

Methodology

Problem Understanding

Data Visualization

Conclusion

Data Description Experiments

Problem Understanding

Overview

Income is money that a person or a business receives in return for working, providing a product or service, or investing capital. A person's income may also derive from a pension, a government benefit.

Problem Statment

building a model to predict whether an individual's income will be greater than \$50,000 per year based on several attributes .Helping Governments for income tax or any finance company .

Data Description

They Data was token from kaggle. Dataset contains information about people and their income.

15 Columns and 32,561 Rows.

Data Description

Features

```
age
  workclass
    Fnlwgt
  education
education-num
marital-status
  occupation
 Relationship
     race
      sex
 capital-gain
  capital-loss
hours-per-week
native-country
```

<u>Target</u>

Income

Data Validation

Pie Chart

Data Visualization

Income distribution

Observation

This plot shows that there is Imbalance in the data

Baseline Model

Train

F1 score 0.38

Test

Dummy with Resampling

SMOTE

Test

F1 score 0.420

RandomUnder Sampler

F1 score 0.433

RandomOver Sampler

Pie Chart

Data Visualization

>50K

<=50K

Data distribution after using RandomUnderSampler

Decision Tree

Train

Befor Tuning

F1 score 0.999

Test F1 score 0.620

After Tuning

F1 score 0.674

Random forest

Befor Tuning

Train F1 score 0.999

Test F1 score 0.677

After Tuning

F1 score 0.72

Knn

Befor Tuning

Train

F1 score 0.60

Test

F1 score 0.41

F1 score 0.43

Xgb

Befor Tuning

Train F1 score 0.872

Test F1 score 0.713

After Tuning

F1 score 0.719

Voting & Stacking Classifier

Roc Curve

Data Visualization

Observation

This plot shows the roc curve for all models.

Xgb Roc Curve Data Visualization

Metric Scores vs. Positive Class Decision Probability Threshold

Observation

Roc curve for Xgb F1 score 0.741 Threshold 0.667

Confusion Matrix Data Visualization

Observation

This plot shows the Confusion Matrix for best Threshold

Conclusion

	Baseline	Dummy	Tuning Logistic Regression	Decision Tree	Random forest	Knn	Xgb	Hard Voting	Soft Voting	Stacked
Train Score	0.38	0.59	0.433	0.674	0.72	0.43	0.719	0.870	0.876	0.895
Test Score	0.40	0.433	0.433	0.657	0.684	0.39	0.717	0.685	0.693	0.677

Thank You..

Raghad Albarrak

Maryam Aljasham

