

ARCHITECTURE SPECIFICATION

32-bit uDLX Core Processor

Universidade Federal da Bahia

Versão: 1.0

GNU LGPL License

This file is part of uDLX (micro-DeLuX) soft IP-core.

uDLX is free soft IP-core: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

uDLX soft core is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with uDLX. If not, see http://www.gnu.org/licenses/>.

Histórico de Revisões

Date	Description	Author(s)	
04/14/2014	Conception	João Carlos Bittencourt	

CONTENTS

1	Intr	oduction	4
	1.1	Purpose	4
	1.2	Document Outline Description	4
	1.3	Acronyms and Abbreviations	4
2	Arc	hitecture Overview	5
	2.1	Block Diagram	5
	2.2	Pin/Port Definitions	5
	2.3	Parameters and Configurations	5
3	Arc	hitecture Description	6
	3.1	Instructions Layout	6
	3.2	Functional Data Path Description	6
		3.2.1 Stage 1 - Instruction Fetch	6
		3.2.2 Stage 2 - Instruction Decoding	6
		3.2.3 Stage 3 - Execution	6
		3.2.4 Stage 4 - Memory	6
		3.2.5 Stage 5 - Write Back	6
	3.3	Pipeline Register Description	6
	3 4	Control Micro-instructions Description	6

1. Introduction

1.1. Purpose

The main purpose of this document is to define specifications of a uDLX implementation and to provide a full overview of the design. This specifications defines all implementation parameters that composes the general uDLX requirements and specification. This definitions include processor operation modes, instruction set (ISA) and internal registers characteristics. This document also include detailed information of pipeline stages architecture, buses and other supplemental units.

1.2. Document Outline Description

This document is outlined as follow:

- Section :
- Section:

1.3. Acronyms and Abbreviations

Along this and other documents part of this project, it will be recurrent the usage of some acronyms and abbreviations. In order to keep track of this elements the Table 1 presents a set of abbreviations used and its corresponding meaning.

Table 1: Acronym and descriptions of elements in this document.

Acronym	Description
RISC	Reduced Instruction Set Computer
GPR	General Purpose Registers
FPGA	Field Gate Programmable Array
GPPU	General Purpose Processing Unit
SDRAM	Synchronous Dynamic Random Access Memory
HDL	Hardware Description Language
RAW	Read After Write
CPU	Central Processing Unit
ISA	Instruction Set Architecture
ALU	Arithmetic and Logic Unit
PC	Program Counter
RFlags	Flags Register
Const	Constant

2. Architecture Overview

2.1. Block Diagram

2.2. Pin/Port Definitions

Name	Length	Direction	Description
clock	1	input	CPU core clock
reset	1	input	CPU core reset
sram_data_io	16	in/out	SRAM data
sdram_data_io	32	in/out	SDRAM data
sram_addr	20	input	SRAM address
sram_we_n	1	output	SRAM write enable
sram_oe_n	1	output	SRAM output enable
sdram_addr	13	in/out	SDRAM address
sdram_we	1	output	SDRAM write enable
sdram_oe	1	output	SDRAM output enable

2.3. Parameters and Configurations

Name	Value	Description

3. Architecture Description

The data path developed to perform the synchronization is composed by:

- 3.1. Instructions Layout
- 3.2. Functional Data Path Description
- 3.2.1. Stage 1 Instruction Fetch
- 3.2.2. Stage 2 Instruction Decoding
- 3.2.3. Stage 3 Execution
- 3.2.4. Stage 4 Memory
- 3.2.5. Stage 5 Write Back
- 3.3. Pipeline Register Description
- 3.4. Control Micro-instructions Description