Opracowanie wyników laboratoriów

Generowanie punktów

Wszystkie operacje wykonane zostały na laptopie z procesorem Ryzen 7 5800H. Językiem z jakiego korzystałem był Python w wersji 3.10. Za pomocą biblioteki **NumPy** wygenerowałem 4 zadane zestawy punktów co zajęło około 0.005s:

Wizualizacja 1: Wygenerowane zbiory punktów.

Klasyfikacja względem prostej

Następnie używając 4 metod, wyznacznika 2x2 oraz 3x3 z biblioteki NumPy oraz zaimplementowanych przeze mnie, podzieliłem każdy zbiór punktów na zbiory zawierające punkty odpowiednio nad, na oraz pod prostą przechodzącą przez punkty A = (-1,0), B = (1,0.1). Punkty, dla których $|\det| \le \epsilon$ są interpretowane jako kolinearne z A i B. Poniżej zamieszczona została wizualizacja zbiorów danych dla $\epsilon = 10^{-8}$, natomiast dalej w tabelach zawarte zostały liczności zbiorów nad, na, oraz pod prostą dla ϵ równego odpowiednio: $10^{-2}, 10^{-5}, 10^{-8}, 10^{-11}, 10^{-14}$.

Zaimplementowane przeze mnie algorytmy korzystają odpowiednio z własności wyznaczników:

$$\begin{vmatrix} a_x - p_x & a_y - p_y \\ b_x - p_x & b_y - p_y \end{vmatrix} = (a_x - p_x)(b_y - p_y) - (b_x - p_x)(a_y - p_y),$$

$$\begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ p_x & p_y & 1 \end{vmatrix} = a_x b_y + a_y p_x + b_x p_y - (a_y b_x + a_x p_y + b_y p_x).$$

Jako, że wizualizacje poszczególnych metod różnią się minimalnie lub wcale, to poniżej zamieściłem tylko jedną z nich.

Klasyfikacja punktów

Wizualizacja 2: Podział dla $\epsilon = 10^{-8}$ oraz metody **NumPy 2x2**.

Table 1: WYNIKI DLA ZBIORU a).

EPSILON METODA	10^{-2}	10^{-5}	10^8	10^{-11}	10^{-14}	
	49795	49795	49795	49795	49795	nad
NumPy 2x2	1	0	0	0	0	na
	50204	50205	50205	50205	50205	pod
	49795	49795	49795	49795	49795	nad
NumPy 3x3	1	0	0	0	0	na
	50204	50205	50205	50205	50205	pod
	49795	49795	49795	49795	49795	nad
My det 2x2	1	0	0	0	0	na
	50204	50205	50205	50205	50205	pod
	49795	49795	49795	49795	49795	nad
My det 3x3	1	0	0	0	0	na
	50204	50205	50205	50205	50205	pod

Table 2: WYNIKI DLA ZBIORU b).

	1			1		
EPSILON METODA	10^{-2}	10^{-5}	10^{-8}	10^{-11}	10^{-14}	
	49923	49923	49923	49923	49923	nad
NumPy 2x2	6	6	6	6	6	na
	50071	50071	50071	50071	50071	pod
	49924	49924	49924	49924	49924	nad
NumPy 3x3	0	0	0	0	0	na
	50076	50076	50076	50076	50076	pod
	49920	49920	49920	49920	49920	nad
My det 2x2	7	7	7	7	7	na
	50073	50073	50073	50073	50073	pod
	49924	49924	49924	49924	49924	nad
My det 3x3	0	0	0	0	0	na
	50076	50076	50076	50076	50076	pod

Table 3: WYNIKI DLA ZBIORU c).

EPSILON METODA	10^{-2}	10^{-5}	10^{-8}	10^{-11}	10^{-14}	
WEIGHT						
	479	479	479	479	479	nad
NumPy 2x2	0	0	0	0	0	na
	521	521	521	521	521	pod
	479	479	479	479	479	nad
NumPy 3x3	0	0	0	0	0	na
	521	521	521	521	521	pod
	479	479	479	479	479	nad
$\mathbf{My} \det \mathbf{2x2}$	0	0	0	0	0	na
	521	521	521	521	521	pod
	479	479	479	479	479	nad
My det 3x3	0	0	0	0	0	na
	521	521	521	521	521	pod

Table 4: WYNIKI DLA ZBIORU d).

EPSILON METODA	10^{-2}	10^{-5}	10^{-8}	10^{-11}	10^{-14}	
	0	0	0	0	155	nad
NumPy 2x2	1000	1000	1000	1000	704	na
	0	0	0	0	141	pod
	0	0	0	0	0	nad
NumPy 3x3	1000	1000	1000	1000	852	na
	0	0	0	0	148	pod
	0	0	0	0	163	nad
$\mathbf{My} \det \mathbf{2x2}$	1000	1000	1000	1000	684	na
	0	0	0	0	153	pod
	0	0	0	0	0	nad
My det 3x3	1000	1000	1000	1000	1000	na
	0	0	0	0	0	pod

Wnioski

W czasie klasyfikacji punktów, dodatkowo zmierzyłem czas, który zajmuje obliczenie wyznaczników dla wszystkich zbiorów punktów na podanym wcześniej procesorze. Jest to odpowiednio:

Metoda	Czas
NumPy 2x2	0.03s.
NumPy 3x3	0.05s.
My det 2x2	0.4s.
My det 3x3	0.4s.

Table 5: Czasy obliczania wyznaczników przez poszczególne metody.

Jak widzimy użycie algorytmów z biblioteki **NumPy** pozwala efektywnie liczyć wyznaczniki większych zbiorów danych. Ponadto widzimy, że sposób szacowania bardzo różni się miedzy sposobami obliczania wyznacznika. Dla ϵ z przedziału $(10^{-11}, 10^{-5})$ wyniki z wybranej metody są takie same. Jako, że obliczenia zmiennoprzecinkowe posiadają ograniczoną precyzje, to dla $\epsilon \leq 10^{-14}$ punkty faktycznie leżące na prostej nie zostają poprawnie przyporządkowane. Widzimy także, że punkty ze zbioru b) zostają błędnie przypisane jako kolinearne z A i B przy użyciu metod 2x2.