DeepIntoDeep

Transformer

발표자: 김지영

Transformer

김지영

Artificial Intelligence in Korea University(AIKU)

Department of Computer Science and Engineering, Korea University

Recap: Issues with recurrent models

1. Linear interaction distance

- O(sequence length) steps for distant word pairs to interact → Gradient vanishing
- Information bottleneck

Recap: Issues with recurrent models

2. Lack of parallelizability

 Future RNN hidden states can't be computed in full before past RNN hidden states have been computed

Recap: Attention

1. Linear interaction distance

O(sequence length) steps for distant word pairs to interact → Gradient vanishing

- Information bottleneck

Use **different** context vector in **each timestep** of decoder Context vector **attends** to relevant part of input sequence

Generalized attention

Changes:

- Use dot product for similarity
- Multiple query vectors
- Separate key and value

$$e_{t,i} = f_{att}(s_{t-1}, h_i) \qquad c_t = \sum_i a_{t,i} h_i$$

Query vectors Q

Input vectors X

Attention weights: A = softmax(E, dim=1)

Attention Layer

Query vectors Q Key matrix
Input vectors X Value Matrix

Key vectors: $K = XW_K$

Value Vectors: V = XW_V

Similarities: E = QKT

Output vectors: Y = AV

Attention as a soft, averaging lookup table

Query vectors Q Key matrix
Input vectors X Value Matrix
Key vectors: K = XW_K

Value Vectors: V = XW_V

Similarities: E = QK^T

Output vectors: Y = AV

- Attention as performing fuzzy lookup in a key-value store
- Gives more flexibility in using input data

Attention layer with multiple vectors

2. Lack of parallelizability

- Future RNN hidden states can't be computed in full before past RNN

hidden states have been computed

(Generalized) Attention layer

Changes:

- Use dot product for similarity
- Multiple query vectors
- Separate key and value

 $Q_i \cdot K_j / sqrt(D_Q)$

Example

"The Sleepy Child Reads A Book"

$\vec{q} =$	[0, 2,	1]
	L / /	_

Index	Embedding	Word
0	0,0,0	The
1	2,0,1	Sleepy
2	1,-1,-2	Child
3	2,3,1	Reads
4	-2,0,0	Α
5	0,2,1	Book

$$\mathbf{K} = \begin{bmatrix} 0 & 2 & 1 & 2 & -2 & 0 \\ 0 & 0 & -1 & 3 & 0 & 2 \\ 0 & 1 & -2 & 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{V} = [0, -0.2, 0.3, 0.4, 0, 0.1]$$

$$\mathbf{V} = [0, -0.2, 0.3, 0.4, 0, 0.1]$$

Self Attention layer

Issue#1 with SA – permutation equivariance

Definition 1.1 (g-invariant). For given f and g, f is g-invariant if for all x,

$$f(g(x)) = f(x) \tag{1}$$

Definition 1.2 (g-equivariant). For given f and g, f is g-equivariant if for all x,

$$f(g(x)) = g(f(x)) \tag{2}$$

Self Attention layer – Positional encoding

Self Attention layer - Positional encoding

Absolute positional encoding

I walk my dog every day

every single day I walk my dog

Self Attention layer - Positional encoding

Frequency-based PE: Sinusoidal position representations

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$

 $M. \left[egin{aligned} \sin(\omega_k.\,t) \ \cos(\omega_k.\,t) \end{aligned}
ight] = \left[egin{aligned} \sin(\omega_k.\,(t+\phi)) \ \cos(\omega_k.\,(t+\phi)) \end{aligned}
ight]$

- Periodicity
- Constrained Values
- 3. Easy to extrapolate for longer sequences

Issue#2 with SA - Look Ahead

2. Lack of parallelizability

- Future RNN hidden states can't be computed in hidden states have been computed

Issue#2 with SA – Look Ahead

Intuition to Multi-Head Attention

Attention head 1

"The Sleepy Child Reads A Book"

Attention head 2

Intuition to Multi-Head Attention

"The Sleepy Child Reads A Book"

K @ Korea Univ

Multi-head Attention

Multi-head Attention

- 1. We compute $XQ \in \mathbb{R}^{n \times d}$, and then reshape to $\mathbb{R}^{n \times h \times \frac{d}{h}}$ (n: size of embedding vector of each input element, d:inner dimension of that's specific to each layer)
- 2. Then we transpose to $R^{h \times n \times \frac{d}{h}}$ now the head axis is like batch axis
- 3. Almost everything else is identical, and the matrices are the same sizes

Self-attention building block

- Self-attention:
 - the basis of the method.
- Position representations: \
 - Specify the sequence order, since self-attention is an unordered function of its inputs.
- Nonlinearities:
 - At the output of the self-attention block
 - Frequently implemented as a simple feed-forward network.
- Masking: __
 - In order to parallelize operations while not looking at the future.
 - Keeps information about the future from "leaking" to the past.
- That's it! But this is not the Transformer model we've been hearing about.

Input embedding

Transformer Decoder

No elementwise nonlinearities in self attention

 $m_i = MLP(\text{output}_i)$

 $= W_2 * ReLU(W_1 \times output_i + b_1) + b_2$

Residual connection

We let X(i) = X(i-1) + Layer(Xi-1) (so we only have to learn "the residual" from the previous layer)

Layer normalization

Layer normalization

- Trick to help models train faster
- Batch normalization is usually less effective than layer normalization in NLP tasks
- Any batch number works
- Can parallelize

Transformer Decoder

No elementwise nonlinearities in self attention

 $m_i = MLP(\text{output}_i)$

 $= W_2 * ReLU(W_1 \times output_i + b_1) + b_2$

Transformer Encoder

No Masking for bidirectional context

Transformer Encoder-Decoder

- Let $h_1, ..., h_T$ be **output** vectors **from** the Transformer **encoder**; $x_i \in \mathbb{R}^d$
- Let $z_1, ..., z_T$ be input vectors from the Transformer **decoder**, $z_i \in \mathbb{R}^d$
- Then keys and values are drawn from the **encoder** (like a memory):
 - $k_i = Kh_i$, $v_i = Vh_i$.
- And the queries are drawn from the **decoder**, $q_i = Qz_i$.

Benefits of transformers

- Much easier to parallelize (especially encoder)
- Useful for transfer learning
- Much deeper than RNN (by incrementing blocks)

Downsides of transformers

Attention computations are quadratic : O(n^2)

- How to better represent position?
 - Does the set of positions need to be decided ahead of time?
 - Does the scheme hinder generalization to new positions?

디스커션 과제

- 개인 질문
 - Transformer의 input sequence가 너무 길면 어떠한 문제점이 발생할 수 있을까요? 또한 이 문제점을 하고 하는 방법으로는 어떤 것들이 있을까요?
- 팀질문
 - Sinusoidal Positional Encoding과 같이 상당수의 PE는 fixed 함수에 의해 계산된 값을 사용합니다.
 - 이 때 발생할 수 있는 문제점이 무엇일까요?
 - 학습 가능한 Positional encoding을 만드는 방법은 없을까요? 또한 학습 가능한 PE가 가지는 장 단점에는 어떤 것이 있을까요?

감사합니다.