Примечание: Обратите внимание, что данные вариантов большей частью совпадают с теми, что использовались в **Лабораторной работе №2**. Допускается ссылаться на исследования, проведенные в рамках той работы, при наглядном оформлении итоговых результатов.

Задание 1. Компенсирующий регулятор по состоянию.

В соответствии с вашим вариантом по **Таблице 1** взять матрицы A, B, B_f и C_Z из **Таблицы 2** и матрицу Γ из **Таблицы 3** и рассмотреть систему

$$\dot{x} = Ax + Bu + B_f w_f, \quad x(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T, \tag{1}$$

генератор внешнего возмущения

$$\dot{w}_f = \Gamma w_f, \quad w_f(0) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T \tag{2}$$

и виртуальный выход вида

$$z = C_Z x. (3)$$

Выполнить следующие шаги:

- \bullet Найти собственные числа матрицы Γ и определить характер внешнего возмущения.
- Построить схему моделирования системы (1), замкнутой компенсирующим регулятором

$$u = K_1 x + K_2 w_f, \tag{4}$$

обеспечивающим выполнение целевого условия

$$\lim_{t \to \infty} z(t) = 0. \tag{5}$$

при внешнем воздействии, задаваемом генератором (2).

- Синтезировать «feedback»-компоненту K_1 компенсирующего регулятора (4) любым пройденным на курсе способом. Привести выкладки процедуры синтеза и полученную матрицу K_1 .
- Синтезировать «feedforward»-компоненту K_2 компенсирующего регулятора (4). Привести выкладки процедуры синтеза и полученную матрицу K_2 .

- Выполнить компьютерное моделирование...
 - \circ ...разомкнутой системы (u=0) и построить графики вектора состояния генератора внешнего возмущения $w_f(t)$, вектора состояния объекта управления x(t) и виртуального выхода z(t).
 - \circ ...системы, замкнутой регулятором только с «feedback»-компонентой ($u = K_1 x$) и построить графики формируемого регулятором управления u(t), вектора состояния замкнутой системы x(t) и виртуального выхода z(t).
 - \circ ...системы, замкнутой компенсирующим регулятором (4) и построить графики формируемого регулятором управления u(t), вектора состояния замкнутой системы x(t) и виртуального выхода z(t).
- Проанализировать полученные результаты и сделать выводы.

Ожидаемые результаты:

- Схема моделирования замкнутой системы.
- Матрицы следящиего регулятора K_1 и K_2 .
- Графики сигналов $w_f(t)$, u(t), x(t) и z(t). Для наглядности рекомендуется:
 - Привести графики для случая разомкнутой системы на отдельных рисунках.
 - \circ Для наглядности рекомендуется разместить графики u(t) для случаев замкнутых систем на одной координатной плоскости.
 - \circ Для наглядности рекомендуется разместить графики z(t) для случаев замкнутых систем на одной координатной плоскости.
- Листинги аналитических расчетов.
- Выводы.

Задание 2. Следящий регулятор по состоянию.

В соответствии с вашим вариантом по **Таблице 1** взять матрицы A, B и C_Z из **Таблицы 2** и матрицы Γ и D_Z из **Таблицы 3** и рассмотреть систему

$$\dot{x} = Ax + Bu, \quad x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T, \tag{6}$$

генератор задающего сигнала

$$\dot{w}_g = \Gamma w_g, \quad w_g(0) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T \tag{7}$$

и виртуальный выход вида

$$z = C_Z x + D_Z w_q. (8)$$

Выполнить следующие шаги:

- Найти собственные числа матрицы Γ и определить характер внешнего возмущения (допускается использовать результаты, полученные в предыдущем **Задании**).
- Построить схему моделирования системы (6), замкнутой следящим регулятором

$$u = K_1 x + K_2 w_q, \tag{9}$$

обеспечивающим выполнение целевого условия (5) при внешнем воздействии, задаваемом генератором (7).

- Синтезировать «feedback»-компоненту K_1 следящего регулятора (9) любым пройденным на курсе способом. Привести выкладки процедуры синтеза и полученную матрицу K_1 .
- Синтезировать «feedforward»-компоненту K_2 следящего регулятора (9). Привести выкладки процедуры синтеза и полученную матрицу K_2 .
- Выполнить компьютерное моделирование...
 - \circ ...разомкнутой системы (u=0) и построить графики вектора состояния генератора задающего сигнала $w_g(t)$, вектора состояния объекта управления x(t) и виртуального выхода z(t) (допускается использовать результаты, полученные в предыдущем Задании).
 - \circ ...системы, замкнутой регулятором только с «feedback»-компонентой ($u=K_1x$) и построить графики формируемого регулятором управления u(t), вектора состояния замкнутой системы x(t) и виртуального выхода z(t).
 - \circ ...системы, замкнутой следящим регулятором (4) и построить графики формируемого регулятором управления u(t), вектора состояния замкнутой системы x(t) и виртуального выхода z(t).
- Проанализировать полученные результаты и сделать выводы.

Ожидаемые результаты:

- Схема моделирования замкнутой системы.
- Матрицы следящего регулятора K_1 и K_2 .

- Графики сигналов $w_g(t)$, u(t), x(t) и z(t). Для наглядности рекомендуется:
 - Привести графики для случая разомкнутой системы на отдельных рисунках.
 - \circ Для наглядности рекомендуется разместить графики u(t) для случаев замкнутых систем на одной координатной плоскости.
 - \circ Для наглядности рекомендуется разместить графики z(t) для случаев замкнутых систем на одной координатной плоскости.
- Листинги аналитических расчетов.
- Выводы.

Задание 3. Слежение и компенсация по выходу.

В соответствии с вашим вариантом по **Таблице 1** взять матрицы A, B, B_f, C и C_Z из **Таблицы 2** и матрицы Γ, D и D_g из **Таблицы 3** и рассмотреть систему

$$\begin{cases} \dot{x} = Ax + Bu + B_f w, \\ y = Cx + Dw, \end{cases} \qquad x(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T, \tag{10}$$

и генератор внешнего воздействия

$$\dot{w} = \Gamma w, \quad w(0) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T. \tag{11}$$

Выполнить следующие шаги:

- Найти собственные числа матрицы Г и определить характер внешнего возмущения (допускается использовать результаты, полученные в предыдущих **Заданиях**).
- Проверить пару $\begin{bmatrix} C & D \end{bmatrix}$ и $\begin{bmatrix} A & B_f \\ 0 & \Gamma \end{bmatrix}$ на обнаруживаемость и сделать вывод о возможности осуществления слежения и компенсации по выходу.
- Построить схему моделирования системы (10), замкнутой регулятором, состоящим из расширенного наблюдателя

$$\begin{bmatrix} \dot{\hat{x}} \\ \dot{\hat{w}} \end{bmatrix} = \bar{A} \begin{bmatrix} \hat{x} \\ \hat{w} \end{bmatrix} - Ly$$
 (12)

и закона управления

$$u = K_1 \hat{x} + K_2 \hat{w},\tag{13}$$

обеспечивающего выполнение целевого условия (5) при внешнем воздействии, задаваемом генератором (11).

- Синтезировать «feedback»-компоненту K_1 следящего регулятора (13) любым пройденным на курсе способом. Привести выкладки процедуры синтеза и полученную матрицу K_1 .
- Синтезировать матрицу коррекции L наблюдателя (12). Привести выкладки процедуры синтеза и полученную матрицу L.
- Рассмотреть два случая виртуального выхода:

$$\circ \ z = C_Z x + D_Z w;$$

$$\circ z = y.$$

Для каждого из вариантов виртуального выхода:

- \circ Синтезировать «feedforward»-компоненту K_2 следящего регулятора (13). Привести выкладки процедуры синтеза и полученную матрицу K_2 .
- \circ Выполнить компьютерное моделирование замкнутой системы с нулевыми начальными условиями наблюдателя. Построить график формируемого регулятором управления u(t), сравнительные графики $\begin{bmatrix} x(t) \\ w(t) \end{bmatrix}$ и $\begin{bmatrix} \hat{x}(t) \\ \hat{w}(t) \end{bmatrix}$, график ошибки наблюдателя $e(t) = \begin{bmatrix} x(t) \\ w(t) \end{bmatrix} \begin{bmatrix} \hat{x}(t) \\ \hat{w}(t) \end{bmatrix}$ и сравнительные графики фактического и виртуального выходов y(t) и z(t).
- \circ Представьте уравнения регулятора (12)-(13) в форме Вход-Состояние-Выход, где вход это y(t), а выход u(t). Найти собственные числа матрицы системы регулятора в форме В-С-В и сравнить с собственными числами матрицы генератора (11) Γ .
- Проанализировать полученные результаты и сделать выводы.

Ожидаемые результаты:

- Схема моделирования замкнутой системы.
- Матрица регулятора K_1 .
- Матрица наблюдателя L.
- Для каждого из рассмотренных виртуальных выходов z(t):
 - \circ Матрица регулятора K_2 .
 - \circ Графики сигналов u(t), $\begin{bmatrix} x(t) \\ w(t) \end{bmatrix}$, $\begin{bmatrix} \hat{x}(t) \\ \hat{w}(t) \end{bmatrix}$, невязки e(t) и фактического и виртуального выходов y(t) и z(t). Для повышения наглядности рекомендуется размещать графики y(t) и z(t) на одной координатной плоскости.
 - \circ Собственные числа матрицы \bar{A} .

- Листинги аналитических расчетов.
- Выводы.

Задание 4. (Необязательное) Тележка и меандр.

Рис. 1: Тележка

Рассмотреть объект управления «тележка», представленный на рисунке 1, и выполнить следующие шаги:

- Синтезировать математическую модель «тележки», приняв в качестве выхода линейную координату $y(t) = x_1(t)$.
- Принять задающий сигнал g(t) меандром (англ. square wave) с произвольной амплитудой и периодом (выбрать самостоятельно).
- Разложить сигнал g(t) в ряд Фурье и задаться конечным числом гармоник m для использования конечной суммы ряда в качестве приближенного сигнала $\bar{q}(t)$.
- Сформировать генератор типа (7), способный порождать выбранные гармоникикомпоненты $\bar{g}(t)$. Необходимый порядок генератора определить самостоятельно.
- Задаться виртуальным выходом z(t) в форме (8) и задать матрицы C_Z и D_Z такими, чтобы при выполнении целевого условия (5) было справедливо

$$\bar{g}(t) = D_Z w_g(t), \quad \lim_{t \to \infty} |\bar{g}(t) - y(t)| = 0.$$

Прокомментировать, какую задачу вы решаете таким образом.

- Синтезировать следящий регулятор (9), обеспечивающий выполнение целевого условия (5). Привести выкладки процедуры синтеза и полученные матрицы K_1 и K_2 .
- Выполнить компьютерное моделирование замкнутой системы и построить графики формируемого регулятором управления u(t), вектора состояния замкнутой системы x(t), задающего сигнала g(t), приближенного задающего сигнала $\bar{g}(t)$ и выхода y(t).
- Проанализировать полученные результаты и сделать выводы о достоинствах и недостатках такого регулятора.

Ожидаемые результаты:

- Математическая модель тележки.
- Параметры задающего сигнала g(t), частичная сумма ряда Фурье $\bar{g}(t)$ для его приближения.
- Параметры генератора (7).
- Выбранный виртуальный выход z(t) с указанием значений матриц C_Z и D_Z .
- Матрицы регулятора K_1 и K_2 .
- Графики сигналов u(t), x(t), g(t), $\bar{g}(t)$ и y(t). Для повышения наглядности рекомендуется размещать графики q(t), $\bar{q}(t)$ и y(t) на одной координатной плоскости.
- Листинги аналитических расчетов.
- Выводы.

Контрольные вопросы для подготовки к защите:

- 1. Какие задачи теории автоматического управления вы знаете? Как формулируются их постановки задач?
- 2. Какие виды внешних воздействий корректно рассматривать в рамках задач слежения и компенсации (т.е. какие виды сигналов возможно отследить и скомпенсировать)?
- 3. Как формулируется теорема, на основании которой построен рассмотренный в данной работе метод?
- 4. Какой вид должен принять виртуальный выход (*целевая переменная*) при решении задачи слежения рассмотренным в данной работе методом? Задачи компенсации?
- 5. В чем в широком смысле заключается принцип внутренней модели? В каком случае он себя проявляет при управлении рассмотренным в данной работе методом?
- 6. Какие условия должны быть соблюдены в объекте управления и в генераторе внешнего воздействия, чтобы были возможны слежение и компенсация по выходу рассмотренным в данной работе методом?
- 7. На какие составляющие традиционно разбиваются следящие и компенсирующие регуляторы? В чем суть данных составляющих, какие задачи они решают?

Таблица 1: Распределение условий Заданий по Вариантам

Вариант	ОУ	Генератор	Вариант	ОУ	Генератор	Вариант	ОУ	Генератор
1	№ 1	<i>№</i> 6	11	№ 6	№ 11	21	№ 11	№ 1
2	№ 2	<i>№</i> 7	12	№ 7	№ 12	22	№ 12	№ 2
3	№ 3	<i>№</i> 8	13	№ 8	№ 13	23	№ 13	№ 3
4	№ 4	№ 9	14	№ 9	№ 14	24	№ 14	№ 4
5	№ 5	№ 10	15	№ 10	№ 15	25	№ 15	№ 5
6	№ 1	№ 11	16	№ 6	<i>№</i> 1	26	№ 11	<i>№</i> 6
7	№ 2	№ 12	17	№ 7	<i>№</i> 2	27	№ 12	№ 7
8	№ 3	№ 13	18	№ 8	<i>№</i> 3	28	№ 13	№ 8
9	№ 4	№ 14	19	№ 9	<i>№</i> 4	29	№ 14	№ 9
10	№ 5	№ 15	20	№ 10	№ 5	30	№ 15	№ 10

Таблица 2: Исходные данные для Заданий (объект) (номера 1-5)

Nº	A	В	B_f	C^{\intercal}	C_Z^\intercal
1	$\begin{bmatrix} 3 & 5 & 4 \\ -2 & -4 & -5 \\ 2 & 2 & 3 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -2 & 0 & 0 & 2 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -2\\-1\\0 \end{bmatrix}$	$\begin{bmatrix} 2\\3\\3 \end{bmatrix}$
2	$\begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} -4 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$	$\begin{bmatrix} -2\\1\\-1 \end{bmatrix}$
3	$\begin{bmatrix} 3 & 4 & 2 \\ -4 & -5 & -4 \\ 4 & 4 & 3 \end{bmatrix}$	$\begin{bmatrix} -3\\7\\-7 \end{bmatrix}$	$\begin{bmatrix} -2 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 2\\3\\3 \end{bmatrix}$
4	$\begin{bmatrix} 7 & 0 & 10 \\ 4 & -1 & 4 \\ -4 & -2 & -7 \end{bmatrix}$	$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$	$ \begin{bmatrix} -2 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{bmatrix} $	$\begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$
5	$\begin{bmatrix} 5 & 6 & 3 \\ -6 & -7 & -6 \\ 6 & 6 & 5 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{bmatrix} -2 & 0 & 0 & 3 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} $	$\begin{bmatrix} -2 \\ -3 \\ -2 \end{bmatrix}$	$\begin{bmatrix} 2\\3\\1 \end{bmatrix}$

Таблица 2: Исходные данные для Заданий (объект) (номера 6-10)

Nº	A	В	B_f	C^{\intercal}	C_Z^\intercal
6	$\begin{bmatrix} 11 & -2 & 13 \\ 6 & -1 & 6 \\ -6 & -1 & -8 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{bmatrix} -6 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 \end{bmatrix} $	$\begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -2\\3\\-1 \end{bmatrix}$
7	$\begin{bmatrix} 5 & 8 & 5 \\ -6 & -9 & -8 \\ 6 & 6 & 5 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} -3 & 0 & 0 & 1 \\ 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -3 \\ -2 \end{bmatrix}$	$\begin{bmatrix} -2\\-1\\-1\end{bmatrix}$
8	$\begin{bmatrix} 13 & 0 & 15 \\ 6 & 1 & 6 \\ -6 & -3 & -8 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} -3 & 0 & 0 & 1 \\ 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -3 \\ -2 \end{bmatrix}$	$\begin{bmatrix} -2\\-1\\-1\end{bmatrix}$
9	$\begin{bmatrix} 4 & 6 & 4 \\ -4 & -6 & -6 \\ 4 & 4 & 4 \end{bmatrix}$	$\begin{bmatrix} 4 \\ -1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -2 & 0 & -1 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -2\\ -3\\ -2 \end{bmatrix}$	$\begin{bmatrix} -2 \\ -3 \\ -1 \end{bmatrix}$
10	$ \begin{bmatrix} 4 & 1 & 6 \\ 2 & 0 & 2 \\ -2 & -2 & -4 \end{bmatrix} $	$\begin{bmatrix} 2 \\ -2 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$

Таблица 2: Исходные данные для Заданий (объект) (номера 6-10)

№	A	В	B_f	C^{\intercal}	C_Z^\intercal
11	$\begin{bmatrix} 7 & 10 & 5 \\ -10 & -13 & -10 \\ 10 & 10 & 7 \end{bmatrix}$	$\begin{bmatrix} 2\\1\\-1 \end{bmatrix}$	$\begin{bmatrix} 0 & -2 & -1 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -2\\ -3\\ -2 \end{bmatrix}$	$\begin{bmatrix} -2\\-1\\-1\end{bmatrix}$
12	$\begin{bmatrix} 17 & -5 & 20 \\ 10 & -3 & 10 \\ -10 & 0 & -13 \end{bmatrix}$	$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -2\\2\\-1 \end{bmatrix}$	$\begin{bmatrix} 2\\1\\3 \end{bmatrix}$
13	$\begin{bmatrix} 5 & 6 & 4 \\ -4 & -5 & -6 \\ 4 & 4 & 5 \end{bmatrix}$	$\begin{bmatrix} 4 \\ -7 \\ 7 \end{bmatrix}$	$\begin{bmatrix} 0 & -3 & -2 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 2\\3\\2 \end{bmatrix}$	$\begin{bmatrix} -2\\-1\\-1\end{bmatrix}$
14	$\begin{bmatrix} 12 & -1 & 14 \\ 6 & 0 & 6 \\ -6 & -2 & -8 \end{bmatrix}$	$\begin{bmatrix} 11 \\ 7 \\ -7 \end{bmatrix}$	$\begin{bmatrix} 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -2\\2\\-1 \end{bmatrix}$	$\begin{bmatrix} 2\\1\\3 \end{bmatrix}$
15	$\begin{bmatrix} 8 & 1 & 11 \\ 4 & 0 & 4 \\ -4 & -3 & -7 \end{bmatrix}$	$\begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -2\\0\\-3 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$

Таблица 3: Исходные данные для Заданий (генератор) (номера 1-5)

$N_{\overline{0}}$	Γ	D^{\intercal}	D_Z^\intercal
1	$\begin{bmatrix} 25 & 8 & -20 & 13 \\ -38 & -11 & 30 & -18 \\ 40 & 13 & -33 & 21 \\ 38 & 12 & -32 & 19 \end{bmatrix}$	$\begin{bmatrix} 12 \\ 4 \\ -10 \\ 6 \end{bmatrix}$	$\begin{bmatrix} -10 \\ -2 \\ 8 \\ -5 \end{bmatrix}$
2	$\begin{bmatrix} 0 & 1 & 0 & 1 \\ -26 & -7 & 20 & -11 \\ 0 & 1 & -1 & 2 \\ 16 & 4 & -14 & 8 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -4 \\ -2 \\ 4 \\ -3 \end{bmatrix}$
3	$\begin{bmatrix} -5 & 0 & 4 & -1 \\ -34 & -9 & 26 & -14 \\ -8 & -1 & 5 & -1 \\ 18 & 4 & -16 & 9 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -4 \\ -2 \\ 4 \\ -3 \end{bmatrix}$
4	$\begin{bmatrix} -40 & 16 & 9 & -7 \\ -64 & 25 & 14 & -12 \\ -26 & 11 & 7 & -3 \\ 48 & -18 & -14 & 8 \end{bmatrix}$	$\begin{bmatrix} 6 \\ -6 \\ -4 \\ -5 \end{bmatrix}$	$\begin{bmatrix} -8 \\ -2 \\ 8 \\ -5 \end{bmatrix}$
5	$\begin{bmatrix} 35 & 10 & -28 & 17 \\ -22 & -7 & 18 & -12 \\ 56 & 17 & -45 & 27 \\ 34 & 12 & -28 & 17 \end{bmatrix}$	$\begin{bmatrix} 12 \\ 4 \\ -10 \\ 6 \end{bmatrix}$	$\begin{bmatrix} -6 \\ -2 \\ 4 \\ -3 \end{bmatrix}$

Таблица 3: Исходные данные для Заданий (генератор) (номера 6-10)

№	Γ	D^{\intercal}	D_Z^\intercal
6	$\begin{bmatrix} 20 & 5 & -16 & 9 \\ 6 & 1 & -4 & 1 \\ 32 & 9 & -25 & 14 \\ 8 & 4 & -6 & 4 \end{bmatrix}$	$\begin{bmatrix} -2\\0\\2\\-1 \end{bmatrix}$	$\begin{bmatrix} -4 \\ -2 \\ 4 \\ -3 \end{bmatrix}$
7	$\begin{bmatrix} 25 & 6 & -20 & 11 \\ 14 & 3 & -10 & 4 \\ 40 & 11 & -31 & 17 \\ 6 & 4 & -4 & 3 \end{bmatrix}$	$\begin{bmatrix} 8 \\ 2 \\ -6 \\ 4 \end{bmatrix}$	$\begin{bmatrix} -20 \\ -6 \\ 16 \\ -9 \end{bmatrix}$
8	$\begin{bmatrix} 35 & 9 & -28 & 16 \\ 4 & 0 & -2 & -1 \\ 56 & 16 & -44 & 25 \\ 18 & 8 & -14 & 9 \end{bmatrix}$	$\begin{bmatrix} -8 \\ -2 \\ 6 \\ -3 \end{bmatrix}$	$\begin{bmatrix} 10 \\ 2 \\ -8 \\ 5 \end{bmatrix}$
9	$\begin{bmatrix} 25 & 40 & 18 & -30 \\ -17 & -27 & -13 & 20 \\ -10 & -14 & -7 & 14 \\ -7 & -10 & -6 & 9 \end{bmatrix}$	$\begin{bmatrix} -1\\ -2\\ -1\\ 2 \end{bmatrix}$	$\begin{bmatrix} -4\\-6\\-2\\5 \end{bmatrix}$
10	$\begin{bmatrix} 25 & 40 & 16 & -30 \\ -9 & -14 & -6 & 10 \\ -5 & -8 & -4 & 8 \\ 6 & 10 & 3 & -7 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \\ 1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 4 \\ 2 \\ -3 \end{bmatrix}$

Таблица 3: Исходные данные для Заданий (генератор) (номера 11-15)

№	Γ	D^\intercal	D_Z^\intercal
11	$\begin{bmatrix} 35 & 56 & 22 & -42 \\ -11 & -17 & -7 & 12 \\ -6 & -10 & -5 & 10 \\ 11 & 18 & 6 & -13 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \\ 1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 4 \\ 2 \\ -3 \end{bmatrix}$
12	$\begin{bmatrix} -25 & 17 & 10 & -7 \\ -40 & 27 & 14 & -10 \\ -18 & 13 & 7 & -6 \\ -30 & 20 & 14 & -9 \end{bmatrix}$	$\begin{bmatrix} -4\\4\\-6\\22 \end{bmatrix}$	$\begin{bmatrix} 16 \\ -6 \\ 4 \\ -7 \end{bmatrix}$
13	$\begin{bmatrix} -25 & 9 & 5 & 6 \\ -40 & 14 & 8 & 10 \\ -16 & 6 & 4 & 3 \\ -30 & 10 & 8 & 7 \end{bmatrix}$	$\begin{bmatrix} 4 \\ -4 \\ 6 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 2\\-2\\-10\\7 \end{bmatrix}$
14	$\begin{bmatrix} -35 & 11 & 6 & 11 \\ -56 & 17 & 10 & 18 \\ -22 & 7 & 5 & 6 \\ -42 & 12 & 10 & 13 \end{bmatrix}$	$\begin{bmatrix} -6\\6\\4\\-5 \end{bmatrix}$	$\begin{bmatrix} -8\\8\\-12\\3 \end{bmatrix}$
15	$\begin{bmatrix} -40 & 16 & 9 & 7 \\ -64 & 25 & 14 & 12 \\ -26 & 11 & 7 & 3 \\ -48 & 18 & 14 & 8 \end{bmatrix}$	$\begin{bmatrix} -12\\2\\2\\6 \end{bmatrix}$	$\begin{bmatrix} 8 \\ -8 \\ 12 \\ -3 \end{bmatrix}$