Аппаратные средства телекоммуникационных систем

Особенности архитектуры системных плат

Особенности архитектуры системны плат

Аппаратные средства телекоммуникационных систем. Особенности архитектуры системных плат

Материнская (системная, главная) плата (Motherboard) является основным компонентом каждого ЭВМ. Это элемент, который управляет внутренними связями и с помощью системы прерываний взаимодействует с внешними устройствами.

В архитектуру системной платы интегрированы:

- Микросхемы чипсета (chip-set) (северный и южный мост, контроль перываний)
- Микросхема ПЗУ (CMOS), содержащая программу BIOS (UEFI), систему Plug&Play
- Систему магистралей (системная магистраль FBS, QPI, PCI-E, USB и т.д.)
- Разъем (сокет, PCI-E, USB, DIMM и т.д.), и внешние разъемы (USB, RJ-45 и т.д.)
- Платы расширения (сетевая, wi-fi, звуковая и т.д.)

Материнская (системная, главная) плата

(Motherboard) является основным компонентом каждого ЭВМ. Это элемент, который управляет внутренними связями и с помощью системы прерываний взаимодействует с внешними устройствами.

2. Блок-схема компьютера на чипсете Intel X58

- В архитектуру системной платы интегрированы:
 - **Микросхемы чипсета** (chip-set) (северный и южный мост, в т.ч. порывания Прямой доступ к памяти (DMA) и т.д.)
 - Микросхема ПЗУ (CMOS), содержащая программу BIOS(UEFI), систему Р&Р
 - **Систему магистралей** (системная магистраль (FBS, INTEL(QPI,DMI, FDI), AMD(HT, UMI)), PCI-E, USB и т.д.)
 - Разъем (сокет, socket) процессора,
 - Разъемы модулей оперативной памяти (SIMM, DIMM),
 - Разъемы видеоадаптера (AGP, PCI, PCI-Express),
 - Разъемы для подключения внешних запоминающих устройств (SATA, IDE)
 - Разъемы работы с периферийными устройствами и др. разъемы (USB, COM, IEEE 1394 (FireWire), PS/2 и др.)
 - Платы расширения (сетевая, wi-fi, звуковая и т.д.)
- Материнская плата во многом определяет производительность и функциональные возможности компьютера, включая средства оптимальной настройки и мониторинга.
- Основные производители: Intel, ASUSTek, MSI, GigaByte и тп

- **Чипсет.** Это связующий элемент системной платы, благодаря которому обеспечивается совместное функционирование центрального процессора, подсистем памяти, устройств ввода-вывода и так далее. Как правило, чипсет имеет северный мост и южный мост.
- **Северный мост** связь процессора с основными устройствами ЭВМ (ОЗУ, графическая карта)
- Южный мост за работа дисковой подсистемы и интерфейсные разъемы
- Иногда мосты объединены в одном чипе.
- **IDE-интерфейс.** Через данный интерфейс
- **Интерфейсы типа АТА (SATA) и IDE.** подключаются внутренние жесткие диски и оптические приводы.
- **Слоты расширения РСІ.** В разъемы РСІ вставляются звуковые и сетевые карты компьютера.
- Слоты PCI-Express x16. Установка графической платы.
- **Слоты PCI-Express x1.** Установка устройств типа Wi-Fi-карты и GSM-модемы, а также различные контроллеры.
- **Разъем для батарейки BIOS.** (CMOS-память, является энергозависимой), для ее питания используется специальная батарейка.

Особенности шинной организации системны плат

Аппаратные средства телекоммуникационных систем. Особенности архитектуры системных плат

Шинная организация платы.

- В современных платах предусмотрено несколько шин.
 - шины «процессор-память» (FSB, UMI, DMI);
 - шины ввода/вывода (PCI, PCI-Express, USB);
 - системные шины (DMA).

Виды шин

• По назначению:

- специализированные (например IDE, Ethernet)
- универсальные (например USB, PCI),
- По числу подключаемых устройств
 - Выделенные интерфейсы (одно устройство к одному порту)
 - Разделяемые интерфейсы(хабы)

• По степени синхронности:

- синхронные (осуществляющими передачу данных только по тактовым импульсам)
- асинхронные (осуществляющими передачу данных в произвольные моменты времени),
- С мультиплексированием (передачу адреса и данных по одним и тем же линиям)
- **Со схемами арбитража** (то есть способа совместного использования шины несколькими устройствами).
- Изохронные то есть на каждое устройство выделяется время передачи пакетов сообщений, и не важно сколько их в этот промежуток времени будет передано (пример USB хаб).

Виды шин

- Шины по методу передачи данных:
 - **Последовательные** (USB, SATA)
 - Передача пакетов по одному проводнику
 - Возможна организация двух каналов (прием и передача)
 - Данные объединяются в пакеты.
 - Пакет также могут включать служебную информацию.
 - Параллельные (PCI, DIMM, PATA)
 - параллельных шинах понятие «ширина шины» соответствует её разрядности количеству сигнальных линий, количеству одновременно передаваемых битов информации.
 - Возможны отдельные вывода под служебные сигналы
 - Последовательно-параллельные (PCI-Express)
 - Несколько последовательных шин
 - для повышения скорости передачи
 - Как правило работают асинхронно.
- По типу информации:
 - Дискретные (дискрет. Звуковые карты)
 - Аналоговые (VGA)
 - Цифровые (большинство)

Интерфейсные шины. Параллельные шины.

• Недостатки:

- Широкая шина данных
- отдельный тактирующий сигнал.

• Рассинхронизация

 Разница задержек сигнала между проводниками в шине ограничения на максимально возможную скорость передачи данных.

• Взаимное влияние устройств на шине

- Помехи, вызванные отражениями и разным время прохождения к различным нагрузкам.
 - Особенно влияют при больших длинах кабелей
 - Шум также может повредить данные.

Интерфейсные шины. Последовательные шины.

- интерфейсы «точка-точка».
- Низкое влияние шумов
 - Данные часто передаются по дифференциальной паре.
 - Внешний шум воздействует на оба проводника в паре, и, таким образом, перестает влиять на передаваемый сигнал.
- Линии передачи проще соединять, так как помехи взаимного влияния малы.
- Тактирующий сигнал не подается в явном виде;
 - <u>вместо этого, приемник восстанавливает его по временам</u> переключения данных (из 0 в 1 и из 1в 0).
- Хорошие интерфейсы могут работать на скоростях более 10 Гбит/с по медным проводникам, а по оптоволокну –быстрее.

Контроллеры шин

- За распределение порядка передачи данных по шине отвечает особое устройство контроллер (адаптеры) шины.
 - Сложный контроллер может иметь в своем составе и собственный процессор.
 - Если передача данных по шине происходит без участия центрального процессора, то говорят, что осуществляется **прямой доступ к памяти** (Direct Memory Access, **DMA**).
 - Для взаимодействия с программой (с помощью процессора или сопроцессоров) адаптеры и контроллеры обычно имеют регистры ввода-вывода, управления и состояния.

Контроллеры шин. Механизм прерываний

- Когда передача данных заканчивается, контроллер выдает
 прерывание, вынуждая центральный процессор приостановить
 работу текущей программы и начать выполнение особой
 процедуры.
 - процедура программой обработки прерываний
 - процедура, чтобы проверить, нет ли ошибок,
 - в случае обнаружения ошибок процедуедура произведет необходимые действия и сообщит операционной системе, что процесс ввода-вывода завершен.

Способы организации шин

Система с одной шиной — низкое быстродействие, строго последовательный доступ Достоинство — цена, простота

Параметр работы шины — трансферы в секунду, который указывает на количество операций по передаче данных в секунду. Например, 3200 МТ/с (мегатрансферы в сек) или 3.2 ГТ/с (гигатрансферы).

Способы организации шин

Система с двумя шинами – связь через адаптеры, разгрузка шины за счет отдельной магистрали для переферии

Параметр работы шины — трансферы в секунду, который указывает на количество операций по передаче данных в секунду. Например, 3200 МТ/с (мегатрансферы в сек) или 3.2 ГТ/с (гигатрансферы).

Способы организации шин

Система с тремя шинами. – Использование шины расширения для разгрузки основных магистралей

Интерфейсные шины

Аппаратные средства телекоммуникационных систем. Особенности архитектуры системных плат

Интерфейсные шины. Подключение периферийных устройств

- Большинство периферийных устройств подключаются через промежуточные периферийные интерфейсы
- К периферийным устройствам относятся:
 - большинство устройств хранения (дисковые, флэш),
 - устройств ввода-вывода (дисплеи, клавиатуры, мыши, принтеры, плоттеры),
 - коммуникационные устройств (внешние модемы).

Интерфейсные шины. Подключение периферийных устройств

- подключение периферийных устройств осуществляется через входные интерфейсы
 - Часто устройства имеют дополнительные контроллеры подключения
- Интерфейсы соединены с процессором и/или южным мостом системной платы
- Устройства соединяются через т.н. шины
 - Часто шины объединены в т.н. хабы

Интерфейсные шины. Разъемы интерфейсов на типичной материнской плате

Интерфейсные шины. Подключение периферийных устройств

Порядок подключения

- подсоединение периферийного устройства к узлу с помощью соответствующего кабеля или беспроводного соединения;
- подключение устройства к источнику питания;
- установка соответствующего драйвера.

Некоторые устройства не предусматривают самонастройки. Драйверы таких устройств устанавливаются после того, как устройство подключается к компьютеру и включается питание.

Драйверы самонастраивающихся устройств в системе уже имеются (PnP). В таком случае при подключении ОС распознает устройство и устанавливает соответствующий драйвер.

Шины процессор-память

Аппаратные средства телекоммуникационных систем. Особенности архитектуры системных плат

Шины процессор-чипсет. FSB шина

- **Шина FSB** (Front Side Bus) параллельная мультиплексированная процессорная шина.
- FSB соединяет процессор с основной памятью.
- FSB подключается к северному мосту чипсета, который содержит контроллер ОП.
- В некоторых компьютерах для соединения процессора с кэш-памятью второго уровня используется отдельная шина **BSB** (Back- Side Bus).
- FSB является «узким» местом работы пк, задавая тактовую частоты работы.
- Использование технологии DDR (double data rate) то есть синхронизации как по фонту и спаду (переднему и заднему фронтам).
- Многие устройства имеют свои шины (DMA- direct memory access).
- Асинхронность шин FSB и ОЗУ,
- Опорной частотой для процессора выступает частота тактирования (а не передачи данных) шины FSB,
- частота тактирования шины памяти может задаваться отдельно Достоинство – гибкость «разгона» процессора и памяти

Шины процессор-чипсет. FSB шина

Шина FSB – **QPB**, или Quad-Pumped Bus, способна передавать четыре блока данных за такт и два адреса за такт 64 разрядная шина ->256 бит информации за такт

(на самом деле меньше, так как часто данные занимают меньше 64 бит)

Временная диаграмма шины FSB-QPB

ТИ 1 и ТИ 2 — тактовые импульсы; f — частота ТИ 1; f_1 — частота ТИ 2; f_2 — частота передачи пакетов данных по шине FSB

Шины процессор-чипсет. HyperTransport (HT) шина

- Двунаправленная последовательно/параллельная компьютерная шина технология точкаточка.
- Синхронность частота ядра, ОЗУ и шины HyperTransport, привязаны к «шине» тактового генератора (HTT), -является опорной. (регулируются множителями)
- Топология на основе моста и тоннелей, объединённых в цепи последовательное объединение нескольких туннелей)
- **Мосты** (выполняет маршрутизацию пакетов между отдельными цепями),
- Архитектура легко масштабируется.
- Автоматическое определение ширины шины
- DDR.
- Позволяет передавать асимметричные потоки данных к периферийным устройствам и от них

Шины процессор-чипсет. НТ шина

Примеры использования HT: AMD процессоры, чипсеты nForce, ATI Radeon, Xbox, CISCO

Обеспечивающая высокую скорость при низкой латентности, простота масштабирования устройств

Шины процессор-чипсет. QPI шина

- Служит для соединения устройств в системе между собой, а также для «общения» процессоров между собой в многопроцессорных системах.
- Кэш—когеренстность (передача кэш-данных в обход оперативной памяти на полной скорости шины).
- Двунаправленный высокоскоростной обмен данными между процессором и внешней памятью, а также между процессором и контроллером ввода/вывода
- Специальные линии контроля ошибок передачи данных.
- Параллельное соединение устройств.
- Шина памяти встроена в процессор.
- В основном используют в серверах.

Доступ к локальной памяти

Доступ к удаленной памяти

Шины процессор-чипсет. Современные тенденции

Проблема— компенсация латентности доступа к памяти и быстродействующим устройствам.

В современных ЭВМ используют шины типа DMI (Intel) и UMI (AMD), а шины QPI и HT находятся внутри процессора

Особенности:

- Обеспечивается высокая скорость при низкой латентности,
- Технология точка-точка,
- Наличие в процессоре нескольких отдельных шин,
- Специальные шины для непосредственной связи процессора с памятью и хабами PCI-Express
 - Преимущество уменьшение задержек (латентности) при обращении процессора к оперативной памяти, (из пути следования данных по маршруту «процессор ОЗУ» (и обратно) исключаются такие загруженные элементы, как интерфейсная шина и контроллер северного моста).
- Синхронизация работы шины единым устройством, частоты каждого устройства регулируются коэффициентами.

Особенности архитектуры чипсетов

Аппаратные средства телекоммуникационных систем. Особенности архитектуры системных плат

Особенности чипсетов

Архитектура системной платы определяется набором микросхем (chipset):

- таймеры,
- система управления "обвязки" микропроцессора
- контроллеры прерываний
- контроллеры прямого доступа к памяти
- контроллеры связи между памятью и шиной,
- часы реального времени
- клавиатурный контроллер
- контроллеры внешних устройств

DDR3 8,5 Гбит/с Intel Core i7 Processor DDR3 8,5 Гбит/с family DDR3 8,5 Гбит/с QPI (25,6 Гбит/с) PCI Express 2.0 Graphics X58 Support for Северный мост до 36 IOH Multi-card configurations: линий 1x16, 2x16, 4x8 or other combination 2 Гбит/с DMI Intel High 12 Hi-Speed USB 2.0 Ports; **Definition Audio Dual EHCL; USB Port Disable** Мбит/с каждый 6 Serial ATA Ports; ICH10 Гбит/с eSATA; Port Disable 6 PCI Express x1 Мбит/с ICH10R каждый каждый х1 **Intel Matrix** Storage Technology Intel Integrated 10/100/1000 MAC Intel Turbo Memory LPC or SPI GLCI LCI with User Pinning **BIOS Support** Intel Gigabit LAN Connect **Intel Extreme** Южный мост Tuning Support

Чипсет определяет основные функциональные возможности платы:

- типы поддерживаемых процессоров,
- структура/объем кэша,
- возможные сочетания типов и объемов модулей памяти,
- поддержка режимов энергосбережения,
- возможность программной настройки параметров

Современные версии чипсетов Intel

<u>Использование субядра процессора</u>

для доступа к главным компонентам ПК (функции

северного моста).

Оптимизация частоты процессора (turboboost).

QРІ встроена в процессор.

<u>Выделенные линии PCI-е в</u> процессоре.

Создание RAID массивов для хранения данных (с резервированием или проверкой данных).

Поддержка SLI – объединение видеоадаптеров 64 разрядная шина

Фирмы производители чипсетов Intel, а также NVidea, и Asus.

Современные версии чипсетов AMD

Современные чипсеты Использование субядра процессора для доступа к главным компонентам ПК (функции северного моста).

Оптимизация частоты процессора (turboboost).

HyperTransport встроена в процессор.

Шина работы с процессором UMI PCI-e16=2xPCI-e8 (CrossFireX)

64 разрядная шина

RAID массивы

Особенности базовых систем ввода-вывода BIOS и UEFI

Аппаратные средства телекоммуникационных систем. Особенности архитектуры системных плат

Базовая система ввода-вывода (BIOS)

Базовая система ввода-вывода (Basic Input-Output System, BIOS) – система компонентами ЭВМ на основе средств, предоставляемых чипсетом.

- <u>BIOS представляет собой набор микропрограмм</u>, которые хранятся в постоянной (энергонезависимой) памяти ROM BIOS CMOS или флэш-памяти (Flash) (ПЗУ базовой системы ввода-вывода).
- Системный модуль BIOS должен обслуживать в соответствии со своими функциям все компоненты, установленные на системной плате: процессор, контроллер (памяти (ОЗУ и кэш), прерываний и DMA, системный таймер, системный порт, CMOS RTC, клавиатуры, ЗУ, стандартные периферийных контроллеры и адаптеры, даже если они не установлены на системной плате.

Базовая система ввода-вывода (BIOS)

- <u>BIOS находится на самым нижнем уровне ПО</u>, который *обеспечивает* изоляцию вышестоящих уровней от подробностей реализации аппаратных средств компьютера.
- BIOS должен соответствовать конкретной материнской плате.
- <u>BIOS обеспечивает программную поддержку стандартных устройств ЭВМ,</u> конфигурирование аппаратных средств, их диагностику и вызов загрузчика операционной системы.
 - Любые изменения конфигурации (например, информация о новом винчестер, время и дата) записываются в специальную область памяти RAM.
 - Данная область памяти находится в южном мосте чипсета и питается от специальной батарейки.

CMOS RAM BIOS и батарейка

Базовая система ввода-вывода (BIOS). Функции

- Инициализация и начальное тестирование аппаратных средств POST;
- Настройка и конфигурирование аппаратных средств и системных ресурсов CMOS Setup;
- Автоматическое распределение системных ресурсов PnP BIOS;
- Идентификация и конфигурирование устройств PCIe и других— PCI BIOS;
- Начальная загрузка (первый этап загрузки операционной системы) **Bootstrap Loader** (Master Boost Recorder, или MBR главная загрузочная запись;)
- Обслуживание аппаратных прерываний от системных устройств (таймера, клавиатуры, дисков) **BIOS Hardware Interrupts**;
- Отработка базовых функций программных обращений (сервисов) к системным устройствам **ROM BIOS Services**;
- Поддержка управляемости конфигурированием **DMI BIOS**;
- Поддержка управления энергопотреблением и автоматического конфигурирования например утилиты **APM и ACPI BIOS**.

Базовая система ввода-вывода (BIOS). Plag&Play (PnP)

- Стандарт Plag&Play (подключай и работай) позволяет системам и адаптерам, поддерживающим его, автоматически настраивать друг друга и определятся в операционной системе (автоматически определять драйвер).
- Стандарт настраивает для каждого устройства (мышь, клавиатура, платы расширения) :
 - определенное адресное пространство,
 - линии прерываний (IRQ),
 - каналы прямого доступа к памяти (DMA)
 - адреса ввода/вывода (I/O).
- Аппаратные средства, поддерживающие стандарт Plug&Play, информируют BIOS и операционную систему о необходимых им ресурсах и, самонастраиваются на основании полученной информации.
- Plug&Play настраивается в режиме POST.
- Устройства PnP

Базовая система ввода-вывода (BIOS). UEFI-BIOS

Unified Extensible Firmware Interface - стандартизированный расширяемый интерфейс встроенного программного обеспечения — является расширенным BIOS. (изначально EFI от Intel), (UEFI поддерживается начиная с Windows 7 sp1)

Как старая BIOS, так и ее преемник UEFI являются связующим звеном между компонентами материнской платы и операционной системы. Для сокращения времени загрузки UEFI наделен некоторыми полезными функциями, многие из которых в настоящее время не используются.

UEFI проверяет компоненты, инициализирует дайвера, позволяет запускать программы в своей ОС, заранее хранит информацию об загрузчике ОС и о драйверах, ОС может использовать драйвера UEFI

Базовая система ввода-вывода (BIOS). UEFI-BIOS

	ХАРАКТЕРИСТИКИ BIOS LEGACY	ХАРАКТЕРИСТИКИ UEFI	
Поддерживаемые режимы работы процессора	Режим реальных адресов	Режим реальных адресов, защищенный режим	
виртуальная память	Не поддерживает	Поддерживает	
Объем ОЗУ	1 Мбайт	Не ограничен	
Пространство опционального ПЗУ (Option ROM)	1 Мбайт	Не ограничено	
Доступ к регистрам	16-битный	16, 32,64 -битный,	
Независимость от архитектуры	Не обеспечивает	Обеспечивает	
Язык программирования	Ассемблер	Си/ассемблер	
Функция безопасной загрузки	Отсутствует	Присутствует	
Таблица разделов жесткого диска	MBR	GPT	

Базовая система ввода-вывода (BIOS). Особенности UEFI

• Снижение времени на загрузку

BIOS

- параллельной инициализации и хранения информации о драйверах и адресах загрузки ОС
- Загрузка дисков объемом более 2 Тб.
 - BIOS для загрузки использовал MBR (Main Boot Record) основная загрузочная запись, которая может адресовать 2 Тб пространства, UEFI же использует **GPT (Guid Partition Table)** это стандарт формата размещения разделов на физическом жестком диске, который позволяет адресовать 9,4 3Б (Зеттабайт).
 - возможна загрузка в режиме совместимости с диска с разметкой MBR.
 - По умолчанию файловая система FAT32 с GPT-разделами.
 - Загрузчик UEFI хранится по определенному адресу: efi\boot\bootx64.efi

CHOS Setup Utility - Copyright. CO. 1985-2004. free from Red

> Standard CHOS Features

> Odranoed HOS Features

> Odranoed Chipset Features

| Indiganced Chipset Features | Load Pail-Safe Ref
| Indiganced Chipset Features | Load Optimized Ref
| Integrated Peripherals | HOS Setting Passal
| Four Management Features | Sour & East Setup
| PROPECT Configurations | Exit Utibust South
| FC Health Status | Configurations | Exit Utibust South
| FC Health Status | Configurations | Conf

UEFI

Базовая система ввода-вывода (BIOS). Особенности UEFI

- графический интерфейс с поддержкой мыши, встроенные программы,
- Поддержка криптографии и других методов защиты. Secure boot
 - Безопасная загрузка (проверка ОС на изменения с предыдущей загрузки).
 - Набор подписанных ключей драйверов(аутентификация) (драйвера устройств,
 ОС, платформы).
 - 4 режима работы ПК- настройка, аудит, пользовательский и расширенный.
 Режимы отличаются уровнем доверия к ключам.
- Поддержка удаленной работы (настройки UEFI по сети).
- **Возможность загрузки UEFI с ЗУ** или по сети
- Менеджер загрузок выбор ОС
- Поддержка встроенных утилит, таких как, браузер или иногда подобие Live CD, у каждого производителя свой UEFI

Базовая система ввода-вывода (BIOS). Особенности UEFI

- Основная идея UEFI сделать прошивку модульной и расширяемой.
 - UEFI позволяет расширять прошивку через загрузку образов (драйверов или приложений в формате PE32/PE32+.).
- Расширение, а также идентификация компонентов UEFI выполняется с помощью GUID-записей.
 - GUID представляет собой уникальный 128-битный идентификатор, соответствующий тому или иному компоненту прошивки.
- Любое устройство или образ в UEFI имеют собственный протокол обработки.
 - Каждый протокол состоит из GUID и структуры интерфейса протокола.
 - Структура интерфейса протокола содержит функции и данные, которые используются для доступа к тому или иному устройству.
- Управление протоколами обеспечивают специальные службы UEFI (LocateProtocol, OpenProtocol и другие).

Примеры образов UEFI

Structure					
Name	Action	Type	Subtype	Text	
▼ CDBB7B35-6833-4ED6-9AB2-57D2ACDDF6FØ		Volume	FFSv2		
> DxeCore		File	DXE core	DxeCore	
> PcdDxe		File	DXE driver	PcdDxe	
> ReportStatusCodeRouterRuntimeDxe		File	DXE driver	ReportStatusCodeRouterRuntimeDxe	
> StatusCodeHandlerRuntimeDxe		File	DXE driver	StatusCodeHandlerRuntimeDxe	
> ReportStatusCodeRouterSmm		File	SMM module	ReportStatusCodeRouterSmm	
> StatusCodeHandlerSmm		File	SMM module	StatusCodeHandlerSmm	
> DatahubStatusCodeHandlerDxe		File	DXE driver	DatahubStatusCodeHandlerDxe	
> StatusCodeRuntimeDxe		File	DXE driver	StatusCodeRuntimeDxe	
> 07A01ACF-46D5-48DE-A63D-74FA92AA8450		File	DXE driver	GenericIpmi	
> D14443FF-3626-4BCC-8204-196D11F06BC5		File	SMM module	SmmGenericIpmi	
> 490D0119-4448-440D-8F5C-F58FB53EE057		File	DXE driver	PolicyInitDxe	
> SectionExtractionDxe		File	DXE driver	SectionExtractionDxe	
> E0471A15-76DC-4203-8B27-6DB4F8BA644A		File	DXE driver	UbaConfigDatabaseDxe	