

Project Initialization and Planning Phase

Date	10 July 2024
Team ID	739713
Project Title	Beansense: Precision Bean Classification For Enhanced Agricultural And Culinary Applications
Maximum Marks	3 Marks

Project Proposal (Proposed Solution) report

Develop an automated system using computer vision and spectroscopic analysis for accurate bean classification, aiming to optimize farming practices and culinary innovation globally.

Project Overview	
Objective	Develop a robust, automated classification system for beans integrating computer vision and spectroscopic analysis to enhance agricultural efficiency and culinary quality on a global scale.
Scope	This project aims to implement a scalable solution using advanced technologies to classify beans accurately, benefiting agricultural productivity and culinary creativity worldwide.
Problem Statement	
Description	Current methods of bean classification are inefficient and subjective, hindering agricultural productivity and limiting culinary innovation globally.
Impact	Improved bean classification will enhance crop yield, ensure consistent quality, and foster

	culinary creativity, benefiting both agricultural	
	economies and food industries worldwide.	
Proposed Solution		
Approach	Develop a robust classification algorithm using	
	machine learning and spectroscopic analysis to	
	automate bean grading, aiming to improve	
	agricultural efficiency and culinary quality	
	globally.	
Key Features	Utilize advanced imaging and machine	
	learning for accurate, automated bean	
	classification with real-time monitoring and	
	cloud-based data access.	

Resource Requirements

Resource Type	Description	Specification/Allocation		
Hardware				
Computing Resources	High-performance processors for running machine learning algorithms	Multi-core CPUs or GPUs (e.g., NVIDIA Tesla)		
Memory	RAM required for data processing and algorithm execution	32 GB to 128 GB		
Storage	Storage for images, data, and models	1 TB SSD for local storage, scalable cloud storage		
Software				
Frameworks	Machine learning and deep learning frameworks	TensorFlow, PyTorch		
Libraries	Libraries for image processing, data analysis, and visualization	OpenCV, NumPy, Pandas, Matplotlib		
Development Environment	Integrated development environment (IDE) and tools for coding and testing	Jupyter Notebook, Visual Studio Code, GitHub		
Data				

Data	Source, size, format	Kaggle dataset, 614, csv UCI dataset, 690, csv
------	----------------------	---