- JointPlot
 - Does a histogram for each variable and scatterplot for both
 - sns.jointplot(data=df, x=col1, y=col2)
- Showing the graph
 - use matplotlib show()
- Formatting and Looks
 - color=
 - o line color
 - linewidth=
 - Change line width
- Tidy dataset
 - Every column is a variable and every row is an observation

Regression

- Two types
 - Univariate
 - Multivariate
- Definition
 - Predicting a continuous variable
 - Modeling the patterns in the data to try to predict that variable
 - A form of supervised machine learning
 - The independent variables are called the dimensions
 - univariate has two dimensions (x and y)
 - multivariate will have more than two
- Goal
 - A function that mimics/models a relationship between one or more independent/feature variables
 - i.e., the best choice of values for the parameters
 - \circ E.g., $y = c_0 + c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$
- Assumptions
 - The dependent variable is continuous and a linear function to some approximation of independent variables
- Parameters
 - the intercept and coefficients
- Univariate
 - Function

- b is y-intercept
- m is slope (rise / run)
- Also as, $y_i = \alpha x_i + \beta + \epsilon_i$
 - This equation will get us back all our data points. There is an ε for each data point. It is the error.
- Goal
 - Minimize error between actual values and estimated values
- Univariate is the easiest way to demonstrate what regression does but it is rarely used in the field

Multivariate

- o Multiple independent input/feature variables
- o Produces one dependent variable
- Visualization
 - In two dimensions (x and y), it's a line
 - In three dimensions (x1, x2, and y), it's a plane
- $\circ y = c_0 + c_1 x_1 + \ldots + c_n x_n$
 - x are each variables
 - c are the constants that the regression algorithm finds to minimize error
 - they can be thought of as the weights for each variable

Polynomial Regression

- Definition
 - models non-linear relationship of the independent and dependent variables
 - considered a linear model
 - the x^2 is considered a feature

Evaluation of regression models

- Residual
 - This is the error. The distance between the actual/observed value and the predicted value
- Sum of squared errors (SSE)
 - a.k.a. residual sum of squares, sum of squared residuals
 - a small SSE indicates a tight fit/good model
 - Squared error is $(actual\ value\ -\ predicted\ value)^2$
 - Square it to account for positives and negatives
 - In Excel, we are going to look at the Total Sum of Squares.

- If we start changing variables or the y-intercept, we can compare the sum of squares of different regressions to see which is better
- Explained (Regression Sum of Squares)
 - How much of the variation in the dependent variable the model explains
 - sum of (predicted value y-mean) squared
- Residual Sum of Squares
 - How much of the dependent variable's variation the model did not explain
 - sum of (actual value predicted value) squared
 - smaller mean better fitting model
 - larger means poorer fitting model
 - 0 is a perfect fit
- Total Sum of Squares
 - Explained + Residual Sum of Squares
- Mean Squared Error (MSE)
 - SSE/n
 - SSE will have a much larger number if we have big outliers
 - can be compared among different models to see which is better
- R-squared
 - fraction of total variation in the dependent variable the model captures
 - Coefficient of determination
 - Does your error mean something. If it's high, we are capturing good information. If it's low, we need better information
 - can be compared among different models to see which is better
 - $R2 \times 100$ = amount of variation in y explained by x
- F-statistic
 - Less than 0.05 is good
 - Greater than .05 means we need to use other independent variables
 - can be compared among different models to see which is better
- P-values
 - All p-values should be below 0.05.
 - Remove a p-value if it's greater than 0.05
 - can be compared among different models to see which is better
- Confidence interval
 - the percentage of time the indicated parameter will fall within the range

- narrow means more confidence; wide means less confidence
- This is the shaded portion in Seaborn
- It's like the funnel in a hurricane prediction map
- Residual plot
 - Will tell us how good our model is
 - We want to see randomness. If we don't, we need to try something else (e.g., polynomial regression, new y-intercept, or adding a new variable)
 - can be compared among different models to see which is better

Regression algorithms

- Ordinary Least Squares
 - Minimizes sum of squared errors
 - Pros
 - fast
 - not complex
 - useful when there's not a lot of data
 - simple to explain to stakeholders
 - Cons
 - Very sensitive to outliers. Might want to remove them when modeling the data or replace them with something else
 - Steps
 - 1. Compute parameters
 - 2. Predict \hat{y} for each observation
 - 3. Measure difference $\hat{y} y$ (residual)
 - 4. Sum of squared difference -> error
- Stepwise Regression
 - Will do a regression for each variable and rank them in terms of the amount of information we get from them
 - x1 might get us .5 of information
 - x2 might get us up to .6
 - x3 might get us up to .7
 - and we might stop here if this is good enough if x4, x5, etc don't get us much farther
 - Some criteria are laid down at the start for use in ranking variables
 - Options
 - forward selection
 - backward elimination
 - Pros

- Faster
- Less prone to overfitting
- Transparent process that gives insights
- Cons
 - May include only one of two highly correlated independent variables
 - Risk of overfitting
 - Can't account for specialized knowledge of DS
 - "It is important to note that charting the individual predictors against the response is often misleading because these do not account for other predictors in the model."
- Training and test
 - o if we have a small amount of data, we may want a 80-20. if we have a lot of data, we could do 60-40 or 70-30
- Regression in Python
 - Example
 - 1. Plan
 - Goals
 - predict final grade
 - stakeholders are students and administration
 - Deliverables
 - Presentation
 - Data
 - Data needed
 - grades (current and previous)
 - attendance
 - participation
 - Data I have: exam 1 and 2
 - o target variable: final grade
 - Steps
 - 1. Create a linear object model
 - 2. Fit that object to training data -> function with coefficients
 - 3. Transform/predict on training data -> predictions
 - 4. Evaluate results -> SSE
 - 5. Transform/predict on test data -> predictions
 - 6. Evaluate results
 - Steps in more detail
 - 1. Prepare the Environment

- imports
 - pandas
 - scipy.stats
 - matplotlib.pyplot
 - seaborn
 - statsmodels.api
 - sklearn.model_selection
 - sklearn.linear_model
 - sklearn.metrics
- 2. Pandas: read a local csv
 - use pd.read_csv()
- 3. Pandas: sample and summarize
 - df.shape
 - df.head()
 - df.info()
 - df.describe()
 - stats.iqr()
 - range
- 4. Pandas: ensure no null values
 - df.isnull().sum()
 - df.columns[df.isnull().any()]
- 5. Distribution, Skewness, Normalization, Standardization
 - histogram of independent variables
 - melt dataframe and use seaborn's FacetGrid
 - OR use matplotlib and subplots
 - boxplot of independent variables
 - sns.boxplot()
- 6. SKlearn: split into test/train
 - 1. drop all columns (including target variable) except those holding independent variables
 - 2. extract dataframe of just target variable
 - 3. split the data using model_selection.train_test_split
 - set a random state other than 0 to ensure reproducibility; 0 means random everytime
 - 4. ensure split was done correctly
 - # of rows in indep var and dep var in training and test data sets are equal
 - # of cols in training and test data sets are the same
 - 5. concatenate into two dataframes: train and test

- 7. Matplotlib & Seaborn: Explore
 - box plts, heatmaps, histograms, density plots, feature or correlation plots
 - Use
 - sns.jointplot()
 - annotate with Pearson's r
 - sns.PairGrid()
 - sns.heatmap()
 - compare independent variables with each other and with the dependent variable to find correlations
- 8. Scipy: Pearson's correlation
 - create a dictionary of independent var: pearson's r
 - use stats.pearsonr()
- 9. Statsmodels: Feature Selection
 - Ordinary Least Squares
 - use sm.OLS()
- 10. Scikit-Learn: Fit Linear Regression Models, In-Sample Predictions
 - 1. Create linear regression object
 - LinearRegression()
 - 2. Fit/Train the model
 - o model parameters are learned from the training data
 - Im.fit() on the independent variables
 - write the regression function
 - 3. In-sample prediction
 - Im.predict() on the independent variable(s) in the training data
- 11. Scikit-Learn: In-Sample Evaluations
 - 1. Train/in-sample evaluations
 - mean squared error
 - mean_squared_error()
 - r-squared
 - r2_score
 - 2. Compare models
 - melt the dataframe and do an sns.relplot()
 - draw a dotted line representing the perfect prediction
 - not sure how this is possible

- 12. Scikit-Learn: Make any changes needed & repeat 9-11 as needed
- 13. Scikit-Learn: Out-of-sample predictions using best model
 - 1. Predict dependent variable
 - Im.predict() on the test data independent variables
 - 2. Evaluate performance
 - mean_squared_error
 - o r2_score
 - 3. Plot Residuals
 - o plt. scatter()
 - o plt.hlines() to draw a horizontal line along x-axis
- Reproducible research
 - set the random seed to any number we want; just be consistent so the results are reproducible
- Meshing training and test data
 - Maggie does this and sees it in practice, instead of keeping four separate variables (X_train, y_train, X_test, y_test)
 - pd.concat([X_train, y_train], axis=1)
- Verifying data preparation
 - the number of rows in both the x and y training data set are equal
 - the number of rows in both the x and y testing data set are equal
 - the number of columns in the training and test data sets are the same
 - the training data set is 80% of the original data, the test set is 20%
- SciPy
 - Pearson-R
 - pearsonr(series1, series2)
- Scikit-Learn Regression
 - Create linear regression object
 - Fit/train the model
 - Look at intercept and coefficients
 - Use model to make predictions (Im.predict)
 - Evaluate performance of model
 - calculate mean squared error and R2
 - compare MSE and R2 to previous models

Modeling

Overfitting