EMS412U Mathematical and Computational Modelling-1

Statics – Introduction

Dr. Wei Tan

wei.tan@qmul.ac.uk

Engineering Mechanics: Statics

Solution of design problems:

- Description of the problem (geometry, material, load cases, boundary and initial conditions, etc. uncertainties);
- Derivation of an appropriate mechanical model for material behaviour, loads etc.;
- Evaluation of the validity of the model - be careful when you extrapolate.
- Solution of the problem often via numerical methods: calculation by hand, computational methods (finite element methods FEM, computational fluid dynamics CFD);
- Visualisation and plausibility control of the results.

Design criteria: What is the purpose and how much can I spend?

2. Mechanical model

3. Solution and 4. visualisation

Have I included all important aspects? Was the model too simplified?

Fluid and Solid Mechanics

Two main fields of Mechanics:

- Fluid mechanics
- Solid mechanics

Fluid mechanics Example: Pressure around an airfoil.

Cardiovascular deseases

Statics and Dynamics

Two main types of Mechanics:

- Statics: loading and reactions are independent of the time; nothing moves
- Dynamics: loading and reactions depend on time.; the objects are moving
- Sometimes so-called quasi-statics are analysed; here the load velocity is very small such that it can be regarded as independent of time.

Attention:

For dynamic cases, failure may occur even though no high loadings are applied.

E.g. due to fatigue or excitation at the natural frequency.

Dynamics example: Vibration of the steering wheel.

Basic Concepts and Quantities

Basic Quantities:

- Length l [m]
- Time *t* [s]
- Velocity v [ms⁻¹]
- Acceleration a [ms⁻²]
- Mass m [kg]
- Weight W [N]
- Force F [N]
- Moment M [Nm]
- Deformation d [m]
- Stress σ [Pa]
- Strain ε [-]
- Work *W* [Nm]
- Energy E [J]

Concepts:

- Mass point: without any physical extension but with mass.
- Rigid body: consists of several masses but is undeformable; can undergo rotation and translation.
- Single force: a load, which acts on a single point of an object.

- 1. 0-4
- 2. 5-9
- 3. 10-13

Fundamentals

Decimal multiples and sub-multiples

1,000,000,000	10 ⁹	Giga	G
1,000,000	10 ⁶	Mega	M
1,000	10 ³	Kilo	k
0.001	10 ⁻³	Milli	m
0.000 001	10 ⁻⁶	Mikro	μ
0.000 000 001	10 ⁻⁹	Nano	n

Unit conversion

	Unit (F	PS) U	nit (SI)	
Force	1 lb	4.	482 N	
Mass	1 slug	14	4.5938 kg	
Length	1 ft	0.	3048 m	
Length	1 inch	0.	0254 m	
Length	1 mile	1,	609.0 m	
Liquid	1 pint	0.	568 I	
Liquid	1 gallor	_	546 I	
		$x \circ F = \frac{5}{2}(x - 3)$	32)°C	
Temperature $\frac{1}{9}$				

Greek alphabet

Alpha	αΑ	Ny	νΝ
Beta	βΒ	Xi	ξΞ
Gamma	γΓ	Omikror	no O
Delta	δΔ	Pi	πΠ
Epsilon	εΕ	Rho	ρР
Zeta	ζΖ	Sigma	σ Σ
Eta	ηН	Tau	τΤ
Theta	θ θ	Ypsilon	υΥ
Jota	ιI	Phi	φФ
Kappa	κΚ	Chi	χΧ
Lambda	λΛ	Psi	ψΨ
Му	μM	Omega	ωΩ

SI = International Units System