

App Serial # 09/714,883 Turner & Mathur

Exhibit P LEX-0092-USA Novel Human Secreted Proteins and Polypeptides Encoding The Same US 6,340,583 B1

(45) Date of Patent:

Jan. 22, 2002

(12) United St Yan et al.

(54)	ISOLATED HUMAN KINASE PROTEINS,
. ,	NUCLEIC ACID MOLECULES ENCODING
	HUMAN KINASE PROTEINS, AND USES
	THEREOF

(75) Inventors: Chunhua Yan, Boyds; Karen A.

Ketchum, Germantown; Valentina Di Francesco, Rockville; Ellen M. Beasley, Darnestown, all of MD (US)

Assignce: PE Corporation (NY), Norwalk, CT

(US)

Subject to any disclaimer, the term of this (*) Notice: patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/813,817

(22) Filed: Mar. 22, 2001

Int. Cl.⁷ C12N 9/12; C12N 1/20; C12N 15/00; C12N 5/00; C07H 21/04

U.S. Cl. 435/194; 435/320.1; 435/252.3; (52)435/325; 536/23.2

435/325, 320.1; 536/23.2 (56)

References Cited

PUBLICATIONS

GenEmbl Database, Accession No. D45906, Feb. 1999.*

Sambrook et al., Molecular Cloning Manual, 2nd edition, Cold Spring Harbor Laboratory Press, 1989.*

* cited by examiner

Primary Examiner-Rebecca E. Prouty Assistant Examiner—M. Monshipouri

(74) Attorney, Agent, or Firm-Celera Genomics; Robert

A. Millman; Justin D. Karjala

ABSTRACT

The present invention provides amino acid sequences of peptides that are encoded by genes within the human genome, the kinase peptides of the present invention. The present invention specifically provides isolated peptide and nucleic acid molecules, methods of identifying orthologs and paralogs of the kinase peptides, and methods of identifying modulators of the kinase peptides.

9 Claims, 41 Drawing Sheets

	CCCAGGGCGC				
51	TCCCGCGCCCT	GAGGCGGCGG	CGGCAGGAGC	TGAGGGGAGT	TGTAGGGAAC
101	TGAGGGGAGC	TGCTGTGTCC	CCCGCCTCCT	CCTCCCCATT	TCCGCGCTCC
151	CGGGACCATG	TCCGCGCTGG	CGGGTGAAGA	TGTCTGGAGG	TGTCCAGGCT
201	GTGGGGACCA	CATTGCTCCA	AGCCAGATAT	GGTACAGGAC	TGTCAACGAA
251	ACCTGGCACG	GCTCTTGCTT	CCGGTGAAAG	TGATGCGCAG	CCTGGACCAC
301	CCCAATGTGC	TCAAGTTCAT	TGGTGTGCTG	TACAAGGATA	AGAAGCTGAA
	CCTGCTGACA				
401	GTATGGATCC	GTTCCCCTGG	CAGCAGAAGG	TCAGGTTTGC	CAAAGGAATC
451	GCCTCCGGAA	TGGACAAGAC	TGTGGTGGTG	GCAGACTTTG	GGCTGTCACG
501	GCTCATAGTG	GAAGAGAGGA	AAAGGGCCCC	CATGGAGAAG	GCCACCACCA
	AGAAACGCAC				
601	GGAAACCCCT	ACTGGATGGC	CCCTGAGATG	CTGAACGGAA	AGAGCTATGA
	TGAGACGGTG				
701	GGCAGGTGTA	TGCAGATCCT	GACTGCCTTC	CCCGAACACT	GGACTTTGGC
	CTCAACGTGA				
	GGCCTTCTTC				
851	GACCAGCATT	CTCGAAATTG	GAGGACTCCT	TTGAGGCCCT	CTCCCTGTAC
901	CTGGGGGAGC	TGGGCATCCC	GCTGCCTGCA	GAGCTGGAGG	AGTTGGACCA
951	CACTGTGAGC	ATGCAGTACG	GCCTGACCCG	GGACTCACCT	CCCTAGCCCT
	GGCCCAGCCC				
	GCCCCATTCC				
	GAATGTTTAG				
1151	GTGGGCGCAG	CACCAGGGAA	ATGTATCTCC	ACAGGTTCTG	GGGCCTAGTT
	ACTGTCTGTA				
	CCCTGGCCTT				
1301	TCCCTGGCAG	TGGATTGTGG	GAGGCTCTTG	CTTACACTAA	TCAGCGTGAC
	CTGGACCTGC				
	GTCACTAGTC				
	AAGACTGATG				
	TACTCCAGAT				
1551	AGAGTCCCTT	AATATGTGGT	GGAACAGGCC	AGGAGTTAGA	GAAAGGGCTG
	GCTTCTGTTT				
1651	TGTGAGAGGA				
1701		TACGGACAAC			
1751	GCACAGGAAG	AGGCTGGGGG	ACTAGAAAGA	GGCCCTGCCC	TCTAGAAAGC
	TCAGATCTTG				
	GCCTAAAACA				
	TTGTCACAGG				
	CTTGGTCTTG				
	TTAGGCAGCA				
	AGATGCTGAG				
	CCATGTTTGC				
2151	CACATGTGCA	GGTACTGGAA	AACCTCCATC	TTGGCTCCCA	GAGCTCTAGG
2201	AACTCTTCAT	CACAACTAGA	TTTGCCTCTT	CTAAGTGTCT	ATGAGCTTGC
	ACCATATTTA				
2301	AAAAAAAAA	AAAAAAAAA	(SEQ ID N	0:1)	

```
FEATURES:
5'MR:
              1-228
Start Codon:
              229
Stop Codon:
              994
3'UTR:
              997
Homologous proteins:
Top 10 BLAST Hits
                                                                    Score
CRA|1000682328847 /altid=gi|8051618 /def=ref|NP_057952.1| LIM d...
                                                                      485 e-136
CRA|18000005015874 /altid=gi|5031869 /def=ref|NP 005560.1| LIM ...
                                                                      485 e-136
CRA|88000001156379 /altid=gi|7434382 /def=pir||JC5814 LIM motif...
                                                                      469 e-131
CRA|88000001156378 /altid=gi|7434381 /def=pir||JC5813 LIM motif...
                                                                      469 e-131
CRA|18000005154371 /altid=gi|7428032 /def=pir||JE0240 LIM kinas...
                                                                      469 e-131
CRA|18000005126937 /altid=gi|6754550 /def=ref|NP 034848.1| LIM ...
                                                                      469 e-131
CRA 18000005127186 /altid=gi 2804562 /def=dbj BAA24491.1 (AB00...
CRA 18000005127185 /altid=gi 2804553 /def=dbj BAA24489.1 (AB00...
                                                                      469 e-131
                                                                      469 e-131
CRA|18000005004416 /altid=gi|2143830 /def=pir||178847 LIM motif...
                                                                      468 e-131
CRA|18000005004415 /altid=gi|1708825 /def=sp|P53670|LIK2 RAT LI...
                                                                      468 e-131
BLAST dbEST hits:
                                                                             Ε
                                                                    Score
gi | 10950740 /dataset=dbest /taxor=96...
                                                                     1049 0.0
gi|10156485 /dataset=dbest /taxon=96...
                                                                      975 0.0
gi | 5421647 / dataset=dbest / taxon=9606 ...
                                                                      952 0.0
gi | 10895718 /dataset=dbest /taxon=96...
                                                                      757 0.0
714 0.0
gi|519615 /dataset=dbest /taxon=9606 /...
                                                                      531 e·149
gi | 11002869 /dataset=dbest /taxon=96...
                                                                      511 e-143
EXPRESSION INFORMATION FOR MODULATORY USE:
library source:
From BLAST dbEST hits:
```

FIG.1B

gi|10950740 teratocarcinoma

gi|11002869 thyroid gland

From tissue screening panels:

testis gi 10895718 nervous normal

infant brain

gi|10156485 ovary

gi | 13043102 bladder

Fetal whole brain

gi | 5421647

gi | 519615

```
1 MVQDCQRNLA RLLLPVKVMR SLDHPNVLKF IGVLYKDKKL NLLTEYIEGG
```

- 51 TLKDFLRSMD PFPWQQKVRF AKGIASGMDK TVVVADFGLS RLIVEERKRA
- 101 PMEKATTKKR TLRKNDRKKR YTVVGNPYWM APEMLNGKSY DETVDIFSFG
- 151 IVLCEIIGQV YADPDCLPRT LDFGLNVKLF WEKFVPTDCP PAFFPLAAIC
- 201 CRLEPESRPA FSKLEDSFEA LSLYLGELGI PLPAELEELD HTVSMQYGLT
- 251 RDSPP (SEQ ID NO:2)

FEATURES:

Functional domains and key regions:
[1] PDOC00004 PS00004 CAMP_PHOSPHO_SITE
cAMP- and cGMP-dependent protein kinase phosphorylation site

Number of matches: 2

- 1 108-111 KKRT
- 2 119-122 KRYT

[2] PDOC00005 PS00005 PKC PHOSPHO_SITE Protein kinase C phosphorylation site

Number of matches: 4

- 1 51-53 TLK
- 2 106-108 TTK
- 3 107-109 TKK
- 4 111-113 TLR

[3] PDOC00006 PS00006 CK2 PHOSPHO_SITE Casein kinase II phosphorylation site

Number of matches: 4

- 1 51-54 TLKD
- 2 76-79 SGMD
- 3 139-142 SYDE
- 4 212-215 SKLE

[4] PDOCO0008 PS00008 MYRISTYL N-myristoylation site

Number of matches: 4

1 73-78 GIASGM

FIG.2A

```
2
             77-82 GMDKTV
      3
           150-155 GIVLCE
           158-163 GQVYAD
Membrane spanning structure and domains:
  Helix Begin
                End
                      Score Certainty
     1
         142
                162
                      0.872 Putative
     2
                      0.652 Putative
         184
                204
BLAST Alignment to Top Hit:
>CRA|1000682328847 /altid=gi|8051618 /def=ref|NP_057952.1| LIM domain kinase 2 isoform 2b [Homo sapiens] /org=Homo
           sapiens /taxon=9606 /dataset=nraa /length=617
          Length = 617
 Score = 485 \text{ bits (1235)}, Expect = e-136
 Identities = 241/265 (90%), Positives = 241/265 (90%), Gaps = 22/265 (8%)
Query: 13 LLPVKVMRSLDHPNVLKFIGVLYKDKKLNLLTEYIEGGTLKDFLRSMDPFPWQQKVRFAK 72
           L VKVMRSLDHPNVLKFIGVLYKDKKLNLLTEYIEGGTLKDFLRSMDPFPWQQKVRFAK
Sbjct: 353 LTEVKYMRSLDHPNVLKFIGVLYKDKKLNLLTEYIEGGTLKDFLRSMDPFPWQQKVRFAK 412
Query: 73 GIASGM-------DKTVVVADFGLSRLIVEERKRAPMEKATTKKR 110
                                         DKTVVVADFGLSRLIVEERKRAPMEKATTKKR
           GIASGM
Sb.ict: 413 GIASGMAYLHSMCIIHRDLNSHNCLIKLDKTVVVADFGLSRLIVEERKRAPMEKATTKKR 472
Query: 111 TLRKNDRKKRYTVVGNPYWMAPEMLNGKSYDETVDIFSFGIVLCEIIGQVYADPDCLPRT 170
           TLRKNDRKKRYTVVGNPYWMAPEMLNGKSYDETVDIFSFGIVLCEIIGQVYADPDCLPRT
Sb.ict: 473 TLRKNDRKKRYTVVGNPYWMAPEMLNGKSYDETVDIFSFGIVLCEIIGQVYADPDCLPRT 532
Ouery: 171 LDFGLNVKLFWEKFVPTDCPPAFFPLAAICCRLEPESRPAFSKLEDSFEALSLYLGELGI 230
           LDFGLNVKLFWEKFVPTDCPPAFFPLAAICCRLEPESRPAFSKLEDSFEALSLYLGELGI
Sbjct: 533 LDFGLNVKLFWEKFVPTDCPPAFFPLAAICCRLEPESRPAFSKLEDSFEALSLYLGELGI 592
Query: 231 PLPAELEELDHTVSMQYGLTRDSPP 255
           PLPAELEELDHTVSMQYGLTRDSPP
```

Hmmer search results (Pfam):	Hmmer	searc	h resul	lts ((Pfam)	:
------------------------------	-------	-------	---------	-------	--------	---

I III III SC	alchitesures (riam).		_	
Mode1	Description	Score	<u>E-value</u>	<u>N</u>
	Eukaryotic protein kinase domain	100.1	1.1e-26	2
	CE00031 VEGFR	4.9	0.14	1
CE00204	CE00204 FIBROBLAST GROWTH RECEPTOR	4.7	1	1
CE00359	E00359 bone_morphogenetic_protein_receptor	1.8	7.9	1
	CE00022 MAGUK subfamily d	1.5	2.5	1
CE00287	CE00287 PTK Eph orphan receptor	-48.4	3.8e-05	1
CE00292	CE00292 PTK membrane span	-61.8	2.1e-05	1

Sbjct: 593 PLPAELEELDHTVSMQYGLTRDSPP 617 (SEQ ID NO:4)

CE00291	CE00291 PTK fgf receptor	-113.0	0.027	1
CE00286	E00286 PTK EGF receptor	-125.1	0.0021	1
CE00290	CE00290 PTK Trk family	-151.3	6.5e-05	1
CE00288	CE00288 PTK Insulin receptor	-210.4	0.014	1

Parsed for domains:

rai seu i	or aoilla i	115:							
Mode1	Domain	seq-f	seq-t		hmm-f	hmm-t		score	E-value
PF00069	1/2	16	79		41	105		52.1	2.3e-13
CE00022	1/1	124	153		187	216		1.5	2.5
PF00069	2/2	81	156		129	182		48.0	3.1e-12
CE00031	1/1	129	156		1114	1141		4.9	0.14
CE00204	1/1	129	156		705	732		4.7	1
CE00359	1/1	79	157		287	356		1.8	7.9
CE00290	1/1	9	218		1	282		-151.3	6.5e-05
CE00287	1/1	1	218	[.	1	260		-48.4	3.8e-05
CE00291	1/1	1	218	[.	1	285		-113.0	0.027
CE00292	1/1	1	218	[.	1	288	[]	-61.8	2.1e-05
CE00288	1/1	1	218	[.	1	269	[]	-210.4	0.014
CE00286	1/1	6	218	• •	1	263		-125.1	0.0021

FIG.2C

1	TCATCCTTGC	GCAGGGGCCA	TGCTAACCTT	CTGTGTCTCA	GTCCAATTTT
51	AATGTATGTG	CTGCTGAAGC	GAGAGTACCA	GAGGTTTTTT	TGATGGCAGT
	GACTTGAACT				
	CTGTAAAGAT				
201	GATCCAGAAC	AGGGGTGTCA	TACCGAGTAG	CCCAGCCTTT	GTTCCGTGGA
251	CACTGGGGAG	TCTAACCCAG	AGCTGAGATA	GCTTGCAGTG	TGGATGAGCC
301	AGCTGAGTAC	AGCAGATAGG	GAAAAGAAGC	CAAAAATCTG	AAGTAGGGCT
	GGGGTGAAGG				
401	GTGGATATGA	GAGGAGAGAG	TAGAGGGTCT	TGATTTCGGG	TCTTTCATGC
451	TTAACCCAAA	GCAGGTACTA	AAGTATGTGT	TGATTGAATG	TCTTTGGGTT
501	TCTCAAGACT	GGAGAAAGCA	GGGCAAGCTC	TGGAGGGTAT	GGCAATAACA
551	AGTTATCTTG	AATATCCTCA	TGGTGGAAAG	TCCTGATCCT	GTTTGAATTT
601	TGGAAATAGA	AATCATTCAG	AGCCAAGAGA	TTGAATTGTT	GAGTAAGTGG
651	GTGGTCAGGT	TACAGACTTA	ATTTTGGGTT	AAAAAGTAAA	AACAAGAAAC
701	AAGGTGTGGC	TCTAAAATAA	TGAGATGTGC	TGGGGGTGGG	GCATGGCAGC
751	TCATAAACTG	ACCCTGAAAG	CTCTTACATG	TAAGAGTTCC	TTTATAAAAA
801	CCAAAACTTG	GAAGATTCAT	TTGGATGTTT	GTGTTCATTA	AAATCTCTCA
851	CTAATTCATT	GTCTTGTCCA	CTGTCCGTAA	CCCAACCTGG	GATTGGTTTG
901	AGTGAGTCTC	TCAGACTTTC	TGCCTTGGAG	TTTGTGAGAG	AGATGGCATA
951	CTCTGTGACC	ACTGTCACCC	TAAAACCAAA	AAGGCCCCTC	TTGACAAGGA
1001	GTCTGAGGAT	TTTAGACCCA	GGAAGAATGA	GTGATGGGCA	TATATATATC
1051	CTATTACTGA	GGCATGAGAA	GAGTGGAATG	GGTGGGTTGA	GGTGGTGTTT
1101	TAAGGCCTCT	TGCCAGCTTG	TTTAACTCTT	CTCTGGGGAA	CGAGGGGGAC
1151	AACTGTGTAC	ATTGGCTGCT	CCAGAATGAT	GTTGAGCAAT	CTTGAAGTGC
1201	CAGGAGCTGT	GCTTTGTCTA	TTCATGGCCC	CTGTGCCTGT	GAAACAGGGT
1251	TCGGTGACTG	TCACTGTGCC	TGTGGCAGTC	TGTAGTTACC	CAGAGAGAAC
1301	AAAGCTGCAT	ACACAGAGCG	CACAAGGGAG	TCTTGTAACA	ACCTTGTCCT
1351	GCTTTCTAGG	GCTGAGTCAG	GTACCACAGC	TTGATCTCAG	CTGTCCTCTT
1401	TATTTCAAGA	AGTTGACATC	TGAGCCATAC	CAGGAGTATT	GTATTTTGTT
1451	TGAGGCCTCT	CTTTTTGGAG	GAACATGGAC	CGACTCTGTG	CTTTTGTCTA
1501	TGCTGGTCTC	TGAGCTCACA	CAACCCTTCA	CCCTCCTTTC	TCAGCCAGTG
1551	ATAGGTAAGT	CTTCCCTATC	TTGCAAGGCT	CAGCTCAAGT	GTCAGCTTCC
	TCTACAAAGA				
	TGGTAGAATG				
	AATGCTAGAT				
	TTAATTTTCC				
	TATTTTGAGA				
	CTTGGCATAT				
	CCATTACTTT				
	AATAACATCC				
	GTGGATTTGC				
	CATACAAAGA				
	CAACTGGTAC				
	GTGAGCGGCG				
	ATCAGTGGTG				
	GCACATGCAA				
	GGCTGATGAT				
	CCCCAACCCC				
	AAGGTTGAGG				
	GTAAATGAGC				

2501 ITTGAGGAAT AGGAAAAGGC AGTACATET TTAACCCAGA GAGAAGGTTIC 2551 TGGCTGTTGG CTGGGAATAG TCATAGGAAG GGCTGACACT GAAAGAAGG 2601 AGATTGGTT CGTTTCTTCT TCTCAGAGGCT ATAAGCAAG GCTGAAAGT 2651 CTAGAAAAAG GCAAGTTTTG TTTCAGTAGA AAAAAGGATA ATCAGAACCA 2701 ITTTTAGAAA ATGGAATGAG ACTACTTTTG AGGCCATGAG TTCCTTGTCC 2751 CTGGAGAGAT GAGCAGAGGT TGGACAAGT CTTACCAGAG ACTCTTGTGCA 2801 GGCAGAAACT GTGCATCTAG CAGAGCATTG CCTCACACCT TTCAAATGAG 2851 ATGCTGTTAA CTCAGTCTTA TTCTACATGG TAGGAATCCT GTCCCTTTGC 2901 CTCCTGCTAC TTTGGGCCCT TCAACCCTT GGTTTTGTTG CAGGGATCCT GTCCCTTTGC 2901 TTGCTGGAG GTGTCCAGCC TGTGGGGACC ACATTGCTCC AGCCAGTAA 3001 TGGTACAGGA CTGTCAACGA ACCTGGCAC GGCTCTTGCT TCCGGTAGGT 3051 GGGCCTATCC TCCCATCTTT ACCAGGTGAC GGCTCTTTGCT TCCGGTAGGT 3051 GGGCCTATCC TCCCATCTTT ACCAGTGTAC TATGGGCCAC ACATTGCTC 3011 AGTGTTCTGAT GGAAAACACA GAAACAAGCT TCTGAGTTGA GAATTTCAAT 3151 CTTAGGGTGG GGAAAGGAAC GAAACAAGCT TCTGAGTTGA GAATTTCAAT 3151 CTTAGGGTGG GGAAAGGAAC GAAACAAGCT TCTGAGTTGA GAATTTTCAAT 3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAT TGGAACAACCT 3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAT TGGAAGAGCC ATAAATGGGC 3351 TTCCTGTGGC TGCACTACAG ATTATGCAGG TACTTTCC AGGTTGTC 3351 TTCCTGTGGC TGCACTACAG ATTATGCAGG TACTTTCAAGA GTTGTTTCTA 3401 TICTTATTT ATTTTTTTT ATTTTTTTTT ATTTTTTTTT ATTTTTT						
2601 AGATTGTGTT CGTTTCTTCT TCTCAGAGCT ATAAGCAAAG GCTGAAAGTT 2651 CTAGAAAAAG GCAAGTTTTG TTTCAGTAGA AAAAAGGATA ATCAGAACCA 2701 TTTTTTAGAAA ATGGAATGAG ACTACTTTTT AGAGCACTAGA TTCCTTGTCC 2751 CTGGAGAGAT GAGCAGAGGT TGGACAAGTG CTTACCAGAG ATCTTGTGGA 2801 GGCAGAAACT GTGCATCTAG CAGAGCATTG GCCTAACCCT TTCAAATGAG 2851 ATGCTGTTAA CTCAGTCTTA TTCTACATGG TAGGAATCCT GTCCTTTGC 2901 CTCCTGCTAC TTTTGGCCCTC TCAACCTCTT GGTTTTTGTTG GCGCGTGAAG 2951 ATGTCTGGAG GTGTCCAGGC TGTGGGGACC ACATTGCTC AGCCAGATA 3001 TGGTACAGGA CTGTCAACGA AACCTGGCAC GGCTCTTGCT TCCGGTAGGT 3051 GGGCCTATCC TCCAGTCTT ACCAGTGTAC TATGGGCCAA GCACTATTTC 3101 ATGTTCTGAT GGAAAACACA GAAACAGCT TCTGAGTTGA GAATTCAAT 3151 CTTAGGGTGG GGAAAGCAAT TCACAGTGTAC TATGGCCAA GCACTATTTC 3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAAT TGGAAGAGCC ATAAATTGGAC 3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAAT TGGAAGAGCC ATAAATTGGAC 3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAAT TGGAAGAGCC ATAAATTGGAC 3351 TTCCTGTGGC TGCACTACAG ATTATGCAGG TACCTAAGA ACCAAACCTC 3351 TTCCTGTGGC TGCACTACAG ATTATGCAGG TACTCAAGA GTGTTTTC 3401 TTTTTATTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTTATTTT ATTTTATTTT ATTTTATTTTATTT ATTTATTTATT ATTTATTTATT ATTTATTTATT ATTTATTTATT ATTTATTTATTT ATTTATTTATT ATTTATTA	2501	TTTGAGGAAT	AGGAAAAGGC	AGTAACATGT	TTAACCCAGA	GAGAAGTTTC
2601 AGATTGTGTT CGTTTCTTCT TCTCAGAGCT ATAAGCAAAG GCTGAAAGTT 2651 CTAGAAAAAG GCAAGTTTTG TTTCAGTAGA AAAAAGGATA ATCAGAACCA 2701 TTTTTTAGAAA ATGGAATGAG ACTACTTTTT AGAGCACTAGA TTCCTTGTCC 2751 CTGGAGAGAT GAGCAGAGGT TGGACAAGTG CTTACCAGAG ATCTTGTGGA 2801 GGCAGAAACT GTGCATCTAG CAGAGCATTG GCCTAACCCT TTCAAATGAG 2851 ATGCTGTTAA CTCAGTCTTA TTCTACATGG TAGGAATCCT GTCCTTTGC 2901 CTCCTGCTAC TTTTGGCCCTC TCAACCTCTT GGTTTTTGTTG GCGCGTGAAG 2951 ATGTCTGGAG GTGTCCAGGC TGTGGGGACC ACATTGCTC AGCCAGATA 3001 TGGTACAGGA CTGTCAACGA AACCTGGCAC GGCTCTTGCT TCCGGTAGGT 3051 GGGCCTATCC TCCAGTCTT ACCAGTGTAC TATGGGCCAA GCACTATTTC 3101 ATGTTCTGAT GGAAAACACA GAAACAGCT TCTGAGTTGA GAATTCAAT 3151 CTTAGGGTGG GGAAAGCAAT TCACAGTGTAC TATGGCCAA GCACTATTTC 3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAAT TGGAAGAGCC ATAAATTGGAC 3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAAT TGGAAGAGCC ATAAATTGGAC 3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAAT TGGAAGAGCC ATAAATTGGAC 3351 TTCCTGTGGC TGCACTACAG ATTATGCAGG TACCTAAGA ACCAAACCTC 3351 TTCCTGTGGC TGCACTACAG ATTATGCAGG TACTCAAGA GTGTTTTC 3401 TTTTTATTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTTATTTT ATTTTATTTT ATTTTATTTTATTT ATTTATTTATT ATTTATTTATT ATTTATTTATT ATTTATTTATT ATTTATTTATTT ATTTATTTATT ATTTATTA	2551	TGGCTGTTGG	CTGGGAATAG	TCATAGGAAG	GGCTGACACT	GAAAAGAAGG
2651 CTAGAAAAAG GCAAGTTITTG TITCAGTAGA AAAAAGGATA ATCAGAACCA 2701 TITTTAGAAA ATGGAATGAG ATCACTTITTG AGGCCATGAG TICCTTGTCC 2751 CTGGAGAGAT AGGCCAGAGGT TGGACAGTG CTTACCAGAG ATCTTTGTCCABO 2801 GGCAGAAACT GTGCATCTAG CAGAGCATTG GCCTACCCCT TCAAATGAG 2851 ATGCTGTTAC CTCAGTCTTA TICTACATGG TAGGAATCCT TICAAATGAG 2851 ATGCTGTACA CTCAGTCTTA TICTACATGG TAGGAATCCT GTCCTTTGCC 2901 CTCCTGCTAC TITGGGCCTC TCAACCTCTT GGTTTTGTGT CAGGGTGAAG 2951 ATGCTGTAGG GTGTCCAGGC TTGGGGGACC ACATTGCTCC AGGCCAGATA 3001 TGGTACAGGA CTGTCAACGA ACCTGGCAC GGCTCTTGCT TCCGGTAGGT 3051 GGGCCTATCC TCCCATCTTT ACCAGTGTAC TATGGGCCA GACACTTCT TCCGGTAGGT 3051 GGGCCTATCC TCCCATCTTT ACCAGTGTAC TATGGGCCAA GACACATTCC 3101 ATGTTCTGAT GGAAAACACA GAACAAGGT TCTGAGTTGA GAATTTCAT 3151 CTTAGGGTGG GGAAAGGAAT GTACCAAGGA AGACCTCATG ACCAAACCTC 3201 AAGTGTGGCC CCCCCTGAACC CAGGTTAAAT TGGAAGAGCC ACGGGTGGGG GGATGAGAAG AGCCCTTTCC AGGGTTGCC 3301 CATATCCCTC ACTTTATGGG TGAGGAAACAACAG AGCCCCTTTC AGCGTTGCC CAGCTGAACC CAGTTAAATTCCCTC ACTTTATGGG TGAGGAAACAACAC AGCCCCTTTCC AGGGTTGTC 3301 CATATCCCTC ACCACACAG ATTATGCAGG TACTTCAAGA GTTGTTTGTA 3401 TTCCTTGTGCC CAGCTGAAC AGGCCCAGG AAAGGTGACT AGCCACTAGA ACCACCTGT ACTTTATTT ATTTTATTTT	2601					
2751 CTGGAGAGAT GAGCAGGAGGT TGCACAGTG CTTACCAGAG ATCTTGTGCA 2801 GGCAGAGACT GTGCATCTAG CAGAGCATTG GCCTAACCCT TTCAAATGAG 2801 GGCAGAGACAT GTGCATCTAG CAGAGCATTG GCCTAACCCT TTCAAATGAG 2801 CTCCTGCTAC CTTGGGCCTC CAACCTCTT GGTTTTGTGT GCCGAGAGACAT GTGTCCAGGC TTCAACCTCTT GGTTTTGTGT GCCGAGACACATG GTGTCCAGGC TGTGGGGACC ACATTGCTCC AAGCCAGATA 2951 ATGTTCTGGAG GTGTCCAGGC TGTGGGGACC ACATTGCTCC AAGCCAGATA 3001 TGGTACAGGA CTGTCAACGA AACCTGGCAC GGCTCTTGCT TCCGGTAGGT 3051 GGGCCTATCC TCCCATCTTT ACCAGTGTAC TATGGGCCAA GCACTATTC 3101 ATGTTCTGAT GGAAAACACA GAAACAGCA TCTGGACTCATG ACCAACCTC 3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAAT TGGAACAGCC ATAAATGGGC 3251 CAGCTGGAGG CAGGGTGGGG GGAAAGAACA GAACAAGCA GAACCACGA AGCGTCATG ACCAAACCTC 3301 CATTATCCCTC ACTTTATGGG TGAGGAAACT ACCAAGACC ATAAATGGGC 3251 CAGCTGGAG CAGGGTGGGG GGATGAGAG AGCCCCATCC AGGGTTGCC 3301 CATTATCCCTC ACTTTATGGG TGAGGAAACT GAGGCCCAGG AAGAGTGAC 3401 TTCTTATTTT ATTTTATTTT ATTTTATTTATTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTATT ATTTATTTATT ATTATT	2651					
2751 CTGGAGAGAT GAGCAGAGGT TGGACAAGTG CTTACCAGAG ATCTTGTGGA 2801 GGCAGAAACT GTGCATCTAG CAGAGCATTG GCCTAACCCT TTCAAATGAG 2851 ATGCTGTTAA CTCAGTCTTA TTCTACATGG TAGGAATCCT GTCCCTTTGC 2901 CTCCTGCTAC TTTGGGCCTC TCAACCTCTT GGTTTTGTGT GCAGGTGAAG 2951 ATGCTGGAG GTGTCCAGGC TGTGGGGACC ACATTGCTCC AAGCCAGATA 3001 TGGTACAGGA CTGTCAACGA AACCTGCAC GGCTCTTGCT TCCGATAGGT 3051 GGGCCTATCC TCCCATCTTT ACCAGTGTAC TATGGGCCAA GCACTATTC 3101 ATGTTCTGAT GGAAAACACA GAAACAAGCT TCTGAGTTGA GAATTTCAT 3151 CTTAGGGTGG GGAAAGACAC CAGGTTAAT TGGAAGAGAGC ATAATTGGGC 2951 AAGTGTGGCC CCCCTGAACC CAGGTTAAAT TGGAAGAGAGC AAGAGCTCATG 3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAAT TGGAAGAGACC ATAAATGGGC 3301 CATATCCCTC ACTTTATGGG TGAGGAAACAGAGAAGCA GAGCCCATTCC AGGGTTGCC 3301 CATATCCCTC ACTTTATTGGG TGAGGAAACAC GAGGCCCAGG AAGAGTGACT 3401 TTCTTATTTT ATTTTATTTT ATTTTTATTTT ATTTTTT						
2801 GECAGAAACT GTGCATCTAG CAGAGCATTG GCCTAACCCT TTCAAATGAG 2851 ATGCTGTAA CTCAGTCTTA TICTACATGG TAGGAATCCT GTCCCTTTGC 2901 CTCCTGCTAC TITTGGGCCTC TCAACCTCTT GGTTTTGTGT GCAGGTGAAG 2951 ATGCTTGGAG GTGTCCAGGC TGTGGGGACC ACATTGCTCC AGGCCAGATA 3001 TGGTACAGGA CTGTCAACGA ACCTGGCAC GGCTCTTGCT TCCGGTAGGT 3051 GGGCCTATCC TCCCATCTTT ACCAGTGTAC TATGGGCCAA GACATTTCAT 3101 ATGTTCTGAT GGAAAACACA GAACAAGCT TCTGAGTTGA GAATTTCAAT 3151 CTTAGGGTGG GGAAAGGAAT GTACCAAGGA AGACCTCATG ACCAAACCTC 3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAAT TGGAAGAGCC ATAAATGGGC 3251 CAGCTGGAGG CAGGGTGGGG GTAGAGAGA AGCCCCTATG ACCAAACCTC 3201 AACTGTGCC CCCCTGAACC CAGGTTAAAT TGGAAGAGCC ATAAATGGGC 3301 CATATCCCTC ACTTTATGGG TGAGGAAACT GAGGCCCCAGG AAGAGTGCT 3301 TCCTCTGTCT TATTTATTTT ATTTTATTTT ATTTTATTTT	2751					ATCTTGTGGA
2851 ATGCTGTTAA CTCAGTCTTA TTCTACATGG TAGGAATCCT GTCCCTTTGC 2901 CTCCTGCTAC TTTGGGCCTC TCAACCTCTT GGTTTTGTGT GCAGGTGAAG 2951 ATGTCTGGAG GTGTCCAGGC TGTGGGGACC ACATTGCTCC AAGCCAGATA 3001 TGGTACAGGA CTGTCAACGA AACCTGGCAC GGCTCTTGCT TCCGGTAGGT 3051 GGGCCTATCC TCCCATCTTT ACCAGTGTAC TATGGGCCAA GCACTATTC 3101 ATGTTCTGAT GGAAAACACA GAAACAGCT CTTGAGTTGA GAATTCAAT 3151 CTTAGGGTGG GGAAAGGAAT GTACCAAGGA AGAGCTCATG ACCAAACCTC 2201 AAGTGTGGCC CCCCTGAACC CAGGTAAAT TGGAAGAGCC ATAAATGGGC 3251 CAGCTGGAGG CAGGGTGGGG GGATGAGAG AGAGCTCATG ACCAAACCTC 3301 CATATCCCTC ACTITATGGG TGAGGAAACT GAGGCCCAGG AAGAGTGACT 3351 TTCCTGTGGC TGCACTACAG ATTATGCAGG TACTTACAGA GTTGTTTGTA 3401 TTCTTATTTT ATTITATTTT ATTITATTTT ATTITATTTT ATTITATTTT ATTITATTAGAG 3451 AGGGATTCTT GCTGTTGCCC AGGCTGGAGT GCACTGCAC CATGCCAG AATCTCGGCT 3501 CACTGCAATC TCTGCCTGCT GGGTTCAAGT GATTTTTCTG CCTTAGCTTC 3551 CTGAGTAGCT GAGATGACAG GCACCTGCCA CCATGCCAG CATATTTGGAG 3601 TATTTTAGTG GAGACAGGGGG TTTCAACATG TTGGCCAGC CTATCTTTGA 3651 CTCCTGACCT CAAATGATGC CCCACCCCAC CCATGCCAG TGGTCTTGAA 3651 CTCCTGACCT CAAATGATGC CCCACCCCCA CCATGCCAG CTGGTCTTGAA 3651 CTCCTGACCT CAAATGATGC CCCACCCCAG ACTTGTCCAAG GTTCCTTGAA 3651 CTCCTGACCT CAAATGATGC CCCACCCCAG ACTTGTCCAAG GTTCCTTGAA 3701 TACAGGCCTG ACCACTGCT CCCACCCCAG AGTTTTTT AGTGTGGTTG 3751 GCAGGCCAG CTCTTCCTTC CCCAACCCACC CCATGCCAG CTGGTCTTGAA 3701 TACAGGCCAG CTCTTCCTTC CCCCACCCAGC AGCCTGCCCCAC 4001 CACCACACCC GCCTAATTTT TATTATTATTA ATTATTATTA TTATTATTA						
2901 CTCCTGCTAC TITGGGCCTC TCAACCTCTT GGTTTTGTGT GCAGGTGAAG 2951 ATGTCTGGAG GTGTCCAGGC TGTGGGGACC ACATTGCTC AAGCCAGATA 3001 TGGTACAGGA CTGTCAACGA AACCTGGCAC GGCTCTTGCT TCCGGTAGGT 3051 GGGCCTATCC TCCCATCTTT ACCAGTGTAC TATGGGCCAA GCACTATTTC 3101 ATGTTCTGAT GGAAAACACA GAAACAAGCT TCTGAGTTGA GAATTCAAT 3151 CTTAGGGTGG GGAAAGCAC GAAACAAGCT TCTGAGTTGA GAATTCAAT 3151 CTTAGGGTGG GGAAAGGAT GTACCAAGGA AGACCTCATG ACCAAACCTC 3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAAT TGGAAGAGCC ATAAATGGGC 3251 CAGCTGGAGG CAGGGTGGGG GGATGAGAC GAGCCCTTTCC AGGGTTGTCC 3301 CATATCCCTC ACTTTATGGG TGAGGAAACT GAGGCCCAGG AAGAGTGACT 3301 TCCTGTGGC TGCACTACAG ATTATGCAGG TACTTCAAGA GTTGTTTGTA 3401 TTCTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTTATTTT ATTTTTT						
2951 ATGTCTGGAG GTGTCCAGGC TGTGGGGACC ACATTGCTCC AAGCCAGATA 3001 TGGTACAGGA CTGTCAACGA AACCTGGCAC GGCTCTTGCT TCCGGTAGGT 3051 GGGCCTATCC TCCCATCTTT ACCAGTGTAC TATGGGCCAA GCACTATTTC 3101 ATGTTCTGAT GGAAAACACA GAAACAGCT TCTGAGTTGA GAATTTCAAT 3151 CTTAGGGTGG GGAAAGGAAT GTACCAAGGA AGAGCTCATG ACCAAACCTC 3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAAT TGGAAGAGCC ATAAATGGGC 3251 CAGCTGGAGG CAGGGTGGGG GGATGAGAGA AGAGCCCATG ACCAAACCTC 3201 AATTCCCTC ACTTTATGGG TGAGGAAACT GAGGCCCAGG AGAGTTGCC 3301 CATATCCCTC ACTTTATGGG TGAGGAAACT GAGGCCCAGG AGAGTGCC 3351 TTCCTGTGGC TGCACTACAG ATTATGCAGG TACTTCAAGA GTTGTTTGA 3401 TTCTTATTTI ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTA ATTTTATTTA ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTTATTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTTATTT ATTTTATTTT ATTTTTATTT ATTTTATTTT ATTTTTATTT ATTTTTATTT ATTTTTATTT ATTTTTATTT ATTTTTATTT ATTTTTATTT ATTTTTATTT ATTTTTATTT ATTTTTATTT ATTTTTATTTT ATTTTTATTT ATTTTTT						
3001 TGGTACAGGA CTGTCAACGA AACCTGGCAC GGCTCTTGCT TCCGGTAGGT 3051 GGGCCTATCC TCCCATCTTT ACCAGTGTAC TATGGGCCAA GCACTATTTC 3101 ATGTTCTGAT GGAAAACACA GAAACAAGCT TCTGAGTTGA GCAATTTTCAT 3151 CTTAGGGTGG GGAAAGGAAT GTACCAAGGA AGAGCTCATG ACCAAACCTC 3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAAT TGGAACAGCC ATAAATGGGC 3251 CAGCTGGAGG CAGGGTGGGG GGATGAGAGG AGAGCTCATG ACCAAACCTC 3301 CATATCCCTC ACTITATGGG TGAGGAAACT GAGGCCCAGG AAGAGTGACT 3351 TTCCTGTGGC TGCACTACAG ATTATGCAGG TACTTCAAGA GTTGTTTGTA 3401 TTCTTATTTT ATTITATTTT ATTITATTTT ATTITATTTA ATTITATTTA 3401 TTCTTATTTT ATTITATTTT ATTITATTTT ATTITATTTA 3411 TCCTGCAATC TCTGCCTGCT GGGTTCAAGT GACTGCAC CATGCGCAG CAATCTGCC 3501 CACTGCAATC TCTGCCTGCT GGGTTCAAGT GATTITTCTG CCTTAGCTTC 3501 CACTGCAATC TCTGCCTGCT GGGTTCAAGT GATTITTCTG CCTTAGCTTC 3501 CACTGCAATC TCTGCCTGCT GGGTTCAAGT GATTITTCTG CCTTAGCTTC 3501 TATTTTATGG GAGAACGAGGGG TTCAACATG TTGGTCAGGC TGGTCTTGAA 3601 TATTTTATGG GAGACGGGGG TTCAACATG TTGGTCAGGC TGGTCTTGAA 3701 TACAGGCGTG AACCACTGTG CCCAGCCAAG ACCTCCCAAA GTGCTGGAAT 3701 TACAGGCCTG AACCACTGTG CCCAGCCAAG ACCTCCCAAA GTGCTGGAAT 3701 TACAGGCGTG AACCACTGTG CCCAGCCAAG ACTTCTTTT AGTGTAGTTG 3751 GCAGAGCCAG CTCTTCCTTC ACCACAGGAT GCCTCCCAAG GTTCCTACTT 3801 TTTGTTACTA GCTTTTATTA TACTATTATT ATTATTATTA 3851 TATTATTATT ATTATTGAGA CAGAGTCTCG CTCTGTCCCC CAGGCTGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAC CTCTGTCCCC CAGGCTGGTG 4001 CACCACACCC GGCTAATTTT TGTATTTTTA GTAGAGACGG GGTTTCACCT 4051 TGTTGACCAG CTCTCCTCGC CCCCGAGTAG GTGGGAATAC TCCTTGCTTC 4051 TGTTACTAGC TTTATTATA GCTAATTATT ATTATTATTA GTAGTTTTTA GTAGTAGATC 4301 TTGGTCACT TATTATAGAGA CAGCCCTGCC CCCCGAGTAAG TTCTTTCTTTA GTAGTTTTTTA GTAGAGACAGA GTTGTTTTTA GTAGTTTTTTA GTAGAGACAGA GTTGTTTTTA GTAGAGACAGA GTTGTTTTTA GTAGAGACAGA TCCCCCTAGATTTTT ATTATTATTA TTATTATTAT 4251 TGAGACACAG TCTTCCTCGC CCCCCGAGTTGC CTCCCTAGAGT TCCTACATT 4301 TTGGTCACT GCACCCCC GCCCAGCCCCCCCCCCAGGT TCAAGCATTCT 4301 TTGGTCACT GCACCCCC GCCCAGCCCT GCCCTACACCAC CCCCAGGCTAA 4401 TTTTTGTATT TTTAGTAGAA CAGCCCCCC GCCCAGATAC TCCCCCCGAGT 4501 TGGGCACCCC TGACCTCCAGG TCCCCCCAGGCC CCCAGC						
3051 GGGCCTATCC TCCCATCTIT ACCAGTGTAC TATGGGCCAA GCACTATTC 3101 ATGTTCTGAT GGAAAACACA GAAACAGCT TCTGAGTTGA GAATTTCAAT 3151 CTTAGGGTGG GGAAAGGAT GTACCAAGGA AGAGCTCATG ACCAAACCTC 3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAAT TGGAAGAGCC ATAAATGGGC 3251 CAGCTGGAGG CAGGGTGGGG GGATGAGAGG AGCCCTTTCC AGGGTTGTCC 3301 CATATCCCTC ACTITATGGG TGAGGAAACT GAGGCCCAGG AAGAGTGACT 3351 TTCCTGTGGC TGCACTACAG ATTATGCAGG TACTTCAAGA GTTGTTTGTA 3401 TTCTTATTIT ATTITATTIT ATTATTAGAG CACCACCTCG ACCTCCCAAA GTGCTCTGAA 3661 CTCCTGACCT CAAACGATGC CCCACCCCAGGAT GCTCCCCAAA GTGCTCTGAA 3751 GCAGAGCCAG CTCTTCCTTC ACCACAGGAT GCCTCCCCAAA GTTGCTTGAA 3751 GCAGAGCCAG CTCTTCCTTC ACCACAGGAT GCCTCCCCAAA GTTGCTTCTT 3801 TTTGTTACTA GCTTTTATTA TAGCTATATT ATTATTATTA ATTATTATTA 3851 TATTATTATT ATTATTGAGA CAGAGTCTCG CCCCCCAGGT GCTCCCCCAGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCCCCCCAGGTG GTTGCACCT 4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCCGGCC CCGGGTTCAA 3951 GCAGTTCCCC TGCCCCCCCCCAGGTA GTTGGTTCACCT 4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCAGGTAAA AGGCGCCCTGC 4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCAGGTAAA TGCTAGAATC 4101 ACAGGCCTGA ACCACTGCG CCCAGCCAGA GTTGTTTTTA GTGTGGACTA 4201 TGTTACACAG GCTGGTCTG CCCCCCCAGGT CCCCCAGGT TCCCCCCAGGT TCCTCCTCT 4201 TGTTACACAG GCTGGTCTG CCCCCCCAGGT TCAGGTTACAG 4501 TGGCTCACT GCAACCTTCT CCCCCAGGT TCAGGTACAG TGCTGGACT 4501 TGGCTCACT TCCCTCAG TGCCC CCCAGGCT TCCCCCAGGT TCCCCCCAGGT TCCTCCTCT 4551 TGGGCACCC TGCAGCC ACCCCCCCCCAGCCC TCCCCAGACT ACATTATTT 44551 TGGGCACCC TCAGGTTTCTT AAAAATTAT CAGACTATC CCCAAAATGT 4501 TGGGCTCACT TCAGCTCAG TGTTCCTCC CCCAGGCT TCCCCCCAGAT TCCCCCCAGATTCC 4551 TGGGGAACCC TCGAGTTCT AAAAATTAT CAGACTTAC CACATTATC 4551 TGGGCACC						
3101 ATGTTCTGAT GGAAACACA GAAACAAGCT TCTGAGTTGA GAATTTCAAT 3151 CTTAGGGTGG GGAAAGGAAT GTACCAAGGA AGAGCTCATG ACCAAACCTC 3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAAT TGGAAGAGCC ATAAATGGG 3251 CAGCTGGAGG CAGGGTGGGG GGATGAGAGG AGCCCTTTCC AGGGTTGCC 3301 CATATCCCTC ACTITATGGG TGAGGAAACT GAGGCCCAGG AAGAGTGACT 3301 TTCCTGTGGC TGCACTACAG ATTATGCAGG TACTTCAAGA GTTGTTTGTA 3401 TTCTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTTT ATTTTATTGAG 3451 AGGGATTCTT GCTGCTCCC AGGCTGGAGT GCAGTGGTGC AATCTCGGCT 3501 CACTGCAATC TCTGCCTGCT GGGTTCAAGT GATTTTCTG CCTTAGCTTC 3501 CAGCTGCAATC TCTGCCTGCT GGGTTCAAGT GATTTTCTG CCTTAGCTTC 3501 CTGAGTAGCT GAGATGACAG GCACCTGCCA CCATGCGCA CTAATTTTG 3601 TATTTTAGTG GAGACGGGGG TTTCAACATG TTGGTCAGC TGGTCTTGAA 3651 CTCCTGACCT CAAATGATGC ACCCACCTCG ACCTCCCAAA GTGCTGGAAT 3701 TACAGGCGTG AACCACTGTG CCCCAGCCAAG AGTTGTTTTT ATTATTATT 3701 TACAGGCCAG CTCCTTCCTTC ACCACAGGAT GCCTCCCCAAA 3701 TACAGGCCAG CTCCTTCCTTC ACCACAGGAT GCCTCCCCAAA 3701 TACAGTGGTG CGATCCGGG CTCACTGCA CCTCCCCCAAA 3701 TACAGTGGTG CGATCCGGG CTCACTGCA CCTCTCCTCT						
3151 CTTAGGGTGG GGAAAGGAAT GTACCAAGGA AGAGCTCATG ACCAAACCTC 3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAAT TGGAAGAGCC ATAAATGGGC 3251 CAGCTGGAGG CAGGGTGGGG GGATGAGAGG AGCCCTTTCC AGGGTTGTCC 3301 CATATCCCTC ACTITATGGG TGAGGAAACT GAGGCCCAGG AAGAGTGACT 3311 TTCCTGTGGC TGCACTACAG ATTATGCAGG TACTTCAAGA GTTGTTTGTA 3401 TTCTTATTTT ATTITATTTT ATTITATTT ATTITATTTT AGG GAGTGACAG GCACCTGCCA CCATGCGCAG CAATCTCGGCT 3501 CACTGCAATC TCTGCCTGCT GGGTTCAAGT GATTTTTCTG CCTTAGCTTC 3501 TACAGGCGTG GAGACGACAG GCACCTGCCA CCATGCGCAG CTGATTTTTTA 3601 TACAGGCGTG AACCACTGTG CCCAGCCAAG AGTTGTTTTT AGTGTCAGAA 3701 TACAGGCGTG AACCACTGTG CCCAGCCAAG AGTTGTTTTT AGTGTGGAAT 3701 TACAGGCGTG AACCACTGTG CCCAGCCAAG AGTTGTTTTT AGTGTGGAAT 3801 TTTGTTACTA GCTTTTATTA TAGCTATATT ATTATTATTA TTATTATTAT 3851 TATTATTATTAT AGCTTTATTAT AGCACTACC CCCCCCAAG CCTCCCCCAAG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTCCCCC CAGGCTGGTG 4001 CACCACACCC GGCTAATTTT TGTATTTTTA GTAGAGACGG GGTTTCAAC 4001 CACCACACCC GGCTAATTTT TGTATTTTTA GTAGAGACAGAG TGCTGCAC 4001 CACCACACCC GGCTAATTTT TGTATTTTTA GTAGAGACAGAG TGCTAGAATC 4101 ACAGGGCTGA ACCACTCGG CCCCCGAGTA GTGGGACTAC AGGCCCCTGC 4151 TGTTGACCAG GCTGGTCTGG AGCTCCCCC CCCCGAGT GTGTGTTCACA 4201 TGTTACTAGC TTTCTTCAC CACAGCACTGC CCCCCCAGCT TCAAGCACAT CCCCCCCAGCT TCAAGCTACA 4401 TTTTTTTATTATT TTTTATAG CACACCTCG CCCCCCAGCC TGCCCCCCACCA CCCCCCCCACACA 4401 TTTTTTTATTAT GCACTCCCCCCCCCAGCC TCCCCCACCA CCCCCCCAGCTAA 4401 TTTTTTTATAT GCACCCCCCCCCCCCCCCCCCCCCCCC						
3201 AAGTGTGGCC CCCCTGAACC CAGGTTAAAT TGGAAGAGCC ATAAATGGGC 3251 CAGCTGGAGG CAGGGTGGGG GATGAGAGG AGCCCTTTCC AGGGTTGTCC 3301 CATATCCCTC ACTTATGGG TGAGGAACT GAGGCCCAGG AAGAGTGACC 3351 TTCCTGTGGC TGCACTACAG ATTATGCAGG TACTTCAAGA GTTGTTTGTA 3401 TTCTTATTTT ATTTTATTTT GAGGCCAGC CAGTGGCC AGCCTCGCA CACTCGCAG CTAATTTTTGAGGCT 3501 CACTGCAATC TCTGCCTGCT GGGTTCAAGT GAGTGCAGG CTAATTTTTG 3601 TACTGGCGT CAAATGATGC ACCCCCCCAAG ACCTCCCAAA GTGCTGGAAT 3701 TACAGGCGTG AACCACTGTG CCCAGCCAAG ACCTCCCAAA GTGCTGGAAT 3701 TACAGGCGTG AACCACTGTG CCCAGCCAAG ACCTCCCAAA GTGCTGGAAT 3701 TACAGGCGTG AACCACTGTG CCCAGCCAAG ACCTCCCAAA GTGCTGGAAT 3701 TACAGGCGTG ACCACTGTG CCCAGCCAAG ACCTCCCAAA GTGCTGGAAT 3701 TACAGGGGTG CACCTCCTC ACCACACAG ACCTCCCAAA GTGCTGGAAT 3701 TACAGTGGTG CACCCCCGGG CTCACTGCAA CCTCCCCAAA GTGCTGGAAT 3701 TACAGTGGTG CACCCCCGGG CTCACTGCAC CCCCGCTCCCCAAG ACCTCCCCAAA GTGCTGGAATTTT ATTATTATTAT ATTATTATTAT ATTATTATT						
3251 CAGCTGGAGG CAGGGTGGGG GGATGAGAGG AGCCCTTTCC 3301 CATATCCCTC ACTITATGGG TGAGGAAACT GAGGCCCAGG AAGAGTGACT 3351 TTCCTGTGGC TGCACTACAG ATTATGCAGG TACTTCAAGA ATTGTTTGTA 3401 TTCTTATTTT ATTITATTTT ATTITATTTGAG 3451 AGGGATTCTT GCTGTTGCCC AGGCTGCAG CCATGCGCAG CTAATTTTTG 3501 TATTITAGTG GAGACGGGGG TTTCAACATG TTGGTCAGGC TGGTCTTGAA 3651 CTCCTGACCT CAAATGATGC ACCCACCTCG ACCTCCCAAG GTGCTTGAA 3701 TACAGGCGTG AACCACTGTG CCCAGCCAAG AGTTGTTTTT AGTGTGGATT 3701 TACAGGCCAG CTCTTCCTTC ACCACAGGAT GCCTCCCTAAG GTTCCTACTT 3801 TTTGTTACTA GCTTTTATTA ATAGCTATATT ATTATTATTA TTATTATTAT 3851 TATTATTATT ATTATTGAGA CAGAGTCTCG CTCTGTCGCC CAGGCTGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTGCCC CAGGCTGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTGCCC CAGGCTGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTGCCC CAGGCTGGTG 4001 CACCACACCC GGCTAATTTT TGTATTTTTA GTAGAGACGG GGTTTCACCT 4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCAGGTAAG TGCTAGAATC 4001 ACAGGCCTGA ACCACTGCC CCAGCCAAGA GTTGTTTTTA GTGGTTGG 4151 CAGAGCCAGC TCTTCCTCAC CACAGGTTGC CTCCGTAGGT TCCTACTTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATTG TTATTATTAT 4251 TGAGACAGAG TCTCGCTCTG CCCCCCGAGT TCAAGCAATT CTCCTACTTT 4301 TTGGTTCACT GCAACCTCTG CCCCCCGAGT TCAAGCAATT CTCCTACTTT 4301 TTGGTTCACT GCAACCTCTG CCCCCCGAGT TCAAGCAATT CCCTACCTTC 4351 AGCCCCCCCA GCAACCTCTG CCCCCCGAGC CTGCCTACACCAC GCCCAACATGT 4501 TGGGATTACA GGCATGAGC ACCGCCCC GCCTAACCT ACATTATT 4551 TGAGGACAGC TCAGGTTCTT AAAAATTATA CAGACTTCA ACATTATTT 4551 TGAGGCAGC TCAGGTTCTT AAAAAATTATA CAGACTTCA ACATTATTT 4551 TGAGGCACA GTGAAGTGTT ATTCCTTCAT CTGGAAAAA TAGGTTAACA 4501 TTGCTGCTG CAAGAGAGAAA AAAAATATAT CAGACTTCAA ATCAGATTGC 4551 AAGGGTTGGA AAGAAGAGA AATCCTTCCT CCACCACGGAC TGAGACCTAAAA TAGGTTAAAA 4661 TTCTTGTTGG AAAGAAGAGA AATAATATAT CAACGTAAAA TAGGTTAAAA 4661 TTGTTGGTGG AAAGAAGAG						
3301 CATATCCCTC ACTITATGGG TGAGGAAACT GAGGCCCAGG AAGAGTGACT 3351 TTCCTGTGGC TGCACTACAG ATTATGCAGG TACTTCAAGA GTTGTTTGTA 3401 TTCTTATTTT ATTITATTTT AGGGTTC GAGATGACAG GCACCTGCCA CCATGCGCAG CTAATTTTTG 3551 CTGAGTAGCT GAGACGAGGG TTTCAACATG TTGGTCAGGC TGGTCTTGAA 3651 CTCCTGACCT CAAATGATGC ACCCACCTCG ACCTCCCAAA GTGCTGGAAT 3701 TACAGGCGTG AACCACTGTG CCCAGCCAAG AGTTGTTTTT AGTGTGGTTG 3751 GCAGAGCCAG CTCTTCCTTC ACCACAGGAT GCCTCCCTAG GTTCCTACTT 3801 TTTGTTACTA GCTTTTATTA TAGCTATATT ATTATTATA TTATTATTAT 3851 TATTATTATTAT ATTATTGAGA CAGAGTCCG CTCTGTCCGC CAGGCTGGGC 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTGCCC CAGGCTGTCA 3951 GCAGTTCTCC TGCCTCAGCC CCCCGAGTAG GTGGGACTAC AGGCGCCTGC 4001 CACCACACCC GGCTAATTTT TGTATTTTTTA GTAGAGACGG GGTTTCACCT 4051 TGTTGACCAG GCTGGTCTGA ACCACTGCC CCCCGAGTAG GTGGGACTAC AGGCCCTGC 4001 CACCACACCC GCCTAATTTT TGTATTTTTTA GTAGAGACGG GGTTTCACCT 4051 TGTTGACCAG CTCTCCCCCCCCAGGC CTCCCCGAGT TCCTACATTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATT GTAGTAGTAG 4101 ACAGGCGTGA ACCACTCCGC CCCCCAGGC TCCCCTAGGT TCCTACATTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATT GTATTATTAT 4251 TGAGACAGAG TCTCCCCCCCAGGT TCAAGCAATT CTCCTCCTTC 4301 TTGGCTCACT GCACCCTCTG CCCCCCAGGT TCAAGCAATT CTCCTCCTTC 4301 TTGGGTTACT GCACCCTCTG CCCCCCAGGT TCAAGCAATT CTCCTCCTTC 4551 AGCCCCCCA GTAGGCC ACCGCCCCT GCCTAAGCT ACATTATTT 4451 TGTAGGCAGC TCAGATTCTT AAAAATTATA CAGACTCCAA ATCAGATTGT 4501 TGGGGTTACA GGCACCTCAGGC ACCGCCCCT GCCTATAGCT ACATTATTTT 4601 TTCTTGTTGA GATTGAATGA AAAAATTATA CAGACTTCAA ATCAGATTGC 4501 TAGACACCCA GGCATGAATGA AATAAATATAT ACAGACTACC CCCCAAGAATG 4701 TAGACACCCA GGCTGAATGATT ATTCCTTCC CCCCCTAGGAT TGGACATTCC 4751 AAGGGTGGA ACTGTCTTT AAAAATTATA CAGACTTCAA ATAGTTATCT 4						
3351 TTCCTGTGGC TGCACTACAG ATTATGCAGG TACTTCAAGA GTTGTTTGTA 3401 TTCTTATTTT ATTTTATTTT ATTTTATTTGAG 3451 AGGGATTCTT GCTGTTGCCC AGGCTGGAGT GCACTGGCAC CATGCGCAG CTAATTTTG 3551 CTGAGTAGCT GAGATGACAG GCACCTGCCA CCATGCGCAG CTAATTTTTG 3601 TATTTTAGTG GAGACGGGGG TTTCAACATG TTGGTCAGGC TGGTCTTGAA 3661 CTCCTGACCT CAAATGATGC ACCCACCTCG ACCTCCCAAA GTGCTGGAAT 3701 TACAGGCGTG AACCACTGTG CCCAGCCAAG AGTTGTTTTT AGTGTGGTTG 3751 GCAGAGCCAG CTCTTCCTTC ACCACAGGAT GCCTCCCTAG GTTCCTACTT 3801 TTTGTTACTA GCTTTTATTA TAGCTATATT ATTATTATTA TTATTATTAT 3851 TATTTATTATT ATTATTGAGA CAGAGTCTCG CTCTGTCGCC CAGGCTGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTGCCC CAGGCTGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTGCCTC CCGAGTTCAA 3951 GCAGTTCTCC TGCCTCAGCC CCCCGAGTAG GTGGGACTAC AGGCGCCTGC 4001 CACCACACCC GGCTAATTTT TGTATTTTTA GTAGAGACCG GGTTTCACCT 4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCAGGTAAG TGCTAGAATC 4101 ACAGGCGTGA ACCACTGCG CCAGCCAAGA GTTGTTTTTA GTGTGGTTGG 4151 CAGAACCAG TCTTCCTCAC CACAGGTTGC CTCCCTAGGT TCCTACTTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATT GTGTGGTTGG 4151 CAGACACAGC TCTTCCTCAC CACAGGTTGC CTCCCTAGGT TCCTACTTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATTG TTATTATTAT 4251 TGAGACAGAG TCTCGCTCTG CCCCCAGGT TCAAGCAATT CTCCTGCTTC 4301 TTGGCTCCCT GCACCCTTG CCCCCCAGGT TCAAGCAATT CTCCTGCTTC 4301 TTGGCTCCCT GTAGGTGGGA CTCCCAGGCC CTGCCACCAC GCCCAGCTAG 4451 CTCAAACTCC TGACCTCAGG TGAGCCC CTGCCACCAC CCCCAAAATGT 4501 TGGGATTACA GGCATGAGC ACCGCGCCCT GCCTATAGCT ACATTATTT 4551 TGAGACACCA GTAGGTTCTT AAAAATTATA CAGAATAGC ACATTATTT 4661 TTCCTGCTGT CTGAGGCC ACCGCCCCT GCCTATAGCT ACATTATTT 4751 AAGGGTGGGA ACTTGCTTT AAAAATTATA CAGACTTCA ACATTATTT 4751 AAGGGTGGGA ACTTGCTTT AAAAATTATA CAGACTTCA ACTTATTTT 4751 AAGGGTTGGGA ACTTGCTTT AAAAATTATA CAGACTTAAA TAGGTTAAAA 4661 TTCCTGCTGT GAAGAGAGACC AGTCCACTCC AGACGCTGA TGGACATGC						
3401 TICTTATTIT ATTITATTIT ATTITATTIT ATTITATTIT ATTITATGAG 3451 AGGGATTCTT GCTGTTGCCC AGGCTGGAGT GCAGTGGTGC AATCTCGGCT 3501 CACTGCAATC TCTGCCTGCT GGGTTCAAGT GATTITTCTG CCTTAGCTTC 3551 CTGAGTAGCT GAGATGACAG GCACCTGCCA CCATGCGCAG CTAATTITTG 3601 TATTITAGTG GAGACGGGGG TITCAACATG TIGGTCAGGC TGGTCTTGAA 3651 CTCCTGACCT CAAATGATGC ACCCACCTCG ACCTCCCAAA GTGCTGGAAT 3701 TACAGGCGTG AACCACTGTG CCCAGCCAAG AGTTGTTTT AGTGTGGAT 3701 TACAGGCGTG AACCACTGTG CCCAGCCAAG AGTTGTTTT AGTGTGGTTG 3801 TITTGTTACTA GCTTTTATTA TAGCATATATT ATTATTATTA 3851 TATTATTATT ATTATTGAGA CAGAGTCTCG CTCTCTCCC CAGGCTGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCCCCCC CAGGCTGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTGCCC CAGGCTGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTGCCC CAGGCTGGTG 4001 CACCACACCC GGCTAATTTT TGTATTTTTA GTAGAGACCG GGTTTCACCT 4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCAGGTAAG TGCTAGAATC 4101 ACAGGCGTGA ACCACTGCGC CCAGCCAAGA GTTGTTTTTA GTGTGGTTGG 4151 CAGAGCCAGC TCTTCCTCAC CACAGCTAGC CTCCAGGTAAG TGCTAGAATC 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATT TATTATTAT 4251 TGAGACCAGG TCTCCCTCAC CACAGGTTGC CTCCCTAGGT TCCACCTTTC 4351 AGCCCCCCTA GTAGCTCTG CCCCCCGAGT TCAAGCAATT CTCCTCTTC 4351 AGCCCCCCTA GTAGGTGGGA CTCCCAGGC TGGTGTACAG TGATGTGATC 4301 TTGGGTCACT GCAACCTCTG CCCCCCGAGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCTA GTAGGTGGGA CTCCCAGGC CCCCCAGCCACA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTC ACCTTGTTGG CCCCCCAGGCT TCAAGCAATT CTCCTGCTTC 4551 TGGGTACAC TGACCTCTG CCCCCCGAGT TCAAGCAATT CTCCTGCTTC 4551 TGGGCACCCC TGACTTCTT AAAAATTAAT CAGACTTCAA ATCAGATTTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTAAT CAGACTTCAA ATCAGATTTT 4601 TTCCTGCTGT CGAGCCCC GCTTCTCCTCC CCCCCAGGCCCT GCCTCAGAAAATG 4501 TGGGGGAACCCC TGGAATGAT ATTCTTCTC CCCCCCAGGCCCC CCCAACAATGCT ACATTATTTT 4761 TAGACACCCA GTGAATGGTT ATTCTTCTC CCCCCTCAAAAA TAGTTGAAAA 4801 TTGTTGGTGG AACGAGAGAGA AGTAGAGAGCC AGTCCACCC AGACGTAAAA TAGTTGAATAA 4801 TTGTTGGTGG AACGAGAGAGA AGTCCACTCC AGACGTAAAA TAGTTGAAAA 4801 TGTTGGTGG AACGAGAGACCC TGGCCTGTAGCT CCTGCACATAG 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC						
3451 AGGGATTCTT 3501 CACTGCAATC 3551 CTGAGTAGCT 3601 TATTTTAGTG 3601 TATTTAGTG 3602 CAAATGATGC 3601 TACAGGCGTG 3601 TACAGCCAGC 3751 GCAGACCAG 3751 GCAGACCAG 3751 GCAGACCAG 3751 GCAGACCAG 3751 GCAGCCAG 3801 TATTATTATT 3771 TACAGTGGTG 3771 TACAGGTGGA 3771 TACAGTGGTG 3771 TATTATTATT 3771						
3501 CACTGCAATC TCTGCCTGCT GGGTTCAAGT GATTTTTCTG CCTTAGCTTC 3551 CTGAGTAGCT GAGATGACAG GCACCTGCCA CCATGCGCAG CTAATTTTTG 3601 TATTTTAGTG GAGACGGGGG TTTCAACATG TTGGTCAGGC TGGTCTTGAA 3651 CTCCTGACCT CAAATGATGC ACCCACCTCG ACCTCCCAAA GTGCTGGAAT 3701 TACAGGCGTG AACCACTGTG CCCAGCCAAG AGTTGTTTTT AGTGTGGTTG 3751 GCAGAGCCAG CTCTTCCTTC ACCACAGGAT GCCTCCCTAG GTTCCTACTT 3801 TTTGTTACTA GCTTTTATTA TAGCTATATT ATTATTATTA TTATTATTAT 3851 TATTATTATT ATTATTGAGA CAGAGTCTCG CTCTGCCC CAGGCTGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTGCCC CCGAGTTCAA 3951 GCAGTTCTCC TGCCTCAGCC CCCCGAGTAG GTGGGACTAC AGGCCCTGC 4001 CACCACACCC GGCTAATTTT TGTATTTTTA GTAGAGACGG GGTTTCACCT 4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCAGGTAAG TGCTAGAATC 4101 ACAGGCGTGA ACCACTGCGC CCAGCCAAGA GTTGTTTTTA GTGTGGTTGG 4151 CAGAGCCAGC TCTTCCTCAC CACAGGTTGC CTCCCTAGGT TCCTACTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATT GTGTTGGTTGG 4151 CAGAGCCAGC TCTTCCCTCAC CACAGGTTGC CTCCCTAGGT TCCTACTTTT 4251 TGAGACAGAG TCTCGCTCTG CCCCCCAGGC TGGTGTACAG TGATGTGATC 4301 TTGGCTCACT GCAACCTCTG CCCCCCGAGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCTA GTAGGTGGGA CTCCAGGCAC CTGCCACCAC GCCCAGCTAA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTG CCCAGGCTGC 4551 TGGGATTACA GGCATGAGCC ACCGCCCCT GCCTACACCA ACCAGGCTGGT 4501 TGGGATTACA GGCATGAGCC ACCGCCCCT GCCTATAGCT ACATTATTT 4551 TGTAGGCACC TCAGGTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4501 TGGGATTACA GGCATGAGCA ATTATTATA CAGACTCAA ATCAGATTTG 4501 TGGGATTACA GGCATGAGCA ATTATTATA CAGACTAAC ACCAGATAATA 4601 TTCCTTGCTTG CTGAGGCTCA ATTATTATA CAGACTCCAAAATG GATTGAATGA 4701 TAGACACCCA GTGAATGGTT ATTACTTCTC CCCCATCAGAT CAGTATATC 4751 AAGGGTGGGA ACTTGCTTT ATATATATA CAGACTTCAA ATCAGATTTC 4751 AAGGGTGGGA ACTTGCTTT ATATATATA CAGACTGGA TGGGAATGAT 4801 TTGTTGTTGA GATGAATGA TATACTTCTCA CACGTGAAAA TAGTTGAAATA 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGAATGAC 4801 TGGCCCCAA GGTCTGAATG TATCCTCTC CCCATCAGAT CCTGAGAATGA 4801 TGGTGTGGA AAGAAAGAGC TGTCTGAATG GATGAGGTTATC CTGGAAATGA 4801 TGGCCCCAA GGCCCCT TGTCCTAATTC CTGGAAATGA 4801 TGGCCCCAA GGCCCT TGTCCTAA	- :					
3551 CTGAGTAGCT GAGATGACAG GCACCTGCCA CCATGCGCAG CTAATTTTTG 3601 TATTTTAGTG GAGACGGGGG TITCAACATG TTGGTCAGGC TGGTCTTGAA 3651 CTCCTGACCT CAAATGATGC ACCCACCTCG ACCTCCCAAA GTGCTGGAAT 3701 TACAGGCGTG AACCACTGTG CCCAGCCAAG AGTTGTTTTT AGTGTGGTTG 3751 GCAGAGCCAG CTCTTCCTTC ACCACAGGAT GCCTCCCTAG GTTCCTACTT 3801 TTTGTTACTA GCTTTTATTA TAGCTATATT ATTATTATTA TTATTATTAT 3851 TATTATTATTA ATTATTGAGA CAGAGTCTCG CTCTGCCCC CAGGCTGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTGCCC CCGAGTTCAA 3951 GCAGTTCTCC TGCCTCAGCC CCCCGAGTAG GTGGGACTAC AGGCGCTGC 4001 CACCACACCC GGCTAATTTT TGTATTTTAT GTAGAGACGG GGTTTCACCT 4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCAGGTAAG TGCTAGAATC 4101 ACAGGCGTGA ACCACTGCGC CCAGCCAGA GTTGTTTTTTA GTGTGGTTGG 4151 CAGAGCCAGC TCTTCCTCAC CACAGGTTGC CTCCCTAAGT TCCTCACTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATT GTGTGGTTGG 4151 CAGAGCCAGC TCTTCCTCAC CACAGGTTGC CTCCCTAGGT TCCTACTTTT 4251 TGAGACAGAG TCTCGCTCTG TCGCCCAGGC TGGTGTACAG TGATGTGATC 4301 TTGGCTCACT GCAACCTCTG CCCCCCGAGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCTA GTAGGTGGGA CTCCAGGCAC CTGCCACCAC GCCCAGCTAA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG CCAGGCTGGT 4451 CTCAAACTCC TGACCTCAGG TGATCCGCCT GCCTCACCAC GCCCAGCCTAA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGGTTTC ACCTTGTTGG CCCAGGCTGGT 4551 TGGGATTACA GGCATGAGCC ACCGCCCCT GCCTATAGCT ACATTATTT 4551 TGAGACACCC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4561 ATCTTGCTTG GATTGAATGA AATAATATAT CAGACTTCCA ATCAGATTTG 4571 AAGAGACCCCA GTGAATGGTT ATTCTTCAC CCCACCGAT TGGAATACATA 4661 TTCCTGCTTG GAATGGTT ATTCTTCAC CCCACCGAT TGGAATACCACTG 4701 TAGACACCCA GTGAATGGTT ATTCTTCAC CACAGTGAAA TAGATTATCT 4751 AAGGGTGGGA ACTTGAATG AATAATATAT GCAGTGTAAC CAGGTAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGAATGCC 4851 TGGCCCCCAA GGTCTGAAGT TATCTTCTC CCCACCACAC CTGCACACACCCAC 4851 TGGCCCCCAA GGTCTGAAGT TGTGCTTTATC CTGGAAATGA 4701 TAGACACCAG GCAGGCACCT TGTGCTGTAG ATTCCACCTC CTGAGAATGA 4701 TAGACACCCA GTGAATGGTT ATTCTTCTC CCCACCACAC TGGGAATGAC 4701 TAGACACCAG GCAGGCACCT TGTGCTGTAG ATTCCACCTC CTGAGAATGA 4701 TAGACACCAG GCAG						
3601 TATTITAGTG GAGACGGGGG TITCAACATG TTGGTCAGGC TGGTCTTGAA 3651 CTCCTGACCT CAAATGATGC ACCCACCTCG ACCTCCCAAA GTGCTGGAAT 3701 TACAGGCGTG AACCACTGTG CCCAGCCAAG AGTTGTTTTT AGTGTGGTTG 3751 GCAGAGCCAG CTCTTCCTTC ACCACAGGAT GCCTCCCTAG GTTCCTACTT 3801 TTTGTTACTA GCTTTTATTA TAGCTATATT ATTATTATTA TTATTATTA 3851 TATTATTATT ATTATTGAGA CAGAGTCTCG CTCTGCGCC CAGGCTGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTGCCTC CCGAGTTCAA 3951 GCAGTTCTCC TGCCTCAGCC CCCCGAGTAG GTGGGACTAC AGGCGCCTGC 4001 CACCACACCC GGCTAATTTT TGTATTTTA GTAGAGACGG GGTTTCACCT 4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCAGGTAAG TGCTAGAATC 4101 ACAGGCGTGA ACCACTGCGC CCAGCCAAGA GTTGTTTTA GTGTGGTTGG 4151 CAGAGCCAGC TCTTCCTCAC CACAGGTTGC CTCCCTAGGT TCCTACTTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATTG TTATTATTATA 4251 TGAGACAGAG TCTCCCTCTG TCCCCCCAGGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCCTA GCAACCTCTG CCCCCCGAGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCCTA GTAGGTGGGA CTCCAGGCAC CTGCCACCAC GCCCAGGCTGA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG CCAAGCTTCA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG CCCAAGCTTGA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG CCCAAGACTTCA 4501 TGGGATTACA GCATGAGCC ACCGCCCCT GCCTCAGCCT CCCCAAAATGT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGGCTTGG 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT CAGACTTCAA ATCAGATTTGT 4551 TGAGCCCCCAA GGTTTCATTT AAAAATTATA CAGACTTCAA ATCAGATTTGT 4561 ATCTTGTTGA GATTGAATGA AATAATATAT CAGACTTCAA ATCAGATTTGT 4751 AAGGGTGGGA ACTTGCTTT AAAAATTATA CAGACTTCAA ATCAGATTTGT 4751 AAGGGTGGGA ACTTGCTTT AAAAATTATA CAGACTTCCA CACTGAAAA TCAGATTTGT 4751 AAGGGTGGGA ACTTGCTTT AAAAATTATAT CAGACTTCC AGTACATGG 4701 TAGACACCCA GTGAATGGTT ATCCTTCCT CCCATCGGAT TGGAAATGA 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGAATTCTC 4751 AAGGGTGGGA ACTTGCCTTT ATATTCTTCC CCCATCGGAT TCGAGAATGA 4801 TGGCCCCCAA GGTCTGAAGT TTTCTCTC CCCATCAGAT TCCCCCCCAACACTCC CTGCCATAAA						
3651 CTCCTGACCT CAAATGATGC ACCCACCTCG ACCTCCCAAA GTGCTGGAAT 3701 TACAGGCGTG AACCACTGTG CCCAGCCAAG AGTTGTTTTT AGTGTGGTTG 3751 GCAGAGCCAG CTCTTCCTTC ACCACAGGAT GCCTCCCTAG GTTCCTACTT 3801 TTTGTTACTA GCTTTTATTA TAGCTATATT ATTATTATTA TTATTATTA 3851 TATTATTATT ATTATTGAGA CAGAGTCTCG CTCTGCGCC CAGGCTGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTGCCTC CCGAGTTCAA 3951 GCAGTTCTCC TGCCTCAGCC CCCCGAGTAG GTGGGACTAC AGGCGCCTGC 4001 CACCACACCC GGCTAATTTT TGTATTTTTA GTAGAGACGG GGTTTCACCT 4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCAGGTAAG TGCTAGAATC 4101 ACAGGCGTGA ACCACTGCGC CCAGCCAAGA GTTGTTTTTA GTGTGGTTGG 4151 CAGAGCCAGC TCTTCCTCAC CACAGGTTGC CTCCCTAGGT TCCTACTTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATTG TTATTATTAT 4251 TGAGACAGAG TCTCGCTCTG TCGCCCAGGC TGGTGTACAG TGATGTGATC 4301 TTGGCCCCCCTA GCAACCTCTG CCCCCCGAGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCCTA GTAGGTGGGA CTCCCAGGCAC CTGCCACCAC GCCCAGGCTGA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG 44501 TGGGATTACA GGCATGAGCC CCCCCCGAGT TCAAGCAATT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGGCTTGG 4451 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4501 TGGGATTACA GGCATGAGCA ACCGCCCCT GCCTTATAGCT ACCATAATTTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTGT 4501 TGGGATTACA GGCATGAGCA ACCGCCCCT GCCTTATAGCT ACATTATTTT 4551 AGGCCCCCAA GGTTGAATGA AATAATATAT CAGACTTCAA ATCAGATTTGT 451 AAGGGTGGGA ACTTGCTTT AAAAATTATA CAGACTTCAA ATCAGATTTGT 451 AAGGGTGGGA ACTTGATGATGA AATAATATAT CAGACTTCAA ATCAGATTTGT 451 AAGGGTGGGA ACTTGCTTTT AAAAATTATAT CAGACTGAAAAT GATGGTAATA 461 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGAATTCTC 4751 AAGGGTGGGA ACTTGCTTTT AAAAATTATAT CAGACTGGAT TGGAAAATGT 4751 AAGGGTGGGA ACTTGCTTTT AAAAATTATAT CAGACTGGAT TGGAAAATGT 4751 AAGGGTGGGA ACTTGCTTTT ATATTCTTCAT CTGGAAAAATATATC CTGGAAAATGA 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGAATGAC 4851 TGGCCCCCAA GGTCTGAAGT GTTGCCTTTATC CTGAGAATGA 4801 TGGCCCCCAA GGTCTGAAGT GTTGCCTTTATC CTGAGAATGA 4801 TGGCCCCCAA GGCCCT TGTGCTTTAAC CTGCCATATCC CTGAGAATGA 4801 TGGCCCCCAA GGCCACCT TGTGC						
3701 TACAGGCGTG AACCACTGTG CCCAGCCAAG AGTTGTTTTT AGTGTGGTTG 3751 GCAGAGCCAG CTCTTCCTTC ACCACAGGAT GCCTCCCTAG GTTCCTACTT 3801 TTTGTTACTA GCTTTTATTA TAGCTATATT ATTATTATTA TTATTATTA 3851 TATTATTATT ATTATTGAGA CAGAGTCTCG CTCTGCCCC CAGGCTGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTGCCTC CCGAGTTCAA 3951 GCAGTTCTCC TGCCTCAGCC CCCCGAGTAG GTGGGACTAC AGGCGCCTGC 4001 CACCACACCC GGCTAATTTT TGTATTTTTA GTAGAGACGG GGTTTCACCT 4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCAGGTAAG TGCTAGAATC 4101 ACAGGCGTGA ACCACTGCGC CCAGCCAAGA GTTGTTTTTA GTGTGGTTGG 4151 CAGAGCCAGC TCTTCCTCAC CACAGGTTGC CTCCCTAGGT TCCTACTTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATT GTATTATTAT 4251 TGAGACAGAG TCTCGCTCTG TCGCCCCAGGC TGGTGCACAG TGATGTGATC 4301 TTGGCTCACT GCAACCTCTG CCCCCCAGGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCTA GTAGGTGGGA CTCCAGGCAC CTGCCACCAC GCCCAGCTAA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGGTTTC ACCTTGTTGG CCCAGGCTGGT 4451 CTCAAACTCC TGACCTCAGG TGATCCGCCT GCCTCAGGCT CCCAAAATGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTATAGCT ACATTATTTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4611 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGGACTTGA 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG						
3751 GCAGAGCCAG CTCTTCCTTC ACCACAGGAT GCCTCCCTAG GTTCCTACTT 3801 TTTGTTACTA GCTTTTATTA TAGCTATATT ATTATTATTA TTATTATTAT 3851 TATTATTATT ATTATTGAGA CAGAGTCTCG CTCTGTCGCC CAGGCTGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTGCCTC CCGAGTTCAA 3951 GCAGTTCTCC TGCCTCAGCC CCCCGAGTAG GTGGGACTAC AGGCGCCTGC 4001 CACCACACCC GGCTAATTTT TGTATTTTTA GTAGAGACGG GGTTTCACCT 4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCAGGTAAG TGCTAGAATC 4101 ACAGGCGTGA ACCACTGCGC CCAGCCAAGA GTTGTTTTTA GTGTGGTTGG 4151 CAGAGCCAGC TCTTCCTCAC CACAGGTTGC CTCCCTAGGT TCCTACTTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATTG TTATTATTAT 4251 TGAGACAGAG TCTCGCTCTG TCGCCCCAGGC TGGTGTACAG TGATGTGATC 4301 TTGGCTCACT GCAACCTCTG CCCCCCAGGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCTA GTAGGTGGGA CTCCAGGCAC CTGCCACCAC GCCCAGCTAA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGGTTTC ACCTTGTTGG CCAGGCTGGT 4451 CTCAAACTCC TGACCTCAGG TGATCCGCCT GCCTCGGCCT CCCAAAATGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTATAGCT ACATTATTTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGGATTTCT 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG						
3801 TITGTTACTA GCTTTTATTA TAGCTATATT ATTATTATTA 3851 TATTATTATT ATTATTGAGA CAGAGTCTCG CTCTGTCGCC CAGGCTGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTGCCTC CCGAGTTCAA 3951 GCAGTTCTCC TGCCTCAGCC CCCCGAGTAG GTGGGACTAC AGGCGCCTGC 4001 CACCACACCC GGCTAATTT TGTATTTTTA GTAGAGACGG GGTTTCACCT 4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCAGGTAAG TGCTAGAATC 4101 ACAGGCGTGA ACCACTGCGC CCAGCCAGA GTTGTTTTTA GTGTGGTTGG 4151 CAGAGCCAGC TCTTCCTCAC CACAGGTTGC CTCCCTAGGT TCCTACTTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATTG TTATTATTAT 4251 TGAGACAGAG TCTCGCTCTG TCGCCCCAGGC TGGTGTACAG TGATGTGATC 4301 TTGGCTCACT GCAACCTCTG CCCCCCCGAGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCTA GTAGGTGGGA CTCCAGGCAC CTGCCACCAC GCCCAGCCTAA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG CCAGGCTGGT 4451 CTCAAACTCC TGACCTCAGG TGATCCGCCT GCCTCGGCCT CCCAAAATGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTCGGCCT CCCAAAATGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTAGGCT ACATTATTTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGT ATTCCTTCCT CCCATCGGAT TGGAATTTC CAGTACATGG 4701 TAGACACCCA GTGAATGGT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAATA 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG						
3851 TATTATTATT ATTATTGAGA CAGAGTCTCG CTCTGTCGCC CAGGCTGGTG 3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTGCCTC CCGAGTTCAA 3951 GCAGTTCTCC TGCCTCAGCC CCCCGAGTAG GTGGGACTAC AGGCGCCTGC 4001 CACCACACCC GGCTAATTTT TGTATTTTTA GTAGAGACGG GGTTTCACCT 4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCAGGTAAG TGCTAGAATC 4101 ACAGGCGTGA ACCACTGCGC CCAGCCAAGA GTTGTTTTTA GTGTGTTGG 4151 CAGAGCCAGC TCTTCCTCAC CACAGGTTGC CTCCCTAGGT TCCTACTTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATTG TTATTATTAT 4251 TGAGACAGAG TCTCGCTCTG TCGCCCAGGC TGGTGTACAG TGATGTGATC 4301 TTGGCTCACT GCAACCTCTG CCCCCCGAGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCTA GTAGGTGGGA CTCCAGGCAC CTGCCACCAC GCCCAGCTAA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG CCAGGCTGGT 4451 CTCAAACTCC TGACCTCAGG TGATCCGCCT GCCTCGGCCT CCCAAAATGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTCGGCCT CCCAAAATGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTCGGCCT CCCAAAATGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTATAGCT ACATTATTTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG						
3901 TACAGTGGTG CGATCCCGGG CTCACTGCAA CCTCTGCCTC CCGAGTTCAA 3951 GCAGTTCTCC TGCCTCAGCC CCCCGAGTAG GTGGGACTAC AGGCGCCTGC 4001 CACCACACCC GGCTAATITI TGTATTITTA GTAGAGACGG GGTTTCACCT 4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCAGGTAAG TGCTAGAATC 4101 ACAGGCGTGA ACCACTGCGC CCAGCCAAGA GTTGTTTTTA GTGTGGTTGG 4151 CAGAGCCAGC TCTTCCTCAC CACAGGTTGC CTCCCTAGGT TCCTACTTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATTG TTATTATTAT 4251 TGAGACAGAG TCTCGCTCTG TCGCCCAGGC TGGTGTACAG TGATGTGATC 4301 TTGGCTCACT GCAACCTCTG CCCCCCGAGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCTA GTAGGTGGGA CTCCAGGCAC CTGCCACCAC GCCCAGCTAA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG CCCAGACTAC 4451 CTCAAACTCC TGACCTCAGG TGATCCGCCT GCCTCGGCCT CCCAAAATGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTATAGCT ACATTATTTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACCTCAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG						
3951 GCAGTTCTCC TGCCTCAGCC CCCCGAGTAG GTGGGACTAC AGGCGCCTGC 4001 CACCACACCC GGCTAATTTT TGTATTTTTA GTAGAGACGG GGTTTCACCT 4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCAGGTAAG TGCTAGAATC 4101 ACAGGCGTGA ACCACTGCGC CCAGCCAAGA GTTGTTTTTA GTGTGGTTGG 4151 CAGAGCCAGC TCTTCCTCAC CACAGGTTGC CTCCCTAGGT TCCTACTTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATTG TTATTATTAT 4251 TGAGACAGAG TCTCGCTCTG TCGCCCAGGC TGGTGTACAG TGATGTGATC 4301 TTGGCTCACT GCAACCTCTG CCCCCCGAGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCTA GTAGGTGGGA CTCCAGGCAC CTGCCACCAC GCCCAGCTAA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG CCAGGCTGGT 4451 CTCAAACTCC TGACCTCAGG TGATCCGCCT GCCTCGGCCT CCCAAAATGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTATAGCT ACATTATTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGACC AGTCCACTCC AGAGGCTGGA TGGCCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCCAGCTC CTGCACATAG						
4001 CACCACACCC GGCTAATTTT TGTATTTTTA GTAGAGACGG GGTTTCACCT 4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCAGGTAAG TGCTAGAATC 4101 ACAGGCGTGA ACCACTGCGC CCAGCCAAGA GTTGTTTTTA GTGTGGTTGG 4151 CAGAGCCAGC TCTTCCTCAC CACAGGTTGC CTCCCTAGGT TCCTACTTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATTG TTATTATTAT 4251 TGAGACAGAG TCTCGCTCTG TCGCCCAGGC TGGTGTACAG TGATGTGATC 4301 TTGGCTCACT GCAACCTCTG CCCCCCGAGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCTA GTAGGTGGGA CTCCAGGCAC CTGCCACCAC GCCCAGCTAA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG CCAGGCTGGT 4451 CTCAAACTCC TGACCTCAGG TGATCCGCCT GCCTCGGCCT CCCAAAATGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTATAGCT ACATTATTTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG						
4051 TGTTGACCAG GCTGGTCTGG AGCTCCTGAC CTCAGGTAAG TGCTAGAATC 4101 ACAGGCGTGA ACCACTGCGC CCAGCCAAGA GTTGTTTTTA GTGTGGTTGG 4151 CAGAGCCAGC TCTTCCTCAC CACAGGTTGC CTCCCTAGGT TCCTACTTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATTG TTATTATTAT 4251 TGAGACAGAG TCTCGCTCTG TCGCCCAGGC TGGTGTACAG TGATGTGATC 4301 TTGGCTCACT GCAACCTCTG CCCCCCGAGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCTA GTAGGTGGGA CTCCAGGCAC CTGCCACCAC GCCCAGCTAA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG CCAGGCTGGT 4451 CTCAAACTCC TGACCTCAGG TGATCCGCCT GCCTCGGCCT CCCAAAATGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTATAGCT ACATTATTTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG						
4101 ACAGGCGTGA ACCACTGCGC CCAGCCAAGA GTTGTTTTTA GTGTGGTTGG 4151 CAGAGCCAGC TCTTCCTCAC CACAGGTTGC CTCCCTAGGT TCCTACTTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATTG TTATTATTAT 4251 TGAGACAGAG TCTCGCTCTG TCGCCCAGGC TGGTGTACAG TGATGTGATC 4301 TTGGCTCACT GCAACCTCTG CCCCCCGAGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCTA GTAGGTGGGA CTCCAGGCAC CTGCCACCAC GCCCAGCTAA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG CCAGGCTGGT 4451 CTCAAACTCC TGACCTCAGG TGATCCGCCT GCCTTGTTGG CCAGGCTGGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTATAGCT ACATTATTTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG						
4151 CAGAGCCAGC TCTTCCTCAC CACAGGTTGC CTCCCTAGGT TCCTACTTTT 4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATTG TTATTATTAT 4251 TGAGACAGAG TCTCGCTCTG TCGCCCAGGC TGGTGTACAG TGATGTGATC 4301 TTGGCTCACT GCAACCTCTG CCCCCCGAGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCTA GTAGGTGGGA CTCCAGGCAC CTGCCACCAC GCCCAGCTAA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG CCAGGCTGGT 4451 CTCAAACTCC TGACCTCAGG TGATCCGCCT GCCTTGTTGG CCAGGCTGGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTATAGCT ACATTATTTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG	4051					
4201 TGTTACTAGC TTTATTATAG CTACATTATT ATTATTATTG TTATTATTAT 4251 TGAGACAGAG TCTCGCTCTG TCGCCCAGGC TGGTGTACAG TGATGTGATC 4301 TTGGCTCACT GCAACCTCTG CCCCCCGAGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCTA GTAGGTGGGA CTCCAGGCAC CTGCCACCAC GCCCAGCTAA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG CCAGGCTGGT 4451 CTCAAACTCC TGACCTCAGG TGATCCGCCT GCCTCGGCCT CCCAAAATGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTATAGCT ACATTATTTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG	4101					GTGTGGTTGG
4251 TGAGACAGAG TCTCGCTCTG TCGCCCAGGC TGGTGTACAG TGATGTGATC 4301 TTGGCTCACT GCAACCTCTG CCCCCCGAGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCTA GTAGGTGGGA CTCCAGGCAC CTGCCACCAC GCCCAGCTAA 4401 TTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG CCAGGCTGGT 4451 CTCAAACTCC TGACCTCAGG TGATCCGCCT GCCTCGGCCT CCCAAAATGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTATAGCT ACATTATTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG	4151	CAGAGCCAGC				TCCTACTTTT
4301 TTGGCTCACT GCAACCTCTG CCCCCCGAGT TCAAGCAATT CTCCTGCTTC 4351 AGCCCCCCTA GTAGGTGGGA CTCCAGGCAC CTGCCACCAC GCCCAGCTAA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG CCAGGCTGGT 4451 CTCAAACTCC TGACCTCAGG TGATCCGCCT GCCTCGGCCT CCCAAAATGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTATAGCT ACATTATTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG	4201	TGTTACTAGC	TTTATTATAG			TATTATTAT
4351 AGCCCCCCTA GTAGGTGGGA CTCCAGGCAC CTGCCACCAC GCCCAGCTAA 4401 TTTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG CCAGGCTGGT 4451 CTCAAACTCC TGACCTCAGG TGATCCGCCT GCCTCGGCCT CCCAAAATGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTATAGCT ACATTATTTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG						
4401 TTTTGTATT TTTAGTAGAG GCGGGGTTTC ACCTTGTTGG CCAGGCTGGT 4451 CTCAAACTCC TGACCTCAGG TGATCCGCCT GCCTCGGCCT CCCAAAATGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTATAGCT ACATTATTTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG	4301	TTGGCTCACT	GCAACCTCTG	CCCCCGAGT	TCAAGCAATT	CTCCTGCTTC
4451 CTCAAACTCC TGACCTCAGG TGATCCGCCT GCCTCGGCCT CCCAAAATGT 4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTATAGCT ACATTATTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG						
4501 TGGGATTACA GGCATGAGCC ACCGCGCCCT GCCTATAGCT ACATTATTTT 4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG						
4551 TGTAGGCAGC TCAGTTTCTT AAAAATTATA CAGACTTCAA ATCAGATTTG 4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGACC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG	4451	CTCAAACTCC	TGACCTCAGG	TGATCCGCCT	GCCTCGGCCT	CCCAAAATGT
4601 TTCCTGCTGT CTGAGGCTCA GTTTCTTCAT CTGGAAAATG GATGGTAATA 4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG	4501	TGGGATTACA	GGCATGAGCC	ACCGCGCCCT	GCCTATAGCT	ACATTATTTT
4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG	4551	TGTAGGCAGC	TCAGTTTCTT	AAAAATTATA	CAGACTTCAA	ATCAGATTTG
4651 ATCTTGTTGA GATTGAATGA AATAATATAT GCAGTGTATC CAGTACATGG 4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG	4601	TTCCTGCTGT	CTGAGGCTCA	GTTTCTTCAT	CTGGAAAATG	GATGGTAATA
4701 TAGACACCCA GTGAATGGTT ATTCCTTCCT CCCATCGGAT TGGAATTCTC 4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG						
4751 AAGGGTGGGA ACTTGTCTTT ATATTCTTCA CAACGTAAAA TAGTTGAAAT 4801 TTGTTGGTGG AAAGAAGAC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG						
4801 TTGTTGGTGG AAAGAAGAGC AGTCCACTCC AGAGGCTGGA TGGGCATGCC 4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG						
4851 TGGCCCCCAA GGTCTGAAGT GGTAGGGCTG TGCCTATATC CTGAGAATGA 4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG						
4901 GATAGACTAG GCAGGCACCT TGTGCTGTAG ATTCCAGCTC CTGCACATAG						

Jan. 22, 2002

Sheet 8 of 41

	TTAAACACTT				
5051	CGTCTGGCCT	CTGGAAGAGT	TGGAAAGCAG	CCATCATTAT	TATCCTTTCC
	TTTCAGCTAT				
5151	TTGGTTCTTG	CCCCTTTTAC	TCCCAGGGAA	GTTGATTCTG	TCTTTTCTGT
	TCCATTTAGT				
	TAGTTAAAGC				
5301	TAACGTCAAA	ACCCAATGAG	TTCACAGATT	GGGTCTCGCC	TTGGCATGTA
5351	ACCCATATGT	TCATATTCTT	GCTGTTTTCC	TATGTGTATG	AATATTTTCT
5401	ATCCAAAATA	AGCAGGACAG	GGTAGAGCAA	GTTAATCTTT	GGAATTTCTG
	GATTCTCTTA				
5501	ATGGTATAAC	CCATTCATAT	CACAGATGAG	GCCTGAAACC	AAAAAGACTT
5551	GCTCAGGCCA	TGGATGACAA	GAGCTGGCCC	TAGCACTGAA	CTCTTGGGTC
	ATTTGTAGGT				
5651	TGTGTGTGTG	TGTGTGTGTG	TGTGTGAGAT	AGAGACAGAA	AGATAACATA
5701	TGTACACAAA	TACATAAAGA	GGAAGTAGAC	ACGTTAGCAT	GGTAGATAAG
5751	AGTACAGGCA	GGCCAGGCGT	GGTGGCTCAC	GCCTGTAATC	CCAGCACTTT
5801	GGGAGGCCAA	GGCAGGTGGA	TCACCTGAGG	TCAGGAATTC	GAGACCAGCC
5851	TGACCAACAT	GGTGAAACCC	CATCTCTACT	AAATACAGAA	AAAAATTAGC
5901	TTGGCATGGT	GGCACATGCC	TGTAATCCCA	GCTACTTGGG	AAGCTGAAGC
5951	AGGAGAATCG	CTTGAATCCG	GGAAGCAGAA	GTTGCAGTGA	GCCGAGATTG
6001	TGCCATTACA	GTCTAGCCTG	GGCAACAAGA	GGGAAACTCC	ATCGCAAAAA
6051	AACAACCACC	ACCAAGAGTA	CAGGCTATGG	AATGAGACTA	TGGTTTTAAA
6101	TCCTGGCTTT	GCAATTTATT	AACTAGCCTT	AAGTGACTTC	CCTGAGCTTC
	AGGCACCAAT				
6201	TGTTAGGGAG	GATTAAATGT	GATAACCTAT	ATAAAGTGGC	TAGCATAGCA
6251	TCTGACATAT	AGAAAACTCT	TAATAGGGCC	GGACGTGGTG	GCTTATGCCT
6301	GTAATCCTAG	CACTCTGGGA	GGCCGAGGCA	GAAGGATCGC	TTGAGCCCAT
6351	GAGCCCAGGA	GTTTGAGACC	AGCCTGGCCA	ACATGGCAAA	ACTCCACCTC
	TACAAAAAAT				
6451	CCCAGCTACT	TGGGAAGCTG	AGGAGCGATG	ATTACCTGAG	CCCAGGGATA
6501	TCAAGGCTGT	AGTGAGCTGT	GATCATGCCA	CTGTACTCCA	TCCAGCTGGG
6551	GGACAGAGTG	AAACCCCTGT	CTCAAAACAA	AACAAATGAA	AAAAAAAACC
	CTTAATAATC				
6651	TATACACCTA	TATGTATACA	TTTCTCTTAT	TACACATTCA	TTGGTGATCT
	GATGTGGAGC				
6751	CAAGCCAAAT	ATCATTCCCG	TGGAGGAAGT	AGAGTATCTA	GGTTCTGTCT
	CCTAGTTGCA				
6851	AAGGAGCACA	TCTCCTGACT	TCTGAGCTTT	CCCCTGGTAA	ATTCAAACTG
	GATGTCACGG				
	GACTGTCTTT				
	TCAGGGCTAG				
	TTGAGGAACA				
					GAGTAGTGCA
	GGCCTGCTGG				
	CTTCAAGGCC				
	AATAAAGGAA				
					CTGGGGTCCA
	TCCTAAACTC				
					CAGACCCTCA
					CAGACTGTGC
, ,,,,,	aa i accondu	, lor v londann	GO I AO I I AAA	ao i daranco i	Critario Farido

Jan. 22, 2002

Sheet 9 of 41

	AATGGAGGCC				
	GTGCGATTAG				
	TGACTAGTCC				
	тстттстт				
	GCTAGTGAAG				
-	CTGGTAGTGA				
	TAGGCCTTTT				
	TGCCATTAAT				
	GGCTCTCTCT				
	TTGTAGCTGA				
	GCATGTTAGC				
	TCACCCTGAT				
	CTATTAGTCT				
	CTAGCAGCAT				
	CTTTCAGGAC				
	TCACTTTTGA				
8301	GCAGATAGAA	GACTGTGGTC	ACTGCATCAG	GCAACAGACC	ATTTCCGCTA
8351	AATTTAGTGA	CTCCAGGAAG	GCCAGTGAAG	AAATAACACA	CGTAGCAACC
8401	AGAGACTGTG	TTGTAATATG	TTGGCTGACA	GCAGGGTACT	TTCTGTGATG
8451	CTGAAAGCCA	CATTCATTTT	CTCTCCCCTC	ATCCCCATCT	AAGCAAGCCT
8501	GGTAGAATCA	TAATTACAGT	AATAGGTACC	ACTTATTGAG	TACTCTGTGC
8551	CAGACACCCT	CCTGAGCATA	CGACATGCAT	AGCACATTTA	ATCCTTACAA
8601	TGACTTAATA	AAATGTAGTA	CTAGTCTTAC	CTACTTCGAG	AATAGGGAAA
8651	TGGAGGTTAC	TTGTTTAAAG	TCACAGAGCT	AATAGGTAGC	ATAGCTGAGA
8701	TTTGAACTCA	GGCATTCTTA	CTCCTTGCCT	GCAAGAGTCT	CTTGGCATTC
8751	TTGAATGCAA	GCATATTTCT	TAACCTCACT	GAGGCTCAGT	TTCCTCTTAT
8801	ATAATATGGG	GTAAAGAGCC	CTCACCCTGC	CTGCCACACA	CTGGTAGTGT
8851	CAGATAACAT	TGAAGGGTGT	TAGTTTAAAG	GCTTCATGGA	CTCTATAATG
8901	TCAACAAAAG	TGCTGTTAAC	TTTCTTCTGG	GTCTCAGGCT	CCTGATGTAG
8951	AGTCAGTGGA	GCAACCCTGC	CATCTGCTGT	TATGCTGTTG	ATGTTGCTGC
	CACACTTACT				
	GTGTTTACTC				
	ATCATTAAGG				
	AAGGAAGGGC				
	CCTGACCACA				
	AATGTGCCTT				
	ACAGATGTTT				
	GATGAGGCCA				
	CCTCACTTAG				
	CCTTTTTTG				
	GGTACAATCA				
	TCCCACCTCA				
	TTGCCATTTT				
	TTGCCCAGGC				
	AAGTGCTTGG				
	CCATTTTATA				
	CAGGGTCACA				
	AGTCTGCTTT				
	AGACTTGGAG				
	TGTGTAACTG				
2201	IGIGIAACIG	I GGGCAAGI I	CULLAGUUUU	I GI I GAGCCIC	MILLOLIM

Jan. 22, 2002

Sheet 10 of 41

10001 CTGTAAAATG TCATAAAAGA	AATCCATCTC	ATGGAGTAGT	TGTGATGATC
10051 AAGGACTCTG AAAACATTAG	AATGGTTTAA	TGTGAAGGAT	TAGCAGCAGC
10101 ACATGGCAAC ATTGTGCATC	TTATATTAAC	TATCCAAATA	TATCAAGCGT
10151 CATTTGCTAT ATATAAAAGT			
10201 GTTGGCATAC TAGCCTGGCC	TCTTAATTAA	TTCATTAATT	AGCTTATTTA
10251 TTTTTGAGAT AGGTCTTGCT	CTATTGCCCA	GGCTGGAGTG	CAGTGGCATG
10301 ATGATAGCTT ACTATAGCCT	CAATCTCCCA	GGCTTAAACA	ATCCTCCTGA
10351 GTAGCTGGGA CTACAGGCAC	ACACTACCAT	GCCCAGCTAA	ΑΤΤΤΤΤΤΤΤ
10401 ATTTTTTGTA GAGACAGGGT			
10451 TCCTGGGCTC GAGATCCTCC	CACCTGGGCC	TCACAAAGTG	TTGGGATTAC
10501 AGGTATGAGC CACGGCACCT	GGCCTGGTCT	CTTAACTGGT	TCCCTAAGAC
10551 AGCTGGAAAT AGAGAATGTC	ATGGAGCATT	CCTAACCATG	GGCTCCAGCC
10601 TGGCTTTCAT TCTGTTTCTC	CCCTGAAACA	ACATTCCTTT	AGTAATATTC
10651 CGAATAACAG CTTCATCAGT			
10701 TTATATGACC TCCCAAACTG			
10751 AAAGTTCGGA GTCAGGCTGC	TTGAGCTTAA	ATGCCAGCTT	CACTTACCAG
10801 CCACCTGACC ATGAGTCAGC			
10851 GTCTATGAAA AGGGAAATGG			
10901 TTCAATCATG TATTCAAAGT			
10951 CTTAACAGAT GTTAGCATTT	ATTATTAGTA	TCTGTCAGTC	TTGAAATGTT
11001 CTCTTCCCTT GGCTTTCATG	ACATTCCACA	CTCTCCTGGT	TTTCTCTTAC
11051 CTCTCTGGTA ATACCTGTTT			
11101 TTACCATTCC TTCAGGCGTG	CTGTTTTCTC	CTTAGGCAGT	CTTACACACA
11151 CTCATGACTT CCTTCCATTG			
11201 TATCTCCAGC CTAAACCTTT	CCACTGAGTT	CTAGACCCAT	ATGTTGTACT
11251 ATCAACCTGG CTTGTCCATT			
11301 TCTCTAGACT TTGCTGGACT	TTCACTCTTC	CCCCTAAAAC	TGGCTCCTCT
11351 TCCACTGAAA CATGTATGTC			
11401 TAAGCCAGAA ACCTAGGAAT	CCTTGATACC	TGTTCTCTCT	CATCCTGCAT
11451 ATCCAAGCCT ATCAGTTTTA	TCTCTAAATT	ATATTTTGGT	AGGTTTACTT
11501 CTTTCCTTTT CTCCCACCAC	CACCCTGCTC	CAAGCTACCA	TCATCTCACC
11551 TGGATGTCTG CAATAGCCTC			
11601 CTGTTCTCTA TAGAGCAGTT			
11651 TTTGTTTTAG ACAGAGTCTC	ACTCTGTTCC	CCAAGGCTGG	AGTGCAGTGG
11701 CACAATTTCG GCTCACTGCA	ACTTCTGCCT	CCCGGGTTTA	AGCAATTCTC
11751 CTGCCTCAGC CTCCCAAGTA	GCTGGGATTA	AGGCACCGGC	CCCCATACCC
11801 AGCTAATTIT TATATTITTA			
11851 GCTAGTCTCG AACTCCTGAC			
11901 AAGTGCTGGG ATTACAGGTG			
11951 TCTTAAAAAA AAAAAAAACA			
12001 GTCTCTCCTA CCTTGTATAC			
12051 GACCAAAATC CTTAACTTGG	CCAGGCGCGG	TGGCTCACAC	CTATCATCTC
12101 AGCACTTTGG GAGGCCGAGG	CAGGCAGATC	ATGAAGTCAA	GAGATTGAGA
12151 CCATCCTGGC CAACATGGTG			
12201 TAGCTGGTCG TGGTGGCGTG			
12251 AGGCAGGAGA ATCACTTGAA			
12301 ATCACGCCAC TGCACTCCAG	CCTGGTGACA	GAGTAAGACT	CCATCTCAAA
12351 AAAAAAAAA AAAAAAAAA	TTCCTTAATT	TGGCCTACAG	TAGAGCCCTC
12401 CGTAATGTGG CCTCTCCCA			
12451 CAGCCTCACC TCTCTTCTGG	ACAGGCCCTC	CTTCTGACAA	GGGCTTTGTT

12501	CATTCTGCTC	CCTCTGCCTA	GAATGCCCCC	TTACTCTGTT	CACTTAACTC
12551	CTGCTTATCG	TTTAGATCTT	TACCTGGATG	GCTCAGAGAA	ATATAGAAGT
12601	AATTCCTCAC	CCTGAAAAAT	AGGTTAGGTC	CCTGTTTTAT	GTTTTCATAG
12651	ACCTTTCCTT	TGAGGCTTTT	TTTAAAAAAG	TAGTTTTAAT	CTCACATTTA
12701	TTCATGTGAT	CATCTCCTTA	ATGATATCTT	AAGACCTCTA	ATAGAACAAT
12751	TTGGTCATGG	ACTGTGGGGT	TTTTGCCCCT	CATTGTGTCA	GCACTGAGCA
12801	TATTGTTGGC	ATAGGAGGA	TATTTGTTGA	ATGAATTGCT	AGAGGTGGCC
12851	AAGAGATATG	ATGTAAGTCA	GGCTTTTCCC	TGCCCTTCCC	CTTCCCCTTC
	CCCACATCCT				
	AAGACGGAAT				
13001	GTGTCAGGGT	GATAAGTTAA	AGCTTTGTCT	TTTGCCCTCA	GAGGAGCTAT
	CCCATAGTGA				
	AGCAGCAGGT				
	CAAGCCCTAG				
	AGCTACTCTA				
	TTTCAATTCC				
	GTATATTTGA				
	GAAAAAATGG				
	TGGGGAGTGG				
	AGTTTGTCCT				
	GTATTGTGTT				
	AAATCCTGGT				
	CCCTTTGTGT				
	AGTGGCTCAT				
	TCACCTGAGG				
	TGTCTCTACA				
	AATCCCAGCT				
	GGCAGAGGTT				
	GACAAGAGCT				
	TACAGGCTGG				
	CTAGGCGGGA				
	ACAGAGCAAG				
	GTGGCTCATG				
	TGCTTGAGCC				
	CATGCCAGCC				
	AAAGAAACGA				
	GGAGGCCAAG				
14351	GGCCAACATG	GTGAAACCCC	ATCTCAACTG	ΔΑΔΑΤΑΓΛΑΛ	AATTACCCAC
	GCATGGTGGC				
	ACGAGAATCG				
	TGTCACTGCA				
	TAAATAAACA				
	TGGAGGCCAG				
	AGGCCGAGGG AACACAGTGA				
	TGGTGGCAGG				
	ATGGCGTGAA				
	TGCAGTCCAG				
	AAAAATGGAG				
14901	GGAGGTCGAG	コレロロロロロロス	CACCIGAGGI	CAGGAGIICC	AGACCAGCCI

15001 GGCCAACATG				
15051 GCACGATGGC	AGGCACCTGT	AATCCCAGCT	ACTTAGGAGA	CTAAGGCAGG
15101 AGAATAGCTT	GAACCTGGGA	GATGGAGGTT	GCAGTGTGCT	GAGATCGCGC
15151 CACTGCCCTC	CAGTAGAGTG	AGATTCCGTC	TCAAAAAAAA	AAAAAAAGAA
15201 GAAATGGAGA	TACAAACTTA	CTACCTACCT	CCTTACAACC	TACCCTCACA
15251 GTATTACTGT	GAATAAAAGT	GTGTGTAGCA	CTGGGAACAC	TATTCACAGA
15301 GCACTCATGA	ATGTTTGTTC	TTTGTTATTA	GTTACTAGAG	AGGCAAATGT
15351 CTGCCAGGGC	TGAATAATAT	GTGTGAATTG	GTGATTGTCG	CACATATCTA
15401 AAGAAGTAGT	TATTTTTTC	AATTAAAACT	TAGTTTAAAA	ACCAATATAA
15451 GGCCGAGCGC	AGTGGCTCAC	ACCTGTAATC	CCAGCACTTT	GGGAGGCCGA
15501 GGTGGGCAGA				
15551 GGTGAAACCC	TGTCTCTGCT	AAAAAAAAA	AAAAAGTACA	AAAATTAGCC
15601 AGGCATGATG	GCAGGTCCCT	GTAATCCCAG	CTACTTGGGA	GGCCGAGGCA
15651 GGAGAATTGC				
15701 GCCACTGCAC				
15751 AAAAAAAAA	ACCAAAACCA	AAATAATAAA	TAAGTGGCCA	GCAATGAAAC
15801 AGAAAGTGAA				
15851 TGCTGAATCT				
15901 GCTAGTTTGG				
15951 ACTCATTTCC				
16001 CCTAATTCAG				
16051 TACCTGTATA				
16101 TGTACAGAGG				
16151 ACACCTCTTT				
16201 GGCCTAGATT				
16251 CTGGGTGGTC				
16301 GCTTCTTTAA				
16351 ACTCCTTCCT				
16401 CTTGCCTAAG				
16451 GTGTTCCCTG				
16501 TTGAGATATO				
16551 TGTCAACACA				
16601 GTATCATGGA				
16651 GCTTATGTGC				
16701 AGGCAGTAGA				
16751 ACACTAGTTG				
16801 GACTTTAGGO				
16851 CAGCATTCTC				
16901 TGCTTAAATA	CCTCTCATAC	CTCTTCACTC	CCTCTACCCA	ACTCTTTACC
16951 CTAGCAGACT				
17001 GGCCTCCTGT				
17051 ACCTGCTCAG				
17101 TTGCACATGT				
17151 AGCCTATTAG				
17201 CGCCAAATCC				
17251 TTGTTATTCT				
17301 TATTTGTTTA				
17351 GTGGAGCCGT				
17401 TAGAATGTAG				
17451 TGAACGACTO	TITGGACACT	IGAATAAAGT	CCATCCAGTA	TGCACCATTA

Jan. 22, 2002

Sheet 13 of 41

17501 CCATCTCTTC GCTC			
17551 GTGATAAGAT AAGO			
17601 GTCATCCCTA AGTO			
17651 GCCTTCTGCA ACTO			
17701 TTTTTCCCCC AAA	AGCTAGA GTCCC	CTTCTC CCATGGGCAG	TGCTGGAAGT
17751 GTGCTAACAA ATTO	CTTTCTC CATAC	CTGCTT ACGATTACAA	AAAAAACCCT
17801 CAGCATCTCA TGC	CAGACTT GAGTT	AAGGT TGTTTTCTTT	TGTGTGTCAG
17851 CTGTATTCTG GTC/	ATGACTT CCTG/	ATGATG CCCTATAGAG	ATTTTGCTGA
17901 GATCAGAGGG TGC	CCACTG CCATO	CAGTAG CACTGACTCT	TGCAGAAGCA
17951 CCGTTTCTGA AGT	TGGCTAA TGTCA	ATCCCT CACGTTTGTT	TGTTTGAAAT
18001 TTGTTTTAGT TCC/	AGAGATA GCACT	TTCAT GGAATGACGC	TATCTTCTAG
18051 AATCACTTTT TTT	TTTTT TGAGT	TTGGAG TCTCGCTGTG	TCGCCAGGCT
18101 GGAGTGCAGT GGC			
18151 CAAGTGATTC CCC			
18201 CACCCCCACT CCTC			
18251 CCGTGTTGGC CAG			
		ACAGGT GTGAGTCACC	
		GTGAG CACCACTGCC	
18401 GGAAAGAGAG AGG			
18451 CAGGAAGGTG AAA			
18501 CCAAACATTT ATT			
18551 ATCTGTACAT TCA			
18601 CCTGCCTGCC TCT			
18651 AAGCACTTAG GAA			
18701 AGAAACACTG GGG	TTGTTT AAAA	TGCAGA TTCTTAGCCC	CAGTCTCAGC
18751 GATTCTGATT CTG	TATATOT CAACT	TOCAGA TOTTAGOOD	TGATTTTCAA
18801 CAAGCTGACC AGA	CCCTCCA ATCC	TECTAT TOTTTAGTT	ACACTTTCAG
18851 AAATATTACT GTA			
18901 TTTTAGTATG TTG			
18951 TGTCAGTTCC TAG			
19001 TAGTTCCCTC AGG			
19051 ACTCACCACA TAA			
19101 CTCCTTTTAC AGC			
19101 CTCCTTTTAC AGC			
19201 CTTCAATGTG TCT			
19251 ATCTGTCTAT CAC			
19301 CAGTGCCCAG CATA 19351 AAAGAAACCT ATG			
19401 ACAGTGATAA TAA			
19451 TTTGTACTCA TCA			
19501 AGCACAAGCA GGA			
19551 TTTATGCTGC TGG			
19601 GCTCAAATCC CAT			
19651 GAATCCTGCC TCT.			
19701 CTTGTATCTG ATT			
19751 ATCAGGAAAG AGT			
19801 TGATGAGTAA CCC			
19851 ATTTCACTAC TGC			
19901 TGTCCACTTA TTC			
19951 AAAAGGATCA TAA	GGCTTCC TTTT	TCCAGT ATGTTTTTC	TCCTTTTTGA

20001	AAACTGGGCC	AGTTAGCTAT	CTCCATTTTT	ATTTCATGAA	TACATCCCCA
20051	GCGCCTGGTA	TATAGTAGAT	ATGGAACATT	ACACTTTGGA	GATATTGCAC
20101	CCATTCTCCA	GTTTCTCCAA	AGTTACTAAC	AATGGTTCCA	TCACTGTGCC
20151	AACATATTTT				
	AATCTGAACA				
	CAATTCTCCA				
	GACTAAATCT				
	TGATACCTAA			TTTTACCTGG	
	CATGACATCA			CTAAACTCTC	ACTCTGTAAA
	ACACTGACTG				
	TGTTCTCATT				
	TITTATTTAT				
	GTGTGCAATG				
	AAGCGATTCT				
	CACCACCACA				
	CATGTTGGCC				
	CTCAGCCTCC				
	CGGGACCCTT				
	TTGGAAGAGG				
	GTAATGCTTA				
	CTTCCTTGAT				
21051	TTCTTGGGTT			TTTCTTCCGA	
21101		TTCACTTACC		TGAACATTCA	
21151		AGGCTATTGT		GTCACAGACG	CTTTGAAGAC
21201		GCTGGTTCTA			
	TTTCCAACTT				TGCCATTTTA
21301		AATTGCCAGT			
	CATAACTGAT			TGAGGACCTA	
	TTTCTATCCA			GAGGGTGAAA	TATATCCTCC
	AGTGTGACAT				
	GGCTCTGAGG				
	TCTGGTGATC				
	GTCAAATGGA				
	GGAGAAGGCT				
	TGTCCTCTCA				
	TAGGGGAGA				
	GACTCACTGA				
	AGAGGAGTTA				
21901	ATATTCTTCC	ATTAGTACTG	TGTTCATCAC	ATGGAAATCA	GAGGGTACAA
	TTAAAAGATA				
	CTGATTGAAT				
	CTGTGTGGCT				
	TTCAGTATCC				
					CTGCTCAAGA
	GTTTAAACTC				
					ACCTAACCAA
	GGCCCAGACA				
					TTATCAACCT
					TGCATTGTCG
					CTTTGGTATA
CCANI			addictude	JUNGUU I WAG	STITUUININ

22501 GCATGGTAGA ACGTT	IGTCTA TAATGTCTAG	TCTGGGTTCA	AATCCTGGCT
22551 TCACTTCTCA CATTT	FACAGC TGAGTGACCT	CAGGCAAGTG	ATTTAACCTC
22601 CCTGTACCTC AGTTC	ECTTTA TCTGTAAAGA	GAAAAATCAC	AGCACTGTGG
22651 AATAGTGGGG GTTAA	VAATTC ATTCATACAA	GTAGTGCTGC	AAGCAATGTT
22701 TAATACAGGG TGAGC	CACCTG TTCAGTGCTT	CCTTCTTCTG	GCTGCCTCTG
22751 GGGCTAGAGT GTGGT	FGTCTT CGTGGTATAG	ATAGATAGAT	ATGGCTGAGC
22801 TCTGCACAAA CACCA	AGAGC TGTTCTTCAC	TATTAGAGGT	AGTAAACAGA
22851 GTGGTTGAGC TCTGT	GGTTC TAGAACAGAG	GCCGGCAAGC	TATGGCCCAT
22901 TGCCTATTTT AATAC			TTCTTTTTGA
22951 GACAGAGTTT CACTO			GCACGAACTC
23001 AGCTCACCGC AACCT	CTGCC TCCTGGGTTC	AAGCGATTCT	CCTGTCTCAG
23051 CCTCTCGAGT AGCTG	GGATT ACAGGCATGT	GCCACCACGC	CTGGCTAATT
23101 TTTGTATTTT TAGTA	AGAGAC AGGGTTTCTC	CATGTTGGTC	AGGCTAGTCT
23151 CGAACTTCCA ACCTO	CAGGTG ATCTGCCCGC	CTCAGCCTTC	CAAAGTGCTG
23201 GGATTACAGG CGTGA	AGCCAC CATGACTGGC	CTGATTGACT	GATTTTTTA
23251 GTAGAGATAG GGTCT	TTGGTT TGTTACCCAG	GCTGGTCTCA	AACTTCTGGC
23301 TTCAAGCAGT CCTCC	CCTCCT TGGCCTCTCG	AATGCTGGGA	TTATAGGCAT
23351 GAGCCACTAT GCCTG	GCCTA TATGACCTGT	GATTTTTAAT	GGTTAGGGGA
23401 AAAAAAGCAA AAGAA	ATGCTT TGTGACATGT	GGAAATTACA	TGAAACTCAA
23451 ATATCAGTGT CCCAG	CCTGG GCAACAAAGT	GAGACCCTGT	CTCTACAAAA
23501 AATAAAAAA AATAA			
23551 TCAGCACTTT GGGAG			
23601 AAGACCAGCC TGACC	CAATAT GGTGAAACCC	TGTCTGTACT	AAAAACACAA
23651 AAATTAGCCG AGCAT			
23701 GCTGAGACAA GAGAA			
23751 CAAGATCGCG ACACT			
23801 ACACGCACGC ACGCA			
23851 TGGTGGCCAG CACGT			
23901 GATCACTTGA GCTTA			
23951 CTGCACTTTA GCCAG			
24001 AAAAAAAAGA AAAA			
24051 CATGTCCCTT AGTTT			
24101 CACAATTGAG TGGCC			
24151 TTGCTCTCTG GCCCT			
24201 CATATGTACC AGGTT			
24251 CATCTGTAGT CCCAG			
24301 TCCAGAAGGT CGAGG			
24351 CTCCAGCCTG AGTGA			
24401 AAAAAAAAA CACCO			
24451 ACATAACCCC TCAGA			
24501 GTTTCCTCCT TTTAC			
24551 CACTTAACAC AGGGG			
24601 CTTAACAGTA TTCAA			
24651 GTGTCCAGTT GGTGC			
24701 TCTTTATCAG ACTT			
24751 CGGTGACTTC TGGCT			
24801 AGAGCTGATG TCACT			
24851 TTTCCTCCAG CAGCO			
24901 CAAGGGCTTT CTACA			
24951 GGCTGTTCAG GTGG			
ETSSI GGCTGTTCAG GTGGC	GUICCU MITCUMGATA	- CLIAGGUITA	ICAMICCOIL

Jan. 22, 2002

Sheet 16 of 41

25001	TTGGCACCCC	AGGCCTTTTT	CTCCCTCATG	CCCCATTTTT	CAGTTTGAAA
	AGCATGGTTA				
25101	CAATGGATGG	TGTTCTGCAT	GTGAACACTC	AGTGAATAGT	GAGTGAATGA
25151	GAGTAACCTG	GGCTCCATCC	TATTTGCAGA	GAGCTTTGGA	AAAGATTTTT
25201	CTCCTTAAAG	AGCCAGAATG	AAGCCTGGTA	GTGGGAGAGC	TCCAGCTCTA
25251	GAGTCACATG	AGCCTACATT	TAAATTCCAG	CCCTGCCACT	GACTCCCTTT
25301	TTGACCTTGA	GTGAGTTACC	TAATCTCTCT	GTACCTCACT	TTTCTTGTCT
25351	GTAGAGTGGG	AATAATTCCT	GTCTCAGAGA	AATAAAAGAG	TGCATATAGT
	GTTTGCCACA				
	TTCCTTATTT				
	TTGGTCAGCT				
	TGGGAGCCCT				
	GCTCTCTGGA				
	CTTCCTGGAC				
	GAATTACTGT				
	ATATGTTCAC				
	GCTCAATTGG				
	CAGCCCAGCT				
	CAACCACACA				
	CCTCATTCAG				
	TCTTTCTTAG				
	AGCCTCCACA				
26101		TAGGGAGGAG			
26151		CAAGTGGCCT			
	AGGGAGAGGT				
26251		GTCATGGTGG			
26301 26351	ACGGATTTGC TTACTTGTCA				
26401		AGTTCCCCTC			
	GAGGGTGGTC				
	CTGCCGGGCA				
	GAGGTACCCC				
	AAGGAACTTC				
	AAGGAGCCTC				
	TTCCGGGGGG				
26751		GCCATGCTGC			
26801		TTGCCAAACT			
26851	GCCTGGTACA	CAGTAGGCAC	CTTATAAACG	TITIGTTCTCT	TAATGGCAGG
	CACATTTGCC				
	TTGCTGGGGA				
	TTAGAGTGTT				
	AGGCCTAAGT				
27101	ATGTGGAAAC	TCTACCTCTA	ACCTGGCTTT	CTTTGCTCAT	TGCCCCACTC
	CACCTCCCAT				
	TGAATGGAGC				
	GCAGCCTGTT				
	CGACTTTTCC				
27351	CTGCCGGGAT	ACTAGTCAGG	TGGCCAGGCC	CTGGGCAGAA	AAGCAGTGTA
27401	CCATGTGGTT	TTGTGGAATG	ACCGGACCCT	GGTAGATTGC	TGGGAAGTGT
27451	CTGGACAGGG	GGAAGGGGGA	AGGGAACTGG	TCCTCAATGC	TGACTCTACC

27501	AAGCGCCCTG	CTAGACACTT	TATCCTTTAA	TCTCTCAACA	GCCTAAAGAG
27551	ATTATATATC	CCCATTITAC	AGATGAGGCA	ACCAGTTTCA	ACAGAGTTAA
27601	CATATGGAGC	CTCACTGGGC	AGCTTTTTCT	GTCTTCCTGA	CTTTCTCTCA
27651	TCCTTCAGGG	GGCTGCAGGT	TTGTTTTCTT	CTCCTAGTGG	AGAGGAAATT
27701	CTCAGGTTTG	TTTTCCTCTC	CTAGCAGAGA	GTAAAAAAAG	GGATAGTTTG
27751	CCTGACTTGT	TGAAGGTGTG	GCTGAGATTG	TTTTCTAAAG	AGCCAATGGA
27801	AATTGATCTT	GAGTTTAGGA	GAAAGCTTTT	ACATGTGGAA	TTAAGATGCC
27851	AAGTGTTGAA	GTAGCCACAT	TTCAGGTCCT	CATTAATTTC	TCTTAATCCT
27901	GGGAAGGCAG	CTTAGGAGAA	GGGTTGTTCC	TTTAGGAGCC	AGGAACTATA
27951	CCCCTTTTAC	CCTTGGAGAG	GCAGGGAAGC	CAGGGAGGAC	ACAACTTCTC
28001	AGGAAGAGGA	GAAGCTAGAG	CAGATAGTGA	ACTCTCAACC	TGAACCTTTA
			ACCCAAGTCC		
28101	TGTCCCAGGC	TTTCTGGAGA	ACCTGATCTT	CTTGCCCCTA	CCCCCAAGCT
28151	CCGTTTGCCC	AGCTAGAGTC	TGGGGGGTAC	TGACTGACTT	TCGTAGACAT
28201	TCTTCCCTTC	CCCAAATAAG	AGGCCACATT	CCTGAAGTCA	CTTCTGAAGA
28251			CTTTCCCCCC		
28301			GTTACCACAT		
28351			CCTCTTTTAT		
28401	TCCTCTTTGG	GCCTCAGTTT	CATCCTTGGC	AGAAAGTAGA	AGCTAGACTT
28451	CTTGGGCTCC	TGAACAGGGT	CCTTGCTGGA	TTCTGTGAAA	CAAATTAAGT
28501	TCTTGACCCT	AGGCCTCTGG	GGGAGTACAA	AGTCTATGGG	AGTTCTGGGG
			ACGCAACCAG		
			AAGAGGAGC		
28651	TTCTGTGTCC	CATACACCCC	TGCCTGACAG	GCCATACATA	CTCAGCAGAG
28701	AATGCACTGT	CTTTCCTACC	ACACTAGCGT	GAGGAGTGAG	CTGCAATTAC
28751	CACTGTGCTT	CCAAGTAAGA	AAATACCTCA	AATTGGAATT	TACAAAAGAG
28801	GTAAATTAGG	GAGTGGCTTT	TGTCGGACAT	CTTTAAAGCA	TTTTCTTT
28851	TATAGAATTT	CACTTAATGT	CCAATACTGA	TTTAATGAGC	TTGGGTTTAC
28901	ACATTATCTC	TTGAAGAAA	CAAATGAACC	TITGTGTTCC	AAAGCAATCC
28951	ATGTTTAAAG	GGAAAAAATT	ATGCATAACT	CTGCCCAGCT	TCACACTAAC
29001	CTTTGGCAGG	TGCCTTAGGT	CCTCTGGGAC	TCTTTTCCTT	ATCTCAAAAA
29051	TGAAGGACTT	GGATCAGGTG	AATGGTTCCC	AGCTCTGCAA	CTTATETEEC
29101	TCCTCAGAGG	CACACAAGCT	CTTTTCCATT	ATTTGCCAAA	TAATGGAGGC
29151	CCTGTCTTTA	ACTGCAGTAC	AACTACACAA	ΔΔΤΔΟΤΤΩΔΑ	ACTACACTCT
29201	TCCTGGTTTT	TGGTTGGAAC	TGAATCAGTG	CACTCTAGCA	ACACTTATTT
			TTATGTGTTT		
29301	AATAACATAT	TCCATAATAA	TTACAGCTTA	ATTECCAGAC	TGTTTCAGTC
29351	TATAGGATCT	GCAGGAAGGA	GGAGTAATAA	ACCCATITI	CACTCACCTC
29401	TTATGGAACA	GAGTCTCTCT	AGGCCCCTGT	CATATCTCCC	CTTCTCCCCC
29451	CTGGGGAAAA	GTTGGCATCC	CCAGTTGTGG	TECTETECAG	CTCCCTCAC
29501	GCTGTGGTGG	AGGGAGCTTC	CCATTCTCTC	CTTCACCCCA	CTCAATTCAG
29551	AGGCTAGGGG	CTGAAAGAAG	CTTCTCTACA	ACTECCTETT	CACTECEAGE
29601	TTAAGGGATG	ACCATCCACC	CAGGCCTTCC	TCACCACATC	CACTGGGAGG
29651	TGCTTTAACA	TGTGTAAATC	CACTGCAATA	ATCACTCCTT	CTTTTACCCC
29701	ATAAGGTTGA	GAATTTACCT	GTAAACATTT	TTCTCTCAAC	AATTTCCATC
29751	TAAGTGAGGG	CTGGGCCTCT	ATCTTATCTC	ACTTECETTE	TCTCACCACA
29801	GCACCTTGCC	TECTTETTET	TACACATCCT	ACATCCACAC	TAACTATTTC
29851	CTAATTATTA	GAAATCTATT	AGAATCAATT	CATTTCACCT	CCCCTTCCTC
29901	GCTCCTTCCT	GTAATCCAG	CACTTTGGGA	CCCTAACCCT	CCACCATCAC
20051	CTGAGTCCAG	CACTITAACA	CCAGCCTGGG	CAACATACCC	ACACCCTCTC
	o i who i cond	WHUTTIAMUA	DUDU JUDAUU	CHACHIAGGG	MUMULUIGIL

Jan. 22, 2002

Sheet 18 of 41

30001 TCTACAAAAA	ATAAAAAATT	AGCCAGGCAT	GGTGGTGTGC	ACCTGTAGTC
30051 CCAGCTACTC	AGGAGGCTGA	GGCAGGAGGA	TCTCTTGAGC	CTGGGAGGTC
30101 AGACTACAGT	GAGCAATGAT	TGTGCCACTG	CACTCCAGCC	TGGGTGACAG
30151 AGTAAGACTC	TGTCTCTTAA	AAAAAAAA	AAAAAAGTTG	ATTTCTATTT
30201 GGATAGATAA	ATAATTCATT	TTAGGACCTT	TCTTTTTCAC	TTACAGAAAT
30251 CTGTTTCATT	CTGGGCTGAG	AAGCAGGTCC	ATATTGCTAG	GCATAGGAGA
30301 AAAAGGGGTC				
30351 AAGAAATGAA				
30401 ACATCTGTAC				
30451 TGTACAAGTG				
30501 GTGACACAGA				
30551 AGAGAAAATC			,	
30601 CTGACTCAAA				
30651 ATCAGGGTTC				
30701 TAATGTTTTG				
30751 CGTATGTAGG				
30801 TTCACTCTGG				
30851 TACCACCTCC		• • • • • • • • • • • • • • • • • • • •		
30901 ACTITCACTT				
30951 TTTGGGAAGA				
31001 ATGTTCGAGT				
31051 TAAAAGAACA				
31101 AGGAGAATTG				
31151 CACGAAGTGT				
31201 CTTATTTTCA				
31251 CTCACTCCGG				
31301 ATAGCTTCAC				
31351 ATGATTTGAC				
31401 CCTGCTACCG				
31451 CATATAGGAC				
31501 TGATAGCTAA	GCTAGAACTC	TGAAGTCTAC	CATGGCAACT	TCTTAAGTGG
31551 TCTGAGAACC	CAGTTGTGTT	CTGTGGCAAA	ACACAGCTTA	GGGATCCATA
31601 CCCAGCCCTC	CTGTCAGCTG	TTCACCTTCC	AGTTCTTCAG	AGACATGTGT
31651 GGCAGTGACT	TTGGCCACAT	AGCTGGCTGT	GCCCTTTAAA	GGCATTCCTT
31701 GACACAGATA	TGTGGACTGG	TGACGTTGCT	CTCCAGCCAG	GTGTTCTTCC
31751 CAGCAGGCTG	GCCTGGCTGT	CTCCTGCATG	CCTGTACTTG	TTTGTCTCCC
31801 TGCTCCCTCT	CCTGGGCCTG	GCCAGAGCTA	CTTGCAGCAA	ACAAAAGCAG
31851 GATATTGGCA				
31901 GCGCACATAC				
31951 GCAAATAAGT				
32001 ATGGAACCCT				
32051 CCATTTTCAG				
32101 TGCTTGGTGC				
32151 AGGGAGCTAA				
32201 AAGTCAGAAG				
32251 CTCTGTTGGG				
32301 AGGCCAGGCA				
32351 AGGCGGGCAG				
32401 TGGGGAAACC				
32451 GCATGCGCCA	GIAAILLLAG	CIACICAGGA	ם ו בובואביו שביבי	JAJIAAAADU

32501 TTGAACTCGG (GAAGCAGAGG	TTGCAGTGAG	CCGAGATTGT	GCCACTGCAC
32551 TCCAGCCTGG (
32601 AAGAAAAAAT (CCTCACTGCT	ACCTTGAAAG	TAGGTGATGA	CATTGCCATT
32651 TCACAAATGA (GAAGTGAAGG	GGCTAGCCCA	AGATCACTTA	GGTGGTAAAT
32701 GGTGGTGCTA	AGATTAGAAC	CTCAGATCAT	CTAGGGAAAA	ACACAGATAT
32751 GCACAGAGTT /	AAGGGGACCC	AGGGTATTGT	TTGTCCTCTT	GTTTCACAGG
32801 TGGGGAAACA				
32851 CCCAAGAACT				
32901 ACATGTATCT				
32951 TCCCCTCTGC (
33001 TACTCTTCAT (
33051 AAGACAAGTA				
33101 AGCACCCAGG /				
33151 ACTTGCTTCT (
33201 CCTCTTCTCT /				
33251 CTCTCACCTT (
33301 TTCATAAGCT				
33351 ATATCTGCAG	TGCTTAGCAA	GTTATAATAA	TGCACTTGCC	TGGCAAAAGG
33401 CTTTCTCTCA				
33451 AATAGGATGC				
33501 TGTCCAGCTA				
33551 GTCATCATCT				
33601 GTCTTTTTT				
33651 TGTCCAGGCT				
33701 TTCCCAGGTT				
33751 TACCAGTGCA				
33801 CAGGGTTTCA				
33851 TCTGCCCGCC				
33901 GCGCCCTGCC				
33951 CTAGCTAGCT				
34001 CTGGAGTGCA				
34051 TTCCAGTGAT				
34101 CATGCCACCA				
34151 ACCATGTTGG				
34201 GCCTCGGCCT				
34251 GCTGCTCTCT				
34301 GTTCATTITA				
34351 CAAGATGATG				
34401 GTTCAAACCT				
34451 CTTGACAACA				
34501 TGGGCTCAGC				
34551 AAGGGAGGAA				
34601 TTTTGAGAGG				
34651 TAGATTTTTT				
34701 TTACTATGTT				
34751 CCACCTCAGC				
34801 CAGCGAGCTA				
34851 TTGGGTTTCT				
34901 AAAAGTTGAA				
34951 TTCATGATTT	GTTAATGTTA	TGCCACTTTG	TATATATCTC	TCTCCCTCCT

Jan. 22, 2002

Sheet 20 of 41

35001	ATCTGTATAC	TTTTATTTAT	TTATTTTTGC	TGAACTATTT	CAGAGTAACT
35051	TAAAGGCATC	TTGATTTTAC	CCTTGAACAG	TTCAATATGT	TTCTGCTAAG
35101	AATTCTCCTA	TATAAGTCAG	ATATCATTAC	ATCTAAGAAA	ATTCACGGCA
35151	ATTITACAAT	ATAATATTAT	AGTCCAAATC	CATATTTCCT	CAGTTGTTCC
35201	AAAAAATGTT	CATGGCTGTT	TCCTTTTTTA	ATCTAAATTT	GAATCCAAGT
		GTATTTGGTT			
35301	CCTTTTCTTC	TCCCCATGAC	TTTTTAGAAG	AGTCAAGACC	GGTTATTCTT
35351	ATAGAATAAC	CCACATTCTA	GATTTGCCTG	ATTAGTTTTT	TTATACTTAA
35401	CGTATTTTTG	GCAAGAACAT	TACATTGGTA	ACGCTGTTGG	TGATGGGTCA
35451	GTTTTGAAGA	GTGGAGATGA	TTAAACTGCT	TTTGTTCATT	GAAGTATCTG
35501	TCAAGACCAG	AGATCCTTAA	CTGGTGCCAT	AAATAGGTTT	CAGAGAATCC
35551	TTTATATATA	CACCCTGTCC	CCCACCTAAA	TTATATACAC	ATCTTCTTTA
35601	TATATTCATT	TTTCTAGGGG	AGGCTTCTTG	GCTTTTATCA	AATTCTCAGA
		ACCCAAAGAG			
		GAGCTGGTTT			
		ATAGCACAAG			
		CTGTCCATTT			
		GGTTCCAGGG			
		TCAGAATGCC			
		GCTCTACTGC			
		GGTGCTCCCT			
		ATCTGCCCCT			
		GTGGCCTGTT			
		TITATTCATT			
		AAGGTAAGAT			
		AGGAGAGGCA			
		AGGAGAGTGT			
		AATCAGAAAA			
		CTATACCTGC			
		CCCTGTATTG			
36501		GATTTCTTCT			
36551		GACAGGAGGT			
36601		TGAAAGAGTG			
		CCTGTCCTCA			
		ACACCCTTCT			
		CCAGAGTGCT			
		TGCATATGCA			
		CTTTGTCTAT			
		CAGGGTGAGT			
		TTACCACAGC			
37001	GCAGAATGAT	TTACACATGT	CTCTACCCTT	TTTCCTTACC	AACCTTGAAA
37051	ATGTCTTCAC	TCTGCCCTGC	ΔΑΤΟΤΟΤΟΓΑ	CTCCCACCCA	CTCTTCAACC
		AACATTAAAG			
		TTGATAAAAG			
		AAGGTTCTCA			
		CACCCCAACC			
		TAGCTCAGCA			
37351	CCCTCCTCAT	TCTGAGCAGC	CACCTACAAT	CATCACAAAC	ACCCTCCTAC
		GGTACTGTTG			
		TGTGGGACTC			
37431	adductivit	IGIGGGACIC	IAGUATUTA	110000010	I GCCC IC ICC

37501	CCAGTGGGAA	GTGCCACAAT	GAGGTGGTGC	TGGCACCCAT	GTTTGAGAGA-
37551	CTCTCCACAG	AGTCTGTTCA	GGAGCAGCTG	CCCTACTCTG	TCACGCTCAT
37601	CTCCATGCCG	GCCACCACTG	AAGGCAGGCG	GGGCTTCTCC	GTGTCCGTGG
37651		CTCCAACTAC			AGAGTAAGTA
37701	TTTTGAGAAC	CCTTCAGCAG	GGGTTCTTGA	GCAGAGTCTG	TAAATGGGCC
37751	TCAGAGGCT		AAGTCTCATG		TTTATTCTCA
37801		TTCTCCTGGA			ACCTGGGCCT
37851		TGTTCTCTCT			GATACTTAAG
37901		CTCACCTTTC			TGTTTGCTCT
37951		CTGGCTTGAT			CTTCTATCCC
38001		ATGTAAATTC			ATTCAGTGCT
38051		GGCTTGGAAG			AGTTGATTGA
38101	TTATTATTTT		AGAATGAATG		GGTCCATGGC
38151	CCAAAAGAAG		ATCCTAGATT		ACCAGATGGA
38201		GTGTCTATCT			TCTGGCCGCT
38251		ATATTGATTG			CACTAGGCTA
38301	GTGCTTGCAC		AGATACTAGA		TCAGGAGGAG
38351	CTAAGGTCTG		TTATTAGATG		GGAATTGTGT
38401		GGGAGAAGCA			TTAATCATGT
		TTGAGTGTGG			TATAGAGGC
		AAAATCCAGC			
38551		GTTAACATTT			
		AAGCCTAAAG			
		GTGGTTCATG			
		TGCTTGAGGC			
-		GTCTCTGTTT			
		TCACGCCTGT			CCAAGGTGGG
		GAGGTCAAGA			CAGTGGCTCA
		CCCAGCACTT			ATCACAAGGT
		AGACCATCCT			GTCTCTACTA
		AATTAGCCGG			
		CTGAGGCAGG			
39101		GAGATCACGC			GACAGAGCGA
39151		CAAAAAAAA			
39201		ATCTCTACAA			
39251		GTAATCCCAG			TGAGAATTGC
39301		GAGGTGGAGG			GCCACTGCAC
		ATGACAGAGT			
		AAAAAAATAG			
		CAATGATGGA			
		GGGAACTCCA			
		GGGTGAGTGG			
		TGCCTTTCTG			
		GGACCTGGTA			
		AGGACATCTT			
		TGCACATCAG			
		CTGGAGATCA			
		GTGTGTGTCT			
		GGAAATCAGG			
		GTCTTAGCAT			
33331	CONTOICITI	aic i i AdcAl	Tundee I di d	ACCAC I GO I G	HOLIVITION

Jan. 22, 2002

Sheet 22 of 41

40001	GCGTAACAGG	TTCCCAGGGT	AGCAGGGATG	GTTGATGGAC	GGGAGAGCTG
40051	ACAGGATGCC	AGGCAGAGGG	CACTGTGAGG	CCACTGGCAG	CTAAAGGCCA
	CCATTAGACA				
	GGCCATGGGT				
	TTGGCCACAG				
	TGTTGATTGA				
	GAGGCCCGGC			-	
	CAGCACCCTG				
	CCCTAAGGTG				
	CTCGGATGAA				
	ACCAGCTGGC				
	TGTGGGGATC				
	CAGGTTTCCT				
40651		AGGCAGTGAT			
40701		GGAGCTCAGA			
	TAAATTGTGT				
	GTTTTTTTA				
	AGGTCCATGG				
	GACTTACAGA				
	TACCCTACTG				
	CTCTCTGAGC				
	GGCTGTCTCA				
41101	TGTATAGTGC	TGCCATAGGG	ACAGTGTTCA	GTAAACGTGA	CACATTCTTA
41151	GTATCACTAA	GAATCAGGTT	CTTGGCCAGG	CACCGTGGCT	CATGCCTGTA
41201	ATCCCAACAC	TCTGGGAGGC	CTAGGTCGGA	GGATGGCTTG	AACACAGGAG
41251	TTTGAGACCA	GCCTGAGCAA	CATAGTGAGA	CACTGTCTCT	ACAAAAAAA
41301	AATAATAA	ATAATTGTTT	TTAATTAGAT	GGGCAGGGCA	CTGTGGCTCA
41351	CACCTGTAAT	CCCAGCACTT	TGGGAGGCCA	AGGCCGGAGG	ATTGCTTGAG
	GCCAGGAGTT				
	AAAAAAGTTA				
	AGAGGCTGAG				
	AGCCTTGATC				
	GTCTCCAAAA				
	AAACTGAGTA				
	CCTCTCATTA				
	GTATGATGAA				
	GAAATCCATG				
	AGAGCCACCA				
	GCATGGTCAG				
	GGTCGGGACA				
	AAGTAAAGCA				
	TGCAGTGCTG				
42001	TAACAGTCAT	TCACCATCAC	TATTATCCAC	CCCTTTTCAG	AATCTAAACA
	TAGTGACTTT				
	AGGAAACATG				
42201	TTTGCTGGCC	AGGCACACGG G	GUTUAUGUUT	GIAATUUCAG	CACATTGGGA
42301	GGCCGAGGCG	GGCAAA I CAC	TIGAGGICAG	GAGIIIGAGA	CCAGCC TGGC
	CAACATGGTG				
42401	GCAGTGGCTC	ACGCCTATAA	ICCCAGCACT	TGGGAGGCC	GAGGTGGGCG
42451	AATCACAAGG	TCAGGAGTTT	GAGACTAGCC	TGGCCAATAT	GGTGAAACCC

Jan. 22, 2002

Sheet 23 of 41

	CATCTCTACT				
	TGTAATCCCA				
42601	AGTTCGAGAC	CAACCTAGCC	AACATGGTGA	AACCCCATCT	CTACTAAAAA
42651	AATACAAAAA	TTATTCGGTT	GTGGTGGCAC	ACGCCTGTAA	TCCCAGCTAC
42701	TTGGGAGGCT	GAGGCAGGAG	AATCTCTTGA	ACCTGGGAGG	CAGAGGTTGC
42751	AGTGAGTGGA	GATCCCGCCG	TTGCACTCCA	GCCTGGGCGA	CAGAGTGAGA
42801	CTCCATCAAA	AAAAAAAAA	AAAAAAAAA	AAATTAGCCG	GGCGTGGTGG
42851	CGTGCACCTA	TACTCCCAGC	TACTTGGGAG	GCTGAGGCAG	GAGAATCGCT
42901	TGAACCTGGA	AGGCGGAGGT	CGCAGTGAGC	CGAGATCGTG	CCATTGCACT
42951	TCAGCCTGGG	CGACAGAGCG	AGACTCTGTC	TCAAAAATAA	TAATAATAAC
43001	AATAACTAGC	CGGCCTGGT	GGCACATGCC	TGTAGTCCCA	GTTACTCAGG
43051	AGGCGGAGGC	ATGAGACTCA	GGTGAACTAG	GGAGACAGAG	GTTGCAGTGA
43101	GCCAAGATCA	CACCACTGCA	CTCCAGCCTG	GTTGACAGAG	CGAGACTCTG
43151	TCTCAAAAAA	AAAAAAATCC	CATTTGCTCA	TTTTTTGGAT	ACTAGTATAA
43201	CTATCACTCT	AAACCAGTTA	GTACTTAAAT	CAAGCAGATA	TGGGAGATGG
43251	TGAATTACCA	TCTACAGTGT	TGTCATATAT	GTCACATACT	GAGCATTATC
43301	AGCTAGTAGA	ATCTAGTTAA	TTGTTCTATG	TGTGATGTAT	GCAGAGTTCC
	CATTTTGAAT				
	CCCCAAAATG				
	TCTAAACTAT				
	CAGGGTTTCT				
	TCCTCATCTT				
	TCCCCAAAGG				
	CCTTCGTTGT				
	TAATCCATGG				
	GTGAGCGCAG				
	ACTGTCTTTC				
	GATGCCAGGC				
	CACCCCCACC				
	TGGACCTGGA				
	TCCAGTCAGT				TACCGGGCAT
	GCTACAAGGA				
	TCAGGGACTA				
	ACTGGGAGGG				
	GGCTGGAGAG	•			
	GCACTGACCT				
	TATGCCAAAT				
	CTTCTTCCCC				
	CCAGCTCTCC				
	CACGCTGCAT				
	TGCCCTCCAA				
	CTCCAGAACT				
	GGTGACACAC				
	GATGTGATGA				
	AGGGGGCCCG				
	ATAATGGCTT				
	AGCAGAAAAG				
	AATTATTTGT				
	GGGATGCAGT				
	GGATGATGGA				
TOUL	auni uni uun		GIOCHAITIA	U I AUANO I UA	AIGHAIAAI

Jan. 22, 2002

Sheet 24 of 41

45001	CCTCACCTGA	ACGCCCTGCT	AAGGGAGCCT	GGAGGGGAGC	TCCCTGAGCA
45051	CTCACACTCC	TTGGGCATTT	ACAGTTTTCA	CTACCCCTCC	CAAGTTACTT
45101	CATGGAGTAA	CTTAAGTTGG	GGACACCTGT	GGTCTGGGTA	TTGCCCTCCA
45151	AGCCACTTGG	CCACTCCCAC	CCCAGTTCTC	CCAATGCAGT	TCCAAGGGTA
45201	AGGCCTATGA	AGCCATCTCC	ATCTATATGG	TGGTGGTCTT	CCCTCATCCT
45251	GATCTTAGTG	CCCTGTCATA	TCACAAGATA	GGAGGTAGGA	GATACAGGTG
	GTAACACTTG				
	GAGAAGTTAA				
	TGATGCGCAG				
	TACAAGGATA				
	ACTGAAGGAC				
	AGGAGCCTTG				
	TTAAAGGGCA				
	GACTGAGCAT				
	GGCCTGGACC				
	CCATTCTGCA				
	GGAATCGCCT				
	GAGAGTAGGG				
	CCCTTCCTAT				
	TGTCTGTGTC				
	CTGTTTTCAA				
	GCAAACTGGA				
	CAGGTATTCA				
	CTAGGAAATC				
	AGAATTGGAT				
	AGGAGCAAAG				
	AAACAAATGA				
	GCCCTCTATA				
	TITATTCCTC				
	ACAGAGCTGG				
	TAGCCACTGC				
	CAGTTTGGGG				
	CTATAGGAGA				
	TTTTGTTTG				
	TCTGGGGCTT				
	AAGGATATTG				
	TCACTACAGC				
	CCCAAGTAGC				
	TTTTTTCT				
	TTGTTGCCCA				
	CCTCGCCCTC				
	CAGGAAAAGA				
	ATGAGTCTGG				
		•			
	TGGGAGGCCG				
	CTGGCCAACT				
	TTAGCTGGGC				
	GAGGCAGGAG				
	GATCACACCA				
	AAAAAAAAA				
4/451	CGGAGGGTCC	AUUUAA I GGA	GCCCTGCATA	I AA I Jaaaaa	GAAACATTIC

47501	AGATTTCTGA	ATTAAGGTAG	TGGCTGTGGG	GACAGGAGCC	TGGGAGGCAG
47551	GGTGGAGTCA	GAATGGAGAG	ACTGGTTGGC	AATGAGGGAA	CAGGAGGAGG
47601	AGGAGGAGGA	GTTACGAGTG	GCTTGAGGTG	TCACTTACCA	GACATTTGGG
47651	GGATGGGGGA	TAGCCGTGAT	TGTTGAGCAA	CTGGTTTGGG	AAGAGCTAGC
	ATTGATCCCT				
	AGGAAACTGG				
	ATCTGCAGAG				
47851			GCTTGTGAAG		
47901			AAGAAAAAA		
47951			TTGTGGACAG		
48001			CATGAGCTAT		
48051			AGGAGCCTAA		
48101			TGGCTCCTTC		
	AAAGGAAGTT				
	AGGAGACATA				
	AGAGCTTAAA				
	TGTCTGAAAG				TCTGTTGCAG
	GCAGGAAGGA				
	AGGGAGCAGC				
	CAACGGCCAG				
	GCTTTGGCCA				
	AGATGGCAGC				
	ACAAGGGAGA				
	TGAAGCTGGG				
	CCAGATTCAG				
	TTCTGTTCCA				
	AACTCGCACA				· · · · · · · · · · · · · · · ·
	GGCCTCCAGG				
	CTTGTCCCCT				
	TTCCCTTCCT				
49001			CACCTTCTCT		
	ATTTGATTAG				
49101			CCCCATAGTA		
	GCTGACCCCA				
49201			GACCAGTTTG		TCCTCCCACT
	GCCCCTCAGC				
	CTGGCTTCCT				
	ACACCACGCA				
	AAAGAGCTTG				
	TTTTCTGTCT				
	AAGACAGGAC				
49301	CCACTCTCCA	ACTCCCTCAC	CCTCACCTCC	ACCCCTCCAC	TOCOTOTOCO
	ATGAACCCAC				
	AGAAACACAA				
	TTTTTAGATG				
	ATCTTGGCTTC				
	TTCAGCCTCC				
47001	TOTTOGGAG	COTCOTOTTO	IGIAILLIA	GTAGAGACAG	GGTTTTGCCA
	TGTTGGCCAG				
49951	TGGCCTCCCA	AAGTTCTGGG	ATTACAGGTG	GAAGCCACCG	IGCCIGGCCT

Jan. 22, 2002

Sheet 26 of 41

50001	GAGTGTGTCT	ATTTGATAGA	GCTTTCTGCT	CTGATTCTCC	CTTGCTATAC
50051	ACCTTTTCTC	CCCTTCTCAG	TGGCTTCTCT	TGCCTATGCT	TCCTCCCCAG
		GAGAACATCC			
		ACTGTGGTGG			
50201	TGGAAGAGAG	GAAAAGGGCC	CCCATGGAGA	AGGCCACCAC	CAAGAAACGC
		AGAACGACCG			
		GCCCCTGAGA			
		CAGAGGGAGG			
		GGAGGCCTGT			
50451	GATATTTTC	CCTTGCCAGG	TGGGCCTCA	CGATTTAGCT	CCTGAGCTCA
		AACTGATCAG			
50551	GACTGTGGCA	TTTGTGCCTC	AGGGATCGCT	AAGAGCTCAG	GCTATTGTCC
50601	CAGCTTTAGC	CTTCTCTCTC	CATGGTGAGA	ACTGAAGTGT	GGTGCCCTCT
50651	GGTGGATAAT	GCTCAAACCA	ACCAGAGATG	CTGGTTGGGA	TTCTTGAAAT
		AGGCCTCAGA			
		AGAAGTTCAG			
		TAGATGAACC			
		TAGGCAGTGT			
		AGGAAGGACT			
		CCCTACAGAA			
		CCTAGACCCA			
		TCCTGTGTTC			
		CTTTGGGATC			
		AGGCAGCAGG			
		CCTAGGGATG			
		GTTTATAACG			
		AAGAGAAGGA			
		TGCCCAGGCT			
		CTTCTGGGTT			
		TACCGGCACA			
		CAGGGTTTCA			
		GATCCGCCTG			
51601	GCCCTCAGGT	ACCTCGCCCG	CCTCAGCTTTT	TITITITI	TTTTACTTC
51651	ACCAAACTCA	GGCTTGGAAG	ACCCCACTCC	CTTCCACATC	CTCCATAACC
		ACTCAGAATT			
		CTAGCTCTTG			
51001 51051	TCCACACACT	AGCCACTCTA GAGGAATCTT	CCAAACATTC	CTACCTTTAC	CACTTTACTC
E1001	ACCTCACACC	ATATCTCACC	CACTCAAACA	CACACACATT	CAAACCCTTC
E10E1	TOTALTTOOT	ATATCTCAGC	CACCCCTACA	CACACACATT	CAAAGCCTTC
E2001	CCTTACCATA	ACAAAGTTGT	CTTTTCTTT	TOTTTTTT	GACAAGGGAI
52001	ACTITCACTO	ATGAAGGAAT	COTCOACTCO	ACACCTCCAA	TOTTOGAGATGG
52051	CTCCACCCTC	TGTCACCCAG	GC I GGAG I GC	AGAGG I GCAA	TOTIGGETEA
		CGCCTCCCAG			
52151	AAGTAGCTAG	GACTACAGGT	GIGCGCCACC	ACGCC I GGC I	AAIIIIIGIA
2667	THICAGIAG	AGACAGGGTT	ICGCCATAIT	GGCCAGGCTG	GICICAAATG
52251	CACCCATCAC	GGTGATACAC	CCGCTTCAGC	CICCCAAAGT	GCTGAGATTA
523UI	CAGGCA I GAG	CTACCGTGCC	IGGCCATGAA	GGAAGATTTG	ITTAAAAAA
52351	TOOMS	TAATATTAAT	IGAACACCTC	IGTTCAGAGC	ACTGGGCTGG
52401	IGUUAGAGGG	TTTCAGACAT	GAATCAGATC	CAGCACCTCA	IAGAGCCTTA
52451	ATCTGGCACA	CACACACAGC	CACAAGGAGA	CACAGACAAG	GCAGGGTAGG

Jan. 22, 2002

52501	ATGAGTGGAA	GCTAGGAGCA	GATGCTGATT	TGGAACACTT	GGCTTCTGCA
52551	GTGAAGCCCC	TTCTTAGTCC	TCTTCAGTAA	CCCAGCTCTC	AGTGGATACA
	GGTCTGGATT				
	TCTAACCTAT				
	CCAGCATCCC				
	AAACAGCTGT				
	CTGACTGCCT				
	TGGGAGAAGT				
	CGCCATCTGC				
	TTCTCCCAGC				
	CCTGAGCCCT				
	GTGGCTGTCA				
	AAGAGAGAGA				
	CACAGCCATT				
	GAATACAGTA				
	CATATACTTT				
	CTTGTGTTTA				
	AAATTCTATT				
	TTTTCCAGTT				
	TGCATTTAGC				
	TTCTTCTCAG				
	CAAGTGTGTG				
	CTGTAATCCC				
	TGGAGTTCGA				
	AAATACAAAA				
53751	CTTGGGAGGC	TGAGGCAGGA	GAATTGCTTG	AACCCAGGGG	CGGAGGTTGC
53801	AGTGAGCCGA	TATCACGCCA	TTGCACTCCA	GCCTCGGCAA	CAAGAGTGAA
53851	ACTCTGTCTC	AAAAATGGGG	ПСТТТТССТ	GCCATCAAAA	ATCATGTTTC
53901	TTTTAAAAAC	AAGTTCAAAC	ATTACCAAAG	TTTATAGCAC	AGGAAATACG
53951	TCTTCTGTAA	TCTCCCTTAA	CCAATATATC	CCTCAACATT	CTCCTCACCC
54001	CCAACTCCAC	CCTCCCAGGA	TAACCAGTTG	GGACATAATC	TTTATTTAAA
	AATGGTTTCC				
	GCCGCAGGGG				
	ACCAGGCCAG				
	CCCGCCGCCG				
	CGGGCGTCAC				
	GCCCCGGAGG				
	GGCGGCCCCG				
54401	GCATCTACTT	TCAGAGCCCC	CCAGGGGGGC	CLACCACACC	COCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
	GGCGGATGAT				
	ATGACCCCAA				
	GAGCAGCTCA				
	AGAGATTGAC				
	CTTCCAGGGT				
	TTCATCTCTG				
	ACCCCAGAAG				
	GGACAATCGC				
	TGCGGCCAGG				
	GGGTCTCTTC				
54951	TTATTAAACT	GATGGGACTT	TGTGTTTTTA	TATTGACTCT	GCGGCACGGG

FF001 000		4.4.0.0.4.0.T.		TT00T00100	
					TCAAAAAAA
		GATTTCCAGC			
		TACCTTGTTC			
		GTAAAAGCTT			
		ACCTCTTGTC			
		AGTATTGAAT			
		CAGCAGCGAA			
		CATGGTATCT			
		ATATTAGAAT			
		CGATTGTTCA			
		CCTCACTGAG			
		AAGCCTGAGC			
		CTAGGAGCCT			
		AGATATGGGA			
		CTAGTCCAGC			
		GGTACCGGTA			
		GAGTTTGCCT			
		CCACCCACCC			
		TTTTCCTTCT			
		TCTCCCTGTA			
		GAGTTGGACC			
		TCCCTAGCCC			
56101 CAG	CCAGCAT	TGCCCCTCTG	TGCCCCATTC	CTGCTGTGAG	CAGGGCCGTC
56151 CGG	GCTTCCT	GTGGATTGGC	GGAATGTTTA	GAAGCAGAAC	AAGCCATTCC
56201 TAT	TACCTCC	CCAGGAGGCA	AGTGGGCGCA	GCACCAGGGA	AATGTATCTC
56251 CAC	AGGTTCT	GGGGCCTAGT	TACTGTCTGT	AAATCCAATA	CTTGCCTGAA
56301 AGC	TGTGAAG	AAGAAAAAA	CCCCTGGCCT	TTGGGCCAGG	AGGAATCTGT
56351 TAC	TCGAATC	CACCCAGGAA	CTCCCTGGCA	GTGGATTGTG	GGAGGCTCTT
56401 GCT	TACACTA	ATCAGCGTGA	CCTGGACCTG	CTGGGCAGGA	TCCCAGGGTG
		TGAACTCTGA			
56501 TTC	AAGTGTG	TGGACGAAAG	AAAGACTGAT	GGCTCAAAGG	GTGTGAAAAA
		CTCCCCCTTT			
		GTAGGTTTTG			
		AGAAAGGGCT			
		GACCACATCA			
		ACTGGAGACT			
		AACAGTCACA			
		CTCTAGAAAG			
		CTTAGTCAGA			
		GACAGTGTGG			
		CTCAGCAATC			
		ACATGCCTGG			
		TCTCAAAGCT			
		ACTTCTACCT			
		TCCTCCTGAG			
		AGAGCTCTAG			
57201 TCT	ACTETE	TATGAGCTTG	CACCATATTT	AATAAATTCC	CANTCCCTTT
57351 666	TATTAA	TGCAATGTGT	CCTCCTTCTA	TTCCACCACC	CCCAATTCAT
		GGTTGCTGTT			
		CATAGACCTG			
2142T WAY	IALIGIA	CATAGACCTG	AIGAGIIGIG	BUALLAGAIG	ICAICICIGG

Jan. 22, 2002

Sheet 29 of 41

US 6,340,583 B1

57501 TCAGAGTTTA CTTGCTATAT AGACTGTACT TATGTGTGAA GTTTGCAAGC
57551 TTGCTTTAGG GCTGAGCCCT GGACTCCCAG CAGCAGCACA GTTCAGCATT
57601 GTGTGGCTGG TTGTTTCCTG GCTGTCCCCA GCAAGTGTAG GAGTGGTGGG
57651 CCTGAACTGG GCCATTGATC AGACTAAATA AATTAAGCAG TTAACATAAC
57701 TGGCAATATG GAGAGTGAAA ACATGATTGG CTCAGGGACA TAAATGTAGA
57751 GGGTCTGCTA GCCACCTTCT GGCCTAGCCC ACACAAACTC CCCATAGCAG
57801 AGAGTTTTCA TGCACCCAAG TCTAAAACCC TCAAGCAGAC ACCCATCTGC
57851 TCTAGAGAAT ATGTACATCC CACCTGAGGC AGCCCCTTCC TTGCAGCAGG
57901 TGTGACTGAC TATGACCTTT TCCTGGCCTG GCTCTCACAT GCCAGCTGAG
57951 TCATTCCTTA GGAGCCCTAC CCTTTCATCC TCTCTATATG AATACTTCCA
58001 TAGCCTGGGT ATCCTGGCTT GCTTTCCTCA GTGCTGGGTG CCACCTTTGC
58051 AATGGGAAGA AATGAATGCA AGTCACCCCA CCCCTTGTGT TTCCTTACAA
58101 GTGCTTGAGA GGAGAAGACC AGTTTCTTCT TGCTTCTGCA TGTGGGGGAT
58151 GTCGTAGAAG AGTGACCATT GGGAAGGACA ATGCTATCTG GTTAGTGGGG
58201 CCTTGGGCAC AATATAAATC TGTAAACCCA AAGGTGTTTT CTCCCAGGCA
58251 CTCTCAAAGC TTGAAGAATC CAACTTAAGG ACAGAATATG GTTCCCGAAA
58301 AAAACTGATG ATCTGGAGTA CGCATTGCTG GCAGAACCAC AGAGCAATGG
58351 CTGGGCATGG GCAGAGGTCA TCTGGGTGTT CCTGAGGCTG ATAACCTGTG
58401 GCTGAAATCC CTTGCTAAAA GTCCAGGAGA CACTCCTGTT GGTATCTTTT
58451 CTTCTGGAGT CATAGTAGTC ACCTTGCAGG GAACTTCCTC AGCCCAGGGC
58501 TGCTGCAGGC AGCCCAGTGA CCCTTCCTCC TCTGCAGTTA TTCCCCCTTT
58551 GGCTGCTGCA GCACCACCCC CGTCACCCAC CACCCAACCC CTGCCGCACT
58601 CCAGCCTTTA ACAAGGGCTG TCTAGATATT CATTTTAACT ACCTCCACCT
58651 TGGAAACAAT TGCTGAAGGG GAGAGGATTT GCAATGACCA ACCACCTTGT
58701 TGGGACGCCT GCACACCTGT CTTTCCTGCT TCAACCTGAA AGATTCCTGA
58751 TGATGATAAT CTGGACACAG AAGCCGGGCA CGGTGGCTCT AGCCTGTAAT
58801 CTCAGCACTT TGGGAGGCCT CAGCAGGTGG ATCACCTGAG ATCAAGAGTT
58851 TGAGAACAGC CTGACCAACA TGGTGAAACC CCGTCTCTAC TAAAAATACA
58901 AAAATTAGCC AGGTGTGGTG GCACATACCT GTAATCCCAG CTACTCTGGA
58951 GGCTGAGGCA GGAGAATCGC TTGAACCCAC AAGGCAGAGG TTGCAGTGAG
59001 GCGAGATCAT GCCATTGCAC TCCAGCCTGT GCAACAAGAG CCAAACTCCA
59051 TCTCAAAAAA AAAAA (SEQ ID NO:3)

FEATURES:

Start: 3000 Exon: 3000-3044 Intron: 3045-45393 Exon: 45394 - 45525 Intron: 45526-45761 Exon: 45762-45818 45819-50154 Intron: 50155-50329 Exon: 50330-51076 Intron: 51077-51132 51133-52775 52776-52933 Exon: Intron: Exon:

Intron: 52934-55922 Exon: 55923-56064

Stop: 56065

CHROMOSOME MAP POSITION: Chromosome 22

ALLELIC \	/ARIANTS	(SNPs):	
Position	Major	Minor	Domain
941	A	T	Beyond ORF(5')
2612	G	Α	Beyond ORF(5')
5080	G	Α	Intron
6599	•	A C	Intron
6983	C	G	Intron
9885	Α	-	Intron
12538	G	T	Intron
17707	T	С	Intron
18219	•	Α	Intron
19670	С	T	Intron
21153	G	υT	Intron
24566	С	-	Intron
26604	G	Α	Intron
27255	С	G	Intron
27399	T	С	Intron
28088	G	Α	Intron
28734	G	Α	Intron
29246	•	T	Intron
29490	G	Α	Intron
29934	T	С	Intron
34480	Α	G	Intron
38812	T	С	Intron
40731	C	G	Intron
41303	T	Α	Intron
41305	-	Α	Intron
41457	G	С	Intron
43168	Α	- T	Intron
43357	T	G	Intron
45664	T	С	Intron
47549	Α	С	Intron
47908	С	Α	Intron
52267	С	Α	Intron
54654	T	С	Intron
54679	C	G	Intron
54693	Α	С	Intron
54706	Τ .	C.	Intron
54712	T	C C	Intron
54799	T	С	Intron
54819	T G C C	Α	Intron
55499	С	T	Intron
56825		Α	Beyond ORF(3')
58871	T	Α	Beyond ORF(3')

Context:

Jan. 22, 2002

Sheet 31 of 41

US 6,340,583 B1

DNA
Position
941

GAGTAAGTGGGTGGTCAGGTTACAGACTTAATTTTGGGTTAAAAAGTAAAAACAAGAAAC
AAGGTGTGGCTCTAAAATAATGAGATGTGCTGGGGGTGGGGCATGGCAGCTCATAAACTG
ACCCTGAAAGCTCTTACATGTAAGAGTTCCAAAAATATTTCCAAAACTTGGAAGATTCAT
TTGGATGTTTGTGTTCATTAAAATCTCTCACTAATTCATTGTCTTGTCCACTGTCCGTAA
CCCAACCTGGGATTGGTTTGAGTGAGTCTCTCAGACTTTCTGCCTTGGAGTTTTGTGAGAG
[A.T]

TGAGTTGGAACAGTTTGATACCAAAACCATCCCCCGCCCCCCAACCCCCAGCCTAGGGT
CCGTGGAAAAATTGGCCCCTGGTGCCAAAAAGGTTGAGGACTGATCTAGAGGACCAA
TTTATTCAATGTTGGTTGAGTAAATGAGCTCTTGGATTAGGTGATGAAAAAAATCTGAAAA
AACAGGGCTTTTGAGGAATAGGAAAAGGCAGTAACATGTTTAACCCAGAGAAAGTTTCT
GGCTGTTGGCTGGGAATAGTCATAGGAAGGGCTGACACTGAAAAGAAGGAGATTGTGTTC
[G,A]

TTTCTTCTCTCAGAGCTATAAGCAAAGGCTGAAAGTTCTAGAAAAAGGCAAGTTTTGTT
TCAGTAGAAAAAAGGATAATCAGAACCATTTTTAGAAAAATGGAATGAGACTACTTTTGAG
GCCATGAGTTCCTTGTCCCTGGAGAGATGAGCAGAGGTTGGACAAGTGCTTACCAGAGAT
CTTGTGGAGGCAGAAACTGTGCATCTAGCAGAGCATTGGCCTAACCCTTTCAAATGAGAT
GCTGTTAACTCAGTCTTATTCTACATGGTAGGAATCCTGTCCCTTTGCCTCCTGCTACTT

ACAACGTAAAATAGTTGAAATTTGTTGGTGGAAAGAAGACAGTCCACTCCAGAGGCTGG
ATGGGCATGCCTCCAAGGTCTGAAGTGGTAGGCTGTGCCTATATCCTGAGAATG
AGATAGACTAGGCAGGCACCTTGTGCTGTAGATTCCAGCTCCTGCACATAGCTCTTGTTG
TAAAACATCCCTGTGCTTATACCAAGTAATTGAGTTGACCTTTAAACACTTGCCTCTTCC
CTGGGAACCATATAGGGGATTGGCCTGGAGACGTCTGGCCTCTGGAAAGACA
[G,A]
CCATCATTATTATCCTTTCCTTTCAGCTATAACTCAGAGCTCTCAAGTCTTTTCTGTGGA

CCATCATTATTATCCTTTCCTTTCAGCTATAACTCAGAGCTCTCAAGTCTTTTCTGTGGA
TCTTATTGCCTTGGTTCTTGCCCCTTTTACTCCCAGGGAAGTTGATTCTGTCTTTTCTGT
TCCATTTAGTATGACAGGAGCAGAGAATGTCAGAGCTGTAAAGGGACCTTATAGTTAAAGC
CTTTGGCTGGTCCTTTCATTTTATAGCTGGGACTAATAAGTAACGTCAAAACCCAATGAG
TTCACAGATTGGGTCTCGCCTTGGCATGTAACCCCATATGTTCATATTCTTGCTGTTTTTCC

Jan. 22, 2002

Sheet 32 of 41

US 6,340,583 B1

6983

CACATTCATTGGTGATCTGATGTGGAGCCCCAGGGATTAAGGGCAACTTTGAACTACCCT GACACAATCAAGCCAAATATCATTCCCGTGGAGGAAGTAGAGTATCTAGGTTCTGTCTCC TAGTTGCAGCTTTACCTTGAGGACAGAGACTCTAATCCAGCTGTGCTGAAGGAGCACATC TCCTGACTTCTGAGCTTTCCCCTGGTAAATTCAAACTGGATGTCACGGCGCCCTCAGATA GAGCCTGGTAATTTGCCCTGGGGAGAGTGACTGTCTTTTGGATCTAATTTGACTTTTGCC IC. G1

CAGTTGGAGGAAAATCTTCAGGGCTAGGAAGGATTGTATTTGTCTGACCCCAGAGATAAC
CTGGGTTTTGAGGAACATGGGGCATCAACCTGAATGGTCTTGTAAGATCTCTCCCACGCC
AGCTTGCCAGTGTTTCTCTGATGAATTTAGAGTACCTGAGTAGTGCAGGCCTGCTGGGAG
GAGGACTCTCCCTCTGTGCTACTCAGAGAAATTCATTCTTCAAGGCCCCCTTCCAGCCTT
GCTCTTACCCAGCTGGGCTACAGTTACAATAAAGGAAATGACTTTTCTTCTCCCCTTCCC

9885

GGCGTGCCACCACCCTTGCCATTTTTTTTTATTTTAAGTAGAAACAAGGTCTTATTAAT
ACTATGTTGCCCAGGCTGGTCTTGAACTCCAGCGATCCTCCTGCCCCAGCCTCCCAAAGT
GCTTGGGATTACGGAAGTAAGCCACTGTGCCTGGCCAGTGCAACCCCCATTTTATACTAA
AACAGGAAGGCCCAGAAAGGTTTGGAGTAACTTGTCCAGGGTCACACAGATGATATTTGA
ACTCAGGTCTCCCTGGCTCCCAAGAGAGTCTGCTTTCCACTAGGACTCCCAGGAGAAAAA

12538

17707

Jan. 22, 2002

Sheet 33 of 41

US 6,340,583 B1

18219

19670

GACCCCCATGATGAGCAACTATAGCACTAGAACAGTGATAATAACTAATGTTTATAATGC
ATCTTCAGTTTACAGAGGGCTTTTGTACTCATCATCTAGTTTAGTTCCTGCAACAACCTC
TTGAGGAATATAGCACAAGCAGGACAAGGGAAGCCCCAGAGATGTTAAATAATTTATCCAA
GTTTATGCTGCTGGGAAGGGCAGCACTGAAATTAAAAGAAAAGTTTTCTGAGCTCAAATC
CCATGCCCTTTCCTCAATGTGAGCTCTAGCAAGGTATTCAGGAATCCTGCCTCTACAGTT
[C,T]

AGAGCCTCAAATTGCTGGGTATGTTGAGTTCTTGTATCTGATTTTTCTAGATTTCCTGCC CACATTCTTACTGTCTGGATATCAGGAAAGAGTTTATCAAATGCCTGTGGAAATCCAAGA TAAGGTCTCATGATGAGTAACCCAGTGAAAACATGAAGTCAAGTCTAACTAGTCACTACT ATTTCACTACTGCTGACTCCTGATGATCAGCTCCTTTTCTAAGTGCTTACTGTCCACTTA TTCCATCATCTGCCTAGAATTTATGTGAAGGAATCAAAGCAAAAGGATCATAAGGCTTCC

21153

GGACCCTTGTTTTAGAAGGATGACTGCTGCTATAATGTAGAAAGTGATTTGGAAGAGGGG AGGAGTGGGGCACGAAAGATGGTTAGTAGATGGGGGTGGTAATGCTTACCTTTCAGTATT TGGAGGCTTCGGAGTCCTCAAAAATTCTCTTCCTTGATTGGAGTCCTCCCAGCCAATAGA GGGCTTCACACAAACAGTTTCTTGGGTTTTGAATTGTTTGACCAGAGCTTTCTTCCGACA AAAGGTTGGGGTGATTCATTCACTTACCACACCTTGCCTGAACATTCACTTGGGGCTGCC

GTTATGAAGGCTATTGTTCTCCAGCCTGTCACAGACGCTTTGAAGACCTGTGCCTCAGCT
GGTTCTAAGGAGTCAGTTTGTTCAGCTCCGTGCCAGGTTTCCAACTTATGAAATGTGCTG
GAGATTAACACCTCTCCTGCCATTTTATCCCTACTATAATTGCCAGTCAAAGGATTCCTG
CAGTTGCCTCTGGCAGCCATAACTGATGAATGTTCTGCCAGCTGCTCTGAGGACCTAGAA
GAGCAGTTTTCTATCCAGGACCAGTTTCCAAGGGTGGGAGGGTGAAATATATCCTCCAGT

24566

TAGAAGATATTAACTGCTCAATAAATGGTAGCTTCTTAACAGTATTCAAACCCATGTGCT CTTATCACATGCATTGTTGTCCCTGTGTCCAGTTGGTGGAATGGGAAAAGGCTCCCTTGT AACCCCATCTACCATCTTTATCAGACTTTCCTGCCATGGTTCACAGTAAGAGATAGAAGC TGCACGGTGACTTCTGGCTCTTTACAATGGTGAGCGGTGTGTGCCTGGTAAGGGAGAGCT GATGTCACTGCCCCAAATCCAGTAGTGAGATCTGAGTGTTCCTGGTTTCCTCCAGCAGCCT

Jan. 22, 2002

Sheet 34 of 41

US 6,340,583 B1

26604

27255

CTGTTGTTCCAAAAAGGCTGCCTCCCCCTCACCAGTGGTCCTGGTCGACTTTTCCCTTCT GGCTTCTCTAAGCTAGGTCCAGTGCCCAGATCTTGCTGCCGGGATACTAGGTCAGGTGGCC AGGCCCTGGGCAGAAAAGCAGTGTACCATGTGGTTTTGTGGAATGACCGGACCCTGGTAG ATTGCTGGGAAGTGTCTGGACAGGGGGAAGGGGAACTGGTCCTCAATGCTGACT CTACCAAGCGCCCTGCTAGACACTTTATCCTTTAATCTCTCAACAGCCTAAAGAGATTAT

27399

AGATGTGGAAACTCTACCTCTAACCTGGCTTTCTTTGCTCATTGCCCCACTCCACCTCCC
ATAGAAACTCCCCAGGGGGTTTCTGGCCCTCTGGGTCCCTTCTGAATGGAGCCATTCCAG
GCTAGGGTGGGGTTTGTTTTCATTCTTTGGGAGCAGCCTGTTGTTCCAAAAAGGCTGCCT
CCCCCTCACCAGTGGTCCTGGTCGACTTTTCCCTTCTGGCTTCTCTAAGCTAGGTCCAGT
GCCCAGATCTTGCTGCCGGGATACTAGTCAGGTGGCCAGGCCCTGGGCAGAAAAGCAGTG
LT.C1

28088

AAGAGCCAATGGAAATTGATCTTGAGTTTAGGAGAAAGCTTTTACATGTGGAATTAAGAT GCCAAGTGTTGAAGTAGCCACATTTCAGGTCCTCATTAATTTCTCTTAATCCTGGGAAGG CAGCTTAGGAGAAGGGTTGTTCCTTTAGGAGCCAGGAACTATACCCCTTTTACCCTTGGA GAGGCAGGGAAGCCAGGGAGGACCAACTTCTCAGGAAGAGGAGAAGCTAGAGCAGATAG TGAACTCTCAACCTGAACCTTTAAGGGCCAGACCACTAATGCCACCCAAGTCCACCTGCC LG.AT

Jan. 22, 2002

Sheet 35 of 41

US 6,340,583 B1

28734 AAGTAGAAGCTAGACTTCTTGGGCTCCTGAACAGGGTCCTTGCTGGATTCTGTGAAACAA
ATTAAGTTCTTGACCCTAGGCCTCTGGGGGAGTACAAAGTCTATGGGAGTTCTGGGGCTG
TGGTTGCAAGGAAAGTGACGCAACCAGATTCCATGGGGACATGATCAGGCGTGACATGTG
AGGGAGGAAGAGGGAGCAAGGGAATGAAGAATACAACTTCTGTGTCCCATACACCCCTGC

CTGACAGGCCATACATACTCAGCAGAGAATGCACTGTCTTTCCTACCACACACTAGCGTGAG

AGTGAGCTGCAATTACCACTGTGCTTCCAAGTAAGAAAATACCTCAAATTGGAATTTACA AAAGAGGTAAATTAGGGAGTGGCTTTTGTCGGACATCTTTAAAGCATTTTTCTTTTTATA GAATTTCACTTAATGTCCAATACTGATTTAATGAGCTTGGGTTTACACATTATCTCTTGA AGAAAACAAATGAACCTTTGTGTTCCAAAGCAATCCATGTTTAAAGGGAAAAAATTATGC ATAACTCTGCCCAGCTTCACAGTAACCTTTGGCAGGTGCCTTAGGTCCTCTGGGACTCTT

29246 AATCCATGTTTAAAGGGAAAAAATTATGCATAACTCTGCCCAGCTTCACAGTAACCTTTG
GCAGGTGCCTTAGGTCCTCTGGGACTCTTTTCCTTATCTGAAAAATGAAGGACTTGGATC
AGGTGAATGGTTCCCAGCTCTGCAACTTATGTGGCTCCTCAGAGGCACACAAGCTCTTTT
CCATTATTTGCCAAATAATGGAGGCCCTGTCTTTAACTGCAGTACAACTACACAAAATAC
TTGAAACTACAGTCTTCCTGGTTTTTGGTTGGAACTGAATCAGTGCACTCTAGCAACACT

ĀTTTČTTGCTGTTCGTAGGCTTCATTATGTGTTTGGTTAATTTTTTAAAACAACAATAAC
ATATTCCATAATAATTACAGCTTAATTGGCAGACTGTTTCAGTCTATAGGATCTGCAGGA
AGGAGGAGTAATAAAGGGATTTTTGACTGAGCTCTTATGGAACAGAGTCTCTCTAGGCCC
CTGTCATATCTGCCCTTCTGGGCCCTGGGGAAAAGTTGGCATCCCCAGTTGTGGTGCTCT
CCAGGTGCCCTCAGGCTGTGGTGGAGGGAGCTTCCCATTCTCCCTTCAGCCCACTCAAT

29490 AACTACAGTCTTCCTGGTTTTTTGGTTGGAACTGAATCAGTGCACTCTAGCAACACTTATT
TCTTGCTGTTCGTAGGCTTCATTATGTGTTTGGTTAATTTTTTAAAACAACAATAACATA
TTCCATAATAATTACAGCTTAATTGGCAGACTGTTTCAGTCTATAGGATCTGCAGGAAGG
AGGAGTAATAAAGGGATTTTTGACTGAGCTCTTATGGAACAGAGTCTCTCTAGGCCCCTG
TCATATCTGCCCTTCTGGGCCCTGGGGAAAAGTTGGCATCCCCAGTTGTGGTGCTCTCCA

GTGCCCTCAGGCTGTGGAGGGAGGCTTCCCATTCTCCCTTCAGCCCACTCAATTCAG AGGCTAGGGGCTGAAAGAAGCTTCTCTACAACTGGCTGTTCACTGGGAGGTTAAGGGATG ACCATCCAGCCAGGCCTTCCTCAGGACATGGGAGGGCTTATGCTTTAACATGTGTAAATC CACTGCAATAATGACTGGTTCTTTTACCCCCATAAGGTTGAGAATTTACCTGTAAACATTT TTGTCTGAAGAATTTGGATGTAAGTGAGGGCTGGGCCTCTATCTTATCTCACTTGGCTTC

CTGACTTCAAGTGATCCACCCGCCTCGGCCTCCCAAAGTGCTGGGATTATAAGCATAAGC CACTGTGCCCAGCTGCTCTCTATATTTTTAATACATATTATTTCCATTAATTTTCACAGC AGTTCATTTTATAGATGAGGAAACTAGGCCAGAGAAGTAAAATATCTTGCCCAAGATGAT GTAACTAGTAAGTGGCAGGATCAAGATTCAAACCAAGCAATGTTCAAACCTCTTGGAAGC AAGAATGTGGCCACTGTGGAAGGTGCAAGGCCTTGACAACAAGAATAGGGAAAAGAAGAA [A,G]

38812

ÄCGCCTGTAATGCCAGCACTTTGGGAGGCCAAGGTGGGCAGATTGCTTGAGGTCAAGAGT TTGGGATTAGGCCAGGCGCAGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAG GTGGGCGGATCACAAGGTCAGGAGATCAAGACCATCCTGGCTAACACAATGAAACCCCGT CTCTACTAAAAGTACAAAAATTAGCCGGGCATGGTGGCGGACGCCTGTAGTCCCAGCTAC TCGGGAGGCTGAGGCAGGAGAATGGCGTGAACCTAGGAGGCGGAGCTTGCTGTGAGCAGA

40731

GGGCACAGATAGGATTGAATAAATTGTGTAGAAAAGACTTTGAAAACAATAAAGCAAAAGA TGAATGAACGTTTTTTTTTAGACTTGAGGGACCAACCCCCCAAACCCCCAGATTCTGCCA GGTCCATGGGGAAGGAGAAGTTGCCTTGAGTGGAAGCCCCCAAGTAGGGAGACTTACAGAA AAGAAGTCAAGAGCACTGGCTCCCAGGCAGAAATACTGATACCCTACTGGGGCTTCAGGC TGAGCTCCTCCCTTCACAAATCACTTCATCTCTCTGAGCCTGTTTCTGCATCTGTGACAT

41303

AATAATAATAATTGTTTTTAATTAGATGGGCAGGGCACTGTGGCTCACACCTGTAATCCC
AGCACTTTGGGAGGCCAAGGCCGGAGGATTGCTTGAGGCCAGGAGTTCAGGAGCAGCCTG
GGCCACATTCCTGTCTCTACAAAGAATAAAAAAGTTAACTGGGCATGGTGGCACATGCCT
GTAATCCCAGCTACTCAAGAGGCTGAGGAGGAGGATTGCCTGAGCCCAGGAGTTCAAGAC
TGCAGTGAGCCTTGATCACACCACTGTACTACAGCTTGGGCAACAGAGTGAGACCTTGTC

TAATAATAATTGTTTTTAATTAGATGGCAGGCACTGTGGCTCACACCTGTAATCCCAG CACTTTGGGAGGCCAAGGCCGGAGGATTGCTTGAGGCCAGGAGTTCAGGAGCAGCCTGGG CCACATTCCTGTCTCTACAAAGAATAAAAAAGTTAACTGGGCATGGTGGCACATGCCTGT AATCCCAGCTACTCAAGAGGCTGAGGAGGAGGATTGCCTGAGCCCAGGAGTTCAAGACTG CAGTGAGCCTTGATCACACCACTGTACTACAGCTTGGGCAACAGAGTGAGACCTTGTCTC

41457

43168

CCCATTTGCTCATTTTTTGGATACTAGTATAACTATCACTCTAAACCAGTTAGTACTTAA ATCAAGCAGATATGGGAGATGGTGAATTACCATCTACAGTGTTGTCATATATGTCACATA CTGAGCATTATCAGCTAGTAGAATCTAGTTAATTGTTCTATGTGTGATGTATGCAGAGTT CCCATTTTGAATGTGTTTTTACTATGCTTAAATAAATGACTGATGTCAGCAACCCCCAAAA TGATACATCTGATGTAAGAGCCCCTGTTCCCCAATAATAACATCTAAACTATAGACATTG

43357

AATGTGTTTTTACTATGCTTAAATAAATGACTGATGTCAGCAACCCCAAAATGATACATC
TGATGTAAGAGCCCCTGTTCCCCAATAATAACATCTAAACTATAGACATTGGAATGAACA
GGTGCCCCTAAGTTTCCTCCCTCCAGGGTTTCTTGGCCGGTCTCTGAGGACTACACATCC
CTACTCCCGTCTTTCCTCATCTTCAGGCGCAGTAACAGTATCTCCAAGTCCCCTGGCCCC
AGCTCCCCAAAGGAGCCCCTGCTGTTCAGCCGTGACATCAGCCGCTCAGAATCCCTTCGT

AGGGAGGCTTCACTGGGAGACCACATTGACCCATGGGGCCTGGACCACGAGTGGGACAGG GCTCAACAGCCTCTGAAAATCATTCCCCATTCTGCAGGATCCGTTCCCCTGGCAGCAGAA GGTCAGGTTTGCCAAAGGAATCGCCTCCGGAATGGTGAGTCCCACCAACAAACCTGCCAG CAGGGCGAGAGTAGGGAGAGGTGTGAGAATTGTGGGCTTCACTGGAAGGTAGAGACCCCT TCCTATGCAACTTGTGTGGGCTGGGTCAGCAGCTATTCATTGAGTTTGTCTGTGTCACTG

47549

47908

GGAGTTACGAGTGGCTTGAGGTGTCACTTACCAGACATTTGGGGGGATGGGGGATAGCCGT GATTGTTGAGCAACTGGTTTGGGAAGAGCTAGCATTGATCCCTGCTGTTCTGTGCTAGCA GAACCTATCAGCATCTTCTGGGCAGGAAACTGGCTCCATGAGACTGGCTTAGGGAGAGGC TGCTAGTCACCTAATCTGCAGAGAAGGGGCAGCTGGAGCTGTGGGACAGAAGAGGCATCC ATGTAGCTGGTGGGGGTGTCTCAGCTTGTGAAGAGGAGATGGCTTTGAGCAGGGCTGACA CC. AT

52267

TTGTGAGGGGTAGAGGAGAGAGAGAGAGAGACAAGGGATGGTTAGGATAATGAAGGAATGTTTTG
TTTTTGTTTTTGAGATGGAGTTCACTCTGTCACCCAGGCTGGAGTGCAGAGGT
GCAATCTTGGCTCACTGCAGCCTCCCAGGTTCAAGCAATCCTCCTGCCTCAGCC
TCCCAAGTAGCTGGGACTACAGGTGTGCCCACCACGCCTGGCTAATTTTTGTATTTTCA
GTAGAGACAGGGTTTCGCCATATTGGCCAGGCTGGTCTCAAATGCCTGACCTCAGGTGAT
[C.A]

CACCCGCTTCAGCCTCCCAAAGTGCTGAGATTACAGGCATGAGCTACCGTGCCTGGCCAT GAAGGAAGATTTGTTTTAAAAAATTGTTTTCTTTAATATTAATTGAACACCTCTGTTCAG AGCACTGGGCTGGTGCCAGAGGGTTTCAGACATGAATCAGATCCAGCACCTCATAGAGCC TTAATCTGGCACACACACACACCACAGGCACAAGGAGACACAGACAAGGCAGGGTAGGATGAGTG GAAGCTAGGAGCAGATGCTGATTTGGAACACTTGGCTTCTGCAGTGAAGCCCCTTCTTAG

U.S. Patent

Jan. 22, 2002

Sheet 39 of 41

US 6,340,583 B1

54654

GGCCCCGGCCCCAGGCCAGGCAGGCAGTGGCGGCCAAGGACCACGCATCTACTTTCA
GAGCCCCCCCGGGGCCGCAGGAGAGGGCCCGGGCTGGGCGGATGATGAGGGCCCAGTGA
GGCGCCAAGGGAAGGTCACCATCAAGTATGACCCCAAGGAGCTACGGAAGCACCTCAACC
TAGAGGAGTGGATCCTGGAGCAGCTCACGCGCCTCTACGACTGCCAGGAAGAGGAGATCT
CAGAACTAGAGATTGACGTGGATGAGCTCCTGGACATGGAGAGTGACGATGCCTGGGCTT
IT.C]

CAGGGTCAAGGAGCTGCTGGTTGACTGTTACAAACCCACAGAGGCCTTCATCTCTGGCCT GCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACCCCAGAAGAAGTGAGGGTCCCC GACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTACCCCCCGACCTCGTAGCAACAG CAATACCGGGGGACCCTGCGGCCAGGCCTGGTTCCATGAGCAGGGCTCCTCGTGCCCCTG GCCCAGGGGTCTCTTCCCCTGCCCCCTCAGTTTTCCACTTTTTGGATTTTTTATTGTTAT

54679

GGCAGTGGCGGCCAAGGACCACGCATCTACTTTCAGAGCCCCCCCGGGGCCGCAGGAGA GGGCCCGGGCTGGGCGGATGATGAGGGCCCAGTGAGGCGCCCAAGGGAAGGTCACCATCAA GTATGACCCCAAGGAGCTACGGAAGCACCTCAACCTAGAGGAGTGGATCCTGGAGCAGCT CACGCGCCTCTACGACTGCCAGGAAGAGGAGATCTCAGAACTAGAGATTGACGTGGATGA GCTCCTGGACATGGAGAGTGACGATGCCTGGGCTTCCAGGGTCAAGGAGCTGCTGGTTGA [C.G]

TGTTACAAACCCACAGAGGCCTTCATCTCTGGCCTGCTGGACAAGATCCGGGCCATGCAG AAGCTGAGCACACCCCAGAAGAAGTGAGGGTCCCCGACCCAGGCGAACGGTGGCTCCCAT AGGACAATCGCTACCCCCCGACCTCGTAGCAACAGCAATACCGGGGGACCCTGCGGCCAG GCCTGGTTCCATGAGCAGGGCTCCTCGTGCCCCTGGCCCAGGGGTCTCTTCCCCTGCCCC CTCAGTTTTCCACTTTTGGATTTTTTTATTGTTATTAAACTGATGGGACTTTGTGTTTTT

54693

AGGACCACGCATCTACTTTCAGAGCCCCCCCGGGGCCGCAGGAGAGGGCCCGGGCTGGG CGGATGATGAGGGCCCAGTGAGGCGCCAAGGGAAGGTCACCATCAAGTATGACCCCAAGG AGCTACGGAAGCACCTCAACCTAGAGGAGTGGATCCTGGAGCAGCTCACGCGCCTCTACG ACTGCCAGGAAGAGGAGATCTCAGAACTAGAGATTGACGTGGATGAGCTCCTGGACATGG AGAGTGACGATGCCTGGGCTTCCAGGGTCAAGGAGCTGCTGGTTGACTGTTACAAACCCA

AGAGGCCTTCATCTCTGGCCTGCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACC CCAGAAGAAGTGAGGGTCCCCGACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTAC CCCCGACCTCGTAGCAACAGCAATACCGGGGGACCCTGCGGCCAGGCCTGGTTCCATGA GCAGGGCTCCTCGTGCCCCTGGCCCAGGGGTCTCTTCCCCTGCCCCCTCAGTTTTCCACT TTTGGATTTTTTATTGTTATTAAACTGATGGGACTTTTGTGTTTTTTATATTGACTCTGCG

54706

TACTTTCAGAGCCCCCCCGGGGCCGCAGGAGAGGGCCCGGGCTGGGCGGATGATGAGGG CCCAGTGAGGCGCCAAGGGAAGGTCACCATCAAGTATGACCCCAAGGAGCTACGGAAGCA CCTCAACCTAGAGGAGTGGATCCTGGAGCAGCTCACGCCCTCTACGACTGCCAGGAAGA GGAGATCTCAGAACTAGAGATTGACGTGGATGAGCTCCTGGACATGGAGAGTGACGATGC CTGGGCTTCCAGGGTCAAGGAGCTGCTGGTTGACTGTTACAAACCCACAGAGGCCTTCAT [T,C]

TCTGGCCTGCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACCCCAGAAGAAGTGA GGGTCCCCGACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTACCCCCCGACCTCGT AGCAACAGCAATACCGGGGGACCCTGCGGCCAGGCCTGGTTCCATGAGCAGGGCTCCTCG TGCCCCTGGCCCAGGGGTCTCTTCCCCTGCCCCCTCAGTTTTCCACTTTTGGATTTTTTT ATTGTTATTAAACTGATGGGACTTTGTGTTTTTTATATTGACTCTGCGGCACGGGCCCTTT

FIG. 3-34

U.S. Patemt

Jan. 22, 2002

Sheet 40 of 41

US 6,340,583 B1

CTGCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACCCCAGAAGAAGTGAGGGTCCCCGACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTACCCCCCGACCTCGTAGCAACAGCAATACCGGGGGACCCTGCGCCAGGCCTGGTTCCATGAGCAGGGCTCCTCGTGCCCCCTGGCCCAGGTTTTCCACTTTTTGGATTTTTTATTGTTATTAAACTGATGGGACTTTTGTGTTTTTATTGACTCTGCGGCACGGGCCCTTTAATAAA

GTATGACCCCAAGGAGCTACGGAAGCACCTCAACCTAGAGGAGTGGATCCTGGAGCAGCT
CACGCGCCTCTACGACTGCCAGGAAGAGAGAGATCTCAGAGATTGACGTGGATGA
GCTCCTGGACATGGAGAGTGACGATGCCTGGGCTTCCAGGGTCAAGGAGCTGCTGGTTGA
CTGTTACAAACCCACAGAGGCCTTCATCTCTGGCCTGCTGACAAGATCCGGGCCATGCA
GAAGCTGAGCACACCCCAGAAGAAGTGAGGGTCCCCGACCCAGGCGAACGGTGGCTCCCA
[T,C]
AGGACAATCGCTACCCCCCGACCTCGTAGCAACAGCAATACCGGGGGACCCTGCGGCCAG
CCCTCGTTCCATGAGCAGGCCTCCTGTGCCCCAGGGGTTTCTTCCCCTGCCCC

GGAAGCACCTCAACCTAGAGGAGTGGATCCTGGAGCAGCTCACGCGCCTCTACGACTGCC
AGGAAGAGGAGATCTCAGAACTAGAGATTGACGTGGATGAGCTCCTGGACATGGAGAGTG
ACGATGCCTGGGCTTCCAGGGTCAAGGAGCTGCTGGTTGACTGTTACAAACCCACAGAGG
CCTTCATCTCTGGCCTGCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACCCCAGA
AGAAGTGAGGGTCCCCGACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTACCCCCC

GTCAGAGCAGGCCTCACTGAGGTGACATGACATTTAAGCATAAACATGGAGGAGGAGGAG TAAGCCTGAGCTGTCTTAGGCTTCCGGGGCAGCCAAGCCATTTCCGTGGCACTAGGAGCC TGGTGTTTCCGATTCCACCTTTGATAACTGCATTTTCTCTAAGATATGGGAGGAAGTTT TTCTCCTATTGTTTTTAAGTATTAACTCCAGCTAGTCCAGCCTTGTTATAGTGTTACCTA ATCTTTATAGCAAATATATGAGGTACCGGTAACATTATGCCCATTTCTCACAGAGGCACT

FIG.3-35

CGTCACCCACCCAACCCCTGCCGCACTCCAGCCTTTAACAAGGGCTGTCTAGATATT

FIG.3-36

ISOLATED HUMAN KINASE PROTEINS, NUCLEIC ACID MOLECULES ENCODING **HUMAN KINASE PROTEINS, AND USES** THEREOF

FIELD OF THE INVENTION

The present invention is in the field of kinase proteins that are related to the serine/threonine kinase subfamily, recombinant DNA molecules, and protein production. The present invention specifically provides novel peptides and proteins that effect protein phosphorylation and nucleic acid molecules encoding such peptide and protein molecules, all of which are useful in the development of human therapeutics and diagnostic compositions and methods.

BACKGROUND OF THE INVENTION

Protein Kinases

Kinases regulate many different cell proliferation, 20 differentiation, and signaling processes by adding phosphate groups to proteins. Uncontrolled signaling has been implicated in a variety of disease conditions including inflammation, cancer, arteriosclerosis, and psoriasis. controlling activities of eukaryotic cells. It is estimated that more than 1000 of the 10,000 proteins active in a typical mammalian cell are phosphorylated. The high energy phosphate, which drives activation, is generally transferred from adenosine triphosphate molecules (ATP) to a particular protein by protein kinases and removed from that protein by protein phosphatases. Phosphorylation occurs in response to extracellular signals (hormones, neurotransmitters, growth and differentiation factors, etc), cell cycle checkpoints, and environmental or nutritional stresses and is roughly analo- 35 gous to turning on a molecular switch. When the switch goes on, the appropriate protein kinase activates a metabolic enzyme, regulatory protein, receptor, cytoskeletal protein, ion channel or pump, or transcription factor.

The kinases comprise the largest known protein group, a 40 superfamily of enzymes with widely varied functions and specificities. They are usually named after their substrate, their regulatory molecules, or some aspect of a mutant phenotype. With regard to substrates, the protein kinases may be roughly divided into two groups; those that phos- 45 phorylate tyrosine residues (protein tyrosine kinases, PTK) and those that phosphorylate serine or threonine residues (serine/threonine kinases, STK). A few protein kinases have dual specificity and phosphorylate threonine and tyrosine residues. Almost all kinases contain a similar 250-300 50 amino acid catalytic domain. The N-terminal domain, which contains subdomains I-IV, generally folds into a two-lobed structure, which binds and orients the ATP (or GTP) donor molecule. The larger C terminal lobe, which contains subdomains VI A-XI, binds the protein substrate and carries out 55 the transfer of the gamma phosphate from ATP to the hydroxyl group of a scrine, threonine, or tyrosine residue. Subdomain V spans the two lobes.

The kinases may be categorized into families by the different amino acid sequences (generally between 5 and 60 100 residues) located on either side of, or inserted into loops of, the kinase domain. These added amino acid sequences allow the regulation of each kinase as it recognizes and interacts with its target protein. The primary structure of the kinase domains is conserved and can be further subdivided 65 into 11 subdomains. Each of the 11 subdomains contains specific residues and motifs or patterns of amino acids that

are characteristic of that subdomain and are highly conserved (Hardie, G. and Hanks, S. (1995) The Protein Kinase Facts Books, Vol I:7-20 Academic Press, San Diego, Calif.).

The second messenger dependent protein kinases primarily mediate the effects of second messengers such as cyclic AMP (cAMP), cyclic GMP, inositol triphosphate, phosphatidylinositol, 3,4,5-triphosphate, cyclic-ADPribose, arachidonic acid, diacylglycerol and calcium-calmodulin. The cyclic-AMP dependent protein kinases (PKA) are important members of the STK family. Cyclic-AMP is an intracellular mediator of hormone action in all prokaryotic and animal cells that have been studied. Such hormoneinduced cellular responses include thyroid hormone secretion, cortisol secretion, progesterone secretion, glyco-15 gen breakdown, bone resorption, and regulation of heart rate and force of heart muscle contraction. PKA is found in all animal cells and is thought to account for the effects of cyclic-AMP in most of these cells. Altered PKA expression is implicated in a variety of disorders and diseases including cancer, thyroid disorders, diabetes, atherosclerosis, and cardiovascular disease (Isselbacher, K. J. et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, New York, N.Y., pp. 416-431, 1887)

Calcium-calmodulin (CaM) dependent protein kinases are Reversible protein phosphorylation is the main strategy for 25 also members of STK family. Calmodulin is a calcium receptor that mediates many calcium regulated processes by binding to target proteins in response to the binding of calcium. The principle target protein in these processes is CaM dependent protein kinases. CaM-kinases are involved in regulation of smooth muscle contraction (MLC kinase), glycogen breakdown (phosphorylase kinase), and neurotransmission (CaM kinase I and CaM kinase II). CaM kinase I phosphorylates a variety of substrates including the neurotransmitter related proteins synapsin I and II, the gene transcription regulator, CREB, and the cystic fibrosis conductance regulator protein, CFTR (Haribabu, B. et al. (1995) EMBO Journal 14:3679-86). CaM II kinase also phosphorylates synapsin at different sites, and controls the synthesis of catecholamines in the brain through phosphorylation and activation of tyrosine hydroxylase. Many of the CaM kinases are activated by phosphorylation in addition to binding to CaM. The kinase may autophosphorylate itself, or be phosphorylated by another kinase as part of a "kinase

> Another ligand-activated protein kinase is 5'-AMPactivated protein kinase (AMPK) (Gao, G. et al. (1996) J. Biol Chem. 15:8675-81). Mammalian AMPK is a regulator of fatty acid and sterol synthesis through phosphorylation of the enzymes acetyl-CoA carboxylase and hydroxymethylglutaryl-CoA reductase and mediates responses of these pathways to cellular stresses such as heat shock and depletion of glucose and ATP. AMPK is a heterotimeric complex comprised of a catalytic alpha subunit and two non-catalytic beta and gamma subunits that are believed to regulate the activity of the alpha subunit. Subunits of AMPK have a much wider distribution in nonlipogenic tissues such as brain, heart, spleen, and lung than expected. This distribution suggests that its role may extend beyond regulation of lipid metabolism alone.

> The mitogen-activated protein kinases (MAP) are also members of the STK family. MAP kinases also regulate intracellular signaling pathways. They mediate signal transduction from the cell surface to the nucleus via phosphorylation cascades. Several subgroups have been identified, and each manifests different substrate specificities and responds to distinct extracellular stimuli (Egan, S. E. and Weinberg, R. A. (1993) Nature 365:781-783). MAP kinase signaling

pathways are present in mammalian cells as well as in yeast. The extracellular stimuli that activate mammalian pathways include epidermal growth factor (EGF), ultraviolet light, hyperosmolar medium, heat shock, endotoxic lipopolysaccharide (LPS), and pro-inflammatory cytokines such as 5 tumor necrosis factor (TNF) and interleukin-1 (IL-1).

PRK (proliferation-related kinase) is a serum/cytokine inducible STK that is involved in regulation of the cell cycle and cell proliferation in human megakaroytic cells (Li, B. et al. (1996) J. Biol. Chem. 271:19402-8). PRK is related to 10 the polo (derived from humans polo gene) family of STKs implicated in cell division. PRK is downregulated in lung tumor tissue and may be a proto-oncogene whose deregulated expression in normal tissue leads to oncogenic transformation. Altered MAP kinase expression is implicated in 15 a variety of disease conditions including cancer, inflammation, immune disorders, and disorders affecting growth and development.

The cyclin-dependent protein kinases (CDKs) are another group of STKs that control the progression of cells through the cell cycle. Cyclins are small regulatory proteins that act by binding to and activating CDKs that then trigger various phases of the cell cycle by phosphorylating and activating selected proteins involved in the mitotic process. CDKs are unique in that they require multiple inputs to become activated. In addition to the binding of cyclin, CDK activation requires the phosphorylation of a specific threonine residue and the dephosphorylation of a specific tyrosine residue.

Protein tyrosine kinases, PTKs, specifically phosphorylate tyrosine residues on their target proteins and may be divided into transmembrane, receptor PTKs and nontransmembrane, non-receptor PTKs. Transmembrane protein-tyrosine kinases are receptors for most growth factors. Binding of growth factor to the receptor activates the transfer of a phosphate group from ATP to selected tyrosine side chains of the receptor and other specific proteins. Growth factors (GF) associated with receptor PTKs include; epidermal GF, platelet-derived GF, fibroblast GF, hepatocyte 40 GF, insulin and insulin-like GFs, nerve GF, vascular endothelial GF, and macrophage colony stimulating factor.

Non-receptor PTKs lack transmembrane regions and, instead, form complexes with the intracellular regions of cell surface receptors. Such receptors that function through non- 45 Gene 236 (2), 259-271 (1999). receptor PTKs include those for cytokines, hormones (growth hormone and prolactin) and antigen-specific receptors on T and B lymphocytes.

Many of these PTKs were first identified as the products of mutant oncogenes in cancer cells where their activation 50 was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs, and it is well known that cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity (Carbonneau H and Tonks NK (1992) Annu. Rev. 55 Cell. Biol. 8:463-93). Regulation of PTK activity may therefore be an important strategy in controlling some types of cancer.

LIM Domain Kinases

The novel human protein, and encoding gene, provided by the present invention is related to the family of serine/c threonine kinases in general, particularly LIM domain kinases (LIMK), and shows the highest degree of similarity to LIMK2, and the LIMK2b isoforn (Genbank gi8051618) 65 in particular (see the amino acid sequence alignment of the protein of the present invention against LIMK2b provided in

FIG. 2). LIMK proteins generally have serine/threonine kinase activity. The protein of the present invention may be a novel alternative splice form of the art-known protein provided in Genbank gi805161; however, the structure of the gene provided by the present invention is different from the art-known gene of gi8051618 and the first exon of the gene of the present invention is novel, suggesting a novel gene rather than an alternative splice form. Furthermore, the protein of the present invention lacks an LIM domain relative to gi8051618. The protein of the present invention does contain the kinase catalytic domain.

Approximately 40 LIM proteins, named for the LIM domains they contain, are known to exist in eukaryotes. LIM domains are conserved, cystein-rich structures that contain 2 zinc fingers that are thought to modulate protein-protein interactions. LIMK1 and LIMK2 are members of a LIM subfamily characterized by 2 N-terminal LIM domains and a C-terminal protein kinase domain. LIMK1 and LIMK2 mRNA expression varies greatly between different tissues. The protein kinase domains of LIMK1 and LIMK2 contain a unique sequence motif comprising Asp-Leu-Asn-Ser-His-Asn in subdomain VIB and a strongly basic insert between subdomains VII and VIII (Okano et al., J. Biol. Chem. 270 (52), 31321-31330 (1995)). The protein kinase domain present in LIMKs is significantly different than other kinase domains, sharing about 32% identity.

LIMK is activated by ROCK (a downstream effector of Rho) via phosphorylation. LIMK then phosphorylates cofilin, which inhibits its actin-depolymerizing activity, thereby leading to Rho-induced reorganization of the actin cytoskeleton (Maekawa et al., Science 285: 895-898, 1999).

The LIMK2a and LIMK2b alternative transcript forms are differentially expressed in a tissue-specific manner and are generated by variation in transcriptional initiation utilizing 35 alternative promoters. LIMK2a contains 2 LIM domains, a PDZ domain (a domain that functions in protein-protein interactions targeting the protein to the submembranous compartment), and a kinase domain; whereas LIMK2b just has 1.5 LIM domains. Alteration of LIMK2a and LIMK2b regulation has been observed in some cancer cell lines (Osada et al., Biochem. Biophys. Res. Commun. 229: 582-589, 1996).

For a further review of LIMK proteins, see Nomoto et at,

Kinase proteins, particularly members of the serine/ threonine kinase subfamily, are a major target for drug action and development. Accordingly, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown members of this subfamily of kinase proteins. The present invention advances the state of the art by providing previously unidentified human kinase proteins that have homology to members of the serine/ threonine kinase subfamily.

SUMMARY OF THE INVENTION

The present invention is based in part on the identification of amino acid sequences of human kinase peptides and proteins that are related to the serine/threonine kinase subfamily, as well as allelic variants and other mammalian orthologs thereof. These unique peptide sequences, and nucleic acid sequences that encode these peptides, can be used as models for the development of human therapeutic targets, aid in the identification of therapeutic proteins, and serve as targets for the development of human therapeutic agents that modulate kinase activity in cells and tissues that express the kinase. Experimental data as provided in FIG. 1

indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

DESCRIPTION OF THE FIGURE SHEETS

FIG. 1 provides the nucleotide sequence of a cDNA molecule that encodes the kinase protein of the present invention. (SEQ ID NO:1) In addition, structure and functional information is provided, such as ATG start, stop and tissue distribution, where available, that allows one to readily determine specific uses of inventions based on this molecular sequence. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

FIG. 2 provides the predicted amino acid sequence of the kinase of the present invention. (SEQ ID NO:2) In addition structure and functional information such as protein family, function, and modification sites is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence.

FIG. 3 provides genomic sequences that span the gene encoding the kinase protein of the present invention. (SEQ ID NO:3) In addition structure and functional information, such as intron/exon structure, promoter location, etc., is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence. As illustrated in FIG. 3, SNPs were identified at 42 different nucleotide positions.

DETAILED DESCRIPTION OF THE INVENTION

General Description

The present invention is based on the sequencing of the human genome. During the sequencing and assembly of the human genome, analysis of the sequence information revealed previously unidentified fragments of the human genome that encode peptides that share structural and/or 40 sequence homology to protein/peptide/domains identified and characterized within the art as being a kinase protein or part of a kinase protein and are related to the serine/ threonine kinase subfamily. Utilizing these sequences, additional genomic sequences were assembled and transcript 45 and/or cDNA sequences were isolated and characterized. Based on this analysis, the present invention provides amino acid sequences of human kinase peptides and proteins that are related to the serine/threonine kinase subfamily, nucleic acid sequences in the form of transcript sequences, cDNA 50 sequences and/or genomic sequences that encode these kinase peptides and proteins, nucleic acid variation (allelic information), tissue distribution of expression, and information about the closest art known protein/peptide/domain that has structural or sequence homology to the kinase of the 55 present invention.

In addition to being previously unknown, the peptides that are provided in the present invention are selected based on their ability to be used for the development of commercially important products and services. Specifically, the present 60 peptides are selected based on homology and/or structural relatedness to known kinase proteins of the serine/threonine kinase subfamily and the expression pattern observed. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous 65 tissue, bladder, infant and fetal brain, and thyroid gland. The art has clearly established the commercial importance of

6

members of this family of proteins and proteins that have expression patterns similar to that of the present gene. Some of the more specific features of the peptides of the present invention, and the uses thereof, are described herein, particularly in the Background of the Invention and in the annotation provided in the Figures, and/or are known within the art for each of the known serine/threonine kinase family or subfamily of kinase proteins.

Specific Embodiments

Peptide Molecules

The present invention provides nucleic acid sequences that encode protein molecules that have been identified as being members of the kinase family of proteins and are related to the serine/threonine kinase subfamily (protein sequences are provided in FIG. 2, transcript/cDNA sequences are provided in FIG. 1 and genomic sequences are provided in FIG. 3). The peptide sequences provided in FIG. 20, as well as the obvious variants described herein, particularly allelic variants as identified herein and using the information in FIG. 3, will be referred herein as the kinase peptides of the present invention, kinase peptides, or peptides/proteins of the present invention.

The present invention provides isolated peptide and protein molecules that consist of, consist essentially of, or comprise the amino acid sequences of the kinase peptides disclosed in the FIG. 2, (encoded by the nucleic acid molecule shown in FIG. 1, transcript/cDNA or FIG. 3, genomic sequence), as well as all obvious variants of these peptides that are within the art to make and use. Some of these variants are described in detail below.

As used herein, a peptide is said to be "isolated" or "purified" when it is substantially free of cellular material or free of chemical precursors or other chemicals. The peptides of the present invention can be purified to homogeneity or other degrees of purity. The level of purification will be based on the intended use. The critical feature is that the preparation allows for the desired function of the peptide, even if in the presence of considerable amounts of other components (the features of an isolated nucleic acid molecule is discussed below).

In some uses, "substantially free of cellular material" includes preparations of the peptide having less than about 30% (by dry weight) other proteins (i.e., contaminating protein), less than about 20% other proteins, less than about 10% other proteins, or less than about 5% other proteins. When the peptide is recombinantly produced, it can also be substantially free of culture medium, i.e., culture medium represents less than about 20% of the volume of the protein preparation.

The language "substantially free of chemical precursors or other chemicals" includes preparations of the peptide in which it is separated from chemical precursors or other chemicals that are involved in its synthesis. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of the kinase peptide having less than about 30% (by dry weight) chemical precursors or other chemicals, less than about 20% chemical precursors or other chemicals, less than about 10% chemical precursors or other chemicals, or less than about 5% chemical precursors or other chemicals.

The isolated kinase peptide can be purified from cells that naturally express it, purified from cells that have been altered to express it (recombinant), or synthesized using known protein synthesis methods. Experimental data as

provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. For example, a nucleic acid molecule encoding the kinase peptide is cloned into an expression vector, the expression vector introduced into a host cell and the protein expressed in the host cell. The protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Many of these techniques are described in detail below.

Accordingly, the present invention provides proteins that consist of the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genornic sequences provided in FIG. 3 (SEQ ID NO:3). The amino acid sequence of such a protein is provided in FIG. 2. A protein consists of an amino acid sequence when the amino acid sequence is the final amino acid sequence of the protein.

The present invention further provides proteins that consist essentially of the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). A protein consists essentially of an amino acid sequence when such an amino acid sequence is present with only a few additional amino acid residues, for example from about 1 to about 100 or so additional residues, typically from 1 to about 20 additional residues in the final protein.

The present invention further provides proteins that com- 30 prise the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/ cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ when the amino acid sequence is at least part of the final amino acid sequence of the protein. In such a fashion, the protein can be only the peptide or have additional amino acid molecules, such as amino acid residues (contiguous encoded sequence) that are naturally associated with it or heterologous amino acid residues/peptide sequences. Such a protein can have a few additional amino acid residues or can comprise several hundred or more additional amino acids. The preferred classes of proteins that are comprised of the kinase peptides of the present invention are the naturally 45 occurring mature proteins. A brief description of how various types of these proteins can be made/isolated is provided below.

The kinase peptides of the present invention can be attached to heterologous sequences to form chimeric or 50 fusion proteins. Such chimeric and fusion proteins comprise a kinase peptide operatively linked to a heterologous protein having an amino acid sequence not substantially homologous to the kinase peptide. "Operatively linked" indicates that the kinase peptide and the heterologous protein are 55 fused in-frame. The heterologous protein can be fused to the N-terminus or C-terminus of the kinase peptide.

In some uses, the fusion protein does not affect the activity of the kinase peptide per se. For example, the fusion protein can include, but is not limited to, enzymatic fusion 60 proteins, for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions, MYC-tagged, HI-tagged and Ig fusions. Such fusion proteins, particularly poly-His fusions, can facilitate the purification of recombinant kinase peptide. In certain host cells (e.g., mammalian 65 host cells), expression and/or secretion of a protein can be increased by using a heterologous signal sequence.

A chimeric or fusion protein can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different protein sequences are ligated together in-frame in accordance with conventional techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see Ausubel et al., Current Protocols in Molecular Biology, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST protein). A kinase peptide-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the kinase peptide.

As mentioned above, the present invention also provides and enables obvious variants of the amino acid sequence of the proteins of the present invention, such as naturally occurring mature forms of the peptide, allelic/sequence variants of the peptides, non-naturally occurring recombinantly derived variants of the peptides, and orthologs and paralogs of the peptides. Such variants can readily be generated using art-known techniques in the fields of recombinant nucleic acid technology and protein biochemistry. It is understood, however, that variants exclude any amino acid sequences disclosed prior to the invention.

from 1 to about 20 additional residues in the final protein. The present invention further provides proteins that comprise the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). A protein comprises an amino acid sequence when the amino acid sequence is at least part of the final amino acid sequence of the protein. In such a fashion, the protein can be only the peptide or have additional amino acid between the orthologs.

Such variants can readily be identified/made using molecular techniques and the sequence information disclosed herein. Further, such variants can readily be distinguished from other peptides based on sequence and/or structural homology to the kinase peptides of the present invention. The degree of homology/identity present will be based primarily on whether the peptide is a functional variant or non-functional variant, the amount of divergence present in the paralog family and the evolutionary distance between the orthologs.

To determine the percent identity of two amino acid sequences or two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and nonhomologous sequences can be disregarded for comparison purposes). In a preferred embodiment, at least 30%, 40%, 50%, 60%, 70%, 80%, or 90% or more of the length of a reference sequence is aligned for comparison purposes. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

The comparison of sequences and determination of percent identity and similarity between two sequences can be accomplished using a mathematical algorithm. (Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A. M., and Griffin, H. G.,

eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J. Mol. Biol. (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (Devereux, J., et al., Nucleic Acids Res. 12(1):387 (1984)) (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. 20 Myers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

The nucleic acid and protein sequences of the present 25 invention can further be used as a "query sequence" to perform a search against sequence databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (J. Mol. 30 Biol. 215:403-10 (1990)). BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to the nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST 35 program, score=50, wordlength=3 to obtain amino acid sequences homologous to the proteins of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (Nucleic Acids Res. 25(17):3389-3402 (1997)). When uti-40 lizing BLAST and gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used.

Full-length pre-processed forms, as well as mature processed forms, of proteins that comprise one of the peptides 45 of the present invention can readily be identified as having complete sequence identity to one of the kinase peptides of the present invention as well as being encoded by the same genetic locus as the kinase peptide provided herein. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

Allelic variants of a kinase peptide can readily be identified as being a human protein having a high degree (significant) of sequence homology/identity to at least a portion of the kinase peptide as well as being encoded by the same genetic locus as the kinase peptide provided herein. Genetic locus can readily be determined based on the genomic information provided in FIG. 3, such as the genomic sequence mapped to the reference human. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data. As used herein, two proteins (or a region of

the proteins) have significant homology when the amino acid sequences are typically at least about 70–80%, 80–90%, and more typically at least about 90–95% or more homologous. A significantly homologous amino acid sequence, according to the present invention, will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under stringent conditions as more fully described below.

FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

Paralogs of a kinase peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the kinase peptide, as being encoded by a gene from humans, and as having similar activity or function. Two proteins will typically be considered paralogs when the amino acid sequences are typically at least about 60% or greater, and more typically at least about 70% or greater homology through a given region or domain. Such paralogs will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under moderate to stringent conditions as more fully described below.

Orthologs of a kinase peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the kinase peptide as well as being encoded by a gene from another organism. Preferred orthologs will be isolated from mammals, preferably primates, for the development of human therapeutic targets and agents. Such orthologs will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under moderate to stringent conditions, as more fully described below, depending on the degree of relatedness of the two organisms yielding the proteins.

Non-naturally occurring variants of the kinase peptides of the present invention can readily be generated using recombinant techniques. Such variants include, but are not limited to deletions, additions and substitutions in the amino acid sequence of the kinase peptide. For example, one class of substitutions are conserved amino acid substitution. Such substitutions are those that substitute a given amino acid in a kinase peptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu, and Ile; interchange of the hydroxyl residues Ser and Thr; exchange of the acidic residues Asp and Glu; substitution between the amide residues Asn and Gln; exchange of the basic residues Lys and Arg; and replacements among the aromatic residues Phe and Tyr. Guidance concerning which amino acid changes are likely to be phenotypically silent are found in Bowie et al., Science 247:1306-1310 (1990).

Variant kinase peptides can be fully functional or can lack function in one or more activities, e.g. ability to bind substrate, ability to phosphorylate substrate, ability to mediate signaling, etc. Fully functional variants typically contain only conservative variation or variation in non-critical residues or in non-critical regions. FIG. 2 provides the result of protein analysis and can be used to identify critical domains/regions. Functional variants can also contain substitution of similar amino acids that result in no change or an insignificant change in function. Alternatively, such substitutions may positively or negatively affect function to some degree.

Non-functional variants typically contain one or more non-conservative amino acid substitutions, deletions, insertions, inversions, or truncation or a substitution, insertion, inversion, or deletion in a critical residue or critical region.

Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham et al., Science 244:1081-1085 (1989)), particularly using the results provided in FIG. 2. The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as kinase activity or in assays such as an in vitro proliferative activity. Sites that are critical for binding partner/substrate binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al., J. Mol. Biol. 224:899-904 (1992); de Vos et al. Science 255:306-312 (1992)).

The present invention further provides fragments of the kinase peptides, in addition to proteins and peptides that comprise and consist of such fragments, particularly those comprising the residues identified in FIG. 2. The fragments to which the invention pertains, however, are not to be construed as encompassing fragments that may be disclosed publicly prior to the present invention.

As used herein, a fragment comprises at least 8, 10, 12, 14, 16, or more contiguous amino acid residues from a kinase peptide. Such fragments can be chosen based on the ability to retain one or more of the biological activities of the kinase peptide or could be chosen for the ability to perform a function, e.g. bind a substrate or act as an immunogen. Particularly important fragments are biologically active fragments, peptides that are, for example, about 8 or more amino acids in length. Such fragments will typically comprise a domain or motif of the kinase peptide, e.g., active site, a transmembrane domain or a substrate-binding domain. Further, possible fragments include, but are not limited to, domain or motif containing fragments, soluble peptide fragments, and fragments containing immunogenic structures. Predicted domains and functional sites are readily identifiable by computer programs well known and readily available to those of skill in the art (e.g., PROSITE analysis). The results of one such analysis are provided in FIG. 2.

Polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally occurring amino acids. Further, many amino acids, including the terminal amino acids, may be modified by natural processes, such as processing and other post-translational modifications, or by chemical modification techniques well known in the art. Common modifications that occur naturally in kinase peptides are described in basic texts, detailed monographs, and the research literature, and they are well known to those of skill in the art (some of these features are identified in FIG. 2).

Known modifications include, but are not limited to, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide 60 derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cystine, formation of pyroglutamate, formylation, gamma carboxylation, 65 glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pro-

teolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.

Such modifications are well known to those of skill in the art and have been described in great detail in the scientific literature. Several particularly common modifications, glycosylation, lipid attachment, sulfation, gammacarboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, for instance, are described in most basic texts, such as Proteins—Structure and Molecular Properties, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993). Many detailed reviews are available on this subject, such as by Wold, F., Posttranslational Covalent Modification of Proteins, B. C. Johnson, Ed., Academic Press, New York 1-12 (1983); Seifter et al. (Meth. Enzymol. 182: 626-646 (1990)) and Rattan et al. (Ann. N.Y. Acad. Sci. 663:48-62 (1992)).

Accordingly, the kinase peptides of the present invention also encompass derivatives or analogs in which a substituted amino acid residue is not one encoded by the genetic code, in which a substituent group is included, in which the mature kinase peptide is fused with another compound, such as a compound to increase the half-life of the kinase peptide (for example, polyethylene glycol), or in which the additional amino acids are fused to the mature kinase peptide, such as a leader or secretory sequence or a sequence for purification of the mature kinase peptide or a pro-protein sequence.

Protein/Peptide Uses

The proteins of the present invention can be used in substantial and specific assays related to the functional information provided in the Figures; to raise antibodies or to 35 elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its binding partner or ligand) in biological fluids; and as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state). Where the protein binds or potentially binds to another protein or ligand (such as, for example, in a kinase-effector protein interaction or kinase-ligand interaction), the protein can be used to identify 45 the binding partner/ligand so as to develop a system to identify inhibitors of the binding interaction. Any or all of these uses are capable of being developed into reagent grade or kit format for commercialization as commercial products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

The potential uses of the peptides of the present invention are based primarily on the source of the protein as well as the class/action of the protein. For example, kinases isolated from humans and their human/mammalian orthologs serve as targets for identifying agents for use in mammalian therapeutic applications, e.g. a human drug, particularly in modulating a biological or pathological response in a cell or tissue that expresses the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant

brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. A large percentage of pharmaceutical agents are being developed that modulate the activity of kinase proteins, particularly members of the serine/threonine kinase subfamily (see Background of the Invention). The structural and functional information provided in the Background and Figures provide specific and substantial uses for the molecules of the present invention, particularly in combination with the expression information provided in FIG. 1. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Such uses can readily be determined using the information provided herein, that which is known in the art, 15 and routine experimentation.

The proteins of the present invention (including variants and fragments that may have been disclosed prior to the present invention) are useful for biological assays related to kinases that are related to members of the serine/threonine 20 kinase subfamily. Such assays involve any of the known kinase functions or activities or properties useful for diagnosis and treatment of kinase-related conditions that are specific for the subfamily of kinases that the one of the present invention belongs to, particularly in cells and tissues 25 that express the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In 30 addition, PCR-based tissue screening panels indicate expression in fetal brain.

The proteins of the present invention are also usefull in drug screening assays, in cell-based or cell-free systems. Cell-based systems can be native, i.e., cells that normally express the kinase, as a biopsy or expanded in cell culture. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. In an alternate embodiment, cell-based assays involve recombinant host cells expressing the kinase protein.

The polypeptides can be used to identify compounds that modulate kinase activity of the protein in its natural state or an altered form that causes a specific disease or pathology associated with the kinase. Both the kinases of the present invention and appropriate variants and fragments can be used in high-throughput screens to assay candidate compounds for the ability to bind to the kinase. These compounds can be further screened against a functional kinase to determine the effect of the compound on the kinase activity. Further, these compounds can be tested in animal or invertebrate systems to determine activity/effectiveness. Compounds can be identified that activate (agonist) or inactivate (antagonist) the kinase to a desired degree.

Further, the proteins of the present invention can be used to screen a compound for the ability to stimulate or inhibit interaction between the kinase protein and a molecule that normally interacts with the kinase protein, e.g. a substrate or a component of the signal pathway that the kinase protein normally interacts (for example, another kinase). Such assays typically include the steps of combining the kinase protein with a candidate compound under conditions that allow the kinase protein, or fragment, to interact with the target molecule, and to detect the formation of a complex between the protein and the target or to detect the biochemical consequence of the interaction with the kinase protein and the target, such as any of the associated effects of signal

transduction such as protein phosphorylation, cAMP turnover, and adenylate cyclase activation, etc.

Candidate compounds include, for example, 1) peptides such as soluble peptides, including Ig-tailed fusion peptides and members of random peptide libraries (see, e.g., Lam et al., Nature 354:82–84 (1991); Houghten et al., Nature 354:84–86 (1991)) and combinatorial chemistry-derived molecular libraries made of D- and/or L-configuration amino acids; 2) phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang et al., Cell 72:767–778 (1993)); 3) antibodies (e.g., polyclonal, monoclonal, humanized, anti-diotypic, chimeric, and single chain antibodies as well as Fab, F(ab')₂, Fab expression library fragments, and epitope-binding fragments of antibodies); and 4) small organic and inorganic molecules (e.g., molecules obtained from combinatorial and natural product libraries).

One candidate compound is a soluble fragment of the receptor that competes for substrate binding. Other candidate compounds include mutant kinases or appropriate fragments containing mutations that affect kinase function and thus compete for substrate. Accordingly, a fragment that competes for substrate, for example with a higher affinity, or a fragment that binds substrate but does not allow release, is encompassed by the invention.

The invention further includes other end point assays to identify compounds that modulate (stimulate or inhibit) kinase activity. The assays typically involve an assay of events in the signal transduction pathway that indicate kinase activity. Thus, the phosphorylation of a substrate, activation of a protein, a change in the expression of genes that are up- or down-regulated in response to the kinase protein dependent signal cascade can be assayed.

Any of the biological or biochemical functions mediated by the kinase can be used as an endpoint assay. These include all of the biochemical or biochemical/biological events described herein, in the references cited herein, incorporated by reference for these endpoint assay targets, and other functions known to those of ordinary skill in the art or that can be readily identified using the information provided in the Figures, particularly FIG. 2. Specifically, a biological function of a cell or tissues that expresses the kinase can be assayed. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain.

Binding and/or activating compounds can also be screened by using chimeric kinase proteins in which the amino terminal extracellular domain, or parts thereof, the entire transmembrane domain or subregions, such as any of the seven transmembrane segments or any of the intracellular or extracellular loops and the carboxy terminal intracellular domain, or parts thereof, can be replaced by heterologous domains or subregions. For example, a substrate-binding region can be used that interacts with a different substrate then that which is recognized by the native kinase. Accordingly, a different set of signal transduction components is available as an end-point assay for activation. This allows for assays to be performed in other than the specific host cell from which the kinase is derived.

The proteins of the present invention are also useful in competition binding assays in methods designed to discover compounds that interact with the kinase (e.g. binding part-

ners and/or ligands). Thus, a compound is exposed to a kinase polypeptide under conditions that allow the compound to bind or to otherwise interact with the polypeptide. Soluble kinase polypeptide is also added to the mixture. If the test compound interacts with the soluble kinase polypeptide, it decreases the amount of complex formed or activity from the kinase target. This type of assay is particularly useful in cases in which compounds are sought that interact with specific regions of the kinase. Thus, the soluble polypeptide that competes with the target kinase region is designed to contain peptide sequences corresponding to the region of interest.

To perform cell free drug screening assays, it is sometimes desirable to immobilize either the kinase protein, or fragment, or its target molecule to facilitate separation of complexes from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay.

Techniques for immobilizing proteins on matrices can be used in the drug screening assays. In one embodiment, a fusion protein can be provided which adds a domain that 20 allows the protein to be bound to a matrix. For example, glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtitre plates, which are then combined with the cell lysates (e.g., 35S-25 labeled) and the candidate compound, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads are washed to remove any unbound label, and the matrix immobilized and radiolabel determined directly, or in the supernatant after the complexes are dissociated. Alternatively, the complexes can be dissociated from the matrix, separated by SDS-PAGE, and the level of kinase-binding protein found in the bead fraction quantitated from the gel using standard electrophoretic techniques. For 35 example, either the polypeptide or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin using techniques well known in the art. Alternatively, antibodies reactive with the protein but which do not interfere with binding of the protein to its target molecule can be derivatized to the wells of the plate, and the protein trapped in the wells by antibody conjugation. Preparations of a kinase-binding protein and a candidate compound are incubated in the kinase protein-presenting wells and the amount of complex trapped in the well can be quantitated. Methods 45 for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the kinase protein target molecule, or which are reactive with kinase protein and compete with the target molecule, as well 50 as enzyme-linked assays which rely on detecting an enzymatic activity associated with the target molecule.

Agents that modulate one of the kinases of the present invention can be identified using one or more of the above assays, alone or in combination. It is generally preferable to 55 use a cell-based or cell free system first and then confirm activity in an animal or other model system. Such model systems are well known in the art and can readily be employed in this context.

Modulators of kinase protein activity identified according 60 to these drug screening assays can be used to treat a subject with a disorder mediated by the kinase pathway, by treating cells or tissues that express the kinase. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant 65 and fetal brain, and thyroid gland. These methods of treatment include the steps of administering a modulator of

kinase activity in a pharmaceutical composition to a subject in need of such treatment, the modulator being identified as described herein.

In yet another aspect of the invention, the kinase proteins can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693/1696; and Brent WO94110300), to identify other proteins, which bind to or interact with the kinase and are involved in kinase activity. Such kinase-binding proteins are also likely to be involved in the propagation of signals by the kinase proteins or kinase targets as, for example, downstream elements of a kinase-mediated signaling pathway. Alternatively, such kinase-binding proteins are likely to be kinase inhibitors.

The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNAbinding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for a kinase protein is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, in vivo, forming a kinase-dependent complex, the DNAbinding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the kinase protein.

This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a kinase-modulating agent, an antisense kinase nucleic acid molecule, a kinase-specific antibody, or a kinase-binding partner) can be used in an animal or other model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal or other model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.

The kinase proteins of the present invention are also useful to provide a target for diagnosing a disease or predisposition to disease mediated by the peptide. Accordingly, the invention provides methods for detecting the presence, or levels of, the protein (or encoding mRNA) in a cell, tissue, or organism. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The method involves contacting a biological sample with a compound capable of interacting with the kinase protein such that the interaction can be detected. Such an assay can be provided in a single detection format or a multi-detection format such as an antibody chip array.

One agent for detecting a protein in a sample is an antibody capable of selectively binding to protein. A bio-

logical sample includes tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject.

The peptides of the present invention also provide targets for diagnosing active protein activity, disease, or predisposition to disease, in a patient having a variant peptide, particularly activities and conditions that are known for other members of the family of proteins to which the present one belongs. Thus, the peptide can be isolated from a biological sample and assayed for the presence of a genetic 10 mutation that results in aberrant peptide. This includes amino acid substitution, deletion, insertion, rearrangement, (as the result of aberrant splicing events), and inappropriate post-translational modification. Analytic methods include altered electrophoretic mobility, altered tryptic peptide 15 digest, altered kinase activity in cell-based or cell-free assay, alteration in substrate or antibody-binding pattern, altered isoelectric point, direct amino acid sequencing, and any other of the known assay techniques useful for detecting mutations in a protein. Such an assay can be provided in a 20 single detection format or a multi-detection format such as an antibody chip array.

In vitro techniques for detection of peptide include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence using 25 a detection reagent, such as an antibody or protein binding agent. Alternatively, the peptide can be detected in vivo in a subject by introducing into the subject a labeled anti-peptide antibody or other types of detection agent. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Particularly useful are methods that detect the allelic variant of a peptide expressed in a subject and methods which detect fragments of a peptide in a sample.

The peptides are also useful in pharmacogenomic analysis. Pharmacogenomics deal with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Eichelbaum, M. (Clin. Exp. Pharmacol. Physiol. 40 23(10-11):983-985 (1996)), and Linder, M. W. (Clin. Chem. 43(2):254-266 (1997)). The clinical outcomes of these variations result in severe toxicity of therapeutic drugs in certain individuals or therapeutic failure of drugs in certain individuals as a result of individual variation in metabolism. 45 Thus, the genotype of the individual can determine the way a therapeutic compound acts on the body or the way the body metabolizes the compound. Further, the activity of drug metabolizing enzymes effects both the intensity and duration of drug action. Thus, the pharmacogenomics of the 50 individual permit the selection of effective compounds and effective dosages of such compounds for prophylactic or therapeutic treatment based on the individual's genotype. The discovery of genetic polymorphisms in some drug metabolizing enzymes has explained why some patients do 55 not obtain the expected drug effects, show an exaggerated drug effect, or experience serious toxicity from standard drug dosages. Polymorphisms can be expressed in the phenotype of the extensive metabolizer and the phenotype of the poor metabolizer. Accordingly, genetic polymorphism may 60 lead to allelic protein variants of the kinase protein in which one or more of the kinase functions in one population is different from those in another population. The peptides thus allow a target to ascertain a genetic predisposition that can affect treatment modality. Thus, in a ligand-based treatment, 65 polymorphism may give rise to amino terminal extracellular domains and/or other substrate-binding regions that are

more or less active in substrate binding, and kinase activation. Accordingly, substrate dosage would necessarily be modified to maximize the therapeutic effect within a given population containing a polymorphism. As an alternative to genotyping, specific polymorphic peptides could be identified.

The peptides are also useful for treating a disorder characterized by an absence of, inappropriate, or unwanted expression of the protein. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Accordingly, methods for treatment include the use of the kinase protein or fragments.

Antibodies

The invention also provides antibodies that selectively bind to one of the peptides of the present invention, a protein comprising such a peptide, as well as variants and fragments thereof. As used herein, an antibody selectively binds a target peptide when it binds the target peptide and does not significantly bind to unrelated proteins. An antibody is still considered to selectively bind a peptide even if it also binds to other proteins that are not substantially homologous with the target peptide so long as such proteins share homology with a fragment or domain of the peptide target of the antibody. In this case, it would be understood that antibody binding to the peptide is still selective despite some degree of cross-reactivity.

As used herein, an antibody is defined in terms consistent with that recognized within the art: they are multi-subunit proteins produced by a mammalian organism in response to an antigen challenge. The antibodies of the present invention include polyclonal antibodies and monoclonal antibodies, as well as fragments of such antibodies, including, but not limited to, Fab or F(ab')2, and Fv fragments.

Many methods are known for generating and/or identifying antibodies to a given target peptide. Several such methods are described by Harlow, Antibodies, Cold Spring Harbor Press, (1989).

In general, to generate antibodies, an isolated peptide is used as an immunogen and is administered to a mammalian organism, such as a rat, rabbit or mouse. The full-length protein, an antigenic peptide fragment or a fusion protein can be used. Particularly important fragments are those covering functional domains, such as the domains identified in FIG. 2, and domain of sequence homology or divergence amongst the family, such as those that can readily be identified using protein alignment methods and as presented in the Figures.

Antibodies are preferably prepared from regions or discrete fragments of the kinase proteins. Antibodies can be prepared from any region of the peptide as described herein. However, preferred regions will include those involved in function/activity and/or kinase/binding partner interaction. FIG. 2 can be used to identify particularly important regions while sequence alignment can be used to identify conserved and unique sequence fragments.

An antigenic fragment will typically comprise at least 8 contiguous amino acid residues. The antigenic peptide can comprise, however, at least 10, 12, 14, 16 or more amino acid residues. Such fragments can be selected on a physical property, such as fragments correspond to regions that are located on the surface of the protein, e.g., hydrophilic regions or can be selected based on sequence uniqueness (see FIG. 2).

Detection on an antibody of the present invention can be facilitated by coupling (i.e., physically linking) the antibody

to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, 5 β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine 10 fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and acquorin, and examples of suitable radioactive material include ¹²⁵I, ¹³¹I, ³⁵S or ³H.

Antibody Uses

The antibodies can be used to isolate one of the proteins of the present invention by standard techniques, such as affinity chromatography or immunoprecipitation. The antibodies can facilitate the purification of the natural protein from cells and recombinantly produced protein expressed in host cells. In addition, such antibodies are useful to detect the presence of one of the proteins of the present invention in cells or tissues to determine the pattern of expression of 25 the protein among various tissues in an organism and over the course of normal development. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant 30 brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. Further, such antibodies can be used to detect protein in situ, in vitro, or in a cell lysate or supernatant in order to evaluate the abundance and 35 pattern of expression. Also, such antibodies can be used to assess abnormal tissue distribution or abnormal expression during development or progression of a biological condition. Antibody detection of circulating fragments of the full length protein can be used to identify turnover.

Further, the antibodies can be used to assess expression in disease states such as in active stages of the disease or in an individual with a predisposition toward disease related to the protein's function. When a disorder is caused by an inappropriate tissue distribution, developmental expression, level of expression of the protein, or expressed/processed form, the antibody can be prepared against the normal protein. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. If a disorder is characterized by a specific mutation in the protein, antibodies specific for this mutant protein can be used to assay for the presence of the specific mutant protein.

The antibodies can also be used to assess normal and aberrant subcellular localization of cells in the various 55 tissues in an organism. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The diagnostic uses can be applied, not only in genetic testing, but also in monitoring a treatment modality. Accordingly, where treatment is ultimately aimed at correcting expression level or the presence of aberrant sequence and aberrant tissue distribution or developmental expression, antibodies directed against the protein or relevant fragments can be used to monitor therapeutic efficacy.

Additionally, antibodies are useful in pharmacogenomic analysis. Thus, antibodies prepared against polymorphic

proteins can be used to identify individuals that require modified treatment modalities. The antibodies are also useful as diagnostic tools as an immunological marker for aberrant protein analyzed by electrophoretic mobility, isoelectric point, tryptic peptide digest, and other physical assays known to those in the art.

The antibodies are also useful for tissue typing. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Thus, where a specific protein has been correlated with expression in a specific tissue, antibodies that are specific for this protein can be used to identify a tissue type.

The antibodies are also useful for inhibiting protein function, for example, blocking the binding of the kinase peptide to a binding partner such as a substrate. These uses can also be applied in a therapeutic context in which treatment involves inhibiting the protein's function. An antibody can be used, for example, to block binding, thus modulating (agonizing or antagonizing) the peptides activity. Antibodies can be prepared against specific fragments containing sites required for function or against intact protein that is associated with a cell or cell membrane. See FIG. 2 for structural information relating to the proteins of the present invention.

The invention also encompasses kits for using antibodies to detect the presence of a protein in a biological sample. The kit can comprise antibodies such as a labeled or labelable antibody and a compound or agent for detecting protein in a biological sample; means for determining the amount of protein in the sample; means for comparing the amount of protein in the sample with a standard; and instructions for use. Such a kit can be supplied to detect a single protein or epitope or can be configured to detect one of a multitude of epitopes, such as in an antibody detection array. Arrays are described in detail below for nuleic acid arrays and similar methods have been developed for antibody arrays.

Nucleic Acid Molecules

The present invention further provides isolated nucleic acid molecules that encode a kinase peptide or protein of the present invention (cDNA, transcript and genomic sequence). Such nucleic acid molecules will consist of, consist essentially of, or comprise a nucleotide sequence that encodes one of the kinase peptides of the present invention, an allelic variant thereof, or an ortholog or paralog thereof.

As used herein, an "isolated" nucleic acid molecule is one that is separated from other nucleic acid present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. However, there can be some flanking nucleotide sequences, for example up to about 5KB, 4KB, 3KB, 2KB, or 1KB or less, particularly contiguous peptide encoding sequences and peptide encoding sequences within the same gene but separated by introns in the genomic sequence. The important point is that the nucleic acid is isolated from remote and unimportant flanking sequences such that it can be subjected to the specific manipulations described herein such as recombinant expression, preparation of probes and primers, and other uses specific to the nucleic acid sequences.

Moreover, an "isolated" nucleic acid molecule, such as a transcript/cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. However, the nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated.

For example, recombinant DNA molecules contained in a 5 vector are considered isolated. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include in vivo or in vitro RNA transcripts of the 10 isolated DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.

Accordingly, the present invention provides nucleic acid molecules that consist of the nucleotide sequence shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule consists of a nucleotide sequence when the nucleotide sequence is the complete nucleotide 20 sequence of the nucleic acid molecule.

The present invention further provides nucleic acid molecules that consist essentially of the nucleotide sequence shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule consists essentially of a nucleotide sequence when such a nucleotide sequence is present with only a few additional nucleic acid residues in the final nucleic acid molecule.

The present invention further provides nucleic acid molecules that comprise the nucleotide sequences shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule comprises a nucleotide sequence when the nucleotide sequence is at least part of the final nucleotide sequence of the nucleic acid molecule. In such a fashion, the nucleic acid molecule can be only the nucleotide sequence or have additional nucleic acid residues, such as nucleic acid residues that are naturally associated with it or heterologous nucleotide sequences. Such a nucleic acid molecule can have a few additional nucleotides or can comprises several hundred or more additional nucleotides. A 45 brief description of how various types of these nucleic acid molecules can be readily made/isolated is provided below.

In FIGS. 1 and 3, both coding and non-coding sequences are provided. Because of the source of the present invention, humans genomic sequence (FIG. 3) and cDNA/transcript 50 sequences (FIG. 1), the nucleic acid molecules in the Figures will contain genomic intronic sequences, 5' and 3' noncoding sequences, gene regulatory regions and non-coding intergenic sequences. In general such sequence features are either noted in FIGS. 1 and 3 or can readily be identified 55 using computational tools known in the art. As discussed below, some of the non-coding regions, particularly gene regulatory elements such as promoters, are useful for a variety of purposes, e.g. control of heterologous gene expression, target for identifying gene activity modulating 60 compounds, and are particularly claimed as fragments of the genomic sequence provided herein.

The isolated nucleic acid molecules can encode the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature peptide 65 (when the mature form has more than one peptide chain, for instance). Such sequences may play a role in processing of

a protein from precursor to a mature form, facilitate protein trafficking, prolong or shorten protein half-life or facilitate manipulation of a protein for assay or production, among other things. As generally is the case in situ, the additional amino acids may be processed away from the mature protein by cellular enzymes.

As mentioned above, the isolated nucleic acid molecules include, but are not limited to, the sequence encoding the kinase peptide alone, the sequence encoding the mature peptide and additional coding sequences, such as a leader or secretory sequence (e.g., a pre-pro or pro-protein sequence), the sequence encoding the mature peptide, with or without the additional coding sequences, plus additional non-coding sequences, for example introns and non-coding 5' and 3' sequences such as transcribed but non-translated sequences that play a role in transcription, mRNA processing (including splicing and polyadenylation signals), ribosome binding and stability of mRNA. In addition, the nucleic acid molecule may be fused to a marker sequence encoding, for example, a peptide that facilitates purification.

Isolated nucleic acid molecules can be in the form of RNA, such as mRNA, or in the form DNA, including cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof. The nucleic acid, especially DNA, can be double-stranded or single-stranded. Single-stranded nucleic acid can be the coding strand (sense strand) or the non-coding strand (antisense strand).

The invention further provides nucleic acid molecules that 30 encode fragments of the peptides of the present invention as well as nucleic acid molecules that encode obvious variants of the kinase proteins of the present invention that are described above. Such nucleic acid molecules may be naturally occurring, such as allelic variants (same locus), para-NO:3, genomic sequence), or any nucleic acid molecule that 35 logs (different locus), and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis. Such non-naturally occurring variants may be made by mutagenesis techniques, including those applied to nucleic acid molecules, cells, or organisms. Accordingly, as discussed above, the variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions.

> The present invention further provides non-coding fragments of the nucleic acid molecules provided in FIGS. 1 and 3. Preferred non-coding fragments include, but are not limited to, promoter sequences, enhancer sequences, gene modulating sequences and gene termination sequences. Such fragments are useful in controlling heterologous gene expression and in developing screens to identify genemodulating agents. A promoter can readily be identified as being 5' to the ATG start site in the genomic sequence provided in FIG. 3.

> A fragment comprises a contiguous nucleotide sequence greater than 12 or more nucleotides. Further, a fragment could at least 30, 40, 50, 100, 250 or 500 nucleotides in length. The length of the fragment will be based on its intended use. For example, the fragment can encode epitope bearing regions of the peptide, or can be useful as DNA probes and primers. Such fragments can be isolated using the known nucleotide sequence to synthesize an oligonucleotide probe. A labeled probe can then be used to screen a cDNA library, genomic DNA library, or mRNA to isolate nucleic acid corresponding to the coding region. Further, primers can be used in PCR reactions to clone specific regions of gene.

A probe/primer typically comprises substantially a purified oligonucleotide or oligonucleotide pair. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 20, 25, 40, 50 or more consecutive nucleotides.

Orthologs, homologs, and allelic variants can be identified using methods well known in the art. As described in the Peptide Section, these variants comprise a nucleotide sequence encoding a peptide that is typically 60-70%, 70-80%, 80-90%, and more typically at least about 90-95% or more homologous to the nucleotide sequence shown in the Figure sheets or a fragment of this sequence. Such nucleic acid molecules can readily be identified as being able to hybridize under moderate to stringent conditions, to the nucleotide sequence shown in the Figure sheets or a 15 fragment of the sequence. Allelic variants can readily be determined by genetic locus of the encoding gene. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is 20 supported by multiple lines of evidence, such as STS and BAC map data.

FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences encoding a peptide at least 60-70% homologous to each other typically remain hybridized to each other. The conditions can be such that sequences at least about 60%, at least about 70%, or at least about 80% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. One example of stringent hybridization conditions are hybridization in 6× 40 sodium chloride/sodium citrate (SSC) at about 45C, followed by one or more washes in 0.2xSSC, 0.1% SDS at 50-65C. Examples of moderate to low stringency hybridization conditions are well known in the art.

Nucleic Acid Molecule Uses

The nucleic acid molecules of the present invention are useful for probes, primers, chemical intermediates, and in biological assays. The nucleic acid molecules are useful as a hybridization probe for messenger RNA, transcript/cDNA and genomic DNA to isolate full-length cDNA and genomic clones encoding the peptide described in FIG. 2 and to isolate cDNA and genomic clones that correspond to variants (alleles, orthologs, etc.) producing the same or related peptides shown in FIG. 2. As illustrated in FIG. 3, SNPs were identified at 42 different nucleotide positions.

The probe can correspond to any sequence along the entire length of the nucleic acid molecules provided in the Figures. Accordingly, it could be derived from 5' noncoding regions, the coding region, and 3' noncoding regions. 60 However, as discussed, fragments are not to be construed as encompassing fragments disclosed prior to the present invention.

The nucleic acid molecules are also useful as primers for PCR to amplify any given region of a nucleic acid molecule 65 and are useful to synthesize antisense molecules of desired length and sequence.

The nucleic acid molecules are also useful for constructing recombinant vectors. Such vectors include expression vectors that express a portion of, or all of, the peptide sequences. Vectors also include insertion vectors, used to integrate into another nucleic acid molecule sequence, such as into the cellular genome, to alter in situ expression of a gene and/or gene product. For example, an endogenous coding sequence can be replaced via homologous recombination with all or part of the coding region containing one or more specifically introduced mutations.

The nucleic acid molecules are also useful for expressing antigenic portions of the proteins.

The nucleic acid molecules are also useful as probes for determining the chromosomal positions of the nucleic acid molecules by means of in situ hybridization methods. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

The nucleic acid molecules are also useful in making vectors containing the gene regulatory regions of the nucleic acid molecules of the present invention.

The nucleic acid molecules are also useful for designing ribozymes corresponding to all, or a part, of the mRNA produced from the nucleic acid molecules described herein.

The nucleic acid molecules are also useful for making vectors that express part, or all, of the peptides.

The nucleic acid molecules are also useful for constructing host cells expressing a part, or all, of the nucleic acid molecules and peptides.

The nucleic acid molecules are also useful for constructing transgenic animals expressing all, or a part, of the nucleic acid molecules and peptides.

The nucleic acid molecules are also useful as hybridization probes for determining the presence, level, form and distribution of nucleic acid expression. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. Accordingly, the probes can be used to detect the presence of, or to determine levels of, a specific nucleic acid molecule in cells, tissues, and in organisms. The nucleic acid whose level is determined can be DNA or RNA. Accordingly, probes corresponding to the peptides described herein can be used to assess expression and/or gene copy number in a given cell, tissue, or organism. These uses are relevant for diagnosis of disorders involving an increase or decrease in kinase protein expression relative to normal results.

In vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detecting DNA includes Southern hybridizations and in situ hybridization.

'Probes can be used as a part of a diagnostic test kit for identifying cells or tissues that express a kinase protein, such as by measuring a level of a kinase-encoding nucleic acid in a sample of cells from a subject e.g., mRNA or genomic DNA, or determining if a kinase gene has been mutated. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by

virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain.

Nucleic acid expression assays are useful for drug screening to identify compounds that modulate kinase nucleic acid expression.

The invention thus provides a method for identifying a compound that can be used to treat a disorder associated with nucleic acid expression of the kinase gene, particularly biological and pathological processes that are mediated by the kinase in cells and tissues that express it. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The method typically includes assaying the ability of the compound to modulate the expression of the kinase nucleic acid and thus identifying a compound that can be used to treat a disorder characterized by undesired kinase nucleic acid expression. The assays can be performed in cell-based and cell-free systems. Cell-based assays include cells naturally expressing the kinase nucleic acid or recombinant cells genetically engineered to express 20 specific nucleic acid sequences.

The assay for kinase nucleic acid expression can involve direct assay of nucleic acid levels, such as mRNA levels, or on collateral compounds involved in the signal pathway. Further, the expression of genes that are up- or down-regulated in response to the kinase protein signal pathway can also be assayed. In this embodiment the regulatory regions of these genes can be operably linked to a reporter gene such as luciferase.

Thus, modulators of kinase gene expression can be iden- 30 tified in a method wherein a cell is contacted with a candidate compound and the expression of mRNA determined. The level of expression of kinase mRNA in the presence of the candidate compound is compared to the level of expression of kinase mRNA in the absence of the candi-35 date compound. The candidate compound can then be identified as a modulator of nucleic acid expression based on this comparison and be used, for example to treat a disorder characterized by aberrant nucleic acid expression. When expression of mRNA is statistically significantly greater in 40 the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of nucleic acid expression. When nucleic acid expression is statistically significantly less in the presence of the candidate compound than in its absence, the candidate compound is 45 identified as an inhibitor of nucleic acid expression.

The invention further provides methods of treatment, with the nucleic acid as a target, using a compound identified through drug screening as a gene modulator to modulate kinase nucleic acid expression in cells and tissues that 50 express the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, 55 PCR-based tissue screening panels indicate expression in fetal brain. Modulation includes both up-regulation (i.e. activation or agonization) or down-regulation (suppression or antagonization) or nucleic acid expression.

Alternatively, a modulator for kinase nucleic acid expression can be a small molecule or drug identified using the screening assays described herein as long as the drug or small molecule inhibits the kinase nucleic acid expression in the cells and tissues that express the protein. Experimental data as provided in FIG. 1 indicates expression in humans in 65 teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

The nucleic acid molecules are also useful for monitoring the effectiveness of modulating compounds on the expression or activity of the kinase gene in clinical trials or in a treatment regimen. Thus, the gene expression pattern can serve as a barometer for the continuing effectiveness of treatment with the compound, particularly with compounds to which a patient can develop resistance. The gene expression pattern can also serve as a marker indicative of a physiological response of the affected cells to the compound. Accordingly, such monitoring would allow either increased administration of the compound or the administration of alternative compounds to which the patient has not become resistant. Similarly, if the level of nucleic acid expression falls below a desirable level, administration of the compound could be commensurately decreased.

The nucleic acid molecules are also useful in diagnostic assays for qualitative changes in kinase nucleic acid expression, and particularly in qualitative changes that lead to pathology. The nucleic acid molecules can be used to detect mutations in kinase genes and gene expression products such as mRNA. The nucleic acid molecules can be used as hybridization probes to detect naturally occurring genetic mutations in the kinase gene and thereby to determine whether a subject with the mutation is at risk for a disorder caused by the mutation. Mutations include deletion, addition, or substitution of one or more nucleotides in the gene, chromosomal rearrangement, such as inversion or transposition, modification of genomic DNA, such as aberrant methylation patterns or changes in gene copy number, such as amplification. Detection of a mutated form of the kinase gene associated with a dysfunction provides a diagnostic tool for an active disease or susceptibility to disease when the disease results from overexpression, underexpression, or altered expression of a kinase protein.

Individuals carrying mutations in the kinase gene can be detected at the nucleic acid level by a variety of techniques. FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data. Genomic DNA can be analyzed directly or can be amplified by using PCR prior to analysis. RNA or cDNA can be used in the same way. In some uses, detection of the mutation involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g. U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al., Science 241:1077-1080 (1988); and Nakazawa et al., PNAS 91:360-364 (1994)), the latter of which can be particularly useful for detecting point mutations in the gene (see Abravaya et al., Nucleic Acids Res. 23:675-682 (1995)). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. Deletions and insertions can be detected by a change in size of the amplified product compared to the normal

genotype. Point mutations can be identified by hybridizing amplified DNA to normal RNA or antisense DNA sequences.

Alternatively, mutations in a kinase gene can be directly identified, for example, by alterations in restriction enzyme 5 digestion patterns determined by gel electrophoresis.

Further, sequence-specific ribozymes (U.S. Pat. No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site. Perfectly matched sequences can be distinguished from 10 mismatched sequences by nuclease cleavage digestion assays or by differences in melting temperature.

Sequence changes at specific locations can also be assessed by nuclease protection assays such as RNase and S1 protection or the chemical cleavage method. Furthermore, sequence differences between a mutant kinase gene and a wild-type gene can be determined by direct DNA sequencing. A variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve, C. W., (1995) Biotechniques 19:448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen et al., Adv. Chromatogr. 36:127-162 (1996); and Griffin et al., Appl. Biochem. Biotechnol. 38:147-159 (1993)).

Other methods for detecting mutations in the gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA duplexes (Myers etal., Science 230:1242 (1985)); Cotton et al., PNAS 85:4397 (1988); Saleeba et al., Meth. Enzymol. 21 7:286-295 (1992)), electrophoretic mobility of mutant and wild type nucleic acid is compared (Orita et al., PNAS 86:2766 (1989); Cotton et al., Mutat. Res. 285:125-144 (1993); and Hayashi et al., Genet. Anal. Tech. Appl. 9:73-79 (1992)), and movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (Myers et al., Nature 313:495 (1985)). Examples of other techniques for detecting point mutations include selective oligonucleotide hybridization, selective amplification, and $_{40}$ nRNA or DNA. selective primer extension.

The nucleic acid molecules are also useful for testing an individual for a genotype that while not necessarily causing the disease, nevertheless affects the treatment modality. relationship between an individual's genotype and the individual's response to a compound used for treatment (pharmacogenomic relationship). Accordingly, the nucleic acid molecules described herein can be used to assess the mutation content of the kinase gene in an individual in order 50 to select an appropriate compound or dosage regimen for treatment. FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different outside the ORF and in introns, may affect gene transcrip-

Thus nucleic acid molecules displaying genetic variations that affect treatment provide a diagnostic target that can be used to tailor treatment in an individual. Accordingly, the 60 production of recombinant cells and animals containing these polymorphisms allow effective clinical design of treatment compounds and dosage regimens.

The nucleic acid molecules are thus useful as antisense constructs to control kinase gene expression in cells, tissues, 65 and organisms. A DNA antisense nucleic acid molecule is designed to be complementary to a region of the gene

involved in transcription, preventing transcription and hence production of kinase protein. An antisense RNA or DNA nucleic acid molecule would hybridize to the mRNA and thus block translation of mRNA into kinase protein.

Alternatively, a class of antisense molecules can be used to inactivate mRNA in order to decrease expression of kinase nucleic acid. Accordingly, these molecules can treat a disorder characterized by abnormal or undesired kinase nucleic acid expression. This technique involves cleavage by means of ribozymes containing nucleotide sequences complementary to one or more regions in the mRNA that attenuate the ability of the mRNA to be translated. Possible regions include coding regions and particularly coding regions corresponding to the catalytic and other functional activities of the kinase protein, such as substrate binding.

The nucleic acid molecules also provide vectors for gene therapy in patients containing cells that are aberrant in kinase gene expression. Thus, recombinant cells, which include the patient's cells that have been engineered ex vivo and returned to the patient, are introduced into an individual where the cells produce the desired kinase protein to treat the individual.

The invention also encompasses kits for detecting the presence of a kinase nucleic acid in a biological sample. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. For example, the kit can comprise reagents such as a labeled or labelable nucleic acid or agent capable of detecting kinase nucleic acid in a biological sample; means for determining the amount of kinase nucleic acid in the sample; and means for comparing the amount of kinase nucleic acid in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect kinase protein

Nucleic Acid Arrays

The present invention further provides nucleic acid detection kits, such as arrays or microarrays of nucleic acid Thus, the nucleic acid molecules can be used to study the 45 molecules that are based on the sequence information provided in FIGS. 1 and 3 (SEQ ID NOS:1 and 3).

As used herein "Arrays" or "Microarrays" refers to an array of distinct polynucleotides or oligonucleotides synthesized on a substrate, such as paper, nylon or other type of membrane, filter, chip, glass slide, or any other suitable solid support. In one embodiment, the microarray is prepared and used according to the methods described in U.S. Pat. No. 5,837,832, Chee et al., PCT application W095/11995 (Chee et al.), Lockhart, D. J. et al. (1996; Nat. Biotech. 14: nucleotide positions. Some of these SNPs, which are located 55 1675-1680) and Schena, M. et al. (1996; Proc. Natl. Acad. Sci. 93: 10614-10619), all of which are incorporated herein in their entirety by reference. In other embodiments, such arrays are produced by the methods described by Brown et al., U.S. Pat. No. 5,807,522.

> The microarray or detection kit is preferably composed of a large number of unique, single-stranded nucleic acid sequences, usually either synthetic antisense oligonucleotides or fragments of cDNAs, fixed to a solid support. The oligonucleotides are preferably about 6-60 nucleotides in length, more preferably 15-30 nucleotides in length, and most preferably about 20-25 nucleotides in length. For a certain type of microarray or detection kit, it may be

preferable to use oligonucleotides that are only 7-20 nucleotides in length. The microarray or detection kit may contain oligonucleotides that cover the known 5', or 3', sequence, sequential oligonucleotides which cover the full length sequence; or unique oligonucleotides selected from particular areas along the length of the sequence. Polynucleotides used in the microarray or detection kit may be oligonucleotides that are specific to a gene or genes of interest.

In order to produce oligonucleotides to a known sequence for a microarray or detection kit, the gene(s) of interest (or 10 an ORF identified from the contigs of the present invention) is typically examined using a computer algorithm which starts at the 5' or at the 3' end of the nucleotide sequence. Typical algorithms will then identify oligomers of defined length that are unique to the gene, have a GC content within a range suitable for hybridization, and lack predicted secondary structure that may interfere with hybridization. In certain situations it may be appropriate to use pairs of oligonucleotides on a microarray or detection kit. The "pairs" will be identical, except for one nucleotide that preferably is located in the center of the sequence. The 20 second oligonucleotide in the pair (mismatched by one) serves as a control. The number of oligonucleotide pairs may range from two to one million. The oligomers are synthesized at designated areas on a substrate using a light-directed chemical process. The substrate may be paper, nylon or 25 other type of membrane, filter, chip, glass slide or any other suitable solid support.

In another aspect, an oligonucleotide may be synthesized on the surface of the substrate by using a chemical coupling procedure and an ink jet application apparatus, as described 30 in PCT application W095/251116 (Baldeschweiler et al.) which is incorporated herein in its entirety by reference. In another aspect, a "gridded" array analogous to a dot (or slot) blot may be used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum system, thermal, UV, mechanical or chemical bonding procedures. An array, such as those described above, may be produced by hand or by using available devices (slot blot or dot blot apparatus), materials (any suitable solid support), and machines (including robotic instruments), and may contain 8, 24, 96, 384, 1536, 6144 or more oligonucleotides, or any other number between two and one million which lends itself to the efficient use of commercially available instrumentation.

In order to conduct sample analysis using a microarray or detection kit, the RNA or DNA from a biological sample is 45 made into hybridization probes. The mRNA is isolated, and cDNA is produced and used as a template to make antisense RNA (aRNA). The aRNA is amplified in the presence of fluorescent nucleotides, and labeled probes are incubated with the microarray or detection kit so that the probe 50 sequences hybridize to complementary oligonucleotides of the microarray or detection kit. Incubation conditions are adjusted so that hybridization occurs with precise complementary matches or with various degrees of less complementarity. After removal of nonhybridized probes, a scanner 55 is used to determine the levels and patterns of fluorescence. The scanned images are examined to determine degree of complementarity and the relative abundance of each oligonucleotide sequence on the microarray or detection kit. The biological samples may be obtained from any bodily fluids (such as blood, urine, saliva, phlegm, gastric juices, etc.), cultured cells, biopsies, or other tissue preparations. A detection system may be used to measure the absence, presence, and amount of hybridization for all of the distinct sequences simultaneously. This data may be used for largescale correlation studies on the sequences, expression 65 patterns, mutations, variants, or polymorphisms among samples.

Using such arrays, the present invention provides methods to identify the expression of the kinase proteins/peptides of the present invention. In detail, such methods comprise incubating a test sample with one or more nucleic acid molecules and assaying for binding of the nucleic acid molecule with components within the test sample. Such assays will typically involve arrays comprising many genes, at least one of which is a gene of the present invention and or alleles of the kinase gene of the present invention. FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

Conditions for incubating a nucleic acid molecule with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid molecule used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or array assay formats can readily be adapted to employ the novel fragments of the Human genome disclosed herein. Examples of such assays can be found in Chard, T, An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, Fla. Vol. 1 (1 982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing nucleic acid extracts or of cells are well known in the art and can be readily be adapted in order to obtain a sample that is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the nucleic acid molecules that can bind to a fragment of the Human genome disclosed herein; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound nucleic acid.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers, strips of plastic, glass or paper, or arraying material such as silica. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not crosscontaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the nucleic acid probe, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound probe. One skilled in the art will readily recognize that the previously unidentified kinase gene of the present invention can be routinely identified using the sequence information disclosed herein can be readily incorporated into one of the established kit formats which are well known in the art, particularly expression arrays.

Vectors/host Cells

The invention also provides vectors containing the nucleic acid molecules described herein. The term "vector" refers to a vehicle, preferably a nucleic acid molecule, which can transport the nucleic acid molecules. When the vector is a nucleic acid molecule, the nucleic acid molecules are covalently linked to the vector nucleic acid. With this aspect of the invention, the vector includes a plasmid, single or double stranded phage, a single or double stranded RNA or PAC, YAC, OR MAC.

A vector can be maintained in the host cell as an extrachromosomal element where it replicates and produces additional copies of the nucleic acid molecules. Alternatively, the vector may integrate into the host cell 15 genome and produce additional copies of the nucleic acid molecules when the host cell replicates.

The invention provides vectors for the maintenance (cloning vectors) or vectors for expression (expression vectors) of the nucleic acid molecules. The vectors can 20 function in prokaryotic or eukaryotic cells or in both (shuttle

Expression vectors contain cis-acting regulatory regions that are operably linked in the vector to the nucleic acid molecules such that transcription of the nucleic acid mol- 25 ecule can be introduced into an appropriate host cell for ecules is allowed in a host cell. The nucleic acid molecules can be introduced into the host cell with a separate nucleic acid molecule capable of affecting transcription. Thus, the second nucleic acid molecule may provide a trans-acting factor interacting with the cis-regulatory control region to allow transcription of the nucleic acid molecules from the vector. Alternatively, a trans-acting factor may be supplied by the host cell. Finally, a trans-acting factor can be produced from the vector itself It is understood, however, that in some embodiments, transcription and/or translation of the nucleic acid molecules can occur in a cell-free system.

The regulatory sequence to which the nucleic acid molecules described herein can be operably linked include promoters for directing mRNA transcription. These include, but are not limited to, the left promoter from bacteriophage λ , the lac, TRP, and TAC promoters from E. coli, the early 40 and late promoters from SV40, the CMV immediate early promoter, the adenovirus early and late promoters, and retrovirus long-terminal repeats.

In addition to control regions that promote transcription, expression vectors may also include regions that modulate 45 transcription, such as repressor binding sites and enhancers. Examples include the SV40 enhancer, the cytomegalovirus immediate early enhancer, polyoma enhancer, adenovirus enhancers, and retrovirus LTR enhancers.

In addition to containing sites for transcription initiation 50 and control, expression vectors can also contain sequences necessary for transcription termination and, in the transcribed region a ribosome binding site for translation. Other regulatory control elements for expression include initiation and termination codons as well as polyadenylation signals. The person of ordinary skill in the art would be aware of the numerous regulatory sequences that are useful in expression vectors. Such regulatory sequences are described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1989).

A variety of expression vectors can be used to express a nucleic acid molecule. Such vectors include chromosomal, episomal, and virus-derived vectors, for example vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, includ- 65 ing yeast artificial chromosomes, from viruses such as baculoviruses, papovaviruses such as SV40, Vaccinia

viruses, adenoviruses, poxviruses, pseudorabies viruses, and retroviruses. Vectors may also be derived from combinations of these sources such as those derived from plasmid and bacteriophage genetic elements, e.g. cosmids and phagemids. Appropriate cloning and expression vectors for prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor,

The regulatory sequence may provide constitutive expres-DNA viral vector, or artificial chromosome, such as a BAC, 10 sion in one or more host cells (i.e. tissue specific) or may provide for inducible expression in one or more cell types such as by temperature, nutrient additive, or exogenous factor such as a hormone or other ligand. A variety of vectors providing for constitutive and inducible expression in prokaryotic and eukaryotic hosts are well known to those of ordinary skill in the art.

> The nucleic acid molecules can be inserted into the vector nucleic acid by well-known methodology. Generally, the DNA sequence that will ultimately be expressed is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction enzymes and then ligating the fragments together. Procedures for restriction enzyme digestion and ligation are well known to those of ordinary skill in the art.

> The vector containing the appropriate nucleic acid molpropagation or expression using well-known techniques. Bacterial cells include, but are not limited to, E. coli, Streptomyces, and Salmonella typhimurium. Eukaryotic cells include, but are not limited to, yeast, insect cells such as Drosophila, animal cells such as COS and CHO cells, and plant cells.

As described herein, it may be desirable to express the peptide as a fusion protein. Accordingly, the invention provides fusion vectors that allow for the production of the peptides. Fusion vectors can increase the expression of a recombinant protein, increase the solubility of the recombinant protein, and aid in the purification of the protein by acting for example as a ligand for affinity purification. A proteolytic cleavage site may be introduced at the junction of the fusion moiety so that the desired peptide can ultimately be separated from the fusion moiety. Proteolytic enzymes include, but are not limited to, factor Xa, thrombin, and enterokinase. Typical fusion expression vectors include pGEX (Smith et al., Gene 67:31-40 (1988)), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., Gene 69:301-315 (1988)) and pET 11 d (Studier et al., Gene Expression Technology: Methods in Enzymology 185:60-89 (1990)).

Recombinant protein expression can be maximized in host bacteria by providing a genetic background wherein the host cell has an impaired capacity to proteolytically cleave the recombinant protein. (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 119-128). Alternatively, the sequence of the nucleic acid molecule of interest can be altered to provide preferential codon usage for a specific host cell, for example E. coli. (Wada et al., Nucleic Acids Res. 20:2111-2118 (1992)).

The nucleic acid molecules can also be expressed by expression vectors that are operative in yeast. Examples of vectors for expression in yeast e.g., S. cerevisiae include pYepSec1 (Baldari, et al., EMBO J. 6:229-234 (1987)), pMFa (Kurjan et al., Cell 30:933-943(1982)), pJRY88 (Schultz et al., Gene 54:113-123 (1987)), and pYES2 (Invitrogen Corporation, San Diego, Calif.).

The nucleic acid molecules can also be expressed in insect cells using, for example, baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al., Mol. Cell Biol. 3:2156-2165 (1983)) and the pVL series (Lucklow et al., Virology 170:31-39 (1989)).

In certain embodiments of the invention, the nucleic acid molecules described herein are expressed in mammalian cells using mammalian expression vectors. Examples of mammalian expression vectors include pCDM8 (Seed, B. Nature 329:840(1987)) and pMT2PC (Kaufman et al., EMBO J. 6:187-195 (1987)).

The expression vectors listed herein are provided by way of example only of the well-known vectors available to those of ordinary skill in the art that would be useful to express the nucleic acid molecules. The person of ordinary skill in the art would be aware of other vectors suitable for maintenance propagation or expression of the nucleic acid molecules described herein. These are found for example in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

The invention also encompasses vectors in which the nucleic acid sequences described herein are cloned into the vector in reverse orientation, but operably linked to a regulatory sequence that permnits transcription of antisense RNA. Thus, an antisense transcript can be produced to all, or to a portion, of the nucleic acid molecule sequences described herein, including both coding and non-coding regions. Expression of this antisense RNA is subject to each of the parameters described above in relation to expression of the sense RNA (regulatory sequences, constitutive or inducible expression, tissue-specific expression).

The invention also relates to recombinant host cells containing the vectors described herein. Host cells therefore 35 include prokaryotic cells, lower eukaryotic cells such as yeast, other eukaryotic cells such as insect cells, and higher eukaryotic cells such as mammalian cells.

The recombinant host cells are prepared by introducing the vector constructs described herein into the cells by 40 techniques readily available to the person of ordinary skill in the art. These include, but are not limited to, calcium phosphate transfection, DEAE-dextran-mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, lipofection, and other techniques such as those found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).

Host cells can contain more than one vector. Thus, different nucleotide sequences can be introduced on different vectors of the same cell. Similarly, the nucleic acid molecules can be introduced either alone or with other nucleic acid molecules that are not related to the nucleic acid molecules such as those providing trans-acting factors for expression vectors. When more than one vector is introduced into a cell, the vectors can be introduced independently, co-introduced or joined to the nucleic acid molecule vector.

In the case of bacteriophage and viral vectors, these can be introduced into cells as packaged or encapsulated virus ⁶⁰ by standard procedures for infection and transduction. Viral vectors can be replication-competent or replication-defective. In the case in which viral replication is defective, replication will occur in host cells providing functions that complement the defects.

Vectors generally include selectable markers that enable the selection of the subpopulation of cells that contain the recombinant vector constructs. The marker can be contained in the same vector that contains the nucleic acid molecules described herein or may be on a separate vector. Markers include tetracycline or ampicillin-resistance genes for prokaryotic host cells and dihydrofolate reductase or neomycin resistance for cukaryotic host cells. However, any marker that provides selection for a phenotypic trait will be effective.

While the mature proteins can be produced in bacteria, yeast, mammalian cells, and other cells under the control of the appropriate regulatory sequences, cell-free transcription and translation systems can also be used to produce these proteins using RNA derived from the DNA constructs described herein.

Where secretion of the peptide is desired, which is difficult to achieve with multi-transmembrane domain containing proteins such as kinases, appropriate secretion signals are incorporated into the vector. The signal sequence can be endogenous to the peptides or heterologous to these peptides.

Where the peptide is not secreted into the medium, which is typically the case with kinases, the protein can be isolated from the host cell by standard disruption procedures, including freeze thaw, sonication, mechanical disruption, use of lysing agents and the like. The peptide can then be recovered and purified by well-known purification methods including ammonium sulfate precipitation, acid extraction, anion or cationic exchange chromatography, phosphocellulose chromatography, hydrophobic-interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography, or high performance liquid chromatography.

It is also understood that depending upon the host cell in recombinant production of the peptides described herein, the peptides can have various glycosylation patterns, depending upon the cell, or maybe non-glycosylated as when produced in bacteria. In addition, the peptides may include an initial modified methionine in some cases as a result of a host-mediated process.

Uses of Vectors and Host Cells

The recombinant host cells expressing the peptides described herein have a variety of uses. First, the cells are useful for producing a kinase protein or peptide that can be further purified to produce desired amounts of kinase protein or fragments. Thus, host cells containing expression vectors are useful for peptide production.

Host cells are also useful for conducting cell-based assays involving the kinase protein or kinase protein fragments, such as those described above as well as other formats known in the art. Thus, a recombinant host cell expressing a native kinase protein is useful for assaying compounds that stimulate or inhibit kinase protein function.

Host cells are also useful for identifying kinase protein mutants in which these functions are affected. If the mutants naturally occur and give rise to a pathology, host cells containing the mutations are useful to assay compounds that have a desired effect on the mutant kinase protein (for example, stimulating or inhibiting function) which may not be indicated by their effect on the native kinase protein.

Genetically engineered host cells can be further used to produce non-human transgenic animals. A transgenic animal is preferably a mammal, for example a rodent, such as a rat or mouse, in which one or more of the cells of the animal include a transgene. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal in one or more cell types or tissues of the transgenic animal. These animals are useful for

studying the function of a kinase protein and identifying and evaluating modulators of kinase protein activity. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, and amphibians.

A transgenic animal can be produced by introducing nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. Any of the kinase protein nucleotide sequences can be 10 introduced as a transgene into the genome of a non-human animal, such as a mouse.

Any of the regulatory or other sequences useful in expression vectors can form part of the transgenic sequence. This includes intronic sequences and polyadenylation signals, if not already included. A tissue-specific regulatory sequence (s) can be operably linked to the transgene to direct expression of the kinase protein to particular cells.

Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such 20 as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 and 4,870,009, both by Leder et al, U.S. Pat. No. 4,873,191 by Wagner et al. and in Hogan, B., Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of transgenic mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals 30 carrying the transgene. Moreover, transgenic animals carrying a transgene can further be bred to other transgenic animals carrying other transgenes. A transgenic animal also includes animals in which the entire animal or tissues in the animal have been produced using the homologously recom- 35 binant host cells described herein.

In another embodiment, transgenic non-human animals can be produced which contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, see, e.g., Lakso et al. PNAS 89:6232-6236 (1992). Another example of a recombinase system is the FLP recombinase system of S. cerevisiae (O'Gorman et al. Science 251:1351-1355 (1991). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recom-

binase and a selected protein is required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. et al. Nature 385:810–813 (1997) and PCT International Publication Nos. WO 97/07668 and WO 97/07669. In brief, a cell, e.g., a somatic cell, from the transgenic animal can be isolated and induced to exit the growth cycle and enter G_o phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyst and then transferred to pseudopregnant female foster animal. The offspring born of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.

Transgenic animals containing recombinant cells that express the peptides described herein are useful to conduct the assays described herein in an in vivo context. Accordingly, the various physiological factors that are present in vivo and that could effect substrate binding, kinase protein activation, and signal transduction, may not be evident from in vitro cell-free or cell-based assays. Accordingly, it is useful to provide non-human transgenic animals to assay in vivo kinase protein function, including substrate interaction, the effect of specific mutant kinase proteins on kinase protein function and substrate interaction, and the effect of chimeric kinase proteins. It is also possible to assess the effect of null mutations, that is, mutations that substantially or completely eliminate one or more kinase protein functions.

All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the above-described modes for carrying out the invention which are obvious to those skilled in the field of molecular biology or related fields are intended to be within the scope of the following claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 4

<210> SEQ ID NO 1
<211> LENGTH: 2320
<212> TYPE: DNA
<213> ORGANISM: Human

<400> SEQUENCE: 1

cccagggcgc cgtaggcggt gcatcccgtt cgcgcctggg gctgtggtct tcccgcgcct 60
gaggcggcgg cggcaggagc tgaggggagt tgtagggaac tgagggagc tgctgtgtcc 120
cccgcctcct cctccccatt tccgcgctcc cgggaccatg tccgcgtgg cgggtgaaga 180
tgtctggagg tgtccaggct gtggggacca cattgctcca agccaqatat qqtacaqqac 240

-continued

tgtcaacgaa	acctggcacg	gctcttgctt	ccggtgaaag	tgatgcgcag	cctggaccac	300
cccaatgtgc	tcaagttcat	tggtgtgctg	tacaaggata	agaagctgaa	cctgctgaca	360
gagtacattg	aggggggcac	actgaaggac	tttctgcgca	gtatggatcc	gttcccctgg	420
cagcagaagg	tcaggtttgc	caaaggaatc	gcctccggaa	tggacaagac	tgtggtggtg	480
gcagactttg	ggctgtcacg	gctcatagtg	gaagagagga	aaagggcccc	catggagaag	540
gccaccacca	agaaacgcac	cttgcgcaag	aacgaccgca	agaagcgcta	cacggtggtg	600
ggaaacccct	actggatggc	ccctgagatg	ctgaacggaa	agagctatga	tgagacggtg	660
gatatcttct	cctttgggat	cgttctctgt	gagatcattg	ggcaggtgta	tgcagatcct	720
gactgccttc	cccgaacact	ggactttggc	ctcaacgtga	agcttttctg	ggagaagttt	780
gttcccacag	attgtccccc	ggccttcttc	ccgctggccg	ccatctgctg	cagactggag	840
cctgagagca	gaccagcatt	ctcgaaattg	gaggactcct	ttgaggccct	ctccctgtac	900
ctgggggagc	tgggcatccc	gctgcctgca	gagetggagg	agttggacca	cactgtgagc	960
atgcagtacg	gcctgacccg	ggactcacct	ccctagccct	ggcccagccc	cctgcagggg	1020
ggtgttctac	agccagcatt	gcccctctgt	gccccattcc	tgctgtgagc	agggccgtcc	1080
gggcttcctg	tggattggcg	gaatgtttag	aagcagaaca	aaccattcct	attacctccc	1140
caggaggcaa	gtgggcgcag	caccagggaa	atgtatctcc	acaggttctg	gggcctagtt	1200
actgtctgta	aatccaatac	ttgcctgaaa	gctgtgaaga	agaaaaaaac	ccctggcctt	1260
tgggccagga	ggaatctgtt	actcgaatcc	acccaggaac	tccctggcag	tggattgtgg	1320
gaggctcttg	cttacactaa	tcagcgtgac	ctggacctgc	tgggcaggat	cccagggtga	1380
acctgcctgt	gaactctgaa	gtcactagtc	cagctgggtg	caggaggact	tcaagtgtgt	1440
ggacgaaaga	aagactgatg	gctcaaaggg	tgtgaaaaag	tcagtgatgc	tcccctttc	1500
tactccagat	cctgtccttc	ctggagcaag	gttgagggag	taggttttga	agagtccctt	1560
aatatgtggt	ggaacaggcc	aggagttaga	gaaagggctg	gcttctgttt	acctgctcac	1620
tggctctagc	cagcccaggg	accacatcaa	tgtgagagga	agcctccacc	tcatgttttc	1680
aaacttaata	ctggagactg	gctgagaact	tacggacaac	atcctttctg	tctgaaacaa	1740
acagtcacaa	gcacaggaag	aggctggggg	actagaaaga	ggccctgccc	tctagaaagc	1800
tcagatcttg	gcttctgtta	ctcatactcg	ggtgggctcc	ttagtcagat	gcctaaaaca	1860
ttttgcctaa	agctcgatgg	gttctggagg	acagtgtggc	ttgtcacagg	cctagagtct	1920
gagggagggg	agtgggagtc	tcagcaatct	cttggtcttg	gcttcatggc	aaccactgct	1980
cacccttcaa	catgcctggt	ttaggcagca	gcttgggctg	ggaagaggtg	gtggcagagt	2040
ctcaaagctg	agatgctgag	agagatagct	ccctgagctg	ggccatctga	cttctacctc	2100
ccatgtttgc	tctcccaact	cattagctcc	tgggcagcat	cctcctgagc	cacatgtgca	2160
ggtactggaa	aacctccatc	ttggctccca	gagetetagg	aactcttcat	cacaactaga	2220
tttgcctctt	ctaagtgtct	atgagettge	accatattta	ataaattggg	aatgggtttg	2280
gggtattaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa			2320

<210> SEQ ID NO 2 <211> LENGTH: 255 <212> TYPE: PRT <213> ORGANISM: Human

Met Val Gln Asp Cys Gln Arg Asn Leu Ala Arg Leu Leu Pro Val

-continued

1				5					10					15		
Lys	Val	Met	Arg 20	Ser	Leu	Авр	His	Pro 25	Asn	Val	Leu	Lys	Phe 30	Ile	Gly	
Val	Leu	Туг 35	Lув	Asp	Lys	Lув	Leu 40	Asn	Leu	Leu	Thr	Glu 45	Tyr	Ile	Glu	
Gly	Gly 50	Thr	Leu	Lys	Авр	Phe 55	Leu	Arg	Ser	Met	Asp 60	Pro	Phe	Pro	Trp	
Gln 65	Gln	Lys	Val	Arg	Phe 70	Ala	Lys	Gly	Ile	Ala 75	Ser	Gly	Met	Asp	Lув 80	
Thr	Val	Val	Val	Ala 85	Asp	Phe	Gly	Leu	Ser 90	Arg	Leu	Ile	Val	Glu 95	Glu	
Arg	Lys	Arg	Ala 100	Pro	Met	Glu	Lув	Ala 105	Thr	Thr	Lys	Lys	Arg 110	Thr	Leu	
Arg	Lys	Asn 115	Asp	Arg	Lys	Lys	Arg 120	Tyr	Thr	Val	Val	Gly 125	Asn	Pro	Tyr	
Trp	Met 130	Ala	Pro	Glu	Met	Leu 135	Asn	Gly	Lys	Ser	Tyr 140	Asp	Glu	Thr	Val	
Asp 145	Ile	Phe	Ser	Phe	Gly 150	Ile	Val	Leu	Сув	Glu 155	Ile	Ile	Gly	Gln	Val 160	
Tyr	Ala	Asp	Pro	Asp 165	Cys	Leu	Pro	Arg	Thr 170	Leu	Asp	Phe	Gly	Leu 175	Asn	
Val	Lув	Leu	Phe 180	Trp	Glu	Lys	Phe	Val 185	Pro	Thr	Asp	Сув	Pro 190	Pro	Ala	
Phe	Phe	Pro 195	Leu	Ala	Ala	Ile	С у в 200	Сув	Arg	Leu	Glu	Pro 205	Glu	Ser	Arg	
Pro	Ala 210	Phe	Ser	Lys	Leu	Glu 215	Asp	Ser	Phe	Glu	Ala 220	Leu	Ser	Leu	Tyr	
Leu 225	Gly	Glu	Leu	Gly	11e 230	Pro	Leu	Pro	Ala	Glu 235	Leu	Glu	Glu	Leu	Asp 240	
His	Thr	Val	Ser	Met 245	Gln	Tyr	Gly	Leu	Thr 250	Arg	Asp	Ser	Pro	Pro 255		
<211 <212 <213	> LE > TY > OR	Q ID NGTH PE: GANI	: 59 DNA SM:	065 Huma	ın											
		QUEN														6.0
					_			-	-		-			-	atgtg	120
								-	-	-	-	-			tcttc	180
										_					ccttt	240
													_		gagcc	300
															gaagg	360
acag	ggaa	aa a	ctac	agag	a ca	ttto	GAAA	ata	aaac	cag	ataa	atat	GA C	agga	gagag	420

tagagggtct tgatttcggg tctttcatgc ttaacccaaa gcaggtacta aagtatgtgt

tgattgaatg tctttgggtt tctcaagact ggagaaagca gggcaagctc tggagggtat

ggcaataaca agttatcttg aatatcctca tggtggaaag tcctgatcct gtttgaattt

tggaaataga aatcattcag agccaagaga ttgaattgtt gagtaagtgg gtggtcaggt

tacagactta attttgggtt aaaaagtaaa aacaagaaac aaggtgtggc tctaaaataa

480

540

600

660 720

tgagatgtgc	tgggggtggg	gcatggcagc	tcataaactg	accctgaaag	ctcttacatg	780
taagagttcc	aaaaatattt	ccaaaacttg	gaagattcat	ttggatgttt	gtgttcatta	840
aaatctctca	ctaattcatt	gtcttgtcca	ctgtccgtaa	cccaacctgg	gattggtttg	900
agtgagtctc	tcagactttc	tgccttggag	tttgtgagag	agatggcata	ctctgtgacc	960
actgtcaccc	taaaaccaaa	aaggcccctc	ttgacaagga	gtctgaggat	tttagaccca	1020
ggaagaatga	gtgatgggca	tatatatatc	ctattactga	ggcatgagaa	gagtggaatg	1080
ggtgggttga	ggtggtgttt	taaggcctct	tgccagcttg	tttaactctt	ctctggggaa	1140
cgagggggac	aactgtgtac	attggctgct	ccagaatgat	gttgagcaat	cttgaagtgc	1200
caggagctgt	gctttgtcta	ttcatggccc	ctgtgcctgt	gaaacagggt	tcggtgactg	1260
tcactgtgcc	tgtggcagtc	tgtagttacc	cagagagaac	aaagctgcat	acacagagcg	1320
cacaagggag	tcttgtaaca	accttgtcct	gctttctagg	gctgagtcag	gtaccacage	1380
ttgatctcag	ctgtcctctt	tatttcaaga	agttgacatc	tgagccatac	caggagtatt	1440
gtattttgtt	tgaggcctct	ctttttggag	gaacatggac	cgactctgtg	cttttgtcta	1500
tgctggtctc	tgagctcaca	caacccttca	ccctcctttc	tcagccagtg	ataggtaagt	1560
cttccctatc	ttgcaaggct	cagctcaagt	gtcagcttcc	tctacaaaga	ctttcctggt	1620
tcccctcatt	ggagtgaaca	agagttgaca	tggtagaatg	gaaagagcag	aagctttaga	1680
atgagccaga	cctgagtatg	aatgctagat	ccaccactta	gctagtcaac	cctgccccct	1740
gcctcaagtt	ttaattttcc	tatccattaa	gtgaatataa	taatacctgt	gtcacaggat	1800
tattttgaga	attaaatgag	attaggtcta	tgaaagcacc	tagcagagtt	cttggcatat	1860
aggaggcatt	cattaaatat	ttgttcttcc	ccttttatac	ccattacttt	tctttttctg	1920
aactaaaata	atacttggtt	ctatctctga	aataacatcc	aagtgaaaaa	tcaacaacat	1980
gaaagagcag	ttcttttcca	gtggatttgc	ttcttaagga	gcagagatta	tgtaatctaa	2040
cagootocaa	catacaaaga	gctttgtatc	tagaacaggg	gtccccagcc	cctggaccgc	2100
caactggtac	gggtctgtag	cctgttagga	accaggctgc	acagcaggag	gtgagcggcg	2160
ggccagtgag	cattgctgcc	tgagctctgc	ctcctgtcag	atcagtggtg	gcattagatt	2220
ctcataggag	tgtgaaccct	attgtgaact	gcacatgcaa	gggatctggg	ttgcatgctc	2280
cttatgagaa	tctcactaat	ggctgatgat	ctgagttgga	acagtttgat	accaaaacca	2340
tcccccgcc	CCCCAACCCC	cagcctaggg	tccgtggaaa	aattggcccc	tggtgccaaa	2400
aaggttgagg	actgctgatc	tagaggacca	atttattcaa	tgttggttga	gtaaatgagc	2460
tcttggatta	ggtgatggaa	aaatctgaaa	aaacagggct	tttgaggaat	aggaaaaggc	2520
agtaacatgt	ttaacccaga	gagaagtttc	tggctgttgg	ctgggaatag	tcataggaag	2580
ggctgacact	gaaaagaagg	agattgtgtt	cgtttcttct	tctcagagct	ataagcaaag	2640
gctgaaagtt	ctagaaaaag	gcaagttttg	tttcagtaga	aaaaaggata	atcagaacca	2700
tttttagaaa	atggaatgag	actacttttg	aggccatgag	ttecttgtcc	ctggagagat	2760
gagcagaggt	tggacaagtg	cttaccagag	atcttgtgga	ggcagaaact	gtgcatctag	2820
cagagcattg	gcctaaccct	ttcaaatgag	atgctgttaa	ctcagtctta	ttctacatgg	2880
taggaatcct	gtccctttgc	ctcctgctac	tttgggcctc	tcaacctctt	ggttttgtgt	2940
gcaggtgaag	atgtctggag	gtgtccaggc	tgtggggacc	acattgctcc	aagccagata	3000
tggtacagga	ctgtcaacga	aacctggcac	ggctcttgct	tccggtaggt	gggcctatcc	3060
tcccatcttt	accagtgtac	tatgggccaa	gcactatttc	atgttctgat	ggaaaacaca	3120

gaaacaagct	tctgagttga	gaatttcaat	cttagggtgg	ggaaaggaat	gtaccaagga	3180
agagctcatg	accasacete	aagtgtggcc	cccctgaacc	caggttaaat	tggaagagcc	3240
ataaatgggc	cagctggagg	cagggtgggg	ggatgagagg	agccctttcc	agggttgtcc	3300
catatccctc	actttatggg	tgaggaaact	gaggcccagg	aagagtgact	ttcctgtggc	3360
tgcactacag	attatgcagg	tacttcaaga	gttgtttgta	ttcttatttt	attttatttt	3420
attttattt	attttattt	attttatgag	agggattctt	gctgttgccc	aggctggagt	3480
gcagtggtgc	aatctcggct	cactgcaatc	tctgcctgct	gggttcaagt	gatttttctg	3540
ccttagcttc	ctgagtagct	gagatgacag	gcacctgcca	ccatgcgcag	ctaatttttg	3600
tattttagtg	gagacggggg	tttcaacatg	ttggtcaggc	tggtcttgaa	ctcctgacct	3660
caaatgatgc	acccacctcg	acctcccaaa	gtgctggaat	tacaggcgtg	aaccactgtg	3720
cccagccaag	agttgtttt	agtgtggttg	gcagagccag	ctcttccttc	accacaggat	3780
gcctccctag	gttcctactt	tttgttacta	gcttttatta	tagctatatt	attattatta	3840
ttattattat	tattattatt	attattgaga	cagagtctcg	ctctgtcgcc	caggctggtg	3900
tacagtggtg	cgatcccggg	ctcactgcaa	cctctgcctc	ccgagttcaa	gcagttctcc	3960
tgcctcagcc	ccccgagtag	gtgggactac	aggegeetge	Caccacaccc	ggctaatttt	4020
tgtattttta	gtagagacgg	ggtttcacct	tgttgaccag	gctggtctgg	agctcctgac	4080
ctcaggtaag	tgctagaatc	acaggcgtga	accactgcgc	ccagccaaga	gttgttttta	4140
gtgtggttgg	cagagecage	tcttcctcac	cacaggttgc	ctccctaggt	tcctactttt	4200
tgttactagc	tttattatag	ctacattatt	attattattg	ttattattat	tgagacagag	4260
tctcgctctg	tcgcccaggc	tggtgtacag	tgatgtgatc	ttggctcact	gcaacctctg	4320
cccccgagt	tcaagcaatt	ctcctgcttc	agccccccta	gtaggtggga	ctccaggcac	4380
ctgccaccac	gcccagctaa	tttttgtatt	tttagtagag	gcggggtttc	accttgttgg	4440
ccaggctggt	ctcaaactcc	tgacctcagg	tgatccgcct	gcctcggcct	cccaaaatgt	4500
tgggattaca	ggcatgagcc	accgcgccct	gcctatagct	acattatttt	tgtaggcagc	4560
tcagtttctt	aaaaattata	cagacttcaa	atcagatttg	ttcctgctgt	ctgaggctca	4620
gtttcttcat	ctggaaaatg	gatggtaata	atcttgttga	gattgaatga	aataatatat	4680
gcagtgtatc	cagtacatgg	tagacaccca	gtgaatggtt	attccttcct	cccatcggat	4740
tggaattctc	aagggtggga	acttgtcttt	atattcttca	caacgtaaaa	tagttgaaat	4800
ttgttggtgg	aaagaagagc	agtccactcc	agaggctgga	tgggcatgcc	tggcccccaa	4860
ggtctgaagt	ggtagggctg	tgcctatatc	ctgagaatga	gatagactag	gcaggcacct	4920
tgtgctgtag	attccagctc	ctgcacatag	ctcttgttgt	aaaacatccc	tgtgcttata	4980
ccaagtaatt	gagttgacct	ttaaacactt	gcctcttccc	tgggaaccat	ataggggatt	5040
ggcctggaga	cgtctggcct	ctggaagagt	tggaaagcag	ccatcattat	tatcctttcc	5100
tttcagctat	aactcagagc	tctcaagtct	tttctgtgga	tcttattgcc	ttggttcttg	5160
ccccttttac	tcccagggaa	gttgattctg	tcttttctgt	tccatttagt	atgacaggag	5220
cagagaatgt	cagagctgta	agggacctta	tagttaaagc	ctttggctgg	tcctttcatt	5280
ttatagctgg	gactaataag	taacgtcaaa	acccaatgag	ttcacagatt	gggtetegee	5340
ttggcatgta	acccatatgt	tcatattctt	gctgttttcc	tatgtgtatg	aatattttct	5400
atccaaaata	agcaggacag	ggtagagcaa	gttaatcttt	ggaatttctg	gattctctta	5460

gagctaaaaa	acttcagaac	tagaagaaac	cacccactat	atggtataac	ccattcatat	5520
cacagatgag	gcctgaaacc	aaaaagactt	gctcaggcca	tggatgacaa	gagctggccc	5580
tagcactgaa	ctcttgggtc	atttgtaggt	ctagtcagat	gctagcttgt	tagctctgtg	5640
cgtgcgtgtg	tgtgtgtgtg	tgtgtgtgtg	tgtgtgagat	agagacagaa	agataacata	5700
tgtacacaaa	tacataaaga	ggaagtagac	acgttagcat	ggtagataag	agtacaggca	5760
ggccaggcgt	ggtggctcac	gcctgtaatc	ccagcacttt	gggaggccaa	ggcaggtgga	5820
tcacctgagg	tcaggaattc	gagaccagcc	tgaccaacat	ggtgaaaccc	catctctact	5880
aaatacagaa	aaaaattagc	ttggcatggt	ggcacatgcc	tgtaatccca	gctacttggg	5940
aagctgaagc	aggagaatcg	cttgaatccg	ggaagcagaa	gttgcagtga	gccgagattg	6000
tgccattaca	gtctagcctg	ggcaacaaga	gggaaactcc	atcgcaaaaa	aacaaccacc	6060
accaagagta	caggctatgg	aatgagacta	tggttttaaa	tcctggcttt	gcaatttatt	6120
aactagcctt	aagtgacttc	cctgagcttc	aggcaccaat	ctgtaaaatg	aggataagaa	6180
tattactcat	gccacatggt	tgttagggag	gattaaatgt	gataacctat	ataaagtggc	6240
tagcatagca	tctgacatat	agaaaactct	taatagggcc	ggacgtggtg	gcttatgcct	6300
gtaatcctag	cactctggga	ggccgaggca	gaaggatcgc	ttgagcccat	gagcccagga	6360
gtttgagacc	agcctggcca	acatggcaaa	actccacctc	tacaaaaaat	acaaaaatat	6420
tagccaggcg	tgatggcaca	cacctgtagt	cccagctact	tgggaagctg	aggagcgatg	6480
attacctgag	cccagggata	tcaaggctgt	agtgagctgt	gatcatgcca	ctgtactcca	6540
tccagctggg	ggacagagtg	aaacccctgt	ctcaaaacaa	aacaaatgaa	aaaaaaaacc	6600
cttaataatc	agtaactgtc	actttatatt	atgttgtgag	tgtgtgtcta	tatacaccta	6660
tatgtataca	tttctcttat	tacacattca	ttggtgatct	gatgtggagc	cccagggatt	6720
aagggcaact	ttgaactacc	ctgacacaat	caagccaaat	atcattcccg	tggaggaagt	6780
agagtatcta	ggttctgtct	cctagttgca	gctttacctt	gaggacagag	actctaatcc	6840
agctgtgctg	aaggagcaca	tctcctgact	tctgagcttt	cccctggtaa	attcaaactg	6900
gatgtcacgg	cgccctcaga	tagagcctgg	taatttgccc	tggggagagt	gactgtcttt	6960
tggatctaat	ttgacttttg	ccccagttgg	aggaaaatct	tcagggctag	gaaggattgt	7020
atttgtctga	ccccagagat	aacctgggtt	ttgaggaaca	tggggcatca	acctgaatgg	7080
tcttgtaaga	tctctcccac	gccagcttgc	cagtgtttct	ctgatgaatt	tagagtacct	7140
gagtagtgca	ggcctgctgg	gaggaggact	ctccctctgt	gctactcaga	gaaattcatt	7200
cttcaaggcc	cccttccagc	cttgctctta	cccagctggg	ctacagttac	aataaaggaa	7260
atgacttttc	ttctcccctt	ccccagtac	ctttgttttc	ctagtcacag	ggtggggctg	7320
gatattgaat	ggagaaattg	ctggggtcca	tcctaaactc	ctccctcat	ctctccctta	7380
cattacccca	ttcttctgtc	tgcagccaca	tccataatcc	tgcctctgtt	agccttccga	7440
cagaccctca	ggtgcccagg	acaacaggaa	gctacttaaa	gctggaacct	cagactgtgc	7500
aatggaggcc	agtgacaaaa	ctgaaagtag	ctctgtcagt	aattgtgctg	gtgcgattag	7560
gcagctggcc	agaatctttt	ggatctcctg	gacatatggc	tgactagtcc	tcccaagcct	7620
tcccaacagg	cctcttttt	ttccttttt	tcttttcttt	ttttctttc	tttctttctt	7680
tcttttttt	tttttttag	gctagtgaag	tgaaattgtg	ggagtggaaa	aggaacaaag	7740
aaatcggtaa	ctggtagtga	tcaattactt	gtaaacacta	ttgtacttgg	accagcccag	7800
taggcctttt	ttaaaactct	gagttacctc	tctttccttt	ccttgagcag	tgccattaat	7860

tctgtatctg	gggcaatcct	ttctgatgtt	ctctggacct	ggctctctct	ccttaggaga	7920
ggccaggaga	gtagccagag	agcatgtcat	ttgtagctga	ggttaaagtg	tggagctatc	7980
aatggtgacc	tggcctcttg	gcatgttagc	aagccagagg	accttgacaa	cttttttgat	8040
gattgtccgt	tcaccctgat	caaaggtgtt	tggcttagga	ggagggaaga	aaagctaccc	8100
ctattagtct	tgatggcccc	agcgtgggtc	tctattgctt	gacctggttc	ctagcagcat	8160
tatcagaagg	aaaatccacc	gctcttaagg	ctcctgggaa	ctttcaggac	ttcctttctc	8220
aggattgcaa	acataagact	atttgagctt	tcacttttga	aaagcggtta	ctaataccta	8280
tactctggga	aagggctaat	gcagatagaa	gactgtggtc	actgcatcag	gcaacagacc	8340
atttccgcta	aatttagtga	ctccaggaag	gccagtgaag	aaataacaca	cgtagcaacc	8400
agagactgtg	ttgtaatatg	ttggctgaca	gcagggtact	ttctgtgatg	ctgaaagcca	8460
cattcatttt	ctctcccctc	atccccatct	aagcaagcct	ggtagaatca	taattacagt	852 0
aataggtacc	acttattgag	tactctgtgc	cagacaccct	cctgagcata	cgacatgcat	8580
agcacattta	atccttacaa	tgacttaata	aaatgtagta	ctagtcttac	ctacttcgag	8640
aatagggaaa	tggaggttac	ttgtttaaag	tcacagagct	aataggtagc	atagctgaga	8700
tttgaactca	ggcattctta	ctccttgcct	gcaagagtct	cttggcattc	ttgaatgcaa	8760
gcatatttct	taacctcact	gaggctcagt	ttcctcttat	ataatatggg	gtaaagagcc	8820
ctcaccctgc	ctgccacaca	ctggtagtgt	cagataacat	tgaagggtgt	tagtttaaag	8880
gcttcatgga	ctctataatg	tcaacaaaag	tgctgttaac	tttcttctgg	gtctcaggct	8940
cctgatgtag	agtcagtgga	gcaaccctgc	catctgctgt	tatgctgttg	atgttgctgc	9000
cacacttact	aacctaaacc	tttgattctg	gctgtggcct	tctccagaag	gtgtttactc	9060
atttgtccag	tttatctttt	aggaaacagc	cagcccgtag	atcattaagg	ctggctattg	9120
gacagggggc	tggggcctgc	ctgacagagg	aaggaagggc	agacatctgg	ttcttcctct	9180
gcccctacaa	gagactccag	cctgaccaca	gagtggtact	cctaggatgt	agcagcagca	9240
tatgagcttg	aatgtgcctt	aatcctgctc	tttactttga	gaagagagaa	ctaaggaccc	9300
acagatgttt	cacagcttct	ataggaggca	gaggtagaaa	aatggagaga	gatgaggcca	9360
gagatagata	actgatatta	attaaacgtt	gtattaagaa	cctcacttag	attatctgat	9420
tcaatcttca	taataaccct	gcaaccccca	ccttttttg	agaacagggt	cttgctctgt	9480
tgtccaggct	acagtgcact	ggtacaatca	tagttcactg	cagtgtcaac	ctcctgagct	9540
caagcaatcc	teccacetea	gccttgcaag	cagcttggac	tacaggcgtg	ccaccacacc	9600
ttgccatttt	tttttattt	aagtagaaac	aaggtcttat	taatactatg	ttgcccaggc	9660
tggtcttgaa	ctccagcgat	cctcctgccc	cagcctccca	aagtgcttgg	gattacggaa	9720
gtaagccact	gtgcctggcc	agtgcaaccc	ccattttata	ctaaaacagg	aaggcccaga	9780
aaggtttgga	gtaacttgtc	cagggtcaca	cagatgatat	ttgaactcag	gtctccctgg	9840
ctcccaagag	agtctgcttt	ccactaggac	tcccaggaga	aaaaaaaaa	aaaaaacagt	9900
agacttggag	acagaaaatc	tgatttgagt	cttagttgag	ctaggctaac	tgtgtaactg	9960
tgggcaagtt	ccttagcccc	tgtgagcctc	agtttcttat	ctgtaaaatg	tcataaaaga	10020
aatccatctc	atggagtagt	tgtgatgatc	aaggactctg	aaaacattag	aatggtttaa	10080
tgtgaaggat	tagcagcagc	acatggcaac	attgtgcatc	ttatattaac	tatccaaata	10140
tatcaagcgt	catttgctat	atataaaagt	catcaaatta	ggcactgtgg	gggatacgga	10200

gttggcatac	tagcctggcc	tcttaattaa	ttcattaatt	agcttattta	tttttgagat	10260
aggtettget	ctattgccca	ggctggagtg	cagtggcatg	atgatagett	actatageet	10320
caatctccca	ggcttaaaca	atcctcctga	gtagctggga	ctacaggcac	acactaccat	10380
gcccagctaa	tttttttta	attttttgta	gagacagggt	cttgctctgt	tgcccaggct	10440
ggtctcaaac	tcctgggctc	gagatectee	cacctgggcc	tcacaaagtg	ttgggattac	10500
aggtatgagc	cacggcacct	ggcctggtct	cttaactggt	tccctaagac	agctggaaat	10560
agagaatgtc	atggagcatt	cctaaccatg	ggctccagcc	tggctttcat	tctgtttctc	10620
ccctgaaaca	acattccttt	agtaatattc	cgaataacag	cttcatcagt	ctgtctaccg	10680
accactcttc	aggetteate	ttatatgacc	tcccaaactg	cactaagggt	tgtattagag	10740
aaaagtggat	aaagttcgga	gtcaggctgc	ttgagcttaa	atgccagctt	cacttaccag	10800
ccacctgacc	atgagtcagc	tgcttaacca	ttctttgcca	cagtttcctt	gtctatgaaa	10860
agggaaatgg	ctcccacctc	aaaaagttgt	taacattaaa	ttcaatcatg	tattcaaagt	10920
cctgagcaga	atgtctggcc	atgactggga	cttaacagat	gttagcattt	attattagta	10980
tctgtcagtc	ttgaaatgtt	ctcttccctt	ggctttcatg	acattccaca	ctctcctggt	11040
tttctcttac	ctctctggta	atacctgttt	gcttatcctt	ctttgtccag	ctctgggatg	11100
ttaccattcc	ttcaggcgtg	ctgttttctc	cttaggcagt	cttacacaca	ctcatgactt	11160
ccttccattg	tcctccacac	actgatgacc	ctaaaatcag	tatctccagc	ctamaccttt	11220
ccactgagtt	ctagacccat	atgttgtact	atcaacctgg	cttgtccatt	tgaatgtctt	11280
ccaggcactt	cagactctct	tctctagact	ttgctggact	ttcactcttc	cccctaaaac	11340
tggctcctct	tccactgaaa	catgtatgtc	attgagaggc	accaccatcc	acccagtgcc	11400
taagccagaa	acctaggaat	ccttgatacc	tgttctctct	catcctgcat	atccaagcct	11460
atcagtttta	tctctaaatt	atattttggt	aggtttactt	ctttcctttt	ctcccaccac	11520
caccctgctc	caagetacca	tcatctcacc	tggatgtctg	caatagcctc	atctcccaca	11580
gccactctgc	accccctaat	ctgttctcta	tagagcagtt	ggaaggagtg	atttttgttg	11640
tttgttttgt	tttgttttag	acagagtete	actctgttcc	ccaaggctgg	agtgcagtgg	11700
cacaatttcg	gctcactgca	acttctgcct	cccgggttta	agcaattctc	ctgcctcagc	11760
ctcccaagta	gctgggatta	aggcaccggc	ccccataccc	agctaatttt	tatattttta	11820
gtagagatgg	ggttttgcca	tgttggccaa	gctagtctcg	aactcctgac	ctcaagtgat	11880
ccacctgcct	cggcctccca	aagtgctggg	attacaggtg	tgagccactg	cacctggctg	11940
gaaggagtga	tcttaaaaaa	aaaaaaaaca	aaaaaaaact	tgactgtgtc	actctgtgtt	12000
gtctctccta	ccttgtatac	ttccacaact	tcccagtgtt	cttggataaa	gaccaaaatc	12060
cttaacttgg	ccaggcgcgg	tggctcacac	ctatcatctc	agcactttgg	gaggccgagg	12120
caggcagatc	atgaagtcaa	gagattgaga	ccatcctggc	caacatggtg	aaaccccatc	12180
tctactaaaa	atacaaaaat	tagctggtcg	tggtggcgtg	tgcctgtagt	cccagctact	12240
tgggaggctg	aggcaggaga	atcacttgaa	cctgggaggc	agaggttgca	gtgagcccag	12300
atcacgccac	tgcactccag	cctggtgaca	gagtaagact	ccatctcaaa	aaaaaaaaa	12360
********	ttccttaatt	tggcctacag	tagagccctc	cgtaatgtgg	cctctctcca	12420
catctccaca	acctcctgct	ccctgcactt	cagcctcacc	tctcttctgg	acaggccctc	12480
cttctgacaa	gggctttgtt	cattctgctc	cctctgccta	gaatgccccc	ttactctgtt	12540
cacttaactc	ctgcttatcg	tttagatctt	tacctggatg	gctcagagaa	atatagaagt	12600

aatteeteae	cctgaaaaat	aggttaggtc	cctgttttat	gttttcatag	acctttcctt	12660
tgaggctttt	tttaaaaaag	tagttttaat	ctcacattta	ttcatgtgat	catctcctta	12720
atgatatctt	aagacctcta	atagaacaat	ttggtcatgg	actgtggggt	ttttgcccct	12780
cattgtgtca	gcactgagca	tattgttggc	ataggaggga	tatttgttga	atgaattgct	12840
agaggtggcc	aagagatatg	atgtaagtca	ggcttttccc	tgcccttccc	cttccccttc	12900
cccacatcct	tcctatagca	gccaccgtgg	ctgcagttac	tgtaaatggc	aagacggaat	12960
cagttccgga	cattgggttg	ttttagaaaa	ttgcctgcaa	gtgtcagggt	gataagttaa	13020
agctttgtct	tttgccctca	gaggagctat	cccatagtga	gtagaagcca	gagaagctga	13080
ccccaggagt	ccttctttcc	agcagcaggt	cttgagctgc	acttctctgt	agctacaatc	13140
caggcaggaa	caagccctag	gtacctccgg	agaggagggc	aagagaggaa	gaatgagttc	13200
agctactcta	gccaccaaac	tgattatgaa	ttgccctgaa	atctgaaaaa	tttcaattcc	13260
aatcgtaagt	ttgttttgtt	tcattttgtt	ttcttaaatt	gtatatttga	aagatggcat	13320
taactaaaga	tatatattca	atatagagtg	gaaaaaatgg	aatacttgca	tagtatcttt	13380
tacttatagg	tgatttatga	tggggagtgg	ggtggatagg	ttggcagttc	ccccaagaag	13440
ttggaaatga	agtttgtcct	ctgtgagttg	aactaattag	atccacaagt	aatgaaagca	13500
gtattgtgtt	gtagttaaga	gcacactcta	gaaccagatt	gcttagtttc	aaatcctggt	13560
tctgcctttt	attatctgtg	tactttgggc	aagttacttg	ccctttgtgt	gcttcatttt	13620
tctcatctag	aaaatggaga	ggccaggcgt	agtggctcat	gcctataatc	ccagcacttt	13680
gggaggccga	ggcgggcaga	tcacctgagg	tgagaagttc	aagaccagcc	tggccaacat	13740
ggtgaaaccc	tgtctctaca	aaaatacaaa	aattagccag	gcatgatggc	gggtgcctgt	13800
aatcccagct	acccaggagc	ctgaggcggg	agaaacactt	gaacctggaa	ggcagaggtt	13860
gtagtgagcc	aggattgcac	cactgcactc	cagcctgggt	gacaagagct	agactcagtc	13920
taaaaaaaaa	aaaaaaaac	aaactggaga	tacaggctgg	gtgcagggct	tacacttata	13980
atatcagcac	tttgggaggc	ctaggcggga	ggattgcttg	aactcaggag	tttcaagatc	14040
agtctgggta	acagagcaag	acctcatccc	cacaaaaaat	caaaaattta	gccaggcatg	14100
gtggctcatg	cctgtggtcc	cagctactca	ggaggctgag	gcgagaggat	tgcttgagcc	14160
caggaggttg	aggctgcagt	gaaccatgac	tgcaccacta	catgccagcc	tggatgacag	14220
agcaagaccc	tatctcaaaa	aaaaaaaa aa	aaagaaacga	gccaggcgcg	tttgctcacg	14280
ccagtaatcc	cagcactttg	ggaggccaag	gcaggtggat	cacttgaggt	caggagatcg	14340
agactagcct	ggccaacatg	gtgaaacccc	atctcaactg	aaaatacaaa	aattagccag	14400
gcatggtggc	atgctcctgt	agtcccagct	actcacttgg	aggctgaggc	acgagaatcg	14460
cttgaaccca	ggaggcggag	gttgcagtgg	gccaacatca	tgtcactgca	ctccagcctg	14520
ggagacagag	cgagactctg	tctcaataaa	taaataaaca	taaaataaaa	taaaataaaa	14580
taaaataaaa	taaaaaaata	tggaggccag	caggcacggt	ggctcacgca	tgtaatccca	14640
gcactttggg	aggccgaggg	gggcggatca	caaggtcagg	agatcgagac	catcctggct	14700
aacacagtga	aaccgcgtct	ctactaaaaa	tacacaaaat	tagccaggca	tggtggcagg	14760
cacctgtagt	ccctgctact	caggaggctg	aggcaggaga	atggcgtgaa	cccgggaggc	14820
ggagcttgca	gtgagctgag	atcgcgccac	tgcagtccag	cctgggcgac	agagcaagac	14880
tctgtctcaa	******	aaaaatggag	gttgggcgcg	gtggctcgcg	cctgtaatcc	14940

cagcactttg	ggaggtcgag	gcgggcggat	cacctgaggt	caggagttcc	agaccagcct	15000
ggccaacatg	gtgaaacctt	gtctctacta	aaattacaaa	aattagccag	gcacgatggc	15060
aggcacctgt	aatcccagct	acttaggaga	ctaaggcagg	agaatagctt	gaacctggga	15120
gatggaggtt	gcagtgtgct	gagatcgcgc	cactgccctc	cagtagagtg	agattccgtc	15180
tcaaaaaaaa	aaaaaaagaa	gaaatggaga	tacaaactta	ctacctacct	ccttacaacc	15240
taccctcaca	gtattactgt	gaataaaagt	gtgtgtagca	ctgggaacac	tattcacaga	15300
gcactcatga	atgtttgttc	tttgttatta	gttactagag	aggcaaatgt	ctgccagggc	15360
tgaataatat	gtgtgaattg	gtgattgtcg	cacatatcta	aagaagtagt	tattttttc	15420
aattaaaact	tagtttaaaa	accaatataa	ggccgagcgc	agtggctcac	acctgtaatc	15480
ccagcacttt	gggaggccga	ggtgggcaga	tcatttgagg	tcaggagttc	gagactagcc	15540
tggccaacat	ggtgaaaccc	tgtctctgct	aaaaaaaaa	aaaaagtaca	aaaattagcc	15600
aggcatgatg	gcaggtccct	gtaatcccag	ctacttggga	ggccgaggca	ggagaattgc	15660
ttgaacccag	gaggtggagg	ttgtagtgag	ccgagtttgt	gccactgcac	ttcagcctgg	15720
gtgacagagg	gagacactgt	ctcaaaaaaa	aaaaaaaaa	accaaaacca	atataataaa	15780
taagtggcca	gcaatgaaac	agaaagtgaa	aagttagtga	agcaaaacta	gtactgtatt	15840
cagataaaga	tgctgaatct	agatttggtc	accagaatag	ggtcctttgt	ggcaacctgg	15900
gctagtttgg	ctgactcacc	actgccagga	tgaaatttct	ttcagtggct	actcatttcc	15960
ctttatttta	agtccatgct	cacagagcaa	ccttctgatg	cctaattcag	cttcctggga	16020
tacttaataa	caggaagggt	ctggaagtag	tacctgtata	ggggatatga	gtgttctgat	16080
tttaatagtc	aattcataag	tgtacagagg	gtttgataaa	tggttaggtc	agaaccatca	16140
cagaatgtct	acacctcttt	ggacattagg	aaggtcaaaa	acctgaaagg	ccaaaagcta	16200
ggcctagatt	agggtcattc	accaagaaaa	catcagcctt	gaagagttct	ctgggtggtc	16260
caccagtcaa	ccttcctttg	atcacacctc	cttcctcgtt	gcttctttaa	gcattgacct	16320
gtaatgggta	tggaatttt	tgctcaccta	actccttcct	tttacagagg	aagaagttga	16380
agcccagaga	gatttaatgg	cttgcctaag	atcacacgca	gattttctgt	taaccagggt	16440
gatttttcag	gtgttccctg	ccagacgagg	gctttttcc	ttgaattgcc	tagagatttc	16500
ttgagatatc	cgaagcattt	ttcccagtgc	agcctggaga	aggatgtccc	tgtcaacaca	16560
gcatttgtta	ctcaatgtta	gacattcaat	tttctaatta	gtatcatgga	gcaacagtgg	16620
atgattatct	ataaggggtt	gcaattccat	gcttatgtgc	ttacagccca	tatagacaaa	16680
tatcagctgt	taaaatgaca	aggcagtaga	gatgtggccc	caggacaaag	gcatactctg	16740
ctgttagtga	acactagttg	gccagcaaat	ttcacatggg	catatacacg	gccaactgta	16800
gactttaggc	atttataccc	attcagagag	ccaaactggc	aactaaagat	cagcattctc	16860
tttggcattt	cagctttgcg	ttctgttaaa	aatcactgct	tgcttaaata	cctctgatag	16920
ctcttcactg	cctgtaggca	actctttagc	ctagcagact	tggtctttag	tgctctgccc	16980
ctactctctt	ccaccattct	ggcctcctgt	ctaattgctg	cccatatgtg	ccatgcacta	17040
gagcttacag	acctgctcag	cgttatatga	gcataccata	ctctttatgc	ctcagtgcat	17100
ttgcacatgt	tgttccttca	ggccagaatg	cctgttactg	cctggcaatc	agcctattag	17160
agtctgccaa	taccatccca	tcttctgtgg	aggageeece	cgccaaatcc	acccatacct	17220
ctcccacca	atcagagact	tcttctctct	ttgttattct	cttcgttatt	ctcttcatac	17280
ctcagttata	tccatttcag	tatttgttta	cacatctagc	atcactctta	gagtgtgaaa	17340

ttctccaagt	gtggagccgt	atctagtttg	tctttgtatc	ccagagctta	gcaaagtgcc	17400
tagaatgtag	tgggtgctca	gagtgtttgc	tgggtgaatg	atgtatttgt	tgaacgactc	17460
tttggacact	tgaataaagt	ccatccagta	tgcaccatta	ccatctcttc	gctctacaat	17520
attcttttag	gcaagagctt	atcttttgag	gtgataagat	aagctcaaac	ttatgtagac	17580
taagacctca	gtctgtaaat	gtcatcccta	agtcttaaac	catcaaaacc	agggcctcaa	17640
ggaatggcat	gccttctgca	actgtagcaa	cctgctgtgc	ttattttgcc	gtgttttca	17700
ttttccccc	aaaagctaga	gtcccttctc	ccatgggcag	tgctggaagt	gtgctaacaa	17760
attctttctc	catactgctt	acgattacaa	aaaaaaccct	cagcatctca	tgccagactt	17820
gagttaaggt	tgttttcttt	tgtgtgtcag	ctgtattctg	gtcatgactt	cctgatgatg	17880
ccctatagag	attttgctga	gatcagaggg	tgctccactg	ccatcagtag	cactgactct	17940
tgcagaagca	ccgtttctga	agttggctaa	tgtcatccct	cacgtttgtt	tgtttgaaat	18000
ttgttttagt	tccagagata	gcactttcat	ggaatgacgc	tatcttctag	aatcactttt	18060
tttttttt	tgagttggag	tctcgctgtg	tcgccaggct	ggagtgcagt	ggcacaatct	18120
cagctcactg	caatctccac	cttccgggtt	caagtgattc	ccctgcctca	gcctcccgag	18180
gagctgttac	tacaggcgca	cacccccact	cctggctaat	tttatgtgtt	ttagtagaga	18240
cggggtttca	ccgtgttggc	caggatggtc	tcgatctcct	gactttgtga	tctgcctgct	18300
tcagcctccc	aaagtgctgg	gattacaggt	gtgagtcacc	gcgcctggcc	tagaatcacc	18360
tttttatacc	ataacgtgag	caccactgcc	gcgtcaccaa	ggaaagagag	aggcagctac	18420
tgtggggtta	caaatgggta	agagtggcac	caggaaggtg	aaagtctcta	cttagccaag	18480
gcttaacaaa	atgtcaatca	ccaaacattt	atttattaag	ctacgttcag	gataagaaga	18540
tgaacaagct	atctgtacat	tcattttctc	gtttgtaaca	aggtaatgat	agtgatctat	18600
cctgcctgcc	tctgagggtt	attgtgagaa	taaaatgaaa	tcaagtggaa	aagcacttag	18660
gaaaaagaaa	agcattggtt	ttcaattgtt	agtgtggatc	agaaacactg	gggcttgttt	18720
aaaatgcaga	ttcttagccc	cagtctcagc	gattctgatt	ctgtatatct	gaagtgggac	18780
tcaggaatct	tgattttcaa	caagctgacc	agagggtcca	atgctgctat	tcctttagtt	18840
acactttcag	aaatattact	gtaaatcaaa	tggcaagaat	aaaatagtta	tttgaggcag	18900
ttttagtatg	ttggacctgg	agtccaaaga	cttgggtcaa	actccagctt	tgtcagttcc	18960
tagacctgtg	accttaaaca	gcaaccttct	ctgtgaacct	tagttccctc	aggaacggct	19020
ctggtcacct	cctgctgtac	tccattgatg	actcaccaca	taaggctccc	tgggagtccc	19080
ccaaaccttt	gctctcttaa	ctccttttac	agcctcctac	atctcctgca	ggtgctgtct	19140
tctcctcctt	tttccaggcc	ctgctctgac	acagcattca	ttctcctctg	ggaagggttc	19200
cttcaatgtg	tctccaagca	catcacaccc	aggaaggacc	ctgtggccat	atctgtctat	19260
caccagatca	aactacgtga	aggcaggcac	taggtactgt	cagtgcccag	cataggcctg	19320
gcccatacca	ggtgtccaca	gatgcctagt	aaagaaacct	atgattcagg	acccccatga	19380
tgagcaacta	tagcactaga	acagtgataa	taactaatgt	ttataatgca	tcttcagttt	19440
acagagggct	tttgtactca	tcatctagtt	tagttcctgc	aacaacctct	tgaggaatat	19500
agcacaagca	ggacaaggga	agcccagaga	tgttaaataa	tttatccaag	tttatgctgc	19560
tgggaagggc	agcactgaaa	ttaaaagaaa	agttttctga	gctcaaatcc	catgcccttt	19620
cctcaatgtg	agctctagca	aggtattcag	gaatcctgcc	tctacagttc	agagootcaa	19680

19740							
typatagabaa cccagtgaaa acatgaagte aagtetaact agtecatact attecateact 19920 typetgactee tyatgateag eteettete aagtgettae tytecaetta tecateact 19920 typetagaat teatgtgaag gaateeaaage aanaggatea taaggettee tettteeagt 19980 atgettettee teettettya aaactgggee agttagetae eteeattyag gatattyee 20100 ccatteteea getteeteeaa agttactaac aatggteea teaettyga gatattyee 20100 ccatteteea getteeteeaa agttactaac aatggteea teeettyga gatattyee 20200 gacttggtat ceteataty ettygggete caatteteea teeettyga gatattyee 20200 gacttggtat ceteataty ettygggete caatteteea teeetagtyee aacatatett 20100 catteteea typetaeaa gatagatyee eaattetee ateeetagtyee aaactetett 20340 teeetteea typetaeaa gatagatyee aaattetee acetetyga gattytygaa 20400 caatgacatea cattacagga gtageagata etaaactete acetetyaaa acactgactg 20460 agtteeatga gecagataet gaagtgaget tyteacaata tyteeteata taatgeteat 20520 aaccetytya agetgggaat tyetyggaaca tittattat tattatty gaacggagat 20580 tygetetyte acetaggety gtytycaaty geatgatett gyseeacge aaceteegee 20640 teeeggyte aageagatee etygeeaag gaagtatett gyseeacge aaceteegee 20700 caccaccaca teeagetaat titytaettit tageagagag gaggtteete caaggtggge 20700 caccaccaca teeagetaat titytaettit tageagagag gaggatteete caaagtgety 20880 gyetaaatyd agaaagtgat tyggaagaag gaggagaty gysgaagaagaa atggtagaty 20940 agatggggg gagaagaagaa etygaagaaga gaggagattee caaaaagteet 2000 ctteettyat tygagaccae catgeetyee egggacetta eagaacaga atggtagaty 20040 gatggggggg gtaatgacae catgeetyee egggagattea cacaaaaagtet 2000 ctteettyat tygagateeta cetteegata tytggagggt teygagatea teeteageety 20100 ctteettyat tygagateeta cetteegata tyggagggt gygagatea teeteageety 20100 ctteettyat tygagagaag tteetteega caaaaaggtt tyggagatea tydeetagag tygagagaga tygagagaga tygagagaga gygggagagaa atggtagaga 20100 ctteettyat tygagagaa tygagagaga egggtataa aaaceetee tygagatea 20100 ctteettyat tygaagaaga etygagagaga egggagagaagaa tygaagagaa 20100 ccaaagggaga gaggagaa tatateeteea agaagagaga tteetateee agaagagaga 20100 geaaatyteet eeagagaga caaagagaga aagagagaa atggagagaa 20100 geaaatyteet eaagagagaa aa	attgctgggt	atgttgagtt	cttgtatctg	atttttctag	atttcctgcc	cacattotta	19740
tgctqaccc tgatgatcag ctcctttct asgtgctac tgtccactta ttccatcatc 19920 tgcctagaat ttatgtgaag gaatcaaagc aaaaggatca taaggcttc tttttccagt 19980 atgttttcc tcctttttga aaactgggcc agttagctat ctccatttt attccatga 20040 tacatcccca gcgcctggta tatagtagat atggaacatt acacttgga gatattgca 20100 ccattctcca gtttctccaa agttactaa catggttca tacattgga gatattgca 20100 ccattctcca gtttctccaa agttactaa catggttca tacatgtgcc aacatattt 20160 ctttttcaa tatattggga aataattct ccagtctgaa aatctgaaca cattcatgt 20220 gacttggtat cctcatatgt cttggggttc caattctca ttcctagtt caagtcatg 20280 aacatgtaaaa caaaggatta gactaaatct ctaaagttc atccagatgc caaattctt 20340 tctctttcca tgataccaa gatagatgc aaaattctt attccatgt gtgttggaa 20400 caatgacatca cattacagga gtagaagagc aaaattctt gtctcatat taatgccat 20520 aaccctgga agctgggaat tgctgggaat tgttgagaa 20580 tggccagata ccaaaggatg gtgggaatg gcagatact ggggatcaagg gcagatact ggctggaat gcagatact gggtcacag agctgggat aggggggac 20700 caccaccaca tccagctaat tttgtattt tagcagagat gggggttcc caaggggatc 20700 caccaccaca tccagctaat tttgtatttt tagcagagat ggggttcc caaagggcgac 20700 caccaccaca tccagctaat tttgtatttt tagcagagat ggggttcc caaagtgct 20880 ggattacagg catgagcca catgacctgc cgggacctt gttttagaag gatgactgc 20880 ggattacagg catgagcac catgacctgc cgggacctt gttttagaag gatgactgc 20880 ggattacagg catgagcac catgaccac catgccagca gaggggtgg ggaagaaga atggttagta 20940 gatgggggt gtaatgctta cctttcagta tttggaggct tcggagtcct caaaaattct 21000 cttccttgat tggagcac catgaccac atgggggggggg	ctgtctggat	atcaggaaag	agtttatcaa	atgcctgtgg	aaatccaaga	taaggtotca	19800
atgettagaat ttatgtgaag gaatcaaagc aaaaggatca taaggettee tittecagt 19980 atgetttee teettittga aaactgggee agttagetat etecatittt attecatgaa 20040 tacatcocca gegeetggta tataggaat atggaacatt acactttgga gatattgeae 20100 ceatteteea gitteecaa agttactaac aatggiteea teaetgigee aacatatitt 20160 cittitteaa tatattggga aaaaatee eeagteegaa aateegaaca catteeatgi 20220 gacttggtat ceteatagt etigggette caatteeca teetagite caagteeatg 20280 aactgraaaa caaaggatta gactaaaatee etaaagtee ateeaggie caaattett 20340 teetetteea tgatacetaa gatagatgae aaatatigte tittacetgi tgittiggaa 20400 catgacatea cattacagga gaaggagata etaaactee acteegaaga accaetgaetg 20460 agteeatga geeagatact gaaggagat tgiteacata tgiteeatt taatgeeat 20520 aaccetgga geeagatact gaaggagat tittattat titattatig agacggage 20580 tggetetgte acetaggetg gitgegaatg geatgateet ggeteacege aaceteegee 20640 teeeggite aageggatet etigeeagga etigeggaat acggggaata acggggaca 20700 caccaccaca teeagetaat titgattit tageaggaat ggagtteet catgitiggee 20880 aggitiggtea egaacatig aceteaagga aceteaggag ggagagagag gatgacgatgee 20880 getataaagg catgaageae catgeetgee egggaceett gittagaag gatgactget 2080 ggatggggggg gaaaggaga tteggaagg ggagggggggggg	tgatgagtaa	cccagtgaaa	acatgaagtc	aagtctaact	agtcactact	atttcactac	19860
adgitititico toctititiga aaactigggoc agitagotat otocatitit atticatgaa 20100 tacatococa gogoctigita tatagiagat atigaacatt acactitigia gatattigoac 20100 coattotoca gittotocaa agitactaac aatigitico teactigigoc aacatatitt 20160 cittittoaa tatattigga aataatoto coagitotgaa aatotigaac catticatigi 20220 gactigitat ootocatatigi otogagotto caattotoca tiotoagiti caagitoata 20280 aactigiaaa cotaatagi agitagata otaaatot otaaagitot atocagatigo caaattotti 20340 toototoca agaacaa cattacaaga gaagaagaca caaatatot otaaagito atocagacata gittigigaa 20460 agitocaga gocagatact gaagigagat otaaactoto actocigaaa acactigatago 20460 agitocatga gocagatact gaagigagat tittattat titattatig agacgagat 20520 aaccetigia agotgagaat tigotgggaca tittattat titattatig agacggagt 20520 aaccetigia agotgggaat tigotgggaca tittattat titattatig agacggagt 20520 aaccetigia agotgggaat tootgocagatagagat agotgggata accetogoc 20640 toocggito aagotggatat titgatatit tagocagaga agotgggat acceggaca 20700 caccaccaca toocgcaata titgatatit tagocagaga agotggata acceggeaca 20700 caccaccaca toocgcaata titgatatit tagocagaga gaggattotoc caaaagtog 20820 ggatacaagg cagaacatig accetoagga atocgcoc caaaaqtog 20820 ggatacaagg catgagocac catgoctgoc cgggaccett gittiagaag gatgactgot 20880 gctataatagt agaaagtgat tiggaagagg ggaggaggg ggacagaaag atggitagta 20940 gatggggggg gaaagaagtat tiggaagagg ggaggagggg ggacagaaga atggitagta 20940 gatgggggggggggggagaagaagt titotacagaa titoticagaa caaaaaggit tiggagatata titoaactaac 21120 acacctiqoc tigaacataca citigggetg caggitataga aggatatigi toocagaca 21240 cocagacagaag citicaaacta accegacaacaa citiggitota agaagacagt titocaacta agaagacagt titocaacata atigaaagac citigaagaa accacaacac tigggtotaga gaagacagac 21340 gaaatgitot caaacatacaa citiggigaa aacaacaacaa titigaagag gaagagagagaagacaa 21340 gaaatgitacaa caaagagagagaagaagaagaagacagacagacag	tgctgactcc	tgatgatcag	ctccttttct	aagtgcttac	tgtccactta	ttccatcatc	19920
cattetecca gegecteggta tatagtagat atggaacatt acaetttgga gatattgeac ccattetecca gitteteccaa agttactaac aatggiteca teaetgigec aacatatttt 20160 ctttttteaa tatattggga aataatteet ceagtetgaa aatetgaaca cattetatgt gaettggtat ceteatatgi ettgggette caatteteca teetaggie caaattettt 20280 aactgiaaaa caaaggatta gactaaatet etaaagttet ateeaggie caaattette teetateca tgatacetaa gatagaagat etaaacetet acteeggie gittigtgaa 20400 catgacatca cattacagga giaggagata etaaacetet acteeggaa acaetgage agteegga agecagatact gaaggagat tgiteacata tgitetoatt taatgeteat agteetiga agecaggaat tgeegggaa tittattat tattattat gagacggage tggetetge acctaggetg gitgeaatg geatgatett ggeteaceg accecece aggattaga accasaatea titgattit tageaggaat gagagttete catgitggec aggattacagg cagaacatea titgattit tageaggaat ggagttete catgitggec aggattacagg cagaacatea titgattit tageaggaat ggagttete catgitggec aggattacagg catgagecae catgeetgec eggaacaett gittiagaag gatgagecae 20760 aggatgggea cagaacateg accteaggag accecec gatgaagaagagggggagaagaagatgggggagagagag	tgcctagaat	ttatgtgaag	gaatcaaagc	aaaaggatca	taaggcttcc	tttttccagt	19980
ccatteteca gettetecaa agetactaac aatgeteca teaetgegec aacatatttt 20160 ctttttteaa tatattggga aataattete ceagtetgaa aatetgaac cattetatgt 20220 gacttggtat ceteatatgt ettgggette caattetea tectagtte caagteteat 20340 catgaaaa caaaggatta gactaaatet etaaagtet atecaggtge caaattettt 20340 teetetteca tgatacetaa gatagatgec aaatattget etttacetgg tgettggaa 20400 catgacatca cattacagga gtagcagata etaaacetet actetgaaa acactgaetg 20460 agttecatga gecagatact gaagtgaget tgtecacata tgteteatt taatgeteat 20520 aaccetgtga agetgggaat tgetgggaca tittattat ttattattg agacggagte 20580 tggetetgte acctaggetg gtgtgcaatg catgatett ggeteacege aacetecgee 20640 teecgggtte aagegateet ettgeteag ceteagega agetgggata acggggaca 20700 caccaccaca tecagetaat titgtattit tagcagagat ggagttete catgstegge 20760 aggttggtea egaacactig aceteaagtg atetgeetge etcageete caaagtegg 20820 ggattacagg catgagecae catgeetgee egggacectt gttttagaag gatgactget 20880 getataatgt agaaagtgat tiggaagagg ggagagggg ggacagaag atggtagta 20940 gatgggggtg gtaatgetta cetticagta titggaagget teggagteet caaaaattee 21000 ctteettgat tggagteet ecagecaata gagggettea cacaaacagt tiettgggtt 21060 ttgaattgtt tgaccagage titetteega caaaaggttg gggtgatta tetecageet 21120 acaccttgee tgaacatea ettggggetg ecggtataga aggetatigt tetecageet 21120 getacaagaeg ettgaagae etgggete egggtata acacetetee tgecattta 21200 ctteettgat tgaccagage tietetteega getggteta agagetagt tigtecaget 21240 cegtgecagg titecaactt atgaaatgtg etggagatta acacetetee tgecattta 21300 tecetactat aattgecagt caaaggatee etgagatea acacetee tgecattta 21300 tecetactat aattgecagt caaaggatee etgagatea teaacetee tgecattta 21300 getaggggg gaggggga agagggtga aacacacae tegggtega cataacega 21240 ceaagggggg gaggggaa aataceteaa aggacaate teaacacae 21240 ceaagggggg gaggggaa aatacetea gagacaeae tegggetega 21240 ceaagggggg gaggggaa aataceteaa aggacaeae teaacacaeae 21240 gettateaca tetggagate aataceteaa aggacaeae teagacaeae 21240 gettateaca tetggagate aataceteaa aggacaeae teagacaeae 21240 gettacacat ceagaceegg gagggetee gacacaeae teggacaeag 21240 gettacacat	atgtttttcc	tcctttttga	aaactgggcc	agttagctat	ctccattttt	atttcatgaa	20040
gactigata cotcataga ataatect coagitigaa aatetgaaca catticatgi 20220 gactiggata cotcatagi citigggette caatetetea ticetagiti caagiteata 20280 aactgiaaaa caaaggatta gactaaatet citaaagtiet atecagatge caaatetitt 20340 teetetteea tgatacetaa gatagatgee aaatatigte tittacetgi tgitiggaa 20400 catgacatea cattacagga giageagata citaaaetee acetetgaaaa acactgacig 20460 agiteeatga gecagatact gaagigaget tgiteacata tgiteteati taatgeeate 20520 aaccetgiga agetgggaat tgetgggaca tittatitat tiattatig agacggaget 20580 tggetetgie acetaggetg gigigaaatg geatgatett ggeteacege aaceteegee 20640 teeegggite aageagatet etigeeteag ceteegaga agetgggata acggaggeaca 20700 caccaccaca tecagetaat titigatiti tageagagat ggagtitete catgitiggee 20760 aggitiggica egaacactig aceteaaggig atetgeetee etigeggegggggggggggggggggggggg	tacatcccca	gcgcctggta	tatagtagat	atggaacatt	acactttgga	gatattgcac	20100
aactggaaaa caaaggatta gactaaatct ctaaagttc atccagatg caaatcttt 20340 tectettee tgaaacatca gatagatge aaatattgte tritacegg tgttggaa 20400 catgacatca cattacagga gtagcagata ctaaactct actctgaaaa acactgactg 20460 agttecatga gecagatact gaagtgaget tgttecacat tgtteteatt taatgecat 20520 aaccetgtga agetgggaat tgetgggaac tritattat trattattg agacggaget 20580 tggetetgte acctaggetg gtgtgcaatg gecagatact gaagtgaget tgtecacata tggeteacege aaccteegee 20640 tecegggtte aagegatet ettgeeteag ecteeggagata agggggtte agggggata tegggaat tgatgagat ggaggatte eagggggaca 20700 caccaccaca tecagetaat tritgtattit tagcagagat ggagttete catggtgge 20760 aggttggtea eggaacact gactcaggg atccaggaaggatggggat acggagatgggggaaca 20700 caccaccaca tecagetaat trigaattit tagcagagat ggagttete catggtgge 20760 aggttggtea eggaacacttg acctcaggg atctgeetge etcagectee caaagtgeg 20820 ggattacagg catgagecae catgeetgee eggaaccett gttttagaag gatgactget 20880 getataatgt agaaaggat triggaaggag ggaggagtgg ggeacgaaag atggttagta 20940 gatggggggg gtaatgetta ecttreagta triggagget teggaggtee caaaaattet 21000 etteettgat tggagetee ecagecataa gagggettea eaaaaaggt trittgggtt 21060 ttgaattgtt tggaccagage ttteteega caaaaggttg gggtgatea treactace 21120 acacettgee tgaaacattea ettggggetg eeggttata agggtaatg treecageet 21180 gteacagae ettgaagae etggeetea getggtetaa agggtaatg treecageet 21240 eegggecagg treecaagae etgggeetea gaagaggagt treetacag gaaccaget 21240 eegggeegg gagggtgaa tataacctee aggageagt treetacca ggaccaget 21240 eegaagggggg gagggtgaaa tatateece aggagaga treetacca aggaccaget 21240 eegaaggggg gagggtgaaa tatateece aggagaag treetacca aggaccagea 21540 gettacaaca tetggggag aaccaccaca teggggaga aaccacaca tegggetga geagacagge 21600 gteaaaatgga treecaccag gagggggaga aaccacaca tegggacca etaaccac 21720 accacaccac caaagceett gaagaggat tageteetee aggagagage 21660 gteeaaatgga tecaccett gaagaggag eagttteat ggeetegae getggaacag eagacaget 21780 tegeacacac ecaaggeggag eagatteea aggaggaga aggaggaga gaggagaga aggaggag	ccattctcca	gtttctccaa	agttactaac	aatggttcca	tcactgtgcc	aacatatttt	20160
acctgtamaa camaggatta gactamatct ctamagttct atccagatgc camattcttt 20340 tctctttcca tgatacctam gatagatgcc amatattgtc ttttacctgg tgtttgtgam 20400 catgacatca cattacagga gtagcagata ctamactctc acctctgama acactgactg 20460 agttccatga gccagatact gamagtgagct tgttcacatm tgttctoatt tamagctcat 20520 amacctgtga agctgggamat tgctgggaca ttttattat ttattattg agacggagtc 20580 tggctctgtc acctmaggctg gtgtgcamtg gcatgatctt ggctcaccgc amactccgcc 20640 tcccggggttc amagcgattct cttgcctcmag cctccgcagt mgctgggatm acgggggcaca 20700 caccaccaca tccagctamt tttgtatttt tagcagagat ggagttctc catggtggc 20760 aggttggtca cgamaccttg acctcmaggtg atctgcctgc ctcagcctcc camagtgctg 20820 ggattacagg catgagccac catgcctgcc cgggmacctt gttttagamg gatgactgct 20880 gctatamatgt agamagtgat ttggamgagg ggaggagtgg ggcacquamag atggttagtm 20940 gatgggggtg gtamatgctta cctttcagtmagtaggggttca camamattct 21000 cttccttgat tggagtcctc ccagccamtmagagggcttca camamagttg 21120 acaccttgcc tgamacattca ctttggggct cggagtctca camamagttg 21120 acaccttgcc tgamacattca ctttggggct cggattaga agggtattca ttcacttacc 21120 acaccttgcc tgamacattca cttggggctg cggttatga agggtattg tctccagcct 21180 gtcacagamg tttccamactt atgamatggt ctgggagatma acacctctcc tgccatttta 21300 tccctactat amtgccagt camamgattc ctgcagttct aggagtcag catmactgat 21240 ccgtgccang tttccamact atgamatggt ctgaggatma acacctctcc tgccatttta 21300 tccctactat amtgccagt camamgattc ctgcagttgc ctctggcagc catmactgat 21420 ccamagggtgg gmgggtgama tatmacctcc agtggacat ttcatcccc agtgatgggt 21480 ggcttgggcc ctttgamgt ggctctgagg amccacaca ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc amtccttcma aggtccctc tgamgactgg ggagagaggc 21660 gtcamatgga ttccacctgg gmaggggttc tgcttcamact caggacatgg 21600 gtcamatgga ttccacctgg gmaggggat tagctcctca ctmattccc 21720 acccacccac camagtcctt gmagagaga tagggggaga gmagagcgcc tgamgcctcc 21780 tgctacactt cctagacacc gmctcactga gcccgccc gctgmacaa cmagacttgc 21800 gtcamatgtca agangagat tgctcatagg cccctcctgcc tcagtctct tgtggcttgc 21980 tgatattctcc attagacac gmctcactag gcccgtccc gctgmacaa tcamaggata 21960 gtcacacaccac cam	ctttttcaa	tatattggga	aataattoto	ccagtctgaa	aatctgaaca	catttcatgt	20220
tototttoca tgatacctaa gatagatgoc aaatattgtc tittacctgg tgttigtgaa 20400 catgacatca cattacagga gtagcagata ctaaactcic actictgtaaa acactgacig 20460 agttocatga gocagatact gaagtgagct tgttacaata tgttoteatt taatgctcat 20520 aaccctgtga agctgggaat tgctgggaca tittattat tratitatig agacggagtc 20580 tggctotgtc acctaggcig gtgtgcaatg gcatgatcit ggctcaccgc aacctccgcc 20640 tcccgggttc aacgacactig gtgtgcaatg gcatgatcit ggctcaccgc aacctccgcc 20700 caccaccaca tocagctaat titgtattit tagcagagat ggagttictc catgtiggcc 20700 caccaccaca tocagctaat titgtattit tagcagagat ggagttictc catgtiggcc 20700 aggitggica cgaacactig acctcaagtg atctgcctgc ctcagcctcc caaagtgctg 20820 ggattacagg catgagccac catgcctgcc cgggaccctt gitttagaag gatgactgct 20880 gctataatgt agaaagtgat tiggaagagg ggaggaggg ggcacaaag atggttagta 20940 gatgggggg gtaatgcta ccttcaagta titggaaggg ggaggagac atggttagta 20940 gatgggggg gtaatgcta ccttcaagta titggaaggg ggaggagtc caaaacagt ticttgggtt 21000 cttccttgat tggagtcctc ccagccaata gagggcttca cacaaacagt ticttgggtt 21000 cttccttgat tggagcccc ccagccaata gagggcttca cacaaacagt ticttgggtt 21000 cttccttgat tggagccc ctgagccac cttgagggct ccagcactag gggtgatta atcactacc 21120 accacttgcc tgaacattca cttggggctg ccggttatga aggctatgt tetccagcct 21180 gtcacaagacg ctttgaagac ctgtgcctca gctggttcta aggagtcagt ttgttcagct 21240 ccgtgccagg tttccaactt atgaaatgtg ctggagatta acacctccc tgccatttta 21300 tccctactat aattgccagt caaaaggattc ctgcagttgc ctctggcagc cataactgat 21360 gaatgttctg ccagctgctc tgaggaccta gaagagcagt tttctatcca ggaccagttt 21420 ccaaggggtg gaggggaaa tatatcctcc agtgtgacat ttcatcccc agtgatggg 21640 ggttatcaac tctgggtgc aatccttcaa aggtccaccac ctgagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggtccccc tgaagcctga ggagaaggcc 21660 gttcacatt ccaggagag cagtttcat ggaccaccac ctgagccacc ctaaccacc caagtcctt gtaagaggag tagggggag agaggagcc tgcagccccc 21780 tgccacaccacc caagtcctt gtaagaggg taggggaga gaggggacc caagaccgg 21840 tgccacaccac caagtcctt gtaagaggag ccccccgccc cctggacccc tcaggcctcc 21780 tgccacaccccac caaggcggtta tgctccacac atggagacc cccacaccac ctaag	gacttggtat	cctcatatgt	cttgggcttc	caattctcca	ttcctagttt	caagttcatg	20280
catgacatca cattacagga gtagcagata ctamactete actetgtama acacetgactg 20460 agttecatga gecagatact gaagtgaget tgtteacata tgtteteatt tamatgeteat 20520 aaccetgtga agetgggaat tgetgggaca ttttattat ttattattg agacggagte 20580 tggetetgte acetaggetg gtgtgeamig geatgatett ggeteacege aaceteegee 20640 tecegggtte aageggatet ettgeeteag ecteegeagt agetgggatt aeggggeaca 20700 caccaccaca tecagetamat tttgtattit tageagagat ggagttete catgtiggee 20760 aggitggea ecagacactig aceteaggg attegeetge etcageetge etcagetge etcagetge 20820 ggattacagg catgagecae catgeetgee egggacecti gitttagama gatgactget 20820 ggattacagg catgagecae catgeetgee egggacecti gitttagama gatgactget 20880 getatamatgt agamagtgat tiggamagagg ggaggagtgg ggeacgamag atggttagta 20940 gatgggggg gtamacatga ecticagata tittggamagagg ggaggagtgg ggeacgamag atggttagta 20940 gatgggggg gtamagetta cettecagta tittggagget teggagteet camamatet 21000 etteettgat tyggagteet ceagcamata gagggettea eacamacagt titettgggtt 21060 titgamatigit tgaccagage titetteega camamaggitg gggtgatea titeacece 21120 acacettgee tgamacattea ettggggetg eeggtatam acacetetee tgecaget 21180 gteacagaeg etttgamagae etgggeetge eeggtitem agggetagt titeteaget 21240 eeggeegagg titecamacit atgamatgit etggagata acaceteete tgecattita 21300 tecetacitat amitgecagt camamagate etgeagtige etetggage catmacigat 21420 eegaggeeggg gaggggama atmatectee agtgagaeg titecateca aggacaget 21420 eegaggggggg gaggggama tamatectee agtgagaeg titecateca aggacaget 21480 ggettgggee etttgamagt ggetetgama aggeteete tgamagtega attitiggag 21600 gteamatgga titecacetgg gagggggete tgeteamact engagacage 21540 gettatacaa tetgggaga cagtiticat ggeattgama titecacece 21720 acceacecae camageett gaaggagga tagggggaga gaggageee tgeageetee 21780 titecacette ecagagagg eagtiteete tgamagaga gaggageee tgeageetee 21780 titecacette ecagagagg eageeraga engagggga engacaceae eageeteete 21780 titecaceae ecagacetee gacecaeeae 21780 titecaceae ecagageete tgeageetee 21780 titecaceae ecagageete tgeteaaeae eagagggaga eageeraeae 21780 titecaceae eagaggagae ecagaceae 21780 titecaceae	aactgtaaaa	caaaggatta	gactaaatct	ctaaagttct	atccagatgc	caaattcttt	20340
agttccatga gccagatact gaagtgagct tgttcacata tgttctcatt taatgctcat 20520 aaccctgtga agctgggaat tgctgggaca ttttattat ttattattg agacggagtc 20580 tggctctgtc acctaggctg gtgtgcaatg gcatgatctt ggctcaccgc aacctccgcc 20640 tcccgggttc aagcgattct cttgcctcag cctccgcagt agctgggatt acggggcaca 20700 caccaccaca tccagctaat tttgtattt tagcagagat ggagtttctc catgttggcc 20760 aggttggtca cgaacacttg acctcaagtg atctgcctgc ctcagcctcc caaagtgctg 20820 ggattacagg catgagcac catgcctgc cgggaccctt gttttagaag gatgactgct 20880 gctataatgt agaaagtgat ttggaagagg ggaggagtgg ggcacgaaag atggttagta 20940 gatgggggtg gtaatgctta ccttcagta tttggaggct tcggagtcct caaaaattct 21000 cttccttgat tggagtcctc ccagccaata gagggcttca cacaaacagt ttcttgggtt 21060 ttgaattgtt tgaccagagc tttcttccga caaaaggttg gggtgattca ttcacttacc 21120 acaccttgcc tgaacattca cttggggctg ccggttatga aggctattgt tctccagcct 21180 gtcacagacg ctttgaagac ctgtgcctca gctggttcta aggagtcagt ttgttcagct 21240 ccgtgccagg tttccaacct atgaaatgtg ctggagatta acacctctcc tgccattta 21300 tccctactat aattgccagt caaaaggattc ctgcagttgc ctctggcagc cataactgat 21420 ccaaggggtgg gagggtgaaa tatatcctcc agtgtgcat ttctatcca ggaccagtt 21420 ccaagggtgg gagggtgaaa tatatcctcc agtgtgcat ttctatcca agtgatggg 21480 ggcttgggcc ctttgaagtt ggctctgagg aaccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga atttttggag 21600 gtcaaatgga ttccacctgg gaggggctc tgcttcaact caggacatgg ggagaaggct 21660 gttcctcttc caggggagg cagttttcat ggcattgaga tgcctctca cttattccc 21720 acccacccac caagtccttt gtaagaggg tagggggaga gagagagcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagacgttg 21840 tgaaatgtca agaggagtta tgctcatacg cccctcctcgc tcagtctctt tgtggcttgc 21900 atattcttcc attagtactg tgttcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagactta atttgggcc cccttcttgc ctgattgaat taaaaagata 21960	tctctttcca	tgatacctaa	gatagatgcc	aaatattgtc	ttttacctgg	tgtttgtgaa	20400
aaccctgtga agctgggaat tgctgggaca ttttattat ttattattg agacggagtc 20580 tggctctgtc acctaggctg gtgtgcaatg gcatgatctt ggctcaccgc aacctccgcc 20640 tcccggggttc aagcgattc cttgcctcag cctccgcagt agctgggatt acggggcaca 20700 caccaccaca tccagctaat tttgtatttt tagcagagat ggagtttcc catgttggcc 20760 aggttggtca cgaacacttg acctcaagtg atctgcctgc ctcagcctcc caaagtgctg 20920 ggattacagg catgagccac catgcctgc cgggaccctt gttttagaag gatgactgtt 20880 gctataatgt agaaagtgat ttggaagag ggaggaggg ggcacgaaag atggttagta 20940 gatgggggg gtaatgctta ccttcagta tttggaaggt tcggagtcct caaaaattct 21000 cttccttgat tggaggcccc ccagccaata gagggcttca cacaaacagt ttcttgggtt 21060 ttgaattgt tgaacagag tttctccaga caaaaggttg gggtgatca tcacataccc 21120 acaccttgcc tgaacattca cttggggct ccggttatga aggctattg tctccagcct 21180 gtcacagacg ctttgaagac ctgtgcctca gctggttcta aggagtcagt ttgtccagcct 21180 ccgtgccagg tttccaactt atgaaatgtg ctggagatta acacctctcc tgccattta 21300 tccctactat aattgccagt caaaggatc ctgcagttgc ctctggcagc cataactgat 21240 ccgtgccagg tttccaactt atgaaatgtg ctggagatta acacctctcc tgccattta 21300 tccctactat aattgccagt caaaggatcc ctgcagttgc ctctggcagc cataactgat 21240 ccaagggggg gagggtgaaa tatatcctcc agtgtgacat ttctatcca agtgaccagtt 21420 ccaagggggg gagggtgaaa tatatcctcc agtgtgacat ttcatcccc agtgacggt 21480 ggcttagag gagggtgaa atatatcctcc agtgtgacat ttcatcccc agtgacggg 21480 ggcttagagc ctttgaagtt ggctctgagg aaccacacac ttgggtctga gcagccagca 21540 gcttaatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga atttttggag 21600 gtcaaatgga ttccacctgg gagggggctc tgcttcaact caggacagcc 21780 tgctcaccac caagtccttt gtaagaggg tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcaccat cctaggacac gaccaccac gaccaccac caagtccttt gtaagaggg acgccgcc ccgtggaacag cagagcgct 21840 tgaacaccacac caaggcgatta tgctcacacac gaccaccac caaggccttc tgttcatcac atgggaaaa taaaaagata 21960 atattctcc attagtacc gtgtcacaca attgggac cccctcctcc ccagacctac ttaaaaagata 21960 atattctcc attagtacc gtgtcacaca attgggaaacac acaaggagacaca 21980 atattctcc attagtacc gtgtcacaca attgggaacacacacac cccagaccaca caaggagata attgaccac	catgacatca	cattacagga	gtagcagata	ctaaactctc	actctgtaaa	acactgactg	20460
tggctctgtc acctaggctg gtgtgcaatg gcatgatctt ggctcaccgc aacctccgcc 20640 tcccgggttc aagcgattct cttgcctcag cctccgcagt agctgggatt acggggcaca 20700 caccaccaca tccagctaat tttgtatttt tagcagagat ggagtttctc catgttggcc 20760 aggttggtca cgaacacttg acctcaagtg atctgcctgc ctcagcctcc caaagtgctg 20920 ggattacagg catgagccac catgcctgc cgggaccctt gttttagaag gatgactgct 20880 gctataatgt agaaagtgat ttggaagagg ggaggagtgg ggcacgaaag atggttagta 20940 gatgggggtg gtaatgctta cctttcagta tttggaaggct tcggagtcct caaaaaatctt 21000 cttccttgat tggagtcctc ccagccaata gagggcttca cacaaacagt ttcttgggtt 21060 ttgaattgtt tgaccagagc tttctccga caaaaggttg gggtgattca ttcacttacc 21120 acaccttgcc tgaacattca cttggggctg ccggttatga aggctattgt tctccagcct 21180 gtcacagacg ctttgaagac ctgggcctca gctggttcta aggagtcagt ttgttcagct 21240 ccgtgccagg tttccaacct atgaaatgtg ctggagatta acacctctcc tgccatttta 21300 tccctactat aattgccagt caaaaggattc ctgcagttgc ctctggcagc cataactgat 21360 gaatgttctg ccagctgctc tgaggaccta gaagagcagt tttctacca ggaccagttt 21420 ccaagggtgg gagggtgaaa tatatcctcc agtgtgacat ttcatcccc agtgacagt 21480 ggcttgggc ctttgaagtt ggcctgagg aaccacacca ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatcctcaa aggtcctct tgaggcctc tgaggcctc tgaggcctc tgcagcctc tgcagtctc tgctcacact caggacatgg ggaggaggg cagtttca tgctctacac caggacatgg ggaggaggc cgagagggcc ctttgaagt ggaggggctc tgcttcaact caggacatgg ggagaaggcc 21660 gttcctctc cagggggagg cagtttcat ggcattgaga tgccctcca cttattcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaaatgca agaggagtta tgctcatcac attagtacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaaatgca agaggagtta tgctcatcac attagacac gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaaatgca agaggagtta tgcccacaccac caaggcctac ggcccacaccac attagaccac gactcactga gcccgcccc gctggaacag cagagcgct 21900 atattctcc attagtactg tgttcatcac attggaaatca attaaaaggaa 22020	agttccatga	gccagatact	gaagtgagct	tgttcacata	tgttctcatt	taatgctcat	20520
tcccqqqttc aaqcqattct cttqcctcaq cctccqcaqt aqctqqqatt acqqqqcaca 20700 caccaccaca tccaqctaat tttqtattt taqcaqaqat qqaqttctc catqttqqcc 20760 aqqttqqtca cqaacacttq acctcaqqtq atctqcctqc ctcaqcctcc caaaqtqctq 20820 qqattacaqq catqaqccac catqcctqcc cqqqacactt qttttaqaaq qatqactqct 20880 qctataatqt aqaaaqtqat ttqqaaqqq qqaqqqqq qqaqqqqq qqaqqqqq qqaqqqqq qqaqqqqq qqaqqqqq qqaqqqqqq	aaccctgtga	agctgggaat	tgctgggaca	ttttatttat	ttatttattg	agacggagtc	20580
caccaccaca tocagctaat titgtattit tagcagagat ggagittote catgitiggec 20760 aggitiggica cgaacactig accicaagig atcigcinge cicagcetee caaagigetig 20820 ggattacagg catgagecac catgecinge cgggaccett gittiagaag gatgactiget 20880 gctataatig agaaagigat tiggaagagg ggaggagigg ggcacgaaag atggitagta 20940 gatgggggig gtaatgetta cetiteagia tittggagget teggagicet caaaaattet 21000 citectigat tiggagicete ceagecaata gagggettea cacaaacagi tictigggit 21060 tigaatigit tigaccagage titeticega caaaagitig gggigattea ticactiace 21120 acaccitigee tigaacatica citigggget ceggitatiga aggetatigi tetecageet 21180 gteacagacg citigaagae citigectea getigiteta aggagicagi tigiteaget 21240 cegtigecagg titecaacit atgaaatigi etigaagata acaccicee tigecatitia 21300 tecctactat aatigecagi caaaggatee etigaagide citigagage cataacigat 21360 gaatgitetig ceagetigete tigaggaccia gaagagaagi titetateea ggaccagiti 21420 ceaagggigg gagggigaaa tatateetee aggigigacat ticateeea aggaccagea 21540 ggettiggee citigaagit ggetetgag aaccacacae tigggietiga geagecagea 21660 gteaaatigga ticeaccigg gaggggette tigeteaaci caggacatig ggagaaggee 21660 gteaaatigga ticeaccigg gaggggette tigeteaaci caggacatig ggagaaggee 21660 gteeccaccae caagteetti gtaagaggag taggggaga ggagageee tigeageetee 21780 accacaccae caagteetti gtaagaggag taggggaga ggagaaggee tigeageetee 21780 tigeteacati ectagacae gacteactga gecegiceee getiggaacaa cagagetigg 21840 tigaaatgica agaggagtia tigeteatag etecetigee teageteete tigtigeetige 21900 atattettee attagtactg tigticateae atggaaatea gagggtacaa tiaaaaggaa 21960 atatteetee attagtactg tigticateae atggaaatea gagggtacaa tiaaaaggaa 21960 attigtagtag eccagactaa attiggggee eccettige etigtigaat tacaagggaa 22020	tggctctgtc	acctaggctg	gtgtgcaatg	gcatgatctt	ggctcaccgc	aacctccgcc	20640
aggitiggica cgaacactig accicaagig atcigcitgc cicagcitcc caaagigcig 20820 ggattacagg catgagcac catgcctigcc cgggacccti gittiagaag gatgactigct 20880 gctataatgi agaaagigat tiggaagagg ggaggagigg ggacacaaaa atggitagta 20940 gatgggggig gtaatgctia cctitcagia tittiggaggct teggagicci caaaaaattet 21000 citcctigat tiggagicci ccaacaaa gagggciica cacaaacagi tictigggtt 21060 tigaatigit tigaccagage titcticciga caaaaagitig gggtgatica ticacctiacc 21120 acacctigcc tigaacatica citigggget ecggitatiga aggciatigi teccagect 21180 gicacagacg citigaagac citiggiget ecggitatiga aggciatigi teccagect 21180 gicacagacg citigaagac citiggiget ecggitatiga aggacagt tigitcaget 21240 ecgigecagg titiccaacti atgaaatigi citigaagata acacctecc tigicattia 21300 tecctactat aatigccagi caaaaggatic citigaagic citiggigage cataactigat 21360 gaatgitcig ecagetigete tigaggaccia gaagagagat titicateca aggaccagti 21420 ecaagggggg gaggggaaa tatatectec aggigagacat ticatecec aggaccagti 21420 ecaagggggg gaggggaaa tatatectec aggigagacat ticatecec aggaccagca 21540 gettateaca tetiggigate aatecticaa aggitectec tigaagiciga atettiggag 21600 gicaaatgga ticcacctig gaggggitte tigeticaact eaggacatgg gagagaggci 21660 gitectetic eaggiggagg cagtiticat ggeatigaga tigaegigaga eagaccigci 21720 acceaccac caagicctit giaagaagag taggggagaa ggagagegec tigaagectec 21780 tigeteacati ectagacace gaeteactga gecegicece getigaacaa cagagetigi 21840 tigaaatgica agagggitaa tigeteataag citicetete tigtigetige 21900 ataticite attagtactg tigticateac attaggaaataa agaggataa taaaagaaa 22920	tecegggtte	aagcgattct	cttgcctcag	cctccgcagt	agctgggatt	acggggcaca	20700
ggattacagg catgagecae catgectgee egggaceett gttttagaag gatgaetgee 20940 getataatgt agaaagtgat ttggaagagg ggaggagtgg ggacagaaag atggttagta 20940 gatgggggtg gtaatgetta cettteagta tttggagget teggagteet caaaaattee 21000 etteettgat tggagteete eagagetete eagagetete tgaaetgtt tgaccagage tteetteega eaaaaggttg gggtgattea tteaettace 21120 acacettgee tgaaeattea ettggggetg eeggttatga aggetattgt tetecageet 21180 gteacagaeg ettegaagae etgggetee getggateta aggagteagt ttgtteaget 21240 eegggeeagg tteeaacatt atgaaatgtg etggagatta acacetetee tgeeattta 21300 teeetacata aattgeeagt eaaaggatte etgeagttge etetggage eataactgat 21360 gaatgtteetg eeagetgee tgaaggaeta tatateetee aggageagt tteetateea ggaceagtt 21420 eeaagggtgg gagggtgaaa tatateetee agtggaacat tteeateeee agtgatgggt 21480 ggettgggee etttgaagt ggeetetgagg aaceacacae ttgggtetga geageeagea 21540 gettateaca tetgggtgae aateetteaa aggtteetee tgaagteega atttttggag 21600 gteaaatgga tteeacetgg gaggggget etgetgagga tgeteetee etgaagteega atttttggag 21600 gteaaatgga tecaceetgg gaggggggagg eagttteat ggeattggaa tgeeeteee etaateeee 21720 acceaceae eaagteett gtaagaggag tagggggaga ggagagegee tgeageetee 21780 tgeeteacat eetagaeee gaeteaetga geeegtegee getggaacag eagagetgtg 21840 tgaaatgtea agaggagta tgeteateag etceetgee teageteete tgtggettee 21900 atattettee attagtaeetg tgtteateae attggaaatea gaggggaaa ttaaaaagata 21960 atttgetagt eecagaeetta atttggggee eecetteee etgggetee 21990 atattettee attagtaeetg tgtteateae attggaaatea gaggggaaa taaaaggaa 22020	caccaccaca	tccagctaat	tttgtatttt	tagcagagat	ggagtttctc	catgttggcc	20760
gctataatgt agaaagtgat ttggaagagg ggaggagtgg ggcacgaaag atggttagta 20940 gatgggggtg gtaatgctta cctttcagta tttggaggct tcggagtcct caaaaattct 21000 cttccttgat tggagtcctc ccaagcaata gagggcttca cacaaacagt ttcttgggtt 21060 ttgaattgtt tgaccagagc tttcttccga caaaaggttg gggtgattca ttcacttacc 21120 acaccttgcc tgaacattca cttggggctg ccggttatga aggctattgt tctccagcct 21180 gtcacagacg ctttgaagac ctgtgcctca gctggttcta aggagtcagt ttgttcagct 21240 ccgtgccagg tttccaactt atgaaatgtg ctggagatta acacctctcc tgccattta 21300 tccctactat aattgccagt caaaggattc ctgcagttgc ctctggcagc cataactgat 21360 gaatgttctg ccagctgctc tgaggaccta gaagagcagt ttctatcca ggaccagtt 21420 ccaagggggg gagggtgaaa tatatcctcc agtgtgacat ttcatcccc agtgatgggt 21480 ggcttgggcc ctttgaagtt ggcctctgagg aaccacaca ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga atttttggag 21600 gtcaaatgga ttccacctgg gaggggcttc tgcttcaact caggacatgg ggagaaggct 21660 gttcctctc caaggggagg cagtttcat ggcattgaga tgccctctca cttattccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agaggagtta tgctcatagg ctccctggcc tcagtctctt tgtggcttgc 21900 atattctcc attagtactg tgttcatcac attggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagacctta atttggggcc cccttcttgc ctgattgaat tacaaggggaa 22020	aggttggtca	cgaacacttg	acctcaagtg	atctgcctgc	ctcagcctcc	caaagtgctg	20820
gatgggggt gtaatgctta cettecagta tetggagget teggagteet caaaaattet 21000 cetteettgat tggagteet ceagecaata gagggettea cacaaacagt teettgggtt 21060 tegaattget tgaacatee eeagecaata gagggettea cacaaacagt teettgggtt 21060 tegaattget tgaacatee eetggggetg ceagetatga aggetategt teeccageet 21180 geacaagaeg eetggagee eegggteeta aggagteagt tegeteageet 21180 geacaagaeg eetggaacatea eetggggetg eegggteeta aggagteagt tegeteageet 21240 eeggeeagg teecaacate atgaaatgg eegggteeta acaceteee tgecatetta 21300 teectactat aattgeeagt caaaggate eeggagteg eetetggeage cataacegat 21360 gaatgeeteg eeaggegeete tgaggaceta gaaggaggeg eeteetggeage eataacegat 21420 eeaagggggg gagggegaaa tatateetee aggggaacat teeateeee aggaecaget 21480 ggettggge eettggaggt ggeegeegea 21540 gettateaca teeggggate aateetteaa aggeteetee tgaagteega geagecagea 21540 gettateaca teeggggate aateetteaa aggeteetee tgaagteega attettggag 21600 geteaaatgga teecacetgg gaggggette tgeeteaact eaggacatgg ggagaaggee 21660 geteetee eagggggagg eageteetea ggeeteetee eegaacetee 21720 acceacecac eaagteett geagaggag tagggggag ggagagegee tgeageetee 21780 tgeeteacatt eetaggace gacteacetga geeegeegee geeggaacag eagagetgtg 21840 tgaaatgea agaggagta tgeeteatagg etecetggee teageeteet tgeggettge 21900 atatteetee attagtacet getteateac atggaaatea gagggtacaa taaaaagata 21960 atttgetagt eecaagactta atttggggee eecetteetee etgaateetet tgeggettge 21900 atatteetee attagtacet tgetteateac atggaaatea gagggtacaa taaaaagata 21960 atttgetagt eecaagactta atttggggee eecetteetee etgaateetet tgeggetage 21900 atttgetagt eecaagactta atttggggee eecetteetee etgaateetee tagaagagaa 22020	ggattacagg	catgagccac	catgcctgcc	cgggaccctt	gttttagaag	gatgactgct	20880
cttccttgat tggagtcctc ccagccaata gagggcttca cacaaacagt ttcttgggtt 21060 ttgaattgtt tgaccagagc tttcttccga caaaaggttg gggtgattca ttcacttacc 21120 acaccttgcc tgaacattca cttggggctg ccggttatga aggctattgt tctccagcct 21180 gtcacagacg ctttgaagac ctgtgcctca gctggttcta aggagtcagt ttgttcagct 21240 ccgtgccagg tttccaactt atgaaatgtg ctggagatta acacctctcc tgccattta 21300 tccctactat aattgccagt caaaaggattc ctgcagttgc ctctggcagc cataactgat 21360 gaatgttctg ccagctgct tgaggaccta gaagagcagt tttctatcca ggaccagtt 21420 ccaagggtgg gagggtgaaa tatatcctcc agtgtgacat ttcatctcc agtgatgggt 21480 ggcttgggcc ctttgaagtt ggctctgagg aaccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga attttggag 21600 gtcaaatgga ttccacctgg gagggggttc tgctcaact caggacatgg ggagaaggct 21660 gttcctctc cagggggagg cagtttcat ggcattgaga tgtcctcta cttatcccc 21720 acccaccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaaatgtca agaggagtta tgctcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaaggggaa 22020	gctataatgt	agaaagtgat	ttggaagagg	ggaggagtgg	ggcacgaaag	atggttagta	20940
ttgaattgtt tgaccagagc tttcttccga caaaaggttg gggtgattca ttcacttacc 21120 acaccttgcc tgaacattca cttggggctg ccggttatga aggctattgt tctccagcct 21180 gtcacagacg ctttgaagac ctgtgcctca gctggttcta aggagtcagt ttgttcagct 21240 ccgtgccagg tttccaactt atgaaatgtg ctggagatta acacctctcc tgccattta 21300 tccctactat aattgccagt caaaggattc ctgcagttgc ctctggcagc cataactgat 21360 gaatgttctg ccagctgctc tgaggaccta gaagagcagt tttctatcca ggaccagtt 21420 ccaagggtgg gagggtgaaa tatatcctcc agtgtgacat ttcatcccc agtgatgggt 21480 ggcttgggcc ctttgaagtt ggctctgagg aaccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga attttggag 21600 gtcaaatgga ttccacctgg gaggggcttc tgcttcaact caggacatgg ggagaaggct 21660 gttcctcttc cagggggagg cagtttcat ggcattgaga tgtcctctca cttattcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agaggagtta tgctcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttctctc attagtactg tgttcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaaggggaa 22020	gatgggggtg	gtaatgctta	cctttcagta	tttggaggct	tcggagtcct	caaaaattct	21000
acacettgee tgaacattea ettggggetg eeggttatga aggetattgt tetecageet 21240 gteacagaeg etttgaagae etgtgeetea getggtteta aggagteagt ttgtteaget 21240 eegtgeeagg tttecaacet atgaaatgtg etggagatta acacetetee tgeeattta 21300 teeetactat aattgeeagt eaaaggatte etgeagttge etetggeage eataactgat 21360 gaatgttetg eeagetgee tgaaggaeeta gaagageagt tttetateea ggaceagttt 21420 eeaagggtgg gagggtgaaa tatateetee agtgtgaeat tteateteee agtgatgggt 21480 ggettgggee etttgaagtt ggetetgagg aaceacacae ttgggtetga geageeagea 21540 gettateaca tetggtgate aateetteaa aggtteetee tgaagtetga attttggag 21660 gteaaatgga tteeacetgg gaggggette tgetteaact eaggaeatgg ggagaagget 21660 gtteetetee eagggggagg eagttteeat ggeattgaga tgeetetea ettateeee 21720 acceacecae eaggeggagg eagttteea ggeattgaga tgeetetea ettateeee 21780 tgeteaactt eetagaacae gaeteactga geeeggeggag ggagagegee tgeageetee 21840 tgaaatgtea agagggtta tgeteataag etecetggee teagetetet tgtggettge 21900 atattetee attagtactg tgtteateae attggaaatea gagggtacaa ttaaaagata 21960 atttgetagt eecagaetta atttggggee eeettetee etgattgaat taaaaggtaa 22020	cttccttgat	tggagtcctc	ccagccaata	gagggcttca	cacaaacagt	ttcttgggtt	21060
gtcacagacy ctttgaagac ctgtgcctca gctggttcta aggagtcagt ttgttcagct 21240 ccgtgccagg tttccaactt atgaaatgtg ctggagatta acacctctcc tgccattta 21300 tccctactat aattgccagt caaaggattc ctgcagttgc ctctggcagc cataactgat 21360 gaatgttctg ccagctgctc tgaggaccta gaagagcagt tttctatcca ggaccagttt 21420 ccaagggtgg gagggtgaaa tatatcctcc agtgtgacat ttcatctcc agtgatgggt 21480 ggcttgggcc ctttgaagtt ggctctgagg aaccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga attttggagg 21600 gtcaaatgga ttccacctgg gaggggcttc tgcttcaact caggacatgg ggagaaggct 21660 gttcctcttc cagggggagg cagtttcat ggcattgaga tgtcctctca cttattcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaaatgtca agaggagtta tgctcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaggggaa 22020	ttgaattgtt	tgaccagagc	tttcttccga	caaaaggttg	gggtgattca	ttcacttacc	21120
cogtgocagg tttccaactt atgaaatgtg ctggagatta acacctctcc tgccatttta 21300 tocctactat aattgccagt caaaggattc ctgcagttgc ctctggcagc cataactgat 21360 gaatgttctg ccagctgctc tgaggaccta gaagagcagt tttctatcca ggaccagttt 21420 ccaagggtgg gagggtgaaa tatatcctcc agtgtgacat ttcatctcc agtgatgggt 21480 ggcttgggcc ctttgaagtt ggctctgagg aaccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga attttggag 21660 gtcaaatgga ttccacctgg gaggggcttc tgctcaact caggacatgg ggagaaggct 21660 gttcctctc cagggggagg cagtttcat ggcattgaga tgcctctca cttattcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agagggtta tgctcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaaggggaa 22020	acaccttgcc	tgaacattca	cttggggctg	ccggttatga	aggctattgt	tctccagcct	21180
tccctactat aattgccagt caaaggattc ctgcagttgc ctctggcagc cataactgat 21360 gaatgttctg ccagctgctc tgaggaccta gaagagcagt tttctatcca ggaccagttt 21420 ccaagggtgg gagggtgaaa tatatcctcc agtgtgacat ttcatctccc agtgatgggt 21480 ggcttgggcc ctttgaagtt ggctctgagg aaccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga attttggag 21600 gtcaaatgga ttccacctgg gaggggcttc tgcttcaact caggacatgg ggagaaggct 21660 gttcctcttc cagggggagg cagtttcat ggcattgaga tgtcctctca cttattcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agaggagtta tgctcatcac atggaaatca gagggtacaa ttaaaaggta 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaggggaa 22020	gtcacagacg	ctttgaagac	ctgtgcctca	gctggttcta	aggagtcagt	ttgttcagct	21240
gaatgttctg ccagctgctc tgaggaccta gaagagcagt tttctatcca ggaccagttt 21420 ccaagggtgg gagggtgaaa tatatcctcc agtgtgacat ttcatctcc agtgatgggt 21480 ggcttgggcc ctttgaagtt ggctctgagg aaccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga attttggag 21600 gtcaaatgga ttccacctgg gaggggcttc tgcttcaact caggacatgg ggagaaggct 21660 gttcctcttc cagggggagg cagtttcat ggcattgaga tgtcctctca cttattcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agaggagtta tgctcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaaggggaa 22020	ccgtgccagg	tttccaactt	atgaaatgtg	ctggagatta	acacctctcc	tgccatttta	21300
ccaagggtgg gagggtgaaa tatatcctcc agtgtgacat ttcatctccc agtgatgggt 21480 ggcttgggcc ctttgaagtt ggctctgagg aaccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga attttggag 21600 gtcaaatgga ttccacctgg gaggggcttc tgcttcaact caggacatgg ggagaaggct 21660 gttcctcttc cagggggagg cagtttcat ggcattgaga tgtcctctca cttattcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgg 21840 tgaaatgtca agaggagtta tgctcatagg ctccctggcc tcagtctctt tgtggcttgc 21900 atttcttcc attagtactg tgttcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaggggaa 22020	tccctactat	aattgccagt	caaaggattc	ctgcagttgc	ctctggcagc	cataactgat	21360
ggcttgggcc ctttgaagtt ggctctgagg aaccacaca ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga attttggag 21600 gtcaaatgga ttccacctgg gaggggcttc tgcttcaact caggacatgg ggagaaggct 21660 gttcctcttc cagggggagg cagtttcat ggcattgaga tgtcctctca cttattcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agaggagtta tgctcatcac atggaaatca gagggtacaa ttaaaaggta 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaggggaa 22020	gaatgttctg	ccagctgctc	tgaggaccta	gaagagcagt	tttctatcca	ggaccagttt	21420
gettateaca tetggtgate aateetteaa aggsteetee tgaagtetga attittggag 21600 gteaaatgga teecacetgg gaggggette tgetteaact eaggacatgg ggagaagget 21660 gtteetette eagggggagg eagstiteat ggeattgaga tgteetetea ettateecee 21720 acceacecae eaagteetti gtaagaggag tagggggaga ggagagegee tgeageetee 21780 tgeteacatt eetagacaee gaeteacetga geeegtegee getggaacaag eagagetggg 21840 tgaaatgtea agaggagta tgeteataag eteeetggee teagteetet tgtggettge 21900 atteetetee attagtaeetg tgtteateae atggaaatea gagggtacaa ttaaaaggta 21960 attigetagt eeeagaetta attiggggee eeettettge etgattgaat tacaggggaa 22020	ccaagggtgg	gagggtgaaa	tatatcctcc	agtgtgacat	ttcatctccc	agtgatgggt	21480
gtcaaatgga ttccacctgg gaggggcttc tgcttcaact caggacatgg ggagaaggct 21660 gttcctcttc cagggggagg cagtttcat ggcattgaga tgtcctctca cttattcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agaggagtta tgctcatagg ctccctggcc tcagtctctt tgtggcttgc 21900 atattcttcc attagtactg tgttcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaggggaa 22020	ggcttgggcc	ctttgaagtt	ggctctgagg	aaccacacac	ttgggtctga	gcagccagca	21540
gttcctcttc cagggggagg cagtttcat ggcattgaga tgtcctctca cttattcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agaggagtta tgctcatagg ctccctggcc tcagtctctt tgtggcttgc 21900 atattcttcc attagtactg tgttcatcac atggaaatca gagggtacaa ttaaaaggta 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaggggaa 22020	gcttatcaca	tctggtgatc	aatccttcaa	aggttcctcc	tgaagtctga	atttttggag	21600
acceaceae caagteett gtaagaggag tagggggaga ggagagegee tgeageetee 21780 tgeteacatt eetagacaee gaeteaetga geeegtegee getggaacag cagagetgtg 21840 tgaaatgtea agaggagtta tgeteatagg etecetggee teagtetett tgtggettge 21900 atattettee attagtactg tgtteateae atggaaatea gagggtacaa ttaaaagata 21960 atttgetagt eecagaetta atttggggee eeettettge etgattgaat tacaggggaa 22020	gtcaaatgga	ttccacctgg	gaggggcttc	tgcttcaact	caggacatgg	ggagaaggct	21660
tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agaggagtta tgctcatagg ctccctggcc tcagtctctt tgtggcttgc 21900 atattcttcc attagtactg tgttcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaggggaa 22020	gttcctcttc	cagggggagg	cagttttcat	ggcattgaga	tgtcctctca	cttattcccc	21720
tgaaatgtca agaggagtta tgctcatagg ctccctggcc tcagtctctt tgtggcttgc 21900 atattcttcc attagtactg tgttcatcac atggaaatca gagggtacaa ttaaaaggta 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaggggaa 22020	acccacccac	caagtccttt	gtaagaggag	tagggggaga	ggagagcgcc	tgcagcctcc	21780
atattettee attagtactg tgttcateae atggaaatea gagggtacaa ttaaaaggata 21960 atttgctagt cccagactta atttggggce ecettettge etgattgaat tacaggggaa 22020	tgctcacatt	cctagacacc	gactcactga	gcccgtcgcc	gctggaacag	cagagctgtg	21840
atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaggggaa 22020							21900
							21960
cataatagat ttttggtgag aaatagttgt ctgtgtggct gggagaaaga ttgctcccag 22080	atttgctagt	cccagactta	atttggggcc	cccttcttgc	ctgattgaat	tacaggggaa	22020
	cataatagat	ttttggtgag	aaatagttgt	ctgtgtggct	gggagaaaga	ttgctcccag	22080

ctctccagct	gggcagccct	ttcagtatcc	cgtatgttat	ttccccactt	ccagcccacc	22140
tcacctcctc	tgtggccctt	gtgtgtcccc	toggotagga	tcctgacctc	ctgctcaaga	22200
gtttaaactc	aacttgagac	ccaaggaaaa	tagagagccc	tctgcaacct	cataggggtg	22260
aaaaatgttg	atgctgggag	ctatttagag	acctaaccaa	ggcccagaca	gagagagtga	22320
cttgctaaag	gccacatagc	tagcccacag	tagttgtaac	aatagtotta	atgatattaa	22380
tggctaacat	ttatcaacct	ttaatgtgtc	ccagactttg	tgccaagggc	ttacatgcag	22440
tgcattgtcg	cattcaaacc	cagacagtct	ggctctgggc	ccaggctgag	ctttggtata	22500
gcatggtaga	acgttgtcta	taatgtctag	tctgggttca	aatcctggct	tcacttctca	22560
catttacagc	tgagtgacct	caggcaagtg	atttaacctc	cctgtacctc	agttgcttta	22620
tctgtaaaga	gaaaaatcac	agcactgtgg	aatagtgggg	gttaaaattc	attcatacaa	22680
gtagtgctgc	aagcaatgtt	taatacaggg	tgagcacctg	ttcagtgctt	ccttcttctg	22740
gctgcctctg	gggctagagt	gtggtgtctt	cgtggtatag	atagatagat	atggctgagc	22800
tctgcacaaa	caccaagagc	tgttcttcac	tattagaggt	agtaaacaga	gtggttgagc	22860
tctgtggttc	tagaacagag	gccggcaagc	tatggcccat	tgcctatttt	aatacggcct	22920
gtgattgatt	gattttttt	ttctttttga	gacagagttt	cactcttgtt	gcccaggctg	22980
gaatgcaatg	gcacgaactc	agctcaccgc	aacctctgcc	tcctgggttc	aagcgattct	23040
cctgtctcag	cctctcgagt	agctgggatt	acaggcatgt	gccaccacgc	ctggctaatt	23100
ttgtattt	tagtagagac	agggtttctc	catgttggtc	aggctagtct	cgaacttcca	23160
acctcaggtg	atctgcccgc	ctcagccttc	caaagtgctg	ggattacagg	cgtgagccac	23220
atgactggc	ctgattgact	gatttttta	gtagagatag	ggtcttggtt	tgttacccag	23280
gctggtctca	aacttctggc	ttcaagcagt	cctcctcct	tggcctctcg	aatgctggga	23340
tataggcat	gagccactat	gcctggccta	tatgacctgt	gatttttaat	ggttagggga	23400
aaaaagcaa	aagaatgctt	tgtgacatgt	ggaaattaca	tgaaactcaa	atatcagtgt	23460
ccagcctgg	gcaacaaagt	gagaccctgt	ctctacaaaa	aataaaaaaa	aataagccag	23520
ldccdddcdc	agtggctcac	acctataatc	tcagcacttt	gggaggccga	ggcaagtgga	23580
cacctgagg	tcaggagttc	aagaccagcc	tgaccaatat	ggtgaaaccc	tgtctgtact	23640
aaaacacaa	aaattagccg	agcatggtgg	catgcgcctg	tagtcccagc	tacttgggag	23700
octgagacaa	gagaattgct	tgaacctggg	aggcggaggt	tgcagtgagc	caagatcgcg	23760
cactacact	gcagcctggg	caacagagcg	agactccgac	acacgcacgc	acgcacacac	23820
cacacacac	acacacacac	acgctgggta	tggtggccag	cacgtgtggt	cccaggatgc	23880
ctggaggct	taggtaggag	gatcacttga	gcttaggtgg	ttgagactac	aatgaaccat	23940
itttatacca	ctgcacttta	gccagggcaa	cagtgtgaga	ctgaatctca	aaagaaaaaa	24000
aaaaaaaga	aaaaaatctt	tccataagta	aatatctgtt	ggaacatagc	catgtccctt	24060
ıgtttatgtt	ttatatatgg	ctgcttttgc	cctataatga	cacaattgag	tggccacgac	24120
gtctgtatg	gcctgcagag	cctaagatat	ttgctctctg	gccctttaca	gaaaaagtgc	24180
ttgacctgt	gctctagagc	catatgtacc	aggtttgaaa	ctcagcctca	cagctgggtg	24240
gatggcacg	catctgtagt	cccagctact	ctggaggctg	aggtgagagg	atcacttgag	24300
ccagaaggt	cgaggtcaag	attgtagtga	gccatgatgg	catcaccgca	ctccagcctg	24360
gtgacagag	agagaccctg	actcaaaaaa	aaaaaaacaa	aaaaaaaaa	caccctcacc	24420

acttatcagc	tatttgtctt	gagaatagtg	acataacccc	tcagaaccta	tttcctaatc	24480
tgttaaatga	ggctgatgac	gtttcctcct	tttactggca	atttaaacat	gatggataat	24540
aaatgctaag	cacttaacac	agggcctaga	agatattaac	tgctcaataa	atggtagctt	24600
cttaacagta	ttcaaaccca	tgtgctctta	tcacatgcat	tgttgtccct	gtgtccagtt	24660
ggtggaatgg	gaaaaggctc	ccttgtaacc	ccatctacca	tctttatcag	actttcctgc	24720
catggttcac	agtaagagat	agaagctgca	cggtgacttc	tggctcttta	caatggtgag	24780
cggtgtgtgc	ctggtaaggg	agagctgatg	tcactgcccc	aaatccagta	gtgagatctg	24840
agtgttctgg	tttcctccag	cagccttgct	ttttccttta	caatcctgca	ggcagggaga	24900
caagggcttt	ctacatggta	ggctctggtt	tggtcatcgt	cacaactggg	ggctgttcag	24960
gtgggctccc	attccagata	cctaggctta	tcaatccctt	ttggcacccc	aggccttttt	25020
ctccctcatg	ccccatttt	cagtttgaaa	agcatggtta	tcacaggaca	agtagaagaa	25080
gctccactgt	ccactgaggc	caatggatgg	tgttctgcat	gtgaacactc	agtgaatagt	25140
gagtgaatga	gagtaacctg	ggctccatcc	tatttgcaga	gagctttgga	aaagattttt	25200
ctccttaaag	agccagaatg	aagcctggta	gtgggagagc	tccagctcta	gagtcacatg	25260
agcctacatt	taaattccag	ccctgccact	gactcccttt	ttgaccttga	gtgagttacc	25320
taatctctct	gtacctcact	tttcttgtct	gtagagtggg	aataattcct	gtctcagaga	25380
aataaaagag	tgcatatagt	gtttgccaca	tggagacaca	tcaggtgtag	gttaatactc	25440
tgggccttgt	ttccttattt	gcaacacagc	cctgccctgg	agtggaagtg	gcacctccca	25500
ttggtcagct	cttgaggctg	tccccaggac	aggcagaggg	agggaatgaa	tgggagccct	25560
agtgccagga	cagaacagat	ggcagctcag	agctaggatg	gctctctgga	cctgtctctc	25620
ctaccagagg	teccecegte	tggtgtggct	cttcctggac	ctggcatcct	ctgcttttt	25680
ttttttcca	cctccaagca	gaattactgt	cctgtaggca	gctcctctgc	ttgaggacat	25740
ctggggccag	atatgttcac	actctatcct	gccttgccct	tccctgagct	caggatggac	25800
gctcaattgg	tcccagttat	tgtctgcagc	gcctgcctgc	agcctcgatc	cageceaget	25860
ccaccccttg	cctgcaaggt	ctgtttccta	acagctgctc	caaccacaca	cctcggttct	25920
gcgggagccc	ctcctcttcc	tccctccctc	cctcattcag	gggtgggact	gaagaagaag	25980
gctaacttga	cagcagcgct	tctttcttag	ctagtcaccg	gcccctgctc	aagaatgcca	26040
gtgtgtgtgt	agcctccaca	gagaggtcgt	tttctcggag	tccagagggg	ccgcctgagc	26100
ttctgagaac	tagggaggag	ccatcccagc	catgagcccc	tgtgggaatc	tgctgggggc	26160
caagtggcct	ggagtcctca	ggctcccgca	gctgctccgg	agggagaggt	gagctcaggg	26220
cagcctgcct	gcagccagag	gtgccgggag	ccccgggcct	gtcatggtgg	ccatctacag	26280
ccggcctgag	gcagtcacag	acggatttgc	agctgagcct	gtctatctgg	tgtgggaaga	26340
agatggggag	ttacttgtca	gtcccggctt	acttcacctc	cagagacctg	tttcggtgag	26400
ttggtctccg	agttcccctc	tccatctctc	ctggcccctg	gtcctgagag	gagggtggtc	26460
tccctaaatc	tccttctcac	ttagtccttt	accatcggtt	ctgccgggca	gaagccagcg	26520
gaggttatac	ccaaggagaa	tcggccttgt	gaggtacccc	cattatgtcc	tggaagtggt	26580
gaggggaggg	atatacccag	aaggaacttc	ttagggagct	ccagctcccc	ttctatccca	26640
gacaaacctg	aaggagcctc	caaaagatgc	cactgacctg	cccattgtag	atgttactgc	26700
ttccgggggg	aatagcccaa	atagagtgct	gtttccagct	ctcacatgtc	ttacctgcgg	26760
gccatgctgc	ctgcccagga	atttgtccca	acaagcagga	tgggcaggtt	ttgccaaact	26820

gtggaaactg	gcaagtcctg	ggtgtgggta	gcctggtaca	cagtaggcac	cttataaacg	26880
tttgttctct	taatggcagg	cacatttgcc	tctggccttg	aagggcttct	gagctcccag	26940
gtgaatgtag	ttgctgggga	aagacctggg	cgagtgcttc	taagactgga	gcaatgggct	27000
ttagagtgtt	cctgagctgc	tgggccagcc	cccacacctc	ctcagtccct	aggcctaagt	27060
acctccacga	gcctctctct	gtggggcttc	tcagagggag	atgtggaaac	tctacctcta	27120
acctggcttt	ctttgctcat	tgccccactc	cacctcccat	agaaactccc	cagggggttt	27180
ctggccctct	gggtcccttc	tgaatggagc	cattccaggc	tagggtgggg	tttgttttca	27240
ttctttggga	gcagcctgtt	gttccaaaaa	ggctgcctcc	ccctcaccag	tggtcctggt	27300
cgacttttcc	cttctggctt	ctctaagcta	ggtccagtgc	ccagatcttg	ctgccgggat	27360
actagtcagg	tggccaggcc	ctgggcagaa	aagcagtgta	ccatgtggtt	ttgtggaatg	27420
accggaccct	ggtagattgc	tgggaagtgt	ctggacaggg	ggaagggga	agggaactgg	27480
tcctcaatgc	tgactctacc	aagcgccctg	ctagacactt	tatcctttaa	tctctcaaca	27540
gcctaaagag	attatatatc	cccattttac	agatgaggca	accagtttca	acagagttaa	27600
catatggagc	ctcactgggc	agctttttct	gtcttcctga	ctttctctca	tccttcaggg	27660
ggctgcaggt	ttgttttctt	ctcctagtgg	agaggaaatt	ctcaggtttg	ttttcctctc	27720
ctagcagaga	gtaaaaaaag	ggatagtttg	cctgacttgt	tgaaggtgtg	gctgagattg	27780
ttttctaaag	agccaatgga	aattgatctt	gagtttagga	gaaagctttt	acatgtggaa	27840
ttaagatgcc	aagtgttgaa	gtagccacat	ttcaggtcct	cattaatttc	tcttaatcct	27900
gggaaggcag	cttaggagaa	gggttgttcc	tttaggagcc	aggaactata	cccctttac	27960
ccttggagag	gcagggaagc	cagggaggac	acaacttctc	aggaagagga	gaagctagag	28020
cagatagtga	actctcaacc	tgaaccttta	agggccagac	cactaatgcc	acccaagtcc	28080
acctgccgtt	tgtcttgttc	tgtcccaggc	tttctggaga	acctgatctt	cttgccccta	28140
ccccaagct	ccgtttgccc	agctagagtc	tggggggtac	tgactgactt	tcgtagacat	28200
tcttcccttc	cccaaataag	aggccacatt	cctgaagtca	cttctgaaga	gatagctgcc	28260
acacagggct	ctttcccccc	agggagggac	cacccagacc	ctctgctctc	ccaggtatcc	28320
gttaccacat	cactacctgg	tcagaaagct	gtttctgcca	ttagcccctc	cctcttttat	28380
tataggatat	cctcaagggc	tcctctttgg	gcctcagttt	catccttggc	agaaagtaga	28440
agctagactt	cttgggctcc	tgaacagggt	ccttgctgga	ttctgtgaaa	caaattaagt	28500
tcttgaccct	aggcctctgg	gggagtacaa	agtctatggg	agttctgggg	ctgtggttgc	28560
aaggaaagtg	acgcaaccag	attccatggg	gacatgatca	ggcgtgacat	gtgagggagg	28620
aagagggagc	aagggaatga	agaatacaac	ttctgtgtcc	catacacccc	tgcctgacag	28680
gccatacata	ctcagcagag	aatgcactgt	ctttcctacc	acactagcgt	gaggagtgag	28740
ctgcaattac	cactgtgctt	ccaagtaaga	aaatacctca	aattggaatt	tacaaaagag	28800
gtaaattagg	gagtggcttt	tgtcggacat	ctttaaagca	tttttcttt	tatagaattt	28860
cacttaatgt	ccaatactga	tttaatgagc	ttgggtttac	acattatctc	ttgaagaaaa	28920
caaatgaacc	tttgtgttcc	aaagcaatcc	atgtttaaag	ggaaaaaatt	atgcataact	28980
ctgcccagct	tcacagtaac	ctttggcagg	tgccttaggt	cctctgggac	tcttttcctt	29040
atctgaaaaa	tgaaggactt	ggatcaggtg	aatggttccc	agctctgcaa	cttatgtggc	29100
tcctcagagg	cacacaagct	cttttccatt	atttgccaaa	taatggaggc	cctgtcttta	29160

-continued

actgcagtac	aactacacaa	aatacttgaa	actacagtct	tcctggtttt	tggttggaac	29220
tgaatcagtg	cactctagca	acacttattt	cttgctgttc	gtaggcttca	ttatgtgttt	29280
ggttaatttt	ttaaaacaac	aataacatat	tccataataa	ttacagctta	attggcagac	29340
tgtttcagtc	tataggatct	gcaggaagga	ggagtaataa	agggatttt	gactgagctc	29400
ttatggaaca	gagtctctct	aggcccctgt	catatctgcc	cttctgggcc	ctggggaaaa	29460
gttggcatcc	ccagttgtgg	tgctctccag	gtgccctcag	gctgtggtgg	agggagcttc	29520
ccattctctc	cttcagccca	ctcaattcag	aggctagggg	ctgaaagaag	cttctctaca	29580
actggctgtt	cactgggagg	ttaagggatg	accatccagc	caggccttcc	tcaggacatg	29640
ggagggctta	tgctttaaca	tgtgtaaatc	cactgcaata	atgactggtt	cttttacccc	29700
ataaggttga	gaatttacct	gtaaacattt	ttgtctgaag	aatttggatg	taagtgaggg	29760
ctgggcctct	atcttatctc	acttggcttc	tctcagcaca	gcaccttgcc	tgcttgttct	29820
tacacatcct	agatgcacag	taactatttc	ctaattatta	gaaatctatt	agaatcaatt	29880
gatttcagct	gggcttggtg	gctccttcct	gtaatcccag	cactttggga	ggctaaggct	29940
ggaggatcac	ctgagtccag	gagtttaaga	ccagcctggg	caacataggg	agaccctgtc	30000
tctacaaaaa	ataaaaaatt	agccaggcat	ggtggtgtgc	acctgtagtc	ccagctactc	30060
aggaggctga	ggcaggagga	tctcttgagc	ctgggaggtc	agactacagt	gagcaatgat	30120
tgtgccactg	cactccagcc	tgggtgacag	agtaagactc	tgtctcttaa	aaaaaaaaa	30180
aaaaaagttg	atttctattt	ggatagataa	ataattcatt	ttaggacctt	tctttttcac	30240
ttacagaaat	ctgtttcatt	ctgggctgag	aagcaggtcc	atattgctag	gcataggaga	30300
aaaaggggtc	tgtctgcatt	tgcccttggt	ggtctcaaat	tggggaggga	aagaaatgaa	30360
cacttactgg	ctaccttctg	tgagccaggc	atcatgcaag	acatctgtac	ataatttaat	30420
tctcataacc	ccataagata	ttattagcaa	tgtacaagtg	aggaaactga	ggctcagagt	30480
catgaagtaa	ctggccttgg	gtgacacaga	tggtaaatgg	cagagaagga	atatggatcc	30540
aggtcttgaa	agagaaaatc	tcaactgatt	atctttttta	aaaaactcat	atgttctctg	30600
ctgactcaaa	aggtctctgt	gtggatctgg	gttgacccac	tgaactgacc	atcagggttc	30660
catgcacttt	gtatctgccc	aagccctcag	aacccctcag	taatgttttg	gaagatgagt	30720
tttggaggtt	gtccttaggc	atagcctcag	cgtatgtagg	cctctaggtg	atctccccta	30780
acctgaggat	ttcagctcaa	ttcactctgg	ctcctcagga	cagtgggatg	actggttcag	30840
acctcagctt	taccacctcc	cagctgggta	ctcttctacc	tacagccagg	gcagattttg	30900
actttcactt	gaaacttcca	aaaattgaaa	ggtagaaaaa	cagccttggc	tttgggaaga	30960
acgtatgatg	tccatggcct	ctaagcatct	gaggtgggac	atgttcgagt	agcaccttac	31020
agttccaaag	tgtgttctgg	gttctttgtt	taaaagaaca	gagactgctg	gggaattgaa	31080
cactgtgaag	tatatgaagg	aggagaattg	tgctatttaa	cattcagtac	ttgggctaaa	31140
ggagaagcat	cacgaagtgt	taacactcaa	agggtcttga	gctgtcaggg	ctccagcttc	31200
cttattttca	caggtgagaa	tcctgaggct	cagctgttga	gatgtgctgt	ctcactccgg	31260
tgacatagta	cagtggatgt	ggctttgcag	ccaagcacac	atagcttcac	attccagctc	31320
catcaattat	gtattgggca	gctttgcaga	atgatttgac	tttaactctg	cttttcagtc	31380
ttctgtaaaa	cagggataat	cctgctaccg	tagggttgtc	aggattagag	ataatataaa	31440
taaggtacct	catataggac	ctggattatg	gctggcattc	aataaatagt	agctgttaat	31500
tgatagctaa	gctagaactc	tgaagtctac	catggcaact	tcttaagtgg	tctgagaacc	31560

cagttgtgtt	ctgtggcaaa	acacagetta	gggatccata	cccagccctc	ctgtcagctg	31620
ttcaccttcc	agttcttcag	agacatgtgt	ggcagtgact	ttggccacat	agctggctgt	31680
gccctttaaa	ggcattcctt	gacacagata	tgtggactgg	tgacgttgct	ctccagccag	31740
gtgttcttcc	cagcaggctg	gcctggctgt	ctcctgcatg	cctgtacttg	tttgtctccc	31800
tgctccctct	cctgggcctg	gccagagcta	cttgcagcaa	acaaaagcag	gatattggca	31860
atggaaagga	gggtgtgttc	tggtgctccc	atgccctgcg	gcgcacatac	cattgcaagg	31920
gcgtaacaga	gcccaggcct	gcatttgggt	gcaaataagt	ctgcacacag	aagaaaagaa	31980
ggacctggtg	accaggagcc	atggaaccct	tgtgctcccc	tacctgggct	actggttctt	32040
gccactccta	ccattttcag	tttggaaata	tttgttaagg	ctttgctctt	ccaggtcctt	32100
tgcttggtgc	tgagtctacc	aagagtaagt	gggatgctgt	ttttgtcctc	agggagctaa	32160
cagtctagtg	aagaagaaag	atggttgccc	aggaacttct	aagtcagaag	gcaggaggca	32220
agaaggaagc	ccctgctcct	actgccagcc	ctctgttggg	caccccatag	ttcttcagaa	32280
ccacatttaa	tcctcactgc	aggccaggca	tagtggctca	cacctgtaat	cgcagcactt	32340
cgggaggcca	aggcgggcag	atcacttgag	gtcgggagtt	cgagaccagc	ctcaccaaca	32400
tggggaaacc	ccgtctctac	taaaaataga	aaaattagcc	gggtgtggtg	gcatgcgcca	32460
gtaatcccag	ctactcagga	ggctgaggtg	ggaaaatcac	ttgaactcgg	gaagcagagg	32520
ttgcagtgag	ccgagattgt	gccactgcac	tccagcctgg	gcgataagag	caaaattcca	32580
tctcaaaaaa	aaaaagaaaa	aagaaaaaat	cctcactgct	accttgaaag	taggtgatga	32640
cattgccatt	tcacaaatga	gaagtgaagg	ggctagccca	agatcactta	ggtggtaaat	32700
ggtggtgcta	agattagaac	ctcagatcat	ctagggaaaa	acacagatat	gcacagagtt	32760
aaggggaccc	agggtattgt	ttgtcctctt	gtttcacagg	tggggaaaca	acccagagag	32820
ggaaaggggc	ttgtccaagg	caatttagca	cccaagaact	tgaacccata	tctctctct	32880
cctcatttag	ageteatece	acatgtatct	tatattgaga	ggagtgtgag	ccacatacca	32940
agaacagtct	tcccctctgc	ctccaacctc	actgtgcagt	tttgagacac	ttcacagcca	33000
tactcttcat	gccataccca	gcccttaaga	ccctgaagtt	ccccttccat	aagacaagta	33060
ggaaaagcta	tagggtaaaa	atagccatca	gtgtttgttg	agcacccagg	aggaattggg	33120
cactccagaa	agataaaggg	attctcaggg	acttgcttct	ctagacttcc	ctagctcagc	33180
tgcttcaact	cattcctgcc	cctcttctct	acctcccgca	gtgctcagaa	gtagtagaac	33240
tcactgtggc	ctctcacctt	gcattgttga	gttttattta	gactttctct	tcctcaactc	33300
ttcataagct	catgaaaggt	gaagtagggt	gccctgtgta	tttatctttt	atatctgcag	33360
tgcttagcaa	gttataataa	tgcacttgcc	tggcaaaagg	ctttctctca	tacattagct	33420
tatttcctct	tcacattggc	tctttgtagt	aataggatgc	tattagttat	tttcaatgag	33480
agaaagctac	taagagaagt	tgtccagcta	gtgacagtaa	gtggctgata	aagtgagctg	33540
ccattacatt	gtcatcatct	ttaatagaag	ttaacacata	ctgagtttct	actatattgg	33600
gtctttttt	tttttttt	tttttttta	gagacggaat	cttgctctgt	tgtccaggct	33660
ggaacgcagt	ggtgcaattt	tgggtcacca	caaceteege	ttcccaggtt	caagcgattc	33720
tectgeetca	gcctcctgag	tagctgggac	taccagtgca	cgccaccacg	cccggctaat	33780
ttttgtattt	ttagtagaga	cagggtttca	ccatgttggc	caggctggtc	ttgaactcct	33840
gaccttgtga	tctgcccgcc	tcagcctccc	aaagtgctgg	gattacaggt	gtgagccacc	33900

gcgccctgcc	tatattagga	cttttatata	agctatctct	agctagctag	ctagctagct	33960
ataatgtttt	ttgagacaga	gtctgactct	gtcacccagg	ctggagtgca	gtggcgtgat	34020
ctcgactcac	tgcaacctcc	acctcctggg	ttccagtgat	tctcctgcct	cagceteceg	34080
agtagctggg	attataggtg	catgccacca	cgcccagcta	attttttgta	ttttagtag	34140
accaggtttc	accatgttgg	ccaggctggt	ctcgaactcc	tgacttcaag	tgatccaccc	34200
gcctcggcct	cccaaagtgc	tgggattata	agcataagcc	actgtgccca	gctgctctct	34260
atattttaa	tacatattat	ttccattaat	tttcacagca	gttcatttta	tagatgagga	34320
aactaggcca	gagaagtaaa	atatcttgcc	caagatgatg	taactagtaa	gtggcaggat	34380
caagattcaa	accaagcaat	gttcaaacct	cttggaagca	agaatgtggc	cactgtggaa	34440
ggtgcaaggc	cttgacaaca	agaataggga	aaagaaggaa	ctagaaggaa	agagatggca	34500
tgggctcagc	aggccaggga	gctcttagct	gtgtgtgttg	ggaagctcag	aagggaggaa	34560
gaggttgtct	gtgcaggtaa	gtcctgagaa	cacaccagac	ttttgagagg	tggagcttca	34620
tagccaggtc	attaggggag	aagggagcta	tagattttt	tttttttt	tttttttt	34680
tttttttag	agacggggtc	ttactatgtt	gcccaggctg	gtcttgaact	cctgggctca	34740
agtgatcctc	ccacctcagc	ctcccaaagt	gctgggatta	gaggcatcag	ccaccccgcc	34800
cagcgagcta	tggatctaac	atgtacatct	tacacagtgc	taatagaatg	ttgggtttct	34860
tccccaatat	tttattttga	aaaaaaattc	aaatatatag	aaaagttgaa	aaatgtagtt	34920
caaagaacac	ctacatacct	ttcacataga	ttcatgattt	gttaatgtta	tgccactttg	34980
tatatatctc	tctccctcct	atctgtatac	ttttatttat	ttatttttgc	tgaactattt	35040
cagagtaact	taaaggcatc	ttgattttac	ccttgaacag	ttcaatatgt	ttctgctaag	35100
aattctccta	tataagtcag	atatcattac	atctaagaaa	attcacggca	attttacaat	35160
ataatattat	agtccaaatc	catatttcct	cagttgttcc	aaaaaatgtt	catggctgtt	35220
tcctttttta	atctaaattt	gaatccaagt	ttgaggcatt	gtatttggtt	gctgtgtctc	35280
tagggtttt	aaaatctgtg	ccttttcttc	tccccatgac	tttttagaag	agtcaagacc	35340
ggttattctt	atagaataac	ccacattcta	gatttgcctg	attagttttt	ttatacttaa	35400
cgtattttg	gcaagaacat	tacattggta	acgctgttgg	tgatgggtca	gttttgaaga	35460
gtggagatga	ttaaactgct	tttgttcatt	gaagtatctg	tcaagaccag	agatoottaa	35520
ctggtgccat	aaataggttt	cagagaatcc	tttatatata	caccctgtcc	cccacctaaa	35580
ttatatacac	atcttcttta	tatattcatt	tttctagggg	aggcttcttg	gcttttatca	35640
aattctcaga	gggccccaag	acccaaagag	gttatgaaac	actagtctgt	ccactgaggc	35700
aggcaacaca	gagctggttt	ctggggcctt	gttcagtctg	aaccagcttc	ccttggggag	35760
atagcacaag	gctgtaactt	tgccccatct	tggctttgga	tcaaagagga	ctgtccattt	35820
tgttgtcata	cctaggaacc	agggacagct	tatgtggcct	ggttccaggg	atccaggaga	35880
atttcagttc	ttgtcttgcc	tttcaggtgt	tcagaatgcc	aggattccct	caccaactgg	35940
tactatgaga	aggatgggaa	gctctactgc	cccaaggact	actgggggaa	gtttggggag	36000
ttctgtcatg	ggtgctccct	gctgatgaca	gggcctttta	tggtgagtga	atcccttcat	36060
atctgcccct	cttggtcttc	agagtccatt	gacagtgctt	ccagttccct	gtggcctgtt	36120
aatcttttag	tctttccatc	agccagggca	tctcccttta	tttattcatt	cattcaacta	36180
gcaggtatca	attgagcacc	tactaagtga	aaggtaagat	ccttccctca	aagacttaat	36240
agttgaacgt	tgggagtggg	aggagaggca	ggcagagagg	agacacaata	tagttggata	36300

aggacctcca	aggagagtgt	tacaggctga	gaggaggata	tacttaggtt	gtctttaggg	36360
aatcagaaaa	ggagactctg	gaataggctg	gcagagagag	gggctacctc	ctatacctgc	36420
tctggacaaa	cgactttaag	catagtgaca	gatttgccaa	ccctgtattg	gaagaactga	36480
tctttttag	tggggatgat	tacttctggg	gatttcttct	cataactgag	accaaaacag	36540
ttttgtgcag	tctcagaaat	gacaggaggt	accaatctga	cacttccttt	ggaagctcta	36600
gggcagagag	tgaaagagtg	gattttgacg	ggggccttgc	ttggaggtca	ttcacccacc	36660
cctgtcctca	ctccagcaac	agtgataact	cacttccttc	ctccctttgt	acacccttct	36720
ccccacctgc	tcacaggtgg	ctggggagtt	caagtaccac	ccagagtgct	ttgcctgtat	36780
gagctgcaag	gtgatcattg	aggatgggga	tgcatatgca	ctggtgcagc	atgccaccct	36840
ctactggtaa	gatagtggtc	ctttgtctat	cctctcccat	ataagagtgg	ctggcgggga	36900
gggacagtgg	cagggtgagt	tgggcagaag	gagtgttagg	gtagtcagag	cattggattc	36960
ttaccacagc	agtgctctta	accagctctt	taacttgtaa	gcagaatgat	ttacacatgt	37020
ctctaccctt	tttccttacc	aaccttgaaa	atgtcttcac	tctgccctgc	aatcctccca	37080
gtgggaggca	ctcttcaagg	acgatcccag	aacattaaag	tcaaagaccc	cttagagctc	37140
accctgtcca	accaccttgg	ttgataaaag	aagtcagcct	ggggcccatg	gaatagaata	37200
gtacaagggc	aaggttctca	ttgtgagtca	aaggtagagt	gaagagaacc	cagaccatct	37260
caccccaacc	caggccagtg	tttttccaaa	tataccactt	gctgcagatc	tagctcagca	37320
ccccagtcc	cagcccaccc	tgagaaccca	ggctcctcat	tctgagcagc	cagctagaat	37380
catgacaaag	agggtggtag	tgagactatg	ggtactgttg	cttaaagcca	catggtgcag	37440
tggttgctgg	ggggcttctg	tgtgggactc	tagcatctta	ttcccccctg	tgccctctcc	37500
ccagtgggaa	gtgccacaat	gaggtggtgc	tggcacccat	gtttgägaga	ctctccacag	37560
agtctgttca	ggagcagctg	ccctactctg	tcacgctcat	ctccatgccg	gccaccactg	37620
aaggcaggcg	gggcttctcc	gtgtccgtgg	agagtgcctg	ctccaactac	gccaccactg	37680
tgcaagtgaa	agagtaagta	ttttgagaac	ccttcagcag	gggttcttga	gcagagtctg	37740
taaatgggcc	tcagagggct	tagacctcca	aagtctcatg	cagaactccc	tttattctca	37800
tctcatatct	ttctcctgga	ccccactatg	ctgtaaccgt	acctgggcct	tggcacttac	37860
tgttctctct	gcccaggcta	cttcctaccc	gatacttaag	gcaagaatca	ctcacctttc	37920
aggtgtcagg	tttcaggtca	tgtttgctct	ttgaaatcat	ctggcttgat	tatgtgtatt	37980
agttgtttat	cttctatccc	ctccactaga	atgtaaattc	cagaagaaac	ttgctgtctt	38040
attcagtgct	gcatgcccag	ggcttggaag	agtacctggc	atatagtagg	agttgattga	38100
ttattatttt	gtcagtcgag	agaatgaatg	gagaaaatgt	ggtccatggc	ccaaaagaag	38160
ttaagaccct	atcctagatt	caggccagag	accagatgga	gaaagagtct	gtgtctatct	38220
aataccagta	atgtcgtacc	tetggeeget	taccatgtaa	atattgattg	tgtatctacc	38280
atgtgttgga	cactaggcta	gtgcttgcac	agcaggtgaa	agatactaga	gtttgggaag	38340
tcaggaggag	ctaaggtctg	ttctacaacc	ttattagatg	aagaggagag	ggaattgtgt	38400
tcagggcaga	gggagaagca	tttctccaaa	agtaggagtc	ttaatcatgt	ctgatgtagg	38460
ttgagtgtgg	ccagaaaagg	ggctgttaag	tatagagggc	ctggattatg	aaaatccagc	38520
agatccattg	agagtttaag	cagcaaggtg	ttgtgaccaa	gttaacattt	tagaaggatc	38580
actggtatgg	aggttggatt	ggagagggga	aagcctaaag	gtatagagac	tagttaggaa	38640

gctattgtag	gctgggcatg	gtggttcatg	cctgtaatct	cagcactttg	ggaggctgag	38700
gtgggaggat	tgcttgaggc	caggagttga	agaccaacct	ggccaacata	gcaagacccc	38760
gtctctgttt	ttcttaatta	aaagaaaagt	ccagacgtag	acatagtggc	tcacgcctgt	38820
aatgccagca	ctttgggagg	ccaaggtggg	cagattgctt	gaggtcaaga	gtttgggatt	38880
aggccaggcg	cagtggctca	cgcctgtaat	cccagcactt	tgggaggccg	aggtgggcgg	38940
atcacaaggt	caggagatca	agaccatcct	ggctaacaca	atgaaacccc	gtctctacta	39000
aaagtacaaa	aattagccgg	gcatggtggc	ggacgcctgt	agtcccagct	actcgggagg	39060
ctgaggcagg	agaatggcgt	gaacctagga	ggcggagctt	gctgtgagca	gagatcacgc	39120
cactgcactc	cagcctgagc	gacagagcga	gactccatct	caaaaaaaa	aaagagtttg	39180
ggattagcct	ggccaacatg	gcaaaacccc	atctctacaa	aaagtacaaa	aaaattagct	39240
gggtatggtg	gtgcgcgcct	gtaatcccag	ttactcagga	ggctgaggca	tgagaattgc	39300
ttgagcctgg	gaggtggagg	ttgcagtgag	cccagatcat	gccactgcac	tccagcctgg	39360
atgacagagt	aagatgccat	ctcaaataaa	aattaaaaac	aaagtttaaa	aaaaaaatag	39420
aagctattac	cgtgatccag	gtaagagatg	tgaataacta	caatgatgga	aagaaggcag	39480
agttcttaga	gatgggagta	ggagagatga	gggaactcca	gattgggaag	atgatgttca	39540
agtttctggc	ttaggccaca	gggtgagtgg	caattccctt	cactgagatg	gggcatcctg	39600
gaaaaggtgt	tgcctttctg	tgtgggtatc	ctgggcccct	taggggccac	tggtggcctg	39660
ggacctggta	aaccttccct	gcacaagcag	aattggtcaa	gcaggttttt	aggacatctt	39720
taccctgcct	caactcttgt	ctggcccagg	gtcaaccgga	tgcacatcag	tcccaacaat	39780
cgaaacgcca	tccaccctgg	ggaccgcatc	ctggagatca	atgggacccc	cgtccgcaca	39840
cttcgagtgg	aggaggtaga	gtgtgtgtct	aatctgtctt	gtgagggtgg	gacatggaac	39900
agatcctctg	ggaaatcagg	ctgtagcctt	taccttttcc	tacccccagc	ccatctctt	39960
gtcttagcat	tgagcctgtg	accactggtg	acctatttca	gcgtaacagg	ttcccagggt	40020
agcagggatg	gttgatggac	gggagagctg	acaggatgcc	aggcagaggg	cactgtgagg	40080
ccactggcag	ctaaaggcca	ccattagaca	agttgagcac	tggccacact	gtgcctgagt	40140
catctgggtt	ggccatgggt	ggcctgggat	ggggcagcct	gtgggagctt	tatactgctc	40200
ttggccacag	gtggaggatg	caattagcca	gacgagccag	acacttcagc	tgttgattga	40260
acatgacccc	gtctcccaac	gcctggacca	gctgcggctg	gaggcccggc	togotootoa	40320
catgcagaat	gccggacacc	cccacgccct	cagcaccctg	gacaccaagg	agaatctgga	40380
ggggacactg	aggagacgtt	ccctaaggtg	ccacctccca	ccctggctct	gttctgtcct	40440
atgtctgtct	ctcggatgaa	gctgagctgg	ctttcagaag	cctgcagagt	taggaaagga	40500
accagctggc	cagggacaga	ctatgaggat	tgtgctgacc	cagctgcccc	tgtggggatc	40560
acagtttaca	gccagagcct	gtgcggaccc	agctgtctgc	caggtttcct	tagaaacctg	40620
agagtcagtc	tctgtccact	gaactcctaa	gctggacagg	aggcagtgat	gctaaaccct	40680
gaagggcaac	atggcctatg	gagaaagcat	ggagctcaga	gcctggagta	cgggcacaga	40740
taggattgaa	taaattgtgt	agaaagactt	tgaaaacaat	aaagcaaaag	atgaatgaac	40800
gtttttttta	gacttgaggg	accaacaacc	CCCAAACCCC	agattctgcc	aggtccatgg	40860
ggaaggagaa	gttgccttga	gtggaagccc	caagtaggga	gacttacaga	aaagaagtca	40920
agagcactgg	ctcccaggca	gaaatactga	taccctactg	gggcttcagg	ctgagctcct	40980
cccttcacaa	atcacttcat	ctctctgagc	ctgtttctgc	atctgtgaca	taagatggta	41040

agataaaggt	ggctgtctca	ccaattatgt	aaggattaaa	tgtggaaaag	gacataaagt	41100
tgtatagtgc	tgccataggg	acagtgttca	gtaaacgtga	cacattctta	gtatcactaa	41160
gaatcaggtt	cttggccagg	caccgtggct	catgcctgta	atcccaacac	tctgggaggc	41220
ctaggtcgga	ggatggcttg	aacacaggag	tttgagacca	gcctgagcaa	catagtgaga	41280
cactgtctct	acaaaaaaaa	aataataata	ataattgttt	ttaattagat	gggcagggca	41340
ctgtggctca	cacctgtaat	cccagcactt	tgggaggcca	aggccggagg	attgcttgag	41400
gccaggagtt	caggagcagc	ctgggccaca	ttcctgtctc	tacaaagaat	aaaaaagtta	41460
actgggcatg	gtggcacatg	cctgtaatcc	cagctactca	agaggctgag	gaggaggatt	41520
gcctgagccc	aggagttcaa	gactgcagtg	agccttgatc	acaccactgt	actacagett	41580
gggcaacaga	gtgagacctt	gtctccaaaa	aaaaaagttt	gtttttttt	atccactctc	41640
ctcaccaaac	aaactgagta	agttagagcc	ctctcagctg	gcatgtgttg	gaaacagtgc	41700
cctctcatta	aagtgctgcc	ctcactccca	ttgcctcttg	gccttggtca	gtatgatgaa	41760
attagtggga	ggcagggcaa	cagagggcag	ggaagagcta	gaaatccatg	gcctggaaaa	41820
gggaagattt	gggagtggcc	aggtatctgt	agagccacca	tgcagaggag	gggggcagct	41880
agccttgtgt	gctctggtgg	gcatggtcag	caggaggcag	agcaaaagga	caagggtaag	41940
taaacctgta	ggtcgggaca	agccaagagc	catccagcgt	cagtcctctc	tgggtagccc	42000
aagtaaagca	ggagcatacc	ccagagagaa	agttcgcagg	gctgttcacc	tgcagtgctg	42060
tggacttcaa	ccttcttgtt	ccttcttcag	taagtgaaaa	taacagtcat	tgaccatgac	42120
tattatcgac	cgcttttgaa	aatgtaaaca	tagtgacttt	attgctgtaa	aaatcatacg	42180
tgtttatcat	cttaaaattc	aggaaacatg	gacaggtaca	aagatgtgca	aaatatcatc	42240
caaaatccca	tttgctggcc	aggcacggtg	gctcacgcct	gtaatcccag	cacattggga	42300
ggccgaggcg	ggcaaatcac	ttgaggtcag	gagtttgaga	ccagcctggc	caacatggtg	42360
aaaccctatc	tctactaaaa	atacaataat	taggctgggc	gcagtggctc	acgcctataa	42420
tcccagcact	ttgggaggcc	gaggtgggcg	aatcacaagg	tcaggagttt	gagactagcc	42480
tggccaatat	ggtgaaaccc	catctctact	aaaaatacaa	aaattagggc	cgggtgtggt	42540
ggctcacgcc	tgtaatccca	gcacttaggg	aggccgagac	agatggatcg	cgagatcagg	42600
agttcgagac	caacctagcc	aacatggtga	aaccccatct	ctactaaaaa	aatacaaaaa	42660
ttattcggtt	gtggtggcac	acgcctgtaa	toccagotac	ttgggaggct	gaggcaggag	42720
aatctcttga	acctgggagg	cagaggttgc	agtgagtgga	gatcccgccg	ttgcactcca	42780
gcctgggcga	cagagtgaga	ctccatcaaa	222222222	***********	aaattagccg	42840
ggcgtggtgg	cgtgcaccta	tactcccagc	tacttgggag	gctgaggcag	gagaatcgct	42900
tgaacctgga	aggcggaggt	cgcagtgagc	cgagatcgtg	ccattgcact	tcagcctggg	42960
cgacagagcg	agactctgtc	tcaaaaataa	taataataac	aataactagc	cgggcctggt	43020
ggcacatgcc	tgtagtccca	gttactcagg	aggcggaggc	atgagactca	ggtgaactag	43080
ggagacagag	gttgcagtga	gccaagatca	caccactgca	ctccagcctg	gttgacagag	43140
cgagactctg	tctcaaaaaa	aaaaaaatcc	catttgctca	ttttttggat	actagtataa	43200
ctatcactct	aaaccagtta	gtacttaaat	caagcagata	tgggagatgg	tgaattacca	43260
tctacagtgt	tgtcatatat	gtcacatact	gagcattatc	agctagtaga	atctagttaa	43320
ttgttctatg	tgtgatgtat	gcagagttcc	cattttgaat	gtgttttac	tatgcttaaa	43380

taaatgactg	atgtcagcaa	ccccaaaatg	atacatetga	tgtaagagcc	cctgttcccc	43440
aataataaca	tctaaactat	agacattgga	atgaacaggt	gcccctaagt	ttcctccctc	43500
cagggtttct	tggccggtct	ctgaggacta	cacatcccta	ctcccgtctt	tcctcatctt	43560
caggcgcagt	aacagtatct	ccaagtcccc	tggccccagc	tccccaaagg	agcccctgct	43620
gttcagccgt	gacatcagcc	gctcagaatc	ccttcgttgt	tccagcagct	attcacagca	43680
gatcttccgg	ccctgtgacc	taatccatgg	ggaggtcctg	gggaagggct	tctttgggca	43740
ggctatcaag	gtgagcgcag	gcaacaattg	ctttgctctt	ctgcccccag	tccctctgtc	43800
actgtctttc	ggggatttct	catcacttgg	ccccacccca	caccatgcag	gatgccaggc	43860
ctccttcctg	gctttgggtg	ttggtgtgag	aggtatcctt	cacccccacc	caggccacct	43920
aaggtcaatg	ttgctgttac	agtgagcttg	tggacctgga	gatccaggtt	gggttgagct	43980
gtgcctgtgg	ccctcctgcc	tccagtcagt	gggtgtttgt	taggtgcctg	cagacctcag	44040
taccgggcat	gctacaagga	gcacacaggg	gaatggctcc	tgcctccctg	gtgaacagtc	44100
tcagggacta	acctctctct	ttctctcctc	ctcctcctct	tctgctgaga	actgggaggg	44160
ggggtcaggt	aagacgtgtg	tctcagcttg	ggggcagcag	ggctggagag	ctcacccccg	44220
atccacccag	ctccctggtg	catgtctttg	gcactgacct	tcctgccccc	agacttctgt	44280
tcactcagga	gactcacttc	tatgccaaat	gaccagagcc	cctgcttggc	ttggcagcat	44340
cccctcctgc	cttcttcccc	acttcccttt	tctgggttct	tgcctgtcct	ctgtgcatgc	44400
ccagctctcc	aggaaagagg	gtttgcttcc	gtgtgagtcc	catgttgctc	cacgctgcat	44460
cttccacaca	tgaactctgt	cattctgacc	cggctcagtg	tgccctccaa	gggatgggat	44520
ggccagctgc	atagattttc	tcaaacagtt	ctccagaact	tcctctggtc	tcagcaccat	44580
taacagtcac	cctccctgta	ggtgacacac	aaagccacgg	gcaaagtgat	ggtcatgaaa	44640
gagttaattc	gatgtgatga	ggagacccag	aaaacttttc	tgactgaggt	aagaagatgg	44700
agggggcccg	ggaggttggt	gtcaccattg	gaagagagaa	gaccttacaa	ataatggctt	44760
caagagaaaa	tacagtttgg	aattactgtc	ttaaagacta	agcagaaaag	agccctagag	44820
gaatatccca	ctccctctaa	attacagcgt	aattatttgt	tcaatgaaca	cttactaaaa	44880
gcaacacaaa	cagggtacaa	gggatgcagt	aacaaaagat	acagggttca	gaagagctct	44940
caggttatga	ggatgatgga	catgaaaaca	ctccaattta	gtacaactca	atgttataat	45000
cctcacctga	acgccctgct	aagggagcct	ggaggggagc	tccctgagca	ctcacactcc	45060
ttgggcattt	acagttttca	ctacccctcc	caagttactt	catggagtaa	cttaagttgg	45120
ggacacctgt	ggtctgggta	ttgccctcca	agccacttgg	ccactcccac	cccagttctc	45180
ccaatgcagt	tccaagggta	aggcctatga	agccatctcc	atctatatgg	tggtggtctt	45240
ccctcatcct	gatcttagtg	ccctgtcata	tcacaagata	ggaggtagga	gatacaggtg	45300
gtaacacttg	tcaagctgat	tccttggagg	gaagaggtaa	ggaagacagt	gagaagttaa	45360
ccaccagett	tccttggctt	ccccaccc	caggtgaaag	tgatgcgcag	cctggaccac	45420
cccaatgtgc	tcaagttcat	tggtgtgctg	tacaaggata	agaagctgaa	cctgctgaca	45480
gagtacattg	aggggggcac	actgaaggac	tttctgcgca	gtatggtgag	cacaccaccc	45540
catagtetee	aggageettg	gtgggttgtc	agacacctat	gctatcacta	ccctaggagc	45600
ttaaagggca	gaggggccct	gctttgcctc	caaaggacca	tgctgggtgg	gactgagcat	45660
acatagggag	gcttcactgg	gagaccacat	tgacccatgg	ggcctggacc	acgagtggga	45720
cagggctcaa	cagcctctga	aaatcattcc	ccattctgca	ggatccgttc	ccctggcagc	45780

agaaggtcag	gtttgccaaa	ggaatcgcct	ccggaatggt	gagtcccacc	aacaaacctg	45840
ccagcagggc	gagagtaggg	agaggtgtga	gaattgtggg	cttcactgga	aggtagagac	45900
cccttcctat	gcaacttgtg	tgggctgggt	cagcagctat	tcattgagtt	tgtctgtgtc	45960
actgaaactg	accccagcca	actgttctca	gttcacagcc	ctgttttcaa	agaattacac	46020
atctctaaag	gcaaacaggg	cacggacaag	gcaaactgga	gaggcaaact	gtagcctgag	46080
atggcctggg	cttgccatca	caggtattca	ggtgctgagg	gcccttagac	caactagagc	46140
acctcactgc	ctaggaaatc	aatgaagggg	aaatgagttc	tagcggagcc	ctgaaggatc	46200
agaattggat	aaagttctta	ttggcagaga	ggcaccagga	ttgaagtgac	aggagcaaag	46260
acctgggagg	aaagaggaga	aaatcatcta	tttcacctgg	aaacaaatga	ttccaagcat	46320
agaaataata	acagctgaca	agtactgagt	gccctctata	tgctaggcac	tgggctgagg	46380
gattaacatg	catgtgcatg	tttattcctc	atgacaacct	tggtttccag	ataagctgga	46440
ctggaaaggg	acagagctgg	gatcctgggc	taatcagtct	ggtcgccaag	cctgagactt	46500
tagccactgc	ccttcacatg	ggggtccatg	aaaatagtag	tagtctggaa	cagtttgggg	46560
gtacatcaag	gtcgctgtgt	tttaagctat	ggagtctgga	ctataggaga	caaatgtaaa	46620
agagttttt	ggttgactgg	ctttttggtt	tttttgtttg	tttgtttgtt	tgtttgtttg	46680
tttgtttgtt	ttttcctgtt	tctggggctt	gaatcaggaa	ggaggtttt	ttgttgttgt	46740
tgttttgaga	aaggatattg	ctctgttgcc	cagactggag	tgcagtggca	cgatcatggc	46800
tcactacagc	ttcgacctcc	tgggctcaag	caatcctcct	gccttagcct	cccaagtagc	46860
tggactacag	gtgtgtacca	ccacacctaa	ttttttgaat	tttttttct	tttttttt	46920
tttttttt	ggtagagaca	ggttctcact	ttgttgccca	ggcctgaatc	tcaaactcct	46980
gggctcaagc	attcctcctg	cctcgccctc	ccaaagtgtt	gggattacag	ttgtgagcca	47040
ccatgcccgg	caggaaaaga	tttttaagca	agaaagctta	agagctgtgg	tttttccaaa	47100
atgagtctgg	gctggcacag	tggctcatgc	ctgtaatccc	agcactttt	tgggaggccg	47160
aggtgagtgg	atcacttgag	gtcaggagtt	tgagaccagc	ctggccaact	ggtgaaaccc	47220
ctgtttctac	taaagaaaaa	aatgcaaaaa	ttagctgggc	gtggtggtgc	acgcctgtag	47280
tcccagctac	tcaggaggcc	gaggcaggag	aatagcttga	acctgggagg	cagaagttgc	47340
agtgagccaa	gatcacacca	ctgcattcca	gcctgggtga	cagagtgaga	cttcatctca	47400
aaaaaaaaaa	aaaagagaga	ctgatatggt	tagtacattg	gggtggaatg	cggagggtcc	47460
agggaatgga	gccctgcata	gggggctaat	gaaacatttc	agatttctga	attaaggtag	47520
tggctgtggg	gacaggagcc	tgggaggcag	ggtggagtca	gaatggagag	actggttggc	47580
aatgagggaa	caggaggagg	aggaggagga	gttacgagtg	gcttgaggtg	tcacttacca	47640
gacatttggg	ggatggggga	tagccgtgat	tgttgagcaa	ctggtttggg	aagagctagc	47700
attgatccct	gctgttctgt	gctagcagaa	cctatcagca	tcttctgggc	aggaaactgg	47760
ctccatgaga	ctggcttagg	gagaggctgc	tagtcaccta	atctgcagag	aaggggcagc	47820
tggagctgtg	ggacagaaga	ggcatccatg	tagctggtgg	gggtgtctca	gcttgtgaag	47880
aggagatggc	tttgagcagg	gctgacactg	aaaaggctgg	aagaaaaaaa	cagacacaca	47940
agagtctcag	gatcaggtag	cataggaaag	ttgtggacag	tctttgagga	gcactccctc	48000
aggcaggcag	gcaggcaggt	catgagctat	agcgattcag	gaagagctcc	ctgggtgtgt	48060
gagcagctcc	aggagcctaa	gggatgaaag	tagtattgca	gggggctgga	gagcaaggag	48120

tggctccttc	tacatttgca	agggaaggag	aaaggaagtt	gctcctgaga	gtggtaagag	48180
tcagtggtgg	aggcctggag	aggagacata	acaaacaaat	ttgttgacaa	acattttggt	48240
aggaaggggg	agagcttaaa	gtttagacag	tggggaaggt	ggagtcttag	aggaggtgaa	48300
tgtctgaaag	acagagctag	ctggagcaag	aagtcacttc	tctgttgcag	gcaggaagga	48360
tccaaagtgg	ctcaagccag	agattgggag	agtggggagg	agggagcagc	ctggatctaa	48420
gtaaaatggg	tagaggtgga	gggggtgctg	caacggccag	ggttttctga	agttggggac	48480
attaggagag	agctgtgagg	gctttggcca	gccactgtgc	tagtgattgg	tgaaccaaag	48540
gatgggcagg	agatggcagc	agggaagcag	aggaagtcca	ggcttcctgt	tggtattggg	48600
acaagggaga	ggccatagga	ggccctggcc	ctgttgtcca	ggttgggttc	tgaagctggg	48660
tgggcatggc	ctggtaggag	agcatctatg	gcgcccaatt	ccagattcag	ggtctagttg	48720
atttgctggc	cctgtagcct	cagctcatgc	ttctgttcca	ggcctatttg	cactctatgt	48780
gcatcatcca	ccgggatctg	aactcgcaca	actgcctcat	caagttggta	tgtcccactg	48840
ctctgggcct	ggcctccagg	gtcctatcct	tcctggcttc	cttgtcacaa	aggaggctga	48900
cttgtcccct	ctggctagag	ggcagaggtg	ttgcctagga	gctcctatct	ttcccttcct	48960
gcttcttcca	atgcccttct	ctgtcctctg	ggagctccga	gacacacaca	gacataattt	49020
caccttctct	cattagcaac	ctttgaaata	atttgattag	aagggacttc	agaagtttgt	49080
tgactatatg	tagaaaaccc	tgtcatttta	cctgcttttg	ccccatagta	gtcttgtaaa	49140
acagttcatt	gctgacccca	ttttacagtg	gtggcacctg	aagcctcagc	ctgaggccac	49200
cgagctagta	aatttacagg	gaccagtttg	agaccagcat	tcctcccact	gcccctcagc	49260
tgtggtggtt	acaatgttgt	ttgtcttact	gacttgctat	ctggcttcct	gggtgtctac	49320
cggctggccc	tggctctgcc	ctctagaccc	acaccacgca	atcttcattc	ctttcccaca	49380
tgactgccct	gtagctattc	aaagagcttg	tctcccccaa	gtctccccat	ctactgcctc	49440
caccttgcct	ttttctgtct	tatcctggtt	ctagccactg	cctgaaatca	ttttaggaat	49500
aagacaggac	agggaaaaac	aaaagcaacc	ccctgtccca	cctctgagtt	ccactctcca	49560
agtccctgag	cctcacctcc	agggctccag	tggctctgcc	atgaacccac	tgtgggctgg	49620
gagtctgctg	tgcacagata	ccagaccctc	agaaacacaa	atgccaagtg	tgtctgtttt	49680
tttgttttgt	tttgttttgt	tttttagatg	gagtctcatt	ctgtttccca	ggctggagtg	49740
cagtggtgca	atcttggctt	actgcagcct	ctacctcccg	ggttctagtg	attgttctgc	49800
ttcagcctcc	cagtagctag	gactacagge	gtgtgccacc	acgcccagct	aattttttt	49860
tttttttt	tgtattttta	gtagagacag	ggttttgcca	tgttggccag	gctggtcttg	49920
aactcctgac	ctcaggtgat	tcacccgcct	tggcctccca	aagttctggg	attacaggtg	49980
gaagccaccg	tgcctggcct	gagtgtgtct	atttgataga	gctttctgct	ctgattctcc	50040
cttgctatac	accttttctc	cccttctcag	tggcttctct	tgcctatgct	tcctccccag	50100
ggccaggttt	gagaacatcc	ccatgaagtc	ctgacctgtc	ttttatccta	ccaggacaag	50160
actgtggtgg	tggcagactt	tgggctgtca	cggctcatag	tggaagagag	gaaaagggcc	50220
cccatggaga	aggccaccac	caagaaacgc	accttgcgca	agaacgaccg	caagaagcgc	50280
tacacggtgg	tgggaaaccc	ctactggatg	gcccctgaga	tgctgaacgg	tgagtcctga	50340
agccctggag	gggacacccg	cagagggagg	acagatgctg	cccttgcatc	agagccctgg	50400
gaattccagg	ggaggcctgt	gaagcgtagg	accggatacc	cagagctgag	gatattttc	50460
ccttgccagg	tggggcctca	cgatttagct	cctgagctca	gggggctggg	aactgatcag.	50520

tgtcccatca	tgggggataa	ggtgagttct	gactgtggca	tttgtgcctc	agggatcgct	50580
aagagctcag	gctattgtcc	cagctttagc	cttctctctc	catggtgaga	actgaagtgt	50640
ggtgccctct	ggtggataat	gctcaaacca	accagagatg	ctggttggga	ttcttgaaat	50700
cagggttgtg	aggcctcaga	aatggtctga	atacaatcca	ttttggagtc	tgaggcccag	50760
agaagttcag	tgaattgcct	aggagcatac	agctgcctaa	tggcagaggc	tagatgaacc	50820
ctagtctggt	tcttttccac	tttaacgtgc	agtttcatcc	taggcagtgt	tatgttataa	50880
gggctctcca	aggcagttca	cctacggctg	aggaaggact	attttcaggt	ggtgtctgcg	50940
caggacagcc	tgtggggtgt	ccctacagaa	cctgttctag	ccctagttct	tagctgtggc	51000
ttagattgac	cctagaccca	gtgcagagca	ggtaagggat	gtaaacttaa	cagtgtgctc	51060
tcctgtgttc	cccaaggaaa	gagctatgat	gagacggtgg	atatcttctc	ctttgggatc	51120
gttctctgtg	aggtgagctc	tggcaccaag	gccatgcccg	aggcagcagg	cctagcagct	51180
ctgccttccc	toggaactgg	ggcatctcct	cctagggatg	actagcttga	ctaaaatcaa	51240
catgggtgta	gggttttatg	gtttataacg	catctgcaca	tctttgccac	gttcgtgttt	51300
cattggtctt	aagagaagga	ctggcagggt	ttttttgttt	tagatggagc	ctcacttcgt	51360
tgcccaggct	ggagtgcagt	ggcacaatct	gggctcactg	caacctctgc	cttctgggtt	51420
caagtgattc	tcctgcctca	gcctcccaag	tagctgggac	taccggcaca	caccaccatg	51480
cccggctaat	ttttgtattt	ttagtagaga	cagggtttca	ccatgttggc	caggctggtc	51540
ttgaactccg	gacctcaggt	gatccgcctg	cctcagcctc	taaaagtgct	ggaattaata	51600
ggcgtgagct	acctcgcccg	gccaggtttt	tttttttt	tttttagttg	aggaaactga	51660
ggcttggaag	agggcagtgg	cttgcacatg	gtcgataagg	ggcagatgag	actcagaatt	51720
ccagaaggaa	gggcaagaga	ctgttcatgt	ggctgtctag	ctagctcttg	ggccaaatgt	51780
agcccttctc	agttcccttc	aagtagaagt	agccactcta	ggaagtgtca	gccctgtgcc	51840
aggtaccacg	tggacagagt	gaggaatctt	ggaaagattc	ctacctttag	gagtttagtc	51900
aggtgacagc	atatctcagc	gactcaaaca	cacacacatt	caaagccttc	tgtaattcct	51960
acaaagttgt	gaggggtaga	ggagaggaga	gacaagggat	ggttaggata	atgaaggaat	52020
gttttgttt	tgtttttgtt	tttgagatgg	agtttcactc	tgtcacccag	gctggagtgc	52080
agaggtgcaa	tcttggctca	ctgcagcctc	cgcctcccag	gttcaagcaa	tcctcctgcc	52140
tcagcctccc	aagtagctgg	gactacaggt	gtgcgccacc	acgcctggct	aatttttgta	52200
ttttcagtag	agacagggtt	tcgccatatt	ggccaggctg	gtctcaaatg	cctgacctca	52260
ggtgatacac	ccgcttcagc	ctcccaaagt	gctgagatta	caggcatgag	ctaccgtgcc	52320
tggccatgaa	ggaagatttg	ttttaaaaaa	ttgttttctt	taatattaat	tgaacacctc	52380
tgttcagagc	actgggctgg	tgccagaggg	tttcagacat	gaatcagatc	cagcacctca	52440
tagagcctta	atctggcaca	cacacacage	cacaaggaga	cacagacaag	gcagggtagg	52500
atgagtggaa	gctaggagca	gatgctgatt	tggaacactt	ggcttctgca	gtgaagcccc	52560
ttcttagtcc	tcttcagtaa	cccagctctc	agtggataca	ggtctggatt	agtaagattt	52620
ggagagatga	ttggggattg	gggagagctc	tctaacctat	tttaccacct	cctcttctgc	52680
cattcttcct	gtccacatcc	ccagcatccc	tttcccttgc	caagtatctg	tggcctctgt	52740
agteetttgt	aaacagctgt	cttcttaccc	tacagatcat	tgggcaggtg	tatgcagatc	52800
ctgactgcct	tccccgaaca	ctggactttg	gcctcaacgt	gaagcttttc	tgggagaagt	52860

ttgttcccac	agattgtccc	ccggccttct	tcccgctggc	cgccatctgc	tgcagactgg	52920
agcctgagag	caggttggta	tcctgccttt	ttctcccagc	tcacagggtc	ctgggacgtt	52980
tgcctctgtc	taaggccacc	cctgagccct	ctgcaagcac	aggggtgaga	gaagccttga	53040
ggtcaagaat	gtggctgtca	acccctgage	catctgacaa	cacatatgta	caggttggag	53100
aagagagagg	taaagacata	gcagcaagta	atctggatag	gacacagaaa	cacagccatt	53160
aaaagaaagt	ttaaaagaag	gaaattcacc	caaaccattt	gaatacagta	agtgtattca	53220
tctttcgata	ttcccctgtc	catatctaca	catatacttt	tttttatagt	aaatagttct	53280
gtattttgcc	ctgcatttcc	cttgtgttta	ctatccagtc	ttcctgttta	tcatttttgt	53340
cgacaacatg	aaattctatt	gagagactgt	ctgaacatat	tgtaatgtag	atgttcaggt	53400
ttttccagtt	tctctttaca	ataggtattt	aactacagtg	agcagtttta	tgcatttagc	53460
taatttctcc	tttgaggaag	tattttcaaa	attaccttta	ttcttctcag	gtaataattt	53520
cattattacc	aaagttaccc	taggtctttt	caagtgtgtg	gttaaaaaac	gagaatctgg	53580
ctgggcgcga	tggctcacac	ctgtaatccc	agcactttgg	gaggctgagg	ctggtggatc	53640
acctgaggtc	tggagttcga	gaccagcctg	gccaacatgg	tgaaacccca	tctctactaa	53700
aaatacaaaa	cttagccagg	catggtggca	ggtgcctgta	accccagcta	cttgggaggc	53760
tgaggcagga	gaattgcttg	aacccagggg	cggaggttgc	agtgagccga	tatcacgcca	53820
ttgcactcca	gcctcggcaa	caagagtgaa	actctgtctc	aaaaatgggg	ttcttttcct	53880
gccatcaaaa	atcatgtttc	ttttaaaaac	aagttcaaac	attaccaaag	tttatagcac	53940
aggaaatacg	tcttctgtaa	tctcccttaa	ccaatatatc	cctcaacatt	ctcctcaccc	54000
ccaactccac	cctcccagga	taaccagttg	ggacataatc	tttatttaaa	aatggtttcc	54060
ggatagagaa	agcgcttcgg	cggcggcagc	cccggcggcg	gccgcagggg	acaaagggcg	54120
ggcggatcgg	cggggagggg	gcggggcgcg	accaggccag	gcccgggggc	tccgcatgct	54180
gcagctgcct	ctcgggcgcc	cccgccgccg	ccctcgccgc	ggagccggcg	agctaacctg	54240
agccagccgg	cgggcgtcac	ggaggcggcg	gcacaaggag	gggccccacg	cgcgcacgtg	54300
gccccggagg	ccgccgtggc	ggacagcggc	accgcggggg	gcgcggcgtt	ggcggccccg	54360
geceeggeee	ccaggccagg	cagtggcggc	caaggaccac	gcatctactt	tcagagcccc	54420
ccccggggcc	gcaggagagg	gcccgggctg	ggcggatgat	gagggcccag	tgaggcgcca	54480
agggaaggtc	accatcaagt	atgaccccaa	ggagctacgg	aagcacctca	acctagagga	54540
gtggatcctg	gagcagetea	cgcgcctcta	cgactgccag	gaagaggaga	tctcagaact	54600
agagattgac	gtggatgagc	tcctggacat	ggagagtgac	gatgcctggg	cttccagggt	54660
caaggagctg	ctggttgact	gttacaaacc	cacagaggcc	ttcatctctg	gcctgctgga	54720
caagatccgg	gccatgcaga	agctgagcac	accccagaag	aagtgagggt	ccccgaccca	54780
ggcgaacggt	ggctcccata	ggacaatcgc	taccccccga	cctcgtagca	acagcaatac	54840
cgggggaccc	tgcggccagg	cctggttcca	tgagcagggc	tcctcgtgcc	cctggcccag	54900
gggtctcttc	ccctgccccc	tcagttttcc	acttttggat	ttttttattg	ttattaaact	54960
gatgggactt	tgtgtttta	tattgactct	gcggcacggg	ccctttaata	aagcgaggta	55020
gggtacgcct	ttggtgcagc	tcaaaaaaaa	aaaaaaaaat	gatttccagc	ggtccacatt	55080
agagttgaaa	ttttctggtg	ggagaatcta	taccttgttc	ctttataggc	caaggaccgc	55140
agtecttcag	taacaccagt	gtaaaagctt	gaggagaaat	tgtgaagcta	cacagtattt	55200
gttttctaat	acctcttgtc	attctaaata	tctttaattt	attaaaaaat	atatatatac	55260

agtattgaat	gcctactgtg	tgctaggtac	agttctaaac	acttgggtta	cagcagcgaa	55320
caaaataaag	gtgcttaccc	tcatagaaca	tagattctag	catggtatct	actgtatcat	55380
acagtagata	caataagtaa	actatattga	atattagaat	gtggcagatg	ctatggaaaa	55440
agagtcaaga	caagtaaaga	cgattgttca	gggtaccagt	tgcaatttta	aatatggtcg	55500
tcagagcagg	cctcactgag	gtgacatgac	atttaagcat	aaacatggag	gaggaggagt	55560
aagcctgagc	tgtcttaggc	ttccggggca	gccaagccat	ttccgtggca	ctaggagcct	55620
ggtgtttccg	attccacctt	tgataactgc	attttctcta	agatatggga	gggaagtttt	55680
tctcctattg	tttttaagta	ttaactccag	ctagtccagc	cttgttatag	tgttacctaa	55740
tctttatagc	aaatatatga	ggtaccggta	acattatgcc	catttctcac	agaggcacta	55800
ctaggtgaag	gagtttgcct	gacgttatac	aaccaggaag	tagctgagcc	tagatccctt	55860
ccacccaccc	catggccctg	ctcatgttcc	acctgcctct	aatttacctc	ttttccttct	55920
agaccagcat	tctcgaaatt	ggaggactcc	tttgaggccc	tctccctgta	cctgggggag	55980
ctgggcatcc	cgctgcctgc	agagctggag	gagttggacc	acactgtgag	catgcagtac	56040
ggcctgaccc	gggactcacc	tccctagccc	tggcccagcc	ccctgcaggg	gggtgttcta	56100
cagccagcat	tgcccctctg	tgccccattc	ctgctgtgag	cagggccgtc	cgggcttcct	56160
gtggattggc	ggaatgttta	gaagcagaac	aagccattcc	tattacctcc	ccaggaggca	56220
agtgggcgca	gcaccaggga	aatgtatctc	cacaggttct	ggggcctagt	tactgtctgt	56280
aaatccaata	cttgcctgaa	agctgtgaag	aagaaaaaa	cccctggcct	ttgggccagg	56340
aggaatctgt	tactcgaatc	cacccaggaa	ctccctggca	gtggattgtg	ggaggctctt	56400
gcttacacta	atcagcgtga	cctggacctg	ctgggcagga	tcccagggtg	aacctgcctg	56460
tgaactctga	agtcactagt	ccagctgggt	gcaggaggac	ttcaagtgtg	tggacgaaag	56520
aaagactgat	ggctcaaagg	gtgtgaaaaa	gtcagtgatg	ctccccttt	ctactccaga	56580
tcctgtcctt	cctggagcaa	ggttgaggga	gtaggttttg	aagagtccct	taatatgtgg	56640
tggaacaggc	caggagttag	agaaagggct	ggcttctgtt	tacctgctca	ctggctctag	56700
ccagcccagg	gaccacatca	atgtgagagg	aagcctccac	ctcatgtttt	caaacttaat	56760
actggagact	ggctgagaac	ttacggacaa	catcetttet	gtctgaaaca	aacagtcaca	56820
agcacaggaa	gaggctgggg	gactagaaag	aggccctgcc	ctctagaaag	ctcagatctt	56880
ggcttctgtt	actcatactc	gggtgggctc	cttagtcaga	tgcctaaaac	attttgccta	56940
aagctcgatg	ggttctggag	gacagtgtgg	cttgtcacag	gcctagagtc	tgagggaggg	57000
gagtgggagt	ctcagcaatc	tcttggtctt	ggcttcatgg	caaccactgc	tcacccttca	57060
acatgcctgg	tttaggcagc	agcttgggct	gggaagaggt	ggtggcagag	tctcaaagct	57120
gagatgctga	gagagatagc	tccctgagct	gggccatctg	acttctacct	cccatgtttg	57180
ctctcccaac	tcattagctc	ctgggcagca	tcctcctgag	ccacatgtgc	aggtactgga	57240
aaacctccat	cttggctccc	agagctctag	gaactcttca	tcacaactag	atttgcctct	57300
tctaagtgtc	tatgagcttg	caccatattt	aataaattgg	gaatgggttt	ggggtattaa	57360
tgcaatgtgt	ggtggttgta	ttggagcagg	gggaattgat	aaaggagagt	ggttgctgtt	57420
aatattatct	tatctattgg	gtggtatgtg	aaatattgta	catagacctg	atgagttgtg	57480
ggaccagatg	tcatctctgg	tcagagttta	cttgctatat	agactgtact	tatgtgtgaa	57540
gtttgcaagc	ttgctttagg	gctgagccct	ggactcccag	cagcagcaca	gttcagcatt	57600

gtgtggctgg	ttgtttcctg	gctgtcccca	gcaagtgtag	gagtggtggg	cctgaactgg	57660
gccattgatc	agactaaata	aattaagcag	ttaacataac	tggcaatatg	gagagtgaaa	57720
acatgattgg	ctcagggaca	taaatgtaga	gggtctgcta	gccaccttct	ggcctagccc	57780
acacaaactc	cccatagcag	agagttttca	tgcacccaag	tctaaaaccc	tcaagcagac	57840
acccatctgc	tctagagaat	atgtacatcc	cacctgaggc	agccccttcc	ttgcagcagg	57900
tgtgactgac	tatgaccttt	tcctggcctg	gctctcacat	gccagctgag	tcattcctta	57960
ggagccctac	cctttcatcc	tctctatatg	aatacttcca	tagcctgggt	atcctggctt	58020
gctttcctca	gtgctgggtg	ccacctttgc	aatgggaaga	aatgaatgca	agtcacccca	58080
ccccttgtgt	ttccttacaa	gtgcttgaga	ggagaagacc	agtttcttct	tgcttctgca	58140
tgtgggggat	gtcgtagaag	agtgaccatt	gggaaggaca	atgctatctg	gttagtgggg	58200
ccttgggcac	aatataaatc	tgtaaaccca	aaggtgtttt	ctcccaggca	ctctcaaagc	58260
ttgaagaatc	caacttaagg	acagaatatg	gttcccgaaa	aaaactgatg	atctggagta	58320
cgcattgctg	gcagaaccac	agagcaatgg	ctgggcatgg	gcagaggtca	tctgggtgtt	58380
cctgaggctg	ataacctgtg	gctgaaatcc	cttgctaaaa	gtccaggaga	cactcctgtt	58440
ggtatcttt	cttctggagt	catagtagtc	accttgcagg	gaacttcctc	agcccagggc	58500
tgctgcaggc	agcccagtga	cccttcctcc	tctgcagtta	ttcccccttt	ggctgctgca	58560
gcaccacccc	cgtcacccac	cacccaaccc	ctgccgcact	ccagccttta	acaagggctg	58620
tctagatatt	cattttaact	acctccacct	tggaaacaat	tgctgaaggg	gagaggattt	58680
gcaatgacca	accaccttgt	tgggacgcct	gcacacctgt	ctttcctgct	tcaacctgaa	58740
agattcctga	tgatgataat	ctggacacag	aagccgggca	cggtggctct	agcctgtaat	58800
ctcagcactt	tgggaggcct	cagcaggtgg	atcacctgag	atcaagagtt	tgagaacagc	58860
ctgaccaaca	tggtgaaacc	ccgtctctac	taaaaataca	aaaattagcc	aggtgtggtg	58920
gcacatacct	gtaatcccag	ctactctgga	ggctgaggca	ggagaatcgc	ttgaacccac	58980
aaggcagagg	ttgcagtgag	gcgagatcat	gccattgcac	tccagcctgt	gcaacaagag	59040
ccaaactcca	tctcaaaaaa	aaaaa				59065

<210> SEQ ID NO 4

<211> LENGTH: 265

<212> TYPE: PRT

<213> ORGANISM: Human

<400> SEQUENCE: 4

Leu Thr Glu Val Lys Val Met Arg Ser Leu Asp His Pro Asn Val Leu 1 5 10 15

Lys Phe Ile Gly Val Leu Tyr Lys Asp Lys Lys Leu Asn Leu Thr $20 \ \ 25 \ \ 25$

Glu Tyr Ile Glu Gly Gly Thr Leu Lys Asp Phe Leu Arg Ser Met Asp 35 40

Pro Phe Pro Trp Gln Gln Lys Val Arg Phe Ala Lys Gly Ile Ala Ser 50

Gly Met Ala Tyr Leu His Ser Met Cys Ile Ile His Arg Asp Leu Asn 65 70 70 80

Ser His Asn Cys Leu Ile Lys Leu Asp Lys Thr Val Val Val Asp 85 90 95

Phe Gly Leu Ser Arg Leu Ile Val Glu Glu Arg Lys Arg Ala Pro Met 100 $$105\$

Glu	Lys	Ala 115	Thr	Thr	Lys	Lys	Arg 120	Thr	Leu	Arg	Lys	Asn 125	Asp	Arg	Lys
Lys	Arg 130	Tyr	Thr	Val	Val	Gly 135	Asn	Pro	Tyr	Trp	Met 140	Ala	Pro	Glu	Met
Leu 145	Asn	Gly	Lув	Ser	Tyr 150	Asp	Glu	Thr	Val	Авр 155	Ile	Phe	Ser	Phe	Gly 160
Ile	Val	Leu	Сув	Glu 165	Ile	Ile	Gly	Gln	Val 170	Tyr	Ala	Asp	Pro	Авр 175	Сув
Leu	Pro	Arg	Thr 180	Leu	Авр	Phe	Gly	Leu 1.85	Asn	Val	Lys	Leu	Phe 190	Trp	Glu
Lys	Phe	Val 195	Pro	Thr	Asp	Сув	Pro 200	Pro	Ala	Phe	Phe	Pro 205	Leu	Ala	Ala
Ile	Сув 210	Сув	Arg	Leu	Glu	Pro 215	Glu	Ser	Arg	Pro	Ala 220	Phe	Ser	Lys	Leu
Glu 225	Авр	Ser	Phe	Glu	Ala 230	Leu	Ser	Leu	Tyr	Leu 235	Gly	Glu	Leu	Gly	Ile 240
Pro	Leu	Pro	Ala	Glu 245	Leu	Glu	Glu	Leu	Asp 250	His	Thr	Val	Ser	Met 255	Gln
Tyr	Gly	Leu	Thr 260	Arg	Asp	Ser	Pro	Pro 265							

That which is claimed is:

- 1. An isolated nucleic acid molecule consisting of a ³⁰ sequence set forth in SEQ ID NO:1. nucleotide sequence selected from the group consisting of:
 - (a) a nucleotide sequence that encodes an amino acid sequence shown in SEQ ID NO:2;
 - sequence of SEQ ID NO:1;
 - (c) a nucleic acid molecule consisting of the nucleic acid sequence of SEQ ID NO:3; and
 - (d) a nucleotide sequence that is completely complementary to a nucleotide sequence of (a)-(c).
- 2. A nucleic acid vector comprising a nucleic acid molecule of claim 1.
 - 3. A host cell containing the vector of claim 2.
- 4. A process for producing a polypeptide comprising culturing the host cell of claim 3 under conditions sufficient 45 sequence. for the production of said polypeptide, and recovering the peptide from the host cell culture.

- 5. An isolated polynucleotide consisting of a nucleotide
- 6. An isolated polynucleotide consisting of a nucleotide sequence set forth in SEQ ID NO:3.
- 7. A vector according to claim 2, wherein said vector is (b) a nucleic acid molecule consisting of the nucleic acid 35 selected from the group consisting of a plasmid, virus, and bacteriophage.
 - 8. A vector according to claim 2, wherein said isolated nucleic acid molecule is inserted into said vector in proper orientation and correct reading frame such that the protein of SEQ ID NO:2 may be expressed by a cell transformed with said vector.
 - 9. A vector according to claim 8, wherein said isolated nucleic acid molecule is operatively linked to a promoter