Graph Random Neural Networks for Semi-Supervised Learning on Graphs

Presented by: Gauransh Sawhney 2018A3PS0325P Utkarsh Kumar Singh 2018A3PS0368P

In partial fulfillment of the requirements of the course: BITS F464 Machine Learning Submitted to: Dr. Kamlesh Tiwari

Semi-Supervised Learning

- What is Semi-Supervised Learning
- Semi-Supervised Learning on Graphs

Semi-Supervised Learning on Graphs

unlabeled nodes

attributed graph

Graph Neural Networks

- What are Graph Neural Networks(GNNs)
- Problems with existing implementations

Graph Neural Network

non-linear activation function (e.g. ReLU)

$$H^{k+1} = \sigma(\widehat{A}H^{(k)}W^{(k)})$$

normalized Laplacian matrix

$$H^{k+1} = \sigma \left(W^k \sum_{u \in \underline{N(v)} \cup v} \frac{H_u^k}{\sqrt{|N(u)||N(v)|}} \right)$$

the neighbors of node v

Existing Issues

$$H^{k+1} = \sigma(\widehat{A}H^{(k)}W^{(k)})$$

- Oversmoothing
 - Stacking multiple GNN layers makes nodes indistinguishable;
 coupling the feature propagation and non-linear transformation steps, aggravates this problem
- Not robust to graph attacks
 - Each node is highly dependent on neighbors, making it non-robust to noise
- Overfitting in case of semi-supervised
 - In the standard setting of semi-supervised training, scarce node label information can be overfit

GRAND: Graph Random Neural Network

- Architecture
- Algorithm
- How does it tackle the issues faced by other GNNs

GRAND

GRAND

Algorithm

Algorithm 1 GRAND

Input:

Adjacency matrix $\hat{\mathbf{A}}$, feature matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$, times of augmentations in each epoch S, DropNode/dropout probability δ , learning rate η , an MLP model: $f_{mlp}(\mathbf{X}, \Theta)$.

Output:

Prediction Z.

- 1: while not convergence do
- 2: **for** s = 1 : S **do**
- 3: Pertube the input: $\widetilde{\mathbf{X}}^{(s)} \sim \text{DropNode}(\mathbf{X}, \delta)$.
- 4: Perform propagation: $\overline{\mathbf{X}}^{(s)} = \frac{1}{K+1} \sum_{k=0}^{K} \hat{\mathbf{A}}^{k} \widetilde{\mathbf{X}}^{(s)}$.
- 5: Predict class distribution using MLP: $\widetilde{\mathbf{Z}}^{(s)} = f_{mlp}(\overline{\mathbf{X}}^{(s)}, \Theta)$
- 6: end for
- 7: Compute supervised classification loss \mathcal{L}_{sup} via Eq. 1 and consistency regularization loss via Eq. 3.
- 8: Update the parameters Θ by gradients descending: $\Theta = \Theta \eta \nabla_{\Theta} (\mathcal{L}_{sup} + \lambda \mathcal{L}_{con})$
- 9: end while
- 10: Output prediction \mathbf{Z} via: $\mathbf{Z} = f_{mlp}(\frac{1}{K+1} \sum_{k=0}^{K} \hat{\mathbf{A}}^k \mathbf{X}, \Theta)$.

Loss Functions

$$\mathcal{L}_{sup} = -\frac{1}{S} \sum_{i=1}^{S} \sum_{i=0}^{m-1} \mathbf{Y}_{i}^{\top} \log \widetilde{\mathbf{Z}}_{i}^{(s)}.$$

$$\overline{\mathbf{Z}}_{ij}' = \overline{\mathbf{Z}}_{ij}^{\frac{1}{T}} / \sum_{c=0}^{C-1} \overline{\mathbf{Z}}_{ic}^{\frac{1}{T}}, (0 \le j \le C - 1),$$

$$\mathcal{L}_{con} = \frac{1}{S} \sum_{i=0}^{S} \sum_{j=0}^{N-1} \|\overline{\mathbf{Z}}_{i}' - \widetilde{\mathbf{Z}}_{i}^{(s)}\|_{2}^{2}.$$

Results

Some of the results presented in the paper:

- Comparison with existing architectures on benchmarks
- Generalization analysis
- Robustness analysis
- Over-smoothing analysis
- Results on large datasets

3 datasets were used to benchmark results

Dataset	Nodes	Edges	Train/Valid/Test Nodes	Classes	Features	Default Label Rate
Cora	2708	5429	140/500/1000	7	1433	0.052
Citeseer	3327	4732	120/500/1000	6	3703	0.036
Pubmed	19717	44338	60/500/1000	3	500	0.003

Comparison with existing architectures

Method	Cora	Citeseer	Pubmed	
GCN [20]	81.5	70.3	79.0	
GAT [35]	83.0±0.7	72.5 ± 0.7	79.0 ± 0.3	
APPNP [21]	83.8±0.3	71.6 ± 0.5	79.7 ± 0.3	
Graph U-Net [12]	84.4±0.6	73.2 ± 0.5	79.6 ± 0.2	
SGC [39]	81.0 ±0.0	71.9 ± 0.1	78.9 ± 0.0	
MixHop [1]	81.9± 0.4	71.4 ± 0.8	80.8 ± 0.6	
GMNN [31]	83.7	72.9	81.8	
GraphNAS [13]	84.2±1.0	73.1 ± 0.9	79.6 ± 0.4	
GraphSAGE [17]	78.9±0.8	67.4±0.7	77.8±0.6	
FastGCN [7]	81.4±0.5	68.8±0.9	77.6±0.5	
VBAT [9]	83.6±0.5	74.0±0.6	79.9±0.4	
G ³ NN [25]	82.5±0.2	74.4 ± 0.3	77.9 ± 0.4	
GraphMix [36]	83.9±0.6	74.5 ± 0.6	81.0±0.6	
DropEdge [32]	82.8	72.3	79.6	
GRAND_dropout	84.9±0.4	75.0±0.3	81.7±1.0	
GRAND_DropEdge	84.5±0.3	74.4 ± 0.4	80.9±0.9	
GRAND_GCN	84.5±0.3	74.2 ± 0.3	80.0 ± 0.3	
GRAND_GAT	84.3±0.4	73.2 ± 0.4	79.2 ± 0.6	
GRAND	85.4±0.4	75.4 ± 0.4	82.7±0.6	
w/o CR	84.4±0.5	73.1±0.6	80.9±0.8	
w/o mDN	84.7±0.4	74.8 ± 0.4	81.0 ± 1.1	
w/o sharpening	84.6±0.4	72.2 ± 0.6	81.6±0.8	
w/o CR & DN	83.2±0.5	70.3 ± 0.6	78.5±1.4	

Table 1: Overall classification accuracy (%).

Generalization Analysis

(c) GRAND(with RP and CR)

Robustness Analysis

Over-smoothing analysis

Other results presented in the paper

Over-smoothness of GRAND and its variants(on Cora)

Other results presented in the paper

Classification Accuracy of GRAND on large datasets

Method	Cora Full	Coauthor CS	Coauthor Physics	Amazon Computer	Amazon Photo	Aminer CS
GCN	62.2 ± 0.6	91.1 ± 0.5	92.8 ± 1.0	82.6 ± 2.4	91.2 ± 1.2	49.9 ± 2.0
GAT	51.9 ± 1.5	90.5 ± 0.6	92.5 ± 0.9	78.0 ± 19.0	85.7 ± 20.3	49.6 ± 1.7
GRAND	63.5 ±0.6	92.9 ± 0.5	94.6 ± 0.5	$\textbf{85.7} \pm \textbf{1.8}$	$\textbf{92.5} \pm \textbf{1.7}$	$ 52.8 \pm 1.2 $

Experiments

The following experiments were conducted:

- MLP v/s GCN as classification network
- Classification accuracy v/s {K, S}
- Sensitivity wrt CR loss coefficient Å

1. MLP v/s GCN

Effect of using an MLP vs GCN as the classification network

GRAND very clearly outperforms
GRAND_GCN in terms of classification
accuracy

2. Classification Accuracy v/s {K, S}

(i) Effect of K(propagation order) and S(number of data augmentations) on Classification Accuracy on GRAND(DropNode data augmentation)

2. Classification Accuracy v/s {K, S}

(ii) Effect of K(propagation order) and S(number of data augmentations) on Classification Accuracy on GRAND_dropout and GRAND_dropedge(alternative data augmentation techniques)

Classification Accuracy v/s 🐧

Consistency Regularization Loss Coefficient

3. Sensitivity wrt λ

Classification Accuracy v/s X

Ablation Study

The effect of the absence of the following parameters was studied:

- w/o consistency regularization(CR)
- w/o multiple dropnode(mDN)
- w/o sharpening
- w/o consistency regularization(CR) and dropnode(DN)

Ablation Study

these are classification accuracies

Method	Cora	Pubmed	Citeseer
w/o CR (λ=0)	0.841	0.811	0.728
w/o mDN (S=1)	0.85	0.80	0.744
w/o sharpening (T=1)	0.844	0.816	0.578
w/o CR & DN (λ=0, δ=0)	0.835	0.787	0.597

Thank You!

END