Dependency Parsing

Sudeshna Sarkar

22 AUG 2019

Transition Based Dependency Parser

```
Start: \sigma = [ROOT], \beta = w_1, ..., w_n, A = \emptyset

1. Shift \sigma, w_i | \beta, A \rightarrow \sigma | w_i, \beta, A

2. Left-Arc<sub>r</sub> \sigma | w_i | w_j, \beta, A \rightarrow \sigma | w_j, \beta, A \cup \{r(w_j, w_i)\}

3. Right-Arc<sub>r</sub> \sigma | w_i | w_j, \beta, A \rightarrow \sigma | w_i, \beta, A \cup \{r(w_i, w_j)\}

Finish: \sigma = [w], \beta = \emptyset
```

And on it goes until ...

[ROOT, had, $.]_S$ []_B

Classification for Shift-Reduce

Given a state:

Which action do we choose?

Correct actions → correct tree

A supervised classification task

- Given the current state (i.e., stack, buffer and A) predict the next action.
- Can be viewed as a supervised learning problem.
- Each action is predicted by a discriminative classifier over each legal move
 - Max of 3 untyped choices; max of |R| * 2 + 1 when typed
- Features
 - Compute features of the current configuration of the stack, buffer and A.
 - Word in stack, POS of word, Word in buffer and POS of Word in buffer.
 - Other features: Length of dependency arc
- Greedy classifier (no search involved)
 - At each stage ask the classifier to predict the next transition.
- O(N) in length of sentence.

Evaluation of Dependency Parsing: (labeled) dependency accuracy

Acc =	# correct deps			
	# of deps			
	4 / 5 = 80% 2 / 5 = 40%			

Gold					
1	2	She	nsubj		
2	0	saw	root		
3	5	the	det		
4	5	video	nn		
5	2	lecture	obj		

P	Parsed					
1	2	She	nsubj			
2	0	saw	root			
3	4	the	det			
4	5	video	nsubj			
5	2	lecture	ccomp			

Training

- Supervised ML methods require training material in the form of (input, output) pairs.
 - Treebanks associate sentences with their corresponding trees
 - We need parser states paired with their corresponding correct operators
 - But we do know the correct trees for each sentence

Training Data

- Automatically construct dependency parses from treebank.
- Compute correct sequence of "oracle" shift-reduce parse actions (transitions, t_i) at each step from gold-standard parse trees.
- Determine correct parse sequence by using a "shortest stack" oracle which always prefers LeftArc over Shift.
- At each stage it chooses using a case statement
 - 1. Left if the relation to be added is in the reference tree.
 - 2. Right if the resulting relation is in the correct tree AND if all the other outgoing relations associated with the word are already in the relation list.
 - Otherwise shift

Stanford Neural Dependency Parser

(Chen and Manning, 2014)

- Train a neural net to choose the best shift-reduce parser action to take at each step.
- Uses features (words, POS tags, arc labels) extracted from the current stack, buffer, and arcs as context.

Neural Architecture

Softmax layer: $p = \operatorname{softmax}(W_2h)$ Hidden layer: $h = (W_1^w x^w + W_1^t x^t + W_1^l x^l + b_1)^3$ Input layer: $[x^w, x^t, x^l]$

Configuration

Parse action classification

State Representation

Extract a set of tokens from Stack/Buffer

	Word	POS	dep
S1	good	JJ	0
S2	has	VBZ	0
B1	control	NN	0
lc(S1)	0	0	0
rc(S1)	0	0	0
lc(S2) rc(S2)	Не	PRP	nsubj
rc(S2)	0	0	0

Embeddings express similarities

POS: NN similar to NNS

deps: amod similar num

Concatenate their vector embeddings

Context Features Used

(rc = right-child, lc=left-child)

- The top 3 words on the stack and buffer: s₁; s₂; s₃;
 b₁; b₂; b₃;
- The first and second leftmost / rightmost children of the top two words on the stack: lc₁(s_i); rc₁(s_i); lc₂(s_i); rc₂(s_i), i = 1; 2.
- The leftmost-of-leftmost and rightmost-ofrightmost children of the top two words on the stack: lc₁(lc₁(s_i)); rc₁(rc₁(s_i)), i = 1; 2.
- Also include the POS tag and parent arc label (where available) for these same items.

Input Embeddings

- Instead of using one-hot input encodings, words and POS tags are "embedded" in a 50 dimensional set of input features.
- Embedding POS tags is unusual since there are relatively few; however, it allows similar tags (e.g. NN and NNS) to have similar embeddings and thereby behave similarly.

Cube Activation Function

- Alternative non-linear output function instead of sigmoid (softmax) or tanh.
- Allows modeling the product terms of $x_i x_j x_k$ for any three different input elements.
- Based on previous empirical results, capturing interactions of three elements seems important for shift-reduce dependency parsing.

Training Algorithm

 Training objective is to minimize the cross-entropy loss plus a L2-regularization term:

$$L(\theta) = -\sum_{i} \log p_{t_i} + \frac{\lambda}{2} \|\theta\|^2$$

- Initialize word embeddings to precomputed values such as Word2Vec.
- Use AdaGrad with dropout to compute model parameters that approximately minimize this objective.