Writing Session - eXplainable Al

# 생성형 모델 eXplainable Al

 20212549
 20192780
 20212568

 김채원
 유광열
 이서연

# CONTENTS

| 01    | 02    | 03    | 04    | 05    |  |
|-------|-------|-------|-------|-------|--|
| 연구 주제 | 연구 방향 | 진행 상황 | 연구 계획 | 연구 의의 |  |

### 연구 주제

Generative AI + Explainable AI (XAI)

Diffusion에 XAI 기술을 적용하여 모델의 의사 결정을 이해하고 성능을 향상시킴



Discriminator를 Diffusion에 추가하고 해당 부분에 XAI 기술을 적용한 후, 이를 모델에 다시 반영하여 성능을 향상

# **Pipeline**

#### 1 Cycle - 100,000 Process



Process1

X 20,000

기존 Diffusion Process

(Discriminator 학습)

X 40,000

(Discriminator 학습 X)

Process2

Discriminator의 Saliency Map 결과 (픽셀별 Fake라고 판별한 데 기여한 정도)를 Noise에 곱하여 진행

# Saliency Map?

이미지에서 어떤 부분에 집중하는지 살펴보는 방법으로, 각 Input 픽셀에 대해서 구하고자 하는 Class의 Output의 Gradient를 계산





즉 위의 사진에서 색깔이 밝을 수록, 모델이 해당 사진을 강아지라고 판단하는데 큰 도움을 줬다는 의미

### **Details**

#### **Process**

: 한번 Noising 거치고 Denoising으로 복원하는 과정

#### [Process1]

기존 Diffusion Process

#### [Process2]

Noising 과정에서, 학습이 더 필요한 영역에 Noise를 더 많이 추가 → 해당 부분에 집중하여 학습할 것으로 기대

#### Cycle

- Discriminator를 추가한 Process1로 Diffusion 모
   델 및 Discriminator 학습 (x 2만)
- Process1을 거친 후, 만들어진 이미지를 Discriminator에 넣어 Discriminator가 Fake라고 판단한 결과에 대한 각 픽셀의 기여도(Saliency Map)를 추출한 후, Process2에서 이미지에 Noise를 추가할 때 Noise에 해당 기여도를 곱한 값으로 추가 ( x 4만)
- ⇒ Process1 x 2만 + (Process1 + Process2) X 4만 = 10만 Process



총 5 Cycle (500,000 Process) 진행

\* 기존 DDPM 논문에서 학습한 Process 횟수와 동일하게 설정

### Add XAI info to Noise: MAKE Attention MAP

Discriminator에서 도출된 Saliency MAP 정보를 DDPM의 Noise Layer에 순차적으로 Attention 정보로 입력

- Discriminator에서 추출된 Saliency MAP을 Hierarchical하게 변형함

- Hierarchical하게 변형 된 Saliency MAP정보를 바탕으로 Attnetion MAP을 생성



### Add XAI info to Noise: Layer Hierarchical Info

Discriminator에서 도출된 Saliency MAP 정보를 DDPM의 Noise Layer에 순차적으로 Attention 정보로 입력



### Add XAI info to Noise: Layer SAME Info

Discriminator에서 나온 Saliency MAP 정보를 DDPM의 Noise Layer에 같은 Attention 정보로 입력



### 진행 상황

#### DDPM 학습 진행

```
class RandomOrLearnedSinusoidalPosEmb(nn.Module):
    """ following @crowsonkb 's lead with random (learned optional) sinusoidal pos emb """
    https://github.com/crowsonkb/v-diffusion-jax/blob/master/diffusion/models/danbooru_128.py#L8 """

def __init__(self, dim, is_random = False):
    super().__init__()
    assert divisible_by(dim, 2)
    half_dim = dim // 2
    self.weights = nn.Parameter(torch.randn(half_dim), requires_grad = not is_random)

def forward(self, x):
    x = rearrange(x, 'b -> b 1')
    freqs = x * rearrange(self.weights, 'd -> 1 d') * 2 * math.pi
    fouriered = torch.cat((freqs.sin(), freqs.cos()), dim = -1)
    fouriered = torch.cat((x, fouriered), dim = -1)
    return fouriered
```

Dataset: CelebA-HQ 256

원활한 실험 결과 비교를 위해 기존 DDPM 논문에서 사용한 데이터셋을 사용하여 학습

\*현재까지 CIFAR-10, CIFAR-100에 대해서는 학습 가능 여부 확인

## 연구 계획



- Diffusion에 Discriminator를 적용한 후, CelebA-HQ 256으로 학습 진행
- 앞서 설명한 3가지 방법론 중 가장 효율적인 방법론으로 선택
- Cycle 및 Process 수와 같은 파라미터를 실험적으로 결정

### 연구의의

#### Diffusion 모델에 eXplainbe Al 적용

XAI를 통해 모델을 이해할 수 있는 기회 제공 가능

- Diffusion에 Discriminator를 적용
- Discriminator에 XAI 기술을 적용하여 Saliency MAP을 통한 Generative model 모델 이해
- 모델 이해를 통한 Gerative model에 정보 전달 및 의사 결정 반영

XAI를 통해 생성 모델의 성능 향상을 기대

- Discriminator에서 추출한 Saliency map을 attentim MAP으로 변환
- 해당 attention MAP을 Hierarchical하게 Noise에 반영
- 해당 attention mAP을 모든 Noise에 반영
- 이를 통한 Generative model 성능 향상 기대

Writing Session - eXplainable Al

Q & A