Deep Learning com Python de A à Z – O Curso Completo Jones Granatyr

Aprendizagem supervisionada	Aprendizagem não supervisionada
Redes Neurais Artificiais	Mapas auto organizáveis
classificação e regressão	detecção de características e agrupamento
Redes Neurais Convolucionais	Boltzmann machines
visão computacional	sistemas de recomendação
Redes Neurais Recorrentes	Auto encoders
análise de séries temporais	sistemas de recomendação

Conteúdo do curso

- Parte 1 Redes neurais artificiais
 - Teoria
 - Classificação binária câncer de mama
 - Classificação multiclasse classificação de plantas
 - Regressão preço de veículos usados
 - Regressão com múltiplas saídas venda de videogames
- Parte 2 Redes neurais convolucionais
 - Teoria
 - Classificação de dígitos escritos a mão (MNIST)
 - Classificação de gatos e cachorros
 - Classificação de personagens

Conteúdo do curso

- Parte 3 Redes neurais recorrentes
 - Teoria
 - Série temporal bolsa de valores
 - Série temporal com múltiplos previsores
 - Série temporal com múltiplas saídas
 - Série temporal poluição na China
- Parte 4 Mapas auto organizáveis
- Parte 5 Boltzmann machines
- Parte 6 Auto encoders
- Parte 7 Generative Adversarial Networks
- Atividades teóricas e práticas!

Pré-requisitos

- É interessante ter algum conhecimento básico sobre aprendizagem de máquina e redes neurais, embora seja possível acompanhar o curso sem esse conhecimento inicial
- É recomendado conhecimento sobre lógica de programação, principalmente estruturas condicionais e de repetição
- Conhecimentos básicos em Python são desejáveis, embora seja possível acompanhar o curso sem saber essa linguagem com profundidade
- São necessários conhecimentos básicos sobre instalação de softwares básicos

O que não veremos

- Interface gráfica
- Implementar "todos" os exemplos
- Teoria muito detalhada
- Implementação manual das redes neurais (usaremos Keras e Pytorch, rodando sob o Tensorflow)

Fonte: https://www.engadget.com/2014/09/08/google-details-object-recognition-tech/

Fonte: https://www.taygan.co/blog/2018/02/09/getting-started-with-speech-to-text

Fonte: https://www.zdnet.com/article/tracking-terrorists-with-iomniscient/

Fonte: https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/

Fonte: https://www.frontiersin.org/articles/10.3389/fpls.2016.01419/full

Fonte: https://towards datascience.com/what-happened-at-the-tensorflow-dev-summit-2017-part-1-3-community-applications-77fb5ce03c52

Fonte: https://oppmax.com/blog/state-self-driving-car-mid-2017-report/

Fonte: http://www.sciencemag.org/news/2017/03/artificial-intelligence-goes-deep-beat-humans-poker

The Doutlace (v2)

Fonte: https://highnoongmt.wordpress.com/2015/08/11/deep-learning-for-assisting-the-process-of-music-composition-part-1/

Fonte: https://deeplearning4j.org/generative-adversarial-network

Fonte: https://www.analyticsvidhya.com/blog/2018/02/neural-network-algorithm-making-movies-from-text/

Se as redes neurais datam de 1950, porque somente agora as redes neurais tem desempenho superior a outros algoritmos?

Conclusão

