Learning the Semantics of Structured Data Sources

Mohsen Taheriyan

Department of Computer Science

Information Sciences Institute

USC Viterbi School of Engineering

Dissertation Committee

Craig Knoblock (PhD Advisor)

Cyrus Shahabi

Pedro Szekely

Viktor Prasanna (EE Department)

Motivation

Explicit semantics is missing in many of the structured sources

Employee? CEO?

	name		date	city	state	workplace
1	Fred Collin	ns	Oct 1959	Seattle	WA	Microsoft
2	Tina Peter	son	May 1980	New York	NY	Google

Person?

Birth date?

Birth city?

Organization? Death date?

Work city?

Employment date?

How to express the intended meaning of data?

Map the Source to the Domain Ontology

Describe sources using classes & relationships in an ontology

Domain Ontology

Source

	name	date	city	state	workplace
1	Fred Collins	Oct 1959	Seattle	WA	Microsoft
2	Tina Peterson	May 1980	New York	NY	Google

Semantic Types

Relationships

Semantic Model

Key ingredient to automate

Source discovery

Data integration

Publish knowledge graphs

Problem:

How to automate building semantic models for structured sources?

Thesis Statement

The knowledge of previously modeled sources as well as the semantic data available in the Linked Open Data (LOD) cloud can be leveraged to learn accurate semantic models of structured data sources, enabling automated source discovery and data integration.

Outline

- Semi-automatically building semantic models
- Learning semantics models from known models
- Inferring semantic relations from LOD
- Related Work
- Discussion & Future Work

Semi-automatically Building Semantic Models

Contribution: a graph-based approach to extract implicit relationships

Approach

[Knoblock et al, ESWC 2012]

Implemented in Karma

http://www.isi.edu/integration/karma

@KarmaSemWe

Source

	name	date	city	state	workplace
1	Fred Collins	Oct 1959	Seattle	WA	Microsoft
2	Tina Peterson	May 1980	New York	NY	Google

Domain Ontology

Goal: Find a semantic model for the source (map the source to the ontology)

[Krishnamurthy et al., ESWC 2015]

- 1. User Specifies
- 2. Systems learns

workplace

Google

Microsoft

Amazon

•••

employer

Facebook

Apple

Google

•••

workplace

Google

Microsoft

Amazon

•••

Semantic Labeling Approach

- Each semantic type: label
- Each data column: document
- Textual Data
 - Compute TF/IDF vectors for documents
 - Compare documents using Cosine Similarity between TF/IDF vectors
- Numeric Data
 - Use Statistical Hypothesis Testing
 - Intuition: distribution of values in different semantic types is different, e.g., temperature vs. population
- Return Top-k suggestions based on the confidence scores

Construct a Graph

Construct a graph from semantic types and ontology

Construct a Graph

Construct a graph from semantic types and ontology

Inferring the Relationships

Select minimal tree that connects all semantic types

A customized Steiner tree algorithm

Result in Karma

name ▼	date ▼	city →	state ▼	workplace ▼
Fred Collins	Oct 1959	Seattle	WA	Microsoft
Tina Peterson	May 1980	New York	NY	Google
Richard Smith	Feb 1975	Los Angeles	CA	Apple

Refining the Model

Impose constraints on Steiner Tree Algorithm

- Change weight of selected links to ε
- Add source and target of selected link to Steiner nodes

Final Semantic Model

name ▼	date ▼	city ▼	state ▼	workplace ▼
Fred Collins	Oct 1959	Seattle	WA	Microsoft
Tina Peterson	May 1980	New York	NY	Google
Richard Smith	Feb 1975	Los Angeles	CA	Apple

Evaluation

Evaluation Dataset	EDM
# sources	29
# classes in the ontologies	119
# properties in the ontologies	351
# nodes in the gold standard models	473
# links in the gold standard models	444

- Measured the user effort in Karma to model the sources
- Started with no training data
- User actions
 - Assign/Change semantic types
 - Change relationships

Evaluation

source	columns	Choose Type	Change Link	Time (min)
s1	7	7	1	3
s2	12	5	2	6
s3	4	0	0	2
s4	17	5	6	8
s 5	14	4	6	7
s6	18	4	4	7
s7	14	1	4	6
s8	6	0	4	3
•••	•••	•••	•••	•••
s29	10	2	1	3
Total	331	56	92	128

Avg. min per source: 4.4 minutes

Avg. # user actions per column: 148/331=0.44

Limitation

 This approach does not learn the changes done by the user in <u>relationships</u>

 User has to go through the refinement process each time

Learning Semantic Models

Contribution: exploiting known semantic models to learn relationships

Main Idea

Sources in the same domain often have similar data

Harvest Home

First Previous 1 2 3 .. 715 716

Next Last

view lightbox

Geographic location:

COURT OF BENIN, EDO CULTURE

Nigeria

Commemorative Head of a King

16th-17th century Copper alloy

11 1/2 x 9 x 9 inches

The Museum of Fine Arts, Houston

Museum purchase with funds provided by the Alice Pratt Brown Museum Fund and gift of Oliver E. and Pamela F. Cobb

Department of the Arts of Africa, Oceania, & the Americas

Arts of Africa

ABOUT

The most important Benin artworks were life-size heads of the *obas*, the spiritual and corporeal kings of Benin. Ordered in pairs by every new king to honor his predecessor, these heads were arranged symmetrically on altars as representations of the institution of divine kingshin. This king's head dates

Not on view

Exploit knowledge of known semantic models to hypothesize a semantic model for a new sources

NEXT WORK

Domain: Museum Data

Domain ontologies: <u>EDM SKOS FOAF AAC ORE ElementsGr2 DCTerms</u>

Source: Dallas Museum of Art → dma(title,creationDate,name,type)

Domain: Museum Data

Domain ontologies: <u>EDM SKOS FOAF AAC ORE ElementsGr2 DCTerms</u>

Source: National Portrait Gallery → npg(name,artist,year,image)

Domain: Museum Data

Domain ontologies: <u>EDM SKOS FOAF AAC ORE ElementsGr2 DCTerms</u>

Source: Detroit Institute of Art → dia(title,credit,classification,name,imageURL)

	•	•		•
title ▼	credit ▼	classification ▼	name ▼	imageURL ▼
	ШШШ		1000000	ШШШ
Indian Telegraph	Formerly in the collection of:The artist's student, Mrs. M. Noble Brainard, 1868-	Paintings	John Mix Stanley	http://www.dia.org/us S1.jpg
Winter Landscape	Empty	Paintings	Mortimer L. Smith	http://www.dia.org/us S1.jpg
The River Seine	Theodore Scott DaboDIA in 1906	Paintings	Theodore Scott Dabo	http://www.dia.org/us D1.jpg

Goal: Automatically suggest a semantic model for dia

Approach

[Taheriyan et al, ISWC 2013, ICSC 2014, JWS 2015]

Approach

Input

- Sample data from new source (S)
- Domain Ontologies (O)
- Known semantic models
- 1 Learn semantic types for attributes(s)

Construct Graph G=(V,E)

Generate mappings between attributes(S) and V

Generate and rank semantic models

Output

A ranked set of semantic models for S

- Learn Semantic Types for each attribute from its data
- Pick top <u>K</u> semantic types according to their confidence values

dia(title,credit, classification,name,imageURL)				
title	<aac:culturalheritageobject, dcterms:title=""></aac:culturalheritageobject,>	0.49		
title	<aac:culturalheritageobject, rdfs:label=""></aac:culturalheritageobject,>	0.28		
credit	<aac:culturalheritageobject, dcterms:provenance=""></aac:culturalheritageobject,>	0.83		
credit	<aac:person, elementsgr2:note=""></aac:person,>	0.06		
classification	<skos:concept, skos:preflabel=""></skos:concept,>	0.58		
Classification	<skos:concept, rdfs:label=""></skos:concept,>	0.41		
n.2m.e	<aac:person, foaf:name=""></aac:person,>	0.65		
name	<fofa:person, fofaf:name=""></fofa:person,>	0.32		
imagalIDI	<foaf:document, uri=""></foaf:document,>	0.47		
imageURL	<edm:webresource, uri=""></edm:webresource,>	0.40		

Approach

Input

- Sample data from new source (S)
- Domain Ontologies (O)
- Known semantic models
- ✓ Learn semantic types for attributes(s)
- 2 Construct Graph G=(V,E)

Generate mappings between attributes(S) and V

Generate and rank semantic models

Output

A ranked set of semantic models for S

Build Graph G: Add Known Models

- Annotate (tag) nodes and links with list of supporting models
- Adjust weight based on the number of supporting models

dma

Build Graph G: Add Known Models

- Annotate (tag) nodes and links with list of supporting models
- Adjust weight based on the number of tags

Build Graph G: Add Semantic Types

Build Graph G: Add Semantic Types

Build Graph G: Add Semantic Types

Build Graph G: Expand with Paths from Ontology

Assign a high weight to the links coming from the ontology

Approach

Input

- Sample data from new source (S)
- Domain Ontologies (O)
- Known semantic models
- ✓ Learn semantic types for attributes(s)
- \checkmark Construct Graph G=(V,E)
- Generate mappings between attributes(S) and V

Generate and rank semantic models

Output

A ranked set of semantic models for S

Map Source Attributes to the Graph

title	<culturalheritageobject,title> <culturalheritageobject,label></culturalheritageobject,label></culturalheritageobject,title>		
credit	<culturalheritageobject,provenance> <person,note></person,note></culturalheritageobject,provenance>		
classification	<concept,preflabel> <concept,label></concept,label></concept,preflabel>		
name	<aac:person,name> <foaf:person,name></foaf:person,name></aac:person,name>		
imageURL	<document,uri> <webresource,uri></webresource,uri></document,uri>		

Map Source Attributes to the Graph

title	<pre><culturalheritageobject,title> <culturalheritageobject,label></culturalheritageobject,label></culturalheritageobject,title></pre>		
credit	<culturalheritageobject,provenance> <person,note></person,note></culturalheritageobject,provenance>		
classification	<concept,preflabel> <concept,label></concept,label></concept,preflabel>		
name	<aac:person,name> <foaf:person,name></foaf:person,name></aac:person,name>		
imageURL	<document,uri> <webresource,uri></webresource,uri></document,uri>		

Map Source Attributes to the Graph

title	<pre><culturalheritageobject,title> <culturalheritageobject,label></culturalheritageobject,label></culturalheritageobject,title></pre>		
credit	<culturalheritageobject,provenance> <person,note></person,note></culturalheritageobject,provenance>		
classification	<concept,preflabel> <concept,label></concept,label></concept,preflabel>		
name	<aac:person,name> <foaf:person,name></foaf:person,name></aac:person,name>		
imageURL	<document,uri> <webresource,uri></webresource,uri></document,uri>		

Approach

Input

- Sample data from new source (S)
- Domain Ontologies (O)
- Known semantic models
- ✓ Learn semantic types for attributes(s)
- ✓ Construct Graph G=(V,E)
- ✓ Generate mappings between attributes(S) and V
- 4 Generate and rank semantic models

Output

A ranked set of semantic models for S

Generate Semantic Models

- Compute Steiner tree for each mapping
 - A minimal tree connecting nodes of mapping
 - A customization of BANKS algorithm [Bhalotia et al., 2002]
- Our algorithm considers both coherence and popularity
- Each tree is a candidate model
- Rank the models based on coherence and cost

Known Models

Known Models

Known Models

Known Models

Top 3 Steiner trees

Example Mapping

title	<pre><culturalheritageobject,title> <culturalheritageobject,label></culturalheritageobject,label></culturalheritageobject,title></pre>	
credit	<pre><culturalheritageobject,provenance> <person,note></person,note></culturalheritageobject,provenance></pre>	
classification	<pre><concept,preflabel> <concept,label></concept,label></concept,preflabel></pre>	
name	<aac:person,name> <foaf:person,name></foaf:person,name></aac:person,name>	
imageURL	<document,uri> <webresource,uri></webresource,uri></document,uri>	

Steiner Tree

title	<pre><culturalheritageobject,title> <culturalheritageobject,label></culturalheritageobject,label></culturalheritageobject,title></pre>	
credit	<culturalheritageobject,provenance> <person,note></person,note></culturalheritageobject,provenance>	
classification	<concept,preflabel> <concept,label></concept,label></concept,preflabel>	
name	<aac:person,name> <foaf:person,name></foaf:person,name></aac:person,name>	
imageURL	<document,uri> <webresource,uri></webresource,uri></document,uri>	

Final Model in Karma

Domain: Museum Data

Domain ontologies: <u>EDM SKOS FOAF AAC ORE ElementsGr2 DCTerms</u>

Source: Detroit Institute of Art → dia(title,credit,classification,name,imageURL)

Evaluation

Evaluation Dataset	EDM	CRM
# sources	29	29
# classes in the ontologies	119	147
# properties in the ontologies	351	409
# nodes in the gold standard models	473	812
# links in the gold standard models	444	785

Compute precision and recall between learned models and correct models

$$precision = \frac{rel(sm) C rel(sm')}{rel(sm')}$$

How many of the learned relationships are correct?

$$recall = \frac{rel(sm) \bigcap rel(sm')}{rel(sm)}$$

How many of the correct relationships are learned?

rel(sm) is the set of triples <source, link, target> in the semantic model 61

Example

correct model

Museum founder

Artwork Person

learned model

Artwork,location,Museum>Artwork,creator,Person>

<Museum,founder,Person>
<Artwork,location,Museum>

Precision: 0.5
Recall: 0.5

Experiment 1

correct semantic types are given

Experiment 2

learn semantic types, pick top K candidates

Limitation

 Lack of sufficient known semantic models is some domains

Inferring Semantic Relations from Linked Open Data

Contribution: leveraging graph patterns in LOD to infer relationships

Idea

 There is a huge amount of linked data available in many domains (RDF format)

 Use LOD when there is no known semantic model

Exploit the relationships between instances

Approach

[Taheriyan et al, COLD 2015]

LOD Patterns

LOD Patterns

Evaluation

- Linked data: 3,398,350 triples published by Smithsonian American Art Museum
- Correct semantic types given
- Extracted patterns of length 1 and 2

Evaluation Dataset	
# sources	29
# classes in the ontologies	147
# properties in the ontologies	409
# nodes in the gold standard models	812
# links in the gold standard models	785

background knowledge	precision	recall	time (s)
domain ontology	0.07	0.05	0.17
domain ontology + patterns of length 1	0.65	0.55	0.75
domain ontology + patterns of length 1 and 2	0.78	0.70	0.46

Related Work

Related Work

- Mapping databases and spreadsheets to ontologies
 - Mapping languages: D2R [Bizer, 2003], D2RQ [Bizer and Seaborne, 2004], R2RML [Das et al., 2012]
 - Tools: RDOTE [Vavliakis et al., 2010], RDF123 [Han et al., 2008], XLWrap [Langegger and Woß, 2009]
 - String similarity between column names and ontology terms [Polfliet and Ichise, 2010]
- Understand semantics of Web tables
 - Use column headers and cell values to find the labels and relations from a database of labels and relations populated from the Web [Wang et al., 2012] [Limaye et al., 2010] [Venetis et al., 2011]
- Exploit Linked Open Data (LOD)
 - Link the values to the entities in LOD to find the types of the values and their relationships [Muoz et al., 2013] [Mulwad et al., 2013]
- Semantic annotation of Web services
 - Languages: SAWSDL [Farrell and Lausen, 2007]
 - Tools: SWEET [Maleshkova et al., 2009]
 - Annotate input and output parameters [Heß et al., 2003] [Lerman et al., 2006] [Saquicela e al., 2011]
- Learn Semantic Definitions of Online Information Sources [Carman, Knoblock, 2007]
 - Learns LAV rules from known sources
 - Only learns descriptions that are conjunctive combinations of known descriptions

Discussion & Future Work

Discussion

- Contributions
 - Semi-automatically model the relationships
 - Learn semantic models from previous models
 - Infer semantic relationships from LOD
- Provide explicit semantics for large portion of LOD
- Help to publish consistent RDF data
- Applications
 - VIVO
 - Smithsonian American Art Museum
 - DIG for DARPA's Memex project

Future Work

- Improve the quality of semantic labeling
 - Use LOD to learn semantic types

Extract longer patterns from LOD

- Publish linked data
 - Transform the data to a common vocabulary
 - Linking entities across different datasets