High Level Overview of Data Science & Machine Learning

Hrishikesh Bhatkhande 19-Dec-2017

Agenda

- 1 Data, Big Data & Data Analytics
- 2 Components of Data Science
- 3 Machine Learning Overview
- 4 Linear & Logistic Regression and another Classifier algorithm
- 5 Appendix

About Me

Hrishikesh Bhatkhande, PMP®

Contact #: +91 7028184981

hrishikesh.bhatkhande@gmail.com

LinkedIn - https://www.linkedin.com/in/hrishikesh-bhatkhande-pmp-341b8421

Kaggle - https://www.kaggle.com/hrishikesh312

GitHub - https://github.com/Hrishikesh312/

Career So Far

- ✓ IT Professional with 13+ years of experience Delivering and Managing IT projects primarily in Healthcare domain working in India and USA for Infosys Ltd and Syntel Pvt Ltd.
- ✓ Have managed multi-million dollar projects as part of well-known Healthcare programs in USA such as Healthcare-Reform (Obamacare), COB initiative
- ✓ Primary expertise in end-to-end Project Management, Delivery Management & Account Management

Data Science

- ✓ A Data Science enthusiast trained in R, Python, Statistics, Machine Learning, NLP, Hadoop & Spark frameworks aspiring to contribute in the field of Data Science
- ✓ Recently completed a Post Graduate Program (PGP) in Data Science, Business Analytics & Big Data at Aegis School of Data Science in association with IBM
- ✓ Prize Winner at <u>Techgig Data Science competition</u> Bagged a consolation prize among ~3000 entries

Data, Big Data & Data Analytics 1 2 Components of Data Science 3 Machine Learning Overview 4 Linear & Logistic Regression and another Classifier algorithm 5 **Appendix**

- > As of 2016, 90% of the data in the world until then had been created in the last two years alone, at 2.5 quintillion bytes of data a day!
- > It was expected that 2017 would create more data than ever before

Data

Big Data

- ☐ Data maintained in multiple separate systems and multiple formats
- ☐ Generally structured Data (column and rows structure)
- ☐ Typically data comes from traditional sources
- ☐ Data-warehousing for analytics and reporting

- ☐ Huge amount of data
- ☐ Typically doesn't follow any structure
- ☐ Mostly raw and non-transformed data with no roadmap
- ☐ Data also comes from non-traditional sources such as social media
- ☐ Characterized by the V's of Big Data

Characteristics of Big Data

Volume

Scale / Amount

Variety

Different Types and Sources

Velocity

How fast it changes

Veracity

Reliability & Truthfulness

Validity

Accuracy & Correctness

Variability

Inconsistencies & Multiple Dimensions

Vulnerability

Security Concerns

Volatility

Irrelevancy & Outdatedness

Visualization

Ease of viewing

Value

Potential of Data for the Business

Examples of Types of Data Analytics - in Cricket		
Descriptive	What happened	A Bowler's pitch-map A Batsman's Wagon Wheel Graphical view of Batsman's scores in each test innings
Diagnostic	Why did it happen?	A bowler with an overall economy rate of 4.2 and 1.1 wickets every match had figures of 10-0-80-0 in a particular one-day match, because he was a left arm spinner and had no assistance from the pitch the batting team had 7 left-handers
Predictive	What is likely to happen	Bowler B is likely to concede 1.7 runs more per delivery if he tries to bowl a Yorker and misses the length compared to if he sticks to a normal line and length
Prescriptive	What should we do about it?	In order for Team X to win the match Team X should score in excess of 325 runs batting first At least one of the top 3 batsmen in Team X should score 80+ runs

Components of Data Science

Data, Big Data & Data Analytics Components of Data Science Machine Learning Overview 3 Linear & Logistic Regression and another Classifier algorithm 4 5 **Appendix**

Components of Data Science

Domain Knowledge Statistics & Machine Learning Technology & Computer Science **Data Engineering Data Visualization**

Data, Big Data & Data Analytics Components of Data Science Machine Learning Overview 4 Linear & Logistic Regression and another Classifier algorithm 5 **Appendix**

Machine Learning:

Ability of computers to learn without being explicitly programmed

Self Learning algorithms that improve with experience

Multilayered neural networks implemented on vast amounts of data

Types of Machine Learning

Examples of Machine Learning Algorithms

- Supervised Regression algorithms -
 - ☐ Regression (Simple Linear, Multiple Linear, Polynomial)
- Supervised Classification algorithms -
 - ☐ Logistic Regression
 - ☐ Support Vector Machines
 - ☐ Decision Trees
 - □ Random Forests
 - ☐ Naïve Bayes
- Unsupervised Algorithms
 - ☐ K-means Clustering

Linear and Logistic Regression

1 Data, Big Data & Data Analytics 2 Components of Data Science 3 Machine Learning Overview Linear & Logistic Regression and another Classifier algorithm 4 5 **Appendix**

Simple Linear Regression Example - Price of house vs Size of house

Hypothesis Function:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost Function:

$$J(\theta_0,\theta_1) = \sum_{i=1}^m (h_\theta(x_i) - y_i)^2$$
 where m is the number of observations $2m$

Goal:

Minimize $J(\theta_0, \theta_1)$

Simple Linear Regression Example - Price of house vs Size of house

Goal:

Minimize $J(\theta_0, \theta_1)$

Iterative approach to find θ_0 , θ_1 to minimize Cost Function:

$$\theta_{j} := \theta_{j} - \alpha * \frac{\delta}{\delta \theta_{i}}$$

Where -

 θ_j represents θ_0 and θ_1 α is called the learning rate j is iteration number taking values 1, 2, ..., n

Why Gradient Descent And what is significance of a

Example with $\theta_0 = 0$

Hypothesis function: $h_{\theta}(x) = \theta_1 x$

Cost Function:

$$J(\theta_1) = \frac{\sum_{i=1}^{m} (\theta_1 x_i - y_i)^2}{2m}$$

Derivative of $J(\theta_1)$ w.r.t. θ_1 to minimize $J(\theta_1)$:

$$J^{\dagger}(\theta_1) = (\sum_{i=1}^{m} (\theta_1 x_i - y_i) * x_i) / m$$

Equation for θ_1 :

$$\theta_{j} := \theta_{j} - (\alpha / m) * \sum_{i=1}^{m} (\theta_{1}x_{i} - y_{i}) * x_{i}$$

Significance of α

Plot of $J(\theta_1)$ vs θ_1

The parameter α will help you control the **step** through which θ_1 changes.

In this example, controlling α will prevent θ_1 oscillating between values <1 and >1 without ever reaching the desired value of 1.

Gradient Descent

Plot of $J(\theta_1)$ vs n (number of iteration)

Solving Binary Classification using Linear Regression - Case 1

Solving Binary Classification using Linear Regression - Case 2

Although actual output Y will be either 0 or 1, the Hypothesis Function $h_{\theta}(x)$ will have values >1 or <0 if we solve the problem using Linear Regression.

For Classification problems, the Hypothesis Function for Regression (Logistic Regression) is defined such that $0 \le h_{\theta}(x) \le 1$.

Linear Regression Hypothesis Function in the Matrix form:

$$h_{\theta}(X) = \theta^{T}X$$

Logistic Regression Hypothesis Function in the Matrix form (Sigmoid Function):

Logistic Regression Hypothesis Function in the Matrix form (Sigmoid Function):

$$h_{\theta}(X) = ----$$

$$1 + e^{-(\theta^{T}X)}$$

Logistic Regression Cost Function in the Matrix form (Sigmoid Function):

The final equation for θ_i for both Linear and Logistic Regression -

$$\theta_{j} := \theta_{j} - \alpha * - \frac{\delta}{-\cdots} J(\theta) = \theta_{j} - (\alpha/m) * \sum_{i=1}^{m} [(h_{\theta}(x_{i}) - y_{i}) x_{ij}]$$

Spam E-mail Detection

Training Data		
Survey, Win, Tickets	Spam	
Buy, Movie, Tickets	Not-Spam	
Contest, Win, Prize	Not-Spam	
Win, Prize, Survey	Spam	

Test Data	
Survey, Buy, Prize	??

Sentiment Analysis of Movie Reviews

Training Data		
Disappointing, Average	Negative	
Okay, Bad	Negative	
Average, Good, Bad	Neutral	
Disappointing, Great, Superb	Positive	

Test Data		
Average, Superb	??	

Spam E-mail Detection

Training Data		
Survey, Win, Tickets	Spam	
Buy, Movie, Tickets	Not-Spam	
Contest, Win, Prize	Not-Spam	
Win, Prize, Survey	Spam	

Test Data	
Survey, Buy, Prize	??

What can I derive from this data? ☐ P(Spam) and P(Not-Spam)
□ P(Survey Spam) P(Survey Not-Spam) P(Survey) = P(Survey Spam) + P(Survey Not-Spam) And so on for all other words
What do I need to find out from this data? □ P(Spam Survey, Buy, Prize)

Sentiment Analysis of Movie Reviews

Training Data		
Disappointing, Average	Negative	
Okay, Bad	Negative	
Average, Good, Bad	Neutral	
Disappointing, Great, Superb	Positive	

Test Data	
Average, Superb	??

What can I derive from this data? ☐ P(Negative), P(Neutral), P(Positive)	
□ P(Bad Negative), P(Bad Neutral) P(Bad Positive) P(Bad) = P(Bad Negative) + P(Bad Neutral) + P(Bad Positive) And so on for other words	
What do I need to find out from this data? ☐ P(Positive Average, Superb)	

Spam E-mail Detection

Training Data		
Survey, Win, Tickets	Spam	
Buy, Movie, Tickets	Not-Spam	
Contest, Win, Prize	Not-Spam	
Win, Prize, Survey	Spam	

Test Data		
Survey, Buy, Prize	??	

If we assume that all the individual terms such as Survey, Win, Tickets, Buy and so on occur independently of each other (it's quite a Naïve assumption!), then -

We can write P(Survey, Buy, Prize | Spam) = P(Survey | Spam) * P(Buy | Spam) * P(Prize | Spam)

Since the RHS values can be derived, we can say we derive LHS.

Spam E-mail Detection

Training Data		
Survey, Win, Tickets	Spam	
Buy, Movie, Tickets	Not-Spam	
Contest, Win, Prize	Not-Spam	
Win, Prize, Survey	Spam	

Test Data	
Survey, Buy, Prize	??

```
Let -
{Survey, Buy, Prize} be X and
{Spam, Not-Spam} be Y
```

This means -

- \checkmark I know P(X | y1),
- ✓ I know P(y1) and
- \checkmark I can get P(X) as P(X | y1) + P(X | y2)
- I need to find out P(y1 | X)

Spam E-mail Detection

Training Data		
Survey, Win, Tickets	Spam	
Buy, Movie, Tickets	Not-Spam	
Contest, Win, Prize	Not-Spam	
Win, Prize, Survey	Spam	

Test Data	
Survey, Buy, Prize	??

P(X)

NOW WE KNOW !!! -- It's Bayes Theorem!

Bayes Theorem

$$P(Y \cap X) = P(X \cap Y) = P(Y|X) * P(X) = P(X|Y) * P(Y)$$
 $P(Y|X) = P(X|Y) * P(Y) / P(X)$

 $X = \{Survey, Win, Tickets, Buy, Movie, Contest, Prize\} = \{x_1, x_2, x_3, ..., x_7\}$ $Y = \{Spam, Not-Spam\} = \{y_1, y_2\}$

Since there are two output levels -

$$P(X) = P(x_1, x_2, x_3, ..., x_7) = P(x_1, x_2, x_3, ..., x_7 | y_1) * P(y_1) + P(x_1, x_2, x_3, ..., x_7 | y_2) * P(y_2)$$

$$P(x_{1}, x_{2}, x_{3}, ..., x_{7} | y_{1}) * P(y_{1})$$

$$P(y_{1} | X) = P(x_{1}, x_{2}, x_{3}, ..., x_{7} | y_{1}) * P(y_{1}) + P(x_{1}, x_{2}, x_{3}, ..., x_{7} | y_{2}) * P(y_{2})$$

The biggest challenge in this equation is that the term $P(x_1, x_2, x_3, ..., x_7 \mid y_i)$ is difficult to solve. To simplify the term, we use Naïve Bayes algorithm.

The Naïve Bayes Algorithm assumes that all the attributes in the set X are independent.

Therefore, $P(x_1, x_2, x_3, ..., x_7 \mid y_i) = P(x_1 \mid y_i) * P(x_2 \mid y_i) * ... * P(x_7 \mid y_i)$

$$[P(x_1 \mid y_1) * P(x_2 \mid y_1) * ... * P(x_7 \mid y_1)] * P(y_1)$$

$$[P(x_1 \mid y_1) * P(x_2 \mid y_1) * ... * P(x_7 \mid y_1)] * P(y_1) + [P(x_1 \mid y_2) * P(x_2 \mid y_2) * ... * P(x_7 \mid y_2)] * P(y_2)]$$

Appendix

Data, Big Data & Data Analytics 1 2 Components of Data Science 3 Machine Learning Overview Linear & Logistic Regression and another Classifier algorithm 4 5 Appendix

Exciting Data Science Applications

Thank You

Please provide your valuable feedback at - hrishikesh.bhatkhande@gmail.com

My webpages -

- ✓ LinkedIn https://www.linkedin.com/in/hrishikesh-bhatkhande-pmp-341b8421
- √ Kaggle https://www.kaggle.com/hrishikesh312
- ✓ GitHub https://github.com/Hrishikesh312/