Pontificia Universidad Católica de Chile

Facultad de Matemáticas

 \odot

@

Profesor: Héctor Pastén Vásquez

Curso: Álgebra abstracta II Fecha: 24 de abril de 2025

Sigla: MAT2244

Ayudante: José Cuevas Barrientos

Anillos e ideales

En esta ayudantía, entendemos que todo anillo es conmutativo y unitario (i.e., con $1 \in A$). El anillo nulo A=0 sí se considera un anillo, aunque no es un cuerpo.

1. (Examen de lucidez) Sea A un anillo y considere el conjunto $R := \operatorname{Func}(\mathbb{N}_{>0}, A)$ de funciones con la suma dada coordenada por coordenada y el producto por convolución:

$$(f+g)(n) := f(n) + g(n), \qquad (f*g)(n) = \sum_{ab=n} f(a)g(b).$$

- a) Pruebe que (R, +, *) es un anillo cuya unidad es la función dada por $\varepsilon(1) = 1$ y $\varepsilon(n) = 0$ para n > 1.
- b) Una función f se dice **multiplicativa** si f(ab) = f(a)f(b) cuando a, b son coprimos. Pruebe que si f,g son multiplicativas, entonces f*g también lo es.

Problema (fórmula de inversión de Möbius): Defina la función de Möbius μ como $\mu(n) = (-1)^m$ cuando $n = p_1 \cdots p_m$ es el producto de primos distintos y $\mu(n) = 0$ cuando $p^2 \mid n$ para algún primo p. Sea «1» la función constante 1(n) = 1. Pruebe que $\mu * 1 = \varepsilon$.

- 2. Sea A un anillo y sea $a \in A$ un elemento *nilpotente* (i.e., $a^n = 0$ para algún $n \in \mathbb{N}$). Pruebe que 1 + a es inversible.
- 3. Sea A un anillo en donde cada para cada $a \in A$, existe $n \ge 2$ tal que $x^n = x$. Pruebe que todo ideal primo es maximal.
- 4. Diremos que un anillo A es *local*, si posee un único ideal maximal $\mathfrak{m} \subseteq A$. Pruebe que:
 - a) Un anillo A es local syss el conjunto $\mathfrak{m} = A \setminus A^{\times}$ de elementos que no poseen inversa es un ideal; en cuvo caso, m es el único ideal maximal.
 - b) Pruebe que si $f: A \to B$ es un homomorfismo sobrevectivo (o epimorfismo) de anillos y A es local. Entonces B es o bien nulo o bien un anillo local.
- 5. El objetivo de este ejercicio es caracterizar al nilradical de un anillo.
 - a) Sea $S \subseteq A$ un sistema multiplicativo tal que $0 \notin S$. Verifique que la familia de ideales

$$\mathcal{F} := \{ \mathfrak{a} \lhd A : S \subseteq A \setminus \mathfrak{a} \}$$

posee un elemento ⊆-maximal.

- b) Pruebe que un elemento \subseteq -maximal de \mathcal{F} es un ideal primo de A.
- c) Concluya que un elemento $a \in A$ es nilpotente syss pertenece a todos los ideales primos
- d) Más en general, sea $\mathfrak{a} \triangleleft A$ un ideal propio y defina su radical como

$$\operatorname{Rad} \mathfrak{a} = \{ a \in A : \exists n \ge 1 \quad a^n \in \mathfrak{a} \}.$$

Pruebe que Rad \mathfrak{a} es la intersección de todos los primos $\mathfrak{p} \triangleleft A$ que contienen a \mathfrak{a} .

¹Es decir, si $a, b \in S$, entonces $ab \in S$.

A. Ejercicios propuestos

1. Sea k un cuerpo finito con q elementos, y denotemos por $\psi(d)$ a la cantidad de polinomios irreducibles en k[x] de grado d. Empleando la fórmula de inversión de Möbius, pruebe que

$$n\psi(n) = \sum_{d|n} \mu(d)q^{n/d}.$$

- 2. Sea A un anillo y sea $\mathfrak{a} \subseteq \mathfrak{N}(A)$ un ideal de nilpotentes. Pruebe que si $a \in A$ se proyecta en una unidad $a \mod \mathfrak{a} \in (A/\mathfrak{a})^{\times}$, entonces a es una unidad en A.
- 3. Un anillo A se dice booleano (o de Boole) si $a^2 = a$ para todo $a \in A$. Pruebe lo siguiente:
 - a) Para todo primo $\mathfrak{p} \triangleleft A$ se cumple que $A/\mathfrak{p} \cong \mathbb{F}_2$.
 - b) Todo ideal finitamente generado es principal.

B. Comentarios adicionales

El nombre «anillo local» se debe a que, asociado a ciertos objetos geométricos X (e.g., variedades diferenciales, analíticas o algebraicas), uno puede construir lo que se llaman «haces» que consisten de anillos naturales asociados a los abiertos de X. Por ejemplo, si X es una variedad diferencial (piense en un abierto de \mathbb{R}^n), al abierto $U \subseteq \mathbb{R}^n$ podemos asociarle el anillo de funciones diferenciables $U \to \mathbb{R}$; un «germen» es una clase de equivalencia de dichas funciones en vecindades de un punto $x \in U$ fijado. El anillo de «gérmenes en x» será un anillo local.

Por lo demás, la teoría de álgebra conmutativa (vid. [1]) justifica que los anillos locales son capaces de captar harta información algebraica (por ejemplo, un módulo será nulo si sus localizaciones lo son en analogía a como una función es nula si sus evaluaciones lo son).

El nombre «anillo booleano» se debe a que corresponden, de manera elemental, a las llamadas álgebras booleanas. Una álgebra booleana está dotada de un 0, un 1, una inversa \neg y operadores binarios \lor y \land que satisfacen la típica álgebra de proposiciones lógicas. Por un teorema de M. H. Stone, un álgebra booleana corresponde a un subconjunto del conjunto potencia $\mathcal{P}S$ de un conjunto S, que contiene a \varnothing y A, y es cerrado bajo complementos, uniones e intersecciones finitas. Estos objetos tienen su utilidad e interés en la lógica, pero también tienen interacciones con la topología:

Teorema B.1 (dualidad de Stone): Hay una anti-equivalencia («las flechas se dan vuelta») entre la categoría de anillos booleanos y la categoría de espacios topológicos de Hausdorff, compactos y totalmente disconexos.³

Para más detalles lea [2], en §II.4 aparece el teorema aquí citado.

Referencias

- 1. ATIYAH, M. F. y MACDONALD, I. G. Introduction to Commutative Algebra (Addison-Wesley, 1969).
- 2. Johnstone, P. T. Stone spaces (Cambridge University Press, 1982).
- 3. Lang, S. Algebra (Springer-Verlag New York, 2002).

Correo electrónico: josecuevasbtos@uc.cl

URL: https://josecuevas.xyz/teach/2025-1-ayud/

²El mismo del «teorema de Stone-Weierstrass» y de las «compactificaciones de Stone-Čech».

 $^{^3}$ Es decir, espacios en donde todo subconjunto con al menos dos puntos es disconexo. Por ejemplo, \mathbb{Q} es totalmente disconexo (pero no es compacto).