605910

CONTRACT NO. NObs 90269 3RD BIMONTHLY REPORT

SEPTEMBER 28, 1964

DEVELOPMENT OF FIRE RESISTANT WATER BASED HYDRAULIC FLUIDS

COPY Z OF 3 HARD COPY \$. 1.00 MICROFICHE \$. 0.50

> PHILIP HAKOFF G. JOHN COLUCCI ROBERT K. SMITH

E. F. HOUGHTON AND COMPANY PHILADELPHIA, PENNSYLVANIA

DEPARTMENT OF THE NAVY BUREAU OF SHIPS WASHINGTON, D. C.

ABSTRACT

Pire resistant, water based hydraulic fluid formulations have been evaluated for autoignition temperature, lubricity, static corrosion (determined from the liquid phase corrosion test) and for pump performance using a Vickers Vane Pump. In this report period, several large batches of alkanolamine borates and glycol borate condensates have been prepared for evaluation as well as a number of synthetic compounds containing boron and nitrogen.

INTRODUCTION

Synthesized boron-nitrogen and glycol borate condensates have not only improved the fire resistance of many water based hydraulic fluids but have also acted as corrosion inhibitors on metals present in hydraulic pumps. These compounds are being utilized as additives to a water based hydraulic fluid base blend or as a substitute for a material in the blend.

Presently, additional data are being obtained to show the effect of selected additives on the autoignition temperatures of the base fluid blends. This study should define compatibility and effective concentration of the additives.

Vickers Vane Pump tests have been run in order to determine lubricity characteristics as well as the corrosive effects of some of the fluids on various metals under the dynamic test conditions in the pump reservoir. A preliminary check of the static liquid phase corrosion test of MIL-H-19457 specification has been run to obtain comparative data.

Al ar

SYNTHESIS OF IGNITION INHIBITORS

During the past several months, a complete series of alkanolamine borates have been prepared which have been screened as components of hydraulic fluids. The materials synthesized are polymeric in nature and water soluble for the most part. These compounds do not appreciably alter the viscosity of a finished water-glycol lubricant and only a few substantially increase fire resistance. The physical properties of the synthesized compounds are listed in Appendix Table I.

Our efforts are presently directed towards incorporating the alkanolamine esters into a water based hydraulic fluid which will meet all of the proposed target specifications. When 10 percent of the most promising candidate is added to an available commercial water glycol hydraulic fluid, the autogenous ignition temperature of the end product is increased by 75 to 100°F. Concentrations of inhibitor below 10 percent of the total fluid do not appear to be effective. The following table summarizes appropriate data.

AUTOIGNITION INHIBITION OF A COMMERCIAL WATER GLYCOL HYDRAULIC FLUID

		AIT, °F
À -	Commercial water Glycol Hydraulic Fluid	765-775
A +	5% DEAB	775-780
A +	10% DEAB	860-870
35% 10%	Polyalkylene Glycol A Polyalkylene Glycol B DEAB Water	875-895
35% 10%	Polyalkylene Glycol A Propylene Glycol DEAB Vater	930-950

Alkanolamine borates, glycol borates and various other additives are being screened for compatibility and autoignition inhibition

Vickers vane pump tests summarized below indicate that direct substitution of a glycol borate condensate for one of the polyalkylene glycols used in blend A produces a fluid (designated Blend J) which is deficient in lubricating properties. When only a partial substitution of the polyalkylene glycol in base A with the glycol borate condensate was effected, the resulting fluid had better lubricating qualities. This formulation is coded as base K. Further lubricity improvement in base K may be effected upon inclusion of appropriate antiwear additives. This phenomenon is demonstrated by the addition of a small amount of Benzotriazole and sodium benzoate (refer to results under Blend L). Blend L shows a vast improvement in lubricity characteristics over Blend J which is a similar formulation without wear additives.

properties in a promising hydraulic fluid base blend. Appendix Table II summarizes the evaluation. As brought out before, about

observed.

		Wear Re	ate, Ring
Base	A	1.2	mg/hour
Base	J	3000	mg/hour
Base	ĸ	17	mg/hour
Base	I,	16.6	mg/nour

Complete wear and formulation data are presented in Appendix Table III.

The effect of both lubricity and autoignition depressant additives on the pump performance of several water glycol hydraulic fluid bases is presented below. The addition of up to 8 percent of the synthesized P-Glyco Bor additive improves the lubricity characteristics of the resultant formulation.

	Wear Rate, Ring
Blend B (including 1% sodium benzoate)	4.0 mg/hour 0.2 mg/hour
+ 1% P-Glyco-Bor	0.2 mg/hour
+ 4% P-Glyco-Bor	0.1 mg/hour
+ 8% P-Glyco-Bor	0,2 mg/hour

More detailed data are presented in Appendix Table IV

A preliminary check of the corrosivity of several fluid blends was conducted by examining the pump parts ofter test runs at 120° and 140°F. Blends J, K and L, all containing the synthesized P-Glyco-Bor additive, caused no visible corrosion to the pump parts. Blend C, which contains a commercial fire resistant, water soluble, phosphate additive, caused heavy corrosion to the steel pump parts. Blends A and B, both containing various percentages of several polyalkylene glycols in a water formula, cause moderate to heavy corrosion to the steel pump parts.

WATER GLYCOL BASE STOCKS RATED FOR CORROSIVITY DURING VICKERS VANE PUMP RUNS

Blend	Rating*
A	4
В	6
С	10
J	1
K	1
L	1

- * Ratings 1 = Very good condition No visible corrosion of pump parts
 - 10 = Very poor condition Rust and corrosion of pump parts is evident

A series of pump tests were conducted in order to show the effect of the formulated, water based hydraulic fluids on some of the metals. It is noted here that the addition of the P-Glyco Bor additive to Base Blend B containing sodium benzoate, lessens the attack of zinc plate. Data confirming this statement is presented in Appendix Table V.

A preliminary check of the static liquid phase corrosion test of MIL-H-19457 specification was run to obtain comparison data to the dynamic corrosion tests. It is again noted that the Zinc panel is clean and bright which is definitely due to the addition of the P-Glyco Bor additive added to the Base Blend B. These observations can be detailed in Appendix Table VI.

The following data represent initial studies of foam tendencies of three experimental fluids. Tested at 75°F and 140°F in order to determine what degree of foam can be expected from higher viscosity fluids specified in the proposed target requirements. The most promising hydraulic fluid formulation having the lowest foam tendency

will be considered the most acceptable. These data indicate that the P-Glyco Bor additive in conjunction with the high molecular weight glycol presents no foaming problem.

FOAM TENDENCY OF FLUIDS @ 75°F AND 140°F

		Tendency ml of foam after 5 min aeration	Stability ml of foam after 10 min of collapse time
Base A + 1% sodium benzoate Base A + 1% sodium benzoate	75°F	550	190
	140°F	580	None
Base A + 1% sodium benzoate 0.1% benzotriazole	75°F	550	190
	140°F	540	None
Base L	75 ° F	230	10
	140°F	5 10	20

STATUS AND FUTURE PROGRAM

Ignition inhibitors, both the commercial and the experimental materials, have been screened for this project. Two types of compounds, glycol borates and alkanolamine borates, show the most promise for this application. These materials are now being prepared in sufficient quantities for the formulation and evaluation tests listed in the target specification.

The AIT apparatus, described in ASTM D 1255 T, has been constructed and will be used to confirm data we have determined by the procedure listed in ASTM D 286.

-	1
T C	1
A A	
FUNTY	
APPE	į

			ı						
Nacio	Appearance		PH-20% 1n H20	V18c @ 300 PP	V1sc @ 100°F 20% in H ₂ 0 cs	R I ND/20°C	Flash Pt (COC)	Pire Pt (COC)	AIT°?
50 HB 660-	Dark, Brown Liquid	21.2 Ao1d	2.7	271.0	separation	1.4673	4°054	500°F	750-775
17-1-THPB	Sample separated into 2 layers on standing- 24 hours	3.36 Base	0,0				250°F	290°F	<700
E-01yco Bor	Water wt.	78.5 Base	#* &	4.67	1.17	1.4422	4°045	260°F	950-970
P-Glyco Bor Batch 1	Clear, amber liquid	81.3 Base	#. 8	300.0	1.27	1.4400		220 F	
P-Glyco Bor Batch 2	Clear, amber liquid	71.6 Base	a•. ⊗	78.2	1.27	1.4331		280°F	71000
P-Glyco Bor Batch 3	Clear, amber liquid	70.0 Base	8.1	131.75	1.262	1.4351		280°F	
P-Glyco Bor Batch 4	Cloudy	60.6 Base	ε.			1.4310			
D-Glyco Bor Azine in P-G	Yellow to Brown Bemi Bolid	267.5 Base	10.0		·			130°F Recheck 120°F	

.

.

S E E	Appearance	Neut	PH-20%	Viec @	H	continued	Flash Pt	Fire Pt	AIT °F
		.	10 H20	68	20% in H ₂ 0	ND/20°C	(202)	(000)	
75 н 450 вег	Brown 11quid	2.52 Base	7.2	14.141	2.368	1.4645	500 °F	£10.5	760-775
	Clear, amber liquid	8.9 Base	3.75	90.96	1.356	1.4481	·		960-975
	Cloudy		5.15		separated in H20				790-810
MEAB-A Batch 1	Cloudy, wiscous polymeric type	740 Base	10.1		764.1				835-855
MEAB-A Batch 2	Viscous- polymeric type	700 Base	10.5		1.574	1,4885			970
~	Viscous- polymeric type	605 Base	9.6			1,4994			6/5-890
O)	Viscous- polymeric type	#35 Basse	6.6						970
_aa	Viscous- polymeric type	523 Base	6. 9.		1.824	1,4990			
DEAB-A Batch 3	Viscous- polymeric type	504 Base	2 6		1.515	1.4955			775

A STATE OF THE STA

~	1
Č	,
-	,
- 5	:
-	i
4.	•
continued	
Ö	
Ü	,
_	
-	i
¢	
~	
Table	
60	
E -4	
×	
+1	į
덫	
<u></u>	
ĕ	
Append1x	١
	١
٠,	-

				1	Thursday.	Appendix range 1 co	continued			
	Nebe	Appearance	Neut No	PH-20%	Visc © 100°F cc	V18c @ 100°r 20% in H20 cs	R I ND/20°C	Flash Pt (COC)	Fire Pt (000)	AIT °F
	DEAB Batch 2	Viscous- polymeric type	Solidif	fled dur:	fled during reaction		- discontinued		The state of the s	
	DEAB Batch 3	Viscous- polymeric type	202 Base	8.2		1.239	1.4734	·		925°+
(9)	DEAB Batch 4	Viscous polymeric type	252 Base	8.2		1.19	1.4760			970
and the second	MIPAB-A	Viscous- polymeric type	645 Base	10.5						
a sanaarii	MIFAB	Viscous- polymeric type	365 Base	9.5		1.09	1,4686			
	DIFAB-A	Viscous- polymeric type								
	DiekB	Viscous polymeric type	224 . 4	7.9		1.098	1.4616			ġ25°
	TIPAB-A	Viscous- polymeric type	126,2	8. 8.		1.359	1.4678			
	TIPAB	Viscous- polymeric type	112.2	&) &)		1.270	1.4592			

APPENDIX TABLE II

AUTOIGNITION INHIBITION OF A GLYCOL BASED HYDRAULIC FLUID THROUGH ADDITIVE TREATMENT

Selected Base Fluid

16%	Polyalkylene	Glycol	(a)
39%	Polyalkylene Polyalkylene	Glycol	(b)
45%	Water		•

	Additive Treatment	AIT°F
1.	None	830
23456789	4% Potassium Diethyl Phosphate	805
3.	4% GB DEA Complex	840
4.	4% DEAB - Batch 1	870-935
5.	4% E. Glyco-Bor - Batch 1	845
6.	4% DEAB-A - Batch 1	815
7.	10% DEAB-A - Batch 3	<825
8.	10% MEAB - Batch 2	825
9.	4% Urea	830
10.	8% Urea	<840
11.	5% MIPAB	<805
12.	10% DIPAR-A	810
13.	20% DIPAB-A	895
14.		835
15.		4800
16.	10% DIPAB	<810
17.		800
18.	10% TIPAB-A	785
19.	20% TIPAB-A	760
20.		835
21.	40% TIPAB-A	845
22.	10% TIPAB	760
23.	20% TIPAB	925
24.	40% TIPAB	875

APPENDIX TABLE III

SCREENING PUMP TESTS OF FLUID BLENDS

Vickers V-104-A-10 Pump

Pressure 900 psi Vol. output 5 GPM Operating Temp 115+125; 130-145°F

		Hours	Wear, Ring	mg Vanes
	Blend J			
Polyalkylene Glycol (a) P-Glyco Bor Batch 2 Water	21% 34% 45%	3	9050	942
	Blend K			
Polyalkylene Glycol (a) Polyalkylene Glycol (b) P-Glyco Bor Batch 3 Water Sodium Benzoate	16.5% 29.5% 8.0% 45 % 1.0%	18 2 2 65	183 89 19	24 33 12
	Blend L			
Polyalkylene Glycol (c) P-Glyco Bor Batch 4 Water Sodium Benzoate Benzotriazole	16.0 % 35.95% 45.0 % 1.0 % 0.05%	16 23	273 383	1 0

APPENDIX TABLE IV

EFFECT OF ADDITIVE MATERIALS ON THE PUMP PERFORMANCE OF THE BASE FLUIDS

Flu1ô	Hours	Wear Ring	y mg Vanes
Blend B + 1% Sodium Benzoate Test Stand No. 1	18 22 18 65	47 39 9 2	41 25 8 4
Blend J + 15 EFH Additive	18 9	213 150	4 3
Rerun of above rluid	19 21	377 397	1 2
3lend J + 2% EFH Additive	24 22	432 423	NW L 4
Blend B + 1% Sodium Benzoate + 1% P-Glyco bor Batch 3	19	5	1
Blend B + 1% Sodium Benzoate + 4% P-Glyco bor Batch 3	65	8	7
Blend B + 1% Sodium Benzoate + 8% P-Glyco bor Batch 3	18	3	2

APPENDIX TABLE V

STUDY OF METALS CORROSION IN LIQUID PHASE IMMERSION TESTS DURING PUMP OPERATION

Immersion @ 140°F in reservoir of hydraulic pump stand Test panels - lxlx1/16; Zinc plate lx2x1/16

> Fluid - Blend B + 1% Sodium Benzoate Duration - 20 hrs

	Weight Change, mg
Aluminum Copper Bronze Steel Zinc plate Zinc plate	-0.2 +0.4 None +0.2 -2.8 evidence of attack -0.3 on Zinc plate
Fluid -	Blend B + 1% Sodium Benzoate + 1% P-Glyco bor Batch 3 Duration - 20 hrs
Aluminum Copper Bronze Steel Zinc plate Zinc plate	+0.1 +0.4 +0.7 +0.2 -1.2 None
Fluid -	Blend B + 1% Sodium Benzoate + 4% P-Glyco bor Batch 3 Duration - 65 hrs
Aluminum Copper Bronze Steel Zinc	-9.8 +0.1 -0.3 +2.7 -0.6

APPENDIX TABLE VI

STATIC CORROSION LIQUID PHASE CORROSION TEST

MIL-H-19457

Duration - 1 week Test Temp - 130°F

Fluid - Blend B + 1% Sodium Benzoate

		· ·	
Metal	Weight Change, mg/mg/cm2	Appearance	
Aluminum Bronze Steel Copper Zinc	-0.3/0.009 +0.4/0.012 -0.5/0.015 +1.9/0.056 -2.3/0.067	Clean and bright Hazy film Clean and bright Dulling film - bronzed Dulled surface	
	Fluid - Blend B + 1% Se + 4% P.	odium Benzoate -Glyco bor Batch 3	
Aluminum Bronze Steel Copper Zinc	1.6/0.052	Scattered gray black staining Clean and bright Slightly dulled surface Dulling film - bronzed copper Cl-an and bright	
	Fluid - Blend B + 1% So + 8% P-	dium Benzoate Glyco bor Batch 3	
Aluminum	-0.2/0.006	Gray-black staining slightly	
Bronze Steel Copper Zinc	-0.4/0.012 -0.4/0.012 +1.1/0.032	more than in fluid above Clean and bright Clean and bright Dulling film; bronzed Clean and bright	