$\mathcal{A}\Rightarrow\mathcal{B}$ " \mathcal{A} hinreichend"

 $\mathcal{B} \Rightarrow \mathcal{A}$ " \mathcal{A} notwendig"

Äquivale	Bezeichnung		
$A \wedge B$	$A \wedge B$ $B \wedge A$		
$A \vee B$	$B \lor A$	Kommutativ	
$A \wedge (B \wedge C)$	$(A \wedge B) \wedge C$	Assoziativ	
$A \vee (B \vee C)$	$(A \lor B) \lor C$	ASSOZIALIV	
$A \wedge (B \vee C)$	$(A \wedge B) \vee (A \wedge C)$	Distributiv	
$A \vee (B \wedge C)$	$(A \lor B) \land (A \lor C)$	Distributiv	
$A \wedge A$	A	Idempotenz	
$A \vee A$	A	idempotenz	
$\neg \neg A$	A	Involution	
$\neg(A \land B)$	$\neg A \lor \neg B$	DE-MORGAN	
$\neg(A \lor B)$	$\neg A \land \neg B$	DE-MORGAN	
$A \wedge (A \vee B)$	A	Absorption	
$A \vee (A \wedge B)$	A	Absorption	
$A \Rightarrow B$	$\neg A \lor B$		
$\neg(A \Rightarrow B)$	$A \land \neg B$	Elimination	
$A \Leftrightarrow B$	$(A \Rightarrow B) \land (B \Rightarrow A)$		

 $\mathcal{A} \Rightarrow \mathcal{B}$ " \mathcal{A} hinreichend"

 $\mathcal{B} \Rightarrow \mathcal{A}$ " \mathcal{A} notwendig"

Äquivale	Bezeichnung	
$A \wedge B$	$B \wedge A$	Kommutativ
$A \vee B$	$B \lor A$	Kommutativ
$A \wedge (B \wedge C)$	$(A \wedge B) \wedge C$	Assoziativ
$A \vee (B \vee C)$	$(A \lor B) \lor C$	ASSOZIALIV
$A \wedge (B \vee C)$	$(A \land B) \lor (A \land C)$	Distributiv
$A \vee (B \wedge C)$	$(A \lor B) \land (A \lor C)$	Distributiv
$A \wedge A$	A	Idempotenz
$A \lor A$	A	idempotenz
$\neg \neg A$	A	Involution
$\neg (A \land B)$	$\neg A \lor \neg B$	DE-MORGAN
$\neg(A \lor B)$	$\neg A \land \neg B$	DE-MORGAN
$A \wedge (A \vee B)$	A	Absorption
$A \vee (A \wedge B)$	A	Absorption
$A \Rightarrow B$	$\neg A \lor B$	
$\neg(A \Rightarrow B)$	$A \land \neg B$	Elimination
$A \Leftrightarrow B$	$(A \Rightarrow B) \land (B \Rightarrow A)$	

 $\mathcal{A} \Rightarrow \mathcal{B}$ " \mathcal{A} hinreichend"

 $\mathcal{B} \Rightarrow \mathcal{A}$ " \mathcal{A} notwendig"

Äquivale	Äquivalente Formeln ⇔			
$A \wedge B$	$B \wedge A$	Kommutativ		
$A \vee B$	$B \lor A$	Kommutativ		
$A \wedge (B \wedge C)$	$(A \wedge B) \wedge C$	Assoziativ		
$A \lor (B \lor C)$	$(A \lor B) \lor C$	ASSOZIALIV		
$A \wedge (B \vee C)$	$(A \wedge B) \vee (A \wedge C)$	Distributiv		
$A \vee (B \wedge C)$	$(A \lor B) \land (A \lor C)$	Distributiv		
$A \wedge A$	A	Idempotenz		
$A \vee A$	A	idempotenz		
$\neg \neg A$	A	Involution		
$\neg(A \land B)$	$\neg A \lor \neg B$	DE-MORGAN		
$\neg(A \lor B)$	$\neg A \land \neg B$	DE-MORGAN		
$A \wedge (A \vee B)$	A	Absorption		
$A \vee (A \wedge B)$	A	Absol ption		
$A \Rightarrow B$	$\neg \mathbf{A} \lor B$			
$\neg(A \Rightarrow B)$	$A \wedge \neg B$	Elimination		
$A \Leftrightarrow B$	$(A\Rightarrow B)\wedge (B\Rightarrow A)$			

Groß-O-Notation Kosten $C_f(n)$ mit $g: \mathbb{N} \to \mathbb{R} \exists c > 0 \exists n_0 > 0 \forall n \geq n_0$

Untere Schranke
$$\Omega(f)$$

 $C_f(n) \geq c * g(n)$

Obere Schranke
$$O(f)$$

 $C_f(n) \le c * g(n)$

Exakte Schranke $\Theta(f)$ $C_f(n) \in \Omega(f) \cap O(f)$ Polynom kten Grades $\in \Theta(n^k)$

(Beweis: g und c finden)

Elementare Operationen, Kontrollstr. $\in \mathbf{O}(1)$

Schleifen $\in i$ Wiederholungen * O(f)teuerste Operation

Abfolge O(g)nach O(f) $O(\max(f;q))$

Rekursion $\in k$ Aufrufe * O(f) teuerste Operation

Mastertheorem $a \ge 1, b > 1, \Theta \ge 0$

$$T(n) = a * T(\frac{n}{b}) + \Theta(n^k)$$

$$\Rightarrow \begin{cases} \Theta(n^k) & a < b^k \\ \Theta(n^k \log n) & a = b^k \\ \Theta(n^{\log_b a}) & a > b^k \end{cases}$$

Skip

- ullet Zeiger auf Ebene i zeigt zu nächstem 2^i Element
- Suchen $\in O(\log n)$

(Perfekt) Einfügen, Löschen $\in O(n)$ (Vollst. Reorga.)

Randomisiert Höhe zufällig (keine vollst. Reorga.) $P(h) = \frac{1}{2h+1}$: Einfügen, Löschen $\in \mathbf{O}(\log \mathbf{n})$

Sortierproblem

Gegeben (endliche) Folge von Schlüsseln (von Daten) $(K_i)_{i \in I}$

Gesucht Bijektive Abbildung $\pi:I\to$ I (Permutation), sodass $K_{\pi(i)} \leq$ $K_{\pi(i+1)} \quad \forall i \in I$

Ordnung Allgemein vs. speziell: Ordnung wird nur über Schlüsselvergleiche hergestellt

Relation Stabil vs. instabil: Vorherig relative Reihenfolge bleibt erhalten

Speicher In situ vs. ex situ: Zusätzlicher Speicher notwendig

Lokal Intern vs. extern: Alles im RAM oder Mischung vorsortierter externer Teilfolgen

Anzahl der Inversionen Anzahl kleinerer Nachfolger für iedes Element:

$$\begin{split} &\operatorname{inv}(L) := |\{(i,j) \mid \\ &0 \leq i < j \leq n-1, \\ &L[i] \geq L[j]\}| \end{split}$$

Anzahl der Runs Ein Run ist eine sortierte Teilliste, die nicht nach links oder rechts verlängert werden kann. Die Anzahl der Runs ist:

$$\begin{aligned} & \mathsf{runs}(L) := |\{i \mid \\ & 0 \leq i < n-1, \\ & L[i+1] < L[i]\}|{+}1 \end{aligned}$$

Längster Run Anzahl der Elemente der **Abfolge** O(g)längsten sortierten Teilliste:

> $las(L) := max\{r.len \mid$ r ist Run in L} rem(L) := L.len - las(L)

Jedes allgemeine Sortierverfahren benötigt im Worst- und Average-case Schlüsselvergleiche von mindestens:

$$\Omega(n \log n)$$

Lexikographische Ordnung Sei $A = \{a_1, \ldots, a_n\}$ ein Alphabet, Skip dass sich mit gegebener Ordnung $a_1 < \cdots < a_n$ wie folgt auf dem Lexikon $A* = \bigcup_{n \in \mathbb{N}_0} A^n$ fortsetzt:

$$v = (v_1, \dots, v_p) \le w = (w_1, \dots, w_q)$$

$$\Leftrightarrow \forall 1 \le i \le p : v_i = w_i \quad p \le q$$

$$\forall \forall 1 \le j \le i : v_j = w_j \quad v_i < w_i$$

Fachverteilen Sortieren von n k-Tupeln in k Schritten: Sortieren nach letztem Element, vorletzem usw.

Algo.	Stabil	Mem.	Schlüsselvergleiche		Satzbewegungen				
			Ca	C_A	Cw	Ma	M_A	Mw	
Selection	×	1	$\frac{n(n-1)}{2}$	n(n-1)	n(n-1)	3(n - 1)	3(n-1)	3(n - 1)	_
Insertion	/	1	n-1	$\stackrel{n\to\infty}{\approx} \frac{n(n-1)}{4} + n - \ln n$	$\frac{n(n-1)}{2}$	2(n - 1)	$\frac{n^2+2n-4}{4}+n-1$	$\frac{n^2+3n-4}{2}$	9(6.3)
Bubble	1	1	$\frac{n(n-1)}{2}$	$\frac{n(n-1)}{2}$	$\frac{n(n-1)}{2}$	0	$\frac{3m(m-1)}{4}$	$\frac{3n(n-1)}{2}$	-
				Best-case	Avera	erage-case Wor		-case	
Shell	×	1		-			-		
Quick	×	$\log n$		n log n	$n \log n$		n ²		8
Turnier	×	2n-1		nlogn	$n \log n$		$n \log n$		O(nlogn)
Heap	×	1		nlogn	$n \log n$		$n \log n$		õ
Merge	/	20		nlogn	nlogn		$n \log n$		
			Untere	Schranke $\Omega(n \log n)$ für al	lgemeine	Sortierverfa	hren		
Distribution	-/	- 12		n			n log n, n ²		O(n)

Groß-O-Notation Kosten $C_f(n)$ mit **Gegeben** (endliche) Folge von Schlüs $g: \mathbb{N} \to \mathbb{R} \exists c > 0 \exists n_0 > 0 \forall n \geq n_0$

Untere Schranke
$$\Omega(f)$$

 $C_f(n) \ge c * g(n)$

Obere Schranke
$$O(f)$$

 $C_f(n) \le c * g(n)$

(Beweis: q und c finden)

Elementare Operationen, Kontrollstr. $\in \mathbf{O}(1)$

Schleifen $\in i$ Wiederholungen * O(f)teuerste Operation

nach O(f) $O(\max(f;g))$

Rekursion $\in k$ Aufrufe *O(f) teuerste Operation

Mastertheorem $a > 1, b > 1, \Theta > 0$

$$T(n) = a * T(\frac{n}{b}) + \Theta(n^k)$$

$$\Rightarrow \begin{cases} \Theta(n^k) & a < b^k \\ \Theta(n^k \log n) & a = b^k \\ \Theta(n^{\log_b a}) & a > b^k \end{cases}$$

- Zeiger auf Ebene i zeigt zu nächstem 2ⁱ Element
- Suchen $\in O(\log n)$

(**Perfekt**) Einfügen, Löschen $\in O(n)$ (Vollst. Reorga.)

Randomisiert Höhe zufällig (keine vollst. Reorga.) $P(h) = \frac{1}{2^{h+1}}$: Einfügen, Löschen $\in \mathbf{O}(\log n)$

Sortierproblem

seln (von Daten) $(K_i)_{i \in I}$

Gesucht Bijektive Abbildung $\pi:I\to$ I (Permutation), sodass $K_{\pi(i)} \leq$ $K_{\pi(i+1)} \quad \forall i \in I$

Ordnung Allgemein vs. speziell: Ordnung wird nur über Schlüsselvergleiche hergestellt

Relation Stabil vs. instabil: Vorherig relative Reihenfolge bleibt erhalten

Speicher In situ vs. ex situ: Zusätzlicher Speicher notwendig

Lokal Intern vs. extern: Alles im RAM oder Mischung vorsortierter exter ner Teilfolgen

Anzahl der Inversionen Anzahl kleinerer Nachfolger für jedes Element:

$$\operatorname{inv}(L) := |\{(i, j) \mid 0 \le i < j \le n - 1, L[i] \ge L[j]\}|$$

Anzahl der Runs Ein Run ist eine sortierte Teilliste, die nicht nach links oder rechts verlängert werden kann. Die Anzahl der Runs ist:

$$\begin{aligned} & \mathsf{runs}(L) := |\{i \mid \\ & 0 \leq i < n-1, \\ & L[i+1] < L[i]\}| + 1 \end{aligned}$$

Längster Run Anzahl der Elemente der längsten sortierten Teilliste:

$$\begin{aligned} & \mathsf{las}(L) := \max\{r.\mathsf{len} \mid \\ & r \; \mathsf{ist} \; \mathsf{Run} \; \mathsf{in} \; L\} \\ & \mathsf{rem}(L) := L.\mathsf{len} - \mathsf{las}(L) \end{aligned}$$

Jedes allgemeine Sortierverfahren benötigt im Worst- und Average-case Schlüsselvergleiche von mindestens:

$$\Omega(n \log n)$$

 $\begin{array}{lll} \textbf{Lexikographische} & \textbf{Ordnung} & \leq & \text{Sei} \\ A & = & \{a_1, \dots, a_n\} & \text{ein} & \text{Alphabet,} \\ \text{dass sich mit gegebener} & \text{Ordnung} \\ a_1 & < \cdots & < a_n & \text{wie folgt auf dem} \\ \text{Lexikon} & A* = \bigcup_{n \in \mathbb{N}_0} A^n & \text{fortsetzt:} \end{array}$

$$v = (v_1, \dots, v_p) \le w = (w_1, \dots, w_q)$$

$$\Leftrightarrow \forall 1 \le i \le p : v_i = w_i \quad p \le q$$

$$\forall 1 \le j \le i : v_j = w_j \quad v_i < w_i$$

Algo.	Stabil	Mem.	Schlüsselvergleiche						
			C_B	C_A	C_W	M_B	M_A	M_W	
Selection	х	1	n(n-1)	n(n-1) 2	n(n-1)	3(n - 1)	3(n-1)	3(n - 1)	
Insertion	/	1	n-1	$\stackrel{n\to\infty}{\approx} \frac{n(n-1)}{4} + n - \ln n$	$\frac{n(n-1)}{2}$	2(n-1)	$\frac{n^2+3n-4}{4} + n - 1$	$\frac{n^2+3n-4}{2}$	(%)
Bubble	1	1	n(n-1)	n(n-1)	$\frac{n(n-1)}{2}$	0	3n(n-1)	$\frac{3n(n-1)}{2}$	_
			Best-case Avera		ge-case	Worst-case			
Shell	×	1				-			
Quick	×	$\log n$	n log n		n log n		n ²		200
Turnier	×	2n-1	n log n		n log n		n log n		O(u log n)
Heap	×	1	n log n		$n \log n$		$n \log n$		ŏ
Merge	/	n	$n \log n$		$n \log n$		$n \log n$		
Untere Schranke $\Omega(n \log n)$ für allgemeine Sortierverfahren									
Distribution	/	75		n		п	n log n, n	2	O(n)

$$(AB)_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$$

 $(Reihe \times Spalte)$