Lab 3 - Finding Optimal House Rent

Submitted By Name: Harsha KG

Register Number: 19112005 Class: **5 BSc Data Science**

Lab Overview

Objectives

- Train and Test through Different Regression Models for Better Pricdiction.
- · .Help the client in finding a suitable residence in Lavasa

Problem Definition

THE BACKGROUND

You are working in the Lavasa Campus, helping our Public Relations Team to find houses for people who are in search for one. You currently have the dataset that shows the Building Type, Location, Size, Building Area, No of Baltonies and how many people stayed in the building in the academic year 2020-21. This dataset also shows you the rent that is demanded by the current building owners.

THE NEW PROFESSOR IN COLLEGE

Prof Naived George Eapen is coming to Lavasa on this upcoming Friday, and he has contacted you to get an idea about the rent of the accommodation facilities as available there. You, being an amazing analyst, is very confident that you will be able to help him with the requirements that he has.

Below are some suggestions that Prof Naived has in mind:

- 1. 1 BHK with 2 Baths in Portofino Street
- 2. A Fully-Furnished 2 BHK Room, in School Street
- 3. A Super-Furnished Single Room, anywhere in Lavasa
- 4. A Fully-Furnished 2 BHK Room with two balconies

He does not say what he has in mind with respect to other conditions, and he belives that you can provide case-wise results by populating other variable values.

THE IRRITATING JUNIORS

You started by considering 70% of Data for Training and 30% for testing. Your juniors, seeing you do the training and testing for predicting house values, asks you few doubts.

What happens if you use different Random States for splitting the dataset before the training process?

Is there any improvement in the Reduction of Training and Generalization Errors if you increase the percentage of Training to 75%, 80% and 90%?

What are the different Error Measures (Evaluation Metrics) in relation to Linear Regression? How much do you get in the above cases?

During LinearRegression() process, what is the impact of giving TRUE/FALSE as the value for Normalize Parameter?

Additional Exploration: Try to use Lasso Regression (L1) and Ridge Regression (L2) and ElasticNet (Hybrid Model) and note on the variation in results

Approach

Imported the Dataset using required libraries using python and did some preprocessing techniques before exploration to make the datset into standard format and then did some EDA. After that datset is splitted into training and testing into several ratio and compared the regression model with different ratio. At the end, help the client with insights for choosing best rental property.

Sections

- 1. Lab Overview
- 2. Dataset Overview
- 3. EDA
- 4. About Different Regression Models
- 5. Implementation and Evaluation of Different Regression Models
- 6. Conclusion

References

1. https://www.kaggle.com/c/house-prices-advanced-regression-techniques (https://www.kaggle.com/c/house-prices-advanced-regression-techniques (https://www.kaggle.com/c/house-prices-advanced-regression-techniques (https://www.kaggle.com/c/house-prices-advanced-regression-techniques (https://www.kaggle.com/c/house-prices-advanced-regression-techniques)

About The Dataset

This dataset also shows you the rent that is demanded by the current building owners.

- 1. Building_Type- Is it a fully/semi/Un furnished Single Room, Flat, or Villa?
- 2. Location- Correct location in which Building is located in Lavasa
- 3. Size-specify no of bedroom.
- 4. Areasqft- Tells us Whether they are supported with some loan, scholarship, sponsor, etc.
- 5. No of Bath- Specify no of bathrooms
- 6. No of Balcony- count of no of balconies
- 7. RentPerMonth-Rent paid per month

Import the Libraries

```
In [13]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   import hvplot.pandas
   import random
   from sklearn.linear_model import Ridge
from sklearn.model_selection import train_test_split
```

Loading and Pre-Processing

```
In [14]: df=pd.read_csv("HousePricePrediction.csv")
```

In [15]: df.head(34)

Out[15]:

	BuildingType	Location	Size	AreaSqFt	NoOfBath	NoOfPeople	NoOfBalcony	RentPerMonth
0	Minimum Budget Rooms	Portofino H	1 BHK	400.0	1	1	1	1100.0
1	Minimum Budget Rooms	Portofino H	1 BHK	450.0	1	1	1	1100.0
2	Minimum Budget Rooms	School Street	1 BHK	530.0	1	1	0	1166.0
3	Minimum Budget Rooms	Portofino B	1 BHK	400.0	1	1	0	1400.0
4	Minimum Budget Rooms	School Street	2 BHK	460.0	1	1	0	1500.0
5	Minimum Budget Rooms	Portofino A	1 BHK	600.0	1	1	1	1500.0
6	Semi Furnished Single Room	School Street	1 BHK	654.0	1	1	0	1513.5
7	Semi Furnished Single Room	School Street	1 BHK	645.0	1	1	1	1645.0
8	Semi Furnished Single Room	School Street	1 BHK	645.0	1	1	1	1645.0
9	Semi Furnished Single Room	Clubview Road	2 BHK	880.0	1	1	1	1650.0
10	Minimum Budget Rooms	School Street	2 BHK	650.0	1	1	1	1700.0
11	Minimum Budget Rooms	Portofino H	1 BHK	686.0	1	1	1	1700.0
12	Minimum Budget Rooms	Portofino C	1 BHK	666.0	1	1	0	1753.5
13	Minimum Budget Rooms	Portofino A	1 BHK	665.0	1	1	0	1841.0
14	Minimum Budget Rooms	Portofino A	1 BHK	386.0	1	1	0	1850.0
15	Minimum Budget Rooms	Portofino D	1 BHK	416.0	1	1	1	1850.0
16	Minimum Budget Rooms	School Street	1 BHK	1200.0	1	1	0	2000.0
17	Semi Furnished Single Room	Portofino H	1 BHK	530.0	1	1	1	2000.0
18	Minimum Budget Rooms	School Street	2 BHK	800.0	1	1	1	2000.0
19	Semi Furnished Single Room	Portofino B	1 BHK	425.0	1	1	0	2003.0
20	Semi Furnished Single Room	Portofino A	1 BHK	525.0	1	1	0	2153.0
21	Semi Furnished Single Room	Portofino A	2 BHK	460.0	1	1	0	2200.0
22	Semi Furnished Single Room	Portofino H	2 BHK	656.0	2	1	1	2200.0
23	Semi Furnished Single Room	School Street	2 BHK	805.0	2	1	1	2214.0
24	Semi Furnished Single Room	Portofino C	2 BHK	900.0	2	1	2	2250.0
25	Minimum Budget Rooms	Starter Homes	1 BHK	500.0	1	1	1	2300.0
26	Minimum Budget Rooms	Clubview Road	2 BHK	400.0	3	1	3	2300.0

In [16]:
Out[16]:

In [17]:

In [18]:

Out[18]:

	BuildingType	Location	Size	AreaSqFt	NoOfBath	NoOfPeople	NoOfBalcony	RentPerMonth
27	Minimum Budget Rooms	Clubview Road	2 BHK	660.0	1	1	1	2310.0
28	Minimum Budget Rooms	Portofino A	2 BHK	810.0	2	1	2	2450.0
29	Semi Furnished Single Room	Clubview Road	1 BHK	469.0	1	1	0	2500.0
30	Semi Furnished Single Room	Portofino H	2 BHK	656.0	2	1	1	2500.0
31	Semi Furnished Single Room	Clubview Road	2 BHK	891.0	2	1	1	2500.0
32	Semi Furnished Single Room	Clubview Road	2 BHK	1000.0	2	1	1	2500.0
33	Minimum Budget Rooms	Portofino A	2 BHK	1000.0	2	1	1	2500.0
df.s	hape							
(100	0, 8)							
`	, ,							
df.i	nfo()#to get in	fo about	filled	d values	in the da	taframe for	r every colu	mn
			_					
	ss 'pandas.core							
_	eIndex: 1000 er columns (total			,				
Jaca #	Column	Non-Null (Dtypo				
	COTUMN	NOII-NUII (Dtype 				
0	0).	1000 non-r		object				
1	Location	1000 non-r		object				
2	Size	1000 non-r		object				
3	AreaSqFt	1000 non-r		float64				
4	NoOtBath	NoOfBath 1000 non-null						
_				int64				
5	•	1000 non-r	null	int64				
6	NoOfBalcony	1000 non-r 1000 non-r	null null	int64 int64				
6 7	NoOfBalcony RentPerMonth	1000 non-r 1000 non-r 1000 non-r	null null null	int64 int64 float64				
6 7 dtyp	NoOfBalcony RentPerMonth es: float64(2),	1000 non-r 1000 non-r 1000 non-r int64(3)	null null null	int64 int64 float64				
6 7 dtyp	NoOfBalcony RentPerMonth	1000 non-r 1000 non-r 1000 non-r int64(3)	null null null	int64 int64 float64				
6 7 dtyp memo	NoOfBalcony RentPerMonth es: float64(2),	1000 non-r 1000 non-r 1000 non-r int64(3)	null null null	int64 int64 float64				
6 7 dtyp memo df.c	NoOfBalcony RentPerMonth es: float64(2), ry usage: 62.64	1000 non-r 1000 non-r 1000 non-r int64(3) - KB	null null null , obje	int64 int64 float64 ect(3)			ath',	

AreaSqFt 0
NoOfBath 0
NoOfPeople 0
NoOfBalcony 0
RentPerMonth 0
dtype: int64

In [20]: df.describe(include='all')

Out[20]:

	BuildingType	Location	Size	AreaSqFt	NoOfBath	NoOfPeople	NoOfBalcony	RentPerMon
count	1000	1000	1000	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000
unique	10	11	10	NaN	NaN	NaN	NaN	Na
top	Semi Furnished Single Room	Clubview Road	2 BHK	NaN	NaN	NaN	NaN	Na
freq	274	213	429	NaN	NaN	NaN	NaN	Na
mean	NaN	NaN	NaN	1548.270010	2.661000	2.168000	1.544000	10476.63350
std	NaN	NaN	NaN	1345.141175	1.247251	0.959529	0.838312	10509.5089
min	NaN	NaN	NaN	375.000000	1.000000	1.000000	0.000000	1100.00000
25%	NaN	NaN	NaN	1090.000000	2.000000	2.000000	1.000000	4890.50000
50%	NaN	NaN	NaN	1270.000000	2.000000	2.000000	2.000000	7000.00000
75%	NaN	NaN	NaN	1664.250000	3.000000	2.000000	2.000000	11925.00000
max	NaN	NaN	NaN	35000.000000	11.000000	6.000000	3.000000	96000.00000

In [22]: plt.figure(figsize=[26,10])
 sns.countplot(x='NoOfBath',palette='viridis',alpha=0.7,data=df)
 sns.despine()


```
In [23]: plt.figure(figsize=[26,10])
    sns.countplot(x='Size',palette='twilight',alpha=0.7,data=df)
    sns.despine()
```



```
In [24]: plt.figure(figsize=(8,5))
    sns.distplot(df['RentPerMonth'], kde = True, color='g', bins = 30)
    plt.ylabel('Frequency')
    plt.title('Rent Per Month')
    plt.show()
```

C:\Users\HP\anaconda3\anacondaorginal\lib\site-packages\seaborn\distributions.py:261
9: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)


```
In [25]: plt.figure(figsize=(8,5))
    sns.distplot(df['AreaSqFt'], kde = True, color='b', bins = 30)
    plt.ylabel('Frequency')
    plt.title('AreaSqFt')
    plt.show()
```

C:\Users\HP\anaconda3\anacondaorginal\lib\site-packages\seaborn\distributions.py:261
9: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

In [33]: sns.heatmap(df.corr(), annot=True)

Out[33]: <matplotlib.axes._subplots.AxesSubplot at 0x12de897fe80>

Split it into Features and Target

```
In [34]: X = df[['Size','AreaSqFt','NoOfBath','NoOfPeople','NoOfBalcony']]
y = df['RentPerMonth']

In [35]: df['Size'] = df['Size'].str.replace('BHK','')
df['Size'] = df['Size'].str.replace('RK','')
```

Training and Testing

```
In [36]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .30, random_sta
         te = 8)
In [37]: from sklearn import metrics
         from sklearn.model_selection import cross_val_score
         def cross val(model):
             pred = cross_val_score(model, X, y, cv=10)
             return pred.mean()
         def print evaluate(true, predicted):
             mae = metrics.mean_absolute_error(true, predicted)
             mse = metrics.mean_squared_error(true, predicted)
             rmse = np.sqrt(metrics.mean_squared_error(true, predicted))
             r2_square = metrics.r2_score(true, predicted)
             print('MAE:', mae)
             print('MSE:', mse)
             print('RMSE:', rmse)
             print('R2 Square', r2_square)
             print('_
         def evaluate(true, predicted):
             mae = metrics.mean absolute error(true, predicted)
             mse = metrics.mean_squared_error(true, predicted)
             rmse = np.sqrt(metrics.mean_squared_error(true, predicted))
             r2_square = metrics.r2_score(true, predicted)
             return mae, mse, rmse, r2_square
In [38]: | from sklearn.preprocessing import StandardScaler
         from sklearn.pipeline import Pipeline
         pipeline = Pipeline([
             ('std_scalar', StandardScaler())
         X_train = pipeline.fit_transform(X_train)
         X_test = pipeline.transform(X_test)
In [39]: | from sklearn.linear_model import LinearRegression
         lin_reg = LinearRegression(normalize=True)
         lin_reg.fit(X_train,y_train)
Out[39]: LinearRegression(normalize=True)
In [40]: # print the intercept
         print(lin_reg.intercept_)
         10563.420714285716
```

```
coeff_df = pd.DataFrame(lin_reg.coef_, X.columns, columns=['Coefficient'])
In [41]:
          coeff df
Out[41]:
                       Coefficient
                       756.489445
                 Size
             AreaSqFt 1356.389028
             NoOfBath 1935.611925
           NoOfPeople 6802.630708
          NoOfBalcony
                       -81.066590
In [42]: pred = lin_reg.predict(X_test)
In [43]:
         test_pred = lin_reg.predict(X_test)
          train_pred = lin_reg.predict(X_train)
          print('Test set evaluation:\n_
          print_evaluate(y_test, test_pred)
          print('Train set evaluation:\n_
          print_evaluate(y_train, train_pred)
         Test set evaluation:
         MAE: 4029.6462125390954
         MSE: 33731914.40446294
         RMSE: 5807.918250497586
         R2 Square 0.6599134411967313
          Train set evaluation:
         MAE: 3955.100627820552
         MSE: 35559217.843001105
          RMSE: 5963.1550242301355
          R2 Square 0.6910422404289258
In [44]: | test_pred = lin_reg.predict(X_test)
          train_pred = lin_reg.predict(X_train)
          print('Test set evaluation:\n_
          print_evaluate(y_test, test_pred)
          print('Train set evaluation:\n_
          print_evaluate(y_train, train_pred)
         Test set evaluation:
         MAE: 4029.6462125390954
         MSE: 33731914.40446294
         RMSE: 5807.918250497586
         R2 Square 0.6599134411967313
         Train set evaluation:
         MAE: 3955.100627820552
         MSE: 35559217.843001105
         RMSE: 5963.1550242301355
          R2 Square 0.6910422404289258
In [45]: pd.DataFrame({'True Values': y_test, 'Predicted Values': pred}).hvplot.scatter(x='Tru
          e Values', y='Predicted Values')
Out[45]:
```

print the intercept

```
In [47]: print(lin_reg.intercept_)
          10563.420714285716
          coeff_df = pd.DataFrame(lin_reg.coef_, X.columns, columns=['Coefficient'])
          coeff_df
Out[48]:
                        Coefficient
                       756.489445
                  Size
              AreaSqFt
                      1356.389028
                       1935.611925
             NoOfBath
           NoOfPeople 6802.630708
          NoOfBalcony
                        -81.066590
In [49]:
          est_pred = lin_reg.predict(X_test)
          train_pred = lin_reg.predict(X_train)
          print('Test set evaluation:\n_
          print_evaluate(y_test, test_pred)
          print('Train set evaluation:\n
          print_evaluate(y_train, train_pred)
          Test set evaluation:
         MAE: 4029.6462125390954
          MSE: 33731914.40446294
          RMSE: 5807.918250497586
          R2 Square 0.6599134411967313
          Train set evaluation:
         MAE: 3955.100627820551
         MSE: 35559217.8430011
          RMSE: 5963.155024230135
          R2 Square 0.6910422404289258
          results_df = pd.DataFrame(data=[["Linear Regression", *evaluate(y_test, test_pred) ,
In [50]:
          cross_val(LinearRegression())]],
                                     columns=['Model', 'MAE', 'MSE', 'RMSE', 'R2 Square', "Cross
          Validation"])
          results_df
Out[50]:
                      Model
                                  MAE
                                               MSE
                                                        RMSE R2 Square Cross Validation
                                                                            -189.153433
          0 Linear Regression 4029.646213 3.373191e+07 5807.91825
                                                               0.659913
```

Ridge Regression

```
In [51]:
         model = Ridge(alpha=100, solver='cholesky', tol=0.0001, random state=42)
         model.fit(X train, y train)
         pred = model.predict(X_test)
         test pred = model.predict(X test)
         train_pred = model.predict(X_train)
         print('Test set evaluation:\n
         print_evaluate(y_test, test_pred)
         print('=======')
         print('Train set evaluation:\n
         print_evaluate(y_train, train_pred)
         Test set evaluation:
         MAE: 3766.295286504833
         MSE: 32688749.075766582
         RMSE: 5717.407548510652
         R2 Square 0.67043067726716
         _____
         Train set evaluation:
        MAE: 3774.4747576607556
        MSE: 36322363.657398194
         RMSE: 6026.803767951815
         R2 Square 0.6844116159286016
In [52]:
         results_df_2 = pd.DataFrame(data=[["Ridge Regression", *evaluate(y_test, test_pred) ,
         cross_val(Ridge())]],
                                    columns=['Model', 'MAE', 'MSE', 'RMSE', 'R2 Square', "Cro
         ss Validation"])
         results_df = results_df.append(results_df_2, ignore_index=True)
         results df
Out[52]:
                                           MSE
                    Model
                               MAE
                                                    RMSE R2 Square Cross Validation
         0 Linear Regression 4029.646213 3.373191e+07 5807.918250
                                                           0.659913
                                                                       -189.153433
```

0.670431

-188 913057

LASSO Regression

1 Ridge Regression 3766.295287 3.268875e+07 5717.407549

```
In [53]: from sklearn.linear_model import Lasso
         model = Lasso(alpha=0.1,
                     precompute=True,
                       warm start=True,
                      positive=True,
                      selection='random',
                      random_state=42)
         model.fit(X_train, y_train)
         test_pred = model.predict(X_test)
         train_pred = model.predict(X_train)
         print('Test set evaluation:\n_
                                                                      ')
         print_evaluate(y_test, test_pred)
         print('======')
         print('Train set evaluation:\n__
         print_evaluate(y_train, train_pred)
        Test set evaluation:
        MAE: 4037.454430671962
        MSE: 33749449.18585603
        RMSE: 5809.427612584223
        R2 Square 0.6597366548041229
         _____
        Train set evaluation:
        MAE: 3956.5764794264705
        MSE: 35565052.081629254
        RMSE: 5963.644194754517
        R2 Square 0.6909915494012627
```

```
In [54]: results_df_2 = pd.DataFrame(data=[["Lasso Regression", *evaluate(y_test, test_pred) ,
         cross_val(Lasso())]],
                                      columns=['Model', 'MAE', 'MSE', 'RMSE', 'R2 Square', "Cro
         ss Validation"])
         results_df = results_df.append(results_df_2, ignore_index=True)
         results df
```

Out[54]:

	Model	MAE	MSE	RMSE	R2 Square	Cross Validation
(Linear Regression	4029.646213	3.373191e+07	5807.918250	0.659913	-189.153433
1	Ridge Regression	3766.295287	3.268875e+07	5717.407549	0.670431	-188.913057
2	Lasso Regression	4037.454431	3.374945e+07	5809.427613	0.659737	-189.134286

Elastic Net

```
from sklearn.linear_model import ElasticNet
In [55]:
         model = ElasticNet(alpha=0.1, l1_ratio=0.9, selection='random', random_state=42)
         model.fit(X_train, y_train)
         test pred = model.predict(X test)
         train_pred = model.predict(X_train)
         print('Test set evaluation:\n
         print_evaluate(y_test, test_pred)
         print('======')
         print('Train set evaluation:\n_
         print_evaluate(y_train, train_pred)
         Test set evaluation:
         MAE: 4007.27283286183
         MSE: 33602616.59927238
         RMSE: 5796.776397211848
         R2 Square 0.6612170270264837
         _____
         Train set evaluation:
         MAE: 3938.2746890185163
         MSE: 35564427.825836554
         RMSE: 5963.59185607437
         R2 Square 0.6909969732739689
In [56]: results_df_2 = pd.DataFrame(data=[["Elastic Net Regression", *evaluate(y_test, test_p
         red) , cross_val(ElasticNet())]],
                                      columns=['Model', 'MAE', 'MSE', 'RMSE', 'R2 Square', "Cro
         ss Validation"])
         results_df = results_df.append(results_df_2, ignore_index=True)
         results_df
Out[56]:
                        Model
                                    MAE
                                                MSF
                                                          RMSE R2 Square Cross Validation
                Linear Regression
                              4029.646213 3.373191e+07 5807.918250
                                                                 0.659913
                                                                             -189.153433
          1
                Ridge Regression 3766.295287 3.268875e+07 5717.407549
                                                                 0.670431
                                                                             -188.913057
          2
                             4037.454431 3.374945e+07 5809.427613
                                                                 0.659737
                                                                             -189.134286
                Lasso Regression
          3 Elastic Net Regression 4007.272833 3.360262e+07 5796.776397
                                                                             -152.868602
                                                                 0.661217
```

Polynomial Regression

In []:

```
In [57]: from sklearn.preprocessing import PolynomialFeatures
         poly reg = PolynomialFeatures(degree=2)
         X train 2 d = poly reg.fit transform(X train)
         X test 2 d = poly reg.transform(X test)
         lin_reg = LinearRegression(normalize=True)
         lin_reg.fit(X_train_2_d,y_train)
         test_pred = lin_reg.predict(X_test_2_d)
         train_pred = lin_reg.predict(X_train_2_d)
         print('Test set evaluation:\n_
                                                                        ')
         print_evaluate(y_test, test_pred)
         print('======')
         print('Train set evaluation:\n_
         print_evaluate(y_train, train_pred)
         Test set evaluation:
         MAE: 2455.3319656714907
         MSE: 19140141.004973438
```

MAE: 2455.3319656714907 MSE: 19140141.004973438 RMSE: 4374.944685933005 R2 Square 0.8070283052618701

Train set evaluation:

MAE: 2671.5042294865675 MSE: 17881774.27004752 RMSE: 4228.684697402671 R2 Square 0.8446334522873383

Out[58]:

	Model	MAE	MSE	RMSE	R2 Square	Cross Validation
0	Linear Regression	4029.646213	3.373191e+07	5807.918250	0.659913	-189.153433
1	Ridge Regression	3766.295287	3.268875e+07	5717.407549	0.670431	-188.913057
2	Lasso Regression	4037.454431	3.374945e+07	5809.427613	0.659737	-189.134286
3	Elastic Net Regression	4007.272833	3.360262e+07	5796.776397	0.661217	-152.868602
4	Polynomail Regression	2455.331966	1.914014e+07	4374.944686	0.807028	0.000000

Models Comparison

```
In [59]: results_df.set_index('Model', inplace=True)
    results_df['R2 Square'].plot(kind='barh',color='yellow',figsize=(12, 8))
```

Out[59]: <matplotlib.axes. subplots.AxesSubplot at 0x12de8d5c850>

Regression Model Implementation with different implementation and Evaluation with different split (75:25.80:20.90:10)

```
In [60]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .25, random_sta
         te = 8)
In [61]:
         from sklearn import metrics
         from sklearn.model_selection import cross_val_score
         def cross_val(model):
             pred = cross_val_score(model, X, y, cv=10)
             return pred.mean()
         def print evaluate(true, predicted):
             mae = metrics.mean_absolute_error(true, predicted)
             mse = metrics.mean_squared_error(true, predicted)
             rmse = np.sqrt(metrics.mean_squared_error(true, predicted))
             r2_square = metrics.r2_score(true, predicted)
             print('MAE:', mae)
             print('MSE:', mse)
print('RMSE:', rmse)
             print('R2 Square', r2_square)
             print('_
         def evaluate(true, predicted):
             mae = metrics.mean_absolute_error(true, predicted)
             mse = metrics.mean squared error(true, predicted)
             rmse = np.sqrt(metrics.mean_squared_error(true, predicted))
             r2_square = metrics.r2_score(true, predicted)
             return mae, mse, rmse, r2_square
```

```
In [62]:
         from sklearn.preprocessing import StandardScaler
          from sklearn.pipeline import Pipeline
          pipeline = Pipeline([
              ('std_scalar', StandardScaler())
          1)
          X_train = pipeline.fit_transform(X_train)
          X_test = pipeline.transform(X_test)
In [63]: from sklearn.linear_model import LinearRegression
          lin_reg = LinearRegression(normalize=True)
          lin_reg.fit(X_train,y_train)
Out[63]: LinearRegression(normalize=True)
In [64]: | # print the intercept
          print(lin_reg.intercept_)
          10509.06733333333
In [65]:
         coeff_df = pd.DataFrame(lin_reg.coef_, X.columns, columns=['Coefficient'])
          coeff_df
Out[65]:
                       Coefficient
                 Size
                       574.593285
             AreaSqFt 1365.197525
             NoOfBath 1971.485842
           NoOfPeople 6602.312514
          NoOfBalcony
                        31.825087
In [66]:
         pred = lin_reg.predict(X_test)
         test_pred = lin_reg.predict(X_test)
In [67]:
          train_pred = lin_reg.predict(X_train)
          print('Test set evaluation:\n_
          print_evaluate(y_test, test_pred)
          print('Train set evaluation:\n_
                                                      _')
          print_evaluate(y_train, train_pred)
         Test set evaluation:
         MAE: 4059.8377815782783
         MSE: 35271984.62141491
          RMSE: 5939.0221940496995
         R2 Square 0.6825148862196837
         Train set evaluation:
         MAE: 3880.5604165913487
         MSE: 34656018.09829068
         RMSE: 5886.936223392494
         R2 Square 0.6851805639249118
In [68]: | pd.DataFrame({'True Values': y_test, 'Predicted Values': pred}).hvplot.scatter(x='Tru
          e Values', y='Predicted Values')
Out[68]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .10, random_sta
In [69]:
         te = 8
In [70]:
         from sklearn import metrics
         from sklearn.model_selection import cross_val_score
         def cross val(model):
              pred = cross val score(model, X, y, cv=10)
             return pred.mean()
         def print evaluate(true, predicted):
             mae = metrics.mean_absolute_error(true, predicted)
             mse = metrics.mean_squared_error(true, predicted)
             rmse = np.sqrt(metrics.mean_squared_error(true, predicted))
             r2_square = metrics.r2_score(true, predicted)
             print('MAE:', mae)
             print('MSE:', mse)
             print('RMSE:', rmse)
             print('R2 Square', r2_square)
             print('_
         def evaluate(true, predicted):
             mae = metrics.mean_absolute_error(true, predicted)
             mse = metrics.mean_squared_error(true, predicted)
             rmse = np.sqrt(metrics.mean_squared_error(true, predicted))
             r2_square = metrics.r2_score(true, predicted)
              return mae, mse, rmse, r2_square
In [71]: | from sklearn.preprocessing import StandardScaler
         from sklearn.pipeline import Pipeline
         pipeline = Pipeline([
              ('std_scalar', StandardScaler())
         1)
         X_train = pipeline.fit_transform(X_train)
         X_test = pipeline.transform(X_test)
In [72]: from sklearn.linear_model import LinearRegression
         lin_reg = LinearRegression(normalize=True)
         lin reg.fit(X train,y train)
Out[72]: LinearRegression(normalize=True)
In [73]: # print the intercept
         print(lin_reg.intercept_)
         10370.96222222222
         coeff_df = pd.DataFrame(lin_reg.coef_, X.columns, columns=['Coefficient'])
In [74]:
         coeff df
Out[74]:
                       Coefficient
                 Size
                       315.445802
             AreaSqFt 1454.682579
             NoOfBath 2181.731306
           NoOfPeople 6386.514897
          NoOfBalcony -178.653465
```

```
pred = lin_reg.predict(X_test)
In [75]:
         test_pred = lin_reg.predict(X_test)
In [76]:
         train_pred = lin_reg.predict(X_train)
         print('Test set evaluation:\n
         print_evaluate(y_test, test_pred)
         print('Train set evaluation:\n
         print_evaluate(y_train, train_pred)
         Test set evaluation:
         MAE: 4454.41536035513
         MSE: 50399587.55818312
         RMSE: 7099.266691580414
         R2 Square 0.6816159323173014
         Train set evaluation:
         MAE: 3725.496231389967
         MSE: 32852799.62832211
         RMSE: 5731.736179232442
         R2 Square 0.6868146842461976
```

Helping Prof Naived to find accomodation

```
BuildingTypes = df.BuildingType.unique()
         for building in BuildingTypes:
             print(building)
         Minimum Budget Rooms
         Semi Furnished Single Room
         Semi Furnished Flat
         Fully Furnished Single Room
         Super Furnished Single Room
         Semi Furnished Villa
         Fully Furnished Flat
         Super Furnished Flat
         Fully Furnished Villa
         Super Furnished Villa
In [78]: import random
         New_df = pd.DataFrame(columns=['BuildingType', 'Location', 'Size', 'AreaSqFt', 'NoOfB
         ath', 'NoOfPeople', 'NoOfBalcony'])
         New_df
Out[78]:
            BuildingType Location Size AreaSqFt NoOfBath NoOfPeople NoOfBalcony
```

localhost:8888/nbconvert/html/Machine_Learning_NVD/Harsha_KG_House_Prediction.ipynb?download=false

```
In [79]:
         BuildingTypes = df.BuildingType.unique()
         for Building in BuildingTypes:
             print(Building)
         Minimum Budget Rooms
         Semi Furnished Single Room
         Semi Furnished Flat
         Fully Furnished Single Room
         Super Furnished Single Room
         Semi Furnished Villa
         Fully Furnished Flat
         Super Furnished Flat
         Fully Furnished Villa
         Super Furnished Villa
In [80]:
         NoOfBath = [1, 2]
         NoOfPeople = [1, 2]
         NoOfBalcony = [0, 1, 2]
         Location = ["Portofino", "School Street"]
         Size = ["1 BHK", "2 BHK"]
In [81]: for Building in BuildingTypes:
             for Locate in Location:
                 for size in Size:
                      for Bathroom in NoOfBath:
                          for People in NoOfPeople:
                              for Balcony in NoOfBalcony:
                                  Build = {}
                                  Build['BuildingType'] = Building
                                  Build['Location'] = Locate
                                  Build['Size'] = size
                                  Build['AreaSqFt'] = random.randint(350, 600)
                                  Build['NoOfBath'] = Bathroom
                                  Build['NoOfPeople'] = People
                                  Build['NoOfBalcony'] = Balcony
                                  New_df = New_df.append(Build, ignore_index = True)
```

In [82]: New_df.head(15)

Out[82]:

	BuildingType	Location	Size	AreaSqFt	NoOfBath	NoOfPeople	NoOfBalcony
0	Minimum Budget Rooms	Portofino	1 BHK	537	1	1	0
1	Minimum Budget Rooms	Portofino	1 BHK	434	1	1	1
2	Minimum Budget Rooms	Portofino	1 BHK	517	1	1	2
3	Minimum Budget Rooms	Portofino	1 BHK	477	1	2	0
4	Minimum Budget Rooms	Portofino	1 BHK	370	1	2	1
5	Minimum Budget Rooms	Portofino	1 BHK	452	1	2	2
6	Minimum Budget Rooms	Portofino	1 BHK	396	2	1	0
7	Minimum Budget Rooms	Portofino	1 BHK	382	2	1	1
8	Minimum Budget Rooms	Portofino	1 BHK	475	2	1	2
9	Minimum Budget Rooms	Portofino	1 BHK	511	2	2	0
10	Minimum Budget Rooms	Portofino	1 BHK	376	2	2	1
11	Minimum Budget Rooms	Portofino	1 BHK	403	2	2	2
12	Minimum Budget Rooms	Portofino	2 BHK	445	1	1	0
13	Minimum Budget Rooms	Portofino	2 BHK	403	1	1	1
14	Minimum Budget Rooms	Portofino	2 BHK	366	1	1	2

```
In [83]: New_df.to_csv("HousePrices .csv")
```

```
In [84]: N_New_df=pd.read_csv("HousePrices .csv")
```

In [86]: N_New_df

Out[86]:

	Unnamed: 0	BuildingType	Location	Size	AreaSqFt	NoOfBath	NoOfPeople	NoOfBalcony	RentPerMc
0	0	Minimum Budget Rooms	Portofino	1 BHK	537	1	1	0	864983.6
1	1	Minimum Budget Rooms	Portofino	1 BHK	434	1	1	1	711683.1
2	2	Minimum Budget Rooms	Portofino	1 BHK	517	1	1	2	834760.3
3	3	Minimum Budget Rooms	Portofino	1 BHK	477	1	2	0	829763.9
4	4	Minimum Budget Rooms	Portofino	1 BHK	370	1	2	1	670519.8
		•••							
475	475	Super Furnished Villa	School Street	2 BHK	485	2	1	1	790275.7
476	476	Super Furnished Villa	School Street	2 BHK	463	2	1	2	757333.2
477	477	Super Furnished Villa	School Street	2 BHK	412	2	2	0	735991.9
478	478	Super Furnished Villa	School Street	2 BHK	472	2	2	1	824893.4
479	479	Super Furnished Villa	School Street	2 BHK	379	2	2	2	686451.9

480 rows × 9 columns

```
In [87]:
         def main():
             while True:
                 C = int(input("Enter your choice:"))
                 if C == 0:
                      print("Thank you")
                     break
                 if C == 1:
                      print("Minimum Budget Rooms\n"
                             "Semi Furnished Single Room\n"
                              "Semi Furnished Flat\n"
                              "Fully Furnished Single Room\n"
                              "Super Furnished Single Room\n"
                              "Semi Furnished Villa\n"
                               "Fully Furnished Flat\n"
                               "Super Furnished Flat\n"
                               "Fully Furnished Villa\n"
                               "Super Furnished Villa\n")
                     Struct= str(input('Search the type of building by Type:'))
                     RPM = pd.DataFrame(N_New_df[N_New_df['BuildingType'].str.contains(Struct
         )])
                     return RPM
         main()
```

Enter your choice:1
Minimum Budget Rooms
Semi Furnished Single Room
Semi Furnished Flat
Fully Furnished Single Room
Super Furnished Single Room
Semi Furnished Villa
Fully Furnished Flat
Super Furnished Flat
Fully Furnished Villa
Super Furnished Villa

Search the type of building by Type:Minimum Budget Rooms

Out[87]:

	Unnamed:	BuildingType	Location	Size	AreaSqFt	NoOfBath	NoOfPeople	NoOfBalcony	RentPerMor
0	0	Minimum Budget Rooms	Portofino	1 BHK	537	1	1	0	864983.66
1	1	Minimum Budget Rooms	Portofino	1 BHK	434	1	1	1	711683.14
2	2	Minimum Budget Rooms	Portofino	1 BHK	517	1	1	2	834760.33
3	3	Minimum Budget Rooms	Portofino	1 BHK	477	1	2	0	829763.99
4	4	Minimum Budget Rooms	Portofino	1 BHK	370	1	2	1	670519.87
5	5	Minimum Budget Rooms	Portofino	1 BHK	452	1	2	2	792111.16
6	6	Minimum Budget Rooms	Portofino	1 BHK	396	2	1	0	658283.11
7	7	Minimum Budget Rooms	Portofino	1 BHK	382	2	1	1	637227.84
8	8	Minimum Budget Rooms	Portofino	1 BHK	475	2	1	2	775164.04
9	9	Minimum Budget Rooms	Portofino	1 BHK	511	2	2	0	883096.22
10	10	Minimum Budget Rooms	Portofino	1 BHK	376	2	2	1	682246.86
11	11	Minimum Budget Rooms	Portofino	1 BHK	403	2	2	2	722113.55
12	12	Minimum Budget Rooms	Portofino	2 BHK	445	1	1	0	728280.71
13	13	Minimum Budget Rooms	Portofino	2 BHK	403	1	1	1	665620.19
14	14	Minimum Budget Rooms	Portofino	2 BHK	366	1	1	2	610389.19
15	15	Minimum Budget Rooms	Portofino	2 BHK	421	1	2	0	746553.50
16	16	Minimum Budget Rooms	Portofino	2 BHK	518	1	2	1	890433.31
17	17	Minimum Budget Rooms	Portofino	2 BHK	535	1	2	2	915440.99
18	18	Minimum Budget Rooms	Portofino	2 BHK	430	2	1	0	708803.76
19	19	Minimum Budget Rooms	Portofino	2 BHK	476	2	1	1	776902.59

	Unnamed: 0	BuildingType	Location	Size	AreaSqFt	NoOfBath	NoOfPeople	NoOfBalcony	RentPerMor
20	20	Minimum Budget Rooms	Portofino	2 BHK	473	2	1	2	772192.23
21	21	Minimum Budget Rooms	Portofino	2 BHK	390	2	2	0	703302.12
22	22	Minimum Budget Rooms	Portofino	2 BHK	461	2	2	1	808548.49
23	23	Minimum Budget Rooms	Portofino	2 BHK	504	2	2	2	872189.61
24	24	Minimum Budget Rooms	School Street	1 BHK	405	1	1	0	668844.64
25	25	Minimum Budget Rooms	School Street	1 BHK	473	1	1	1	769633.31
26	26	Minimum Budget Rooms	School Street	1 BHK	537	1	1	2	864478.36
27	27	Minimum Budget Rooms	School Street	1 BHK	407	1	2	0	725750.88
28	28	Minimum Budget Rooms	School Street	1 BHK	520	1	2	1	893405.11
29	29	Minimum Budget Rooms	School Street	1 BHK	531	1	2	2	909497.38
30	30	Minimum Budget Rooms	School Street	1 BHK	594	2	1	0	952491.62
31	31	Minimum Budget Rooms	School Street	1 BHK	502	2	1	1	815536.03
32	32	Minimum Budget Rooms	School Street	1 BHK	590	2	1	2	946042.72
33	33	Minimum Budget Rooms	School Street	1 BHK	529	2	2	0	909842.45
34	34	Minimum Budget Rooms	School Street	1 BHK	569	2	2	1	969025.86
35	35	Minimum Budget Rooms	School Street	1 BHK	522	2	2	2	898935.84
36	36	Minimum Budget Rooms	School Street	2 BHK	484	1	1	0	786230.87
37	37	Minimum Budget Rooms	School Street	2 BHK	505	1	1	1	817182.16
38	38	Minimum Budget Rooms	School Street	2 BHK	447	1	1	2	730747.22
39	39	Minimum Budget Rooms	School Street	2 BHK	521	1	2	0	895143.66

	Unnamed: 0	BuildingType	Location	Size	AreaSqFt	NoOfBath	NoOfPeople	NoOfBalcony	RentPerMor
40	40	Minimum Budget Rooms	School Street	2 BHK	546	1	2	1	932038.55
41	41	Minimum Budget Rooms	School Street	2 BHK	531	1	2	2	909497.38
42	42	Minimum Budget Rooms	School Street	2 BHK	381	2	1	0	635994.58
43	43	Minimum Budget Rooms	School Street	2 BHK	545	2	1	1	879429.80
44	44	Minimum Budget Rooms	School Street	2 BHK	464	2	1	2	758819.12
45	45	Minimum Budget Rooms	School Street	2 BHK	471	2	2	0	823660.15
46	46	Minimum Budget Rooms	School Street	2 BHK	352	2	2	1	646585.22
47	47	Minimum Budget Rooms	School Street	2 BHK	417	2	2	2	742916.17

Conclusion

In this lab we have tried to find some Insightful info in house prediction using different kinds of regression model. Implemented various regression model and evaluated the found the one with highest score which will help the public relation team to find a perfect accomadation for the client

In []:	
In []:	
In []:	