Elektrische und magnetische Monopole

Jürgen Womser-Schütz, https://github.com/JW-Schuetz

Vektoren werden im folgenden durch einen Unterstrich kenntlich gemacht \underline{v} , ihr inneres Produkt sei durch \bullet , ihr äusseres Produkt durch \times bezeichnet.

Weiterhin sollen Kugelkoordinaten (ρ, ϕ, Θ) zur Anwendung kommen.

Motivation

In der Elektrodynamik sind die Skalar- und Vektorpotentiale ψ und \underline{A} ein nützliches, aber verzichtbares mathematisches Werkzeug, das die Lösung der Maxwell-Gleichungen stark vereinfacht.

Mit der Quantenmechanik ändert sich die Situation - hier kann auf das Vektorpotential \underline{A} nicht mehr verzichtet werden. So zeigt z.B. der Aharonov-Bohm-Effekt, dass das Vektorpotential messbare Auswirkungen besitzt.

Umso ärgerlicher ist es, dass es einfache physikalische Systeme gibt, für die kein Vektorpotential existiert. Ein solches System ist der (noch hypothetische) magnetische Monopol.

Grundlegendes

Satz von Stokes

Sei S eine glatte, orientierte Fläche im \mathbb{R}^3 mit Rand ∂S . Dann gilt für ein Vektorfeld \underline{A} mit kontinuierlichen 1. partiellen Ableitungen in einer Umgebung, die S enthält

$$\iint_{S} (\operatorname{rot} \underline{A}) \bullet d\underline{a} = \oint_{\partial S} \underline{A} \bullet d\underline{l}. \tag{1}$$

Dabei gilt $d\underline{a} = \underline{n}dS$ und $d\underline{l} = \underline{t}ds$ mit dem Normalenvektor \underline{n} der Fläche S und dem Tangentialvektor \underline{t} des Randes ∂S .

Helmholtz Zerlegung

Es werden für einen Definitionsbereich Ω die beiden Räume der "Harmonischen Felder" definiert

$$\begin{array}{lcl} \mathbb{H}_m\left(\Omega\right) & = & \left\{\underline{w} \in L^3_2\left(\Omega\right) \mid \operatorname{rot}(\underline{w}) = \underline{0}, \; \operatorname{div}(\underline{w}) = \underline{0}, \; \underline{w} \bullet \underline{n} = 0 \; \operatorname{auf} \; \partial\Omega\right\} \\ \mathbb{H}_e\left(\Omega\right) & = & \left\{\underline{w} \in L^3_2\left(\Omega\right) \mid \operatorname{rot}(\underline{w}) = \underline{0}, \; \operatorname{div}(\underline{w}) = \underline{0}, \; \underline{w} \times \underline{n} = 0 \; \operatorname{auf} \; \partial\Omega\right\}. \end{array}$$

Mit $L_p^3(\Omega)$ seien die Lebeque-integrablen Funktionen L_p in $\Omega \subset \mathbb{R}^3$ bezeichnet.

Maxwellgleichungen

Es gelten die quellenfreien Maxwellgleichungen

$$\operatorname{div}(\underline{E}) = 0$$

$$\operatorname{div}(\underline{B}) = 0$$

$$\operatorname{rot}(\underline{E}) = \underline{0}$$

$$\operatorname{rot}(\underline{B}) = \underline{0}.$$
(2)

Potentiale

Aus der Vektoranalysis ist für den \mathbb{R}^3 hinlänglich bekannt

$$rot \operatorname{grad}(\psi) = \underline{0}$$
$$\operatorname{div} \operatorname{rot}(A) = 0.$$

Damit gelten die folgenden beiden Aussagen

$$\underline{V} = \operatorname{grad}(\psi) \implies \operatorname{rot}(\underline{V}) = \underline{0}$$

 $W = \operatorname{rot}(A) \implies \operatorname{div}(W) = 0.$

Aber gilt auch die Umkehrung?

Existiert für jedes rotationsfreie Feld \underline{V} eine skalare Funktion ψ mit $\underline{V} = \operatorname{grad}(\psi)$ und existiert für jedes divergenzfreie Feld \underline{W} ein Feld \underline{A} mit $\underline{W} = \operatorname{rot}(\underline{A})$?

Die Antworten auf diese Fragen hängen von der Topologie des betrachteten Definitionsbereich Ω ab.

Definitionsbereich

Der Definitionsbereich Ω der Felder und Potentiale beider Monopole ist der gesamte \mathbb{R}^3 mit Ausnahme des Ortes des Monopoles im Koordinatenursprung, also $\Omega = \mathbb{R}^3 - \underline{0}$.

Dieser spezielle Definitionsbereich $\mathbb{R}^3 - 0$ wird im folgenden mit U bezeichnet.

Topologische Eigenschaften des Definitionsbereiches U

- Die erste Homotopiegruppe (die Fundamentalgruppe) von U ist trivial $\pi_1(U) = 0$. D.h. eine beliebige 1-Sphäre S^1 (Kreislinie) in U kann kontinuierlich auf einen Punkt in U zusammengezogen werden man nennt U auch einfach zusammenhängend.
- Die zweite Homotopiegruppe von U ist nicht trivial $\pi_2(U) \neq 0$. D.h. es ist nicht möglich, eine beliebige 2-Sphäre S^2 (Kugeloberfläche) in U kontinuierlich auf einen Punkt in U zusammenzuziehen - dies scheitert für jede Kugeloberfläche, die den Ursprung umschliesst.

Diese beiden Eigenschaften des Definitionsbereiches U haben vermutlich Konsequenzen für die Existenz der Potentiale.

- 1. Im Fall $\pi_1(U) = 0$ wird sich vermutlich zeigen, dass für jedes rotationsfreie Feld \underline{V} die Existenz eines skalaren Potentiales ψ folgt.
- 2. Im Fall $\pi_1(U) = 0$ existieren aber vermutlich divergenzfreie Felder W die kein Vektorpotential A besitzen.
- 3. Im Fall $\pi_2(U) \neq 0$ wird sich vermutlich zeigen, dass jedes divergenzfreie Feld \underline{W} eine Vektorpotential \underline{A} besitzt.

Noch zu tun: die Vermutungen beweisen

Potentiale des elektrischen Monopols

Sein elektrisches und magnetisches Feld ist auf U durch

$$\underline{E} (\rho, \phi, \Theta) = \frac{q}{\rho^2} \underline{e}_{\rho}
\underline{B} (\rho, \phi, \Theta) = \underline{0}$$
(3)

gegeben.

Noch zu tun: skalares Potential und Vektorpotential herleiten

Potentiale des magnetischen Monopols

Ein magnetischer Monopol wurde bisher noch nicht beobachtet und ist deshalb hypothetisch.

Sein magnetisches und elektrisches Feld in Kugelkoordinaten ist auf U analog zum elektrischen Monopol durch

$$\underline{\underline{E}}(\rho, \phi, \Theta) = \underline{0}$$

$$\underline{\underline{B}}(\rho, \phi, \Theta) = \frac{g}{\rho^2}\underline{e}_{\rho}$$
(4)

gegeben.

Noch zu tun:

- skalares Potential herleiten
- Dirac-Strings thematisieren
- Quantelung der Elementarladung als direkte Folge der magnetischen Monopole herleiten

Beweis zu Punkt 2 für den Spezialfall "Magnetischer Monopol"

Betrachtet man eine Kugeloberfläche S des Radiuses R um den Ursprung und sei ∂S ihr Äquator. Weiterhin seien S^+ und S^- ihre obere und untere Hemisphären. ∂S sei entgegen des Uhrzeigersinns orientiert und die beiden Hemisphären S^+ und S^- besitzen einen nach aussen gerichteten Normalenvektor \underline{n} .

Wir nehmen an, dass ein Vektorpotential \underline{A} mit kontinuierlichen 1. partiellen Ableitungen in einer Umgebung, die S enthält, existiert.

Dann erhält man für den Fluss der Rotation des Vektorpotentials \underline{A} durch S zusammen mit (4)

$$\iint_{S} (\operatorname{rot} \underline{A}) \bullet d\underline{a} = \iint_{S} \underline{B} \bullet d\underline{a}$$

$$= \iint_{S} \left(\frac{g}{\rho^{2}} \underline{e}_{\rho} \right) \bullet d\underline{a}$$

$$= \frac{g}{R^{2}} \iint_{S} \underline{e}_{\rho} \bullet d\underline{a}$$

$$= \frac{g}{R^{2}} (4\pi R^{2})$$

$$= 4\pi g.$$
(5)

Andererseits folgt aus dem Satz von Stokes (1) für diesen Fluss

$$\iint_{S} (\operatorname{rot} \underline{A}) \bullet d\underline{a} = \iint_{S^{+}} (\operatorname{rot} \underline{A}) \bullet d\underline{a} + \iint_{S^{-}} (\operatorname{rot} \underline{A}) \bullet d\underline{a}$$

$$= \oint_{\partial S} \underline{A} \bullet d\underline{l} + \oint_{-\partial S} \underline{A} \bullet d\underline{l}$$

$$= \oint_{\partial S} \underline{A} \bullet d\underline{l} - \oint_{\partial S} \underline{A} \bullet d\underline{l}$$

$$= 0.$$
(6)

Zwischen (5) und (6) besteht ein Widerspruch.

Die Annahme ist also falsch und es existiert kein solches Vektorpotential. \underline{A}

Noch zu tun: 1, 2 und 3 in voller Allgemeinheit beweisen

Theorem 1

Nehmen wir an, dass \underline{H} rotationsfrei ist und dass jede geschlossene Kurve $C \subset \Omega$ der Rand ∂S einer Fläche $S \subset \Omega$ ist. Dann existiert eine Funktion ψ mit $H = \operatorname{grad}(\psi)$ in Ω .

Beweis

Da der Fluss von rot (\underline{H}) auf jeder Oberfläche S verschwindet, folgt aus dem Satz von Stokes (1), dass das Linienintegral einer geschlossenen Kurve C über H verschwindet.

Theorem 2

Nehmen wir an, dass \underline{B} in Ω divergenzfrei ist und dass jede geschlossene Oberfläche $S \subset \Omega$ der Rand ∂S einer Teilmenge $D \subset \Omega$ ist. Dann existiert ein Vektorfeld \underline{A} mit $\underline{A} = \operatorname{rot}(\underline{B})$ in Ω .

Beweis

Da das Integral von div (\underline{B}) auf jeder Teilmenge D verschwindet, verschwindet der Fluss von B auf jeder geschlossenen Fläche in Ω . Dies garantiert die Existenz eines Vektorpotentials \underline{A} .

Theorem 3

Nehmen wir an, dass \underline{H} in Ω rotationsfrei ist und dass $\underline{H} \times \underline{n} = 0$ auf dem Rand $\partial \Omega$ von Ω gilt. Dann existiert eine Funktion ψ mit $\underline{H} = \operatorname{grad}(\psi)$ in Ω .

Beweis

Setzt man \underline{H} ausserhalb von Ω durch $\underline{0}$ fort, dann bleibt \underline{H} rotationsfrei. \underline{H} ist also der Gradient eines skalaren Potentials.

Theorem 4

Nehmen wir an, dass \underline{B} in Ω divergenzfrei ist und dass $\underline{B} \bullet \underline{n} = 0$ auf dem Rand $\partial \Omega$ von Ω gilt. Dann existiert ein Vektorfeld \underline{A} mit $\underline{B} = \operatorname{rot}(\underline{A})$ in Ω .

Beweis

Setzt man \underline{B} ausserhalb von Ω durch $\underline{0}$ fort, dann bleibt \underline{B} divergenzfrei. \underline{B} ist also die Rotation eine Vektorfeldes.

Noch zu tun:

- Definition der "Harmonischen Felder" verstehen
- Theorem 2 ist die Stelle, in der die Topologie ins Spiel kommt. Die Voraussetzungen von sind für den magnetischen Monopol nicht erfüllt!
- Alles obige zu einem folgerichtigen Ganzen integrieren

Alternierende Differentialformen auf n-Mannigfaltigkeiten

Im folgenden wird mit n die Dimension der Mannigfaltigkeit bezeichnet.

Griechische Buchstaben bezeichnen Differentialformen und d deren äussere Ableitung.

- 1. Es gilt $d^2 = 0$.
- 2. Eine Form α nennt man geschlossen, falls $d\alpha = 0$ gilt.
- 3. Eine Form β nennt man exakt, falls $\beta = d\gamma$ gilt , wobei γ wieder eine Form ist. Eine exakte Form ist im Bild und eine geschlossene Form im Kern von d.
- 4. Wegen (1) ist eine exakte Form stets geschlossen.
- 5. Die Frage, ob jede geschlossene Form exakt ist, hängt von der Topologie des Definitionsbereiches ab.

6. Auf einem einfach zusammenhängenden Definitionsbereich ist jede geschlossene p-Form mit $1 \le p \le n$ wegen des Poincaré-Lemmas exakt.

Noch zu tun:

- Warum gilt Punkt (1)?
- Poincaré-Lemma verstehen
- Zusammenhang verstehen

Inhaltsverzeichnis

Literatur

- [1] Topology, Geometry and Gauge fields; Naber, Gregory; Springer Science+Business Media; 2011
- [2] Scalar and vector potentials, Helmholtz decomposition and de Rham cohomology; Valli, Alberto; University of Trento, Italy
- [3] Quantised singularities in the electromagnetic field; Dirac, P.A.M.; Proc. Roy. Soc., A133(1931), 60–72
- [4] The theory of magnetic poles; Dirac, P.A.M.; Phys. Rev., 74(1948), 817–830