Lecture 8: Equilibrium Renewal Processes and Renewal Reward Processes

Parimal Parag

1 Renewal thmry Contd.

1.1 Example:

Consider two coins and suppose that each time is coin flipped, it lands tail with some unknown probability p_i , i=1,2. We are interested in coming up with a strategy that ensures that long term proportion of tails is $\min\{p_1, p_2\}$. One strategy is as follows: In n^{th} round of coin flipping, flip the first coin till n consecutive tails are obtained. Then flip the second coin till n consecutive tails are obtained. The proof is as follows:

Let $p = \max\{p_1, p_2\}$ and $\alpha p = \min\{p_1, p_2\}$. Call the coin with P(T) = p, the bad coin and the other, the good coin. Let B_m denote the number of flips in the $n^t extth$ round with bad coin and G_m denote the number of flips in the $n^t extth$ round with good coin.

Lemma 1.1. $P(B_m \ge \epsilon G_m \text{ for infinitely many } m) = 0.$

Proof.

$$P(G_m \le \frac{B_m}{\epsilon}) = \mathbb{E}[P(G_m \le \frac{B_m}{\epsilon}|B_m)]$$

$$= \mathbb{E}[\sum_{i=1}^{\frac{B_m}{\epsilon}} P(G_m = i|B_m)]$$

$$\le \mathbb{E}[\frac{B_m}{\epsilon}] \sum_{i=1}^m (\alpha p)^m$$

$$= (\sum_{i=1}^m (\frac{1}{p^i}))(\alpha p)^m,$$

where the inequality follows from the fact that $\{G_m=i\}$ implies that $i\geq m$ and that cycle m coin flips numbered i-m+1 to i are all tails. Hence by Borel-Cantelli lemma, it follows that $P(B_m\geq \epsilon G_m \text{for infinitely many m})\to 0$ as $m\to\infty$. Hence $\frac{B}{B+G}<\frac{\epsilon}{1+\epsilon}<\epsilon$.

1.2 Distribution of Last Renewal Time for Delayed Renewal Processes

$$P(S_{N(t)} \le s) = G^{c}(t)P(S_{N(t)} \le s|S_{N(t)=0}) + \int_{0}^{t} P(S_{N(t)} \le s|S_{N(t)=s})F^{c}(t-u)dm(u)$$
$$= G^{c}(t) + \int_{0}^{s} F^{c}(t-u)dm(u).$$

Let $F_e(x) = frac \int_0^x F^c(y) dy \mu$, $x \geq 0$ equilibrium distribution of F. Observe that the moment generating function of $F_e(x)$ is $\tilde{F}_e(s) = \frac{1-\tilde{F}(s)}{s\mu}$. If $G = F_e$, then the delayed renewal process is called equilibrium renewal process. Suppose start observing a renewal process at some arbitrary time t, the observed renewal process is called equilibrium renewal process. Let $Y_D(t)$ denote the excess time for delayed renewal process.

Theorem 1.2. For the equilibrium renewal process,

1.
$$m_D(t) = \frac{t}{\mu}$$
.

2.
$$P(Y_D(t) \le x) = F_e(x)$$
.

3. $\{N_D(t): t \geq 0\}$ has stationary increments.

Proof. To prove i), observe that $\tilde{m_D(s)} = \frac{\tilde{G}(s)}{1-\tilde{F}(s)} = \frac{1}{s\mu}$. Hence, $m_D(t) = \frac{t}{\mu}$. ii)

$$P(Y_D(t) > x) = P(Y_D(t) > x | S_{N(t)=0}) P(S_{N(t)=0}) + P(Y_D(t) > x | S_{N(t)=s}) F^c(t-s) \frac{ds}{\mu}$$

$$= P(X > t + x, X > t) + P(X_2 > t + x - s | X_2 > t - s) F^c(t-s) \frac{ds}{\mu}$$

$$= F^c(t+x) + \int_0^t F^c(t+x-s) \frac{ds}{\mu} = F_e^c(x).$$

iii) $N_D(t+s) - N_D(s) =$ Number of renewals in time interval of length t. When we start observing at s, the observed renewal process is delayed renewal process with initial distribution being the original distribution.

1.3 Renewal Reward Process

Definition: A renewal process $\{N(t), t \geq 0\}$ with inter arrival times $\{X_n : n \in \mathbb{N}\}$ having distribution F and rewards $\{R_n : n \in \mathbb{N}\}$ where R_n is the reward at the end of X_n . Let (X_n, R_n) be iid. Then $R(t) = \sum_{i=1}^{N(t)} R_i$ is reward process.

Theorem 1.3. Let $\mathbb{E}[|R|]$ and $\mathbb{E}[|X|]$ be finite.

1.
$$\lim_{t\to\infty} \frac{R(t)}{t} = \frac{\mathbb{E}[R]}{\mathbb{E}[X]} a.s.$$

2.
$$\lim_{t\to\infty} \frac{\mathbb{E}[R(t)]}{t} = \frac{\mathbb{E}[R]}{\mathbb{E}[X]}$$
.

Proof.

$$R(t) = \sum_{i=1}^{N(t)} R_i$$

= $(\frac{t}{N(t)} \sum_{i=1}^{N(t)} R_i) \frac{N(t)}{t}$.

Hence by Strong Law of Large Numbers, $\lim_{t\to\infty}\frac{R(t)}{t}=\frac{\mathbb{E}[R]}{\mathbb{E}[X]}$ a.s. To prove the second part,

$$\mathbb{E}[R(t)] = \mathbb{E}[\sum_{i=1}^{N(t)} R_i] = (m(t)+1)\mathbb{E}[R] - \mathbb{E}[R_{N(t)+1}].$$
 Let $q(t) = \mathbb{E}[R_{N(t)+1}].$

$$g(t) = \mathbb{E}[R_{N(t)+1}1\{S_{N(t)} = 0\}] + \mathbb{E}[R_{N(t)+1}1\{S_{N(t)} > 0\}]$$

$$= \mathbb{E}[R_1|X_1 > t]P(X_1 > t) + \int_0^t \mathbb{E}[R_1|X > t - u]F^c(t - u)dm(u). = h(t) + \int_0^t h(t - u)dm(u).$$

where $h(t) = \mathbb{E}[R_1|X>t]P(X_1>t)$. Since $\mathbb{E}[|R_1|]<\infty$, as $t\to\infty$, $h(t)\to 0$ as $t\to\infty$. Hence choose T such that $|h(T)|<\epsilon$, $t\geq T$.

$$\frac{g(t)}{t} \le \frac{|h(t)|}{t} + \int_0^{t-T} \frac{h(t-s)}{t} dm(s) + \int_{t-T}^T \frac{h(t-T)}{t} dm(s)$$
$$\frac{\epsilon}{T} + \frac{\epsilon m(t-T)}{T} + \frac{\mathbb{E}[|R_1|]}{t} (m(t) - m(t-T)).$$

Hence $\lim_{t\to\infty} \frac{g(t)}{t} = 0$ and the result follows.

Remarks:

- 1. $R_{N(t)+1}$ has different distribution than R_1 .
- 2. R(t) is the gradual reward during a cycle,

$$\frac{\sum_{n=1}^{N(t)} R_n}{t} \le \frac{R(t)}{t} \le \frac{\sum_{n=1}^{N(t)+1} R_n}{t}.$$

1.3.1 Example:

Suppose for an alternating renewal process, we earn at a rate of one per unit time when the system is on and the reward for a cycle is the time system is ON during that cycle.

Amount of on time in $\frac{[0,t]}{t} = \lim_{t\to\infty} \frac{R(t)}{t} = \frac{\mathbb{E}[X]}{\mathbb{E}[X]+\mathbb{E}[Y]} = \lim_{t\to\infty} P(\text{on at time t}).$