Ex 1

Consider the following page reference:

1, 2, 3, 1, 7, 4, 1, 8, 2, 7, 8, 4, 3, 8, 1, 1

How many page faults would occur for the following replacement algorithms, assuming four frames? Remember that all frames are initially empty.

- FIFO
- LRU
- Optimal

FIFO:

1, 2, 3, 1, 7, 4, 1, 8, 2, 7, 8, 4, 3, 8, 1, 1

1	1	1	1	1	4	4	4	4	7	7	7		
	2	2	2	2	2	1	1	1	1	1	4		
		3	3	3	3	3	8	8	8	8	8		
				7	7	7	7	2	2	2	2		

<u>LRU</u>

1, 2, 3, 1, 7, 4, 1, 8, 2, 7, 8, 4, 3, 8, 1, 1

1	1	1	1	1	1	1	1	1	1	1	4			
	2	2	2	2	4	4	4	4	7	7	7			
		3	3	3	3	3	8	8	8	8	8			
				7	7	7	7	2	2	2	2			

optimal

1, 2, 3, 1, 7, 4, 1, 8, 2, 7, 8, 4, 3, 8, 1, 1

1	1	1	1	1	1	1	8	8	8	8	8	8	8	8	8	
	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	
		3	3	3	4	4	4	4	4	4	4	4	4	4	4	
				7	7	7	7	7	7	7	7	7	7	1	1	

- a. In a paging system, the logical address space is 8 GB, the page's size is 1 KB, and the size of physical memory is 2 GB. Indicate the necessary number of bits for each of the following elements:
 - Virtual address
 - Physical address
 - Page's number
 - Frame's number
 - Offset
- b. In the same system, we give the page table of the process P:

page	0	1	2	3	4	5	6	7	8
frame	3	8	15	2	0	9	6	4	7

- 1. Give the size of P.
- 2. Give the physical addresses of the following logical addresses if they are valid:
 - i. (3, 563)
 - ii. (10, 0)
 - iii. (0, 1024)
 - iv. 1000
 - v. 5000
 - vi. 12000

Ex 3

Given the following segment table of a process P:

Segment	0	1	2	3	4	5
base	120	0	250	900	450	800
limit	100	50	150	250	350	100

a) Give the size of P.

- b) What is the necessary number of bits to represent the segment number of the process P?
- c) Give the physical addresses of the following logical addresses if they are valid:
 - a. 01000010001010
 - b. 11001011110010
 - c. 10000011001111
 - d. 00000001110000