TRIGONOMETRY

Chapter 07

b C a

RAZONES TRIGONOMÉTRICAS DE ÁNGULOS NOTABLES II

HELICO MOTIVACIÓN

"Tu actitud, no tu aptitud, determinará tu altitud"

Tu curso amigo de trigonometría.

¿ CÓMO CALCULAMOS LAS LONGITUDES DE LOS LADOS EN LOS TRIÁNGULOS RECTÁNGULOS NOTABLES?

Las calculamos utilizando una constante positiva K para conservar las proporcionalidades fijas y muy conocidas entre las longitudes de sus respectivos lados.

TRIGONOMETRÍA

Luego aplicamos las definiciones de las razones trigonométricas de un ángulo agudo.

$$\frac{a}{\sqrt{b}} = \frac{a\sqrt{b}}{b}$$

Ejemplo:

$$csc60^{\circ} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

α RT	sen	cos	tan	cot	sec	CSC
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
60°	$\frac{\sqrt{3}}{2}$	1 2	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
37°	3 5	4 5	3 4	4 3	5 4	5 3
53 °	4 5	$\frac{3}{5}$	$\frac{4}{3}$	$\frac{3}{4}$	$\frac{5}{3}$	$\frac{5}{4}$

Josué ha rendido sus exámenes de Trigonometría, Geometría y Razonamiento Matemático y ha obtenido las notas a, b y c, respectivamente.

¿ En cuál de los cursos obtuvo la mejor calificación ?

En Trigonometría obtuvo la mejor calificación.

Del gráfico, calcule $tan \alpha$.

RESOLUCIÓN

Se observa que el ⊿ ABC es notable e isósceles :

$$AB = BC = 3$$

En
$$\triangle$$
 CBD: $\tan \alpha = \frac{3}{1}$

$$\therefore$$
 tan $\alpha = 3$

RESOLUCIÓN

 \star Trazamos $\overline{BH} \perp \overline{AC}$

 \bullet | BHC (notable de 37° y 53°):

$$AHB$$
: $tan\theta = \frac{6}{8}$

$$\therefore \tan \theta = \frac{3}{4}$$

Del gráfico, calcule cotα si el triángulo ABC es equilátero.

RESOLUCIÓN

♦ Trazamos MH ⊥ AC

 \Leftrightarrow AHM (notable de 30°y 60°):

$$\therefore \cot \alpha = \frac{4\sqrt{3}}{3}$$

Del gráfico, calcule tanθ.

RESOLUCIÓN

 \triangle ABD (notable de 30°y 60°):

♦ △ ABC:

$$\therefore \tan \theta = \frac{\sqrt{3}}{2}$$

La edad de Juan Carlos, joven estudiante de la UNI, está dada por el valor de 17x en el gráfico mostrado. Halle dicha edad.

RESOLUCIÓN

Recuerda:

* Según gráfico:

$$\cos 37^{\circ} = \frac{3x + 1}{8x - 4}$$

$$\frac{4}{5} = \frac{3x + 1}{8x - 4}$$

$$4(8x-4) = 5(3x+1)$$

 $32x-16 = 15x+5$
 $17x = 21$

Juan Carlos tiene 21 años.

Giancarlo heredó un terreno ubicado en la provincia de Yauyos, el cual es de la forma mostrada en el gráfico.- Se desea calcular el valor de la cotα, ya que indica la cantidad de hijos que tiene Giancarlo.

RESOLUCIÓN

- **❖** \triangleright BPC es notable de 45° − 45°
- $\Leftrightarrow \land APC : \cot \alpha = \frac{6+2}{2} = 4$

Giancarlo tiene 4 hijos.

