

Optimization of an energy system model coupled with a numerical hydrothermal groundwater simulation

Smajil Halilović¹, Leonhard Odersky¹, Fabian Böttcher¹, Kyle Davis², Miriam Schulte², Kai Zosseder¹, Thomas Hamacher¹

¹Technical University of Munich, Germany

²University of Stuttgart, Germany

IAEE 2022, Tokyo

Importance of heat pumps

Expansion paths for heat pumps in residential buildings in Germany

Project Geo.KW

Optimising the thermal use of groundwater for a decentralized heating and cooling supply in the city of Munich, Germany

Groundwater heat pumps (GWHPs)

Working principle of GWHPs

Negative interaction between systems

Hydrogeological conditions in Munich

The urban heat island effect

- Groundwater is already anthropologically heated
- Further heating can decrease the groundwater quality
- Increased efficiency of groundwater heat pumps

Thermal use of groundwater in Munich

The thermal use in numbers:

- over 2600 registered users
- heating: 25.1 Mio m³/a
 (2257 user)
- cooling: 86.4 Mio m³/a
 (242 user)
- heating & cooling:
 31.5 Mio m³/a (188 user)

The research question

How and where new groundwater heat pumps can be optimally installed in Munich?

With sustainable operation

- No depletion or flooding while operation
- No thermal recycling from injection to extraction
- Within water protection law

With the use of synergies from surrounding thermal uses

While minimizing the cost for heating & cooling

While minimizing the greenhouse gas emissions

Methodology

Coupling of models:

Energy system optimization model

https://github.com/tum-ens/urbs

Coupling library

https://precice.org

Numerical groundwater simulation

www.pflotran.org

Optimization problem

Optimization problem:

- HEB optimization problem (<u>highly</u> dimensional, <u>expensive</u> evaluations, <u>black-box</u> optimization)
- Decomposition, parallelization and new optimization methods required

urbs extension:

- Check regulations for new GWHPs
- Update the efficiency of GWHPs

Concept for the overall problem decomposition

Iterative optimization approach

Iteration 01

- potential GWHP
- installed GWHP
- selected GWHP

0

0

0

Iteration 02

Small test model

Integration of all elements

- Hypothetical heat pumps each with one well pair (extraction and injection)
- Existing thermal uses
- Culvert (Düker) Systems
- Drinking water wells

Small test model - solution

Temperature field: Present state

Temperature field: Optimized expansion

Smajil Halilovic | IAEE 2022 | Tokyo

Conclusion and outlook

Real city region

- 1818 potential GWHP wells
- 80 existing wells
- Currently being tested on SuperMUC-NG

Contact:

smajil.halilovic@tum.de

https://www.epe.ed.tum.de/en/ens

Smajil Halilovic | IAEE 2022 | Tokyo