Annales scientifiques de l'É.N.S.

Daniel Bertrand Frits Beukers

Équations différentielles linéaires et majorations de multiplicités

Annales scientifiques de l'É.N.S. 4^e série, tome 18, nº 1 (1985), p. 181-192.

http://www.numdam.org/item?id=ASENS_1985_4_18_1_181_0

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1985, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www.elsevier.com/locate/ansens), implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. scient. Éc. Norm. Sup., 4 série, t. 18, 1985, p. 181 à 192.

ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES ET MAJORATIONS DE MULTIPLICITÉS

PAR DANIEL BERTRAND ET FRITS BEUKERS

RÉSUMÉ. — Nous établissons une majoration des multiplicités, en un ou plusieurs points, de fonctions liées aux solutions d'un système différentiel linéaire sur $P_1(C)$, raffinant ainsi les résultats de Nesterenko, Chudnovsky et Osgood sur le lemme de Shidlovsky. A cet effet, nous étendons au cas de singularités irrégulières une relation globale classique liant les différents exposants des équations différentielles du type de Fuchs.

ABSTRACT. — We establish an upper bound for the order, at one or several points, of certain functions associated to the solutions of a linear differential system on $P_1(C)$. This sharpens previous results of Nesterenko, Chudnovsky and Osgood on Shidlovsky's lemma. To this aim, we extend to the case of irregular singularities a well-known global relation connecting the different exponents of a fuchsian differential equation.

Soient K le corps C(z) des fractions rationnelles à coefficients complexes, m un entier ≥ 0 , et A une matrice carrée d'ordre m+1 à coefficients dans K. On considère le système différentiel

$$(*) Y' = AY.$$

où l'apostrophe désigne la dérivation d/dz, et un vecteur solution $f(f_0, \ldots, f_m)$ de (*), que l'on suppose formé de fonctions analytiques en 0.

Soient par ailleurs N et h deux entiers ≥ 1 , et P un élément de $\mathbb{C}[z, x_0, \ldots, x_m]$, de degré $\le \mathbb{N}$ en z, et homogène de degré h en x_0, \ldots, x_m . On se propose d'étudier l'ordre en 0 de la fonction

$$R(z) = P(z, f_0(z), \dots, f_m(z)).$$

Du fait de (*), le K-espace vectoriel engendré par les dérivées successives de R est de dimension finie sur K. Notons s cette dimension. Elle est majorée par le nombre de monômes de degré total h en f_0, \ldots, f_m linéairement indépendants sur K, et a fortiori, par $\binom{h+m}{m}$. Le résultat que nous avons en vue peut alors s'exprimer de la façon

annales scientifiques de l'école normale supérieure. -0012-9593/85/01 181 12/\$ 3.20/ © Gauthier-Villars

suivante:

Théorème 1. — Il existe deux nombres réels c_1 et c_2 ne dépendant que de A tels que R(z) soit identiquement nulle ou vérifie

$$\operatorname{ord}_{0} \mathbf{R}(z) \leq s \mathbf{N} + c_{1} sh + c_{2} s^{2}$$
.

Une version plus précise de cet énoncé est donnée au paragraphe 1 b ci-dessous. Notons dès à présent qu'il entraı̂ne l'existence d'un nombre réel c ne dépendant que de A tel que, si R(z) n'est pas identiquement nulle, on ait :

$$\operatorname{ord}_{0} \mathbf{R}(z) \leq s \mathbf{N} + ch^{\gamma}, \quad \text{où} \quad \gamma = 2 m.$$

La première majoration de ce type a été obtenue, au moyen d'un profond raffinement des résultats de Shidlovsky [14], par Y. Nesterenko: sous l'hypothèse que f_0, \ldots, f_m ne vérifient pas de relation de dépendance homogène à coefficients dans K, Nesterenko a établi dans [11] l'estimation précédente avec $\gamma = (m+1)^{m+1} + m + 1$. En reprenant ses techniques, D. Brownawell a montré qu'elle restait valable avec $\gamma = (m+1)! + m+1$ (voir [3]), et N'guyen-Ten-Tai [12] a étendu le résultat de Nesterenko au cas où les f_i sont dépendants.

Le présent travail tire sa source de [4] et [13]. Dans [4], G. Chudnovsky établit le théorème ci-dessus sous l'hypothèse que toutes les singularités du système (*) sont régulières. Sa méthode repose sur une égalité fondamentale reliant les différents exposants d'une équation différentielle fuchsienne en toutes ses singularités (voir [5], 15.4 et [4], § 7 et 11). Cette égalité est ici étendue (sous forme d'une inégalité, voir le théorème 3 du paragraphe 2) au cas où (*) admet des singularités irrégulières. C'est dans [13] que C. Osgood a noté l'importance de l'étude des exposants pour de telles singularités, tout au moins au niveau local. Enfin, le rôle du groupe de monodromie dans [4] est ici joué par le groupe de Galois différentiel du système (*), qui fournit une écriture commode de l'équation différentielle minimale satisfaite par la fonction R (voir la proposition 3 du paragraphe 3).

1. Énoncé des résultats

Les notions introduites dans l'alinéa suivant seront utilisées tout au long de l'article. Elles sont à la base du calcul des constantes c_1 et c_2 du théorème 1.

a. Notations, ordres généralisés et rangs. — Soient α un élément de la sphère de Riemann $\mathbf{P}^1(\mathbf{C})$ et ν un entier ≥ 1 . On désigne par z_{α} un paramètre local au voisinage de α , par v_{α} la valuation z_{α} -adique sur le corps $\mathbf{K} = \mathbf{C}(z)$, et par \mathbf{K}_{α} le complété de \mathbf{K} pour la valuation v_{α} : c'est le corps des séries de Laurent formelles en z_{α} à coefficients dans \mathbf{C} . Plus généralement, on note $t = t_{\alpha,\nu}$ un élément d'une clôture algébrique de \mathbf{K}_{α} tel que $t^{\nu} = z_{\alpha}$, et $\mathbf{K}_{\alpha,\nu}$ le corps $\mathbf{K}_{\alpha}(t)$. La valuation v_{α} se prolonge de façon unique en une valuation (à valeurs dans $\nu^{-1}\mathbf{Z}$) sur $\mathbf{K}_{\alpha,\nu}$, que nous noterons encore v_{α} . De même, la dérivation d/dz sur \mathbf{K} se prolonge de façon unique en une dérivation sur \mathbf{K}_{α} continue

4e série − tome 18 − 1985 − n° 1

par la topologie z_{α} -adique, et cette dérivation admet un unique prolongement en une dérivation sur $K_{\alpha,\nu}$, que nous désignerons encore par d/dz (ou par une apostrophe).

Soit par ailleurs Ω l'espace des formes différentielles sur $P_1(C)$, de sorte que $\Omega_{\alpha,\nu} = \Omega \underset{\kappa}{\otimes} K_{\alpha,\nu}$ est un espace vectoriel de dimension 1 sur $K_{\alpha,\nu}$, engendré par la différentielles sur $K_{\alpha,\nu}$, est un espace vectoriel de dimension 1 sur $K_{\alpha,\nu}$, engendré par la différentielles sur $K_{\alpha,\nu}$, engendré par la différentielles sur $K_{\alpha,\nu}$.

tielle dz_{α} de z_{α} . On sait définir l'ordre en α et le résidu en α des éléments de Ω . Ces applications admettent des prolongements naturels à $\Omega_{\alpha,\nu}$, que nous noterons respectivement v_{α} et Rés_{α}: ainsi, pour tout entier rationel m:

$$v_{\alpha}(t^{-m}dz_{\alpha}) = -m/v$$
, $\operatorname{R\acute{e}s}_{\alpha}(t^{-m}dz_{\alpha}) = 0$ si $m \neq v$,
 $\operatorname{R\acute{e}s}_{\alpha}(t^{-v}dz_{\alpha}) = 1$,

et de facon générale :

$$R\acute{e}s_{\alpha}(df/f) = v_{\alpha}(f),$$

pour tout élément f de $K_{\alpha, \nu}^{\times}$. Rappelons (voir [1], § 1) que l'ensemble $d(K_{\alpha, \nu})$ des formes différentielles exactes de $K_{\alpha, \nu}$ coïncide avec le noyau de l'application C-linéaire Rés_{α}, tandis que l'ensemble $d\ln(K_{\alpha, \nu}^{\times})$ des formes différentielles logarithmiques exactes de $K_{\alpha, \nu}^{\times}$ forme le sous-groupe de $\Omega_{\alpha, \nu}$ défini par :

$$d\ln(\mathbf{K}_{\alpha,\nu}^{\times}) = \{df/f; f \in \mathbf{K}_{\alpha,\nu}^{\times}\} = \{\omega \in \Omega_{\alpha,\nu}; v_{\alpha}(\omega) \ge -1, \operatorname{Rés}_{\alpha}(\omega) \in \mathbf{V}^{-1} \mathbf{Z}\}.$$

Notons enfin $\mathscr{K}_{\alpha,\nu}$ l'extension différentielle de $K_{\alpha,\nu}$, de corps des constantes C, engendrée par les solutions de toutes les équations différentielles de la forme $y'=u,\ y'=uy$, où u parcourt $K_{\alpha,\nu}$, ou, de façon équivalente, par une solution $\lambda_{\alpha}=\text{Log }z$ de l'équation différentielle $y'=z^{-1}$, par les solutions $z_{\alpha}[\rho]=z_{\alpha}^{p}$ des équations différentielles $z_{\alpha}y'=\rho\,z'_{\alpha}y$ où ρ parcourt le complémentaire de $\nu^{-1}\,\mathbf{Z}$ dans \mathbf{C} , et par les solutions $\mathbf{E}[\lambda\,z_{\alpha}^{-q}]=\exp(\lambda/t^{p})$ des équations différentielles de la forme $t^{p+\nu}\,y'=-\lambda\,q\,z'_{\alpha}y$ où λ parcourt \mathbf{C}^{\times} , p est un entier rationnel ≥ 1 et $q=p/\nu$. L'ensemble $\mathscr{U}_{\alpha,\nu}$ des éléments de $\mathscr{K}_{\alpha,\nu}^{\times}$ dont la dérivée logarithmique appartient à $\mathbf{K}_{\alpha,\nu}$ (c'est-à-dire des solutions non nulles des équations différentielles de la forme y'=uy, où u appartient à $K_{\alpha,\nu}$) forme un sous-groupe de $\mathscr{K}_{\alpha,\nu}^{\times}$ contenant $K_{\alpha,\nu}^{\times}$; l'espace vectoriel engendré sur \mathbf{C} par $\mathscr{U}_{\alpha,\nu}$ dans $\mathscr{K}_{\alpha,\nu}$ est une sous-algèbre $\mathscr{E}_{\alpha,\nu}$ de $\mathscr{K}_{\alpha,\nu}$ stable sous l'opérateur d/dz, et $\mathscr{K}_{\alpha,\nu}$ n'est autre que le corps des fractions de l'algèbre différentielle $\mathscr{A}_{\alpha,\nu}=\mathscr{E}_{\alpha,\nu}[\lambda_{\alpha}]$ des polynômes en λ_{α} à coefficients dans $\mathscr{E}_{\alpha,\nu}$. En résumé, $\mathscr{K}_{\alpha,\nu}$ est l'ensemble, muni de sa structure de corps différentiel naturelle, des quotients d'expressions de la forme

$$\sum_{i\in I}\sum_{\rho\in E}\sum_{Q\in\mathscr{L}}u_{i,\rho,Q}(t_{\alpha,\nu})z_{\alpha}^{\rho}(\operatorname{Log}z)^{i}\exp(Q(1/t_{\alpha,\nu})),$$

où I désigne un ensemble fini d'entiers ≥ 0 , E un ensemble fini de nombres complexes, \mathscr{L} un ensemble fini de polynômes à coefficients complexes et $u_{i,\rho,Q}$ des éléments de $K_{\alpha,\nu}$. Ces notations étant fixées, on pose :

Définition 1. — Soient r un nombre réel, et q un nombre rationnel tel que p=v q soit un entier ≥ 0 . On dira qu'un élément y de $\mathscr{U}_{\alpha,v}$ est d'ordre généralisé $\geq r$ et de rang $\leq q$ si l'élément

$$\omega = dy/y = (y'/y) dz = (y'/z'_{\alpha}y) dz_{\alpha}$$

de $\Omega_{\alpha,\nu}$ vérifie :

$$v_{\alpha}(\omega) \ge -(q+1), \quad \operatorname{Re}(\operatorname{R\acute{e}s}_{\alpha}(\omega)) \ge r,$$

où $\operatorname{Re}(\rho)$ désigne la partie réelle du nombre complexe ρ . Un élément de $\mathscr{E}_{\alpha,\nu}$ sera dit d'ordre généralisé $\geq r$ et de rang $\leq q$ s'il peut s'écrire comme une combinaison linéaire à coefficients dans $\mathbf C$ d'éléments de $\mathscr{U}_{\alpha,\nu}$ d'ordres généralisés $\geq r$ et de rang $\leq q$. Un élément de $\mathscr{A}_{\alpha,\nu}$ sera dit d'ordre généralisé $\geq r$ et de rang $\leq q$ s'il peut s'écrire comme un polynôme en λ_{α} dont les coefficients sont des éléments de $\mathscr{E}_{\alpha,\nu}$ d'ordres généralisés $\geq r$ et de rangs $\leq q$; un tel élément admet donc une représentation de la forme

$$\sum_{i \in I} \sum_{\rho \in \mathcal{L}} \sum_{Q \in \mathcal{L}} u_{i,\rho,Q}(t_{\alpha,\nu}) z_{\alpha}^{\rho} (\text{Log } z)^{i} \exp(Q(1/t_{\alpha,\nu})),$$

où les éléments de E sont de parties réelles $\geq r$, les polynômes Q sont de degrés $\leq p$, et les $u_{i,\rho,Q}$ sont maintenant des séries formelles en $t_{\alpha,\nu}$ sans termes d'exposant <0 (mais dont le terme constant n'est pas forcément inversible).

On vérifie aisément la cohérence de ces définitions (qui entraînent que la fonction nulle est d'ordre généralisé supérieur ou égal à tout nombre réel, et de rang ≤ 0). De plus, la formule, rappelée plus haut, liant la valuation d'un élément de $K_{\alpha,\nu}^{\times}$ au résidu de sa différentielle logarithmique, montre qu'une fonction analytique au voisinage de α , identifiée par sa série de Taylor à un élément de $\mathcal{A}_{\alpha,\nu}$, est d'ordre généralisé supérieur ou égal à son ordre en α .

b. Calcul des constantes c_1 et c_2 et raffinements du théorème 1. — L'existence et le calcul des constantes c_1 et c_2 du théorème 1 reposent sur un résultat fondamental de la théorie des singularités des équations différentielles linéaires (Thomae, Fabry, Turritin, Hukuhara, Levelt [8], Baldassarri [1], ..., voir [2]), dont nous n'utiliserons que le corollaire suivant.

PROPOSITION 1., — Soient α un élément de $\mathbf{P}_1(\mathbf{C})$ et ν l'entier (m+1)!. Le système différentiel (*) admet dans $\mathcal{K}_{\alpha,\nu}^{m+1}$ un système de m+1 solutions linéairement indépendantes sur \mathbf{C} , dont les composantes sont formées d'éléments de $\mathcal{A}_{\alpha,\nu}$. Il existe donc un nombre réel r_{α} et un nombre rationnel $q_{\alpha} = p_{\alpha}/\nu \ge 0$ tel que toute composante de toute solution de (*) soit un élément de $\mathcal{A}_{\alpha,\nu}$ d'ordre généralisé $\ge r_{\alpha}$ et de rang $\le q_{\alpha}$.

Démonstration. — D'après le théorème de Fabry-Turritin (voir [8], théorème 1, en vertu duquel on pourrait même prendre v=p. p. c. m. $(1,2,\ldots,n)$), il existe une matrice fondamentale de solutions de (*) formée de multiples, par des éléments de $\mathscr{U}_{\alpha,v}$, de vecteurs dont les composantes appartiennent à $K_{\alpha,v}[\lambda_{\alpha}]$. Ce sont donc bien des éléments de $\mathscr{A}_{\alpha,v}$. On notera qu'on peut choisir, d'après le théorème de Cauchy, $r_{\alpha}=q_{\alpha}=0$ dès que α est un nombre complexe où chaque coefficient de la matrice A est défini, et, d'après le théorème de Fuchs, $q_{\alpha}=0$ pour toutes les singularités régulières de (*).

Nous sommes maintenant en mesure de préciser l'énoncé du théorème 1.

Théorème 1 bis. — Soit S_0 le sous-ensemble de $P_1(C)$ formé des pôles des coefficients de la matrice A, du point ∞ et du point 0. Pour tout élément α de S_0 , on désigne par $\{r_\alpha, q_\alpha\}$ un couple de nombres satisfaisant la conclusion de la proposition 1. Le théorème 1

est alors valable avec les choix

$$c_1 = -\sum_{\alpha \in S_0} r_{\alpha};$$
 $c_2 = -1 + \frac{1}{2} \sum_{\alpha \in S_0} (q_{\alpha} + 1).$

La démonstration du théorème 1 donnée dans cet article en fournit sans difficulté diverses généralisations. En voici un exemple, où nous supposons, pour simplifier l'énoncé, que β_1, \ldots, β_l sont des nombres complexes distincts au voisinage desquels la solution $l(f_0, \ldots, f_m)$ de (*) a été étendue par prolongement analytique à partir d'un voisinage de 0, et est analytique.

Théorème 2. — Soit S le sous-ensemble de $P_1(C)$ formé des pôles des coefficients de A, du point ∞ , et des points β_1, \ldots, β_l . Pour tout élément α de S, on désigne par $\{r_\alpha, q_\alpha\}$ un couple de nombres satisfaisant la conclusion de la proposition 1, et on pose :

$$c_1(\mathbf{S}) = -\sum_{\alpha \in \mathbf{S}} r_{\alpha}; \qquad c_2(\mathbf{S}) = -1 + \frac{1}{2} \sum_{\alpha \in \mathbf{S}} (q_{\alpha} + 1).$$

Alors, la fonction R est identiquement nulle ou vérifie :

$$\sum_{i=1}^{l} \operatorname{ord}_{\beta_{i}} \mathbf{R}(z) \leq s \, \mathbf{N} + c_{1}(\mathbf{S}) \, sh + c_{2}(\mathbf{S}) \, s^{2}.$$

Nous concluons ce paragraphe par quelques remarques sur le caractère, effectif ou non, des résultats précédents. On désigne par T(z) un polynôme non nul tel que tous les coefficients de la matrice TA soient des polynômes, et par τ le maximum des degrés de T et de ces coefficients. Par ailleurs, on note l' le nombre des points β_1, \ldots, β_l qui ne sont pas zéros de T(z).

LEMME 2 bis. - Le théorème 2 est valable avec le choix

$$c_2(S) = \tau + \frac{1}{2}l'.$$

Démonstration. — Soit α un élément de $P_1(C)$. La démonstration du théorème de Fabry-Turritin montre qu'on peut choisir pour valeur de q_{α} le rang de Katz (voir [2], lemme 1.1) du système (*) en α. Or celui-ci est par définition majoré par le rang de Poincaré du système (*) relativement à l'opérateur $z_{\alpha}d/dz_{\alpha}$, c'est-à-dire, si $\alpha \neq \infty$, par le plus petit entier $\kappa_{\alpha} \ge 0$ tel que $(z-\alpha)^{\kappa_{\alpha}+1}A(z)$ soit analytique en α , et, si $\alpha = \infty$, par le plus petit entier $\kappa_{\infty} \ge 0$ tel que $u^{\kappa_{\infty}-1}A(u^{-1})$ soit analytique en u=0. Par conséquent, la somme, étendue aux éléments α de l'ensemble S où T s'annule, des expressions $q_{\alpha}+1$ est majorée par le degré de T; de même, $q_{\infty}-1$ peut être majorée par τ ; enfin, les autres points β de S sont des points ordinaires de (*), pour lesquels on peut choisir $q_{\beta}=0$.

La constante c_2 (S) est ainsi effective. Le statut de la constante c_1 (S) est moins clair, bien qu'on dispose d'algorithmes pour la calculer (voir [13], Appendice). Nous rappellerons simplement que si le système (*) correspond à une équation différentielle, et si α en est une singularité régulière, on peut choisir pour r_{α} la plus petite des parties réelles des

racines de son équation indicielle en α : sa valeur absolue est donc effectivement majorable en fonction des hauteurs des coefficients de l'équation différentielle. Dans tous les cas, il est probable que c_1 (S) dépende non seulement des degrés, mais aussi des hauteurs des coefficients de la matrice A (pour d'autres remarques sur l'effectivité, voir [3], [12]).

2. Relations globales entre exposants d'une équation différentielle

Le résultat principal de ce paragraphe est l'inégalité fondamentale énoncée au théorème 3. Comme on le verra, c'est un corollaire presque immédiat du théorème des résidus sur P₁ (voir aussi la remarque 1 ci-dessous).

a. Quelques sorites locales. — On fixe dans cet alinéa un élément α de $\mathbf{P}_1(\mathbf{C})$, et un nombre rationnel $q \ge 0$, dont on note ν un dénominateur, c'est-à-dire un entier >0 tel que p=q ν soit entier. On reprend les notations du paragraphe 1 a.

LEMME 1. — Soient n un entier >0, r_1, \ldots, r_n des nombres réels, et y_1, \ldots, y_n des éléments de $\mathscr{A}_{\alpha,\nu}$ de rang $\leq q$ et d'ordres généralisés $\geq r_1, \ldots, r_n$ respectivement. Alors, pour tout n-uple (k_1, \ldots, k_n) d'entiers ≥ 0 , $y_1^{k_1} \ldots y_n^{k_n}$ est un élément de $\mathscr{A}_{\alpha,\nu}$ de rang $\leq q$ et d'ordre généralisé $\geq k_1 r_1 + \ldots + k_n r_n$.

 $D\acute{e}monstration$. — Le résultat est clair si y_1, \ldots, y_n appartiennent au groupe $\mathscr{U}_{\alpha,\nu}$. On passe de là au cas général en écrivant chaque y_i comme une combinaison linéaire de puissances (non nécessairement distinctes) de λ_{α} à coefficients dans $\mathscr{U}_{\alpha,\nu}$.

COROLLAIRE. — Soient k un entier rationnel, r un nombre réel, et y un élément de $\mathcal{A}_{\alpha,\nu}$ de rang $\leq q$ et d'ordre généralisé $\geq r$. Alors, $z_{\alpha}^k y$ est un élément de $\mathcal{A}_{\alpha,\nu}$ de rang $\leq q$ et d'ordre généralisé $\geq r + k$.

 $D\acute{e}monstration$. — z_{α} est un élément de $\mathscr{A}_{\alpha,\nu}$ de rang $\leq 0 \leq q$ et d'ordre généralisé supérieur ou égal à sa valuation, qui vaut 1. On conclut au moyen du lemme 1.

LEMME 2. — Soient l un entier ≥ 0 , r un nombre réel, et y un élément de $\mathcal{A}_{\alpha,\nu}$ de rang $\leq q$ et d'ordre généralisé $\geq r$. Alors, la dérivée l-ième $(d/dz)^l y = y^{(l)}$ de y est un élément de $\mathcal{A}_{\alpha,\nu}$ de rang $\leq q$ et d'ordre généralisé $\geq r - l(q+1)$ si $\alpha \neq \infty$ [resp. d'ordre généralisé $\geq r - l(q-1)$ si $\alpha = \infty$].

Démonstration. — Par récurrence, il suffit de traiter le cas l=1. Par ailleurs, le corollaire au lemme 1, joint à la relation $y'=-u^2\left(d/du\right)y$, où u désigne le paramètre local $z_{\alpha}=z^{-1}$ en $\alpha=\infty$, permet de se restreindre au cas où $\alpha\neq\infty$.

Dans ces conditions, supposons tout d'abord que y appartienne à $\mathcal{U}_{\alpha,\nu}$ sans être constant, de sorte qu'il existe un élément u de $K_{\alpha,\nu}$, de la forme

$$u(t_{\alpha,\nu}) = \sum_{i=Q}^{+\infty} u_i t_{\alpha,\nu}^i, \quad \text{où} \quad u_Q \neq 0, \quad Q \geq -(p+\nu), \quad \operatorname{Re}(u_{-\nu}) \geq r,$$

tel que y' = uy. Les relations

$$v_{\alpha}(u'/u) = -1$$
, $R \acute{e}s_{\alpha}((u'/u) dz) = Q/v$, $y''/y' = u + u'/u$,

 4^{e} série - tome $18 - 1985 - n^{\circ}$ 1

entraînent que (y''/y') dz est un élément ω de $\Omega_{\alpha y}$ vérifiant :

$$v_{\alpha}(\omega) \ge -(q+1)$$
, $\operatorname{Re}(\operatorname{R\acute{e}s}_{\alpha}(\omega)) \ge r - (q+1)$;

y' est donc un élément de $\mathscr{U}_{\alpha,\nu}$ de rang $\leq q$ et d'ordre généralisé $\geq r - (q+1)$.

Dans le cas général, y s'écrit sous la forme $\sum_{i\in I} y_i \lambda_{\alpha}^i$, où I est un ensemble fini d'entiers

 ≥ 0 , et les y_i appartiennent à $\mathcal{U}_{\alpha,\nu}$. Alors

$$y' = \sum_{i \in I} y_i' \lambda^i + \sum_{i \in I} i z^{-1} y_i \lambda_{\alpha}^{j_i},$$

où $j_i = i - 1$ ou 0 suivant que i est ≥ 1 ou nul, et le cas précédemment traité, joint au corollaire au lemme 1, permet de conclure.

PROPOSITION 2. — Sous les hypothèses du lemme 1, le wronskien $W(y_1, \ldots, y_n)$ de la famille (y_1, \ldots, y_n) est un élément de $\mathcal{A}_{\alpha, \nu}$ de rang $\leq q$ et d'ordre généralisé supérieur ou égal à

$$r_1 + \ldots + r_n - n(n-1)(q+1)/2$$
 si $\alpha \neq \infty$,

$$r_1 + \ldots + r_n - n(n-1)(q-1)/2$$
 si $\alpha = \infty$.

Démonstration. — Ce wronskien s'exprime en effet comme une combinaison linéaire de monômes de la forme $y_1^{(l_1)} \dots y_n^{(l_n)}$, où l'ensemble $\{l_1, \dots, l_n\}$ coïncide à l'ordre près, avec l'ensemble des n-1 premiers entiers ≥ 0 , de sorte que $\sum_{i=1}^n l_i$ est égal à n(n-1)/2, et

la proposition s'obtient en combinant les lemmes 1 et 2.

b. Le théorème des résidus. — Dans cet alinéa, on considère un entier $n \ge 0$ et un opérateur différentiel d'ordre n

$$L = b_0(z) (d/dz)^n + b_1(z) (d/dz)^{n-1} + \dots + b_n(z),$$

à coefficients dans l'anneau C[z].

Définition 2. — Soient α un élément de $\mathbf{P}_1(\mathbf{C})$, q un nombre rationnel ≥ 0 , et $\{r_1,\ldots,r_n\}$ un n-uple de nombre réels. On dira que l'opérateur différentiel \mathbf{L} est de rang $\leq q$ en α et que $\{r_1,\ldots,r_n\}$ est un système admissible d'exposants de \mathbf{L} en α s'il existe un dénominateur \mathbf{v} de q tel que l'équation différentielle $\mathbf{L} \mathbf{y} = 0$ admette dans le corps $\mathcal{K}_{\alpha,\mathbf{v}}$ un système fondamental de q solutions q, q, q linéairement indépendantes sur q, vérifiant la propriété suivante : q, est, pour chaque indice q, un élément de q, de rang q et d'ordre généralisé q.

La proposition 1 assure, pour tout point α , l'existence d'un nombre rationnel q_{α} et d'une famille de nombres réels $\{r_{\alpha,1},\ldots,r_{\alpha,n}\}$ satisfaisant les conditions de cette définition, avec v=n!. Nous utiliserons ce fait pour énoncer le théorème 2 ci-dessous, mais nous n'en ferons pas directement usage par la suite. On notera que, d'après le théorème de Cauchy, la famille $\{0,1,\ldots,n-1\}$ est un système admissible d'exposants pour L en tout point ordinaire de l'équation différentielle Ly=0; plus généralement, l'ensemble des exposants (c'est-à-dire des racines, répétées suivant leurs multiplicités, de l'équation indicielle) de L

en une singularité régulière α en est un système admissible d'exposants; dans ces cas, on peut bien entendu choisir $q_{\alpha} = 0$.

Dans ces conditions, on a:

Théorème 3. — Soit S un ensemble fini de points de $\mathbf{P}_1(\mathbf{C})$ contenant les racines de $b_0(z)$ et le point ∞ . Pour tout élément α de S, on note q_{α} un nombre rationnel ≥ 0 et $\{r_{\alpha,1},\ldots,r_{\alpha,n}\}$ un n-uple de nombres réels tels que L soit de rang $\leq q_{\alpha}$ en α et admette $\{r_{\alpha,1},\ldots,r_{\alpha,n}\}$ pour système admissible d'exposants en α . Alors

$$\sum_{\alpha \in \mathbb{S}} \left(\left(\sum_{i=1}^{n} r_{\alpha,i} \right) - (q_{\alpha} + 1) n (n-1)/2 \right) \leq -n (n-1).$$

Démonstration. — Soient α un élément de S et $\{y_{\alpha,1},\ldots,y_{\alpha,n}\}$ un système fondamental de solutions de Ly=0 vérifiant les conditions de la définition 2. Comme il est bien connu, leur wronskien W_{α} est une solution non nulle de l'équation différentielle $w'=-(b_1(z)/b_0(z))w$. Ainsi, la forme différentielle $(W'_{\alpha}/W_{\alpha})dz$ coïncide avec l'élément $\omega=-(b_1/b_0)dz$ de Ω , et leurs résidus en α sont égaux. De la définition 1 et de la proposition 2, on tire donc :

$$\operatorname{Re}\left(\operatorname{R\acute{e}s}_{\alpha}\omega\right) \geq \left(\sum_{i=1}^{n} r_{\alpha,i}\right) - (q_{\alpha}+1) \, n \, (n-1)/2 \quad \text{si} \quad \alpha \neq \infty,$$

$$\operatorname{Re}\left(\operatorname{R\acute{e}s}_{\alpha}\omega\right) \geq \left(\sum_{i=1}^{n} r_{\alpha,i}\right) - (q_{\alpha}-1) n(n-1)/2 \quad \text{si} \quad \alpha = \infty.$$

Mais puique S contient l'ensemble des pôles de la forme différentielle ω , le théorème des résidus sur $P_1(C)$ fournit l'égalité

$$\operatorname{Re}\left(\sum_{\alpha\in S}\operatorname{R\acute{e}s}_{\alpha}\omega\right)=\sum_{\alpha\in S}\operatorname{Re}\left(\operatorname{R\acute{e}s}_{\alpha}\omega\right)=0,$$

et le théorème 3 s'obtient en sommant terme à terme les inégalités précédentes.

Nous utiliserons le théorème 3, sous la forme moins précise suivante.

COROLLAIRE. — Le théorème 3 est encore valable si l'ensemble fini S est astreint seulement à contenir le point ∞ et toutes les singularités non apparentes de L.

Démonstration. — Les singularités apparentes de L (à distance finie) sont des racines de $b_0(z)$ en lesquelles L admet un système fondamental de solutions analytiques. Un tel point α est nécessairement une singularité régulière de L, où les exposants de L sont des entiers ≥ 0 et distincts, donc de somme > n(n-1)/2, de sorte qu'on peut alors choisir $q_{\alpha}=0$ et un système admissible d'exposants de somme > n(n-1)/2. Les contributions

$$\left(\sum_{i=1}^{n} r_{\alpha,i}\right) - \left(q_{\alpha} + 1\right) n \left(n - 1\right) / 2,$$

des singularités apparentes α de L (à distance finie) à la somme étudiée au théorème 3 sont ainsi des nombres entiers >0, et l'inégalité du théorème 3 vaut encore si on les omet.

 4^{e} série — tome $18 - 1985 - n^{\circ} 1$

Remarque 1. — Le théorème 3 étend une égalité classique sur la somme des exposants, en ses différentes singularités, d'un opérateur différentiel fuchsien sur $P_1(C)$ (voir [4], [5]). On sait en fait définir les exposants d'un opérateur différentiel en une singularité irrégulière, et il est possible d'exprimer (et non simplement de majorer) leur somme en fonction d'invariants plus précis (voir [9]) que les rangs q_{α} . Ce raffinement (et sa généralisation aux opérateurs différentiels sur les surfaces de Riemann compactes) ne sera pas étudié ici.

3. Démonstration des théorèmes 1 et 2

On reprend les notations de l'introduction relatives au système différentiel (*), au polynôme P et à la fonction R qu'on suppose non identiquement nulle (sans quoi il n'y a rien à démontrer). On note \mathcal{L}_R l'opérateur différentiel à coefficients dans K = C(z), de terme dominant 1 et d'ordre minimal tel que \mathcal{L}_R R = 0: \mathcal{L}_R est un générateur de l'idéal à gauche de l'anneau K[d/dz] formé des opérateurs annulant R; d'après la définition de l'entier s donnée dans l'introduction, il est d'ordre s.

Outre le théorème 3, l'outil principal de ce paragraphe est la théorie de Galois différentielle, dont nous rappelons tout d'abord certains résultats.

a. Théorie de Galois différentielle et étude de \mathcal{L}_R . — Soient v l'entier (m+1)! et $F=F_0$ le sous-corps du corps différentiel $\mathcal{K}_{0,v}$ engendré sur K par les composantes de toutes les solutions du système (*) dans $\mathcal{K}_{0,v}^{m+1}$ (voir § 1 a). D'après la proposition 1, (*) admet dans F^{m+1} un système de m+1 solutions linéairement indépendantes sur C. D'après le lemme 1 de [10] (ou, plus directement, d'après le lemme du vecteur cyclique — voir [1], lemme 1.4 — en vertu duquel le système (*) est K-équivalent à une équation différentielle d'ordre m+1), l'extension différentielle F/K est une extension de Picard-Vessiot. En particulier, si $G=Gal_{diff}(F/K)$ désigne le groupe des automorphismes du corps F fixant K et commutant à la dérivation d/dz (voir [6], [7]), tout élément de F fixé par G appartient à K.

Plus généralement, pour tout point α de $\mathbf{P}_1(\mathbf{C})$, nous désignerons par \mathbf{F}_{α} le sous-corps de $\mathscr{K}_{\alpha,\nu}$ engendré par les composantes de toutes les solutions de (*) dans $\mathscr{K}_{\alpha,\nu}^{m+1}$. D'après la théorie de Picard-Vessiot, il existe un *isomorphisme* φ_{α} de \mathbf{F} sur \mathbf{F}_{α} fixant \mathbf{K} et commutant aux actions de la dérivation d/dz sur \mathbf{F} et sur \mathbf{F}_{α} . Un tel isomorphisme permet d'identifier les groupes \mathbf{G} et $\mathbf{Gal}_{\mathrm{diff}}(\mathbf{F}_{\alpha}/\mathbf{K})$.

Les coefficients de la solution ${}^{t}(f_0, \ldots, f_m)$ de (*) considérée dans l'introduction, et par conséquent la fonction R, seront désormais identifiées, par le biais de leurs séries de Taylor en 0, à des éléments de F. Dans ces conditions, les images $\sigma(R)$ de l'élément R de F par les différents éléments de G vérifient

$$\mathcal{L}_{\mathbf{R}}(\sigma(\mathbf{R})) = \sigma(\mathcal{L}_{\mathbf{R}}(\mathbf{R})) = 0,$$

puisque ces automorphismes commutent à la dérivation. Elles engendrent donc dans F un C-espace vectoriel V de dimension $n \le s$, non nulle car R est non nul. Soient $\{R_1 = R, \}$

 $R_2 = \sigma_2(R), \ldots, R_n = \sigma_n(R)$ une base de V formée d'images de R sous G, et \mathcal{L} l'opérateur différentiel défini par

$$\mathcal{L} y = \frac{1}{\mathbf{W}(\mathbf{R}_1, \dots, \mathbf{R}_n)} \begin{pmatrix} y & y' & \dots & y^{(n)} \\ \mathbf{R}_1 & \mathbf{R}_1' & \dots & \mathbf{R}_1^{(n)} \\ \vdots & & & \vdots \\ \mathbf{R}_n & \mathbf{R}_n' & \dots & \mathbf{R}_n^{(n)} \end{pmatrix},$$

où W désigne le wronskien.

PROPOSITION 3. — Avec les notations introduites ci-dessus, les opérateurs différentiels \mathscr{L} et $\mathscr{L}_{\mathbf{R}}$ coïncident. En particulier, leurs ordres n et s sont égaux.

Démonstration. — A tout élément σ de G, la représentation naturelle de G sur V relativement à la base $\{R_1, \ldots, R_n\}$ permet d'associer un élément A_{σ} de $GL_n(C)$ tel que

$${}^{t}(\sigma(R_1),\ldots,\sigma(R_n)) = A_{\sigma}{}^{t}(R_1,\ldots,R_n),$$

et donc tel que, pour tout entier $l \ge 0$:

$${}^{t}(\sigma(R_{1}^{(l)},\ldots,\sigma(R_{n}^{(l)}))=A_{\sigma}{}^{t}(R_{1}^{(l)},\ldots,R_{n}^{(l)}).$$

Par conséquent, l'image par σ de chacun des mineurs de la première ligne du déterminant d'ordre n+1 apparaissant dans la définition de $\mathscr L$ est égale à son multiple par le déterminant de A_{σ} . Il en résulte que chacun des coefficients de $\mathscr L$ est un élément de F fixé par G, et donc un élément de K. Ainsi, $\mathscr L$ appartient à l'anneau K[d/dz] et vérifie $\mathscr L$ $R = \mathscr L$ $R_1 = 0$. Donc $\mathscr L_R$ divise à gauche $\mathscr L$ dans K[d/dz], et $s \le n$. Mais alors, s = n, et puisque $\mathscr L$ et $\mathscr L_R$ admettent tous deux 1 pour terme dominant, c'est que $\mathscr L = \mathscr L_R$.

COROLLAIRE. — Pour tout point α de $\mathbf{P}_1(\mathbf{C})$, il existe s solutions ${}^t(f_{\alpha,0,j},\ldots,f_{\alpha,m,j})$ de (*) dans $\mathbf{F}_{\alpha}^{m+1}$ telles que les s éléments $\mathbf{P}(z,f_{\alpha,0,j},\ldots,f_{\alpha,m,j})$ de \mathbf{F}_{α} , où $j=1,\ldots,s$, forment un système fondamental de solutions de l'équation différentielle \mathcal{L} y=0.

Démonstration. — Pour $\alpha=0$, posons, avec les notations précédant la définition de \mathscr{L} et la convention que σ_1 est l'identité :

$${}^{t}(\sigma_{i}(f_{0}), \ldots, \sigma_{i}(f_{m})) = {}^{t}(f_{0,0,i}, \ldots, f_{0,m,i})$$
 où $j = 1, \ldots, s$.

Alors, $R_j = \sigma_j(R) = P(z, f_{0,0,j}, \ldots, f_{0,m,j})$, et la proposition 3 assure que l'assertion du corollaire est bien vérifiée en $\alpha = 0$. On passe de là au cas général en appliquant l'isomorphisme différentiel φ_α de F sur F_α à chacune des solutions $(f_{0,0,j}, \ldots, f_{0,m,j})$ pour $j = 1, \ldots, s$.

Remarque 2. — La considération du groupe de Galois différentiel de (*) permet ainsi non seulement de supprimer l'hypothèse d'indépendance homogène des coordonnées f_0, \ldots, f_m sur K (voir [11]), mais aussi de calculer directement, dans des cas particuliers, l'ordre s apparaissant dans l'énoncé du lemme de Siegel-Shidlovsky ([14]; voir à ce propos [3], [10] et [12]). De façon moins fondamentale, elle fournit également la possibilité de remplacer C par un corps algébriquement clos, de caractéristique nulle, quelconque.

b. Fin de la démonstration. — Pour tout nombre réel r, nous noterons $\{(r)\}$ (resp. $\{(r)\}'$) le s-uple [resp. le (s-1)-uple] dont toutes les composantes sont égales à r. D'après

la proposition 1, chacune des coordonnées $f_{\alpha,i,j}$ apparaissant dans le corollaire à la proposition 3 est un élément de $\mathscr{A}_{\alpha,\nu}$ d'ordre généralisé $\geqq r_{\alpha}$ et de rang $\leqq q_{\alpha}$, et on déduit du lemme 1, et de son corollaire, que $P(z,f_{\alpha,0,j},\ldots,f_{\alpha,m,j})$ est un élément de $\mathscr{A}_{\alpha,\nu}$ de rang $\leqq q_{\alpha}$, et d'ordre généralisé $\geqq hr_{\alpha}$ si $\alpha \neq \infty$ (resp. $hr_{\alpha}-N$ si $\alpha=\infty$). En reprenant la définition 2, on déduit alors du corollaire à la proposition 3 que l'opérateur différentiel \mathscr{L}_R est de rang $\leqq q_{\alpha}$ en α , et que, pour $\alpha \neq \infty$ (resp. pour $\alpha=\infty$), $\{(hr_{\alpha})\}$ (resp. $\{(hr_{\alpha}-N)\}$) en est un système admissible d'exposants en α .

Ces estimations sont valables pour tout point α de $\mathbf{P}_1(\mathbf{C})$. Mais elles peuvent être affinées en $\alpha=0$ (ou, dans l'optique du théorème 2, en $\alpha=\beta_1,\ldots,\beta_l$; voir plus bas). En effet, \mathscr{L}_R admet en $\alpha=0$ une solution non nulle R qui s'identifie à un élément de $\mathscr{A}_{0,\nu}$ de rang $\leq 0 \leq q_0$ et d'ordre généralisé supérieur ou égal à son ordre ord $_0$ R (z) en 0, en vertu de la remarque concluant le paragraphe 1 a. Par conséquent, $\{\operatorname{ord}_0 R, \{(hr_0)\}'\}$ est un système admissible d'exposants de \mathscr{L}_R en 0.

Plaçons-nous, plus généralement, sous les hypothèses du théorème 2 : pour $\beta = \beta_1, \ldots, \beta_l$, un chemin joignant 0 à β a été fixé, et l'image de ${}^t(f_0, \ldots, f_m)$ par le prolongement analytique π_{β} correspondant est analytique en β . Comme cette image est solution de (*), ses composantes appartiennent au corps F_{β} , et π_{β} définit un homomorphisme différentiel injectif de K (f_0, \ldots, f_m) dans F_{β} (qu'on peut d'ailleurs prolonger en un isomorphisme du type ϕ_{β}). Par conséquent, $\pi_{\beta}(R)$ est une solution non nulle de l'équation différentielle $\mathcal{L} y = 0$ dans F_{β} , et est analytique en β . Son ordre en β étant, par définition, l'ordre de la fonction R(z) en β , le raisonnement précédent montre que $\{ \operatorname{ord}_{\beta} R, \{ (hr_{\beta}) \}' \}$ est un système admissible d'exposants de \mathcal{L}_R en β .

Considérons alors l'ensemble S_0 du théorème 1 bis, ou, plus généralement, l'ensemble S du théorème 2. D'après sa définition, tout élément α du complémentaire de S dans $P_1(C)$ est un point ordinaire de système (*). En particulier, toutes les solutions de (*) y sont analytiques. Le corollaire à la proposition 3 montre alors que toutes les solutions de \mathscr{L}_R en un tel point sont analytiques. En d'autres termes, α est soit un point ordinaire soit une singularité apparente de \mathscr{L}_R , et l'ensemble S contient, avec les points β_1, \ldots, β_l et ∞ , toutes les singularités non apparentes de \mathscr{L}_R . Il est donc justifiable du corollaire au théorème 3, qui entraîne, en vertu des estimations précédentes :

$$(\sum_{\alpha \in S - \{\beta_1, \dots, \beta_l, \infty\}} (sh \, r_\alpha - (q_\alpha + 1) \, s \, (s - 1)/2))$$

$$+ (s \, (hr_\infty - N) - (q_\infty + 1) \, s \, (s - 1)/2)$$

$$+ \sum_{i=1}^l (\operatorname{ord}_{\beta_i} R + (s - 1) \, hr_{\beta_i} - (q_{\beta_i} + 1) \, s \, (s - 1)/2) \le -s \, (s - 1)/2,$$

d'où:

$$\sum_{i=1}^{l} \operatorname{ord}_{\beta_{i}} \mathbf{R}(z) \leq s \, \mathbf{N} + (-\sum_{\alpha \in \mathbf{S}} r_{\alpha}) \, sh + (-2 + \sum_{\alpha \in \mathbf{S}} (q_{\alpha} + 1)) \, s \, (s - 1)/2.$$

Les théorèmes 2, 1 bis et 1 sont donc démontrés.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

BIBLIOGRAPHIE

- [1] F. BALDASSARRI, Differential Modules and Singular Points of p-adic Differential Equations (Advances in Maths, vol. 44, 1982, p. 155-179).
- [2] D. Bertrand, Travaux récents sur les points singuliers des équations différentielles linéaires [Sém. Bourbaki, n° 538, 1979 (= Springer L.N., n° 770, 228-243)].
- [3] D. Brownawell, Effectivity in Independence Measures for Values of E-Functions [J. Australian M.S. (à paraître)].
- [4] G. Chudnovsky, Rational and Padé Approximations to Solutions of Linear Differential Equations and the Monodrony Theory [Les Houches Lectures, 1979 (= Springer L.N. in Physics, n° 126, p. 136-169)]. Voir aussi: D. et G. Chudnovsky, Rational approximations to solutions of linear differential equations (Proc. Nat. Acad. Sc. U.S.A., vol. 80, 1983, p. 5158-5162).
- [5] E. INCE, Ordinary Differential Equations, Dover repr., 1956.
- [6] N. KATZ, A Conjecture in the Arithmetic Theory of Differential Equations (Bull. Soc. math. Fr., t. 110, 1982, p. 203-239 et 347-348).
- [7] E. KOLCHIN, Algebraic Matrix Groups and the Picard-Vessiot Theory of Homogeneous Linear Ordinary Differential Equations (Ann. Math., vol. 49, 1948, p. 1-42).
- [8] A. LEVELT, Jordan Decomposition for a Class of Singular Differential Operators (Arkiv for Math., vol. 13, 1975, p. 1-27).
- [9] B. Malgrange, Remarques sur les équations différentielles à points singuliers irréguliers [Sém. Goulaouic-Schwartz, 1977, n° 25 (=Springer L.N. n° 712, p. 77-86)].
- [10] Y. NESTERENKO, Sur l'indépendance algébrique des composantes des solutions d'un système différentiel [Izv. A.N. S.S.S.R., vol. 38, 1974, p. 495-512 (en russe)].
- [11] Y. NESTERENKO, Bornes pour l'ordre des zéros de fonctions d'une certaine classe... [Izv. A.N. S.S.S.R., vol. 41, 1977, p. 253-284 (en russe)].
- [12] N'GUYEN-TIEN-TAI, Sur les bornes des ordres des zéros de polynômes en des fonctions analytiques... [Mat. Sbornik, vol. 120, 1983, p. 112-142 (en russe)].
- [13] C. OSGOOD, Nearly Perfect Systems and Effective Generalizations of Shidlovski's Theorem (J. Number Th., vol. 13, 1981, p. 515-540).
- [14] A. Shidlovsky, Sur un critère d'indépendance algébrique des valeurs des fonctions d'une certaine classe [Izv. A.N. S.S.S.R., vol. 23, 1959, p. 35-66 (en russe)].

(Manuscrit reçu le 16 décembre 1983, révisé le 21 mai 1984.)

D. BERTRAND, Université de Paris-VI, Mathématiques, Tour 46, 4, place Jussieu, 75230 Paris Cedex 05, France.

F. BEUKERS, Rijksuniversiteit te Leiden, Wiskunde u. Informatica, Postbus 9512, 2300 RA Leiden, Pays-Bas.