Prüfungsdauer: 150 Minuten

Abschlussprüfung 2013 an den Realschulen in Bayern

Mathematik I

Name:		Vorname:										
			Platz	ziffer: _			Punkte: _					
Au	ufgabe A 1								Haupttermin			
A 1.0	In einer Medikamentenstudie wird in drei zeitgleich beginnenden Laborversuchen die Vermehrung von Krankheitserregern untersucht. Bei allen Versuchen geht man von anfänglich 10 000 Krankheitserregern aus.											
A 1.1	Im ersten Versuch wird festgestellt, dass sich die Anzahl der Krankheitserreger ohne Zugabe eines Medikaments täglich um 16 % vergrößert. Bestimmen Sie durch Rechnung, am wievielten Tag nach Versuchsbeginn sich die Anzahl der Krankheitserreger verdreifacht hat.											
										2 H		
A 1.2	von 12 Tag	en beträ rozent o	gt die Anz lie Anzah	zahl der il der K	Krank Trankh	heitserr	eger 45	000 . Bere	. Nach Ablauf chnen Sie, um ent A täglich			
										1 H		
A 1.3	Krankheits am wievie	erreger t lten Tag nt B hal	äglich nu nach Ve b so groß	r um 89 ersuchsb 3 ist wie	6 zuni eginn	mmt. E	Bestimm zahl de	en Sie dur r Krankhe	lie Anzahl der reh Rechnung, eitserreger mit eger aus dem			

A 2.0 Die nebenstehende Zeichnung zeigt ein Schrägbild der Pyramide ABCS, deren Grundfläche das gleichseitige Dreieck ABC ist. Der Fußpunkt T der Pyramidenhöhe [ST] teilt die Dreieckshöhe [MB] des gleichseitigen Dreiecks ABC im Verhältnis $\overline{MT}:\overline{TB}=1:2$.

Es gilt: $\overline{MB} = 6 \text{ cm}$; $\angle SBM = 65^{\circ}$.

In der Zeichnung gilt:

 $q = \frac{1}{2}$; $\omega = 45^{\circ}$; [MB] liegt auf der Schrägbildachse.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

A 2.1 Berechnen Sie die Länge der Strecke [ST].

[Ergebnis: $\overline{ST} = 8,58 \text{ cm}$]

- A 2.2 Punkte P_n liegen auf der Strecke [BS]. Die Winkel BMP_n haben das Maß ϕ mit $\phi \in [0^\circ; 76,88^\circ]$. Die Punkte P_n sind zusammen mit den Punkten A und C die Eckpunkte von gleichschenkligen Dreiecken AP_nC mit der Basis [AC]. Zeichnen Sie das Dreieck AP₁C für $\phi = 20^\circ$ in das Schrägbild zu 2.0 ein.
- A 2.3 Zeigen Sie durch Rechnung, dass für die Länge der Strecken [MP_n] in Abhängigkeit von ϕ gilt: $\overline{MP_n}(\phi) = \frac{5,44}{\sin{(\phi+65^\circ)}}$ cm.

2 P

1 P

A 2.4 Unter den Dreiecken AP_nC hat das Dreieck AP_2C den minimalen Flächeninhalt. Berechnen Sie den Flächeninhalt des Dreiecks AP_2C .

2 P

A 2.5 Die Punkte P_n sind für $\phi \in]0^\circ; 76,88^\circ]$ Spitzen von Pyramiden ABCP $_n$ mit den Höhen $[P_nF_n]$, deren Fußpunkte F_n auf [MB] liegen. Für das Volumen der Pyrami-

de $ABCP_3$ gilt: $V_{ABCP_3} = \frac{1}{2} \cdot V_{ABCS}$. Bestimmen Sie das zugehörige Winkelmaß ϕ .

1 P

A 3.0 Die Trapeze ABC_nD (siehe Skizze) haben die parallelen Seiten [AB] und [C_nD]. Die Winkel C_nBA haben das $Ma\beta$ ϕ mit $\phi \in]21,80^\circ;90^\circ[$. Es gilt: $\overline{AB} = 10$ cm; $\overline{AD} = 4$ cm; $\prec BAD = 90^\circ$.

A 3.1 Bestätigen Sie durch Rechnung die untere Intervallgrenze von φ.

A 3.2 Zeigen Sie, dass für den Flächeninhalt A der Trapeze ABC_nD in Abhängigkeit von φ gilt: $A(\varphi) = \left(40 - \frac{8}{\tan \varphi}\right) cm^2$.

A 3.3 Für $\,\phi$ = 50° entsteht das Trapez ABC₁D. Der Flächeninhalt des Trapezes ABC₂D ist um 30 % kleiner als der Flächeninhalt des Trapezes ABC₁D. Berechnen Sie das Maß $\,\phi$ des Winkels C₂BA des Trapezes ABC₂D.

2 P

2 P

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2013 an den Realschulen in Bayern

Mathematik I

A	ufgabe B 1 Haupttermir	1
B 1.0	Gegeben ist die Funktion f_1 mit der Gleichung $y = 2 \cdot \log_2(x+5) + 3$ mit $G = \mathbb{R} \times \mathbb{R}$.	
B 1.1	Geben Sie die Definitionsmenge und die Wertemenge der Funktion f_1 sowie die Gleichung der Asymptote h an und zeichnen Sie sodann den Graphen zu f_1 für $x \in [-4,5;8]$ in ein Koordinatensystem. Für die Zeichnung: Längeneinheit 1 cm; $-6 \le x \le 8$; $-4 \le y \le 11$	4 P
B 1.2	Der Graph der Funktion f ₁ wird durch Achsenspiegelung an der x-Achse und an-	
	schließende Parallelverschiebung mit dem Vektor $\overrightarrow{v} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}$ auf den Graphen	
	der Funktion f_2 abgebildet. Zeigen Sie rechnerisch, dass die Funktion f_2 die Gleichung $v = 2 \log_2(v + 6) + 5 \log_2(v + 6) + 5 \log_2(v + 6) + 6 \log_2(v + 6)$	
	Gleichung $y = -2 \cdot \log_2(x+6) + 5$ besitzt ($\mathbb{G} = \mathbb{R} \times \mathbb{R}$) und zeichnen Sie sodann den Graphen zu f_2 in das Koordinatensystem zu 1.1 ein.	3 P
В 1.3	Punkte $A_n(x 2\cdot\log_2(x+5)+3)$ auf dem Graphen zu f_1 und Punkte $B_n(x -2\cdot\log_2(x+6)+5)$ auf dem Graphen zu f_2 haben dieselbe Abszisse x . Sie sind für $x>-4$ zusammen mit dem Schnittpunkt $S(-4 3)$ der Graphen zu f_1 und f_2 und Punkten C_n die Eckpunkte von Parallelogrammen $A_nSB_nC_n$. Zeichnen Sie die Parallelogramme $A_1SB_1C_1$ für $x=0$ und $A_2SB_2C_2$ für $x=2$ in der K_1 auf in term parallelogramme A_1 in	2.0
B 1.4	das Koordinatensystem zu 1.1 ein. Zeigen Sie rechnerisch, dass für die Koordinaten der Diagonalenschnittpunkte M_n der Parallelogramme $A_nSB_nC_n$ in Abhängigkeit von der Abszisse x der Punkte A_n gilt: $M_n\left(x\left \log_2\frac{x+5}{x+6}+4\right.\right)$. Berechnen Sie sodann die Koordinaten des Diagonalenschnittpunktes M_3 für	2 P
	$C_3(16 y_{C_3}) \text{ mit } y_{C_3} \in \mathbb{R}.$	3 P
B 1.5	Berechnen Sie die Koordinaten der Punkte C_n in Abhängigkeit von x .	2 P
B 1.6	Begründen Sie durch Rechnung, dass es unter den Parallelogrammen $A_nSB_nC_n$ keine Raute gibt.	3 P

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2013

an den Realschulen in Bayern

Mathematik I

Aufgabe B 2

Haupttermin

B 2.0 Der Punkt A(4|1) ist gemeinsamer Eckpunkt von Rechtecken AB_nC_nD_n. Die Diagonalenschnittpunkte $M_n(x|0,2x+2)$ der Rechtecke $AB_nC_nD_n$ liegen auf der Geraden g mit der Gleichung y = 0, 2x + 2 mit $G = IR \times IR$. Es gilt: $\angle B_n AM_n = 30^\circ$.

> Die nebenstehende Skizze zeigt das Rechteck $AB_0C_0D_0$ für x = 2,5.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

B 2.1 Zeichnen Sie die Gerade g und die Rechtecke $AB_1C_1D_1$ für x = 0 und $AB_2C_2D_2$ für x = 5 in ein Koordinatensystem.

Zeigen Sie sodann durch Rechnung, dass der Punkt C1 die Koordinaten $C_1(-4|3)$ besitzt.

Für die Zeichnung: Längeneinheit 1 cm; $-5 \le x \le 8$; $-3 \le y \le 7$

B 2.2 Zeigen Sie, dass für die Länge der Strecken [AB_n] gilt: $\overline{AB_n} = \sqrt{3} \cdot \overline{AM_n}$. 1 P

B 2.3 Ermitteln Sie rechnerisch die Koordinaten der Punkte B_n in Abhängigkeit von der Abszisse x der Punkte M_n .

[Ergebnis: $B_n (1,67x-1,13|-0,57x+5,96)$]

B 2.4 Bestimmen Sie die Gleichung des Trägergraphen h
 der Punkte $\, B_{\scriptscriptstyle n} \,$ und zeichnen Sie sodann den Trägergraphen h in das Koordinatensystem zu 2.1 ein.

[Ergebnis: h: y = -0.34x + 5.57] 3 P

B 2.5 Im Rechteck $AB_3C_3D_3$ gilt: $B_3 \in g$. Berechnen Sie die Koordinaten des zugehörigen Diagonalenschnittpunktes M₃. 3 P

B 2.6 Unter den Rechtecken AB_nC_nD_n hat das Rechteck AB₄C₄D₄ den kleinstmöglichen Flächeninhalt.

Berechnen Sie die x-Koordinate des zugehörigen Diagonalenschnittpunktes M₄ 3 P und geben Sie den minimalen Flächeninhalt an.

4 P

3 P