Criticality Calculations

Criticality Calculations - Part I

- Criticality Overview
- Criticality Estimators
- KCODE & KSRC Cards
- Examples & Output

Criticality Calculations - Part II

- Convergence
- Plotting
- Examples & Plots
- Continue Runs
- Burnup

Criticality Overview

Particle Histories

Random Walk for particle

Particle History

Fixed-source Monte Carlo Calculation

K-eigenvalue equation

 $\vec{\Omega} \cdot \nabla \Psi(\vec{r}, E, \vec{\Omega}) =$ **loss** term, leakage $\Sigma_{\tau}(\vec{r}, E) \Psi(\vec{r}, E, \vec{\Omega}) =$ **loss** term, collisions

$$\begin{split} &\iint \Psi(\vec{r}, E', \vec{\Omega}') \Sigma_{\text{S}}(\vec{r}, E' \to E, \vec{\Omega} \cdot \vec{\Omega}') d\vec{\Omega}' dE' \\ &= \text{gain term}, \text{ scatter from } E', \Omega' \text{ into } E, \Omega \\ &\frac{1}{K_{\text{off}}} \cdot \frac{\chi(E)}{4\pi} \iint \nu \Sigma_{\text{F}}(\vec{r}, E') \Psi(\vec{r}, E', \vec{\Omega}') d\vec{\Omega}' dE' \\ &= \text{gain term}, \text{ production from fission} \end{split}$$

 \Rightarrow Jointly find K_{eff} and $\Psi(r,E,\Omega)$ such that equation balances

K_{eff} Eigenvalue Equations

K-eigenvalue equation

$$\begin{split} \left[\vec{\Omega} \cdot \nabla + \Sigma_{\text{T}}(\vec{r}, \text{E}) \right] \Psi(\vec{r}, \text{E}, \vec{\Omega}) &= \iint \Psi(\vec{r}, \text{E}', \vec{\Omega}') \Sigma_{\text{S}}(\vec{r}, \text{E}' \rightarrow \text{E}, \vec{\Omega} \cdot \vec{\Omega}') d\vec{\Omega}' d\text{E}' \\ &+ \frac{1}{\mathsf{K}_{\text{eff}}} \cdot \frac{\chi(\text{E})}{4\pi} \iint \nu \Sigma_{\text{F}}(\vec{r}, \text{E}') \Psi(\vec{r}, \text{E}', \vec{\Omega}') d\vec{\Omega}' d\text{E}' \end{split}$$

- This is a **static** equation, an **eigenvalue problem** for K_{eff} and Ψ without time-dependence
- K_{eff} is called the effective multiplication factor
- Criticality

Supercritical: $K_{eff} > 1$

Critical: $K_{eff} = 1$

Subcritical: $K_{eff} < 1$

- Never use \mathbf{K}_{eff} and Ψ to model time-dependent problems.
- K_{eff}-eigenvalue problems can be solved by Monte Carlo methods

K-eigenvalue equation

Use operator (or matrix) form to simplify notation

$$(L + T)\Psi = S\Psi + \frac{1}{K_{eff}}M\Psi$$

where

L = leakage operator S = scatter-in operator

T = collision operator M = fission multiplication operator

Rearrange

$$\begin{split} (L+T-S)\Psi &= \tfrac{1}{K_{eff}} M\Psi \\ \Psi &= \tfrac{1}{K_{eff}} \cdot (L+T-S)^{-1} M\Psi \\ \Psi &= \tfrac{1}{K_{off}} \cdot F\Psi \end{split}$$

⇒ This eigenvalue equation will be solved by power iteration

Power Iteration

Eigenvalue equation

$$\Psi = \frac{1}{K_{eff}} \cdot F\Psi$$

1. Assume that k_{eff} and Ψ on the right side are known for iteration n, solve for Ψ on left side (for iteration n+1)

$$\boldsymbol{\Psi}^{(n+1)} = \frac{_1}{\mathsf{K}_{\text{eff}}^{(n)}} \cdot \boldsymbol{F} \boldsymbol{\Psi}^{(n)}$$

Note: This requires solving the equation below for $\Psi^{(n+1)}$, with $K_{\text{eff}}^{(n)}$ and $\Psi^{(n)}$ fixed

$$(L+T-S)\Psi^{(n+1)}=\frac{1}{K_{eff}^{(n)}}M\Psi^{(n)}$$

2. Then, compute $K_{eff}^{(n+1)}$

$$K_{\text{eff}}^{(n+1)} = K_{\text{eff}}^{(n)} \cdot \frac{\int M \Psi^{(n+1)} d\vec{r}}{\int M \Psi^{(n)} d\vec{r}} \quad \text{(other norms could be used)}$$

Power Iteration

- Power iteration procedure:
 - 1. Initial guess for K_{eff} and Ψ $K_{eff}^{(0)}, \ \Psi^{(0)}$

2. Solve for $\Psi^{(n+1)}$ [Monte Carlo random walk for N particles]

$$\boldsymbol{\Psi}^{(\text{n+1})} = \frac{_1}{\mathsf{K}_{\text{eff}}^{(\text{n})}} \cdot \boldsymbol{F} \boldsymbol{\Psi}^{(\text{n})}$$

3. Compute new K_{eff}

$$K_{\text{eff}}^{(n+1)} = K_{\text{eff}}^{(n)} \cdot \frac{\int\! M \Psi^{(n+1)} d\vec{r}}{\int\! M \Psi^{(n)} d\vec{r}}$$

4. Repeat 1-3 until both $K_{eff}^{(n+1)}$ and $\Psi^{(n+1)}$ have converged

Monte Carlo Eigenvalue calculation

Power Iteration

- Guess an initial source distribution
- Iterate until converged (How do you know ???)
- Then

For S_n code: done, print the results

- For Monte Carlo: start tallies,

keep running until uncertainties small enough

Convergence? Stationarity? Bias? Statistics?

MCNP Criticality Flow

- Histories are run in <u>batches</u> of N particles
- Spatial distribution:
 - Initial distribution of fission source sites from KSRC, SDEF, or SRCTP card
 - After first batch, fission source sites taken from previous batch
- Total weight in each batch is N
- For each batch, 3 estimates of Keff are made for the batch
 - Keff track-length estimator
 - Keff collision estimator
 - Keff absorption estimator
- At the end of the problem, the batch estimates are combined into 7 overall estimates (only the last one matters):
 - 3 cumulative Keff estimates using track-length, collision, & absorption
 - 3 cumulative Keff estimates using pairs
 - 1 overall combined cumulative estimate based on all data

K-effective Estimators

Background on Monte Carlo Estimators

Pathlength estimator for flux

- Flux ≡ total pathlength traveled by all neutrons per unit volume per unit time
- For flux in a cell.

$$\phi \approx \frac{1}{W \cdot V} \sum_{\substack{\text{all flights} \\ \text{in cell}}} \mathbf{d_k} \cdot \mathbf{wgt}$$

V = cell volume

W = total starting weight

Collision estimator for flux

- Collision rate = $\Sigma_T \phi$, so ϕ = [collision rate]/ Σ_T

- For flux in cell,

$$\phi \approx \frac{1}{W \cdot V} \sum_{\substack{\text{all collisions} \\ \text{in cell}}} \frac{\text{wgt}}{\Sigma_{\text{T}}}$$

Absorption estimator for flux

- Absorption rate = $\Sigma_A \phi$, so ϕ = [absorption rate]/ Σ_A
- For flux in cell,

$$\phi \approx \frac{1}{W \cdot V} \sum_{\substack{\text{all absorptions} \\ \text{in cell}}} \frac{\text{wgt}}{\Sigma_{A}}$$

Single-cycle Keff Estimators

Neutron production rate = $v\Sigma_F \phi$

Pathlength estimator for Keff, for cycle n

$$K^{(n)}_{path} = \left(\sum_{\substack{\text{all} \\ \text{flights}}} wgt_j \cdot d_j \cdot v\Sigma_F\right) / W$$

W = total weight starting cycle n

Collision estimator for Keff, for cycle n

$$\mathsf{K}^{(\mathsf{n})}_{\text{collision}} = \left(\sum_{\substack{\mathsf{all} \\ \mathsf{collisions}}} \frac{\mathsf{wgt}_{\mathsf{j}}}{\Sigma_{\mathsf{T}}} \cdot \mathsf{v} \Sigma_{\mathsf{F}} \right) / \mathsf{W}$$

Absorption estimator for Keff, for cycle n

$$\mathsf{K}^{(\mathsf{n})}_{\mathsf{absorption}} = \left(\sum_{\substack{\mathsf{all} \\ \mathsf{absorptions}}} \frac{\mathsf{wgt}_{\mathsf{j}}}{\Sigma_{\mathsf{A}}} \cdot \mathsf{v} \Sigma_{\mathsf{F}} \right) / \mathsf{W}$$

Cumulative Eigenvalue Estimators

7 estimators of overall Keff -- K_{p-c-a} is best

- 1. K_{path} = average over all active cycles of $K^{(n)}_{path}$
- 2. $K_{collision}$ = average over all active cycles of $K^{(n)}_{collision}$
- 3. $K_{absorption}$ = average over all active cycles of $K^{(n)}_{absorption}$
- 4. K_{p-c} = combined average over all active cycles of $K^{(n)}_{path}$ and $K^{(n)}_{collision}$, including correlation
- 5. K_{p-a} = combined average over all active cycles of $K^{(n)}_{path}$ and $K^{(n)}_{absorption}$, including correlation
- 6. K_{c-a} = combined average over all active cycles of $K^{(n)}_{collision}$ and $K^{(n)}_{absorption}$, including correlation
- 7. K_{p-c-a} = combined average over all active cycles of $K^{(n)}_{path}$, $K^{(n)}_{collision}$, and $K^{(n)}_{absorption}$, including correlation

Confidence Intervals

Confidence interval:

Range that contains the true Keff with some specified probability

68% Confidence interval

$$K_{eff} - \sigma \leq K_{true} \leq K_{eff} + \sigma$$

95% Confidence interval

$$K_{eff} - 2\sigma \leq K_{true} \leq K_{eff} + 2\sigma$$

99% Confidence interval

$$K_{eff}$$
 - 2.6 σ \leq K_{true} \leq K_{eff} + 2.6 σ

 To get better confidence interval (smaller σ), run more histories (more cycles)

$$\sigma \propto \frac{1}{\sqrt{N}}$$

KCODE & KSRC Cards

MCNP Criticality Input

Control for K-effective calculations

KCODE card

- Number of particles per cycle
- Initial guess for Keff
- Number of initial cycles to skip
- Total number of cycles to run

Guess for initial source

(only use 1 of these)

KSRC card

Can specify any number of x,y,z points for initial location of fission neutrons

SRCTP file

Can use a file of source points from a previous calculation

SDEF card

Can specify source points should be sampled from a volume (eg, sphere, cylinder, box, etc.)

KCODE Card

KCODE N kest ndiscard ntotal

N = number of particles per cycle,

Typical: 1K - 2K for testing

5K - 100K for production

kest = initial guess for Keff, usually 1.0

ndiscard = number of inactive cycles to discard

before beginning tallies

ntotal = total number of cycles to run,

should be > ndiscard+100

(see manual for other optional entries)

Initial Source & Energy Spectrum

Can specify source points with KSRC or SDEF (not both)

```
ksrc 0 0 0 .5 .5 .25 .1 .1 .1 [etc
```

 For KSRC, source points are reused as needed to get starting locations for all the particles in the initial cycle

```
      sdef
      x=d1
      y=d2
      z=d3

      si1
      -5.
      5.
      $ extent for x

      sp1
      0
      1
      $ uniform in x

      si2
      15.
      75.
      $ extent for y

      sp2
      0
      1
      $ uniform in y

      si3
      0.
      100.
      $ extent for z

      sp3
      0
      1
      $ uniform in z
```

• For the initial cycle only, neutron starting energy is sampled from a Watt fission spectrum. (Other cycles use actual (n,f) data & energy distributions.)

$$p(E) = Ce^{-E/a} \sinh \sqrt{bE}$$
, $a = 0.965 \text{ MeV}$, $b = 2.29 \text{ MeV}^{-1}$

Examples

EXAMPLE PROBLEMS

Godiva critical -- using KSRC & surfaces

- Bare, high-enriched uranium sphere
- Sphere radius = 8.741 cm
- Material density =18.74 g/cm3

•	Nuclide		Wgt-fraction	ZAID
	_	U235	94.73	92235
	_	U238	5.27	92238

- (1) Create & edit file "g1"
- (2) Add title, cell cards, surface cards, data cards
 - surface card (sphere at origin): # so radius also use these data cards:
 - kcode 1000 1.0 10 50
 - ksrc 0 0 0
- (3) Plot the geometry: mcnp i=g1 ip
- (4) Run the problem: mcnp i=g1
- (5) Rerun the problem: mcnp i=g1

File g1

```
Godiva critical - using ksrc & surfaces
   C
      CELL CARDS
   10
         100 -18.74
                        -1
   20
         0
                        1
   c SURFACE CARDS
          8.741
   1
        so
   c DATA CARDS
   imp:n 1 0
   m100 92235 -94.73 92238 -5.27
   C
   kcode 1000 1.0
                      10 50
   ksrc 0 0 0
Commands
   mcnp5 i=g1 ip <-- process input & plot geometry
   mcnp5 i=g1
                      <-- run the problem...
   Source?
   Files created?
```

Comments - g1

KSRC 0 0 0

- isotropic point source at (0,0,0)
- used only for the source guess for initial cycle, ignored after that

KCODE 1000 1.0 10 50

- start 1000 particles
- run 50 cycles, throw out the first 10
- initial guess for Keff = 1.0

• imp:n 1 0

- cell 1 has importance 1, cell 2 has importance 0
- could put this information on cell cards instead:

```
c CELL CARDS

10 100 -18.74 -1 imp:n 1

20 0 1 imp:n 0
```

cleanup:

rm out* src* run* com*

Problems g3, g4, g5

Same as problem g1, but:

g3: Use KSRC card to start points at center

g4: Use SDEF card to start points uniformly in sphere

g5: Use srctp file from g4, don't use KSRC or SDEF

For all: use 5000 neutrons/cycle, skip 50, run 150 total


```
Godiva - using KSRC
C
c CELL CARDS
     100 -18.74 -1
10
20
     0
c SURFACE CARDS
    so 8.741
c DATA CARDS
kcode 5000 1.0 50 150
ksrc 0. 0. 0.
imp:n 1 0
m100 92235 -94.73 92238 -5.27
```



```
Godiva - using SDEF
C
c CELL CARDS
10 100 -18.74 -1
20 0
c SURFACE CARDS
1 so 8.741
c DATA CARDS
kcode 5000 1.0 50 150
Sdef pos= 0 0 0 rad=d1
Si1 0 8.741
Sp1 -21 2 $ density ~ r**2
imp:n 1 0
m100 92235 -94.73 92238 -5.27
```



```
Assuming that problem g4 created source tape file srctw,
      mcnp5 I=q5 src=srctw
Godiva - using srctp, no ksrc or sdeff
C
c CELL CARDS
10 100 -18.74 -1
20 0
c SURFACE CARDS
1 so 8.741
c DATA CARDS
kcode 5000 1.0 50 150 $ 50 could be changed to 0 !
imp:n 1 0
m100 92235 -94.73 92238 -5.27
```


Examine output file For KCODE calculation

.

Random Numbers

- Random numbers
 - MCNP is a Monte Carlo code & uses random numbers to sample from probability densities
 - If a calculation is repeated using the <u>same input & cross-section</u> <u>libraries</u>, bit-for-bit identical results will be obtained.
- How can you repeat a calculation using different random numbers?

rand gen= k	seed= n
gen= k	 choose the random number generator gen=1 for default 48-bit generator, period ~10¹⁴ gen= 2, 3, 4, 5, 6 for 63-bit generators, period ~10¹⁸
seed= n	set the initial random seed for the problem to nn should be an odd integer, 18 digits or fewer

Example

- Pick a problem, change the random seed, rerun the problem, compare answers.
- Results should differ, but should agree within statistics.
- If calculations are run using different random seeds, the results are statistically independent & may be averaged together. (Using weights proportional to $1/\sigma^2$)

Godiva - using KSRC

Criticality Calculations - Part I

- Criticality Overview
- Criticality Estimators
- KCODE & KSRC Cards
- Examples & Output

Criticality Calculations - Part II

- Convergence
- Plotting
- Examples & Plots
- Continue Runs
- Burnup

Convergence

Power Iteration

- Guess an initial source distribution
- Iterate until converged (How do you know ???)
- Then
 - For S_n code: done, print the results
 - For Monte Carlo: start tallies,
 - keep running until uncertainties small enough
- Convergence? Stationarity? Bias? Statistics?

K-eigenvalue equation

Transport equation, for K-eigenvalue problems

Use operator (or matrix) form to simplify notation

$$(L + T)\Psi = S\Psi + \frac{1}{K_{eff}}M\Psi$$

where

L = leakage operator S = scatter-in operator

T = collision operator M = fission multiplication operator

Rearrange

$$(L+T-S)\Psi = \frac{1}{K_{eff}}M\Psi$$

⇒ This eigenvalue equation will be solved by **power iteration**

$$(L + T - S)\Psi^{(n+1)} = \frac{1}{K_{eff}^{(n)}}M\Psi^{(n)}$$

Power Iteration - Convergence

• Expand Ψ in terms of eigenfunctions $u_i(r, E, \Omega)$

$$\begin{split} \Psi &= \sum_{j=0}^\infty a_j \vec{u}_j = a_0 \vec{u}_0 + a_1 \vec{u}_1 + a_2 \vec{u}_2 + a_3 \vec{u}_3 + \\ \int \vec{u}_j \vec{u}_k dV &= \delta_{jk} \qquad \qquad a_j = \int \Psi \cdot \vec{u}_j dV \\ \vec{u}_j &= \frac{1}{k_i} F \cdot \vec{u}_j \qquad \qquad k_0 > k_1 > k_2 > ... > 0 \qquad k_0 \equiv k_{\text{effective}} \end{split}$$

Expand the initial guess in terms of the eigenmodes

$$\Psi^{(0)} = \sum_{i=0} a_i^{(0)} \vec{u}_j$$

• Substitute expansion for $\Psi^{(0)}$ into power iteration equation

$$\begin{split} \Psi^{(n+1)} &= \frac{1}{K^{(n)}} F \cdot \Psi^{(n)} = \frac{1}{k^{(n)}} \cdot \frac{1}{k^{(n-1)}} ... \frac{1}{k^{(0)}} \cdot F^n \cdot \Psi^{(0)} \\ &= \left[\prod_{m=0}^n \frac{k_0}{K^{(m)}} \right] \cdot a_0^{(0)} \cdot \left[\vec{u}_0 + \sum_{j=1}^n \left(\frac{a_j^{(0)}}{a_0^{(0)}} \right) \cdot \left(\frac{k_j}{k_0} \right)^{n+1} \cdot \vec{u}_j \right] \end{split}$$

Power Iteration - Convergence

$$\Psi^{(n+1)} \approx [constant] \cdot \left[\vec{u}_0 + \left(\frac{a_1^{(0)}}{a_0^{(0)}} \right) \cdot \left(\frac{k_1}{k_0} \right)^{n+1} \cdot \vec{u}_1 + \dots \right]$$

$$K^{(n+1)} \approx k_0 \cdot \left[1 + \left(\frac{a_1^{(0)}}{a_0^{(0)}} \right) \cdot \left(\frac{k_1}{k_0} \right)^n \cdot \left(\frac{k_1}{k_0} - 1 \right) \cdot G_1 + \dots \right]$$

- Because $k_0 > k_1 > k_2 > ...$, all of the red terms vanish as $n \rightarrow \infty$
 - $-\Psi^{(n+1)} \rightarrow constant \cdot u_0$
 - $\mathbf{K}^{(n+1)} \rightarrow \mathbf{k}_{n}$
- After the initial transient, error in $\Psi^{(n)}$ is dominated by first mode
 - (k_1/k_0) is called the <u>dominance ratio</u>, DR or ρ
 - Errors in the source distribution $\Psi^{(n)}$ die off as $\sim (DR)^n$
- For problems with a high dominance ratio (e.g., DR \sim .99), the error in $K_{\rm eff}$ may be small, since the factor (k_1/k_0 1) is small.
 - K_{eff} may appear converged, even if the source distribution is <u>not</u> converged

Keff Calculations

- Initial cycles of a Monte Carlo K-effective calculation should be discarded, to avoid contaminating results with errors from initial guess
 - How many cycles should be discarded?
 - How do you know if you discarded enough cycles?

- Analysis of the power iteration method shows that Keff is not a reliable indicator of convergence -- K_{eff} can converge faster than the source shape
- Based on concepts from information theory,
 Shannon entropy of the source distribution is useful for characterizing the convergence of the source distribution

Shannon Entropy of the Fission Source

- Divide the fissionable regions of the problem into N_s spatial bins
 - Spatial bins should be consistent with problem symmetry
 - Typical choices: -- 1 bin for each assembly
 - -- regular grid superimposed on core
 - Use dozens or hundreds of bins, not thousands

- During the random walks for a cycle, tally the fission source points in each bin
 - Provides a discretized approximation to the source distribution
 - $\{ p_J, J=1,N_S \}$
- Shannon entropy of the source distribution

$$H(S) = -\sum_{J=1}^{N_S} p_J \cdot ln_2(p_J), \quad \text{where} \quad p_J = \frac{(\text{\# source particles in bin J})}{(\text{total \# source particles in all bins})}$$

Shannon Entropy of the Fission Source

Shannon entropy of the source distribution

$$H(S) = -\sum_{J=1}^{N_S} p_J \cdot ln_2(p_J), \quad \text{where} \quad p_J = \frac{(\text{\# source particles in bin J})}{(\text{total \# source particles in all bins})}$$

- $0 \leq H(S) \leq In_2(N_S)$
- For a <u>uniform</u> source distribution, $H(S) = In_2(N_S)$
- For a point source (in a single bin), H(S) = 0
- H(S⁽ⁿ⁾) provides a single number to characterize the source distribution for iteration n (no physics!)
 - \Rightarrow As the source distribution converges in 3D space, a line plot of H(S⁽ⁿ⁾) vs. n (the iteration number) converges

Typical K-effective convergence patterns

- Higher mode error terms die out as $(k_1 / k_0)^n$, for n iterations
 - k_1 is the eigenvalue of the first higher mode, $k_0 = k_{eff}$
 - k_1/k_0 is called the Dominance Ratio
- When initial guess is concentrated in center of reactor, initial K_{eff} is too high (underestimates leakage)

 When initial guess is uniformly distributed, initial K_{eff} is too low (overestimates leakage)

 The Sandwich Method uses 2 K_{eff} calculations one starting too high & one starting too low.
 Both calculations should converge to the same result.

Example - Reactor core (Problem inp24)

 $K^{(n)}$ vs cycle

20

H(fission source)

K_{eff} 80

Example - Loosely-coupled array of spheres (Problem test4s)

K⁽ⁿ⁾ vs cycle

75

H(fission source)

K_{eff}

85

Example - Fuel Storage Vault (Problem OECD_bench1)

Example - PWR 1/4-Core (Napolitano)

K⁽ⁿ⁾ vs cycle

25

H(fission source)

50

Example - 2D PWR (Ueki)

 $\mathbf{K}^{(n)}$ vs cycle

25

H(fission source)

50

Guidance on Computing H_{src}

Source Entropy & MCNP5

- Grid for computing H_{src}
 - User can specify a rectangular grid in input

```
hsrc n_x x_{min} x_{max} n_y y_{min} y_{max} n_z z_{min} z_{max} example: hsrc 5 0. 100. 5 0. 100. 1 -2. 50.
```

- If hsrc card is absent, MCNP5 will choose a grid based on the fission source points, expanding it if needed during the calculation
- MCNP5 prints H_{src} for each cycle
- MCNP5 can plot H_{src} vs cycle
- Convergence check at end of problem
 - MCNP5 computes the average H_{src} and its population variance σ_{H}^{2} for the last half of the cycles
 - Then, finds the first cycle where H_{src} is within the band $<\!H_{src}\!>\pm2\sigma_H$
 - Then, checks to see if at least that many cycles were discarded

H_{src} Convergence vs Number of Spatial Bins

- For large number of bins, H_{src} approaches uniform upper limit
- Use 10s or 100s of bins, not 1000s or more

10000 bins

1000 bins

100 bins

OECD bench3

H_{src} and 2D vs 3D Spatial Bins

- For 3D problems, using a 2D bin layout for H_{src} may incorrectly assess convergence
- Important to use 3D bin layout for 3D problems

3D bin layout

2D bin layout

inp24, 3D 1/4 core PWR

H_{src} Convergence vs Neutrons per Cycle

- H_{src} converges to the same value, regardless of neutrons/cycle
- More neutrons/cycle ⇒ less noise in plot

Convergence Testing Using H_{src}

Example 1 - New Output

Information on mesh used for calculating H_{src}

```
comment.
comment. entropy of the fission source distribution will be computed
comment.
comment. the mesh for source entropy is based on the site coordinates
          using 4 \times 4 \times 4 = 64 mesh cells
comment.
comment.
            Xmin = 2.2973E + 01
                                   Xmax = 3.6787E + 02
comment.
            Ymin= 5.3433E+01
                                   Ymax = 1.8017E + 02
comment.
comment. Zmin = -1.1753E+01
                                   Zmax = 1.1701E + 01
comment.
comment. the mesh will be automatically expanded if necessary to
          encompass the entire fission source distribution
comment.
comment.
cycle
       k(col)
                                       active
                                                 k(col)
                                                           std dev
                      ctm
                           entropy
        1.35561
    1
                    0.00 1.58E+00
    2
       1.12276
                    0.01 1.77E+00
```

Example 1 - New Output (cont'd)

At end of run, information on convergence, based on H_{src}

```
129 1.10703
                    0.17 2.43E+00
                                          99
                                                1.06324
                                                           0.00502
  130
       1.14460
                    0.17 2.40E+00
                                         100
                                                           0.00503
                                                1.06405
source distribution to file srctt
                                           cycle =
                                                     130
run terminated when 130 kcode cycles were done.
comment.
comment. Average fission-source entropy for the last half of cycles:
             H= 3.02E+00 with population std.dev.= 4.97E-01
comment.
comment.
comment.
comment. Cycle 47 is the first cycle having fission-source
          entropy within 1 std.dev. of the average
comment.
comment. entropy for the last half of cycles.
         At least this many cycles should be discarded.
comment.
warning.
warning. The fission-source entropy for the first active cycle, cycle= 31,
warning.
         is NOT within 1 standard deviation of the average
warning.
          source entropy for the last half of cycles.
warning.
warning. You should consider rerunning the problem,
warning.
         discarding more initial cycles.
warning.
```

Example 2 - New Output

At end of run, information on convergence, based on H_{src}

```
0.20 2.76E+00
                                         99
  174 1.15010
                                               1.11162
                                                          0.00292
                    0.21 2.73E+00
  175
       1.13930
                                               1.11190
                                                         0.00291
                                        100
source distribution to file srctu
                                          cycle =
                                                    175
run terminated when
                      175 kcode cycles were done.
comment.
comment. Average fission-source entropy for the last half of cycles:
             H= 2.66E+00 with population std.dev.= 2.21E-01
comment.
comment.
comment.
comment. Cycle 36 is the first cycle having fission-source
comment.
          entropy within 1 std.dev. of the average
comment. entropy for the last half of cycles.
comment. At least this many cycles should be discarded.
comment.
comment. Source entropy convergence check passed.
comment.
```

Example

For Watts-Bar Unit #1, 3D whole-core model

```
C
   Mesh tally for assembly powers (flux*fission*Q)
fmesh104:n geom=xyz origin= -161.25 -161.25 -194.492
            imesh=161.25 iints=15
            jmesh=161.25 jints=15
           kmesh=170.508 kints=1
fm104 - 1.0 0 - 6 - 8 $ NOTE: 0 = use actual materials
C
c Mesh tally for detailed fast & thermal flux
fmesh204:n geom=xyz origin= -161.25 -161.25 -194.492
            imesh=161.25 iints=150
            jmesh=161.25 jints=150
           kmesh=170.508 kints=1
           emesh .625e-6 20.
```

Example (cont'd)

Geometry Model (1/4)

K vs cycle

H_{src} vs cycle

Assembly Powers

Fast Flux

Thermal Flux

Plotting

Criticality Output and Plotting

- Plot the geometry
- Make a trial run
 - 50-100 cycles
 - 1000-2000 neutrons/cycle
- Examine plots of:
 - Keff vs cycle number
 - Shannon entropy of fission distribution vs cycle
- Fix the KCODE card:
 - Make sure that enough initial cycles are discarded
 - Change neutrons/cycle to 5K or more
- Run calculation until statistics are small enough
- Look at convergence plots again, to verify...

Criticality Output and Plotting

- To invoke the MCNP tally plotter:
 - While problem is running, type CTL-C, then m,
 - After run complete, type: mcnp5 r=runtpe z
- Commands for the tally plotter:

```
mcplot> kcode n
```

kcode 1 collision estimate of single-cycle K vs cycle
absorption estimate of single-cycle K vs cycle
kcode 3 track-length estimate of single-cycle K vs cycle
kcode 11-13 same as 1, 2, 3, but cumulative averages vs cycle
kcode 6 Shannon entropy of fission distribution vs cycle
kcode 16 Combined trk/abs/col ave. K vs cycle, with std dev
kcode 17 Combined trk/abs/col ave K vs cycles skipped (what if)

- Can plot several quantities together
 mcplot> kcode 1 coplot kcode 2 coplot kcode 3
- See MCNP5 Manual, Volume II, Appendix B

Plotting Exercise

Make keff plots from Problem g1 RUNTPE

```
mcnp5 r=runtpe Z
mcplot> kcode 3
mcplot> kcode 6
mcplot> kcode 16
mcplot> KCODE 1 coplot KCODE 2 coplot KCODE 3
```

- MPLOT in INP File produces plots during execution
 - Add this data card to g1, then rerun

. . .

kcode 5000 1.0 10 150 **mplot kcode 3 freq 5**

See MCNP5 Manual, Volume II, Appendix B

Godiva Example

Cautions and Suggestions

 You MUST make sure that enough initial cycles are discarded to ensure convergence of Keff & the fission source distribution

Bias

- If you run with 10s or 100s of neutrons/cycle, there will be a bias in Keff.
- Bias is proportional to 1/N, so using more neutrons/cycle reduces the bias.
- Use 5K or more neutrons/cycle for production runs so that bias is negligible.

Correlation

- Tallies for one cycle are correlated to the previous (and next)
- Cycle-to-cycle correlation may cause estimated relative errors may be low.
- Can check on this by examining "batching" results in MCNP output.

If anything looks suspicious,

- Run more cycles
- Start over with more neutrons/cycle
- Rerun the calculation with a new random number seed.

Cautions and Suggestions

- Use more neutrons/cycle, not fewer...
- For systems with high dominance ratio (ie, close to 1), may need to discard 100s or 1000s of initial cycles. For typical LWR's, probably need to discard ~50 initial cycles.
- Should run at least 100 cycles after convergence, to ensure that statistical analysis is reliable
- For reactors, initial source guess should cover most of core. Not necessary to worry about fuel vs non-fuel.
- For criticality safety, make sure initial source guess has some source points in each fissionable region.

CONTINUE Runs

Continue Runs

MCNP C [INP=inpfile RUN=runfile]

Continues from RUNTPE "runfile" using input file "inpfile"

Special input file to change parameters

Optional Message Block & blank Continue Data Cards

Example:

Continue KCODE 5000 1 50 150

Legal Continue Run Data

```
(total)
(total)
KCODE
NPS
NPS
FQ
DD
CTME
              (more)
PRDMP
PRINT
MPLOT
DBCN
LOST
IDUM, RDUM, ZA, ZB, ZC
```


Burnup

(MCNPX)

What is Depletion Analysis?

- During reactor operation, the isotopic concentration of the reactor material (fuel/coolant/clad/shielding) will change as isotopes consume neutrons and undergo various nuclear reactions
 - (n,f), (n,gamma), (n,alpha), (n,beta), (n,p), etc.
- Changes in the isotopic concentration over time will result in changes in reactor parameters
 - Flux, reactivity, power distribution, shutdown margin, poison concentration, rod height, ...
 - These reactor parameters limit reactor operation characteristics, therefore it is necessary to accurately calculate these values at many time steps

Burnup Implementation

MCNP

- Collision rates
- Eigenvalue
- Flux normalization parameters

CINDER90

 Nuclide densities for next time step

Final Time S tep

Yes

Done

Isotopes Tracked

- MCNP currently only tracks depletion information for certain isotopes
 - Materials listed on material card(s)
 - Nuclides selected from a fission product tier
 - Tier 1. (default) Zr-93, Mo-95, Tc-99, Ru-101, Xe-131, Cs-133, Cs-137, Ba-138, Pr-141, Nd-143, Nd-145
 - Tier 2. Nuclides contained in the fission product array that are included in the MCNPX 2.5.0 XSDIR
 - Tier 3. All isotopes contained in the fission product array
 - Nuclides created from the isotope generator algorithm
- CINDER90 tracks isotope concentrations for 3400 isotopes
 - Only those isotopes utilized in the transport calculation contain isotope abundance data in the output file

		β ⁻ out			
		(n,2n) n out	Original Nucleus (n,n)	(n,γ)	
t out		(n,t) (n,nd) d out	(n,d) (n,np) p out	(n,p) β ⁺ out	
Ct Ou	it	(n,α) (n,n³He) ³He out	(n,³He) (n,pd)		

n = neutron $\alpha =$

 α = alpha particle

p = proton

 β = beta minus (negative electron)

d = deuteron

 β^+ = beta plus (positron)

t = triton

 ε = electron capture

BURN CARD

```
BURN
       TIME= T1 T2 T3 ...
                                                Burn Card
       PFRAC= F1 F2 F3 ...
                                                must be
       POWER= P
                                                placed
       MAT = +M1 + M2 + M3 ...
                                                before
       OMIT= J1 N1 I11 I12 ... J2 N2 I21 I22 ...
       AFMIN= A1 A2
                                                material
       BOPT= B1 B2 B3
                                                cards!
       MATMOD=
       MATVOL= V1 V2 ...
```

Ti = duration of burn step i (days). Default is one time step of one day.

Fi = fraction of POWER (0-1). Default is 100% POWER (1.0)

P = power level (MW). Default is 1.0 MW.

Mi = list of material numbers to include in the burn. If the BURN card is utilized then a burn material MUST be specified.

BURN CARD (continued)

```
Ji =
          ith material for which to omit nuclides li1, li2, etc.
Ni =
          number of omitted nuclides listed for the ith material.
li1, li2, ... = 1st, 2nd, etc. omitted nuclide for the ith material.
B1 =
          Q value multiplier. Default is 1.0.
B2 =
          mn
          m = 0/1/2 = fission product tiers 1/2/3
          n = 1/2/3/4 = print output by decreasing mass/decreasing
          activity/decreasing specific activity/increasing ZAID
               Example: B2 = 14 tier 2, print by increasing zaid
B3 = Models option
               Fatal error if models are used in the problem
               Runs with models
A1 =
          atom fraction minimum below which the atom fraction
          is set to zero. Default is 1.0e-10.
A2 =
          decay chain convergence criteria. Default =1e-10.
V =
          total repeated volume of material M
```


BURN CARD

(continued)

$$\begin{split} \textbf{MATMOD=} & NT,_1 TS,_1 NM,_1 MT_1,_1 K_1,_1 Z_1^1,_1 C_1^1,_1 Z_1^2,_1 C_1^2,...,_1 Z_1^{K_1},_1 C_1^{K_1},\\ & ...,_1 MT_n,_1 K_n,_1 Z_n^1,_1 C_n^1,_1 Z_n^2,_1 C_n^2,...,_1 Z_n^{K_n},_1 C_n^{K_n},\\ & _{j} TS,_{j} NM,_{j} MT_1,_{j} K_1,_{j} Z_1^1,_{j} C_1^1,_{j} Z_1^2,_{j} C_1^2,...,_{j} Z_1^{K_1},_{j} C_1^{K_1},\\ & ...,_{j} MT_n,_{j} K_n,_{j} Z_n^1,_{j} C_n^1,_{j} Z_n^2,_{j} C_n^2,...,_{j} Z_n^{K_n},_{j} C_n^{K_n}, \end{split}$$

NT = Number of time steps (1 through I)

 $_{j}TS$ = Time step (1..j) for which to manually change nuclide concentrations of material MT_i. Enter "1" for 2nd, etc.

 $_{i}NM$ = Number of materials at time step "j" that incur nuclide concentration changes

 $_{j}^{MT_{n}}$ = nth material number for which to manually change nuclides at time step "j". Positive value indicates atom/wt. fraction and negative value indicates atom/gram densities.

 K_n = number of nuclides to manually change for the ith material

 $_{j}Z_{n}^{K_{n}}$ = 1st, 2nd,.. Knth nuclide of the MTith material at time step "j" for which a concentration will be specified. List as a ZAID value.

 $_{j}^{K_{n}}$ = concentration for the nth isotope in material MTi at time step "j". Enter positive values for atom fractions or atom densities, and enter a negative value for wt. fractions or gram densities. See sign of MTi to specify either fraction or density

BURN CARD - MATMOD

(continued)

MATMOD=

$$NT,_{1}TS,_{1}NM,_{1}MT_{1},_{1}K_{1},_{1}Z_{1}^{1},_{1}C_{1}^{1},_{1}Z_{1}^{2},_{1}C_{1}^{2},...,_{1}Z_{1}^{K_{1}},_{1}C_{1}^{K_{1}},$$

$$...,_{1}MT_{n},_{1}K_{n},_{1}Z_{n}^{1},_{1}C_{n}^{1},_{1}Z_{n}^{2},_{1}C_{n}^{2},...,_{1}Z_{n}^{K_{n}},_{1}C_{n}^{K_{n}},$$

$$_{j}TS,_{j}NM,_{j}MT_{1},_{j}K_{1},_{j}Z_{1}^{1},_{j}C_{1}^{1},_{j}Z_{1}^{2},_{j}C_{1}^{2},...,_{j}Z_{1}^{K_{1}},_{j}C_{1}^{K_{1}},$$

$$...,_{j}MT_{n},_{j}K_{n},_{j}Z_{n}^{1},_{j}C_{n}^{1},_{j}Z_{n}^{2},_{j}C_{n}^{2},...,_{j}Z_{n}^{K_{n}},_{j}C_{n}^{K_{n}},$$

 $_{j}Z_{n}^{K_{n}}$ = 1st, 2nd,.. Knth nuclide of the MTith material at time step "j" for which a concentration will be specified. List as a ZAID value.

 $_{j}C_{n}^{K_{n}}$ = concentration for the nth isotope in material MTi at time step "j". Enter positive values for atom fractions or atom densities, and enter a negative value for wt. fractions or gram densities. See sign of MTi to specify either fraction or density

Example Problem - b1 (mcnpx)

Problem b1

Burnup Default Cross Section Option

Copy case g1 and rename to b1

- (1) Add a burn card
- (2) Add a volume card for material 100
- (3) Use 2 time steps (time durations 10 100 days)
- (4) Burn at 5 MW
- (5) Burn material 100 at 100% power
- (6) Use the BOPT keyword (BOPT=1.0,4)
- (7) Use the OMIT keyword (OMIT=100,2,90234,91232)
- (8) Run the problem using MCNPX, not MCNP5

Burn Card must be placed before material cards!

Problem b1 (mcnpx)

File b1

```
Godiva critical - using burnup
C
c CELL CARDS
     100 -18.74 -1 vol=2797.5
10
20
     0
                     1
c SURFACE CARDS
1
         8.741
    so
c DATA CARDS
imp:n 1 0
BURN TIME=10 100
      PFRAC=1.0 1.0
      POWER=5
      MAT=100
      BOPT=1.0 4
      OMIT=100,2,90234,91232
m100 92235 -94.73 92238 -5.27
C
kcode 1000 1.0
                   10
                       50
ksrc 0 0 0
```


Examine output fileFor BURN calculation

.

Burnup - Cautions and Suggestions

- For each time step, you must run enough neutrons/cycle, discard enough cycles to guarantee convergence, and run enough active cycles, so that the uncertainties on fluxes and reaction rates are acceptably small in every depletion region.
- An omit keyword will be required to omit nuclides generated by the isotope generator algorithm, that do not contain a transport cross sections, yet will be tracked in CINDER90
- Must use at least fission product tier 2 in order model majority of important fission products
- In order to track entire decay chains in transport, you must include nuclides at a density of 1e-36 that are not included by the isotope generator algorithm
- Use time steps that account for buildup and decay of highly absorbing isotopes
 - Fission product poison buildup
 - Burnable poison burnout
- Only group together materials incurring similar power distributions
- Section a larger burn material into smaller burn materials if the power gradient across the large burn material is determined to be too significant to assume a homogenized burnup

Burnup Equation (background)

$$\frac{dN_m(r,t)}{dt} = -N_m(r,t)\beta_m + \overline{Y}_m + \sum_{k \neq m} N_k(r,t)\gamma_{k \to m}$$

$$\beta_m = \lambda_m + \sum_i \int \sigma_{m,j}(E) \Phi(r, E, t) dE =$$
loss coefficient

$$\gamma_{k \to m} = \sum_{m \neq k} L_{km} \lambda_k + \sum_{m \neq k} \sum_j \int Y_{km,j}(E) \sigma_{k,j}(E) \Phi(r, E, t) dE = \text{gain coefficient}$$

 \overline{Y}_m = continuous feed/removal coefficient

 $Y_{km,j}(E)$ = reaction yield leading to production of isotope m from isotope k

 λ_m = decay constant for isotope m

 $L_{\it km}$ = branching ratio for the decay of isotope k into isotope m

 $\sigma_{m,j}(E)$ = absorption reaction cross section for reaction type j for isotope m

 $\Phi(r, E, t)$ = scalar spatial, energy and time dependent flux

CINDER90 Method

(background)

- The set of coupled differential equations is reduced to a set of linear differential equations
 - Linear chains are created for each isotope transmutation path

$$\frac{d\mathbf{N}_{i}}{dt} = \overline{Y}_{i} + \mathbf{N}_{i-1}(t)\gamma_{i-1} - \mathbf{N}_{i}(t)\beta_{i}$$

The solutions of each linear chain determines a partial nuclide density

$$N_{n}(t) = \sum_{m=1}^{n} \prod_{k=m}^{n-1} \gamma_{k} \left\{ \overline{Y}_{m} \left[\frac{1}{\prod_{l=m}^{n} \beta_{l}} - \sum_{j=m}^{n} \frac{e^{-\beta_{jt}}}{\prod_{i=m, \neq j}^{n} (\beta_{i} - \beta_{j})} \right] + N_{m}^{0} \sum_{j=m}^{n} \frac{e^{-\beta_{jt}}}{\prod_{i=m, \neq j}^{n} (\beta_{i} - \beta_{j})} \right\}$$

CINDER90 Method

(background)

Partial nuclide densities are summed to determine the total nuclide density

$$N_m = \sum_{j=1}^M N_{i,j}$$

 Each transmutation path for each nuclide is followed until it is determined that significant amounts of progeny are no longer created

$$P_m(t) = \int_0^t N_m(t') \beta_m dt'$$

