MA 205 Complex Analysis: Counting Zeros and Poles

B.K. Das IIT Bombay

September 3, 2018

Multiplicity of a zero

Recall that a holomorphic function f on Ω has a zero at z_0 of multiplicity m if m is the least positive integer with $f^{(m)}(z_0)$ is non-zero. This is also equivalent to the fact that $f(z) = (z - z_0)^m h(z)$ where h is a holomorphic function on some small neighborhood of z_0 and $h(z_0) \neq 0$. Here h(z) can be taken to be holomorphic on Ω (why?). Thus if f has finite number of zeros z_1, \ldots, z_n inside Ω with multiplicities m_1, \ldots, m_n respectively, then

$$f(z) = \prod_{i=1}^{n} (z - z_i)^{m_i} H(z) \ (z \in \Omega)$$

for some holomorphic function H on Ω which does not vanish on Ω .

Counting zeros

$\mathsf{Theorem}$

Let f be a holomorphic function on Ω and $\overline{D}(P,r) \subset \Omega$. Suppose that f does not vanish on $\{z: |z-P|=r\}$ and that z_1,\ldots,z_n are the zeros of f in D(P,r) with multiplicities m_1,\ldots,m_n respectively. Then

$$\frac{1}{2\pi\imath}\int_{|z-p|=r}\frac{f'(z)}{f(z)}dz=\sum_{i=1}^n m_i.$$

Proof: Let

$$f(z) = \prod_{i=1}^{n} (z - z_i)^{m_i} H(z) \ (z \in \Omega)$$

for some holomorphic function H on Ω which does not vanish at z_1, \ldots, z_{n-1} and z_n .

Proof Cont..

Then

$$f'(z) = \prod_{i=1}^{n} (z-z_i)^{m_i} H'(z) + \sum_{i=1}^{n} m_i (z-z_i)^{m_i-1} \prod_{1 \le j \le n, j \ne i} (z-z_j)^{m_j} H(z)$$

and therefore,

$$\frac{f'(z)}{f(z)} = \frac{H'(z)}{H(z)} + \sum_{i=1}^{n} \frac{m_i}{z - z_i}.$$

Since $\frac{H'(z)}{H(z)}$ is holomorphic on an open set containing $\bar{D}(P,r)$,

$$\frac{1}{2\pi i} \int_{|z-P|=r} \frac{f'(z)}{f(z)} dz = 0 + \sum_{i=1}^n m_i.$$

Counting poles

Recall that if f is a meromorphic function on Ω with poles z_1, \ldots, z_n of orders m_1, \ldots, m_n respectively. Then

$$H(z) = \prod_{i=1}^{n} (z - z_i)^{m_i} f(z)$$

becomes an holomorphic function on Ω .

Theorem

Let f be a meromorphic function on Ω with poles z_1,\ldots,z_n of orders m_1,\ldots,m_n , respectively. Suppose $\bar{D}(P,r)\subset\Omega$ contains all the poles of f and f does not vanish on $\bar{D}(P,r)$. Then

$$\frac{1}{2\pi i} \int_{|z-P|=r} \frac{f'(z)}{f(z)} dz = -\sum_{i=1}^n m_i.$$

proof

Proof: Define

$$H(z) = \prod_{i=1}^{n} (z-z_i)^{m_i} f(z).$$

Then H is an holomorphic function on an open set containing $\bar{D}(P,r)$ and does not vanish on $\bar{D}(P,r)$. Note that for $z \in \Omega \setminus \{z_1,\ldots,z_n\}$,

$$\frac{H'(z)}{H(z)} = \frac{f'(z)}{f(z)} + \sum_{i=1}^{n} \frac{m_i}{z - z_i}.$$

Then by integrating on |z - P| = r we get

$$\frac{1}{2\pi i} \int_{|z-P|=r} \frac{f'(z)}{f(z)} dz = 0 - \sum_{i=1}^n m_i.$$

Argument principle

Combining the above results, we get a variant of the residue theorem and is known as the argument principle. It is used to count zero's and poles of a meromorphic function on a domain.

Theorem (Argument Principle)

Let f be a meromorphic function on Ω , and let γ be a closed contour contained in Ω such that γ does not pass through any of the zeros and poles of f(z). Suppose, inside γ , f has zeros at z_1, \ldots, z_n with multiplicities m_1, \ldots, m_n respectively and has poles at w_1, \ldots, w_k of orders ℓ_1, \ldots, ℓ_k respectively. Then

$$\frac{1}{2\pi\imath}\int_{\gamma}\frac{f'(z)}{f(z)}dz=\sum_{i=1}^{n}m_{i}-\sum_{j=1}^{k}\ell_{j}.$$

Rouche's Theorem

A nice and useful corollary of the argument principle is the following theorem:

Theorem (Rouche's Theorem)

Let γ be a simple closed contour and let f(z) and g(z) be two functions holomorphic on an open set containing γ and its interior. Suppose |f(z) - g(z)| < |f(z)| at all points on γ . Then γ encloses the same number of zero's, counting multiplicities, of f(z) and g(z).

<u>Proof:</u> Let $h(z) = \frac{g(z)}{f(z)}$. Then h is an meromorphic function on an open set containing γ . Note that h does not have any zeros or poles on γ . Since |h(z) - 1| < 1 for all z on γ ,

$$\int_{\gamma} \frac{h'}{h} dz = 0.$$

Thus number of zeros and poles of $\it h$, counting multiplicities, inside $\it \gamma$ are same.

Example

The proof of the theorem follows easily from the fact that, after canceling common factors, the zeros of g (resp. f) are the zero's (resp. poles) of h.

Let us compute the number of zero's of $f(z)=z^6+11z^4+z^3+2z+4$ inside the unit disc. Take $g(z)=11z^4$. Then |g(z)-f(z)|<|g(z)| on the unit circle. Hence g(z) has the same number of roots as f(z) inside the unit circle. But the number of roots of g(z) inside unit circle is 4 (counting mutiplicity) which therefore equals number of roots of f(z).

Example

Lets count number of roots of $f(z) = e^z - 2z - 1$ inside the unit circle.

Let us consider g(z) = -2z. Then

$$|g(z) - f(z)| = |e^z - 1| = |\sum_{1}^{\infty} \frac{z^n}{n!}| \le \sum_{1}^{\infty} \frac{|z^n|}{n!} = e - 1 < |g(z)|$$

on the unit circle. Hence by Rouche's theorem f(z) and g(z) have equal number of roots in the unit circle, namely 1.

FTA

Here's another quick and pretty proof of FTA using Rouche's theorem.

Let $f(z) = a_0 + a_1z + \cdots + z^n$ be a non-constant polynomial. Take $g(z) = z^n$. Then on a sufficiently large circle around 0 of radius R, |f(z) - g(z)| < |f(z)|. Hence f(z) and g(z) have same number of zero's in the disc of radius R. Since g(z) has n zero's, so does f(z)!

Picard's theorem

I now restate another absolutely spectacular theorem in complex analysis called Picard's theorem on the values taken by a holomorphic function.

Theorem (Big Picard's Theorem)

Let z_0 be an essential singularity of f(z). Then in any punctured neighborhood of z_0 , the image of f(z) can miss atmost one point.

This theorem is called the Big Picard Theorem in view of what comes next.

Theorem (Little Picard theorem)

Any non-constant entire function can miss atmost one point.

The little Picard Theorem can be seen to be a corollary of the Big Picard Theorem as follows.

Picard's Theorem

Recall the following fact mentioned earlier: An entire function has a pole at infinity if and only if it is a non-constant polynomial.

Let f(z) be a non-constant entire function. We wish to show it misses atmost one point. If f(z) is a polynomial, then it is surjective by FTA. If f(z) is not a polynomial, then it has an essential singularity at infinity (WHY?). That is $f(\frac{1}{z})$ has an essential singularity at 0. Thus by Big Picard theorem, in any punctured neighborhood of 0, say of radius r, $f(\frac{1}{z})$ misses atmost one point. But this implies that in the complement of the circle of radius 1/r, f(z) misses atmost one point. This is what we wanted.

Exercise: If a non-constant entire function misses one point c, show that it is of the form $e^{f(z)} + c$ for some entire function f(z).

Picard (1856-1941); Wiki

Picard was a top rate mathematician who did fundamental work in many disciples; analysis, function theory, differential equations, and analytic geometry to name a few. In physics he worked on elasticity, heat and electricity. Hadamard wrote about his teacher Picard:- A striking feature of Picard's scientific personality was the perfection of his teaching, one of the most marvellous, if not the most marvellous, that I have ever known.

It is a remarkable fact that between 1894 and 1937 he trained over 10000 engineers who were studying at the cole Centrale des Arts et Manufactures.