PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-040686

(43) Date of publication of application: 06.02.2002

(51)Int.CI.

G03G 5/05 CO8K 5/02 C08L101/12 G03G 5/07

(21)Application number: 2000-222194

(71)Applicant: CANON INC

(22)Date of filing:

24.07.2000

(72)Inventor: KIKUCHI NORIHIRO

OCHI ATSUSHI UEMATSU HIRONORI TANAKA HIROYUKI **SEKIYA MICHIYO AMAMIYA SHOJI**

(1)

*(*2).

(54) ELECTROPHOTOGRAPHIC PHOTORECEPTOR, AND PROCESS CARTRIDGE AND ELECTROPHOTOGRAPHIC DEVICE HAVING THE ELECTROPHOTOGRAPHIC **PHOTORECEPTOR**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor, capable of improving wear resistance and scratch resistance significantly by increasing the film strength, having high sensitivity, hardly causing the change or deterioration of photoreceptor characteristics such as increase in the residual potential during repeated use, and having stable performance even during repeated use.

SOLUTION: The electrophotographic photoreceptor has a photosensitive layer, containing a polymerized product of a hole transfer compound having two or more chain polymerizable functional groups in one molecule and containing at least one kind of halogen compound expressed by the following formula (1) or (2). In formulae (1) and (2), each of R1 to R3 is a hydrogen atom, halogen atom, alkyl group which may have substitutents, alkoxy group which may have substituents, aryloxy group which may have substituents, aralkyl group which may have substituents or aryl group which may have

substituents, Ar1 is an aryl group which may have substituents, and each of X1 and X2 is a halogen atom.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than

4. _ 11

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

0

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-40686 (P2002-40686A)

(43)公開日 平成14年2月6日(2002.2.6)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコード(参考)
G03G 5/05	104	G 0 3 G 5/05	104B 2H068
CO8K 5/02		C 0 8 K 5/02	4J002
C08L 101/12		C08L 101/12	
G 0 3 G 5/07	101	G 0 3 G 5/07	101
		審査請求 未請求 請	請求項の数19 OL (全 61 頁)
(21)出願番号	特顏2000-222194(P2000-222194)	(71)出願人 000001007	
		キヤノンを	朱式会社
(22)出願日	平成12年7月24日(2000.7.24)	東京都大田	田区下丸子3丁目30番2号
		(72)発明者 菊地 嶽神	•
		7,000,000	田区下丸子3丁目30番2号キヤノ
		ン株式会	性内
		(72)発明者 大地 敦	
		東京都大	田区下丸子3丁目30番2号キヤノ
		ン株式会	灶内
		(74)代理人 100090538	3
		弁理士 「	西山恵三(外1名)
		1	

最終頁に続く

(54) 【発明の名称】 電子写真感光体、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置

(57)【要約】

【課題】 膜強度を高くすることによって耐磨耗性および耐傷性を著しく向上させ、かつ高感度であり、また、繰り返し使用時における残留電位の上昇などの感光体特性の変化や劣化が非常に少なく、繰り返し使用時にも安定した性能を発揮することができる電子写真感光体を提供する。

【解決手段】 同一分子内に2つ以上の連鎖重合性官能 基を有する正孔輸送性化合物を重合したものを含有し、 かつ下記式(1)または(2)のハロゲン化合物を少な くとも1種含有する感光層を有する電子写真感光体。

【外1】

(式中、R¹ ~R³ は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、置換基を有してもよいアラルキル基、置換基を有してもよ

いアリール基を示す。 $A r^1$ は置換基を有してもよいアリール基を示す。 X^1 および X^2 はハロゲン原子を示す。)

【特許請求の範囲】

【請求項1】 支持体上に感光層を有する電子写真感光体において、該感光層が同一分子内に2つ以上の連鎖重合性官能基を有する正孔輸送性化合物の重合物を含有し、かつ下記式(1)または(2)のハロゲン化合物を少なくとも1種含有することを特徴とする電子写真感光体。

(式中、 $R^1 \sim R^3$ は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、置換基を有してもよいアラルキル基、置換基を有してもよいアリール基を示す。 $A r^1$ は置換基を有してもよいアリール基を示す。 X^1 および X^2 はハロゲン原子を示す。)

【請求項2】 前記ハロゲン化合物が前記式(1)である請求項1に記載の電子写真感光体。

【請求項3】 前記 X¹ が塩素原子または臭素原子である請求項1または2に記載の電子写真感光体。

【請求項4】 前記ハロゲン化合物が前記式(2)である請求項1に記載の電子写真感光体。

【請求項5】 前配 X² が塩素原子または臭素原子である請求項1または4に配載の電子写真感光体。

【請求項6】 前記Ar¹ がアリール基である請求項 1、4または5に記載の電子写真感光体。

【請求項7】 前記ハロゲン化合物が感光層中の連鎖重合性官能基を有する正孔輸送性化合物に対して0.01~50質量%含有することを特徴とする請求項1~6のいずれかに記載の電子写真感光体。

【請求項8】 前記感光層が電荷発生物質を含有する電荷発生層、および、電荷輸送物質および式(1)または(2)のハロゲン化合物を少なくとも1種含有する電荷輸送層を有する電子写真感光体である請求項1~7のい

ずれかに記載の電子写真感光体。

【請求項9】 前記感光層の最表面層が、同一分子内に 2つ以上の連鎖重合性官能基を有する正孔輸送性化合物 を重合したものを含有する請求項1~8のいずれかに記 載の電子写真感光体。

【請求項10】 前記連鎖重合性官能基を有する正孔輸送性化合物が、下記式(3)で示される請求項1~9のいずれかに記載の電子写真感光体。

$$\begin{pmatrix}
P^{1} \\
Q^{2}
\end{pmatrix}_{a} A + Z + \begin{pmatrix}
P^{2} \\
Q^{2}
\end{pmatrix}_{b}$$
(3)

(式中、Aは正孔輸送性基を示す。 P^1 および P^2 は連鎖重合性官能基を示す。 P^1 と P^2 は同一でも異なってもよい。 Z は置換基を有してもよい有機基を示す。 a 、 b および d は O または 1 以上の整数を示し、 $a+b\times d$ は 2 以上の整数を示す。 また、 a が 2 以上の場合、 P^1 は同一でも異なってもよく、 d が 2 以上の場合、 P^2 は同一でも異なってもよく、また、 b が 2 以上の場合、 2 および P^2 は同一でも異なってもよい。)

【請求項11】 前記AのAとP¹ およびZとの結合部位を水素原子に置き換えた正孔輸送性化合物が下記式(4)で示される請求項10に記載の電子写真感光体。

[外3] R⁴ 、

 R^{5} N— R^{6} (4)

(式中、 R^4 、 R^5 および R^6 は置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基または置換基を有してもよいアリール基を示す。ただし、少なくともそのうち 2 つはアリール基を示す。また、 R^4 、 R^5 および R^6 はそれぞれ同一であっても異なっていてもよい。)

【請求項12】 前記R⁴ 、R⁵ およびR⁶ の総てがアリール基である請求項11に記載の電子写真感光体。

【請求項13】 前記 P^1 および P^2 の一方または両方が下記式(5) ~ (12) のいずれかである請求項10 ~ 12のいずれかに記載の電子写真感光体。

【外4】

$$O$$
 $||$
 $-O-C-CH = CH_2$ (5)

$$-O-CH = CH_2 \tag{7}$$

$$-CH = CH_2 \tag{9}$$

【請求項14】 前記P¹ およびP² の一方または両方が前記式(5)または(6)である請求項13に記載の電子写真感光体。

【請求項15】 同一分子内に2つ以上の連鎖重合性官能基を有する正孔輸送性化合物の重合が電子線によって行われる請求項1~14のいずれかに記載の電子写真感光体。

【請求項16】 前記電子線の加速電圧が30~250 k V である請求項15に記載の電子写真感光体。

【請求項17】 前記電子線の線量が1~100Mra dである請求項15または16に記載の電子写真感光 体。

【請求項18】 請求項1~17のいずれかに記載の電子写真感光体、および、帯電手段、現像手段およびクリーニング手段からなる群より選ばれる少なくとも1つの手段を一体に支持し、電子写真装置に着脱自在であることを特徴とするプロセスカートリッジ。

【請求項19】 請求項1~17のいずれかに記載の電子写真感光体、帯電手段、露光手段、現像手段およびクリーニング手段を有することを特徴とする電子写真装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子写真感光体に 関し、さらに詳しくは、改善された電子写真特性を有す る電子写真感光体に関する。また、本発明は、該電子写 真感光体を有するプロセスカートリッジおよび電子写真 装置に関する。

[0002]

【従来の技術】従来、電子写真感光体に用いられる光導電材料としては、セレン、硫化カドミウムおよび酸化亜鉛などの無機材料が知られていた。他方、有機材料であるポリビニルカルパゾール、フタロシアニンおよびアゾ顔料などは高生産性や無公害性などの利点が注目され、無機材料と比較して光導電特性や耐久性などの点で劣る

$$-CH_2-CH = CH_2 \qquad (8)$$

$$\sim$$
 CH = CH₂ (10)

(nは1から3の整数)

傾向にあるものの、広く用いられるようになってきた。【0003】これらの電子写真感光体は、電気的および機械的特性の双方を満足するために、電荷発生層と電荷輸送層を積層した機能分離型の感光体として利用される場合が多い。一方、当然のことながら、電子写真感光体には適用される電子写真プロセスに応じた感度、電気的特性、さらには、光学的特性を備えていることが要求される。特に、繰り返し使用される感光体にあっては、その感光体表面には帯電、露光、トナー現像、紙への転写、クリーニング処理といった電気的、機械的外力が直接加えられるため、それらに対する耐久性が要求される。

【0004】具体的には、摺擦による表面の摩耗や傷の 発生に対する耐久性、帯電による表面劣化(例えば、転 写効率や滑り性の低下)、さらには、感度低下、電位低 下などの電気特性の劣化に対する耐久性も要求される。

【〇〇〇5】一般に感光体の表面は薄い樹脂層であり、

樹脂の特性が非常に重要である。上述の諸条件をある程度満足する樹脂として、近年、アクリル樹脂やポリカーボネート樹脂などが実用化されているが、前述したような特性の総てがこれらの樹脂で満足されるわけではなく、特に、感光体の高耐久化を図る上では該樹脂の被膜硬度は十分高いとはいい難い。これらの樹脂を表面層形成用の樹脂として用いた場合でも、繰り返し使用時において表面層の摩耗が起こり、さらに傷が発生するという問題点があった。

【0006】さらに、近年の有機電子写真感光体の高感度化に対する要求から、電荷輸送物質などの低分子量化合物が比較的大量に添加される場合が多いが、この場合、それら低分子量物質の可塑剤的な作用により膜強度が著しく低下し、一層、繰り返し使用時の表面層の摩耗や傷発生が問題となっている。また、電子写真感光体を長期にわたって保存する際に前述の低分子量成分が析出してしまい、層分離するといった問題も発生している。

【〇〇〇7】これらの問題点を解決する手段として、硬

化性の樹脂を電荷輸送層用の樹脂として用いる試みが、 例えば、特開平2-127652号公報などに開示され ている。このように、電荷輸送層用の樹脂に硬化性の樹 脂を用い電荷輸送層を硬化、架橋することによって機械 的強度が増し、繰り返し使用時の耐削れ性および耐傷性 は大きく向上する。

3.

【0008】しかしながら、硬化性樹脂を用いても、低分子量成分はあくまでも結着樹脂中において可塑剤として作用するので、先に述べたような析出や層分離の問題の根本的な解決にはなっていない。また、有機電荷輸送物質と結着樹脂とで構成される電荷輸送層においては、電荷輸送能の樹脂に対する依存度が大きく、例えば、硬度が十分に高い硬化性樹脂では電荷輸送能が十分ではなく、繰り返し使用時に残留電位の上昇が見られるなど、両者を満足させるまでにはいたっていない。

【0009】また、特開平05-216249号公報、特開平07-72640号公報などにおいては、電荷輸送層に炭素一炭素二重結合を有するモノマーを含有させ、電荷輸送物質の炭素一炭素二重結合と熟あるいは光のエネルギーによって反応させて、電荷輸送層硬化膜を形成した電子写真感光体が開示されているが、電荷輸送物質はポリマー主骨格にペンダント状に固定化されているだけであり、先の可塑的な作用を十分に排除できないため、機械的強度が十分ではない。また、電荷輸送能の向上のために電荷輸送物質の濃度を高くすると、架橋密度が低くなり、十分な機械的強度を確保することができない。さらには、重合時に必要とされる開始剤類の電子写真特性への影響も懸念される。

【0010】また、別の解決手段として、例えば、特開 平8-248649号公報などにおいて、熱可塑性高分子主鎖中に電荷輸送能を有する基を導入し電荷輸送層を 形成させた電子写真感光体が開示されているが、従来の分子分散型の電荷輸送層と比較して、析出や層分離に対しては効果があり、機械的強度も向上するが、あくまでも熱可塑性樹脂であり、その機械的強度には限界があり、樹脂の溶解性などを含めたハンドリングや生産性の面で十分であるとはいい難い。

【〇〇11】一方、同一分子内に連鎖重合性官能基を有する正孔輸送性物質を硬化したものを最表面層に含有する感光体を用いることで、高い機械的強度と電位輸送能の両立を達成することが提案されている。しかしながら、この場合、前配正孔輸送性物質を重合する際には放射線のような通常よりもかなり高エネルギーを感光体に加える必要があり、その高エネルギー線の影響で感光体の帯電不良、光感度の低下、残留電位の上昇、繰り返し使用時の電位変動または各種メモリー類の悪化などのいずれかの現象が生じ問題になっている。これは当然ないら、照射するエネルギー強度が増大するにつれ、上記問題点は悪化する傾向にある。一方、機械的強度を十分満足するような膜を形成するためには、ある程度のエネル

ギー強度が必要であり、いまだに高い機械的強度と電子 写真特性を十分満足する感光体が得られていないのが現 状である。

[0012]

【発明が解決しようとする課題】本発明の目的は、従来の樹脂を表面層として使用した電子写真感光体の有していた問題点を解決し、膜強度を高くすることによって耐摩耗性および耐傷性を著しく向上させ、かつ高感度な電子写真感光体を提供することにある。

【 O O 1 3 】また、本発明の別の目的は、繰り返し使用時における残留電位の上昇などの感光体特性の変化や劣化が非常に少なく、繰り返し使用時にも安定した性能を発揮することができる電子写真感光体を提供することにある。

【 O O 1 4 】本発明のさらに別の目的は、上記電子写真 感光体を有するプロセスカートリッジおよび電子写真装 置を提供することにある。

[0015]

【課題を解決するための手段】本発明者らは、鋭意研究を重ねた結果、支持体上に感光層を有する電子写真感光体において、該感光層が同一分子内に2つ以上の連鎖重合性官能基を有する正孔輸送性化合物を重合したものを含有し、かつ下記式(1)または(2)のハロゲン化合物を少なくとも1種含有することにより感光体の劣化が大きく押さえられ、高い機械的強度と高感度かつ高安定な電子写真感光体を提供できることを見出した。

[0016]

(式中、 $R^1 \sim R^3$ は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリールオキシ基、置換基を有してもよいアラルキル基または置換基を有してもよいアリール基を示す。 X^1 および X^2 はハロゲン原子を示す。)

[0017]

【発明の実施の形態】以下に、本発明の詳細を説明する。

【0018】まず、同一分子内に連鎖重合性官能基を少なくとも2つ有する正孔輸送化合物としては、下記式(3)である場合が好ましい。

(3) である場形 【0019】

【外6】

$$\begin{pmatrix}
P^1 \\
a
\end{pmatrix}_a A \left[Z - \left(P^2 \right)_d \right]_b$$
(3)

(式中、Aは正孔輸送性基を示す。 P^1 および P^2 は連鎖 重合性官能基を示す。 P^1 と P^2 は同一でも異なってもよい。 Zは 置換基を有してもよい有機基を示す。 a、 b および d は O 以上の整数を示し、 $a+b\times d$ は 2 以上の整数を示す。また、a が 2 以上の場合、 P^1 は同一でも異なってもよく。d が 2 以上の場合、 P^2 は同一でも異なってもよく、また、b が 2 以上の場合、 D^2 は同一でも異なってもよい。)

【0020】なお、ここで、『aが2以上の場合、P1は同一でも異なってもよく』とは、それぞれ異なるn種類の連鎖重合性官能基をP11、P12、P13、P14、P15…P1nと示した場合、例えば、a=3のとき正孔輸送性化合物Aに直接結合する重合性官能基P1 は3つとも同じものでも、2つ同じで1つは違うもの(例えば、P11とP12とか)でも、それぞれ3つとも異なるもの(例えば、P12とP15とP17とか)でもよいということを意味するものである(『dが2以上の場合、P2 は同一でも異なってもよい』というのも、これと同様なことを意味するものである)。

【〇〇21】上記式(3)のAのAとP¹ およびZとの結合部位を水素原子に置き換えた正孔輸送化合物は、各種トリアリールアミン系化合物、各種ヒドラゾン系化合物、各種スチルベン系化合物、各種ピラゾリン系化合物、各種オキサゾール系化合物、各種チアゾール系化合物、各種トリアリールメタン系化合物などが挙げられる。

【0022】さらに上記式(3)のAのAとP¹ および Zとの結合部位を水素原子に置き換えた正孔輸送化合物 の中でも、下記式(4)式で示される化合物であるもの が好ましい。

[0023]

【外7】

$$\begin{array}{c}
R^4 \\
R^5
\end{array}$$
 N — R^6
(4)

【0024】上記式(4)中、R4、R5 およびR6 は 置換基を有してもよいメチル基、エチル基、プロピル基 およびブチル基などの炭素数 10以下のアルキル基、置 換基を有してもよいベンジル基、フェネチル基などのアラルキル基、または、置換基を有してもよいフェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニン基、ジフェニル基、フルオレニル基、フェナンスレニル基、チオフェニル基、フリル基、ピリジル基、キノリル基、ベンゾキノリル基、カルパゾル基、フェノチアジ

ニル基、ベンゾフリル基、ベンゾチオフェニル基、ジベンゾフリル基およびジベンゾチオフェニル基などのアリール基を示す。

【0.025】ただし、 R^4 、 R^5 および R^6 のうち少なくとも2つはアリール基を示し、 R^4 、 R^5 および R^6 はそれぞれ同一であっても異なっていてもよい。

【0026】さらに、その中でも、 R^4 、 R^5 およびR6 の総てがアリール基であるものが特に好ましい。

【0027】なお、上記式(3)および(4)のR4~ R6、Ar1 およびZがそれぞれ有してもよい置換基と しては、フッ素、塩素、臭素、ヨウ素などのハロゲン原 子、または、ニトロ基、または、シアノ基、または、水 酸基、または、メチル基、エチル基、プロピル基、ブチ ル基などのアルキル基、または、メトキシ基、エトキシ 基、プロポキシ基などのアルコキシ基、または、フェノ キシ基、ナフトキシ基などのアリールオキシ基、また は、ベンジル基、フェネチル基、ナフチルメチル基、フ ルフリル基、チエニル基などのアラルキル基、または、 フェニル基、ナフチル基、アンスリル基、ピレニル基な どのアリール基、または、ジメチルアミノ基、ジエチル アミノ基、ジベンジルアミノ基、ジフェニルアミノ基、 ジ (P-トリル) アミノ基などの置換アミノ基、スチリ ル基、ナフチルビニル基などのアリールビニル基などが 挙げられる。

【0028】つぎに、本発明における連鎖重合性官能基について説明する。本発明における連鎖重合とは、高分子物の生成反応を大きく連鎖重合と逐次重合に分けた場合の前者の重合反応形態を示し、詳しくは、例えば、技報堂出版 三羽忠広著の「基礎 合成樹脂の化学(新版)」1995年7月25日(1版8刷)p. 24に説明されているように、その形態が主にラジカルあるいはイオンをなどの中間体を経由して反応が進行する不飽和重合、開環重合そして異性化重合などのことをいう。前記式(1)における連鎖重合性官能基Pとは、前述の反応形態が可能な官能基を意味するが、ここではその大半を占め応用範囲の広い不飽和重合あるいは開環重合性官能基の具体例を示す。

【0029】不飽和重合とは、ラジカル、イオンなどによって不飽和基、例えば、C=C、C=C、C=O、C=N、C=Nなどが重合する反応であるが、主にはC=Cによる場合が大部分である。不飽和重合性官能基の具体例を第1表に示すが、これらに限定されるものではない。

[0030]

【表 1】

第1表 不飽和重合性官能基の具体例

【0031】開環重合とは、炭素環、オクソ環、窒素へテロ環などのひずみを有した不安定な環状構造が触媒の作用で活性化され、開環すると同時に重合を繰り返し、鎖状高分子物を生成する反応であるが、この場合、基本的にはイオンが活性種として作用するものが大部分であ

る。該開環重合性官能基の具体例を第2表に示すが、これらに限定されるものではない。

[0032]

【表2】

第2表 開環重合性官能基の具体例

(第1表および第2表中、Rは置換基を有してもよいメ チル基、エチル基、プロピル基およびブチル基などのア

ルキル基、置換基を有してもよいペンジル基、フェネチ ル基、ナフチルメチル基、フルフリル基およびチエニル 基などのアラルキル基、置換基を有してもよいフェニル 基、ナフチル基およびアンスリル基などのアリール基ま たは水素原子を示す。)

【0033】上記で説明したような本発明に係わる連鎖

$$--O-CH = CH_2 \tag{7}$$

$$-CH = CH_2$$
 (9)

【0035】さらに上記式(5)~(12)の中でも、(5)のアクリロイルオキシ基および(6)のメタクリロイルオキシ基が、重合特性などの点から特に好ましい。

【0036】本発明で『連鎖重合性官能基を有する正孔輸送性化合物』とは、上記で説明した連鎖重合性基が上記で説明した正孔輸送性化合物に官能基として少なくとも2つ以上化学結合している化合物を示す。この場合、それらの連鎖重合性官能基は総て同一でも異なったものであってもよい。

【0037】本発明においては、前記同一分子内に2つ 以上の連鎖重合性官能基を有する正孔輸送性化合物を重 合させることで、その感光層中において、正孔輸送能を 有する化合物は少なくとも2つ以上の架橋点をもって3 次元架橋構造の中に共有結合を介して取り込まれる。前 記正孔輸送性化合物はそれのみを重合・架橋させる、あ るいは他の連鎖重合性基を有する化合物と混合させるこ とのいずれもが可能であり、その種類/比率は総て任意 である。ここでいう他の連鎖重合性基を有する化合物と は、連鎖重合性基を有する単量体あるいはオリゴマー/ ポリマーのいずれもが含まれる。正孔輸送性化合物の官 能基とその他の連鎖重合性化合物の官能基が同一の基あ るいは互いに重合可能な基である場合には、両者は共有 結合を介した共重合3次元架橋構造をとることが可能で ある。両者の官能基が互いに重合しない官能基である場 合には、感光層は少なくとも2つ以上の3次元硬化物の 混合物あるいは主成分の3次元硬化物中に他の連鎖重合 性化合物単量体あるいはその硬化物を含んだものとして 構成されるが、その配合比率/製膜方法をうまくコント ロールすることで、IPN (Inter Penetr ating Network) すなわち相互進入網目構 重合性官能基の中でも、下記式(5)~(12)で示されるものが好ましい。

[0034]

【外8】

$$-CH_2-CH = CH_2 \qquad (8)$$

$$-CH = CH_2 \qquad (10)$$

(nは1から3の整数)

造を形成することも可能である。

【0038】また、前記正孔輸送性化合物と連鎖重合性基を有しない単量体あるいはオリゴマー/ポリマーや、連鎖重合性以外の重合性基を有する単量体あるいはオリゴマー/ポリマーなどから感光層を形成してもよい。

【0039】さらに、場合によっては、3次元架橋構造に化学結合的に組み込まれない、すなわち、連鎖重合性官能基を有しない従来の正孔輸送性化合物を含有することも可能である。

【〇〇40】本発明の感光体の構成は、支持体上に感光 層として電荷発生物質を含有する電荷発生層および電荷 輸送物質を含有する電荷輸送層をこの順に積層した構成 あるいは逆に積層した構成、また、電荷発生物質と電荷 輸送物質を同一層中に分散した単層からなる構成のいず れの構成をとることも可能である。前者の積層型におい ては、電荷輸送層が2層以上の構成、また、後者の単層 型においては、電荷発生物質と電荷輸送物質を同一に含 有する感光層上にさらに電荷輸送層を構成してもよく、 さらには、電荷発生層あるいは電荷輸送層上に保護層の 形成も可能である。これらいずれの場合においても、先 の連鎖重合性基を有する正孔輸送性化合物および/また は該正孔輸送性化合物を重合したものを感光層が含有し ていればよい。ただし、電子写真感光体としての特性、 特に残留電位などの電気的特性および耐久性の点より、 電荷発生層/電荷輸送層をこの順に積層した機能分離型 の感光体構成が好ましく、本発明の利点も電荷輸送能を 低下させることなく表面層の高耐久化が可能になった点 にある。

【 O O 4 1 】 つぎに、本発明による電子写真感光体の製造方法を具体的に示す。

【0042】電子写真感光体の支持体としては導電性を

(8)

有するものであればよく、例えば、アルミニウム、銅、クロム、ニッケル、亜鉛およびステンレスなどの金属や合金をドラムまたはシート状に成形したもの、アルミニウムおよび銅などの金属箔をプラスチックフィルムにラミネートしたもの、アルミニウム、酸化インジウムおよび酸化スズなどをプラスチックフィルムに蒸着したもの、導電性物質を単独または結着樹脂とともに塗布して導電層を設けた金属、また、プラスチックフィルムおよび紙などが挙げられる。

【0043】本発明においては、支持体の上にはパリアー機能と接着機能をもつ下引き層を設けることができる。

【0044】下引き層は感光層の接着性改良、塗工性改良、支持体の保護、支持体上の欠陥の被覆、支持体からの電荷注入性改良、また、感光層の電気的破壊に対する保護などのために形成される。下引き層の材料としてはポリビニルアルコール、ポリーNービニルイミダゾール、ポリエチレンオキシド、エチルセルロース、エチレンーアクリル酸共重合体、カゼイン、ポリアミド、Nーメトキシメチル化6ナイロン、共重合ナイロン、にかわおよびゼラチンなどが知られている。これらはそれぞれに適した溶剤に溶解されて支持体上に塗布される。その際の膜厚としては 0.1~2μmが好ましい。

【0045】本発明の感光体が機能分離型の感光体である場合には、電荷発生層および電荷輸送層を積層する。電荷発生層に用いる電荷発生物質としては、セレンーテルル、ピリリウム、チアピリリウム系染料、また、各種の中心金属および結晶系、具体的には、例えば、α、β、γ、εおよび×型などの結晶型を有するフタロシアニン化合物、アントアントロン顔料、ジベンズピレンキノン顔料、ピラントロン顔料、トリスアゾ顔料、ジスアゾ顔料、モノアゾ顔料、インジゴ顔料、キナクリドン顔料、非対称キノシアニン顔料、キノシアニンおよび特開昭54-143645号公報に記載のアモルファスシリコンなどが挙げられる。

【0046】機能分離型感光体の場合、電荷発生層は前記電荷発生物質を0.3~4倍量の結着樹脂および溶剤とともにホモジナイザー、超音波分散、ボールミル、振動ボールミル、サンドミル、アトライターおよびロールミルなどの方法でよく分散し、分散液を塗布し、乾燥されて形成されるか、または前記電荷発生物質の蒸着膜など、単独組成の膜として形成される。その膜厚は0.1~5μmであることが好ましく、特に0.1~2μmの範囲であることが好ましい。

【 O O 4 7 】 結着樹脂を用いる場合の例は、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレン、などのビニル化合物の重合体および共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレ

ンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、エポキシ樹脂などが挙げられる。

【0048】本発明における前記連鎖重合性官能基を有する正孔輸送性化合物は、前述した電荷発生層上に電荷輸送層として、もしくは電荷発生層上に電荷輸送圏を形成した後に正孔輸送といる。配債を有する表面保護圏として用いることができる。いずれの場合も前記表面層の形成方法は、前記正孔輸送性化合物を含有する溶液を塗布後、重合反応をさせるの形成方法は、前記正孔輸送性化合物を含有する溶液を塗布後であるが、前もって該正孔輸送性化合物を含むあるが、前もって該と性化合物を含むある。これらの溶液を塗布する方法は、がよいとも可能である。これらの溶液を塗布する方法は、がよいとも可能である。これらの溶液を塗布する方法は、がよいとも可能である。これらの溶液を塗布する方法は、がよいとも可能である。これらの溶液を塗布する方法は、がままして、対法がよりに、対象性/生産性の点からは浸漬コーティング法が好ましい。

【0049】また、蒸着、プラズマその他の公知の成膜 方法が適宜選択できる。

【0050】本発明において連鎖重合性基を有する正孔輸送性化合物は放射線により重合させることが好ましい。放射線による重合の最大の利点は重合開始剤を必要としない点であり、これにより非常に高純度な3次元感光層マトリックスの作製が可能となり、良好な電子写真特性が確保される点である。また、短時間でかつ効率的な重合反応であるがゆえに生産性も高く、さらには、放射線の透過性の良さから、厚膜時や添加剤などの遮蔽物質が膜中に存在する際の硬化阻害の影響が非常に小さいことなどが挙げられる。ただし、連鎖重合性基の種類や中心骨格の種類によっては重合反応が進行しにくい場合があり、その際には影響のない範囲内での重合開始剤の添加は可能である。

【0051】本発明では、α線、β線、電子線、γ線、 X線および陽子線などの放射線のうち、電子線およびγ 線が好ましく、また特には電子線が好ましい。電子線照 射をする場合、加速器としてはスキャニング型、エレク トロカーテン型、ブロードビーム型、パルス型およびラ ミナー型などいずれの形式も使用することができる。電 子線を照射する場合に、本発明の感光体においては、電 気特性および耐久性能を発現させる上で照射条件が非常 に重要である。本発明において、加速電圧は30~25 OkVが好ましく、最適には50~150kVである。 また、線量は好ましくは1~100Mrad、より好ま しくは3~50Mradの範囲である。加速電圧が上記 を超えると、感光体特性に対する電子線照射のダメージ が増加し、加速電圧が上記範囲よりも少ないと膜内部の 硬化が不十分となる。また、線量が上記範囲よりも少な い場合には、硬化が不十分となりやすく、線量が多い場 合には、感光体特性の劣化が起こりやすいので注意が必 要である。

【0052】前記連鎖重合性基を有する正孔輸送性化合物を電荷輸送層として用いた場合の前記正孔輸送性化合物の量は、重合硬化後の電荷輸送層膜の全質量に対して、前記式(3)で示される連鎖重合性官能基を有する正孔輸送性化合物のAのAとP¹ およびZの結合部位を水素原子に置き換えた正孔輸送性化合物が分子量換算で20~95%、好ましくは40%~90%含有されていることが好ましい。20%以下であると電荷輸送能が低下し、感度低下および残留電位の上昇などの問題点が生じ、また、95%以上であると連鎖重合性基の量が少なく、硬化後の膜の機械的強度が低下してしまう。この場合の電荷輸送層としての膜厚は1~50μmであることが好ましく、特には3~30μmであることが好ましく、特には3~30μmであることが好ましい。

【0053】前記正孔輸送性化合物を電荷発生層/電荷 輸送層上に表面保護層として用いた場合、その下層に当 たる電荷輸送層は適当な電荷輸送物質、例えば、ポリー Nービニルカルバゾール、ポリスチリルアントラセンな どの複素環や縮合多環芳香族を有する高分子化合物や、 ピラゾリン、イミダゾール、オキサゾール、トリアゾー ル、カルバゾールなどの複素環化合物、トリフェニルメ タンなどのトリアリールアルカン誘導体、トリフェニル アミンなどのトリアリールアミン誘導体、フェニレンジ アミン誘導体、Nーフェニルカルパゾール誘導体、スチ ルベン誘導体、ヒドラゾン誘導体などの低分子化合物な どを適当な結着樹脂(前述の電荷発生層用樹脂の中から 選択できる)とともに溶剤に分散/溶解した溶液を前述 の公知の方法によって塗布、乾燥して形成することがで きる。この場合の電荷輸送物質と結着樹脂の比率は、両 者の全質量を100とした場合に、正電荷輸送物質の質 量が30~100の範囲であることが好ましく、好まし くは50~100の範囲で適宜選択される。電荷輸送物 質の量がそれ以下であると、電荷輸送能が低下し、感度 低下および残留電位の上昇などの問題が生ずる。電荷輸 送層の膜厚は、上層の表面保護層と合わせた総膜厚が1 ~50µmとなるように決定され、好ましくは5~30 μmの範囲で調整される。

【0054】本発明においては、上述のいずれの場合においても、前記連鎖重合性基を有する正孔輸送性化合物の硬化物を含有する感光層に、前記電荷輸送物質を含有することが可能である。

【0055】単層型感光層の場合は、前記正孔輸送性化合物を含む溶液中に同時に電荷発生物質が含まれることになり、この溶液を適当な下引き層あるいは中間層を設けてもよい支持体上に塗布後重合させて形成される場合と、支持体上に設けられた電荷発生物質および電荷輸送物質から構成される単層型感光層上に前記正孔輸送性化合物を含有する溶液を塗布後、重合させる場合のいずれもが可能である。

【0056】感光層に上記の連鎖重合性官能基を有する 正孔輸送性化合物を重合したものを含有し、かつ下記式 (1)または(2)の特定の構造を有するハロゲン化合 物を少なくとも1種含有することにより感光体の劣化が 大きく押さえられ、高い機械的強度と高感度かつ高安定 な電子写真感光体を提供できる。

[0057]

【0058】上記式(1) および(2) 中、R¹~R³ は水素原子、フッ素原子、塩素原子、臭素原子、または ヨウ素原子などのハロゲン原子、置換基を有してもよい メチル基、エチル基、プロピル基およびブチル基などの 炭素数10以下のアルキル基、置換基を有してもよいメ トキシ基、プロポキシ基およびブトキシ基などのアルコ キシ基、置換基を有してもよいフェノキシ基およびナフ トキシ基などのアリールオキシ基、置換基を有してもよ いペンジル基、フェネチル基、ナフチルメチル基、フル フリル基およびチェニル基などのアラルキル基、または 置換基を有してもよいフェニル基、ナフチル基、アンス リル基、フェナンスリル基、ピレニル基、チオフェニル 基、フリル基、ピリジル基、キノリル基、ペンゾキノリ ル基、カルパゾリル基、フェノチアジニル基、ベンゾフ リル基およびベンゾチオフェニル基などのアリール基を 示す。Ar¹ は置換基を有してもよいフェニル基、ナフ チル基、アンスリル基、フェナンスリル基、ピレニル 基、チオフェニル基、フリル基、ピリジル基、キノリル 基、ペンゾキノリル基、カルパゾリル基、フェノチアジ ニル基、ペンゾフリル基およびペンゾチオフェニル基な どのアリール基を示すが、その中でもフェニル基、ナフ チル基、アンスリル基、ピレニル基、フェナンスリル基 およびフルオレニル基などのアリール基である場合が好 ましい。 X¹ および X² はフッ素原子、塩素原子、臭素 原子およびヨウ素原子などのハロゲン原子を示す。

【0059】なお、上記式(1)および(2)のR¹ ~ R³ およびAr¹ がそれぞれ有してもよい置換基としてはフッ素、塩素、臭素、ヨウ素などのハロゲン原子、または、ニトロ基、または、シアノ基、または、水酸基、または、メチル基、エチル基、プロピル基、ブチル基などのアルキル基、または、メトキシ基、エトキシ基、プロポキシ基などのアルコキシ基、または、フェノキシ基、ナフトキシ基などのアリールオキシ基、または、フェンル基、フェネチル基、ナフチル基、フェニル基などのアラルキル基、または、フェニル基、ナフチル基、アンスリル基、ピレニル基などのアリール基、または、スチリル基、ナフチルビニル基など

のアリールビニル基などが挙げられる。

*1

【0060】なお、 X^1 および X^2 が塩素原子または臭素原子の場合が好ましく、上記式(1)の、 $R_1 \sim R_3$ のうち少なくとも 1 つは塩素原子である場合がより好ましく、その中でも式(1)で示されるハロゲン化合物である場合が最も好ましい。

【〇〇61】また、上記式(1)および(2)の化合物は感光層を作成する際または作成後の揮発性の問題などより分子量は150以上であることが好ましい。ただし、連鎖重合性官能基を有する正孔輸送性化合物を重合する際にこのハロゲン化合物が存在していることが重要であり、重合後に分解あるいは揮発などして感光層より無くなっても本発明の効果は十分発揮する。

【0062】上記式(1)または(2)で示される特定のハロゲン化合物は上記感光層のいずれの層に含有してもよいが、特に前記連鎖重合性官能基を有する正孔輸送性化合物を含有している層あるいは従来の電荷輸送物質を含有している層のいずれかに添加した場合が特に有効である。その添加量は感光層中に含まれる前記連鎖重合性官能基を有する正孔輸送性化合物の全量に対し0.01~100質量%含有することが好ましく、特に好ましくは0.01~50質量%である場合が特に好ましい。

【0063】さらに、本発明における感光層には、上記のような特定なハロゲン化合物の他にも各種添加剤を添加することができる。該添加剤とは酸化防止剤および紫外線吸収剤などの劣化防止剤や、テトラフルオロエチレン樹脂粒子およびフッ化カーボンなどの潤滑剤などである。

【0064】図1に本発明の電子写真感光体を有するプロセスカートリッジを有する電子写真装置の概略構成を示す。図において、1はドラム上の本発明の電子写真感光体であり、軸2を中心に矢印方向に所定の周速度で転駆動される。感光体1は、回転過程において、1次帯電手段3によりその周面に正または負の所定電位の均一帯電を受け、ついでスリット露光やレーザービーム走査露光などの露光手段(不図示)からの露光光4を受ける。こうして感光体1の周面に静電潜像が順次形成されていく。形成された静電潜像は、ついで、現像手段5によりトナー現像され、現像されたトナー現像像は、不図

示の給紙部から感光体1と転写手段6との間に感光体1 の回転と同期取り出されて給紙された転写材フに、転写 手段6により順次転写されていく。像転写を受けた転写 材7は、感光体面から分離されて像定着手段8へ導入さ れて像定着を受けることにより、複写物(コピー)とし て装置外へプリントアウトされる。像転写後の感光体 1 の表面は、クリーニング手段9によって転写残りトナー の除去を受けて清浄面化され、さらに前露光手段(不図 示)からの前露光光10により除電処理された後、繰り 返し画像形成に使用される。なお、1次帯電手段3が帯 電ローラーなどを用いた接触帯電手段である場合は、前 露光は必ずしも必要ではない。本発明においては、上述 の電子写真感光体1、1次帯電手段3、現像手段5およ びクリーニング手段9などの構成要素のうち、複数のも のをプロセスカートリッジとして一体に結合して構成 し、このプロセスカートリッジを複写機やレーザービー ムプリンターなどの電子写真装置本体に対して着脱可能 に構成してもよい。例えば、1次帯電手段3、現像手段 5およびクリーニング手段9の少なくとも1つを感光体 1とともに一体に支持してカートリッジ化して、装置本 体のレール12などの案内手段を用いて装置本体に着脱 可能なプロセスカートリッジ11とすることができる。 また、露光光4は、電子写真装置が複写機やプリンター である場合には、原稿からの反射光や透過光、あるいは センサーで原稿を読みとり、信号化し、この信号に従っ て行われるレーザービームの走査、LEDアレイの駆動 および液晶シャッターアレイの駆動などにより照射され る光である。

【0065】本発明の電子写真感光体は電子写真複写機に利用するのみならず、レーザービームプリンター、CRTプリンター、LEDプリンター、液晶プリンターおよびレーザー製版などの電子写真応用分野にも広く用いることができる。

【0066】なお、本発明に係わる上記式(1)および(2)で示されるハロゲン化合物および連鎖重合性官能基を有する正孔輸送性化合物の代表的な化合物例をそれぞれ第3表および第4表に示すが、これらに限定されるものではない。

[0067]

【表3】

第3表 化合物例

No.	化合物例
1	Cl—(CH ₂) ₈ -Cl
2	Br (CH ₂) ₈ Br
3	$H_8C - \left(-CH_2\right)_8 - CI$
4	H ₂ C ————————————————————————————————————
5	ClCH2—CH2—CH2—CH2-CH2Cl
6	BrCH ₂ —CH ₂ —CH ₂ —CH ₂ Br
7	Br CHz CHz CHz
8	CI —CH ₂ —C—CH ₂ —
9	t-C ₄ H ₉ -C-CHCl ₂
10	t—C₄H₃——O—CHBr₂
11	C1 C1 C1—C——C—C1 C1 C1

[0068]

【表 4 】

No.	化合物例
12	CI CI H—C——C———————————————————————————————
13	CI CI H—C——C—CI CI CI
14	ClH₂C——CH₂Cl
15	BrH ₂ C——CH ₂ Br
16	
17	
18	Br C H
19	$ \begin{array}{c} $
20	$ \begin{array}{c} C_1 \\ CCH_2 - C_{\bullet} \end{array} $
21	$t-C_4H_9-C_1$ C_1 C_1 C_1 C_1 C_1

[0069]

【表5】

No.	化合物例		
22	$t-C_4H_9-C_1$ C_1 C_1 C_1		
23			
24	Cl Cl C_2H_5		
25	F F C_2H_5		
26	Cl Cl Cl C_2H_5		
27	Cl H C ₂ H ₅		
28	CI		
29	29 C1—(
30	Br——		
31	HO————Cl		

[0070]

【表6】

No.	化合物例	
32	$HO-\left(CH_2\right)_{10}Br$	
33	CI	
34	CHCl ₂	
35	Cl ————————————————————————————————————	
36	Cl Cl Cl	
37	Cl ₂ HC—CH ₂ O—	
38		
39		
40	F-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	

[0071]

【表7】

No.		化合物例	
41	H _s C CH _s	50	CI
42	Cl—t—C4H9	51	Br
43	CI CI CH ₃ CH ₃	52	C1C1
44	O CI	53	F—
45	CI—CI	54	F
46	CI	55	t-C4H9-Cl
47	CI CI	56	I—————————————————————————————————————
48	CI CI	57	CI
49	C1	58	I .

[0072]

【表8】

No.	化合物例		
59	CI CI	62	H ₃ C CH ₃
60	H ₅ C CH ₅	63	S CI
61	H _s C CH _s Br	64	S CI CH ₂

【0073】これらの中では特に、12、14、16、 8、39、43が好ましい。またさらに特には、17、 17, 19, 20, 21, 22, 23, 24, 26, 2 7、28、34、38、39、43が好ましく、さらに は、12、17、22、23、24、26、34、3

22、24、38が好ましい。

[0074] 【表9】

第4表 化合物例

No.	化合物例		
1	$ \begin{array}{c c} O \\ O \\ C \\ C$		
2	$H_{2}C = CH - C - C - CH = CH_{2}$ $O - C - CH = CH_{2}$ $O - C - CH = CH_{2}$ $O - C - CH = CH_{2}$		
3	$CH_{2}CH_{2}O - C - CH = CH_{2}$ $CH_{2}CH_{2}O - C - CH = CH_{2}$		
4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
5	CH_3 CH_2		

[0075]

【表10】

No.	化合物例
6	CH_3 CH_3 $CH_2C = CH - C - O(CH_2)_2 - O - C - CH = CH_2$
7	CH_3 O CH_3 O CH_3 O CH_3 CH_2 C = C - C
8	$CH_{3} O$ $H_{2}C = C - C - O$ $N - CH = C - CH_{2}O - C - C = CH_{2}$
9	CH_3 O $H_2C = CH - C - O(CH_2)_2O - O(CH_2)_2O - C - CH = CH_2$
10	CH_3 O CH_3 O CH_3 O CH_2 O CH_3 O

[0076]

【表11】

No.	化合物例		
11	$(CH_2)_2O-C-CH = CH_2$ $H_2C = CH-C-O(CH_2)_2-O-C-CH = CH_2$		
12	$H_2C = CH - C - OCH_2 - CH_2O - C - CH = CH_2$		
13	$\begin{array}{c} O \\ C \\$		
14	$S - CN$ O $H_2C = CH - C - O(CH_2)_2O - O(CH_2)_2O - C - CH = CH_2$		
15	CH_{9} CH_{9} CH_{2}		

[0077]

【表12】

No.	化合物例
16	CH ₂ —CH ₂ —CH ₂ O—CH
17	$H_2C = CH - C - O - CH_2 - C$
18	$H_{2}C = CH - C - O - C - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{2}O - C - CH = CH_{2}$
19	$CH_{2}CH_{2}-O-C-CH=CH_{2}$ $CH_{3}-O-(CH_{2})_{5}-O-CH_{2}O-C-CH=CH_{2}$
20	$H_2C = NCC - C - OCH_2$ C_2H_5 C_2H_5 $C_1H_2 - CH_2 - CH_2 - CH_2O - C - OCN = CH_2$

【表13】

[0078]

No.	化合物例		
21	CH_3 CH_3 CH_3 CH_2 CH_2 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3		
22	$H_2C = CH - C - O - O - O - C - CH_2$		
23	CH_{2} CH_{3} CH_{4} CH_{5} CH_{6} CH_{7} CH_{8} CH_{8}		
24	$H_2C = CH - C - OCH_2 - OCH_2 - CH_2O - C - CH = CH_2$		
25	$O = CH - CH_{2}$ $O = CH - CH_{2}$ $O = CH_{2}$		

[0079]

【表14】

No.	化合物例
26	$O = CH = CH_2$ $O = CH = CH_2$ $O = CH_2$
27	$H_2C = CH - C - O - O - C - CH = CH_2$
28	$H_2C = CH - C - OCH_2 - OCH_2 - CH_2O - C - CH = CH_2$
29	CH_3 CH_3 CH_3 CH_3 $CH_2C = CH - C - O(CH_2)_3 - O - C - CH = CH_2$
30	$H_2C = CH - C - OCH_2 - OCH_2 - CH_2O - C - CH = CH_2$

[0080]

【表15】

No.	化合物例
31	$H_2C = CH - C - OCH_2CH_2 - OCH_2CH_2 - CH_2CH_2O - C - CH = CH_2$
32	H ₂ C = CH— C—OCH ₂ — — N— — CH ₂ O— C—CH = CH ₂
33	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
34	CH_3 O CH_3 $H_2C = C - C - O - O - C - C = CH_2$
35	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

[0081]

【表16】

No.	化合物例
36	$H_2C = CH - C - OCH_2 - CH_2O - C - CH = CH_2$
37	$H_2C = CH - C - CCH_3 - CH_2O - C - CH = CH_2$
38	CH_{9} CH_{9} CH_{2}
39	$H_2C = CH - C - OCH_2 - O - CH_2O - C - CH = CH_2$
40	$ \begin{array}{c c} O & \\ \hline -(CH_2)_2O - C - CH = CH_2 \\ O & \\ \hline -(CH_2)_2O - C - CH = CH_2 \end{array} $

[0082]

【表17】

No.	化合物例
41	$CH_{2} = CH_{2}$ $CH_{2} = CH_{2}$
42	$H_2C = CH - C - O(CH_2)_3 - O - CH = CH_2$
43	$CH = CH_2$ $CH = CH_2$ CH_2 CH_3 CH_4 CH_5 CH
44	$CH = CH_2$ O $H_2C = CH - C - O(CH_2)_5 - O - C - CH = CH_2$
45	$H_2C = CH - C - OCH_2 - N - CH_2O - C - CH = CH_2$

[0083]

【表18】

No.	化合物例
46	$H_2C = CH - C - OCH_2 - OCH_2 - CH_2O - C - CH = CH_2$
47	$H_2C = CH - C - OCH_2 - CH_2CH_2 - CH = CH_2$
48	CH_2 CH_3 CH_3 CH_2 CH_3 CH_2 CH_2 CH_2 CH_2 CH_2 CH_3 CH_2 CH_3
49	Me O CH_3
50	$CH_3 O CH_2$ $H_2C = C - C - O - N - O - CH O CH_2$

[0084]

【表19】

No.	化合物例
51	$CH_{2} = CH_{2}$ $CH = CH_{2}$
52	$CH = CH_2$ $O \qquad O$ $CH_2O - C - CH = CH_2$
53	O CI O n —CsH7 O $H_2C = CH$ — C — CH_2 — C
54	H ₂ C = CH - C - OCH ₂ CH ₂ O CH ₂ O - C - CH = CH ₂ CH ₃ CH ₃
55	CH_3 $H_2C = CH - CH_2 - O(CH_2)_2 - O($

[0085]

【表20】

No.	化合物例
56	CH ₃ O(CH ₂) ₂ —O(CH ₂) ₂ O—O
57	CH ₃ C ₂ H ₅ C ₃ H ₅ C ₄ H ₅ C ₅ C ₆ H ₅ C ₇
58	CH_3 $H_2C = CH - C - (CH_2)_3 - CH - CH_2$
59	(CH ₂) ₇ —CH—CH ₂ (CH ₂) ₇ —CH—CH ₂ (CH ₂) ₇ —CH—CH ₂
60	CH ₃ CH ₃ CH ₂ O CH ₂ O CH ₂ O

[0086]

【表21】

No.	化合物例
61	$CH_{2}C = CH - C - O(CH_{2})_{3} - O - C - CH = CH_{2}$ $CH_{2}C = CH - C - O(CH_{2})_{3} - O - C - CH = CH_{2}$
62	CH ₂ CH ₂ CH ₂ CH—CH ₂
63	CH ₂ OC ₂ H ₅ CH ₂ CH—CH ₂
64	CH_{2} C
65	OH CH ₂ CH ₂ O CH ₂ O CH ₂ O

[0087]

【表22】

No.	化合物例
66	C—CH = CH ₂ O CH ₂ —CH—CH ₂
67	$ \begin{array}{c} O \\ O \\ CH_{3} \end{array} $ $ \begin{array}{c} O \\ O \\ CH_{2} \end{array} $ $ \begin{array}{c} O \\ O \\ O \\ CH_{3} \end{array} $
68	$H_2C = CH - C - O - CH_2)_5 - O - C - CH = CH_2$ $CH_2O - C - CH = CH_2$
69	CH_{2} — CH CH_{2}
70	$CH_{3} O O O O O O O O O O O O O O O O O O O$

[0088]

【表23】

No.	化合物例
71	$H_2C = CH - CH_2 - O(CH_2)_2 - O(CH_2)_2 - CH_2 - CH_2 - CH_2 - CH_2$
72	H_2 C—CH—CH2—O— \longrightarrow N— \longrightarrow O—CH2—CH—CH2
73	$ \begin{array}{c} CH_2 \\ CH_2 \end{array} $ $ \begin{array}{c} CH_2 \\ N \end{array} $ $ \begin{array}{c} CH_2 \\ CH_2 \end{array} $ $ \begin{array}{c} CH_2 \\ CH_2 \end{array} $
74	$O \xrightarrow{CH_2} (CH_2)_5 - \bigcirc N - \bigcirc - (CH_2)_5 - CH \xrightarrow{CH_2} O$ CH_2
75	CH_3 CH_3 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2

[0089]

【表24】

No.	化合物例
76	$\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\$
77	$O = C - CH = CH_2$ $CH_3 O \qquad (CH_2)_3$ $H_2C = C - C - C(CH_2)_3$ $CH_2 \rightarrow CH_2$ $CH_2 \rightarrow CH_2$ $CH_2 \rightarrow CH_2$
78	$O-CH = CH_2$ $(CH_2)_2$ $H_2C = CH-O-(CH_2)_2$ $N-CH_2$ $(CH_2)_2$ $(CH_2)_2$ $(CH_2)_2$ $(CH_2)_2$ $(CH_2)_2$ $(CH_2)_2$
79	$O-CH = CH_2$ CH_2 $H_2C = CH-O-N-CH = CH_2$
80	O — $CH = CH_2$ $H_2C = CH$ — O — N — O — $CH = CH_2$

[0090]

【表25】

No.	化合物例
81	$O-CH = CH_2$ $O - CH = CH_2$
82	$H_{3}C = CH \longrightarrow O \longrightarrow N \longrightarrow CH = CH_{2}$
83	$H_2C = CH - C - O(CH_2)_3 - O - CH = CH_2$
84	$H_2C = CH - O$ $N - CH_2CH_2 - CH = CH_2$
85	C_2H_5 $H_2C = CH - \bigcirc O - \bigcirc O - \bigcirc - CH = CH_2$

[0091]

【表26】

No.	化合物例
86	$\begin{array}{c} \text{CH}_3 \text{O} \\ \text{H}_2 \text{C} = \text{C} - \text{C} - \text{O} - \text{O} - \text{N} - \text{O} - \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \end{array}$
87	(CH2)2O - CH = CH2 $(CH2)2O - CH = CH2$
88	$H_2C = HC - C - N - $
89	$CH = CH_2$ $CH = CH_2$
90	$\begin{array}{c c} Me \\ \hline \\ O & CH_{3} \\ \hline \\ O - C - C = CH_{2} \\ \hline \\ O - C - C = CH_{2} \\ \hline \end{array}$

[0092]

【表27】

No.	化合物例
91	$CH_{2})_{2}O-C-CH = CH_{2}$ $CH = CH_{2}$
92	$H_{2}C = CH - C - OCH_{2} - OCH_{2$
93	$CH_2O - C - CH = CH_2$ $O = CH_2O - C - CH = CH_2$ $O = CH_2O - C - CH = CH_2$
94	CH ₂ —CH—O——————————————————————————————————
95	S CH ₂ —CH—O——————————————————————————————————

[0093]

【表28】

No.	化合物例
96	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₄ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ CH ₃ CH ₄ CH ₃ CH ₄ CH ₄ CH ₄ CH ₅
97	$H_2C = CH - C - (CH_2)_3 - N - C - CH = CH_2$
98	$H_2C = CH - C - O - O - CH_2$ $O - CH_2$ $O - CH_2$
99	CN CH_2 CH_2 O
100	CH_8 $O(CH_2)_5 \longrightarrow N \longrightarrow (CH_2)_5O \longrightarrow O(CH_2)_5O \longrightarrow O(CH_2)$

【0094】 【表29】

No.	化合物例
101	$\begin{array}{c} CH_{9} \\ O \\ H_{2}C = CH - C - O - CH_{2} - CH_{2} - OOC - OOC - CH_{2} - * \\ \bullet \\ \bullet \\ O - C - CH = CH_{2} \end{array}$
102	$H_2C = CH - C - O - O - C - CH = CH_2$
103	$CH_{2}O-CH=CH_{2}$ $CH_{2}O-CH=CH_{2}$ $CH_{2}O-CH=CH_{2}$ $CH_{2}O-CH=CH_{2}$ $CH_{2}O-CH=CH_{2}$ $CH_{2}O-CH=CH_{2}$ $CH_{2}O-CH=CH_{2}$ $CH_{2}O-CH=CH_{2}$
104	$H_2C = CH - C - O(CH_2)_3 - N - (CH_2)_2 - O$
105	CH_3 $(CH_2)_2O-C-CH = CH_2$ CH_3 $(CH_2)_2O-C-CH = CH_2$ CH_3 $(CH_2)_2O-C-CH = CH_3$

[0095]

【表30】

No.	化合物例
106	$CH_2O - C - CH = CH_2$ $CH_2C - CH = CH_2$ C_2H_5 C_2H_5
107	$H_{2}C = CH - \frac{O}{C} - OCH_{2} - \frac{O}{N} - \frac{O}{CH_{2} - C} - CH = CH_{2}$ $H_{2}C = CH - \frac{O}{C} - CCH_{2} - \frac{O}{N} - \frac{O}{N} - \frac{O}{C} - CH = CH_{2}$
108	CH ₂ —CH—O—OCH ₂ —— CH ₃ ————————————————————————————————————
109	$H_2C = CH - C - C - CH = CH_2$
110	CH_3 $CH_2CH_2C-C-CH = CH_2$ CH_3 CH_3 $CH_2CH_2C-C-CH = CH_2$

[0096]

【表31】

No.	化合物例
111	$H_{2}C = CH - O(CH_{2})_{2} - O - CH = CH_{2}$
112	CH_{8} $H_{2}C = CH$ $O(CH_{2})_{2}$ N CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2}
113	$H_{2}C = CH - C - OCH_{2} - (CH_{2})_{2} - (CH_{2$
114	CH_3 $H_2C = CH - C - O - SO_2 - CH_2 - N - CH_2 - SO_2 - *$ $*O - C - CH = CH_2$
115	$H_2C = CH - C - O - C - CH = CH_2$ CH_2

[0097]

【表32】

No.	化合物例
116	CH_{9} CH_{9} CH_{9} CH_{9} CH_{9} CH_{9} CH_{9} CH_{9} CH_{9} CH_{1} CH_{2} C
117	$CH_2 = CH - C - O - N - N - N - C - CH = CH_2$
118	$C_{2}H_{5}$ V
119	CH_{3} $CH_{2} = CH - C - CH_{2}O - C - CH = CH_{2}$
120	$CH_{3} \qquad CH_{3}$ $CH_{2} = CH - C - O - CH_{2} - O - CH_{2} - CH_{2} - N - CH_{2} $

[8600]

【表33】

No.	化合物例
121	$CH_2 = CH - C - O - N - O - C - CH = CH_2$
122	$CH_2 = CH - C - O - N - O - C - CH = CH_2$
123	$CH_2 = CH - C - O - O - O - C - CH = CH_2$
124	$CH_2 = CH - C - CH_2O - N - CH_2O - CH = CH_2$
125	$CH_2 = CH - C - O - N - O - C - CH = CH_2$

[0099]

【表34】

No.	化合物例
126	$CH_{2} = CH - C - CH_{2}O - CH_{2}CH_{2} - N - CH_{2}O - CH_{2}CH_{2} - CH_{2}O - CH_{2}CH_{2}O - CH_{2}CH_{$
127	$CH_2 = CH - C - O - O - C - CH = CH_2$
128	$CH_{2} = CH - C - O $ CH_{3} $CH_{2} = CH - C - C - CH = CH_{2}$ CH_{3} $CH_{4} = CH - C - C - CH = CH_{2}$
129	$CH_2 = CH - C - CH_2O - CH_2$
130	$CH_{2} = CH - C - OCH_{2}CH_{2} - OCH_{2}CH_{2} - C_{2}H_{5}$ $CH_{2} = CH - C - OCH_{2}CH_{2} - OCH_{2}CH_{2} - OCH_{2}CH_{3} - OCH_{2}CH_{$

[0100]

【表35】

No.	化合物例
131	$CH_{2} = CH - C - O - N - C - CH = CH_{2}$
132	$CH_2 = CH - C - O - O - O - O - C - CH = CH_2$
133	$CH_{2} = CH - C - OCH_{2}CH_{2} - OCH_{2}CH_$
134	$CH_2 = CH - C - OCH_2CH_2 - $
135	$CH_2 = CH - C - OCH_2CH_2 - O$ $CH_2 = CH - C - OCH_2CH_2 - O$ $CH_3 = CH - C - OCH_2CH_3 - O$

[0101]

【表36】

No.	化合物例
136	$CH_{2} = C - C - CCH_{2}CH_{2}CH_{2} - C - C - CCH_{2}CH_{2}CH_{2} - C - C - CCH_{2}CH_{2}CH_{2} - C - C - C - C - C - C - C - C - C - $
137	$CH_{2} = CH - C - CCH_{2}CH_{2}CH_{2} - CH_{2}CH_{2}CH_{2} - CH_{2}CH_$
138	$CH_2 = CH - C - OCH_2CH_2 - OCH_2CH_2 - C_2H_5$ $CH_2 = CH - CH_2 - OCH_2CH_2 - OCH_2CH_$
139	$CH_2 = CH - C - OCH_2CH_2CH_2 - OCH_2CH_2CH_2 - C_2H_5$ $CH_2 = CH - C - OCH_2CH_2CH_2 - OCH_2CH_2 - OCH_2CH_2CH_2 - OCH_2CH_2CH_2 - OCH_2CH_2 - OCH_2CH_2 -$
140	CH_{2}

[0102]

【表37】

No.	化合物例
141	$CH_2 = CH - C - O - N - CH = CH_2$
142	$CH_{2} = CH - C - CH_{2}O - O - O$ $CH_{3} $
143	$CH_2O-C-CH=CH_2$ $CH_2=CH-C-OCH_2-N-C-CH=CH_2$
144	$CH_2 = CH - C - OCH_2 - OCH_$
145	$CH_2 = CH - C - OCH_2$ $CH_2O - C - CH = CH_2$ $CH_2O - C - CH = CH_2$ $CH_2O - C - CH = CH_2$

[0103]

【表38】

No.	化合物例
146	$CH_{2} = CH - C - OCH_{2} $ $CH_{3} CH_{8} $ $CH_{2}O - C - CH = CH_{2}$ $CH_{2}O - C - CH = CH_{2}$
147	$CH_2 = CH - C - O - C - CH = CH_2$ $CH_2 = CH - C - OCH_2 - CH_2O - C - CH = CH_2$
148	$CH_2 = CH - C = OCH_2$ $CH_2O - C - CH = CH_2$
149	CH2-CH-CH2-OCH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-
150	$CH_2 = CH - C - OCH_2CH_2 \qquad CH_2CH_2O - C - CH = CH_2$

[0104]

【表39】

No.	化合物例
151	$CH_2 = CH - C = OCH_2$ $CH_2O - C - CH = CH_2$
152	$CH_{2} = CH - C = OCH_{2}$ $CH_{2}O - C - CH = CH_{2}$
153	$CH_2 = CH - C = O - N - N - C - CH = CH_2$
154	$\begin{array}{c} O \\ O \\ CH_2 = CH - C = OCH_2CH_2 - OCH_2CH_2 -$
155	$CH_{2} \longrightarrow CH = CH_{2}$ $CH_{2} = CH \longrightarrow CH_{2} \longrightarrow CH_{2} \longrightarrow CH_{2}$ $CH_{2} = CH \longrightarrow CH_{2} \longrightarrow CH_{2}$

[0105]

【表40】

No.	化合物例
156	CH_2 — CI CH_2 — CI CH_2 — CI CH_2 — CH CH_2 CH_2 — CH CH_2 C
157	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
158	$CH_{2} = CH - C - CH_{2}O - CH - CH_{2}O - CH = CH_{2}O - CH - CH_{2}O - CH_{2}$
159	$CH_2 = CH - C - O - C - CH = CH_2$
160	CH_3 CH_3 $CH_2 = CH - C - O - O - C - CH = CH_2$

[0106]

【表41】

No.	化合物例
161	$CH_2 = CH - C - O - CH_2$ $CH_2 = CH - C - O - CH_2$ $CH_2 = CH - C - O - CH_2$ $CH_2 = CH - C - O - CH_2$ $CH_2 = CH - C - O - CH_2$ $CH_2 = CH - C - O - CH_2$
162	$CH_{2} = CH - C - O - O - CH_{3}$ CH_{3} CH_{4} CH_{5} CH_{5} CH_{5} CH_{5} CH_{6} CH_{7} CH_{8} CH_{8}
163	$C_2H_5 \qquad C_2H_5$ $CH_2 = CH \longrightarrow N \longrightarrow N \longrightarrow CH = CH_2$
164	$CH_3 CH_3$ $CH_3 CH_3$ $CH_2 = CH - C - O - O - C - CH = CH_2$
165	$CH_{2} = CH - C - OCH_{2}CH_{2} - CH_{2} - CH_{2}$ $CH_{2} = CH - C - OCH_{2}CH_{2} - CH_{2} - CH_{2$

[0107]

【表42】

No.	化合物例
166	$CH_{2} = CH - C - OCH_{2}CH_{2} $ $CH_{3} - CH_{2}$ $CH_{3} - CH_{2}$ $CH_{2} - CH_{2}$ $CH_{3} - CH_{2}$ $CH_{4} - CH_{2}$ $CH_{5} - CH_{2}$ $CH_{5} - CH_{2}$
167	$\begin{array}{c} O \\ CH_2-CH- \bigcirc OCH_2CH_3 - \bigcirc \\ OCH_2-CH- \bigcirc OCH_2CH_2 - \bigcirc \\ O \end{array}$
168	O CH ₂ CH ₂ -CH ₂ CH ₂ -O CH ₂ CH ₂ -O
169	CH ₂ O CH ₂ N N CH ₂ N CH ₂
170	$CH_2 = CH - C - OCH_2CH_2 - CH = CH_2$ $N - CH_2CH_2O - C - CH = CH_2$

[0108]

【表43】

No.	化合物例
171	$CH_{2}CH_{2}O - C - CH = CH_{2}$ $CH_{2} = CH - C - OCH_{2}CH_{2}$ $CH_{2}CH_{2}O - C - CH = CH_{2}$ $CH_{2}CH_{2}O - C - CH = CH_{2}$
172	$CH_2 = CH - C - OCH_2CH_2$ $CH_2 = CH - C - O - O - O - O - C - CH = CH_2$
173	$CH_2 = CH - C - O - O - C - CH = CH_2$
174	$CH_2 = CH - C - O - CH_2$ $CH_3 - O - C - CH = CH_2$
175	$CH_2 = CH - CH_2 - OCH_2 - CH_2 - C$

[0109]

【表44】

No.	化合物例
176	$CH_2 = CH - OCH_2 - N - CH_2O - CH = CH_2$
177	CH ₂ =CH-CH ₂ -OCH ₂ -OCH ₂ -CH ₂ O-CH ₂ -CH ₂ -CH ₂ -CH ₂ O-CH ₂ -CH ₂ -CH ₂ O-CH ₂ -CH ₂ -CH ₂ O-CH ₂ -CH
178	$CH_2 = CH - C - O - N - O - C - CH = CH_2$
179	$CH_2 = CH - C - OCH_2CH_2 - $
180	$CH_{2} = CH - C - OCH_{2}CH_{2} - OCH_{2}CH_$

[0110]

【表45】

No.	化合物例
181	$CH_2 = CH - C - OCH_2CH_2 - $
182	$CH_{2} = CH - C - OCH_{2}CH_{2} - OCH_{2}CH_$
183	$CH_2 = CH - C - O - \bigcirc N - \bigcirc N - \bigcirc - CH = CH_2$
184	$CH_{2} \longrightarrow CH = CH_{2}$ $CH_{2} = CH \longrightarrow C \longrightarrow CH = CH_{2}$
185	$CH_2 = CH$ $CH_2 = CH$ $CH_2 = CH$ CH_3 $CH_4 = CH$ CH_5 CH_6 CH_7 CH_8

[0111]

【表46】

No.	化合物例
186	$CH_2 = CH - C - OCH_2CH_2$ $CH_2 = CH - C - OCH_2CH_2$ $CH_2 = CH - C - OCH_2CH_2$ $CH_3 = CH - C - OCH_3CH_3$
187	$CH_2 = CH - C - OCH_2CH_2 - OCH_3CH_2 - OCH_3 - OCH_$
188	$CH_2 = CH - C - OCH_2CH_2 $ O $CH_2 = CH - C - OCH_2CH_2 $ $CH_2 = CH - C - OCH_2CH_2 $
189	$CH_2 = CH - C - OCH_2CH_2 $ $CH_2 = CH - C - OCH_2CH_2 $ $CH_2 = CH - C - OCH_2CH_2 $ $CH_3 = CH - C - OCH_2CH_3 $ $CH_4 = CH - C - OCH_2CH_3 $
190	$CH_2 = CH - C - O - O - C - CH = CH_2$

[0112]

【表47】

No.	化合物例
191	$CH_{2} = CH - C = O - CH = CH_{2}$
192	$CH_2 = CH - C = O - O - C - CH = CH_2$
193	$CH_2 = CH - C - OCH_2CH_2 - CH_2$ $CH_2 = CH - C - OCH_2CH_2 - CH_2$ $CH_2 = CH - C - OCH_2CH_2 - CH_2$
194	$CH_2 = CH - C - O CH_3$ $CH_2 = CH - C - O CH_3$ $N - CH_2 - CH_2 - CH_3$
195	$CH_2 = CH - C - OCH_2CH_2$ $CH_2 = CH - C - O - N - N - C - CH = CH_2$

[0113]

【表48】

No.	化合物例
196	$CH_2 = CH - C - OCH_2CH_2 - CH_2$ $CH_2 = CH - C - OCH_2CH_2 - CH_2$ $CH_2 = CH - C - OCH_2CH_2 - CH_2$
197	$CH_2 = CH - C - OCH_2CH_2 - $
198	$CH_{2} = CH - C - OCH_{2}CH_{2} - OCH_{2}CH_$
199	$CH_2 = CH - C - C - CH_3 - CH_3 - CH_2$ $N - N - N - C - CH = CH_2$
200	$CH_2 = CH - C - OCH_2CH_2 $ $CH_2 = CH - C - OCH_2CH_2 $ $O $ $CH_2 = CH - C - OCH_2CH_2 $ $O $ O

【0114】これらの中では特に、31、61、116 が好ましく、さらには、31、116が好ましい。

【0115】以下に本発明を実施例および比較例により 詳細に説明するが、特にこれらに限定されるものではない。

【0116】 実施例1

まず、導電層用の塗料を以下の手順で調整した。10%の酸化アンチモンを含有する酸化スズで被覆した導電性酸化チタン粉体50部(質量部、以下同様)、フェノール樹脂25部、メチルセロソルブ20部、メタノール5部およびシリコーン樹脂(ジメチルシロキサンーオキシ

アルキレン共重合体、平均分子量3000) 0.002 部を直径1mmのガラスビーズを用いたサンドミル装置で2時間分散して調整した。この塗料を直径30mmのアルミニウムシリンダー上に浸漬塗布方法で塗布し、150℃で30分乾燥して、膜厚15μmの導電層を形成した。

【0117】つぎに、Nーメトキシメチル化ナイロン5 部をメタノール95部中に溶解し、中間層用塗料を調整 した。この塗料を前記の導電層上に浸漬コーティング法 によって塗布し、100℃で20分間乾燥して、0.5 μmの中間層を形成した。 【0118】 $CuK\alpha$ 特性 X 線回折におけるブラック角 $2\theta\pm0$. 2° の7. 4° および 28. 2° に強いピークを有するヒドロキシガリウムフタロシアニン結晶を 3 部、ポリビニルブチラール(商品名エスレック 3 BM 3 MM 3

置で24時間分散して、その後に酢酸エチル60部を加えて電荷発生層用塗料を調製した。この塗料を前記の中間層の上に浸漬塗布方法で塗布して105℃で10分間乾燥し、膜厚0、15μmの電荷発生層を形成した。

[0119]

【外10】

【0120】ついで、第4 表の化合物例No. (31)の連鎖重合性官能基を有する正孔輸送性化合物60部、および、第3 表の化合物例No. (38)のハロゲン化合物0. 6部をエタノー50部、および、イソプロピルアルコール20部の混合溶媒中に溶解し、保護層用塗料を調整した、この塗料を前記の電荷輸送層上にコーティングし、加速電圧150kV、線量30Mradの条件で電子線を照射し樹脂を硬化し、膜厚3μmの電荷輸送層を形成し、電子写真感光体を得た。

【0121】この感光体をレーザービームプリンター(LASER SHOT LBP-930:キヤノン製)の改造機において常温常湿下(23° 、 55° RH)(N/N)で、初期暗部電位(Vd)が-700(V)になるように帯電設定をし、これに波長 780(nm)のレーザー光を照射して-700(V)の電位を-200(V)まで下げるのに必要な光量($E\Delta50$ 0)を測定し感度とした。さらに、 $20(\mu J/cm2)$ の光量を照射した場合の電位を残留電位(Vr)として初期特性を測定した。なお、その他の条件は、転写電流: $+5.5\mu$ A、プロセススピード: 106mm/sで行った。

【O122】つぎに新たに上記と同様の方法で作成した感光体を、上記と同様の改造機において、常温低湿下(23 $^{\circ}$ 、10 $^{\circ}$ R H)(N $^{\circ}$ $^{\circ}$ しで連続 500 $^{\circ}$ の 通紙耐久を行なって、初期と耐久直後の暗部電位と明部電位の変動量の絶対値($|\Delta V d^{1}|$ $|\Delta V 1^{1}|$)を測定した。さらに、その感光体の削れ量を過電流式膜厚測定器(PERMASCOPE TYPEE-11 1:FISCHER社製)で測定を行った。

【0123】さらに、白色光に対するフォトメモリーの 測定として、新たに上記と同様にして作成した電子写真 感光体をN/Nで、初期暗部電位(Vd)/初期明部電 位(V1)が-700v)/-200(v)になるよう に帯電電位および露光光量を設定し、つぎに、この感光 体に暗部と明部ができるようにマスキングし、蛍光灯下 で30001x、20分間光照射した後、<math>5分間放置し、同様に電位を測定し暗部電位の初期との変化の絶対 値(ΔVd^2)をフォトメモリーとして測定した。

【0124】上記の結果を以下の第5表に示す。

[0125]

【表49】

					第5	安 実施例					
実施例 No.	速範圍合 性官部基 4有16 正孔輸送	建氧蛋合性 官能基+有 核正孔的 送性化合物	化合物 例 示化合物	ハロゲン 化合物 添加量 (部)	Miles de la companya	初期特性		N/L5000枚耐久			フォト メモリー
	性化合物	添加量(部)				4.00	EΔ500(μJ/cm)	Vr(-V)	\P \A9, (A)	אוימעבן	前体(μm)
	31	60	38	0.6	15	0.3	20 20	5	5		5
2	1	1	24	-	1	0.3	20	5	Ö	1	5
3			41	+	T T	0, 32	25	15	15	1.1	10
4			45	•	1	0, 33	30	20	20	1, 3	15
	. Î .		57			0.32	25	10	15	1.1	10
В	+		40			0, 33	30	15	20	1, 3	15
7		T	58	+	•	0, 34	30	25	25	1.4	30
8	1	L t	52			0, 91	25	10	15	1. 2	10
9			54			0.34	30	20	30	1.4	25
10	<u> </u>		21			0, 32	25	10	15	111	10
11		 	22	$ldsymbol{eta}$	Ţ	0.3	20	5	5	0.9	5
12	I	↓ Ī	38	IÎ	30	0, 34	25	10	10	0, 7	10
13	I		24	<u> </u>		0.34	25	10	10	0.7	10
14		1 1	41	- I.		0.37	30	20	25	1	20
15	I	ļ <u>Ī</u>	22	0.003	15	0, 32	25 20	10	15	1, 2	10
16	<u> </u>	├── Ӏ──	 	18	—I—	0.3		5	5	 	5
17		└		48	-I	0.34	30	20	20	1.2	15
18	116	 	24	0.6		0,3	20 20	10	10	 	5
19 20	61 148	 	 	I		0, 31	15	5	5	1 1	5
21		 		- I	-I-	0.29	25			1.1	5
$\frac{21}{22}$	112	+ - I	- 1	<u> </u>	I	0.32	 43	15	15 10	1.6	15
23	139	├	1-17-	6		0.3	20 20		10	1,1	5
23		- I −	 	0, 6 0, 005		0.3	25	15	15	1.1	<u>5</u> 15
		 	- I -			0.33	20				
25 26	156 137	 	II	0.6	<u> </u>		35	25	5 25	1.2	5 20
45	137	<u> </u>	<u> </u>	<u> </u>	<u> </u>	0, 35	35	1 25		1. 7	_ 20

【0126】実施例2~実施例6

連鎖重合性官能基を有する正孔輸送性化合物またはハロゲン化合物または電子線の線量を以下の第5表に示したように代えた以外は、実施例1と同様に感光体を作成し同様な評価を行った。それらの結果を第5表に示す。

【0127】比較例1~比較例5

第5表に示した比較例1および実施例18~21のハロゲン化合物を添加しなかった以外は、実施例1および実施例18~21と同様に感光体を作成し同様な評価を行

った。それらの結果を第6表に示す。

【0128】比較例6~比較例9

実施例1のハロゲン化合物を下記式の化合物(H-1) ~ (H-4)に代えた以外は、実施例1と同様に感光体を作成し同様な評価を行った。それらの結果を第6表に示す。

[0129]

【外11】

$$(H-1) \qquad H_{S}C \qquad CH_{S} \qquad (H-3) \qquad CH_{S}$$

$$(H-2) \qquad O \qquad (H-4)$$

[0130]

【表50】

第8表 実施例

					7,10	** YEEF1										
実施例 Na.	性官能基 官間 特有46 46 正孔輸送 送性	整 官能基1有 均正孔輪	官能基特 杉正孔榆	官能基情	官能基1有 核正孔輪	官能基特 核正孔輪	官能基i有 核正孔輪	添 加 化合物	添加化合物 添加量 (部)	照射線量 Olirad)	初期特性		N/	1.5000牧耐	Д	フォト メモリー
		添加量(部)			J.a.	EΔ500(μJ/cm²)	Vr(-V)	\P\ Aq, (A)	ΔVI' Œ	前体(μm)	\(\Partial(Y)					
1	31	60	-	_	15	0, 39	35	35	35	1.1	35					
2	116	1	-	= =	•	0.4	35	40	40	1.2	30					
3	61	1	-	-	1	0.41	40	35	45	1. 2	35					
4	145		-	-	†	0, 38	35	35	55	1.3	35					
Б	112	1	-	-	•	0. 45	45	50	60	1.7	4.5					
В	31		D-1	0.6		0, 39	40	35	35	1, 2	35					
7			0-2	.		0, 41	35	35	40	1.1	40					
8			0-3			0, 42	35	35	35	1, 5	55					
9			D-4		1	0.4	35	35	35	1. 2	40					

【0132】ついで、第4表の化合物例No. (150)の連鎖重合性官能基を有する正孔輸送性化合物60部および第3表の化合物例No. (38)のハロゲン化合物1. 2部をモノクロロベンゼン50部およびジクロ

ロメタン30部の混合溶媒中に溶解し、電荷輸送層用塗料を調整した、この塗料を前記の電荷発生層上にコーティングし、加速電圧150kV、線量20Mradの条件で電子線を照射し樹脂を硬化し、膜厚16μmの電荷輸送層を形成し、電子写真感光体を得た。

【O133】得られた感光体を上記の実施例1と同様な評価を行った。その結果を第7表に示す。

【0134】実施例28~実施例38

連鎖重合性官能基を有する正孔輸送性化合物またはハロゲン化合物または電子線の線量を以下の第7表に示したように代えた以外は、実施例27と同様に感光体を作成し同様な評価を行った。それらの結果を第7表に示す。

[0135]

【表51】

第7表 実施例

更施例 No.	連續重合 性官能基 持有76 正孔輸送	を 官能基件 お正孔 を 送性化合物	ハロゲン 化合物 例 示 化合物 Na	ハロゲン 化合物 添加量 (部)	照射線量 (Jirad)	初期特性		N/L5000 枚耐久			フォト メモリー
	性化合物					EΔ500(μJ/cm)	Vr(-V)	\PAq. (A)	אוימען	月油(µn)	\(\V \d^2 \) (V)
27	150	60	38	1, 2	20	0, 24	30	5	5	0.9	5
28	1		23	1	†	0.23	30	10	10	0, 9	10
29		1	11	1		0. 24	30	10	10	0.9	10
30			5	1	†	0, 25	30	5	10	0.9	10
31	147		38	1	†	0. 24	30	10	10	0.5	5
32	1	1	1	1	10	0. 22	25	5	5	0.6	5
33	150	1 t	-	6	_ 20	0, 25	30	10	10	1	10
34	•	I f	†	0.003	1	0.28	35	15	15	1, 2	15
35		L _ t	60	1, 2	f	0, 28	35	15	20	1.2	15
35	143	If	24	0.6		0.24	30	5	10	0.8	10
37	1	1	25	1	1	0.28	35	20	25	0.9	20
38	31		24			0, 24	30	5	10	0.9	5

【0136】比較例10~比較例13

第7表に示した実施例27、31、36および38のハロゲン化合物を添加しなかった以外は、実施例27、31、36および38と同様に感光体を作成し同様な評価

を行った。

【0137】それらの結果を第8表に示す。

[0138]

7---

【表52】

第8表 実施例

実施例	建筑图合 性官能基 特有78 正孔输送 性化合物	連續重合性 官能基特 私正孔輪 送性化合物 添加量(部)	ハロゲン 化合物示物 化合Na	ハロゲン 化合物 添加量 (部)	照射線量 (Mrad)	初期特性		N/L5000枚耐久			フォトメモリー
						EΔ500(μJ/cm²)	Vr(-V)	V AG, (A)	וימען	育体(μm)	\ \Y&* (Y)
10	150	60	-	-	20	0, 31	50	35	40		50
11	147			-	1.	0.32	55	40	35	0.7	50
12	143		_		1	0, 32	55	40	40	l î	45
13	31		1		t	0.35	65	45	55	1.2	45

【0139】実施例39

上記実施例1と同様に導電層、中間層および電荷発生層を形成後、電荷輸送物質として下記式(D-2)を4.5部、第3表の化合物例No.(38)のハロゲン化合物O.6部およびビスフェノールZ型ポリカーボネート(粘度平均分子量25.000)5.5部をモノクロロ

ベンゼン38gに溶解し、電荷輸送層用塗料を調製した。この塗料を前記電荷発生層の上に浸漬塗布方法で塗布して100℃で60分間乾燥し、膜厚10μmの電荷輸送層を形成した。

[0140]

【外12】

(D-2)

【0141】ついで、第4 表の化合物例No. (31)の連鎖重合性官能基を有する正孔輸送性化合物60部を

エタノー50部およびイソプロピルアルコール20部の 混合溶媒中に溶解し、保護層用塗料を調整した、この塗 料を前記の電荷輸送層上にコーティングし、加速電圧15.0kV、線量20Mradの条件で電子線を照射し樹脂を硬化し、膜厚3μmの電荷輸送層を形成し、電子写真感光体を得た。

【 O 1 4 2 】得られた感光体を上記の実施例 1 と同様な 評価を行った。その結果を第 9 衷に示す。

【0143】 実施例40

上記実施例39と同様に導電層および中間層を形成後、 C u K α 特性 X 線回折におけるブラック角2θ±0.2°の7.4°および28.2°に強いピークを有するヒ ドロキシガリウムフタロシアニン結晶を3部、ポリビニ ルブチラール(商品名エスレックBM2、積水化学 (株) 製) 1.5部、第3表の化合物例No.(38) のハロゲン化合物0.8部およびシクロヘキサノン35 部を直径1mmのガラスビーズを用いたサンドミル装置で24時間分散して、その後に酢酸エチル60部を加えて電荷発生層用塗料を調製した。この塗料を前配の中間層の上に没漬塗布方法で塗布して105℃で10分間乾燥し、膜厚0.15μmの電荷発生層を形成した。

【0144】つぎに、電荷輸送層および保護層を実施例39と同様な方法で作成し、電子写真感光体を得た。ただし、実施例39で電荷輸送層に添加したハロゲン化合物は添加せず作成した。

【O145】得られた感光体を上記の実施例1と同様な評価を行った。その結果を第9表に示す。

[0146]

【表53】

第9表 実施例

実施例	初期特性	N,	フォトメモリー				
No.	BΔ 500 (μ J/cm/)	Vr(– V)	7/4, (A)	\(\nabla \text{VI}^1 \) (V)	削れ (μm)	\(\d \) \(\tau \)	
39	0.24	30	10	Б	0.9	6	
40	0.27	35	15	15	1	16	
41	0.42	45	30	30	2.5	25	

【0147】比較例14

上記実施例39で電荷輸送層中に添加したハロゲン化合物を添加しなかった以外は、実施例39と同様に感光体を作成し同様な評価を行った。それらの結果を第10表に示す。

【0148】比較例15

上記実施例40で電荷発生層中に添加したハロゲン化合物の代わりに前記(H-3)の化合物を添加した以外は、実施例40と同様に感光体を作成し同様な評価を行った。それらの結果を第10表に示す。

【0149】 実施例41

上記実施例1と同様に導電層、中間層、電荷発生層および電荷輸送層を形成後、第4表の化合物例No. (31)の連鎖重合性官能基を有する正孔輸送性化合物60部、第3表の化合物例No. (38)のハロゲン化合物0.6部および下記式(A)の光重合開始剤6部をテトラヒドロフラン40部および1,4ージオキサン20部の混合溶媒中に溶解し、保護層用塗料を調整した、この塗料を前記の電荷輸送層上にスプレーコーティングし、

メタルハライドランプを用いて500mW/cm²の光 強度で硬化させることによって膜厚3μmの電荷輸送層 を形成し、電子写真感光体を得た。

[0150]

【外13】

$$\begin{array}{c|c}
\hline
O & CH_3 \\
\hline
C - C - C \\
\hline
CH_3
\end{array}$$
(A)

【 O 1 5 1 】得られた感光体を上記の実施例 1 と同様な評価を行った。その結果を第 9 表に示す。

【0152】比較例16

上記実施例41で保護層中に添加したハロゲン化合物を添加しなかった以外は、実施例41と同様に感光体を作成し同様な評価を行った。それらの結果を第10表に示す。

[0153]

【表54】

第10表 比较例

実施例	初期特性		N.	フォトメモリー		
No.	BΔ 500 (μ J/c m)	Vr(- V)	\(\Days\)	\(\text{Vi} \) (V)	削れ (μm)	7 Aq, (A)
14	0.41	40	40	40	1.1	35
15	0.41	45	86	40	1	40

[0154]

【発明の効果】放射線のような通常よりもかなり高エネルギーを感光体に加え、同一分子内に2つ以上の連鎖重合性官能基を有する正孔輸送性化合物を重合する際にお

いても、本発明のハロゲン化合物を少なくとも1種含有することにより、感光体の光感度の低下、残留電位の上昇、繰り返し使用時の電位変動または各種メモリー類の悪化などが大きく改善され、実用上使用可能な高い機械

的強度と電子写真特性を十分満足する感光体が提供できた。

【図面の簡単な説明】

【図1】本発明の電子写真感光体を有するプロセスカートリッジを有する電子写真装置の概略構成の例を示す図。

[図1]

フロントページの続き

(72)発明者 植松 弘規

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

(72)発明者 田中 博幸

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

(72) 発明者 関谷 道代

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

(72) 発明者 雨宮 昇司

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

Fターム(参考) 2H068 AA02 AA14 AA20 BA01 BA12

BA14 BB07 BB10 BB30 BB49

BB57 BB60 FA03 FA12 FA19

FA27

4J002 BG071 CD131 CD191 CH021

CHO31 CMO01 CNO11 EB006

EB026 EB046 EB066 EC036

ED076 EE036 EJ056 EU046

EV306 EV316

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.