Fondamentaux / Dipôles et réseaux

Composant électrique à deux bornes

i_p(t): **courant** traversant le dipôle

 $V_{AB}(t)$: différence de potentiel aux bornes du dipôle

RÉCEPTEUR LINÉAIRE

Relation linéaire entre i_D(t) et v_{AB}(t)

RÉCEPTEUR NON-LINÉAIRE

Relation non-linéaire entre $i_D(t)$ et $v_{AB}(t)$

Diode

GÉNÉRATEURS

 $i_D(t) > 0$ si $v_{AB}(t) > V_{SFIIII}$

TENSION Source idéale E = constante idéale quelque soit ic

COURANT Source idéale Source réelle I = constante quelque soit VRA $V_{RA}(t)$

RÉSEAUX

Ensemble de dipôles reliés entre eux

BRANCHE

Ensemble de dipôles reliés en SÉRIE

Tous les dipôles d'une même branche sont parcourus par le même courant

NOEUD

Point du réseau

MAILLE

Tout chemin fermé du réseau

LOIS DE KIRCHHOFF

MAILLE: la tension aux bornes d'une branche d'un réseau est égale à la somme algébrique des tensions aux bornes de chacun des dipôles qui la composent

NŒUD: en un nœud, la somme des courants entrants est égale à la somme des courants sortants

LOI DES MAILLES

LOI DES NŒUDS

 $i_{\Delta} + i_{B} + i_{D} = i_{C} + i_{E}$

DIVISEUR DE TENSION

 $V_c = R_2 . I$ et $E_c = (R_1 + R_2) . I$

$$V_S = E_G \cdot \frac{R_2}{R_1 + R_2}$$

SUPERPOSITION

MODÈLES

THÉVENIN

NORTON

I_v: courant de court-circuit

R_N: résistance équivalente du réseau lorsqu'on éteint les générateurs indépendants

