Weed Removing Robot

A MAJOR PROJECT REPORT SUBMITED BY

CH.EN.U4AIE20011 D.MANISH

CH.EN.U4AIE20012 D.MEHUL

CH.EN.U4AIE20061 SHAIK NAWAB MUDASIR

CH.EN.U4AIE20062 SIRIGIRI NAGA PAVAN SATHVIK REDDY

CH.EN.U4AIE20067 MADISHETTY THARUN KUMAR

In partial fulfillment for the award of the degree

Of

BACHELOR OF TECHNOLOGY

IN

ARTIFICIAL INTELLIGENCE

AMRITA VISHWA VIDYAPEETHAM

AMRITA SCHOOL OF ENGINEERING, CHENNAI, 601 103

May 2022

THIS IS TO CERTIFY THAT THE MAJOR PROJECT REPORT ENTITLED "Weed Removing Robot"

Submitted by

CH.EN.U4AIE20011	D.MANISH		
CH.EN.U4AIE20012	D.MEHUL		
CH.EN.U4AIE20061	SHAIK NAWAB MUDASIR		
CH.EN.U4AIE20062	SIRIGIRI NAGA PAVAN SATHVIK REDDY		
CH.EN.U4AIE20067	MADDISHETTY THARUN KUMAR		
Bachelor of Technology in	requirements for the award of the Degree of ARTIFICIAL INTELLIGENCE is a bonafide out under my guidance and supervision at Amrita ennai.		
Dr. K Manoj Prabhakara	n		
This project report was eva	luated by us on		
INTERNAL EXAMINER	EXTERNAL EXAMINER		

ACKNOWLEDGEMENT

We would like to offer our sincere pranams at the lotus feet of Universal guru, **MATA AMRITANANDAMAYI DEVI** who blessed us with her grace to make this a successful major project.

We express our deep sense of gratitude to Dr. Prasanna Kumar R, Chairperson, for his constant help, suggestions, and inspiring guidance. We are grateful to our guide, **Dr. K Manoj Prabhakaran** Department of ASE, Chennai for his invaluable support and guidance during the major project work.

We would also like to extend our gratitude to our director **Shri. Manikandan**, Principal **Dr. Shankar** who has always encouraged us. We are also thankful to all our classmates who have always been a source of strength, for always being there and extending their valuable bits of help to the successful completion of this work.

Table of contents				
1	Abstract	5		
2	Introduction	6-7		
3	Methodology	7-11		
4	Results	12-15		
5	Future scope	16		
6	Conclusion	17		
7	References	18		

Abstract:

In precision farming, autonomous robotic weeding systems have proved their full potential to reduce existing reliance on agrochemicals such as herbicides and pesticides, lowering pollution and enhancing sustainability. To achieve real-time treatment, most previous works have required quick and constant-time weed identification systems, which precludes the use of more capable but timeconsuming algorithms, such as learning-based techniques. A nonoverlapping multicamera system is used in this work to give the weed control system more flexibility in coping with indeterminate classification delays. Our proposed modular weed control device is designed, implemented, and tested using mechanical and chemical weeding instruments. A framework that combines stateof-the-art crop/weed detection with naive Bayes filtering, 3D direct intra and inter camera visual tracking, and predictive control to achieve the higher processing weed removal. Our suggested fully operational weed control system can execute selective mechanical and chemical in row weeding with unpredictable detection delays in various topographical circumstances and crop growth stages, according to the trial results. In this work, a 2 DOF robot arm is developed in simulation for precise weed spraying. This arm is designed for the Thorvald robotic platform. The performance of the sprayer is then evaluated on a simulated farm environment.

Indroduction:-

PESTICIDES are a vital part of modern food production, giving higher crop yields by reducing losses due to disease and pests. However, pesticides can be harmful to the environment in large quantities by contaminating soils and waterways and harming animals. Further, pesticides come at an expense, therefore reducing pesticide use offers both a environmental and economical appeal. Robotic precision sprayers allow the reduction of pesticide usage by only spraying pesticides where and when they are required, this reduces usage compared to the traditional method of spraying entire fields at a time. These systems can be fully autonomous and operate without human intervention further reducing costs and the required labour to manage crops. These systems require the integration of vision based weed detection algorithms with precise control of the robot in a challenging environment.

The Thorvald platform, developed by SAGA robotics, is an agricultural robotic platform developed for a variety of tasks. The platform has been designed in such a way to allow expansion and modularity. In this work, the objective is to implement a realistic robot sprayer for Thorvald in simulation, develop control algorithms that allow high level control of the arm, and evaluate the system on a simulated farm environment in Gazebo.

The existing robot sprayer for the Thorvald simulation is non actuated and relies on spraying a wide area to cover the crop row. A precision crop sprayer would add more realism to the simulated environment. This will allow the development of planning and vision systems which are more realistic and therefore more deployable in the real world

Precision robotic spraying systems fall into one of two categories. Those with multiple fixed nozzles and those with singular actuated nozzles. Having multiple fixed nozzles offers the advantage of simplicity of mechanical design and control. This allows simple planning as the nozzle solenoids open when a weed is underneath them. This means that the sprayer can be moved over the crops and operate independently of the movement of the robot. These systems are suitable for large flat crop fields and are often incorporated into tractor booms. The alternative is a actuated nozzle. An actuated nozzle can move precisely over the weed and further reduce the pesticide required. This better suits smaller robots such as IBEX where the planning of arm control and the robot can be incorporated. These smaller robots are more appropriate for sparse environments and those with more challenging terrain as the arm can be actuated and controlled around possible obstacles and other plants. Actuated arms can also better suit non

chemical weeding techniques such as electrical or laser based systems due to the need to move in close proximity of the weeds.

Mechanical solutions for actuated robot sprayers vary. Ecorobotix use a a dual delta configuration on their autonomous robot weeder. This allows the arm to move fast over the crop rows, allowing the base to keep a constant velocity of 0.4 m/s across the field. The delta configuration allows movement in three degrees of freedom allowing the nozzle to move backwards to compensate for the robot's forward velocity and hold constant over the weed. This robot platform developed and uses a 4 DOF ZUTO460 series manipulator with a mounted sprayer. This platform was designed to work inside greenhouses and in their work they consider the motion planning of the arm as the robot moves across the crop rows at constant velocity. This arm allow the movement of the sprayer in a tight space and also reach down to crop level. The system is designed to suit crops stored on multiple shelves. This use of a small 4 DOF arm suits this situation as the arm can reach multiple heights.

Methodology

For the Thorvald robot, a 2 joint arm mounted to the rear of the robot was designed. This had several advantages. One is that the arm can move precisely over each weed allowing accurate spraying by getting down to ground level, secondly this design would be feasible in real life and could make use of commercially available actuators. Further, because of this simple design, the robot kinematics can be solved analytically, negating the need for any numerical kinematic solvers. This will simplify the control code and the computational power to calculate joint angles. For evaluating the performance of the system, a simple colour filter vision based node is also developed along with a movement controller that synchronises control between the arm and robot platform.

(i) Implementation in ROS

ROS (Robot Operating System) is used for the software implementation. The mover node operates as the master controller for the system and coordinates the robot and arm movement based on detected weeds. weed detector locates weeds seen by the Kinect2 camera. weed tracker tracks the movement of these weeds as the robot moves in the environment from the robot odometry. The kinematics and control parameters are calculated by arm controller

Fig:- Abstracted Graph of ROS Nodes

(ii) Arm Implementation and control node

The initial arm design was made, This allows the automatic generation of the relevant URDF structure of the arm, adding the relevant joints and mass/inertia calculations. The arm is made of four fixed link sections base link, link 1, link 2 and nozzle. The base link is meant to represent the base actuator of the robot and house any electronics that would be necessary. The arm is designed so that self collision of the arm is not possible. The arm lengths and range of motion are also constrained to limit the arm reach to within the frame of Thorvald whilst also allowing the arm to reach crop level (11 = 12 = 0.320m). Link mass were decided on to reflect real robot actuators such as 0.6kg MIT actuator as well as accounting for the mass of the links themselves. A max joint torque of 15nm was used also reflecting that of the MIT actuator.

An effort controller, commands the joint forces for the arm in order to reach a desired angle. PID values were tuned by hand to find suitable values allowing the arm to move quickly and without vibration. Arm properties are summarised below:

Arm Link	Mass (kg)
base_link	1.35
link_1	0.65
link_2	0.65
nozzle	0.30

PID Values for Joints	P	I	D
joint_1	80	0.2	6
joint_2	40	0.2	6
joint 3	10	0.1	1

To command the end effector position, an inverse kinematic solution is needed. This can be used to calculate the relevant joint angles for a desired end effector position in the workspace. Due to the simple arm design, this solution can be solved analytically using the arm geometry and trigonometric identities.

Fig. Geometry of 2 DOF arm

Using the cosine rule and the geometry we can find the relationship between $\theta 2$ and the end effector position. From Figure X we can see

$$h^2 = x^2 + y^2,$$

$$h^{2} = l_{1}^{2} + l_{2}^{2} - 2l_{1}l_{2}\cos(c),$$

$$\theta_{2} = \pi - c,$$

therefore,

$$\theta_2 = -acos\left(\frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1l_2}\right)$$

To calculate θ_1

$$\gamma = \operatorname{atan}\left(\frac{y}{x}\right),$$

$$\beta = \operatorname{atan}\left(\frac{l_2 \sin(\theta_2)}{l_1 + l_2 \cos(\theta_2)}\right)$$

therefore,

$$\theta_1 = \operatorname{atan}\left(\frac{y}{x}\right) + \operatorname{atan}\left(\frac{l_2 \sin(\theta_2)}{l_1 + l_2 \cos(\theta_2)}\right).$$

Therefore to reach a desired position, the required joint angles can be therefore calculated. Then, the required forces are calculated by the PID controllers. A third joint is present which controls the angle of the nozzle. This, however is not considered in the kinematics and is set to always point vertically down as such

$$\theta_3 = -\theta_1 - \theta_2$$

(iii) Weed detection and Tracking

The weed tracked is based on simple colour filters. This would not be viable for realistic crop rows, but for the purpose of evaluating the arm it is viable. The main computer vision pipeline is implemented with OpenCV. The image is first put through a HSV filter this can separate the pixels containing weeds from the crops and ground. The image is then blurred with a 31x31 median blur filter. This helps remove any artifacts. Dilation is then used to enlarge areas containing relevant pixels. A blob detector algorithm then locate the centre points of the weeds in the image. Weed locations are then tracked relative to the robots odometry, this allows the location of weeds to be tracked as the robot moves, so the arm can make appropriate motion plans when a weed is within its range.

Fig. Image Pipeline

(iv) Base Controller

Control must be synchronised between the robot base and the arm. The inbuilt ROS navigation stack is used with the move base node to navigate the farm and move to the start of crop rows. move base is reliant on the existing map of the environment and the odometry of the robot and allows basic obstacle avoidance. In this work, the odometry is obtained directly from the simulated environment so there is no error is present and therefore no localisation is used. Crop row starts and ends are also given by a configuration file. At the start of the crop rows a straight line movement controller takes over. This moves the robot directly towards the goal. When a tracked weed is within the arms reach, the robot stops moving and the arm moves over the crop. Once the arm has reached the desired position, the spray service is called creating a red box directly below the nozzle, representing the pesticide. The straight line controller is based on a proportional controller. This controller aims to reduce the angle between the the current angle and the angle between the current position and the goal (the end of the crop row). When navigating between crop rows the arm moves to a neutral position to avoid collisions.

Results

Overall the arm performs well on the simulated farm environment. The controller manages to coordinate the movement of

Fig. Overview of Movement Control

arm and base allowing the robot to successfully spray weeds in its path. The arm range is limited to operate within the internal frame of the Thorvald robot. This means the robot sometimes cannot fully reach weeds that lie out of this range. Apart from these out of range weeds, the robot successfully manages to spray all weeds it tracks as seen below

Fig. Arm performance: Actual Sprays (top) vs Planned Sprays (bottom)

Fig. 3d Camera

The current robot motion planning involves stopping, then moving the arm, spraying the weed then continuing moving. This limits the speed the robot can work at especially when working with a high weed density. image shows the relationship between the weed density and the time taken to complete one 10m row of the simulated environment. This shows that the singular actuated nozzle may not be the ideal solution for higher weed density environments.

The arm design developed in this work proposes a realistic solution for an actuated sprayer. The arm is a mechanically viable solution and is shown to be

feasible based on the modelling of realistic actuators. The controller and vision detection system provided a valuable way to evaluate the arm's performance on a simulated farm environment. The system has been designed to easily expanded and integrated with more realistic vision systems and complex controllers.

Time Taken to Complete a Row of the Simulated Farm against Weed Density

Fig. Simulation in Rviz

Fig:- Gazebo Simulater

Future scope

The control of the actuated sprayer could be improved with motion planning and collision detection. This would allow the robot to get closer to the crops and navigate around crop plants or more complex terrain. At the moment no motion planning is used so the arm occasionally can get stuck as it attempts to move between one position and another. Due to the use of inbuilt ROS motor controllers the integration of the arm into the ROS MoveIt library would allow this existing infrastructure to be used. MoveIt could also control the movement of the robot base in its environment, this could allow the tighter integration of robot and arm control. This control could be expanded further to have continuous movement of the platform. By tracking the upcoming weeds and their density the velocity of Thorvald could be adjusted to allow the arm to plan its motion and be ready to spray the weeds as they come past. With higher weed density the robot could slow down or stop to make sure all weeds are sprayed. With more complex arm planning, the arm could be used to move round obstacles. This could be integrated with 3D plant structures where the arm could attempt to move underneath crops in order to reach occluded weeds. In the current simulation the terrain is completely flat, with more complex terrain and integration with depth readings from the camera, the arm could get as close to the ground as possible spraying the weeds more precisely.

For real world deployment, the integration with localisation systems would of course be necessary due to the inaccuracies of real world odometry. This would mean for systems such as the weed tracker, uncertainty in weed locations would need to be accounted for. The straight line controller, although suitable for this work, would be unrealistic in a real farm. Crop rows are rarely straight and a more advanced controller would be needed. Crop row detection could be used to predict and follow these paths. This again would make the arm path planning more complex as the controller would have to account for these changes in direction.

Conclusion:-

A computer-vision-based weeding removal system is designed, implemented, and evaluated. A multi-camera system is introduced to compensate for the indeterminate classification delays caused by the plant detection algorithms, and a 3D multi-camera multi-object 3D tracking algorithm is developed to provide high-precision tracking results across cameras. To boost the robustness of our proposed system, a 3D mapping layer is introduced to enable the 3D-2D template matching, which compensates the appearance changes due to viewpoint variation during operation, while an illumination-robust cost is incorporated to rule out the appearance changes due to lighting difference. A biased HSV filter is designed to remove the false positives from the detector in the complex field terrain. To adopt an operation-while-driving strategy, both low- and high-level control strategies are deliberately designed for fast-actuation high-precision weed removal. The tracking and control performance of the proposed system is extensively evaluated in different terrain conditions and crop growth stages regarding various classification delays and vehicle speeds, and the final in-row weed removal performance is also assessed to validate our claim that our system can provide accurate and reliable in-row weed removal service in the real field.

References

https://www.researchgate.net/publication/339086261_Robotic_weed_control_us ing_automated_weed_and_crop_classification/link/5f6b547ca6fdcc008634d8fe/download [1]

http://www.ipb.uni-bonn.de/pdfs/wu2020jfr.pdf [2]

https://www.scielo.br/j/asagr/a/5hY65Xdx7WstWB8BX5QYdLw/?lang=en [3]

https://create.arduino.cc/projecthub/autoroboculture/nindamani-the-weed-removal-robot-36f7c0 [4]

https://www.fieldrobot.com/event/wpcontent/uploads/2019/07/FRE2019_Bookl et.pdf [5]