Knowledge Compilation und #SAT

Narek Bojikian

Humboldt University of Berlin

08.01.2019

• The SAT Problem (SAT).

SAT

- Given a Boolean formula φ of n variables.
- ? Find an assignment that satisfies φ .

- The SAT Problem (SAT).
- Counting SAT Problem (**#SAT**).

#SAT

- Given a Boolean formula φ of n variables.
- ? How many assignments in $2^{\mathrm{Var}(\varphi)}$ satisfy φ ?

- The SAT Problem (SAT).
- Counting SAT Problem (#SAT).

Notation

Let $SAT(\chi) \subseteq 2^{VAR(\chi)}$ be the set of all satisfying assignments of χ $SAT(\chi) = \{\rho : VAR(\chi) \to \{0,1\} : \rho(\chi) = 1\}.$

- The SAT Problem (SAT).
- Counting SAT Problem (#SAT).

Notation

Let $SAT(\chi) \subseteq 2^{VAR(\chi)}$ be the set of all satisfying assignments of χ $SAT(\chi) = \{\rho : VAR(\chi) \to \{0,1\} : \rho(\chi) = 1\}.$

SAT: Is $SAT(\varphi) = \emptyset$. #SAT: Find $|SAT(\varphi)|$.

- The SAT Problem (SAT).
- Counting SAT Problem (#SAT).

Example

$$\varphi = X_1 \wedge (X_2 \vee \neg X_3)$$

Clearly, $\#SAT(\varphi) = 3$.

- The SAT Problem (SAT).
- Counting SAT Problem (#SAT).
- Negation Normal Form (NNF).

Negation Normal Form

A Boolean formula φ is in NNF form, if it contains only disjunctions and conjunctions over a set of positive and(or) negative literals.

Example. $\varphi = X_1 \vee \neg X_2$.

- The SAT Problem (SAT).
- Counting SAT Problem (#SAT).
- Negation Normal Form (NNF).
- Conjunctive Normal Form (CNF).

Conjunctive Normal Form

A Boolean formula φ is in CNF, if it is a conjunction of one or more clauses, where each clauses is a disjunction of one or more literals. Note that each CNF formula is an NNF formula as well.

- The SAT Problem (SAT).
- Counting SAT Problem (#SAT).
- Negation Normal Form (NNF).
- Conjunctive Normal Form (CNF).
- Decomposable Negation Normal Form (DNNF).

Decomposable Negation Normal Form

A Boolean formula φ is in DNNF, if it is in NNF and for each conjunction subformula $phi' := \psi_1 \wedge \psi_2$ we have $VAR(\psi_1) \cap VAR(\psi_2) = \emptyset$.

- The SAT Problem (SAT).
- Counting SAT Problem (#SAT).
- Negation Normal Form (NNF).
- Conjunctive Normal Form (CNF).
- Decomposable Negation Normal Form (DNNF).
- deterministic Decomposable Negation Normal Form (d-DNNF).

deterministic Decomposable Negation Normal Form

A Boolean formula φ is in d-DNNF, if it is in DNNF and for each disjunction subformula $\varphi' = \psi_1 \vee \psi_2$ we have $SAT(\psi_1) \cap SAT(\psi_2) = \emptyset$.

- The SAT Problem (SAT).
- Counting SAT Problem (#SAT).
- Negation Normal Form (NNF).
- Conjunctive Normal Form (CNF).
- Decomposable Negation Normal Form (DNNF).
- deterministic Decomposable Negation Normal Form (d-DNNF).
- decision Decomposable Negation Normal Form (dec-DNNF).

decision Decomposable Negation Normal Form

A Boolean formula φ is in dec-DNNF, if it is in DNNF and each disjunction subformula φ' is of the form $\varphi' = (X \wedge \psi_1) \vee (\neg X \wedge \psi_2)$ for some variable $X \in \mathrm{VAR}(\varphi)$.

- The SAT Problem (SAT).
- Counting SAT Problem (#SAT).
- Negation Normal Form (NNF).
- Conjunctive Normal Form (CNF).
- Decomposable Negation Normal Form (DNNF).
- deterministic Decomposable Negation Normal Form (d-DNNF).
- decision Decomposable Negation Normal Form (dec-DNNF).

decision Decomposable Negation Normal Form

A Boolean formula φ is in dec-DNNF, if it is in DNNF and each disjunction subformula φ' is of the form $\varphi' = (X \wedge \psi_1) \vee (\neg X \wedge \psi_2)$ for some variable $X \in \mathrm{VAR}(\varphi)$.

Note. Each dec-DNNF is a d-DNNF.

Assignments

• Given a CNF Formula φ , an **assignment** for C is a function $\tau: VAR(C) \rightarrow \{0,1\}.$

Assignments¹

- Given a CNF Formula φ , an **assignment** for C is a function $\tau: VAR(C) \rightarrow \{0,1\}.$
- For $V' \subseteq VAR(C)$, we define the **partial assignment** $\tau_{|V'}: V' \to \{0,1\}$ as τ restricted to the variables in V'.

Assignments

- Given a CNF Formula φ , an **assignment** for C is a function $\tau: VAR(C) \rightarrow \{0,1\}.$
- For $V' \subseteq VAR(C)$, we define the **partial assignment** $\tau_{|V'}: V' \to \{0,1\}$ as τ restricted to the variables in V'.
- A partial assignment $\tau_{|V'}$ satisfies a CNF-formula φ $(\tau_{|V'} \models \varphi)$, if for each clause $C \in \varphi$ there is a variable $v \in VAR(C) \cap V'$ such that $\tau_{|V'}(v) = 1$ if and only if v appears in C as a positive literal.

Assignments

- Given a CNF Formula φ , an **assignment** for C is a function $\tau: VAR(C) \to \{0,1\}.$
- For $V' \subseteq VAR(C)$, we define the **partial assignment** $\tau_{|V'}: V' \to \{0,1\}$ as τ restricted to the variables in V'.
- A partial assignment $\tau_{|V'}$ satisfies a CNF-formula φ $(\tau_{|V'} \models \varphi)$, if for each clause $C \in \varphi$ there is a variable $v \in VAR(C) \cap V'$ such that $\tau_{|V'}(v) = 1$ if and only if v appears in C as a positive literal.

Example

$$\varphi := (v_1 \vee \neg v_2 \vee v_3) \wedge (v_1 lor v_2) \wedge (\neg v_2 \vee \neg v_3)$$

For $V'=\{v_1,v_2\}, \tau_{|V'}(v_1)=1, \tau_{|V'}(v_2)=0$, the partial assignment $\tau_{|V'}$ satisfies φ .

- Hypergraph \mathcal{H} .
 - A set of vertices $V(\mathcal{H})$.
 - Edges $E(\mathcal{H})$, defined as subsets over $V(\mathcal{H})$.

 $^{^{1}}e_{i>i}:=e\cap\{v_{i},\ldots v_{n}\}.$

- Hypergraph \mathcal{H} .
 - A set of vertices $V(\mathcal{H})$.
 - Edges $E(\mathcal{H})$, defined as subsets over $V(\mathcal{H})$.
- A walk is sequence $(e_1, x_1, \dots, x_n, e_{n+1})$, $e_i \in \mathcal{H}, x_i \in V(\mathcal{H})$ and $x_i \in e_i \cap e_{i-1}$ for all $i \in [n]$.

 $^{{}^1}e_{1>i}:=e\cap\{v_i,\ldots v_n\}.$

- Hypergraph \mathcal{H} .
 - A set of vertices $V(\mathcal{H})$.
 - Edges $E(\mathcal{H})$, defined as subsets over $V(\mathcal{H})$.
- A walk is sequence $(e_1, x_1, \dots, x_n, e_{n+1})$, $e_i \in \mathcal{H}, x_i \in V(\mathcal{H})$ and $x_i \in e_i \cap e_{i-1}$ for all $i \in [n]$.
- A path is a walk that never goes twice through the same vertex nor the same edge.

 $^{{}^1}e_{1>i}:=e\cap\{v_i,\ldots v_n\}.$

- Hypergraph \mathcal{H} .
 - A set of vertices $V(\mathcal{H})$.
 - Edges $E(\mathcal{H})$, defined as subsets over $V(\mathcal{H})$.
- A walk is sequence $(e_1, x_1, \dots, x_n, e_{n+1})$, $e_i \in \mathcal{H}, x_i \in V(\mathcal{H})$ and $x_i \in e_i \cap e_{i-1}$ for all $i \in [n]$.
- A path is a walk that never goes twice through the same vertex nor the same edge.
- Different ways to translate acyclicity to hypergraphs.

 $^{^{1}}e_{1>i}:=e\cap\{v_{i},\ldots v_{n}\}.$

• Let $\rho := v_1, \dots v_n$ be an enumeration of the vertices.

- Let $\rho := v_1, \dots v_n$ be an enumeration of the vertices.
- \bullet ρ is a β -elimination, if for all

- Let $\rho := v_1, \dots v_n$ be an enumeration of the vertices.
- ho is a eta-elimination, if for all $e_1, e_2 \in E(\mathcal{H})$ and $v_i \in e_1 \cap e_2$, $e_{1|>i} \subseteq e_2$ or $e_{2|>i} \subseteq e_1$.

- Let $\rho := v_1, \dots v_n$ be an enumeration of the vertices.
- ho is a eta-elimination, if for all $e_1,e_2\in E(\mathcal{H})$ and $v_i\in e_1\cap e_2,$ $e_{1|\geq i}\subseteq e_2$ or $e_{2|\geq i}\subseteq e_1.$
- A hypergraph is β -acyclic, if it admits a β -elimination.

- Let $\rho := v_1, \dots v_n$ be an enumeration of the vertices.
- ho is a eta-elimination, if for all $e_1,e_2\in E(\mathcal{H})$ and $v_i\in e_1\cap e_2$, $e_{1|>i}\subseteq e_2$ or $e_{2|>i}\subseteq e_1$.
- A hypergraph is β -acyclic, if it admits a β -elimination.
- We define $V_{\leq v_i} := \{v_j; j \leq i\}$.

Theoretical upper-bound on the practical method

• Let \mathcal{H} be a β -acyclic graph and $v_1, \ldots v_n$ a β -elimination.

Figure: Note that $e_2 \notin H_{e_3}^{v_2}$ meanwhile $e_2 \in H_{e_3}^{v_3}$

- Let \mathcal{H} be a β -acyclic graph and $v_1, \ldots v_n$ a β -elimination.
- For two edge $e, f \in \mathcal{H}$, e < f, if and only if $\max\{e\Delta f\} \in f$

Figure: Note that $e_2 \notin H_{e_3}^{v_2}$ meanwhile $e_2 \in H_{e_3}^{v_3}$

- Let \mathcal{H} be a β -acyclic graph and $v_1, \ldots v_n$ a β -elimination.
- For two edge $e, f \in \mathcal{H}$, e < f, if and only if $\max\{e\Delta f\} \in f$
- \mathcal{H}_e^{\times} denotes the subgraph of \mathcal{H} , that contain the edges f, such that there is a walk from f to e that goes only through edges smaller than e and vertices smaller than (or equal to) x.

Figure: Note that $e_2 \notin H_{e_3}^{v_2}$ meanwhile $e_2 \in H_{e_3}^{v_3}$

Lemma (lemma 2)

For $x, y \in V(\mathcal{H}), x \leq y$ and for $e, f \in \mathcal{H}, e \leq f$,

$$\text{if } V(\mathcal{H}_e^x) \cap V(\mathcal{H}_f^y) \cap V_{\leq x} \neq \emptyset, \text{ then } \mathcal{H}_e^x \subseteq \mathcal{H}_f^y.$$

In particular, for all $y \in V(\mathcal{H})$,

if
$$e \in \mathcal{H}_f^y$$
, then $\mathcal{H}_e^y \subseteq \mathcal{H}_f^y$

Lemma (lemma 2)

For $x, y \in V(\mathcal{H}), x \leq y$ and for $e, f \in \mathcal{H}, e \leq f$,

$$\text{if } V(\mathcal{H}_e^x) \cap V(\mathcal{H}_f^y) \cap V_{\leq x} \neq \emptyset, \text{ then } \mathcal{H}_e^x \subseteq \mathcal{H}_f^y.$$

In particular, for all $y \in V(\mathcal{H})$,

if
$$e \in \mathcal{H}_f^y$$
, then $\mathcal{H}_e^y \subseteq \mathcal{H}_f^y$

Proof sketch. For $g \in \mathcal{H}_e^x$, there is a path from g to e using edges smaller than e and vertices smaller than x.

There is also a path from e to f. Concatenate both paths to get a path from g to f.

Lemma (lemma 4)

For $e, f \in \mathcal{H}, e \leq f$, If there exists a vertex $x \in V(\mathcal{H})$, such that $x \in e \cap f$, then $e \cap V_{>x} \subseteq f$.

Lemma (lemma 4)

For $e, f \in \mathcal{H}, e \leq f$, If there exists a vertex $x \in V(\mathcal{H})$, such that $x \in e \cap f$, then $e \cap V_{>x} \subseteq f$.

Proof sketch. If $y \in e \setminus f$ such that y > x, then \mathcal{H} is not β -acyclic.

A path $(e_1, x_1, \dots e_{n+1})$ is called decreasing, if $e_i > e_{i+1}$ and $x_i > x_{i+1}$ for all i.

Lemma (lemma 5)

For $x \in V(\mathcal{H})$, $e \in \mathcal{H}$ and $f \in \mathcal{H}_e^x$, there exists a decreasing path from e to f going through vertices smaller than x.

A path $(e_1, x_1, \dots e_{n+1})$ is called decreasing, if $e_i > e_{i+1}$ and $x_i > x_{i+1}$ for all i.

Lemma (lemma 5)

For $x \in V(\mathcal{H})$, $e \in \mathcal{H}$ and $f \in \mathcal{H}_e^x$, there exists a decreasing path from e to f going through vertices smaller than x.

Proof sketch. Any shortest path from e to f is decreasing. A path exists by definition.

Theorem (theorem 3)

For every $x \in V(\mathcal{H})$ and $e \in \mathcal{H}, V(\mathcal{H}_e^x) \cap V_{\geq x} \subseteq e$

Lemmas on β -acyclic graphs

Theorem (theorem 3)

For every $x \in V(\mathcal{H})$ and $e \in \mathcal{H}, V(\mathcal{H}_e^x) \cap V_{\geq x} \subseteq e$

Proof sketch. Prove that all edges of a decreasing path are subsets of the first edge by induction over the length of the path.

Lemmas on β -acyclic graphs

Theorem (theorem 3)

For every $x \in V(\mathcal{H})$ and $e \in \mathcal{H}, V(\mathcal{H}_e^{\mathsf{x}}) \cap V_{\geq \mathsf{x}} \subseteq e$

Proof sketch. Prove that all edges of a decreasing path are subsets of the first edge by induction over the length of the path.

Intuitively, this allows us to use dynamic programming, since all variables in \mathcal{H}_e^{\times} not contained in e are smaller than x.

• The hyper graph of a CNF-formula:

The hyper graph of a CNF-formula:
 Variables of each clause correspond to an edge.

The hyper graph of a CNF-formula:

Variables of each clause correspond to an edge.

Two clauses might correspond to the same edge.

- The hyper graph of a CNF-formula:
 - Variables of each clause correspond to an edge.
 - Two clauses might correspond to the same edge.
- A β -acyclic CNF-formula F is given.

- The hyper graph of a CNF-formula:
 Variables of each clause correspond to an edge.
- Two clauses might correspond to the same edge.
- A β -acyclic CNF-formula F is given.
- Let \mathcal{H} be the hyper graph of F.

- The hyper graph of a CNF-formula:
 - Variables of each clause correspond to an edge.
 - Two clauses might correspond to the same edge.
- A β -acyclic CNF-formula F is given.
- Let \mathcal{H} be the hyper graph of F.
- Let $v_1, \ldots v_n$ be an elimination order in \mathcal{H} .

- The hyper graph of a CNF-formula:
 Variables of each clause correspond to an edge.
 - Two clauses might correspond to the same edge.
- A β -acyclic CNF-formula F is given.
- Let \mathcal{H} be the hyper graph of F.
- Let $v_1, \ldots v_n$ be an elimination order in \mathcal{H} .
- Let F_e^x be a subformula of F that corresponds to \mathcal{H}_e^x ,

- The hyper graph of a CNF-formula:
 Variables of each clause correspond to an edge.
 Two clauses might correspond to the same edge.
- A β -acyclic CNF-formula F is given.
- Let \mathcal{H} be the hyper graph of F.
- Let $v_1, \ldots v_n$ be an elimination order in \mathcal{H} .
- Let F_e^{\times} be a subformula of F that corresponds to \mathcal{H}_e^{\times} , i.e. $C \in F_e^{\times}$, if $VAR(C) \in \mathcal{H}_e^{\times}$.

- The hyper graph of a CNF-formula:
 Variables of each clause correspond to an edge.
 Two clauses might correspond to the same edge.
- A β -acyclic CNF-formula F is given.
- Let \mathcal{H} be the hyper graph of F.
- Let $v_1, \ldots v_n$ be an elimination order in \mathcal{H} .
- Let F_e^{\times} be a subformula of F that corresponds to \mathcal{H}_e^{\times} , i.e. $C \in F_e^{\times}$, if $VAR(C) \in \mathcal{H}_e^{\times}$.
- For a clause C, the partial assignment τ_C is defined over VAR(C) as the only assignment that does not satisfy C,

- The hyper graph of a CNF-formula:
 - Variables of each clause correspond to an edge.

Two clauses might correspond to the same edge.

- A β -acyclic CNF-formula F is given.
- Let \mathcal{H} be the hyper graph of F.
- Let $v_1, \ldots v_n$ be an elimination order in \mathcal{H} .
- Let F_e^{\times} be a subformula of F that corresponds to \mathcal{H}_e^{\times} , i.e. $C \in F_e^{\times}$, if $VAR(C) \in \mathcal{H}_e^{\times}$.
- For a clause C, the partial assignment τ_C is defined over VAR(C) as the only assignment that does not satisfy C,
 - i.e. for $x \in C$, $\tau_C(x) = 1$ if and only if x appears as a negative literal in C.

- The hyper graph of a CNF-formula:
 Variables of each clause correspond to an edge.
 - Two clauses might correspond to the same edge.
- A β -acyclic CNF-formula F is given.
- Let \mathcal{H} be the hyper graph of F.
- Let $v_1, \ldots v_n$ be an elimination order in \mathcal{H} .
- Let F_e^{\times} be a subformula of F that corresponds to \mathcal{H}_e^{\times} , i.e. $C \in F_e^{\times}$, if $VAR(C) \in \mathcal{H}_e^{\times}$.
- For a clause C, the partial assignment τ_C is defined over VAR(C) as the only assignment that does not satisfy C,
 - i.e. for $x \in C$, $\tau_C(x) = 1$ if and only if x appears as a negative literal in C.
- We define $\tau_C^{\times} := \tau_{C|\geq_X}$,

• The hyper graph of a CNF-formula:

Variables of each clause correspond to an edge.

Two clauses might correspond to the same edge.

- A β -acyclic CNF-formula F is given.
- Let \mathcal{H} be the hyper graph of F.
- Let $v_1, \ldots v_n$ be an elimination order in \mathcal{H} .
- Let F_e^{\times} be a subformula of F that corresponds to \mathcal{H}_e^{\times} , i.e. $C \in F_e^{\times}$, if $VAR(C) \in \mathcal{H}_e^{\times}$.
- For a clause C, the partial assignment τ_C is defined over VAR(C) as the only assignment that does not satisfy C,
 - i.e. for $x \in C$, $\tau_C(x) = 1$ if and only if x appears as a negative literal in C.
- We define $\tau_C^{\mathsf{x}} := \tau_{C|\geq \mathsf{x}}$,
 - i.e. $F[\tau_C^x]$ results from F by removing all variables greater than x from each clause.

Lemma (lemma 6)

Let $x \neq x_1 \in \mathrm{VAR}(F)$ and let y be the predecessor of x for <. Let $e \in \mathcal{H}$ and $\tau : (e \cap V_{\geq x}) \to \{0,1\}$. Then either $F_e^x[\tau] \equiv 1$ or there exists $U \subseteq \mathcal{H}_e^x$ such that

$$F_e^{\mathsf{x}}[\tau] \equiv \bigwedge_{g \in U} F_g^{\mathsf{y}}[\tau_{C_g}^{\mathsf{y}}],$$

where $C_g in F_e^x$ such that $C_g = g$.

Lemma (lemma 6)

Let $x \neq x_1 \in \mathrm{VAR}(F)$ and let y be the predecessor of x for <. Let $e \in \mathcal{H}$ and $\tau : (e \cap V_{\geq x}) \to \{0,1\}$. Then either $F_e^x[\tau] \equiv 1$ or there exists $U \subseteq \mathcal{H}_e^x$ such that

$$F_e^{\mathsf{x}}[\tau] \equiv \bigwedge_{g \in U} F_g^{\mathsf{y}}[\tau_{C_g}^{\mathsf{y}}],$$

where $C_g in F_e^x$ such that $C_g = g$.

Proof sketch.

• Let A be the set of all edges not satisfied by τ .

Lemma (lemma 6)

Let $x \neq x_1 \in VAR(F)$ and let y be the predecessor of x for <. Let $e \in \mathcal{H}$ and $\tau : (e \cap V_{\geq x}) \to \{0,1\}$. Then either $F_e^x[\tau] \equiv 1$ or there exists $U \subseteq \mathcal{H}_e^x$ such that

$$F_e^{\mathsf{x}}[\tau] \equiv \bigwedge_{g \in U} F_g^{\mathsf{y}}[\tau_{C_g}^{\mathsf{y}}],$$

where $C_g in F_e^x$ such that $C_g = g$.

- Let A be the set of all edges not satisfied by τ .
- For each clause C such that $VAR(C) \notin A, \tau \models C$.

Lemma (lemma 6)

Let $x \neq x_1 \in VAR(F)$ and let y be the predecessor of x for <. Let $e \in \mathcal{H}$ and $\tau : (e \cap V_{\geq x}) \to \{0,1\}$. Then either $F_e^x[\tau] \equiv 1$ or there exists $U \subseteq \mathcal{H}_e^x$ such that

$$F_e^{\mathsf{x}}[\tau] \equiv \bigwedge_{g \in U} F_g^{\mathsf{y}}[\tau_{C_g}^{\mathsf{y}}],$$

where $C_g in F_e^x$ such that $C_g = g$.

- Let A be the set of all edges not satisfied by τ .
- For each clause C such that $VAR(C) \notin A, \tau \models C$.
- Choose U as the set of "maximal" edges $g \in A$,

Lemma (lemma 6)

Let $x \neq x_1 \in \mathrm{VAR}(F)$ and let y be the predecessor of x for <. Let $e \in \mathcal{H}$ and $\tau : (e \cap V_{\geq x}) \to \{0,1\}$. Then either $F_e^x[\tau] \equiv 1$ or there exists $U \subseteq \mathcal{H}_e^x$ such that

$$F_e^{\mathsf{x}}[\tau] \equiv \bigwedge_{g \in U} F_g^{\mathsf{y}}[\tau_{C_g}^{\mathsf{y}}],$$

where $C_g in F_e^x$ such that $C_g = g$.

- Let A be the set of all edges not satisfied by τ .
- For each clause C such that $VAR(C) \notin A, \tau \models C$.
- Choose U as the set of "maximal" edges $g \in A$, i.e. $g \not\subseteq \mathcal{H}_f^y$ for all $f \in A$.

Lemma (lemma 6)

Let $x \neq x_1 \in VAR(F)$ and let y be the predecessor of x for <. Let $e \in \mathcal{H}$ and $\tau : (e \cap V_{\geq x}) \to \{0,1\}$. Then either $F_e^x[\tau] \equiv 1$ or there exists $U \subseteq \mathcal{H}_e^x$ such that

$$F_e^{\mathsf{x}}[\tau] \equiv \bigwedge_{g \in U} F_g^{\mathsf{y}}[\tau_{C_g}^{\mathsf{y}}],$$

where $C_g in F_e^{x}$ such that $C_g = g$.

- Let A be the set of all edges not satisfied by τ .
- For each clause C such that $VAR(C) \notin A, \tau \models C$.
- Choose U as the set of "maximal" edges $g \in A$, i.e. $g \not\subseteq \mathcal{H}_f^y$ for all $f \in A$.
- U can be computed in polynomial time, is decomposable and for each $f \in A$, there is $g \in U$ sch that $f \in \mathcal{H}_{g}^{y}$

Corollary (corollary 7)

Let $x \neq x_1 \in VAR(F)$ and let y be the predecessor of x for <. For every $C \in \mathcal{H}$, there exist $U_0, U_1 \subseteq \mathcal{H}^x_{VAR(C)}$ such that

$$F_{\mathrm{VAR}(C)}^{x}[\tau_{C}^{x}] \equiv (x \wedge \bigwedge_{g \in U_{1}} F_{g}^{y}[\tau_{C_{g}}^{y}]) \vee (\neg x \wedge \bigwedge_{g \in U_{2}} F_{g}^{y}[\tau_{C_{g}}^{y}]).$$

Moreover, all conjunctions are decomposable and U_0 , U_1 can be computed in polynomial time.

Corollary (corollary 7)

Let $x \neq x_1 \in VAR(F)$ and let y be the predecessor of x for <. For every $C \in \mathcal{H}$, there exist $U_0, U_1 \subseteq \mathcal{H}^x_{VAR(C)}$ such that

$$F_{\mathrm{VAR}(C)}^{x}[\tau_{C}^{x}] \equiv (x \wedge \bigwedge_{g \in U_{1}} F_{g}^{y}[\tau_{C_{g}}^{y}]) \vee (\neg x \wedge \bigwedge_{g \in U_{2}} F_{g}^{y}[\tau_{C_{g}}^{y}]).$$

Moreover, all conjunctions are decomposable and U_0 , U_1 can be computed in polynomial time.

Proof sketch. Let $\tau_1 := \tau_C^x \cup \{x \mapsto 1\}$ and $\tau_0 := \tau_C^x \cup \{x \mapsto 0\}$.

$$F_{\mathrm{VAR}(C)}^{x}[\tau_{C}^{x}] = (x \wedge F_{\mathrm{VAR}(C)}^{x}[\tau_{1}]) \vee (\neg x \wedge F_{\mathrm{VAR}(C)}^{x}[\tau_{0}])$$

Apply lemma 6 on each of the terms.

Theorem (theorem 8)

Let F be a β -acyclic CNF-formula. One can construct in polynomial time in $\operatorname{size}(F)$ a dec-DNNF D of size $O((\operatorname{size}(F)))$ and fanin at most $|\mathcal{H}|$ computing F.

Theorem (theorem 8)

Let F be a β -acyclic CNF-formula. One can construct in polynomial time in $\operatorname{size}(F)$ a dec-DNNF D of size $O((\operatorname{size}(F)))$ and fanin at most $|\mathcal{H}|$ computing F.

Theorem (theorem 8)

Let F be a β -acyclic CNF-formula. One can construct in polynomial time in $\operatorname{size}(F)$ a dec-DNNF D of size $O((\operatorname{size}(F)))$ and fanin at most $|\mathcal{H}|$ computing F.

Proof sketch. Let D_i be a dec-DNNF of fanin $|\mathcal{H}|$ at most such that for each $e \in \mathcal{H}$, $C \in F$ such that VAR(C) = e and $j \leq i$, there exists a gate in D_i computing $F_e^{x_j}[\tau_c^{x_j}]$.

• Construct D_i inductively over i.

Theorem (theorem 8)

Let F be a β -acyclic CNF-formula. One can construct in polynomial time in $\operatorname{size}(F)$ a dec-DNNF D of size $O((\operatorname{size}(F)))$ and fanin at most $|\mathcal{H}|$ computing F.

- Construct D_i inductively over i.
- For an edge e, distinguish the cases whether $v_i \in e$ or not.

Theorem (theorem 8)

Let F be a β -acyclic CNF-formula. One can construct in polynomial time in $\operatorname{size}(F)$ a dec-DNNF D of size $O((\operatorname{size}(F)))$ and fanin at most $|\mathcal{H}|$ computing F.

- Construct D_i inductively over i.
- For an edge e, distinguish the cases whether $v_i \in e$ or not.
- For i = 1,

Theorem (theorem 8)

Let F be a β -acyclic CNF-formula. One can construct in polynomial time in $\operatorname{size}(F)$ a dec-DNNF D of size $O((\operatorname{size}(F)))$ and fanin at most $|\mathcal{H}|$ computing F.

- Construct D_i inductively over i.
- For an edge e, distinguish the cases whether $v_i \in e$ or not.
- For i = 1,

$$v_1 \notin e$$
: $F_e^{v_1}[\tau_C] = 0$.

Theorem (theorem 8)

Let F be a β -acyclic CNF-formula. One can construct in polynomial time in $\operatorname{size}(F)$ a dec-DNNF D of size $O((\operatorname{size}(F)))$ and fanin at most $|\mathcal{H}|$ computing F.

- Construct D_i inductively over i.
- For an edge e, distinguish the cases whether $v_i \in e$ or not.
- For i = 1,

$$v_1 \notin e$$
: $F_e^{v_1}[\tau_C] = 0$.

$$v_1 \in e$$
: $F_e^{v_1} \in \{1, v_1, \neg v_1\}$.

• If $v_{i+1} \notin e$, then $F_e^{x_{i+1}} = F_e^{x_i}$.

- If $v_{i+1} \notin e$, then $F_e^{x_{i+1}} = F_e^{x_i}$.
- If $v_{i+1} \in e$, then by corollary 7 we can compute $F_e^{x_{i+1}}$ by adding a decision gate and (two) fanin at most \mathcal{H} decomposable and-gates.

- If $v_{i+1} \notin e$, then $F_e^{x_{i+1}} = F_e^{x_i}$.
- If $v_{i+1} \in e$, then by corollary 7 we can compute $F_e^{x_{i+1}}$ by adding a decision gate and (two) fanin at most \mathcal{H} decomposable and-gates.

For each other terms from corollary 7 there is already a gate in D_i that computes this term by induction hypothesis.

- If $v_{i+1} \notin e$, then $F_e^{x_{i+1}} = F_e^{x_i}$.
- If $v_{i+1} \in e$, then by corollary 7 we can compute $F_e^{x_{i+1}}$ by adding a decision gate and (two) fanin at most \mathcal{H} decomposable and-gates.

For each other terms from corollary 7 there is already a gate in D_i that computes this term by induction hypothesis.

• For $e = \max \mathcal{H}$ and a clause C such that $\mathrm{VAR}(C) = e$, we have $\mathcal{H}_e^{v_n} = \mathcal{H}$ and $\tau_{\mathrm{VAR}(C)}^{x_n} = \emptyset$, hence there is a gate in D_n computing $F_e^{x_n}[\tau_C] = F$.

- If $v_{i+1} \notin e$, then $F_e^{x_{i+1}} = F_e^{x_i}$.
- If $v_{i+1} \in e$, then by corollary 7 we can compute $F_e^{x_{i+1}}$ by adding a decision gate and (two) fanin at most \mathcal{H} decomposable and-gates.

For each other terms from corollary 7 there is already a gate in D_i that computes this term by induction hypothesis.

- For $e = \max \mathcal{H}$ and a clause C such that $\mathrm{VAR}(C) = e$, we have $\mathcal{H}_e^{v_n} = \mathcal{H}$ and $\tau_{\mathrm{VAR}(C)}^{x_n} = \emptyset$, hence there is a gate in D_n computing $F_e^{x_n}[\tau_C] = F$.
- We add at most 7 gates per edges per vertex.

Example

$$F=\{\{\overline{v_1},v_2,v_3\},\{\overline{v_3},v_4\},\{v_2,v_3,\overline{v_4},\overline{v_5}\}\}$$

The rest on the blackboard..

concluding the practical method

• Exhaustive DPLL is a very-well used in practice method.

- Exhaustive DPLL is a very-well used in practice method.
 - Try to write F as a decomposable conjunction.

- Exhaustive DPLL is a very-well used in practice method.
 - Try to write F as a decomposable conjunction.
 Solve independently on each and multiply the results.

- Exhaustive DPLL is a very-well used in practice method.
 - Try to write F as a decomposable conjunction.
 Solve independently on each and multiply the results.
 - Choose a variable x.

- Exhaustive DPLL is a very-well used in practice method.
 - Try to write F as a decomposable conjunction.
 Solve independently on each and multiply the results.
 - Choose a variable x.

Compute
$$\#F[x \mapsto 1] + \#F[x \mapsto 0]$$
.

- Exhaustive DPLL is a very-well used in practice method.
 - Try to write F as a decomposable conjunction.
 Solve independently on each and multiply the results.
 - Choose a variable x. Compute $\#F[x \mapsto 1] + \#F[x \mapsto 0]$.
- The method makes use of cashing (choose what values to keep).

- Exhaustive DPLL is a very-well used in practice method.
 - Try to write F as a decomposable conjunction.
 Solve independently on each and multiply the results.
 - Choose a variable x. Compute $\#F[x \mapsto 1] + \#F[x \mapsto 0]$.
- The method makes use of cashing (choose what values to keep).
- Tries to find a good candidate for x.

- Exhaustive DPLL is a very-well used in practice method.
 - Try to write F as a decomposable conjunction.
 Solve independently on each and multiply the results.
 - Choose a variable x. Compute $\#F[x \mapsto 1] + \#F[x \mapsto 0]$.
- The method makes use of cashing (choose what values to keep).
- Tries to find a good candidate for x.
- The previous dynamic programming is implicitly a run of DPLL.

- Exhaustive DPLL is a very-well used in practice method.
 - Try to write F as a decomposable conjunction.
 Solve independently on each and multiply the results.
 - Choose a variable x. Compute $\#F[x \mapsto 1] + \#F[x \mapsto 0]$.
- The method makes use of cashing (choose what values to keep).
- Tries to find a good candidate for x.
- The previous dynamic programming is implicitly a run of DPLL.
- ullet The variables are chosen in e reversed eta-elimination ordering.

- Exhaustive DPLL is a very-well used in practice method.
 - Try to write F as a decomposable conjunction.
 Solve independently on each and multiply the results.
 - Choose a variable x. Compute $\#F[x \mapsto 1] + \#F[x \mapsto 0]$.
- The method makes use of cashing (choose what values to keep).
- Tries to find a good candidate for x.
- The previous dynamic programming is implicitly a run of DPLL.
- ullet The variables are chosen in e reversed eta-elimination ordering.

conclusion

Exhaustive DPLL can yield efficient algorithms "theoretically", if we can find a good order to choose the variable (such an ordering must be computable in polynomial time) and a good method of cashing.

Lower-bound on the theoretical method

• A branch decomposition T of a graph G = (V, E) is a binary rooted tree T, whose leaves are in one-to-one correspondence with V.

- A branch decomposition T of a graph G = (V, E) is a binary rooted tree T, whose leaves are in one-to-one correspondence with V.
- The maximal-induced-matching width (MIM-width) of a vertex t of T is the size of a largest induced matching M of $G[V \setminus V_t, V_t]$.

- A branch decomposition T of a graph G = (V, E) is a binary rooted tree T, whose leaves are in one-to-one correspondence with V.
- The maximal-induced-matching width (MIM-width) of a vertex t of T is the size of a largest induced matching M of $G[V \setminus V_t, V_t]$.
- $mimw(T) = max\{mimw(t) : t \in V(T)\}.$

- A branch decomposition T of a graph G = (V, E) is a binary rooted tree T, whose leaves are in one-to-one correspondence with V.
- The maximal-induced-matching width (MIM-width) of a vertex t of T is the size of a largest induced matching M of $G[V \setminus V_t, V_t]$.
- $mimw(T) = max\{mimw(t) : t \in V(T)\}.$

Example.

- A branch decomposition T of a graph G = (V, E) is a binary rooted tree T, whose leaves are in one-to-one correspondence with V.
- The maximal-induced-matching width (MIM-width) of a vertex t of T is the size of a largest induced matching M of $G[V \setminus V_t, V_t]$.
- $mimw(T) = max\{mimw(t) : t \in V(T)\}.$

Example.

MIM-width(t) = 2.

• Let φ be a DNNF formula and let $V := VAR(\varphi)$.

- Let φ be a DNNF formula and let $V := VAR(\varphi)$.
- A vTree T is a binary tree where the leaves of the tree has a one-to-one correspondence to the variables of φ.

- Let φ be a DNNF formula and let $V := VAR(\varphi)$.
- A **vTree** T is a binary tree where the leaves of the tree has a one-to-one correspondence to the variables of φ .
- The formula φ respects T if and only if for each subformula of φ of the form $\varphi' := \psi_1 \wedge \psi_2$, there is a vertex $v \in V(T)$ with two children v_1, v_2 , where $\mathrm{VAR}(\psi_1) \subseteq V(T_{v_1})$ and $\mathrm{VAR}(\psi_2) \subseteq V(T_{v_2})$, where T_v is the subtree of T rooted at v. We say φ' respects v in this case.

$$(x \wedge (y \vee z)) \vee (z \wedge \neg x)$$

- Let φ be a DNNF formula and let $V := VAR(\varphi)$.
- A **vTree** T is a binary tree where the leaves of the tree has a one-to-one correspondence to the variables of φ .
- The formula φ respects T if and only if for each subformula of φ of the form $\varphi' := \psi_1 \wedge \psi_2$, there is a vertex $v \in V(T)$ with two children v_1, v_2 , where $\mathrm{VAR}(\psi_1) \subseteq V(T_{v_1})$ and $\mathrm{VAR}(\psi_2) \subseteq V(T_{v_2})$, where T_v is the subtree of T rooted at v. We say φ' respects v in this case.
- A formula φ is structured, if there is a vtree T over the vertices of φ , such that φ respects T.

$$(x \wedge (y \vee z)) \vee (z \wedge \neg x)$$

Incidence graphs and structure of formulas

• The **incidence graph** of \mathcal{H} is a bipartite graph $(V(\mathcal{H}) \cup E(\mathcal{H}), E)$, where $\{v, e\} \in E$ iff $v \in e$.

Incidence graphs and structure of formulas

- The **incidence graph** of \mathcal{H} is a bipartite graph $(V(\mathcal{H}) \cup E(\mathcal{H}), E)$, where $\{v, e\} \in E$ iff $v \in e$.
- The incidence graph of a CNF-Formula is the incidence graph of its hyper graph.

Incidence graphs and structure of formulas

- The **incidence graph** of \mathcal{H} is a bipartite graph $(V(\mathcal{H}) \cup E(\mathcal{H}), E)$, where $\{v, e\} \in E$ iff $v \in e$.
- The incidence graph of a CNF-Formula is the incidence graph of its hyper graph.
- The MIM-width of a CNF-formula is the MIM-width of its incidence graph.

Theorem (theorem 9)

There exists an infinite family \mathcal{F} of β -acyclic CNF-formulas such that for every $F \in \mathcal{F}$ having n variables, there is no structured DNNF of size less than $2^{\Omega(\sqrt{n})}$ computing F.

¹Understanding Model Counting for beta-acyclic CNF-formulas, Brault-Baron et al., 2015.

Theorem (theorem 9)

There exists an infinite family \mathcal{F} of β -acyclic CNF-formulas such that for every $F \in \mathcal{F}$ having n variables, there is no structured DNNF of size less than $2^{\Omega(\sqrt{n})}$ computing F.

Theorem (theorem $1)^1$

There exists an infinite family of β -acyclic hypergraphs of incidence MIM-width $\Omega(n)$ where n is the number of vertices of the hypergraph.

¹Understanding Model Counting for beta-acyclic CNF-formulas, Brault-Baron et al., 2015.

- Let r be a boolean function over X and let (Y,Z) be a partition of X. We call r a (Y,Z)-rectangle if and only if for every $\tau,\tau'\in\{0,1\}^X$ such that $\tau\models r$ and $\tau'\models r$, we have $\tau|Y\cup\tau'|Z)\models r$.
- A (Y, Z)-rectangle cover of a boolean function f is a set $R = \{r_1, \ldots, r_q\}$ of (Y, Z)-rectangles such that $\operatorname{sat}(f) = \bigcup_{i=1}^q \operatorname{sat}(r_i)$.

²Knowledge Compilation Meets Communication Complexity, Bova et al., 2016.

³A Lower Bound on the Size of Decomposable Negation Normal Form, Pipatsrisawat and Darwiche, 2010.

- Let r be a boolean function over X and let (Y,Z) be a partition of X. We call r a (Y,Z)-rectangle if and only if for every $\tau,\tau'\in\{0,1\}^X$ such that $\tau\models r$ and $\tau'\models r$, we have $\tau|Y\cup\tau'|Z)\models r$.
- A (Y, Z)-rectangle cover of a boolean function f is a set $R = \{r_1, \ldots, r_q\}$ of (Y, Z)-rectangles such that $\operatorname{sat}(f) = \bigcup_{i=1}^q \operatorname{sat}(r_i)$.

Theorem (theorem $11)^{2,3}$

Let D be a DNNF on variables X respecting the vtree T. For every vertex t of T, there exists a $(X_t, X \setminus X_t)$ -rectangle cover of D of size at most |D|, where $X_t = \operatorname{VAR}(T_t)$.

²Knowledge Compilation Meets Communication Complexity, Bova et al., 2016.

³A Lower Bound on the Size of Decomposable Negation Normal Form, Pipatsrisawat and Darwiche. 2010.

Let F be a CNF-formula. Let $\hat{F} := \{K \cup \{c_K\} | K \in F\}$ where we add a fresh variable to each clause.

Theorem (theorem 12)

Let F be a monotone formula of incidence MIM-width k. Any structured DNNF computing \hat{F} is of size at least $2^{k/2}$.

Let F be a CNF-formula. Let $\hat{F} := \{K \cup \{c_K\} | K \in F\}$ where we add a fresh variable to each clause.

Theorem (theorem 12)

Let F be a monotone formula of incidence MIM-width k. Any structured DNNF computing \hat{F} is of size at least $2^{k/2}$.

Lemma (lemma 13)

Let $X = \{x_1, \dots, x_n\}$ and $Y = \{y_1, \dots, y_n\}$ be two disjoint sets of k variables. The number of (X, Y)-rectangles needed to cover the CNF-formula $F = \bigwedge_{i=1}^k (x_i \vee y_i)$ is at least 2^k .

Let F be a CNF-formula. Let $\hat{F} := \{K \cup \{c_K\} | K \in F\}$ where we add a fresh variable to each clause.

Theorem (theorem 12)

Let F be a monotone formula of incidence MIM-width k. Any structured DNNF computing \hat{F} is of size at least $2^{k/2}$.

Lemma (lemma 13)

Let $X = \{x_1, ..., x_n\}$ and $Y = \{y_1, ..., y_n\}$ be two disjoint sets of k variables. The number of (X, Y)-rectangles needed to cover the CNF-formula $F = \bigwedge_{i=1}^k (x_i \vee y_i)$ is at least 2^k .

Proof sketch (lemma 12). Find an assignment τ of \hat{F} such that

$$\hat{F}[\tau] \equiv \bigwedge_{e \in N} (x_e \vee c_e).$$

Conclusion

Takeaway

• Building a structured d-DNNF is not always the best choice we have.

Takeaway

- Building a structured d-DNNF is not always the best choice we have.
- If the structure implies a good elimination ordering, exhaustive DPLL might be a better shot.