

Modulhandbuch Master Wirtschaftsinformatik (wiM)

FAKULTÄT INFORMATIK HOCHSCHULE REUTLINGEN

Stand: 28.02.2025

Inhalt

Inhalt	1
Modulliste:	3
Grafische Darstellung Curriculum Master Wirtschaftsinformatik	5
Schlüsselqualifikation	6
Jahresprojekt (Teil 1 und Teil 2)	11
Bereich Digital Business	13
Unternehmensplanspiel	13
Digital Innovation	16
Product Management	19
Digital Strategy	22
Digital Business Models	26
Management Consulting	29
Innovation for Sustainable Business	32
Bereich Data and Analytics	35
Data Management and Analytics	35
Theoretische Informatik	38
Business Intelligence and Corporate Performance Management	41
Internet of Things	45
Intelligente Systeme und Verfahren	48
Data Science / Statistical Learning	50
Knowledge Representation and Natural Language Processing	53
Bereich Enterprise Computing	55
Software Architecture	55
Cloud und Big Data Technologien	58
Cloud Computing	61
Enterprise Services Development	65
Business Process Technology	69
Architekturmanagement	73
Demand Driven Supply Chain Management	77
Intelligente Informationssysteme	80
Master-Thesis und Master-Kolloquium	84

Im Folgenden werden die einzelnen Module im Detail beschrieben. Wird nichts anderes erwähnt, sind die zu erbringenden Prüfungsleistungen benotet.

Modulliste:

Semester	Module/Vorlesung	ECTS
1. Semester:		
WIM11 WIM12	Schlüsselqualifikation Jahresprojekt Teil 1	5 5
2. Semester		
WIM21	Jahresprojekt Teil 2	5
1. und 2. Sem	ester	
WIMB1X	Studienbereich: Digital Business	
WIMB11 WIMB12 WIMB13 WIMB15 WIMB17 WIMB18 WIMB19	Unternehmensplanspiel Digital Innovation Product Management Digital Strategy Digital Business Models Management Consulting Innovation for Sustainable Business	5 5 5 5 5 5 5 5
WIMB2X	Studienbereich: Data and Analytics	
WIMB21 WIMB22 WIMB23 WIMB24 WIMB25 WIMB26 WIMB27	Data Management and Analytics Theoretische Informatik Business Intelligence & Corporate Performance Management Internet of Things Intelligente Systeme und Verfahren Data Science / Statistical Learning Knowledge Representation and Natural Language Processing	5 5 5 5 5 5
WIMB3X	Studienbereich: Enterprise Computing	
WIMB31 WIMB32 WIMB33 WIMB34 WIMB35 WIMB36 WIMB37 WIMB38	Software Architecture Cloud und Big Data Technologien Cloud Computing Enterprise Services Development Business Process Technology Architekturmanagement Demand Driven Supply Chain Management Intelligente Informationssysteme	5 5 5 5 5 5 5
3. Semester		
WIM31 WIM32	Master-Kolloquium Master-Thesis	3 27

Grafische Darstellung Curriculum Master Wirtschaftsinformatik

Wirtsc	Wirtschaftsinformatik Master			
Semester		Abschluss Master of Science		
m	Master-Thesis und Master-Kolloquium			
2	WPM	WPM	WPM	Jahresprojekt Teil 2 2 SWS
1	Schlüssel- qualifikation 4 SWS	WPM	WPM	Jahresprojekt Teil 1 2 SWS
ECTS be	1 2 3 4 5 6 7 8 9 mesterwochenstunde (45 Minuten)	10 11 12 13 14 15 16 17 18	19 20 21 22 23 24	25 26 27 28 29 30
	Wahlpflichtmodule Studienbereich Digital Business	Wahlpflichtmodule Studienbereich Data and Analytics		Wahlpflichtmodule Studienbereich Enterprise Computing
	Unternehmensplanspiel (4 SWS)	Data Management and Analytics (4 SWS)	VS) Software Architecture (4 SWS)	ture (4 SWS)
1	Digital Innovation (4 SWS)	Theoretische Informatik (4 SWS)	Cloud und Big Data Technologien	a Technologien
1	Product Management (4 SWS)	Business Intelligence and Corporate	(4 SWS)	
1	Digital Strategy (4 SWS)	Performance Management (4 SWS)	Cloud Computing (4 SWS)	(4 SWS)
	Digital Business Models (4 SWS)	Internet of Things (4 SWS)	Enterprise Services Development	s Development
1	Management Consulting (4 SWS)	Intelligente Systeme und Verfahren (4 SWS)	(+ 3003) Business Process T	(+ 5w3) Business Process Technology (4 SWS)
	Innovation for Sustainable Business (4 SWS)	Data Science / Statistical Learning	Architekturmanagement (4 SWS)	ement (4 SWS)
		(4 SWS)	Demand Driven Supply Chain Mgmt.	upply Chain Mgmt.
		Knowledge Representation and Natural Language Processing (4 SWS)		nationssysteme:
			Compound AI (4SWS)	WS)

Modul:	Schlüsselqualifikation
Kürzel:	WIM11
Untertitel:	Wissenschaftliches Arbeiten und Publizieren,
	Interkulturelle Kompetenz
Lehrveranstaltungen:	Vorlesung
Studiensemester:	Jedes Semester
Modulverantwortlicher:	Prof. Dr. Dennis Schlegel
Dozent(in):	Dr. Stefan Kehrer
	Dr. Birgit Meyer
Sprache:	Deutsch
Zuordnung zum Curriculum:	Pflichtfach, 1. Semester
Lehrform / SWS:	Vorlesung: Wissenschaftliches Arbeiten 2 SWS Vorlesung: Interkulturelle Kompetenz 2 SWS
Arbeitsaufwand:	Präsenzstudium: 60 Stunden Eigenstudium: 90 Stunden
Kreditpunkte:	5 ECTS
Voraussetzungen nach StuPro:	Keine
Empfohlene Voraussetzung:	Keine
Studien-/Prüfungsleistungen/ Prüfungsform:	Vorlesung "Wissenschaftliches Arbeiten": Hausarbeit, Referat Vorlesung "Interkulturelle Kompetenz": Referat
Modulziel:	
Wissenschaftliches Arbeiten:	
Die Teilnehmer erwerben die Fähigkeit zur w	vissenschaftlichen Forschung und zum Publizieren.
Angestrebte Lernergebnisse:	
Kenntnisse:	

Die Teilnehmer lernen verschiedene qualitative und quantitative Forschungsmethoden der Wirtschaftsinformatik kennen. Sie sind darüber hinaus in der Lage wissenschaftliche Literatur

systematisch zu identifizieren und zu analysieren, um den aktuellen Stand der Forschung darzustellen. Sie lernen relevante Forschungsfragen zu einem Thema zu formulieren und zielgerichtete Untersuchungen zur Lösung der Fragen zu entwickeln. Sie lernen ihre Erkenntnisse wissenschaftlich und formgerecht darzustellen.

Kompetenzen:

Die Studierenden sind in der Lage, die für die Wirtschaftsinformatik relevanten Forschungsmethoden erfolgreich anzuwenden. Sie können den Stand der Forschung ermitteln und ihren eigenen Beitrag kritisch beurteilen. Sie arbeiten wissenschaftlich nach internationalen Publikationsrichtlinien.

LE#	Lernergebnis (LE)	Geprüft durch
LE1	Wissenschaftliche Quellen systematisch analysieren und in die eigene wissenschaftliche Arbeit einzuordnen	Gruppenarbeit, Präsentation/Reflexion, Ausarbeitung
LE2	Wissenschaftliche Texte erstellen und reflektieren	Gruppenarbeit, Präsentation/Reflexion, Ausarbeitung
LE3	Ein Exposé für ein wissenschaftliches Projekt oder eine Abschlussarbeit konzipieren und durch wissenschaftliche Methoden und Instrumente unterfüttern	Gruppenarbeit, Präsentation/Reflexion, Ausarbeitung

Inhalt:

Definitionen von "Wissenschaft", Wissenschaftliche Disziplinen, Grundsätze des Wissenschaftlichen Arbeitens, Planung und Konzeption wissenschaftlicher Arbeiten, Systematische Literaturanalyse und Reviewmethoden, Wissenschaftliches Schreiben, Zitationsstile, Strukturierung wissenschaftlicher Texte, Erstellung wissenschaftlicher Gutachten, Reflektion, Exposé für Projekte und Abschlussarbeiten, wissenschaftliche Methoden, Publikationsmöglichkeiten

Medienformen:

Seminaristischer Unterricht, Tafel, Vortrag, Demos, Übungsaufgaben, Skript mit PPT-Folien, Präsentationen/Reflexionen, Beispielhafte Publikationen.

Literatur:

- Helmut Balzert, Marion Schröder, Christian Schäfer (2011): Wissenschaftliches Arbeiten.
 2. Auflage, W3L.
- Helga Esselborn-Krumbiegel (2008): Von der Idee zum Text. Eine Anleitung zum wissenschaftlichen Schreiben. 3. Auflage, UTB.
- Loraine Blaxter, Christina Hughes, Malcolm Tight (2001): How to Research. 2. Auflage, Open University Press.
- Katrin Bergener, Nico Clever, Armin Stein (2019): Wissenschaftliches Arbeiten im Wirtschaftsinformatik-Studium: Leitfaden für die erfolgreiche Abschlussarbeit. 1. Auflage, Springer Gabler.
- Arlene Fink (2013): Conducting Research Literature Reviews: From the Internet to Paper.
 SAGE Publications.

Modulziel:

Interkulturelle Kompetenz

Die Teilnehmer erwerben theoretische und praktischen Grundlagen interkultureller Kompetenz für eine effektive Beratungstätigkeit und Teamarbeit in internationalen Kontexten.

Angestrebte Lernergebnisse:

Kenntnisse:

Die Teilnehmer lernen verschiedene theoretische Ansätze zum Umgang mit kultureller Diversität und ihre praktischen Anwendungsmöglichkeiten kennen. Sie erwerben Grundlagenkenntnisse interkulturelle Kommunikation und ein Verständnis für die Bedeutung adressatenorientierter Kommunikation in der internationalen Zusammenarbeit. Die Teilnehmer erwerben Regionalkompetenzen ausgewählter wirtschaftlicher Regionen und sowie international relevanter Formen von "Business Behavior".

Kompetenzen:

Die Studierenden sind in der Lage, kulturelle Diversität in beruflichen Zusammenhängen zu erkennen und mit Hilfe der Analysewerkzeuge zu verstehen. Sie haben eine Sensibilität für die Wirkung ihrer eigenen kulturellen Prägung entwickelt und sind in der Lage, durch Perspektivwechsel ethnozentrisches Verhalten zu überwinden. Die Studierenden haben ein grundlegendes Verständnis für die Bedeutung kultureller Diversität in der Dynamik von Teams, im Führungsverständnis und allgemein in der internationalen Zusammenarbeit im IT-Bereich entwickelt.

LE#	Lernergebnis (LE)	Geprüft durch
LE1	Interkulturelle Sensibilisierung: Erkennen des eigenen Ethnozentrismus und seine Überwindung durch Perspektivwechsel	Kultursimulationen und Analyse von Case Studies
LE2	Erkennen und einüben verschiedener Kommunikationsstile, Wahl angemessener Kommunikationsformen in Bezug auf Kontext, Gesprächspartner und Kultur	Rollenspiele und Gruppenarbeiten
LE3	Kenntnis und Verständnis regional unterschiedlicher Kulturstandards und ihre Auswirkungen auf die Praxis	Gruppenarbeit und Präsentationen
LE4	Umsetzung der theoretischen Grundlagen in praxisnahen Beispielen und Situationen	Anfertigung von Konzepten und Lösungsstrategien

Inhalt:

Theoretische Grundlagen: Kulturbegriff und wissenschaftliche Werkzeuge für die Analyse kultureller Diversität, interkulturelle Kommunikation, Führungsstile und Business Behavior im internationalen Vergleich, interkulturelles Projekt- und Personalmanagement, Grundlagen der internationalen Zusammenarbeit virtueller und agiler Teams, Regionalkompetenzen zu ausgewählten Ländern.

Medienformen:

Seminaristischer Unterricht, Vortrag, Skript mit PPT-Folien, Übungen (Kultursimulationen, Case Studies, Gruppenarbeiten), Analyse von Videomaterial, Präsentationen in Teams.

- Bolten, J. (2007): Einführung die Interkulturelle Wirtschafskommunikation, Vandenhoeck & Ruprecht, Göttingen
- Brodbeck, F.C. (2008): Die Suche nach universellen Führungsstandards: Herausforderungen im globalen Dorf. In: Wirtschaftspsychologie aktuell 1/2008, S. 19-22.
- Engelen, A./Tholen, E. (2014): Interkulturelles Management, Schäffer-Poeschel, Stuttgart
- Groysberg, B./Lee, J./Price, J./Cheng, J. Y. J. (2018): Guide to Corporate Culture. How to manage the eight critical elements of organizational life. In: Harvard Business Review January February 2018, p. 45-52.
- Gutting, D. (2016): Interkulturelles Management, Diversity und international Kooperation. Herne: NWB Verlag.

- Haller P.M./ Nägele, U. (2013): Praxishandbuch interkulturelles Management: der andere Weg: affektives Vermitteln interkultureller Kompetenz, Springer Gabler, Wiesbaden
- Meyer, E. (2014): The Culture Map. Decoding how people think, lead, and get things done across cultures. New York: Public Affairs.
- Roth, J. /Köck, C. (Hg.) (2011): Culture communication skills Interkulturelle Kompetenz. Handbuch für die Erwachsenenbildung. München.
- Lang, R. / Baldauf, N. (2016): Interkulturelles Management. Wiesbaden: Springer Gabler.
- Rothlauf, J. (2014): Interkulturelles Management. Mit Beispielen aus Vietnam, China, Japan, Russland und den Golfstaaten, Oldenbourg, München
- Schroll-Machl, S. (2013): Die Deutschen- Wir Deutsche. Fremdwahrnehmung und Selbstsicht im Berufsleben, Vandenhoeck & Ruprecht, Göttingen

Modul:	Jahresprojekt (Teil 1 und Teil 2)		
Kürzel:	WIM12 und WIM21		
Untertitel:			
Lehrveranstaltungen:	Projekt		
Studiensemester:	Jedes Semester		
Modulverantwortlicher:	Studiendekan Wirtschaftsinformatik Master		
Dozent(in):	Professorinnen und Professoren der Fakultät Informatik		
Sprache:	Deutsch		
Zuordnung zum Curriculum:	Pflichtfach, 1. und 2. Semester		
Lehrform / SWS:	Projekt jeweils 2 SWS		
Arbeitsaufwand:	Präsenzstudium Eigenstudium	jeweils 30 Stunden jeweils 120 Stunden	
Kreditpunkte:	jeweils 5 ECTS		
Voraussetzungen nach StuPro:	Keine		
Empfohlene Voraussetzung:	Keine		
Studien-/Prüfungsleistungen/ Prüfungsform:	Projekt: jeweils eine Projektarbeit		
Modulziele:			
In diesem Modul sollen die Studierenden ihr Schlüsselkompetenzen sowie ihre digitale K Wirtschaftsinformatik gesamthaft zur Anwer	ompetenz in einem	umfassenden Fallbeispiel aus der	
Angestrebte Lernergebnisse			
Kenntnisse:			
Die Studierenden kennen die wissenschaftli Organisation und zum Management von Pro	·		

Projekt-Managements vertraut. Sie sind mit fortgeschrittenen Themen aus der jeweiligen

Anwendungsdomäne vertraut.

_		- 1		٠.	
Fe	rtı	വ	<i>ι</i> Δ	ı†Δ	'n
ıc	ıu	≤	ľ	ונכ	. I I .

Die Studierenden können anhand einschlägiger Methoden Arbeits- und Zeitpläne systematisch erstellen und dabei eine Arbeitsteilung und Arbeitszusammenführung berücksichtigen. Sie können den Arbeitsstand angemessen dokumentieren und kommunizieren und ggf. den Arbeits- und Zeitplan anpassen. Die Studierenden können zu einem ausgewählten Fachthema wissenschaftlich fundierte Recherchen durchführen. Sie können die Ergebnisse der Projektgruppe vor einem fachkundigen Publikum und mit fachspezifischer visueller Unterstützung auf hohem Niveau präsentieren.

Kompetenzen:

Die Studierenden verfügen über fortgeschrittene fachliche Kompetenzen und erweiterte Methodenkompetenz. Die Kommunikations- und Teamfähigkeit der Studierenden ist wesentlich weiterentwickelt. Ihre Sozial- und Problemlösungskompetenz ist gestärkt.

Inhalt:

Durch den Dozenten teilweise moderierte aber weitgehend eigenständige Projektarbeit an einer umfassenden Aufgabenstellung aus dem Themenfeld der Wirtschaftsinformatik. Die Bearbeitung der Aufgabenstellung erfolgt in einem Team von Studierenden. Die Regelgröße des Teams beträgt 8 Studierende. Das erarbeitete Projektergebnis und die Projekterfahrungen sind in Form einer Zwischen- und einer Abschlusspräsentation einem fachkundigen Publikum vorzustellen und in einer anschließenden Diskussion zu verteidigen. Die Projektergebnisse sind in einer Projektdokumentation gesamthaft zu erfassen.

Projektspezifische Medienformen.

Literatur:

Medienformen:

Abhängig von der jeweiligen Aufgabenstellung

Bereich Digital Business

Modul: Unternehmensplanspiel

Kürzel: WIMB11

Untertitel:

Lehrveranstaltungen: Seminar

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dipl.-Kfm. Armin Roth

Dozent(in): Dr. Stefan Knopf

Sprache: Deutsch

Zuordnung zum Curriculum: Wahlpflichtfach, 1./2. Semester

Lehrform / SWS: Seminar 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/ Seminar: Hausarbeit, Referat

Prüfungsform:

Modulziele:

Das Modul führt die Studierenden durch alle Bereiche einer Unternehmensführung und fördert somit zum unternehmerischen Denken in allen Facetten heraus. In einem abgeschlossenen Raum kann so erlebt werden, welche Folgen sich aus welchen unternehmerischen Entscheidungen und Aktionen ergeben.

Angestrebte Lernergebnisse

Kenntnisse:

- Strategisches Management & Controlling: Prozess und Instrumente kennen lernen.
- Operatives Management & Controlling: Prozess und Instrumente kennen lernen.
- Organisation erklären können.

- Unternehmenskultur international beschreiben können.
- Personalmanagement kennen lernen.
- Materialwirtschaft erklären können.
- Produktionsmanagement beschreiben können.
- Marketing und Vertrieb beschreiben können.
- Investition und Finanzierung kennen lernen.
- Berichterstattung/Kennzahlensysteme der Performance-Messung erklären können.

Fertigkeiten:

Die Studierenden durchleben die Lebensphasen eines Unternehmens und entscheiden, welche Maßnahmen eingeleitet werden sollen, um ein strategisches Unternehmensziel zu erreichen. Dabei analysieren sie den Ist-Stand des Unternehmens mittels Berichterstattung / Kennzahlensystem. Durch Controlling wird überprüft, ob die Zielvorgaben mittels der eingesetzten Maßnahmen erreicht werden können. Die Studierenden erkennen die Bezugsgrößen von Marketing und Vertrieb, Produktion, Logistik, Forschung und Entwicklung im Hinblick auf die Unternehmensziele und können den Faktor Personal analysieren und in Ihre Entscheidungen einbeziehen.

Kompetenzen:

Nach Abschluss des Moduls diskutieren die Studierenden betriebswirtschaftliche Fragen aus dem Blickwinkel des Managers eines Unternehmens. Sie können ihre Entscheidungen begründen und darstellen und können Entscheidungen argumentativ vertreten sowie reflektieren. Durch die Aufteilung in unterschiedliche Bereiche eines Unternehmens wird die Delegation von Aufgaben erkannt und die Wichtigkeit von exakten Zielbeschreibungen erfahren.

LE#	Lernergebnis (LE)	Geprüft durch
LE1	Kenntnis der spezifischen Herausforderungen der Unternehmensführung	Referat, Hausarbeit
LE2	Anwendung der Vorgehensmodelle und Methoden zur Unternehmensführung	Gruppenarbeit, Referat, Hausarbeit
LE3	Management- und Controllingprozesse verstehen und beschreiben können	Referat, Fallstudienarbeit Ausarbeitung
LE4	Aktionsparameter des Managements kennen und beurteilen können	Referat, Fallstudienarbeit, Ausarbeitung

Inhalt:

- Strategisches Management & Controlling: Prozess und Instrumente.
- Operatives Management & Controlling: Prozess und Instrumente.
- Organisation.
- Unternehmenskultur international.
- Personalmanagement.
- Materialwirtschaft.
- Produktionsmanagement.
- Marketing und Vertrieb.
- Investition und Finanzierung.
- Berichterstattung/Kennzahlensysteme der Performance-Messung.

Medienformen:

Einführende Vorlesung zum Planspiel, Teamarbeit im Planspiel, Präsentation und schriftliche Ausarbeitung von Referaten, Simulationssystem TOPSIM, Fallstudien, fallstudienbezogene Literatur.

- Achleitner, Ann-Kristin (2004): Private Debt alternative Finanzierung für den Mittelstand. Finanzmanagement Rekapitalisierung institutionelles Fremdkapital. Stuttgart: Schäffer-Poeschel (Handelsblatt-Bücher).
- Buchholz, Rainer: Internationale Rechnungslegung. Die wesentlichen Vorschriften nach IFRS und HGB - mit Aufgaben und Lösungen. Jeweils neueste Auflage, Berlin: Schmidt (ESV basics Rechnungslegung Generally Accepted Accounting Principles International Accounting Standards).
- Dillerup, Ralf; Stoi, Roman: Unternehmensführung. Jeweils neueste Auflage, München: Vahlen.
- Horváth, Péter: Controlling. Jeweils neueste Auflage, München: Vahlen (Vahlens Handbücher der Wirtschafts- und Sozialwissenschaften).
- Reichmann, Thomas: Controlling mit Kennzahlen und Managementberichten. Grundlagen einer systemgestützten Controlling-Konzeption. Jeweils neueste Auflage, München: Vahlen.
- Roth, Armin (2014): Ganzheitliches Performance Management, München: Haufe.
- Steinmann, Horst; Schreyögg, Georg: Management. Grundlagen der Unternehmensführung; Konzepte Funktionen Fallstudien. Jeweils neueste Auflage. Wiesbaden: Springer/Gabler.

Modul:	Digital Innovation	1	
Kürzel:	WIMB12		
Untertitel:			
Lehrveranstaltungen:	Vorlesung		
Studiensemester:	Wintersemester		
Modulverantwortlicher:	Prof. Dr. Jürgen Münch		
Dozent(in):	Prof. Dr. Jürgen Münch		
Sprache:	Deutsch		
Zuordnung zum Curriculum:	Wahlpflichtfach, 1./2. Semester		
Lehrform / SWS:	Vorlesung	4 SWS	
Arbeitsaufwand:	Präsenzstudium Eigenstudium	60 Stunden 90 Stunden	
Kreditpunkte:	5 ECTS		
Voraussetzungen nach StuPro:	Keine		
Empfohlene Voraussetzung:	Keine		
Studien-/Prüfungsleistungen/ Prüfungsform:	Vorlesung: Referat		
Modulziele:			
Das Modul "Digital Innovation" gibt Ihnen einen Überblick über wichtige Methoden und Ansätze der Innovationsentwicklung für digitale Produkte und Dienstleistungen. Es befähigt Sie einerseits, wichtige Innovationsmethoden selbst anzuwenden. Andererseits werden Sie in die Lage versetzt, nnovationsprozesse in Startups und etablierten Unternehmen zu initiieren, zu begleiten sowie eine förderliche Umgebung für Innovationen zu schaffen. Darüber hinaus Iernen Sie, Ergebnisse und den Fortschritt von Innovationsprozessen im Unternehmenskontext zu kommunizieren.			
Angestrebte Lernergebnisse			
Kenntnisse:			

Die Studierenden kennen wichtige Innovationsmethoden und -prozesse. Sie haben sich fachspezifische Kenntnisse zur Gestaltung und Durchführung von Innovationsentwicklungen im Unternehmenskontext angeeignet. Sie kennen die Besonderheiten digitaler Technologien und

können diese nutzbringend in den Innovationsprozess einbringen. Die Studierenden sind darüber hinaus mit den Grundlagen des Innovationsmanagements vertraut.

Fertigkeiten:

Die Studierenden sind in der Lage, Innovationsmethoden eigenständig zu planen und im Unternehmenskontext anwenden. Sie kennen die verschiedenen Phasen der Innovationsentwicklung und können für konkrete Aufgabenstellungen die passenden Innovationsmethoden auswählen. Die Studierenden können Innovationsteams zusammensetzen und anleiten. Die Studierenden können zielgerichtet die notwendigen organisatorischen Strukturen gestalten, um Innovation und Kreativität zu unterstützen. Sie können Innovationsentwicklungen in Unternehmen kommunizieren und wissen, wie man Fortschritte in der Innovationsentwicklung misst und transparent macht.

Kompetenzen:

Die Studierenden können unterschiedliche Innovationsmethoden beurteilen, geeignete Methoden auswählen und diese anwenden. Die Studierenden präsentieren im seminaristischen Teil der Lehrveranstaltung wichtige Aspekte der Innovationsentwicklung. Die Studierenden erschließen sich die praktische Umsetzbarkeit und Relevanz der Vorlesungsinhalte anhand individueller Aufgaben und Gruppenaktivitäten.

Inhalt:

- Was ist Innovation?
- Innovations- und Kreativitätsprozesse
- Phasen der Innovationsentwicklung
- Ausgewählte Innovationsmethoden
- Innovationsframeworks wie Outcome-driven Innovation
- Basismethoden wie Time Boxing, Story Mapping und Fragetechniken
- Createmethoden wie Jobs-to-be-Done
- Evaluationsmethoden wie Wizard of Oz
- Skalierungsmethoden wie Growth Hacking
- Zusammenarbeit zwischen Produktmanagement, Entwicklung und Marketing
- Grundlagen des Innovationsmanagements
- Organisation und Teams
- Innovationsstrategie
- Innovationsmetriken und Innovation Accounting
- Kommunikation mit Stakeholdern

Medienformen:

- Vorlesung mit integrierten Übungen
- Seminaristischer Teil mit praktischen Übungen
- Vorlesungsmaterial in elektronischer Form

- Clayton M. Christensen, Taddy Hall, Karen Dillon, David Duncan (2017): Competing Against Luck: The Story of Innovation and Customer Choice.
- Dark Horse Innovation (2017): Digital Innovation Playbook. The essential exercise book for founders, doers and managers. Murmann Publishers GmbH
- Ulwick, A. W. (2016): Jobs to be Done: Theory to Practice. Idea Bite Press.
- Ulwick, A. W. (2005): What Customers Want: Using Outcome-Driven Innovation to Create Breakthrough Products and Services. Mcgraw Hill Book Co.
- Clayton M. Christensen, Michael E. Raynor (2013): The Innovator's Solution: Creating and Sustaining Successful Growth. Revised. Harvard Business Review Press.
- Wunker, S., Wattman, J. (2016) Jobs to Be Done: A Roadmap for Customer-Centered Innovation. Amacom Books.

Modul: Product Management

Kürzel: WIMB13

Untertitel:

Lehrveranstaltungen: Vorlesung

Studiensemester: Sommersemester

Modulverantwortlicher: Prof. Dr. Jürgen Münch

Dozent(in): Prof. Dr. Jürgen Münch

Sprache: Deutsch

Zuordnung zum Curriculum: Wahlpflichtfach, 1./2. Semester

Lehrform / SWS: Vorlesung 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/ Vorlesung: Referat

Prüfungsform:

Modulziele:

Das Modul "Product Management" befähigt Sie, die Entwicklung von Produkten zu planen und beteiligte Teams so zu koordinieren, dass Kunden- und Geschäftsziele erfolgreich erreicht werden. Sie erlangen vertiefende Kenntnisse zu den Themen Produktkonzeption, Prototyping, User Experience, Ideation, Data Science, Validation und Führung.

Die Entwicklung software-basierter Produkte findet heute in der Regel in dynamischen Umfeldern statt, in denen sich Technologien und Märkte rasant verändern. Anforderungen an Produkte lassen sich meist nicht im Voraus festlegen. Man kann auch nicht den Kunden fragen, welche Features er gerne hätte. Schon Steve Jobs sagte, dass es nicht die Aufgabe des Kunden sei, herauszufinden, was er will. In solchen Situationen sind klassische Ansätze der Produktentwicklung mit vorgelagerter Anforderungsdefinition nicht geeignet. Wie kommt man aber dennoch zu Produkten, die Kunden brauchen und wollen? Hierfür gibt es neuartige Entwicklungsansätze, die agile Software-Entwicklungsmethoden wie Scrum mit Prozessen zur Ideenfindung und Validation kritischer Produktannahmen verzahnen. Das Modul bereitet Sie auf Berufe wie Produktmanager, Product Owner oder technischer Technikleiter vor. Auch für Gründer, Leiter von Innovationsteams, Produktentwickler, User Experience Designer, Software-Ingenieure oder Produktmarketing-Manager sind die vermittelten Kenntnisse besonders wichtig.

Angestrebte Lernergebnisse

Kenntnisse:

Die Studierenden sind in der Lage, eine Produktvision zu beschreiben, wichtige Produktannahmen zu identifizieren, datenbasierte Tests für diese Annahmen zu entwerfen und eine Produktstrategie basierend auf Ergebnissen von Tests zu entwickeln. Darüber hinaus verfügen die Studierenden über die notwendigen Kenntnisse für das Management der Produktentwicklung und die Koordination bzw. Führung von Produktteams.

Fertigkeiten:

Die Studierenden sind in der Lage, selbstständig geeignete Methoden, Techniken und Werkzeuge des Produktmanagements anzuwenden, um wichtige Produktentscheidungen treffen zu können. Sie entwickeln Produktvisionen, Roadmaps, Lernprototypen und andere Artefakte und validieren Ideen und Produkte in Bezug auf Ihre Tragfähigkeit.

Kompetenzen:

Die Studierenden können unterschiedliche Verfahren des Produktmanagements beurteilen, geeignete Verfahren auswählen und diese anwenden. Hierbei achten die Studierenden darauf, dass Kundenwerte generiert, Geschäftsziele verfolgt, Entwicklungsaufwände reduziert und Entwicklungsrisiken beherrscht werden. Die praktische Relevanz des Themas wird im Rahmen von Gruppenübungen sowie anhand konkreter Beispiele und Fallstudien vermittelt.

Inhalt:

- Rolle des Produktmanagers und des Product Owners
- Prinzipien des Produktmanagements
- Definition einer Produktvision
- Entwicklung einer Produktstrategie
- Wichtige Verfahren zur Identifikation von Kundenwert
- Definition von Geschäfts- und Kundenzielen
- Design Thinking, Kreativität
- Identifikation und Bewertung verschiedener Entwicklungsoptionen
- Definition guter Produkthypothesen
- Entwurf, Durchführung und Analyse von Experimenten zur Validierung kritischer Produkthypothesen
- Minimum Viable Product (MVP)

- Entwicklung von Roadmaps
- Release Management
- Agile Software-Entwicklung
- Impact Mapping
- Value Mapping
- User Story Mapping
- Metriken & Insights
- Lean Startup
- Customer Development
- Minimum Viable Products
- Unternehmenskultur
- Organisatorische Aspekte des Produktmanagements (z.B. Produktteams, Stakeholder-Management)

Medienformen:

- Vorlesung mit integrierten Übungen
- Seminaristischer Teil mit praktischen Übungen
- Vorlesungsmaterial in elektronischer Form

- Alvarez, C. (2014): Lean Customer Development: Building Products Your Customers Will Buy. O'Reilly.
- Cagan, M. (2017): INSPIRED: How to Create Tech Products Customers Love. 2. Auflage. Wiley.
- Gothelf, J., Seiden, J. (2016): Lean UX: Designing Great Products with Agile Teams. O'Reilly.
- Klein, L. (2016): Build Better Products. A Modern Approach to Building Successful User-Centered Products. Rosenfeld.
- Olsen, D. (2015): The Lean Product Playbook How to Innovate with Minimum Viable Products and Rapid Customer Feedback. Wiley.
- Fagerholm, F., Sanchez Guinea, A., Mäenpää, H., Münch, J. (2014): Building Blocks for Continuous Experimentation. In RCoSE 2014 Proceedings, Hyderabad, India, pages 26-35.
- Pichler, R. (2010): Agile Product Management with Scrum. Addison Wesley. 2010.
- Pichler, R. (2016): Strategize: Product Strategy and Product Roadmap Practices for the Digital Age. Pichler Consulting.
- Ries, E. (2011): Lean Startup How Constant Innovation Creates Radically Successful Businesses. Portfolio Penguin. 2011.
- Ries, E. (2017): The Startup Way: How Entrepreneurial Management Transforms Culture and Drives Growth. Portfolio Penguin.

Modul:	Digital Strategy		
Kürzel:	WIMB15		
Untertitel:			
Lehrveranstaltungen:	Vorlesung		
Studiensemester:	Jedes Semester		
Modulverantwortlicher:	Prof. Dr. Alexander Rossmann		
Dozent(in):	Prof. Dr. Alexander Rossmann		
Sprache:	Deutsch		
Zuordnung zum Curriculum:	Wahlpflichtfach, 1./2. Semester		
Lehrform / SWS:	Vorlesung 4 SWS		
Arbeitsaufwand:	Präsenzstudium Eigenstudium	60 Stunden 90 Stunden	
Kreditpunkte:	5 ECTS		
Voraussetzungen nach StuPro:	Keine		
Empfohlene Voraussetzung:	Keine		
Studien-/Prüfungsleistungen/ Prüfungsform:	Vorlesung: Hausarbeit, Referat		
Modulziele:			
Das Wahlfach Digital Strategy vermittelt grundlegende Konzepte und Methoden für die Entwicklung, Analyse und Überwachung von Strategien für digitale Unternehmen, sowie für digitalisierte Produkte und Dienstleistungen. Zusätzlich zu den Basiskonzepten digitaler Strategien werden die Auswirkungen digitaler Strategien auf die Digitale Transformation, auf Digitale Architekturen, auf Innovationsprozesse, sowie auf die Strategieumsetzung mittels digitaler Anwendungsbeispiele und durch integrale strategische Konzepte der Digitalisierung von digitalen Geschäftsmodellen und IT behandelt.			
Angestrebte Lernergebnisse:			
Kenntnisse:			
Die Studierenden kennen die verschiedener	n Ausprägungen des Um	ngangs mit den grundlegenden	

Konzepten digitaler Strategien – Prinzipien, Rollen, strategische Analysen, Schlüsselfaktoren,

Mission, Vision, Strategiekonzeption, Innovationsinnitiativen, strategische Planung und Controlling für digitale Unternehmen. Sie kennen die Grundlagen, Methoden, Prozesse, Modelle, Werkzeuge und Standards für die Gestaltung digitaler Services und Produkte.

Fertigkeiten:

Die Studierenden analysieren, bewerten und erstellen Strategiemodelle für digitale Unternehmen. Studierenden stellen Grundlagen, Prozesse, Modelle und Basistechnologien zur Unterstützung digitaler Strategien in den Zusammenhang zukunftsweisender Innovationskonzepte und Methoden.

Kompetenzen:

Die Studierenden sind nach Abschluss des Moduls in der Lage, in Abhängigkeit von gegebenen Anwendungsfällen, Empfehlungen für den Einsatz zukunftsweisender digitaler Strategien zu geben und dieses Wissen durch Fallstudien für die Praxis und die Wissenschaft zu kommunizieren. Studierende konzipieren und modellieren exemplarische digitale Strategien sowie die zugehörigen Methoden und Instrumente.

Nach Abschluss des Moduls sind die Studierenden in der Lage:

LE#	Lernergebnis (LE)	Geprüft durch
LE1	Prinzipien und Basiskonzepte digitaler Strategien analysieren und praktisch nutzen.	Gruppenarbeit, Konzeptionen, Modelle
LE2	Strategiemodelle, Innovationsideen, Anwendungen und Technologien gestalten und weiterentwickeln.	Gruppenarbeit, Konzeptionen, Modelle
LE3	Digitale Mission und Wertorientierung, digitale Strategieszenarien, digitale Vision für Unternehmen analysieren und konzipieren.	Gruppenarbeit, Präsentation, Ausarbeitung
LE4	Integration der Strategieelemente zur Digitalen Unternehmensstrategie verstehen und anwenden.	Gruppenarbeit, Präsentation, Ausarbeitung

Inhalt:

Das Modul Digital Strategy vermittelt durch die Vorlesung und durch integrierte Forschungsstudien zukunftsweisende Methoden und Modelle für digitale Strategien in Unternehmen. Die Vorlesung wird durch eng begleitete Forschungsstudien sowie durch zugehörige Begriffe, Definitionen, Modelle, Fallstudien aus der Praxis, Werkzeuge, Instrumente, Methoden und Verfahren ergänzt. Ziel der Veranstaltung ist es die Studierenden auf die Praxis und die Forschung auf dem Gebiet digitalen Strategien wirkungsvoll vorzubereiten. Zu diesem Zweck werden aktuelle Ansätze aus der Praxis und Theorie moderner digitaler Strategien und innovationsmethoden durch vier parallele Teams analysiert, gemeinsam bearbeitet und konsequent in Richtung Publikation und Einsatz dieser Methoden, Instrumente, Modelle und Werkzeugen begleitet.

- Basiselemente von Digitalstrategien
- Prinzipielle strategische Ausrichtung der Digitalstrategie
- Innovationsideen
- Strategische Analysen von Geschäftsmodellen
- Anwendungen und Technologien
- Digitale Mission und Wertorientierung
- Digitale Strategieszenarien
- Digitale Vision
- Digital Business Operating Model
- Integration der Strategieelemente zur Digitalen Unternehmensstrategie
- Strategisches Leitbild
- Strategische Ziele und Kennzahlen
- Innovationsinitiativen, Strategische Projekte
- Strategisches Portfolio
- Strategische Planung und strategisches Controlling.

Medienformen:

Vorlesungen, seminaristischer Unterricht und übergreifende Referate, Skripte, Tafel, Demos, Übungsaufgaben, Fallstudien, vertiefende Konzeptarbeiten, Wissenschaftlicher Kurzaufsatz, Poster, Dokumentationen, Prototypen.

Literatur:

Benson, R. J., Burgnitz, T. L., Walton, W. B. (2004): From Business Strategy to IT Action.
 John Wiley 2004

- Hill, C. W. L., Jones, G. R. (2009): Theory of Strategic Management with Cases. Thomson South-Western 2009
- Simon, H., von der Gathen, A. (2002): Das große Handbuch der Strategie-Instrumente. Campus Verlag 2002
- Grant, R. M., Nippa, M. (2006): Strategisches Management. Pearson 2006
- Hitt, M., A., Ireland, R. D., Hoskisson, R. E. (2005): Strategic Management. Thomson -South-Western 2005
- De Witt, B., Meyer, R. (2010): Strategy Synthesis. Thomson South-Western 2010
- De Witt, B., Meyer, R. (2010): Strategy Process, Content, Context An International Perspective. Thomson South-Western 2010
- Hanschke, I. (2013): Strategisches Management der IT-Landschaft. Hanser Verlag 2013
- Kaplan, R. S., Norton, D. P. (2001): Die Strategie-fokussierte Organisation. Schäfer Poeschel Verlag 2001
- Müller-Stevens, G., Lechner, C. (2001): Strategisches Management. Schäfer Poeschel Verlag 2001
- Nagel, R., Wimmer, R. (2002): Systemische Strategieentwicklung. Klett-Cotta Verlag 2002
- Brynjolfsson, E. & McAfee, A. (2014): The second machine age. Work, progress, and prosperity in a time of brilliant technologies. Norton & Company 2014
- Ross, J. W., Weill, P., Robertson, D. C. (2006): Enterprise Architecture as Strategy. Harvard Business School Press 2006
- Streibich, K.-H. (2014): The Digital Enterprise. The Moves and Motives of the Digital Leaders. Software AG Darmstadt 2014
- Westerman, G., Bonnet, D. & McAfee, A. (2014): Leading digital: Turning technology into business transformation. Harvard Business Review Press 2014
- Schmidt, E., Rosenberg, J. (2014): How Google Works. John Murray Publishers 2014
- Levy, S. (2011): In the Plex. Simon & Schuster 2011
- Baesens, B. (2014): Analytics in a Big Data World. Wiley 2014
- Hanna, N. K. (2010) Enabling Enterprise Transformation. Springer Verlag 2010
- Harmsen, F., Proper, H. A. (2013): Practice-Driven Research on Enterprise Transformation. Springer Verlag 2013

Modul: Digital Business Models

Kürzel: WIMB17

Untertitel:

Lehrveranstaltungen: Vorlesung

Studiensemester: Sommersemester

Modulverantwortlicher: Prof. Dr. Alexander Rossmann

Dozent(in): N. N.

Sprache: Deutsch

Zuordnung zum Curriculum: Wahlpflichtfach, 1./2. Semester

Lehrform / SWS: Vorlesung 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/ Vorlesung: Hausarbeit, Referat, Continous

Prüfungsform: Assessment

Modulziele:

Das Modul Digital Business Models behandelt grundsätzliche Fragestellungen der Analyse und Modellierung digitaler Geschäftsmodelle. Dabei werden unterschiedliche Lernziele verfolgt. Zunächst können die Teilnehmer/innen nach Abschluss des Moduls die Begriffe Geschäftsmodell und Betriebsmodell differenzieren und die wesentlichen Elemente der Definition entsprechender Modelle bestimmen. Darüber hinaus wird die Funktionslogik unterschiedlicher Geschäfts- und Betriebsmodelle in Details und Fallbeispielen erläutert. Im Anschluss daran werden grundsätzliche Begriffsmerkmale der digitalen Transformation bestimmt. Dabei können die Teilnehmer/innen unterschiedliche Phasen der digitalen Transformation unterscheiden, z.B. die Entwicklung von Web 1.0, Web 2.0 und Web 3.0. Wichtige Kernbegriffe der digitalen Transformation werden erörtert. Dabei stehen auch der zunehmende Wandel des Mediennutzungsverhaltens und der Einfluss der Mediennutzung auf Wirtschaft und Gesellschaft zur Diskussion. Auf dieser Basis werden technologische Grundkonzepte definiert, die für die Beschreibung digitaler Transformationsprojekte und Geschäftsmodelle wesentlich sind. Weiterhin wird der Einfluss der Digitalisierung auf etablierte Geschäfts- und Betriebsmodelle charakterisiert. Der Schwerpunkt liegt dabei auf den Bereichen Customer Experience und Produktion bzw. Operations (Industrie 4.0). Dabei steht sowohl der Einfluss auf etablierte Modelle, als auch die

disruptive Entwicklung neuer Modelle zur Diskussion. Die Programmteilnehmer können auf dieser Grundlage den Einfluss der Digitalisierung auf unterschiedliche Unternehmen und Branchen bestimmen.

Angestrebte Lernergebnisse

Kenntnisse:

Die Teilnehmer bauen Kenntnisse zu den wesentlichen Themenbereichen der Digitalisierung auf. Dabei geht es v.a. darum, die Themen in der Breite und ihrer Wechselwirkung zueinander kennen zu lernen. Die vermittelten Kenntnisse gehen daher in die Breite und beziehen sich auf Wissen zu Begriffen, Kernthemen und Zusammenhängen. Eine besondere Vertiefung wird in Bezug auf digitale Geschäftsmodelle vorgenommen. Dies gilt sowohl für die Entwicklung neuer Geschäftsmodelle in Form von Start-Ups, als auch für die Transformation etablierter Geschäftsmodelle.

Fertigkeiten:

Die im Rahmen des Moduls erworbenen Fähigkeiten beziehen sich v.a. auf die Analyse von Geschäftsmodellen zu relevanten Teilfragen der Digitalisierung. Dies umfasst z.B. die Analyse von Geschäftsmodellen auf Basis des Business Modell Canvas und die Beurteilung der wesentlichen Kommunikationskanäle zur Schärfung der Customer Experience. Darüber hinaus sind die Teilnehmer in der Lage, wesentliche Grundkonzepte der so genannten Industrie 4.0 auf Unternehmen anzuwenden.

Kompetenzen:

Die erworbenen Kompetenzen des Moduls beziehen sich auf die Anwendung der skizzierten Kenntnisse in Form von Fallstudien. Darüber hinaus sind die Teilnehmer nach Abschluss des Moduls dazu in der Lage, relevante Wissensbausteine zu einzelnen Teilthemen der Digitalisierung aus Datenbanken zu aggregieren. Kompetenzen im Bereich des wissenschaftlichen Arbeitens werden dabei zusätzlich ausgebaut.

Inhalt:

- Merkmale und Phasen der digitalen Transformation.
- Mediennutzung und der Einfluss digitaler Medien auf Geschäftsmodelle.
- Grundfragen zur Konfiguration von Geschäfts- und Betriebsmodellen, Business Model Canvas, Value Proposition Design.

- Anwendung von Geschäftsmodelllogiken auf etablierte Unternehmen und Startups, Erarbeitung und Diskussion von Fallbeispielen.
- Leitlinien für die strategische Planung von Geschäfts- und Betriebsmodellen, exemplarische Strategieprozesse in unterschiedlichen Branchen.
- Transformation von Geschäfts- und Betriebsmodellen in der Praxis.
- Der Einfluss der Digitalisierung auf die Customer Experience und das interne Betriebsmodell (Operations).
- Industrie 4.0, Digitalisierung von Produktionssystemen.
- Verbindung von Fragestellungen aus IT- und Business.
- Entwicklung von Geschäftsmodellen, agile Methoden, iterative Entwicklung von Geschäftsmodellprototypen, Anbindung an des Kerngeschäft.
- Duale Geschäfts- und Betriebsmodelle.

Medienformen:

Vorlesung, Übungsaufgaben, Fallstudien, Skript mit PPT-Folien, beispielhafte Publikationen, Hausarbeiten, Präsentationen, Projektarbeiten.

- Brynjolfsson, E. & McAfee, A. (2014): The second machine age. Work, progress, and prosperity in a time of brilliant technologies. Norton & Company 2014
- Osterwalder, A. & Pigneur, Y. (2010): Business Model Generation: A handbook for visionaries, game changers, and challengers. John Wiley & Sons 2010
- Osterwalder, A. et al. (2014): Value proposition design: How to create products and services customers want. John Wiley & Sons 2014
- Solis, B. (2011): The end of business as usal: Rewire the way you work to succeed in the customer revolution. John Wiley & Sons 2011
- Streibich, K.-H. (2014): The Digital Enterprise. The Moves and Motives of the Digital Leaders. Software AG Darmstadt 2014
- Westerman, G., Bonnet, D. & McAfee, A. (2014): Leading digital: Turning technology into business transformation. Harvard Business Review Press 2014

Modul: Management Consulting Kürzel: WIMB18 Untertitel: Lehrveranstaltungen: Vorlesung Studiensemester: Wintersemester Modulverantwortlicher: Prof. Dr. Dennis Schlegel Dozent(in): Prof. Dr. Dennis Schlegel Sprache: Deutsch und Englisch **Zuordnung zum Curriculum:** Wahlpflichtfach, 1. und 2. Semester Lehrform / SWS: Vorlesung: 4 SWS Arbeitsaufwand: Präsenzstudium: 60 Stunden Eigenstudium: 90 Stunden Kreditpunkte: 5 ECTS Voraussetzungen nach StuPro: Keine **Empfohlene Voraussetzung:** Kenntnisse der englischen Sprache auf dem Niveau B2 Vorlesung: Continuous Assessment Studien-/Prüfungsleistungen/ Prüfungsform: Modulziele:

Interne und externe Consultants spielen in der Wirtschaft eine immer größere Rolle, insbesondere in IT-Projekten. Einerseits stellt daher ein Berufseinstieg bei einer Unternehmensberatung oder eine Freelancer-Tätigkeit eine attraktive Karriereoption für ambitionierte Absolventen dar. Andererseits ist auch bei einer Anstellung in einer anderen Branche die Kenntnis von Geschäftsmodell und Arbeitsweise der Berater für eine wirkungsvolle Steuerung von Projekten und Koordination von externen Dienstleistern essentiell. Darüber hinaus finden Consulting-Methoden auch bei reinen Inhouse-Projekten Anwendung.

Ziel des Moduls ist die Vorbereitung der Teilnehmer auf eine Tätigkeit im Consulting-Umfeld. Dies beinhaltet sowohl Positionen auf der Beratungsseite (z.B. Unternehmensberater, Inhouse-Consultant, Freelancer), als auch Positionen auf der Kundenseite (z.B. Projektmanager).

Angestreb	ote Lerr	nergeb	nisse:

Kenntnisse:

Die Studierenden sind in der Lage, wichtige Grundlagen des Consulting zu erklären, das Geschäftsmodell eines Beratungsunternehmens zu analysieren und wesentliche Methoden und Techniken in einem Beratungsprojekt beurteilen.

Fertigkeiten:

Die Studierenden sind als Mitglied eines Beraterteams in der Lage, ein Projekt zu strukturieren und zu planen. Die Studierenden können selbstständig geeignete Methoden und Werkzeuge zur Analyse und Problemlösung im Consulting-Kontext auswählen und anwenden.

Kompetenzen:

Die Studierenden sind in der Lage, sich als Team zu koordinieren und situationsgerecht zu kommunizieren. Außerdem sind sie in der Lage, ihre Ergebnisse in englischer Sprache zu präsentieren.

LE#	Lernergebnis (LE)	Geprüft durch
LE1	Kenntnis theoretischer Modelle	Schriftlicher Test
LE2	Anwendung von Methoden und Werkzeugen	Fallstudie/Präsentation
LE3	Situationsgerechte Kommunikation	Fallstudie/Präsentation

Inhalt:

Das Modul beinhaltet Vorlesungseinheiten zur Vermittlung der theoretischen Inhalte und Modelle, kurze Übungen, sowie eine integrierte Fallstudie, die innerhalb der Präsenzzeit bearbeitet wird. In dieser durchlaufen die Studierenden als Teil eines Beraterteams verschiedene Phasen eines simulierten Consulting-Projekts. Die Vorlesungsinhalte umfassen u.a. folgende Themen:

- Consulting-Branche und Geschäftsmodell
- Beraterauswahl und Projektakquise
- Methoden und Werkzeuge im Consulting
- Strategische Analyse und Strategiewahl
- Organisations- und Prozessanalyse

- Outsourcing und Shared Services
- Robotic Process Automation
- Change Management
- IT-Consulting
- Projektmanagement

Medienformen:

- Vorlesung
- Fallstudien
- Gastvorträge

- Andler: Tools for Project Management, Workshops and Consulting. Erlangen: Publicis
- Baldegger: Organization. In: Management in a Dynamic Environment. Wiesbaden: Gabler
- Chereau, Meschi: Strategic Consulting. Tools and methods for successful strategy missions. Cham: Palgrave Macmillan
- Ennfsfellner et al, Exzellenz in der Unternehmensberatung, Wiesbaden: Springer.
- Kubr: Management Consulting. A Guide to the Profession. Geneva: International Labour Office
- Lippold: Grundlagen der Unternehmensberatung. Strukturen Konzepte Methoden. Wiesbaden: SpringerGabler
- Milani: Digital Business Analysis. Cham: Springer International Publishing
- Tiemeyer: Handbuch IT-Projektmanagement. München: Hanser
- Wieczorrek, Mertens: Management von IT-Projekten. Heidelberg: Springer

Modul:	Innovation for	Sustainable	Business
Wodai:		Justamable	Dusinic

Kürzel: WIMB19

Untertitel:

Lehrveranstaltungen: Vorlesung

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dr. David Feierabend

Dozent(in): Prof. Dr. David Feierabend

Sprache: Deutsch und Englisch

Zuordnung zum Curriculum: Wahlpflichtfach, 1. Und 2. Semester

Lehrform / SWS: Vorlesung 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/

Prüfungsform:

Vorlesung: Continuos Assessment, Referat

Modulziele:

Dieses Modul vertieft die Zusammenhänge von Innovation, Geschäftsmodellen und Nachhaltigkeit. Die Studierenden lernen die neuesten Theorien und Praktiken im Zusammenhang mit nachhaltigen Innovationen und Geschäftsmodellen kennen und erfahren, wie sie in verschiedenen organisatorischen Kontexten angewendet werden können. Technologie und Innovation werden dabei in ihrer zentralen Rolle für die digitale Transformation und die Ermöglichung nachhaltiger Geschäftsmodelle betrachtet.

Angestrebte Lernergebnisse

Kenntnisse:

- Die Studierenden verstehen das Konzept des Sustainable Business und die Bedeutung von Innovation und Business Model dafür
- Sie lernen neueste praktische Trends und Forschungsergebnisse im Bereich Sustainable Business

- Die Studierenden kennen verschiedene Typen von nachhaltigen Geschäftsmodellen sowie reale Unternehmen mit diesen Geschäftsmodellen
- Sie lernen die mit nachhaltigen Innovationen verbundenen Herausforderungen und Chancen in verschiedenen Branchen verstehen
- Die Studierenden wissen um die Bedeutung des Engagements von Stakeholdern für Sustainable Businesses

Fertigkeiten:

- Die Studierenden können die ökologischen und sozialen Auswirkungen von Unternehmenstätigkeiten kritisch und anhand realer Beispiele analysieren
- Die Studierenden können die Nachhaltigkeit bestehender Geschäftsmodelle bewerten und Chancen für nachhaltige Innovationen erkennen
- Sie beurteilen innovative Geschäftsideen auf ihre ökonomische, ökologische und soziale Tragfähigkeit

Kompetenzen

- Sie sind in der Lage, Nachhaltigkeitsprinzipien auf reale geschäftliche Herausforderungen anzuwenden
- Die Studierenden haben die Fähigkeit, nachhaltige Geschäftsmodelle zu entwerfen, die wirtschaftliche, soziale und ökologische Faktoren in Einklang bringen
- Die Studierenden können Business Cases im Themenfeld Sustainable Business entwickeln und kommunizieren
- Sie können nachhaltige Innovationsstrategien in verschiedenen organisatorischen Kontexten entwickeln

Inhalte

- Theoretische Grundlagen f
 ür Sustainable Business
- Prinzipien nachhaltiger Wirtschaftssysteme, z.B. Circular Economy/ closed loop systems
- Innovation als Treiber neuer Geschäftsmodelle
- Frameworks zur Entwicklung von nachhaltigen Geschäftsmodellen, z.B. Triple Layered Business Model Canvas
- Archetypen nachhaltiger Geschäftsmodelle
- Die Rolle der Informationstechnologie als Enabler von nachhaltigen Geschäftsmodellen
- Fallstudien zu Sustainable Businesses

Inhalt:

- Theoretische Grundlagen für Sustainable Business
- Prinzipien nachhaltiger Wirtschaftssysteme, z.B. Circular Economy/ closed loop systems
- Innovation als Treiber neuer Geschäftsmodelle
- Frameworks zur Entwicklung von nachhaltigen Geschäftsmodellen, z.B. Triple Layered Business Model Canvas
- Archetypen nachhaltiger Geschäftsmodelle
- Die Rolle der Informationstechnologie als Enabler von nachhaltigen Geschäftsmodellen

Fallstudien zu Sustainable Businesses

Medienformen:

- Interaktive Vorlesung und Übungen
- Gastvorträge
- Fallstudien

- De Angelis, R. (2018). Business models in the circular economy: Concepts, examples and theory. Springer.
- Lüdeke-Freund, F., Carroux, S., Joyce, A., Massa, L., & Breuer, H. (2018). The sustainable business model pattern taxonomy—45 patterns to support sustainability-oriented business model innovation. Sustainable Production and Consumption, 15, 145-162.
- Bocken, N., Ritala, P., Albareda, L., & Verburg, R. (Eds.). (2019). Innovation for sustainability: Business transformations towards a better world. Springer.

Bereich Data and Analytics

Modul: Data Management and Analytics

Kürzel: WIMB21

Untertitel: Advanced Management and Analytics

Analytical Data Processing

Lehrveranstaltungen: Vorlesung:

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dr. Ilja Petrov

Dozent(in): Prof. Dr. Ilja Petrov

Sprache: Deutsch, Englisch

Zuordnung zum Curriculum: Wahlpflichtfach, 1./2. Semester

Lehrform / SWS: Vorlesung: 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/

Prüfungsform:

Vorlesung: Klausur

Modulziele

Die Vorlesung betrachtet moderne Datenbanksysteme, ihre Architektur und Algorithmen. Mit Trends wie Digitalisierung, IoT, Industrie 4.0, Cloud&BigData, oder KI/Data Science, haben wir heute mit einer Vielzahl verschiedener DBMS zu tun die unterschiedliche Einsatzbereiche (Blockchain, BigData&Cloud, DataScience KI) haben; unter andrem: klassische relationale DBMS, NoSQL Datenbanksysteme, Key/Value-Stores, Column-Stores, Hauptspeicher-DBMS. Für die erfolgreiche Durchführung von datenbezogenen Einsatzszenarien oder Aufbau von Anwendungen ist es wichtig die am Besten geeigneten Systeme nach eine Vielzahl von Kriterien (wirtschaftliche, leistungsbezogene, architektonische, anwendungsbezogene) auswählen zu können. Diese typische Aufgabe der Wirtschaftsinformatik steht im Fokus dieser Veranstaltung.

Im Rahmen der Veranstaltung werden die Grundlagen von System-Architekturen und Verfahren und Ansätze zur analytischen Datenverarbeitung betrachtet. Es wird außerdem der gesamte

Prozess von der transaktionsorientieren Datenhaltung, Data-Warehouse Modellierung, multidimensionale Datenhaltung bis zu Analysewerkzeugen vermittelt sowie die technischen Grundlagen der Business Systeme.

Die Veranstaltung beinhaltet auch eine ganze Reihe von praxis-nahen Übungsaufgaben, um den Einsatz und praktischen Wert besser zu vermitteln. Diese Aufgaben unterstützen das spielerische, das eigenständige und experiment-basierte Lernen der vorgestellten Methoden. Bei einer erfolgreichen Lösung wird ein Bonus vergeben.

Andactranta	Lernergebnisse:
ヘロをとうにとかに	LCITICI ECUTIOSC.

Kenntnisse:

- Architekturen von modernen Datenbanksystemen verstehen und beschreiben können.
- Vorteile und Stärken von den verschiedenen DBMS-Architekturen aufzeigen k\u00f6nnen und die Eignung f\u00fcr verschiedene Einsatzszenarien bewerten k\u00f6nnen auch f\u00fcr moderne Umgebungen wie Blockchains, BigData&Cloud, oder Data Science/KI
- Wir betrachten und experimentieren mit modernen hauptspeicher Datenbanksystemen und auch moderne NoSQL DBMS für BigData
- Algorithmen für Anfrage-Verarbeitung und Transaktions-Management, Index-Strukturen und Speicher-Organisation und –Verwaltung kennen und einsetzen können sowie Algorithmen für analytische Datenverarbeitung kennen lernen.
- Datenmodelle für Analytische Systeme beschreiben können, Datenhaltung und Datenorganisation erklären können.

Fertigkeiten:

Die Studierenden analysieren die Informations- und Datenbanksysteme. Dazu wenden sie eine Reihe von erlernten Methoden an. Sie entwickeln Konzepte und Lösungen zur Datenanalyse und Datenhaltung.

Kompetenzen:

Nach Abschluss des Moduls sind die Studierenden in der Lage, sich den für sie nötigen Informationsbedarf zu beschaffen, um eine Datenbank modellieren zu können. Die Studierenden sind in der Lage die Architekturen von verschiedenen Datenhaltungssystemen miteinander zu vergleichen. Durch Praxis-Aufgaben können die Studierenden die Stärken und Schwächen der vorgestellten Methoden experimenten-basiert ermitteln.

- DBMS Ansätze und Architekturen: z. B. klassische relationale DBMS, NoSQL Datenbanksysteme, Key/Value-Stores, Column-Stores, Hauptspeicher-DBMS
- Grundlagen der Datenbank-Speicherverwaltung Pufferverwaltungsalgorithmen
- Anfrage-Verarbeitung und Anfrage-Optimierung
- Transaktionsmanagement, Zugriffspfade und Indexstrukturen.
- Daten-Analyse

Medienformen:

Seminaristischer Unterricht und Vorträge, Demos, Übungsaufgaben, Skript, Übungsaufgaben, SQL-Lernprogramm

- Härder, T., Rahm, E. Datenbanksysteme Konzepte und Techniken der Implementierung. Springer, 1999
- H. Garcia-Molina, J. Ullman, J. Widom. Database Systems: The Complete Book (2 ed.). Prentice Hall Press. 2008
- Ramakrishnan, R., Gehrke, J. Database Management Systems. 3rd Ed., McGraw Hill, 2003
- Avi Silberschatz, Henry F. Korth, S. Sudarshan. Database System Concepts. seventh edition, McGraw Hill 2019
- Gray, J., Reuter, A. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, 1993

Modul:

Kürzel:	WIMB22	
Untertitel:		
Lehrveranstaltungen:	Vorlesung	
Studiensemester:	Jedes Semester	
Modulverantwortlicher:	Prof. Dr. Bernhard Möf	3ner
Dozent(in):	Prof. Dr. Bernhard Möf	3ner
Sprache:	Deutsch	
Zuordnung zum Curriculum:	Wahlpflichtfach, 1./2.	Semester
Lehrform / SWS:	Vorlesung	4 SWS
Arbeitsaufwand:	Präsenzstudium Eigenstudium 90 Stu	60 Stunden nden
Kreditpunkte:	5 ECTS	
Voraussetzungen nach StuPro:	Keine	
Empfohlene Voraussetzung:	Keine	
Studien-/Prüfungsleistungen/ Prüfungsform:	Vorlesung: Hausarbeit	, Referat
Modulziele:		
Die Studierenden kennen grundlegende Begriffe, Modelle und Arbeitsweisen der Theoretischen Informatik. Im Zentrum steht die Untersuchung von Problemen und Algorithmen zur Lösung dieser Probleme. Die Studierenden können Algorithmen analysieren, die Gleichwertigkeit von Problemen nachweisen und diese Komplexitätsklassen zuordnen. Dies ist ein wesentlicher Aspekt bei der Auswahl von Algorithmen zur Datenanalyse.		
Angestrebte Lernergebnisse		
Kenntnisse:		
Die Studierenden kennen unterschiedliche M Beispielen für Probleme aus dem Bereich de	_	_

Theoretische Informatik

die Erfüllbarkeit aussagenlogischer Formeln oder das Problem des Handlungsreisenden. Die Studierenden können wiedergeben, wie mit Simulation bzw. Reduktion die Gleichwertigkeit von

Berechnungsmodellen bzw. Problemen nachgewiesen werden kann. Sie kennen verschiedene Komplexitätsklassen, insbesondere die Klasse der NP-vollständigen Probleme.

Fertigkeiten:

Die Studierenden können Algorithmen in verschiedenen Berechnungsmodellen umsetzen. Sie können Algorithmen analysieren und ihre Komplexität bestimmen. Die Studierenden können Reduktionen zwischen Problemen konstruieren und so z.B. die Unentscheidbarkeit eines Problems nachweisen.

Kompetenzen:

Die Studierenden können beurteilen, welche Klassen von Problemen mit Hilfe bestimmter Berechnungsmodelle bearbeitet werden können. Sie können Problemen aus der Praxis Komplexitätsklassen zuordnen und so entscheiden, wie gut sich diese lösen lassen. Die Studierenden können Themen aus der Theoretischen Informatik selbst erarbeiten und ihrer Ergebnisse präsentieren.

LE#	Lernergebnis (LE)	Geprüft durch
LE1	Themen der Theoretischen Informatik erarbeiten und die Ergebnisse präsentieren	Referat
LE2	Konstruktion von Reduktionen	Referat
LE3	Umsetzung von Algorithmen in verschiedenen Berechnungsmodellen	Referat
LE4	Bewertung der Komplexität von Problemen	Referat

Inhalt:

Es werden verschiedene Modelle für Berechnung behandelt. Dies können z.B. endliche Automaten, Kellerautomaten, Turing-Maschinen, Lambda-Kalkül oder partiell-rekursive Funktionen sein. Durch Simulation wird exemplarisch die Gleichwertigkeit von Berechnungsmodellen gezeigt.

Es werden eine Reihe von Problemen vorgestellt. Diese können aus den Bereichen Logik, Graphentheorie, Optimierung oder Kryptographie stammen. Durch Reduktion wird exemplarisch die Gleichwertigkeit bestimmter Probleme nachgewiesen. Dies führt zu Einteilung von Problemen in Komplexitätsklassen, insbesondere die Klasse der NP-vollständigen Probleme.

Nach heutigem Stand gibt es für NP-vollständige Probleme keine effizienten Algorithmen. Es werden mögliche Alternativen vorgestellt: Probabilistische Algorithmen, die mit einer bestimmten Wahrscheinlichkeit die korrekte Lösung bestimmen, approximative Algorithmen, die eine gute, aber nicht die optimale Lösung bestimmen, Algorithmen für Quantencomputer, die mit Überlagerung von Zuständen neue Berechnungsmöglichkeiten bieten.

Medienformen:

Das Modul besteht aus zwei Teilen. Der erste Teil besteht aus einer Vorlesung in seminaristischem Stiel mit Tafelanschrieb und PC-Projektion. Die Studierenden erhalten Übungsaufgaben, die dann im Rahmen der Vorlesung besprochen werden. Für den zweiten Teil wählen die Studierenden sich Themen aus, die sie selbständig oder in kleinen Gruppen erarbeiten und dann präsentieren.

Zur Vorlesung wird ein Kurzskript angeboten, das alle Definition und Sätze enthält, für die Übungsaufgaben werden Aufgabenblätter ausgeteilt.

- L. König, F. Pfeiffer-Bohnen und H. Schmeck (2016): Theoretische Informatik: ganz praktisch. 1. Auflage. Berlin: De Gruyter Oldenbourg.
- J. Hromkovic (2014): Theoretische Informatik: Formale Sprachen, Berechenbarkeit, Komplexitätstheorie, Algorithmik, Kommunnikation und Kryptographie. 5. überarb. Auflage. Wiesbaden: Springer Vierweg.
- B. Hollas (2007): Grundkurs Theoretische Informatik mit Aufgaben und Prüfungsfragen. 1. Auflage. Heidelberg, Spektrum Akademischer Verlag.
- I. Wegener (2005): Theoretische Informatik: eine algorithmenorientierte Einführung. 3. überarb. Auflage. Stuttgart, Teubner.
- J.E. Hopcroft und J.D. Ullman (2002): Einführung in Automatentheorie, Formale Sprachen und Komplexitätstheorie. 2. überarb. Auflage. Addison-Wesley Longman Verlag.

Modul: Business Intelligence and Corporate

Performance Management

Kürzel: WIMB23

Untertitel:

Lehrveranstaltungen: Vorlesung

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dipl.-Kfm. Armin Roth

Dozent(in): Prof. Dipl.-Kfm. Armin Roth

Sprache: Deutsch

Zuordnung zum Curriculum: Wahlpflichtfach, 1./2. Semester

Lehrform / SWS: Vorlesung 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/

Prüfungsform:

Vorlesung: Hausarbeit, Referat

Modulziele:

Das Modul zeigt über die kompletten Prozessstufen von der transaktionsorientieren Datenhaltung, ETL-Prozess, Data-Warehouse, multidimensionale Datenhaltung und Analysewerkzeuge auf, mit welchen Methoden und Verfahren die "betriebswirtschaftliche Intelligenz" aus den Daten und Informationen generiert, empfängerorientiert aufbereitet und für das Management nutzbar gemacht werden kann. Das Modul ist als betriebswirtschaftliche sowie anwender- und anwendungsbezogene Komponente im Vergleich zum Modul "Data Management & Analytics" zu verstehen

Angestrebte Lernergebnisse

Kenntnisse:

- Die unterschiedlichen Aspekte und Dimensionen des Performance Managements in und von Organisationen kennen
- Die kompletten Prozessstufen von der transaktionsorientieren Datenhaltung, ETL-Prozess, Data-Warehouse, multidimensionale Datenhaltung und Analysewerkzeuge kennen und erklären können
- Die Methoden und Verfahren, wie die "betriebswirtschaftliche Intelligenz" welche aus den Daten und Informationen generiert werden kann, zu kennen und einsetzen zu können
- Daten empfängerorientiert aufbereiten und für das Management nutzbar machen können
- Betriebswirtschaftliche Problemstellungen erkennen und erklären können
- Grenzen von SQL kennen
- Konzepte der Datengenerierung, -speicherung, -aufbereitung und -verteilung nachvollziehen können
- Architekturmodellen für das Corporate Performance Management kennen
- Datenmodelle, Funktionen, Navigation und Präsentation verstehen und selbst erstellen können

Fertigkeiten:

Die Studierenden entwickeln ein umfassendes Verständnis für die betriebswirtschaftlichen und IT-technischen Anforderungen an Corporate Performance Managementsysteme. Anhand praktischer Fallstudien erkennen sie Zielgruppen, Ebenen und Prozessstufen. Darauf aufbauend wenden sie Data Warehouse Modelle und selbst entwickelte Softwarekomponenten an. Sie setzen die Konzepte der Führungsunterstützung um und erwerben die Fähigkeit zur Erstellung von Datengenerierungs-, -speicherungs-, -aufbereitungs- und -verteilungskonzepte.

Kompetenzen:

Die Studierenden sollen nach der Lehrveranstaltung in der Lage sein,

- die betriebswirtschaftlichen und IT-technischen Herausforderungen des Corporate Performance Managements vertiefend zu diskutieren,
- Vorgehensmodelle und Methoden für die Gestaltung von Corporate Performance Managementsystemen zu kennen und anzuwenden,

- Ausgewählte Problemstellungen des Corporate Performance Managements praktisch zu modellieren und mit gängigen BI-Technologien zu implementieren,
- BI-Technologien anzuwenden und den Anwendungsnutzen der Technologien zu kennen und bewerten zu können.

LE#	Lernergebnis (LE)	Geprüft durch
LE1	Kenntnis der Herausforderungen des Corporate Performance Managements	Gruppenarbeit, Referat, Hausarbeit
LE2	Anwendung der Vorgehensmodelle und Methoden zur Gestaltung von Corporate Performance Managementsystemen	Gruppenarbeit, Referat, Hausarbeit
LE3	Fähigkeit Corporate Performance Management Problemstellungen zu modellieren und mit BI- Technologien zu implementieren	Hausarbeit, Erstellung IT-Lösung
LE4	Praktische Implementierung und Bewertung der BI- Lösung	Hausarbeit, Erstellung IT-Lösung

- Betriebswirtschaftliche Motivation/Problemstellung
- Informationsnotstand im Management, Informationsasymmetrie
- Technische Motivation
- Grenzen von SQL, Konzepte der Datengenerierung, -speicherung, -aufbereitung und verteilung
- Konzepte der Führungsunterstützung
- Executive Information Systems (EIS), Management Information Systems (MIS), Decision Support Systems (DSS). OLAP, Data-Warehousing, Business Intelligence, Corporate Performance Management, Big Data
- Aufgaben und Ziele des Corporate Performance Managements
- Prozess der Informationsstrukturierung und –fokussierung
- Entscheidungs- und Strategierelevanz von Informationen, Kritische Erfolgsfaktoren, CPM-Design, CPM-Prozess
- Techniken für die Informationsfokussierung
- Datenmodelle, Funktionen, Navigation, Präsentation,
- Architekturmodelle für das Corporate Performance Management

- Zielgruppen, Ebenen, Prozessstufen, Data Warehouse Modelle, Softwarekomponenten
- Vorgehensmodell zur Konzeption und Implementierung von Corporate Performance Managementsystemen
- Projektmarketing, Projektmanagement, Einführungsstrategien
- Praktische Fallstudien

Medienformen:

Vorlesungsfolien, Fallstudien, Workshops, Gruppenarbeiten

- Chamoni, P.; Gluchowski, P. (Hrsg):, Analytische Informationssysteme, (jeweils neueste Auflage)
- Kemper, H.-G.; Mehanna, W.; Unger, C.: Business Intelligence, Gabler (jeweils neueste Auflage)
- Larson, B (2006).: Delivering Business Intelligence with Microsoft SQL Server
- Oehler, K. (2006): Corporate Performance Management, Hanser
- Fasel D. (2016): Big Data: Grundlagen, Systeme, Nutzungspotentiale
- Davenport, T. (2014): big data @ work: Chancen erkennen, Risiken verstehen
- Roth, A. (2014): Ganzheitliches Performance Management, München: Haufe
- Schrödl, H.: Business Intelligence mit Microsoft SQL Server , (jeweils neueste Auflage)
- Totok ,A.(2000): Modellierung von OLAP- und Data-Warehouse-Systemen, 2000
- Witten / Frank (2000): Data Mining
- Ester / Sander (2000): Knowledge discovery in databases

Modul: Internet of Things Kürzel: WIMB24 Untertitel: Internet of Things (IoT) Lehrveranstaltungen: Vorlesung Studiensemester: Wintersemester Modulverantwortlicher: Prof. Dr. Christian Decker Dozent(in): Prof. Dr. Christian Decker Sprache: Deutsch **Zuordnung zum Curriculum:** Wahlpflichtfach, 1./2. Semester Lehrform / SWS: Vorlesung 4 SWS Arbeitsaufwand: Präsenzstudium 60 Stunden 90 Stunden Eigenstudium Kreditpunkte: 5 ECTS Voraussetzungen nach StuPro: Keine **Empfohlene Voraussetzung:** Gute Informatikkenntnisse, insb. Softwareengineering; Kenntnisse im wissenschaftlichen Arbeiten Studien-/Prüfungsleistungen/ Vorlesung: Projektarbeit Prüfungsform:

Modulziele:

Das Internet der Dinge, engl. Internet of Things (IoT), beschäftigt sich mit der Informationsverarbeitung in Umgebungen, in denen extrem viele miniaturisierte Rechnersysteme miteinander vernetzt sind und mit Benutzern auf vielfältige Weise interagieren können.

Ziel des Moduls ist es, die Studierenden in die Grundlagen, Technologien und Anwendungsmöglichkeiten des Internet of Things (IoT) einzuführen. Das umfasst ein schichtenübergreifendes Know-How über den Aufbau, Funktionsweise und Vernetzung von Rechnersystemen und deren verteilte Informationsverarbeitung. Dies wird durch die Vermittlung von Wissen in den Bereichen Hardware, Software, Kommunikationsprotokolle, Middleware und Systemdesign erreicht.

Angestrebte Lernergebnisse

Kenntnisse:

- Veränderte Ausprägung der Informationsverarbeitung durch miniaturisierte vernetzte Rechnersysteme
- Wissen über die Technologieanforderungen an Rechnersysteme, die in die reale Welt quasi unsichtbar eingebettet sind
- Kommunikationstechnologien und –protokolle zur massiven Vernetzung von eingebetteten Rechnersystemen
- Möglichkeiten und Einsatz von Sensorik
- Klassifikation von IoT Anwendungen und Entwicklungsmethoden
- IoT Systemdesign, Plattformen und Kommunikationsmustern integrierender Systeme
- Value Driver und Veränderungen von Geschäftsmodellen durch IoT
- Web als Middleware im Web-of-Things (WoT)

Fertigkeiten:

Die Studierenden werden in die Lage versetzt, selbständig auf verschiedenen Ebenen im Unternehmen IoT Anwendungen zu entwerfen und zu entwickeln. Sie entwickeln ein schichtenübergreifendes Verständnis von Rechnersystemen und deren vernetzte Informationsverarbeitung im Zusammenspiel mit neuen Möglichkeiten der impliziten Benutzerinteraktion. Dazu gehört die Fertigkeit zugehörige Managementfunktionen ausüben und IoT Ansätze erfolgreich in Unternehmensanwendungen zu integrieren.

Kompetenzen:

Lernergebnis (LE)	Geprüft durch
Die Studierenden sind in der Lage, IoT Lösungen zu entwerfen, grundlegende Konzepte der Einbettung durch Smart Object Computer, Designprinzipien von Anwendungen in der Lösung explizit darzustellen und korrekt einzuordnen. Durch ein schichtenübergreifendes Verständnis von Rechnersystemen haben sie die Kompetenz die Schlüsseleigenschaften von IoT Technologien einzuschätzen, um neuartige oder verbesserte Anwendungen durch die massive Vernetzung von eingebetteter Informationstechnologie und deren Services zu verwirklichen. Schließlich können Die Studierenden die Lösungen hinsichtlich ihres geschäftsrelevanten Beitrages bewerten.	Projektarbeit

Das Modul vermittelt die Grundlagen und Konzepte des Themenfeldes "Internet der Dinge". Es werden Hardware- und Softwaretechnologien, insbesondere zur sensorischen Erfassung und Kommunikationsprotokolle, besprochen. Schwerpunkte bilden die Themenbereiche Smart Object Computer, IoT Plattformen, Anwendungen und Entwicklungsmethoden sowie das Web of Things. Kleinere Aufgaben während der Vorlesung vertiefen die Inhalte. Das Modul behandelt folgende Themenbereiche:

- Einführung und Einordnung in die Entwicklung der Computertechnologie
- Enabling Technologie, Einbettung "The invisible computer", Smart Object Computer
- Kommunikationsformen von IoT Technologien und sensorische Erfassung
- IoT Anwendungen und Entwicklungsmethoden
- IoT Geschäftsmodelle
- IoT Plattformen für die Integration mit weiteren informationsverarbeitenden Systemen
- Web of Things (WoT)

Medienformen:

PDF der Folien aus der Vorlesung. Weiteres Material wird während der Vorlesung bekannt gegeben.

- Weiser, M. The computer for the 21st century
- Mattern F., Flörkemeier, Ch. Vom Internet der Computer zum Internet der Dinge. Informatik Spektrum, Vol. 33, no. 2, S. 107-121, April 2010
- Porter, M.E., Heppelmann, J.E., How Smart, Connected Products Are Transforming Competition. Harvard Business Review 92, no. 11, S. 64-88, November 2014

Modul:	Intelligente Syste	me und Verfahren
Kürzel:	WIMB25	
Untertitel:		
Lehrveranstaltungen:	Vorlesung und Praktik	um
Studiensemester	Jedes Semester	
Modulverantwortlicher:	Prof. Dr. Elena Kuß	
Dozent(in):	Dr. John Warwicker	
Sprache:	Englisch	
Zuordnung zum Curriculum:	Wahlpflichtfach, 1./2.	Semester
Lehrform / SWS:	Vorlesung: Praktikum	3 SWS 1 SWS
Arbeitsaufwand:	Präsenzstudium Eigenstudium 90 Stu	60 Stunden nden
Kreditpunkte:	5 ECTS	
Voraussetzungen nach StuPro:	Keine	
Empfohlene Voraussetzung:	Grundlagen in Python	
Studien-/Prüfungsleistungen/ Prüfungsform:	Klausur, Praktikum	
Modulziele und angestrebte Lernerge	bnisse	
Kenntnisse:		
Die Studierenden lernen verschiedene Methoden und Verfahren des maschinellen Lernens und deren praktischen Anwendung kennen.		
Fertigkeiten und Kompetenzen:		

Die Studierenden werden in die Lage versetzt, Problemstellungen und Auswertungsanforderungen von Daten und Informationen zu strukturieren, ein entsprechendes Modell des Problems bzw. der Anforderung zu erstellen und daraus dann mit den gelernten Verfahren und Vorgehensmethoden Problemlösungen zu erzeugen bzw. problemlösende Anwendungen bzw. Systeme zu entwickeln Es werden Kenntnisse über maschinelles Lernen und Lernsysteme vermittelt. Dieses schließt Kenntnisse über Neuronale Netze und Deep Learning ein.

Das Modul beinhaltet folgenden Themen:

- Introduction / Organisation: Introduction to AI; Introduction to Machine Learning
- Optimisation Under Uncertainty: Robustness; Worst-Case Analysis; Outlier Detection
- Expert Systems; Rule-Based Systems; Fuzzy Logic
- Time Series Analysis
- Heuristic Search and Optimisation: Search-based heuristics; Evolutionary and Genetic Algorithms; Introduction to Neural Networks.
- Artificial Neural Networks: Training / Testing; Learning; Applications.
- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning
- Deep Learning: Revision of ANNs; Deep Neural Networks; Applications
- Hybrid Intelligent Systems

			•			
N	/led	IΔI	ነተለ	rm	Δr	٦.
ı١	/ICU	ıcı	$\mathbf{H}\mathbf{U}$		CI	Ι.

Folien, Demonstrationen, Übungen

- Machine Learning Under a Modern Optimization Lens (Bertsimas & Dunn, 2019, Dynamic Ideas LLC)
- Pattern Classification, 2nd Edition (Duda, Hart & Stork, 2000, Wiley)
- W.Ertel: Grundkurs Künstliche Intelligenz, Springer (2016), 4.Auflage.
- I.Goodfellow, Y.Bengio, A.Courville: Deep Learning, MIT-Press (2016).
- St.Russell, P.Norvig: Artificial Intelligence A Modern Approach, Pearson (2016), 3.Auflage.

Kenntnisse:

Modul: Data Science / Statistical Learning Kürzel: WIMB26 Untertitel: Lehrveranstaltungen: Vorlesung Studiensemester Jedes Semester Modulverantwortlicher: Prof. Dr. Josef Schürle Dozent(in): Prof. Dr. Josef Schürle Sprache: Deutsch **Zuordnung zum Curriculum:** Wahlpflichtfach, 1./2. Semester Lehrform / SWS: Vorlesung 4 SWS Arbeitsaufwand: Präsenzstudium 60 Stunden 90 Stunden Eigenstudium Kreditpunkte: 5 ECTS Voraussetzungen nach StuPro: Keine **Empfohlene Voraussetzung:** Keine Studien-/Prüfungsleistungen/ Vorlesung: Hausarbeit, Referat Prüfungsform: Modulziele: Ziel des Moduls ist es, die Studierenden mit den grundlegenden Konzepten des Statistical Learning vertraut zu machen, welche in aktuell sehr relevanten Feldern in Forschung und Praxis Anwendung finden (z.B. Machine Learning, Predictive Analytics). Aus den umfangreich vorhandenen Daten sollen die für konkrete Fragestellungen wichtigen Informationen herausgefiltert und beispielsweise in Zukunftsprognosen übersetzt werden. Im Vordergrund dabei das Verständnis für Daten, Modelle und Modellvalidierung sowie die konkrete Umsetzung mit Python. Angestrebte Lernergebnisse

Die Studierenden kennen die grundlegenden Konzepte der Regression und Klassifikation. Sie verstehende den wesentlichen Unterschied von Trainings- und Testdaten und die sich daraus ergebenden Notwendigkeiten im Hinblick auf die Modellentwicklung. Die Studierenden kennen wesentliche Konzepte der Modellvalidierung und der Modellauswahl.

Fertigkeiten:

Die Studierenden wenden die theoretischen Konzepte auf Daten und konkrete Fragestellungen an. Sie entwickeln Lösungen und setzen diese mit Python um. Die Studierenden können die erhaltenen Ergebnisse beurteilen und in Wahrscheinlichkeitsaussagen übersetzen.

Kompetenzen:

Durch die grundlegende Einführung und die systematische Erarbeitung der Lösungen anhand von Lernfällen sind die Studierenden in der Lage, die Methoden zum einen in Forschung und Praxis auf konkrete Anwendungsfälle zu übertragen und anzuwenden. Zum anderen sind sie in der Lage, sich mit vertretbarem Zeitaufwand weitere in der Lehrveranstaltung nicht behandelte Verfahren anzueignen und so ihr Methodenwissen künftig aktuell zu halten bzw. weiter Auszubauen.

Inhalt:

- Deskriptive Datenanalyse mit Python
- Erzeugung von Zufallszahlen wesentlicher statistischer Verteilungen mit Python
- Regression (Lineare Einfachregression; Multiple lineare Regression)
- Klassifikation (Logistische Regression; kNN)
- Modellvalidierung und der Modellauswahl

Medienformen:

Die Lehrveranstaltung folgt dem Konzept des Problem Based Learning. Die Studierenden erhalten vom Dozenten Daten und dazu passende Lernfälle. Die Studierenden erarbeiten sich anhand der Lernfälle Lernfragen und bearbeiten diese zwischen zwei Präsenzveranstaltungen. Essentieller Bestandteil ist die Umsetzung der erarbeiteten Lösungen in Python. Zu Beginn der Folgeveranstaltung präsentieren die Studierenden ihre Ergebnisse im Plenum. Durch den Dozenten werden theoretische Aspekte ergänzend erläutert und anhand von Präsentationen visualisiert. Schließlich führen die Studierenden eine eigenständige Simulationsstudie durch und erstellen dazu eine schriftliche Ausarbeitung.

Literatur:

Bruce, Bruce, Gedeck (2020): Praktische Statistik für Data Scientists, Übersetzung der 2.
 Auflage, O'Reilly

- Fahrmeir / Heumann / Künstler / Pigeot / Tutz (2016): Statistik Der Weg zur Datenanalyse. 8. Auflage. Wiesbaden: SpringerSpektrum.
- James, Witten, Hastie, Tibshirani, Taylor (2023): An Introduction to Statistical Learning with Applications in Python, Springer
- Landup (2021): Data Visualization in Python, StackAbuse
- McKinney (2017): Python for Data Analysis, Second Edition, O'Reilly

anwenden.

Modul:	Knowledge Representation and Natural Language Processing
Kürzel:	WIMB27
Untertitel:	
Lehrveranstaltungen:	Vorlesung
Studiensemester:	Jedes Semester
Modulverantwortlicher:	Prof. Dr. Elena Kuß
Dozent(in):	Prof. Dr. Elena Kuß
Sprache:	Deutsch
Zuordnung zum Curriculum:	Wahlpflichtfach, 1. und 2. Semester
Lehrform / SWS:	Vorlesung: 4 SWS
Arbeitsaufwand:	Präsenzstudium: 60 Stunden Eigenstudium: 90 Stunden
Kreditpunkte:	5 ECTS
Voraussetzungen nach StuPro:	Keine
Empfohlene Voraussetzung:	Programmierkenntnisse
Studien-/Prüfungsleistungen/ Prüfungsform:	Projektarbeit
Modulziele:	
Sprachverarbeitung. Darüber hinaus we Sprachverarbeitung vermittelt. In der Vo	Methoden der Wissensrepräsentation für natürliche erden einfache Methoden der natürlichen orlesung werden Praxisbeispiele von Chatbots behandelt. es Wissen bei der Entwicklung eines Chatbots anwenden.
Angestrebte Lernergebnisse:	
Kenntnisse:	
Sprachverarbeitung. Sie kennen gängig	blick über die Problemstellungen im Kontext natürlicher ge Wissensrepräsentationen. Die Studierenden verstehen Language Processing und können diese in der Praxis

Fertigkeiten:

Die Studierenden sind in der Lage einen einfachen Chatbot zu entwickeln. Sie könne darüber hinaus einschätzen welche Methoden in entsprechen Bereichen in der Praxis eingesetzt werden können.

Kompetenzen:

Die Studierenden verstehen die Herausforderungen natürlicher Sprachverarbeitung und sind in der Lage selbstständig Methoden der natürlichen Sprachverarbeitung anwendungsorientiert umzusetzen. Darüber hinaus können die Studierenden Methoden und Ansätze zur Verarbeitung von Texten verstehen und differenzieren.

Inhalt:

- Grundlagen des Natural Language Processing (NLP)
- Normalisierung und Stemming
- Wissensrepräsentationen
- Semantik
- Chatbots
- Evaluierung der Methoden

- Vajjala, S., Majumder, B., Gupta, A., & Surana, H. (2020). Practical Natural Language Processing: A Comprehensive Guide to Building Real-World NLP Systems. O'Reilly Media.
- Kohne, A., Kleinmanns, P., Rolf, C., & Beck, M. Chatbots.
- Bird, S., Klein, E., & Loper, E. (2009). *Natural language processing with Python: analyzing text with the natural language toolkit.* "O'Reilly Media, Inc.".
- Jurafsky, Daniel & Martin, James. (2008). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition.

Bereich Enterprise Computing

Modul:	Software Architec	ture	
Kürzel:	WIMB31	WIMB31	
Untertitel:			
Lehrveranstaltungen:	Vorlesung		
Studiensemester	Jedes Semester		
Modulverantwortlicher:	ulverantwortlicher: Prof. Dr. Jürgen Münch		
Dozent(in):	Prof. Dr. Jürgen Münch		
Sprache:	Deutsch		
Zuordnung zum Curriculum:	Wahlpflichtfach, 1./2. Semester		
Lehrform / SWS:	Vorlesung	4 SWS	
Arbeitsaufwand:	Präsenzstudium Eigenstudium	60 Stunden 90 Stunden	
Kreditpunkte:	5 ECTS		
Voraussetzungen nach StuPro:	Keine		
Empfohlene Voraussetzung:	Keine		
Studien-/Prüfungsleistungen/ Prüfungsform:	Vorlesung: Referat		

Modulziele:

Das Modul "Software Architecture" vermittelt Ihnen wesentliche Prinzipien, Methoden und Erkenntnisse des Software-Entwurfs und befähigt Sie, existierende Architekturen zu beurteilen und neue Architekturen zu entwerfen. Sie bekommen einen umfassenden Einblick in wichtige Themen wie die Rolle von Qualitätseigenschaften, die Anwendung grundlegender Architekturprinzipien oder die systematische und konsistente Verfeinerung von Architekturen. Da heutige Softwaresysteme in der Regel nicht als Individualsysteme entwickelt werden, spielt das Variantenmanagement eine große Rolle. Daher Iernen Sie auch die Grundlagen der Produktlinienentwicklung kennen.

Angestrebte Lernergebnisse

Kenntnisse:

Die Studierenden kennen wichtige Grundlagen, Prinzipien, Methoden, Muster und Taktiken für den Entwurf und die Evolution von Software-Architekturen. Sie können verschiedene Architekturen bewerten. Sie können erklären, mit welchen Taktiken sich welche Qualitätsziele erreichen lassen.

Fertigkeiten:

Die Studierenden analysieren, bewerten und erstellen Architekturmodelle für unterschiedliche Zielstellungen und Zwecke im Kontext von Unternehmens- und Produktstrategien. Die Studierenden können die erlernten Kenntnisse (Grundlagen, Methoden, Prozesse, Modelle und Basistechnologien) auf Fallbeispiele anwenden. Die Studierenden können das Potential für Produktenentwicklung bestimmen und wiederverwendungsorientierte Architekturen entwerfen.

Kompetenzen:

Die Studierenden ordnen erworbenes Wissen fachgerecht ein, können Zusammenhange erklären, und können das erlernte Wissen auf eigene oder vorgegebene Anwendungsfälle anwenden. Die Studierenden können Architekturen schrittweise verfeinern.

Inhalt:

- Rolle des Software-Entwurfs
- Referenzmodelle und Referenzarchitekturen
- Begriffe und Definitionen
- Architekturprinzipien
- Software-Qualitäten (z.B. Performanz, Security, User Experience)
- Architekturbeschreibungen
- Architekturmuster
- Entwurf von Architekturen
- Feinentwurf
- Verfeinerung von Software-Architekturen
- Komponenten-Entwurf
- Continuous Delivery
- Software-Wiederverwendung
- Product Line Engineering

Medienformen:

- Vorlesung mit begleitenden Übungen
- Bearbeitung von Aufgaben in Teams
- Vorlesungsmaterial in elektronischer Form

- Bass, L., Clements, P., Kazman, R. (2012): Software Architecture in Practice. Addison Wesley.
- Humble, J., Farley, D. (2010): Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation. Addison Wesley.
- Taylor, R. N., Medvidovic, N., Dashofy, E. M. (2009): Software Architecture: Foundations, Theory, and Practice. Wiley.
- Clements, P., Northrop, L. (2007): Software Product Lines : Practices and Patterns. Addison Wesley

Modul: Cloud und Big Data Technologien

Kürzel: WIMB32

Untertitel: Anwendung fortgeschrittener Systemkonzepte im

Enterprise Computing

Lehrveranstaltungen: Vorlesung

Studiensemester Sommersemester

Modulverantwortlicher: Prof. Dr. Wolfgang Blochinger

Dozent(in): Prof. Dr. Wolfgang Blochinger

Sprache: Deutsch

Zuordnung zum Curriculum: Wahlpflichtfach, 1./2. Semester

Lehrform / SWS: Vorlesung 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/

Prüfungsform:

Vorlesung: Projektarbeit

Modulziele:

In diesem Modul sollen Studierende mit der Anwendung fortgeschrittener Systemkonzepte im Kontext von Enterprise Computing vertraut gemacht werden. Die betrachteten Anwendungsszenarien beziehen sich dabei insbesondere auf aktuelle Cloud und Big Data Technologien. Die umfassende Digitalisierung aller Unternehmensbereiche und der rasche technologische Fortschritt bedingen kontinuierlich weitreichende Veränderungen bei der Unternehmens-IT. Die Bewertung und der Einsatz neuer Technologien stellen jedoch aufgrund der hohen Komplexität und den kurzen Innovationszyklen oftmals eine große Herausforderung dar. Vielen aktuellen Technologien ist jedoch gemein, dass sie auf der Anwendung etablierte Systemkonzepte, insbesondere aus dem Bereich der parallelen und verteilten Systeme, beruhen. Eine vertiefte Kenntnis solcher elementaren Anwendungsprinzipien und Wirkzusammenhänge ist ein wichtiges Mittel, um die oben beschriebene hohe Dynamik beherrschbar zu machen. Die Lerninhalte werden anhand einer integrierten Projektarbeit eingeübt.

Dieses Modul steht in engem Bezug zum Modul "Cloud Computing". Beide Module ergänzen sich, sind jedoch nicht voneinander abhängig, so dass sie in beliebiger Reihenfolge oder auch jeweils eigenständig besucht werden können.

Angestrebte Lernergebnisse

Kenntnisse:

Die Studierenden haben vertiefte Kenntnisse über aktuelle Cloud und Big Data Technologien. Sie kennen die wichtigsten zugrundeliegenden Systemkonzepte, insbesondere aus dem Bereich der parallelen und verteilten Systeme.

Fertigkeiten:

Die Studierenden sind in der Lage aktuelle Cloud und Big Data Technologien hinsichtlich ihres Anwendungsradius insbesondere im Kontext von Enterprise Computing zu beurteilen. Sie sind im praktischen Umgang mit aktueller Cloud und Big Data Technologien versiert.

Kompetenzen:

Die Studierenden verstehen die relevanten Konzepte paralleler und verteilter Systeme und deren Anwendungsprinzipien im Bereich der modernen Unternehmens-IT. Sie sind dadurch in der Lage, sich selbständig und effizient in komplexe Cloud und Big Data Technologien einzuarbeiten sowie diese unter verschiedenen technischen und nicht-technischen Aspekten zu beurteilen und zu bewerten.

LE#	Lernergebnis (LE): Nach Abschluss des Moduls sind die Studierenden in der Lage:	Geprüft durch
LE1	Die zugrundeliegenden Systemkonzepte aktueller Cloud und Big Data Technologien zu verstehen.	Projektarbeit
LE2	Aktuelle Cloud und Big Data Technologien anzuwenden und hinsichtlich ihres Anwendungspotentials innerhalb der Unternehmens-IT zu bewerten.	Projektarbeit
LE3	Fachliche Entscheidungen im Themengebiet der Veranstaltung wissenschaftlich fundiert zu treffen.	Projektarbeit
LE4	Neue Entwicklungen und Erkenntnisse im Bereich der Cloud und Big Data Technologien sich anzueignen sowie kritisch zu bewerten.	Projektarbeit

- Relevante Grundkonzepte paralleler und verteilter Systeme
- Architektur und Anwendung aktueller Cloud Plattformen
- Konzepte zur Virtualisierung und zum Management von IT-Ressourcen
 - o Container-Virtualisierung: Docker
 - o Ressourcen-Management und Orchestrierung: Kubernetes
- Verteilte Koordination
 - Zookeeper
- Parallele und verteilte Verarbeitung großer Datenmengen in Cloud Infrastrukturen
 - o Verteilte Datenspeicherung HDFS, Ceph, Crush Algorithmus
 - o Parallele Programmiermodelle: MapReduce, Spark
 - o Anwendungsbeispiele

Medienformen:

Vorlesung mit praktischen Übungen und Demonstrationen, Referate

Literatur:

- Tanenbaum, Andrew S.; van Steen, Maarten (2014): Distributed Systems Principles and Paradigms. 2nd edition. Pearson.
- Grama, Ananth; Gupta, Anshul; Karypis, George; Kumar, Vipin (2003): Introduction to Parallel Computing. Pearson.
- Smith, James E.; Nair, Ravi (2005): Virtual Machines Versatile Platforms for Systems and Processes, Morgan Kaufmann.
- Winn, Duncan (2017): Cloud Foundry The Definitive Guide. O'Reilly.
- Liebel, Oliver (2018): Skalierbare Container-Infrastrukturen. Rheinwerk Computing.
- White, Tom (2015): Hadoop: The Definitive Guide: Storage and Analysis at Internet Scale.
 4. Auflage. O'Reilly.
- Kunigk, Jan et al. (2018): Hadoop in the Enterprise: Architecture: A Guide to Successful Integration. O'Reilly.

Weitere Literatur zu aktuellen Technologien wird in der Veranstaltung bekannt gegeben.

Modul: Cloud Computing

Kürzel: WIMB33

Untertitel: Anwendung, Architektur und Management global

verteilter IT-Infrastrukturen

Lehrveranstaltungen:

Studiensemester Wintersemester

Modulverantwortlicher: Prof. Dr. Wolfgang Blochinger

Dozent(in): Prof. Dr. Wolfgang Blochinger

Sprache: Deutsch

Zuordnung zum Curriculum: Wahlpflichtfach, 1./2. Semester

Lehrform / SWS: Vorlesung 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/

Prüfungsform:

Vorlesung: Klausur

Modulziele:

In diesem Modul sollen Studierende mit wesentlichen Aspekten des Cloud Computing (insbesondere auch aus der Enterprise Computing Perspektive) vertraut gemacht werden. Cloud Computing ist mittlerweile ein zentraler Bestandteil der Unternehmens-IT und ermöglicht zudem eine Vielzahl neuartiger digitaler Geschäftsmodelle und digitaler Produkte. Die wesentliche Idee des Cloud Computing ist es verschiedenartigste IT-Ressourcen als Dienstleistung in einem payper-use Modell zu vermarkten bzw. zu beziehen. Zur Sicherstellung nicht-funktionaler Eigenschaften (wie Verfügbarkeit und Performance) von Cloud-Diensten müssen Anbieter eine komplexe, oftmals global verteilte IT-Infrastruktur betreiben. Für die Architektur und das Management von Cloud nativen Anwendungen ergeben sich hieraus signifikante Herausforderungen, die in der Vorlesung systematisch thematisiert werden sollen.

Dieses Modul steht in engem Bezug zum Modul "Cloud und Big Data Technologien". Beide Module ergänzen sich, sind jedoch nicht voneinander abhängig, so dass sie in beliebiger Reihenfolge oder auch jeweils eigenständig besucht werden können.

Angestrebte Lernergebnisse

Kenntnisse:

Die Studierenden kennen die wesentlichen Charakteristika und Ausprägungen des Cloud Computing Paradigmas samt zugehörigen Preis- und Kostenmodellen. Sie kennen die theoretischen, technischen sowie organisatorischen Grundlagen der Realisierung global verteilter Cloud-Infrastrukturen und Cloud-Dienste sowie entsprechender Anwendungen. Sie sind mit den wichtigsten Prozessen zum Management von Cloud-Infrastrukturen und Cloud-Diensten vertraut.

Fertigkeiten:

Die Studierenden können selbständig Cloud native Anwendungen auf Basis eines Katalogs einschlägiger Architekturmuster entwerfen. Sie können bestehende Anwendungen hinsichtlich ihrer Eignung für die Ausführung in Cloud-Infrastrukturen systematisch analysieren und entsprechend geeignete Cloud-Service- und Deployment-Modelle bestimmen.

Kompetenzen:

Die Studierenden sind in der Lage alternative Cloud-Angebote bezüglich technischer und nichttechnischer Gesichtspunkte systematisch zu bewerten. Sie sind in der Lage im Dialog mit Fachpersonal von Cloud Anbietern fachliche und organisatorische Problemstellungen zu erörtern und adäquate Lösungen zu entwickeln.

LE#	Lernergebnis (LE): Nach Abschluss des Moduls sind die Studierenden in der Lage:	Geprüft durch
LE1	Wesentliche technische und organisatorische Herausforderungen des Cloud Computing zu verstehen.	Klausur
LE2	Cloud fähige Anwendungen auf Basis des aktuellen Stands der Technik zu entwerfen.	Klausur
LE3	Fachliche Entscheidungen im Themengebiet der Veranstaltung wissenschaftlich fundiert zu treffen.	Klausur
LE4	Neue Entwicklungen und Erkenntnisse im Bereich des Cloud Computing sich anzueignen sowie kritisch zu bewerten.	Klausur

- Einführung
 - Definition nach NIST
 - o Cloud-Servicemodelle mit aktuellen Beispielen
 - o Cloud-Deploymentmodelle
- Ausgewählte theoretische und technologische Grundlagen
 - Architektur von Cloud Rechenzentren
 - Virtualisierung
 - o Verteilte Koordination und Synchronisation, CAP-Theorem
- Architektur und Design von Cloud-Anwendungen
 - o Eigenschaften von Cloud nativen Anwendungen
 - o Cloud- Architektur Patterns
- Sicherheitsaspekte und rechtliche Aspekte
 - o Privacy Shield Framework
 - o BSI Anforderungskatalog Cloud Computing (C5)
- Kosten und Preismodelle für das Cloud Computing
- Management von Cloud-Infrastrukturen und -Diensten
 - o Service / Service Level Management
 - o Risk Management
 - o Qualitätsmanagement
- Diskussion aktueller Beispiele für Cloud-Anwendungen und -Dienste

Medienformen:

Vorlesung mit praktischen Übungen und Demonstrationen, Referate

Literatur:

- Fehling, Christoph; Leymann, Frank; Retter, Ralph; Schupeck, Walter; Arbitter, Peter (2014): Cloud Computing Patterns. Fundamentals to Design, Build, and Manage Cloud Applications. Wien: Springer.
- Marinescu, Dan C. (2013): Cloud Computing. Theorie and Practice. Waltham, MA: Morgan Kaufmann.
- Buyya, Rajkumar; Vecchiola, Christian; Selvi, S. Thamarai (2013): Mastering Cloud Computing. Foundations and Applications Programming. Waltham, MA: Morgan Kaufmann.
- Srinivasan, S. (2014): Cloud Computing Basics. New York: Springer.
- Mahmood, Zaigham (Ed.) (2013): Cloud Computing. Methods and Practical Approaches. London: Springer.
- Bhowmik, Sandeep (2017): Cloud Computing. Cambridge University Press.

Weitere aktuelle Literatur wird in der Veranstaltung bekannt gegeben.

Modul: Enterprise Services Development

Kürzel: WIMB34

Untertitel: Entwicklung von Microservices Architekturen

Lehrveranstaltungen: Vorlesung

Studiensemester Sommersemester

Modulverantwortlicher: Prof. Dr. Martin Schmollinger

Dozent(in): Prof. Dr. Martin Schmollinger

Sprache: Deutsch

Zuordnung zum Curriculum: Wahlpflichtfach, 1./2. Semester

Lehrform / SWS: Vorlesung 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung Keine

Studien-/Prüfungsleistungen/

Prüfungsform:

Klausur (1 h), Projektarbeit.

Modulziele:

Unternehmensanwendungen oder –dienste (Enterprise Applications / Enterprise Services) sind kritisch, da Sie meist wertschöpfende Kernprozesse des Geschäftsmodells unterstützen ("mission-critical"). Daher haben sie besondere Anforderungen im Hinblick auf Verteilung, Skalierbarkeit, Verfügbarkeit, transaktionales Verhalten, Persistenz, Sicherheit oder Kommunikations- und Schnittstellentechnologien.

Um die Entwicklung kritischer Unternehmensanwendungen zu beschleunigen und zu vereinfachen haben sich über die Jahre Programmierplattformen etabliert, die für die genannten Aspekte Frameworks, Werkzeuge und Laufzeitumgebungen bereitstellen. Ein prominentes Beispiel dafür ist Jakarta EE (aka Java EE).

Unternehmensanwendungen sind in den letzten Jahren feingranularer geworden. Anstelle von schwergewichtigen, monolithischen Anwendungen tritt eine Vielzahl kleinerer Microservices, die unabhängig voneinander entwickelt und in Produktion gebracht werden können. Die Unabhängigkeit ermöglicht es auch den verantwortlichen Teams die für den einzelnen Service geeignetste Programmiersprache und Plattform einzusetzen.

Unabhängig ob man die Anwendung oder den Dienst als Deployment-Monolith oder Microservice entwickelt wird zunehmend der Betrieb in der Cloud durch die Unternehmen favorisiert. Um die Potentiale beim Betrieb in der Cloud voll ausnutzen zu können, müssen bereits bei der Entwicklung einige Aspekte berücksichtigt werden. Man spricht dann auch von Cloud-nativen Anwendungen, da sie speziell für den Betrieb in der Cloud entwickelt wurden.

Beiden Trends haben dazu geführt, dass etablierte Programmierplattformen diesen Rechnung getragen und entsprechende Erweiterungen für daraus resultierende neue Anforderungen integriert haben. Des Weiteren konnten sich junge Programmiersprachen, die parallel zu diesen Entwicklungen entstanden einen bedeutenden Marktanteil sichern.

Ziel des Modules ist es den Studierenden Kenntnisse, Fertigkeiten und Kompetenzen zu Methoden, Konzepte, Muster, Technologien und Werkzeugen zu vermitteln mit denen moderne Unternehmensanwendungen entwickelt und in Betrieb genommen werden können. Das vermittelte Wissen wird anhand einer integrierten Projektarbeit eingeübt.

Andactranta	Larnardahnicca
イロをとって といて	Lernergebnisse

Kenntnisse:

- Grundlegende Konzepte von Programmierplattformen für Unternehmensanwendungen.
- Praktische Kenntnisse zu mind. einer konkreten Programmierplattform (aktuell Go).
- Kenntnisse über die Softwarearchitektur von Unternehmensanwendungen/-diensten.
- Praktische Kenntnisse von professionellen Entwicklungswerkzeugen und zur Ausführung von Unternehmensanwendungen und -diensten.

Fertigkeiten:

Die Studierenden sind in der Lage eine Anwendung oder einen Service für ein fachliches Szenario zu entwickeln. Dabei setzen sie aktuelle Entwicklungswerkzeuge und -methoden ein. Sie sind in der Lage den Code des Projekts mit einem Version Control System (VCS) zu verwalten und einen Prozess aufzubauen, der die Anwendung oder den Service baut, testet und (in der Cloud) bereitstellt.

Kompetenzen:

LE#	Lernergebnis (LE)	Geprüft durch
LE1	Erfahrung mit professioneller Softwareentwicklungs- und Ausführungssumgebungen für Unternehmensanwendungen oder –dienste	Projektarbeit
LE2	Praktische Anwendung allgemeiner Konzepte von Programmierplattformen für die Entwicklung von Unternehmensanwendungen oder –dienste.	Klausur / Projektarbeit
LE3	Reflexion und Anwendung nicht-funktionaler Aspekte von Enterprise Services (z.B. Sicherheit, Qualität des Quellcodes, durchdachtes API-Designs).	Klausur / Projektarbeit
LE4	Erstellung eines eigenen Unternehmensanwendung oder – dienst	Projektarbeit

- Professionelle Softwareentwicklungsumgebung für Unternehmensanwendungen oder dienste Z.B.:
 - o IDE, Build-Werkzeuge bzw. -Server,
 - Versionsverwaltung,
 - o Container Virtualisierung und Orchestierung.
- Grundlegende Konzepte von Programmierplattformen für Unternehmensanwendungen oder –diensten. Z.B.:
 - o Objektrelationale Abbildung,
 - o Schichtenarchitekturen,
 - o Kommunikationsstile und Implementierungen in Microservices-Architekturen
- Projektarbeit: Programmierung und Bereitstellung einer Microservices-Architektur für eine beispielhafte Fachlichkeit.

Lehr- bzw Medienformen:

Das Modul wird in mehreren ganztägigen Veranstaltungen abgehalten. Jeder Tag ist eine Mischung aus Vorlesung und Programmierübung. Durch die theoretischen Abschnitte werden Methoden und Konzepte vermittelt, durch die praktischen Übungen werden diese theoretischen Kenntnisse praktisch angewandt und eingeübt.

Im Rahmen der Veranstaltung wird gemeinsam eine Beispielanwendung entwickelt, anhand der die Konzepte erklärt und eingeübt, sowie die Entwicklungswerkzeuge angewandt werden. Dadurch werden die Studierenden in die Lage versetzt eine eigene Projektarbeit durchzuführen.

- Newman, Sam (2021): Building Microservices, O'Reilly
- Titmus, Matthew A. (2021): Cloud Native Go, O'Reilly
- Köhler, Kristian (2021): Microservices mit Go, Rheinwerk Computing
- Kane, Sean; Karl, Matthias; Demmig, Thomas (2024): Praxiswissen Docker: Grundlagen und Best Practices für das Deployen von Software mit Containern. O'Reilly
- Arundel, John; Domingus, Justin: Cloud Native DevOps mit Kubernetes

Modul:	Business Process	s Technology		
Kürzel:	WIMB35			
Untertitel:				
Lehrveranstaltungen:	Vorlesung			
Studiensemester	Wintersemester			
Modulverantwortlicher:	Prof. Dr. Martin Schmollinger			
Dozent(in): Prof. Dr. Martin Schmollinger		ollinger		
Sprache:	Deutsch			
Zuordnung zum Curriculum:	Wahlpflichtfach, 1./2. Semester			
Lehrform / SWS:	Vorlesung	4 SWS		
Arbeitsaufwand:	Präsenzstudium Eigenstudium 90 Stu	60 Stunden Inden		
Kreditpunkte:	5 ECTS			
Voraussetzungen nach StuPro:	Keine			
Empfohlene Voraussetzung:	Keine			
Studien-/Prüfungsleistungen/ Prüfungsform:	Vorlesung: Klausur, P	rojektarbeit.		
Modulziele:				
Die Veranstaltung verfolgt das Ziel, Studierende in die Lage zu versetzen bei der Automatisierung von Geschäftsprozessen in Unternehmen mitzuarbeiten. Die Studierenden können dabei in unterschiedlicher Funktion eingesetzt werden. Sie können Projekte als Business Analyst fachlich und technisch begleiten und nachvollziehen. Sie sind aber auch in der Lage als Process Engineer bei der Implementierung der Prozessanwendung mitzuarbeiten.				
Angestrebte Lernergebnisse				
Kenntnisse:				
Die Studierenden kennen die Grundlagen d zugehörigen Methoden und Technologien e		anagement und können die		

Studierende kennen die aktuellen Standards und Notationen der Prozessmodellierung.

Die Studierenden kennen die Funktionsweise und den Aufbau von BPM-Systemen und kennen einige spezielle Softwareprodukte.

Sie kennen Standardprogrammierumgebungen zur Erweiterung von Prozessapplikationen in BPM-Systemen.

Studierende haben Kenntnisse über die verschiedenen Stakeholder in BPM-Projekten und haben die Voraussetzungen in der Praxis die Rolle eines Process Analysten oder eines Process Engineers einzunehmen.

Fertigkeiten:

Nach Abschluss des Moduls sind die Studierenden in der Lage Geschäftsprozesse mit Hilfe von BPM-Systemen zu automatisieren.

Sie wenden dabei etablierte Methoden der Geschäftsprozessanalyse und –modellierung an, und wissen wie man fachliche Prozesse erstellt und dann im Rahmen der Implementierung um technische Details für die Ausführung in einem BPM-System erweitert.

Kompetenzen:

Fachliche Kompetenzen:

Die Studierenden sind in der Lage ein Prozessautomatisierungsprojekt mit aktuellen Methoden und Technologien des BPM von der fachlichen Modellierung bis zur technischen Umsetzung in Form einer Prozessapplikation zu begleiten und durchzuführen.

Sozialkompetenz:

Im Rahmen von BPM-Projekten hat man es in der Praxis mit sehr unterschiedlichen Arten von Beteiligten zu tun. Durch die vermittelten Methoden und die eigene Projektarbeit werden die Studierenden auf dieses komplexe Umfeld vorbereitet.

Studierende lernen die Wichtigkeit von sozialem Verhalten und Teamarbeit im Kontext von BPM-Projekten kennen.

Persönliche Kompetenzen:

Studierende wissen von der Notwendigkeit unterschiedliche Prozessmodelle zur Kommunikation für verschiedene Stakeholder verwenden zu müssen.

Studierende können den Aufwand hinter einer Prozessautomation besser einschätzen. Studierende kennen unterschiedliche BPM-Systemansätze und sind in der Lage Argumente für die Systemauswahl im jeweiligen Unternehmensumfeld zu liefern.

LE#	Lernergebnis (LE)	Geprüft durch
LE1	Praktische Erfahrung mit der Verwendung von Prozessmodellierungsstandards	Klausur / Projekt
LE2	Anwendung von Methoden der Prozessmodellierung in Automatisierungsprojekten	Klausur / Projekt
LE3	Wissen über die Produktstrategien, Architekturen und Arbeitsweisen von BPM-Systemen und Process-Engines	Klausur / Projekt
LE4	Erfahrungen bei der Implementierung von Prozessapplikationen	Klausur / Projekt
LE5	Vorbereitung auf den Umgang und die Kommunikation mit den Stakeholdern in Prozessautomatisierungsprojekten	Klausur / Projekt

Inhalt:

Die Veranstaltung vermittelt Wissen über moderne Methoden, Architekturen und Technologien für die Modellierung und Automatisierung von Geschäftsprozessen:

- Geschäftsprozesse werden dabei in einem Lebenszyklus verwaltet, der die Modellierung, Ausführung, Überwachung und Optimierung beinhaltet und Stakeholder mit unterschiedlichsten fachlichen Hintergründen einbindet.
- BPM-Systeme unterstützen den gesamten Lebenszyklus, ermöglichen die Automatisierung von Geschäftsprozessen und können in eine bestehende IT-Unternehmensarchitektur integriert werden.
- Prozesse werden in Form von grafischen Modellen erfasst, die sowohl zur Kommunikation, wie zur Automation verwendet werden. Prozesse können sich hier in ihrem Charakter unterscheiden (normativ vs. adaptiv) und werden daher häufig mit unterschiedlichen Notationen modelliert (Z. B. BPMN vs. CMMN).
- Das Herz eines BPM-Systems, die Process Engine, führt Prozessinstanzen aus und orchestriert manuelle Aufgaben der Prozessbeteiligten mit Aufgaben, die durch Drittsysteme (ERP, CRM u.a.) automatisch durchgeführt werden.
- Geschäftslogik kann in Form von Regeln (Business Rule) gekapselt werden. Durch die Regel bzw. Entscheidungsmodelle (z.B. mit DMN) erreicht man eine bessere Entkopplung von Geschäftsprozessmodellen und Geschäftslogik, die die Wartbarkeit der Prozesse verbessert.
- BPM-Systeme setzen dabei auf Service-Architekturen auf. Die Teile der automatisierten Geschäftsprozesse die durch Drittsysteme durchgeführt werden sollen, werden dabei in Form von Webservices bereitgestellt.

Medienformen:

Das Modul besteht aus einer Vorlesung in seminaristischem Stil mit Tafelanschrieb, Tageslichtprojektion und PC-Projektion und integrierten Übungen zu den Vorlesungsinhalten. Das Material zu den Veranstaltungen gibt es in elektronischer Form: Folienskript zu den Vorlesungen, Übungsblätter mit Aufgaben.

- Rücker, Bernd (2021): Practical Process Automation. O'Reilly
- Dumas, M., La Rosa, M., Mendling, J., & Hajo, R. A. (2018). Fundamentals of Business Process Management. Springer.
- Freund, J., Rücker, B., & Henninger, T. (2019). Praxishandbuch BPMN. 6. Auflage, Hanser Verlag.
- Weske, M. (2013). Business Process Management. Concepts, Languages, Architectures,
 2. Auflage, Springer.

Modul:	Architekturmanag	gement
Kürzel:	WIMB36	
Untertitel:	Intelligent Service Arcl	nitecture
Lehrveranstaltungen:	Vorlesung	
Studiensemester:	Kann zurzeit nicht angeboten werden	
Modulverantwortlicher:	N.N.	
Dozent(in):	N.N.	
Sprache:	Deutsch, teilweise Englisch	
Zuordnung zum Curriculum:	Wahlpflichtfach, 1./2. Semester	
Lehrform / SWS:	Vorlesung	4 SWS
Arbeitsaufwand:	Präsenzstudium Eigenstudium 90 Stu	60 Stunden nden
Kreditpunkte:	5 ECTS	
Voraussetzungen nach StuPro:	Keine	
Empfohlene Voraussetzung:	Keine	
Studien-/Prüfungsleistungen/ Prüfungsform:	Vorlesung: Hausarbeit	, Referat
Modulziele:		
Die Veranstaltung verfolgt das Ziel, Studie Architekturmanagement mit Fokus auf - forschungs- und anwendungsorientierten S gestalten. Das Modul ist Grundlage für weit für Abschlussarbeiten.	Intelligente Service-Arc Studien, begleitet durch	chitekturen - im Rahmen von Vorlesungen und Übungen zu
Angestrebte Lernergebnisse:		
Kenntnisse:		

Studierende kennen die verschiedenen Ausprägungen des Umgangs mit den grundlegenden Ressourcen – Rollen, Information, Systeme, Technologien, Architekturmodelle - für digitale

Unternehmen. Der Schwerpunkt liegt auf folgenden Themen: Kanonische Architekturen für Digitalisierung und Künstliche Intelligenz, Digitale Unternehmensarchitekturen und Systeme, Software-Architekturen, Intelligente Service Architekturen, Intelligente Produkte und Services. Studierende erwerben Grundlagen, Methoden, Prozesse, Modelle, Werkzeuge und Standards für intelligente Service-Architekturen und können diese exemplarisch anwenden und ausbauen.

Fertigkeiten:

Studierende analysieren, bewerten und erstellen Architekturmodelle für intelligente Softwaresysteme unter Berücksichtigung der gemeinsamen Dimensionen - Geschäft und IT – im Kontext von praktisch geübten Innovationsprozessen sowie von Unternehmensstrategien und einer leistungsstarken IT-Governance. Studierende stellen Grundlagen, Methoden, Prozesse, Modelle und Basistechnologien von intelligenten Service Architekturen in den Zusammenhang eines zukunftsweisenden Digital Enterprise Architecture Management.

Kompetenzen:

Studierende sind nach Abschluss des Moduls in der Lage, in Abhängigkeit von gegebenen Anwendungsfällen, Empfehlungen für den Einsatz eines an der Digitalen Transformation ausgerichteten Software- und Architekturmanagements zu geben und dieses Wissen durch Fallstudien für die Praxis und Wissenschaft zu entwickeln und zu kommunizieren. Studierende konzipieren und modellieren intelligente Software- und Unternehmensarchitekturen sowie zugehörige Methoden und Instrumente. Moderne Architektur-Frameworks, Metamodelle und Bewertungsmethoden werden exemplarisch eingesetzt, weiterentwickelt und bewertet.

Nach Abschluss des Moduls sind die Studierenden in der Lage:

LE#	Lernergebnis (LE)	Geprüft durch
LE1	Digitale Architekturen und Basistechnologien der Künstlichen Intelligenz, für intelligente Service- Architekturen und Systeme, Software-Referenzmodelle und Software Patterns analysieren und praktisch nutzen.	Gruppenarbeit, Konzeptionen, Modelle
LE2	Digitale Architekturen mit Hilfe aktueller Standardsprachen wie ArchiMate, UML, BPMN, SysML, AADL modellieren und bewerten.	Gruppenarbeit, Konzeptionen, Modelle

LE3	Digitale Governance- und Strategiemodelle als Kontext für ein leistungsstarkes Software Management nutzen, bewerten und gestalten.	Gruppenarbeit, Präsentation, Ausarbeitung
LE4	Referenzarchitekturen und Anwendungsszenarien für intelligente Service-Systeme und -Architekturen verstehen, anwenden und exemplarisch in die Forschung durch kreative Experimente und wissenschaftliche Publikationen einbringen.	Gruppenarbeit, Präsentation, Ausarbeitung

Inhalt:

Das Modul vermittelt durch Vorlesungen mit integrierten Forschungsstudien essentielle Architekturen, Methoden und Technologien für digital ausgerichtete Unternehmen. Die Vorlesung wird durch eng begleitete Forschungsstudien sowie durch zugehörige Begriffe, Definitionen, Modelle, Fallstudien aus der Praxis, Werkzeuge, Instrumente, Methoden und Verfahren ergänzt. Ziel der Veranstaltung ist es, Studierende auf die innovative Praxis und Forschung adäquat vorzubereiten. Zu diesem Zweck werden aktuelle Ansätze aus der Praxis und Theorie intelligenter Software- und Unternehmensarchitekturen durch parallele Teams analysiert, gemeinsam bearbeitet und konsequent in Richtung wissenschaftlicher Publikationen und Einsatz dieser Methoden, Instrumente, Modelle und Werkzeuge begleitet

Themen

- Einführung: Intelligente Service-Systeme und Softwarearchitekturen
- Neue Technologien, Digitalisierung und digitale Transformation
- Modelle, Metamodelle und Standards
- Ausarbeitung eines individuellen Fachszenarios der Digitalisierung
- ArchiMate: Architektursprache und ganzheitliche Software-Modellierung für intelligente Service Architekturen, sowie ergänzende Methoden, Techniken, Werkzeuge
- Kanonische Architekturen für Künstlichen Intelligenz und Service Computing
- Intelligente Plattform- und Ökosystem-Architekturen für digitale Unternehmen
- Digitale Governance und Strategien
- Ergebnispräsentation und Reflektion

Medienformen:

Vorlesungen, seminaristischer Unterricht und übergreifende Referate, Skripte, Tafel, Demos, Übungsaufgaben, Fallstudien, vertiefende Konzeptarbeiten, Wissenschaftlicher Kurzaufsatz, Poster, Dokumentationen, Prototypen.

- Ross, J. W., Weill, P., Robertson, D. C. (2006): Enterprise Architecture as Strategy, Harvard Business School.
- Ross, J. W., Beath, C. M., Mocker, M.: (2019): Designed for Digital: How To Architect Your Business for Sustained Success. MIT Press.
- Bernard, S. A. (2020): An Introduction to Holistic Enterprise Architecture. AuthorHouse.
- Hanschke, I. (2022): Enterprise Architecture Management einfach und effektiv, Hanser.
- Open Group (2019): ArchiMate® 3.1 Specification, The Open Group Standard.
- Wierda, G. (2020): Mastering ArchiMate 3.1. R&A.
- Lankhorst, M. (2017): Enterprise Architecture at Work, Springer Verlag.
- The Essential Project on EAM: http://www.enterprise-architecture.org
- Bass, Len; Clements, Paul; Kazman, Rick (2013): Software architecture in practice. 3. ed. Upper Saddle River, NJ, Munich: Addison-Wesley (SEI series in software engineering).
- Papazoglou M.P., Traverso P., Dustdar S., Leymann F. (2007): Service-Oriented Computing: State of the Art and Research Challenges, in Computer, vol. 40, no. 11, pp. 38-45, Nov. 2007.
- Buyya, Rajkumar; Broberg, James; Gościński, Andrzej (2011): Cloud computing. Principles and paradigms. Wiley.

Modul: Demand Driven Supply Chain

Management

Kürzel: WIMB37

Untertitel: Softwaregestützte Planung in Supply Chains

Lehrveranstaltungen: Vorlesung

Studiensemester: Wintersemester

Modulverantwortlicher: Prof. Dr. Philipp Zeise

Dozent(in): Prof. Dr. Philipp Zeise

Sprache: Deutsch

Zuordnung zum Curriculum: Wahlpflichtfach, 1. oder 2. Semester

Lehrform / SWS: Vorlesung: 4 SWS

Arbeitsaufwand: Präsenzstudium: 60 Stunden

Eigenstudium: 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Programmierkenntnisse (Java, Excel-VBA o.ä.)

Studien-/Prüfungsleistungen/

Prüfungsform:

Projektarbeit

Modulziele:

Vor dem Hintergrund aktueller Herausforderungen, welche Unternehmen bei der Gestaltung von Lieferketten (Supply Chains) bewältigen müssen, wird den Studierenden die zentrale Bedeutung eines ganzheitlichen Supply Chain Managements verdeutlicht. Supply Chain Management beinhaltet die Koordination verschiedener Parteien innerhalb und zwischen Unternehmen, wie Vertriebs- und Marketinggesellschaften, Produktionsstätten, Logistikunternehmen, Zulieferer, Kunden und Großhändler. Mit zunehmender Größe einer Organisation und ihrer Lieferkettekette ist eine angemessene Transparenz und Unterstützung für die Entscheidungsfindung unabdingbar. Sogenannte Advanced Planning Systeme wie SAP® APO werden zur Standardisierung von Planungs-prozessen sowie zur Durchführung von Planungsaufgaben verwendet. In vielen großen Unter-nehmen bilden diese daher das Rückgrat des globalen Supply Chain Managements.

In diesem Kurs werden diese Planungssysteme im Kontext eines modernen Supply Chain Managements beleuchtet und anschließend aktuelle, adaptive Planungsmethoden vorgestellt. Schlüsselthemen sind Methoden zur Produktionsplanung und -steuerung, wie die nachfragegesteuerte Materialbedarfsplanung und die Heijunka-nivellierte Kanban-Planung.

Im Folgeschritt entwickeln die Studierenden anhand eines Beispielunternehmens ein Konzept sowie eine entsprechende Softwarelösung für die Platzierung von Lagerhaltungspunkten in Lieferketten (strategische Planungsebene) sowie zur Produktionsplanung und -steuerung (taktische und operative Planungsebene). Die Durchführung erfolgt in Projektteams, wobei die Studierenden sowohl die Rolle eines Unternehmensberaters als auch die Rolle eines Softwareentwicklers einnehmen.

Angestrebte Lernergebnisse:

Kenntnisse:

- Ziele und Begriffe des Supply Chain Managements
- Fortschrittliche Planungssysteme des Supply Chain Managements
- Fachspezifische Kenntnisse zur Gestaltung und Anwendung ausgewählter Planungsmethoden
- Programmierkenntnisse zur Entwicklung eines simulationsbasierten Planungssystems mit Java oder Excel VBA
- Testmanagement
- Simulation von Lieferketten

Fertigkeiten:

Die Studierenden entwickeln ein umfassendes Verständnis für die betriebswirtschaftlichen und IT-technischen Anforderungen an Planungssysteme des Supply Managements. Anhand einer praktischen Fallstudie erkennen die Studierenden Entscheidungsprobleme und die Wirkungsweise der vorgestellten Planungssysteme. Die Studierenden sind in der Lage, Konzepte für integrierte Planungssysteme zu erstellen und erwerben die Fähigkeit zur Entwicklung von Simulations-software. Die Studierenden können ihre Ergebnisse verständlich präsentieren.

Kompetenzen:

Durch die grundlegende Einführung, die systematische Konzepterarbeitung und die Entwicklung einer Softwarelösung anhand einer Fallstudie sind die Studierenden in der Lage, die erlernten Methoden auf Anwendungsfälle in Forschung und Praxis zu übertragen und anzuwenden. Des Weiteren sind sie in der Lage, sich mit vertretbarem Zeitaufwand weitere in der Lehrveranstaltung nicht behandelte Planungsmethoden anzueignen und so ihr Methodenwissen künftig weiter auszubauen.

Inhalt:

- Grundlagenvermittlung im Bereich Supply Chain Management
- Konzeptentwicklung f
 ür die Erstellung eines Planungssystems
- Umsetzung des Konzepts in Java oder Excel VBA
- Präsentation der Ergebnisse

Medienformen:

Die Lehrveranstaltung folgt dem Konzept des Problem Based Learning. Die Studierenden erhalten vom Dozenten eine Einführung in Ziele, Begrifflichkeiten und Planungssysteme des Supply Chain Managements. Anschließend erhalten Sie eine Fallstudie mit entsprechenden Daten. Die Studierenden erarbeiten in selbständig organisierten Projektteams von maximal 4 Studierenden anhand dieser Fallstudie Planungsmodelle und Lösungsmethoden. Essentieller Bestandteil ist die Umsetzung der erarbeiteten Lösungen in Java oder Excel VBA. Schließlich führen die Studierenden eine eigenständige Simulationsstudie durch und präsentieren ihre Ergebnisse an festgelegten Veranstaltungsterminen.

- Dennis, P. (2015). Lean Production simplified. CRC Press.
- Ptak, C. and Smith, C. (2016). Demand Driven Material Requirements Planning. South Norwalk: Industrial Press.
- Ptak, C. and Smith, C. (2018). Precisely Wrong Why conventional planning fails and how to fix it. South Norwalk: Industrial Press.

Modul:	Intelligente Informationssysteme	
Kürzel:	WIMB38	
Untertitel:	Compound Al Systems: - Wie entwirft man GenAl Systeme	
Lehrveranstaltungen:	Vorlesung	
Studiensemester:	Wintersemester	
Modulverantwortlicher:	Prof. Dr. Martin Schmollinger	
Dozent(in):	Dominik Neumann	
Sprache:	Deutsch	
Zuordnung zum Curriculum:	Wirtschaftsinformatik Master Wahlpflichtfach, 1. Und 2. Semester	
Lehrform/SWS:	Vorlesung	4 SWS
Arbeitsaufwand:	Präsenzstudium Eigenstudium	60 Stunden 90 Stunden
Kreditpunkte:	5 ECTS	
Voraussetzungen nach StuPro:	keine	
Empfohlene Voraussetzung :	Mathematische Fertigkeiten in linearer Algebra, Analysis und Wahrscheinlichkeitstheorie für das Erlangen	

der Hochschulreife sowie Grundlagen in Python.

Vorlesungen über maschinelles Lernen und Natural Language Processing sind hilfreich, bilden aber keine Voraussetzung

Studien-/Prüfungsleistungen/ Prüfungsform: Projektarbeit und Referat

Modulziele:

Intelligente Informationssysteme erweitern klassische Informationssysteme um Komponenten künstlicher Intelligenz. Insbesondere die generative künstliche Intelligenz (auch GenAI) nimmt hier einen großen Stellenwert ein. Mit ihrer Hilfe können klassische Informationssysteme um Natural Language Processing & Understanding aber auch Reasoning, erweitert werden. Das führt dazu, dass das maschinelle Lernen in den Hintergrund tritt und Informationssysteme um vorhandene KI-Komponenten erweitert und neu entworfen werden.

Die Vorlesung widmet sich den Design-Prinzipien intelligenter Informationssysteme. Ein Grundverständnis für relevante Grundlagen aus NLP, sowie die Transformer Architektur als Basis für Large Language Models wird zu Beginn vermittelt.

In der Vorlesung werden Praxisbeispiele und aktuelle Frameworks behandelt. Die Studierenden können ihr erworbenes Wissen bei der Entwicklung eines intelligenten Informationssystems anwenden.

Angestrebte Lernergebnisse:

Mit einem erfolgreichen Bestehen des Moduls soll sichergestellt sein, dass die Studierenden einen Überblick über die verschiedenen Methoden und Werkzeuge erlangt haben, die Stand der Technik sind um intelligente Informationssysteme zu erstellen, welche die Verarbeitung natürlicher Sprache als Kernbaustein beinhalten. Dazu zählt auch, dass die Studierenden in der Lage sind Entscheidungen zu treffen, welche Technologie und Methode unter der gegebenen Problemstellung geeignet erscheint.

Kenntnisse:

Um die Studierenden mit den Grundlagen von Large Language Models vertraut zu machen, wird schrittweise in die angewandte Mathematik hinter großen Sprachmodellen eingeführt. Die Theorie wir dann gemeinsam am System erprobt.

Es werden die typischen Architekturmuster und Bausteine intelligenter Informationsysteme vermittelt:

- Conversational AI hier steht der Dialog im Vordergrund. Ziel ist ein System, das dem Benutzer die Interaktion mit einem Menschen imitiert.
- CoPilot ein Copilot assistiert einen Menschen bei seiner Arbeit (human in the loop). Entscheidend dabei ist, dass der der Copilot die Umgebung der menschlichen Arbeit wahrnimmt und in seine Unterstützung mit einbezieht.
- Retrieval Augmented Generation System ein RAG wird eingesetzt, um den Prompt-Kontext mit Wissen, welches das LLM nicht hat (haben kann) anzureichern.
- Multi Agent Problem Solver hier arbeiten mehrere Agenten zusammen, um ein Problem zu lösen. Jeder Agent nutzt ein LLM als Brain, die Orchestrierung erfolgt über einschlägige Frameworks.

Neben der Theorie der Large Language Models (LLMs) wird in ein Ökosystem für NLP, LLMs für intelligente Informationssysteme eingeführt. Verwendung finden:

•Python 3.11

• Jupyter Notebook: https://jupyter.org

PyTorch: https://pytorch.org

•SentenceTransformer: https://sbert.net/

•TikToken: https://github.com/openai/tiktoken

•Transformer: https://huggingface.co/docs/transformers/index

•Typische Frameworks wie Llamaindex, Langchain, MetaGPT und AutoGen

Fertigkeiten:

Die Studierenden können gegebene Problemstellungen im Hinblick auf den Entwurf zusammengesetzter KI Systeme zur Sprachverarbeitung analysieren, geeignete Technologien und Werkzeuge auswählen und Anwendungen auf Basis von einschlägigen Frameworks entwerfen und entwickeln. Die Studierenden können Lösungen ganzheitlich analysieren und bewerten und somit technisch fundierte Entscheidungen für die Einsatzmöglichkeiten dieser Technologien treffen.

Inhalte:

- Large Language Models kurzgefasst
- Angewandte Mathematik von Large Language Models
- Design und Architekturmuster intelligenter Informationssysteme
- Retrieval Augmented Generation
- Multi Agent Problem Solver
- Bewertung, Test und Evaluation intelligenter Informationssysteme

Es gibt viel Grundlagenliteratur, aber nur wenige Fachbücher, die das Design intelligenter Informationssysteme behandeln, dafür aber eine Vielzahl an Artikeln auf arxiv.

- Natural Language Processing with Transformers; Lewis Tunstall, Leandro von Werra, Thomas Wolf; O'REILLY
- Build a Large Language Model from Scratch; Sebastian Raschka; ; O'REILLY
- Large Language Model-Based Solutions; Shreyas Subramanian; WILEY
- Compound Al Systems: https://bair.berkeley.edu/blog/2024/02/18/compound-aisystems/
- Transformer: https://arxiv.org/abs/1706.03762
- Sentence-BERT: https://arxiv.org/abs/1908.10084
- MetaGPT: https://arxiv.org/abs/2308.00352
- AutoGen: https://arxiv.org/abs/2308.08155
- HuggingFace: https://huggingface.co/docs

Modul:	Master-Thesis und Mas	ster-Kolloquium
Kürzel:	WIM31 und WIM32	
Untertitel:		
Lehrveranstaltungen:	Master-Kolloquium Master-Thesis	
Studiensemester:	Jedes Semester	
Modulverantwortlicher:	Studiendekan Wirtschaftsinformatik Master	
Dozent(in):	Professorinnen und Professor Informatik	ren der Fakultät
Sprache:	Deutsch	
Zuordnung zum Curriculum:	Pflichtfach, 3. Semester	
Lehrform / SWS:	Mündliche Prüfung Master-Thesis	
Arbeitsaufwand:	Präsenzstudium: Eigenstudium	- 900 Stunden
Kreditpunkte:	30 ECTS	
Voraussetzungen nach StuPro:	45 ECTS sind erreicht	
Empfohlene Voraussetzung:	Alle anderen Lehrveranstaltungen des Master- Studiums Wirtschaftsinformatik	
Studien-/Prüfungsleistungen/ Prüfungsform:	Mündliche Prüfung, Master-Tl	nesis
Nodulziele:		

M

Die Master-Thesis ist eine abschließende Prüfungsarbeit, mit der die Studierenden nachweisen, dass sie eine umfassende interdisziplinäre Aufgabenstellung der Wirtschaftsinformatik selbstständig nach grundlegenden wissenschaftlichen Methoden in einem vorgegebenen Zeitrahmen bearbeiten können.

Das Master-Kolloquium ist eine mündliche Prüfung, die alle Themen des Master-Studiengangs mit einem Schwerpunkt auf dem Themenbereich der Master-Thesis überprüft. Es wird demzufolge in der Regel nach Abgabe der Master-Thesis abgehalten.

Angestrebte L	ernergebnisse
---------------	---------------

Kenntnisse:

Die Studierenden verfügen über umfassende Kenntnisse aus dem Themenbereich der Arbeit. Die Studierenden sind mit allen formalen Anforderungen für das Erstellen von wissenschaftlichen Arbeiten vertraut.

Fertigkeiten:

Die Studierenden können ein abgeschlossenes Gebiet eigenständig nach wissenschaftlichen Methoden bearbeiten. Sie beherrschen einschlägige Techniken für das Anfertigen einer wissenschaftlichen Arbeit wie Gliederung, Zitieren und Einhaltung einer adäquaten äußeren Form.

Kompetenzen:

Die Studierenden sind zur Abstraktion und Modellbildung zum Zweck der praktischen Analyse, Konzeption und Gestaltung etwa von Geschäftsprozessen und zugehörigen Informationssystemen befähigt. Sie verfügen über Analyse-, Design-, Realisierungs- und Projektmanagementkompetenz. Sie sind zur zielorientierten Lösungsentwicklung in der Lage.

Inhalt:

Themen von Master-Arbeiten beziehen sich auf Aufgabenstellungen der Wirtschaftsinformatik, die aktuell und für die absehbare Zukunft in der Disziplin relevant sind. Die Themen beinhalten mehrere informatische, softwaretechnische, mediale, psychologische, didaktische, wirtschaftliche oder andere Aspekte, die in einem komplexen Zusammenhang mit der Lösung der Aufgabe stehen.

Medienformen:

Fachliche und methodische Betreuung der Studierenden durch Beratungs- und Betreuungsgespräche, die bei unternehmensnahen Arbeiten auch vor Ort stattfinden. Für die Studierenden ergibt sich darüber hinaus die Notwendigkeit, relevante Informationen zu recherchieren und zu referenzieren sowie ggf. die Relevanz und Zielorientierung im betrieblichen Umfeld nachzuweisen. Präsentationen der Studierenden hinsichtlich des Arbeitsfortschrittes und der weiteren Planung.

Literatur:

Abhängig von der jeweiligen Aufgabenstellung