Lecture Four - Exponential and Logarithmic Functions

Section 4.1 – Inverse Functions

Inverse Relations

Interchanging the first and second coordinates of each ordered pair in a relation produces the inverse relation.

If a relation is defined by an equation, interchanging the variables produces an equation of the inverse relation

Given the relation: $\{(Zambia, 4.2), (Columbia, 4.5), (Poland, 3.3), (Italy, 3.3), (US, 2.5)\}$ Inverse Relation: $\{(4.2, Zambia), (4.5, Columbia), (3.3, Poland), (3.3, Italy), (2.5, US)\}$

Example

Consider the relation g given by: $G = \{(2,4), (-1,3), (-2,0)\}$

Solution

The inverse relation: $G = \{(4,2), (3,-1), (0,-2)\}$

Example

Consider the relation given by: $F = \{(-2, 2), (-1, 1), (0, 0), (1, 3), (2, 5)\}$

Solution

The inverse relation: $G = \{(2,-2),(1,-1),(0,0),(3,1),(5,2)\}$

One-to-One Functions

A function f is one-to-one (1-1) if different inputs have different outputs that is,

if
$$a \neq b$$
, then $f(a) \neq f(b)$

A function f is one-to-one (1-1) if different outputs the same, the inputs are the same – that is,

if
$$f(a) = f(b)$$
, then $a = b$

Example

Given the function f described by f(x) = 2x - 3, prove that f is one-to-one.

Solution

$$f(a) = f(b)$$

 $2a - 3 = 2b - 3$ Add 3 on both sides
 $2a = 2b$ Divide by 2
 $a = b$ f is one-to-one

Example

Given the function f described by f(x) = -4x + 12, prove that f is one-to-one.

Solution

$$f(a) = f(b)$$

$$-4a + 12 = -4b + 12$$

$$-4a = -4b$$

$$a = b$$
Subtract 12 from both sides
Divide by -4

Example

Given the function f described by $f(x) = x^2$, prove that f is one-to-one.

$$\begin{cases} f(-1) = 1 \\ f(1) = 1 \end{cases} \Rightarrow f(-1) = f(1) \text{ f is not one-to-one}$$

Definition of the Inverse of a Function

Let f and g be two functions such that

$$f(g(x)) = x \quad and \quad g(f(x)) = x$$

$$x \xrightarrow{f} f(x) \qquad g(f(x)) = f^{-1}(f(x)) = x$$

$$g(f(x)) = f^{-1}(f(x)) = x$$

If the inverse of a function f is also a function, it is named f^{-1} read "f - inverse"

The -1 in f^{-1} is not an exponent! And is not equal to

Domain and **Range** of f and f^{-1}

domain of
$$f^{-1}$$
 = range of f
range of f^{-1} = domain of f

If a function f is one-to-one, then f^{-1} is the unique function such that each of the following holds.

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$$
 for each x in the domain of f , and
$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = x$$
 for each x in the domain of f^{-1}

The condition that f is one-to-one in the definition of inverse function is important; otherwise, g will not define a function

3

Example

Let $f(x) = x^3 - 1$ and $g(x) = \sqrt[3]{x+1}$, is g the inverse function of f?

Solution

$$(f \circ g)(x) = f(g(x))$$

$$= f\left(\sqrt[3]{x+1}\right)$$

$$= \left(\sqrt[3]{x+1}\right)^3 - 1$$

$$= x + 1 - 1$$

$$= x$$

$$= (3\sqrt[3]{x+1})^3 - 1$$

$$= 3\sqrt[3]{x^3} - 1 + 1$$

$$= \sqrt[3]{x^3} - 1$$

$$= \sqrt[3]{x^3} - 1$$

$$= x$$

g is the inverse function of f

Example

Show that each function is the inverse of the other: f(x) = 4x - 7 and $g(x) = \frac{x+7}{4}$

$$f(g(x)) = f\left(\frac{x+7}{4}\right) = 4\left(\frac{x+7}{4}\right) - 7 = x + 7 - 7 = x$$

$$g(f(x)) = g(4x-7) = \frac{4x-7+7}{4} = \frac{4x}{4} = x$$

Finding the *Inverse Function*

Example

Finding an Inverse Function

1. Replace
$$f(x)$$
 with y

3. Solve for
$$y$$

4. Replace
$$y$$
 with $f^{-1}(x)$

 $f(\mathbf{x}) = 2x + 7$

$$y = 2x + 7$$

$$x = 2y + 7$$

$$x-7=2y$$

$$\frac{x-7}{2} = \mathbf{y}$$

$$f^{-1}(x) = \frac{x-7}{2}$$

Example

Find the inverse of $f(x) = 4x^3 - 1$

$$y = 4x^3 - 1$$

$$x = 4y^3 - 1$$

$$x+1=4y^3$$

$$\frac{x+1}{4} = y^3$$

$$y = \left(\frac{x+1}{4}\right)^{1/3}$$
$$= \sqrt[3]{\frac{x+1}{4}} = f^{-1}(x)$$

Example

Find a formula for the inverse $f(x) = \frac{5x-3}{2x+1}$

$$y = \frac{5x - 3}{2x + 1}$$

$$x = \frac{5y - 3}{2y + 1}$$

$$x(2y+1) = 5y-3$$

$$2xy + x = 5y - 3$$

$$2xy - 5y = -x - 3$$

$$y(2x-5) = -x-3$$

$$y = \frac{-x - 3}{2x - 5}$$

$$f^{-1}(x) = -\frac{x+3}{2x-5}$$

Exercise

Section 4.1 – Inverse Functions

Determine whether the function is one-to-one

1.
$$f(x) = 3x - 7$$

$$3. \qquad f(x) = \sqrt{x}$$

$$5. f(x) = |x|$$

2.
$$f(x) = x^2 - 9$$

4.
$$f(x) = \sqrt[3]{x}$$

Prove that the given function f is one-to-one

6.
$$f(x) = \frac{2}{x+3}$$

$$f(x) = \frac{2}{x+3}$$
 7. $f(x) = (x-2)^3$ 8. $y = x^2 + 2$ 9. $f(x) = \frac{x+1}{x-3}$

8.
$$y = x^2 + 2$$

9.
$$f(x) = \frac{x+1}{x-3}$$

10. Let
$$f(x) = x^3 - 1$$
 and $g(x) = \sqrt[3]{x+1}$, is g the inverse function of f?

11. Given that
$$f(x) = 5x + 8$$
, use composition of functions to show that $f^{-1}(x) = \frac{x - 8}{5}$

12. Given the function
$$f(x) = (x+8)^3$$

a) Find
$$f^{-1}(x)$$

b) Graph
$$f$$
 and f^{-1} in the same rectangular coordinate system

c) Find the domain and the range of
$$f$$
 and f^{-1}

Prove the f and g are inverse functions of each other, and sketch the graphs of f and g

13.
$$f(x) = 3x - 2$$
 $g(x) = \frac{x+2}{3}$

15.
$$f(x) = x^3 - 4$$
; $g(x) = \sqrt[3]{x+4}$

14.
$$f(x) = x^2 + 5, x \le 0$$
 $g(x) = -\sqrt{x-5}, x \ge 5$

Determine the domain and range of f^{-1} (Hint: first find the domain and range of f)

16.
$$f(x) = -\frac{2}{x-1}$$

17.
$$f(x) = \frac{5}{x+3}$$

18.
$$f(x) = \frac{4x+5}{3x-8}$$

Find the inverse function of

19.
$$f(x) = 3x + 5$$

24.
$$f(x) = 2x^3 - 5$$

28.
$$f(x) = x^2 - 6x$$
; $x \ge 3$

20.
$$f(x) = \frac{1}{3x-2}$$

25.
$$f(x) = \sqrt{3-x}$$

29.
$$f(x) = (x-2)^3$$

21.
$$f(x) = \frac{3x+2}{2x-5}$$

26.
$$f(x) = \sqrt[3]{x} + 1$$

30.
$$f(x) = \frac{x+1}{x-3}$$

22.
$$f(x) = \frac{4x}{x-2}$$

27.
$$f(x) = (x^3 + 1)^5$$

31.
$$f(x) = \frac{2x+1}{x-3}$$

23.
$$f(x) = 2 - 3x^2$$
; $x \le 0$