Problem Set 5 GR6413 [Ng] Miguel Acosta December 14, 2017

Q1. In the first panel, I plot the distribution of $\hat{\alpha}$ (not sure what the normalization $T(\hat{\alpha}-1)$ means). In the second panel, I plot the t-stats constructed as follows.

OLS: Estimate $y_t = a + \beta t + \alpha y_{t-1} + \text{error}_t$, then

$$t_{\rm OLS} \equiv \frac{\widehat{\alpha} - 1}{\sqrt{\frac{\sum_{t=1}^{T} y_t^2}{T}}}$$

• GLS: Estimate $y_t^d = \alpha_G y_{t-1}^d + \text{error}_t$, then

$$t_{\text{GLS}} \equiv \frac{\widehat{\alpha}_G - 1}{\sqrt{\frac{\sum_{t=1}^{T} (y_t^d)^2}{T}}}$$

Here I plot the same t-stats as mentioned in the previous exercise, except I substitute 1 for 0.98 and 0.90.

The critical values under the three nulls are as follows:

i.

α	OLS	GLS
1.00	0.9458	0.707
0.98	0.1488	0.07692
0.90	0.3004	0.6324

ii. Using the same data as in the previous exercises, the equation I esimate with OLS is

$$y_t = a + b \cdot \mathbb{1}\{t > 75\} + c \cdot (t \times \mathbb{1}\{t > 75\}) + d \cdot t + y_{t-1} + \text{error}_t$$
 (1)

The critical values under the three nulls are as follows:

α	OLS
1.00	1.553
0.98	0.6185
0.90	0.1014

iii. I perform the same estimation as in equation (1), except now the data are generated from a process with a trend shift. The critical values under the three nulls are as follows:

$=$ α	OLS
1.00	3.386
0.98	2.4
0.90	0.06858

Q2. Let's try to get a handle on what this question is asking. The variable x_t is an AR(1) for which we let the AR coefficient range from 0.8 to 1, and y_t is a noisy measurement of x_t :

$$x_t = \phi x_{t-1} + u_t$$
$$y_t = \beta x_t + e_t$$

As $\phi \to 1$, x_t becomes a random walk, so we're measuring a random walk with some noise. As ϕ moves away from 1, then we are measuring some type of scaled random walk and thus making the error e_t more important. By estimating

$$y_t = a + \gamma t + \beta x_t + \text{error}_t,$$

we are saying that the researcher is mistakenly confusing y_t as a variable with a trend. In what follows, I set T = 200 and performed 10,000 simulations for each value of ϕ .

i. The mean values of β and γ for each value of ϕ are

Mean Estimates			
ϕ	γ	β	
0.8	-7.796e - 06	0.9988	
0.9	-8.425e - 06	0.9993	
0.95	-9.593e - 06	0.9996	
0.99	-9.886e - 06	1	
1.0	-4.229e - 06	1	

and the distributions are plotted below. As $\phi \to 1$, the mean estimate of $\beta \to 1$. The distribution also becomes much tigher around β . On the other hand, the estimates of γ become slightly less-precisely estimated about 0. So, as the process x_t becomes less and less like a random walk, it's more likely that we'll infer some type of trend, and the component of y_t coming from x_t will look less important (smaller β). Summarizing more-succinctly, the trend is more-imprecisely estimated as we get closer to a random walk.

ii. Now, we let y_t be the sum of an AR(1) and a random walk, and study what happens as the AR(1) oscillates (negative AR coefficient) and doesn't.

Mean Estimates				
ϕ	γ	β		
-0.8	-0.0002873	1		
0.8	-0.000276	0.9987		

In both cases, the trend component is estimated to be negative¹, and β is centered at about 1. But, when the AR oscillates, the estimates of β are much more precise. This is surprising to me, but maybe the point is that now that x_t is kind of crazy, OLS realizes that x_t is the primary driver of y_t .

 $^{^{1}}$ which I think makes sense... in the absence of shocks all but , an AR(1) will look like it has a negative trend.

Q3.

i.
$$y_{1t} - y_{1t-1} = \Upsilon y_{2t} - \Upsilon y_{2t-1} + u_{1t} - u_{1t-1}$$

$$= \Delta y_{1t} = \Upsilon \Delta y_{2t} + \Delta u_{1t}$$

$$= \Upsilon u_{2t} + (I-L)u_{1t}$$

$$\begin{bmatrix} \Delta y_{1t} \\ \Delta y_{2t} \end{bmatrix} = \begin{bmatrix} (I-L) & \Upsilon \\ 0 & I \end{bmatrix} \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix}$$

$$\begin{bmatrix} S_{0,1} & \text{the } MA(\varpi) & \text{representation} & \text{is } \Delta y_{t} = \Psi(L)u_{t} \\ \text{with } \Psi(L) = \begin{bmatrix} I-L & \Upsilon \\ 0 & I \end{bmatrix}$$

ii.
$$y_{1t} = \Upsilon y_{2t} + u_{1t}$$
 $y_{2t} = y_{2t+1} + u_{2t}$
 $y_{t} = \begin{bmatrix} 0 & \Upsilon \\ 0 & L \end{bmatrix} y_{t} + u_{t}$

$$\Rightarrow u_{t} = \begin{bmatrix} 1 & -\Upsilon \\ 0 & l-L \end{bmatrix} y_{t}$$

$$So, the AR(a) representation is $\Phi(L)y_{t} = u_{t}$
with $\Phi(L) \equiv \begin{bmatrix} 1 & -\Upsilon \\ 0 & l-L \end{bmatrix}$$$

iii
$$\Delta q_{1t} = \Upsilon \Delta q_{2t} + \Delta u_{1t} = \Upsilon u_{2t} + u_{1t} - (q_{1t} - \Upsilon q_{2t+1})$$

$$\Delta q_{2t} = u_{2t}$$

$$\Rightarrow \Delta q_{t} = \begin{bmatrix} -1 & \gamma \\ 0 & 0 \end{bmatrix} q_{t} + \begin{bmatrix} 1 & \gamma \\ 0 & 1 \end{bmatrix} u_{t}$$

$$= \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 \end{bmatrix} q_{t} + \begin{bmatrix} 1 & \gamma \\ 0 & 1 \end{bmatrix} u_{t}$$

$$\beta = \lambda^{2}$$

So, the VECM represention is
$$\Delta_{4\ell} = \beta a' \gamma_{\ell} + e_{\ell}$$
 with $\beta = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$, $\alpha = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $e_{\ell} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} u_{\ell}$