

Specification and Verification

Lecture 3: Linear temporal logic

Guillermo A. Pérez

October 7, 2024

TL;DR: This lecture in short

What is LTL? Why study it?

A logic to speak about linear-temporal properties

Main references

- Christel Baier, Joost-Pieter Katoen: Principles of Model Checking. MIT Press 2018.
- Mickael Randour: Verification course @ UMONS.

Required and target competences

What tools do we need?

Discrete mathematics, Automata theory

What skills will we obtain?

- theory: a common language to speak about specifications
- practice: LTL and its variants are used for formal specifications in industry and in applied verification

How will these skills be useful?

Having a common language will allow us to move forward in this course and will help you formalize what you want from systems you use and program.

1 A specification language for linear-temporal properties

2 LTL syntax

3 LTL semantics

Linear-time semantics: a reminder

TS \mathcal{T} with atomic propositions $P = \{a, b\}$ (state and action names are omitted).

From now on, we assume no terminal state

- Linear-time semantics deals with *traces* of executions.
 - lacktriangle The language of infinite words described by ${\mathcal T}$

TS for semaphore-based mutex

Ensure that $\langle c_1, c_2, y = \dots \rangle \notin \operatorname{Reach}(\mathcal{T}(PG_1 \mid \mid \mid PG_2))$ or equivalently that $\neg \exists \pi \in \operatorname{Paths}(\mathcal{T}), \langle c_1, c_2, y = \dots \rangle \in \pi$

Ensure that $\langle c_1, c_2, y = \dots \rangle \notin \operatorname{Reach}(\mathcal{T}(PG_1 \mid \mid \mid PG_2))$ or equivalently that $\neg \exists \pi \in \operatorname{Paths}(\mathcal{T}), \langle c_1, c_2, y = \dots \rangle \in \pi$

→ Satisfied

For model checking, we like to use *labels* and *traces*

- $P = \{crit_1, crit_2\}$, natural labelling
- Ensure that $\neg \exists w \in \text{Traces}(\mathcal{T}), \{crit_1, crit_2\} \in w$

Beverage vending machine

Ensure that the machine delivers a drink infinitely often.

- \blacksquare $P = \{paid, drink\}, natural labelling$
- $\forall w \in \text{Traces}(\mathcal{T})$, for all position i along w, label drink must appear in the future

Ensure that the machine delivers a *drink* infinitely often.

- \blacksquare $P = \{paid, drink\}$, natural labelling
- $\forall w \in \text{Traces}(\mathcal{T})$, for all position i along w, label drink must appear in the future
- Satisfied: recall we consider infinite executions

What if we ask that the machine delivers a beer infinitely often?

- \blacksquare $P = \{paid, soda, beer\}$, natural labelling
- $\forall w \in \text{Traces}(\mathcal{T})$, for all positions *i* along *w*, label *beer* must appear in the future

What if we ask that the machine delivers a beer infinitely often.

- \blacksquare $P = \{paid, soda, beer\}$, natural labelling
- $\forall w \in \text{Traces}(\mathcal{T})$, for all positions *i* along *w*, label *beer* must appear in the future
- \hookrightarrow Not satisfied: $w = (\varnothing \{paid\} \{paid, soda\})^{\omega}$

LT properties: safety vs. liveness

Informally, safety means "something bad never happens"

⇒ Can easily be satisfied by doing nothing!

LT properties: safety vs. liveness

Informally, safety means "something bad never happens"

⇒ Can easily be satisfied by doing nothing!

⇒ Needs to be complemented with liveness, i.e., "something good will happen"

LT properties: safety vs. liveness

Informally, safety means "something bad never happens"

- ⇒ Can easily be satisfied by doing nothing!
- ⇒ Needs to be complemented with liveness, i.e., "something good will happen"

Finite vs. infinite time

Safety is violated by *finite* executions (i.e., the prefix up to seeing a bad state) whereas liveness is violated by *infinite* ones:

witnessing that the good behavior never occurs.

LT properties: persistence

Ensure that a property eventually holds forever

■ E.g., from some point on, a holds but b does not

LT properties: persistence

Ensure that a property eventually holds forever

- E.g., from some point on, a holds but b does not
- $\hookrightarrow \textbf{Satisfied. Indeed, Traces}(\mathcal{T}) = \\ \left\{a\right\} \left[\left\{a\right\}^{\omega} \middle| (\left\{a\right\}\left\{a,c\right\})^{\omega} \middle| \left\{a\right\}^{+} \left\{b\right\} (\left\{a,c\right\}\left\{a\right\})^{\omega}\right]$

LT properties: persistence

Ensure that a property eventually holds forever

- E.g., from some point on, a holds but b does not
- \hookrightarrow Satisfied. Indeed, $\operatorname{Traces}(\mathcal{T}) = \{a\} \left[\{a\}^{\omega} \mid (\{a\} \{a,c\})^{\omega} \mid \{a\}^{+} \{b\} (\{a,c\} \{a\})^{\omega} \right]$
 - \implies Ultimately periodic traces where b is false and a is true, at all steps after some point

TS for semaphore-based mutex

TS for semaphore-based mutex

Ensure that both processes get fair access to the critical section

■ Unconditional fairness. E.g., "every process gets access infinitely often"

- Unconditional fairness. E.g., "every process gets access infinitely often"
- **Strong fairness.** E.g., "every process that requests access infinitely often gets access infinitely often"

- Unconditional fairness. E.g., "every process gets access infinitely often"
- **Strong fairness.** E.g., "every process that requests access infinitely often gets access infinitely often"
- Weak fairness. E.g., "every process that continuously requests access from some point on gets access infinitely often"

- Unconditional fairness. E.g., "every process gets access infinitely often"
- **Strong fairness.** E.g., "every process that requests access infinitely often gets access infinitely often"
- Weak fairness. E.g., "every process that continuously requests access from some point on gets access infinitely often"

 ${\sf Unconditional} \Longrightarrow {\sf strong} \Longrightarrow {\sf weak}$

Converse not true in general

- Unconditional fairness. E.g., "every process gets access infinitely often"
- **Strong fairness.** E.g., "every process that requests access infinitely often gets access infinitely often"
- Weak fairness. E.g., "every process that continuously requests access from some point on gets access infinitely often"

 ${\sf Unconditional} \Longrightarrow {\sf strong} \Longrightarrow {\sf weak}$

Converse not true in general

⇒ All forms can be formalized in LTL

The semaphore-based mutex is **not fair** in any sense

The semaphore-based mutex is **not fair** in any sense We have seen that *starvation* is possible. E.g., execution

$$\langle n_1, n_2, y = 1 \rangle$$
 $\longrightarrow (\langle w_1, n_2, y = 1 \rangle \longrightarrow \langle w_1, w_2, y = 1 \rangle \longrightarrow \langle w_1, c_2, y = 0 \rangle)^{\omega}$

■ Peterson's mutex is **strongly fair**

- Peterson's mutex is **strongly fair**
- We saw that it has bounded waiting

- Peterson's mutex is **strongly fair**
- We saw that it has bounded waiting
- A process requesting access waits at most one turn
- → Infinitely frequent requests ⇒ infinitely frequent access
- **⇒** Strong fairness

Linear temporal logic

LT property

Essentially, a set of acceptable traces over P

Linear temporal logic

LT property

Essentially, a set of acceptable traces over P

- Often difficult to describe explicitly
- Adequate formalism needed for model checking

Linear temporal logic

LT property

Essentially, a set of acceptable traces over P

- Often difficult to describe explicitly
- Adequate formalism needed for model checking

```
⇒ Linear Temporal Logic (LTL):
```

propositional logic + temporal operators

LTL in a nutshell

■ Atomic propositions $a \in P$; Boolean combinations of formulas: $\neg \varphi$, $\varphi \wedge \psi$, $\varphi \vee \psi$; Temporal operators:

LTL in a nutshell

■ Atomic propositions $a \in P$; Boolean combinations of formulas: $\neg \varphi$, $\varphi \wedge \psi$, $\varphi \vee \psi$; Temporal operators:

1 A specification language for linear-temporal properties

2 LTL syntax

3 LTL semantics

LTL syntax

LTL syntax

Given the set of atomic propositions P, LTL formulas are formed according to the following grammar:

$$\varphi ::= \top \mid \mathbf{a} \mid \varphi \wedge \psi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \ \mathcal{U} \ \psi$$

where $a \in P$.

LTL syntax

LTL syntax

Given the set of atomic propositions P, LTL formulas are formed according to the following grammar:

$$\varphi ::= \top \mid \mathbf{a} \mid \varphi \wedge \psi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \ \mathcal{U} \ \psi$$

where $a \in P$.

 $\varphi \mathcal{U} \psi$ requires that ψ holds at some point!

(i.e., φ forever does not suffice)

$$\varphi \vee \psi \equiv \neg (\neg \varphi \wedge \neg \psi)$$

$$\varphi \lor \psi \equiv \neg (\neg \varphi \land \neg \psi)$$
$$\varphi \to \psi \equiv \neg \varphi \lor \psi \qquad \text{*implication*}$$

$$\begin{split} \varphi \lor \psi &\equiv \neg (\neg \varphi \land \neg \psi) \\ \varphi \to \psi &\equiv \neg \varphi \lor \psi \qquad \text{*implication*} \\ \varphi \leftrightarrow \psi &\equiv (\varphi \to \psi) \land (\psi \to \varphi) \qquad \text{*equivalence*} \end{split}$$

$$\begin{split} \varphi \lor \psi &\equiv \neg (\neg \varphi \land \neg \psi) \\ \varphi \to \psi &\equiv \neg \varphi \lor \psi \qquad \text{*implication*} \\ \varphi \leftrightarrow \psi &\equiv (\varphi \to \psi) \land (\psi \to \varphi) \qquad \text{*equivalence*} \\ \varphi \oplus \psi &\equiv (\varphi \land \neg \psi) \lor (\neg \varphi \land \psi) \qquad \text{*exclusive or*} \end{split}$$

$$\varphi \lor \psi \equiv \neg(\neg \varphi \land \neg \psi)$$

$$\varphi \to \psi \equiv \neg \varphi \lor \psi \qquad \text{*implication*}$$

$$\varphi \leftrightarrow \psi \equiv (\varphi \to \psi) \land (\psi \to \varphi) \qquad \text{*equivalence*}$$

$$\varphi \oplus \psi \equiv (\varphi \land \neg \psi) \lor (\neg \varphi \land \psi) \qquad \text{*exclusive or*}$$

$$\bot \equiv \neg \top$$

$$\begin{split} \varphi \vee \psi &\equiv \neg (\neg \varphi \wedge \neg \psi) \\ \varphi \to \psi &\equiv \neg \varphi \vee \psi \qquad \text{*implication*} \\ \varphi \leftrightarrow \psi &\equiv (\varphi \to \psi) \wedge (\psi \to \varphi) \qquad \text{*equivalence*} \\ \varphi \oplus \psi &\equiv (\varphi \wedge \neg \psi) \vee (\neg \varphi \wedge \psi) \qquad \text{*exclusive or*} \\ \bot &\equiv \neg \top \\ \Diamond \varphi &\equiv \top \ \mathcal{U} \ \varphi \qquad \text{*eventually (or finally)*} \end{split}$$

$$\begin{split} \varphi \lor \psi &\equiv \neg (\neg \varphi \land \neg \psi) \\ \varphi \to \psi &\equiv \neg \varphi \lor \psi \qquad \text{*implication*} \\ \varphi \leftrightarrow \psi &\equiv (\varphi \to \psi) \land (\psi \to \varphi) \qquad \text{*equivalence*} \\ \varphi \oplus \psi &\equiv (\varphi \land \neg \psi) \lor (\neg \varphi \land \psi) \qquad \text{*exclusive or*} \\ \bot &\equiv \neg \top \\ \Diamond \varphi &\equiv \top \ \mathcal{U} \ \varphi \qquad \text{*eventually (or finally)*} \\ \Box \varphi &\equiv \neg \Diamond \neg \varphi \qquad \text{*always (or globally)*} \end{split}$$

$$\varphi \vee \psi \equiv \neg (\neg \varphi \wedge \neg \psi)$$

$$\varphi \rightarrow \psi \equiv \neg \varphi \vee \psi \qquad \text{*implication*}$$

$$\varphi \leftrightarrow \psi \equiv (\varphi \rightarrow \psi) \wedge (\psi \rightarrow \varphi) \qquad \text{*equivalence*}$$

$$\varphi \oplus \psi \equiv (\varphi \wedge \neg \psi) \vee (\neg \varphi \wedge \psi) \qquad \text{*exclusive or*}$$

$$\bot \equiv \neg \top$$

$$\Diamond \varphi \equiv \top \mathcal{U} \varphi \qquad \text{*eventually (or finally)*}$$

$$\Box \varphi \equiv \neg \Diamond \neg \varphi \qquad \text{*always (or globally)*}$$

$$\varphi \, \mathcal{W} \, \psi \equiv (\varphi \, \mathcal{U} \, \psi) \vee \Box \varphi \qquad \text{*weak until*}$$

lacktriangle Weak until \leadsto until that does not require ψ to be reached

$$\varphi \vee \psi \equiv \neg (\neg \varphi \wedge \neg \psi)$$

$$\varphi \rightarrow \psi \equiv \neg \varphi \vee \psi \qquad \text{*implication*}$$

$$\varphi \leftrightarrow \psi \equiv (\varphi \rightarrow \psi) \wedge (\psi \rightarrow \varphi) \qquad \text{*equivalence*}$$

$$\varphi \oplus \psi \equiv (\varphi \wedge \neg \psi) \vee (\neg \varphi \wedge \psi) \qquad \text{*exclusive or*}$$

$$\bot \equiv \neg \top$$

$$\Diamond \varphi \equiv \top \mathcal{U} \varphi \qquad \text{*eventually (or finally)*}$$

$$\Box \varphi \equiv \neg \Diamond \neg \varphi \qquad \text{*always (or globally)*}$$

$$\varphi \, \mathcal{W} \, \psi \equiv (\varphi \, \mathcal{U} \, \psi) \vee \Box \varphi \qquad \text{*weak until*}$$

$$\varphi \, \mathcal{R} \, \psi \equiv \neg (\neg \varphi \, \mathcal{U} \neg \psi) \qquad \text{*release*}$$

- lacktriangle Weak until \leadsto until that does not require ψ to be reached
- lacktriangle Release $\leadsto \psi$ must hold up to the point where φ releases it, or forever if φ never

LTL syntax: precedence order

Precedence order

- Unary operators before binary ones,
- \blacksquare \neg and \bigcirc equally strong,
- \blacksquare \mathcal{U} before \land . \lor and \rightarrow

LT properties in LTL: safety

TS for semaphore-based mutex

- \blacksquare $P = \{crit_1, crit_2\}$, natural labelling
- Ensure that $\neg \exists w \in \text{Traces}(\mathcal{T}), \{crit_1, crit_2\} \in w$

LT properties in LTL: safety

TS for semaphore-based mutex

- \blacksquare $P = \{crit_1, crit_2\}$, natural labelling
- Ensure that $\neg \exists w \in \text{Traces}(\mathcal{T}), \{crit_1, crit_2\} \in w$
- $\hookrightarrow \neg \lozenge (crit_1 \land crit_2)$ or equivalently $\square (\neg crit_1 \lor \neg crit_2)$

LT properties in LTL: liveness

Beverage vending machine

- \blacksquare $P = \{paid, drink\}$, natural labelling
- $\forall w \in \text{Traces}(\mathcal{T})$, for all positions i along w, label drink must appear in the future

LT properties in LTL: liveness

Beverage vending machine

- \blacksquare $P = \{paid, drink\}$, natural labelling
- $\forall w \in \text{Traces}(\mathcal{T})$, for all positions i along w, label drink must appear in the future
- $\hookrightarrow \Box \Diamond drink$

LT properties in LTL: liveness

Beverage vending machine

- \blacksquare $P = \{paid, drink\}$, natural labelling
- $\forall w \in \text{Traces}(\mathcal{T})$, for all positions i along w, label drink must appear in the future
- $\hookrightarrow \Box \Diamond drink$
- ⇒ "infinitely often"

LT properties in LTL: persistence

Ensure that a property eventually holds forever

■ E.g., from some point on, a holds but b does not

LT properties in LTL: persistence

Ensure that a property eventually holds forever

- E.g., from some point on, a holds but b does not
- $\hookrightarrow \Diamond \Box (a \land \neg b)$

LT properties in LTL: persistence

Ensure that a property eventually holds forever

- E.g., from some point on, a holds but b does not
- $\hookrightarrow \Diamond \Box (a \land \neg b)$
- ⇒ "eventually always"

Assume k processes and $P = \{wait_1, \dots, wait_k, crit_1, \dots, crit_k\}$

■ Unconditional fairness. E.g., "every process gets access infinitely often"

Assume k processes and $P = \{wait_1, \dots, wait_k, crit_1, \dots, crit_k\}$

■ Unconditional fairness. E.g., "every process gets access infinitely often"

$$\hookrightarrow \bigwedge_{1 \le i \le k} \Box \Diamond crit_i$$

Assume k processes and $P = \{wait_1, \dots, wait_k, crit_1, \dots, crit_k\}$

■ Unconditional fairness. E.g., "every process gets access infinitely often"

$$\hookrightarrow \bigwedge_{1 \le i \le k} \Box \Diamond crit_i$$

■ **Strong fairness.** E.g., "every process that requests access infinitely often gets access infinitely often"

Assume k processes and $P = \{wait_1, \dots, wait_k, crit_1, \dots, crit_k\}$

■ Unconditional fairness. E.g., "every process gets access infinitely often"

$$\hookrightarrow \bigwedge_{1 \le i \le k} \Box \Diamond crit_i$$

■ **Strong fairness.** E.g., "every process that requests access infinitely often gets access infinitely often"

$$\hookrightarrow \bigwedge_{1 \le i \le k} (\Box \Diamond wait_i \to \Box \Diamond crit_i)$$

Assume k processes and $P = \{wait_1, \dots, wait_k, crit_1, \dots, crit_k\}$

■ Unconditional fairness. E.g., "every process gets access infinitely often"

$$\hookrightarrow \bigwedge_{1 \le i \le k} \Box \Diamond crit_i$$

■ **Strong fairness.** E.g., "every process that requests access infinitely often gets access infinitely often"

$$\hookrightarrow \bigwedge_{1 \le i \le k} (\Box \Diamond wait_i \rightarrow \Box \Diamond crit_i)$$

■ Weak fairness. E.g., "every process that continuously requests access from some point on gets access infinitely often"

Assume k processes and $P = \{wait_1, \dots, wait_k, crit_1, \dots, crit_k\}$

■ Unconditional fairness. E.g., "every process gets access infinitely often"

$$\hookrightarrow \bigwedge_{1 \le i \le k} \Box \Diamond crit_i$$

■ **Strong fairness.** E.g., "every process that requests access infinitely often gets access infinitely often"

$$\hookrightarrow \bigwedge_{1 \le i \le k} (\Box \Diamond wait_i \rightarrow \Box \Diamond crit_i)$$

■ Weak fairness. E.g., "every process that continuously requests access from some point on gets access infinitely often"

$$\hookrightarrow \bigwedge_{1 \le i \le k} (\lozenge \square wait_i \to \square \lozenge crit_i)$$

1 A specification language for linear-temporal properties

2 LTL syntax

3 LTL semantics

Given propositions P and LTL formula φ , the associated LT property is the language of words:

$$\operatorname{Words}(\varphi) = \left\{ w = a_0 a_1 a_2 \dots \in (2^P)^\omega \mid w \models \varphi \right\}$$

Given propositions P and LTL formula φ , the associated LT property is the language of words:

$$\operatorname{Words}(\varphi) = \left\{ w = a_0 a_1 a_2 \dots \in (2^P)^\omega \mid w \models \varphi \right\}$$

$$w \models \top$$

Given propositions P and LTL formula φ , the associated LT property is the language of words:

$$\operatorname{Words}(\varphi) = \left\{ w = a_0 a_1 a_2 \dots \in (2^P)^\omega \mid w \models \varphi \right\}$$

$$w \models \top$$
 Recall letters are subsets of P
 $w \models a$ iff $a \in a_0$

Given propositions P and LTL formula φ , the associated LT property is the language of words:

$$\operatorname{Words}(\varphi) = \left\{ w = a_0 a_1 a_2 \dots \in (2^P)^\omega \mid w \models \varphi \right\}$$

$$w \models \top$$
 Recall letters are subsets of P
 $w \models a$ iff $a \in a_0$
 $w \models \varphi \land \psi$ iff $w \models \varphi$ and $w \models \psi$

Given propositions P and LTL formula φ , the associated LT property is the language of words:

$$\operatorname{Words}(\varphi) = \left\{ w = a_0 a_1 a_2 \dots \in (2^P)^\omega \mid w \models \varphi \right\}$$

```
w \models \top Recall letters are subsets of P

w \models a iff a \in a_0

w \models \varphi \land \psi iff w \models \varphi and w \models \psi

w \models \neg \varphi iff w \not\models \varphi
```


Given propositions P and LTL formula φ , the associated LT property is the language of words:

$$\operatorname{Words}(\varphi) = \left\{ w = a_0 a_1 a_2 \dots \in (2^P)^\omega \mid w \models \varphi \right\}$$

$w \models \top$	Rec	call letters are subsets of P
$w \models a$	iff	$a \in a_0$
$\mathbf{w} \models \varphi \wedge \psi$	iff	$\mathbf{w} \models \varphi \text{ and } \mathbf{w} \models \psi$
$w \models \neg \varphi$	iff	$\mathbf{w} \not\models \varphi$
$w \models \bigcirc \varphi$	iff	$w[1] = a_1 a_2 \ldots \models \varphi$

Given propositions P and LTL formula φ , the associated LT property is the language of words:

$$\operatorname{Words}(\varphi) = \left\{ w = a_0 a_1 a_2 \dots \in (2^P)^\omega \mid w \models \varphi \right\}$$

where \models is the smallest relation satisfying:

$$\begin{array}{lll} w \models \top & \textit{Recall letters are subsets of P} \\ w \models a & \text{iff} & a \in a_0 \\ w \models \varphi \wedge \psi & \text{iff} & w \models \varphi \text{ and } w \models \psi \\ w \models \neg \varphi & \text{iff} & w \not\models \varphi \\ w \models \bigcirc \varphi & \text{iff} & w[1..] = a_1 a_2 \ldots \models \varphi \\ w \models \varphi \, \mathcal{U} \, \psi & \text{iff} & \exists j \geq 0, \, w[j..] \models \psi \text{ and } \forall \, 0 \leq i < j, \, w[i..] \models \varphi \end{array}$$

$$\mathbf{w} \models \Diamond \varphi$$

iff
$$\exists j \geq 0, \ w[j..] \models \varphi$$

$$\begin{array}{lll} w \models \Diamond \varphi & & \text{iff} & \exists j \geq 0, \ w[j..] \models \varphi \\ w \models \Box \varphi & & \text{iff} & \forall j \geq 0, \ w[j..] \models \varphi \end{array}$$


```
\begin{array}{lll} w \models \Diamond \varphi & \text{iff} & \exists j \geq 0, \ w[j..] \models \varphi \\ w \models \Box \varphi & \text{iff} & \forall j \geq 0, \ w[j..] \models \varphi \\ w \models \Box \Diamond \varphi & \text{iff} & \forall j \geq 0, \ \exists i \geq j, \ w[i..] \models \varphi \end{array}
```



```
\begin{array}{lll} w \models \Diamond \varphi & \text{iff} & \exists j \geq 0, \ w[j..] \models \varphi \\ w \models \Box \varphi & \text{iff} & \forall j \geq 0, \ w[j..] \models \varphi \\ w \models \Box \Diamond \varphi & \text{iff} & \forall j \geq 0, \ \exists i \geq j, \ w[i..] \models \varphi \\ w \models \Diamond \Box \varphi & \text{iff} & \exists j \geq 0, \ \forall i \geq j, \ w[i..] \models \varphi \end{array}
```


Let $\mathcal{T} = (S, A, \longrightarrow, I, P, L)$ be a TS and φ an LTL formula over P.

Let $\mathcal{T} = (S, A, \longrightarrow, I, P, L)$ be a TS and φ an LTL formula over P.

■ For $\pi \in \text{Paths}(\mathcal{T})$, $\pi \models \varphi$ iff $\text{trace}(\pi) \models \varphi$

Let $\mathcal{T} = (S, A, \longrightarrow, I, P, L)$ be a TS and φ an LTL formula over P.

- For $\pi \in \text{Paths}(\mathcal{T})$, $\pi \models \varphi$ iff $\text{trace}(\pi) \models \varphi$
- For $s \in S$, $s \models \varphi$ iff $\forall \pi \in \text{Paths}(s)$, $\pi \models \varphi$

Let $\mathcal{T} = (S, A, \longrightarrow, I, P, L)$ be a TS and φ an LTL formula over P.

- For $\pi \in \text{Paths}(\mathcal{T})$, $\pi \models \varphi$ iff $\text{trace}(\pi) \models \varphi$
- For $s \in S$, $s \models \varphi$ iff $\forall \pi \in \text{Paths}(s)$, $\pi \models \varphi$
- TS \mathcal{T} satisfies φ , denoted $\mathcal{T} \models \varphi$ iff $\operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Words}(\varphi)$

Let $\mathcal{T} = (S, A, \longrightarrow, I, P, L)$ be a TS and φ an LTL formula over P.

- For $\pi \in \text{Paths}(\mathcal{T})$, $\pi \models \varphi$ iff $\text{trace}(\pi) \models \varphi$
- For $s \in S$, $s \models \varphi$ iff $\forall \pi \in \text{Paths}(s)$, $\pi \models \varphi$
- TS \mathcal{T} satisfies φ , denoted $\mathcal{T} \models \varphi$ iff $\operatorname{Traces}(\mathcal{T}) \subseteq \operatorname{Words}(\varphi)$

It follows that $\mathcal{T} \models \varphi$ iff $\forall s_0 \in I$, $s_0 \models \varphi$.

Example

Notice the added initial state

$$\mathcal{T} \not\models \Box a$$

$$\mathcal{T} \not\models \Diamond b$$

$$\mathcal{T} \models a \mathcal{W} b$$

$$\mathcal{T} \models \Box(b \to \Box \Diamond c) \qquad \qquad \mathcal{T} \models b \to \Box c$$

$$\mathcal{T} \models \Diamond \Box a$$

$$\mathcal{T} \not\models a \mathcal{U} b$$

$$\mathcal{T} \not\models b \mathcal{R}$$
 a

$$\mathcal{T} \models b \rightarrow \Box c$$

$$\mathcal{T} \models \bigcirc (a \land \neg c)$$

$$\mathcal{T} \models \Box (c \rightarrow \bigcirc a)$$

$$\mathcal{T} \models \Box \neg c
ightarrow \neg \Diamond b$$

$$\mathcal{T} \not\models \bigcirc \bigcirc (b \lor c) \lor \Box a$$

Semantics of negation: paths

Negation for paths

For $\pi \in \text{Paths}(\mathcal{T})$ and an LTL formula φ over P,

$$\pi \not\models \varphi \Longleftrightarrow \pi \models \neg \varphi$$

because $\operatorname{Words}(\neg \varphi) = (2^P)^{\omega} \setminus \operatorname{Words}(\varphi)$.

Semantics of negation: transition systems

Negation for TSs

For TS $\mathcal{T} = (S, A, \longrightarrow, I, P, L)$ and an LTL formula φ over P:

$$\begin{array}{c} \mathcal{T} \not\models \varphi \\ & \stackrel{\forall}{\checkmark} \uparrow \uparrow \\ \mathcal{T} \models \neg \varphi \end{array}$$

Semantics of negation: transition systems

Negation for TSs

For TS $\mathcal{T} = (S, A, \longrightarrow, I, P, L)$ and an LTL formula φ over P:

$$\mathcal{T} \not\models \varphi$$
 $\not\downarrow \uparrow$
 $\mathcal{T} \models \neg \varphi$

We have that
$$\mathcal{T} \not\models \varphi$$
 iff $\operatorname{Traces}(\mathcal{T}) \not\subseteq \operatorname{Words}(\varphi)$ iff $\operatorname{Traces}(\mathcal{T}) \setminus \operatorname{Words}(\varphi) \neq \varnothing$ iff $\operatorname{Traces}(\mathcal{T}) \cap \operatorname{Words}(\neg \varphi) \neq \varnothing$

Semantics of negation: transition systems

Negation for TSs

For TS $\mathcal{T} = (S, A, \longrightarrow, I, P, L)$ and an LTL formula φ over P:

$$\mathcal{T} \not\models \varphi \\
\downarrow \uparrow \\
\mathcal{T} \models \neg \varphi$$

We have that
$$\mathcal{T} \not\models \varphi$$
 iff $\operatorname{Traces}(\mathcal{T}) \not\subseteq \operatorname{Words}(\varphi)$ iff $\operatorname{Traces}(\mathcal{T}) \setminus \operatorname{Words}(\varphi) \neq \varnothing$ iff $\operatorname{Traces}(\mathcal{T}) \cap \operatorname{Words}(\neg \varphi) \neq \varnothing$

But it may be the case that $\mathcal{T} \not\models \varphi$ and $\mathcal{T} \not\models \neg \varphi$ if $\operatorname{Traces}(\mathcal{T}) \cap \operatorname{Words}(\neg \varphi) \neq \emptyset \text{ and } \operatorname{Traces}(\mathcal{T}) \cap \operatorname{Words}(\varphi) \neq \emptyset.$

Semantics of negation: example

We saw that $\mathcal{T} \not\models \Diamond b$

Do we have $\mathcal{T} \models \neg \lozenge b \equiv \Box \neg b$?

Semantics of negation: example

We saw that $\mathcal{T} \not\models \Diamond b$

Do we have $\mathcal{T} \models \neg \lozenge b \equiv \Box \neg b$?

 \longrightarrow No. Because trace $w = \{a\}^2 \{b\} (\{a,c\}\{a\})^{\omega}$ satisfies $\lozenge b$

Equivalence of LTL formulas: definition

Equivalence of LTL formulas

LTL formulas φ and ψ are equivalent, denoted $\varphi \equiv \psi$, if

 $Words(\varphi) = Words(\psi).$

Back to fairness constraints with LTL

Let φ, ψ be LTL formulas representing that "something is enabled" (φ) and that "something is granted" (ψ) . Recall the three types of fairness.

Unconditional fairness constraint

ufair =
$$\Box \Diamond \psi$$

■ Strong fairness constraint

$$sfair = \Box \Diamond \varphi \rightarrow \Box \Diamond \psi$$

Weak fairness constraint

wfair
$$= \Diamond \Box \varphi \rightarrow \Box \Diamond \psi$$

Fairness assumptions

Let *fair* denote a conjunction of such assumptions. It is sometimes useful to check that all *fair* executions of a TS satisfy a formula (in contrast to all of them).

Fair satisfaction

Let arphi be an LTL formula and fair an LTL fairness assumption. We have that $\mathcal{T} \models_{\mathit{fair}} arphi$ iff

 $\forall w \in \text{Traces}(\mathcal{T}) \text{ such that } w \models \text{fair}, \ w \models \varphi.$

Example: randomized arbiter for mutex

Mutual exclusion with a randomized arbiter

The arbiter chooses who gets access by tossing a coin: probabilities are abstracted by non-determinism.

Can process 1 access the section infinitely often?

Example: randomized arbiter

 \hookrightarrow No, $\mathcal{T}_1 \mid \mid \mid Arbiter \mid \mid \mid \mathcal{T}_2 \not\models \Box \Diamond req_1 \rightarrow \Box \Diamond crit_1$ because the arbiter can always choose *tails*.

Intuitively, this is *unfair*: a real coin would lead to this with probability zero.

- \implies LTL fairness assumption: $\Box \Diamond heads \land \Box \Diamond tails$.
- \hookrightarrow The property is verified on fair executions, i.e., $\mathcal{T}_1 \mid\mid\mid Arbiter\mid\mid\mid \mathcal{T}_2 \models_{fair} \bigwedge_{i \in \{1,2\}} (\Box \Diamond req_i \to \Box \Diamond crit_i).$

Handling fairness assumptions

Given a formula φ and a fairness assumption *fair*, we can reduce \models_{fair} to the classical satisfaction \models .

From
$$\models_{\mathsf{fair}}$$
 to \models
$$\mathcal{T} \models_{\mathsf{fair}} \varphi \iff \mathcal{T} \models (\mathsf{fair} \rightarrow \varphi).$$

Summary and conclusions

Linear temporal logic

Three very important things learned today:

- We now have a formal language to specify properties about systems: LTL
- We know how LTL formulas are interpreted over words
- We know how LTL formulas are interpreted over transition systems

Moving forward

Given a transition system and a formula, are there algorithms to determine whether the system satisfies the formula?

