CSC 226

Algorithms and Data Structures: II Rich Little rlittle@uvic.ca

Network Flow

Example of an st-flow network

Network Flow (Definitions)

- A *flow network* is an edge-weighted, directed graph with positive edge weights, called **capacities**, denoted c(e) for each edge e (capacities of non-existing edges are zero).
- An st-flow network, N, is a flow network that has two identified vertices, namely the source, s, and the sink, t.
- An st-flow, f, in an st-flow network, N, is a set of nonnegative values (edge flows, denoted f(e)) associated with each edge. Furthermore, we define
 - inflow: total flow of edges into a specific vertex
 - outflow: total flow of edges from a specific vertex
 - netflow: inflow minus outflow of a specific vertex

Flow Network (Definitions)

- An st-flow, f, is feasible if it satisfies the conditions that
 - no edge's flow is greater than that edge's capacity
 - i.e. $0 \le f(e) \le c(e)$
 - the netflow of every vertex v (except s and t) in the st-flow network is zero:
 - i.e netflow(v) = 0 or inflow(v) = outflow(v)
- *st*-flow *value*, | *f* |, for *st*-flow network, *N*, with *st*-flow, *f*, is the sink's inflow, (or the source's outflow.)
 - i.e. |f| = inflow(t) = outflow(s)
- Maximum st-flow (or maxflow): a feasible st-flow with maximum st-flow value over all feasible flows

Example of a feasible *st*-flow in an *st*-flow network

Maximum Flow Problem: maxflow

- Input: An st-flow network
- Output: A maximum st-flow

Key idea: Augmenting paths in *st*-flow networks

• An *augmenting path* in an *st*-flow network, with feasible *st*-flow, is an undirected path from source *s* to sink *t* along which we can push more flow, obtaining an *st*-flow with higher *st*-flow value.

Example of an augmenting path that improves the flow: scbt

Arc bc is a backward arc on the path scbt.

bottleneck capacity = $min\{(13-8), 4, (20-15)\} = +4$

Improved flow: can increase by +4

Increase the flow by 4 in each forward arc and decrease the flow by 4 in each backward arc.

Ford-Fulkerson's maxflow method

- 1. Initialize with a 0 flow: st-flow value |f| = 0
- 2. Increase the flow along any augmenting path from *s* to *t*
- 3. Repeat step 2 as long as an augmenting path exists

Finding Augmenting Paths: the residual network G_f of a flow f

- Consider an st-flow f in st-flow network G and a directed edge (u,v) in G
- The amount of additional flow we can push from u to v along (u,v) in G is called the *residual capacity* $c_f(u,v)$ of edge (u,v) -- it depends on f.
- That is: for edge (u,v) with capacity c(u,v) and flow value f(u,v) from u to v we have the residual capacity $c_f(u,v) = c(u,v) f(u,v)$; this creates a directed edge (u,v) in the residual network G_f with capacity $c_f(u,v)$.
- Of course in G we could instead *reduce* the flow in (u,v) by f(u,v); this creates a directed edge (v,u) in the residual network G_f with capacity

 $c_f(v,u) = f(u,v)$. (Note the order of the vertices.)

Residual Network

• Given an st-flow network G = (V,E) and a flow f, the residual network of G induced by f is $G_f = (V, E_f)$ where $E_f = \{(u,v) \in V \times V : c_f(u,v) > 0\}$

Question:

Consider an edge (u,v) in G. How many edges does (u,v) create in the residual network G_f ?

- A. 1 edge: (u,v)
- B. 2 edges: (u,v) and (v,u)
- C. Can't tell it depends on the flow *f*, which can change

Question:

```
Consider an edge (u,v) in G, where capacity c(u,v) = 5 and
```

flow f(u,v) = 5.

How many edges does (u,v) create in the residual network G_f ?

- A. 0
- B. 1
- C. 2

Question:

```
Consider an edge (u,v) in G, where capacity c(u,v) = 5 and
```

flow f(u,v) = 3.

How many edges does (u,v) create in the residual network G_f ?

- A. 0
- B. 1
- C. 2

Example of a residual network

Example of a residual network

Augmenting path from s to t in residual network G_f : scbt

Residual network G_f $5 \underbrace{\begin{array}{c} 12 \\ 5 \\ 11 \end{array}}_{5} \underbrace{\begin{array}{c} 12 \\ 4 \\ 0 \end{array}}_{7} \underbrace{\begin{array}{c} 15 \\ 4 \\ 4 \end{array}}_{4}$

Residual capacity of path scbt is $min\{5,4,5\} = 4$

In G, increase flow in each forward arc by 4, decrease flow in each backward arc by 4 to get new flow

Augment the flow along path scbt by 4

Claim: the new flow is a maxflow.

How would you prove this claim? (two ways) Maxflow-mincut.