Digital Design IE1204

Föreläsningsbilder av William Sandqvist

Tillståndsautomater

Carl-Mikael Zetterling bellman@kth.se

Sekvensnät

Om en och samma insignal kan ge upphov till olika utsignal, är logiknätet ett sekvensnät.

Det måste då ha ett *inre minne* som gör att utsignalen
påverkas av både nuvarande
och föregående insignaler!

Moore-automat

För Moore-automaten beror utsignalerna på insignalerna och det inre tillståndet. Det inre minnet är tillståndsregistret som består av **D-vippor**.

Tillståndsregistrets D-vippor

Tillståndsregistrets D-vippor bromsar upp *kapplöpningen* mellan signalerna tills värdet är stabilt. (Jämför med

tullstationen).

Tillståndsregistrets D-vippor

Tillståndsregistrets D-vippor bromsar upp *kapplöpningen* mellan signalerna tills värdet är stabilt. (Jämför med

Tillståndsregistrets D-vippor

Tillståndsregistrets D-vippor bromsar upp *kapplöpningen* mellan signalerna tills värdet är stabilt. (Jämför med

Designexempel "två i rad"

Sekvensdetektor. Om w har varit 1 under två (eller fler) klockcykler i rad skall z = 1.

Specifikation

Sekvenskretsen har en ingång w och en utgång z Om ingången w har varit 1 under nuvarande och föregående klockcykel så ska utgången z sättas till 1 Använd en Moore-automat med D-vippor för att realisera konstruktionen

Tillståndsdiagram "två i rad"

Tillståndstabell

Present	Next	Output	
state	w = 0 $w = 1$		\mathcal{Z}
Α	А	В	0
В	Α	C	0
С	Α	С	1

Tre tillstånd – två vippor behövs för att minnas tillståndets nummer!

"två i rad" som Moore-automat

Designbeslut

 Designern måste bestämma vilka vippor som ska användas

D-, T-, eller JK-vippa

• Designern måste välja koden för varje tillstånd

Designbeslut

Denna gång givet:

- D-vippor
- Tillståndsavkodning A = 00, B = 01, C = 10
- Koden 11 ska *inte* förekommer. Vi väljer don't care.

Kodad tillståndstabell

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	С	1

$$A = 00$$
 $B = 01$
 $C = 10$

Present	Next	state	
state	w = 0 $w = 1$		Output
y_2y_1	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

$$Y_2Y_1 = f(y_2y_1w)$$
 $z = f(y_2y_1)$

Nästa tillståndsavkodare

Nästa tillståndsavkodaren består av de två logiknäten som finns som ingångsnät till de två vipporna. För att kunna minimera logiknäten skriver man in sanningstabellerna i Karnaughdiagram.

$$Y_2Y_1 = f(y_2y_1w)$$
 $Y_2 = f(y_2y_1w)$ $Y_1 = f(y_2y_1w)$
 $z = f(y_2y_1)$

Från kodad tillståndstabell till Karnaughdiagram

$$Y_2Y_1 = f(y_2y_1w)$$
 $Y_2 = f(y_2y_1w)$ $Y_1 = f(y_2y_1w)$

Present state	$ \begin{aligned} \text{Next} \\ w &= 0 \end{aligned} $	state $w = 1$	Output		^y 2 ^y	1 00	01	Y ₁	10
y_2y_1	Y_2Y_1	Y_2Y_1	0	W	0	0	0	d	0
01 10 11	00 00 dd	10 10 dd	0 1 d		1	1	0	d	0

$$Y_1 = w\overline{y}_1\overline{y}_2$$

Present	Next	state	
state	w = 0 $w = 1$		Output
y_2y_1	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	<u>d</u> d	<u>d</u> d	d

$$Y_2 = wy_1 + wy_2 =$$

= $w(y_1 + y_2)$

Utgångsavkodaren

$$z = f(y_2 y_1)$$

Present	Next	state	
state	w = 0 $w = 1$		Output
$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

$$z = y_2$$

Implementeringen

IE1204 2018 P1

Tidsdiagram "två i rad"

IE1204 2018 P1 bellman@kth.se 18

Med andra beteckningar

Nuvarande tillstånd

Nästa tillstånd

y

Med annan uppställning

Man kan direkt ställa upp den kodade tillståndstabellen som ett "Karnaugh-diagram".

IE1204 2018 P1 bellman@kth.se 20

Mealy-automat

I en **Mealy**-Automat beror utgångssignalerna både på nuvarande tillstånd *och* ingångarna

Present	Next	Output	
state	w = 0 $w = 1$		z.
А	А	В	0
В	Α	С	0
С	Α	С	1

Mealy automaten

Present	Next state		Output	
state	w = 0	w = 1	w = 0	w = 1
А	Α	В	0	0
В	Α	С	0	0
С	Α	С	1	1

Två av tillstånden som bara skiljer i utsignal kan slås ihop – insignalen kan användas för att skilja utsignalerna!

Mealy automaten

Present	Next	state	Output	
state	w = 0	w = 1	w = 0	w = 1
Α	Α	ВС	0	0
ВС	Α	BC	0	1

Tillståndsdiagram Mealy

"Två i rad"

- Tillståndsdiagrammet för Mealy-automaten behöver bara två tillstånd
- Utsignalen beror på *både* tillstånd och insignaler

Tillståndstabell

Reset

Present	Next	state	Outp	out z
state	w = 0	w = 1	w = 0	w = 1
A	A	В	0	0
В	A	В	0	1

Två tillstånd – bara en vippa behövs!

Kodad tillståndstabell

Present	Next	state	Outp	out z
state	w = 0	w = 1	w = 0	w = 1
A	A	В	0	0
В	A	В	0	1

$$Y = f(y w)$$
 $z = f(y w)$

$\mathbf{A} = 0$	
$\mathbf{B} = 1$	A
	В

	Present state	Next state		Output	
		w = 0	w = 1	w = 0	w = 1
	у	Y	Y	Z	\mathcal{Z}
	0	0	1	0	0
	1	0	1	0	(1)

Direkt ur tabellen: Y = w z = yw

$$Y = w$$
 $z = yw$

Implementeringen

Tidsdiagram

- Utsignalen kan ändrar sig under hela klockperioden eftersom den är en funktion av insignalen
- Jämfört med Moore-automaten så 'reagerar' Mealyautomaten *tidigare* (bitsekvensen detekteras i t₄ jämfört med t₅ i Moore-automaten)

IE1204 2018 P1

Mealy med utgångsregister

- Nackdelen med Mealy-automaten är att utsignalen kan ändras under hela klockperioden
- Man kan lägga till en register (vippa) på utgången så för att synkronisera utgången med klockflanken

Tidsdiagram med utgångsregister

Med ett utgångsregister så försvinner skillnaden mellan tidsdiagrammen!

IE1204 2018 P1 bellman@kth.se 31

Moore vs Mealy

- Moore-automatens utgångsvärden beror bara på det nuvarande tillståndet
- Mealy-automatens utgångsvärden beror på det nuvarande tillståndet och värden på ingångssignalerna
- Mealy-automaten behöver ofta färre tillstånd
- Mealy-automatens utsignaler är *inte* synkroniserade med klockan, varför man ofta lägger till ett utgångsregister

Val av tillståndskodning

Valet av tillståndskodningen kan spela en stor roll för implementeringen eftersom den påverkar logiken för

- Next-state-decoder
- Utgångsavkodare

"två i rad" tillståndsdiagram

Tillståndskod = Binärkod

$\mathbf{A} = 00$ $\mathbf{B} = 01$ $\mathbf{C} = 10$ $\mathbf{B} = 01$ $\mathbf{C} = 10$

Present	Next			
state	w = 0	w = 1	1 Output	
<i>y</i> ₂ <i>y</i> ₁	$Y_{2}Y_{1}$	$Y_{2}Y_{1}$	Z	
00	00	01	0	
01	00	10	0	
10	00	10	1	
11	dd	dd	d	

Realisering (Binärkod)

2 D-vippor2 AND-grindar1 OR-grind

IE1204 2018 P1 bellman@kth.se 36

Tillståndskod = Graykod

- I Gray-koden ändras bara en bit åt gången, dvs 00, 01, 11, 10
- Gray-koden är bra för räknare

		Present	Next state		
		state	w = 0	w = 1	Output
$\mathbf{A} = 00$		<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z
$\mathbf{B} = 01$	A	00	00	01	0
C = 11	В	01	00	11	0
4.0	C	11	00	11	1
10		10	dd	dd	d

Realisering (Graykod)

One-Hot-kodning

- One-hot-kodningen använder en vippa per tillstånd
- För varje tillstånd är en bit 'hot' (1), alla andra bitar är 0, dvs 0001, 0010, 0100, 1000
- One-hot kodningen minimerar den kombinatoriska logiken men *ökar* antalet vippor

Vilken kod ska man välja?

- Det finns inte en kod som är den bästa i alla lägen, utan det beror helt på tillståndsdiagrammet
- Man kan även ha 'egna koder' som passar till konstruktionen, t ex 00, 11, 10, 01