1.3 Exercises

1. Cliques in MRFs

- (a) What is the definition of a clique in a graphical model?
- (b) What are the cliques in graph \mathcal{G}_1 and \mathcal{G}_2 ?

A) A set of nodes where all nodes in the set are fully connected.

b)

The above shows the max cliques. Gz also has pairwise cliques, e.g < D, B7.

2. Independencies

- (a) Which nodes (or set of nodes) are independent in graph \mathcal{G}_3 ?
- (b) What is the Markov blanket for node x_2 and node x_6 in graph \mathcal{G}_3 ?

a)
$$X_7 \perp X_2 \mid X_5$$

 $X_1 \perp X_6 \mid X_4$
 $X_2 \perp X_6 \mid X_5, X_4$

3. Graphical Representations

- (a) Suppose that we want to define a model with a graph that satisfies the indepence conditions A ⊥ C{B, D}, meaning A and C are independent if B and D are observed, and also B ⊥ D{A, C}. Explain why this model cannot be represented by the directed graph G₄?
- (b) The directed graph \mathcal{G}_5 satisfies $A\perp B$ when C is unobserved. Explain why can't this model be represented by an undirected graph?

1.3a)

ALCIBID holds
DLBIA holds
DLBIA/C as

C will let info flow between D and

B. C is a collider.

1.35)

To represent Go as an undirected graph, we'll need to "marry" A and B, thus obtaining a fully connected moral graph

- $1.\,$ Explain the types of cliques that exist in the undirected graphs in Figure 4
- 2. Which nodes are in the Markov Blanket of the hidden state x_5 in graph \mathcal{G}_2 in Figure 4?
- 3. Write an expression using factors over clique variables for the joint probability distribution $p(\mathbf{x}, \mathbf{y})$ of the graph \mathcal{G}_1 in Figure 4. Remember to define the normalizing constant Z.

1) The graphs in

figure 4 only Consists

of pair wise cliques,

i.e all neigh bouring

hidden Values X; ,x;

and all pairs of hillen

value and corresponding

Observed Value; i.e X; ,Y;

2

X5's Markou Blanket is the blue rodes

 $P(x,y) = -\left(h \sum_{i \in D, y} x_i - \beta \sum_{i,j \in D, y} x_i x_j - n \sum_{i \in D, y} x_i y_i\right)$

Sum product of all Cliques

1) MAP for ising methods leads to efficient local Computations, it is a simple algorithm that can be used but it does not guarantee that you'll find global maximum.

2.) U(x;,y;) = Correlation between observed Value y; and hidden state y;

V(xi,xj) = Correlation between adjecent hidden nodes.

3.1.2) By plotting all resulting images for varying sizes $\lambda \in [1,10]$ and $T \in [1,10]$ I found that $\lambda = 2$, T = 3 gave a good result. Around 5-6 iterations was sufficient for the energy to converge.

3.2.2) Also by Visual observation,

I found $\lambda = 100$ g ave

good results. By increasing

lambda we increase the

Cost of having connected

nodes of opposite value.

This is because if $X_i \neq X_j$, the energy function is thus increased by λ . One can see this as the edges between Verticies with the same value becomes "Stronger".

