

TD2

- \triangleright Exercice 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$ factorisable sans pivotage par l'algorithme de Gauss. Montrer que, si il existe :
 - $(L_1, L_2) \in \mathcal{M}_n(\mathbb{R})^2$ triangulaires infi $; \frac{1}{2}$ rieures $\vdots ; \frac{1}{2}$ diagonale uniti $; \frac{1}{2}$ (les coefficients de la diagonale principale sont tous $\vdots ; \frac{1}{2}$ gaux $\vdots ; \frac{1}{2}$ 1),
 - $(U_1, U_2) \in \mathcal{M}_n(\mathbb{R})^2$ triangulaires sup \ddot{i} ; rieures inversibles,

telles que $A = L_1U_1 = L_2U_2$, alors $L_1 = L_2$ et $U_1 = U_2$.

 \triangleright Exercice 2. Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $b \in \mathbb{R}^n$, avec $n \in \mathbb{N}^*$. On suppose A inversible et on s'intéresse à la résolution du système linéaire Ax = b.

I- Méthode de Richardson

Soit $\alpha > 0$, on définit le schéma itératif suivant :

$$\begin{cases} x_0 \in \mathbb{R}^n \\ x_{k+1} = x_k + \alpha(b - Ax_k) \end{cases}$$
 (1)

- 1- Montrer que ce schéma correspond à une méthode de relaxation associée à la résolution du système Ax = b, dont vous préciserez les matrices M et N.
- 2- Soit $\lambda \in \mathbb{C}$. Montrer l'équivalence suivante : λ valeur propre de $A \Leftrightarrow 1 \alpha \lambda$ valeur propre de $M^{-1}N$, avec M et N définies en 1-.
- 3- On suppose que toutes les valeurs propres de A sont réelles. En conclure que la méthode converge $\forall x_0 \in \mathbb{R}^n$ si et seulement si $0 < \alpha \lambda < 2, \forall \lambda$ valeur propre de A.
- 4- On suppose que A est symétrique définie positive.

Montrer que le schéma itératif (1) s'écrit

$$\begin{cases} x_0 \in \mathbb{R}^n \\ x_{k+1} = x_k - \alpha \nabla f(x_k) \end{cases}$$

pour une fonction f que vous préciserez.

La méthode de Richardson correspond-elle à la méthode de la *steepest descent* (vous justifierez votre réponse)?

II- Méthode de Richardson "préconditionnée"

Soit $P \in \mathcal{M}_n(\mathbb{R})$ une matrice inversible. On s'intéresse au système préconditionné

$$P^{-1}Ax = P^{-1}b. (2)$$

- 5- Ecrire le schéma itératif de Richardson pour le système (2) en prenant $\alpha = 1$. On considérera le cas $\alpha = 1$ dans la suite de cette partie.
- 6- Montrer que ce schéma s'écrit formellement comme une méthode de relaxation associée au système non préconditionné Ax = b, dont vous préciserez les matrices M et N.

7- Application

Quel préconditionneur P permet l'obtention de la méthode de relaxation suivante (vous justifierez votre réponse) :

- a) Méthode de Jacobi.
- b) Méthode de Gauss-Seidel.