Requirements Engineering (Summer 2021)

Prof. Nan Niu (nan.niu@uc.edu)

https://github.com/nanniu/RE-Summer2021

Today's Menu

Wednesday (July 21)

RE Research
(ASN2, ASN3 Q&A)

Thursday (July 22):

Req.s Traceability
ASN4 Release

Friday (July 23):
Unsupervised Learning
(ASN4 Q&A)

Functional vs. Nonfunctional

→Functional requirements describe <u>WHAT</u> the software does

→Nonfunctional requirements (NFRs) describe HOW WELL the software does it

→ Eliciting NFRs

Elicitation Techniques

→ Traditional techniques

- **♥** Introspection
- ♦ Reading existing documents
- Shanalyzing hard data
- **♦ Interviews**
 - >Open-ended
 - >Structured
- **Meetings**

→ Collaborative techniques

- \$ Group techniques
 - >Focus Groups
 - > Brainstorming
- **♥JAD/RAD** workshops
- **Prototyping**
- **⇔**Participatory Design

→ Cognitive techniques

- ♦ Task Analysis
- Protocol Analysis
- Knowledge Acquisition Techniques
 - > Card Sorting
 - >Laddering
 - > Repertory Grids
 - >Proximity Scaling Techniques

→ Contextual approaches

- \$Ethnographic Techniques
 - >Participant Observation
 - >Ethnomethodology
- ♦ Discourse Analysis
 - >Conversation Analysis
 - >Speech Act Analysis
- ♦ Socio-technical Methods
 - >Soft Systems Analysis

So, You Think You Know Others' Goals?

A Repertory Grid Study

Nan Niu and Steve Easterbrook, University of Toronto

Concepts and Terminology

Repertory Grid Technique (RGT)

⇒ George Kelly (1955), psychotherapy

⇒ verbalize how people construe certain factors within the area of interest

%verbalizations: constructs (bipolar in nature)

\$factors: elements

RGT Example

⇒ Information sources

\$TV, Newspaper, Radio, NewsGroup, Web, etc.

belements in RGT

⇒ Triad: (A) TV (B) Newspaper (C) NewsGroup

\$\forall \construct: many focuses (A,B) vs. single focus (C)

\$\\$\as a rating scale (1-5), and each element is assigned a rating on that construct

Sample Repertory Grid

Requirements Goal Models

- ⇒ Softgoals Constructs Unique to personal views
- ⇒ Tasks Elements Shared among stakeholders
- ⇒ Assume: people focusing on similar topics would agree on the definition of a common set of concrete tasks within the area of interest
- ⇒ Idea: compare stakeholder's constructs by how they relate to a shared set of concrete entities, rather than by any terms the stakeholders use to describe them

Kids Help Phone

B - Bob C - Cem

Observations

- ⇒ Trivial correspondence
 - High-level softgoals about counseling: Good, Helpful, Proper, High-Quality, etc.
- ⇒ Numerical threshold
 - \$\to\$Anonymous[Service] (Cem) versus (Bob)
- ⇒ Conflicts beyond terminological level
 - \$\(\phi\)(Ana) "Consult New Technique" would "Make-Difficult[Work]", hence hurt "Avoid[Burnout]"
 - \$\(\psi\) "Consult New Technique" could help "High[Morale]", thus help "Avoid[Burnout]"
- ⇒ This leads us to Assignment 4
 - \$Linking FRs and NFRs automatically

What's "req.s traceability"?

⇒ the ability to describe and follow the life of a requirement

Horizontal and vertical traceability

Roadmap of "req.s traceability"

Rudimentary tools 2nd Generation of Trace features in RM tools

Technology transfer pilots

1995 & earlier
Seminal work in trace-ability

1995-2010

Numerous researchers work on various traceability topics receiving funding from NASA, NSF, & Industry

Grand
Challenge
Workshops
held,
GCT 1.0
released

2010: MRI funded by NSF for

GCT 2.0 released, Jan. 2011

2017: GCT The Next Ten Years

What next?

The Grand
Challenges
provide a
roadmap for
future
research
efforts and
the
mechanism
for tracking
progress
towards our
goals

Relating FRs to NFRs

- **♥NFR1** (Operational): The system shall interface with the Choice Parts System. This provides the feed of recycled parts data.
- **♦NFR2** (Usability): Users shall feel satisfied using the system. 85% of all users will be satisfied with the system.
- **NFR3** (Security): Only adjusters can request recycled parts audit reports.
- **♥FR_i**: The user shall search for the preferred repair facility using vehicle location and radius in miles.
- **♥FR_j:** The estimator shall search for available recycled parts using damaged vehicle parts information.

Correct Answers

	NFR1 (Operational)	NFR2 (Usability)	NFR3 (Security)
FR_i	0	1	0
FR_j	1	1	0

IR-Based Requirements Traceability

IR-Based ASN4 Solution (fully automatic)

Example

→ Two requirements

```
$\psi r1 = "create and deactivate patients profile"
```

\$r2 = "patients create and edit profile"

- → In this lecture, we introduce some basic retrieval methods: set-based, Jaccard, tf-idf.
- → Assumption of IR-based ASN4 solution
 - the more textual similarity there is between the two requirements, the more likely one is linked with (traceable to) the other

Similarity based on set overlapping

→ Basic formula

$$S(R1,R2) = \frac{2 |R1 \cap R2|}{(|R1| + |R2|)}$$

%r1 = "create and deactivate patients profile"

%r2 = "patients create and edit profile"

→ Resulting similarity

$$\diamondsuit$$
 S(r1, r2) = (2x4) / (5+5) = 0.8

Suppose the threshold is 0.5, then {r1, r2} would be regarded as traceable to each other

Similarity based on Jaccard index

→ Basic formula

The Jaccard similarity coefficient, J, is given as

$$J = \frac{M_{11}}{M_{01} + M_{10} + M_{11}}.$$

 M_{11} represents the total number of attributes where A and B both have a value of 1.

 M_{01} represents the total number of attributes where the attribute of A is 0 and the attribute of B is 1.

 M_{10} represents the total number of attributes where the attribute of A is 1 and the attribute of B is 0.

 M_{00} represents the total number of attributes where A and B both have a value of 0.

→ In our example

	create	and	deactivate	patients	profile	edit	a	including	photo
r1	1	1	1	1	1	0	0	0	0
r2	1	1	0	1	1	1	0	0	0
r3	1	1	0	1	1	1	1	1	1

Jaccard (cont'd)

%r1 = "create and deactivate patients profile"

%r2 = "patients create and edit profile"

→ Set-based similarity

$$5(r1, r2) = (2x4) / (5+5) = 0.8$$

 $5(r1, r3) = (2x4) / (5+8) = 0.62$

→ Jaccard-based similarity

$$5(r1, r2) = 4 / 6 = 0.67$$

 $5(r1, r3) = 4 / 9 = 0.44$

Results So Far (threshold=0.5)

→ Our example

```
$\r1 = "create and deactivate patients profile"
```

```
$r2 = "patients create and edit profile"
```

\$r3 = "patients create and edit profile including a photo"

\$r4 = "patients create and and edit edit profile"

→ Set-based overlap → Jaccard index

2,4

1,2	(0.56)
2,3	(0.50)
3,4	(0.45)

(0.89)

VSM (vector space model)

tf-idf

	create	and	deactivate	patients	profile	edit	α	 photo
r1	1	1	1	1	1	0	0	 0
r2	1	1	0	1	1	1	0	 0
r3	1	1	0	1	1	1	1	 1
r4	1	2	0	1	0	3	0	 0

$$sim(d,q) = \cos(d,q) = \frac{\sum_{i=1}^{N} w_i \cdot q_i}{\sqrt{\sum_{i=1}^{N} w_i^2 \cdot \sum_{i=1}^{N} q_i^2}} \cdot \begin{bmatrix} sim(r2, r4) = \\ [1*log(4/4+1)]*[1*log(4/4+1)] & //create \\ + [1*log(4/4+1)]*[2*log(4/4+1)] & //and \\ + [1*log(4/4+1)]*[1*log(4/4+1)] //patients \end{bmatrix}$$

$$w_i = tf_i(d) \cdot idf_i$$

$$idf_i = \log_2\left(\frac{n}{df_i}\right),\,$$

$$sim(r2, r4) =$$

= 0.89

IR-Based ASN4 Solution (fully automatic)

When NFR1 is concerned, different ASN4 solutions will output different FRs

Ana's tool outputs

FR21: "The audit ..."
FR47: "The system ..."
FR9: "The estimator ..."

Bob's tool outputs

FR47: "The system ..."
FR21: "The audit ..."
FR9: "The estimator ..."

Chris's tool outputs

```
FR9: "The estimator ..."
FR5: "The adjuster ..."
FR11: "The system ..."
FR47: "The system ..."
FR76: "The system ..."
```

David's tool outputs

```
FR9: "The estimator ..."
FR5: "The adjuster ..."
FR11: "The system ..."
FR47: "The system ..."
FR76: "The system ..."
FR52: "The system ..."
FR65: "The system ..."
FR80: "The estimator ..."
```

Ana's outputs = Bob's outputs Chris's \subset_of David's

IR Metrics

Precision (accuracy) = |C| / |B|Recall (coverage) = |C| / |A|

F-measure =
$$\frac{(1+beta^2) \times (P \times R)}{(beta^2 \times P + R)}$$

(F2-measure: beta=2; weights R twice as much as P)

CS6027

Result	Relevant	
gr1	Yes	
gr2	No	
gr3	Yes	
gr4	Yes	
gr5	No	

Precision_{Google} =
$$3 / 5 = 60\%$$

Recall_{Google} = $3 / 10 = 30\%$
F2_{Google} = 0.33

Precision_{Bing} = 2 / 3 = 67%
Recall_{Bing} = 2 / 10 = 20%

$$F2_{Bing}$$
 = 0.23

Result	Relevant	
br1	Yes	
br2	Yes	
br3	No	

Let's help David to decide the threshold

Rank	Candidate FR	Relevant?	Recall	Precision	F2
1	FR9	1	1/20=0.05	1/1=1.00	0.062
2	FR5	0	1/20=0.05	1/2=0.50	0.061
3	FR11	1	2/20=0.10	2/3=0.67	0.121
4	FR47	1	3/20=0.15	3/4=0.75	0.179
5	FR76	0	3/20=0.15	3/5=0.60	0.176
6	FR52	1	4/20=0.20	4/6=0.67	0.233
7	FR65	1	5/20=0.25	5/7=0.71	0.287
8	FR80	0	5/20=0.25	5/8=0.63	0.284

ASN4 Given (Existing) Data

→ Answer set: trace-3nfr-80fr.txt

♥FR1,0,1,0

₩...

♥FR9,1,1,0

₩...

ASN4 Performance Evaluation

Evaluating Your ASN4 Solution

→ The output of your ASN4 algorithm will be assessed via IR metrics

\$Recall, Precision, and F2

→Your ASN4 algorithm will be run three times in your 10-minute slot (July 28)

\$\Run #1: 80 FRs and 3 NFRs

\$\to\$Run #2: 100 FRs and 3 NFRs (i.e., 20 new/unseen FRs compared to Run #1)

\$\to\$Run #3: 100 FRs and 4 NFRs (i.e., 1 new/unseen NFR compared to Run #2)

ASN4 Grading: Absolute Criteria

(Recall $\geq 70\%$) and (Precision $\geq 30\%$)

- > You'll receive 10 points if all of your 3 runs satisfy the above performance criteria
- > You'll receive 7 points if 2 of your runs are good
- > You'll receive 4 points if 1 of your runs is good
- > You'll receive 1 point if you do your demo-grading

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 1, JANUARY 2006

Advancing Candidate Link Generation for Requirements Tracing: The Study of Methods

Jane Huffman Hayes, *Member*, *IEEE Computer Society*, Alex Dekhtyar, and Senthil Karthikevan Sundaram, *Student Member*, *IEEE*

Paper in the 'Readings' Content Area

TABLE 3
Classification of Results and Relationship between Measures and Requirements

Measure	Acceptable	Good	Excellent
Recall	60% — 69%	70% — 79%	80% - 100%
Precision	20% - 29%	30% - 49%	50% — 100%
Lag	3 – 4	2 — 3	0 — 2

ASN4 Grading: Relative Criteria

```
NRun #1: 80 FRs and 3 NFRs

Run #2: 100 FRs and 3 NFRs (i.e., 20 new/
unseen FRs compared to Run #1)

Run #3: 100 FRs and 4 NFRs (i.e., 1 new/unseen
NFR compared to Run #2)
```

```
| F2(run2) - F2(run1) | / F2(run1) < 10%
| F2(run3) - F2(run2) | / F2(run2) < 10%
```

- > You'll receive 10 points if both relative criteria hold
- > You'll receive 6 points if only one criterion holds
- > You'll receive 2 points if you do your demo-grading

Tomorrow, we're heading to ...

Friday (July 23):
Unsupervised Learning
(ASN4 Q&A)

