OBJECTIFS 👌

- Utiliser les outils géométriques usuels : règle, règle graduée, équerre et compas.
- Reconnaître et utiliser la notion de perpendicularité.
- Reconnaître et utiliser la notion de parallélisme.
- Connaître les définitions d'un cercle, d'un disque, d'un rayon, d'un diamètre, d'une corde.
- Comprendre la définition d'un cercle et celle d'un disque sous la forme d'ensembles de points.
- Résoudre des problèmes mettant en jeu des distances à un point.

Droites

1. Droites perpendiculaires

À RETENIR 99

Définitions

- Si *A* et *B* sont deux points distincts, la **droite** (*AB*) est l'ensemble de tous les points alignés avec *A* et *B*.
- Trois points A, B et C sont **alignés** lorsque l'on peut tracer une ligne droite passant par ces trois points.
- Deux droites sont **sécantes** si elles se coupent en un seul point, appelé **point d'intersection**.

EXERCICE 1

Avec la règle, tracer la droite (AB). Puis, tracer une droite (d) sécante avec (AB). Appeler I le point d'intersection.

 \times

 $^A \times$

À RETENIR 30

Définition

Deux droites sont **perpendiculaires** si elles sont sécantes et forment un **angle droit**. On note cela avec le symbole \bot .

EXERCICE 2

Avec la règle, tracer la droite (AB). Ensuite, avec l'équerre, tracer une droite (d) perpendiculaire à (AB). Appeler I le point d'intersection.

 $_{\times}^{A}$

ŢΕ

2. Droites parallèles

À RETENIR 99

Définition

Deux droites sont **parallèles** si elles ne sont pas sécantes. On note cela avec le symbole #.

EXEMPLE 🔋

Les droites (d_1) et (d_2) n'ont aucun point commun. Donc $(d_1) \parallel (d_2)$.

EXEMPLE 🔋

Les droites (d_1) et (d_2) sont confondues. Donc $(d_1) \parallel (d_2)$.

À RETENIR 99

Théorèmes

1. Si deux droites sont parallèles à une même droite, alors elles sont parallèles entre elles.

Je **sais** $(d_1) \parallel (d_3)$ *et* $(d_2) \parallel (d_3)$. *J'en* **conclus** $(d_1) \parallel (d_2)$.

2. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Je sais $(d_1) \perp (d_3)$ et $(d_2) \perp (d_3)$. *J'en* conclus $(d_1) \parallel (d_2)$.

3. Si deux droites sont parallèles, et si une troisième droite est perpendiculaire à l'une, alors elle est aussi perpendiculaire à l'autre.

Je **sais** $(d_1) \parallel (d_2)$ *et* $(d_1) \perp (d_3)$. *J'en* **conclus** $(d_2) \perp (d_3)$.

EXERCICE 3

Sachant que $(d_2) \parallel (d_3)$ et que $(d_4) \perp (d_2)$, montrer que $(d_3) \perp (d_4)$.

.....

▼Voir la correction: https://mes-cours-de-maths.fr/cours/sixieme/droites-cercles/#correction-3

Cercles

1. Distance entre deux points

À RETENIR 99

Définition

La **distance** entre deux points *A* et *B* est la longueur du segment [*AB*]. On note celle-ci *AB*.

EXERCICE 4

1. Tracer le segment [AB], puis compléter : $AB = \dots$ cm.

2. Placer le point C au milieu du segment [AB], puis compléter : $AC = \ldots$ cm.

2. Distance entre plusieurs points

À RETENIR 99

Définitions

- Le **cercle** de centre *O* et de rayon *r* est l'ensemble des points situés à la même distance *r* du point *O*.
- Le **disque** de centre O et de rayon r est l'ensemble des points situés à une distance du point O inférieure ou égale à r.

EXERCICE 5
1. Tracer l'ensemble des points situés à une distance de 2 cm du point <i>O</i> . Quelle est la figure tracée?
2. Hachurer l'intérieur de la figure tracée à la question précédente. Quelle est la figure hachurée? O

Quadrilatères particuliers

À RETENIR 99

Définitions

- Un **polygone** est une figure fermée dont les côtés sont des segments.
- Un quadrilatère est un polygone à quatre côtés.

1. Parallélogrammes

À RETENIR 99

Définition

Un parallélogramme est un quadrilatère dont les côtés opposés sont deux à deux parallèles.

EXERCICE 6	
Sachant que $(AD) \parallel (BC)$ et $(AB) \parallel (DC)$, justifier que le quadrilatère $ABCD$ ci-contre est un parallélogramme.	A / D /
	$- \nearrow_B \qquad / C$

Voir la correction: https://mes-cours-de-maths.fr/cours/sixieme/droites-cercles/#correction-6.

2. Losanges

À RETENIR 99

Définition

- Un **polygone** est une figure fermée dont les côtés sont des segments.
- Un quadrilatère est un polygone à quatre côtés.
- Un **losange** est un quadrilatère dont les quatre côtés ont la même longueur.

EXEMPLE 🚦

Le quadrilatère *MARK* est un losange.

- On a MA = MK = RA = RK.
- Ses quatre côtés sont [MA], [AR], [RK] et [KM].
- Ses quatre sommets sont les points M, A, R et K.
- Ses deux diagonales sont [MR] et [AK].

EXERCICE 7

Construire un losange LUNE de 6 cm de côté, et tel que EU = 5 cm.

Voir la correction: https://mes-cours-de-maths.fr/cours/sixieme/droites-cercles/#correction-7.

3. Rectangles

À RETENIR 99

Définition

Un rectangle est un quadrilatère qui a quatre angles droits.

EXERCICE 8

En utilisant les points ci-dessous, tracer un rectangle.

√Voir la correction: https://mes-cours-de-maths.fr/cours/sixieme/droites-cercles/#correction-8.

À RETENIR 99

Propriété

Si un quadrilatère est un rectangle, alors ses côtés opposés sont deux à deux parallèles et de même longueur. En particulier, les rectangles sont des parallélogrammes.

4. Carrés

À RETENIR 99

Définition

Un **carré** est un quadrilatère qui a quatre angles droits et quatre côtés de même longueur. En particulier, les carrés sont des rectangles.

EXERCICE 9

En utilisant les points ci-dessous, tracer un carré.

◆Voir la correction: https://mes-cours-de-maths.fr/cours/sixieme/droites-cercles/#correction-9.

À RETENIR 99

Propriété

Si un quadrilatère est un carré, alors ses côtés opposés sont deux à deux parallèles.