Course code		Da	ta structures and Alg	gorithms	L T P J C		
CSE2003					2 0 2 4 4		
Pre-requisite		-			Syllabus version		
					V. XX.XX		
Course Objecti	ives:						
scientis To app	st. oreciate ar	nd understand the Algo	rithms and Data struct		luctive computer problem are much more		
To pro- independent	ovide an ir		nature of the problem	mming language. as well as possible solugms, computer hardwar			
Ermontod Comm							
On completion		ome: ourse, student should be	abla to				
*							
		rst-case running time of	-				
` '		or data structures and the	•				
(3) Explain	n major a	algorithm design paradi	gms and their analyses	S.			
(4) Explain	n the maj	or graph algorithms and	d their analyses.				
	mpare between different data structures and algorithmic techniques for a given problem and assess the leoffs involved.						
			algorithms and provi	de program solutions in	engineering design		
situation		icht data structures and	algoriums and provi	de program solutions in	engineering design		
		nmic solutions to real-w	orld problems				
(7) Flovide	e aigoriui	inic solutions to rear-w	oria problems				
Student Learni	ing Outc	omes (SLO):	1,5,9				
Student Learni	ing Outc	omes (SLO).	1,5,7				
Module:1	Introduc	ction to Data structure	s and Algorithms	1 hour	SLO: 1		
				algorithm development			
				n Algorithm, Proof of C			
		he time complexity of the		,			
		of Algorithms		3 hours	SLO: 1		
				gorithm, Time-comple			
Performance and proof)	alysis of	an algorithm, Analy	sis of iterative and	recursive algorithms.	Master theorem (without		
Module:3	Data Str	netures		7 hours	SLO: 1,5		
			Onenes Linked list	Frees, Hashing Table, B			
Heaps		tures, rurays, sucks,	Queues, Elliked list,	Trees, Hushing Tuote, B	mary Search Tree,		
M - J-1 - 4		m Design Paradigms		8 hours	SLO:5,9		
		sta famaa Cmaadri Daari	rsive Backtracking an	d Dynamia Programmin			
Divide and Con	quer, Bru	ne force, Greedy, Recu	131VC Ducktrucking un	d Dynamic Frogrammin	<u>1g.</u>		
Divide and Con-	•	algorithms	151Ve Bucktucking air	4 hours	SLO: 5, 9		
Divide and Cond Module:5	Graph A	lgorithms			SLO: 5, 9		

Module:6Computational Complexity classes5 hoursSLO: 5, 9Tractable and Intractable Problems, Decidable and Undecidable problems, Computational complexity Classes: P,

Module:6

		complete - Cook"s Theorem (without proof),3-CNF-SAT	Problem, Reduction	of 3-CNF-SAT to				
Cliq	ue Proble	m, Reduction of 3-CNF-SAT to Subset sum problem.						
Mod	dule:7	Recent Trends	2 hours	SLO: 1,5,9				
			1	~_ <u>~ - , - , - , - , - , - , - , - , - , - </u>				
		Total Lecture hours:	30 hours					
	t Book(s)							
1.		ction to Automata Theory, Languages, and Computation (3rd in, Jeffery D. Ullman, Pearson education, 2013.	Edition), John E Ho	pcroft, Rajeev				
2.	Principles of Compiler Design, Alferd V. Aho and Jeffery D. Ullman, Addison Wesley,2006.							
	erence Bo							
1.		tion to Languages and the Theory of Computation, John Mart						
2.		Compiler Implementation in Java, 2nd ed., Andrew W. Appel	Cambrdige University	ity Press, 2012.				
Mod	le of Evalu	uation:						
List	of Challe	enging Experiments (Indicative)	SL	O: 14,17				
				30 hours 30				
1.	on the re pairs. Im Assume	 Array , loops Stacks and Queues Searching and Sorting Linked List Brute force technique Greedy Technique Backtracking Dynamic Programming Tree BFS and DFS Minimum Spanning Tree Domain Specific Algorithms an algorithm for the following "closet pair problem": Given cal line, find the pair of points which are closest (in the sense of aplement your algorithm in any programming language. that a square matrix is called a Matrix Sorted Array, only if a sense of the pair of points which are closest (in the sense of aplement your algorithm in any programming language. 	of distance) of all such all the entries are in	ch				
	Matrix S	asing order both row and column wise. The below matrix is Sorted Array. Design an efficient algorithm to convert the gatrix Sorted Array. Implement your algorithm into any progra	iven square matrix					

		12	13	14	15			
		23	34	67	89			
		27	45	78	92			
		29	67	86	100	-		
	C' an analysis in a 1					1		
3.	Given n points in a two di polar angles formed by the		ne, sort the n	ooints in increas	sing order of t	ine		
4.	Let S be the set of binary numbers (Strings on alphabet {0,1}) whose decimal value is divisible by 3. Write a program to sort the binary numbers in non-decreasing order of their decimal values.							
	In the situation where there are multiple users or a network computer system, you probably share a printer with other users. When you request to print a file, your request is added to the print queue. When your request reaches the front of the print queue, your file is printed. This ensures that only one person at a time has access to the printer and that this access is given on a first-come, first- served basis. Design an algorithm for this scenario and implement your algorithm in any programming language.							
	Implement an effective so				.			
	You are making an iPod not applicable, choose an you"re your iPod in such song currently on the iPod You have n coins, all of you tit is fake. All gold coothers. You have a balance scale at one time and it willighter if they don"t weight							
	algorithm to find the fake Implement the following of to the usual operations of two more operations. • Split(p(i1,i2,i3 split in two stack need not be equa where 1≤i≤q. • Given two stack of length p+q=n. in any combination							
	Consider the equation AP represents a digit from 0 to zero in any word. There is words, if you choose the coand no other letter can be equation.							
	A village has a problen panchayat) decides to hir Impement an efficient alg number of security guard	e security gua orithm such	ards to give p that all the s	rotection to all treets are prot	l streets of the ected with	e village. minimum		