第八届国际语言学奥林匹克竞赛

斯德哥尔摩 (瑞典), 2010年7月19 - 24日

个人赛解答

题 #1. 规则:

- 形式 1: -mV- 第1个元音后, 其中 V 取决于下一音节之元音 (a 在 a 前, o 在 o 或 u 前, e 在 i 前, ö 在 ü 前);
- 形式 2:
 - -a, 若词干以 -aR 或 -oR 结尾,
 - - Ra, 若词干以 -i, -u 或 -ü 结尾,

若 l 或 n 包含于词根中, 则 R 为该辅音; 否则, R 是 r;

• 形式 3: 形式 2 中 -r- 第1个元音后, 除非 R 恰附于其后.

答案:

形式 1	形式 2	形式 3
<i>ḥamerki</i>	<i>ḥarkira</i>	
jömölkü	jölküla	jölküla
$qamal\dot{q}al$	$qal\dot{q}ala$	
qumorooju	quroojura	$quroo extit{jura}$
$somon \c kon$	sonķona	$son ot\! kon a$

形式 2	形式 3
$al\dot{q}ola$	$al\dot{q}ola$
ensina	
<i>hör</i> çüra	
	čuraģara
	<i>halo1ula</i>
	ïnkana
	jerčira
	ensina

题 #2.

- 1--4: caa 1, lue 2, köni 3, eke 4;
- 5, 10, 15: β -pi = 5 β (1 $\leq \beta \leq$ 3);
- 6--9, 11--14, 16--19: α -ngömen = $5 + \alpha$, α -ko = $10 + \alpha$, -e-ko > -ako α -qaihano = $15 + \alpha$ ($1 \le \alpha \le 4$);
- 20, 40, 60, 80: γ - $atr = 20\gamma \ (1 \le \gamma)$;
- $caa-atr > caatr, \ eke-atr > ekaatr$
- 21--39, 41--59, ...: Γ nge $\Delta = \Gamma + \Delta$ ($\Gamma = 20\gamma, 1 \le \Delta \le 19$).
- (a) caatr nge caako: **31**, caatr nge caangömen: **26**, caatr nge caaqaihano: **36**, ekaatr nge ekengömen: **89**, köniatr nge köniko: **73**, köniatr nge könipi: **75**, köniatr nge köniqaihano: **78**, lueatr nge lue: **42**, lueatr nge luako: **52**, lueatr nge luepi: **50**.
- (b) köniatr nge eke: 64 + caatr nge luepi: 30 = ekaatr nge ekako: 94 luengömen: 7 + luako: 12 = ekeqaihano: 19
- (c) 21: caatr nge caa, 48: lueatr nge köningömen, 83: ekaatr nge köni.

题 #**3.** ≡ : 名词, ≡ : 形容词, ≡ : 动词 (若词语中包含不止1个符号, 该表记置于最左侧符号之上方).

指事符(^, `, `, \,) 用以指示符号的某一特定部分.

(a)

	词类	组合	意义
^	动词	嘴巴 + 鼻子	呼吸
~ o	名词	水 + 嘴巴	口水
Ŏ	形容词	圆圈 (太阳) + 指事符	西方的
٨	形容词	活动性	活动的
>(名词	躯干 + 2 指事符	腰
° ∑ →	动词	嘴巴 + (空气 + 外部)	吹
~	形容词	病的	病的
ŏ	名词	嘴巴 + 2 指事符	双唇
• 	动词	眼睛 + (水 + 下部)	哭
٨	名词	活动性	活动性
Ϋ́Τ	形容词	心 + 上部	快乐的

(b)

		词类	组合	意义
Z		名词	鼻子	鼻子
~	`	名词	水	水,液体
Ç	Ć	名词	躯干 + 指事符	颈
^		动词	活动性	活动
> 6	5	名词	眼睛和眉毛 + 指事符	眉毛
γ	?	名词	头和颈 + 指事符	颈

(c)

	词类	组合	意义
7	名词	空气	空气
	名词	躯干	躯干
^	动词	上部	升起
0	名词	圆圈 (太阳) + 指事符	东方
Ŏ ↑	形容词	心+下部	沮丧的

题 #4. 题例中的4个多肽链由 24, 10, 3 与 25 个氨基酸组成,而 mRNA 序列包含了 $195 = ((24+10+3+25)+3) \times 3$ 个核苷酸. 由此可知,一组3个核苷酸或表记1个氨基酸,或分隔不同的多肽 (实际上是终止多肽合成的信号). 然而,一组3个核苷酸有 $4^3 = 64$ 种可能的组合方式 (除2个外, 题例全部涉及),却仅有 20 种不同的氨基酸. 因此,某些不同的核苷酸组合可能表示相同的意义.

	U	C	A	G
	$\mathtt{UUU} \to \mathit{Phe}$	$\mathtt{UCU} o Ser$	$\mathtt{UAU} \to \mathit{Tyr}$	$ extsf{UGU} ightarrow extsf{Cys}$
U	$\mathtt{UUC} \to \mathit{Phe}$	$\mathtt{UCC} o \mathit{Ser}$	$\mathtt{UAC} \to \mathit{Tyr}$	$\mathtt{UGC} \to \mathit{Cys}$
0	$\mathtt{UUA} \to Leu$	$\mathtt{UCA} o Ser$	$\mathtt{UAA} \to \boxed{\mathit{STOP}}$	$\mathtt{UGA} o oxedsymbol{STOP}$
	$\mathtt{UUG} \to Leu$	$\mathtt{UCG} o \mathit{Ser}$	$\mathtt{UAG} \to \boxed{\mathit{STOP}}$	$\mathtt{UGG} \to \mathit{Trp}$
	$\mathtt{CUU} o Leu$	$\mathtt{CCU} o \mathit{Pro}$	$\mathtt{CAU} o \mathit{His}$	$\mathtt{CGU} o Arg$
C	$\mathtt{CUC} o Leu$	$\mathtt{CCC} o \mathit{Pro}$	$\mathtt{CAC} o \mathit{His}$	$\mathtt{CGC} o Arg$
C	$\mathtt{CUA} \to Leu$	$\mathtt{CCA} o \mathit{Pro}$	$\mathtt{CAA} o \mathit{Gln}$	$\mathtt{CGA} \to \mathit{Arg}$
	$\mathtt{CUG} o Leu$	$\mathtt{CCG} o \mathit{Pro}$	$\mathtt{CAG} o \mathit{Gln}$	$\mathtt{CGG} o Arg$
	$\mathtt{AUU} \to \mathit{Ile}$	$\mathtt{ACU} \to \mathit{Thr}$	$\mathtt{AAU} \to \mathit{Asn}$	$\mathtt{AGU} \to Ser$
A	${\tt AUC} \to \mathit{Ile}$	$\mathtt{ACC} o \mathit{Thr}$	$\texttt{AAC} \to \mathit{Asn}$	${\tt AGC} \to Ser$
A	$\mathtt{AUA} \to \mathit{Ile}$	$\mathtt{ACA} \to \mathit{Thr}$	$\mathtt{AAA} \to Lys$	${\tt AGA} \to \mathit{Arg}$
	${\tt AUG} \to Met$	$\mathtt{ACG} o extcolor{?}$	$\mathtt{AAG} \to Lys$	${\tt AGG} \to \mathit{Arg}$
	$\texttt{GUU} \rightarrow \mathit{Val}$	$\mathtt{GCU} o Ala$	$\mathtt{GAU} \to \mathit{Asp}$	$\texttt{GGU} \to \mathit{Gly}$
G	${\tt GUC} \to \mathit{Val}$	$\mathtt{GCC} o Ala$	$\texttt{GAC} \to \mathit{Asp}$	${\tt GGC} \to Gly$
G	${\tt GUA} \to \mathit{Val}$	$\mathtt{GCA} o Ala$	$\mathtt{GAA} \to \mathit{Glu}$	${\tt GGA} \to Gly$
	${ t GUG} ightarrow Val$	$\mathtt{GCG} o Ala$	$\mathtt{GAG} \to \mathit{Glu}$	$\texttt{GGG} \to \textit{?}$

所有的 mRNA 序列皆由 $AUG \rightarrow Met$ 起始.

(a) Met-Leu-?Thr-Phe STOP Met-Trp-?Gly-Gly-His-Gln. 该序列包含题例中缺失的2组核苷酸组合,因而暂时无法确定答案. 但当本题解答完整后,此处的疑问将得以确认.

(b)
$$Met-Lys-Cys-Ile \leftarrow {\tt AUG} \left\{ \begin{array}{c} {\tt AAA} \\ {\tt AAG} \end{array} \right\} \left\{ \begin{array}{c} {\tt UGU} \\ {\tt UGC} \end{array} \right\} \left\{ \begin{array}{c} {\tt AUU} \\ {\tt AUC} \\ {\tt AUA} \end{array} \right\} \ (1 \times 2 \times 2 \times 3 = 12 \ 种可能).$$

(c) 若 XYA, XYG, XYC 与 XYU 编码同样的氨基酸,则 XY 为强根 (UC, CC, CG, GC). 否则, 其为 弱根 (UU, CA, AG, GA).

题 #5.

苏斯勒万方言	恩嘎丁方言	
uo	uo	在 l 或 r 和另一个辅音的组合前
u	u	在 l 或 r 不含另一个辅音前
u	o	在 m 前
u	uo	在另一个辅音前

	苏斯勒万方言	恩嘎丁方言	
	uolm	uolm	榆树
	stumi	stomi	胃
	cuort	cuort	短的
(a)	mund	muond	世界
	fuorcla	fuorcla	隘口
	plumba	plomba	牙齿填充物
	mussar	muossar	展示
	culant	culant	慷慨的

- (b) *lavur* 2种方言相同.
- (c) 在苏斯勒万方言中, (与恩嘎丁方言不同) 第1条规则对复数形式并不适用. 换言之, 当一个辅音位于词干中, 而另一个辅音位于后缀中时, 或当元音在后缀添加前已经被选定时, 或当复数中的元音需与单数中的元音匹配时, 该规则不适用.
- (d) '榆树 (复数)': *uolms* (2种方言相同). '角 (复数)': *anguls* (苏斯勒万方言), *anguols* (恩嘎丁方言).