基础题

开心提示:基础题目,联考大部分题目都是基础内容,大家认真掌握。							
– ,	一、问题求解题						
	1.已知集合 $M = \{0,1,2\}$, $N\{x \mid x = 2a, a \in M\}$, 则集合 $M \cap N = ($)						
	(A)	{0}		(B) $\{0,1\}$		(C) {1,2}	
	(D)	$\{0,2\}$		(E) 以上结论均 ²	不正确		
	2.已知集合 $M = \{3, \log_{2x} 4\}$, $N = \{x, y\}$.若 $M \cap N = \{2\}$, 则 $M \cup N$ 等于 ()						
	(A)	{1,2,3}		(B) $\{1,2,3,4\}$			
	(C)	{-1,1,2,3}		(D) $\{2,3,x,y\}$			
	(E)	{2,3,4}					
	3.已知 $f(x) = x^3 + a^2x^2 + ax - 1$ 能被 $x + 1$ 整除,则实数 a 的值为().						
			(B) 2	(C) -1	(D) -2或1		
	(E)	以上都不正硕	角				
	4. n 为	正整数,计算	$ \overline{4} \left(-2\right)^{2n+1} + 2 \cdot \left(-2\right)^{2n+1} $) ²ⁿ 的结果是().		
	(A)	0	(B) 1	(C) 2^{2n+1}	(D) -2^{2n+1}	(E) 2	
	5.(-3.	$5.\left(-3x^{n}y\right)^{2}\cdot3x^{n-1}y$ 的计算结果是().					
	(A)	$9x^{3n-1}y^2$		(B) $12x^{3n-1}y^3$		(C) $27x^ny^3$	
	(D) $27x^{3n-1}y^3$		(E) $27x^{3n+1}y^3$				
	6.若 <i>a</i>	<i>, b , c</i> 互不	相等的实数,且 ab	$bc=1$,那么 $\frac{a}{ab+}$	$\frac{a}{a+1} + \frac{b}{bc+b}$	$\frac{c}{c+1} + \frac{c}{ca+c+1} =$	
() .						
	(A)	-1	(B) 0	(C) 1	(D) 0或1	(E) ±1	

7.己知 x-2y=-2 , b=-4089 , $2bx^2-8bxy+8by^2-8b$ 的值为 () .

 $a^2 + b^2 + c^2 - ab - bc - ac =$ ().

(A) 0 (B) 1 (C) 2 (D) 3 (E) 2008

8. 已知 a = 2017x + 2018, b = 2017x + 2019, c = 2017x + 2020,则多项式

- (A) 0 (B) 1 (C) 2 (D) 3 (E) 2008

9.已知 $x^2 - 2x - 1 = 0$,则 $2001x^3 - 6003x^2 + 2001x - 7 = ($).

- (A) -2008
- (B) **0**
- (C) 1 (D) 2008 (E) 2009

二、充分性判断题

 $1.x^4 + mx^2 - px + 2$ 能被 $x^2 + 3x + 2$ 整除.

- (1) m = -6, p = 3 (2) m = 3, p = -6

 $2. x^3 - 3px + 2q$ 能被 $x^2 + 2ax + a^2$ 整除.

- (1) $p = -a^2$, $q = a^3$ (2) $p = a^2$, $q = -a^3$

3. x 为实数,有 $\frac{x^{3n}-x^{-3n}}{x^n-x^{-n}}=7$.

- (1) $x^{2n} = 3 2\sqrt{2}$ (2) $x^{2n} = 2 \sqrt{3}$

4.已知x, y, z都是实数, 有x+y+z=0.

- (1) $\frac{x}{a+b} = \frac{y}{b+c} = \frac{z}{c+a}$ (2) $\frac{x}{a-b} = \frac{y}{b-c} = \frac{z}{c-a}$

5.若x, y, z均是不等于1的非零实数, 那么有 $z+\frac{1}{r}=1$.

- (1) $x + \frac{1}{y} = 1$
- (2) $y + \frac{1}{z} = 1$

6. $(1+x)(1+x^2)(1+x^4)(1+x^8)=1+x+x^2+x^3+\cdots+x^{15}$.

(1) x = 1

(2) $x \neq 1$

基础能力题详解

一、问题求解题

- 1. 【解析】D.由题意得 $N = \{0,2,4\}$,故 $M \cap N = \{0,2\}$.
- 2. 【解析】A.由 $M \cap N = \{2\}$ 可知, $\log_{2x} 4 = 2$,所以x = 1,又 $M \cap N = \{2\}$,所以

$$y = 2$$
, $M \cup N = \{1, 2, 3\}$.

3.【解析】A. $f(x) = x^3 + a^2x^2 + ax - 1$ 能被 x + 1 整除 $\Rightarrow f(-1) = a^2 - a - 2 = 0$,解得: a = 2 或 -1.

4. 【解析】A.
$$(-2)^{2n+1} + 2(-2)^{2n} = -2 \cdot (-2)^{2n} + 2(-2)^{2n} = 0$$
.

5.【解析】D.去括号整理即可.

6.【解析】C.由
$$abc = 1$$
可知 $a = \frac{1}{bc}$,所以 $\frac{a}{ab+a+1} + \frac{b}{bc+b+1} + \frac{c}{ca+c+1} =$

$$\frac{\frac{1}{bc}}{\frac{1}{bc} \cdot b + \frac{1}{bc} + 1} + \frac{b}{bc + b + 1} + \frac{c}{\frac{1}{bc} \cdot c + c + 1} = \frac{1}{bc + b + 1} + \frac{b}{bc + b + 1} + \frac{bc}{bc + b + 1} = 1.$$

7. 【解析】B.
$$2bx^2 - 8bxy + 8by^2 - 8b = 2b[(x - 2y + 2)^2 - 4x + 8y - 4 - 4] = 2b[0 - 4(x - 2y + 2)] = 0$$
.

8. 【解析】 D.
$$a^2 + b^2 + c^2 - ab - ac - bc = \frac{1}{2} \left[(a - b)^2 + (b - c)^2 + (c - a)^2 \right] = 3$$
.

9. 【解析】A.
$$2001x(x^2-2x-1)-2001(x^2-2x-1)-2001-7=-2008$$
.

二、充分性判断题

1. 【解析】A. $f(x) = x^2 + 3x + 2 = (x+1)(x+2)$,故 f(-1) = f(-2) = 0,即有 $g(x) = x^4 + mx^2 - px + 2$.

$$g(-1) = g(-2) = 0$$
 , 从而有
$$\begin{cases} (-1)^4 + m \cdot (-1)^2 - p \cdot (-1) + 2 = 0 \\ (-2)^4 + m \cdot (-2)^2 - p \cdot (-2) + 2 = 0 \end{cases}$$
 , 解得 $m = -6$,

p=3, 故只有条件(1)充分.

2.【解析 】B.设
$$x^3 - 3px + 2q = (x^2 + 2ax + a^2)(x+b)$$
,有 $x^3 - 3px + 2q = x^3 + (b+2a)$

$$x^2 + (2ab + a^2)x + a^2b$$
,即 $\begin{cases} b + 2a = 0 \\ -3p = 2ab + a^2 \end{cases}$,消去 b ,有 $\begin{cases} p = a^2, \\ q = -a^3, \end{cases}$ 只有条件(2)充分.

3.【解析】A. $\frac{x^{3n}-x^{-3n}}{x^n-x^{-n}}=\frac{\left(x^n-x^{-n}\right)\left(x^{2n}+1+x^{-2n}\right)}{x^n-x^{-n}}=x^{2n}+1+x^{-2n}$,条件(1),有 $x^{-2n}=3+2\sqrt{2}$,故原式= $3-2\sqrt{2}+3+2\sqrt{2}+1=7$,充分;条件(2),有 $x^{2n}=2-\sqrt{3}$,故 $x^{-2n}=2+\sqrt{3}$,原式= $2-\sqrt{3}+2+\sqrt{3}+1=5$,不充分.

4.【解析】B.条件 (1),令 $\frac{x}{a+b} = \frac{y}{b+c} = \frac{z}{c+a} = t$,则有x = (a+b)t,y = (b+c)t,z = (a+c)t,那么x + y + z = 2(a+b+c)t,不一定为0,不充分;条件 (2),令 $\frac{x}{a-b} = \frac{y}{b-c} = \frac{z}{c-a} = t$,则有x = (a-b)t,y = (b-c)t,z = (c-a)t,有x + y + z = 0充分.

5.【解析】C.显然单独的两个条件都不充分,考虑联合.由条件(2)知, $y = \frac{z-1}{z}$ 代入 到条件(1)中有 $x + \frac{z}{z-1} = 1$,即 $x + \frac{z-1+1}{z-1} = x+1 + \frac{1}{z-1} = 1 \Rightarrow x = \frac{1}{1-z} \Rightarrow \frac{1}{x} = 1-z$,故 $z + \frac{1}{x} = 1$,充分.

6.【解析】D.条件(1), x=1, 代入题干, 得: 左边=16, 右边=16, 充分; 条件(2), 左边× $(1-x)=(1-x)(1+x)(1+x^2)(1+x^4)(1+x^8)=1-x^{16}$

同理

右边×(1-x)= $(1-x)(1+x+x^2+\cdots+x^{15})$ = $1-x^{16}$ =左边×(1-x)充分,选D.