# Vanxwak万象奥科

# 数据手册

# HD-RK3506-CORE 核心板

关键词: RK3506、核心板、参数、引脚定义、尺寸

2022-08-15

# 修订记录

| 变更内容:             |     |   |   |   |
|-------------------|-----|---|---|---|
| 2024-12-13 创建本文档。 |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
|                   |     |   |   |   |
| 编制: 曹俊            | 审核: |   |   |   |
|                   |     |   |   |   |
| 2024年12月13日       |     | 年 | 月 | 日 |

# 目录

| 1. |      |                                             |
|----|------|---------------------------------------------|
|    | 1.1  | 硬件参数4                                       |
|    | 1.2  | 型号配置5                                       |
|    | 1.3  | 软件参数5                                       |
| 2. | 电气与性 | 能参数                                         |
|    |      |                                             |
|    |      | 电气参数                                        |
| 2  |      | ······································      |
| Э. |      | 核心板引脚描述···································· |
|    |      |                                             |
|    |      | 核心板引脚定义                                     |
|    |      |                                             |
| 5. | 免责声明 |                                             |
| 6. | 联系我们 |                                             |

## 1. 产品简介

HD-RK3506-CORE 核心板基于 Rockchip RK3506B/J 应用处理器开发,RK3506B/J 是一款高性能的三核 Cortex-A7加单核 Cortex-M0应用处理器。该处理器不仅内置了 2D 硬件引擎和显示输出引擎,还集成了丰富的外设接口,如 SAI、PDM、SPDIF、音频 ADC、USB2 OTG、RMII、CAN 等,可以满足不同的应用开发需求。RK3506 具有高性能的外置存储器接口(DDR3/DDR3L/DDR2),能够支持高要求的存储器带宽。



图 1 RK3506 核心板

#### 1.1 硬件参数

HD-RK3506-CORE 核心板硬件资源参数:

| 产品名称            | HD- RK3506-CORE 核心板                    |  |  |
|-----------------|----------------------------------------|--|--|
| 操作系统            | Linux、RT-Thread                        |  |  |
| 加密              | 支持硬件加密,保护用户应用软件版权                      |  |  |
| 处理器             | Rockchip RK3506B/J                     |  |  |
| 主频              | 1.5GHz                                 |  |  |
| 内存              | 256MB/512MB DDR3L                      |  |  |
| 存储              | 256MB/8GB                              |  |  |
| MIPI DSI 2 Lane | 1280x1280@60Hz                         |  |  |
| RGB888          | 1280x1280@60Hz                         |  |  |
| 以太网             | 2 路百兆网                                 |  |  |
| USB2.0          | 2 路 USB2.0 OTG                         |  |  |
| SDMMC           | 1路 SDMMC,支持 SDIO3.0                    |  |  |
| ADC             | 4路 10 bit SARADC                       |  |  |
| DSMC            | 1路 DSMC_Master,1路 DSMC_Slave           |  |  |
| FLEXBUS         | 1 路                                    |  |  |
| 音频接口            | 4路 SAI, 1路 PDM, 1路 SPDIF TX/RX, 1路 MIC |  |  |
| CAN             | 2 路                                    |  |  |
| UART            | 5 路通用串口,1 路调试串口                        |  |  |
| I2C             | 3 路                                    |  |  |
| PWM             | 12 路                                   |  |  |
| SPI             | 2 路通用 SPI,1 路 SPIAPB                   |  |  |

| TOUCH KEY | 8 路                          |  |
|-----------|------------------------------|--|
| GPIO      | 3.3V GPIO 81 个,1.8V GPIO 5 个 |  |
| 机械尺寸      | 35mm * 35mm                  |  |

## 1.2 型号配置

| 产品型号                  | 规格          | 内存    | 存储    | 封装  | 工作温度      | 说明  |
|-----------------------|-------------|-------|-------|-----|-----------|-----|
| HD-RK3506J-256F256GLI | 3xCortex-A7 | 256MB | 256MB | 邮票孔 | -40℃~+85℃ | 工业级 |
| HD-RK3506B-512F8GLW   | 3xCortex-A7 | 512MB | 8GB   | 邮票孔 | -20℃~+70℃ | 宽温级 |
| HD-RK3506J-512F8GLI   | 3xCortex-A7 | 512MB | 8GB   | 邮票孔 | -40℃~+85℃ | 工业级 |

#### 1.3 软件参数

HD-RK3506-CORE 核心板软件资源:

- 操作系统 Linux 或 RT-Thread
- DDR 驱动
- eMMC 驱动
- Nand Flash 驱动
- 显示驱动
- 触摸屏驱动
- 以太网驱动
- USB 驱动
- TF 卡驱动
- CAN 驱动
- 串口驱动
- SPI 驱动
- IIC 驱动
- PWM 驱动
- ADC 驱动
- IO 驱动

# 2. 电气与性能参数

## 2.1 系统主要性能与配置

表格 1 系统主频

| 项目     | 参数         | 规格 |    |      |     | 备注 |
|--------|------------|----|----|------|-----|----|
| 坝日     | <b>少</b> 奴 | 最小 | 典型 | 最大   | 单位  | 田江 |
| CPU 主频 | Fclk       |    |    | 1500 | MHz |    |

#### 表格 2 工作环境

| 项目        |     | 备注  |     |            |     |
|-----------|-----|-----|-----|------------|-----|
| <b>切日</b> | 最小  | 典型  | 最大  | 单位         | 田江  |
| 工作环境温度    | -40 | +25 | +85 | $^{\circ}$ |     |
| 工作环境湿度    | 5   |     | 95  | %RH        | 无凝结 |

#### 表格 3 配置参数

| 项目        |       | 备注 |     |    |    |
|-----------|-------|----|-----|----|----|
| 坝日        | 最小    | 典型 | 最大  | 单位 | 首注 |
| DDR3L     | 256   |    | 512 | MB | 内存 |
| Nand/eMMC | 256MB |    | 8GB |    | 存储 |

### 2.2 电气参数

表格 4 静态电气参数

| 15 FI  | 规格               |      |     |      | 夕计 |    |
|--------|------------------|------|-----|------|----|----|
| 项目     | 标号               | 最小   | 典型  | 最大   | 单位 | 备注 |
| 系统电压   | VDD50            | 4.85 | 5.0 | 5.15 | V  |    |
| 系统供电电流 | I <sub>5V0</sub> |      | 250 |      | mA |    |

## 3. 功能定义

#### 3.1 核心板引脚描述

HD-RK3506-CORE 核心板如图 2 所示,用户可参考评估底板进行二次开发。设计时建议参考核心板引脚默认功能使用,以减少产品驱动的二次开发过程。为了保证产品设计具有良好的兼容性和稳定性,未使用到的引脚资源请务必悬空处理。核心板共 128pin 脚,引脚通过 1.0mm 间距的邮票孔引出。





图 2 RK3506 核心板顶底视图

#### 3.2 核心板引脚定义

HD- RK3506-CORE 核心板所有引脚功能均按下表的"默认功能"作了设定,请慎重修改,否则可能与出厂驱动冲突。如需改动,请与我们的技术人员确认。

注意: HD-RK3506-CORE 核心板的 MIPI 接口不建议作为 GPO 使用,建议仅作为 MIPI 接口使用。

| 引脚号 | 网络标号           | 默认功能              | 引脚默认电平 |
|-----|----------------|-------------------|--------|
| 1   | VCC5V0_SYS     | 核心板 5V 电源输入       | 5V     |
| 2   | VCC5V0_SYS     | 核心板 5V 电源输入       | 5V     |
| 3   | VCC5V0_SYS     | 核心板 5V 电源输入       | 5V     |
| 4   | VCC5V0_SYS     | 核心板 5V 电源输入       | 5V     |
| 5   | VCC_3V3        | 核心板 3.3V 电源输出     | 3.3V   |
| 6   | VCC_3V3        | 核心板 3.3V 电源输出     | 3.3V   |
| 7   | VCC_1V8        | 核心板 1.8V 电源输出     | 1.8V   |
| 8   | VCC_1V8        | 核心板 1.8V 电源输出     | 1.8V   |
| 9   | GND            | GND               | GND    |
| 10  | GND            | GND               | GND    |
| 11  | GND            | GND               | GND    |
| 12  | GND            | GND               | GND    |
| 13  | RMII1_RXDV_CRS | ETH_RMII1_RXDVCRS | 3.3V   |
| 14  | RMII1_MDIO     | ETH_RMII1_MDIO    | 3.3V   |
| 15  | RMII1_MDC      | ETH_RMII1_MDC     | 3.3V   |
| 16  | RMII1_TXEN     | ETH_RMII1_TXEN    | 3.3V   |
| 17  | RMII1_TXD1     | ETH_RMII1_TXD1    | 3.3V   |

表格 5 RK3506 核心板引脚定义

| 18 | RMII1_TXD0             | ETH_RMII1_TXD0     | 3.3V |
|----|------------------------|--------------------|------|
| 19 | RMII1_CLK              | ETH_RMII1_CLK      | 3.3V |
| 20 | RMII1_RXD1             | ETH_RMII1_RXD1     | 3.3V |
| 21 | RMII1_RXD0             | ETH_RMII1_RXD0     | 3.3V |
| 22 | GND                    | GND                | GND  |
| 23 | RMII0_RXDV_CRS         | ETH_RMII0_RXDVCRS  | 3.3V |
| 24 | RMII0_MDIO             | ETH_RMII0_MDIO     | 3.3V |
| 25 | RMII0_MDC              | ETH_RMII0_MDC      | 3.3V |
| 26 | RMII0_TXEN             | ETH_RMII0_TXEN     | 3.3V |
| 27 | RMII0_TXD1             | ETH_RMII0_TXD1     | 3.3V |
| 28 | RMII0_TXD0             | ETH_RMII0_TXD0     | 3.3V |
| 29 | RMII0_CLK              | ETH_RMII0_CLK      | 3.3V |
| 30 | RMII0_RXD1             | ETH_RMII0_RXD1     | 3.3V |
| 31 | RMII0_RXD0             | ETH_RMII0_RXD0     | 3.3V |
| 32 | GND                    | GND                | GND  |
| 33 | GND                    | GND                | GND  |
| 34 | SDMMC_CLK              | SDMMC_CLK          | 3.3V |
| 35 | SDMMC_CMD              | SDMMC_CMD          | 3.3V |
| 36 | SDMMC_D0               | SDMMC_D0           | 3.3V |
| 37 | SDMMC_D1               | SDMMC_D1           | 3.3V |
| 38 | SDMMC_D2               | SDMMC_D2           | 3.3V |
| 39 | SDMMC_D3               | SDMMC_D3           | 3.3V |
| 40 | FSPI_D0                | FSPI_D0            | 3.3V |
| 41 | FSPI_D1                | FSPI_D1            | 3.3V |
| 42 | FSPI_D2                | FSPI_D2            | 3.3V |
| 43 | FSPI_D3                | FSPI_D3            | 3.3V |
| 44 | FSPI_CLK               | FSPI_CLK           | 3.3V |
| 45 | FSPI_CSN               | FSPI_CSN           | 3.3V |
| 46 | NPOR_L                 | NPOR               | 3.3V |
| 47 | SARADC_IN1_RECOVER/KEY | SARADC_IN1         | 1.8V |
| 48 | SARADC_IN0_BOOT        | SARADC_IN0         | 1.8V |
| 49 | SARADC_IN2             | SARADC_IN2         | 1.8V |
| 50 | SARADC_IN3             | SARADC_IN3         | 1.8V |
| 51 | GPIO0_D0_d             | REF_CLK0_OUT       | 1.8V |
| 52 | ACODEC_ADC_INP         | ACODEC_ADC_INP     | 1.8V |
| 53 | ACODEC_ADC_INN         | ACODEC_ADC_INN     | 1.8V |
| 54 | GND                    | GND                | GND  |
| 55 | USB20_OTG0_DP          | USB20_OTG0_DP      |      |
| 56 | USB20_OTG0_DM          | USB20_OTG0_DM      |      |
| 57 | USB20_OTG0_ID          | USB20_OTG0_ID      | 3.3V |
| 58 | USB20_OTG0_VBUSDET     | USB20_OTG0_VBUSDET | 3.3V |
| 59 | GND                    | GND                | GND  |
| 60 | USB20_OTG1_DP          | USB20_OTG1_DP      |      |
| 61 | USB20_OTG1_DM          | USB20_OTG1_DM      |      |
| 62 | GND                    | GND                | GND  |

|     | T                     |               |      |
|-----|-----------------------|---------------|------|
| 63  | MIPI_DPHY_DSI_TX_CLKN | GPO4_A4_z     | 1.8V |
| 64  | MIPI_DPHY_DSI_TX_CLKP | GPO4_A5_z     | 1.8V |
| 65  | GND                   | GND           | GND  |
| 66  | MIPI_DPHY_DSI_TX_D1N  | GPO4_A2_z     | 1.8V |
| 67  | MIPI_DPHY_DSI_TX_D1P  | GPO4_A3_z     | 1.8V |
| 68  | GND                   | GND           | GND  |
| 69  | MIPI_DPHY_DSI_TX_D0N  | GPO4_A0_z     | 1.8V |
| 70  | MIPI_DPHY_DSI_TX_D0P  | GPO4_A1_z     | 1.8V |
| 71  | GND                   | GND           | GND  |
| 72  | VO_LCDC_DEN           | VO_LCDC_DEN   | 3.3V |
| 73  | VO_LCDC_VSYNC         | VO_LCDC_VSYNC | 3.3V |
| 74  | VO_LCDC_HSYNC         | VO_LCDC_HSYNC | 3.3V |
| 75  | VO_LCDC_CLK           | VO_LCDC_CLK   | 3.3V |
| 76  | VO_LCDC_D23           | VO_LCDC_D23   | 3.3V |
| 77  | VO_LCDC_D22           | VO_LCDC_D22   | 3.3V |
| 78  | VO_LCDC_D21           | VO_LCDC_D21   | 3.3V |
| 79  | VO_LCDC_D20           | VO_LCDC_D20   | 3.3V |
| 80  | VO_LCDC_D19           | VO_LCDC_D19   | 3.3V |
| 81  | VO_LCDC_D18           | I2C0_SDA      | 3.3V |
| 82  | VO_LCDC_D17           | I2C0_SCL      | 3.3V |
| 83  | VO_LCDC_D16           | GPIO1_B3_d    | 3.3V |
| 84  | GND                   | GND           | GND  |
| 85  | VO_LCDC_D15           | VO_LCDC_D15   | 3.3V |
| 86  | VO_LCDC_D14           | VO_LCDC_D14   | 3.3V |
| 87  | VO_LCDC_D13           | VO_LCDC_D13   | 3.3V |
| 88  | VO_LCDC_D12           | VO_LCDC_D12   | 3.3V |
| 89  | VO_LCDC_D11           | VO_LCDC_D11   | 3.3V |
| 90  | VO_LCDC_D10           | VO_LCDC_D10   | 3.3V |
| 91  | VO_LCDC_D9            | GPIO1_C2_d    | 3.3V |
| 92  | VO_LCDC_D8            | GPIO1_C3_d    | 3.3V |
| 93  | GND                   | GND           | GND  |
| 94  | VO_LCDC_D7            | VO_LCDC_D7    | 3.3V |
| 95  | VO_LCDC_D6            | VO_LCDC_D6    | 3.3V |
| 96  | VO_LCDC_D5            | VO_LCDC_D5    | 3.3V |
| 97  | VO_LCDC_D4            | VO_LCDC_D4    | 3.3V |
| 98  | VO_LCDC_D3            | VO_LCDC_D3    | 3.3V |
| 99  | VO_LCDC_D2            | PWM0_CH2      | 3.3V |
| 100 | VO_LCDC_D1            | UART4_RX      | 3.3V |
| 101 | VO_LCDC_D0            | UART4_TX      | 3.3V |
| 102 | GND                   | GND           | GND  |
| 103 | I2C2_SCL              | I2C2_SCL      | 3.3V |
| 104 | I2C2_SDA              | I2C2_SDA      | 3.3V |
| 105 | SAI1_MCLK             | GPIO0_B0_d    | 3.3V |
| 106 | SAI1_SCLK             | PWM0_CH0      | 3.3V |
| 107 | SAI1_LRCK             | PWM0_CH1      | 3.3V |
|     |                       |               |      |

|     |                      | I         |      |
|-----|----------------------|-----------|------|
| 108 | SAI1_SDI             | I2C1_SDA  | 3.3V |
| 109 | SAI1_SDO0            | I2C1_SCL  | 3.3V |
| 110 | GND                  | GND       |      |
| 111 | UART0_TX/JTAG_TCK_M1 | UART0_TX  | 3.3V |
| 112 | UART0_RX/JTAG_TMS_M1 | UART0_RX  | 3.3V |
| 113 | UART1_TX             | UART1_TX  | 3.3V |
| 114 | UART1_RX             | UART1_RX  | 3.3V |
| 115 | UART2_TX             | UART2_TX  | 3.3V |
| 116 | UART2_RX             | UART2_RX  | 3.3V |
| 117 | UART3_TX             | UART3_TX  | 3.3V |
| 118 | UART3_RX             | UART3_RX  | 3.3V |
| 119 | CAN0_TX              | CAN0_TX   | 3.3V |
| 120 | CAN0_RX              | CAN0_RX   | 3.3V |
| 121 | CAN1_TX              | CAN1_TX   | 3.3V |
| 122 | CAN1_RX              | CAN1_RX   | 3.3V |
| 123 | GND                  | GND       | GND  |
| 124 | SPIO_CLK             | SPI0_CLK  | 3.3V |
| 125 | SPI0_MOSI            | SPI0_MOSI | 3.3V |
| 126 | SPI0_MISO            | SPI0_MISO | 3.3V |
| 127 | SPI0_CSN0            | SPIO_CSN0 | 3.3V |
| 128 | GND                  | GND       | GND  |

# 4. 机械尺寸

HD-RK3506-CORE核心板的尺寸图如图3所示。



图 3 RK3506 核心板尺寸图

### 5. 免责声明

本文档提供有关武汉万象奥科电子有限公司产品的信息。本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除武汉万象 奥科电子有限公司在产品的销售条款和条件中声明的责任之外,概不承担任何其它责任。并且,产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。武汉万象奥科电子有限公司产品并非设计用于医疗、救生或维生等用途。武汉万象奥科电子有限公司可能随时对产品规格及产品描述做出修改,恕不另行通知。

文档所属产品可能包含某些设计缺陷或错误,一经发现将收入勘误表,并因此可能导致产品与已出版的规格有所差异。如客户索取,可提供最新的勘误表。 在订购产品之前,请您与我司销售处或分销商联系,以获取最新的规格说明。本文档中提及的含有订购号的文档以及其它文献可通过访问 http://www.vanxoak.com 获得。

武汉万象奥科电子有限公司保留所有权利。

## 6. 联系我们

武汉万象奥科电子有限公司

公司地址: 武汉东湖新技术开发区大学园路长城园路 8号海容基孵化园 B 栋 5 楼

公司电话: 027-59218026

公司邮箱: <a href="mailto:sales@vanxoak.com">sales@vanxoak.com</a>
售后邮箱: <a href="mailto:support@vanxoak.com">support@vanxoak.com</a>
公司网址: <a href="mailto:www.vanxoak.com">www.vanxoak.com</a>

