Unsupervised Detection and Tracking of Multiple Objects with Dependent Dirichlet Process Mixtures

Willie Neiswanger,¹ Frank Wood²

¹Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY

²Department of Statistics, Columbia University, New York, NY

Introduction

This work proposes a multiple object detection and tracking method intended to reduce the need for explicit target identification and serve as a general method to track targets with arbitrary characteristics moving over diverse backgrounds. The technique uses a dependent Dirichlet process (DDP) mixture known as the Generalized Polya Urn (GPUDDP) [1] to model spatial and color data that can be extracted from videos containing multiple moving targets via frame differencing.

Data

Figure 1. Video frames and corresponding frame differences showing motion pixels.

Model

Observations: $\mathbf{x} = (\mathbf{x}^{s}, \mathbf{x}^{c}, t) = (x^{s_1}, x^{s_2}, x^{c_1}, \dots, x^{c_V}, t)$

Likelihood: $P(\mathbf{x}|\theta) = \mathcal{N}(\mathbf{x}^s|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \mathcal{M}n(\mathbf{x}^c|\mathbf{p})$

Prior: $\mathbb{G}_0(\theta) = \mathcal{N}i\mathcal{W}(\boldsymbol{\mu}, \Sigma | \boldsymbol{\mu}_0, k_0, v_0, \Lambda_0) \mathcal{D}ir(\mathbf{p}|\mathbf{q}_0)$

where \mathbf{x}^s is the location within a frame, \mathbf{x}^c is a vector of color counts, and t is the time index, for a given pixel extracted via frame differencing.

Dependent Dirichlet Process Mixture

The GPUDDP can be written generatively as

$$\mathbf{x}_{i}|c_{i}, \theta_{c_{i}} \sim \mathcal{N}(\boldsymbol{\mu}_{c_{i}}, \Sigma_{c_{i}}) \mathcal{M}n(\mathbf{p}_{c_{i}})$$

$$c_{i}|c_{1}, \dots, c_{i-1}, d_{1}, \dots, d_{i}, \alpha \sim \operatorname{CRP}(c_{1}, \dots, c_{i-1}, d_{1}, \dots, d_{i}, \alpha)$$

$$d_{i} - i - 1|\rho \sim \operatorname{Geo}(\rho)$$

$$\theta_{k,t}|\theta_{k,t-1}, \mu_{0}, \kappa_{0}, \Lambda_{0}, \nu_{0} \sim \begin{cases} \operatorname{TK} & \text{if } k \in \{1, \dots, K_{t-1}\} \\ \mathbb{G}_{0}(\mu_{0}, \kappa_{0}, \Lambda_{0}, \nu_{0}) & \text{if } k = K_{t-1} + 1 \end{cases}$$

where TK represents a transition kernel that dicatates the dependence of cluster parameters on cluster parameters in adjacent time steps. It is chosen such that the model is marginally a Dirichlet process at each time step.

where $\theta_{k,t}$ denotes the parameters of mixture component k at time step t, $z_{k,t,m}$ denotes one of m auxiliary variables which plays a part in the transition kernel, c_t denotes the assignments of the observations \mathbf{X}_t at time t, and d_t denotes the deletion time at which observations are removed from their assignments. There are an infinite number of mixture components, of which only a finite number are associated with data at any time step t.

Figure 2. A graphical model of the GPUDDP.

Results

Figure 3. Results from synthetic videos of moving colored squares. Results demonstrate successful tracking through occlusions.

Figure 4. Results on a benchmark video data from the PETS2001 workshop.

Conclusion

We have demonstrated detection and tracking of multiple objects through occlusions, appearances / disappearances of objects, and over diverse backgrounds. Future work will involve modifying the prior distribution for more sophisticated appearance modeling and object detection.

^[1] F. Caron, M. Davy, and A. Doucet. Generalized polya urn for time-varying Dirichlet process mixtures. In 23rd Conference on Uncertainty in Artificial Intelligence (UAI'2007), Vancouver, Canada, July 2007, 2007.

^[2] J. Gasthaus, F. Wood, D. Görür, and Y. W. Teh. Dependent Dirichlet process spike sorting. In *Advances in Neural Informations Processing Systems* 22, 2008.
[3] Jan Gasthaus. Spike sorting using time-varying Dirichlet process mixture models, 2008.