M1C03 Lecture 29

Relatively prime integers and the Fundamental Theorem of Arithmetic

Jeremy Lane

Nov 24, 2021

Announcement(s)

- Test 2 Friday
- No quiz this week

Overview

Reference: Lakins, section 6.3.

Relatively prime integers

Definition: An integer a divides an integer b if there exists an integer k such that b=ka. We write a|b.

Definition: A positive integer p is *prime* if p > 1 and for all positive integers a and b, if p = ab, then a = 1 or b = 1.

Definition: The *greatest common divisor* of two integers a and b is the largest positive integer c such that c|a and c|b. We denote this number $\gcd(a,b)$.

Definition: Two integers a and b, not both equal to zero, are *relatively prime* if $\gcd(a,b)=1$.

Theorem (Lakins, Theorem 6.3.2)

Let a and b be integers that are not both 0. Then a and b are relatively prime if and only if there exists $x,y\in\mathbb{Z}$ such that

$$1 = xa + yb.$$

Example

Show that if $d = \gcd(a, b)$, then $\gcd(a/d, b/d) = 1$.

Euclid's Lemma

Theorem (Lakins, Lemma 6.3.3)

Let $a,b,c\in\mathbb{Z}$. If $\gcd(a,c)=1$ and c|ab, then c|b.

Euclid's Lemma

Corollary (Lakins, Lemma 6.3.5)

Let p be a prime number and let b_1,\ldots,b_r be integers. If $p|b_1\ldots b_r$, then there exists $i\in\{1,\ldots,r\}$ such that $p|b_i$.

The Fundamental Theorem of Arithmetic

Theorem

Every positive integer larger than 1 can be written uniquely (up to reordering) as a product of primes.