Regression Analysis Model Selection

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Regularized Regression: **Penalties**

About This Lesson

Bias-Variance Tradeoff

Prediction Risk: Measure of the Bias-Variance Tradeoff

$$R(S) = \frac{1}{n} \sum_{i=1}^{n} E(\hat{Y}_i(S) - Y_i^*)^2$$

Irreducible error

Mean Square Error

$$= V(Y_i^*) + Bias^2(\widehat{Y}_i(S)) + V(\widehat{Y}_i(S))$$

for a submodel S, with $\hat{Y}_i(S)$ the fitted response for model S and \hat{Y}_i^* the future observation.

- It is possible to find a model with lower MSE than the full model!
- It is "generic" in statistics: introducing some bias often yields in a decrease in MSE.

Georgia Tech

Biased Regression: Penalties

Not all biased models are better.

We need a way to find "good" biased models!

- Penalize large values of β s jointly
 - Should lead to "multivariate" shrinkage of the vector β
- Goal is really to penalize "complex" models
 - Heuristically, "large" is interpreted as "complex model"
 - If truth really is complex, this may not work!
 - It will then be hard to build a good model anyways

Georgia Tech

Regularized Regression

Without Penalization

Estimate $(\beta_0, \beta_1, ..., \beta_p)$ by minimizing the sum of squared errors

$$\sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{i1} + ... + \beta_p x_{ip}))^2$$

With Penalization

Estimate $(\beta_0, \beta_1, ..., \beta_p)$ by minimizing the penalized sum of squared errors

$$\sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}))^2 + \lambda Penalty(\beta_1, \dots, \beta_p)$$

The bigger I, the bigger the penalty for model complexity.

Georgia Tech

Regularized Regression (cont'd)

The penalized sum of squared errors:

$$Q(\beta_1, \dots, \beta_p) = \sum_{i=1}^n \left(y_i - \left(\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} \right) \right)^2 + \lambda Penalty(\beta_1, \dots, \beta_p)$$

We consider three choices for the penalty:

L_0 penalty

 $||\beta||_0 = \#\{j: \beta_i \neq 0\} \Rightarrow$ Minimizing Q means searching through all submodels

L₁ penalty (LASSO Regression)

$$||\beta||_1 = \sum_{i=1}^p |\beta_i| \Rightarrow \text{Minimizing Q forces many } \beta_i \text{s to be zeros}$$

L₂ penalty (Ridge Regression)

$$||\beta||_2 = \sum_{j=1}^p \beta_j^2 \Rightarrow$$
 Minimizing Q accounts for multicollinearity

Comparing Penalties

- L_0 penalty
 - Provides best model given a selection criterion
 - Requires fitting all submodels
- L_1 penalty
 - Measures sparsity
- L_2 penalty
 - Easy to implement
 - Does not do variable selection

Example: Consider vectors $\boldsymbol{u}=(1,0,\cdots,0)$ and $\boldsymbol{v}=(\frac{1}{\sqrt{p}},\cdots,\frac{1}{\sqrt{p}})$, both of length p.

Vector *u* is sparce, because it contains mostly zeros.

Using the L_1 norm, we have $||u||_1 = \sum_{i=1}^p |u_i| = 1$ and $||v||_1 = \sum_{i=1}^p |v_i| = \sqrt{p}$.

Using the L_2 norm, we have $||u||_2 = \sum_{i=1}^p u_i^2 = 1$ and $||v||_2 = \sum_{i=1}^p v_i^2 = 1$.

The L_1 penalty rewards the sparsity of u; the L_2 penalty makes no distinction. Georgia

