

# AOD4132

30v N-Channel MOSFET

# **General Description**

The AOD4132 uses advanced trench technology to provide excellent  $R_{\text{DS(ON)}}$ , low gate charge and low gate resistance. This device is ideally suited for use as a low side switch in CPU core power conversion.

- -RoHS Compliant
- -Halogen Free\*

## **Features**

$$\begin{split} &V_{DS}\left(V\right) = 30V \\ &I_{D} = 85A\left(V_{GS} = 10V\right) \\ &R_{DS(ON)} < 4m\Omega\left(V_{GS} = 10V\right) \\ &R_{DS(ON)} < 6m\Omega\left(V_{GS} = 4.5V\right) \end{split}$$

100% UIS Tested 100% Rg Tested







| Absolute Maximum Ratings T <sub>A</sub> =25°C unless otherwise noted |                                               |                                   |            |       |  |  |  |  |
|----------------------------------------------------------------------|-----------------------------------------------|-----------------------------------|------------|-------|--|--|--|--|
| Parameter                                                            |                                               | Symbol                            | Maximum    | Units |  |  |  |  |
| Drain-Source Voltage                                                 |                                               | $V_{DS}$                          | 30         | V     |  |  |  |  |
| Gate-Source Voltage                                                  |                                               | $V_{GS}$                          | ±20        | V     |  |  |  |  |
| Continuous Drain                                                     | T <sub>C</sub> =25°C <sup>G</sup>             |                                   | 85         |       |  |  |  |  |
| Current B,G                                                          | T <sub>C</sub> =100°C <sup>B</sup>            | I <sub>D</sub>                    | 63         | A     |  |  |  |  |
| Pulsed Drain Current                                                 |                                               | I <sub>DM</sub>                   | 200        |       |  |  |  |  |
| Avalanche Current <sup>C</sup>                                       |                                               | I <sub>AR</sub>                   | 30         | А     |  |  |  |  |
| Repetitive avalanche energy L=0.1mH <sup>C</sup>                     |                                               | E <sub>AR</sub>                   | 112        | mJ    |  |  |  |  |
| Power Dissipation <sup>B</sup>                                       | T <sub>C</sub> =25°C                          | P <sub>D</sub>                    | 100        | W     |  |  |  |  |
|                                                                      | T <sub>C</sub> =100°C                         | ] D                               | 50         | VV    |  |  |  |  |
|                                                                      | T <sub>A</sub> =25°C                          | P <sub>DSM</sub>                  | 2.5        | W     |  |  |  |  |
| Power Dissipation A                                                  | Dissipation <sup>A</sup> T <sub>A</sub> =70°C |                                   | 1.6        | V V   |  |  |  |  |
| Junction and Storage Temperature Range                               |                                               | T <sub>J</sub> , T <sub>STG</sub> | -55 to 175 | °C    |  |  |  |  |

| Thermal Characteristics               |              |                |      |       |      |  |  |
|---------------------------------------|--------------|----------------|------|-------|------|--|--|
| Parameter                             | Symbol       | Тур            | Max  | Units |      |  |  |
| Maximum Junction-to-Ambient A         | t ≤ 10s      | D              | 14.2 | 20    | °C/W |  |  |
| Maximum Junction-to-Ambient A         | Steady-State | $R_{	heta JA}$ | 39   | 50    | °C/W |  |  |
| Maximum Junction-to-Case <sup>C</sup> | Steady-State | $R_{	heta JC}$ | 0.8  | 1.5   | °C/W |  |  |



#### Electrical Characteristics (T<sub>.I</sub>=25°C unless otherwise noted)

| Symbol                | Parameter                             | Conditions                                                                 |                       | Min | Тур  | Max  | Units |  |  |
|-----------------------|---------------------------------------|----------------------------------------------------------------------------|-----------------------|-----|------|------|-------|--|--|
| STATIC PARAMETERS     |                                       |                                                                            |                       |     |      |      |       |  |  |
| $BV_{DSS}$            | Drain-Source Breakdown Voltage        | I <sub>D</sub> =250μA, V <sub>GS</sub> =0V                                 |                       | 30  |      |      | V     |  |  |
| I <sub>DSS</sub>      | Zero Gate Voltage Drain Current       | $V_{DS}$ =24V, $V_{GS}$ =0V                                                | T <sub>.l</sub> =55°C |     |      | 1    | μА    |  |  |
| I <sub>GSS</sub>      | Gate-Body leakage current             | $V_{DS}=0V$ , $V_{GS}=\pm20V$                                              | 1]=00 0               |     |      | 100  | nA    |  |  |
| V <sub>GS(th)</sub>   | Gate Threshold Voltage                | $V_{DS}=V_{GS} I_{D}=250 \mu A$                                            |                       | 1   | 1.8  | 3    | V     |  |  |
| I <sub>D(ON)</sub>    | On state drain current                | $V_{GS}$ =10V, $V_{DS}$ =5V                                                |                       | 85  |      |      | Α     |  |  |
| R <sub>DS(ON)</sub>   | Static Drain-Source On-Resistance     | $V_{GS}=10V$ , $I_{D}=20A$                                                 |                       |     | 2.8  | 4    |       |  |  |
|                       |                                       |                                                                            | T <sub>J</sub> =125°C |     | 4.4  | 5.5  | mΩ    |  |  |
|                       |                                       | $V_{GS}$ =4.5V, $I_{D}$ =20A                                               | •                     |     | 4.4  | 6    | mΩ    |  |  |
| <b>g</b> FS           | Forward Transconductance              | $V_{DS}$ =5V, $I_D$ =20A                                                   |                       |     | 106  |      | S     |  |  |
| $V_{SD}$              | Diode Forward Voltage                 | I <sub>S</sub> =1A,V <sub>GS</sub> =0V                                     |                       |     | 0.72 | 1    | V     |  |  |
| Is                    | Maximum Body-Diode Continuous Current |                                                                            |                       |     |      | 85   | Α     |  |  |
| DYNAMIC               | PARAMETERS                            |                                                                            |                       |     |      |      |       |  |  |
| C <sub>iss</sub>      | Input Capacitance                     | V <sub>GS</sub> =0V, V <sub>DS</sub> =15V, f=1MHz                          |                       |     | 3700 | 4400 | pF    |  |  |
| C <sub>oss</sub>      | Output Capacitance                    |                                                                            |                       |     | 700  |      | pF    |  |  |
| $C_{rss}$             | Reverse Transfer Capacitance          |                                                                            |                       |     | 390  |      | pF    |  |  |
| $R_g$                 | Gate resistance                       | $V_{GS}$ =0V, $V_{DS}$ =0V, f=1MHz                                         |                       |     | 0.54 | 0.7  | Ω     |  |  |
| SWITCHII              | NG PARAMETERS                         |                                                                            |                       |     |      |      |       |  |  |
| Q <sub>g</sub> (10V)  | Total Gate Charge                     | V <sub>GS</sub> =4.5V, V <sub>DS</sub> =15V, I <sub>D</sub> =20A           |                       |     | 63   | 76   | nC    |  |  |
| Q <sub>g</sub> (4.5V) | Total Gate Charge                     |                                                                            |                       |     | 33   | 40   | nC    |  |  |
| $Q_{gs}$              | Gate Source Charge                    |                                                                            |                       |     | 8.6  |      | nC    |  |  |
| $Q_{gd}$              | Gate Drain Charge                     |                                                                            |                       |     | 17.6 |      | nC    |  |  |
| t <sub>D(on)</sub>    | Turn-On DelayTime                     |                                                                            |                       |     | 12   |      | ns    |  |  |
| t <sub>r</sub>        | Turn-On Rise Time                     | $V_{GS}$ =10V, $V_{DS}$ =15V, $R_L$ =0.75 $\Omega$ , $R_{GEN}$ =3 $\Omega$ |                       |     | 15.5 |      | ns    |  |  |
| t <sub>D(off)</sub>   | Turn-Off DelayTime                    |                                                                            |                       |     | 40   |      | ns    |  |  |
| t <sub>f</sub>        | Turn-Off Fall Time                    |                                                                            |                       |     | 14   |      | ns    |  |  |
| t <sub>rr</sub>       | Body Diode Reverse Recovery Time      | $I_F$ =20A, dI/dt=100A/ $\mu$                                              | s                     |     | 34   | 41   | ns    |  |  |
| $Q_{rr}$              | Body Diode Reverse Recovery Charge    | I <sub>F</sub> =20A, dI/dt=100A/μs                                         |                       |     | 30   |      | nC    |  |  |

A: The value of R <sub>0JA</sub> is measured with the device mounted on 1in<sup>2</sup> FR-4 board with 2oz. Copper, in a still air environment with T <sub>A</sub> =25° C. The Power dissipation  $P_{DSM}$  is based on steady-state R  $_{\theta JA}$  and the maximum allowed junction temperature of 150 $^{\circ}$  C. The value in any given application depends on the user's specific board design, and the maximum temperature fo 175° C may be used if the PCB or heatsink allows it. B. The power dissipation P<sub>D</sub> is based on T<sub>J(MAX)</sub>=175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package

- C: Repetitive rating, pulse width limited by junction temperature  $T_{J(MAX)}$ =175° C.
- D. The R  $_{\theta JA}$  is the sum of the thermal impedence from junction to case R  $_{\theta JC}$  and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.

  F. These tests are performed with the device mounted on 1 in <sup>2</sup> FR-4 board with 2oz. Copper, in a still air environment with T <sub>A</sub>=25° C. The SOA curve provides a single pulse rating.
- G. The maximum current rating is limited by the package current capability.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

<sup>\*</sup>This device is guaranteed green after data code 8X11 (Sep 1ST 2008).



#### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



V<sub>DS</sub> (Volts) Fig 1: On-Region Characteristics



V<sub>GS</sub>(Volts) Figure 2: Transfer Characteristics



 $\rm I_D$  (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage



Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature



V<sub>GS</sub> (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage



V<sub>SD</sub> (Volts) Figure 6: Body-Diode Characteristics



#### TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



 ${\bf Q_g}$  (nC) Figure 7: Gate-Charge Characteristics



V<sub>DS</sub> (Volts)
Figure 8: Capacitance Characteristics



Figure 9: Maximum Forward Biased Safe Operating Area (Note F)



Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toAmbient (Note F)



Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)



## TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



 $\label{eq:tau} \begin{tabular}{ll} Time in avalanche, $t_A$ (s) \\ Figure 12: Single Pulse Avalanche capability \\ \end{tabular}$ 



 $T_{CASE}$  (° C) Figure 13: Power De-rating (Note B)





# Gate Charge Test Circuit & Waveform





# Resistive Switching Test Circuit & Waveforms





## Unclamped Inductive Switching (UIS) Test Circuit & Waveforms





# Diode Recovery Test Circuit & Waveforms



