PRINCIPLES OF TRIBOLOGY: LUBRICATION, FRICTION AND WEAR

Farshid Sadeghi Professor

Purdue University
School of Mechanical Engineerin 3
West Lafayette, IN 47907
July 1998

OUTLINE

- · Introduction and History of Tribology
- Definition of conformal and non-Conformal Contacts
- Regimes of Lubrication
- Lubricants, Newtonian, non-Newtonian, Units, Grades, Pressure and Temperature Dependence, Mineral or Synthetic Lubricants, Greases, Viscometry
- Types of Bearings, Journal, Thrust, Rolling Element, etc., Bearing Materials
- · Fundamentals of Lubrication (Reynolds Equation)
- Hydrodynamic Lubrication Analysis & Sample Problems
 - Journal Bearing
 - Thrust Bearing
 - Hydrostatic Bearing
- Hertz Stress Theory & Sample Problems
 - Line and Point Contacts
- Elastohydrodynamic Lubrication Analysis and Sample Problems
 - Line and Point Contacts
 - Film Thickness Equations
 - Surface Roughness Effects

- Internal Stresses and Fatigue Damage (Contaminant Effects)
- Surface Profilometry
 - Measurement Techniques (Contacting & non-Contacting)
 - Surface Parameters of Interest
- Brief Review of Wear Measurement Techniques
 - Wear Equations

TRIBOLOGY

Is the science that deals with the design, friction, wear and lubrication of interacting surfaces in relative motion (e.g. bearings, gears, cam/follower mechanisms, manufacturing processes etc,)

- Interdisciplinary Science
 - Contact Mechanics and Elasticity
 - Fluid Mechanics
 - Heat Transfer
 - Rheology
 - Finite Element Methods
 - Computer Graphics

Science of Tribology

- Tribology is derived from the Greek work meaning "rubbing."
- Tribology literally means the science of rubbing surfaces.
- Tribology is the science of lubrication, friction and wear of bodies in relative motions.

History of Tribology

- Dates back to the time of Pharoahs (1880 B.C.) and Assyrians.
- Leonardo da Vinci (1452-1519)
- Sir Isaac Newton (1642-1727)
- Guillaume Amontons (1663-1705)
- Charles Coulomb (1736-1806)
- Nikolai Petrov (1836-1920)
- Sir Osborn Reynolds (1842-1912)
- Heinrich Hertz (1856-1894)
- Grubin and Vinogradova (1949)
- Dowson (1961)

Transporting an Egyptian Colossus (1880 B.C.)

Assyrians Positioning a Human Headed Bull (700 B.C.)

Fig. 7,7 Leonardo da Vinci's sketches in Codex Matrid I of ball, cone and roller pivot bearings.

Fig. 7.6 Early form of 'cage' proposed by Leonardo da Vinci in Codex Madrid I for a ball-bearing to prevent contact between the balls.

	ad While			0	
i.t.	is a device that Supports load while allowing relative Motion wherent in The	place.	Conformed.	an Conformal.	
a Beaung:	rice that the the	to take place.	9	Non /	
what is	as a deri	Mechanism	6	Demings	

BEARING TYPES

- Bearings are used to support, load while allowing the relative motion inherent in the mechanism to take place.
- There are many different types of bearings. Some examples include:
- · Journal bearing
 - dry rubbing
 - impregnated
 - lubricated
- Rolling element bearing
 - ball
 - roller (tapered, spherical, etc.)
- Thrust bearing
- However, bearings can be classified in general in two catagories:
 - conformal
 - non-conformal

CONFORMAL AND NON-COMFORMAL

 Conformal contacts fit into each other with a high degree of geometrical conformity so that the load is carried over a large area.

 In the above example the clearance between the bearing and the journal is usually 1/1000 of journal diameter.

CONFORMAL AND NON-COMFORMAL (Continued)

- Non-conformal contacts have surfaces that do not conform to each other. In these contacts the load is carried by a small area.
- The lubrication area for non-conformal bodies is typically three orders of magnitude less than that of conformal contacts.

LUBRICATION REGIME

 Hydrodynamic Lubrication
 Conformal. Film thickness: 1 μm -- 100 μm. MPa Journal & Thrust Bearings

2: Elasto-Hydrodynamic Lubrication (EHL) ?
Non-conformal. Film thickness: 0.1 μm -- μm. GPa
Gears, Cam and Followers, Rolling-Element Bearings

3: Partial Lubrication (Mixed Lubrication) Film thickness: 0.01 μm --- 1 μm

FRICTION COEFFICIENT IN DIFFERENT LUBRICATION REGIMES

WEAR RATE IN DIFFERENT LUBRICATION REGIME

