Turing Machines

Our most powerful model of a computer is the Turing Machine. This is an FA with an infinite tape for storage.

A Turing Machine

A **Turing Machine** (TM) has three components:

- An *infinite tape* divided into cells. Each *cell* contains one symbol.
- A **head** that accesses one cell at a time, and which can both read from and write on the tape, and can move both left and right.
- A **memory** that is in one of a fixed finite number of states.

The TM's Tape

We assume a *two-way infinite* tape that stretches to infinity in both directions.

 \triangle denotes an empty or **blank** cell.

The *input* starts on the tape surrounded by Δ with the head at left-most symbol. (If input is ε , then tape is empty and head points to empty cell.)

The Program

The **program** of a TM is a transition function; depending on symbol under the head and state, the TM:

- writes a symbol,
- moves left or right or stays in place, and
- updates its state.

The *language* of TM is set of strings it accepts.

Like the PDA, once a TM enters an accept state it stops, and it terminates abnormally if there is no transition.

The Diagram

The TM is represented as a diagram, like for FA, except that each arrow is labeled with a triple:

oldSymbol newSymbol moveDir,

where "moveDir" is one of L (move left one cell), R (move right one cell), and S (stay in place).

For example, triple 01L means "if reading a 0, then write a 1 and move the head left."

Example TM: Strings Containing 101

Here is a simple TM that mimics an FA for the language of all binary strings that contain the substring 101.

Formal Definition

One can define a TM as a 7-tuple $(Q, \Sigma, \Gamma, q_0, h_a, h_r, \delta)$ where:

- Q is set of states.
- Σ is input alphabet.
- Γ is tape alphabet (more than Σ).
- q_0 is start state, h_a the unique halt-and-accept state, and h_r the (seldom drawn) unique halt-and-reject state.
- δ is the transition function $Q \times \Gamma \mapsto Q \times \Gamma \times \{L, R, S\}$.

Example TM: 0^n1^n

For a TM that accepts $\{0^n1^n\}$, pair off the 0's and 1's—repeatedly erase first 0 and last 1 until ε reached. In pseudocode:

- (1) If HeadSymbol=0, then Write(Δ) else Reject.
- (2) Move head right until HeadSymbol= Δ .
- (3) Move head left.
- (4) If HeadSymbol=1, then Write(\triangle) else Reject.
- (5) Move head left until HeadSymbol= Δ .
- (6) Move head right.
- (7) If HeadSymbol= Δ , then Accept.
- (8) Goto (1).

Example Diagram: 0^n1^n

Here is what happens on input 00111...

Goddard 11: 10

TMs might not halt

Here is a particularly unhelpful TM. It does not halt.

