घातांक और घात

13.1 भूमिका

क्या आप जानते हैं कि पृथ्वी का द्रव्यमान (mass) क्या है? यह 5,970,000,000,000,000,000,000,000 kg है! क्या आप इस संख्या को पढ़ सकते हैं? यूरेनस ग्रह (Uranus) का द्रव्यमान 86,800,000,000,000,000,000,000,000 kg है। किसका द्रव्यमान अधिक है—पृथ्वी या यूरेनस ग्रह?

सूर्य (Sun) और शिन (Saturn) के बीच की दूरी 1,433,500,000,000 m है तथा शिन और यूरेनस ग्रह के बीच की दूरी 1,439,000,000,000 m है। क्या आप इन संख्याओं को पढ़ सकते हैं? इनमें कौन–सी दूरी कम है?

ऐसी बहुत बड़ी संख्याओं का पढ़ना, समझना और इनकी तुलना करना कठिन होता है। इन संख्याओं को सरलता से पढ़ने, समझने और इनकी तुलना करने के लिए, हम घातांकों (exponents) का प्रयोग करते हैं। इस अध्याय में, हम घातांकों के बारे में सीखेंगे तथा यह भी सीखेंगे कि इनका प्रयोग किस प्रकार किया जाता है।

13.2 घातांक

हम बड़ी संख्याओं को घातांकों का प्रयोग करके संक्षिप्त रूप में लिख सकते हैं। निम्नलिखित को देखिए: $10,000=10\times10\times10\times10=10^4$

संक्षिप्त संकेतन 10^4 गुणनफल $10\times10\times10\times10$ को व्यक्त करता है। यहाँ, '10' आधार (base) और '4' घातांक कहलाता है। 10^4 को 10 के ऊपर घात (power) 4 या केवल 10 की चौथी घात पढ़ा जाता है। 10^4 को 10000 का घातांकीय रूप (exponential form) कहा जाता है।

हम इसी प्रकार 1000 को भी 10 की घात के रूप में व्यक्त कर सकते हैं। चूँकि 1000 संख्या 10 का स्वयं से तीन बार गुणा है, इसलिए

 $1000 = 10 \times 10 \times 10 = 10^3 \ \xi$

यहाँ, पुन: 10³ संख्या 1000 का घातांकीय रूप है।

इसी प्रकार, $1,00,000 = 10 \times 10 \times 10 \times 10 \times 10 = 10^5$ है।

अर्थात्, 10^5 संख्या 1,00,000 का घातांकीय रूप है।

इन दोनों उदाहरणों में, आधार 10 है। 10³ में घातांक 3 है तथा 10⁵ में घातांक 5 है।

हम संख्याओं को विस्तारित या प्रसारित रूप (expanded form) में लिखने के लिए 10, 100, 1000 इत्यादि जैसी संख्याओं का प्रयोग कर चुके हैं।

उदाहरणार्थ, $47561 = 4 \times 10000 + 7 \times 1000 + 5 \times 100 + 6 \times 10 + 1$ है।

इसे $4 \times 10^4 + 7 \times 10^3 + 5 \times 10^2 + 6 \times 10 + 1$ के रूप में लिखा जा सकता है। निम्नलिखित संख्याओं को इसी प्रकार लिखने का प्रयत्न कीजिए:

172, 5642, 6374

उपरोक्त सभी उदाहरणों में, हमने वे संख्याएँ देखी हैं जिनके आधार 10 हैं। परंतु आधार कोई भी संख्या हो सकती है। उदाहरणार्थ.

कुछ घातों के विशिष्ट नाम हैं। उदाहरणार्थ :

 10^2 , जो 10 के ऊपर घात 2 है, इसे 10 का वर्ग (10 squared) भी पढ़ा जाता है।

 10^3 , जो 10 के ऊपर घात 3 है, इसे 10 का घन (10 cubed) भी पढ़ा जाता है। क्या आप बता सकते हैं कि 5^3 (5 के घन) का क्या अर्थ है?

 5^3 का अर्थ 5 का स्वयं से तीन बार गुणा किया जाना है, अर्थात् $5^3 = 5 \times 5 \times 5 = 125$

अत: हम कह सकते हैं कि 125 संख्या 5 की तीसरी घात (third power) है। 5^3 में आधार तथा घातांक क्या हैं? इसी प्रकार $2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$ है, जो 2 की पाँचवीं घात है। 2^5 में .2 आधार है तथा घातांक 5 है।

प्रयास कीजिए

ऐसे पाँच और उदाहरण दीजिए, जहाँ एक संख्या को घातांकीय रूप हैमें व्यक्त किया जाता है। प्रत्येक स्थिति में, घातांक व आधार की पहचान भी कीजिए। इसी विधि के अनुसार, $243 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^5$, $64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^6$

 $625 = 5 \times 5 \times 5 \times 5 = 5^4$

आप संक्षिप्त रूप में लिखने की इस विधि को तब भी लागू कर सकते हैं, जब आधार एक ऋणात्मक पूर्णांक हो।

 $(-2)^3$ का क्या अर्थ है?

यह $(-2)^3 = (-2) \times (-2) \times (-2) = -8$ है।

क्या $(-2)^4 = 16$ है? इसकी जाँच कीजिए।

कोई निश्चित संख्या लेने के स्थान पर, आइए किसी भी संख्या a को आधार लें तथा संख्याओं को निम्निलिखित रूप में लिखें :

 $a \times a = a^2$ (इसे 'a का वर्ग' या 'a के ऊपर घात 2' पढ़ा जाता है)

 $a \times a \times a = a^3$ (इसे 'a का घन' या 'a के ऊपर घात 3' पढ़ा जाता है)

 $a \times a \times a \times a = a^4$ (इसे a के ऊपर घात 4 या 'a की चौथी घात' पढ़ा जाता है)

 $a \times a \times a \times a \times a \times a \times a = a^{7}$ (इसे 'a के ऊपर घात 7' या 'a की सातवीं घात' पढ़ा जाता है)

इत्यादि।

 $a \times a \times a \times b \times b$ को a^3b^2 के रूप में व्यक्त किया जा सकता है (इसे a का घन गुणा b का वर्ग पढ़ा जाता है)।

 $a \times a \times b \times b \times b \times b$ को a^2b^4 के रूप में व्यक्त किया जा सकता है (इसे a का वर्ग गुणा b पर 4 घात पढ़ा जाता है)।

प्रयास कीजिए

व्यक्त कीजिए:

- (i) 729 को 3 की घात के रूप में
- (ii) 128 को 2 की घात के रूप में
- (iii) 343 को 7 की घात के रूप में

उदाहरण 1 256 को 2 की घात के रूप में व्यक्त कीजिए।

उदाहरण 2 2^3 और 3^2 में कौन बड़ा है?

हल हमें प्राप्त है कि $2^3 = 2 \times 2 \times 2 = 8$ है तथा $3^2 = 3 \times 3 = 9$ है। चूँकि 9 > 8 है, इसलिए 3^2 संख्या 2^3 से बड़ा है।

उदाहरण 3 8^2 और 2^8 में कौन बड़ा है?

हल $8^2 = 8 \times 8 = 64$ है। $2^8 = 2 \times 2 = 256$ है। स्पष्टतया, $2^8 > 8^2$

$$b^3 a^2 = b^3 \times a^2$$
$$= b \times b \times b \times a \times a$$

ध्यान दीजिए कि पद a^3 b^2 और a^2 b^3 की स्थिति में, a और b की घातें भिन्न-भिन्न हैं। इस प्रकार a^3 b^2 और a^2 b^3 भिन्न-भिन्न हैं।

इसके विपरीत, a^3 b^2 और b^2 a^3 बराबर (एक ही) हैं, चूँिक इनमें a और b की घातें एक ही हैं। गुणनखंडों के क्रम से कोई प्रभाव नहीं पड़ता है।

इस प्रकार, $a^3 b^2 = a^3 \times b^2 = b^2 \times a^3 = b^2 a^3$ है। इसी प्रकार $a^2 b^3$ और $b^3 a^2$ भी बराबर हैं।

उदाहरण 5 निम्नलिखित संख्याओं को अभाज्य गुणनखंडों की घातों के गुणनफल के रूप में व्यक्त कीजिए: 2 | 72

(i) 72

(ii) 432

(iii) 1000

(iv) 16000

2 36

18

9

3

2

3

हल

(i)
$$72 = 2 \times 36 = 2 \times 2 \times 18$$

= $2 \times 2 \times 2 \times 9$
= $2 \times 2 \times 2 \times 3 \times 3 = 2^3 \times 3^2$

इस प्रकार $72 = 2^3 \times 3^2$ (वांछित अभाज्य गुणनखंडों की घातों के गुणनफल वाला रूप)

(ii)
$$432 = 2 \times 216 = 2 \times 2 \times 108 = 2 \times 2 \times 2 \times 54$$

= $2 \times 2 \times 2 \times 2 \times 27 = 2 \times 2 \times 2 \times 2 \times 3 \times 9$
= $2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$

या $432 = 2^4 \times 3^3$ (वांछित रूप)

(iii)
$$1000 = 2 \times 500 = 2 \times 2 \times 250 = 2 \times 2 \times 2 \times 125$$

= $2 \times 2 \times 2 \times 5 \times 25 = 2 \times 2 \times 2 \times 5 \times 5 \times 5$
 $1000 = 2^3 \times 5^3$

अतुल इस उदाहरण को निम्नलिखित विधि से हल करना चाहता है : $1000 = 10 \times 100 = 10 \times 10 \times 10$ $= (2 \times 5) \times (2 \times 5) \times (2 \times 5) \qquad (चूँकि <math>10 = 2 \times 5$ है) $= 2 \times 5 \times 2 \times 5 \times 2 \times 5 = 2 \times 2 \times 2 \times 5 \times 5 \times 5$ या $1000 = 2^3 \times 5^3$

भा $1000 = 2^{\circ} \times 3^{\circ}$ भ्या अतुल की विधि सही है?

उदाहरण 6 निम्नलिखित के मान ज्ञात कीजिए। $(1)^5, (-1)^3, (-1)^4, (-10)^3$ और $(-5)^4$:

हल

(i) हमें प्राप्त है, $(1)^5 = 1 \times 1 \times 1 \times 1 \times 1 = 1$ वास्तव में, 1 की कोई भी घात 1 के बराबर होती है।

- (ii) $(-1)^3 = (-1) \times (-1) \times (-1) = 1 \times (-1) = -1$
- (iii) $(-1)^4 = (-1) \times (-1) \times (-1) \times (-1) = 1 \times 1 = 1$ आप इसकी जाँच कर सकते हैं कि (-1) की कोई भी विषम घात (-1) के बराबर होती है तथा (-1) की कोई भी **सम** घात (+1) के बराबर होती है।
- (-1)^{विषम संख्या} = -1 $(-1)^{सम}$ संख्या = + 1
- (iv) $(-10)^3 = (-10) \times (-10) \times (-10) = 100 \times (-10) = -1000$
- (v) $(-5)^4 = (-5) \times (-5) \times (-5) \times (-5) = 25 \times 25 = 625$

प्रश्नावली 13.1

- 1. निम्नलिखित के मान ज्ञात कीजिए :
 - (i) 2^6
- (ii) 9^3
- (iii) 11²
- (iv) 5^4

- 2. निम्नलिखित को घातांकीय रूप में व्यक्त कीजिए :
 - (i) $6 \times 6 \times 6 \times 6$
- (ii) $t \times t$
- (iii) $b \times b \times b \times b$

- (iv) $5 \times 5 \times 7 \times 7 \times 7$
- (v) $2 \times 2 \times a \times a$ (vi) $a \times a \times a \times c \times c \times c \times c \times d$
- 3. निम्नलिखित संख्याओं में से प्रत्येक को घातांकीय संकेतन में व्यक्त कीजिए :
- (ii) 343
- (iii) 729
- 4. निम्नलिखित में से प्रत्येक भाग में, जहाँ भी संभव हो, बड़ी संख्या को पहचानिए:
 - (i) 4³ या 3⁴
- (ii) 5³ या 3⁵
- (iii) 2⁸ या 8²

- (iv) 100² या 2¹⁰⁰
- (v) 2¹⁰ या 10²
- 5. निम्नलिखित में से प्रत्येक को उनके अभाज्य गुणनखंडों की घातों के गुणनफल के रूप में व्यक्त कीजिए।
 - (i) 648
- (ii) 405
- (iii) 540
- (iv) 3600

- 6. सरल कीजिए :
 - (i) 2×10^3
- (ii) $7^2 \times 2^2$
- (iii) $2^3 \times 5$
- (iv) 3×4^4

- (v) 0×10^2
- (vi) $5^2 \times 3^3$
- (vii) $2^4 \times 3^2$
- (viii) $3^2 \times 10^4$

- 7. सरल कीजिए:
 - (i) $(-4)^3$
- (ii) $(-3) \times (-2)^3$
- (iii) $(-3)^2 \times (-5)^2$

- (iv) $(-2)^3 \times (-10)^3$
- 8. निम्नलिखित संख्याओं की तुलना कीजिए:
 - (i) 2.7×10^{12} ; 1.5×10^{8}
- (ii) 4×10^{14} ; 3×10^{17}

13.3 घातांकों के नियम

13.3.1 एक ही आधार वाली घातों का गुणन

(i) आइए $2^2 \times 2^3$ को परिकलित करें।

$$2^2 \times 2^3 = (2 \times 2) \times (2 \times 2 \times 2)$$

= $2 \times 2 \times 2 \times 2 \times 2 = 2^5 = 2^{2+3}$

ध्यान दीजिए कि 2^2 और 2^3 में आधार एक ही (समान) है तथा घातांकों का योग, अर्थात् 2 और 3 का योग 5 है।

(ii)
$$(-3)^4 \times (-3)^3 = [(-3) \times (-3) \times (-3) \times (-3)] \times [(-3) \times (-3) \times (-3)]$$

= $(-3) \times (-3) \times (-3) \times (-3) \times (-3) \times (-3) \times (-3)$
= $(-3)^7$
= $(-3)^{4+3}$

पुन: ध्यान दीजिए कि आधार एक ही है तथा घातांकों का योग 4 + 3 = 7 है।

(iii)
$$a^2 \times a^4 = (a \times a) \times (a \times a \times a \times a)$$

$$= a \times a \times a \times a \times a \times a = a^6$$

(टिप्पणी: आधार एक ही है तथा घातांकों का योग 2 + 4 = 6 है)

इसी प्रकार, सत्यापित कीजिए कि

सरल करके घातांकीय रूप में लिखिए :

(i)
$$2^5 \times 2^3$$

(ii)
$$p^3 \times p^2$$

(iii)
$$4^3 \times 4^2$$

(iv)
$$a^3 \times a^2 \times a^7$$

(v)
$$5^3 \times 5^7 \times 5^{12}$$

(vi)
$$(-4)^{100} \times (-4)^{20}$$

 $4^2 \times 4^2 = 4^{2+2}$ तथा $3^2 \times 3^3 = 3^{2+3}$ है।

क्या आप बॉक्स में उपयुक्त संख्या लिख सकते हैं?

$$(-11)^2 \times (-11)^6 = 11^{\square}$$
$$b^2 \times b^3 = b^{\square}$$

(याद रखिए, आधार एक ही है, b कोई भी शुन्येतर पूर्णांक है)।

$$c^3 \times c^4 = c^\square$$
 (c कोई भी शून्येतर पूर्णांक है)। $d^{10} \times d^{20} = d^\square$

यहाँ से हम व्यापक रूप से यह कह सकते हैं कि एक शुन्येतर पूर्णांक a, के लिए. $a^m \times a^n = a^{m+n}$

होता है, जहाँ m और n पूर्ण संख्याएँ हैं।

सावधानी!

 $2^3 \times 3^2$ पर विचार कीजिए।

क्या आप घातांकों को जोड सकते हैं? नहीं! क्या आप बता सकते हैं 'क्यों'? 2^3 का आधार 2 है और 3^2 का आधार 3 है। आधार एक समान नहीं हैं।

13.3.2 एक ही आधार वाली घातों का विभाजन

आइए $3^7 \div 3^4$ को सरल करें।

 $3^7 \div 3^4 = 3^{7-4} \stackrel{?}{\epsilon}$ इस प्रकार,

[ध्यान दीजिए कि 3^7 और 3^4 के आधार एक ही हैं और $3^7 \div 3^4 = 3^{7-4}$ हो जाता है।]

इस प्रकार,
$$5^6 \div 5^2 = \frac{5^6}{5^2} = \frac{5 \times 5 \times 5 \times 5 \times 5 \times 5}{5 \times 5}$$
$$= 5 \times 5 \times 5 \times 5 \times 5 = 5^4 = 5^{6-2}$$

या.
$$5^6 \div 5^2 = 5^{6-2} \ \hat{\xi}$$

मान लीजिए कि a कोई शून्येतर पूर्णांक है। तब,

$$a^{4} \div a^{2} = \frac{a^{4}}{a^{2}} = \frac{a \times a \times a \times a}{a \times a} = a \times a = a^{2} = a^{4}$$

या

क्या अब आप तुरंत उत्तर दे सकते हैं?

$$10^8 \div 10^3 = 10^{8-3} = 10^5$$
$$7^9 \div 7^6 = 7 \square$$

$$a^8 \div a^5 = a^{\square}$$

शुन्येतर पूर्णांक b और c के लिए

$$b^{10} \div b^5 = b^{\square}$$

$$c^{100} \div c^{90} = c^{\square}$$

व्यापक रूप में, किसी भी शून्येतर पूर्णांक a के लिए,

$$a^m \div a^n = a^{m-n}$$

होता है, जहाँ m और n पूर्ण संख्याएँ हैं तथा m>n है।

13.3.3 एक घात की घात लेना

निम्नलिखित पर विचार कीजिए :

 $(2^3)^{2^3}$ औं 2 ; $(3^2)^4$ को सरल कीजिए।

का अर्थ है 23 का स्वयं से दो बार गुणा किया गया है। अब.

$$(2^3)^2 = 2^3 \times 2^3$$

= 2^{3+3} (चूँकि $a^m \times a^n = a^{m+n}$ है।)
= $2^6 = 2^{3 \times 2}$

अर्थात्

 $\left(2^3\right)^2$

$$(2^3)^2 = 2^{3\times 2}$$

इसी प्रकार,
$$\left(3^2\right)^4 = 3^2 \times 3^2 \times 3^2 \times 3^2$$

$$= 3^{2+2+2+2}$$

$$= 3^8 \qquad (देखिए कि 2 और 4 का गुणनफल 8 है।)$$

$$= 3^{2\times4}$$

क्या आप बता सकते हैं कि $(7^2)^{10}$ किसके बराबर है?

अत:,
$$(2^3)^2 = 2^{3 \times 2} = 2^6$$

$$\left(3^2\right)^4 = 3^{2 \times 4} = 3^8$$

प्रयास कीजिए

सरल करके घातांकीय रूप में लिखिए: (उदाहरण के लिए, $11^6 \div 11^2 = 11^4$)

- (i) $2^9 \div 2^3$
- (ii) $10^8 \div 10^4$
- (iii) $9^{11} \div 9^7$
- (iv) $20^{15} \div 20^{13}$
- (v) $7^{13} \div 7^{10}$

प्रयास कीजिए

सरल करके, उत्तर को घातांकीय रूप में व्यक्त कीजिए।

- (i) $(6^2)^4$ (ii) $(2^2)^{100}$
- (iii) $(7^{50})^2$ (iv) $(5^3)^7$

$$\left(7^2\right)^{10} = 7^{2 \times 10} = 7^{20}$$

$$(a^2)^3 = a^{2 \times 3} = a^6$$

$$(a^m)^3 = a^{m \times 3} = a^{3m}$$

उपरोक्त से, हम व्यापक रूप से कह सकते हैं कि किसी शून्येतर पूर्णांक 'a' के लिए,

$$\left(a^{m}\right)^{n}=a^{mn}$$

होता है, जहाँ m और n पूर्ण संख्याएँ हैं।

हल $(5^2) \times 3$ का अर्थ है कि 5^2 को 3 से गुणा किया गया है, अर्थात् यह $5 \times 5 \times 3 = 75$

परंतु $(5^2)^3$ का अर्थ है कि 5^2 का स्वयं से तीन बार गुणा किया गया है, अर्थात् यह

$$5^2 \times 5^2 \times 5^2 = 5^6 = 15625$$
 है।
(5^2)³ > (5^2) × 3 हੈ।

अत:,

13.3.4 समान घातांकों वाली घातों का गुणन

क्या आप $2^3 \times 3^3$ को सरल कर सकते हैं? ध्यान दीजिए कि यहाँ दोनों पदों 2^3 और 3^3 के आधार भिन्न-भिन्न हैं। परंतु इनके घातांक समान हैं।

সৰ
$$2^3 \times 3^3 = (2 \times 2 \times 2) \times (3 \times 3 \times 3)$$

$$= (2 \times 3) \times (2 \times 3) \times (2 \times 3)$$

$$= 6 \times 6 \times 6$$

देखिए
$$4^4 \times 3^4 = (4 \times 4 \times 4 \times 4) \times (3 \times 3 \times 3 \times 3)$$

$$= (4 \times 3) \times (4 \times 3) \times (4 \times 3) \times (4 \times 3)$$

$$= 12 \times 12 \times 12 \times 12$$

$$= 12^4$$

साथ ही, देखिए $3^2 \times a^2 = (3 \times 3) \times (a \times a)$

$$= (3 \times a) \times (3 \times a)$$

$$= (3 \times a)^2$$

$$= (3a)^2$$
 (ध्यान दीजिए : $3 \times a = 3a$)

इसी प्रकार
$$a^4 \times b^4 = (a \times a \times a \times a) \times (b \times b \times b \times b)$$

$$= (a \times b) \times (a \times b) \times (a \times b) \times (a \times b)$$

$$= (a \times b)^4$$

$$= (ab)^4$$
 (ध्यान दीजिए कि $a \times b = ab$ है)

व्यापक रूप में, किसी भी शून्येतर पूर्णांक के लिए,

 $a^m \times b^m = (ab)^m$ होता है जहाँ, m एक पूर्ण संख्या है

उदाहरण 8 निम्नलिखत पदों को घातांकीय रूप में व्यक्त कीजिए :

(i)
$$(2 \times 3)^5$$

(ii)
$$(2a)^4$$

(iii)
$$(-4m)^3$$

हल

(i)
$$(2 \times 3)^5 = (2 \times 3) \times (2 \times 3) \times (2 \times 3) \times (2 \times 3) \times (2 \times 3)$$

= $(2 \times 2 \times 2 \times 2 \times 2) \times (3 \times 3 \times 3 \times 3 \times 3)$
= $2^5 \times 3^5$

(ii)
$$(2a)^4 = 2a \times 2a \times 2a \times 2a$$

$$= (2 \times 2 \times 2 \times 2) \times (a \times a \times a \times a)$$

$$= 2^4 \times a^4$$

(iii)
$$(-4m)^3 = (-4 \times m)^3$$

= $(-4 \times m) \times (-4 \times m) \times (-4 \times m)$
= $(-4) \times (-4) \times (-4) \times (m \times m \times m) = (-4)^3 \times (m)^3$

प्रयास कीजिए

 $a^m \times b^m = (ab)^m$ का प्रयोग करके, अन्य रूप में बदलिए :

(i)
$$4^3 \times 2^3$$
 (ii) $2^5 \times b^5$

(iii)
$$a^2 \times t^2$$
 (iv) $5^6 \times (-2)^6$

(v)
$$(-2)^4 \times (-3)^4$$

13.3.5 समान घातांकों वाली घातों से विभाजन

निम्नलिखित सरलीकरणों को देखिए:

(i)
$$\frac{2^4}{3^4} = \frac{2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3} = \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \left(\frac{2}{3}\right)^4$$

(ii)
$$\frac{a^3}{b^3} = \frac{a \times a \times a}{b \times b \times b} = \frac{a}{b} \times \frac{a}{b} \times \frac{a}{b} = \left(\frac{a}{b}\right)^3$$

इन उदाहरणों से, हम कह सकते हैं कि व्यापक रूप में,

$$a^m \div b^m = \frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m$$
 जहाँ, a और b कोई दो शून्येतर पूर्णांक हैं तथा m

एक पूर्ण संख्या है।

उदाहरण 9 प्रसार कीजिए: (i)
$$\left(\frac{3}{5}\right)^4$$
 (ii) $\left(\frac{4}{7}\right)^5$

हल

(i)
$$\left(\frac{3}{5}\right)^4 = \frac{3^4}{5^4} = \frac{3 \times 3 \times 3 \times 3}{5 \times 5 \times 5 \times 5}$$

(ii)
$$\left(\frac{4}{7}\right)^5 = \frac{(-4)^5}{7^5} = \frac{(4)(4)(4)(4)(4)(4)}{7777777}$$

प्रयास कीजिए

$$a^m \div b^m = \left(\frac{a}{b}\right)^m$$
 का प्रयोग

करके, अन्य रूप में बदलिए:

(i)
$$4^5 \div 3^5$$

(ii)
$$2^5 \div b^5$$

(iii)
$$(-2)^3 \div b^3$$

(iv)
$$p^4 \div q^4$$

(v)
$$5^6 \div (-2)^6$$

• शून्य घातांक वाली संख्याएँ

क्या आप बता सकते हैं कि $\frac{3^5}{3^5}$ किसके बराबर है?

$$\frac{3^5}{3^5} = \frac{3 \times 3 \times 3 \times 3 \times 3}{3 \times 3 \times 3 \times 3 \times 3} = 1$$
 ਵੈ।

घातांकों के नियमों का प्रयोग करते हए.

अत:

$$3^0 = 1$$
 है।

क्या आप बता सकते हैं कि 70 किसके बराबर है?

$$7^3 \div 7^3 = 7^{3-3} = 7^0$$

$$\frac{7^3}{7^3} = \frac{7 \times 7 \times 7}{7 \times 7 \times 7} = 1 \quad \stackrel{\text{R}}{=} 1$$

अत:

$$7^0 = 1$$

इसी प्रकार, $a^3 \div a^3 = a^{3-3} = a^0$ है।

साथ ही
$$a^3 \div a^3 = \frac{a^3}{a^3} = \frac{a \times a \times a}{a \times a \times a} = 1$$
 है।

 $a^0 = 1$ (किसी भी शुन्येतर पूर्णांक a के लिए)

अत:, हम कह सकते हैं कि किसी भी संख्या (शून्य के अतिरिक्त) पर घात (या घातांक) 0 का मान 1 होता है।

13.4 घातांकों के नियमों का विविध उदाहरणों में प्रयोग

आइए ऊपर विकसित किए गए घातांकों के नियमों का प्रयोग करके, कुछ उदाहरण हल करें। उदाहरण 10 8 × 8 × 8 × 8 के लिए, आधार 2 लेते हुए, इसे घातांकीय रूप में लिखिए।

ज्ञात है कि, $8 \times 8 \times 8 \times 8 = 8^4$

परंत हम जानते हैं कि

$$8 = 2 \times 2 \times 2 = 2^3 है।$$

अत:.

$$8^4 = (2^3)^4 = 2^3 \times 2^3 \times 2^3 \times 2^3$$

 $= 2^{3 \times 4}$ (आप $(a^m)^n = a^{mn}$ का भी प्रयोग कर सकते हैं।) -212

a° क्या है?

सकते हैं?

निम्नलिखित पैटर्न को देखिए:

 $2^6 = 64$ $2^5 = 32$

 $2^{\circ} = ?$

मान का अनुमान लगा सकते हैं।

आप देख सकते हैं कि 2° = 1 है।

आप केवल पैटर्न देख कर ही 2° के

यदि $3^6 = 729$, से प्रारंभ करें, तो ऊपर दर्शाई विधि से 35, 34, 33,... इत्यादि ज्ञात

करते हुए, क्या आप 3° का मान बता

उदाहरण 11 सरल कीजिए और उत्तर को घातांकीय रूप में लिखिए :

(i)
$$\left(\frac{3^7}{3^2}\right) \times 3^5$$

(ii)
$$2^3 \times 2^2 \times 5^5$$

(iii)
$$(6^2 \times 6^4) \div 6^3$$

(iv)
$$((2^2)^3 \times 3^6) \times 5^6$$
 (v) $8^2 \div 2^3$

(v)
$$8^2 \div 2^2$$

हल (i)
$$\left(\frac{3^7}{3^2}\right) \times 3^5 = \left(3^{7-2}\right) \times 3^5$$

= $3^5 \times 3^5 = 3^{5+5} = 3^{10}$

(ii)
$$2^3 \times 2^2 \times 5^5 = 2^{3+2} \times 5^5$$

= $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$

(iii)
$$(6^2 \times 6^4) \div 6^3 = 6^{2+4} \div 6^3$$

= $\frac{6^6}{6^3} = 6^{6-3} = 6^3$

(iv)
$$\left[\left(2^2 \right)^3 \times 3^6 \right] \times 5^6 = \left[2^6 \times 3^6 \right] \times 5^6$$

= $\left(2 \times 3 \right)^6 \times 5^6$
= $\left(2 \times 3 \times 5 \right)^6 = 30^6$

(v)
$$8 = 2 \times 2 \times 2 = 2^3$$

अत:,
$$8^2 \div 2^3 = (2^3)^2 \div 2^3$$

= $2^6 \div 2^3 = 2^{6-3} = 2^3$

(i)
$$\frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$$

(ii)
$$2^3 \times a^3 \times 5a^4$$

(ii)
$$2^3 \times a^3 \times 5a^4$$
 (iii) $\frac{2 \quad 3^4 \quad 2^5}{9 \quad 4^2}$

(i) यहाँ हल

$$\frac{12^{4} \times 9^{3} \times 4}{6^{3} \times 8^{2} \times 27} = \frac{(2^{2} \times 3)^{4} \times (3^{2})^{3} \times 2^{2}}{(2 \times 3)^{3} \times (2^{3})^{2} \times 3^{3}}$$

$$= \frac{(2^{2})^{4} (3)^{4} 3^{2 \times 3} 2^{2}}{2^{3} 3^{3} 2^{2 \times 3} 3^{3}} = \frac{2^{8} \times 2^{2} \times 3^{4} \times 3^{6}}{2^{3} \times 2^{6} \times 3^{3} \times 3^{3}}$$

$$= \frac{2^{8+2} \times 3^{4+6}}{2^{3+6} \times 3^{3+3}} = \frac{2^{10} \times 3^{10}}{2^{9} \times 3^{6}}$$

$$= 2^{10-9} \times 3^{10-6} = 2^{1} \times 3^{4}$$

$$= 2 \times 81 = 162$$

(ii)
$$2^3 \times a^3 \times 5a^4 = 2^3 \times a^3 \times 5 \times a^4$$

= $2^3 \times 5 \times a^3 \times a^4 = 8 \times 5 \times a^{3+4}$
= $40 \ a^7$

(ii)
$$\frac{2 \quad 3^4 \quad 2^5}{9 \quad 4^2} = \frac{2 \times 3^4 \times 2^5}{3^2 \times (2^2)^2} = \frac{2 \times 2^5 \times 3^4}{3^2 \times 2^{2 \times 2}}$$
$$= \frac{2^{1+5} \times 3^4}{2^4 \times 3^2} = \frac{2^6 \times 3^4}{2^4 \times 3^2} = 2^{6-4} \times 3^{4-2}$$
$$= 2^2 \times 3^2 = 4 \times 9 = 36$$

टिप्पणी: इस अध्याय में, हमने अधिकांशत: ऐसे उदाहरण लिए हैं जिनमें आधार पूर्णांक हैं। परंतु इस अध्याय के सभी परिणाम उन स्थितियों के लिए भी सत्य हैं, जहाँ आधार परिमेय संख्याएँ हैं।

प्रश्नावली 13.2

1. घातांकों के नियमों का प्रयोग करते हुए, सरल कीजिए और उत्तर को घातांकीय रूप में लिखिए:

(i)
$$3^2 \times 3^4 \times 3^8$$

(ii)
$$6^{15} \div 6^{10}$$
 (iii) $a^3 \times a^2$

(iii)
$$a^3 \times a^2$$

(iv)
$$7^x \times 7^2$$

(iv)
$$7^x \times 7^2$$
 (v) $(5^2)^3 \div 5^3$ (vi) $2^5 \times 5^5$

(vi)
$$2^5 \times 5^5$$

(vii)
$$a^4 \times b^4$$

(viii)
$$\left(3^4\right)^3$$

(viii)
$$(3^4)^3$$
 (ix) $(2^{20} \div 2^{15}) \times 2^3$

(x)
$$8^t \div 8^2$$

2. निम्नलिखित में से प्रत्येक को सरल करके घातांकीय रूप में व्यक्त कीजिए :

(i)
$$\frac{2^3 \quad 3^4}{3 \quad 32}$$

(i)
$$\frac{2^3 \quad 3^4 \quad 4}{3 \quad 32}$$
 (ii) $\left[\left(5^2 \right)^3 \times 5^4 \right] \div 5^7$ (iii) $25^4 \div 5^3$

(iii)
$$25^4 \div 5^3$$

(iv)
$$\frac{3 \times 7^2 \times 11^8}{21 \times 11^3}$$
 (v) $\frac{3^7}{3^4 \times 3^3}$ (vi) $2^0 + 3^0 + 4^0$

(v)
$$\frac{3^7}{3^4 \times 3^3}$$

(vi)
$$2^0 + 3^0 + 4^0$$

(vii)
$$2^{0} \times 3^{0} \times 4^{0}$$

(viii)
$$(3^0 + 2^0) \times 5^0$$

(vii)
$$2^0 \times 3^0 \times 4^0$$
 (viii) $(3^0 + 2^0) \times 5^0$ (ix) $\frac{2^8 \times a^5}{4^3 \times a^3}$

(x)
$$\left(\frac{a^5}{a^3}\right) \times a^8$$
 (xi) $\frac{4^5 \times a^8 b^3}{4^5 \times a^5 b^2}$ (xii) $\left(2^3 \times 2\right)^2$

(xi)
$$\frac{4^5 \times a^8 b^3}{4^5 \times a^5 b^2}$$

(xii)
$$\left(2^3 \times 2\right)^2$$

- 3. बताइए कि निम्नलिखित कथन सत्य है या असत्य तथा अपने उत्तर का कारण भी दीजिए:
 - (i) $10 \times 10^{11} = 100^{11}$
- (ii) $2^3 > 5^2$
- (iii) $2^3 \times 3^2 = 6^5$

- (iv) $3^0 = (1000)^0$
- 4. निम्नलिखित में से प्रत्येक को केवल अभाज्य गुणनखंडों की घातों के गुणनफल के रूप में व्यक्त कीजिए:
 - (i) 108×192
- (ii) 270
- (iii) 729×64

- (iv) 768
- 5. सरल कीजिए:

(i)
$$\frac{(2^5)^2 \times 7^3}{8^3 \times 7}$$

(ii)
$$\frac{25\times5^2\times t^8}{10^3\times t^4}$$

(i)
$$\frac{\left(2^{5}\right)^{2} \times 7^{3}}{8^{3} \times 7}$$
 (ii) $\frac{25 \times 5^{2} \times t^{8}}{10^{3} \times t^{4}}$ (iii) $\frac{3^{5} \times 10^{5} \times 25}{5^{7} \times 6^{5}}$

13.5 दशमलव संख्या पद्धति

आइए 47561 के निम्नलिखित प्रसार को देखें. जिससे हम पहले से ही परिचित हैं:

$$47561 = 4 \times 10000 + 7 \times 1000 + 5 \times 100 + 6 \times 10 + 1$$

हम इसे 10 की घातों का प्रयोग करते हुए, घातांकीय रूप में निम्नलिखित प्रकार से व्यक्त कर सकते हैं:

$$47561 = 4 \times 10^4 + 7 \times 10^3 + 5 \times 10^2 + 6 \times 10^1 + 1 \times 10^0$$

[ध्यान दीजिए : $10000 = 10^4$, $1000 = 10^3$, $100 = 10^2$, $10 = 10^1$ और $1 = 10^0$ है।] आइए एक और संख्या को प्रसारित रूप में लिखें :

$$104278 = 1 \times 100,000 + 0 \times 10000 + 4 \times 1000 + 2 \times 100 + 7 \times 10 + 8 \times 1$$
$$= 1 \times 10^5 + 0 \times 10^4 + 4 \times 10^3 + 2 \times 10^2 + 7 \times 10^1 + 8 \times 10^0$$
$$= 1 \times 10^5 + 4 \times 10^3 + 2 \times 10^2 + 7 \times 10^1 + 8 \times 10^0$$

ध्यान दीजिए कि किस प्रकार 10 के घातांक अधिकतम मान 5 से प्रारंभ होते हुए एक-एक करके घटते हुए, 0 तक आ जाते हैं।

13.6 बड़ी संख्याओं को मानक रूप में व्यक्त करना

आइए, इस अध्याय की प्रारंभिक स्थिति पर वापस आ जाएँ। हमने कहा था कि बड़ी संख्याओं को, घातांकों का प्रयोग करके सुविधाजनक रूप से व्यक्त किया जा सकता है। इसे अभी तक हमने दिखाया नहीं है। अब हम ऐसा करेंगे।

- सूर्य हमारी आकाशगंगा (Milky Way Galaxy) के केंद्र से 300,000,000,000,000,000,000 m की दूरी पर स्थित है।
- 2. हमारी आकाशगंगा में 100,000,000,000 तारे हैं।
- 3. पृथ्वी का द्रव्यमान 5,976,000,000,000,000,000,000,000,000 kg है। ये संख्याएँ पढ़ने और लिखने की दृष्टि से सुविधाजनक नहीं हैं। इनको सुविधाजनक बनाने के लिए, हम घातों (या घातांकों) का प्रयोग करते हैं। निम्नलिखित को देखिए :

 $59 = 5.9 \times 10 = 5.9 \times 10^{1}$ $590 = 5.9 \times 100 = 5.9 \times 10^{2}$ $5900 = 5.9 \times 1000 = 5.9 \times 10^{3}$ $59000 = 5.9 \times 10000 = 5.9 \times 10^{4}$ इत्यादि।

हमने इन सभी संख्याओं को **मानक रूप** (standard form) में व्यक्त कर दिया है। किसी भी संख्या को 1.0 और 10.0 के बीच की एक दशमलव संख्या (जिसमें 1.0 सिम्मिलित है) और 10 की किसी घात के गुणनफल के रूप में व्यक्त किया जा सकता है। संख्या के इस रूप को उसका **मानक रूप** कहते हैं। इस प्रकार.

5985 = 5.985 × 1000 = 5.985 × 103 संख्या 5985 का मानक रूप है।

प्रयास कीजिए

10 की घातों का प्रयोग करते हुए, घातांकीय रूप में प्रसारित कीजिए :

- (i) 172
- (ii) 5643
- (iii) 56439
- (iv) 176428

ध्यान दीजिए कि 5985 को 59.85×100 या 59.85×10^2 के रूप में भी व्यक्त किया जा सकता है। परंतु यह 5985 का मानक रूप नहीं है। इसी प्रकार

 $5985 = 0.5985 \times 10000 = 0.5985 \times 10^{4}$ भी 5985 का मानक रूप नहीं है।

अब हम इस अध्याय के प्रारंभ में आई हुई संख्याओं को इस मानक रूप में व्यक्त करने में सक्षम हो गए हैं।

हमारी आकाशगंगा के केंद्र से सूर्य की दूरी अर्थात्,

300,000,000,000,000,000,000 m को

 $3.0 \times 100,000,000,000,000,000,000 \text{ m} = 3.0 \times 10^{20} \text{ m}$

के रूप में लिखा जा सकता है। अब, क्या आप 40,000,000,000 को इसी रूप में व्यक्त कर सकते हैं? इसमें शून्यों की संख्या को गिनिए। यह 10 है।

अत:

 $40,000,000,000 = 4.0 \times 10^{10}$ है।

पृथ्वी का द्रव्यमान = 5,976,000,000,000,000,000,000,000 kg

 $= 5.976 \times 10^{24} \text{ kg}$ है।

क्या आप इस बात से सहमत हैं कि पढ़ने, समझने और तुलना करने की दृष्टि से मानक रूप में लिखी यह संख्या उस 25 अंकों की संख्या की अपेक्षा बहुत अधिक सरल या सुविधाजनक है?

अब, यूरेनस ग्रह का द्रव्यमान = 86,800,000,000,000,000,000,000,000 kg = 8.68×10^{25} kg है।

अब, उपरोक्त दोनों व्यंजकों में केवल 10 की घातों की तुलना करके ही, आप यह कह सकते हैं कि यूरेनस ग्रह का द्रव्यमान पृथ्वी से अधिक है।

सूर्य और शनि के बीच की दूरी 1,433,500,000,000 m या 1.4335×10^{12} m है। शनि और यूरेनस के बीच की दूरी 1,439,000,000,000 m या 1.439×10^{12} m हैं। सूर्य और पृथ्वी के बीच की दूरी 149,600,000,000 m या 1.496×10^{11} m है।

क्या आप बता सकते हैं कि इन तीनों दूरियों में कौन-सी दूरी न्यूनतम है?

उदाहरण 13 निम्नलिखित संख्याओं को मानक रूप में व्यक्त कीजिए :

- (i) 5985.3
- (ii) 65950
- (iii) 3,430,000
- (iv) 70,040,000,000

हल

- (i) $5985.3 = 5.9853 \times 1000 = 5.9853 \times 10^3$
- (ii) $65950 = 6.595 \times 10000 = 6.595 \times 10^4$
- (iii) $3,430,000 = 3.43 \times 1000,000 = 3.43 \times 10^6$
- (iv) $70,040,000,000 = 7.004 \times 10,000,000,000 = 7.004 \times 10^{10}$

यहाँ ध्यान रखने योग्य बात यह है कि दशमलव बिंदु से बाईं ओर के (अंकों की संख्या) गिनकर, उसमें से 1 घटा कर जो प्राप्त होता है, वही 10 का घातांक होता है, जिसे मानक रूप में प्रयोग किया जाता है। हम इस बिंदु की कल्पना, संख्या के (दाएँ) सिरे पर कर लेते हैं। यहाँ से बाईं ओर अंकों की (संख्या) 11 है। इसिलए, मानक रूप में व्यक्त करने के लिए, 10 का घातांक 11-1=10 है। इसिलए इसके मानक रूप में 10 का घातांक 11-1=10 है।

प्रश्नावली 13.3

- निम्नलिखित संख्याओं को प्रसारित रूप में लिखिए : 279404, 3006194, 2806196, 120719, 20068
- 2. निम्नलिखित प्रसारित रूपों में से प्रत्येक के लिए संख्या ज्ञात कीजिए :
 - (a) $8 \times 10^4 + 6 \times 10^3 + 0 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$
 - (b) $4 \times 10^5 + 5 \times 10^3 + 3 \times 10^2 + 2 \times 10^0$
 - (c) $3 \times 10^4 + 7 \times 10^2 + 5 \times 10^0$
 - (d) $9 \times 10^5 + 2 \times 10^2 + 3 \times 10^1$
- 3. निम्नलिखित संख्याओं को मानक रूप में व्यक्त कीजिए :
 - (i) 5,00,00,000
- (ii) 70,00,000
- (iii) 3,18,65,00,000

- (iv) 3,90,878
- (v) 39087.8
- (vi) 3908.78
- निम्नलिखित कथनों में प्रकट होने वाली (आने वाली) संख्याओं को मानक रूप में व्यक्त कीजिए।
 - (a) पृथ्वी और चंद्रमा के बीच की दूरी 384,000,000 m है।
 - (b) निर्वात स्थान में प्रकाश की चाल (या वेग) 300,000,000 m/sec. है।
 - (c) पृथ्वी का व्यास 12756000 m है।
 - (d) सूर्य का व्यास 1,400,000,000 m है।
 - (e) एक आकाशगंगा में औसतन 100,000,000,000 तारे हैं।
 - (f) विश्व मंडल (या सौर मंडल) 12,000,000,000 वर्ष पुराना आकलित किया गया है।
 - (g) आकाशगंगा के मध्य से सूर्य की दूरी 300,000,000,000,000,000,000 m आकलित की गई है।
 - (h) 1.8 g भार वाली पानी की एक बूंद में 60,230,000,000,000,000,000,000 अणु (molecules) होते हैं।
 - (i) पृथ्वी में 1,353,000,000 km³ समुद्र जल है।
 - (j) मार्च 2001 में भारत की जनसंख्या 1,027,000,000 थी।

हमने क्या चर्चा की?

- 1. बहुत बड़ी संख्याएँ पढ़ने, समझने, तुलना करने और उन पर संक्रियाएँ करने की दृष्टि से कठिन होती हैं। इनको सरल बनाने के लिए, हम इन अधिकांश बड़ी संख्याओं को घातांकों का प्रयोग करके संक्षिप्त रूप में लिखते हैं।
- 2. कछ संख्याओं के घातांकीय रूप निम्नलिखित हैं :

$$243 = 3^5$$
, $128 = 2^7$.

यहाँ, 10, 3 और 2 आधार हैं तथा 4, 5 और 7 क्रमश: इनके घातांक हैं। हम यह भी कहते हैं कि 10 की चौथी घात 10000 है, 3 की पाँचवीं घात 243 है, इत्यादि।

- **3.** घातांकीय रूप में संख्याएँ कुछ नियमों का पालन करती हैं, जो इस प्रकार हैं : किन्हीं शून्येतर पूर्णांकों a और b तथा पूर्ण संख्याओं m और n के लिए,
 - (a) $a^m \times a^n = a^{m+n}$
 - (b) $a^m \div a^n = a^{m-n}, \quad m > n$
 - (c) $(a^m)^n = a^{mn}$
 - (d) $a^m \times b^m = (ab)^m$

(e)
$$a^m \div b^m = \left(\frac{a}{b}\right)^m$$

- (f) $a^{\circ} = 1$
- $(g) (-1)^{\text{सम संख्या}} = 1$

$$(-1)^{\text{विषम संख्या}} = -1$$

