$(T(t))_{t\geq 0}$ is a semigroup which is <u>not positive</u>. Nevertheless its generator A satisfies Kato's inequality. Even the equality is valid; i.e.,

(3.10) $\langle (\text{sign f}) \text{ Af}, \phi \rangle = \langle |f|, A'\phi \rangle$ for all $f \in D(A)$, $0 \leq \phi \in D(A')$.

Proof. It is not difficult to see that

$$D(A') = \{ \phi \in AC[0,1] : \phi' \in L^{\mathbf{q}}[0,1] , \phi(0) = d\phi(1) \}$$

$$A'\phi = -\phi' \text{ for all } \phi \in D(A') .$$

where 1/p+1/q=1 . Let $\phi\in D(A')_+$. Since d<0 , it follows that $\phi(0)=\phi(1)=0$. Hence for $f\in D(A)$,

<(sign f)Af,
$$\phi$$
> = <(sign f)f', ϕ > = <|f|', ϕ >
= $\int_0^1 |f|'(x) \phi(x) dx$
= |f(1)|\phi(1) - |f(0)|\phi(0) - $\int_0^1 |f(x)| \phi'(x) dx$
= |f(1)|\phi(1) - |f(0)|\phi(0) + <|f|, A'\phi>
= <|f|, A'\phi>

Remark 3.15. The equality (3.10) does not hold for all $\phi \in D(A')$. In fact, this would imply that $|f| \in D(A)$ and (sign f)Af = A|f| for all $f \in D(A)$. Thus by Cor. 5.8 below the semigroup would be positive. The reason why in this example the equality holds will be explained from a more general point of view in Section 5 (see Rem.5.12).

Relation (3.10) shows that A also satisfies Kato's inequality formally in the strong sense. In order to formulate this more precisely, observe that it follows from (3.8) that $D(A_{max}) = D(A) + \mathbb{R} \cdot e_{\lambda}$ (for any fixed $0 < \lambda \in \rho(A)$). Thus the extension A_{max} of A satisfies the following.

- (3.12) A_{max} is closed.
- (3.13) $D(A_{max})$ is a sublattice of E.
- (3.14) D(A) has codimension one in $D(A_{max})$.
- (3.15) (sign f) Af = $A_{\text{max}} |f|$ for all $f \in D(A)$.

It is also remarkable that there exists a dense sublattice $D_O := \{f \in D(A) : f(0) = f(1) = 0\}$ of E which is included in D(A). But D_O is not a core of A (this would imply the positivity of the semigroup by Thm.1.8 if $|d| \le 1$).