Introduction of Structured Learning

Hung-yi Lee

Structured Learning

- We need a more powerful function f
 - Input and output are both objects with structures
 - Object: sequence, list, tree, bounding box ...

X is the space of one kind of object

Y is the space of another kind of object

In the previous lectures, the input and output are both vectors.

Introduction of Structured Learning Unified Framework

Training

Find a function F

$$F: X \times Y \to R$$

 F(x,y): evaluate how compatible the objects x and y is

Inference (Testing)

Given an object x

$$\widetilde{y} = \arg\max_{y \in Y} F(x, y)$$

$$f: X \to Y \implies f(x) = \widetilde{y} = \arg\max_{y \in Y} F(x, y)$$

Unified FrameworkObject Detection

24.9m 20.2m

- Task description
 - Using a bounding box to highlight the position of a certain object in an image
 - E.g. A detector of Haruhi

X: Image \longrightarrow Y: Bounding Box

Haruhi
(the girl with yellow ribbon)

Unified FrameworkObject Detection

Training

Find a function F

$$F: X \times Y \to R$$

 F(x,y): evaluate how compatible the objects x and y is

y: Bounding Box

$$F(x,y) \longrightarrow F($$

the correctness of taking range of y in x as "Haruhi"

Unified Framework – Object Detection

Training

Find a function F

$$F: X \times Y \to R$$

 F(x,y): evaluate how compatible the objects x and y is

Inference (Testing)

• Given an object x $\widetilde{y} = \arg \max_{y \in Y} F(x, y)$

Enumerate all possible bounding box y

- Summarization

- Task description
 - Given a long document
 - Select a set of sentences from the document, and cascade the sentences to form a short paragraph

- Summarization

Inference

- Retrieval
- Task description
 - User input a keyword Q
 - System returns a *list* of web pages

A list of web pages (Search Result)

- Retrieval

Statistics

Unified Framework

Training

• Find a function F

$$F: X \times Y \to R$$

 F(x,y): evaluate how compatible the objects x and y is

Inference

• Given an object x $\widetilde{y} = \arg \max_{y \in Y} F(x, y)$

$$F(x,y) = P(x,y)?$$

Training

 Estimate the probability P(x,y)

$$P: X \times Y \rightarrow [0,1]$$

Inference

Given an object x

$$\widetilde{y} = \arg\max_{y \in Y} P(y \mid x)$$

$$= \arg\max_{y \in Y} \frac{P(x, y)}{P(x)}$$

$$= \arg\max_{y \in Y} P(x, y)$$

Statistics

Unified Framework

$$F(x,y) = P(x,y)?$$

Drawback for probability

- Probability cannot explain everything
- 0-1 constraint is not necessary

Strength for probability

Meaningful

Energy-based Model: http://www.cs.nyu.edu/~yann/research/ebm/

Training

 Estimate the probability P(x,y)

$$P: X \times Y \rightarrow [0,1]$$

Inference

Given an object x

$$\widetilde{y} = \arg\max_{y \in Y} P(y \mid x)$$

$$= \arg\max_{y \in Y} \frac{P(x, y)}{P(x)}$$

$$= \arg\max_{y \in Y} P(x, y)$$

That's it!?

Training

Find a function F

$$F: X \times Y \to R$$

 F(x,y): evaluate how compatible the objects x and y is

Inference (Testing)

Given an object x

$$\widetilde{y} = \arg\max_{y \in Y} F(x, y)$$

There are three problems in this framework.

Problem 1

- **Evaluation**: What does F(x,y) look like?
 - How F(x,y) compute the "compatibility" of objects x and y

Object Detection:
$$F(x=)$$
, $y=$
Summarization: $F(x=)$, $y=$

(a long document) (a short paragraph)

(Search Result)

Problem 2

• Inference: How to solve the "arg max" problem

$$y = \arg\max_{y \in Y} F(x, y)$$

The space Y can be extremely large!

Object Detection: Y=All possible bounding box (maybe tractable)

Summarization: Y=All combination of sentence set in a document ...

Retrieval: Y=All possible webpage ranking

Problem 3

• *Training*: Given training data, how to find F(x,y)

Principle

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^r, \hat{y}^r), ...\}$$

We should find F(x,y) such that

$$F(x^{1}, \hat{y}^{1}) + F(x^{2}, \hat{y}^{2}) + F(x^{r}, \hat{y}^{r}) + F(x^{1}, y)$$

$$for all y \neq \hat{y}^{1}$$

$$for all y \neq \hat{y}^{2}$$

$$for all y \neq \hat{y}^{2}$$

$$for all y \neq \hat{y}^{r}$$

$$for all y \neq \hat{y}^{r}$$

$$for all y \neq \hat{y}^{r}$$

Three Problems

Problem 1: Evaluation

What does F(x,y) look like?

Problem 2: Inference

• How to solve the "arg max" problem

$$y = \arg\max_{y \in Y} F(x, y)$$

Problem 3: Training

Given training data, how to find F(x,y)

From 數位語音處理

The same as what we have learned.

Link to DNN?

Training

$$F: X \times Y \to R$$

$$F(x,y) = -CE(N(x), y)$$

Inference

$$\widetilde{y} = \arg\max_{y \in Y} F(x, y)$$

In handwriting digit classification, there are only 10 possible y.

$$y = [1 \ 0 \ 0 \ 0 \]$$

$$y = [0 \ 1 \ 0 \ 0 \]$$

$$y = [0 \ 0 \ 1 \ 0 \]$$
Find max
$$x \longrightarrow F(x,y)$$

$$y \longrightarrow F(x,y)$$

Introduction of Structured Learning Linear Model

Structured Linear Model

Problem 1: Evaluation

What does F(x,y) look like?
 in a specific form

Problem 2: Inference

How to solve the "arg max" problem

$$y = \arg\max_{y \in Y} F(x, y)$$

Problem 3: Training

Given training data, how to IIII

Evaluation: What does F(x,y) look like?

Evaluation: What does F(x,y) look like?

• Example: Object Detection

percentage of color red in box y
percentage of color green in box y
percentage of color blue in box y
percentage of color red out of box y

area of box y number of specific patterns in box y

• • • • •

Inference: How to solve the "arg max" problem

$$y = \arg\max_{y \in Y} F(x, y)$$

$$F(x, y) = w \cdot \phi(x, y) \Rightarrow y = \arg \max_{y \in Y} w \cdot \phi(x, y)$$

Assume we have solved this question.

- Training: Given training data, how to learn F(x,y)
 - $F(x,y) = w \cdot \phi(x,y)$, so what we have to learn is w

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^r, \hat{y}^r), ...\}$$

We should find w such that

$$\forall r \text{ (All training examples)}$$

$$\forall y \in Y - \{\hat{y}^r\} \text{ (All incorrect label for r-th example)}$$

$$w \cdot \phi(x^r, \hat{y}^r) > w \cdot \phi(x^r, y)$$

Solution of Problem 3 Difficult?

Not as difficult as expected

Algorithm

Will it terminate?

- **Input**: training data set $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^r, \hat{y}^r), ...\}$
- Output: weight vector w
- Algorithm: Initialize w = 0
 - do
 - For each pair of training example (x^r, \hat{y}^r)
 - Find the label \tilde{y}^r maximizing $w \cdot \phi(x^r, y)$

$$\tilde{y}^r = \arg\max_{y \in Y} w \cdot \phi(x^r, y)$$
 (question 2)

• If $\tilde{y}^r \neq \hat{y}^r$, update w

$$w \to w + \phi(x^r, \hat{y}^r) - \phi(x^r, \tilde{y}^r)$$

until w is not updated
 We are done!

Assumption: Separable

• There exists a weight vector \widehat{w} $\|\widehat{w}\| = 1$

 $\forall r$ (All training examples)

 $\forall y \in Y - \{\hat{y}^r\}$ (All incorrect label for an example)

$$\hat{w} \cdot \phi(x^r, \hat{y}^r) \ge \hat{w} \cdot \phi(x^r, y) \text{ (The target exists)}$$

$$\hat{w} \cdot \phi(x^r, \hat{y}^r) \ge \hat{w} \cdot \phi(x^r, y) + \delta$$

Proof of Termination

Structured Linear Model: Reduce 3 Problems to 2

Problem 1: Evaluation

How to define F(x,y)

Problem 2: Inference

 How to find the y with the largest F(x,y)

Problem 3: Training

How to learn F(x,y)

Problem A: Feature

How to define φ(x,y)

Problem B: Inference

 How to find the y with the largest w·φ(x,y)

Graphical Model

A language which describes the evaluation function

Structured Learning

We also know how to involve hidden information.

Problem 1: Evaluation

• What does F(x,y) look like? $F(x,y) = w \cdot \phi(x,y)$

Problem 2: Inference

How to solve the "arg max" problem

$$y = \arg\max_{y \in Y} F(x, y)$$

Problem 3: Training

• Given training data, how to find F(x,y) Structured SVM, etc.

Difficulties

Hard to figure out? Hard to interpret the meaning?

Difficulty 2. Inference

Gibbs Sampling

We can use Viterbi algorithm to deal with sequence labeling. How about other cases?

Graphical Model

$$F(x,y)$$
 Graph

- Define and describe your evaluation function F(x,y)
 by a graph
- There are three kinds of graphical model.
 - Factor graph, Markov Random Field (MRF) and Bayesian Network (BN)
 - Only factor graph and MRF will be briefly mentioned today.

Decompose F(x,y)

- F(x, y) is originally a **global** function
 - Define over the whole x and y
- Based on graphical model, F(x, y) is the composition of some *local* functions
 - x and y are decomposed into smaller components
 - Each local function defines on only a few related components in x and y
 - Which components are related → defined by Graphical model

Decomposable x and y

x and y are decomposed into smaller components

Factor Graph

Each factor influences some components.

Each factor corresponds to a local function.

Larger value means more compatible.

$$F(x,y) = f_a(x_1, y_1) + f_b(x_2, y_1, y_2) + f_c(y_2)$$

You only have to define the factors.

The local functions of the factors are learned from data.

Image De-noising

http://cs.stanford.edu/people/karpathy/visml/ising_example.html

Noisy and clean images are related

Factor: \triangleright **a**: the values of x_i and y_i

The colors in the clean image is smooth.

 \triangleright **b**: the values of the neighboring y_i

$$f_a(x_i, y_i) = \begin{cases} 1 & x_i = y_i \\ -1 & x_i \neq y_i \end{cases}$$

$$f_b(y_i, y_j) = \begin{cases} 2 & y_i = y_j \\ -2 & y_i \neq y_j \end{cases}$$

The weights can be learned from data.

Noisy and clean images are related

 \triangleright **a**: the values of x_i and y_i

The colors in the clean image is smooth.

 \triangleright **b**: the values of the neighboring y_i

Factor:

Realize F(x, y) easily from the factor graph

$$F(x,y) = \sum_{i=1}^{4} f_a(x_i, y_i)$$

$$+ f_b(x_1, y_2) + f_b(x_1, y_3)$$

$$+ f_b(x_2, y_4) + f_b(x_3, y_4)$$

Factor:

- c: the values of x_i and the values of the neighboring y_i
- \triangleright d: the values of the neighboring x_i and the values of y_i

Markov Random Field (MRF)

Clique: a set of components connecting to each other

Maximum Clique: a clique that is not included by

other cliques

MRF

Each maximum clique on the graph corresponds to a factor

MRF

Evaluation Function

$$f_a(A,B) + f_b(A,D) + f_c(B,C) + f_d(C,D,E) + f_e(E,F,G)$$

$$F(x,y) = f_a(x_1, x_2, y_1) + f_b(y_1, y_2)$$

= $w_a \cdot \phi_a(x_1, x_2, y_1) + w_b \cdot \phi_b(y_1, y_2)$

$$= \begin{bmatrix} w_a \\ w_b \end{bmatrix} \begin{bmatrix} \phi_a(x_1, x_2, y_1) \\ \phi_b(y_1, y_2) \end{bmatrix}$$

$$= w \cdot \phi(x, y)$$

Simply training by structured perceptron or structured SVM

Max-Margin Markov Networks (M3N)

$$\phi_b(+1,+1) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$F(x,y) = f_a(x_1, x_2, y_1) + f_b(y_1, y_2)$$

$$\phi_b(+1,-1) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$= w_a \cdot \phi_a(x_1, x_2, y_1) + w_b \cdot \phi_b(y_1, y_2)$$

$$\phi_b(-1,+1) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$y_1, y_2 \epsilon \{+1, -1\}$$

y ₁	y ₂	$f_b(y_1, y_2)$
+1	+1	$w_{\scriptscriptstyle{1}}$
+1	-1	W_2
-1	+1	W_3
-1	-1	W_4

$$w_b = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix}$$

$$w_b = \begin{bmatrix} w_2 \\ w_3 \\ w_4 \end{bmatrix} \qquad \phi_b(-1, -1) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Probability Point of View

- F(x, y) can be any real number
- If you like probability

Between 0 and 1
$$P(x,y) = \frac{e^{F(x,y)}}{\sum_{x',y'} e^{F(x',y')}} \longrightarrow \text{normalization}$$

$$P(x,y)$$

$$P(y|x) = \frac{P(x,y)}{P(x)} = \frac{e^{F(x,y)}}{\sum_{x',y'} e^{F(x',y')}} = \frac{e^{F(x,y)}}{\sum_{x',y'} e^{F(x',y'')}} = \frac{e^{F(x,y)}}{\sum_{x',y'} e^{F(x',y'')}} = \frac{e^{F(x,y)}}{\sum_{x',y'} e^{F(x',y'')}}$$

Evaluation Function

We want to find an evaluation function F(x)

Input: object x, output: scalar F(x) (how "good" the object is)

object

- E.g. x are images
 - Real x has high F(x)
- F(x) can be a network

• We can generate good x by F(x):

Find x with large F(x)

How to find F(x)?

In practice, you cannot decrease all the x other than real data.

Evaluation

Function F

scalar

F(x)

Evaluation Function

- Structured Perceptron
- **Input**: training data set $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^r, \hat{y}^r), ...\}$
- Output: weight vector w
- Algorithm: Initialize w = 0

do

$$F(x, y) = w \cdot \phi(x, y)$$

- For each pair of training example (x^r, \hat{y}^r)
 - Find the label \tilde{y}^r maximizing $F(x^r, y)$

Can be an issue
$$\widetilde{y}^r = \arg \max_{y \in Y} F(x^r, y)$$

• If $\widetilde{y}^r \neq \hat{y}^r$, update w

Increase
$$F(x^r, \hat{y}^r)$$
, decrease $F(x^r, \tilde{y}^r)$

Increase
$$F(x^r, \hat{y}^r)$$
, $w \to w + \phi(x^r, \hat{y}^r) - \phi(x^r, \hat{y}^r)$

until w is not updated
 We are done!

Where are we?

