

第二届顺丰信息安全峰会分论坛

AI 安全与隐私保护(1)

AIoT生态安全的新仇与旧恨

聂科峰 百度AI安全技术总监

AI加速IoT发展, 进入全新的AIoT时代

AIoT将物联网设备带入以感知、理解和自学习为特征的智能设备时代

AIoT安全问题

- AIoT生态安全现状不容乐观
- AIoT生态碎片化且产业链复杂
- AIoT安全的新仇旧恨

AIoT生态安全现状不容乐观

智能摄像头破解软件和破解的IP地址在黑市上频繁交易

百度安全专家利用设备系统漏洞,在无需物理接触、无需拆削 门锁的情况下秒破某品牌互联网智能锁,获得开锁密码

2017年智能设备安全典型案例					
时间	物联智能设备	安全问题和漏洞	类型		
4月22日	网络摄像头	360安全研究院披露http81IoT僵尸网络	DDoS攻击		
5月9日	数十种物联网设备	女十种物联网设备			
6月21日	DVR、路由器、摄像头等	Mirai利用类似蠕虫的方式感染	僵尸网络DDoS攻击		
8月17日	iOS终端	iOS Secure Enclave(TEE系统)固件密钥被公布	漏洞入侵		

AIoT生态安全现状不容乐观

泰尔终端实验室联合百度安全等机构厂商对12个知名品牌的智能电视进行安全评测,发现无一幸免存在安全问题。

模块	检测项	检测指标	存在风险的电视 占比例
硬 件	固件安全	是否存在固件更新风险;能否直接读取固件内容,还是仅能通过系统预 留的更新接口来读写;固件符号调试信息是否去除	25.00%
	系统安全配置	系统是否进行了安全配置,如开启SElinux	91.67%
	调试安全	调试接口(adb)是否可远程非授权开启	75.00%
	安全启动	系统是否有安全启动校验机制,逐层验证系统的完整性,保证系统不被 篡改	25.00%
操 作	系统更新	是否有更新功能,更新过程是否有数据加密和身份验证,是否有完整性 交验,是否有签名。	33.33%
系统	系统回滚	系统是否存在回滚风险,即是否不允许系统进行版本降级更新	41.67%
	安全漏洞检测	操作系统是否存在未修复已知高危或严重漏洞	100.00%
	端口安全	是否不存在开放端口,可供下载安装任意软件、远程静默安装、远程打 开应用	75.00%
	第三方应用	是否关闭未知来源安装,不能允许随意安装第三方应用	66.67%
系统组件	控制权限管理	是否进行权限的校验;是否禁用工程模式	100.00%
	组件更新安全	关键组件更新是否采用签名校验	16.67%
	通信传输安全	系统通信是否采用安全传输信道,如SSL传输等	50.00%

模块	检测项	检测指标	存在风险的 电视比例
系统	安全漏洞检测	系统组件是否存在已知漏洞	91.67%
	用户信息保护	是否存在未告知联网行为情况下传输用户数据	16.67%
组件	蓝牙协议	是否存在重放攻击等	33.33%
	内置应用组件	系统内置应用组件是否存在安全性风险,例如提权,信息泄露 等问题	41.67%
	安全加固	是否经过加固保护	100.00%
控制	进程注入	是否有防注入防护功能	91.67%
A P	逆向分析	dex文件、SO文件能否被反编译进行逆向分析	100.00%
P	二次打包	APK是否能够重打包	100.00%
	用户数据传输	数据传输是否存在未加密的用户关键数据	91.67%
	安全漏洞检测	预置第三方应用是否存在中、高危安全漏洞	50.00%
预置 第三 方应 用	恶意行为检测	是否存在用户信息窃取、恶意吸费等恶意行为	33.33%
AI电 视业 务	语音模块	是否存在安全缺陷,如可窃取用户语音数据等	33.33%
	摄像头	是否存在被越权调用远程非授权开启	0.00%

AIoT生态碎片化严重

从PC到移动到AIoT,生态愈发碎片化,安全防护将面临更大挑战

产品形态种类 操作系统种类 芯片种类 终端厂商数量...

AIoT生态产业链复杂

代码来源于产业链中的各个环节

Linux内核

各嵌入式 Linux发行版

Google Android

其他OS

芯片厂商

解决方案商

终端设备厂商

第三方应用厂商

终端设备厂商云服务

第三方厂商云服务

云端基础组件

终端成本低,设备软件系统版本普遍较旧, 重要安全机制(SELinux、TEE等)缺失

—— AIoT将面临系统性安全挑战

AIoT安全的新仇旧恨

生物识别的马奇诺防线——破解人脸识别

自动驾驶汽车将STOP"误读成"限速 45英里/小时

AI的核心安全挑战:不确定性

AI的不确定性

- 导致非预期/错误的输出
- 导致攻击者想要的预设输出

认知不确定性

- Model
- Parameter

随机不确定性

• Data

- 数据污染
- 数据流攻击
- 机器学习对抗性攻击

机器学习对抗性攻击

针对语音识别的机器学习对抗性攻击

隐匿语音命令攻击

攻击语音识别模型,使得人类难以识别的噪声,语音识别模型 却可以识别为指定的命令,比如控制家居、播放音乐、购物以 及转账等

可实现<mark>物理世界攻击</mark>,攻击过程只依赖空气传播,普通播音设备即可完成

攻击唤醒音

通过"隐匿语音命令攻击"唤醒智能音箱

智能音箱在唤醒状态时,会实时上传周围的语音到云端 一旦唤醒音被攻破,这些设备就可能被攻击者利用成一个用 户身边的监听器

AIoT安全问题解决思路

安全评估:建立标准防范于未然

安全保障:云管端整体防护系统

安全响应:问题修复能力是生命线

系统性解决AIoT的安全问题

安全评估 安全响 应

智能设备架构图

安全评估:尽早发现安全隐患

对象	主要安全威胁	脆弱点
硬件	1. 非授权的访问; 2. 功能失效、设备不可用; 3. 假冒设备; 4. 重放攻击、侧信道攻击;	1. 信号注入 2. 传输未加密 3. 访问控制缺失
固件	1. 非授权的访问; 2. 审计数据丢失; 3. 恶意代码攻击; 4. DDoS攻击、溢出攻击、口令猜测、密码分析	 缺乏身份认证机制 访问控制缺失 调试接口暴露 审计漏洞
应用软件	1. 非授权访问; 2. 软件漏洞; 3. 恶意代码攻击;	1. 弱口令 2. 缺少身份认证机制 3. 调试接口暴露
外围接口	1. 非授权访问; 2. 审计失效;	1. 缺少访问控制机制 2. 调试接口暴露 3. 审计漏洞
通信	1. 通信数据泄露、篡改、丢失; 2. 传输中断、拦截、篡改、伪造; 3. 拒绝服务攻击,重放攻击,中间人攻击; 4. 虚假路由; 5. 通信协议漏洞	1. 采用明文传输 2. 通信协议存在漏洞 3. 安全协议存在漏洞
用户数据	1. 用户数据泄露	1. 终端过度手机 2. 传输、存储安全漏洞

安全评估:利用检测工具自检自查

Advbox

对抗样本工具包

实现多种生成对抗样本的攻击方法,包括 FGSM、BIM、DeepFool、JSMA

百度锐眼

IoT安全检测工具

● 专门为智能设备打造的安全检测工具,可检测系统漏洞、恶意程序及病毒、SELinux配置

锐眼官网:ruiyan.baidu.com

安全保障:云端防护思路

Wi-Fi安全/DNS安全/通信安全3层防护,全面保障设备网络安全

安全保障:设备终端防护思路

状态监测/应用检测/漏洞排查/数据安全4层防护,全面保障设备终端安全

安全响应:建立升级及修复通道

- ✓ 漏洞补丁
- ✓ 修复bug

Android系统版本越高,安全手段与 漏洞缓解措施越强

安全响应:关注升级通道本身的安全性

百度安全 OTA

IoT固件升级服务

- 兼容Android、Linux及嵌入式系统
- 通过集成多种安全能力保障升级过程无虞

百度安全OTA官网: ota.baidu.com

OASES KARMA

Android系统自适应 热修复漏洞能力

- 漏洞补丁自适应不同系统,免去针对不同系统打不同补丁的麻烦
- 漏洞热修复,无需重启机器,修复漏洞过程不影响设备使用

百度安全AIoT安全解决方案

THANK YOU

合作联系:aiotsec@baidu.com