Lab Log

Daniel Padfield

18/10/2017

- Autoclaved the soil again
- Autoclaved 1 L of DI millicule water
- Autoclaved 1 L of 0.6% soft agar
- Autoclaved a spoon to weigh out soil
- Got some $SBW25\phi2$ from Floh. Around 1 mL at 7.26 x 10^8 .
 - Grow up overnight
 - Transfer 60 μl of bacteria and 10 μl of phage (around 7 x 10 6 pfus) into 6 mL of KB agar
 - Should give a concentration of around 10⁸ phage/mL
 - Done this in triplicate
- Grow up lacZ and WT strains overnight. Should give concentration of around ~10⁸ cells in 60 µl.
- Do these in triplicate
- Added 60 μL of frozen overnight culture from first experiment (18/08/2017 lacZ and WT)

Retrospectively work out density of the overnight stocks and phage

19/10/2017

- Put 80g of soil into each 10cm x 10cm microcosm
 - Used autoclaved spoon
 - Placed scale in laminar flow hood (cleaned with ethanol before and after)
- Placed 5 mL ($\sim 200~\mu$ l per microcosm) of lacZ and WT into separate 12 mL centrifuge tubes
 - Centrifuged for 15 minutes at max speed (~4500 r.p.m) on big centrifuge
 - Want to get to 5 mL per microcosm for inoculating (~ 125 mL in total)
 - Resuspended pellet into 2250 μ l, vortexed and placed 620 μ l, 620 μ l and 810 μ l into three different falcon tubes
 - Filled these three falcon tubes up to 40 mL, 40 mL and 45 mL respectively
 - * This guaranteed the same concentration of sample in each falcon tube
 - Placed 5 mL of lacZ or WT strain into each microcosm
 - Froze (-80 °C) 900 μl of inoculate in 900 μl of glycerol (25% final concentration)
- In the no phage treatments, we added 5 mL of M9
- Added 5 mL of phage to phage treatments
 - Place 900 μl of bacteria + phage into three centrifuge tubes
 - Add 100 ul (10%) chloroform into each tube (under fume hood)
 - Vortex rigorously
 - Centrifuge for 2-3 minutes at full speed (minifuge)
 - Take out supernatant and placed in a single tube (took out 800 μl of each tube)
 - Put 40 mL of M9 into 6 tubes
 - Added 400 μl into each tube (~100 fold dilution from the initial stock)
 - Shake each tube and add 5 mL into each microcosm
- Place microcosms into the 26 °C incubator (Level 1 incubator room)

22/10/2017

- setup 2 WT microcosms up for spot assays of phage
- used a crystal from T₀
- autoclaved 2 L of KB agar. Put in small autoclave

23/10/2017

- phage spot test 10_{-1} to 10_{-8}
 - Floh's phage (7.26×10^8)
 - Phage we inoculated with
 - Extra phage tube (should have lower concentration)
 - blank plate
- plated T_0 of WT and $lacZ\ P$. fluorescens

24/10/2017

- phage spot test was no good (streaky)
- likely that we did not wait long enough for the spot to dry
- \bullet set up more T_0 bacteria overnight

25/10/2017

- phage spot assay again
- plating only 4 spots per plate instead of 8
- counted T₀ counts (plated 30 μl)
 - $lacZ @ 10^{-4}$: 18
 - WT @ 10⁻⁴: 64

26/10/2017

- check phage spot, 10⁻⁶ looks to be the correct dilution
- further counts are done by putting the 10 µl phage into the 1% bacteria soft agar
 - vortex and plate
 - leave to dry
 - incubate overnight

30/10/2017

• grow up some T₀ bacteria overnight

31/10/2017

- serial dilution of phage to 10⁻⁶
- $50 \mu l bacteria + 10 \mu l phage + 5 ml soft agar$
 - vortex
 - pour
- set samples up for inoculated phage, floh's phage stock and our phage dregs (each in triplicate)
- in 28 $^{\circ}$ C incubator overnight

01/11/2017

- looked at phage spots (10⁻⁶ dilution)
- calculated how many phage are there

```
Phage\ concentration = \frac{number\ of\ plaques}{dilution\ factor\ \times\ volumeadded}
```

Volume added is almost always 10 µl. I wrote a mini function to calculate this

```
d <- data.frame(dregs = c(3,4,6), phage = c(6,2,4))

# back calculate number in there
# PFU/ml = plaque number / (dil fac * volume added)
plaq_num <- function(x, dilfac){return(x/(dilfac*0.01))}

d <- dplyr::mutate_at(d, c('dregs', 'phage'), plaq_num, dilfac = 10^-6)
knitr::kable(d)</pre>
```

dregs	phage
3e+08	6e+08
4e + 08	2e + 08
6e + 08	4e + 08

```
# concentration of phage added
mean(d$phage)

## [1] 4e+08
# concentration of other phage
mean(d$dregs)
```

[1] 433333333

- sampled all soil microcosms (after 13 days)
 - $-\sim 2g$ of soil into a 12 mL centrifuge tube (with ~ 7 glass beads)
 - $\ast\,$ sample using the big end of a 5 mL pipette and weigh on scales under hood
 - add 10 mL of M9
 - vortex for ~ 1 minute
 - add 900 μl of sample to 900 μl of 50% glycerol and freeze at -80 °C (bacteria + phage)
 - make phage suspension for each tube
 - * add 900 µl of sample to centrifuge tube
 - * add 100 μ l of chloroform under fume hood
 - * vortex
 - * centrifuge at full speed for 4 minutes
 - * put supernatant into separate tube
 - · samples 1-17 800 μl, samples 18-48 750 μl
- names of samples
- 1-12: WT no phage
- 13-24: lacZ no phage
- 25-36: WT + phage
- 37-48: lacZ + phage
- Autoclaved things
 - 2 empty 500 mL bottles
 - M9 salts x10 (500 mL)
 - * converted the weight of Na_2HPO_4 to the amount of $Na_2HPO_4.7H_2O$ needed.
 - * MW of $Na_2HPO_4.7H_2O$ is 268. MW of Na_2HPO_4 is 142.
 - * to convert from weight of Na_2HPO_4 to $Na_2HPO_4.7H_2O$ is to multiply by $\frac{268}{142}$

- centrifuge tubes.

sample	weight_g
1	2.1
2	2.0
3	1.9
4	2.0
5	2.0
6	2.0
7	2.0
8	2.0
9	2.1
10	1.9
11	2.2
12	2.1
13	2.1
14	1.9
15 16	2.2
16	2.2
17 18	1.9 2.2
19	2.2
20	2.0
21	2.3
$\frac{21}{22}$	$\frac{2.3}{2.2}$
$\frac{22}{23}$	1.9
$\frac{23}{24}$	2.1
$\frac{24}{25}$	2.1
26	2.2
27	1.9
28	2.0
29	2.2
30	2.3
31	2.0
32	2.2
33	2.2
34	2.2
35	2.0
36	2.0
37	2.3
38	1.9
39	2.2
40	1.9
41	2.2
42	2.0
43	2.0
44	2.2
45	2.1
46	2.2
47	2.2
48	2.1

- set up phage spot tests of all soil phage suspensions against ancestral WT on soft agar.
 - just checking for presence/absence of phage
 - 5 mL per plate, 4 spots per plate, 12 spots in total
 - important to let the spot dry before moving
- poured plates (all Xgal)

03/11/2017

- all no phage treatments had no phage and all phage treatments had phage
- plated all the bacteria + phage treatments at $10^{\text{-}4}$ and $10^{\text{-}5}$ (30 $\mu l)$
 - left on bench over the weekend

06/11/2017

- counted all the plates
 - all still had bacteria in and were not obviously contaminated (Yays)
- picked 20 colonies from each sample and placed in KB media in 48 well plates
 - $-750 \mu l$ of KB media
 - used matchsticks
- grown statically for 2 days at 26 °C

08/11/2017

- put 500 µl of 50% glycerol into each well (final concentration 20%)
- froze in the -80 $^{\circ}$ C
- autoclaved
 - -2x 800 mL hard agar
 - -2x 800 mL soft agar

13/11/2017

• prep for sampling soil microcosms tomorrow. Labelled samples. Booked downstairs hood with power access.

14/11/2017

- sampled all 48 microcosms
- froze 900 µl of bacteria + phage in 900 µl of 50% glycerol (final concentration equals 25%)
- phage sample in fridge
 - 1-12: 750 μl
 - 13-48: 600 µl
- setup soft agar plates of ancestral bacteria and did phage spot assays

sample	$weight_g$
1	2.2
2	2.2
3	2.3
4	2.1

sample	weight_g
5	2.2
6	2.1
7	2.1
8	2.0
9	2.0
10	2.0
11	2.2
12	2.1
13	2.0
14	2.2
15	2.2
16	2.0
17	2.1
18	2.3
19	2.0
20	2.0
21	2.1
22	2.0
23	2.1
24	2.2
25	2.0
26	2.0
27	2.2
28	2.0
29	2.0
30	2.0
31	2.3
32	2.1
33	2.2
34	2.2
35	2.1
36	2.1
37	2.1
38	2.3
39	2.0
40	2.0
41	2.3
42	2.0
43	2.2
44	2.2
45	2.0
46	2.2
47	2.0
48	2.0

• all phageless samples are still phageless, all phage samples still contain phage

- plated all T_2 samples 10^{-3} and 10^{-4}

 - $-30 \mu l$ of on plate
- used undiluted M9 x10 on Tuesday!!!
- $\bullet\,$ made up 400 mL of M9 salts x10 for autoclave

20/11/2017

- counted plates.
 - Most are ok at 10^{-3} . Counts were much lower. Want to be certain that the reduction in abundance is not due to using concentrated M9.
- full sample again, T_3 .
 - Took 700 μL samples of phage
- setup overnight stock of ancestral bacteria
- $\bullet\,$ autoclaved 2400 mL of KB agar

sample	$weight_g$
1	2.0
2	2.0
3	1.9
4	2.3
5	2.0
6	2.2
7	2.0
8	2.3
9	2.0
10	2.1
11	2.2
12	2.1
13	2.0
14	2.1
15	2.0
16	2.3
17	2.3
18	2.1
19	2.2
20	2.0
21	2.1
22	2.1
23	2.1
24	2.2
25 26	2.1
26 27	2.0
$\begin{array}{c} 27 \\ 28 \end{array}$	2.2
29	2.1 2.1
30	$\frac{2.1}{2.0}$
30 31	$\frac{2.0}{2.2}$
$\frac{31}{32}$	2.2
33	$\frac{2.0}{2.1}$
34	2.1
94	2.1

sample	weight_g
35	2.2
36	2.2
37	2.0
38	2.1
39	2.1
40	2.0
41	2.1
42	2.2
43	2.0
44	2.3
45	2.2
46	2.1
47	2.1
48	2.0

- plated all 48 T_3 samples at $10^{\text{-}2}$ and $10^{\text{-}3}$
- re-plated all T_2 replicates that did not contain > 20 colonies at 10^{-2}
- poured ~150 Xgal plates. Stored in the cold room
- autoclaved two boxes of ependorfs
- put beads in Virkon to clean
- \bullet phage spot assay on phage extractions from T_3 . Used ancestral bacteria as the bacterial lawn

23/11/2017

- all T_3 samples were ok (> 30 colonies at 10^{-3}) apart from 12 and 37
 - 12 an 37 were re-plated at 10^0 and 10^{-1}
- picked 20 colonies from each sample and placed in KB media in 48 well plates
 - 750 μ l of KB media
 - used matchsticks
- grown statically for 2 days at 26 $^{\circ}\mathrm{C}$
- Checked phage spot assays

25/11/2017

- picked colonies from $12 (10^0)$ and $37 (10^{-1})$
 - incubate for two days
- put 500 µl of 50% glycerol into each well of the other replicates that had been growing for two days (final concentration 20%)
- froze in the -80 $^{\circ}\mathrm{C}$

27/11/2017

• autoclaved 4L of KB hard agar

Figure 1: Figure 1. phage spot assays are on point

- poured 2L of KB agar into square plates (Xgal)
- put 180 µl of KB media into 96 well plates
- grew T_F clones up overnight from frozen isolates (phage present microcosms only, 25-48)
 - placed in 28 $^{\rm o}{\rm C}$ incubator

29/11/2017

- look at coevolution of phage and host using streak plates
- streak each clone against contemporary phage, ancestral phage, a paired WT phage and a paired lacZ phage
- spot 30 µl of each phage onto a square plate, let run down the plate then let it dry
- 1 plate per microcosm
- streak clones across the line of phage using matchsticks and the template

30/11/2017

- looked like it didnt work
- everything grew everywhere, even the controls
- set up an ancestral overnight

01/12/2017

- set up some phage spot assays of random phage against the ancestral phage
- did some streak assays

02/12/2017

- phage streak worked
- all phage spots worked
- current hypothesis of problem is that we did not mix the phage properly

05/12/2017

- grew up all clones overnight
- poured lots of square plates

06/12/2017

• did another phage streak day

08/12/2017

- counted the phage streaks. Processed these but they do not look as expected.
- autoclaved 4 L of hard KB agar
- autoclaved 1 L of KB media

10/12/2017

- setup isolated clones overnight in 180 µl of KB media
- poured many square plates
- amplifying T_F phage in ancestral WT overnight
 - 60 μl of ancestor and 10 μl phage
- setup some phage spot assays (P.27, P.38, P.41)
 - spotted 10 μ l from 10⁻¹ to 10⁻⁸

11/12/2017

- Unfortunately some of the lids of the phage amplifications had come off
- Reset these today
- Plated all the phage with ancestral bacteria at 10^{-3}

12/12/2017

• Counted phage

13/12/2017

• Did phage streaks using comb

14/12/2017

• Marked phage streaks

03/01/2018

State of play - It is worrying that there is not fluctuating selection. That there is no variation in resistance across phages - Resistance to ancestral phage by communities without phage has never been observed

Options - Do phage spot tests on some replicates to see if same results hold (whether it is the test) -Re-isolate some replicates - Test resistance of ancestral clones - Test presence of phage in no phage treatments with larger phage volume - Test resistance after T_1

- Am going to use 4 communities for the tests here.
 - 1, 10 (controls that had resistance)
 - 37, 42 communities that had resistance
- Grow each clone up overnight in 200 µl of KB media
- Grow Ancestral clone up overnight in KB media

04/01/2017

- Phage spot tests for each of 4 phage on each clone
 - 20 clones per replicate
 - 80 plates
 - for controls do ancestral phage, their own phage (should be 0) and two other random phages (37 and 42)
- Plate out ancestral to isolate phage
- Re-plate phage from T_2
 - 1, 10, 42 (10⁻² and 10⁻³) 37 (10⁻¹ and 10⁻²)