Math 239 - Lecture 11 - Concatenation - (Block) Decomposition

Review:

Concatenation:

 $AB = \{ab : a \in A, bE \in B\}$ set! (not multiset) unambiguous if $\nexists a_1, a_2 \in A, b_1, b_2 \in B$ $a_1b_1 = a_2b_2$

Star:

$$A^* = E \cup (A^1) \cup (A^2) \cup (A^3) \cup ...$$

Unambiguous

- A^k unambiguous $\forall k \leq 0$
- all pairwise disjoint

Product Lemma

If AB is unambiguous then $\Phi_{AB}(x) = \Phi_A(x)\Phi_B(x)$.

Star Lemma

If
$$A^*$$
 is unambiguous, then $\Phi_{A^*}(x) = \frac{1}{1 - \Phi_A(x)}$

Note: we say an expression for binary strings is unambiguous if all products and stars unambiguous and unions disjoint

Expressions for the set of all binary strings:

Let B be the set of all binary strings;

#1: $B = \{0,1\}^*$ is **unambiguous**, why?

- every string is uniquely reconstructable
- alternatively, the exp. comes from a "decomposition rule"

A **decomposition rule** is a rule to decompose a string into "parts" **uniquely**. Here the rule is: decompose where each part is a single digit

each part is in 0,1, each string is formed from any # of these parts. So we get 0,1* as the expression

Remark: decomposing after every 2nd digit $00,01,10,11* \in ,0,1$ is another unique rule (we won't use). however, decomposing where each part is length 1 or 2 is not unique (and hence is ambiguous)

Useful unambiguous for expressions for *B* **:**

Decomposition Rule	Expression
After each 0	({1}{0}),{1}*
After each 1	({0}{1}){0}*
After each block of 0s	{0}*({1}{1}{0}{0}){1}
1s	{1}*({0}{0}{1}{1}){1}

Why?

Main parts of Decomp (used any # of times)	Final part
$\{0,10,110,1110,\} = \{1\}*\{0\}$	{∈,1,11,111,} = {1}*
{0}*{1}	{0}*

Beginning part	Main part	Final part
(possibly empty) block of 0 s: {0}*	non empty block of 1s followed by a non empty block of 0s: $\{1,11,111,\}\{0,00,000,\}$	(possibly empty) block of 1s: {1}*

Finding Gen series from Block Decompositions:

the 1st rule $B=0,1^*$ is really only useful to find Φ_B . By Star Lemma

$$\Phi_B(x) = \frac{1}{1 - \Phi_{(0,1)(x)}} = \frac{1}{1 - 2x}$$

One can check the other rules also give $\Phi_B(x) = \frac{1}{1-2x}$

Using the block decomposition rules, we can find unambiguous expressions for sets of binary strings w/ restriction parts and from there use sum/product/star lemmas to find $\Phi_{\rm s}$

Ex. No blocks of exactly 4 1's: We choose a decomposition where the restriction can be used on the parts.

Let's use after each block of 1's: $B = \{1\}(\{0\}\{0\}\{1\}\{1\})\{0\}^*$

We modify the exp. by modifying the acceptable parts

	Before(all)	After (number of blocks of ex. 4 1's)
Beg part	{1}*	{∈,1,11,111,11111,} (no 4 1's)
Main part	{0}{0}{1}{1}	{0,00,} {1,11,111,11111,}
Final part	{0}*	{0}*

 $\{E,1,11,111,11111,\ldots\}(\{0\}\{0\}\{1\}\{E,1,11,1111,\ldots\})\{0\}*=(\{E,1,11,111\}\cup\{11111\}\{1\})(\{0\}\{0\}\{1\}(\{E,1,11\}\cup\{1111\}\{1\})\{0\}*)$

$$\mathsf{Exp}\left(1 + x + x^2 + x^3 + \frac{x^5}{1 - x}\right) \left(\frac{1}{1 - x \cdot \frac{1}{1 - x} \cdot x \cdot \left(1 + x + x^2 + \frac{x^4}{1 - x}\right)}\right) \left(\frac{1}{1 - x}\right)$$

Reminder main part is starred

so it will show as $\frac{1}{1-\Phi_{\text{Main}}}$ in the middle You final expression is, $\Phi_{\text{Beg}}\bigg(\frac{1}{1-\Phi_{\text{Main}}}\bigg)\Phi_{\text{end}}$

- it may be useful to calculate Φ_{Beg} , Φ_{Main} , and Φ_{end} first