

Applied Deep Learning

Dr. Philippe Blaettchen Bayes Business School (formerly Cass)

Learning objectives of today

Goals:

Understand some of the key tools to run computer vision algorithms in practice

How will we do this?

- We start with discussing the Functional API and the added flexibility it enables use
- We then take a look at architectural typical for CNNs and specific tips and tricks of modifying them
- Finally, we introduce transfer learning, a key tool to create powerful algorithms from little data

From Sequential to Functional

TensorFlow: the right complexity for everyone

Source: Chollet

Try it out – Code Parts 1.1-1.3!

- What key differences do you observe between the Sequential API and the Functional API?
- For which types of applications is the Sequential API insufficient?

A typical application: object localization and detection

Some architectural ideas specific to CNNs

GoogLeNet

Source: Szegedy

U-Net

Source: Ronneberge

VGG16

Source: Chollet

Architectural tips and tricks around CNNs

- Create modules, organize them into hierarchies, and reuse the same modules
- Create deep stacks of narrow layers (rather than shallow stacks of large layers)

The problem with deep stacks

Architectural tips and tricks around CNNs

- Create modules, organize them into hierarchies, and reuse the same modules
- Create deep stacks of narrow layers (rather than shallow stacks of large layers)
- To avoid vanishing gradients in deep networks, retain noiseless versions of information from previous input ("residual connections")

A residual connection

Source: Chollet

Architectural tips and tricks around CNNs

- Create modules, organize them into hierarchies, and reuse the same modules
- Create deep stacks of narrow layers (rather than shallow stacks of large layers)
- To avoid vanishing gradients in deep networks, retain noiseless versions of information from previous input ("residual connections")
- Use data augmentation
- Use batch normalization (even more so than in other types of networks)
- Use advanced layers that make efficient use of the information structure of your data

Depthwise separable convolutions

- Convolute channels independently
- Assumes information is spatially highly correlated but largely independent across channels → this is usually the case for representations of images
- Key benefit: much fewer parameters and computations

Try it out – Code Part 2!

- Which architectural features do you notice? Do they make sense to you?
- What do we have to do to make the residual dimensions stack up?

Transfer learning: creating powerful computer vision algorithms with little data

Transfer learning: using pre-trained models

- If a CNN is trained on a large number of images, the spatial feature hierarchy can act as a generic model of the visual world
- For example, take a model trained on the ImageNet dataset (1.4 million labeled images of 1,000 different classes, such as animals and everyday objects)
 - What type of classification tasks might this be useful for?

Repurposing a neural network

- Naïve approach: take the existing (trained) neural network
- Adjust the output layer
- Train some more with your data set

Difference between low-level and high-level features

- Problem with the previous approach: training may be very slow. Because the added training is on less data (usually), we might also be adding overfitting issues
- But: early layers capture low-level features that are unlikely to be different
- Deeper layers capture high-level features that are likely to be different

Option 1: Feature extraction

Try it out – Code Part 3!

- In 3.1, you use the outputs from a pretrained model
- In 3.2, you build a model including the pre-trained layers, but freeze training for these

Option 2: Fine-tuning

Transfer learning for computer vision

- In deep learning for computer vision, the visual input is broken down into generic patterns,
 which are then combined in a hierarchy to derive the ultimate prediction
- The deeper we go in the network, the more we move from representing the visual content to representing its meaning
- If we are not too deep, the representations are quite independent of the specific task but are (good) representations of a visual input

Time permitting – Apply what you learned in Code Part 4

Please fill out the module evaluation

https://city.surveys.evasysplus.co.uk/

Sources

- Amini et al., 2019, Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure: http://introtodeeplearning.com/AAAI MitigatingAlgorithmicBias.pdf
- Chollet, 2021, Deep Learning with Python (2nd edition)
- Géron, 2022, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (3rd edition)
- Goodfellow, Bengio, Courville, 2016, The Deep Learning Book: http://www.deeplearningbook.org
- Google, 2017, Machine Learning and Human Bias: https://www.youtube.com/watch?v=59bMh59JQDo
- Manyika et al., 2019, What Do We Do About the Biases in Al? https://hbr.org/2019/10/what-do-we-do-about-the-biases-in-ai
- Ronneberger et al., 2015, U-Net: Convolutional Networks for Biomedical Image Segmentation: https://link.springer.com/content/pdf/10.1007/978-3-319-24574-4_28.pdf
- Szegedy et al., 2015, Going Deeper with Convolutions: https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_CVPR_paper.pdf