

BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẮNG NĂM 2008 Môn thi: TOÁN, khối A

ĐỀ DỰ BỊ 1

Thời gian làm bài 180 phút, không kể thời gian phát đề

PHẦN CHUNG CHO TẤT CẢ THÍ SINH

Câu I (2 điểm)Cho hàm số $y = x^3 + 3mx^2 + (m+1)x + 1$ (1), m là tham số thực.

- 1. Khảo sát sư biến thiên và vẽ đồ thi của hàm số (1) khi m = -1.
- 2. Tìm các giá trị của m để tiếp tuyến của đồ thị hàm số (1) tại điểm có hoành độ x = -1 đi qua điểm A(1;2)

Câu II (2 điểm) 1. Giải phương trình $tgx = cotgx + 4cos^2 2x$.

2. Giải phương trình $\sqrt{2x+1} + \sqrt{3-2x} = \frac{(2x-1)^2}{2}$ (x ∈ R).

Câu III (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng:

$$\mathbf{d}_{1} \colon \frac{x-3}{2} = \frac{y-3}{2} = \frac{z-3}{1} \text{ và } \mathbf{d}_{2} \colon \begin{cases} 5x - 6y - 6z + 13 = 0\\ x - 6y + 6z - 7 = 0. \end{cases}$$

- 1. Chứng minh rằng d₁ và d₂ cắt nhau.
- 2. Gọi I là giao điểm của d_1 và d_2 . Tìm tọa độ các điểm A,B lần lượt thuộc d_1 , d_2 sao cho tạm giác IAB cân tại I và có diện tích bằng $\frac{\sqrt{41}}{42}$.

Câu IV (2 điểm) 1. Tính tích phân $I = \int_{-\frac{1}{2}}^{3} \frac{x dx}{\sqrt[3]{2x+2}}$.

2. Giải phương trình $e^{\sin(x-\frac{\pi}{4})}$ =tgx.

PHẦN RIÊNG _____Thí sinh chỉ được làm 1 trong 2 câu: V.a hoặc V.b ____ Câu V.a. Theo chương trình KHÔNG phân ban (2 điểm)

- 1. Cho tập hợp E = {0,1,2,3,4,5,7}. Hỏi có bao nhiều số tự nhiên chẵn gồm 4 chữ số khác nhau được lập từ các chữ số của E?
- 2. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC các đường cao kẻ từ đỉnh B và đường phân giác trong của góc A lần lượt có phương trình là 3x + 4y + 10 = 0 và x y + 1 = 0; điểm M(0;2) thuộc đường thẳng AB đồng thời cách điểm C một khoảng bằng $\sqrt{2}$. Tìm tọa độ các đỉnh cuả tam giác ABC.

Câu V.b. Theo chương trình phân ban (2 điểm)

- 1. Giải bất phương trình $\log_{\frac{1}{3}} \left(\log_2 \frac{2x+3}{x+1} \right) \ge 0$.
- 2. Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại đỉnh B, BA = BC = 2a, hình chiếu vuông góc của S trên mặt phẳng đáy (ABC) là trung điểm E của AB và SE = 2a. Gọi I, J lần lượt là trung điểm của EC, SC; M là điểm di động trên tia đối của tia BA sao cho góc EĈM = α (α <90°) và H là hình chiếu vuông góc của S trên MC. Tính thể tích của khối tứ diện EHIJ theo a, α và tìm α để thể tích đó lớn nhất.

ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẮNG NĂM 2008 Môn thi: TOÁN, khối A

Câu		Nội dung	Điểm
Ι		·	2,00
	1	Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1,00 điểm)	
		Với m = -1 hàm số trở thành $y = x^3 - 3x^2 + 1$	
		• Tập xác định: R	
		$\begin{cases} x = 0 \end{cases}$	0,25
		• Sự biến thiên: $y' = 3x^2 - 6x$; $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 2 \end{bmatrix}$	
			0,25
		• $y_{CD} = y(0) = 1$, $y_{CT} = y(2) = -3$ • Bảng biến thiên:	0,28
		$x = -\infty$ 0 2 $+\infty$	
		y' + 0 - 0 +	0,25
		y 1	
		• Đồ thị:	
		y †	
		1	
			0,25
		/ O \	
		-3	
		'	
	2	Tìm các giá trị của tham số m(1,00 điểm)	
	<u> </u>	Gọi M là điểm thuộc đồ thị hàm số (1) có hoành độ $x = -1$, suy ra $M(-1; 2m - 1)$	0,25
		Ta có y' = $3x^2 + 6mx + (m+1)$; y'(-1) = $4 - 5m$. Tiếp tuyến d của đồ thị hàm số	0,5
		đã cho tại $M(-1; 2m-1)$ có phương trình là: $y = (4-5m)(x+1) + 2m-1$	- ,-
			0,25
		Tiếp tuyến d đi qua A(1, 2) khi và chỉ khi $2 = (4 - 5m)2 + 2m - 1 \iff m = \frac{5}{8}$	
II			2,00
	1	Giải phương trình lượng giác(1,00 điểm)	
		Điều kiện: $\sin x \cdot \cos x \neq 0$.	
		Phương trình đã cho tương đương với	

		$\Leftrightarrow \cos 2x \left(\frac{1}{\sin 2x} + 2\cos 2x \right) = 0 \Leftrightarrow \cos 2x (1 + \sin 4x) = 0$	0,50
		$\bullet \cos 2x = 0 \Leftrightarrow x = \frac{\pi}{4} + k \frac{\pi}{2}.$	0,30
		• $\sin 4x = -1 \Leftrightarrow x = -\frac{\pi}{8} + k\frac{\pi}{2}$.	
		Đối chiếu điều kiện suy ra nghiệm của phương trình đã cho là	
		$x = \frac{\pi}{4} + k \frac{\pi}{2} va`x = -\frac{\pi}{8} + k \frac{\pi}{2} \text{ v\'oi } k \in \mathbb{Z}$ Giải phương trình(1,00 điểm)	
	2	Giải phương trình(1,00 điểm)	
		Điều kiện: $x \in \left[-\frac{1}{2}; \frac{3}{2}\right]$.	0,50
		Ta có	0,50
		$\left(\sqrt{2x+1} + \sqrt{3-2x}\right)^2 = 4 + 2\sqrt{(2x+1)(3-2x)} \ge 4 \Rightarrow \sqrt{2x+1} + \sqrt{3-2x} \ge 2 (1).$	
		Mặt khác, $-2 £ 2x - 1 £ 2 Þ (2x - 1)^2 £ 4 Þ \frac{(2x - 1)^2}{2} £ 2 (2).$	0,25
		Từ (1) và (2) suy ra phương trình đã cho tương đương với	
		$\sqrt{2x+1} + \sqrt{3-2x} = 2$ 1	0.25
		$\begin{cases} \sqrt{2x+1} + \sqrt{3-2x} = 2 \\ (2x-1)^2 = 4 \end{cases} \Leftrightarrow x = -\frac{1}{2} \text{ hoặc } x = \frac{3}{2}.$	0,25
		Đối chiếu điều kiện ta được nghiệm của phương trình là $x = -\frac{1}{2} \text{ và } x = \frac{3}{2}$	
III		, ,	2,00
	1	Chứng minh d_1 cắt d_2 (1,00 điểm)	
		Tọa độ giao điểm I của d ₁ và d ₂ thỏa mãn hệ $\begin{cases} \frac{x-3}{2} = \frac{y-3}{2} = \frac{z-3}{1} \\ 5x - 6y - 6z + 13 = 0 \\ x - 6y + 6z - 7 = 0 \end{cases}$	0,50
		Giải hệ ta được I(1; 1; 2).	0,50
	2	Tìm tọa độ(1,00 điểm)	3,2 3
		Vécto chỉ phương của d_1 là $\vec{u}_1 = (2; 2; 1)$.	
		Ta có $\begin{pmatrix} -6 & -6 \\ -6 & 6 \end{pmatrix}$; $\begin{vmatrix} -6 & 5 \\ 6 & 1 \end{pmatrix}$; $\begin{vmatrix} 5 & -6 \\ 1 & -6 \end{pmatrix}$ = (-72; -36; -24).	0,25
		Suy ra $\vec{u}_2 = (6; 3; 2)$ là một vectơ chỉ phương của d_2	
		Gọi α là gốc giữa d_1 và d_2 ta có $\cos \alpha = \frac{\left \vec{u}_1.\vec{u}_2\right }{\left \vec{u}_1\right \left \vec{u}_2\right } = \frac{20}{21} \Rightarrow \sin \alpha = \frac{\sqrt{41}}{21}$.	0,25
		Ta có S _{AIAB} = $\frac{1}{2}$ IA ² sin $\alpha = \frac{1}{2}$ IA ² sin $\alpha = \frac{\sqrt{41}}{42}$ IA ² = $\frac{\sqrt{41}}{42}$ \Leftrightarrow IA = IB = 1.	

		1	0,25
		Vì A thuộc d ₁ nên tọa độ của A(1 + 2t; 1 + 2t; 2 + t) \Rightarrow IA = 3 t = 1 \Leftrightarrow t = $\pm \frac{1}{3}$	0,23
		\Rightarrow A $\left(\frac{5}{3}, \frac{5}{3}, \frac{7}{3}\right)$ hoặc A $\left(\frac{1}{3}, \frac{1}{3}, \frac{5}{3}\right)$	
		Vì B thuộc d ₂ nên tọa độ của B(1 + 6k; 1 + 3k; 2 + 2k) \Rightarrow IB = 7 k = 1 \Leftrightarrow t = $\pm \frac{1}{7}$	
		$\Rightarrow B\left(\frac{13}{7}, \frac{10}{7}, \frac{16}{7}\right) \text{ hoặc } A\left(\frac{1}{7}, \frac{4}{7}, \frac{12}{7}\right)$	0,25
IV			2,00
	1	Tính tích phân(1,00 điểm)	
		$I = \int_{-\frac{1}{2}}^{3} \frac{x dx}{\sqrt[3]{2x+2}}$	0,50
			0,50
		$x = -\frac{1}{2} \Rightarrow t = 1; x = 3 \Rightarrow t = 2$	
		Suy ra I = $\int_{1}^{2} \frac{t^{3} - 2}{2} \cdot \frac{3t^{2}dt}{2} = \frac{3}{4} \int_{1}^{2} (t^{4} - 2t)dt = \frac{3}{4} \left(\frac{t^{5}}{5} - t^{2}\right) \Big _{1}^{2} = \frac{12}{5}$	0,50
	2	Giải phương trình(1,00 điểm)	
		Điểu kiện: cosx≠0.Dễ thấy sinx=0 không thỏa mãn phương trình	
		Phương trình đã cho tương đương với $e^{\frac{\sqrt{2}(\sin x - \cos x)}{2}} = \frac{\sin x}{\cos x} \Leftrightarrow \frac{e^{\frac{\sqrt{2}\sin x}{2}}}{\sin x} = \frac{e^{\frac{\sqrt{2}\cos x}{2}}}{\cos x}$	0,50
		(1).	0,50
		Từ (1) ta có phương trình $\frac{e^{\frac{\sqrt{2}u}{2}}}{u} = \frac{e^{\frac{\sqrt{2}v}{2}}}{v}$.	
		$\frac{u}{\sqrt{2}x}$	
		$X \text{\'et hàm s\'o } y = f(x) = \frac{e^{\frac{\sqrt{2}x}{2}}}{x}, \text{ v\'oi } x \in (-1;0) \cup (0;1).$	
		$y' = \frac{\left(\frac{\sqrt{2}x}{2} - 1\right)e^{\frac{\sqrt{2}x}{2}}}{x^2} = \frac{\left(\sqrt{2}x - 2\right)e^{\frac{\sqrt{2}x}{2}}}{2x^2} < 0 \text{ suy ra hàm số nghịch biến trên các}$	
		$\frac{x^2}{\text{khoảng (-1;0) và (0;1)}}$	0,50
		Ta thấy u,v cùng dấu nên u, v cùng thuộc một khoảng (-1;0) hoặc (0;1).	0,50
		Từ giả thiết $f(u) = f(v) \Leftrightarrow u = v \Leftrightarrow tgx = 1 \Leftrightarrow x = \frac{\pi}{4} + k\pi$.	
		Đối chiếu với điều kiện ta được nghiệm của phương trình đã cho là	

		π	
		$x = \frac{\pi}{4} + k\pi \text{v\'oi} \ k \in Z \ .$	
V.a		,	2,00
	1	Có bao nhiêu số tự nhiên(1,00 điểm)	
		Số tự nhiên chẵn gồm 4 chữ số khác nhau của E có dạng: abcd, trong đó	
		$a \neq 0, d \in \{0, 2, 4\}.$	
		Xét d=0. Khi đó các số có 3 chữ số \overline{abc} bằng $A_6^3 = 120$.	0,50
		Xét d = 2 (hoặc d = 4), khi đó a có 5 cách chọn, ứng với mỗi cách chọn a ta có 5	7
		cách chọn b, ứng với mỗi cách chọn hai chữ số a, b ta có 4 cách chọn chữ số c.	
		Vậy có tất cả 5.5.4 = 100 số.	
	_	$V_{ay}^2 = V_{ay}^2 $	
	2	Tìm tọa độ các đỉnh(1,00 điểm) Gọi d ₁ , d ₂ lần lượt là đường cao kẻ từ đỉnh B và đường phân giác trong của góc A	
		Gọi $M'(a; b)$ là điểm đối xứng của M qua d_2 và I là trung điểm của MM' .	
		Ta có $\overline{MM'} = (a;b-2), I\left(\frac{a}{2};\frac{b+2}{2}\right)$. Vecto chỉ phương của d ₂ là $\vec{u} = (1;1)$.	0,25
		(a+b-2=0)	
		Ta có hê: $MM'.u = 0 \Leftrightarrow a + 2 \Leftrightarrow a = 1$	
		Ta có hệ: $\begin{cases} \overline{MM}, \vec{u} = 0 \\ I \in d_2 \end{cases} \Leftrightarrow \begin{cases} a+b-2=0 \\ \frac{a}{2} - \frac{b+2}{2} + 1 = 0 \end{cases} \Leftrightarrow \begin{cases} a=1 \\ b=1 \end{cases}$	
		Khi đó M'(1; 1) thuộc đường thẳng AC. Mặt khác vecto chỉ phương $\vec{v} = (4; -3)$	
		của đường cao d_1 chính là vectơ pháp tuyến của đường thẳng AC. Do đó phương	
		trình đường thẳng AC là $4(x-1)-3(y-1)=0 \Leftrightarrow 4x-3y-1=0$.	0,25
		$A = d_2 \cap AC$ xác định bởi hệ $\frac{1}{4}x - \frac{y+1=0}{3y-1=0}$ Û $\frac{1}{4}x = \frac{4}{5}$. Vậy A (4;5)	
		1 1	
		Phương trình đường thắng AB:	
		$\frac{x-0}{4-0} = \frac{y-2}{5-2} \Leftrightarrow \frac{x}{4} = \frac{y-2}{3} \Leftrightarrow 3x-4y+8=0.$	
			0,25
		$B = d_1 \cap AB \text{ xác định bởi hệ } \frac{1}{1} \frac{3x + 4y + 10 = 0}{1} \hat{\mathbf{U}} \frac{1}{1} \frac{x = -3}{4}. \mathbf{Vây } B(-3; -\frac{1}{4})$,
		Đường thẳng AC: $4x - 3y - 1 = 0$, do đó $C\left(c; \frac{4c - 1}{3}\right)$.	
		$MC = \sqrt{2} \Leftrightarrow c^2 + \left(\frac{4c - 1}{3} - 2\right)^2 = 2 \Leftrightarrow \begin{bmatrix} c = 1 \\ c = \frac{31}{25} \Leftrightarrow \begin{bmatrix} C_1(1;1) \\ C_2(\frac{31}{25}; \frac{33}{25}) \end{bmatrix}.$	0,25
		Ta nhận thấy $\overline{AC_1}$ và $\overline{AC_2}$ cùng chiều.	
		Kết luận: $A(4;5)$, $B(-3;-\frac{1}{4})$, $C(1;1)$.	
		Hoặc $A(4;5)$, $B(-3;-\frac{1}{4})$, $C(\frac{31}{25},\frac{33}{25})$.	
V.b			
	1	Giải bất phương trình logarit(1,00 điểm)	0.50
		Bất phương trình đã cho tương đương với	0,50

$0 < \log_2 \frac{2x+3}{x+1} \le 1 \Leftrightarrow 1 < \frac{2x+3}{x+1} \le 2$	
$\Leftrightarrow \begin{cases} \frac{2x+3}{x+1} - 1 > 0 \\ \frac{2x+3}{x+1} - 2 \le 0 \end{cases} \Leftrightarrow \begin{cases} \frac{x+2}{x+1} > 0 \\ \frac{1}{x+1} \le 0 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} x < -2 \\ x > -1 \Leftrightarrow x < -2. \end{cases}$ $x < -1$ $x < -1$ $x < -2$ $x < -1$ $x < -2$	0,50

Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được đủ điểm từng phần như đáp án qui định.

Nguồn: Cục Khảo thí và Kiểm định chất lượng giáo dục (Bộ GD-ĐT).

Hướng dẫn: Trung tâm Luyện thi Vĩnh Viễn.