Aula 27: Grafos: caminho de custo mínimo Árvores de extensão mínima

David Déharbe
Programa de Pós-graduação em Sistemas e Computação
Universidade Federal do Rio Grande do Norte
Centro de Ciências Exatas e da Terra
Departamento de Informática e Matemática Aplicada

Download me from http://DavidDeharbe.github.io

Plano

Introdução

Algumas propriedades de caminhos de custo mínimo

Relaxação

O algoritmo de Dijkstra

O algoritmo de Bellman-Ford

Referência: Cormen, cap 25.

Introdução

- qual o menor caminho para ir de Natal até o Rio de Janeiro?
- problema de grafo?
 - vértices: cruzamentos
 - ▶ arestas: há uma estrada/rua entre esses dois cruzamentos
 - peso: distância entre dois cruzamentos
- muitas possibilidades!
- soluções não tem ciclos
- pesos podem ser outras medidas (tempo, custo financeiro, pontos turísticos)
- otimização combinatória: caminho de custo mínimo single source shortest path, all pairs shortest path

Definições

$$G = (V, E, W)$$
: grafo dirigido com pesos

Definição (Custo de um caminho)

Seja um caminho $\pi=(v_0,v_1,\ldots v_k)$. Então, temos que cada $(v_i,v_{i+1})\in E$. O peso do caminho π , denotado $W(\pi)$ é tal que

$$W(\pi) = \sum_{i=1}^{k} W(v_{i-1}, v_i).$$

Definição (Caminho de custo mínimo)

O custo mínimo entre dois vértices u e v, denotado $\delta(u,v)$ é tal que:

$$\delta(u,v) = \begin{cases} \min\{W(p) : u \overset{p}{\leadsto} v\} & \text{se existe um caminho de } u \text{ até} \\ \infty & \text{caso contrário} & \text{PPGSO} \end{cases}$$

Diferentes problemas de caminho de custo mínimo

- se não há pesos: busca em largura
- vértice origem fixado
 - custo mínimo de s para todos os demais vértices
- vértice destino fixado
 - custo mínimo de cada vértice até s
 - obtido do anterior com o grafo transposto
- vértices origem e destino fixados
 - não há solução asintoticamente melhor do que quando o vértice origem é fixado
- entre todos os pares de vértices
 - fixar sucessivamente a origem em todos os vértices
 - mas existe algoritmos assintoticamente melhores para este problema

Pesos negativos

- a presença ou ausência de pesos negativos muda os algoritmos possíveis
 - sem pesos negativos: algoritmo de Dijkstra
 - com pesos negativos: algoritmo de Bellman-Ford
- ▶ se há um ciclo tal que a soma dos pesos é negativa, então o custo mínimo é $-\infty$!
 - Bellman-Ford detecta ciclos negativos

Representação de caminhos de custo mínimo

- outra saída esperada: caminho de custo mínimo
- ▶ dados: v.up
- o caminho de custo mínimo de s até v é obtido seguindo
 v, v. up, v. up., . . . até s
- durante a aplicação do algoritmo, o valor de up é atualizado
 - cada (v, v. up) forma uma aresta da árvore dos caminhos de custo mínimo
- em um grafo pode haver várias árvores dos caminhos de custo mínimo

Propriedades dos caminhos de custo mínimo

- 1. Supondo que $\pi = (v_0, v_1, \dots v_{k-1})$ é um caminho de custo mínimo de v_0 até v_{k-1} :
 - ▶ O que podemos dizer do caminho $(v_i, v_{i+1}, \dots v_j)$ contido em π ?

Propriedades dos caminhos de custo mínimo

- 1. Supondo que $\pi = (v_0, v_1, \dots v_{k-1})$ é um caminho de custo mínimo de v_0 até v_{k-1} :
 - ▶ O que podemos dizer do caminho $(v_i, v_{i+1}, \dots v_j)$ contido em π ?
- 2. Supondo que: $s \stackrel{p}{\leadsto} v$ é o caminho de custo mínimo de s até v e é composto por $s \stackrel{p'}{\leadsto} u$ e (u, v):
 - ▶ o que podemos dizer de $\delta(s, u)$, $\delta(s, v)$, W(u, v)?

Propriedades dos caminhos de custo mínimo

- 1. Supondo que $\pi = (v_0, v_1, \dots v_{k-1})$ é um caminho de custo mínimo de v_0 até v_{k-1} :
 - ▶ O que podemos dizer do caminho $(v_i, v_{i+1}, \dots v_j)$ contido em π ?
- 2. Supondo que: $s \stackrel{p}{\leadsto} v$ é o caminho de custo mínimo de s até v e é composto por $s \stackrel{p'}{\leadsto} u$ e (u, v):
 - o que podemos dizer de $\delta(s, u)$, $\delta(s, v)$, W(u, v)?
- 3. Em geral, se (u, v) é uma aresta, qual relação podemos estabelecer entre $\delta(s, u)$, $\delta(s, v)$ e W(u, v)?

Trecho de caminho de custo mínimo

Propriedade

Lema (trecho de um caminho de custo mínimo)

Seja $\pi = (v_0, v_1, \dots v_k)$ um caminho de custo mínimo de v_0 até v_k , e $0 \le i \le j \le v_k$, então o trecho $(v_i, v_{i+1}, \dots, v_j)$ de π é um caminho de custo mínimo de v_i até v_j .

Trecho de caminho de custo mínimo

Propriedade

Lema (trecho de um caminho de custo mínimo)

Seja $\pi = (v_0, v_1, \dots v_k)$ um caminho de custo mínimo de v_0 até v_k , e $0 \le i \le j \le v_k$, então o trecho $(v_i, v_{i+1}, \dots, v_j)$ de π é um caminho de custo mínimo de v_i até v_j .

Demonstração.

- (por contradição) $\pi: v_0 \stackrel{\pi}{\leadsto} v_k$ caminho de custo mínimo de v_0 até v_k
- $ightharpoonup \pi_2$ é um caminho de custo não mínimo de v_i até v_j
- ▶ seja π' um caminho de custo mínimo entre v_i e v_j .
- ▶ temos π_1, π', π_3 um caminho de v_0 até v_k de custo menor que π
- contradizendo a hipótese inicial

Decomposição do custo mínimo

Propriedade

Corolário (decomposição de custo mínimo)

Seja π um caminho de custo mínimo de s até v tal que π pode ser decomposto em s $\stackrel{\pi'}{\leadsto}$ u \rightarrow v para algum caminho π' e aresta (u,v). Então $\delta(s,v)=\delta(s,u)+W(u,v)$.

Decomposição do custo mínimo

Propriedade

Corolário (decomposição de custo mínimo)

Seja π um caminho de custo mínimo de s até v tal que π pode ser decomposto em s $\stackrel{\pi'}{\leadsto}$ $u \to v$ para algum caminho π' e aresta (u, v). Então $\delta(s, v) = \delta(s, u) + W(u, v)$.

Demonstração.

- aplicação do lema do trecho de caminho de custo mínimo
- π tem custo mínimo
- $\blacktriangleright \pi'$ é um trecho de π
- ▶ logo, π' tem custo mínimo
- $\delta(s, v) = W(\pi) = W(\pi') + W(u, v) = \delta(s, u) + W(u, v)$

Relação entre custos mínimos e pesos

Propriedade

Lema (relação entre custos mínimos e pesos)

Para qualquer aresta
$$(u, v)$$
, temos

$$\delta(s, v) \leq \delta(s, u) + W(u, v).$$

Relação entre custos mínimos e pesos

Propriedade

Lema (relação entre custos mínimos e pesos)

Para qualquer aresta (u, v), temos

$$\delta(s, v) \leq \delta(s, u) + W(u, v).$$

Demonstração.

?

Relaxação

- relaxação: reduz o limite superior (estimativa conservadora) do custo de um caminho
- relaxação é aplicada repetidas vezes até chegar à solução
- ▶ o que é relaxação?

Algoritmo de relaxação

- ▶ s: um nó origem dado
- v.d: limite superior do custo de s até v
- W(u, v): peso da aresta (u, v)

```
RELAX(u, v, W)

1 if v.d > u.d + W(u, v)

2 v.d = u.d + W(u, v)

3 v.up = u
```

Algoritmo de relaxação

- ▶ s: um nó origem dado
- v.d: limite superior do custo de s até v
- W(u, v): peso da aresta (u, v)

```
RELAX(u, v, W)

1 if v.d > u.d + W(u, v)

2 v.d = u.d + W(u, v)

3 v.up = u
```

Justificativa:

- se a estimativa do custo de s até v é maior que a estimativa do custo de s até u somado ao peso de (u, v);
- existe um caminho de s até v com custo menor que os caminhos já calculados;
- ▶ este caminho termina pela aresta (u, v).

Relaxação: ponto de partida

- procedimento para iniciar com um estado compatível com a relaxação
- ightharpoonup d é inicializado com uma estimativa conservadora: ∞
- s: vértice origem, logo s. $d = 0 = \delta(s, s)$

```
INIT-RELAX(G, s)

1 for v \in G. V

2 v \cdot d = \infty

3 v \cdot up = NIL

4 s \cdot d = 0
```

Propriedades

Algoritmo de relaxação

```
RELAX(u, v, W)

1 if v.d > u.d + W(u, v)

2 v.d = u.d + W(u, v)

3 v.up = u
```

Lema (Pós-condição de Relax(u, v, W))

Após executar Relax(u, v, W), temos a seguinte relação:

$$v.d \leq u.d + W(u,v)$$

Invariante

Algoritmo de relaxação

Lema (Invariante)

O invariante $\delta(s, v) \leq v.d$ é

- 1. satisfeito após executar Init-Relax(G, s).
- 2. preservado pela execução de Relax(u, v, W)

Invariante

Algoritmo de relaxação

Lema (Invariante)

O invariante $\delta(s, v) \leq v.d$ é

- 1. satisfeito após executar INIT-RELAX(G, s).
- 2. preservado pela execução de Relax(u, v, W)

Demonstração.

inicialização:

- ▶ $\delta(s,s) = 0$ ou $\delta(s,s) = -\infty$ (se s estiver em um ciclo de peso negativo)
- em todo caso $s.d \ge \delta(s,s)$.
- ▶ para $v \neq s$, $s.d = \infty \ge \delta(s, v)$.

Invariante

Algoritmo de relaxação

Lema (Invariante)

O invariante $\delta(s, v) \leq v.d$ é

- 1. satisfeito após executar INIT-RELAX(G, s).
- 2. preservado pela execução de Relax(u, v, W)

Demonstração.

preservação por Relax(u, v, W) (por contradição)

- seja v o primeiro vértice tal que $v.d < \delta(s,v)$
- ightharpoonup então, após Relax(u, v, W) temos

$$u.d + W(u,v) = v.d$$

 $< \delta(s,v) \le \delta(s,u) + W(u,v)$

- ▶ logo $u.d < \delta(s, u)$
- ▶ contradiz que v foi o 1^o vértice t.q. $v.d < \delta(s, v)$.

Vértices não alcançáveis

Propriedades

Corolário (Vértices não alcançáveis)

Depois de executar INIT-RELAX(G,s), para qualquer vértice v não alcançável a partir de s, temos que v. $d = \delta(s, v)$. A execução de RELAX(u,v,W) mantem v. $d = \delta(s, v)$.

Demonstração.

Pelo lema do invariante, temos que $v.d \geq \delta(s,v)$ sempre. Como $\delta(s,v)=\infty$, então teremos v.d conserva seu valor inicial ∞ sempre.

Extensão de caminho de custo mínimo

Lema (Extensão de caminho de custo mínimo)

Seja $s \rightsquigarrow u \rightarrow v$ um caminho de custo mínimo de s até os vértices u e v. Se u. $d = \delta(s, u)$ antes de executar Relax(u, v, W), então v. $d = \delta(s, v)$.

Demonstração.

- ▶ lema do invariante:
 - 1. $\delta(s, v) \leq v.d$ sempre
 - 2. se $\delta(s, u) = u.d$ antes de executar RELAX(u, v, W), também $\delta(s, u) = u.d$ depois
- ▶ Depois executar Relax(u, v, W),

$$v.d \leq u.d + W(u,v)$$
 lema da pós-condição $= \delta(s,u) + W(u,v)$ hipótese vigente $= \delta(s,v)$ corolário decomposição de custo mínimo

Algoritmo de Dijkstra

Princípios

- ▶ Mantem um conjunto de vértices $S = \{v \cdot v \cdot d = \delta(s, v)\}$.
- ► Escolhe um vértice *u* a inserir em *S*
 - custo mínimo de S para u
- Relaxa com as arestas adjacentes a u
- abordagem gulosa

Algoritmo de Dijkstra

```
SINGLE-SOURCE-SHORTEST-PATH(G, s)

1 INIT-RELAX(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for (u, v) \in G.E

8 RELAX(u, v, G.W)
```

Q: fila de prioridade com chave d

llustração

Algoritmo de Dijkstra

Quadro

Complexidade

Algoritmo de Dijkstra

Assumindo que Q é um heap binário...

```
SINGLE-SOURCE-SHORTEST-PATH(G, s)

1 INIT-RELAX(G, s) // \Theta(V)

2 S = \emptyset

3 Q = G.V // O(V)

4 while Q \neq \emptyset // \Theta(V) repetições

5 u = \text{EXTRACT-MIN}(Q) // O(\lg V)

6 S = S \cup \{u\}

7 for (u, v) \in G.E // total: \Theta(E)

8 RELAX(u, v, G.W) // O(\lg V)
```

Complexidade

Algoritmo de Dijkstra

Assumindo que Q é um heap binário...

```
SINGLE-SOURCE-SHORTEST-PATH(G, s)

1 INIT-RELAX(G, s) // \Theta(V)

2 S = \emptyset

3 Q = G.V // O(V)

4 while Q \neq \emptyset // \Theta(V) repetições

5 u = \text{EXTRACT-MIN}(Q) // O(\lg V)

6 S = S \cup \{u\}

7 for (u, v) \in G.E // total: \Theta(E)

8 RELAX(u, v, G.W) // O(\lg V)
```

Total: $O(V \lg V + E \lg V)$

Cada vez que u é inserido em S, $u.d = \delta(s,u)$

Cada vez que u é inserido em S, $u.d = \delta(s, u)$ (contradição).

ightharpoonup v: primeiro vértice inserido em S t.q. $v.d \neq \delta(v,s)$

Cada vez que u é inserido em S, $u.d = \delta(s, u)$ (contradição).

- ightharpoonup v: primeiro vértice inserido em S t.q. $v.d \neq \delta(v,s)$
- certamente $v \neq s$, pois
 - s é o primeiro vértice inserido em S
 - $s.d \in 0$ quando é inserido, e $\delta(s,s) = 0$.

Cada vez que u é inserido em S, $u.d = \delta(s, u)$ (contradição).

- ightharpoonup v: primeiro vértice inserido em S t.q. $v.d \neq \delta(v,s)$
- \triangleright $v \neq s$

Cada vez que u é inserido em S, u. $d = \delta(s, u)$ (contradição).

- v: primeiro vértice inserido em S t.q. $v.d \neq \delta(v,s)$
- \triangleright $v \neq s$
- ▶ logo $S \neq \emptyset$ quand v é inserido em S.

- ightharpoonup v: primeiro vértice inserido em S t.q. $v.d \neq \delta(v,s)$
- ightharpoonup v
 eq s , $S
 eq \emptyset$

- \triangleright v: primeiro vértice inserido em S t.q. $v.d \neq \delta(v,s)$
- \triangleright $v \neq s$, $S \neq \emptyset$
- necessariamente há um caminho de s até v
 - 1. senão, pelo corolário dos vértices não alcançáveis, $v.d = \delta(s, v)$,
 - 2. contradizendo hipótese vigente $v.d \neq \delta(v,s)$.

- ightharpoonup v: primeiro vértice inserido em S t.q. $v.d \neq \delta(v,s)$
- ightharpoonup v
 eq s , $S
 eq \emptyset$, $s \leadsto v$
- logo existe um caminho de custo mínimo entre s e v, digamos p (não necessariamente todo em S).
- ▶ seja y o primeiro vértice de p em V S e x o predecessor de y em p

- ightharpoonup v: primeiro vértice inserido em S t.q. $v.d \neq \delta(v,s)$
- ▶ $v \neq s$, $S \neq \emptyset$, $s \rightsquigarrow v$, $p = p_1(x, y)p_2$, $s \stackrel{p_1}{\leadsto} x \rightarrow y \stackrel{p_2}{\leadsto} v$, $p_1 \subseteq S$, $W(p) = \delta(s, v)$

- \triangleright v: primeiro vértice inserido em S t.q. $v.d \neq \delta(v,s)$
- $\mathbf{v} \neq \mathbf{s}$, $S \neq \emptyset$, $\mathbf{s} \rightsquigarrow \mathbf{v}$, $p = p_1(x, y)p_2$, $\mathbf{s} \stackrel{p_1}{\leadsto} x \rightarrow y \stackrel{p_2}{\leadsto} \mathbf{v}$, $p_1 \subseteq S$, $W(p) = \delta(\mathbf{s}, \mathbf{v})$
- necessariamente $x.d = \delta(s,x)$,
- $\triangleright x \in S$, então foi aplicado Relax(x, y, W)
- ▶ pelo lema da extensão de caminho de custo mínimo, $y.d = \delta(s, y)$

- ightharpoonup v: primeiro vértice inserido em S t.q. $v.d \neq \delta(v,s)$
- ▶ $v \neq s$, $S \neq \emptyset$, $s \rightsquigarrow v$, $p = p_1(x, y)p_2$, $s \stackrel{p_1}{\leadsto} x \rightarrow y \stackrel{p_2}{\leadsto} v$, $p_1 \subseteq S$, $W(p) = \delta(s, v)$, $y \cdot d = \delta(s, y)$

- \triangleright v: primeiro vértice inserido em S t.q. $v.d \neq \delta(v,s)$
- ▶ $v \neq s$, $S \neq \emptyset$, $s \rightsquigarrow v$, $p = p_1(x, y)p_2$, $s \stackrel{p_1}{\leadsto} x \rightarrow y \stackrel{p_2}{\leadsto} v$, $p_1 \subseteq S$, $W(p) = \delta(s, v)$, $y \cdot d = \delta(s, y)$
- y ocorre antes de v em um caminho de custo mínimo
- os pesos não são negativos
- ▶ logo $\delta(s, y) \leq \delta(s, v)$
- ▶ pelo lema do invariante $\delta(s, v) \leq v.d$,
- ▶ por transitividade de \leq , deduzimos que $\delta(s, y) \leq \delta(s, v)$

- ightharpoonup v: primeiro vértice inserido em S t.q. $v.d \neq \delta(v,s)$
- ▶ $v \neq s$, $S \neq \emptyset$, $s \rightsquigarrow v$, $p = p_1(x, y)p_2$, $s \stackrel{p_1}{\leadsto} x \rightarrow y \stackrel{p_2}{\leadsto} v$, $p_1 \subseteq S$, $W(p) = \delta(s, v)$, $y \cdot d = \delta(s, y)$, $\delta(s, y) \leq \delta(s, v)$

- ightharpoonup v: primeiro vértice inserido em S t.q. $v.d \neq \delta(v,s)$
- ▶ $v \neq s$, $S \neq \emptyset$, $s \rightsquigarrow v$, $p = p_1(x, y)p_2$, $s \stackrel{p_1}{\leadsto} x \rightarrow y \stackrel{p_2}{\leadsto} v$, $p_1 \subseteq S$, $W(p) = \delta(s, v)$, $y \cdot d = \delta(s, y)$, $\delta(s, y) \leq \delta(s, v)$
- $\triangleright v = \text{Extract-Min}(Q)$
- ▶ logo $v.d \le y.d$
- ▶ temos $v.d \ge \delta(s,v) \ge \delta(s,y) = y.d \ge v.d$
- logo $v.d = \delta(s, v)$ entramos em contradição

Teorema

Teorema (Correção do algoritmo de Dijkstra)

O algoritmo SINGLE-SOURCE-SHORTEST-PATH(G, s) calcula corretamente o custo dos caminhos de custo mínimo de s até cada vértice de G.

Teorema

Teorema (Correção do algoritmo de Dijkstra)

O algoritmo SINGLE-SOURCE-SHORTEST-PATH(G, s) calcula corretamente o custo dos caminhos de custo mínimo de s até cada vértice de G.

- o lema do invariante garante que $v.d \ge \delta(s,v)$ ao longo da execução
- mostramos que quando um vértice é inserido em S, $v.d = \delta(s, v)$
- ▶ todos os vértices são inseridos em S.

Teorema

Teorema (Correção do algoritmo de Dijkstra)

O algoritmo SINGLE-SOURCE-SHORTEST-PATH(G, s) calcula corretamente o custo dos caminhos de custo mínimo de s até cada vértice de G.

Demonstração.

- o lema do invariante garante que $v.d \ge \delta(s,v)$ ao longo da execução
- mostramos que quando um vértice é inserido em S, $v.d = \delta(s, v)$
- ▶ todos os vértices são inseridos em S.

Omitimos a prova que os caminhos de custo mínimo são calculados corretamente (atributo up).

Algoritmo de Bellman-Ford

Princípios

- leva em conta arestas negativas
- detecta e reporta se existe ciclos de custo mínimo
- ▶ também baseado na relaxação

Algoritmo de Bellman-Ford

```
SINGLE-SOURCE-SHORTEST-PATHS(G, s)

1 INIT-RELAX(G, s)

2 for i = 1 to |G, V| - 1

3 for (u, v) \in G, E

4 RELAX(u, v, G, W)

5 for (u, v) \in G, E

6 if v, d > u, d + G, W(u, v)

7 return False

8 return True
```

llustração

Algoritmo de Bellman-Ford

No quadro

Complexidade

Algoritmo de Bellman-Ford

```
SINGLE-SOURCE-SHORTEST-PATHS(G, s)

1 INIT-RELAX(G, s) // \Theta(V)

2 for i = 1to|G.V| - 1 // \Theta(V) repetições

3 for (u, v) \in G.E // \Theta(E) repetições

4 RELAX(u, v, G.W) // \Theta(1)

5 for (u, v) \in G.E // O(E) repetições

6 if v.d > u.d + G.W(u, v)

7 return FALSE

8 return TRUE
```

Complexidade

Algoritmo de Bellman-Ford

Total: $\Theta(VE)$

```
SINGLE-SOURCE-SHORTEST-PATHS(G, s)

1 INIT-RELAX(G, s) // \Theta(V)

2 for i = 1to|G.V| - 1 // \Theta(V) repetições

3 for (u, v) \in G.E // \Theta(E) repetições

4 RELAX(u, v, G.W) // \Theta(1)

5 for (u, v) \in G.E // O(E) repetições

6 if v.d > u.d + G.W(u, v)

7 return FALSE

8 return TRUE
```

Algoritmo de Bellman-Ford

- 1. caso G não contem ciclos de custo negativo
- 2. caso geral

Algoritmo de Bellman-Ford

Lema (Bellman-Ford sem ciclos de custo negativo)

Se G não possui ciclos de custo negativo, então, após executar o algoritmo de Bellman-Ford com G e s, temos que $v.d = \delta(s,v)$ para todas as arestas alcançáveis de s.

Algoritmo de Bellman-Ford

Lema (Bellman-Ford sem ciclos de custo negativo)

Se G não possui ciclos de custo negativo, então, após executar o algoritmo de Bellman-Ford com G e s, temos que $v.d = \delta(s,v)$ para todas as arestas alcançáveis de s.

- Seja $p = (v_0, v_1, \dots v_k)$ um caminho de custo mínimo entre $v_0 = s$ e $v_k = v$
- ▶ Não há ciclos de custo negativo, logo p não contem ciclo e $k \le |V| 1$.
- Abordagem de prova:
 - ▶ indução
 - ightharpoonup após a iteração $i, v_i.d = \delta(s, v_i)$
 - lacktriangle como há |V|-1 iterações, provar esta propriedade é suficiente.

Algoritmo de Bellman-Ford

Lema (Bellman-Ford sem ciclos de custo negativo)

Se G não possui ciclos de custo negativo, então, após executar o algoritmo de Bellman-Ford com G e s, temos que $v.d = \delta(s,v)$ para todas as arestas alcançáveis de s.

Demonstração.

▶ Seja $p = (v_0, v_1, ..., v_k)$ um caminho de custo mínimo entre $v_0 = s$ e $v_k = v$, $k \le |V| - 1$

Algoritmo de Bellman-Ford

Lema (Bellman-Ford sem ciclos de custo negativo)

Se G não possui ciclos de custo negativo, então, após executar o algoritmo de Bellman-Ford com G e s, temos que v. $d = \delta(s,v)$ para todas as arestas alcançáveis de s.

- ▶ Seja $p = (v_0, v_1, ..., v_k)$ um caminho de custo mínimo entre $v_0 = s$ e $v_k = v$
- No caso de base, i = 0,
 - $\delta(s, v_0) = v_0 \cdot d = 0$ após a inicialização;
 - mantido pelas etapas de relaxação

Algoritmo de Bellman-Ford

Lema (Bellman-Ford sem ciclos de custo negativo)

Se G não possui ciclos de custo negativo, então, após executar o algoritmo de Bellman-Ford com G e s, temos que $v.d = \delta(s, v)$ para todas as arestas alcancáveis de s.

- ▶ Seja $p = (v_0, v_1, \dots v_k)$ um caminho de custo mínimo entre $v_0 = s e v_k = v$
- No caso geral, a hipótese de indução é v_{i-1} . $d = \delta(s, v_{i-1})$ após a iteração i-1.
- ▶ A relaxação é aplicada a (v_{i-1}, v_i) na iteração i,
- pelo lema da extensão de caminhos de custo mínimo. $v_i.d = \delta(s, v_i)$ após a iteração i.

Algoritmo de Bellman-Ford

Corolário (Alcançabilidade e Bellman-Ford sem ciclos de custo negativo)

Se G não possui ciclos de custo negativo, então, existe um caminho de s até v se e somente se, após executar o algoritmo de Bellman-Ford a G e s, temos que v. $d \neq \infty$.

Algoritmo de Bellman-Ford

Teorema (Correção do algoritmo de Bellman-Ford)

Se G não possui ciclos de custo negativo, então o algoritmo retorna TRUE e $v.d = \delta(s,v)$ para todo $v \in V$. Se G possui um ciclo de custo negativo, então o algoritmo retorna FALSE .

- ► Se G não possui ciclos de custo negativo
 - ▶ Se v é alcançável, temos $v.d = \delta(s, v)$ (aplicação do lema)
 - ▶ Se v não é alcançável, também $v.d = \delta(s, v)$ (corolário dos vértices inalcançáveis)
- Quando o laço das relaxações termina:

$$v.d = \delta(s,v) \le \delta(s,u) + W(u,v) = u.d + W(u,v)$$

- o teste v.d > u.d + W(u, v) nunca é verdadeiro
- ▶ o algoritmo retorna TRUE

Algoritmo de Bellman-Ford

- Se G possui um ciclo de custo negativo $c = (v_0, v_1, \dots v_k)$, com $v_0 = v_k$, alcançável a partir de s.
- $\sum_{i=1}^{k} W(v_{i-1}, v_i) < 0$
- ▶ (por contradição) hipótese: algoritmo retorna TRUE
- ▶ logo v_i . $d \le v_{i-1}$. $d + W(v_{i-1}, v_i)$ para todo i = 1, ..., k
- ▶ como é um ciclo: $\sum_{i=1}^{k} v_i . d = \sum_{i=1}^{k} v_{i-1} . d$
- ► conclusão $0 \le \sum_{i=1}^k W(v_{i-1}, v_i)$, contradizendo $\sum_{i=1}^k W(v_{i-1}, v_i) < 0$.

