Normal ODE, Dependent –Independent functions, Homogeneous Linear ODE:

a) 4

b)3

1.)	The differential equ	lation $y''+3y'+\sqrt{xy} =$	$\sin x$ an intege	er is normal on e	every subinterval of	
	a) $(-\infty,\infty)$	b) $[0, \infty)$	c) $(0,\infty)$	d) $(-\infty,1),($	$(-1,1),(1,\infty)$	
2.)	The differential equ	uation $(x^2 - 1)y'' + 2xy$	$y' + y = x \ln x \text{ is n}$	ormal on every	subinterval of	
	a) $(-\infty,\infty)$	b) $(0,\infty)$	c) (-∞,2)	d) (0,1),($(1,\infty)$	
3.)	Which of the following functions are linearly independent for $x \in (0, \infty)$?					
	a) $1, x, x^2, 1+x$	b) $1, x(1-x), x^2, x$	c) $2x, 6x +$	3,3x+2 d) 1,	$x, x^2, x^2(1-x)$	
4.)	If $y_1(x)$ and $y_2(x)$ be the linearly independent solutions of the equation $y''+a(x)y'+b(x)y=0$ on an interval I then which of the following is true					
	a) both $y_1(x)$ and $y_2(x)$ vanishes for some $x_0 \in I$					
	b) both $y_1(x)$ and $y_2(x)$ take extreme values for some $x_0 \in I$					
	c) both $y_1(x)$ and $y_2(x)$ can not vanishes for some $x_0 \in I$ d) None of these					
5.)	The general solution	on of the differential	equation y"+21	$\pi y' + \pi^2 y = 0 \text{ is}$		
	a) $(A+Bx)e^{-\pi x}$	b) $(A + Bx)e^{-x}$	c) $(A+B)e^{-\pi x}$	d) $(A+Bx)e^{\pi x}$		
6.)	The differential equation whose linearly independent solutions are e^{2x} , xe^{2x} is ?					
	a) $y''+4y'+4y=0$	b) $y''+4y'-4y=0$	c) y''-4y'+4y =	= 0 d) y"-4y'-4	4y = 0	
7.)	The lowest possible order of homogeneous linear differential equation whose particular solution is $3\cos 2x + 5\sinh 3x$ is					
	a) 2	b) 3	c) 5	d) 4		
8.)	The roots of charac	cteristic equation of	differential equ	ation $y^{iv} + 8y'' - 9$	9y = 0	
	a) $\pm 1, \pm 3i$ b)	$\pm i, \pm 3i$ c) $\pm i$	$,\pm 3$ d) ± 1 ,	± 3		
9.)	The general solution	on of differential equ	ation y'''-2y''+	y'=0 is		
) $Ae^x + (Bx + C)$	b) A + (Bx + C)	e^x c) ($(Bx+C)e^{x}$	$d) A + (Bx + C)e^{-x}$	
10.)	The lowest possible on is $1 + x + e^x - 3e^{3x}$	e order of homogen	eous linear diff	erential equatio	n whose particular	

c) 2

d) 5

(Operator method) Exp(ax), cosh(ax) sinh(ax), h(x). exp(ax): Polynomila, Sin(ax), cos(ax):

1.	The particu	ular integra	al $\frac{1}{D+3}e^{2x}$ is	
	(a) $\frac{1}{5}e^{2x}$	(b) $\frac{1}{5}$	(c) $\frac{1}{3}e^{2x}$	(d) $\frac{1}{2x+3}e^{2x}$

2. The particular integral $\frac{1}{D^2-9}e^{3x}$ is

(a)
$$\frac{1}{6}e^{3x}$$
 (b) $\frac{xe^{3x}}{6}$ (c) $\frac{x}{3}e^{3x}$ (d) doesn't exist

3. The particular integral $\frac{1}{f(D)}e^{ax}g(x)$ is

(a)
$$e^{ax} \frac{1}{f(D)} g(x)$$
 (b) $g(x) \frac{1}{f(D)} e^{ax}$ (c) $e^{ax} \frac{1}{f(D+a)} g(x)$ (d) $\frac{1}{f(a)} e^{ax} g(x)$

4. The particular integral $\frac{1}{f(D^2)}e^{ax}$ is

(a)
$$\frac{1}{f(-a^2)}e^{ax}$$
 (c) $\frac{1}{f(a^2)}e^{ax}$, provided $f(a^2) = 0$ (b) $\frac{1}{f(a^2)}e^{ax}$, provided $f(a^2) \neq 0$ (d) $\frac{1}{f(a)}e^{ax}$, provided $f(a) \neq 0$

5. The particular integral $\frac{1}{D^3-D^2+4D-4}\sin 3x$ is

(a)
$$-\frac{1}{5}\sin 3x$$
 (c) $\frac{1}{9}x\cos 3x$
 (b) $\frac{1}{50}(\sin 3x + x\cos 3x)$ (d) $\frac{1}{50}(\sin 3x + 3\cos 3x)$

6. The particular integral of the differential equation $y'' + y = 6 \sin x$ is

(a)
$$6 \cos x$$
 (b) $3x \sin x$ (c) $-3x \cos x$ (d) $6x \cos x$

7. The particular integral $\frac{1}{D+5}(2016)^x$ is

(a)
$$\frac{1}{2021}(2016)^x$$
 (b) $x(2016)^x$ (c) $\frac{1}{\ln 2016}(2016)^x$ (d) $\frac{1}{(\ln 2016)+5}(2016)^x$

8. The particular integral of $\frac{d^2y}{dx^2} + \frac{dy}{dx} = x^2 + 2x + 4$ is

(a)
$$\frac{x^2}{3} + 4x$$
 (b) $\frac{x^3}{3} + 4x$ (c) $\frac{x^3}{3} + 4$ (d) $\frac{x^2}{3} + 4x^2$

9. The particular integral of $\frac{d^4y}{dx^4} - 16\frac{d^2y}{dx^2} = (8x + 16)$ is

(a)
$$-\frac{x^2}{12} - \frac{x}{2}$$
 (b) $\frac{x^3}{6} + 2x$ (c) $\frac{x^3}{3} + 4$ (d) $\frac{x^2}{3} + 4x$

10. The particular integral $\frac{1}{(D+1)^3}(2x+4)$ is

(a)
$$\frac{x^2}{3} + 4x$$
 (b) $2x + 4$ (c) $x - 2$ (d) $2x - 2$

11. The particular integral of the differential equation $y'' + 4y = \sin x \cos x$ is

(a)
$$6 \cos x$$
 (b) $3x \sin x \cos x$ (c) $-3x \cos x$ (d) $-\frac{x}{8} \cos 2x$

12. The particular integral $\frac{1}{D^2}\cos 2x$ is

(a)
$$-4\cos 2x$$
 (b) $-4\sin 2x$ (c) $\frac{1}{2}\sin 2x$ (d) $-\frac{1}{4}\cos 2x$

13. The particular integral $\frac{1}{D-1}\cos 2x$ is

(a)
$$-\frac{1}{5}(\cos 2x - 2\sin 2x)$$
 (b) $\frac{1}{2}\cos 2x$ (c) $-\sin 2x$ (d) $-\frac{1}{5}(\sin 2x + 2\cos 2x)$

Method of Variation of Parameter, Method of Undetermined co-efficient:

(a) $-\frac{e^{2x}}{8}$ c (b) $\frac{3}{2}e^x + c$ (c) $\frac{2}{3}e^{3x} + c$ (d) $-\frac{e^{5x}}{18}$ + c 2 Solving by variation of parameter for the equation y" + y = sec x, the value of Wronskian a. 1 b. 2 c 3 d. 4 3 Solving by variation of parameters for the equation y" - 4y' + 3y = e^x , $x \ne 0$ the value of Wronskian is (a) $2e^x$ (b) $3e^{4x}$ (c) $2e^{4x}$ (d) $4e^x$ 4 If by the method of variation of parameter $y(x) = A(x)\sin x + B(x)\cos x$ is the general solution of $y'' + y = \sec x$ then $B(x)$ is (A) $\ln \sin x + c$, (B) $\ln \cos x + c$, (C) $X + c$, (D) $\ln x + c$
 Solving by variation of parameter for the equation y" + y = sec x, the value of Wronskian a. 1 b. 2 c 3 d. 4 Solving by variation of parameters for the equation y" - 4y' + 3y = e^x, x ≠ 0 the value of Wronskian is (a)2e^x (b) 3e^{4x} (c) 2 e^{4x} (d) 4 e^x If by the method of variation of parameter y(x) = A(x) sin x + B(x) cos x is the general solution of y" + y = sec x then B(x) is
 Solving by variation of parameters for the equation y" - 4y' + 3y = e^x, x ≠ 0 the value of Wronskian is (a)2e^x (b) 3e^{4x} (c) 2 e^{4x} (d) 4 e^x If by the method of variation of parameter y(x) = A(x) sin x + B(x) cos x is the general solution of y" + y = sec x then B(x) is
Wronskian is (a) $2e^x$ (b) $3e^{4x}$ (c) $2e^{4x}$ (d) $4e^x$ 4 If by the method of variation of parameter $y(x) = A(x)\sin x + B(x)\cos x$ is the general solution of $y'' + y = \sec x$ then B(x) is
If by the method of variation of parameter $y(x) = A(x) \sin x + B(x) \cos x$ is the general solution of $y'' + y = \sec x$ then B(x) is
$y'' + y = \sec x$ then B(x) is
The choice of particular integral for the equation $y'' - 9y = 13e^{3x}$ is (a) ce^{3x} (b) cxe^{3x} (c) cx^2e^{3x} (d) none of these
By the method of undetermined coefficients the choice of particular integral of the ODE $y'' + 4y' + 4y = 12e^{-2x}$ is
(A) $a x^2 e^{2x}$, (B) $a x^2 e^{-2x}$, (C) $12a e^{2x}$, (D) $12ax e^{-2x}$ By the method of undetermined coefficients the trial solution for y_p for the differential equation $y'' + 3y' + 2y = 12x^2$ is of the form (A) $a + bx + cx^2$ (B) $a + bx$ (C) $ax + bx^2 + cx^3$ (D) None of these
8 By the method of undetermined coefficients the trial solution for y_p for the differential equation $y'' + 2y' + y = 6e^{-x}$ is of the form
(a)A e^{-x} (b) B xe^{-x} (c) C x^2e^{-x} (d)None of these
Q19. By the method of variation of parameter if $A(x)\cos x + B(x)\sin x$ be the particular integral of the differential equation
$y'' + y = \sec x \text{ then } A(x) \text{ is}$ (a) - log cos x (b) log cos x (c) log sin x (d) - log sin x
Q20. By the method of variation of parameter if $A(x) \cos 2x + B(x) \sin 2x$ be the particular integral of the differential equation
$y'' + 4y = \sec 2x$ then $B(x)$ is (a) $3x/2$ (b) $x^2/2$ (c) $-x/2$
Q21. By method of undetermined coefficients the assumed particular integral of the differential equation $y'' + 9y = \cos 3x$ is
(a) $a\cos 3x + b\sin 3x$ (b) $x(a\cos 3x + b\sin 3x)$ (c) $x^2(A\cos 3x + b\sin 3x)$ (d) None of these
Q22. By method of undetermined coefficients the assumed particular integral of the differential equation $y'' + y = Sin x$ is
(a) a $\cos x + b \sin x$ (b) x(a $\cos x$) (c) $x^2(A \cos 3x + b \sin 3x)$ (d) x(a $\cos x + b \sin x$)
Q23. By method of undetermined coefficients the assumed particular integral of the differential equation $y'' - 2y' - 3y = 6e^{-x} - 8e^{x}$ is
(a) $a e^{-x} + b e^{x}$ (b) $a x e^{-x} + b e^{x}$ (c) $a e^{-x} + b x e^{x}$ (d) $a x^{2} e^{-x} + b e^{x}$

❖ The particular integral of differential equation(x > 0) $x^3y^{'''} + 5x^2y^{''} + 5xy^{'} + y = x^2$ Using the transformation x = e^t , we get (in operator notation) [$\theta^3 + 2\theta^2 + 2\theta + 1$]y = e^{2t} is

$$(A) \quad \frac{1}{21}e^{2t}(B)\frac{1}{31}e^{-2t}(C) - \frac{1}{51}e^{2t}(D)\frac{1}{21}e^{7t}$$