

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе № _3_

«Исследование псевдослучайных чисел» Название:

Дисциплина: Моделирование

Студент ИУ7-76Б А. А. Петрова (И.О. Фамилия) (Группа)

Преподаватель И. В. Рудаков

(И.О. Фамилия)

Задание

Реализовать табличный алгоритмический И методы генерирования псевдослучайных критерий случайной чисел, также оценки работы последовательности. Сравнить результаты ЭТОГО критерия одноразрядных, двухразрядных и трехразрядных последовательностях целых чисел.

Математическая формализация

В качестве алгоритмического способа генерации псевдослучайных чисел был выбран линейный конгруэнтный метод, который был предложен Д. Г. Лемером. Суть метода заключается в вычислении последовательности чисел X_n , полагая:

$$X_{n+1} = (aX_n + c) \bmod m,$$

где $m \ge 2$, $a \in [0; m)$, $c \in [0; m)$.

Для оценки случайности генерируемых последовательностей был выбран критерий, основанный на расчете частотности единиц в двоичном представлении чисел последовательности. Цель данного теста — выяснить действительно ли число нулей и единиц в последовательности приблизительно одинаковы, как это можно было бы предположить в случае истинно случайной бинарной последовательности. Тест оценивает, насколько близка доля единиц к 0,5.

Таким образом, процедура проверки последовательности заключается в следующем:

- 1. Перевести каждое число последовательности в двоичный вид.
- 2. Занести все полученные двоичные числа в одну последовательность.
- 3. Подсчитать количество единиц в последовательности n_ones .
- 4. Подсчитать общее число 0 и 1 в последовательности (длину последовательности) len.
- 5. $P = n_ones / len -$ искомая доля единиц в последовательности.
- 6. Если $P \approx 0.5 \pm 0.1$, то последовательность случайна. Иначе неслучайна.

Реализация

В листингах ниже представлена реализация алгоритмического метода генерации и критерия оценки случайности.

Листинг 1: алгоритмический метод генерации последовательности

```
def rand_alg(self, low, high, col): # Лемер
m = 2. ** 31
a = 1664525
c = 1013904223
current = 10
seq = []
for i in range(COUNT):
    current = (a * current + c) % m
    result = int(low + current % (high - low))
    seq.append(result)
for i in range(0, COUNT, STEP):
    self.table_2.setItem(i // STEP, col, QTableWidgetItem(str(seq[i])))
```

Листинг 2: критерий оценки случайности последовательности

```
def _criterion(self, seq):
bin_seq = ""
for num in seq:
    bin_seq += bin(num)[2:]
ones = 0
for digit in bin_seq:
    if digit == '1':
        ones += 1
p = ones / len(bin_seq)
return p
```

Результаты работы

На рисунках ниже приведены результаты работы программы при разных последовательностях.

Рисунок 1: случайные последовательности ($p \in [0,4;0,6]$)

Рисунок 2: неслучайная собственная последовательность (р значительно меньше 0,5)

Рисунок 3: неслучайная собственная последовательность (р значительно больше 0,5)