Examen

L'épreuve dure trois heures. Ni documents, ni calculatrices, ni téléphones. Les quatre exercices sont indépendants.

Exercice 1. Soit $(\Omega, \mathscr{F}, (\mathscr{F}_n)_{n \geq 0}, \mathbb{P})$ un espace de probabilité. Soit $(X_n)_{n \geq 0}$ une martingale. On fait l'hypothèse qu'il existe une suite $(r_n)_{n \geq 1}$ de réels strictement positifs telle que pour tout $n \geq 1$, on ait

$$\mathbb{P}(|X_n - X_{n-1}| \leqslant r_n) = 1.$$

Pour tout $n \ge 1$, on pose $Q_n = r_1^2 + \ldots + r_n^2$. On se propose de démontrer que

$$\forall n \geqslant 1, \ \forall x \geqslant 0, \ \mathbb{P}(|X_n - X_0| \geqslant x) \leqslant e^{-\frac{x^2}{2Q_n}}. \tag{1}$$

1. Montrer que pour tout nombre réel $y \in [-1,1]$ et tout réel $a \ge 0$, on a

$$e^{ay} \leqslant \frac{1-y}{2}e^{-a} + \frac{1+y}{2}e^{a}.$$

En déduire que pour toute sous-tribu $\mathscr G$ de $\mathscr F$ et toute variable aléatoire Y telle que $\mathbb P(-1\leqslant Y\leqslant 1)=1$ et $\mathbb E[Y|\mathscr G]=0$, on a les inégalités

$$\mathbb{E}[e^{aY}|\mathcal{G}] \leqslant \frac{1}{2}(e^a + e^{-a}) \leqslant e^{\frac{1}{2}a^2}.$$

2. Montrer que pour toute variable aléatoire Y, tous réels $a \ge 0$ et $x \ge 0$, on a

$$\mathbb{P}(Y \geqslant x) \leqslant e^{-ax} \mathbb{E}[e^{aY}].$$

3. Soit $n \ge 1$ un entier. Montrer que pour tout réel $a \ge 0$, on a

$$\mathbb{E}[e^{a(X_n - X_0)}] \leqslant e^{\frac{1}{2}a^2 r_n^2} \mathbb{E}[e^{a(X_{n-1} - X_0)}].$$

En déduire que pour tout $x \ge 0$ et pour tout $a \ge 0$,

$$\mathbb{P}(|X_n - X_0| \geqslant x) \leqslant e^{-ax + a^2 \frac{Q_n}{2}}.$$

- 4. Démontrer l'assertion (1).
- 5. En utilisant l'assertion (1), donner une démonstration de la loi forte des grands nombres pour une suite de variables aléatoires $(\xi_n)_{n\geqslant 1}$ indépendantes, identiquement distribuées, d'espérance nulle et telles qu'il existe un réel $r\geqslant 0$ tel que $\mathbb{P}(|\xi_1|\leqslant r)=1$.

Exercice 2. Soit $(\xi_n)_{n\geqslant 1}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées. On suppose qu'il existe un réel t>0 tel que $\mathbb{E}[e^{t\xi_1}]=1$. Soit $x\geqslant 0$ un réel. Montrer que

$$\mathbb{P}(\exists n \geq 0 \text{ tel que } \xi_1 + \ldots + \xi_n \geq x) \leq e^{-tx}.$$

Exercice 3. On considère sur un ensemble dénombrable E une matrice de transition $Q = (p(x,y) : x,y \in E)$. On note G la fonction de Green de la chaîne de Markov de matrice de transition Q.

1. On fixe un point $y \in E$. Montrer qu'on a, pour tout $x \in E$,

$$G(x,y) = \mathbf{1}_{\{y\}}(x) + \sum_{z \in E} p(x,z)G(z,y).$$
 (2)

On fixe désormais deux entiers a et b tels que $b \ge a+2$ et on considère l'ensemble $E = \{a, a+1, \ldots, b\}$ des entiers compris entre a et b. On considère sur E la matrice de transition Q définie comme suit : pour tout $i \in E \setminus \{a, b\}$, on a

$$p(i, i + 1) = p(i, i - 1) = \frac{1}{2}$$

et p(a, a) = p(b, b) = 1.

2. Déterminer parmi les éléments de E quels sont les états récurrents et les états transients.

Soit y fixé dans $E \setminus \{a, b\}$. On souhaite calculer G(x, y) pour tout $x \in E$.

- 3. Calculer G(a, y) et G(b, y).
- 4. Montrer que si c et d sont des entiers tels que c < d et si $f : \{c, \ldots, d\} \to \mathbb{R}$ est une fonction telle que pour tout $x \in \{c+1, \ldots, d-1\}$ on ait $f(x) = \frac{1}{2}(f(x-1) + f(x+1))$, alors il existe des réels α et β tels que pour tout $x \in \{c, \ldots, d\}$, on ait $f(x) = \alpha x + \beta$.
- 5. En utilisant (2), et en distinguant les cas $x \leq y$ et $x \geq y$, donner une expression de G(x,y) en fonction de G(y,y).
 - 6. En utilisant une fois encore (2), calculer G(y, y).
 - 7. Déterminer la valeur de G(x,y) pour tous $x,y \in E$.
- 8. Rappeler la démonstration du fait que pour tous états $x,y \in E$ distincts et tels que $G(x,y) < \infty$, le quotient $\frac{G(x,y)}{G(y,y)}$ est la probabilité partant de x de passer au moins une fois en y.
- 9. Soit $(W_n)_{n\geqslant 0}$ la marche aléatoire simple sur $\mathbb Z$ issue de 1. Posons $T=\inf\{n\geqslant 0:W_n=0\}$ et $H=\max\{W_n:n\leqslant T\}$. Déterminer la loi de H.

Exercice 4. On considère, sur le graphe représenté ci-dessous, une marcheuse au hasard qui, à chaque pas, va vers un sommet choisi uniformément parmi tous les voisins du sommet où elle se trouve.

- 1. Déterminer les états transients, les états récurrents et les classes d'irréductibilité de la chaîne de Markov que notre marcheuse incarne.
- 2. Déterminer, avec aussi peu de calculs que possible, et si possible sans aucun calcul, toutes les mesures de probabilité invariantes de cette chaîne de Markov.
- 3. Partant du sommet 5, quel est le temps moyen que met la marcheuse pour revenir au sommet 5?
- 4. Entre deux visites au sommet 2, combien de fois la marcheuse visite-t-elle, en moyenne, le sommet 9?
- 5. Partant du sommet 3, combien de temps met en moyenne la marcheuse pour atteindre le sommet 10?

— FIN DU SUJET —