

Photon ID in search for GMSB with displaced photons

Egamma Identification Meeting

Daniele Del Re, Shahram Rahatlou, Michael Sigamani, Livia Soffi

INFN Sezione di Roma "La Sapienza"

16th February 2012

Introduction

- INFN

 di Fisica Nucle
- Long-lived particles decaying into photons offer hints of physics 'beyond the SM'
- The signal: GMSB scenario $(\widetilde{\chi}_1^0 \to \widetilde{G}\gamma)$ with Gravitino (\widetilde{G}) as LSP and Neutralino $(\widetilde{\chi}_1^0)$ as NLSP
- Experimental technique:
 - Identify displaced γ (expect $\not\!\!E_T$ from G)
 - $\hbox{$\circ$ See excess over SM$} \to \\ \hbox{$\operatorname{Calculate}$ $\widetilde{\chi}_1^0$ lifetime} \\ \hbox{${\scriptscriptstyle [AN-10-212]}$}$
 - \circ See no excess \rightarrow Calculate upper-limit

Introduction

- INFN Willed Nationals of Fulls Nationals
- Long-lived particles decaying into photons offer hints of physics 'beyond the SM'
- The signal: GMSB scenario $(\widetilde{\chi}_1^0 \to G\gamma)$ with Gravitino (\widetilde{G}) as LSP and Neutralino $(\widetilde{\chi}_1^0)$ as NLSP
- Experimental technique:
 - 2 methods in LL group:
 - Use γ conversions to calc. Impact Param.
 - [EXO-11-067]

[EXO-11-035]

Analysis overview

- Select one high P_T isolated photon
- Use cluster shape (S_{Minor}) to select objects compatible with (off-pointing) photons

$$egin{split} S_{major} &= rac{\left(S_{\phi\phi} + S_{\eta\eta}
ight) + \sqrt{\left(S_{\phi\phi} - S_{\eta\eta}
ight)^2 + 4S_{\phi\eta}^2}}{2} \ S_{minor} &= rac{\left(S_{\phi\phi} + S_{\eta\eta}
ight) - \sqrt{\left(S_{\phi\phi} - S_{\eta\eta}
ight)^2 + 4S_{\phi\eta}^2}}{2} \end{split}$$

- Backgrounds (in order of magnitude)
 - \circ Fake photon, fake $\not\!\!E_T$: QCD, and γ +jets

 - Non collision (spikes, halo, cosmics, instrumental noise)

Data

• Data - 4.54 fb⁻¹

- \circ 189.8 pb⁻¹: /Photon/Run2011A_May10ReReco-v1/AOD
- 855.6 pb⁻¹: /Photon/Run2011A_PromptReco-v4/AOD
- 326.3 pb⁻¹: /Photon/Run2011A_05Aug2011-v1/A0D
- o 637.2 pb⁻¹: /Photon/Run2011A_PromptReco-v6/AOD
- 2533.6 pb⁻¹: /Photon/Run201_PromptReco-v1/AOD
- O JSON: Cert_160404-180252_7TeVPromptReco_Collisions11

• Triggers [summary]

- \circ 160410 \leq Photon75-CaloIdVL-IsoL-v* < 165121
- \circ 165121 \leq Photon90-CaloIdVL-IsoL-v* < 178421
- 178421 ≤ Photon90EB_CaloIdVL_IsoL_TriJet25 < 180252

Monte Carlo

- Signal samples (official CMS production)
 - GMSB_Lambda-*_CTau-*_7TeV_pythia6* (PU4)
- MC bkg samples (PU 3)
 - o QCD_Pt_*_TuneZ2_7TeV_pythia6*
 - o G_Pt_*_TuneZ2_7TeV_pythia6*
 - TT_TuneZ2_7TeV_pythia6_tauola*
 - WToENu_TuneZ2_7TeV_pythia6*
- Re-weight MC by number of pile-up (1d)
- CMSSW_4_2_3 and Summer 11

Analysis strategy

- Standard photon ID uses cluster shape variables $(\sigma_{ii\eta})$ correlated to s_{Minor}/s_{Major}
- More importantly, the standard ID has a default spike cleaning applied with an implicit timing cut (for us not good)
- We use uncleaned superclusters (no timing cut) in AOD as our RECO photon object
- Then we add back topological requirements: $\it E6/E2 > 0.04$ and $\it E4/E1 > (0.04 imes log(E1) 0.024$
- and remake photons using the ID on the next slide

Photon Reconstruction

INFN Inflato National Market National Market National Nat

- Reject 'scraping' events
- Reject 'anomalous HCAL noise'
- Not matched to electron (will discuss on slide 10)

mu - IIII	di Fisica Nucleare
$ \eta $	< 1.4
ECAL time	> -2.0 ns
$P_{\mathcal{T}}(\gamma)$	> 100 GeV
S_{minor}	$0.15 < S_{minor} < 0.3$
HCAL Iso	$\begin{cases} \sum HCAL/E(\gamma) < 0.05\\ \sum HCAL < 2.4 \text{ GeV} \end{cases}$
TICAL ISO	\sum HCAL < 2.4 GeV
ECAL Iso	$\begin{cases} \sum ECAL/E(\gamma) < 0.05 \\ \sum ECAL < 2.4 \text{ GeV} \end{cases}$
LCAL ISO	$\sum ECAL < 2.4 \text{ GeV}$
TRK Iso	$\left\{ \sum_{T} P_{T}/P_{T}(\gamma) < 0.1 \right\}$
Good Vertex	$vndof \ge 4, d_0 < 2, z < 24$
Halo Veto	CSC Tight

Photon Reconstruction

 $\sigma_{ii\eta}$ dist. for GMSB (left). Work performed to keep requirement "very loose" at HLT to not introduce bias

Also trigger eff. (right) is 100% with offline p_T cut on photon

Electron veto

- Since we remake our photons from unclean clusters we loose Pixel Veto information → larger EWK cont.
- We veto (GSF) electrons matching to our signal photons
 - Veto photons within $\rightarrow \Delta R(\gamma, e) > 0.25$
 - Reduces $t\bar{t}$, QCD, $W \rightarrow e\nu$ (left) bkg by 95%, 50%, 99%
 - \circ Reduces signal (right) by $\sim 7\%$

Jet veto

- Require 3 or more jets in event $(p_T > 35 \text{ GeV/c})$ Effective for non-collision events
 - \circ Non-overlapping to photon candidate $ightarrow \Delta R(\gamma, jet) > 0.5$
 - Reduces γ +jet, QCD, $W \rightarrow e\nu$ bkg by 90%, 80%, 90%
 - \circ Reduces signal, $t\bar{t}$ by $\sim 20\%$

Pile-up studies

The HCAL Iso (left), ECAL Iso (right) cut efficiency for the GMSB signal ($\Lambda=100,\ c\tau=250 \mathrm{mm}$) plotted against the number of primary vertices

Pile-up studies

 S_{Minor} (left), and TRK Iso (right) cut efficiency for the GMSB signal ($\Lambda=100,\ c au=250 mm$) plotted against the number of primary vertices.

Pile-up studies

The S_{Minor} (left) and S_{Major} (right) distributions overlaid for different values of number of primary vertices for the GMSB signal ($\Lambda=100,\ c\tau=250 \text{mm}$)

Geometric dependance of cluster shape

Is there a geometry bias in S_{major} , S_{minor} ? Brought up at pre-approval. GMSB (bottom).

Geometric dependance of cluster shape

Does not seem to be a big issue here. We see a 6% deviation wrt mean at most. Data (bottom).

Data-MC comparison

Good agreement in signal regions for selection variables (photon ID only)

Data-MC comparison

Good agreement in signal regions for selection variables (photon ID only)

Selection efficiencies

				INFN	
%	$\gamma+{\sf jet}$	QCD	t₹	$W \rightarrow e \nu$	GMSB
Pre-sel	50	0.35	4.3	0.88	61
$ \eta $	73	86	86	76	93
$P_T(\gamma)$	19	14	37	24	63
Halo Veto	100	100	100	100	100
Electrons	98	55	5.2	1.1	92
S_{Minor}	99	67	96	98	99
Topological	92	97	98	96	93
ECAL time	100	100	100	100	100
HCAL Iso	99	99	99	99	99
ECAL Iso	98	62	85	97	92
Track Iso	89	76	72	60	95
Not $\gamma+{\sf jet}$	96	99	99	99	99
$N_{jets} \geq 3$	11	17	71	8	66
ϵ_{TOT}	3.3×10^{-1}	8.9×10^{-3}	2.5×10^{-2}	6.5×10^{-5}	17

Related systematics

Source	Uncertainty on σ_{UL}^{Exp} (%)		
Photon energy scale (0.6%)	4%		
Jet resolution (10%)	4%		
Luminosity (4.5%)	4.5%		
⊭ _T scale (5%)	3.5%		
$E_{\rm T}$ resolution (10%)	7%		
ECAL time uncertainty (0.5 ns)	15.5%		
Total approx.	tbu %		

Table: Summary of the systematic uncertainties on the σ_{UL} calculation

Summary

- Have presented a selection ID for displaced photons based on cluster shape (s_{Minor})
- Since having access to the timing information (> 3 ns) is necessary we must remake our photons from unclean superclusters
- We add back in topological cuts (recommended PF), and electron veto (GSF matching) - should give us the standard RECO photon again with full timing info.
- 2012 trigger studies are underway (Shih-Chuan Kao and Juliette Alimena) - Attempting to implement a general displaced single (and double) HLT
- Currently targeting Moriond

Documentation

Analysis performed on dataset of 4.5 fb⁻¹ (clickable links to frozen docs. below)

CMS AN AN-11-081

CMS Draft Analysis Note

The content of this note is intended for CMS internal use and distribution only

2011/06/16 Head Id: 40099 Archive Id: 40222M Archive Date: 2011/02/18 Archive Tag: trunk

Search for Long-Lived Particles using Displaced Photons in Proton-Proton Collisions at $\sqrt(s)=7\,\mathrm{TeV}$

Michael Sigamani, Shahram Rahatlou, Daniele Del Re, and Livia Soffi INFN Sezione di Università di Roma "La Sapienza", Roma, Italy

Abstract

We present the results of a search for long-lived particles decaying into photons in $\zeta/b = 7$ Key proton-proton collisions. We use the Maising Transverse Energy and timing information from the ECAL to search for an excess of events over our SM background proteins. After our signal selection, using a data set of 34.41 X/p $^{1/2}$, where the search for the search for the search for the search (x,y) = (x,y) = (x,y). Even this two set limits on the production cross-section of $\chi^{2}_{1} = \gamma G$ at 95% CL and place a limit of OXX GeV/C or the mass the χ^{2}_{1} .

CMS PAS AN-11-081

DRAFT CMS Physics Analysis Summary

The content of this note is intended for CMS internal use and distribution only

2011/06/29 Head Id: 40099 Archive Id: 40222M Archive Date: 2011/02/18 Archive Tax: trunk

Search for Long-Lived Particles using Displaced Photons in Proton-Proton Collisions at $\sqrt(s)=7\,\text{TeV}$

The CMS Collaboration

Abstract

We present the results of a search for long-lived particles decaying into photons in $\langle v \rangle = 716 \text{ yr} \text{ proton-proton collisions}$, we use the Musican Transverse Energy and timing information from the ECAL to search for an excess of events over our 800 yr background proteins. After our signal selection, using a data set of 3442.Xp pr¹. we hookground proteins in takes with a background expectation of 87842.Xp pr¹. where 800 yr is the 800 yr is 800 yr in $800 \text{ yr$

Background estimation

- Main bkgs are QCD and $\gamma+$ jet
 - Define data-driven background control samples (CS) for these
 - Idea is to have an accurate description of the shape for the E
 and the ECAL time
- Cross check results with MC
 - Closure test should show a good agreement of MC and MC with CS selection shapes
 - CS selections should not overlap (orthogonal)
 - Different selections were tested
- $W \rightarrow e\nu$, and $t\bar{t}$ present similar challenges but use MC since they are less dominant (5% each)
- In 2010 analysis these were much less due to PixelSeed veto.
 For 2011 we don't have access to this anymore (uncleaned rechits for AOD).

γ +Jet estimation

INFN PAS

- One photon passes the final selection (and ≤ 2 jets)
- Most energetic jet (jet1) back to back wrt photon
- $0.7 < p_T^{jet1}/p_T^{\gamma} < 1.3$
- $p_T^{jet2}/p_T^{\gamma} < 0.1$
- Re-weight data and MC using ΣE_T distribution (slide 34)

QCD estimation

- Select events that fail final selection, but pass loose(er) selection (> 3 jets)
- EWK contribution less that 1% in control sample
- Jet cleaning (slide 19-20) [and MET cleaning] for PF Jets studied as source for disagreement on ₱

Jet cleaning

PF Jet EM (left) and Hadronic (right) energy fractions from charged particles

PF Charged EM energy Fraction

F Charged Hadron energy Fraction

Jet cleaning

PF Jet EM (left) and Hadronic (right) energy fractions from neutral particles

PF Neutral EM energy Fraction

PF Neutral Hadron energy Fraction

