고령화연구패널조사(KLoSA) 데이터분석

목 차

- 1. 개요
- 2. 경제활동
 - 연령대별 경제활동
 - 성별별 경제활동
 - 현 일자리의 고용형태
- 3. 소득
 - 연령대별 근로소득
 - 성별별 근로소득
- 4. 경제적지원
 - 자녀에게 받은 금전적 지원
 - 자녀에게 준 금전적 지원
- 5. 소비
 - 주요 생활비
- 6. 건강상태
 - ADL(Activities of Daily Living) 일상생활 수행 능력
 - IADL(Instrumental Activities of Daily Living) 도구적 일상 활동수행 능력
 - 음주 / 흡연과 만성질환
 - 만성질환
 - 인지기능
 - 삶의 만족도

1. 개요

- 고령화연구패널조사는 향후 초고령사회로 변화해 가는 과정에서 효과적인 사회경제정책을 수립과 시행에 활용될 기초자료 생산
- 고령사회의 다양한 측면들을 여러 분야의 학제적 연구가 가능한 자료를 구축 및 선진국과 국제비교가 가능한 자료를 생산하고 정책개발과 학술연구의 기초자료로 활용
- 패널조사는 2006년 당시 제주도를 제외한 지역에 거주하는 45세 이상 중고령자 중 일반 가구 거주지를 대상으로 표집 및 조사실 시
- 2006년부터 짝수 연도에는 동일한 조사 항목을 중심으로 기본조사를 실시하고, 2007년부터 홀수 연도에는 기본조사에 포함되지 않은 내용을 중심으로 특정 주제를 정하여 조사를 실시
- 조사 대상

고령화연구패널조사의 대상자는 대한민국 제주도를 제외한 지역에 거주하는 45세(1962년 이전생) 이상의 중고령자 개인을 대상 으로

표본수 약 10,000명을 목표로 표집하여 10,254명이 패널로 구축하고 2014년에는 1962~1963년생을 중심으로 한 920명을 추가

1.1 데이터

Loading

```
In [1]:
```

Conflicte

```
library(tidyverse)
library(sqldf)
library(gridExtra)
library(fs)
dir info("../input")
                                                          —— tidyverse 1.2.1 —

    Attaching packages -

✓ ggplot2 3.1.0.9000
                       ✓ purrr 0.3.1
✓ tibble 2.0.1

✓ dplyr 0.8.0.1

✓ tidyr 0.8.3

                         ✓ stringr 1.4.0
         1.3.1
                         ✓ forcats 0.4.0
✓ readr
```

- tidumarea conflicte() -

	path	type	size	permissions	modification_time	user	group	device_id	hard_links	special_device_id	inode	block
/input/klos	a.csv	file	12.73M	rw-rr	2019-04-24 06:38:36	root	root	39	1	0	734602267	104
/input/klos	a.rda	file	2.12M	rw-rr	2019-04-24 06:38:36	root	root	39	1	0	734602268	104
4												Þ

```
In [2]:
```

```
read.csv("../input/klosa.csv") -> klosa
```

1.2 패널

1)패널 참여인원

```
In [3]:
```

```
klosa %>% count(year)
```

```
year n
2006 10254
2008 8688
2010 7920
2012 7486
2014 7029
2016 6618
```

2)패널의 연도별 연령대 비율

```
In [4]:
```

```
klosa %>% filter(!is.na(year)&!is.na(ageg)) %>%
  select(year,ageg) %>%
  group_by(year,ageg) %>%
  summarise(n=n()) %>%
  mutate(total=sum(n)) %>%
  mutate(pct=round(n/total*100,1))->ageg_by_year
```

In [5]:

```
ggplot(ageg_by_year,aes(factor(year) ,pct,fill=ageg))+
  geom_col(position="dodge")+
  ggtitle("Age Ratio By Year")+
  labs(x="Year", y="Ratio")
```

Age Ratio By Year

3)패널의 연도별 성별 인원

```
In [6]:
```

```
klosa %>% filter(!is.na(year)&!is.na(gender)) %>%
  select(year,gender) %>%
  mutate(year=factor(year)) %>%
  group_by(year,gender) %>%
  summarise(n=n()) %>%
  mutate(total=sum(n)) %>%
  arrange(year)-> gender_by_year
```

In [7]:

4)패널의 연도별 세대구성 (1세대:1G, 2세대:2G, 3세대:3G, 4세대:4G, 기타:Etc)

```
In [8]:
```

```
klosa %>% filter(!is.na(family)) %>%
  select(year, family) %>%
  group_by(year, family) %>%
  summarise(n=n()) %>%
  mutate(total=sum(n))%>%
  mutate(pct=round(n/total*100,1)) -> family_by_year
```

In [9]:

Family member by year

5)패널의 지역구성

In [10]:

```
klosa %>% filter(!is.na(year)&!is.na(regiong)) %>%
    select(year,region,regiong) %>%
    group_by(year,regiong) %>%
    summarise(n=n()) %>%
    mutate(total=sum(n)) %>%
    mutate(pct=round(n/total*100,1)) ->region_by_year
```

In [11]:

```
ggplot(region_by_year[region_by_year$year == "2006",],aes(reorder(regiong,n),pct,fill=regiong))+
    geom_col(position="dodge")+
    coord_flip()+
    ggtitle("Ratio By Region")+
    labs(x="", y="Ratio")+
    guides(fill="none")
```

Ratio By Region

2. 경제활동

- Employment: 취업
- Jobless: 실업
- Inactive: 비경제제활동

2.1 연도별 연령대별 경제활동

```
In [12]:
```

```
In [13]:
```

```
eap1<- ggplot(ecoact_ageg_year[ecoact_ageg_year$year == "2006",], aes(ageg, n, fill=present_ecotype
)) +

geom_col(position='dodge')+
    labs(y="Person", x="Age Group", title="2006 Economic Activity") +
    theme_grey()+
    theme(legend.position = "bottom")+
    scale_fill_discrete(name = "Type")

eap2<- ggplot(ecoact_ageg_year[ecoact_ageg_year$year == "2008",], aes(ageg, n, fill=present_ecotype)</pre>
```

```
geom col(position='dodge')+
       labs(y="Person",x="Age Group",title="2008 Economic Activity") +
       theme grey()+
       guides(fill="none")
eap3<- ggplot(ecoact ageg year[ecoact ageg year$year == "2010",], aes(ageg, n, fill=present ecotype
       geom col(position='dodge')+
       labs(y="Person",x="Age Group",title="2010 Economic Activity") +
       theme_grey() +
       guides(fill="none")
eap4<-ggplot(ecoact_ageg_year[ecoact_ageg_year$year == "2012",], aes(ageg, n, fill=present_ecotype)</pre>
      geom col(position='dodge')+
      labs(y="Person",x="Age Group",title="2012 Economic Activity") +
      theme grey() +
      guides(fill="none")
eap5<- ggplot(ecoact_ageg_year[ecoact_ageg_year$year == "2014",], aes(ageg, n, fill=present_ecotype</pre>
       geom_col(position='dodge')+
       labs(y="Person",x="Age Group",title="2014 Economic Activity") +
       theme grey() +
       guides(fill="none")
eap6<- ggplot(ecoact ageg year[ecoact ageg year$year == "2016",], aes(ageg, n, fill=present ecotype
)) +
       geom_col(position='dodge')+
       labs(y="Person",x="Age Group",title="2016 Economic Activity") +
       theme_grey()
       guides(fill="none")
grid.arrange(eap1, eap2, eap3, eap4, eap5, eap6, ncol=2, nrow = 3)
        2006 Economic Activity
                                                             2008 Economic Activity
   2000 -
                                                        1500 -
   1500 -
Person
    1000 -
                                                    Person
                                                        1000 -
    500 -
      0 -
                                                         500 -
           ~50s
                    50s
                                    70s
                            60s
                                            80s~
                        Age Group
                                                           0 -
                                                                        50s
                                                                                60s
                                                                                        70s
                                                               ~50s
                                                                                                80s~
       Type
                  Employment
                                  Inactive
                                              Jobless
                                                                            Age Group
        2010 Economic Activity
                                                             2012 Economic Activity
                                                        1500 -
   1500 -
                                                    Person
Person
                                                        1000 -
   1000 -
                                                         500 -
     500 •
      0
                                                           0 -
                    50s
                            60s
                                    70s
                                            80s~
                                                                 50s
                                                                           60s
                                                                                     70s
           ~50s
                                                                                              80s~
                        Age Group
                                                                            Age Group
        2014 Economic Activity
                                                             2016 Economic Activity
                                                        1500 -
   1500 -
                                                     S 1000 -
```

5 1000 -

2.2 연도별 경제활동상태

In [14]:

```
klosa %>% filter(!is.na(present_ecotype)) %>%
    mutate(year=factor(year)) %>%
    select(year,present_ecotype) %>%
    count(year,present_ecotype) %>%
    group_by(year) %>%
    mutate(total=sum(n)) %>%
    mutate(pct=round(n/total*100,1))->ecoact_year
```

In [15]:

Economic Activity

2.3 연도별 성별 경제활동

```
In [16]:
```

```
klosa %>% filter(!is.na(gender)&!is.na(present_ecotype)) %>%
  mutate(year=factor(year)) %>%
  select(year,gender,present_ecotype) %>%
  group_by(year,gender,present_ecotype) %>%
  summarise(n=n()) %>%
  mutate(total=sum(n)) %>%
  mutate(pct=round(n/total*100,1)) ->ecoact_gender_year
```

In [17]:

Economic Activity

Male Economic Activity by year

Female Economic Activity by year

2006년 45세~55세, 56세 ~ 65세, 66세~75세, 76세~85세, 86세~95세의 연령그룹 데이터

In [18]:

```
klosa %>% filter((year==2006 & age < 56) |
                      (year==2008 & age < 58)
                      (year = 2010 \& age < 60) |
                      (year == 2012 \& age < 62)
                      (year == 2014 \& age < 64) |
                      (year == 2016 \& age < 66)) %>%
    select(year,gender,age,ageg,emp,present ecotype,earned,adl,iadl) %>% mutate(tfr="45to55") -> r1
klosa %>% filter((year==2006 & age > 55 & age < 66) |
                      (year == 2008 \& age > 57 \& age < 68)
                      (year==2010 & age > 59 & age < 70)
                      (year = 2012 \& age > 61 \& age < 72)
                      (year==2014 & age > 63 & age < 74)
                      (year==2016 & age > 65 & age < 76)) %>%
    select(year,gender,age,ageg,emp,present_ecotype,earned,adl,iadl) %>% mutate(tfr="56to65") -> r2
klosa %>% filter((year==2006 & age > 65 & age < 76) |
                      (year = 2008 \& age > 67 \& age < 78)
                      (year = 2010 \& age > 69 \& age < 80)
                      (year = 2012 \& age > 71 \& age < 82)
                      (year = 2014 \& age > 73 \& age < 84)
                      (year==2016 & age > 75 & age < 86)) %>%
    select(year,gender,age,ageg,emp,present_ecotype,earned,adl,iadl) %>% mutate(tfr="66to75") -> r3
klosa %>% filter((year==2006 & age > 75 & age < 86) |
                      (year==2008 & age > 77 & age < 88)
                      (year = 2010 \& age > 79 \& age < 90)
                      (year == 2012 \& age > 81 \& age < 92)
                      (year == 2014 \& age > 83 \& age < 94) |
                      (year==2016 & age > 85 & age < 96)) %>%
    select(year,gender,age,ageg,emp,present ecotype,earned,adl,iadl) %>% mutate(tfr="76to85") -> r4
klosa %>% filter((year==2006 & age > 85 & age < 96) |
                      (year==2008 & age > 87 & age < 98) |
                      (year==2010 & age > 89 & age < 100) |
                      (year==2012 & age > 91 & age < 102)
                      (year = 2014 \& age > 93 \& age < 104)
                      (year==2016 & age > 95 & age < 106)) %>%
    select(year,gender,age,ageg,emp,present_ecotype,earned,adl,iadl) %>% mutate(tfr="86to95") -> r5
rbind(r1,r2,r3,r4,r5) -> klosabyage
```

2.4 2006년 ~ 2016년 연령대별 경제활동

In [20]:

```
ggplot(ecoact ageg year[ecoact ageg year$tfr=="45to55",],aes(age,pct,color=present ecotype))+
      labs(y="Ratio",x="Age",title="45~55s Group") +
      scale_color_manual( values=c("Blue", "Red", "Green"),
                          name = ("Type"),
                           labels = c("Employment", "Jobless", "Inactive")) -> p1
ggplot(ecoact_ageg_year[ecoact_ageg_year$tfr=="56to65",],aes(age,pct,color=present_ecotype))+
      geom line()+
      labs(y="Ratio",x="Age",title="56~65s Group") +
      scale color manual( values=c("Blue", "Red", "Green"),
                       name = ("Type"),
                       labels = c("Employment", "Jobless", "Inactive")) -> p2
ggplot(ecoact ageg year[ecoact ageg year$tfr=="66to75",],aes(age,pct,color=present ecotype))+
  geom line()+
  labs(y="Ratio",x="Age",title="66~75s Group") +
  scale color manual( values=c("Blue", "Red", "Green"),
                       name = ("Type"),
                       labels = c("Employment", "Jobless", "Inactive")) -> p3
ggplot(ecoact_ageg_year[ecoact_ageg_year$tfr=="76to85",],aes(age,pct,color=present_ecotype))+
  geom line()+
  labs(y="Ratio",x="Age",title="76~85s Group") +
  scale_color_manual( values=c("Blue", "Red", "Green"),
                       name = ("Type"),
                       labels = c("Employment", "Jobless", "Inactive")) -> p4
ggplot(ecoact_ageg_year[ecoact_ageg_year$tfr=="86to95",],aes(age,pct,color=present_ecotype))+
  geom line()+
  labs(y="Ratio",x="Age",title="86~95s Group") +
  scale color manual( values=c("Blue", "Red", "Green"),
                       name = ("Type"),
                       labels = c("Employment", "Jobless", "Inactive")) -> p5
grid.arrange(p1, p2, p3, p4, p5, top="Economic Activity (2006 ~ 2016)", nrow = 3)
```

Economic Activity (2006 ~ 2016)

2.5 2006년 ~ 2016년 연령대별 성별 경제활동

In [21]:

45세~55세, 56세~65세 그룹의 활동

In [22]:

Economic Activity (45 ~ 55s)

45~55s Male Group

In [23]:

In [24]:

Economic Activity (56 ~ 65s)

56~65s Female Group

2.6 연도별 일자리 고용형태 [임금고용, 개인사업, 무급(가족,친척의 일을 돕는다)]

```
In [25]:
```

```
klosa %>% filter(!is.na(emp)&!is.na(year)) %>%
    select(year,emp) %>%
    mutate(emps=ifelse(emp==3|emp==4,3,emp)) %>%
    group_by(year,emps) %>%
    summarise(n=n()) %>%
    mutate(total=sum(n)) %>%
    mutate(total=sum(n)) %>%
    mutate(pct=round(n/total*100,1))->ecoact_emp_year
```

In [26]:

Employment Type By Year

2.7 2006년 ~ 2016년 연령별 일자리 고용형태

In [27]:

```
klosabyage %>% filter(!is.na(emp)&!is.na(year)) %>%
    select(age,tfr,emp) %>%
    mutate(emps=ifelse(emp==3|emp==4,3,emp)) %>%
    group_by(age,tfr,emps) %>%
    summarise(n=n()) %>%
    mutate(total=sum(n)) %>%
    mutate(pct=round(n/total*100,1))->ecoact_emp_tfr
```

45세~55세, 56세~65세 그룹의 고용형태

In [28]:

Employment Type

45~55s Group

56~65s Group

3. 소득

3.1 연도별 근로소득

(2006년 45세~55세, 56세 ~ 65세, 66세~75세, 76세~85세, 86세~95세의 연령그룹)

In [29]:

In [30]:

```
ep1 %>% ggplot(aes(year,mean,color=agegroup))+geom_line()+ylim(0,3000)+ggtitle("Changes in Earned
income by year\n\n")
ep1 %>% ggplot(aes(year,mean,color=agegroup))+geom_line()+facet_wrap(~ agegroup)+ylim(0,3000)
```

Changes in Earned income by year


```
0 -
2006 2008 2010 2012 2014 201@006 2008 2010 2012 2014 2016
year
```

3.2 연도별 연령대의 소득

In [31]:

```
klosa %>%
   filter(!is.na(earned)) %>%
   select(year,ageg,earned) %>%
   group_by(year,ageg) %>%
   summarise(mean=mean(earned)) %>%
   ggplot(aes(year,mean,fill=ageg))+geom_col(position="dodge") +
   scale_x_continuous(breaks=c(2006,2008,2010,2012,2014,2016))
```


3.3 연도에 따른 연령별 근로소득의 변화

```
In [32]:
```

```
klosa %>%
filter(!is.na(earned)) %>%
filter(ageg=="~50s") %>%
select(year,ageg,earned) %>%
group by(year) %>%
summarise("~50"=mean(earned)) ->f
klosa %>%
filter(!is.na(earned)) %>%
filter(ageg=="50s") %>%
select(year,ageg,earned) %>%
group by(year) %>%
summarise("50s"=mean(earned)) ->g
klosa %>%
filter(!is.na(earned)) %>%
filter(ageg=="60s") %>%
select(year,ageg,earned) %>%
group by (year) %>%
summarise("60s"=mean(earned)) ->h
klosa %>%
filter(!is.na(earned)) %>%
filter(ageg=="70s") %>%
select(year,ageg,earned) %>%
group by(year) %>%
summarise("70s"=mean(earned)) ->i
klosa %>%
filter(!is.na(earned)) %>%
filter(ageg=="80s~") %>%
select(year,ageg,earned) %>%
group by(year) %>%
summarise("80s~"=mean(earned)) ->j
In [33]:
right join(f,g) %>% left join(h) %>% left join(i) %>% left join(j) ->fghij
```

```
fghij
Joining, by = "year"
Joining, by = "year"
Joining, by = "year"
Joining, by = "year"
```

year	~50	50s	60s	70s	80s~
2006	2492.911	2203.051	1378.692	1191.8818	921.6316
2008	2435.997	2210.155	1356.993	782.8668	874.4355
2010	2306.345	2447.349	1448.460	788.4990	559.1562
2012	NA	2600.991	1695.823	1016.3766	777.0139
2014	NA	2829.167	1786.510	988.3170	628.2128
2016	NA	2793.422	2179.928	1144.0840	717.2806

In [34]:

```
gather(fghij, key="agegroup", value="mean", `~50`, `50s`, `60s`, `70s`, `80s~`) -> gathering2
gathering2 %>% ggplot(aes(year,mean,color=agegroup))+geom_line()+ylim(0,3000)+ggtitle("Changes in
Earned income by year by age\n\n")
gathering2 %>% ggplot(aes(year,mean,color=agegroup))+geom_line()+facet_wrap(~ agegroup)+ylim(0,3000
Warning message:
"Removed 3 rows containing missing values (geom path)."Warning message:
"Removed 3 rows containing missing values (geom path)."
```

Changes in Earned income by year by age

3.4 연도별 성별 근로소득

In [35]:

```
klosa %>%
   filter(!is.na(earned)) %>%
   select(year,gender,earned) %>%
   group_by(year,gender) %>%
   summarise(mean=mean(earned)) -> meanbygender

meanbygender %>% ggplot(aes(factor(year),mean,fill=gender))+geom_col(position="dodge")
```

80s~

3.5 연도별 성별 소득의 차이(남성의 소득 - 여성의 소득)

In [36]:

```
library(sqldf)
sqldf("select x.year, abs(x.mean-y.mean) as gap from
            (select year, mean from meanbygender where year==2006 and gender=='female') x,
            (select year, mean from meanbygender where year==2006 and gender=='male') y
     where x.year=y.year") -> gap2006
sqldf("select x.year, abs(x.mean-y.mean) as gap from
            (select year, mean from meanbygender where year==2008 and gender=='female') x,
            (select year, mean from meanbygender where year==2008 and gender=='male') y
      where x.year=y.year") -> gap2008
sqldf("select x.year, abs(x.mean-y.mean) as gap from
            (select year, mean from meanbygender where year==2010 and gender=='female') x,
            (select year, mean from meanbygender where year==2010 and gender=='male') y
     where x.year=y.year") -> gap2010
sqldf("select x.year, abs(x.mean-y.mean) as gap from
            (select year, mean from meanbygender where year==2012 and gender=='female') x,
            (select year, mean from meanbygender where year==2012 and gender=='male') y
     where x.year=y.year") -> gap2012
sqldf("select x.year, abs(x.mean-y.mean) as gap from
            (select year, mean from meanbygender where year==2014 and gender=='female') x,
            (select year, mean from meanbygender where year==2014 and gender=='male') y
     where x.year=y.year") -> gap2014
sqldf("select x.year, abs(x.mean-y.mean) as gap from
            (select year, mean from meanbygender where year==2016 and gender=='female') x,
            (select year, mean from meanbygender where year==2016 and gender=='male') y
      where x.year=y.year") -> gap2016
```

Tn [371:

```
(rbind(gap2006,gap2008,gap2010,gap2012,gap2014,gap2016) -> gendergap)
gendergap %>%
    ggplot(aes(year,gap))+geom_line()+
    scale_x_continuous(breaks=c(2006,2008,2010,2012,2014,2016))+
    ggtitle("Gender Earning Gap") +ylim(600,1300)
```

year	gap
2006	1173.0119
2008	1097.9697
2010	1026.8632
2012	1128.2876
2014	1072.6811
2016	937.0045

Gender Earning Gap

3.6 연도별 근로소득의 구성 (임금,자영업, 농어업, 부업)

• 근로총소득=임금소득+자영업소득+농어업소득+부업소득

■ wage : 임금소득

■ selfemployed : 자영업(사업체운영) 소득

■ agriculture : 농어업 소득 ■ sideline : 부업소득

In [38]:

3.7 연도별 연령별 총소득 / 연도별 성별 총소득

• 개인총소득(근로총소득+자산총소득+공적이전총소득+사적이전총소득+개인연금소득+ 기타소득)

In [39]:

```
(klosa %>%
    filter(!is.na(p_inc)) %>%
    select(year,ageg,p_inc) %>%
    group_by(year,ageg) %>%
    summarise(mean = mean(p_inc)) %>%
    ggplot(aes(factor(year),mean,fill=ageg))+geom_col(position="dodge") +
    ggtitle("Total income by ageg")-> p_incbyyear)

klosa %>%
    filter(!is.na(p_inc)) %>%
    select(year,gender,p_inc) %>%
    select(year,gender) %>%
    summarise(mean=mean(p_inc)) -> p_incbygender

p_incbygender %>%
    ggplot(aes(factor(year),mean,fill=gender))+geom_col(position="dodge") +
    ggtitle("Total income by gender")
```

Total income by ageg

3.8 성별 총소득의 차이(남자의 총소득 - 여자의 총소득)

In [40]:

```
library(sqldf)
sqldf("select x.year, abs(x.mean-y.mean) as gap from
            (select year, mean from p_incbygender where year==2006 and gender=='female') x,
            (select year, mean from p incbygender where year==2006 and gender=='male') y
      where x.year=y.year") -> pgap2006
sqldf("select x.year, abs(x.mean-y.mean) as gap from
            (select year, mean from p_{inc}) mean from p_{inc}) where year==2008 and gender=='female') x,
            (select year, mean from p_incbygender where year==2008 and gender=='male') y
      where x.year=y.year") -> pgap2008
sqldf("select x.year, abs(x.mean-y.mean) as gap from
            (select year, mean from p_incbygender where year==2010 and gender=='female') x,
            (select year, mean from p incbygender where year==2010 and gender=='male') y
      where x.year=y.year") -> pgap2010
sqldf("select x.year, abs(x.mean-y.mean) as gap from
            (select year, mean from p_{inc}) where year==2012 and gender=='female') x,
            (select year, mean from p_incbygender where year==2012 and gender=='male') y
      where x.year=y.year") -> pgap2012
sqldf("select x.year, abs(x.mean-y.mean) as gap from
            (select year, mean from p incbygender where year==2014 and gender=='female') x,
            (select year, mean from p_incbygender where year==2014 and gender=='male') y
      where x.year=y.year") -> pgap2014
sqldf("select x.year, abs(x.mean-y.mean) as gap from
            (select year, mean from p incbygender where year==2016 and gender=='female') x,
            (select year, mean from p incbygender where year==2016 and gender=='male') y
      where x.year=y.year") -> pgap2016
(rbind(pgap2006,pgap2008,pgap2010,pgap2012,pgap2014,pgap2016) -> gendergap2)
gendergap2 %>%
    ggplot(aes(year,gap))+geom line()+
    scale_x_continuous(breaks=c(2006,2008,2010,2012,2014,2016))+
    ggtitle("Gender Personal Income Gap") +ylim(600,1300)
```

year	gap
2006	1212.1318
2008	1151.7313
2010	1130.3365
2012	1213.0437
2014	1162.4548
2016	932.8697

Gender Personal Income Gap

4. 경제적지원

4.1 연도별 연령별 금전적 지원(자녀에게 지원 받은 금액)

```
In [41]:
```

```
klosa %>%
    filter(!is.na(m_fromchildren)) %>%
    select(year,ageg,m_fromchildren) %>%
    group_by(year,ageg) %>%
    summarise(mean = mean(m_fromchildren)) %>%
    ggplot(aes(year,mean,fill=ageg))+geom_boxplot() +
    scale_x_continuous(breaks=c(2006,2008,2010,2012,2014,2016))

# 이상치 제거 후 그래프그리기
klosa %>% filter(m_fromchildren<14000) -> klosa_from
klosa_from %>% filter(!is.na(m_fromchildren)) %>%
    select(year,ageg,m_fromchildren) %>%
    group_by(year,ageg) %>%
    summarise(mean = mean(m_fromchildren)) %>%
    ggplot(aes(year,mean,fill=ageg))+geom_col(position="dodge") +
    scale_x_continuous(breaks=c(2006,2008,2010,2012,2014,2016))
```


4.2 연도별 연령별 금전적 지원(자녀에게 지원한 금액)

In [42]:

```
klosa %>%
    filter(!is.na(m_tochildren)) %>%
    select(year,ageg,m_tochildren) %>%
    group_by(year,ageg) %>%
    summarise(mean = mean(m_tochildren)) %>%
    ggplot(aes(year,mean,fill=ageg))+geom_boxplot() +
    scale_x_continuous(breaks=c(2006,2008,2010,2012,2014,2016))

# 이상치 제가 후 그래프그리기
klosa %>% filter(m_tochildren<20000) -> klosa_to
klosa_to %>% filter(!is.na(m_tochildren)) %>%
    select(year,ageg,m_tochildren) %>%
    group_by(year,ageg) %>%
    summarise(mean = mean(m_tochildren)) %>%
    ggplot(aes(year,mean,fill=ageg))+geom_col(position="dodge") +
    scale_x_continuous(breaks=c(2006,2008,2010,2012,2014,2016))
```


4.3 연도별 금전적 지원

In [43]:

```
filter(year==2006) %>%
   select(year,ageg,m tochildren,m fromchildren) %>%
   group by(year,ageg) %>%
   summarise(tochildren= mean(m_tochildren, na.rm=T), fromchildren=mean(m_fromchildren, na.rm=T))
->money2006
klosa %>%
   filter(year==2008) %>%
   select(year,ageg,m tochildren,m fromchildren) %>%
   group_by(year,ageg) %>%
   summarise(tochildren=mean(m tochildren, na.rm=T), fromchildren=mean(m fromchildren, na.rm=T)) -
>money2008
klosa %>%
   filter(year==2010) %>%
   select(year,ageg,m tochildren,m fromchildren) %>%
   group by(year,ageg) %>%
   summarise(tochildren=mean(m tochildren, na.rm=T), fromchildren=mean(m fromchildren, na.rm=T)) -
>monev2010
klosa %>%
   filter(year==2012) %>%
   select(year,ageg,m tochildren,m fromchildren) %>%
   group by(year,ageg) %>%
   summarise(tochildren=mean(m_tochildren, na.rm=T), fromchildren=mean(m_fromchildren, na.rm=T)) -
>money2012
klosa %>%
   filter(year==2014) %>%
   select(year,ageg,m_tochildren,m_fromchildren) %>%
   group by(year,ageg) %>%
   summarise(tochildren=mean(m tochildren, na.rm=T), fromchildren=mean(m fromchildren, na.rm=T)) -
>monev2014
klosa %>%
   filter(year==2016) %>%
   select(year,ageg,m tochildren,m fromchildren) %>%
   group by(year,ageg) %>%
   summarise(tochildren=mean(m tochildren, na.rm=T), fromchildren=mean(m fromchildren, na.rm=T)) -
>money2016
4
                                                                                                 •
```

In [44]:

```
money long2006=gather(money2006, key="tofrom", value="mean", `tochildren`, `fromchildren`)%>% ggplot(
aes(fill=tofrom, x=ageg, y=mean)) + geom col(position="dodge") +
ggtitle('2006')
money long2008=gather(money2008, key="tofrom", value="mean", `tochildren`, `fromchildren`)%>% ggplot(
aes(fill=tofrom, x=ageg, y=mean)) + geom col(position="dodge")+
ggtitle('2008')
money long2010=gather(money2010, key="tofrom", value="mean", `tochildren`, `fromchildren`)%>% ggplot(
aes(fill=tofrom,x=ageg,y=mean)) + geom col(position="dodge")+
ggtitle('2010')
money long2012=gather(money2012, key="tofrom", value="mean", `tochildren`, `fromchildren`)%>% ggplot(
aes(fill=tofrom,x=ageg,y=mean)) + geom col(position="dodge")+
ggtitle('2012')
money_long2014=gather(money2014, key="tofrom", value="mean", `tochildren`, `fromchildren`)%>% ggplot(
aes(fill=tofrom,x=ageg,y=mean)) + geom_col(position="dodge")+
ggtitle('2014')
money_long2016=gather(money2016, key="tofrom", value="mean",`tochildren`,`fromchildren`)%>% ggplot(
aes(fill=tofrom, x=ageg, y=mean)) + geom_col(position="dodge") +
ggtitle('2016')
```

In [45]:

```
\label{long2010} $$ grid.arrange (money_long2006 ,money_long2010 ,money_long2012 ,money_long2014 ,money_long2014 ,money_long2016 , ncol=2, top="money to/from children\n\n")
```

money to/from children

5. 소비

5.1 연도별 소비항목

- 월평균 금액(단위:만원)
- living_expenses: 생활비
- food_expenses: 식비
- eating_out_expenses: 외식비
- public education expenses: 공교육비
- private_education_expenses: 사교육비
- housing_expenses: 주거비
- medical_expenses: 지보건의료비
- savings: 저축액(일반저축, 적금, 보험, 개인연금 등 포함)

In [46]:

```
klosa %>%
filter(year!=2006) %>%
select(year,living_expenses, food_expenses
,eating out expenses, public education expenses, private education expenses, housing expenses, medical
expenses, savings) %>%
group by(year) %>%
summarize(living expenses = sprintf("%.1f", mean(living expenses,na.rm=T)),
          food_expenses=sprintf("%.1f", mean(food_expenses,na.rm=T)),
          eating_out_expenses=sprintf("%.1f", mean(eating_out_expenses,na.rm=T)),
          public_education_expenses=sprintf("%.1f", mean(public_education_expenses,na.rm=T)),
private_education_expenses=sprintf("%.1f", mean(private_education_expenses,na.rm=T)),
          housing expenses=sprintf("%.1f", mean(housing expenses,na.rm=T)),
          medical_expenses=sprintf("%.1f", mean(medical_expenses,na.rm=T)),
          savings=sprintf("%.1f", mean(savings,na.rm=T))) -> expenses
expenses$living expenses=as.numeric(expenses$living expenses)
expenses$food expenses=as.numeric(expenses$food expenses)
expenses$eating out expenses=as.numeric(expenses$eating_out_expenses)
```

```
expenses$public education expenses=as.numeric(expenses$public education expenses)
expenses$private education expenses=as.numeric(expenses$private education expenses)
expenses$housing_expenses=as.numeric(expenses$housing_expenses)
expenses$medical expenses=as.numeric(expenses$medical expenses)
expenses$savings=as.numeric(expenses$savings)
expenses %>% ggplot(aes(factor(year),living_expenses))+geom_col(fill="#4e7aa6")+
                                    geom_text(aes(label=living_expenses), vjust=1.5, colour="white"
size=3)+labs(x="YEAR", y="Living")+ylim(0,220)-> ex0
expenses %>% ggplot(aes(factor(year),food expenses))+geom col(fill="#4e7aa6")+
                                    geom text(aes(label=food expenses), vjust=1.5, colour="white",
ize=3)+labs(x="YEAR", y="Food")+ylim(0,50)-> ex1
expenses %>% ggplot(aes(factor(year),eating_out_expenses))+geom_col(fill="#f08f2e")+
                                    geom text(aes(label=eating out expenses), vjust=1.5, colour="wh
te", size=3)+labs(x="YEAR",y="Eating Out")+ylim(0,50)-> ex2
expenses %>% ggplot(aes(factor(year),public_education_expenses))+geom_col(fill="#e3565b")+
                                    geom text(aes(label=public education expenses), vjust=1.5, colc
r="white", size=3)+labs(x="YEAR",y="Public_Edu")+ylim(0,50)-> ex3
expenses %>% ggplot(aes(factor(year),private education expenses))+geom col(fill="#77b8b0")+
                                    geom text(aes(label=private education expenses), vjust=1.5, col
ur="white", size=3)+labs(x="YEAR",y="Private_Edu")+ylim(0,50)-> ex4
expenses %>% ggplot(aes(factor(year),housing expenses))+geom col(fill="#9d77b8")+
                                    geom_text(aes(label=housing_expenses), vjust=1.5, colour="white")
, size=3)+labs(x="YEAR", y="Housing")+ylim(0,50) -> ex5
expenses %>% ggplot(aes(factor(year), medical expenses))+geom col(fill="#6d915a")+
                                    geom_text(aes(label=medical_expenses), vjust=1.5, colour="white"
, size=3)+labs(x="YEAR",y="Medical")+ylim(0,50)-> ex6
expenses %>% ggplot(aes(factor(year),savings))+geom col(fill="#6d915a")+
                                    geom text(aes(label=savings), vjust=1.5, colour="white", size=3
+labs (x="YEAR", y="Savings")+ylim(0,50) -> ex7
                                                 nrow=3, top="Expenses\n\n")
grid.arrange(ex0,ex1,ex2,ex3,ex4,ex5,ex6,ex7,
```

Expenses

6. 건강상태

6.1 ADL(Activities of Daily Living) - 일상생활 수행 능력

• change_clothes: 옷갈아입기

• bath: 목욕/샤워하기

• meal: 차려놓은 음식 식사하기

• out_of_room: 이부자리에서 일어나 방 밖으로 나오기

toilet: 화장실 이용하기urin: 대소변 조절하기

1) ADL 장애율

In [47]:

```
klosa %>% select(year,ageg, adl) %>%
    mutate(adl=ifelse(adl > 0, 1, 0)) %>%
    count(year,ageg,adl) %>%
    group_by(year,ageg) %>%
    mutate(total=sum(n)) %>%
    filter(adl==1) %>%
    mutate(pct=round(n/total*100,1))-> adl_rate
```

In [48]:

```
adl_rate %>% ggplot(aes(ageg,pct,fill=factor(year)))+
    geom_col(position="dodge")+
    labs(y="Ratio",x="Year",title="ADL Rate by year") +
    theme_grey()+
    scale_fill_discrete(name = "Year")
```

ADL Rate by year

2) 성별 ADL 장애율

In [49]:

```
klosa %>% select(year,gender, adl) %>%
    mutate(adl=ifelse(adl > 0, 1, 0)) %>%
    count(year,gender,adl) %>%
    group_by(year,gender) %>%
    mutate(total=sum(n)) %>%
    filter(adl==1) %>%
    mutate(pct=round(n/total*100,1))-> adl_genrate
```

In [50]:

```
adl_genrate %>% ggplot(aes(factor(year),pct,fill=factor(gender)))+
    geom_col(position="dodge")+
    labs(y="Ratio",x="Year",title="ADL Rate by gender") +
    theme_grey()+
    scale_fill_discrete(name = "Gender")
```

ADL Rate by gender

3) ADL 현황 ((2006년 66세 ~ 85세)

In [51]:

```
klosabyage %>% filter(!is.na(adl)&!is.na(year)) %>%
    select(year,age,tfr,adl) %>%
    mutate(adl=ifelse(adl > 0 , 1, 0)) %>%
    #filter(adl!=0) %>%
    count(year,tfr,adl) %>%
    group_by(year,tfr) %>%
    mutate(total=sum(n)) %>%
    filter(adl==1) %>%
    mutate(pct=round(n/total*100,1))->adl_line
```

In [52]:

ADL by age group(66~75s,76~85s)

4) 일상생활 수행 장애율(70s, 80S~)

In [53]:

```
klosa %>% select(year,ageg,change_clothes,bath,meal,out_of_room,toilet,urin) %>%
   filter(ageg=="70s"| ageg=="80s~") %>%
   mutate(change clothes=ifelse(change clothes==1,0,1)) %>%
   mutate(bath=ifelse(bath==1,0,1)) %>%
   mutate(meal=ifelse(meal==1,0,1)) %>%
   mutate(out_of_room=ifelse(out_of_room==1,0,1)) %>%
   mutate(toilet=ifelse(toilet==1,0,1)) %>%
   mutate(urin=ifelse(urin==1,0,1)) ->adl count
adl count %>% group by(year,ageg,change clothes) %>%
   summarize(count=n()) %>%
   mutate(class="change clothes") %>%
   mutate(total=sum(count)) %>%
   mutate(pct=round(count/total*100,1)) %>%
   filter(change clothes!=0) ->m1
adl_count %>% group_by(year,ageg,bath) %>%
   summarize(count=n()) %>%
   mutate(class="bath") %>%
   mutate(total=sum(count)) %>%
   mutate(pct=round(count/total*100,1)) %>%
   filter (bath !=0) ->m2
adl count %>% group by(year,ageg,meal) %>%
   summarize(count=n()) %>%
   mutate(class="meal") %>%
   mutate(total=sum(count)) %>%
   mutate(pct=round(count/total*100,1)) %>%
   filter(meal!=0)->m3
adl_count %>% group_by(year,ageg,out_of_room)
   summarize(count=n()) %>%
   mutate(class="out of room") %>%
   mutate(total=sum(count)) %>%
   mutate(pct=round(count/total*100,1)) %>%
   filter(out of room!=0)->m4
adl count %>% group by(year,ageg,toilet) %>%
   summarize(count=n()) %>%
   mutate(class="toilet") %>%
   mutate(total=sum(count)) %>%
   mutate(pct=round(count/total*100,1)) %>%
   filter(toilet!=0)->m5
adl_count %>% group_by(year,ageg,urin) %>%
   summarize(count=n()) %>%
   mutate(class="urin") %>%
   mutate(total=sum(count)) %>%
   mutate(pct=round(count/total*100,1)) %>%
   filter(urin!=0)->m6
rbind(m1, m2, m3, m4, m5, m6) -> adl bind
adl_bind %>% select(year,ageg,class,count,total,pct)->adl_bind
```

```
ggplot(adl_bind[adl_bind$ageg=="70s",],aes(factor(year),pct,fill=factor(class)))+
    geom_col(position="dodge")+
    labs(y="Ratio",x="Year",title="70s") +
    theme_grey()+
    scale_fill_discrete(name = "Act.")->adl1

ggplot(adl_bind[adl_bind$ageg=="80s~",],aes(factor(year),pct,fill=factor(class)))+
    geom_col(position="dodge")+
    labs(y="Ratio",x="Year",title="80s~") +
    theme_grey()+
    scale_fill_discrete(name = "Act.")->adl2

grid.arrange(adl1, adl2, top="ADL by age group(70s,80s~)", nrow = 2)
```

ADL by age group(70s,80s~)

6.2 IADL(Instrumental Activities of Daily Living) - 도구적 일상 활동 수행 능력

- prepare_meal: 식사준비
- gloom: 몸단장 하기
- clean: 일상적인 집안일(청소 등)
- laun: 빨래하기(세탁, 빨래 널고 말리기 등)
- out: 가까운 거리 외출(교통수단 미이용)
- bus: 교통수단 이용하여 외출하기

• buying: 상점에서 물건사기

• m_manage: 금전관리(용돈/통장/재산관리 등)

phone_call: 전화걸고 받기
medicine: 약 챙겨 먹기

1) IADL 장애율

In [55]:

```
klosa %>% select(year,ageg, iadl) %>%
    mutate(adl=ifelse(iadl > 0, 1, 0)) %>%
    count(year,ageg,iadl) %>%
    group_by(year,ageg) %>%
    mutate(total=sum(n)) %>%
    filter(iadl==1) %>%
    mutate(pct=round(n/total*100,1))-> iadl_rate
```

In [56]:

```
iadl_rate %>% ggplot(aes(ageg,pct,fill=factor(year)))+
    geom_col(position="dodge")+
    labs(y="Ratio",x="Year",title="IADL rate") +
    theme_grey()+
    scale_fill_discrete(name = "Year")
```

IADL rate

- u

2) 성별 IADL 장애율

In [57]:

```
klosa %>% select(year,gender, iadl) %>%
    mutate(adl=ifelse(iadl > 0, 1, 0)) %>%
    count(year,gender,iadl) %>%
    group_by(year,gender) %>%
    mutate(total=sum(n)) %>%
    filter(iadl==1) %>%
    mutate(pct=round(n/total*100,1))-> iadl_genrate
```

In [58]:

```
iadl_genrate %>% ggplot(aes(factor(year),pct,fill=factor(gender)))+
    geom_col(position="dodge")+
    labs(y="Ratio",x="Year",title="IADL rate by gender") +
    theme_grey()+
    scale_fill_discrete(name = "Gender")
```

IADL rate by gender

3) IADL 현황 ((2006년 66세 ~ 85세)

In [59]:

```
klosabyage %>% filter(!is.na(iadl)&!is.na(year)) %>%
    select(year,age,tfr,iadl) %>%
    mutate(iadl=ifelse(iadl > 0, 1, 0)) %>%
    #filter(adl!=0) %>%
    count(year,tfr,iadl) %>%
    group_by(year,tfr) %>%
    mutate(total=sum(n)) %>%
    filter(iadl==1) %>%
    mutate(pct=round(n/total*100,1))->iadl_line
```

In [60]:

IADL by age group(66~75s,76~85s)

4) 도구적 일상 활동 장애율(70s, 80S~)

```
In [61]:
```

```
klosa %>% select(year,ageg,prepare_meal,gloom,clean,laun,out,bus,buying,m_manage,phone_call,medicin
          mutate(prepare meal=ifelse(prepare meal==1,0,1)) %>%
          mutate(gloom=ifelse(gloom==1,0,1)) %>%
          mutate(clean=ifelse(clean==1,0,1)) %>%
          mutate(laun=ifelse(laun==1,0,1)) %>%
         mutate(out=ifelse(out==1,0,1)) %>%
          mutate(bus=ifelse(bus==1,0,1)) %>%
          mutate(buying=ifelse(buying==1,0,1)) %>%
          mutate(m manage=ifelse(m manage==1,0,1)) %>%
          mutate(phone call=ifelse(phone call==1,0,1)) %>%
          mutate(medicine=ifelse(medicine==1,0,1)) ->iadl count
iadl_count %>% group_by(year,ageg,prepare_meal) %>%
    summarize(count=n()) %>%
   mutate(class="prepare meal") %>%
   mutate(total=sum(count)) %>%
   mutate(pct=round(count/total*100,1)) %>%
    filter(prepare meal!=0) ->n1
iadl count %>% group by(year,ageg,gloom) %>%
   summarize(count=n()) %>%
   mutate(class="gloom") %>%
   mutate(total=sum(count)) %>%
    mutate(pct=round(count/total*100,1)) %>%
    filter(gloom!=0) ->n2
iadl_count %>% group_by(year,ageg,clean) %>%
    summarize(count=n()) %>%
   mutate(class="clean") %>%
   mutate(total=sum(count)) %>%
   mutate(pct=round(count/total*100,1)) %>%
   filter(clean!=0) ->n3
iadl count %>% group by (year, ageg, laun) %>%
    summarize(count=n()) %>%
   mutate(class="laun") %>%
   mutate(total=sum(count)) %>%
   mutate(pct=round(count/total*100,1)) %>%
   filter(laun!=0) ->n4
iadl count %>% group by(year,ageg,out) %>%
   summarize(count=n()) %>%
   mutate(class="out") %>%
   mutate(total=sum(count)) %>%
    mutate(pct=round(count/total*100,1)) %>%
    filter(out!=0) ->n5
iadl count %>% group by(year,ageg,bus) %>%
   summarize(count=n()) %>%
   mutate(class="bus") %>%
    mutate(total=sum(count)) %>%
   mutate(pct=round(count/total*100,1)) %>%
    filter(bus!=0) ->n6
iadl count %>% group by(year,ageg,buying) %>%
   summarize(count=n()) %>%
    mutate(class="buying") %>%
   mutate(total=sum(count)) %>%
   mutate(pct=round(count/total*100,1)) %>%
    filter(buying!=0) ->n7
iadl count %>% group by(year,ageg,m manage) %>%
    summarize(count=n()) %>%
   mutate(class="m manage") %>%
   mutate(total=sum(count)) %>%
   mutate(pct=round(count/total*100,1)) %>%
    filter(m manage!=0) ->n8
iadl count %>% group by(year,ageg,phone call) %>%
    summarize(count=n()) %>%
    mutate(class="phone_call") %>%
```

```
mutate(total=sum(count)) %>%
  mutate(pct=round(count/total*100,1)) %>%
  filter(phone_call!=0) ->n9

iadl_count %>% group_by(year,ageg,medicine) %>%
  summarize(count=n()) %>%
  mutate(class="medicine") %>%
  mutate(total=sum(count)) %>%
  mutate(total=sum(count)) %>%
  mutate(pct=round(count/total*100,1)) %>%
  filter(medicine!=0) ->n10

rbind(n1,n2,n3,n4,n5,n6,n7,n8,n9,n10) -> iadl_bind
iadl_bind %>% select(year,ageg,class,count,total,pct)->iadl_bind
```

In [62]:

IADL by age group(70s,80s~)

6.3 음주 및 흡연과 만성질환

In [63]:

```
klosa %>%
select(year,gender,ageg,alcohol,smoke,hypertension,diabetes,cancer,lung_disease,liver_disease,heart
    disease,cerebrovascular_disease) %>%
    mutate(hypertension=ifelse(hypertension==1,1,0)) %>%
    mutate(diabetes=ifelse(diabetes==1,1,0)) %>%
    mutate(cancer=ifelse(cancer==1,1,0)) %>%
    mutate(lung_disease =ifelse(lung_disease==1,1,0)) %>%
    mutate(liver_disease=ifelse(liver_disease==1,1,0)) %>%
    mutate(heart_disease=ifelse(heart_disease==1,1,0)) %>%
    mutate(cerebrovascular_disease=ifelse(cerebrovascular_disease==1,1,0)) %>%
    mutate(chronic_sum=hypertension+diabetes+cancer+lung_disease+liver_disease+heart_disease+cerebrovascular_disease)->cerebrovascular_data
```

In [64]:

```
#흡연자와 평균 만성질환갯수
cerebrovascular data %>% filter(!is.na(smoke)) %>% filter(!is.na(chronic sum)) %>%
 filter(smoke==2) %>% select(ageg, chronic_sum) %>%
 group_by(ageg) %>% summarize(smoker=mean(chronic_sum)) ->smo1
cerebrovascular data %>% filter(!is.na(smoke)) %>% filter(!is.na(chronic sum)) %>%
 filter(smoke==1) %>% select(ageg, chronic sum) %>%
 group by(ageg) %>% summarize(past smoker=mean(chronic sum))->smo2
cerebrovascular data %>% filter(!is.na(smoke)) %>% filter(!is.na(chronic sum)) %>%
 filter(smoke==0) %>% select(ageg, chronic_sum) %>%
 group by(ageq) %>% summarize(non smoker=mean(chronic sum))->smo3
left_join(smo1, smo2, by='ageg')->smoke
left join(smoke,smo3, by='ageg')->smoke
gather(smoke, key="smoke", value="mean", `smoker`, `past_smoker`, `non_smoker`) %>%
 ggplot(aes(factor(ageg), mean, fill=smoke))+geom col(position="dodge")+
 scale fill discrete(breaks=c("smoker","past smoker","non smoker")) +
 labs(y="Mean of Chronic disease",x="Year",title="Chronic disease & smok")
#음주자와 평균 만성질환갯수
cerebrovascular_data %>% filter(!is.na(alcohol)) %>% filter(!is.na(chronic_sum)) %>%
   filter(alcohol==1) %>% select(ageg, chronic sum) %>%
   group by(ageg) %>% summarize(drinker=mean(chronic sum)) ->ac1
 cerebrovascular data %>% filter(!is.na(alcohol)) %>% filter(!is.na(chronic sum)) %>%
   filter(alcohol==2) %>% select(ageg, chronic sum) %>%
   group by(ageg) %>% summarize(past drinker=mean(chronic sum))->ac2
 cerebrovascular data %>% filter(!is.na(alcohol)) %>% filter(!is.na(chronic sum)) %>%
   filter(alcohol==3) %>% select(ageg, chronic_sum) %>%
   group_by(ageg) %>% summarize(non_drinker=mean(chronic_sum))->ac3
 left join(ac1,ac2, by='ageg')->drink
 left join(drink,ac3, by='ageg')->drink
 gather(drink, key="drink", value="mean", `drinker`, `past drinker`, `non drinker`) %>%
 ggplot(aes(factor(ageg), mean, fill=drink)) + geom col(position="dodge") +
   scale fill discrete(breaks=c("drinker","past drinker","non drinker"))+
   labs(y="Mean of Chronic disease",x="Year",title="Chronic disease & alcohol")
```

Chronic disease & smok

6.4 연령별 만성질환 상위 5개

마성질화

- hypertension:고혈압 / diabetes:당뇨병/고혈당 / cancer:암 및 악성종양 / lung disease:페질환
- liver_disease:간질환 / heart_disease:심장질환 / cerebrovascular_disease:뇌혈관질환
- mental_illness: 정신과적 질환 / arthritis: 관절염 또는 류마티스 / prostate_disease:전립선 질환

In [65]:

```
klosa %>% filter(!is.na(hypertension)) %>% select(ageg,hypertension) %>%
    mutate(yes=ifelse(hypertension==1,1,NA)) %>% mutate(no=ifelse(hypertension==5,1,NA)) %>%
   mutate(class="hypertension") %>% select(ageg, yes, no, class) -> t1
klosa %>% filter(!is.na(diabetes)) %>% select(ageq,diabetes) %>%
   mutate(yes=ifelse(diabetes==1,1,NA)) %>% mutate(no=ifelse(diabetes==5,1,NA)) %>%
   mutate(class="diabetes")%>% select(ageg,yes,no,class)-> t2
klosa %>% filter(!is.na(cancer)) %>% select(ageg,cancer) %>%
   mutate(yes=ifelse(cancer==1,1,NA)) %>% mutate(no=ifelse(cancer==5,1,NA)) %>%
   mutate(class="cancer")%>% select(ageg,yes,no,class)-> t3
klosa %>% filter(!is.na(lung_disease)) %>% select(ageg,lung_disease) %>%
   mutate(yes=ifelse(lung disease==1,1,NA)) %>% mutate(no=ifelse(lung disease==5,1,NA)) %>%
   mutate(class="lung_disease")%>% select(ageg, yes, no, class) -> t4
klosa %>% filter(!is.na(liver_disease)) %>% select(ageg,liver_disease) %>%
   mutate(yes=ifelse(liver disease==1,1,NA)) %>% mutate(no=ifelse(liver disease==5,1,NA)) %>%
   mutate(class="liver disease")%>% select(ageg, yes, no, class) -> t5
klosa %>% filter(!is.na(heart disease)) %>% select(ageg,heart disease) %>%
   mutate(yes=ifelse(heart disease==1,1,NA)) %>% mutate(no=ifelse(heart disease==5,1,NA)) %>%
   mutate(class="heart disease")%>% select(ageg,yes,no,class)-> t6
klosa %>% filter(!is.na(cerebrovascular disease)) %>% select(ageg,cerebrovascular disease) %>%
   mutate(yes=ifelse(cerebrovascular disease==1,1,NA)) %>%
mutate(no=ifelse(cerebrovascular disease==5,1,NA)) %>%
   mutate(class="cerebrovascular disease")%>% select(ageq,yes,no,class)-> t7
klosa %>% filter(!is.na(mental illness)) %>% select(ageg,mental illness) %>%
   mutate(yes=ifelse(mental illness==1,1,NA)) %>% mutate(no=ifelse(mental illness==5,1,NA)) %>%
   mutate(class="mental_illness")%>% select(ageg,yes,no,class)-> t8
klosa %>% filter(!is.na(arthritis)) %>% select(ageg,arthritis) %>%
   mutate(yes=ifelse(arthritis==1,1,NA)) %>% mutate(no=ifelse(arthritis==5,1,NA)) %>%
   mutate(class="arthritis")%>% select(ageg,yes,no,class)-> t9
klosa %>% filter(!is.na(prostate disease)) %>% select(ageq,prostate disease) %>%
   mutate(yes=ifelse(prostate disease==1,1,NA)) %>% mutate(no=ifelse(prostate disease==5,1,NA)) %>
9
   mutate(class="prostate disease")%>% select(ageg, yes, no, class) -> t10
rbind(t1,t2,t3,t4,t5,t6,t7,t8,t9,t10) \rightarrow a rbind
group by ageg, class order by ageg, ratio desc limit 5") -> al
ealdf("select agar class sum (vas) /(sum (vas) +sum (no)) *100 1 as ratio from a rhind where agar= 1500!
```

```
group by ageg, class order by ageg, ratio desc limit 5") -> a2

sqldf("select ageg, class, sum(yes) / (sum(yes) +sum(no)) *100.1 as ratio from a_rbind where ageg='60s'
group by ageg, class order by ageg, ratio desc limit 5") -> a3

sqldf("select ageg, class, sum(yes) / (sum(yes) +sum(no)) *100.1 as ratio from a_rbind where ageg='70s'
group by ageg, class order by ageg, ratio desc limit 5") -> a4

sqldf("select ageg, class, sum(yes) / (sum(yes) +sum(no)) *100.1 as ratio from a_rbind where ageg='80s'
group by ageg, class, sum(yes) / (sum(yes) +sum(no)) *100.1 as ratio from a_rbind where ageg='80s'
group by ageg, class order by ageg, ratio desc limit 5") -> a5

sqldf("select ageg, class, sum(yes) / (sum(yes) +sum(no)) *100.1 as ratio from a_rbind where ageg='80s~'
group by ageg, class order by ageg, ratio desc limit 5") -> a6

rbind(a1,a2,a3,a4,a5,a6) -> b_rbind
```

In [66]:

```
b_rbind %>% ggplot(aes(ageg,ratio,fill=class)) +
    geom_col(position="dodge")+
    labs(y="Ratio",x="Year",title="Chronic disease top 5 by ageg") +
    theme_grey()+
    scale_fill_discrete(name = "Chronic disease")
```

Chronic disease top 5 by ageg

6.5 연령대별 인지기능

~17 : 중증치매18~23 : 의심,24~ : 정상

```
In [67]:
```

```
%>% filter(!is.na(mmse)) %>% filter(ageg=='~50s') %>% select(ageg,mmse,year) %>% group by(
year,ageg) %>% summarize(mean=round(mean(mmse),1)) ->k1
klosa %>% filter(!is.na(mmse)) %>% filter(ageg=='50s') %>% select(ageg,mmse,year)
                                                                                      %>% group by(y
ear,ageg) %>% summarize (mean=round (mean (mmse),1)) ->k2
klosa %>% filter(!is.na(mmse)) %>% filter(ageg=='60s') %>% select(ageg,mmse,year)
                                                                                      %>% group by(y
ear, ageg) %>% summarize (mean=round (mean (mmse), 1)) ->k3
klosa %>% filter(!is.na(mmse)) %>% filter(ageg=='70s') %>% select(ageg,mmse,year)
                                                                                      %>% group by (y
ear, ageg) %>% summarize (mean=round (mean (mmse), 1)) ->k4
klosa %>% filter(!is.na(mmse)) %>% filter(ageg=='80s~') %>% select(ageg,mmse,year)
                                                                                       %>% group by(
year,ageg) %>% summarize (mean=round (mean (mmse), 1)) ->k5
ggplot(k1,aes(factor(year),mean,fill=ageg))+geom_col(position="dodge",fill="#F7AA97")+
 ylim(0,40) + geom text(aes(label=mean), vjust=1.5, colour="white", size=3)+labs(y="MMSE",x="Year"
, title="\sim50s") -> k1
ggplot(k2,aes(factor(year),mean,fill=ageg))+geom_col(position="dodge",fill="#C5E99B")+
 ylim(0,40) + geom text(aes(label=mean), vjust=1.5, colour="white", size=3)+labs(y="MMSE",x="Year"
title="50s")->k2
qqplot(k3,aes(factor(year),mean,fill=ageg))+geom col(position="dodge",fill="#8FBC94")+
 ylim(0,40) + geom text(aes(label=mean), vjust=1.5, colour="white", size=3)+labs(y="MMSE",x="Year"
, title="60s") -> k3
qqplot(k4,aes(factor(year),mean,fill=aqeq))+qeom col(position="dodqe",fill="#548687")+
 ylim(0,40) + geom text(aes(label=mean), vjust=1.5, colour="white", size=3)+labs(y="MMSE",x="Year"
,title="70s")->k4
ggplot(k5,aes(factor(year),mean,fill=ageg))+geom col(position="dodge",fill="#56445D")+
 ylim(0,40) + geom text(aes(label=mean), vjust=1.5, colour="white", size=3)+labs(y="MMSE",x="Year"
, title="80s~")->k5
grid.arrange(k1,k2,k3,k4,k5,ncol=2,top="MMSE\n\n")
```

MMSE

6.6 삶의 질

1) 연령대별 전반적인 삶의 질 (0 ~ 100)

In [68]:

```
klosa %>% filter(!is.na(QOL)) %>% select(ageg,QOL)-> kk1
sqldf("select ageg,avg(QOL) as avg from kk1 group by ageg") ->kk2
kk2 %>% ggplot(aes(ageg,avg)) + geom_col()
```


2) 나이별 전반적인 삶의 질 (0~100)

```
In [69]:
```

```
klosa %>% filter(!is.na(QOL)) %>% select(age,ageg,QOL)-> satisfaction
sqldf("select age,avg(QOL) as avg from satisfaction group by age") ->satisfaction
ggplot(satisfaction,aes(age,avg))+
    geom_line()+
    labs(y="Ratio of satisfaction",x="Age",title="Life satisfaction")+
    ylim(30,75)
```

Life satisfaction

6.7 연령별, 항목별 삶의 만족도

perceived_health: 건강상태perceived_eco: 경제상태

spouse_relationship: 배우자와의 관계children_relationship: 자녀와의 관계

In [70]:

```
klosa %>% filter(!is.na(perceived_health)) %>% filter(!is.na(perceived_eco)) %>%
```

