kable table..

2024-04-21

code so plots work

data cleaning

data combination from jorge

```
"C:/Users/paige/OneDrive/Documents/STAT 472/Team-Koopa/not combined csv files"
## [1] "C:/Users/paige/OneDrive/Documents/STAT 472/Team-Koopa/not combined csv files"
getwd()
## [1] "C:/Users/paige/OneDrive/Documents/STAT 472/Team-Koopa"
setwd("C:/Users/paige/OneDrive/Documents/STAT 472/Team-Koopa/not combined csv files")
data1 <- read.csv("Criminal_Offenses_On_campus.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ paste0(.x,"_all_campus"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_all_campus, unique_id = unique_id_all_campus)
data2 <- read.csv("Criminal_Offenses_On_campus_Student_Housing_Facilities.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ paste0(.x,"_student_housing"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_student_housing, unique_id = unique_id_student_housing)
data3 <- read.csv("Criminal_Offenses_Noncampus.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ pasteO(.x, "_crim_offense_noncampus"), recycleO = TRUE) |>
  rename(Survey.year = Survey.year_crim_offense_noncampus, unique_id = unique_id_crim_offense_noncampus
data4 <- read.csv("Criminal_Offenses_Public_property.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ paste0(.x, "_crim_offense_public"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_crim_offense_public, unique_id = unique_id_crim_offense_public)
data5 <- read.csv("Arrests_On_campus.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ paste0(.x, "_arrests_campus"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_arrests_campus, unique_id = unique_id_arrests_campus)
```

```
data6 <- read.csv("Arrests_On_campus_Student_Housing_Facilities.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ paste0(.x, "_arrests_stuhousing"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_arrests_stuhousing, unique_id = unique_id_arrests_stuhousing)
data7 <- read.csv("Arrests_Noncampus.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename with(~ paste0(.x, " arrests noncampus"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_arrests_noncampus, unique_id = unique_id_arrests_noncampus)
data8 <- read.csv("Arrests_Public_Property.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ paste0(.x, "_arrests_public"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_arrests_public, unique_id = unique_id_arrests_public)
data9 <- read.csv("Disciplinary_Actions_On_campus.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ paste0(.x, "_disciplinary_campus"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_disciplinary_campus, unique_id = unique_id_disciplinary_campus)
setwd("C:/Users/paige/OneDrive/Documents/STAT 472/Team-Koopa")
data10 <- read.csv("Disciplinary_Actions_Student_Housing_Facilities.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ paste0(.x, "_disciplinary_housing"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_disciplinary_housing, unique_id = unique_id_disciplinary_housing)
setwd("C:/Users/paige/OneDrive/Documents/STAT 472/Team-Koopa/not combined csv files")
data11 <- read.csv("Disciplinary_Actions_Noncampus.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ paste0(.x, "_disciplinary_noncampus"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_disciplinary_noncampus, unique_id = unique_id_disciplinary_noncampus
data12 <- read.csv("Disciplinary_Actions_Public_Property.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ paste0(.x, "_disciplinary_public"), recycle0 = TRUE) |>
 rename(Survey.year = Survey.year_disciplinary_public, unique_id = unique_id_disciplinary_public)
# This is our datasets being joined into one
dataset <- data1 |> left_join(data2) |>
 left_join(data3) |>
 left_join(data4) |>
 left join(data5) |>
 left_join(data6) |>
 left_join(data7) |>
 left_join(data8) |>
 left_join(data9) |>
 left_join(data10) |>
 left_join(data11) |>
 left_join(data12)
```

```
## Joining with 'by = join_by(Survey.year, unique_id)'
```

remove useless cols

removing NA values, removing useless columns

```
#remove NAs
dataset[is.na(dataset)] <- 0
#remove repeated columns (like unitid repeating for each xcel file)
#(3/4/24) just fixed some problems w this

cols_to_remove <- c("Unitid_student_housing", "Institution.name_student_housing", "OPEID_student_housing"
## had to change this dataset name before removing the campses ##

cleaned <- dataset[, !names(dataset) %in% cols_to_remove]</pre>
```

remove campuses

Removes campuses outside of Colorado.

barplot

```
year_factor <- as.factor(cleaned_data$Survey.year)

ggplot(cleaned_data, aes(x = year_factor, y = all_liquor_violations, fill = year_factor)) +
    geom_bar(stat = "identity") +
    labs(x = "Year", y = "Liquor Law Violations", fill = "Year") +
    ggtitle("Barplot of Total Liquor Violations vs. Year") +
    theme(legend.position = "none")</pre>
```

Barplot of Total Liquor Violations vs. Year

split data tables

```
set.seed(4242)
## split cleaned data into 25/75
smp_size <- floor(0.75 * nrow(cleaned_data))</pre>
train_split <- sample(seq_len(nrow(cleaned_data)), size = smp_size)</pre>
# create train = 75% and test = 25% set
train <- cleaned_data[train_split,] |> as_tibble() |> mutate(train = TRUE)
test <- cleaned_data[-train_split,] |> as_tibble() |> mutate(train = FALSE)
## check split to ensure nothing got screwed up
# create df of training data means and sd of each column
train_means_sd <- sapply(train[,c(7:20, 22:86)],</pre>
                          function(x) c(mean(x, na.rm = TRUE),
                                        sd(x, na.rm=TRUE)),
                          simplify = FALSE) |> bind_rows()
# transpose so table is legible
ttrain_means_sd <- t(train_means_sd)</pre>
# create kable table
#knitr::kable(ttrain_means_sd, digits = 5, caption = "Training Data, metrics to compare to test", col.n
# create df of testing data means and sd of each column
test_means_sd <- sapply(test[,c(7:20, 22:86)],</pre>
                         function(x) c(mean(x, na.rm = TRUE),
                                        sd(x, na.rm=TRUE)),
                          simplify = FALSE) |> bind_rows()
ttest_means_sd <- t(test_means_sd)</pre>
#knitr::kable(ttest_means_sd, digits = 5, caption = "Test Data, metrics to compare to training", col.na
## kable tables for hw 5
train_means <- round(c(mean(train$Negligent.manslaughter_all_campus),</pre>
           mean(train$Sex.offenses...Forcible_all_campus),
           mean(train$Rape_all_campus),
           mean(train$Fondling_all_campus),
           mean(train$Sex.offenses...Non.forcible_all_campus),
           mean(train$Incest_all_campus),
           mean(train$Statutory.rape_all_campus),
           mean(train$Robbery_all_campus),
           mean(train$Burglary_all_campus),
           mean(train$Motor.vehicle.theft_all_campus),
           mean(train$Arson_all_campus)), 3)
train_sds <- round(c(</pre>
  sd(train$Negligent.manslaughter_all_campus),
  sd(train$Sex.offenses...Forcible_all_campus),
  sd(train$Rape_all_campus),
  sd(train$Fondling_all_campus),
```

```
sd(train$Sex.offenses...Non.forcible_all_campus),
  sd(train$Incest_all_campus),
  sd(train$Statutory.rape_all_campus),
  sd(train$Robbery_all_campus),
  sd(train$Burglary_all_campus),
  sd(train$Motor.vehicle.theft_all_campus),
  sd(train$Arson_all_campus)
), 3)
train_pres <- data.frame(</pre>
  Variable = c("Negligent Manslaughter", "Sex Offenses (Forcible)", "Rape",
               "Fondling", "Sex Offenses (Non-forcible)", "Incest",
               "Statutory Rape", "Robbery", "Burglary", "Motor Vehicle Theft",
               "Arson"),
 Mean = train_means,
 StandardDeviation = train_sds
knitr::kable(train_pres, caption = "Training Data", col.names = c("Variable", "Mean", "SD"))
```

Table 1: Training Data

Variable	Mean	SD
Negligent Manslaughter	0.000	0.000
Sex Offenses (Forcible)	0.131	0.988
Rape	0.514	2.041
Fondling	0.332	1.362
Sex Offenses (Non-forcible)	0.000	0.000
Incest	0.000	0.000
Statutory Rape	0.002	0.046
Robbery	0.137	0.581
Burglary	1.555	5.217
Motor Vehicle Theft	0.826	3.259
Arson	0.103	0.639

```
test_means <- round(c(mean(test$Negligent.manslaughter_all_campus),</pre>
           mean(test$Sex.offenses...Forcible_all_campus),
           mean(test$Rape_all_campus),
           mean(test$Fondling_all_campus),
           mean(test$Sex.offenses...Non.forcible_all_campus),
           mean(test$Incest_all_campus),
           mean(test$Statutory.rape_all_campus),
           mean(test$Robbery_all_campus),
           mean(test$Burglary_all_campus),
           mean(test$Motor.vehicle.theft_all_campus),
           mean(test$Arson_all_campus)), 3)
test_sds <- round(c(</pre>
  sd(test$Negligent.manslaughter_all_campus),
  sd(test$Sex.offenses...Forcible_all_campus),
  sd(test$Rape all campus),
  sd(test$Fondling_all_campus),
```

```
sd(test$Sex.offenses...Non.forcible_all_campus),
  sd(test$Incest_all_campus),
  sd(test$Statutory.rape_all_campus),
  sd(test$Robbery_all_campus),
  sd(test$Burglary_all_campus),
  sd(test$Motor.vehicle.theft_all_campus),
  sd(test$Arson_all_campus)
), 3)
test_pres <- data.frame(</pre>
  Variable = c("Negligent Manslaughter", "Sex Offenses (Forcible)", "Rape",
               "Fondling", "Sex Offenses (Non-forcible)", "Incest",
               "Statutory Rape", "Robbery", "Burglary", "Motor Vehicle Theft",
               "Arson"),
  Mean = test_means,
  StandardDeviation = test_sds
knitr::kable(test_pres, caption = "Test Data", col.names = c("Variable", "Mean", "SD"))
```

Table 2: Test Data

Variable	Mean	\overline{SD}
Negligent Manslaughter	0.000	0.000
Sex Offenses (Forcible)	0.188	1.058
Rape	0.619	2.431
Fondling	0.422	1.774
Sex Offenses (Non-forcible)	0.003	0.056
Incest	0.000	0.000
Statutory Rape	0.003	0.056
Robbery	0.106	0.514
Burglary	1.850	5.850
Motor Vehicle Theft	0.863	3.390
Arson	0.169	0.728

lasso coef table

```
#for lasso
#install.packages("glmnet")
library(glmnet)

## Warning: package 'glmnet' was built under R version 4.3.3

## Loading required package: Matrix

##
## Attaching package: 'Matrix'
```

```
## The following objects are masked from 'package:tidyr':
##
##
       expand, pack, unpack
## Loaded glmnet 4.1-8
train num <- dplyr::select if(train, is.numeric)</pre>
#specify y
y <- train_num$all_liquor_violations
#train$Liquor
exclude_columns <- c("Unitid_all_campus", "OPEID_all_campus",</pre>
                     "Campus.ID_all_campus", "all_liquor_violations",
                     "Liquor.law.violations_arrests_campus",
                     "Liquor.law.violations_arrests_public",
                     "Liquor.law.violations_arrests_noncampus",
                     "Liquor.law.violations arrests stuhousing",
                     "Liquor.law.violations_disciplinary_campus",
                     "Liquor.law.violations_disciplinary_noncampus",
                     "Liquor.law.violations_disciplinary_public",
                     "Liquor.law.violations_disciplinary_housing",
                     "new column")
train_finalset <- train_num[, !names(train_num) %in% exclude_columns]</pre>
#specify x
x <- data.matrix(train_finalset)</pre>
# k fold cv for lambda
cv_model <- cv.glmnet(x,y,alpha = 1)</pre>
best_lambda <- cv_model$lambda.min</pre>
\#best\_lambda
#plot(cv_model)
#find optimal lasso model
best_lasso <- glmnet(x, y, alpha = 1, lambda = best_lambda)</pre>
#coefficients from lasso model
lasso_coef <- coef(best_lasso)</pre>
#lasso_coef
#make coefficients matrix
lc_mat <- as.matrix(lasso_coef)</pre>
#make coefficients dataframe
lc_df <- as.data.frame(lc_mat)</pre>
#filter out coefficients that are 0
rows_to_keep <- apply(lc_mat, 1, function(row) any(row > 0, row < 0))
```

```
lc_df_filtered <- lc_df[rows_to_keep,]

#lc_df_filtered

#remove intercept
lc_df_clean <- lc_df_filtered[-1]

#lc_df_clean

lc_table_df <- data.frame(
    Variable = c("Institution Size", "Sex Offenses (all campus)", "Arson (all campus)", "Rape (student hor Coefficients = lc_df_clean)

#table of lasso coefficients
knitr::kable(lc_table_df, caption = "LASSO Coefficients", digits = 3)</pre>
```

Table 3: LASSO Coefficients

Variable	Coefficients
Institution Size	0.001
Sex Offenses (all campus)	4.213
Arson (all campus)	7.350
Rape (student housing)	13.193
Fondling (student housing)	14.171
Robbery (student housing)	67.500
Assault (student housing)	35.636
Burglary (student housing)	15.433
Vehicle Theft (student housing)	-19.912
Arson (student housing)	82.575
Assault (criminal offense, noncampus)	32.531
Vehicle Theft (criminal offense, noncampus)	-6.897
Arson (criminal offense, noncampus)	80.363
Sex Offenses (criminal offense, public)	3.729
Fondling (criminal offense, public)	64.643
Drug Law Violations (arrest, student housing)	4.979
Drug Law Violations (arrest, noncampus)	12.475
Drug Law Violations (disciplinary, campus)	1.109
Drug Law Violations (disciplinary, housing)	1.474

rmse table

```
## potential libraries

#install.packages("keras")
library(keras)
```

Warning: package 'keras' was built under R version 4.3.3

```
library(tensorflow)
## Warning: package 'tensorflow' was built under R version 4.3.3
##
## Attaching package: 'tensorflow'
## The following object is masked from 'package:caret':
##
##
       train
library(nnet)
#install.packages("neuralnet")
#compute object is masked from package:dplyr
library(neuralnet)
## Warning: package 'neuralnet' was built under R version 4.3.3
## Attaching package: 'neuralnet'
## The following object is masked from 'package:dplyr':
##
##
       compute
#get plots side by side, grid.arrange()
#install.packages("gridExtra")
library(gridExtra)
## Warning: package 'gridExtra' was built under R version 4.3.3
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
#for dredge()
#install.packages("MuMIn")
library(MuMIn)
## Warning: package 'MuMIn' was built under R version 4.3.3
```

Warning: package 'modelr' was built under R version 4.3.3

```
mn_rmse <- data.frame(
    rmse_1 <- rmse(NN_1, data=test),
    rmse_2 <- rmse(NN_2, data=test),
    rmse_3 <- rmse(NN_3, data=test),
    rmse_4 <- rmse(NN_4, data=test),
    rmse_5 <- rmse(NN_5, data=test),
    rmse_6 <- rmse(NN_6, data=test)
)

new_rmse <- data.frame(
    Variable = c("1", "2", "3", "4", "5", "6"),
    Coefficients = new_rmse)

rownames(rmse_table) <- NULL

rmse_table</pre>
```

```
## Variable Coefficients
## 1
       1
              423.2550
## 2
         2
              436.6905
## 3
         3
              420.3293
         4
## 4
             420.3293
## 5
         5
             417.5463
## 6
         6
               423.2502
```

kable(rmse_table, col.names = c("Model #", "Test RMSE"), caption = "Neural Network Model Evaluations",

Table 4: Neural Network Model Evaluations

Model #	Test RMSE
1	423.255
2	436.691
3	420.329
4	420.329
5	417.546
6	423.250

```
#kable(n_rmse, col.names = c("RMSE 1", "RMSE 2", "RMSE 3", "RMSE 4", "RMSE 5", "RMSE 6"), caption = "Ne

final_rmse <- data.frame(
   Variable = c("XGBoost", "Neural Net"),
   Coefficients = c("164.725", "417.546"))

kable(final_rmse, col.names = c("Method", "Test RMSE"), caption = "Final Model Evaluations", digits = 3</pre>
```

Table 5: Final Model Evaluations

Method	Test RMSE
XGBoost	164.725
Neural Net	417.546