Table des matières

Définition 1. Une catégorie consiste en une collection d'objets et une collection de morphismes, cette dernière munie d'une opérations binaire partielle o appelée composition, avec les propriétés suivantes.

- À chaque morphisme f est associé un couple d'objets (A, B); on écrit f: A → B. On dit que A → B est le type de f, et que f est un morphisme de A vers B, et encore que A est le domaine ou la source de f, et B le codomaine ou la cible de f.
- Pour tous objets A, B, C et morphismes f, g tels que $f: A \to B$ et $g: B \to C$, le morphisme $g \circ f$ existe et $g \circ f: A \to C$.
- Identité. Pour tout objet A, il existe un morphisme particulier $id_A: A \to A$ appelé identitié sur A, tel que pour tout objet B, pour tout $f: B \to A$, $id_A \circ f = f$ et pour tout $g: A \to B$, $g \circ id_A = g$.
- Associativité. Pour tous $f: A \to B$, $g: B \to C$, $h: C \to D$, on a $h \circ (g \circ f) = (h \circ g) \circ f$.

On désigne souvent une catégorie par la collection de ses objets.

Définition 2. Une catégorie monoïdale est une catégorie \mathbb{C} munie d'un bifoncteur $\otimes : \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{C}$ et d'un objet e, tel que les morphismes suivants existent

- pour tous objets A, B, C, un isomorphisme $\alpha_{A,B,C}: (A \otimes B) \otimes C \to A \otimes (B \otimes C)$ permettant de parler d'associativité;
- pour tout objet A, des isomorphismes $\lambda_A : e \otimes A \to A$ et $\rho_A : A \otimes e \to A$ justifiant le nom d'**unité** pour e;

et tel que les diagrammes suivants commutent pour tous objets A, B, C, D. On a omis les indices de α , λ , ρ et écrit A pour id_A : par exemple, comprendre $\alpha \otimes D$ comme $\alpha_{A,B,C} \otimes id_A$.

À chaque preuve π on associe une dénotation $[\pi]$, qu'on veut invariante par élimination de la coupure.

Les objets sont les formules et les morphismes sont des dénotations de preuves. Les morphismes d'une formule A vers une formule B sont les dénotations des différentes preuves du séquent $A \vdash B$ (si le séquent n'est pas prouvable, il n'y en a pas).

Soit A, B, C des formules, π_1 une preuve de $A \vdash B$ et π_2 une preuve de $B \vdash C$. On définit $[\pi_2] \circ [\pi_1]$ comme la dénotation de la preuve suivante de $A \vdash C$

$$\frac{\pi_1}{A \vdash B} \frac{\pi_2}{B \vdash C} (cut)$$

L'identité id_A sur une formule A est la dénotation de la preuve $\overline{A \vdash A}$ (Id). Soit π une preuve de $A \vdash B$, l'élimination de la coupure transforme la preuve

$$\frac{A \vdash A}{A \vdash B} (Id) \qquad \begin{array}{c} \pi \\ A \vdash B \end{array} (cut) \qquad \text{en} \qquad A \vdash B$$

donc on a bien $[\pi] \circ id_A = [\pi]$. De même pour π une preuve de $B \vdash A$, on a $id_A \circ [\pi] = [\pi]$. L'associativité vient de ce que les preuves

$$\frac{A \vdash B \quad B \vdash C}{A \vdash C} (cut) \quad \frac{\pi_3}{C \vdash D} (cut) \quad \text{et} \quad \frac{\pi_1}{A \vdash B} \quad \frac{B \vdash C \quad C \vdash D}{B \vdash D} (cut) (cut)$$

sont équivalentes à élimination de la coupure près.