MATH/CS 307: Discrete Mathematics Spring 2016 Problem List

Section	Problems	Quiz Date
1.1	# 1,4,7,10,13,16,20,24,28,32,36,37,47,53,57,64,68,76,77,80,83,87	Friday 22 Jan
1.2	$\#1,7,10,12^*,15^*,16,19,22,25,28,33,36,39,40,42,44,45,55-59,66,67,74$	Friday 29 Jan
	*Give a proper negation of the proposition. That is, do not use some	
	version of "It is not the case that"	
1.3	#1,3-8,11,12,13,16,19,21,24,27,30,31,34,43,44-49,52,53,59,68*,70,73	
	Problem A: SHOW whether or not the propositions $P = p \land (q \lor r)$ and $Q = (p \land q) \lor (p \land r)$ are logically equivalent.	Friday 29 Jan
	* For # 68, use the directions from Problem A. That is, it is <i>not sufficient</i> to simple <i>state</i> whether the two propositions are equivalent. You must give a sound explanation of your conclusion.	
1.4	# 1-5, 6,9,11-15,18,21,24	Friday 29 Jan