Procedures for Bayesian Trader Prediction Market Simulation

- Hyperparameters:
 - \circ A random event X with all kinds of outcome x and some probability distribution p;
 - \circ Agent's belief for this event, $p(x;\theta)$. This belief has a general form:

$$p(x; \theta) = \exp(\langle \theta, \phi(x) \rangle - T(\theta)),$$

 $T(\theta)$ as the log-partition function.

Note. Agent's belief on the probability distribution of this event is not reflected directly from $p(x;\theta)$. Instead, it will be reflected from its prior, i.e, the distribution of the parameter θ .

o Agent's prior for this event. Prior should be of the form

$$p(\theta; b_0) = \exp(\langle n\nu, \theta \rangle + nT(\theta) - \psi(\nu, n)),$$

where
$$b_0 = \begin{bmatrix} n\nu \\ n \end{bmatrix}$$
.

- Procedures:
 - 1. According to the current outstanding shares and the cost function, assume the current market price for the security (contract) is

$$\nabla C(\theta) = \nu.$$

- 2. One agent comes into the market with some prior $p(\theta; b_0)$ where $b_0 = \begin{bmatrix} n\nu \\ n \end{bmatrix}$.
- 3. He is provided with a *private* set of data points of size m.
- 4. He calculates the average payoff by

$$\hat{\mu} = \frac{1}{m} \sum_{i=1}^{m} \phi(x).$$

- 5. His posterior belief $p(\theta; b_1)$ is updated to be of same form but $b_1 = \begin{bmatrix} n\nu + m\hat{\mu} \\ n+m \end{bmatrix}$.
- 6. He would like to buy/sell some number δ of security (contract) such that

$$\nabla C(\theta + \delta) = \frac{n\nu + \hat{\mu}}{n+1}.$$

- 7. Repeat the above steps until all agents have traded in the market.
- Questions and concerns:
 - 1. Why is the fact that every agent would have a prior with a parameter such that its first entry is always ν times larger than the second entry?
 - 2. When calculating $p(x;\theta) = p(\theta;b_0)$, since the second term of θ is $-\frac{1}{2\sigma^2}$, should we use $\frac{\mu}{\sigma}$ in calculation (which is the current method)?

1

3. How to determine ν_2 when we calculate the $[n\nu, n]$ pair?