7. Introduction to Homotopy Theory

Math 4341 (Topology)

► In this chapter we will introduce a powerful topological invariant called the fundamental group.

- In this chapter we will introduce a powerful topological invariant called the fundamental group.
- Definition. Let X and Y be topological spaces, and let f, g : X → Y be continuous maps. We say that f is homotopic to g if there exists a continuous map F : X × [0,1] → Y such that

$$F(x,0) = f(x)$$
 and $F(x,1) = g(x)$

for all $x \in X$.

- In this chapter we will introduce a powerful topological invariant called the fundamental group.
- Definition. Let X and Y be topological spaces, and let f, g: X → Y be continuous maps. We say that f is homotopic to g if there exists a continuous map F: X × [0,1] → Y such that

$$F(x,0) = f(x)$$
 and $F(x,1) = g(x)$

for all $x \in X$.

▶ The map F is called a *homotopy* from f to g, and we write $f \sim g$.

- In this chapter we will introduce a powerful topological invariant called the fundamental group.
- Definition. Let X and Y be topological spaces, and let f, g: X → Y be continuous maps. We say that f is homotopic to g if there exists a continuous map F: X × [0,1] → Y such that

$$F(x,0) = f(x)$$
 and $F(x,1) = g(x)$

for all $x \in X$.

- ▶ The map F is called a *homotopy* from f to g, and we write $f \sim g$.
- If $f \sim g$ where g is a constant map, we say that f is *null-homotopic*.

Path homotopy

▶ We will be interested in the special case where the maps *f* and *g* are paths that start and end at the same point. In this case, we will furthermore require that the homotopy fixes the two end-points of the paths.

Path homotopy

- ▶ We will be interested in the special case where the maps *f* and *g* are paths that start and end at the same point. In this case, we will furthermore require that the homotopy fixes the two end-points of the paths.
- ▶ **Definition.** Two $\gamma, \gamma': [0,1] \to X$ be two paths from p to q in a topological space X. We say that γ is path homotopic to γ' if there is a homotopy $F: [0,1] \times [0,1] \to X$ from γ to γ' so that

$$F(0,t)=p, \quad F(1,t)=q$$

for all $t \in [0, 1]$.

Path homotopy

- ▶ We will be interested in the special case where the maps *f* and *g* are paths that start and end at the same point. In this case, we will furthermore require that the homotopy fixes the two end-points of the paths.
- ▶ **Definition.** Two $\gamma, \gamma': [0,1] \to X$ be two paths from p to q in a topological space X. We say that γ is path homotopic to γ' if there is a homotopy $F: [0,1] \times [0,1] \to X$ from γ to γ' so that

$$F(0,t)=p, \quad F(1,t)=q$$

for all $t \in [0, 1]$.

▶ The map F is called a *path homotopy*, and we write $\gamma \sim_p \gamma'$.

▶ **Lemma 7.1.** \sim and \sim_p are equivalence relations.

- ▶ **Lemma 7.1.** \sim and \sim_p are equivalence relations.
- ▶ *Proof.* Let $f, g, h : X \rightarrow Y$ be continuous maps.

- **Lemma 7.1.** \sim and \sim_p are equivalence relations.
- ▶ *Proof.* Let $f, g, h : X \rightarrow Y$ be continuous maps.
 - To see reflexivity, define $F: X \times [0,1] \to Y$ by F(x,t) = f(x). Then F is a homotopy from f to f, and hence $f \sim f$. If f is a path, then F is a path homotopy, so $f \sim_p f$.

- **Lemma 7.1.** \sim and \sim_p are equivalence relations.
- ▶ *Proof.* Let $f, g, h : X \rightarrow Y$ be continuous maps.
 - To see reflexivity, define $F: X \times [0,1] \to Y$ by F(x,t) = f(x). Then F is a homotopy from f to f, and hence $f \sim f$. If f is a path, then F is a path homotopy, so $f \sim_p f$.
 - For symmetry, suppose $f \sim g$. Then there is a homotopy $F: X \times [0,1] \to Y$ from f to g. Define G(x,t) = F(x,1-t). Then G is a homotopy from g to f, so $g \sim f$. If f and g are paths, then G is a path homotopy, so $f \sim_p g$ implies $g \sim_p f$.

- **Lemma 7.1.** \sim and \sim_p are equivalence relations.
- ▶ *Proof.* Let $f, g, h : X \rightarrow Y$ be continuous maps.
 - To see reflexivity, define $F: X \times [0,1] \to Y$ by F(x,t) = f(x). Then F is a homotopy from f to f, and hence $f \sim f$. If f is a path, then F is a path homotopy, so $f \sim_p f$.
 - For symmetry, suppose $f \sim g$. Then there is a homotopy $F: X \times [0,1] \to Y$ from f to g. Define G(x,t) = F(x,1-t). Then G is a homotopy from g to f, so $g \sim f$. If f and g are paths, then G is a path homotopy, so $f \sim_p g$ implies $g \sim_p f$.
 - Finally, for transitivity, if $f \sim g$ and $g \sim h$, let F be a homotopy from f to g, and let G be a homotopy from g to h. Define a function $H: X \times [0,1] \to Y$ by

$$H(x,t) = \begin{cases} F(x,2t), & \text{if } t \in [0,1/2], \\ G(x,2t-1), & \text{if } t \in [1/2,1]. \end{cases}$$

Then H is a homotopy from f to h, so $f \sim h$. If F and G are path homotopies, then so is H.

Example. Let $f, g: X \to \mathbb{R}^n$ be two continuous functions. Then the map $F: X \times [0,1] \to \mathbb{R}^n$ given by

$$F(x,t) = (1-t)f(x) + tg(x)$$

is a homotopy from f to g.

Example. Let $f,g:X\to\mathbb{R}^n$ be two continuous functions. Then the map $F:X\times[0,1]\to\mathbb{R}^n$ given by

$$F(x,t) = (1-t)f(x) + tg(x)$$

is a homotopy from f to g.

▶ That is, all functions into \mathbb{R}^n are homotopic. In other words, there is only one homotopy equivalence class.

Example. Let $f, g: X \to \mathbb{R}^n$ be two continuous functions. Then the map $F: X \times [0,1] \to \mathbb{R}^n$ given by

$$F(x,t) = (1-t)f(x) + tg(x)$$

is a homotopy from f to g.

- That is, all functions into \mathbb{R}^n are homotopic. In other words, there is only one homotopy equivalence class.
- Likewise, if γ and γ' are paths from p to q in \mathbb{R}^n , then γ and γ' are homotopic: there is only a single equivalence class of path homotopy. Indeed, the path homotopy is obtained in exactly this way. In the special case where p=q, this means that all paths are null-homotopic.

Example. Let γ and γ' be the paths from (1,0) to (-1,0) given by

$$\gamma(x) = (\cos(\pi x), \sin(\pi x)), \quad \gamma'(x) = (\cos(\pi x), -\sin(\pi x)).$$

Then γ and γ' are path homotopic as paths in \mathbb{R}^2 by the previous example, but they are *not* path homotopic as paths in $\mathbb{R}^2 \setminus \{(0,0)\}$.

Example. Let γ and γ' be the paths from (1,0) to (-1,0) given by

$$\gamma(x) = (\cos(\pi x), \sin(\pi x)), \quad \gamma'(x) = (\cos(\pi x), -\sin(\pi x)).$$

Then γ and γ' are path homotopic as paths in \mathbb{R}^2 by the previous example, but they are *not* path homotopic as paths in $\mathbb{R}^2 \setminus \{(0,0)\}$.

► This is a non-trivial fact though, but for instance, the homotopy from the previous example does not work since

$$F(\frac{1}{2},\frac{1}{2}) = \frac{1}{2}(\gamma(\frac{1}{2}) + \gamma'(\frac{1}{2})) = (0,0).$$

Concatenation and reverse

▶ **Definition.** For any path $\gamma:[0,1]\to X$, define the *reverse* of γ , denoted $\overline{\gamma}$, by $\overline{\gamma}(x)=\gamma(1-x)$. Then $\overline{\gamma}$ is continuous, and if γ is a path from p to q, then $\overline{\gamma}$ is a path from q to p.

Concatenation and reverse

- ▶ **Definition.** For any path $\gamma:[0,1]\to X$, define the *reverse* of γ , denoted $\overline{\gamma}$, by $\overline{\gamma}(x)=\gamma(1-x)$. Then $\overline{\gamma}$ is continuous, and if γ is a path from p to q, then $\overline{\gamma}$ is a path from q to p.
- ▶ **Definition.** Let $\gamma, \gamma' : [0,1] \to X$ be two paths so that $\gamma(1) = \gamma'(0)$, so that γ is a path from p to q, and γ' is a path from q to r. We then form a path from p to r as follows: define the *concatenation* $\gamma \star \gamma' : [0,1] \to X$ by

$$\gamma \star \gamma'(x) = \begin{cases} \gamma(2x), & x \in [0, 1/2], \\ \gamma'(2x - 1), & x \in [1/2, 1]. \end{cases}$$

▶ If γ is a path, denote by $[\gamma]$ its path homotopy equivalence class or in short, its *homotopy class*.

- ▶ If γ is a path, denote by $[\gamma]$ its path homotopy equivalence class or in short, its *homotopy class*.
- **Proposition 7.2.** Let γ be a path from p to q in some space X, and let γ' be a path from q to r. Then the operation

$$[\gamma] \star [\gamma'] = [\gamma \star \gamma']$$

is well-defined.

- If γ is a path, denote by $[\gamma]$ its path homotopy equivalence class or in short, its *homotopy class*.
- **Proposition 7.2.** Let γ be a path from p to q in some space X, and let γ' be a path from q to r. Then the operation

$$[\gamma] \star [\gamma'] = [\gamma \star \gamma']$$

is well-defined.

▶ Proof. Suppose that F is a path homotopy from γ to some other curve $\widetilde{\gamma}$ and that G is a path homotopy from γ' to $\widetilde{\gamma'}$. The claim that the operation is well-defined is then the claim that $\gamma \star \gamma' \sim_p \widetilde{\gamma} \star \widetilde{\gamma'}$.

- ▶ If γ is a path, denote by $[\gamma]$ its path homotopy equivalence class or in short, its homotopy class.
- **Proposition 7.2.** Let γ be a path from p to q in some space X, and let γ' be a path from q to r. Then the operation

$$[\gamma] \star [\gamma'] = [\gamma \star \gamma']$$

is well-defined.

- **Proof.** Suppose that F is a path homotopy from γ to some other curve $\tilde{\gamma}$ and that G is a path homotopy from γ' to γ' . The claim that the operation is well-defined is then the claim that $\gamma \star \gamma' \sim_n \tilde{\gamma} \star \gamma'$.
 - ▶ Define $H: [0,1] \times [0,1] \rightarrow X$ by

$$H(x,t) = \begin{cases} F(2x,t), & \text{if } x \in [0,1/2], \\ G(2x-1,t), & \text{if } x \in [1/2,1]. \end{cases}$$

Then H is a path homotopy from $\gamma \star \gamma'$ to $\tilde{\gamma} \star \tilde{\gamma'}$.

▶ For a point $p \in X$ in a topological space, let $e_p : [0,1] \to X$ denote the constant path $e_p(x) = p$, for $x \in [0,1]$.

- For a point $p \in X$ in a topological space, let $e_p : [0,1] \to X$ denote the constant path $e_p(x) = p$, for $x \in [0,1]$.
- ▶ **Theorem 7.3.** The operation \star has the following properties for all paths γ , γ' , and γ'' in a topological space X:

- For a point $p \in X$ in a topological space, let $e_p : [0,1] \to X$ denote the constant path $e_p(x) = p$, for $x \in [0,1]$.
- ▶ **Theorem 7.3.** The operation \star has the following properties for all paths γ , γ' , and γ'' in a topological space X:
 - $\blacktriangleright \ [\gamma] \star ([\gamma'] \star [\gamma'']) = ([\gamma] \star [\gamma']) \star [\gamma''] \text{ when both are defined,}$

- For a point $p \in X$ in a topological space, let $e_p : [0,1] \to X$ denote the constant path $e_p(x) = p$, for $x \in [0,1]$.
- ▶ **Theorem 7.3.** The operation \star has the following properties for all paths γ , γ' , and γ'' in a topological space X:
 - $[\gamma] \star ([\gamma'] \star [\gamma'']) = ([\gamma] \star [\gamma']) \star [\gamma'']$ when both are defined,
 - $[\gamma] \star [e_q] = [e_p] \star [\gamma] = [\gamma], \text{ if } \gamma \text{ is a path from } p \text{ to } q,$

- For a point $p \in X$ in a topological space, let $e_p : [0,1] \to X$ denote the constant path $e_p(x) = p$, for $x \in [0,1]$.
- ▶ **Theorem 7.3.** The operation \star has the following properties for all paths γ , γ' , and γ'' in a topological space X:
 - $[\gamma] \star ([\gamma'] \star [\gamma'']) = ([\gamma] \star [\gamma']) \star [\gamma''] \text{ when both are defined,}$
 - $[\gamma] \star [e_q] = [e_p] \star [\gamma] = [\gamma], \text{ if } \gamma \text{ is a path from } p \text{ to } q,$
 - $ightharpoonup [\gamma] \star [\overline{\gamma}] = [e_p], \ [\overline{\gamma}] \star [\gamma] = [e_q], \ \text{if } \gamma \ \text{is a path from } p \ \text{to } q.$

▶ The idea in this section will be to use the operation \star on path homotopy classes to associate an algebraic structure to any pair (X, p) for X a topological space and $p \in X$.

- ▶ The idea in this section will be to use the operation \star on path homotopy classes to associate an algebraic structure to any pair (X, p) for X a topological space and $p \in X$.
- ▶ If γ is a path from p to p, we say that γ is a *loop* based at p.

- ▶ The idea in this section will be to use the operation \star on path homotopy classes to associate an algebraic structure to any pair (X, p) for X a topological space and $p \in X$.
- ▶ If γ is a path from p to p, we say that γ is a *loop* based at p.
- ▶ **Definition.** Let X be a topological space, and let $p \in X$. Then the fundamental group $\pi_1(X, p)$ is the set of all path homotopy classes of loops based at p.

- ▶ The idea in this section will be to use the operation \star on path homotopy classes to associate an algebraic structure to any pair (X, p) for X a topological space and $p \in X$.
- ▶ If γ is a path from p to p, we say that γ is a *loop* based at p.
- ▶ **Definition.** Let X be a topological space, and let $p \in X$. Then the fundamental group $\pi_1(X, p)$ is the set of all path homotopy classes of loops based at p.
- ➤ To make sense of the terminology, let us recall a few basic notions from abstract algebra.

Groups

Definition. A *group* is a set G with an operation $G \times G \to G$, denoted $(g,h) \mapsto g \cdot h$, an element $e \in G$ called a unit, and a bijection $G \to G$ denoted $x \mapsto x^{-1}$ called the inverse, so that

Groups

- **Definition.** A group is a set G with an operation $G \times G \to G$, denoted $(g,h) \mapsto g \cdot h$, an element $e \in G$ called a unit, and a bijection $G \to G$ denoted $x \mapsto x^{-1}$ called the inverse, so that
 - ▶ $g \cdot (h \cdot k) = (g \cdot h) \cdot k$ for all $g, h, k \in G$,

Groups

- **Definition.** A group is a set G with an operation $G \times G \to G$, denoted $(g,h) \mapsto g \cdot h$, an element $e \in G$ called a unit, and a bijection $G \to G$ denoted $x \mapsto x^{-1}$ called the inverse, so that
 - $ightharpoonup g \cdot (h \cdot k) = (g \cdot h) \cdot k \text{ for all } g, h, k \in G,$
 - $e \cdot g = g = g \cdot e$ for all $g \in G$, and

- **Definition.** A group is a set G with an operation $G \times G \to G$, denoted $(g,h) \mapsto g \cdot h$, an element $e \in G$ called a unit, and a bijection $G \to G$ denoted $x \mapsto x^{-1}$ called the inverse, so that
 - $ightharpoonup g \cdot (h \cdot k) = (g \cdot h) \cdot k \text{ for all } g, h, k \in G,$
 - $e \cdot g = g = g \cdot e$ for all $g \in G$, and

- **Definition.** A group is a set G with an operation $G \times G \to G$, denoted $(g,h) \mapsto g \cdot h$, an element $e \in G$ called a unit, and a bijection $G \to G$ denoted $x \mapsto x^{-1}$ called the inverse, so that
 - $ightharpoonup g \cdot (h \cdot k) = (g \cdot h) \cdot k \text{ for all } g, h, k \in G,$
 - $e \cdot g = g = g \cdot e$ for all $g \in G$, and
- ▶ If G and H are groups, then a map $\phi : G \to H$ is called a homomorphism if $\phi(g \cdot h) = \phi(g) \cdot \phi(h)$ for all $g, h \in G$. A bijective group homomorphism is called an isomorphism.

Example. The one-point set $\{e\}$ is a group under the operation $(e, e) \mapsto e$. This group is called the *trivial group*.

- **Example.** The one-point set $\{e\}$ is a group under the operation $(e, e) \mapsto e$. This group is called the *trivial group*.
- **Example.** The integers form a group under the operation $(g,h)\mapsto g+h$. The unit is $0\in\mathbb{Z}$, and if $n\in\mathbb{Z}$, then the inverse of n is -n.

- **Example.** The one-point set $\{e\}$ is a group under the operation $(e, e) \mapsto e$. This group is called the *trivial group*.
- **Example.** The integers form a group under the operation $(g,h) \mapsto g + h$. The unit is $0 \in \mathbb{Z}$, and if $n \in \mathbb{Z}$, then the inverse of n is -n.
- **Example.** The set $\mathbb{R} \setminus \{0\}$ is a group with operation $(g,h) \mapsto gh$. The unit is 1, and the inverse of $x \in \mathbb{R} \setminus \{0\}$ is 1/x.

- **Example.** The one-point set $\{e\}$ is a group under the operation $(e, e) \mapsto e$. This group is called the *trivial group*.
- **Example.** The integers form a group under the operation $(g,h) \mapsto g + h$. The unit is $0 \in \mathbb{Z}$, and if $n \in \mathbb{Z}$, then the inverse of n is -n.
- ▶ **Example.** The set $\mathbb{R} \setminus \{0\}$ is a group with operation $(g,h) \mapsto gh$. The unit is 1, and the inverse of $x \in \mathbb{R} \setminus \{0\}$ is 1/x.
- **Example.** The set $GL(n, \mathbb{R})$ of invertible $(n \times n)$ -matrices with entries in \mathbb{R} is a group under matrix multiplication. The unit is the unit matrix.

▶ **Proposition 7.4.** The fundamental group $\pi_1(X, p)$ is a group under the operation \star on homotopy classes of loops for any topological space X and any $p \in X$.

- ▶ **Proposition 7.4.** The fundamental group $\pi_1(X, p)$ is a group under the operation \star on homotopy classes of loops for any topological space X and any $p \in X$.
- Proof. This follows immediately from Theorem 8.3.

- ▶ **Proposition 7.4.** The fundamental group $\pi_1(X, p)$ is a group under the operation \star on homotopy classes of loops for any topological space X and any $p \in X$.
- Proof. This follows immediately from Theorem 8.3.
- **Example.** In a previous example we saw that any two given paths in \mathbb{R}^n between the same points were homotopic. This, in particular, implies that any loop based at a point $p \in \mathbb{R}^n$ is null-homotopic; that is, homotopic to e_p . In other words,

$$\pi_1(\mathbb{R}^n,p)=\{[e_p]\},$$

the trivial group, for all $p \in \mathbb{R}^n$.

▶ Theorem 7.5. Let X be a topological space, and let α be a path from x to y in X. Define a map $\hat{\alpha}: \pi_1(X,x) \to \pi_1(X,y)$ by

$$\hat{\alpha}([\gamma]) = [\overline{\alpha}] \star [\gamma] \star [\alpha].$$

Then $\hat{\alpha}$ is well-defined and an isomorphism.

▶ Theorem 7.5. Let X be a topological space, and let α be a path from x to y in X. Define a map $\hat{\alpha}: \pi_1(X,x) \to \pi_1(X,y)$ by

$$\hat{\alpha}([\gamma]) = [\overline{\alpha}] \star [\gamma] \star [\alpha].$$

Then $\hat{\alpha}$ is well-defined and an isomorphism.

▶ *Proof.* That $\hat{\alpha}$ is well-defined means that $\hat{\alpha}([\gamma]) = \hat{\alpha}([\gamma'])$ whenever $[\gamma] = [\gamma']$, i.e. whenever $\gamma \sim_p \gamma'$.

▶ **Theorem 7.5.** Let X be a topological space, and let α be a path from x to y in X. Define a map $\hat{\alpha}: \pi_1(X,x) \to \pi_1(X,y)$ by

$$\hat{\alpha}([\gamma]) = [\overline{\alpha}] \star [\gamma] \star [\alpha].$$

Then $\hat{\alpha}$ is well-defined and an isomorphism.

- ▶ *Proof.* That $\hat{\alpha}$ is well-defined means that $\hat{\alpha}([\gamma]) = \hat{\alpha}([\gamma'])$ whenever $[\gamma] = [\gamma']$, i.e. whenever $\gamma \sim_{p} \gamma'$.
 - ▶ Indeed, if $F:[0,1]\times[0,1]\to X$ is a path homotopy from γ to γ' , then $G:[0,1]\times[0,1]\to X$, defined by

$$G(s,t) = (\overline{\alpha} \star F(\cdot,t) \star \alpha)(s)$$

is a path homotopy from $\overline{\alpha}\star\gamma\star\alpha$ to $\overline{\alpha}\star\gamma'\star\alpha$, so $\hat{\alpha}$ is well-defined.

▶ To see that $\hat{\alpha}$ is an homomorphism, notice that for any $[\gamma], [\gamma'] \in \pi_1(X, x)$, we have

$$\hat{\alpha}([\gamma]) \star \hat{\alpha}([\gamma']) = [\overline{\alpha}] \star [\gamma] \star [\alpha] \star [\overline{\alpha}] \star [\gamma'] \star [\alpha]$$
$$= [\overline{\alpha}] \star ([\gamma] \star [\gamma']) \star [\alpha] = \hat{\alpha}([\gamma] \star [\gamma']).$$

▶ To see that $\hat{\alpha}$ is an homomorphism, notice that for any $[\gamma], [\gamma'] \in \pi_1(X, x)$, we have

$$\hat{\alpha}([\gamma]) \star \hat{\alpha}([\gamma']) = [\overline{\alpha}] \star [\gamma] \star [\alpha] \star [\overline{\alpha}] \star [\gamma'] \star [\alpha]$$
$$= [\overline{\alpha}] \star ([\gamma] \star [\gamma']) \star [\alpha] = \hat{\alpha}([\gamma] \star [\gamma']).$$

► To see that $\hat{\alpha}$ is a bijection, notice that $\widehat{\overline{\alpha}} \circ \hat{\alpha}$ is the identity on $\pi_1(X,x)$ since for any $[\gamma] \in \pi_1(X,x)$, we have

$$(\widehat{\overline{\alpha}} \circ \widehat{\alpha})[\gamma] = \widehat{\overline{\alpha}}([\overline{\alpha}] \star [\gamma] \star [\alpha])$$
$$= [\alpha] \star [\overline{\alpha}] \star [\gamma] \star [\alpha] \star [\overline{\alpha}] = [\gamma],$$

and $\hat{\alpha} \circ \widehat{\alpha}$ is the identity on $\pi_1(X, y)$ by the same reason, so $\hat{\alpha}$ is a bijection and thus a group isomorphism.

▶ Corollary 7.6. If X is a path-connected topological space, then $\pi_1(X,x)$ is independent of $x \in X$ up to isomorphism.

- ▶ Corollary 7.6. If X is a path-connected topological space, then $\pi_1(X,x)$ is independent of $x \in X$ up to isomorphism.
- ▶ Because of this result, one often writes $\pi_1(X) = \pi_1(X,x)$ for any $x \in X$ when X is path-connected. It is then understood that the equality is really up to isomorphism.

- ▶ Corollary 7.6. If X is a path-connected topological space, then $\pi_1(X,x)$ is independent of $x \in X$ up to isomorphism.
- ▶ Because of this result, one often writes $\pi_1(X) = \pi_1(X,x)$ for any $x \in X$ when X is path-connected. It is then understood that the equality is really up to isomorphism.
- ▶ **Definition.** A topological space X is called *simply-connected* if it is path-connected and $\pi_1(X)$ consists of a single element.

- ▶ Corollary 7.6. If X is a path-connected topological space, then $\pi_1(X,x)$ is independent of $x \in X$ up to isomorphism.
- ▶ Because of this result, one often writes $\pi_1(X) = \pi_1(X,x)$ for any $x \in X$ when X is path-connected. It is then understood that the equality is really up to isomorphism.
- **Definition.** A topological space X is called *simply-connected* if it is path-connected and $\pi_1(X)$ consists of a single element.
- **Example.** \mathbb{R}^n is simply-connected.

▶ The next result says that for path-connected spaces, π_1 is a topological invariant. As preparation, suppose that $f: X \to Y$ is a continuous map, and let $x \in X$. Define a map

$$f_*: \pi_1(X,x) \to \pi_1(Y,f(x))$$

$$f_*([\gamma]) = [f \circ \gamma].$$

▶ The next result says that for path-connected spaces, π_1 is a topological invariant. As preparation, suppose that $f: X \to Y$ is a continuous map, and let $x \in X$. Define a map

$$f_*:\pi_1(X,x)\to\pi_1(Y,f(x))$$

by

$$f_*([\gamma]) = [f \circ \gamma].$$

▶ **Theorem 7.7.** Let $f: X \to Y$ and $g: Y \to Z$ be continuous maps, and let $x \in X$. Then

▶ The next result says that for path-connected spaces, π_1 is a topological invariant. As preparation, suppose that $f: X \to Y$ is a continuous map, and let $x \in X$. Define a map

$$f_*: \pi_1(X,x) \to \pi_1(Y,f(x))$$

$$f_*([\gamma]) = [f \circ \gamma].$$

- ▶ **Theorem 7.7.** Let $f: X \to Y$ and $g: Y \to Z$ be continuous maps, and let $x \in X$. Then
 - (i) $f_*: \pi_1(X, x) \to \pi_1(Y, f(x))$ is a well-defined homomorphism,

▶ The next result says that for path-connected spaces, π_1 is a topological invariant. As preparation, suppose that $f: X \to Y$ is a continuous map, and let $x \in X$. Define a map

$$f_*:\pi_1(X,x)\to\pi_1(Y,f(x))$$

$$f_*([\gamma]) = [f \circ \gamma].$$

- ▶ **Theorem 7.7.** Let $f: X \to Y$ and $g: Y \to Z$ be continuous maps, and let $x \in X$. Then
 - (i) $f_*: \pi_1(X,x) \to \pi_1(Y,f(x))$ is a well-defined homomorphism.
 - (ii) $(g \circ f)_* = g_* \circ f_*$, and if id: $X \to X$ denotes the identity, then id $_* : \pi_1(X, X) \to \pi_1(X, X)$ is the identity on $\pi_1(X, X)$.

▶ The next result says that for path-connected spaces, π_1 is a topological invariant. As preparation, suppose that $f: X \to Y$ is a continuous map, and let $x \in X$. Define a map

$$f_*:\pi_1(X,x)\to\pi_1(Y,f(x))$$

$$f_*([\gamma]) = [f \circ \gamma].$$

- ▶ **Theorem 7.7.** Let $f: X \to Y$ and $g: Y \to Z$ be continuous maps, and let $x \in X$. Then
 - (i) $f_*: \pi_1(X, x) \to \pi_1(Y, f(x))$ is a well-defined homomorphism,
 - (ii) $(g \circ f)_* = g_* \circ f_*$, and if id : $X \to X$ denotes the identity, then id $_* : \pi_1(X, X) \to \pi_1(X, X)$ is the identity on $\pi_1(X, X)$.
 - ightharpoonup (iii) Finally, if f is a homeomorphism, then f_* is an isomorphism.

▶ That f_* is well-defined means that $f \circ \gamma \sim_p f \circ \gamma'$ whenever $\gamma \sim_p \gamma'$. This is the case since if F is a homotopy from γ to γ' , then $f \circ F$ is a homotopy from $f \circ \gamma$ to $f \circ \gamma'$.

- ▶ That f_* is well-defined means that $f \circ \gamma \sim_p f \circ \gamma'$ whenever $\gamma \sim_p \gamma'$. This is the case since if F is a homotopy from γ to γ' , then $f \circ F$ is a homotopy from $f \circ \gamma$ to $f \circ \gamma'$.
- ▶ To see that f_* is a homomorphism, let $[\gamma], [\gamma'] \in \pi_1(X, x)$ be arbitrary homotopy classes. We first notice that by definition of concatenation, we have

$$f \circ (\gamma \star \gamma') = (f \circ \gamma) \star (f \circ \gamma'),$$

from which it follows that

$$f_*([\gamma] \star [\gamma']) = f_*([\gamma \star \gamma']) = [f \circ (\gamma \star \gamma')] = [(f \circ \gamma) \star (f \circ \gamma')]$$
$$= [f \circ \gamma] \star [f \circ \gamma'] = f_*([\gamma]) \star f_*([\gamma']),$$

so f_* is a homomorphism, which shows (i).

Similarly,

$$(g_* \circ f_*)([\gamma]) = g_*([f \circ \gamma]) = [g \circ f \circ \gamma] = (g \circ f)_*([\gamma]),$$

which shows the first part of (ii). The last part of (ii) is obvious.

Similarly,

$$(g_* \circ f_*)([\gamma]) = g_*([f \circ \gamma]) = [g \circ f \circ \gamma] = (g \circ f)_*([\gamma]),$$

which shows the first part of (ii). The last part of (ii) is obvious.

▶ Finally, (iii) follows from (ii) as it follows that $(f^{-1})_*$ satisfies that both $f_* \circ (f^{-1})_*$ and $(f^{-1})_* \circ f_*$ are the identity homomorphisms. Thus f_* is a bijection and therefore an isomorphism.

$$(g,h)\cdot(g',h')=(g\cdot g',h\cdot h').$$

▶ If G and H are two groups, then their Cartesian product $G \times H$ is a group with the group operation

$$(g,h)\cdot(g',h')=(g\cdot g',h\cdot h').$$

▶ **Proposition 7.8.** Let X and Y be topological spaces, and let $x \in X$, $y \in Y$. Then $\pi_1(X \times Y, (x, y))$ is isomorphic to $\pi_1(X, x) \times \pi_1(Y, y)$.

$$(g,h)\cdot(g',h')=(g\cdot g',h\cdot h').$$

- ▶ **Proposition 7.8.** Let X and Y be topological spaces, and let $x \in X$, $y \in Y$. Then $\pi_1(X \times Y, (x, y))$ is isomorphic to $\pi_1(X, x) \times \pi_1(Y, y)$.
- ▶ **Theorem 7.9.** We have $\pi_1(S^1) = \mathbb{Z}$, but S^n is simply-connected for $n \ge 2$.

$$(g,h)\cdot(g',h')=(g\cdot g',h\cdot h').$$

- ▶ **Proposition 7.8.** Let X and Y be topological spaces, and let $x \in X$, $y \in Y$. Then $\pi_1(X \times Y, (x, y))$ is isomorphic to $\pi_1(X, x) \times \pi_1(Y, y)$.
- ▶ **Theorem 7.9.** We have $\pi_1(S^1) = \mathbb{Z}$, but S^n is simply-connected for $n \ge 2$.
- ▶ **Definition.** The *m*-torus \mathbb{T}^m is defined to be the product $\mathbb{T}^m = S^1 \times \cdots \times S^1$ of *m* copies of S^1 .

$$(g,h)\cdot(g',h')=(g\cdot g',h\cdot h').$$

- ▶ **Proposition 7.8.** Let X and Y be topological spaces, and let $x \in X$, $y \in Y$. Then $\pi_1(X \times Y, (x, y))$ is isomorphic to $\pi_1(X, x) \times \pi_1(Y, y)$.
- ▶ **Theorem 7.9.** We have $\pi_1(S^1) = \mathbb{Z}$, but S^n is simply-connected for $n \ge 2$.
- ▶ **Definition.** The *m*-torus \mathbb{T}^m is defined to be the product $\mathbb{T}^m = S^1 \times \cdots \times S^1$ of *m* copies of S^1 .
- **Corollary 7.10.** We have $S^n \simeq \mathbb{T}^m$ if and only if n = m = 1.

$$(g,h)\cdot(g',h')=(g\cdot g',h\cdot h').$$

- ▶ **Proposition 7.8.** Let X and Y be topological spaces, and let $x \in X$, $y \in Y$. Then $\pi_1(X \times Y, (x, y))$ is isomorphic to $\pi_1(X, x) \times \pi_1(Y, y)$.
- ▶ **Theorem 7.9.** We have $\pi_1(S^1) = \mathbb{Z}$, but S^n is simply-connected for $n \ge 2$.
- ▶ **Definition.** The *m*-torus \mathbb{T}^m is defined to be the product $\mathbb{T}^m = S^1 \times \cdots \times S^1$ of *m* copies of S^1 .
- **Corollary 7.10.** We have $S^n \simeq \mathbb{T}^m$ if and only if n = m = 1.
- ▶ Proof. $\pi_1(\mathbb{T}^m) = \pi_1(S^1 \times \cdots \times S^1)$ is the product of m copies of \mathbb{Z} . Since \mathbb{Z}^m is not isomorphic to \mathbb{Z} if m > 1, $\pi_1(\mathbb{T}^m)$ can only be isomorphic to $\pi_1(S^n)$ if n = m = 1.

Application: Brouwer fixed point theorem

▶ **Theorem 7.11.** Every continuous map $h: D^2 \to D^2$ has a fixed point, that is, a point $x \in D^2$ with h(x) = x.

Application: Brouwer fixed point theorem

- ▶ **Theorem 7.11.** Every continuous map $h: D^2 \to D^2$ has a fixed point, that is, a point $x \in D^2$ with h(x) = x.
- ▶ *Proof.* Suppose $h(x) \neq x$ for all $x \in D^2$. Then we can define a map $r : D^2 \to S^1$ by letting r(x) be the point of S^1 where the ray in \mathbb{R}^2 starting at h(x) and passing through x leaves D^2 .

Application: Brouwer fixed point theorem

r is continuous, since small perturbations of x produce small perturbations of h(x), hence also small perturbations of the ray through these two points.

Application: Brouwer fixed point theorem

- r is continuous, since small perturbations of x produce small perturbations of h(x), hence also small perturbations of the ray through these two points.
- Note that r(x) = x if $x \in S^1$. That is $r \circ \iota = \mathrm{id}_{S^1}$ where $\iota : S^1 \to D^2$ is the inclusion map.

Application: Brouwer fixed point theorem

- ightharpoonup r is continuous, since small perturbations of x produce small perturbations of x produce small perturbations of the ray through these two points.
- Note that r(x) = x if $x \in S^1$. That is $r \circ \iota = \mathrm{id}_{S^1}$ where $\iota : S^1 \to D^2$ is the inclusion map.
- ▶ Then $(r \circ \iota)_* = (\mathsf{id}_{S^1})_* = \mathsf{id}_{\pi_1(S^1)}$. For $[\gamma] \in \pi_1(S^1)$ we have

$$[\gamma] = (r \circ \iota)_*[\gamma] = r_*(\iota_*[\gamma]).$$

Application: Brouwer fixed point theorem

- r is continuous, since small perturbations of x produce small perturbations of h(x), hence also small perturbations of the ray through these two points.
- Note that r(x) = x if $x \in S^1$. That is $r \circ \iota = \operatorname{id}_{S^1}$ where $\iota : S^1 \to D^2$ is the inclusion map.
- ▶ Then $(r \circ \iota)_* = (\mathsf{id}_{S^1})_* = \mathsf{id}_{\pi_1(S^1)}$. For $[\gamma] \in \pi_1(S^1)$ we have

$$[\gamma] = (r \circ \iota)_*[\gamma] = r_*(\iota_*[\gamma]).$$

Since $\iota_*[\gamma] = 1$ in $\pi_1(D^2) = \{1\}$, we obtain $[\gamma] = r_*(1) = 1$. Hence $\pi_1(S^1) = \{1\}$, which contradicts $\pi_1(S^1) \cong \mathbb{Z}$.

▶ **Theorem 7.12.** \mathbb{R}^2 is not homeomorphic to \mathbb{R}^n for $n \neq 2$.

- ▶ **Theorem 7.12.** \mathbb{R}^2 is not homeomorphic to \mathbb{R}^n for $n \neq 2$.
- ▶ *Proof.* Suppose $f: \mathbb{R}^n \to \mathbb{R}^2$ is a homeomorphism. Then

$$\mathbb{R}^2 \setminus \{\vec{0}\} \simeq \mathbb{R}^n \setminus \{f(\vec{0})\}.$$

- ▶ **Theorem 7.12.** \mathbb{R}^2 is not homeomorphic to \mathbb{R}^n for $n \neq 2$.
- ▶ *Proof.* Suppose $f: \mathbb{R}^n \to \mathbb{R}^2$ is a homeomorphism. Then

$$\mathbb{R}^2 \setminus \{\vec{0}\} \simeq \mathbb{R}^n \setminus \{f(\vec{0})\}.$$

▶ The case n = 1 was done by using connectedness.

- ▶ **Theorem 7.12.** \mathbb{R}^2 is not homeomorphic to \mathbb{R}^n for $n \neq 2$.
- ▶ *Proof.* Suppose $f: \mathbb{R}^n \to \mathbb{R}^2$ is a homeomorphism. Then

$$\mathbb{R}^2 \setminus \{\vec{0}\} \simeq \mathbb{R}^n \setminus \{f(\vec{0})\}.$$

- ▶ The case n = 1 was done by using connectedness.
- ▶ Suppose $n \ge 3$. Note that $\mathbb{R}^k \setminus \{x\} \simeq S^{k-1} \times (0, \infty)$, so

$$\pi_1(\mathbb{R}^k \setminus \{x\}) \cong \pi_1(S^{k-1}) \times \pi_1((0,\infty)) \cong \pi_1(S^{k-1}).$$

- ▶ **Theorem 7.12.** \mathbb{R}^2 is not homeomorphic to \mathbb{R}^n for $n \neq 2$.
- ▶ *Proof.* Suppose $f: \mathbb{R}^n \to \mathbb{R}^2$ is a homeomorphism. Then

$$\mathbb{R}^2 \setminus \{\vec{0}\} \simeq \mathbb{R}^n \setminus \{f(\vec{0})\}.$$

- ▶ The case n = 1 was done by using connectedness.
- ▶ Suppose $n \ge 3$. Note that $\mathbb{R}^k \setminus \{x\} \simeq S^{k-1} \times (0, \infty)$, so

$$\pi_1(\mathbb{R}^k \setminus \{x\}) \cong \pi_1(S^{k-1}) \times \pi_1((0,\infty)) \cong \pi_1(S^{k-1}).$$

▶ Hence $\pi_1(\mathbb{R}^k \setminus \{x\})$ is \mathbb{Z} if k = 2 and trivial for $k \geq 3$.

- ▶ **Theorem 7.12.** \mathbb{R}^2 is not homeomorphic to \mathbb{R}^n for $n \neq 2$.
- ▶ *Proof.* Suppose $f: \mathbb{R}^n \to \mathbb{R}^2$ is a homeomorphism. Then

$$\mathbb{R}^2 \setminus \{\vec{0}\} \simeq \mathbb{R}^n \setminus \{f(\vec{0})\}.$$

- ▶ The case n = 1 was done by using connectedness.
- ▶ Suppose $n \ge 3$. Note that $\mathbb{R}^k \setminus \{x\} \simeq S^{k-1} \times (0, \infty)$, so

$$\pi_1(\mathbb{R}^k \setminus \{x\}) \cong \pi_1(S^{k-1}) \times \pi_1((0,\infty)) \cong \pi_1(S^{k-1}).$$

- ▶ Hence $\pi_1(\mathbb{R}^k \setminus \{x\})$ is \mathbb{Z} if k = 2 and trivial for $k \ge 3$.
- ▶ Remark: $\mathbb{R}^k \setminus \{x\} \simeq S^{k-1} \times (0, \infty)$ via the map

$$y \mapsto \left(\frac{y-x}{||y-x||}, ||y-x||\right).$$

▶ **Lemma 7.13.** Suppose X is the union of a collection of path-connected open sets A_{α} each containing the base point $x_0 \in X$ and each intersection $A_{\alpha} \cap A_{\beta}$ is path-connected. Then every loop in X based at x_0 is homotopic to a product of loops each of which is contained in a single A_{α} .

- ▶ Lemma 7.13. Suppose X is the union of a collection of path-connected open sets A_{α} each containing the base point $x_0 \in X$ and each intersection $A_{\alpha} \cap A_{\beta}$ is path-connected. Then every loop in X based at x_0 is homotopic to a product of loops each of which is contained in a single A_{α} .
- ▶ *Proof.* Given a loop $f:[0,1] \to X$ based at x_0 , we claim that there is a partition $0 = s_0 < s_1 < \cdots < s_m = 1$ such that each subinterval $[s_{i-1}, s_i]$ is mapped by f to a single A_α .

- ▶ Lemma 7.13. Suppose X is the union of a collection of path-connected open sets A_{α} each containing the base point $x_0 \in X$ and each intersection $A_{\alpha} \cap A_{\beta}$ is path-connected. Then every loop in X based at x_0 is homotopic to a product of loops each of which is contained in a single A_{α} .
- ▶ *Proof.* Given a loop $f:[0,1] \to X$ based at x_0 , we claim that there is a partition $0 = s_0 < s_1 < \cdots < s_m = 1$ such that each subinterval $[s_{i-1}, s_i]$ is mapped by f to a single A_α .
- ▶ In fact, since f is continuous, each $s \in [0,1]$ has an open nbh $V_s \subset [0,1]$ mapped by f to some A_α . We may take V_s to be an interval whose closure is mapped to a single A_α .

- ▶ Lemma 7.13. Suppose X is the union of a collection of path-connected open sets A_{α} each containing the base point $x_0 \in X$ and each intersection $A_{\alpha} \cap A_{\beta}$ is path-connected. Then every loop in X based at x_0 is homotopic to a product of loops each of which is contained in a single A_{α} .
- ▶ *Proof.* Given a loop $f:[0,1] \to X$ based at x_0 , we claim that there is a partition $0 = s_0 < s_1 < \cdots < s_m = 1$ such that each subinterval $[s_{i-1}, s_i]$ is mapped by f to a single A_α .
- ▶ In fact, since f is continuous, each $s \in [0,1]$ has an open nbh $V_s \subset [0,1]$ mapped by f to some A_α . We may take V_s to be an interval whose closure is mapped to a single A_α .
- ➤ Compactness of [0,1] implies that a finite number of these intervals cover [0,1]. The endpoints of this finite set of intervals then define the desired partition of [0,1].

▶ Denote the A_{α} containing $f([s_{i-1}, s_i])$ by B_i , and let f_i be the path obtained by restricting f to $[s_{i-1}, s_i]$. Then $f = f_1 \star f_2 \star \cdots \star f_m$ with f_i a path in B_i .

- ▶ Denote the A_{α} containing $f([s_{i-1}, s_i])$ by B_i , and let f_i be the path obtained by restricting f to $[s_{i-1}, s_i]$. Then $f = f_1 \star f_2 \star \cdots \star f_m$ with f_i a path in B_i .
- Since we assume $B_i \cap B_{i+1}$ is path-connected, we may choose a path g_i in $B_i \cap B_{i+1}$ from x_0 to the point $f(s_i) \in B_i \cap B_{i+1}$.

- ▶ Denote the A_{α} containing $f([s_{i-1}, s_i])$ by B_i , and let f_i be the path obtained by restricting f to $[s_{i-1}, s_i]$. Then $f = f_1 \star f_2 \star \cdots \star f_m$ with f_i a path in B_i .
- Since we assume $B_i \cap B_{i+1}$ is path-connected, we may choose a path g_i in $B_i \cap B_{i+1}$ from x_0 to the point $f(s_i) \in B_i \cap B_{i+1}$.
- Then the loop

$$(f_1 \star \overline{g_1}) \star (g_1 \star f_2 \star \overline{g_2}) \star (g_2 \star f_3 \star \overline{g_3}) \star \cdots \star (g_{m-1} \star f_m)$$

is homotopic to f. This loop is the product of loops each lying in a single B_i .

▶ Proof. We can express S^n as the union of two open sets A_1 and A_2 each homeomorphic to \mathbb{R}^n such that $A_1 \cap A_2$ is homeomorphic to $S^{n-1} \times \mathbb{R}$, for example by taking A_1 and A_2 to be the complements of two antipodal points in S^n .

- ▶ Proof. We can express S^n as the union of two open sets A_1 and A_2 each homeomorphic to \mathbb{R}^n such that $A_1 \cap A_2$ is homeomorphic to $S^{n-1} \times \mathbb{R}$, for example by taking A_1 and A_2 to be the complements of two antipodal points in S^n .
- ▶ If $n \ge 2$ then $A_1 \cap A_2$ is path-connected. The lemma then applies to say that every loop in S^n based at x_0 is homotopic to a product of loops in A_1 or A_2 .

- ▶ Proof. We can express S^n as the union of two open sets A_1 and A_2 each homeomorphic to \mathbb{R}^n such that $A_1 \cap A_2$ is homeomorphic to $S^{n-1} \times \mathbb{R}$, for example by taking A_1 and A_2 to be the complements of two antipodal points in S^n .
- ▶ If $n \ge 2$ then $A_1 \cap A_2$ is path-connected. The lemma then applies to say that every loop in S^n based at x_0 is homotopic to a product of loops in A_1 or A_2 .
- ▶ Both A_1 or A_2 are simply-connected since they are homeomorphic to \mathbb{R}^n . Hence S^n is also simply-connected.

▶ We will prove the theorem by studying how paths in S^1 lift to paths in $\mathbb R$ via the covering map $p:\mathbb R\to S^1$ given by

$$p(s) = (\cos 2\pi s, \sin 2\pi s).$$

▶ We will prove the theorem by studying how paths in S^1 lift to paths in \mathbb{R} via the covering map $p : \mathbb{R} \to S^1$ given by

$$p(s) = (\cos 2\pi s, \sin 2\pi s).$$

► This map can be visualized geometrically by embedding \mathbb{R} in \mathbb{R}^3 as the helix parametrized by $s \mapsto (\cos 2\pi s, \sin 2\pi s, s)$, and then p is the restriction to the helix of the projection of \mathbb{R}^3 onto \mathbb{R}^2 , $(x,y,z)\mapsto (x,y)$.

Given a space X, a covering space of X consists of a space X and a map p: X → X satisfying the following condition: (*) For each point x ∈ X there is an open neighborhood U of x in X such that p⁻¹(U) is a union of disjoint open sets each of which is mapped homeomorphically onto U by p.

- Given a space X, a covering space of X consists of a space X and a map p: X → X satisfying the following condition: (*) For each point x ∈ X there is an open neighborhood U of x in X such that p⁻¹(U) is a union of disjoint open sets each of which is mapped homeomorphically onto U by p.
- Such a U will be called **evenly covered**. For example, for the previously defined map $p: \mathbb{R} \to S^1$ any open arc in S^1 is evenly covered.

- Given a space X, a covering space of X consists of a space X and a map p: X → X satisfying the following condition: (*) For each point x ∈ X there is an open neighborhood U of x in X such that p⁻¹(U) is a union of disjoint open sets each of which is mapped homeomorphically onto U by p.
- ▶ Such a U will be called **evenly covered**. For example, for the previously defined map $p : \mathbb{R} \to S^1$ any open arc in S^1 is evenly covered.
- ▶ To prove the theorem we will need just the following two facts about covering spaces $p: \widetilde{X} \to X$:

- Given a space X, a covering space of X consists of a space X and a map p: X → X satisfying the following condition: (*) For each point x ∈ X there is an open neighborhood U of x in X such that p⁻¹(U) is a union of disjoint open sets each of which is mapped homeomorphically onto U by p.
- ▶ Such a U will be called **evenly covered**. For example, for the previously defined map $p : \mathbb{R} \to S^1$ any open arc in S^1 is evenly covered.
- ▶ To prove the theorem we will need just the following two facts about covering spaces $p: \widetilde{X} \to X$:
 - (a) For each path $f:[0,1] \to X$ starting at a point $x_0 \in X$ and each $\widetilde{x_0} \in p^{-1}(x_0)$ there is a unique lift $\widetilde{f}:[0,1] \to \widetilde{X}$ starting at $\widetilde{x_0}$.

- Given a space X, a covering space of X consists of a space X and a map p: X → X satisfying the following condition: (*) For each point x ∈ X there is an open neighborhood U of x in X such that p⁻¹(U) is a union of disjoint open sets each of which is mapped homeomorphically onto U by p.
- ▶ Such a U will be called **evenly covered**. For example, for the previously defined map $p : \mathbb{R} \to S^1$ any open arc in S^1 is evenly covered.
- ▶ To prove the theorem we will need just the following two facts about covering spaces $p: \widetilde{X} \to X$:
 - (a) For each path $f:[0,1] \to X$ starting at a point $x_0 \in X$ and each $\widetilde{x_0} \in p^{-1}(x_0)$ there is a unique lift $\widetilde{f}:[0,1] \to \widetilde{X}$ starting at $\widetilde{x_0}$.
 - ▶ (b) For each homotopy $f_t : [0,1] \to X$ of paths starting at x_0 and each $\widetilde{x_0} \in p^{-1}(x_0)$ there is a unique lifted homotopy $\widetilde{f_t} : [0,1] \to \widetilde{X}$ of paths starting at $\widetilde{x_0}$.

Let $x_0 = (1,0)$. We will show that $\pi(S^1, x_0)$ is an infinite cyclic group generated by the homotopy class of the loop $\omega(s) = (\cos 2\pi s, \sin 2\pi s)$.

- Let $x_0 = (1,0)$. We will show that $\pi(S^1, x_0)$ is an infinite cyclic group generated by the homotopy class of the loop $\omega(s) = (\cos 2\pi s, \sin 2\pi s)$.
- Note that $[\omega]^n = [\omega_n]$ where $\omega_n(s) = (\cos 2\pi ns, \sin 2\pi ns)$ for $n \in \mathbb{Z}$. The theorem is therefore equivalent to the statement that every loop in S^1 based at x_0 is homotopic to ω_n for a unique $n \in \mathbb{Z}$.

- Let $x_0 = (1,0)$. We will show that $\pi(S^1, x_0)$ is an infinite cyclic group generated by the homotopy class of the loop $\omega(s) = (\cos 2\pi s, \sin 2\pi s)$.
- Note that $[\omega]^n = [\omega_n]$ where $\omega_n(s) = (\cos 2\pi ns, \sin 2\pi ns)$ for $n \in \mathbb{Z}$. The theorem is therefore equivalent to the statement that every loop in S^1 based at x_0 is homotopic to ω_n for a unique $n \in \mathbb{Z}$.
- Let $f:[0,1] \to S^1$ be a loop at the basepoint $x_0=(1,0)$, representing a given element of $\pi_1(S^1,x_0)$. By (a) there is a lift \widetilde{f} starting at 0. This path \widetilde{f} ends at some integer n since $p\widetilde{f}(1)=f(1)=x_0$ and $p^{-1}(x_0)=\mathbb{Z}\subset\mathbb{R}$.

- Let $x_0 = (1,0)$. We will show that $\pi(S^1, x_0)$ is an infinite cyclic group generated by the homotopy class of the loop $\omega(s) = (\cos 2\pi s, \sin 2\pi s)$.
- Note that $[\omega]^n = [\omega_n]$ where $\omega_n(s) = (\cos 2\pi ns, \sin 2\pi ns)$ for $n \in \mathbb{Z}$. The theorem is therefore equivalent to the statement that every loop in S^1 based at x_0 is homotopic to ω_n for a unique $n \in \mathbb{Z}$.
- Let $f:[0,1] \to S^1$ be a loop at the basepoint $x_0=(1,0)$, representing a given element of $\pi_1(S^1,x_0)$. By (a) there is a lift \widetilde{f} starting at 0. This path \widetilde{f} ends at some integer n since $p\widetilde{f}(1)=f(1)=x_0$ and $p^{-1}(x_0)=\mathbb{Z}\subset\mathbb{R}$.
- ▶ Another path in \mathbb{R} from 0 to n is $\widetilde{\omega}_n$, and $\widetilde{f} \simeq \widetilde{\omega}_n$ via the linear homotopy $(1-t)\widetilde{f} + t\widetilde{\omega}_n$. Composing this homotopy with p gives a homotopy $f \simeq \omega_n$ so $[f] = [\omega_n]$.

▶ To show that n is uniquely determined by [f], suppose that $f \simeq \omega_n$ and $f \simeq \omega_m$, so $\omega_m \simeq \omega_n$. Let g_t be a homotopy from $\omega_m = g_0$ to $\omega_n = g_1$. By (b) this homotopy lifts to a homotopy \widetilde{g}_t of paths starting at 0.

- ▶ To show that n is uniquely determined by [f], suppose that $f \simeq \omega_n$ and $f \simeq \omega_m$, so $\omega_m \simeq \omega_n$. Let g_t be a homotopy from $\omega_m = g_0$ to $\omega_n = g_1$. By (b) this homotopy lifts to a homotopy \widetilde{g}_t of paths starting at 0.
- The uniqueness part of (a) implies that $\widetilde{g}_0 = \widetilde{\omega}_m$ and $\widetilde{g}_1 = \widetilde{\omega}_n$. Since \widetilde{g}_t is a homotopy of paths, the endpoint $\widetilde{g}_t(1)$ is independent of t. For t=0 this endpoint is m and for t=1 it is n, so m=n.