### LOG8470 Méthodes formelles en fiabilité et sécurité

I. Vérification des propriétés des systèmes de transitions

#### John Mullins

Dép. de génie informatique et de génie logiciel École Polytechnique de Montréal

John.Mullins@polymtl.ca

2018 - 2019



### Plan de la partie I

- Modélisation
  - Introduction
  - Modélisation des systèmes
  - Modélisation des systèmes concurrents
  - Mécanismes de synchronisation
  - Introduction à SPIN
- Spécification des propriétés
  - Propriétés des systèmes concurrents
  - Types des propriétés temporelles des systèmes
  - Applications
- Analyse des systèmes de transitions
  - Composantes fortement connexes d'un graphe orienté
  - Automates de Büchi
  - Automates de Büchi et modèles de formules LTL
  - Model-checking de LTL
  - Model checking de LTL dans SPIN

### Plan de la partie I

- Modélisation
  - Introduction
  - Modélisation des systèmes
  - Modélisation des systèmes concurrents
  - Mécanismes de synchronisation
  - Introduction à SPIN
- Spécification des propriétés
  - Propriétés des systèmes concurrents
  - Types des propriétés temporelles des systèmes
  - Applications
- 3 Analyse des systèmes de transitions
  - Composantes fortement connexes d'un graphe orienté
  - Automates de Büchi
  - Automatés de Büchi et modèles de formules MIA
  - Model-checking de LTL
  - Model checking de LTL dans SPIN

# Model-checking: un exemple introductif (1)

Une machine à café



### Model-checking: un exemple introductif (2)

La machine à café avec les propriétés atomiques



- P<sub>\$\$</sub>: 2 pièces sont dans la machine (vrai dans l'état 3 seulement)
- $P_S$ : La machine sert un café (vrai dans l'état 5 seulement)
- Chaque fois qu'on met 2 pièces, alors, fatalement, un café est servi

# Système de transition

Un système de transitions est un triplet  $A = (S, S_0, T, \Sigma, \rho)$  où

- S est un ensemble d'états
- S<sub>0</sub> est un ensemble d'états initiaux
- Σ est un ensemble d'actions
- $T \subseteq S \times \Sigma \times S$  est l'ensemble des transitions
- Σ : un alphabet d'actions
- $\rho: S \to 2^{Prop}$  est une fonc. d'interprétation des propriétés atomiques  $Prop = \{P_1, P_2, \dots P_n\}$

#### Notation:

- Transition :  $s_1 \xrightarrow{a} s_2$
- Fragment d'exécution :  $s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} s_2 \xrightarrow{a_3} \cdots$
- Trace :  $\rho(s_1)\rho(s_2)\rho(s_3)\dots$



### Un digicode



```
Fragments de traces
1
11, 12
111, 112, 121, 122, 123
1111, 1112, 11121, 1122, 1123, 1211, 1212, 1221, 1222, 1223, ...
```

### Digicode avec les propriétés atomiques



- P<sub>A</sub>: un A vient tout juste d'être tapé
- P<sub>B</sub>: un B vient tout juste d'être tapé
- P<sub>C</sub>: un C vient tout juste d'être tapé
- pred<sub>2</sub>: l'état précédent de toute exécution est 2
- pred<sub>3</sub>: l'état précédent de toute exécution est 3
- Si la porte s'ouvre alors ABA était la dernière séquence tapée
- Toute séquence terminant par ABA ouvre la porte



# Digicode avec transitions gardées

- Variable c
- Initialement : c=0
- Transitions gardées
- Actions c := c + 1
   incrémentent c





### Systèmes de transitions étendu

Un systèmes de transitions étendu sur un ensemble de variables typées Var est un tuplet

$$\mathcal{AE} = (S, S_0, \mathcal{T}, \Sigma, \textit{Effet}, g_0)$$

- S est un ensemble fini d'états de contrôle appelées locations;
- $S_0 \in Q$  est l'ensemble des locations initiales;
- ∑ est un ensemble d'actions ;
- Effet : Σ × Eval(Var) → Eval(Var) est la fonction d'effets où

$$Eval(Var) = Xom(x)$$

et Dom(x), le domaine des valeurs de x;

- $\mathcal{T} \subseteq S \times Cond(Var) \times \Sigma \times S$  est un ensemble fini de transitions où Cond(Var) est l'ensemble des conditions booléennes sur Var;
- $g_0 \in Cond(Var)$  est la condition initiale.



# Digicode avec transitions gardées



# Digicode avec compteur d'erreurs

Configuration :

(location, Eval. de c)

 Effet de c := c + 1 sur la valeur de c

$$(s, n) \xrightarrow{a} (s', n + 1)$$

si

g est valide en n



# Dépliage d'un système de transitions étendu

Le *dépliage* d'un systèmes de transitions étendu sur un ensemble de variables typées *Var* 

$$\mathcal{AE} = (S, S_0, \mathcal{T}, \Sigma, \textit{Effet}, g_0)$$

est le système de transitions tel que

- États : S × Eval(Var);
- États initiaux :  $S_0 \times \{ \sigma \in Eval(Var) : g_0 \text{ est valide dans } \sigma \} ;$
- $(s, \sigma) \xrightarrow{a} (s', \sigma')$  est une transition si :
  - $\begin{array}{c}
    g \to \\
    a, c := c + 1 \\
    \longrightarrow
    \end{array}$
  - g est valide dans  $\sigma$  (noté  $\sigma \models g$ )
  - $\sigma' = Effet(c, \sigma)$



### Exemple à plusieurs variables



Un fragment d'exécution du système de transition (infini) associé :

$$\begin{array}{cccc} (q_{0},[3/x,2/y,10/z]) & \xrightarrow{z:=0} & (q_{1},[3/x,2/y,0/z]) & \xrightarrow{x:=2.} \\ (q_{2},[6/x,2/y,0/z]) & \xrightarrow{z:=z+1} & (q_{1},[6/x,2/y,1/z]) & \xrightarrow{x:=2.} \\ (q_{2},[12/x,2/y,1/z]) & \xrightarrow{z:=z+1} & (q_{1},[12/x,2/y,2/z]) & \xrightarrow{\longrightarrow} \\ (q_{3},[12/x,2/y,2/z]) & \xrightarrow{\longrightarrow} & \end{array}$$

### Produit libre de systèmes de transitions

Le *produit libre*  $A_1 \times \cdots A_n$  de *n* systèmes de transitions  $A_i = (S_i, S_{0,i}, T, \Sigma_i, \rho_i)$  pour tout  $1 \le i \le net$  est le système de transition  $\mathcal{A} = (S, S_0, T, \Sigma, \rho)$  défini par

• 
$$S = S_1 \times \cdots \times S_n$$

• 
$$S_0 = S_{0.1} \times \cdots \times S_{0.n}$$

$$\bullet \ \rho = \bigcup_{1 \leqslant i \leqslant n} \rho_i$$



# Exemple: $0 \xrightarrow{a} 1 \times 2 \xrightarrow{b} 3$

$$0 \xrightarrow{a} 1$$

$$\begin{array}{cccc}
2 & (0,2) \xrightarrow{a,-} (1,2) \\
\downarrow b & \downarrow & \downarrow -,b \\
3 & (0,3) \xrightarrow{a,-} (1,3)
\end{array}$$



### 3 compteurs modulo : $\mathcal{A}_{\text{mod 2}} \times \mathcal{A}_{\text{mod 4}} \times \mathcal{A}_{\text{mod 3}}$

### Espace des états



# 3 compteurs modulo : $\mathcal{A}_{\text{ mod 2}} \times \mathcal{A}_{\text{ mod 4}} \times \mathcal{A}_{\text{ mod 3}}$

### Transitions issues de (0,0,0)



# Produit synchronisé des systèmes de transitions

#### Definition

Une contrainte de synchronisation  $Sync \subseteq (\Sigma_1 \cup \{\_\}) \times \cdots \times (\Sigma_n \cup \{\_\})$  établit l'ensemble de toutes les actions globales permises, toutes les autres étant interdites.

#### Definition

Le produit synchronisé  $\mathcal{A}_1 \| \cdots \| \mathcal{A}_n$  de  $\mathcal{A}_1, \dots \mathcal{A}_n$  par rapport à *Sync* est le système de transition  $\mathcal{A}_1 \times \cdots \times \mathcal{A}_n$  restreint aux seules transitions étiquetées par une action de *Sync* 

### Example

$$0 \xrightarrow{a} 1 \parallel 2 \xrightarrow{b} 3 = (0,2) \xrightarrow{a,b} (1,3) \text{ sur } Sync = \{(a,b)\}$$



# Exemple: $A_{\text{mod 2}} \times A_{\text{mod 4}} \times A_{\text{mod 3}}$

 $\textit{Sync} = \{(\texttt{inc}, \texttt{inc}, \texttt{inc}), (\texttt{dec}, \texttt{dec}, \texttt{dec})\}$ 



### Mécanismes de communication

#### Entrelacement des exécutions

Le modèle de calcul de la concurrence doit être :

- indépendant de la vitesse relative des processeurs
- Modèle indépendant de leurs distances relatives

#### Definition

Le produit d'entrelacement  $\mathcal{A}_1 \|_{I} \mathcal{A}_2$  de de deux systèmes de transitions  $\mathcal{A}_1, \mathcal{A}_2$  est le système de transition  $\mathcal{A}_1 \| \mathcal{A}_2$  avec  $Sync = \Sigma_1 \times \{\_\} \cup \{\_\} \times \Sigma_2$ .

#### Mécanismes

- Communication par variables partagées
- Communication par messages synchrone (handshaking)
- Communication par canal (par messages asynchrone)

### Communication par variables partagées

### Le problème

 Le résultat de l'entrelacement d'affectations à une variables partagée dépend de l'ordre d'exécution :

#### Exemple

L'exécution de

$$\underline{x := 2x} \parallel \underline{x := x + 1}$$

de l'état initial x = 3 termine dans l'état

- x = 7 si  $\alpha$  est exécutée avant  $\beta$
- x = 8 si  $\beta$  est exécutée avant  $\alpha$



# Communication par variables partagées

#### La solution

- Entrelacement des actions
- Résolution de conflit entre les variables critiques par un arbitre

### Remarque

 L'exécution d'affectations à des variables indépendantes est indépendant de l'ordre d'entrelacement

#### Exemple

L'exécution de

$$\underbrace{x := x + 1}_{\text{action } \alpha} \| \underbrace{y := y - 2}_{\text{action } \beta}$$

de l'état initial x = 0, y = 7

# Exemple: Un gestionnaire d'imprimante

• Var. partagée : turn (initialisée à A)



FIGURE: L'utilisateur A.





FIGURE: Système de transition associé à  $\mathcal{AE}_A \parallel_I \mathcal{AE}_B$ .

FIGURE: L'utilisateur B.

### Exclusion mutuelle à l'imprimante

Aucun état accessible de la forme  $(y, t, \bot)$ 

### L'algorithme d'exclusion mutuelle de Peterson

Var. partagées : d0, d1 (init. à 0)
 Le processus P<sub>0</sub> exécute :

```
d0:=1:
     tour:=1;
     w<sub>0</sub> : wait until (d1=0 or tour=0)
     co : {section critique}
     d0 := 0
     end
P<sub>1</sub> exécute le code symétrique
loop forever
     begin
     n_1: {section non critique}
     d1:=1:
     tour:=0;
     W_1: wait until (d0=0 or tour=1);
     C1 : {section critique}
```

 $n_0$ : {section non critique}

d1:=0

loop forever begin

### L'algorithme d'exclusion mutuelle de Peterson

### États de $\mathcal{P}_{Pet}$

$$S_0 \times S_1 \times dom(tour) \times dom(d_0) \times dom(d_1)$$
 (72 états)

### États accessibles



#### **Exclusion mutuelle**

Aucun état accessible de la forme  $(c_0, c_1, \_, \_, \_)$ 

# Communication par message (Handshaking)

#### Definition

Le produit de handshake  $\mathcal{A}_1\|_H \mathcal{A}_2$  de de deux systèmes de transitions  $\mathcal{A}_1, \mathcal{A}_2$  où  $H \subseteq \Sigma_1 \cap \Sigma_2$  sont les actions de handshake, est le système de transition  $\mathcal{A}_1\|\mathcal{A}_2$  avec

$$\textit{Sync} = (\Sigma_1 \backslash H) \times \{\_\} \cup \{\_\} \times (\Sigma_2 \backslash H) \cup \{(a,a) : a \in H\}.$$

### $\|_{\mathcal{H}}$ :

Cas particulier de  $\parallel$  où la synchronisation est simultanée pour les actions de H et entrelacée pour les autres.

### Exemple : Exclusion mutuelle avec un contrôleur



FIGURE: Processus  $P_i$ .





FIGURE: Le contrôleur.

### FIGURE: $(\mathcal{AE}_0||_{I}\mathcal{AE}_1)||_{H}\mathcal{AE}_C$ .

#### Exclusion mutuelle

Aucun état accessible de la forme  $(c_0, c_1, \_)$ 



### Communication par canal

#### Variable c de canal

- domaine : dom(c) Ex. : Mots  $\leq$  200 d'un alphabet  $\mathcal{M}$
- capacité : *cap*(*c*) Ex. : 200
- opérations : c!v (enfiler v si non plein), c?x (defiler si non vide)
- Chan: Un ensemble de variables de canal (FIFO)
- Actions supplémentaires :

```
Comm = \{c!v : v \in dom(c) \text{ et } c \in Chan\} \cup \{c?x : dom(c) \subseteq dom(x), x \in Var \text{ et } c \in Chan\}
```

### Communication par canal : sémantique

$$\mathcal{AE} = (S, S_0, \mathcal{T}, \Sigma, \textit{Effet}, g_0)$$

sur Var ∪ Chan avec

$$\mathcal{T} \subseteq S \times \textit{Cond}(\textit{Var}) \times (\Sigma \cup \textit{Comm}) \times S$$

comme avant avec les effets supplémentaires :

- $s \xrightarrow{g:c!v} s'$ : enfile v sur c si non plein
- $s \stackrel{g:c?xs'}{\longrightarrow}$ : défile et affecte à x si non vide)



# Modèle de système concurrent général

$$\mathcal{AE}_i = (\textit{S}_i, \textit{S}_0^i, \mathcal{T}_i, \Sigma_i, \textit{Effet}_i, \textit{g}_0^i)$$

sur ( $Var_i \cup Chan$ ) et  $Var = Var_0 \cup Var_1$  alors le système de transition associé à

$$\mathcal{AE}_0|\mathcal{AE}_1$$

• 
$$S = S_0 \times S_1 \times Eval(Var) \times Eval(Chan)$$
 où 
$$Eval(Var) = \bigvee_{x \in Var} Dom(x)$$
 
$$Eval(Chan) = \bigvee_{c \in Chan} Dom(c)$$

 $S_0 = \{(s_o, s_1, \sigma, \xi) : s_0 \in S_0, s_1 \in S_1, \sigma \models g_0^0 \land g_0^1, \xi : \text{ tous les canaux vides}\}$ 

# Modèle de système concurrent général (suite)

- T restreint aux actions de
  - $\Sigma_i$  et aux affectations se comporte selon  $\parallel_I$ ;
  - la forme c!v et c?x où cap(c) > 0 se comporte selon les règles d' échanges de messages asynchrones;
  - la forme c!v et c?x où cap(c) = 0 se comporte selon  $\parallel_H$

0

$$\Sigma = \Sigma_0 \cup \Sigma_1 \cup \{x := e : x \in Var, e, \text{ une expresion}\} \cup \{c!v, c?x : c \in Chan, v \in dom(c), x \in Var, dom(c) \subseteq dom(x)\}$$

### Le protocole de Dolev-Klawe-Rodeh

- On suppose N ≥ 2 processus dans une topologie en anneau connectés par des canaux non-bornés
- Émettent ds le sens des aiguilles d'une montre
- Chacun a un *identificateur* unique (ici un entier) représentant sa capacité d'exercer une certaine tâche (gardé dans d)
- But : Assurer que l'élection élira un et un seul processus (le plus apte) i.e. avec le plus grand identificateur



### Le protocole de Dolev-Klawe-Rodeh (suite)

- Les participants sont ou actif ou relai
- Initialement : tous actif
- À chaque ronde tous les processus actifs reçoivent les identificateurs des deux voisins les plus près (dans la direction entrante) (e et f).
- Un processus demeure actif seulement si la valeur du plus près est la plus grande des 3 (entre d, e et f). Le processus adopte alors ce nombre comme le sien.
- À la sortie : 1 et 1 seul actif, le plus grand

### Exemple

En classe



# Modèle du protocole de Dolev-Klawe-Rodeh

```
eligible:
d :=ident;
do forever
begin
      send(d);
      receive(e);
      if e=d then goto stop (* le processus d est le leader*) else skip
      send(e);
      receive(f);
      if e \ge \max(d, f) then d := e else goto relai;
end
relai :
do forever
begin
      receive(d):
      send(d);
end
stop: skip
```

# Une exécution synthétique de Dolev-Klawe-Rodeh







### Le langage PROMELA

- SPIN: Outil de simulation et de vérification d'une spécification
- PROMELA: Langage d'entrée de SPIN
- Syntaxe des commandes :

$$S ::= \mathbf{skip} \mid x := e \mid c?x \mid c!e \mid$$

$$S_1; S_2 \mid \mathtt{atomic}\{S\} \mid$$

$$\mathbf{if} :: g_1 \Rightarrow S_1 \ldots :: g_n \Rightarrow S_n \mathbf{fi} \mid$$

$$\mathbf{do} :: g_1 \Rightarrow S_1 \ldots :: g_n \Rightarrow S_n \mathbf{od}$$

 Programme PROMELA: une suite de processus P<sub>1</sub>,...P<sub>n</sub> modélisant un réseau

$$\mathcal{PE}_1|\dots|\mathcal{PE}_n$$



# Le langage PROMELA

La déclaration

```
proctype P (parametres formels) {declarations locales;
enonces}
```

L'instanciation

```
init{ run P(parametres reels); run Q(parametres reels); ...}
```

- Basé sur les commandes gardées de Dijkstra
  - Toute commande est soit activée soit bloquée :

```
(a == b) est équivalente à while (a != b) do skip
```

- La commande vide : skip
- L'affectation : x = 7
- La conditionnelle non-déterministe if:



### Le langage PROMELA

- Basé sur les commandes gardées de Dijkstra (suite)
  - La boucle non-déterministe do :

```
do :: guarde1 -> commande1
    :: .......
    :: guarden -> commanden
od
```

- Les commandes send et receive
  - Un canal fini : chan c = [5] of byte
  - L'émission!:
     c!2 est activé seulement si c n'est pas plein
  - réception ? :
     c?x est activée seulement si c n'est pas vide
  - Un canal de capacité nulle ( rendez-vous) :
     c! (resp. c?) est activé si et seulement si c? (resp. c!) l'est



# Le processus $P_0$ de l'exclusion mutuelle

od;



# Le protocole de Dolev-Klawe-Rodeh

```
proctype processus (chan in, out; byte ident)
        byte d, e, f;
        printf("MSC: %d\n", ident);
eligible:
        d = ident:
        do :: true -> out!d;
                      in?e;
                      if :: (e == d) ->
                              printf("MSC: %d is LEADER\n", d);
                              nbre leaders = nbre leaders + 1;
                              goto stop /* d est le leader */
                          :: else -> skip
                        fi;
                        out!e;
                        in?f:
                        if :: (e >= d) && (e >= f) -> d = e
                            :: else -> goto relai
                         fi
        od:
relai.
end.
        do :: in?d -> out!d
        od;
stop:
        skip
```

# Le protocole de Dolev-Klawe-Rodeh

Définition des variables globales :

```
#define N 5 /* nombre de processus */ #define I 3 /* processus avec le plus faible ident */ #define L 10 /* dimension du buffer (>= 2*N) */# chan q[N] = [L] of {byte}; /* N canaux de capacité L chacun */
```

Création de l'anneau et instanciation des processus

# Le protocole de Dolev-Klawe-Rodeh



# Plan de la partie I

- Modélisation
  - Introduction
  - Modélisation des systèmes
  - Modélisation des systèmes concurrents
  - Mécanismes de synchronisation
  - Introduction à SPIN
- Spécification des propriétés
  - Propriétés des systèmes concurrents
  - Types des propriétés temporelles des systèmes
  - Applications
- 3 Analyse des systèmes de transitions
  - Composantes fortement connexes d'un graphe orienté
  - Automates de Büchi
  - Automates de Büchi et modèles de formules MIA
  - Model-checking de LTL
  - Model checking de LTL dans SPIN



### Définition

# loop forever begin $n_0$ : {

```
(n_0, n_1, 0, 0, 0)
                                                                (n_0, n_1, 1, 0, 0)
n_0: {section non critique}(c_0, n_1, 1, 1, 0)
                                                                                                 (n_0, c_1, 0, 0, 1)
d0:=1:
                                                                                (n_0, w_1, 0, 0, 1)
                                                                (w_0, n_1, 1, 1, 0)
tour:=1;
W_0: wait until (d1=0 or tour=0)
                                                                (w_0, w_1, 0, 1, 1)
                                                                                (w_0, w_1, 1, 1, 1, 1)
cn : {section critique}
d0 := 0
                                                                (c_0, w_1, 0, 1, 1)
                                                                                (w_0, c_1, 1, 1, 1)
end
```

- Exécution  $\pi = ((n_0, n_1, 0, 0) \cdot (w_0, n_1, 1, 1, 0) \cdot (c_0, n_1, 1, 1, 0))^{\omega}$
- exclusion mutuelle : Au plus un seul processus doit être dans sa section critique à un instant donné.
- $Prop = \{P_{sc0}, P_{sc1}\}$
- Trace de  $\pi = (\varnothing \cdot \varnothing \cdot \{P_{sc0}\})^{\omega} = ((0,0) \cdot (0,0) \cdot (1,0))^{\omega}$
- Une propriété temporelle est un  $\omega$ -langage  $P \subseteq (\mathbb{B}^n)^\omega$

### Exemple

$$P_{mutex} = \left( \left( egin{array}{c} 0 \\ 0 \end{array} 
ight) + \left( egin{array}{c} 1 \\ 1 \end{array} 
ight) + \left( egin{array}{c} 1 \\ 0 \end{array} 
ight) 
ight)^{\omega}$$

# Un autre exemple

#### loop forever $(n_0, n_1, 1, 0, 0)$ $(n_0, n_1, 0, 0, 0)$ begin $n_0$ : {section non critique} $(c_0, n_1, 1, 1, 0)$ $(n_0, c_1, 0, 0, 1)$ d0:=1: $(n_0, w_1, 0, 0, 1)$ $(w_0, n_1, 1, 1, 0)$ tour:=1; $W_0$ : wait until (d1=0 or tour=0) $(w_0, w_1, 0, 1, 1)$ $(w_0, w_1, 1, 1, 1)$ co : {section critique} d0 := 0 $(c_0, w_1, 0, 1, 1)$ $(w_0, c_1, 1, 1, 1)$ end

- Absence de blocage : Si les 2 processus essaient d'entrer en section critique alors un des 2 finira par y parvenir.
- Absence de famine : Si un processus essaie d'entrer dans sa section critique alors il y parviendra.
- Attente bornée: Si un processus attend pour accéder à sa SC, alors il y arrivera et on peut borner le nombre de fois où d'autres processus pourront accéder à leur SC avant lui.
- $Prop = \{P_{w0}, P_{sc0}, P_{sc1}, P_{w1}\}$
- Trace de  $\pi$  :

 $(\varnothing \cdot \{P_{w0}\} \cdot \{P_{s00}\})^{\omega} = ((0,0,0,0) \cdot (1,0,0,0) \cdot (0,1,0,0))^{\omega}$ 

### Propriétés de sûreté

#### Definition

 $P \subseteq (\mathbb{B}^n)^\omega$  est une propriété de sûreté ssi toute trace  $\sigma$  qui viole P contient un "mauvais" préfixe  $\hat{\sigma}$ 

#### P<sub>mutex</sub>

Le langage (régulier) des mauvais préfixes est

$$\left(\left(\begin{array}{c}0\\0\end{array}\right)+\left(\begin{array}{c}0\\1\end{array}\right)+\left(\begin{array}{c}1\\0\end{array}\right)\right)^*\left(\begin{array}{c}1\\1\end{array}\right)$$

### Vivacité

#### Definition

 $P \subseteq (\mathbb{B}^n)^\omega$  est une propriété de vivacité ssi n'importe quel mot de  $(\mathbb{B}^n)^*$  peut être étendu en un mot (infini) de P.

- "Quelque chose de bien va arriver"
- Tout préfixe peut être étendu à un mot de P.

### Example

Absence de famine

# En général

Soit P, une propriété alors

$$\exists_{P_{safe}, P_{live}} P = P_{safe} \cap P_{live}$$

où  $P_{\textit{safe}}$  est une propriété de sûreté et  $P_{\textit{live}}$ , une propriété de vivacité.

### Example

Le système dont les traces sont spécifiées par

$$(e^*ae^*b)^*e^\omega \cup (e^*ae^*b)^\omega$$

satisfait la propriété :

- 1 toute occurrence de a doit être suivie de b (vivacité) et
- 2 toute occurrence de *b* doit être précédée de *a* (sûreté).

# Formules temporelles linéaires

- Un ensemble de propriétés atomiques :
  - $Prop = \{P_0, P_1, P_2, \dots, P_n\}$
- Pour  $P \in Prop$ ,

$$\phi, \psi ::= P \mid \neg \phi \mid \phi \land \psi \mid \phi \lor \psi \mid \phi \rightarrow \psi \mid \phi \leftrightarrow \psi \mid \mathbf{N} \phi \mid \phi \mathbf{U} \psi$$

- $\sigma \in (\mathbb{B}^n)^\omega$ , une chaîne infinie d'interprétations de *Prop* 
  - $\sigma \models P \operatorname{ssi} \sigma(0) \models P$
  - $\sigma \models \phi \land \psi \text{ ssi } \sigma \models \phi \text{ et } \sigma \models \psi$
  - $\sigma \models \neg \phi \text{ ssi } \sigma \not\models \phi$
  - $\sigma \models \mathbf{N}\phi$  ssi  $\mathbf{c} = \sigma(\mathbf{0}) \cdot \sigma'$  et  $\sigma' \models \phi$
  - $\sigma \models \phi \mathbf{U} \psi$  ssi
    - $\sigma \models \psi$  ou
    - If existe un entier n tell que  $\sigma = \sigma(0) \dots \sigma(n) \sigma'$  avec  $\mathcal{A}, \sigma' \models \psi$  et pour tout  $i \in \{0, \dots, n\}$  on a,  $\sigma(i) \dots \sigma(n) \sigma' \models \phi$



### Quelques notations

- $A = (S, S_0, T)$ : Un système de transitions (on oublie les étiquettes des transitions)
- Un ensemble de propriétés atomiques :

$$Prop = \{P_0, P_1, P_2, \dots, P_n\}$$

- Fonction d'interprétation :  $\rho: S \to 2^{Prop}$
- Soit  $c=t_1,t_2\ldots$ , une exécution de  ${\mathcal A}$ 
  - $c \models \phi \text{ ssi } \rho(t_1)\rho(t_2) \ldots \models \phi$
- $A \models \phi$  si toute trace de A à partir de  $S_0$  est un modèle de  $\phi$

### Exemples



- $t_1(t_2t_3t_4)^{\omega} \models r \rightarrow s$
- $t_1(t_2t_3t_4)^{\omega} \models \mathbf{N}(p \leftrightarrow s)$
- $t_1(t_2t_3t_4)^{\omega} \models NN s$
- $t_1(t_2t_3t_4)^{\omega} \models q \mathbf{U} s$
- $t_1(t_2t_3t_4)^{\omega} \models s \mathbf{U} q$
- $(t_2 t_3 t_4)^{\omega} \models \neg(\rho \mathbf{U} t)$
- L'algorithme de Peterson satisfait la propriété d'exclusion mutuelle ssi

$$\mathcal{P}_{Pet} \models \neg (\mathbf{1U}(P_{sc0} \land P_{sc1})).$$



# Opérateurs temporaux auxilliaires



- $\Diamond \phi \stackrel{\text{Def}}{=} \mathbf{1U} \phi$  (Inéxorablement  $\phi$ ) Ex :  $t_1(t_2t_3t_4)^{\omega} \models \Diamond p$
- $\Box \phi \stackrel{\text{Def}}{=} \neg \Diamond \neg \phi$  (Toujours  $\phi$ ) Ex :  $t_1(t_2t_3t_4)^{\omega} \models \Box \rho$
- Quelques schémas de formules utiles
  - $c \models \Box \Diamond \phi$  ssi il existe une infinité de suffixes  $c_2$  de c tel que  $c_2 \models \phi$ . Ex :  $t_1(t_2t_3t_4)^\omega \models \Box \Diamond (q Us)$
  - ②  $c \models \Diamond \Box \neg \phi$  ssi il existe un nombre fini de suffixes c' de c tels que  $c' \models \phi \exists x : t_1(t_2t_3t_4)^{\omega} \models \Diamond \Box \neg t$

### Un feu de circulation intermittent

 $\mathcal{A}=(\mathcal{S},\mathcal{T})$  : modèle de feu de circulation avec feu orange intermittent :



Propositions atomiques : r (rouge), o (orange), v (vert), i (intermittent). On a alors les propriétés suivantes :

- $(A, s_1) \models \mathbf{NN} o$
- $\bullet (s_1 s_3 s_2)^* (s_4 s_2)^{\omega} \subseteq \{ \sigma \in \mathbb{B}^4 : \sigma \models \neg i \mathbf{U} i \}$
- $(A, s_1) \models \neg i \mathbf{U} i$
- $\bullet \ (\mathcal{A}, s_4) \models \neg i \, \mathbf{U} \, i$
- $\bullet \ (\mathcal{A}, s_4) \models i \, \mathbf{U} \, \neg i$
- $(A, S) \models \Diamond o$
- $\bullet (s_1 s_3 s_2)^{\omega} \models \Box \neg i$
- $(A, S) \models \Box \Diamond o$
- $(S_1 S_3 S_2)^* (S_4 S_2)^{\omega} \subseteq \{ \sigma \in \mathbb{B}^4 : \sigma \models \Diamond \Box \neg r \}$

# Model-checking, réalisabilité et validité

- $\bullet$   $\phi$  *réalisable* s'il existe  $\sigma \in (\mathbb{B}^n)^\omega$  tel que  $\sigma \models \phi$ .
  - $\Box(p \Rightarrow \mathbf{N}q)$  est réalisable
- ②  $\phi$  est valide si pour tout  $\sigma \in (\mathbb{B}^n)^\omega$ ,  $\sigma$  est un modèle de  $\phi$ 
  - $(p \land \Box(p \Rightarrow \mathbf{N}p)) \Rightarrow \Box p$  est valide
- Le problème du model-checking :
  - ullet  $\mathcal A$  : un système de transitions
  - Montrer que

$$\mathcal{A} \models \phi$$

#### Problème du modèle checking

Tr(A): Ensemble des traces de A

 $[\![\phi]\!]$  : Ensemble des modèles de la propriété  $\phi$ 

$$\mathcal{A} \models \phi \text{ ssi } \mathit{Tr}(\mathcal{A}) \subseteq \llbracket \phi \rrbracket$$

#### Le canal

- Un émetteur S et d'un récepteur R.
- Munis d'un tampon de capacité infinie parfait S.out et R.in resp.
- S.out et R.in sont connectés par un canal unidirectionnel parfait.
- Un message *m* envoyé par *S* est d'abord inséré dans *S.out*.
- À la réception par R, m est éliminé de R.in.
- On suppose que :
  - les messages sont atomiques et uniquement identifiés
  - l'ensemble *M* des messages est fini.



$$Prop = \{m \in S.out : m \in M\} \cup \{m \in R.in : m \in M\}$$

On formalise les requis suivants en logique temporelle linéaire :

#### La spécification en LTL

 "Un message ne peut être dans les deux tampons en même temps".

• "Le canal ne perd pas de messages".

$$Prop = \{m \in S.out : m \in M\} \cup \{m \in R.in : m \in M\}$$

On formalise les requis suivants en logique temporelle linéaire :

### La spécification en LTL

 "Un message ne peut être dans les deux tampons en même temps".

$$\Box \neg (m \in S.out \land m \in R.in)$$

• "Le canal ne perd pas de messages".

$$Prop = \{m \in S.out : m \in M\} \cup \{m \in R.in : m \in M\}$$

On formalise les requis suivants en logique temporelle linéaire :

#### La spécification en LTL

 "Un message ne peut être dans les deux tampons en même temps".

$$\Box \neg (m \in S.out \land m \in R.in)$$

"Le canal ne perd pas de messages".

$$\square$$
[ $m \in S.out \Rightarrow \lozenge(m \in R.in)$ ]

Si on assume l'unicité des messages.



### La spécification en LTL

• "Le canal préserve à la sortie, l'ordre d'entrée des messages"

"Le canal ne génère pas spontanément de messages".

#### La spécification en LTL

• "Le canal préserve à la sortie, l'ordre d'entrée des messages"

$$\Box[m \in S.out \land \neg m' \in S.out \land \Diamond(m' \in S.out)$$
  
$$\Rightarrow \Diamond(m \in R.in \land \neg m' \in R.in \land \Diamond(m' \in R.in))]$$

• "Le canal ne génère pas spontanément de messages".

#### La spécification en LTL

• "Le canal préserve à la sortie, l'ordre d'entrée des messages"

$$\Box[m \in S.out \land \neg m' \in S.out \land \Diamond(m' \in S.out)$$
  
$$\Rightarrow \Diamond(m \in R.in \land \neg m' \in R.in \land \Diamond(m' \in R.in))]$$

• "Le canal ne génère pas spontanément de messages".

$$\square[(\neg m \in R.in)\mathbf{U}(m \in S.out)]$$



On fait les suppositions suivantes sur le comportement dynamique des processus :

- Chaque processus a un identificateur unique (un entier)
- ils sont initialement inactifs (ne participent donc pas à l'élection)
- ils peuvent s'activer à tout moment (et participer à l'élection)
- ils ne peuvent rester inactifs indéfiniment
- une fois activés ils ne peuvent se désactiver



### On pose:

$$Prop = \{leader_i : i \leq N\} \cup \{active_i : i \leq N\} \cup \{i < j : i, j \leq N\}$$

On suppose qu'un processus inactif n'est pas un leader. On formalise les requis suivants en logique temporelle linéaire :

### Specification en LTL

"Il y a toujours un et un seul leader"



### On pose:

$$Prop = \{leader_i : i \leq N\} \cup \{active_i : i \leq N\} \cup \{i < j : i, j \leq N\}$$

On suppose qu'un processus inactif n'est pas un leader. On formalise les requis suivants en logique temporelle linéaire :

### Specification en LTL

"Il y a toujours un et un seul leader"

$$\square[\exists_i leader_i \land (\forall_{j\neq i} \neg leader_j)]$$

qui n'est pas vérifié puisqu'initialement tous les processus sont inactifs. De plus, la commutation d'un leader à un autre peut difficilement être atomique.



$$Prop = \{leader_i : i \leq N\} \cup \{active_i : i \leq N\} \cup \{i < j : i, j \leq N\}$$

Specification en LTL

"Il y a toujours un et un seul leader"

Une autre tentative:



$$Prop = \{leader_i : i \leq N\} \cup \{active_i : i \leq N\} \cup \{i < j : i, j \leq N\}$$

### Specification en LTL

"Il y a toujours un et un seul leader"

Une autre tentative:

$$\square \lozenge [\exists_i leader_i \land (\forall_{i \neq i} \neg leader_i)]$$

qui permet de n'avoir temporairement aucun leader. Malheureusement elle permet également plus d'un leader à la fois.



$$Prop = \{leader_i : i \leq N\} \cup \{active_i : i \leq N\} \cup \{i < j : i, j \leq N\}$$

#### Specification en LTL

On considère donc les 2 propriétés suivantes :

• "Il y a toujours au plus un leader".

 "Il y aura assez de leaders en temps voulu" (pour éviter un protocole d'élection qui n'élit personne)

$$Prop = \{leader_i : i \leq N\} \cup \{active_i : i \leq N\} \cup \{i < j : i, j \leq N\}$$

#### Specification en LTL

On considère donc les 2 propriétés suivantes :

"Il y a toujours au plus un leader".

$$\square[\exists_i leader_i \rightarrow (\forall_{j \neq i} \neg leader_j)]$$

 "Il y aura assez de leaders en temps voulu" (pour éviter un protocole d'élection qui n'élit personne)

$$Prop = \{leader_i : i \leq N\} \cup \{active_i : i \leq N\} \cup \{i < j : i, j \leq N\}$$

#### Specification en LTL

On considère donc les 2 propriétés suivantes :

• "Il y a toujours au plus un leader".

$$\square[\exists_i leader_i \rightarrow (\forall_{j \neq i} \neg leader_j)]$$

 "Il y aura assez de leaders en temps voulu" (pour éviter un protocole d'élection qui n'élit personne)

$$\Box \Diamond [\exists_i leader_i]$$

$$Prop = \{leader_i : i \leq N\} \cup \{active_i : i \leq N\} \cup \{i < j : i, j \leq N\}$$

#### Specification en LTL

 "En présence d'un processus actif de rang supérieur le leader finira par se démettre"

• "Tout nouveau leader sera plus qualifié que le précédent"

$$Prop = \{leader_i : i \leq N\} \cup \{active_i : i \leq N\} \cup \{i < j : i, j \leq N\}$$

#### Specification en LTL

 "En présence d'un processus actif de rang supérieur le leader finira par se démettre"

$$\square[\forall_{i,j}((\textit{leader}_i \land (i < j) \land \neg \textit{leader}_j \land \textit{active}_j) \Rightarrow \lozenge \neg \textit{leader}_i)]$$

• "Tout nouveau leader sera plus qualifié que le précédent"

# Élection dynamique d'un leader

$$Prop = \{leader_i : i \leq N\} \cup \{active_i : i \leq N\} \cup \{i < j : i, j \leq N\}$$

#### Specification en LTL

 "En présence d'un processus actif de rang supérieur le leader finira par se démettre"

$$\square[\forall_{i,j}((\textit{leader}_i \land (i < j) \land \neg \textit{leader}_j \land \textit{active}_j) \Rightarrow \lozenge \neg \textit{leader}_i)]$$

• "Tout nouveau leader sera plus qualifié que le précédent"

$$\square[\forall_{i,j}(leader_i \land \neg Nleader_i \land N \lozenge leader_j) \Rightarrow (i < j)]$$

## Plan de la partie I

- Modélisation
  - Introduction
  - Modélisation des systèmes
  - Modélisation des systèmes concurrents
  - Mécanismes de synchronisation
  - Introduction à SPIN
- Spécification des propriétés
  - Propriétés des systèmes concurrents
  - Types des propriétés temporelles des systèmes
  - Applications
- 3 Analyse des systèmes de transitions
  - Composantes fortement connexes d'un graphe orienté
  - Automates de Büchi
  - Automates de Büchi et modèles de formules LTL
  - Model-checking de LTL
  - Model checking de LTL dans SPIN



## Composantes fortement connexes d'un graphe orienté

G = (S, A), un graphe orienté

#### Définition

Une composante fortement connexe (CFC)  $\mathcal C$  de G est un sous-ensemble maximal de sommets de G tel que si  $u,v\in\mathcal C$  alors  $u\to^*v$  et  $v\to^*u$ 



#### Exemple : le graphe *G*



### Exemple : les CFC de G



## Calcul des CFC : Algorithme de Kosaraju (1978)

- Faire un parcours en profondeur de *G* et numéroter les sommets dans l'ordre de complétion des appels récursifs
- Construire un nouveau graphe G<sub>r</sub> obtenu de G en inversant la direction des arcs de G
- $\odot$  Fair un parcours en profondeur de  $G_r$  en appelant les somments dans l'ordre décroissant de la numérotation calculée à l'étape 1
- 4 Les CFC de G (et aussi de  $G_r$ ) sont les arbres ainsi obtenus

## Exemple : 1. parcours en profondeur de G



## Exemple : 2. Construction de $G_r$



## Exemple : 3. parcours en profondeur de $G_r$



#### Automates sur des mot infinis

- Automate de Büchi  $\mathcal{B} = (S, T, S_0, F, \Sigma)$  où
  - S est un ensemble d'états
  - $S_0 \subseteq S$  est l'ensemble des états initiaux
  - $T \subseteq S \times \Sigma \times S$  est l'ensemble des transitions
  - $F \subseteq S$ , un ensemble d'états finaux
  - Σ est un alphabet
- Critère d'acceptation de Büchi : Un  $\omega$ -mot sur  $\Sigma$  est reconnaissable par  $\mathcal B$  si la chaîne des états visités par  $\mathcal B$  en le lisant de gauche à droite depuis  $s_0$ , passe par F infiniment souvent
- L(B) l'ensemble des  $\omega$ -mots sur  $\Sigma$  reconnaissables par B.



$$L(\mathcal{B}) =$$



$$L(\mathcal{B}) =$$



$$L(\mathcal{B}) = (a+b)^*b^{\omega}$$



 $\alpha \in L(\mathcal{B})$  ss'il n'y a qu'un nombre fini de *a* 

$$L(\mathcal{B}) =$$



$$L(\mathcal{B}) = (a+b)^*b^{\omega}$$

$$a, b$$

$$b$$

 $\alpha \in L(\mathcal{B})$  ss'il n'y a qu'un nombre fini de a

$$L(\mathcal{B}) = ((b+c)^*(a(a+c)^*b)^*)^{\omega}$$

$$b, c \qquad \qquad \qquad a$$

$$b \qquad \qquad \qquad b$$

 $\alpha \in L(\mathcal{B})$  ssi en tout temps si *a* alors plus tard *b* 







$$L(\mathcal{B}) = (a+b+c)^*(a+c)^{\omega}$$

$$a, b, c$$

$$a, c$$

$$1$$

$$a, c$$

$$2$$

 $\alpha \in L(\mathcal{B})$  ss'il n'y a qu'un nombre fini de b



$$L(\mathcal{B}) =$$



$$L(B) = (b + c)^{\omega} + (b + c)^* a (a^* ((b + c)^2)^*)^{\omega}$$

$$b, c$$

$$a$$

$$b, c$$

$$b, c$$

$$b, c$$

$$b, c$$

$$b, c$$

$$b, c$$

 $\alpha \in L(\mathcal{B})$  ssi entre 2 suites de *a* il y a toujours un nombre pair de lettres



#### Automates sur des mot infinis

#### Théorème (Décidabilité)

Pour un automate de Büchi  $\mathcal{B}$ , on peut décider si  $L(\mathcal{B})$  est vide.

Preuve :

#### Propriétés de fermeture

Les langages  $\omega$ -réguliers sont fermés pour l'intersection, l'union et le complément :

Si *U* et *V* sont ω-réguliers alors *U* ∩ *V*, *U* ∪ *V*, Σ<sup>ω</sup>\*U* sont ω-réguliers

#### Remarque

Les automates de Büchi déterministes sont strictement moins expressifs que les automates de Büchi non-déterministe (et donc ne reconnaissent pas tous les langages  $\omega$ -réguliers).

### Générateur des modèles d'une formule de LTL (1)

• Exemple 1 : L'automate de Büchi

$$\bullet \xrightarrow{(0,0),(0,1),(1,1)} (0,0),(0,1),(1,0),(1,1)$$

reconnait précisément les modèles de la formule  $p_1 \rightarrow p_2$ 

• Exemple 2 : L'automate de Büchi

reconnait précisément les modèles de la formule N p1



### Générateur des modèles d'une formule de LTL (2)

• Exemple 3 : L'automate de Büchi



reconnait précisément les modèles de la formule  $p_1 \mathbf{U} p_2$ 

• Exemple 4 : les modèles de la formule

$$\square(p_1 \rightarrow \mathbf{N}p_2)$$

sont générés par l'automate de Büchi



#### Le problème du model-checking (rappel)

#### Problème du modèle checking

- S : Système de transitions (avec n propriétés atomiques)
- Traces(S): Ensemble des traces de S
- $\bullet$   $\phi$  : Propriété temporelle linéaire
- $\llbracket \phi \rrbracket (\subseteq (\mathbb{B}^n)^\omega)$  : Ensemble des modèles  $\phi$

## Algorithme de model-checking de la LTL (1)

Vérifier :  $\phi \equiv \Box(p_1 \rightarrow \mathbf{N}\Diamond p_2)$  sur



**1** Transformer S en automates de Büchi qui accepte Traces(S):



② Calculer  $\mathcal{B}_{\neg \phi}$ .  $(\neg \phi \equiv \Diamond (p_1 \land \mathbf{N} \Box (\neg p_2)))$ 





## Algorithme de model-checking de la LTL (2)





3 Calculer le produit synchronisé (qui reconnait l'intersection)



- Déterminer si l'intersection est vide (Calcul des composantes fortement connexes)
- **1** OUI : ok; NON : Retourner  $x \cdot y^{\omega}$  qui viole  $\phi$ . Ici :

 $(0,0)(0,0)(0,0)(1,1)((0,0)(0,0)(0,0))^{\omega}$ 



#### La spécification de l'élection d'un leader dans Spin

- [] p
- Déclaration: #define p (nbre\_leaders <= 1)
- nbre\_leaders est une variable auxilliaire globale

comme avant .....

## Calcul du générateur des modèles de $\neg(\Box p)$ par SPIN

```
* Formula As Typed: [] p
         * The Never Claim Below Corresponds
         * To The Negated Formula !([] p)
          (formalizing violations of the original)
         */
never { /* !([] p) */
T0_init:
        if
        :: (! ((p))) -> goto accept_all
        :: (1) -> goto T0_init
        fi;
accept_all:
        skip
```

#### Architecture du model-checker de SPIN

