Distributed Systems Principles and Paradigms Chapter 11 (version 28th November 2001) Maarten van Steen Vrije Universiteit Amsterdam, Faculty of Science Dept. Mathematics and Computer Science Room R4.20. Tel: (020) 444 7784 E-mail:steen@cs.vu.nl, URL: www.cs.vu.nl/~steen/ Introduction Communication Processes 04 Naming 05 Synchronization 06 Consistency and Replication Fault Tolerance 08 Security 09 Distributed Object-Based Systems 10 Distributed File Systems Distributed Document-Based Systems Distributed Coordination-Based Systems **Systems**

Distributed Document-Based

- World Wide Web
- Lotus Notes

01

02

03

07

11

00 - 1

-	
-	
-	
-	

WWW: Overview

Essence: The WWW is a huge client-server system with millions of servers; each server hosting thousands of **hyperlinked** documents:

- Documents are generally represented in text (plain text, HTML, XML)
- Alternative types: images, audio, video, but also applications (PDF, PS)
- Documents may contain scripts that are executed by the client-side software

11 – 2 Distributed Document-Based Systems/11.1 World Wide Web

Extensions to Basic Model

Issue: Simple documents are not enough – we need a whole range of mechanisms to get information to a client

-		
-		
-		
-		
-		
	 -	
-		

Communication (1/2)

Essence: Communication in the Web is generally based on HTTP; a relatively simple client-server transfer protocol having the following request messages:

Operation	Description	
Head	Request to return the header of a document	
Get	Request to return a document to the client	
Put	Request to store a document	
Post	Provide data that are to be added to a document (collection)	
Delete	Request to delete a document	

-4	Distributed Document-Based Systems/11.1 World Wide We	b

Communication (2/2)

Header	C/S	Contents
Accept	С	The type of documents the client can handle
Accept-Charset	С	The character sets are acceptable for the client
Accept- Encoding	С	The document encodings the client can handle
Accept- Language	С	The natural language the client can handle
Authorization	С	A list of the client's credentials
WWW- Authenticate	S	Security challenge the client should respond to
Date	C+S	Date and time the message was sent
ETag	S	The tags associated with the returned document
Expires	S	The time for how long the response remains valid
From	С	The client's e-mail address
Host	С	The TCP address of the document's server
If-Match	С	The tags the document should have
If-None-Match	С	The tags the document should not have
If-Modified- Since	С	Tells the server to return a document only if it has been modified since the specified time
If-Unmodified- Since	С	Tells the server to return a document only if it has not been modified since the specified time
Last-Modified	S	The time the returned document was last modified
Location	S	A document reference to which the client should redirect its request
Referer	С	Refers to client's most recently requested document
Upgrade	C+S	The application protocol sender wants to switch to
Warning	C+S	Information about status of the data in the message

·	
·	

WWW Servers

Important: The majority of Web servers is a configured **Apache server**, which breaks down each HTTP request handling into eight phases. This approach allows flexible configuration of servers.

- 1. Resolving document reference to local file name
- 2. Client authentication
- 3. Client access control
- 4. Request access control
- 5. MIME type determination of the response
- 6. General phase for handling leftovers
- 7. Transmission of the response
- 8. Logging data on the processing of the request

11 – 6 Distributed Document-Based Systems/11.1 World Wide Web

Server Clusters (1/2)

Essence: To improve performance and availability, WWWW servers are often clustered in a way that is transparent to clients:

Problem: The front end may easily get overloaded, so that special measures need to be taken.

Transport-layer switching: Front end simply passes the TCP request to one of the servers, taking some performance metric into account.

Content-aware distribution: Front end reads the content of the HTTP request and then selects the best server.

-			
-			
-			
-			
-			
-			
-			
			
-			
_			
-			
-			
		·	· <u> </u>
-			
-	 		
-			

Server Clusters (2/2)

Question: Why can content-aware distribution be so much better?

11 – 8 Distributed Document-Based Systems/11.1 World Wide Web

Naming: URL

URL: Uniform Resource Locator tells how and where to access a resource.

	Scheme		Host name			Pathname	
	http	:/	:// www.cs.vu.nl		/hc	ome/steen/mbox	
	(a)						
S	Scheme Host name Port Pathname						
http :// www.cs.vu.nl :		: 8	0	/home/steen/mb	ох		
(b)							
Scheme Host name Port Pathname			Pathname				
http :// 130.37.24.11 :		: 8	0	/home/steen/mb	ох		
(c)							

Examples:

http	HTTP	http://www.cs.vu.nl:80/globe
ftp	FTP	ftp://ftp.cs.vu.nl/pub/minix/README
file	Local file	file:/edu/book/work/chp/11/11
data	Inline data	data:text/plain;charset=iso-8859-7, %e1%e2%e3
telnet	Remote login	telnet://flits.cs.vu.nl
tel	Telephone	tel:+31201234567
modem	Modem	modem:+31201234567;type=v32

Synchronization: WebDAV

Problem: There is a growing need for collaborative auditing of Web documents, but bare-bones HTTP can't help here. Solution: Web Distributed Authoring and Versioning.

- Supports exclusive and shared write locks, which operate on entire documents
- A lock is passed by means of a lock token; the server registers the client(s) holding the lock
- Clients modify the document locally and post it back to the server along with the lock token

Note: There is no specific support for crashed clients holding a lock.

11 – 10

Distributed Document-Based Systems/11.1 World Wide Web

Web Proxy Caching

Basic idea: Sites install a separate **proxy server** that handles all outgoing requests. Proxies subsequently cache incoming documents. Cache-consistency protocols:

- · Always verify validity by contacting server
- Age-based consistency:

$$T_{expire} = \alpha \cdot (T_{cached} - T_{last_modified}) + T_{cached}$$

 Cooperative caching, by which you first check your neighbors on a cache miss:

Server Replication

Content Delivery Network: CDNs act as Web hosting services to replicate documents across the Internet providing their customers guarantees on high availability and performance (example: Akamai).

Question: How would consistency be maintained in this system?

11 – 12 Distributed Document-Based Systems/11.1 World Wide Web

Security: TLS (SSL)

Transport Layer Security: Modern version of the the Secure Socket Layer (SSL), which "sits" between transport layer and application protocols. Relatively simple protocol that can support mutual authentication using certificates:

-	
-	
-	
	·
-	

Lotus Notes: Overview

Basics: All documents take the form of **notes**, which are collected in databases. A note is essentially a list of **items**.

Note type	Category	Description
Document	Data	A user-oriented document such as a Web page
Form	Design	Structure for creating, editing, and viewing a document
Field	Design	Defines a field shared between a form and subforms
View	Design	Structure for displaying a collection of documents
ACL	Administration	Contains an access control list for the database
ReplFormula	Administration	Describes the replication of the database

11 – 14 Distributed Document-Based Systems/11.2 Lotus Notes

Domino Server

Essence: A straightforward server design, in which a main server controls various server tasks, spawned as separate processes running on top of NOS:

-	
-	
-	
-	
-	

Server Clusters

Essence: Simple approach – client contacts a known server and gets a list of servers in that cluster, along with a selection of the currently least-loaded one.

Question: What happens if the initial server is too busy or down?

11 - 16

Distributed Document-Based Systems/11.2 Lotus Notes

Naming

Issue: Lotus is database oriented, and therefore is much tailored to support directory services (and searches) instead of plain name resolution (as in traditional naming services). There is support for URLs:

Identifiers:

Identifier	Scope	Description
Universal ID	World	Globally unique identifier assigned to each note
Originator ID	World	Identifier for a note, but includes history information
Database ID	Server	Time-dependent identifier for a database
Note ID	Database	Identifier of a note relative to a database instance
Replica ID	World	Timestamp used to identify the same copies of a database

Replication

Connection documents: Special notes describing exactly when, how, and what to replicate. Servers have replication tasks that are responsible for carrying out replication schemes:

Scheme	Description
Pull-push	A replicator task pulls updates in from a target server, and pushes its own updates to that tar- get as well
Pull-pull	A replicator task pulls in updates from a target server, and responds to update fetch requests from that target
Push-only	A replicator task only pushes its own updates to a target server, but does not pull in any updates from the target
Pull-only	A replicator only pulls in updates from a target server, but does not push any of its own up- dates to that target

Note: This scheme comes very close to the epidemic protocols from Chp. 6. To remove notes, **deletion stubs** are used, similar to death certificates in epidemic protocols.

11 – 18

Distributed Document-Based Systems/11.2 Lotus Notes

Conflict Resolution (1/2)

Problem: Notes allows concurrent modifications to replicated notes, but follows an optimistic approach (assuming that write shares do not occur often). Here's where originator IDs come in (= UNID + sequence number & timestamp).

Solution: Conflicts are detected by comparing OIDs: if they are different while their UNID is the same, we may have a potential conflict. Updates (per copy) are recorded in history lists.

- When an item is modified, the note's sequence number is incremented and credited to the item
- One list is subset of the other \Rightarrow update to longest list
- Two lists the same until sequence number k ⇒ merge copies only if modifications took place on different items.

Conflict Resolution (2/2)

All other cases: There is a nonresolvable conflict; declare one the winner and let the users solve it.

11 - 20

Distributed Document-Based Systems/11.2 Lotus Notes

Security

Essence: Notes uses public-key cryptography for setting secure channels. Crucial becomes the validation of public keys.

Example: Alice works in the CS department of the Franeker University (FU); Bob in the EE department. They share the public key for FU.

Finally: Having databases around, Lotus Notes has extensive access control mechanisms. See book and references for details.