Unidade 4

Camada de Rede

Prof. Ewerton Salvador

Baseado nos slides elaborados por J. F. Kurose e K. W. Ross

Serviços e Protocolos da Camada de Rede

- segmento de transporte do host origem a destino
 - emissor: encapsula segmentos em datagramas, passa para a camada de enlace
 - receptor: entrega segmentos ao protocolo da camada de transporte
- protocolos da camada de rede em todos os dispositivos de Internet: hosts, roteadores
- roteadores:
 - examina campos de cabeçalho em todos os datagramas IP que passam
 - move datagramas de portas de entrada para portas de saída para transferir datagramas ao longo do caminho

Duas funções-chave da Camada de Rede

funções de camada de rede:

- repasse: mover pacotes do enlace de entrada de um roteador para o enlace de saída apropriado do roteador
- roteamento: determinar a rota tomada pelos pacotes da origem para o destino
 - algoritmos de roteamento

analogia: fazer uma viagem

- repasse: processo de passagem por cruzamento único
- roteamento: processo de planejamento de viagem da origem ao destino

Plano de Dados, Plano de Controle

Plano de dados:

- função local no roteador
- determina como o datagrama que chega na porta de entrada do roteador é repassado para a porta de saída

Plano de controle

- lógica em toda a rede
- determina como o datagrama é roteado entre roteadores ao longo do caminho final do host de origem para o host de destino
- duas abordagens de plano de controle:
 - algoritmos de roteamento tradicionais: implementado nos roteadores
 - software-defined networking (SDN): implementado em servidores (remotos)

Plano de controle no roteador

componentes individuais do algoritmo de roteamento em todo e qualquer roteador interagem no plano de controle

Plano de controle SDN

controlador remoto calcula e instala tabelas de encaminhamento em roteadores

Modelo de serviço de rede

Pergunta: Qual modelo de serviço para "canal" transportando datagramas do remetente para o receptor?

Exemplos de serviços para datagramas individuais:

- entrega garantida
- entrega garantida com menos de 40 mseg de atraso

Exemplos de serviços para um fluxo de datagramas:

- entrega ordenada de datagramas
- largura de banda mínima garantida para fluxo
- restrições a alterações no espaçamento entre pacotes

Modelo de serviço de camada de rede

A raudtatura	Madala	Garantias de Quality of Service (QoS)?				
Arquitetura de rede		Bandwidth	Loss	Order	Timing	
Internet	melhor esforço	nenhuma	não	não	não	

Modelo de serviço de "melhor esforço" da Internet

Sem garantias sobre:

- i. entrega bem-sucedida do datagrama ao destino
- ii. Entrega no tempo e em ordem
- iii. largura de banda disponível para o fluxo final

Modelo de serviço de camada de rede

	A raujtatura	Modele	Garantias de Quality of Service (QoS)?			
4	Arquitetura de rede	Modelo de Serviço	Bandwidth	Loss	Order	Timing
	Internet	melhor esforço	nenhuma	não	não	não
	ATM	Taxa de bit constant.	Taxa constant.	sim	sim	sim
	ATM	Taxa de bit dispon.	Garantia minim.	não	sim	não
	Internet	Intserv Guaranteed (RFC 1633)	sim	sim	sim	sim
	Internet	Diffserv (RFC 2475)	possível	possível	possível	não

Reflexões sobre o "melhor esforço"

- Simplicidade do mecanismo permitiu que a Internet fosse amplamente implantada
- Provisionamento suficiente de largura de banda permite que o desempenho de aplicações de tempo real (ex.:, voz interativa, vídeo) seja "bom o suficiente" para "a maior parte do tempo"
- Serviços distribuídos replicados na camada de aplicação (datacenters, redes de distribuição de conteúdo) conectando-se perto das redes dos clientes. Permite que serviços sejam fornecidos a partir de vários locais
- Controle de congestionamento de serviços "elásticos" ajuda

É difícil argumentar contra o sucesso do modelo de serviço de melhor esforço

Visão geral da arquitetura do roteador

visão de alto nível da arquitetura genérica do roteador:

Visão geral da arquitetura do roteador

Visão de uma analogia da arquitetura genérica do roteador:

Funções da porta de entrada

camada de enlace: e.g., Ethernet

comutação descentralizada:

- usa valores de campo de cabeçalho, procura por porta de saída usando tabela de repasse na porta de entrada
- objetivo: processamento completo da porta de entrada na 'velocidade da linha'
- enfileiramento de portas de entrada: se datagramas chegam mais rápido do que a taxa de encaminhamento para comutação

Funções da porta de entrada

- de repasse na porta de entrada

 encaminhamento baseado em destino:
- encaminhamento baseado em destino: encaminhamento com base apenas no endereço IP de destino (tradicional)
- encaminhamento generalizado: encaminhar com base em qualquer conjunto de valores de campo de cabeçalho

Encaminhamento baseado em destino

forwarding table	
Destination Address Range	Link Interface
11001000 00010111 000 <mark>10000 00000000</mark>	Λ
11001000 00010111 000 <mark>10000 00000</mark> 100 through	3 -
11001000 00010111 000 <mark>10000 00000</mark> 111	
11001000 00010111 000 <mark>11000 11111111</mark>	
11001000 00010111 000 <mark>11001 00000000</mark> through	2
11001000 00010111 000 <mark>11111 11111111</mark>	
otherwise	3

P: Mas o que acontece se os intervalos não se dividirem tão bem?

longest prefix match

ao procurar a entrada da tabela de repasse para endereço de destino, use o prefixo de endereço mais longo que corresponda ao endereço de destino.

Destination A	Link interface			
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	00010111	00011***	*****	2
otherwise	3			

00010110

10100001

qual interface?

qual interface?

11001000

11001000 00010111 00011000 10101010

00010111

□ longest prefix match

ao procurar a entrada da tabela de repasse para endereço de destino, use o prefixo de endereço mais longo que corresponda ao endereço de destino.

Destination A	Link interface			
11001000	00010111	00010***	*****	0
11001000	000.0111	00011000	*****	1
11001000	match! 1	00011***	*****	2
otherwise				3

exemplos:

11001000 00010111 00010 10 10100001 qual interface?

11001000 00010111 00011000 10101010 qual interface?

□ longest prefix match

ao procurar a entrada da tabela de repasse para endereço de destino, use o prefixo de endereço mais longo que corresponda ao endereço de destino.

match!

00010111

Destination A	Link interface			
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	00010111	00011***	*****	2
otherwise	<u> </u>			3

00010110

00011000

exemplos:

11001000

10100001 qual interface?

10101010

qual interface?

longest prefix match

ao procurar a entrada da tabela de repasse para endereço de destino, use o prefixo de endereço mais longo que corresponda ao endereço de destino.

Destination A	Link interface			
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	0000111	00011***	*****	2
otherwise	match!			3
	macerr.			

00011000

exemplos

11001000

00010111

0100001 qual interface?

10101010 qual interface?

- Veremos por que a correspondência de prefixo mais longa é usada em breve, quando estudarmos o endereçamento
- Correspondência de prefixo mais longa: geralmente executada usando memórias endereçáveis de conteúdo ternário (TCAMs)
 - necessárias outras técnicas além da busca linear simples por uma tabela grande
 - conteúdo endereçável: endereço presente para TCAM: recuperar endereço em um ciclo de relógio, independentemente do tamanho da tabela
 - Cisco Catalyst: ~1M de entradas na tabela de roteamento no TCAM

Elemento de comutação

- transfere pacote do enlace de entrada para o enlace de saída apropriado
- taxa de comutação: taxa na qual os pacotes podem ser transferidos de entradas para saídas
 - frequentemente medido como múltiplo da taxa de linha de entrada/saída
 - N entradas: taxa de comutação N vezes taxa de linha desejável

Elemento de comutação

- transfere pacote do enlace de entrada para o enlace de saída apropriado
- taxa de comutação: taxa na qual os pacotes podem ser transferidos de entradas para saídas
 - frequentemente medido como múltiplo da taxa de linha de entrada/saída
 - N entradas: taxa de comutação N vezes taxa de linha desejável
- três tipos principais de elementos de comutação:

Comutação via memória

Roteadores de primeira geração:

- computadores tradicionais com comutação sob controle direto da CPU
- pacote copiado para a memória do sistema
- velocidade limitada pela largura de banda da memória (datagrama cruza o barramento duas vezes)

Comutação via barramento

- datagrama da memória da porta de entrada para a memória da porta de saída por meio de um barramento compartilhado
- contenção de barramento: velocidade de comutação limitada pela largura de banda do barramento
- barramento de 32Gbps, Cisco 5600: velocidade suficiente para roteadores de acesso

Comutação via rede de interconexão

- Crossbar, redes Clos e outras redes de interconexão inicialmente desenvolvidas para conectar processadores em sistemas multiprocessador
- switch multiestágio: nxn comuta entre múltiplos estágios de switches menores

- fragmenta datagrama em células de comprimento fixo na entrada
- Comuta células através do elemento de comutação, remonta datagrama na saída

switch multiestágio 8x8 construído a partir de switches menores

Comutação via rede de interconexão

- escala usando vários "planos" de comutação em paralelo:
 - expansão via paralelismo
- roteador Cisco CRS:
 - Unidade básica: 8 planos de comutação
 - cada plano: redede interconexão de3 estágios
 - até centenas de Tbps de capacidade de comutação

Enfileiramento nas portas de entrada

- Se o elemento de comutação for mais lento do que as portas de entrada combinadas, poderá ocorrer filas de entrada
 - atraso e perda de fila devido ao estouro de buffer de entrada!
- Bloqueio Head-of-the-Line (HoL): datagrama na frente da fila impede que outros na fila avancem

contenção da porta de saída: apenas um datagrama vermelho pode ser transferido. O pacote vermelho inferior está **bloqueado**

um pacote depois: o pacote verde experimenta bloqueio HOL

Enfileiramento de portas de saída

- Buffering necessário quando os datagramas chegam da comutação mais rápido do que a taxa de transmissão do link.
- Política de descarte: quais datagramas descartar se não houver buffers livres?
- Disciplina de escalonamento escolhe entre datagramas enfileirados para transmissão

Datagramas podem ser perdidos devido a congest., falta de buffers

Escalonamento prioritário – quem obtém melhor desempenho, neutralidade de rede

Enfileiramento de portas de saída

- bufferização quando a taxa de chegada via comutador excede a velocidade da linha de saída
- enfileiramento (atraso) e perda devido ao overflow do buffer da porta de saída!

Quanto buffer é "suficiente"?

- Regra prática da RFC 3439: buferização media é igual ao RTT "típico" (por exemplo 250 msec) vezes capacidade C do enlace
 - e.g., C = enlace de 10 Gbps: 2.5 Gbit buffer
- recomendação mais recente: para N fluxos, buffer igual a

- buffer em excesso pode aumentar atrasos (particularmente em roteadores domésticos)
 - RTTs longos: baixo desempenho para aplicações em tempo real, responsividade lenta do TCP frente a um congestionamento
 - Lembre-se do controle de congestionamento baseado em atraso: "manter o canal cheio, mas não mais do que cheio"

Gerenciamento de buffer

Abstração: fila

Gerenciamento de buffer:

- descarte: qual pacote descartar quando os buffers estiverem cheios
 - Descarte de cauda: descarta pacote chegando
 - Prioridade: descartar com base na prioridade
 - marcação: quais pacotes marcar para sinalizar congestionamento (ECN, RED)

Política de escalonamento: FCFS

Escalonamento de pacotes:

Decide qual pacote enviar em seguida no link

- First Come, First Served
- Prioridade
- Round Robin
- Weighted Fair Queueing (WFQ)

FCFS: pacotes transmitidos por ordem de chegada à porta de saída

também conhecido como:
 First-in-first-out (FIFO)

Política de escalonamento: Prioridade

Escalonamento por prioridade:

 tráfego de chegada classificado, enfileirado por classe

qualquer campo de cabeçalho
 pode ser usado para classificação

- enviar pacote da fila de prioridade mais alta que tenha pacotes armazenados em buffer
 - FCFS dentro da classe de prioridade

Política de escalonamento: Round Robin

Escalonamento Round Robin (RR):

- tráfego de chegada classificado, enfileirado por classe
 - qualquer campo de cabeçalho pode ser usado para classificação
- verifica ciclicamente as filas de classe, enviando um pacote completo de cada classe (se disponível) na sua vez

Política de escalonamento: Weighted Fair Queueing

Enfileiramento Justo Ponderado (WFQ):

- Round Robin generalizado
- cada classe i tem peso w_i, e recebe quantidade ponderada de serviço em cada ciclo

 garantia de largura de banda minima (por classe de tráfego)

Neutralidade da Rede

O que é Neutralidade da Rede?

- Aspecto técnico: como um ISP deve dividir/alocar seus recursos
 - escalonamento de pacote e gerenciamento de buffer são os mecanismos
- Aspectos sociais e econômicos
 - Proteger liberdade de expressão
 - Incentivar inovação/competição
- Aplicação de leis e politicas

Países diferentes possuem interpretações diferentes sobre Neutralidade da Rede

Neutralidade da Rede

Nos Estados Unidos

- Neutralidade da Rede imposta em 2015
- Revogada em 2017
- FCC iniciou em 2023 um processo para restauração da Neutralidade da Rede

No Brasil

- Marco Civil da Internet (2014) estabelece a Neutralidade da Rede como um de seus princípio
- Permite discriminar tráfego apenas em casos de ser um "requisito indispensável à prestação do serviço" ou em caso de "priorização de serviço de emergência"

Camada de rede: Internet

Funções da camada de rede do host ou roteador:

Formato de datagrama IP

número de versão do protocol do IP comprimento do cabeçalho (bytes) "tipos" de serviço:

- diffserv (0:5)
- ECN (6:7)

TTL: máximo de saltos remanescentes (decrementado em cada roteador) Protocolo da camada superior(e.g., TCP or UDP)

overhead

- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes +overhead da camada de aplicação para TCP+IP

dados de payload (comprimento variável, tipicamente um segmento TCP ou UDP)

e.g., timestamp, registro da rota tomada

Endereçamento IP: introdução

 endereço IP: identificador de 32 bits associado a cada interface de host ou roteador

- interface: conexão entre host/roteador e enlace físico
- roteadores normalmente têm várias interfaces
- host normalmente tem uma ou duas interfaces (e.g., ethernet, wireless 802.11)

notação decimal separada por pontos:

Endereçamento IP: introdução

 endereço IP: identificador de 32 bits associado a cada interface de host ou roteador

 interface: conexão entre host/roteador e enlace físico

- roteadores normalmente têm várias interfaces
- host normalmente tem uma ou duas interfaces (e.g., ethernet, wireless 802.11)

notação de endereço IP decimal:

Endereçamento IP: introdução

conectadas pela estação base

WiFi

Sub-redes

O que é uma sub-rede?

interfaces de dispositivos
 que podem alcançar
 fisicamente umas às outras
 sem passar por um roteador
 interveniente

Os endereços IP têm estrutura:

 parte da sub-rede: dispositivos na mesma sub-rede têm os mesmos bits mais significativos

 parte do host: bits menos significativos restantes

rede composta por 3 sub-redes

Sub-redes

Receita para definir sub-redes:

- Desanexar cada interface de seu host ou roteador, criando "ilhas" de redes isoladas
- Cada rede isolada é chamada de sub-rede

máscara de sub-rede: /24 (24 bits mais significativos: parte da sub-rede do endereço IP)

Sub-redes

- Onde estão as
- Quais são os endereços de

223.1.1.2

Endereçamento IP: CIDR

CIDR: Classless InterDomain Routing (pronuncia "cider") – Roteamento Interdomínio sem classe

- parte da sub-rede do endereço de comprimento arbitrário
- formato de endereço: a.b.c.d/x, onde x é o número de bits na parte de sub-rede do endereço

11001000 00010111 00010000 00000000

200.23.16.0/23

Endereçamento IP: CIDR

Estrutura de endereço IP

Endereçamento IP: CIDR

Estrutura de endereço IP

Endereço de rede

Endereço de broadcast

Endereços IP: como obter um?

- Na verdade, são duas perguntas:
 - 1. Como um host obtém o endereço IP dentro de sua rede (parte do host do endereço)?
 - Como uma rede obtém o endereço IP para si mesma (parte da rede do endereço)
- Como o host obtém o endereço IP?
 - Codificado pelo sysadmin no arquivo de config (e.g., /etc/rc.config no UNIX)
 - DHCP: Dynamic Host Configuration Protocol: obtém o endereço dinamicamente do servidor
 - "plug-and-play"

DHCP: Dynamic Host Configuration Protocol

Objetivo: host obtém dinamicamente o endereço IP do servidor de rede quando ele "ingressa" na rede

- pode renovar sua "locação" no endereço em uso
- permite a reutilização de endereços (mantém o endereço apenas enquanto estiver conectado/ligado)
- suporte para vários usuários móveis que ingressam/saem da rede
- Visão geral do DHCP:
 - hosts fazem broadcast de mensagem de descoberta DHCP (opcional)
 - servidor DHCP responde com a mensagem de oferta DHCP (opcional)
 - host solicita endereço IP: mensagem de requisição DHCP
 - servidor DHCP envia o endereço: mensagem ack DHCP

Cenário cliente-servidor DHCP

Cenário cliente-servidor DHCP

DHCP: mais do que endereços IP

O DHCP pode retornar mais do que apenas o endereço IP alocado na sub-rede:

- endereço do roteador de primeiro salto para o cliente
- nome e endereço IP do servidor DNS
- máscara de rede (indicando partes, redes x host, do endereço)

DHCP: exemplo

- Laptop usará DHCP para obter endereço IP, endereço do roteador de primeiro salto, endereço do servidor DNS.
- Mensagem DHCP REQUEST encapsulada em UDP, encapsulada em IP, encapsulada em Ethernet
- Transmissão de quadro Ethernet (dest: FFFFFFFFFFFF) na LAN, recebida no roteador que executa o servidor DHCP
- Ethernet de-muxe para IP de-muxe,
 UDP de-muxe para DHCP

DHCP: exemplo

- O servidor DHCP cria o ACK DHCP contendo o endereço IP do cliente, o endereço IP do roteador de primeiro salto para o cliente, o nome e o endereço IP do servidor DNS
- resposta encapsulada do servidor DHCP encaminhada para o cliente, de-muxing até DHCP no cliente
- o cliente agora sabe seu endereço IP, nome e endereço IP do servidor DNS, endereço IP de seu roteador de primeiro salto

Endereços IP: como obter um?

Pergunta: como a rede obtém a parte da sub-rede do endereço IP?

Resposta: obtém a parte alocada do espaço de endereços do ISP

Bloco do ISP 11001000 00010111 00010000 00000000 200.23.16.0/20

O ISP pode então alocar seu espaço de endereço em 8 blocos:

Organização 0 <u>11001000</u> 00010111 00010000 000000000 200.23.16.0/23

Organização 1 <u>11001000 00010111 0001001</u>0 00000000 200.23.18.0/23

Organização 2 <u>11001000 00010111 0001010</u>0 00000000 200.23.20.0/23

• • •

Organização 7 <u>11001000 00010111 0001111</u>0 00000000 200.23.30.0/23

Endereços hierárquico: agregação de rotas

O endereçamento hierárquico permite anúncio eficiente das informações de roteamento:

Endereços hierárquico: rotas mais específicas

- A organização 1 muda de Fly-By-Night-ISP para ISPs-R-Us
- ISPs-R-Us agora anuncia rota mais específica para a Organização 1

Endereços hierárquico: rotas mais específicas

- A organização 1 muda de Fly-By-Night-ISP para ISPs-R-Us
- ISPs-R-Us agora anuncia rota mais específica para a Organização 1

Endereçamento IP: considerações finais

Pergunta: como um ISP obtém um bloco de endereços?

Resposta: ICANN: Internet Corporation for Assigned Names and Numbers

http://www.icann.org

- aloca endereços IP por 5 regional registries (RRs) (os quais podem fazer alocações para registros locais)
- gerencia zona raiz do DNS, incluindo delegação do gerenciamento de TLDs individuais (.com, .edu, ...)

Endereçamento IP: considerações finais

Pergunta: existem endereços IP de 32 bits suficientes?

- ICANN alocou o último bloco de endereços IPv4 para RRs em 2011
- NAT (estudado na próxima aula) ajuda com o problema de exaustão do espaço de endereços IPv4
- IPv6 possui espaço de endereços de 128 bits

"Quem diabos sabia o quanto de espaço de endereços precisávamos?" Vint Cerf (refletindo sobre a decisão de tornar o tamanho do endereço IPv4 32 bits)

NAT (Network Address Translation): todos os dispositivos na rede local compartilham apenas um endereço IPv4 no que diz respeito ao mundo externo

todos os datagramas que saem da rede local têm o mesmo endereço IP NAT origem: 138.76.29.7, mas nº de _____ porta origem diferentes

datagramas com origem ou destino nesta rede têm endereço 10.0.0/24 para origem, destino (como de costume)

 Todos os dispositivos na rede local têm endereços de 32 bits em um espaço de endereço IP "privado" (prefixos 10/8, 172.16/12, 192.168/16) que só podem ser usados na rede local

Vantagens:

- Necessário apenas um endereço IP do ISP para todos os dispositivos
- Pode alterar endereço de host na rede sem notificar o mundo externo
- Pode alterar o ISP sem alterar endereços de dispositivos de rede local
- Segurança: dispositivos dentro da rede local não são endereçáveis/visíveis diretamente, pelo mundo exterior

Implementação: o roteador NAT deve (de forma transparente):

- Datagramas de saída: substituir (endereço IP de origem, número de porta) de cada datagrama de saída para (endereço IP NAT, novo número de porta)
 - Clientes/servidores remotos responderão usando (endereço IP NAT, novo número de porta) como endereço de destino
- Lembrar (na tabela de tradução NAT) cada par (endereço IP de origem, número de porta) para (endereço IP NAT, novo número de porta)
- Datagramas de entrada: substituir (endereço IP NAT, novo número de porta) nos campos de destino de cada datagrama de entrada com correspondente (endereço IP de origem, número de porta) armazenado na tabela NAT

NAT é controverso:

- roteadores "devem" processar apenas até a camada 3
- "escassez" de endereços deve ser resolvida pelo IPv6
- viola o argumento de ponta a ponta (manipulação do número de porta pelo dispositivo da camada de rede)
- NAT Transversal (NAT-T): e se um cliente externo quiser se conectar ao servidor atrás de um NAT? (e.g. P2P, videoconferência, jogos eletrônicos)
- Mas o NAT veio para ficar:
 - amplamente utilizado em redes domésticas e institucionais, redes celulares 4G/5G

IPv6: motivação

 Motivação inicial: o espaço de endereços IPv4 de 32 bits seria esgotado

- Motivação adicional:
 - velocidade de processamento/encaminhamento: cabeçalhos de comprimento fixo de 40 bytes
 - permitir o tratamento de diferentes camadas de rede de "fluxos"

Formato de datagrama IPv6

O que está faltando (em comparação com o IPv4):

- sem soma de verificação (para acelerar o processamento em roteadores)
- sem fragmentação/remontagem
- sem opções (disponível como protocolo de camada superior)

Transição do IPv4 para o IPv6

- Nem todos os roteadores podem ser atualizados simultaneamente
 - Como a rede funcionará com roteadores IPv4 e IPv6 mistos?
- Tunelamento: datagrama IPv6 transportado como carga útil no datagrama IPv4 entre roteadores IPv4 ("pacote dentro de um pacote")
 - Tunelamento usado extensivamente em outros contextos (4G/5G)

Tunelamento e encapsulamento

Ethernet conectando dois roteadores IPv6:

quadro da camada de enlace

IPv6 IPv6 IPv6 IPv6 IPv6 IPv6

usual: datagrama como carga útil no quadro da camada de enlace

Rede IPv4 conectando dois roteadores IPv6

Tunelamento e encapsulamento

Ethernet conectando dois roteadores IPv6:

IPv6 IPv6 IPv6 IPv6

Ethernet conecta dois

quadro da camada de enlace

usual: datagrama como carga útil no quadro da camada de enlace

Túnel IPv4 conectando dois roteadores IPv6

datagrma IPv4

datagrama IPv6

tunelamento: datagrama IPv6 como carga útil em um datagrama IPv4

Tunelamento

IPv6: adoção

- Google: ~40% de clientes acessam serviços via IPv6 (2023)
- NIST: 1/3 de todos os domínios do governo dos EUA são compatíveis com IPv6

IPv6 Adoption

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

IPv6: adoção

- Google: ~40% de clientes acessam serviços via IPv6 (2023)
- NIST: 1/3 de todos os domínios do governo dos EUA são compatíveis com IPv6
- Tempo de instalação/uso longo (longo!):
 - 28 anos e contando!
 - Pense nas mudanças em nível de aplicação nos últimos 28 anos:
 WWW, mídia social, streaming de mídia, gaming, telepresença, ...
 - Por quê?

Unidade 4

Camada de Rede

Baseado nos slides elaborados por J. F. Kurose e K. W. Ross

Perguntas?

