

● 1. 语法分析器处理 token 流, 输出语法分析树。

2024 年春季学期 《编译原理》 北京大学计算机学院

\odot 2. 考虑上下文无关文法 $G = (V_T, V_N, S, P)$:

 $V_T = \{+, *, a\}, V_N = \{S\}, P$ 中规则表示为S ::= SS + |SS *|a

针对符号串 aaa+*, 回答以下问题:

(1)给出这个串的一个最左推导

- $S \Rightarrow SS^*$
 - \Rightarrow a S^*
 - \Rightarrow a SS+*
 - \Rightarrow aaS+*
 - \Rightarrow aaa+*

\odot 2. 考虑上下文无关文法 $G = (V_T, V_N, S, P)$:

 $V_T = \{+, *, a\}, V_N = \{S\}, P$ 中规则表示为S ::= SS + |SS *|a

针对符号串 aaa+*, 回答以下问题:

(2)给出这个串的一个最右推导

- $S \Rightarrow SS^*$
 - $\Rightarrow SSS+*$
 - $\Rightarrow SSa+*$
 - \Rightarrow Saa+*
 - \Rightarrow aaa+*

\odot 2. 考虑上下文无关文法 $G = (V_T, V_N, S, P)$:

 $V_T = \{+, *, a\}, V_N = \{S\}, P$ 中规则表示为S ::= SS + |SS *|a

针对符号串 aaa+*, 回答以下问题:

(3) 画出这个串的一棵语法分析树

北京大学计算机学院

\odot 2. 考虑上下文无关文法 $G = (V_T, V_N, S, P)$:

 $V_T = \{+, *, a\}, V_N = \{S\}, P$ 中规则表示为S ::= SS + |SS *|a

针对符号串 aaa+*, 回答以下问题:

(4)判断这个文法是否是二义性的,并解释你的判断

无二义性。该文法表示后缀表达 式,总能够根据串最右侧的符号是 +、*或a来确定唯一的产生规则。

● 3. 为下列的语言设计上下文无关文法:

(1) 所有由 a 和 b 组成的形如 $a^k b^k (k \ge 0)$ 的符号串

 $S ::= \epsilon \mid a S b$

证明该文法 G 是正确的, 即 $L(G) = L_o$, 用 L_o 表示题目要求的语言。

- 证明 $L(G) \subseteq L_o$, 即对任意 $S \Rightarrow *w$ (w 是终结符号串), 有 $w \in L_o$ 。 按照推导的步数 k 进行归纳。若 k = 0, 有 $w = \epsilon \in L_o$ 。若 k > 0,则有 $S \Rightarrow a S b \Rightarrow *w$,中间的 S 的推导步数为 k 1,根据归纳假设可得 $w = a \underbrace{a^n b^n}_{} b$ (存在自然数 n),从而 $w \in L_o$ 。
- 证明 $L_o \subseteq L(G)$, 即对任意 $w \in L_o$, 存在推导 $S \Rightarrow^* w$ 。 按照 w 的长度进行归纳。若 |w| = 0, 有 $S \Rightarrow \epsilon$ 。若 |w| > 0, 那么存在 k > 0 使得 $w = a^k b^k = a a^{k-1} b^{k-1} b$, 而根据归纳假设可得 $S \Rightarrow^* a^{k-1} b^{k-1}$, 从而 $S \Rightarrow a S b \Rightarrow^* w$ 。

● 3. 为下列的语言设计上下文无关文法:

(2)所有由a和b组成的回文符号串,即反转后等于自身的符号串

 $S := \epsilon \mid a \mid b \mid aSa \mid bSb$

证明该文法 G 是正确的, 即 $L(G) = L_o$, 用 L_o 表示题目要求的语言。

- $证明 <math>L(G) \subseteq L_o$, 即对任意 $S \Rightarrow *w (w$ 是终结符号串), 有 $w \in L_o$ 。略。
- $证明 L_o \subseteq L(G)$, 即对任意 $w \in L_o$, 存在推导 $S \Rightarrow w$.

按照 w 的长度进行归纳。若 |w|=0,有 $S \Rightarrow \epsilon$ 。若 |w|=1,那么要么 w=a,要么 w=b,两种情况均有 $S \Rightarrow w$ 。若 |w|>1,由于 w 是回文串,那么要么 w=aw'a,要么 w=bw'b,且 w' 也是回文串,则根据归纳假设,有 $S \Rightarrow^* w'$,从而可得 $S \Rightarrow aSa \Rightarrow^* w$ 或 $S \Rightarrow bSb \Rightarrow^* w$ 。

2024 年春季学期 《编译原理》 北京大学计算机学院

◎ 3. 为下列的语言设计上下文无关文法:

(3) 所有由 a 和 b 组成的 a 的数目和 b 的数目相同的符号串

 $S ::= \epsilon \mid \mathsf{a} S \, \mathsf{b} S \mid \mathsf{b} S \, \mathsf{a} S$

证明该文法 G 是正确的, 即 $L(G) = L_o$, 用 L_o 表示题目要求的语言。

- 证明 $L(G) \subseteq L_o$, 即对任意 $S \Rightarrow w$ (w 是终结符号串), 有 $w \in L_o$ 。略。
- $证明 L_o \subseteq L(G)$, 即对任意 $w \in L_o$, 存在推导 $S \Rightarrow w$.

按照 w 的长度进行归纳。若 |w|=0,有 $S\Rightarrow \epsilon$ 。若 |w|=k>0,令 c_i 表示前缀 $w_1w_2...w_i$ 中 a 的数目减去 b 的数目,则 $c_0=c_k=0$ 。

若 $w_1 = a$,那么 $c_1 = 1$,且一定存在 i 使得 $c_i = 0$,令 i_o 为其中最小的一个。也就是说,从 c_1 到 c_{i_o-1} 都是正数,那么 w_{i_o} 一定是 b。更进一步,因为 $1 < i_o \le k$,我们知道子串 $w_2 ... w_{i_o-1}$ 、 $w_{i_o+1} ... w_k$ 是良定义的(允许为空),且这两个子串中 a 和 b 的数目相同。根据归纳假设,可得 $S \Rightarrow w_2 ... w_{i_o-1}$ 和 $S \Rightarrow w_{i_o+1} ... w_k$,故 $S \Rightarrow a S b S \Rightarrow w_o$ 。

若 $W_1 = b$, 也可用类似的方法证明。

◎ 3. 为下列的语言设计上下文无关文法:

(4)所有由a和b组成的a的数目和b的数目不相同的符号串

 $S ::= A \mid B$ $A ::= T a T \mid A a T$ $B ::= T b T \mid B b T$ $T ::= \epsilon \mid a T b T \mid b T a T$

A表示a的数目比b多的串,B表示b的数目比a多的串,T表示a和b的数目相同串。

证明 $L(A) = L_a$, 用 L(A) 表示 A 推导的串的集合, 用 L_a 表示由 a 的数目比 b 多的串构成的语言。

- 证明 $L(A) \subseteq L_a$, 即对任意 $A \Rightarrow * w (w$ 是终结符号串), 有 $w \in L_a$ 。略。
- 证明 $L_a \subseteq L(A)$, 即对任意 $w \in L_a$, 存在推导 $A \Rightarrow w$ 。

按照 a 比 b 多的数目 k 进行归纳。令 c_i 表示前缀 $w_1w_2...w_i$ 中 a 的数目减去 b 的数目。则 $c_0 = 0$, $c_n = k$ (n 是 w 的长度)。那么一定存在 i 使得 $c_i = k - 1$, 令 i_o 为其中最大的一个,则一 定有 $w_{i_o+1}=a$ 。此时, $c_{i_o+1}=k$,从而子串 $w_{i_o+1}...w_n$ 中 a 和 b 的数目相同, 即可以被 T 推导出 来。而前缀 $w_1...w_i$ 中 a 的数目比 b 多 k-1,若 k=1,则对应 $A\Rightarrow T$ a T;若 k>1,则对应 $A \Rightarrow A a T$, 可以通过归纳完成证明。

2024年春季学期 《编译原理》 北京大学计算机学院

● 4. 考虑上下文无关文法,终结符号集合为 {a,b,c,d,EOF}:

S' ::= L EOF

 $L ::= R a \mid Q b a$

 $R ::= aba \mid caba \mid Rbc$

Q := bbc | bc

(1) 计算非终结符号 S'、L、R、Q 的 FIRST 和 FOLLOW 集合

 $FIRST(S') = \{a, b, c\}$

 $FIRST(L) = \{a, b, c\}$

 $FIRST(R) = \{a, c\}$

 $FIRST(Q) = \{b\}$

 $FOLLOW(S') = \{\}$

 $FOLLOW(L) = \{EOF\}$

 $FOLLOW(R) = \{a, b\}$

 $FOLLOW(Q) = \{b\}$

● 4. 考虑上下文无关文法,终结符号集合为 {a,b,c,d,EOF}:

S' ::= L EOF

 $L ::= R a \mid Q b a$

R ::= aba | caba | Rbc

Q := bbc | bc

(2)判断该文法是否是LL(1) 文法,如果不是的话则通过消除左递归、提取左公因子等方法把它转换为一个LL(1) 文法

上面的文法不是LL(1)的,比如R有左递归,Q有左公因子。

S' ::= L EOF

 $L ::= R a \mid Q b a$

 $R ::= abaR' \mid cabaR'$

 $R' ::= \epsilon \mid b c R'$

Q ::= b Q'

Q' ::= bc | c