

Data Warehousing: Data Summarization Technology

Ling Liu
Professor
College of Computing
Georgia Tech

Adapted from Slides of Hector Garcia-Molina, George Kollios, Sudarshan

Outline

- What is a data warehouse?
- Why a warehouse?
- Data Summarization: Models & operations
- Implementing a warehouse
- Future Outlook

What is a Warehouse?

A data warehouse is a

- database that is maintained separately from an operational database
- subject oriented
 - aimed at executive, decision maker
 - often a copy of operational data with value-added data (e.g., summaries, history)
- Integrated
- time-varying
- non-volatile

collection of detailed and summary data used to support the strategic decision making process for the enterprise

[W.H.Inmon]

[W.11.111111011]

What is a Warehouse?

- Collection of tools
 - gathering data
 - cleansing, integrating, ...
 - querying, reporting, analysis
 - data mining
 - monitoring, administering warehouse

Subject-view

■ Example: regional product monthly sales comparison

Product	store	Date	Sale
acron	Rolla,MO	7/3/99	325.24
budwiser	LA,CA	5/22/99	833.92
large pants	NY,NY	2/12/99	771.24
3' diaper	Cuba,MO	7/30/99	81.99

Data Warehouse vs. Operational DBMS

- OLTP (on-line transaction processing)
 - Major task of traditional relational DBMS
 - Day-to-day operations: purchasing, inventory, banking, manufacturing, payroll, registration, accounting, etc.
 - Describes processing at operational sites
- OLAP (on-line analytical processing)
 - Major task of data warehouse system
 - Data analysis and decision making
 - Describes processing at warehouse

7

Examples of OLAP

- Comparisons (this period v.s. last period)
 - Show me the sales per region for this year and compare it to that of the previous year to identify discrepancies
- Multidimensional ratios (percent to total)
 - Show me the contribution to weekly profit made by all items sold in the northeast stores between may 1 and may 7
- Ranking and statistical profiles (top N/bottom N)
 - Show me sales, profit and average call volume per day for my 10 most profitable salespeople
- Customer consolidation (market segments, ad hoc groups)
 - Show me an abbreviated income statement by quarter for the last four quarters for my northeast region operations

Summarization Technique: Attribute-Oriented Induction

■ Generalization using Concept hierarchy (taxonomy)

On-Line Analytical Processing

- Data Cube
 - a multidimensonal array
 - Summariztion/aggregation attributes v.s. generalization attributes
 - each generation attribute represents a dimension
 - variable a special dimension for aggregation

Product	store	Date	Sale	
acron	Rolla,MO	7/3/99	325.24	
budwiser	LA,CA	5/22/99	833.92	
large pants	NY,NY	2/12/99	771.24	
3' diaper	Cuba,MO	7/30/99	81.99	

Advantages of Warehousing

- High query performance
- Queries not visible outside warehouse
- Local processing at sources unaffected
- Can operate when sources unavailable
- Can query data not stored in a DBMS
- Extra information at warehouse
 - Modify, summarize (store aggregates)
 - Add historical information

Data Marts

- Smaller warehouses
- Spans part of organization
 - e.g., marketing (customers, products, sales)
- Do not require enterprise-wide consensus
 - but long term integration problems?

Individual Architected Data Marts

17

An Incremental Approach

Individual Architected Data Marts

Data Warehouse Design (1)

- Most of data warehouses use **a star schema** to represent multi-dimensional data model
- Each dimension is represented by **a dimension table** that provides its multidimensional coordinates
 - LOCATION(location_key,store,street_address,c ity,state,country,region)
 - dimension tables are not normalized
- The star fact table stores **measures** for those coordinates

21

Star Schema: Example 1 Product Date **ProductNo** Sale Fact Table Date **ProdName** ProdDesc Month Categoryu Year Date Product Store Customer Customer unit_Sales Store CustID dollar Sales CustName StoreID Summarization CustCity City attributes State CustCountry Country Region 22

Data Warehouse Design (2)

- A fact table
 - connects to all dimension tables with a multiple join. Each tuple in the fact table consists of a pointer to each of the dimensional tables
- Transactions are described through a fact-table
 - each tuple consists of a pointer to each of the dimension-tables (foreign-key) and a list of measures (e.g. sales \$\$\$)
- The links between the fact table and the dimensional tables form a shape like a star

Advantages of Star Schema

- Facts and dimensions are clearly depicted
 - dimension tables are relatively static, data is loaded (append mostly) into fact table(s)
 - easy to comprehend (and write queries)
- Example

"Find total sales per product-category in our stores in Europe"

Example

"Find total sales per product-category in our stores in Europe"

SELECT PRODUCT.category, SUM(SALES.amount)

FROM SALES, PRODUCT, LOCATION

WHERE SALES.product_key = PRODUCT.product_key

AND SALES.location_key = LOCATION.location_key

AND LOCATION.region="Europe"

GROUP BY PRODUCT.category

27

Multidimensional Modeling

■ Example: compute total *sales* volume per *product* and *store*

Dimensions and Hierarchies

• A cell in the cube may store values (measurements) relative to the combination of the labeled dimensions

Dimension Hierarchies

cities	city	state
	c1	GA
	c2	NY

From Tables and Spreadsheets to Data Cubes

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions
 - **Dimension tables**, such as product (name, brand, type), or time(day, week, month, quarter, year), store(name, city, state, country)
 - Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables
- In data warehousing literature, an n-D base cube is called a **base cuboid**. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube.

33

Cube: A Lattice of Cuboids

Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures
 - <u>Star schema</u>: A fact table in the middle connected to a set of dimension tables
 - Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - <u>Fact constellations</u>: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

A Data Mining Query Language, DMQL: Language Primitives

- Cube Definition (Fact Table)
 define cube <cube_name> [<dimension_list>]:
 <measure list>
- Dimension Definition (Dimension Table)

 define dimension <dimension_name> as

 (<attribute or subdimension list>)
- Special Case (Shared Dimension Tables)
 - First time as "cube definition"
 - define dimension < dimension_name > as
 < dimension_name_first_time > in cube
 < cube name first time >

39

Defining a Star Schema in DMQL

Defining a Snowflake Schema in DMQL

41

Defining a Fact Constellation in DMQL

```
define cube sales [time, item, branch, location]:

dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales_in_dollars), units_sold = count(*)

define dimension time as (time_key, day, day_of_week, month, quarter, year)

define dimension item as (item_key, item_name, brand, type, supplier_type)

define dimension branch as (branch_key, branch_name, branch_type)

define dimension location as (location key, street, city, province or state, country)

define cube shipping [time, item, shipper, from_location, to_location]:

dollar_cost = sum(cost_in_dollars), unit_shipped = count(*)

define dimension time as time in cube sales

define dimension shipper as (shipper_key, shipper_name, location as location in cube sales, shipper_type)

define dimension from_location as location in cube sales

define dimension to_location as location in cube sales
```

Multidimensional Data

■ Sales volume as a function of product, month, and region

Hierarchical summarization paths **Industry Region** Year Category Country Quarter Product Month Week City Office Day

Relational View of Data Cube Store Product_key sum(amout) Product Sales 1870 800 ALL ALL ALL SELECT LOCATION.store, SALES.product_key, SUM (amount) ALL FROM SALES, LOCATION ALL ALL WHERE SALES.location_key=LOCATION.location_key ALL CUBE BY SALES.product_key, LOCATION.store ALL ALL ALL

Warehouse Models

- Data Models
 - relations
 - stars & snowflakes
 - cubes

51

Typical OLAP Operations

- Roll up (drill-up): summarize data
 - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
 - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice:
 - project and select
- Pivot (rotate):
 - reorient the cube, visualization, 3D to series of 2D planes.
- Other operations
 - drill across: involving (across) more than one fact table
 - *drill through*: through the bottom level of the cube to its back-end relational tables (using SQL)

Common OLAP Operations (1)

- Slice: selection condition set on one of the cube dimensions.
 - Find product sales of atlanta
 - Find 2006 sales of all states
- <u>Dice</u>: selection condition set on all three dimensions
 - Find digital camera sale of 2007 in Atlanta

PRODUCT LOCATION TIME

53

Slice and Dice Queries

■ <u>Slice and Dice</u>: select and project on one or more dimensions

Common OLAP Operations (2)

- Roll-up: move up the hierarchy
 - given total sales per city, we can roll-up to get sales per state
- <u>Drill-down</u>: move down the hierarchy
 - more fine-grained aggregation
 - lowest level can be the detail records (<u>drill-</u> through)

PRODUCT LOCATION TIME

Pivoting

- <u>Pivoting</u>: aggregate on selected dimensions
 - usually 2 dims (cross-tabulation)

Sales		Product				
		1	2	3	4	ALL
Store	1	454			925	1379
	2	468	800			1268
	3	296		240		536
	4	652		540	745	1937
	ALL	1870	800	780	1670	5120

- *Monitoring*:
 - Sending data from sources
- *Integrating*:
 - Loading, cleansing, deriving data ...
- *Processing*:
 - Query processing, indexing, ...
- *Managing*:
 - Metadata, Design, ...

61

Query performance issues

- On Line Transaction Processing.

 Read & write from/to database.
- Data Warehousing, Decision Support System.

 Read mostly environments, with high selectivity factor.

Overview of Index Data Structures

- One dimensional index data structures:
 - Total order for one-dimension
 - Hash-based:
 - → Optimised for exact match queries, e.g. jetE = 106
 - Tree-based:
 - → Optimised for range queries, e.g. jetE < 106
 - *Most widely used: B+-tree (1972):*
- Multidimensional index data structures
 - No total order for all dimensions
 - Hash-based:
 - → Grid-File, Bang-File, ...
 - Tree based:
 - ▶ R-Trees, Pyramid-Tree, ...
 - Bitmap Indices:
 - → Applied in Data Warehouses for typical read-only environments

63

Index Structures

- Traditional Access Methods
 - B-trees, hash tables, R-trees, grids, ...
- Popular in Warehouses
 - inverted lists
 - bit map indexes
 - join indexes
 - text indexes

Using Inverted Lists

- Query:
 - Get people with age = 20 and name = "fred"
- List for age = 20: r4, r18, r34, r35
- List for name = "fred": r18, r52
- Answer is intersection: r18

Using Bit Maps

- Query:
 - Get people with age = 20 and name = "fred"
- List for age = 20: 1101100000
- List for name = "fred": 0100000001
- Answer is intersection: 010000000000
- Good if domain cardinality is not too big (small)
- Bit vectors can be compressed

Bitmap Index

- A bitmap is simply an array of bits
 - Consists of a collection of bitmap vectors each created to represent a distinct value.
 - More than one conditions in a query can be replied by Boolean operation on the respective bitmaps.
- Bitmap indices are a special type of index designed for efficient querying on multiple keys

Properties:

- > Suited for low cardinality column.
- Utilizes bitwise operation.
- Easy to build and add new indexed value.
- Whole bitmap segment is locked at index updating.
- Less space for storing indexes. More indexes can be cached in memory.

Bitmap Indices (Cont.)

- A bitmap is simply an array of bits
- In its simplest form a bitmap index on an attribute has a bitmap for each value of the attribute
 - Bitmap has as many bits as records
 - In a bitmap for value v, the bit for a record is 1 if the record has the value v for the attribute, and is 0 otherwise
 - The cardinalty of the Attribute is the number of bitmap vectors the bitmap index maintains.

record number	name	gender	address	income _level	Bitma m	ps for gender		maps for come_level
0	John	m	Perryridge	L1	f	01101	L1	10100
1	Diana	f	Brooklyn	L2	1	01101	L2	01000
2	Mary	f	Jonestown	L1			L3	00001
3	Peter	m	Brooklyn	L4			L4	00010
4	Kathy	f	Perryridge	L3			L5	00000

Bitmap Indices (Cont.)

- Bitmap indices are useful for queries on multiple attributes
 - not particularly useful for single attribute queries
- Queries are answered using bitmap operations
 - Intersection (and), Union (or), Complementation (not)
- Each operation takes two bitmaps of the same size and applies the operation on corresponding bits to get the result bitmap
 - E.g. 100110 AND 110011 = 100010 100110 OR 110011 = 110111 NOT 100110 = 011001
 - Males with income level L1: 10010 AND 10100 = 10000
 - Can then retrieve required tuples.
 - Counting number of matching tuples is even faster

72

Bitmap Indices (Cont.)

- Bitmap indices generally very small compared with relation size
 - E.g. if record is 100 bytes, space for a single bitmap is 1/800 of space used by relation.
 - → If number of distinct attribute values is 8, bitmap is only 1% of relation size (8*1/800)
- Deletion needs to be handled properly
 - Existence bitmap to note if there is a valid record at a record location
 - Needed for complementation
 - → not(A=v): (NOT bitmap-A-v) AND ExistenceBitmap
- Should keep bitmaps for all values, even null value
 - To correctly handle SQL null semantics for NOT(A=v):
 - *→ intersect above result with (NOT* bitmap-A-Null)

Advantages

- Compact size.
- Efficient hardware support for bitmap operations (AND, OR, XOR, NOT).
- Fast search.
- Multiple differentiate bitmap indexes for different kind of queries.

74

On-disk Bitmap Index - Index Size Performance

■ Index size - Size of bitmap index is a fraction of B-tree index

On-disk Bitmap Index - Creation Time Performance

■ Index creation time: Up to 7 times faster index creation

77

On-disk Bitmap Index - Performance with varying cardinality

■ Index size with varying cardinality: Total rows 250 million

78

On-disk Bitmap Index - Performance with varying cardinality

■ Index creation time with varying cardinality: Total rows 250 million

79

On-disk Bitmap Index - Query Performance

Query 1 Query 2 SELECT sum(lineitem.l_discount) SELECT avg(lineitem.1 tax) FROM FROM lineitem, orders, customer, nation WHERE nation.n_name='UNITED STATES' AND orders.o_orderstatus='F' AND customer.c_mktsegment='AUTOMOBILE' AND orders.o orderpriority='4-NOT SPECIFIED' AND orders.o orderstatus='P' AND orders.o_orderpriority='2-HIGH' AND lineitem.l_linenumber=5 AND lineitem.1_quantity=5 AND lineitem.l_shipmode='TRUCK' AND lineitem.l_shipmode='AIR' AND lineitem.1 quantity=2 AND lineitem.1_linenumber=5 AND orders.o_orderkey=lineitem.l_orderkey; customer.c_custkey=orders.o_custkey AND orders.o_orderkey=lineitem.l_orderkey AND nation.n_nationkey=customer.c_nationkey; Query 3 SELECT count(*) FROM lineitem WHERE 1_linenumber=1; Query 4 SELECT count(*) FROM lineitem WHERE 1_linenumber in (1,2) AND 1_shipmode IN ('RAIL','TRUCK'); Query 5 SELECT count(*) FROM lineitem WHERE 1_linenumber=5 AND 1_shipmode='RAIL' AND 1_quantity=18;

On-disk Bitmap Index - Query Query Performance: Performance

Run1, Run2 and Run3 indicate that the same query has been run consecutively three-times

Pros and Cons of Bitmap Indices

■ Pros:

- Easy to build and to maintain
- Easy to identify records that satisfy a complex multiattribute predicate (multi-dim. ad-hoc queries)
- Very space efficient for attributes with low cardinality (number of distinct attribute values, e.g. "Yes", "No")

Cons:

- Space inefficient for attributes with high cardinality
- A possible solution:
 - **→** Bitmap Encoding + Bitmap Compression

Problems with Bitmap Indexes

- Space inefficient for attributes with high cardinality (sparsity of bitmap vectors)
- Increase the complexity of the software

Solution:

- 1. Bitmap Encoding
- 2. Bitmap Compression

84

Encoded bitmap indexing

Figure 2: An example of encoded bitmap indexing

Encoded Bitmap Indexes

- •We assume that our attribute domain is given by the table T is $\{a, b, c\}$.
- •The encoding schema of EBI is stored in a separate table called mapping table and simply encodes the values from a SBI by means of Huffman encoding (log₂m for m bitmaps on attribute X).
- Therefore reduces the number of bitmaps vectors. In particular, we use only $ceil(log_2 3) = 2$ Encoded Bitmap vectors instead of 3 simple bitmap vectors.
- This means that 2 bits are used to encode the domain {a, b, c}.

86

Encoded Bitmap Indexes

- We assume that we have a fact table SALES with N tuples and a dimension table PRODUCT with 12,000 different products.
- If we build a simple bitmap index (SBI)on PRODUCT, It will require 12,000 bitmap vectors of N bits in length.
- However, if we use encoded bitmap indexing (EBI) we only need ceil($\log_2 12,000$)= 14 bitmap vectors plus a mapping table which is a very significant reduction of the space complexity.

Applications and variations of encoding indexing

- Hierarchy encoding
- Total order preserving
- Using encoding indexes for range encoding

Mapping Table		
[6,8)	000	
[8,10)	001	
[10,12)	101	
[12,13)	100	
[13,16)	010	
[16,20)	110	
(a)Range	encodir	n

 $\begin{array}{ccccc} 6 \leq A < 10 & : & \mathbf{B}_2' \mathbf{B}_1' \\ 8 \leq A < 12 & : & \mathbf{B}_1' \mathbf{B}_0 \\ 10 \leq A < 13 & : & \mathbf{B}_2' \mathbf{B}_1' \\ 16 \leq A < 20 & : & \mathbf{B}_2' \mathbf{B}_1 \end{array}$

(b)Retrieval functions

88

Space time tradeoff of bitmap indexes, for selection queries.

- Space optimal bitmap index.
- Time optimal bitmap index under a given space constraint.
- Bitmap index with optimal space time tradeoff.
- Time optimal bitmap index.

Figure 2: Space-Time Tradeoff Issues

Processing

- ROLAP (Relational OLAP) servers vs. MOLAP servers (Multi-dimensional OLAP)
- Index Structures
- What to Materialize?
- Algorithms

90

Materialized Views

■ Define new warehouse relations using SQL expressions

sale	prodld	storeld	date	amt
	p1	c1	1	12
	p2	c1	1	11
	p1	сЗ	1	50
	p2 p1 p2 p1	c2	1	8
	p1	c1	2	44
	p1	c2	2	4

product	id	name pric		
	p1	bolt	10	
	n2	nut	5	

joinTb	prodld	name	price	storeld	date	amt
	p1	bolt	10	c1	1	12
	p2	nut	5	c1	1	11
	p1	bolt	10	c3	1	50
	p2	nut	5	c2	1	8
	p1	bolt	10	c1	2	44
	p1	bolt	10	c2	2	4

91

Data Cube Computation

■ Model dependencies among the aggregates:

Materialization Factors

- Type/frequency of queries
- Query response time
- Storage cost
- Update cost

96

Data Cleaning Data Loading Derived Data Metadata Warehouse Source Source Source Source

Data Cleaning

- Migration (e.g., yen ⇒ dollars)
- Scrubbing: use domain-specific knowledge (e.g., social security numbers)
- Fusion (e.g., mail list, customer merging)

■ Auditing: discover rules & relationships (like data mining)

98

Loading Data

- Incremental vs. refresh
- Off-line vs. on-line
- Frequency of loading
 - At night, 1x a week/month, continuously
- Parallel/Partitioned load

Data Warehousing

- Growing industry: \$8 billion in 1998, predicted > > \$30~50 billions today
- Range from desktop to huge:
 - Walmart: 900-CPU, 2,700 disk, 23TB Teradata system
- Lots of buzzwords, hype
 - slice & dice, rollup, MOLAP, pivot, ...

102

References (I)

- S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi. On the computation of multidimensional aggregates. In Proc. 1996 Int. Conf. Very Large Data Bases, 506-521, Bombay, India, Sept. 1996.
- D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data warehouses. In Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data, 417-427, Tucson, Arizona, May 1997.
- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data, 94-105, Seattle, Washington, June 1998.
- R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. In Proc. 1997 Int. Conf. Data Engineering, 232-243, Birmingham, England, April 1997.
- K. Beyer and R. Ramakrishnan. Bottom-Up Computation of Sparse and Iceberg CUBEs. In Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'99), 359-370, Philadelphia, PA, June 1999.
- S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26:65-74, 1997.
- OLAP council. MDAPI specification version 2.0. In http://www.olapcouncil.org/research/apily.htm, 1998.
- J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29-54, 1997.

104

References (II)

- V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently. In Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data, pages 205-216, Montreal, Canada, June 1996.
- Microsoft. OLEDB for OLAP programmer's reference version 1.0. In http://www.microsoft.com/data/oledb/ olap, 1998.
- K. Ross and D. Srivastava. Fast computation of sparse datacubes. In Proc. 1997 Int. Conf. Very Large Data Bases, 116-125, Athens, Greece, Aug. 1997.
- K. A. Ross, D. Srivastava, and D. Chatziantoniou. Complex aggregation at multiple granularities. In Proc. Int. Conf. of Extending Database Technology (EDBT'98), 263-277, Valencia, Spain, March 1998.
- S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of OLAP data cubes. In Proc. Int. Conf. of Extending Database Technology (EDBT'98), pages 168-182, Valencia, Spain, March 1998.
- E. Thomsen. OLAP Solutions: Building Multidimensional Information Systems. John Wiley & Sons, 1997.
- Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultaneous multidimensional aggregates. In Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data, 159-170, Tucson, Arizona, May 1997.