a) Se A≤pL1 entro existe f: Z*→ Z* toble comptered
por méq. Turng F com true; (n) = O(na)
tal que xe A see f(x)eL1.

Se B \ plz entre existe g: \(\frac{1}{2}\) \(\frac{1}{2}\) to \(\tall \) e computsvel por wig. Turing G can true \(\text{g(n)} : \text{O(nb)} \) \(\text{bl que } \(\text{x} \in \text{B} \) sse \(\text{g(x)} \in \text{Lz.} \)

Se C≤pANB entro existe h: Ž*→ ∑* total e computável por máq. Turing H com truey(n) = O(nc) tal que xe C see h(x) ∈ ANB.

Ento, a fusão K: Z* → (ZUE\$)* tol que K(x)= f(h(x))\$g(h(x))
é toble complèvel pois fig.h são por máq. Toring K com

Além disso,

 $x \in C$ sse $h(x) \in A \cap B$ sse $h(x) \in A$ e $h(x) \in B$ sse $f(h(x)) \in L_1 = g(h(x)) \in L_2 \text{ sse}$ $f(h(x)) \nleq g(h(x)) = k(x) \in L = \{w_1 \nmid w_2 : w_1 \in L_1, w_2 \in L_2\}.$

Conclui-se que C &p L.

b) Se LEP subernos que LEP (troendo que/que no mág. de Turng que devide Lobtém-se mág. que decide L com a mesma eficiencia temporal).

Sabemos também que PCNP (pois uma mág. determinants é un caso particular da def. de máquina não-determinants).

Logo LENP e portrito LECONP. (Notado que T=L).
Canclusõe que PCCONP.

Le LECONP entro LENP.

Sibernos que NP = PSPACE (pois NP SNPSPICE = PSPACE, pi que nspacenmi « ntmenin i perz una miq. non-determista N, e usando o teorema de Szvitch).

Logo LE PSPACE pelo que LEPSPACE (de novo trocomdo que/ques no miq. que decide L).

Conclui-se que CONPEPSPACE.

Teoria da Computação

	Abril 2022	MAP30–5A.1	Duração: 30m
	Nome:	N	úmero:
a) (2.5 valores) Seja Σ um alfabeto, $\$ \notin \Sigma$, e considere linguagens $A,B,C,L_1,$ que:			nguagens $A, B, C, L_1, L_2 \subseteq \Sigma^*$ tais
	$-A \leq_P L_1,$ $-B \leq_P L_2,$ $-C \leq_P A \cap B.$		
	Mostre, justificando, qu	ne $C \leq_P \{w_1 \$ w_2 : w_1 \in L_1, w_2 \in L_2, w_2 \in L_1, w_2 \in L_1, w_2 \in L_1, w_2 \in L_1, w_2 \in L_2, w_2 \in L_1, w_2 \in L_2, w_2 \in L_2$	$\in L_2\}.$

b) (1.5 valores) Considere a classe $\mathbf{coNP} = \{\overline{L} : L \in \mathbf{NP}\}$. Demonstre, justificando, que se tem $\mathbf{P} \subseteq \mathbf{coNP} \subseteq \mathbf{PSPACE}$.

Teoria da Computação

Duração: 30m

MAP30-5A.2

Abril 2022

	-
Nome:	Número:
a) (2.5 valores) Seja Σ um alfabeto, $\$$ ($\not\in \Sigma$, e considere linguagens $A,B,C,L\subseteq \Sigma^*$ tais que
$-A \leq_P B \cap C,$	
$-B \leq_P L$,	
$-C \leq_P \overline{L}.$	
Mostre, justificando, que $A \leq_P \{w_1\}$	$\$w_2: w_1 \in L \text{ e } w_2 \in \Sigma^* \setminus L\}.$

b) (1.5 valores) Considere a classe $\mathbf{duNP} = \{L : \overline{L} \in \mathbf{NP}\}$. Demonstre, justificando, que se tem $\mathbf{P} \subseteq \mathbf{duNP}$ e $\mathbf{duNP} \subseteq \mathbf{EXPTIME}$.

Teoria da Computação

	Abril 2022	MAP30–5B.1	Duração: 30m
	Nome:	Nú	mero:
a) (2.5 valores) Seja Σ um alfabeto, $\$ \notin \Sigma$, e considere linguagens $A, B, C, L_1, L_2 \subseteq \Sigma$ que $A \leq_P L_1$, $B \leq_P L_2$ e $C \leq_P A \cup B$.			guagens $A, B, C, L_1, L_2 \subseteq \Sigma^*$ tais
	Mostre, justificando, o	que $C \leq_P \{w_1 \$ w_2 : w_1, w_2 \in \Sigma^* \text{ co}\}$	om $w_1 \in L_1$ ou $w_2 \in L_2$.

b) (1.5 valores) Demonstre, justificando, que se tem $\mathbf{P} \subseteq \{L : \overline{L} \in \mathbf{NP}\} \subseteq \mathbf{PSPACE}$.

Teoria da Computação

	Abril 2022	MAP30–5B.2	Duração: 30m
	Nome:	N	(úmero:
a)) (2.5 valores) Seja Σ um alfabeto, $\$ \notin \Sigma$, e considere linguagens $A, B, C, L \subseteq \Sigma^*$ tais qu $A \leq_P B \cup C, \ B \leq_P \overline{L}$ e $C \leq_P \overline{L}$.		
	Mostre, justificando, qu	e $A \leq_P \{w_1 \$ w_2 : w_1, w_2 \in \Sigma^* \}$	$com w_1 \notin L \text{ ou } w_2 \notin L \}.$
b)	(1.5 valores) Demonstre	, justificando, que se tem $\mathbf{P}\subseteq$	$\{\overline{L}: L \in \mathbf{NP}\} \subseteq \mathbf{EXPTIME}.$

Teoria da Computação

	Abril 2022	MAP30–5C.1	Duração: 30m	
	Nome:	N	lúmero:	
•	(2.5 valores) Seja Σ um que:	ores) Seja Σ um alfabeto, $\$ \notin \Sigma,$ e considere linguagens $A,B,C,L_1,L_2 \subseteq \Sigma^*$ tais		
	- $L_1 \le_P A$, - $L_2 \le_P B$, - $\{u\$v : u \in A, v \in B\}$	$\{e\} \leq_P C.$		
I	Mostre, justificando, que	$e \{w_1 \$ w_2 : w_1 \in L_1, w_2 \in L_2\}$	$\leq_P C$.	

b) (1.5 valores) Considere a classe $\mathbf{coNP} = \{\overline{L} : L \in \mathbf{NP}\}$. Demonstre, justificando, que se tem $\mathbf{P} \subseteq \mathbf{NP} \cap \mathbf{coNP} \in \mathbf{NP} \cup \mathbf{coNP} \subseteq \mathbf{PSPACE}$.

Teoria da Computação

Abril 2022	MAP30–5C.2	Duração: 30m	
Nome:	N	Número:	
a) (2.5 valores) Seja Σ un	n alfabeto, $\$ \notin \Sigma$, e considere lin	nguagens $A, B, C, L \subseteq \Sigma^*$ tais que:	
$-L \leq_P A,$ $-\overline{L} \leq_P B,$ $-\{u\$v : u \in A, v \in$	$B\} \leq_P C.$		
Mostre, justificando, q	ue $\{w_1 \$ w_2 : w_1 \in L, w_2 \in \Sigma^* \setminus I\}$	$L\} \leq_P C.$	

b) (1.5 valores) Considere a classe $\mathbf{duNP} = \{L : \overline{L} \in \mathbf{NP}\}$. Demonstre, justificando, que se tem $\mathbf{P} \subseteq \mathbf{duNP} \cap \mathbf{NP}$ e $\mathbf{duNP} \cup \mathbf{NP} \subseteq \mathbf{EXPTIME}$.

Teoria da Computação

Abril 2022	MAP30-5D.1	Duração: 30m

Número:

- a) (2.5 valores) Seja Σ um alfabeto, $\$ \notin \Sigma$, e considere linguagens $A, B, C, L_1, L_2 \subseteq \Sigma^*$ tais que $L_1 \leq_P A$, $L_2 \leq_P B$ e $\{u\$v : u, v \in \Sigma^* \text{ com } u \in A \text{ ou } v \in B\} \leq_P C$. Mostre, justificando, que $\{w_1\$w_2 : w_1, w_2 \in \Sigma^* \text{ com } w_1 \in L_1 \text{ ou } w_2 \in L_2\} \leq_P C$.
- b) (1.5 valores) Demonstre, justificando, que se tem $\mathbf{P} \subseteq \{L : L \in \mathbf{NP} \in \overline{L} \in \mathbf{NP}\}\ e$ $\{L : L \in \mathbf{NP} \text{ ou } \overline{L} \in \mathbf{NP}\} \subseteq \mathbf{PSPACE}.$

Teoria da Computação

Abril 2022	MAP30–5D.2	Duração: 30m
Nome:		Número:

- a) (2.5 valores) Seja Σ um alfabeto, $\$ \notin \Sigma$, e considere linguagens $A, B, C, L \subseteq \Sigma^*$ tais que $L \leq_P \overline{A}, L \leq_P B$ e $\{u\$v : u, v \in \Sigma^* \text{ com } u \in A \text{ ou } v \in B\} \leq_P C$. Mostre, justificando, que $\{w_1\$w_2 : w_1 \in \Sigma^* \setminus L \text{ ou } w_2 \in L\} \leq_P C$.
- b) (1.5 valores) Demonstre, justificando, que se tem $\mathbf{P} \subseteq \{L \in \mathbf{NP} : \overline{L} \in \mathbf{NP}\}$ e também $\{L : L \in \mathbf{NP} \text{ ou } \overline{L} \in \mathbf{NP}\} \subseteq \mathbf{EXPTIME}.$