WGEN: A Model for Generating Daily Weather Variables

By

C. W. Richardson and D. A. Wright United States Department of Agriculture Agriculture Research Service ARS-8, August 1984

The CMLS94 model of Nofziger and Hornsby incorporates WGEN to generate weather sequences needed in Monte Carlo simulation of pesticide movement in unsaturated soils. We think some model users will want to understand the basis of WGEN and to use the manual and software developed by the authors to determine weather parameters for weather stations of interest to them. Since copies of this publication are no longer available from the authors or from the Agricultural Research Service, the authors have granted us permission to make the manual available in this form. The pages which follow contain the text, tables, figures, and program listings available in the original publication. No editing was done. However, slight differences in the placement of text within a page exist due to differences in fonts. We thank the authors for their cooperation.

D.L. Nofziger and A.G. Hornsby

United States Department of Agriculture

Agricultural Research Service

ARS-8

August 1984

WGEN: A Model for Generating Daily Weather Variables

ABSTRACT

Richardson, C. W., and D. A. Wright. 1984. WGEN: A Model for Generating Daily Weather Variables. U. S. Department of Agriculture, Agricultural Research Service, ARS-8, 83 p.

A computer simulation model called WGEN (Weather Generator) that provides daily values for precipitation, maximum temperature, minimum temperature, and solar radiation is described. The model accounts for the persistence of each variable, the dependence among the variables, and the seasonal characteristics of each variable. Its parameters are defined for locations in the United States, enabling use of the model in the 48 contiguous States without reference to actual data. Examples of model applications are given, and weather data generated by the model are compared with actual data.

KEYWORDS: weather, climate, precipitation, solar radiation, temperature, simulation model, Markov chain

Copies of this publication are available from the National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, VA. 22161.

ARS has no additional copies for free distribution.

CONTENTS

Introduction, 5

Model description, 5

Precipitation, 6

Temperature and solar radiation, 7

Precipitation and temperature correction, 10

The WGEN Program, 11

The WGEN PAR Program, 12

Results and discussion, 12

Summary, 14

Literature cited, 15

Tables, 16

Figures, 33

Appendixes, 35

Appendix A: Generation parameters, 35

Appendix B: Input data for WGEN, 59

Appendix C: The WGEN Program, 63

Appendix D: The WGEN PAR Program, 75

WGEN: A MODEL FOR GENERATING DAILY WEATHER **VARIABLES**

C.W. Richardson and D.A. Wright $\frac{1}{}$

INTRODUCTION

Daily weather data are required for many applications. Weather data are frequently needed to aid in the design of hydraulic structures; to evaluate the effects of watershed changes on hydrology, water quality, or erosion; or to assess alternative crop or range management strategies. Mathematical models of the physical processes involved are often used to make these evaluations. In addressing the response of these processes to weather inputs, it is seldom sufficient to examine only responses to observed weather events. Use of only observed sequences gives a solution which is based on only one realization of the weather process. For some locations no weather data are available to make the desired assessment. It is desirable to have the capability of generating synthetic weather data with the same statistical characteristics as the actual weather at the location. Therefore, the purpose of this paper is to provide a method for generating samples of daily weather variables.

A computer simulation model called WGEN (Weather Generator) has been developed to generate daily values for precipitation, maximum temperature, minimum temperature, and solar radiation. The model is based on the procedure described by Richardson (1981); however, several assumptions have been made that simplify the use of the model. The model parameters that are required to generate new sequences of the weather variables have been determined for locations in the 48 contiguous States of the United States and are given in Appendix A.

Several other models have been developed for generating sequences of daily weather variables (Jones et al. 1972, Bond 1979, Nicks and Harp 1980, Bruhn et al. 1980, Larsen and Pense 1981). These models are based on sound statistical principles; however, they lack the general applicability and ease of use that is afforded by WGEN, and the model parameters given in the appendix.

MODEL DESCRIPTION WGEN provides daily generated values of precipitation (p), maximum temperature (t_{max}), minimum temperature (t_{min}), and solar radiation (r) for an nyear period at a given location. The occurrence of rain on a given day has a major influence on temperature and solar radiation for the day. The approach that is used is to generate precipitation for a given day independently of the other variables. Maximum temperature, minimum temperature, and solar radiation are then generated according to whether a wet day or dry day was previously generated. The model is designed to preserve the dependence in time, the correlation between variables, and the seasonal characteristics in actual weather data for the location.

> 1/ Agricultural engineer and computer programmer, respectively, USDA-ARS, Grassland, Soil and Water Research Laboratory, P.O. Box, 748, Temple, TX 76503.

Precipitation

The precipitation component of WGEN is a Markov chain-gamma model. A first-order Markov chain is used to generate the occurrence of wet or dry days. When a wet day is generated, the two-parameter gamma distribution is used to generate the precipitation amount.

With the first-order Markov chain model, the probability of rain on a given day is conditioned on the wet or dry status of the previous day. A wet day is defined as a day with 0.01 inch or rain or more. Let P_i (W/W) be the probability of a wet day on day i given a wet day on day i-1, and let P_i (W/D) be the probability of a wet day on day i given a dry day on day i-1. Then,

$$P_i(D/W) = 1 - P_i(W/W)$$
 (1)
 $P_i(D/D) = 1 = P_i(W/D)$

where $P_i(D/W)$ and $P_i(D/D)$ are the probabilities of a dry day given a wet day on day i-1 and the probability of a dry day given a dry day on day i-1, respectively. Therefore, the transition probabilities are fully defined given $P_i(W/W)$ and $P_i(W/D)$.

Several probability density functions have been used to describe the distribution of rainfall amounts (Smith and Schreiber 1974, Woolhiser and Roldan 1982). For this application, a distribution with a minimum number of parameters was needed to minimize the problem of defining the parameters for a large number of locations. Richardson (1982a) has shown the two-parameter gamma distribution to be significantly better for describing daily precipitation amounts than the simple one-parameter exponential distribution. The density function of the two-parameter gamma distribution is given by

$$f(p) = \frac{p^{\alpha - 1}e^{-p/\beta}}{\beta^{\alpha}\Gamma(\alpha)}, \quad p, \alpha, \beta > 0$$
 (2)

where f(p) is the density function of p, α , and β are distribution parameters, $\Gamma(\alpha)$ is the gamma function of α , and e is the base of natural logarithms. The α and β are shape and scale parameters, respectively. For $0 < \alpha < 1$, f(p) decreases with increasing p. The shape is appropriate for preon whewewhere f(p) is the density function of p, α , and β are distribution parameters, $\Gamma(\alpha)$ is the gamma function of α , and e is the base of natural logarithms. The α and β are shape and scale parameters, respectively. For $0 < \alpha < 1$, f(p) decreases with increasing p. The shape is appropriate for precipitation amounts since small amounts occur more frequently than larger amounts.

The values of P(W/W), P(W/D), α , and β vary continuously during the year for most locations. In WGEN, each of the four precipitation parameters are constant for a given month but are varied from month to month.

The values of each of the four parameters were determined by month for 139 stations in the United States, as shown in figure 1. The parameters were defined using 20 years (1951-1970) of daily rainfall data for each station. The rainfall parameter values are given for each of the 139 stations in table A1. Rainfall parameters for other locations may be obtained by interpolation of values given in the same table. The parameters are used with a Markov chain generation procedure, and the gamma generation procedure described by Haan (1977) to generate daily precipitation values.

Temperature and Solar Radiation.

The procedure that is used in WGEN for generating daily values of t_{max} , t_{min} , and r is that described by Richardson (1981). The procedure is based on the weakly stationary generating process given by Matalas (1967). The equation is

$$\chi_{i}(j) = A\chi_{i-1}(j) + B\varepsilon_{i}(j)$$
 (3)

where $\chi_i(j)$ is a 3 X 1 matrix for day i whose elements are residuals of t_{max} (j=1), t_{min} (j=2), and r (j=3), ϵ_i is a 3 X 1 matrix of independent random components, and A and B are 3 X 3 matrices whose elements are defined such that the new sequences have the desired serial-correlation and cross-correlation coefficients. The A and B matrices are given by

$$A = M_1 M_0^{-1}$$
 (4)

$$BB^{T} = M_{0} - M_{1} M_{0}^{-1} M_{1}^{T}$$
 (5)

where the superscripts -1 and T denote the inverse and transpose of the matrix. M_0 and M_1 are defined as

$$M_0 = \begin{bmatrix} 1 & \rho_0(1,2) & \rho_0(1,3) \\ \rho_0(1,2) & 1 & \rho_0(2,3) \\ \rho_0(1,3) & \rho_0(2,3) & 1 \end{bmatrix}$$
(6)

$$M_1 = \begin{bmatrix} \rho_1(1) & \rho_1(1,2) & \rho_1(1,3) \\ \rho_1(2,1) & \rho_1(2) & \rho_1(2,3) \\ \rho_1(3,1) & \rho_1(3,2) & \rho_1(3) \end{bmatrix} \tag{7}$$

where ρ_0 (j,k) is the correlation coefficient between variables j and k on the same day, ρ_1 (j,k) is the correlation coefficient between variables j and k with variable k lagged 1 day with respect to variable j, and ρ_1 (j) is the lag 1 serial-correlation coefficient for variable j.

The correlation coefficients in equations (6) and (7) were determined by season from 20 years of temperature and solar radiation data for 31 locations in the United States (fig 1.). The seasonal and regional patterns of the correlation coefficients were described by Richardson (1982b). The seasonal and spatial variation in the correlation coefficients were relatively small. If the small variations are neglected and the average values of the correlation coefficients given by Richardson (1982b) are used, the M_0 and M_1 matrices become

$$M_0 = \begin{bmatrix} 1.000 & 0.633 & 0.186 \\ 0.633 & 1.000 & -0.193 \\ 0.186 & -0.193 & 1.000 \end{bmatrix}$$
 (8)

$$M_1 = \begin{bmatrix} 0.621 & 0.445 & 0.087 \\ 0.563 & 0.674 & -0.100 \\ 0.015 & -0.091 & 0.251 \end{bmatrix}^{\frac{1}{2}} \quad (9)$$

Using equations (4) and (5) the A and B matrices become

$$A = \begin{bmatrix} 0.567 & 0.086 & -0.002 \\ 0.253 & 0.504 & -0.050 \\ -0.006 & -0.039 & 0.244 \end{bmatrix}$$
 (10)

$$B = \begin{bmatrix} 0.781 & 0 & 0 \\ 0.328 & 0.637 & 0 \\ 0.238 & -0.341 & 0.873 \end{bmatrix}$$
 (11)

The A and B matrices given in equations (10) and (11) are used with equation (3) in WGEN to generate new sequences of the residuals of t_{max} , t_{min} , and r that are serially correlated and cross-correlated with the correlations being constant at all locations.

 $[\]frac{2}{2}$ The off-diagonal elements were calculated but not reported by Richardson (1982b).

The final daily generated values of t_{max} , t_{min} , and r are determined by multiplying the residual elements generated with equation (3) by a seasonal standard deviation and adding seasonal mean using the equation

$$t_i(j) = \chi_i(j) \cdot s_i(j) + m_i(j) \tag{12}$$

where $t_i(j)$ is the daily value of t_{max} (j=1), t_{min} (j=2), and r (j=3), s_i (j) is the standard deviation and $m_i(j)$ is the mean for day i. The values of m_i (j) and s_i (j) are conditioned on the wet or dry status as determined from the precipitation component of the model. By expressing equation (12) in terms of the coefficient of variation (c=s/m) rather than the standard deviation, the equation becomes

$$t_i(j) = m_i(j)[\chi_i(j) \cdot c_i(j) + 1]$$
 (13)

The seasonal change in the means and coefficients of variation may be described by

$$u_i = \overline{u} + C \cos(0.0172(i-T)), \quad i = 1, ..., 365$$
 (14)

where u_i is the value of the m_i (j) or c_i (j) on day i, u is the mean of u_i , C is the amplitude of the harmonic, and T is the position of the harmonic in days (fig.2). Values of u , C, and T must be determined for the mean and coefficient of variation of each weather variable (t_{max} , t_{min} , and r) and for the wet or dry condition. These values were determined from the 20 years of daily weather data for the 31 locations and are given in tables 1-5. There were no detectable differences in the means and coefficients of variation for t_{min} on wet or dry days; therefore, the values u , C and T given in table 3 describe the seasonal variation in the mean and coefficient of variation of t_{min} for both wet or dry days.

Some of the parameters in tables 1-5 are strongly location dependent while other parameters do not change significantly with location. The values of T for all the descriptors of temperature (means and coefficients of variation of t_{max} , t_{min}) were near 200 days for all locations. Similarly, the T values for r were about 172 days (summer solstice) for all locations. Therefore, in WGEN all the T values for temperature are assumed to be 200 days, and all the T values for solar radiation are assumed to be 172 days.

Most of the u and C values in tables 1-5 were location dependent. The variable names that will be used for those parameters are given in table 6. The variables are defined graphically in figure 3. Contour maps for the parameters that had spatial trends are shown in Appendix A.

The map of u for the mean of t_{max} on dry days is shown in figure A1. The amplitude (C) of the mean of t_{max} for a given location was not significantly different on wet or dry days. The map of C for the mean of t_{max} (wet or dry) is given in figure A2. The u 's for the coefficient of variation of t_{max} are given in figure A3. The C's for the coefficient of variation of t_{max} are given in figure A4. The values in figure A4 are negative because t_{max} is less variable in the summer when the mean t_{max} is greatest. The values of u and C for the coefficients of variation of t_{max} were the same for either wet or dry days.

The u values for the mean of t_{max} on wet days was significantly less than for dry days and are mapped in figure A5. Maps of the other parameters for t_{max} on wet days were not required since they were not significantly different from the parameters for t_{max} on dry days.

The maps of u and C for the means and coefficients of variation of t_{min} are shown in figures A6-A9. All these parameters had a strong regional pattern.

The map of u for the mean of r on dry days is given in figure A10. Similar to t_{max} , C for the mean of r was not significantly different on wet or dry days. The map of C for the mean of r (wet or dry) is given in figure A11. The map of u for the mean of r on wet days is given in figure A12.

The values of u and C for the coefficients of variation of r given in table 5 showed no relationship to station location. The variation in each of the four parameters among the 31 locations was assumed to be sampling error. In WGEN the value of the four parameters are assumed to be constant at the average values given in table 5.

Precipitation and Temperature Correction

For most locations, the data generated with these procedures will have mean monthly precipitation and temperatures that are very close to the means obtained from actual data. In some cases, there will be differences caused by the temporal and spatial smoothing that is inherent in the model or topographic features of the location or other factors. Procedures have been developed that provide for the correction of these differences if actual mean monthly values are available and the user chooses to make these corrections. Use of the correction options provides generated daily values that compare very closely with the monthly means derived from the actual observations. Use of the correction procedure requires that the actual monthly means for the variable to be corrected be input to the generation program. Mean monthly precipitation and/or temperatures for selected locations are available from many sources, such as Climatic Atlas of the United States (U.S. Department of Commerce, 1968).

The precipitation correction factor for a given month is calculated as the mean monthly precipitation from actual data divided by the mean monthly precipitation theoretically generated with the Markov chain-gamma model. The generated daily precipitation amounts are multiplied by the precipitation correction factor for the appropriate month to obtain a corrected precipitation amount.

The temperature correction may be based on either the actual mean monthly temperature or mean maximum temperature and mean minimum temperature, depending on which type of data are available for the location. For the actual mean monthly temperature, the temperature correction factor is calculated as the difference between the actual mean monthly temperature for the location and the mean monthly temperature theoretically generated using the parameters for the location. The generated daily maximum and minimum temperatures are both corrected by adding the correction factor to the generated temperatures. When mean monthly maximum and minimum temperatures are available, correction factors for maximum temperature and minimum temperature are computed independently.

The WGEN Program

The WGEN program can be used to generate daily values of precipitation, maximum temperature, minimum temperature, and solar radiation. The inputs required for WGEN, input formats, and the source of each input is given in appendix B. The Fortran program of WGEN is given in appendix C. The program contains two major options. If option 1 is chosen, the program will generate daily values of p (inches), t_{max} (${}^{o}F$), t_{min} (${}^{o}F$), and r (ly) for the number of years specified by the user. If option 2 is chosen, the program will read actual precipitation supplied by the user and generate corresponding values of t_{max} , t_{min} , and r. Option 2 is provided because frequently a user will have a long record of actual precipitation data with corresponding data for daily temperature or solar radiation.

Options are also provided that enable the user to correct generated precipitation and temperature based on actual data. The user may choose to (1) make no corrections, (2) correct both precipitation and temperature, (3) correct only precipitation, or (4) correct only temperature. The codes that are required for the various options are given in the list of inputs in appendix B.

The WGEN program will print daily values of the four variables. A summary of the monthly and annual amounts will be printed at the end of each year. At the end of the n-year run, the mean monthly and mean annual amounts will be printed.

The WGEN PAR Program

To generate weather data for a location outside the 48 contiguous states, or to develop generation parameters for actual data from a specific location, the WGEN PAR program given in appendix D may be used. The WGEN PAR program reads daily values of p, t_{max} , t_{min} , and r and writes the generation parameters that are required by WGEN. The number of years of weather data required to develop parameters representative of a particular location vary with the climate. In general, at least 20 years of precipitation and 10 years of temperature and radiation are required. Longer records of precipitation may be required for arid locations.

RESULTS AND DISCUSSION

The WGEN model has been subjected to extensive testing. The results will be illustrated by applying the model at five locations with a wide variety of climates and comparing the results with recorded data. The locations are Columbia, MO; Boise, ID; Miami, FL; Phoenix, AZ; and Boston, MA. The rainfall parameters were obtained from table A1, and the temperature and solar radiation parameters were obtained from figures A1-A12 for each location. A 30-year sample of weather data was generated for each location without correcting precipitation and temperature based on actual monthly means.

Several statistics were selected in comparing the generated weather data with observed data. The following statistics were compared for each month and for the year;

- 1) Mean precipitation amount.
- 2) Mean number of wet days (p > 0.01 inches).
- 3) Mean run of wet days (maximum length of consecutive wet days).
- 4) Mean number of days with p > 2.0 inches.
- 5) Mean daily solar radiation.
- 6) Mean daily maximum temperature.
- 7) Mean daily minimum temperature.
- 8) Mean monthly and annual maximum temperature.
- 9) Mean monthly and annual minimum temperature.
- 10) Mean number of days with $t_{max} > 95^{\circ}F$.
- 11) Mean number of days with $t_{min} < 32^{\circ}F$.

The results of the comparisons are given in tables 7-11.

The Markov chain-gamma model that was used for generating daily precipitation amounts gave results that compared well with the observed data. The precipitation amounts and the season distribution of precipitation were accurately represented in the generated data. No significant differences occurred between the observed and generated mean monthly or annual precipitation amounts for any of the five locations. The mean number of wet

days per month was also accurately simulated at all five locations. The persistence of wet days as indicated by the maximum length of consecutive wet days for each month and the frequency of occurrence of daily precipitation in excess of 2.0 inches also compared favorably with the observed data.

The mean daily solar radiation generated with WGEN was not significantly different from the observed data for any month at any of the five locations.

The daily maximum and minimum temperature generation procedure also produced results that are good representations of the observed data. Mean daily maximum and mean daily minimum temperature by month were significantly different in only 20 of the 130 cases. In most instances, the differences were due to the actual data not having a simple sinusoidal shape as assumed in the model (fig. 3). This problem can be corrected by use of the local average temperature correction previously described.

The statistics that reflect temperature extremes did not compare as well with the observed data as did the other statistics. This result could be expected because the extremes are not as directly related to the generation procedure as mean monthly temperatures. In general, however, the temperature extremes are adequate for most applications.

The precipitation and temperature correction procedures offer an opportunity to make adjustments in the generation procedure when the parameters from table A1 and figures A1-A9 are not adequate due to some physical effect (such as topography), or when a more precise definition of precipitation and/or temperature is needed. As an example of the application of the correction procedure, a 30-year record of weather data was generated for a site on Reynolds Mountain,³ south of Boise, ID. Boise was the nearest location for which precipitation parameters could be obtained from table A1. The elevation at the Reynolds Mountain site is 7,100 feet while the elevation at Boise is only 2,840 feet. The precipitation regime on Reynolds Mountain is considerably different from that in Boise because of the elevation difference and related factors. Similarly, actual temperature at the Reynolds Mountain site are much lower than would be generated using the parameters from figures A1-A9 since the parameters were developed for sites at lower elevations such as Boise. To adjust these differences, the precipitation and temperature correction options were used. The mean monthly precipitation, maximum temperature, and minimum temperature were calculated from actual data from Reynolds Mountain. These means were input to the WGEN program along with the generation parameters obtained from table A1 and figures A1-A12 for Boise.

The weather data for Reynolds Mountain were obtained by the USDA-ARS Northwest Watershed Research Center and supplied by C.L. Hanson

The results of the generation are shown in table 12. The mean monthly precipitation amounts from the generated data are an excellent representation of the observed data. However, the wet days generated by WGEN are less than the observed number because only the rainfall amounts are changed with the correction procedure. The daily maximum and minimum temperatures generated using the correction procedure also compare closely with the observed data for Reynolds Mountain and are much lower than would be generated without the correction procedure (see table 8).

SUMMARY

The WGEN model is designed for use in generating daily values of precipitation, maximum temperature, minimum temperature, and solar radiation that are representative of the weather at a specific site. The generation procedure is designed to account for the dependence structure of the four variables. The serial dependence of p is described using a first-order Markov chain. The t_{max} , t_{min} , and r values are related to p by conditioning the values on the wet or dry status of the day. The persistence of t_{max} , t_{min} , and r is preserved using the serial-correlation of each variable. The dependence among the three variables is preserved using the cross-correlation coefficients. The generation procedure is also designed to describe the seasonal characteristics of the variables. The basic structure of the model is simple and several assumptions are made to enable general application of the model.

Two major generation options are available with WGEN. The user may choose (1) generate daily values of all four variables or (2) use actual precipitation data and generate the other three variables. In addition to the two major options, the user may choose to apply correction factors to precipitation and/or temperature based on actual mean monthly values.

A Fortran program of WGEN is given in appendix C. Application of WGEN to a particular site requires that 48 precipitation parameters and 12 temperature and radiation parameters be defined. The precipitation parameters have been defined for 139 location in the United States and are given in table A1. The temperature and radiation parameters have been mapped and are given in figures A1-A12. A description of the input format for WGEN is given in appendix B. A Fortran program is given in appendix D that can be used to define the generation parameters derived from actual weather data for a particular site.

LITERATURE CITED

Bond, D. C. 1979. Generating daily weather values by computer simulation techniques for crop yield forecasting models. USDA-ARS (formerly USDA-ESCS), Statis. Res. Div., 38 pp. Washington, D.C.

Bruhn, J. A., W. E. Fry, and G. W. Fick. 1980. Simulation of daily weather data using theoretical probability distributions. J. Appl. Meteor. 19(9): 1029-1036.

Haan, C. T. 1977. Statistical Methods in Hydrology, 378 pp. The Iowa State Univ. Press, Ames.

Jones, J. W., R. F. Colwick, and E. D. Threadgill. 1972. A simulated environmental model of temperature, evaporation, rainfall, and soil moisture. Trans. ASAE 15 (2):366-372.

Larsen, G. A. and R. B. Pense. 1981. Stochastic simulation of daily climatic data. USDA-SRS, Statis. Res. Div. Rpt. No. AGES810831. Washington, D. C.

Matalas, N. C. 1967. Mathematical assessment of synthetic hydrology. Water Resources Res. 3(4):937, 945.

Nicks, A. D. and J. F. Harp. 1980. Stochastic generation of temperature and solar radiation data. J. Hydrology 48:1-17.

Richardson, C. W. 1981. Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resources Res. 17(1):182-190.

Richardson, C. W. 1982a. A comparison of three distributions for the generation of daily rainfall amounts. <u>In Singh</u>, V. P. (ed.), Statistical Analysis of Rainfall and Runoff, pp. 67-78, Proc. Int. Symp. on Rainfall-Runoff Modeling, Water Resources Publications, 700 pp.

Richardson, C. W. 1982b. Dependence structure of daily temperature and solar radiation. Trans. ASAE 25(3):735-739.

Smith, R. E. and H. A. Schreiber. 1974. Point processes of seasonal thunderstorm rainfall. 2. Rainfall depth probabilities. Water Resource Res. 10(3):418-423.

U. S. Department of Commerce. 1968. Climatic atlas of the United States. Environ. Sci. Serv. Admin., Environ. Data Serv., 80pp.

Woolhiser, D. A. and J. Roldan. 1982. Stochastic daily precipitation models. 2. A comparison of distribution of amounts. Water Resources Res. 18(5):1461-1468.

Table 1. Values ofu , C, and T for the mean maximum temperature on wet or dry days for 31 locations in the United States.

		Dry Day	S	Wet Days
u Location	(°F)	C (°F)	Tu (days)	C T (°F) (days)
Albuquerque, NM Atlanta, GA Bismarck, ND Boise, ID Boston, MA Brownsville, TX Caribou, ME Charleston, SC Cleveland, OH Columbia, MO Dodge City, KS El Paso, TX Ely, NV Fresno, CA Great Falls, MT Grand Junction, CO Greensboro, NC Indianapolis, IN Lander, WY Little Rock, AR Madison, WI Medford, OR Miami, FL Nashville, TN Oklahoma City, OK Phoenix, AZ Rapid City, SD Salt Lake City, UT San Antonio, TX Sault Ste. Marie, MI Spokane, WA	71.8573.4660051575688307031136543094 756698.57568830703136543094 756698.66983075830.6543094 756698307583094	23.1 19.3 32.4 26.1 24.0 10.8 30.1 15.9 25.5 24.4 19.5 23.5 24.7 20.5 24.3 21.8 22.6 22.6 23.2 22.4 19.5 23.5 24.3 25.7 26.3	195.9 197.1 201.7 198.3 202.9 201.1 201.1 197.1 203.5 200.6 199.4 194.8 203.5 200.6 202.3 197.7 200.0 200.6 198.3 204.0 198.8 199.4 200.6 202.9	64.8 24.4 200.6 69.8 17.2 197.1 48.8 32.1 199.4 59.4 20.6 202.9 58.2 20.7 209.2 78.4 13.1 204.6 48.4 23.9 204.6 74.4 14.6 201.1 58.6 25.1 201.1 64.0 23.8 201.1 59.5 28.7 198.3 71.5 22.0 197.1 54.5 23.1 206.3 69.4 16.8 208.1 46.9 28.4 198.8 59.9 24.7 200.6 67.6 19.2 196.5 62.0 23.5 200.6 49.7 25.1 200.6 49.7 25.1 200.6 49.7 25.1 200.6 49.7 25.1 200.6 49.7 25.1 200.6 60.9 16.3 203.5 82.6 6.4 207.5 66.1
Mean Std. dev.	67.3 9.5	23.1 5.2	199.9	62.5 21.8 201.6 9.8 5.3 3.4

Table 2. Values ofu , C, and T for coefficient of variation of maximum temperature on wet or dry days for 31 locations in the United States.

		Dry Da	ys		Wet Day	ys
u Location		С	Tu (days)		С	T (days)
Albuquerque Atlanta Bismarck Boise Boston Brownsville Caribou Charleston Cleveland Columbia Dodge City El Paso Ely Fresno Great Falls Grand Junction Greensboro Indianapolis Lander Little Rock Madison Medford Miami Nashville Oklahoma City Phoenix Rapid City Salt Lake City San Antonio Sault Ste. Marie Spokane	0.11 0.12 0.30 0.15 0.16 0.07 0.26 0.10 0.22 0.19 0.17 0.09 0.15 0.10 0.21 0.14 0.13 0.19 0.13 0.19 0.13 0.19 0.15 0.10 0.21 0.16	-0.07 -0.08 -0.28 -0.07 -0.08 -0.05 -0.23 -0.07 -0.13 -0.11 -0.05 -0.10 -0.03 -0.14 -0.09 -0.14 -0.09 -0.17 -0.04 -0.03 -0.11 -0.05 -0.10 -0.03 -0.11 -0.10 -0.03	201.1 201.7 200.6 201.7 205.2 194.2 200.6 209.8 200.6 204.0 198.8 203.5 204.6 201.7 200.6 202.9 200.6 195.9 199.4 202.3 204.0 200.0 201.1 212.7 201.1 212.7 201.1 201.1 198.8 204.6 194.8	0.14 0.12 0.32 0.15 0.16 0.09 0.21 0.10 0.21 0.19 0.23 0.13 0.17 0.10 0.40 0.15 0.15 0.15 0.15 0.15 0.17 0.10 0.21	-0.07 -0.06 -0.28 -0.03 -0.06 -0.06 -0.12 -0.06 -0.13 -0.15 -0.07 -0.06 -0.01 -0.36 -0.07 -0.12 -0.15 -0.09 -0.13 -0.01 -0.02 -0.08 -0.12 -0.02 -0.02 -0.07 -0.13 -0.05	201.1 198.8 197.7 194.2 215.6 193.1 197.1 205.8 205.8 201.1 202.3 198.3 199.4 195.4 202.3 199.4 195.4 202.3 203.5 197.1 202.9 204.0 222.5 200.0 198.3 197.1 202.9 204.5 205.8
Ave. Std. dev.	0.16 0.06	-0.10 .06	201.5	0.17	-0.10 0.08	200.5 6.3

Table 3. Values of u, C, and T for the mean and coefficient of variation of minimum temperature for 31 locations in the United States.

	Mean w	et or d	ry days		oef. of t	
u Location	(°F)	C (°F)	Tu (days)		C .	r (days)
Albuquerque Atlanta Bismarck Boise Boston Brownsville Caribou Charleston Cleveland Columbia Dodge City El Paso Ely Fresno Great Falls Grand Junction Greensboro Indianapolis Lander Little Rock Madison Medford Miami Nashville Oklahoma City Phoenix Rapid City Salt Lake City San Antonio Sault Ste. Marie Spokane	43.5 51.4 29.3 39.5 43.6 64.9 29.8 53.3 44.7 42.9 52.8 28.1 40.3 47.0 42.3 51.4 40.3 51.4 35.5 49.5 34.5 49.5 34.5 49.5 34.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5 4	21.0 18.8 28.7 17.1 21.0 12.7 25.1 18.2 21.3 24.2 21.3 24.2 13.3 20.6 22.7 20.6 22.5 24.6 11.7 9.8 21.3 2		0.17 0.16 0.65 0.22 0.20 0.11 0.35 0.16 0.29 0.26 0.25 0.15 0.45 0.12 0.49 0.23 0.20 0.28 0.44 0.18 0.48 0.16 0.08 0.22 0.19 0.11 0.35	-0.13 -0.90 -0.06 -0.18 -0.08 -0.50 -0.12 -0.16 -0.22 -0.20 -0.11 -0.45 -0.56 -0.20 -0.14 -0.48 -0.13 -0.55 -0.06 -0.17 -0.15 -0.05 -0.16 -0.17 -0.15 -0.15 -0.16	202.9 198.3 200.0 187.9 199.4 196.5 207.5 195.9 203.5 198.8 201.7 199.4 195.4 199.4 196.5 196.5 199.4 195.9 200.6 191.3 204.0 198.8 200.0 202.3 200.0 208.7 194.2
Ave. Std. dev.	43.8 10.1	20.0	201.4	0.27 0.15	-0.25 0.22	198.7 4.3

Table 4. Values ofu , C, and T for the mean solar radiation on wet or dry days for 31 locations in the United States.

		Dry Day	s		Wet Days				
u Location	(ly)	C (ly)	Tu (days)	(]	ly)	C (ly)	T (days)		
Albuquerque Atlanta Bismarck Boise Boston Brownsville Caribou Charleston Cleveland Columbia Dodge City El Paso Ely Fresno Great Falls Grand Junction Greensboro Indianapolis Lander Little Rock Madison Medford Miami Nashville Oklahoma City Phoenix Rapid City Salt Lake City San Antonio Sault Ste. Marie Spokane	520.4 448.1 401.0 429.2 388.0 480.5 383.2 462.7 383.8 464.3 486.4 462.9 478.7 434.4 407.1 451.8 438.9 479.2 431.0 449.3 516.0 4462.5 394.3	224.6 174.0 266.1 276.0 218.5 175.1 245.6 1745.6 244.4 226.7 221.0 241.5 242.3 243.3	171.1 166.5 171.7 173.4 168.2 180.9 164.7 165.3 171.1 174.6 172.8 168.2 172.8 172.8 172.8 169.9 169.9 169.9 167.0 174.6 167.0 174.6 167.0 174.6 165.3 171.1 172.8	2: 2: 2: 2: 2: 2: 3: 4: 3: 2: 2: 3: 2: 2: 3: 2: 3: 2: 3: 2: 3: 2: 3: 2: 3: 2: 3: 2: 3: 2: 3: 2: 3: 2: 3: 2: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3:	35.2 35.4 71.1 301.9 91.4 60.0 91.4 60.0	226.7 161.7 181.2 209.3 142.5 157.1 142.2 159.2 176.7 185.7 198.4 227.7 174.6 175.6 175.6 176.5 183.1 170.8 179.5 162.1 174.3 170.2 192.0 108.0 186.2 180.6 195.7 173.7 200.1 166.7 144.2 200.8	180.9 177.4 174.0 179.2 176.9 191.9 166.5 175.1 178.6 174.6 172.2 171.7 170.5 169.9 175.7 176.9 175.1 174.0 180.3 179.8 178.6 180.3 179.8 178.6 180.3		
Ave. Std. dev.	443.1 43.0	227.4	171.1 4.0		84.1 45.5	176.9 24.5	175.5 5.5		

Table 5. Values of u, C, and T for the coefficient by variation of solar radiation on wet or dry days for 31 locations in the United States.

		Dry Days		W	et Days	
u Location		С	Tu (days)		С	T (days)
Albuquerque Atlanta Bismarck Boise Boston Brownsville Caribou Charleston Cleveland Columbia Dodge City El Paso Ely Fresno Great Falls Grand Junction Greensboro Indianapolis Lander Little Rock Madison Medford Miami Nashville Oklahoma City Phoenix Rapid City Salt Lake City San Antonio Sault Ste. Marie Spokane	0.15 0.24 0.26 0.23 0.28 0.22 0.32 0.28 0.22 0.32 0.28 0.23 0.14 0.17 0.21 0.26 0.19 0.24 0.29 0.18 0.26 0.29 0.28 0.22	-0.05 -0.06 -0.07 -0.12 -0.05 -0.11 -0.06 -0.06 -0.12 -0.11 -0.06 -0.04 -0.04 -0.05 -0.12 -0.10 -0.08 -0.12 -0.10 -0.08 -0.12 -0.11 -0.10 -0.08 -0.12 -0.11	190.7 197.7 190.2 189.6 182.1 204.0 117.9 190.2 180.3 200.0 202.3 175.1 197.7 186.7 179.8 205.2 193.1 197.1 178.6 192.5 176.9 184.4 194.8 192.5 200.6 169.9 192.5 184.4 210.4 150.3 178.0	0.32 0.56 0.46 0.44 0.70 0.52 0.55 0.55 0.52 0.52 0.53 0.48 0.43 0.43 0.55 0.58 0.58 0.42 0.53 0.42 0.43 0.43	-0.13 -0.22 -0.01 -0.12 -0.16 -0.19 -0.08 -0.17 -0.16 -0.22 -0.13 -0.13 -0.07 -0.12 -0.04 -0.10 -0.19 -0.23 -0.24 -0.13 -0.05 -0.25 -0.20 -0.16 -0.04 -0.10	178.6 194.8 197.7 178.0 186.1 211.5 90.2 197.1 179.8 189.6 181.5 172.2 160.7 156.1 111.6 176.3 187.3 183.8 118.5 196.5 179.2 163.6 222.0 191.3 189.6 222.0 191.3 189.6 221.0 191.3 189.6 221.0
Ave. Std. dev.	0.24 0.05	-0.08 0.04	186.6 17.6	0.48	-0.13 0.07	172.8 31.1

Table 6. Variable names for the means (u) and amplitude (C) of equation (14) for t_{max} , t_{min} , and r.

Variable name

Description

TXMDmean of t_{max} (dry), °F ATXamplitude of t_{max} (wet or dry), °F

CVTXmean coef. of var. of t_{max} (wet or dry)

ACVTXamplitude of coef. of var. of t_{max} (wet or dry)

TXMWmean of t_{max} (wet), ${}^{\circ}F$

TNmean of t_{min} (wet or dry), ${}^{\circ}F$

ATNamplitude of t_{min} (wet or dry), ${}^{\circ}F$

CVTNmean of coef. of var. of t_{min} (wet or dry)

ACVTNamplitude of coef. of var. of tmin (wet or dry)

RMDmean of r (dry), ly

ARamplitude of r (dry), ly

CVRDmean of coef. of var. of r (dry) (assumed to be 0.24 for all locations)

ACVRDamplitude of coef. of var. of r (dry) (assumed to be -0.08 for all locations)

RMWmean of r (wet), ly

CVRWmean of coef. of var. of r (wet) (assumed to be 0.48 for all locations)

ACVRWamplitude of coef. of var. of r (wet) (assumed to be -0.13 for all locations)

TABLE 7. COMPARISONS OF GENERATED AND OBSERVED WEATHER DATA, COLUMBIA, MO.

PRECIPITATION	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.	OCT.	NOV.	DEC.	ANN.	
AMOUNT (IN)														
OBSERVED MEAN	1.41	1.68	2.51	3.63	4.45	4.15	3.95	2.84	4.00	3.12	1.58	1.66	34.98	
GENERATED MEAN	1.27	1.68	2.97	3.40	4.12	4.79	4.43	3.14	3.94	3.36	1.73	1.86	36.69	
NO. OF WET DAYS														
OBSERVED MEAN	7.15	7.60	10.40	11.40	10.50	10.30	9.25	7.55	7.95	7.55	6.20	8.25	104.10	
GENERATED MEAN	6.10	7.27	10.80	11.03	10.60	10.87	9.40	7.03	7.27	7.07	6.10	8.57	102.10	
RUN OF WET DAYS														
OBSERVED MEAN	2.65	2.90	3.50	3.70	3.85	3.80	3.30	2.55	3.15	2.85	2.80	2.85	5.70	
GENERATED MEAN	2.37	2.80	3.63	3.77	3.90	3.93	3.47	2.53	2.93	2.83	2.47	3.37	6.23	
NO. DAYS > 2.0 I	ΙΝ													
OBSERVED MEAN	0.00	0.00	0.05	0.10	0.10	0.25	0.15	0.20	0.40	0.15	0.00	0.05	1.45	
GENERATED MEAN	0.00	0.00	0.00	0.00	0.17	0.27	0.27	0.23	0.30	0.17	0.00	0.00	1.40	
RADIATION MEAN DAILY (LY)														
OBSERVED MEAN	185.6	261.3	348.0	440.1	531.4	570.6	583.7	522.8	427.3	322.2	212.0	160.6	381.1	
GENERATED MEAN	192.9	257.7	342.6	452.2	541.4	581.3	577.8	515.9	403.2	286.8	206.9	162.9	377.4	

TABLE 7. CONTINUED. JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. OCT. NOV. DEC. ANN. TEMPERATURE DAILY MAXIMUM (F) OBSERVED MEAN 38.24 43.24 51.57 66.15 75.71 83.99 88.77 87.48 80.46 69.28 54.13 42.02 GENERATED MEAN 39.46 42.04 49.90 63.94 75.17 86.77 89.80 87.06 78.12 65.80 52.90 44.00 64.70 DAILY MINIMUM (F) OBSERVED MEAN 19.73 24.25 31.42 44.59 54.40 63.32 67.51 65.65 57.49 46.77 34.20 24.88 44.60 20.77 22.49 30.35 43.75 54.30 63.91 67.18 64.62 56.20 44.62 32.89 24.79 43.94 GENERATED MEAN MONTH/ANN. MAX (F) OBSERVED MEAN 65.16 65.32 77.46 86.26 89.19 94.05 98.40 97.32 93.25 86.34 74.10 66.64 100.04 GENERATED MEAN 60.97* 63.47 73.50 86.67 93.03* 98.97* 98.27 98.63 94.60 88.10 74.00 66.33 101.93 MONTH/ANN. MIN (F) OBSERVED MEAN -2.69 4.66 12.39 29.00 37.91 50.30 56.05 52.96 41.58 30.41 15.49 4.90 -5.14 -0.40 0.30* 7.37* 21.13* 37.17 57.60* 64.77* 59.13* 42.73 24.07* 7.13* 2.80 -6.83 GENERATED MEAN

NO. DAYS > 95 F

OBSERVED MEAN 0.00 0.00 0.00 0.00 1.95 5.35 4.75 1.50 0.00 0.00 13.55 0.00 0.00 0.00 0.10 0.90* 3.83* 4.83 3.77 0.87 0.10 0.00 0.00 14.40 GENERATED MEAN

NO. DAYS < 32 F

OBSERVED MEAN 27.10 21.65 17.45 3.10 0.00 0.00 0.00 0.00 0.00 1.95 13.10 23.70 108.05 GENERATED MEAN 25.80 22.77 17.63 5.53* 0.30 0.00 0.00 0.00 0.10 4.20* 14.30 23.30 113.93*

* -- GENERATED VALUES SIGNIFICANTLY DIFFERENT FROM OBSERVED VALUES AT 5% LEVEL BY T-TEST

TABLE 8. COMPARISON OF GENERATED AND OBSERVED WEATHER DATA, BOISE, ID.

	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.	OCT.	NOV.	DEC.	ANN.
PRECIPITATION													
AMOUNT (IN)													
OBSERVED MEAN	1.69	1.05	0.91	1.20	1.31	1.01	0.19	0.39	0.45	0.71	1.29	1.30	11.52
GENERATED MEAN	1.62	1.28	0.96	1.16	1.36	0.88	0.20	0.53	0.33	0.65	1.32	1.32	11.62
NO. OF WET DAYS													
OBSERVED MEAN	13.50	9.90	9.05	7.90	8.40	6.70	2.05	2.75	3.55	6.20	9.25	11.55	90.80
GENERATED MEAN	11.87	11.70	8.80	7.77	8.40	6.07	1.73	3.10	2.97	5.90	8.70	11.97	88.97
RUN OF WET DAYS													
OBSERVED MEAN	6.00	4.70	3.45	3.00	3.40	3.00	1.45	1.90	2.25	2.40	4.35	4.10	7.80
GENERATED MEAN	4.50*	4.60	3.37	2.87	3.27	2.57	1.20	1.93	1.83	2.77	3.73	4.73	6.73
NO. DAYS > 2.0 IN													
OBSERVED MEAN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
GENERATED MEAN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
RADIATION													
MEAN DAILY (LY)													
OBSERVED MEAN	141.0	231.2	350.8	485.0	588.8	634.0	672.5	579.1	457.6	308.6	172.7	124.3	400.4
GENERATED MEAN	119.0	197.4	350.5	499.2	594.9	662.9	660.3	550.5	418.6	265.2	147.6	99.1	381.4

TABLE 8. CONTINUED.

TEMPERATURE	JAN. FEB. M	AR. APR. N	MAY JUN. JUL.	AUG. SEP. (OCT. NOV. DEC. ANN.
DAILY MAXIMUM (F	")				
OBSERVED MEAN	37.73 44.02 51.56	60.81 70.79	79.26 90.84 87.	55 77.73 64.51	49.19 39.17 62.87
GENERATED MEAN	33.06 36.22* 45.58*	58.98 72.24	82.79 86.94 83.	90 75.32 61.78	47.64 38.33 60.36
DAILY MINIMUM (F)					
	23.12 27.33 30.35				30.50 24.86 39.35
GENERATED MEAN	21.75 24.47 29.62	37.48 46.37	52.89 54.95* 53.	72 48.20 39.30	30.91 25.71 38.86
MONTH/ANN. MAX (F	")				
	52.05 57.60 68.25				64.45 54.55 103.85
GENERATED MEAN	48.20* 51.47* 62.73*	78.97 89.43	95.83 99.13* 98.	03* 93.10 80.77	65.73 54.57 101.33
MONTH/ANN. MIN (F	')				
OBSERVED MEAN	4.30 14.30 18.10				
GENERATED MEAN	6.37 10.07* 12.67*	19.93* 32.23	42.40* 46.10 42.	50* 33.63 23.60	14.20 10.40 3.43
NO. DAYS > 95 F					
OBSERVED MEAN	0.00 0.00 0.00	0.00 0.10		20 0.65 0.00	
GENERATED MEAN	0.00 0.00 0.00	0.00 0.13	1.60 4.13* 2.	47* 0.77 0.00	0.00 0.00 9.10*
NO. DAYS < 32 F					
	25.35 21.20 19.95	9.50 1.90	0.00 0.00 0.		17.50 26.30 128.00
GENERATED MEAN	28.63* 23.67* 19.27	8.80 1.23	0.03 0.00 0.	00 0.77 6.37	16.67 23.83 129.27
* GENERATED VA	LUES SIGNIFICANTLY D	IFFERENT FROM OF	BSERVED VALUES AT 5	% LEVEL BY T-TES	Γ

TABLE 9. COMPARISONS OF GENERATED AND OBSERVED WEATHER DATA, MIAMI, FL.

PRECIPITATION	J	AN. F	EB. MA	AR. A	PR.	MAY J	UN. J	UL. A	UG. S	EP. C	OCT. N	OV. D	EC. ANN	•
AMOUNT (IN)														
OBSERVED MEAN	2.27	2.20	2.05	2.65	6.49	9.84	6.21	6.61	8.62	8.37	2.63	1.69	59.65	
GENERATED MEAN	2.22	2.39	2.09	2.12	7.68	10.02	6.45	6.18	8.70	8.65	2.40	1.54	60.45	
NO. OF WET DAYS														
OBSERVED MEAN	6.60	6.00	6.05	5.90	9.90	15.85	15.70	15.85	17.10	14.85	7.05	5.65	126.50	
GENERATED MEAN	6.27	6.30	5.50	5.30	10.40	15.33	14.93	14.70	15.00	12.97	6.63	5.07	118.40	
RUN OF WET DAYS														
OBSERVED MEAN	2.40	2.30	2.55	2.20	5.35	6.45	5.75	5.95	7.85	6.00	2.75	2.35	10.25	
GENERATED MEAN	2.37	2.53	2.07	2.63	4.87	5.53	5.47	5.10	6.10	5.03	2.63	1.97	8.47	
NO. DAYS > 2.0 I	N													
OBSERVED MEAN	0.05	0.15	0.10	0.10	0.85	1.05	0.35	0.40	0.70	1.15	0.25	0.10	5.25	
GENERATED MEAN	0.07	0.03	0.03	0.13	1.00	1.13	0.37	0.23	0.70	1.00	0.07	0.03	4.80	
RADIATION MEAN DAILY (LY)														
OBSERVED MEAN	332.2	409.3	479.8	546.9	548.9	516.3	544.1	517.2	442.3	394.5	355.1	323.3	452.2	
GENERATED MEAN	332.4	384.3	449.4	522.6	554.4	565.2	543.1	498.6	435.6	373.3	333.4	314.3	442.4	

TABLE 9. CONTINUED.

TEMPERATUI	RE	JA	AN. F	EB. M	AR.	APR.	MAY 3	UN. J	UL. Z	AUG. S	EP. C	OCT. N	OV. D	EC. ANN
DAILY MAX	XIMUM	(F)												
		74.86				85.17				88.13				
GENERATED	MEAN	73.83	75.32	78.07	82.04	86.58	90.00*	91.33*	90.43	86.92	82.56	79.45	75.33	82.69
DAILY MIN	IMUM (F)												
OBSERVED	MEAN	58.37	59.69	63.24	67.83	71.32	74.14	75.87	76.15	75.36	71.21	64.68	59.66	68.17
GENERATED	MEAN	55.12*	56.73	60.31	65.17	* 70.86	75.12	76.85*	75.65	71.38*	66.32*	61.95	57.04	66.09
MONTH/ANN	. MAX	(F)												
OBSERVED	MEAN	82.75	85.10	87.30	89.80	90.40	92.30	92.85	93.65	92.00	89.15	85.35	82.95	94.60
GENERATED	MEAN	87.53*	89.10*	90.03*	91.10	92.37	* 93.40*	93.43	93.53	92.80	91.57*	90.77*	88.80*	95.63
MONTH/ANN	. MIN	(F)												
OBSERVED	MEAN	40.00	44.70	46.70	56.70	62.65	69.40	71.90	72.30	71.50	61.25	49.75	42.75	37.90
GENERATED	MEAN	42.80*	43.23	48.13	55.87	63.77	70.73*	74.57*	71.57	* 64.90*	57.97*	50.77	43.67	40.03*
NO. DAYS	> 95 F													
OBSERVED	MEAN	0.00	0.00	0.00	0.00	0.00	0.05	0.20	1.10	0.05	0.00	0.00	0.00	1.40
GENERATED	MEAN	0.03	0.07	0.13	0.13	0.03	0.13	0.03	0.03	0.17	0.17	0.37	0.03	1.33
NO. DAYS <	< 32 F													
OBSERVED	MEAN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
GENERATED	MEAN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TABLE 10. COMPARISONS OF GENERATED AND OBSERVED WEATHER DATA, PHOENIX, AZ.

PRECIPITATION	J	AN. F	EB. MA	AR. Al	PR. M	IAY J	UN. J	UL. A	UG. S	EP. C	OCT. N	IOV. D	EC. ANN.	
AMOUNT (IN)														
OBSERVED MEAN GENERATED MEAN	0.73 0.62	0.53	0.76 0.91	0.30 0.23	0.10 0.07	0.15	0.73 0.72	1.20	0.68	0.51	0.49	0.85	7.03 7.15	
NO. OF WET DAYS														
OBSERVED MEAN GENERATED MEAN	3.95 2.80	3.45 3.53	3.15 3.53	1.70 1.67	0.80 0.57	0.90	4.15 4.00	5.50 5.43	2.75 3.70	2.40	2.45	3.55 3.13	34.75 33.60	
RUN OF WET DAYS														
OBSERVED MEAN GENERATED MEAN	2.20 1.87	2.45 2.13	1.85 2.07	1.40 1.33	1.25 1.17	1.25 1.17	2.10	2.30	2.05 2.17	1.75 1.73	1.60 1.67	2.10	4.15 3.93	
NO. DAYS > 2.0 I	N													
OBSERVED MEAN GENERATED MEAN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.05	0.00	0.00	0.00	0.10 0.07	
RADIATION														
MEAN DAILY (LY)														
OBSERVED MEAN GENERATED MEAN	296.9 289.9	399.8 361.8	507.4 471.9	636.9 587.7	708.6 665.8	722.8 703.0	641.2 665.6	591.3 581.4	530.5 490.0	438.9 392.8	325.9 313.7	268.2 268.9	501.0 483.3	

TABLE 10. CONTINUED.

	JAN. FEB. MA	AR. APR. N	MAY JUN.	JUL. AUG. SEP	OCT. N	OV. DEC. ANN.
TEMPERATURE						
DAILY MAXIMUM (F)						
OBSERVED MEAN 64.9 GENERATED MEAN 62.3	91 68.84 74.05 33 63.94* 71.18	82.77 92.42 81.37 90.86		5 101.58 97.75 8 2 98.80 92.07* 8		
DAILY MINIMUM (F)						
OBSERVED MEAN 38.6 GENERATED MEAN 35.8		52.31 60.57 53.06 61.72		76.85 69.73 5 * 70.39* 63.78* 5		
MONTH/ANN. MAX (F)						
OBSERVED MEAN 76.2 GENERATED MEAN 78.8				108.40 105.55 9 108.73 103.83 9		
MONTH/ANN. MIN (F)						
OBSERVED MEAN 28.0 GENERATED MEAN 25.1	05 31.00 34.05 10* 27.00* 31.70*	42.15 49.15 41.40 49.77		6 68.60 58.85 4 * 60.07* 53.03* 4		
NO. DAYS > 95 F						
OBSERVED MEAN 0.0 GENERATED MEAN 0.0		1.55 14.95 1.37 9.53*			5.95 0.00 2.60* 0.20	0.00 128.65 0.00 101.60*
NO. DAYS < 32 F						
OBSERVED MEAN 5.3 GENERATED MEAN 8.5	35 2.70 0.65 53* 6.03* 1.23	0.00 0.00 0.00 0.00	0.00 0.00		0.00 0.65 0.00 0.83	3.80 13.15 5.13 21.77*

^{* --} GENERATED VALUES SIGNIFICANTLY DIFFERENT FROM OBSERVED VALUES AT 5% LEVEL BY T-TEST

TABLE 11. COMPARISONS OF GENERATED AND OBSERVED WEATHER DATA, MIAMI, FL.

	J	TAN. F	EB. MA	AR. A	.PR. I	MAY J	UN. J	UL. A	UG. S	EP. O	CT. N	OV. I	DEC. ANN.
PRECIPITATION													
AMOUNT (IN)													
OBSERVED MEAN GENERATED MEAN	3.73 3.94	3.97 4.67	4.43 4.68	3.91 3.98	3.58 3.99	3.08 3.42	2.71 2.57	3.71 3.50	3.45 3.02	3.31 2.40*	4.61 4.66		45.21 45.01
NO. OF WET DAYS													
OBSERVED MEAN GENERATED MEAN	11.85 11.33		12.00 11.90	11.45 10.70	11.40 11.43	10.60 10.50	9.10 8.53	10.00	8.65 7.63		11.75 10.90		128.15 121.23*
RUN OF WET DAYS													
OBSERVED MEAN GENERATED MEAN	3.85 4.07	3.40 3.90	3.90 4.17	3.80 3.90	4.25 3.27	3.40 3.50	3.10 3.40	3.00	2.90 2.73	3.55 2.73	3.70 3.70	3.05 3.23	6.70 6.33
NO. DAYS > 2.0	IN												
OBSERVED MEAN GENERATED MEAN	0.00	0.20	0.10 0.10	0.10	0.15	0.05	0.15 0.00*	0.25	0.40	0.20	0.25	0.15 0.17	2.00
RADIATION													
MEAN DAILY (LY))												
OBSERVED MEAN GENERATED MEAN	147.7 138.3	212.8 197.7	301.7 292.4	386.2 413.0	485.8 497.8	504.4 537.6	499.1 525.1	430.9 457.4	359.6 364.4	253.2 245.6		127.9 128.4	322.8 329.7

TABLE 11. CONTINUED.

	JAN. FEB.	MAR. APR.	MAY JUN. J	UL. AUG. SI	EP. OCT. N	OV. DEC. ANN.
TEMPERATURE						
DAILY MAXIMUM (F)						
	04 37.86 43.9 66 36.15 44.6			79.63 72.26 79.16 70.29		
DAILY MINIMUM (F)						
	17 23.32 30.6 27 22.38 30.1			63.31 56.55 60.53* 52.66*		
MONTH/ANN. MAX (F)						
	75 55.25 64.6 87* 54.07 63.3			92.30 89.80 90.83 85.73*		
MONTH/ANN. MIN (F)						
	85 5.15 16.4 33 8.93* 15.1			54.55 43.80 54.90 41.03*		9.15 0.30 9.23 3.67
NO. DAYS > 95 F						
	00 0.00 0.0 00 0.00 0.0		0.55 1.25 0.00* 0.17*	0.65 0.10 0.20 0.00	0.00 0.00 0.00 0.00	0.00 2.55 0.00 0.40*
NO. DAYS < 32 F						
	00 23.10 16.7 07* 25.20* 18.4		0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00		22.00 96.85 27.17* 123.90*

^{* --} GENERATED VALUES SIGNIFICANTLY DIFFERENT FROM OBSERVED VALUES AT 5% LEVEL BY T-TEST

TABLE 12. Comparisons of data generated for Reynolds Mountain using precipitation and temperature correction procedure with observed weather data*

Item	JAN. F	EB. MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.	OCT.	NOV	. DEC.	ANN.
PRECIPITATION												
Amount (in)												
Observed Mean 8.03 Generated Mean 7.66	4.68 4.60 5.83 4.8		2.62	2.30	0.67	1.17 1.65	1.31	2.48 2.29		6.09 6.15	43.34 44.25	
No. wet days												
	13.3 15.1 12.2 9.2	12.9 8.1	10.6	10.0	4.7 1.8	6.0 3.3	5.4 3.3	8.9 6.1		6.6	133.5 92.6	
TEMPERATURE												
Daily Maximum (°F)												
Observed Mean 27.2 Generated Mean 27.2		3.0 38. 2.9 38.		61.8 61.9	72.1 71.5	70.1 69.5	60.9 61.1	48.8 48.9	36.0 35.8	29.3 30.2		
Daily Minimum (°F)												
Observed Mean 17.8 Generated Mean 17.1		1.2 24. 1.0 24.		44.0 44.3	53.4 53.1	52.1 52.4	44.0 44.6	34.7 34.5	25.3 25.0	19.5 20.2		

^{* --} GENERATED VALUES SIGNIFICANTLY DIFFERENT FROM OBSERVED VALUES AT 5% LEVEL BY t-test.

Figure 1. Location of stations used to define weather generation parameters.

Figure 2. Definition of variables in seasonal description of temperature and solar radiation.

A, maximum temperature

B, minimum temperature

C, solar radiation

Figure 3. Definition of generation parameters for (A) maximum temperature, (B) minimum temperature, and (C) solar radiation.

APPENDIX A

Generation Parameters

TABLE A1. RAINFALL GENERATION PARAMETERS FOR LOCATIONS IN THE UNITED STATES.

STATION		JAN	FEB	MAR	APF	MAY	JUN	I JUL	AUG	S SEF	OCT	' NOV	7 DEC
BIRMINGHAM, AL	P(W/D)	0.491 (0.264 (0.643 (0.710 (0.299	0.285 0.648	0.245 0.712	0.183 0.675	0.220 0.626	0.307 0.802	0.265 0.660	0.175 0.676	0.144 0.630	0.213 0.715	0.267 0.647
MOBILE, AL	P(W/D)	0.419 (0.294 (0.577 (0.766 (0.286	0.257 0.556	0.197 0.512	0.202	0.280 0.623	0.446 0.713	0.351 0.686	0.232 0.548	0.135 0.645	0.193 0.613	0.271 0.624
MONTGOMERY, AL	P(W/D)	0.447 (0.269 (0.713 (0.525 (0.289	0.262 0.699	0.219 0.634	0.185 0.634	0.220 0.706	0.317 0.620	0.264 0.762	0.166 0.546	0.117 0.601	0.175 0.684	0.279 0.691
FLAGSTAFF, AZ	P(W/D)	0.558 (0.114 (0.895 (0.327 (0.138	0.151 0.854	0.127 0.945	0.073 0.983	0.051 0.592	0.254 0.826	0.279 0.782	0.132 0.659	0.082 0.811	0.114 0.689	0.115 0.729
PHOENIX, AZ	P(W/D)	0.407 (0.085 (0.825 (0.225 (0.077	0.070 0.998	0.042	0.018 0.899	0.022 0.629	0.099 0.752	0.147 0.650	0.057 0.532	0.054 0.680	0.060 0.917	0.078 0.746
YUMA, AZ	P(W/D)	0.273 (0.056 (0.841 (0.180 (0.048	0.041	0.024 0.517	0.008	0.000	0.030 0.637	0.052 0.670	0.017 0.394	0.025 0.686	0.038 0.624	0.047 0.882
FORT SMITH, AR	P(W/D)	0.426 (0.157 (0.655 (0.447 (0.216	0.238 0.719	0.280 0.709	0.245 0.658	0.210 0.632	0.195 0.590	0.171 0.650	0.171 0.752	0.134 0.625	0.147 0.638	0.165 0.719
LITTLE ROCK, AR	P(W/D)	0.489 (0.217 (0.619 (0.699 (0.267	0.242 0.790	0.270 0.686	0.190 0.554	0.179 0.651	0.233 0.703	0.177 0.581	0.174 0.624	0.154 0.659	0.186 0.633	0.225 0.665
BAKERSFIELD, CA	P(W/D)	0.425 (0.132 (0.966 (0.175 (0.132	0.130 0.845	0.095 0.822	0.039 0.841	0.008 0.805	0.010	0.006 0.796	0.019 0.893	0.022 0.967	0.082	0.117 0.913

STATION		JAN	FEB	MAR	APR	MAY	. JUN	I JUL	AUG	S SEF	OCI	NOV	7 DEC
BLUE CANYON, CA		0.731 0.208 0.716 1.597	0.213 0.808	0.231 0.880	0.184 0.721	0.155 0.798	0.073 0.742	0.025 0.996	0.032 0.439	0.054	0.090 0.567	0.200 0.710	0.174 0.791
EUREKA, CA	P(W/D)	0.754 0.331 0.837 0.556	0.265 0.758	0.261 0.968	0.209 0.777	0.167 0.743	0.128 0.777	0.064 0.998	0.058 0.499	0.095 0.651	0.177 0.851	0.272 0.719	0.266 0.877
FRESNO, CA	P(W/D)	0.509 0.172 0.724 0.384	0.156 0.759	0.140 0.852	0.105 0.752	0.056 0.998	0.024	0.010 0.998	0.010 0.698	0.017 0.848	0.034 0.862	0.098 0.827	0.154 0.755
MT. SHASTA, CA	P(W/D)	0.718 0.233 0.776 0.724	0.211 0.650	0.206 0.729	0.154 0.706	0.137 0.834	0.101 0.998	0.042	0.049	0.049 0.558	0.097 0.635	0.200 0.660	0.185 0.623
SAN DIEGO, CA	P(W/D)	0.580 0.124 0.683 0.398	0.131 0.659	0.139 0.737	0.106 0.734	0.047 0.867	0.026 0.998	0.006 0.998	0.010 0.617	0.019 0.847	0.046 0.578	0.103 0.785	0.111 0.708
SAN FRANCISCO, CA	P(W/D)	0.662 0.225 0.725 0.550	0.193 0.762	0.203 0.762	0.121 0.803	0.063 0.744	0.042 0.512	0.016 0.900	0.030 0.769	0.028 0.486	0.090 0.535	0.168 0.702	0.166 0.761
COLORADO SPRINGS, CO	P(W/D)	0.333 0.098 0.905 0.077	0.123 0.998	0.173 0.850	0.159 0.656	0.232	0.235 0.607	0.400 0.708	0.253 0.755	0.140 0.716	0.111 0.774	0.098 0.885	0.087 0.988
DENVER, CO	P(W/D)	0.423 0.130 0.781 0.118	0.177 0.853	0.201 0.790	0.202 0.655	0.208 0.611	0.246 0.637	0.237 0.634	0.228	0.149 0.693	0.113 0.690	0.122 0.948	0.126 0.988
GRAND JUNCTION, CO	P(W/D)	0.407 0.173 0.947 0.096	0.183 0.994	0.179 0.998	0.168 0.849	0.107 0.821	0.086 0.835	0.114 0.764	0.184 0.794	0.136 0.840	0.107 0.983	0.127 0.918	0.169 0.973

STATION		JAN FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
PUEBLO, CO	P(W/D) 0. ALPHA 0.	.362 0.411 .104 0.113 .935 0.998 .066 0.065	0.136 0.966	0.116 0.634	0.172 0.650	0.180 0.693	0.246 0.720	0.230 0.615	0.143 0.661	0.092 0.719	0.093 0.939	0.071 0.928
WINDSOR LOCKS, CT	P(W/D) 0. ALPHA 0.	.406 0.454 .311 0.311 .780 0.650 .555 0.485	0.301 0.755	0.310 0.689	0.309 0.725	0.295 0.667	0.275 0.702	0.274 0.594	0.236 0.556	0.182 0.641	0.297 0.687	0.297 0.694
WILMINGTON, DE	P(W/D) 0. ALPHA 0.	.450 0.410 .263 0.282 .783 0.727 .335 0.435	0.312 0.732	0.318 0.771	0.291	0.244	0.251 0.578	0.244	0.172 0.592	0.162 0.667	0.245 0.699	0.226 0.746
DISTRICT OF COLUMBIA	P(W/D) 0. ALPHA 0.	.424 0.415 .265 0.254 .834 0.811 .299 0.384	0.303 0.828	0.276 0.789	0.260 0.751	0.269 0.622	0.243 0.581	0.231 0.607	0.179 0.635	0.162 0.628	0.242 0.731	0.244
JACKSONVILLE, FL	P(W/D) 0. ALPHA 0.	.401 0.398 .212 0.253 .677 0.731 .486 0.670	0.190 0.626	0.172 0.670	0.181 0.586	0.294 0.651	0.391 0.676	0.342 0.613	0.320 0.622	0.200 0.545	0.157 0.665	0.191 0.677
MIAMI, FL	P(W/D) 0. ALPHA 0.	.328 0.364 .182 0.173 .622 0.634 .553 0.577	0.174 0.662	0.160 0.611	0.196 0.601	0.413 0.679	0.382 0.707	0.422 0.635	0.401 0.631	0.319 0.549	0.196 0.549	0.142 0.562
TALLAHASSEE, FL	P(W/D) 0. ALPHA 0.	.387 0.433 .241 0.286 .744 0.696 .583 0.830	0.225 0.628	0.187 0.591	0.206 0.722	0.304 0.652	0.496 0.670	0.329 0.745	0.254 0.555	0.110 0.656	0.163 0.625	0.219 0.696
TAMPA, FL	P(W/D) 0. ALPHA 0.	.309 0.409 .180 0.201 .669 0.719 .526 0.634	0.169 0.631	0.118 0.687	0.169 0.578	0.270 0.655	0.436 0.624	0.474	0.350 0.632	0.178 0.672	0.132 0.641	0.181 0.687
ATLANTA, GA	P(W/D) 0. ALPHA 0.	.502 0.490 .261 0.291 .718 0.727 .566 0.618	0.286 0.689	0.247 0.723	0.188 0.728	0.258 0.765	0.318 0.681	0.208 0.711	0.163 0.661	0.119 0.622	0.207 0.668	0.258 0.743

STATION		JAN	FEB	MAR	APF	R MAY	Z JUN	I JUL	AUG	S SEF	OCI	NOV	7 DEC
AUGUSTA, GA	P(W/D)	0.477 0.232 0.733 0.528	0.290 0.797	0.253 0.689	0.220 0.637	0.183 0.754	0.227 0.813	0.271 0.614	0.233 0.641	0.180 0.694	0.113 0.643	0.165 0.618	0.220 0.738
MACON, GA	P(W/D)	0.468 0.250 0.701 0.527	0.283 0.799	0.263 0.666	0.214	0.182 0.597	0.257 0.637	0.340 0.692	0.239 0.751	0.184 0.623	0.118 0.594	0.176 0.734	0.248 0.756
SAVANNAH, GA	P(W/D)	0.439 0.229 0.737 0.456	0.283	0.251 0.710	0.194 0.712	0.203 0.626	0.264 0.689	0.394 0.671	0.292 0.653	0.244	0.131 0.582	0.158 0.600	0.215 0.795
BOISE, ID	P(W/D)	0.595 0.317 0.846 0.148	0.235	0.223 0.998	0.211	0.196 0.740	0.150 0.854	0.053 0.826	0.063 0.676	0.083 0.801	0.152 0.998	0.213 0.998	0.271 0.883
POCATELLO, ID	P(W/D)	0.511 0.289 0.949 0.097	0.253	0.230 0.998	0.213 0.998	0.194 0.794	0.169 0.824	0.095 0.850	0.107 0.706	0.099 0.836	0.110 0.884	0.194 0.987	0.259 0.992
CHICAGO, IL	P(W/D)	0.430 0.291 0.681 0.251	0.285 0.782	0.330 0.705	0.332 0.733	0.293 0.783	0.288 0.692	0.270 0.602	0.202	0.214 0.718	0.193 0.640	0.236 0.735	0.274 0.666
EVANSVILLE, IN	P(W/D)	0.467 0.242 0.673 0.479	0.276 0.725	0.288 0.622	0.336	0.252 0.697	0.243 0.676	0.263 0.743	0.181 0.654	0.170 0.629	0.166 0.659	0.214	0.260 0.648
FORT WAYNE, IN	P(W/D)	0.496 0.326 0.667 0.280	0.309	0.359 0.743	0.389 0.781	0.305 0.830	0.253 0.838	0.297 0.713	0.217 0.762	0.238 0.758	0.202 0.653	0.277 0.830	0.313
INDIANAPOLIS, IN	P(W/D)	0.466 0.291 0.630 0.387	0.277	0.344 0.688	0.332 0.749	0.304 0.845	0.266 0.671	0.273 0.746	0.218 0.753	0.192 0.646	0.175 0.689	0.259 0.733	0.291

STATION		JAN	FEB	MAF	APF	MAY	/ JUN	JUL	AUG	SEP	OCT	NOV	DEC DEC
DES MOINES, IA	P(W/W) P(W/D) ALPHA BETA	0.205 0.762	0.212 0.821	0.255 0.698	0.317 0.713	0.286 0.681	0.295	0.257 0.697	0.252 0.693	0.238 0.691	0.183 0.661	0.141 0.536	0.200 0.831
DUBUQUE, IA	P(W/W) P(W/D) ALPHA BETA	0.234 0.722	0.212	0.269 0.814	0.326 0.802	0.301 0.733	0.286	0.298 0.673	0.219 0.752	0.237 0.644	0.184 0.746	0.173 0.595	0.248 0.744
DODGE CITY, KS	P(W/W) P(W/D) ALPHA BETA	0.109 0.927	0.138 0.795	0.150 0.660	0.157 0.733	0.233 0.670	0.213	0.247	0.209 0.616	0.144 0.591	0.096 0.592	0.074 0.783	0.103 0.819
TOPEKA, KS	P(W/W) P(W/D) ALPHA BETA	0.151 0.773	0.186 0.708	0.172 0.748	0.243 0.626	0.293 0.780	0.294	0.228 0.698	0.215 0.652	0.202 0.755	0.147 0.695	0.123 0.592	0.154 0.894
WICHITA, KS	P(W/W) P(W/D) ALPHA BETA	0.060 0.621	0.212 0.734	0.194 0.524	0.322 0.551	0.246	0.188	0.254 0.640	0.292 0.989	0.123 0.724	0.137 0.998	0.157 0.609	0.111 0.858
COVINGTON, KY	P(W/W) P(W/D) ALPHA BETA	0.326 0.655	0.332 0.708	0.380	0.343	0.265 0.794	0.259	0.283 0.763	0.211	0.198 0.797	0.197 0.719	0.289	0.309 0.684
LEXINGTON, KY	P(W/W) P(W/D) ALPHA BETA	0.317 0.630	0.345 0.751	0.356 0.652	0.353 0.647	0.292 0.680	0.273	0.312 0.734	0.245 0.631	0.176 0.666	0.194 0.725	0.267 0.708	0.321 0.678
LOUISVILLE, KY	P(W/W) P(W/D) ALPHA BETA	0.301 0.662	0.323 0.709	0.355 0.645	0.331 0.664	0.256 0.723	0.222	0.297 0.743	0.201 0.692	0.182 0.648	0.188 0.752	0.257 0.628	0.291 0.653
BATON ROUGE, LA	P(W/W) P(W/D) ALPHA BETA	0.251 0.654	0.267 0.664	0.220 0.645	0.182 0.582	0.180 0.652	0.194	0.363 0.700	0.279 0.767	0.219 0.721	0.121 0.617	0.180 0.712	0.255 0.725

STATION		JAN	FEB	MAR	APF	K MAY	Z JUN	I JUL	AUG	SEF	OCI	NOV	DEC DEC
NEW ORLEANS, LA	P(W/D)	0.409 0.253 0.575 0.865	0.279	0.227 0.570	0.197 0.604	0.191	0.258 0.691	0.368 0.705	0.329 0.642	0.237 0.646	0.130 0.694	0.168 0.593	0.274 0.633
SHREVEPORT, LA	P(W/D)	0.497 0.221 0.625 0.599	0.237	0.248 0.729	0.245 0.665	0.186 0.668	0.154 0.578	0.187 0.607	0.163 0.527	0.163 0.663	0.131 0.713	0.205 0.652	0.222
CARIBOU, ME	P(W/D)	0.516 0.409 0.779 0.192	0.368 0.826	0.315 0.756	0.318	0.332 0.858	0.376 0.782	0.424 0.719	0.367 0.682	0.361 0.609	0.316 0.676	0.389 0.788	0.379 0.720
PORTLAND, ME	P(W/D)	0.442 0.295 0.765 0.413	0.341	0.281 0.716	0.310 0.717	0.321 0.714	0.310 0.651	0.261 0.724	0.299 0.708	0.234 0.631	0.229	0.308 0.691	0.299 0.670
BALTIMORE, MD	P(W/D)	0.446 0.263 0.791 0.334	0.264	0.293 0.713	0.319 0.698	0.277 0.707	0.260 0.631	0.243 0.592	0.247 0.617	0.180 0.530	0.164 0.698	0.251 0.653	0.244 0.737
BOSTON, MA	P(W/D)	0.460 0.333 0.689 0.456	0.359	0.315 0.662	0.302 0.720	0.313 0.670	0.305 0.680	0.248 0.663	0.286 0.582	0.252 0.562	0.229 0.607	0.307 0.601	0.294 0.679
NANTUCKET, MA	P(W/D)	0.498 0.353 0.763 0.415	0.369	0.352 0.723	0.316 0.699	0.281 0.652	0.223	0.218 0.636	0.255 0.644	0.212 0.571	0.214 0.665	0.319 0.660	0.344 0.718
DETROIT, MI	P(W/D)	0.496 0.351 0.695 0.211	0.329	0.335 0.772	0.332 0.741	0.313 0.684	0.289 0.776	0.241 0.713	0.225 0.704	0.221 0.778	0.180 0.672	0.262 0.743	0.351 0.651
GRAND RAPIDS, MI	P(W/D)	0.661 0.362 0.802 0.153	0.392 0.788	0.352 0.762	0.333 0.772	0.278 0.706	0.288 0.699	0.252 0.756	0.218 0.757	0.276 0.646	0.230 0.673	0.295 0.727	0.373 0.805

STATION		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
DULUTH, MN	P(W/W) P(W/D) ALPHA BETA	0.291 0.819	0.272 0.798	0.269 0.676	0.291 0.713	0.342 0.723	0.324		0.324 0.635	0.298 0.716	0.212 0.688	0.239 0.618	0.296 0.730
MINNEAPOLIS, MN	P(W/W) P(W/D) ALPHA BETA	0.221 0.826	0.188 0.730	0.275 0.670	0.283 0.785	0.321 0.751	0.331 0.760		0.266 0.732	0.252 0.771	0.182 0.642	0.198 0.675	0.247 0.826
COLUMBIA, MO	P(W/W) P(W/D) ALPHA BETA	0.181	0.224 0.712	0.274 0.695	0.309 0.816	0.279 0.803	0.279 0.677		0.205 0.662	0.199 0.612	0.182 0.585	0.163 0.735	0.208 0.750
KANSAS CITY, MO	P(W/W) P(W/D) ALPHA BETA	0.157 0.727	0.216 0.713	0.215 0.682	0.260 0.754	0.305 0.687	0.284 0.786		0.203 0.646	0.214	0.156 0.695	0.135 0.553	0.166 0.859
ST. LOUIS, MO	P(W/W) P(W/D) ALPHA BETA	0.195 0.753	0.254 0.670	0.276 0.725	0.328 0.814	0.273 0.716	0.243 0.664		0.201 0.735	0.190 0.796	0.184 0.813	0.193 0.692	0.218 0.753
JACKSON, MS	P(W/W) P(W/D) ALPHA BETA	0.262 0.636	0.287 0.758	0.258 0.670	0.267 0.657	0.170 0.684	0.205 0.673	0.289	0.246 0.623	0.174 0.540	0.126 0.551	0.217 0.652	0.267 0.679
MERIDIAN, MS	P(W/W) P(W/D) ALPHA BETA	0.260 0.812	0.281 0.786	0.244	0.224 0.835	0.174	0.199 0.874		0.243	0.171 0.753	0.108 0.590	0.195 0.836	0.252 0.853
BILLINGS, MT	P(W/W) P(W/D) ALPHA BETA	0.198 0.998	0.184	0.241	0.233 0.775	0.270 0.740	0.314 0.728	0.177	0.170 0.743	0.165 0.753	0.160 0.768	0.166 0.732	0.139 0.911
GREAT FALLS, MT	P(W/W) P(W/D) ALPHA BETA	0.210 0.923	0.211	0.207 0.998	0.245 0.738	0.269 0.675	0.297 0.692	0.177	0.162 0.731	0.169 0.787	0.129 0.914	0.156 0.899	0.178 0.988

STATION		JAN	FEB	MAR	APF	MAY	Z JUN	I JUL	AUG	S SEF	OCT	NOV	7 DEC
HAVRE, MT	P(W/D)	0.503 0.189 0.998 0.062	0.162	0.169 0.998	0.183 0.883	0.237 0.747	0.308 0.712	0.154 0.781	0.152 0.669	0.163 0.752	0.138 0.765	0.130 0.940	0.144 0.988
HELENA, MT	P(W/D)	0.429 0.215 0.998 0.070	0.184	0.200 0.843	0.249	0.260 0.726	0.266 0.891	0.180 0.883	0.207 0.804	0.147 0.844	0.159 0.802	0.185 0.866	0.183 0.988
KALISPELL, MT	P(W/D)	0.658 0.383 0.998 0.100	0.309	0.249 0.998	0.250 0.834	0.264 0.862	0.310 0.807	0.145 0.829	0.164 0.798	0.197 0.866	0.217 0.968	0.322 0.857	0.431 0.921
MILES CITY, MT	P(W/D)	0.444 0.212 0.998 0.063	0.193	0.200 0.958	0.213 0.869	0.262 0.741	0.309 0.744	0.230 0.666	0.166 0.699	0.146 0.797	0.135 0.848	0.159 0.861	0.168 0.998
GRAND ISLAND, NE	P(W/D)	0.409 0.108 0.841 0.120	0.181 0.795	0.178 0.745	0.204 0.645	0.278 0.724	0.259 0.745	0.271 0.668	0.221 0.647	0.188 0.650	0.113 0.885	0.109 0.780	0.120 0.676
ELKO, NV	P(W/D)	0.467 0.224 0.797 0.164	0.216 0.928	0.212 0.958	0.163 0.905	0.176 0.960	0.130 0.809	0.095 0.828	0.091 0.565	0.083 0.779	0.080 0.738	0.146 0.998	0.220 0.921
LAS VEGAS, NV	P(W/D)	0.271 0.061 0.808 0.200	0.065	0.055 0.802	0.048 0.749	0.025 0.727	0.022 0.669	0.067 0.672	0.082 0.543	0.040 0.629	0.041	0.056 0.605	0.047 0.826
RENO, NV	P(W/D)	0.496 0.138 0.728 0.275	0.113 0.748	0.135 0.838	0.101 0.721	0.101 0.663	0.074 0.942	0.067 0.998	0.049	0.044	0.046 0.701	0.093 0.813	0.138 0.718
WINNEMULLA, NV	P(W/D)	0.467 0.198 0.928 0.123	0.177	0.153 0.998	0.146 0.786	0.147	0.113 0.718	0.053 0.787	0.052 0.759	0.058 0.783	0.087 0.761	0.149	0.193 0.930

STATION		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	S SEP	OCT	NOV	DEC
CONCORD, NH	P(W/W) P(W/D) ALPHA BETA	0.300 0.774	0.307	0.295 0.809	0.321 0.873	0.317 0.763	0.296 0.723		0.295 0.654	0.241	0.211 0.710	0.333 0.701	0.293 0.670
MT. WASHINGTON, NH	P(W/W) P(W/D) ALPHA BETA	0.524 0.789	0.569 0.619	0.441 0.735	0.436 0.822	0.397 0.794	0.439 0.972		0.416 0.893	0.409 0.787	0.313 0.808	0.495 0.734	0.537 0.695
ALBUQUERQUE, NM	P(W/W) P(W/D) ALPHA BETA	0.080	0.090	0.095 0.964	0.073 0.712	0.094 0.699	0.077 0.718		0.240 0.804	0.129 0.836	0.090 0.739	0.070 0.998	0.093 0.858
ALBANY, NY	P(W/W) P(W/D) ALPHA BETA	0.360 0.755	0.365 0.683	0.331 0.747	0.331 0.708	0.336 0.673	0.310 0.741		0.322 0.705	0.254 0.672	0.210 0.709	0.340 0.788	0.339 0.673
BUFFALO, NY	P(W/W) P(W/D) ALPHA BETA	0.578 0.779	0.485 0.728	0.421 0.752	0.409 0.783	0.339 0.757	0.276 0.785		0.300 0.754	0.270 0.728	0.239 0.711	0.412 0.824	0.533 0.751
NEW YORK, NY	P(W/W) P(W/D) ALPHA BETA	0.302 0.739	0.296 0.671	0.325 0.683	0.354 0.650	0.314	0.271 0.765	0.245	0.297 0.583	0.217 0.667	0.191	0.283 0.683	0.299 0.658
SYRACUSE, NY	P(W/W) P(W/D) ALPHA BETA	0.494 0.893	0.487 0.778	0.415 0.736	0.388 0.800	0.350 0.783	0.301 0.735		0.308 0.722	0.262 0.805	0.266 0.824	0.425 0.806	0.561 0.840
NORTH PLATTE, NE	P(W/W) P(W/D) ALPHA BETA	0.126 0.845	0.151 0.750	0.167 0.731	0.179 0.683	0.255 0.700	0.273 0.635	0.270	0.227 0.676	0.154 0.705	0.117 0.704	0.108 0.813	0.112 0.785
SCOTTSBLUFF, NE	P(W/W) P(W/D) ALPHA BETA	0.122 0.998	0.133	0.192 0.877	0.189 0.858	0.269 0.715	0.312	0.240	0.171 0.789	0.147	0.112 0.720	0.112	0.129 0.998

STATION		JAN	FEB	MAR	APF	R MAY	JUN	I JUI	AUG	SEF	OCT	NOV	7 DEC
ASHEVILLE, NC	P(W/D)	0.448 0.265 0.690 0.378	0.302 0.786	0.344	0.296 0.670	0.265 0.772	0.296 0.779	0.358 0.818	0.279 0.676	0.184 0.628	0.158 0.672	0.221 0.670	0.239 0.645
CHARLOTTE, NC	P(W/D)	0.463 0.235 0.752 0.487	0.287	0.272 0.728	0.245 0.751	0.205 0.844	0.283 0.766	0.289 0.679	0.223 0.695	0.161 0.652	0.133 0.688	0.189 0.765	0.246 0.634
GREENSBORO, NC	P(W/D)	0.435 0.255 0.739 0.459	0.281 0.819	0.264	0.279 0.725	0.232 0.721	0.266 0.646	0.301 0.694	0.244	0.167 0.535	0.158 0.562	0.199 0.697	0.202 0.713
RALEIGH, NC	P(W/D)	0.416 0.251 0.722 0.485	0.258 0.808	0.261 0.873	0.247 0.844	0.247 0.797	0.236 0.732	0.264 0.770	0.243 0.620	0.147 0.729	0.150 0.722	0.201 0.755	0.204 0.850
BISMARCK, ND	P(W/D)	0.354 0.227 0.998 0.066	0.188 0.935	0.205 0.803	0.187 0.704	0.261 0.698	0.328 0.673	0.249 0.690	0.277 0.626	0.200 0.755	0.112 0.822	0.139 0.828	0.197 0.998
WILLISTON, ND	P(W/D)	0.409 0.227 0.998 0.071	0.204	0.206 0.998	0.187 0.731	0.189 0.728	0.322 0.689	0.240	0.205 0.644	0.176 0.664	0.119 0.733	0.155 0.998	0.169 0.998
NEWARK, NJ	P(W/D)	0.437 0.300 0.781 0.311	0.313	0.316 0.704	0.330 0.738	0.297 0.719	0.278 0.736	0.254 0.630	0.260 0.616	0.211	0.189 0.691	0.299 0.720	0.292 0.738
CLEVELAND, OH	P(W/D)	0.598 0.470 0.702 0.219	0.452 0.781	0.432 0.780	0.404	0.319 0.794	0.290 0.769	0.292 0.639	0.267 0.691	0.252 0.823	0.244 0.775	0.352 0.748	0.419 0.762
COLUMBUS, OH	P(W/D)	0.504 0.339 0.683 0.325	0.359 0.757	0.384 0.664	0.360 0.788	0.328 0.754	0.276 0.733	0.323 0.720	0.230 0.822	0.216 0.766	0.205 0.879	0.288 0.740	0.329 0.739

STATION		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
TOLEDO, OH	P(W/W) P(W/D) ALPHA BETA	0.350 0.656	0.326 0.752	0.364 0.724	0.366 0.745	0.287	0.252	0.260 0.716	0.229 0.737	0.251 0.755	0.186 0.674	0.279 0.759	0.363 0.640
OKLAHOMA CITY, OK	P(W/W) P(W/D) ALPHA BETA	0.123 0.703	0.172 0.744	0.179 0.669	0.197 0.660	0.217 0.632	0.205	0.175 0.707	0.190 0.696	0.190 0.608	0.117 0.638	0.100 0.616	0.125 0.644
TULSA, OK	P(W/W) P(W/D) ALPHA BETA	0.146 0.711	0.184 0.757	0.205 0.672	0.231 0.707	0.260 0.658	0.217	0.186 0.591	0.171 0.662	0.193 0.638	0.133 0.582	0.146	0.165 0.625
BURNS, OR	P(W/W) P(W/D) ALPHA BETA	0.353 0.910	0.223	0.233 0.998	0.178 0.927	0.180 0.986	0.157	0.067 0.868	0.082 0.792	0.072 0.657	0.127 0.738	0.201 0.998	0.243 0.897
MEACHUM, OR	P(W/W) P(W/D) ALPHA BETA	0.484	0.331	0.311 0.998	0.291 0.919	0.270 0.920	0.216	0.080 0.816	0.100 0.688	0.129 0.792	0.194 0.801	0.298 0.927	0.371 0.906
MEDFORD, OR	P(W/W) P(W/D) ALPHA BETA	0.361 0.703	0.269 0.608	0.236 0.876	0.189 0.946	0.174 0.791	0.111	0.036 0.579	0.053 0.998	0.086 0.724	0.159 0.678	0.273 0.692	0.281 0.654
PENDLETON, OR	P(W/W) P(W/D) ALPHA BETA	0.353 0.966	0.247	0.250 0.998	0.249 0.938	0.179 0.874	0.163	0.067 0.957	0.078 0.932	0.108 0.913	0.174 0.813	0.275 0.933	0.369
SALEM, OR	P(W/W) P(W/D) ALPHA BETA	0.411	0.341	0.293 0.964	0.304 0.867	0.215 0.998	0.151	0.045 0.826	0.086 0.829	0.148 0.722	0.233 0.866	0.339	0.427 0.827
PORTLAND, OR	P(W/W) P(W/D) ALPHA BETA	0.425 0.830	0.357 0.840	0.344	0.309 0.945	0.236 0.853	0.188	0.071 0.788	0.082	0.172 0.790	0.232 0.962	0.324	0.443 0.879

STATION		JAN	FEB	MAR	APF	R MAY	JUN	I JUI	AUG	S SEF	OCI	' NOV	DEC DEC
SEXT. SUMMIT, OR	P(W/W) P(W/D) ALPHA BETA	0.373 0.730	0.312	0.300 0.887	0.230 0.835	0.179 0.776	0.126 0.890	0.044	0.053 0.749	0.101	0.174 0.729	0.276 0.694	0.286 0.731
ROSWELL, NM	,	0.314 0.063 0.830 0.196	0.097	0.072 0.810	0.056 0.740	0.091 0.641	0.117 0.612	0.197 0.664	0.173 0.683	0.125 0.593	0.078 0.596	0.053 0.768	0.070 0.779
PHILADELPHIA, PA	P(W/W) P(W/D) ALPHA BETA		0.295 0.757	0.298 0.811	0.313 0.759	0.275 0.760	0.272 0.585	0.246	0.256 0.668	0.185 0.613	0.171 0.577	0.257 0.735	0.255 0.673
PITTSBURGH, PA	P(W/W) P(W/D) ALPHA BETA		0.414	0.451 0.731	0.393 0.847	0.311 0.772	0.304 0.733	0.317 0.728	0.267 0.651	0.219 0.723	0.255 0.695	0.328 0.841	0.451 0.765
PROVIDENCE, RI	P(W/W) P(W/D) ALPHA BETA		0.323	0.321 0.657	0.298 0.658	0.301 0.670	0.297 0.650	0.256 0.655	0.304 0.589	0.211 0.636	0.208 0.590	0.292 0.626	0.329 0.645
CHARLESTON, SC	P(W/W) P(W/D) ALPHA BETA	0.244	0.268 0.760	0.265 0.707	0.194 0.710	0.205 0.628	0.259 0.603	0.381 0.710	0.310 0.677	0.231 0.758	0.134 0.576	0.171 0.657	0.222 0.678
COLUMBIA, SC	P(W/W) P(W/D) ALPHA BETA	0.227	0.283	0.262 0.758	0.227 0.674	0.206 0.758	0.246 0.812	0.290 0.672	0.260 0.637	0.162 0.559	0.112 0.578	0.168 0.723	0.229 0.737
HURON, SD	P(W/W) P(W/D) ALPHA BETA	0.171	0.167	0.189 0.712	0.252 0.682	0.263 0.616	0.324 0.652	0.261	0.254 0.615	0.176 0.705	0.114	0.134	0.169 0.761
RAPID CITY, SD	P(W/W) P(W/D) ALPHA BETA	0.156	0.200	0.222 0.815	0.233 0.776	0.306 0.674	0.317 0.713	0.239 0.622	0.208 0.757	0.167 0.709	0.103 0.782	0.157 0.830	0.155 0.998

STATION		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
CHATTANOOGA, TN	P(W/W) P(W/D) ALPHA BETA	0.268 0.727	0.295 0.769	0.289 0.671	0.270 0.719	0.228 0.794	0.264 0.721	0.263	0.240 0.679		0.154 0.738	0.217 0.784	0.263 0.718
KNOXVILLE, TN	P(W/W) P(W/D) ALPHA BETA	0.317 0.747	0.329 0.774	0.327 0.737	0.294 0.759	0.253 0.916	0.291 0.720	0.304 0.778	0.257 0.681		0.170 0.729	0.271 0.731	0.289 0.664
MEMPHIS, TN	P(W/W) P(W/D) ALPHA BETA	0.246 0.645	0.294 0.753	0.270 0.755	0.295 0.729	0.184 0.717	0.200 0.755	0.241	0.205 0.620		0.146 0.657	0.222 0.715	0.259 0.686
NASHVILLE, TN	P(W/W) P(W/D) ALPHA BETA	0.274 0.655	0.299 0.835	0.280 0.705	0.323 0.763	0.248 0.743	0.238 0.718	0.272 0.705	0.214 0.751		0.161 0.738	0.249 0.805	0.280 0.721
ABILENE, TX	P(W/W) P(W/D) ALPHA BETA	0.102 0.603	0.135 0.796	0.111 0.864	0.149 0.741	0.179 0.676	0.115 0.633	0.097 0.637	0.136 0.587		0.136 0.611	0.116 0.707	0.089 0.700
AMARILLO, TX	P(W/W) P(W/D) ALPHA BETA	0.081 0.654	0.117 0.748	0.121 0.748	0.107 0.687	0.212 0.575	0.207 0.582	0.203 0.615	0.203 0.639	0.147	0.090 0.664	0.061 0.834	0.092 0.645
AUSTIN, TX	P(W/W) P(W/D) ALPHA BETA	0.174 0.601	0.205 0.555	0.179 0.632	0.190 0.613	0.197 0.571	0.117 0.611	0.101 0.547	0.115 0.643	0.172	0.143 0.550	0.146 0.593	0.144 0.556
BROWNSVILLE, TX	P(W/W) P(W/D) ALPHA BETA	0.148 0.614	0.158	0.097 0.646	0.087 0.517	0.094 0.535	0.107 0.586	0.093 0.615	0.138 0.628	0.226	0.160 0.507	0.138 0.623	0.134 0.559
CORPUS CHRISTI, TX	P(W/W) P(W/D) ALPHA BETA	0.171 0.483	0.165 0.547	0.138 0.635	0.130 0.453	0.153 0.581	0.130 0.560	0.104 0.562	0.113 0.597	0.219	0.142 0.553	0.136 0.636	0.141 0.544

STATION		JAN	FEB	MAR	APF	MAY	JUN	JUL	AUG	SEF	OCT	' NOV	7 DEC
DALLAS, TX	P(W/D)	0.431 0.153 0.750 0.358	0.195 0.653	0.203 0.612	0.196 0.673	0.202 0.632	0.146 0.713	0.105 0.568	0.139 0.581	0.143 0.667	0.126 0.525	0.134	0.131 0.661
EL PASO, TX	P(W/D)	0.368 0.060 0.988 0.107	0.067 0.911	0.075 0.817	0.046 0.658	0.043 0.709	0.087 0.694	0.229 0.645	0.168 0.716	0.093 0.558	0.077 0.827	0.064	0.080 0.976
GALVESTON, TX	P(W/D)	0.383 0.232 0.640 0.509	0.251	0.186 0.567	0.172 0.551	0.141 0.589	0.141 0.580	0.162 0.609	0.206 0.635	0.175 0.523	0.131 0.727	0.156	0.221 0.691
HOUSTON, TX	P(W/D)	0.407 0.253 0.558 0.615	0.237 0.564	0.218 0.507	0.212 0.485	0.189 0.565	0.156 0.585	0.214 0.594	0.219 0.581	0.186 0.645	0.135 0.545	0.205	0.232 0.626
SAN ANTONIO, TX	P(W/D)	0.446 0.180 0.521 0.392	0.195 0.604	0.166 0.502	0.179 0.545	0.195 0.592	0.123 0.562	0.088 0.495	0.115 0.566	0.167 0.689	0.135 0.600	0.140	0.158 0.606
TEMPLE, TX	P(W/D)	0.507 0.149 0.659 0.428	0.213 0.735	0.176 0.713	0.178 0.680	0.193 0.630	0.133 0.704	0.079 0.705	0.118 0.584	0.161 0.686	0.125 0.488	0.127	0.151 0.590
WACO, TX	P(W/D)	0.397 0.148 0.650 0.415	0.210	0.166 0.676	0.203 0.573	0.188 0.612	0.138 0.651	0.072 0.639	0.111 0.711	0.138 0.706	0.123 0.626	0.142	0.133 0.677
MILFORD, UT	P(W/D)	0.364 0.151 0.863 0.122	0.200	0.156 0.981	0.153 0.920	0.099	0.079 0.770	0.119 0.771	0.147 0.890	0.100 0.721	0.078 0.848	0.111	0.131 0.956
SALT LAKE CITY, UT	P(W/D)	0.479 0.226 0.854 0.165	0.263	0.236 0.911	0.239 0.799	0.165 0.853	0.139 0.734	0.104 0.635	0.139 0.638	0.111	0.108 0.702	0.170	0.230 0.879

STATION		JAN	FEB	MAF	APF	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
NORFOLK, VA	P(W/W) P(W/D) ALPHA BETA	0.246 0.728	0.289 0.757	0.316 0.744	0.301 0.782	0.242 0.727	0.228	0.266 0.704	0.272 0.608	0.184 0.519	0.174 0.619	0.223 0.666	0.226 0.823
RICHMOND, VA	P(W/W) P(W/D) ALPHA BETA	0.252 0.770	0.266 0.843	0.284 0.816	0.253 0.825	0.243 0.734	0.226	0.271 0.642	0.249 0.607	0.187 0.642	0.172 0.623	0.237 0.620	0.215 0.751
OLYMPIA, WA	P(W/W) P(W/D) ALPHA BETA	0.452 0.848	0.344	0.321	0.276 0.917	0.185 0.998	0.194	0.079 0.998	0.106 0.753	0.160 0.848	0.267 0.863	0.349	0.455 0.851
SPOKANE, WA	P(W/W) P(W/D) ALPHA BETA	0.361 0.955	0.269 0.998	0.239 0.956	0.225 0.933	0.202 0.889	0.200	0.099 0.878	0.121 0.746	0.154 0.824	0.184 0.910	0.278 0.903	0.386 0.887
STAMPEDE PASS, WA	P(W/W) P(W/D) ALPHA BETA	0.457 0.858	0.418 0.772	0.388 0.889	0.379 0.809	0.323 0.846	0.284	0.161 0.822	0.209 0.775	0.251 0.701	0.330 0.874	0.361 0.824	0.442 0.797
YAKIMA, WA	P(W/W) P(W/D) ALPHA BETA	0.229 0.811	0.126 0.873	0.126 0.998	0.110	0.126 0.977	0.124	0.044	0.069	0.073 0.872	0.114 0.878	0.188 0.974	0.229 0.809
WALLA WALLA, WA	P(W/W) P(W/D) ALPHA BETA	0.377 0.878	0.262 0.880	0.259 0.897	0.240 0.878	0.197 0.766	0.181	0.054 0.671	0.085 0.778	0.119 0.860	0.200 0.702	0.304 0.855	0.370 0.822
CHARLESTON, WV	P(W/W) P(W/D) ALPHA BETA	0.383 0.741	0.395 0.730	0.397 0.761	0.395 0.828	0.314	0.264	0.369 0.680	0.249	0.213 0.780	0.222	0.279 0.850	0.384 0.746
GREEN BAY, WI	P(W/W) P(W/D) ALPHA BETA	0.282 0.821	0.217 0.822	0.262 0.808	0.271 0.781	0.339 0.718	0.298	0.273 0.688	0.267 0.787	0.293 0.728	0.196 0.724	0.223 0.754	0.286 0.825

STATION		JAN FEI	B MAR	APR	R MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
LACROSSE, WI	P(W/D) 0 ALPHA 0	0.320 0.410 0.233 0.161 0.838 0.778 0.127 0.158	0.272 0.723	0.274 0.791	0.296 0.862	0.308 0.728	0.287 0.732	0.245 0.816	0.242 0.722	0.204 0.793	0.178 0.662	0.221 0.874
MADISON, WI	P(W/D) 0 ALPHA 0	0.392 0.409 0.284 0.204 0.794 0.751 0.137 0.170	0.292 0.783	0.322 0.709	0.287 0.713	0.297 0.695	0.282 0.655	0.256 0.689	0.245 0.631	0.204 0.688	0.219 0.654	0.218 0.767
MILWAUKEE, WI	P(W/D) 0 ALPHA 0	0.481 0.449 0.288 0.260 0.661 0.756 0.208 0.167	0.299 0.711	0.349 0.759	0.313	0.285 0.670	0.288 0.635	0.226 0.650	0.240 0.638	0.206 0.670	0.243	0.269 0.695
CHEYENNE, WY	P(W/D) 0 ALPHA 0	0.360 0.414 0.125 0.176 0.998 0.924 0.064 0.071	0.225 0.833	0.206 0.864		0.282 0.689	0.293 0.742	0.255 0.737	0.159 0.735	0.123 0.794	0.133 0.942	0.131 0.967

Figure Al. Distribution of the mean of t_{max} for dry days (TXPM), °F.

Figure A2. Distribution of the amplitude to t for wet or dry days (ATX), °F.

Figure A3. Distribution of the mean of the coefficient of variation of t for wet or dry days (CVTX).

Figure A4. Distribution of the amplitude of the coefficient of variation of t_{max} for wet or dry days (ACVTX).

Figure A5. Distribution of the mean of t_{max} for wet days (TXMW), *F.

Figure A6. Distribution of the mean of t min for wet or dry days (TN), *F.

Figure A7. Distribution of the amplitude of t_{min} for wet or dry days (ATN), °F.

Figure A8. Distribution of the mean of the coefficient of variation of t min for wet or dry days (CVTN).

Figure A9. Distribution of the amplitude of the coefficient of variation of t_{\min} for wet or dry days (ACVTN).

Figure AlO. Distribution of the mean of r for dry days (RMD), 1y.

Figure All. Distribution of the amplitude of r for dry days (AR), ly.

Figure Al2. Distribution of the mean of r for wet days (RMW), ly.

APPENDIX B

Input Data for WGEN

Table B1. Description of order, format, and source of input for WGEN

Input no.	Variable _name	<u>Description</u>	<u>Format</u>	Source
1	ACOM(I)	Up to 80 characters of user comments	20A4	User supplied
2	NYRS	Number of years of data to be generated	I5	User supplied
	KGEN	Generation option code	I5	User supplied
		1 if p, $t_{\text{max}}\text{, }t_{\text{min}}$ and r to be generated		
		2 if actual p to be used		
	ALAT	Station latitude, deg	F5.0	User supplied
	KTCF	Temperature correction factor code	I5	User supplied
		0 if no temperature correction		
		<pre>1 if some correction factor for maximum and minimum temperatures</pre>		
		2 if independent correction factors for maxiimum and miminum temperatures		
	KRFC	Precipitation correction factor code	I5	User supplied
		0 if no precipitation correction		
		1 if precipitation to be corrected		
		-If KGEN = 2, skip to Input No. 7		
3	PWW(I)	Monthly probability of wet day given wet on previous day	12F6.0	Table A1
4	PWD(I)	Monthly probability of wet day given dry on previous day	12F6.0	Table A1
5	ALPHA(I)	Monthly values of gamma distribution shape parameter	12F6.0	Table A1
6	BETA(I)	Monthly values of gamma distribution scale parameter	12F6.0	Table A1

Table B1. Continued.

Input no.	Variable _name	<u>Description</u>	<u>Format</u>	Source
7	TXMD	Mean of t_{max} (dry)	F8.0	Figure A1
	ATX	Amplitude of t_{max} (wet or dry)	F8.0	Figure A2
	CVTX	Mean of coef. of var. of t_{max} (wet or dry)	F8.0	Figure A3
	ACVTX	Amplitude of coef. of var. of t_{max} (wet or dry)	F8.0	Figure A4
8	TXMW	$\text{Mean of } t_{\text{max}} \text{ (wet)}$	F8.0	Figure A5
9	TN	Mean of t_{min} (wet or dry)	F8.0	Figure A6
	ATN	Amplitude of t_{min} (wet or dry)	F8.0	Figure A7
	CVTN	Mean of coef. of var. of t_{min} (wet or dry)	F8.0	Figure A8
	ACTVN	Amplitude of coef.of var. of t_{min} (wet or dry)	F8.0	Figure A9
10	RMD	Mean of r (dry)	F8.0	Figure A10
	AR	Amplitude of r (wet or dry)	F8.0	Figure All
11	RMW	Mean of r (wet)	F8.0	Figure A12
		-If KTCF = 0, skip to Input No. 15		
		-If KTCF = 2, skip to Input No. 13		
12	TM(I)	Monthly values of actual mean temperature (°F)	12F6.0	User supplied
13	TTMAX(I)	Monthly values of actual mean maximum temperature (°F)	12F6.0	User supplied
14	TTMIN(I)	Monthly values of actual mean minimum temperature (°F)	12F6.0	User supplied
		-If KRCF = 0, omit Input No. 15		
15	RM(I)	Monthly values of actual mean precipitation amount (in.)	12F6.0	User supplied
		-If KGEN = 1, omit Input No. 16		
16	RAIN(I)	Actual precipitation data	User specified	User supplied

APPENDIX C
The WGEN Program

```
DIMENSION TXM(366), TXS(366), TXM1(366), TXS1(366), TNM(366), TNS(366),
    1RMO(366), RSO(366), RM1(366), RS1(366), RC(366), RAIN(366), TMAX(366),
    2TMIN (366), RAD (366), ACOM (20), NI (12), SR (12), SSTX (12), SSTN (12), SSRAD (
    32), SRAIN(12), STMAX(12), STMIN(12), SRAD(12), NII(12), PWW(12), PWD(12),
    4ALPHA(12), BETA(12), TM(12), PW(12), TG(12), RM(12), RG(12), RCF(12),
    5NWET (12), XNW (12)
     DIMENSION TAMAX(12), TAMIN(12)
     DIMENSION TTMAX(12), TTMIN(12), TCFMAX(12), TCFMIN(12)
     DATA NI/31,59,90,120,151,181,212,243,273,304,334,365/
     DATA NII/31,60,91,121,152,182,213,244,274,305,335,366/
C* INPUT # 01 - TITLE
C*
     ACOM(I) - LOCATION IDENTIFICATION OR OTHER USER
C*
               COMMENTS. 80 CHARACTER MAXIMUM
READ (2,98) (ACOM (I), I=1,20)
     FORMAT (20A4)
     WRITE (6,99) (ACOM (I), I=1,20)
    FORMAT('1',20A4)
C* INPUT # 02 - NUMBER OF YEARS, GENERATION CODES, AND LATITUDE *
C*
C*
         NYRS - YEARS OF DATA TO BE GENERATED
C*
         KGEN - GENERATION OPTION CODE
C*
               IF KGEN = 1, RAIN, MAX TEMP, MIN TEMP, AND
C*
               SOLAR RADIATION WILL BE GENERATED
C*
               IF KGEN = 2 OBSERVED RAIN WILL BE USED AND
C*
               MAX TEMP, MIN TEMP, SOLAR RADIATION WILL
C*
               BE GENERATED
C*
        ALAT - STATION LATITUDE IN DEGREES
C*
        KTCF - TEMP. CORRECTION FACTOR OPTION CODE
C*
               IF KTCF = 0 NO TEMP CORRECTION WILL BE MADE
C*
               IF KTCF = 2 GENERATED MAX TEMP AND
C*
               MIN TEMP WILL BE CORRECTED BASED ON
C*
               OBSERVED MEAN MONTHLY MAX AND MIN TEMP
C*
               IF KTCF = 1 GENERATED MAX TEMP AND MIN TEMP
C*
               WILL BE CORRECTED BASED ON OBSERVED MEAN
C*
               MONTHLY TEMP
C*
        KRCF - RAIN CORRECTION FACTOR OPTION CODE
C*
               IF KRCF = 1 GENERATED RAIN WILL BE CORRECTED
C*
               BASED ON OBSERVED MEAN MONTHLY RAIN
C*
               IF KRCF = 0 NO RAIN CORRECTION WILL BE MADE
READ(2,100) NYRS, KGEN, ALAT, KTCF, KRCF
100 FORMAT (215, F5.2, 215)
C**** CALCULATE MAXIMUM SOLAR RADIATION FOR EACH DAY
     XLAT = ALAT*6.2832/360.
     DO 6 I = 1,366
     XI = I
     SD = 0.4102*SIN(0.0172*(XI-80.25))
     CH = -TAN(XLAT)*TAN(SD)
```

```
IF (CH .GT. 1.0) H = 0.
   IF (CH .GT. 1.0) GO TO 5
   IF (CH .LT. -1.0) H=3.1416
   IF(CH .LT. -1.0) GO TO 5
   H = ACOS(CH)
   DD = 1.0+0.0335*SIN(0.0172*(XI+88.2))
   RC(I)=889.2305*DD*((H*SIN(XLAT)*SIN(SD))+(COS(XLAT)*COS(SD)*SIN(H)
   RC(I) = RC(I) * 0.8
6
   CONTINUE
   DO 7 I = 1,12
   TTMAX(I)=0.
   TTMIN(I) = 0.
   RM(I) = 0.
   CONTINUE
   IF (KGEN .EQ. 2) GO TO 10
C* NOTE--INPUTS #03,04,05,06 ARE RAINFALL PARAMETERS
  OMIT IF KGEN=2
C* INPUT # 03 - PROBABILITY OF WET GIVEN WET
C*
  PWW(I) - 12 MONTHLY VALUES OF P(W/W)
READ(2,103) (PWW(I),I=1,12)
103 FORMAT (12F6.0)
C***************
C* INPUT # 04 - PROBABILITY OF WET GIVEN DRY
   PWD(I) - 12 MONTHLY VALUES OF P(W/D)
READ(2,103)(PWD(I),I=1,12)
C* INPUT # 05 - GAMMA DISTRIBUTION SHAPE PARAMETER
C*
  ALPHA(I) - 12 MONTHLY VALUES OF SHAPE PARAMETER
READ(2,103)(ALPHA(I),I=1,12)
C* INPUT # 06 - GAMMA DISTRIBUTION SCALE PARAMETER
   BETA(I) - 12 MONTH VALUES OF SCALE PARAMETER
READ (2, 103) (BETA (I), I=1, 12)
101 FORMAT (9F8.0)
C* INPUT # 07 - FOURIER COEFFICIENTS OF MAX TEMP ON DRY DAYS
C*
   TXMD - MEAN OF TMAX - DRY
C*
    ATX - AMPLITUDE OF TMAX - WET OR DRY
C*
    CVTX - MEAN OF COEF. OF VAR. OF TMAX - WET OR DRY
C*
   ACVTX - AMPLITUDE OF COEF.OF VAR. OF TMAX - WET OR DRY
C***************
  READ(2,101) TXMD, ATX, CVTX, ACVTX
```

```
C* INPUT # 08 - FOURIER COEFFICIENTS OF MAX TEMP ON WET DAYS *
  TXMW - MEAN OF TMAX - WET
READ(2,101) TXMW
C* INPUT # 09 - FOURIER COEFFICIENTS OF MIN TEMP
C*
   TN - MEAN OF TMIN - WET OR DRY
   ATN - AMPLITUDE OF TMIN - WET OR DRY
C*
C*
   CVTN - MEAN OF COEF. OF VAR. OF TMIN - WET OR DRY
   ACVTN - AMPLITUDE OF COEF. OF VAR. OF TMIN - WET OR DRY *
C*
READ(2,101) TN,ATN,CVTN,ACVTN
C* INPUT # 10 - FOURIER COEFFICIENTS OF RAD ON DRY DAYS
C*
   RMD - MEAN OF RAD - DRY
   AR - AMPLITUDE OF RAD - WET OR DRY
READ(2,101) RMD, AR
   CVRD = 0.24
   ACVRD = -0.08
C* INPUT # 11 - FOURIER COEFFICIENTS OF RAD ON WET DAYS
  RMW - MEAN OF RAD - WET
READ(2,101) RMW
   CVRW = 0.48
   ACVRW = -0.13
   D1 = TXMD - TXMW
   D2 = RMD - RMW
   IF(KTCF .EQ. 0) GO TO 12
   IF(KTCF .EQ. 2) GO TO 8
C* INPUT # 12 - MONTHLY VALUES OF ACTUAL MEAN TEMP
C*
         OMIT IF KTCF = 0 OR 2
C*
   TM(I) - 12 MONTHLY VALUES OF ACTUAL MEAN TEMP
READ(2,103)(TM(I),I=1,12)
   GO TO 12
C* INPUT # 13 - MONTHLY VALUES OF ACTUAL MEAN MAX TEMP
         OMIT IF KTCF = 0 OR 1
C*
C*
   TTMAX(I) - 12 MONTHLY VALUES OF ACTUAL MEAN MAX TEMP
READ(2,103) (TTMAX(I), I=1,12)
C* INPUT # 14 - MONTHLY VALUES OF ACTUAL MEAN MIN TEMP
C*
         OMIT IF KTCF = 0 OR 1
C* TTMIN(I) - 12 MONTHLY VALUES OF ACTUAL MEAN MIN TEMP *
```

```
READ(2,103) (TTMIN(I), I=1,12)
12
     IF(KRCF .EQ. 0) GO TO 13
C* INPUT # 15 - MONTHLY VALUES OF ACTUAL MEAN RAINFALL
C*
               OMIT IF KRCF = 0
C*
     RM(I) = 12 MONTHLY VALUES OF ACTUAL MEAN RAINFALL
READ(2,103)(RM(I),I=1,12)
13
     WRITE (6,700)
700
     FORMAT (///, 10x, 'GENERATION PARAMETERS', //, 15x, 'PRECIPITATION')
     WRITE(6,701)(PWW(I),I=1,12)
701
     FORMAT (20X, 'P(W/W) ', 12F7.3)
     WRITE (6,702) (PWD (I), I=1,12)
     FORMAT(20X, 'P(W/D) ',12F7.3)
702
     WRITE (6,703) (ALPHA (I), I=1,12)
     FORMAT (20X, 'ALPHA ', 12F7.3)
703
     WRITE (6,704) (BETA (I), I=1,12)
704
     FORMAT(20X, 'BETA
                       ',12F7.3)
     WRITE (6, 705) TXMD, ATX, CVTX, ACVTX, TXMW
    FORMAT(15X, 'MAXIMUM TEMPERATURE', /, 20X, 'TXMD = ', F8.3, /, 20X,
705
     * 'ATX = ',F8.3,/,20X,'CVTX = ',F8.3,/,20X,'ACVTX = ',F8.3,/,20X,
     * 'TXMW = ',F8.3,//)
     WRITE (6,706) TN, ATN, CVTN, ACVTN
    FORMAT (15X, 'MINIMUM TEMPERATURE', /, 20X, 'TN = ', F8.3, /, 20X,
     *'ATW = ',F8.3,/,20X,'CVTN = ',F8.3,/,20X,'ACVTN = ',F8.3,//)
     WRITE(6,707)RMD,AR,RMW
    FORMAT(15X, 'SOLAR RADIATION', /, 20X, 'RMD = ', F8.3, /, 20X,
     * 'AR = ', F8.3, /, 20X, 'RMW = ', F8.3, ///)
     DO 11 J = 1,366
     XJ = J
     DT = COS(.0172*(XJ-200.))
     DR = COS(.0172*(XJ-172.))
     TXM(J) = TXMD + ATX * DT
     XCR1=CVTX+ACVTX*DT
      IF(XCR1 .LT. 0.0) XCR1=0.06
     TXS(J) = TXM(J) * XCR1
     TXM1(J) = TXM(J) - D1
     TXS1(J) = TXM1(J) * XCR1
      TNM(J) = TN + ATN*DT
     XCR2=CVTN+ACVTN*DT
     IF(XCR2 .LT. 0.0) XCR2=0.06
     TNS(J) = TNM(J) * XCR2
     RMO(J) = RMD + AR * DR
     XCR3=CVRD+ACVRD*DR
     IF(XCR3 .LT. 0.0) XCR3=0.06
     RS0(J) = RM0(J) * XCR3
     RM1(J) = RM0(J) - D2
     XCR4=CVRW+ACVRW*DR
     IF(XCR4 .LT. 0.0) XCR4=0.06
     RS1(J) = RM1(J) * XCR4
```

```
11
     CONTINUE
      DO 22 IM=1,12
      XNW (IM) = 0.
      SR(IM) = 0.
      SSTX(IM) = 0.
      SSTN(IM) = 0.
      SSRAD(IM) = 0.
      TCFMAX(IM) = 0.0
      TCFMIN(IM) = 0.0
      RCF(IM) = 1.0
      PW(IM) = PWD(IM) / (1.-PWW(IM) + PWD(IM))
      S1 = 0.
      S2 = 0.
      S3 = 0.
      NL = NI(IM)
      IF(IM .EQ. 1) GO TO 14
      NF = NI(IM-1) + 1
      GO TO 15
14
     NF = 1
15
     CONTINUE
      ZN = NL - NF + 1
      DO 16 J = NF, NL
      S1 = S1 + TXM(J)/ZN
      S2 = S2 + TXM1(J)/ZN
      S3 = S3 + TNM(J)/ZN
16
     CONTINUE
C*****CALCULATE MONTHLY RAINFALL CORRECTION FACTOR
      RG(IM) = ALPHA(IM)*BETA(IM)*ZN*PW(IM)
      IF(KRCF .EQ. 0 ) GO TO 17
      RCF(IM) = RM(IM)/RG(IM)
     IF(KTCF .EQ. 0) GO TO 22
C*****CALCULATE MONTHLY TEMP CORRECTION FACTOR
      IF(KTCF.EQ.2) GO TO 18
      TMD = (S1 + S3) / 2.
      TMW = (S2 + S3) / 2.
      TG(IM) = TMW*PW(IM) + TMD*(1-PW(IM))
      TCFMAX(IM) = TM(IM) - TG(IM)
      TCFMIN(IM) = TCFMAX(IM)
      GO TO 22
18
      TAMAX(IM) = S2*PW(IM) + S1*(1.-PW(IM))
      TAMIN(IM) = S3
      IF(KTCF .EQ. 0.) GO TO 22
      TCFMAX (IM) =TTMAX (IM) -TAMAX (IM)
      TCFMIN(IM) = TTMIN(IM) - TAMIN(IM)
22
      CONTINUE
      IF(KRCF .EQ. 0) GO TO 52
      WRITE (6,712) (RM(I), I=1,12)
712
      FORMAT (10X, 'ACT MEAN RAIN', 12F7.2)
      WRITE (6,713) (RG(I), I=1,12)
713
      FORMAT(10X, 'EST MEAN RAIN', 12F7.2)
```

```
WRITE (6,714) (RCF (I), I=1,12)
     FORMAT (10X, 'RAIN CF', 12F7.3)
714
     IF (KTCF .EQ. 0) GO TO 19
     IF(KTCF .EQ. 2) GO TO 51
     WRITE (6,708) (TM(I), I=1,12)
708
     FORMAT (10X, 'ACT MEAN TEMP', 12F7.1)
     WRITE (6,711) (TG(I), I=1,12)
    FORMAT(10X, 'EST MEAN TEMP', 12F7.1)
711
     GO TO 50
51
     WRITE (6,722) (TTMAX (I), I=1,12)
     FORMAT (10X, 'ACT MEAN TMAX', 12F7.1)
     WRITE (6,723) (TTMIN (I), I=1,12)
     FORMAT(10X,'ACT MEAN TMIN',12F7.1)
723
     WRITE (6,720) (TAMAX (I), I=1,12)
     FORMAT (10X, 'EST MEAN TMAX', 12F7.1)
720
     WRITE (6,721) (TAMIN (I), I=1,12)
     FORMAT (10X, 'EST MEAN TMIN', 12F7.1)
     WRITE (6,709) (TCFMAX (I), I=1,12)
     FORMAT(10X, 'CF. MEAN TMAX', 12F7.1)
709
     WRITE (6,724) (TCFMIN (I), I=1,12)
724
     FORMAT(10X, 'CF. MEAN TMIN', 12F7.1)
19
     XYR = NYRS
     SYTX = 0.
     SYTN = 0.
     SYRAD = 0.
     SYR = 0.
     SYNW = 0.
     DO 40 I = 1, NYRS
     IYR = I
     IF (KGEN .EQ. 1) GO TO 20
     KK = 0
     IJ = 1
C* INPUT # 16 - MEASURED RAINFALL FOR NYRS
C*
               OMIT IF KGEN = 1
C*
      RAIN(I) - ACTUAL RAINFALL DATA - ONE VALUE PER DAY
C*
               FOR NYRS
C****************
     READ(2,102) IYR, MO, IDAY, RAIN(IJ)
21
     FORMAT (4X, 3I2, 20X, F10.0)
     IF(KK .EQ. 1) GO TO 24
20
     IDAYS = 365
     IFLG= MOD(IYR,4)
     IF(IFLG .EQ. 0) IDAYS = 366
     KK = 1
     IF (KGEN .EQ. 1) GO TO 28
24
     IJ = IJ + 1
     IF(IJ .LE. IDAYS) GO TO 21
28
     CONTINUE
```

```
CALL WGEN (PWW, PWD, ALPHA, BETA, TXM, TXS, TXM1, TXS1, TNM, TNS, RM0, RS0,
     *RM1, RS1, RAIN, TMAX, TMIN, RAD, KGEN, RC, IDAYS, NI, NII,
     *TCFMAX, TCFMIN, RCF)
     DO 23 IM = 1,12
      SRAIN(IM) = 0.
      STMAX(IM) = 0.
      STMIN(IM) = 0.
      SRAD(IM) = 0.
     NWET(IM) = 0
23
     CONTINUE
     IM = 1
      YTMAX = 0.
      YTMIN = 0.
      YRAD = 0.
      RYR = 0.
      NYWET = 0
      IDA = 0
      DO 30 J=1, IDAYS
      IDA = IDA + 1
      IF(IDAYS .EQ. 366) GO TO 27
      IF(J .GT. NI(IM)) GO TO 251
      GO TO 29
251
    IM = IM + 1
     IDA = 1
      GO TO 29
27
     IF(J .GT. NII(IM)) GO TO 251
    CONTINUE
C****THE FOLLOWING STATEMENT WRITES DAILY GENERATED WEATHER ON AN
C****EXTERNAL FILE (UNIT 8).
     WRITE (8, 200) IM, IDA, IYR, J, RAIN (J), TMAX (J), TMIN (J), RAD (J)
800
    CONTINUE
C****THE FOLLOWING STATEMENT PRINTS DAILY GENERATED WEATHER
      WRITE (6, 200) IM, IDA, IYR, J, RAIN (J), TMAX (J), TMIN (J), RAD (J)
200
     FORMAT (2X, 415, F7.2, 3F7.0)
25
      CONTINUE
      IF(RAIN(J) .LT. 0.005) GO TO 26
      NWET(IM) = NWET(IM) + 1
      NYWET = NYWET + 1
26
      CONTINUE
      SRAIN(IM) = SRAIN(IM) + RAIN(J)
      STMAX(IM) = STMAX(IM) + TMAX(J)
      STMIN(IM) = STMIN(IM) + TMIN(J)
      SRAD(IM) = SRAD(IM) + RAD(J)
     RYR = RYR + RAIN(J)
30
     CONTINUE
      XNM1 = 0.
      DO 35 IM = 1,12
      XXN = NI(IM)
      XNI = XXN - XNM1
      XNM1 = XXN
```

```
ANW = NWET(IM)
      XNW(IM) = XNW(IM) + ANW/XYR
      SR(IM) = SR(IM) + SRAIN(IM) / XYR
      STMAX(IM) = STMAX(IM) / XNI
      SSTX(IM) = SSTX(IM) + STMAX(IM) / XYR
      STMIN(IM) = STMIN(IM) / XNI
      SSTN(IM) = SSTN(IM) + STMIN(IM) / XYR
      SRAD(IM) = SRAD(IM) / XNI
      SSRAD(IM) = SSRAD(IM) + SRAD(IM) / XYR
      YTMAX = YTMAX + STMAX(IM) / 12.
      YTMIN = YTMIN + STMIN(IM) / 12.
      YRAD = YRAD + SRAD(IM) / 12.
3.5
     CONTINUE
      SYTX = SYTX + YTMAX/XYR
      SYTN = SYTN + YTMIN/XYR
      SYRAD = SYRAD + YRAD / XYR
      SYR = SYR + RYR / XYR
      XYNW = NYWET
      SYNW = SYNW + XYNW / XYR
      WRITE(6,201) IYR
201
    FORMAT(//,5x,'SUMMARY FOR YEAR',15,/,2x,'MONTH
                             5
                                                                          10
                     4
                                        6
               3
                            YR',/)
            11
                    12
     WRITE (6, 207) (NWET (IM), IM=1, 12), NYWET
207
     FORMAT(2X,'WET DAYS ',1318)
      WRITE(6,202)(SRAIN(IM),IM=1,12),RYR
202
      FORMAT (2X, 'RAINFALL
                            ',13F8.2)
      WRITE (6, 203) (STMAX (IM), IM=1, 12), YTMAX
      FORMAT (2X, 'AVE MAX TEMP', 13F8.2)
203
      WRITE (6, 204) (STMIN (IM), IM=1, 12), YTMIN
204
      FORMAT (2X, 'AVE MIN TEMP', 13F8.2)
      WRITE(6,205)(SRAD(IM),IM=1,12),YRAD
205
     FORMAT (2X, 'AVE RAD
                           ',13F8.2)
40
      CONTINUE
      WRITE (6, 206) NYRS
206
      FORMAT(///,5X,'SUMMARY FOR', 15, 'YEARS')
      WRITE (6, 208) (XNW (IM), IM=1, 12), SYNW
208
      FORMAT (2X, 'WET DAYS
                            ',13F8.2)
      WRITE (6, 202) (SR (IM), IM=1, 12), SYR
      WRITE (6, 203) (SSTX (IM), IM=1, 12), SYTX
      WRITE (6, 204) (SSTN (IM), IM=1, 12), SYTN
      WRITE (6, 205) (SSRAD (IM), IM=1, 12), SYRAD
999
     STOP
     END
C****THE FOLLOWING SUBROUTINE GENERATED DAILY WEATHER DATA FOR
C****ONE YEAR.
      SUBROUTINE WGEN (PWW, PWD, ALPHA, BETA, TXM, TXS, TXM1, TXS1, TNM, TNS, RM0,
     1RSO, RM1, RS1, RAIN, TMAX, TMIN, RAD, KGEN, RC, IDAYS, NI, NII,
     2TCFMAX, TCFMIN, RCF)
```

```
DIMENSION TXM(366), TXS(366), TXM1(366),
     1 TXS1(366), TNM(366), TNS(366), RMO(366), RSO(366), RM1(366), RS1(366),
     2 RAIN(366), TMAX(366), TMIN(366), RAD(366), RC(366), A(3,3), B(3,3),
     3XIM1(3), E(3), R(3), X(3), RR(3), PWW(12), PWD(12), ALPHA(12), BETA(12),
     4NI(12), NII(12), TCF(12), RCF(12)
     DIMENSION TCFMAX(12), TCFMIN(12)
      DATA A/0.567, 0.253, -0.006, 0.086, 0.504, -0.039, -0.002, -0.050, 0.244/
      DATA B/0.781,0.328,0.238,0.0,0.637,-0.341,0.0,0.0,0.873/
      DATA XIM1/0.,0.,0./
      DATA IX/9398039/
      DATA IP/0/
      IM = 1
      DO 50 IDAY=1, IDAYS
      IF (IDAYS .EQ. 366) GO TO 2
      IF (IDAY .GT. NI (IM)) IM = IM + 1
      GO TO 4
      IF (IDAY .GT. NII (IM)) IM = IM + 1
      CONTINUE
      IF(IM.GT.12) PAUSE ' IM >12 '
      IF(KGEN .EQ. 2) GO TO 15
C****DETERMINE WET OR DRY DAY USING MARKOV CHAIN MODEL
      CALL RANDN (RN)
      IF(IP-0) 7,7,10
7
      IF(RN - PWD(IM ))11,11,8
8
     IP = 0
      RAIN(IDAY) = 0.
      GO TO 18
10
     IF(RN-PWW(IM))11,11,8
11
     IP = 1
C****DETERMINE RAINFALL AMOUNT FOR WET DAYS USING GAMMA DISTRIBUTION
      AA = 1./ALPHA(IM)
      AB = 1./(1.-ALPHA(IM))
      TR1 = EXP(-18.42/AA)
      TR2 = EXP(-18.42/AB)
      SUM = 0.
      SUM2 = 0.
12
      CALL RANDN (RN1)
      CALL RANDN (RN2)
      IF(RN1-TR1) 61,61,62
61
      S1 = 0.
      GO TO 63
62
      S1 = RN1**AA
63
      IF(RN2-TR2) 64,64,65
64
      S2 = 0.
      GO TO 66
65
     S2 = RN2**AB
     S12 = S1 + S2
66
      IF(S12-1.) 13,13,12
13
      z = s1/s12
      CALL RANDN (RN3)
      RAIN(IDAY) = -Z*ALOG(RN3)*BETA(IM)*RCF(IM)
```

```
C****RAIN(IDAY) IS GENERATED RAINFALL FOR IDAY
     IF(RAIN(IDAY)) 16,16,17
16
     IP = 0
     GO TO 18
17
     IP = 1
18
     IF(IP-1) 25,26,26
C*****GENERATE TMAX, TMIN, AND RAD FOR IDAY
     RM=RM0(IDAY)
      RS = RSO(IDAY)
      TXXM = TXM(IDAY)
      TXXS = TXS(IDAY)
      GO TO 27
26
     RM = RM1(IDAY)
      RS = RS1(IDAY)
      TXXM = TXM1(IDAY)
      TXXS = TXS1(IDAY)
27
     CONTINUE
      DO 30 K = 1,3
    AA = 0.
131
      CALL RANDN (RN1)
      CALL RANDN (RN2)
      V = SQRT(-2.*ALOG(RN1))*COS(6.283185*RN2)
      IF(ABS(V) .GT. 2.5) GO TO 131
      E(K) = V
30
     CONTINUE
      DO 31 I = 1,3
      R(I) = 0.
      RR(I) = 0.
31
     CONTINUE
      DO 32 I = 1.3
      DO 32 J = 1,3
      R(I) = R(I) + B(I, J) * E(J)
      RR(I) = RR(I) + A(I,J) *XIM1(J)
32
      CONTINUE
      DO 37 K = 1,3
      X(K) = R(K) + RR(K)
      XIM1(K) = X(K)
37
      CONTINUE
      TMAX(IDAY) = X(1) * TXXS + TXXM
      TMIN(IDAY) = X(2) *TNS(IDAY) +TNM(IDAY)
      IF(TMIN(IDAY) .GT. TMAX(IDAY)) GO TO 38
     GO TO 39
      TMM = TMAX (IDAY)
38
      TMAX(IDAY) = TMIN(IDAY)
      TMIN(IDAY) = TMM
39
      CONTINUE
      TMAX (IDAY) = TMAX (IDAY) + TCFMAX (IM)
      TMIN (IDAY) = TMIN (IDAY) + TCFMIN (IM)
C****TMAX(IDAY) IS GENERATED TMAX FOR IDAY
C****TMIN(IDAY) IS GENERATED TMIN FOR IDAY
```

TABLE C1. CONTINUED.

```
RAD(IDAY) = X(3)*RS+RM
      RMIN = 0.2*RC(IDAY)
      IF(RAD(IDAY) .LT. RMIN) RAD(IDAY) = RMIN
     IF(RAD(IDAY) .GT. RC(IDAY)) RAD(IDAY) = RC(IDAY)
C^{****RAD}(IDAY) IS GENERATED RAD FOR IDAY
 50 CONTINUE
     RETURN
     END
C****THE FOLLOWING SUBROUTINE GENERATES A UNIFORM RANDOM NUMBER ON
C****THE INTERVAL 0 - 1
      SUBROUTINE RANDN (YFL)
      DIMENSION K(4)
      DATA K/2510,7692,2456,3765/
      K(4) = 3*K(4)+K(2)
      K(3) = 3*K(3)+K(1)
      K(2) = 3 * K(2)
      K(1) = 3*K(1)
      I=K(1)/1000
      K(1) = K(1) - I * 1000
      K(2) = K(2) + I
      I = K(2)/100
      K(2) = K(2) - 100 * I
      K(3) = K(3) + I
      I = K(3)/1000
      K(3) = K(3) - I * 1000
      K(4) = K(4) + I
      I = K(4)/100
      K(4) = K(4) - 100 * I
      YFL=(((FLOAT(K(1))*.001+FLOAT(K(2)))*.01+FLOAT(K(3)))*.001+FLOAT
     *(K(4)))*.01
      RETURN
      END
```

APPENDIX D

The WGEN PAR Program

```
C*
C*
                 DEE ALLEN WRIGHT
C*
                 COMPUTER PROGRAMMER
C*
                FEBRUARY 25, 1983
C*
DIMENSION TMAX(20,365), TMIN(20,365), RAIN(20,365), RAD(20,365)
    DIMENSION AA(20)
    DIMENSION RC(365)
    DIMENSION XDATA(30), YDATA(4,12)
    DO 1 I=1,30
    XDATA(I) = 0.0
1
   CONTINUE
    DO 2 I=1,4
    DO 2 J=1,12
    YDATA(I,J)=0.0
2
   CONTINUE
C*
C*
   INPUT #1 TITLE OF DATA SET (20A4)
^{\prime\prime}
READ (5,100) (AA (I), I=1,20)
100 FORMAT (20A4)
   WRITE (6, 101) (AA(I), I=1, 20)
101 FORMAT('1',//,30X,'DATA IS -----',20A4,//)
C*
    INPUT #2 NUMBER OF YEARS AND LATITUDE
C*
C*
READ(5,102) NYRS, ALAT
   FORMAT(I10,F10.0)
C*****CALCULATE MAXIMUM SOLAR RADIATION FOR EACH DAY.
    XYRS=NYRS
    XLAT=ALAT*6.2832/360.
    DO 6 I = 1,365
    XI = I
    SD = 0.4102*SIN(0.0172*(XI-80.25))
    CH = -TAN(XLAT)*TAN(SD)
    IF (CH .GT. 1.0) H = 0.
    IF (CH .GT. 1.0) GO TO 5
    IF (CH .LT. -1.0) H = 3.1416
    IF(CH .LT. -1.0) GO TO 5
   H = ARCOS(CH)
   DD=1.0+0.0335*SIN(0.0172 *(XI+88.2))
    RC(I) = 889.2305*DD*((H*SIN(XLAT)*SIN(SD)) + (COS(XLAT)*COS(SD)*SIN(H))
   *))
    RC(I) = RC(I) * 0.80
```

```
6
     CONTINUE
     DO 7 I = 1, NYRS
     DO 7 J = 1, 365
C*
C*
    INPUT #3 MO, DAY, YEAR, MAX TEMP, MIN TEMP, RAINFALL, RADIATION
C*
C*
READ (5, 103) IMO, IDA, IYR, V1, V2, V3, V4
     IF (IMO.EQ.2.AND.IDA.EQ.29) GOTO 8
     TMAX(I,J) = V1
     TMIN(I,J) = V2
     RAIN(I,J) = V3
     RAD(I,J) = V4
     IF(RAD(I,J).GT.RC(J)) RAD(I,J)=RC(J)
     CONTINUE
    FORMAT (312, 3F6.0, 6X, F6.0)
103
     WRITE (6, 104)
104
    FORMAT('1',///,5X,'MAXIMUM TEMPERATURE',/)
C*****CALCULATE TMAX PARAMETERS
     CALL MSD (NYRS, TMAX, RAIN, 1, XDATA)
     WRITE (6, 105)
    FORMAT('1',///5X,'MINIMUM TEMPERATURE',/)
105
C*****CALCULATE TMIN PARAMETERS
     CALL MSD (NYRS, TMIN, RAIN, 2, XDATA)
     WRITE (6, 106)
    FORMAT('1',///,5X,'SOLAR RADIATION')
C*****CALCULATE RAD PARAMETERS
     CALL MSD (NYRS, RAD, RAIN, 3, XDATA)
     WRITE (6, 107)
    FORMAT('1',///,5X,'PRECIPITATION',/)
C*****CALCULATE RAINFALL PARAMETERS
     CALL PPRAIN (RAIN, NYRS, YDATA)
C--PHASE ANGEL SHIFTED BY 180 DEGREES
C--AND SIGNS CHANGED ON AMPLITUDES
     XDATA(02) = XDATA(02) * (-1.0)
     XDATA(04) = XDATA(04) * (-1.0)
     XDATA(10) = XDATA(10) * (-1.0)
     XDATA(12) = XDATA(12) * (-1.0)
     XDATA(14) = XDATA(14) * (-1.0)
C*****WRITE GENERATION PARAMETERS FOR INPUT TO WGEN PROGRAM
     WRITE(6,'(20A4)') (AA(I),I=1,20)
     WRITE(6,707)
707
     FORMAT(///,20X,'INPUT CARDS FOR THE WEATHER GENERATOR ARE AS FOLLO
    *WS ----',///)
     WRITE (6, 403)
403
    FORMAT (///)
     WRITE (6,513) (YDATA (1,J), J=1,12)
     WRITE (6,514) (YDATA (2,J), J=1,12)
     WRITE (6,515) (YDATA (3,J), J=1,12)
```

```
WRITE (6,516) (YDATA (4,J), J=1,12)
513 FORMAT(5X,'INPUT # 3 ---- P(W/W)',12F6.3)
514 FORMAT(5X,'INPUT # 4 ---- P(W/D)',12F6.3)
515 FORMAT (5X, 'INPUT # 5 ---- ALPHA ', 12F6.3)
516 FORMAT (5X, 'INPUT # 6 --- BETA ', 12F6.3)
     WRITE (6, 400)
400 FORMAT (///)
     WRITE (6,701)
      WRITE (6,501) XDATA (01)
      WRITE (6,502) XDATA (02)
      WRITE(6,503) XDATA(03)
     WRITE(6,504) XDATA(04)
701 FORMAT(5X,'INPUT # 7 ----',/)
501 FORMAT (15X, ' 1 TXMD ---- ',F10.3)
502 FORMAT (15X, ' 2 ATX ---- ',F10.3)
503 FORMAT (15X, ' 3 CVTX ---- ',F10.3)
     FORMAT (15X, ' 4 ACVTX ---- ', F10.3)
504
     WRITE (6,702)
     FORMAT(//,5X,'INPUT # 8 ----',/)
702
     WRITE(6,505) XDATA(05)
505
     FORMAT (15X, '5 TXMW
                                ---- ',F10.3)
     WRITE (6,703)
703 FORMAT(//,5X,'INPUT # 9 ----',/)
     WRITE(6,506) XDATA(09)
     WRITE(6,507) XDATA(10)
     WRITE(6,508) XDATA(11)
     WRITE(6,509) XDATA(12)
                              ---- ',F10.3)
506 FORMAT (15X, ' 6 TN
507 FORMAT (15X, ' 7 ATN ---- ', F10.3)
508 FORMAT (15X, ' 8 CVTN ---- ', F10.3)
509 FORMAT (15X, '9 ACVTN ---- ', F10.3)
     WRITE (6,704)
704 FORMAT(//,5X,'INPUT # 10 ----',/)
     WRITE(6,510) XDATA(13)
     WRITE (6,511) XDATA (14)
                             --- ', F10.3)
510 FORMAT (15X, '10 RMD
                     AR
                                --- ',F10.3)
511
     FORMAT (15X, '11
     WRITE (6,705)
705
     FORMAT(//,5X,'INPUT # 11 ----',/)
     WRITE(6,512) XDATA(17)
     FORMAT (15X, '12 RMW
                               ---- ',F10.3)
512
     WRITE (6,600)
600
    FORMAT('1')
     STOP
     END
C****THE FOLLOWING SUBROUTINE CALCULATES A ONE HARMONIC SERIES
      SUBROUTINE FOUR (XM, SD, CV, XDATA)
      DIMENSION XM(13), SD(13)
      DIMENSION CV(13)
      DIMENSION XDATA (30)
```

TABLE D1. CONTINUED.

```
DATA JCT /0/
      s = 0.
      S1 = 0.
      S2 = 0.
     WRITE (6, 200)
200
    FORMAT (//, 33X, '
                        PERIOD MEAN
                                          STD DEV
                                                      CV')
     DO 10 I = 1,13
      WRITE(6,201)I,XM(I),SD(I),CV(I)
201
    FORMAT (30X, I10, 3F10.2)
     S = S + XM(I)
      S1 = S1 + SD(I)
      S2 = S2 + CV(I)
10
     CONTINUE
      XBAR=S/13.
      XBAR1=S1/13.
      XBAR2=S2/13.
      SUMA = 0.
      SUMB = 0.
      SUMA1 = 0.
      SUMB1 = 0.
      SUMA2=0.
      SUMB2 = 0.
      DO 15 K = 1,13
      XK = K
      SUMA=SUMA+ (XM(K)-XBAR) *COS(6.2832*XK/13.)
      SUMA1=SUMA1+(SD(K)-XBAR1)*COS(6.2832*XK/13.)
      SUMA2=SUMA2+(CV(K)-XBAR2)*COS(6.2832*XK/13.)
      SUMB=SUMB+ (XM(K) - XBAR) * SIN(6.2832 * XK/13.)
      SUMB1=SUMB1+(SD(K)-XBAR1)*SIN(6.2832*XK/13.)
     SUMB2=SUMB2+(CV(K)-XBAR2)*SIN(6.2832*XK/13.)
15
     CONTINUE
     A = SUMA*(2./13.)
      A1 = SUMA1*(2./13.)
      A2 = SUMA2*(2./13.)
      B = SUMB*(2./13.)
      B1 = SUMB1*(2./13.)
      B2 = SUMB2*(2./13.)
      T = ATAN(-B/A)
      T1 = ATAN(-B1/A1)
      T2=ATAN(-B2/A2)
      C = A/COS(T)
      C1 = A1/COS(T1)
      C2 = A2/COS(T2)
     WRITE (6, 100)
100
    FORMAT(/,5X,'FOURIER COEFFICIENTS--MEAN')
     WRITE (6, 101) XBAR, C, T
     FORMAT(5X, 'MEAN =',F10.4,5X, 'AMPLITUDE =',F10.4,5X, 'PHASE =',
101
     *F10.4)
      JCT=JCT+1
      XDATA (JCT) = XBAR
```

TABLE D1. Continued.

```
JCT=JCT+1
      XDATA (JCT) =C
      WRITE (6, 102)
102
     FORMAT (/, 5X, 'FOURIER COEFFICIENTS--STD. DEV.')
      WRITE (6, 101) XBAR1, C1, T1
      WRITE (6, 103)
     FORMAT (/, 5x, 'FOURIER COEEFICIENTS--CV')
      WRITE (6, 101) XBAR2, C2, T2
      JCT=JCT+1
      XDATA (JCT) = XBAR2
      JCT=JCT+1
      XDATA(JCT) = C2
      RETURN
C****THE FOLLOWING SUBTOUTINE CALCULATES THE STATISTICS OF TMAX, TMIN AND RAD
C****BY 28-DAY PERIOD OF THE YEAR AND FITS A FOURIER SERIES TO THE RESULTS
      SUBROUTINE MSD(NYRS, W, RAIN, ID, XDATA)
      DIMENSION W(20,365), RAIN(20,365), XM(13), XM1(13), SD(13), SD1(13)
      DIMENSION CX(13), CX1(13)
      DIMENSION XDATA (30)
      DO 20 I = 1,13
      NF=I*28
      NI=NF-27
      XN = 0.
      XN1 = 0.
      SUM = 0.
      SUM1 = 0.
      SS = 0.
      SS1 = 0.
      DO 15 JD=NI,NF
      DO 15 JY = 1, NYRS
      IF(ID .EQ. 2) GO TO 11
      IF(RAIN(JY, JD))11,11,12
11
      CONTINUE
      XN = XN + 1.
      SUM = SUM + W(JY, JD)
      SS = SS + (W(JY, JD) *W(JY, JD))
      GO TO 15
12
      CONTINUE
      XN1 = XN1 + 1.
      SUM1 = SUM1 + W(JY, JD)
      SS1=SS1+(W(JY,JD)*W(JY,JD))
15
      CONTINUE
      IF(XN .LE. 2.) XM(I) = 0.
      IF(XN .LE. 2.) SD(I) = 0.
      IF(XN .LE. 2.) CX(I) = 0.
      IF(XN .LE. 2.) GO TO 400
      XM(I) = SUM / XN
      SD(I) = SQRT((SS-SUM*SUM/XN)/(XN-1.))
      IF(XM(I) .LT. 0.001) XM(I) = 0.001
```

```
CX(I) = SD(I) / XM(I)
400
     CONTINUE
      IF(ID .EQ. 2) GO TO 20
      IF(XN1 .LE. 2.) XM1(I)=0.
      IF(XN1 .LE. 2.) SD1(I) = 0.
      IF(XN1 . LE. 2.) CX1(I) = 0.
      IF(XN1 .LE. 2.) GO TO 500
      XM1(I) = SUM1 / XN1
      SD1(I) = SQRT((SS1 - SUM1 * SUM1 / XN1) / (XN1 - 1.))
      IF(XM1(I) .LT. 0.001) XM1(I) = 0.001
     CX1(I) = SD1(I) / XM1(I)
500
     CONTINUE
20
     CONTINUE
      IF(ID .EQ. 2) GO TO 25
      WRITE (6, 100)
100
     FORMAT(10X,'DRY DAYS')
      CALL FOUR (XM, SD, CX, XDATA)
      WRITE (6, 101)
     FORMAT(/,10X,'WET DAYS')
101
      CALL FOUR (XM1, SD1, CX1, XDATA)
      GO TO 30
25
     WRITE (6, 102)
102
    FORMAT(10X,'WET AND DRY DAYS')
      CALL FOUR (XM, SD, CX, XDATA)
30
      CONTINUE
      RETURN
      END
C*****THIS SUBROUTINE CALCULATES THE RAINFALL GENERATION PARAMETERS
C*****USING THE MARKOV CHAIN-GAMMA MODEL
      SUBROUTINE PPRAIN (XRAIN, NYR, YDATA)
      DIMENSION XRAIN (20, 365)
      DIMENSION NWD (12), NDD (12), NDW (12), NWW (12)
      DIMENSION SUM(12), SUM2(12), SUM3(12)
      DIMENSION SL(12), PWW(12), PWD(12), RBAR(12)
      DIMENSION ALPHA(12), BETA(12)
      DIMENSION NW(12), IC(12), SUML(12)
      DIMENSION RLBAR (12), AL2 (12), BE2 (12), DATE (12)
      DIMENSION PPPW (12), ND (12)
      DIMENSION YDATA (4, 12)
      CHARACTER *36 A(2)
     DATA DATE /'JAN.', 'FEB.', 'MAR.', 'APR.', 'MAY ', 'JUNE',
                 'JULY', 'AUG.', 'SEP.', 'OCT.', 'NOV.', 'DEC.'/
      DATA A(1) /'
      DATA A(2) /'NOT ENOUGH DATA TO DEFINE PARAMETERS'/
      DO 10 I = 1,12
      ND(I) = 0
      PPPW(I) = 0.
      NWD(I) = 0
      NWW(I) = 0
      NDD(I) = 0
```

```
NDW(I) = 0
      NW(I) = 0
      SL(I) = 0.
      SUML(I) = 0.
      SUM(I) = 0.
      SUM2(I) = 0.
      PWW(I) = 0.
      PWD(I) = 0.
      ALPHA(I) = 0.
      BETA(I) = 0.
      SUM3(I) = 0.
10
      CONTINUE
      XYR=NYR
      RIM1 = 0.
      DO 20 J = 1,NYR
      DO 30 K = 1,365
      IF(K .GE. 001 .AND. K .LE. 031) MO = 1
      IF(K .GE. 032 .AND. K .LE. 059) MO = 2
      IF(K .GE. 060 .AND. K .LE. 090) MO = 3
      IF(K .GE. 091 .AND. K .LE. 120) MO = 4
      IF(K .GE. 121 .AND. K .LE. 151) MO = 5
      IF(K .GE. 152 .AND. K .LE. 181) MO = 6
      IF(K .GE. 182 .AND. K .LE. 212) MO = 7
      IF(K .GE. 213 .AND. K .LE. 243) MO = 8
      IF(K .GE. 244 .AND. K .LE. 273) MO = 9
      IF (K .GE. 274 .AND. K .LE. 304) MO = 10
      IF (K .GE. 305 .AND. K .LE. 334) MO = 11
      IF (K .GE. 335 .AND. K .LE. 365) MO = 12
      RAIN=XRAIN(J,K)
      IF (RAIN .GT. 0.00) NW(MO) = NW(MO) + 1
      ND(MO) = ND(MO) + 1
      IF(RAIN) 5,5,3
      IF(RIM1)2,2,4
2
      NWD (MO) = NWD (MO) + 1
      GO TO 6
4
      NWW (MO) = NWW (MO) + 1
6
      CONTINUE
      SUML (MO) = SUML (MO) + ALOG (RAIN)
      SUM(MO) = SUM(MO) + RAIN
      SUM2 (MO) = SUM2 (MO) + RAIN * RAIN
      SUM3 (MO) = SUM3 (MO) + RAIN*RAIN*RAIN
      SL(MO) = SL(MO) + ALOG(RAIN)
      GO TO 9
      IF(RIM1) 7,7,8
      NDD (MO) = NDD (MO) + 1
      GO TO 9
8
      NDW (MO) = NDW (MO) + 1
9
      RIM1 = RAIN
30
      CONTINUE
20
      CONTINUE
      DO 120 I = 1,12
```

TABLE D1. CONTINUED.

```
XXND=ND(I)
      YYNW=NW(I)
      PPPW(I) = YYNW/XXND
      IF(NW(I) .LT. 3) III=2
      IC(I) = III
      IF(NW(I) .LT. 3) GO TO 120
      XNWW=NWW(I)
      XNWD=NWD(I)
      XXNW=NWW(I)+NDW(I)
      XND=NDD(I)+NWD(I)
      XNW=NW(I)
      PWW(I)=XNWW/XXNW
      PWD(I)=XNWD/XND
      RBAR(I) = SUM(I) / XNW
      RLBAR(I) = SUML(I) / XNW
      Y=ALOG(RBAR(I))-RLBAR(I)
      ANUM=8.898919+9.05995*Y+0.9775373*Y*Y
      ADOM=Y* (17.79728+11.968477*Y+Y*Y)
      ALPHA2=ANUM/ADOM
      IF(ALPHA2 .GE. 1.0) ALPHA2=0.998
      BETA2=RBAR(I)/ALPHA2
      ALPHA(I)=ALPHA2
     BETA(I)=BETA2
120 CONTINUE
     WRITE (6, 201)
201 FORMAT (///, 8X, '--MARKOV CHAIN--
                                                        -GAMMA DIST-',/,
     *1X, 'MONTH P(W/W)
                                                  ALPHA BETA',/)
     DO 130 I = 1,12
     WRITE (6,202) DATE (I), PWW (I), PWD (I), ALPHA (I), BETA (I), A (IC (I))
    FORMAT (1X, A4, F8.3, F10.3, 11X, F11.3, F7.3, 5X, A36)
202
130 CONTINUE
     DO 400 J=1,12
      YDATA(1, J) = PWW(J)
      YDATA(2, J) = PWD(J)
      YDATA (3, J) = ALPHA(J)
      YDATA(4, J) = BETA(J)
400
      CONTINUE
      RETURN
      END
```