Note on Mathematical Logic: from Zero to Hero 数理逻辑笔记: 从入门到入土

XIN CHEN

 $\begin{array}{l} \textit{Master Student at the SYSU} \\ \textit{Website} \\ \textit{GitHub} \end{array}$

Laste update: May 29, 2023 chenxin_hello@outlook.com

Contents

Ι	Propositional Logic	3
1	Proposition Logic 1.1 Lindenbaum Lemma via Zorn's Lemma	4 4
Π	I First-order Logic	5
2	First Order Logic	6
	2.1 Syntax	6
	2.1.1 terms	6
	2.1.2 formulas	6
	2.1.3 free variables, bound variables	6
	2.2 Semantics	6
	2.2.1 Interpreting terms	7
	2.2.2 Substitution and the satisfaction relation	7
	2.3 Isomorphisms between structures	7
	2.4 Substructures and elementary substructures	8
	2.5 Definable sets and Tarski's Criterion	8
	2.6 Countable sets	9
	2.7 The Downward Löwenheim-Skolen Theorem	9
3	The Gödel Completeness Theorem	10
	3.1 Proof	10
	3.2 Soundness	11
	3.3 The Henkin property	11
	3.4 Extensions of consistent sets of formulas	11
	3.5 The Gödel Completeness Theorem	11
	3.6 The Craig Interpolation Theorem	11

Notes on Mathematical Logic

Chen Xin Last update: May 29, 2023

Textbook:

Figure 0. books

References:

- 1. Theodore A. Slaman & W. Hugh Wooding: Mathematical Logic (The Berkeley undergraduate course), draft.

 [this is our textbook in spring semester 2023, lecturer is Prof. Jinsheng Chen]
- 2. H. B. Enderton: A mathematical introduction to logic, Second edition, Harcourt/Academic Press, 2001
 [this is our textbook in autumn semester 2021, lecturer is Prof. Huiming Dong]
- 3. [this is our textbook in autumn semester 2021, lecturer is Prof. Yongfeng Yuan]
- 4. 徐明, 符号逻辑讲义, 武汉大学出版社, 2008
- 5. Hinman: Fundamentals of Mathematics Logic, 2005 [a big book over 800 pages]

check sheet

Table 1. some adequate and not adequate sets of connectives

adequate set of connectives	comments and notes
$\overline{\{\neg,\vee\},\{\neg,\wedge\},\{\neg,\rightarrow\}}$	a common and unremarkable combination
$\{\bot, \to\}$	$\neg \varphi \coloneqq \varphi \to \bot$
$\{\downarrow\}$	nor ("neither \cdots nor \cdots ")
	$v(\varphi \downarrow \psi) = \begin{cases} 1 & v(\varphi) = 1 \text{ and } v(\psi) = 1 \\ 0 & otherwise \end{cases}$
{ }	$nand$ ("not both \cdots and \cdots "), also called Sheffer stroke
	$v(\varphi \mid \psi) = \begin{cases} 1 & v(\varphi) = 1 \text{ or } v(\psi) = 1 \\ 0 & otherwise \end{cases}$
not adequate set of connectives	,
$\overline{\{\land,\lor,\rightarrow,\leftrightarrow\}}$	
$\{\neg,\leftrightarrow\}$	

Table 2. some properties of PL

property	comments or notes
Criag Interpolation	
Lyndon Interpolation	
Compactness	

Table 3. PL v.s. FOL

Table 6: 1 E vis. 1 GE				
	PL	FOL		
Soundness and Completeness				
Decidability		×		

 $Propositional\ Logic$

PART

П

CHAPTER

1

Proposition Logic

Section 1.1

Lindenbaum Lemma via Zorn's Lemma

Zorn's Lemma	
dddd	

First-order Logic

PART

 \mathbf{II}

First Order Logic

Section 2.1

Syntax

 $\bullet \;$ The $logical \; symbols:$

 $() \neg \rightarrow \forall$

- \bullet The $variable\ symbols$
- The constant symbols
- The function symbols
- The predicate symbols

Subsection 2.1.1

terms

$$Term \ni t := x \mid c \mid f(t_1 \cdots t_n).$$

Subsection 2.1.2

formulas

Subsection 2.1.3

free variables, bound variables

Definition 2.1 (Scope of quantifier) 内容...

Definition 2.2 (Occurrences)

Definition 2.3 (Sentences) A first-order formulas ϕ is a **sentence** iff it has no free variables.

Section 2.2

Semantics

Definition 2.4 (Structure) (M, I)

Subsection 2.2.1

Interpreting terms

 $t[a_1,\ldots,a_n]$

 $\mathfrak{M} \models \varphi[a_1,\ldots,a_n]$ indicates the proposition ' $(\mathfrak{M},v) \models \varphi$ ' holds, where v is any \mathfrak{M} -assignment such that for all $i \leq n$, $v(x_i) = a_i$.

If φ is a sentence (with on free variable), then we write $\mathfrak{M} \models \varphi$ or $\mathfrak{M} \not\models \varphi$.

Subsection 2.2.2

Substitution and the satisfaction relation

Theorem 2.5 (Substitution) Let $\mathfrak{M} = (M, I)$ be an $\mathcal{L}_{\mathcal{A}}$ -structure and v be an \mathfrak{M} -assignment.

Section 2.3

Isomorphisms between structures

Definition 2.6 (Isomorphisms) Suppose that $\mathfrak{M}=(M,I)$ and $\mathfrak{N}=(N,J)$ are $\mathcal{L}_{\mathcal{A}}$ -structures. A bijection $e\colon M\to N$ is an **isomorphism** (同构) between \mathfrak{M} and \mathfrak{N} iff the following conditions hold:

1.
$$e(c^{\mathfrak{M}}) = c^{\mathfrak{N}}$$

2.
$$(fa_1 ... f_n)^{\mathfrak{M}} = a_{n+1} \iff (fe(a_1) ... e(a_n))^{\mathfrak{N}} = e(a_{n+1})$$

3.
$$(a_1, \ldots, a_n) \in P^{\mathfrak{M}} \Leftrightarrow (e(a_1), \ldots, e(a_n)) \in P^{\mathfrak{N}}$$

When $\mathfrak{M} = \mathfrak{N}$, we say that e is an **automorphism** (自同构). $\mathfrak{M} \cong \mathfrak{N}$

The *inverse* of an isomorphism is also an isomorphism.

The *composition* of two isomorphisms is also an isomorphism.

Isomorphism preserves the interpretation of terms.

$$e(\bar{v}(t)) = \overline{e \circ v}(t)$$

Definition 2.7 (Elementarily equivalent) $\mathcal{L}_{\mathcal{A}}$ -structures \mathfrak{M} and \mathfrak{N} are elementarily equivalent iff for each $\mathcal{L}_{\mathcal{A}}$ -sentence φ :

$$\mathfrak{M} \models \varphi \Leftrightarrow \mathfrak{N} \models \varphi.$$

We write $\mathfrak{M} \equiv \mathfrak{N}$ that these structures are elementarily equivalent.

Theorem 2.8 (类似于模态中的 H-M property) Suppose \mathfrak{M} and \mathfrak{N} are *finite* $\mathcal{L}_{\mathcal{A}}$ -structures, the following are equivalent:

- 1. $\mathfrak{M} \cong \mathfrak{N}$.
- 2. $\mathfrak{M} \equiv \mathfrak{N}$.

Section 2.4

Substructures and elementary substructures

Definition 2.9

(Substructures) $\mathfrak{M}=(M,I)$ is a **substructure** of $\mathfrak{N}=(N,J)$ iff $M\subseteq N$ and the following conditions hold.

- 1. $c^{\mathfrak{M}} = c^{\mathfrak{N}}$
- 2. $f^{\mathfrak{M}} = f^{\mathfrak{N}} \mid M^n$, where n is the arity of f. That is, f^M is the restriction of $f^{\mathfrak{N}}$ to M^n .
- 3. $P^{\mathfrak{M}} = P^{\mathfrak{N}} \cap M^n$

We will write $\mathfrak{M} \subseteq \mathfrak{N}$ to indicate that \mathfrak{M} is a substructure of \mathfrak{N} .

Theorem 2.10

Suppose $\mathfrak{M}=(M,I)$ and $\mathfrak{N}=(N,J)$ are $\mathcal{L}_{\mathcal{A}}$ -structures with $M\subseteq N$, then the following are equivalent.

- 1. $\mathfrak{M} \subset \mathfrak{N}$
- 2. For all atomic formulas α , and for all \mathfrak{M} -assignment v,

$$\mathfrak{M}, v \models \alpha \Leftrightarrow \mathfrak{N}, v \models \alpha.$$

Definition 2.11

(Elementary substructure) Suppose $\mathfrak{M}=(M,I)$ and $\mathfrak{N}=(N,J)$ are $\mathcal{L}_{\mathcal{A}}$ -structures with $\mathfrak{M}\subseteq\mathfrak{N}$, \mathfrak{M} is an **elementary substructure** of \mathfrak{N} iff for all formulas φ and for all \mathfrak{M} -assignments v,

$$\mathfrak{M}, v \models \varphi \Leftrightarrow \mathfrak{N}, v \models \varphi.$$

We write $\mathfrak{M} \leq \mathfrak{N}$ to indicate that \mathfrak{M} is an elementary substructure of \mathfrak{N} .

Section 2.5

Definable sets and Tarski's Criterion

Tarski's Theorem below gives an elegant characterization of when a substructure of \mathfrak{N} is an elementary substructure. Tarski's criterion is given in terms of definable sets.

Definition 2.12

(Definability) Suppose $\mathfrak{M} = (M, I)$ is an $\mathcal{L}_{\mathcal{A}}$ -structure.

- 1. Assume $X \subseteq M$. A set $Y \subseteq M^n$ is **definable in** \mathfrak{M} with parameters from X iff there are elements $b_1, \ldots, b_m \in X$ and an $\mathcal{L}_{\mathcal{A}}$ -formulas φ such that the following conditions hold.
 - (a) φ has n+m free variable x_{i_1},\ldots,x_{i_n} and x_{k_1},\ldots,x_{k_m} .
 - (b) For each $(a_1, \ldots, a_n) \in M^n$, $(a_1, \ldots, a_n) \in Y$ iff there is an \mathfrak{M} -assignment v such that
 - i. for each $i \leq n$, $v(x_{i}) = a_{i}$
 - ii. for each $i \leq m$, $v(x_{k_i}) = b_i$
 - iii. $\mathfrak{M}, v \models \varphi$
- 2. A set $Y \subseteq M^n$ is **definable in \mathfrak{M} without parameters** iff it is definable with parameters from \emptyset .
- 3. When n = 1, we identify M^1 with M and speak of **definable subsets** of M.

上面定义的等价定义:

 $Y \subseteq M^n$ is definable in \mathfrak{M} with parameters from X, if

$$Y := \{(a_1, \dots, a_n) \in M^n \mid \mathfrak{M} \models \varphi[a_1, \dots, a_n, b_1, \dots, b_m]\}$$

Definability within a structure is one of the central concepts in Mathematical Logic.

Theorem 2.13

(Tarski) Suppose that $\mathfrak{M}=(M,I)$ and $\mathfrak{N}=(N,J)$ are $\mathcal{L}_{\mathcal{A}}$ -structures, and \mathfrak{M} is a substructure of \mathfrak{N} . The following are equivalent.

- 1. $\mathfrak{M} \leq \mathfrak{N}$
- 2. $\mathfrak{M} \subseteq \mathfrak{N}$ and for each nonempty set $A \subseteq N$, if A is definable in \mathfrak{N} with parameters from M, then $A \cap M \neq \emptyset$.

PROOF 内容...

Section 2.6

Countable sets

Definition 2.14

(Countable set) A set A is **countable** if either it is $\underline{\text{empty}}$ or there is a $\underline{\text{surjective map}}$ from $\mathbb N$ to A.

Theorem 2.15

(Cantor) The set of real number is not countable.

Proof

It suffices to show that the real interval (0,1) is uncountable. Using **diagonal** method.

Section 2.7

The Downward Löwenheim-Skolen Theorem

The Downward Löwenheim-Skolem Theorem is an important application of Tarski's Theorem.

 $\mathfrak{M} = (M, I)$ is countable if M is a countable set.

Theorem 2.16

(**Downward Löwenheim-Skolem**) Suppose that $\mathfrak{N}=(N,J)$ is an $\mathcal{L}_{\mathcal{A}}$ -structure, then there exists an elementary substructure $\mathfrak{M}=(M,I)\preceq \mathfrak{N}$ such that M is countable.

[note that: \mathfrak{N} maybe uncountable here]

Proof

If \mathfrak{N} is a countable structure, let $\mathfrak{M} = \mathfrak{N}$, then we done.

If \mathfrak{N} is uncountable.

The Gödel Completeness Theorem

Section 3.1

Proof

Definition 3.1 (Validity) A validity is an formulas φ which is satisfied in any and every interpretation. That is, for all \mathfrak{M} and all v: $\mathfrak{M}, v \models \varphi$.

Definition 3.2 (Substitutable) Suppose that φ is an $\mathcal{L}_{\mathcal{A}}$ formulas and that t is a term.

- 1. Suppose that x is a free variable of φ .
 - (a) The term t is **substitutable** for x iff every variable of t is free for x in φ .
 - (b) If t is **substitutable** for x, then $\varphi(x;t)$ denotes the formulas obtained by substituting t for each free occurrence of x in φ . Similar meaning for $\varphi(x_1,\ldots,x_n;t_1,\ldots,t_n)$.
- 2. Suppose that c is a constant symbol.
 - (a) The term t is **substitutable** for c iff for every variable x_j of t, no occurrence of c in φ is within the scope of an occurrence of $\forall x_j$.
 - (b) If t is **substitutable** for c, then $\varphi(c;t)$ denotes the formulas obtained by substituting t for each occurrence of c in φ . Similar meaning for $\varphi(c_1,\ldots,c_n;t_1,\ldots,t_n)$.

Definition 3.3 (Axioms) The **set of axioms**, denoted Δ , is the smallest set of formulas which satisfies the following closure properties.

- 1. Instance of Propositional Tautologies.
- 2. Suppose φ is a formula, t is a term, and t is substitutable for x in φ , then

$$\forall x \varphi \to \varphi(x;t) \in \Delta.$$

3. Suppose φ and ψ are formulas, then

$$\forall x(\varphi \to \psi) \to (\forall x\varphi \to \forall x\psi) \in \Delta.$$

4. Suppose φ is a formulas, and x is not a free variable of φ , then

$$\varphi \to \forall x \varphi \in \Delta$$
.

5. For every variable x,

$$x = x \in \Delta$$
.

6. Suppose that φ and ψ are formulas, and x_i is substitutable for x_i in φ, ψ , then

$$\psi(x_i; x_j) = \varphi(x_i, x_j) \implies x_i = x_j \to (\varphi \to \psi) \in \Delta.$$

7. Suppose $\varphi \in \Delta$, then $\forall x \varphi \in \Delta$.

Definition 3.4

(Deduction)

Section 3.2

Soundness

Section 3.3

The Henkin property

Section 3.4

Extensions of consistent sets of formulas

Section 3.5

The Gödel Completeness Theorem

Section 3.6

The Craig Interpolation Theorem

Bibliography