Zum Hilbertschen Nullstellensatz.

Von

J. L. Rabinowitsch in Moskau.

Satz. Verschwindet das Polynom $f(x_1, x_2, ..., x_n)$ in allen Nullstellen — im algebraisch abgeschlossenen Körper — eines Polynomideals a, so gibt es eine Potenz f^2 von f, die zu a gehört.

Beweis. Es sei $a=(f_1,f_2,\ldots,f_r)$, wo f_i die Variablen x_1,\ldots,x_n enthalten. x_0 sei eine Hilfsvariable. Wir bilden das Ideal $\bar{a}=(f_1,f_2,\ldots,f_r,x_0f-1)$. Da der Voraussetzung nach f=0 ist, sobald alle f_i verschwinden, so hat das Ideal \bar{a} keine Nullstellen.

Folglich muß \bar{a} mit dem Einheitsideal zusammenfallen. (Vgl. etwa bei K. Hentzelt, "Eigentliche Eliminationstheorie", § 6, Math. Annalen 88¹).) Ist also $1 = \sum_{i=1}^{i=r} F_i(x_0, x_1, ..., x_n) f_i + F_0 \cdot (x_0 f - 1)$ und setzen wir in dieser Identität $x_0 = \frac{1}{f}$, so ergibt sich:

$$1 = \sum_{i=1}^{i=r} F_i\left(\frac{1}{f}, x_1, \dots, x_n\right) f_i = \frac{\sum\limits_{i=1}^{r} \bar{F}_i f_i}{f^{\varrho}}.$$

Folglich ist $f^{\varrho} \equiv 0(\mathfrak{a})$, w. z. b. w.

¹⁾ Folgt auch schon aus der Kroneckerschen Eliminationstheorie.