1 7 8 1 1 7 8 1 1 1 1 1 1 1 1 1 1 1				23	558	880	100
798 30 349 3 572 4 745 6 864 4 6016 157 230 1 2088 2 727 38 887 7 764 7 460 0 421 20 421 20 438 24 1135 2			38 60 60 60 63 63 63 63	31 2 2 2 2 2 2 2 2 1 78 1 1 78				0	=	4	100
349 3 572 4 745 6 864 4 6016 157 230 1 2088 2 727 38 887 7 764 7 460 0 421 20 421 20 438 24 1135 2			66 63 39 63 63 63 63 63 63 63 63 63 63 63 63 63	2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1				21	150	187	100
572 4 745 6 864 4 6016 157 230 1 2088 2 727 38 887 7 764 7 460 0 421 20 498 24 1135 2 230 1			62 63 39 63	2 3 3 178				0	13	37	100
745 6 864 4 6016 157 230 1 2088 2 727 38 887 7 764 7 460 0 421 20 498 24 1135 2 230 1			62 63 69 69 69 69 69 69 69 69 69 69 69 69 69	2 2 178				0	17	30	100
864 4 6016 157 230 1 2088 2 727 38 887 7 764 7 460 0 421 20 498 24 1135 2 230 1			62 39 63	178				0	22	30	100
6016 157 230 1 2088 2 727 38 887 7 764 7 460 0 421 20 498 24 1135 2 230 1			39	178				0	17	20	100
230 1 2088 2 727 38 887 7 764 7 460 0 421 20 498 24 1135 2			63	_			163 27	20	815	136	100
230 1 2088 2 727 38 887 7 764 7 460 0 421 20 498 24 1135 2			63	-		_					
ad 727 38 2 2088 2 2 38 38 38 38 38 38			7 7 7		3 12		0 0	0	5	23	100
727 38 887 7 764 7 460 0 421 20 498 24 1135 2			++	2	1 24	_	0 1	6	10	5	100
887 7 764 7 460 0 421 20 498 24 1135 2		76 104	49	37	51 24	-	9 9	3	155	213	. 001
764 7 460 0 421 20 498 24 1135 2	8 25		63	3	4 13	- 0	0 0	0	28	31	100
460 0 421 20 498 24 1135 2 230 1	9 25	17 22	19	4	5 14		0 0	0	28	37	100
421 20 498 24 1135 2 230 1	1 25	1 2	63	0	0 13	_	0 0	0	2	3	100
498 24 1135 2 230 1	47 18	33 78	29	26				29	==	263	100
1135	48 23	41 83	39	22	45 21	-	17 35	16	105	211	100
230	1 25		63	_				0	7	9	100
	3 25	2 7	63	0	1 13	_		0	3	=	100
	3 25	15 8	63	3				0	24	12	100
Parklands 312 12 39	39 18	20 64	29	17	53 24			28	89	217	100
Racecourse 247 0 0	0 0	0 0	0	0	0 0		0 0	0	0	0	100
Redwood 5 6	6 25	12 16	63	2				0	19	25	100
		9 35	29	~	29 24	-	10 36	30	32	122	100
Wigram 786 10 13	13 25	24 31	09	9			0 0	0	41	52	100
Sub-total 11741 140 12	12 22	279 24	44	133	11 2		84 7	13	637	54	100
Total - Total Study Area 17757 298 17	17 20	597 34	41	311	17 21		247 14	17	1452	82	100

Table 5.12 SO_x emissions produced at different times of a typical winter's day by industry across various suburb areas of Christchurch.

Suburb Area Area (ha) kg	kg g	g/ha %	% Daily		g/ha %	Daily	ka	α/ha	% Daily		a/ha	% Daily		a/ha	o' Daily
555 745 635 754 798 349	3	Ξ	Total	Ži		Total	n	i h	Total	Đ.		Total	Kg Kg	9/19	% Dally Total
1,45 7,45 6,35 7,54 7,98 3,49	3														
745 635 754 798 349		5	25	9	12	63	_	2	13	0	0	0	01	81	100
635 754 798 349 577	10	14	23	24	33	55	7	6	15	3	4	7	45	09	100
754 798 349	192	303	81	365	575	34	260	410	24	262	412	24	1079	1701	100
349	5	9	25	12	15	62	2	3	13	0	0	0	18	25	100
on 349	54		61	102	128	37	59	73	21	62	77	22	276	346	100
625	9	17	25	15	43	62	3	6	13	0	0	0	24	70	100
10	6	91	25	22	39	63	4	00	13	0	0	0	36	63	100
Spreydon/Addington 745	=	15	25	26	35	09	7	6	15	0	0	0	43	58	100
St Albans 864 8	∞	6	25	20	23	62	4	5	13	0	0	0	32	37	100
Sub-total - Inner Suburb Study Area 6016 29	297	49	61	592	86	38	348	58	22	326	54	21	1564	260	100
Outer Suburbs															
Addington Industrial 230	_	5	25	3	13	63	_	3	12	0	0	0	5	21	100
Airport 2088 3	3	2	23	9	3	46	3	2	24	Ĺ	0	7	14	7	100
Avonhead 727 7.	75	104	25	154	211	51	72	66	24	-	-	0	302	415	, 001
Bishopdale 887 1.3	12	4	25	31	34	63	9	7	13	0	0	0	49	55	100
764	=	15	25	28	36	19	9	8	4	0	0	0	45	59	100
Burnside/Bryndwr 460	_	2	25	2	4	63	0	-	13	0	0	0	3	7	100
Hoon Hay 421 4.	42	66	81	69	164	29	99	132	24	69	165	29	236	999	100
Hornby 498 9	93	981	61	148	297	31	114	230	24	129	259	27	484	972	100
Marshlands 1135 3	3	3	25	8	7	63	2	_	13	0	0	0	12	=	100
New Avonhead 230	_	2	25	3	12	63	-	2	13	0	0	0	2	20	100
New Brighton 1942 1	10	2	25	26	13	63	2	3	13	0	0	0	41	21	100
	20	99	17	32	103	27	29	93	24	38	120	31	119	382	100
Racecourse 247 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
Redwood 752 9	6	12	25	22	30	63	4	9	13	0	0	0	36	48	100
Sockburn 264	-	43	17	81	69	28	91	09	24	20	9/	31	65	248	100
Wigram 786	61	24	25	46	59	19	10	13	14	0	0	0	75	95	100
Sub-total 31	312	27	21	595	51	40	325	28	22	258	22	17	1491	127	100
Total - Total Study Area 60	609	34	20	8811	29	39	673	38	22	584	33	61	3055	172	100

Table 5.13 VOC emissions produced at different times of a typical winter's day by industry across various suburb areas of Christchurch.

			6am-10am	E	=	0am-4pm	E	4	4pm-10pm	E	-	10pm-6am		۵	Daily Tota	al
Suburb Area	Area (ha)	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total	kg	g/ha	% Daily Total
Inner Suburb Study Area																
Beckenham/Sydenham	555	-	2	25	3	9	63	-	_	13	0	0	0	5	10	100
Fendalton	745	0	0	24	0	0	59	0	0	14	0	0	3	0	0	100
Inner City	635	35	55	25	98	136	19	19	31	14		2	,	142	223	100
Linwood	754	2	7	25	13	17	19	3	4	14	0	0	0	21	27	100
Opawa/Woolston	862	17	21	24	40	20	59	10	12	14	2	3	3	89	85	100
Riccarton	349	0	-	25	-	3	52	0	-	23	0	0	0	2	9	100
Shirley	572	0	0	25	0	0	63	0	0	13	0	0	0	0	0	100
Spreydon/Addington	745	6	12	25	22	30	19	5	7	14	0	0	0	37	50	100
St Albans	864	_	_	25	2	2	62	0	0	13	0	0	0	3	4	100
Sub-total - Inner Suburb Study Area	a 6016	69	=	25	891	28	09	39	9	14	3	_	-	279	46	100
Outer Suburbs	230	-	٧	3,5	,	31	5	-	,	2		C		,	,	9
Airport	2088		-	25) (f	2 -	3 9		n	7 7	0 0	0 0	> -	o v	۲,	8 5
Avonhead	727	. –	. 2	2 2	2 3	۰ ،	3 8	2	2 0	24	0 6	~، د	. %		2 0	001
Bishopdale	887	-	_	25	7	5	63	0	0	13	0	0	0	۳.	4	100
Bromley	764	13	81	25	32	42	09	∞	=	15	0	0	0	54	70	100
Burnside/Bryndwr	460	0	0	25	0	0	63	0	0	13	0	0	0	0	0	100
Hoon Hay	421	-	3	24	4	80	58	-	2	14	0		4	9	14	100
Hornby	498	09	120	17	92	186	56	98	173	25	113	226	32	351	705	100
Marshlands	1135	_	-	25	7	2	63	0	0	13	0	0	0	3	2	100
New Avonhead	230	0	0	25	0	0	63	0	0	13	0	0	0	0	0	100
New Brighton	1942	6	4	25	21	=	63	4	2	13	0	0	0	34	18	100
Parklands	312	0	0	18	0	0	32	0	0	23	0	0	27	0	2	100
Racecourse	247	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
Redwood	752	2	3	25	5	7	63	_	_	13	0	0	0	∞	=	100
Sockburn	264	2	∞	. 24	2	20	57	-	5	14	0	2	2	6	35	100
Wigram	786	8	10	25	17	22	52	7	6	23	0	0	0	33	42	100
Sub-total	11741	101	6	61	190	91	37	113	01	22	115	10	22	519	44	100
Total - Total Study Area	17757	170	10	21	358	20	45	152	6	61	811	7	15	862	45	100

Table 5.14 CO₂ emissions produced at different times of a typical winter's day by industry across various suburb areas of Christchurch.

% Daily kg grha kg grha kg grha kg grh		6am-10am	9	Gam-10am	_	10	Jam-4nm		41	4nm-10nm	_	1	10nm-6am		0	Daily Tota	
555 706 1772 23 1765 3181 63 353 636 13 0	Suburb Area	Area (ha)		g/ha		•	g/ha	% Daily Total		g/ha	% Daily Total		g/ha	% Daily Total		g/ha	% Daily Total
yden/ham 555 706 1272 21 1765 3181 63 353 636 13 0	Inner Suburb Study Area																
ton iiiiiiton iiiiiiton iiiiiiton iiiiiiton iiiiiiton iiiiiiton iiiiiiiton iiiiiiiton iiiiiiiiii	Beckenham/Sydenham	555	902	1272	25	1765	3181	63	353	636	13	0	0	0	2823	5090	100
total 46214 68671 20 93719 147680 43 45677 11977 21 36581 37643 17 20 9 9 44981 14680 43 45677 11977 21 36881 37643 17 20 0 0 0 0 0 0 84688 11333 14 14 0 <th>Fendalton</th> <th>745</th> <th>2029</th> <th>2724</th> <th>24</th> <th>4842</th> <th>6499</th> <th>57</th> <th>1244</th> <th>1670</th> <th>15</th> <th>401</th> <th>539</th> <th>5</th> <th>8516</th> <th>11431</th> <th>100</th>	Fendalton	745	2029	2724	24	4842	6499	57	1244	1670	15	401	539	5	8516	11431	100
tot 2117 2808 25 5289 7106 62 1062 1499 13 0 0 0 6 46 11233 1173 14188 11233 14188 11233 14188 11233 14188 1418 14188	Inner City	635	44214	12969	20	93719	147680	43	45677	71977	21	36581	57643	17	220191	346971	100
ton 798 1970 2468 21 41386 51842 44 17689 2158 19 15273 1913 16 4045 11818 349 1977 5521 25 4683 1347 61 1098 2138 13 0 0 0 0 0 0 1709 1718 sind 455 3523 2678 25 381 6694 61 1699 2281 14 0 0 0 0 1710 1711 submrh sludy Area 6016 78034 476 25 7406 994 61 1699 2281 14 0 0 0 7709 1711 blustrial 8644 2766 1838 2520 251 1449 1678 13 6 771 1970 1717 dustrial 8649 28 1649 2281 14 0 0 0 1710 1711	Linwood	754	2117	2808	25	5289	7016	62	1062	1409	13	0	0	0	8468	11233	100
1949 1927 5521 25 4683 13417 61 1098 3146 14 0 0 0 0 7709 2085 1953 2078 252 4685 25 4684 63 766 1339 13 0 0 0 0 0 17199 2085 2864 2766 2303 25 4076 25 4066 28 7931 62 449 1578 13 0 0 0 0 0 11039 11039 2864 2766 2303 25 4685 7931 62 449 149 1678 13 0 0 0 0 0 11039 11039 2864 2766 2303 25 4686 7931 62 449 1888 13 0 0 0 0 0 11039 11039 2865 1288 23 2340 2310 244 2830 1356 24 1037 497 9 11796 5631 2875 4428 4959 25 2491 249 2497 13 0 0 0 0 0 0 440 188 410 25 441 1024 63 448 2497 2497 2497 2497 2494 3882 441 4424 4939 25 2434 2434 3845 43 8752 1357 2496 2494 2494 3841 442 442 442 4939 2434 4434 4434 4434 4434 4434 444 444 244 244 244 244 244 244 244 244 244 244 444 444 244 244 244 244 244 244 244 244 244 244 444 444 244 244 244 244 244 244 244 244 244 244 244 244 445 445 445 445 445 444 244 244 244 244 244 244 244 445 445 445 445 445 445 444 244	Opawa/Woolston	798	19707	24686	21	41386	51842	44	17689	22158	16	15273	19132	91	94055	117818	100
Mathematical Mat	Riccarton	349	1927	5521	25	4683	13417	19	1098	3146	4	0	0	0	7709	22085	100
Hington 745 3035 4076 25 7406 9946 61 1699 2281 14 0 0 0 12139 16303 Suburb Slundy Area 6016 7864 2766 3203 23 23 606 149 1687 188 1 0 0 0 17106 12813 16303 Suburb Slundy Area 6016 78034 1291 22 3240 2510 4 1103 52255 8686 14 311098 61683 Just Institution 230 1515 6603 25 3740 2810 1856 24 1037 497 9 11066 12813 6603 25 3740 4280 438 11070 12487 66 4798 14 0 0 0 11066 12813 6603 23 2240 2870 11070 12487 63 1284 244 188 14 0 0 0	Shirley	572	1533	2678	25	3831	6694	63	991	1339	13	0	0	0	6130	10711	100
Subject of the color	Spreydon/Addington	745	3035	4076	25	7406	9946	19	6691	2281	14	0	0	0	12139	16303	100
dustrial 5016 78034 12971 2819 46 71037 11808 19 52255 8686 14 371098 61683 dustrial 230 1515 6603 23 3768 16423 63 139 3223 12 0 0 0 6033 2649 dustrial 2308 2689 1288 23 5340 2510 44 2830 1356 24 1037 497 9 11796 5651 ndwr 4288 2586 23 2118 29159 24 1037 497 9 11796 5651 ndwr 428 4428 4955 25 11070 12487 63 2148 2497 13 0 1731 1843 1843 1141<	St Albans	864	2766	3203	25	6850	7931	62	1449	1678	13	0	0	0	11066	12813	100
dustrial 230 1515 6603 25 3768 16423 63 3223 12 0 0 0 6023 26249 dustrial 2088 1588 23 5240 2510 44 2830 1356 24 1037 497 9 665 561 ndwr 460 18387 2589 128 2340 2188 21188 2025 1 17712 19979 ndwr 460 188 410 25 11070 12487 63 2214 2497 13 0 0 0 0 17712 19979 dwr 450 188 410 25 11070 12487 63 2214 2497 13 0	Sub-total - Inner Suburb Study Area		78034	12971	21	169771	28219	46	71037	11808	19	52255	9898	14	371098	61683	100
dustrial 230 1515 6603 25 3768 16423 63 3223 12 0 0 0 0 6023 2649 dustrial 2088 2689 1188 23 3240 2510 44 2830 1356 24 1037 497 9 11796 5651 ndwr 877 18387 25305 21 12487 666 4798 14 0 0 0 0 11712 1976 5670 3182 11712 1976 578 1188 21188 21188 21188 21188 21188 21188 21188 21188 21188 21188 11712 3940 366 4798 14 0 0 0 0 0 0 2670 34121 17171 17171 17171 17171 17171 17171 17171 17171 17171 17171 17171 17171 17171 17171 17171 17171	Outer Suburbs																
2088 2689 1288 23 5240 2510 44 2830 1356 24 1037 497 9 11796 5651 727 18387 25305 21 39930 46666 38 21188 29159 24 14719 20257 17 88225 121417 887 4428 4995 25 11070 12487 63 2214 2497 13 0 0 0 17712 19979 440 188 410 25 1588 20792 61 366 2479 13 0 0 0 17712 19979 441 188 410 25 417 1024 63 524 205 13 60 0 0 753 1697 4421 88827 1411 1424 88827 1411 1424 88827 1411 1424 1424 1424 14241 88827 1412 1424	Addington Industrial	230	1515	6603	25	3768	16423	63	739	3223	12	0	0	0	6023	26249	100
727 18387 25365 21 33930 46696 38 21188 29159 24 14719 20257 17 88225 121417 887 4428 4995 25 11070 12487 63 2214 2497 13 0 0 0 0 0 17712 19979 460 188 410 25 11070 12487 63 2214 2497 13 0 0 0 0 0 0 17712 19979 440 188 410 25 1471 1024 63 2214 205 13 0	Airport	2088	5689	1288	23	5240	2510	44	2830	1356	24	1037	497	6	11796	5651	100
887 4428 4995 25 11070 12487 63 2214 2497 13 0 0 0 0 17712 19979 764 6517 8530 25 11886 20792 61 3666 4798 14 0 0 0 753 1639 460 188 410 25 471 1024 63 18247 23 0 0 0 0 753 1639 421 188 410 25 471 1024 63 18247 23 942 22406 28 3159 7889 421 5394 38 43 7689 18247 23 6298 12645 14 44241 8827 1135 1054 292 25 1267 5307 63 253 1101 13 0 0 0 173 1881 1942 2406 245 126	Avonhead	727	18387	25305	21	33930	46696	38	21188	29159	24	14719	20257	17	88225	121417	. 001
764 6517 8530 25 15886 20792 61 3666 4798 14 0 0 0 0 26070 34121 460 188 410 25 471 1024 63 94 205 13 0 0 0 753 1639 421 5936 14088 18 10022 23949 30 7689 18247 23 9442 22406 28 33159 7889 498 10035 20148 23 19156 38462 43 8752 17573 20 6298 12645 14 44241 88877 1135 1054 929 25 1267 5507 63 253 1101 13 0 0 0 7 70 9 4217 3715 1942 4760 2470 252 1267 5507 63 1326 1366 136 446 13	Bishopdale	887	4428	4995	25	11070	12487	63	2214	2497	13	0	0	0	17712	19979	100
460 188 410 25 471 1024 63 94 205 13 0 0 0 0 0 753 1639 421 5936 14088 18 10092 23949 30 7689 18247 23 9442 22406 28 33159 78689 498 10035 20148 23 19156 38462 43 8752 17573 20 6298 12645 14 44241 88827 1135 1054 929 25 2636 2322 63 527 464 13 0 0 0 4217 3155 78827 230 507 2203 25 1267 5507 63 2380 1226 13 0 <th< th=""><th>Bromley</th><th>764</th><th>6517</th><th>8530</th><th>25</th><th>15886</th><th>20792</th><th>19</th><th>3666</th><th>4798</th><th>14</th><th>0</th><th>0</th><th>0</th><th>26070</th><th>34121</th><th>100</th></th<>	Bromley	764	6517	8530	25	15886	20792	19	3666	4798	14	0	0	0	26070	34121	100
421 5936 14088 18 10092 23949 30 7689 18247 23 9442 22406 28 33159 7889 498 10035 20148 23 19156 38462 43 8752 17573 20 6298 12645 14 44241 88827 1135 1054 929 25 2636 2322 63 257 464 13 0 0 0 0 4217 3715 1942 4760 2452 25 11900 6129 63 253 1101 13 0 0 0 0 4217 3715 3789 1638 2380 1226 13 0 <th>Burnside/Bryndwr</th> <th>460</th> <th>188</th> <th>410</th> <th>25</th> <th>471</th> <th>1024</th> <th>63</th> <th>94</th> <th>205</th> <th>13</th> <th>0</th> <th>0</th> <th>0</th> <th>753</th> <th>1639</th> <th>100</th>	Burnside/Bryndwr	460	188	410	25	471	1024	63	94	205	13	0	0	0	753	1639	100
498 10035 20148 23 19156 38462 43 8752 17573 20 6298 12645 14 44241 88827 1135 1054 929 25 2636 2322 63 527 464 13 0 0 0 4217 3715 230 507 2203 25 1267 5507 63 253 1101 13 0	Hoon Hay	421	5936	14088	81	10092	23949	30	6892	18247	23	9442	22406	28	33159	68981	100
1135 1054 929 25 2636 2322 63 527 464 13 0 0 0 0 4217 3715 230 507 2203 25 1267 5507 63 253 1101 13 0 <td< th=""><th>Hornby</th><th>498</th><th>10035</th><th>20148</th><th>23</th><th>19156</th><th>38462</th><th>43</th><th>8752</th><th>17573</th><th>20</th><th>6298</th><th>12645</th><th>14</th><th>44241</th><th>88827</th><th>100</th></td<>	Hornby	498	10035	20148	23	19156	38462	43	8752	17573	20	6298	12645	14	44241	88827	100
230 507 2203 25 1267 5507 63 253 1101 13 0 0 0 0 2027 8811 1942 4760 2452 25 11900 6129 63 2380 1226 13 0 0 0 0 1904 9806 312 3076 9854 18 5108 16362 29 4105 13150 24 5099 16333 29 17389 55698 247 0 10 0 0 0<	Marshlands	1135	1054	929	25	2636	2322	63	527	464	13	0	0	0	4217	3715	100
1942 4760 2452 25 11900 6129 63 2380 1226 13 0 </th <th>New Avonhead</th> <th>230</th> <th>207</th> <th>2203</th> <th>25</th> <th>1267</th> <th>5507</th> <th>63</th> <th>253</th> <th>1101</th> <th>13</th> <th>0</th> <th>0</th> <th>0</th> <th>2027</th> <th>8811</th> <th>100</th>	New Avonhead	230	207	2203	25	1267	5507	63	253	1101	13	0	0	0	2027	8811	100
312 3076 9854 18 5108 16362 29 4105 13150 24 5099 16333 29 17389 55698 247 0 <th>New Brighton</th> <th>1942</th> <th>4760</th> <th>2452</th> <th>25</th> <th>11900</th> <th>6129</th> <th>63</th> <th>2380</th> <th>1226</th> <th>13</th> <th>0</th> <th>0</th> <th>0</th> <th>19040</th> <th>9086</th> <th>100</th>	New Brighton	1942	4760	2452	25	11900	6129	63	2380	1226	13	0	0	0	19040	9086	100
247 0	Parklands	312	3076	9854	81	5108	16362	29	4105	13150	24	5099	16333	29	17389	8698	100
752 2648 3524 25 6621 8810 63 1324 1762 13 0 0 0 0 10593 14095 264 2510 9500 19 4546 17207 35 2974 11258 23 3122 11818 24 13152 49784 786 5847 7442 25 13491 17172 58 4050 5156 17 0 0 0 23388 29770 11741 70098 5970 22 145181 12365 46 62788 5348 20 39718 3383 12 317786 27066 17757 148132 8342 22 314953 17736 46 133825 7536 19 91974 5179 13 688883 38794	Racecourse	247	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
264 2510 9500 19 4546 17207 35 2974 11258 23 3122 11818 24 13152 49784 786 5847 7442 25 13491 17172 58 4050 5156 17 0 0 0 0 23388 29770 11741 70098 5970 22 145181 12365 46 62788 5348 20 39718 3383 12 317786 27066 17757 148132 8342 22 314953 17736 46 133825 7536 19 91974 5179 13 688883 38794	Redwood	752	2648	3524	25	6621	8810	63	1324	1762	13	0	0	0	10593	14095	100
786 5847 7442 25 13491 17172 58 4050 5156 17 0 0 0 0 0 23388 29770 11741 70098 5970 22 145181 12365 46 62788 5348 20 39718 3383 12 317786 27066 17757 148132 8342 22 314953 17736 46 133825 7536 19 91974 5179 13 688883 38794	Sockburn	264	2510	9500	61	4546	17207	35	2974	11258	23	3122	11818	24	13152	49784	100
11741 70098 5970 22 145181 12365 46 62788 5348 20 39718 3383 12 317786 27066 17757 148132 8342 22 314953 17736 46 133825 7536 19 91974 5179 13 688883 38794	Wigram	786	5847	7442	25	13491	17172	58	4050	5156	17	0	0	0	23388	29770	100
17757 148132 8342 22 314953 17736 46 133825 7536 19 91974 5179 13 688883 38794	Sub-total	11741	20098	5970	22	145181	12365	46	62788	5348	20	39718	3383	12	317786	27066	100
	Total - Total Study Area	17757	148132	8342	22	314953	17736	46	133825	7536	19	91974	5179	13	688883	38794	100

6. Combined Emissions

6.1. How do Industrial Emissions Compare with Motor Vehicle Emissions and Home Heating Emissions?

In both the total study area and the inner suburb study area, 82% of PM_{10} emissions to the air on a typical winter's day result from domestic solid fuel heating. Approximately 90% of NO_x emissions, ~65%-70% of CO and VOC and nearly 60% of CO_2 emissions are derived from motor vehicles. Almost 50% of SO_x emissions stem from industry and a further third is derived from home heating. (Table 6.1, Table 6.2 and Figure 6.1).

In 96% of the suburbs (the results of which can be found in Appendix III), more PM_{10} emissions to the air on a typical winter's day result from domestic solid fuel heating than from motor vehicles or industry. Motor vehicles emit more CO, NO_x , VOC and CO_2 than home heating or industry in 80%. 96%, 76% and 88% of the suburbs respectively. In 13 of the 25 suburbs (52%), more SO_x is emitted from home heating than from motor vehicles or industry.

The combined emissions for the various study areas do not account for variations in local air quality that result from differing dispersion methods. Pollutants emitted from domestic home heating are expected to produce more uniform concentrations throughout the airshed because of greater regularity between sources and the height at which the pollutants are released. Motor vehicle and industrial emissions however, can result in much higher local concentrations. Pollutants from motor vehicles tend to be released at exhaust height and are usually concentrated along the narrow corridors of the roading system within a suburb area. Industrial emissions tend to be released from single point sources with an area.

Another factor that also needs to be noted when considering PM_{10} emissions from motor vehicles is that the calculations used in this study only relate to emissions of primary particulate direct from the vehicle exhaust. Other pollutants emitted from motor vehicles, such as sulphur oxides and nitrogen oxides, can react later in the atmosphere to form secondary particulate. While quantifying this effect is outside the scope of this project, the contribution from this source is expected to be relatively minor compared to the contribution from domestic fires.

Table 6.1 Home heating, motor vehicle and industry emissions for the total study area.

		PM ₁₀			000			Ň			SOx			VOC			CO_2	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating	10971	819	82	61962	3489	33	937	53	4	2490	140	37	15490	872	34	1375853	77482	28
Motor Vehicles	1365	11	01	125591	7073	29	23655	1332	16	1130	64	17	28608	1191	64	2802943	157849	58
Industry	8101	57	œ	478	27	0	1452	82	9	3055	172	46	798	45	2	688883	38794	14
Total	13354 752	752	100	188031 10589	10589	100	26044	1467	100	6675	376	100	44896	2528	100	4867679	274122	100

Table 6.2 Home heating, motor vehicle and industry emissions for the inner suburb study area.

		PM ₁₀			00			NOx			SOx			VOC			CO2	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating	5585	928	82	31086	5167	30	472	7.9	4	1293	215	37	7772	1292	32	681470	113274	27
Motor Vehicles	747	124	=	73896	12283	70	12162	2022	06	613	102	<u>~</u>	18891	2723	19	1505008	250163	59
Industry	512	85	7	228	38	0	815	136	9	1564	260	45	279	46	_	371098	61683	15
Total	6844	1138	100	105210 17488	17488	100	13449	2236	100	3470	577	100	24432	4061	100	2557576	425122	100
		The same of the sa				The state of the s	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO I											

Figure 6.1 Comparison of home heating and motor vehicle emissions of PM_{10} , CO, NO_x , SO_x , VOC, and CO_2 for a typical winter's day for (a) the total study area and (b) the inner suburb study area.

6.2. How do Combined Emissions vary with the Time of Day?

Across the total study area, combined home heating, motor vehicle and industrial PM_{10} , CO, SO_x , VOC and CO_2 emissions peak between the hours of 4pm-10pm (which also coincides with the onset of temperature inversion conditions) (Table 6.3 and Figure 6.2(a)). Combined NO_x emissions peak between 10am and 4pm (which coincides with high VKT's from Table 4.8). Combined PM_{10} emissions are at their lowest between 6am-10am while combined CO, NO_x , SO_x , VOC and CO_2 emissions drop off between 10pm-6am (which also coincides with lower VKT's from Table 4.8).

Within the inner suburb study area, combined PM_{10} emissions are at their lowest between the hours of 6am and 10am (Table 6.4 and Figure 6.2(b)). Like the total study area, all the other pollutants are at their lowest between 10pm and 6am. Combined PM_{10} , CO, SO_x , VOC and CO_2 emissions all peak between 4pm and 10pm. Combined NO_x emissions again peak between 10am and 4pm (which coincides with high VKT's from Table 4.8).

This pattern for combined emissions is slightly different to that of the separate source emissions (Table 6.3 and Table 6.4). Solid fuel heating emissions of PM₁₀, CO, NO_x, SO_x, VOC and CO₂ peak between 4pm-10pm and are at their lowest between 6am-10am in both the total study area and the inner suburb study area. The peak period for all motor vehicle emissions and industry however, tends to occur between 10am-4pm. The low period for motor vehicle emissions occurs from 10pm-6am while for industry it tends to occur between 10pm and 10am.

Across the individual suburbs, combined motor vehicle, solid fuel heating and industrial PM_{10} , CO. SO_x and VOC emissions peak between the hours of 4pm-10pm in over 60% of suburbs (Appendix III). Furthermore, for PM_{10} the peak period between 4pm and 10pm is recorded in all suburbs but the Airport (96%). Combined CO_2 emissions peak between 4pm and 10pm in 56% of the suburbs while NO_x peaks between 10am and 4pm in all suburbs. Combined CO, NO_x , VOC and CO_2 emissions drop off between 10pm and 6am in over 85% of the suburbs. 60% of the suburbs record the low period for SO_x between 10pm and 6am while 40% record it between 6am and 10am. For PM_{10} , 52% of suburbs recorded the low emission period between the hours of 6am and 10am while in 48% of suburbs it was between 10pm and 6am.

Table 6.3 Combined estimated pollutant emissions for various times of a typical winter's day across the total study area.

manual mar la Camerin usun summer

	4		the state of the s	11100 00									and and	200				
		PM ₁₀			00			NOx			SOx			VOC			CO2	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	788	44	7	4388	247	7	29	4	7	187	=	×	1097	62	7	103073	5805	7
10am-4pm	1623	16	15	9606	512	15	138	œ	15	377	21	15	2274	128	15	205651	11581	15
4pm-10pm	7201	406	99	40485	2280	99	613	35	65	1640	92	99	10121	570	9	887048	49955	64
10pm-6am	1360	11	12	7992	450	13	119	7	13	286	91	=	1998	113	13	180081	10141	13
Total	10971	819	100	61962	3489	100	937	53	100	2490	140	100	15490	872	100	1375853	77482	100
Motor Vehicles																		
6am-10am	297	11	22	27559	1552	22	5112	288	22	246	14	22	6257	352	22	608628	34275	22
10am-4pm	609	34	45	99595	3186	45	10478	290	44	504	28	45	12839	723	45	1247927	70278	45
4pm-10pm	394	22	29	36362	2048	29	6820	384	29	326	81	29	8275	466	29	809130	45567	29
10pm-6am	65	4	5	5104	287	4	1246	70	2	54	3	5	1236	70	4	137258	7730	5
Total	1365	11	100	125591	7073	100	23655	1332	100	1130	64	100	28608	1191	100	2802943	157849	100
Industry																		
6am-10am	861	=	16	95	2	20	298	17	20	609	34	20	170	0	21	148132	8342	22
10am-4pm	374	21	37	185	01	30	597	34	41	1188	29	30	358	20	45	314953	17736	46
4թա-10թա	230	13	23	105	g	22	311	17	21	673	38	22	152	6	61	133825	7536	61
10թա-6սա	217	12	21	93	5	20	247	14	1.7	584	33	61	= 8	7	15	91974	5179	13
Total	1018	57	100	478	27	100	1452	82	100	3055	172	100	862	45	100	688883	38794	100
Combined Total																		
6am-10am	1283	72	10	32042	1804	17	5477	308	21	1042	59	91	7524	424	17	859833	48421	81
10am-4pm	2606	147	20	65847	3708	35	11213	631	43	2069	911	3	15471	871	34	1768531	99594	36
4թա-10թա	7825	441	29	76952	4334	4	7744	436	30	2639	149	40	18548	1045	4	1830003	103056	38
10թա-6am	1642	92	12	13189	743	7	1612	16	9	924	52	4	3352	189	7	409313	23050	œ
Total	13354	752	001	188031	10589	100	26044	1467	100	9299	376	100	9681-1	2528	100	4867679	274122	001
							the state of the s			***************************************						-		

	Table	6.4 Co	mbined e	stimated	polluta	nt emissi	ons for	various	times of	a typica	il winte	r's day w	ithin th	e inner	Table 6.4 Combined estimated pollutant emissions for various times of a typical winter's day within the inner suburb study area.	udy area.		
		PM ₁₀			00			NOx			SOx			VOC			CO2	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	384	64	7	2117	352	7	32	5	7	93	15	7	529	88	7	49614	8247	7
10am-4pm	751	125	13	4378	728	4	99	=	14	191	27	12	1094	182	14	95681	15904	14
4pm-10pm	3922	652	70	21414	3559	69	327	54	69	932	155	72	5353	890	69	463559	77053	89
10pm-6am	528	88	6	3177	528	01	47	×	0	107	81	×	794	132	10	72616	12070	
Total	5885	928	100	31086	5167	100	472	79	100	1293	215	100	7772	1292	100	681470	113274	100
Motor Vehicles																		
6am-10am	162	27	22	16125	2680	22	2632	437	22	133	22	22	3569	593	22	326621	54291	22
10am-4pm	335	99	45	33260	5528	45	5429	902	45	274	46	45	7361	1224	45	169829	111981	45
4pm-10pm	214	36	29	21305	3541	29	3478	578	59	176	29	20	4715	784	29	431547	71732	29
10pm-6am	35	9	2	3205	533	4	623	104	5	29	5	5	735	122	4	73149	12159	2
Total	747	124	100	73896	12283	100	12162	2022	100	613	102	100	18381	2723	100	1505008	250163	100
Industry																		
6am-10am	93	91	<u>~</u>	44	7	61	157	26	61	297	49	61	69	=	25	78034	12971	21
10am-4pm	175	29	34	68	15	39	318	53	39	592	86	38	168	28	09	169771	28219	46
4pm-10pm	611	20	23	49	×	22	178	30	22	348	58	22	39	9	14	71037	11808	19
10pm-6am	124	21	24	45	7	20	163	27	20	326	54	21	3	-	_	52255	9898	14
	512	85	100	228	38	100	815	136	100	1564	260	100	279	46	100	371098	61683	100
Combined Total																		
6am-10am	639	901	6	18286	3040	1.1	2821	469	21	523	87	15	4167	603	17	454269	75509	8
10am-4pm	1261	210	<u>~</u>	37727	6271	36	5813	996	43	1027	171	30	8623	1433	35	939143	156105	37
4pm-10pm	4255	707	62	42768	7109	-	3983	662	30	1456	242	42	10107	0891	41	966143	160593	38
10pm-6am	289	114	10	6427	1068	9	833	138	9	462	11	13	1532	255	9	198020	32915	8
Total	6844	1138	100	105210	17488	100	13449	2236	100	3470	577	100	24432	4061	100	2557576	425122	100

Figure 6.2 Comparison of home heating, motor vehicle and industrial PM₁₀, CO, NO_x, SO_x, VOC and CO₂ emissions for various times of a typical winter's day for (a) the total study area and (b) the inner suburb study area.

6.3. Aircraft Emissions *

Emissions associated with aircraft have been estimated separately based on the methodology by Wright and Kuschel ("Transport Inventory for New Zealand" NIWA report AK96049). Aircraft emissions have been calculated for "take off and landing cycles" only. Emissions outside this time period were excluded, as their effects on the airshed were considered negligible because of the altitude of emissions. From the national report on transport emissions the annual aircraft emissions for Christchurch City were estimated, in tonnes per year, to be:

CO_2	CO	VOC	NOx	SOx	PM_{10}
22,797	171	30.87	65.18	7.24	2.62

Assuming constant emissions every day, the annual figure was divided by 365 to get daily aircraft emissions in kg/day as follows:

CO_2	CO	VOC	NOx	SOx	PM_{10}
62,458	468	85	179	20	7

These emissions were broken down further by time of day and type of flight (national versus international) using information provided by Christchurch airport flight schedules. This breakdown of emissions for domestic and international aircraft and concentrations on a gram per hectare basis (relative to the area of the Airport suburb – 2088 hectares) are in Appendix VI.

Table 6.5 provides a comparison of aircraft emissions with emissions from other sources and a new combined total for the total study area (taking into account the additional aircraft emissions). Aircraft emissions as a percentage of the combined total emissions and as a percentage of the "Airport suburb" emissions are also include in Table 6.5.

Because of the minor contribution of aircraft emissions to the total study area indicated (less than 0.7% except $CO_2-1.3\%$) no adjustments have been made to other tables in the emissions inventory for the total study area. However the impact of aircraft emission on "Airport suburb" emissions is more significant i.e. 7% of PM_{10} , approx. 20% for CO and NOx emissions and 28% for SOx emissions, and should be taken into account in assessing the breakdown of emissions and sources for this suburb.

^{*} Addition to report June 1998

Christchurch Inventory of Total Emissions

:0
=
.≅
SS
=
5
=
2
5
=
=
=
Ξ
2
.=
ಫ
2
==
$\frac{1}{2}$
Ξ
S
=
=
5
=
SS
2
2
-2
7
S
=
=
=
>
77
:2
-
\sim
्द
0
S
2
ine
s time
us time
ious time
arious time
various time
or various time
for various time
is for various time
ons for various time
sions for various time
rissions for various time
missions for various time
emissions for various time
int emissions for various time
tant emissions for various time
lutant emissions for various time
ollutant emissions for various time
pollutant emissions for various time
ed pollutant emissions for various time
ited pollutant emissions for various time
nated pollutant emissions for various time
timated pollutant emissions for various time
estimated pollutant emissions for various time
-
-
-
bined est
-
bined est
bined est
bined est
Combined est
Combined est
Combined est
Combined est
Combined est

		PM			00			NO			SO.			VOC			ပ်	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	788	44	7	4388	247	7	19	4	7	187	=	×	1097	62	7	103073	5805	7
10am-4pm	1623	16	15	9606	512	15	138	×	15	377	21	15	2274	128	15	205651	11581	15
4pm-10pm	7201	406	99	40485	2280	65	613	35	65	1640	92	99	10121	570	59	887048	49955	64
10րա-6սա	1360	11	12	7992	450	13	119	7	13	286	91	=	1998	113	13	180081	10141	13
Total	10971	819	100	61962	3-189	100	937	53	100	2490	140	100	15:190	872	100	1375853	77482	100
Motor Vehicles																		
6am-10am	297	17	22	27559	1552	22	5112	288	22	246	14	22	6257	352	22	608628	34275	22
10am-4pm	609	34	45	99595	3186	45	10478	290	44	504	28	45	12839	723	45	1247927	70278	45
4pm-10pm	394	22	29	36362	2048	29	6820	384	29	326	18	29	8275	466	29	809130	45567	29
10pm-6am	9	4	S	5104	287	7	1246	70	5	54	3	5	1236	70	4	137258	7730	5
Total	1365	11	100	125591	7073	100	23655	1332	100	1130	64	100	28608	1191	100	2802943	157849	100
Industry	901	=	9	90	ų	96	000	Ē	00	007	7	o c	20	3		661071	67.00	ć
oam-10am	170	= ;	61	C.	c :	0.7	067	_	70	600	7	70	2	2	7	140132	2450	77
10am-4pm	374	21	37	185	2	£	207	34	-	88	<i>L</i> 9	36	358	20	45	314953	17736	46
4pm-10pm	230	13	23	105	9	22	311	17	21	673	38	22	152	6	61	133825	7536	61
10րm-6սա	217	12	21	93	5	20	2.17	14	17	584	33	61	-8	7	15	91974	5179	13
Total	1018	57	100	478	27	100	1452	82	100	3055	172	100	798	45	100	688883	38794	100
Aircraft																		
6am-10am	7	600.0	23	107	0.0	23	41	2.3	23	2	0.3	2.3	2	=:	23	14276	804	23
10am-4pm	C1	0.14	34	101	0.0	₹.	19	3.5	34	7	0.4	<u>₹</u>	50	9.1	74	21414	1206	3
4pm-10pm	2	0.14	34	191	0.6	34	19	3.5	34	7	0.4	34	29	9.1	34	21414	1206	34
10pm-6am	-	0.03	6	40	2.3	6	15	6.	6	5	0.1	6	7	0.4	6	5354	301	6
Total	7	0.39	100	468	26.4	100	179	10.1	100	20	1.1	100	85	4.8	100	62458	3517	100
Combined Total																		
6am-10am	1285	72	10	32149	1810	1.1	5518	311	21	1047	09	91	7543	425	17	874109	49226	18
10am-4pm	2608	146	20	20099	3717	35	11274	635	43	2075	911	31	15500	873	34	1789945	100801	36
4pm-10pm	7827	441	59	77112	43-13	41	7805	440	30	2646	148	40	18577	1046	41	1851417	104264	38
10PM ₁₀ -6am	1642	93	12	13229	745	7	1627	92	9	956	52	14	3360	190	7	414666	23352	œ
Total	13361	753	100	188499	10615	100	26223	1477	100	6695	377	001	44981	2533	100	4930137	277643	100
Aircraft Emissions as a percentage of Combined Total	as a pe	rcentag	ge of Com	bined To	otal													
6am-10am	0.12	0.12		0.3	0.3		0.7	0.7		0.4	0.4		0.3	0.3		9.1	9.1	
10am-4pm	0.00	60.0		0.2	0.2		0.5	0.5		0.3	0.3		0.2	0.2		1.2	1.2	
4թու-10թու	0.03	0.03		0.2	0.2		8.0	8.0		0.3	0.3		0.2	0.2		<u></u>	1.2	
10pm-6am	0.04	0.04		0.3	0.3		6.0	6.0		0.2	0.2		0.2	0.2		1.3	1.3	
Total	0.05	0.05		0.2	0.2		0.7	0.7		0.3	0.3		0.2	0.2		5.1	1.3	

Christchurch Inventory of Total Emissions

		PM ₁₀			00			Ň			SOx			VOC			CO ₂	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Total Airport suburb emissions including Aircraft emissions	rb emi	ssions in	rcluding A	ireraft e	mission	8												
6am-10am	22	=	22	165	283	22	247	611	22	91	œ	22	160	92	22	37149	17793	22
10am-4pm	49	23	48	1097	526	41	461	221	42	29	4	41	303	145	42	19759	31497	40
4pm-10pm	26	13	26	816	391	3.1	329	158	30	22	=	31	218	104	30	51129	24489	31
10pm-6am	4	7	4	154	74	9	62	30	9	5	2	7	40	61	9	11083	5309	7
Total	102	49	100	2658	1273	100	1099	526	100	73	34	100	721	346	100	165121	79088	100
Aircraft Emissions as a percentage of Airport suburb emissions	as a pe	rcentag	e of Airpo	rt subur	b emiss	ions												
6am-10am	7	7		<u>∞</u>	<u>∞</u>		11	17		29	29		12	12		38	38	
10am-4pm	5	2		15	15		13	13		23	23		01	01		33	33	
4pm-10pm	6	6		20	20		61	19		31	31		13	13		42	42	
10pm-6am	15	1.5		26	26		2.5	25		35	35		81	81		48	48	
Total	7	7		8	18		91	91		28	28		12	12		38	38	

7. Key Findings

From this study the following key results have been identified:

Methods of Home Heating:

- Multiple methods of home heating occur within the main living area of the same household on a typical winter's day.
- Electricity is used by 68% and 71% of household in the total study area and within the inner suburb study area respectively to heat the main living area on a typical winter's day while 28% and 23% of households use woodburners.
- Across the total study area approximately 13240 households use an open fire on a typical winter's
 day to heat the main living area. This equates to approximately 14% of the total number of
 households in the total study area, and nearly 31% of solid fuel burning appliances in use.
- Within the total study area there are approximately 26160 households using woodburners to heat the main living area on a typical winter's day (approximately 28% of the total number of households in the total study area and nearly 61% of solid fuel burning appliances in use).
- 50% of the households that use woodburners, had them installed prior to 1989, approximately 23% were installed between 1989 and 1992 while over 25% have been installed since 1993.

Wood and Coal Use:

- By weight, the use of wood on a typical winter's day within the total study area is approximately
 four and a half times greater that the use of coal (590 tonnes of wood compared to 132 tonnes of
 coal). Within the inner suburb area 69 tonnes of coal are burnt per day compared to 288 tonnes of
 wood.
- Across the total study area approximately 65% of the daily firewood consumption is burnt on woodburners, 31% on open fires, 2% on enclosed coal burners and 1% on incinerators. Nearly 60% of the daily coal consumption is burnt on open fires, 33% on enclosed coal burners, 5% on woodburners, 1% each on incinerators and pot bellies.
- Within the inner suburb study area, 59% of the daily wood consumption is burnt on woodburners compared with 38% on open fires. 64% of the daily coal consumption is burnt on open fires. 29% on enclosed coal burners, 3% on woodburners and 3% on incinerators.

Home Heating Emissions:

- The burning of wood and coal on open fires in the total study area is estimated to produce 48% of the home heating PM₁₀ emissions while the burning of wood on woodburners produces 34%. 15% of PM₁₀ emissions stem from the burning of wood and coal on enclosed coal burners.
- Within the inner suburb study area, 56% of PM₁₀ emissions stem from the burning of wood and coal on open fires, 31% from woodburners, and 12% from enclosed coal burners.
- Across the total study area, open fires are responsible for approximately 43% of CO emissions. 45% of NO_x emissions, 57% of SO_x emissions, 43% of VOC emissions, and 39% of CO₂ emissions. Of those emissions, wood burning on an open fire produces 36% of CO emissions. 33% of NO_x emissions, 1% of SO_x emissions, 36% of VOC emissions, and 23% of CO₂ emissions. Coal burning on an open fire makes up the difference.
- The burning of wood on woodburners across the total study area produces approximately 49% of CO emissions, 45% of NO_x emissions, 4% of SO_x emissions, 49% of VOC emissions, and 49% of CO₂ emissions. Coal burning on woodburners contributes to a small percentage of CO₂ emissions (2%) and to over half of the SO_x emissions (5%).
- Within the inner suburb study area, the burning of wood and coal on an open fires produces 51% of CO emissions, 53% of NO_x emissions, 63% of SO_x emissions, 51% of VOC emissions, and 46% of CO₂ emissions. Of those emissions, wood burning on an open fire produces 43% of CO. 39% of NO_x, 2% of SO_x, 43% of VOC, and 28% of CO₂ emissions. Coal burning on an open fire makes up the difference (61% in the case of SO_x).

- The burning of wood and coal on woodburners produces approximately 43% of CO emissions, 39% of NO_x emissions, 6% of SO_x emissions, 43% of VOC emissions, and 44% of CO₂ emissions. Coal burning on woodburners contributes to a small percentage of CO₂ emissions (1%) and to half of the SO_x emissions (3%).
- Across the total study area, 32% of SO_x, 7% of NO_x, 9% of CO₂ comes from the burning of coal on enclosed coal burners. Within the inner suburb study area, 28% of SO_x, 6% of NO_x, 8% of CO₂ comes from the coal burning on these appliances.
- At the 95% confidence level, PM₁₀ emissions are positively correlated with the use of open fires and to the use of enclosed coal burners. The relationship between PM₁₀ and woodburners is significant at the 99% confidence level. CO is positively correlated to open fires and to woodburners at the 99% confidence level. SO_x emissions are positively correlated with the use of open fires, oil fires, pot bellies, and gas at the 95% confidence level and are correlated with the use of enclosed coal burners at the 99% confidence level
- The total study area is estimated to produce approximately 10971 kilograms of PM₁₀ per day or 618 gram per hectare per day whereas the inner suburb study area is estimated to produce 51% of the total PM₁₀ emissions (5585 kg/day). On a grams per hectare basis, the PM₁₀ emissions from home heating within the inner suburb study area are 1.5 times greater than the total study area (928 g/ha/day) compared to 618 g/ha/day).
- The inner suburb study area is estimated to produce 50% of the total CO, NO_x, VOC, and CO₂ emissions and 52% of the total SO_x. On a grams per hectare basis, the inner suburb study area produces 1.5 times more CO, NO_x, SO_x, VOC, and CO₂ than the total study area.
- On an individual suburb basis, PM₁₀ emissions per hectare in Burnside/Bryndwr can be as much as 41 times larger than those in New Avonhead. CO and NO_x can be as much as 30 times larger, VOC 28 times larger, CO₂ 20 times larger, and SO_x 450 times greater.
- Across the total study area, ~78% of PM₁₀, CO, NO_x, SO_x, VOC, and CO₂ are emitted between 4pm and 6am on a typical winter's night. The next highest period of emissions occurs between 10am and 4pm across all pollutants (15% of each pollutant released during this time).
- Within the inner suburb study area, ~80% of pollutants are emitted between 4pm and 6am on a typical winter's night. The next highest period of emissions occurs from 10am to 4pm across all pollutants (with 12%-14% released during this time).
- Both in the total study area and the inner suburb study area estimated PM_{10} , CO, NO_x , SO_x , VOC, and CO_2 emissions are lowest between the hours of 6am and 10am when ~7% of the total daily emissions are released

Motor Vehicle Emissions:

- Suburbs with larger vehicle kilometers travelled (VKT) values and more major traffic routes display higher emissions of the six pollutants than suburbs with lower VKT's values.
- Light duty petrol vehicles are the main emitters of CO (~90%), VOC (83%), and CO₂ (~70%). Heavy duty diesel vehicles tend to emit larger quantities of PM₁₀ (65%) and SO_x (87%). A further 20% of CO₂ emissions stem from heavy duty diesel vehicles while nearly 30% of PM₁₀ emissions are derived from light duty petrol vehicles. Both light duty petrol vehicles and heavy duty diesel vehicles release similar quantities of NO_x (50% and 46% respectively).
- On average, the inner suburb area produces 1.5-1.75 times the amount of all six pollutants per hectare per day when compared to the quantities produced by the total study area.
- The total study area is estimated to produce approximately 1365 kilograms of PM₁₀ per day or 77 gram per hectare per day from motor vehicles whereas the inner suburb study area is estimated to produce 55% of the total PM₁₀ emissions (747 kg/day). On a grams per hectare basis, the PM₁₀ emissions from motor vehicles within the inner suburb study area are 1.6 times greater than the total study area (124 g/ha/day compared to 77 g/ha/day).
- The inner suburb study area is estimated to produce nearly 60% of the total CO and NO_x emissions from motor vehicles, 54% of the total SO_x and CO_2 emissions and 51% of the total NO_x emissions.

- On a grams per hectare basis, the inner suburb study area produces 1.5 times more NO_x than the total study area, 1.6 times the SO_x and CO_2 , and 1.7 times the CO and VOC.
- On an individual suburb basis, PM₁₀ emissions per hectare in the Inner City are approximately 230 times larger than those in New Avonhead. CO and CO₂ can be as much as 350 times larger, NO_x and VOC 340 times larger, and SO_x 190 times greater.
- On average, approximately 45% of all motor vehicle emissions of PM₁₀, CO, NO_x, SO_x, VOC and CO₂ are released between the hours of 10am-4pm across the total study area. A secondary peak occurs between 4pm-10pm, during which ~30% of contaminants are emitted. A further 22% of pollutants are emitted between 6am-10am. Only 4-5% of all pollutants are emitted overnight (between 10pm-6am). This pattern is also a similar feature of the inner suburb area across all six pollutants, as well as in the majority of individual suburbs.
- The average estimated emissions per hectare from motor vehicles within the inner suburb area are 1.5-1.75 times the emissions of the total study area for all six pollutants.

Industrial Emissions:

- Across the total study area, Part A industries are the main emitters of PM₁₀ (44%) and VOC (47%), while Part B industries emit larger quantities of CO (50%), NO_x (40%), and SO_x (39%). Part C industries emit nearly half the CO₂ (46%).
- Within the inner suburb study area, Part A industries are the main emitters of PM₁₀ (46%), while Part B industries emit larger quantities of CO (37%), NO_x (37%), and SO_x (39%). Part C industries emit approximately 80% of VOC and over half the CO₂ (51%).
- On average, Part A industries within the inner suburb area produce approximately half of the kilogram per day figure for all pollutants except VOC (which produces approximately 20 times more per day). However on a per hectare basis, the inner suburb study area produces 1.6 times more PM₁₀ per hectare than the total study area, 1.7 times the CO₂, 1.8 times the CO and NO_x and 1.3 times the SO_x. The total study area however, produces 7 times more VOC than the inner suburb study area.
- On a kilogram per day basis, Part B industries within the inner suburb area emit 40%-50% of the kg/day figure, yet on a per hectare basis they produce 1.3 times more PM₁₀ and CO₂ than the total study area. 1.5 times the NO_x and SO_x, 1.2 times the VOC, and equal quantities of CO.
- Part C industries within the inner suburb area produce 1.8 times more PM₁₀ per hectare than the total study area, 1.7 times the NO_x and SO_x, 1.9 times the VOC and CO, and 1.1 times the quantities of CO₂. On a kilogram per day basis they produce approximately half to a third of the total study area.
- The total study area is estimated to produce approximately 1018 kilograms of PM_{10} per day or 57 grams per hectare per day whereas the inner suburb study area is estimated to produce half the total PM_{10} emissions (512 kg/day). On a grams per hectare basis, the PM_{10} emissions from industry within the inner suburb study area are 1.5 times greater than the total study area (85 g/ha/day compared to 57 g/ha/day).
- The inner suburb study area is estimated to produce nearly 50% of the total CO emissions, ~55% of the total NO_x and CO₂ emissions, 51% of the total SO_x emissions, and 35% of the VOC emissions. On a grams per hectare basis, the inner suburb study area produces 1.4 times more CO than the total study area, 1.6 times the NO_x and CO₂, and 1.5 times the SO_x. VOC emissions per hectare are the same in both the total study area and the inner suburb study area.
- On an individual suburb basis, industrial emissions vary considerably from suburb to suburb. For example, when comparing the suburb of Racecourse with the Inner, PM₁₀ emissions per hectare in the Inner City are approximately 450 times larger than those in the Racecourse. CO₂ can be as much as 350000 times larger, NO_x nearly 900 times larger, SO_x 1700 times greater, CO and VOC around 200 times larger.
- Pollutant concentrations are largely determined by the number and type of industries within a study area. Suburb areas with few or no industries tend to exhibit lower pollutant emissions per day whereas suburbs with a larger number of industries displayed higher pollutant concentrations.

- Across the total study area, ~40% of PM₁₀, CO, NO_x, and SO_x, and ~45% of VOC and CO₂ are released between the hours of 10am and 4pm on a typical winter's day. The remaining emissions are evenly spread between the three other time periods.
- Within the inner suburb study area, 34% to 39% of PM₁₀, CO, NO_x, and SO_x, 60% of VOC and 46% of CO₂ emissions are released between the hours of 10am and 4pm on a typical winter's day. With the exception of VOC, the remaining emissions are evenly spread between the three other time periods. For VOC, 25% of the emissions are released between 6am and 10am while 14% are emitted from 4pm to 10pm. 1% of VOC emissions are released from 10pm and 6am.
- On an individual suburb basis, PM₁₀, CO, NO_x, SO_x, VOC, and CO₂ emissions tended to peaked between the hours of 4pm and 10pm. In the suburbs where the peak was not between 4pm and 10pm, it occurred between 10pm an 6am.
- In ~70% of the suburbs, the next highest period of PM_{10} , CO, NO_x , SO_x , and CO_2 emissions occurred between 6am and 10am. For VOC, ~85% of the suburbs also displayed a secondary peak between 6am and 10am. Low PM_{10} , CO, and SO_x emissions were displayed between 10pm and 6am in ~75% of the suburbs. Over 80% of the suburbs displayed low NOx, CO_2 , and VOC between 10pm and 6am.

Combined Emissions:

- In the total study area and the inner suburb study area, 82% of PM₁₀ emissions to the air on a typical winter's day result from domestic solid fuel heating. Approximately 90% of nitrogen oxide emissions, ~65%-70% of CO and VOC, and nearly 60% of CO₂ emissions are derived from motor vehicles. Almost 50% of SO_x emissions stem from industry and a further third is derived from home heating.
- In 96% of the suburbs, more PM₁₀ emissions to the air on a typical winter's day result from domestic solid fuel heating than from motor vehicles or industry. Motor vehicles emit more CO. NO_x, VOC, and CO₂ than home heating or industry in 80%, 96%, 76%, and 88% of the suburbs respectively. In 13 of the 25 suburbs (52%), more SO_x is emitted from home heating than from motor vehicles or industry.
- Across the total study area, combined home heating, motor vehicle and industrial PM₁₀, CO, SO_x, VOC, and CO₂ emissions peak between the hours of 4pm-10pm. Combined NO_x emissions peak between 10am and 4pm. Combined PM₁₀ emissions are at their lowest between 6am-10am while combined CO, NO_x, SO_x, VOC and CO₂ emissions drop off between 10pm-6am.
- Within the inner suburb study area, combined PM₁₀ emissions are at their lowest between the hours of 6am and 10am. All other pollutants are at their lowest between 10pm and 6am. Combined PM₁₀, CO, SO_x, VOC and CO₂ emissions all peak between 4pm and 10pm. Combined NO_x peaks between 10am and 4pm.
- Across the individual suburbs, combined motor vehicle, solid fuel heating and industrial PM₁₀. CO, SO_x and VOC emissions peak between the hours of 4pm-10pm in over 60% of suburbs. Furthermore, for PM₁₀ the peak period between 4pm and 10pm is recorded in all suburbs but the Airport (96%). Combined CO₂ emissions peak between 4pm and 10pm in 56% of the suburbs while NO_x peaks between 10am and 4pm in all suburbs. Combined CO, NO_x, VOC and CO₂ emissions drop off between 10pm-6am in over 85% of the suburbs. 60% of the suburbs record the low period for SO_x between 10pm and 6am while 40% record it between 6am-10am. For PM₁₀ the low period for emissions is almost even between 6am-10am and 10pm-6am in 52% and 48% of the suburbs respectively.

References

Brady, T.J. & Pullen, D.R. 1985, Survey of Fuel, Energy and Air Pollution in the Christchurch Metropolitan Area, Air Pollution Section, Department of Health, Christchurch, New Zealand, 69pp.

Economopoulos, A.P. 1993: Assessment of Sources of Air, Water, and Land Pollution. Part One: Rapid Inventory Techniques in Environmental Pollution. Environmental Technology Series, World Health Organisation, Geneva, Switzerland. 187pp.

Gas Association of New Zealand Inc. 1995: Reducing Motor Vehicle Emissions through Alternative Fuels, Wellington, New Zealand. 9pp.

Inter-governmental Panel on Climate Change. 1995: IPCC Guidelines for National Greenhouse Gas Inventories. Volume 3, *Greenhouse Gas Inventory Reference Manual*, United Kingdom, 342pp.

Todd, J.J. 1994: Biomass - Improving Air Quality through Better Combustion. Solar 94 Conference, November 30 to December 3 1994, University of New South Wales, Sydney, Australia.

United States Environmental Protection Agency (USEPA). 1994, Compilation of Air Pollution Emission Factors (AP-42), Research Triangle Park, North Carolina, United States of America.

Appendices

- I Suburb Boundaries
- II Survey Questionnaires
- III Individual Suburb Results
- IV Industry Definitions
- V Process Emission Factors
- VI Aircraft Emissions

THE LIBRARY
UNIVERSITY OF CANTERBURY
CHRISTCHURCH, N.Z.

Appendix I - Suburb Boundaries

Suburb Name	Suburb Number		
Inner Suburb Study Area			
Beckenham / Sydenham	95, 107, 108		
Fendalton	48, 49, 50, 63, 65, 67		
Inner City	66, 68, 83		
Linwood	69, 70, 71, 84, 85, 86, 87		
Opawa / Woolston	96, 97, 98, 99, 100		
Riccarton	64, 78, 81		
Shirley	41, 42, 55, 56		
Spreydon / Addington	82, 92, 93, 94, 104, 106		
St Albans	38, 39, 40, 51, 52, 53, 54		
Outer Suburbs			
Addington Industrial	80		
Airport	32		
Avonhead	34, 45, 46, 47, 60, 61, 62		
Bishopdale	19, 24, 25		
Bromley	88		
Burnside / Bryndwr	26, 35, 36, 37		
Hoon Hay	91, 103, 105		
Hornby	76, 90		
Marshlands	30		
New Avonhead	33		
New Brighton	31, 43, 44, 57, 58, 72, 73, 74, 121		
Parklands	23		
Racecourse	59		
Redwood	21, 22, 27, 28, 29		
Sockburn	77		
Wigram	79		

Appendix II - Survey	Questionnaires
----------------------	----------------

Christchurch Home Heating Survey June 1995

Christchurch Home Heating Survey **June 1995**

Council to better identify domestic home heating requirements and assess the most appropriate options for the future management of air quality in This pilot survey on home heating methods in use in Christchurch has been university students employed by the Council. It is designed to assist the Christchurch. More than five hundred questionnaires have been delivered by designed by the Canterbury Regional Council and is being conducted by university students in six different areas of Christchurch City. The main purpose of the survey is to collect reliable information on methods of home heating, the types and quantities of fuel burnt by householders, and the type of appliance used. Please try to answer all questions, even if it is only an estimate. If in doubt, use answers which best describe your average use over the last year, or on a typical winters night. Sources of information will be treated with strictest confidence. A collector will call for the completed survey in approximately 7 days time during the early evening. If you have any questions about the survey or need help to fill in your answers, you can discuss them with the collector. The results from the study will appear in your community newspaper once they are available, so we'll keep you posted on our progress.

Thank You For Your Help.

Home Heating Survey

SECTION A. HEATING REQUIREMENTS

Q2. Q3.

01

94.

How many people live at your address? ____

80

CHON A. HEATING NECOINEMENTS	Q9 What age group do these people fit into?	fit into?		
	Age group Num	Number of people per age group	ge group	
Type of dwelling? (please tick)	less than 10 yrs	I		
☐ Stand alone house/Townhouse ☐ Apartment	11 to 20 yrs	I		
Separate living rooms (number) Bedrooms (number)	36 to 50 yrs			
Do you own or rent the dwelling? (please tick) \square Rented \square Privately owned	51 to 65 yrs over 65 yrs	1 1		
How old is the dwelling? (please tick) □ 10 yrs or less □ 11-20 yrs □ 21-40 yrs □ 40 yrs more than □ age unknown	Q10 Main method of winter heating: (please tick) Blectric Gas Wood fin Main living areas (if any) Main living area If other, please specify:	ဥ	Coal fire Oil	
Is the dwelling insulated. (please tick) Yes No Don't Know	SECTION B. ELECTRICITY USE	ry use		
If insulated, please indicate extent. (please tick) Yes No Don't Know	If electricity is not your main source of winter heating, please proceed to	e of winter heati	ng. please pr	oceed to
50	SECTION C.		J 2000-1 (6)	
Walls Under floor	Q11 If electricity is your main source of winter heating, do you usually use it to heat: (please tick)	e of winter heatir	ıg, do you usı	ally use
Double grazing \Box		YES	No	
Would you describe your dwelling as: (please tick)	Main living area			
	Other living areas (if any)		□ [
afty	Bedrooms	_	_	
Slightly drafty \Box Draft proof \Box	Whole house	_	-	

Q5.

90

07

212	If you use alternative or supplementary heating to electricity at any			
	time, do you use: (please tick) Gas Wood fire	SECTION D. OIL HEATING	IEATING	
	Coal fire Oil fire Solar panels	If an oil fired heating systen proceed to SECTION E.	If an oil fired heating system is not your main source of winter heating, please proceed to SECTION E.	vinter heating, please
		Q16 If an oil fired heating system is your <u>not</u>	Q16 If an oil fired heating system is your <u>main</u> source of <u>winter</u> heating, do vou usually use it to heat: (nlease tick)	of winter heating, do
)EC	SECTION C. GAS HEATING		YES	No
		Main living area		
f gas	f gas is not your main source of winter heating, please proceed to SECTION	Other living areas (if any) Bedrooms	any)	00
·.		Whole house		
213	If electricity is your <u>main</u> source of <u>winter</u> heating, do you usually use it to heat: (please tick) YES NO	Q17 Approximately how \$	Approximately how much oil do you use during a winter?	a winter?kg or
	Main living area □ □ Other living areas (if any) □ □ Bedrooms □ □ Whole house □ □	SECTION E. WOO (includes open fires, woodb bellies etc)	SECTION E. WOOD OR COAL HEATING (includes open fires, woodburners, coal ranges, incinerators, pot bellies etc)	NG ors, pot
214	If you use alternative or supplementary heating to gas at any time, do you use: (please tick) Electricity Wood fire Coal fire Oil fire Solar panels Approximately how much gas do you use during a winter?kg or \$\$\frac{\partial}{\partial}\$\$	#Note. Please answer ever home heating. Q18 What type of wood dwelling? Open fire(s) Woodburner(s) Coal Range Incinerator Pot Belly	#Note. Please answer even if wood/coal heating is not your main method of home heating. Q18 What type of wood or coal burning appliances do you have in your dwelling? Tick Number of appliances Open fire(s) Woodburner(s) Coal Range Incinerator	t your main method of do you have in your appliances
		6		ı

Q20

Q21

619

Q22

Concern about air pollution Other (please specify)

Access to cheap fuel

Q28	Q28 How adequate is the heat output from your wood or coal burning	
	Appliance for the area it was instance to hear? (Piedse iten) Main Appliance Second Appliance Other Appliances Just right \[\Boxed{\omega} \] Too hot \[\Boxed{\omega} \] Not adequate \[\Boxed{\omega} \]	Q31 Any general comments about home heating that you would like to add:
029	If you have a woodburner, please indicate the following (most information should be contained on the label): Name: Model: Heat Output Approximate year of installation: (please tick)	
	More that 10 years ago (before 1985)	Thank You For Your Time In Completing This Questionnaire If for any reason you miss or collector, please post this survey back to the
SE	SECTION F. CHOICE OF HOME HEATING AND GENERAL COMMENT	"Home Heating Survey" Canterbury Regional Council
030	What are the main factors which influence your choice of home heating methods: (please tick as many as you feel important) Cost Convenience Comfort Appearance Effective heating Risk of power cuts	58 Kilmore Street PO Box 345 Christchurch.

30 October	1995			Code: 4157/LD
		HOME HEATING	SURVEY	
Introduction	are conduct	ng/afternoon/evening. My na ing a very brief survey on be heating needs in Christchur	half of the Canterbury Regi	
	Could I ple	ase speak to the person who	owns or is responsible for re	enting this house?
	(If necessar	y say: the survey will honest	tly only take 5 minutes)	
	Is now a co	nvenient time, or can I make	e an appointment to call back	k later?
Appointmen	nt call back:	Time:		
••		Date:		
		Respondent's first name:		
		presentative spread of street suburb you live in?	ets and suburbs throughout	Christchurch can I
Suburb		Stree	eet	
(Check sub	urb quota, if not	in quota close with thanks.)		
•	_	energy sources do you <u>norm</u> COLUMN Q1 BELOW.	nally use to heat your main l	iving area in
Don't read	Natural Gas LPG Coal Wood Solar Oil Heater - oil Oil Heater - ele Some other me	Q1	#	-
			100% CHECK PERCENTAGE AI	DDS TO 100
			CLIECK LENCENTAGE AL	2010100

IF MORE THAN ONE METHOD USED ASK Q2 O OTHERWISE GO TO Q3

Q2. You said you use (all methods used). Approximately what percentage or the time would you use (Read out each method used). WRITE IN PERCENTAGES (2 DIGITS) IN COLUMN "Q2" above).

CHECK BACK TO Q1. IF WOOD (05*) OR COAL (04') CODED ASK Q3 OTHERWISE GO TO Q4

	Wood	Coal
Open fire/visor	1	1
Woodburner	2	2
Juno/Coal Range/Coal Burner	3	3
Pot Belly	4	4

Christchurch Inventory of Total Emissions

	Other (Please spec	ify)	8	8		
Don't read	Don't know	• • • • • • • • • • • • • • • • • • • •	9	9		
CHECK BACK TO Q1/Q2. IF ELECTRICITY, (CODE 01#) IS NOT USED AS THE ONLY OR MAIN SOURCE OF HEATING IN THE MAIN LIVING AREA ASK Q4 OTHERWISE ASK Q5.						
	ORMS OF HEATING T Q3 ASK Q4	CODED AT Q3 AS	K Q4, AND FOR ANY O	F CODES 02, 03 OR 07		
Q4. How main winter?	any of the following	g heating appliances	do you normally use to	o heat your main living area		
	Woodburner Juno/Coal Range/C Pot Belly Non electric oil he Gas heater	Coal Burnerater				
Q5. On the	•	wood to heat your n	_	$SE \Rightarrow Q7$ er, how much wood do you		
If necessary		- number of logs/p: - kilograms?	eces?			
	Don't know		9			
Q6. Where of	Wood merchant Other (Please state		02			
Q7. On the o		coal to heat your m	7, OTHERWISE ⇒ Q8 nain living area in winte	er, how much coal do you		
If necessary:		- number of bucket - number of bags? - kilograms?	s?			
	Don't know		9			

	CK TO Q1, IF <u>EVER</u> HEA OTHERWISE GO TO Q9.	T MAIN LIVING AREA USING WOOD AND/OR COAL (CODES 04,
-	of the following times do ad out. Code all that appl	you normally heat your main living area using wood/coal in y.
	Day time (sometime du Evening (sometime dur	ing 6arn-10am)
	Don't know	9
	CK TO Q1, IF <u>EVER</u> HEA COAL ASK Q9. OTHERW	T MAIN LIVING AREA BY USING ANYTHING OTHER THAN ISE GO TO Q10
electricity/g	0	you normally heat your main living area in winter using/either ner" (methods coded at Q1)?
	Day time (sometime du Evening (sometime dur	ing 6arn-10am)
	Don't know	9
Q10. Appro	eximately how old is the l	nouse or dwelling that you are presently living in?
	Approximately 50-100 Approximately 40 years Approximately 20 years Approximately 10 years Approximately 5-9 year Approximately 5-9 year Approximately 3-4 year Approximately 1-2 years Approximately 1	old (built 1890's or earlier)
	Don't know	99
-	-	st name. We ask this because our supervisor checks a percentage is not to identify you with the data. (Record first name only)
Record tele	phone Number:	Date:
interview m		ting in this survey. Should you have any queries regarding this MRL Research Group. My field manager is (give
"I hereby c instructions		nd accurate record of the survey carried out by me according to
INTERVIE	WER'S NAME:	PHONE:
INTERVIE	WER NUMBER:	DATE:

Telephone Home Heating - Domestic Wintertime Emissions To Air Questionnaire

		Questionnaire Code
Introd	uction:	
Good	morning/afternoon/evening	. My name is () and I am from ().
		survey on behalf of the () to assess
	heating needs.	·
	5	
Could	I please speak to the perso	on who owns or is responsible for your house?
Is now	a convenient time, or can	I make an appointment to call back later?
Appointment Call Back:		Time:
Appointment Can Back.		Date:
		Respondent's first name:
		respondent s mot hame.
To ens	sure we have a representa	ative spread of streets and suburbs throughout ()
	lease ask which street and	
carrip	lease ask which street and	a Sabarb you live iii:
Suburb		(Check suburb quota, if not in quota
		close with thanks)
011001_		oloos with thanks,
Q1.	How old is the dwelling?	
	10yrs or less	
	11-20yrs	
	21-40yrs	
	40yrs or more	
	age unknown	
	-g	
Q2.	What percentage of time	e do you usually use the following energy sources to heat your main
	rea in winter? (read out)	and the second s
Ü	` '	
	Electricity (including oil co	olumn heaters)
	Gas (including LPG)	
	Coal	
	Wood	
	Oil fire	
	Solar	
		100% (Check percentages add to 100%)
		13575 (311531 por 3511 lag 55 add 15 10070)

- If wood and/or coal are used as home heating energy sources (Q2.), then ask Q3., otherwise proceed to Q4.
- If electricity is not listed in Q2. as 100% then ask Q4, otherwise proceed to Q11.

Q3.	You mentioned that you (read out and tick approp		coal to heat your main living area. Is this on a
		Wood	Coal
	Open fire/Visor		
	Woodburner		
	Juno/Coal Range		
	Pot Belly		
	Incinerator		
Q4. typical	How many of the followir winters day?	ng appliances do you	u normally use to heat your main living area on a
	Open fire/Visor	_	
	Woodburner		
	Juno/Coal Range		
	Pot Belly		
	Incinerator		
	Non electric oil heater		
	Gas heater	_	
Q5.		use a woodburner	to heat your main living area. What year was it
	D (1005	_	
	Before 1985		
	1985 - 1989		
	1990 - 1993		
	Since 1993		
	Date unknown		
Q6.	On the days when you us	se wood to heat you	ır main living area in winter, please estimate how
much v	wood you normally burn pe		
	Split logs	_	number of logs
	Sawmill offcuts		number of pieces
	Timber offcuts		number of pieces
	Wood		kilograms
	neck Q2. to see if coal is occeed to Q8.	used as a home he	eating energy source. If it is ask Q7., otherwise

	BucketsI	number of buck	cets	
			sweight o	of bag (kg)
		kilograms		3 (13)
What typ	e of coal do you use?			
	ck Q2. to see if gas is used as a hor eed to Q9.	me heating end	ergy source. If it i	is ask Q8., otherwise
	Please estimate how much gas you u or detail)	se per week t	o heat your main	living area in winter.
	Gas Gas		ograms Ilars	
• Chec	ck Q2. to see if oil is used as a home he	ating energy s	ource. If it is ask Q	9., otherwise proceed
Q9. I	Please estimate how much oil you use p il)	er week to hea	at your main living	area in winter. (probe
	Oil Oil	litro	es Ilars	
• Chec	ck Q2., if wood and/or coal is used to he	eat the main livi	ing area ask Q10.,	otherwise proceed to
	Which of the following times do you al? (read out)	normally heat	your main living	area in winter using
M C E	Monday to Friday Morning (sometime between 6am - 10ar Day time (sometime between 10am - 4p Evening (sometime between 4pm - 10pr Dver night (sometime during 10pm - 6ar	m) n)		
1	Saturday and Sunday Morning (sometime between 6am - 10ar Day time (sometime between 10am - 4p Evening (sometime between 4pm - 10pr	m)		

	neck Q2., if other energy sources are ever unerwise proceed to Q12.	used to heat	the n	nain liv	ving ar	ea in v	wint	er ask	Q11.,
Q11. electric	Which of the following times do you no city/gas/oil/ other? (read out)	ormally heat	your	main	living	area	in	winter	using
	Monday to Friday								
	Morning (sometime between 6am - 10am)								
	Day time (sometime between 10am - 4pm								
	Evening (sometime between 4pm - 10pm)								
	Over night (sometime during 10pm - 6am)								
	Saturday and Sunday								
	Morning (sometime between 6am - 10am)								
	Day time (sometime between 10am - 4pm)							
	Evening (sometime between 4pm - 10pm)								
	Over night (sometime during 10pm - 6am)								
Q12. What a	How many people live at your address? age group do these people fit into?								
	Age Group	No. of Peo	ple pe	er Age	Grou	n			
	10yrs or less		pio pi	,, , , , g c	4.04	۲			
	11-20yrs								
	21-35yrs								
	36-50yrs								
	51-65yrs								
	66yrs or more								
Q13.	Could we please record your first name a	nd telephone	e num	iber so	that v	ve ma	ıy c	ontact	you if
our su	pervisor requires clarification regarding your	replies to thi	s surv	ey?					
	First name	Telephone	numb	er					
	Surveyor	Today's dat	e						

Christchurch Emissions Inventory - Industrial Questionnaire

27 44 72 27 44 72 27 44 72 72 27 44 72 72		ſ						Q	uestion	naire C	Code	<u></u>
Comp	any N	ame										
CRC	Permit	No (if	known)):								
Plant	Addres	ss:										
Subu	rb											
Posta	i Addre	ess										
Subu	rb					Cit	ty					
Perso	n com	pleting	Quest	ionnair	e							
							x No					
						· · · · · · · · · · · · · · · · · · ·	l found					
_		ple pro	•					<i>y</i> , σ.σ.				
Opera	ating S	Schedu	ıle									
Q2.	Month	ns of th	e year	(cros	s out r	nonth(s) <u>not</u>	operat	ting)			
JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DE	0
Q3.	Days	of the v	week:	(cross	out da	ay(s) <u>n</u>	ot ope	rating))			
MON	TUE	WED	THU	FRI	SAT	SUN						
Q4.	Hours	of the	day: (cross d	out ho	ur(s) <u>n</u>	ot ope	rating))			
am	1	2	3	4	5	6	7	8	9	10	11	12(noon)
pm	1	2	3	4	5	6	7	8	9	10	11	12(midnight)

Q5. Seasonal variation:

If production varies throughout the year for any reason please indicate the approximate production as a percentage of a full year, for the four periods below. e.g. Jan-Mar 30%, Apr-Jun 20%, Jul-Sep 10%, Oct-Dec 40%

JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC

Major Materials

Q6. Please estimate the annual consumption of major raw materials (tonnes/year, litre/year, kilogram/year, etc.)

Raw Materials Consumed	Annual Quantity
1.	
2.	
3.	
4.	
5.	
6.	
7.	

Q7. Please estimate the annual production of major manufactured products (tonnes/year, litre/year, kilogram/year, etc.)

Manufactured Products	Annual Quantity
1.	
2.	
3.	
4.	
5.	
6.	
7.	

Fuel Combustion Emissions

Q8. Estimate the percentage of fuel combustion throughout the **week**. The example shown indicates a constant use Monday to Friday with no weekend usage.

Q9. Estimate the percentage of fuel combustion throughout the **day** (please note the use of a 24 hour clock). The example shown indicates a constant use of full power and then at 40% from 2pm to 6pm.

Stack Emissions

Q10. If emissions to the air from your stack are known or can be estimated, please list below. If unknown, please write "unknown".

Stack number & Height ^a (in m)	Compounds discharged ^b	Discharge rate ^c (if known)	Type of emission control ^d
1.			
2.			
3.			
4.			
5.			
6.			
7.			

a) height above ground in metres

Storage Tank Losses

Q11. Storage tanks containing volatile organic compounds (VOCs) (e.g. fuel oil, diesel, petrol, CNG, paint thinners, solvents etc.)

Tank	Tank	type	Capacity	Yearly tank throughput	Fuels, solvents or	Process where solvent	Estimated annual losses
No.	above ground	below ground	(kilolitres)	(kilolitres)	gases stored	is used ^a	(kg or litres)

a) e.g. vehicle refuelling, metal degreasing, spray painting etc.

Waste Combustion

Q12. Please estimate the amount of waste burnt at the premises for each quarter.

	(tonnes	/season		Type of incinerator ^b used	Operating hours	Days per year
JAN-MAR	APR-JUN	JUL-SEP	OCT-DEC			
	JAN-MAR	(tonnes or kg/s	Amount incinerated (tonnes/season or kg/season) JAN-MAR APR-JUN JUL-SEP	(tonnes/season or kg/season)	Amount incinerated of incinerator or kg/season used	Amount incinerated of Operating (tonnes/season incinerator hours or kg/season) used

a) e.g. wood, paper, rubber, car tyres, 'off-spec' product (please specify)

Surface Coating Operations

Q13. Please estimate annual consumption of paints, lacquers and solvents used for surface coating. (attach separate list if necessary)

b) CO, particulates (PM10 if known), NOx, VOCs (specify compounds if known), SOx, and CO2

c) mass/unit time e.g. kg/hr, tonne/year

d) e.g. baghouse, electrostatic precipitator, scrubber etc.

b) e.g. multiple chamber, single chamber, trench, flue fed single chamber, 'domestic single chamber, etc.

Coating type ^a	Coating product name	Percentage volatile organics (if known)	Annual consumption (in L)	Type of emission control ^b	Percentage ^b control efficiency
		based thinners (su			

Fugitive Emissions - valves, seals and flanges
Q14. Please estimate the annual losses from valves, seals, and flanges (specify compounds if known).
Fugitive Losses - open air processing This can include a wide range of processes not covered elsewhere in this questionnaire e.g. painting, wastewater treatment, fuel transfer operations etc.
Q15. Please estimate the annual losses from open air processing (specify compounds if known)
Other Emissions and Processes Any emissions from processes which have nor been considered elsewhere.
Q16. Special processes, describe the process and estimate annual emissions
Q17. Comments

a) Solvent based, water based, thinners (so b) If control of volatile vapour is employed

Appendix III - Individual Suburb Results

Addington Industrial

	Daily F	Daily Fuel Quantity	antity		PM ₁₀			ဗ			Š			sox			VOC			SO	
	kg/day t/day	t/day	% asn	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Open fire																					
- Wood	489	0.5	37	7	32	17	59	256	36	_	4	29	0	0		15	64	36	832	3624	8
- Coal	369	0.4	42	12	53	29	22	96	4	_	2	20	7	29	4	9	24	14	1032	4496	22
Pre 1989 Woodburner																					
- Wood	143	0.1		2	00	4	15	64	6	0	-	7	0	0	0	4	91	6	244	1061	5
-Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner																					
- Wood	358	0.4	27	7	=	9	20	98	12	0	_	01	0	0	0	5	22	12	609	2653	13
-Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	287	0.3	22	2	7	4	14	59	8	0	_	7	0	0	0	3	15	∞	487	2123	10
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	44	0.0	3	_	3	_	5	22	3	0	0	2	0	0.	0	_	5	3	74	324	2
-Coal	519	0.5	58	91	71	38	30	129	18	_	3	56	6	41	58	7	32	18	1452	6328	31
Pot Belly																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator									-												
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	1321	-		14	19	33	113	187	89	c	1	2	c	-		00	123	89	37.76	0787	-
Total Coal	887	0.0		28	124	67	52	226	32	1	. 4	46	9	70	2 86	2 2	27	3 6	2484	10825	53
Total Gas	99	0.1		0	0		0	0		. 0	. –	2	0	2 0) c	2 0	1	165	718	,
Total O:1	0.9							. <		. <			0 0) -		, (
Total Oil	00	0.1		0	0		0	D		D	-		0	_		0	0		761	83/	
Total (Wood and Coal only)	2208	2		42	185	100	163	712	001	3	12	100	91	71	100	14	178	100	4730	20609	100

									Pollutan	+								
		PM ₁₀			၀			Š			SOx			VOC			CO2	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total		g/ha	% Total
Light duty <3.5t petrol vehicles	7	31	29	2216 9655	9655	96	861	864	49	_	4	5	454	8261	83		149438	69
Light duty <3.5t diesel vehicles	_	3	3	4	19	0	3	12	_	_	2	2	7	6	0		9168	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	2	21	0	9	26	-	0	0	0	9	56	_		4257	2
Heavy duty >3.5t petrol vehicles	-	3	3	140	609	9	6	39	7	0	0	0	14	19	3		7394	3
Heavy duty >3.5t diesel vehicles	91	69	64	74	321	3	184	801	46	81	11	87	59	256	=		45666	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	2	21	0	****	9	0	0	0	0	2	=	0	242	1054	0
2&4 stroke petrol motorcycles	0	0	0	91	72	_	0	-	0	_	2	3	7	32	-		354	0
Total	25	108	001	2460 1071	10717	100	401	1749	100	20	88	100	544	2372	100	49819	217078	100

Part A kg g/ha Combustion 0.1 0.3 Other Processes 0.0 0.0 Sub-total 0.1 0.3	% Total									_					1	
ustion 0.1 Processes 0.0 0.1 0.1	1	kg	g/ha	% Total	kg	g/ha	% Total									
nstion 0.1 Processes 0.0 0.1 0.1																
Processes 0.0	7	0.1	9.0	6	9.0	2.5	=	8.0	3.6	17	0.0	0.2		6.179	2928.3	44
0.1	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
	7	0.1	9.0	6	9.0	2.5	=	8.0	3.6	17	0.0	0.2	_	6.11.9	2928.3	44
Part B																
Combustion 0.1 0.3	∞	0.2	0.7	=	0.7	3.2	14	1.0	4.6	21	0.0	0.2	-	844.2	3679.1	99
Other Processes 0.3 1.3	33	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total 0.4 1.6	42	0.2	0.7	=	0.7	3.2	14	1.0	4.6	21	0.0	0.2	-	844.2	3679.1	99
Part C																
Combustion 0.5 2.0	52	1.3	5.5	81	3.9	16.9	75	3.0	13.1	19	0.2	1.0	4	0.0	0.0	0
Other Processes 0.0 0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	5.2	22.7	94	0.0	0.0	0
Sub-total 0.5 2.0	52	1.3	5.5	81	3.9	6.91	75	3.0	13.1	19	5.4	23.7	86	0.0	0.0	0
Total																
Combustion 0.6 2.5	. 19	9.1	8.9	100	5.2	22.7	100	4.9	21.3	100	0.3	1.4	9	1516.1	6607.4	100
Other Processes 0.3 1.3	33	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	5.2	22.7	94	0.0	0.0	0
Total 0.9 3.8	100	9.1	8.9	100	5.2	22.7	100	4.9	21.3	100	5.5	24.1	100	1516.1	6607.4	100

kg Home Heating																		
	LL.	PM ₁₀			၀			Ň			so _x			VOC			CO2	
Home Heating		g/ha °	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
6am-10am	3	13	4	6	40	0	0	-	0	-	9	3	2	10	0	317	1381	
10am-4pm 5	2	22	7	18	79	_	0	pausa	0	2	6	S	5	20	_	617	2690	-
4pm-10pm 28	8:	123	42	118	514	4	2	6	0	01	43	24	29	128	2	3162	13776	5
10pm-6am 6	9	26	6	8	62	_	0	2	0	3	12	7	5	20	-	634	2762	-
Total 42	12	185	62	163	712	9	3	12	_	91	71	39	41	178	7	4730	20609	∞
Motor Vehicles																		
6am-10am 5	2	24	00	542	2357	21	88	385	22	4	19	=	120	522	20	10979	47736	18
10am-4pm 11		50	17	1135	4937	43	185	908	45	6	41	23	251	1093	42	23000	66666	38
4pm-10pm 7	7	29	10	664	2888	25	801	471	56	2	24	13	147	639	25	13452	58489	22
10pm-6am	1	5	2	118	513	4	61	84	2	-	4	2	26	113	4	2388	10383	4
Total 25	25	108	36	2460	10694	93	401	1745	86	20	88	49	544	2367	92	49819	216606	82
Industry																		
6am-10am 0	0	_	0	0	2	0	-	9	0	_	2	3	-	9	0	1515	6603	3
10am-4pm		2	-	_	4	0	3	14	-	3	13	7	3	15	_	3768	16423	9
4pm-10pm 0	0	0	0	0	-	0	-	3	0	_	3	_	_	3	0	739	3223	-
10pm-6am 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	-	4	1	2	7	0	5	23	-	5	21	12	9	24	_	6023	26249	01
Combined Total																		
6am-10am 9	6	38	13	552	2404	21	06	392	22	7	31	17	124	539	21	12811	55833	21
10am-4pm 17	17	74	25	1155	5032	44	189	823	46	15	63	35	259	1130	44	27386	119350	45
4pm-10pm 35	15	153	52	782	3409	30	Ξ	484	27	91	70	39	177	772	30	17354	75629	29
10pm-6am 7	7	31	11	136	593	5	20	85	5	4	91	6	31	134	5	3022	13170	5
Total 68	89	297	100	2625	11438	100	409	1785	100	41	180	100	165	2575	100	60572	263982	100

Christchurch Inventory of Total Emissions

Airport			-			-												ĺ			
	Daily Fuel Quantity	uel Or	antity		PM ₁₀						Š										
	kg/day t/day Use %	t/day	% esn	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Open fire - Wood	55	0.1	=	_	0	9	7	3	12	0	0	10	0	0	0	2	-	12	94	45	9
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pre 1989 Woodburner																					
- Wood	147	0.1	59	2	-	15	15	7	26	0	0	22	0	0	_	4	2	26	250	120	91
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner																					
- Wood	49	0.0	01	0	0	3	3	_	2	0	0	4	0	0	0	_	0	2	83	40	2
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	147	0.1	29		0	7	7	3	12	0	0	10	0	0	_	7	_	12	250	120	91
-Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	89	0.1	13	_	0	00	00	4	14	0	0	=	0	0	0	7	-	4	116	55	00
-Coal	198	0.2	83	9	3	48	=	2	20	0	0	30	4	2	81	3		20	554	266	36
Pot Belly																					
- Wood	38	0.0	00	-	0	4	4	2	∞	0	0	9	0	0	0	-	_	00	65	31	4
- Coal	40	0.0	17	_	_	01	2	-	4	0	0	9	_	0	91	_	0	4	Ξ	53	7
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	505	0.5		5	8	42	44	21	92	_	0	64	0	0	7	=	5	92	858	411	99
Total Coal	238	0.2		7	4	58	14	7	24	0	0	36	4	2	86	3	2	24	999	319	44
Total Gas	23	0.0		0	0		0	0		0	0		0	0		0	0		57	27	
Total Oil	4	0.0		0	0		0	0		0	0		0	0		0	0		46	22	
					,						,										
Total (Wood and Coal only)	743	-		13	9	001	57	27	001	-	0	001	4	2	001	14	7	100	1524	730	001

consession and a formation of the transporters

		PM10		}	8			Ň			SOx			VOC			C02	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	0.7	0.4	2	1.9	6.0	78	8.0	3.8	78	10.5	5.0	77	0.5	0.5	=	9210.0	4411.7	16
Other Processes	41.3	8.61	86	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	42.0	20.1	66	6.1	6.0	78	8.0	3.8	78	10.5	5.0	77	0.5	0.2	=	9210.0	4411.7	91
Part B																		
Combustion	0.1	0.0	0	0.2	0.1	7	0.7	0.4	7	1:1	0.5	∞	0.0	0.0	-	862.1	412.9	6
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	1.3	9.0	53	0.0	0.0	0
Sub-total	0.1	0.0	0	0.2	0.1	7	0.7	0.4	7	Ξ	0.5	∞	1.3	9.0	30	862.1	412.9	6
Part C																		
Combustion	0.1	0.1	0	0.3	0.2	14	1.5	0.7	15	2.1	1.0	91	0.1	0.0	7	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	5.6	1.2	57	0.0	0.0	0
Sub-total	0.1	0.1	0	0.3	0.2	14	1.5	0.7	15	2.1	1.0	91	2.7	1.3	59	0.0	0.0	0
Total																		
Combustion	1.0	0.5	2	2.4	-:	100	10.3	4.9	100	13.7	9.9	100	9.0	0.3	4	10072.1	4824.7	100
Other Processes	41.3	8.61	86	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	3.9	1.9	98	0.0	0.0	0
Total	42.2	20.2	100	2.4	1.1	100	10.3	4.9	100	13.7	9.9	001	4.5	2.2	100	10072.1	4824.7	100

									Pollutant	Itant								
		PM ₁₀			ပ္ပ			Ň			so _x			VOC			CO2	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	-	-	_	2	3	0	0	0	0	0	0	_	_	-	0	146	70	0
10am-4pm	3	7	3	=	5		0	0	0	-	-	3	3	-	0	350	168	0
4pm-10pm	7	3	00	35	17	2	-	0	0	2		4	6	4	-	870	417	_
10pm-6am	-	-	-	9	3	0	0	0	0	0	0	_	-	-	0	157	75	0
Total	13	9	14	57	27	3	_	0	0	4	2	8	14	7	2	1524	730	
Motor Vehicles																		
6am-10am	6	4	6	478	229	22	204	86	22	∞	4	15	138	99	22	20038	9597	20
10am-4pm	17	∞	18	924	443	42	394	189	43	15	7	28	268	128	42	38757	18562	38
4pm-10pm	12	9	12	620	297	28	265	127	29	10	5	19	180	98	28	26014	12459	25
10pm-6am	7	-	2	108	52	5	46	22	2	7		3	31	15	2	4534	2172	4
Total	40	61	42	2130	1020	62	606	435	66	34	16	99	617	296	16	89343	42789	87
Industry																		
6am-10am	=	2	=	-	0	0	2	_	0	3	2	9	_	_	0	2689	1288	3
10am-4pm	26	13	28	-	_	0	5	2	0	9	3	12	3	-	0	5240	2510	5
4pm-10pm	5	3	9	-	0	0	7	-	0	3	2	9	_	0	0	2830	1356	3
10pm-6am	0	0	0	0	0	0	_	0	0	_	0	2	0	0	0	1037	497	_
Total	42	20	45	2	-	0	10	5	1	14	7	56	5	2	-	11796	5651	=
Combined Total																		
6am-10am	21	10	22	484	232	22	206	66	22	=	5	22	141	<i>L</i> 9	22	22873	10956	22
10am-4pm	47	22	49	937	449	43	399	161	43	23	=	43	273	131	43	44347	21243	43
4pm-10pm	24	12	25	959	314	30	268	128	29	15	7	50	189	91	30	29714	14234	29
10pm-6am	3	2	4	114	55	5	47	23	5	3	2	9	33	91	5	5729	2744	9
Total	95	45	100	2190	1049	100	920	441	100	52	25	001	636	305	100	102663	49177	100
																-		-

Contistend on thremony by votal semissions

125

Avonhead											-				The second second						
	Daily Fuel Quantity	uel Qu	antity		PM ₁₀			00			NOx			so _x			VOC			CO2	
	kg/day t/day Use %	t/day	% esn	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Open fire																					
- Wood	1758	8.	=	26	36	9	211	290	=	3	4	6	0	0	0	53	73	=	2989	4113	9
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pre 1989 Woodburner																					
- Wood	6264	6.3	39	80	110	19	641	883	34	6	12	28	-	7	-	160	221	34	10650	14657	22
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner																					
- Wood	1566	1.6	10	Ξ	15	3	98	119	2	_	2	4	0	0	0	22	30	5	2662	3664	2
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	3132	3.1	61	18	25	4	148	203	∞	2	3	7	-	_	0	37	51	∞	5325	7328	=
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	2172	2.2	13	31	43	7	249	342	13	3	5	=	0	-	0	62	98	13	3693	5083	∞
- Coal	6315	6.3	83	199	273	47	361	497	16	6	12	56	114	156	81	06	124	19	17682	24335	36
Pot Belly																					
- Wood	1212	1.2	∞	17	24	4	139	191	7	2	3	9	0	0	0	35	48	7	2061	2837	4
- Coal	1263	1.3	17	40	55	6	72	66	4	7	7	9	23	31	91	18	25	4	3536	4867	7
Incinerator			•																		
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	16106	16.1		184	254	44	1474	2029	77	20	28	65	~	4	2	368	507	11	27380	37682	56
Total Coal	7578	7.6		238	328	99	433	597	23	Ξ	15	35	136	188	86	108	149	23	21218	29202	44
Total Gas	725	0.7		0	0		0	0		-	2		0	0		0	0		1813	2496	
Total Oil	460	0.5		-	_		0	0		-	_		7	2		0	0		1472	2026	
Total (Wood and Coal only)	23684	24		423	582	001	1907	2625	100	31	43	001	140	192	100	477	959	100	48598 66884	66884	100
																				}	

						:			Pollutant	<u>+</u>								
		PM ₁₀			္ပ			Ň			SOx			VOC			CO	
	kg	g/ha	g/ha % Total kg	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	29	40	29	8871	12209	06	825	1136	49	4	9	5	1833	2522	83	140970	194014	69
Light duty <3.5t diesel vehicles	3	4	3	81	25	0	12	91	,	4	9	2	∞	12	0	8411	11575	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	19	27	0	25	34	_	0	0	0	24	33	_	4016	5526	7
Heavy duty >3.5t petrol vehicles	3	5	3	899	782	9	38	52	2	0	0	0	57	78	3	6975	9599	3
Heavy duty >3.5t diesel vehicles	65	06	65	295	406	3	765	1053	46	72	100	87	236	324	=	43079	59288	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	61	27	0	9	∞	0	0	0	0	10	14	0	994	1368	0
2&4 stroke petrol motorcycles	0	0	0	19	93	_	_	-	0	7	8	3	30	42	-	334	459	0
Total	101	139	100	8958 13568	13568	100	1671	2300	001	83	114	100	2198	3025	100	204777	281830	100

		PM10			္ပ			NOx			SOx			VOC			C02	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part B																		
Combustion	129.1	177.6	95	114.6 157.6	157.6	16	141.6	194.9	16	275.4	379.1	91	6.9	9.5	96	81276.7 111854.6	11854.6	100
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	129.1	177.6	95	114.6	157.6	62	141.6	194.9	16	275.4	379.1	16	6.9	9.5	96	81276.7 111854.6	11854.6	100
Part C																		
Combustion	6.4	8.9	2	3.6	5.0	3	13.5	9.81	6	26.3	36.3	6	0.3	6.4	4	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	6.4	8.9	5	3.6	5.0	3	13.5	18.6	6	26.3	36.3	6	0.3	0.4	4	0.0	0.0	0
Total																		
Combustion	135.5	135.5 186.5	100	118.2	162.6	100	155.1	213.5	100	301.8	415.3	100	7.2	6.6	100	81276.7 111854.6	111854.6	100
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Total	135.5	135.5 186.5	100	118.2	162.6	100	155.1	213.5	100	301.8	415.3	100	7.2	6.6	100	81276.7	81276.7 111854.6	100

Kg g/ha % Home Heating 39 54 6am-10am 104 143 4pm-10pm 237 326 10pm-6am 43 59 Total 423 582	% Total 6 16 36 7	kg	5			014	-			-					00	
Heating kg g/ha n-10am 39 54 nm-4pm 104 143 n-10pm 237 326 nm-6am 43 59 423 582	6 Fotal 6 36 7 7 64	,	2			Š	_		Š			VOC			ŝ	
Heating 39 n-10am 39 nm-4pm 104 n-10pm 237 nm-6am 43	6 16 36 7 64		g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
m-10am 39 m-4pm 104 n-10pm 237 m-6am 43	6 16 36 7 64															
m-4pm 104 n-10pm 237 nm-6am 43	16 36 7 64	170	234	_	3	4	0	14	19	3	42	58	2	4661	6415	_
n-10pm 237 nm-6am 43 423	36 7 64	371	510	3	7	6	0	43	59	00	93	128	3	11172	15376	3
m-6am 43 423	7 64	1187	1634	10	19	56	-	19	93	13	297	408	=	27745	38185	00
423	64	180	247	2	3	4	0	15	21	3	45	62	2	5020	6069	-
		1907	2625	91	31	43	2	140	192	27	477	959	81	48598	66884	14
Motor Vehicles																
6am-10am 22 31	3	2208	3037	61	360	496	19	18	25	3	489	672	81	44723	61517	13
10am-4pm 45 62	7	4503	6193	38	735	1011	40	37	51	7	266	1371	37	91201	125449	27
4pm-10pm 29 40	4	2914	4008	25	476	654	56	24	33	5	645	887	24	59016	81178	17
10pm-6am 4 6	_	235	323	2	100	138	5	4	2	-	89	94	3	9837	13531	3
Total 101 139	15	6586	13561	83	1671	2299	06	83	114	91	2198	3023	82	204777	281674	09
Industry																
6am-10am 30 41	4	23	32	0	38	52	2	75	104	14	_	2	0	18387	25305	5
	∞	40	55	0	92	104	4	154	211	50	2	3	0	33930	46696	10
4pm-10pm 33 46	5	29	40	0	37	51	2	72	66	14	2	2	0	21188	29159	9
10pm-6am 17 23	3	56	36	0	5	9	0	_	-	0	2	3	0	14719	20257	4
Total 135 186	21	811	163	-	155	213	∞	302	415	58	7	10	0	88225	121417	26
Combined Total																
6am-10am 91 125	14	2401	3304	20	401	552	22	107	147	20	532	733	20	67771	93268	20
10am-4pm 205 282	31	4913	19/9	41	817	1125	44	234	322	45	1001	1502	4	136303	187583	40
4pm-10pm 299 412	45	4130	5684	35	531	731	29	164	225	31	943	1298	35	107949	148562	32
10pm-6am 64 89	10	440	909	4	108	148	9	20	28	4	115	158	4	29577	40704	6
Total 659 907	100	11884	16355	100	1857	2556	100	525	722	100	2682	3691	001	341601	470117	100

beckennam/sydennam	Daily F	Daily Fuel Quantity	lantity		PM ₁₀			ဗ			NO			SO			VOC			လွ	
	kg/day t/day Use %	t/day	Use %	kg		% Total	kg	_	% Total	kg		% Total	kg		% Total	kg		% Total	kg		% Total
Open fire - Wood	11507	11.5	61	173	311	47	1381	2489	63	19	34	58	2	4	3	345	622	63	19561	35265	45
- Coal	3868	3.9	100	128	230	34	232	418	=	9	10	<u>∞</u>	70	126	95	58	105	=		19527	25
Pre 1989 Woodburner														-							
- Wood	3714	3.7	20	48	98	13	380	989	17	5	6	16	_	_	_	95	171	17	6313	11381	15
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner																					
- Wood	1238	1.2	7	6	15	2	89	123	3	_	2	3	0	0	0	17	31	3	2104	3794	2
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	2476	2.5	13	15	26	4	117	211	5	2	3	2	0	-	_	53	53	S	4209	7887	10
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pot Belly																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	18934	18.9		243	439	99	1946	3509	68	27	48	82	4	7	'n	487	877	68	32188	58027	75
Total Coal	3868	3.9		128	230	34	232	418	=	9	10	18	70	126	95	58	105	=	10831	19527	25
Total Gas	995	1.0		0	0		0	_		7	4		0	0		0	0		2487	4483	
Total Oil	247	0.2		0	-		0	0		-	_		_	7		0	0		161	1425	.,
Total (Wood and Coal only)	22802	23		371	699	100	2178	3927	001	33	59	001	73	132	100	545	982	100	43019	77554	001

consociones services of rome timesocons

							-	Pollutani	_								
	PM ₁₀	10		ပ္ပ			Š			SOx			VOC			CO	
æ	kg g/h	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles 2	23 42	29	7076	7076 12757	90	629	1187	49	3	9	5	1462	2636	83	112469	202756	69
Light duty <3.5t diesel vehicles	3 5	3	14	26	0	6	17	_	3	9	2	7	12	0	6710	12097	4
Light duty <3.5t LPG/CNG vehicles	0 0	0	15	28	0	20	35	_	0	0	0	-61	35	_	3204	5775	2
Heavy duty >3.5t petrol vehicles	3 5	3	454	818	9	30	55	2	0	0	0	45	82	3	5564	10032	3
Heavy duty >3.5t diesel vehicles	52 94	99	236	425	3	610	1100	46	58	104	87	188	339	=	34369	61959	21
Heavy duty >3.5t LPG/CNG vehicles	0 . 0	0	15	28	0	5	∞	0	0	0	0	∞	14	0	793	1429	0
2&4 stroke petrol motorcycles	0 0	0	54	26	-	0	_	0	2	3	3	24	43	_	566	480	0
Total 8	81 146	001 9	7864 14177	14177	100	1333	2404	100	99	120	100	1753	3161	100	163375	294529	100

		PM10			ន			Ň			SOx			VOC			C02	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part B																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part C																		
Combustion	2.5	4.4	100	1.4	2.5	100	5.3	9.5	100	10.2	18.4	100	0.1	0.2	2	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	5.2	9.4	86	0.0	0.0	0
Sub-total	2.5	4.4	100	1.4	2.5	100	5.3	9.5	100	10.2	18.4	100	5.3	9.6	100	0.0	0.0	0
Total																		
Combustion	2.5	4.4	100	4.1	2.5	100	5.3	9.5	100	10.2	18.4	100	0.1	0.2	5	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	5.2	9.4	98	0.0	0.0	0
Total	2.5	4.4	100	1.4	2.5	100	5.3	9.5	100	10.2	18.4	100	5.3	9.6	100	0.0	0.0	0

Chrisicharch inventory of 10th Emissions

131

Bishopdale																					
	Daily Fuel Quantity	uel Qu	antity		PM ₁₀			00			NOx			SOx			VOC			CO2	
	kg/day t/day Use %	t/day	% esn	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Open fire																					
- Wood	8257	8.3	36	124	140	35	166	1118	43	14	15	40	2	2	3	248	279	43	14037	15834	30
- Coal	2417	2.4	100	80	06	23.	145	164	9	4	4	=	44	49	06	36	41	9	8919	7634	15
Pre 1989 Woodburner																					
- Wood	8486	8.5	37	109	123	31	698	086	37	12	13	35	2	2.	4	217	245	37	14426	16273	31
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0	0	0	0	0	0
1989-1992 (incl) Woodburner																					
- Wood	3182	3.2	14	22	25	9	176	198	∞	2	3	7	_	-	_	44	50	00	5410	6103	12
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	3182	3.2	14	19	21	2	150	691	9	2	2	9	_	_	_	38	42	9	5410	6103	12
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pot Belly																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator							1														
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	23107	23.1		273	308	77	2186	2465	94	30	34	68	5	5	10	546	919	94	39283	44312	85
Total Coal	2417	2.4		80	90	23	145	164	9	4	4	=	44	49	06	36	14	9	8929	7634	15
Total Gas	2189	2.2		0	0		-	_		4	5		0	0		0	0		5473	6174	
Total Oil	0	0.0		0	0		0	0		0	0		0	0		0	0		0	0	
Total (Wood and Coal only)	25525	26		353	398	100	2331	2629	100	34	38	100	48	54	100	583	657	001	46051	51947	001

									Pollutant	ıt								
		PM ₁₀			္ပ			Š			sox			VOC			CO2	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	6	=	29	2915	3288	06	261	294	49	_	2	5	597	673	83	45116	50892	69
Light duty <3.5t diesel vehicles		-	3	9	9	0	4	4	_	-	7	5	3	3	0	2692	3036	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	9	7	0	8	6	_	0	0	0	∞	6	_	1285	1450	2
Heavy duty >3.5t petrol vehicles	_	_	3	184	207	9	12	13	2	0	0	0	18	21	3	2232	2518	3
Heavy duty >3.5t diesel vehicles	21	24	64	64	109	3	242	273	46	23	26	87	77	87	11	13787	15552	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	9	7	0	2	2	0	0	0	0	3	4	0	318	359	0
2&4 stroke petrol motorcycles	0	0	0	22	24	-	0	0	0	_	-	3	10	=	1	107	121	0
Total	33	37	100	3236 3650	3650	100	528	965	100	27	30	100	716	808	100	65536	73927	100

		PM10			8			NOX			SOx			VOC			C02	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part B																		
Combustion	0.1	0.1	_	0.2	0.2	2	0.7	8.0	3	1.0	1.2	2	0.0	0.1	-	844.2	952.2	100
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.1	0.1	-	0.2	0.2	2	0.7	8.0	3	1.0	1.2	2	0.0	0.1	1	844.2	952.2	100
Part C																		
Combustion	11.0	12.4	95	7.1	8.0	86	27.0	30.5	16	47.8	53.9	86	8.0	6.0	23	0.0	0.0	0
Other Processes	0.5	0.5	4	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	5.6	5.9	9/	0.0	0.0	0
Sub-total	11.4	12.9	66	7.1	8.0	86	27.0	30.5	16	47.8	53.9	86	3.4	3.8	66	0.0	0.0	0
Total																		
Combustion	11.0	12.5	96	7.3	8.2	100	27.8	31.3	100	48.8	55.1	100	8.0	6.0	24	844.2	952.2	001
Other Processes	0.5	0.5	4	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	5.6	5.9	92	0.0	0.0	0
Total	11.5	13.0	100	7.3	8.2	001	27.8	31.3	100	48.8	55.1	100	3.4	3.9	100	844.2	952.2	100

Canterbury Regional Council Technical Report

									Pollutant	tant								
		PM ₁₀			္ပ			Ň			sox			VOC			CO	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	32	36	∞	220	248	4	3	4	-	4	4	3	55	62	4	4420	4985	3
10am-4pm	48	54	12	330	373	9	5	5	-	5	9	4	83	93	9	6629	7478	2
4pm-10pm	245	277	62	1557	1756	28	23	26	4	39	44	31	389	439	30	31058	35035	24
10pm-6am	28	31	7	223	252	4	3	3	-	0	-	0	99	63	4	3944	4448	3
Fotal	353	398	68	2331	2629	42	34	38	9	48	54	39	583	657	45	46051	51947	36
Motor Vehicles																		
6am-10am	7	∞	2	720	812	13	811	132	20	9	7	5	159	180	12	14582	16440	11
10am-4pm	14	16	4	1406	1585	25	229	259	39	12	13	6	311	351	24	28471	32098	22
4pm-10pm	10	Ξ	2	948	1069	17	155	174	56	8	6	9	210	237	16	19206	21653	15
10pm-6am	2	2	0	162	182	3	56	30	4	-	2	-	36	40	3	3277	3695	3
Total	33	37	∞	3236	3648	58	528	595	06	27	30	22	716	807	55	65536	73885	51
Industry																		
6am-10am	3	3	_	2	7	0	7	∞	-	12	14	10	_	_	0	4428	4995	3
10am-4pm	7	%	2	2	5	0	17	20	3	31	34	25	2	2	0	11070	12487	6
4pm-10pm	-	2	0		-	0	3	4	-	9	7	2	0	0	0	2214	2497	2
10pm-6am	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	12	13	3	7	∞	0	28	31	5	49	55	39	3	4	0	17712	19979	14
Combined Total																		
6am-10am	42	47	=	942	1062	17	128	144	22	22	24	81	215	243	17	23429	26428	18
10am-4pm	69	78	17	1740	1963	31	252	284	43	47	54	38	396	446	30	46170	52079	36
4pm-10pm	256	289	9	2506	2827	45	181	204	31	53	59	43	009	919	46	52479	59195	41
10pm-6am	30	33	7	385	434	7	29	33	5	2	2	_	92	103	7	7221	8145	9
Total	397	448	100	5573	6287	100	590	999	100	124	139	100	1302	1469	100	129299	145847	100

Christchurch Inventory of Total Emissions

	Daily Fuel Quantity	uel Qu	antity		PM ₁₀			ပ္ပ			Š			Sox			VOC			SO	
	kg/day t/day	t/day	% esn	kg		% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg		% Total
Open fire - Wood	1548	1.5	81	23	30	81	186	243	23	3	3	21	0	0	-	46	61	23	2631	3443	14
- Coal	605	9.0	48	20	26	15	36	47	4	_	_	~	=	4	45	6	12	4	1693	2215	6
Pre 1989 Woodburner																					
- Wood	3482	3.5	40	45	58	34	357	467	43	2	9	41	_	_	3	68	117	43	5919	7748	32
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner																					
- Wood	1451	1.5	17	01	13	00	80	105	10	_	_	6	0	0	_	20	56	01	2466	3228	4
- Coal	186	0.2	15	3	4	2	5	7	_	0	0	_	3	4	14	-	7	_	521	682	3
Post 1993 Woodburner																					
- Wood	1741	1.7	20	10	13	8	82	108	01	_	_	6	0	0	_	21	27	01	2960	3874	16
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	446	0.4	2	9	8	2	51	19	9	_	_	9	0	0	0	13	17	9	759	993	4
- Coal	465	0.5	37	15	19	=	27	35	3		_	9	∞	=	34	7	6	3	1302	1704	7
Pot Belly																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	8998	2 8 7		04	124	77	756	080	02	10	14	98	C	C	7	180	747	92	14735	19287	~
Total Coal	1256	1.3		37	49	28	89	68	. ∞	. 7	. 7	4	23	30	93	17	22	00	3515	4601	16
Total Gas	1088			0	0		0	_		2	3		0	0		0	0		2720	3561	
Total Oil	99	0.1		0	0		0	0		0	0		0	0		0	0		213	278	
Total (Wood and Coal only)	9923	10		132	173	001	824	1078	001	12	91	100	24	32	100	206	269	100	18250 23888	23888	100

Canterbury Regional Council Technical Report

									Pollutant	+								
		PM ₁₀			္ပ			Š			SOx			VOC			CO	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	7	6	23	1401	1834	85	349	457	50	-	-	3	397	520	84	47372	62005	69
Light duty <3.5t diesel vehicles	-	-	3	9	00	0	4	2	_	-	7	2	3	4	_	2826	3699	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	4	2	0	00	=	-	0	0	0	8	10	2	1349	1766	2
Heavy duty >3.5t petrol vehicles	-	2	4	152	199	6	21	27	3	0	0	0	15	20	3	2344	3068	3
Heavy duty >3.5t diesel vehicles	21	27	69	46	64	3	316	414	45	23	31	88	39	51	∞	14476	18948	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	7	6	0	2	3	0	0	0	0	3	4	-	334	437	0
2&4 stroke petrol motorcycles	0	0	0	23	30	_	0	0	0	-	-	3	10	13	2	112	147	0
Total	30	40	100	1641	2147	100	200	617	100	27	35	100	475	622	100	68813	90070	100

		PM10			ပ္ပ			NOX			SOx			VOC			C02	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	0.1	0.2	2	0.3	0.3	e	1.2	1.5	4	1.7	2.2	4	0.1	0.1	0	1343.8	1758.9	70
Other Processes	0.3	0.4	5	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	1.1	1.5	2	0.0	0.0	0
Sub-total	.0.5	9.0	9	0.3	0.3	3	1.2	1.5	4	1.7	2.2	4	1.2	9.1	2	1343.8	1758.9	70
Part B																		
Combustion	0.0	0.1	_	0.1	0.1		0.5	0.7	2	0.7	6.0	2	0.0	0.0	0	572.3	749.1	30
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	8.1	9.01	15	0.0	0.0	0
Sub-total	0.0	0.1	_	0.1	0.1	_	0.5	0.7	2	0.7	6.0	2	8.1	10.6	15	572.3	749.1	30
Part C																		
Combustion	7.0	9.1	93	7.2	9.5	95	26.3	34.4	94	42.6	55.8	95	1.3	1.7	2	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	43.0	56.3	80	0.0	0.0	0
Sub-total	7.0	9.1	93	7.2	9.5	95	26.3	34.4	94	42.6	55.8	95	44.4	58.1	83	0.0	0.0	0
Total																		
Combustion	7.1	9.4	95	9.7	10.0	100	28.0	36.6	001	45.0	58.9	100	1.4	1.9	3	1916.2	2507.9	100
Other Processes	0.3	0.4	5	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	52.2	68.4	26	0.0	0.0	0
Total	7.5	8.6	100	9.7	10.0	100	28.0	36.6	100	45.0	58.9	100	53.7	70.2	100	1916.2	2507.9	100

kg g/ha % Total kg g/ha g/ha <th></th> <th>% Total % 50 50 15 78 8 8 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6</th> <th>kg 60 57 549 158 824 824 717 484</th> <th></th> <th>% Total 2 2 2 2 6 6 6 33 33 29 20 20</th> <th>kg 1 1 2 2 2 2 2 2 2 2</th> <th>NO_x g/ha</th> <th>% Total</th> <th>kg</th> <th>SO_x</th> <th>% Total</th> <th>3</th> <th>VOC g/ha</th> <th>% Total</th> <th>ķ</th> <th></th> <th></th>		% Total % 50 50 15 78 8 8 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	kg 60 57 549 158 824 824 717 484		% Total 2 2 2 2 6 6 6 33 33 29 20 20	kg 1 1 2 2 2 2 2 2 2 2	NO _x g/ha	% Total	kg	SO _x	% Total	3	VOC g/ha	% Total	ķ		
Heating kg g/ha % Total kg g/ha % Total kg n-10am 11 14 6 60 78 2 1 n-10pm 85 111 50 549 719 22 1 n-10pm 85 111 50 549 719 22 1 n-10pm 26 34 15 158 206 6 2 n-10pm 132 173 78 824 1078 33 12 r Vehicles 7 9 4 360 472 15 154 n-10pm 13 17 8 717 939 29 306 n-10pm 9 12 5 484 633 20 207 try 30 40 18 1641 2147 66 70 try 1 1 1 1 1 0 0 0		% Total 6 6 6 50 15 78 78 8 8 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	kg 60 57 549 158 824 824 717 484		% Total % 5 2 2 2 2 6 6 9 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	kg 1 1 2 2 2 12 154 306	g/ha 1	% Total	kg		% Total	2	g/ha	% Total	ka		
Heating 11 14 6 60 78 2 1 n-10am 10 13 6 57 74 2 1 n-10pm 85 111 50 549 719 22 8 nn-10pm 26 34 15 158 206 6 2 r.Vehicles 7 9 4 360 472 15 15 r.Vehicles 7 9 4 360 472 15 15 n-10am 7 9 4 360 472 15 154 nn-10pm 9 12 5 484 633 20 207 try 30 40 18 1641 2147 66 70 try 1 1 1 1 1 0 4 nn-10pm 5 6 3 5 6 0 17 nn-10pm		6 6 50 15 78 4 4 8 8 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	60 57 549 158 824 824 717 484	78 74 719 206 1078 472 939 633	2 22 22 6 6 15 29 20	1 1 8 2 2 12 12 154 306	3	O	٠			Kg			6	g/na	% Total
n-10am 11 14 6 60 78 2 1 nn-10pm 85 111 50 549 719 22 1 nn-10pm 85 111 50 549 719 22 8 nn-10pm 26 34 15 158 206 6 2 r Vehicles nn-10pm 7 9 4 360 472 15 8 nn-10pm 7 9 4 360 472 15 154 nn-10pm 9 12 5 484 633 20 207 nn-10pm 9 12 5 484 633 20 207 try nn-10pm 2 1 79 104 3 34 nn-10pm 5 6 3 5 6 0 17 nn-10pm 1 1 1 1 0 0 0 <t< th=""><th></th><th>6 6 50 15 17 8 8 8 8</th><th>60 57 549 158 824 824 717 484</th><th>78 74 719 206 1078 472 939 633</th><th>2 2 2 2 2 6 6 6 15 29 20 20 20</th><th>1 8 8 2 2 12 12 154 306</th><th> 9</th><th>C</th><th>•</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		6 6 50 15 17 8 8 8 8	60 57 549 158 824 824 717 484	78 74 719 206 1078 472 939 633	2 2 2 2 2 6 6 6 15 29 20 20 20	1 8 8 2 2 12 12 154 306	9	C	•								
m-4pm 10 13 6 57 74 2 1 n-10pm 85 111 50 549 719 22 8 nm-6am 26 34 15 158 206 6 2 r Vehicles 132 173 78 824 1078 33 12 n-10am 7 9 4 360 472 15 154 n-10pm 9 12 5 484 633 20 207 nm-10pm 9 12 5 484 633 20 207 try 30 40 18 1641 2147 66 70 try 30 40 18 1641 2147 66 70 try 3 5 6 0 0 0 0 try 1 1 1 1 1 1 am-10pm 2		6 50 15 178 4 4 8 8 5 1	57 549 158 824 360 717 484	74 719 206 1078 472 939 633	2 22 6 6 33 15 29 20	1 8 2 2 12 12 154 306	- ?	>	7	3	3	15	20	2	1363	1784	_
n-10pm 85 111 50 549 719 22 8 nm-6am 26 34 15 158 206 6 2 r Vehicles 132 173 78 824 1078 33 12 r Vehicles 13 17 8 717 939 29 306 nn-10am 13 17 8 717 939 29 306 nn-10pm 9 12 5 484 633 20 207 nn-10pm 1 2 1 79 104 3 34 try 30 40 18 1641 2147 66 70 try nn-10pm 5 6 3 5 6 0 17 nn-10pm 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0		50 15 78 4 4 8 8 5	549 158 824 360 717 484	719 206 1078 472 939 633	6 6 6 33 33 22 29 29 20 20	8 2 12 12 154 306		0	2	3	2	14	19	2	1526	8661	_
nm-6am 26 34 15 158 206 6 2 r Vehicles 7 9 4 360 472 15 154 n-10am 7 9 4 360 472 15 154 n-10pm 13 17 8 717 939 29 306 n-10pm 9 12 5 484 633 20 207 nm-10pm 1 2 1 79 104 3 34 try n-10am 2 2 1 79 104 3 34 n-10pm 2 2 1 2 2 0 7 nn-10pm 5 6 3 5 6 0 7 nn-10pm 0 0 0 0 0 0 0 17 nn-10pm 1 1 1 1 1 0 0 17		15 78 8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	158 824 360 717 484	206 1078 472 939 633	6 33 15 29 20	2 12 154 306	0	_	15	61	15	137	180	61	12019	15732	=
rVehicles 132 173 78 824 1078 33 12 n-10am 7 9 4 360 472 15 154 nn-10pm 13 17 8 717 939 29 306 nn-10pm 9 12 5 484 633 20 207 sm-10pm 1 2 1 79 104 3 34 try 30 40 18 1641 2147 66 70 try n-10am 2 2 1 2 2 0 7 nn-10pm 1 1 1 1 0 0 17 nn-6am 0 0 0 0 0 0 0 17 ined Total 7 10 4 8 10 0 28		78 4 8 8 5	360 717 484 79	472 939 633	33 15 29 20	12 154 306	3	0	2	9	5	39	52	5	3342	4374	3
r Vehicles 7 9 4 360 472 15 154 m-10am 7 9 4 360 472 15 154 m-10pm 9 12 5 484 633 20 207 nm-10pm 9 12 5 484 633 20 207 nm-10pm 1 2 1 79 104 3 34 try 30 40 18 1641 2147 66 700 try n-10am 2 2 1 2 2 0 7 nm-10pm 5 6 3 5 6 0 17 nm-6am 0 0 0 0 0 0 4 nm-6am 7 10 4 8 10 0 28 ined Total 7 10 4 8 10 0 28		4 8 5 1	360 717 484 79	472 939 633	15 29 20	154	91	2	24	32	25	206	569	28	18250	23888	91
n-10am 7 9 4 360 472 15 154 nm-4pm 13 17 8 717 939 29 306 nm-10pm 9 12 5 484 633 20 207 sm-6am 1 2 1 79 104 3 34 try 30 40 18 1641 2147 66 700 try n-10am 2 2 2 0 7 m-10pm 5 6 3 5 6 0 17 m-10pm 1 1 1 1 0 4 nm-6am 0 0 0 0 0 0 0 nm-6am 7 10 4 8 10 0 28		4 8 8 -	360 717 484 79	472 939 633	15 29 20	154 306											
m-4pm 13 17 8 717 939 29 306 m-10pm 9 12 5 484 633 20 207 nm-6am 1 2 1 79 104 3 34 try 30 40 18 1641 2147 66 700 try n-10am 2 2 1 2 2 0 7 m-10pm 5 6 3 5 6 0 17 nn-10pm 1 1 1 1 0 4 nn-6am 0 0 0 0 0 0 0 nn-6am 7 10 4 8 10 0 28 sined Total 7 10 4 8 10 0 28		8 2 - 9	717 484 79	633	29	306	201	21	9	8	9	104	137	14	15115	19783	13
m-10pm 9 12 5 484 633 20 207 sm-6am 1 2 1 79 104 3 34 try n-10am 2 2 1 2 2 0 7 m-4pm 5 6 3 5 6 0 17 m-10pm 1 1 1 1 0 4 sm-6am 0 0 0 0 0 0 0 ined Total 7 10 4 8 10 0 28		2	484	633	20		401	41	12	15	12	208	272	28	30077	39368	27
try 1 2 1 79 104 3 34 try n-10am 2 2 1 2 2 0 7 nm-10pm 1 1 1 1 1 0 4 nm-6am 0 0 0 0 0 0 0 0 ined Total 1 1 4 8 10 0 28		- 9	79	101		207	270	28	8	10	∞	140	184	61	20294	26563	18
try 30 40 18 1641 2147 66 700 n-10am 2 2 1 2 2 0 7 nm-4pm 5 6 3 5 6 0 7 nm-10pm 1 1 1 1 1 0 17 nm-6am 0 0 0 0 0 0 0 0 nined Total 7 10 4 8 10 0 28		10		104	3	34	44	5	_	2	-	23	30	3	3327	4355	3
try n-10am 2 2 1 2 2 0 7 am-4pm 5 6 3 5 6 0 17 m-10pm 1 1 1 1 0 4 sm-6am 0 0 0 0 0 0 nined Total 7 10 4 8 10 0 28		8	1641	2147	99	700	617	95	27	35	28	475	622	65	68813	90070	19
m-10am 2 2 1 2 2 0 7 am-4pm 5 6 3 5 6 0 17 m-10pm 1 1 1 1 0 4 pm-6am 0 0 0 0 0 0 nined Total 7 10 4 8 10 0 28																	
m-4pm 5 6 3 5 6 0 17 m-10pm 1 1 1 1 0 4 pm-6am 0 0 0 0 0 0 nined Total 7 10 4 8 10 0 28	2 2	_	2	2	0	7	6	_	=	15	12	13	18	2	6517	8530	9
m-10pm 1 1 1 1 4 pm-6am 0 0 0 0 0 0 nined Total 7 10 4 8 10 0 28	5 6	3	5	9	0	17	22	2	28	36	29	32	42	4	15886	20792	14
om-6am 0 0 0 0 0 0 7 10 4 8 10 0 28 sined Total	-	_	-	-	0	4	5	_	9	8	9	∞	11	-	3666	4798	3
7 10 4 8 10 0 28 nined Total		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		4	00	10	0	28	37	4	45	59	47	54	70	7	26070	34121	23
25 11 422 552 17 162	19 25	=	422	552	17	162	212	22	20	56	20	133	174	81	22995	30097	20
		16	179	1019	32	324	424	44	41	54	43	254	333	35	47489	62155	42
95 125 56 1034 1354 42 218		99	1034	1354	42	218	286	29	29	37	30	286	374	39	35980	47091	32
10pm-6am 28 36 16 237 310 10 36 47		91	237	310	10	36	47	5	9	00	7	62	82	∞	6999	8728	9
Total 170 222 100 2472 3235 100 740 969		100	2472	3235	100	740	696	100	96	125	001	735	962	100	113133	148072	100

CHIBICHHICH INVENIORY OF LOWN EMISSIONS

	Doily F	0	white																		
	Dally	200	Daily ruel Quantity		E S C			္ပ			Š			SO _x			VOC			CO	
	kg/day t/day Use %	t/day	Use %	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Open fire																					
- Wood	14007	14.0	33	210	457	25	1681	3658	37	23	20	33	3	9	_	420	914	37	23811	51820	23
- Coal	4808	4.8	43	159	345	61	288	879	9	7	91	01	87	188	42	72	157	9		29298	13
Pre 1989 Woodburner																					
- Wood	14893	14.9	35	191	415	23	1525	3319	33	21	46	30	3	9	_	381	830	33	25319	55100	25
- Coal	1923	1.9	17	54	118	9	86	214	2	2	2	4	35	75	17	25	54	7	5385	11719	5
1989-1992 (incl) Woodburner																					
- Wood	5416	5.4	13	37	81	4	299	651	9	4	6	9	-	2	_	75	163	9	9207	20036	6
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	0//9	8.9	91	40	87	2	320	695	7	4	10	9	_	3	_	80	174	7	11508	25046	=
- Coal	481	0.5	4	9	14	_	=	25	0	0	_	0	6	61	4	3	9	0	1346	2930	_
Enclosed Coal Burner															,						
- Wood	1404	1.4	3	20	44	2	161	350	3	2	5	3	0	-	0	40	87	3	2387	5194	2
- Coal	3846	3.8	35	121	263	14	220	479	S	9	12	∞	69	151	33	55	120	2	10770	23438	10
Pot Belly																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	42489	42.5		498	1084	59	3985	8672	87	55	119	78	00	18	4	966	2168	87	72232	15719	70
Total Coal	11058	11.1		340	740	41	819	1346	13	15	34	22	199	433	96	155	336	13	30964	67385	30
Total Gas	615	9.0		0	0		0	-		-	3		0	0		0	0		1537	3345	
Total Oil	247	0.2		0	-		0	0		_	-		-	2		0	0		791	1722	
Total (Wood and Coal only)	53548	54		838	1824	100	4603	10018	100	70	153	100	208	452	100	1151	2504	100	10319 22458	22458	100
Total (Wood and Coal only)	53548			838	1824	00		10018	001	70	153	9	208	452	001	1151	2504	00	10316	_	22458

									Pollutant	Ħ								
		PM ₁₀			္ပ			Š			SO _x			VOC			CO2	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	=	25	29	3461	7531	06	322	701	49	2	4	5	715	1556	83	55035	119771	69
Light duty <3.5t diesel vehicles	_	3	3	7	15	0	2	10	-	2	4	2	3	7	0	3283	7146	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	∞	91	0	10	21	_	0	0	0	6	21	-	1568	3412	2
Heavy duty >3.5t petrol vehicles	-	3	3	222	483	9	15	32	7	0	0	0	22	48	3	2723	5926	3
Heavy duty >3.5t diesel vehicles	26	99	65	115	251	3	299	650	46	28	19	87	92	200	11	16818	36600	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	∞	16	0	2	2	0	0	0	0	4	∞	0	388	844	0
2&4 stroke petrol motorcycles	0	0	0	26	57	-	0	0	0	_	7	3	12	56	_	130	284	0
Total	39	98	100	3846 8370	8370	100	653	1420	100	32	71	100	858	1867	100	79945	173982	100

anomania me - to transmission minimum

		PM10			8			NOX			SOx			VOC			C02	
	kg	g/ha	% Total															
Part A																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part B																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part C																		
Combustion	0.7	1.6	100	0.4	6.0	100	1.5	3.3	100	3.0	6.5	100	0.0	0.1	100	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.7	1.6	100	0.4	6.0	100	1.5	3.3	100	3.0	6.5	100	0.0	0.1	100	0.0	0.0	0
Total																		
Combustion	0.7	1.6	100	0.4	6.0	100	1.5	3.3	100	3.0	6.5	100	0.0	0.1	100	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Total	0.7	1.6	100	0.4	6.0	100	1.5	3.3	100	3.0	6.5	100	0.0	0.1	100	0.0	0.0	0

									Pollutant	tant								
		PM ₁₀			၀			NOx			sox			VOC			CO2	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	48	104	5	230	501	3	4	∞	-	17	38	7	58	125	3	7117	15620	4
10am-4pm	119	259	14	689	1499	∞	10	23	-	28	62	12	172	375	6	16653	36242	6
4pm-10pm	516	1122	59	2926	6367	35	44	96	9	114	247	47	731	1592	36	98009	130764	33
10pm-6am	156	339	18	759	1651	6	12	26	2	48	105	20	190	413	6	19279	41956	10
Total	838	1824	95	4603	10018	54	70	153	10	208	452	85	1151	2504	57	103195	224582	56
Motor Vehicles																		
6am-10am	00	18	-	844	1835	01	138	299	19	7	15	3	187	406	6	17095	37163	6
10am-4pm	18	38	2	1748	3800	21	285	620	39	14	31	9	387	841	19	35403	76963	19
4pm-10pm	12	25	_	1160	2522	14	189	412	26	10	21	4	257	558	13	23501	51089	13
10pm-6am	2	4	0	94	205	-	40	87	9	2	3	-	27	59	-	3946	8579	7
Total	39	98	4	3846	8361	45	653	1419	06	32	71	13	858	1865	43	79945	173793	43
Industry																		
6am-10am	0	0	0	0	0	0	0	-	0	-	2	0	0	0	0	188	410	0
10am-4pm	0	_	0	0	_	0	_	2	0	2	4	_	0	0	0	471	1024	0
4pm-10pm	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	94	205	0
10pm-6am	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	1	2	0	0	_	0	2	3	0	3	7	-	0	0	0	753	1639	0
Combined Total																		
6am-10am	99	123	9	1074	2338	13	142	309	20	25	55	10	244	532	12	24460	53232	13
10am-4pm	137	298	16	2437	5303	29	297	645	41	45	16	81	559	1217	28	52527	114311	29
4pm-10pm	527	1148	09	4086	8892	48	234	509	32	124	569	51	886	2151	49	83681	182110	46
10pm-6am	157	343	18	853	1856	10	52	114	7	20	108	20	217	472	=	23225	50544	13
Total	878	1912	100	8450	18389	100	724	1576	100	243	529	100	2009	4371	100	183893	400196	100

Christchurch Inventory of Total Emissions

	>
	≒
•	J
	ē
	≧
	_

EHOICOME THAT I LANGE

	Daily Fuel Quantity	uel Qu	lantity		PM			ဝ္ပ			NO.			SO.			VOC			တ်	
	kg/day t/day	t/day	Use %	kg		% Total	kg	_	% Total	kg	g/ha	% Total	kg	< m	% Total	kg		% Total	kg	g/ha	% Total
Open fire																					
- Wood	10596	9.01	75	159	250	46	1272	2004	72	17	28	65	2	3	3	318	501	72	18013	28385	51
- Coal	3953	4.0	100	130	206	41	237	374	13	9	6	22	71	112	96	59	93	13	11069	17442	31
Pre 1989 Woodburner																					
- Wood	1442	1.4	10	18	29	9	148	233	∞	2	3	∞	0	0	0	37	58	∞	2452	3863	7
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner																					
- Wood	721	0.7	5	2	∞	2	40	63	2	-	_	2	0	0	0	10	16	2	1226	1932	3
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner			•																		
- Wood	1442	1.4	10	6	13	3	89	107	4	-	-	3	0	0	0	17	27	4	2452	3863	7
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pot Belly																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	14202	14.2		191	301	59	1527	2406	87	21	33	78	m	4	4	382	602	87	24143	38044	69
Total Coal	3953	4.0		130	206	41	237	374	13	9	6	22	71	112	96	59	93	13	11069	17442	31
Total Gas	652	0.7		0	0		0	0		_	2		0	0		0	0		1629	2568	
Total Oil	0	0.0		0 .	0		0	0		0	0		0	0		0	0		0	0	
Total (Wood and Coal only)	18155	18		321	909	001	1764	2780	100	27	42	100	74	117	100	441	969	100	35211	55486	100

9		% Total 90 1	kg g/			000							
kg g/ha % Total 43 67 29 5 7 3 0 0 0						Š			VOC			CO ₂	
43 67 29 5 7 3 0 0 0 5 7 3	3163 20743 26 41	_		g/ha % Total	otal kg	g/ha	% Total	kg	g/ha	% Total	kg		% Total
5 7 3 26 0 0 0 28 5 7 3 830 1	26 41	_		1855 49	9	10	5	2696	4249	83		321042	69
0 0 0 28	200	,	17	26 1	9	10	2	12	19	0	12155	19154	4
5 7 3 830 1	65 87	0		56 1	0	0	0	35	55	-		9145	2
	830 1308	9	53 8	84 2	0	_	0	83	131	3		15884	3
95 149 64 438	438 690	3	093	722 46	5 105	5 165	87	349	550	Ξ	62258	98106	21
Heavy duty >3.5t LPG/CNG vehicles 0 0 0 28 44		0	«	13 0	0	0	0	14	23	0	1436	2263	0
0 1 0 98	98 154	-	_	1 0	3	5	3	44	69	_	482	092	0
Total 147 232 100 14611 23024	4611 23024	100 2	2385 37	3758 100	0 121	1 190	100	3234	9609	100	295948 4	466354	100

		PM10			00			NOX			SOx			VOC			C02	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Fart A																		
Combustion	127.2	200.5	43	64.3	101.3	41	231.7	365.2	42	446.3	703.3	41	1.7	2.7	_	63811.1	100551.7	49
Other Processes	5.0	7.9	2	0.0	0.0	0	6.0	1.4	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	132.2	208.3	45	64.3	101.3	41	232.6	366.5	42	446.3	703.3	41	1.7	2.7	-	63811.1	100551.7	49
Part B																		
Combustion	120.6 190.1	190.1	41	57.5	7.06	37	204.7	322.6	37	427.1	673.0	40	2.0	3.1	-	66687.5	105084.3	51
Other Processes	0.0	0.1	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	19.2	30.3	14	0.0	0.0	0
Sub-total	120.6	190.1	41	57.5	7.06	37	204.7	322.6	37	427.1	673.0	40	21.2	33.4	15	66687.5	105084.3	51
Part C																		
Combustion	43.2	0.89	15	33.5	52.9	22	120.9	190.5	22	205.9	324.4	19	4.5	7.1	3	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	114.4	180.3	81	0.0	0.0	0
Sub-total	43.2	0.89	15	33.5	52.9	22	120.9	190.5	22	205.9	324.4	61	118.9	187.4	84	0.0	0.0	0
Total																		
Combustion	291.0	458.6	86	155.4	244.9	100	557.4	878.3	100	1079.3	1700.8	100	8.2	12.9	9	130498.5	205636.0	100
Other Processes	5.0	7.9	2	0.0	0.0	0	6.0	1.4	0	0.0	0.0	0	133.6	210.5	94	0.0	0.0	0
Total	296.0	466.5	100	155.4	244.9	001	558.2	9.628	001	1079.3	1700.8	100	141.8	223.4	100	130498.5	205636.0	100

									Pollutant	tant								
		PM ₁₀			00			NOx			SOx			VOC			CO	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	4	9	0	30	47	0	0	-	0	0	0	0	∞	12	0	550	867	0
10am-4pm	41	64	5	274	432	2	4	9	0	5	∞	0	69	108	2	5026	7919	_
4pm-10pm	266	420	35	1377	2170	00	21	34	-	69	108	5	344	542	6	27834	43860	5
10pm-6am	01	91	_	83	131	_	,	2	0	0	0	0	21	33	-	1801	2839	0
Total	321	909	42	1764	2780	Ξ	27	42	-	74	117	9	441	969	12	35211	55486	9
Motor Vehicles																		
6am-10am	32	51	4	3220	5071	61	526	828	81	27	42	2	713	1122	19	65222	102711	12
10am-4pm	29	901	6	6999	10492	40	1088	1713	37	55	87	4	1475	2322	39	134953	212525	24
4pm-10pm	41	64	5	4042	6365	24	099	1039	22	33	53	3	894	1409	23	81863	128919	15
10pm-6am	7	11	-	289	1081	4	112	177	4	9	6	0	152	239	4	13910	21905	3
Total	147	231	19	14611	23009	88	2385	3756	08	121	190	6	3234	5092	85	295948	466060	54
Industry																		
6am-10am	52	82	7	28	44	0	101	160	3	192	303	15	35	55	-	44214	12969	∞
10am-4pm	16	153	13	54	98	0	195	308	7	365	575	29	98	136	2	93719	147680	17
4pm-10pm	73	115	10	37	58	0	132	208	4	260	410	20	19	31	-	45677	71977	∞
10pm-6am	74	117	10	36	57	0	130	204	4	262	412	21	-	2	0	36581	57643	7
Total	296	466	39	155	245	-	558	880	61	1079	1701	85	142	223	4	220191	346971	40
Combined Total																		
6am-10am	88	139	12	3278	5166	20	627	686	21	219	345	17	755	1190	20	109986	173313	20
10am-4pm	205	323	27	1669	11017	42	1287	2028	43	425	029	33	1629	2568	43	233698	368255	42
4pm-10pm	380	599	50	5455	8596	33	813	1281	27	362	571	28	1258	1982	33	155374	244834	28
10pm-6am	92	145	12	908	1270	5	243	383	∞	268	422	21	174	274	5	52292	82400	6
Total	764	1204	100	16531	26048	100	2970	4680	100	1274	2007	100	3817	6014	100	551351	868803	100
	-											T						

	Daily Fuel Quantity	iel Qui	antity		PM ₁₀			၀			Š			SOx			VOC			CO	
	kg/day t/day Use %	Vday	% esn	kg		% Total	ķ	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg g	g/ha	% Total	kg	g/ha	Tot a
Open fire - Wood	20454	20.5	54	307	412	34	2455	3295	54	34	45	48	4	5	2	614	824	54	34773	46675	34
- Coal	12023	12.0	98	397	533	44	721	896	91	18	24	25	216	290	83	180	242	16	33664	45186	
Pre 1989 Woodburner																					
- Wood	7565	7.6	20	6	130	=	775	1040	17	=	14	15	2	2		194	260	17	12860	17262	12
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1989-1992 (incl) Woodburner																					
- Wood	4323	4.3	=	30	40	3	239	320	5	3	4	5	-	_	0	09	80	5	7349	9864	_
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
Post 1993 Woodburner																					
- Wood	5403	5.4	4	32	43	4	255	342	9	4	5	5	-	_	0	64	98	9	9186	12330	
- Coal	1312	1.3	6	17	23	2	31	42	_	-	-	-	24	32	6	00	10	_	3672	4929	_
Enclosed Coal Burner																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
- Coal	959	0.7	5	21	28	2	38	50	_	-	-	-	12	16	2	6	13	_	1836	2465	
Pot Belly																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0
Total Wood	37746	37.7	73	465	625	52	3723	4997	82	51	69	72	00	10	3	931	1249	82	64168	86131	62
Total Coal	13990	14.0	27	434	583	48	790	1060	18	20	27	28	252	338	97	197	265	18		52580	
Total Gas	1902	1.9		0	0		_			4	5		0	0		0	-		4754	6382	
Total Oil	7286	7.3		6	13		4	9		16	22		28	37		2	2		23316	31297	_
Total (Wood and Coal only)	51736	52		006	1208	001	4513	6057	100	71	95	100	259	348	100	1128	1514	100	100 103340	138711 100	\simeq

									Pollutant	+								
		PM ₁₀			၀			Ň			sox			VOC			co ₂	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	61	26	59	5977	8023	06	535	717	49	3	4	5	1224	1643	83	92505	124167	69
Light duty <3.5t diesel vehicles	2	3	3	12	91	0	∞	10	-	3	4	S	9	7	0	5519	7408	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	13	17	0	91	22		0	0	0	16.	21	_	2635	3537	2
Heavy duty >3.5t petrol vehicles	2	3	3	377	206	9	24	33	2	0	0	0	38	51	3	4577	6143	3
Heavy duty >3.5t diesel vehicles	43	28	64	199	267	3	496	999	46	48	64	87	159	213	=	28268	37944	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	13	17	0	4	5	0	0	0	0	7	6	0	652	875	0
2&4 stroke petrol motorcycles	0	0	0	44	59	_	0	_	0	-	7	3	20	27	_	219	294	0
Total	29	06	100	6634	8905	100	1083	1453	100	55	73	100	1468	1971	100	134375	180369	100

S. CHUISCHILL AND CO. C.

		PM10			8			Ň			SOx			VOC			C02	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0.	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part B																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part C																		
Combustion	12.5	8.91	100	9.9	8.8	100	21.8	29.2	100	44.8	60.1	100	0.3	0.4	100	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	12.5	16.8	100	9.9	8.8	100	21.8	29.5	100	8.44	1.09	100	0.3	6.4	100	0.0	0.0	0
Total																		
Combustion	12.5	16.8	100	9.9	8.8	100	21.8	29.2	100	44.8	1.09	100	0.3	0.4	100	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Total	12.5	8.91	100	9.9	8.8	100	21.8	29.2	100	44.8	1.09	100	0.3	0.4	100	0.0	0.0	0

HOOH Hay	Daily Fuel Quantity	uel Qu	antity		PM10			CO			NO			SO			VOC	_		ဂ္ပ	
	kg/day t/day		% esn	kg		% Total	kg	_	% Total	kg	g/ha	% Total	kg		% Total	kg		% Total	kg		% Total
Open fire - Wood	6517	6.5	61	86	232	21	782	1856	24	=	26	23		3	2	961	464	24	11079	26290	17
- Coal	2830	2.8	100	93	222	20	170	403	5	4	10	6	51	121	88	42	101	2	7923	18801	12
Pre 1989 Woodburner																					
- Wood	15695	15.7	45	201	477	43	1607	3814	50	22	52	48	3	7	5	402	953	50	18997	63316	40
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner															-						
- Wood	6278	6.3	81	43	103	6	347	822	=	5	Ξ	10	_	3	2	87	206	=	10672	25326	91
- Coal	0 .	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	6278	6.3	81	37	88	00	296	703	6	4	10	6	_	3	2	74	176	6	10672	25326	91
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pot Belly																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	34768	34.8		379	668	80	3032	7195	95	42	66	16	7	17	12	758	1799	95	59105	14025	88
Total Coal	2830	2.8		93	222	20	170	403	2	4	10	6	51	121	88	42	101	2	7923	18801	12
Total Gas	597	9.0		0	0		0	-		-	3		0	0		0	0		1493	3544	
Total Oil	6	0.0	.,,	0	0		0	0		0	0		0	0		0	0		29	89	
Total (Wood and Coal only)	37597	38		472	1121	100	3202	7598	100	46	109	100	58	137	100	800	1900	001	67028 15906	15906	001

CHOISENHER THEOSIGHS ...

	CO kg g/ha	% Total												
kg g/ha % Total kg 8 19 25 1943 1 3 3 6 0 0 0 5 1 3 4 168	kg	% Total		Ň		0,	ŏ			VOC			CO2	
8 19 25 1 3 3 0 0 0 0			kg	g/ha %	% Total	kg	g/ha %	% Total	kg	g/ha	% Total	kg	g/ha	% Total
0 0 3 3 4 4 0		88	335	794	50	_	2	4	477	1133	83	48558	115231	69
0 0 0 1 1 3 4	6 15	0	4	6		_	3	2	3	7	_	2897	6875	4
1 3 4	5 11	0	6	20	_	0	0	0	∞	19	_	1383	3282	7
	168 399	∞	61	44	3	0	0	0	17	40	3	2402	5701	3
Heavy duty >3.5t diesel vehicles 22 52 67 66	157	3	305	724	45	24	58	88	53	126	6	14839	35213	21
Heavy duty >3.5t LPG/CNG vehicles 0 0 0 7	7 16	0	2	5	0	0	0	0	3	%	-	342	812	0
2&4 stroke petrol motorcycles 0 0 0 23	23 55	-	0	0	0	-	2	3	10	25	2	115	273	0
Total 32 77 100 2218	2218 5264	100	673	1598	001	28	99	100	572	1357	100	70537	167387	100

L Kg g/ha % Total % Tot			PM10			00			NOX			SOx			VOC			C02	
her Processes 0.0 <		kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
mbustion 0.0 0.	Part A																		
ther Processes 0.0	Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
stale .0.0 0.0<	Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
standardion 59.6 141.4 89 27.4 65.0 88 97.7 231.9 88 208.6 494.9 88 0.7 1.7 1.2 stal 0.0	Sub-total	0.0.	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
mbustion 59.6 141.4 89 27.4 65.0 88 97.7 231.9 88 208.6 494.9 88 0.7 1.7 1.2 her Processes 0.0 <th>Part B</th> <th></th>	Part B																		
her Processes 0.0 <	Combustion	9.69		68	27.4	65.0	88	7.76	231.9	88	208.6	494.9	88	0.7	1.7	12	28353.4	28353.4 67286.0	100
Otal 59.6 141.4 89 27.4 65.0 88 97.7 231.9 88 208.6 494.9 88 0.7 1.7 1.2 mbustion 7.5 17.8 11 3.7 8.7 12 13.2 31.4 12 27.4 65.1 12 0.0	Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
2 mbustion 7.5 17.8 11 3.7 8.7 12 13.2 31.4 12 27.4 65.1 12 0.0 0.4 3 her Processes 0.0 <	Sub-total	9.69	141.4	68	27.4	65.0	88	7.76	231.9	88	208.6	494.9	88	0.7	1.7	12	28353.4	28353.4 67286.0	100
mbustion 7.5 17.8 11 3.7 8.7 12 13.2 31.4 12 27.4 65.1 12 0.0 0.4 3 her Processes 0.0	Part C																		
her Processes 0.0 <	Combustion	7.5	17.8	=	3.7	8.7	12	13.2	31.4	12	27.4	65.1	12	0.2	0.4	3	0.0	0.0	0
mbustion 67.1 159.2 100 31.1 73.7 100 111.0 263.3 100 236.0 560.0 100 6.9 2.1 144 100 mbustion 67.1 159.2 100 31.1 73.7 100 111.0 263.3 100 236.0 560.0 100 0.9 2.1 14 her Processes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 6.1 14.4 100	Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	5.2	12.3	98	0.0	0.0	0
mbustion 67.1 159.2 100 31.1 73.7 100 111.0 263.3 100 236.0 560.0 100 0.9 2.1 14 her Processes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.2 12.3 86 67.1 159.2 100 31.1 73.7 100 111.0 263.3 100 236.0 560.0 100 6.1 14.4 100	Sub-total	7.5	17.8	11	3.7	8.7	12	13.2	31.4	12	27.4	65.1	12	5.4	12.7	88	0.0	0.0	0
mbustion 67.1 159.2 100 31.1 73.7 100 111.0 263.3 100 236.0 560.0 100 0.9 2.1 14 her Processes 0.0	Total																		
her Processes 0.0 <	Combustion	67.1	159.2	100	31.1	73.7	100	0.111	263.3	100	236.0	560.0	100	6.0	2.1	14	28353.4	28353.4 67286.0	100
67.1 159.2 100 31.1 73.7 100 111.0 263.3 100 236.0 560.0 100 6.1 14.4 100	Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	5.2	12.3	98	0.0	0.0	0
	Total	67.1	159.2	100	31.1	73.7	001	0.111	263.3	100	236.0	560.0	100	6.1	14.4	100	28353,4	28353.4 67286.0	100

									Pollutant	tant								
		PM ₁₀			00			NOx			SOx			VOC			CO	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	36	84	9.	236	260	4	3	8	0	5	=		59	140	4	4792	11373	3
10am-4pm	92	219	91	602	1429	=	6	21	_	13	31	4	151	357		11774	27939	7
4pm-10pm	263	624	46	1784	4234	33	26	19	3	32	92	10	446	1059	32	38256	90782	22
10pm-6am	82	194	14	579	1374	=	∞	61	-	∞	18	2	145	344	=	12206	58968	7
Total	472	1121	83	3202	7598	59	46	601	9	58	137	18	800	1900	58	67028	159060	39
Motor Vehicles																		
6am-10am	7	91	-	360	855	7	154	365	61	9	14	2	104	248	∞	15102	35871	6
10am-4pm	14	33	2	740	1758	14	316	751	38	12	28	4	215	510	91	31048	73749	18
4pm-10pm	10	25	2	1038	2465	61	169	402	20	6	20	3	230	546	17	21020	49930	12
10pm-6am		4	0	80	161	_	34	81	4	-	3	0	23	55	7	3367	9662	2
Total	32	17	9	2218	5269	41	673	1599	81	28	99	6	572	1358	42	70537	167546	41
Industry																		
6am-10am	12	28	2	2	13	0	20	47	2	42	66	13	-	3	0	5936	14088	3
10am-4pm	20	46	3	6	22	0	33	78	4	69	164	22	4	∞	0	10092	23949	9
4pm-10pm	91	38	3	7	17	0	56	62	3	99	132	17	-	7	0	6892	18247	2
10pm-6am	20	47	3	6	22	0	33	77	4	69	165	22	0	_	0	9442	22406	9
Total	19	159	12	31	74	-	111	263	13	236	260	73	9	14	0	33159	78689	19
Combined Total																		
6am-10am	54	128	6	602	1428	=	177	419	21	52	124	91	165	391	12	25830	61298	15
10am-4pm	126	298	22	1352	3208	25	357	848	43	94	224	59	369	875	27	52914	125570	31
4pm-10pm	289	989	51	2829	6714	52	221	525	27	96	229	30	<i>LL</i> 9	9091	46	96999	158916	39
10pm-6am	103	244	18	699	1587	12	75	178	6	62	186	24	168	399	12	25015	59362	15
Total	572	1357	001	5451	12936	001	830	1970	100	322	763	100	1378	3271	100	170723	405147	100
	-	-	-															

	Dally	Daily Fuel Quantity	antity		PM ₁₀			00			Š			SOx			VOC			$\frac{1}{2}$	
	kg/day t/day Use%	t/day	% esn	kg		% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Open fire	7467	,	2	5		2	,		8	,	:	ī				3		8	i c	0.00	:
- W00d	3420	3.3	7	70	104	7	413	833	07	9	=	_	-	_	_	104	208	07	28/2	11/95	=
- Coal	4661	4.7	64	154	309	35	280	562	13	7	14	21	84	891	62	70	140	13	13052	26204	26
Pre 1989 Woodburner																					
- Wood	7716	7.7	43	66	198	22	790	1586	38	=	22	33	2	3	_	198	397	38	13116	26333	26
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 -	0	0	0
1989-1992 (incl) Woodburner																					
- Wood	3086	3.1	17	21	43	5	170	342	00	2	5	7	_	_	0	43	98	∞	5247	10533	10
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	2315	2.3	13	14	27	3	601	219	2	2	3	4	0	_	0	27	55	2	3935	7900	00
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	804	8.0	4	11	23	3	92	185	4	_	3	4	0	0	0	23	46	4	1366	2743	3
- Coal	2679	2.7	36	84	691	61	153	308	7	4	∞	=	48	26	36	38	11	7	7501	15060	15
Pot Belly																					
- Wood	589	9.0	3	00	17	7	<i>L</i> 9	135	3	_	7	3	0	0	0	17	34	3	1002	2012	7
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	17965	18.0		205	413	46	1644	3300	79	23	45	89	4	7	ю	411	825	79	30541	61315	09
Total Coal	7340	7.3		238	478	54	433	698	21	=	22	32	132	265	76	108	217	21	20553	41263	40
Total Gas	658	0.7		0	0		0	-		_	3		0	0		0	0		1646	3304	
Total Oil	138	0.1		0	0		0	0		0	_			-		0	0		441	885	
Total (Wood and Coal only)	25306	25		444	168	100	2077	4169	001	33	19	001	136	272	001	519	1042	001	51094 10257	10257	100

									Pollutant	+								
		PM ₁₀			၀			Š			SOx			VOC			CO	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	10	21	29	3122	6267	06	167	583	46	1	3	5	645	1295	83	49621	99620	69
Light duty <3.5t diesel vehicles	_	7	3	9	13	0	4	∞	-	_	3	5	3	9	0	2960	5944	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	7	14	0	6	11	_	0	0	0	6	17	_	1413	2838	2
Heavy duty >3.5t petrol vehicles	-	7	3	200	402	9	13	27	7	0	0	0	20	40	3	2455	4929	3
Heavy duty >3.5t diesel vehicles	23	46	9	104	209	3	569	541	46	25	51	87	83	991	=	15163	30442	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	7	14	0	2	4	0	0	0	0	3	7	0	350	702	0
2&4 stroke petrol motorcycles	0	0	0	24	48	_	0	0	0	_	2	3	11	21	-		236	0
Total	36	71	100	3469 696	6965	100	588	1181	001	29	59	100	774	1553	100	72080	144710	100

4 4/4 6/4 77.0 154.6 73 147.6 296.3 30 0.7 1.5 9 deal 131.2 263.5 93 21.2 42.5 74 77.0 154.6 73 436.6 876.7 90 336.4 675.4 96 deal mbustion 3.6 7.2 3 2.5 5.0 9 77.0 154.6 73 436.6 875.7 90 336.4 675.3 96 97 16.6 97 16.8 33.7 <th></th> <th></th> <th>PM10</th> <th></th> <th></th> <th>8</th> <th></th> <th></th> <th>Š</th> <th></th> <th></th> <th>SOx</th> <th></th> <th></th> <th>VOC</th> <th></th> <th>S</th> <th>C02</th> <th></th>			PM10			8			Š			SOx			VOC		S	C02	
4 mbustion 40.9 82.1 29 21.2 42.5 74 77.0 154.6 73 147.6 296.3 30 0.7 1.5 0 her Processes 90.3 181.4 64 0.0 0.0 0.0 0.0 0.0 0.0 380.4 60 335.6 673.9 96 otal mbustion 3.6 7.2 3 2.5 7.4 77.0 154.6 73 436.6 876.7 90 335.6 673.9 96 nabustion 3.6 7.2 3 2.5 5.0 9 9.7 19.5 9 16.8 33.7 3 3.5 7.0 1 call 3.6 7.2 3 2.5 5.0 9 9.7 19.5 9 16.8 33.7 3 3.5 7.0 1 C 33.6 7.2 3 2.5 5.0 9 9.7 19.5 9 16.8		kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha %	% Total
mbustion 40.9 82.1 29 21.2 42.5 74 77.0 154.6 73 147.6 296.3 30 0.7 1.5 0 her Processes 90.3 181.4 64 0.0 0.0 0.0 0.0 0.0 289.0 580.4 60 335.6 673.9 96 otal 131.2 263.5 93 21.2 42.5 74 77.0 154.6 73 436.6 876.7 90 335.6 673.9 96 mbustion 3.6 7.2 3 2.5 5.0 9 9.7 19.5 9 16.8 33.7 3 35.6 6.4 1 clash 7.2 3 2.5 5.0 9 9.7 19.5 9 16.8 33.7 3 3.5 7.0 1 clash 7.2 3 2.5 5.0 9 9.7 19.5 9 16.8 33.7 3 3.5 <th>Part A</th> <th></th>	Part A																		
her Processes 90.3 181.4 64 0.0 0.0 0.0 0.0 0.0 0.0 0.0 580.4 60 335.6 673.9 96 otal 131.2 263.5 93 21.2 42.5 74 77.0 154.6 73 436.6 876.7 90 335.4 673.9 96 mbustion 3.6 7.2 3 2.5 5.0 9 9.7 19.5 9 16.8 33.7 3 35.4 673.4 96 otal 0.0 0.	Combustion	40.9	82.1	29	21.2	42.5	74	77.0	154.6	73	147.6	296.3	30	0.7	1.5	0	23967.2 48121.4	121.4	80
B mbustion 3.6 7.2 3.5 7.2 4.5 7.4 7.7 154.6 73 436.6 876.7 90 336.4 675.4 96 B mbustion 3.6 7.2 3 2.5 5.0 9 9.7 19.5 9 16.8 33.7 3 0.3 0.6 0 otal 3.6 7.2 3 2.5 5.0 9 9.7 19.5 9 16.8 33.7 3 0.3 0.6 0 otal 3.6 7.2 3 2.5 5.0 9 9.7 19.5 9 16.8 33.7 3 3.5 7.0 1 colar 0.0 <t< th=""><th>Other Processes</th><th>90.3</th><th>181.4</th><th>64</th><th>0.0</th><th>0.0</th><th>0</th><th>0.0</th><th>0.0</th><th>0</th><th>289.0</th><th>580.4</th><th>09</th><th>335.6</th><th>673.9</th><th>96</th><th>0.0</th><th>0.0</th><th>0</th></t<>	Other Processes	90.3	181.4	64	0.0	0.0	0	0.0	0.0	0	289.0	580.4	09	335.6	673.9	96	0.0	0.0	0
B mbustion 3.6 7.2 3 2.5 5.0 9 7 19.5 9 16.8 33.7 3 0.3 0.6 0 her Processes 0.0 </th <th>Sub-total</th> <th>131.2</th> <th>263.5</th> <th>93</th> <th>21.2</th> <th>42.5</th> <th>74</th> <th>77.0</th> <th>154.6</th> <th>73</th> <th>436.6</th> <th>876.7</th> <th>90</th> <th>336.4</th> <th>675.4</th> <th>96</th> <th>23967.2 48121</th> <th>121.4</th> <th>80</th>	Sub-total	131.2	263.5	93	21.2	42.5	74	77.0	154.6	73	436.6	876.7	90	336.4	675.4	96	23967.2 48121	121.4	80
mbustion 3.6 7.2 3 2.5 5.0 9 9.7 19.5 9 16.8 33.7 3 0.3 0.6 0 her Processes 0.0 0	Part B																		
her Processes 0.0 <	Combustion	3.6	7.2	3	2.5	5.0	6	7.6	19.5	6	8.91	33.7	3	0.3	9.0	0	6091.7 123	12231.0	20
Cambustion 5.8 7.2 3 2.5 5.0 9 7.1 19.5 9 16.8 33.7 3 3.5 7.0 1 Cambustion 5.8 11.6 4 4.9 9.9 17 18.5 37.2 18 30.6 61.4 6 0.7 1.5 0 otal 0.0 <th>Other Processes</th> <th>0.0</th> <th>0.0</th> <th>0</th> <th>0.0</th> <th>0.0</th> <th>0</th> <th>0.0</th> <th>0.0</th> <th>0</th> <th>0.0</th> <th>0.0</th> <th>0</th> <th>3.2</th> <th>6.4</th> <th>_</th> <th>0.0</th> <th>0.0</th> <th>0</th>	Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	3.2	6.4	_	0.0	0.0	0
C mbustion 5.8 11.6 4 4.9 9.9 17 18.5 37.2 18 30.6 61.4 6 0.7 1.5 0 her Processes 0.0 <th< th=""><th>Sub-total</th><th>3.6</th><th>7.2</th><th>3</th><th>2.5</th><th>5.0</th><th>6</th><th>7.6</th><th>19.5</th><th>6</th><th>16.8</th><th>33.7</th><th>3</th><th>3.5</th><th>7.0</th><th>_</th><th>6091.7 123</th><th>12231.0</th><th>20</th></th<>	Sub-total	3.6	7.2	3	2.5	5.0	6	7.6	19.5	6	16.8	33.7	3	3.5	7.0	_	6091.7 123	12231.0	20
mbustion 5.8 11.6 4 4.9 9.9 17 18.5 37.2 18 30.6 61.4 6 0.7 1.5 0 her Processes 0.0 <	Part C																		
her Processes 0.0 <	Combustion	5.8	11.6	4	4.9	6.6	17	18.5	37.2	<u>«</u>	30.6	61.4	9	0.7	1.5	0	0.0	0.0	0
otal 5.8 11.6 4 4.9 9.9 17 18.5 37.2 18 30.6 61.4 6 11.1 22.4 3 imbustion 50.2 100.9 36 28.6 57.4 100 105.2 211.2 100 195.0 391.5 40 1.8 3.6 1 her Processes 90.3 181.4 64 0.0 0.0 0.0 0.0 280.0 580.4 60 349.2 701.2 99 140.6 282.2 100 28.6 57.4 100 105.2 211.2 100 484.0 971.8 100 351.0 704.8 100	Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	10.4	20.9	3	0.0	0.0	0
Industion 50.2 100.9 36 28.6 57.4 100 105.2 211.2 100 195.0 391.5 40 1.8 3.6 1 her Processes 90.3 181.4 64 0.0 0.0 0.0 0.0 289.0 580.4 60 349.2 701.2 99 140.6 282.2 100 28.6 57.4 100 105.2 211.2 100 484.0 971.8 100 351.0 704.8 100	Sub-total	5.8	11.6	4	4.9	6.6	17	18.5	37.2	18	30.6	61.4	9	11.1	22.4	3	0.0	0.0	0
imbustion 50.2 100.9 36 28.6 57.4 100 105.2 211.2 100 195.0 391.5 40 1.8 3.6 1 her Processes 90.3 181.4 64 0.0 0.0 0.0 0.0 289.0 580.4 60 349.2 701.2 99 140.6 282.2 100 28.6 57.4 100 105.2 211.2 100 484.0 971.8 100 351.0 704.8 100	Total																		
her Processes 90.3 181.4 64 0.0 0.0 0.0 0.0 0.0 349.2 701.2 99 140.6 282.2 100 28.6 57.4 100 105.2 211.2 100 484.0 971.8 100 351.0 704.8 100	Combustion	50.2	100.9	36	28.6	57.4	100	105.2	211.2	100	195.0	391.5	40	1.8	3.6	-	30058.9 60352.4		100
140.6 282.2 100 28.6 57.4 100 105.2 211.2 100 484.0 971.8 100 351.0 704.8 100	Other Processes	90.3	181.4	64	0.0	0.0	0	0.0	0.0	0	289.0	580.4	09	349.2	701.2	66	0.0	0.0	0
	Total	140.6	282.2	100	28.6	57.4	100	105.2	211.2	100	484.0	8.176	100	351.0	704.8	100	30058.9 60352.4	352.4	100

									Pollutant	tant								
		PM ₁₀			8			Ň			so _x			VOC			CO2	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	25	49	4	150	302	3	2	4	0	4	6	_	38	75	2	3419	6864	2
10am-4pm	106	214	17	459	921	00	00	15	_	36	72	9	115	230	7	11891	23872	7
4pm-10pm	247	496	40	1129	2268	20	81	37	3	78	157	12	282	267	17	28233	56681	17
10pm-6am	99	132	=	338	629	9	5	Ξ	_	17	34	3	85	170	5	7552	15161	2
Total	444	891	72	2077	4169	37	33	19	5	136	272	21	519	1042	32	51094	102579	31
Motor Vehicles																		
6am-10am	∞	91	_	790	1586	14	129	259	81	7	13	-	175	351	=	15994	32117	10
10am-4pm	16	32	3	1604	3221	59	262	526	36	13	27	2	355	713	22	32488	65238	61
4pm-10pm	10	20	2	992	1993	81	162	325	22	8	91	-	220	441	13	20102	40365	12
10pm-6am	2	3	0	83	167	_	36	7.1	5	_	3	0	24	49	_	3496	7019	2
Total	36	72	9	3469	1969	62	588	1181	81	29	59	5	774	1553	47	72080	144739	43
Industry																		
6am-10am	27	53	4	7	13	0	24	48	3	93	981	14	09	120	4	10035	20148	9
10am-4pm	42	83	7	=	23	0	41	83	9	148	297	23	92	186	9	19156	38462	=
4pm-10pm	34	89	5	9	12	0	22	45	3	114	230	81	98	173	5	8752	17573	5
10pm-6am	39	78	9	2	6	0	17	35	7	129	259	20	113	226	7	6298	12645	4
Total	141	282	23	29	57	-	105	211	14	484	972	75	351	705	21	44241	88827	26
Combined Total																		
6am-10am	59	119	10	946	1900	17	155	311	21	104	208	91	272	546	17	29448	59125	18
10am-4pm	164	329	56	2074	4164	37	311	624	43	197	396	30	562	1128	34	63535	127567	38
4pm-10pm	291	583	47	2128	4273	38	203	407	28	201	403	31	588	1181	36	57087	114620	34
10pm-6am	106	213	17	427	856	∞	58	117	∞	147	296	23	221	444	13	17346	34827	10
Total	620	1244	100	5575	11193	100	727	1459	100	649	1303	100	1644	3300	100	167416	336138	100

Linwood																		Ì			
	Daily Fuel Quantity kg/day t/day Use %	Daily Fuel Quantity kg/day t/day Use %	iantity Use %	kg	PM ₁₀ g/ha	% Total	kg	CO g/ha	% Total	kg	NO _x g/ha	% Total	kg	SO _x g/ha	% Total	kg	VOC g/ha	% Total	kg	CO ₂ g/ha	% Total
Open fire - Wood	13416	13.4	42	201	267	33	1610	2135	46	22	29	42	ω	4	2	402	534	46	22807	30252	31
- Coal	2509	2.5	38	83	110	14	151	200	4	4	5	7	45	09	36	38	50	4	7026	9319	10
Pre 1989 Woodburner																					
- Wood	8565	9.8	27	110	145	18	877	1163	25	12	91	23	2	2	-	219	291	25	14560	19313	20
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner																					
- Wood	4282	4.3	13	30	39	2	236	314	7	3	4	9	-	_	_	59	78	7	7280	9656	10
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	4282	4.3	13	25	34	4	202	268	9	3	4	5	_	_	_	51	29	9	7280	9656	10
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	1673	1.7	2	24	32	4	161	254	2	3	3	2	0	0	0	48	63	5	2844	3772	4
- Coal	4182	4.2	63	132	175	22	239	317	7	9	∞	=	75	100	59	09	46	7	11710	15532	91
Pot Belly																					
. pood -	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator									•												
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	32218	32.2		390	217	9	3117	4134	68	43	57		9	6	v	779	1034	80	54771	72650	75
Total Coal	1699	6.7		214	284	35	390	517	=	10	13	10	120	160	95	47	129	=		24851	25
Total Gas	4027	4.0	-	0	_		2	7		. ∞	=		0	0		_	-			13353	
Total Oil	645	9.0		_	_		0	_		-	2		7	3		0	0			2739	
			T						T												
Total (Wood and Coal only)	38909	39		604	801	100	3507	4651	001	53	70	100	127	891	100	877	1163	100	73506 97501	97501	100

		PM10			္ပ			Š			SOx			VOC			C02	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part B																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	26.8	35.6	100
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	2.0	2.6	6	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	2.0	2.6	6	26.8	35.6	100
Part C																		
Combustion	4.6	6.1	100	4.2	9.6	100	9.01	14.1	100	18.4	24.5	100	0.5	0.7	2	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	18.2	24.1	88	0.0	0.0	0
Sub-total	4.6	6.1	100	4.2	9.6	100	9.01	14.1	100	18.4	24.5	100	18.7	24.8	16	0.0	0.0	0
Total																		
Combustion	4.6	6.1	100	4.2	9.6	100	10.7	14.1	100	18.5	24.5	100	0.5	0.7	7	26.8	35.6	100
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	20.2	26.7	86	0.0	0.0	0
Total	4.6	6.1	100	4.2	9.6	100	10.7	14.1	100	18.5	24.5	100	20.6	27.4	100	26.8	35.6	100

									Pollutant	tant								
		PM ₁₀			၀			NOx			sox			VOC			CO ₂	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	17	22	2	134	178		2	7	0	0	0	0	34	44	_	2973	3943	-
10am-4pm	94	125	13	497	629	4	%	10	0	23	31	10	124	165	4	10779	14297	4
4pm-10pm	434	575	19	2401	3185	81	37	48	2	102	136	45	009	962	20	51993	68965	19
10pm-6am	59	42	00	474	629	4	7	6	0	-	_	0	119	157	4	7762	10296	3
Total	604	801	98	3507	4651	27	53	70	3	127	891	99	877	1163	29	73506	97501	26
Motor Vehicles																		
6am-10am	21	28	3	2086	2767	91	341	452	21	17	23	∞	462	612	15	42258	56046	15
10am-4pm	43	57	9	4250	5636	32	694	920	42	35	46	91	941	1247	31	86078	114161	31
4pm-10pm	29	38	4	2846	3774	22	464	919	28	23	31	10	630	835	21	57640	76446	21
10pm-6am	5	9	-	486	645	4	62	105	5	4	2	2	108	143	4	1586	13064	4
Total	26	129	14	8996	12822	73	1578	2093	96	80	901	35	2140	2838	70	195827	259717	70
Industry																		
6am-10am	-	2	0	_	_	0	3	4	0	5	9	2	2	7	0	2117	2808	_
10am-4pm	3	4	0	3	3	0	7	6	0	12	15	S	13	17	0	5289	9102	2
4pm-10pm	-		0	_		0	-	7	0	2	3		3	4	0	1062	1409	0
10pm-6am	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	5	9	-	4	9	0	=	14	-	18	25	~	21	27	-	8468	11233	3
Combined Total											:							
6am-10am	39	52	9	2221	2946	17	345	458	21	22	29	10	200	664	91	47348	62803	17
10am-4pm	140	185	20	4749	6300	36	208	939	43	70	93	31	1077	1429	35	102146	135486	37
4pm-10pm	463	614	99	5247	0969	40	502	999	31	128	170	57	1233	1635	41	110695	146825	40
10pm-6am	64	85	6	196	1274	7	98	114	2	2	7	2	226	300	7	17613	23361	9
Total	902	936	100	13179	17480	100	1641	2177	100	225	299	100	3037	4028	100	277802	368475	100

11854 10441

Total (Wood and Coal only)

Marshiands																					
	Daily I	Daily Fuel Quantity	Jantity		PM ₁₀			00		_	NOx		•	so _x			VOC			CO2	
	kg/day	t/day	kg/day t/day Use %	kg		% Total	kg (g/ha T	% Total	kg 6	g/ha T	% Total	kg	g/ha T	% Total	kg	g/ha	% Total	kg	g/ha T	% Total
Open fire																					
- Wood	3171	3.2	19	48	42	47	380	335	63	5	5	58	_	_	3	95	84	63	5390	4748	45
- Coal	1066	1.1	100	35	31	34		56	=	2	_	8	61	17	95	91	14	=		2629	25
Pre 1989 Woodburner																					
- Wood	1023	1.0	20	13	12	13	105	92	17	_	_	91	0	0	_	26	23	17	1740	1532	15
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner						-						_									
- Wood	341	0.3	7	2	2	2	19	17	3	0	0	3	0	0	0	5	4	3	580	511	2
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	682	0.7	13	4	4	4	32	28	2	0	0	2	0	0	_	00	7	2	1160	1021	10
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pot Belly																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	5217	5.2		29	29	99	536	472	68	7	9	82	_	_	S	134	118	68	6988	7812	75
Total Coal	9901	-:		35	31	34	64	99	=	2	_	18	61	17	95	16	4	=	2985	2629	25
Total Gas	274	0.3		0	0	-	0	0		_	0		0	0		0	0		685	604	
Total Oil	89	0.1		0	0		0	0		0	0		0	0		0	0		218	192	
						-			_			_			-			-			_

									Pollutan	+								
		PM ₁₀			တ			Ň			SOx			VOC			co ₂	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	11	10	23	2133	1879	85	531	468	50	-	-	3	604	532	84	72104	63511	69
Light duty <3.5t diesel vehicles	2	_	3	6	∞	0	9	5	_	7	2	2	4	4	_	4302	3789	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	9	2	0	13	Ξ	-	0	0	0	12	10	2	2054	1809	2
Heavy duty >3.5t petrol vehicles	2	7	4	231	203	6	31	28	3	0	0	0	23	20	3	3567	3142	3
Heavy duty >3.5t diesel vehicles	32	28	69	74	65	3	481	424	45	36	31	88	59	52	∞	22034	19408	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	10	6	0	3	3	0	0	0	0	5	4	_	808	448	0
2&4 stroke petrol motorcycles	0	0	0	35	30	-	0	0	0	_	_	3	15	14	2	171	150	0
Total	46	41	100	2497 2200	2200	100	9901	939	100	40	36	100	724	637	100	104741	92258	100

		PM10			ဗ			NOX			SOx			VOC			C02	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part B																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part C																		
Combustion	2.8	2.4	100	1.7	1.5	100	2.9	5.9	100	12.5	11.0	100	0.2	0.2	7	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	5.6	2.3	93	0.0	0.0	0
Sub-total	2.8	2.4	100	1.7	1.5	100	6.7	5.9	100	12.5	11.0	100	2.8	2.5	100	0.0	0.0	0
Total																		
Combustion	2.8	2.4	100	1.7	1.5	100	2.9	5.9	100	12.5	11.0	100	0.2	0.2	7	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	2.6	2.3	93	0.0	0.0	0
Total	2.8	2.4	100	1.7	1.5	100	6.7	5.9	100	12.5	11.0	100	2.8	2.5	100	0.0	0.0	0

									Pollutant	tant								
		PM ₁₀			္ပ			Ň			SOx			VOC			CO	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	∞	7	5	45	39	_		_	0	_	-	7	=	10	_	894	788	-
10am-4pm	26	23	17	187	165	9	3	2	0	2	2	3	47	41	S	3047	2684	3
4pm-10pm	63	99	42	329	290	=	5	4	0	91	14	22	82	72	6	7002	6167	9
10pm-6am	5	4	3	39	35	,	-	0	0	0	0	0	10	6		911	803	-
Total	102	06	89	009	529	19	6	∞	_	20	8-	28	150	132	17	11854	10441	10
Motor Vehicles																		
6am-10am	10	6	7	537	473	17	229	202	21	6	8	12	156	137	18	22516	19838	19
10am-4pm	20	18	13	1098	196	35	469	413	43	18	16	24	318	280	36	46056	40578	38
4pm-10pm	14	12	6	741	653	24	316	279	29	12	=	91	215	189	25	31090	27392	26
10pm-6am	2	2	_	121	107	4	52	46	5	2	2	3	35	31	4	5079	4475	4
Total	46	41	31	2497	2200	81	9901	939	66	40	36	55	724	638	83	104741	92283	87
Industry		-																
6am-10am	_	-	0	0	0	0	2	-	0	3	3	4	-	_	0	1054	929	-
10am-4pm	2	2	-	_	_	0	4	4	0	∞	7	=	2	2	0	2636	2322	2
4pm-10pm	0	0	0	0	0	0	-	-	0	2	_	2	0	0	0	527	464	0
10pm-6am	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	3	2	2	2	2	0	7	9	-	12	=	17	3	7	0	4217	3715	3
Combined Total																		
6am-10am	18	91	12	585	513	61	231	204	21	13	12	81	167	147	61	24465	21549	20
10am-4pm	49	43	32	1287	1133	42	476	419	44	28	25	38	367	323	42	51738	45572	43
4pm-10pm	77	89	51	1070	943	35	322	284	30	30	26	4	297	262	34	38618	34016	32
10pm-6am	7	9	5	191	141	5	52	46	5	7	2	3	45	40	2	2990	5276	2
Total	151	133	100	3099	2730	100	1082	953	100	73	64	100	877	772	100	120812	106412	100

Christchurch Inventory of Total Emissions

	Daily Fuel Quantity	uel Qu	antity		PM ₁₀			00			Š			so,			00X			S	
	kg/day t/day		% esn	kg		% Total	kg	_	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Open fire	(0							((٥	,			d		d		•
- Wood	0	0.0	0	0	0	-	0	0	-	0	0	-	0	0	 ->	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pre 1989 Woodburner																					
- Wood	526	0.5	50	7	29	19	54	234	29	_	3	29	0.11	0.46	50	13	59	29	895	3889	20
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner																					
- Wood	263	0.3	25	2	∞	81	15	63	81	0		18	0.05	0.23	25	4	16	8	447	1945	25
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	263	0.3	25	2	7	15	12	54	15	0	_	15	0.05	0.23	25	3	13	15	447	1945	25
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pot Belly																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	1052	_		10	44	100	8	351	100	_	5	100	0.21	0.92	100	20	88	100	1789	7778	100
Total Coal	0	0.0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Gas	699	0.7		0	0		0	_		_	9		0.01	0.03		0	_		1671	7267	
Total Oil	0	0.0		0	0		0	0		0	0		0	0		0	0		0	0	
Total (Wood and Coal only)	1052	_		10	44	100	8	351	100		S	100	0.21	0.92	100	20	88	100	1789	7778	100

									Pollutan	+								
		PM ₁₀			ပ္ပ			Ň			SO _x			VOC			CO2	
	kg	g/ha	g/ha % Total kg	kg	g/ha	% Total	kg	g/ha	% Total	Ķģ	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	0	0	29	14	09	06	_	5	49	0	0	5	3	12	83	212	923	69
Light duty <3.5t diesel vehicles	0	0	3	0	0	0	0	0	_	0	0	2	0	0	0	13	55	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	0	0	0	0	0	-	0	0	0	0	0	_	9	26	2
Heavy duty >3.5t petrol vehicles	0	0	3		4	9	0	0	2	0	0	0	0	0	3	Ξ	46	3
Heavy duty >3.5t diesel vehicles	0	0	64	0	2	3	-	5	46	0	0	87	0	2	=	65	282	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	7	0
2&4 stroke petrol motorcycles	0	0	0	0	0	-	0	0	0	0	0	3	0	0	-	-	2	0
Total	0	_	100	15	99	100	7	=	100	0	-	001	3	15	100	308	1341	100

Ambustion (0.0)			PM10			္ပ			NOX			SOx			VOC			C02	
her Processes 0.0 <		kg	g/ha	% Total															
mbustion 0.0 0.	Part A																		
her Processes 0.0 <	Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
state .0.0 0.0<	Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
3 mbustion 0.0	Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
mbustion 0.0 0.	Part B																		
her Processes 0.0 <	Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Detail 0.0<	Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Cher Processes 0.09 3.7 100 0.7 2.9 100 2.6 11.5 100 4.6 19.9 100 0.1 0.4 100 her Processes 0.0 <th>Sub-total</th> <th>0.0</th> <th>0.0</th> <th>0</th>	Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
mbustion 0.9 3.7 100 0.7 2.9 100 2.6 11.5 100 4.6 19.9 100 0.1 0.4 100 her Processes 0.0	Part C																		
her Processes 0.0 <	Combustion	6.0	3.7	100	0.7	2.9	100	2.6	11.5	100	4.6	19.9	100	0.1	0.4	100	0.0	0.0	0
mbustion 0.9 3.7 100 0.7 2.9 100 2.6 11.5 100 4.6 19.9 100 0.1 0.4 100 mbustion 0.9 3.7 100 0.7 2.9 100 2.6 11.5 100 4.6 19.9 100 0.1 0.4 100 her Processes 0.0	Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
mbustion 0.9 3.7 100 0.7 2.9 100 2.6 11.5 100 4.6 19.9 100 0.1 0.4 100 her Processes 0.0	Sub-total	6.0	3.7	100	0.7	2.9	100	2.6	11.5	100	4.6	19.9	100	0.1	0.4	100	0.0	0.0	0
mbustion 0.9 3.7 100 0.7 2.9 100 2.6 11.5 100 4.6 19.9 100 0.1 0.4 100 her Processes 0.0	Total																		
her Processes 0.0 <	Combustion	6.0	3.7	100	0.7	2.9	100	2.6	11.5	100	4.6	6.61	100	0.1	0.4	100	0.0	0.0	0
0.9 3.7 100 0.7 2.9 100 2.6 11.5 100 4.6 19.9 100 0.1 0.4 100	Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
	Total	6.0	3.7	100	0.7	2.9	100	2.6	11.5	100	4.6	19.9	100	0.1	0.4	100	0.0	0.0	0

									Pollutant	tant								
		PM ₁₀			ပ္ပ			Ň			SO _x			VOC			CO	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	0	-	7	7	6	2	0	0	0	0	0	0	_	7	2	75	324	2
10am-4pm	0	2	3	3	13	3	0	0	-	0	0	0		3	3	112	486	3
4pm-10pm	6	39	80	72	311	74	-	4	91	0	_	3	81	78	91	1454	6320	35
10pm-6am	-	2	5	4	18	4	0	0		0	0	0	-	4	4	149	849	4
Total	10	44	91.81		10	44	18.16	84	_	5 . 1 8 .	_	4	20	88	85	1789	1778	43
			•351				•351											
Motor Vehicles																		
6am-10am	0	0	0	3	=	3	0	2	7	0	0	0	_	2	2	53	228	
10am-4pm	0	0		9	27	9	-	4	91	0	0		-	9	9	126	547	3
4pm-10pm	0	0	0	4	20	2	_	3	12	0	0		-	4	4	16	396	2
10pm-6am	0	0	0	2	∞	2	0	-	2	0	0	0	0	7	7	39	170	
Total	0		-	15	99	91	2	=	40	0	-	3	3	15	14	308	1341	7
Industry																		
6am-10am	0	-	2	0	-	0	-	3	=	_	5	23	0	0	0	207	2203	12
10am-4pm	_	7	2	0	2	0	7	7	56	3	12	28	0	0	0	1267	5507	31
4pm-10pm	0	0	_	0	0	0	0	-	5	-	2	12	0	0	0	253	1101	9
10pm-6am	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	1	4	8	1	3	-	3	Ξ	42	5	20	93	0	0	0	2027	8811	49
Combined Total																		
6am-10am	0	7	4	2	21	2	_	2	18	_	2	24	-	2	2	634	2755	15
10am-4pm	-	4	6	10	42	01	3	12	43	3	13	09	2	10	6	1504	6540	36
4pm-10pm	6	40	82	9/	331	79	2	6	33	_	3	91	61	82	80	1798	7817	44
10pm-6am	_	2	5	9	26	9	0	7	9	0	0	-	1	9	9	188	818	5
Total		48	100	62	420	100	9	27	100	5	21	100	24	103	100	4124	17929	100
							-											

chairman of a oun timesone

=
0
-
_
=
0
-
-
\mathbf{o}
_
>
5
(1)
=
Z

	Daily Fuel Quantity	iel Qua	ıntity		PM ₁₀			දු			Š			Sox			VOC			CO	
	kg/day	t/day	t/day Use %	kg		% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Open fire																					
- Wood	19169	19.2	∞	288	148	<u>∞</u>	2300	1185	23	32	91	21	4	7	_	575	296	23	32588	16784	4
- Coal	7488	7.5	48	247	127	15	449	231	4	=	9	00	135	69	45	112	58	4	20966	10799	6
Pre 1989 Woodburner																					
- Wood	39537	39.5	37	909	261	31	4049	2085	40	99	29	38	∞	4	3	1012	521	40	67212	34617	30
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner																					
- Wood	21565	21.6	20	149	77	6	1190	613	12	91	∞	=	4	2	_	298	153	12	36661	18882	16
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	21565	21.6	20	127	99	∞	8101	524	10	14	7	10	4	2	-	254	131	10	36661	18882	91
- Coal	2304	2.3	15	30	15	7	54	28	_	_	_	_	41	21	14	14	7	_	6451	3323	3
Enclosed Coal Burner																					
- Wood	5530	5.5	2	79	41	2	633	326	9	6	4	9	_	_	0	158	81	9	9400	4842	4
- Coal	2160	5.8	37	181	93	=	329	170	3	00	4	9	104	53	34	82	42	3	16128	8307	7
Pot Belly																					
. poom -	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	107366	107.4		1149	592	71	9190	4733	92	126	65	98	21	=	7	2297	1183	92	18252	94006	8
Total Coal	15552	15.6		458	236	59	833	429	∞	21	=	14	280	144	93	208	107	∞	43546	22428	19
Total Gas	13478	13.5	-	_	_		5	3		27	14		0	0		3	_		33696	17355	
Total Oil	823	8.0		-	_		0	0		7	-		3	7		0	0		2633	1356	
							l l														
Total (Wood and Coal only)	122918	123		1607	828	001	10023	5162	001	147	9/	001	301	155	100	2506	1291	100	22606 11643	11643	100

									Pollutani	+								
		PM ₁₀			္ပ			Š			SOx			VOC			CO	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	24	13	29	7446	3835	90	694	357	49	3	2	5	1539	792	83	118424	60993	69
Light duty <3.5t diesel vehicles	3	_	3	15	00	0	10	5	_	4	2	2	7	4	0	7065	3639	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	91	∞	0	21	=	_	0	0	0	20	=	_	3373	1737	2
Heavy duty >3.5t petrol vehicles	3		3	477	246	9	32	17	7	0	0	0	48	25	3	5859	3018	3
Heavy duty >3.5t diesel vehicles	55	28	65	248	128	3	643	331	46	19	31	87	198	102	=	36189	18639	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	91	∞	0	S	3	0	0	0	0	∞	4	0	835	430	0
2&4 stroke petrol motorcycles	0	0	0	57	53	_	0	0	0	2	-	3	25	13	_	280	144	0
Total	85	44	100	8275 4262	4262	100	1404	723	100	70	36	100	1845	950	100	172026	00988	100

		PM10			8			NON			SOx			VOC			C02	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part B																		
Combustion	1.6	8.0	20	1.0	0.5	15	3.7	1.9	91	6.9	3.6	17	0.1	0.1	0	2258.4	1163.2	100
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	12.4	6.4	36	0.0	0.0	0
Sub-total	9.1	8.0	20	1.0	0.5	15	3.7	1.9	91	6.9	3.6	17	12.5	6.5	37	2258.4	1163.2	100
Part C																		
Combustion	6.4	3.3	80	9.6	2.9	85	20.2	10.4	84	34.2	9.71	83	6.0	0.5	3	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	20.8	10.7	61	0.0	0.0	0
Sub-total	6.4	3.3	80	5.6	2.9	85	20.2	10.4	84	34.2	17.6	83	21.7	11.2	63	0.0	0.0	0
Total																		
Combustion	7.9	4.1	100	9.9	3.4	100	23.9	12.3	100	41.1	21.2	100	1.0	0.5	3	2258.4	1163.2	100
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	33.2	17.1	26	0.0	0.0	0
Total	7.9	4.1	100	9.9	3.4	100	23.9	12.3	100	41.1	21.2	100	34.2	17.6	100	2258.4	1163.2	100
														-				

Canterbury Regional Council Technical Report

									Pollutant	tant								
		PM ₁₀			00			Ň			SOx			VOC			CO2	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	133	89	00	746	384	4	=	9	_	30	16	7	186	96	4	16887	2698	4
10am-4pm	124	64	7	712	367	4	Ξ	9	_	28	14	7	178	92	4	18908	9738	5
4pm-10pm	1026	528	09	6604	3401	36	96	49	9	182	94	44	1651	850	38	148882	26680	36
10pm-6am	325	167	19	1962	1010	=	29	15	2	19	32	15	490	253		41392	21319	10
Total	1607	828	95	10023	5162	55	147	92	6	301	155	73	2506	1291	57	226068	116434	54
Motor Vehicles																		
6am-10am	8-	6	_	1798	926	01	294	151	19	15	∞	4	398	205	6	36425	18757	6
10am-4pm	37	19	7	3700	1905	20	604	311	38	31	16	7	819	422	61	74950	38594	18
4pm-10pm	26	13	2	2573	1325	14	420	216	27	21	Ξ	5	570	293	13	52125	26841	12
10pm-6am	4	2	0	203	105	-	87	45	9	3	2		59	30	_	8525	4390	7
Total	85	44	5	8275	4261	45	1404	723	68	70	36	17	1845	950	42	172026	88582	41
Industry																		
6am-10am	7	-	0	2	-	0	9	3	0	01	2	2	6	4	0	4760	2452	-
10am-4pm	2	3	0	4	2	0	15	00	-	26	13	9	21		0	11900	6129	3
4pm-10pm	_	_	0	_	0	0	3	2	0	5	3	_	4	2	0	2380	1226	-
10pm-6am	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	∞	4	0	7	3	0	24	12	2	41	21	01	34	8-1		19040	9086	5
Combined Total																		
6am-10am	153	79	6	2546	1311	14	311	160	20	55	29	13	593	305	14	58072	29910	14
10am-4pm	991	98	01	4416	2275	24	630	324	40	84	43	20	1018	524	23	105758	54471	25
4pm-10pm	1052	542	62	8118	4727	50	519	267	33	208	107	51	2225	1146	51	203387	104754	49
10pm-6am	328	691	16	2165	1115	12	116	09	7	65	33	91	549	283	13	49918	25710	12
Total	1700	876	100	18305	9428	100	1575	811	100	412	212	100	4385	2250	100	117125	PYOVIC	100

Christchurch Inventory of Total Emissions

Opawa/Woolston																					
	Daily Fuel Quantity	nel Q	antity		PM ₁₀			00	!		NO×			so _x			VOC			CO2	
	kg/day t/day Use %	t/day	% esn	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Open fire																					
- Wood	7167	7.2	23	108	135	25	860	1077	30	12	15	28	_	2	2	215	569	30	12185	15263	20
- Coal	2365	2.4	62	78	86	81	142	178	5	4	4	6	43	53	71	35	44	2	6623	8296	=
Pre 1989 Woodburner															-						
- Wood	12175	12.2	39	156	195	36	1247	1562	43	17	21	41	7	3	4	312	390	43	20697	25926	34
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner																					
- Wood	5831	5.8	19	40	90	6	322	403	=	4	9	=	_	_	7	80	101	=	9912	12417	91
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	5831	5.8	19	34	43	00	275	345	01	4	S	6	_	_	7	69	98	10	9912	12417	91
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	613	9.0	21	19	24	4	35	44	_	_		2	=	14	18	6	=	_	1717	2151	3
Pot Belly																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	31003	31.0		338	423	78	2704	1387	40	37	47	08	4	00	0	919	847	94	90265	10099	98
Total Coal	2978	3.0		97	122	22	177	222	, 9	4	: 4	3 =	5.4	67	06	44	55	, ,	8340	10447	4
Total Com	030	000		, <	1	1			>	٠ ,	, ,	:	; <	5 <	2		3 <	>	2000	2626	
Total Gas	000	0.0		0	o •		0 0	0 0		4 0	7 -		o •	۰ د		0 0	0 0		20%0	0707	
Total Oil	572	0.2		0	0		0	0		0	_			_		0	0		721	903	
Total (Wood and Coal only)	33982	34		435	545	100	2881	3609	100	42	52	100	09	75	100	720	905	100	61045 76469	76469	100
									-			-			-						-

concerning may for frame

									Pollutani	+								
		PM ₁₀			္ပ			Ň			SOx			VOC			co ₂	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	24	29	29	7168	6268	90	299	836	49	3	4	5	1481	1855	83	113925	142709	69
Light duty <3.5t diesel vehicles	3	3	3	14	18	0	6	12	_	3	4	2	7	6	0	1679	8514	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	91	20	0	20	25	-	0	0	0	20	25	_	3245	4065	2
Heavy duty >3.5t petrol vehicles	3	3	3	459	575	9	31	39	2	0	0	0	46	58	3	5637	1904	3
Heavy duty >3.5t diesel vehicles	53	99	65	239	299	3	819	774	46	58	73	87	190	239	=	34814	43610	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	91	20	0	5	9	0	0	0	0	∞	10	0	803	1006	0
2&4 stroke petrol motorcycles	0	0	0	55	89	-	0		0	2	2	3	24	31	-	270	338	0
Total	82	102	100	9961	8266	100	1351	1692	100	29	84	100	1776	2225	100	165490	207303	100

		PM10			00			Š			SOx			00V			C02	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha %	% Total
Part A																		
Combustion	1.2	1.5	_	2.7	3.3	7	11.7	14.6	8	16.7	20.9	9	8.0	6.0	-	13460.8 16861.7	16861.7	28
Other Processes	100.0	125.3	62	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	15.6	19.5	23	0.0	0.0	0
Sub-total	101.2	126.7	62	2.7	3.3	7	11.7	14.6	8	16.7	20.9	9	16.3	20.4	24	13460.8	16861.7	28
Part B																		
Combustion	47.7	59.7	59	24.0	30.1	09	87.5	9.601	58	177.4	222.2	64	1.2	1.6	2	34680.9 43443.0	43443.0	72
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	6.5	8.2	10	0.0	0.0	0
Sub-total	47.7	8.65	29	24.0	30.1	09	87.5	9.601	58	177.4	222.2	64	7.8	7.6	=	34680.9 43443.0	43443.0	72
Part C																		
Combustion	13.2	16.5	~	13.5	6.91	34	50.4	63.1	34	81.9	102.6	30	2.5	3.1	4	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	41.6	52.1	19	0.0	0.0	0
Sub-total	13.2	16.5	8	13.5	6.91	34	50.4	63.1	34	81.9	102.6	30	44.1	55.2	65	0.0	0.0	0
Total																		
Combustion	62.1	77.8	38	40.2	50.3	100	149.5	187.3	100	276.0	345.7	100	4.5	5.6	7	48141.7 60304.7	60304.7	100
Other Processes	100.0	125.3	62	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	63.7	8.62	93	0.0	0.0	0
Total	162.1	203.1	100	40.2	50.3	100	149.5	187.3	100	276.0	345.7	100	68.2	85.4	100	48141.7 60304.7	60304.7	100

									Pollutant	tant								
		PM ₁₀			ဝ			×ON			sox			VOC			CO	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	24	30	4	192	240	7	3	3	0		_	0	48	09	2	4421	5538	_
10am-4pm	49	62	7	360	451	3	2	9	0	4	2	_	06	113	4	7861	9848	7
4pm-10pm	294	368	43	1832	2294	17	27	34	2	20	62	12	458	574	18	38989	48840	12
10pm-6am	89	85	10	498	623	2	7	6	0	5	7	-	124	156	5	9774	12243	3
Total	435	545	64	2881	3609	26	42	52	3	09	75	15	720	905	28	61045	76469	19
Motor Vehicles																		
6am-10am	18	22	3	1763	2210	16	288	361	19	15	18	4	390	489	15	35717	44758	=
10am-4pm	37	46	5	3659	4585	34	597	748	39	30	38	7	810	1015	32	74118	92880	23
4pm-10pm	24	30	3	2352	2948	22	384	481	25	19	24	2	521	652	20	47643	59704	15
10pm-6am	4	4	-	161	239	2	82	102	5	3	4	-	55	69	2	8012	10040	2
Total	82	102	12	9962	9982	73	1351	1692	88	19	84	17	1776	2226	69	165490	207381	52
Industry	•																	
6am-10am	28	35	4	∞	10	0	30	37	2	54	<i>L</i> 9	13	17	21	_	19707	24686	9
10am-4pm	46	28	7	15	61	0	57	72	4	102	128	25	40	90	2	41386	51842	13
4pm-10pm	39	49	9	∞	10	0	31	39	2	59	73	15	10	12	0	17689	22158	9
10pm-6am	49	19	7	6	Ξ	0	32	40	2	62	11	15	2	3	0	15273	19132	5
Total	162	203	24	40	50	0	150	187	10	276	346	89	89	85	3	94055	117818	29
Combined Total																		
6am-10am	70	88	10	1963	2459	18	320	401	21	69	98	17	455	570	81	59845	74965	16
10am-4pm	132	166	19	4035	5054	37	099	826	43	136	171	34	940	1177	37	123365	154533	38
4pm-10pm	356	446	52	4192	5251	39	442	553	29	128	160	32	886	1238	39	104322	130678	33
10pm-6am	121	151	18	269	873	9	120	150	∞	70	88	17	182	228	7	33059	41411	10
Total	619	851	100	10887	13637	100	1542	1931	100	403	505	100	2564	3212	100	320590	401587	100

	Daily Fuel Quantity	nel Qu	antity		PM ₁₀			္ပ			Š			so _x			VOC			CO2	
	kg/day t/day Use %	t/day	% esn	kg		% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Open fire																					
- Wood	405	0.4	9	9	61	7	49	156	6	_	2	00	0	0	0	12	39	6	689	2207	2
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pre 1989 Woodburner																					
- Wood	2515	2.5	35	32	103	35	258	825	45	4		42	-	2	3	64	206	45	4276	13696	29
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner																					
- Wood	2096	2.1	29	14	46	91	911	371	20	2	5	61	0	_	2	29	93	20	3563	11413	25
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	2096	2.1	29	12	40	13	66	317	17	_	4	91	0	_	2	25	42	17	3563	11413	25
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	873	6.0	100	27	88	30	20	160	6	_	4	15	91	20	92	12	40	6	2445	7833	17
Pot Belly																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	7112	7.1		65	209	70	521	1668	- 16	7	23	580		8	00	130	417	16	12091	38729	83
Total Coal	873	6.0		27	88	30	50	160	6		4	15	. 91	50	92	12	40	6	2445	7833	17
Total Gas	2129	2.1		0	-		_	3		4	4	-	0	0		0	-		5324	17052	
Total Oil	0	0.0		0	0		0	0		0	0		0	0		0	0		0	0	
Total (Wood and Coal only)	9862	∞	•	93	297	100	571	1828	100	∞	27	100	11	55	100	143	457	100	14536	46561	100

									Pollutan	Ħ								
		PM ₁₀			္ပ			Š			Š			VOC			CO	
	kg		g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	3	11	29	1015	3252	06	94	302	49	0	2	5	210	672	83	16127	51656	69
Light duty <3.5t diesel vehicles	0	-	3	7	7	0	-	4	_	0	7	5	-	3	0	962	3082	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	2	7	0	3	6	_	0	0	0	3	6	-	459	1471	2
Heavy duty >3.5t petrol vehicles	0	_	3	65	208	9	4	14	2	0	0	0	7	21	3	798	2556	3
Heavy duty >3.5t diesel vehicles	7	24	9	34	108	3	87	280	46	00	27	87	27	98	Ξ	4928	15785	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	2	7	0	-	2	0	0	0	0	_	4	0	114	364	0
2&4 stroke petrol motorcycles	0	0	0	∞	25	_	0	0	0	0	_	3	3	=	-	38	122	0
Total	12	37	100	1128 3614	3614	100	161	612	100	10	30	100	252	908	100	23427	75037	100
							-											

		PM10			8			Ň			SOx			VOC			202	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha %	% Total
Part A																		
Combustion	32.2	103.1	79	16.1	51.7	95	58.1	186.0	98	112.7	360.9	95	0.4	1.3	82	15453.5 49498.5	3498.5	100
Other Processes	8.9	21.8	17	0.0	0.0	0	6.4	20.4	6	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	, 39.0	124.9	96	1.91	51.7	95	64.5	206.4	95	112.7	360.9	95	0.4	1.3	82	15453.5 49498.5	3498.5	100
Part B																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part C																		
Combustion	1.5	4.9	4	6.0	2.9	5	3.4	11.0	5	6.5	21.0	S	0.1	0.3	18	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	1.5	4.9	4	6.0	2.9	5	3.4	11.0	5	6.5	21.0	5	0.1	0.3	81	0.0	0.0	0
Total																		
Combustion	33.7	108.0	83	17.0	54.6	100	61.5	197.0	16	119.2	381.9	100	0.5	1.5	100	15453.5 49498.5	3498.5	001
Other Processes	8.9	21.8	17	0.0	0.0	0	6.4	20.4	6	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Total	40.5	129.8	100	17.0	54.6	100	6.79	217.4	100	119.2	381.9	100	0.5	1.5	100	15453.5 49498.5	3498.5	100

Canterbury Regional Council Technical Report

									Pollutant	Itant								
		PM ₁₀			8			Ň			SOx			VOC			CO2	
×	kg	g/ha °	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
	15	46	10	74	236	4		4	0	4	13	3	18	59	5	2274	7284	4
10am-4pm 2	20	65	14	66	316	9	7	5	-	9	20	4	25	79	9	3055	9785	9
	53	170	37	362	1160	21	5	17	2	7	22	5	91	290	23	8020	25688	14
10pm-6am	5	15	3	36	116	2	0	2	0	0	0	0	6	29	2	1188	3804	2
Total 9	93	297	64	571	1828	33	∞	27	3	17	55	12	143	457	36	14536	46561	26
Motor Vehicles																		
6am-10am	2	«	2	247	790	14	40	129	15	2	7	_	55	175	14	4664	16008	6
10am-4pm	5	16	3	503	1611	56	82	263	31	4	13	3	111	357	28	10180	32627	18
4pm-10pm	4	11	2	353	1130	21	58	185	22	3	6	2	78	250	20	7144	22898	13
10pm-6am	0	2	0	56	85	2	=	36	4	0	-	0	8	25	2	1108	3551	2
Total	12	37	∞	1128	3616	99	191	613	72	10	31	7	252	908	64	23427	75085	42
Industry																		
6am-10am	7	24	2	3	6	0	12	39	2	20	99	14	0	0	0	3076	9854	9
10am-4pm	12	40	6	2	15	0	20	64	7	32	103	22	0	0	0	5108	16362	6
4pm-10pm	10	32	7	4	13	0	17	53	9	29	93	20	0	0	0	4105	13150	7
10pm-6am	=	34	7	5	17	0	19	62	7	38	120	26	0	0	0	5099	16333	6
Total 4	41	130	28	17	55	-	89	217	25	119	382	82	0	2	0	17389	86955	31
Combined Total																		
6am-10am 2	24	78	17	323	1035	19	54	172	20	27	85	81	73	234	19	10345	33135	19
10am-4pm 3	38	121	26	909	1941	35	103	331	39	43	136	29	136	436	34	18343	58753	33
4pm-10pm	29	214	46	719	2303	42	79	254	30	39	124	26	691	540	43	19269	61721	35
10pm-6am	91	20	=	89	218	4	31	100	12	38	122	26	17	54	4	7395	23687	13
Total	145	463	100	1716	5497	100	267	857	100	146	467	100	395	1264	100	55352	177296	100

Racecourse																		İ			
	Daily F	Daily Fuel Quantity	uantity		PM ₁₀			၀			Š			sox		-	Voc			CO_2	
	kg/day	kg/day t/day Use%	Use %	kg	g/ha	% Total	kg	g/ha T	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Open fire	900	0.0	10	2	95	2	=	440	10	C	4	ŏ	c	-	-	80	113	21	1572	9529	=
- wood -	676		2 3	<u> </u>	3	71	111	7	17	1 (0	0 6	> 8		- (0 7	71.	1 .	2101	14120	
- Coal	1248	1.2	64	4	991	36	2	303	4	7	×	77	77	16	79	61	9/	4	3493	14120	97
rre 1989 Woodburner	1657	,		-	30	0	160	107		,	c		<	-		Ç	171	,,	0000	11261	5
- W000 -	701	1.7	34	17	83	× 1	109	084	37	7	7	17	>	_	_	74	1/1	25	2002	10011	7.1
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner																					
- Wood	826	8.0	17	9	23	2	46	184	6		3	7	0	_	0	11	46	6	1404	9299	10
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	1032	1.0	21	9	25	5	49	197	6	_	3	∞	0		_	12	49	6	1755	7095	13
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	215	0.2	4	3	12	3	25	66	5	0	-	4	0	0	0	9	25	2	366	1478	3
- Coal	717	0.7	36	23	16	19	41	166	∞	_	4	12	13	52	36	10	41	∞	2008	8115	15
Pot Belly									\^												
- Wood	158	0.2	3	7	6	2	18	73	3	0	_	3	0	0	0	5	18	3	268	1084	7
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	4808	8.4		52	211	45	417	1686	78	9	23	99	-	4	3	104	422	78	8174	33039	09
Total Coal	1965	2.0		64	258	55	116	468	22	3	12	34	35	143	16	29	117	22	5501	22235	40
Total Gas	176	0.2		0	0		0	0		0	_		0	0		0	0		440	1780	
Total Oil	37	0.0		0	0		0	0		0	0		0	_		0	0		118	477	
Total (Wood and Coal only)	6773	7		116	468	100	533	2154	100	6	35	100	36	147	001	133	539	100	13675	55274	100
									1												

Canterbury Regional Council Technical Report

									Pollutan	Ħ								
		PM ₁₀			္ပ			Š			SOx			VOC			င္ပ	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	-	9	27	661	803	82	95	384	62	0	-	4	62	251	83	9410	38035	69
Light duty <3.5t diesel vehicles	0	-	4	-	2	0	-	3	_	0	-	9	_	2	_	561	2269	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	_	2	0	2	6	_	0	0	0	2	9	2	268	1083	2
Heavy duty >3.5t petrol vehicles	0	gadesq	9	27	111	=	4	17	3	0	0	0	2	8	3	466	1882	3
Heavy duty >3.5t diesel vehicles	3	13	63	∞	32	3	50	204	33	4	17	87	9	25	8	2875	11623	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	-	5	_	0	2	0	0	0	0	-	3	_	99	268	0
2&4 stroke petrol motorcycles	0	0	0	5	18	2	0	0	0	0	-	3	2	∞	3	22	06	0
Total	5	21	100	241	916	100	153	819	100	5	20	100	75	302	100	13669	55250	100

		PM10			ဗ			NOX			SOx			VOC			C02	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part B																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part C																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Total																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0

									Pollutant	ant								
		PM ₁₀			္ပ			Ň			so _x			VOC			CO2	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	9	25	5	38	153	2	-	7	0	_	S	3	6	38	S	915	3699	3
10am-4pm	28	113	23	119	482	15	2	∞	-	10	39	23	30	121	14	3182	12863	12
4pm-10pm	64	260	53	289	1168	37	5	19	3	21	85	51	72	292	35	7556	30542	28
10pm-6am	17	69	14	87	351	=	-	2	_	2	19	=	22	88	10	2021	8170	7
Total	116	468	96	533	2154	69	6	35	5	36	147	88	133	539	64	13675	55274	50
Motor Vehicles																		
6am-10am	_	4		43	176	9	28	Ξ	17	_	4	2	13	54	9	2459	9366	6
10am-4pm	2	6	2	102	411	13	64	260	40	2	∞	5	31	127	15	5749	23274	21
4pm-10pm	2	9		73	297	6	46	188	29	-	9	4	23	92	=	4152	16808	15
10pm-6am	_	7	0	23	94	3	15	59	6	0	7	-	7	29	3	1310	5302	2
Total	5	21	4	241	677	31	153	619	95	5	20	12	75	303	36	13669	55340	50
Industry	-																	
6am-10am	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10am-4pm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4pm-10pm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10pm-6am	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Combined Total																		
6am-10am	7	29	9	8	329	10	28	113	17	2	8	S	23	93	=	3374	13638	12
10am-4pm	30	122	25	221	892	29	99	268	41	12	47	28	19	248	29	8931	36099	33
4pm-10pm	99	267	55	362	1465	47	51	207	32	22	91	54	95	384	46	11708	47322	43
10pm-6am	18	11	15	110	444	14	91	65	01	2	20	12	29	117	14	3331	13463	12
Total	121	490	100	774	3130	100	162	653	100	41	991	001	208	841	100	27344	110522	100

consession of the commence of

Redwood																					
	Daily Fuel Quantity	uel Qu	antity		PM ₁₀			00			Š			sox			VOC			CO2	
	kg/day t/day Use%	t/day	% asn	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Open fire																					
- Wood	11461	11.5	19	172	229	47	1375	1830	63	19	25	58	2	3	3	344	458	63	19484	25927	45
- Coal	3853	3.9	100	127	169	34	231	308		9	∞	18	69	92	95	58	11	11	10789	14356	25
Pre 1989 Woodburner																					
- Wood	3699	3.7	20	47	63	13	379	504	17	5	7	16	1	_	-	95	126	17	6288	8368	15
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner																					
- Wood	1233	1.2	7	6	Ξ	7	89	91	3	_	_	3	0	0	0	17	23	3	2096	2789	5
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	2466	2.5	13	15	61	4	116	155	5	2	2	2	0	_	-	29	39	2	4192	5578	01
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pot Belly																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	18859	18.9		242	322	99	1939	2580	68	27	35	28	4	v	٧	485	645	80	32060	42662	75
Total Coal	3853	3.9		127	169	34	231	308	11	9	∞	81	69	92	95	58	11	=	10789	14356	25
Total Gas	166	1.0		0	0		0	-		2	3		0	0		0	0		2477	3296	
Total Oil	246	0.2		0	0		0	0		_	_		_	-		0	0		787	1048	
Total (Wood and Coal only)	22712	23		369	492	001	2170	2887	100	32	43	100	73	67	100	542	722	100	42849 57018	57018	100

									Pollutant									
		PM ₁₀			ဝ္ပ			Š			SOx			VOC			CO2	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	14	18	27	3872	5153	68	444	591	50	2	3	5	841	1120	83	711187	94727	69
Light duty <3.5t diesel vehicles	2	2	3	6	12	0	9	∞	-	2	3	2	4	9	0	4247	5652	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	6	12	0	12	17	_	0	0	0	12	16	_	2028	8697	2
Heavy duty >3.5t petrol vehicles	2	2	3	272	362	9	22	30	2	0	0	0	27	36	3	3522	4687	3
Heavy duty >3.5t diesel vehicles	33	43	99	130	173	3	409	544	46	36	48	87	104	138	10	21754	28947	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	10	13	0	3	4	0	0	0	0	5	7	0	502	899	0
2&4 stroke petrol motorcycles	0	0	0	34	45		0	0	0	1	-	3	15	20	2	691	224	0
Total	20	99	100	4335 5769	5769	100	268	1194	100	41	55	100	1009	1342	100	103409	137603	100

commendate of the commendations

		PM10			00			XON			SOx			VOC			C02	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part B																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part C																		
Combustion	8.9	11.9	100	9.6	7.5	100	18.7	24.9	100	35.7	47.5	100	0.5	0.7	9	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	7.8	10.4	94	0.0	0.0	0
Sub-total	8.9	11.9	100	5.6	7.5	100	18.7	24.9	100	35.7	47.5	100	8.3	11.1	100	0.0	0.0	0
Total																		
Combustion	8.9	6.11	100	5.6	7.5	100	18.7	24.9	100	35.7	47.5	100	0.5	0.7	9	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0 ,	0.0	0.0	0	7.8	10.4	94	0.0	0.0	0
Total	8.9	11.9	100	5.6	7.5	100	18.7	24.9	100	35.7	47.5	100	8.3	11.1	100	0.0	0.0	0

Total

10pm-6am

2417 2466

Combined Total

Fotal

6am-10am 10am-4pm 4pm-10pm

10am-4pm

6am-10am

Industry

Fotal

4pm-10pm

10pm-6am

Motor Vehicles

Total

10am-4pm

4pm-10pm

10pm-6am

6am-10am

Home Heating

10am-4pm 4pm-10pm

10pm-6am

6am-10am

 0 0

% Total

g/ha

kg

% Total

Christchurch Inventory of Total Emissions

S

3 25 3

Riccarton									-			-			-						
	Daily Fuel Quantity	uel Or	antity		_												00 00 00				
	kg/day t/day Use%	t/day	% esn	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Open fire	4147	4 1	41	C	178	25	498	1426	41	7	20	36	-	0	-	124	356	41	7050	20200	25
Cool	2316	23	88	76	219	3 5	139	398	: =	۰ (۰	01	2 ~	. 42	119	57	35	100	=	6486	18583	23
Dra 1080 Woodburnar)					:	1)	!								
- Wood	3706	3.7	37	47	136	61	380	1087	31	2	15	27	_	2	-	95	272	31	6300	18053	22
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner																					
- Wood	741	0.7	7	2	15	2	41	117	3	_	2	3	0	0	0	10	29	3	1260	3611	4
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner						7															
- Wood	1482	1.5	15	6	25	4	70	200	9	_	3	5	0	_	0	17	50	9	2520	7221	6
- Coal	331	0.3	∞	4	12	2	∞	22	-	0	_	_	9	17	∞	2	9		927	2655	3
Enclosed Coal Burner																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	1324	1.3	33	42	119	17	92	217	9	2	2	10	24	89	32	19	54	9	3706	10619	13
Pot Belly																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	10077	10.1		124	354	50	886	2831	82	14	39	71	2	9	3	247	708	82	17130	49084	19
Total Coal	3971	4.0		122	351	20	222	638	18	9	16	59	71	205	62	99	159	18	11118	31857	39
Total Gas	662	0.7		0	0		0	-		1	4		0	0		0	0		1655	4741	
Total Oil	170	0.2		0	-		0	0		0	_		-	7		0	0		545	1560	
Total (Wood and Coal only)	14047	14		246	705	001	1211	3468	100	61	55	100	73	211	100	303	867	100	28248	80941	100

kg g/ha % Total kg g/ha 18 53 29 5653 16198 2 6 3 11 32 cles 0 0 12 35 2 6 3 12 35 2 6 3 356 1021				Lougiani								
kg g/ha % Total kg g/ha 18 53 29 5653 16198 2 6 3 11 32 0 0 0 12 35 2 6 3 356 1021	00		NOx	_	sox			VOC		S	02	
18 53 29 5653 2 6 3 11 0 0 0 12 2 6 3 356		kg	g/ha % Total	talkg	g/ha	% Total	kg	g/ha	% Total			% Total
2 6 3 11 0 0 0 12 2 6 3 356 1	53 16198 90	909	1449 49	3	∞	5	1158	3318	83		3702	69
0 0 0 12 2 6 3 356 1	32 0	7	21 1	3	∞	5	S	15	0		957	4
2 6 3 356 1	35 0	15	44	0	0	0	15	43	_	2492 7	7141	2
	_	23	66 2	0	0	0	36	102	3		404	3
Heavy duty > 3.5t diesel vehicles 41 116 64 188 539		469	1345 46	45	129	87	150	430			611	21
Heavy duty >3.5t LPG/CNG vehicles 0 0 0 12 34	34 0	4	10 0	0	0	0	9	18	0		89/	0
2&4 stroke petrol motorcycles 0 0 0 42 120		0	1 0	_	4	3	19	54	_		594	0
Total 63 181 100 6275 17979	15 17979 100	1024	2935 100	52	148	100	1389	3979	100	127098 36	364176	100

-		PM10			၀			Š			SOx			VOC			C02	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part B																		
Combustion	0.1	0.3	2	0.2	9.0	9	6.0	2.7	7	1.3	3.8	9	0.1	0.2	3	1077.6	3087.3	100
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	1.6	4.6	82	0.0	0.0	0
Sub-total	0.1	0.3	2	0.2	9.0	9	6.0	2.7	7	1.3	3.8	9	1.7	4.8	85	1077.6	3087.3	100
Part C																		
Combustion	5.4	15.6	86	3.2	9.1	94	12.0	34.3	93	23.0	65.8	94	0.3	6.0	15	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	5.4	15.6	86	3.2	9.1	94	12.0	34.3	93	23.0	65.8	94	0.3	6.0	15	0.0	0.0	0
Total																		
Combustion	5.5	15.8	100	3.4	6.7	100	12.9	37.0	001	24.3	69.7	001	0.4	1.0	81	1077.6	3087.3	100
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	1.6	4.6	82	0.0	0.0	0
Total	5.5	15.8	100	3.4	6.7	100	12.9	37.0	100	24.3	69.7	100	2.0	5.6	100	1077.6	3087.3	100

									Pollutant	tant								
		PM ₁₀			တ			Ň			sox			VOC			CO	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	15	43	5	42	121	_		2	0	7	20	5	=	30	_	1531	4387	-
10am-4pm	32	92	10	129	369	2	2	9	0	4	39	6	32	92	2	4397	12598	3
4pm-10pm	185	530	59	1014	2905	14	15	44	-	45	129	30	254	726	15	21085	60417	13
10pm-6am	14	40	4	25	72	0	-	2	0	∞	23	5	9	81	0	1235	3540	-
Total	246	705	78	1211	3468	91	61	55	2	73	211	49	303	198	81	28248	80941	17
Motor Vehicles																		
6am-10am	14	40	4	1386	3970	61	226	648	21	=	33	∞	307	879	81	28066	80420	17
10am-4pm	29	83	6	2866	8213	38	468	1340	44	24	89	91	634	1818	37	58055	166347	36
4pm-10pm	17	20	5	1718	4922	23	280	803	27	14	41	6	380	1089	22	34793	66966	21
10pm-6am	3	6	-	305	875	4	20	143	5	С	7	2	89	194	4	6183	17717	4
Total	63	181	20	6275	17979	84	1024	2935	62	52	148	35	1389	3979	82	127098	364176	78
Industry	•																	
6am-10am	_	4	0	-	2	0	3	6	0	9	17	4	0	_	0	1927	5521	-
10am-4pm	3	01	_	7	9	0	∞	23	-	15	43	01	_	3	0	4683	13417	3
4pm-10pm	-	2	0	0	-	0	2	5	0	3	6	2	0	-	0	1098	3146	-
10pm-6am	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	9	91	2	3	10	0	13	37	-	24	70	91	2	9	0	7709	22085	5
Combined Total																		
6am-10am	30	87	10	1429	4094	61	230	099	22	25	70	91	318	910	61	31525	90328	19
10am-4pm	64	185	20	2997	8858	40	478	1370	45	52	150	35	899	1913	39	67135	192364	41
4pm-10pm	203	582	65	2732	7829	36	298	853	28	62	178	42	634	1817	37	92695	163256	35
10pm-6am	11	49	5	330	947	4	20	145	2	01	30	7	74	212	4	7419	21257	5
Total	315	901	100	7489	21457	001	1056	3027	100	150	429	001	1693	4852	100	163054	467205	100

		>	
	-	1	
1	ć	ī	
	Ī		

Open fire 28	ka/dav t/dav																				
			% asn	kg	g/ha T	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
	0980	0 0	9	5	37	=	343	009	13	v	٥	2	-	-	-	98	150	2	1967	2407	٥
	0007	0.0	2 0	f 0	C 0	. 0	£ 0	80	2 0			2 0	- 0	- 0	- 0	8 0	6 0	2 0	0	0 0	0
89 Woodburner)	,	•	,	:		,)	•)	1			:	,		,	,	•
	12122	12.1	43	155	271	40	1241	2169	48	17	30	46	7	4	2	310	542	48	20607	36007	38
	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner																					
	4959	5.0	81	34	09	6	274	478	=	4	7	10	_	7	2	89	120	=	8430	14730	15
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner									_												
- Wood 55	5510	5.5	20	33	57	00	260	454	01	4	9	01	_	2	2	65	114	10	9367	16367	17
	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner									_												
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	644	9.0	25	20	35	5	37	64	_	_	2	2	12	20	22	6	91	_	1802	3149	3,
Pot Belly									-												
- Mood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood 2.	2418	2.4	6	38	99	01	302	527	12	4	7	=	0	_	_	75	132	12	4110	7182	8
- Coal	1931	1.9	75	99	116	17	120	211	S	3	2	∞	35	19	29	30	53	2	5407	9448	10
TC Total Wood	07860	27.0		303	520	78	2420	4220	04	33	85	08	9	10	=	503	1057	0.4	77277	82783	70
		26		25	151	22		275	<u> </u>	C 4	3 -	= 6	46	2 - 8	80	30	60	, ,	7200	12507	13
	0590	2.5		G C		1	-	6	·	٠,	. 0	:	2 =	; c)	· -	S -	>	8659	11528	2
# C	507	0:0		> <	> <		- <	1 <		, <	` <		0 0	> <		- <	- <		000	070	
Total Oil	0	0.0		0	o		0	0		0	o		0	0		0	0		0	0	
Total (Wood and Coal only) 30	30443	30		389	089	100	2577	4504	100	37	99	100	52	91	100	644	1126	100	54586	95380	100

									Pollutant	=								
		PM ₁₀			ဝ			Š			SOx			VOC			S S	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	ķ	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	12	20	29	3567	6233	90	319	557	49	2	3	5	731	1277	83	55206	96464	69
Light duty <3.5t diesel vehicles		2	3	7	12	0	5	∞	-	2	3	2	3	9	0	3294	5755	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	8	13	0	10	17	_	0	0	0	10	17	_	1573	2748	2
Heavy duty >3.5t petrol vehicles	-	2	3	225	393	9	4	25	2	0	0	0	22	39	3	2731	4773	3
Heavy duty >3.5t diesel vehicles	26	45	64	119	207	3	296	517	46	28	20	87	95	165	=	16870	29478	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	∞	13	0	2	4	0	0	0	0	4	7	0	389	089	0
2&4 stroke petrol motorcycles	0	0	0	56	46	_	0	0	0	-	2	3	12	21	-	131	228	0
Total	40	70	100	3959 6918	8169	100	646	1129	100	33	57	100	876	1531	100	80194	140126	100
	-						-	1				1						l

		PM10			၀			XON			SOx			VOC			C02	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part B																		
Combustion	0.1	0.3	_	0.2	0.4	4	0.0	0.1	0	0.0	0.0	0	0.0	0.0	∞	122.4	213.9	100
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.1	0.3	_	0.2	0.4	4	0.0	0.1	0	0.0	0.0	0	0.0	0.0	∞	122.4	213.9	100
Part C																		
Combustion	10.0	17.5	66	4.9	9.8	96	17.2	30.0	100	35.8	62.5	100	0.2	0.4	92	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	10.0	17.5	66	4.9	9.8	96	17.2	30.0	100	35.8	62.5	100	0.2	0.4	92	0.0	0.0	0
Total																		
Combustion	10.1	17.7	001	5.1	0.6	100	17.2	30.0	100	35.8	62.5	100	0.2	0.4	100	122.4	213.9	001
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Total	10.1	17.7	100	5.1	0.6	100	17.2	30.0	100	35.8	62.5	100	0.2	0.4	100	122.4	213.9	100

kg gg sg	% Total % 52 13 52 16 89 89 89 89 89	kg 230 345 1585 418	CO g/ha	% Total		Š.	Total		so _x			VOC			CO	
Heating 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	% Total 8 8 13 52 16 89 89 4 4	kg 230 345 1585 418	g/ha	% Total			O' Total									
Heating 37 n-10am 37 nm-4pm 56 nm-10pm 228 nm-6am 69 r Vehicles 8 n-10am 8	8 113 52 16 16 89 2 2	230 345 1585 418			kg	g/ha	% ICIA	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
m-10am 37 m-4pm 56 m-10pm 228 m-6am 69 r Vehicles 8 m-10am 8	8 13 52 16 16 89 2 4	230 345 1585 418														
m-4pm 56 m-10pm 228 m-6am 69 r Vehicles 8 m-10am 8	13 52 16 89 89 4 4	345 1585 418 2577	401	4	3	9	0	9	=	2	57	100	4	4797	8381	3
m-10pm 228 nm-6am 69 389 r Vehicles 8 n-10am 8	52 16 89 89 4 4	1585 418	602	5	5	6	_	6	91	∞	98	151	9	7195	12572	5
000-600 69 389 389	16 89 2 2 4 4	418	2770	24	23	39	3	24	41	20	396	693	56	32528	56837	23
389 r Vehicles n-10am 8	89 4 4 4 3 3	2577	730	9	9	=	_	13	22	10	104	182	7	10066	17589	7
∞ 2	2 4 %		4504	39	37	65	5	52	16	43	644	1126	42	54586	95380	39
∞ º	2 4 K															
10	4 κ	842	1472	13	137	240	20	7	12	9	186	326	12	17051	29809	12
10am-4pm	3	1743	3048	27	285	497	41	14	25	12	386	675	25	35311	61732	25
4pm-10pm 12 21		1191	2083	81	194	340	28	01	17	∞	264	461	17	24132	42189	17
10pm-6am 2 3	0	183	319	3	30	52	4	7	3	_	40	71	3	3701	6470	3
Total 40 70	6	3959	6922	19	646	1130	92	33	57	27	928	1532	58	80194	140200	57
Industry																
6am-10am 3 4	_	_	2	0	4	8	_	6	91	7	0	0	0	1533	2678	_
10am-4pm 6 11	_	3	9	0	=	61	7	22	39	61	0	0	0	3831	6694	3
4pm-10pm 1 2	0	_	-	0	2	4	0	4	∞	4	0	0	0	992	1339	_
10pm-6am 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total 10 18	2	5	6	0	17	30	2	36	63	30	0	0	0	6130	10711	4
Combined Total																
6am-10am 48 84	=	1073	1874	16	145	253	21	22	39	18	244	426	91	23380	40849	17
10am-4pm 79 139	81	2091	3654	32	300	525	43	46	81	38	472	825	31	46337	19608	33
4pm-10pm 241 421	55	2777	4853	42	219	383	31	38	99	32	099	1153	43	57427	100336	41
10pm-6am 71 123	91	009	1049	6	36	63	5	4	25	12	145	253	10	13767	24054	10
Total 439 767	100	6542	11430	100	701	1224	100	120	210	100	1521	2657	100	140910	246200	100

2	=
ì	3
2	į
긓	5
Č	5

occupant.	Daily Finel Quantity	Olan	antity		DW			5			2			0	-		00%			5	
	kg/day t/day		Use %	kg		% 5	kg	_	% 10,01	kg		% 10	kg		% Total	ķĝ		% 10,01	kg		% to
Onon fire						10101			Otal			Otal			Otal			i c			i c
- Wood	2337	2.3	61	35	133	12	280	1062	20	4	15	17	0	7	_	70	265	20	3974	15041	=
- Coal	3153	3.2	64	104	394	35	681	716	4	5	18	21	57	215	62	47	179	4	8828	33414	26
Pre 1989 Woodburner																					
- Wood	5219	5.2	43	19	253	22	534	2023	38	7	28	33	_	4	-	134	909	38	8872	33579	56
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner																					
- Wood	1566	9.1	13	Ξ	41	4	98	327	9	_	4	5	0	_	0	22	82	9	2661	10074	~
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	2087	2.1	17	12	47	4	66	373	7	_	2	9	0	2	0	25	93	7	3549	13432	10
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	544	0.5	4	00	29	3	62	235	4	-	3	4	0	0	0	16	59	4	924	3498	3
- Coal	1812	<u>~</u>	36	57	216	61	104	392	7	3	10	=	33	123	36	26	86	7	5074	19204	15
Pot Belly																					
- Wood	399	0.4	3	9	22	2	46	173	3	_	2	3	0	0	0	=	43	3	829	2565	7
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	12151	122		138	524	46	1108	4192	79	5	85	89	C	0	~	777	1048	79	20657	78188	09
Total Coal	4965	5.0		191	019	5.4	293	1108	2.5	, ,	280	32	68	338	97	73	777	2.7	13902	\$2618	40
Total Gas	445	0.4		0	0		0	-		_	3	}	0	0		0	0		1113	4213	
Total Oil	93	0.1		0	0		0	0		0			0	_		0	0		298	1129	
Total (Wood and Coal only)	17116	17		300	1134	100	1400	5301	001	23	85	001	92	347	001	350	1325	100	34559 13080	13080	100

									Pollutant	1								
		PM ₁₀			္ပ			Š			SOx			VOC			CO	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	12	44	29	3597	13614	06	322	1218	49	2	9	5	737	2789	83	1	210715	69
Light duty <3.5t diesel vehicles		5	3	7	27	0	2	17	-	2	9	2	.3	13	0	3321	12572	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	00	29	0	10	37	-	0	0	0	10	36	_	1586	6002	7
Heavy duty >3.5t petrol vehicles	-	5	3	227	859	9	15	55	2	0	0	0	23	98	3	2754	10425	3
Heavy duty >3.5t diesel vehicles	26	86	64	120	453	3	299	1130	46	29	108	87	95	361	=	17012	64391	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	∞	29	0	2	6	0	0	0	0	4	15	0	392	1486	0
2&4 stroke petrol motorcycles	0	0	0	27	101	-	0	-	0	-	3	3	12	45	-	132	499	0
Total	40	152	100	3992 151	15112	100	652	2467	100	33	125	100	884	3345	100	69808	306090	100

		PM10			00			×ON			SOx			VOC			C02	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part B																		
Combustion	16.9	64.0	85	8.2	31.1	84	29.7	112.4	92	61.7	233.6	94	0.4	1.3	4	10642.5 40283.0	40283.0	100
Other Processes	1.7	6.4	6	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	1.0	3.8	=	0.0	0.0	0
Sub-total	18.6	70.4	94	8.2	31.1	84	29.7	112.4	92	61.7	233.6	94	1.3	5.1	14	10642.5 40283.0	40283.0	100
Part C																		
Combustion	1.2	4.7	9	1.5	5.8	91	2.4	9.2	∞	3.8	14.2	9	0.2	0.7	2	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	7.8	29.5	84	0.0	0.0	0
Sub-total	1.2	4.7	9	1.5	5.8	91	2.4	9.2	8	3.8	14.2	9	8.0	30.2	98	0.0	0.0	0
Total																		
Combustion	18.1	9.89	16	6.7	36.9	100	32.1	121.6	100	65.5	247.8	100	0.5	2.0	9	10642.5 40283.0	40283.0	100
Other Processes	1.7	6.4	6	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	8.8	33.3	94	0.0	0.0	0
Total	19.8	75.1	100	6.7	36.9	100	32.1	121.6	100	65.5	247.8	100	9.3	35.3	100	10642.5 40283.0	40283.0	100

									Pollutant	tant								
		PM ₁₀			္ပ			ŇO×			SOx			VOC			CO	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	91	62	2	101	381	2	_	9	0	3	=	2	25	95	7	2312	8753	7
10am-4pm	72	272	20	309	1168	9	5	19	_	24	92	13	77	292	9	8043	30441	9
4pm-10pm	167	631	46	762	2886	4	12	47	2	53	201	28	161	721	15	19096	72278	15
10pm-6am	44	168	12	229	998	4	4	14	-	12	44	9	57	217	5	5108	19333	4
Total	300	1134	83	1400	5301	26	23	85	3	92	347	48	350	1325	28	34559	130806	27
Motor Vehicles																		
6am-10am	6	34	2	880	3334	91	144	544	20	7	28	4	195	738	91	17830	67539	14
10am-4pm	81	69	5	1803	6831	33	294	1115	42	15	99	∞	399	1512	32	36526	138358	28
4pm-10pm		42	3	1112	4213	21	182	889	56	6	35	5	246	932	20	22526	85326	18
10pm-6am	2	7	-	197	745	4	32	122	5	2	9		44	165	4	3986	15099	3
Total	40	152	=	3992	15123	74	652	2468	92	33	125	17	884	3347	71	69808	306322	63
Industry	-																	
6am-10am	3	13	-	2	7	0	9	21		Ξ	43	9	2	00	0	2510	9500	7
10am-4pm	2	21	2	3	12	0	6	35	_	18	69	10	2	20	0	4546	17207	4
4pm-10pm	5	81	-	7	∞	0	∞	29	-	91	09	00	-	2	0	2974	11258	2
10pm-6am	9	23	7	3	10	0	10	36	_	20	9/	=	0	2	0	3122	11818	2
Total	20	75	9	01	37	0	32	122	5	65	248	34	6	35	_	13152	49784	10
Combined Total																		
6am-10am	29	109	∞	683	3719	81	151	571	21	22	82	=	222	841	18	22653	85744	18
10am-4pm	95	. 361	27	2115	8005	39	309	1168	44	57	217	30	482	1823	39	49115	185906	38
4pm-10pm	183	692	51	1877	7104	35	202	763	29	78	295	4	438	1658	35	44596	168803	35
10pm-6am	53	199	15	428	1621	8	45	171	9	33	126	17	101	383	8	12216	46240	10
Total	360	1361	100	5403	20450	001	902	2674	100	190	720	100	1243	4705	100	128580	486693	100

Majday Label Lab	Spreydon/Addington																					
Ng/dey Vdsy Udsy Vdsy <		Daily F	⁻uel Q≀	uantity		PM ₁₀			00			NOx			SOx			VOC			CO	
10736 10,7 33 161 216 15 1288 1730 30 18 24 24 24 3 1 1 146 196 36 121 163 11 11039 10,4 32 133 178 12 1061 1425 25 115 20 20 2 3 1 1 1 1 1 1 1 1 1		kg/day	t/day	% esn	kg	g/ha		kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg		% Total
8003 8.1.1 3.7 267 3.59 2.5 486 652 11 1.2 16 196 36 121 163 11 10359 10.4 3.2 2.8 3.8 3 5.2 70 1 4 5 3 1 265 356 25 1012 1.0 5 2.8 3.8 3 5.2 70 1 1 2 2 1 1 265 356 25 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 6 0	Open fire	10736		33	191	216	15	1288	1730	30	~	24	24	,	"	_	322	433	30		24512	19
10359 10.4 32 133 178 12 10.61 1425 25 15 20 20 2 3 17 12 15 15 15 16 1425 13 178 12 10.61 1425 25 18 24 5 18 24 5 13 17 1 1 1 1 1 1 1 1	- Coal	8003		37	767	350	25	486	653	2 =	2 2	1 2	17	146	106	36	121	271	3 =		20432	0
1035 10.4 3.2 133 178 12 1061 1425 25 15 20 20 2 3 1 265 356 25 101 101 2 2 2 2 2 2 2 3 1 2 2 2 2 3 2 2 2 2 2	Pre 1989 Woodburner			5	2		3	200	100	:	1	2	-	2	2	3	2		-	00077	70100	2
1012 1.0 5 28 38 3 52 70 1 1 2 2 2 18 24 5 13 17 1 1 1 1 1 1 1 1	- Wood	10359		32	133	178	12	1901	1425	25	15	20	20	7	3		265	356	25		23650	15
5179 5.2 16 36 48 3 286 384 7 4 5 5 1 1 0 71 96 7 0 0.0 0	- Coal	1012	1.0	5	28	38	3	52	70		-	2	2	81	24	2	13	17			3804	2
1179 5.2 16 36 48 3 286 384 7 4 5 5 1 1 0 7 96 7 1079 1.1 3 1.2 1.1 3 1.2 1 1.2	1989-1992 (incl) Woodburner																					
1079 1.1 3 1.2	- Wood	5179	5.2	91	36	48	3	286	384	7	4	5	5	-	-	0	7.1	96	7	8805	11825	∞
1079 1.1 3 41 3 244 328 6 3 5 5 1 1 0 6 82 6 6 6 6 6 6 6 6 6	- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S179 S.2 16 31 41 3 244 328 6 3 5 5 1 1 0 0 0 0 0 0 0 0	Post 1993 Woodburner																					
0 0	- Wood	5179	5.2	91	31	41	3	244	328	9	3	5	2	_		0	19	82	9	8805	11825	∞
1079 1.1 3 15 21 1 123 166 3 2 3 3 4 1 3 4 4 1 3 4 4 4 4 4 4 4 <t< th=""><th>- Coal</th><td>0</td><td>0.0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1079 1.1 3 15 21 1 123 166 3 2 2 2 2 0 0 0 31 41 3 12814 12.8 58 403 541 38 733 984 17 18 25 25 25 25 131 310 58 183 246 17 0 0.0 0 <td< th=""><th>Enclosed Coal Burner</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Enclosed Coal Burner																					
1 1	- Wood	1079	Ξ	3	15	21	_	123	166	3	2	2	2	0	0	0	31	41	3	1834	2464	2
0 0.0 0	- Coal	12814		58	403	541	38	733	984	17	18	25	25	231	310	58	183	246	17	35878	48184	31
. 0 0.0 0	Pot Belly																					
0 0.0 0	- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 0.0 0	- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 0.0 0	Incinerator																					
0 0.0 0	- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
32533 3.2.5 375 504 35 3003 4033 70 41 55 57 7 9 2 751 1008 70 21918 21.9 699 938 65 1270 1706 30 43 43 395 530 98 318 427 30 1628 1.6 0 0 1 1 1 3 4 6 8 0 0 0 1484 1.5 2 3 1 1 1 3 4 6 8 0 0 0 54451 54 1074 1442 100 4273 5739 100 73 98 100 401 539 100 1068 1435 100	- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21918 21.9 699 938 65 1270 1706 30 43 43 43 43 530 98 318 427 30 1628 1.6 0	Total Wood	32533			375	504	35	3003	4033	70	14	55	57	7	6	2	751	1008	70	55306	74276	47
1628 1.6 0 <th>Total Coal</th> <td>21918</td> <td></td> <td></td> <td>669</td> <td>938</td> <td>65</td> <td>1270</td> <td>1706</td> <td>30</td> <td>32</td> <td>43</td> <td>43</td> <td>395</td> <td>530</td> <td>86</td> <td>318</td> <td>427</td> <td>30</td> <td>61370</td> <td>82421</td> <td>53</td>	Total Coal	21918			669	938	65	1270	1706	30	32	43	43	395	530	86	318	427	30	61370	82421	53
1484 1.5 2 3 1 1 1 6 8 0 0 54451 54 1074 1442 100 4273 5739 100 73 98 100 401 539 100 1068 1435 100	Total Gas	1628	1.6		0	0		-	_		3	4		0	0		0	0		4070	5467	
54451 54 1074 1442 100 4273 5739 100 73 98 100 401 539 100 1068 1435 100	Total Oil	1484	1.5		2	3		_			3	4		9	00		0	0		4748	9289	
54451 54 1074 1442 100 4273 5739 100 73 98 100 401 539 100 1068 1435 100																						
	Total (Wood and Coal only)	54451			1074	1442	100	4273	5739	100	73	86	100	401	539	100	1068	1435	100	11667 15669	15669	100

CO g/ha 9896 19 21 624	kg 7369	NO _x kg g/ha	% Total							
kg g/ha % Total kg g/ha 24 32 29 7369 9896 3 3 3 14 19 sles 0 0 16 21 4 3 465 624 53 71 64 245 329	kg g/ha 7369 9896	kg	-	SO	×		VOC		Ö	\mathcal{O}_2
24 32 29 7369 3 3 3 14 14 16s 0 0 0 16 3 4 3 465 53 71 64 245	7369 9896			kg g/ha	a % Total	kg	g/ha %	% Total	kg g/	g/ha % Total
3 3 3 14 les 0 0 0 16 3 4 3 465 53 71 64 245			49	3 5	5	1509	2027	83 1		165 69
les 0 0 0 16 3 4 3 465 53 71 64 245		9 13	-	3 5	S	7	6	0		38 4
3 4 3 465 53 71 64 245	0 16 21 0	20 27	-	0 0	0	20	26	_	3249 43	63 2
53 71 64 245		30 40	2	0 0	0	46	62	3		78 3
	64 245 329 3	612 821	46	59 79	87	961	263	11 3		305 2
Heavy duty >3.5t LPG/CNG vehicles 0 0 0 16 21	0 16 21 0	5 6	0	0 0	0	00	Ξ	0) 08
2&4 stroke petrol motorcycles 0 0 0 55 73		0 1	0	2 2	3	24	33	_		363 (
Total 82 111 100 8179 10984		1335 1793	100	16 29	100	1810	2431	100	65667 22249	491 100

		PM10			8			NOX			SOx			VOC			C02	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part B																		
Combustion	2.9	3.9	28	4.	8.1	22	4.9	6.5	22	10.3	13.9	24	0.0	0.1	0	1448.9	1945.8	100
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	5.2	7.0	14	0.0	0.0	0
Sub-total	2.9	3.9	28	4.1	8.1	22	4.9	6.5	22	10.3	13.9	24	5.2	7.0	14	1448.9	1945.8	100
Part C																		
Combustion	7.7	10.4	72	5.0	9.9	78	17.6	23.6	78	33.0	44.3	9/	0.5	0.7	_	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	31.2	41.9	84	0.0	0.0	0
Sub-total	7.7	10.4	72	5.0	9.9	78	17.6	23.6	78	33.0	44.3	92	31.7	42.6	98	0.0	0.0	0
Total																		
Combustion	10.7	14.3	100	6.3	8.5	100	22.5	30.2	001	43.4	58.2	100	9.0	0.7	_	1448.9	1945.8	100
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	36.4	48.9	66	0.0	0.0	0
Total	10.7	14.3	100	6.3	8.5	001	22.5	30.2	100	43.4	58.2	100	37.0	49.6	100	1448.9	1945.8	100
								-										

									Pollutant	tant								
		PM ₁₀			္ပ			×ON			SOx			VOC			CO2	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	92	102	7	236	317	2	4	9	0	35	47	7	59	79	2	7776	10443	3
10am-4pm	133	178	=	504	<i>LL</i> 9	4	6	12	-	52	70	01	126	169	4	15088	20263	5
4pm-10pm	713	856	19	3060	4109	25	51	89	4	245	328	48	765	1027	56	78262	105106	27
10pm-6am	152	204	13	473	635	4	6	12	_	69	93	4	118	159	4	15551	20886	5
Total	1074	1442	92	4273	5739	34	73	86	5	401	539	78	1068	1435	37	116677	156697	40
Motor Vehicles																		
6am-10am	81	24	2	1766	2371	14	288	387	20	15	20	3	391	525	13	35781	48028	12
10am-4pm	37	49	3	3665	4919	29	598	803	42	30	41	9	811	1089	28	74229	99637	25
4pm-10pm	24	32	2	2352	3157	16	384	515	27	19	26	4	521	669	81	47647	63956	16
10pm-6am	4	2	0	395	531	3	65	87	5	3	4		88	1117	3	8009	10751	3
Total	82	110	7	8179	10978	99	1335	1792	93	19	16	13	1810	2430	62	165667	222372	56
Industry	-																	
6am-10am	3	4	0	2	7	0	9	00	0	=	15	7	6	12	0	3035	4076	-
10am-4pm	9	∞	-	4	2	0	13	81	_	26	35	5	22	30	_	7406	9946	3
4pm-10pm	2	2	0	-	-	0	3	2	0	7	6	_	5	7	0	6691	2281	-
10pm-6am	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	=	14	-	9	∞	0	22	30	2	43	58	∞	37	50	-	12139	16303	4
Combined Total																		
6am-10am	96	130	∞	2004	2692	91	298	401	21	09	81	12	459	617	91	46591	62570	91
10am-4pm	176	236	15	4173	5604	33	620	833	43	108	146	21	096	1289	33	96723	129895	33
4pm-10pm	739	992	63	5413	7270	43	438	588	31	271	364	53	1291	1734	44	127608	171372	43
10pm-6am	156	209	13	898	1166	7	74	66	5	73	86	14	206	276	7	23561	31641	∞
Total	1167	1567	100	12458	16731	100	1431	1921	100	512	687	100	2915	3915	100	294483	395479	100

St Albans

% tg kg g/ha % tg g/ha g		Daily Fuel Quantity	uel Qu	antity		PM ₁₀			ဝ			Ň			SO,			VOC			ပ္ပ	
29735 29,7 36 446 516 36 3568 4131 44 49 57 41 6 7 3 8705 8.7 100 287 333 23 522 605 6 13 15 11 157 181 90 10 0.0 <		kg/day	t/day	% esn			% Total	ğ		% Total	kg	g/ha	% Total	kg		% Total	kg	g/ha	% Total	kg	g/ha	% Total
26735 29,7 36 346 516 36 3568 4131 44 49 57 41 6 7 3 8705 8705 871 44 57 41 6 7 3 8705 8705 871 11 157 181 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90	Open fire											:		,								
8705 8.7 100 287 333 23 522 605 6 13 15 11 157 181 90 26740 26.7 32 342 396 27 2738 3170 33 38 44 32 5 6 3 11460 11.5 14 79 92 6 633 732 8 9 10 7 2 3 1 15280 15.3 18 90 104 7 721 835 9 10 7 2 3 1 15280 15.3 18 90 104 7 721 835 9 10 1 0	- Wood	29735	29.7	36	446	216	36	3568	4131	44	49	57	41	9	7	ς,	892	1033		50549	58526	30
1460 11.5 14 79 92 6 633 732 8 9 10 7 2 3 1 1 1 1 1 1 1 1 1	- Coal	8705	8.7	100	287	333	23	522	605	9	13	15	=	157	181	06	131	151	9	24373	28219	15
1460 11.5 14 79 92 6 633 732 8 9 10 7 2 3 1 1 1 1 1 1 1 1 1	Pre 1989 Woodburner																					
11460 11.5 14 79 92 6 633 732 8 9 10 7 2 3 1	- Wood	26740	26.7	32	342	396	27	2738	3170	33	38	44	32	2	9	3	685	793	33	45458	52632	27
11460 11.5 14 79 92 6 633 732 8 9 10 7 2 3 1 14 15 14 79 92 6 633 732 8 9 10 7 2 3 1 15280 15.3 18 90 104 7 721 835 9 10 11 8 3 4 2 2	- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11460 11.5 14 79 92 6 633 732 8 9 10 7 2 3 1 1 1 1 1 1 1 1 1	1989-1992 (incl) Woodburner																					
Woodburner 15280 15.3 18 90 104 7 721 835 9 10 11 8 3 4 2 Coal Burner 0 0.0 0	- Wood	11460	11.5	14	79	92	9	633	732	∞	6	10	7	2	3	_	158	183	∞	19482	22557	12
Woodburner 15280 15.3 18 90 104 7 7 721 835 9 10 11 8 3 4 2 Coal Burner 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15280 15.3 18 90 104 7 721 835 9 10 11 8 3 4 2	Post 1993 Woodburner																					
CoalBurner	- Wood	15280	15.3	81	06	104	7	721	835	6	01	=	8	3	4	7	180	209	6	25976	30076	91
Coal Burner 0 0.0 <	- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r 0 0.0 0	Enclosed Coal Burner																					
r 0 0.0 0	- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r 0 0.0 0	-Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pot Belly																					
r 0 0.0 0	- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
d 83215 83.2 958 1109 77 7660 8869 94 105 122 89 17 19 10 d 8705 8.7 287 333 23 522 605 6 13 15 11 157 181 90 0 0.0 0	- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
d 83215 83.2 958 1109 77 7660 8869 94 105 122 89 17 19 10 n 8705 8.7 287 333 23 522 605 6 13 15 11 157 181 90 n 0	Incinerator																					
d 83215 83.2 958 1109 77 7660 8869 94 105 122 89 17 19 10 7884 7.9 1 1 1 3 4 16 18 0 0 0 0	- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
d 83215 83.2 958 1109 77 7660 8869 94 105 122 89 17 19 10 1 8705 8.7 287 333 23 522 605 6 13 15 11 157 181 90 7884 7.9 1 1 3 4 16 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
64 63213 83.2 938 1109 77 7000 8809 94 103 122 89 17 19 10 10 10 10 10 10 10 10 10 10 10 10 10		31000	6		0.50	9	1	0000	0,00	2	901	2	6	ī	9	9			3	77.17	010	90
8/02 8.7 28/ 355 25 502 605 6 15 15 11 15/ 181 90 7884 7.9 1 1 3 4 16 18 0 0 0 0.0 0 0 0 0 0 0 0 0	Total Wood	63213	2.00		928	6011	- :	099/	8869	4,	60 5	771	68	1	6 :	2 8	5161	/177	4,	14140	103/9	œ :
7884 7.9 1 1 3 4 16 18 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total Coal	2/02	8./		187	333	57	275	603	0	13	2	=	12/	×	9	131	121		243/3	61787	2
	Total Gas	7884	7.9		_	-		c	4		91	8		0	0		7	7		19709	22820	
	Total Oil	0	0.0		0	0		0	0		0	0		0	0	****	0	0		0	0	
													1									
Total (Wood and Coal only) 91920 92 1245 1441 100 8182 9474 100 118 137 100 173 201 100 204	Total (Wood and Coal only)	91920	92		1245	1441	100	8182	9474	100	118	137	100	173	201	001	2046	2368	100	16583 19200	19200	100

		PM10			8			Ň			SOx			VOC			C02	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Part B																		
Combustion	0.0	0.1	_	0.1	0.1	2	0.5	0.5	3	0.7	8.0	2	0.0	0.0	_	527.6	6.019	100
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0
Sub-total	0.0	0.1	_	0.1	0.1	2	0.5	0.5	3	0.7	8.0	2	0.0	0.0	-	527.6	6.019	100
Part C																		
Combustion	7.4	9.8	66	4.9	5.7	86	6.91	19.5	26	31.2	36.1	86	0.5	9.0	91	0.0	0.0	0
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	5.6	3.0	83	0.0	0.0	0
Sub-total	7.4	9.8	66	4.9	5.7	86	6.91	19.5	62	31.2	36.1	86	3.1	3.6	66	0.0	0.0	0
Total																		
Combustion	7.4	9.8	100	5.0	5.8	100	17.3	20.1	100	31.9	36.9	100	0.5	9.0	17	527.6	610.9	100
Other Processes	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	2.6	3.0	83	0.0	0.0	0
Total	7.4	9.8	100	5.0	5.8	100	17.3	20.1	100	31.9	36.9	100	3.1	3.6	100	527.6	610.9	100

									Pollutant	tant								
•		PM ₁₀			္ပ			Ň			sox			VOC			CO2	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	115	133	6	793	816	5	=	13	_	13	15	2	198	230	5	15916	18427	4
10am-4pm	172	200	13	1189	1377	7	17	20	-	61	22	7	297	344	7	23873	27641	7
4pm-10pm	870	1007	65	5499	6367	32	80	93	5	140	162	50	1375	1592	35	111847	129498	32
10pm-6am	88	101	7	701	812	4	10	=	_	2	2	-	175	203	4	14202	16443	4
Total	1245	1441	93	8182	9474	48	811	137	∞	173	201	63	2046	2368	51	165838	192009	47
Motor Vehicles																		
6am-10am	19	22	-	1881	2177	=	307	355	20	91	18	9	416	482	10	38107	44105	=
10am-4pm	39	45	3	3872	4481	23	632	731	40	32	37	12	857	992	22	78427	90772	22
4pm-10pm	56	30	2	2552	2954	15	417	482	27	21	24	∞	595	654	14	51692	59829	15
10pm-6am	4	5	0	435	503	3	71	82	5	4	4	_	96	111	2	8809	10195	7
Total	88	102	7	8740	10116	52	1427	1651	16	72	83	26	1934	2239	49	177034	204901	20
Industry																		
6am-10am	2	2	0		-	0	4	2	0	∞	6	3	_	-	0	2766	3203	
10am-4pm	2	5	0	3	4	0	=	12		20	23	7	2	2	0	6850	7931	7
4pm-10pm	-	-	0	_	-	0	2	3	0	4	2	_	0	0	0	1449	1678	0
10pm-6am	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0
Total	7	6	-	5	9	0	17	20	_	32	37	=	3	4	0	11066	12813	3
Combined Total																		
6am-10am	136	157	10	2675	3098	91	323	374	21	36	42	13	615	713	15	26789	65753	16
10am-4pm	216	250	16	5064	5864	30	099	764	42	71	82	26	1156	1339	29	109150	126379	31
4pm-10pm	968	1038	<i>L</i> 9	8052	9323	48	499	578	32	165	161	59	1940	2246	49	164988	191031	47
10pm-6am	92	107	7	1136	1315	7	81	93	5	5	9	2	272	314	7	23010	26643	7
Total	1340	1552	100	16928	19599	100	1562	1809	100	277	321	100	3983	4612	100	353938	409805	100

Wigram																					
	Daily F	Daily Fuel Quantity	antity		PM ₁₀			00			×ON			SOx			VOC			CO_2	
	kg/day	kg/day t/day Use %	% esn	kg		% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Open fire	581	90	9	0	=	5	02	68		-	-	~		<	-	17	"	1,0	087	1256	=
noo.	783	0.0	2 7	, , ,	33	7 7	2 7	6 9	1 -			2 6	2	9	- 5	2	77	1 -	2107	1020	20
- Coai Pre 1989 Woodhiirner	Co/	0.0	5	07	CC	2	,	00	<u> </u>	-	-	77	<u>+</u>	01	70	7	2	<u>+</u>	7617	16/7	07
- Wood	1037	1.0	34	13	17	8	106	135	32		7	27	0	0	_	27	34	32	1763	2244	21
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1989-1992 (incl) Woodburner																				,)
- Wood	389	4.0	13	3	3	4	21	27	9	0	0	5	0	0	0	2	7	9	199	841	8
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Post 1993 Woodburner																					
- Wood	778	8.0	56	5	9	9	37	47	=	_	_	6	0	0	-	6	12	=	1322	1683	15
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Enclosed Coal Burner																					
- Wood	135	0.1	4	7	7	3	15	20	5	0	0	4	0	0	0	4	5	5	230	292	3
- Coal	450	0.5	36	14	18	20	56	33	∞	-	-	12	00	10	36	9	∞	8	1260	1604	15
Pot Belly																					
- Wood	66	0.1	3		7	7	=	4	3	0	0	3	0	0	0	3	4	3	168	214	7
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Incinerator																					
- Wood	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- Coal	0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Wood	3018	3.0		33	4	45	261	332	78	4	8	99	-		т	65	83	78	5130	6530	09
Total Coal	1233	1.2		40	51	55	73	93	22	2	2	34	22	28	76	18	23	22	3452	4395	40
Total Gas	Ξ	0.1		0	0		0	0		0	0		0	0		0	0		276	352	
Total Oil	23	0.0		0	0		0	0		0	0		0	0		0	0		74	94	
Total (Wood and Coal only)	4251	4		73	92	100	333	424	100	5	7	100	23	29	100	83	106	100	8582	10925	100

									Pollutan	+								
		PM ₁₀			္ပ			Š			SOx			VOC			COS	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Light duty <3.5t petrol vehicles	10	13	23	2009	2557	85	500	637	50	_	2	3	695	725	84	67901	86432	69
Light duty <3.5t diesel vehicles	7	2	3	6	=	0	9	7	_	7	3	5	4	2	_	4051	5157	4
Light duty <3.5t LPG/CNG vehicles	0	0	0	9	7	0	12	15	_	0	0	0	=	14	7	1934	2462	2
Heavy duty >3.5t petrol vehicles	2	7	4	217	277	6	30	38	3	0	0	0	22	28	3	3359	4276	3
Heavy duty >3.5t diesel vehicles	30	38	69	70	68	3	453	577	45	34	43	88	99	71	8	20750	26412	21
Heavy duty >3.5t LPG/CNG vehicles	0	0	0	6	12	0	3	4	0	0	0	0	2	9	_	479	609	0
2&4 stroke petrol motorcycles	0	0	0	33	41	_	0	0	0	-	-	3	15	81	2	191	205	0
Total	44	99	100	2352 2994	2994	100	1004	1278	100	38	48	100	682	898	100	98635	125553	100

		PM10			8			NOX			SOx			VOC			202	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Part A																		
Combustion	0.2	0.2	-	8.0	1.0	7	3.2	4.1	∞	1.9	2.4	3	0.2	0.2		3603.3	4586.4	99
Other Processes	0.2	0.3	-	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	18.7	23.8	57	0.0	0.0	0
Sub-total	, 0.4	0.5	2	8.0	1.0	7	3.2	4.1	∞	1.9	2.4	3	18.8	24.0	57	3603.3	4586.4	99
Part B																		
Combustion	0.2	0.2	_	0.4	0.5	3	9.1	2.0	4	2.3	2.9	3	0.1	0.1	0	1831.5	2331.2	34
Other Processes	0.2	0.3	-	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	7.8	10.0	24	0.0	0.0	0
Sub-total	0.4	0.5	2	0.4	0.5	3	9.1	2.0	4	2.3	2.9	3	7.9	1.01	24	1831.5	2331.2	34
Part C																		
Combustion	18.3	23.3	94	9.01	13.5	06	35.9	45.7	88	9.07	89.9	94	8.0	1.0	2	0.0	0.0	0
Other Processes	0.5	9.0	2	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	5.2	9.9	91	0.0	0.0	0
Sub-total	18.7	23.9	96	9.01	13.5	06	35.9	45.7	88	9.07	6.68	94	0.9	9.7	18	0.0	0.0	0
Total																		
Combustion	9.81	23.7	95	11.8	15.0	100	40.7	51.8	100	74.8	95.2	100	-:	4.1	3	5434.7	911.6	100
Other Processes	6.0	1.2	5	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0	31.7	40.3	26	0.0	0.0	0
Total	19.5	24.9	100	8.11	15.0	100	40.7	51.8	100	74.8	95.2	100	32.8	41.7	100	5434.7	9.7169	100

									Pollutant	tant								
		PM ₁₀			ဒ			Ň			so _x			VOC			COS	
	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Home Heating																		
6am-10am	4	2	3	24	30	_	0	0	0	-		_	9	∞	-	574	731	0
10am-4pm	18	22	13	75	95		-	2	0	9	00	4	19	24	2	1997	2542	2
4pm-10pm	40	51	30	180	230	7	3	4	0	13	17	10	45	57	9	4742	6037	4
10pm-6am	=	14	∞	54	69	2	-	-	0	3	4	2	14	17	2	1269	1615	-
Total	73	92	53	333	424	12	S	7	-	23	29	17	83	106	10	8582	10925	7
Motor Vehicles																		
6am-10am	10	12	7	517	859	19	221	281	21	8	=	9	150	161	61	21685	27589	17
10am-4pm	20	25	15	1901	1350	39	453	576	43	17	22	13	308	391	39	44507	56625	34
4pm-10pm	12	91	6	099	840	24	282	359	27	=	14	∞	161	243	24	27688	35227	21
10pm-6am	2	3	2	113	144	4	48	62	5	2	2	_	33	42	4	4754	6049	4
Total	44	99	32	2352	2992	87	1004	1277	96	38	48	28	682	867	85	98635	125489	75
Industry																		
6am-10am	5	9	4	3	4	0	01	13	-	61	24	14	8	10	-	5847	7442	4
10am-4pm	12	15	6	7	6	0	24	31	2	46	59	34	17	22	2	13491	17172	10
4pm-10pm	3	3	2	2	2	0	9	8	-	10	13	7	7	6	-	4050	5156	3
10pm-6am	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	20	25	14	12	15	0	41	52	4	75	95	55	33	42	4	23388	29770	18
Combined Total																		
6am-10am	18	23	14	544	692	20	231	294	22	28	35	20	164	209	21	28106	35775	22
10am-4pm	49	63	36	1143	1455	42	479	609	46	69	88	51	343	437	43	59995	76364	46
4pm-10pm	55	70	41	842	1072	31	291	370	28	34	43	25	244	310	31	36481	46435	28
10pm-6am	13	91	9	891	214	9	49	63	5	5	9	3	46	59	9	6023	9992	S
Total	136	173	100	2697	3433	100	1050	1336	100	136	173	100	798	1015	100	130606	166240	100

ion Processes s, including flaring or on of trade wastes or iich singly or together ed to burn combustible do burn combustible er to burn combustible casting Processes er Frying Processes er Frying Processes of the ground or from iit (including coal, coke, on), or the size reduction iinerals, or the storage and above the ground, or ng or heating that ust or any other air	Activity	De	Description	Classification
	Combustion Processes	•	heat release > 50MW	Part A
	Incinerators, boilers - burning of	•	rate > 100kg/hr where pathological, refuse, or trade wastes are incinerated.	
ation of trade wastes or which singly or together used to burn combustible sed above the storage sed and above the ground, or rying or heating that sed to any other air	fossil fuels, including flaring or	•	heat release > 500KW where products used to, stove enamel, bake or dry releasing dust or other pollutants, or	
which singly or together used to burn combustible used to burn combustible Roasting Processes ites ites ites ites ites iteraction of minerals from in pit (including coal, coke, rbon), or the size reduction in minerals, or the storage and above the ground, or rying or heating that se dust or any other air	incineration of trade wastes or		maintaining reducing conditions in any manufacturing process.	
Roasting Processes able Frying Processes ies traction of minerals from face of the ground or from n pit (including coal, coke, rbon), or the size reduction n minerals, or the storage and above the ground, or rying or heating that ss dust or any other air	refuse, which singly or together	•	where combustible matter is incinerated in excess of 100kg/hr containing sulphur, arsenically treated wood,	
Roasting Processes able Frying Processes ies itraction of minerals from face of the ground or from n pit (including coal, coke, rbon), or the size reduction n minerals, or the storage and above the ground, or rying or heating that se dust or any other air	can be used to can companie		rubber, oil sludge, pitch or paint restaues.	
s s com trom coke, coke, ction age d, or r	matter.	•	where combustible matter is incinerated in excess of 25kg/hr which contains chemicals, plastics, or fibre in which	
rom from coke, iction age d, or			Juorine, chiorine, phosphorous, or nitrogen has been chemically combined.	0 t-20
rom from coke, ctrion age d, or r		•	heat release between 5MW-50MW	Part B
rom from coke, iction age d, or		•	for recovery of metals from insulated cable, motor vehicles, other mixtures, combinations of metals and	
rom from coke, iction age d, or			combustibles.	
s s com from coke, ction age d, or r		•	for cleaning of drums or containers.	
rom from coke, rction age d, or		•	for frost protection on more than one occasion in one year by the use of fire pots.	
rom from coke, tetion age d, or		•	rate < 100kg/hr where pathological, refuse or trade wastes are incinerated.	
rom from coke, coke, d, or r		•	where combustible matter is incinerate between 25-100kg/hr containing sulphur, arsenically treated wood,	
s com from coke, ction age d, or r	-		rubber, oil sludge, pitch, or paint residues.	
s rom from coke, ettion age d, or r		•	where combustible matter is incinerated between 5-25kg/hr which contains chemicals, plastics or fibre in which	
rom coke, ction age d, or			stuorine, chlorine, phosphorus, or nitrogen has been chemically combined.	
rom from coke, cuction age d, or		•	heat release between 40kW and 5MW	Part C
	Coffee Roasting Processes	•	Raw material capacity > 5 tonnes/hr for deep fat frying, oil frying, curing by smoking.	Part A
• • • • • • • •	Vegetable Frying Processes			
• • • • • • •		•	Raw material capacity < 5 tonnes/hr.	Part C
• • • • • •	Quarries	•	an open cast mine producing > 100 tonnes/hr	Part A
• • • • • •	The extraction of minerals from	•	a size reduction or screening plant with capacity > 200 tonnes/hr	
• • • • •	the surface of the ground or from	•	a storage capacity >10,000 tonnes.	
	an open pit (including coal, coke,	•	heat release > 2,000kW	
	and carbon), or the size reduction	•	are part of a manufacturing process for Portland or similar cements and pozzolanic materials.	
• •	of such minerals, or the storage	•	part of the manufacturing process for the sintering, calcining, or roasting of metal ores in preparation for burning	
lust or any other air	their dering or begins that		or smelting.	
•	releases dust or any other air	•	for making hot-mix asphalt paving mixes.	
	pollutant.	•	Part of the process for making glass or frit from raw materials or making mineral wood or glass fibre, including application of any surface coasting to the fibres.	

	•	an opencast extraction process between 5-100 tonnes/hr.	Part B
	•	a size reduction or screening plant with capacity between 5-200 tonnes/hr.	
	• •	a storage capacity between 500 - 10,000 tonnes.	
Wood Processing Industries	•	wood or other cellulose material is cooked with chemical solutions to dissolve lignin and the associated processes	Part A
Any industrial wood pulp or particle board processes	•	of bleaching and chemical by-product recovery. Hard board or particle board or wood pulp are made by processes involving emission of air pollutants.	
Abrasive Blasting	•	Any dry abrasive blasting	Part B
	•	Any wet abrasive blasting	Part C
Wool scours and Tanneries,		> 0.5 of a tonne/hr, including processes for rendering or reduction or drying through the application of heat to	Part A
Freezing Works and Abattoirs		animal matter (eg. Feathers, blood, bone, hoof, skin, offal, whole fish, fish heads, fish guts and parts and organic	
which have a raw material	2.	natures). > 5 tonnes/hr including processes for deep fat frying, oil frying, curing by smoking, roasting of berries or grains,	
capacity:		or where organic matter including wood is subject to such temperatures or conditions that there is partial	
		distillation or pyrolysis.	
	• •	z tolines an nour 101 processes for the drying of milk. cheese manufacture	
	•	< 0.5 of a tonne/hr for processes described in 1. Above.	Part B
	•	Between 250 kg/lrr - 5 tonnes/hr for processes in 2. above.	
-	•	<2 tonnes per hour for processes for the drying of milk.	
	•	any process of wool scouring	Part B
	•	any of the above having a raw material capacity of <250kg/hr.	Part C
Concrete Manufacturing Plants	•	extraction, size reduction, screening, storage (outside and above ground), drying or heating releasing dust or other	Part A therefore
		air pollutant involved with the manufacturing process for Portland or similar cements and pozzolanic materials.	requires a
			resource consent.
Industrial Metallurgical	•	the extraction (including Electro-chemcial methods of reduction) of any metal or metal alloy form its ore, oxide	Part A
(Including associated foundry	•	of outel compound. the making of steel or the refining of any metal or modification of any alloy in the molten state by blowing with	
practices)		air, oxygen, oxygen enriched air, chlorine or other gasses, or by addition of reactive chemicals or volatile fluxes	
		and the use of oxygen lancing in scarfing and similar operations.	
	•	The manufacture of silicon or ferrosilicon or of metal powders or of alloys rich in any metals specified in clauses 1 to 3.	
	•	The melting of any metal or metal alloy, including secondary melting and the seating of scrap metal, where	
		aggregated melting capacity exceeds one tonne an hour.	
	•	hot dip galvanising or other processes for the protection of surfaces by metal coating using fluxes.	

Industrial or Chemical Process having as a by-product or emission of any substance that can cause air pollution, including any processes used in (excluding electroplating):	• • • • •	Bodying of natural oils or manufacture or reaction of monomers for production of synthetic resins, varnishes and plastics. Production of soap, grease, detergents, and surface active agents. -Synthesis or extraction of organic chemicals including formulation of insecticides, weedicides, plant hormones, and like toxic or offenisve organic compounds. Production of phosphatic or nitrogenuous synthetic fertilisers, including granulation of single or mixed fertilisers. Any chemical manufacturing process using or producing chlorine (except for water sterilisation) at rates exceeding 5kg/hr. separation of concentration for manufacture or disposal of any uranium metal or compound or any radioactive substance.	Part A
Industrial carbonising or gasification processes in which natural gas, petroleum, shale, coal, wood, or other carbonaceous material is subject to:	• •	Pyrolysis, carbonisation, or destructive distillation, the soild or gaseous products being recovered. Gasification by partial combustion with air or oxygen or reaction with steam.	Part A
Processes involving the production of Compost.	• •	From raw materials that contain municipal or domestic refuse with a raw materials capacity 10 tonnes per day. From raw materials that do not contain municipal or domestic refuse and which has on the premises at any time a volume of compost and raw materials exceeding 750 cubic metres.	Part A
-	• •	from raw materials containing municipal or domestic refuse with a raw material capacity < 10 tonnes/day. from raw materials not containing municipal or domestic refuse with a volume at any one time of between 100-750 m ³ on the premises.	Part B
	•	(except silage) from raw materials that do not contain municipal or domestic waste with a volume at any one time of $< 100 \text{ m}^3$ on the premises.	Part C.
Use of geothermal steam	•	at a rate of 5MW.	Part A
Industrial or trade processes, e.g., spray painting	• •	using isocyanates at a rate > 100kg/hr. organic plasticsers at a rate > 100kg/hr.	Part A
	•	using di-isocyanates at a rate < 100kg/hr	Part B
Activities owned or operated by a local authority where the process is situated within the area administered by that local authority.	•	Any process/activity specified as a part B process.	Part A
Fellmongery Process	• •	using sulphides treating fellmongery liquid wastes containing sulphides.	Part A
General - Any industrial or trade	•	Grain elevators, seed dressing but not processes solely concerned with retail distribution or with distribution of	Part B

process not described in the		fuels.	
schedule for blending, packaging			
or handling of air polluting			
substances specified in the First			
Schedule including:			
Dag Crushing	•	Any industrial or trade processes for the teasing of textiles, shredding of paper, for cleaning sacks, or the crushing	Part B
		or separating dags from wool.	
Umbrella Clause (C7) for	•	Any industrial or trade process not otherwise specified that discharges hydrocarbons or related substances in	Part C
almost all activities not covered		quantity > 5kg/hr.	
elsewhere in the Schedules	•	any process not otherwise specified above for which a lower emission rate is not specified by which may	
which release fumes or odours		discharge any of the contaminants in The First Schedule.	
that were on the list of air			
pollutants. E.g., Spray painting,			
adhesive spraying, chlorinators,			
furniture strippers, welding.			
Pneumatic Conveying used in	•	of any air polluting substance specified in The First Schedule.	Part C
any industrial or trade process.			

Appendix V - Process Emission Factors

All process emissions factors were taken from AP42 and WHO and have been allocated a reference (where it exists) under the Standard Industrial Classification (SIC) system, developed by UN in 1989. Where emissions were given in total suspended particulate (TSP), the assumption was made that $PM_{10} = 0.4$ TSP. This was based on particle sizing work conducted for various emissions of particulate from various industrial processes.

For the individual processes, please note the following:

- Firstly, not all industries produce process air emissions any process emissions may be to water or solid waste or the industry may have combustion-only air emissions.
- For foundries involved with only melting / casting operations (ref 371)

Assuming uncontrolled induction furnace

=> EF = 0.05 kg TSP = 0.02 kg PM₁₀ per tonne metal product

• For incinerators burning hospital/pathological waste (ref 920) assume uncontrolled incineration

Assuming the density of waste = 300 kg/m^3 for conversion to tonnes

=> EF = 8.0 kg TSP = 3.2 kg PM₁₀ per tonne waste

=> EF = 3.0 kg NO_x per tonne waste

• For industries involved with surface coatings/painting (ref 0)

Assuming the density of paint = 1 kg/l for conversion to tonnes

=> EF = 560 kg VOC per tonne paint consumed/applied

• For production of resins/adhesives/fibreglass (ref 3513)assume partial vapour recovery

Assuming partial vapour recovery

=> EF = 3.0 kg VOC per tonne chemical produced

For fish processing (ref 3114)

Assuming average emissions

=> EF = 3.0 kg TSP = 1.2 kg PM₁₀ per tonne processed fish

• For bitumen plants (ref 354)

Assuming a dryer drum hot mix process with a cyclone

=> EF = 0.85 kg TSP = = 0.34 kg PM₁₀ per tonne produced

• For timber treatment plants (ref 0)

Assuming average surface coating operation

=> EF = 600 kg VOC per tonne treatment chemical used

• For can manufacturing (ref 372)

Assuming same emissions as galvanising

=> EF = 2.5 kg TSP = per 1.0 kg PM₁₀ tonne plate used

• For fertiliser production (ref 3512)

Assuming normal superphosphate process

=> EF = 0.76 kg TSP = 0.30 kg PM₁₀ per tonne fertiliser produced

We also have to include the emissions from the sulphuric acid manufacture

Assuming stoichiometry H₂SO₄ required is 40% of fertiliser produced

$$\Rightarrow$$
 EF = 2.4 kg SO_x per tonne H₂SO₄

Therefore overall emissions for the process are

$$=>$$
 EF = 0.76 kg TSP = 0.30 kg PM₁₀ per tonne fertiliser produced

- => EF = 0.96 kg SO_x per tonne fertiliser produced
- For textile manufacturing (ref 321)

Assuming half of the product is printed

- => EF = 71 kg VOC per tonne fabric
- For ready-mix concrete (ref 3699)

Assuming uncontrolled

=> EF =
$$0.05 \text{ kg TSP} = 0.02 \text{ kg PM}_{10} \text{ per tonne concrete produced}$$

• For cable manufacturing (ref 3513)

Assuming emissions come from plastic cable coating only

$$=>$$
 EF = 1.5 kg TSP = 0.6 kg PM₁₀ per tonne plastic used

=> 0.35 kg VOC per tonne plastic used

Assuming the plastic makes up 10% of the raw materials used, overall emissions are

$$=>$$
 EF = 0.06 kg PM₁₀ per tonne cable produced

• For brewing (ref 3133)

Assuming the density of beer = 1000 kg/m³ for conversion to tonnes

$$=>$$
 EF = 0.8kg TSP = 0.32 kg PM₁₀ per m³ beer produced

$$=>$$
 EF = 0.25 kg VOC per m³ beer produced

• For manufacture of chemicals (ref 351)

Assuming an average emission rate and the density of liquid products = 1 kg/l

$$=>$$
 EF = 0.3 kg TSP = 0.12 kg PM₁₀ per tonne product

Appendix VI - Aircraft Emissions

Christchurch International Airport Aircraft Emission

									Pollutant	tant								
Aircraft Type		PM ₁₀			္ပ			Ň			SOx			VOC			CO	
	kg	g/ha	g/ha % Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total	kg	g/ha	% Total
Domestic	6.7	3.2	96	449.3	215.2	96	171.8	82.3	96	19.2	9.2	96	9.18	39.1	96	59959.7	28721.5	96
International	0.3	0.1	4	18.7	0.6	4	7.2	3.4	4	8.0	6.4	4	3.4	9.1	4	2498.3	1196.7	4
Total	7.0	3.4	100	468.0	224.2	100.0	179.0	85.7	100	20.0	9.6	100	85.0	40.7	100	62458.0	29918.2	100

Pollutant emissions produced at different times of a typical winter's day from domestic aircraft - Airport suburb

							17	The second secon	,			-		-	
	ě	6am-10am	_	10	0am-4pm	_	4	4pm-10pm	_	7	Jpm-6am	u		Total	
Pollutant	kg	g/ha	%total	kg	g/ha	%total	kg	g/ha	%total	kg	g/ha	%total	kg	g/ha	%total
PM ₁₀	1.5	0.7	23	2.3	=	34	2.3	-:	34	9.0	0.3	6	6.7	3.2	100
8	102.7	49.2	23	154.0	73.8	34	154.0	73.8	34	38.5	18.4	6	449.3	215.2	100
ŇON	39.3	18.8	23	58.9	28.2	34	58.9	28.2	34	14.7	7.1	6	171.8	82.3	100
sox	4.4	2.1	23	9.9	3.2	34	9.9	3.2	34	9.1	8.0	6	19.2	9.2	100
VOC	18.7	8.9	23	28.0	13.4	34	28.0	13.4	34	7.0	3.4	6	9.18	39.1	100
CO	13705.1	6564.9	23	20557.6	9847.4	34	20557.6	9847.4	34	5139.4	2461.8	6	59959.7	28721.5	100

Pollutant emissions produced at different times of a typical winter's day from international aircraft - Airport suburb

•	onamin chinosichio produ	CHILIDRICA	in product		ed at different times of a typical truther a day morn missinguism and truther against	וווכם כווו	the state of	1011111	in from						
	9	6am-10am	E	7	0am-4pm	_	4	4pm-10pm	u	7	0pm-6am	n		Total	
	kg	g/ha	%total	kg	g/ha	%total	kg	g/ha	%total	kg	g/ha	%total	kg	g/ha	%total
PM ₁₀	0.1	0.0	23	0.1	0.0	34	0.1	0.0	34	0.0	0.0	6	0.3	0.1	100
8	4.3	2.0	23	6.4	3.1	34	6.4	3.1	34	9.1	8.0	6	18.7	0.6	100
Ň	1.6	8.0	23	2.5	1.2	34	2.5	1.2	34	9.0	0.3	6	7.2	3.4	100
šoš	0.2	0.1	23	0.3	0.1	34	0.3	0.1	34	0.1	0.0	6	8.0	0.4	100
VOC	8.0	0.4	23	1.2	9.0	34	1.2	9.0	34	0.3	0.1	6	3.4	1.6	100
co	571.0	273.5	23	856.6	410.3	34	9.958	410.3	34	214.1	102.6	6	2498.3	1196.7	100

Pollutant emissions produced at different times of a typical winter's day from all aircraft (domestic and international) - Airport suburb

Christchurch Inventory of Total Emissions

m 10am-4pm %total kg g/ha %total kg 23 2.4 1.1 34 2.4 23 160.5 76.9 34 160.5 23 61.4 29.4 34 61.4 23 6.9 3.3 34 6.9 23 29.1 14.0 34 29.1																
kg g/ha %total kg g/ha %total kg 1.6 0.8 23 2.4 1.1 34 2.4 107.0 51.2 23 160.5 76.9 34 160.5 40.9 19.6 23 61.4 29.4 34 61.4 4.6 2.2 23 6.9 3.3 34 6.9 19.4 9.3 23 29.1 14.0 34 29.1		9	am-10an		10	Jam-4pm	_	4	4pm-10pm	_	=	0pm-6am	E		Total	
1.6 0.8 23 2.4 1.1 34 2.4 107.0 51.2 23 160.5 76.9 34 160.5 40.9 19.6 23 61.4 29.4 34 61.4 4.6 2.2 23 6.9 3.3 34 6.9 19.4 9.3 23 29.1 14.0 34 29.1		kg	g/ha	%total	kg	g/ha	%total	kg	g/ha	%total	kg	g/ha	%total	kg	g/ha	%total
107.0 51.2 23 160.5 76.9 34 160.5 40.9 19.6 23 61.4 29.4 34 61.4 4.6 2.2 23 6.9 3.3 34 6.9 19.4 9.3 23 29.1 14.0 34 29.1	PM ₁₀	9.1	8.0	23	2.4	=:	34	2.4	-:	34	9.0	0.3	6	7.0	3.4	100
40.9 19.6 23 61.4 29.4 34 61.4 4.6 2.2 23 6.9 3.3 34 6.9 19.4 9.3 23 29.1 14.0 34 29.1	8	107.0	51.2	23	160.5	6.97	34	160.5	6.92	34	40.1	19.2	6	468.0	224.2	100
4.6 2.2 23 6.9 3.3 34 6.9 19.4 9.3 23 29.1 14.0 34 29.1	Ň	40.9	9.61	23	61.4	29.4	34	61.4	29.4	34	15.3	7.3	6	179.0	85.7	100
19.4 9.3 23 29.1 14.0 34 29.1	šox	4.6	2.2	23	6.9	3.3	34	6.9	3.3	34	1.7	8.0	6	20.0	9.6	100
- CT-1700 - CT-1	VOC	19.4	9.3	23	29.1	14.0	34	29.1	14.0	34	7.3	3.5	6	85.0	40.7	100
142/6:1 6838.5 23 21414.2 1025/./ 34 21414.2	ç S	14276.1	6838.5	23	21414.2	10257.7	34	21414.2	10257.7	34	5353.5	2564.4	6	62458.0	29918.2	100

