京 都 大 学

数学 I

1 から 7 までの全問を解答せよ。

- $\boxed{1}$ A は n 次複素正方行列で、ある整数 $k \geq 2$ について、 $A^k = A$ をみたすものとする.このとき、 $|\operatorname{tr} A| \leq \operatorname{rank} A$ を示せ.
- ② 数列 $\{a_n\}_{n=1}^{\infty}$ が条件「任意の部分列 $\{a_{n_k}\}_{k=1}^{\infty}$ に対し,更にその部分列 $\{a_{n_k}\}_{\ell=1}^{\infty}$ がとれて

$$\lim_{\ell \to \infty} a_{n_{k_{\ell}}} = \alpha$$

となる」をみたすならば、数列 $\{a_n\}_{n=1}^\infty$ 自身が α に収束することを示せ、

- 3 $V = \mathbb{C}^n$ を複素数体 \mathbb{C} 上の n 次元ベクトル空間とする. A を \mathbb{C} 係数 n 次正方行列とする. V の部分ベクトル空間 W は,任意の $w \in W$ に対して $Aw \in W$ が成り立つとき A-不変であるという. 次の (1), (2) を示せ.
 - (1) A が対角化可能であるための必要十分条件は, V の A-不変な部分ベクトル空間はつねにA-不変な補空間を持つことである.
 - (2) A が対角化可能で,A の各固有値の A の固有多項式における重複度は 1 であるための必要十分条件は,V の A-不変な部分ベクトル空間はつねに唯一つのA-不変な補空間を持つことである.
- |4| 区間 $(0,\infty)$ で定義された実数値連続函数 f(x) と実数列 $\{A_m\}_{m\geq 1}$ が与えられて,任意の正整数 $n\geq 1$ に対して

$$\lim_{x \to +\infty} x^n \left| f(x) - \sum_{m=1}^n \frac{A_m}{x^m} \right| = 0$$

が成り立つとき,

$$f(x) \sim \sum_{m=1}^{\infty} \frac{A_m}{x^m}$$

と記す. (*) が $A_1=0$ で成り立つとき, 任意の $x\in(0,\infty)$ に対して $\int_x^\infty f(t)dt$ が収束し,

$$\int_{x}^{\infty} f(t)dt \sim \sum_{m=1}^{\infty} \frac{A_{m+1}}{mx^{m}}$$

が成り立つことを示せ.

- G は位数 n の有限群で、次の性質 (*) をみたす:
 (*) n の任意の約数 d に対し、G は位数 d の部分群を唯一つ持つ。
 G はどの様な群か。
- $f: S^2 \to \mathbf{R}^2$ は C^{∞} -写像であるとする. このとき $\mathrm{rank}\, df_x < 2$ となる $x \in S^2$ が存在することを示せ. ここで, S^2 は 2 次元球面である.
- [7] 函数 $f(z) = \int_0^\infty \frac{e^{-t}}{\sqrt{t}} e^{izt} dt$ は $\mathrm{Im}\, z > -1$ で正則であることを示せ.

数学 II

- ⊗ 問題は7題あり、次の3つの分野群に分かれる. 分野群 [A] の問題は 1 と 2 の2題、分野群 [B] の問題は 3 と 4 の2題、分野群 [C] の問題は 5 から 7 の3題である.
- ⊗ この7問題中, 3問題 を 2つ以上の分野群 から選択して解答せよ.
- $\omega = \frac{-1 + \sqrt{-3}}{2}$ に対して、C の部分環 $R = \mathbf{Z}[\omega]$ を考える。R の元 $a \in R$ が生成する R のイデアルを (a) と記し、商環 R/(a) の可逆元の全体を $(R/(a))^{\times}$ と記す。
 - (1) 乗法群 (R/(3))× の位数を求めよ.
 - (2) 乗法群 $(R/(9))^{\times}$ を巡回群の直和の形に表せ.
- [2] 標数 0 の体 k 上の n 変数多項式環 $k[X_1, \ldots, X_n]$ の d 次の同次多項式全体 (0 も含む) を $k[X_1, \ldots, X_n]_{(d)}$ で表すことにする。n に関する次の命題 P_n を考える。

 P_n : 任意の $F \in k[X_1, \ldots, X_n]_{(2)}$, $G \in k[X_1, \ldots, X_n]_{(3)}$ に対して, k の有限次可解拡大体 k' と $a = (a_1, \ldots, a_n) \in k'^n$ が存在して, $a \neq (0, \ldots, 0)$, F(a) = G(a) = 0 となる.

- (1) P_n が成立すれば、 P_{n+1} が成立することを示せ.
- (2) $n \ge 4$ のとき, P_n が成立することを示せ.

- R^2
- 図 \mathbf{R}^2 の線型変換 $\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} n \text{ は整数} \end{pmatrix}$ は 2 次元トーラス $T^2 = \mathbf{Q}/\mathbf{Z}^2$ の自己同型写像 φ を誘導する。 $[0,1] \times T^2$ に対して $0 \times T^2$ の点 (0,x) と $1 \times T^2$ の点 $(1,\varphi(x))$ とを同一視することによって多様体 M_n を定義する。
 - (1) $\varphi_*: H_*(T^2, \mathbf{Z}) \to H_*(T^2, \mathbf{Z})$ を求めよ.
 - (2) $H_*(M_n, \mathbf{Z})$ を求めよ.
- 境界のない n 次元コンパクト C^∞ 級多様体 M 上の Morse 函数 $f:M\to \mathbf{R}$ (すなわちf の任意の臨界点 p のまわりの局所座標 (u_1,\ldots,u_n) に対して

$$Hf_p = \left(\frac{\partial^2 f}{\partial u_i \partial u_j}(p)\right)$$

が正則行列である) を考える. Hf_p の負の固有値の数を $\nu_p(f)$ と記す. 境界のないコンパクト C^∞ 級多様体には常に Morse 函数が存在し, 臨界点は有限個であり

$$\alpha(f) = \sum_{p: \text{ im}} (-1)^{\nu_p(f)}$$

は Morse 函数 f によらないM の位相不変量であることが知られている. 以下の問に答えよ.

- 1) 2m 次元球面 S^{2m} に対して $\alpha(S^{2m})$ を求めよ.
- 2) M が奇数次元のとき $\alpha(M) = 0$ であることを示せ.
- 3) M に有限群 G が C^{∞} 級かつ自由に作用すれば(すなわち $g \neq e$ ならば $gx \neq x$ が成り立つ), $\alpha(M)$ は G の位数 |G| で割り切れることを示せ.
- 4) $M=S^{2m},\,M=S^{2m}\times S^{2m}$ の場合に C^{∞} かつ自由に作用する有限群をすべて求めよ.
- 5 全複素平面 C 上の正則函数 f(z) に対して

$$F(z) = \int_0^1 \frac{f(x)}{x - z} dx \quad (z \in \mathbb{C} \setminus [0, 1])$$

とおく.

1) F(z) は $C \setminus [0,1]$ 上正則であり、また 0 < t < 1 を満たす任意の t に対し $\lim_{\epsilon \downarrow 0} F(t \pm i\epsilon)$ が存在することを示せ.

- 2) f(z) が恒等的に 0 でない限り, F(z) を原点の近傍における有理型関数 に解析接続することはできないことを示せ.
- Banach 空間 X 上の有界線型作用素の列 $\{P_n\}_{n=1}^{\infty}$ は $\|P_n\|=1$, $P_n^2=P_n$ $(n=1,2,\cdots)$ をみたし、各 $x\in X$ に対して

$$\lim_{n \to \infty} ||P_n x - x|| = 0$$

が成り立っているとする. また A は X 上の有界線型作用素で ||I-A|| < 1 (I は恒等作用素) をみたすものとする.

- 1) 作用素 A, $I P_n(I A)P_n$ $(n = 1, 2, \cdots)$ は有界な逆作用素を持つことを示せ.
- 2) 各 $n=1,2,\cdots$ と $y\in X$ に対して、作用素 P_n の値域に一意的に x_n が存在して $P_nAx_n=P_ny$ となることを、実際に x_n を求めることにより示せ.
- 3) 2) の x_n について, $\lim_{n\to\infty} ||x_n A^{-1}y|| = 0$ を示せ.
- $\lceil 7 \rceil$ 閉区間 [0,1] 上の複素数値連続関数の全体を $\mathcal{C}\left([0,1]\right)$ と記し,

 $H = \{f \in \mathcal{C}([0,1]) \mid f$ は絶対連続で f' は [0,1] で2乗可積分 $\}$

とおく. $f,g \in H$ に対しその内積を

$$\langle f, g \rangle = f(0)\overline{g(0)} + \int_0^1 f'(x)\overline{g'(x)}dx$$

で定め, $\|f\| = \sqrt{\langle f, f \rangle}$ とする.

- 1) $f_n \in H$ $(n = 1, 2, \cdots)$ がこのノルムに関し Cauchy 列 $||f_n f_m|| \to 0$ $(n, m \to \infty)$ となるとき, $f \in H$ が存在して f_n は f に [0, 1] 上で一様収束することを証明せよ.
- 2) $n=0,\pm 1,\pm 2,\cdots$ に対し $e_n(x)=e^{2\pi inx}$ とおくと, $e_n\in H$ であるが, $\{e_n\}_{n\in \mathbb{Z}}$ に直交する空間 M, すなわち

$$M = \{ f \in H \mid \langle f, e_n \rangle = 0, \quad n = 0, \pm 1, \pm 2, \cdots \}$$

を決定せよ.