Math 415 - Lecture 16

Linear Transformations

Friday October 2nd 2015

Textbook reading: Chapter 2.6

Suggested practice exercises: Chapter 2.6: 5, 6, 7, 36, 37

Khan Academy videos: Linear Transformations / Linear Transformations as Matrix Vector Products / Linear Transformation Examples: Rotations in \mathbb{R}^2

Strang lecture: Lecture 30: Linear Transformations

1 Review

If $\mathcal{B} = (\mathbf{b_1}, \dots, b_p)$ is a basis for a vector space V then the coordinate vector of a vector $\mathbf{w} \in V$ is the column vector

$$\mathbf{w}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_p \end{bmatrix}, \quad \text{if } \mathbf{w} = c_1 \mathbf{b_1} + c_2 \mathbf{b_2} + \dots + c_p \mathbf{b_p}$$

Example 1. Let
$$V = \mathbb{R}^2$$
, $\mathcal{B} = (\mathbf{b_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{b_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix})$ and $\mathbf{w} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$.

Solution.

Example 2. Still $V = \mathbb{R}^2$, $\mathcal{B} = (\mathbf{b_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{b_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix})$ a basis for V. Suppose $\mathbf{w}_{\mathcal{B}} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ is a coordinate vector with respect to the basis \mathcal{B} . What is the vector \mathbf{w} , with respect to the standard basis?

Solution.

Remark. Translating to the standard basis is always easy. To go from the standard

Remark. Translating to the standard basis is always easy. To go from the standard basis to a new basis requires solving a system of equations, so is generally harder.

2 Linear Transformations

Let V and W be vector spaces.

Definition. A map $T: V \to W$ is a linear transformation if

for all $\mathbf{x}, \mathbf{y} \in V$ and all $c, d \in \mathbb{R}$. In other words, a linear transformation respects addition and scaling.

- $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$
- $T(c\mathbf{x}) = cT(\mathbf{x})$

It also sends the zero vector in V to the zero vector in W:

•
$$T(\mathbf{0}) = \mathbf{0}$$
 (because $T(\mathbf{0}) = T(0 \cdot \mathbf{0}) = 0 \cdot T(\mathbf{0}) = \mathbf{0}$)

Example 3. Let $V = \mathbb{R}$, $W = \mathbb{R}$. Then the map $f(x) = 3x$ is linear. Why?
Solution.
Example 4. Let A be an $m \times n$ matrix. Then the map $T(\mathbf{x}) = A\mathbf{x}$ is a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$. Why?
Solution.
Example 5. Let P_n be the vector space of all polynomials of degree at most n . Consider the map $T: P_n \to P_{n-1}$ given by
$T(p(t)) = \frac{d}{dt}p(t).$
This map is linear! Why?
Solution.

3 Important Geometric Examples

Let's consider some linear maps $\mathbb{R}^2 \to \mathbb{R}^2$ which are defined by matrix multiplication $(\mathbf{x} \mapsto A\mathbf{x})$. In fact, it turns out that all linear maps $\mathbb{R}^n \to \mathbb{R}^m$ are given by $\mathbf{x} \mapsto A\mathbf{x}$ for some $m \times n$ matrix A.

Example 6 (Stretching). The matrix $A = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix}$ gives the map $x \mapsto c\mathbf{x}$, It stretches every vector in \mathbb{R}^2 by a factor c.

Example 7 (Reflection). The matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} y \\ x \end{bmatrix}$. It reflects every vector in \mathbb{R}^2 across the line y = x.

Example 8 (Projection.). The matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x \\ 0 \end{bmatrix}$. It projects every vector in \mathbb{R}^2 onto the x-axis.

Example 9 (Rotation by 90°.). The matrix $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} -y \\ x \end{bmatrix}$. It rotates every vector in \mathbb{R}^2 counter-clockwise by 90 degrees.

4 Representing linear maps by matrices

Motto

If you know T on a basis, you know T everywhere.

- Let $\mathbf{x_1}, \dots, \mathbf{x_n}$ be an input basis, a basis for V. A linear map $T: V \to W$ is determined by the values $T(\mathbf{x_1}), \dots, T(\mathbf{x_n})$.
- Why?

Solution.			
Example 10. Suppo	se $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a line	ear map so that	
	$T\begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}1\\2\\3\end{bmatrix}$ and	$\operatorname{d} T \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix}$	
What is		L J	
	$T\begin{bmatrix}1\\2\end{bmatrix}$	l ₂]?	
Solution.	L-	-1	

Summary: The linear transformation

$$T \colon \mathbb{R}^2 \to \mathbb{R}^3, \quad T \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad T \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix}$$

is the same as multiplying by the matrix

$$A = \begin{bmatrix} T \begin{bmatrix} 1 \\ 0 \end{bmatrix} & T \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} & \begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix} \end{bmatrix}$$

We say that the linear transformation T is represented by the matrix A, or that A is the *coordinate matrix* of the linear transformation T, (with respect to the standard bases).

Example 11. Let $T_{\alpha} \colon \mathbb{R}^2 \to \mathbb{R}^2$ be the "rotation over α radians (counterclockwise)" map. So $T_{\alpha}(\mathbf{x})$ is the vector obtained by rotating \mathbf{x} over angle α . Can you find a matrix so that $T_{\alpha}(\mathbf{x}) = A_{\alpha}\mathbf{x}$?

Solution.

Theorem 1 (Linear Transformation is Matrix Multiplication, Standard basis). Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there is a matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}, \quad \text{for all } \mathbf{x} \in \mathbb{R}^n.$$

Explicitly,

$$A = \begin{bmatrix} T(e_1) & T(e_2) & \dots & T(e_n) \end{bmatrix},$$

where e_1, e_2, \ldots, e_n is the standard basis of \mathbb{R}^n .

Proof.

5 Nonstandard Bases

Untill now we have used the standard bases to describe $T: \mathbb{R}^n \to \mathbb{R}^m$. Often it is useful to use other bases.

Example 13. Let $T\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 3a+1b \\ 1a+3b \end{bmatrix}$. Then the matrix of T is $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. But let us use, instead of the standard basis, another basis adapted to T. Put

$$\mathbf{b_1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \mathbf{b_2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

What is the coordinate matrix for T with respect to $\mathcal{B} = (\mathbf{b_1}, \mathbf{b_2})$?

Solution.

6 Additional Problems

- Suppose $A = \begin{bmatrix} 1 & 2 & 3 & 4 & 1 \\ 2 & 4 & 7 & 8 & 1 \end{bmatrix}$. Find the dimensions and a basis for all four fundamental subspaces of A.
- Suppose A is 5×5 and v is a vector in \mathbb{R}^5 which is not a linear combination of the columns of A. What can you say about the number of solutions to $A\mathbf{x} = \mathbf{0}$?
- Let T be the linear map such that

$$T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\0\\4\end{bmatrix}, \quad T\left(\begin{bmatrix}-1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\-2\\0\end{bmatrix}.$$

What is $T\left(\begin{bmatrix}0\\4\end{bmatrix}\right)$?