	Les	5501	n 1	9									0	2/ 2	3/	22	-
	Fiv	risl	1	7.	3												
	la	+2.	+i	me		qar	ti'a	£	fro	ichi	ous						
	-a	m	m	一 [mf		F										
						×(10									ω≠		
6	EXOL	mi	ne	سلم	out	h	eup p.	ens	w	her	1 4	υ ‡ ,	3	=	J K	259	n'ng coust
0	nd	ah	en	w=	59	Ţ.											4as,
C	_o u	put	ed:		X	(s)	-	(S ² -	5 s (w²)	(s ²	+ 9)	_					
1.0	2 J +	9															
		5s	(s2+	9)		=	_		5 -		<u> </u>	+	_	A 2 5	3 + 5 2 + 5		
	îr	redi	7 uci b	R 9	wad	ratio	Ç										
	55		_		٤, ۶	+ B	.)(521	(و	4	(A	25 t	B ₂) (S2-	+ω ^z	
1.	st u	, ay		M	rtcl	۸ (٥٤	140	iev	it			7		^	2	
2	5 =		A, s		+ 9	A, 5	+	B +	, s ²	+JB	+	B ₂	w ²	+	726	2 2	

$$\begin{array}{lll} \left\{\begin{array}{lll} A_1 + A_2 = 6 \\ 9A_1 + A_2\omega^2 = 5 \end{array}\right. & \left(\begin{array}{lll} \times 4 & \text{system in } 4 \\ B_1 + B_2 = 0 \end{array}\right. & \left(\begin{array}{lll} \times 4 & \text{system in } 4 \\ B_1 + B_2 = 0 \end{array}\right. & \left(\begin{array}{lll} \times 4 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_1 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_1 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B_2 & \text{system in } 4 \\ \end{array}\right) & \left(\begin{array}{lll} B$$

For
$$A_1, B_1$$
: set so wi
Swi = $(A_1\omega i + B_1)(9-\omega^2)$
Pari $O = B_1(9-\omega^2) \Rightarrow B_1 = O$
This $SU = A_1\omega(9-\omega^2) \Rightarrow A_1 = \frac{S}{9-\omega^2}$
 $X(S) = \frac{S}{9-\omega^2} \frac{S^2+\omega^2}{S^2+\omega^2} + \frac{S}{9-\omega^2} \frac{S^2+g}{S^2+g}$
 $\Rightarrow x(t) = \frac{S}{9-\omega^2} \frac{Cos(\omega t)}{S^2+\omega^2} - \frac{S}{9-\omega^2} \frac{Cos(3t)}{S^2+g}$
Purperposition of periodic working $\omega^2 = g$: $X(S) = \frac{SS}{(S^2+g)^2}$
table $\Rightarrow X(t) = \frac{SS}{(S^2+g)^2}$
 $\Rightarrow X(t) = \frac{SS}{(S^2+g)^2}$
unbounded as a function of the solution of the solution

Property: Trouvalation in s axis If L {f} exists for s>c then
L{eat}(+)} exists s>c+a and L { e at fet] = F(s-a), where F(s)= L{f(x)} Equivalently. 2-18 F(s-a) = = at p(+). Multiplication by exp int => translation in s. $F(s) = \frac{1}{s}$ So: 2-18-3= eat 2-18-3= eat $\frac{2\times 2}{5\times 1}$ 1st $\frac{S-1}{S+1} = \frac{A_1}{S+1} + \frac{A_2}{(S+1)^2} + \frac{A_2}{(S+1)^3}$ (partfal fr)

$$\frac{s-1}{(s+1)^3} = \frac{(s+1)-2}{(s+1)^3} = F(s+1),$$

$$F(s) = \frac{s-2}{s^3}$$

$$= \frac{1}{s^2} - \frac{2}{s^3}$$

$$= e^{-\frac{1}{s^2}} + \frac{1}{s^2} - \frac{2}{s^3} = e^{-\frac{1}{s^2}} + \frac{1}{s^2} - \frac{2}{s^3} = e^{-\frac{1}{s^2}} + \frac{1}{s^2} + \frac{1}{s^2} + \frac{1}{s^2} = e^{-\frac{1}{s^2}} + \frac{1}{s^2} + \frac{1}{$$

In general: 2 { 193 + 2 192 } Define a new operation called convolutions Input: 2 nice enough functions of t Output: A function of t.

A(1) defined for $t \ge 0$. $f * g(t) = \int_{0}^{t} f(\tau) g(t-\tau) d\tau$ Convolution Theorem: If fig nice then Léf*g3 = Léf3 Lég3. So: L turns convolution into multiplication. 1-{F.G} = f * 9