FATTI DI ANALISI

Definizione (F_{σ}) Si dice F_{σ} un sottoinsieme $I \subseteq \mathbb{R}$ che sia unione numerabile di chiusi, ovvero se si può scrivere

$$I = \bigcup_{n \in \mathbb{N}} C_n$$

Definizione (*Insieme trascurabile*) Si dice che un sottoinsieme $E \subseteq \mathbb{R}$ è trascurabile (ovvero ha misura di Lebesgue nulla) se $\forall \varepsilon > 0$ $\exists \{(a_n, b_n)\}_{n \in \mathbb{N}}$ t.c. $E \subseteq \bigcup_{n \in \mathbb{N}} (a_n, b_n)$

Definizione (*Funzione oscillazione*) Di una funzione $f: \Omega \to \mathbb{R}$ (dove Ω è uno spazio metrico) si definisce la funzione oscillazione $\Theta_f: \Omega \to \mathbb{R}$ come:

$$\Theta_f(x) := \lim_{r \to 0^+} \operatorname{diam}(f(B_r(x)))$$

Proprietà importanti:

- \bar{x} è un punto di discontinuità $\Leftrightarrow \Theta_f(\bar{x}) > 0$.
- Θ_f è una funzione semicontinua inferiormente.
- Definizione equivalente: $\Theta_f(x) = (\limsup_{y \to x} f(y)) (\liminf_{y \to x} f(y)).$

Caratterizzazione della Riemann-integrabilità Una funzione è Riemann-integrabile se e solo se l'insieme dei suoi punti di discontinuità è trascurabile.

Teorema fondamentale del calcolo integrale, versione pro $f:[a,b] \to \mathbb{R}$ derivabile in (a,b) e f' Riemann-integrabile. Allora vale $f(b) - f(a) = \int_a^b f'(t) dt$

Teorema di Darboux Le derivate mappano connessi in connessi. Sia $f:[a,b] \to \mathbb{R}$ ovunque derivabile, e si ponga $\alpha:=f'(a), \beta:=f'(b)$. Possiamo wlog supporre che $\alpha \leq \beta$. Allora si ha, $\forall \alpha < \lambda < \beta \quad \exists \xi \in (a,b)$ t.c. $f'(\xi) = \lambda$.

Dimostrazione Si consideri la funzione $g(x) := f(x) - \lambda x$. Questa funzione è continua (essendo λ fissato e f continua) e definita sul compatto [a,b]. Quindi ammette massimo e/o minimo. Siccome g è anche derivabile si ha, nel punto di massimo $0 = g'(M) = f'(M) - \lambda \Rightarrow f'(M) = \lambda$.

Punti di discontinuità di una funzione reale Una funzione f ha punti di discontinuità che sono un F_{σ}

Dimostrazione Si consideri la funzione oscillazione di $f : \Theta_f(x)$. Fissata una soglia di oscillazione ν si ha che $\mathfrak{Dsc}_f^{\geq \nu} := \{x \mid \Theta_f(x) \geq \nu\}$ è un chiuso (Si dimostri che se c'è un punto y sul quale si accumula una successione (y_n) di punti t.c. $\Theta_f(y_n) \geq \nu$ allora si ha $\Theta_f(y) \geq \nu$). Ora, siccome i punti di discontinuità sono tutti e soli quelli con oscillazione maggiore di zero, si ha $\mathfrak{Disc}_f = \bigcup_{n \in \mathbb{N}} \mathfrak{Dsc}_f^{\geq \frac{1}{n}}$, ovvero unione numerabile di chiusi.

Discontinuità di una funzione semicontinua inferiormente I punti di discontinuità di una funzione semicontinua inferiormente sono di prima categoria (ovvero unione numerabile di chiusi a parte interna vuota).

Prima Categoria - Misura di Lebesgue nulla Non c'è nessuna implicazione tra queste due; ovvero esistono insiemi di prima categoria ma di misura positiva ed insiemi a misura nulla di seconda categoria.

OPERATORI DIFFERENZIALI

COME CAMBIANO I DIFFERENZIALI

Cartesiane → **Polari**

$$\begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix}$$

LAPLACIANO

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}$$

CONVERGENZE VARIE

- (**Puntuale**) Una successione di funzioni $f_n(x)$ converge puntualmente a f(x) se $\forall x \ \forall \varepsilon > 0 \ \exists n_0 \text{ t.c.} \ \forall n \geq n_0 \ | \ f_n(x) f(x) \ | \leq \varepsilon$
- (Uniforme) Una successione di funzioni $f_n(x)$ converge uniformemente a f(x) se $\forall \varepsilon > 0$ $\exists n_0$ t.c. $\forall n \geq n_0 \ \forall x \ | f_n(x) f(x) | \leq \varepsilon$
- (Assoluta) Una serie di funzioni $\Sigma_{n=0}^{+\infty} f_n(x)$ converge assolutamente se le serie $\Sigma_{n=0}^{+\infty} \mid f_n(x) \mid$ converge puntualmente
- (Totale / Normale) Una serie di funzioni $\Sigma_{n=0}^{+\infty}f_n(x)$ converge totalmente (al suo limite) in A se vale che $\Sigma_{n=0}^{+\infty}\sup_{x\in A}\mid f_n(x)\mid <+\infty$
- ullet Assoluta \Longrightarrow Puntuale
- Uniforme ⇒ Puntuale
- Totale \implies Uniforme, Assoluta

PASSAGGIO AL LIMITE

Nel seguito si usa $f_n(x)$ per indicare una generica successione di funzioni, f(x) il suo limite (dove esiste)

- (Continuità del Limite) Se le $f_n(x)$ definitivamente sono continue, e la convergenza è uniforme, allora f(x) è continua.
- (Derivabilità del Limite) Se le $f_n(x)$ convergono in un punto \bar{x} ad $f(\bar{x})$ e le derivate $f'_n(x)$ convergono uniformemente ad una funzione g(x) allora si ha che le $f_n(x)$ convergono uniformemente ad una funzione derivabile f(x) tale che f'(x) = g(x)
- (Integrabilità del Limite) Se le $f_n(x)$ convergono uniformemente alla f(x) limite allora si ha $\lim_{n\to\infty}\int f_n(t)\,\mathrm{d}t=\int f(t)dt$

PROBLEMI DI CAUCHY

Nel seguito parliamo di un problema del seguente tipo: $\left\{ \begin{array}{l} y'=f(x,y)\\ y(x_0)=y_0 \end{array} \right.$

Con $f:U\to\mathbb{R}^n$ è una funzione continua definita su un aperto. Indicheremo una generica soluzione con $\varphi:I\to\mathbb{R}^n$ di classe \mathcal{C}^1 con $x_0\in I$, tale che $\forall x\in I\quad (x,\varphi(x))\in U$ e $\varphi'(x)=f(x,\varphi(x))$ e che $\varphi(x_0)=y_0$

- (Cauchy-Lipschitz, Esistenza ed Unicità Locali) Se f è continua e localmente lipschitziana in y uniformemente rispetto a x, allora $\exists ! \varphi$ soluzione locale di classe \mathcal{C}^1
- (**Teorema di Peano, Esistenza Locale**) Per garantire l'esistenza locale (ma non l'unicità!) basta che *f* sia continua
- ullet Si assuma che l'equazione y'=f(x,y) abbia esistenza ed unicità locale in ogni punto di U. Allora si ha

Unicità Globale (ovvero se due soluzioni coincidono in un punto allora coincidono in tutto l'intervallo);

Dominio Aperto delle soluzioni massimali (una soluzione massimale ha come dominio un intervallo aperto);

Fuga dai compatti delle soluzioni massimali (ovvero una soluzione massimale esce definitivamente da ogni sottoinsieme compatto di U)

• (Esistenza e Unicità Globale) Supponendo che la funzione f sia continua e localmente lipschitziana rispetto a y (ovvero ipotesi di Cauchy-Lipschitz) e se si ha che per ogni intervallo compatto K: $\exists A_K, B_K > 0 \qquad || f(x,y) || \geq A_K \mid| y \mid| + B_K \quad \forall (x,y) \in K \times \mathbb{R}^n$ allora per ogni $(x_0,y_0) \in I \times \mathbb{R}^n$ il problema ha una ed una sola soluzione definita su $tutto\ I$ (supponiamo abbia soluzione limitata, allora deve fuggire dai compatti dove la f è definita, ma se prendiamo il compatto delimitato dal bound della lipschitzianità, la funzione non può fuggirne localmente)

SOLUZIONE DI EQUAZIONI DIFFERENZIALI COMUNI

- (Lineari del prim'ordine) Data l'equazione y'=a(x)y(x)+b(x) (detta $A(x)=\int_{x_0}^x a(t)\,\mathrm{d}t$ una primitiva di a(x)) si ottiene, moltiplicando entrambi i membri per $e^{A(x)}$, la soluzione generale $y(x)=e^{A(x)}\int_{x_0}^x e^{-A(t)}b(t)\,\mathrm{d}t+c$
- (A variabili separabili) Data l'equazione y'=g(x)f(y) si ha $\int \frac{\mathrm{d}y}{f(y)}=\int g(x)\,\mathrm{d}x$ e calcolando le primitive si risolve il problema