Nafarroako Unibertsitate Publikoa

Universidad Pública de Navarra TEMA 3 — SELECCIÓN DE INSTANCIAS

Mikel Galar Idoate mikel.galar@unavarra.es Ciencia de datos con técnicas inteligentes — Pre-procesamiento Experto Universitario en Ciencia de Datos y Big Data

Índice

- 1. Introducción
- Training Set Selection vs. Prototype Selection
- 3. Modelos de selección de prototipos
- 4. Descripción de los modelos más relevantes
- 5. Otros filtros para eliminar ruido

Índice

- 1. Introducción
- 2. Training Set Selection vs. Prototype Selection
- 3. Modelos de selección de prototipos
- 4. Descripción de los modelos más relevantes
- 5. Otros filtros para eliminar ruido

Visualización del conjunto de datos Banana

Dataset artificial 5300 ejemplos 2 clases

Banana Original (0.8751,0.7476)

(Reduction rate, Test Accuracy, Test Kappa)

□ Ejemplos de selección de instancias con Banana

Dataset completo

 $N_{sel} \times L$

 $N \times L_{sel}$

- □ Selección de variables
 - Reduce el tamaño del conjunto de datos
 - Elimina características redundantes o irrelevantes
- Selección de instancias
 - Obtiene un subconjunto del conjunto de datos disponibles (los reduce)
 - Nos debe permitir lograr el mismo objetivo en la aplicación de minería de datos que el que obtendríamos si utilizáramos el conjunto de datos original

- Selección de Instancias
 - □ Elige los ejemplos relevantes para una aplicación y lograr el máximo rendimiento
 - Menos datos
 - Los algoritmos pueden aprender más rápidamente
 - Mayor exactitud
 - El clasificador generaliza mejor
 - Resultados más simples
 - Más fácil de entender

□ Tipos de instancias

- □ Tipos de instancias
 - Superfluas
 - No son necesarias para clasificar
 - Si las borramos, se decrementará el tiempo de clasificación
 - Ruido (o solapamiento)
 - **Confunden** al clasificador
 - Si las borramos, mejorará el porcentaje de aciertos esperado

Condensación

Mantenemos instancias en las fronteras Eliminamos instancias superfluas Se suelen eliminar muchas instancias

Edición

Eliminamos el ruido (instancias en las fronteras) Más o menos extremo Se suelen eliminar pocas instancias

Híbridos

Buscamos el subconjunto de instancias menor con la mayor capacidad de generalización

Se elimina el ruido y las instancias superfluas

- □ Ejemplo típico de Edición
 - ENN (Edited Nearest Neighbor) Wilson
 - Elimina una instancia si es clasificada incorrectamente por sus k vecinos más cercanos
 - Excepciones en el interior de una clase
 - Algunos puntos en la frontera (suaviza las fronteras)

- □ Ejemplo típico de Edición
 - ENN (Edited Nearest Neigbor) Wilson

- □ Selección de instancias / Instance Selection (IS)
 - Realiza el proceso complementario a la selección de características
 - Objetivo principal
 - Reducir el tamaño de los datos seleccionando o identificando los datos relevantes entre todos los disponibles
 - Se trata de obtener un subconjunto de los datos que al ser aplicado sobre un algoritmo de minería de datos logre el mismo resultado que se obtendría con el conjunto completo

- IS vs. Remuestreo de datos
 - IS realiza un proceso inteligente para categorizar las instancias de acuerdo al grado de irrelevancia o ruido
 - Remuestreo: aleatorio

Definición IS

- Un método de IS trata de obtener un subconjunto S del conjunto de entrenamiento TR tal que $S \subset TR$, S no contiene instancias superfluas y Acc(S) es similar a Acc(TR)
 - Donde Acc(X) es el porcentaje de acierto obtenido utilizando X como conjunto de entrenamiento

- □ ¿Qué aporta la selección de instancias?
 - Permite utilizar algoritmos de minería de datos con grandes cantidades de datos
 - Que no podrían aplicarse sobre el conjunto completo
 - Permite limpiar el conjunto de datos
 - Eliminando instancias redundantes o que son ruido, mejorando la calidad de los datos

Índice

- 1. Introducción
- 2. Training Set Selection vs. Prototype Selection
- 3. Modelos de selección de prototipos
- 4. Descripción de los modelos más relevantes
- 5. Otros filtros para eliminar ruido

- Existen diferentes términos para hablar de IS
 - Obtener los datos más relevantes del conjunto de entrenamiento
 - Instance Selection el más general
 - Pensado para trabajar con algoritmos como árboles de decisión, redes neuronales o SVMs
 - Vamos a distinguir dos tipos
 - Prototype Selection (PS)
 - La selección se centra en obtener un buen subconjunto para clasificadores basados en instancias (kNN)
 - Training Set Selection (TSS)
 - La selección se realiza para cualquier clasificador

□ Prototype Selection

□ Training Set Selection

- Nos vamos a centrar en Prototype Selection
 - □ 90% de la literatura existente
 - Los métodos tipo filtro suelen funcionar bien como TSS
 - No eliminan tantos datos
 - En TSS no se puede reducir tanto el conjunto ya que los modelos necesitan más instancias para aprender

Índice

- 1. Introducción
- 2. Training Set Selection vs. Prototype Selection
- 3. Modelos de selección de prototipos
- 4. Descripción de los modelos más relevantes
- 5. Otros filtros para eliminar ruido

Taxonomía (tipología, dirección de búsqueda y evaluación de la búsqueda)

□ Tipo de selección

Condensación

 Mantiene las instancias cercanas a las fronteras de decisión (border points)

Edición

- Busca eliminar las instancias en las fronteras de decisión (border points)
- Eliminan instancias que son ruido o que no estén de acuerdo con su vecindad

Híbridos

 Tratan de buscar el subconjunto S más pequeño que mantiene o incluso aumenta la capacidad de generalización (precisión) sobre los datos de test

Dirección de la búsqueda

Incremental

- lacksquare Comienza con un subconjunto S vacío y añade cada instancia de TR en S si satisface cierto criterio
 - El orden es importante
 - \blacksquare Hay modelos independientes del orden requieren de todo el conjunto, no son 100% incrementales
 - Decisiones con poca información errores más probables

Decremental

- Comienza con S = TR y después busca las instancias a eliminar de S
- Importancia del orden Pero todos los ejemplos disponibles al inicio
- Mayor coste computacional puede merecer la pena

Batch

- Decremental eliminando más de una instancia
- Se decide qué instancias eliminar y se eliminan todas a la vez

Dirección de la búsqueda

■ Mixed

- Comienza con un subconjunto S pre-seleccionado e iterativamente añade o eliminan instancias que satisfacen cierta condición
 - Permite rectificaciones

Fixed

- Subfamilia de mixed donde el número de adiciones y substracciones es el mismo
- El número de instancias está prefijado

Evaluación de la búsqueda

□ Filtro

- Cuando kNN se usa sobre parte de los datos para determinar el criterio de añadir o eliminar instancias
- No se utiliza el esquema de validación leave-one-out para obtener una buena estimación de la capacidad de generalización

■ Wrapper

- Cuando kNN se usa para evaluar el conjunto de entrenamiento completo con leave-one-out
- Se obtiene una buen estimación de la capacidad de generalización
 - Mejor precisión sobre los datos de test

- Criterios para comparar los métodos
 - □ Reducción en el almacenamiento
 - Uno de los principales objetivos
 - Se acelera la clasificación
 - Capacidad de generalización (precisión en test)
 - No deberíamos perder precisión
 - Coste computacional (tiempo)
 - No es tan importante siempre que sea posible ejecutarlo

Taxonomía (tipología, dirección de búsqueda y evaluación de la búsqueda)

PS Methods Hybrid Condensation Edition ^VIncremental ^VIncremental _MMixed + Filter _λBatch Decrementa Mixed + Wrapper Fixed + Wrapper Decrementa Decremental Batch _MWrapper Filter Ψ \mathbf{V} Ψ CNN RNN **IKNN ENN** AIIKNN IB3 **ICF** Explore **CBP RMHC CRIS IRB** POP MoCS Ullmann SNN Multiedit **VSM HMNEI GGA BSE** VISOM RP-Edit **TCNN** Shrink **RNGE CCIS** CerveronTS Reconsistent PF DSC **FRPS ISCC** MNV MCS MENN **EDA** TRKNN DROP3 CCV **MCNN** MSS **NCNEdit IGA PSRCG** Bien **GCNN ENRBF** ZhangTS Cpruner **BEPS ENNTh** CHC **FCNN SVBPS** SIR LSVM **PSC** GGA-MSE-**NRMCS** D-PS **RNNR EVA** CC-FSM **RDCL ATISA SSMA** CoCoIS SegRA

CBIS

Métodos de

Selección de

Prototipos (1):

	Condensed nearest neighbor	CNN
	Reduced nearest neighbor	RNN
	Edited nearest neighbor	ENN
	No name specified	Ullmann
•	Selective nearest neighbor	SNN
	Repeated edited Nearest neighbor	RENN
	All-KNN	AllKNN
	Tomek condensed nearest neighbor	TCNN
	Mutual neighborhood value	MNV
	MultiEdit	MultiEdit
	Shrink	Shrink
	Instance based 2	IB2
	Instance based 3	IB3
	Monte carlo 1	MC1
	Random mutation hill climbing	RMHC
	Minimal consistent set	MCS

Métodos de Selección de Prototipos (2):

	Encoding length heuristic	ELH
	Encoding length grow	ELGrow
	Explore	Explore
	Model class selection	MoCS
	Variable similarity metric	VSM
	Gabriel graph editing	GGE
	Relative Neighborhood Graph Editing	RNGE
-	Polyline functions	PF
	Generational genetic algorithm	GGA
	Modified edited nearest neighbor	MENN
	Decremental reduction optimization procedure 1	DROP1
	Decremental reduction optimization procedure 2	DROP2
	Decremental reduction optimization procedure 3	DROP3
	Decremental reduction optimization procedure 4	DROP4
	Decremental reduction optimization procedure 5	DROP5
	Decremental encoding length	DEL
-	Estimation of distribution algorithm	EDA
-	Tabu search	CerveronTS
	Iterative case filtering	ICF
	Modified condensed nearest neighbor	MCNN
	Intelligent genetic algorithm	IGA
	Prototype selection using relative certainty gain	PSRCG
	Improved KNN	IKNN

Métodos de Selección de Prototipos (3):

Tabu search	ZhangTS
Iterative maximal nearest centroid neigh- bor	Iterative Ma
Reconsistent	Reconsisten
C-Pruner	CPruner
Steady-state genetic algorithm	SSGA
Population based incremental learning	PBIL
CHC evolutionary algorithm	СНС
Patterns by ordered projections	POP
Nearest centroid neighbor edition	NCNEdit
Edited normalized radial basis function	ENRBF
Edited normalized radial basis function 2	ENRBF2
Edited nearest neighbor estimating class probabilistic	ENNProb
Edited nearest neighbor estimating	ENNTh
Class probabilistic and threshold	
Support vector based prototype selection	SVBPS
Backward sequential edition	BSE
Modified selective subset	MSS
Generalized condensed nearest neighbor	GCNN

Métodos de Selección de Prototipos (4):

Fast condensed nearest neighbor 1	FCNN
Fast condensed nearest neighbor 2	FCNN2
Fast condensed nearest neighbor 3	FCNN3
Fast condensed nearest neighbor 4	FCNN4
Noise removing based on minimal consis- tent set	NRMCS
Genetic algorithm based on mean square error,	GA-MSE-CC-FSM
Clustered crossover and fast smart muta- tion	
Steady-state memetic algorithm	SSMA
Hit miss network C	HMNC
Hit miss network edition	HMNE
Hit miss network edition iterative	HMNEI
Template reduction for KNN	TRKNN
Prototype selection based on clustering	PSC
Class conditional instance selection	CCIS
Cooperative coevolutionary instance selection	CoCoIS

Métodos de

Selección de

Prototipos (5):

ISCC
EVA
RP-Edit
CCV
SeqRA
LSVM
Bien
RNNR
BEPS
CBP
CBIS
RDCL
MSGA

Modelos de selección de prototipos

Métodos de

Selección de

Prototipos (6):

Ant colony prototype reduction	Ant-PR
Spectral instance reduction	SIR
Competence enhancement by Ranking- based instance selection	CRIS
Discriminative prototype selection	D-PS
Adaptive threshold-based instance selec- tion algorithm	ATISA
InstanceRank based on borders for instance selection	IRB
Visualization-Induced self-organizing map for prototype reduction	VISOM
Support vector oriented instance selection	SVOIS
Dominant set clustering prototype selec- tion	DSC
Fuzzy rough prototype selection	FRPS

Modelos de selección de prototipos

Taxonomía (tipología, dirección de búsqueda y evaluación de la búsqueda)

Modelos de selección de prototipos

□ Red de comparación entre métodos

Índice

- 1. Introducción
- 2. Training Set Selection vs. Prototype Selection
- 3. Modelos de selección de prototipos
- 4. Descripción de los modelos más relevantes
- 5. Otros filtros para eliminar ruido

Condensación

- Condensed Nearest Neighbor (CNN)
 - Busca el subconjunto $S \subset TR$ tal que todos los ejemplos de TR están más cercanos a un ejemplo de S de la misma clase que a otro de otra clase
 - lacksquare Es decir, todos los ejemplos en TR se aciertan usando S

- 1. Inicializar S con un ejemplo aleatorio de cada clase del TR
- 2. Clasificar cada instancia en TR usando las instancias en S
 - Si se falla, añadir a S (se asegura que será clasificada correctamente)
- 3. Repetir hasta que todos los ejemplos en TR sean acertados utilizando S

Condensación

- 1. Inicializar S con un ejemplo aleatorio de cada clase del TR
- 2. Clasificar cada instancia en TR usando las instancias en S
 - Si se falla, añadir a S (se asegura que será clasificada correctamente)
- 3. Repetir hasta que todos los ejemplos en TR sean acertados utilizando S

Condensación

- 1. Inicializar S con un ejemplo aleatorio de cada clase del TR
- 2. Clasificar cada instancia en TR usando las instancias en S
 - Si se falla, añadir a S (se asegura que será clasificada correctamente)
- 3. Repetir hasta que todos los ejemplos en TR sean acertados utilizando S

Condensación

- 1. Inicializar S con un ejemplo aleatorio de cada clase del TR
- 2. Clasificar cada instancia en TR usando las instancias en S
 - Si se falla, añadir a S (se asegura que será clasificada correctamente)
- 3. Repetir hasta que todos los ejemplos en TR sean acertados utilizando S

Condensación

- 1. Inicializar S con un ejemplo aleatorio de cada clase del TR
- 2. Clasificar cada instancia en TR usando las instancias en S
 - Si se falla, añadir a S (se asegura que será clasificada correctamente)
- 3. Repetir hasta que todos los ejemplos en TR sean acertados utilizando S

Condensación

- 1. Inicializar S con un ejemplo aleatorio de cada clase del TR
- 2. Clasificar cada instancia en TR usando las instancias en S
 - Si se falla, añadir a S (se asegura que será clasificada correctamente)
- 3. Repetir hasta que todos los ejemplos en TR sean acertados utilizando S

Condensación

- 1. Inicializar S con un ejemplo aleatorio de cada clase del TR
- 2. Clasificar cada instancia en TR usando las instancias en S
 - Si se falla, añadir a S (se asegura que será clasificada correctamente)
- 3. Repetir hasta que todos los ejemplos en TR sean acertados utilizando S

Condensación

- 1. Inicializar S con un ejemplo aleatorio de cada clase del TR
- 2. Clasificar cada instancia en TR usando las instancias en S
 - Si se falla, añadir a S (se asegura que será clasificada correctamente)
- 3. Repetir hasta que todos los ejemplos en TR sean acertados utilizando S

Condensación

Condensed Nearest Neighbor (CNN)

Banana Original (0.8751,0.7476)

CNN (0.7729,0.8664,0.7304)

(Reduction rate, Test Accuracy, Test Kappa)

Condensación

- Reduced Nearest Neighbor (RNN)
 - Empieza con $S=S_{CNN}$ y elimina cada instancia de S si dicha eliminación no causa que ninguna otra instancia en TR sea fallada al clasificar con las instancias que quedan en S
 - Genera un subconjunto del resultado obtenido con CNN

- Inicializa S como el subconjunto devuelto por CNN
- 2. Elimina un ejemplo de S si todos los ejemplos de TR siguen clasificándose correctamente sin él

Condensación

- Condensed Nearest Neighbor (CNN)
 - CNN depende mucho del orden en el que se toman las instancias
 - Tiende a conservar aquellas instancias con ruido (puesto que son mal clasificadas por las instancias en S)
- Reduced Nearest Neighbor (RNN)
 - Trata de reducir el conjunto obtenido por CNN
 - Elimina instancias superfluas en el conjunto obtenido por CNN
- No hay garantía de que CNN o RNN encuentren el conjunto consistente mínimo
 - Conjunto mínimo de ejemplos que clasifican correctamente al conjunto de entrenamiento

× · · · · · ·

Conjunto Consistente Mínimo

Condensación

□ CNN y RNN

```
CNN( Training set T): Object set S
S = \emptyset
Repeat
Additions= FALSE
For all patterns in T do
Randomly pick O from T
Find s_c \in S such that Distance(O, s_c) = \min_j Distance(O, s_j)
If class(O) \neq class(s_c) then
S = S \cup \{O\}
Additions = TRUE
Until NOT(Additions)
Return S
```

RNN(Training set T, CNN set S_{CNN}): object set S

- 1. $S=S_{CNN}$
- 2. Remove the first object from S
- Use S to classify all objects in T:
 a) If all objects are classified correctly, go to 4
 b) If an object is classified incorrectly, return the object that was removed and go to 4
- If every object in S has been removed once (and posibly replaced) then halt.
 Otherwise, remove the next object and go to 3.

Return S

Método CNN

Método RNN

Condensación

- Fast Condensed Nearest Neighbor family (FCNN)
 - Familia de algoritmos basados en la idea de CNN
 - FCNN1
 - Comienza introduciendo en S los centroides de cada clase
 - Para cada prototipo $s \in S$ se busca su enemigo más cercano en su celda de Voronoi (ejemplos que son más cercanos a s que a ningún otro)
 - Se añade el enemigo a S (si existe)
 - Repetir el proceso hasta que no haya más enemigos en ninguna celda
 - FCNN2 similar a FCNN1
 - En vez de añadir el enemigo más cercano en la celda de Voronoi
 - Se añade el centroide de todos los enemigos en la celda
 - FCNN3 similar a FCNN1
 - En vez de añadir un prototipo por celda solo se añade un prototipo
 - Aquel que corresponde a la celda de Voronoi con más enemigos
 - S se inicializa solo con el centroide de la clase mayoritaria

Condensación

■ FCNN1

Banana Original (0.8751,0.7476)

FCNN (0.8010,0.8655,0.7284)

(Reduction rate, Test Accuracy, Test Kappa)

Diagrama de Voronoi

- Crea regiones con todos los puntos más cercanos al punto correspondiente
 - Cada celda contiene un ejemplo y todas las localizaciones dentro de la celda están más cerca de ese punto que de cualquier otro

Edición

- Edited Nearest Neighbor (ENN) Wilson method
 - \blacksquare Comienza con S = TR
 - lacktriangle Cada instancia en S se elimina si no está de acuerdo con la mayoría de sus k vecinos más cercanos

Edición

Edited Nearest Neighbor (ENN) — Wilson method

Original data

Wilson editing with k=3

Original data

Wilson editing with k=3

Edición

All KNN

- Es una extensión de ENN
- Consiste en repetir ENN con valores de k=1...K y eliminar aquellas instancias falladas con cualquiera de dichos valores

- 1. Repetir con $k = 1 \dots K$
 - lacktriangle Marcar como instancia a eliminar las instancias incorrectamente clasificadas por sus k vecinos más cercanos
- 2. Eliminar instancias marcadas como instancia a eliminar

Edición

All KNN

Banana Original (0.8751,0.7476)

AllKNN (0.1758,0.8934,0.7831)

(Reduction rate, Test Accuracy, Test Kappa)

Edición

□ ENN y All kNN

ENN(Training set T): object set S

- 1. S=T
- 2. For each object O_i in S do
 - a) Find the k nearest neighbors of O_i in $S \{O_i\}$
 - b) Remove O_i from S if its label disagrees with the class associated with the largest number of k nearest neighbors
- Return S

All k-NN((Training set T, number of neighbors k): object set S

- 1. S=T
- 2. For each object O in S do
 - a) i=1, flag(O)=1
 - b) find i nearest neighbors of O: NN(i,O)
 - c) If the majority of NN(i,O) classify O incorrectly, flag(O)=0
 - d) i = i + 1
 - e) If $i \le k$ go to step b)
- 3. Eliminate from S those objects with flag(O)=0
- Return S

Método ENN

Método All k-NN

Híbridos

- Decremental Reduction Optimization Procedure Family (DROP)
 - Cada instancia X_i tiene k vecinos más cercanos (con k valor impar pequeño)
 - $lacksquare X_i$ tiene un enemigo más cercano
 - La instancia más cercana con clase diferente
 - Aquellas instancias que tienen a X_i como uno de sus k vecinos más cercanos se llaman asociadas de X_i

Híbridos

- DROP1
 - \blacksquare Comienza con S = TR
 - Elimina un ejemplo de S si sus asociados en S son clasificados correctamente más veces sin él que con él

Listas de Asociados					
Y	W	Z	٧	:	
X	X	X	X		

k=3
La instancia tiene 6 asociados

Híbridos

DROP2

- \blacksquare Comienza con S = TR
- Elimina un ejemplo de S si sus asociados en TR son clasificados correctamente más veces sin él que con él
- lacksquare Cambia el orden de eliminación de las instancias de S
 - Reordena las instancias en S por su distancia a su enemigo más cercano (de mayor a menor)
 - Se eliminan primero instancias lejanas a la frontera de decisión
 - Hay más posibilidades de mantener los puntos en la frontera

□ DROP3

- Combing DROP2 con ENN
 - Utiliza ENN primero
 - Continúa con DROP2 después

Híbridos

■ DROP3

Banana Original (0.8751,0.7476)

DROP3 (0.9151,0.8696,0.7356)

(Reduction rate, Test Accuracy, Test Kappa)

☐ Híbridos

DROP1

```
1. DROP1(Training set T): Instance set S.
 2.
        Let S = T.
        For each instance P in S:
             Find P.N_{1..k+1}, the k+1 nearest neighbors of P in S.
 5.
             Add P to each of its neighbors' lists of associates.
        For each instance P in S:
 6.
             Let with = \# of associates of P classified correctly with P as a neighbor.
 8.
            Let without = \# of associates of P classified correctly without P.
 9.
            If without \ge with
                 Remove P from S.
10.
                 For each associate A of P
11.
                     Remove P from A's list of nearest neighbors.
12.
                     Find a new nearest neighbor for A.
13.
                     Add A to its new neighbor's list of associates.
14.
15.
                 For each neighbor N of P
16.
                     Remove P from N's lists of associates.
            Endif
17.
18.
        Return S.
```

Híbridos

- Iterative Case filtering (ICF)
 - lacksquare Define el conjunto local de un ejemplo X como L(X)
 - Contiene todos los ejemplo dentro de la híper-esfera más grande centrada en X_i tal que la híper-esfera solo contiene ejemplos de la misma clase que X_i
 - Dos propiedades
 - Cobertura (coverage)
 - Instancias en TR en las que X_i está en su híper-esfera
 - Alcance (reachability)
 - lacktriangle Instancias en TR que están en la híper-esfera de X_i

$$Coverage(X_i) = \{X'_i \in TR : X_i \in L(X'_i)\},$$

$$Reachability(X_i) = \{X'_i \in TR : X'_i \in L(X_i)\},$$

☐ Híbridos

Iterative Case filtering (ICF)

- 1. Se aplica ENN para eliminar ruido ($TR = S_{ENN}$)
- 2. Eliminar cada instancia X_i en TR si su alcance es mayor que su cobertura
- 3. Recalcular alcance y cobertura para las instancias restantes y repetir hasta que no haya cambios

```
ICF (Training set T)
// Perform Wilson Editing
For all O \in T do
 If O classified incorrectly by k nearest neighbors then
   Flag O for removal
For all O \in T do
 If O flagged for removal then T = T - \{O\}
Repeat
 For all O \in T do
    Compute recheable(O)
    Compute coverage(O)
  Progress = false
  For all O \in T do
   If |recheable(O)| > |coverage(O)| then
      Flag O for removal
      Progress = True
  For all O \in T do
    If O flagged for removal then T = T - \{O\}
 Until not Progress
Return T
```

Híbridos

Iterative Case filtering (ICF)

Banana Original (0.8751,0.7476)

ICF (0.8635,0.8081,0.6088)

(Reduction rate, Test Accuracy, Test Kappa)

Híbridos

- Random Mutation Hill Climbing (RMHC)
 - Comienza con S siendo un subconjunto aleatorio de TR
 - Con un número fijo de instancias s(s = %|TR|)
 - En cada iteración
 - lacksquare Se intercambia una instancia de S con otra de TR S
 - El cambio se mantiene si la precisión mejora
 - Leave-one-out para obtenerla

☐ Híbridos

■ Random Mutation Hill Climbing (RMHC)

Banana Original (0.8751,0.7476)

RMHC (0.9000,0.8972,0.7915)

(Reduction rate, Test Accuracy, Test Kappa)

Híbridos

- Steady-state memetic algorithm (SSMA) y CHC genetic algorithm
 - Utilizan algoritmos evolutivos para obtener el conjunto óptimo de instancias en base a la precisión y el tamaño del conjunto
 - $Eval = acc(S) \cdot \alpha |S| \cdot (1 \alpha)$
 - Suelen ser precisos y reducir mucho

```
Initialize population
While (not termination-condition) do
   Use binary tournament to select two parents
   Apply crossover operator to create
   offspring (Off_1, Off_2)
   Apply mutation to Off_1 and Off_2
      Evaluate Off_1 and Off_2
      For each Off_i
         Invoke Adaptive-P_{LS}-mechanism to
         obtain P_{LS_i} for Off_i
         If v(0,1) < P_{LS_i} then
             Perform meme optimization for Off_i
         End if
      End for
   Employ standard replacement for Off_1 and Off_2
End while
Return the best chromosome
```

Híbridos

Steady-state memetic algorithm (SSMA) y CHC genetic algorithm

Banana Original (0.8751,0.7476) SSMA (0.9879,0.8964,0.7900) (Reduction rate, Test Accuracy, Test Kappa)

Otro ejemplo de aplicación

Útiles para simplificar los modelos

	Execution	Rules	%	C4.5				
	Time(sec)	Number	Reduction	%Ac Trn	%Ac Test			
C4.5	265	252		99.97%	99.94%			
Cnn Strat	8	83	81.61%	98.48%	96.43%			
Drop1 Strat	111	3	99.97%	38.63%	34.97%			
Drop2 Strat	105	82	76.66%	81.40%	76.58%			
Drop3 Strat	131	49	56.74%	77.02%	75.38%			
Ib2 Strat	7	48	82.01%	95.81%	95.05%			
Ib3 Strat	3	74	78.92%	99.13%	96.77%			
Icf Strat	Strat 242		23.62%	99.98%	99.53%			
CHC Strat	1960	9	99.68%	98.97%	97.53%			

Dataset ADULT

	No. Instan- cias - N	No. Varia- bles	No. Reglas			'ariables/ 'egla	Confidencia de las Reglas N(Cond,Clas)/N		
Adult	30132	14	C4.5	IS-CHC/ C4.5	C4.5	IS-CHC/ C4.5	C4.5	IS-CHC/ C4.5	
			359	5	14	3	0.003	0.167	

Índice

- 1. Introducción
- 2. Training Set Selection vs. Prototype Selection
- 3. Modelos de selección de prototipos
- 4. Descripción de los modelos más relevantes
- 5. Otros filtros para eliminar ruido

Filtrado del ruido a nivel de datos

- Vamos a considerar tres filtros de ruido para detectar instancias mal etiquetadas
 - Los más comunes y relevantes
 - Son métodos basados en ensembles y técnicas de voto
 - Idea
 - Recoger información de modelos diferentes permite obtener un método con mayor capacidad de detección de ejemplos mal etiquetados que usando un único modelo
 - Ensemble Filter (EF)
 - Cross-Validated Committees Filter
 - Iterative-Partitioning Filter

- □ Ensemble Filter (EF)
 - Muy conocido en la literatura
 - Utiliza un conjunto de clasificadores aprendidos en diferentes subconjuntos de los datos de entrenamiento
 - Se utilizan como filtros para el conjunto de entrenamiento
 - Originalmente se propuso el uso de
 - Árbol de decisión C4.5
 - 1-NN
 - LDA (Linear Discriminant Analysis)

C.E. Brodley, M.A. Friedl. Identifying Mislabeled Training Data. Journal of Artificial Intelligence Research 11 (1999) 131-167.

□ Ensemble Filter (EF)

- Dos pasos
 - Para cada algoritmo de aprendizaje (C4.5, 1-NN, LDA), se utiliza una validación cruzada de k particiones para etiquetar cada ejemplo de entrenamiento como
 - correcto (predicción = etiqueta en training)
 - mal etiquetado (predicción ≠ etiqueta en training)
 - Es decir, entrenamos un clasificador con k-1 particiones y lo utilizamos para etiquetar las instancias en la partición restante
 - Lo repetimos k veces

□ Ensemble Filter (EF)

- Dos pasos
 - 2. Aplicar un **esquema de voto** para identificar el conjunto final de instancias que son ruido
 - Consenso: elimina un ejemplo si todos los clasificadores lo han fallado
 - Mayoría: elimina un ejemplo si ha sido fallado por más de la mitad de los clasificadores

□ Ensemble Filter (EF)

Cross-Validated Committees Filter

- Cross-Validated Committees Filter (CVCF)
 - Similar a EF
 - Pero con dos diferencias principales
 - Utiliza el mismo algoritmo de aprendizaje (C4.5) para crear los clasificadores en cada subconjunto de datos
 - Los autores de CVCF ponen un énfasis especial en usar ensembles con árboles de decisión como C4.5 porque funcionan bien para filtrar el ruido
 - Cada clasificador construido con la validación cruzada de k particiones es usado para etiquetar TODOS los ejemplos de entrenamiento (no solo los de test) como
 - correctos (predicción = etiqueta en traning)
 - mal etiquetados (predicción ≠ etiqueta en traning)
- S. Verbaeten, A.V. Assche. Ensemble methods for noise elimination in classification problems. 4th International Workshop on Multiple Classifier Systems (MCS 2003). LNCS 2709, Springer 2003, Guilford (UK, 2003) 317-325.

Cross-Validated Committees Filter

- Cross-Validated Committees Filter (CVCF)
 - Dos pasos
 - Utilizar una validación cruzada de k particiones para entrenar k árboles de decision C4.5. Etiquetar cada ejemplo de entrenamiento con los k árboles como
 - correcto (predicción = etiqueta en traning)
 - **mal etiquetado** (predicción ≠ etiqueta en traning)
 - Es decir, entrenamos un árbol C4.5 con k-1 particiones y lo utilizamos para etiquetar TODAS las instancias en las k particiones
 - Lo repetimos k veces

Cross-Validated Committees Filter

Cross-Validated Committees Filter (CVCF)

- Dos pasos
 - Aplicar un esquema de voto para identificar el conjunto final de instancias que son ruido
 - Consenso: elimina un ejemplo si todos los clasificadores lo han fallado
 - Mayoría: elimina un ejemplo si ha sido fallado por más de la mitad de los clasificadores

- □ Iterative-Partitioning Filter (IPF)
 - Basado en CVCF
 - Elimina instancias con ruido en múltiples iteraciones
 - Hasta que la cantidad de instancias con ruido detectadas en una iteración sea menor que un porcentaje p del tamaño del conjunto de entrenamiento original

T.M. Khoshgoftaar, P. Rebours. Improving software quality prediction by noise filtering techniques. Journal of Computer Science and Technology 22 (2007) 387-396.

□ Iterative-Partitioning Filter (IPF)

- □ Iterative-Partitioning Filter (IPF)
 - Repetir hasta que el número de instancias eliminadas en una iteración sea menor que el umbral establecido
 - Utilizar una validación cruzada de k particiones para entrenar k árboles de decisión C4.5. Etiquetar cada ejemplo de entrenamiento con los k árboles como
 - correcto (predicción = etiqueta en traning)
 - mal etiquetado (predicción ≠ etiqueta en traning)
 - Es decir, entrenamos un árbol C4.5 con k-1 particiones y lo utilizamos para etiquetar TODAS las instancias en las k particiones
 - Lo repetimos k veces

□ Iterative-Partitioning Filter (IPF)

- Repetir hasta que el número de instancias eliminadas en una iteración sea menor que el umbral establecido
 - Aplicar un esquema de voto para identificar el conjunto final de instancias que son ruido
 - Consenso: elimina un ejemplo si todos los clasificadores lo han fallado
 - Mayoría: elimina un ejemplo si ha sido fallado por más de la mitad de los clasificadores

Filtrado de ruido

□ Resultados sobre tres clasificadores clásicos

		Pairwise class noise				Uniform random class noise					
		0%	5%	10%	15%	20%	0%	5%	10%	15%	20%
	None	90.02	88.51	86.97	86.14	84.86	90.02	87.82	86.43	85.18	83.20
SVM	EF	90.49	89.96	89.07	88.33	87.40	90.49	89.66	88.78	87.78	86.77
	CVCF	90.56	89.86	88.94	88.28	87.76	90.48	89.56	88.72	87.92	86.54
	IPF	90.70	90.13	89.37	88.85	88.27	90.58	89.79	88.97	88.48	87.37
	None	82.46	81.15	80.35	79.39	78.49	82.46	79.81	78.55	76.98	75.68
Ripper	EF	83.36	82.87	82.72	82.43	81.53	83.46	83.03	82.87	82.30	81.66
	CVCF	83.17	82.93	82.64	82.03	81.68	83.17	82.59	82.19	81.69	80.45
	IPF	83.74	83.59	83.33	82.72	82.44	83.74	83.61	82.94	82.94	82.48
	None	83.93	83.66	82.81	82.25	81.41	83.93	82.97	82.38	81.69	80.28
C4.5	EF	84.18	84.07	83.70	83.20	82.36	84.16	83.96	83.53	83.38	82.66
	CVCF	84.15	83.92	83.24	82.54	82.13	84.15	83.61	83.00	82.84	81.61
	IPF	84.44	84.33	83.92	83.38	82.53	84.44	83.89	83.84	83.50	82.72