CIS 530 Fall 2015 Project Report Authorship Attribution

Mao-Hsu Chen

December 17th, 2015

Overview

- Given training data labeled as 1 if the author is Gina Kolata and as 0 otherwise
- Authorship attribution task
 - Distinguish the authorship of new excerpts in the unlabeled testing data

Overview

- Given training data labeled as 1 if the author is Gina Kolata and as 0 otherwise
- Authorship attribution task
 - Distinguish the authorship of new excerpts in the unlabeled testing data
- \rightarrow A semi-supervised binary classification task

Main idea

Stylometric features

- Differentiate Kolatas style of writing from those of other authors
- Topic/genre-independent
- Contextual/structural information matters more than content information

Main idea

Stylometric features

- Differentiate Kolatas style of writing from those of other authors
- Topic/genre-independent
- Contextual/structural information matters more than content information
- Potential style markers
 - Lexical: most frequent words, function words (Chung and Pennebaker, 2007)
 - Character: character n-grams
 - Syntactic: part-of-speech

Parameter manipulation

 The first dozens of most common words of a corpus are usually dominated by closed class words, many of which are function words, whereas open class words become majority after a few hundred words (Stamatatos, 2009).

Parameter manipulation

- The first dozens of most common words of a corpus are usually dominated by closed class words, many of which are function words, whereas open class words become majority after a few hundred words (Stamatatos, 2009).
- → How many most frequent non-function words should be included in the feature space?
- \rightarrow How many *n*-grams should be used as features?
- \rightarrow How big is n?

Approach

- Start with the baseline SVM using the top-1000 most common words in the training data as features.
 - Use libsvm library for the binary-class prediction SVM with a linear kernel
- Supplement with other stylometric features
 - Function words: stopwords.txt from HW4
 - Character n-grams: n = 3, 4, or 5
 - POS tags: Stanford Part of Speech tagger with the mapping en-ptb.map to Google Universal tagset from HW3
- 9-fold cross-validation to avoid overfitting the training data

Feature vector of the final system

3 sets of features:

- 1. (Stop words) \cup (top-1000 most common words)
- 2. Top-15,000 4-grams
- 3. 12 POS tags: % of each tag within an excerpt

For each of the first two feature sets:

 Logarithmic relative frequency was calculated for each term frequency

•
$$F_{log}(w_k, d_i) = log(1 + f(w_k, d_i)/f(d_i))$$

- Inverse document frequency weighting
- Euclidean (L_2) normalization of the resulting excerpt vector

•
$$d_i^* = \frac{d_i}{\|d_i\|_{L_p}}$$
, where $\|x\|_{L_p} = (\sum_i |x_i|^p)^{1/p}$ is the *p*-norm

Experiments

Leaderboard team name: lingolingoling

Accuracy	Train	Test	Parameter anipulation						
			norm	n-gram	# of n-grams	# of mfw	stop words	POS	
other 1	86.6011%	-	L2	-	-	100	-	-	
other 2	88.5412%	-	L2	-	-	1000	-	-	
other 3	87.5011%	-	L2	3	1000	-	-	-	
other 4	88.2936%	-	L2	4	1000	-	-	-	
other 5	87.6413%	-	L2	5	1000	-	-	-	
other 6	79.1381%	-	na	4	1000	1000	-	-	
other 7	79.1877%	-	L1	4	1000	1000	-	-	
1st sub.	88.970%	87.7415%	L2	4	1000	1000	-	-	
other 8	88.7890%	-	L2	4	1000	-	v	-	
other 9	89.0614%	-	L2	4	1000	500	v	-	
other 10	89.3586%	-	L2	4	1000	1000	v	-	
other 11	89.6805%	-	L2	4	1500	1000	v	-	
other 12	90.5142%	-	L2	4	2000	1000	v	-	
2nd sub.	91.3398%	90.9361%	L2	4	3000	1000	\mathbf{v}	-	
3rd sub.	-	93.7593%	L2	4	15000	1000	v	-	
4th sub.	-	93.4621%	L2	4	20000	1000	v	-	
5th sub.	-	94.4279%	L2	4	20000	1000	v	v	
Final	93.8414%	93.4621%	L2	4	15000	1000	v	v	

Table: Performance and parameter manipulation of all the experiments.

Parameter manipulation of k & n

Λ σουνο ου	Train	Parameter manipulation					
Accuracy		norm	n-gram	# of ngrams	# of mfw		
other 1	86.60%	L2	-	-	100		
other 2	88.54%	L2	-	-	1000		
other 3	87.50%	L2	3	1000	-		
other 4	88.29%	L2	4	1000	-		
other 5	87.64%	L2	5	1000	-		

Table: Parameter manipulation of the top-k most frequent words (mfw) and the number n for ngrams.

Parameter manipulation of normalization, k & stop words

A cours ou	Train	Tast	Parameter manipulation			
Accuracy		Test	norm	# of mfw	stop words	
other 6	79.14%	-	na	1000	-	
other 7	79.19%	-	L1	1000	-	
1st sub.	88.97%	87.74%	L2	1000	-	
other 8	88.79%	-	L2	-	V	
other 9	89.06%	-	L2	500	V	
other 10	89.36%	-	L2	1000	V	

Table: Parameter manipulation of the normalization method, the top-k most frequent words (mfw), and the use of the stop words list. Note that all these attempts used top-1000 most frequent 4-grams as features.

Parameter manipulation of # of ngrams & POS

Accuracy	Train	Test	Parameter manipulation		
Accuracy	ITalli	rest	# of ngrams	POS	
other 11	89.68%	-	1500	-	
other 12	90.51%	-	2000	-	
2nd sub.	91.34%	90.94%	3000	-	
3rd sub.	-	93.76%	15000	-	
4th sub.	-	93.46%	20000	-	
5th sub.	-	94.43%	20000	V	
Final	93.84%	93.46%	15000	V	

Table: Parameter manipulation of the number of ngrams and the use of POS tags. Note that all these attempts used top-1000 most frequent 4-grams and the stop words list as features and L2 normalization.

Discussion and Analysis

- With the capability of managing a large number of dimensions, SVM is ideal for the classification here when the number of stylometric features was unknown.
- SVM: the more features are included the better the performance would be, as exemplified in our experimental results.
- The achieved high performance (over 90%) only implies an integral success of all features used but fails to identify the contribution of individual feature set.
- There always exists a difference between the training and the testing data sets, especially when the latter is unlabeled, which is often the case in real-world application.

References

Cindy Chung and James W Pennebaker. The psychological functions of function words. *Social communication*, pages 343–359, 2007.

Efstathios Stamatatos. A survey of modern authorship attribution methods. *Journal of the American Society for information Science and Technology*, 60(3):538–556, 2009.

Thank you

References