

Prof. Giovanni Pani Dott.ssa Vita Santa Barletta

JFLAP

Macchine di TURING

Macchina di Turing

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \diamond, F)$$

- Q: insieme finito e non vuoto di stati
- Σ: alfabeto di input
- Γ: alfabeto dei simboli di nastro
- δ: funzione di transizione
- q₀: stato iniziale
- ♦: simbolo di blank
- F: insieme degli stati finali

Macchina di Turing

La head ad ogni transizione (time step):

- 1. legge un simbolo
- 2. scrive un simbolo
- 3. si muove Left or Right

Macchina di Turing sono deterministiche

permesso

Non permesso

nessuna transizione lambda è permessa

Stati di accettazione

- Stati di accettazione non hanno transizioni in uscita
- La macchina si ferma e accetta

Non permesso

Linguaggi decidibili

Un linguaggio A è decidibile, se vi è una Turing Machine M (decisore) che accetta il linguaggio A e si ferma su ogni stringa di input

Linguaggi indecidibili

Linguaggi indecidibili

Linguaggi non decidibili

Linguaggi indecidibili

Non esiste un procedimento di decisione (decisore):

- Non esiste una Turing Machine che accetta il linguaggio e prende una decisione (halts) per ogni stringa di input
- La macchina può prendere decisioni per qualche stringa

Linguaggio

Turing-Accettabile e decidibile

Macchine di Turing: calcolare funzioni

Una funzione f(w) ha:

Macchine di Turing: calcolare funzioni

Una funzione f è calcabile se vi è una macchina di Turing M tale che:

Per tutti $w \in D$ dominio

il 0 è il delimitatore che Separa I due numeri

lo 0 ci può aiutare se usiamo il risultato per un altra operazione

Fine

lo 0 ci può aiutare se usiamo il risultato per un altra operazione

esempio di esecuzione:

Time 0

$$x = 11$$
 (=2)

$$y = 11$$
 (=2)

17

Macchine di TURING UNIVERSALE

Limitazione Macchina di Turing

Turing Machines eseguono
un solo programma per
volta

Limitazione Macchina di Turing

Una TM per eseguire l'operazione tra due numeri seguirà univocamente ed unicamente quell'operazione

Limitazione Macchina di Turing

Soluzione

Macchina di Turing Universale UTM

Universal Turing Machine

Astrarre di un livello per simulare qualsiasi altra Turing Machine (TM)

Universal Turing Machine

UTM sarà una MultiTape TM con 3 nastri

Tape 1

Descriviamo la Turing Machine come una stringa di simboli:

 codifichiamo M come una stringa di simboli

Tape 2

- Contiene l'input della macchina che stiamo simulando
- Lo stesso che avremmo inserito in una comune TM

Tape 3

• Come nastro di lavoro che ospiterà ad ogni "passaggio" la δ (transizione) da analizzare ed eseguire

 Necessità di codificare la Turing Machine come una stringa di simboli

Codifica Alfabeto

Codifica degli stati

Codifica dei movimenti della Head

Codifica della transizione

Codifica Turing Machine

Transizione:

$$\delta(q_1, a) = (q_2, b, L)$$
 $\delta(q_2, b) = (q_3, c, R)$

Codifica:

10101101101 00 1101101110111011

separatore

- Componente essenziale nella progettazione della Macchina di Turing Universale
- Per una UTM è una stringa $w_{in} \in \Sigma^*$ su alfabeto Σ
- Dobbiamo quindi codificare una TM , rappresentando la sua descrizione in forma "simbolica"

- Possiamo distinguere 3 differenti livelli logici di codifica:
 - 1. Codifica elemento atomico
 - 2. Codifica transizione
 - 3. Codifica macchina

- Scegliamo di codificare l'insieme
 N in alfabeto unario
- $\Sigma_{\text{encode}} = \{1\}$
 - -es: $0=\langle 1 \rangle$, $1=\langle 11 \rangle$, $2=\langle 111 \rangle$, ...;
 - definiamo quindi la funzione di codifica:
 - π : $\Sigma \cup Q \cup \{R, L\} \rightarrow \Sigma^*_{encode}$

N.B.!!!

- Nelle TM da simulare il dominio delle operazioni di spostamento rimane {R,L},
- Invece nell'implementazione della UTM usiamo, per comodità, anche l'identità S (non atomica) composta dalla concatenazione di R ed L

Codifica elemento atomico

 In maniera informale, preso un oggetto O ne indichiamo la sua codifica con (O)

```
• \forall \sigma_i \in \Sigma : \pi(\sigma_i) = 1, 1, ..., 1 = \langle \sigma_i \rangle con 0 \le i \le |\Sigma|
```

•
$$\forall q_i \in Q: \pi(q_i)=1,1,...,1=\langle q_i \rangle$$
 con $0 \le i \le |Q|$

•
$$\pi(R)=1=\langle R \rangle$$
, $\pi(L)=11=\langle L \rangle$

Codifica transizione

Possiamo identificare una singola transizione con una 5-upla

 $(q_{in}, \sigma_r, q_{out}, \sigma_w, op.code)$

- q_{in} : stato corrente (diagramma a stati finiti)
- σ_r : simbolo letto
- q_{out} : nuovo stato
- σ_w : simbolo da scrivere
- op.code: operazione di spostamento (right, left)

Introduzione di un nuovo simbolo

- Lo zero(0) in modo che esso funga da separatore tra elementi della transizione e transizioni stesse (00)
- Di conseguenza estendiamo il nostro albeto di codifica

$$\Sigma^*_{\text{encode}} \{1\} \cup \{0\}$$

Utilizzando la funzione π possiamo codificare una generica transizione

 $\langle (q_{in}, \sigma_r, q_{out}, \sigma_w, op.code) \rangle = \pi(q_{in}) 0 \pi(\sigma_r) 0 \pi(q_{out}) 0 \pi(\sigma_w) 0 \pi(op.code) 00$

- Durante l'implementazione, la struttura della transizione può essere modificata per ottimizzarne l'analisi
- A livello semantico, per convenzione, dividiamo la transizione in 2 sezioni:

- Per la sezione in, eliminiamo la componente q_{in} poiché definiamo un ordinamento totale sull'insieme delle transizioni
- Riguardo la sezione *out* modifichiamo l'ordine delle componenti utilizzando quella che definiamo "notazione polacca modificata" (es: $0#1 \rightarrow #10$)
- La struttura dell'istruzione si riduce quindi alla seguente 4-upla:

 $(\sigma_r, \sigma_w, op.code, q_{out})$

- Codificare l'intera TM
- Essenzialmente la codifica (M) di una TM M, si riduce a descrivere tutte le singole transizioni
- Definiamo quindi l'insieme di tutte le δ (transizioni) di M:

$$\Delta = \{ \text{tutte le 4-uple } (\sigma_r, \sigma_w, op.code, q_{out}) \text{ di M } \}$$

Quindi la codifica di M risulta:

$$\langle M \rangle = \langle \Delta \rangle = \pi(\sigma_r) 0\pi(\sigma_w) 0\pi(\text{op.code}) 0\pi(q_{\text{out}}) 00$$

.....

 $\pi(\sigma_{\rm r})0\pi(\sigma_{\rm w})0\pi({\rm op.code})0\pi({\rm q_{out}})00$

A livello implementativo scaturiscono delle considerazioni

- Definire un ordine totale implicito tra le transizioni, ovvero, nell'insieme Δ tutte le transizioni sono ordinate in base al valore numerico dello stato corrente (e poi in base al loro carattere di input), evitando così di dover codificare la componente q_{in} dell'istruzione e quindi la ricerca (randomica) della stessa
 - Si tratterà solo di "saltare" le n-1 istruzioni per trovare l'n-esima desiderata

• Come conseguenza abbiamo definito totalmente la funzione δ , e quindi previsto uno stato di errore q_e

$$\forall q_i \in Q - F - \{q_e\}, \ \forall \sigma_i \in \Sigma : (q_i, \sigma_i) = \emptyset \Rightarrow (q_i, \sigma_i) = (q_e, E, S)$$

e aggiunto poi delle transizioni "dummy" le quali da uno stato q_i corrente fanno transitare la macchina nello stato di errore q_e scrivendo sul tape 2 il carattere simbolico E per segnalare l'avvenuto errore di computazione

In generale, dato l'alfabeto di nastro Γ , per trovare la k-esima istruzione dovremmo saltare p istruzioni, con:

$$p = |\Gamma| \cdot (\mathsf{k} - 1)$$

• In ultimo, assegnando un numero progressivo ad ogni stato, si perderebbe la semantica di q_e e q_f che verrebbero identificati cos' come tutti gli altri, pur essendo degli stati "speciali"

Introduciamo, pertanto, un nuovo simbolo, il dollaro (\$), per indicare durante l'analisi dell'istruzione se q_{out} è uno stato finale (\$) o uno stato di errore (\$\$)

- Codificando:
 - stato finale: $\langle q_f \rangle = \pi(q_f) = \$$
 - stato di errore: $\langle q_e \rangle = \pi(q_e) = \$\$$
- Evitiamo in questo modo di introdurre un nuovo simbolo per lo stato di errore che avrebbe aumentato esponenzialmente le transizioni per l'UTM
- Aggiorniamo l'alfabeto di codifica:

$$\Sigma_{\text{encode}} = \{1\} \cup \{0\} \cup \{\$\}$$

Transition Search Unit (in Tape 1)

- Se sul tape 2 il carattere osservato è 0 (prima δ utile) passa direttamente all'unità di copia
- Se è 1 questa macchina esegue la ricerca della transizione giusta, facendo riferimento a $\sigma_{\rm r}$, puntato sul tape 2
- La testina del tape 1 si muove di una δ alla volta tra le transizioni di un prestabilito stato q_{in}

Transition Search Unit (in Tape 1)

Copy Unit

- Copia la transizione, sulla quale si è fermata la testina del tape 1 nella sottomacchina precedente, sul tape 3 (di lavoro)
- Alla fine della copia esegue un rewind sul tape 3, pronto per essere scandito

Copy Unit

Transition Analizer

- Questa sottomacchina, cuore della UTM, analizza l'intera parte output della transizione presente sul tape 3
- Per farlo ha bisogno di 3 unità

Transition Analizer: Sigma out (σ_{out}) Analizer

– Sigma out ($\sigma_{\rm out}$) Analizer: determina il carattere $\sigma_{\rm w}$ che sovrascriverà la testina sul tape 2

Transition Analizer: Sigma out (σ_{out}) Analizer

Transition Analizer: Move Analizer

 Move Analizer: sceglie la mossa op.code che deve eseguire la testina sul tape 2, tra R, L, S

Alla fine esegue un rewind del tape 1 pronto per essere scandito

Transition Analizer: Move Analizer

Transition Analizer: Transition Search Unit

Transition Search Unit (in Tape 2):
 esegue la ricerca dello stato q_{out} nel
 quale trovare la prossima
 transizione che verrà analizzata
 La testina del tape 1 si muove di

 $2n-1 \delta$ alla volta

con n pari al numero di simboli dell'alfabeto di input

Transition Analizer: Clean Tape 3 Unit

 Clean Tape 3 Unit: pulisce il tape 3 che ospiterà la prossima transizione ricercata dalla TSU (in Tape 1)

Transition Analizer: Transition Search Unit

Error/Final Control

 Gestisce gli stati "speciali" quali il finale (nel caso nella transizione ci fosse \$) e quello di errore (nel caso si trovasse \$\$)

Error/Final Control

Universal Turing Machine

