MATH 506 HOMEWORK 1-3 SOLUTIONS

1. Homework 1

Problem 1.1. Use the definition of H_1 to prove the following: Let D_1 and D_2 be two connected open sets in \mathbb{C} . If $H_1(D_1) = H_1(D_2) = 0$ and $D_1 \cap D_2$ is connected, then $H_1(D_1 \cup D_2) = 0$. Hint: Show that every closed curve γ in $D_1 \cup D_2$ is homologous to the sum $\sum \gamma_{\alpha}$, where each γ_{α} is either a closed curve in D_1 or a closed curve in D_2 .

Proof. Let γ be parameterized by $\gamma:[0,1] \to D = D_1 \cup D_2$. Let us consider $\gamma^{-1}(D_1)$ and $\gamma^{-1}(D_2)$. Each is a disjoint union of intervals open in [0,1] and their union covers [0,1]. By compactness of [0,1], we can find a finite open cover of [0,1] in the form of

$$[0,1] = [a_0,b_0) \cup (a_1,b_1) \cup ... \cup (a_{2n},b_{2n}]$$

with $0 = a_0 < a_1 < b_0 < a_2 < b_1 < a_3 < b_2 < ... < b_{2n} = 1$ such that $(a_k, b_k) \subset \gamma^{-1}(D_1)$ if k is even and $(a_k, b_k) \subset \gamma^{-1}(D_2)$ if k is odd. Here we assume that $\gamma(0) = \gamma(1) \in D_1$ WLOG. So

$$[0,1] = [0,c_1] \cup [c_1,c_2] \cup ... \cup [c_{2n},1] \text{ for } c_m = \frac{1}{2}(b_{m-1} + a_m)$$

with $\gamma(c_m) \in D_1 \cap D_2$ for $1 \leq m \leq 2n$ and $\gamma([c_{m-1}, c_m]) \subset D_k$ if $2 \mid (m-k)$, where we let $c_0 = 0$ and $c_{2n+1} = 1$.

We let γ_m be the curve $\gamma:[c_{m-1},c_m]\to D$. Then $\gamma_m\subset D_k$ if $2\mid (m-k)$. For each pair $\{c_i,c_{2n+1-i}\}$, we choose a continuous curve $\sigma_i:[0,1]\to D_1\cap D_2$ such that $\sigma_i(0)=\gamma(c_i)$ and $\sigma_i(1)=\gamma(c_{2n+1-i})$. This is possible since $D_1\cap D_2$ is connected. Then

$$\gamma = (\gamma_1 + \sigma_1 + \gamma_{2n+1}) + \sum_{i=2}^{n} (\gamma_i + \sigma_i + \gamma_{2n+2-i} - \sigma_{i-1}) + (\gamma_{n+1} - \sigma_n)$$

in $H_1(D)$. Clearly, each of

$$\gamma_1 + \sigma_1 + \gamma_{2n+1}, \ \gamma_i + \sigma_i + \gamma_{2n+2-i} - \sigma_{i-1}, \ \gamma_{n+1} - \sigma_n$$

lies entirely in one of D_1 and D_2 . So they are homologous to 0 since $H_1(D_1) = H_1(D_2) = 0$. So $\gamma = 0$ in $H_1(D)$.

Problem 1.2. Find all entire functions f(z) satisfying

$$f(z_1 + z_2) = f(z_1)f(z_2)$$
 for all $z_1, z_2 \in \mathbb{C}$.

Do there exist nonconstant entire functions f(z) satisfying

$$f(z_1z_2) = f(z_1) + f(z_2)$$
 for all $z_1, z_2 \in \mathbb{C}$?

Justify your answer.

Proof. If f(z) has a zero at z_0 , then $f(z) = f(z_0)f(z - z_0) = 0$ for all z. Suppose that f(z) is nowhere vanishing. Then f'(z)/f(z) has a complex anti-derivative g(z) on \mathbb{C} . Then

$$\frac{(e^{g(z)})'}{e^{g(z)}} = g'(z) = \frac{f'(z)}{f(z)} \Rightarrow \left(\frac{f(z)}{e^{g(z)}}\right)' = 0$$

for all $z \in \mathbb{C}$. Therefore, $f(z) \equiv ce^{g(z)}$ for some constant $c \neq 0$. We may choose g(z) such that c = 1. So $f(z) \equiv e^{g(z)}$ for some entire function g(z). Then

$$1 = \frac{f(z_1)f(z_1)}{f(z_1 + z_2)} = \exp(g(z_1) + g(z_2) - g(z_1 + z_2))$$

$$\Rightarrow g(z_1) + g(z_2) - g(z_1 + z_2) \in \{2n\pi i : n \in \mathbb{Z}\}$$

for all $z_1, z_2 \in \mathbb{C}$. And since $g(z_1) + g(z_2) - g(z_1 + z_2) : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ is continuous, we must have

$$g(z_1) + g(z_2) - g(z_1 + z_2) = 2n\pi i$$

for all $z_1, z_2 \in \mathbb{C}$ and some $n \in \mathbb{Z}$. Differentiating it with respect to z_1 , we obtain

$$g'(z_1) = g'(z_1 + z_2)$$

for all $z_1, z_2 \in \mathbb{C}$. Hence $g'(z) \equiv a$ and $g(z) \equiv az + 2n\pi i$. So $f(z) \equiv \exp(az)$. In conclusion, either $f(z) \equiv 0$ or $\exp(az)$ for some constant $a \in \mathbb{C}$.

Problem 1.3. Show that if f and g are analytic functions on a region G (i.e. a connected open set in \mathbb{C}) such that $\overline{f}g$ is analytic on G, then either f is constant or $g \equiv 0$.

Proof. If $g \equiv 0$, we are done. Otherwise, $D = \{g(z) \neq 0\}$ is a dense open subset of G. Then f and $\overline{f} = (\overline{f}g)/g$ are analytic on D. By Cauchy-Riemann equations,

$$\frac{\partial f}{\partial \overline{z}} = \frac{\partial \overline{f}}{\partial \overline{z}} = 0 \Rightarrow \frac{\partial f}{\partial \overline{z}} = \frac{\overline{\partial f}}{\partial z} = 0 \Rightarrow \frac{\partial f}{\partial \overline{z}} = \frac{\partial f}{\partial z} = 0 \Rightarrow \frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$$

on D and hence $f(z) \equiv c$ is constant on D. By continuity, $f(z) \equiv c$ on G since D is dense in G.

Problem 1.4. Let $D \subset \mathbb{C}$ be a region and let f(z) be a meromorphic functions on D (i.e. the quotient of two analytic functions on D). Show that if

$$a_0(z) + a_1(z)f(z) + a_2(z)(f(z))^2 + \dots + a_{n-1}(z)(f(z))^{n-1} + (f(z))^n \equiv 0$$

for some analytic functions $a_0(z), a_1(z), ..., a_{n-1}(z)$ on D, then f(z) is analytic on D.

Proof. Otherwise, f(z) has a pole at $z_0 \in D$. Then $f(z) = (z - z_0)^{-m} g(z)$ in a disk $\Delta = \{|z - z_0| < r\}$ for some $m \in \mathbb{Z}^+$ and some analytic function g(z) in Δ satisfying $g(z_0) \neq 0$. Then

$$\sum_{r=0}^{n-1} a_r(z)(z-z_0)^{m(n-r)}(g(z))^r + (g(z))^n = 0$$

in Δ . Setting $z=z_0$, we obtain $g(z_0)=0$. Contradiction. So f(z) is analytic on D.

Problem 1.5. Suppose that the power series $\sum a_n z^n$ has radius of convergence 1. If $\sum a_n$ converges to A, show that

$$\lim_{r \to 1^-} \sum a_n r^n = A.$$

Use this to show that

$$\log 2 = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}.$$

Proof. Let

$$A_n = \sum_{m=0}^n a_m.$$

Then

$$\sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} (A_n - A_{n-1}) z^n = \sum_{n=0}^{\infty} A_n z^n (1 - z)$$

for |z| < 1. For 0 < r < 1,

$$\left| \sum a_n r^n - A \right| = \left| \sum_{n=0}^{\infty} A_n r^n (1-r) - \sum_{n=0}^{\infty} A r^n (1-r) \right|$$

$$\leq \sum_{n=0}^{\infty} |A_n - A| r^n (1-r)$$

$$= \sum_{n=0}^{N-1} |A_n - A| r^n (1-r) + \sum_{n=N}^{\infty} |A_n - A| r^n (1-r)$$

$$\leq 2M(1-r^N) + \varepsilon_N r^N$$

for all $N \in \mathbb{Z}^+$, $\varepsilon_N = \sup\{|A_n - A| : n \ge N\}$ and $M = \sup |A_n|$. Therefore,

$$\limsup_{r \to 1^{-}} \left| \sum a_n r^n - A \right| \le \varepsilon_N$$

for all $N \in \mathbb{Z}^+$. And since $\varepsilon_N \to 0$ as $N \to \infty$,

$$\limsup_{r \to 1^{-}} \left| \sum a_n r^n - A \right| = 0 \Rightarrow \lim_{r \to 1^{-}} \sum a_n r^n = A.$$

Let Log(z) be the principal branch of log z. Then

$$Log(1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^n$$

for |z| < 1. Since $\{1/n\}$ is decreasing and $\lim_{n \to \infty} 1/n = 0$,

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

converges. Therefore,

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \lim_{r \to 1^{-}} \text{Log}(1+r) = \ln 2.$$

Problem 1.6. Show that if $f: \mathbb{C} \to \mathbb{C}$ is a continuous function and f(z) is analytic on $\mathbb{C}\setminus\{\operatorname{Re}(z)=0\}$, then f(z) is entire.

Proof. By Morera's Theorem, it suffices to show that $\int_{\gamma} f(z)dz = 0$ for all triangles γ .

Since f(z) is analytic on $\{\text{Re}(z) > 0\}$, $\int_{\gamma} f(z)dz = 0$ for all continuous closed curves γ contained in $\{\text{Re}(z) > 0\}$. For every continuous closed curve $\gamma \in \{\text{Re}(z) \geq 0\}$,

$$\int_{\gamma} f(z)dz = \lim_{\varepsilon \to 0^{+}} \int_{\gamma_{\varepsilon}} f(z)dz = 0$$

where $\gamma_{\varepsilon}(t) = \gamma(t) + \varepsilon \in \{\text{Re}(z) > 0\}$ for $\varepsilon > 0$. In conclusion,

$$\int_{\gamma} f(z)dz = 0$$

for all continuous closed curves $\gamma \subset \{\text{Re}(z) \geq 0\}$. Similarly,

$$\int_{\gamma} f(z)dz = 0$$

for all continuous closed curves $\gamma \subset \{\text{Re}(z) \leq 0\}$.

For every triangle γ , it is easy to see that

$$\int_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz$$

for some closed polygons γ_1 and γ_2 satisfying that $\gamma_1 \subset \{\text{Re}(z) \leq 0\}$ and $\gamma_2 \subset \{\text{Re}(z) \geq 0\}$. Therefore, $\int_{\gamma} f(z)dz = 0$ and f(z) is entire.

Problem 1.7. Let f(z) and g(z) be two analytic functions on an open set D. Show that if f(z) and g(z) have finitely many zeros in D and they do not have common zeros, then there exist analytic functions a(z) and b(z) on D such that $a(z)f(z) + b(z)g(z) \equiv 1$ on D.

Proof. Let $p_1, p_2, ..., p_n$ be the zeros of f(z) with multiplicities $m_1, m_2, ..., m_n$, respectively. We claim that there exists a polynomial b(z) in z of degree $\deg b(z) < m_1 + m_2 + ... + m_n$ such that 1 - b(z)g(z) has zeros at $p_1, p_2, ..., p_n$ of multiplicities at least $m_1, m_2, ..., m_n$.

Let h(z) = 1/g(z). Since g(z) does not vanish at p_j , h(z) is analytic at p_j for j = 1, 2, ..., n. By Chinese Remainder Theorem, there exists $b(z) \in \mathbb{C}[z]$ of deg $b(z) < m_1 + m_2 + ... + m_n$ such that

$$b(z) \equiv \sum_{l=0}^{m_j-1} \frac{h^{(l)}(p_j)}{l!} (z - p_j)^l \pmod{(z - p_j)^{m_j}}$$

for j = 1, 2, ..., n. Therefore, h(z) - b(z) has zeros at p_j of multiplicities at least m_j . The same holds for 1 - b(z)g(z) = g(z)(h(z) - b(z)). So

$$a(z) = \frac{1 - b(z)g(z)}{f(z)}$$

is analytic on D. We are done.

2. Homework 2

Problem 2.1. Let f(z) be an entire function with two periods λ_1 and λ_2 , i.e.,

$$f(z) = f(z + \lambda_1) = f(z + \lambda_2)$$

for all $z \in \mathbb{C}$. If λ_1 and λ_2 are linearly independent over \mathbb{Q} , then f(z) must be constant.

Proof. Suppose that λ_1 and λ_2 are linearly independent over \mathbb{R} . Then every complex number z is a linear combination of λ_1 and λ_2 over \mathbb{R} . That is,

$$z = c_1 \lambda_1 + c_2 \lambda_2$$

for some real numbers c_1 and c_2 . Let

$$m_1 = |c_1|$$
 and $m_2 = |c_2|$

be the largest integers less than or equal to c_1 and c_2 , respectively. Then

$$f(z) = f(z - m_1\lambda_1 - m_2\lambda_2) = f((c_1 - m_1)\lambda_1 + (c_2 - m_2)\lambda_2).$$

Since $0 < c_1 - m_1 < 1$ and $0 < c_2 - m_2 < 1$,

$$|(c_1 - m_1)\lambda_1 + (c_2 - m_2)\lambda_2| \le (c_1 - m_1)|\lambda_1| + (c_2 - m_2)|\lambda_2| \le |\lambda_1| + |\lambda_2|.$$

Let M be the maximum of |f(z)| on $\{|z| \leq |\lambda_1| + |\lambda_2|\}$. Then

$$|f(z)| = |f((c_1 - m_1)\lambda_1 + (c_2 - m_2)\lambda_2)| \le M$$

for all $z \in \mathbb{C}$. So f(z) is constant by Louville.

Suppose that λ_1 and λ_2 are linearly independent over \mathbb{Q} . If they are linearly independent over \mathbb{R} , then we are done. Otherwise, λ_1 and λ_2 are linearly independent over \mathbb{Q} and dependent over \mathbb{R} . That is, $\lambda = \lambda_1/\lambda_2 \in \mathbb{R} \setminus \mathbb{Q}$. Namely, it is an irrational real number.

We claim that for every $\varepsilon > 0$, there exist integers m_1 and m_2 such that

$$0 < |m_1\lambda - m_2| < \varepsilon$$

Fixing a positive integer n, let us consider

$$a_k = k\lambda - |k\lambda|$$

for k = 0, 1, 2, ..., n. These are n+1 numbers in the interval [0, 1]. By Pigeon Hole principle, there exist a_k and a_l such that $0 \le k \ne l \le n$ and

$$|a_k - a_l| = |(k - l)\lambda - (\lfloor k\lambda \rfloor - \lfloor l\lambda \rfloor)| \le \frac{1}{n}$$

Let $m_1 = k - l$ and $m_2 = |k\lambda| - |l\lambda|$. Then

$$|m_1\lambda - m_2| \le \frac{1}{n}.$$

This proves our claim.

For every positive integer n, there exist integers m_1 and m_2 such that

$$0 < |m_1\lambda - m_2| \le \frac{1}{n}$$

So

$$0 < |m_1\lambda_1 - m_2\lambda_2| = |\lambda_2(m_1\lambda - m_2)| \le \frac{|\lambda_2|}{n}.$$

Let $z_n = m_1\lambda_1 - m_2\lambda_2$. Since $f(z_n) = f(m_1\lambda_1 - m_2\lambda_2) = f(0)$, we conclude that there exists a sequence $\{z_n\}$ such that

$$0 < |z_n| \le \frac{|\lambda_2|}{n}$$
 and $f(z_n) = f(0)$.

This means that the set $\{z: f(z) = f(0)\}$ has a cluster point at 0. So $f(z) \equiv f(0)$.

Problem 2.2. Let f(z) be an entire function. Show that $f(x) \in \mathbb{R}$ for all $x \in \mathbb{R}$ if and only if $f^{(n)}(0) \in \mathbb{R}$ for all n = 0, 1, 2, ...

Proof. If $f^{(n)}(0)$ is real, then

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n$$

for all $z \in \mathbb{R}$ and hence $f(x) \in \mathbb{R}$ for all $x \in \mathbb{R}$.

Suppose that $f(x) \in \mathbb{R}$ for all $x \in \mathbb{R}$. We can prove by induction that $f^{(n)}(z) \in \mathbb{R}$ for $z \in \mathbb{R}$. By Cauchy-Riemann equations,

$$f'(z) = \frac{\partial f}{\partial x} = f_x(z).$$

For $z \in \mathbb{R}$, since $f(z) \in \mathbb{R}$, $f_x(z) \in \mathbb{R}$. Therefore, $f'(z) \in \mathbb{R}$ for all $z \in \mathbb{R}$. Then, inductively, we have $f''(z), ..., f^{(n)}(z), ... \in \mathbb{R}$ for all $z \in \mathbb{R}$.

Problem 2.3. Let $f_1(z)$ and $f_2(z)$ be two analytic functions on $D = \{|z| < 1\}$. Suppose that $f_1(0) = f_2(0)$, f_2 is biholomorphic and $f_1(D) \subset f_2(D)$. Show that

$$|f_1'(0)| \le |f_2'(0)|.$$

Find a necessary and sufficient condition for the equality to hold.

Proof. Let us consider $g(z) = f_2^{-1} \circ f_1(z) : D \to D$, which is well defined since $f_1(D) \subset f_2(D)$.

Since $f_1(0) = f_2(0)$, g(0) = 0. Applying Schwartz Lemma to g, we obtain $|g'(0)| \le 1$ and hence

$$|g'(0)| = \frac{|f_1'(0)|}{|f_2'(0)|} \le 1 \Rightarrow |f_1'(0)| \le |f_2'(0)|.$$

By Schwartz Lemma, the equality holds if and only if g(z) = cz for some |c| = 1, i.e., $f_1(z) = f_2(cz)$ for all z.

Problem 2.4. Let f(z) be a holomorphic function on $D = \{|z| < 1\}$. If f(0) = 0, show that the series

$$\sum_{n=1}^{\infty} f(z^n)$$

uniformly converges on every compact subset of D.

Proof. It suffices to show that the series converges uniformly on the closed disk $\{|z| \leq r\}$ for all r < 1. Let

$$f(z) = \sum_{n=1}^{\infty} a_n z^n$$

on D. Since $\sum a_n z^n$ has radius of convergence at least 1, for every 0 < R < 1, there exists a constant M such that $|a_n| \leq MR^{-n}$ for all n. We choose some r < R < 1. Then

$$|f(z^n)| = \left| \sum_{m=1}^{\infty} a_m z^{mn} \right| \le \sum_{m=1}^{\infty} |a_m| |z|^{mn}$$
$$\le MR^{-n} r^{mn} = \frac{Mr^n}{R - r^n} \le \frac{Mr^n}{R - r}$$

for all $|z| \leq r$. Clearly,

$$\sum_{n=1}^{\infty} \frac{Mr^n}{R-r} = \frac{M}{R-r} \sum_{n=1}^{\infty} r^n$$

converges and hence $\sum f(z^n)$ converges uniformly on $\{|z| \leq r\}$.

Problem 2.5. Show that for a complex polynomial f(z) of degree n, the function $M(r)/r^n$ is nonincreasing for $r \in (0, \infty)$, where

$$M(r) = \max_{|z| \le r} |f(z)|.$$

Proof. Let $g(z) = z^n f(z^{-1})$. Then by Maximum Modulus,

$$\max_{|z| \leq 1/r} |g(z)| = \max_{|z| = 1/r} |g(z)| = \frac{1}{r^n} \max_{|z| = r} |f(z)| = \frac{M(r)}{r^n}.$$

Hence

$$\max_{|z| \leq 1/r_1} |g(z)| \geq \max_{|z| \leq 1/r_2} |g(z)| \Rightarrow \frac{M(r_1)}{r_1^n} \geq \frac{M(r_2)}{r_2^n}$$

for all $0 < r_1 < r_2$.

Problem 2.6. Let $D = \{r \leq |z| \leq R\}$ for some 0 < r < R. Show that there exists a positive constant ε , depending on r and R, such that

$$\left| \left| f(z) - \frac{1}{z} \right| \right|_D = \max_{z \in D} \left| f(z) - \frac{1}{z} \right| \ge \varepsilon$$

for all entire functions f(z).

Proof. By Maximum Modulus,

$$\left| \left| f(z) - \frac{1}{z} \right| \right|_{D} \ge \max_{|z| = r} \left| f(z) - \frac{1}{z} \right| = \frac{1}{r} \max_{|z| = r} |zf(z) - 1|$$
$$\ge \frac{1}{r} |0f(0) - 1| = \frac{1}{r}.$$

Problem 2.7. Let a be a complex number satisfying |a| > 5/2. Show that the power series

$$F(z) = \sum_{n=0}^{\infty} \frac{z^n}{a^{n^2}}$$

defines an entire function which does not vanish on the boundary of the annulus

$$|a^{2n-2}| < |z| < |a^{2n}|$$

and has exactly one zero inside the annulus for n = 1, 2, ...

Proof. We apply Rouché's theorem to f(z) and $f_n(z) = -a^{-n^2}z^n$ in $|z| < |a^{2n}|$. For $|z| = |a^{2n}|$,

$$\left| \frac{z^{m-1}a^{-(m-1)^2}}{z^m a^{-m^2}} \right| = a^{2m-2n-1} \le |a|^{-3} \text{ if } m \le n-1 \text{ and}$$

$$\left| \frac{z^{m+1}a^{-(m+1)^2}}{z^m a^{-m^2}} \right| = a^{2n-2m-1} \le |a|^{-3} \text{ if } m \le n+1$$

Therefore,

$$|f(z) + f_n(z)| = \left| \sum_{m=0}^{n-1} a^{-m^2} z^m + \sum_{m=n+1}^{\infty} a^{-m^2} z^m \right|$$

$$\leq \sum_{m=0}^{n-1} |a^{-m^2} z^m| + \sum_{m=n+1}^{\infty} |a^{-m^2} z^m|$$

$$= |a^{-(n-1)^2} z^{n-1}| \sum_{m=0}^{n-1} \left| \frac{z^m a^{-m^2}}{z^{n-1} a^{-(n-1)^2}} \right|$$

$$+ |a^{-(n+1)^2} z^{n+1}| \sum_{m=n+1}^{\infty} \left| \frac{z^m a^{-m^2}}{z^{n+1} a^{-(n+1)^2}} \right|$$

$$< |a^{n^2-1}| \sum_{m=0}^{\infty} |a|^{-3m} + |a^{n^2-1}| \sum_{m=0}^{\infty} |a|^{-3m}$$

$$= \frac{2|a|^{n^2-1}}{1-|a|^{-3}} = |f_n(z)| \frac{2|a|^{-1}}{1-|a|^{-3}}$$

$$= |f_n(z)| \frac{2}{|a|-|a|^{-2}} < |f_n(z)| \frac{2}{(5/2)-(5/2)^{-2}}$$

$$= \frac{100}{117} |f_n(z)| < |f_n(z)|$$

for $|z| = |a^{2n}|$ and |a| > 5/2. In conclusion, we have

$$(2.2) |f(z) + f_n(z)| < |f(z)| + |f_n(z)|$$

for $|z| = |a^{2n}|$ and all n = 0, 1, 2, ... By Rouché's Theorem, f(z) and $f_n(z)$ have the same number of zeros in $|z| < |a^{2n}|$, counted with multiplicity. Therefore, f(z) has exactly n zeros in $|z| < |a^{2n}|$, counted with multiplicity. This holds for all $n \in \mathbb{N}$.

Finally, since f(z) has n zeros in $|z| < |a^{2n}|$ and n-1 zeros in $|z| < |a^{2n-2}|$, it has exactly one zero in $|a^{2n-2}| \le |z| < |a^{2n}|$. By (2.2), $f(z) \ne 0$ for $|z| = |a^{2n}|$ and all $n \in \mathbb{N}$. Therefore, f(z) has exactly one zero in $|a^{2n-2}| < |z| < |a^{2n}|$.

Problem 2.8. For an entire function f(z), we let

$$M(r) = \max_{|z| \le r} |f(z)|.$$

Let f(z) be an entire function with

$$\limsup_{r\to\infty}\frac{\log M(r)}{r}=l.$$

Show that the infinite series

$$F(z) = \sum_{n=0}^{\infty} f^{(n)}(z)$$

converges if l < 1 and diverges if l > 1.

Proof. Suppose that l < 1. So there exists $\lambda < 1$ such that $|f(z)| \le ce^{\lambda|z|}$ for some constant c > 0 and all z. By Cauchy Integral Formula,

$$(2.3) |f^{(n)}(z)| = \left| \frac{n!}{2\pi i} \int_{|w|=R} \frac{f(w)}{(w-z)^{n+1}} dw \right| \le \frac{c(n!)R}{(R-|z|)^{n+1}} e^{\lambda R}$$

for all $n \in \mathbb{N}$.

We fix r > 0 and want to show that

(2.4)
$$\sum_{n=0}^{\infty} |f^{(n)}(z)| < \infty$$

in $\{|z| \le r\}$. We choose $R = r + \lambda^{-1}n$. Then

$$(2.5) |f^{(n)}(z)| \le ce^{\lambda r} \left(1 + \frac{\lambda r}{n}\right) \lambda^n e^n \frac{n!}{n^n}$$

for all $n \ge 1$ and $|z| \le r$ by (2.3). So it suffices to show the convergence of the series

(2.6)
$$\sum_{n=1}^{\infty} c e^{\lambda r} \left(1 + \frac{\lambda r}{n} \right) \lambda^n e^n \frac{n!}{n^n} = \sum_{n=1}^{\infty} a_n$$

which follows from the ratio test:

(2.7)
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \lambda e\left(\frac{n^n}{(n+1)^n}\right) = \lambda < 1.$$

When l > 1, if F(z) converges for z = 0, then

(2.8)
$$\lim_{n \to \infty} f^{(n)}(0) = 0 \Rightarrow |f^{(n)}(0)| \le c$$

for a constant c and all n. Then

(2.9)
$$|f(z)| = \left| \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n \right| \le \sum_{n=0}^{\infty} \frac{c|z|^n}{n!} = ce^{|z|}$$

which contradicts

(2.10)
$$\limsup_{r \to \infty} \frac{\log M(r)}{r} = l > 1.$$

Problem 2.9. Let f(z) be an entire function with M(r) defined in the previous problem. Show that if there is a constant $0 < \alpha < 1$ such that

$$\lim_{r \to \infty} \frac{M(\alpha r)}{M(r)} > 0,$$

then f(z) is a polynomial and the above limit is α^n with $n = \deg f$.

Proof. Since the limit

(2.11)
$$\lim_{r \to \infty} \frac{M(\alpha r)}{M(r)} > 0,$$

exists, there exists a constant c > 0 such that $M(\alpha r) \ge cM(r)$ for all $r \ge 1$. Therefore,

(2.12)
$$M(\alpha^n r) \ge c^n M(r) \Rightarrow c^{-n} M(1) \ge M(\alpha^{-n}).$$

By Cauchy Integral Formula, we have

$$|f^{(m)}(0)| = \left| \frac{m!}{2\pi i} \int_{|z|=\alpha^{-n}} \frac{f(z)}{z^{m+1}} dz \right| \le (m!) M(\alpha^{-n}) \alpha^{mn}$$

$$\le (m!) M(1) \left(\frac{\alpha^m}{c} \right)^n$$

for all m and n. Then for all m satisfying $\alpha^m < c$, $f^{(m)}(0) = 0$ by taking $n \to \infty$ in (2.13). Therefore, f(z) is a polynomial.

If f(z) is a polynomial of degree n, then

$$(2.14) \qquad \lim_{z \to \infty} \left| \frac{f(z)}{z^n} \right| = c \Rightarrow \lim_{r \to \infty} \frac{M(r)}{r^n} = c \Rightarrow \lim_{r \to \infty} \frac{M(\alpha r)}{M(r)} = \alpha^n.$$

Problem 2.10. Let f(z) be an analytic function on $\{|z| < 1\}$. If f(0) = 0 and |f(z)| < 1 for all $z \in D$, show that

$$|f''(0)| \le 2 - 2|f'(0)|^2.$$

Hint: Apply Schwartz's Lemma to the function

$$\frac{g(z) - g(0)}{1 - \overline{g(0)}g(z)}$$

for $g(z) = z^{-1} f(z)$.

Proof. By Schwartz's Lemma, |g(z)| < 1 for |z| < 1 and $g(z) = z^{-1}f(z)$ unless f(z) = cz for |c| = 1, where the inequality is obvious.

Therefore, |h(z)| < 1 for |z| < 1 and

$$h(z) = \frac{g(z) - g(0)}{1 - \overline{g(0)}g(z)}.$$

And since h(0) = 0, we conclude that

$$|h'(0)| = \frac{|g'(0)|}{1 - |g(0)|^2} \le 1 \Rightarrow |g'(0)| \le 1 - |g(0)|^2$$

by Schwartz's Lemma.

Suppose that

$$f(z) = \sum_{n=1}^{\infty} a_n z^n.$$

Then

$$g(z) = \sum_{n=0}^{\infty} a_{n+1} z^n$$

and hence

$$g^{(n)}(0) = (n!)a_{n+1} = \frac{(n!)f^{(n+1)}(0)}{(n+1)!} = \frac{f^{(n+1)}(0)}{n+1}.$$

Therefore,

$$|g'(0)| \le 1 - |g(0)|^2 \Rightarrow |f''(0)| \le 2 - 2|f'(0)|^2.$$

3. Homework 3

Problem 3.1. We call a map $f: X \to Y$ proper if $f^{-1}(K)$ is compact for all compact sets $K \subset Y$. Then an entire function $f: \mathbb{C} \to \mathbb{C}$ is proper if and only if f(z) is a nonconstant polynomial in z.

Proof. Suppose that f is proper. Let $K = \{|w| \le 1\}$. Since f is proper, $f^{-1}(K)$ is compact. Therefore, $f^{-1}(K) \subset \{|z| \le R\}$ and hence

$$f(\{|z| > R\}) \cap K = \emptyset.$$

So $f(\{|z| > R\})$ cannot be dense in \mathbb{C} . By Casorati-Weierstrass, f(z) has at worst a pole at ∞ and hence f(z) is a polynomial. Clearly, f(z) cannot be constant; otherwise, $f^{-1}(c) = \mathbb{C}$ is not compact for some c.

Suppose that $f(z) = a_0 + a_1 z + ... + a_n z^n$ is a nonconstant polynomial. To show that f is proper, it suffices to show that $f^{-1}(K_r)$ is bounded for all $K_r = \{|w| \le r\}$. Since

$$\lim_{z \to \infty} f(z) = \infty,$$

there exists R > 0 such that |f(z)| > r for all |z| > R. It follows that

$$f^{-1}(K_r) \subset \{|z| \le R\}.$$

Problem 3.2. Prove the following variation of Rouché's Theorem: Let γ be a continuous closed curve homologous to 0 in an open set $D \subset \mathbb{C}$ and let f(z) and g(z) be two analytic functions on D satisfying

$$|f(z) + c_1 g(z)| > |f(z) + c_2 g(z)|$$

for some constants $c_1, c_2 \in \mathbb{C}$ satisfying $|c_1| \leq |c_2|$ and all z on γ . Then f(z) and g(z) have the same number of zeros in the interior of γ , counted with multiplicities, i.e.,

$$\sum_{f(p)=0} \nu(\gamma,p) \operatorname{mult}_p f = \sum_{g(q)=0} \nu(\gamma,q) \operatorname{mult}_q g$$

where $\nu(\gamma, z_0)$ is the winding number of γ at z_0 .

Proof. Let h(z) = f(z)/g(z). Applying Argument Principle to h(z) on γ ,

$$\begin{split} \nu(h\circ\gamma,0) &= \frac{1}{2\pi} \int_{\gamma} \frac{h'(z)}{h(z)} dz = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz \frac{1}{2\pi} - \frac{1}{2\pi i} \int_{\gamma} \frac{g'(z)}{g(z)} dz \\ &= \sum_{f(p)=0} \nu(\gamma,p) \operatorname{mult}_p f - \sum_{g(q)=0} \nu(\gamma,q) \operatorname{mult}_q g. \end{split}$$

It suffices to show that $\nu(h \circ \gamma, 0) = 0$. By our hypothesis,

$$|h(z) + c_1| > |h(z) + c_2|$$

for all $z \in \gamma$ and hence

$$h \circ \gamma \subset G = \{|w + c_1| > |w + c_2|\}.$$

Note that $0 \notin G$ since $|c_1| \leq |c_2|$. And G is a half plane and hence simply connected. Therefore, $\nu(h \circ \gamma, 0) = 0$.

Problem 3.3. Compute the integral

$$\int_0^\infty \frac{dx}{1+x^r}$$

for r > 1.

Solution. Let us first assume that r=p/q is rational for some positive integer p and q such that $\gcd(p,q)=1$. Since $r>1,\ p>q$. Then

$$\int_{0}^{\infty} \frac{dx}{1+x^{r}} = \int_{0}^{\infty} \frac{dx}{1+t^{p/q}} = \int_{0}^{\infty} \frac{qt^{q-1}}{1+t^{p}} dt$$

after the substitution $x = t^q$.

Let $\alpha = \exp(2\pi i/p)$ and let us consider the complex integral

(3.1)
$$\int_{\gamma} \frac{qz^{q-1}}{1+z^p} dz = \left(\int_{\gamma_1} + \int_{\gamma_2} + \int_{\gamma_3} \right) \frac{qz^{q-1}}{1+z^p} dz$$

along the curve $\gamma = \gamma_1 + \gamma_2 + \gamma_3$ given by

$$\begin{cases} \gamma_1(t) = t \text{ for } 0 \le t \le R \\ \gamma_2(t) = Re^{it} \text{ for } 0 \le t \le 2\pi/p \\ \gamma_3(t) = (R - t)\alpha \text{ for } 0 \le t \le R \end{cases}$$

for some large R.

For γ_2 , we have

(3.2)
$$\left| \int_{\gamma_2} \frac{qz^{q-1}}{1+z^p} dz \right| \le \left(\frac{2\pi R}{p} \right) \frac{qR^{q-1}}{R^p - 1} = \frac{2\pi R^q}{r(R^p - 1)}$$
$$\Rightarrow \lim_{R \to \infty} \int_{\gamma_2} \frac{qz^{q-1}}{1+z^p} dz = 0$$

since p > q.

For γ_1 , we have

(3.3)
$$\int_{\gamma_1} \frac{qz^{q-1}}{1+z^p} dz = \int_0^R \frac{qt^{q-1}}{1+t^p} dt.$$

For γ_3 , we have

(3.4)
$$\int_{\gamma_3} \frac{qz^{q-1}}{1+z^p} dz = -\int_0^R \frac{q\alpha^q (R-t)^{q-1}}{1+\alpha^p (R-t)^p} dt$$
$$= -\alpha^q \int_0^R \frac{q(R-t)^{q-1}}{1+(R-t)^p} dt$$
$$= -\alpha^q \int_0^R \frac{qt^{q-1}}{1+t^p} dt$$

since $\alpha^p = 1$.

Combining (3.1)-(3.4), we obtain

(3.5)
$$\lim_{R \to \infty} \int_{\gamma} \frac{qz^{q-1}}{1+z^p} dz = (1-\alpha^q) \int_0^{\infty} \frac{qt^{q-1}}{1+t^p} dt$$

The roots of $1 + z^p$ are $\exp((2n+1)\pi i/p)$ for $0 \le n < p$; among them, only $\beta = \exp(\pi i/p)$ lies inside the curve γ . Therefore, by Residue Theorem,

(3.6)
$$\int_{\gamma} \frac{qz^{q-1}}{1+z^p} dz = 2\pi i \operatorname{Res}\left(\frac{qz^{q-1}}{1+z^p},\beta\right)$$
$$= 2\pi i \left.\frac{qz^{q-1}}{(1+z^p)'}\right|_{\beta} = 2\pi i \left(\frac{q}{p}\right) \beta^{q-p} = -\frac{2\pi i \beta^q}{r}$$

where $qz^{q-1}(1+z^p)^{-1}$ has a simple pole at β since $1+z^p$ has a zero at β of multiplicity one.

Combining (3.5) and (3.6), we obtain

$$\int_0^\infty \frac{qt^{q-1}}{1+t^p} dt = -\left(\frac{2\pi i}{r}\right) \frac{\beta^q}{1-\alpha^q} = -\left(\frac{2\pi i}{r}\right) \frac{\beta^q}{1-\beta^{2q}}$$

$$= -\left(\frac{2\pi i}{r}\right) \frac{1}{\beta^{-q}-\beta^q}$$

$$= -\left(\frac{2\pi i}{r}\right) \frac{1}{\exp(-q\pi i/p) - \exp(q\pi i/p)}$$

$$= -\left(\frac{2\pi i}{r}\right) \frac{1}{(-2i)\sin(q\pi/p)} = \frac{\pi}{r\sin(\pi/r)}$$

where we notice that $\alpha = \beta^2$. Therefore,

(3.7)
$$\int_0^\infty \frac{dx}{1+x^r} = \frac{\pi}{r\sin(\pi/r)}$$

for all rational numbers r > 1. It is not hard to prove that the function

$$F(r) = \int_0^\infty \frac{dx}{1 + x^r}$$

is continuous for r > 1. Therefore,

$$F(r) \equiv \frac{\pi}{r \sin(\pi/r)}$$

(3.7) holds for all real numbers r > 1.

Problem 3.4. Find $\operatorname{Aut}(\mathbb{C}^*) = \operatorname{Aut}(\mathbb{C} - \{0\})$ and $\operatorname{Aut}(\mathbb{C} - \{0, 1\})$.

Proof. Let us prove the following lemma:

Lemma 3.1. For a finite set S of points on \mathbb{C} , every univalent function f(z) on $\mathbb{C}\backslash S$ is a linear fractional transformation with singularity in S.

By the above lemma, if $f \in \operatorname{Aut}(\mathbb{C}^*)$, then f(z) = az + b or $a + bz^{-1}$ for some constants $a, b \in \mathbb{C}$. And since $0 \notin f(\mathbb{C}^*)$, it is easy to see

$$\operatorname{Aut}(\mathbb{C}^*) = \{bz : b \neq 0\} \cup \left\{\frac{b}{z} : b \neq 0\right\}.$$

Similar, $f \in Aut(\mathbb{C} - \{0, 1\})$ must be one of the following:

$$az + b, \ a + \frac{b}{z}, \ a + \frac{b}{z-1}$$

And since $0, 1 \notin f(\mathbb{C} - \{0, 1\})$, it is easy to see

$$Aut(\mathbb{C} - \{0, 1\}) = \left\{z, 1 - z, \frac{1}{z}, 1 - \frac{1}{z}, \frac{1}{1 - z}, \frac{z}{z - 1}\right\}.$$

It remains to prove the lemma.

First, we show that f has at worst poles at $S \cup \{\infty\}$. We choose a closed disk $D \subset \mathbb{C}\backslash S$ of positive radius. By Open Mapping, f(D) contains a nonempty open set G. Since f is 1-1,

$$f(\mathbb{C}\backslash D)\cap G=\emptyset.$$

Therefore, $f(\{0 < |z-p| < \varepsilon\}) \cap G = \emptyset$ for some $\varepsilon > 0$ and $p \in S$ as long as

$$\{|z-p|<\varepsilon\}\cap D=\emptyset.$$

By Casorati-Weierstrass, f(z) has at worst poles at S.

Similarly, $f(\{|z| > R\}) \cap G = \emptyset$ as long as $D \subset \{|z| \le R\}$. So f(z) has at worst poles at ∞ . In conclusion, f(z) is an analytic function on $\mathbb{C}\backslash S$ with at worst poles at $S \cup \{\infty\}$. So f(z) has to be a rational function f(z) with poles in $S \cup \{\infty\}$.

Second, we prove that f(z) has simple poles at every singularity among $S \cup \{\infty\}$. Otherwise, suppose that f(z) has a pole of order $m \geq 2$ at p. Then there exists an open neighborhood U of p such that $f(z) \neq 0$ in $U^* = U \setminus \{p\}$. So $f: U^* \to \mathbb{C}^*$ is analytic and 1-1. Consequently, g(z) = 1/f(z) is also 1-1 on U^* . Since g(z) has a removable singularity at p and g(p) = 0, g(z) extends to a univalent function on U. So $g'(p) \neq 0$. But g(z) has a zero of multiplicity $m \geq 2$ at p. Contradiction.

Finally, we prove that f(z) has at most one pole among $S \cup \{\infty\}$. Otherwise, suppose that f(z) has two poles $p \neq q$. We choose U_p and U_q to

be open neighborhoods of p and q, respectively, such that $U_p \cap U_q = \emptyset$ and $f(z) \neq 0$ on $U_p^* \cup U_q^*$ for $U_p^* = U_p \setminus \{p\}$ and $U_q^* = U_q \setminus \{q\}$. As before, g(z) = 1/f(z) is 1-1 on $U_p^* \cup U_q^*$ and extends to an analytic function on $U_p \cup U_q$ with g(p) = g(q) = 0. By Open Mapping, $g(U_p) \cap g(U_q)$ contains an open disk D with $0 \in D$. Thus, for every $w \in D \setminus \{0\}$, there exist $z_p \in U_p^*$ and $z_q \in U_q^*$ such that $g(z_p) = g(z_q) = w$. This contradicts the fact that g is 1-1 on $U_p^* \cup U_q^*$.

In conclusion, f(z) has at most one simple pole and hence a linear fractional transformation.

Problem 3.5. Let $\lambda_1, \lambda_2 \neq 0, 1$ be two complex numbers. Show that $\mathbb{C} - \{0, 1, \lambda_1\}$ and $\mathbb{C} - \{0, 1, \lambda_2\}$ are biholomorphic if and only if

$$\lambda_1 \in \left\{\lambda_2, \frac{1}{\lambda_2}, 1 - \lambda_2, 1 - \frac{1}{\lambda_2}, \frac{1}{1 - \lambda_2}, \frac{\lambda_2}{\lambda_2 - 1}\right\}.$$

In other words, they are biholomorphic if and only if there exists $f \in \text{Aut}(\mathbb{C} - \{0,1\})$ such that $\lambda_1 = f(\lambda_2)$.

Proof. By Lemma 3.1, f must be one of the following:

$$az + b, \ a + \frac{b}{z}, \ a + \frac{b}{z - 1}, \ a + \frac{b}{z - \lambda_1}$$

And since $0, 1, \lambda_2 \notin f(\mathbb{C} - \{0, 1, \lambda_1\})$, we conclude

$$f(z) = z, \ 1 - z, \ \frac{z}{\lambda_1}, \ 1 - \frac{z}{\lambda_1}, \ \frac{1 - z}{1 - \lambda_1}, \ \frac{z - \lambda_1}{1 - \lambda_1},$$

$$\frac{1}{z}, \ 1 - \frac{1}{z}, \ \frac{\lambda_1}{z}, \ 1 - \frac{\lambda_1}{z}, \ \frac{\lambda_1(z - 1)}{(\lambda_1 - 1)z}, \ \frac{z - \lambda_1}{z(1 - \lambda_1)},$$

$$\frac{z(1 - \lambda_1)}{z - \lambda_1}, \ \frac{\lambda_1(z - 1)}{z - \lambda_1}, \ \frac{z}{z - \lambda_1}, \ \frac{\lambda_1}{\lambda_1 - z}, \ \frac{z - 1}{z - \lambda_1} \text{ or } \frac{1 - \lambda_1}{z - \lambda_1}.$$

It is easy to see that λ_2 is one of the limits of f(z) as $z \to 0, 1, \lambda_1, \infty$. Then it follows

$$\lambda_2 \in \left\{\lambda_1, \frac{1}{\lambda_1}, 1-\lambda_1, 1-\frac{1}{\lambda_1}, \frac{1}{1-\lambda_1}, \frac{\lambda_1}{\lambda_1-1}\right\}$$

which is equivalent to

$$\lambda_1 \in \left\{\lambda_2, \frac{1}{\lambda_2}, 1 - \lambda_2, 1 - \frac{1}{\lambda_2}, \frac{1}{1 - \lambda_2}, \frac{\lambda_2}{\lambda_2 - 1}\right\}.$$

Problem 3.6. Let $D = \{|z| < 1\}$ and H(D) be the space of holomorphic functions on D. Show that $F \subset H(D)$ is normal if and only if there is a sequence $\{M_n\}$ of positive constants such that $\limsup \sqrt[n]{M_n} \le 1$ and $|a_n| \le M_n$ for all n and all $f(z) = \sum_{n=0}^{\infty} a_n z^n \in F$.

Proof. Suppose that F is normal. Let

$$M_n = \sup_{f \in F} \frac{|f^{(n)}(0)|}{n!} = \sup \{|a_n| : \sum a_m z^m \in F\}.$$

Since F is normal, $\{f^{(n)}(z): f \in F\}$ is normal for all $n \in \mathbb{N}$. So the set $\{|f^{(n)}(0)|: f \in F\}$ is uniformly bounded. Consequently, $M_n < \infty$ for all n. By the definition of M_n , $|a_n| \leq M_n$ for all n and $\sum a_m z^m \in F$.

For all 0 < r < 1, F is uniformly bounded on $\{|z| \le r\}$. Hence there exists C > 0 such that $|f(z)| \le C$ for all $f \in F$ and $|z| \le r$. Then

$$\frac{|f^{(n)}(0)|}{n!} = \left| \frac{1}{2\pi i} \int_{|z|=r} \frac{f(z)}{z^{n+1}} dz \right| \le \frac{C}{r^n}$$

for all n and all $f \in F$. Then $M_n \leq C/r^n$ and

$$\limsup \sqrt[n]{M_n} \le \frac{1}{r} \limsup \sqrt[n]{C} = \frac{1}{r}$$

for all 0 < r < 1. Therefore, $\limsup \sqrt[n]{M_n} \le 1$.

On the other hand, suppose that there exists such a sequence $\{M_n\}$. Since $\limsup \sqrt[n]{M_n} \le 1$, for every 0 < R < 1, there exists C such that $M_n \le CR^{-n}$ for all n. Then

$$|f(z)| \le \sum_{n=0}^{\infty} M_n r^n \le \sum_{n=0}^{\infty} CR^{-n} r^n = \frac{CR}{R-r}$$

for all $f \in F$ and $|z| \le r < R$. So F is uniformly bounded on $\{|z| \le r\}$ for all r < 1. Consequently, F is normal.

Problem 3.7. Let G be a connected open set in \mathbb{C} and H(G) be the space of holomorphic functions on G. For a sequence $\{f_n\} \subset H(G)$ of one-to-one functions which converge to some $f \in H(G)$ locally uniformly, show that f is either one-to-one or a constant function.

Proof. It suffices to show that for every $c \in \mathbb{C}$, either $f(z) \equiv c$ or f(z) - c has at most one zero in G. Otherwise, suppose that $f(z) \not\equiv c$ and f(z) - c has two zeros $z_1 \neq z_2$ in G.

We choose r > 0 such that $K = \{|z - z_1| \le r\} \sqcup \{|z - z_2| \le r\} \subset G$ and $f(z) \ne c$ for all $z \in K \setminus \{z_1, z_2\}$. Let

$$M = \min_{z \in \partial K} |f(z) - c| = \min \left(\min_{|z - z_1| = r} |f(z) - c|, \min_{|z - z_2| = r} |f(z) - c| \right).$$

Since f_n converges to f uniformly on K, there exists N such that

$$||f - f_n||_K < M$$

for all n > N. By Rouché's Theorem, since

$$|(f(z)-c)-(f_n(z)-c)| \le ||f-f_n||_K < M \le |f(z)-c|$$

for n > N, $|z - z_j| = r$ and j = 1, 2, f(z) - c and $f_n(z) - c$ has the same number of zeros in $|z - z_j| < r$. Therefore, $f_n(z) - c$ has at least two zeros for n > N, which contradicts the hypothesis that f_n is 1-1.

Problem 3.8. Let $G_1, G_2 \subsetneq \mathbb{C}$ be simply connected open sets and $f: G_1 \to G_2$ be a biholomorphic map from G_1 to G_2 . Suppose that $f(z_1) = z_2$. Show that for every one-to-one holomorphic map $g: G_1 \to G_2$ satisfying $g(z_1) = z_2, |g'(z_1)| \leq |f'(z_1)|$.

Proof. By Riemann Mapping Theorem, there exist biholomorphic maps s_j : $G_j \to D$ for $D = \{|z| < 1\}$ and j = 1, 2. We can choose s_j such that $s_j(z_j) = 0$ for j = 1, 2.

By Problem 2.3,

$$|(s_2 \circ g \circ s_1^{-1})'(0)| \le |(s_2 \circ f \circ s_1^{-1})'(0)| \Rightarrow \left| \frac{s_2'(z_2)g'(z_1)}{s_1'(z_1)} \right| \le \left| \frac{s_2'(z_2)f'(z_1)}{s_1'(z_1)} \right|$$
$$\Rightarrow |g'(z_1)| \le |f'(z_1)|.$$

Problem 3.9. Let f(z) and g(z) be entire functions such that $e^{f(z)}, e^{g(z)}$ and 1 are linearly dependant over \mathbb{C} , i.e., there exist $c_1, c_2, c_3 \in \mathbb{C}$, not all zero, such that $c_1e^{f(z)} + c_2e^{g(z)} + c_3 = 0$ for all z. Then f(z), g(z) and 1 are linearly dependent over \mathbb{C} .

Proof. If one of c_1, c_2, c_3 vanishes, then it is obvious that f(z), g(z) and 1 are linearly dependent over \mathbb{C} . Otherwise, suppose that $c_1, c_2, c_3 \neq 0$. Then

$$e^{f(z)} = -\frac{c_2}{c_1}e^{g(z)} - \frac{c_3}{c_1} \not\in \left\{0, -\frac{c_3}{c_1}\right\}$$

for all $z \in \mathbb{C}$. By Picard's Little Theorem, $e^{f(z)}$ is constant and hence f(z) is constant. So f(z) and 1 are linearly dependent over \mathbb{C} .

Problem 3.10. Let f(x,y) and g(x,y) be real-valued harmonic functions on \mathbb{R}^2 such that $e^{f(x,y)}$, $e^{g(x,y)}$ and 1 are linearly dependent over \mathbb{R} . Then f(x,y), g(x,y) and 1 are linearly dependent over \mathbb{R} .

Proof. Suppose that $c_1e^{f(x,y)} + c_2e^{g(x,y)} + c_3 = 0$ for some $c_1, c_2, c_3 \in \mathbb{R}$, not all zero, and all $(x,y) \in \mathbb{R}^2$.

If one of c_1, c_2, c_3 vanishes, it is obvious that f(x, y), g(x, y) and 1 are linearly dependent over \mathbb{R} . Otherwise, suppose that $c_1, c_2, c_3 \neq 0$.

WLOG, suppose that $c_1 > 0$. If $c_2 > 0$, then

$$c_1 e^{f(x,y)} = c_3 - c_2 e^{g(x,y)} < c_3 \Rightarrow f(x,y) < \ln c_3 - \ln c_1$$

and hence f(x, y) is constant by Louiville's Theorem on harmonic functions over \mathbb{R}^2 . Suppose that $c_2 < 0$. If $c_3 > 0$, then

$$-c_2 e^{g(x,y)} = c_1 e^{f(x,y)} + c_3 > c_3 \Rightarrow g(x,y) > \ln c_3 - \ln(-c_2)$$

and hence g(x,y) is constant. If $c_3 < 0$, then

$$c_1 e^{f(x,y)} = -c_2 e^{g(x,y)} - c_3 > -c_3 \Rightarrow f(x,y) > \ln(-c_3) - \ln c_1$$

and hence f(x,y) is constant. In conclusion, f(x,y), g(x,y) and 1 are linearly dependent over \mathbb{R} .