Rock-Scissor-Paper Image Classification

1. 데이터 구축 방법

1) Laurence Moroney - The Al Guy. : Train 과 Valid 로 활용

https://laurencemoroney.com/datasets.html

2) Kaggle Data: Train 과 Valid 로 활용

 $\underline{https://www.kaggle.com/datasets/drgfreeman/rockpaperscissors?resource=download}$

3) Webcam Data: Webcam 으로 직접 촬영하여 Test 로 활용

https://teachablemachine.withgoogle.com/

2. 데이터 구축 현황

- 총 5698 장, Train, Valid, Test 를 대략 8 : 1 : 1 로 split 실행

Train (4571)			Valid (509)			Test (618)		
Rock	Scissor	Paper	Rock	Scissor	Paper	Rock	Scissor	Paper
1521	1542	1508	169	172	168	197	210	211

3. 모델 선정

Swin_t, ResNet50, ReXNetV1, VGG11 로 대표적인 Image Classification 4 가지 모델 선정

4. Augmentation 및 하이퍼파라미터 설정

```
train_aug = A.Compose([
    A.SmallestMaxSize(max size= 224),
   A.Resize(width= 200, height= 200),
   A.RandomCrop(width= 180, height= 180),
    A.HorizontalFlip(p=0.6),
    A. Vertical Flip (p=0.6),
    A.ShiftScaleRotate(shift limit= 0.05, scale limit= 0.06,
                                rotate limit=20, p=0.5),
    A.RGBShift(r shift limit=10, g shift limit=10, b shift limit=10, p=1),
    A.RandomBrightnessContrast(p= 0.5),
    A.Normalize(mean=(0.485, 0.456, 0.406), std= (0.229, 0.224, 0.225)),
    ToTensorV2()
])
valid_aug = A.Compose([
    A.SmallestMaxSize(max size= 224),
    A.Resize(width= 200, height= 200),
   A.CenterCrop(width= 180, height= 180),
   A.Normalize(mean=(0.485, 0.456, 0.406), std= (0.229, 0.224, 0.225)),
    ToTensorV2()
```

No.	Case 1	Case 2	Case3	Case 4			
Train Batch	64	64	64	128			
Valid Batch	64	64	64	128			
Epoch	50	10	10	10			
Learning Rate	0.0001	0.001	0.0001	0.0001			
Loss Function	Label Smoothing Cross Entropy						
Optimizer	AdamW						

6. 결과 화면

No.	Swin_t	ResNet50	ReXNetV1	VGG11	Average	비교 지표
Case 1	86.89	92.88	54.05	94.50	82.08	epoch: 50
Case 2	87.70	35.60	79.77	33.79	59.22	lr: 0.001
Case 3	92.23	86.41	53.56	33.01	66.30	평균
Case 4	90.45	71.52	70.39	99.80	83.04	batch: 124
Average	89.32	71.60	64.44	65.28	72.66	

- 1) Learning Rate 비교분석 (Case 2 vs 다른 Case)
- Case 2 에서 Learning Rate 를 0.001 로 설정하였을 때 대부분의 모델의 정확도가 상대적으로 낮은 것을 확인하여, 다른 Case 에서 Learning Rate 를 낮춰 0.0001 로 설정한 경우 더 높은 정확도를 기록.
- 2) Epoch 비교분석 (Case 3 vs 다른 Case)
- Case 1 에서 Epoch 을 50 으로 설정하였을 때 Epoch 을 10 으로 설정한 다른 Case 에 비해 더 높은 정확도를 기록.
- 3) Batch Size 비교분석 (Case 4 vs 다른 Case)
- Case 4 에서 Batch Size 를 124 로 설정하였을 때 Batch Size 을 64 로 설정한 다른 Case 에 비해 비교적 높은 정확도를 기록.
- 4) 서로 다른 4 가지의 Classification 모델 비교분석
- Swin_t가 모든 Case에서 큰 폭 없이 높은 정확도를 보이며 성능이 가장 좋은 분류 모델로 판단.
- VGG11 의 경우 Case 에 따라 가장 큰 정확도 차이를 보이며 hyperparameter 의 가장 큰 영향을 받는 것으로 판단.

- ResNet50 은 Case 2 를 제외하고 모든 Case 에서 고른 정확도를 보이고 ReXNetV1 의 경우 모든 Case 에서 좋지 않은 정확도를 기록.
- 전체적인 정확도 부분에 있어 Train 과 Valid 의 모든 사진은 손등(손의 뒷면)이 사용되었지만 실시간 webcam 으로 촬영하여 구축한 test 의 사진의 경우 손의 앞면이 포함 되어있어 모델이 성능이 조금 미흡한 것으로 판단.

7. Real-time Webcam Object Detection & Classification

- Rock

- Scissor

- Paper

