## **AIPMT - 2006**

- In producing chlorine through electrolysis 100 **Q.1** watt power at 125V is being consumed. How much chlorine per minute is liberated? E.C.E. of chlorine is  $0.367 \times 10^{-6}$  kg/coulomb:-
  - (1) 17.6 mg
- (2) 21.3 mg
- (3) 24.3 mg
- (4) 13.6 mg
- 0.2 In the circuit shown, if a conducting wire is connected between points A and B, the current in this wire will-



- (1) Flow from A to B
- (2) Flow in the direction which will be decided by the value of V
- (3) Be zero
- (4) Flow from B to A
- Q.3 A rectangular block of mass m and area of crosssection A floats in a liquid of density p. If it is given a small vertical displacement from equilibrium it undergoes oscillation with a time period T. Then:-

  - (1)  $T \propto \sqrt{\rho}$  (2)  $T \propto \frac{1}{\sqrt{\Delta}}$

  - (3)  $T \propto \frac{1}{\rho}$  (4)  $T \propto \frac{1}{\sqrt{m}}$
- **Q.4** A Carnot engine whose sink is at 300 K has an efficiency of 40%. By how much should the temperature of source be increased so as to increase its efficiency by 50% of original efficiency:-
  - (1) 275 K
- (2) 325 K
- (3) 250 K
- (4) 380 K

- When a charged particle moving with velocity Q.5  $\vec{V}$  is subjected to a magnetic field of induction  $\vec{B}$ , the force on it is non-zero. This implies the:-
  - (1) Angle between  $\vec{V}$  and  $\vec{B}$  is necessary 90°
  - (2) Angle between  $\vec{V}$  and  $\vec{B}$  can have at value other than 90°
  - (3) Angle between  $\vec{V}$  and  $\vec{B}$  can have at value other than zero and 180°
  - (4) Angle between  $\vec{V}$  and  $\vec{B}$  is either zero or 180°
- 0.6 Two cells, having the same e.m.f., are connected in series through an external resistance R. Cell have internal resistances  $r_1$  and  $r_2$  ( $r_1 > r_2$ ) respectively. When the circuit is closed, the potential difference across the first cell is zero. The value of R is:-

  - (1)  $r_1 r_2$  (2)  $\frac{r_1 + r_2}{2}$
  - (3)  $\frac{\mathbf{r}_1 \mathbf{r}_2}{2}$  (4)  $\mathbf{r}_1 + \mathbf{r}_2$
- **Q.7** A black body at 1227°C emits radiations with maximum intensity at a wavelength of 5000Å. The temperature of the body is increased by 1000°C, the maximum intensity will be observe at:-
  - (1) 4000Å
- (2) 5000Å
- (3) 6000Å
- (4) 3000Å
- 0.8 Two circular coil 1 and 2 are made from the same wire but the radius of the 1st coil is twice that of the 2<sup>nd</sup> coil. What potential difference in volts should be applied across them so that the magnetic field at their centres is the same-
  - (1) 3
- (2)4
- (3) 6
- (4) 2
- **Q.9** A transistor-oscillator using a resonant circuit with an inductor L (of negligible resistance) and a capacitor C in series produce oscillations of frequency f. If L is doubled and C is changed to 4C, the frequency will be:-
  - (1)  $\frac{f}{4}$  (2) 8f (3)  $\frac{f}{2\sqrt{2}}$  (4)  $\frac{f}{2}$

| Q.10 | The binding energy of deuteron is 2.2 MeV and                           |  |  |  |
|------|-------------------------------------------------------------------------|--|--|--|
|      | that of <sup>4</sup> <sub>2</sub> He is 28MeV. If two deuterons are     |  |  |  |
|      | fused to form one <sup>4</sup> <sub>2</sub> He then the energy released |  |  |  |
|      | is:-                                                                    |  |  |  |

- (1) 25.8 MeV
- (2) 23.6 MeV
- (3) 19.2 MeV
- (4) 30.2 MeV

## Q.11 In a radioactive material the activity at time $t_1$ is $R_1$ and at a later time $t_2$ , it is $R_2$ . If the decay constant of the material is $\lambda$ , then

- (1)  $R_1 = R_2 e^{-\lambda(t_1 t_2)}$  (2)  $R_1 = R_2 e^{\lambda(t_1 t_2)}$
- (3)  $R_1 = R_2 (t_2/t_1)$  (4)  $R_1 = R_2$

## Q.12 Ionization potential of hydrogen atom is 13.6eV. Hydrogen atoms in the ground state are excited by monochromatic radiation of photon energy 12.1 eV. According to Bohr's theory, the spectral lines emitted by hydrogen will be:-

- (1) Two
- (2) Three
- (3) Four
- (4) One
- Q.13 The potential energy of a long spring when stretched by 2 cm is U. If the spring is stretched by 8 cm the potential energy stored in it is:-
  - (1)4U
- (2) 8U
- (3) 16U
- (4)  $\frac{U}{4}$
- Q.14 For angles of projection of a projectile at angles  $(45^{\circ} - \theta)$  and  $(45^{\circ} + \theta)$ , the horizontal ranges described by the projectile are in the ratio of:
  - (1) 1 : 1
- (2) 2 : 3
- (3)1:2
- (4) 2:1
- Q.15 A body of mass 3 kg is under a constant force which causes a displacement s in metres in it, given by the relation  $s = \frac{1}{3}t^2$ , where t is in seconds. Work done by the force in 2 seconds is:-
  - $(1) \frac{5}{19} J$   $(2) \frac{3}{8} J$   $(3) \frac{8}{3} J$   $(4) \frac{19}{5} J$

- Q.16 A particle moves along a straight line OX. At a time t (in seconds) the distance x (in metres) of the particle from O is given by  $x = 40 + 12t - t^3$ . How long would the particle travel before coming to rest: -
  - (1) 24 m (2) 40 m (3) 56 m
- (4) 16 m

The velocity v of a particle at time t is given by  $v = at + \frac{b}{t + c}$ , where a, b and c are constants.

The dimensions of a, b and c are respectively:-

- (1)  $LT^{-2}$ , L and T (2)  $L^{2}$ , T and  $LT^{2}$
- (3)  $LT^2$ , LT and L (4) L, LT and  $T^2$

Q.17

- Q.18 A microscope is focused on a mark on a piece of paper and then a slab of glass of thickness 3 cm and refractive index 1.5 is placed over the mark. How should the microscope be moved to get the mark in focus again:-
  - (1) 1 cm upward
- (2) 4.5 cm downward
- (3) 1 cm downward (4) 2 cm upward
- Q.19 300 J of work is done in sliding a 2 kg block up an inclined plane of height 10m. Taking  $g = 10 \text{ m/s}^2$ , work done against friction is
  - (1) 200 J
- (2) 100 J
- (3) Zero
- (4) 1000 J
- Q.20 A transistor is operated in common emitter configuration at constant collector voltage  $V_c = 1.5 \text{ V}$  such that a change in the base current from 100 µA to 150 µA produces a change in the collector current from 5 mA to 10 mA. The current gain (β) is:-
  - (1)67
- (2)75
- (3) 100
- (4)50
- Q.21 A forward biased diode is:-



(3) 
$$\frac{-2V}{}$$
 **W**  $\frac{+2V}{}$ 

$$(4) \xrightarrow{\text{0V}} \text{ww} -2\text{V}$$

- Q.22 A photo-cell employs photoelectric effect to convert:-
  - (1) Change in the frequency of light into a change in electric voltage
  - (2) Change in the intensity of illumination into a change in photoelectric current
  - (3) Change in the intensity of illumination into a change in the work function of the photocathode
  - (4) Change in the frequency of light into a change in the electric current

- Q.23 The core of a transformer is laminated because:-
  - (1) Energy losses due to eddy currents may be minimised
  - (2) The weight of the transformer may be reduced
  - (3) Rusting of the core may be prevented
  - (4) Ratio of voltage in primary and secondary may be increased
- Q.24 Two coils of self inductances 2 mH and 8 mH are placed so close together that the effective flux in one coil is completely linked with the other. The mutual inductance between these coils is:
  - (1) 10 mH
- (2) 6mH
- (3) 4 mH
- (4) 16 mH
- Q.25 In a discharge tube ionization of enclosed gas produced due to collisions between:
  - (1) Positive ions and neutral atoms/molecules
  - (2) Negative electrons and netural atoms/molecules
  - (3) Photons and neutral atoms/molecules
  - (4) Neutral gas atoms/molecules
- Q.26 When photons of energy hy fall on an aluminium plate (of work function E<sub>0</sub>), photoelectrons of maximum kinetic energy K are ejected. If the frequency of the radiation is doubled, the maximum kinetic energy of the ejected photoelectrons will be
  - (1)  $K + E_0$
- (2) 2K
- (3) K
- (4) K + hv
- Q.27 The following figure shows a logic gate circuit with two inputs A and B and the output C. The voltage waveforms of A, B and C are as shown below-



The logic circuit gate is:

- (1) AND gate
- (2) NAND gate
- (3) NOR gate
- (4) OR gate

- Q.28 A coil of inductive reactance  $31\Omega$  has a resistance of  $8\Omega$ . It is placed in series with a condenser of capacity reactance  $25\Omega$ . The combination is connected to an a.c. source of 110 volt. The power factor of the circuit is:-
  - (1) 0.56
- (2) 0.64
- (3) 0.80
- (4) 0.33
- Q.29 A 0.5 kg ball moving with a speed of 12 m/s strikes a hard wall at an angle of 30° with the wall. It is reflected with the same speed and at the same angle. If the ball is in contact with the wall for 0.25 seconds, the average force acting on the wall is:-



- O.30 The moment of inertia of a uniform circular disc of radius 'R' and mass 'M' about an axis touching the disc at its diameter and normal to the disc is:-
  - (1) MR<sup>2</sup>
- (2)  $\frac{2}{5}$  MR<sup>2</sup>
- (3)  $\frac{3}{2}$  MR<sup>2</sup>
- (4)  $\frac{1}{2}$  MR<sup>2</sup>
- Q.31 The momentum of a photon of energy 1MeV in kg m/s, will be-
  - $(1) 0.33 \times 10^6$
- (2)  $7 \times 10^{-24}$
- $(3)\ 10^{-22}$
- $(4)\ 5\times 10^{-22}$
- Q.32 The radius of Germanium (Ge) nuclide is measured to be twice the radius of <sup>9</sup><sub>4</sub>Be. The number of nucleons in Ge are:-
  - (1)73
- (2)74
- (3)75
- (4)72
- Q.33 The molar specific heat at constant pressure of an ideal gas is  $\left(\frac{7}{2}\right)$ R. The ratio of specific heat at constant pressure to that at constant volume is:-
  - (1)  $\frac{7}{5}$  (2)  $\frac{8}{7}$  (3)  $\frac{5}{7}$  (4)  $\frac{9}{7}$



(1) 
$$\sqrt{2}$$
 (2)  $\frac{1}{\sqrt{2}}$  (3)  $\frac{1}{3}$  (4)  $\frac{1}{2}$ 

- Q.35 Two sound waves with wavelength 5.0 m and 5.5 m respectively, each propagate in a gas with velocity 330 m/s. We expect the following number of beats per second:-
  - (1) 12
- (2) 0
- (3) 1
- (4)6
- 0.36 Power dissipated across the  $8\Omega$  resistor in the circuit shown here is 2 watt. The power dissipated in watt units across the  $3\Omega$  resistor is:-



- Q.37 Kirchhoff's first and second laws for electrical circuits are consequences of:-
  - (1) Conservation of energy
  - (2) Conservation of electric charge and energy respectively
  - (3) Conservation of electric charge
  - (4) Conservation of energy and electric charge respectively
- Q.38 A transverse wave propagating along x-axis is represented by

$$y(x, t) = 8.0 \sin (0.5\pi x - 4\pi t - \frac{\pi}{4})$$

where x is in metres and t is in seconds. The speed of the wave is:-

- (1)  $4\pi$  m/s
- (2)  $0.5 \pi \text{ m/s}$
- (3)  $\frac{\pi}{4}$  m/s
- (4) 8 m/s
- Q.39 The time of reverberation of a room A is one second. What will be the time (in seconds) of reverberation of a room, having all the dimensions double of those of room A-
  - (1) 2
- $(3) \frac{1}{2}$ (4) 1

- Q.40 Which one of the following statements is true:
  - (1) Both light and sound waves in air are transverse
  - (2) The sound waves in air are longitudinal while the light waves are transverse
  - (3) Both light and sound waves in air are longitudinal
  - (4) Both light and sound waves can travel in vacuum
  - Q.41 Above Curie temperature:-
    - (1)A ferromagnetic substance becomes paramagnetic
    - (2) A paramagnetic substance becomes diamagnetic
    - (3) A diamagnetic substance becomes paramagnetic
    - (4) A paramagnetic substance becomes ferromagnetic
  - Q.42 A convex lens and a concave lens, each having same focal length of 25 cm, are put in contact to form a combination of lenses. The power in dipoters of the combination is:-
    - (1)25
- (2)50
- (3) Infinite
- (4) Zero
- 0.43 An electric dipole of moment  $\vec{p}$  is lying along a uniform electric field E. The work done in rotating the dipole by 90° is:-
  - (1)  $\sqrt{2} \text{ pE}$  (2)  $\frac{\text{pE}}{2}$
  - (3) 2pE
- (4) p E
- Q.44 A parallel plate air capacitor is charged to a potential difference of V volts. After disconnecting the charging battery the distance between the plates of the capacitor is increased using an insulating handle. As a result the potential difference between the plates:-
  - (1) Decreases
- (2) Does not change
- (3) Becomes zero
- (4) Increases
- A car runs at a constant speed on a circular track Q.45 of radius 100 m, taking 62.8 seconds for every circular lap. The average velocity and average speed for each circular lap respectively is:
  - (1) 0, 0
- (2) 0, 10 m/s
- (3) 10 m/s, 10 m/s
- (4) 10 m/s, 0





Q.47 A tube of length L is filled completely with an incompressible liquid of mass M and closed at both the ends. The tube is then rotated in a horizontal plane about one of its ends with a uniform angular velocity ω. The force exerted by the liquid at the other ends is:-

(1) 
$$\frac{\text{ML}\omega^2}{2}$$

$$(1) \frac{ML\omega^2}{2} \qquad (2) \frac{ML^2\omega}{2}$$

$$(3) M L\omega^2$$

$$(3) M L\omega^2 \qquad (4) \frac{ML^2\omega^2}{2}$$

Q.48 A uniform rod of length  $\ell$  and mass m is free to rotate in a vertical plane about A. The rod initially in horizontal position is released. The initial angular acceleration of the rod is (Moment

of inertia of rod about A is  $\frac{m\ell^2}{3}$ ):



The vectors  $\vec{A}$  and  $\vec{B}$  are such that Q.49  $|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$ . The angle between the two vectors is:-

- $(1) 90^{\circ}$
- $(2) 60^{\circ}$
- $(3) 75^{\circ}$
- $(4) 45^{\circ}$

Q.50 Two bodies, A(of mass 1kg) and B(of mass 3kg), are dropped from heights of 16 m and 25 m respectively. The ratio of the time taken by them to reach the ground is:-

- $(1) \frac{5}{4}$   $(2) \frac{12}{5}$   $(3) \frac{5}{12}$   $(4) \frac{4}{5}$

- Q.51 Identify the correct statement for change of Gibbs energy for a system ( $\Delta G_{\text{system}}$ ) at constant temperature and pressure:-
  - (1) If  $\Delta G_{\text{system}} > 0$ , the process is spontaneous
  - (2) If  $\Delta G_{\text{system}} = 0$ , the system has attained equilibrium
  - (3) If  $\Delta G_{\text{system}} = 0$ , the system is still moving in a particular direction
  - (4) If  $\Delta G_{system}$  < 0, the process is not spontaneous

A solution containing 10 g per dm<sup>3</sup> of urea Q.52 (molecular mass =  $60 \text{ g mol}^{-1}$ ) is isotonic with a 5% solution of a nonvolatile solute. The molecular mass of this nonvolatile solution is:

- (1)  $250 \text{ g mol}^{-1}$
- (2)  $300 \text{ g mol}^{-1}$
- (3)  $350 \text{ g mol}^{-1}$  (4)  $200 \text{ g mol}^{-1}$

A plot of log x/m versus log p for the adsorption Q.53 of a gas on a solid gives a straight line with slope equal to:

- $(1) \log K$
- (2) n
- $(3) \frac{1}{-}$
- (4) log K

Q.54 Assume each reaction is carried out in an open container. For which reaction will  $\Delta H = \Delta E$ ?

- $(1) H_2(g) + Br_2(g) \rightarrow 2HBr(g)$
- $(2) C(s) + 2H_2O(g) \rightarrow 2H_2(g) + CO_2(g)$
- (3)  $PCl_5(g) \rightarrow PCl_3(g) + Cl_2(g)$
- (4) 2CO(g) + O<sub>2</sub>(g)  $\rightarrow$  2CO<sub>2</sub>(g)

Q.55 In a set off reactions propionic acid yielded a compound D.

$$\begin{array}{c} CH_{3}CH_{2}COOH & \xrightarrow{SOCl_{2}} B \xrightarrow{NH_{3}} C \\ & \xrightarrow{KOH} D \end{array}$$

The structure of D would be:-

- (1) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub> (2) CH<sub>3</sub>CH<sub>2</sub>CONH<sub>2</sub>
- (3) CH<sub>2</sub>CH<sub>2</sub>NHCH<sub>3</sub> (4) CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub>
- Q.56 During the process of digestion, the proteins present in food materials are hydrolysed to amino acids. The two enzymes involved in the process:

Proteins  $\xrightarrow{\text{Enzyme(A)}}$  Polypeptides  $\xrightarrow{\text{Enzyme}(B)}$  Amino acids,

are respectively-

- (1) Amylase and Maltase
- (2) Diastase and Lipase
- (3) Pepsin and Trypsin
- (4) Invertase and Zymase

| Q.57 | The human body does not produce:-                                                                                                                                                                                                                                                                                                                       | Q.65                                                                    | The appearance of colour in solid alkali metal                                                                   |                                                                                                                           |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|      | (1) DNA (2) Vitamin                                                                                                                                                                                                                                                                                                                                     |                                                                         | halides is generally                                                                                             |                                                                                                                           |
|      | (3) Hormones (4) Enzymes                                                                                                                                                                                                                                                                                                                                |                                                                         | <ul><li>(1) F-centres</li><li>(3) Frenkel defect</li></ul>                                                       | <ul><li>(2) Schottky defect</li><li>(4) Interstitial positions</li></ul>                                                  |
| Q.58 | CsBr crystallizes in a body centred. The unit cell length is 436.6 pm. G atomic mass of Cs = 133 and that of and Avogadro number being 6.02 > the density of CsBr is:-  (1) 42.5 g/cm <sup>3</sup> (2) 0.425 g/cm                                                                                                                                       | iven that the Br = 80 amu $< 10^{23} \text{ mol}^{-1},$                 | The general mo                                                                                                   | olecular formula, which logus series of alkanols is:- (2) C <sub>n</sub> H <sub>2n</sub> O                                |
|      | (3) $8.25 \text{ g/cm}^3$ (4) $4.25 \text{ g/cm}^3$                                                                                                                                                                                                                                                                                                     | Q.67                                                                    | If $E_{Fe^{2+}/Fe}^{\circ} = -0.44$                                                                              | 1 V and                                                                                                                   |
| Q.59 | More number of oxidation states are the actinoids than by the lanthonoid reason for this is:-  (1) More energy difference between orbitals than that between 4f and (2) Lesser energy difference between orbitals than between 4f and 5d (3) Greater metallic character of the than that of the corresponding as (4) More active nature of the actinoid | en 5f and 6d d 5d orbitals en 5f and 6d orbitals e lanthanoids etinoids | (1) 0.330 V<br>(3) 1.212 V<br>For the reaction :<br>2A + B -                                                     | + $2Fe^{3+}$ → $3Fe^{2+}$ will be:<br>(2) 1.653 V                                                                         |
| Q.60 | Given: The mass of electron is 9.1 Planck constant is $6.626 \times 10^{-34}$ Js, th involved in the measurement of velo distance of 0.1Å is:- (1) $5.79 \times 10^6 \text{ ms}^{-1}$ (2) $5.79 \times 10^7$ (3) $5.79 \times 10^8 \text{ ms}^{-1}$ (4) $5.79 \times 10^5 \text{ ms}^{-1}$                                                              | e uncertainty<br>city within a<br>ms <sup>-1</sup>                      | (1) $-\frac{d[C]}{3dt}$<br>(3) $\frac{d[D]}{dt}$<br>For the reaction :                                           | $(2) - \frac{d[B]}{dt}$ $(4) - \frac{d[A]}{2dt}$                                                                          |
|      | ` ,                                                                                                                                                                                                                                                                                                                                                     |                                                                         |                                                                                                                  | $ ightharpoonup CO_2(g) + 2H_2O(\ell)$                                                                                    |
| Q.61 | Copper sulphate dissolved in excess                                                                                                                                                                                                                                                                                                                     | s of KCN to                                                             |                                                                                                                  | $- \cos_2(g) + 2\Pi_2 \cos(\epsilon)$<br>170.8 kJ mol <sup>-1</sup>                                                       |
| Q.62 | give:- (1) CuCN (2) [Cu(CN) <sub>4</sub> ] (3) [Cu(CN) <sub>4</sub> ] <sup>2-</sup> (4) Cu(CN) <sub>2</sub> In which of the following pairs are locoloured in aqueous solution-                                                                                                                                                                         |                                                                         | Which of the follow (1) At equilibrium, and H <sub>2</sub> O(ℓ) are (2) The equilibrium                          | ting statements is not true:- the concentrations of CO <sub>2</sub> (g) not equal a constant for the reaction is          |
|      | (1) $Ni^{2+}$ , $Ti^{3+}$ (2) $Sc^{3+}$ , $Ti^{3+}$<br>(3) $Sc^{3+}$ , $Co^{2+}$ (4) $Ni^{2+}$ , $Cu^{+}$<br>[At. No.: $Sc = 21$ , $Ti = 22$ , $Ni = 28$ , $Cu = 28$                                                                                                                                                                                    | = 29, Co = 27]                                                          | given by K <sub>P</sub> = -<br>(3) Addition of CH will cause a shi                                               | $H_4(g)$ or $O_2(g)$ at equilibrium                                                                                       |
| Q.63 | Al <sub>2</sub> O <sub>3</sub> can be converted to anhydro<br>heating:-<br>(1) Al <sub>2</sub> O <sub>3</sub> with HCl gas                                                                                                                                                                                                                              | ous AlCl <sub>3</sub> by Q.70                                           | (4) The reaction is e [NH(CH <sub>2</sub> )NHCO(C                                                                | exothermic                                                                                                                |
|      | <ul> <li>(2) Al<sub>2</sub>O<sub>3</sub> with NaCl in solid state</li> <li>(3) A mixture of Al<sub>2</sub>O<sub>3</sub> and carbon in</li> <li>(4) Al<sub>2</sub>O<sub>3</sub> with Cl<sub>2</sub> gas</li> </ul>                                                                                                                                       | dry Cl <sub>2</sub> gas                                                 | <ul><li>(1) copolymer</li><li>(2) Addition polymer</li><li>(3) Thermosetting p</li><li>(4) Homopolymer</li></ul> | er                                                                                                                        |
| Q.64 | The enthalpy and entropy change for $P_{T}(\ell) + CL(\alpha) \rightarrow 2P_{T}CL(\alpha)$                                                                                                                                                                                                                                                             |                                                                         |                                                                                                                  | aund regets with hydrogen                                                                                                 |
|      | $Br_2(\ell) + Cl_2(g) \rightarrow 2BrCl(g)$<br>are 30 kJ mol <sup>-1</sup> and 105 JK <sup>-1</sup> mol <sup>-1</sup><br>The temperature at which the reaction<br>equilibrium is:-<br>(1) 285.7K (2) 273 K<br>(3) 450 K (4) 300 K                                                                                                                       |                                                                         | cyanide to form<br>hydrolysis forms                                                                              | cund reacts with hydrogen cyanohydrin which on a racemic mixture of e carbonyl compound is:  (2) Acetone (4) Formaldehyde |



(1) 
$$CH_3-CH_2-CH_2C-CH_3$$
  
(2)  $(CH_3)_2C = O$   
(3)  $CH_3CH_2CHO$   
(4)  $CH_3CHO$ 

- (1) Ethyl butyrate (2) Acetoacetic ester
- (3) Methyl acetoacetate (4) Ethyl propionate

Q.77 Consider the reaction  

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

The equality relationship between  $\frac{d[NH_3]}{L}$  and  $-\frac{d[H_2]}{dt}$  is :-

(1) 
$$\frac{d[NH_3]}{dt} = -\frac{1}{3} \frac{d[H_2]}{dt}$$

(2) 
$$+\frac{d[NH_3]}{dt} = -\frac{2}{3}\frac{d[H_2]}{dt}$$

(3) 
$$+\frac{d[NH_3]}{dt} = -\frac{3}{2}\frac{d[H_2]}{dt}$$

(4) 
$$\frac{d[NH_3]}{dt} = -\frac{d[H_2]}{dt}$$

- (2) 2,3-Dibromopentane (3) 3-Bromopentane
- (4) 2-Hydroxypropanoic acid

Which of the following is not chiral:-

## Q.79 [Co(NH<sub>3</sub>)<sub>4</sub>(NO<sub>2</sub>)<sub>2</sub>]Cl exhibits:-

(1) 2-Butanol

Q.78

- (1) Linkage isomerism, ionization isomerism and optical isomerism
- (2) Linkage isomerism, ionization isomerism and geometrical isomerism
- (3) Ionization isomerism, geometrical isomerism and optical isomerism
- (4) Linkage isomerism, geometrical isomerism and optical isomerism

- $(1) (3d x^2 y^2)^1$ ,  $3d z^{2^1}$ ,  $3d xz^1$  $(2) 3d xy^1, (3d x^2 - y^2)^1, 3d yz^1$
- (3)  $3dxv^{1}$ ,  $3dvz^{1}$ ,  $3dxz^{1}$
- (4)  $3d xv^1$ ,  $3d vz^1$ ,  $3dz^{2^1}$

Q.81 1.00 g of a non-electrolyte solute (molar mass 
$$250 \mathrm{g \ mol^{-1}}$$
) was dissolved in 51.2 g of benzene. If the freezing point depression constant  $K_f$  of benzene is 5.12 K kg mol<sup>-1</sup>, the freezing point of benzene will be lowered by:-

- (1) 0.4 K(2) 0.3 K
- (3) 0.5 K(4) 0.2 K

- (1) HNO<sub>2</sub> & NaNO<sub>2</sub> (2) NaOH & NaCl
- (3) HNO<sub>3</sub> & NH<sub>4</sub>NO<sub>3</sub> (4) HCl & KCl

Q.83 The hydrogen ion concentration of a 
$$10^{-8}$$
M HCl aqueous solution at 298 K ( $K_W = 10^{-14}$ ) is:-
(1)  $1.0 \times 10^{-6}$  M (2)  $1.0525 \times 10^{-7}$  M

- (3)  $9.525 \times 10^{-8} \,\mathrm{M}$  (4)  $1.0 \times 10^{-8} \,\mathrm{M}$
- **O.84** A solution of acetone is ethanol:-
  - (1) Shows a negative deviation from Raoult's law
  - (2) Shows a positive deviation from Raoult's law
  - (3) Behaves like a near ideal solution
  - (4) Obeys Raoult's law



| Q.99  |                                 | wing is not isostructural with                           | Q.106    | The 'blue baby' synd    |                                                       |
|-------|---------------------------------|----------------------------------------------------------|----------|-------------------------|-------------------------------------------------------|
|       | SiCl <sub>4</sub> :-            |                                                          |          | (1) Excess of chlorid   | le                                                    |
|       | (1) SCl <sub>4</sub>            | (2) $SO_4^{2-}$                                          |          | (2) Methemoglobin       |                                                       |
|       | (3) $PO_4^{3-}$                 | $(4) NH_4^+$                                             |          | (3) Excess of dissolv   |                                                       |
|       | (-) 1 - 4                       | (1) 11114                                                |          | (4) Excess of TDS (t    | total dissolved solids)                               |
|       |                                 | ∧ Å ∠CI                                                  | Q.107    | Praying mantis is a g   | good example of-                                      |
| Q.100 | The IUPAC name o                | f Cl is:-                                                |          | (1) Mullerian mimic     | •                                                     |
|       |                                 | '                                                        |          | (2) Warning coloura     |                                                       |
|       | (1) 3,4-dimethylpen             | tanoyl chloride                                          |          | (3) Social insects      |                                                       |
|       | (2) 1-chloro-1-oxo-2            | 2,3-dimethylpentane                                      |          | (4) Camouflage          |                                                       |
|       | (3) 2-ethyl-3-methy             | lbutanoyl chloride                                       |          | ( )                     |                                                       |
|       | (4) 2,3-dimethylpen             | tanoyl chloride                                          | Q.108    | Which one of the foll   | owing statements is correct?                          |
|       |                                 |                                                          |          |                         | e endocrine activity, but not                         |
| Q.101 |                                 | number of chromosomes in                                 |          | vice verse              |                                                       |
|       |                                 | irone layer in a plant species                           |          |                         | ds regulate neural activity,                          |
|       | with 8 chromosome               |                                                          |          |                         | ystem regulates endocrine                             |
|       | (1) 16 (2) 24                   | (3) 32 (4) 8                                             |          | glands                  |                                                       |
| 0.404 | <b>D</b> : 1 ( )                |                                                          |          |                         | s control neural activity nor trol endocrine activity |
| Q.102 | Pineapple (ananas)              | _                                                        |          |                         | ds regulate neural activity,                          |
|       | (1) a unilocular poly           | 1 2                                                      |          | but not vice vers       |                                                       |
|       | (2) a multipistillate           | -                                                        |          |                         |                                                       |
|       | (3) a cluster of concommon axis | mpactly borne flowers on a                               | Q.109    | Examination of bloc     | od of a person suspected of                           |
|       |                                 | onocarpellary flower                                     | <b>C</b> |                         | shows large, immature,                                |
|       | (+) a mutillocular in           | ionocarpenary nower                                      |          |                         | rtes without haemoglobin.                             |
| Q.103 | Golden rice is a                | promising transgenic crop.                               |          |                         | diet with which of the                                |
| Q.103 |                                 | cultivation, it will help in                             |          | -                       | alleviate his symptoms?                               |
|       | (1) Alleviation of vi           | _                                                        |          | (1) Thiamine            | L. L                                                  |
|       | (2) Pest resistance             | ,                                                        |          | (2) Folic acid and co   | balamine                                              |
|       | (3) Herbicide tolera            | nce                                                      |          | (3) Riboflavin          |                                                       |
|       | * /                             | ol-like fuel from rice                                   |          | (4) Iron compounds      |                                                       |
|       | <i>( )</i>                      |                                                          | Q.110    | Farmers in a particu    | ular region were concerned                            |
| Q.104 | Parthenocarpic toma             | ato fruits can be produced by-                           | Q.110    |                         | owing of leaves of a pulse                            |
|       | (1) Removing and                | froecium of flowers before                               |          | crop might cause de     | ecrease in the yield. Which                           |
|       | pollen grains ar                |                                                          |          |                         | most beneficial to obtain                             |
|       |                                 | ants with low concentrations                             |          | maximum seed yield      |                                                       |
|       | of gibberellic ac               |                                                          |          | (1) Frequent irrigation | *                                                     |
|       |                                 | nts from vernalized seeds                                |          | ` /                     | the plants with cytokinins mall dose of nitrogenous   |
|       | (4) Treating the acetate        | plants with phenylmercuric                               |          | fertilizer              | man dosc of introgenous                               |
|       |                                 |                                                          |          |                         | yellow leaves and spraying                            |
| Q.105 | How does pruning                | help in making the hedge                                 |          |                         | green leaves with 2,4,5-                              |
|       | dense?                          |                                                          |          | trichlorophenox         | -                                                     |
|       | · /                             | differentiation of new shoots                            |          |                         | iron and magnesium to sis of chlorophyll              |
|       | from the rootstoo               |                                                          |          | F                       | · · · · · · · · · · · · · · · · · · ·                 |
|       | · · ·                           | buds from apical dominance<br>grows faster after pruning | Q.111    | In which of the fol     | llowing fruits is the edible                          |
|       | (4) It released woun            | • •                                                      | -        | part the aril?          | -                                                     |
|       | (+) it released would           | M HOTHIOHOS                                              |          | (1) Custard apple       | (2) Pomegranate                                       |
|       |                                 |                                                          |          | (3) Orange              | (4) Litchi                                            |

| Q.112 | Which one of the following amino-acids was not found to be synthesized in Miller's experiment? |                                                            | Q.121    | Which one of the following is not included under in-situ conservation?                                 |                                                       |
|-------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|       | <ul><li>(1) Glycine</li><li>(3) Glutamic acid</li></ul>                                        | <ul><li>(2) Aspartic acid</li><li>(4) Alanine</li></ul>    |          | <ul><li>(1) Sanctuary</li><li>(3) Biosphere reserve</li></ul>                                          | (2) Botanical garden<br>e (4) National park           |
| Q.113 | Crop plants grown in monoculture are- (1) Low in yield (2) Free from intraspecific competition |                                                            | Q.122    | Which antibiotic inhibits interaction between tRNA and mRNA during bacterial protein synthesis?        |                                                       |
|       | (3) Characterised by                                                                           | _                                                          |          | (1) Erythromycin                                                                                       | (2) Neomycin                                          |
|       | (4) Highly prone to                                                                            | -                                                          |          | (3) Streptomycin                                                                                       | (4) Tetracycline                                      |
| Q.114 | Montreal Protocol which calls for appropriate                                                  |                                                            | Q.123    |                                                                                                        | nnism is the result of-                               |
|       |                                                                                                | ne ozone layer from human                                  |          | (1) Mutations and linkages                                                                             |                                                       |
|       | activities was passed                                                                          | -                                                          |          | (2) Cytoplasmic effe                                                                                   |                                                       |
|       | (1) 1986                                                                                       | (2) 1987                                                   |          |                                                                                                        | nges and sexual dimorphism                            |
|       | (3) 1988                                                                                       | (4) 1985                                                   |          | (4) Genotype and en                                                                                    | vironment interactions                                |
| Q.115 | •                                                                                              | onential population growth is-                             | Q.124    | _                                                                                                      | pollution does not contain-                           |
|       | (1) dt/dN = rN                                                                                 | (2) dN/rN = dt                                             |          | (1) Ozone                                                                                              |                                                       |
|       | (3) rN/dN = dt                                                                                 | (4) dN/dt = rN                                             |          | <ul><li>(2) Nitrogen dioxide</li><li>(3) Carbon dioxide</li></ul>                                      |                                                       |
| Q.116 | Which one of the                                                                               | following is not used for                                  |          | (4) PAN (peroxy acy                                                                                    | d nitrata)                                            |
| Q.110 | construction of ecol-                                                                          |                                                            |          |                                                                                                        | ,                                                     |
|       | (1) Dry weight                                                                                 |                                                            | Q.125    | Moss peat is used as a packing material for sending flowers and live plants to distant places because- |                                                       |
|       | <ul><li>(2) Number of individuals</li><li>(3) Rate of energy flow</li></ul>                    |                                                            |          |                                                                                                        |                                                       |
|       |                                                                                                | low                                                        |          | (1) It is easily availal                                                                               | hle                                                   |
|       | (4) Fresh weight                                                                               |                                                            |          | (2) It is hygroscopic                                                                                  | oic .                                                 |
| Q.117 | Niche overlap indicates-                                                                       |                                                            |          | (3) It reduces transpi                                                                                 | ration                                                |
| Q.117 | (1) Active cooperation between two species                                                     |                                                            |          | (4) It serves as a disi                                                                                |                                                       |
|       |                                                                                                | rasites on the same host                                   |          | (1) -1 2 -1 1 2 3 3 3 3 3 3 3 3                                                                        |                                                       |
|       |                                                                                                | r more resources between the                               | Q.126    | A common structura                                                                                     | l feature of vessel elements                          |
|       | two species                                                                                    | i more resources between the                               | -        | and sieve tube eleme                                                                                   | nts is-                                               |
|       | (4) Mutualism betw                                                                             | een two species                                            |          | (1) Thick secondary                                                                                    |                                                       |
|       |                                                                                                |                                                            |          | (2) Pores on lateral v                                                                                 | vall                                                  |
| Q.118 | In photosystem-I, th                                                                           | e first electron acceptor is-                              |          | (3) Presence of p-pro                                                                                  |                                                       |
|       | (1) Ferredoxin                                                                                 |                                                            |          | (4) Enucleate conditi                                                                                  | on                                                    |
|       | (2) Cytochrome                                                                                 |                                                            | Q.127    | The thalloid bod                                                                                       | y of a slime mould                                    |
|       | (3) Plastocyanin                                                                               |                                                            | <b>C</b> | (Myxomycetes) is kr                                                                                    |                                                       |
|       | (4) An iron sulphur                                                                            | protein                                                    |          | <ul><li>(1) Protonema</li><li>(3) Fruiting body</li></ul>                                              | <ul><li>(2) Plasmodium</li><li>(4) Mycelium</li></ul> |
| Q.119 |                                                                                                | at low temperature under                                   | 0.130    |                                                                                                        | •                                                     |
|       |                                                                                                | break its dormancy is called -                             | Q.128    |                                                                                                        | inheritance do you expect ence among the offspring?   |
|       | (1) Sclarification                                                                             | (2)Vernalization                                           |          | (1) Autosomal                                                                                          | (2) Cytoplasmic                                       |
|       | (3) Chelation                                                                                  | (4) Stratification                                         |          | (3) Y-linked                                                                                           | (4) X-linked                                          |
| Q.120 |                                                                                                | following is the most suitable of Drosophila melanogaster? | Q.129    | • • •                                                                                                  | ration is seen in sweet pea?                          |
|       | medium for culture of <i>Drosophila melanogaster</i> ? (1) Moist bread (2) Agar-agar           |                                                            |          | (1) Basal                                                                                              | (2)Axile                                              |
|       | (3) Ripe banana                                                                                | (4) cow dung                                               |          | (3) Free central                                                                                       | (4) Marginal                                          |
|       | · / • · · · · ·                                                                                | · ,                                                        |          |                                                                                                        |                                                       |

| Q.130 |                                              | nreads protruding at the end                           | Q.138 | Bowman's glands ar                            |                                             |
|-------|----------------------------------------------|--------------------------------------------------------|-------|-----------------------------------------------|---------------------------------------------|
|       | of a young cob of m                          |                                                        |       | (1) Olfactory epithe                          | lium                                        |
|       | (1) Anthers                                  | (2) Styles                                             |       | (2) External auditor                          |                                             |
|       | (3) Ovaries                                  | (4) Hairs                                              |       | (3)Cortical nephron                           | s only                                      |
|       |                                              |                                                        |       | (4) Juxtamedullary                            | nephrons                                    |
| Q.131 | Conifers differ from                         | grasses in the-                                        |       |                                               |                                             |
|       | (1) Production of sec                        | eds from ovules                                        | Q.139 | The bacterium (C                              | lostridium botulinum) that                  |
|       | (2) Lack of xylem tr                         | acheids                                                |       | causes botulism is-                           |                                             |
|       | (3) Absence of polle                         | n tubes                                                |       | (1) A facultative and                         | aerobe                                      |
|       | (4) Formation of end                         | losperm before fertilization                           |       | (2) An obligate anac                          | erobe                                       |
|       |                                              |                                                        |       | (3) A facultative aer                         | robe                                        |
| Q.132 |                                              | nt kinds of gametes will be                            |       | (4) An obligate aero                          | bbe                                         |
|       |                                              | lant having the genotype                               |       |                                               |                                             |
|       | AABbCC?                                      |                                                        | Q.140 | Which one of the                              | following is the correctly                  |
|       | (1) Three                                    | (2) Four                                               |       |                                               | n endangered animal and a                   |
|       | (3) Nine                                     | (4) Two                                                |       | National Park?                                |                                             |
|       |                                              |                                                        |       | (1) Lion                                      | <ul> <li>Corbett National Park</li> </ul>   |
| Q.133 | In Maize, hybrid vig                         | · · · · · · · · · · · · · · · · · · ·                  |       | (2) Rhinoceros                                | <ul> <li>Kaziranga National Park</li> </ul> |
|       |                                              | protoplast with DNA                                    |       | (3) Wild Ass                                  | <ul> <li>Dudhwa National Park</li> </ul>    |
|       | · ·                                          | inbred parental lines                                  |       | (4) Great Indian                              | <ul> <li>Keoladeo National Park</li> </ul>  |
|       | plants                                       | s from the most productive                             |       | Bustard                                       |                                             |
|       | (4) Inducing mutation                        | ons                                                    | Q.141 |                                               | ng unpredictable moods,                     |
|       |                                              |                                                        |       |                                               | on, quarrelsome behaviour                   |
| Q.134 |                                              | owing statements regarding                             |       |                                               | thers is suffering from-                    |
|       | mitochondrial memb                           |                                                        |       | (1) Schizophrenia                             | amality Disamdan (DDD)                      |
|       | (1) The outer member of molecules            | rane is permeable to all kinds                         |       | (3) Mood disorders                            | onality Disorder (BPD)                      |
|       |                                              | f the electron transfer chain                          |       | ` /                                           | lama                                        |
|       | are embedded in                              | f the electron transfer chain<br>in the outer membrane |       | (4) Addictive disord                          | ICIS                                        |
|       | forming a series                             | _                                                      | Q.142 | Sulphur is an impogrowth and product          | ortant nutrient for optimum ivity in-       |
|       | (4) The outer member                         | rane resembles a sieve                                 |       | (1) Pulse crops                               | (2) Cereals                                 |
|       |                                              |                                                        |       | (3) Fibre crops                               | (4) Oilseed crops                           |
| Q.135 |                                              | nce, in protein synthesis is                           |       |                                               |                                             |
|       | decided by the seque                         |                                                        | Q.143 |                                               | morphic flowers, bicarpellary               |
|       | (1) tRNA                                     | (2) mRNA                                               |       |                                               | septa, and fruit a capsule or               |
|       | (3) cDNA                                     | (4) rRNA                                               |       | berry, are characteris                        |                                             |
|       |                                              |                                                        |       | (1) Asteraceae                                | (2) Brassicaceae                            |
| Q.136 |                                              | olecules could maximally be                            |       | (3) Solanaceae                                | (4) Liliaceae                               |
|       |                                              | molecule of glucose, if the of one mole of glucose to  |       |                                               |                                             |
|       |                                              | ds 686 kcal and the useful                             | Q.144 | In a moss the sporo                           |                                             |
|       | chemical energy available in the high energy |                                                        |       | (1) is partially parasitic on the gametophyte |                                             |
|       |                                              | ne mole of ATP is 12 kcal?  (2) Thirty                 |       | (2) produces game gametophyte                 | etes that given rise to the                 |
|       | (3) Fifty-seven                              | (4) One                                                |       | gametophyte                                   | spore produced from the                     |
| Q.137 | An organic substant essential for its activ  | ce bound to an enzyme and rity is called -             |       | (4) Manufactures for<br>the gametophyt        | ood for itself, as well as for              |
|       | (1) Coenzyme                                 | (2) Holoenzyme                                         |       |                                               |                                             |
|       | (3) Apoenzyme                                | (4) isoenzyme                                          |       |                                               |                                             |

- Q.145 Curing of tea leaves is brought about by the activity of-
  - (1) Bacteria
- (2) Mycorrhiza
- (3) Viruses
- (4) Fungi
- Q.146 People living at sea level have around 5 million RBC per cubic millimeter of their blood whereas those living at an altitude of 5400 metres have around 8 million. This is because at high altitude-
  - (1) People get pollution-free air to breathe and more oxygen is available
  - (2) Atmospheric O<sub>2</sub> level is less and hence more RBCs are needed to absorb the required amount of O<sub>2</sub> to survive
  - (3) There is more UV radiation which enhances RBC production
  - (4) People eat more nutritive food, therefore more RBCs are formed
- Q.147 An important evidence in favour of organic evolution is the occurrence of-
  - (1) Homologous and vestigial organs
  - (2) Analogous and vestigial organs
  - (3) Homologous organs only
  - (4) Homologous and analogous organs
- Q.148 Which one of the following is not a living fossil-
  - (1) King crab
- (2) Sphenodon
- (3) Archaeopteryx
- (4) Peripatus
- Q.150 A major breakthrough in the studies of cells came with the development of electron microscope. This is because-
  - (1) The resolution power of the electron microscope is much higher than that of the light microscope
  - (2) The resolving power of the electron microscope is 200-350 nm as compared to 0.1-0.2 nm for the light microscope
  - (3) Electron beam can pass through thick materials, whereas light microscopy requires thin sections
  - (4) The electron microscope is more powerful than the light microscope as it uses a beam of electrons which has wavelength much longer than that of photons
- Q.151 Which one of the following is a matching set of phylum and its three examples?
  - (1) Cnidaria Bonellia, Physalia, Aurelia
  - (2) Platyhelminthes-Planaria, Schistosoma, Enterobius
  - (3) Mollusca-Loligo, Teredo, Octopus
  - (4) Porifera-Spongilla, Euplectella, Pennatula

- Q.152 Metameric segmentation is the characteristic of-
  - (1) Platyhelminthes and Arthropoda
  - (2) Echinodermata and Annelida
  - (3) Annelida and Arthropoda
  - (4) Mollusca and Chordata
- Q.153 Which of the following pairs of an animal and a plant represents endangered organisms in India-
  - (1) Bentinckia nicobarica and Red Panda
  - (2) Tamarind and Rhesus monkey
  - (3) Cinchona and Leopard
  - (4) Banyan and Black buck
- Q.154 Jurassic period of the Mesozoic era characterized by-
  - (1) Gymnosperms are dominant plants and first birds appear
    - (2) Radiation of reptiles and origin of mammal like reptiles
    - (3) Dinosaurs become extinct and angiosperms appear
    - (4) Flowering plants and first dinosaurs appear
- Q.155 What is common about Trypanosoma, Noctiluca, Monocystis and Giardia-
  - (1) These are all unicellular protists
  - (2) They have flagella
  - (3) They produce spores
  - (4) These are all parasites
- Q.156 Which of the following statements regarding cilia is not correct -
  - (1) The organized beating of cilia is controlled by fluxes of Ca<sup>2+</sup> across the membrane
  - (2) Cilia are hair-like cellular appendages
  - (3) Microtubules of cilia are composed of tubulin
  - (4) Cilin contain an outer ring of nine doublet microtubules surrounding two single microtubules
- Q.157 Two microbes found to be very useful in genetic engineering are-
  - (1) Escherichia coli and Agrobacterium tumefaciens
  - (2) Vibrio cholerae and a tailed bacteriophage
  - (3) Diplococcus sp.and Pseudomonas sp.
  - (4) Crown gall bacterium and Caenorhabditis elegans

| Q.158             | Which of the following environmental conditions are essential for optimum growth of          |       | The contractile protein of skeletal muscle involving ATPase activity is-                                                                       |  |
|-------------------|----------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                   | Mucor on a piece of bread?                                                                   |       | (1) Tropomyosin (2) Myosin                                                                                                                     |  |
|                   | A. Temperature of about 25°C                                                                 |       | (3) α-Actin (4) Troponin                                                                                                                       |  |
|                   | B. Temperature of about 5°C                                                                  |       |                                                                                                                                                |  |
|                   | <ul><li>C. Relative humidity of about 5%</li><li>D. Relative humidity of about 95%</li></ul> | Q.167 | Which one of the following is not a second messenger in hormone action?                                                                        |  |
|                   | E. A shady place                                                                             |       | (1) cGMP (2) Calcium                                                                                                                           |  |
|                   | F. A brightly illuminated place                                                              |       | (3) Sodium (4) cAMP                                                                                                                            |  |
|                   | Choose the answer from the following options                                                 |       |                                                                                                                                                |  |
|                   | (1) A, C and E only (2) A, D and E only (3) B, D and E only (4) B, C and F only              | Q.168 | In Mendel's experiments with garden pea, round<br>seed shape (RR) was dominant over wrinkled<br>seeds (rr), yellow cotyledon (YY) was dominant |  |
| Q.159             | Evolutionary history of an organism is known as-                                             |       | over green cotyledon (yy). What are the                                                                                                        |  |
|                   | (1) Phylogeny (2) Ancestry                                                                   |       | expected phenotypes in the F <sub>2</sub> generation of the                                                                                    |  |
|                   | (3) Paleontology (4) Ontogeny                                                                |       | cross RRYY × rryy ?                                                                                                                            |  |
| Q.160             | Which of the following is considered a hot-spot                                              |       | (1) Only round seeds with green cotyledons                                                                                                     |  |
| Q.100             | of biodiversity in India?                                                                    |       | (2) Only wrinkled seeds with yellow cotyledons                                                                                                 |  |
|                   | (1) Western Ghats                                                                            |       | (3) Only wrinkled seeds with green cotyledons                                                                                                  |  |
|                   | (2) Indo-Gangetic Plain                                                                      |       | (4) Round seeds with yellow cotyledons, and wrinkled seeds with yellow cotyledons                                                              |  |
|                   | (3) Eastern Ghats                                                                            |       | willikied seeds with yellow cotyledolis                                                                                                        |  |
|                   | (4) Aravalli Hills                                                                           | Q.169 | One gene-one enzyme hypothesis was postulated by-                                                                                              |  |
| Q.161             | During photorespiration the oxygen consuming                                                 |       | (1) R. Franklin (2) Hershey and Chase                                                                                                          |  |
|                   | reaction (s) occur in- (1) Stroma of chloroplasts and mitochondria                           |       | (3) A.Garrod (4) Beadle and Tatum                                                                                                              |  |
|                   | (2) Stroma of chloroplasts and peroxisomes                                                   |       | ()                                                                                                                                             |  |
|                   | (3) Grana of chloroplasts and peroxisomes                                                    | Q.170 | One turn of the helix in a B-form DNA is                                                                                                       |  |
|                   | (4) Stroma of chloroplasts                                                                   |       | approximately-                                                                                                                                 |  |
|                   | •                                                                                            |       | (1) 20 nm (2) 0.34 nm                                                                                                                          |  |
| Q.162             | Which one of the following is an example of polygenic inheritance?                           |       | (3) 3.4 nm (4) 2 nm                                                                                                                            |  |
|                   | (1) Flower colour in Mirabilis jalapa                                                        | Q.171 | Test cross involves-                                                                                                                           |  |
|                   | <ul><li>(2) Production of male honey bee</li><li>(3) Pod shape in garden pea</li></ul>       |       | (1) Crossing between two genotypes with recessive trait                                                                                        |  |
|                   | (4) Skin colour in humans                                                                    |       | (2) Crossing between two F <sub>1</sub> hybrids                                                                                                |  |
| Q.163             | Which one of the following does not act as a neurotransmitter?                               |       | (3) Crossing the $F_1$ hybrid with a double recessive genotype                                                                                 |  |
|                   | (1) Acetylcholine (2) Epinephrine                                                            |       | (4) Crossing between two genotypes with                                                                                                        |  |
|                   | (3) Norepinephrine (4) Cortisone                                                             |       | dominant trait                                                                                                                                 |  |
| Q.164             | Sertoli cells are regulated by the pituitary                                                 | Q.172 | Antiparallel strands of a DNA molecule means                                                                                                   |  |
| Q.10 <del>4</del> | hormone known as-                                                                            | Q.172 | that-                                                                                                                                          |  |
|                   | (1) FSH (2) GH                                                                               |       | (1) One strand turns anti-clockwise                                                                                                            |  |
|                   | (3) Prolactin (4) LH                                                                         |       | (2) The phosphate groups of two DNA stands, at their ends, share the same position                                                             |  |
| Q.165             | A steroid hormone which regulates glucose metabolism is-                                     |       | (3) The phosphate groups at the start of two DNA strands are in opposite position (pole)                                                       |  |
|                   | (1) Cortisol                                                                                 |       | (4) One strand turns clockwise                                                                                                                 |  |
|                   | (2) Corticosterone                                                                           |       | · · · · · · · · · · · · · · · · · · ·                                                                                                          |  |
|                   | (3) 11-deoxycorticosterone                                                                   |       |                                                                                                                                                |  |
|                   | (4) Cortisone                                                                                |       |                                                                                                                                                |  |

| (1) Fat body with muscles (2) Integument with nuscles (3) Bones with bones (4) Bones with bones (4) Bones with bones (4) Bones with bones (4) Ilippurin (2) Myoglobin (3) Histamine (4) Heamoglobin (2) One-half colourblind woman marries a normal visioned man, their sons will be (1) All normal visioned man, their sons will be (2) One-half colourblind and one-half normal (3) Three-fourths colourblind and one-half normal (4) All colourblind and one-half normal (4) All colourblind and one-half normal (4) Fertilization of an XX egg by a normal Y-bearing sperm (2) Loss of half of the short arm of chromosome 5 (3) Loss of half of the short arm of chromosome 5 (4) Trisomy of 21" chromosome 5 (3) Loss of half of the short arm of chromosome 5 (4) Synthesizes DNA  Q.177 Restriction endonuclease (1) Cuts the DNA molecule at specific sites (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA  Q.180 Antibodies in our body are complex (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glogoproteins (2) Steroids (3) Prostaglandins (4) Glogoproteins (2) Steroids (3) Prostaglandins (4) Glogoproteins (3) Control Board for the discharge of industrial and municipal waste waters into natural surface waters, is - (1) Cartotlic when plenty of water is available (2) Uricotelic when plenty of water is available (3) Uricotelic when plenty of wa                     | Q.173 | Areolar connective tiss                                                                                                      | sue joins-                    | Q.181 | Which of the follow    | ring is an accumulation and  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------|------------------------|------------------------------|
| (2) Integument with muscles (3) Bones with bones (4) Bones with bones (4) Bones with bones (4) Heamoglobin (3) Histamine (4) Heamoglobin (1) All normal visioned man, their sons will be (1) All normal visioned (2) One-half colourblind and one-half normal (3) Three-fourths colourblind and one-fourth normal (4) All colourblind (2) One-half colourblind and one-fourth normal (4) All colourblind (3) Three-fourths colourblind and one-fourth normal (4) All colourblind (4) I Fertilization of an XX egg by a normal Y-bearing sperm (2) Loss of half of the short arm of chromosome 5 (3) Loss of half of the long arm of chromosome 5 (4) Trisomy of 21" chromosome (4) Trisomy of 21" chromosome (5) Ausclass of half of the short arm of chromosome 5 (1) Cuts the DNA molecule at specific sites (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (3) Prostaglandins (4) Glycoproteins (4) Synthesizes DNA (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (3) Prostaglandins (4) Glycoproteins (4) Synthesizes DNA (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (3) Worm (4) Virus  Q.180 Earthworms are- (1) Cute-lic when plenty of water is available (2) Uricotelic when plenty of water is available (3) Uricotelic when plenty of water is available (4) Ammonotelic when plenty of water is available (2) Uricotelic when plenty of water is available (3) Uricotelic when plenty of water is available (2) Uricotelic when plenty of water is available (3) Uricotelic when plenty of water is available (4) Ammonotelic when plenty of water is available (3) Uricotelic when plenty of water is available (4) Ammonotelic when plenty of water is available (4) Ammonotelic when plen                     |       | · ·                                                                                                                          |                               |       |                        |                              |
| (3) Bones with muscles (4) Bones with bones (3) Hornero intuitary lobe (3) Histamine (4) Heamoglobin (3) Histamine (4) Heamoglobin (3) Histamine (4) Heamoglobin (2) One-half colourblind woman marries a normal visioned man, their sons will be- (1) All normal visioned (2) One-half colourblind and one-half normal (3) Three-fourths colourblind and one-half normal (4) All colourblind (4) Histogram (5) FSH (6) Fertilization of an XX egg by a normal (7) Hor residual air in lungs slightly decreases the efficiency of respiration in mammals (7) Hor residual air in lungs slightly decreases the efficiency of respiration in mammals (8) The presence of non-respiratory air sacs, increases the efficiency of respiration in birds (8) In insects, circulating body fluids serve to distribute oxygen to tissues (9) For presence of non-respiratory air sacs, increases the efficiency of respiration in birds (3) In insects, circulating body fluids serve to distribute oxygen to tissues (4) The principle of countercurrent flow facilitates efficient respiration in gills of fishes (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA (1) Lipoproteins (2) Cust the DNA molecule at specific sites (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glucoproteins (3) Hirudinaria (4) Glucagon (4) Yrus (1) ACTH (2) Insulin (3) Adrenalin (4) Glucagon (4) Yrus (1) Bacterium (2) Prion (3) Worm (4) Vrus (1) Bacterium (2) Prion (3) Worm (4) Vrus (1) Bacterium (2) Prion (3) Worm (4) Vrus Suterium (2) Prioteins (3) Mass Ilou involving a carrier and ATP (4) Cytoplasmic streaming (2) Cicnoplana and Beroe (3) Locaplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                 |       | · /                                                                                                                          |                               |       | (1) Posterior pituitar | y lobe                       |
| Q.174 Mast cells secrete- (1) Hippurin (2) Myoglobin (3) Histamine (4) Heamoglobin (2) One-half colourblind woman marries a normal visioned man, their sons will be- (1) All normal visioned (2) One-half colourblind and one-half normal (3) Three-fourths colourblind and one-fourth normal (4) All colourblind (4) Fertilization of an XX cgg by a normal Y-bearing sperm (2) Loss of half of the short arm of chromosome 5 (3) Loss of half of the short arm of chromosome 5 (3) Loss of half of the short arm of chromosome 5 (4) Trisomy of 21st chromosome (1) Cuts the DNA molecule randomly (2) Cuts the DNA molecule as specific sites (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (3) Prostaglandins (4) Glycoproteins (3) Prostaglandins (4) Glycoproteins (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (3) Prostaglandins (4) Glycoproteins (1) Licutedic when plenty of water is available (2) Uricotelic when plenty of water is available (3) Uricotelic under conditions of water sa available (3) Uricotelic under conditions of water is available (3) Uricotelic under conditions o                     |       | • /                                                                                                                          |                               |       | (2) Intermediate lobe  | e of the pituitary           |
| Q.174 Mast cells secrete- (1) Hippurin (2) Myoglobin (3) Histamine (4) Heamoglobin (7) Histogene (2) FSH  Q.175 If a colourblind woman marries a normal visioned man, their sons will be- (1) All normal visioned (2) One-half colourblind and one-half normal (3) Three-fourths colourblind and one-fourth normal (4) All colourblind  Q.176 Cri-du-chat syndrome in humans is caused by the the colour blind of an XX egg by a normal Y-bearing sperm (2) Loss of half of the short arm of chromosome 5 (4) Trisomy of 21 <sup>st</sup> dromosome (3) Loss of half of the short arm of chromosome 5 (4) Trisomy of 21 <sup>st</sup> dromosome (1) Cuts the DNA molecule randomly (2) Cuts the DNA molecule randomly (2) Cuts the DNA molecule at specific sites (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA  Q.178 Antibodies in our body are complex- (1) Lipoproteins (2) Steroids (3) Prostaglandins (3) Prostaglandins (4) Glycoproteins  Q.180 Earthworms are - (1) Urcotelic when plenty of water is available (3) Uricotelic under conditions of water is available (4) Cytoplasmic streaming ( |       | (4) Bones with bones                                                                                                         |                               |       | (3) Hypothalamus       |                              |
| (1) Hippurin (2) Myoglobin (3) Histamine (4) Heamoglobin (4) Heamoglobin (2) Heamoglobin (1) All normal visioned man, their sons will be - (1) All normal visioned (2) One-half colourblind and one-half normal (3) Three-fourbs colourblind and one-half normal (4) All colourblind (4) All colourblind (5) Three-fourbs colourblind and one-fourth normal (4) All colourblind (7) Fertilization of an XX egg by a normal Y-bearing sperm (2) Loss of half of the short arm of chromosome 5 (3) Loss of half of the long arm of chromosome 5 (4) Trisomy of 21st chromosome (3) Loss of half of the long arm of chromosome 5 (4) Synthesizes DNA (1) Lipoproteins (2) Steroids (3) Prostaglanding (4) Glycoproteins (2)                     |       |                                                                                                                              |                               |       | (4) Anterior pituitary | lobe                         |
| (3) Histamine (4) Hearnoglobin (1) Estrogen (2) FSH  Q.175 If a colourblind woman marries a normal visioned man, their sons will be (1) All normal visioned (2) One-half colourblind and one-half normal (3) Three-fourths colourblind and one-fourth normal (4) All colourblind (4) All colourblind (5) There-fourths colourblind and one-fourth normal (6) All colourblind (7) Fertilization of an XX egg by a normal Y-bearing sperm (8) Loss of half of the short arm of chromosome 5 (8) Trisomy of 21" chromosome (9) Loss of half of the short arm of chromosome 5 (9) Trisomy of 21" chromosome (1) Cuts the DNA molecule randomly (2) Cuts the DNA molecule at specific sites (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA (1) Lipoproteins (2) Ustoritol Board for the discharge of industrial and municipal waste waters into natural surface waters, is: (1) Capproteins (2) Loss of palf of the discharge of industrial and municipal waste waters into natural surface waters, is: (1) STR-RH (4) Progesterone (1) The residual air in lungs slightly decreases the efficiency of respiration in mammals (2) The presence of non-respiratory air sacs, increases the efficiency of respiration in birds (3) In insects, circulating body fluids serve to distribute oxygen to tissues (4) The principle of countercurrent flow facilitates efficient respiration in gills of fishes (3) Hiradinaria (4) Octopus  (1) Pheretima (2) Periplaneta (3) Hiradinaria (4) Octopus  (1) Pheretima (2) Periplaneta (3) Hiradinaria (4) Octopus  (1) ACTH (2) Insulin (3) Adrenalin (4) Gilucagon  (1) Bacterium (2) Prion (3) Worm (4) Virus  (2) Prion (3) Most pressure and transpiration pull (2) Peripociens (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming (2) Peripociens (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming (3) Maries and Paramecium                                                                                                                                                                                                               | Q.174 | Mast cells secrete-                                                                                                          |                               |       |                        |                              |
| Q.175 If a colourblind woman marries a normal visioned man, their sons will be- (1) All normal visioned (2) One-shalf colourblind and one-half normal (3) Three-fourths colourblind and one-half normal (4) All colourblind (4) All colourblind (5) Fertilization of an XX egg by a normal Y-bearing sperm (6) Loss of half of the short arm of chromosome 5 (6) Loss of half of the long arm of chromosome 5 (6) Loss of half of the long arm of chromosome 5 (6) Loss of half of the long arm of chromosome 5 (7) Cristic the DNA molecule randomly (8) Cuts the DNA molecule at specific sites (9) Restriction condonuclease - (1) Cuts the DNA molecule at specific sites (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (2) Reathworms are - (1) Urcotelic when plenty of water is available (3) Uricotelic under conditions of water searcity (4) Ammonotelic when plenty of water is available (3) Uricotelic under conditions of water searcity (4) Ammonotelic when plenty of water is available. (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | (1) Hippurin                                                                                                                 | (2) Myoglobin                 | Q.182 |                        |                              |
| Q.175 If a colourblind woman marries a normal visioned man, their sons will be- (1) All normal visioned (2) One-half colourblind and one-half normal (3) Three-fourths colourblind and one-fourth normal (4) All colourblind (4) All colourblind (5) Three-fourths colourblind and one-fourth normal (4) All colourblind (5) Three-fourths colourblind and one-fourth normal (6) All colourblind (7) Fertilization of an XX egg by a normal Y-bearing sperm (8) Loss of half of the short arm of chromosome 5 (9) Loss of half of the short arm of chromosome 5 (1) Cuts so fhalf of the short arm of chromosome 5 (3) Loss of half of the short arm of chromosome 5 (4) Trisomy of 21st chromosome (2) Cuts the DNA molecule at specific sites (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (5) FSH-RH (4) Progesterone (1) The residual air in lungs slightly decreases the efficiency of respiration in mammals (2) The presence of non-respiratory air sacs, increases the efficiency of respiration in birds (3) In insects, circulating body fluids serve to distribute oxygen to tissues (4) The principle of countercurrent flow facilitates efficient respiration in gills of fishes (3) Hirudinaria (4) Octopus (1) Entroline proprieties (3) Hirudinaria (4) Octopus (1) Lipoproteins (2) Steroids (3) Hirudinaria (4) Octopus (1) Lipoproteins (2) Steroids (3) Horating premion in mammals (4) North one of the following has an open circulatory system? (1) Pheretima (2) Periplaneta (3) Hirudinaria (4) Octopus (1) ACTH (2) Insulin (3) Hirudinaria (4) Octopus (1) ACTH (2) Insulin (3) Adrenalin (4) Octopus (1) ACTH (2) Insulin (3) Adrenalin (4) Octopus (1) Bacterium (2) Prion (3) Worm (4) Virus (4) Prion (3) Worm (4) Virus (5) Prion (5) Loso of half of the discharge of industrial and municipal waste waters into natural surface waters, is a cutal price was a security of the discharge of industrial and municipal wast                     |       | (3) Histamine                                                                                                                | (4) Heamoglobin               |       |                        |                              |
| man, their sons will be- (1) All normal visioned (2) One-half colourblind and one-half normal (3) Three-fourths colourblind and one-fourth normal (4) All colourblind (5) Three-fourths colourblind and one-fourth normal (4) All colourblind (5) Three-fourths colourblind and one-fourth normal (4) All colourblind (5) Three-fourths colourblind and one-fourth normal (4) All colourblind (5) Three-fourths colourblind and one-fourth normal (4) All colourblind (6) All colourblind (7) Cri-du-chat syndrome in humans is caused by the- (8) The residual air in lungs slightly decreases the efficiency of respiration in mammals (6) The residual air in lungs slightly decreases the efficiency of respiration in mammals (7) The residual air in lungs slightly decreases the efficiency of respiration in mammals (8) The residual air in lungs slightly decreases the efficiency of respiration in birds (8) In insects, circulating body fluids serve to distribute oxygen to tissues (8) In insects, circulating body fluids serve to distribute oxygen to tissues (8) In insects, circulating body fluids serve to distribute oxygen to tissues (9) The presence of non-respiratory air sacs, increases the efficiency of respiration in birds (8) In insects, circulating body fluids serve to distribute oxygen to tissues (9) The presence of non-respiratory air sacs, increases the efficiency of respiration in birds (9) In insects, circulating body fluids serve to distribute oxygen to tissues (9) The presence of non-respiratory air sacs, increases the efficiency of respiration in birds (9) In insects, circulating body fluids serve to distribute oxygen to tissues (9) In insects, circulating body fluids serve to distribute oxygen to tissues (9) In insects, circulating body fluids serve to distribute oxygen to issues (9) In insects, circulating body fluids serve to distribute oxygen to issues (9) In insects, circulating body fluids serve to distribute oxygen to issues (9) In insects, circulating body fluids serve to distribute oxygen to issues (9) In insects, circul                     |       |                                                                                                                              |                               |       | • •                    |                              |
| (2) One-half colourblind and one-half normal (3) Three-fourths colourblind and one-half normal (4) All colourblind (5) All colourblind (6) All colourblind (7) Cri-du-chat syndrome in humans is caused by the- (8) Fertilization of an XX egg by a normal Y-bearing sperm (9) Loss of half of the short arm of chromosome 5 (9) Loss of half of the long arm of chromosome 5 (9) Trisomy of 21st chromosome (1) Cuts the DNA molecule randomly (2) Cuts the DNA molecule at specific sites (3) Restriction endonuclease- (1) Cuts the DNA molecule at specific sites (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA (1) Lipoproteins (3) Prostaglandins (4) Glucagon (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (1) Limit of BOD prescribed by Central Pollution Control Board for the discharge of industrial and municipal waste waters into natural surface waters, is - (1) 3.0 ppm (2) <10 ppm (3) < 100 ppm (4) < 30 ppm (2) = 10 ppm (3) < 100 ppm (4) < 30 ppm (2) = 10 ppm (3) Cuts then plenty of water is available (2) Uricotelic when plenty of water is available (3) Uricotelic under conditions of water scarcity (4) Ammonotelic when plenty of water is available. (3) Uricotelic under conditions of water scarcity (4) Ammonotelic when plenty of water is available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q.175 |                                                                                                                              |                               |       |                        | · / ·                        |
| (3) Three-fourths colourblind and one-fourth normal (4) All colourblind (2) Cir-du-chat syndrome in humans is caused by the- (1) Fertilization of an XX egg by a normal Y-bearing sperm (2) Loss of half of the short arm of chromosome 5 (3) Loss of half of the long arm of chromosome 5 (4) Trisomy of 21sth chromosome (2) Cuts the DNA molecule are randomly (2) Cuts the DNA molecule at specific sites (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA  Q.178 Antibodies in our body are complex- (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (1) Limit of BOD prescribed by Central Pollution Control Board for the discharge of industrial and municipal waste waters into natural surface waters, is (1) Sa, 0 ppm (2) <10 ppm (3) < 100 ppm (4) < 30 ppm (2) (10 ppm (3) < 100 ppm (4) < 30 ppm (2) (10 ppm (3) < 100 ppm (4) < 30 ppm (2) (10 ppm (3) < 100 ppm (4) < 30 ppm (2) (10 ppm (3) < 100 ppm (4) < 30 ppm (2) (10 ppm (3) < 100 ppm (4) < 30 ppm (2) (10 ppm (3) < 100 ppm (4) < 30 ppm (4) < 30 ppm (5) (10 ppm (3) < 100 ppm (4) < 30 ppm (4) < 30 ppm (5) (10 ppm (3) < 100 ppm (4) < 30 ppm (4) < 30 ppm (5) (10 ppm (3) < 100 ppm (4) < 30 ppm (4) < 30 ppm (5) (10 ppm (3) < 100 ppm (4) < 30 ppm (4) < 30 ppm (5) (10 ppm (3) < 100 ppm (4) < 30 ppm (5) (10 ppm (3) < 100 ppm (4) < 30 ppm (5) (10 ppm (3) < 100 ppm (4) < 30 ppm (5) (10 ppm (3) < 100 ppm (4) < 30 ppm (5) (10 ppm (3) < 100 ppm (4) < 30 ppm (5) (10 ppm (3) < 100 ppm (4) < 30 ppm (5) (10 ppm (3) < 100 ppm (4) < 30 ppm (5) (10 ppm (3) < 10 ppm (3) < 100 ppm (4) < 30 ppm (5) (10 ppm (3) < 10 p                     |       | (1) All normal visione                                                                                                       | d                             | Q.183 |                        | e following statements is    |
| the efficiency of respiration in mammals  (4) All colourblind  (5) The presence of non-respiratory air sacs, increases the efficiency of respiration in mammals  (6) The presence of non-respiratory air sacs, increases the efficiency of respiration in birds  (7) Fertilization of an XX egg by a normal Y-bearing sperm  (8) Loss of half of the short arm of chromosome 5  (9) Loss of half of the long arm of chromosome 5  (4) Trisomy of 21st chromosome  (9) Loss of half of the long arm of chromosome 5  (4) Trisomy of 21st chromosome  (1) Cuts the DNA molecule randomly  (2) Cuts the DNA molecule at specific sites  (3) Restricts the synthesis of DNA inside the nucleus  (4) Synthesizes DNA  (1) Lipoproteins  (2) Steroids  (3) Prostaglandins  (4) Glycoproteins  (5) Steroids  (6) Limit of BOD prescribed by Central Pollution Control Board for the discharge of industrial and municipal waste waters into natural surface waters, is -  (1) Cutsic then plenty of water is available  (3) Uricotelic when plenty of water is available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | (2) One-half colourblin                                                                                                      | nd and one-half normal        |       |                        |                              |
| Q.176 Cri-du-chat syndrome in humans is caused by the- (1) Fertilization of an XX egg by a normal Y-bearing sperm (2) Loss of half of the short arm of chromosome 5 (3) Loss of half of the long arm of chromosome 5 (4) Trisomy of 21st chromosome  Q.177 Restriction endonuclease - (1) Cuts the DNA molecule randomly (2) Cuts the DNA molecule at specific sites (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA  Q.178 Antibodies in our body are complex- (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins  Q.185 Which hormone causes dilation of blood vessels, increased oxygen consumption an glucogenesis? (1) Adrenalin (4) Glucagon  Q.186 The causative agent of mad-cow disease is a- (1) Bacterium (2) Prion (3) Adrenalin (4) Virus  Q.187 The translocation of organic solutes in sieve tube members is supported by- (1) Root pressure and transpiration pull (2) P-proteins (3) Moss flow involving a carrier and ATP (4) Cytoplasmic streaming  Q.188 Biradial symmetry and lack of enidoblasts are the characteristics of- (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | ` '                                                                                                                          | blind and one-fourth normal   |       | the efficiency of      | f respiration in mammals     |
| (1) Fertilization of an XX egg by a normal Y-bearing sperm (2) Loss of half of the short arm of chromosome 5 (3) Loss of half of the long arm of chromosome 5 (4) Trisomy of 21 <sup>st</sup> chromosome  (1) Cuts the DNA molecule randomly (2) Cuts the DNA molecule at specific sites (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA  (4) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (1) Santipodies in our body are complex- (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (1) Santipodies in our body are sate waters, is - (1) Control Board for the discharge of industrial and municipal waste waters into natural surface waters, is - (1) Candidate the plenty of water is available (2) Uricotelic when plenty of water is available (3) Uricotelic under conditions of water searcity (4) Ammonotelic when plenty of water is available. (5) In insects, circulated oxygen to tissues of distribute oxygen to tissues (4) The principle of countercurrent flow facilitates efficient respiration in gills of fishes (2) Periplaneta (3) Hirudinaria (4) Octopus (3) Hirudinaria (2) Periplaneta (3) Hirudinaria (4) Octopus (3) Hirudinaria (4) Octopus (3) Hirudinaria (2) Periplaneta (4) Cytopus (3) Hirudinaria (2) Periplaneta (4) Cytopus (3) Hirudinaria (2) Periplaneta (4) Cytopus (3) Adrenalin (4) Glucago           | Q.176 |                                                                                                                              | e in humans is caused by      |       | increases the e        |                              |
| (2) Loss of half of the short arm of chromosome 5 (3) Loss of half of the long arm of chromosome 5 (4) Trisomy of 21st chromosome  (4) Trisomy of 21st chromosome  (5) Q.184 Which one of the following has an open circulatory system?  (6) Cuts the DNA molecule randomly (7) Cuts the DNA molecule at specific sites (8) Restricts the synthesis of DNA inside the nucleus (9) Synthesizes DNA  (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins  (2) Steroids (3) Worm (4) Glucagon  (3) Worm (4) Virus  (3) Worm (4) Virus  (2) Priplaneta (3) Hirudinaria (4) Octopus  (5) Adrenalin (6) Glucagon  (7) Limit of BOD prescribed by Central Pollution Control Board for the discharge of industrial and municipal waste waters into natural surface waters, is - (1) < 3.0 ppm (3) < 100 ppm (4) < 30 ppm (2) < 10 ppm (3) < 100 ppm (4) < 30 ppm (2) Priplaneta (3) Hirudinaria (4) Octopus  (3) Adrenalin (4) Glucagon  (4) Glucagon  (3) Worm (4) Virus  (3) Worm (4) Virus  (2) Priplaneta (3) Hirudinaria (4) Octopus  (3) Adrenalin (4) Glucagon  (1) Bacterium (2) Prion (3) Worm (4) Virus  (2) Priproteins (3) Worm (4) Virus  (2) Priproteins (3) Worm (3) Worm (4) Virus  (2) Priproteins (3) Worm (3) Worm (4) Virus  (2) Priproteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming  (4) Cytoplasmic streaming  (4) Cytoplasmic streaming  (4) Cytoplasmic streaming  (5) Extraction of organic solutes in sieve tube members is supported by- (1) Root pressure and transpiration pull (2) Priproteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming  (5) Extraction of blood vessels, increased oxygen consumption an glucogenesis? (1) Bacterium (2) Priproteins (3) Worm (3) Worm (4) Virus                                                                                                                                                                                                             |       | the- (1) Fertilization of an XX egg by a normal                                                                              |                               |       |                        |                              |
| (3) Loss of half of the long arm of chromosome 5 (4) Trisomy of 21st chromosome  Q.177 Restriction endonuclease - (1) Cuts the DNA molecule randomly (2) Cuts the DNA molecule at specific sites (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA  Q.188 Mhich one of the following has an open circulatory system? (1) Pheretima (2) Periplaneta (3) Hirudinaria (4) Octopus  Q.189 Which one of the following has an open circulatory system? (1) Pheretima (2) Periplaneta (3) Hirudinaria (4) Octopus  Q.180 Which one of the following has an open circulatory system? (1) Pheretima (2) Periplaneta (3) Hirudinaria (4) Octopus  Q.180 Which one of the following has an open circulatory system? (1) Pheretima (2) Periplaneta (3) Hirudinaria (4) Octopus  Q.180 Which one of the following has an open circulatory system? (1) Pheretima (2) Periplaneta (3) Hirudinaria (4) Octopus  Q.180 Which one of the following has an open circulatory system? (1) Pheretima (2) Periplaneta (3) Hirudinaria (4) Octopus  Q.180 Which one of the following has an open circulatory system? (1) Pheretima (2) Periplaneta (3) Hirudinaria (4) Octopus  Q.180 Which one of the following has an open circulatory system? (1) ACTH (2) Insulin (3) Adrenalin (4) Glucagon  Q.180 The causative agent of mad-cow disease is a- (1) Bacterium (2) Prion (3) Worm (4) Virus  Q.181 The translocation of organic solutes in sieve tube members is supported by- (1) Root pressure and transpiration pull (2) P-proteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming  Q.182 Biradial symmetry and lack of cnidoblasts are the characteristics of- (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                       |       | • •                                                                                                                          | h                             |       |                        |                              |
| Q.184 Which one of the following has an open circulatory system?  Q.177 Restriction endonuclease - (1) Cuts the DNA molecule randomly (2) Cuts the DNA molecule at specific sites (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA  Q.185 Which hormone causes dilation of blood vessels, increased oxygen consumption an glucogenesis? (1) Antibodies in our body are complex- (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins  Q.186 The causative agent of mad-cow disease is a- (1) Bacterium (2) Prion (3) Worm (4) Virus  Q.187 The translocation of organic solutes in sieve tube members is supported by- (1) Control Board for the discharge of industrial and municipal waste waters into natural surface waters, is - (1) < 3.0 ppm (2) <10 ppm (3) < 100 ppm (4) < 30 ppm (2) <10 ppm (3) Control Board for the discharge of industrial and municipal waste waters into natural surface waters, is - (1) Cuts the DNA molecule randomly (2) Root pressure and transpiration pull (2) P-proteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming (2) Piroteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming (4) Cytoplasmic streaming (5) Hirudinaria (4) Octopus (5) Hirudinaria (4) Octopus (6) Hirudinaria (4) Octopus (6) Hirudinaria (4) Octopus (6) Hirudinaria (7) Hirudinaria (8) Hirudinaria (9) Hirudinaria (9) Hirudinaria (1) LACTH (1) ACTH (2) Insulin (3) Adrenalin (4) Glucagon (1) Bacterium (2) Prion (3) Worm (4) Virus (1) Root pressure and transpiration pull (2) P-proteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming (5) Hirudinaria (6) Octopus (6) Hirudinaria (7) Prion (8) Adrenalin (9) Glucagon (1) Bacterium (1) Bacterium (2) Prion (3) Worm (4) Virus (4) Virus (5) Hirudinaria (4) Octopus (6) Glucagon (7) Hirudinaria (8) Hirudinaria (9) Hirudinaria (1) Actrolling (1) Bacterium (2) Prion (3) Worm (4) Virus (5) Prion (6) Hirudinaria (7) Glucagon (7) Hirudinaria (8) Hirudinaria (9) Hirudinaria (1) Actrolling (1) Root pressure and transpiration pull                     |       | ` '                                                                                                                          |                               |       |                        | ient respiration in gills of |
| circulatory system?  (1) Cuts the DNA molecule randomly (2) Cuts the DNA molecule at specific sites (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA  (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins  (4) Synthesizes DNA  (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins  (4) Synthesizes DNA  (5) Limit of BOD prescribed by Central Pollution Control Board for the discharge of industrial and municipal waste waters into natural surface waters, is - (1) < 3.0 ppm (2) < 10 ppm (3) < 100 ppm (4) < 30 ppm  (2) Limit of Bod prescribed by Central Pollution Control Board for the discharge of industrial and municipal waste waters into natural surface waters, is - (1) Cyntheside When plenty of water is available (2) Uricotelic when plenty of water is available (3) Uricotelic under conditions of water scarcity (4) Ammonotelic when plenty of water is available.  (3) Hirudinaria (4) Octopus  (3) Hirudinaria (4) Octopus  (4) North (2) Insulin (3) Adrenalin (4) Glucagon  (1) ACTH (2) Insulin (3) Worm (4) Virus  (3) Worm (4) Virus  (4) Virus  (5) Insulin (4) Glucagon  (7) Bacterium (2) Prion (3) Worm (4) Virus  (4) Virus  (5) Insulin (4) Glucagon  (7) Bacterium (2) Prion (3) Worm (4) Virus  (4) Virus  (5) Insulin (4) Glucagon  (7) Bacterium (2) Prion (3) Worm (4) Virus  (5) Insulin (4) Glucagon  (7) Bacterium (2) Prion (3) Worm (4) Virus  (6) Proteins (2) Steroids (1) Bacterium (2) Prion (3) Worm (4) Virus  (6) Proteins (2) Crion plane and transpiration pull (2) P-proteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming  (6) Crion plane at the characteristics of- (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                             |       |                                                                                                                              | _                             | O 184 |                        | e following has an open      |
| (1) Cuts the DNA molecule randomly (2) Cuts the DNA molecule at specific sites (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA  (4) Synthesizes DNA  (5) Mirudinaria (4) Octopus  Q.185 Which hormone causes dilation of blood vessels, increased oxygen consumption an glucogenesis? (1) ACTH (2) Insulin (3) Adrenalin (4) Glucagon  (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (2) Prion (3) Adrenalin (2) Prion (3) Worm (4) Virus  Q.186 The causative agent of mad-cow disease is a- (1) Bacterium (2) Prion (3) Worm (4) Virus  Q.187 The translocation of organic solutes in sieve tube members is supported by- (1) Root pressure and transpiration pull (2) P-proteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming  Q.188 Biradial symmetry and lack of enidoblasts are the characteristics of- (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | . ,                                                                                                                          |                               | Q.104 | circulatory system?    |                              |
| (2) Cuts the DNA molecule at specific sites (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA (4) Synthesizes DNA (5) Antibodies in our body are complex- (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (2) Prion (3) Worm (4) Virus  Q.186 The causative agent of mad-cow disease is a- (1) Bacterium (2) Prion (3) Worm (4) Virus  Q.187 The translocation of organic solutes in sieve tube members is supported by- (1) Root pressure and transpiration pull (2) P-proteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming  Q.188 Biradial symmetry and lack of enidoblasts are the characteristics of- (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q.177 |                                                                                                                              |                               |       | ` '                    | - · · · -                    |
| (3) Restricts the synthesis of DNA inside the nucleus (4) Synthesizes DNA (4) Synthesizes DNA (5) Antibodies in our body are complex- (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (5) Prostaglandins (6) Glycoproteins (7) Limit of BOD prescribed by Central Pollution Control Board for the discharge of industrial and municipal waste waters into natural surface waters, is (1) < 3.0 ppm (2) <10 ppm (3) < 100 ppm (4) < 30 ppm (2) Uricotelic when plenty of water is available (2) Uricotelic when plenty of water is available (3) Uricotelic under conditions of water sarcity (4) Ammonotelic when plenty of water is available. (3) Aurelia and Paramecium  Which hormone causes dilation of blood vessels, increased oxygen consumption an glucogenesis? (1) ACTH (2) Insulin (3) Adrenalin (4) Glucagon (3) Worm (4) Virus  Q.187 The translocation of organic solutes in sieve tube members is supported by- (1) Root pressure and transpiration pull (2) P-proteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming  Q.188 Biradial symmetry and lack of cnidoblasts are the characteristics of- (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | * *                                                                                                                          | •                             |       | (3) Hirudinaria        | (4) Octopus                  |
| vessels, increased oxygen consumption an glucogenesis? (1) ACTH (2) Insulin (2) Insulin (3) Adrenalin (4) Glucagon (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins (3) Prostaglandins (4) Glycoproteins (3) Earthworms are - (1) Ureotelic when plenty of water is available (2) Uricotelic under conditions of water savailable. (3) Uricotelic when plenty of water is available. (4) Synthesizes DNA (1) ACTH (2) Insulin (3) Adrenalin (4) Glucagon (3) Adrenalin (2) Prion (3) Worm (4) Virus (3) Worm (4) Virus (4) Virus (5) Proteins (6) Mass flow involving a carrier and ATP (6) Cytoplasmic streaming (1) Ureotelic when plenty of water is available (2) Uricotelic when plenty of water is available. (3) Uricotelic when plenty of water is available. (4) Synthesizes DNA (1) ACTH (2) Insulin (3) Adrenalin (4) Glucagon (3) Worm (4) Virus (3) Worm (4) Virus (1) Root pressure and transpiration pull (2) P-proteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming (4) Cytoplasmic streaming (5) Uricotelic when plenty of water is available (2) Uricotelic when plenty of water is available (3) Uricotelic when plenty of water is available. (4) Synthesizes Oxygen consumption an glucogenesis? (1) ACTH (3) Adrenalin (4) Glucagon (3) Worm (4) Virus (5) Worm (4) Virus (6) Prion (3) Worm (4) Virus (7) Prion (1) Racterium (2) Prion (3) Worm (4) Virus (5) Prion (6) Worm (7) Prion (7) Prion (8) Worm (9) Prion (9) Worm (1) Starfish and sea anemone (1) Ureotelic when plenty of water is available.                                                                                                                                                                                                                                                                     |       | ` '                                                                                                                          | *                             | O 105 | Which harmon           | one diletion of blood        |
| Q.178 Antibodies in our body are complex- (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins  Q.180 The causative agent of mad-cow disease is a- (1) Bacterium (2) Prion (3) Worm (4) Virus  Q.181 The translocation of organic solutes in sieve tube members is supported by- (1) < 3.0 ppm (2) <10 ppm (3) < 100 ppm (4) < 30 ppm (3) Uricotelic when plenty of water is available (2) Uricotelic when plenty of water is available (3) Uricotelic under conditions of water scarcity (4) Ammonotelic when plenty of water is available.  Q.182 Gradualin (4) Glucagon  (1) ACTH (2) Insulin (3) Adrenalin (4) Glucagon  (4) Virus  Q.183 The translocation of organic solutes in sieve tube members is supported by- (1) Root pressure and transpiration pull (2) P-proteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming  Q.183 Biradial symmetry and lack of cnidoblasts are the characteristics of- (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | nucleus                                                                                                                      | thesis of DNA inside the      | Q.165 | vessels, increased     |                              |
| Q.178 Antibodies in our body are complex- (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins Q.186 The causative agent of mad-cow disease is a- (1) Bacterium (2) Prion (2) Prion (3) Worm (4) Virus  Q.187 The translocation of organic solutes in sieve tube members is supported by- (1) < 3.0 ppm (2) <10 ppm (3) < 100 ppm (4) < 30 ppm (1) Ureotelic when plenty of water is available (2) Uricotelic when plenty of water is available (3) Uricotelic under conditions of water scarcity (4) Ammonotelic when plenty of water is available.  Q.188 (3) Adrenalin (4) Glucagon  Q.180 The causative agent of mad-cow disease is a- (1) Bacterium (2) Prion (3) Worm (4) Virus  Q.187 The translocation of organic solutes in sieve tube members is supported by- (1) Root pressure and transpiration pull (2) P-proteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming (4) Cytoplasmic solutes in sieve tube members is supported by- (1) Root pressure and transpiration pull (2) P-proteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | (4) Symmesizes DNA                                                                                                           |                               |       |                        | (2) Insulin                  |
| (1) Lipoproteins (2) Steroids (3) Prostaglandins (4) Glycoproteins  Q.186 The causative agent of mad-cow disease is a- (1) Bacterium (2) Prion (3) Worm (4) Virus  Q.187 The translocation of organic solutes in sieve tube members is supported by- (1) < 3.0 ppm (2) < 10 ppm (3) < 100 ppm (4) < 30 ppm (2) Uricotelic when plenty of water is available (2) Uricotelic when plenty of water is available (3) Uricotelic under conditions of water scarcity (4) Ammonotelic when plenty of water is available.  Q.186 The causative agent of mad-cow disease is a- (1) Bacterium (2) Prion (3) Worm (4) Virus  Q.187 The translocation of organic solutes in sieve tube members is supported by- (1) Root pressure and transpiration pull (2) P-proteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming  Q.188 Biradial symmetry and lack of cnidoblasts are the characteristics of- (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | O 178 | Antibodies in our body                                                                                                       | y are compley                 |       | ` /                    | ` '                          |
| (3) Prostaglandins (4) Glycoproteins  Q.186 The causative agent of mad-cow disease is a- (1) Bacterium (2) Prion (3) Worm (4) Virus  Q.187 The translocation of organic solutes in sieve tube members is supported by- (1) < 3.0 ppm (2) < 10 ppm (3) < 100 ppm (4) < 30 ppm (1) Ureotelic when plenty of water is available (2) Uricotelic under conditions of water savailable (3) Uricotelic under conditions of water savailable. (4) Ammonotelic when plenty of water is available. (5) Uricotelic under conditions of water is available. (6) Uricotelic under conditions of water is available. (7) Uricotelic under conditions of water is available. (8) Uricotelic under conditions of water is available. (9) Uricotelic under conditions of water is available. (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q.170 |                                                                                                                              | _                             |       | ` '                    | , , ,                        |
| Q.179 Limit of BOD prescribed by Central Pollution Control Board for the discharge of industrial and municipal waste waters into natural surface waters, is - (1) < 3.0 ppm (2) < 10 ppm (3) < 100 ppm (4) < 30 ppm  (2) Prion (3) Worm (4) Virus  Q.187 The translocation of organic solutes in sieve tube members is supported by- (1) Root pressure and transpiration pull (2) P-proteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming  Q.188 Biradial symmetry and lack of cnidoblasts are the characteristics of- (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | · / I I                                                                                                                      | ` '                           | Q.186 | The causative agent    | of mad-cow disease is a-     |
| Control Board for the discharge of industrial and municipal waste waters into natural surface waters, is -  (1) < 3.0 ppm (2) <10 ppm (3) < 100 ppm (4) < 30 ppm  (1) Ureotelic when plenty of water is available (2) Uricotelic when plenty of water is available (3) Uricotelic under conditions of water scarcity (4) Ammonotelic when plenty of water is available.  Q.188 Biradial symmetry and lack of cnidoblasts are the characteristics of- (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | (-)                                                                                                                          | ( ) )                         |       | (1) Bacterium          | (2) Prion                    |
| municipal waste waters into natural surface waters, is -  (1) < 3.0 ppm (2) < 10 ppm (3) < 100 ppm (4) < 30 ppm  (1) Ureotelic when plenty of water is available (2) Uricotelic under conditions of water scarcity (4) Ammonotelic when plenty of water is available.  (2) Uricotelic under conditions of water scarcity (4) Ammonotelic when plenty of water is available.  (3) Uricotelic under conditions of water scarcity (4) Ammonotelic when plenty of water is available.  (3) Uricotelic under conditions of water scarcity (4) Ammonotelic when plenty of water is available.  (4) Cytoplasmic streaming  (5) Uricotelic under conditions of water scarcity (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q.179 | Limit of BOD prescr                                                                                                          | ribed by Central Pollution    |       | (3) Worm               | (4) Virus                    |
| waters, is -  (1) < 3.0 ppm (2) < 10 ppm (3) < 100 ppm (4) < 30 ppm  (2) P-proteins (3) Mass flow involving a carrier and ATP  (4) Cytoplasmic streaming  (1) Uricotelic when plenty of water is available (2) Uricotelic under conditions of water scarcity (4) Ammonotelic when plenty of water is available.  (2) Uricotelic under conditions of water scarcity (4) Ammonotelic when plenty of water is available.  (5) Uricotelic under conditions of water scarcity (6) Ammonotelic when plenty of water is available.  (6) Uricotelic under conditions of water scarcity (7) Starfish and sea anemone (8) Ctenoplana and Beroe (9) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                                                                                                              |                               |       |                        |                              |
| (1) < 3.0 ppm (2) <10 ppm<br>(3) < 100 ppm (4) < 30 ppm<br>(2) P-proteins<br>(3) Mass flow involving a carrier and ATP<br>(4) Cytoplasmic streaming<br>(1) Ureotelic when plenty of water is available<br>(2) Uricotelic under conditions of water scarcity<br>(3) Uricotelic under conditions of water scarcity<br>(4) Ammonotelic when plenty of water is available.<br>(3) Uricotelic under conditions of water scarcity<br>(4) Ammonotelic when plenty of water is available.<br>(2) Ctenoplana and Beroe<br>(3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | -                                                                                                                            | ters into natural surface     | Q.187 |                        |                              |
| (3) < 100 ppm (4) < 30 ppm  (2) P-proteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming  (1) Ureotelic when plenty of water is available (2) Uricotelic under conditions of water scarcity (3) Uricotelic under conditions of water scarcity (4) Ammonotelic when plenty of water is available.  (2) P-proteins (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming  (3) Starfish and lack of cnidoblasts are the characteristics of- (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                                                                                                              | (2) <10                       |       | *                      | -                            |
| Q.180 Earthworms are - (1) Ureotelic when plenty of water is available (2) Uricotelic when plenty of water is available (3) Uricotelic under conditions of water scarcity (4) Ammonotelic when plenty of water is available.  (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming  (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming  (3) Mass flow involving a carrier and ATP (4) Cytoplasmic streaming  (1) Starfish and lack of cnidoblasts are the characteristics of- (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                                                                              |                               |       |                        | a transpiration pull         |
| Q.180 Earthworms are -  (1) Ureotelic when plenty of water is available (2) Uricotelic when plenty of water is available (3) Uricotelic under conditions of water scarcity (4) Ammonotelic when plenty of water is available.  Q.188 Biradial symmetry and lack of cnidoblasts are the characteristics of- (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | (3) < 100 ppm                                                                                                                | (4) < 30 ppm                  |       | · / •                  | ving a comion and ATD        |
| (2) Uricotelic when plenty of water is available (3) Uricotelic under conditions of water scarcity (4) Ammonotelic when plenty of water is available.  Q.188 Biradial symmetry and lack of enidoblasts are the characteristics of- (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q.180 |                                                                                                                              |                               |       |                        | _                            |
| (4) Ammonotelic when plenty of water is available. (1) Starfish and sea anemone (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | <ul><li>(2) Uricotelic when plenty of water is available</li><li>(3) Uricotelic under conditions of water scarcity</li></ul> |                               | Q.188 |                        |                              |
| (4) Ammonotetic when pienty of water is available. (2) Ctenoplana and Beroe (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                                                                                                              |                               |       |                        |                              |
| (3) Aurelia and Paramecium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | (4) Ammonotelic when                                                                                                         | plenty of water is available. |       | ` '                    |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                                                                                                              |                               |       | • •                    |                              |
| (4) Hydra and starfish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                                                                                                              |                               |       | (4) Hydra and starfis  |                              |

| Q.189    | The arrangement of embryo sac in the di | of the nuclei in a normal                  | Q.196 | In which one of the following sets of animals do all the four give birth to young ones? |
|----------|-----------------------------------------|--------------------------------------------|-------|-----------------------------------------------------------------------------------------|
|          | (1) 2 + 4 + 2                           | (2) 3 + 2 + 3                              |       | (1) Lion, Bat, Whale, Ostrich                                                           |
|          | (3) 2 + 3 + 3                           | (4) 3 + 3 + 2                              |       | (2) Platypus, Penguin, Bat, Hippopotamus                                                |
|          | (0) = 0                                 | ( )                                        |       | (3) Shrew, Bat, Cat, Kiwi                                                               |
| Q.190    | An enzyme that cabarley seeds is-       | an stimulate germination of                |       | (4) Kangaroo, Hedgehog, Dolphin, Loris                                                  |
|          | (1) $\alpha$ - amylase                  | (2) Lipase                                 | Q.197 | Sickle cell anemia has not been eliminated from                                         |
|          | (3) Protease                            | (4) Invertase                              |       | the African population because-                                                         |
|          | (5) 11000000                            | (1) 111, 61,015                            |       | (1) It is controlled by recessive genes                                                 |
| Q.191    | In a cereal grain the                   | single cotyledon of embryo                 |       | (2) It is not a fatal disease                                                           |
| <b>C</b> | is represented by -                     |                                            |       | (3) It provides immunity against malaria                                                |
|          | (1) Coleorhiza                          | (2) Scutellum                              |       | (4) It is controlled by dominant genes                                                  |
|          | (3) Prophyll                            | (4) Coleoptile                             |       |                                                                                         |
| Q.192    | The majority of earl                    | oon dioxide produced by our                | Q.198 | Two common characters found in centipede, cockroach, and crab are-                      |
| Q.192    | body cells is transpo                   |                                            |       | (1) Compound eyes and anal cerci                                                        |
|          | (1) Dissolved in the                    | _                                          |       | (2) Jointed legs and chitinous exoskeleton                                              |
|          | (2) As bicarbonates                     |                                            |       | (3) Green gland and tracheae                                                            |
|          | (3) As carbonates                       |                                            |       | (4) Book lungs and antennae                                                             |
|          | (4) Attached to hemo                    | oglobin                                    |       |                                                                                         |
|          |                                         |                                            | Q.199 | Both sickle cell anemia and Huntington's chorea                                         |
| Q.193    | Triticale, the first                    | man-made cereal crop, has                  |       | are-                                                                                    |
|          | been obtained by cro                    | ossing wheat with                          |       | (1) Bacteria-related diseases                                                           |
|          | (1) Rye                                 | (2) Pearl millet                           |       | (2) Congenital disorders                                                                |
|          | (3) Sugarcane                           | (4) Barley                                 |       | (3) Pollutant-induced disorders                                                         |
|          |                                         |                                            |       | (4) Virus-related diseases                                                              |
| Q.194    |                                         | rus-free plants through tissue             |       |                                                                                         |
|          | culture the best meth                   |                                            | Q.200 | Angiotensinogen is a protein produced and secreted by-                                  |
|          | (1) Protoplast culture                  | e                                          |       | (1) Macula densa cells                                                                  |
|          | (2) Embryo rescue                       |                                            |       | (2) Endothelial cells (cells lining the blood vessels)                                  |
|          | (3) Anther culture                      |                                            |       | (3) Liver cells                                                                         |
|          | (4) Meristem culture                    | ,                                          |       | (4) Juxtaglomerular (JG) cells                                                          |
| O 105    | UIV that agus as AIF                    | OS first starts dostroving                 |       | (4) Juxtugionicidiai (30) cens                                                          |
| Q.195    | (1) B-lymphocytes                       | OS, first starts destroying (2) Leucocytes |       |                                                                                         |
|          | (3) Thrombocytes                        | (4) Helper T-lymphocytes                   |       |                                                                                         |
|          | (3) Thrombocytes                        | (4) Tresper 1-symphocytes                  |       |                                                                                         |
|          |                                         |                                            |       |                                                                                         |
|          |                                         |                                            |       |                                                                                         |
|          |                                         |                                            |       |                                                                                         |