## **ELG 5255: Applied Machine Learning**

## **Assignment 4**





#### **Part1: Calculations**

## 1(a): build a decision tree by using Gini Index.

There are possible output variables Yes and No.

The data has 7 instances of No and 3 instances of Yes.

| Weather | Temperature | Humidty | Wind   | Hiking   |
|---------|-------------|---------|--------|----------|
| (F1)    | (F2)        | (F3)    | (F4)   | (Labels) |
| Cloudy  | Cool        | Normal  | Weak   | No       |
| Sunny   | Hot         | High    | Weak   | Yes      |
| Rainy   | Mild        | Normal  | Strong | Yes      |
| Cloudy  | Mild        | High    | Strong | No       |
| Sunny   | Mild        | High    | Strong | No       |
| Rainy   | Cool        | Normal  | Strong | No       |
| Cloudy  | Mild        | High    | Weak   | Yes      |
| Sunny   | Hot         | High    | Strong | No       |
| Rainy   | Cool        | Normal  | Weak   | No       |
| Sunny   | Hot         | High    | Strong | No       |

Step 1: Calculate the Total Gini index using this  $Gini=1-\sum_{i=1}^{N_c}(p_i)^2$  formula

Gini(S) = 
$$1 - \left(\left(\frac{3}{10}\right)^2 + \left(\frac{7}{10}\right)^2\right) = 0.42$$

## **Step 2:** Calculate the Gini index for feature 1 (Weather).

It has 3 possible outcomes, 3 instances of Cloudy, 4 instances of Sunny, and 3 instances of Rainy.

-Now we will calculate **Gini(Cloudy).** 

Gini(Cloudy) = 
$$1 - \left( \left( \frac{1}{3} \right)^2 + \left( \frac{2}{3} \right)^2 \right) = 0.444$$

| Weather (F1) | Hiking (Labels) |
|--------------|-----------------|
| Cloudy       | No              |
| Sunny        | Yes             |
| Rainy        | Yes             |
| Cloudy       | No              |
| Sunny        | No              |
| Rainy        | No              |
| Cloudy       | Yes             |
| Sunny        | No              |
| Rainy        | No              |
| Sunny        | No              |

-Now we will calculate Gini(Sunny).

Gini(Sunny) = 
$$1 - \left(\left(\frac{3}{4}\right)^2 + \left(\frac{1}{4}\right)^2\right) = 0.375$$

-Now we will calculate Gini(Rainy).

Gini(Rainy) = 
$$1 - \left(\left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2\right) = 0.444$$

| *** (1  | TT:1 :   |
|---------|----------|
| Weather | Hiking   |
| (F1)    | (Labels) |
| Cloudy  | No       |
| Sunny   | $Y_{es}$ |
| Rainy   | Yes      |
| Cloudy  | No       |
| Sunny   | No-      |
| Rainy   | No       |
| Cloudy  | Yes      |
| Sunny   | No       |
| Rainy   | No       |
| Sunny   | -No-     |
|         |          |

| Hiking   |
|----------|
| (Labels) |
| No       |
| Yes      |
| $V_{es}$ |
| No       |
| No       |
| No       |
| Yes      |
| No       |
| No       |
| No       |
|          |

Gini(Sunny)

Gini(Rainy)

-Now we will calculate the total Gini Index score for feature 1 Gini(Weather).

Gini(Weather) = 0.444 \* 
$$\left(\frac{3}{10}\right)$$
 + 0.375 \*  $\left(\frac{4}{10}\right)$  + 0.444 \*  $\left(\frac{3}{10}\right)$  = 0.416

#### Step 3: Calculate the Gini index for feature 2 (Temperature).

It has 3 possible outcomes, 3 instances of Cool, 3 instances of Hot, and 4 instances of Mild.

-Now we will calculate Gini(Cool).

Gini(Cool) = 
$$1 - \left(\left(\frac{0}{3}\right)^2 + \left(\frac{3}{3}\right)^2\right) = 0$$

-Now we will calculate Gini(Hot).

Gini(Hot) = 
$$1 - \left(\left(\frac{1}{3}\right)^2 + \left(\frac{2}{3}\right)^2\right) = 0.444$$

| Temperature          | Hiking   |
|----------------------|----------|
| (F2)                 | (Labels) |
| -Cool-               | No       |
| $\operatorname{Hot}$ | Yes      |
| Mild                 | Yes      |
| Mild                 | No       |
| Mild                 | No       |
| -Cool-               | No-      |
| Mild                 | Yes      |
| Hot                  | No       |
| -Cool-               | No.      |
| Hot                  | No       |
|                      |          |

| Temperature | Hiking   |
|-------------|----------|
| (F2)        | (Labels) |
| Cool        | No       |
| Hot         | Yes      |
| Mild        | Yes      |
| Mild        | No       |
| Mild        | No       |
| Cool        | No       |
| Mild        | Yes      |
| -Hot        | No       |
| Cool        | No       |
| Hot         | No       |

Gini(Cool)

Gini(Hot)

-Now we will calculate Gini(Mild).

Gini(Mild) = 
$$1 - \left( \left( \frac{2}{4} \right)^2 + \left( \frac{2}{4} \right)^2 \right) = 0.5$$

| Temperature        | Hiking   |
|--------------------|----------|
| (F2)               | (Labels) |
| Cool               | No       |
| Hot                | Yes      |
| <del>- Mild-</del> | $V_{es}$ |
| -Mild              | -No-     |
| Mild               | No-      |
| Cool               | No       |
| Mild               | Yes      |
| Hot                | No       |
| Cool               | No       |
| Hot                | No       |

-Now we will calculate the total Gini Index score for feature 2 Gini(Temperature).

Gini(Temperature) = 0 \* 
$$\left(\frac{3}{10}\right)$$
 + 0.444 \*  $\left(\frac{3}{10}\right)$  + 0.5 \*  $\left(\frac{4}{10}\right)$  = 0.333

#### Step 4: Calculate the Gini index for feature 3 (Humidity).

It has 2 possible outcomes, 4 instances of Normal, 6 instances of High.

-Now we will calculate Gini(Normal).

Gini(Normal) = 
$$1 - \left(\left(\frac{3}{4}\right)^2 + \left(\frac{1}{4}\right)^2\right) = 0.375$$

-Now we will calculate Gini(High).

Gini(High) = 
$$1 - \left(\left(\frac{2}{6}\right)^2 + \left(\frac{4}{6}\right)^2\right) = 0.444$$

| Humidty | Hiking   |
|---------|----------|
| (F3)    | (Labels) |
| Normal  | No       |
| High    | Yes      |
| Normal  | Yes      |
| High    | No       |
| High    | No       |
| Normal  | No       |
| High    | Yes      |
| High    | No       |
| Normal  | No       |
| High    | No       |
|         |          |

**Gini(Normal)** 

| Humidty | Hiking        |
|---------|---------------|
| (F3)    | (Labels)      |
| Normal  | No            |
| High    | Yes Yes       |
| Normal  | Yes           |
| High    | <del>No</del> |
| High    | <del>No</del> |
| Normal  | No            |
| High    | Yes           |
| High    | -No-          |
| Normal  | No            |
| High    | -No-          |

Gini(High)

-Now we will calculate the total Gini Index score for feature 3 Gini(Humidty).

Gini(Humidty) = 0.375 \* 
$$\left(\frac{4}{10}\right)$$
 + 0.444 \*  $\left(\frac{6}{10}\right)$  = 0.416

## **Step 5:** Calculate the Gini index for feature 4 (Wind).

It has 2 possible outcomes, 4 instances of Weak, 6 instances of Strong.

-Now we will calculate Gini(Weak).

Gini(Weak) = 
$$1 - \left(\left(\frac{2}{4}\right)^2 + \left(\frac{2}{4}\right)^2\right) = 0.5$$

-Now we will calculate Gini(Strong).

Gini(Strong) = 
$$1 - \left(\left(\frac{1}{6}\right)^2 + \left(\frac{5}{6}\right)^2\right) = 0.277$$

| Wind   | Hiking           |
|--------|------------------|
| (F4)   | (Labels)         |
| Weak   | -No-             |
| Weak   | Yes              |
| Strong | Yes              |
| Strong | No               |
| Strong | No               |
| Strong | No               |
| Weak   | <del>-Yes-</del> |
| Strong | No               |
| Weak   | No               |
| Strong | No               |

| Wind   | Hiking   |
|--------|----------|
| (F4)   | (Labels) |
| Weak   | No       |
| Weak   | Yes      |
| Strong | Yes      |
| Strong | No.      |
| Strong | No.      |
| Strong | No_      |
| Weak   | Yes      |
| Strong | No.      |
| Weak   | No       |
| Strong | -No      |

Gini(Weak)

**Gini(Strong)** 

-Now we will calculate the total Gini Index score for feature 4 Gini(Wind).

Gini(Wind) = 0.5 \* 
$$\left(\frac{4}{10}\right)$$
 + 0.277 \*  $\left(\frac{6}{10}\right)$  = 0.366

Step 6: Now we will choose the root node based on the minimum value of Gini Index.

Gini(Weather) = 0.416

Gini(Temperature) = 0.333

Gini(Humidty) = 0.416

Gini(Wind) = 0.366

We found that the **Gini(Temperature)** was had the **minimum** value of Gini Index score, so we will take the temperature feature as the root node.



#### Step 7: now we will see the Gini index score with the other features.

-When Temperature = Cool

Gini(Temperature = Cool | Weather = Cloudy) = 
$$1 - \left(\left(\frac{1}{1}\right)^2 + \left(\frac{0}{1}\right)^2\right) = 0$$

Gini(Temperature = Cool | Weather = Rainy) = 
$$1 - \left(\left(\frac{2}{2}\right)^2 + \left(\frac{0}{2}\right)^2\right) = 0$$

• Total = Gini(Temperature = Cool | Weather) = 0 \* 
$$\left(\frac{1}{3}\right)$$
 + 0 \*  $\left(\frac{2}{3}\right)$  = 0

-When Temperature = Mild

Gini(Temperature = Mild | Weather = Rainy) = 
$$1 - \left(\left(\frac{1}{1}\right)^2 + \left(\frac{0}{1}\right)^2\right) = 0$$

Gini(Temperature = Mild | Weather = Cloudy) = 
$$1 - \left(\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2\right) = 0.5$$

Gini(Temperature = Mild | Weather = Sunny) = 
$$1 - \left(\left(\frac{1}{1}\right)^2 + \left(\frac{0}{1}\right)^2\right) = 0$$

• Total = Gini(Temperature = Mild | Weather) = 0 \* 
$$(\frac{1}{4})$$
 + 0.5 \*  $(\frac{2}{4})$  + 0 \*  $(\frac{1}{4})$  = 0.25

-When Temperature = Hot

Gini(Temperature = Hot | Weather = Sunny) = 
$$1 - \left(\left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2\right) = 0.444$$

• Total = Gini(Temperature = Hot | Weather) = 0.444 \* 
$$\left(\frac{3}{3}\right)$$
 = 0.444

So that's mean the when the temperature is Cool the Decision will be No.

Now we will compute the temperature with the other feature which is **Humidity**.

-When Temperature = Mild

Gini(Temperature = Mild | Humidity = Normal) = 
$$1 - \left(\left(\frac{1}{1}\right)^2 + \left(\frac{0}{1}\right)^2\right) = 0$$

Gini(Temperature = Mild | Humidity = High) = 
$$1 - \left(\left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2\right) = 0.444$$

• Total = Gini(Temperature = Mild | Humidity) = 0 \* 
$$(\frac{1}{4})$$
 + 0.444 \*  $(\frac{3}{4})$  = 0.333

-When Temperature = Hot

Gini(Temperature = Hot | Humidity = High) = 
$$1 - \left(\left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2\right) = 0.444$$

• Total = Gini(Temperature = Hot | Humidity) = 0.444 \* 
$$\left(\frac{3}{3}\right)$$
 = 0.444

Now we will compute the temperature with the other feature which is Wind.

-When Temperature = Mild

Gini(Temperature = Mild | Wind = Strong) = 
$$1 - \left(\left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2\right) = 0.444$$

Gini(Temperature = Mild | Wind = Weak) = 
$$1 - \left(\left(\frac{1}{1}\right)^2 + \left(\frac{0}{1}\right)^2\right) = 0$$

• Total = Gini(Temperature = Mild | Wind) = 0.444 \* 
$$(\frac{3}{4})$$
 + 0 \*  $(\frac{1}{4})$  = 0.333

-When Temperature = Hot

Gini(Temperature = Hot | Wind = Strong) = 
$$1 - \left(\left(\frac{2}{2}\right)^2 + \left(\frac{0}{2}\right)^2\right) = 0$$

Gini(Temperature = Hot | Wind = Weak) = 
$$1 - \left(\left(\frac{1}{1}\right)^2 + \left(\frac{0}{1}\right)^2\right) = 0$$

• Total = Gini(Temperature = Hot | Wind) = 0 \* 
$$\left(\frac{2}{3}\right)$$
 + 0 \*  $\left(\frac{1}{3}\right)$  = 0

#### Step 8: From these scores we can start to build the tree.

1- When the **temperature is Mild** we will see which feature has the minimum value of Gini index score.

```
Gini(Temperature = Mild | Weather) = 0.25
Gini(Temperature = Mild | Humidity) = 0.333
Gini(Temperature = Mild | Wind) = 0.333
so, we will take feature (Weather) with the temperate = Mild.
```

2- When the **temperature is Hot** we will see which feature has the minimum value of Gini index score.

```
Gini(Temperature = Hot | Weather) = 0.444

Gini(Temperature = Hot | Humidity) = 0.444

Gini(Temperature = Hot | Wind) = 0

so, we will take feature (Wind) with the temperate when it's = Hot.
```

So, until now we have something like this.



**Step 9: Complete the Tree.** 

So now we will see what is the result of each possibility.

We notice from the table, when the temperature is **Mild**,

And the weather is **Rainy** we found that the **only** hiking option is **YES.** 

| Weather<br>(F1) | Temperature<br>(F2) | Humidity<br>(F3) | Wind<br>(F4) | Hiking<br>(Labels) |
|-----------------|---------------------|------------------|--------------|--------------------|
| Rainy           | Mild                | Normal           | Strong       | Yes                |
| Cloudy          | Mild                | High             | Strong       | No                 |
| Sunny           | Mild                | High             | Strong       | No                 |
| Cloudy          | Mild                | High             | Weak         | Yes                |

And the same for weather is **Sunny** we found that the **only** hiking option is **NO**.

But we found that there are **and impurity when weather is Cloudy** (one time hiking option was **NO** and the other time it was **Yes**)

So now we will calculate the Gini Index score for...

Gini(Temperature = Mild | Weather = Cloudy | Humidity) = 
$$1 - \left(\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2\right) = 0.5$$

• Total = Gini(Temperature = Mild | Weather = Cloudy | Humidity) = 0.5 \*  $\left(\frac{2}{2}\right)$  = 0.5

Gini(Temperature = Mild | Weather = Cloudy | Wind = Strong) = 
$$1 - \left(\left(\frac{1}{1}\right)^2 + \left(\frac{0}{1}\right)^2\right) = 0$$

Gini(Temperature = Mild | Weather = Cloudy | Wind = Weak) = 
$$1 - \left(\left(\frac{1}{1}\right)^2 + \left(\frac{0}{1}\right)^2\right) = 0$$

• Total = Gini(Temperature = Mild | Weather = Cloudy | Wind) = 
$$0 * (\frac{1}{2}) + 0 * (\frac{1}{2}) = 0$$

We found that **Gini(Temperature = Mild | Weather = Cloudy | Wind)** has the minimum Gini index score.

Gini(Temperature = Mild | Weather = Cloudy | Humidity) = 0.5

Gini(Temperature = Mild | Weather = Cloudy | Wind) = 0

So now when the **Temperature = Mild** and the **Weather = Cloudy**, we will check for **Wind** Value if it was = **strong** it will be **No**, and if it was = **Weak** it will be **Yes**, **based on that table on the below**. (There is no Impurity).

| Weather<br>(F1) | Temperature<br>(F2) | Humidity<br>(F3) | Wind<br>(F4) | Hiking<br>(Labels) |
|-----------------|---------------------|------------------|--------------|--------------------|
| Rainy           | Mild                | Normal           | Strong       | Yes                |
| Cloudy          | Mild                | High             | Strong       | No                 |
| Sunny           | Mild                | High             | Strong       | No                 |
| Cloudy          | Mild                | High             | Weak         | Yes                |

So now when the **Temperature = Hot**, we will check for **Wind** Value if it was = **strong** it will be **No**, and if it was = **Weak** it will be **Yes**, **based on that table on the below (There is no Impurity).** 

| Weather (F1) | Temperature<br>(F2) | Humidity<br>(F3) | Wind<br>(F4) | Hiking<br>(Labels) |
|--------------|---------------------|------------------|--------------|--------------------|
| Sunny        | Hot                 | High             | Weak         | Yes                |
| Sunny        | Hot                 | High             | Strong       | No                 |
| Sunny        | Hot                 | High             | Strong       | No                 |

So we have reached to the leaf node (**Final Decision**) on each branch, and we got something like this...



# 1(b): build a decision tree by using Information Gain.

| Weather | Temperature | Humidty | Wind   | Hiking   |
|---------|-------------|---------|--------|----------|
| (F1)    | (F2)        | (F3)    | (F4)   | (Labels) |
| Cloudy  | Cool        | Normal  | Weak   | No       |
| Sunny   | Hot         | High    | Weak   | Yes      |
| Rainy   | Mild        | Normal  | Strong | Yes      |
| Cloudy  | Mild        | High    | Strong | No       |
| Sunny   | Mild        | High    | Strong | No       |
| Rainy   | Cool        | Normal  | Strong | No       |
| Cloudy  | Mild        | High    | Weak   | Yes      |
| Sunny   | Hot         | High    | Strong | No       |
| Rainy   | Cool        | Normal  | Weak   | No       |
| Sunny   | Hot         | High    | Strong | No       |

Step 1: Calculate the Entropy(S) using this formula... 
$$Entropy(t) = -\sum_{j} p(j|t) \log_{2} p(j|t)$$

$$P(No) = \frac{7}{10}$$

$$P(Yes) = \frac{3}{10}$$

Entropy(S) = 
$$-\frac{7}{10} * \log_2 \frac{7}{10} - \frac{3}{10} * \log_2 \frac{3}{10} = 0.88129$$

Step 2: Calculate the Information Gain Score for each feature using this formula...

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

#### Weather

3 Cloudy -> 2 No, 1 Yes.

4 Sunny -> 3 No, 1 Yes.

3 Rainy -> 2 No, 1 Yes.

Gain(S, Weather) = 0.88129 
$$-\frac{3}{10}*\left(-\frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}*\log_2\frac{1}{3}\right) - \frac{4}{10}*\left(-\frac{3}{4}\log_2\frac{3}{4} - \frac{1}{4}*\log_2\frac{1}{4}\right) - \frac{3}{10}*\left(-\frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}*\log_2\frac{1}{3}\right) = 0.4982$$

## Temperature

3 Cool -> 3 No, 0 Yes.

3 Hot -> 2 No, 1 Yes.

4 Mild -> 2 No, 2 Yes.

Gain(S, Temperature) = 0.88129 
$$-\frac{3}{10}*\left(-\frac{3}{3}\log_2\frac{3}{3} - \frac{0}{3}*\log_2\frac{0}{3}\right) - \frac{3}{10}*\left(-\frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}*\log_2\frac{1}{3}\right) - \frac{4}{10}*\left(-\frac{2}{4}\log_2\frac{2}{4} - \frac{2}{4}*\log_2\frac{2}{4}\right) = 0.82279$$

#### • Humidity

4 Normal -> 3 No, 1 Yes.

6 High -> 4 No, 2 Yes.

Gain(S, Humidity) = 0.88129 
$$-\frac{4}{10}*\left(-\frac{3}{4}\log_2\frac{3}{4} - \frac{1}{4}*\log_2\frac{1}{4}\right) - \frac{6}{10}*\left(-\frac{4}{6}\log_2\frac{4}{6} - \frac{2}{6}*\log_2\frac{2}{6}\right) = 0.00580$$

#### Wind

4 Weak -> 2 No, 2 Yes.

6 Strong -> 5 No, 1 Yes.

Gain(S, Wind) = 0.88129 
$$-\frac{4}{10} * \left(-\frac{2}{4} \log_2 \frac{2}{4} - \frac{2}{4} * \log_2 \frac{2}{4}\right) - \frac{6}{10} * \left(-\frac{5}{6} \log_2 \frac{5}{6} - \frac{1}{6} * \log_2 \frac{1}{6}\right) = 0.09127$$

**Step 3:** Determine which feature will be the root node, and after that calculate the IG Score for the other features.

We found that the **Temperature has the highest value of information**, so it will be the root node.

#### Gain(S, Temperature) = 0.82279



from the above figure we will found that when **Temperature = Cool**, the **decision will be No.** 

now we will calculate the other feature when **Temperature = Mild,** but first we will calculate the **new Entropy.** 

Entropy(S) = 
$$-\frac{2}{4} * \log_2 \frac{2}{4} - \frac{2}{4} * \log_2 \frac{2}{4} = 1$$

| Weather<br>(F1) | Temperature<br>(F2) | Humidity<br>(F3) | Wind<br>(F4) | Hiking<br>(Labels) |  |
|-----------------|---------------------|------------------|--------------|--------------------|--|
| Rainy           | Mild                | Normal           | Strong       | Yes                |  |
| Cloudy          | Mild                | High             | Strong       | No                 |  |
| Sunny           | Mild                | High             | Strong       | No                 |  |
| Cloudy          | Mild                | High             | Weak         | Yes                |  |

#### Weather

1 Rainy -> 0 No, 1 Yes.

2 Cloudy -> 1 No, 1 Yes.

1 Sunny -> 1 No, 0 Yes.

Gain(S, Weather) = 
$$1 - \frac{1}{4} * \left( -\frac{1}{1} \log_2 \frac{1}{1} \right) - \frac{2}{4} * \left( -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} * \log_2 \frac{1}{2} \right) - \frac{1}{4} * \left( -\frac{1}{1} \log_2 \frac{1}{1} \right) = 0.5$$

#### Humidity

1 Normal -> 0 No, 1 Yes.

3 High -> 2 No, 1 Yes.

Gain(S, Humidity) = 
$$1 - \frac{1}{4} * \left( -\frac{1}{1} \log_2 \frac{1}{1} \right) - \frac{3}{4} * \left( -\frac{2}{3} \log_2 \frac{2}{3} - \frac{1}{3} * \log_2 \frac{1}{3} \right) = 0.311278$$

#### Wind

3 Strong -> 2 No, 1 Yes.

1 Weak -> 0 No, 1 Yes.

Gain(S, Wind) = 
$$1 - \frac{3}{4} * \left( -\frac{2}{3} \log_2 \frac{2}{3} - \frac{1}{3} \log_2 \frac{1}{3} \right) - \frac{1}{4} * \left( -\frac{1}{1} \log_2 \frac{1}{1} \right) = 0.311278$$

We found that the **Weather has the highest value of information**, When **Temperature = Mild.** 

Gain(S, Weather) = 0.5

now we will calculate the other feature when **Temperature = Hot,** but first we will calculate the **new Entropy.** 

Entropy(S) = 
$$-\frac{1}{3} * \log_2 \frac{1}{3} - \frac{2}{3} * \log_2 \frac{2}{3} = 0.9182$$

|   | eather<br>(F1) | Temperature<br>(F2) | Humidity<br>(F3) | Wind<br>(F4) | Hiking<br>(Labels) |
|---|----------------|---------------------|------------------|--------------|--------------------|
| S | unny           | Hot                 | High             | Weak         | Yes                |
| S | unny           | Hot                 | High             | Strong       | No                 |
| S | unny           | Hot                 | High             | Strong       | No                 |

#### Weather

3 Sunny -> 2 No, 1 Yes.

Gain(S, Weather) = 0.9182 
$$-\frac{3}{3}*\left(-\frac{2}{3}\log_2\frac{2}{3}-\frac{1}{3}\log_2\frac{1}{3}\right)=0$$

#### Humidity

3 High -> 2 No, 1 Yes.

Gain(S, Humidity) = 0.9182 
$$-\frac{3}{3}*\left(-\frac{2}{3}\log_2\frac{2}{3}-\frac{1}{3}\log_2\frac{1}{3}\right)=0$$

#### Wind

2 Strong -> 2 No, 0 Yes.

1 Weak -> 0 No, 1 Yes.

Gain(S, Wind) = 0.9182 
$$-\frac{2}{3}*\left(-\frac{2}{2}\log_2\frac{2}{2}\right) - \frac{1}{3}*\left(-\frac{1}{1}\log_2\frac{1}{1}\right)$$
 = 0.9182

We found that the Wind has the highest value of information, When Temperature = Hot.

Gain(S, Wind) = 0.9182

## Step 4: continue constructing the tree...

Now we have something like this...



So now we will see what is the result of each possibility.

We notice from the table, when the temperature is **Mild**, And the weather is **Rainy** we found that the **only** hiking option is **YES**.

| Weather<br>(F1) | Temperature<br>(F2) | Humidity<br>(F3) | Wind<br>(F4) | Hiking<br>(Labels) |  |
|-----------------|---------------------|------------------|--------------|--------------------|--|
| Rainy           | Mild                | Normal           | Strong       | Yes                |  |
| Cloudy          | Cloudy Mild         |                  | Strong       | No                 |  |
| Sunny Mild      |                     | High             | Strong       | No                 |  |
| Cloudy          | Mild                | High             | Weak         | Yes                |  |

And the same for weather is **Sunny** we found that the **only** hiking option is **NO.** 

But we found that there are **and impurity when weather is Cloudy** (one time hiking option was **NO** and the other time it was **Yes**)

Now we will calculate the other feature when **Temperature = Mild** and **Weather = Cloudy,** but first we will calculate the **new Entropy.** 

Entropy(S) = 
$$-\frac{1}{2} * \log_2 \frac{1}{2} - \frac{1}{2} * \log_2 \frac{1}{2} = 1$$

| Weather<br>(F1) | Temperature<br>(F2) | Humidity<br>(F3) |        | Hiking<br>(Labels) |  |
|-----------------|---------------------|------------------|--------|--------------------|--|
| Cloudy          | Mild                | High             | Strong | No                 |  |
| Cloudy          | Mild                | High             | Weak   | Yes                |  |

#### Humidity

2 High -> 1 No, 1 Yes.

Gain(S, Humidity) = 
$$1 - \frac{2}{2} * \left( -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) = 0$$

#### Wind

1 Strong -> 1 No, 0 Yes.

1 Weak -> 0 No, 1 Yes.

Gain(S, Wind) = 
$$1 - \frac{1}{2} * \left( -\frac{1}{1} \log_2 \frac{1}{1} \right) - \frac{1}{2} * \left( -\frac{1}{1} \log_2 \frac{1}{1} \right) = 1$$

We found that the **Wind has the highest value of information**, When **Temperature = Mild** and **Weather = Cloudy.** 

Gain(S, Wind) = 1

So now when the **Temperature = Mild** and the **Weather = Cloudy**, we will check for **Wind** Value if it was = **strong** it will be **No**, and if it was = **Weak** it will be **Yes**, **based on that table on the below.** (There is no Impurity).

| Weather<br>(F1) | Temperature<br>(F2) | Humidity<br>(F3) | Wind<br>(F4) | Hiking<br>(Labels) |
|-----------------|---------------------|------------------|--------------|--------------------|
| Rainy           | Mild                | Normal           | Strong       | Yes                |
| Cloudy          | Mild                | High             | Strong       | No                 |
| Sunny           | Mild                | High             | Strong       | No                 |
| Cloudy          | Mild                | High             | Weak         | Yes                |

So now when the **Temperature = Hot**, we will check for **Wind** Value if it was = **strong** it will be **No**, and if it was = **Weak** it will be **Yes**, **based on that table on the below (There is no Impurity).** 

| Weather (F1) | Temperature<br>(F2) | Wind<br>(F4) | Hiking<br>(Labels) |     |
|--------------|---------------------|--------------|--------------------|-----|
| Sunny        | Hot                 | High         | Weak               | Yes |
| Sunny        | Hot                 | High         | Strong             | No  |
| Sunny        | Hot                 | High         | Strong             | No  |

So we have reached to the leaf node (Final Decision) on each branch, and we got something like this...



**1(c):** We have seen that both ways gave us the same Tree at the end, but talk about each method from the perspective of computational power, the Gini index will win because...

- Gini index it only goes up to 0.5 and then it starts decreasing, hence it requires less computational power.
- But The range of Entropy (information gain) lies in between 0 to 1 and the range.

Hence, we can conclude that Gini Impurity is better as compared to entropy (information gain) for selecting the best features.

## **Part2: Programming**

**2(a):** we have tried both Decision tree with **Gini Index** method and **Entropy** method, and we found that Gini Index gave better accuracy...

And after that we have plot the different **predicted classes** with different colors.

| In        | n [33]: print(Gini_report) |     |      |       |      |      |      |            |      |      |     |         |    |       |
|-----------|----------------------------|-----|------|-------|------|------|------|------------|------|------|-----|---------|----|-------|
|           | precision                  |     |      |       |      | ion  | re   | ecall      | l f1 | -sco | re  | support |    |       |
|           | 0 0.95                     |     |      |       | .95  |      | 0.96 | 5          | 0.   | 95   | 363 |         |    |       |
|           |                            |     |      |       | 1    |      | 0    | .86        |      | 0.88 | 3   | 0.      | 87 | 364   |
|           |                            |     |      |       | 2    |      | 0    | .87        |      | 0.96 | 5   | 0.      | 91 | 364   |
|           |                            |     |      |       | 3    |      |      | .89        |      | 0.93 |     |         | 91 | 336   |
|           |                            |     |      |       | 4    |      |      | .97        |      | 0.96 |     |         | 96 | 364   |
|           |                            |     |      |       | 5    |      |      | .96        |      | 0.86 |     |         | 90 | 335   |
|           |                            |     |      |       | 6    |      |      | .98        |      | 0.94 |     |         | 96 | 336   |
|           |                            |     |      |       | 7    |      |      | .94        |      | 0.91 |     |         | 92 | 364   |
|           |                            |     |      |       | 8    |      |      | .92        |      | 0.94 |     |         | 93 | 335   |
|           |                            |     |      |       | 9    |      | О    | .93        |      | 0.93 | 5   | θ.      | 93 | 336   |
|           |                            |     |      | accu  | racy | ,    |      |            |      |      |     | 0.      | 93 | 3497  |
|           |                            |     | n    | nacro | avg  |      | 0    | .93 0.92 0 |      | 0.   | 93  | 3497    |    |       |
|           |                            |     | weig | ghted | avg  |      | 0    | .93        |      | 0.93 | 3   | 0.      | 93 | 3497  |
|           |                            |     |      |       | _    |      |      | _          |      |      |     |         |    |       |
|           |                            |     |      |       | D    | ecis | ion  | Tre        | e Gi | ni   |     |         |    | - 350 |
|           |                            | 0   | 347  | 0     | 0    | 0    | 1    | 0          | 1    | 0    | 14  | 0       |    | 330   |
|           |                            | п.  | 0    | 319   | 42   | 2    | 1    | 0          | 0    | 0    | 0   | 0       |    | - 300 |
|           |                            | 2   | 0    | 11    | 348  | 0    | 0    | 0          | 1    | 2    | 0   | 2       |    | - 250 |
|           |                            | m · | 1    | 14    | 2    | 311  | 0    | 1          | 0    | 3    | 0   | 4       |    | 233   |
|           | ual                        | 4 . | 0    | 0     | 3    | 0    | 350  | 7          | 1    | 1    | 0   | 2       |    | - 200 |
|           | Actual                     | ω.  | 0    | 0     | 0    | 25   | 2    | 287        | 0    | 3    | 5   | 13      |    | - 150 |
|           |                            | 9 . | 11   | 5     | 1    | 0    | 0    | 0          | 317  | 0    | 2   | 0       |    |       |
|           |                            | 7   | 0    | 17    | 4    | 7    | 0    | 0          | 1    | 330  | 4   | 1       |    | - 100 |
|           |                            | ω · | 6    | 1     | 0    | 0    | 1    | 2          | 1    | 7    | 315 | 2       |    | - 50  |
|           |                            | ο.  | 1    | 3     | 0    | 4    | 7    | 3          | 0    | 4    | 3   | 311     |    |       |
|           |                            |     | ó    | í     | 2    | 3    | 4    | 5          | 6    | 7    | 8   | 9       | '  | -0    |
|           |                            |     |      | -     | _    | _    |      |            | _    | •    | -   | _       |    |       |
| Predicted |                            |     |      |       |      |      |      |            |      |      |     |         |    |       |

```
In [15]: # Plot Gini
XTsne = pd.concat([pd.DataFrame(XTsne), pd.DataFrame(Gini_Ypred)],axis=1 , ignore_index = True).astype(float)
GiniLs = GetListOfClasses(9, XTsne, pd.DataFrame(XTsne).columns[2])
Labels = ['0','1','2','3','4','5','6','7','8']
PlotDataPoints(9, GiniLs, 'Component 0', 'Component 1' ,Labels ,5, 'Gini_Classifier').show()
XTsne = T_SNE(XTest)
```



#### Entropy

| <pre>In [34]: print(Ent_report)</pre> |
|---------------------------------------|
|---------------------------------------|

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.97      | 0.95   | 0.96     | 363     |
| 1            | 0.81      | 0.90   | 0.85     | 364     |
| 2            | 0.87      | 0.95   | 0.91     | 364     |
| 3            | 0.91      | 0.94   | 0.92     | 336     |
| 4            | 0.95      | 0.91   | 0.93     | 364     |
| 5            | 0.90      | 0.85   | 0.87     | 335     |
| 6            | 0.95      | 0.90   | 0.92     | 336     |
| 7            | 0.97      | 0.84   | 0.90     | 364     |
| 8            | 0.88      | 0.98   | 0.93     | 335     |
| 9            | 0.91      | 0.89   | 0.90     | 336     |
|              |           |        |          |         |
| accuracy     |           |        | 0.91     | 3497    |
| macro avg    | 0.91      | 0.91   | 0.91     | 3497    |
| weighted avg | 0.91      | 0.91   | 0.91     | 3497    |



In [17]: # Plot Entropy
XTsne = pd.concat([pd.DataFrame(XTsne), pd.DataFrame(Ent\_Ypred)],axis=1 , ignore\_index = True).astype(float)
EntLs = GetListOfClasses(9, XTsne, pd.DataFrame(XTsne).columns[2])
PlotDataPoints(9, EntLs, 'Component 0', 'Component 1' , Labels ,5, 'Entropy\_Classifier').show()



# 3(a): here we applied BaggingClassifier(base\_estimator=SVC(), n\_estimators=(we have tries 1 and 2))

so, the frist time the  $n_estimators$  was = 1 and the second time,  $n_estimators$  was = 2.

|              | SVM Baggin | g: 1 |          |         |              | SVM Baggin | _      |          |         |
|--------------|------------|------|----------|---------|--------------|------------|--------|----------|---------|
|              | precision  | _    | f1-score | support |              | precision  | recall | f1-score | support |
| 0            | 1.00       | 0.98 | 0.99     | 363     | 0            | 1.00       | 0.98   | 0.99     | 363     |
| 1            | 0.95       | 0.95 | 0.95     | 364     | 1            | 0.95       | 0.96   | 0.95     | 364     |
| 2            | 0.97       | 0.99 | 0.98     | 364     | 2            | 0.96       | 0.99   | 0.98     | 364     |
| 3            | 0.99       | 0.99 | 0.99     | 336     | 3            | 0.99       | 0.99   | 0.99     | 336     |
| 4            | 1.00       | 0.98 | 0.99     | 364     | 4            | 1.00       | 0.99   | 0.99     | 364     |
| 5            | 0.98       | 0.98 | 0.98     | 335     | 5            | 0.98       | 0.98   | 0.98     | 335     |
| 6            | 1.00       | 1.00 | 1.00     | 336     | 6            | 1.00       | 1.00   | 1.00     | 336     |
| 7            | 0.98       | 0.95 | 0.97     | 364     | 7            | 0.99       | 0.95   | 0.96     | 364     |
| 8            | 0.97       | 1.00 | 0.98     | 335     | 8            | 0.97       | 1.00   | 0.98     | 335     |
| 9            | 0.97       | 0.99 | 0.98     | 336     | 9            | 0.98       | 0.99   | 0.98     | 336     |
| accuracy     |            |      | 0.98     | 3497    | accuracy     |            |        | 0.98     | 3497    |
| macro avg    | 0.98       | 0.98 | 0.98     | 3497    | macro avg    | 0.98       | 0.98   | 0.98     | 3497    |
| weighted avg | 0.98       | 0.98 | 0.98     | 3497    | weighted avg | 0.98       | 0.98   | 0.98     | 3497    |





here we did the same thing but we have changed the base estimator to ...
 BaggingClassifier(base\_estimator= DecisionTreeClassifier(), n\_estimators=(we have tries 1 and 2))

so, the frist time the  $n_estimators$  was = 1 and the second time,  $n_estimators$  was = 2.

|            |     |            |        |          |         |              | Decision T | ree Baggi | ng: 2    |         |
|------------|-----|------------|--------|----------|---------|--------------|------------|-----------|----------|---------|
|            |     | Decision T |        | _        |         |              | precision  |           | f1-score | support |
|            |     | precision  | recall | f1-score | support |              | p          |           |          |         |
|            | 0   | 0.97       | 0.94   | 0.96     | 363     | 0            | 0.95       | 0.97      | 0.96     | 363     |
|            |     |            |        |          |         | 1            | 0.74       | 0.92      | 0.82     | 364     |
|            | 1   | 0.83       | 0.87   | 0.85     | 364     | 2            | 0.89       | 0.90      | 0.89     | 364     |
|            | 2   | 0.88       | 0.89   | 0.89     | 364     |              |            |           |          |         |
|            | 3   | 0.90       | 0.96   | 0.93     | 336     | 3            | 0.86       | 0.96      | 0.91     | 336     |
|            | 4   | 0.93       | 0.96   | 0.94     | 364     | 4            | 0.93       | 0.96      | 0.95     | 364     |
|            | 5   | 0.97       | 0.83   | 0.90     | 335     | 5            | 0.96       | 0.82      | 0.89     | 335     |
|            | 6   | 0.94       | 0.90   | 0.92     | 336     | 6            | 0.95       | 0.91      | 0.93     | 336     |
|            | 7   | 0.90       | 0.88   | 0.89     | 364     | 7            | 0.95       | 0.83      | 0.89     | 364     |
|            | 8   | 0.90       | 0.96   | 0.93     | 335     | 8            | 0.97       | 0.92      | 0.94     | 335     |
|            | 9   | 0.92       | 0.91   | 0.91     | 336     | 9            | 0.97       | 0.87      | 0.92     | 336     |
|            |     | 0.52       | 0.51   | 0.51     | 220     |              | 0.57       | 0.07      | 0.52     | 330     |
| accura     | асу |            |        | 0.91     | 3497    | accuracy     |            |           | 0.91     | 3497    |
| macro a    | avg | 0.91       | 0.91   | 0.91     | 3497    | macro avg    | 0.92       | 0.91      | 0.91     | 3497    |
| weighted a | avg | 0.91       | 0.91   | 0.91     | 3497    | weighted avg | 0.91       | 0.91      | 0.91     | 3497    |
|            |     |            |        |          |         |              |            |           |          |         |
|            |     | DT Baggir  | na 1   |          |         |              | DT D       |           |          |         |
|            |     |            |        | - 35     | 0       |              | DT_Baggir  | 1g Z      |          | -0      |
| 0 - 341    | 1   | 0 0 0 0    | 0 0 2  | 1 0      |         | 0 - 351      | 0 0 1 0    | 4 0 €     | 5 0 -35  | ou      |
| . 0        | 317 | 36 2 0 1   | 1 4 0  | 3 - 30   | 0       |              |            |           |          |         |





**3(b):** to find the best number of estimators we have used a for loop to iterate on this range [10,200] to try as many options as we can, so we go for range(10,201,10), that's mean that we will have 20 different accuracies, and after that we have sorted these accuracies to know which n\_estimators values will give use the highest accuracies.

 Best values for n\_estimators that gave us the highest accurices.





Accuracies VS n estimators (Full DataFrame)



Accuracies VS n\_estimators (Best 5 (4 of them are have the same Accuracy))

4(a): here we did the same idea like 3(b) to tune the n\_estimators values from this range [10,200]. and we found that the best 4 values for n\_estimators is [200,160,150,140].

```
In [23]: # 4(a) ----- #Boosting
         # Tuning the number of estimators Parameter
         Boosting_Acc = []
         numOfEst = []
         for i in range(10,201,10):
           Boosting_estimator = GradientBoostingClassifier(n_estimators=i, random_state=0).fit(XTrain, YTrain)
           Boosting_Ypred = Boosting_estimator.predict(XTest)
           Boosting_Acc.append(AccuracyTest(Ytest, Boosting_Ypred))
           numOfEst.append(i)
         Boosting_Est = pd.concat([pd.DataFrame(Boosting_Acc), pd.DataFrame(numOfEst)],axis=1 , ignore_index = True).astype(float)
         Boosting_Est = Boosting_Est.sort_values(by=[0],ascending=False)
         print(Boosting_Est.iloc[:4,1])
         19
              200.0
              160.0
         15
         14
              150.0
         13
              140.0
         Name: 1, dtype: float64
```

here we did the same idea like 3(b) to tune the learning\_rate values from this range
 [0.1 -> 0.9].

and we found that the best 4 values for is [0.2,0.3,0.1,0.7].

```
In [24]: # Tuning learning rate parameter
         Lr rate = np.array([0.1,0.2,0.3, 0.4, 0.5, 0.6,0.7,0.8,0.9])
         Boosting Acc = []
         Lr = []
         for i in Lr_rate:
            Boosting_estimator = GradientBoostingClassifier(learning_rate=i, random_state=0).fit(XTrain, YTrain)
            Boosting_Ypred = Boosting_estimator.predict(XTest)
            Boosting_Acc.append(AccuracyTest(Ytest, Boosting_Ypred))
            Lr.append(i)
         Boosting_Lr = pd.concat([pd.DataFrame(Boosting_Acc), pd.DataFrame(Lr)],axis=1 , ignore_index = True).astype(float)
         Boosting_Lr = Boosting_Lr.sort_values(by=[0],ascending=False)
         print(Boosting_Lr.iloc[:4,1])
         1
              0.2
         2
              0.3
         0
              0.1
              0.7
         Name: 1, dtype: float64
```

• This for loop for finding the best combination between the best values of the parameters.

```
In [25]: # Train GradientBoostingClassifier
           Boosting_Acc = []
           est = []
            lr = []
            estLS = list(Boosting_Est.iloc[:4,1])
            LrLS = list(Boosting Lr.iloc[:4,1])
            for i in range(len(Boosting_Est.iloc[:4,1])):
                for j in range(len(Boosting_Lr.iloc[:4,1])):
                     Boosting estimator = GradientBoostingClassifier(n estimators=trunc(estLS[i]),learning rate=LrLS[j], random state=0).fit
                    Boosting_Ypred = Boosting_estimator.predict(XTest)
                    Boosting_Acc.append(AccuracyTest(Ytest, Boosting_Ypred))
                     print('Done')
                     est.append(trunc(estLS[i]))
                    lr.append(LrLS[j])
            \frac{\mathsf{Boosting}}{\mathsf{Boosting}} = \mathsf{pd.concat}([\mathsf{pd.DataFrame}(\mathsf{Boosting}_\mathsf{Acc}), \mathsf{pd.DataFrame}(\mathsf{est}), \mathsf{pd.DataFrame}(\mathsf{lr})], \mathsf{axis} = 1, \mathsf{ignore}_\mathsf{index} = \mathsf{True}). \mathsf{astype}(\mathsf{fl} \in \mathsf{pd}_\mathsf{index})
            Boosting = Boosting.sort_values(by=[0],ascending=False)
            print(Boosting.iloc[:4])
```

```
0 1 2
2 96.568487 200.0 0.1
1 96.511295 200.0 0.3
6 96.482699 160.0 0.1
10 96.482699 150.0 0.1
```

Best combination of the parameters together that gave the highest accuracy.

We found that the best combinations are...

```
Learning_rate = [0.1,0.3]
n_estimators = [160,150,200]
```

with these combinations we have trin gradient boost again and we have to obtain 6 different Confusion matrices, and 6 different classification\_reports.

```
for i in range(len(best_estLS)):
    for j in range(len(best_LrLS)):
        Boosting_estimator = GradientBoostingClassifier(n_estimators=trunc(best_estLS[i]),learning_rate=best_LrLS[j], random_state
        Boosting_Ypred = Boosting_estimator.predict(XTest)

        GB_report = classification_report(Ytest, Boosting_Ypred)
        GB_reports.append(DT_report)
        print('\t\tGradient Boosting Best 6 Accuracies:',"\tNum of Est = ",trunc(best_estLS[i]), '\tLearning Rate = ',best_LrLS[i])
        GB_cf = ConfusionMatrix(Ytest, Boosting_Ypred)
        PLOT_ConfusionMatrix(GB_cf, f'Gradient Boosting {trunc(best_estLS[i]),best_LrLS[j]}')
        GB_Acc.append(AccuracyTest(Ytest, Boosting_Ypred))
        GBIr.append(best_LrLS[j])
        GBEst.append(trunc(best_estLS[i]))
        print('Done')
```

## • First model (num of est = 200, lr\_rate = 0.1)

|              | Gradient  | Boosting B | est 6 Accu | racies: | Num o      | f E | st : | = 2  | 00   |      | l    | ear  | nin | g R  | ate | = |
|--------------|-----------|------------|------------|---------|------------|-----|------|------|------|------|------|------|-----|------|-----|---|
|              | precision | recall     | f1-score   | support |            |     |      |      |      |      |      |      |     |      |     |   |
|              |           |            |            |         |            |     | Gra  | dier | nt B | Boos | tino | 1 (2 | 00. | 0.1) |     |   |
| 0            | 1.00      | 0.94       | 0.97       | 363     |            |     |      |      |      |      | _    |      |     |      |     |   |
| 1            | 0.91      | 0.95       | 0.93       | 364     | 0 -        | 343 | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 20   | 0   |   |
| 2            | 0.95      | 0.99       | 0.97       | 364     | г -        | 0   | 345  | 17   | 0    | 1    | 1    | 0    | 0   | 0    | 0   |   |
| 3            | 0.97      | 0.99       | 0.98       | 336     | 2 -        | 0   | 2    | 362  | 0    | 0    | 0    | 0    | 0   | 0    | 0   |   |
| 4            | 1.00      | 1.00       | 1.00       | 364     | m -        | 0   | 2    | 0    | 332  | 0    | 0    | 0    | 1   | 0    | 1   |   |
| 5            | 0.99      | 0.93       | 0.96       | 335     |            |     |      |      |      |      |      |      | -   |      | •   |   |
| 6            | 1.00      | 1.00       | 1.00       | 336     | Actual 5 4 | 0   | 0    | 0    | 0    | 364  | 0    | 0    | 0   | 0    | 0   |   |
| 7            | 0.99      | 0.90       | 0.94       | 364     | - ≥ द      | 0   | 0    | 0    | 6    | 0    | 310  | 1    | 0   | 4    | 14  |   |
| 8            | 0.93      | 1.00       | 0.96       | 335     | 7 9 -      | 0   | 0    | 0    | 0    | 0    | 1    | 335  | 0   | 0    | 0   |   |
| 9            | 0.93      | 0.96       | 0.95       | 336     | _          | 0   | 25   | 4    | 0    | 0    | 0    | 0    | 327 | 0    | 8   |   |
| accuracy     |           |            | 0.97       | 3497    | ω -        | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 335  | 0   |   |
| macro avg    | 0.97      | 0.97       | 0.97       | 3497    | o -        | 0   | 5    | 0    | 5    | 0    | 0    | 0    | 1   | 1    | 324 |   |
| veighted avg | 0.97      | 0.97       | 0.97       | 3497    |            | Ó   | í    | 2    | 3    | 4    | 5    | 6    | 7   | 8    | 9   |   |
|              |           |            |            |         |            |     |      |      | F    | red  | icte | d    |     |      |     |   |

## Second model (num of est = 200, lr\_rate = 0.3)



## • Third model (num of est = 160, lr\_rate = 0.1)

|              | Gradient  | Boosting E | Best 6 Accu | racies: | Num    | 0   | f E | st = | : 1  | 60   |      | L    | earr | ing | Raf  | te = | 0.1  |
|--------------|-----------|------------|-------------|---------|--------|-----|-----|------|------|------|------|------|------|-----|------|------|------|
|              | precision | recall     | f1-score    | support |        |     |     | Gra  | dier | nt B | oos  | ting | (16  | 50, | 0.1) |      |      |
| 0            | 1.00      | 0.94       | 0.97        | 363     |        | o - | 343 | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 20   | 0    | - 35 |
| 1            | 0.91      | 0.95       | 0.93        | 364     |        | ١,  | 0   | 344  | 18   | 0    | 1    | 1    | 0    | 0   | 0    | 0    | - 30 |
| 2            | 0.94      | 0.99       | 0.97        | 364     |        | 2 - | 0   | 2    | 362  | 0    | 0    | 0    | 0    | 0   | 0    | 0    | - 30 |
| 3            | 0.97      | 0.99       | 0.98        | 336     |        | m - | 0   | ,    | 0    | 332  | ٥    | 0    | 0    | ī   | 0    | ĭ    | - 25 |
| 4            | 1.00      | 1.00       | 1.00        | 364     |        |     | ٠   | -    |      |      |      |      |      | •   |      | •    |      |
| 5            | 0.99      | 0.92       | 0.96        | 335     | na     | 4   | 0   | 0    | 0    | 0    | 364  | 0    | 0    | 0   | 0    | 0    | - 20 |
| 6            | 1.00      | 1.00       | 1.00        | 336     | Actual | s - | 0   | 0    | 0    | 6    | 0    | 309  | 1    | 0   | 4    | 15   | 35   |
| 7            | 0.99      | 0.90       | 0.94        | 364     |        | ٠.  | 0   | 0    | 0    | 0    | 0    | 1    | 335  | 0   | 0    | 0    | - 15 |
| 8            | 0.93      | 1.00       | 0.96        | 335     |        | _   | 0   | 25   | 4    | 0    | 0    | 0    | 0    | 327 | 0    | R    | - 10 |
| 9            | 0.93      | 0.96       | 0.95        | 336     |        |     |     |      | 7    |      |      |      | ٠    |     |      |      |      |
|              |           |            |             |         |        | ∞ † | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 335  | 0    | - 50 |
| accuracy     |           |            | 0.96        | 3497    |        | თ - | 0   | 5    | 0    | 6    | 0    | 0    | 0    | 1   | 1    | 323  |      |
| macro avg    | 0.97      | 0.97       | 0.96        | 3497    |        |     | ó   | i    | 2    | 3    | 4    | 5    | 6    | 7   | 8    | 9    | - 0  |
| weighted avg | 0.97      | 0.96       | 0.96        | 3497    |        |     |     |      |      | Р    | redi | cte  | d    |     |      |      |      |

#### • Fourth model (num of est = 160, lr\_rate = 0.3)



#### • Fifth model (num of est = 150, lr\_rate = 0.1)

|              |           | _      | est 6 Accur |         | Num o         | of E | st  | = 1 | L50  |      | ı    | Lear | nin | g Ra | te = | 0.1   |
|--------------|-----------|--------|-------------|---------|---------------|------|-----|-----|------|------|------|------|-----|------|------|-------|
|              | precision | recall | f1-score    | support |               |      | Gra | die | nt B | oos  | ting | (15  | 50, | 0.1) |      |       |
| 0            | 1.00      | 0.94   | 0.97        | 363     | 0 -           | 343  | 0   | 0   | 0    | 0    | 0    | 0    | 0   | 20   | 0    | - 350 |
| 1            | 0.91      | 0.95   | 0.93        | 364     |               | 0    | 345 | 17  | 0    | 1    | 1    | 0    | 0   | 0    | 0    | 200   |
| 2            | 0.95      | 0.99   | 0.97        | 364     |               | 0    | 2   | 362 | 0    | 0    | 0    | 0    | 0   | 0    | 0    | - 300 |
| 3            | 0.97      | 0.99   | 0.97        | 336     | 2 -           |      | -   | 302 |      |      |      |      | ٠   |      |      | - 250 |
| 4            | 1.00      | 1.00   | 1.00        | 364     | m -           | 0    | 3   | 0   | 331  | 0    | 0    | 0    | 1   | 0    | 1    | 230   |
| 5            | 0.99      | 0.92   | 0.96        | 335     | P 4           | 0    | 0   | 0   | 0    | 364  | 0    | 0    | 0   | 0    | 0    | - 200 |
| 6            | 1.00      | 1.00   | 1.00        | 336     | Actual<br>5 4 | 0    | 0   | 0   | 6    | 0    | 309  | 1    | 0   | 4    | 15   |       |
| 7            | 0.99      | 0.90   | 0.94        | 364     | ₹ "           |      | -   |     |      |      |      | 225  |     |      |      | - 150 |
| 8            | 0.93      | 1.00   | 0.96        | 335     | 9 -           | 0    | 0   | 0   | 0    | 0    | 1    | 335  | 0   | 0    | 0    |       |
| 9            | 0.93      | 0.96   | 0.94        | 336     | 7             | 0    | 24  | 4   | 0    | 0    | 0    | 0    | 327 | 0    | 9    | - 100 |
|              |           |        |             |         | · -           | 0    | 0   | 0   | 0    | 0    | 0    | 0    | 0   | 335  | 0    | - 50  |
| accuracy     |           |        | 0.96        | 3497    | on -          | 0    | 5   | 0   | 6    | 0    | 0    | 0    | 1   | 1    | 323  |       |
| macro avg    | 0.97      | 0.97   | 0.96        | 3497    | -             |      | 1   | -   | 1    | -    | 1    | - 1  | -   | -    | 1    | -0    |
| weighted avg | 0.97      | 0.96   | 0.96        | 3497    |               | 0    | 1   | 2   | 3    | 4    | 5    | - 6  | 7   | 8    | 9    |       |
| ••           |           |        |             |         |               |      |     |     | Р    | redi | cte  | a    |     |      |      |       |

#### • Sixth model (num of est = 150, lr\_rate = 0.3)



4(b): now we will use the same combinations to train XG\_Boost models.

Learning\_rate = [0.1,0.3]

n\_estimators = [160,150,200]

## • First XG\_Boost model (num of est = 200, lr\_rate = 0.1)

|              | XG_Boost B<br>precision |      | uracies:<br>f1-score | Num of<br>support |          | =    | 200 | )   |     | Le         | arn: | ing  | Ra  | te  | =   | 0.1   |
|--------------|-------------------------|------|----------------------|-------------------|----------|------|-----|-----|-----|------------|------|------|-----|-----|-----|-------|
|              |                         |      |                      |                   |          |      |     | XG  | Во  | ost        | (20  | 0, 0 | .1) |     |     |       |
| 0            | 0.99                    | 0.94 | 0.97                 | 363               | 0        | - 34 | 3 0 | 0   | 0   | 0          | 0    | 0    | 0   | 20  | 0   | - 350 |
| 1            | 0.92                    | 0.94 | 0.93                 | 364               |          |      |     |     |     |            |      |      |     |     | ٠   |       |
| 2            | 0.94                    | 0.99 | 0.96                 | 364               | -        | 0    | 341 | 22  | 0   | 0          | 0    | 0    | 1   | 0   | 0   | - 300 |
| 3            | 0.96                    | 0.99 | 0.97                 | 336               | 2        | 0    | 1   | 362 | 0   | 0          | 0    | 0    | 1   | 0   | 0   | 250   |
| 4            | 0.97                    | 0.99 | 0.98                 | 364               | m        | - 0  | 3   | 0   | 331 | 0          | 0    | 0    | 1   | 0   | 1   | - 250 |
| 5            | 1.00                    | 0.95 | 0.97                 | 335               | ual<br>4 | - 0  | 2   | 0   | 0   | 361        | 0    | 0    | 1   | 0   | 0   | - 200 |
| 6            | 0.99                    | 0.99 | 0.99                 | 336               | Acti     | 0    | 1   | 0   | 5   | 0          | 318  | 1    | 0   | 2   | 8   | 350   |
| 7            | 0.98                    | 0.90 | 0.94                 | 364               | 4 9      | - 0  | 0   | 1   | 0   | 0          | 1    | 334  | 0   | 0   | 0   | - 150 |
| 8            | 0.94                    | 0.99 | 0.96                 | 335               | _        | . 0  | 20  | 2   | 2   | 12         | 0    | 1    | 326 | 0   | 1   | - 100 |
| 9            | 0.97                    | 0.96 | 0.97                 | 336               | 00       |      | 0   | 0   | 0   | 0          | 0    | 0    | 0   | 333 | 0   | - 50  |
|              |                         |      |                      |                   | 0        | . 0  | 4   | 0   | 6   | 0          | 0    | 0    | 1   | 1   | 324 |       |
| accuracy     |                         |      | 0.96                 | 3497              | 0.50     |      |     | -   | -   |            | -    |      | -   |     | 1   | -0    |
| macro avg    | 0.97                    | 0.97 | 0.96                 | 3497              |          | 0    | 1   | 2   | 3   | 4<br>bradi | 5    | 9    | 1   | 8   | 9   |       |
| weighted avg | 0.97                    | 0.96 | 0.96                 | 3497              |          |      |     |     | ۲   | rea        | icte | u    |     |     |     |       |

## • Second XG\_Boost model (num of est = 200, lr\_rate = 0.3)



# • Third XG\_Boost model (num of est = 160, lr\_rate = 0.1)

|              | XG_Boost B<br>precision |        | uracies:<br>f1-score | Num of<br>support | Est :         | = 1 | L60 |     |        | Le   | arı  | nin  | g Ra | ate | =   | 0.1  |
|--------------|-------------------------|--------|----------------------|-------------------|---------------|-----|-----|-----|--------|------|------|------|------|-----|-----|------|
|              | precision               | recuii | 11-30010             | suppor c          |               |     |     | XG  | Во     | ost  | (16  | 0, 0 | ).1) |     |     |      |
| 0            | 0.99                    | 0.94   | 0.97                 | 363               | 0             | 343 | 0   | 0   | 0      | 0    | 0    | 0    | 0    | 20  | 0   | - 35 |
| 1            | 0.91                    | 0.93   | 0.92                 | 364               | -             | 0   | 340 | 23  | 0      | 0    | 0    | 0    | 1    | 0   | 0   | - 30 |
| 2            | 0.93                    | 0.99   | 0.96                 | 364               | 2             | 0   | 1   | 362 | 0      | 0    | 0    | 0    | 1    | 0   | 0   | 302  |
| 3            | 0.96                    | 0.99   | 0.97                 | 336               | m             | 0   | 3   | 0   | 331    | 0    | 0    | 0    | 1    | 0   | 1   | - 25 |
| 4            | 0.97                    | 0.99   | 0.98                 | 364               | <u>a</u> 4    | 0   | 2   | 0   | 0      | 361  | 0    | 0    | 1    | 0   | 0   | - 20 |
| 5            | 0.99                    | 0.95   | 0.97                 | 335               | Actual<br>5 4 | 0   | 1   | 0   | 5      | 0    | 318  | 1    | 0    | 2   | 8   |      |
| 6            | 0.99                    | 0.99   | 0.99                 | 336               | <b>∀</b>      | 0   | 1   | 1   | 0      | 0    | 3    | 331  | 0    | 0   | 0   | - 15 |
| 7            | 0.98                    | 0.89   | 0.94                 | 364               | _             | 0   | 21  | 3   | ,      | 13   | 0    | 1    | 324  |     | 0   | - 10 |
| 8            | 0.94                    | 0.99   | 0.96                 | 335               | 00            | 3   | 0   | 0   | 0      | 0    | 0    | 0    | 0    | 333 | 0   |      |
| 9            | 0.97                    | 0.96   | 0.97                 | 336               |               | 0   | 4   | 0   | 7      | 0    | ٥    | 0    | 1    | 300 | 323 | - 50 |
|              |                         |        |                      |                   | 6             | -   | -   | -   | 4      | 1    | -    | -    | -    | 1   | 323 | -0   |
| accuracy     |                         |        | 0.96                 | 3497              |               | 0   | 1   | 2   | 3<br>D | redi | icto | d    | 1    | 8   | 9   |      |
| macro avg    | 0.96                    | 0.96   | 0.96                 | 3497              |               |     |     |     | 36     | ieu  | CCC  | u    |      |     |     |      |
| weighted avg | 0.96                    | 0.96   | 0.96                 | 3497              |               |     |     |     |        |      |      |      |      |     |     |      |

# • Fourth XG\_Boost model (num of est = 160, lr\_rate = 0.3)

|              | XG_Boost  | Best 6 Acc | uracies: | Num of  | Est      | =     | 160 |                                                                                                                 |     | Lea | arni | ing   | Rat  | e =                   | 0.  | 3   |
|--------------|-----------|------------|----------|---------|----------|-------|-----|-----------------------------------------------------------------------------------------------------------------|-----|-----|------|-------|------|-----------------------|-----|-----|
|              | precision | recall     | f1-score | support |          |       |     |                                                                                                                 |     |     |      |       |      |                       |     |     |
|              |           |            |          |         |          |       |     | XG                                                                                                              | Bo  | ost | (16  | 0,0   | ).3) |                       |     |     |
| 0            | 0.99      | 0.94       | 0.97     | 363     | 0        | - 343 | 0   | 0                                                                                                               | 0   | 0   | 0    | 0     | 0    | 20                    | 0   | - 3 |
| 1            | 0.92      | 0.95       | 0.94     | 364     |          | 0     | 345 | 18                                                                                                              | 0   | 0   | 0    | 0     | 1    | 0                     | 0   |     |
| 2            | 0.94      | 0.99       | 0.97     | 364     | 7        |       | 343 | STREET, |     |     | Ť    |       |      |                       |     | - 3 |
| 3            | 0.97      | 0.99       | 0.98     | 336     | 2        | 0     | 1   | 362                                                                                                             | 0   | 0   | 0    | 0     | 1    | 0                     | 0   | - 2 |
| 4            | 0.97      | 0.99       | 0.98     | 364     | m        | 0     | 2   | 0                                                                                                               | 332 | 0   | 0    | 0     | 1    | 0                     | 1   |     |
| 5            | 0.99      | 0.96       | 0.97     | 335     | ual<br>4 | 0     | 1   | 0                                                                                                               | 0   | 361 | 2    | 0     | 0    | 0                     | 0   | - 2 |
| 6            | 1.00      | 0.99       | 0.99     | 336     | Actu     | 0     | 0   | 0                                                                                                               | 5   | 0   | 320  | 1     | 0    | 2                     | 7   |     |
| 7            | 0.99      | 0.90       | 0.94     | 364     | A 9      | . 0   | 0   | 1                                                                                                               | 0   | 0   | 2    | 333   | 0    | 0                     | 0   | - 1 |
| 8            | 0.94      | 0.99       | 0.96     | 335     |          | 0     | 20  |                                                                                                                 | Ĭ   | 13  | 0    | F1000 | _    |                       | 0   | - 1 |
| 9            | 0.98      | 0.96       | 0.97     | 336     | 7        | 1 "   | 20  | 3                                                                                                               | 1   |     | ·    | 0     | 327  | and the second second | U   |     |
|              |           |            |          |         | 00       | 2     | 0   | 0                                                                                                               | 0   | 0   | 0    | 0     | 0    | 333                   | 0   | - 5 |
| accuracy     |           |            | 0.97     | 3497    | o        | 0     | 4   | 0                                                                                                               | 6   | 0   | 0    | 0     | 1    | 1                     | 324 |     |
| macro avg    | 0.97      | 0.97       | 0.97     | 3497    |          | ó     | i   | 2                                                                                                               | 3   | 4   | 5    | 6     | 7    | 8                     | 9   | - ( |
| weighted avg | 0.97      | 0.97       | 0.97     | 3497    |          |       |     |                                                                                                                 | P   | red | icte | d     |      |                       |     |     |

# • Fifth XG\_Boost model (num of est = 150, lr\_rate = 0.1)

|            | XG_Boost B |        |          | Num of  | Est  | =      | 1  | 50  |               |      | Lea | rni  | ng   | Rat  | e = | 0.  | 1 |
|------------|------------|--------|----------|---------|------|--------|----|-----|---------------|------|-----|------|------|------|-----|-----|---|
|            | precision  | recall | f1-score | support |      |        |    |     | vc            |      |     | /15  |      |      |     |     |   |
|            |            |        |          |         |      |        |    |     | XG            | _RO  | ost | (15  | U, U | ).1) |     |     |   |
| 0          | 0.99       | 0.94   | 0.97     | 363     |      | 0 - 34 | 13 | 0   | 0             | 0    | 0   | 0    | 0    | 0    | 20  | 0   |   |
| 1          | 0.91       | 0.93   | 0.92     | 364     | - 8  |        | 0  | 340 | 23            | 0    | 0   | 0    | 0    | 1    | 0   | 0   |   |
| 2          | 0.93       | 0.99   | 0.96     | 364     | - 7  | •      | •  | 310 | submission is | rij. | 3   | Ĭ.   |      | - 5  | 8   | Ĭ.  |   |
| 3          | 0.96       | 0.99   | 0.97     | 336     |      | v -    | 0  | 1   | 362           | 0    | 0   | 0    | 0    | 1    | 0   | 0   |   |
| 4          | 0.97       | 0.99   | 0.98     | 364     |      | n 📅    | 0  | 3   | 0             | 331  | 0   | 0    | 0    | 1    | 0   | 1   |   |
| 5          | 0.99       | 0.95   | 0.97     | 335     |      |        | 0  | 2   | 0             | 0    | 361 | 0    | 0    | 1    | 0   | 0   |   |
| 6          | 0.99       | 0.99   | 0.99     | 336     | Acti | n -    | 0  | 1   | 0             | 5    | 0   | 318  | 1    | 0    | 2   | 8   |   |
| 7          | 0.98       | 0.89   | 0.94     | 364     |      |        | 0  | 1   | 1             | 0    | 0   | 3    | 331  | 0    | 0   | 0   |   |
| 8          | 0.94       | 0.99   | 0.96     | 335     |      |        | 0  | 21  | 3             | 2    | 13  | 0    | 1    | 324  | 0   | 0   |   |
| 9          | 0.97       | 0.96   | 0.97     | 336     |      |        |    | 0   | 0             | 0    | 0   | 0    | 0    | 0    | 333 |     |   |
|            |            |        |          |         |      | o 1    | •  |     | ٠             | ٠    | ٠   |      |      |      | 222 | ,   |   |
| accuracy   |            |        | 0.96     | 3497    |      | n =    | 0  | 4   | 0             | 7    | 0   | 0    | 0    | 1    | 1   | 323 |   |
| macro avg  | 0.96       | 0.96   | 0.96     | 3497    |      |        | ò  | i   | 2             | 3    | 4   | 5    | 6    | 7    | 8   | 9   |   |
| ighted avg | 0.96       | 0.96   | 0.96     | 3497    |      |        |    |     |               | P    | red | icte | d    |      |     |     |   |

# • Sixth XG\_Boost model (num of est = 150, lr\_rate = 0.3)

|              | XG_Boost B | est 6 Acc | uracies: | Num of  | Est :      | =   | 150 | )   |     | L    | ear | nin  | ıg F | Rate | e = | 0.3   |  |
|--------------|------------|-----------|----------|---------|------------|-----|-----|-----|-----|------|-----|------|------|------|-----|-------|--|
|              | precision  | recall    | f1-score | support |            |     |     |     |     |      |     |      |      |      |     |       |  |
|              |            |           |          |         |            |     |     | XG  | Во  | ost  | (15 | 0, 0 | .3)  |      |     |       |  |
| 0            | 0.99       | 0.94      | 0.97     | 363     | 0 -        | 343 | 0   | 0   | 0   | 0    | 0   | 0    | 0    | 20   | 0   | - 350 |  |
| 1            | 0.92       | 0.95      | 0.93     | 364     | 10000      | 0   | 345 | 18  | 0   | 0    | 0   | 0    | 1    | 0    | 0   | 700   |  |
| 2            | 0.94       | 0.99      | 0.97     | 364     | г.         | 0   |     | 362 |     |      | 0   | 0    | -    | 0    | 0   | - 300 |  |
| 3            | 0.97       | 0.99      | 0.98     | 336     | 2.         |     | -   |     | 222 | 0    |     |      |      |      | ,   | - 250 |  |
| 4            | 0.97       | 0.99      | 0.98     | 364     | = "        | 0   | 2   | 0   | 332 | 0    | 0   | 0    | 1    | 0    | 1   |       |  |
| 5            | 0.99       | 0.96      | 0.97     | 335     | Actual 5 4 | 0   | 2   | 0   | 0   | 361  | 1   | 0    | 0    | 0    | 0   | - 200 |  |
| 6            | 1.00       | 0.99      | 0.99     | 336     | Ac s       | 0   | 0   | 0   | 5   | 0    | 320 | 1    | 0    | 2    | 7   | - 150 |  |
| 7            | 0.99       | 0.90      | 0.94     | 364     | 9 -        | 0   | 0   | 1   | 0   | 0    | 2   | 333  | 0    | 0    | 0   |       |  |
| 8            | 0.94       | 0.99      | 0.96     | 335     | ۲.         | 0   | 20  | 3   | 1   | 13   | 0   | 0    | 327  | 0    | 0   | - 100 |  |
| 9            | 0.98       | 0.96      | 0.97     | 336     | · ·        | 2   | 0   | 0   | 0   | 0    | 0   | 0    | 0    | 333  | 0   | - 50  |  |
| ,            | 0.50       | 0.50      | 0.57     | 330     | 0.         | 0   | 4   | 0   | 6   | 0    | 0   | 0    | 1    | 1    | 324 |       |  |
| accuracy     |            |           | 0.97     | 3497    |            | ó   | i   | 2   | 3   | 4    | 5   | 6    | 7    | 8    | ģ   | -0    |  |
| macro avg    | 0.97       | 0.97      | 0.97     | 3497    |            |     |     |     | P   | redi | cte | d    |      |      |     |       |  |
| _            |            |           |          |         |            |     |     |     |     |      |     |      |      |      |     |       |  |
| weighted avg | 0.97       | 0.97      | 0.97     | 3497    |            |     |     |     |     |      |     |      |      |      |     |       |  |

**4(c):** here we have measured the time that each method (**XG\_Boost** and **Gradient boost**) takes to train the six model, and we found that **XG\_Boost** is **faster by Approximately 8 times.** 

and also, XG\_Boost gave better accuracies.

Done

#### 19.37900400161743 0 1 2 0.3 3 160.0 96.654275 96.654275 150.0 0.3 5 1 96.597083 200.0 0.3 0 96.454104 200.0 0.1 2 96.253932 160.0 0.1 150.0 4 96.253932 0.1

XB\_Boost Time and accuracies

|   | ne<br>3.978688716 | 88843 |     |
|---|-------------------|-------|-----|
|   | 9                 | 1     | 2   |
|   | •                 |       | _   |
| 0 | 96.568487         | 200.0 | 0.1 |
| 1 | 96.511295         | 200.0 | 0.3 |
| 2 | 96.482699         | 160.0 | 0.1 |
| 4 | 96.482699         | 150.0 | 0.1 |
| 5 | 96.425508         | 150.0 | 0.3 |
| 3 | 96.396912         | 160.0 | 0.3 |

**Gradient boost Time and accuracies** 

- We believe that the both evaluation metrics are important (accuracy and confusion matrix), but in this case and this dataset (pen digits) we think that confusion matrix would be more important, because it will tell us which numbers mislead the model and why...
- for example, when we analyze this confusion matrix, we will find that the model misled the digit '7' and it predicted it as '1' (20 times) and

that give us indicator that '7' is kind of similar to '1' in handwritten digits.

Based on question 3 and 4, we have notice
 Bagging is the best option to avoid over-fitting.

