Математический анализ-2

Лектор: проф. Подольский Владимир Евгеньевич 14 февраля 2025 г.

Конспект: Кирилл Яковлев, Егор Соколов, 108 группа

Telegram: @fourkenz GitHub: yakovlevki

Содержание

1	Неопределенный интеграл		3
	1.1	Первообразная и неопреленный интеграл	•
	1.2	Свойства неопределённого интеграла	•
	1.3	Таблица неопределенных интегралов	۷
	1.4	Интегрирование рациональных функций	!
	1.5	Метод Остроградского	,
2	Интеграл Римана		i
	2.1	Интегрируемость по Риману	,
	2.2	Суммы Дарбу	9
	2.3	Классы интегрируемых функций	1

1 Неопределенный интеграл

1.1 Первообразная и неопреленный интеграл

Определение. Пусть f(x) определена на (a,b). Если существует F(x) определенная на (a,b) такая, что $F(x) \in \mathcal{D}(a,b)$ и F'(x) = f(x), то F(x) называется первообразной функцией для f(x).

Определение. Пусть f(x) определена на (a,b). Совокупность всех первообразных функций для f(x) называется неопределённым интегралом f(x) и обозначается

$$\int f(x)dx$$

Теорема. Пусть F(x) является первообразной для f(x) на (a,b). Тогда

$$\int f(x)dx = \{F(x) + C\}, \ C = const, \ C \in \mathbb{R}$$

Доказательство.

$$(F(x) + C)' = f(x) + 0 = f(x)$$

Пусть $\varphi(x)$ - первообразная f(x). Тогда:

$$(\varphi(x) - F(x))' = f(x) - f(x) = 0$$

т.е. по следствию из теоремы Лагранжа $\varphi(x) - F(x) = const$, ч.т.д.

1.2 Свойства неопределённого интеграла

1. $\forall c \in \mathbb{R}$:

$$\int c \cdot f(x) dx = c \cdot \int f(x) dx$$

(При c=0 множества получаются разными: первое - произвольная константа, а второе - ноль; в рассуждениях этот случай будет опускаться)

2.

$$\int (f(x) \pm g(x))dx = \int f(x)dx \pm \int g(x)dx$$

3. (Замена переменной)

Пусть F(x) - первообразная для f(x) на (a,b).

Пусть $\varphi(t) \in \mathcal{D}(\alpha, \beta)$ и $\varphi((\alpha, \beta)) \subset (a, b)$ Тогда $F(\varphi(t))$ является первообразной для $F'(\varphi(t)) \cdot \varphi'(t)$ на (α, β) .

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt,$$
где $x = \varphi(t)$

4. (Интегрирование по частям) Пусть $u, v \in \mathcal{D}(a, b)$.

$$(u \cdot v)' = u \cdot v' + u' \cdot v$$

$$\int (uv)' dx = \int uv' dx + \int u' v dx$$

$$\int uv' dx = uv - \int u' v dx$$

$$\int u dv = uv - \int v du$$

Замечание. Неопределённый интеграл - операция на дифференциалах:

$$\int dF(x) = F(x) + C$$

1.3 Таблица неопределенных интегралов

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ \alpha \neq -1$$

$$\int \frac{dx}{x} = \ln|x| + \begin{cases} C_1, \ x > 0 \\ C_2, \ x < 0 \end{cases}$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int e^x \, dx = e^x + C$$

$$\int a^x \, dx = \frac{a^x}{\ln a} + C$$

$$\int \frac{1}{\sin^2 x} \, dx = \cot x + C$$

$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$$

$$\int \frac{dx}{1+x^2} = \arctan x + C$$

$$\int \frac{dx}{1-x^2} = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| + C$$

Замечание. Все равенства верны только на промежутках.

1.4 Интегрирование рациональных функций

Хотим научиться находить интеграл

$$\int \frac{P(x)}{Q(x)} \, dx$$

где $P(x),\ Q(x)$ - многочлены. Разложим Q(x) на неприводимые многочлены:

$$Q(x) = (x - a_1)^{\alpha_1} \dots (x - a_n)^{\alpha_n} (x^2 + p_1 x + q_1)^{\beta_1} \dots (x^2 + p_k x + q_k)^{\beta_k}$$

Теперь разложим дробь в сумму простейших:

$$\int \frac{P(x)}{Q(x)} dx = \int (\tilde{P} + \sum_{i=1}^{\alpha_1} \frac{\aleph_{1i}}{(x - a_1)^{\alpha_{1i}}} + \dots + \sum_{i=1}^{\alpha_n} \frac{\aleph_{ni}}{(x - a_n)^{\alpha_{ni}}} + \dots + \sum_{j=1}^{\beta_1} \frac{\rho_{1j}x + \omega_{1j}}{(x^2 + p_1x + q_1)^{\beta_{1i}}} + \dots + \sum_{j=1}^{\beta_k} \frac{\rho_{kj}x + \omega_{kj}}{(x^2 + p_1x + q_1)^{\beta_{kj}}}) dx$$

Осталось понять как интегрировать слагаемые вида

$$\int \frac{dx}{(x-a)^n} \quad \text{M} \quad \int \frac{\alpha x + \beta}{(x^2 + px + q)^k} \ dx$$

1.

$$\int \frac{dx}{(x-a)^n} = \begin{cases} \ln|x-a|, & n=1\\ \frac{(x-a)^{1-n}}{1-n}, & n>1 \end{cases}$$

2. Сначала преобразуем знаменатель:

$$x^{2} + px + q = (x + \frac{p}{2})^{2} + (q - \frac{p^{2}}{4})$$

причем $q-\frac{p^2}{4}>0$, поскольку у x^2+px+q нет вещественных корней. Сделаем замену

$$t = x + \frac{p}{2} \Rightarrow x = t - \frac{p}{2}, \ q_1^2 = q - \frac{p^2}{4}$$

$$\int \frac{\alpha x + \beta}{(x^2 + px + q)^k} dx = \int \frac{\alpha t - \frac{\alpha p}{2} + \beta}{(t^2 + q_1^2)^k} d(t - \frac{p}{2}) = \int \frac{\alpha_1 t + \beta_1}{(t^2 + q_1^2)^k} dt$$

где $\alpha_1 = \alpha, \ \beta_1 = \beta - \frac{\alpha p}{2}$. Далее осталось рассмотреть два интеграла:

$$\int rac{t}{(t^2+q_1^2)^k} \; dt$$
 и $I_k = \int rac{dt}{(t^2+q_1^2)^k}$

(i)

$$\int \frac{t}{(t^2 + q_1^2)^k} dt = \frac{1}{2} \int \frac{dt^2}{(t^2 + q_1^2)^k} =$$

$$= \frac{1}{2} \int \frac{d(t^2 + q_1^2)}{(t^2 + q_1^2)^k} = \begin{cases} \frac{1}{2} \ln(t^2 + q_1^2), & k = 1\\ \frac{1}{2} \ln(t^2 + q_1^2), & k = 1\\ \frac{(t^2 + q_1^2)^{1-k}}{2(1 - k)}, & k > 1 \end{cases}$$

(ii)

$$I_{k} = \int \frac{dt}{(t^{2} + q^{2})^{k}} = \frac{t}{(t^{2} + q^{2})^{k}} - \int td(\frac{1}{t^{2} + q^{2}})^{k} =$$

$$= \frac{t}{(t^{2} + q^{2})^{k}} + 2k \int \left(\frac{t^{2} + q^{2} - q^{2}}{(t^{2} + q^{2})^{k+1}}\right) dt =$$

$$= \frac{t}{(t^{2} + q^{2})^{k}} + 2kI_{K} - 2kq^{2}I_{k+1}$$

$$I_{k+1} = \frac{1}{2kq^{2}} \cdot \frac{t}{(t^{2} + q^{2})^{k}} + \frac{2k - 1}{2kq^{2}}I_{k}$$

Замечание.

$$tg^{2}z + 1 = \frac{\sin^{2}z + \cos^{2}z}{\cos^{2}z} = \frac{1}{\cos^{2}z}$$

$$\int \frac{dt}{(t^{2} + q^{2})^{k}} = \begin{vmatrix} t = q \operatorname{tg}z \\ dt = \frac{q}{\cos^{2}z} dz \end{vmatrix} = \int \frac{qdz}{\cos^{2}z(q^{2}\operatorname{tg}^{2}z + q^{2})^{k}} = \int \frac{\cos^{2k-2}z}{q^{2k-1}} dz$$

1.5 Метод Остроградского

$$\int \frac{P(x)}{Q(x)} dx = \int \frac{P(x)}{\prod_{i=1}^{n} (x - a_i)^{\alpha_i} \cdot \prod_{j=1}^{k} (x^2 + b_j x + c_j)^{\beta_j}} dx = \frac{P_1(x)}{\prod_{i=1}^{n} (x - a_i)^{\alpha_i - 1} \cdot \prod_{j=1}^{k} (x^2 + b_j x + c_j)^{\beta_j - 1}} + \int \frac{P_2(x)}{\prod_{i=1}^{n} (x - a_i) \cdot \prod_{j=1}^{k} (x^2 + b_j x + c_j)} dx$$

2 Интеграл Римана

2.1 Интегрируемость по Риману

Определение. $\{x_i\}_{i=0}^n \subset [a,b]$ называется разбиением отрезка, если $a=x_0<\cdots< x_n=b$. Обозначается $T_{[a,b]}^+$. Если $b=x_0>\cdots> x_n=a$, то обозначают $T_{[a,b]}^-$.

Отрезки $[x_{i-1},x_i]$ или $[x_i,x_{i-1}]$ называются отрезками разбиения, их обычно обозначают Δ_i . Длина отрезка Δ_i обозначается $\Delta x_i:=x_i-x_{i-1}$.

Диаметром разбиения называется $d(T) = \max |x_i - x_{i-1}| = \max \Delta x_i$.

Определение. Пусть $T_{[a,b]}$ - разбиение. Разметкой для $T_{[a,b]}$ называется множество точек $\{\xi_i\}_{i=1}^n$ такое, что $\forall i \ \xi_i \in \Delta_i$.

Если $\{\xi_i\}_{i=1}^n$ является разметкой для $\{x_i\}_{i=0}^n$, то множество $\{\{x_i\}_{i=0}^n, \{\xi_i\}_{i=1}^n\}$ называется размеченым разбиением и обозначается $T(\xi)$.

Определение. Сумма

$$\sigma_{[a,b]} = \sum_{i=1}^{N} f(\xi_i)(x_i - x_{i-1})$$

называется интегральной суммой. Иногда ее обозначают $\sigma_T(\xi)$

Определение. Пусть f(x) определена на [a,b]. Рассмотрим $T_{[a,b]}(\xi)$. Если

$$\exists I \in \mathbb{R} : \forall \varepsilon > 0 \ \exists \ \delta > 0, \ \text{что} \ \forall T(\xi) \subset \{T : d(T) < \delta\} : \left| \ \sum_{i=1}^N f(\xi_i)(x_i - x_{i-1}) - I \right| < \varepsilon$$

то говорят, что f(x) интегрируема по Риману на [a,b], а число I называют интегралом Римана на размеченых разбиениях на отрезке [a,b]. Интеграл Римана обозначают

$$I = \int\limits_a^b f(x) dx$$
 или $I = \int\limits_b^a f(x) dx$

для T^+ и T^- соответственно.

Замечание. Можно считать определение интеграла определением предела интегральных сумм и писать

$$\lim_{d \to 0} \left(\sum_{i=1}^{N} f(\xi_i)(x_i - x_{i-1}) \right) = I$$

где d - диаметр разбиения.

Утверждение.

Если
$$\exists \int\limits_a^b f(x)dx$$
, то $\exists \int\limits_b^a f(x)dx$ и $\int\limits_a^b f(x)dx = -\int\limits_b^a f(x)dx$

Определение. Класс функций, интегрируемых на [a,b] по Риману обозначается $\mathcal{R}[a,b]$.

Теорема. Если $f \in \mathcal{R}[a,b]$, то f - ограничена на [a,b].

Доказательство. Предположим, что $\exists \{x_n\}_{n=1}^{\infty} \subset [a,b], \ \exists \lim_{n \to \infty} x_n = \widetilde{x}, \ \text{что} \ |f(x_n)| > n \ \text{и пусть}$

$$\exists \lim_{d \to 0} \left(\sum_{i=0}^{N} f(\xi_i)(x_i - x_{i-1}) \right) = I$$

то есть

$$\left| \sum_{i=0}^{N} f(\xi_i)(x_i - x_{i-1}) - I \right| < 1$$

это означает, что

$$I + \sum_{i=1, i \neq k}^{N} f(\xi_i)(x_i - x_{i-1}) - 1 < f(\xi_k)(x_k - x_{k-1}) < I + \sum_{i=1, i \neq k}^{N} f(\xi_i)(x_i - x_{i-1}) + 1$$

 \widetilde{x} лежит на этом отрезке \Rightarrow с какого то номера все точки лежат в этом отрезке.

2.2 Суммы Дарбу

Далее рассматриваем разбиения T_+

Определение. Пусть $T_{1[a,b]}$, $T_{2[a,b]}$ - разбиения отрезка a,b такие, что $T_1 \subset T_2$. Тогда T_2 называется измельчением T_1 .

Определение. Пусть f(x) ограничена на [a,b]. Пусть $\{x_i\}_{i=1}^n=T$ - разбиение [a,b] и $m_i=\inf_{[x_i,x_{i+1}]}f(x), M_i=\sup_{[x_i,x_{i+1}]}$. Тогда

$$\overline{\overline{S}}_f(T) = \sum_{i=0}^{n-1} m_i(x_{i+1} - x_i), \ \underline{\underline{S}}_f(T) = \sum_{i=0}^{n-1} M_i(x_{i+1} - x_i)$$

 $\overline{\overline{S}}_f(T)$ называется верхней суммой Дарбу, а $\underline{\underline{S}}_f(T)$ нижней суммой Дарбу.

Лемма. (1) Пусть T_1 - измельчение T. Тогда $\overline{\overline{S}}(T) \leq \overline{\overline{S}}(T_1)$ и $\underline{\underline{S}}(T) \geq \underline{\underline{S}}(T_1)$

Доказательство. $T_1 = T \cup \{x'_j \in [x_j, x_{j+1}]\}$. Тогда

$$\overline{\overline{S}}(T_1) - \overline{\overline{S}}(T) = m_{1j}(x_i' - x_j) + m_{2j}(x_{j+1} - x_j') - m_j(x_j' - x_j) - m_j(x_{j+1} - x_j') \ge 0$$

Лемма. (2)

$$\forall T_1, T_2 : \overline{\overline{S}}(T_1) \leq \underline{S}(T_2)$$

 \mathcal{A} оказательство. Рассмотрим $T=T_1\cup T_2$. Тогда T является измельчением и T_1 и T_2 . Тогда по предыдущей лемме:

$$\overline{\overline{S}}(T_1) \leq \overline{\overline{S}}(T)$$
 и $\underline{S}(T) \leq \underline{S}(T_2)$

Лемма. (3) $\forall T_{[a,b]}$:

$$\overline{\overline{S}}(T) = \inf_{\{\xi_i\}} \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1})$$

$$\underline{\underline{S}}(T) = \sup_{\{\xi_i\}} \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1})$$

Доказательство. $\{X_i:X_i\subset\mathbb{R}\}_{i=1}^n,\ \forall i\ X_i$ - ограничено, $\{a_i\}_{i=1}^n,\ \forall i:a_i\geq 0.\ \forall \varepsilon>0, \forall i=1,\ldots,n\$ и $\exists\ x_i\in X_i,x_i>\sup X_i-\varepsilon.$ Тогда

$$\sum_{i=1}^{n} a_i x_i > \sum_{i=1}^{n} a_i \sup X_i - \varepsilon \cdot \sum_{i=1}^{n} a_i$$

$$\sup_{\{x_i\}} \sum_{i=1}^n a_i x_i \ge \sum_{i=1}^n a_i \sup X_i$$

НО

$$\sum_{i=1}^{n} a_i x_i \le \sum_{i=1}^{n} a_i \sup X_i$$

отсюда получаем:

$$\sup_{\{x_i\}} \sum_{i=1}^n a_i x_i = \sum_{i=1}^n a_i \sup X_i$$

Теорема. $f(x) \in \mathcal{R}[a,b] \Leftrightarrow f$ - ограничена и $\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0$:

$$\forall T_{[a,b]} \ c \ d(T) < \delta_{\varepsilon} : \underline{\underline{S_f}}(T) - \overline{\overline{S}}(T) < \varepsilon$$

 \mathcal{A} оказательство. (\Rightarrow) :

$$\exists I = \int_{a}^{b} f(x)dx \Rightarrow \forall \varepsilon > 0 \ \exists \ \delta_{\varepsilon}, \ \forall T(\xi), \ d(T) < \delta_{\varepsilon}$$
$$I - \frac{\varepsilon}{3} < \sigma_{f}(T(\xi)) < I + \frac{\varepsilon}{3}$$
$$\left| \overline{\overline{S_{f}}}(T) - I \right| \leq \frac{\varepsilon}{3}, \ \left| \underline{S_{f}}(T) - I \right| \leq \frac{\varepsilon}{3}$$

$$\Rightarrow \underline{\underline{S}}(T) - \overline{\overline{S}}(T) < \varepsilon$$

$$(\Leftarrow) : \forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0, \ \forall T : d(T) < \delta_{\varepsilon}(*)$$

$$\underline{\underline{S}}(T) - \overline{\overline{S}}(T) < \varepsilon$$

из леммы 2 по аксиоме полноты:

$$\exists I, \forall T_1, T_2 : \overline{\overline{S}}(T) \le I \le \underline{S}(T)$$
 (1)

из (*) следует, что I - единтсвенно, но

$$\forall T(\xi) : \overline{\overline{S}}(T) \le \sigma_f(T(\xi)) \le \underline{S}(T)$$
 (2)

из (1) и (2) получаем:

$$|\sigma_f(T(\xi)) - I| < \varepsilon$$

2.3 Классы интегрируемых функций

Теорема. Если $f(x) \in \mathcal{C}[a,b]$, то $f(x) \in \mathcal{R}[a,b]$

Доказательство. $f(x) \in \mathcal{C}[a,b] \Rightarrow f(x)$ - равномерно непрерывна на [a,b]. Значит

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \forall x_1, x_2 \in [a, b] : |x_1 - x_2| < \delta_{\varepsilon} : |f(x_1) - f(x_2)| < \varepsilon$$

Пусть $T:d(T)<\delta$

$$\underline{\underline{S}}(T) - \overline{\overline{S}}(T) = \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1}) = \sum_{i=1}^{n} (f(x_{i_{max}}) - f(x_{i_{min}}))(x_i - x_{i-1}) < \varepsilon(b - a)$$

Теорема. Пусть f(x) - монотонна на [a,b]. Тогда $f(x) \in \mathcal{R}[a,b]$

Доказательство. Докажем для неубывающей. Если f(x)=const, то очевидно. Пусть $d(T)<\frac{\varepsilon}{f(b)-f(a)}$

$$\underline{\underline{S}}(T) - \overline{\overline{S}}(T) = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))(x_i - x_{i-1}) <$$

$$< \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \cdot \frac{\varepsilon}{f(b) - f(a)} =$$

$$= \frac{\varepsilon}{f(b)f(a)} \cdot (f(b) - f(a)) = \varepsilon$$

тестовый коммит