2017 G4

Ezra Guerrero Alvarez

October 5, 2021

2017 G4

2017 G4

In triangle ABC, let ω be the A-excircle. Let D, E, F be the points where ω is tangent to BC, CA, AB respectively. The circle AEF intersects BC at P and Q. Let M be the midpoint of AD. Prove that (MPQ) is tangent to ω .

Let I_A be the A-excenter. Then, since $\angle AFI_A = \angle AEI_A = 90^\circ$, $(APFI_AEQ)$ has diameter AI_A . Let N be the midpoint of $\overline{\text{AI}_A}$. Then, from midpoints $\overline{\text{MN}} \parallel \overline{\text{DI}_A} \perp \overline{\text{PQ}}$. Since NP = NQ, M lies on the perpendicular bisector of $\overline{\text{PQ}}$ so M is the midpoint of arc \widehat{PMQ} . Now, let T be the second intersection of $\overline{\text{AD}}$ with ω and K be the midpoint of $\overline{\text{DT}}$. Since $I_AK \perp DT$, K lies on $(APFI_AEQ)$. Hence,

$$DM \cdot DT = \frac{1}{2}DA \cdot 2DK = DA \cdot DK = DP \cdot DQ,$$

giving T on (MPQ). Now, let O be the intersection of lines $\overline{\mathrm{TI}_{\mathrm{A}}}$ and $\overline{\mathrm{MN}}$. We have

$$\angle OMT = \angle I_ADT = \angle I_ATD = \angle OTM,$$

so O lies on the perpendicular bisector of $\overline{\text{MT}}$. Since it also lies on the perpendicular bisector of $\overline{\text{PQ}}$, O is the center of (MPTQ). Since O, I_A, T are collinear, (MPQ) and ω are tangent at T.