Probabilistic Programming and AI: Lecture 4

Variational Inference

Markus Böck and Jürgen Cito

Research Unit of Software Engineering

Table of contents

1. From Constrained to Unconstrained Model

2. Variational Inference

3. Automatic Differentiation Variational Inference (ADVI)

4. Stochastic Variational Inference

From Constrained to

Unconstrained Model

Every density that is defined for constrained continuous variables can be transformed to an unconstrained density. For Y = H(X)

$$p_{Y}(y) = p_{X}(H^{-1}(y)) \cdot \left| \frac{d}{dy} H^{-1}(y) \right| \qquad \text{defined for } y \in H^{-1}(\text{support}(X))$$
$$p_{X}(x) = p_{Y}(H(x)) \cdot \left| \frac{d}{dx} H(x) \right| \qquad \qquad \text{defined for } x \in \text{support}(X)$$

3

Example:

 $X \sim \text{Gamma}(1,1)$ is supported on $[0,\infty)$

Choose $y = H(x) = \log(x)$

$$p_{Y}(y) = p_{X}(\exp(y)) \cdot \exp(y)$$

is supported on \mathbb{R} .

With pytorch:

```
T = dist.transform_to(dist_constrained.support)
dist_unconstrained = dist.TransformedDistribution(dist_constrained, T.inv)
```


- Assumption: Finite number of continuous (unconstrained) random variables
- Idea: Approximate the posterior with a fixed-form parameterised variational distribution.
- Optimise the parameters of the variational distribution to be "close" to true posterior.

Adjust mean and deviation of orange Normal distribution to "fit" blue distribution.

How to measure distance between two distributions?

Kullback-Leibler Divergence

$$D_{KL}(P \parallel Q) = \mathbb{E}_{X \sim P} \left[\log \left(\frac{P(X)}{Q(X)} \right) \right]$$
$$= \underbrace{\mathbb{E}_{X \sim P} \left[\log P(X) \right]}_{=-\text{entropy}} - \mathbb{E}_{X \sim P} \left[\log Q(X) \right]$$

It is the amount of information lost when Q is used to approximate P.

$$\min_{Q} D_{KL}(P \parallel Q) = \min_{Q} \mathbb{E}_{X \sim P} \left[\log \left(\frac{P(X)}{Q(X)} \right) \right]$$

$$\min_{Q} D_{KL}(Q \parallel P) = \min_{Q} \mathbb{E}_{X \sim Q} \left[\log \left(\frac{Q(X)}{P(X)} \right) \right]$$

KL-Divergence is not symmetric!

How to compute $D_{KL}(P \parallel Q)$?

· Discrete Variables:

$$D_{KL}(P \parallel Q) = \sum_{x} P(x) \log \left(\frac{Q(x)}{P(x)} \right)$$

· Continuous Variables:

$$D_{KL}(P \parallel Q) = \int_{-\infty}^{\infty} P(x) \log \left(\frac{Q(x)}{P(x)}\right) dx$$

· Sampling!

$$D_{KL}(P \parallel Q) \approx \frac{1}{N} \sum_{i=1}^{N} \log \left(\frac{Q(x_i)}{P(x_i)} \right) \quad x_i \sim P$$

```
# numerical integration
def integrate(func: Callable[[torch.Tensor], torch.Tensor], a, b, N=500):
   x = torch.linspace(a, b, N)
   v = func(x)
   return torch.trapz(y, x)
def kl_divergence_1(p: dist.Distribution, q: dist.Distribution, a, b, N=500):
    def integrand(x: torch.Tensor) -> torch.Tensor:
        px = p.log_prob(x).exp()
        qx = q.log_prob(x).exp()
        I = px * torch.log(px / qx)
        return L
    return integrate (integrand, a, b, N)
# sampling
def kl_divergence_2(p: dist.Distribution, q: dist.Distribution, N=500):
   x = p.sample((N_1))
    px = p.log_prob(x).exp()
   qx = q.log_prob(x).exp()
    I = torch.log(px / qx)
    return I.mean()
```



```
kl_divergence_1(normal_mixture, normal, -5, 7, N=10000)
Returns:
tensor(4.5455)
kl_divergence_2(normal_mixture, normal, N=1000000)
Returns:
tensor(4.5453)
```

For Bayesian inference $P = P(\Theta|X)$.

We cannot sample from posterior, so we are bound to $D_{\mathrm{KL}}(Q \parallel P) = \mathbb{E}_{\Theta \sim Q}\left[\log\left(\frac{Q(\Theta)}{P(\Theta \mid X)}\right)\right]$, where we sample from the variational distribution.

We cannot evaluate $P(\Theta|X)$ and we rewrite to joint.

$$\begin{array}{lll} D_{\mathsf{KL}}(Q \parallel P) & = & \mathbb{E}_{\Theta \sim Q} \left[\log \left(\frac{Q(\Theta)}{P(\Theta \mid X)} \right) \right] = \mathbb{E}_{\Theta \sim Q} \left[\log \left(\frac{Q(\Theta)P(X)}{P(\Theta,X)} \right) \right] \\ & = & \mathbb{E}_{\Theta \sim Q} \left[\log Q(\Theta) - \log P(\Theta,X) \right] + \mathbb{E}_{\Theta \sim Q} \left[\log P(X) \right] \\ & = & - \underbrace{\mathbb{E}_{\Theta \sim Q} \left[\log P(\Theta,X) - \log Q(\Theta) \right]}_{\mathsf{ELBO}(Q,P)} + \underbrace{\log P(X)}_{\mathsf{log-evidence}} \\ \underbrace{\log P(X)}_{\mathsf{constant}} & = & D_{\mathsf{KL}}(Q \parallel P) + \mathsf{ELBO}(Q,P) \end{array}$$

Maximising the ELBO w.r.t. Q minimizes $D_{KL}(Q \parallel P)!$

Variational Inference: Example

Coin model:

```
flips = torch.tensor([0.,1.,1.,0.,0.])
prior = dist.Uniform(0,1)
posterior = dist.Beta(1+flips.sum(), 1+(1-flips).sum()) # analytical solution
def likelihood(p):
    return dist.Bernoulli(p).log_prob(flips.reshape(-1,1)).sum(dim=0).exp()

# transform to unconstrained model
T = dist.transforms.transform_to(posterior.support) # sigmoid: R -> [0,1]
posterior_unconstrained = dist.TransformedDistribution(posterior, T.inv)
prior uncontrained = dist.TransformedDistribution(prior, T.inv)
```

Variational Inference: Example

```
def DKL_QP(X):
    # variational distribution is Normal parameterised with mean and sigma
    mu, sigma = X
    q = dist.Normal(mu, sigma)
    return kl_divergence(q, posterior_unconstrained, mu-4*sigma, mu+4*sigma)
# minimize by brute force (grid search)
mu, sigma = brute(DKL_QP, [(-3,3), (0.1,1.)], Ns=100)
variational = dist.Normal(mu, sigma)
```


Why don't we fit Gaussian to constrained posterior?

$$D_{\mathsf{KL}}(Q \parallel P) = \mathbb{E}_{\Theta \sim Q} \left[\log \left(\frac{Q(\Theta)}{P(\Theta|X)} \right) \right]$$

Only well-defined if $P(\theta|X) = 0 \implies Q(\theta) = 0$.

Variational Inference: Example

```
def ELBO_loss(X):
    mu, sigma = X
    q = dist.Normal(mu, sigma)
    def integrand(x: torch.Tensor) -> torch.Tensor:
        px = likelihood(T(x)) * prior_uncontrained.log_prob(x).exp()
        qx = q.log_prob(x).exp()
        l = qx * torch.log(px / qx)
        I[px == 0] = 0
        return |
        return -integrate(integrand, mu-4*sigma, mu+4*sigma) # -ELBO
mu, sigma = brute(ELBO_loss, [(-3,3), (0.1,1.)], Ns=100) # minimize
```


Automatic Differentiation

Variational Inference (ADVI)

ADVI

- Computing D_{KL} with numerical integration \rightarrow estimate with sampling
- Optimise parameters with grid-search ightarrow perform gradient descent
- Single variable \rightarrow multiple variables

ADVI: Gradient Descent

ADVI: Automatic Differentiation (AD)

```
X = torch.tensor(2., requires_grad=True)
Y = X**2 + torch.log(X)
Y.backward() # compute gradients
X.grad.item(), (2*X + 1/X).item()
Returns:
(4.5, 4.5)
```

ADVI: Variational Distribution

Mean-field Gaussian:

Independent Gaussian for each of K variables:

$$Q(\theta; \phi) = \text{MvNormal}(\theta; \mu, \text{diag}(\sigma^2)) = \prod_{k=1}^{K} \text{Normal}(\theta_k; \mu_k, \sigma_k^2)$$

Q parameterised by unconstrained $\phi=(\mu,\omega)$ with $\sigma=\exp(\omega)$.

Full-rank Gaussian:

Correlated Gaussians

$$Q(\boldsymbol{\theta}; \boldsymbol{\phi}) = \mathsf{MvNormal}(\boldsymbol{\theta}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

Q parameterised by unconstrained $\phi = (\mu, L)$ with $\Sigma = LL^T$.

Assumption:

- · Unconstrained model for simpler notation.
- · Mean-field Gaussian: $Q(\theta; \phi) = MvNormal(\theta; \mu, diag(\sigma^2))$

$$\mathsf{ELBO}(\phi) = \mathbb{E}_{\theta \sim \mathcal{Q}(.;\phi)} \left[\log P(\theta, X) \right] + \underbrace{\mathbb{E}_{\theta \sim \mathcal{Q}(.;\phi)} \left[-\log \mathcal{Q}(\theta;\phi) \right]}_{\mathsf{Entropy of } \mathcal{Q}}$$

Entropy can be determined analytically

$$\mathbb{H}\left[Q(\boldsymbol{\theta}; \boldsymbol{\phi})\right] = \frac{K}{2}\log(2\pi e) + \frac{1}{2}\sum_{k=1}^{K}\log\sigma_k^2$$

ADVI: ELBO Gradient: Reparametrisation Trick

$$\begin{array}{lll} \nabla_{\phi} \mathbb{E}_{\theta \sim \mathbb{Q}(.;\phi)} \left[\log P(\boldsymbol{\theta}, \boldsymbol{X}) \right] & = & \nabla_{\phi} \mathbb{E}_{\theta \sim \mathsf{MvNormal}(\boldsymbol{\mu}, \mathsf{diag}(\mathsf{exp}(\boldsymbol{\omega})^2))} \left[\log P(\boldsymbol{\theta}, \boldsymbol{X}) \right] \\ & = & \nabla_{\phi} \mathbb{E}_{\boldsymbol{\eta} \sim \mathsf{MvNormal}(\boldsymbol{0}, \boldsymbol{I})} \left[\log P(\mathsf{exp}(\boldsymbol{\omega}) \cdot \boldsymbol{\eta} + \boldsymbol{\mu}, \boldsymbol{X}) \right] \\ & = & \mathbb{E}_{\boldsymbol{\eta} \sim \mathsf{MvNormal}(\boldsymbol{0}, \boldsymbol{I})} \left[\underbrace{\nabla_{\phi} \log P(\mathsf{exp}(\boldsymbol{\omega}) \cdot \boldsymbol{\eta} + \boldsymbol{\mu}, \boldsymbol{X})}_{\mathsf{Compute with AD}} \right] \end{array}$$

Putting all together:

For
$$\eta_i \sim \text{MvNormal}(\mathbf{0}, I)$$

$$\begin{split} \nabla_{\boldsymbol{\mu}} \mathsf{ELBO}(\boldsymbol{\phi}) &\approx & \frac{1}{L} \sum_{i=1}^{L} \nabla_{\boldsymbol{\mu}} \log P(\exp(\boldsymbol{\omega}) \cdot \boldsymbol{\eta}_i + \boldsymbol{\mu}, \boldsymbol{X}) \\ \nabla_{\boldsymbol{\omega}} \mathsf{ELBO}(\boldsymbol{\phi}) &\approx & \frac{1}{L} \sum_{i=1}^{L} \nabla_{\boldsymbol{\omega}} \log P(\exp(\boldsymbol{\omega}) \cdot \boldsymbol{\eta}_i + \boldsymbol{\mu}, \boldsymbol{X}) \underbrace{+\mathbf{1}}_{\mathsf{Derivative of entropy}} \end{split}$$

Typically, $1 \le L \le 10$.

ADVI: constrained case

Transformation

$$T: \operatorname{support}(P(\theta)) \to \mathbb{R}^K, \quad \zeta = T(\theta)$$

The transformed density becomes

$$P(\zeta,X) = P(T^{-1}(\zeta))|\det J_{T^{-1}}(\zeta)|$$

and we fit the Gaussians to the unconstrained density

$$\mathsf{ELBO}(\boldsymbol{\phi}) = \mathbb{E}_{\boldsymbol{\zeta} \sim Q(:; \boldsymbol{\phi})} \left[\log P(T^{-1}(\boldsymbol{\zeta}), \boldsymbol{X}) + \log |\mathsf{det} J_{T^{-1}}(\boldsymbol{\zeta})| \right] + \underbrace{\mathbb{H} \left[Q(\boldsymbol{\zeta}; \boldsymbol{\phi}) \right]}_{\mathsf{Entropy of } Q}$$

T = dist.transforms.transform_to(dist_constrained.support) dist_unconstrained = dist.TransformedDistribution(dist_constrained, T.inv)

ADVI

- 1. Initialise ϕ (e.g. $\phi = 0$)
- 2. Repeat
 - · Draw L samples $\eta_i \sim \text{MvNormal}(\mathbf{0}, I)$
 - · Approximate gradient $abla_{m{\phi}}$ ELBO $(m{\phi})$ with $m{\eta}_i$.
 - · Update ϕ with gradient (e.g. Adagrad update rule)

Hard math - easier implementation.

See Assignment 4.

Stochastic Variational Inference

Stochastic Variational Inference

The complexity of ADVI is $\mathcal{O}(NLK)$, where N is the number of data points, since

$$\log P(\Theta, X) = \sum_{i=1}^{N} \log P(\Theta, X_i).$$

Thus, ADVI as presented, does not scale well to large datasets.

Subsampling

Suppose we have X_j are independent and identically distributed (iid). We are interested in the quantity

$$\sum_{j=1}^{N} f(X_j).$$

Draw an index uniformly at random $J \sim \text{DiscreteUniform}(1, ..., N)$, then

$$\sum_{j=1}^{N} f(X_j) = N \cdot \mathbb{E}_J [f(X_J)].$$

The left hand side can be approximated with the Monte Carlo method, $j_m \sim \text{DiscreteUniform}(1, ..., N)$ iid,

$$\sum_{j=1}^{N} f(X_j) \approx \frac{N}{M} \sum_{m=1}^{M} f(X_{j_m}).$$

Subsampling

Thus, from a large dataset we can subsample a mini-batch by selecting data points at random, $\{X_{j_1}, \ldots, X_{j_M}\}$, and the sum will be approximately equal to the sum over the entire dataset

$$\sum_{j=1}^{N} f(X_j) \approx \frac{N}{M} \sum_{m=1}^{M} f(X_{j_m}).$$

This approximation is more accurate for larger mini-batches.

Stochastic Variational Inference

In Stochastic Variational Inference, we doubly approximate the gradient of the ELBO:

For $\eta_i \sim \text{MvNormal}(\mathbf{0}, I), j_m \sim \text{DiscreteUniform}(1, \dots, N)$

$$abla_{m{\mu}} ext{ELBO}(m{\phi}) \quad pprox \quad \frac{1}{L} \sum_{i=1}^{L}
abla_{m{\mu}} \log P(\exp(m{\omega}) \cdot m{\eta}_i + m{\mu}, X)$$

$$\approx \quad \frac{N}{M} \frac{1}{L} \sum_{m=1}^{M} \sum_{i=1}^{L}
abla_{m{\mu}} \log P(\exp(m{\omega}) \cdot m{\eta}_i + m{\mu}, X_{j_m})$$

Typically, for $M \approx 100$ large enough, L can be set to 1.

The complexity of SVI is $\mathcal{O}(MLK)$, where $M \ll N$ is the mini-batch size, L is the number of samples per iteration, and K is the number of variables.

Resources

KL Divergence - Clearly explained!

https://www.youtube.com/watch?v=9_eZHt2qJs4

Variational Inference + ELBO Intuition

https://www.youtube.com/watch?v=HxQ94L8n0vU

Automatic Differentiation and Gradient Descent https://medium.com/@rhome/automatic-differentiation-26d5a993692b

Paper: Automatic Differentiation Variational Inference

https://arxiv.org/abs/1603.00788

Paper: Stochastic Variational Inference https://arxiv.org/abs/1312.6114

Organisation

- · Deadline A2: 29.10. (Inspiration for models on homepage)
- · Assignment Discussion Session: 30.10. online
- · Release A3: 30.10.
- · Deadline A3 and Release A4: 15.11.
- Look at probabilistic programming / Bayesian inference publications for inspiration for group project
- Send me an e-mail if you want to have topic covered in upcoming lectures