LITERATURE SURVEY

S.	TITLE	YEAR&	METHODOLOGY	ADVANTAGE	DRAWBACK
NO	&PUBLICATIONS	PUBLICATION			
1	Amezquita-Sanchez J., Valtierra-Rodriguez M., Adeli H. Current efforts for prediction and assessment of natural disasters: Earthquakes, tsunamis, volcanic eruptions, hurricanes, tornados, and floods.	Journal Archives of computational methods in Engineering	Signal processing, image processing and statistical technique	More accurate prediction of natural disasters	Limited statistical parameters for prediction
2	Zhang X.Y., Li X., Lin X. The data mining technology of particle swarm optimization algorithm in earthquake prediction. Adv. Mater.	2016 Journal ACS Sustainable chemistry &Engineering	Particle swarm optimization	Predict magnitude of earthquake	Work only for prediction on seismic dataset
3	Adeli H., Panakkat A. A probabilistic neural network for earthquake magnitude prediction.	Journal of neuroscience	Neural network	Predict magnitude of earthquake	Limited parameters used for prediction
4	Kradolfer U. SalanderMaps: A rapid overview about felt earthquakes through data mining of webaccesses; Proceedings of the EGU General Assembly Conference; Vienna, Austria	Journal Bulletin of the seismological society of America	Text mining, regular log mining technique	Detect earthquake with speed and accuracy on seismological data	Depends on public feedback to detect earthquake

6	Merz B., Kreibich H., Lall U. Multi-variate flood damage assessment: A tree- based data-mining approach. Sahay R.R., Srivastava A. Predicting monsoon floods in rivers embedding wavelet transform, genetic algorithm and neural network.	Journal Information & management 2014 Journal The Visual Computer	Artificial neural network, genetic algorithm and wavelet transfer technique	Utilize some parameters to access the model for flood damage area detection Sum-up good results as compared to the already existing techniques in the southeast Asia	Parametric limitation for the detection of flood damaging regions Work for monsoon floods in June and September for specific regions in India for time series data
7	Venkatesan M., Thangavelu A., Prabhavathy P. An improved Bayesian classification data mining method for early warning landslide susceptibility model using GIS; Proceedings of the Seventh International Conference on Bio-Inspired Computing: Theories and Applications	2005 Journal Nature materials	Support vector machine, naïve Bayes	Classify the natural disasters on various parameters	Limited for only early stages of natural disasters
8	Korup O.Stolle A. Landslide prediction from machine learning.	2022 Uncertainty in Artificial Intelligence	Machine learning technique	Predict the land slidding with the accuracy rate of 75 to 95	More guidlines for model selection for predition large scale landslide
9	Das H.S., Jung H. An efficient tool to assess risk of storm surges using data mining. Coast. Hazards.	2010 Chemistry-A European Journal	Clustering for multivariable time series	Proposed a dynamic clustering approch for time series analysis and self-optimize organizing	Dynamic time series data required for clustering process

			mapping techniques	
Chatfield A.T., Brajawida U. Twitter ea tsunami warning system: A case study Indonesia natural disaster manageme Proceedin of the 201 46th Haw Internation Conference on System Sciences	Computers in human Behavior v in es ent; gs 3 aiii nal ee	Data mining technique	A real time desktop-based GUI system is designed to predict local storm	Use parallel computing process that takes various amounts of time to predict storm