Demostración del Axioma del Extremo Superior

Cortadura de Dedekind

Sea L una cortadura tal que $L \subseteq \mathbb{Q}$ con, $L \neq \emptyset$ y $L \neq \mathbb{Q}$. Ahora sea $l \in L$ y $t \in \mathbb{Q}$ con t < l entonces por definición de subconjunto se cumple que $t \in L$, un conjunto que satisface la propiedad anterior se dice que es cerrado hacia atrás.

Axioma del extremo superior

El axioma del extremo superior nos dice que si $S \subseteq \mathbb{R}$, con $S \neq \emptyset$, entonces $\exists U$ tal que $s \leq U$, $\forall s \in S$, esto significa que $\exists u \in \mathbb{R}$ tal que:

- \bullet u es cota superior de S
- ullet u es la menor de las cotas superiores de S

Entonces

$$u = sup(S)$$

Demostración

Dado un conjunto $S \subseteq \mathbb{R}$ acotado superiormente consideremos L_s como la cortadura de Dedekind asociada a cada $s \in S$, dado que el conjunto S está acotado superiormente existe $q \in \mathbb{Q}$ tal que $q \ge t$, para cualquier $t \in L_s$.

Consideremos el conjunto $L^* = \bigcup_{s \in S} L_s$. Ahora vamos a demostrar que L^* es una cortadura de Dedekind.

Ahora nótese que:

- $\blacksquare \ L^* \neq \emptyset$ ya que $L^* = \bigcup_{s \in S} L_s$ y $L_s \neq \emptyset$
- \bullet $L^* \neq \mathbb{Q}$ ya que por ejemplo $q + n \neq L^*$, $n \in \mathbb{N}$

Ahora consideremos que sea $l \in L^*$ y $a \le l$, esto significa que $l \in L_s$ como L_s es cerrado hacia atrás, y $a \le l$ entonces esto implica que $a \in L_s$ y por consecuencia $a \in L^*$.

Es facil comprobar que L^* no tiene máximo pues de ser así este máximo pertenece a L_s , y tendría que ser su máximo también, pero sabemos que los conjuntos L_s son cortaduras inferiores de Dedekind y por lo tanto no tienen máximo.

Así hemos comprobado que L^* es una cortadura inferior de Dedekind, de esta forma, $L^* = s^* \in \mathbb{R}$, y por lo tanto afirmamos que, $s^* \in \mathbb{R}$ es la menor de las cotas superiores de S

$$s^* = Sup(S)$$

Dado que los conjuntos $L_s \subseteq L^*$ por definición del principio del buen orden $s \leq s^*, \forall s \in S$.

Así s^* es una cota superior del conjunto S. Ahora veamos que es el mínimo de todas las cotas superiores. Sea $y \in \mathbb{R}$ tal que $y < s^*$ vamos a comprobar que no puede ser una cota superior del conjunto S. Sea L' la cortadura de Dedekind asociada a y verifica por definición del principio del buen orden que $L' \subsetneq L^*$, recordemos que

$$L^* = \bigcup_{s \in S} L_s$$

Dado que la inclusión es propia existe un L_s tal que $L' \subsetneq L_s \iff y < x$ así y no es cota superior del conjunto S, que era lo que queríamos demostrar.