Martin Kleinsteuber: Computer Vision

Kapitel 2 – Bildentstehung

1. Das Lochkameramodell

Abbildung durch eine dünne Linse

- Strahlen parallel zur optischen Achse werden so gebrochen, dass sie durch die Brennebene gehen
- Strahlen durch das optische Zentrum werden nicht abgelenkt

Abbildung durch eine dünne Linse

Herleitung der Abbildungsgleichung

Gleichung für dünne Linsen

$$\frac{1}{|Z|} + \frac{1}{z} = \frac{1}{f}$$

Abbildung durch eine Lochkamera

Idealisierte Annahmen

- Sehr kleine Öffnung vor der Linse
- Beliebig großer Blickwinkel
- Bild wird scharf auf Brennebene abgebildet
- Es gilt:

$$b = -\frac{fB}{Z}$$

Abbildung durch eine Lochkamera

Abbildung eines Punktes im Raum auf die Brennebene

- Koordinaten von P bzgl. optischem Zentrum der Kamera seien (X,Y,Z)
- Dann sind die Koordinaten des Bildpunktes $\left(-\frac{fX}{Z}, -\frac{fY}{Z}, -f\right)$

Frontales Lochkameramodell

Projektion eines Punktes

- Koordinaten des Bildpunktes beim frontalen Lochkameramodell $\left(\frac{fX}{Z}, \frac{fY}{Z}, f\right)$
- Ideale perspektivische Projektion:

$$\pi \colon \mathbb{R}^3 \setminus \{(X, Y)\text{-Ebene}\} \to \mathbb{R}^2, \quad \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \mapsto \frac{f}{Z} \begin{bmatrix} X \\ Y \end{bmatrix}$$

Abbildung durch eine Lochkammera Idealisierte Annahmen

- Dünne Linse
- Kleine Blende
- Beliebig großer Blickwinkel
- Perspektivische Projektion:

$$\pi \colon \mathbb{R}^3 \setminus \{(X,Y)\text{-Ebene}\} \to \mathbb{R}^2, \quad \begin{vmatrix} X \\ Y \\ Z \end{vmatrix} \mapsto \frac{f}{Z} \begin{bmatrix} X \\ Y \end{bmatrix}$$

Quelle: Wikipedia.de, 2013

Zusammenfassung

- Lochkameramodell
- Ideale perspektivische Projektion: die Abbildung der Koordinaten des 3D-Punktes auf die 2D-Koordinaten in der Brennebene