Requirement Analysis Phase

Date	
Team ID	LTVIP2025TMID31460
Project Name	To Supply Leftover Food to Poor
College Name	Ideal Institute Of Technology

Step-1: Customer Journey Map

Awareness	Registration	Donation	Collection	Distribution	Feedback
Restaurants Volunteers	Restaurants o NGOs	Volunteers	Volunteers	Volunteers / NGOs	Restaurants Beneficiariaes
User Learn about the initiative via ads social, media or NGO	Actions Register-on toe pletform to donate or volunteer	Actions Ropheful	Responsible Use app to locate pickups and collect food	Empathic Delivery delays, poor infrastructure	Emotion Grateful Informed
Emotions Unclear purpose or impact	Emotion Time-consuning forms, privacy concerns	Pain Points Time-ceuming forms, privacy concms	Gains Personal fulfillment contribution	Paintoin Lack of follow-up	Gains Continuous improvement recognition

Step-2: Solution Requirement

• 1. Functional Requirements

These describe what the system should do.

ID	Requirement Description
FR1	Users (restaurants, NGOs, volunteers) should be able to register and log in to the system.
FR2	Restaurants should be able to submit food donation details (type of food, quantity, pickup time, location).
FR3	Volunteers should be able to view available food pickups and accept tasks.
FR4	The system should assign and notify volunteers automatically for pickups.
FR5	Volunteers should update collection status (e.g., "picked up", "in transit").
FR6	NGOs or volunteers should mark deliveries as complete and optionally include recipient feedback.
FR7	System should maintain a record/log of all transactions.
FR8	Users should be able to give and view feedback on the process.
FR9	Admin should be able to monitor, audit, and generate reports.

2. Non-Functional Requirements

These define how the system should behave.

Category	Requirement		
Performance	System should support simultaneous requests from at least 100 users.		
Reliability	System should have 99.5% uptime.		
Usability	Interface must be mobile-friendly and easy to use for all age groups.		
Security	User data must be protected via secure authentication & encryption.		
Scalability	Platform should support scaling to new cities or states as needed.		
Maintainability	System should allow easy updates and bug fixes without downtime.		

3. Data Requirements

ID Data Requirement

DR1 Store user data (name, role, contact, location).

DR2 Food donation data (type, expiry time, quantity, origin).

DR3 Volunteer task data (assigned, status updates, timestamps).

DR4 Feedback data from donors, volunteers, and recipients.

4. Technical Requirements

Area	Requirement
------	-------------

Platform Web-based platform + Android mobile app

Database Use of cloud-hosted relational database (e.g., PostgreSQL, Firebase)

Hosting Cloud service provider like AWS, Azure, or GCP

Integration SMS or push notification service (e.g., Twilio, Firebase)

Mapping Integration with Google Maps API for navigation

5. Stakeholder Requirements

Stakeholder Needs

Donors Easy way to donate food with trust in the

(restaurants) process

Volunteers Efficient task coordination and safety

NGOs Smooth distribution and reporting

Admin Real-time system visibility and user

management

Step-3: Data Flow Diagram

Level 0 - Context Level DFD (Overview)

The system is designed and established across the world with input and output at this level.

Food Ordering System has the following input:

• Food order is input as the customer's order for food.

Food Ordering System has the following output:

- Receipt of the order.
- For further processing the order, the food order is passed to the kitchen.
- The restaurant manager gets the report of Bill and Management.

Level 1 - Detailed DFD

For processing the order, process 1.0 is responsible. For food, the housekeeping activities involved are represented by processes 2.0, 3.0, and 4.0. The detailed information about daily sold items should be available to create and report management and the list of items that are available 'in-stock' should be kept by maintaining the inventory data (describes the records of datasets such as their name, their content, source, many useful information, etc.) at the same time. Hence, two data stores are used in this level of DFD given below:

- Database of Sold items
- Inventory database

Step-4: Technology Stack Requirement Analysis

The system includes multiple components: frontend (user interface), backend (business logic), database (storage), APIs (communication), and infrastructure.

• 1. Frontend (User Interface)

Component	Technology	Purpose
Web App	React.js or Vue.js	For building the restaurant, volunteer, and NGO dashboards
Mobile App	Flutter or React Native	Cross-platform (Android/iOS) app for ease of use in field
UI Design	Figma or Adobe XD	Designing user-friendly wireframes and prototypes

2. Backend (Server-Side Logic)

Component	Technology	Purpose
Backend Framework	Node.js (Express.js) or Django (Python)	To manage API logic and data flow
Authentication	JWT (JSON Web Tokens) / OAuth 2.0	Secure login and role-based access control
Scheduler	Node-Cron / Celery	Automate tasks like reminders, pickup alerts

• 3. Database (Data Storage)

Туре	Technology	Purpose
Relational DB	PostgreSQL or MySQL	Store structured data (users, donations, delivery logs)
Real-time DB (Optional)	Firebase Realtime Database	For quick updates and live tracking
Cloud Storage	Amazon S3 or Google Cloud Storage	Store images (e.g., food photos, proof of delivery)

4. APIs & Integrations

Туре	Technology	Purpose
Maps API	Google Maps API	Location tracking, route optimization for volunteers
Notification API	Firebase Cloud Messaging / Twilio	Send real-time SMS or push alerts
Email Service	SendGrid / Mailgun	Email notifications for confirmations or reminders
Payment Gateway (Optional)	Razorpay / Stripe	If you accept donations or need logistics support funds

5. DevOps & Infrastructure

Tool Purpose

Docker Containerize application for consistent deployment

GitHub / GitLab Version control and collaboration

CI/CD GitHub Actions, Jenkins, or GitLab CI for continuous deployment

Cloud Provider AWS / GCP / Azure to host backend, DB, and frontend

Monitoring Prometheus, Grafana, or Google Stackdriver for system health

tracking

6. Security Requirements

Security Layer Technology

HTTPS SSL Certificates

Data Encryption AES or SHA-256 for sensitive info

Role-Based Access Admin, Restaurant, Volunteer, NGO

Regular Backups Cloud-based scheduled backups

7. Optional Al Features (Future Scope)

Use Case Technology

Predicting food wastage

patterns

TensorFlow / Scikit-learn

Matching pickup schedules

Al-based route optimization using Google OR-Tools

Sentiment Analysis on

Feedback

Natural Language Processing APIs