Лабораторная работа 6. Задача об эпидемии

Вариант 10

Ильин Никита Евгеньевич

Содержание

1	Цель работы	5
2	Теоретическое введение	6
3	Задание	9
4	Условия варианта	10
5	Выполнение лабораторной работы	11
6	Выводы	15
7	Список литературы	16

List of Figures

2.1	График решения уравнения модели Мальтуса	7
2.2	График логистической кривой	8
5.1	Код программы для случая 1	11
5.2	Настройки симуляции	12
	График распространения информации о товаре с учетом платной	
	рекламы и с учетом сарафанного радио №1	12
5.4	График распространения информации о товаре с учетом платной	
	рекламы и с учетом сарафанного радио №2	13
5.5	Код программы случая 2	13
	Получаем график распространения информации о товаре с учетом	
	платной рекламы и с учетом сарафанного радио №3	14

List of Tables

1 Цель работы

Цель работы научиться строить модели эффективности рекламы в OpenModelica.

2 Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $\alpha_1(t)>0$ - характеризует интенсивность рекламной

кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t)(N-n(t))$$

При $\alpha_1(t) >> \alpha_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид (рис.2.1)

Figure 2.1: График решения уравнения модели Мальтуса

В обратном случае, $\alpha_1(t) << \alpha_2(t)$ получаем уравнение логистической кривой: (рис.2.2)

Figure 2.2: График логистической кривой

3 Задание

января в городе открылся новый салон красоты. Полагаем, что на момент открытия о салоне знали N_0 потенциальных клиентов. По маркетинговым исследованиям известно, что в районе проживают N потенциальных клиентов салона. Поэтому после открытия салона руководитель запускает активную рекламную компанию. После этого скорость изменения числа знающих о салоне пропорциональна как числу знающих о нем, так и числу не знаю о нем. 1. Построить график распространения рекламы о салоне красоты (N_0 и N задайте самостоятельно). 2. Сравнить эффективность рекламной кампании при $\alpha_1(t)>\alpha_2(t)$ и $\alpha_1(t)<\alpha_2(t)$ 3. Определить в какой момент времени эффективность рекламы будет иметь максимально быстрый рост (на вашем примере). 4. Построить решение, если учитывать вклад только платной рекламы 5. Построить решение, если предположить, что информация о товаре распространятся только путем «сарафанного радио», сравнить оба решения

4 Условия варианта

Вариант 10

1.
$$\frac{dn}{dt} = (0.95 + 0.0008n(t)(N - n(t)))$$

2.
$$\frac{dn}{dt} = (0.000095 + 0.92n(t)(N - n(t)))$$

$$3. \quad \frac{dn}{dt} = (0.95 sin(t) + 0.93 cos(9t)n(t)(N-n(t)) \label{eq:dn}$$

5 Выполнение лабораторной работы

1. Пишем программу для всех случаев.(рис.5.1)

```
1 model lab07
2 parameter Real N = 995;
3 parameter Real n0 = 9;
4
5 parameter Real a1 = 0.95; //первый случай parameter Real a2 = 0.0008;
7
8 //parameter Real a1 = 0.000095; //второй случай //parameter Real a2 = 0.92;
10
11 //parameter Real a1 = 0.95*sin(time); //третий случай 12 //parameter Real a2 = 0.93*cos(9*time);
13
14 Real n(start = n0);
15 equation der(n) = (a1+a2*n)*(N - n);
16 end lab07;
```

Figure 5.1: Код программы для случая 1

2. Задаем настройки симуляции.(рис.5.2)

Figure 5.2: Настройки симуляции

3. Получаем график распространения информации о товаре с учетом платной рекламы и с учетом сарафанного радио №1 (рис.5.3)

Figure 5.3: График распространения информации о товаре с учетом платной рекламы и с учетом сарафанного радио №1

4. Получаем график распространения информации о товаре с учетом платной рекламы и с учетом сарафанного радио №1 (рис.5.4)

Figure 5.4: График распространения информации о товаре с учетом платной рекламы и с учетом сарафанного радио №2

5. Момент максимально быстрого роста. (рис.5.5)

Figure 5.5: Код программы случая 2

6. Получаем график распространения информации о товаре с учетом платной рекламы и с учетом сарафанного радио №3.(рис.5.6)

Figure 5.6: Получаем график распространения информации о товаре с учетом платной рекламы и с учетом сарафанного радио №3.

6 Выводы

В данной лабораторной работе мы изучили задачу об эффективности рекламы, построили графики распространения информации о товаре в OpenModelica

7 Список литературы

1. Кулябов, Д.С. Эффективность рекламы [Текст] / Д.С.Кулябов. - Москва: - 4 с.