無機化学

第I部

非金属元素

1 水素

無色無臭の気体*1 最も軽く、水に溶けにくい

1.1 同位体

 1 H 99% 以上 2 H ($\underline{\mathbf{D}}$)0.015% 3 H ($\underline{\mathbf{T}}$) 微量

1.2 製法

• ナフサの電気分解 工業的製法

• 赤熱した $\frac{1-\rho Z}{C}$ に $\frac{x \, \overline{X}}{X}$ を吹き付ける $\frac{x \, \overline{X}}{X}$ と $\frac{x \, \overline{X}}{X}$ に $\frac{x \, \overline{X}}{X}$ と $\frac{x \, \overline{X}}{X}$ と

• 水(水酸化ナトリウム水溶液) の電気分解 $2 \operatorname{H}_2 \operatorname{O} \longrightarrow 2 \operatorname{H}_2 + \operatorname{O}_2$

• イオン化傾向がH₂より大きい金属と希薄強酸

M Fe + 2 HCl \longrightarrow FeCl₂ + H₂ \uparrow

 $\bigcirc \mathbb{N}$ Zn + 2 HCl \longrightarrow ZnCl₂ + H₂ \uparrow

1.3 反応

• 水素と酸素 (爆鳴気の燃焼)

 $2 H_2 + O_2 \longrightarrow H_2O$

• 加熱した酸化銅(Ⅱ)と水素

 $\mathrm{CuO} + \mathrm{H_2} \longrightarrow \mathrm{Cu} + \mathrm{H_2O}$

• 水酸化ナトリウムと水

 $NaH + H_2O \longrightarrow NaOH + H_2$

2 貴ガス

He, Ne, Ar, Kr, Xe, Rn

2.1 性質

無色・無臭

● 第 18 族元素であり、電子配置がオクテットを満た すため反応性が低い。

イオン化エネルギーが極めて大きい。

■ 電子親和力は極めて小さい(ほぼ0)。

• 電気陰性度は定義されない。

2.2 生成

 40 K の電子捕獲

 $^{40}\text{K} + \text{e}^- \longrightarrow ^{40}\text{Ar}$

2.3 ヘリウム He

浮揚ガス

2.4 ネオン Ne

ネオンサイン

2.5 アルゴン Ar

 N_2 , O_2 に次いで 3 番目に空気中での存在量が多い (約 1%)。

3 ハロゲン

3.1 性質

I_2	X	強(弱)	雪	固体	黒紫色	<u>昇華</u> 性	高温で平衡状態	加熱して触媒により一部反応	水と反応しない	KIag には可溶
${ m Br}_2$	\longleftrightarrow	↑	\uparrow	液体	赤褐色	揮発性	加熱して	触媒により反応	わずかに	水と反応
Cl_2	*	+	+	気体	黄緑色	刺激臭	第温でも光で	爆発的に反応	一一部(为3	水と反応
F ₂	Ý	弱 (強)	低	気体	淡黄色	特異臭	冷暗所でも	爆発的に反応	水を酸化して	酸素を発生
単体の化学式	分子量	分子間力(反応性)	沸点・融点	常温での状態	卸	特徴	$ m H_2$ との反応性		水との反応性	

3.2 反応

● フッ素と水素の反応

 $m H_2 + F_2 \xrightarrow{$ 常温で爆発的に反応 m 2~HF

^{*&}lt;sup>1</sup> 融点 14K 沸点 20K

● 塩素と水素の反応

 $\mathrm{H}_2 + \mathrm{Cl}_2 \xrightarrow{\mathrm{光を当てると爆発的に反応}} 2\,\mathrm{HCl}$

• ヨウ素と水素の反応

 $\mathrm{H_2} + \mathrm{I_2} \stackrel{\overline{\mathrm{ala}}$ で平衡 $2\,\mathrm{HI}$

3.3 フッ素 F

- 保存が困難
- Kr や Xe と反応

3.3.1 製法

フッ化水素ナトリウム KHF_2 のフッ化水素 HF 溶液 の電気分解 $\boxed{\mathtt{T業的製法}}$

3.4 塩素 CI

<u>ClO</u>-による<mark>殺菌・漂白</mark>作用

3.4.1 製法

- 水酸化ナトリウムの電気分解 工業的製法
- 酸化マンガン (III) に濃硫酸を加えて加熱
- 高度さらし粉と塩酸
- さらし粉と塩酸

3.4.2 塩素のオキソ酸

3.5 臭素 Br

C=C や C≡C の検出

3.6 ヨウ素 1

ヨウ素デンプン反応で青紫色

第Ⅱ部

金属元素