

8.8 CIRCULATION IN ANIMALS

Arati G Raut

BLOOD VASCULAR SYSTEM:

- HIGHER FORMS SPECIAL CIRCULATING FLUID
- BLOOD
- (Pumped by heart through blood vessels)

TYPES OF BLOOD VASCULAR SYSTEM:

OPEN CIRCULATION

CLOSED CIRCULATION

COCKROACH -Open circulatory system

OPEN CIRCULATION	CLOSED CIRCULATION
Visceral organs lie in blood filled <u>Haemocoel</u> .	Blood circulated through a network of <u>blood</u> <u>vessels.</u>
<u>Direct exchange</u> of materials between cells and blood	Cells and blood <u>not in direct contact</u> with one another
<u>Low</u> pressure of blood.	<u>High</u> pressure of blood.
No respiratory pigment	Contains Respiratory pigment.
No transportation of resp. gases	<u>Transportation</u> of Resp. gases.
Eg. Arthropods.	Eg. Annelids, Higher molluscs, Vertebrates.

TYPES OF CLOSED CIRCULATION:

1) **SINGLE CIRCULATION**

- In fishes.
- Blood passes through heart only once in each cycle.
- Venous heart (Heart carries only deoxygenated blood)

Single circulation

SINGLE CIRCULATION: e.g. fishes

2) DOUBLE CIRCULATION:

- In Birds and mammals
- Blood passes **twice** through heart in each cycle.

8.9 Circulatory System in Human:

Composed of:

1) Blood vascular system

2) Lymphatic system

Circulatory System

Lymphatic System Inter-relationship between systems

BLOOD VASCULAR SYSTEM:

- 1) Blood
- 2) Heart
- 3) Blood vessels

1)BLOOD: (Embryonic mesoderm)

Haematology – Study of blood

4 to 6 litres

Red in colour

pH 7.4 Slightly alkaline

Salty and Viscous

COMPOSITION OF BLOOD:

Main components:

- a) Fluid plasma (55%)
- Formed elements (44%)

PLASMA (55%)

- Straw coloured
- Viscous
- Alkaline fluid

Water - 90%

Centrifuged Whole blood blood

FORMED ELEMENTS (44%)

8.10 Red blood corpuscles / Erythrocytes / RBC's

Shape: Circular, Biconcave

Cell structure : enucleated, membrane bound organelles absent.

Cytoplasm rich in hemoglobin (270 million in 1 RBC)

Contains enzyme Carbonic anhydrase

Life span : 120 days

Function

- Transport of respiratory gases
- Maintains pH of blood
- Maintains Viscosity of blood

<u>Haemoglobin: Protein – Iron Complex</u>

Erythropoiesis (formation of RBC's)

Life span

120 days

Birth

Foetus – Liver and Spleen

Adult - Red bone marrow

Folic Acid Vit B12 Haeme protein

Haemocytoblasts / Reticulocytes

Death

Graveyard of RBCs Liver and Spleen Worn out RBCs are degraded here

Some important values

RBC Count

Males – 5.1 to 5.8 million/mm³

Females – 4.3 to 5.2 million/mm³

Haemoglobin Content
Males – 14 to 17 gm%
Females – 13 to 15 gm %

Haematocrit
Ratio of
volume of
RBCs to total
volume of
blood

8.11 White blood corpuscles /Leucocytes/WBC's

- Colorless
- Nucleated
- Amoeboid
- Defense of body

DIAPEDESIS

Some important values

WBC Count - 5 to 11 thousand /mm³

pregnancy,
Newborn babies

HIV, AIDS, TB patients

Leukemia
Uncontrolled increase in WBC number
Type of cancer

TYPES OF LEUCOCYTES:

Types of WBC's (Polymorphism)

72 %

Granular Cytoplasm Granules – secretory vesicles

Polymorpho nuclear Leucocyte cells (PMNC)

Formed from Myeloid stem cells, cannot divide

Granulocytes

Neutrophil (70%) Eosinophil (1-3%)

(phagocyting a bacteria and other pathogens)

Nucleus - 2 to 7 lobed

(control mechanisms associated with allergy)

Nucleus -bilobed

Basophil (0.5-1%)

(contain histamine and heparin)

Nucleus-twisted

Histamine release from the basophils

Agranulocytes

Monocyte (3-5%) (phagocytosis)

Nucleus –kidney shaped

Lymphocyte (25-30%) (secretion of antibodies)

Large non lobulated nucleus

Nucleus-spherical

28 %

Agranular cytoplasm

Lymphoid stem cells, can divide

WBCs – Types of Granulocytes:

Eosinophil

Basophil

70%
Neutral stain
Nucleus -Many Lobed
Perform amoeboid
movement and
phagocytosis

1-3%
Acidic stain (Eosin)
Nucleus -Bilobed
Destroy Ag- Ab complex,
increase in allergic reactions
Antihistamine property,
detoxification.

0.5 - 1 %
Basic stain (methylene blue)
Nucleus -Twisted
Present in Allergic conditions
Secretes- Heparin, Histamine
and serotonin

WBCs – Types of Agranulocytes:

8.12 Thrombocytes / Platelets:

Small, oval, enucleated cell fragments

Function: secrete platelet factors, forms platelet plug (Thrombus), serotonin(vasoconstrictor)

Platelet Count – 2.5 to 4.5 lakh /mm³

Thrombocytopenia (low thrombocytes) (haemorrhage)

Blood Clotting / Blood Coagulation

Process of converting the liquid blood into a solid form.

Requires:

- Blood Clotting Factors 12 BCF (I to XIII) produced by liver, platelets and damaged tissues.
 - - Fibrinogen
 - Prothrombin
 - Thromboplastin (Tissue factor)
 - Calcium ions
 - Prothrombinase (Thrombokinase)

Blood Coagulation – Process Injury Damage to blood Damage to Tissue vesse Intrinsic pathway **Extrinsic** pathway Activate Series of cascade Prothrombinase/ **Thromboplastin** reaction of Tissue and Factor X Leaks from the cells to **Blood Clotting Factors** blood vessel (VIII/IX/XI/XII) **Prothrombinase Prothrombin Thrombin** Calcium **Thrombin Fibrin** Fibrinogen Calcium Clot – mesh of fibres along with trapped blood cells

8.13 **Heart**:

•Heart - main pumping organ.

Reddish brown

hollow

muscular

Wt 300gm males, 250gms females

Mediastenum

Above diaphragm

- •Heart enclosed in pericardium.
- Pericardium outer fibrous and inner serous pericardium.
- •Serous pericardium divisible into two layers (parietal and visceral layer)
- •In between Parietal and visceral layers is pericardial space.
- Pericardial fluid (about 50ml)
- a shock absorber
- protects the heart from mechanical injuries.

Heart: mesodermal in origin.

Three layers:

- outer epicardium(protective)
- middle myocardium (contraction and relaxation)
- inner endocardium (protective)

EXTERNAL STRUCTURE OF HEART:

- Four chambered
- •Superior-Atria
- •Inferior-ventricles
- •Transverse groove Coronary sulcus / Atrioventricular groove (between atria and ventricles)
- interventricular sulci (harbour coronary arteries and veins)
- Pulmonary trunk
- Systemic Aorta (ascending aorta /systemic or aortic arch/descending aorta)
- Aortic arch 3 branches
- Brachiocephalic artery
- -Left common carotid
- -Left subclavian
- •Ligamentum arteriosum
- Remnant of ductus arteriosus
- •Superior and inferior venacava
- Pulmonary veins.

Fig. 8.18 : Posterior (dorsal) view : External structure of human heart

Fig. 8.19: Anterior (ventral) view: External structure of human heart

INTERNAL STRUCTURE OF HEART:

ATRIA:

- Thin walled
- •Inter-auricular septum (fossa ovalis)
- •Remnant of foramen ovalis
- •RA- both vena cava and and coronary sinus
- Postcaval Eustachian valve
- •Coronary sinus Thebasian valve
- •Pulmonary veins open Left atrium
- •Atrioventricular apertures Cuspid valves
- •Tricuspid valve- Right AV Aperture
- •Bicuspid valve (Mitral valve)- Left AV Apertureght ventricle

VENTRICLES:

- Thick walled
- •Inter-ventricular septum
- •Left ventricle-3times more thick
- •Inner surface-ridges Columnae carnae/ trabeculae carnae
- •Inelastic fibres chordae tendinae (attach valves to papillary muscles ,regulating their opening and closing)
- •Pulmonary aorta and aorta -three semilunar valves
- Valves: unidirectional flow and prevents backflow

Left ventricle

GE

Pumping action of heart:

- •Heart Pumping organ
- rhythmic contraction and relaxation
- Contraction-Systole
- •Relaxation- Diastole
- •Heart beat single systole followed by diastole
- •Heart rate: 70-72times /min
- •Stroke volume: each heart beat ventricles pump 70ml of blood
- •H.R X S.V = CARDIAC OUTPUT (volume of blood pumped out per min)
- •CO = SV X HR
- =72 X 70 = 5040ml = **5 liters** of blood per min

Conducting tissue of heart:

- •Human heart- Myogenic
- auto rhythmicity
- specialized cardiac muscles nodal tissue
- Consists of
- -SA Node /Sino- atrial node (PACE MAKER)
- AV Node/ Atrioventricular node (PACE SETTER)
- Bundle of His/Tawara
- -Purkinje fibres

8.14 Working mechanism of human heart

Cardiac cycle (0.8 sec)

8.15 Blood vessels:

Arteries	Veins
Carry blood from heart to organs	Carry blood from organs towards the heart
Usually situated deep	Usually superficial
Carry oxygenated blood (except pulmonary artery)	Carry deoxygenated blood (except pulmonary veins)
Thick wall (tunica media)	Comapratively thinner (tunica media)
No valves	Valves present
Blood flows under high pressure	Blood flows under low pressure

T.S of Artery, Vein and capillary

Portal vein

- Blood flows under high pressure
- •Wall bears pores or fenestrae

PULSE:

- •Series of pressure waves that travel through arteries due to ventricular systole.
- Felt easily in superficial arteries
- Pulse rate is equal to heart rate
- Tachycardia(above 100beats /min)
- Bradycardia (below 60 beats/min)

PULSE POINTS:

8.17 Electrocardiogram

ECG helps to diagnose:

- Abnormality in conducting pathway
- Enlargement of heart chambers
- Damages to cardiac muscles
- Reduced blood supply to cardiac muscles
- Causes of chest pain

ECG – Graphical recording of electrical variations detected at the surface of the body during their propagation through the wall of the heart.

8.17 Electrocardiogram

Ventricular depolarization

Heart – Regulation of Cardiac Activity

Heart – Regulation of Cardiac Activity

Heart – Regulation of Cardiac Activity

8.16 Blood Pressure

Sphygmomanometer

8.16 Blood Pressure

Systolic Pressure

Diastolic pressure

BP of normal healthy adult — 120/80 mmHg

- Volume of Blood
- Arteriosclerosis
- Atherosclerosis
- Renal Diseases
- Hormonal changes
- Obesity
- Cardiac Output
- Venous return
- Length and diameter of vessels
- Peripheral Resistance of blood
- Physical State
- Age and Gender
- Emotional state

Heart Disorders

Hypertension

Higherthan 140/90 mmHg

Effects

- Angina pectoris
- Heart lowered Blood supply may lead to myocardial infarction
- Brain hemorrhage
- Kidney failure

Cause

Exertion due to reduction in blood supply to cardiac muscles

Heart Disorders

Coronary Artery Disease (CAD) – Atherosclerosis

Narrow Lumen

Plaque

Deposition of Ca, fat, cholesterol or fibrous tissue

Arteriosclerosis

Inelastcity and hardening of arteries

Heart Disorders

Silent Heart Attack – Silent Myocardial infarction

Mild symptoms confused with normal discomfort

Heart Disorders – Diagnosis

Angiography

X ray imaging of cardiac vessels to locate the blockage

Heart Disorders – Treatment

Angioplasty

Stent is inserted to at the site of blockage to restore blood supply

Heart Transplant

Bypass surgery

Atherosclerotic region is bypassed with graft artery or vein

Patients must take **immunosuppressive drugs** for the rest of their lives to keep the immune system from attacking **transplanted organs**.

8.18 Lymphatic System

Lymphatic Capillaries and vessels

Thoracic duct and Right lymphatic duct

Lymph nodes and Lymphoid organs

8.18 Lymphatic System

Fluid from **Intercellular spaces** Lymphatic capillaries Lymphatic vessels **Lymphatic Ducts** Discharged into veins

Keep learning

Thanku