

School

Accidents' point of incidence in Lisbon

Beatriz Macedo m20201719@novaims.unl.pt

Frederico Ferreira m20201723@novaims.unl.pt

Ricardo Martins m20201443@novaims.unl.pt

Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa

Context

Objectives

Urban mobility plays an important role in addressing urban livability

Traffic accidents have an important impact in urban mobility, affecting the livability of the cities

External factors such as the condition of the roads or the meteorological conditions, for example, can affect or increase accidents

Identify the points with the highest incidence of road accidents and their correlation with exogenous factors

Information Management School

Workflow

Received data from LxDataLab

Crossroads

position

- Road Accident Occurrences*
- Signage · Traffic lights Accident data
- from the **National Road** Safety Agency
- - Altimetry Traffic data*
- Slopes

Obtain geo data from ArcGIS Lisboa

- Lisbon Parish polygon
- **Metro Stations**

Get Lisbon parish data from INE

- Parish demographic data
- Parish mean house pricing

Trim weekdays

Time of accident binned into "morning", "afternoon" "evening" and "night"

Parish organization from 2011 converted to organization since 2013

Accidents with missing GPS coordinates were dropped (for visual representations)

Accidents intersected with Lisbon parish polygons for accurate

representation

Number of passengers, vehicles and pawns merged with accidents

Slope, Altimetry, crossroads and traffic lights were merged with the accidents data

Graphical representation of accidents

Exploratory analysis

Correlation analysis

Linear regression

^{*} Although available this data was not considered for analysis

The big picture...

Strategy

Strategy

- Distribution of the accidents during 2019
- Distribution of the accidents per weekday
- Distribution of the accidents per hour of the day

do accidents happen?

- Road conditions and types of road
- Road signaling
- Meteorological and lighting conditions

No conclusions reached

do accidents happen?

Project Focus

• Evaluate the impact of the parish's endogenous characteristics in the number of accidents

Where...

Why...

Results

Information Management School

Temporal analysis of accidents

Number of traffic accidents registered per weekday

Number of traffic accidents registered per hour

The typical accident in Lisbon

Straight

flat

Most accidents occurred in the presence of favorable external factors

- Exogenous characteristics as the road condition or weather do not seem to influence the outcome
- Human error may have a greater impact on the occurrence of accidents than external factors

Focus on the parish characteristics

Frequency of accidents in Lisbon

- The parishes with higher incidence of accidents are Avenidas Novas and Alvalade
- However, this may be related with endogenous characteristics of these parishes (e.g. resident population, number of people commuting, complexity of the roads, area, etc.)
- In order to corroborate this analysis, the number of accidents per parish were compared taking into consideration the endogenous characteristics of the parishes

Frequency of each type of accident in Lisbon

- When considering only collisions, Avenidas Novas, Lumiar and Benfica are the top 3 parishes, followed by Alvalade and Arroios
- Considering runover accidents by parish, besides Avenidas Novas and Alvalade, Santa Maria Maior also stands out
- Plotting the overturn accidents, it is possible to observe that Alvalade and Estrela are the parishes with higher number of accidents
- **Conclusion:** Parishes that have a higher number of accidents, generally, also register a higher number of accidents of each type (Alvalade and Avenidas Novas stand out in all the categories)

OLS Regression Results

Dep. Variable:	N_Accidents	R-squared:	0.870
Model:	0LS	Adj. R-squared:	0.834
Method:	Least Squares	F-statistic:	24.17
Date:	Sat, 08 May 2021	Prob (F-statistic):	2.12e-07
Time:	16:13:39	Log-Likelihood:	-9.5387
No. Observations:	24	AIC:	31.08
Df Residuals:	18	BIC:	38.15
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	1.527e-16	0.085	1.8e-15	1.000	-0.178	0.178
Commute_Automovel_Pass	-0.6934	0.215	-3.222	0.005	-1.146	-0.241
Commute_Moto	0.6585	0.178	3.706	0.002	0.285	1.032
AREA_M2	0.4683	0.115	4.070	0.001	0.227	0.710
N_Metro_Stations	0.3292	0.185	1.782	0.092	-0.059	0.717
N_Crossroads	0.4726	0.179	2.645	0.016	0.097	0.848
Omnibus:	0.170	Durbir	n-Watson:		1.742	
Prob(Omnibus):	0.919	Jarque	e-Bera (JB):		0.119	
Skew:	0.132	Prob(J	IB):		0.942	
Kurtosis:	2.779	Cond.	No.		6.30	

Commute_Automovel _Pass	Number of passenger commutes in cars			
Commute_Moto	Number of commutes in motorcycles			
Area_M2	Parish area			
N_Metro_Stations	Number of metro stations			
N_Crossroads	Number of crossroads			

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

 $N_Accidents_i = 1.527.10^{-16} - 0.69 \text{ Commute_Automovel_Pass}_i + 0.66 \text{ Commute_Moto}_i + 0.47 \text{ AREA_M2}_i + 0.33 \text{ N_Metro_Stations}_i + 0.47 \text{ N_Crossroads}_i$

- All the regression coefficients are significant at least at the 10% level
- 87% of the dependent variable variability is explained by the regressors
- Most features have a positive marginal impact on the target, except for Commute_Automovel_Pass

Predicted accidents VS Registered accidents

- The model was used to predict the of number of accidents for each parish
- The predicted values were compared with the observed values in order to determine if the endogenous characteristics influence the number of accidents observed
- For most parishes, the deviations between the predicted and the observed value is small
- For Belém the model is overestimating the number of accidents and for Alcântara is underestimating the number of accidents

Final Thoughts

Conclusions + Critiques + Challenges

Challenges

- The dataset did not comprise all the accidents registered during the year (is the sample representative?)
- Waze data did not have timestamps did not allow to match traffic data with accidents
- INE data was not from the same period as the accidents

Unable to identify the external factors that contribute to the occurrence of accidents –
No way of comparing the characteristics of the accidents with the characteristics of "non-accidents"

Critiques

Conclusions

- Endogenous factors of the parishes influence the occurrence of accidents
- The model was not accurate at predicting the number of accidents for Belém and Alcântara, indicating there may be some characteristics explaining the occurrence of accidents other than the ones contemplated in the model
- Avenidas Novas and Alvalade registered the highest number of accidents, however it cannot be implied that these parishes are more dangerous than others

NOVA IMS

Information Management School

Thank you