Fokker-Planck equation: Numerical solutions and integration

Steven Large

February 10, 2022

Contents

1	Introduction	2
Ι	Numerical Integration	2
2	Numerical integration: general properties	2
3	Stability	2
4	Advection	2
5	Diffusion	2
6	Fokker-Planck	2
7	Driven Harmonic Trap 7.1 Excess Work in a Translating Track	2 2 2
8	Driven Rotary Machine8.1Steady-State Flux8.2Precision and Driving Accuracy	2 2 2
9	Information Erasure	2
10	Kolmogorov Backwards Equation 10.1 First passage times	2 2 2
ΙΙ	Steady-state solutions	2

10 2

1 Introduction

The Fokker-Planck equation is a tremendously important relation in the study of all types of stochastic systems. Starting from the most basic 'continuity equation' of stochastic processes—the Chapman-Kolmogorov equation—one can show that, under a set of reasonable assumptions on the continuity and smoothness of the process itself, the governing dynamics at the level of a probability distribution is the Fokker-Planck equation. Put simply, the Fokker-Planck equation takes the form of a 2nd order parabolic partial differential equation, describing the time-dependent evolution of a probability distribution (among other things).

Part I

Numerical Integration

- 2 Numerical integration: general properties
- 3 Stability
- 4 Advection
- 5 Diffusion
- 6 Fokker-Planck
- 7 Driven Harmonic Trap
- 7.1 Excess Work in a Translating Track
- 7.2 Excess Work in a Breathing Trap
- 8 Driven Rotary Machine
- 8.1 Steady-State Flux
- 8.2 Precision and Driving Accuracy
- 9 Information Erasure
- 10 Kolmogorov Backwards Equation
- 10.1 First passage times
- 10.2 Financial mathematics: Options pricing

Part II

Steady-state solutions