

Functional Programming Lecture 7: Lambda calculus

Viliam Lisý Rostislav Horčík

Artificial Intelligence Center
Department of Computer Science
FEE, Czech Technical University in Prague

viliam.lisy@fel.cvut.cz xhorcik@fel.cvut.cz

Acknowledgement

Lecture based on:

Raúl Rojas: A Tutorial Introduction to the Lambda Calculus, FU Berlin, WS-97/98.

https://arxiv.org/abs/1503.09060

Link is also provided in courseware.

Lambda calculus

Theory developed for studying properties of effectively computable functions

Formal basis for functional programming

as Turing machines for imperative programming

Smallest universal programming language

- function definition scheme
- variable substitution rule

Introduced by Alonzo Church in 1930s

Why to care?

- Understand that lambda and application is enough to build any program
 - without mutable state, assignment, define, etc.
 - useful for proving program properties
- Understand how numbers, conditions, recursion can be created in a purely functional way
- Think about programming yet a little differently
- Have a clue when someone mentions λ -calculus
- Understand that scheme syntax is not the worst

Syntax

A program in λ -calculus is an expression

```
<expression> := <name> | <function> | <application>
```

<function $> := \lambda <$ name> .<expression>

<application> := <expression><expression>

Names, also called a variables, will be x,y,z,... By convention

 $E_1E_2E_3 \dots E_n$ is interpreted as $(\dots (E_1E_2)E_3) \dots E_n)$

Free and bound variables

A variable in a body of a function is **bound** if it is under the scope of λ and **free** otherwise.

 $\lambda x. xy$, $(\lambda x. x)(\lambda y. yx)$ - bold variables are free

Bound variable names can be renamed anytime $\lambda x. x \equiv \lambda y. y \equiv \lambda z. z$

An expression is **closed** if it has no free variables; otherwise it is **open**.

β-reduction

Lambda term represents a function:

Argument Body
$$\lambda x \cdot e_1$$

In scheme (lambda (x) e_1)

Function can by applied to an expression e_2

$$(\lambda x. e_1)e_2$$
 redex

It is applied by substituting free x 's in e_1 by e_2

$$(\lambda x. e_1)e_2 = [e_2/x]e_1$$

Examples of β-reduction

- $(\lambda x. x) (\lambda y. y) \equiv [(\lambda y. y)/x] x \equiv (\lambda y. y)$
- $(\lambda x. x x) (\lambda y. y) \equiv [(\lambda y. y)/x](x x)$

$$\equiv$$
 ($\lambda y. y$) ($\lambda y. y$)

• $(\lambda x. x (\lambda x. x)) y \equiv [y/x](x (\lambda x. x))$

$$\equiv y (\lambda x. x)$$

Name conflicts

Avoid name conflicts by renaming bound variables

1) do not let a substituent become bound

$$(\lambda x.(\lambda y.xy))y$$
 does **not** yield $\lambda y.yy$
 $[y/x](\lambda z.xz) = \lambda z.yz$

2) substitute only free occurrences of argument

$$\left(\lambda x. \left(\lambda y. \left(x(\lambda x. xy)\right)\right)\right) z \text{ is } \mathbf{not} \left(\lambda y. \left(z(\lambda z. zy)\right)\right)$$
$$\left[z/x\right] (\lambda y. \left(x(\lambda x. xy)\right)) = (\lambda y. \left(z(\lambda x. xy)\right))$$

Reduction orders

Expression may contain several redexes.

- Normal-order reduction: reduce left-most first
- Applicative-order reduction: reduce right-most first

Expression with no redex is in **normal form**.

Reduction process need not terminate!

$$(\lambda x.(x x))(\lambda x.(x x)) \equiv (\lambda x.(x x))(\lambda x.(x x))$$

Church-Rosser Theorem:

- 1. Normal forms are unique (independently of reduction order).
- 2. Normal order always finds normal form if it exists.

Non-naming of functions

Function in λ -calculus do not have names We apply a function by writing its whole definition We use capital letters and symbols to abbreviate this These function names are not a part of λ -calculus

The identity function is usually abbreviated by $I \equiv (\lambda x. x)$

Conditionals

Lambda term of the form λx . λy . e is abbreviated λxy . e

$$T \equiv \lambda x y. x$$
$$F \equiv \lambda x y. y$$

The T and F functions directly serve as If

$$Tab = a$$

 $Fab = b$

Logical operations

AND

OR

$$\lor \equiv \lambda xy.x(\lambda uv.u)y \equiv \lambda xy.xTy$$

Negation

$$\neg \equiv \lambda x. x(\lambda uv. v)(\lambda ab. a) \equiv \lambda x. xFT$$

$$\wedge TF \equiv (\lambda xy.xyF)TF \equiv TFF \equiv (\lambda ab.a)FF \equiv F$$

$$\wedge FT \equiv (\lambda xy. xyF)FT \equiv FTF \equiv (\lambda ab. b)TF \equiv F$$

Numbers

We define a "zero" and a successor function representing the next number

$$0 \equiv \lambda s. (\lambda z. z) \equiv \lambda sz. z$$

$$1 \equiv \lambda sz. s(z)$$

$$2 \equiv \lambda sz. s(s(z))$$

$$3 \equiv \lambda sz. s(s(s(z)))$$

Functional alternative of binary representation

Successor function

Increment a number by one

$$S \equiv \lambda wyx.y(wyx)$$

Increment zero to get one

$$S0 \equiv (\lambda wyx. y(wyx))(\lambda sz. z) = \lambda yx. y((\lambda sz. z)yx) = \lambda yx. y((\lambda z. z)x) = \lambda yx. y(x) \equiv 1$$

Try: *S*1, S2,...

Addition

x+y is applying the successor x times to y Meaning of number n is just "apply the first argument n times to the second argument" $\lambda sz.s(...s(s(z))...)$

Therefore 2+3 is just:

$$2S3 \equiv (\lambda sz.s(sz))(\lambda wyx.y(wyx))(\lambda uv.u(u(uv)))$$
$$\equiv S(S3) \equiv S4 \equiv 5$$

Multiplication

We can multiply two numbers using

$$* \equiv (\lambda xyz.x(yz))$$

* 23
$$\equiv$$
 $(\lambda xyz. x(yz))23 = (\lambda z. 2(3z)) =$
 $(\lambda z. (\lambda xy. x(x(y)))(3z)) =$
 $(\lambda z. (\lambda y. (3z)((3z)(y)))) =$
 $(\lambda z. (\lambda y. (z(z(z((3z)(y))))))) =$
 $(\lambda zy. (z(z(z(z(z(y)))))))) =$

Conditional tests

Test if a given number is the 0

$$Z \equiv \lambda x. xF \neg F$$

$$Z0 \equiv (\lambda x. xF \neg F)0 = 0F \neg F = \neg F = T$$

$$ZN \equiv (\lambda x. xF \neg F)N = NF \neg F$$
$$= F(...F(\neg) ...)F = IF = F$$

Pairs

The pair [a, b] can be represented as $(\lambda z. zab)$

We can extract the first element of the pair by $(\lambda z. zab)T$

and the second element by $(\lambda z. zab)F$

Predecessor

We want to create a function, which applied N times to something returns N-1

The function modifies a pair
$$(x, y)$$
 to $(x + 1, x)$
 $\Phi \equiv (\lambda pz. z(S(pT))(pT))$

Calling
$$\Phi$$
 on $[0,0]$ N times yields $[N, N-1]$ $\Phi[0,0] = [1,0]$ $\Phi[1,0] = [2,1]$...

Finally, we take the second number in the pair

The predecessor function is

$$P \equiv \lambda n. n\Phi(\lambda z. z00)F$$

Note than the predecessor of 0 is 0

Equality and inequality

 $x \ge y$ can be represented by

$$G \equiv (\lambda xy.Z(xPy))$$

Equality if than defined based on the above as

$$E \equiv \lambda xy. \wedge (Gxy)(Gyx)$$

$$\equiv (\lambda xy. \wedge (Z(xPy))(Z(yPx)))$$

Other inequalities can be defined analogically using the previously defined logical operations

Recursion

Can we create recursion without function names?

$$Y \equiv (\lambda y.(\lambda x.y(xx))(\lambda x.y(xx)))$$

Now apply Y to some other function R

$$YR \equiv (\lambda x. R(xx))(\lambda x. R(xx)) \equiv$$

$$R((\lambda x. R(xx))(\lambda x. R(xx)))) \equiv$$

$$R(YR) \equiv R(R(YR)) \equiv R(...(R(YR)...)$$

Function R is called with YR as the first argument

Recursion

We can recursively sum up first n integers as

$$\sum_{i=0}^{n} i = n + \sum_{i=0}^{n-1} i$$

In scheme

A corresponding recursive function is

$$R \equiv (\lambda rn. Zn0(nS(r(Pn))))$$

Recursion

$$R \equiv (\lambda rn. Zn0(nS(r(Pn))))$$

$$YR3 \equiv$$

$$R(YR)3 \equiv Z30 \left(3S(YR(P3))\right) \equiv$$

$$F0 \left(3S(YR(P3))\right) \equiv \left(3S(YR(P3))\right) \equiv$$

$$3S(YR2) \equiv 3S(2S(YR1)) \equiv 3S2S1S0 \equiv 6$$

Turing completeness

Turing machine

- a standard formal model of computation
- B4B01JAG Jazyky, automaty a gramatiky
- what can be solved by TM, can be solved by standard computers

A programming language Turing complete, if it can solve all problems solvable by TM Lambda calculus is Turing complete

Summary

- Lambda calculus is formal bases of FP
- Simplest universal programming language
- Everything using lambda and application
 - conditions
 - numbers
 - pairs
 - recursion