- Problem 1 (3.2.3). (a) Using the cup product structure, show there is no map $\mathbb{R}P^n \to \mathbb{R}P^m$ inducing a nontrivial map $H^1(\mathbb{R}P^m; \mathbb{Z}_2) \to H^1(\mathbb{R}P^n; \mathbb{Z}_2)$ if n > m. What is the corresponding results for maps $\mathbb{C}P^n \to \mathbb{C}P^m$?
 - (b) Prove the Borsuk-Ulam theorem by the following argument. Suppose on the contrary that $f: S^n \to \mathbb{R}^n$ satisfies $f(x) \neq f(-x)$ for all x. Then define $g: S^n \to S^{n-1}$ by g(x) = (f(x) f(-x))/|f(x) f(-x)|, so g(-x) = -g(x) and g induces a map $\mathbb{R}P^n \to \mathbb{R}P^{n-1}$. Show that part (a) applies to this map.
- *Proof.* (a) Suppose that $f: \mathbb{R}P^n \to \mathbb{R}P^m$ was non-trivial for the first cohomology. The cup product structure for $\mathbb{R}P^k$ with \mathbb{Z}_2 coefficients is $\mathbb{Z}_2[\alpha]/(\alpha^{k+1})$. As such f induces a map on the cohomology rings

$$f^*: \mathbb{Z}_2[\alpha]/(\alpha^{m+1}) \to \mathbb{Z}_2[\beta]/(\beta^{n+1})$$

- wherein $f^*(\alpha) = \beta$ since the map is nontrivial in first cohomology. However $\alpha^{m+1} = 0$ which would imply that $f(\alpha^{m+1}) = \beta^{m+1} = 0$. However this is a contradiction since n > m.
- (b) Let $g: S^n \to S^{n-1}$ be the map as defined above. Then this map induces a map $g': S^n \to \mathbb{R}P^{n-1}$ since g(x) = -g(-x). Then g' induces a map $g'': \mathbb{R}P^n \to \mathbb{R}P^{n-1}$ as now g'(x) = g'(-x). On the cellular cochain complex \mathbb{Z}_2 coefficients the map g'' induces the identity map since it also does on the cellular chain complex (since g will send a path between antipodal points on S^n to a path between antipodal points on S^{n-1}). However since all the coboundary maps are zero the induces map on the cellular cochains will induce the same map on the cohomology. However since $(g'')^*$ is not trivial this contradicts part (a).

Problem 2 (3.2.5). Show the ring $H^*(\mathbb{R}P^{\infty}; \mathbb{Z}_{2k})$ is isomorphic to $\mathbb{Z}_{2k}[\alpha, \beta]/(2\alpha, 2\beta, \alpha^2 - k\beta)$ where $|\alpha| = 1$ and $|\beta| = 2$. [Use the coefficient map $\mathbb{Z}_{2k} \to \mathbb{Z}_2$ and the proof of Theorem 3.19.]

Proof. Using the cellular cochain complex for $\mathbb{R}P^{\infty}$ with \mathbb{Z}_{2k} coefficients

$$0 \longrightarrow \mathbb{Z}_{2k} \xrightarrow{0} \mathbb{Z}_{2k} \xrightarrow{2} \mathbb{Z}_{2k} \xrightarrow{0} \cdots$$

we get the cohomology of $\mathbb{R}P^{\infty}$ with \mathbb{Z}_{2k} coefficients is

$$H^{i}(\mathbb{R}P^{\infty}; \mathbb{Z}_{2k}) \cong \left\{ \begin{array}{ll} \mathbb{Z}_{2k} & i = 0\\ \mathbb{Z}_{2} & \text{otherwise} \end{array} \right.$$

Problem 3 (3.2.7). Use the cup products to show that $\mathbb{R}P^3$ is not homotopy equivalent to $\mathbb{R}P^2 \vee S^3$.

Proof. From Hatcher the cup product structure for $\mathbb{R}P^3$ with \mathbb{Z}_2 coefficients is

$$H^*(\mathbb{R}P^3; \mathbb{Z}_2) \cong \mathbb{Z}_2[\alpha]/(\alpha^4) \quad |\alpha| = 1$$

and the cup product structure for $\mathbb{R}P^2 \vee S^3$ with \mathbb{Z}_2 coefficients is

$$H^*(\mathbb{R}P^2 \vee S^3; \mathbb{Z}_2) \cong H^*(\mathbb{R}P^2; \mathbb{Z}_2) \times H^*(S^3; \mathbb{Z}_2) \cong (\mathbb{Z}_2[\beta]/(\beta^3) \times \mathbb{Z}_2[\gamma]/(\gamma^2))/(\langle 1_{\beta}, 1_{\gamma} \rangle) \quad |\beta| = 1, |\gamma| = 3$$

The latter has an element, β , which when cubed is zero. However the former has no such elements. Thus the two cohomology rings are not isomorphic and therefore $\mathbb{R}P^3$ is not homotopy equivalent to $\mathbb{R}P^2 \vee S^3$.