測位航法学会 平成23年度全国大会 セミナー②

GNSS Precise Positioning with RTKLIB Part 2

Timetable

1.	GPS/GNSS	April 25	9:30-10:40
2.	Signal and Receiver		10:50-12:00
3.	Standard Positioning		13:00-15:10
4.	RTKLIB		15:30-16:40
5.	RTK	April 26	9:30-10:30
	RTK PPP	April 26	9:30-10:30 10:40-11:50
6.		April 26	

5. RTK

Precise Positioning

	Standard Positioning (code-based)	Precise Positioning (carrier-based)
Observables	Pseudorange (Code)	Carrier-Phase + Pseudorange
Receiver Noise	30 cm	3 mm
Multipath	30 cm - 30 m	1 - 3 cm
Sensitivity	High (<20dBHz)	Low (>35dBHz)
Discontinuity	No Slip	Cycle-Slip
Ambiguity	-	Estimated/Resolved
Receiver	Low-Cost (~\$100)	Expensive (~\$20,000)
Accuracy (RMS)	3 m (H), 5 m (V) (Single) 1 m (H), 2 m (V) (DGPS)	5 mm (H), 1 cm (V) (Static) 1 cm (H), 2 cm (V) (RTK)
Application	Navigation, Timing, SAR,	Survey, Mapping,

Carrier-Phase

Definition:

$$\phi_r^s = \phi^s - \phi_r + N$$
 (cycle)

... actually being a measurement on the beat frequency between the received carrier of the satellite signal and a receiver-generated reference frequency. (RINEX 2.10)

Carrier-Phase Model (1)

Carrier-Phase:

$$\begin{split} \phi_r^s &= \phi_r(t_r) - \phi^s(t^s) + N_r^s + \varepsilon_{\varphi} & (\phi_{r,0} = \phi_r(t_0), \phi_0^s = \phi^s(t_0)) \\ &= (f(t_r + dt_r - t_0) + \phi_{r,0}) - (f(t^s + dT^s - t_0) + \phi_0^s) + N_r^s + \varepsilon_{\varphi} \\ &= \frac{c}{\lambda}(t_r - t^s) + \frac{c}{\lambda}(dt_r - dT^s) + (\phi_{r,0} - \phi_0^s + N_r^s) + \varepsilon_{\varphi} & \text{(cycle)} \\ \varPhi_r^s &= \lambda \phi_r^s = c(t_r - t^s) + c(dt_r - dT^s) + \lambda (\phi_{r,0} - \phi_0^s + N_r^s) + \lambda \varepsilon_{\varphi} \\ &= \underline{\rho_r^s} + c(dt_r - dT^s) - I_r^s + T_r^s + \lambda B_r^s + \underline{d_r^s} + \varepsilon_{\varphi} & \text{(m)} \end{split}$$

Carrier-Phase Bias Other Correction Terms

Pseudorange:

$$P_r^s = \rho_r^s + c(dt_r - dT^s) + I_r^s + I_r^s + \varepsilon_P$$

Carrier-Phase Model (2)

Carrier-Phase Bias:

```
B_r^s = \phi_{r,0} - \phi_0^s + N_r^s (cycle)
      N_r^S : Integer Ambiguity
      \phi_{r,0}: Receiver Initial Phase \phi_0^s: Satellite Initial Phase
```

Other Correction Terms:

$$\underline{d_r^s} = -d_{r,pco}^T e_{r,enu}^s + \left(E_{sat \to ecef} d_{pco}^s \right)^T e_r^s + d_{r,pcv} + d_{pcv}^s - d_{disp}^T e_{r,enu}^s$$

$$+ d_{pw} + d_{rel} \qquad (m)$$

 $d_{r,pco}$: Receiver Antenna Phase Center Offset

 $d_{r,pcv}^{S}$: Receiver Antenna Phase Center Variation d_{pco}^{S} : Satellite Antenna Phase Center Offset d_{pcv}^{S} : Satellite Antenna Phase Center Variation

 $oldsymbol{d}_{disp}^{per}$: Site Displacement

 d_{pw} : Phase Wind-up Effect d_{rel} : Relativistic Effect

DD (Double Difference)

$$\begin{split} \varPhi_{ub}^{ij} &\equiv \lambda((\phi_{u}^{i} - \phi_{b}^{i}) - (\phi_{u}^{j} - \phi_{b}^{j})) \\ &= \rho_{ub}^{ij} + c(dt_{ub}^{ij} - dT_{ub}^{ij}) - I_{ub}^{ij} + T_{ub}^{ij} + \lambda B_{ub}^{ij} + d_{ub}^{ij} + \varepsilon_{\Phi} \\ &= \rho_{ub}^{ij} - I_{ub}^{ij} + T_{ub}^{ij} + \lambda N_{ub}^{ij} + d_{ub}^{ij} + \varepsilon_{\Phi} \\ &dt_{ub}^{ij} = dt_{u}^{ij} - dt_{b}^{ij} = 0, dT_{ub}^{ij} = dT_{ub}^{i} - dT_{ub}^{j} \approx 0 \\ &B_{ub}^{ij} = (\phi_{u,0} - \phi_{0}^{i} + N_{u}^{i}) - (\phi_{b,0} - \phi_{0}^{i} + N_{b}^{i}) - (\phi_{u,0} - \phi_{0}^{j} + N_{u}^{j}) + (\phi_{b,0} - \phi_{0}^{j} + N_{b}^{j}) = N_{ub}^{ij} \end{split}$$

(short Baseline and same antenna type) -

$$\Phi_{ub}^{ij} \approx \rho_{ub}^{ij} + \lambda N_{ub}^{ij} + \mathcal{E}_{\Phi}$$

$$I_{ub}^{ij} = I_{ub}^{i} - I_{ub}^{j} \approx 0, T_{ub}^{ij} = T_{ub}^{i} - T_{ub}^{j} \approx 0, d_{ub}^{ij} = d_{ub}^{i} - d_{ub}^{j} \approx 0$$

Carrier-based Relative Positioning

Nonlinear-LSE:

Parameter Vector:

$$\mathbf{x} = (\mathbf{r}_u^T, N_{ub}^{s_2 s_1}, N_{ub}^{s_3 s_1}, ..., N_{ub}^{s_m s_1})^T$$

Measurement Vector:

$$\mathbf{y} = (\mathbf{y}_{t_1}^T, \mathbf{y}_{t_1}^T, ..., \mathbf{y}_{t_n}^T)^T$$

Meas Model, Design Matrix:

$$\boldsymbol{h}(\boldsymbol{x}) = \left(\boldsymbol{h}_{t_1}(\boldsymbol{x})^T, \boldsymbol{h}_{t_2}(\boldsymbol{x})^T, ..., \boldsymbol{h}_{t_n}(\boldsymbol{x})^T\right)^T$$

$$\boldsymbol{H} = \left(\boldsymbol{H}_{t_1}^T, \boldsymbol{H}_{t_2}^T, ..., \boldsymbol{H}_{t_n}^T\right)^T$$

Meas Error Covariance:

$$\mathbf{R} = blkdiag(\mathbf{R}_{t_1}, \mathbf{R}_{t_2}, ..., \mathbf{R}_{t_n})$$

Solution (Static/Float):

$$\hat{x} = x_0 + (H^T R^{-1} H)^{-1} H^T R^{-1} (y - h(x_0))$$

$$\mathbf{y}_{t_{k}} = (\mathbf{\Phi}_{ub,t_{k}}^{S_{2}S_{1}}, \mathbf{\Phi}_{ub,t_{k}}^{S_{3}S_{1}}, \dots, \mathbf{\Phi}_{ub,t_{k}}^{S_{m}S_{1}})^{T}$$

$$\mathbf{h}_{t_{k}}(\mathbf{x}) = \begin{pmatrix} \rho_{u,t_{k}}^{S_{2}S_{1}} - \rho_{b,t_{k}}^{S_{2}S_{1}} + \lambda N_{ub}^{S_{2}S_{1}} \\ \rho_{u,t_{k}}^{S_{3}S_{1}} - \rho_{b,t_{k}}^{S_{3}S_{1}} + \lambda N_{ub}^{S_{m}S_{1}} \\ \rho_{u,t_{k}}^{S_{m}S_{1}} - \rho_{b,t_{k}}^{S_{m}S_{1}} + \lambda N_{ub}^{S_{m}S_{1}} \end{pmatrix}$$

$$\mathbf{H}_{t_{k}} = \begin{pmatrix} -\mathbf{e}_{u,t_{k}}^{S_{2}S_{1}} & \lambda & 0 & \cdots & 0 \\ -\mathbf{e}_{u,t_{k}}^{S_{3}S_{1}} & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\mathbf{e}_{u,t_{k}}^{S_{m}S_{1}} & 0 & \lambda & \cdots & 0 \end{pmatrix}$$

$$\mathbf{R}_{t_{k}} = \begin{pmatrix} 4\sigma_{\phi}^{2} & 2\sigma_{\phi}^{2} & \cdots & 2\sigma_{\phi}^{2} \\ 2\sigma_{\phi}^{2} & 4\sigma_{\phi}^{2} & \cdots & 2\sigma_{\phi}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ 2\sigma_{\phi}^{2} & 2\sigma_{\phi}^{2} & \cdots & 4\sigma_{\phi}^{2} \end{pmatrix}$$

 r_h : Fixed Base-Station Position

Effect of Baseline Length

Integer Ambiguity Resolution

Objectives

- More accurate than float solutions
- Fast converge of solutions

Many AR Strategies

- Simple Integer rounding
- Multi-frequency wide-lane and narrow-lane generation
- Search in coordinate domain
- Search in ambiguity domain
- AFM, FARA, LSAST, LAMBDA, ARCE, HB-L³, Modified
 Cholesy Decomposition, Null Space, FAST, OMEGA, ...

ILS (Integer Least Square Estimation)

Problem:

$$x = (a^{T}, b^{T})^{T}, H = (A, B)$$

$$y = Hx + v = Aa + Bb + v$$

$$\check{x} = \underset{a \in \mathbb{Z}^{n}, b \in \mathbb{R}^{m}}{\min} (y - Hx)^{T} Q_{y}^{-1} (y - Hx)$$

Strategy:

(1) Conventional LSE

$$\hat{\boldsymbol{x}} = \begin{pmatrix} \hat{\boldsymbol{a}} \\ \hat{\boldsymbol{b}} \end{pmatrix} = \boldsymbol{Q}_{x} \boldsymbol{H}^{T} \boldsymbol{Q}_{y}^{-1} \boldsymbol{y}, \, \boldsymbol{Q}_{x} = \begin{pmatrix} \boldsymbol{Q}_{a} & \boldsymbol{Q}_{ab} \\ \boldsymbol{Q}_{ba} & \boldsymbol{Q}_{b} \end{pmatrix} = (\boldsymbol{H}^{T} \boldsymbol{Q}_{y} \boldsymbol{H})^{-1}$$

(2) **Search Integer Vector** with Minimum Squared Residuals

$$\widetilde{\boldsymbol{a}} = \arg\min_{\boldsymbol{a} \in \boldsymbol{Z}^n} (\widehat{\boldsymbol{a}} - \boldsymbol{a})^T \boldsymbol{Q}_a^{-1} (\widehat{\boldsymbol{a}} - \boldsymbol{a})$$

(3) Improve solution

$$\mathbf{b} = \hat{\mathbf{b}} - \mathbf{Q}_{ba} \mathbf{Q}_a^{-1} (\hat{\mathbf{a}} - \mathbf{a})$$

LAMBDA

Teunissen, P.J.G. (1995)

The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. *Journal of Geodesy,* Vol. 70, No. 1-2, pp. 65-82.

• ILS Estimation with:

- Shrink Integer Search Space with "Decorrelation"
- Efficient Tree Search Strategy
- Similar to Closest Point Search with LLL Lattice Basis Reduction
 Algorithm

RTK (Real-time Kinematic)

Technique with Carrier-based Relative Positioning

- Real-time Position of Rover Antenna
- Transmit Reference Station Data to Rover via Comm. Link
- OTF (On-the-Fly) Integer Ambiguity Resolution
- Typical Accuracy: 1 cm + 1ppm x BL RMS (Horizontal)
- Applications:
 Land Survey, Construction Machine Control, Precision
 Agriculture etc.

NRTK (Network RTK)

Extension of RTK

- RTK without User Reference Station
- Sparse Networked Reference Stations
- Correction Messages via Mobile-Phone Network
- Format: VRS, FKP, MAC, RTCM 2.3, RTCM 3.1
- Server S/W: Trimble GPSNet, GEO++ GNSMART, ...
- NTRIP Networked Transport of RTCM via Internet Protocol

NRTK Service in Japan

- GEONET: ~1200 Reference Stations by GSI
- NGDS (www.gpsdata.co.jp), JENOBA (www.jenoba.jp)

GEONET

(http://terras.gsi.gsi.go.jp/ja/index.htm)

5. RTK: Exercise

RTK of Driving Vehicle

Objective RTK of Driving Vehicle

Program

...¥rtklib_2.4.0¥bin¥rtknavi.exe ...¥rtklib_2.4.1b¥bin¥rtknavi.exe

Data

...¥seminar¥sample2¥
oemv_2009515c.gps (NovAtel)
0263_20090515c.rtcm3 (VRS)

RTKNAVI

NovAtel OEMV-3G, GPS-702-GG

RTK Configuration

RTKNAVI - Options

RTK Solutions

6. PPP

PPP (Precise Point Positioning)

Feature

- with Single Receiver (No Reference Station)
- Efficient Analysis for Many Receivers
- Precise Ephemeris
- Conventionally Post-Processing

Applications

- GPS Seismometer
- GPS Meteorology
- POD (Precise Orbit Determination) of LEO Satellite
- Precise Time Transfer

Precise Ephemeris

Precise Satellite Orbit and Clock

- By Post-Processing or in Real-time
- Observation Data of Tracking Stations World-Wide

Data Format

Orbit: NGS SP3

Clock: NGS SP3 or RINEX Clock Extension

Contents

Orbit: ECEF-Positions of Satellite Mass Center

Clock: Clock-biases wrt Time Scale Aligned to GPS Time

IGS (International GNSS Service)

IGS Products

Product		Final Rapid		Ultra-Ra	Broadcast	
		(IGS)	(IGR)	Observed	Predicted	Divaucast
Accuracy	Orbit	~2.5cm	~2.5cm	~3cm	~5cm	~100cm
	Clock	~75ps RMS ~20ps STD	~75ps RMS ~25ps STD	~150ps RMS ~50ps STD	~3ns RMS ~1.5ns STD	~5ns RMS ~2.5ns STD
Latency		12-18 days	17-41 hours	3-9 hours	realtime	realtime
Updates		every Thursday	at 17 UTC daily	at 03, 09, 15, 21 UTC	at 03, 09, 15, 21 UTC	-
Sample Interval	Orbit	15min	15min	15min	15min	daily
	Clock	Sat: 30s Stn: 5min	5min	15min	15min	daily

(2009/8, http://igscb.jpl.nasa.gov/)

lono-free LC (Linear Combination)

$$C = a\Phi_1 + b\Phi_2 + cP_1 + dP_2(\Phi_1 = \lambda_1\phi_1, \Phi_2 = \lambda_2\phi_2)$$

	10	Coefficients				Wave	lonos Effect	Typical
	LC	а	b	С	d	Length (cm)	wrt L1	Noise (cm)
L1	L1 Carrier-Phase	1	0	0	0	19.0	1.0	0.3
L2	L2 Carrier-Phase	0	1	0	0	24.4	1.6	0.3
LC/L3	Iono-Free Phase	C_1	C_2	0	0	-	0.0	0.9
LG/L4	Geometry-Free Phase	1	-1	0	0	-	0.6	0.4
WL	Wide-Lane Phase	λ_W/λ_1	$-\lambda_W/\lambda_2$	0	0	86.2	1.3	1.7
NL	Narrow-Lane Phase	λ_N/λ_1	λ_N/λ_2	0	0	10.7	1.3	1.7
MW	Melbourne-Wübbena	λ_W/λ_1	$-\lambda_W/\lambda_2$	λ_N/λ_1	λ_N/λ_2	86.2	0.0	21
MP1	L1-Multipath	$2C_2 - 1$	$-2C_{2}$	1	0	-	0.0	30
MP2	L2-Multipath	$-2C_{1}$	$2C_1 - 1$	0	1	-	0.0	30

$$C_1 = f_1^2/(f_1^2 - f_2^2), C_2 = -f_2^2/(f_1^2 - f_2^2), \lambda_W = 1/(1/\lambda_1 - 1/\lambda_2), \lambda_N = 1/(1/\lambda_1 + 1/\lambda_2)$$

Tropospheric Model

Tropospheric Delay:

$$T = m_h(El)ZHD + m_w(El)ZWD$$

$$ZHD = \frac{0.0022768 p}{1 - 0.00266\cos 2\phi - 2.8 \times 10^{-7} H}$$

: Zenith Hydrostatic Delay (m)

ZWD : Zenith Wet Delay (m)

 $m_h(El)$: Hydrostatic Mapping Function

 $m_w(El)$: Wet Mapping Function

ZWD to PWV (Precipitable Water Vapor):

$$T_{m} = 70.2 + 0.72T$$

$$PWV = \frac{1 \times 10^{5}}{R_{v} \left(k_{2} - k_{1} \frac{m_{v}}{m_{d}} + \frac{k_{3}}{T_{m}}\right)} ZWD \quad k_{2} = 71.98, k_{3} = 3.754 \times 10^{5}$$

$$m_{v} = 18.0152, m_{d} = 28.9644$$

Antenna PCV (Phase Center Variation)

Receiver Antenna Phase Center:

Antenna Phase Center Variation (PCV)

Earth Tides

Solid Earth Tide, Ocean Tide Loading, Pole Tide, Atmospheric Loading

30

Static PPP vs Kinematic PPP

Static PPP Results

Station: GEONET 0837

2009/1/1-2009/12/31 Interval: 1day

Kinematic PPP Results

Station: IGS CONZ

2010/2/27 6:28-6:45 GPST

Interval: 1 s

Real-time PPP

Commercial RT-PPP/GDPS Services

Sarvica	Provider	Communication		Ref.	Orbit/	Engino	Ассиноси
Service		Coverage	Link	Stations	Clock	Engine	Accuracy
StarFire	NavCom	World- wide	3 GEO L-band	60	1 min/ 1-2 s	JPL RTG	<10 cm H <15 cm V (1 sigma)
OmniSTAR XP/HP+	Гидика	World- wide (Land)	6 GEO L-band	100	1 min/ 10 s	Fuguro	dm-class
SeaSTAR XP/G2	Fuguro	World- wide (Sea)	6 GEO L-band	100	1 min/ 10 s	Fuguro/ ESOC (G2)	dm-class
VERIPOS Ultra/Apex	VERIPOS	World- wide	7 GEO L-band	80	30 s/ 30 s	JPL/ ESOC	10 cm H 20 cm V (95%)

IGS Real-time Ephemeris

Developed by IGS-RTPP

- RTCM v.3 MT1057-1068 (SSR)
- Corrections to broadcast ephemeris
- Real-time NTRIP stream
- Interval: 10 s, Latency: 5 10 s
- GPS and GLONASS

Analysis Strategy

- Orbit: fixed to IGU or estimated
- Clock: estimated with IGS real-time tracking network

http://igs.bkg.bund.de

RT-PPP Performance with IGS

2010/9/18 0:00-23:59, 1Hz, Kinematic PPP, NovAtel OEMV-3+GPS-702, RTKLIB 2.4.1

JAXA QZSS LEX-PPP Experiment

Implementation for LEX-PPP user algorithm

- Based on Real-time PPP by RTKLIB 2.4.1
- Support QZSS LEX Message Type 10, 11
- Support LEX-Receiver (Furuno LPY-10000) Message

Preliminary Evaluation

GEONET 0001 Wakkanai, 2010/8/3 0:00:00-23:59:30

RMS Error E/N/U: 15.2, 14.2, 21.6 cm (Dual Frequency)

(T.Takasu, Space Sciences and Technology Conference, 2011)

6. PPP: Exercise

PPP Analysis for Reference Point

Objective

PPP Analysis for Reference Point

Program

...¥rtklib_2.4.0¥bin¥rtkpost.exe

...¥rtklib_2.4.1b¥bin¥rtkpost.exe

Data

...\(\frac{1}{2}\) seminar\(\frac{1}{2}\) sample 4\(\frac{1}{2}\) 09160700.110, 09160700.11n (RINEX) 21100700.11o, 21100700.11n (RINEX) igs16265.sp3 (Precise Orbit) igs16265.clk 30s (Precise Clock)

RTKPOST

Date:

2011/3/11 GPST

(GPS week 1626-5, DOY 070)

GEONET Station:

020916: Minamikata

92110: Tsukuba

Online GNSS Data Sources

GEONET Data _ D X 電子基準点データ提供画面 ファイル 編集 表示 履歴 ブックマ ク ウィンドウ ヘルプ + shttp://terras.gsi.go.jp/ja/index.html ○ □ + ☆ + Ĉ □ Q → az vision 電子基準点データ提供サービス ようこそ このサービスでは、国土地理院の**G E O N E T ◎** (G P S 連続観測システム) で得られた電子基準点観測データや解析 結果値をインターネットを利用してユーザの皆様に提供する ことを目的としています。 ● 初めてご利用になる方は左フレームメニュー情報をご確認ください。 **●**TOPページ ● ご利用前に、当サービスに関する最新情報「<u>おしら</u>せ」をご確認ください。 **●おしらせ** NEW!! ■ 電子基準点の停止状況についてはこちらをご覧くださ 雷子基準点停止状況 ●電子基準点とは * * * * * * * * * 【重要なお知らせ】G P S データクリアリング ハウスのサーバ停止について * * * * * * * ●提供情報について **GPS データクリアリングハウス** (http://datahousel.gsi.go.jp/)については、サービス向上のため当面の間サーバを停止致します。詳しく 観測データ提供方法概要 提供情報内容 は、下記ファイルを参照願います ●電子基準点PCV補正デー <u>G P S データクリアリングハウスのサーバ停止に関するお知らせ</u> 【P D F 版 7 2 K B 】 ●FAQ * * * * * * * * 電子基準点の測量成果について ●提供サービス このサービスでは、データの提供のみ行っており、成果値については収録していません。電子基準点の成果を含む全ての基準点成果は、「基準点成果等関策サービス」に収録されています。成果を閲覧される場合は、下記のアドレスよりお進み下さい。また、閲覧の際に基準点コードを使用される場合は左のフレーム「提供サービス」よりお進みになり、「基準点コード一覧表」よりお調べ下さい。 ◆国土地理院メインページへ 「基準点成果等閲覧サービス」はこちら ※「基準点成果」・「点の記」の謄本が必要な場合は、手数料が必要です。謄本交付を行う場合は、基準点成果等閲覧サービスのHPをご覧いただき、手続きを行ってください。閲覧は無料です。

http://igscb.jpl.nasa.gov

http://terras.gsi.go.jp/ja/index.html

RTKPOST - Options

7. RTK System

RTK Application

Geodetic Survey

Construction

Machine Control

Precision Agriculture

ITS (Intelligent Transport System)

Mobile Mapping
System

Sports

Considerations for RTK System

Rover

- Single vs. Dual-freq, Update Rate, GNSS, Receiver-cost
- CPU Power for external processing
- INS-integration for obstacles

Reference Station

- Baseline-Length vs. Performance
- Self-provided vs. NRTK Service
- Coverage, Receiver-cost, Operational-cost, Service-fee

Communication Link

Coverage, Band-width, Latency, Link-cost

CPU-power, Bandwidth, Latency

CPU-power

- ~2 ms/epoch for dual-freq RTK on Intel Core 2 Q 2.4 GHz
- ~20ms/epoch for single-freq RTK on ARM 600 MHz
- H/W DP floating-point is necessary

Bandwidth

- ~3 kbps for 1 Hz GPS only, RTCM 3
- ~20 kbps for 1 Hz GPS+GLO+QZS+SBAS, JAVAD GREIS

Latency

- > 5 s Latency degrades RTK performance
- "Low-latency" vs. "Matched" Solution

Communication Link for RTK

Local (<300 m)

- Serial, USB, LAN, ... (wired)
- Radio Modem, WiFi, ZigBee, DSRC, ... (wireless)

Regional (<1,000 km)

- Analog-phone, ISDN, Dedicated Link, ... (wired)
- Mobile-phone (Analog, 2G, 3G, ...), ... (wireless)

• Global (<10,000 km)

- Internet
- GEO Satellite Link (Inmarsat, WideStar II, ...)
- LEO Satellite Link (Iridum, Orbicom, ...)

Coverage by Mobile-phone N/W

NTT docomo FOMA (2008/9)

(http://servicearea.nttdocomo.co.jp)

RTK Configurations (1)

RTK Configuration (2)

RTK Configuration (3)

- (1) Input Rover=Serial
- (2) Input Base Station=TCP Client

7. RTK System: Exercise

Communication Link for RTK

Objective

Network Connection for RTK

Program

...¥rtklib 2.4.1b¥bin¥rtknavi.exe

...\forall rtklib_2.4.1b\forall bin\forall strsvr.exe

Stream (TCP Client)

JAV1: 192.168.1.173: 2101 (Format: Javad)

JAV2: 192.168.1.173: 2102 (Format: Javad)

STRSVR

Acknowledgment:

Sample data were captured by JAVAD DELTA and FURUNO LPY-10000 receiver provided by JAXA

Network Configuration

8. Advanced Topics

Advanced Topics

- Multi-GNSS RTK
- Long-Baseline RTK
- INS-Aided RTK
- Ambiguity Resolution for PPP
- "CM-Accuracy Anywhere"

GNSS Evolution

Number of Planned GNSS Satellites

. tallined entry outcomes						
System	2010	2013	2016	2019		
GPS	31	32	32	32		
GLONASS	23 (+2)	24 (+3)	24 (+3)	24 (+3)		
Galileo	0	4	18	27 (+3)		
Compass	6	12	30	32 (+3)		
QZSS	1	1	7	7		
IRNSS	0	7	7	7		
SBAS	7	8	11	11		
Total	68	88	129	140		

(Y.Yang, COMPASS: View on Compatibility and Interoperability, 2009)

Multi-GNSS RTK Performance

RTK Performance: Baseline 13.3 km, Instantaneous AR

		El Mask=15°			El Mask=30°					
	GPS	Galileo	Fixing	RMS Error (cm)		Fixing	RMS Error (cm)		cm)	
			Ratio	E-W	N-S	U-D	Ratio	E-W	N-S	U-D
G	PS L1+L2	-	49.7%	4.6	8.1	19.0	23.3%	71.4	115.0	289
	L1,L2	-	99.0%	1.4	1.3	1.9	87.6%	3.4	10.5	15.5
	L1,L2,L5	-	99.0%	1.4	1.3	1.9	87.3%	3.4	10.5	15.6
	L1	E1	98.8%	1.3	1.2	1.9	90.1%	1.2	2.1	2.7
G	PS <mark>+GAL L1</mark>	E1	98.9%	1.4	1.2	1.7	98.7%	1.2	1.0	1.6
	L1,L2,L5	E1,E5a, E5b	98.9%	1.5	1.3	2.0	98.9%	1.3	1.1	1.8

Multi-GNSS Receiver

Moore's Law

- More correlators
- More tracking channels
- More powerful embedded CPU

Consumer-grade Multi-GNSS Receiver

- SkyTraq: GPS + GLONASS
- STMicro: GPS + GLONASS
- Broadcom: GPS + GLONASS + QZSS
- u-blox: GPS + Galileo

Issues for Multi-GNSS RTK

Multi-GNSS Integration Issue

- Time-system, Coordinate-system
- Receiver H/W Biases

Multi-code System Issue

- L1C/A-L1P(Y)-L1Cd-L1Cp, L2P(Y)-L2C, L5I-L5Q
- Quarter cycle phase-shift problem

GLONASS FDMA Issue

- Receiver Inter-channel biases (Receiver Interoperability)
- Calibration Message Standard
- Antenna Calibration

Long-Baseline RTK

GPS Tsunami
Monitoring System
(Currently ~15 km off-shore)

http://www.tsunamigps.com

Long-Baseline RTK Strategy

	BL		Chuckomy			
(km)		Ephem	lonos	Tropos	Others	Strategy
S	0 – 10	Broadcast	-	-	-	Conventional RTK
М	10 –	Broadcast	Dual-Freq	-	-	IVIIV
IVI	100		Interpo	olation	-	Network RTK
L	100 – 1,000	Real-time Precise (IGU)	Dual-Freq	Estimate ZTD + MF	Earth Tides	Long-Baseline RTK
VL	>1,000	Non-RT Precise (IGR, IGS)	Dual-Freq	Estimate ZTD + MF	Earth Tides, Ph-WU	Post- Processing or PPP

Long-Baseline RTK with RTKLIB

Mobile AP issues for RTK

Cycle-Slips

- Frequent cycle-slip with around obstacles
- Miss-detection of cycle-slip

Low Solution Availability

- Long acquisition time by weak signal (Low C/N0)
- Half-cycle ambiguity resolution with Costas-PLL
- Low fixing ratio

High Noise Level

- High multipath level even in carrier-phase
- Jamming by RFI

Cycle-Slips

INS-Aided RTK

Loosely-Coupled Integration

Tightly-Coupled Integration

Deep Integration (Ultra-Tightly) High sensitivity (DLL, PLL) Slip resistance

Ambiguity Resolution for PPP

- with AR for PPP
 - Improve Convergence Time
 - Improve Accuracy of Static Solution (EW, UD)
 - Improve Stability of Kinematic Solution
- Difficulties of AR for PPP
 - Unknown Satellite Initial Phase Biases
 - Effect of Precise Orbit/Clock Error
 - Effect of Ionospheric Delay
 - Code/Phase Bias Instability
 - Multipath Effect at Reference Station Network

M.Ge et al., EGU 2007

NL Phase Bias Stability

North

East

M.Ge et al., Resolution of GPS carrier-phase ambiguity in precise point positioning, EGU

Assembly 2007

Up

D.Laurichesse, ION 2010

- Real-Time Implementation of PPP-AR
 - Network WL ambiguity fixing
 - Parameter estimation by EKF with iono-free code/phase: phase-clock, code-phase-bias, ZTD, station position, orbit correction to IGU, phase ambiguity
 - Orbit construction + high-rate clock generation
- Evaluation of Accuracy
 - Orbit: 4cm, code-clock: 5 cm, phase-clock: 1cm
- RT-PPP with AR ("CNES Integer PPP")
 - 1 cm HRMS

"CM-Accuracy Anywhere"

Requirement	Target in 2020	Developing/Future Technologies
Coverage	Global (world-wide)	Precise Ephemeris with AR, Broadcast via GEO/QZSS Satellite
Latency	Real-time (1 s)	Real-time Multi-GNSS Orbit/Clock Estimation
Accuracy	1 cm (HRMS) 2 cm (VRMS)	Local iono/tropos corrections (land) lono estimation by triple-freq (sea)
	99 % (open-sky)	Multi-GNSS 30 Sats + triple-freq
Availability	95 % (urban)	Multi-GNSS 30 Sats + INS-aided PLL, slip-resistant
TTFF	10 s (land)	Local iono/tropos corrections
HIFF	1 min (sea)	Iono estimation by triple-freq
User Cost	< \$100	No patent problem, need killer-AP

8. Advanced Topics: Q & A