3.4 相互独立的随机变量 — 将事件独立性推广到随机变量上

■ 定义 设(X, Y) 的联合分布函数为F(x,y), 两个边缘分布函数分别为 $F_X(x)$, $F_Y(y)$, 如果对于任意的X, Y

都有

$$P\{X \le x, Y \le y\} = P\{X \le x\}P\{Y \le y\}$$

即

$$F(x, y) = F_X(x)F_Y(y)$$

则称随机变量X,Y相互独立。

■ 特别,对于离散型和连续型的随机变量,该定义 分别等价于

离散型
$$X$$
与 Y 独立 \longrightarrow 对一切 i,j 有 $p_{ij}=p_{i\bullet}p_{\bullet j}$ 即 $P\{X=x_i,Y=y_j\}=P\{X=x_i\}P\{Y=y_j\}$

连续型
$$X$$
与 Y 独立 对任何 x , y 有

■ 实际意义

在实际问题或应用中,当X的取值与Y的取值 互不影响时,我们就认为X与Y是相互独立的,进 而把上述定义式当公式运用.

■补充说明

№ 在X与Y是相互独立的前提下,

♥ 边缘分布可确定联合分布!

$$F(x, y) = F_X(x) \cdot F_Y(y)$$

\mathfrak{O}_1 设 (X, Y) 的概率分布 (律) 为

Х	-1	0	2	p _i .
1/2	2/20	1/20	2/20	1/4
1	2/20	1/20	2/20	1/4
2	4/20	2/20	4/20	2/4
p .j	2/5	1/5	2/5	

证明: X、Y相互独立。

逐个验证等式

$$p_{ij} = p_{i\bullet} \times p_{\bullet j}$$

- 4/9页 -

证:X与Y的边缘分布律分别为

$$p_{11} = \frac{2}{20} = p_{1.} \cdot p_{.1} \qquad p_{12} = \frac{1}{20} = p_{1.} \cdot p_{.2}$$

$$p_{13} = \frac{4}{20} = p_{1.} \cdot p_{.3}$$

$$p_{21} = p_{2.} \cdot p_{.1}$$
 $p_{22} = p_{2.} \cdot p_{.2}$ $p_{23} = p_{2.} \cdot p_{.3}$

$$p_{31} = p_{3.} \cdot p_{.1}$$
 $p_{32} = p_{3.} \cdot p_{.2}$ $p_{33} = p_{3.} \cdot p_{.3}$

$$p_{33} = p_{3.} \cdot p_{.3}$$

:X、Y相互独立

例2 设(X,Y)的概率密度为

$$\varphi(x,y) = \begin{cases} 6e^{-(2x+3y)} & x \ge 0, y \ge 0 \\ 0 & \text{ 其他} \end{cases}$$

解 边缘密度函数分别为

$$\varphi_X(x) = \int_{-\infty}^{+\infty} \varphi(x, y) dy$$

$$\stackrel{\text{def}}{=} x \ge 0 \qquad \varphi_X(x) = \int_0^{+\infty} 6e^{-2x-3y} dy = 2e^{-2x}$$

$$\stackrel{\text{def}}{=} x < 0 \qquad \varphi_X(x) = 0$$

所以,
$$\varphi_X(x) = \begin{cases} 2e^{-2x}, & (x \ge 0) \\ 0, & (x < 0) \end{cases}$$

所以,
$$\varphi_X(x) = \begin{cases} 2e^{-2x}, & (x \ge 0) \\ 0, & (x < 0) \end{cases}$$
 同理可得
$$\varphi_Y(y) = \begin{cases} 3e^{-3y}, & (y \ge 0) \\ 0, & (y < 0) \end{cases}$$

$$\varphi_X(x) = \begin{cases} 2e^{-2x}, & x \ge 0 \\ 0, & x < 0 \end{cases}, \quad \varphi_Y(y) = \begin{cases} 3e^{-3y}, & y \ge 0 \\ 0, & y < 0 \end{cases}$$

$$\varphi_X(x) \cdot \varphi_Y(y) = \begin{cases} 6e^{-(2x+3y)}, & (x \ge 0, y \ge 0) \\ 0, & \text{ } \sharp \text{ } \end{cases}$$

$$= \varphi(x, y)$$

所以 X 与 Y 相互独立。

命题

$$(X,Y) \sim N(\mu_1, \sigma_1^2; \mu_2, \sigma_2^2; \rho),$$
 X,Y 为相互独立 $\Leftrightarrow \rho = 0$
 X,Y 为相互独立 $\qquad \qquad \rho = 0$

证 \longrightarrow 对任何x,y有

$$\frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}}-2\rho\frac{(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}}+\frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right]}=\frac{1}{\sqrt{2\pi}\sigma_{1}}e^{-\frac{(x-\mu_{1})^{2}}{2\sigma_{1}^{2}}}\frac{1}{\sqrt{2\pi}\sigma_{2}}e^{-\frac{(y-\mu_{2})^{2}}{2\sigma_{2}^{2}}}$$

$$\mathbb{R} \ \ \chi = \mu_1, y \stackrel{\text{fig.}}{=} \mu_2 \qquad \qquad \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} = \frac{1}{\sqrt{2\pi}\sigma_1}\frac{1}{\sqrt{2\pi}\sigma_2}$$

故
$$\rho = 0$$

$$\Rightarrow$$
 将 $\rho = 0$ 代入 $f(x,y)$ 即得 $f(x,y) = f_X(x) f_Y(y)$