

Art of Problem Solving 2004 Iran MO (3rd Round)

National Math Olympiad (3rd Round) 2004

1	We say $m \circ n$ for natural m,n \iff nth number of binary representation of n is 1 or mth number of binary representation of n is 1. and we say $m \bullet n$ if and only if m, n doesn't have the relation \circ We say $A \subset \mathbb{N}$ is golden $\iff \forall U, V \subset A$ that are finite and are not empty and $U \cap V = \emptyset$, There exist $z \in A$ that $\forall x \in U, y \in V$ we have $z \circ x, z \bullet y$ Suppose \mathbb{P} is set of prime numbers. Prove if $\mathbb{P} = P_1 \cup \cup P_k$ and $P_i \cap P_j = \emptyset$ then one of $P_1,, P_k$ is golden.
2	A is a compact convex set in plane. Prove that there exists a point $O \in A$, such that for every line XX' passing through O , where X and X' are boundary points of A , then $\frac{1}{2} \leq \frac{OX}{OX'} \leq 2.$
3	Suppose $V = \mathbb{Z}_2^n$ and for a vector $x = (x_1,x_n)$ in V and permutation σ . We have $x_{\sigma} = (x_{\sigma(1)},, x_{\sigma(n)})$ Suppose $n = 4k + 2, 4k + 3$ and $f : V \to V$ is injective and if x and y differ in more than $n/2$ places then $f(x)$ and $f(y)$ differ in more than $n/2$ places. Prove there exist permutaion σ and vector v that $f(x) = x_{\sigma} + v$
4	We have finite white and finite black points that for each 4 oints there is a line that white points and black points are at different sides of this line. Prove there is a line that all white points and black points are at different side of this line.
5	assume that k,n are two positive integer $k \leq n$ count the number of permutation $\{1,\ldots,n\}$ st for any $1\leq i,j\leq k$ and any positive integer m we have $f^m(i)\neq j$ $(f^m$ meas iterarte function,)
6	assume that we have a n*n table we fill it with 1,,n such that each number exists exactly n times prove that there exist a row or column such that at least \sqrt{n} diffrent number are contained.
7	Suppose F is a polygon with lattice vertices and sides parallel to x-axis and y-axis. Suppose $S(F)$, $P(F)$ are area and perimeter of F . Find the smallest k that: $S(F) \leq k.P(F)^2$

Art of Problem Solving 2004 Iran MO (3rd Round)

8	$\mathbb P$ is a n-gon with sides $l_1,,l_n$ and vertices on a circle. Prove that no n-gon with this sides has area more than $\mathbb P$
9	Let ABC be a triangle, and O the center of its circumcircle. Let a line through the point O intersect the lines AB and AC at the points M and N , respectively. Denote by S and R the midpoints of the segments BN and CM , respectively. Prove that $\angle ROS = \angle BAC$.
10	$f: \mathbb{R}^2 \to \mathbb{R}^2$ is injective and surjective. Distance of X and Y is not less than distance of $f(X)$ and $f(Y)$. Prove for A in plane:
	$S(A) \geq S(f(A))$
	where $S(A)$ is area of A
11	assume that ABC is a cute traingle and AA' is median we extend it until it meets circumcircle at A". let AP_a be a diameter of the circumcircle. the pependicular from A' to AP_a meets the tangent to circumcircle at A" in the point X_a ; we define X_b, X_c similary . prove that X_a, X_b, X_c are one a line.
12	\mathbb{N}_{10} is generalization of \mathbb{N} that every hypernumber in \mathbb{N}_{10} is something like: $\overline{\ldots a_2 a_1 a_0}$ with $a_i \in 0, 19$ (Notice that $\overline{\ldots 000} \in \mathbb{N}_{10}$) Also we easily have $+, *$ in \mathbb{N}_{10} . first k number of $a * b =$ first k nubmer of (first k number of a * first k number of b) first k number of $a + b =$ first k nubmer of (first k number of a + first k number of b) Fore example $\overline{\ldots 999} + \overline{\ldots 0001} = \overline{\ldots 000}$ Prove that every monic polynomial in $\mathbb{N}_{10}[x]$ with degree d has at most d^2 roots.
13	Suppose f is a polynomial in $\mathbb{Z}[X]$ and m is integer .Consider the sequence a_i like this $a_1 = m$ and $a_{i+1} = f(a_i)$ find all polynomials f and all integers m that for each i : $a_i a_{i+1}$

Contributors: Omid Hatami, sam-n, behzad

14

Art of Problem Solving

2004 Iran MO (3rd Round)

We define $f: \mathbb{N} \to \mathbb{N}$, $f(n) = \sum_{k=1}^{n} (k, n)$.

	a) Show that if $gcd(m, n) = 1$ then we have $f(mn) = f(m) \cdot f(n)$;
	b) Show that $\sum_{d n} f(d) = nd(n)$.
15	This problem is easy but nobody solved it.

point A moves in a line with speed v and B moves also with speed v' that at every time the direction of move of B goes from A. We know $v \geq v'$. If we know the point of beginning of path of A, then B must be where at first that B can catch A.

Let ABC be a triangle . Let point X be in the triangle and AX intersects BC in Y. Draw the perpendiculars YP, YQ, YR, YS to lines CA, CX, BX, BA respectively. Find the necessary and sufficient condition for X such that PQRS be cyclic .

Let p = 4k + 1 be a prime. Prove that p has at least $\frac{\phi(p-1)}{2}$ primitive roots.

Prove that for any n, there is a subset $\{a_1, \ldots, a_n\}$ of \mathbb{N} such that for each subset S of $\{1, \ldots, n\}$, $\sum_{i \in S} a_i$ has the same set of prime divisors.

Find all integer solutions of $p^3 = p^2 + q^2 + r^2$ where p, q, r are primes.

20 p(x) is a polynomial in $\mathbb{Z}[x]$ such that for each $m, n \in \mathbb{N}$ there is an integer a such that $n \mid p(a^m)$. Prove that 0 or 1 is a root of p(x).

21 a_1, a_2, \ldots, a_n are integers, not all equal. Prove that there exist infinitely many prime numbers p such that for some k

$$p \mid a_1^k + \ldots + a_n^k.$$

Suppose that \mathcal{F} is a family of subsets of X. A, B are two subsets of X s.t. each element of \mathcal{F} has non-empty intersection with A, B. We know that no subset of X with n-1 elements has this property. Prove that there is a representation A, B in the form $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_n\}$, such that for each $1 \leq i \leq n$, there is an element of \mathcal{F} containing both a_i, b_i .

Art of Problem Solving 2004 Iran MO (3rd Round)

23	\mathcal{F} is a family of 3-subsets of set X . Every two distinct elements of X are exactly in k elements of \mathcal{F} . It is known that there is a partition of \mathcal{F} to sets X_1, X_2 such that each element of \mathcal{F} has non-empty intersection with both X_1, X_2 . Prove that $ X \leq 4$.
24	In triangle ABC , points M, N lie on line AC such that $MA = AB$ and $NB = NC$. Also K, L lie on line BC such that $KA = KB$ and $LA = LC$. It is know that $KL = \frac{1}{2}BC$ and $MN = AC$. Find angles of triangle ABC .
25	Finitely many convex subsets of \mathbb{R}^3 are given, such that every three have non-empty intersection. Prove that there exists a line in \mathbb{R}^3 that intersects all of these subsets.
26	Finitely many points are given on the surface of a sphere, such that every four of them lie on the surface of open hemisphere. Prove that all points lie on the surface of an open hemisphere.
27	$\Delta_1, \ldots, \Delta_n$ are <i>n</i> concurrent segments (their lines concur) in the real plane. Prove that if for every three of them there is a line intersecting these three segments, then there is a line that intersects all of the segments.
28	Find all prime numbers p such that $p = m^2 + n^2$ and $p \mid m^3 + n^3 - 4$.
29	Incircle of triangle ABC touches AB, AC at P, Q . BI, CI intersect with PQ at K, L . Prove that circumcircle of ILK is tangent to incircle of ABC if and only if $AB + AC = 3BC$.
30	Find all polynomials $p \in \mathbb{Z}[x]$ such that $(m,n) = 1 \Rightarrow (p(m),p(n)) = 1$

Contributors: Omid Hatami, sam-n, behzad