Série d'exercices

Exercice 1

- 1 Répondre par vrai ou faix
 - ☐ Le générateur électrique transforme l'énergie électrique en chaleur.
 - \square L'unité de la puissance électrique dans le système international des unités est le watt (W).
 - ☐ La puissance électrique dissipée par effet joule dans un conducteur ohmique est proportionnelle à l'intensité du courant de qui le traverse.
 - ☐ Le conducteur ohmique transforme complétement l'énergie électrique qu'il reçoit en énergie thermique .
 - \square Une lampe porte les informations suivantes ; (24V; 0, 2A), sa puissance optimale
 - \square est: $P_e = 4.8W$

Exercice 2

La tension aux bornes d'une batterie d'une automobile est : U = 12V et l'intensité du courant qui la traverse est I = 10,3A

- Calculer la puissance fournie par cette batterie.
- 2 Calculer l'énergie fournie par cette batterie pendant 12min
- **3** La puissance produite par la batterie est : P = 125,7W
 - a Calculer la puissance dissipée par effet joule dans la batterie.
 - b-Déduire la valeur de la résistance interne de la bobine.

Exercice 3

On applique aux bornes d'un moteur électrique une tension électrique continue : U = 40VEn régime permanent, l'intensité de courant qui traverse le moteur est I = 1,4A

- **1** Calculer la puissance électrique reçue par le moteur .
- 2 Calculer l'énergie électrique reçue par le moteur pendant $\Delta t = 15$ min.
- - a Calculer la vitesse angulaire du moteur.
 - **b** Calculer la puissance mécanique(utile)produite par le moteur sachant que le moment de son couple est $M_C = 71,88$ N. m
 - c Déduire la puissance dissipée par effet joule dans le moteur.

Exercice 4

On considère le circuit électrique ci-contre qui comporte :

- Deux conducteurs ohmiques de résistances $R_1 = 15\Omega$ et $R_2 = 22\Omega$
- Un générateur de tension continue $U_{PN} = 30V$
- Un interrupteur K
- Fils de connexions
- 1 Par application de la loi d'additivité des tensions déterminer la valeur de l'intensité du courant traversant le circuit.
- Calculer la puissance fournie par le générateur.
- **3** Calculer la puissance dissipée par effet Joule dans les deux conducteurs et déduire.

Série d'exercices

Exercice 5

On considère le circuit électrique ci-contre qui comporte :

- Un conducteur ohmique de résistance R
- Un générateur de tension continue $U_{PN} = 50V$
- Un moteur électrique.
- Un électrolyseur.
- Un interrupteur *K*
- Fils de connexions

En régime permanent, l'intensité du courant débité par le générateur est: I = 1,6A

- Représenter la tension électrique aux bornes de chaque dipôle électrique.
- Calculer la puissance électrique fournie par le générateur.
- 8 Calculer la puissance reçue par l'électrolyseur.
- **1** Le moteur produit une puissance mécanique $P_m = 22,4W$ et sa résistance interne est: $r = 15\Omega$
 - a Calculer la puissance dissipée par effet Joule dans le moteur.
 - **b** Calculer la puissance électrique reçue par le moteur.
- **6** Calculer la puissance électrique dissipée par effet Joule dans le conducteur ohmique et déduire la valeur de sa résistance.

Exercice 6

Le montage électrique schématisé ci-contre comporte :

- Deux conducteurs ohmiques de résistances $R = 13,75\Omega$ et R'
- Un générateur de tension continue $U_{PN} = 50V$
- Un moteur électrique de résistance interne r = 10V.
- Un ampèremètre
- Un voltmètre
- Un interrupteur *K*
- Fils de connexions

En régime permanent, le voltmètre indique $U'_R = 22,5V$ et le l'ampèremètre indique I' = 1,5A

- $oldsymbol{0}$ Le moteur transforme $oldsymbol{80\%}$ de l'énergie électrique qu'il reçoit en énergie mécanique .
 - a Calculer la puissance électrique reçue par le moteur.
 - **b** Calculer la puissance dissipée par effet Joule dans le moteur.
 - c Déduire mécanique produite par ce moteur.
- Calculer la puissance électrique fournie par le générateur .
- $oldsymbol{3}$ Calculer la tension électrique aux bornes du conducteur ohmique R.
- 4 Calculer la puissance dissipée par effet Joule dans conducteur ohmique R.
- $footnote{\bullet}$ En appliquant deux méthodes différentes, calculer l'intensité du courant I' qui travers le conducteur ohmique R'

