ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

В.А. Трясучёв

ЛЕКЦИИ ПО ОСНОВАМ КВАНТОВОЙ МЕХАНИКИ ДЛЯ СТУДЕНТОВ ТЕХНИЧЕСКИХ ВУЗОВ

Рекомендовано в качестве учебного пособия Редакционно-издательским советом Томского политехнического университета

Издательство Томского политехнического университета 2010 УДК 530.145 ББК В318 C32

Трясучёв В.А.

K58 Лекции по основам квантовой механики для студентов технических вузов: учебное пособие / В.А. Трясучёв, Томский политехнический университет. - Томск: Изд-во Томского политехнического университета, 2010 – 116 c.

Пособие знакомит с механикой микрочастиц, начиная с осмысления необходимости квантовой механики для описания всех явлений природы и заканчивая наиболее используемым методом расчёта квантовой механики – теорией возмущений. Последовательно изложены главы описания математического аппарата квантовой механики, статистического смысла законов микромира, основных постулатов и вытекающих из них законов квантовой теории. Решения идеальных задач применяются к описанию сложных квантовых явлений природы: альфа-распад ядер, электронный газ в металле, водородоподобные атомы, мю-катализ термоядерных реакций, двух атомные молекулы, излучение космического водорода, принцип работы лазеров.

При изучении квантовой механике по рецензируемому пособию у студентов нет необходимости использовать многочисленные учебники по квантовой механике и специальным главам математики, поскольку весь необходимый материал изложен в пособии с необходимой полнотой. Считаю, что данное учебное пособие будет полезным для студентов ФТФ, ХТФ, ЭлТИ ТПУ. Кроме того, данное пособие может быть использовано при подготовке бакалавров по направлению 140800 «Ядерная физика и технологии».

> УДК 530.145 **ББК В318**

Рецензенты

Кандидат физико-математических наук, доцент кафедры общей и экспериментальной физики Томского государственного университета А.М. Толстик

Доктор физико-математических наук, профессор, заведующий кафедрой прикладной физики НИ ТПУ А.П.Потылицын

Доктор физико-математических наук, профессор ТГПУ Ю.П.Кунашенко

- © ГОУ ВПО НИ ТПУ, 2010
- © Трясучёв В.А., 2010
- © Обложка. Издательство Томского политехнического университета, 2010

Содержание

Необходимость новой теории5
Постоянная Планка
Фотоэффект
Комптоновское рассеяние
Гипотеза де Бройля и её опытное подтверждение
Математический аппарат квантовой механики12
Понятие оператора. Свойства операторов
Операторы "набла" и дельта
Свойства квантовомеханических операторов
Собственные функции и собственные значения операторов и их
свойства. Вырожденные функции.
Полнота системы собственных функций оператора
Матричное представление операторов
Операторы квантовой механики
Оператор квадрата момента импульса
Оператор Гамильтона (гамильтониан)
Гамильтониан заряженной частицы в электромагнитном поле
Собственные функции основных операторов квантовой механики30
Собственные функции операторов импульса и кинетической энергии
Собственные функции оператора момента импульса
Статистические закономерности поведения микрочастиц35
Опыт Джермера и Девиссона
Опыт Бибермана, Сушкина, Фабриканта по дифракции электронов
Описание состояний микрочастиц в квантовой механике
Некоторые сведения из теории вероятностей и статистики
Дискретные случайные величины
Среднее значение случайной величины и его связь с математическим
ожиданием
Непрерывные случайные величины
Основные положения квантовой механики (постулаты и законы)42
Статистический смысл волновой функции
Измеряемые величины в квантовой механике
Условие точного измерения физических величин
Вычисление вероятностей результатов измерения
Условие одновременной измеримости нескольких физических величин
Спин51
Спин и системы тождественных частиц
Спиновые операторы частиц со спином 1/2ħ
Собственные функции оператора проекции спина частиц со спином 1/2ħ
Сложения угловых моментов в квантовой механике
Собственные функции оператора полного момента для частицы со спином
Зависимость волновой функции от времени
Уравнение Шрёдингера

Вектор тока вероятностей для частиц
Уравнение Шрёдингера для стационарных состояний
Матричная форма уравнения Шрёдингера
Гейзенберговское представление
Полный набор физических величин квантовой системы
Движение частиц в поле сил, не зависящих от времени64
Движение свободной бесспиновой частицы
Частица в потенциальной яме с бесконечно высокими стенками
Туннельный эффект для микрочастиц
Теория α-распада ядер и термоядерный синтез
Частица в потенциальной яме. Связанные состояния
Симметрии уравнений Шредингера
Электронный газ в металле
Гармонический осциллятор
Уравнение Шредингера для частицы в центральном поле
Атом водорода
Местонахождение электрона в атоме водорода
Водородоподобные атомы
μ-катализ ядерного синтеза
Теорема о вириале
Молекула водорода
Теория возмущений
Стационарная теория возмущений. Невозмущённые состояния не
вырождены.
Стационарная теория возмущений. Невозмущённые состояния вырождены
Эффект Штарка. Расчёт эффекта Штарка по теории возмущений
Эффект Зеемана
Сверхтонкое расщепление спектральных линий водородоподобных атомов и
излучение космического водорода
Нестационарная теория возмущений
Понятие квантового перехода
Периодическое возмущение и лазеры
Дополнительная литература116

Необходимость новой теории

В конце XIX в. все известные явления природы укладывались в созданные для их объяснения теории. Механика подчинялась законам Ньютона, волновые движения — законам Гюйгенса, Френеля и т.д., электромагнитные процессы описывались уравнениями Максвелла, тепловое движение подчинялось законам термодинамики. Правда, было несколько тучек на ясном небе физики того времени. Одна из них известна как "ультрафиолетовая катастрофа". Катастрофа заключалась в том, что распределение по частотам интенсивности ультрафиолетового излучения от нагретого тела $dI/d\omega$, наблюдаемое на опыте, имело противоположную зависимость, чем это следовало из проверенного закона Рэлея-Джинса для видимого света:

$$\frac{dI}{d\omega} = a\omega^2,\tag{1}$$

где ω — циклическая частота излучаемого света, a — константа при фиксированной температуре.

Постоянная Планка

В 1900 г. М. Планк предложил для частотной плотности излучения формулу:

$$\frac{dI}{d\omega} = a\omega^2 \cdot \frac{\omega}{\exp(\frac{\hbar\omega}{kT})-1},\tag{2}$$

которая приводила к хорошему согласию с экспериментом. Здесь k — постоянная Больцмана, T — температура, градус Кельвина, \hbar — константа,

Рис.1. Штриховая кривая – закон Рэлея-Джинса

введённая Планком. Её размерность, как следует из выражения (2), должна быть

Величину константы \hbar Планк выбрал такой, чтобы формула (2) описывала экспериментальную зависимость (рис.1).

При этом величина \hbar оказалась очень маленькой, равной

$$\hbar = \frac{h}{2\pi}; \quad h = 6,6261 \cdot 10^{-34} \, \text{Дж} \cdot c = 4,1356 \cdot 10^{-15} \, \text{эВ} \cdot c$$
 (4)

с учётом уточнения на сей день. Из гипотезы Планка следовало простое выражение для энергии электромагнитной волны, а именно:

$$\hbar\omega = hv = E_{v}, \tag{5}$$

в то время как в классической физике энергия электромагнитной волны определялась через квадраты напряженностей её электрической и магнитной составляющих. Кроме того, при интерпретации формулы (2) нужно было предположить, что излучаться и поглощаться свет должен порциями -**(5)**. квантами Альберт Эйнштейн пошёл дальше революционных представлений Планка. Для объяснения законов фотоэффекта ОН предположил, что излучение должно распространяться порциями, как частицы.

Фотоэффект

Явление образования электронов на поверхности металла, облучаемого светом, получило название фотоэффекта. Оно было открыто Г. Герцем в 1887 г.

С точки зрения классической физики на электрон, слабо связанный в металле, действует сила:

$$\mathbf{F} = -e\mathbf{E}(t),$$

где ${\bf \epsilon}$ — напряжённость электрического поля электромагнитной волны, меняющаяся по гармоническому закону:

$$\mathbf{E} = \mathbf{E}_0 \cos(\omega \cdot t).$$

Уравнение Ньютона для электрона, на который действует излучение, будет иметь вид:

$$m\dot{\mathbf{v}}(t) = -e\mathbf{E}_0 \cos(\omega \cdot t). \tag{6}$$

Проинтегрируем его, взяв простейшее начальное условие $v(0) \approx 0$

$$\int_{0}^{t} m\dot{\mathbf{v}}(t) dt = -e\mathbf{E}_{0} \int_{0}^{t} \cos(\omega \cdot t) dt,$$

$$m\mathbf{v}(t) = -\frac{e\mathbf{E}_{0}}{\omega} \sin(\omega \cdot t),$$

$$v(t) = -\frac{e\mathcal{E}_0}{\omega \cdot m} \sin(\omega \cdot t),$$

$$v^{\text{max}} = \frac{e\mathcal{E}_0}{m\omega}, \qquad T_e^{\text{max}} = \frac{e^2 \mathcal{E}_0^2}{2m\omega^2}.$$
(7)

Итак, расчёты приводили к тому, что максимальная кинетическая энергия вылетевших электронов должна быть обратно пропорциональна частоте электромагнитного излучения ω и пропорциональна интенсивности света ε_0^2 .

Экспериментальное изучение фотоэффекта, начатое А. Г. Столетовым в 1888 году показало, что максимальная энергия выбиваемых из металлов электронов прямо пропорциональна *частоте* падающего света ω и не зависит от \mathbf{E}_0^2 . При уменьшении частоты падающего света ниже определённого значения ω_k , электроны вообще перестают вылетать из металлов (красная граница фотоэффекта). У каждого металла, ω_k было своим.

Возникшее противоречие между теорией и экспериментом разрешил А. Эйнштейн в 1905 году благодаря полному отказу от волновой теории света в этом явлении, предположив, что свет не только излучается и поглощается порциями, но и распространяется как частица, получившая название фотона. Тем самым подтвердилась гипотеза И. Ньютона XVII века о корпускулярной природе света!

Фотон γ взаимодействует с атомом A вещества таким образом, что сам он поглощается, а один из электронов вылетает из атома, который становится ионом A^+ :

$$\gamma + A \rightarrow e^- + A^+. \tag{8}$$

Законы сохранения импульса и энергии для такого процесса имеют вид:

$$\mathbf{P}_{\gamma} + \mathbf{P}_{\mathbf{A}} = \mathbf{P}_{e} + \mathbf{P}_{\mathbf{A}}^{+},$$

 $E_{\gamma} + E_{\mathbf{A}} = E_{e} + E_{\mathbf{A}}^{+}.$

Поскольку происходит превращение энергии в вещество, постольку в законе сохранения надо учитывать полные энергии частиц. В системе отсчёта, где атом покоится:

$$E_{\gamma} + m_{A}c^{2} = m_{e}c^{2} + T_{e} + m_{A}^{+}c^{2} + T_{A}^{+}$$

$$E_{\gamma} = T_{e} + (m_{e} + m_{A}^{+} - m_{A}) \cdot c^{2} + \frac{(\mathbf{P}_{A}^{+})^{2}}{2m_{A}^{+}}.$$

Оценим величину $T_{\rm A}^+$. Из закона сохранения импульса имеем $\left| {\bf P}_{\gamma} \right| \ge \left| {\bf P}_{\rm A}^+ \right|$, и:

$$T_{\rm A}^{+} = \frac{\left(\mathbf{P}_{\rm A}^{+}\right)^{2}}{2m_{\rm A}^{+}} \le \frac{\mathbf{P}_{\gamma}^{2}}{2m_{\rm A}^{+}} = \frac{E_{\gamma}^{2}}{2m_{\rm A}^{+}c^{2}},$$
 (9)

так как $P_{\gamma} = E_{\gamma}/c$. Очевидно, что последняя величина мала по сравнению с энергией покоя атома. Пренебрегая $T_{\scriptscriptstyle A}^+$, получим:

$$E_{_{Y}} \approx T_{_{e}} + U_{_{\rm I}},\tag{10}$$

где $U_I = (m_e + m_A^+ - m_A^-) \cdot c^2 \ge 0$ — потенциал ионизации атома вещества. При некоторых v, как следует из приближённого равенства $hv \approx T_e + U_I$, $T_e = 0$ и электроны перестают вылетать из металлов. Интенсивность света (количество фотонов) никак не влияет на величину кинетической энергии электронов, что и было отмечено в эксперименте.

Чтобы понять революционность идеи Эйнштейна в решении проблемы, напомним неприложные положения классической физики о частицах и волнах, которые он нарушил.

- В природе существуют два вида движения это движение частиц и волн и эти движения не переходят друг в друга.
- Частица локализована, волна протяжённая, нелокализована.
- Движение частиц связанно с переносом вещества и/или электрического заряда; движение волны не связанно с переносом вещества или электрического заряда.
- Свободные частицы движутся прямолинейно, а количества движения нескольких частиц складываются по правилу сложения векторов: $\sum_{n} \mathbf{P}_{n}$. Волна распространяется не прямолинейно, огибая препятствия (дифракция), а сложение нескольких волн приводит к сложному явлению интерференции, когда колебания складываются по закону $\left|\sum A_{n}(\omega_{n})\right|^{2} = A^{2}$.

Комптоновское рассеяние

Комптоновское рассеяние — это явление упругого рассеяния электромагнитной волны рентгеновского диапазона на свободных или слабо связанных электронах. Впервые его обнаружил американский физик Артур Комптон в 1922 году.

По классической теории (*пудинговая модель* атома Дж. Томсона, 1897г.) электрон, под действием переменной силы, обусловленной электрической составляющей электромагнитной волны:

$$\mathbf{F} = -e\mathbf{E}_0 \cos(\omega t),$$

совершает вынужденные колебания с той же частотой ω , что и вынуждающая сила. В результате таких колебаний, сам электрон излучает электромагнитную волну той же самой частоты. Иначе, частота падающего света ω_i должна была бы быть равной частоте рассеянного света ω_f и не зависеть от угла рассеяния θ .

Комптон в проведённом им эксперименте (1923г.) получил результат, изображённый на рисунке 2. Объяснение своим результатам он дал сам, используя представление Эйнштейна о распространении света в виде

квантов. Электромагнитное излучение ренгеновского диапозона он рассматривал как частицу фотон большой энергии. Тогда процесс комптоновского рассеяния может быть записан как столкновение двух частиц:

Рис.2.Зависимость частоты рассеянного света от угла рассеяния в опыте Комптона

$$\gamma + e \to \gamma' + e' \,. \tag{11}$$

Закон сохранения энергии для этого процесса имеет вид:

$$E_{\gamma} + T_{e} = E_{\gamma}' + T_{e}',$$

из которого следует:

$$E'_{\gamma} \equiv \hbar \omega_{f} = \hbar \omega_{i} - (T'_{e} - T_{e}), \qquad (12)$$
$$(T'_{e} - T_{e}) > 0, \quad \omega_{f} < \omega_{i}.$$

Чем больше угол рассеяния фотона, тем интенсивнее он взаимодействует с электроном и тем больше передача энергии конечному электрону, а значит меньше E_γ' и, соответственно, $\omega_f < \omega_i$, как это показал эксперимент.

В этих двух рассмотренных явлениях электромагнитное излучение проявило себя чисто в виде квантов — частиц. Однако во всех других случаях — это волна (Гюйгенс, Френель, Фарадей, Максвелл). Заметим, что в одном и том же явлении свет не проявляет себя *одновременно* и как частица, и как волна. Свойство света проявлять себя в одном случае (явлении) как волна, а в другом — как частица, было названо *дуальностью* света.

Гипотеза де Бройля и её опытное подтверждение

В 1924г. французский князь Луи де Бройль, находясь под впечатлением обнаруженной дуальности света, высказал "дилетантское" утверждение, что и с массивным *движущимся* телом можно связать волновое движение, длину волны которого определил выражением:

$$\lambda = \frac{h}{P},\tag{13}$$

где P — импульс тела. Возможно, он размышлял следующим образом. Для фотона такое соотношение имеет место:

$$E_{\gamma} = hv = \sqrt{m_{\gamma}^2 c^4 + P_{\gamma}^2 c^2} = cP_{\gamma},$$

тогда:

$$\lambda = \frac{c}{v} = \frac{ch}{vh} = \frac{ch}{E_v} = \frac{h}{P_v}$$

и, возможно, оно справедливо для движущихся массивных частиц.

Главное в гипотезе де Бройля то, что движущиеся частицы могут проявлять волновые свойства с длиной волны де Бройля (13). То есть, движущаяся частица может проявлять себя в некоторых случаях (ситуациях) как волна. Оставался вопрос — в каких? Ответа на этот вопрос долго ждать не пришлось.

В 1925г. в опытах американских экспериментаторов К. Девиссона и Л. Джермера пучком электронов с энергией до 100 эВ облучали разные вещества - мишени. Регистрировалась интенсивность рассеянных электронов в зависимости от угла рассеяния θ . Типичная картина зависимости интенсивности рассеянных электронов от угла рассеяния показана на рисунке 3.

Рис.3. Зависимость интенсивности рассеянных электронов от угла рассеяния от аморфных мишеней

Когда же в качестве мишени им случайно попался монокристалл никеля, они, вдруг, обнаружили не монотонное уменьшение, а чередования уменьшений с увеличением интенсивности рассеяных электронов с ростом θ. Разумное объяснение этим пикам (см. рис.4) можно было дать только с точки зрения волновой теории. Сначала "волна движущихся электронов" дифрагировала на центрах кристаллической решётки — ионах никеля (пространственная дифракционная решетка), а затем, отражаясь, приходила к наблюдателю от разных центров рассеяния и, интерферируя, давала

чередующиеся максимумы и минимумы в соответствии с длиной волны движущего электрона, равной $\lambda = h/P_e$.

Рис.4. Зависимость интенсивности рассеянных электронов от угла рассеяния от монокристалла никеля

Вскоре, эффекты дифракции наблюдались в рассеянии более тяжёлых частиц нейтронов ($m_n \approx 2000 m_e$), а также ионов и даже молекул, для которых соответствующие λ были очень маленькие.

Дуальность света в природе уравновешивается дуальностью движущихся частиц, которые в определенных случаях проявляют себя как волны.

Резюме

Таким образом, для описания движения микрочастиц нельзя использовать механику, так как с её помощью нельзя объяснить дифракцию и интерференцию, но нельзя было использовать и волновую теорию, которая не объясняла корпускулярные свойства частиц (перенос вещества, заряда). Необходима была новая теория: волновая механика частиц или квантовая механика волн.

Математический аппарат квантовой механики

Исааку Ньютону при создании своей механики потребовался математический аппарат – дифференциальное исчисление. Законы квантовой механики могут быть сформулированы и лучше усвоены с помощью своей математики – математики операторов.

Понятие оператора. Свойства операторов

Определение1. Оператором \hat{A} называется правило, закон, рецепт, с помощью которого каждой функции f, из некоторого класса функций, ставится в соответствие другая функция φ , что обозначается так:

$$\hat{A}f = \varphi. \tag{1}$$

Операторы будем обозначать большими буквами со "шляпкой". Равенство (1) читается: оператор \hat{A} переводит функцию f в φ .

Примеры. Рассмотрим оператор дифференцирования:

$$\hat{A} = \frac{d}{dx} \text{ if } f(x) = \arctan(x);$$

$$\frac{d}{dx} \left[\arctan(x) \right] = \left(\arctan(x) \right)' = \frac{1}{1 + x^2}.$$

Другой оператор – умножения:

$$\hat{A} = \hat{x}$$
; $\hat{x}f(x) = xf(x)$.

He на всякую функцию можно действовать всяким оператором. В первом примере f(x) должна быть дифференцируемой. Поэтому, когда задают оператор, указывают класс функций, на которые он действует.

Опеределение 2. Оператор считается заданным, если наряду с правилом, законом, указано множество функций, на которые действует этот оператор. Такое множество называется *областью определения оператора*.

Определение 3. Произведением двух операторов \hat{A} и \hat{B} называется оператор $\hat{A} \cdot \hat{B}$, действие которого на функцию сводится к последовательному действию *сначала* оператора \hat{B} , а потом оператора \hat{A} на результат действия \hat{B} или:

$$(\hat{A} \cdot \hat{B}) \cdot f = \hat{A} \cdot (\hat{B} \cdot f). \tag{2}$$

Пример: $\hat{A} = \frac{d}{dx}$, $\hat{B} = \hat{x}$;

$$(\hat{A} \cdot \hat{B}) \cdot f(x) = \frac{d}{dx} [\hat{x}f(x)] = (x \cdot f(x))' = f(x) + xf'(x) = \left(1 + \hat{x}\frac{d}{dx}\right) f(x),$$

или можно получить произведение операторов (эквивалентный оператор):

$$\hat{A} \cdot \hat{B} = \left(1 + \hat{x} \frac{d}{dx}\right).$$

Изменим порядок действия этих операторов:

$$(\hat{B} \cdot \hat{A}) \cdot f(x) = \left[\hat{x} \frac{d}{dx} f(x)\right] = x \cdot f'(x) == (\hat{x} \frac{d}{dx}) \cdot f(x),$$

или:

$$\hat{B} \cdot \hat{A} = \hat{x} \frac{d}{dx}.$$

Поэтому, в общем случае операторы нельзя переставлять местами

$$\hat{A} \cdot \hat{B} \neq \hat{B} \cdot \hat{A}. \tag{3}$$

Для произведения одинаковых операторов используют для краткости обозначения:

$$\hat{A} \cdot \hat{A} = \hat{A}^2,$$

$$\hat{A} \cdot \hat{A} \cdot \hat{A} ... \hat{A} = \hat{A}^n$$
(4)

Определение 4. Суммой двух операторов \hat{A} и \hat{B} называется оператор $\hat{A} \pm \hat{B}$, который действует на функцию f следующим образом:

$$(\hat{A} \pm \hat{B})f = \hat{A}f \pm \hat{B}f. \tag{5}$$

Операторы равны, $\hat{A} = \hat{B}$, если $(\hat{A} - \hat{B})f = 0$ или $\hat{A} - \hat{B} = 0$ (оператор умножения на ноль).

Определение 5. Выражение вида:

$$\hat{A} \quad \hat{B} - \hat{B} \cdot \hat{A} = |\hat{A}, \hat{B}| \tag{6}$$

называется *коммутатором* операторов \hat{A} и \hat{B} . Если $[\hat{A},\hat{B}]=0$, то говорят, что операторы коммутируют. В противном случае операторы не коммутируют.

Самостоятельно. Показать, что $\left[\frac{d}{dx}, \hat{x}\right] = \hat{1}$.

Операторы "набла" и дельта

Операторы в квантовой механике могут быть векторными, как, например, оператор ∇ - набла, который определён на дифференцируемых функциях трёх переменных:

$$\nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}, \tag{7}$$

где i,j,k — единичные, взаимно ортогональные векторы.

Под произведением двух векторных операторов будем подразумевать их скалярное произведение, если не оговорено противное:

$$\nabla^2 = \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \equiv \Delta.$$
 (8)

Полученный оператор носит название оператора $\mathit{Лапласa}$ и обозначается греческой буквой Δ . Он определён на функциях трёх переменных, имеющих вторые частные производные. Заметим, что функции

в квантовой механике могут быть и комплексными, так же, как и операторы. *Например*:

$$\hat{x} + i \frac{d}{dx}, \qquad \frac{1}{i} \frac{d^2}{dx^2}.$$

Свойства квантовомеханических операторов

В дальнейшем будем иметь дело со специальными операторами, а именно: линейными и самосопряжёнными (эрмитовыми).

Определение 6. Оператор \hat{A} называется линейным, если:

$$\hat{A}[C_1f_1 + C_2f_2] = C_1\hat{A}f_1 + C_2\hat{A}f_2, \tag{9}$$

где C_1 и C_2 – числа, а f_1 и f_2 – функции, на которых определён оператор \hat{A} .

Пример: покажем, что оператор $\hat{A} = \frac{d}{dx}$ – линейный оператор:

$$\frac{d}{dx} \left[C_1 f_1(x) + C_2 f_2(x) \right] = \left[C_1 f_1(x) + C_2 f_2(x) \right]' = C_1 \frac{df_1}{dx} + C_2 \frac{df_2}{dx}$$

Для доказательства использованы правила дифференцирования.

Определение 7. *Самосопряжённым* или э*рмитовым* называется такой оператор \hat{A} , определённый на функциях $f_1(x)$, $f_2(x)$, для которого выполняется равенство:

$$\int f_1^*(x)\hat{A}f_2(x)dx = \int f_2(x)\hat{A}^*f_1^*(x)dx,$$
 (10)

где (*) обозначает комплексное сопряжение функции и оператора, x – совокупность непрерывных переменных, которых может быть больше, чем $o\partial ha$, например, $x = \{x_1, x_2, x_3, x_4\}$. Интеграл (10) — или определённый, или многократный, поэтому пределы интегрирования здесь и в дальнейшем не конкретизируются. Не все операторы самосопряжённые, например, оператор

 $\hat{A} = \frac{d}{dx}$ — несамосопряжённый. Докажем это. Пусть $f_1(x)$ и $f_2(x)$ — дифференцируемые функции, определённые на отрезке [a,b], удовлетворяющие условию:

$$f_1(a) = f_1(b); f_2(a) = f_2(b).$$

Запишем определённый интеграл:

$$I_{1} = \int_{a}^{b} f_{1}^{*}(x) \left[\frac{d}{dx} \right] f_{2}(x) dx,$$

и ещё один:

$$I_2 = \int_a^b f_2(x) \left[\frac{d}{dx} \right]^* f_1^*(x) dx.$$

Если оператор $\frac{d}{dx}$ самосопряжённый, то по определению (10) $I_1 = I_2$

$$I_{2} = \int_{a}^{b} f_{2}(x) \left[\frac{d}{dx} \right]^{*} f_{1}^{*}(x) dx = f_{2}(x) f_{1}^{*}(x) \Big|_{a}^{b} - \int_{a}^{b} f_{1}^{*}(x) f_{2}'(x) dx = -\int_{a}^{b} f_{1}^{*}(x) \left[+ \frac{d}{dx} \right]^{*} f_{2}(x) dx \neq I_{1}$$

Докажем, что оператор $\hat{B}=-i\,rac{d}{dx}$ — эрмитов. Для доказательства будем использовать те же функции:

$$\widetilde{I}_{1} = \int_{a}^{b} f_{1}^{*}(x) \left[-i \frac{d}{dx} \right] f_{2}(x) dx;$$

$$\widetilde{I}_{2} = \int_{a}^{b} f_{2}(x) \left[-i \frac{d}{dx} \right]^{*} f_{1}^{*}(x) dx = i \cdot f_{2}(x) f_{1}^{*}(x) \Big|_{a}^{b} - i \cdot \int_{a}^{b} f_{1}^{*}(x) f_{2}'(x) dx = \int_{a}^{b} f_{1}^{*}(x) \left[-i \frac{d}{dx} \right] f_{2}(x) dx = \widetilde{I}_{1}.$$

Итак, оператор $\hat{B} = -i \frac{d}{dx}$ и линейный, по ранее доказанному, и самосопряжённый.

Самостоятельно. Проверить, будет ли эрмитов оператор $\frac{2}{i}\frac{d}{dx}$?

Собственные функции и собственные значения операторов и их свойства. Вырожденные функции

После действия оператора на функцию получается, вообще говоря, другая функция. Но, иногда, функция, после действия на неё оператора изменяется не существенно, а лишь на постоянный множитель.

В общем виде такое "действие" оператора на функцию можно записать:

$$Af = af , (11)$$

где a — число.

Пример.

$$\hat{A} = \frac{d^2}{dx^2}, \quad f(x) = \cos(3x),$$

$$\frac{d^2}{dx^2} \left[\cos(3x)\right] = \left(\cos 3x\right)'' = -9\cos(3x).$$

Определение 8. Величина a в уравнении (11) носит название собственного значения оператора \hat{A} . Соответствующая этому собственному значению функция f, обозначаемая обычно

$$f \equiv f_a$$

называется собственной функцией оператора \hat{A} , принадлежащая собственному значению a.

Совокупность собственных значений оператора \hat{A} называется спектром собственных значений этого оператора, который может быть непрерывным, в конечном интервале или нет:

$$a_0 < a < b_0,$$

$$-\infty < a < \infty.$$
(12)

Если оператор \hat{A} задан, то условие (11) можно рассматривать как уравнение для нахождения собственных функций. Пример.

$$\hat{A} = i \frac{d}{dx},$$

TO:

$$if'(x) = a \cdot f(x).$$

Решая это дифференциальное уравнение с разделяющимися переменными, получаем:

$$f(x) = f_a(x) = C \cdot e^{-iax}$$
,

где C > 0, а в остальном произвольная константа.

Замечание. Собственные функции $f_a(x)$ в операторном уравнении (11) определены только с точностью до произвольного множителя.

Самостоятельно. Показать, что функция $25e^{-iax}$ также будет собственной функцией оператора $\hat{A} = i \frac{d}{dx}$.

Определение 8*. Если уравнение (11) имеет решение не при всех значениях a, а только некоторых a_n (n = 1, 2, 3, ...), то спектр собственных значений становится дискретным конечным, или нет:

$$a_1, a_2, a_3, \ldots, a_n, \ldots,$$
 (13)

а само уравнение приобретает вид:

$$\hat{A}f_n = a_n f_n, \tag{11}$$

n — натуральные числа.

Так как оператор A и его собственные функции f могут быть комплексными, то комплексными могут быть и собственные значения a операторов.

Теорема 1. Если оператор \hat{A} самосопряжённый, то его собственные значения a – вещественные.

Доказательство. Пусть:

$$\hat{A}f_a(x) = af_a(x). \tag{14}$$

Умножим это уравнение слева на $f_a^*(x)$ и проинтегрируем левую и правую части полученного равенства по x в заданных пределах (без их указаний):

$$\int f_a^*(x) \hat{A} f_a(x) dx = a \int f_a^*(x) f_a(x) dx = a \int |f_a(x)|^2 dx.$$
 (14a)

Перепишем (14) в виде:

$$\hat{A}^* f_a^*(x) = a^* f_a^*;$$

умножим это равенство слева на $f_a(x)$ и также проинтегрируем по x:

$$\int f_a(x)\hat{A}^* f_a^*(x) dx = a^* \int |f_a(x)|^2 dx.$$
 (146)

Так как \hat{A} — самосопряжённый оператор, то левые части равенства (14a) и (14б) равны, а правые отличаются только множителями, отсюда $a=a^*$. Что и требовалось доказать.

Теорема 2. Собственные функции самосопряжённого оператора \hat{A} принадлежащие разным собственным значениям — ортогональны, то есть:

$$\int f_m^*(x)f_n(x)dx = 0, \tag{15}$$

если $a_m \neq a_n$.

Доказательство. Пусть:

$$\hat{A}f_n(x) = a_n f_n(x) \quad \text{M} \quad \hat{A}f_m(x) = a_m f_m(x).$$
 (*)

Перепишем (*):

$$\int dx f_{m}^{*}(x) \left\{ \hat{A}f_{n}(x) = a_{n} f_{n}(x) \right\} \Rightarrow \int f_{m}^{*}(x) \hat{A}f_{n}(x) dx = a_{n} \int f_{m}^{*}(x) f_{n}(x) dx,$$

$$\int dx f_{n}(x) \left\{ \hat{A}^{*} f_{m}^{*}(x) = a_{m}^{*} f_{m}^{*}(x) \right\} \Rightarrow \int f_{n}(x) \hat{A}^{*} f_{m}^{*}(x) dx = a_{m}^{*} \int f_{n}(x) f_{m}^{*}(x) dx,$$

$$\int f_{m}^{*}(x) \hat{A}f_{n}(x) dx - \int f_{n}(x) \hat{A}f_{m}^{*}(x) dx = (a_{n} - a_{m}^{*}) \int f_{m}^{*}(x) f_{n}(x) dx.$$

Левая часть последнего равенства есть 0 в силу самосопряжённости оператора \hat{A} , а справа — из неравенства $a_n - a_m^* = a_n - a_m \neq 0$, следует:

$$\int f_m^*(x)f_n(x)dx = 0,$$

что и требовалось доказать.

При m = n интеграл (15) не равен нулю, но должен быть конечным, так как именно такие функции будут рассматриваться в квантовой механике (квадратично-интегрируемые). Пусть:

$$\int f_n^*(x)f_n(x)dx = C_n^2,$$

так как интеграл положителен. Рассмотрим функции:

$$\psi_n(x) = \frac{1}{C_n} f_n(x), \qquad (*)$$

которые также будут собственными функциями оператора \hat{A} при тех же собственных значениях (см. замечание), тогда:

$$\int \left| \Psi_n \left(x \right) \right|^2 \mathrm{d}x = 1 \,. \tag{16a}$$

Объединяя это условие с (15), получим:

$$\int \Psi_m^*(x) \Psi_n(x) dx = \delta_{mn}, \qquad (166)$$

где δ_{mn} – символ Кронекера.

Определение 9. Функции, удовлетворяющие условию (16б), называются *ортонормированными*, а числа C_n – *коэффициентами нормировки*.

В случае непрерывного спектра собственных значений оператора, ортогональность функций, принадлежащих разным собственным значениям a и a', должна была бы записываться в виде:

$$\int f_a^*(x) f_{a'}(x) dx = 0, \quad a \neq a'; \quad \int f_a^*(x) f_{a'}(x) dx \neq 0, \ a = a'.$$

Выполнение обоих условий возможно, но функции $f_a(x)$, при этом, не могут быть квадратично - интегрируемы, то есть:

$$\int \left| f_a(x) \right|^2 dx = \infty \,,$$

а такие функции нормировать нельзя. Эта трудность обходится с помощью использования δ-функции Дирака, которая определяется следующим образом:

$$\delta(a-a') = \begin{cases} 0, & a \neq a' \\ \infty, & a = a' \end{cases}$$
 (17)

С её помощью ортогональность и нормировку функций непрерывного спектра можно записать в форме:

$$\int_{a}^{\infty} f_{a}^{*}(x) f_{a'}(x) dx = \delta(a - a'). \tag{18}$$

Назвать δ -функцию функцией можно только с большой натяжкой, так как эта функция относится к классу обобщённых. Остановимся на её свойствах, используемых далее:

$$\delta(z) = \delta(-z),\tag{11}$$

$$\int_{-\infty}^{\infty} f(z)\delta(z-z_0)dz = f(z_0), \tag{Д2}$$

$$\int_{a}^{b} f(z)\delta(z-z_{0})dz = \begin{cases} f(z_{0}), & z_{0} \in (a, b) \\ 0, & z_{0} \notin (a, b) \end{cases},$$
 (Д3)

$$\int_{-\infty}^{\infty} \delta(\varphi(z) - C) f(z) dz = \int_{-\infty}^{\infty} \sum_{k=1}^{n} \frac{\delta(z - z_k)}{|\varphi'_z|_{z = z_k}} f(z) dz, \tag{Д4}$$

где z_k – корни уравнения:

$$\varphi(z) - C = 0,$$

а C – число (константа), которое может быть и ноль.

Если в уравнении (11) у разных собственных функций оператора \hat{A} собственные значения одинаковые, то такие функции не обязаны быть ортогональными (см. Теорему 2), что не позволяет использовать свойства ортонормируемости всех собственных функций оператора, так необходимого в дальнейшем.

Определение 10. Если в уравнении:

$$\hat{A}f_n(x) = a_n f_n(x),$$

начиная с n = p + 1, (p -натуральное число)

$$a_{p+1} = a_{p+2} = \ldots = a_{p+k}$$
,

то, соответствующие им разные функции f_{p+1} , f_{p+2} , ..., f_{p+k} называются вырожденными, а целое число k называется кратностью вырождения.

Теорема 3. Если в уравнении:

$$\hat{A}f_n(x) = a_n f_n(x),$$

где \hat{A} — линейный самосопряжённый оператор, имеет место k-кратное вырождение (при a_{p+1}), то линейная комбинация из k-вырожденных различных функций будет собственной функцией этого оператора с тем же собственным значением.

Доказательство: рассмотрим случай k=2, то есть $a_{p+1}=a_{p+2}=a$, тогда

$$\hat{A}f_{p+1}(x) = a \cdot f_{p+1}(x), \quad \hat{A}f_{p+2}(x) = a \cdot f_{p+2}(x)$$

Покажем, что линейная комбинация $f = C_1 f_{p+1} + C_2 f_{p+2}$, где C_1 и C_2 – произвольные постоянные, удовлетворяет условию:

$$\hat{A}f = af;$$

$$\hat{A}[C_1f_{p+1} + C_2f_{p+2}] = C_1\hat{A}f_{p+1} + C_2\hat{A}f_{p+2} = a[C_1f_{p+1} + C_2f_{p+2}],$$

что и требовалось доказать.

Следствие. Из разных вырожденных функций f_{p+i} ($i=\overline{1,k}$) с помощью надлежащего выбора констант C_i ($i=\overline{1,k}$) можно построить k-линейнонезависимых функций, которые будут ортогональны между собой. В итоге, все собственные функции оператора \hat{A} , включая и вырожденные, можно, в принципе, сделать ортогональными.

Теорема 4. Для того, чтобы два линейных оператора \hat{A} и \hat{B} имели общую систему собственных функций *необходимо* и *достаточно*, чтобы они коммутировали.

Heoбxoдимость: пусть, $\{\Psi_n\}$ — общая система собственных функций операторов \hat{A} и \hat{B} :

$$\hat{A} \cdot (\hat{B} \Psi_n = b_n \Psi_n) \Longrightarrow \hat{A} \cdot \hat{B} \Psi_n = \hat{A} b_n \Psi_n = b_n a_n \Psi_n,$$

$$\hat{B} \cdot (\hat{A} \Psi_n = a_n \Psi_n) \Longrightarrow \hat{B} \cdot \hat{A} \Psi_n = \hat{B} a_n \Psi_n = a_n b_n \Psi_n.$$

Вычтем из верхнего уравнения нижнее:

$$\hat{A}\hat{B}\Psi_n - \hat{B}\hat{A}\Psi_n = (b_n a_n - a_n b_n)\Psi_n \equiv 0,$$

то есть $(\hat{A}\hat{B} - \hat{B}\hat{A})\Psi_n = 0$, что и требовалось доказать.

Достаточность: пусть

$$[A,B]=0$$
,

а $\{\varphi_n\}$ — собственные функции одного из операторов, например, \hat{A} : $\hat{A}\varphi_n=a_n\varphi_n$. Подействуем на это равенство оператором \hat{B} :

$$\hat{B} \{ \hat{A} \varphi_n = a_n \varphi_n \} \rightarrow \hat{B} \hat{A} \varphi_n = a_n \hat{B} \varphi_n.$$

Используя условие теоремы $\hat{A}\hat{B}=\hat{B}\hat{A}$, получим:

$$\hat{A}(\hat{B}\varphi_n) = a_n(\hat{B}\varphi_n),$$

то есть φ_n и $\hat{B}\varphi_n$ — собственные функции оператора \hat{A} , принадлежащие одному собственному значению a_n . Значит, они могут различаться между собой *только* на константу, которую назовём b_n и:

$$\hat{B}\varphi_n = b_n \varphi_n$$

что доказывает наше утверждение.

Полнота системы собственных функций операторов

Теорема 5. Система собственных функций $\{f_n\}$ операторного уравнения:

$$\hat{A}f_n(x) = a_n f_n(x) \tag{11}$$

полна; это значит, что любую функцию $\Psi(x)$, определяемую в той же области переменных x, можно представить в виде:

$$\Psi(x) = \sum_{n} C_n f_n(x), \tag{19}$$

где C_n – числа коэффициенты разложения.

Если спектр собственных значений непрерывен:

$$\hat{A}f_a(x) = af_a(x), \tag{11}$$

TO:

$$\Psi(x) = \int C_a f_a(x) da, \qquad (20)$$

где интегрирование ведётся по всем возможным непрерывным собственным значениям a в уравнении (11), а C_a — функции непрерывной переменной a, записанные в форме коэффициентов разложения.

Доказательство: правильность разложений (19), (20) будет доказана, если мы найдём коэффициенты этих разложений через заданные функции $\Psi(x)$ и f(x).

Умножим равенство (19) на $f_k^*(x)$ и проинтегрируем по всем непрерывным x:

$$\int f_k^*(x)\Psi(x)dx = \sum_n C_n \int f_k^*(x)f_n(x)dx = \sum_n C_n \cdot \delta_{kn} = C_k.$$
 (21)

Умножим равенство (20) на $f_{a'}^*(x)$ и проинтегрируем по x:

$$\int f_{a'}^{*}(x)\Psi(x)dx = \int dx \Big[\int f_{a'}^{*}(x)f_{a}(x)C_{a}da \Big] =$$

$$= \int C_{a}da \Big[\int f_{a'}^{*}(x)f_{a}(x)dx \Big] = \int C_{a}\delta(a-a')da = C_{a'}.$$
(22)

Вычисление коэффициентов разложения (21) и (22) по заданной $\Psi(x)$ и известным $f_n(x)$, f(x) доказывает возможность разложений (19), (20).

Если функции $f_n(x)$ в разложении (19) известны, то, чтобы знать $\Psi(x)$ достаточно знать коэффициенты разложения

$$C_1, C_2, C_3, ..., C_n,$$
 (19)*

Определение 11. Полный набор ортонормируемых собственных функций оператора \hat{A} :

$$f_1(x), f_2(x), f_3(x), ..., f_n(x), ...$$

назовём базисом, а числа $(19)^*$ – координатами функций $\Psi(x)$ в этом базисе. Представление функций в виде разложений (19) и (20) будем называть A – представлением этих функций.

Матричное представление операторов

Рассмотрим оператор \hat{B} , который переводит функцию $\varphi(x)$ в $\Psi(x)$ или:

$$\hat{B}\varphi(x) = \Psi(x). \tag{23}$$

Запишем функции φ и Ψ в A-представлении [$\hat{A}f_n = a_n f_n$]:

$$\Psi(x) = \sum_{m} C_{m} f_{m}(x),$$

$$\varphi(x) = \sum_{n} U_{n} f_{n}(x),$$

где C_n и U_n — координаты-числа. Подставим в (23) вместо функций их разложения в ряды:

$$\hat{B}\left[\sum_{n}U_{n}f_{n}(x)\right] = \sum_{m}C_{m}f_{m}(x).$$

Это равенство умножим на $f_k^*(x)$ слева и проинтегрируем по x полученное выражение:

$$\sum_{n} U_{n} \underbrace{\left[\int f_{k}^{*}(x) \hat{B} f_{n}(x) dx \right]}_{b_{kn}} = \sum_{m} C_{m} \underbrace{\left[\int f_{k}^{*}(x) f_{m}(x) dx \right]}_{b_{kn}}.$$

Введём обозначение:

$$b_{kn} = \int f_k^*(x)\hat{B}f_n(x)dx = \langle f_k | \hat{B} | f_n \rangle = \langle k | \hat{B} | n \rangle$$
 (24)

и, используя ортонормируемость функций f_n в правой части равенства, получим:

$$\sum_{n} U_{n} b_{kn} = \sum_{m} C_{m} \delta_{mk} = C_{k} . \tag{25}$$

Окончательно, уравнение (23) запишется в виде:

$$\sum_{n} b_{kn} U_n = C_k \,, \tag{25}$$

а коэффициенты b_{kn} (24) это – оператор \hat{B} в A - представлении.

Определение 12. Набор всех коэффициентов b_{kn} (24), представленный в виде матрицы B:

квадратной и, как правило, бесконечной

$$m=\overline{1, \infty}; n=\overline{1, \infty},$$

называется матричным A - представлением оператора \hat{B} . Выражение (25)* есть произведение матрицы

$$B = [b_{kn}]$$

на матрицу - столбец $[U_n]$, в результате которого получим матрицу - столбец $[C_n]$.

Например, для $k, n = \overline{1, 3}$:

$$\begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} \begin{pmatrix} U_1 \\ U_2 \\ U_3 \end{pmatrix} = \begin{pmatrix} C_1 \\ C_2 \\ C_3 \end{pmatrix}.$$

Определение 13. Транспонирование матрицы $B = [b_{kn}]$ и последующая замена её элементов комплексно-сопряжёнными называется *операцией* эрмитового сопряжения матрицы B. Матрица, эрмитово сопряжённая матрице B обозначается:

$$B^+ = [b_{kn}]^+.$$

Согласно определению, имеем:

$$[b_{kn}]^{+} = [b_{nk}^{*}]. (27)$$

Используя правило умножения матриц и операцию эрмитового сопряжения, можно показать, что:

$$(AB)^{+} = B^{+} \cdot A^{+}, \tag{28}$$

где A и B – квадратные матрицы одного порядка.

Определение 14. Матрица B называется *самосопряжённой* или э*рмитовой*, если:

$$B = B^{+}, ([b_{kn}] = [b_{kn}]^{+}).$$
 (29)

Теорема 6. Если оператор \hat{B} самосопряжённый, то в любом представлении его матрица эрмитова (самосопряжённая).

Доказательство. Пусть \hat{B} — самосопряжённый оператор, который в A-представлении запишется так (см. (25)):

$$b_{kn} = \langle f_{k} | \hat{B} | f_{n} \rangle = \int f_{k}^{*}(x) \hat{B} f_{n}(x) dx = \int f_{n}(x) (\hat{B})^{*} f_{k}^{*}(x) dx = \left[\int f_{n}^{*}(x) \hat{B} f_{k}(x) dx \right]^{*} = b_{nk}^{*},$$
$$[b_{kn}] = [b_{nk}^{*}] = [b_{kn}]^{+},$$

то есть

$$B=B^{+}$$
.

Утверждение доказано.

Напомним, что матрица называется диагональной, если она имеет вид:

Теорема 7. В своём собственном представлении оператор \hat{A} имеет диагональный вид и на диагонали стоят его собственные значения. Доказательство. Дано:

$$\hat{A}f_n(x) = a_n f_n(x),$$

тогда

$$\langle f_k | \hat{A} | f_n \rangle = a_{kn} = \int f_k^*(x) \hat{A} f_n(x) dx = a_n \int f_k^*(x) f_n(x) dx = a_n \delta_{kn}, \quad (31)$$

где последнее равенство получается благодаря свойству ортонормируемости собственных функций оператора \hat{A} .

Имеет место и обратное утверждение.

Теорема 8. Если в каком-либо представлении оператор \hat{A} имеет диагональный вид, то это есть собственное представление оператора. Доказательство: провести самостоятельно.

Операторы квантовой механики

Принцип соответствия (постулат 1).

В квантовой механике всякой физической величине сопоставляется *линейный самосопряжённый* оператор. При этом говорят, что $\hat{\Phi}$ есть оператор физической величины Φ .

Вид операторов в квантовой механике постулируется на основе согласования с опытными данными.

С этого момента буквой h в лекциях будем обозначать величину $h/2\pi$. Оператор координат частиц:

$$x \to \hat{x} \equiv x,$$

$$\mathbf{r} \to \hat{\mathbf{r}} = \mathbf{i} \ \hat{x} + \mathbf{j} \ \hat{y} + \mathbf{k} \ \hat{z}.$$
 (1)

Оператор импульса частиц:

$$P_{x} \to \hat{P}_{x} = -ih\frac{\partial}{\partial x},$$

$$\mathbf{P} \to \hat{\mathbf{P}} = -ih\left(\mathbf{i}\frac{\partial}{\partial x} + \mathbf{j}\frac{\partial}{\partial y} + \mathbf{k}\frac{\partial}{\partial z}\right) = -ih\nabla.$$
(2)

Оператор функции координат:

$$f(x) \rightarrow \hat{f}(x) \equiv f(\hat{x}).$$

Оператор функции импульса:

$$f(\mathbf{P}) \rightarrow \hat{f}(\mathbf{P}) \equiv f(-ih\nabla).$$

Между операторами в квантовой механике сохраняются те же соотношения, что и между соответствующими им физическими величинами. Кинетическая энергия:

$$T = \frac{\mathbf{P}^2}{2m} \to \hat{T} = \frac{1}{2m} \left(-ih\nabla \right)^2 \equiv -\frac{h^2}{2m} \nabla^2 = -\frac{h^2}{2m} \Delta = -\frac{h^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right). \tag{3}$$

В ряде случаев оператор \hat{T} (3) *требуется* записать в сферических координатах, которые наиболее просто будут связаны с декартовыми, если начала их отсчётов будут совпадать, а полярная ось сферической системы направляется вдоль декартовой оси z:

$$\begin{cases} x = r \sin \theta \cos \varphi \\ y = r \sin \theta \sin \varphi \\ z = r \cos \theta \end{cases}, \qquad \begin{cases} r^2 = x^2 + y^2 + z^2 \\ \theta = \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}} \\ \text{tg} \varphi = \frac{y}{x} \end{cases}$$
 (4)

Чтобы теперь записать оператор дифференцирования, например $\frac{\mathcal{C}}{\partial x}$, в сферических координатах, необходимо вспомнить дифференцирование сложных функций многих переменных:

$$\frac{\partial}{\partial x} f(r, \theta, \varphi) = \frac{\partial f}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial f}{\partial \theta} \frac{\partial \theta}{\partial x} + \frac{\partial f}{\partial \varphi} \frac{\partial \varphi}{\partial x} = \left[A \frac{\partial}{\partial r} + B \frac{\partial}{\partial \theta} + C \frac{\partial}{\partial \varphi} \right] f,$$

$$A = \frac{\partial r}{\partial x}, B = \frac{\partial \theta}{\partial x}, C = \frac{\partial \varphi}{\partial x}.$$
(5)

С помощью этого алгоритма оператор \hat{T} можно записать в сферических координатах:

$$\hat{T} = -\frac{h^2}{2m} \left[\hat{R}(r) + \frac{\hat{L}(\theta, \varphi)}{r^2} \right],\tag{6}$$

где

$$\hat{R}(r) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right), \tag{6R}$$

$$\hat{L}(\theta,\varphi) = \frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial\varphi^2}, \tag{6L}$$

соответственно, радиальная и угловая части оператора \hat{T} в сферических координатах.

Напомним, что в классической механике момент импульса записывается в виде:

$$\mathbf{M} = \mathbf{r} \times \mathbf{P} = \begin{bmatrix} \mathbf{r}, \mathbf{P} \end{bmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x & y & z \\ P_{x} & P_{y} & P_{z} \end{vmatrix} =$$

$$= \mathbf{i} \underbrace{(yP_{z} - zP_{y})}_{\mathbf{M}_{x}} + \mathbf{j} \underbrace{(zP_{x} - xP_{z})}_{\mathbf{M}_{y}} + \mathbf{k} \underbrace{(xP_{y} - yP_{x})}_{\mathbf{M}_{z}}$$
(7)

По принципу соответствия, имеем $\hat{\mathbf{M}} = \hat{\mathbf{r}} \times \hat{\mathbf{P}}$:

$$M_x \to \hat{M}_x = -i\hbar \left(\hat{y} \frac{\partial}{\partial z} - \hat{z} \frac{\partial}{\partial y} \right),$$
 (7x)

$$M_{y} \rightarrow \hat{M}_{y} = -i\hbar \left(\hat{z}\frac{\partial}{\partial x} - \hat{x}\frac{\partial}{\partial z}\right),$$
 (7y)

$$M_z \to \hat{M}_z = -i\hbar \left(\hat{x} \frac{\partial}{\partial y} - \hat{y} \frac{\partial}{\partial x} \right).$$
 (7z)

Эти операторы обладают следующими интересными, коммутационными соотношениями:

$$\left[\hat{M}_{x}, \hat{M}_{y}\right] = ih\hat{M}_{z}, \quad \left[\hat{M}_{y}, \hat{M}_{z}\right] = ih\hat{M}_{x}, \quad \left[\hat{M}_{z}, \hat{M}_{x}\right] = ih\hat{M}_{y}. \tag{7}$$

С помощью алгоритма (5), можно их представить в сферических координатах:

$$\hat{M}_{x} = +i\hbar \left(\sin \varphi \frac{\partial}{\partial \theta} + \operatorname{ctg}\theta \cdot \cos \varphi \frac{\partial}{\partial \varphi} \right), \tag{8x}$$

$$\hat{M}_{y} = -i\hbar \left(\cos\varphi \frac{\partial}{\partial\theta} - \operatorname{ctg}\theta \cdot \sin\varphi \frac{\partial}{\partial\varphi}\right),\tag{8y}$$

$$\hat{M}_z = -ih\frac{\partial}{\partial \varphi}.$$
 (8z)

Оператор квадрата момента импульса

Квадрат вектора в декартовых координатах равен:

$$\mathbf{M}^2 = M_x^2 + M_y^2 + M_z^2$$

По принципу соответствия:

$$\mathbf{M}^2 \to \hat{\mathbf{M}}^2 = \hat{M}_x^2 + \hat{M}_y^2 + \hat{M}_z^2$$

В декартовых координатах это выражение громоздко, но в сферических координатах (см. (8)) его можно преобразовать к виду:

$$\hat{\mathbf{M}}^{2} = -h^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}} \right] = -h^{2} \hat{L}(\theta, \varphi), \tag{9}$$

где \hat{L} — угловая часть оператора кинетической энергии частицы в сферических координатах (6L). Оператор \hat{T} (6) можно теперь записывать с помощью оператора $\hat{\mathbf{M}}^2$:

$$\hat{T} = -\frac{h^2}{2m}\hat{R}(r) - \frac{h^2}{2m}\frac{1}{r^2}\hat{L}(\theta,\varphi) = -\frac{h^2}{2m}\hat{R}(r) + \frac{\hat{\mathbf{M}}^2}{2mr^2}.$$
 (10)

Оператор Гамильтона (гамильтониан)

В классической физике функцией Гамильтона, обозначаемой H, называется выражение для энергии частицы:

$$H = \frac{\mathbf{P}^2}{2m} + U(x, y, z, t), \tag{11}$$

где U(x, y, z, t) — потенциальная энергия частицы. Если U не зависит от времени t, то функция H представляет собой полную энергию частицы.

По принципу соответствия запишем оператор потенциальной энергии:

$$U(x, y, z, t) \rightarrow \hat{U}(x, y, z, t) \equiv U(\hat{x}, \hat{y}, \hat{z}, t).$$

Функции Гамильтона будет соответствовать оператор Гамильтона, или иначе – гамильтониан:

$$H \to \hat{H} = \frac{\hat{\mathbf{P}}^2}{2m} + \hat{U}(x, y, z, t) = -\frac{h^2}{2m} \nabla^2 + \hat{U}(x, y, z, t). \tag{12}$$

Однако, для задачи о движении заряженной микрочастицы в электромагнитном поле, наиболее востребованной, гамильтониан в форме (12) использовать нельзя, так как электромагнитное поле не потенциальное.

Гамильтониан заряженной частицы в электромагнитном поле

С точки зрения классической физики на частицу с зарядом q в электромагнитном поле действует сила:

$$\mathbf{F} = \mathbf{q} \ \mathbf{\xi} \ t) + \frac{q}{c} [\mathbf{v}, \mathbf{K} \ t)] , \tag{13}$$

состоящая, соответственно, из силы Кулона и силы Лоренца, ϵ и B – напряжённости электрической и магнитной составляющих электромагнитного поля, \mathbf{v} – скорость частицы.

Известно, что решением системы уравнений Максвелла является ненаблюдаемая в эксперименте величина четырёх-вектор-потенциала электромагнитного поля:

$$\underline{\mathbf{D}} = \{\mathbf{A}, \boldsymbol{\varphi}\}$$

с векторной ${f A}$ и скалярной ${m arphi}$ компонентами, которые, в свою очередь, связаны с наблюдаемыми величинами электромагнитного поля ${f \epsilon}$ и ${f B}$ следующим образом:

$$\mathbf{\varepsilon}(t) = -\nabla \varphi(\mathbf{r}, t) - \frac{1}{c} \frac{\partial \mathbf{A}(\mathbf{r}, t)}{\partial t}; \qquad \mathbf{B}(\mathbf{r}, t) = \text{rot}\mathbf{A}(\mathbf{r}, t). \tag{14}$$

Так как сила Лоренца зависит от скорости частицы, то эта сила не потенциальная и функция Гамильтона для рассматриваемого случая не может быть записана в форме (12). Записывается она с помощью четырёхвекторного потенциала электромагнитного поля $\{A, \phi\}$ следующим образом:

$$H = \frac{1}{2m} \left[\mathbf{P} - \frac{q}{c} \mathbf{A}(\mathbf{r}, t) \right]^{2} + q \varphi(\mathbf{r}, t).$$
 (15)

Согласно постулату соответствия, оператор Гамильтона для такой микрочастицы можно записать:

$$\hat{H} = \frac{1}{2m} \left[-ih\nabla - \frac{q}{c} \hat{\mathbf{A}}(\mathbf{r}, t) \right]^2 + q\hat{\varphi}(\mathbf{r}, t).$$
 (16)

Если одновременно частица находится в потенциальном поле другой природы $U(\mathbf{r},t)$, то к гамильтониану (16) надо добавить оператор $\hat{U}(\mathbf{r},t)$.

В заключение приведём вид основных операторов квантовой механики (координатное представление):

1.
$$\hat{x} = x$$
,

$$2. \quad \hat{P}_x = -ih \frac{\partial}{\partial x},$$

3.
$$\hat{\mathbf{P}} = -i\hbar \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z} \right) = -i\hbar \nabla$$
,

$$4. \quad \hat{M}_z = -ih \frac{\partial}{\partial \varphi},$$

5.
$$\hat{\mathbf{M}}^2 = -h^2 \hat{L}(\theta, \varphi) = -h^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} \right],$$

6.
$$\hat{T} = \frac{\hat{\mathbf{P}}^2}{2m} = -\frac{h^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) = -\frac{h^2}{2m} \hat{R}(r) + \frac{\hat{\mathbf{M}}^2}{2mr^2},$$

7.
$$\hat{H} = -\frac{h^2}{2m}\nabla^2 + \hat{U}(\mathbf{r},t),$$

8.
$$\hat{H} = \frac{1}{2m} \left[-ih\nabla - \frac{q}{c} \hat{\mathbf{A}}(\mathbf{r}, t) \right]^2 + q\hat{\varphi}(\mathbf{r}, t) + \hat{U}(\mathbf{r}, t)$$

Собственные функции основных операторов квантовой механики

Собственные функции операторов импульса и кинетической энергии

Собственные функции оператора проекции импульса определяются уравнением:

$$\hat{P}_{x}\Psi(x) = P_{x}\Psi(x),$$

или

$$-i\hbar \frac{\partial \Psi(x)}{\partial x} = P_x \Psi(x) \tag{1}$$

имеет решение (при замене частной производной на полную производную):

$$\Psi(x) = C \cdot exp(iP_x x/h), \tag{1a}$$

где C>0 произвольная постоянная. Функция (1a) удовлетворяет всем требованиям, которым должна удовлетворять функция микрочастицы в квантовой механике. Спектр собственных значений P_x непрерывен и бесконечен:

$$-\infty < P_r < \infty$$
.

Векторное уравнение:

$$\hat{\mathbf{P}}\Psi(\mathbf{r}) = \mathbf{P}\Psi(\mathbf{r})$$

или

$$-i\hbar\left(\mathbf{i}\frac{\partial\Psi(\mathbf{r})}{\partial x}+\mathbf{j}\frac{\partial\Psi(\mathbf{r})}{\partial y}+\mathbf{k}\frac{\partial\Psi(\mathbf{r})}{\partial z}\right)=\left(\mathbf{i}P_x+\mathbf{j}P_y+\mathbf{k}P_z\right)\Psi(\mathbf{r})$$
 (2)

решается подстановкой

$$\Psi(\mathbf{r}) = X(x)Y(y)Z(z), \tag{2a}$$

где X, Y и Z – неизвестные функции одной соответствующей переменной и в координатной форме сводится к трём уравнениям вида (1). Поэтому его решение есть:

$$\Psi(\mathbf{r}) = X(x)Y(y)Z(z) = C \cdot \exp\left[\frac{i}{h}(P_x \cdot x + P_y \cdot y + P_z \cdot z)\right] = C \cdot e^{\frac{i}{h}\mathbf{P}\cdot\mathbf{r}}, (26)$$

где C>0 произвольная константа. Найденное решение совпадает с решением волнового уравнения для плоской волны с волновым вектором $\mathbf{k}=\mathbf{P}/h$ и удовлетворяет всем условиям, которым должна удовлетворять функция микрочастицы в квантовой механике. Спектр \mathbf{P} непрерывен и бесконечен.

Уравнение:

$$\hat{T}\Psi = T\Psi ,$$

ИЛИ

$$-\frac{h^2}{2m} \left(\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} \right) = T \Psi(\mathbf{r}) , \qquad (3)$$

должно иметь частное решение:

$$\Psi_{\mathbf{P}}(\mathbf{r}) = Cexp(i\mathbf{P} \cdot \mathbf{r}/h)$$
 (3a)

в виде плоской волны де Бройля (*проверить*), что не удивительно, поскольку оператор кинетической энергии $\hat{T} = \frac{\hat{\mathbf{P}}^2}{2m}$ и оператор импульса $\hat{\mathbf{P}}$

коммутируют. Однако собственные функции оператора \hat{T} , принадлежащие одному собственному значению непрерывного спектра T, оказываются вырожденными: импульсам \mathbf{P} и $-\mathbf{P}$ соответствуют разные функции:

$$\Psi_1 = C_1 \exp(i \mathbf{P} \cdot \mathbf{r}/h)$$
, $\Psi_2 = C_2 \exp(-i \mathbf{P} \cdot \mathbf{r}/h)$,

но одинаковые собственные значения T:

$$T = \frac{\mathbf{P}^2}{2m} = \frac{\left(-\mathbf{P}\right)^2}{2m}.$$

Поэтому, согласно теореме 3, собственные функции оператора \hat{T} можно записать в виде линейной комбинации:

$$\Psi_T(\mathbf{r}) = C_1 \cdot e^{i\mathbf{P}\cdot\mathbf{r}/h} + C_2 \cdot e^{-i\mathbf{P}\cdot\mathbf{r}/h}$$
(36)

с C_i — произвольными константами. Собственные функции $\Psi_T(\mathbf{r})$ одновременно являются и общим решением уравнения (3). Таким образом, собственные волновые функции оператора \hat{T} будут иметь вид (36), а спектр собственных значений положителен, непрерывен, неограничен и вырожден.

Собственные функции оператора момента импульса

Уравнение:

$$\hat{M}_z \Psi(\mathbf{r}) = M_z \Psi(\mathbf{r})$$

запишем в сферических координатах $(\mathbf{r} = \{r, \theta, \varphi\})$:

$$-i\hbar \frac{\partial \Psi(r,\theta,\varphi)}{\partial \varphi} = M_z \Psi(r,\theta,\varphi) \tag{4}$$

Оно имеет простое решение

$$\Psi(\varphi) = C \cdot \exp[i M_z \cdot \varphi/h] = C \cdot e^{im\varphi}, \qquad (4a)$$

где безразмерную величину M_z/h обозначили:

$$m = \frac{M_z}{h} \,. \tag{46}$$

Заметим, что C > 0 может быть любой функцией переменных r и θ .

Функция $\Psi(\varphi)$ должна удовлетворять очевидному условию:

$$\Psi(\varphi) = \Psi(\varphi + 2\pi),$$

так как при повороте на угол $\phi = 2\pi$ ничего не должно меняться. Отсюда:

$$e^{im\varphi} = e^{im(\varphi + 2\pi)}$$

Это равенство выполняется только для целых m (nokasamb camocmosmenbho), что приводит к дискретному спектру проекций момента импульса:

$$\hat{M}_z \Psi(\varphi) = M_z(m) \Psi(\varphi), \quad M_z = mh, \ m = 0, \pm 1, \pm 2, \dots$$
 (4B)

Собственные функции этого оператора можно нумеровать целым числом m. Уравнение:

$$\hat{\mathbf{M}}^2 \Psi = \mathbf{M}^2 \Psi.$$

в сферических координатах:

$$-h^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Psi}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2} \Psi}{\partial \varphi^{2}} \right] = M^{2} \Psi$$
 (5)

сводится к известному уравнению Штурма-Лиувилля:

$$\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Psi}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 \Psi}{\partial \varphi^2} + \lambda \Psi = 0,$$

$$\lambda = \frac{M^2}{h^2}.$$
(Ш-Л)

c

Это дифференциальное уравнение второго порядка, в частных производных решается с помощью подстановки

$$\Psi(\theta, \varphi) = F(\theta)\Phi(\varphi)$$
.

Конечные решения этого уравнения ($|\Psi(\theta, \varphi)| < \infty$), которые представляют интерес для квантовой механики, получаются только для положительных целых чётных λ :

$$\lambda = \frac{M^2}{h^2} = l(l+1), M^2 = h^2 l(l+1),$$
 (6)

где l — натуральные числа, включая ноль. Поэтому, спектр собственных значений оператора $\hat{\mathbf{M}}^2$ также дискретен. Его собственные функции можно нумеровать натуральным целым квантовым числом l:

$$\hat{\mathbf{M}}^2 \Psi_l(\theta, \varphi) = h^2 l(l+1) \Psi_l(\theta, \varphi). \tag{7}$$

Спектр собственных значений оператора $\hat{\mathbf{M}}^2$ оказывается *вырожденным*. Каждому собственному значению

$$h^2 l(l+1)$$

соответствуют (2l+1) разных функций Ψ_l , различающихся проекциями момента импульса на ось Z. Чтобы их различать, для вырожденных функций вводят дополнительный нумератор - квантовое число проекции импульса m, принимающий целые положительные и отрицательные значения при заданном l:

$$-l \le m \le l$$

Функции $\Psi_{lm}(\theta, \varphi)$ хорошо изучены и их можно представить в виде:

$$\Psi_{lm}(\theta,\varphi) = C_{lm} P_l^{|m|}(\cos\theta) \cdot e^{im\varphi}, \tag{8}$$

где

$$P_{l}^{|m|}(x) = (-1)^{m} \cdot (1 - x^{2})^{\frac{|m|}{2}} \frac{d^{|m|}P_{l}(x)}{dx^{|m|}}, |m| = 0, 1, 2, ..., l$$
 (8a)

присоединённые полиномы Лежандра, выражающиеся через простые полиномы Лежандра, $P_l(x)$, для которых существует воспроизводящий функционал:

$$P_{i}(x) = \frac{1}{2^{i} I!} \frac{d^{i}}{dx^{i}} \left[(x^{2} - 1)^{i} \right]. \tag{86}$$

Требование нормировки функций Ψ_{lm} , наряду с ортогональностью, можно записать в виде:

$$\iint_{\Omega} \Psi_{lm}(\theta, \varphi) \Psi_{l'm'}(\theta, \varphi) \sin \theta d\theta d\varphi = \delta_{ll'} \delta_{mm'}, \tag{8B}$$

откуда следует, что константы C_{lm} в выражении (8) должны быть:

$$C_{lm} = \sqrt{\frac{(l-|m|)!}{(l+|m|)!} \frac{(2l+1)}{4\pi}}$$
 (8r)

Функции (8) известны в математической литературе под названием сферические и имеют обозначения:

$$\Psi_{lm}(\theta,\varphi) \equiv Y_l^m(\theta,\varphi). \tag{9}$$

Операторы $\hat{\mathbf{M}}^2$ и \hat{M}_z коммутируют ($\mathit{meopnpakmukym}$) и поэтому могут

Рис.5.Рельеф реальной части функции $Y_3^2(heta, arphi)$

иметь общие собственные функции, согласно теореме 4. Этими функциями как раз и являются сферические, так как наряду с равенством (7) имеет место равенство:

$$\hat{\mathbf{M}}_z \Psi_{lm} (\theta, \varphi) = mh \Psi_{lm} (\theta, \varphi). \tag{10}$$

Физическая причина вырождения спектра оператора $\hat{\mathbf{M}}^2$ заключается в том, что при заданной величине момента импульса $\sqrt{l(l+1)} \cdot h$, он может располагаться относительно оси \mathbf{Z} (2l+1) способом, а состояния с разными проекциями m, описываются разными функциями (8). \mathbf{Z} $\mathbf{L}^{(1)}$

 $Puc.6.\ Bозможные$ значения проекций на ось Z для момента импульса, определяемого квантовым числом l=2

На рисунке 6 представлены возможные проекции момента импульса с квантовым числом l=2.