THEORETICAL COMPUTER SCIENCE TUTORING (4)

Maurizio Fiusco

Problem 3.1 from the exam held on June 18, 2018

Let $L_1 \subseteq \Sigma^*$ be an acceptable but undecidable language and let $L_2 \subseteq \Sigma^*$ be a decidable language. Consider the following function $f: \sigma^* \to \mathbb{N}: \forall x \in \Sigma^*$

$$f(x) = \begin{cases} 1 & \text{if } x \in L_1 \\ |x| & \text{if } x \notin L_1 \land x \in L_2 \\ 0 & \text{otherwise} \end{cases}$$

Show whether *f* is a computable function

Problem 3.1 from the exam held on June 18, 2018

Claim

f is **not** computable

Proof

Let's assume for contradiction that ${\it f}$ is computable. We could then construct a Turing machine T_1 that decides L_1

$$x \in \Sigma^*$$

working tape

f(x)

Problem 3.1 from the exam held on June 18, 2018

Let's build a recognizer T₁

$$x \in \Sigma^*$$

working tape

Calculate f(x) on the third tape

if
$$f(x) = 1$$

else if $f(x) = |x|$ or $f(x) = 0$

$$\checkmark$$
 T_1 accepts $\gt{T_1}$ rejects

$$m{ imes}_{m{1}}$$
 rejects

$$T_1$$
 decides L_1 \Leftrightarrow contradiction

Prove that for every constant $k \in \mathbb{N}$, 2^{n^k} is a **time-constructible** function.

Definition

A function $f: \mathbb{N} \to \mathbb{N}$ is **time-constructible** if there exists a Turing machine T of transducer type that, given an input integer n in unary (1^n) , writes on the output tape f(n) in unary $(1^{f(n)})$ in dtime(T, n) = O(f(n))

$$\square O(f(n))$$

n

Claim

 \forall constant $k \in \mathbb{N}$, $\mathbf{2}^{n^k}$ is a **time-constructible**

Let's build a Turing machine that computes 2^{n^k}

concatenation

$$n_1 \leftarrow r$$

$$n_2 \leftarrow k^{th}$$
-power (n_1)

We know how to compute the k^{th} power in $O(n^k)$ steps

$$n_3 \leftarrow 2$$

Let i_2 be the position of the head on the second tape $i_2 \leftarrow 2$

while(
$$i_2 \leq n_2$$
) do

while(
$$i_2 \leq n_2$$
) do $n_4 \leftarrow n_3$

n_1	11
n_2	1 1 1
	11
n_3	
n_4	11

while
$$(i_2 \leq n_2)$$
 do $n_4 \leftarrow n_3 \ n_3 \leftarrow n_3 + n_4$

n_1	1 1
n_2	1 1 1
102	
n_3	1111
n_4	11

while
$$(i_2 \leq n_2)$$
 do $n_4 \leftarrow n_3 \ n_3 \leftarrow n_3 + n_4 \ i_2 \leftarrow i_2 + 1$

n_1	11
n_2	11 1 1
102	
n_3	1111
n_4	11

while
$$(i_2 \leq n_2)$$
 do $n_4 \leftarrow n_3 \ n_3 \leftarrow n_3 + n_4 \ i_2 \leftarrow i_2 + 1$

$$\sum_{i_{2}=2}^{n^{k}} \left[2^{i_{2}-1} + 2^{i_{2}} \right] = \sum_{i_{2}=2}^{n^{k}} 2^{i_{2}-1} + \sum_{i_{2}=2}^{n^{k}} 2^{i_{2}} =$$

$$= \frac{1}{2} \sum_{i_{2}=2}^{n^{k}} 2^{i_{2}} + \sum_{i_{2}=2}^{n^{k}} 2^{i_{2}} = \left(\frac{1}{2} + 1 \right) \sum_{i_{2}=2}^{n^{k}} 2^{i_{2}} =$$

$$= \left(\frac{3}{2} \right) \sum_{i_{2}=2}^{n^{k}} 2^{i_{2}} = \left(\frac{3}{2} \right) \left(2^{n^{k}+1} - 1 - 1 - 2 \right) <$$

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

$$< 3 \cdot 2^{n^{k}} \in O\left(2^{n^{k}}\right)$$

Prove that $f(n) = n^n$ is a **time-constructible** function

Claim

 $f(n) = n^n$ is a time-constructible function

Let's build a Turing machine that computes n^n

$$n_1 \leftarrow r$$

$$n_2 \leftarrow n_1$$

Let i and j be the positions of the heads of the first two tapes

$$n_3 \leftarrow n_1$$

 $i \leftarrow 2$

while(
$$i \leq n$$
) do $n_4 \leftarrow n_3$

while(
$$i \leq n$$
) do $n_4 \leftarrow n_3$ $j \leftarrow 2$

n_1	1 1 1
n_2	1 1 1
n_3	1 1
n_4	1 1
-	

while
$$(i \le n)$$
 do $n_4 \leftarrow n_3$ $j \leftarrow 2$ while $(j \le n)$ do

$$\begin{vmatrix} n_3 \leftarrow n_3 + n_4 \\ j \leftarrow j + 1 \end{vmatrix}$$

n_1	1 1 1
n_2	11 1 1
n_3	1 11 1
n_4	1 1

```
11 ... 1
n_1
n_2
                 1...1...1
n_3
n_4
                                                                 \begin{vmatrix} n_3 \leftarrow n_3 + n_4 \\ j \leftarrow j + 1 \end{vmatrix}
i \leftarrow i + 1
while(i \leq n) do
                                                                                                                  #1 = n_4 \cdot n
       while(j \leq n) do
```


while
$$(i \le n)$$
 do $n_4 \leftarrow n_3$ $j \leftarrow 2$ while $(j \le n)$ do

$$\begin{vmatrix} n_3 \leftarrow n_3 + n_4 \\ j \leftarrow j + 1 \end{vmatrix}$$

$$i \leftarrow i + 1$$

• •

```
111 ... 1
n_1
                     11 ... 1
n_2
                     1...1...1
n_3
n_4
                                                                             \begin{vmatrix} n_3 \leftarrow n_3 + n_4 \\ j \leftarrow j + 1 \end{vmatrix}
i \leftarrow i + 1
while (i \leq n) do
        n_4 \leftarrow n_3 j \leftarrow 2 while(j \leq n) do
```

output n_3

$$n_1, n_2, n_3 \leftarrow n \qquad O(n)$$
 $i \leftarrow 2$
$$\text{while}(i \leq n) \text{ do} \qquad n \text{ times}$$

$$| n_4 \leftarrow n_3 \qquad \#1 = n^{i-1}$$

$$| j \leftarrow 2 \qquad \text{while}(j \leq n) \text{ do} \qquad n \text{ times}$$

$$| n_3 \leftarrow n_3 + n_4 \qquad \#1 \text{ added} = n^{i-1}$$

$$| j \leftarrow j + 1 \qquad \qquad i \leftarrow i + 1$$
 output n_3

$$\sum_{i=2}^{n} n^{i} = \frac{n^{2} - n^{n+1}}{1 - n} = \frac{n^{n+1} - n^{2}}{n - 1} \in O(n^{n})$$

$$\sum_{i=2}^{n} x^{k} = \frac{x^{m} - x^{n+1}}{1 - x}$$

