Lecture 20

The Solution of Non-linear equations

One of the most frequently occurring problems in scientific work is to find the roots of equations of the form f(x) = 0

In general we can only hope for c'approximate solutions i.e a pt

** for which |f(x*)| is "small".

Some iterative methods of not finding 1) Bisection method Recall intermediate value theore $f_i(a) = f_i(b) < 0$ then $f_i(a) = f_i(b) < 0$ a zero in (a,6). Suppose f(a) = bSet $a_0 = a$ $b_0 = b$ $m = \frac{a_0 + b_0}{2}$ \star If $f(a_0) f(m) < 0$ then set $b_1 = m$ $a_1 = a_0$ Otherwise set $q_1 = m$ $b_1 = b$ so not lies in [a, b,)

Example
$$f(x) = x^2 - 2$$
 $a_0 = 1$ $f(a_0) = -1$
 $b_1 = 2$ $f(b_0) = 2$
 $M = \frac{1+2}{2} = 1.5$
 $f(1.5) = 2.25 - 2 = 0.25$

So $a_0 = 1$ $b_1 = 1.5$

Yout lies in $E_1, ..., E_n$

Algorithm for bisection method

Given a function continuous in $[a_0, b_0]$

and such that $f(a_0) f(b_0) < \delta$

For $m = 0, 1, 2, ...$ will satisfied do

Set $m = \frac{a_0 + b_0}{2}$

If $f(a_0) f(m) < 0$ then set $a_{n+1} = a_n$
 $b_{n+1} = m$

Otherwisk set $a_{n+1} = m$, $b_{n+1} = b_n$

Then $f(x)$ has a root in the interned $[a_{n+1}, b_{n+1}]$

Example $f(n) = n^2 - 2$

(4 sig digits)

~		an	bn	flan	f (bn)
				,	
0	1		2	<u> </u>	2
		l	1.5	<u> -1</u>	2.5 E-)
2		1.25	1.5	-4.375E-1	2.5 E-1
9		1.375	1.5	-1.094 E-1	2-5 E-1
4		1.375	1.438	-1.094 E-1	6-641 E-1
5		1.407	1-438	-2.035E-2	6-641 E-1
6		1.407	1.423	-2.035GA	2.493 E-2
7		1-407	1-415	-2.035 G-2	2-225 E-3
8		1-411	1.415	- 9·079 E-3	2-225 E-3
		1.413	. 1-415	- 3.431 E-3	2.225 E-3
10		1-414	1-415	-6.040 E-4	2-225 E-3
	1				

1.414 + 1.415 = 1.415 in 4 sig 2 dight .So algorithim ends. routlies in [1.414, 1.415]

- · Bisection method always converges to the root
 - · Convergence is slow

One can hope to get to not forter by using fully the information about f(x) available at each step.

In our example $f(x) = x^2 - 2$ $f(1) = -1 \quad \text{and} \quad f(2) = 2$

Since If(1) is closer to zero that

If (2) | the good & is likely to

be closer to I than 2.

Hence rather than check the midpt or any value of 1 and 2, we find at the weighted average w = |f(2)|11 + |f(1)|2\f(2)\ +\f(1)\ f(1), f(2) have apposite sig Since f(2).1 - f(1).2f(2) - f(1)In our example $w = \frac{2 + 2}{3} = 1.333$ f(w) < 0 Su the root lies in [1-333, 2] repeating the process we get w = 1.400 and so-on

This algorithim is known as regula-falsi or false-position method. Algorithins (Regula-falsi) Given a function fixe untinua on the internal Eao, ho I and such that f(a) f(b) < 0 For n=0,1,2,--, until satisfied do $w = f(b_n)a_n - f(a_n)b_n$ If $f(a_n) f(w) \leq 0$, set $a_{n+1} = a_n$, $b_{n+1} = w$ Otherwise set anti = W, buti = bn

Enample

 $f(x) = x^2 - 2$

4 ses digits

7	an	bn	flan	f(lm)	Wn
				_	. 5.00
0	l	2		2	1.333
	l·333	2	- 3.3338	2	1-400
2	1-400	2	-4-086 E-2	2	1.412
3	1.412	2	- 6.256 G-2	. 2	1.414
4	1-414	2			,

Regula falsi method for oduces a point at which I f(n) | is "small" somewher faster than the bisection method, it fails completely to give a "small interval" where the root is known to lie.

$$w = \frac{f(b_n)a_n - f(a_n)b_n}{f(b_n) - f(a_n)}$$

is the pt at which the st-line passing through (an, f(an)), (bn, f(on)) interects
the x-axis

Such a st-like is secont to f(x) and in our example f(x) is uncome upward and increasing (in the internal [1,2] of interest, here the secant is always abone the graph of f(x). Consequently we always lies to the left- q the zero (in our example: If f(x) were concave downward and increasing w would always lie to the right of the zero.

Two ways of inproving regula-false.

The first one, called "modified regula-fabri" replaces seconts by st-lines of ever-smaller slope curtil w falls to the opp side of the root.

Algorithin (Modified regula fabri)

Given f(n) continuous on [as, bo]

and such that f(as) f(bs) c bSet F = f(as) G = f(bs) $w_0 = ab$

until satisfied do For n = 0,1,2, -. Gan-Fbn Calculate Wnt1 = G - F If $f(a_n) f(\omega_{n+1}) \leq 0$ bnti = Wnti a = f(wh+1) If also f(wn) f(wn+1) >0 set F= 7/2. Otherwise sur anti- why, F=f(wmil) met = low If also f(wn1f(wn+1)>0 ser g = 5/2 Then f(n) has a zero in the internal [anti, buti]

Example
$$f(x) = x^2 - 2$$

~	Clan	b n	F	1 9	Wn
0	t	2	—)	2	1
1	1.333	Q	- 2·222G	1	1.333
2.	1.333	1.454	-2-222 E-1	1.141 E-1	1-454
3.	1-413	1-454	-3-431 E-3	1-1418-1	1.413
h	1.414	1.454		5-705 G-2	
5,	1-414	1.454	-6.040E4	2.853 EX	1.414
6	1-414	1.415	-6.04064	1-7426-2	1-415

not lies in [1.414, 1.415]

A second, very popular modification of the regula-fabri, called the secont method, retains the use of secants throughout, but may give up the bracketing of the root Algorithim (Secant method) Gren a function f(n) and two points X-1 and Xo For n= 0,1,2, ... until satisfied do Calentalie $f(x_n) x_{n+1} - f(x_{n-1}) x_n$ $f(x_n) - f(x_{n-1})$

$$f(x) = x^2 - 2$$

$$X_{-1} = 1$$

$$X_0 = 2$$

η 1	×n	f (m)
		1 304
-1	1	- \
0	2	2
1	1.333	-2-222 E-1
2	1-400	-4.000 E-2
3	1.415	2.225 E-3
4	1.414	-6.040 E-4
5.	1.414	-6.040 E-4
	J	•

forvren ends

"note algorithin ends if $f(x_n) = f(x_n)$

This makes the calculation of x_{n+1} impossible

The expression $u_{n+1} = \frac{f(x_n) x_{n-1} - f(x_{n-1}) x_n}{f(x_n) - f(x_{n-1})}$ is prone to round-off error since f(xn) and f(xn-1) need not be of opposite signs. It is better to calculate x_{n+1} from the equivalent expression $\frac{x_n - x_{n-1}}{x_{n+1}}$ $x_{n+1} = x_n - f(x_n) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$ in which Mh+1 is obtained from 24 by adding the correction term $\frac{-f(x_n)}{f(x_{n-1})-f(x_{n-1})}$ $\frac{-\chi_{n-1}}{\chi_{n-1}}$ [fan), fix.,1]

If x_n close to x_{n-1} then we get $[f(x_n), f(x_{n-1})] \approx f'(x_n)$

Newton's method

Given f(n) continuity diff and a

pt no

For n = 0,1,2,... until satisfied do

Calculate $2n+1 = x_n - \frac{f(2n)}{f'(x_n)}$

 $\frac{\text{example}}{f(x) = x^2 - 2}$

 $x_0 = 1$

 $X_1 = 1.5$

X2 = 1-416666667

X3 = 1.414215686

Xy=1.414213562

Xn = Xy for n > 4.

Newtons method is special example of "fixed-pt iteration" $g(x) = x - \frac{f(x)}{x}$ f'(n) $\gamma_{n+1} = g(x_n)$ \exists I closed internel artain If he seg u, nz, --, so general Converge, to some pt & and sixi is its then & = lim Un+1 = lim g(24) = g (lim xn) = 9 () is a fixed pt of g.

