

Estatística Descritiva Análise Bidimensional

Análise Bidimensional

Já sabemos como resumir e analisar cada variável de um conjunto de dados, mas:

"E se tivermos que analisar o comportamento de **2 variáveis** simultaneamente?

Por exemplo:

- Qual a taxa de turnover por nível de formação?
- Qual o percentual de compra do novo livro do Flávio Augusto por região do Brasil?

Análise Bidimensional

A Análise Bidimensional é o nome dado a um conjunto de técnicas utilizadas para:

Analisar o comportamento conjunto de duas variáveis

Considerando os diferentes tipos de variáveis, podemos ter 3 situações:

- 1. Duas variáveis quantitativas
- 2. Uma variável qualitativa e outra variável quantitativa
- 3. Duas variáveis qualitativas

Análise Bidimensional

2 Variáveis Quantitativas

Análise Bidimensional: 2 variáveis quantitativas

A análise de 2 variáveis quantitativas inicia-se com o **Gráfico de Dispersão**. Nele uma das variáveis fica no eixo X e a outra no eixo Y.

Exemplo: Em uma pesquisa com os suecos, foram obtidos os dados de peso e altura de cada habitante. O gráfico de dispersão com essas variáveis é apresentado abaixo.

Podemos perceber que existe uma relação entre altura e peso, ou seja, quanto maior a altura, maior o peso.

A essa relação damos o nome de correlação, logo Altura e Peso estão correlacionados.

Análise Bidimensional: 2 variáveis quantitativas

O **Gráfico de Dispersão** fornece a **distribuição conjunta** da Altura e Peso, e junto com ela a visualização de uma possível **correlação entre essas duas variáveis**.

Nesse caso, a correlação entre Altura e Peso aparenta ser linear, ou seja, é possível definir uma equação linear em que dada a Altura encontramos o Peso, e vice-versa.

Entender a **correlação entre variáveis** é algo bastante **poderoso**! Mas é preciso ter cautela. Veremos a seguir...

Análise Bidimensional: 2 variáveis quantitativas

A existência de **correlação entre duas variáveis** indica que elas estão de alguma forma **associadas**, mas nem sempre isso quer dizer que **uma variável "causa" a outra**.

Em nosso exemplo:

- As pessoas são mais pesadas porque são mais altas?
- As pessoas são mais altas porque são mais pesadas?
- As pessoas são mais **altas** e mais **pesadas** devido a outro fator não observado? Genético, por exemplo.

Essa é a grande diferença entre correlação e causalidade!

Ou seja, nem toda correlação é causalidade mas toda causalidade gera uma correlação.

Vamos ver esse assunto com mais detalhes adiante.

Análise Bidimensional: 2 variáveis quantitativas

Uma forma de **medirmos a força da correlação** entre duas variáveis quantitativas, como Altura e Peso, é calculando o **Coeficiente de Correlação de Pearson**:

$$corr(X,Y) = \frac{1}{n} \cdot \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{dp(X)} \right) \cdot \left(\frac{y_i - \bar{y}}{dp(Y)} \right)$$

O Coeficiente de Correlação de Pearson varia entre -1 e +1 e indica:

- Correlação positiva forte: coeficiente próximo a 1
- Correlação inexistente: coeficiente próximo a zero
- Correlação negativa forte: coeficiente próximo a -1

Análise Bidimensional: 2 variáveis quantitativas

O Coeficiente de Correlação de Pearson varia entre -1 e +1 e indica:

- Correlação positiva: quando a variável X aumenta, a variável Y também aumenta
- Correlação inexistente: quando a variável X aumenta, a variável Y não se altera
- Correlação negativa: quando a variável X aumenta, a variável Y diminui

Análise Bidimensional: 2 variáveis quantitativas

No Excel: CORREL(X;Y)

X: observações da variável 1

Y: observações da variável 2

Intervalo	Força
- 1,0 < r < - 0,7	Fortemente Negativa
- 0,6 < r < 0,6	Fraca
0,7 < r < 1,0	Fortemente Positiva

Neste exemplo, vamos considerar **X** = **Altura e Y** = **Peso**.

Utilizando CORREL(Altura; Peso) = 0,85

Logo, existe uma forte correlação positiva entre Altura e Peso.

Análise Bidimensional

- 2 Variáveis Qualitativas,
- 1 Binária

Análise Bidimensional: 2 Variáveis Qualitativas, 1 Binária

Outro tipo de medida de associação muito útil é o Information Value (IV). Essa medida é responsável por fornecer o "poder de separação" que uma variável qualitativa de duas ou mais categorias possui sobre outra variável de duas categorias (variável binária).

Exemplos de variáveis binárias:

- 1. Bons clientes x Maus clientes
- 2. Comprou x Não comprou
- 3. Doente x Não doente
- 4. Verdadeiro x Falso
- 5. Entre outros...

Em vários problemas de Analytics, estamos interessados em descobrir quais fatores, isto é, quais variáveis são responsáveis por separar as categorias das variáveis binárias.

Ex: Qual variável separa um Bom cliente de um Mau cliente para um empréstimo? Renda? Profissão? Escolaridade?

Análise Bidimensional: 2 Variáveis Qualitativas, 1 Binária

Vamos calcular o Information Value (IV) para um exemplo no qual queremos avaliar se a variável

Escolaridade é útil para separar os clientes que **Pagaram e Atrasaram** em um financiamento:

Escolaridade		Classific	Frequência	% Freq			
Escolativave	Qte Pagou	Qte Atrasou	% Pagou	% Atrasou	rrequencia	/011Eq	
Fundamental	4	127	0,8%	6,2%	131	5%	
Médio	92	710	17,4%	34,4%	802	31%	
Graduação	102	432	19,2%	20,9%	534	21%	
Pós Graduação	332	795	62,6%	38,5%	1127	43%	
Total Geral	530	2064	100%	100%	2594	100%	

Frequência: Quantidade de clientes em cada um dos níveis de escolaridade. Por exemplo, na categoria Ensino Fundamental temos **131** clientes.

Qte Pagou: Quantidade de clientes que fizeram o pagamento em cada um dos níveis de escolaridade. Por exemplo, na categoria Ensino Fundamental, dos **131** clientes, temos **4** que pagaram.

Análise Bidimensional: 2 Variáveis Qualitativas, 1 Binária

Vamos calcular o Information Value (IV) para um exemplo no qual queremos avaliar se a variável

Escolaridade é útil para separar os clientes que **Pagaram e Atrasaram** em um financiamento:

Escolaridade		Classifica	Frequência	% Freq		
LSCOIALIUAUE	Qte Pagou	Qte Atrasou	% Pagou	% Atrasou	rrequencia	70 11EQ
Fundamental	4	127	0,8%	6,2%	131	5%
Médio	92	710	17,4%	34,4%	802	31%
Graduação	102	432	19,2%	20,9%	534	21%
Pós Graduação	332	795	62,6%	38,5%	1127	43%
Total Geral	530	2064	100%	100%	2594	100%

% Pagou: Percentual de clientes pagantes em cada nível de escolaridade em relação ao total de clientes pagantes. Por exemplo, na categoria Ensino Fundamental temos 4 clientes pagantes de um total de **530** clientes pagantes, logo **0,8%** (4/530) dos clientes pagantes estão na categoria Ensino Fundamental.

% Atrasou: Mesmo conceito do % Pagou, mas aplicado aos clientes que atrasaram o pagamento.

Análise Bidimensional: 2 Variáveis Qualitativas, 1 Binária

Vamos calcular o Information Value (IV) para um exemplo no qual queremos avaliar se a variável

Escolaridade é útil para separar os clientes que Pagaram e Atrasaram em um financiamento:

Escolaridade		Classific	ação	Frequência	% Freq	Taxa Pagou	
Escolativave	Qte Pagou	Qte Atrasou	% Pagou	% Atrasou	rrequencia	70 TTEQ	Taxa Fagou
Fundamental	4	127	0,8%	6,2%	131	5%	3,1%
Médio	92	710	17,4%	34,4%	802	31%	11,5%
Graduação	102	432	19,2%	20,9%	534	21%	19,1%
Pós Graduação	332	795	62,6%	38,5%	1127	43%	29,5%
Total Geral	530	2064	100%	100%	2594	100%	20,4%

Taxa Pagou: Percentual de clientes pagantes em relação ao total de clientes em cada nível de escolaridade. Por exemplo, no Ensino Fundamental temos 4 clientes pagantes de um total de 131 clientes neste nível de Escolaridade, logo 3,1% (4/131) dos clientes dessa categoria realizaram o pagamento.

Análise Bidimensional: 2 Variáveis Qualitativas, 1 Binária

Vamos calcular o Information Value (IV) para um exemplo no qual queremos avaliar se a variável

Escolaridade é útil para separar os clientes que Pagaram e Atrasaram em um financiamento:

Escolaridade		Classific	ação		Frequência	% Freq	Taxa Pagou	Odds	LN(Odds)
	Qte Pagou	Qte Atrasou	% Pagou	% Atrasou	rrequencia	70 1 1 Cq	iaxa i agou	Ouus	LiviOuus
Fundamental	4	127	0,8%	6,2%	131	5%	3,1%	0,12	-2,10
Médio	92	710	17,4%	34,4%	802	31%	11,5%	0,50	-0,68
Graduação	102	432	19,2%	20,9%	534	21%	19,1%	0,92	-0,08
Pós Graduação	332	795	62,6%	38,5%	1127	43%	29,5%	1,63	0,49
Total Geral	530	2064	100%	100%	2594	100%	20,4%		

Odds: Razão entre %Pagou e %Atrasou. Por exemplo, na categoria Ensino Fundamental temos **0,8%** no %Pagou e **6,2%** no %Atrasou, logo a Odds de **0,12** (0,8%/6,2%) é a chance de encontrarmos um cliente que pagou nessa categoria. Ou seja, a proporção na categoria Ensino Fundamental é de aproximadamente 1 cliente que pagou para 6 clientes que atrasaram.

LN(Odds): Logarítimo Natural da Odds. Por exemplo, na categoria Ensino Fundamental temos LN(0,12) = -2,10.

Análise Bidimensional: 2 Variáveis Qualitativas, 1 Binária

Vamos calcular o Information Value (IV) para um exemplo no qual queremos avaliar se a variável

Escolaridade é útil para separar os clientes que Pagaram e Atrasaram em um financiamento:

Escolaridade		Classifica	ação		Frequência	% Freq	Taxa Pagou	Odds	LN(Odds)	IV
	Qte Pagou	Qte Atrasou	% Pagou	% Atrasou	riequeillia	∕₀ rieq	iaxa Pagou	Odds	LIN(Odds)	IV
Fundamental	4	127	0,8%	6,2%	131	5%	3,1%	0,12	-2,10	0,11
Médio	92	710	17,4%	34,4%	802	31%	11,5%	0,50	-0,68	0,12
Graduação	102	432	19,2%	20,9%	534	21%	19,1%	0,92	-0,08	0,00
Pós Graduação	332	795	62,6%	38,5%	1127	43%	29,5%	1,63	0,49	0,12
Total Geral	530	2064	100%	100%	2594	100%	20,4%			0,35

IV: Produto da diferença entre %Pagou e %Atrasou pelo LN(Odds). Por exemplo, na categoria Ensino Fundamental temos (0.8% - 6.2%) * -2.10 = 0.11.

Para fins de medida de associação, estamos interessados na soma dos IV's de cada categoria da variável.

Neste exemplo, o **IV Total** = 0.11 + 0.12 + 0.00 + 0.12 = 0.35

Análise Bidimensional: 2 Variáveis Qualitativas, 1 Binária

Após calcularmos o IV, como avaliamos se a variável possui um alto poder de separação?

Abaixo apresentamos uma referência bastante utilizada na prática:

IV Total	Poder de separação
< 0,02	Muito fraco
0,02 a 0,1	Fraco
0,1 a 0,3	Médio
0,3 a 0,5	Forte
> 0,5	Muito bom pra ser verdadeVerifique!

Em nosso exemplo, a variável **Escolaridade** obteve um IV = 0,35, ou seja, ela possui um **forte** poder de separação entre os bons e maus clientes.

Logo, ao perguntar a escolaridade de um cliente, você já pode ter uma boa estimativa se ele pagará em dia ou atrasará.

Análise Bidimensional

- 1 Variável Qualitativa e
- 1 Variável Quantitativa

Análise Bidimensional: 1 Qualitativa e 1 Quantitativa

Quando temos 1 variável qualitativa e 1 variável quantitativa queremos analisar a distribuição da variável quantitativa para cada categoria, ou nível, da variável qualitativa.

Uma técnica bastante utilizada e prática é a construção de *boxplots* para a variável quantitativa, separando as distribuições em cada nível da variável qualitativa.

Análise Bidimensional: 1 Qualitativa e 1 Quantitativa

Voltemos a nossa pesquisa com os suecos, mas agora vamos analisar a variável Altura por gênero. No gráfico, o *boxplot* vermelho corresponde a distribuição da altura das mulheres e o *boxplot* azul corresponde a distribuição da altura dos homens.

Insights

- As medidas de posição da altura dos homens são ligeiramente superiores as das mulheres.
- 2. As duas distribuições de altura possuem **dispersão** semelhante.
- 3. Poucas observações discrepantes (outliers).

Análise Bidimensional: 1 Qualitativa e 1 Quantitativa

Uma outra forma de analisarmos os dados é criar uma tabela com as **medidas resumo** separadas por gênero.

Gênero	N	Média de altura	Variância de altura	Desvio Padrão de altura	Mínimo de altura	Máximo de altura	1º Quartil de altura	Mediana de altura	3º Quartil de altura
Feminino	600	1,60	0,010	0,10	1,33	1,91	1,53	1,59	1,67
Masculino	400	1,85	0,010	0,10	1,45	2,14	1,78	1,85	1,92
Total	1.000	1,70	0,025	0,16	1,33	2,14	1,57	1,68	1,82

Utilizando essa tabela podemos:

- 1. Identificar que a quantidade de mulheres é maior do que a quantidade de homens.
- 2. Confirmamos as informações extraídas anteriormente utilizando os boxplots.

Análise Bidimensional: 1 Qualitativa e 1 Quantitativa

Para medir a associação entre variáveis qualitativas e quantitativas utilizamos o Coeficiente de

Determinação, também conhecido como R². Neste exemplo, calcularíamos:

$$R^2 = 1 - \frac{\overline{var(Altura)}}{var(Altura)}$$
 Sendo, $\overline{var(Altura)} = \frac{\sum_{i=1}^{k} n_i \cdot var_i(Altura)}{\sum_{i=1}^{k} n_i}$

(Média das variâncias para cada gênero)

Intuitivamente, o R² mede quanto da **variância total** é explicada pela **introdução da variável qualitativa** e é uma medida que **varia entre 0 e 1**.

Dessa forma:

- R² igual a zero: indica a **inexistência** de associação entre as variáveis
- R² igual a 1: indica **forte associação** entre as variáveis

Análise Bidimensional: 1 Qualitativa e 1 Quantitativa

Calculando o R² para este exemplo:

$$\overline{var(Altura)} = \underbrace{\frac{600}{0,010} + 400}_{600 + 400} \underbrace{0,010}_{0,010} = 0,010 \qquad R^2 = 1 - \underbrace{\frac{0,010}{0,025}}_{0,025} = 0,6 = 60\%$$

Gênero	N	Média de altura	Variância de altura	Desvio Padrão de altura	Mínimo de altura	Máximo de altura	1º Quartil de altura	Mediana de altura	3º Quartil de altura
Feminino	600	1,60	0,010	0,10	1,33	1,91	1,53	1,59	1,67
Masculino	400	1,85	0,010	0,10	1,45	2,14	1,78	1,85	1,92
Total	1.000	1,70	0,025	0,16	1,33	2,14	1,57	1,68	1,82

Análise Bidimensional: 1 Qualitativa e 1 Quantitativa

Calculando o R² para este exemplo:

$$\overline{var(Altura)} = \frac{600 \cdot 0,010 + 400 \cdot 0,010}{600 + 400} = 0,010 \qquad R^2 = 1 - \frac{0,010}{0,025} = 0,6 = 60\%$$

Nesse exemplo, vemos que a associação entre Altura e Gênero existe, e o R² igual a 60% indica que essa associação **é forte**.

Ou seja, o gênero explica 60% da diferença de altura entre homens e mulheres.

Análise Bidimensional Correlação vs. Causalidade

Análise Bidimensional: Correlação vs. Causalidade

É fundamental dominarmos a **diferença entre esses 2 conceitos** para não cairmos em algumas **armadilhas** de Analytics.

Vejamos a definição destes 2 termos:

- Correlação: relação de dependência ou associação entre duas variáveis.
- Causalidade: relação entre um evento A e um evento B, sendo que o evento B é consequência do evento A.

Ou seja, Correlação está relacionada com a dependência ou associação e a Causalidade relacionada a consequência.

Análise Bidimensional: Correlação vs. Causalidade

Vamos avaliar a Correlação entre Venda de Sorvetes e Incêndio nas Florestas:

Fonte: https://www.decisionskills.com/blog/how-ice-cream-kills-understanding-cause-and-effect

Você acha que a venda de sorvetes pode causar incêndios nas florestas?

Neste caso há uma 3ª variável não avaliada e que faz mais sentido ser a causadora do aumento no consumo de sorvete e dos incêndios nas florestas: o clima quente!

Análise Bidimensional: Correlação vs. Causalidade

Vamos avaliar a Correlação entre Venda de Sorvetes e Incêndio nas Florestas:

Fonte: https://www.decisionskills.com/blog/how-ice-cream-kills-understanding-cause-and-effect

A Correlação entre Venda de Sorvetes e Incêndio nas Florestas é conhecida como Correlação Espúria.

As **Correlações Espúrias** podem ser uma armadilha para **falsas conclusões**.

Vejamos alguns outros exemplos.

Análise Bidimensional: Correlação vs. Causalidade

Exemplo 1: Gasto em Pesquisa no EUA vs. Suicídios

US spending on science, space, and technology

correlates with

Suicides by hanging, strangulation and suffocation

Fonte: https://www.tylervigen.com/spurious-correlations

Análise Bidimensional: Correlação vs. Causalidade

Exemplo 2: Divórcios em Maine vs. Consumo de margarina

Divorce rate in Maine

correlates with

Per capita consumption of margarine

Fonte: https://www.tylervigen.com/spurious-correlations

Análise Bidimensional: Correlação vs. Causalidade

Exemplo 3: Consumo de frango vs. Importação de petróleo

Per capita consumption of chicken

correlates with

Total US crude oil imports

Fonte: https://www.tylervigen.com/spurious-correlations

Análise Bidimensional: Correlação vs. Causalidade

Conclusões:

- Se 2 variáveis estão correlacionadas, pode ou não haver causalidade
- Se houver correlação e não houver causalidade entre essas 2 variáveis, possivelmente há uma 3º
 variável que não foi observada
- Mantenha-se cético: busque fortes evidências para assumir a causalidade
- Antes de assumir a causalidade responda as seguintes perguntas:
 - Por que a variável A causa a variável B?
 - Como a variável A causa a variável B?

