Applications

Applications

Savoirs et compétences :

Correcteur proportionnel

Soit un système de fonction de transfert $G(p) = \frac{1}{(1+10p)(1+0,1p)(1+0,2p)}$ placé dans une boucle à retour unitaire.

Question 1 Calculer la précision du système ε_S pour une entrée échelon unitaire.

Correction Le système est de classe 0. L'entrée est de type échelon. $K_{\text{BO}} = 1$. L'écart statique est de $\frac{1}{1+1} = \frac{1}{2}$.

Question 2 Tracer dans le diagramme de Bode la fonction de transfert en boucle ouverte du système.

Question 3 Déterminer K pour avoir une marge de phase de 45°. Indiquer alors la valeur de l'écart statique.

Correction • On résout $\varphi(\omega) = -135^{\circ}$: $\varphi(\omega) = -\arctan 10\omega - \arctan 0, 1\omega - \arctan 0, 2\omega$. $\varphi(\omega) = -135^{\circ} \Leftrightarrow \omega = 2.95 \, \mathrm{rad} \, \mathrm{s}^{-1}$ (solveur Excel). • Calculons $G_{\mathrm{dB}}(\omega) = -20 \log \left(\sqrt{1+10^2 \omega^2} \right) - 20 \log \left(\sqrt{1+0, 1^2 \omega^2} \right) - 20 \log \left(\sqrt{1+0, 2^2 \omega^2} \right)$.

Question 4 Déterminer K pour avoir une marge de gain de 6 dB. Indiquer alors la valeur de l'écart statique.

Correction

Correcteur proportionnel

Soit un système de fonction de transfer $G(p) = \frac{1}{(1+0,05p)(1+p+2p^2)}$. On souhaite corriger le comportement de ce système par un correcteur proportionnel.

Question Déterminer le gain K qui assure une marge de phase de 45°.

Correcteur proportionnel

Soit un système de fonction de transfer $G(p)=\frac{10}{p\left(1+p+p^2\right)}$. On souhaite corriger le comportement de ce système par un correcteur proportionnel. On désire une marge de phase de -45°et une marge de gain de $10\,\mathrm{dB}$.

Question 1 Calculer la marge de phase.

Question 2 Calculer la marge de gain.

Question 3 Déterminer K_p pour avoir une marge de phase de 45°. Vérifier la marge de gain.

Question 4 Déterminer K_p pour avoir une marge de gain de 10 dB. Vérifier la marge de phase.

Correcteur proportionnel intégral

1

Soit un système de fonction de transfert $G(p) = \frac{1}{(p+1)\left(\frac{p}{8}+1\right)}$ placé dans une boucle à retour unitaire.

On souhaite disposer d'une marge de phase de 45° en utilisant un correcteur proportionnel intégral de la forme $C(p) = K_p \frac{1+\tau p}{\tau p}$.

Question 5 Déterminer les paramètres du correcteur pour avoir une marge de phase de 45°.

Correcteur à avance de phase

Soit un système de fonction de transfert $G(p) = \frac{100}{(p+1)^2}$ placé dans une boucle à retour unitaire.

Question Corriger ce système de sorte que sa marge de phase soit égale à 45°.