E.T.S D'ENGINYERIA DE TELECOMUNICACIÓ DE BARCELONA

Senyals i Sistemes I (G30), Novembre, 2006

 $Antonio\ Bona fonte$

1. (4 puntos) Considere el siguiente esquema:

(a) Analice la linealidad de los sistemas S1, S2 y S3.

Solución: Los tres sistemas son lineales, al ser la interconexión en cascada o en paralelo de sistemas lineales. En efecto:

1. Los multiplicadores son lineales; en general, sea $T[x(t)] = w(t) \cdot x(t)$

$$T[\alpha x_1(t) + \beta x_2(t)] = w(t) \cdot (\alpha x_1(t) + \beta x_2(t))$$

= $\alpha w(t)x_1(t) + \beta w(t)x_2(t) = \alpha T[x_1(t)] + \beta T[x_2(t)]$

2. El alisador es lineal, al serlo la integral:

$$T[\alpha x_1(t) + \beta x_2(t)] = \int_{t-2}^t (\alpha x_1(\tau) + \beta x_2(\tau)) d\tau$$
$$= \alpha \int_{t-2}^t x_1(\tau) d\tau + \beta \int_{t-2}^t x_2(\tau) d\tau = \alpha T[x_1(t)] + \beta T[x_2(t)]$$

3. La conexión en cascada de dos sistemas lineales, es lineal: sea $T[x(t)] = T_2[T_1[x(t)]]$, con T_1 y T_2 , sistemas lineales.

Como $T_1[.]$ es lineal,

$$T[\alpha x_1(t) + \beta x_2(t)] = T_2 [T_1[\alpha x_1(t) + \beta x_2(t)]]$$

= $T_2 [\alpha T_1[x_1(t)] + \beta T_1[x_2(t)]]$

Y al ser $T_2[.]$ lineal,

$$T[\alpha x_1(t) + \beta x_2(t)] = \dots$$

$$= \alpha T_2 [T_1[x_1(t)]] + \beta T_2 [T_1[x_2(t)]]$$

$$= \alpha T[x_1(t)] + \beta T[x_2(t)]$$

4. Y la conexión en paralelo de dos sistemas lineales, obviamente es lineal: sea $T[x(t)] = T_1[x(t)] + T_2[x(t)]$, con $T_1[.]$ y $T_2[.]$ lineales:

$$\begin{split} T[\alpha \, x_1(t) + \beta \, x_2(t)] &= T_1[\alpha \, x_1(t) + \beta \, x_2(t)] + T_2[\alpha \, x_1(t) + \beta \, x_2(t)] \\ &= \alpha \, T_1[x_1(t)] + \beta \, T_1[x_2(t)] + \alpha \, T_2[x_1(t)] + \beta \, T_2[x_2(t)] \\ &= \alpha \, \left(T_1[x_1(t)] + T_2[x_1(t)] \right) + \beta \, \left(T_1[x_2(t)] + T_2[x_2(t)] \right) \\ &= \alpha \, T[x_1(t)] + \beta \, T[x_2(t)] \end{split}$$

v1.1

(b) Estudie la invarianza de los sistemas S1 y S2

Solución:

1. Sabemos que el alisador $T_a[x(t)] = \int_{t-2}^t x(\tau) d\tau$, es invariante. En efecto, llamando $x_a(t) = T_a[x(t)]$,

$$T_a[x(t-t_0)] = \int_{t-2}^t x(\tau - t_0) d\tau$$

Mediante el cambio de variable, $\lambda = \tau - t_0$,

$$T_a[x(t-t_0)] = \int_{t-t_0-2}^{t-t_0} x(\lambda) \, d\lambda = x_a(t-t_0)$$

Por tanto, el alisador queda caracterizado por la respuesta impulsional,

$$h_a(t) = T[\delta(t)] = \int_{t-2}^{t} \delta(\tau) d\tau = \Pi\left(\frac{t-1}{2}\right)$$

2. Sistema 1: un multiplicador (v(t) = 1 + t/2), seguido de un SLI $(h_a(t))$. Llamando $z_1(t) = T_{S1}[x(t)]$, tenemos que la salida a una entrada retardada t_0 es:

$$T_{S1}[x(t-t_0)] = (v(t) \cdot x(t-t_0)) * h_a(t)$$

Esta expresión es distinta a retardar la salida t_0 :

$$z_1(t - t_0) = ((v(t) \cdot x(t)) * h_a(t)) * \delta(t - t_0) = (v(t - t_0) \cdot x(t - t_0)) * h_a(t)$$

El sistema S1 es variante.

3. Sistema 2: Un SLI $(h_a(t))$, seguida de un multiplicador (w(t) = t/2). Llamando $z_2(t) = T_{S2}[x(t)]$, y a la salida del alisador $x_a(t) = x(t) * h_a(t)$, tenemos que la salida a una entrada retardada t_0 es:

$$T_{S2}[x(t-t_0)] = (x(t-t_0) * h_a(t)) \cdot w(t) = x_a(t-t_0) \cdot w(t)$$

Esta expresión es distinta a retardar la salida t_0 :

$$z_2(t-t_0) = ((x(t)*h_a(t)) \cdot w(t)) * \delta(t-t_0) = (x_a(t) \cdot w(t)) * \delta(t-t_0) = x_a(t-t_0) \cdot w(t-t_0)$$

El sistema S2 es variante.

(c) Calcule la respuesta del sistema S3 a la señal $\delta(t)$ y a la señal $\delta(t-t_0)$. El sistema S3, ¿queda caracterizado por $h(t) = T[\delta(t)]$? Justifique su respuesta.

Como puede verse en las figuras,

$$T[\delta(t)] = \left(1 - \frac{t}{2}\right) \cdot h_a(t) = \left(1 - \frac{t}{2}\right) \cdot \Pi\left(\frac{t-1}{2}\right)$$
$$T[\delta(t-t_0)] = \left(1 - \frac{t-t_0}{2}\right) \cdot \Pi\left(\frac{t-t_0-1}{2}\right) = T[\delta(t)] * \delta(t-t_0)$$

Al ser lineal, y cumplirse que $T[\delta(t-t_0)] = T[\delta(t)] * \delta(t-t_0)$, el sistema es invariante. En efecto, para buscar la relación entrada/salida de sistemas lineales e invariantes, partimos de:

$$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t - \tau)d\tau$$

Y como la integral y el sistema son lineales,

$$T[x(t)] = \int_{-\infty}^{\infty} x(\tau)T[\delta(t-\tau)]d\tau$$

Y si se cumple, como en el sistema S3, que la respuesta a $\delta(t-t_0)$, es la salida a $\delta(t)$, retrasada t_0 , podemos definir la respuesta impulsional, $h(t) = T[\delta(t)]$, y obtenemos la ecuación de convolución, que caracteriza a los sistemas lineales e invariantes.

$$T[x(t]) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = x(t) * h(t)$$

Por tanto, al ser S3 un sistema lineal e invariante, podemos definir su respuesta impulsional, $h(t) = T[\delta(t)]$, que caracteriza al sistema, $h(t) = \left(1 - \frac{t}{2}\right) \cdot \Pi\left(\frac{t-1}{2}\right)$

Considere ahora un sistema lineal e invariante, definido por $h(t) = \left(1 - \frac{t}{2}\right) \cdot \prod \left(\frac{t-1}{2}\right)$

(d) ¿Es estable? ¿Es causal? Justifique sus repuestas.

Solución: A la vista de la figura que representa h(t), puede afirmarse que es causal (h(t) es nula para t < 0) y estable, ya que la integral de |h(t)|, está acotada $(\int_{-\infty}^{\infty} |h(t)| dt = \frac{2 \cdot 1}{2} = 1)$.

(e) Calcule la respuesta si la entrada es $x(t) = \Pi\left(\frac{t-1}{2}\right)$

Solución:

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t - \tau)h(\tau)d\tau$$

Para resolver la integral, debemos considerar los distintos valores de t, para tener en cuenta los intervalos de la integral. Con el apoyo de la gráfica siguiente vemos:

- 1. Si t < 0, y(t) = 0
- 2. Si 0 < t < 2,

$$y(t) = \int_0^t h(\tau)d\tau = \int_0^t \left(1 - \frac{\tau}{2}\right)d\tau = \tau - \frac{\tau^2}{4}\Big|_0^t = t - \frac{t^2}{4}$$

3. Si 2 < t < 4,

$$y(t) = \int_{t-2}^{2} h(\tau)d\tau = \int_{t-2}^{2} \left(1 - \frac{\tau}{2}\right)d\tau = \tau - \frac{\tau^{2}}{4} \Big|_{t-2}^{2} = \frac{t^{2}}{4} - 2t + 4$$

4. Si t > 4, y(t) = 0

2. (a) (3 puntos) Demuestre la transformada de Fourier de $x(t) \cdot \cos(2\pi f_0 t + \phi)$

Solución:

$$\mathcal{F}\{x(t) \cdot \cos(2\pi f_0 t + \phi)\} = \int_{-\infty}^{\infty} x(t) \cdot \cos(2\pi f_0 t + \phi) e^{-j2\pi f t} dt$$

$$= \int_{-\infty}^{\infty} x(t) \frac{e^{j(2\pi f_0 t + \phi)} + e^{-j(2\pi f_0 t + \phi)}}{2} e^{-j2\pi f t} dt$$

$$= \frac{e^{j\phi}}{2} \int_{-\infty}^{\infty} x(t) e^{j2\pi f_0 t} e^{-j2\pi f t} dt + \frac{e^{-j\phi}}{2} \int_{-\infty}^{\infty} x(t) e^{-j2\pi f_0 t} e^{-j2\pi f t} dt$$

$$= \frac{e^{j\phi}}{2} \int_{-\infty}^{\infty} x(t) e^{-j2\pi (f - f_0)t} dt + \frac{e^{-j\phi}}{2} \int_{-\infty}^{\infty} x(t) e^{-j2\pi (f + f_0)t} dt$$

Cada término es la transformada de X(f), pero evaluada en una frecuencia distinta:

$$\mathcal{F}\{x(t)\cdot\cos(2\pi f_0 t + \phi)\} = \frac{e^{j\phi}}{2}X(f - f_0) + \frac{e^{-j\phi}}{2}X(f + f_0)$$

Sean $s_1(t)$ y $s_2(t)$ dos señales reales, de ancho de banda B, que se aplican al siguiente esquema:

(b) Calcule Z(f) y representela esquemáticamente.

(c) Calcule y represente esquemáticamente S(f). ¿Podría recuperar $s_1(t)$ o $s_2(t)$ escogiendo adecuadamente ϕ ?

Solución: La señal, antes de pasar por el filtro, $S_a(f)$, es:

$$S_a(f) = \frac{e^{j\phi}}{2} Z(f - f_0) + \frac{e^{-j\phi}}{2} Z(f + f_0)$$

$$= \frac{e^{j\phi}}{4} S_1(f - 2f_0) + \frac{e^{j\phi}}{4} S_1(f) + \frac{e^{j(\phi - \frac{\pi}{2})}}{4} S_2(f - 2f_0) + \frac{e^{j(\phi + \frac{\pi}{2})}}{4} S_2(f)$$

$$+ \frac{e^{-j\phi}}{4} S_1(f) + \frac{e^{-j\phi}}{4} S_1(f + 2f_0) + \frac{e^{-j(\phi + \frac{\pi}{2})}}{4} S_2(f) + \frac{e^{-j(\phi - \frac{\pi}{2})}}{4} S_2(f + 2f_0)$$

El filtro elimina las componentes de alta frecuencia, centradas en $\pm 2f_0$, por lo que la salida, considerando la ganancia 2 del filtro, es:

$$S(f) = S_1(f) \left(\frac{e^{j\phi}}{2} + \frac{e^{-j\phi}}{2} \right) + S_2(f) \left(\frac{e^{j(\phi + \frac{\pi}{2})}}{2} + \frac{e^{-j(\phi + \frac{\pi}{2})}}{2} \right)$$
$$= S_1(f) \cos(\phi) + S_2(f) \cos(\phi + \frac{\pi}{2})$$
$$= S_1(f) \cos(\phi) - S_2(f) \sin(\phi)$$

La salida s(t), es una mezcla de las señales de entrada,

$$s(t) = s_1(t)\cos(\phi) - s_2(t)\sin(\phi)$$

Si $\phi = 0$, la salida es $s_1(t)$ y si $\phi = -\frac{\pi}{2}$, la salida es $s_2(t)$.

Este esquema permite utilizar ancho de banda 2B para enviar dos señales de ancho de banda B. No requiere filtros muy selectivos. Pero el valor de la fase del demodulador, ϕ , es muy crítica u obtenemos interferencias de la otra señal.

3. (3 puntos) Sea una señal $x(t) = 2\cos(2\pi 500t) + \cos(2\pi 800t)$ que se muestrea a frecuencia de muestreo $f_m = 1/T_m$. El esquema siguiente representa una reconstrucción ideal a partir de muestras de x(t).

$$x_m(t) = \sum_{n=-\infty}^{\infty} x(nT_m)\delta(t - nT_m)$$

$$T_m$$

$$f_m/2 f$$

(a) Demuestre que el esquema permite recuperar a la salida x(t), indicando el valor que debe tener la frecuencia de muestreo f_m .

Solución: Éste es el teorema del muestreo:

$$x_m(t) = \sum_{n = -\infty}^{\infty} x(nT_m)\delta(t - nT_m) = \sum_{n = -\infty}^{\infty} x(t)\delta(t - nT_m)$$
$$= x(t) \cdot \sum_{n = -\infty}^{\infty} \delta(t - nT_m)$$

Su transformada de Fourier es:

$$X_m(f) = X(f) * \mathcal{F} \left\{ \sum_{n = -\infty}^{\infty} \delta(t - nT_m) \right\} = X(f) * \frac{1}{T_m} \sum_{n = -\infty}^{\infty} \delta(f - nf_m)$$
$$= \frac{1}{T_m} \sum_{n = -\infty}^{\infty} X(f) * \delta(f - nf_m) = \frac{1}{T_m} \sum_{n = -\infty}^{\infty} X(f - nf_m)$$

La transformada de Fourier de $x_m(t)$ consiste en copias de X(f) separadas en frecuencia.

Si la señal es paso bajo, es decir, X(f) = 0 si |f| > B, es posible recuperar la señal X(f), (término n = 0), con un filtro paso bajo, siempre que las copias no se solapen. La copia más próxima corresponde a $X(f - f_m)$, y ocupa las frecuencias $[f_m - B, f_m + B]$. Por tanto, para que no se solape con la señal, se necesita que $f_m - B$ sea mayor que B. Éste es el teorema de Nyquist: podemos recuperar una señal paso bajo, a partir de sus muestras, si la frecuencia de muestreo, $f_m > 2B$.

Para la señal del problema, B=800, y la frecuencia de muestreo debe ser mayor que 1600 Hz.

Suponga que la frecuencia de muestreo es 1500Hz

(b) Represente $X_m(f)$. Calcule la salida, y(t).

Solución: Como la frecuencia de muestreo es menos que 1,6 kHz, los distintos componentes frecuenciales están entremezclados, tal y como se aprecia en la figura. Al filtrar a frecuencia $\frac{f_m}{2} = 750 \text{ Hz}$, se perderá la frecuencia de 800 Hz, y aparecerá una frecuencia debido al *aliassing*.

Al aplicar el filtro sólo nos quedan los componentes de frecuencia menor que 750Hz, y teniendo en cuenta la ganancia:

$$Y(f) = \delta(f - 500) + \frac{1}{2}\delta(f + 700) + \delta(f + 500) + \frac{1}{2}\delta(f + 700)$$

Y por tanto, la salida es $y(t) = 2\cos(2\pi 500t) + \cos(2\pi 700t)$.

Al muestrear por debajo de la frecuencia de Nyquist, tenemos aliassing, es decir, las frecuencias que no pueden representarse (800Hz), aparecen en la salida en otras frecuencias por debajo de $\frac{f_m}{2}$, en este caso 700Hz.

(c) La señal x(t), ¿es periódica? ¿Y $x_m(t)$? En caso afirmativo, indicar el valor del periodo.

Solución: La transformada de Fourier de una señal periódica consiste en componentes *armónicos*, esto es, funciones $\delta(f-kf_0)$. La frecuencia fundamental, inversa del periodo, es el mayor valor de f_0 . Las dos señales son periódicas y con $f_0=100$ (500 = 5 × 100, 800 = 8 × 100, 700 = 7 × 100, $1000=10\times100,\ldots$). El periodo es por tanto $T=\frac{1}{f_0}=10\,\mathrm{msec}$.