Θέμα

Ελαχιστοποίηση συνάρτησης πολλών μεταβλητών - Εξελικτικοί αλγόριθμοι

Θεωρείστε το οδικό δίκτυο του Σχ. 1. Οι κόμβοι παριστάνουν οδικές διασταυρώσεις και τα βέλη κυκλοφοριακές κατευθύνσεις. Οι αριθμοί με μαύρο χρώμα ορίζουν την αρίθμηση των ακμών. Αν υπάρχουν λίγα οχήματα στους δρόμους οι χρόνοι κίνησης μεταξύ των κόμβων θεωρούνται σταθεροί. Καθώς όμως τα οχήματα αυξάνονται στο δίκτυο οι χρόνοι κίνησης αυξάνονται δραματικά. Έστω t_i [min] ο σταθερός χρόνος που απαιτείται για να κινηθούμε στο δρόμο i όταν η κίνηση είναι ασθενής. Έστω επίσης x_i [οχ./min] ο ρυθμός διέλευσης οχημάτων στο δρόμο i και c_i [οχ./min] ο μέγιστος δυνατός ρυθμός διέλευσης οχημάτων από τον ίδιο δρόμο. Ο χρόνος κίνησης στο δρόμο i συναρτήσει του αριθμού των οχημάτων x_i είναι:

$$T_i(x_i) = t_i + \alpha_i \frac{x_i}{1 - \frac{x_i}{c_i}} [min].$$

Παρατηρήστε πως $\lim_{x_{i\to 0}} T_i(x_i) = t_i$ και $\lim_{x_i\to c_i} T_i(x_i) = +\infty$.

Επιθυμούμε να ελαχιστοποιήσουμε ως προς x_i τον συνολικό χρόνο διάσχισης του δικτύου του Σχ. 1 ανά όχημα για ρυθμό εισερχόμενων οχημάτων ίσο με V [οχ./min]. Για να αποφύγουμε την συγκέντρωση οχημάτων στους κόμβους του δικτύου είναι επιθυμητό όσα οχήματα εισέρχονται σε κάθε κόμβο τόσα και να εξέρχονται.

Στις ακμές του δικτύου αναγράφεται με κόκκινο χρώμα η τιμή του c_i . Για παράδειγμα $c_1=54.13$. Θεωρείστε επίσης πως $a_i=1.25, i=1,\ldots,5,$ $a_i=1.5, i=6,\ldots 10,$ $a_i=1,$ $i=11,\ldots,17,$ και ότι V=100.

Θέμα 1. Να δοθεί η μαθηματική διατύπωση του προβλήματος.

Θέμα 2. Να λυθεί το πρόβλημα κάνοντας χρήση γενετικών αλγορίθμων στο Matlab.

Θέμα 3. Θεωρείστε ότι ο ρυθμός εισερχομένων οχημάτων V μπορεί να μεταβάλλεται μέχρι $\pm 15\%$ της αρχικής του τιμής. Να επιλυθεί το πρόβλημα εκ' νέου με την ίδια μεθοδολογία βελτιστοποίησης.

Σχήμα 1. Το οδικό δίκτυο.

- -Να παραδώσετε όλους τους κώδικες των προγραμμάτων που γράψατε (.m-files) και μια αναφορά (.pdf) στην οποία θα καταγράψετε τα αποτελέσματα και όλες τις παρατηρήσεις σας.
- -Να ανεβάσετε στο elearning ένα αρχείο .zip ή .rar που να εμπεριέχει όλα τα αρχεία σας (κώδικες και αναφορά) με ονομασία 'Lastname_Firstname_AEM_project'.