

Circuitos limitadores: Vamos explicar o limitador ou clipper positivo

. Se
$$V_{in} > 0.7 \text{ V} \Rightarrow \text{D ON} \Rightarrow V_{out} = 0.7 \text{ V}$$

. Se
$$V_{in} < 0.7 \text{ V} \Rightarrow \text{D OFF} \Rightarrow i=0 \Rightarrow \text{R}_{s} \text{i}=0 \Rightarrow \text{V}_{out} = \text{V}_{in}$$

Circuito limitador simples Positivo: Negativo: v_0 v_1 v_2 v_3 v_4 v_2 v_4 v_5 Diodos práticos (b)

Circuito limitador simples, positivo e com *bias*:

Limitador ou clipper positivo com carga:

Admite-se que R_L seja muito grande ($R_L \rightarrow \infty$). Neste caso a influência da carga não é relevante.

No entanto, à medida que a resistência de carga R_L fica pequena o comportamento do circuito sofre perturbações. Com que intensidade??

Circuito limitador duplo com diodo convencional:

Circuito limitador duplo com diodo zener:

Circuitos limitadores: Aplicações em sistemas de comunicação

Sistema de comunicação por fios

(Deve haver um amplificador entre o microfone e o alto-falante)

Sistema de comunicação sem fio:

A transmissão ocorre pelo canal atmosférico (o ar)

Torna-se necessário modular o sinal elétrico original!

Uso do limitador duplo para recuperar o sinal de FM:

Isto será estudado em Princípios de Comunicação.

O sinal FM recebido contém AM residual

Sinal FM recebido (distorcido)

Sinal FM recuperado (amplitude constante

OK!

02 - Detector de pico (em vazio):

O detector de pico gera um valor DC igual ao pico do sinal de entrada.

Como funciona??

Detector de pico (em vazio):

O diodo conduz no primeiro quarto de ciclo e carrega o capacitor com o valor de pico $\Rightarrow v_o = v_i$

Quando v_i diminui, o diodo bloqueia, e o capacitor não tem por onde descarregar;

Nos demais instantes, o diodo permanece reversamente polarizado $\Rightarrow v_o = V_p$.

Detector de pico (transitório):

Normalmente, nos livros didáticos, analisa-se a situação final do circuito, já em regime estacionário, após cessado o transitório.

Entretanto, na prática, existe um transitório: nem sempre o circuito é ligado quando a senóide de entrada passa por um zero, o diodo prático tem queda de tensão de 0,7 V, etc.

É interessante testar os circuitos com o PSPICE. Normalmente este período transitório é muito rápido!

Detector de pico prático (com carga):

Tensão de ripple:

Ripple = ondulação ou imperfeição de um sinal que deveria ser constante.

O qua causa o ripple??

Se a constante de tempo RC for muito grande, haverá apenas uma pequena diferença de amplitudes, entre o tempo do pico de tensão de entrada e o tempo em que o diodo corta.

Detector de pico prático (com carga):

Admite-se que o valor de R_L seja elevado (R_LC é elevado), muito maior que o período da senóide.

Quando o diodo bloqueia, C se descarrega sobre R_L .

Esta variação não é muito pronunciada, de modo que ainda se detecta o valor de pico do sinal de entrada com boa qualidade.

Medida do ripple usando o sciloscópio:

Usar acoplamento AC e aumentar o fator de sensibilidade.

Avaliar a amplitude da tensão de ripple no experimento.

Detector de envoltória AM (sinal de áudio):

O detector de pico (ou envoltória) recupera o sinal de mensagem (voz) original.

OK!

03 - Circuitos grampeadores (clamper)

Um clamper acrescenta um nível DC à uma tensão AC.

Também são chamados de restauradores DC.

Exemplo: clamper positivo (acrescenta um valor DC positivo ao sinal AC)

Como funciona???

Grampeador ou clamper negativo:

O capacitor está inicialmente descarregado.

Assume-se que o diodo seja ideal: D ON \rightarrow curto $\rightarrow v_D = 0^+$

No primeiro quarto de ciclo o diodo conduz, o capacitor se carrega ⇒

$$\Rightarrow v_C = v_i = V_M$$

Grampeador ou clamper negativo:

Após a tensão v_i atingir seu pico, ela começa a diminuir e o diodo torna-se reversamente polarizado (pois não pode conduzir corrente reversa). Como C não pode descarregar $\Rightarrow v_c = v_i = V_M$ permanece indefinidamente.

$$v_i - v_C - v_0 = 0$$

$$v_0 = v_i - v_c = v_i - V_M$$

deslocamento negativo, para baixo

Grampeador ou clamper positivo com diodo prático e com carga:

Deslocamento positivo, para cima.

Grampeador ou clamper positivo com forma de onda quadrada e resistência de carga:

Multiplicadores de tensão usam a ação de *clamper* para aumentar o pico de tensão retificada, sem a necessidade de se aumentar a entrada com transformadores. Dobrador de tensão negativo; ver o livro de Sedra & Smith Iniciar a análise pelo semi-ciclo positivo Clamper negativo detector de pico negativo Tensão de saída = -2V_p

