Generalized symmetries and and analy matching

Yuya Tanizaki (YITP, Kyoto)

Outline

- Anomaly in Quantum Mechanics Demonstration of the idea
 - 2. SUT(N) Yang-Mills theories

 What is center sym?

 Anomaly involving center sym.

 - QCD (-like) theories

Outline

- Anomaly in Quantum Mechanics Demonstration of the idea
 - 2. SUT(N) Yang-Mills theories

 What is center sym?

 Anomaly involving center sym.

 - QCD (-like) theories

General idea

Solving QFT is a very difficult task.

=> We want to get a guidline for possible interesting dynamics.

Strategy Pay attention to symmetry!

Anomaly of symmetry sometimes tell nontrivial dynamics must occur.

$$\hat{H} = J \hat{S}_{z}^{2}$$

Hamiltonian
$$\hat{H} = J \hat{S}_z^2 \qquad (\hat{S}_z = -S_z - S_z + J_z) = S_z$$

J>> 1

Classical racua

$$L_{eff} = \pm \int_{d\tau} (\frac{3\phi}{3\tau})^2 + \cdots$$
 $(\phi \sim \phi + 2\pi)$

How does low-energy EFT
$$Z_{eff}$$
 capature $S=\frac{1}{2},\frac{1}{2},...$ or $S=1,2,...$?

$$\Rightarrow \theta \text{-angle} : \theta = 2\pi S$$

$$Z_{eff} = \int d\tau \frac{1}{2} \left(\frac{\partial \phi}{\partial \tau}\right)^2 + \frac{i\theta}{2\pi} \int d\tau \left(\frac{\partial \phi}{\partial \tau}\right)$$

$$S_0, \theta \sim \theta + 2\pi.$$

Hamiltonian for Leff: Heff =
$$\frac{1}{2} \left(\hat{P}_{4} - \frac{\Theta}{2\pi} \right)^{2}$$
.

E(0) $P_{4}=-1$
 $P_{4}=0$
 $P_{4}=1$
 $P_{4}=0$
 $P_{4}=1$

Spectral (non) degeneracy from symmetry

. U(1) sym
$$\hat{U}_{d} = \exp(i\alpha \hat{p}_{\phi}) \Rightarrow \hat{p}_{\phi} = n$$
 is a good quantum #.

· Z2 symmetry $\phi \mapsto -\phi$.

$$S=1,2,\dots\Leftrightarrow \Theta=0$$
 i.e. $Heff= \pm \hat{P}_{\phi}$.
 \hat{H}_{eff} is invariant under $\hat{P}_{\phi} \mapsto -\hat{P}_{\phi}$. $\hat{P}_{\phi}=0$ is invariant $\hat{P}_{\phi} \mapsto -\hat{P}_{\phi}$. $\hat{P}_{\phi}=0$ is invariant $\hat{P}_{\phi} \mapsto -\hat{P}_{\phi}$. $\hat{P}_{\phi}=0$ is invariant $\hat{P}_{\phi}=0$ is invariant $\hat{P}_{\phi}=0$ is invariant $\hat{P}_{\phi}=0$ is invariant.

$$S = \frac{1}{2}, \frac{3}{2}, \dots \Leftrightarrow \theta = \pi$$
 i.e. $Heff = \frac{1}{2}(\hat{p}_{+} - \frac{1}{2})^{2}$. $Heff$ is inv. under $\hat{p}_{+} \mapsto -\hat{p}_{+} + 1$.

~) No simultaneous eigenstate. Doublet spectrum

Reinterpretation as an anomaly.

Let us introduce U(1) gauge field A: dø > dø+A.

 $Z_{\Theta}[A] = \int \mathcal{B}\phi \exp\left(-\frac{1}{2}\int |d\phi + A|^2 + i\frac{Q}{2\pi}\int (d\phi + A)\right)$

Perform \mathbb{Z}_2 transformation: $\phi \mapsto -\phi$, $A \mapsto -A$.

$$\begin{bmatrix} A + \theta = 0 & \text{(i.e. } S = 1,2,...), \\ B_0 & \text{[A]} \longrightarrow \int 84 e^{-\frac{1}{2}\int 1-44-AI^2} = B_0 & \text{[A]}. \end{bmatrix}$$

At $\theta = \pi$ (i.e. $S = \{1, \frac{3}{2}, ...\}$) $\frac{\pi}{1/2\pi} S(\lambda + A) - \int (\lambda + A)$

Af $\theta = \pi$ (i.e. $\frac{1}{2}$, $\frac{1}{2}$) $Z_{\pi}[A] = \int \theta e^{-\frac{1}{2}\int (a+a)^2 + i\frac{\pi}{2\pi}\int (-a+A)} = e^{-i\int A} \cdot Z_{\pi}[A]$ Anomaly

Summary for QM of a spin
$$\hat{H}=J\hat{S}_{z}^{2}$$
.

•
$$S = 1, 2, 3, \cdots$$

Symmetry
$$U(1)$$
 and \mathbb{Z}_2 . $\mathbb{Z}(A) \xrightarrow{\mathbb{Z}_2} \mathbb{Z}(A)$.

No anomaly for these sym => Singlet state exists.

Same sym U(1) and \mathbb{Z}_2 , but $\mathbb{Z}[A] \xrightarrow{\mathbb{Z}_2} e^{iSA} \mathbb{Z}[A]$.

Gauzing TT(1) breaks $\mathbb{Z}_2 \Rightarrow Anomaly$ => All spectra are doublets.

4 Hooft anomaly matching (in a generalized form) 4 Hooft anomaly Assume d-dim. QFT has a symmetry G. JA: G-gange field $lA \rightarrow A + S_{\lambda}A$: G-gauge transformation. Compute the partition function with this background, Z[A]. $Z[A+S_{\lambda}A] = \exp(i\int A(\lambda,A)) \cdot Z[A]$ $\frac{1}{L_{d-dim. local functional of A, \lambda}.$ A is called an 4 Hooft anomaly if $A + \delta_{\lambda}(d\cdot lim\cdot func.of A)$ Anomaly matching 4 Hooft anomaly is RG-invariant.

Outline.

- Anomaly in Quantum Mechanics Demonstration of the idea
- 2. SUT(N) Yang-Mills theories

 What is center sym?

 Anomaly involving center sym.

 - QCD (-like) theories

SU(N) Yang-Mills theory
$$S = \frac{1}{9^2} \int |F|^2 + i \frac{\theta}{8\pi^2} \int tr(F \wedge F)$$

$$\theta \times instanton \# \rightarrow \theta \sim \theta + 2\pi$$

Yang-Mills racua have interesting response for O

(Large-N: Witten 80, '98 (Chiral model: Dashen 71, Di Veschia, Veneziano, 80)

Intuitive explanation

(At least in Abelianized regime)

there are monopole/dyon

in YM theory

$$(\vec{e}, \vec{m}) = (n\vec{\alpha}_i, \vec{\alpha}_i)$$

Coulomb energy ~ g2e2+ \$1 m2.

with the O-angle, Witten effect tells

Coulomb energy
$$\sim 9^2 \left(e + \frac{Q}{2\pi}m\right)^2 + \frac{1}{9^2}m^2$$

 $\sim 8^2 \left(n + \frac{Q}{2\pi}\right)^2$

 $-\pi < 0 < \pi \Rightarrow Monopole (i.e. n=0) is preferred as condensate.$

T(< O < 3T => Dyon (n=1) is preferred. (4 Hooft '81)

I like this intuition, but it is also puzzling:

No order parameter distinguishes monopole/dyon condensates.

1) Landau's classification does not require CP-breaking at $0=\pi$.

what's wrong with

· This is inconsistent with 't Hooft anomaly involving the center symmetry. (Quieto, Kapustin, Komonyaddis Seibony 17)

Genter symmetry

Entering the graduate school, learning non-Abelian YM theories, we are told about a mysterious sym., center sym.

Standard story: globel

Mary does not have symmetry. (except Poincaré)

- · But, Confinement/Higgs phases are separated.
- · Once you compactify on a torus, ZN sym appears. Polyakov bop P -> en P

UN 1-form symmetry 1-form symmetry provides a systematic tool to formulate Center symmetry on a general 4-dim. spacetime.

(Roughly)

(Roughly)

(Roughly)

(Gaidto, Kapustin, Seiberg, Willet'M) $\frac{v_{\text{ortex}}}{v_{\text{ortex}}} = e^{\frac{2\pi i}{W(C)}}$ IN-twist on a plagnette. (= Gukov-Witten surface operator)

[Location of the twist Location of the twist can be changed freely conservation law. - . It the move crosses w(c), (attice Zn phase appears. spacetime

Using this (abstract/famey) terminologies,

we can make the precise meaning of & Hooft twisted b.C.

25(4) U(10)

-U2(4) U(0)

25(4) V(10)

-U2(4) U(0)

Gauging of \mathbb{Z}_N 1-form sym $\Rightarrow \mathbb{Z}_N$ 2-form gauge field \mathbb{B} $\int_{(T^2)_{1,2}} \mathbb{B} = 2\pi n_{12}$ is the 4 Hooft twist. Anomaly involving ZN 1-form sym. at 0=T

Introducing 4 Hooft twist.

Qtop =
$$-\frac{1}{N} \times \frac{n_{ij}}{4}$$
 + integer. (van Boal '82)
 $-\frac{N}{8\pi^2 J} B \wedge B$ in the current terminology.

Using this,

but

$$Z_{\theta=\pi} [B] \xrightarrow{CP} e^{i\frac{N}{4\pi}SB^2} Z_{\theta=\pi} [B].$$
Anomaly.

Monopole/dyon condensing vacua cannot be distinguished by the Landau's order parameter. monopole vacuum Zo=o[B] = 1×120=o[B]/ Different phase factors

With B-field. $Z_{\theta=2\pi}[B] = e^{i\frac{N}{4\pi}SB \wedge B}$ 180=0 [B] dyon vacuum These two states are different as Symmetry. Protected Topological phase with \mathbb{Z}_{N} I-form symmetry. (Faiotto, Kaputin, Komangodski, Scibenji)
Tanizaki, Kikuchi, 17 ...

What do we get?

Outline

- Anomaly in Quantum Mechanics Demonstration of the idea
 - 2. ST(N) Yang-Mills theories

 What is center sym?

 Anomaly involving center sym.

 - QCD (-like) theories
 - Im skipping many details and present results. Please see the next talk by Takuya Fulusawa.

Chiral symmetry vs. Confinement in QCD QCD with fundamental quarko:

(\$\psi\psi\$)

(\$\psi\psi\$)

Chiral restoration occurs at the temperature, around which (P) rises up.

But, fund. quarks explicitly break center symmetry.

~) Can we make the precise connection?

Two interesting set-ups $N = 10^{-1} \text{ (Kouno et al. } 12 \dots, Poppitz, Sulej manpasic 13, Iritani, Misumi, Itou 15)}$ Take $N = N = N = 10^{-1} \text{ (Most of the SUON)} = 10^{-1} \text{ (Most of the SUON)} = 10^{-1} \text{ (Most of the Sum)} = 10^{-1} \text{ (Most$

1) There is a center-like sym:

P -> enter-like sym:

P -> enter-like sym:

Ff -> Ff+1.

Lary-Nc acd (Nf: f: xed)

String-breaking by dynamical quarks is $\frac{1}{N_c}$ - suppressed.

1) Inc center sym. is approximately good.

In these setups, we can show unbroken center (-like) sym => chiral symmetry breaking (Tanizaki, (Kikuchi), Misumi, Sakai 17) (Shimizu, Yonekura 17 ... Faithful symmetry of QCD 5 U(Nf) L x 5 U(Nf) R x U(a) V ZNf X ZNc nontrivial quotient exists.

| Start can be introduced |
| A | Bc | Can be introduced |
| Start can be i Z [Bc, Bs]

Summary

- · Symmetry and anomely provide us a useful guidline toward interesting nontrivial dynamics
- · Of course, this is an "antique" technology, but many new results are still found there.