I. Rappels

Définitions

- Toute fonction est définie sur intervalle I.
- Elle a un nom, souvent f.
- Le nombre de départ, la variable est en général appelé x. Le nombre qui lui est associé est alors noté f(x).
- Le nombre f(x) est appelé **image** de x par la fonction f.
- x est appelé antécédent f(x) par la fonction f
- f est croissante si f(x) augmente quand x augmente.
- f est décroissante si f(x) diminue quand x augmente.

II. Fonctions de référence

1) Fonction carré

Définition

La fonction carré est définie par $x \mapsto x^2$.

Propriétés

- Elle est définie pour tous les nombres qui existent (sur l'intervalle $]-\infty$; $+\infty[$).
- Elle est décroissante sur $]-\infty;0]$.
- Elle est croissante sur $[0; +\infty[$.
- Sa représentation graphique est une parabole.

Illustartion

Courbe représentative de la fonction $f(x)=x^2$ et tableau de variations associé :

2) Fonction inverse

Définition

La fonction inverse est définie par $x \mapsto \frac{1}{x}$.

Propriétés

- Elle est définie pour tous les nombres qui existent sauf 0, car il n'est pas possible de diviser un nombre par 0 (sur l'intervalle $]-\infty; 0[\cup]0; +\infty[)$.
- Elle est décroissante sur] $-\infty$; 0[.
- Elle est croissante sur $]0; +\infty[$.
- Sa représentation graphique est une hyperbole.

Illustartion

Courbe représentative de la fonction $f(x) = \frac{1}{x}$ et tableau de variations associé :

x	$-\infty$	0	$+\infty$
	0	$+\infty$	
1			
$\frac{1}{x}$			
	_	∞	0

3) Fonction racine

Définition

La fonction racine carrée est définie par $x \mapsto \sqrt{x}$.

Propriétés

- Elle est définie pour tous les nombres positifs, car on ne peut pas prendre la racine carrée d'un nombre négatif (sur l'intervalle $[0; +\infty[$).
- Elle est croissante sur $[0; +\infty[$.

Illustartion

Courbe représentative de la fonction $f(x) = \sqrt{x}$ et tableau de variations associé :

4) Fonction cube

Définition

La fonction cube est définie par $x \mapsto x^3$.

Propriétés

- Elle est définie pour tous les nombres qui existent (sur l'intervalle $]-\infty\;;+\infty[).$
- Elle est croissante sur $[0; +\infty[$.

Illustartion

Courbe représentative de la fonction $f(x) = x^3$ et tableau de variations associé :

x	$-\infty$	$+\infty$
		$+\infty$
x^3		
	$ -\infty $	

III. Opérations avec les fonctions

1) Somme d'une fonction et d'un nombre

Propriété

Lorsque l'on ajoute une constante k à une fonction f, on obtient une nouvelle fonction notée f+k qui a le même sens de variation que f.

Exemple

Soit la fonction f, telle que $f(x) = x^2$. f est décroissante sur l'intervalle $]-\infty;0]$ et croissante sur $[0;+\infty[$.

Donc la fonction $f + k(x) = x^2 + 2$ est décroissante sur l'intervalle $]-\infty;0]$ et croissante sur $[0;+\infty[)$.

2) Somme de deux fonctions

Propriété

Si on ajoute deux fonctions f et g qui possèdent le même sens de variation, on obtient alors une fonction f+g qui a le même sens de variation que f ou g.

Exemple

Soient les fonctions f et g, telles que $f(x) = x^2$ et g(x) = 2x + 1.

f et g sont croissantes sur l'intervalle $[0; +\infty[$.

Donc la fonction $f + g(x) = x^2 + 2x + 1$ est croissante sur $[0; +\infty[$.

3) Produit d'une fonction et d'un nombre

Propriétés

- Lorsque l'on multiplie une fonction f par une constante positive k, on obtient alors une fonction kf qui a le même sens de variation que f.
- Lorsque l'on multiplie une fonction f par une constante négative k, on obtient alors une fonction kf qui varie en sens contraire de f.

6

Exemple

Soit la fonction f, telle que $f(x) = x^2$.

f est décroissante sur l'intervalle $]-\infty;0]$ et croissante sur $[0;+\infty[$. Donc la fonction $kf(x)=0,5\times x^2$ est décroissante sur l'intervalle $]-\infty;0]$ et croissante sur $[0; +\infty[$.

Exemple

Soit la fonction f, telle que $f(x) = x^2$. fest décroissante sur l'intervalle $]-\infty;0]$ et croissante sur $[0; +\infty[$. Donc la fonction $kf(x) = -2 \times x^2$ est croissante sur l'intervalle $]-\infty;0]$ et décroissante sur $[0;+\infty[.$

