Generating Random Logic Programs Using Constraint Programming

Paulius Dilkas¹ Vaishak Belle^{1,2}

¹University of Edinburgh, Edinburgh, UK

²Alan Turing Institute, London, UK

FATA Seminar

Anytime Inference in Probabilistic Logic Programs with T_p -Compilation

Jonas Vlasselaer, Guy Van den Broeck, Aye ka Kimmig, Wannes Meert, Luc De Raedt
Department of en puter Science
KU Leuwer, Belgium
firstname_lastname@ex.kuleuwen.be

Anytime Inference in Probabilistic Logic Programs with T_p -Compilation

Jonas Vlasselaer, Guy Van den Broeck, Angelka Kimmig, Wannes Meert, Luc De Raedt firstname.lastname@cs.kuleuven.be

Inference and learning in probabilistic logic programs using weighted Boolean formulas

DAAN FIERENS, GUY VAN DEN BROECK, JORIS RENKENS, DIMITAR SHTERIONOV, BENED GUTMANN, INGO THON, GERDA JANSSENS and LUC DE RAEDT

Department of Computer Science, KU Leuven, Celestiinenlaan 200A, 3001 Heverlee, Belgium (e-mail: FirstName.LastName@cs.kuleuven.be)

Anytime Inference in Probabilistic Logic Programs with T_p -Compilation

Jonas Vlasselaer, Guy Van den Broeck, Angelka Kimmig, Wannes Meert, Luc De Raedt firstname.lastname@cs.kuleuven.be

Inference and learning in probabilistic logic programs using weighted Boolean formulas

DAAN FIERENS, GUY VAN DEN BROECK, JORIS RENKENS, DIMITAR SHTERIONOV, BENED GUTMANN, INGO THON, GERDA JANSSENS and LUC DE RAEDT

Department of Computer Science, KU Leuven, Celestiinenlaan 200A, 3001 Heverlee, Belgium (c-mail: FirstName.LastName@cs.kuleuven.be)

k-Optimal: a novel approximate inference algorithm for ProbLog

Joris Renkens · Guy Van den Broeck · Siegfried Nijssen

Anytime Inference in Probabilistic Logic Programs with T_P -Compilation

Jonas Vlasselaer, Guy Van den Broeck, Ande ka Kimmig, Wannes Meert, Luc De Raedt
Department of ea aputer Science
KU Leuven Belgium
firstname.lastname@esk.uleuven.be

Inference and learning in probabilistic logic programs using weighted Boolean formulas

DAAN FIERENS, GUY VAN DEN BROECK, JORIS RENKENS, DIMITAR SHTERIONOV, BENNED GUTMANN, INGO THON, GERDA TANSSENS and LUC DE RAFEIT

Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium (e-mail: FirstName.LastName@cs.kuleuven.be)

k-Optimal: a novel approximate inference algorithm for ProbLog

Joris Renkens · Guy Van den Broeck · Siegfried Nijssen

On the Efficient Execution of ProbLog Programs

Angelika Kimmig¹, Vítor Santos Cost ², Ricardo Rocha², Bart Demoen¹, and Luc De Raedt¹

Anytime Inference in Probabilistic Logic Programs with T_p -Compilation

Jonas Vlasselaer, Guy Van den Broeck, Ange ka Kimmig, Wannes Meert, Luc De Raedt
Department of en mouter Science
KU Leuwen, Belgium
firstname, lastname@cs.kuleuwen.be

Inference and learning in probabilistic logic programs using weighted Boolean formulas

DAAN FIERENS, GUY VAN DEN BROECK, JORIS RENKENS, DIMITAR SHTERIONOV, BENYD GUTMANN, INGO THON, GERDA JANSSENS and LUC DE RAFEIT

Department of Computer Science, KU Leuwen, Celestijnenlaan 200A, 3001 Heverlee, Belgium (e-mail: FirstName.LastName@cs.kuleuwen.be)

k-Optimal: a novel approximate inference algorithm for ProbLog

Joris Renkens · Guy Van den Broeck · Sjegfried Nijssen

On the Efficient Execution of ProbLog Programs

Angelika Kimmig 1, Vítor Santos Cost 2 , Ricardo Rocha 2, Bart Demoen 1, and Luc De Raedt 1

On the Implementation of the Probabilistic Logic Programming Language ProbLog

Angelika Kimmig, Bart Damoen and Luc De Raedt
Departement Computerwe suschappen, K.U. Leuven
Celestjunelaan 2004. - bus 24, 28, 28-3001 Heverles, Belgium
(e-mail: {Angelika.Kimmig,Bart.Damoen,Luc.DeRaedt}@cs.kuleuven.be)

Vítor Santos Costa and Ricardo Rocha

CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal (e-mail: {vsc.ricroc}@dcc.fc.up.pt)

Anytime Inference in Probabilistic Logic Programs with T_p -Compilation

Jonas Vlasselaer, Guy Van den Broeck, Ange ka Kimmig, Wannes Meert, Luc De Raedt
Department of en mouter Science
KU Leuwen, Belgium
firstname, lastname@cs.kuleuwen.be

Inference and learning in probabilistic logic programs using weighted Boolean formulas

DAAN FIERENS, GUY VAN DEN BROECK, JORIS RENKENS, DIMITAR SHTERIONOV, BENND GUTMANN, INGO THON, GERDA JANSSENS and LUC DE RAEDT

Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium (e-mail: FirstNane, LastNane@cs, kuleuven, be)

k-Optimal: a novel approximate inference algorithm for ProbLog ◀

Joris Renkens · Guy Van den Broeck · Siegfried Nijssen

On the Efficient Execution of ProbLog Programs

Angelika Kimmig¹, Vítor Santos Cost $\frac{P}{L}$ Ricardo Rocha², Bart Demoen¹, and Luc De Raedt¹

On the Implementation of the Probabilistic Logic Programming Language ProbLog

Angelika Kimmig, Bart Damoen and Luc De Raedt

Departement Computerwe ruschoppen, K.U. Leuven

Celestijnenlaan 200A - bus 24 2, B-3001 Heverlee, Belgium

(e-mail: {langelika.Kimnig,Bart.Demis.,Luc.DeRaedt]bec.kuleuven.be)

Vítor Santos Costa and Ricardo Rocha

CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal (e-mail: {vsc.ricroc}@dcc.fc.up.pt)

ProbLog Technology for Inference in a Probabilistic First Order Logic

Maurice Bruynooghe and Theofrastos Mantadie and Angelika Kimmig and Bernd Gutmann and Joost Vennekens and Gerda Janssens and Luc De Raedt¹

Outline

Probabilistic Logic Programming

The Constraint Model

Example Programs

Experimental Results

Summary

Probabilistic Logic Programs (PROBLOG)

"Smokers" (Domingos et al. 2008; Fierens et al. 2015)

```
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
    smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
    cancer(P):-cancer_spont(P).
    cancer(P): - smokes(P), cancer\_smoke(P).
    person(mary).
    person(albert).
    friend(albert, mary).
```

Applications

Moldovan et al. 2012

```
is_malignant(Case):-
    biopsyProcedure(Case, usCore),
    changes_Sizeinc(Case, missing),
    feature_shape(Case).

is_malignant(Case):-
    assoFinding(Case, asymmetry),
    breastDensity(Case, scatteredFDensities),
    vacuumAssisted(Case, yes).

is_malignant(Case):-
    needleGauge(Case,9),
    offset(Case,14),
    vacuumAssisted(Case,yes).
```

Côrte-Real, Dutra, and Rocha 2017

Q1: In a group of 10 people, 60 percent have brown eyes. Two people are to be selected at random from the group. What is the probability that neither person selected will have brown eyes?

Q2: Mike has a bag of marbles with 4 white, 8 blue, and 6 red marbles. He pulls out one marble from the bag and it is red. What is the probability that the second marble he pulls out of the bag is white?

Dries et al. 2017

De Maeyer et al. 2013

000000

```
Let a \oplus b := a + b - ab. Then
Pr[cancer(mary)] = Pr[cancer_spont(mary)]
                     \oplus \Pr[smokes(mary)]
                      \times \Pr[\operatorname{cancer\_smoke}(mary)]
```

```
cancer(P):-cancer\_spont(P).
cancer(P): - smokes(P), cancer\_smoke(P).
```

000000

Probabilistic Inference: Reasoning by Hand

Let
$$a \oplus b := a + b - ab$$
. Then $Pr[cancer(mary)] = 0.1 \oplus 0.3 \times Pr[smokes(mary)]$

```
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
```

000000

Probabilistic Inference: Reasoning by Hand

```
Let a \oplus b := a + b - ab. Then
Pr[cancer(mary)] = 0.1 \oplus 0.3 \times Pr[smokes(mary)]
Pr[smokes(mary)] = Pr[stress(mary)]
                   ⊕ Pr[smokes(albert)]
                   × Pr[influences(albert, mary)]
```

```
smokes(X):-stress(X).
smokes(X):-smokes(Y), influences(Y, X).
```

000000

```
Let a \oplus b := a + b - ab. Then
Pr[cancer(mary)] = 0.1 \oplus 0.3 \times Pr[smokes(mary)]
Pr[smokes(mary)] = 0.2 \oplus 0.3 \times Pr[smokes(albert)]
```

```
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
```

Probabilistic Inference: Reasoning by Hand

```
Let a \oplus b := a + b - ab. Then
Pr[cancer(mary)] = 0.1 \oplus 0.3 \times Pr[smokes(mary)]
Pr[smokes(mary)] = 0.2 \oplus 0.3 \times Pr[smokes(albert)]
Pr[smokes(albert)] = Pr[stress(albert)] = 0.2
```

```
0.2::stress(P):-person(P).
    smokes(X):-stress(X).
```

```
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
    smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
    cancer(P):-cancer_spont(P).
    cancer(P): - smokes(P), cancer\_smoke(P).
    person(mary).
    person(albert).
    friend(albert, mary).
```

```
cancer(mary) = \top
     Pr(world) = 0.2 \times (1 - 0.3) \times 0.1 \times 0.3
0.2: stress(P):-person(P).
0.3::influences(P_1, P_2):=friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
     smokes(X):-stress(X).
     smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P): - smokes(P), cancer\_smoke(P).
     person(mary).
     person(albert).
     friend(albert, mary).
```

000000

```
cancer(mary) = \top
     Pr(world) = 0.2 \times 0.3 \times 0.1 \times (1 - 0.3)
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
     smokes(X):-stress(X).
     smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P):=smokes(P), cancer\_smoke(P).
     person(mary).
     person(albert).
     friend(albert, mary).
```

```
cancer(mary) = \top
  Pr(world) = (1 - 0.2) \times (1 - 0.3) \times 0.1 \times 0.3
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
     smokes(X):-stress(X).
     smokes(X):-smokes(Y), influences(Y, X).
     cancer(P):-cancer\_spont(P).
     cancer(P):=smokes(P), cancer\_smoke(P).
     person(mary).
     person(albert).
     friend(albert, mary).
```

```
cancer(mary) = \bot
Pr(world) = (1 - 0.2) \times (1 - 0.3) \times (1 - 0.1) \times (1 - 0.3)
   0.2::stress(P):-person(P).
   0.3::influences(P_1, P_2):-friend(P_1, P_2).
   0.1::cancer_spont(P):-person(P).
   0.3::cancer_smoke(P):-person(P).
        smokes(X):-stress(X).
        smokes(X):-smokes(Y), influences(Y, X).
        cancer(P):-cancer_spont(P).
        cancer(P):=smokes(P), cancer\_smoke(P).
        person(mary).
        person(albert).
        friend(albert, mary).
```

000000

Inference Algorithms and Knowledge Compilation Maps

NNF negation normal form

BDD binary decision diagrams

SDD sentential decision diagrams

k-Best only use the k most probable proofs

```
NNF negation normal form
```

Probabilistic Logic Programming

000000

BDD binary decision diagrams

SDD sentential decision diagrams

k-Best only use the k most probable proofs

- for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
- for every pair $\alpha \wedge \beta$, no atoms are shared between α and β

```
NNF negation normal form
```

Probabilistic Logic Programming

000000

BDD binary decision diagrams

SDD sentential decision diagrams

k-Best only use the k most probable proofs

- for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
- for every pair $\alpha \wedge \beta$, no atoms are shared between α and β
- examples:

$$XX (A \lor C) \land (A \lor \neg B)$$

```
NNF negation normal form
```

Probabilistic Logic Programming

000000

BDD binary decision diagrams

SDD sentential decision diagrams

k-Best only use the k most probable proofs

- for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
- for every pair $\alpha \wedge \beta$, no atoms are shared between α and β
- examples:

$$(A \lor C) \land (A \lor \neg B)$$
 $(A \lor A) \land (A \lor \neg B)$

```
NNF negation normal form
```

Probabilistic Logic Programming

000000

- BDD binary decision diagrams
- SDD sentential decision diagrams
- k-Best only use the k most probable proofs

- for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
- for every pair $\alpha \wedge \beta$, no atoms are shared between α and β
- examples:

$$(A \lor C) \land (A \lor \neg B)$$
 $(A \lor C) \land (A \lor \neg B)$

$$\checkmark X B \land C \land [(B \land A) \lor \neg B]$$

```
NNF negation normal form
```

000000

BDD binary decision diagrams

SDD sentential decision diagrams

k-Best only use the k most probable proofs

- for every pair $\alpha \vee \beta$, we have $\alpha \wedge \beta = \bot$
- for every pair $\alpha \wedge \beta$, no atoms are shared between α and β
- examples:

$$(A \lor C) \land (A \lor \neg B)$$
 $(A \lor C) \land (A \lor \neg B)$
 $(A \lor A) \lor \neg B$

Example Diagrams for $C \wedge (A \vee \neg B)$

Figure: BDD

Figure: d-DNNF

Figure: vtree

```
0.2::stress(P):-person(P).
0.3: influences(P_1, P_2): friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
    smokes(X) : - stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
    cancer(P):-cancer_spont(P).
    cancer(P) : -smokes(P), cancer_smoke(P).
    person(mary).
    person(albert).
    friend(albert, mary).
```

```
0.2:stress(P):-person(P).
0.3: :influences(P_1, P_2): -friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer\_smoke(P):-person(P).
    smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
    cancer(P):-cancer_spont(P).
    cancer(P): - smokes(P), cancer\_smoke(P).
    person(mary).
    person(albert).
    friend(albert, mary).
```

predicates, arities

```
0.2::stress(P):-person(P).
0.3: influences(P_1, P_2): -friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer\_smoke(P):-person(P).
    smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P): - smokes(P), cancer\_smoke(P).
    person(mary).
    person(albert).
    friend(albert, mary).
```

- predicates, arities
- variables

```
0.2::stress(P):-person(P).
0.3: influences(P_1, P_2): -friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer\_smoke(P):-person(P).
    smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
    cancer(P):-cancer_spont(P).
    cancer(P): - smokes(P), cancer\_smoke(P).
    person(mary).
    person(albert).
    friend(albert, mary).
```

- predicates, arities
- variables
- constants

```
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
    smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
    cancer(P): - cancer\_spont(P).
    cancer(P): - smokes(P), cancer\_smoke(P).
    person(mary).
    person(albert).
    friend(albert, mary).
```

- predicates, arities
- variables
- constants
- probabilities

```
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
     smokes(X):-stress(X).
     smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P): - smokes(P), cancer\_smoke(P).
    person(mary).
    person(albert).
     friend(albert, mary).
```

- predicates, arities
- variables
- constants
- probabilities
- length

```
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
     smokes(X):-stress(X).
     smokes(X):-smokes(Y), influences(Y, X).
     cancer(P): - cancer\_spont(P).
     cancer(P) := smokes(P), cancer_smoke(P).
    person(mary).
    person(albert).
     friend(albert, mary).
```

- predicates, arities
- variables
- constants
- probabilities
- length
- complexity

Formulas As Trees

$$\neg p(X) \lor (q(X) \land r(X))$$

$$\neg p(X) \lor (q(X) \land r(X))$$

$$\neg p(X) \lor (q(X) \land r(X))$$

S: ۷: 0 0 0 6 q(X)r(X) \land

$$\neg p(X) \lor (q(X) \land r(X))$$

• s is a forest with T=2 trees

$$\neg p(X) \lor (q(X) \land r(X))$$

• s is a forest with T=2 trees

$$\neg p(X) \lor (q(X) \land r(X))$$

• s is a forest with T = 2 trees

- s is sorted
- $s_i \neq i \implies v_i \neq \top$

$$\neg p(X) \lor (q(X) \land r(X))$$

- s is a forest with T=2 trees
- length L = 7
- number of nodes N := L T + 1 = 6
- for i = 1, ..., L 1,
 - if i < N, then $s_i < i$
 - else $s_i = i$ and $v_i = T$

- s is sorted
- $s_i \neq i \implies v_i \neq \top$

$$\neg p(X) \lor (q(X) \land r(X))$$

- s is a forest with T=2 trees
- length L=7
- number of nodes N := L T + 1 = 6
- for i = 1, ..., L 1,
 - if i < N, then $s_i < i$
 - else $s_i = i$ and $v_i = \top$
- $c_i = 0 \iff v_i = \top$ or an atom
- $c_i = 1 \iff v_i = \neg$
- $c_i > 1 \iff v_i \in \{\land, \lor\}$

- s is sorted
- $s_i \neq i \implies v_i \neq \top$

```
Let \{W, X, Y\} be the set of variables. Then smokes(X) :- smokes(Y), influences(Y, X) is equivalent to smokes(Y) :- smokes(X), influences(X, Y) and to smokes(W) :- smokes(X), influences(X, W)
```


Occurrences (channeling)

 $\begin{array}{c} \mathsf{W} \mapsto \emptyset \\ \mathsf{X} \mapsto \{0,3\} \end{array}$

 $Y \mapsto \{1,2\}$

Introductions

 $1 + \min occurrences(v) \text{ or } 0$

 $W \mapsto 0$

 $X \mapsto 1$

 $Y \mapsto 2$

sorted!

Occurrences (channeling)

 $W \mapsto \emptyset$ $X \mapsto \{1, 2\}$ $Y \mapsto \{0, 3\}$

Introductions $1 + \min \operatorname{occurrences}(v)$ or 0

 $W \mapsto 0$ $X \mapsto 2$

 $Y \mapsto 1$

not sorted!

Occurrences (channeling)

 $W \mapsto \{0,3\}$ $X \mapsto \{1,2\}$ $Y \mapsto \emptyset$

Introductions

 $1 + \min occurrences(v) \text{ or } 0$

 $W \mapsto 1$

 $\mathsf{X}\mapsto 2$

 $Y \mapsto 0$

not sorted!

Predicate Dependency Graph

Stratification and Negative Cycles

0.1::friend(X, Y):-\+smokes(Y).

Stratification and Negative Cycles

0.1::friend(X, Y):-\+smokes(Y).

Stratification and Negative Cycles

Predicate Independence: friend ⊥ stress

Predicate Independence: friend ⊥ stress

Predicate Independence: friend ⊥ stress

One-Liners

Setup

- predicate p/1
- variable X
- no constants
- 1 clause
- 4 nodes
- no negative cycles

(All) Programs

0000

- p(X).
- 0.7::p(X):-p(X).
- 0.8::p(X):-p(X);p(X).
- 0.7::p(X):-p(X),p(X).
- 0.1::p(X):-p(X);p(X);p(X).
- 0.8::p(X):-p(X),p(X),p(X).

Symmetry Breaking in Action

Setup

- predicate p/3
- variables: X, Y, Z
- no constants
- 1 clause
- 1 node
- no cycles at all

(All) Programs

• 0.8::p(Z, Z, Z).

Example Programs 0000

- p(Y, Y, Z).
- p(Y, Z, Y).
- p(Y, Z, Z).
- 0.1::p(X,Y,Z).

A Larger Example

Setup

- predicates: p/1, q/2, r/3
- variables: X, Y, Z
- constants: a, b, c
- 5 clauses
- 5 nodes
- no negative cycles

A Random Program

r(Y, b, Z).

Example Programs 0000

$$p(b): - \setminus +(q(a, b), q(X, Y), q(Z, X)).$$
 $0.4::q(X, X): - \setminus + r(Y, Z, a).$
 $q(X, a): - r(Y, Y, Z).$
 $q(X, a): - r(Y, b, Z).$

Examples of Predicate Independence

Setup

- predicates: p/1, q/1, r/1
- no variables
- constant a
- 3 clauses
- 3 nodes
- no negative cycles
- p ⊥ q

A Few Random Programs

- 0.5::p(a):-p(a);p(a). 0.2::q(a):-q(a),q(a).
 - 0.4::r(a):-\+q(a).
- p(a):-p(a). 0.5::q(a):-r(a):q(a).
 - r(a) : -r(a); r(a).
- p(a) : -p(a); p(a).
 - 0.6::q(a):-q(a).
 - 0.7: :r(a): + q(a).

Scalability

Variable

- The number of predicates
- Maximum arity
- The number of variables
- The number of constants
- The number of additional clauses
- The maximum number of nodes

What Programs Should We Generate?

- each program is divided into:
 - rules
 - e.g., 0.2::stress(P):-person(P).
 - facts
 - e.g., friend(albert, mary).
- predicates, variables, nodes: 2, 4, 8
- maximum arity: 1, 2, 3
- all possible numbers of pairs of independent predicates
- 10 programs per configuration
 - fully restarting the constraint solver
- probabilities sampled from $\{0.1, 0.2, \dots, 0.9\}$
- query: random unlisted fact

Rules

```
0.2::stress(P):-person(P).
```

- no constants, no empty bodies
- one rule per predicate
- all rules are probabilistic

Facts

friend(albert, mary).

- proportion probabilistic: 25%, 50%, 75%
- constants: 100, 200, 400
- number of facts: 10³, 10⁴, 10⁵
 - but only up to 75% of all possible facts

Properties of Programs vs. Inference Algorithms

Properties of Programs vs. Inference Algorithms

How Encodings Compare Across Instances

The Ratio of Listed Facts to Possible Facts

Summary

- The model can generate (approximately) realistic instances of reasonable size
- The main performance bottleneck can be addressed by generating programs with a simpler structure
- Open questions and future work
 - Can we ensure uniform sampling?
 - Why do all of the algorithms behave so similarly?
 - Why does independence have no effect on inference time?