Assignment 6

G SAVARANA DATTA REDDY - AI20BTECH11008

Download the latex code from

https://github.com/SavaranaDatta/AI1103/tree/main/Assignment_6.tex

1 PROBLEM

Let X_1 and X_2 be a random sample of size two from a distribution with probability density function

$$f_{\theta}(x) = \theta \left(\frac{1}{\sqrt{2\pi}}\right) e^{-\frac{1}{2}x^2} + (1-\theta)\left(\frac{1}{2}\right) e^{-|x|},$$

 $-\infty < x < \infty$

where $\theta \in \left\{0, \frac{1}{2}, 1\right\}$. If the observed values of X_1 and X_2 are 0 and 2, respectively, then the maximum likelihood estimate of θ is

- 1) 0
- 2) $\frac{1}{2}$
- 3) $\bar{1}$
- 4) not unique

2 SOLUTION

Definition 2.1 (Maximum Likelihood Estimation (MLE)). Let $x_1, x_2, ..., x_n$ be observations from an independent and identically distributed random variables drawn from a Probability Distribution f_0 , where f_0 is known to be from a family of distributions f that depend on some parameters θ .

The goal of MLE is to maximize the likelihood function:

$$L = f(x_1, x_2, \dots, x_n \mid \theta)$$
 (2.0.1)

$$= f(x_1 \mid \theta) \times f(x_2 \mid \theta) \times \dots \times f(x_n \mid \theta) \quad (2.0.2)$$

The likelihood function for given data is given by

$$L(\theta \mid X_1 = 0, X_2 = 2) = f_{\theta}(X_1 = 0) \times f_{\theta}(X_2 = 2)$$

(2.0.3)

$$= \left(\theta \left(\frac{1}{\sqrt{2\pi}} - \frac{1}{2}\right) + \frac{1}{2}\right)^2 e^{-2}$$
(2.0.4)

But $\theta \in \left\{0, \frac{1}{2}, 1\right\}$ 1) At $\theta = 0$ $L(\theta = 0) = \frac{1}{4}e^{-2} = 0.0338$

2) At
$$\theta = 1$$
 $L(\theta = 1) = \frac{1}{2\pi}e^{-2} = 0.0215$

3) At $\theta = \frac{1}{2}$ $L(\theta = \frac{1}{2}) = \left(\frac{1}{2\sqrt{2\pi}} + \frac{1}{4}\right)^2 e^{-2} = 0.0273$ ∴ Required option is **1**.