1.1.

1.1.1 Limits calculation for sequences

Here, we present some useful theorems to calculate the limit of a sequence as $n \to \infty$.

Theorem 3 Let $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ be two convergent sequences such that

$$\lim_{n \to \infty} a_n = a \in \mathbb{R}, \quad \lim_{n \to \infty} b_n = b \in \mathbb{R}.$$

Then, the following properties hold.

- $\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n = a \pm b$.
- $\lim_{n\to\infty} (a_n b_n) = \left(\lim_{n\to\infty} a_n\right) \left(\lim_{n\to\infty} b_n\right) = a b$.
- If $b \neq 0$: $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} = \frac{a}{b}$.
- If $a \neq 0$ or $b \neq 0$: $\lim_{n \to \infty} (a_n)^{b_n} = \left(\lim_{n \to \infty} a_n\right)^{\left(\lim_{n \to \infty} b_n\right)} = a^b$.
- If $a_n > 0$ for all $n \in \mathbb{N}$ and a > 0: $\lim_{n \to \infty} \ln(a_n) = \ln\left(\lim_{n \to \infty} a_n\right) = \ln(a)$.

In the case of divergent sequences with limit equal to $\pm \infty$ (or in cases different from those considered in Theorem 3), the limits calculation is performed according to the next result.

Theorem 4 The following properties hold.

- If $(a_n)_{n\in\mathbb{N}}$ is bounded and $\lim_{n\to\infty} b_n = \pm\infty$: $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$; $\lim_{n\to\infty} (a_n + b_n) = \pm\infty$ and $\lim_{n\to\infty} (a_n b_n) = \mp\infty$.
- If $(a_n)_{n\in\mathbb{N}}$ is bounded and $\lim_{n\to\infty} b_n = 0$: $\lim_{n\to\infty} (a_n b_n) = 0$.
- If $\lim_{n\to\infty} a_n = a \in \mathbb{R}$ and $\lim_{n\to\infty} b_n = \pm \infty$: $\lim_{n\to\infty} (a_n b_n) = \pm \infty$ if a > 0 and $\lim_{n\to\infty} (a_n b_n) = \mp \infty$ if a < 0.
- If $\lim_{n\to\infty} a_n = \pm \infty$ and $\lim_{n\to\infty} b_n = \pm \infty$: $\lim_{n\to\infty} (a_n + b_n) = \pm \infty$.
- If $\lim_{n\to\infty} a_n = +\infty$ and $\lim_{n\to\infty} b_n = \pm\infty$: $\lim_{n\to\infty} (a_n b_n) = \pm\infty$.

- If $\lim_{n\to\infty} a_n = -\infty$ and $\lim_{n\to\infty} b_n = \pm \infty$: $\lim_{n\to\infty} (a_n b_n) = \mp \infty$.
- If $\lim_{n\to\infty} a_n = a \in \mathbb{R}$ and $\lim_{n\to\infty} b_n = 0$, with $b_n > 0$ for all $n \in \mathbb{N}$: $\lim_{n\to\infty} \frac{a_n}{b_n} = +\infty$ if a > 0 and $\lim_{n\to\infty} \frac{a_n}{b_n} = -\infty$ if a < 0.
- If $\lim_{n\to\infty} a_n = 0$, with $a_n > 0$ for all $n \in \mathbb{N}$, and $\lim_{n\to\infty} b_n = \pm \infty$: $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\lim_{n\to\infty} \frac{b_n}{a_n} = \pm \infty$.
- If $\lim_{n \to \infty} a_n = +\infty$ and $\lim_{n \to \infty} b_n = b$: $\lim_{n \to \infty} a_n^{b_n} = +\infty$ if b > 0 and $\lim_{n \to \infty} a_n^{b_n} = 0$ if b < 0; $\lim_{n \to \infty} b_n^{a_n} = +\infty$ if b > 1 and $\lim_{n \to \infty} b_n^{a_n} = 0$ if 0 < b < 1.

However, we cannot directly assign a value to those limits leading to any of the following *indeterminate forms*:

$$+\infty-\infty\,,\quad 0\,(\pm\infty)\,,\quad \frac{0}{0}\,,\quad \frac{\pm\infty}{\pm\infty}\,,\quad 0^0\,,\quad (\pm\infty)^0\,,\quad 1^{(\pm\infty)}\,.$$

Note that the last one appears whenever we have a limit like

$$\lim_{n\to\infty}a_n^{b_n}$$

with $\lim_{n\to\infty} a_n = 1$ and $\lim_{n\to\infty} b_n = \pm \infty$. In all these cases, one should rearrange the involved expressions or use known theorems in order to get some conclusion.