Precalculus

Factor cubic with one rational and two real roots using its plot

Todor Milev

2019

2019

Example

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

(x - 3)(x² + 2x - 2) = 0

The graph appears to intersect the *x* axis at:

 $-\sqrt{3}-1$, $\sqrt{3}-1$, 3. What are the two roots besides 3?

Quotient:
$$x^2 + 2x - 2$$

 $x - 3$ $x^3 - x^2 - 8x + 6$
 $x^3 - 3x^2$
 $2x^2 - 8x + 6$
 $2x^2 - 6x$
 $2x + 6$
Remainder: 0

Example

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$

$$(x - 3)(x^{2} + 2x - 2) = 0$$

$$x - 3 = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1}$$

$$x = 3 \quad x = \frac{-2 \pm \sqrt{12}}{2}$$

$$x = \frac{-2 \pm 2\sqrt{3}}{2} = -1 \pm \sqrt{3}.$$

The graph appears to intersect the x axis at: $-\sqrt{3}-1, \sqrt{3}-1, 3$. What are the two roots besides 3? Final answer:

$$x = 3$$
 or $x = -1 - \sqrt{3}$ or $x = -1 + \sqrt{3}$.