Spodbujevalno učenje pri igranju namiznih iger

(angl. Reinforcement learning in board games)

Tim Kalan

Mentor: izr. prof. dr. Marjetka Knez

Fakulteta za matematiko in fiziko

30. marec 2021

Napovednik

- ► Motivacija,
- problem spodbujevalnega učenja,
- algoritmi,
- namizne igre.

Umestitev

Motivacija: Instrumentalno pogojevanje

- ▶ Psihološko motivirana podlaga.
- ► Nagrade in kazni.

Okvir

Primer 1: robot se uči hoje

- ▶ Situacija/Stanje: položaj v sobi in stanje nog,
- ▶ **Nagrada**: 1 za doseg vrat, 2 za ključ, −0.5 za časovni korak,
- Okolje: soba in senzorji, ki govorijo o položaju,
- ► **Akcija**: Premik noge.

Primer 2: križci in krožci

- Situacija/Stanje: stanje na plošči,
- Nagrada: 1 za zmago, −1 za poraz, x za izenačenje/potezo,
- Okolje: nasprotnik, plošča, sodnik, nagrajevalec,
- Akcija: postavitev X oz. O na ploščo.

Ideja

- Agent »pade« v okolje.
- S poskušanjem se nauči pravilnih akcij.
- Svoje znanje izkoristi za maksimizacijo nagrade.

Ideja

- Agent »pade« v okolje.
- S poskušanjem se nauči pravilnih akcij.
- Svoje znanje izkoristi za maksimizacijo nagrade.

Hipoteza 1 (Hipoteza o nagradi).

Vse cilje je mogoče opisati kot maksimizacijo neke kumulativne numerične nagrade.

Definicija 2 (Markovska veriga).

Slučajni proces $(S_t)_{t=0}^T$ na končnem verjetnostnem prostoru (Ω, \mathcal{F}, P) je **Markovska veriga**, če velja Markovska lastnost

$$P(S_{t+1} = s_{t+1} \mid S_t = s_t, ..., S_0 = s_0) = P(S_{t+1} = s_{t+1} \mid S_t = s_t)$$

Definicija 2 (Markovska veriga).

Slučajni proces $(S_t)_{t=0}^T$ na končnem verjetnostnem prostoru (Ω, \mathcal{F}, P) je **Markovska veriga**, če velja Markovska lastnost

$$P(S_{t+1} = s_{t+1} \mid S_t = s_t, ..., S_0 = s_0) = P(S_{t+1} = s_{t+1} \mid S_t = s_t)$$

 Prihodnost je neodvisna od preteklosti, če poznamo sedanjost

Definicija 2 (Markovska veriga).

Slučajni proces $(S_t)_{t=0}^T$ na končnem verjetnostnem prostoru (Ω, \mathcal{F}, P) je **Markovska veriga**, če velja Markovska lastnost

$$P(S_{t+1} = s_{t+1} \mid S_t = s_t, ..., S_0 = s_0) = P(S_{t+1} = s_{t+1} \mid S_t = s_t)$$

- Prihodnost je neodvisna od preteklosti, če poznamo sedanjost
- ▶ $p_{ss'} := P(S_{t+1} = s' \mid S_t = s) \rightarrow \mathcal{P} := [p_{ss'}]_{s,s' \in \mathcal{S}}$, \mathcal{S} je množica stanj
- ightharpoonup Markovska veriga je torej dvojica (S, P)

Definicija 3 (Markovski proces nagrajevanja).

Markovski proces nagrajevanja je nabor (S, P, R, γ) , kjer je

- ► S (končna) množica stanj,
- \triangleright \mathcal{P} prehodna matrika, kjer $\mathcal{P}_{ss'} = P(S_{t+1} = s' \mid S_t = s)$,
- $ightharpoonup \mathcal{R}$ nagradna funkcija $\mathcal{R}_s = E[R_{t+1} \mid S_t = s]$,
- $ightharpoonup \gamma \in [0,1]$ je diskontni faktor.

Definicija 4 (Markovski proces odločanja).

Markovski proces odločanja (MDP) je nabor (S, A, P, R, γ) , kjer je

- ► S (končna) množica stanj,
- A (končna) množica akcij oz. dejanj,
- $ightharpoonup \mathcal{P}$ prehodna matrika, kjer $\mathcal{P}_{ss'}^a = P(S_{t+1} = s' \mid S_t = s, \mathbf{A_t} = \mathbf{a})$,
- $ightharpoonup \mathcal{R}$ nagradna funkcija $\mathcal{R}_s^a = E[R_{t+1} \mid S_t = s, \mathbf{A_t} = \mathbf{a}],$
- $ightharpoonup \gamma \in [0,1]$ diskontni faktor.

Primer: MDP

Agent 1

- ► Strategija (angl. *Policy*)
- Vrednostna funkcija (angl. Value function)
- ► (Model)

Agent 2: strategija

Definicija 5.

Deterministična strategija stanju s priredi akcijo a,

$$\pi(s) = a$$
.

 Stohastična strategija za vsako stanje s pove verjetnosti vseh možnih akcij a,

$$\pi(a|s) = P(A_t = a \mid S_t = s).$$

Agent 3: vrednostna funkcija

Definicija 6 (Povračilo).

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Definicija 7 (Vrednostna funkcija).

ightharpoonup Vrednostna funkcija stanja je pričakovana vrednost povračila, če se vedemo skladno s strategijo π

$$v_{\pi}(s) = \mathrm{E}[G_t \mid S_t = s].$$

Vrednostna funkcija akcije je podobna prejšnji, le da sprosti prvo akcijo

$$q_{\pi}(s, a) = E[G_t \mid S_t = s, A_t = a].$$

Primer: strategija in vrednostna funkcija

Algoritmi

- Učenje prek strategije ali vrednostne funkcije.
- Celoten problem je načrtovanje:
 - ► Napovedovanje ugotvaljanje vrednosti.
 - Upravljanje iskanje optimalne strategije.

Algoritmi: dinamično programiranje 1

- ▶ Poznamo $\mathcal{P}_{ss'}^a$ in \mathcal{R}_s^a ,
- Bellmanove enačbe,
- vrednostna funkcija ponovna uporaba rešitev,

$$v_{\pi}(s) = \mathbb{E}[G_t \mid S_t = s]$$

$$= \mathbb{E}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \sum_{k=1}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma(\sum_{k=1}^{\infty} \gamma^{k-1} R_{t+k+1}) \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s].$$

Algoritmi: dinamično programiranje 2

Algoritmi: Monte Carlo 1

- ▶ Nepoznan epizodični MDP,
- problem napovedovanja,
- empirično povračilo,
- štejemo obiske stanj.

Algoritmi: Monte Carlo 2

▶ Ob **prvem** obisku stanja *s*:

$$N(s) \leftarrow N(s) + 1$$

 $S(s) \leftarrow S(s) + G_t$

▶ Po koncu učenja:

$$V(s) \leftarrow S(s)/N(s)$$

lacktriangle Pomni: Računanje povprečja zaporedja $(X_i)_{i\in\mathbb{N}}$

$$\mu_k = \frac{1}{k} \sum_{j=1}^k X_j = \mu_{k-1} + \frac{1}{k} (X_k - \mu_{k-1})$$

► Inkrementalni Monte Carlo:

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(t)}(G_t - V(S_t))$$

Algoritmi: Monte Carlo 3

► Inkrementalni Monte Carlo:

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t)\right)$$

Splošni obrazec:

 $nova \ ocena \leftarrow stara \ ocena + korak \ (tarča - stara \ ocena).$

Algoritmi: TD(0)

- Učenje s časovno razliko.
- ▶ Bootstrapping.
- Ne potrebujejo povračila.
- $ightharpoonup G_t \approx R_{t+1} + \gamma V(S_{t+1}).$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

Algoritmi: $TD(\lambda)$ 1

- ▶ Povezava med MC in TD(0).
- $G_t^{(n)} = R_{t+1} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+1}).$
- Povprečenje različnih $G_t^{(n)}$: $G_t^{\lambda} = (1 \lambda) \sum_{n=1}^{\infty} \lambda^{(n-1)} G_t^{(n)}$.

$TD(\lambda)$ s pogledom naprej:

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t^{\lambda} - V(S_t)).$$

Algoritmi: $TD(\lambda)$ 2

► Sledi upravičenosti (angl. *eligibility traces*):

$$E_0(s) = 0,$$

$$E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbb{1}(S_t = s),$$

$TD(\lambda)$ s **pogledom nazaj**:

$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$
.

Spreminjanje strategije - upravljanje

- Potrebujemo vrednostno funkcijo akcij.
- raziskovanje in izkoriščanje.
- ightharpoonup ϵ -požrešna izbira akcij:

$$\pi(a|s) = \begin{cases} \epsilon/m + 1 - \epsilon & \text{\'e } a^* = \arg\max_{a \in \mathcal{A}} Q(s, a) \\ \epsilon/m & \text{sicer} \end{cases}$$

Konvergenca

► GLIE:

$$\lim_{k\to\infty} N_k(s,a) = \infty,$$

$$\lim_{k\to\infty} \pi_k(a|s) = \mathbb{1}(a = \arg\max_{a'\in\mathcal{A}} Q_k(s,a')).$$

Robbins-Monro zaporedje *korakov* α_t :

$$\sum_{t=1}^{\infty} \alpha_t = \infty,$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

Težave

- Veliki MDP-ji:
 - ► Križci in krožci: 3⁹ / 4578 / 765 stanj,
 - ▶ Štiri v vrsto: 4.531.985.219.092 stanj,
 - ▶ Šah: približno 10⁴⁶ stanj,
 - ► Go: 10¹⁷⁰ stanj,
- Vsi zgornji algoritmi so tabelarični.
- Počasno učenje.

Aproksimacija

- Linearna Aproksimacija.
- Nevronske mreže.

Namizne igre: posebnosti

- ▶ »Postanja«.
- ► Trening:
 - Fiksiran nasprotnik,
 - naključni nasprotnik,
 - samoigra.
- Več agentov: $\pi = \langle \pi^1, \pi^2 \rangle$.
- Iskanje.

$$v_*(s) = \max_{\pi^1} \min_{\pi^2} v_{\pi}(s)$$

m,n,k-igra

- Dva igralca, vsota nič, ekstenzivna,
- $ightharpoonup m \times n$ plošča,
- ► *k* v vrsto,
- pravila križcev in krožcev (3,3,3-igra),
- prilagoditve: gravitacija.

3,3,3-igra 1

3,3,3-igra 2

4,4,3-igra

4,4,4-igra

5,5,4-igra

Literatura I

Richard E. Bellman.

Dynamic Programming.

Princeton University Press, Princeton, 1957.

Richard E. Bellman.
A markov decision process.

Journal of Mathematical Mechanics, (6), 1957.

Imran Ghory.
Reinforcement learning in board games.
2004.

David Silver.

Introduction to reinforcement learning.

https://deepmind.com/learning-resources/ -introduction-reinforcement-learning-david-silve 2015.

Literatura II

Csaba Szepesvari.

Algorithms for Reinforcement Learning. Morgan & Claypool Publishers, Alberta, Canada, 2009.