Data Science & S

Machine Learning

Supervised Learning

Lecture No. - 05

Recap of Previous Lecture

Regressor

Decision Tree

Probability

Topics to be Covered

Machine Learning CROSS VALIDATION Feature Transformation. Standard Scaler Naive Bayes Bagging And Boosting. 1) CROSS Validation And Its Typus Gan Exam 1000 datapints DATASET 766 TRANING Model Train Yandom - State Validato TRAIN Model Hyperparameter Tuning =) (ROSS VALIDATION CV=5 560 240 96% Exp 1 VALIDATEON CROSS VALIDATION TRAIN EXPZ TRAIN VALIDATEN 90% (10%. Exp3 EXPY 11 EXPS

lyps of Choss Validation

1) Leave One Out (ROSS VALIDATION (LOOCV)

V) - Acc n

Disadvantage

Trancy

Avenage Acc

Stratified -> layers Binary o/p

n=100 Validatin=100 ←

0/p 1's → 2 rox. ? 0's → 2 rox. }

Proportional representation.

$$\begin{cases} 100 \rightarrow 1's \\ 0 \rightarrow 0's \end{cases}$$

100

Time Series CV

Time Some Ap

Question: What is the primary purpose of using cross-validation in model building?

- a) To increase the speed of the training process.
- b) To reduce the complexity of the model.
- c) To estimate the model's performance on an independent dataset.
- d) To reduce the need for feature selection.

Question: What is a special consideration when using cross-validation for time-series data?

- a) Randomly dividing the dataset into k-folds.
- b) Ensuring that the validation set comes after the training set in time.
- c) Increasing the number of folds to improve accuracy.
- d) Using a larger test set than the training set.

Question: What is an advantage of cross-validation compared to using a single validation set?

- a) It requires less computation time.
- b) It provides a more accurate estimate of out-of-sample performance.
- c) It eliminates the need for a test set. X
- d) It alvays selects the best hyperparameters.

Assignment

K-5, 10, 15, 20, 25,

D, 100, 100

- Question: In k-fold cross-validation, what is the effect of increasing 'k'?
- a) Decreases both bias and variance of the model evaluation.
- b) Increases bias and decreases variance of the model evaluation.
- c) Decreases bias but increases variance of the model evaluation.
- d) Increases both bias and variance of the model evaluation.

h-100 K: (00

Question: In the context of cross-validation, what is the impact of partitioning data into a higher number of folds?

- a) Increases the risk of overfitting.
- b) Decreases the size of the training set in each fold.
- c) Reduces the computational complexity.
- d) Makes the model less sensitive to the choice of hyperparameters.

Question: How does cross-validation help in determining the optimal complexity of a model?

- a) By allowing the model to train on larger datasets.
- b) Through repeated training and validation on different data subsets.
- c) By fixing the hyperparameters to standard values.
- d) By exclusively focusing on the model's accuracy.

1 Standard Scaling

$$SS = \frac{x_i - \overline{x}}{C} \Rightarrow \frac{x_i - x}{C}$$

= { 574 ndard Normal Distribution }.

- (3) Naive Bayés Algorithm
- 1) Probability [Independent And Dependent Events].
- 2) Bayle Theorem
- 3 Naive Bayus Maths Intuition.
- 1 Probability

Independent Krunts

Rolling a die { 1,2,3,4,5,6}

Dependent Runts

1) What is the probability of first removing a orange marble and then a yellow marble?

Conditional Probability.

$$Pr(0 \text{ and } y) = P(0) * P(y|0)$$

= $3/5 * 3/4 = \left[\frac{3}{10}\right]$

Bayes Theorem

$$Pr(A \text{ and } B) = Pr(B \text{ and } A)$$

$$Pr(A) * Pr(B|A) = Pr(B) * Pr(A|B)$$

$$Pr(A|B) = Pr(A) + Pr(B|A)$$

$$Pr(B)$$

$$Pr(B)$$

Pr(AIB) = Probability of Runt A giron B has occurred.

P(BIA):

$$P_{Y}(y|(x_{1},x_{2},x_{1})) = P_{Y}(y) + P_{Y}(x_{1},x_{2},x_{3})$$

$$= P_{Y}(y) + P_{Y}(x_{1}/y) + P_{Y}(x_{2}/y) + P_{Y}(x_{3}/y)$$

$$P(x_{1}) + P_{Y}(x_{2}) + P_{Y}(x_{2}/y) + P_{Y}(x_{3}/y)$$

$$P_{Y}(y_{3}|(x_{1},x_{2},x_{3})) = P_{Y}(y_{4}) + P_{Y}(x_{1}/y_{4}) + P_{Y}(x_{2}/y_{4}) + P_{Y}(x_{3}/y_{4})$$

$$= P_{Y}(x_{1}) + P_{Y}(x_{2}) + P_{Y}(x_{3}/y_{4}) + P_{Y}(x_{3}/y_{4}) + P_{Y}(x_{3}/y_{4})$$

$$= P_{Y}(x_{1}) + P_{Y}(x_{2}) + P_{Y}(x_{3}/y_{4}) + P_{Y}(x_{3}/y_{4}) + P_{Y}(x_{3}/y_{4})$$

$$= P_{Y}(x_{1}) + P_{Y}(x_{2}/y_{4}) + P_{Y}(x_{3}/y_{4}) + P_{Y}(x_{3}/y_{4})$$

$$= P_{Y}(x_{1}) + P_{Y}(x_{2}/y_{4}) + P_{Y}(x_{3}/y_{4}) + P_{Y}(x_{3}/y_{4})$$

$$= P_{Y}(x_{1}) + P_{Y}(x_{2}/y_{4}) + P_{Y}(x_{3}/y_{4})$$
Naive Bayes = Probability

* Ensemble Techniques [Bagging And Boosting]

Framble - Combining Multiple Models =

Question: What is the role of Random Forests in bagging?

- a) They are a type of boosting algorithm.
- b) They combine multiple decision trees to reduce variance.
- c) They are used to sequentially correct errors.
- d) They use a single decision tree with high depth.

Question: What is the primary objective of bagging in ensemble learning?

- a) To combine multiple weak learners to make a final strong prediction.
- b) To reduce overfitting by averaging the predictions of multiple models.
- c) To sequentially correct the errors of previous models.
- d) To use a single, highly complex model to make predictions.

Question: How does the Naive Bayes classifier typically perform with a small amount of training data?

a) It tends to overfit easily.
b) It requires large datasets to perform well.

Question: How is continuous data typically handled in a Naive Bayes classifier?

a) By converting it into categorical data.

d) It cannot be used with small datasets.

b) By using the Gaussian Naive Bayes approach. 🗸.

c) It often performs well even with a small amount of data.

- c) By ignoring continuous features.
- d) By applying a linear transformation.

Question: In which of the following scenarios is the Naive Bayes classifier most effective?

- a) When features are highly correlated.
- b) In regression problems.
- c) For large datasets with many features.
- d) For text classification and spam filtering.

THANK - YOU