Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Отчёт

Лабораторная работа №3 по методам оптимизации

Выполнили:

Абрамов Илья Дмитриевич M32341 Кузнецов Илья Дмитриевич M32341

Лабораторная работа # 3 Методы высокого порядка

Предполагаемый язык выполнения лабораторных работ Python 3. Лабораторные работы выполняются студентами индивидуально или в группах по 2-3 человека (по желанию). По результатам выполнения лабораторной работы необходимо подготовить отчет. Отчет должен содержать описание реализованных вами алгоритмов, ссылку на реализацию, необходимые тесты и таблицы.

Постановка задачи

- 1. Реализовать методы Gauss-Newton и Powell Dog Leg для решения нелинейной регрессии. Сравнить эффективность с методами реализованными в предыдущих работах.
- 2. Реализовать метод BFGS и исследовать его сходимость при минимизации различных функций. Сравнить с другими реализованными методами.

Дополнительное задание

Реализовать и исследовать метод L-BFGS

Критерии оценивания

- 1. Работоспособность и качество кода.
- 2. Полнота отчета: наличие постановки задачи, описания методов, промежуточных выводов, результатов, а также графиков и таблиц, которые их демонстрируют.
- 3. Знание теории, которая лежит в основе применяемых методов.
- 4. Анализ результатов, преимуществ и ограничений методов.
- 5. Дополнительное задание.

Каждый критерий оценивается максимально в 5 баллов. Итого максимальный балл за лабораторную работу: 25 баллов.

Состав команды: Абрамов Илья М32341, Кузнецов Илья М32341

Gauss-Newton

Алгоритм Гаусса Ньютона используется для решения задачи наименьших квадратов

Пусть задано m функций $f=(f_1,f_2,\ldots,f_m)$ от n переменных $x=(x_1,x_2,\ldots,x_n)$. Задача найти:

$$\arg\min_{x} \sum_{i=1}^{m} f_i^2(x)$$

Алгоритм работает следующим образом: пусть у нас есть некоторое приближение x_0 , тогда следующее приближение будет считаться по формуле:

$$x_{i+1}=x_i-(J^TJ)^{-1}J^Tf(x_i)$$
, где J - матрица Якоби $J_{i,j}=rac{df_i}{dx_j}$

Решим с помощью этого алгоритма задачу полиномиальной регрессии.

Как видно на рисунке, алгоритм работает.

Powell Dog Leg

Этот алгоритм решает ту же задачу, что и алгоритм Гаусса Ньютона. Алгоритм работает следующим образом: пусть у нас есть некоторое число Δ - радиус, внутри которого будут производиться все шаги, некоторое приближение x_0 , x_i - текущее приближение,

мекоторое приолижение
$$\omega_0$$
, ω_i – текущее приолижение, $\delta_{gn} = (J^T J)^{-1} J^T f(x_i)$ - шаг в алгоритме Гаусса Ньютона. $\delta_{sd} = J^T f(x_i)$ - шаг в алгоритме наискорейшего спуска $t = \frac{||\delta_{sd}||^2}{||J\delta_{sd}||^2}$ тогла

1)
$$\delta=\delta_{gn}$$
, если $||\delta_{gn}||\leq \Delta$
2) $\delta=\frac{\Delta}{||\delta_{sd}||}\delta_{sd}$, если $||\delta_{gn}||>\Delta$ и $t||\delta_{sd}||>\Delta$
3) $\delta=t\delta_{sd}+s(\delta_{gn}-t\delta_{sd})$, s - такое, что $||\delta||=\Delta$, иначе

Следующее приближение будет считаться по формуле: $x_{i+1} = x_i - \delta$

Решим с помощью этого алгоритма задачу полиномиальной регрессии.

Как видно на рисунке, алгоритм также работает.

BFGS

Пусть решается задача поиска $argminf(x), \ x \in R^n$ Алгоритм стартует в некотором начальном приближении x_0 . Каждое следующее приближение находится по следующему принципу $x_{k+1} = x_k + \alpha_k * p_k$, где α_k удовлетворяет условиям Вольфе. $p_k = -B_k^{-1} * \nabla f(x_k)$, где B_k - приближенное значение гессиана функции в данной точке. В силу дороговизны вычисления обратной матрицы, мы на каждом шаге просто обновляем значения уже имеющейся:

$$B_{k+1}^{-1} = \left(I - \frac{\mathbf{s}_k \mathbf{y}_k^T}{\mathbf{y}_k^T \mathbf{s}_k}\right) B_k^{-1} \left(I - \frac{\mathbf{y}_k \mathbf{s}_k^T}{\mathbf{y}_k^T \mathbf{s}_k}\right) + \frac{\mathbf{s}_k \mathbf{s}_k^T}{\mathbf{y}_k^T \mathbf{s}_k}$$
$$s_k = x_{k+1} - x_k, \ y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$$

L-BFGS

Проблема BFGS заключалась в том, что нам приходится хранить матрицу, что делает использование памяти в методе квадратичным. Вместо этого будем хранить значение s_k, y_k, α_k , полученные на последних m итерациях метода. Этого будет достаточно, чтобы с необходимой точностью получить следующее приближение x_k .

Рассмотрим потребление памяти методами BFGS и LBFGS на примере следующей функции

$$f = \sum_{i=0}^{49} (x_i - 30)^2 + \sum_{i=50}^{99} (2x_i - 30)^2 + \sum_{i=100}^{500} (3x_i - 30)^2$$

Видно, что при использовании LBFGS мы тратим меньше памяти.

Сравнение методов.

Сравним методы Gauss-Newton, Powell Dog Leg, BFGS и LBFGS с реализованными ранее методами на примере следующей функции

$$f = \sum_{i=0}^{49} (x_i - 30)^2 + \sum_{i=50}^{99} (2x_i - 30)^2 + \sum_{i=100}^{149} (3x_i - 30)^2$$

Видно, что метод Gauss-Newton сходится на порядок быстрее других методов, а скорость сходимости метода Powell Dog Leg напрямую зависит от радиуса trust region: при большом радиусе он будет сходится почти так же быстро, как и метод Gauss-Newton, а при маленьком радиусе он будет сходится довольно долго.

Также видно, что BFGS и LBFGS сходятся быстрее всех ранее реализованных методов, и медленнее методов Gauss-Newton и Powell Dog Leg.