

Principle Component Analysis

0

Spectral Theorem

对称

Let $A \in \mathbb{R}^{n,n}$ be symmetric, and $\lambda_i \in \mathbb{R}, i = 1, 2, \dots, n$ be the eigenvalues of A. There exists a set of orthonormal vectors $u_i \in \mathbb{R}_n, i = 1, 2, \dots, n$, such that $Au_i = \lambda_i u_i$. Equivalently, there exists an orthogonal matrix $U = [u_1, \dots, u_n]$ (i.e., $UU^T = U^TU = I_n$), such that,

$$A = U\Lambda U^T = \sum_{i=1}^n \lambda_i u_i u_i^T, \Lambda = ext{diag}(\lambda_1, \cdots, \lambda_n)$$