University of Balamand Faculty of Arts and Sciences

Instructors: K. Hitti, M. Dib, R. Fares MATH 211, Final

Date: Spring 2021 **Duration**: 1 hour 30 minutes (including submission)

Question 1- (50pts: 6-5-5-6-2-4-10-12)

Consider the matrix
$$A = \begin{pmatrix} 1 & 4 & 2 \\ 2 & 4 & 2 \\ 3 & 4 & 2 \end{pmatrix}$$

- a) Find the null space of A.
- b) Find a basis for the null space of A. Call this basis S_1 .
- c) Deduce the nullity and the rank of A.
- d) Complete S_1 into a basis of \mathbb{R}^3 . Call it S

e) Verify that
$$T = \left\{ u1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; u2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}; u3 = \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix} \right\}$$
 is a basis of \mathbb{R}^3 .

- f) Find $[v]_T$ for $v = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$
- g) Find the transition matrix from T to S and deduce $[v]_S$
- h) Transform T into an orthonormal basis W.

Question 2- (25pts: 8-8-9)

Let
$$L: \mathbb{R}^2 \to \mathbb{R}^3$$
 such that $L\left(\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}\right) = \begin{pmatrix} u_1 \\ u_1 + 3u_2 \\ u_1 - u_2 \end{pmatrix}$

- a) Prove the L is a linear transformation.
- b) Find Ker L and check whether L is one-to-one.
- c) Find Range L and check if L is onto.

Question 3- (25pts: 20-5)

Consider the *symmetric* matrix
$$A = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 5 \end{pmatrix}$$

- a) Find a diagonal matrix D and an orthogonal matrix P such that $A = PDP^T$
- b) Find A¹⁰⁰