Quantum simulation on a random tensor network

February 2, 2022

1 Differentiating single step time evolution

The m site Rydberg Hamiltonian is

$$H_{\text{Rydberg}} = \sum_{i,j=1,i>j}^{m} \frac{C}{|r_i - r_j|^6} n_i n_j + \Omega(t) \sum_{i=1}^{m} \frac{1}{2} \sigma_i^x + \Delta(t) \sum_{i=1}^{m} n_i$$
 (1)

For simplicity, we consider the following general representation of a time-space dependent Hamiltonian with k terms

$$H = \sum_{k=1}^{K} c_k O_k \tag{2}$$

where c_k can be dependent on a set of parameters like locations r_1, r_2, \ldots, r_m , and pulses $\Omega(t)$ and $\Delta(t)$.

1.1 The ODE version

In each step of the ODE solver, it performs the following update

$$|\psi'\rangle = (1 - iH\Delta t)|\psi\rangle \tag{3}$$

We derive the backward rules for the gradients by inspecting the following equations

$$\overline{\mathcal{L}}\delta\mathcal{L} = \overline{|\psi'\rangle} \circ \delta|\psi'\rangle
= \sum_{k} \overline{c_k} \delta c_k + \overline{|\psi\rangle} \circ \delta|\psi\rangle + \overline{\Delta t} \delta \Delta t$$
(4)

where \circ is the Hadamard product applied on real numbers, note a complex number in computer is composed of two real numbers. The above equations has a more elegant linear algebra version as the following.

$$\overline{\mathcal{L}}\delta\mathcal{L} = \overline{\langle \psi' | \delta | \psi' \rangle}
= \sum_{k} \overline{c_k} \delta c_k + \overline{\langle \psi | \delta | \psi \rangle} + \overline{\Delta t} \delta \Delta t$$
(5)

where we have used $\langle \psi |$ to represent the hermitian conjugate of $|\psi \rangle$.

$$\delta|\psi'\rangle = -i\sum_{k}\delta c_{k}O_{k}\Delta t|\psi\rangle - iH\delta\Delta t|\psi\rangle + (1 - iH\Delta t)\delta|\psi\rangle$$
 (6)

By observing Eq. (5) and Eq. (6), one can see

$$\overline{\langle \psi |} = \overline{\langle \psi' |} (1 - iH\Delta t) \tag{7}$$

$$\overline{c_k} = \Re \left[-i\Delta t \overline{\langle \psi' | O_k | \psi \rangle} \right] \tag{8}$$

$$\overline{\Delta t} = \Re \left[-i \overline{\langle \psi' | H | \psi \rangle} \right] \tag{9}$$

After a step, a normalization procedure might be called on the wave functions, this is trivial so that we do not discuss it at this stage.

1.2 The expmv version

To differentiate the time evolution directly, one can use the Taylor expansion

$$|\psi'\rangle = e^{-iHt}|\psi\rangle$$

$$= \sum_{n=0}^{\infty} \frac{(-it)^n H^n}{n!} |\psi\rangle$$
(10)

Similarly, we have

$$\delta|\psi'\rangle = e^{-iHt}\delta|\psi\rangle + \sum_{n=0}^{\infty} \frac{(-it)^n \delta(H^n)}{n!} |\psi\rangle + \left(e^{-iH(t+\delta t)} - e^{-iHt}\right) |\psi\rangle \qquad (11)$$

$$\overline{\langle \psi |} = \overline{\langle \psi |} e^{-iHt} \delta \tag{12}$$

$$\bar{t} = \overline{\langle \psi' |} - iHe^{-iHt} |\psi\rangle \tag{13}$$

$$\overline{c_k} = \sum_n \frac{(-it)^n}{n!} \sum_{p=0}^{n-1} \overline{\langle \psi' | H^p O_k H^{n-p-1} | \psi \rangle}$$
(14)

2 How to reverse the time evolution

- 1. Since the time evolution is reversible, one can reverse it by doing inverse time evolution (or the adjoint state method [4, 2]).
- 2. For the cases reversibility is not guarented, one can use treeverse algorithm [3, 1].

2.1 The treeverse algorithm (or optimal checkpointing)

Peter is a road maintainer. He is assigned a job to paint a one-way road to blue in the reversed order (do not ask me why!). In the following illustration, we represent the road as N grids arranged in one dimension.

He can paint one cell a time as limited the painting material he can carry at one time. Since the road is one-way, Peter soon find once he reaches the working spot, he can not drive back. Lucky enough, Peter picked up some teleportation magics in Hogwarts, he can teleport his car to a teleportation gate (marked with red symbols). One limitation of this magic is he can at most create $\delta \leq N$ gates at the same time. When this upper limit is reached, he can distroy a teleportation gate to create a new one. Given N=10000, $\delta=10$, can you please help Peter design a scheme so that he can drive the least?

References

- [1] TreeverseAlgorithm.jl. https://github.com/GiggleLiu/TreeverseAlgorithm.jl.
- [2] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. In *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018.
- [3] Andreas Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. *Optimization Methods and software*, 1(1):35–54, 1992.
- [4] R.-E. Plessix. A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. *Geophysical Journal International*, 167(2):495–503, 11 2006.