

Connecting Low-Loss Subspace for Personalized Federated Learning

kakaoenterprise

Seok-Ju Hahn¹, Minwoo Jeong², Junghye Lee¹ ¹Ulsan National Institute of Science and Technology (UNIST), ²Kakao Enterprise

CIFAR10

Personalized Federated Learning (PFL)

The global objective of PFL

$$\min_{h_k \in \mathcal{H}} \frac{1}{K} \sum_{k=1}^{K} \mathcal{L}_{\mathcal{D}_k}(h_k, \mathcal{W}_k)$$

The local objective of PFL

$$\min_{\mathcal{W}_k} \frac{1}{n_k} \sum_{i=1}^{n_k} l\left(h_k\left(\mathbf{x}_i^{(k)}; \mathcal{W}_k\right), \mathbf{y}_i^{(k)}\right) + \Omega(\mathcal{W}_k)$$

Model Mixture-based PFL

Connectivity

• Two deep networks' local optimum <u>CAN BE CONNECTED</u> IN A PATH, and all solutions on the path have low-loss. (i.e., different optima can be connected to be a FLAT MINIMA – (mode) connectivity)

(Garipov et al., 2018; Draxler et al., 2018; Frankle et al., 2020)

 When the optimization trajectories of two or more deep networks are dissimilar (i.e., low cosine similarity), the ensemble performance is far higher.

(Fort et al., 2019; Wortsman et al., 2021)

SuPerFed: Proposed Method

1) Receive a global model from server as a federated model. (a local model has the same structure)

2) Mix two models instantly per every mini-batch (x, y).

$$\mathcal{W}(\lambda) = (1 - \lambda)\mathbf{w}^f + \lambda\mathbf{w}^l, \lambda \sim \text{Unif}(0,1)$$

3) Update each endpoint \mathbf{w}^f , \mathbf{w}^l at the same time with regularizations to induce the **connectivity**, while not derailing from the global update.

Experimental Results

Dataset

▲ Personalization

Pathological Non-IID (McMahan et al., 2017)

# clients	50	100	500	50	100	500	
# samples	960	480	96	800	400	80	c
FedAvg	95.69 ± 2.39	89.78 ± 11.30	96.04 ± 4.74	43.09 ± 24.56	36.19 ± 29.54	47.90 ± 25.05	F
FedProx	95.13 ± 2.67	93.25 ± 6.12	96.50 ± 4.52	49.01 ± 19.87	38.56 ± 28.11	48.60 ± 25.71	F
SCAFFOLD	95.50 ± 2.71	90.58 ± 10.13	96.60 ± 4.26	43.81 ± 24.30	36.31 ± 29.42	40.27 ± 26.90	S
LG-FedAvg	98.21 ± 1.28	97.52 ± 2.11	96.05 ± 5.02	89.03 ± 4.53	70.25 ± 35.66	78.52 ± 11.22	I
FedPer	99.23 ± 0.66	99.14 ± 0.93	98.67 ± 2.61	89.10 ± 5.41	87.99 ± 5.70	82.35 ± 9.85	F
APFL	99.40 ± 0.58	99.19 ± 0.92	98.98 ± 2.22	92.83 ± 3.47	91.73 ± 4.61	87.38 ± 9.39	P
pFedMe	81.10 ± 8.52	82.48 ± 7.62	81.96 ± 12.28	92.97 ± 3.07	92.07 ± 5.05	88.30 ± 8.53	p
Ditto	97.07 ± 1.38	97.13 ± 2.06	97.20 ± 3.72	85.53 ± 6.22	83.01 ± 5.62	84.45 ± 10.67	Γ
FedRep	99.11 ± 0.63	99.04 ± 1.02	97.94 ± 3.37	82.00 ± 5.41	81.27 ± 7.90	80.66 ± 11.00	F
SuPerFed-MM	99.45 ± 0.46	99.38 ± 0.93	99.24 ± 2.12	94.05 ± 3.18	93.25 ± 3.80	90.81 ± 9.35	S
SuPerFed-LM	99.48 ± 0.54	99.31 ± 1.09	98.83 ± 3.02	93.88 ± 3.55	93.20 ± 4.19	89.63 ± 11.11	S

▼ Visualization of a Global Model's Loss Surface (CIFAR10 with 100 clients)

MNIST

▼ Effects of Phase-wise Learning (CIFAR10 with 100 clients)

 $\mathcal{L}(h, \mathcal{W}) = l(h(\mathbf{x}), \mathbf{y}; \mathcal{W}(\lambda)) + \mu \|\mathbf{w}^f - \mathbf{w}^g\|^2 + \nu \cos^2(\mathbf{w}^f, \mathbf{w}^l)$ $\lambda \sim \text{Unif}(0,1)$ $\mu \|\mathbf{w}^f - \mathbf{w}^g\|^2$ $\nu \cos^2(\mathbf{w}^f, \mathbf{w}^l)$ Orthogonality Proximity Regularization Regularization Loss $\mathcal{W}(0.8)$ High W(1) $\mathcal{W}(0)$ Low

LEAF Benchmark (Caldas et al., 2018)

Dirichlet distribution-based non-IID (Hsu et al., 2019)

	=												
	Dataset	CIFAR100		TinyImageNet		Dataset	FEMNIST		Shakespeare				
)	# clients	100		200		# clients	730		660				
	concentration (α)	1	10	100	1	10	100	Accuracy	Top-1	Top-5	Top-1	Top-5	
25.05	FedAvg	58.12 ± 7.06	59.04 ± 7.19	58.49 ± 5.27	46.61 ± 5.64	48.90 ± 5.50	48.90 ± 5.40	FedAvg	80.12 ± 12.01	98.74 ± 2.97	50.90 ± 7.85	80.15 ± 7.87	
25.71	FedProx	57.71 ± 6.79	58.24 ± 5.94	58.75 ± 5.56	47.37 ± 5.94	47.73 ± 5.94	48.97 ± 5.02	FedProx	80.23 ± 11.88	98.73 ± 2.94	51.33 ± 7.54	80.31 ± 6.95	
26.90	SCAFFOLD	51.16 ± 6.79	51.40 ± 5.22	52.90 ± 4.89	46.54 ± 5.49	48.77 ± 5.49	48.27 ± 5.32	SCAFFOLD	80.03 ± 11.78	98.85 ± 2.77	50.76 ± 8.01	80.43 ± 7.09	
11.22	LG-FedAvg	28.88 ± 5.64	21.25 ± 4.64	20.05 ± 4.61	14.70 ± 3.84	9.86 ± 3.13	9.25 ± 2.89	LG-FedAvg	50.84 ± 20.97	75.11 ± 21.49	33.88 ± 10.28	62.84 ± 13.16	
9.85	FedPer	46.78 ± 7.63	35.73 ± 6.80	35.52 ± 6.58	21.90 ± 4.71	11.10 ± 3.19	9.63 ± 3.12	FedPer	73.79 ± 14.10	86.39 ± 14.70	45.82 ± 8.10	75.68 ± 9.25	
9.39	APFL	61.13 ± 6.86	56.90 ± 7.05	55.43 ± 5.45	41.98 ± 5.94	34.74 ± 5.14	34.23 ± 5.07	APFL	84.85 ± 8.83	98.83 ± 2.73	54.08 ± 8.31	83.32 ± 6.22	
8.53	pFedMe	19.00 ± 5.37	17.94 ± 4.72	18.28 ± 3.41	6.05 ± 2.84	8.01 ± 2.92	7.69 ± 2.41	pFedMe	5.98 ± 4.55	24.64 ± 9.43	32.29 ± 6.64	63.12 ± 8.00	
10.67	Ditto	60.04 ± 6.82	58.55 ± 7.12	58.73 ± 5.39	46.36 ± 5.44	43.84 ± 5.44	43.11 ± 5.35	Ditto	64.61 ± 31.49	81.14 ± 28.56	49.04 ± 10.22	78.14 ± 12.61	
11.00	FedRep	38.49 ± 6.65	26.61 ± 5.20	24.50 ± 4.21	18.67 ± 4.66	9.23 ± 2.84	8.09 ± 2.83	FedRep	59.27 ± 15.72	70.42 ± 15.82	38.15 ± 9.54	68.65 ± 12.50	
9.35	SuPerFed-MM	60.14 ± 6.24	58.32 ± 6.25	59.08 ± 5.12	50.07 ± 5.73	49.86 ± 5.03	49.73 ± 4.84	SuPerFed-MM	85.20 ± 8.40	99.16 ± 2.13	54.52 ± 7.54	84.27 ± 6.00	
11.11	SuPerFed-LM	62.50 ± 6.34	61.64 ± 6.23	59.05 ± 5.59	47.28 ± 5.19	48.98 ± 4.79	49.29 ± 4.82	SuPerFed-LM	83.36 ± 9.61	98.81 ± 2.58	54.52 ± 7.54	83.97 ± 5.72	

▼ Ablation Studies (CIFAR10 with 100 clients; Left: SuPerFed-MM, Right: SuPerFed-LM)

