Topologia Algebrica

Zitto e studia.

Parigi 1905 H. Poincarè

Professore: *Gilberto Bini*

Scriba: Gabriele Bozzola

Indice

1	Richimi di algebra e geometria			
	1.1	Richiami di algebra	4	
	1.2	Richiami sul gruppo fondamentale	7	
		1.2.1 Omomorfismo tra \mathbb{R} e \mathbb{R}^N	10	
2	Om	ologia Singolare	13	
	2.1	Introduzione	13	
	2.2	Simplessi singolari	13	
		$2.2.\overline{1}$ $H_0(X)$	20	
		$H_1(X)$	22	
	2.3	Morfismi indotti	27	
	2.4	Successioni esatte	30	
		2.4.1 Omomorfismo di connessione	30	
	2.5	Omologia singolare relativa	33	
	2.6	Omologia singolare ridotta	36	
	2.7	Assioni di una teoria omologica	38	
	2.8	Omologia delle sfere	38	
		2.8.1 Teoria del grado	41	

Lista dei simboli e abbreviazioni

Simbolo	Significato	Pagina
\mathbb{N}	Numeri naturali	2
\mathbb{Z}	Numeri interi	2
$\mathcal R$	Anello	4
$<\cdots>$	Gruppo generato	5
Ker(f)	Nucleo di f	5
$\operatorname{Im}(f)$	Immagine f	5
X	Spazio topologico	6
\simeq	Spazi omeomorfi	7
\sim_H	Relazione di omotopia	7
$\stackrel{\sim}{\longrightarrow}$	Omeomorfismo	11
π_1	Gruppo fondamentale	11
Δ_k	Simplesso standard	13
\sim_{hom}	Relazione di omologia	19

1 Richimi di algebra e geometria

1.1 Richiami di algebra

Definizione 1.1.1 Un anello è un insieme \mathcal{R} dotato di due operazioni + $e \cdot$ tali che \mathcal{R} sia un gruppo abeliano con l'addizione, sia un monoide con la moltiplicazione (ovvero la moltiplicazione è associativa e possiede un elemento neutro¹) e goda della proprietà distributiva rispetto all'addizione.

Definizione 1.1.2 Un anello si dice **anello commutativo** se l'operazione di moltiplicazione è commutativa.

Definizione 1.1.3 *Un campo* è un anello commutativo in cui ogni elemento non nullo ammette un inverso moltiplicativo.

Definizione 1.1.4 Sia $\mathcal R$ un anello commutativo si definisce l' $\mathcal R$ -modulo un gruppo abeliano $\mathcal M$ equipaggiato con un'operazione di moltiplicazione per uno scalare in $\mathcal R$ tale che $\forall v,w\in \mathcal M$ e $\forall a,b\in \mathcal R$ vale che:

- a(v+w) = av + aw
- (a+b)v = av + bv
- (ab)v = a(bv)

Osservazione 1.1.5 *Se* \mathcal{R} *è un campo allora l'* \mathcal{R} *-modulo è uno spazio vettoriale.*

Sostanzialmente la nozione di \mathcal{R} -modulo generalizza agli anelli il concetto di spazio vettoriale sui campi.

Osservazione 1.1.6 Ogni gruppo abeliano \mathcal{G} è uno \mathbb{Z} -modulo in modo univoco, cioè \mathcal{G} è un gruppo abeliano se e solo e è uno \mathbb{Z} -modulo.

Dimostrazione: Sia $x \in \mathcal{G}$ si definisce l'applicazione di moltiplicazione per un elemento $n \in \mathbb{Z}$ come

$$nx = \begin{cases} \underbrace{x + x + x + \dots}_{n \text{ volte}} & \text{se } n > 0 \\ 0 & \text{se } n = 0 \\ \underbrace{-x - x - x - \dots}_{|n| \text{ volte}} & \text{se } n < 0 \end{cases}$$

¹La richiesta di esistenza dell'elemento neutro, cioè dell'unità non è comune a tutti gli autori, chi non la richiede chiama anello unitario la presente definizione di anello.

Si verifica banalmente che questa operazione è ben definita e soddisfa le giuste proprietà perché la coppia $(\mathcal{G}, \mathbb{Z})$ sia uno \mathbb{Z} -modulo. A questo punto non è possibile costruire applicazioni diverse che soddisfino le proprietà richieste infatti utilizzando la struttura di anello di \mathbb{Z} : $nx = (1+1+1+1+\dots)x = x+x+x\dots$, quindi quella definita è l'unica possibile. \square

Definizione 1.1.7 Un gruppo \mathcal{G} si dice **generato** dai suoi elementi $x_1, x_2, \dots \in \mathcal{G}$ se ogni suo elemento si può scrivere come combinazione lineare a elementi interi di x_1, x_2, \dots In questo caso si indica $\mathcal{G} = \langle \{x_1, x_2, \dots \} \rangle$.

Definizione 1.1.8 Un gruppo abeliano si dice **libero** se è generato da un numero finito di elementi linearmente indipendenti, il numero di tali elementi definisce il **rango** del gruppo.

Definizione 1.1.9 Siano (X, \cdot) e (Y, \star) due gruppi, un **omomorfismo** è un'applicazione f tra X e Y che preserva la struttura di gruppo, cioè tale che:

$$\forall u, v \in X \quad f(u \cdot v) = f(u) \star f(v)$$

Osservazione 1.1.10 Da questa definizione si trova immediatamente che gli omomorfismi si comportano bene nei confronti dell'inverso, cioè $\forall v \in X$ vale che $f(v^{-1}) = f(v)^{-1}$.

Voglio studiare gli omomorfismi tra Z-moduli.

Definizione 1.1.11 Sia $\varphi: \mathcal{M} \to \mathcal{N}$ un omomorfismo tra gli \mathcal{R} -moduli \mathcal{M} e \mathcal{N} , allora si definisce il **nucleo** e l'**immagine**:

$$\operatorname{Ker}(\varphi) := \{ \, m \in \mathcal{M} \mid \varphi(m) = 0 \, \} \qquad \operatorname{Im}(\varphi) := \{ \, m \in \mathcal{N} \mid \exists k \in M \text{ con } m = \varphi(k) \, \}$$

Osservazione 1.1.12 $\operatorname{Ker}(\varphi)$ e $\operatorname{Im}(\varphi)$ sono \mathcal{R} -sottomoduli, cioè sono sottoinsiemi di \mathcal{M} e \mathcal{N} che posseggono la struttura di \mathcal{R} -modulo.

Se M_i sono \mathcal{R} -moduli posso fare composizioni di omomorfismi, come:

$$\mathcal{M}_1 \stackrel{\varphi_1}{\longrightarrow} \mathcal{M}_2 \stackrel{\varphi_2}{\longrightarrow} \mathcal{M}_3$$
 o equivalentemente $\mathcal{M}_1 \stackrel{\varphi_2 \circ \varphi_1}{\longrightarrow} \mathcal{M}_3$

Proposizione 1.1.13 *Se vale* $\varphi_2 \circ \varphi_1 = 0$ *allora* $\operatorname{Im}(\varphi_1) \subseteq \operatorname{Ker}(\varphi_2)$.

Dimostrazione: Se $u \in \text{Im}(\varphi_1)$ allora $\exists v \in \mathcal{M}_2$ tale che $\varphi_1(v) = u$, ma $\varphi_2(u) = \varphi_2(\varphi_1(v)) = (\varphi_2 \circ \varphi_1)(v) = 0$ per ipotesi, quindi $u \in \text{Ker}(\varphi_2)$.

Mi interessano questi morfismi perché hanno un preciso significato geometrico che sarà chiaro successivamente.

Definizione 1.1.14 Siano $\mathcal M$ un $\mathcal R$ -modulo e $\mathcal N$ un suo sottomodulo, allora il **modulo quo-**ziente di $\mathcal M$ con $\mathcal N$ e definito da:

$$\mathcal{M}/\mathcal{N} := \mathcal{M}/\mathcal{N}$$
 dove \sim è definita da: $x \sim y \Leftrightarrow x - y \in \mathcal{N}$

Dove $\mathcal{M}/_{\sim}$ è l'insieme delle classi di equivalenza di \sim equipaggiate con operazioni indotte dall' \mathcal{R} -modulo, cioè se $[u], [w] \in \mathcal{M}/_{\sim}$ e $a \in \mathcal{R}$:

- [u] + [w] = [u + w]
- a[u] = [au]

In questo caso gli elementi di \mathcal{M}/\mathcal{N} sono le classi di equivalenza $[m] = \{m+n \mid n \in \mathcal{N}\}.$

Siccome $\mathrm{Im}(\varphi)$ è sottomodulo di $\mathrm{Ker}(\varphi)$ allora posso prendere il quoziente:

$$\operatorname{Ker}(\varphi_2)/\operatorname{Im}(\varphi_1)$$

Questo è un sottomodulo. Si nota che questo è sensato solo se si impone la condizione $\varphi_2 \circ \varphi_1 = 0$, altrimenti non c'è l'inclusione e quindi non è possibile fare l'operazione di quoziente. A questo punto ci sono due possibilità:

- 1. $\operatorname{Ker}(\varphi_2)/\operatorname{Im}(\varphi_1)=0$, che significa che $\operatorname{Ker}(\varphi_2)=\operatorname{Im}(\varphi_1)$ in quanto non ci sono elementi di $\operatorname{Ker}(\varphi_2)$ fuori da $\operatorname{Im}(\varphi_1)$, dato che l'unica classe di equivalenza presente è [0] significa che $\forall m\in \operatorname{Ker}(\varphi_1)\ \exists n\in \operatorname{Im}(\varphi_2)$ tale che m-n=0, cioè m e n coincidono e quindi $\operatorname{Ker}(\varphi_2)=\operatorname{Im}(\varphi_1)$.
- 2. $\operatorname{Ker}(\varphi_2)/\operatorname{Im}(\varphi_1) \neq 0$, cioè $\exists v \in \operatorname{Ker}(\varphi_2)$ tale che $v \notin \operatorname{Im}(\varphi_1)$ e quindi $\operatorname{Im}(\varphi_1) \subsetneq \operatorname{Ker}(\varphi_2)$.

Nel primo caso si dice che la successione dei moduli \mathcal{M} e delle applicazioni φ è **esatta** in \mathcal{M}_2 , nel secondo caso la successione è detta **complesso di moduli**.

Sostanzialmente il modulo quoziente quantifica la non esattezza nel punto \mathcal{M}_2 della successione.

Definizione 1.1.15 $H(\mathcal{M}_{\bullet}) = \operatorname{Ker}(\varphi_2)/\operatorname{Im}(\varphi_1)$ è detto modulo di omologia del complesso $M_{\bullet} = M_1 \longrightarrow M_2 \longrightarrow M_3$ con le applicazioni φ_1 e φ_2 .

Per questo $H(\mathcal{M}_{\bullet})$ quantifica quanto il complesso \mathcal{M}_{\bullet} non è esatto. Questo deriva da un problema topologico concreto.

Definizione 1.1.16 La coppia (X, \mathcal{T}) è detta **spazio topologico** (generalmente si omette la \mathcal{T}) se \mathcal{T} è una **topologia**, cioè se è una collezione di insiemi di X tali che:

- 1. $\emptyset, X \in \mathcal{T}$
- 2. $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{T}$ se $A_n \in \mathcal{T} \ \forall n \in \mathbb{N}$
- 3. $\bigcap_{n\in\{0,1,\ldots,N\}} A_n \in \mathcal{T} \text{ se } A_n \in \mathcal{T} \ \forall n\in\{0,1,\ldots,N\}$

Gli elementi di \mathcal{T} sono detti aperti.

Osservazione 1.1.17 Se τ è la collezione di tutti i sottoinsiemi di X allora le proprietà sono automaticamente verificate e questa è la **topologia discreta**, invece $\tau = \{\emptyset, X\}$ è una topologia ed è la **topologia triviale**. Infine in \mathbb{R}^n si definisce la **topologia usuale** che è la topologia in cui gli aperti sono iperintervalli aperti del tipo $(a_1,b_1)\times (a_2,b_2)\times (a_3,b_3)\cdots\times (a_n,b_n)$. Si dimostra che se si ammettono intersezioni infinite allora la topologia usuale coincide con la topologia triviale in \mathbb{R}^n .

Osservazione 1.1.18 Uno spazio metrico si può rendere topologico definendo gli insiemi aperti come gli intorni sferici aperti.

Osservazione 1.1.19 Sia $A \subseteq X$ spazio topologico, si può rendere anche A uno spazio topologico equipaggiandolo con la **topologia indotta** in cui gli aperti sono gli aperti di X intersecati con A.

Osservazione 1.1.20 Uno spazio topologico è **connesso** se si può scrivere come unione disgiunta di due suoi aperti.

Definizione 1.1.21 Sia X uno spazio topologico l'insieme $\{A_i \mid A_i \in X \ \forall i\}$ è un **ricoprimento** di X se:

$$\bigcup_{i} A_i = X$$

Se in particolare gli insiemi A_i sono aperti il ricoprimento è detto **ricoprimento aperto**.

Definizione 1.1.22 Un insieme U è detto **compatto** se per ogni suo possibile ricoprimento aperto ne esiste un sottoinsieme che è un ricoprimento finito di U.

Definizione 1.1.23 Una mappa tra spazi topologici è detta **omeomorfismo** se è continua e ammette inverso continuo, cioè se è una mappa uno a uno. Se due spazi sono omeomorfi si utilizza il simbolo \simeq .

Siccome gli omeomorfismi sono mappe uno a uno due spazi omeomorfi sono essenzialmente identici. La relazione di omeomorfismo costituisce una relazione di equivalenza. Molti degli strumenti sviluppati in questo corso servono a capire se due spazi sono omeomorfi o meno.

1.2 Richiami sul gruppo fondamentale

Definizione 1.2.1 Sia X uno spazio topologico e x_0 un suo punto, allora un **laccio** è un arco in X avente come punto di partenza e punto di arrivo il punto x_0 . Un laccio c_{x_0} si dice **costante** se $\forall t \in I$ $c_{x_0}(t) = x_0$ con $x_0 \in X$.

Vorrei strutturare l'insieme dei lacci in uno spazio X come un gruppo con l'operazione di giunzione e avente come unità il laccio costante. Questo non si riesce a fare perché non sempre la giunzione di un laccio con il suo inverso è il laccio costante. Per questo si passa al quoziente rispetto la relazione di omotopia.

Definizione 1.2.2 Sia X uno spazio topologico e $x_0 \in X$ un suo punto, allora la coppia (X, x_0) è detta spazio topologico puntato.

Definizione 1.2.3 Sia (X, x_0) uno spazio topologico puntato $e : I \to X$ una mappa continua tale che $f(0) = f(1) = x_0 \ \forall t \in I$, cioè un laccio di base x_0 , si dice che una funzione continua g è **omotopicamente equivalente** a $f(g \sim_H f)$ se esiste una funzione continua $F: I \times I \to X$ tale che:

- $F(0,x) = f(x) \ \forall x \in I$
- $F(1,x) = g(x) \ \forall x \in I$
- $F(t,0) = x_0 \ \forall s \in I$
- $F(t,1) = x_0 \ \forall s \in I$

La relazione \sim_H è detta **relazione di omotopia tra lacci** e si dimostra essere una relazione di equivalenza.

Figura 1.1: Omotopia: deforma f in g in modo continuo.

Si definisce l'insieme;

$$\pi_1(X,x_0) = \big\{\, f \colon I \to X \mid f \text{ continua}, f(0) = f(1) = x_0 \,\big\} \big/_{\sim_H}$$

Questo insieme può essere equipaggiato con un'operazione di somma facendolo diventare un gruppo, questo è noto come **gruppo fondamentale**, e i suoi elementi si indicano con la usuale notazione di classe di equivalenza. Si vogliono definire le operazioni di gruppo: siano $[f],[g] \in \pi_i(X,x_0)$, si definisce $[f][g] := [f \star g]$, dove l'operazione \star è il **cammino composto**, o **giunzione**, definita da:

$$(f\star g)(t) = \begin{cases} f(2t) & \text{se } 0 \leq t \leq \frac{1}{2} \\ g(2t-1) & \text{se } \frac{1}{2} \leq t \leq 1 \end{cases}$$

Cioè è un cammino di base x_0 percorso a velocità doppia, metà del tempo percorso su f l'altra metà su g. L'elemento neutro di questa operazione è il cammino costante $1_{\pi_1(X,x_0)}=[C_{x_0}]$ con $C_{x_0}(t)=x_0 \ \forall t$. L'inverso di un elemento invece è $[f]^{-1}=[\bar{f}]$ dove \bar{f} è il cammino percorso in verso opposto, cioè definito da $\bar{f}(t)=f(1-t)$, in questo modo $\bar{f}(0)=f(1)$ e $\bar{f}(1)=f(0)$.

Alcune proprietà del gruppo fondamentale:

• $\pi_1(X, x_0)$ è invariante omotopico, cioè se $X \sim_H Y$, cioè se

$$\exists f: X \to Y, g: Y \to X \mid f \circ g \sim_H 1_Y e g \circ f \sim_H 1_X$$

allora $\pi_1(X,x_o)\cong\pi_1(Y,f(x_0))$. Questo in particolare porta alla seguente utile osservazione:

Osservazione 1.2.4 Se due spazi topologici puntati hanno gruppi fondamentali non isomorfi allora non possono essere omotopicamente equivalenti.

- Se X è **contraibile** (cioè è omotopo ad un punto) allora vale che $\pi_1(X, x_0) \cong 1$, cioè il gruppo fondamentale è banale.
- Si dimostra che:

Proposizione 1.2.5 Se uno spazio tologico X è connesso per archi allora tutti i gruppi fondamentali degli spazi puntati (X,x_0) sono isomorfi, cioè si può omettere la dipendenza da x_0 .

Questo intuitivamente è vero perché se gli spazi sono connessi per archi allora esistono cammini che collegano qualunque coppia di punti.

Definizione 1.2.6 Uno spazio topologico connesso per archi si dice **semplicemente connesso** se il suo gruppo fondamentale è banale.

Osservazione 1.2.7 Tutti gli spazi contraibili sono semplicemente connessi, ma non tutti gli spazi semplicemente connessi sono contraibili, come ad esempio S^2 .

• $\pi_1(\mathcal{S}^1) \cong \mathbb{Z}$, infatti si può costruire la mappa:

$$\sigma \colon I \to \mathcal{S}^1$$
$$t \mapsto \mathrm{e}^{2\pi i t}$$

Questa è tale che $\sigma(0)=\sigma(1)=1$ quind
i $[\sigma]\in\pi_1(\mathcal{S}^1)$ e:

$$\pi_1(\mathcal{S}^1) \to \mathbb{Z}$$
 $[\sigma] \mapsto 1$

Ogni elemento è multiplo di σ e il fattore di proporzionalità conta il numero di avvolgimenti con segno del cammino su sé stesso.

- $\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y)$
- Il gruppo fondamentale si calcola o partendo da gruppi omotopi oppure utilizzando il **teorema di Seifert-van Kampen**, il quale fornisce un metodo algoritmico per il calcolo.

Esempio 1.2.8 Si definisce:

$$V_g = \begin{cases} \mathcal{S}^2 & \text{se } g = 0 \\ P_{\frac{4g}{N}} & \text{se } g \ge 1 \in \mathbb{N} \end{cases}$$

con $P_{\frac{k}{N}}$ poligono con k lati e con identificazioni a coppie, come ad esempio nel caso g=1 si ottiene un toro piatto identificando lati opposti di un quadrato. Si usano simboli combinatori

1 Richimi di algebra e geometria

(a) Toro piatto, o anche toro di Clifford

Figura 1.2: Toro

per descrivere l'identificazione: si definisce un verso di percorrenza, si assegnano delle lettere a ciascun lato e si scrivono in ordine tali lettere, aggiungendo un esponente -1 quando il verso di percorrenza è opposto. In questo caso quindi si ha $aba^{-1}b^{-1}$. Questo si estende a poligoni con 4g lati e si usa l'identificazione $a_1b_1a_1^{-1}b_1^{-1}\dots a_gb_ga_g^{-1}b_g^{-1}$.

Si dimostra che queste sono varietà differenziabili, in particolare per g=1 si ha un toro, per g=2 un bitoro, g è detto **genere** .

Si trova con il teorema di Seifert-Van Kampen che:

$$\pi_1(V_g)\cong egin{cases} 1 & ext{se }g=0 \ \mathbb{Z}\oplus\mathbb{Z} & ext{se }g=1 \ \langle a_1b_1\dots\Pi_{i=1}^g[a_i,b_i]=1
angle & ext{se }g>1 \end{cases}$$

Dove [,] è il commutatore, cioè esattamente $a_1b_1a_1^{-1}b_1^{-1}\dots a_gb_ga_g^{-1}b_g^{-1}$. Solo per g=0 o g=1 si ottengono dei gruppi abeliani, ma io vorrei averlo sempre abeliano, quindi lo abelianizzo.

$$\operatorname{Ab}(\pi_1(X)) = \frac{\pi_1(X)}{[\pi_1(X), \pi_1(X)]} = \frac{\pi_1(X)}{\pi'_1(X)}$$

Chiaramente questo gruppo è abeliano e si calcola facilmente che Ab $(\pi_1(V_q)) \cong \mathbb{Z}^{2g}$ per $g \geq 2$, infatti il gruppo è generato su 2g generatori $a_1, b_1, a_2, b_2, \ldots, a_g, b_g$ e poi si impone la relazione di identificazione e i commutatori diventano tutti banali. Si vedono facilmente anche i generatori, ad esempio per un toro sono riportati in figura.

1.2.1 Omomorfismo tra \mathbb{R} e \mathbb{R}^N

Definizione 1.2.9 Un arco in uno spazio topologico X tra i punti $x_0 \in X$ e $y_0 \in X$ è una funzione continua da I = [0,1] a X tale che $\alpha(0) = x_0$ e $\alpha(1) = y_0$. Si dice che l'arco parte $da x_0$ e finisce in y_0 .

Definizione 1.2.10 Uno spazio topologico X è **connesso per archi** se per ogni coppia di punti $x, y \in X$ esiste un arco che parte da x e termina in y.

Definizione 1.2.11 Uno spazio topologico X si dice **connesso per archi** se $\forall x, y \in X$ esiste un arco con punto iniziale x e punto finale y.

Proposizione 1.2.12 Se $f: X \to Y$ è una mappa continua suriettiva tra spazi topologici e se X è connesso per archi allora Y è connesso per archi. Questo vale in particolare se f è un omeomorfismo, cioè la connessione per archi è una proprietà invariante per omeomorfismi.

Dimostrazione: Siano y_0, y_1 due punti di Y. La funzione f è suriettiva, e dunque esistono x_0 e x_1 in X tali che $f(x_0) = y_0$ e $f(x_1) = y_1$. Dato che X è connesso, esiste un cammino $\alpha: [0,1] \to X$ tale che $\alpha(0) = x_0$ e $\alpha(1) = x_1$. Ma la composizione di funzioni continue è continua, e quindi il cammino ottenuto componendo α con $f\colon f\circ\alpha: [0,1] \to X \to Y$ è un cammino continuo che parte da y_0 e arriva a y_1 .

Si sa inoltre che:

Proposizione 1.2.13 \mathbb{R}^n è connesso per archi $\forall n \in \mathbb{N}$.

È noto che $\mathbb{R} \not\simeq \mathbb{R}^N$ per $n \ge 2$, infatti basta togliere un punto a \mathbb{R} che diventa sconnesso per archi mentre \mathbb{R}^N rimane connesso per archi anche togliendogli un punto. In questa dimostrazione ho utilizzato il seguente risultato fondamentale:

Proposizione 1.2.14 Se $f: X \to Y$ è omeomorfismo tra spazi topologici allora $f|_U: U \to f(U)$ è omeomorfismo per ogni $U \subseteq X$.

Nel caso considerato $U=x_0$, siccome ho trovato un U per cui la funzione ristretta non è omeomorfismo f non può essere omeomorfismo. Infatti l'immagine di un punto rimane un punto.

Tuttavia vale anche che $\mathbb{R}^2 \not\simeq \mathbb{R}^N$ per $n \geq 3$, infatti:

Dimostrazione: Per assurdo $f: \mathbb{R}^2 \xrightarrow{\sim} \mathbb{R}^N$ è un omeomorfismo con $n \geq 3$, tolgo un punto da \mathbb{R}^2 , se f omeomorfismo anche la restrizione deve essere omeomorfismo, cioè $\forall p \in \mathbb{R}^2 \quad f: \mathbb{R}^2 \setminus \{p\} \xrightarrow{\sim} \mathbb{R}^N \setminus \{f(p)\}$. Ma $\mathbb{R}^2 \setminus \{p\} \simeq \mathbb{R} \times \mathcal{S}^1$ con la mappa $\vec{x} \mapsto \left(||\vec{x}||, \frac{\vec{x}}{||\vec{x}||}\right)$ (dopo aver fatto una traslazione di p nell'origine, operazione che è certamente un omeomorfismo). In pratica sto dicendo che il piano senza un punto è omeomorfo ad un cilindro infinito. Analogamente $\mathbb{R}^n \setminus \{f(p)\} \simeq \mathbb{R} \times \mathcal{S}^{n-1}$. Quindi se esiste un omeomorfismo tra \mathbb{R}^2 e \mathbb{R}^n significherebbe che $\mathbb{R} \times \mathcal{S}^1 \simeq \mathbb{R} \times \mathcal{S}^{n-1}$, ma quindi i gruppi fondamentali dovrebbero essere isomorfi: $\pi_1(\mathbb{R} \times \mathcal{S}^1) \simeq \pi_1(\mathbb{R} \times \mathcal{S}^{n-1})$ ma $\pi_1(\mathbb{R} \times \mathcal{S}^1) = \mathbb{Z}$ infatti il gruppo fondamentale di un prodotto è il prodotto dei gruppi fondamentali e $\pi_1(\mathbb{R}) = 1$, $\pi_1(\mathcal{S}^1) = \mathbb{Z}$ dato che i lacci omotopicamente distinti sono quelli che avvolgono il buco un numero differente di volte. Analogamente $\pi_1(\mathbb{R} \times \mathcal{S}^{n-1}) = 1$ perché le sfere sono contraibili. Trovo quindi che dovrebbero essere isomorfi $\pi_1(\mathbb{R} \times \mathcal{S}^1) = \mathbb{Z}$ e $\pi_1(\mathbb{R} \times \mathcal{S}^{n-1}) = 1$ che è accurdo

Ho quindi dedotto proprietà topologiche a partire da considerazioni algebriche (con il gruppo fondamentale). Il gruppo fondamentale è un invariante algebrico per problemi topologici.

Definizione 1.2.15 Si definisce il **gruppo fondamentale** di uno spazio topologico X connesso per archi attorno al punto $x_0 \in X$

$$\pi_1(X,x_0) = \{g: \mathcal{S}^1 \to X \mid g \text{ continua}, g(1) = x_0\}/\infty$$

 $e \sim \grave{e}$ la relazione di omotopia: $g_1 \sim g_2$ se $\exists G: \mathcal{S}^1 \times I \to X$ tale che $G(z,0) = g_1(z), G(z,1) = g_2(z), G(1,t) = x_o$ con G continua. In questo vedo \mathcal{S}^1 come sottospazio di \mathbb{R}^2 con la topologia indotta (il punto 1 è un punto della circonferenza vedendola come insieme nello spazio complesso $\mathcal{S}^1 = \{z \in \mathbb{C} \mid |z| = 1\}$).

Sostanzialmente il gruppo fondamentale è l'insieme dei lacci quozientato rispetto alla relazione di omotopia. Infatti g è un laccio dato che è un arco e il punto di partenza e il punto di arrivo necessariamente coincidono dato che g è definito su S^1 . Questo perché l'insieme dei lacci non è strutturabile come gruppo in quanto il laccio costante non è l'unità.

Ora voglio mostrare per assurdo che non esiste omomorfismo tra \mathbb{R}^3 e \mathbb{R}^N .

Dimostrazione: Come nel caso precedente suppongo esiste f omeomorfismo tra \mathbb{R}^3 a \mathbb{R}^n , tolgo q da \mathbb{R}^3 e f(q) da \mathbb{R}^n , quindi ottengo l'omomorfismo tra $\mathbb{R} \times \mathcal{S}^2 \simeq \mathbb{R} \times \mathcal{S}^{n-1}$, ma i gruppi fondamentali associati sono banali, quindi sono isomorfi, e non è possibile replicare il ragionamento utilizzato sopra.

Poincaré introdusse i gruppi di omotopia superiore.

Definizione 1.2.16 Si definiscono i **gruppi di omotopia superiore** di uno spazio topologico X attorno al punto x_0 per $k \geq 2$:

$$\pi_k(X)(X,x_0) = \{ g: \mathcal{S}^k \to X \mid g \text{ continua}, \ g(p_0) = x_0 \} /_{\sim}$$

Con $p_0 \in \mathcal{S}^k$ e \sim relazione di omotopia.

Studiare i gruppi di omotopia superiore è un problema aperto della topologia moderna. Tuttavia si sa che:

1.
$$\pi_k(S^m) = 1$$
 per $1 \le k < m \quad (m > 2)$

2.
$$\pi_m(\mathcal{S}^m) \simeq \mathbb{Z}$$
 per $k = m$

3.
$$\pi_1(S^2) = 1$$

4.
$$\pi_2(\mathcal{S}^2) \simeq \mathbb{Z}$$

5.
$$\pi_3(\mathcal{S}^2) \simeq \mathbb{Z}^2$$

Definizione 1.2.17 Sia $A \subseteq X$ con X spazio topologico $i:A \to X$ si definisce mappa di **inclusione** e si scrive $i:A \hookrightarrow X$ se $\forall a \in A$ vale che i(a)=a.

Anche se non so calcolare i gruppi di omotopia superiore non vorrei buttarli via...Vorrei degli invarianti algebrici per problemi topologici, come i gruppi di omotopia.

 $^{^2\}mathrm{Questo}$ da origine alla fibrazione di Hopf che ha molte applicazioni in fisica.

2 Omologia Singolare

2.1 Introduzione

Inizio definendo l'omologia singolare, che è la più generale.

2.2 Simplessi singolari

Uso la teoria dell'omologia che mi permette di semplificare i problemi. La teoria dell'omologia serve ad associare agli spazi topologici degli oggetti algebrici meno complicati dei gruppi di omotopia. Ci sono varie possibilità:

- Omologia singolare
- · Omologia cellulare
- Omologia persistente¹
- · Omologia simpliciale

Ma cosa è l'omologia? Assocerò ad ogni spazio topologico (anche patologico) gruppi abeliani e omomorfismi a partire da applicazioni continue tra due spazi topologici. In tutto questo lavoro sempre con anello di base \mathbb{Z} , che quindi rimane sottinteso a meno di scriverlo esplicitamente.

Definizione 2.2.1 In \mathbb{R}^{k+1} si definisce il **simplesso standard** Δ_k l'insieme:

$$\Delta_k = \{ (x_1, x_2, \dots) \in \mathbb{R}^{k+1} \mid \forall i \ 0 \le x_i \le 1 \ e \sum_{i=1}^{k+1} x_i = 1 \}$$

Le coordinate x_i sono dette coordinate baricentrali.

Osservazione 2.2.2 Alcuni esempi sono:

- Δ_0 è un punto.
- Δ_1 è un segmento, che è omeomorfo a [0,1].
- Δ_2 è un triangolo
- Δ_3 è un tetraedro
- ...

Figura 2.1: 1-Simplesso standard

Figura 2.2: Simplessi standard

Definizione 2.2.3 Dato uno spazio topologico X si definisce il k-simplesso singolare in X come un'applicazione continua $\sigma: \Delta_k \to X$.

Spesso conviene identificare il k-simplesso con la sua immagine in X. In questo modo uno 0-simplesso è un punto in X, mentre un 1-simplesso singolare potrebbe essere sia un segmento che un punto (se la mappa è costante). Siccome non c'è relazione tra la dimensione dello spazio di partenza e lo spazio di arrivo (ad esempio la curva di Peano) il simplesso può deformare, ed è per questo che è detto singolare.

Esempio 2.2.4 Un esempio di k-simplesso singolare in cui è particolarmente evidente la possibilità di fare l'identificazione è la mappa identità: $\mathbb{I}: \Delta_k \to \Delta_k$.

Voglio costruire un complesso di gruppi abeliani e definire l'omologia singolare come l'omologia di tale complesso.

 S_{\bullet} è il compesso (S sta per singolare), cioè:

$$\cdots \to S_{k+1}(X) \to S_k(X) \to S_{k-1}(X) \to \cdots \to S_0(X)$$

Dove:

$$S_k(X) = \{ \text{combinazioni lineari finite a coefficienti interi:} \\ \sum_g n_g g \mid n_g \in \mathbb{Z}, g \ k - \text{simplessi singolari di } X \}$$

¹Questa ha numerose applicazioni pratiche, come la ricostruzione di immagini.

 $S_k(X)$ è un gruppo abeliano con l'operazione somma definita naturalmente:

$$\sum_{g} n_{g}g + \sum_{h} n_{h}h = \sum_{g} n_{g}g + \sum_{g} n_{g}^{*}g = \sum_{g} (n_{g} + n_{g}^{*})g$$

Inoltre $\forall k < 0$ si pone $S_k(X) = 0$. Un elemento generico di $S_k(X)$ è una somma formale finita (cioè con un numero finito di coefficienti non nulli) su tutti i possibili k-simplessi singolari in X.

Esempio 2.2.5

$$(n_1g_1 + n_2g_2 + 2n_3g_3) + (m_1g_1 + m_4g_4) = (n_1 + m_1)g_1 + n_2g_2 + 2n_3g_3 + m_4g_4$$

Questa è una somma con tutte le giuste proprietà. Lo zero è la catena con tutti i coefficienti nulli, mentre l'inverso è la catena con i coefficienti opposti. Queste catene sono chiamate k-catene singolari. $S_k(X)$ è generato da tutte le possibili applicazioni continue da Δ_k a X, cioè:

$$S_k(X) = \langle \{ g \mid g \text{ } k\text{-simplesso singolare in } X \} \rangle$$

Si nota che le catene sono somme formali di mappe e non sono esse stesse mappe.

Esempio 2.2.6 (k = 0) Se k = 0 allora $S_0(X)$ sono catene di punti ($g_0 : \Delta_0 \to X$, identifico l'applicazione con il punto in X sapendo che l'immagine di un punto è un punto)

$$S_0(X) = \{ \sum n_i p_i \mid n_i \in \mathbb{Z}, \ p_i \in X \}$$

Osservazione 2.2.7 *Quando è possibile faccio un abuso di notazione e identifico la mappa con la sua immagine nello spazio topologico.*

Ora devo introdurre le applicazioni tra i vari S_k , queste applicazioni saranno il bordo. Definisco $h: \Delta_1 \to X$ in modo tale che $h(\Delta) = \alpha$ dove α è un **arco**.

Figura 2.3: 1-Simplesso singolare

Posso ottenere una 0-catena prendendo i punti estremi dell'arco, infatti il bordo di un 1-simplesso è uno 0-simplesso. L'idea è quindi ottenere simplessi di ordine più piccolo prendendo il bordo dei simplessi.

Definizione 2.2.8 Sia Δ_k un k-simplesso standard con $k \geq 0$ si definisce l'operatore **faccia** come la mappa $F_i^k: \Delta_{k-1} \to \Delta_k$ tale che $F_i^k(\Delta_{k-1})$ è una faccia di Δ_k .

L'operatore faccia prende un k-simplesso standard e lo immerge in un qualche senso in un simplesso più grande, ad esempio manda un punto in uno degli estremi di un segmento (nel caso k=0),

Esempio 2.2.9 (k = 2) *Per* k = 2 *vale che*:

$$\Delta_2 = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 1, \ 0 \le x_i \le 1 \ \forall i \}$$

Si definisce la base $e_0=(1,0,0)$ $e_1=(0,1,0)$ $e_2=(0,0,1)$, voglio vedere il bordo del triangolo come facce.

Figura 2.4: Azione dell'operatore faccia

Il segmento faccia i-esimo è quello che non contiene il vertice i-esimo, cioè dimentico un punto e gli altri punti diventano vertici del simplesso.

In generale se Δ_k è un simplesso standard definisco la base canonica (si noti che la base canonica è ordinata):

$$e_0 = (1, 0, 0, \dots)$$

 $e_1 = (0, 1, 0, \dots)$
 $e_2 = (0, 0, 1, \dots)$

Questi sono i vertici del simplesso, definisco l'azione dell'operatore faccia come:

$$\begin{cases} F_i^{\ k}(e_j) = e_{j+1} & \text{se } j \ge i \\ F_i^{\ k}(e_j) = e_j & \text{se } j < i \end{cases}$$

Se fosse un tetraedro dimenticando punti ottengo triangoli e dimenticando triangoli ottengo punti, come è giusto.

Esercizio 1 Dimostrare che se $[\cdot, \cdot]$ indica l'inviluppo convesso allora:

1. Per
$$j > i$$
 vale che $F_i^{k+1} \circ F_i^{k} = [e_0, \dots, \hat{e}_i, \dots, \hat{e}_j, \dots, e_k]$.

2. Per
$$j \leq i$$
 vale che $F_i^{k+1} \circ F_i^k = [e_0, \dots, \hat{e}_j, \dots, \hat{e}_{i+1}, \dots, e_k]$.

dove i cappucci indicano che quell'elemento è omesso.

Definizione 2.2.10 L'inviluppo convesso di un insieme U in \mathbb{R}^n è il più piccolo insieme convesso che contiene U.

Definizione 2.2.11 Un insieme in \mathbb{R}^n si dice **convesso** se contiene il segmento che unisce ogni coppia di punti dell'insieme.

Definizione 2.2.12 Dato un k-simplesso singolare $\sigma: \Delta_k \to X$ si definisce la mappa $\sigma^{(i)}: \Delta_{k-1} \to X$ come la restrizione di σ sulla faccia i-esima del simplesso, cioè $\sigma^{(i)} = \sigma \circ F_i{}^k$, si definisce quindi il **bordo** come la mappa:

$$\partial \colon \Sigma_k(X) \to \Sigma_{k-1}(X)$$

$$\sigma \mapsto \sum_{i=0}^k (-)^i \sigma^{(i)}$$

dove $\Sigma_k(X)$ indica lo spazio dei k-simplessi singolari di X.

Il bordo sostanzialmente corrisponde alla somma alterna delle facce.

Figura 2.5: Azione di σ e $\sigma^{(i)}$

Esempio 2.2.13 (k = 1) Per k = 1 vale che $\partial_1 \sigma = p_1 - p_0$, infatti:

$$\sigma^0 = \sigma \circ F_0^{\ 1} = \sigma(1) = p_1$$

$$\sigma^1 = \sigma \circ F_1^{\ 1} = \sigma(0) = p_0$$

Il bordo è la somma con i segni alternati: $\partial_1 \sigma = p_1 - p_0$. Tecnicamente il bordo è una mappa quindi sarebbe più corretto scrivere $\partial_1 \sigma = \sigma^{(1)} - \sigma^{(0)}$ dove l'azione di queste due mappe è quella di mandare un estremo dell'intervallo [0,1] in p_0 o p_1 .

Allora si definisce l'operatore bordo sul complesso delle catene $\partial_k: S_k(X) \to S_{k-1}(X)$ estendendolo per linearità $\partial_k \left(\sum_g n_g g\right) = \sum_g n_g \partial_k g$ (infatti si è definita l'azione sui generatori g).

Devo mostrare che ∂_k è un omomorfismo e che soddisfa $\partial_k \circ \partial_{k+1} = 0$. Comincio con il fatto che è un omomorfismo.

Dimostrazione:

$$\partial_k \left(\sum_g n_g g + \sum_g m_g g \right) = \partial_k \left(\sum_g (m_g + n_g) g \right) = \sum_g (m_g + n_g) \partial_k g =$$

$$= \sum_g n_g \partial_k g + \sum_g m_g \partial_k g = \partial_k \left(\sum_g n_g g \right) + \partial_k \left(\sum_g m_g g \right)$$

Dove si è usato che la mappa di bordo è lineare.

Quindi il complesso è costituito da:

$$\dots \xrightarrow{\partial_{k+1}} S_k(X) \xrightarrow{\partial_k} S_{k-1}(X) \xrightarrow{\partial_{k-1}} \dots$$

Devo verificare che $\partial_k \circ \partial_{k+1} = 0$ (spesso come notazione si pone $\partial^2 = 0$). SISTEMARE **Dimostrazione**: Se σ è un k-complesso singolare, cioè $\sigma : \Delta_k \to X$ continua:

$$\partial_{k} \circ \partial_{k+1} \sigma = \partial_{k} \left(\sum_{j=0}^{k+1} (-)^{j} (\sigma \circ F_{j}^{k+1}) \right) = \sum_{j=0}^{k+1} (-)^{j} \partial_{k} (\sigma \circ F_{j}^{k+1}) =$$

$$= \sum_{j=0}^{k+1} (-)^{j} \sum_{i=0}^{k} (-)^{i} (\sigma \circ F_{j}^{k+1}) \circ F_{i}^{k} = \sum_{j=0}^{k+1} \sum_{i=0}^{k} (-)^{j+i} \sigma \circ F_{j}^{k+1} \circ F_{j}^{k} =$$

$$= \sum_{0 \le i < j \le k+1} (-)^{i+j} \sigma \circ F_{j}^{k+1} \circ F_{i}^{k} + \sum_{0 \le j < i \le k} (-)^{i+j} \sigma \circ F_{j}^{k+1} \circ F_{i}^{k} =$$

Rinominando nella seconda sommatoria ..

$$= \sum_{0 \le i < j \le k+1} (-)^{i+j} \sigma \circ F_j^{\ k+1} \circ F_i^{\ k} + \sum_{0 \le j < i \le k} (-)^{i+j} \sigma \circ F_{i+1}^{\ k+1} \circ F_j^{\ k} = 0$$

Dove nel penultimo passaggio si sono utilizzate le identità lasciate da dimostrare come esercizio, e nell'ultimo si è rinominato nel secondo termine i+1 con i.

Esercizio 2 Verificare che fa veramente zero.

Si nota che è di importanza cruciale il fatto che si è definito il bordo con i segni alternati. \square Sia X uno spazio topologico, voglio definire l'omologia singolare $H_k(X)$, cioè il k-esimo gruppo di omologia singolare. Costruisco il complesso $(S_{\bullet}(X), \partial)$ con:

$$S_k(X) = \{ \sum_g n_g g \mid g \text{ simplesso singolare, } n_g \in \mathbb{Z} \}$$

E $\partial_k: S_k(X) \to S_{k-1}(X)$ applicazione di bordo con $\partial_k(g) = \sum_{i=0}^k (-)^i g^{(i)}$ con $g: \Delta_k \to X$, e poi lo estendo per linearità su tutti gli elementi di S, dove $g^{(i)} = g \circ F_i^{\ k}$. Siccome $\partial_{k-1} \circ \partial_k = 0$ si ha il complesso

$$\dots \xrightarrow{\partial_{k+1}} S_k(X) \xrightarrow{\partial_k} S_{k-1}(X) \xrightarrow{\partial_{k-1}} \dots$$

Inoltre $\partial_k \circ \partial_{k-1}$ è la mappa nulla dalle catene singolari di $S_k(X)$ a quelle di $S_{k-2}(X)$, in questo modo $(S_{\bullet}(X), \partial)$ è un complesso di gruppi abeliani. Posso quindi calcolare l'omologia di $(S_{\bullet}(X), \partial)$ come l'avevo definita in precedenza:

$$H_k(S_{\bullet}(X)) = \frac{\operatorname{Ker}(\partial_k)}{\operatorname{Im}(\partial_{k+1})}$$

Vale che ${\rm Ker}(\partial_k)=\{\,c\in S_k(X)\mid \partial_k(c)=0\,\}$, cioè le k-catene con bordo nullo, questi sono chiamati k-cicli.

Definizione 2.2.14 Sia $(S_{\bullet}(X), \partial)$ un complesso di moduli, gli elementi di $Ker(\partial)$ sono detti k-cicli. Un k-ciclo è quindi una k-catena con bordo nullo:

$$c \ ciclo \Leftrightarrow \partial c = 0$$

L'insieme dei k-cicli è indicato con $Z_k(X)$, cioè: $Z_k(X) = \operatorname{Ker}(\partial)$.

Si pone invece $B_k(X)$ come l'insieme dei bordi, cioè le k-catene singolari che sono immagini di k+1-catene, cioè esplicitamente:

$$B_k(X) = \{ \eta \in S_k(X) \mid \exists b \in S_{k+1}(X), \partial b = \eta \}$$

Per definizione si ha quindi che $H_k(X)={Z_k(X)}/{B_k(X)}$, cioè il gruppo di omologia è formato dai cicli modulo i bordi.

Esplicitamente gli elementi di $H_k(X)$ sono classi di equivalenza tali che se $[c] \in H_k(X)$ con $\partial c = 0$, e $c_1 \in [c]$ allora $c_1 - c \in B_k(X)$ e $\partial c_1 = 0$ quindi esiste b tale che $c_1 - c = \partial b$. Cioè due elementi stanno nella stessa classe di equivalenza se differiscono per un bordo:

Definizione 2.2.15 Due elementi a, b si dicono **omologhi** se differiscono per un bordo.

$$a \sim_{hom} b \Leftrightarrow \exists c \mid \partial_k c = a - b$$

Osservazione 2.2.16 Vale che $H_k(X) = 0 \Leftrightarrow B_k(X) = Z_k(X)$, cioè se ogni ciclo è un bordo, come si è già osservato. In generale si ha che $B_k(X) \subseteq Z_k(X)$ e possono esserci cicli che non sono immagini di bordi.

 $\partial_k c$ è il bordo di un k-ciclo, se $\partial_k c=0$ significa che il ciclo non ha bordo, inoltre se $c=\partial_{k+1}b$ allora c è bordo di qualcosa: c è un bordo che non ha bordo. Questo tipo di oggetti è di interesse centrale.

Scopo del corso è studiare $H_k(X)$ e capire se si possono determinare a meno di isomorfismi. In alcuni casi è possibile calcolare esplicitamente tutti i gruppi di omologia (come nel caso dell'omologia cellulare).

2.2.1 $H_0(X)$

Proposizione 2.2.17 Sia X uno spazio topologico connesso per archi, allora $H_0 \cong \mathbb{Z}$, cioè è uno \mathbb{Z} -modulo libero di rango 1. In effetti $H_0(X)$ conta le componenti connesse per archi in X e quindi dà informazioni di natura geometrica.

Dimostrazione: Dalla definizione di gruppo di omologia: $H_0(X) = Z_0(X) / B_0(X)$. Ma $Z_0(X) = \{ c \in S_o(X) \mid \partial_0 c = 0 \}$ e $S_0(X) = \{ \sum n_i p_i \mid n_i \in \mathbb{N}, p_i \in X \}$. Sia $c \in S_0(X)$ allora $c = \sum n_i p_i$, e vale che $\partial_0(c) = \sum n_i \partial_0(p_i) = 0$, infatti $\partial_0 : S_0(X) \to S_{-1}(X)$, ma per k < 0 $S_k = 0$ per definizione. Quindi per ora ho che:

$$Z_0(X) = \text{Ker}(\partial_0) = S_0(X) \implies H_0(X) = \frac{S_0(X)}{B_0(X)}$$

Per definizione $B_0(X)=\{x\in S_0(X)\mid \exists \alpha\in S_1(X), \partial_1(\alpha)=x\}$. Sia $p_0\in X$, allora $q\sim_{hom}p_0$ se e solo se $\exists \alpha\in S_1(X)$ tale che $q-p_0=\partial_1\alpha$. Per questo motivo i punti sono tutti omologhi, infatti essendo X connesso per archi esiste un arco α che connette q e p_0 , ma per definizione gli archi sono applicazioni continue da Δ_1 a X che hanno come bordo $q-p_0$. Esiste quindi un'unica classe di equivalenza che è la classe di equivalenza di un punto. Per questo il gruppo è omomorfo a \mathbb{Z} .

Definizione 2.2.18 Si definisce inoltre la mappa **grado** come l'applicazione che manda una catena in $S_0(X)$ nella somma dei suoi coefficienti:

$$\deg \colon S_0(X) \to \mathbb{Z}$$
$$\sum n_i p_i \mapsto \sum n_i$$

Teorema 2.2.19 (Teorema fondamentale degli omomorfismi) $Sia\ f: \mathcal{G}_1 \to \mathcal{G}_2 \ un \ omo-morfismo \ tra gruppi abeliani, allora vale che:$

$$\mathcal{G}_1/_{\mathrm{Ker}(f)} \cong \mathrm{Im}(f)$$

Proposizione 2.2.20 La mappa grado gode di alcune proprietà:

1. deg è un omomorfismo di gruppi abeliani

- 2. deg è suriettivo
- 3. $\operatorname{Ker}(\operatorname{deg}) \cong B_0(X)$

Se dimostro questa proprietà utilizando il primo teorema fondamentale di isomorfismo:

$$S_0(X)/B_0(X) \cong \operatorname{Im}(\operatorname{deg})$$

 $Ma \operatorname{deg} \hat{e}$ suriettiva, quindi $\operatorname{Im}(\operatorname{deg}) = \mathbb{Z}$, perciò:

$$H_0(X) = \frac{S_0(X)}{B_0(X)} \cong \mathbb{Z}$$

Dimostro quindi questa proposizione.

Dimostrazione:

1. Sia $c_1 = \sum n_i p_i$ e $c_2 = \sum m_i q_i$, bisogna mostrare che:

$$\deg(c_1 + c_2) = \deg(c_1) + \deg(c_2)$$

ma:

$$c_1 + c_2 = \sum n_i p_i + \sum m_i q_i = \sum (n_i + m_i) r_i$$

dove r_i è quello comune tra le catene, oppure è zero se l'elemento è presente in solo uno delle due catene. Quindi:

$$\deg(c_1 + c_2) = \sum (n_i + m_i) = \sum n_i + \sum m_i = \deg(c_1) + \deg(c_2)$$

Alternativamente in modo più semplice si può osservare l'azione di \deg sui generatori di $S_0(X)$, che è unico e viene mandato dalla mappa grado in 1, quindi si estende per linearità.

- 2. La mappa è suriettiva, basta prendere un punto $p\in X$ e la controlmmagine di $m\in \mathbb{Z}$ è $\deg^{-1}(m)=mp$
- 3. <u>SISTEMARE</u> Mostro che $\operatorname{Ker}(\deg) = B_0(X)$. Sia $c \in \operatorname{Ker}(\deg)$ cioè tale che $\deg(c) = 0$, se $c = \sum n_i p_i$ allora $\sum n_i = 0$, bisogna mostrare che $c \in B_0(X)$, cioè che $\exists b \in S_1(X)$ con $\partial_1 b = c$. Considerato p_0 e altri punti p_i , ci sono archi $\lambda_i s$ che li uniscono a p_0 . b si può costruire in questo modo.

Siano $\lambda_i:[0,1]\to X$ con $\lambda_i(0)=p_0$ e $\lambda_i(1)=p_i$ considero $c-\partial\left(\sum n_1\lambda_i\right)=c-\sum n_i\partial\lambda_i=c-\sum n_i(p_i-p_0)=c-\sum n_ip_i=\sum n_ip_0=0$. Siccome per ipotesi $p_0\in\operatorname{Ker}(\deg)$ e $c=\sum n_ip_i$ allora $c=\partial(\sum n_i\lambda_i)$ quindi $\sum n_i\lambda_i=b$ da cui $\operatorname{Ker}(\deg)\subseteq B_0(X)$. Mi rimane da mostrare che $B_0(X)\subseteq\operatorname{Ker}(\deg)$, infatti ora mostro che se $c\in B_0(X)$ allora $\deg(c)=0$. $c=\partial b$ ma se λ_i sono gli archi $b=\sum m_i\lambda_i$ quindi $\partial b=\sum n_i\partial\lambda_i$ ma $\partial\lambda_i=\lambda_i(1)-\lambda_i(0)$ e l'azione dell'opertaore grado è quella di sommare i coefficienti, quindi

$$deg(c) = deg(\partial b) = \sum n_i deg(\partial \lambda_i) = 0$$

Per questo $H_0(X) \cong \mathbb{Z}$ generato dalla classe $[p] \ \forall p \in X$ (con X connesso per archi). \square Se ci sono più componenti connesse per archi posso ripetere il ragionamento senza connettere componenti distinte, quindi trovo che:

$$H_0(X) \cong \mathbb{Z}^{N_c}$$

Dove N_c è il numero di componenti connesse per archi di X con $N_c < +\infty$, in pratica $H_0(X)$ è generato da un insieme formato da un punto per ogni componente connessa per archi.

2.2.2 $H_1(X)$

Cosa si può dire invece su $H_1(X)$?

Sia X spazio topologico e $x_0 \in X$, allora alla coppia (X,x_0) si associa il gruppo fondamentale $\pi_1(X,x_0)$. In generale il gruppo fondamentale non è abeliano, allora conviene studiare la versione abelianizzata: Ab $(\pi_1(X,x_0)) = \frac{\pi_1(X,x_0)}{\pi_i(X,x_0)'}$ dove ' indica il **gruppo derivato**, cioè il gruppo generato dai commutatori.

$$\pi_1(X, x_0)' = [\pi_1(X, x_0), \pi_1(X, x_0)] = \langle \{ [g, h] \mid g, h \in \pi_1(X, x_0) \} \rangle$$

Se X è connesso per archi allora Ab $(\pi_1(X, x_0)) \cong H_1(X)$, quindi conoscendo il gruppo fondamentale si può calcolare anche il primo gruppo di omologia, che quindi è sostanzialmente formato dai lacci (modulo omotopia) che commutano tra loro.

Osservazione 2.2.21 Sia X uno spazio topologico connesso per archi e $\mathcal G$ un gruppo abeliano se esiste un omomorfismo di gruppi $\varphi:\pi_1(X)\to\mathcal G$ allora esiste $\varphi':\operatorname{Ab}(\pi_1(X))\to\mathcal G$ omomorfismo di gruppi abeliani.

$$\begin{array}{ccc}
\pi_1(X) & \xrightarrow{\varphi} & \mathcal{G} \\
\downarrow^P & & \\
\operatorname{Ab}(\pi_1(X)) & & \\
\end{array}$$

dove P è la proiezione sul quoziente.

Dimostrazione: Bisogna mostrare che φ' è ben definito, cioè che se:

$$\varphi'(a) = \varphi'(P(c)) = \varphi(c)$$
 e $\varphi'(a) = \varphi'(P(d)) = \varphi(d)$

allora $\varphi(c)=\varphi(d)$. Se $c\sim_H d$ allora P(c)=P(d), e quindi c=d[x,y], in quanto gli elementi in $\mathrm{Ab}\left(\pi_1(X)\right)$ differiscono per commutatori. Applicando $\varphi\colon \varphi(c)=\varphi(d[x,y])$, siccome φ è omomorfismo:

$$\varphi(d[x,y]) = \varphi(d)\varphi([x,y]) = \varphi(d)\varphi(xyx^{-1}y^{-1}) = \varphi(d)\varphi(x)\varphi(y)\varphi(x)^{-1}\varphi(y)^{-1} = \varphi(d)$$

dove nell'ultimo passaggio ho utilizzato che il gruppo è abeliano. \Box

Questa osservazione dipende crucialmente dal fatto che il gruppo è abeliano.

Proposizione 2.2.22 Se X è uno spazio topologico connesso per archi allora $Ab(\pi_1(X)) \cong H_1(X)$, cioè si può passare dall'equivalenza omologica a quella omotopica, e in questo modo per il teorema di Seifert-van Kampen si possono ottenere tante informazioni su $H_1(X)$.

Dimostrazione: Per dimostrare che $\mathrm{Ab}\,(\pi_1(X))\cong H_1(X)$ trovo un isomorfismo di gruppi abeliani. Per ora so che $H_1(X)$ è uno \mathbb{Z} -modulo. Se costruisco $\varphi\colon \pi_1(X)\to H_1(X)$ omomorfismo di gruppi ottengo gratuitamente la mappa da $\mathrm{Ab}\,(\pi_1(X))$ a $H_1(X)$ per l'osservazione precedente.

$$\begin{array}{ccc}
\pi_1(X) & \xrightarrow{\varphi} & H_1(X) \\
\downarrow^P & & & & \\
\operatorname{Ab}(\pi_1(X)) & & & & \\
\end{array}$$

Poi dovrò mostrare che questa mappa è invertibile, cioè $\exists \psi: H_1(X) \to A_1(X)$ tale che $\varphi' \circ \psi = \mathbb{I}_{H_1(X)}$ e $\psi \circ \varphi' = \mathbb{I}_{\mathrm{Ab}(\pi_1(X))}$.

Provo a costruire φ .

$$\varphi: \pi_1(X) \to H_1(X)$$
$$[f]_H \mapsto [f]_{hom}$$

Usando il seguente risultato:

Lemma 2.2.23 Se $f \sim_H g$ allora $f \sim_{hom} g$, cioè se f e g sono lacci che definiscono lo stesso elemento nel gruppo fondamentale allora differiscono per un bordo.

Dimostrazione: Siccome $f \sim_H g$ allora $\exists F$ continua tale $F: I \times I \to X$ tale che F(0, x) = f(x), F(1, x) = g(x) e $F(t, 0) = F(t, 1) = x_0$.

Figura 2.6: Omotopia: deforma f in g in modo continuo.

Voglio mostrare che f-g bordo di un 2-simplesso. Identificando tutti i punti di un uno dei due intervalli con l'equivalenza $^{I\,\times\,I}/_{\left\{\,0\,\right\}\,\times\,I}$ si ottiene qualcosa che è omeomorfo a $\Delta_2.$

Figura 2.7: La relazione di equivalenza fa passare da un quadrato a un triangolo in quanto fa collassare un intervallo nel punto 0

SISTEMARE Siccome rimane costante sul sottospazio su cui su quozienta, cioè su x_0 , F induce $F'\colon \Delta_2 \to X$ continua:

$$I \times I \xrightarrow{F} X$$

$$\downarrow^{P} \xrightarrow{F'} X$$

$$I \times I /_{0 \times I} \simeq \Delta_{2}$$

Calcolo il bordo: $\partial F' = F'^{(0)} - F'^{(1)} + F'^{(2)} = K - g + f$ dove K è il cammino costante per definizione di omotopia. Se K fosse il bordo di qualcosa avrei finito ($\partial w = f - g$). Prendo il 2-simplesso standard K costante e uguale a x_0 (è la stessa costante di K):

$$\partial K = K^{(0)} - K^{(1)} + K^{(2)}$$

ma questi sono uguali perché sono costanti, quindi $\partial K = K^{(2)} = k$, cioè k è un bordo, quindi:

$$\partial F' = \partial K - F'^{(1)} + F'^{(2)} \Rightarrow \partial F' - \partial K = f - g \Rightarrow \partial (F' - K) = f - g$$

F'-K è 2-simplesso singolare, lo chiamo σ : $\partial \sigma = f-g$, quindi f e g sono omologhi e σ è il 2-simplesso singolare che realizza l'omologia.

Se X è uno spazio topologico connesso per archi sono in grado di costruire senza utilizzare l'ipotesi di connessione per archi:

$$\varphi: \pi_1(X) \to H_1(X)$$
$$[f]_H \mapsto [f]_{hom}$$

Ora voglio costruire φ' : Ab $(\pi_1(X)) \to H_1(X)$ e lo faccio ancora senza l'ipotesi di connessione per archi. Mostro che φ' è omomorfismo, per far ciò basta che mostro che φ lo è.

Dimostrazione: Siano $[f]_H, [g]_H \in \pi_1(X)$ voglio fare vedere che:

$$\varphi([f]_H[g]_H) = \varphi([f]_H) + \varphi([g]_H)$$

Questo è verso se e solo se:

$$\varphi([f \star g]_H) = [f]_{hom} + [g]_{hom}$$

Che è vera se e solo se:

$$[f \star g]_{hom} = [f + g]_{hom}$$

Questo è vero se e solo se i due rappresentati sono equivalenti:

 $\exists T: \Delta_2 \rightarrow X$ 2-simples so singolare tale che $\partial T = f + g - f \star g$

Cioè:

$$\partial T = T^{(0)} - T^{(1)} + T^{(2)} = f + g - f \star g$$

Una possibile costruzione parte tracciando la retta che congiunge due punti medi di due

Figura 2.8: Costruzione dell'omomorfismo

segmenti, quindi si richiede che T abbia valori costanti sulle rette parallele.

Figura 2.9: Costruzione dell'omomorfismo, deve avere valori costanti su rette parallele

Quindi è un omomorfismo.

Al momento la situazione è che ho $\varphi:H_1(X,x_0)\to H_1(X)$ omomorfismo di gruppi ben definito anche con X non necessariamente connesso per archi, e dato che $H_1(X)$ è abeliano ho $\varphi':\operatorname{Ab}(\pi_1(X))\to H_1(X)$.

Proposizione 2.2.24 Se X è connesso per archi allora la mappa $\varphi':: \operatorname{Ab}(\pi_1(X)) \to H_1(X)$ è un isomorfismo.

Dimostrazione: Sketch of proof, la dimostrazione completa è piuttosto noiosa. Per dimostrare che φ' è isomorfismo o dimostro che è iniettiva e suriettiva o che ammette un inverso. Procedo con la seconda possibilità: mostro che $\exists \psi \colon H_1(X) \to \operatorname{Ab}(\pi_1(X))$ tale che ψ è inverso di φ' . Considero un arco $f \colon \Delta_1 \to X$ con $f(0), f(1) \in X$. Siccome lo spazio è connesso per

Figura 2.10: Dimostrazione della proposizione

archi esiste un cammino da x_0 a f(0), cioè una funzione $\lambda_{f(0)}\colon I\to X$ tale che $\lambda_{f(0)}=x_0$ e $\lambda_{f(1)}=f(0)$. Lo stesso vale per x_0 e f(1). Questi archi sono orientati partendo da x_0 , posso considerare il cammino con verso opposto $\bar{\lambda}_{f(1)}$ e quindi costruire il laccio di base x_0 : $\lambda_{f(0)}\star f\star \bar{\lambda}_{f(1)}=:\tilde{f}.$ Vale che $\psi(f)=[\![\tilde{f}]\!]$, dove $[\![\tilde{f}]\!]=P\left([\tilde{f}]\!]_H\right)$. Bisogna mostrare che:

- 1. ψ è ben definito, cioè se $f\sim_{hom} g$ allora $\psi(f)=\psi(g)$ e che ψ non dipende dalla scelta del cammino.
- 2. ψ è omomorfismo di gruppi
- 3. $\varphi' \circ \psi = \mathbb{I}_{H_1(X)}$
- 4. $\psi \circ \varphi' = \mathbb{I}_{Ab(\pi_1(X))}$

Lo studente interessato può verificare queste asserzioni.

Esercizio 3 Verificarli.

Una volta verificati si trova quindi che $H_1(X) \cong \mathrm{Ab}\,(\pi_1(X))$.

Esempio 2.2.25

- $H_1(V_q) \cong \mathbb{Z}^{2g} \text{ con } g \geq 0$
- $H_1(\bigvee_{i=1}^k \mathcal{S}^1) \cong \mathbb{Z}^k$ con $\bigvee_{i=1}^k \mathcal{S}^1$ bouquet, cioè k circonferenze incollate in un punto.
- $H_1(\mathbb{R}^3 \setminus \mathcal{S}^1) \cong \mathbb{Z}$ (è un toro tappato)

- $H_1(U_1)\cong \mathbb{Z}_2$ dove U_1 è il piano proiettivo reale $\mathbb{P}^2(\mathbb{R})=\mathbb{R}^3\setminus \set{0}/_{\sim} con\ \vec{x}\sim \vec{y}$ se $\vec{x}=a\vec{y}$ con $a\in \mathbb{R}$
- $H_1(U_2) \cong \mathbb{Z} \oplus \mathbb{Z}_2$ dove U_2 è la bottiglia di Klein. Infatti $\pi_1(U_2)$] $\{a,b \mid aba^{-1}b^{-1}=1\}$ per ableliannizzarlo bisogna porre $aba^{-1}b=1$ e $aba^{-1}b^{-1}=1$ cioè $b^2=1$ e a libero: Ab $(\pi_1(U_2))=\{a,b \mid aba^{-1}b=1\}$.

(b) Bottiglia di Klein, si nota che rispetto al toro di Clifford c'è una torsione nella a di destra

Figura 2.11: Bottiglia di Klein

2.3 Morfismi indotti

So calcolare $H_0(X)$ e $H_1(X)$ se voglio calcolare gli altri $H_k(X)$? Prima guardo come si comportano i gruppi sotto l'azione di applicazioni continue: Sia $g\colon X\to Y$ mappa continua tra spazi topologici, g induce un'applicazione tra $H_k(X)$ e $H_k(Y)$? Considero $\sigma\colon \Delta_k\to X$ k-simplesso singolare, posso considerare la composizione con g:

$$\Delta_k \xrightarrow{\sigma} X \xrightarrow{g} Y$$

Cioè: $g': \Delta_k \to Y$ con $g' = g \circ \sigma$. Siccome sia g che σ sono continue allora g' è continua, quindi è un k-simplesso singolare in Y. Si definisce g_{\sharp} :

$$g_{\sharp} \colon S_k(X) \to S_k(Y)$$
$$\sum_{\sigma} n_{\sigma} \sigma \mapsto \sum_{\sigma} n_{\sigma} g' = \sum_{\sigma} n_{\sigma} (g \circ \sigma)$$

Questa mappa è ben definita ed è lineare quindi g_{\sharp} è un omomorfismo di gruppi abeliani che manda k-catene in $S_k(X)$ in k-catene in $S_k(Y)$. Ora voglio ottenere un'applicazione a livello di omologia singolare, quindi definisco g_{\star} .

$$g_{\star} \colon H_k(X) \to H_k(Y)$$

 $[c] \mapsto [g_{\sharp}(c)]$

Si dice che g è **covariante** perché va da X a Y, cioè rispetta il verso della applicazione g. Devo verificare se questa applicazione è ben definita, cioè non dipende dalla scelta del rappresentate della classe. Considero $d \in S_k(X)$ tale che $\partial d = 0$, suppongo che $d \sim_{hom} c$, questo vale se e solo se [d] = [c] con $\partial c = 0$, mi chiedo è vero che $g_{\star}([d]) = g_{\star}([c])$? Devo cioè mostrare che $g_{\sharp}(d) \sim_{hom} g_{\sharp}(c)$, ma questo è vero se e solo se $\exists \tau \in S_{k+1}(Y)$ tale che $g_{\sharp}(d) - g_{\sharp}(c) = \partial \tau$. Siccome g_{\sharp} è omomorfismo allora deve essere $g_{\sharp}(d-c) = \partial \tau$, ma d e c sono omologhi per ipotesi, quindi:

$$\exists u \in S_{k+1}(X) \mid \partial u = d - c$$

Quindi $g_{\sharp}(\partial u)=g_{\sharp}(d-c)$, e questo implica che $[g_{\sharp}(d)]=[g_{\sharp}(c)]$, infatti trovo τ a partire da u:

$$g_{\sharp}(\partial u) = g_{\sharp}\left(\sum_{i=0}^{k+1} (-)^{i} u^{(i)}\right) = \sum_{i=0}^{k+1} (-)^{i} g_{\sharp}(u^{(i)}) = \sum_{i=0}^{k+1} (-)^{i} g \circ u^{(i)} = \sum_{i=0}^{k+1} (-)^{i} g \circ \left(u \circ F_{i}^{k+1}\right) = \sum_{i=0}^{k+1} (-)^{i} \left(g \circ u\right) \circ F_{i}^{k+1} = \sum_{i=0}^{k+1} (-)^{i} \left(g \circ u\right)^{(i)} = \partial \left(g \circ u\right)$$

Ma quindi $g_{\sharp}(\partial u) = \partial(g_{\sharp}(u))$ cioè:

$$g_{\sharp}(d-c) = g_{\sharp}(\partial u) = \partial(g_{\sharp}(u)) = \partial \tau \quad \text{con } \tau = g_{\sharp}(u)$$

Quindi g_{\star} è ben definita ed è omomorfismo in quanto è il passaggio a quoziente di omomorfismi.

Esempio 2.3.1 Sia $j: \mathcal{S}^1 \to \mathcal{S}^2$ l'immersione di un equatore in una sfera, che cosa è $j_\star: H_1(\mathcal{S}^1) \to H_1(\mathcal{S}^2)$? j_\star è una mappa costante in quanto \mathcal{S}^2 ha gruppo fondamentale banale quindi $H_1(\mathcal{S}^2)$ è banale. Si nota che j era iniettiva, ma j_\star è costante quindi non è più iniettiva.

Esempio 2.3.2 *Se considero* $S^1 = \{ z \in \mathbb{C} \mid |z| = 1 \}$

$$f \colon \mathcal{S}^1 \to \mathcal{S}^1$$

 $z \to z^4$

Come è fatta $f_{\star} \colon H_1(\mathcal{S}^1) \to H_1(\mathcal{S}^1)$? Si sa che $H_1(\mathcal{S}^1) \cong \mathbb{Z}$, quindi, sia

$$\sigma \colon \Delta_1 \to \mathcal{S}^1$$
$$t \to e^{2\pi i t}$$

Cioè in pratica $[\sigma] \to 1$, il laccio si avvolge su sè stesso una volta.

$$f_{\star} \colon H_1(\mathcal{S}^1) \to H_1(\mathcal{S}^1)$$

 $[\sigma] \mapsto [f_{t}(\sigma)] = [f \circ \sigma]$

2 Omologia Singolare

Si ha:

$$\Delta_1 \xrightarrow{\sigma} \mathcal{S}^1 \xrightarrow{f} \mathcal{S}^1$$

Con:

$$t \xrightarrow{\sigma} e^{2\pi i t} \xrightarrow{f} e^{8\pi i t}$$

Quindi:

$$f \circ \sigma \colon \Delta_1 \to \mathcal{S}^1$$

 $t \mapsto e^{8\pi i t}$

Sostanzialmente $f \circ \sigma$ è un cammino in S^1 ed è quindi potenza di σ , che è l'unico generatore:

$$f \circ \sigma = \sigma^4 = \sigma \star \sigma \star \sigma \star \sigma$$

Cioè avvolgo il laccio quattro volte, quindi:

$$f_{\star} \colon H_1(\mathcal{S}^1) \to H_1(\mathcal{S}^1)$$

 $[\sigma] \mapsto [\sigma^4]$

Cioè:

$$f_{\star} \colon \mathbb{Z} \to \mathbb{Z}$$

 $1 \mapsto 4$

 f_{\star} è iniettivo ma non suriettivo (non tutti gli interi sono multipli di 4)

Osservazione 2.3.3 *Siano X spazio topologico*: $\mathbb{I}_X : X \to X$ *allora*:

$$(\mathbb{I}_X)_{\star}: H_k(X) \to H_k(X)$$
$$[c] \mapsto [(\mathbb{I}_X)_{\star}(c)] = [c]$$

Quindi $(\mathbb{I}_X)_+$ è proprio l'identità a livello di gruppi di omologia, cioè:

$$(\mathbb{I}_X)_{\star} = \mathbb{I}_{H_h(X)}$$

Osservazione 2.3.4 Siano X, Y, Z spazi topologici e $f: X \to Y, g: Y \to Z$ funzioni continue, allora $g \circ f: X \to Z$ è continua, si ha quindi:

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

E:

$$H_k(X) \xrightarrow{f_\star} H_k(Y) \xrightarrow{g_\star} H_k(Z)$$

Sono ben definite $g_{\star} \circ f_{\star} \colon H_k(X) \to H_k(Z)$ e $(g \circ f)_{\star} \colon H_k(X) \to H_k(Z)$, vale che $g_{\star} \circ f_{\star} = (g \circ f)_{\star}$, infatti se σ è simplesso singolare (poi basta estendere per linearlità):

$$(g \circ f)_{\star} ([\sigma]) = [(g \circ f)_{\sharp}(\sigma)] = [(g \circ f) \circ \sigma] = [g \circ (f \circ \sigma)] =$$
$$= [g_{\sharp}(f \circ \sigma)] = [g_{\sharp} \circ f_{\sharp}(\sigma)] = (g_{\star} \circ f_{\star})([\sigma])$$

Quindi sulla categoria degli spazi topologici questo fornisce un funtore covariante. Si veda più avanti cosa significa tutto ciò.

2.4 Successioni esatte

Considero due complessi (C_{\bullet}, ∂) e $(C'_{\bullet}, \partial')$, considero l'omomorfismo di \mathbb{Z} -moduli $F \colon (C_{\bullet}, \partial) \to (C'_{\bullet}, \partial')$ tale che $\forall k$ si formi un diagramma commutativo, cioè valga $F \circ \partial = \partial' \circ F$

Tutti i quadrati che si formano devono essere commutativi. Si pone questa richiesta di commutatività in quanto considerando $f\colon X\to Y$ e quindi $F=f_\sharp\colon (S_\bullet(X),\partial)\to (S_\bullet(Y),\partial')$ la condizione di commutatività è $f_\sharp\circ\partial=\partial'\circ f_\sharp$ che è proprio quella che ho utilizzato prima per mostrare che l'applicazione è ben definita a livello di omologia (avevo usato $g_\sharp\circ\partial=\partial\circ g_\sharp$). Una funzione F fatta in questo modo è detta **mappa tra complessi**.

Definizione 2.4.1 Si definisce una successione esatta corta di complessi la successione:

$$0 \longrightarrow A_{\bullet} \xrightarrow{\alpha} B_{\bullet} \xrightarrow{\beta} C_{\bullet} \longrightarrow 0$$

con $(A_{\bullet}, \partial^A)$, $(B_{\bullet}, \partial^B)$ e $(C_{\bullet}, \partial^C)$ complessi, e α mappa tra complessi iniettiva, β mappa tra complessi suriettivo e deve valere che $\forall k$ sia $C_k \cong B_k/A_k$.

In modo più esteso questo significa:

Le colonne sono successioni esatte corte di Z-moduli, quindi l'immagine di α è uguale al nucleo e la mappa è iniettiva perciò la prima riga è formata da zero (infatti se è iniettiva il nucleo è zero), similmente siccome la mappa β è suriettiva quindi l'ultima riga è formata da zero. Inoltre tutti i quadrati sono commutativi.

2.4.1 Omomorfismo di connessione

A partire da una successione esatta corta posso passare all'omologia, se passo brutalmente all'omologia non ottengo una successione esatta, ma c'è il modo per indurre una successione esatta lunga:

Teorema 2.4.2 Esiste una successione esatta lunga tale che sia fatta così:

$$\dots \longrightarrow H_p(A_{\bullet}) \xrightarrow{\alpha_{\star}} H_p(B_{\bullet}) \xrightarrow{\beta_{\star}} H_p(C_{\bullet}) \xrightarrow{\delta} H_{p-1}(A_{\bullet}) \xrightarrow{\alpha_{\star}} \dots$$

Quindi $\forall p$:

$$Im(\alpha_{\star}) = Ker(\beta_{\star})$$

$$Im(\beta_{\star}) = Ker(\delta)$$

$$Im(\delta) = Ker(\alpha_{\star})$$

 δ è detto **omomorfismo di connessione** in quanto cambia il grado dell'omologia. La scrittura estesa della successione è:

Dimostrazione: Per dimostrare il teorema bisogna:

- 1. Dimostrare che α_{\star} e β_{\star} sono ben definite
- 2. Costruire l'omomorfismo di connessione e verificare che è effettivamente un omomorfismo
- 3. Mostare che la successione è esatta, cioè che

$$Im(\alpha_{\star}) = Ker(\beta_{\star})$$

$$Im(\beta_{\star}) = Ker(\delta)$$

$$Im(\delta) = Ker(\alpha_{\star})$$

Sketch of proof, la dimostrazione è lunga e noiosa.

2 Omologia Singolare

Sia $c \in C_k$ un ciclo, quindi tale che $\partial c = 0$, siccome β_k è suriettiva $\exists b \in B_k$ tale che $\beta_k(b) = c$, voglio recuperare un elemento in A_{k-a} .

$$a \in A_{k-1}$$

$$\downarrow \partial b$$

$$b \in B_k \xrightarrow{\partial} B_{k-1}$$

$$\downarrow \beta_k \qquad \qquad \downarrow \beta_{k-1}$$

$$c \in B_k \xrightarrow{\partial} C_{K-1}$$

Usando la commutataività:

$$\beta_{k-1}(\partial b) = \partial \beta_k(b) = \partial c = 0$$

Quindi $\beta_{k-1}(b)=0$, e quindi $\partial b\in \operatorname{Ker}(\beta_{k-1})$, ma le colonne sono esatte quindi $\partial b\in \operatorname{Im}(\alpha_{k-1})=\operatorname{Ker}(\beta_{k-1})$, perciò $\exists a\in A_{k-1}$ tale che $\alpha_{k-1}(a)=\partial b$, quindi a partire da $c\in C_k$ ho associato un elemento $a\in A_{k-1}$. Per scendere a livello di omologia a deve essere un ciclo, cioè $\partial a=0$, ma per la commutatività:

$$\alpha_{k-2}(\partial a) = \partial \alpha_{k-1}(a) = \partial \partial b = 0$$

Ma α_{k-2} è iniettiva, quindi $\partial a=0$. Sono partito da un k-ciclo in C_k e ho trovato un k-1-ciclo in A_{k-1} .

Ci sono un paio di dettagli da verificare:

- 1. È univoca la scelta dell'elemento *b*? Se non lo è ci sono problemi?
- 2. Se prendo un elemento c' che è omologo a c è sicuro che trovo un a' che è omologo ad a?

Se queste due cose non sono verificate l'applicazione non è ben definita. Verifico che comunque scelga una controimmagine di β_k si ottiene qualcosa di omologo ad a: suppongo che $\beta_k(b')=\beta_k(b)=c$:

$$\beta_k(b'-b) = 0 \iff b'-b \in \operatorname{Ker}(\beta_k) = \operatorname{Im}(\alpha_k)$$

Quindi esiste $a_0 \in A_k$ tale che $\alpha_k(\alpha_0) = b' - b$, prendendo il bordo:

$$\partial(b'-b) = \partial(\alpha_k(a_0)) \Rightarrow \partial b' - \partial b = (\partial \circ \alpha_k)(a_0) = \alpha_{k-1}(\partial a_0)$$

Quindi:

$$\alpha_{k-1}(a') - \alpha_{k-1}(a) = \alpha_{k-1}(\partial a_0) \Rightarrow \alpha_{k-1}(a' - a - \partial a_0) = 0$$

Ma α_{k-1} è iniettivo quindi $a'-a-\partial a_0=0$, e perciò $a'\sim_{hom}a$, in quanto ae a' differiscono per un bordo. Per quanto riguarda la seconda questione considero $c''\sim_{hom}c$ in C_k allora mostro che $a''\sim_{hom}a$ in A_{k-1} , e così facendo mostro che l'applicazione è ben definita.

$$c'' \sim_{hom} c \iff \exists c_0 \mid c'' - c = \partial c_0$$

Ma per la suriettività $\exists b, b''$ tale che $c = \beta_k(b)$ e $c'' = \beta_k(b'')$, quindi:

$$\beta_k(b^{\prime\prime}) - \beta_k(b) = \partial c_0 \Rightarrow \beta_k(b^{\prime\prime} - b) = \partial c_0 \overset{\text{commutatività}}{\Rightarrow} \beta_k(b^{\prime\prime} - b) = \partial \beta_{k+1}(b_0) = \beta_k(\partial b_0)$$

Quindi:

$$\beta_k(b''-b-\partial b_0)=0 \Rightarrow b''-b-\partial b_0 \in \operatorname{Ker}(\beta_k)=\operatorname{Im}(\alpha_k)$$

Perciò $\exists \tilde{a} \in A_k$ tale che $b'' - b - \partial b_0 = \alpha_k(\tilde{a})$ Apllicando il bordo: $\partial b'' - \partial b - \partial \partial \alpha_k(\tilde{a})$, quindi:

$$\partial b'' - \partial b = \partial \alpha_k(\tilde{a}) \Rightarrow \alpha_{k+1}(a'') - \alpha_{k-1}(a) = \alpha_{k-1}(\partial \tilde{a})$$

Ma α_{k-1} è omomorfismo iniettivo quindi $a'' - a - \partial \tilde{a} = 0$ cioè $a'' - a = \partial \tilde{a}$ Si può quindi definire δ su $[c] \in H_p(C_k)$:

$$\delta([c]) = \llbracket \alpha \circ \partial \circ \beta^{-1}(c) \rrbracket$$

Questa è ben definita.

2.5 Omologia singolare relativa

Sia X uno spazio topologico e A sottospazio generico di X (anche improprio), cioè $A \hookrightarrow X$. Vorrei definrie l'omologia singolare di X tenendo presente la presenza di A, cioè $H_k(X,A)$, il k-esimo gruppo di omologia singolare dellla coppia (X,A). Sia $S_K(A)$ lo spazio delle k-catene che finiscono totalmente in A, la mappa di inclusione $i\colon A\to X$ induce una mappa $i_\sharp\colon s_k(A)\to S_k(X)$. Questa mappa è sicuramente iniettiva (basta vedere le catene di A come catene di X). A questo punto la successione

$$0 \longrightarrow S_k(A) \xrightarrow{i_{\sharp}} S_k(X) \xrightarrow{\beta} S_k(X)/_{S_k(A)} \longrightarrow 0$$

è esatta, e anche la restrizione:

$$0 \longrightarrow S_k(A) \xrightarrow{i_{\sharp}} S_k(X) \xrightarrow{\beta} S_k(X,A) \longrightarrow 0$$

Posso fare:

2 Omologia Singolare

I quadrati sono commutativi quindi posso costruisre una successione esatta lunga. Si ottiene quindi:

$$\dots \longrightarrow H_k(A) \xrightarrow{\alpha_{\star}} H_k(B) \xrightarrow{\beta_{\star}} H_k(X,A) \xrightarrow{\delta} H_{k-1}(A) \longrightarrow \dots$$

$H_k(X,A)$ è l'omologia singolare della coppia

Questa è una costruzione geometrica e fornice informazioni su nucleo e conucleo. Consudero una successione esatta corta di \mathcal{R} -moduli:

$$0 \longrightarrow A \stackrel{\alpha}{\longrightarrow} B \stackrel{\beta}{\longrightarrow} C \longrightarrow 0$$

Con α iniettiva, β suriettiva e $^B/_A\cong C$, cioè $\mathrm{Im}(\alpha)=A=\mathrm{Ker}(\beta)$ in quanto β è suriettiva.

Definizione 2.5.1 Si dice che la successione spezza se esiste una funzione continua $\varphi \colon B \to B$ idempotente, cioè tale che $\varphi^2 = \varphi$, e tale che $\operatorname{Ker}(\varphi) = \operatorname{Im}(\alpha) = \operatorname{Ker}(\beta)$.

Esempio 2.5.2 (MANCA ESEMPIO)

Sia $B=A\oplus C$ con A,C \mathbb{Z} -moduli, a questi sono associate la mappa di inclusione e di passaggio al quoziente:

$$i \colon A \to A \oplus C$$

 $a \mapsto (a,0)$

$$j: A \oplus CC$$

Con j quoziente per lo \mathbb{Z} -modulo i(A). Ovviamente si possono scegliere i' e j' in cui si scambia il ruolo di A e di C. Si nota che i è iniettiva e j è suriettiva. Ho quindi:

$$0 \longrightarrow A \stackrel{i}{\longrightarrow} B \stackrel{j}{\longrightarrow} C \longrightarrow 0$$

Ma esiste anche $s \colon C \to B$ e quindi ho;

$$C \xrightarrow{s} A \oplus C \xrightarrow{j} C$$

Con $s \circ j \colon c \mapsto (0,c) \mapsto c$, mi piacerebbe che $s \circ j = \mathbb{I}_C$. La mappa s è detta **sezione dell'omomorfismo** $j \colon B \to C$. Quindi se B è proprio somma diretta ho automaticamente s e s' con s' quoziente. Questo è il prototipo di successione che spezza.

Definizione 2.5.3 Siano A, B, C \mathbb{Z} -moduli con $\operatorname{Ker}(\alpha) = 0$, $\operatorname{Im}(\beta) = C$ e $\operatorname{Ker}(\beta) = \operatorname{Im}(\alpha)$, cioe una successione esatta, si dice che la successione

$$0 \longrightarrow A \stackrel{\alpha}{\longrightarrow} B \stackrel{\beta}{\longrightarrow} C \longrightarrow 0$$

spezza se esiste una sezione da B a C o da B ad A, cioè:

$$\exists s \colon B \to C \text{ tale che } s \circ \beta = \mathbb{I}_C$$

oppure

 $\exists s' \colon B \to A \text{ tale che } \alpha \circ s' = \mathbb{I}_A$

Questo è equivalente a dire che $B = A \oplus s(C)$, infatti vale l'osservazione

Osservazione 2.5.4 Se la successione $0 \to A \to B \to C \to 0$ spezza allora $B = A \oplus s(C)$ con s sezione. Il viceversa l'ho già dimostrato.

Dimostrazione: Vale che $A \hookrightarrow B$ in quanto α è iniettiva e quindi $\alpha(A) \cong A$, inoltre $s(C) \hookrightarrow B$ in quanto $s \colon C \to B$ è la sezione. Sia $x \in \alpha(A) \cap s(C)$, cioè $x \in \alpha(A)$ e $x \in s(C)$ allora esiste $a \in A$ tale che $x = \alpha(a)$ ed esiste $k \in C$ tale che x = s(k), vale che $\alpha(a) = s(k)$. Applicando $\beta \colon B \to C$ si ottiene $(\beta \circ \alpha)(a) = (\beta \circ s)(k)$, ma $\beta \circ \alpha = 0$ in quanto $\ker(\beta) = \operatorname{Im}(\alpha)$, quindi $(\beta \circ s)(k) = 0$. Ma s è sezione quindi $\beta \circ s = \mathbb{I}_C$, da cui k = 0. s è omomorfismo quindi s(k) = 0, perciò s = 0.

Ogni elemento di Bsi scrive come somma di elemento di $\alpha(A)$ e di un elemento di s(C). Sia $b \in B$ applicando β si ottiene $\beta(b) \in C$, ci sono due possibilità:

- 1. $\beta(b)=0$ quindi $b\in \mathrm{Ker}(\beta)=\mathrm{Im}(\alpha)$, quindi $b\in \mathrm{Im}(a)$, cioè $\exists \alpha\in A$ tale che $b=\alpha(a)$ e quindi si scrive come elemento di A sommato a zero.
- 2. $\beta(b) = c \neq 0$. Vorrei scrivre b = x + y con $x \in \alpha(A)$ e $y \in s(C)$. Considero s(t) con $s(t) \in B$, allora $b s(t) \in B$, allora mostro che $b s(t) \in \text{Ker}(\beta)$ e quindi posso usare lo stesso ragionamento di prima.

$$\beta(b-s(t)) = \beta(b) - \beta(s(t)) = t - t = 0 \Rightarrow \beta(b-s(t)) \in \text{Ker}(b) = \text{Im}(\alpha)$$

Quindi esiste $a' \in A$ tale che $\alpha(a') = b - s(t)$ e quindi $b = s(t) + \alpha(a')$

Esempio 2.5.5 Considero la successione:

$$0 \longrightarrow n\mathbb{Z} \stackrel{\alpha}{\longrightarrow} \mathbb{Z} \stackrel{\beta}{\longrightarrow} \mathbb{Z}/n\mathbb{Z} \longrightarrow 0$$

Questa successione è esatta ma non spezza, infatti se spezzasse esisterebbe una sezione:

$$s: \mathbb{Z}/_{n\mathbb{Z}} \to \mathbb{Z}$$

Ma questa non può esistere per queztioni di immagini.

Proposizione 2.5.6 Le due definizioni di successione che spezza sono equivalenti, cioè se $\exists s \colon C \to B$ tale che $s \circ \beta = \mathbb{I}_C$ allora $\exists \varphi \colon B \to B$ tale che sia idempotente e che $\operatorname{Ker}(\varphi) = \operatorname{Ker}(\beta)$

Dimostrazione: Una possibile costruzione è $\varphi = s \circ \beta \neq \mathbb{I}_C$, infatti:

$$\varphi^2 = s \circ \beta \circ s \circ \beta = s \circ \mathbb{I}_C \circ \beta = s \circ \beta = \varphi$$

Quindi φ è idempotente. Inoltre:

$$\operatorname{Ker}(\varphi) = \operatorname{Ker}(s \circ \beta) = \{ b \in B \mid (s \circ \beta)(b) = 0 \}$$

Quindi $s(\beta(b)) = 0$ cioè $\beta \circ s \circ \beta(b) = 0$ quindi $\beta(b) = 0$ che significa che $b \in \operatorname{Ker}(\beta)$. Deve essere $\operatorname{Ker}(\varphi) = \operatorname{Ker}(\beta)$. Siccome $\operatorname{Ker}(\beta) \subseteq \operatorname{Ker}(s \circ \beta) \subseteq \operatorname{Ker}(\beta)$ allora $\operatorname{Ker}(s \circ \beta) = \operatorname{Ker}(\beta)$. Rimane da mostrare il viceversa.

2.6 Omologia singolare ridotta

Fin ora ho parlato di omologia singolare $H_k(X)$, omologia singolare relativa $H_k(X,A)$, ora introduco l'omologia singolare ridotta.

Definizione 2.6.1 Sia X uno spazio topologico e $A = \{x_0 \in X\}$, è ben definita l'omologia relativa $H_k(X, A)$, si definisce questa come **omologia singolare ridotta** $\tilde{H}_k(X)$. L'omologia singolare ridotta è l'omologia relativa ad un punto.

Per costruire l'omologia singolare ridotta servono le k-catene in X e le k-catene in $\{x_0\}$

$$0 \longrightarrow S_k(\lbrace x_0 \rbrace) \longrightarrow S_k(X) \longrightarrow S_k(X)/S_k(\lbrace x_0 \rbrace) = S_k(X,\lbrace x_0 \rbrace) \longrightarrow \dots$$

In $S_k \sigma \colon \Delta_k \to \{x_0\}$ è simplesso sono le applicazioni costanti dal k-simplesso standard in $\{x_0\}$. Quindi $S_k(\{x_0\}) = \langle \sigma_k \rangle \sigma_k$ è l'unica mappa che c'è.

Proposizione 2.6.2 *Vale che:*

$$ilde{H}_k(X)\cong egin{cases} H_0(X)/\mathbb{Z} & \textit{se } k=0 \ H_k(X) & \textit{se } k\geq 1 \end{cases}$$

Dimostrazione: Per dimostrarlo uso la succession esatta lunga in omologia relativa:

$$\dots \longrightarrow H_{k+1}(\{x_0\}) \longrightarrow H_{k+1}(X) \longrightarrow \tilde{H}_{k+1}(X) \longrightarrow H_k(\{x_0\}) \longrightarrow \dots$$

Vale che:

$$H_k(\{\,x_0\,\})\cong \begin{cases} \mathbb{Z} & \text{se } k=0\\ 0 & \text{se } k\geq 1 \end{cases}$$

infatti dalla definizione di omologia singolare c'è il complesso:

$$\ldots \longrightarrow S_{k+1}(\lbrace x_0 \rbrace) \xrightarrow{\partial} S_k(\lbrace x_0 \rbrace) \xrightarrow{\partial} S_{k-1}(\lbrace x_0 \rbrace) \longrightarrow \ldots$$

Che corrisponde alla successione dei generatori:

$$\ldots \longrightarrow \langle \sigma_{k+1} \rangle \xrightarrow{\partial} \langle \sigma_k \rangle \xrightarrow{\partial} \langle \sigma_{k-1} \rangle \longrightarrow \ldots$$

Ma $\partial \sigma_k = \sum_{i=0}^k (-)^i \sigma_k^{(i)}$ con $\sigma_k \colon \Delta_k \to \{x_0\}$ e $F_k^{\ i} \colon \Delta_{k-1} \to \Delta_k \overset{\sigma_k}{\to} \{x_0\}$. Quindi $\forall i$ vale che $F_k^{\ i} \circ \sigma_k = \sigma_{k-1}$ in quanto il bordo della costante è costante.

Tutte le quantita sono utuali quindi la somma a segni alterni è nulla oppure è uguale a σ_{k-1} :

$$\partial \sigma_k = \begin{cases} 0 & \text{se } k \text{ dispari} \\ \sigma_{k-1} & \text{se } k \text{ pari} \end{cases}$$

Conosco il nucleo e l'immagine di questo operatore, quindi posso calcolare l'omologia singolare con la definizione: Se $k \geq 2$ è pari:

$$\partial_k \colon S_k(\lbrace x_0 \rbrace) \to S_{k-1}(\lbrace x_0 \rbrace)$$

 $\sigma_k \mapsto \sigma_{k-1}$

Quindi $\operatorname{Ker}(\partial_k)=0$ infatti [MANCA] quindi $H_k(\{x_0\})=0$. Se k è dispari:

$$\partial_k \colon S_k(\lbrace x_0 \rbrace) \to S_{k-1}(\lbrace x_0 \rbrace)$$

 $\sigma_k \mapsto 0$

Quindi $\operatorname{Ker}(\partial_{k+1}) = S_k(\{x_0\})$ e perciò $S_k(\{x_0\})/S_k(\{x_0\}) = 0$, in ogni caso si ottiene:

$$H_k(\lbrace x_0 \rbrace) \cong \begin{cases} \mathbb{Z} & \text{se } k = 0 \\ 0 & \text{se } k \ge 1 \end{cases}$$

Nel caso $k \ge 1$ sicuramente k + 1 > 0 e il complesso quindi è:

$$0 \longrightarrow H_{k+1}(X) \stackrel{\psi}{\longrightarrow} \tilde{H}_{k+1}(X) \longrightarrow 0$$

 ψ è ininiettiva quindi $\mathrm{Ker}(\psi)=\mathrm{Im}(0)=0,$ ma è anche surietta, in quanto [MANCA]. Quindi ψ è isomorfismo e perciò $H_m(X)\cong \tilde{H}_m(X)$ per $m\geq 2.$ Mi rimane da calcolare il caso k=1 e il caso k=0. [MANCA MANCA]

Quindi ${\rm Ker}(i_\star)=0$ da cui ${\rm Im}(j)={\rm Ker}(i_\star)=0$ e perciò φ è iniettiva ma anche suriettiva. Ho quindi la successione:

$$0 \longrightarrow H_1(X) \stackrel{\varphi}{\longrightarrow} \tilde{H}_1(X) \longrightarrow 0$$

 φ è isomorfismo quindi $H_1(X) \cong \tilde{H}_1(X)$, ma vale anche che:

$$0 \longrightarrow H_0(\{x_0\}) \xrightarrow{i_{\star}} H_0(X) \longrightarrow \tilde{H}_0(X) \longrightarrow 0$$

Quindi $H_0(X)/H_0(\{x_0\})\cong \tilde{H}_0(X)$ infatti $H_0(X)/\mathrm{Ker}(\tau)\cong \mathrm{Im}(\tau)$ per il teorema fondamentale dell'isomorfismo. E infine $\mathrm{Im}(\tau)=\tilde{H}_0(X)$ per la suriettività e $\mathrm{Ker}(\tau)=\mathbb{Z}$ per l'iniettività.

Se voglio mostrare che $H_0(X)\cong \tilde{H}_0(X)\oplus \mathbb{Z}$ basta che mostro che esiste una sezione, e in molti casi questo è vero.

Esempio 2.6.3 Considero ad esempio $H_k(S^n)$ con $n \ge 1$:

$$H_k(\mathcal{S}^n) \cong \begin{cases} \mathbb{Z} & \textit{se } k \in \{\,0,n\,\} \\ 0 & \textit{se } k \not\in \{\,0,n\,\} \end{cases}$$

Fin ora so che:

$$H_1(\mathcal{S}^n) \cong egin{cases} \mathbb{Z} & \textit{se } n = 1 \\ 0 & \textit{se } n \ge 2 \end{cases}$$

E che $H_0(S^n) \cong \mathbb{Z}$ per $n \geq 1$, vorrei calcolare gli altri gruppi di omologia, ma per farlo mi servono altru strumenti.

2.7 Assioni di una teoria omologica

Definizione 2.7.1 (Teoria omologica secondo Eilenberg e Steenrod) Una teoria omologica sulla categoria di tutte le coppie di spazi topologici e mappe continue è un funtore che assegna ad ogni coppia di spazi (X,A) un gruppo abeliano $H_p(X,A)$ e ad ogni applicazione continua $f:(X,A) \to (Y,B)$ un omomorfismo $f_*: H_k(X,A) \to H_k(Y,B)$ con una trasformazione naturale $\delta_k: H_k(X,A) \to H_{k-1}(A) := H_{k-1}(A,\emptyset)$, detta omomorfismo di connessione tale che siano soddisfatti i seguenti assioni:

- 1. (Omotopia): se $f \sim_H g$ con $f, g \colon (X, A) \to (Y, B)$ mappe continue, allora $f_\star = g_\star$. Dove $f \sim_H g$ se esiste una funzione continua $F \colon X \times I \to Y$ tale che F(x, 0) = f(x), F(x, 1) = g(x) e $F(a, t) \subseteq B \ \forall a \in A$ e $\forall t \in I$.
- 2. (Esattezza): Per ogni inclusione $i: A \hookrightarrow X$ e $j: X \hookrightarrow (X, A)$ la successione:

$$\dots \longrightarrow H_p(A) \xrightarrow{i_{\star}} H_p(X) \xrightarrow{j_{\star}} H_p(X,A) \xrightarrow{\delta_p} H_{p-1}(A) \longrightarrow \dots$$

è esatta.

- 3. (Dimensione): $H_k(P) = 0 \ \forall k \neq 0$ dove P è lo spazio formato da un solo punto.
- 4. (Additività): Se X è la somma topologica di spazi X_{α} allora $H_p(X)=MANCABIG\oplus H_p(X_{\alpha})$
- 5. (Escissione): Se U è un aperto in X tale che $\bar{U} \subset \operatorname{int}(A)$ allora l'inclusione di $(X \setminus U, A \setminus U)$ in (X, A) induce un isomorfismo tra H_k , cioe togliendo un opportuno insieme da (X, A) l'omologia non sente della escissione.

Per trasformazione naturale si intende che $\forall f \colon (X,A) \to (Y,B)$ il seguente diagramma è commutativo:

$$\begin{array}{ccc} H_p(X,A) & \stackrel{\delta}{\longrightarrow} & H_{p-1}(A) \\ & & \downarrow f_{\star} & & \downarrow f_{\star}' \\ H_p(Y,B) & \stackrel{\delta}{\longrightarrow} & H_{p-1}(B) \end{array}$$

dove $f'=f|_A$. Mentre la richiesta che sia funtore significa che se $f\colon (X,A)\to (Y,B)$ e $g\colon (Y,B)\to (Z,C)$ sono mappe continue allora $(g\circ f)_\star=g_\star\circ f_\star$.

L'omologia singolare relativa soddisfa tutti questi assiomi, a meno di quelli non ancora verificati che sono l'omotopia e l'escissione.

[MANCA TUTTA LE LEZIONE 6]

2.8 Omologia delle sfere

Considero S^n con $n \ge 1$, ho trovato che:

$$H_k(\mathcal{S}^n) \cong \begin{cases} \mathbb{Z} & \text{se } k \in \{0, n\} \\ 0 & \text{se } k \notin \{0, n\} \end{cases}$$

Questo risultato ha numerose conseguenze, infatti ho trovato uno strumento più fine del gruppo fondamentale che riesce a distinguere cose diverse.

Corollario 2.8.1 $S^n \simeq S^m$ se e solo se n = m.

Dimostrazione: Se n=m vale che $\mathcal{S}^n=\mathcal{S}^m$ quindi in particolare $\mathcal{S}^n\simeq\mathcal{S}^m$ con la mappa identità. Assumo $n\neq m$ e senza perdita di generalità pongo n>m.

Per assurdo $\mathcal{S}^n \simeq \mathcal{S}^m$, quindi esiste un omomorfismo $F: \mathcal{S}^n \xrightarrow{\sim} \mathcal{S}^m$, quindi esiste anche l'omomorfismo inverso $G: \mathcal{S}^m \xrightarrow{\sim} \mathcal{S}^n$. Quindi esistono anche:

$$F_{\star}: H_k \mathcal{S}^n \to H_k(\mathcal{S}^m)$$
 e $G_{\star}: H_k \mathcal{S}^m \to H_k(\mathcal{S}^n)$

Ma $F \circ G = \mathbb{I}_{S^n}$ e $G \circ F = \mathbb{I}_{S^m}$, ma utilizzando la funtorialità si trova quindi che:

$$F_{\star} \circ G_{\star} = \mathbb{I}_{H_k(\mathcal{S}^m)}$$
 e $G_{\star} \circ F_{\star} = \mathbb{I}_{H_k(\mathcal{S}^n)}$

Da cui si deduce che F_{\star} e G_{\star} sono continue e sono inverse. Vale quindi che:

$$H_k(\mathcal{S}^n) \cong H_k(\mathcal{S}^m) \ \forall k \geq 0$$

Se vale per ogni k in particolare vale per k=n, cioè:

$$H_n(\mathcal{S}^n) = H_n(\mathcal{S}^m)$$

П

Ma $H_n(\mathcal{S}^n) \cong \mathbb{Z}$ e $H_n(\mathcal{S}^m) \cong 0$ da cui $\mathbb{Z} \cong 0$, che è assurdo.

Corollario 2.8.2 (Invarianza topologica della dimensione) $\mathbb{R}^n \simeq \mathbb{R}^m$ se e solo se n=m.

Come si è visto non si riesce a dimostrare questo corollario utilizzano solo il gruppo fondamentale. **Dimostrazione**: Per assurdo esiste un omomorfismo $f: \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^m$ con n > m > 2. Con i vincolo imposti su m e n gli spazi sono contraibili, quindi il gruppo fondamentale è in entrambi i casi banale. Togliendo un punto $p \in \mathbb{R}^n$ e $f(p) \in \mathbb{R}^m$, e restringendo f in modo da ottenere l'omomorfismo $f': \mathbb{R}^n \setminus \{p\} \xrightarrow{\sim} \mathbb{R}^m \setminus \{f(p)\}$. Si sa inoltre che per $s \geq 2$ vale che $\mathbb{R}^s \setminus \{q\} \simeq \mathcal{S}^{s-1} \times \mathbb{R}$, infatti è sufficiente mandare a 0 il punto q con una traslazione (che è certamente un omomorfismo) e quindi si ha:

$$\mathbb{R}^{k} \setminus \{q\} \to \mathcal{S}^{k-1} \times \mathbb{R}^{+} \simeq \mathcal{S}^{k-1} \times \mathbb{R}$$
$$\vec{x} \mapsto \left(\vec{x}, \frac{\vec{x}}{||\vec{x}||}\right)$$

Quindi:

$$\mathbb{R}^n \setminus \{p\} \simeq \mathbb{R}^m \setminus \{f(p)\} \iff \mathcal{S}^{n-1} \times \mathbb{R} \simeq \mathcal{S}^{m-1} \times \mathbb{R}$$

Si ha la tentazione di eliminare $\mathbb R$ dalla precedente relazione, ma questo non si può fare come mostrano alcuni casi molto patologici. Tuttavia è possibile passare alla omotopia sapendo che $\mathcal S^k \times \mathbb R \sim \mathcal S^k$, da cui $\mathcal S^{n-1} \sim \mathcal S^{m-1}$. Ma l'omologia è invariante omotopico, cioè $H_k(\mathcal S^{n-1}) \cong H_k(\mathcal S^{m-1})$, utilizzando il trucco di prima scelgo k=n-1 e quindi:

$$H_{n-1}(\mathcal{S}^{n-1}) \cong H_{n-1}(\mathcal{S}^{m-1}) \iff \mathbb{Z} \cong 0$$

Che è assurdo. □

Corollario 2.8.3 S^{n-1} non è un retratto di deformazione di \mathcal{D}^n per $n \geq 2$

Dimostrazione: Si ricorda che:

$$\mathcal{D}^{n} = \{ \vec{x} \in \mathbb{R}^{n} \mid ||\vec{x}|| \le 1 \} \quad \mathcal{S}^{n-1} = \partial \mathcal{D}^{n} = \{ \vec{x} \in \mathbb{R}^{n} \mid ||\vec{x}|| = 1 \}$$

Chiaramente esiste $i: \mathcal{S}^{n-1} \hookrightarrow \mathcal{D}^n$.

Definizione 2.8.4 Uno spazio topologico Y si dice **retratto di deformazione** di un altro spazio topologico X tale che $Y \hookrightarrow X$ se esiste una funzione continua $r \colon X \to Y$ che inverte a meno di omotopia la mappa di inclusione $i \colon Y \to X$, cioè tale che soddisfa:

1.
$$r: X \to Y$$
 continua

2.
$$i \circ r \sim \mathbb{I}_X$$

3.
$$r \circ i = \mathbb{I}_Y$$

Una mappa che soddisfa queste condizioni è detta retrazione.

Suppongo per assurdo che S^{n-1} è un retratto di deformazione di D^n , cioè che esiste una retrazione r. Passando all'omologia:

$$i_{\star} \colon H_{k}(\mathcal{S}^{n-1}) \to H_{k}(\mathcal{D}^{n})$$

$$r_{\star} \colon H_{k}(\mathcal{D}^{n}) \to H_{k}(\mathcal{S}^{n-1})$$

$$(i \circ r)_{\star} = (\mathbb{I}_{\mathcal{D}^{n}})_{\star} \ \mathbf{e} \ (r \circ i)_{\star} = (\mathbb{I}_{\mathcal{S}^{n-1}})_{\star}$$

Quindi:

$$i_{\star} \circ r_{\star} = \mathbb{I}_{H_k(\mathcal{D}^n)} e r_{\star} \circ i_{\star} = \mathbb{I}_{H_k(\mathcal{S}^{n-1})} \ \forall k \in \mathbb{N}$$

In particolare considero k = n - 1:

$$i_{\star} \colon H_n - 1(\mathcal{S}^{n-1}) \to H_n - 1(\mathcal{D}^n)$$

 $r_{\star} \colon H_n - 1(\mathcal{D}^n) \to H_n - 1(\mathcal{S}^{n-1})$

Cioè: $i_{\star} \colon \mathbb{Z} \to 0$. Considero un generatore α di $H_{n-1}(\mathcal{S}^{n-1}) \cong \mathbb{Z}$, cioè tale che $\langle \alpha \rangle = H_{n-1}(\mathcal{S}^{n-1})$ allora $i_{\star}(\alpha) = 0$ quindi $r_{\star} \circ i_{\star} = 0$, ma $(r \circ i)_{\star} = \mathbb{I}_{\mathcal{S}^{n-1}_{\star}}$ quindi significherebbe $\mathbb{I}_{\mathcal{S}^{n-1}}(\alpha) = 0$, cioè che $\alpha = 0$, che è assurdo perché $\mathbb{Z} \neq \langle 0 \rangle$.

Teorema 2.8.5 (Teorema del punto fisso di Brouwer) Ogni funzione continua $g \colon \mathcal{D}^n \to \mathcal{D}^n$ con $n \geq 2$ ammette almeno un punto fisso in \mathcal{D}^n , cioè:

$$\exists \vec{x_0} \in \mathcal{D}^n \mid g(\vec{x_0}) = \vec{x_0}$$

Dimostrazione: Per assurdo g non ammette punto fisso cioè esisto $\vec{x} \in \mathcal{D}^n$ tale che $g(\vec{x}) \neq \vec{x}$. Sicuramente tuttavia $g(\vec{x}) \in \mathcal{D}^n$. Considero la retta l passante per \vec{x} e $g(\vec{x})$. Questa retta interseca il bordo di \mathcal{D}^n in due punti $\{p_1, p_2\}$:

$$l \cap \partial \mathcal{D}^n = l \cap \mathcal{S}^{n-1} = \{ p_1, p_2 \}$$

Definisco la mappa $r\colon \mathcal{D}^n\to \partial\mathcal{D}^n=\mathcal{S}^{n-1}$ tale che associ ad ogni punto del disco il punto di intersezione della retta $l_{\vec{x}}$ che gli sta più vicino (infatti in \mathbb{R}^n è ben definita una nozione di distanza). La retta $l_{\vec{x}}$ è ben definita in quanto per due punti distinti (e per ipotesi $g(\vec{x})\neq\vec{x}$) passa una e una sola retta.

Figura 2.12: Schema per n=2

Esercizio 4 Dimostrare che r è continua.

Ho una mappa di inclusione naturale:

$$i: \mathcal{S}^{n-1} \quad \to \mathcal{D}^n$$

$$\vec{x} \qquad \mapsto \vec{x}$$

Se dimostro che r è una retrazione trovo un assurdo per il corollario precedentemente dimostrato. Devo verificare $r \circ i = \mathbb{I}_{S^{n-1}}$ e $i \circ r \sim \mathbb{I}_{\mathcal{D}^n}$. La prima uguaglianza è certamente vera perché se $\vec{x} \in \partial \mathcal{D}^n$ allora l'intersezione del bordo del disco che gli sta più vicina corrisponde a \vec{x} stesso. Costruisco esplicitamente una relazione di omotopia per mostrare la seconda: Siccome \mathcal{D}^n è convesso è ben definita $G(t, \vec{x}) = (1 - t)\vec{x} + tr(\vec{x})$ con $t \in [0, 1]$. Questa è una buona omotopia in quanto $\forall t, \vec{x}$:

- G è continua
- $G(t, \vec{x}) \in \mathcal{D}^n$
- $G(0, \vec{X}) = \vec{x}$
- $G(1, \vec{X}) = r(\vec{x})$

Quindi r è retrazione ma questo è assurdo.

2.8.1 Teoria del grado

Considero $H_n(\mathcal{S}^m)$, so che $H_n(\mathcal{S}^m) \cong \mathbb{Z}$, cioè esiste una mappa $f: \mathbb{Z} \to H_n(\mathcal{S}^m)$ tale che $f(1) = \alpha$ con α n-ciclo che non è un bordo. In questo modo $H_n(\mathcal{S}^m) = \langle \alpha \rangle$. Considero

 $\varphi \colon \mathcal{S}^n \to \mathcal{S}^n$ continua con $n \geq 1$, so che esiste $\varphi_\star \colon H_n(\mathcal{S}^n) \to H_n(\mathcal{S}^n)$. Per $n = 0 \ \varphi_\star$ manda punti in punti, per $n \geq 1$: sia $c \in H_n(\mathcal{S}^n)$ allora $c = p\alpha$ con $p \in \mathbb{Z}$:

$$\varphi_{\star}(c) = \varphi_{\star}(p\alpha) = \varphi_{\star}(\underbrace{\alpha + \alpha + \alpha + \dots}_{|p|volte}) = \underbrace{\varphi_{\star}(\alpha) + \varphi_{\star}(\alpha) + \dots}_{|p|volte} = p\varphi_{\star}(\alpha)$$

Ma $\varphi_{\star}(\alpha) \in H_n(\mathcal{S}^n)$ quindi si deve poter scrivere come multiplo di α : $\varphi_{\star}(\alpha) = d\alpha$ da cui: $\varphi_{\star}(c) = pd\alpha = dc$ con $d \in \mathbb{Z}$. Questo numero d viene fuori dall'immagine di un generatore, ma non dipende dalla scelta del generatore, infatti:

Sia β un altro generatore, siccome α è un generatore si può scrivere $\beta=m\alpha$ con $m\in\mathbb{Z}$. Pongo come notazione:

$$\varphi_{\star}(\beta) = d(\beta)\beta \quad \varphi_{\star}(\alpha) = d(\alpha)\alpha$$

Allora:

$$d(\beta)\beta = \varphi_{\star}(\beta) = m\varphi_{\star}(\alpha) = md(\alpha)\alpha$$

Da cui $d(\beta)\beta = \beta d(\alpha)$ cioè $(d(\beta) - d(\alpha))\beta = 0$, siccome questo vale per ogni α e β allora $d(\alpha) = d(\beta)$.

Definizione 2.8.6 Data un'applicazione $\varphi \colon \mathcal{S}^n \to \mathcal{S}^n$ continua è possibile associargli in modo univoco un numero intero, questo è il **grado**:

$$\varphi_{\star} : H_n(\mathcal{S}^n) \to H_n(\mathcal{S}^n)$$

$$\alpha \mapsto \deg(\varphi)\alpha$$

Con α generatore.

Ad esempio per n=1 e $p \in \mathbb{N}$:

$$\varphi \colon \mathcal{S}^1 \quad \to \mathcal{S}^1$$
$$z \quad \mapsto z^p$$

Vale che $\deg\left(\varphi\right)=p$, infatti prendo un generatore di \mathcal{S}^1 : [MANCA MANCA MANCA] Voglio usare la teoria del grado per un'applicazione del teorema della palla pelosa.

Proposizione 2.8.7 Se $f: S^n \to S^n$ è la riflessione rispetto all'iperpiano $x_0 = 0$, cioè $f(x_0, x_1, x_2, ...) = (-x_0, x_1, x_2, ...)$ allora il grado di $f \ earline{e} -1$.

Dimostrazione: La dimostrazione è per induzione. Per n=1 [MANCA MANCA MANCA MANCA MANCA MANCA]

Ho $\mathcal{S}^n=\{(x_1,\ldots,x_{n+1})\in\mathbb{R}^{n+1}\mid \sum_{i=1}^{n+1}x_i^2=1\}\subset\mathbb{R}^{n+1}$ spazio topologico con la topologia indotta.

Ho trovato che:

$$H_k(\mathcal{S}^n) \cong egin{cases} \mathbb{Z} & \text{se } k \in \{\,0, n\,\} \\ 0 & \text{se } k
ot\in \{\,0, n\,\} \end{cases}$$

Ho che $f: \mathcal{S}^n \to \mathcal{S}^n$ induce $f_\star: H_n(\mathcal{S}^n) \to H_n(\mathcal{S}^n)$ e ho definito il grado come: Prendo α tale che $\langle \alpha \rangle = H_n(\mathcal{S}^n)$ con:

$$H_n(\mathcal{S}^n) \to \mathbb{Z}$$

 $\alpha \mapsto 1$

e $f_{\star}(\alpha) = \deg(f)\alpha$. So che il grado è un invariante topologico per le sfere.

Proposizione 2.8.8 Siano $f, g: \mathcal{S}^n \to \mathcal{S}^n$ mappe continue, allora $\deg(g \circ f) = \deg(f) \deg(g)$.

Dimostrazione: Per la funtorialità $(g \circ f)_{\star} = g_{\star} \circ f_{\star}$ quindi:

$$(g \circ f)_{\star}(\alpha) = (g_{\star} \circ f_{\star})(\alpha) \quad \Rightarrow \quad g_{\star}(f_{\star}(\alpha)) = g_{\star}(\deg(f)\alpha) = \deg(f)g_{\star}(\alpha) = \deg(f)\deg(g)\alpha$$

Quindi:

$$\deg(f)\deg(g)\alpha = (g \circ f)_{\star}(\alpha) = \deg(g \circ f)\alpha$$

Siccome α è generatore: $\deg(g \circ f) = \deg(f) \deg(g)$.

Voglio applicare questa proprietà alla composizione di riflessioni. Considero:

$$\rho \colon \mathcal{S}^n \to \mathcal{S}^n$$
$$(x_1, \dots, x_{n+1}) \mapsto (x_1, \dots, -x_{n-1})$$

Questa è la riflessione rispetto al sottospazio $x_{n+1}=0$ in \mathbb{R}^{n+1} , quindi ρ fissa su \mathcal{S}^n l'equatore $\mathcal{S}^n\cap x_{n+1}=0$. Ho trovato che per n=1 deg $(\rho)=-1$, ora voglio continuare la dimostrazione per induzione.

Suppongo che il risultato sia vero per S^k e S^n con k < n mostro che è vero anche per S^n . In S^n ho dei sottoinsiemi naturali:

$$\mathcal{D}_{+}^{n} = \{ (x_{1}, \dots, x_{n+1}) \in \mathcal{S}^{n} \mid x_{1} \geq 0 \}$$

$$\mathcal{D}_{-}^{n} = \{ (x_{1}, \dots, x_{n+1}) \in \mathcal{S}^{n} \mid x_{1} \leq 0 \}$$

Indice analitico

 \mathcal{R} -modulo, 4 \mathbb{Z} -modulo libero, 5 k-catene singolari, 15 k-ciclo, 19 k-simplesso singolare, 14

Anello, 4 Anello commutativo, 4 Anello unitario, 4 Arco, 10

Bordo, 17

Cammino composto, 8 Campo, 4 Complesso di moduli, 6 Complesso di moduli esatto, 6 Coordinate baricentrali, 13

Elementi omologhi, 19

Genere, 10
Giunzione
vedi Cammino composto, 8
Grado, 20
Grado di una sfera, 37
Gruppi di omotopia superiore, 12
Gruppo derivato, 22
Gruppo fondamentale, 8, 11
Gruppo generato, 5

Immagine, 5 Inclusione, 12 Insieme compatto, 7 Insieme convesso, 17 Insiemi aperti, 6 Inviluppo convesso, 17 Laccio, 7

Mappa tra complessi, 30 Modulo di omologia, 6 Modulo quoziente, 5

Nucleo, 5

Omeomorfismo, 7
Omologia singolare della coppia vedi Omologia singolare relativa, 34
Omologia singolare relativa, 34
Omomorfismo, 5
Omomorfismo di connessione, 31
Omotopia vedi Relazione di omotopia, 8
Operatore faccia, 16

Rango di gruppo abeliano, 5 Relazione di omotopia, 8 Retratto di deformazione, 35 Retrazione, 35 Ricoprimento, 7

Semplicemente connesso, 9 Simplesso standard, 13 Spazio connesso, 7 Spazio connesso per archi, 10, 11 Spazio contraibile, 9 Spazio topologico, 6 Spazio topologico puntato, 7 Successione esatta corta, 30

Teorema del punto fisso, 36 Teorema di Seifert–van Kampen, 9 Teorema fondamentale degli omomorfismi,

Indice analitico

Topologia, 6 Topologia discreta, 6 Topologia indotta, 7