Physik

Unterricht - Abitur 2025

Niklas von Hirschfeld

All my contents

1 20	024-06-04 - Physik LOG	3		
1.1	Bearbeitungen	3		
2 20	024-06-06 - Interferenz Gitter Versuch			
2.1	Beobachtung	4		
	Auswertung			
2.3	Aufgaben	4		
2.3.1	1	4		
2.4	Versuch Wiederholung	4		
2.5	Worauf muss man achten:	4		
	Links			
2.6.1	a	5		
2.7	Zweite Runde	5		
2.7.1	Messung der verschiedenen Wellen / LED's	5		
2.8	Bedeutung der einzelnen Bestandteile	5		
3 2024-06-18 - Übungsaufgaben				

1 2024-06-04 - Physik LOG

1.1 Bearbeitungen

 $\qquad \qquad \qquad \qquad \qquad \qquad \left[\left[.../.../area/physik/2024-06-04-08-38-30-fleet-doppelspalt.md \right] \right] \\$

2 2024-06-06 - Interferenz Gitter Versuch

2.1 Beobachtung

Abstand zum Schirm: 27cm Abstand der Maxima: 12cm

2.2 Auswertung

2.3 Aufgaben

2.3.1 1.

Algemein sind folgende Formeln bekannt:

$$\sin \alpha = \frac{\lambda}{g} \quad \text{und} \quad \tan \alpha = \frac{a}{l}$$

Wobei λ die Wellenlaenge ist.

Gitter: 500 Spalten pro Millimeter

$$g = \frac{1 \cdot 10^{-3} m}{500} = 2 \cdot 10^{-6} m$$

• $2a_1 = 0, 12m;$ $a_1 = 0, 06m;$ l = 27cm = 0, 27m

$$\lambda \ \& = g \cdot \& \ \& \sin(\tan^{-1}(\frac{a}{l})) \ \& = (2 \cdot 10^{-6}) \cdot \& \ \& \sin(\tan^{-1}(\frac{0,12}{0,27})) \ \& = 434 \cdot 10^{-9} m$$

2.4 Versuch Wiederholung

$$2a_2 = 0.127m; \quad a_2 = 0.635m; \quad l = 0.38m$$

Berechnung der Wellenlaenge λ :

$$\lambda \& = g \cdot \& \& \sin(\tan^{-1}(\frac{a}{l})) \& = (2 \cdot 10^{-6}) \cdot \& \& \sin(\tan^{-1}(\frac{0, 07}{0, 38})) \& = 6,34 \cdot 10^{-7} m = 634 nm$$

2.5 Worauf muss man achten:

Wir sollen naechstes Jahr den Versuch den anderen erklaeren

2.6 Links

2.6.1 a

2a ist zwischen den Maxima der Ordnung n. Also von einem Maxima bis zur mitte ist nur a

2.7 Zweite Runde

2024-06-18

2.7.1 Messung der verschiedenen Wellen / LED's

LED	Wellenlaenge in nm	Abstand 1. Ordnung in cm ¹	A. 2. Ordnung
Rot	632	10,3	-
Grün	514	8,5	18,8
Blau	463	7,5	15,7

$$g = \frac{1 \cdot 10^{-3} m}{500} = 2 \cdot 10^{-6} m$$

2.7.1.1 Rot

2.7.1.1.1 1. Ordnung

$$2a=0.103m; \quad a=0.0515m; \quad l=0.15m$$

Berechnung der Wellenlaenge λ :

$$\lambda \ \& = \frac{g}{n} \cdot \sin(\tan^{-1}(\frac{a_n}{l})) \ \& = (2 \cdot 10^{-6}) \cdot \sin(\tan^{-1}(\frac{0,0515}{0,15})) \ \& = 6,49 \cdot 10^{-7} m$$

2.8 Bedeutung der einzelnen Bestandteile

Abstand 1. Ordnung zur 1. Ordnung

3 2024-06-18 - Übungsaufgaben

■ Klausuren/Übungen -> Übungen zu Elektrodynamik und Schwingungen / Wellen