

Tecnologie e Servizi di Rete

Computer Engineering

Marco Lampis

26 novembre 2022

Indice

0	Info	rmazioni	1
1	IPv4	Summary	3
	1.1	Indirizzi speciali	3
	1.2	Indirizzamento IP con classi	3
	1.3	Indirizzamento IP senza classi (CIDR)	3
	1.4	IP routing	4
	1.5	IP addressing methodology	7

0 Informazioni

I seguenti appunti sono stati presi nell'anno accademico 2022-2023 durante il corso di Tecnologie e Servizi di Rete.

Il materiale non è ufficiale e non è revisionato da alcun docente, motivo per cui non mi assumo responsabilità per eventuali errori o imprecisioni.

Per qualsiasi suggerimento o correzione non esitate a contattarmi.

E' possibile riutilizzare il materiale con le seguenti limitazioni:

- Utilizzo non commerciale
- Citazione dell'autore
- Riferimento all'opera originale

E' per tanto possibile:

• Modificar parzialmente o interamente il contenuto

Questi appunti sono disponbili su GitHub al seguente link:

1 IPv4 Summary

In ogni sottorete tutti i dispositivi che ne fanno parte avranno lo stesso indirizzo ip.

1.1 Indirizzi speciali

- tutti i bit a 1: indirizzo di broadcast, non può essere assegnato
- 127.x.x.x: indirizzo di loopback, è una classe di indirizzi e servono a identificare l'host stesso e per tale motivo vengono solitamente utilizzate a scopo di debug.

Spesso oggi giorno non è consentito l'invio di messaggi in broadcast per motivi di sicurezza.

1.2 Indirizzamento IP con classi

Le rappresentazioni possono essere classes (a classe) o classness (senza l'utilizzo di classi). In particolare esistono di tre tipologie:

- A: prevede i primi 8 bit per l'indirizzo di rete, i rimanenti sono per identificare i dispositivi. Il totale degli indirizzi è 2^7 per la rete e 2^24 per i dispositivi. Si possono avere 128 networks.
- **B**: 2 bit per la classe, 14 bit per la rete e 16 bit per i dispositivi. Si possono avere 16384 networks.
- C: 3 bit per la classe, 21 bit per la rete e 8 bit per gli host.

Basta guardare il primo bit per capire se era una classe A o B o C.

Nota:l bit di riconoscimento servono per sapere quali bit individuano la rete e quali gli host.

1.3 Indirizzamento IP senza classi (CIDR)

Il sistema *Classless InterDomain Routing* permette di indirizzare la porzione più precisa di indirizzi tra rete e e dispositivi. La porzione di rete è dunque di lunghezza arbitraria. Il formato con cui può essere rappresentato un indirizzo è il seguente: networkID + prefix length oppure netmask.

Il prefix length, specificato con /x, è il numero di bit di network.

La netmask è identificata da una serie di bit posti a 1 che determinano quali bit identificano la rete, attraverso un and bit a bit.

Esempio:

```
1 200.23.16.0/23 # prefix length
2 200.23.16.0 255.255.254.0 # netmask
```

L'indirizzo viene espresso attraverso gruppi di 8 bit, rappresentanti in modo decimale puntato (4 gruppi in quanto 32 bit totali). Ogni raggruppamento avrà un valore da 0 a 255.

Non tutti i valori sono permessi possibili, il più piccolo è 252. Questo è dovuto al fatto che abbiamo l'indirizzo dell'intera sottorete e l'indirizzo del inter broadcast che non possono essere utilizzati nell'assegnazione.

Un modo per sapere se un indirizzo è scritto in modo corretto è prendere il prefix length /x e controllare che ci l'ultimo numero puntato sia multiplo di $2^(32-x)$.

Esempi:

```
1 130.192.1.4/30 => 4%(2^32-30) = 4%4 = 0 si!

2 130.192.1.16/30 => 16%(2^32-30) = 16%4 = 0 si!

3 130.192.1.16/29 => 16%(2^32-29) = 16%8 = 0 si!

4 5 130.192.1.1/30 => 1%(2^32-30) = 1%4 != 0 no!

6 130.192.1.1/29 => 1%(2^32-29) = 1%8 != 0 no!

7 130.192.1.1/28 => 1%(2^32-28) = 1%16 != 0 no!
```

Per il ragionamento di sopra appare evidente che un indirizzo che termina con .1 non sarà mai un indirizzo corretto, in quanto ritornerà sempre un resto.

1.4 IP routing

Il routing degli host avviene attraverso la routing table, caratterizzata da due colonne che identificano:

- destinazione (indirizzi ip)
- interfaccia (eth0...)

Quando viene inviato un pacchetto, si cerca un match all'interno della tabella per identificare dove inviare un pacchetto IP. Se è presente più di un match, viene considerato quello con il prefisso più lungo.

nota: i router sono identificati solitamente con un cerchio con dentro una x.

Di seguito è mostrato un esempio di routing:

Figura 1.1: routing

Sono presenti in totale 7 sottoreti, di cui 3 reti locali e 4 reti punto punto. Tutta la sottorete ha come indirizzo quello raffigurato in alto a sinistra. Gli indirizzi di ciascuna di queste sono come segue:

Figura 1.2: routing2

Scriviamo la routing table del router identificando le reti direttamente connesse e raggiungibili. Prendiamo come riferimento **R1**:

Destination	Next	Туре
130.192.3.0/30	130.192.3.1	direct
130.192.3.4/30	130.192.3.5	direct
130.192.2.0/24	130.192.2.1	direct
80.105.10.0/30	80.105.10.1	direct
80.105.10.0/30	80.105.10.1	direct
130.192.0.0/24	130.192.3.2	static
130.192.3.8/30	130.192.3.2	static
130.192.1.6/24	130.192.3.2	static

1.5 IP addressing methodology

IP Addressing: methodology

Figura 1.3: Rete di esempio

La metodologia da adoperare è la seguente:

- 1. Localizzare le reti IP, in questo caso 3.
- 2. Individuare il numero di indirizzi richiesti, in questo caso nel router in alto a destra è sufficiente /30 perché ne sono richiesti 4 (2^2), /26 a sinistra (2^6) e /25 in basso a destra (2^7).
- 3. Quanti indirizzi posso allocare.
- 4. Il range di validità degli indirizzi,in questo caso /26, /25 e /30 dunque mi basterebbe o tutti e 3, o due /25 o infine un solo /24

Nota: in basso a sinistra sono richiesti 43 indirizzi per 40 dispositivi. Ciò è dovuto al fatto che oltre ai 40 richiesti serve l'indirizzo di rete, l'indirizzo di broadcast e l'indirizzo del router.

Per riuscire a trovare le sottoreti, si prosegue in ordine dal maggiore (decimale minore):

```
1 # tutta la rete
2 10.0.0.0/24
3
4 # subnet2 (/25), 32-25 = 7 => 2^7 = 128 indirizzi
5 # range: 0-127
6 10.0.0.0/25
```

```
7 10.0.0.127 <- ultimo
8
9 # subnet3 (/26), 32-26 = 6 => 2^6 = 64 indirizzi
10 # range: 128-191
11 10.0.0.128/26
12 10.0.0.191 <- ultimo
13
14 #subnet4 (/30), punto punto
15 10.0.0.192/30
```