

Deep Learning

If you need computational resources, check with center for research computing: https://crc.pitt.edu/

- Used in commercial products (e.g. Siri, self-driving cars, recommenders system, fraud detection, translation, gaming, captioning, Grammar correction, ...,)
 - Typically tailored to specific application
- Automatic feature extraction
 - · Reduces the effort of guessing which features would work well
- Complex models, not easily interpretable
- Requires huge computing power and large training data

Deep Learning Models

- Several popular deep leaning models, including:
 - Convolutional Neural Network (CNN or ConvNet) -- application example: image recognition

```
Input is 20 or 3D grid
```

• Recurrent Neural Network (RNN) Sequential data, application examples -- text recognition, translation

Reading: https://www.nature.com/articles/nature14539

Python libraries for deep learnings

- There are other more powerful Python-based libraries for deep learning with neural networks (beyond Sklearn), such as:
 - Keras:
 - https://keras.io/
 - Model-level library works with several backends, including TensorFlow
 - TensorFlow
 - https://www.tensorflow.org/
 - Developed by Google
 - CNTK
 - https://github.com/Microsoft/CNTK
 - By Microsoft
 - Theano:
 - http://deeplearning.net/software/theano/
 - · University of Montreal
 - Lasagne
 - https://lasagne.readthedocs.io/en/latest/

Deep Learning Concept

Neural networks with **two main phases**:

- 1. Feature extraction
- 2. Output **prediction** phase
 - Fully connected networks (discussed earlier)

Typical neural network that does prediction

Example: Pattern Recognition

- Example: Convolutional Neural Net (ConvNet) for pattern recognition
 - Automatic feature extraction made up of hierarchy of feature layers

Figure: Peemen et al., "Efficiency Optimization of Trainable Feature Extractors for a Consumer Platform", International Conference on Advanced Concepts for Intelligent Vision Systems, 2011

Convolutional Neural Networks

- For feature extraction phase
 - Detect local patterns (instead of global patterns in the fully connected networks)
 - Neuron operates on small number of inputs
 - Patterns in a small 2D grid of the input

- Uses mathematical operation called "convolution" to detect patterns
 - Convolution between input and a Kernel
 (Dod product)

Chollet, Deep Learning with Python

Example of Features Extraction Phase in Layers for Face Recognition using ConvNet

Low-level features

Patterns captured by neurons in first layer

Patterns captured by neurons in second layer

Patterns captured by neurons in third layer

Fig. Ref: Honglak Lee et al. "Unsupervised Learning of Hierarchical Representations with

- In feature extraction phase, each neuron focuses on certain part of an image and detects a particular pattern
- First, level of feature extraction obtains some low-level features (like edges), then layers that follow capture higher-level features (like facial expression)
- Each layer uses a combination of features of previous layers

Convolution

- Dot product between the kernel and small window (grid) of the input (image)
- Kernel can be regarded as a filter searching for a pattern
- Slide the window over the input

Example: Edge Detection

Edge detection

Output

Goodfellow 2016

Sparse Connectivity

Sparse connectivity: Kernel size is much smaller than the input size

Prediction phase, traditional neural net Dense connectivity: output of each s_i depends on all input x_i

Feature extraction phase, CNN

Sparse connectivity: output of each s_i depends on few of the input x_i

Deep Convolution Networks: Receptive Field Grows with Layers

- Receptive field grows as you add more layers
 - Output of a hidden units will be function of more inputs as you add more layers (as the network gets deeper)

Learn Hierarchies of Patterns

- Learn spatial hierarchies of patterns
 - First layer: learn small local patterns such as edges
 - Next layer: learn larger patterns made of output features of the previous layer

Chollet, Deep Learning with Python

Face recognition

Parameter Sharing

- Weights (Kernel) need to be learned using training data and backpropagation
- Parameter sharing reduce the number of weights that need to be learned by sharing the same parameter (weights) across hidden units (spatial locations) at same level

- Learning pattern at one window of input, convnet can recognize it anywherein the image
 - Invariant to translation

Output of Convolution

 Output dimension can be different from input, that depends on Kernel size and the Stride (step)

Padding

We can add padding to make output size equals to input size

Stride will have effect of downsampling

- Stride: distance between two successive windows for convolution
 - Set to 1 by default
- Using stride s means the width and height of the feature map are downsampled by s
- Output dimension = (input – kernel size)/stride + 1

Strice is both horizontal

Activation function applied after Kernel at Conv. layer

 Convolutional layer: apply kernel, then pass result to activation function (e.g. Relu or tanh) to get the output

Pooling Layer

- A way to down-sample the output of a layer is through pooling
 - Also makes output invariant to small changes
- Max pooling: output is the max value of the input

 Other techniques: e.g., average pooling

Reference: Hands-On Machine Learning with Scikit-Learn and TensorFlow, Géron

CNN Architecture

Convolutional layer: apply kernel, then pass result to activation function (e.g. Relu or tanh) to get the output

3D Tensors of Convolution

Operation of convolution is over 3D tensor

Tensor: multidimensional data/array

- Two spatial axis: height and width
- Depth axis, also called channels
 - For input:
 - RGB images have 3 channels corresponding to the three colors (Red, Green and Blue)
 - White and black images have depth of 1
 - For hidden layers
 - Depth corresponds to the number of filters/kernels (not color as in the input)
 - Depth is a parameter of the layer and can be set

Depth at input

0	0	0	0	0	0	
0	156	155	156	158	158	
0	153	154	157	159	159	
0	149	151	155	158	159	
0	146	146	149	153	158	
0	145	143	143	148	158	
		122				

0	0	0	0	0	0	
0	167	166	167	169	169	
0	164	165	168	170	170	
0	160	162	166	169	170	
0	156	156	159	163	168	
0	155	153	153	158	168	•••

0	0	0	0	0	0	***
0	163	162	163	165	165	
0	160	161	164	166	166	
0	156	158	162	165	166	
0	155	155	158	162	167	
0	154	152	152	157	167	

Input Channel #1 (Red)

Input Channel #2 (Green)

Input Channel #3 (Blue)

-1	-1	1
0	1	-1
0	1	1

Kernel Channel #1

Bias = 1

Depth at hidden layer: Many Kernels are Applied

- At each layer of feature extraction phase, many kernels are learned and applied to small grid of input
 - Number of kernels at each layer is a parameter that needs to be set
 - This is the depth

A conv layer with depth 2, filter 3x3, and stride 2

Demo: https://cs231n.github.io/convolutional-networks/

One conv layer – after convolution apply activation

Demo: https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

Defining the model with Keras - Python

- It has a user-friendly API that makes it easy to quickly prototype deeplearning models
- Use TensorFlow backend
- Define sequential class model
 - Most common
 - Sequential stack of layers
 - Another class is the functional class for defining arbitrary connections

Reference: Deep Learning with Python, by Chollet

Install:

- conda install -c conda-forge keras
- pip install keras, pip install tensorflow, pip install keras.utils

Handwritten Digit Recognition Example ---Define the model

Feature extraction phase

Check Keras documentation for details: https://keras.io/layers/convolutional/

```
from keras import layers
from keras import models
                                      Depth
                                                 Kernel size
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
                                                                             28x 28
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
```

Reference: Deep Learning with Python, by Chollet

```
Model.summary
```

from keras import layers from keras import models

model = models.Sequential() model.add(layers.Conv2D 32) (3, 3), activation='relu', input_shape=(28, 28, 1)))

Output Shape

model.add(layers.MaxPooling2D((2, 2))) model.add(lavers.Conv2D(64) (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2)))

Model.summary()

(Fully

Layer (type)

model.add(lavers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10, activation='softmax'))

Param #

(None, 26, 26, (32)) conv2d 1 (Conv2D) 320 max pooling2d 1 (MaxPooling2 (None, 13, 13, 32) 0 + deeth conv2d_2 (Conv2D) (None, 11, 11, 64) 18496 max pooling2d 2 (MaxPooling2 (None, 5, 5, 64) 0 conv2d 3 (Conv2D) (None, 3, 3, 64) 36928 flatten 1 (Flatten) dense 1 (Dense) (None, 64) 36928 764 dense 2 (Dense) (None, 10) 650 lamected Total params: 93,322 Trainable params: 93,322 Non-trainable params: 0

Handwritten Digit Recognition Example --Apply to data

Reference: Deep Learning with Python, by Chollet

```
from keras.datasets import mnist
from keras.utils import to_categorical
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
                                                                       Dataset of 60,000 28x28 grayscale images
train images = train images.reshape((60000, 28, 28, 1))
                                                                       of the 10 digits, test set of 10,000 images.
train images = train images.astype('float32') / 255
test images = test images.reshape((10000, 28, 28, 1))
test_images = test_images.astype('float32') / 255
                                                               Using model architecture
from above slide
train labels = to categorical(train labels)
test labels = to categorical(test labels)
                                                              Compile: Configure the model, prepare for
                                                              training, define loss function (objective function
model.compile(optimizer='rmsprop',
               loss='categorical_crossentropy',
                                                              to minimize), optimizer, and can specify the
               metrics=['accuracy'])
                                                              metric to print while training.
model.fit(train images, train labels, epochs=5, batch size=64)
 test acc = model.evaluate(test images, test labels)
```

https://keras.io/api/models/model training apis/

Can add a dropout layer

- https://keras.io/api/layers/regularization layers/dropout/
 - tf.keras.layers.Dropout(rate, ...)
 - Rate < 1
 - Set input to 0 with that rate during training