

基础信息论

费诺码

华中科技大学电信学院

学习目标

- ■编制费诺码
- ■评价费诺码性能

费诺码

设有离散无记忆信源, $\begin{bmatrix} X \\ P(X) \end{bmatrix} = \begin{bmatrix} x_1, & x_2, & \cdots, & x_i, & \cdots, & x_n \\ p(x_1), & p(x_2), & \cdots, & p(x_i), & \cdots, & p(x_n) \end{bmatrix}$

编码步骤如下:

- (1) 将信源符号按概率从大到小依次排列。设排序后的消息分别记为 $X_1, X_2, ..., X_n$ 。
- (2) 将信源符号按概率分成若干组,使每组的概率的和尽量接近或相等。若编二元码就分两组,编m元码就分成m组。
- (3) 给每组分配一位码元,码元的分配是任意的。
- (4) 对每一分组按上述原则继续分组,直到概率不可分。

例 对信源 $\begin{cases} x_1, & x_2, & x_3, & x_4, & x_5, & x_6 \\ 0.22, & 0.04, & 0.08, & 0.32, & 0.16, & 0.18 \end{cases}$ 编二元费诺码。

解: (1) 按概率从 大到小依次排列

$$\begin{cases} x_1, & x_2, & x_3, & x_4, & x_5, & x_6 \\ 0.32, & 0.22, & 0.18, & 0.16, & 0.08, & 0.04 \end{cases}$$

(2) 按概率分组 (3) 为每组分配码元 (4) 继续分组

信源符号
 概率
 编码过程
 码字

$$x_1$$
 0.32
 0
 0
 x_2
 0.22
 0
 0
 x_3
 0.18
 0
 0
 x_4
 0.16
 0.08
 0.08
 x_6
 0.04
 0.04
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

$$\begin{vmatrix} 0.18 + 0.16 - \\ (0.08 + 0.04) \end{vmatrix} = 0.22$$

$$\begin{vmatrix} 0.18 - (0.16 + \\ 0.08 + 0.04) \end{vmatrix} = 0.08$$

检验是否为即时码?

计算编码效率

$$\eta = \frac{H(X)}{\frac{\overline{L} \cdot \log m}{N}}$$

$$= \frac{-0.32 \log 0.32 - 0.22 \log 0.22 - ... - 0.04 \log 0.04}{(0.32 \times 2 + 0.22 \times 2 + ... + 0.04 \times 4) \cdot \frac{\log 2}{1}}$$

$$= 97.92\%$$

从计算结果可看出,编码效率较高。但这并不意味着费 诺码的效率一定高于香农码。

实践表明,费诺码比较适合于每次分组的概率的和比较 接近的情况。最理想的情况是:每次分组的概率的和都恰好 相等,这时编码效率可达100%。

(2) 按概率分组 (3) 为每组分配码元 (4) 继续分组

信源符号	概率	编码过程				码字
x_1	0.25	0	0			00
x_2	0.25	V	1			01
x_3	0.125	1	0	0		100
x_4	0.125			1		101
x_5	0.0625		1	0	0	1100
x_6	0.0625				1	1101
x_7	0.0625			1	0	1110
x_8	0.0625				1	1111

(5) 编码效率
$$\eta = \frac{H(X)}{\frac{\overline{L} \cdot \log m}{N}} = \frac{-\frac{1}{4} \log \frac{1}{4} - \dots - \frac{1}{16} \log \frac{1}{16}}{(\frac{1}{4} \cdot 2 + \dots + \frac{1}{16} \cdot 4) \cdot \frac{\log 2}{1}} = 100\%$$

谢谢!

黑晚军

华中科技大学 电子信息与通信学院

Email: heixj@hust.edu.cn

网址: http://eic.hust.edu.cn/aprofessor/heixiaojun