CORRIGÉ DM N°3

Matrices réductibles et irréductibles. Permanents. Théorème de Frobenius et König. Matrices magiques et bistochastiques. Théorème de Birkhoff. d'après CCP 2000 et ENS 1996. cf. aussi MINES-PONTS 2008

PARTIE A:

- 1°) a) Soient $\sigma, \sigma' \in \Sigma_n$.
 - (i) Pour tout $i \in [1, n]$, $P_{\sigma}P_{\sigma'}(e_i) = P_{\sigma}(e_{\sigma'(i)}) = e_{\sigma \circ \sigma'(i)}$ donc $P_{\sigma}P_{\sigma'} = P_{\sigma \circ \sigma'}$.
 - (ii) Pour $\sigma' = \sigma^{-1}$ dans l'égalité ci-dessus, on obtient $P_{\sigma}P_{\sigma^{-1}} = P_{\mathrm{Id}_{\Sigma_n}} = I_n$ donc P_{σ} est inversible, et $P_{\sigma^{-1}} = (P_{\sigma})^{-1}$.
 - (iii) On a, pour tout $(i,j) \in [1,n]^2 : ({}^tP_{\sigma})_{ij} = (P_{\sigma})_{ji} = \delta_{j,\sigma(i)}; \text{ or, } \delta_{j,\sigma(i)} = 1 \Leftrightarrow j = \sigma(i) \Leftrightarrow i = \sigma^{-1}(j) \text{ donc } \delta_{j,\sigma(i)} = \delta_{i,\sigma^{-1}(j)} \text{ d'où } ({}^tP_{\sigma})_{ij} = (P_{\sigma^{-1}})_{ij} \text{ soit } : (P_{\sigma})^{-1} = {}^tP_{\sigma}.$ Il y avait d'autres solutions possibles : par exemple, calculer le terme d'indice (i,j) du produit des matrices $P_{\sigma} {}^tP_{\sigma}$ à l'aide de la formule du produit matriciel, ou, mieux, remarquer que la matrice P_{σ} est orthogonale puisqu'elle transforme une b.o.n (lorsque \mathbb{R}^n est muni de sa structure euclidienne canonique) en une b.o.n...
 - **b)** On calcule : $b_{ij} = \sum_{k,l} (P_{\sigma})_{ik}(a_{kl})(P_{\sigma'})_{lj} = \sum_{k,l} \delta_{i,\sigma(k)} a_{kl} \delta_{l,\sigma'(j)}$. Le seul terme non nul dans cette somme est celui pour lequel $\sigma(k) = i$ et $l = \sigma'(j)$, soit $k = \sigma^{-1}(i)$ et $l = \sigma'(j)$. On a donc bien : $b_{ij} = a_{\sigma^{-1}(i)\sigma'(j)}$.
 - La matrice B s'obtient donc à partir de A par la suite d'opérations élémentaires :

$$\begin{cases} \forall j \in [1, n] & C_j \leftarrow C_{\sigma(j)} \\ \forall i \in [1, n] & L_i \leftarrow L_{\sigma^{-1}(i)} \end{cases}$$

2°) a) Supposons que la matrice nulle de $\mathcal{M}_{p,q}(\mathbb{R})$ soit extraite de A. Cela signifie qu'il existe i_1, \ldots, i_p distincts $\in [1, n]$ et j_1, \ldots, j_q distincts $\in [1, n]$ tels que les a_{i_k, j_l} soient nuls. Notons alors σ' une permutation de Σ_n telle que

$$\sigma'(n) = j_q, \ \sigma'(n-1) = j_{q-1}, \dots, \sigma'(n-q+1) = j_1$$

et σ une permutation de Σ_n telle que

$$\sigma(i_1) = 1, \ \sigma(i_2) = 2, \dots, \sigma(i_p) = p$$

On aura alors, pour $1 \le k \le p$ et $n - q + 1 \le l \le n$: $b_{kl} = a_{\sigma^{-1}(k)\sigma'(l)} = 0$, donc la matrice $B = P_{\sigma}AP_{\sigma'}$ sera bien de la forme voulue.

- b) Supposons A réductible : il existe une partition (S,T) de [1,n] (avec S et T non vides) telle que : $\forall (i,j) \in S \times T$, $a_{ij} = 0$. En notant $p = \operatorname{Card}(S)$ (donc $n - p = \operatorname{Card}(T)$), cela implique que l'on peut extraire de A la matrice nulle de $\mathcal{M}_{p,n-p}(\mathbb{R})$. Il suffit donc d'appliquer le résultat précédent avec q = n - p.
- c) Supposons A réductible, et S, T comme ci-dessus. Notons alors : $S = \{i_1, \ldots, i_p\}$ et $T = \{j_{p+1}, \ldots, j_n\}$. Puisque $S \cup T = [\![1, n]\!]$ et $S \cap T = \emptyset$, on peut définir $\sigma \in \Sigma_n$ par : $\sigma(1) = i_1, \ldots, \sigma(p) = i_p, \ \sigma(p+1) = j_{p+1}, \ldots, \sigma(n) = j_n.$

Les mêmes calculs qu'auparavant montrent alors que la matrice $B = P_{\sigma^{-1}}AP_{\sigma}$ sera bien

de la forme voulue.

• Réciproquement, si $P_{\sigma^{-1}}AP_{\sigma}$ est de la forme indiquée, on considère les ensembles S et T tels que $S = \{\sigma(1), \ldots, \sigma(p)\}$ et $T = \{\sigma(p+1), \ldots, \sigma(n)\}$. σ étant une permutation de $[\![1,n]\!]$, ces ensembles forment bien une partition de $[\![1,n]\!]$ et :

 $\forall (k,l) \in S \times T$, $\exists (i,j) \in [[1,p]] \times [[p+1,n]]$ tq $k=\sigma(i), l=\sigma(j)$ d'où $a_{kl}=a_{\sigma(i)\sigma(j)}=b_{ij}=0$

donc <u>A est réductible</u>.

3°) a) Supposons (P) vérifiée, et, par l'absurde, A réductible. Il existe donc une partition (S,T) de $[\![1,n]\!]$ (avec S et T non vides) telle que : $\forall (i,j) \in S \times T$, $a_{ij}=0$.

Soit $(i,j) \in S \times T$. Puisque $a_{ij} = 0$ et que (P) est vraie, il existe i_1, i_2, \ldots, i_s tels que le produit $a_{ii_1} a_{i_1 i_2} \ldots a_{i_{s-1} i_s} a_{i_s j}$ soit non nul.

On a donc : $a_{ii_1} \neq 0$ d'où $i_1 \notin T$ d'où $i_1 \in S$.

Puis : $i_1 \in S$ et $a_{i_1 i_2} \neq 0$ impliquent $i_2 \notin T$ d'où $i_2 \in S$

etc... On arriverait ainsi à $j \in S$: contradiction. Ainsi: $(P) \Rightarrow A$ irréductible.

- b) Supposons ici A irréductible.
 - Si, par l'absurde, X_i était vide, on aurait $a_{ij} = 0$ pour tout $j \neq i$. En prenant $S = \{i\}$ et $T = [1, n] \setminus \{i\}$, on obtiendrait alors A réductible : contradiction.
 - X_i ne contient pas i par définition. Supposons alors X_i strictement inclus dans $[1, n] \setminus \{i\}$. Soit alors $S = X_i \cup \{i\}$ et $T = [1, n] \setminus S$. S et T sont non vides par hypothèse, et forment bien une partition de [1, n].

Soit $(k, l) \in S \times T$. Si a_{kl} était non nul, on aurait :

- \diamond soit k = i: dans ce cas, $a_{il} \neq 0$ donc $l \in X_i$: impossible! (car $l \in T$).
- \diamond soit $k \neq i$, i.e $k \in X_i$. On a alors deux sous-cas:

 \triangleright si $a_{ik} \neq 0$: alors $a_{ik}a_{kl} \neq 0$ donc $l \in X_i$: impossible!

 \triangleright si il existe i_1, \ldots, i_s tels que $a_{ii_1} a_{i_1 i_2} \ldots a_{i_{s-1} i_s} a_{i_s k} \neq 0$ alors

 $a_{ii_1}a_{i_1i_2}\dots a_{i_{s-1}i_s}a_{i_sk}a_{kl} \neq 0 \text{ et } l \in X_i : impossible!$

On a donc une contradiction dans tous les cas, soit : $\forall (k,l) \in S \times T$, $a_{kl} = 0$ i.e A réductible, ce qui est contraire à l'hypothèse!

• Ainsi, $X_i = \llbracket 1, n \rrbracket \setminus \{i\}$ d'où, $\forall j \in \llbracket 1, n \rrbracket$, $j \neq i \Rightarrow j \in X_i$ d'où (P).

 $\mbox{Finalement}: \underline{A \mbox{ irr\'eductible}} \iff (P)$

4°) Le graphe ne pose pas de problème.

La traduction sur ce graphe de la propriété (P) pourrait s'exprimer ainsi : pour tout couple de points distincts (P_i, P_j) , on peut aller de P_i à P_j en suivant les flèches... (on notera que les boucles éventuelles allant de P_i à lui-même ne servent à rien...).

Il est alors facile de voir que : A_1 est irréductible et A_2 est réductible.

PARTIE B : Permanents

1°) a) • Avec des notations évidentes :

$$\mathbf{per}(C_1, \dots, C_{j-1}, C_j + \lambda C'_j, C_{j+1}, \dots, C_n) = \sum_{\sigma \in \Sigma_n} a_{\sigma(1)1} \dots [a_{\sigma(j)j} + \lambda a'_{\sigma(j)j}] \dots a_{\sigma(n)n}$$
$$= \mathbf{per}(C_1, \dots, C_j, \dots, C_n) + \lambda \mathbf{per}(C_1, \dots, C'_j, \dots, C_n)$$

donc **per** est linéaire par rapport à chacune des variables, i.e est n-linéaire.

• Soit $\sigma' \in \Sigma_n$:

$$\mathbf{per}(C_{\sigma'(1)}, \dots, C_{\sigma'(n)}) = \sum_{\sigma \in \Sigma_n} a_{\sigma(1)\sigma'(1)} \dots a_{\sigma(n)\sigma'(n)}$$
$$= \sum_{\sigma \in \Sigma_n} a_{\sigma \circ \sigma'^{-1}(1)1} \dots a_{\sigma \circ \sigma'^{-1}(n)n}$$

(en faisant le changement d'indice $i = \sigma'^{-1}(j)$ dans le premier produit).

Or l'application $\sigma \mapsto \tau = \sigma \circ \sigma'^{-1}$ est bijective de Σ_n dans Σ_n donc :

$$\mathbf{per}(C_{\sigma'(1)}, \dots, C_{\sigma'(n)}) = \sum_{\tau \in \Sigma_n} a_{\tau(1)1} \dots a_{\tau(n)n} = \mathbf{per}(C_1, \dots, C_n)$$

donc **per** est n-linéaire symétrique.

- b) Même démonstration que dans le cours pour le déterminant (en faisant le changement d'indice $\sigma \to \sigma^{-1}$).
- 2°) Le principe de la démonstration est le même que pour le déterminant (cf. cours!). Brièvement :
 - \diamond On commence par démontrer le résultat dans le cas du développement selon la 1ère colonne et dans le cas $a_{11}=1, a_{i1}=0$ pour $i\geqslant 2$, en revenant à la définition...
 - ⋄ puis, dans le cas général, on utilise la linéarité par rapport à la j-ème colonne; pour chacun des permanents obtenus, une permutation circulaire des lignes et une permutation circulaire des colonnes (ce qui ne change pas le permanent, celui-ci étant symétrique) permet de se ramener au cas précédent...
- 3°) a) Soit $\sigma \in \Sigma_n$. Si $\sigma(\{p+1,\ldots,n\}) \nsubseteq \{p+1,\ldots,n\}$, alors il existe $j \in \{p+1,\ldots,n\}$ tel que $\sigma(j) \in \{1,\ldots,p\}$ d'où $a_{\sigma(j)j} = 0$. Donc : $\mathbf{per}(A) = \sum_{\sigma \in \Sigma'_n} a_{\sigma(1)1} \ldots a_{\sigma(n)n}$ où Σ'_n désigne

l'ensemble des permutations $\sigma \in \Sigma_n$ telles que $\sigma(\{p+1,\ldots,n\}) \subset \{p+1,\ldots,n\}$.

Toute permutation $\sigma \in \Sigma_n$ étant une bijection de [1, n] sur lui-même, on a :

$$\Sigma'_n = \{ \sigma \in \Sigma_n , \ \sigma([1, p]) = [1, p] \ \text{et} \ \sigma([p+1, n]) = [p+1, n] \}.$$

À toute permutation $\sigma \in \Sigma'_n$ on peut donc associer, de façon bijective, un couple $(\rho, \tau) \in \Sigma_p \times \Sigma_{n-p}$ par :

$$(\rho, \tau) \in \Sigma_{p} \times \Sigma_{n-p} \text{ par :}$$

$$\forall i \in [1, n], \quad \sigma(i) = \begin{cases} \rho(i) & \text{si } i \in [1, p] \\ p + \tau(i - p) & \text{si } i \in [p + 1, n] \end{cases}$$

$$\text{D'où : } \mathbf{per}(A) = \sum_{(\rho, \tau) \in \Sigma_{p} \times \Sigma_{n-p}} a_{\rho(1), 1} \dots a_{\rho(p), p} a_{p+\tau(1), p+1} \dots a_{p+\tau(n), n}$$

$$= \left(\sum_{\rho \in \Sigma_{p}} a_{\rho(1), 1} \dots a_{\rho(p), p}\right) \left(\sum_{\tau \in \Sigma_{n-p}} a_{p+\tau(1), p+1} \dots a_{p+\tau(n), n}\right)$$

$$= \mathbf{per}(F) \mathbf{per}(H)$$

- b) Récurrence facile...
- **4°)** Le résultat découle directement du fait que *B* se déduit de *A* par permutations de lignes et de colonnes, et que le permanent, étant une forme n-linéaire symétrique des colonnes et des lignes, est invariant par ces permutations.

PARTIE C : Théorème de Frobenius et König

1°) Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $s \in [1, n]$ tels que la matrice nulle de $\mathcal{M}_{s,n+1-s}(\mathbb{R})$ soit extraite de A. D'après A.2.a, il existe $\sigma, \sigma' \in \Sigma_n, F \in \mathcal{M}_{s,s-1}(\mathbb{R}), G \in \mathcal{M}_{n-s,s-1}(\mathbb{R})$ et $H \in \mathcal{M}_{n-s,n+1-s}(\mathbb{R})$ telles que $P_{\sigma}AP_{\sigma'} = \begin{bmatrix} F & 0 \\ G & H \end{bmatrix}$, où 0 est la matrice nulle de $\mathcal{M}_{s,n+1-s}(\mathbb{R})$. En notant F' la matrice carrée d'ordre s obtenue en adjoignant à F une colonne de '0' et G'celle obtenue en adjoignant à G la première colonne de H et H' la matrice carrée d'ordre n-sobtenue en supprimant la première colonne de H, on a : $P_{\sigma}AP_{\sigma'} = \begin{bmatrix} F' & 0 \\ G' & H' \end{bmatrix}$, où 0 est ici la matrice nulle de $\mathcal{M}_{s,n-s}(\mathbb{R})$.

D'après B.3 et B.4, $\operatorname{per}(A) = \operatorname{per}(P_{\sigma}AP_{\sigma'}) = \operatorname{per}(F')\operatorname{per}(H')$.

Mais la dernière colonne de F' est nulle; le développement du permanent de F' selon cette colonne donne donc $\mathbf{per}(F') = 0$, d'où : $\mathbf{per}(A) = 0$.

a) Préliminaires : cas n=2 : soit $A \in \mathcal{M}_2^+(\mathbb{R})$ telle que $\mathbf{per}(A)=0$. On a donc : $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ avec $a, b, c, d \ge 0$ et ad + bc = 0. D'où ad = bc = 0. Si, par exemple, a=0, alors, ou bien b=0 et l'on peut extraire de A la matrice $\begin{pmatrix} 0 & 0 \end{pmatrix}$, ou bien c = 0, et l'on peut extraire de A la matrice $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

On a donc bien le résultat voulu (avec s = 1 dans le premier cas et s = 2 dans le second).

- **b)** Soit $A \in \mathcal{M}_{n+1}^+(\mathbb{R})$ telle que $\mathbf{per}(A) = 0$, et soit (i, j) tel que $a_{ij} > 0$. On a : $\mathbf{per}(A) = \sum_{k=1}^{n} a_{kj} \mathbf{per}(A_{kj})$. De plus, pour tout $k \in [1, n]$, $a_{kj} \ge 0$ et $\mathbf{per}(A_{kj}) \ge 0$ (car tous les termes dans l'expression de $\mathbf{per}(A_{kj})$ sont ≥ 0). On en déduit donc, puisque $\mathbf{per}(A) = 0 : \forall k \in [1, n], \ a_{kj}\mathbf{per}(A_{kj}) = 0.$ Puisque $a_{ij} > 0$, il en découle $\mathbf{per}(A_{ij}) = 0$.
- c) En appliquant l'hypothèse de récurrence à la matrice A_{ij} , qui appartient à $\mathcal{M}_n^+(\mathbb{R})$, il existe $s_1 \in [1, n]$ tel que la matrice nulle de $\mathcal{M}_{s_1, n+1-s_1}(\mathbb{R})$ soit extraite de A_{ij} . Elle est donc aussi extraite de A. En appliquant directement A.2.a, et puisque A est d'ordre n+1, on obtient:

 $\exists F \in \mathcal{M}_{s_1}(\mathbb{R}) \ , \ \exists G \in \mathcal{M}_{n+1-s_1,s_1}(\mathbb{R}) \ , \ \exists H \in \mathcal{M}_{n+1-s_1}(\mathbb{R}) \ , \ \exists \sigma,\sigma' \in \Sigma_{n+1}$ tels que : $P_{\sigma}AP_{\sigma'} = \begin{bmatrix} F & 0 \\ G & H \end{bmatrix}$.

De plus, F, G, H sont bien \tilde{a} termes positifs, puisqu'elles sont extraites de A. Enfin, on a $\operatorname{per}(P_{\sigma}AP_{\sigma'}) = \operatorname{per}(A) = 0$ d'où $\operatorname{per}(F)\operatorname{per}(H) = 0$.

d) Supposons alors, par exemple, $\mathbf{per}(F) = 0$. D'après l'hypothèse de récurrence appliquée à F, il existe $s_2 \in [1, s_1]$ tel que la matrice nulle de $\mathcal{M}_{s_2, s_1 + 1 - s_2}(\mathbb{R})$ soit extraite de F. De plus, dans $P_{\sigma}AP_{\sigma'} = \begin{bmatrix} F & 0 \\ G & H \end{bmatrix}$, il y a aussi la matrice nulle de $\mathcal{M}_{s_1, n+1 - s_1}(\mathbb{R})$.

On peut donc, au total, extraire de $P_{\sigma}AP_{\sigma'}$ une matrice nulle d'ordre $(s_2, s_1 + 1 - s_2 + n + 1)$ $(1-s_1)=(s_2,n+2-s_2)$. Celle-ci sera aussi extraite de A, car $P_{\sigma}AP_{\sigma'}$ s'obtient simplement à partir de A par permutations sur les lignes et colonnes.

Cela démontre le résultat à l'ordre n+1.

PARTIE D : Matrices magiques et bistochastiques ; théorème de Birkhoff

1°) E_n est non vide car la matrice nulle appartient évidemment à E_n . Soient $A, B \in E_n$ et $\lambda \in \mathbb{R}$. Alors, $\lambda A + B$ est la matrice dont le terme d'indice (i, j) est $\lambda a_{ij} + b_{ij}$, et, pour tous i et j:

$$\sum_{k=1}^{n} (\lambda A + B)_{ik} = \lambda \sum_{k=1}^{n} a_{ik} + \sum_{k=1}^{n} b_{ik} = \lambda d(A) + d(B)$$
$$\sum_{k=1}^{n} (\lambda A + B)_{kj} = \lambda \sum_{k=1}^{n} a_{kj} + \sum_{k=1}^{n} b_{kj} = \lambda d(A) + d(B)$$

$$\sum_{k=1}^{n} (\lambda A + B)_{kj} = \lambda \sum_{k=1}^{n} a_{kj} + \sum_{k=1}^{n} b_{kj} = \lambda d(A) + d(B)$$

Donc $\underline{\lambda A + B \in E_n}$ et $\underline{d(\lambda A + B)} = \lambda \underline{d(A)} + \underline{d(B)}$ ce qui prouve que E_n est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ et que d est une forme linéaire sur E_n .

2°) a) On a, avec des notations évidentes :

$$(AJ_n)_{ij} = \sum_{k=1}^n a_{ik} (J_n)_{kj} = \sum_{k=1}^n a_{ik} \text{ et } (J_n A)_{ij} = \sum_{k=1}^n (J_n)_{ik} a_{kj} = \sum_{k=1}^n a_{kj}$$

On a donc : $AJ_n = J_n A = \lambda J_n \iff \forall (i,j) \in [[1,n]]^2$, $\sum_{k=1}^n a_{ik} = \sum_{k=1}^n a_{kj} = \lambda$
 $\iff A \in E_n \text{ et } \lambda = d(A)$

- b) On sait déjà que E_n est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$. Pour montrer que c'est une sous-algèbre, il suffit de vérifier :
 - $I_n \in E_n$: c'est évident
 - Si $A, B \in E_n$, alors $AB \in E_n$. En effet : $(AB)J_n = A(BJ_n) = A.d(B)J_n = d(B)AJ_n = d(B)d(A)J_n$ et $J_n(AB) = (J_nA)B = d(A)J_nB = d(A)d(B)J_n$ donc, d'après la question précédente, $AB \in E_n$ et, de plus, d(AB) = d(A)d(B)
 - Puisque l'on a également $d(I_n) = 1$, la relation ci-dessus prouve en outre que d est un morphisme de \mathbb{R} -algèbres.
- c) Soit $A \in E_n$, inversible. On a alors: $J_n = A^{-1}(AJ_n) = d(A)A^{-1}J_n$ et aussi $J_n = (J_nA)A^{-1} = d(A)J_nA^{-1}$ Cela implique $d(A) \neq 0$ et $A^{-1}J_n = J_nA^{-1} = \frac{1}{d(A)}J_n$, donc $A^{-1} \in E_n$ et $d(A^{-1}) = \frac{1}{d(A)}$.
 - La réciproque est fausse (si $n \ge 2$): par exemple, si $A = J_n$, on a $d(A) = n \ne 0$, mais A n'est pas inversible (elle est de rang 1).
- 3°) Soit $A \in \Omega_n$. On a évidemment $\mathbf{per}(A) \geq 0$, puisque tous les coefficients de A sont positifs. Si, par l'absurde, on avait $\mathbf{per}(A) = 0$, alors, d'après le th. de Frobenius et König, il existe $s \in [\![1,n]\!]$ tel que la matrice nulle de $\mathcal{M}_{s,n+1-s}(\mathbb{R})$ soit extraite de A. Il existerait alors $\sigma, \sigma' \in \Sigma_n$, $F \in \mathcal{M}_{s,s-1}(\mathbb{R})$, $G \in \mathcal{M}_{n-s,s-1}(\mathbb{R})$ et $H \in \mathcal{M}_{n-s,n+1-s}(\mathbb{R})$ telles que $P_{\sigma}AP_{\sigma'} = \begin{bmatrix} F & 0 \\ G & H \end{bmatrix}$, où 0 est la matrice nulle de $\mathcal{M}_{s,n+1-s}(\mathbb{R})$. Puisque P_{σ} et $P_{\sigma'}$ appartiennent à Ω_n , il en est de même de $P_{\sigma}AP_{\sigma'}$ d'après D.2.b. La somme des éléments de chaque ligne de F vaut donc 1 et la somme des éléments de chaque colonne de H vaut 1. Donc en faisant la somme des éléments de F et de F, on obtient F et de F et de F, on obtient F et de F et de F.
- **4°)** $\operatorname{\mathbf{per}}(A) = \sum_{\sigma \in \Sigma_n} a_{\sigma(1)1} a_{\sigma(2)2} \dots a_{\sigma(n)n}$, et tous les termes sont ici $\geqslant 0$. Puisque $\operatorname{\mathbf{per}}(A) > 0$, il existe donc $\sigma \in \Sigma_n$ tel que $a_{\sigma(1)1} a_{\sigma(2)2} \dots a_{\sigma(n)n}$ soit strictement positif, d'où $a_{\sigma(j)j} > 0$ pour tout $j \in [1, n]$.

(s+(n+1-s)). Mais, puisque $P_{\sigma}AP_{\sigma'}\in\Omega_n$, la somme de tous les éléments de $P_{\sigma}AP_{\sigma'}$ vaut

5°) Soit A bistochastique $(A \in \Omega_n)$ et réductible. Il existe donc (S, T), partition de [1, n], telle que $\forall (i, j) \in S \times T$, $a_{ij} = 0$.

n! D'où la contradiction...

On a donc :
$$\sum a_{ij} = n$$
. D'autre part :

On a donc :
$$\sum_{\substack{1 \leq i,j \leq n \\ 1 \leq S \\ j \in S}} a_{ij} = \sum_{\substack{i \in S \\ j \in T}} a_{ij} + \sum_{\substack{i \in T \\ j \in T}} a_{ij} + \sum_{\substack{i \in T \\ j \in T}} a_{ij} + \sum_{\substack{i \in T \\ j \in S}} a_{ij}$$

Par définition,
$$\sum_{\substack{i \in S \\ j \in T}} a_{ij} = 0$$
. De plus : $\sum_{\substack{i \in S \\ 1 \leqslant j \leqslant n}} a_{ij} = \sum_{i \in S} \sum_{j=1}^{n} a_{ij} = \operatorname{Card}(S)$

donc :
$$\sum_{\substack{i \in S \\ j \in S}} a_{ij} = \sum_{\substack{i \in S \\ 1 \leqslant j \leqslant n}} a_{ij} - \sum_{\substack{i \in S \\ j \in T}} a_{ij} = \operatorname{Card}(S)$$

On a de même :
$$\sum_{\substack{i \in T \\ i \in T}} a_{ij} = \operatorname{Card}(T) .$$

On a de même :
$$\sum_{i \in \underline{T}} a_{ij} = \operatorname{Card}(T)$$

On a donc :
$$n = \sum_{1 \leqslant i,j \leqslant n}^{j \in T} a_{ij} = \underbrace{\operatorname{Card}(S) + \operatorname{Card}(T)}_{=n} + \sum_{\substack{i \in T \\ j \in S}} a_{ij}$$

d'où :
$$\sum_{\substack{i \in T \\ j \in S}} a_{ij} = 0 \text{ et donc, puisque } a_{ij} \geqslant 0 : \underline{a_{ij} = 0 \text{ pour } (i, j) \in T \times S}.$$

6°) **a)** Si
$$A \in \Omega_n$$
, on a, pour tout $i \in [1, n]$, $\sum_{j=1}^n a_{ij} = 1$, donc, si $X = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$, on aura $AX = X$

(autrement dit, X est vecteur propre de A, associé à la valeur propre 1).

b) Supposons qu'il existe
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
, avec au moins deux composantes distinctes, tel que

AX = X (autrement dit, X est un vecteur propre de A, associé à la valeur propre 1, et non colinéaire au précédent).

Soit alors $S = \{i \in [1, n] \text{ tq } x_i = \min_{1 \leq j \leq n} x_j\}$ et $T = [1, n] \setminus S$ (S et T sont non vides par hypothèse). On a alors:

$$\forall i \in S , \ x_i = \sum_j a_{ij} x_j \ (\text{car } AX = X)$$

mais aussi :
$$x_i = \left(\sum_j a_{ij}\right) x_i \text{ (car } \sum_j a_{ij} = 1\text{)}.$$

On en déduit : $\sum a_{ij}(x_j - x_i) = 0$. Tous les termes étant positifs, on aura donc, pour tout

 $i \in S$ et tout j, $a_{ij}(x_j - x_i) = 0$, d'où, si $j \in T$, $x_j - x_i > 0$ par définition donc $a_{ij} = 0$. Ainsi : $\forall (i,j) \in S \times T$, $a_{ij} = 0$ donc <u>A est réductible</u>.

Rem: La réciproque est vraie: si A est bistochastique réductible, il existe un vecteur propre de A associé à la valeur propre 1 et ayant au moins deux composantes distinctes : si (S,T) est une partition telle que $a_{ij}=0$ pour $(i,j)\in S\times T$, il suffit de prendre X tel que $x_k = 0$ si $k \in S$ et $x_k = 1$ si $k \in T$...

c) Du résultat précédent il découle immédiatement que, si $A \in \Omega_n$ est irréductible, les vec-

teurs X tels que AX = X sont exactement ceux colinéaires à

- 7°) a) $Pr\'{e}liminaires:$ Si $\pi(A)$ était strictement inférieur à n, il y aurait dans A une rangée de zéros, ce qui est exclu. Si $\pi(A) = n$, il y a exactement un et un seul '1' dans chaque ligne et dans chaque colonne, donc A est alors une matrice de permutation.
 - b) Les $a_{\sigma(j)j}$ étant strictement positifs, il en est de même de leur minimum, donc a > 0. • Les $a_{\sigma(j)j}$ étant tous ≤ 1 , il en est de même de a. Et, si on avait a = 1, on aurait, pour tout $j \in [1, n]$, $a_{\sigma(j)j} = 1$ et A serait une matrice de permutation, d'où $\pi(A) = n$, ce qui est exclu.
 - c) (i) A et P_{σ} appartenant à E_n , qui est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$, il en est de même de B.
 - On a : $b_{ij} = \frac{1}{1-a}[a_{ij} a\delta_{i\sigma(j)}]$ donc, si $i \neq \sigma(j)$, $b_{ij} = \frac{a_{ij}}{1-a}$ et, si $i = \sigma(j)$, $b_{ij} = \frac{a_{\sigma(j)j} a}{1-a}$. Dans les deux cas, $b_{ij} \geqslant 0$ donc $\underline{B} \in \mathcal{M}_n^+(\mathbb{R})$.
 - Enfin : $d(B) = \frac{d(A) ad(P_{\sigma})}{1 a} = \frac{1 a}{1 a} = 1$ (d est une forme linéaire sur E_n), d'où finalement : $B \in \Omega_n$.
 - (ii) On a : $b_{\sigma(k)k} = \frac{a_{\sigma(k)k} a}{1 a} = 0$, donc il y a (au moins) un terme nul de plus dans B que dans A (si $a_{ij} = 0$, le calcul précédent montre que l'on a aussi $b_{ij} = 0$). Ainsi, $\pi(B) < \pi(A)$, et il suffit d'appliquer l'hypothèse de récurrence.
 - d) $\sum_{k=1}^{p+1} \mu_k = (1-a) \sum_{k=1}^p \lambda_k + a = 1 a + a = 1$ $\sum_{k=1}^{p+1} \mu_k P_{\sigma_k} = (1-a) \sum_{k=1}^p \lambda_k P_{\sigma_k} + a P_{\sigma} = (1-a)B + a P_{\sigma} = A$ ce qui achève la démonstration.

FIN