Big Data Analytics

Isara Anantavrasilp

Lecture 4: Hadoop Distributed File System

Client-Server Architecture

- Client-Server is one of the oldest architecture in computer network field
- One powerful machine serves many (weak) clients
- It works! (WWW, Mail, Games, etc.)

Client-Server Limitations

client

- This architecture does not scale well
 - Server could be overwhelmed by clients
 - Processing power could be limited
 - Storage could be limited
- Extending processors or expanding drives will not get very far

Supersized Server

- Some tasks require High-Performance Computers (HPC)
 - Complex task:Weather forecasts,simulations
 - Large data: Search engines, LHC

Supersized Server Limitations

Rapid Cooking Scenario

Rapid Cooking Scenario

Problem: Does not scale to customers

Hiring More Cooks

Adding More Fridges

Completely Independent Work

And Scale!

Software library for distributed processing of large data sets using a network of many computers

© Isara Anantavrasilp 13

- Software *library* for distributed processing of large data sets using a network of many computers
 - Composed of many software and components
 - Each component is responsible for different task in data processing and storage
- Designed to store and process large data sets in *parallel* and *distributed* fashion

Hadoop History

- In 2002, Doug Cutting and Mike Cafarella were developing an open source web-crawler called Apache Nutch
- They estimated that to index 1 billion pages, they would need around \$500k for hardware
- However, their architecture would not scale to such volume
- In 2003, Google released a white paper on Google File System (GFS)
 - Technology to store large files
 - Distributed file system
- Nutch team implemented their own version called Nutch Distributed File System (NDFS)

MapReduce

- In 2004 Google introduced MapReduce in another paper
- It works closely with GFS
- Nutch team incorporated MapReduce with NDFS
- Finally, they extend the system beyond web crawling and called it Hadoop
- In 2008, Hadoop became the fastest system to sort a terabyte of data
- Now, Hadoop has grown very mature

Hadoop Distribution

- HDFS takes care of distributed file storage
- MapReduce processes the files in distribution fasion
- However there are other operations
 - Query
 - Analysis and processing
 - Resource negotiation
 - Export/import data
- Thus, there are much more components in the Hadoop Ecosystem

Hadoop Ecosystem

Hadoop Ecosystem

Hadoop Distribution

cloudera®

Hadoop vs RDBMS

- Hadoop is fast, but it is not for everything
- Hadoop is good for analyzing large files, but not good for small changes
- MapReduce is good for data that are write once read many times.
 - RDBMS is better when the data must be updated often
- MapReduce interpret data while reading (schema on read)
 - RDBMS checks schema at write time

HDFS Architecture DataNode 128 NameNode 380 MB 128 Hadoop separates a file into blocks 124 Each block is stored in different DataNode NameNodes keeps track of the location of each block Block size can be configured

DataNode 128 128 124 124 128 128 124

HDFS Fault Tolerance

- Hadoop provides fault tolerance by replicated the same blocks in different DataNodes
- Number of replicates is dictated by replication factor
 - Default is 3