Пространство ограниченных функций

Линейное пространство ограниченных функций $B(X)=\{\,f\colon X\to\mathbb{R}\mid \sup_{x\in X}|f(x)|<\infty\,\},\ \|f\|=\sup_{x\in X}|f(x)|.$

Утв. 1. Не существует метрики ρ на B([0,1]) такой, что $f_n \to f$ поточечно $\Leftrightarrow \rho(f_n,f) \to 0$, где поточечная сходимость означает: $\forall x \in [0,1], f_n(x) \to f(x)$.

- \square (От противного): Пусть такая метрика ρ есть. Мы построим последовательность функций f_n :
 - (1) $\rho(f_n, 0) \to 0$;
 - (2) $f_n \rightarrow 0$ поточечно;

Что будет противоречить тому, что метрика задает поточечную сходимость.

Возьмем шар $B(0,1)=\{f\mid \rho(f,0)<1\},\ \exists$ отрезок $\Delta_1\subset [0,1],\ f_1(x)=\begin{cases} 1,&x\in\Delta_1\\0,&x\notin\Delta_1\end{cases}:f_1(x)\in B(0,1).$

Рис. 1: Отрезок Δ_1 и функция f_1 на нём.

Найдем такой отрезок: на отрезке [0,1] возьмем бесконечную последовательность отрезков $I_1,I_2,\ldots,I_n,\ldots$, не достигающих правой части отрезка, но стремящихся к ней (например, выделим отрезки $\left[1-\frac{1}{n},1-\frac{1}{n+1}\right]$ и возьмем из них только четные отрезки $n=2k,\ k\in\mathbb{N}$ или отрезки через одного).

Рис. 2: Выбор последовательности отрезков для B(0,1).

На них возьмем последовательность функций $\{g_n\}: g_n(x) = \begin{cases} 1, & x \in I_n \\ 0, & x \notin I_n \end{cases}$. Эта последовательность поточечно стремится к нущо: $\forall x \in [0, 1], q_n(x) \to 0$ (так как после определенного номера n, значение в дюбой

чечно стремится к нулю: $\forall x \in [0,1], g_n(x) \to 0$ (так как после определенного номера n, значение в любой точке x становится равным 0, например, $x \in I_3 \Rightarrow g_1(x) = 0; g_2(x) = 0; g_3(x) = 1; \forall n > 3, g_n(x) = 0$). Так как метрика задает поточечную сходимость, то для этой последовательности функций:

$$\rho(g_n,0) \to 0 \Rightarrow \exists N : g_N \in B(0,1)$$

Тогда, в качестве отрезка Δ_1 возьмем I_N и в качестве функции f_1 возьмем g_N .

Такое построение можно выполнить на любом отрезке \Rightarrow продолжим построение внутри построенных отрезков.

Возьмем шар $B(0,\frac{1}{n}) = \{ f \mid \rho(f,0) < \frac{1}{n} \}, \exists \text{ отрезок } \Delta_n \subset \Delta_{n-1}, f_n(x) = \begin{cases} 1, & x \in \Delta_n \\ 0, & x \notin \Delta_n \end{cases} : f_n(x) \in B(0,\frac{1}{n}).$

$$\begin{array}{c|cccc}
 & 1 & \\
 & 0 & \Delta_2 & 0 \\
 & 0 & \Delta_1 & 1
\end{array}$$

Рис. 3: Отрезок Δ_2 внутри отрезка Δ_1 и функция f_2 на нём.

Поскольку эти отрезки вложенные, то у них есть общая точка: $c \in \bigcap_n \Delta_n$, в этой точке $\forall n, f_n(c) = 1$. Таким образом, получили последовательность функций такую, что:

- (1) $\rho(f_n,0) < \frac{1}{n} \to 0$, по предположению это задает поточечную сходимость \Rightarrow функция должна сходится к нулю в каждой точке $x \in [0,1]$;
- (2) $f_n(c) = 1 \to 0$, то есть \exists точка в которой последовательность функций к нулю не стремится;

Получили противоречие \Rightarrow такой метрики не существует.

Теорема 1. B(X) - банахово пространство (т.е. B(X) - полное \Rightarrow на нем выполняется критерий Коши).

 \square Пусть f_n - фундаментальна:

$$\forall \varepsilon > 0, \exists N : \forall n, m > N, \, \rho(f_n, f_m) = \sup_{x \in X} |f_n(x) - f_m(x)| < \varepsilon$$

то есть $\forall x \in X$, $|f_n(x) - f_m(x)| < \varepsilon$, тогда при фиксированном x числовая последовательность $\{f_n(x)\}$ будет фундаментальной \Rightarrow по критерию Коши для числовых последовательностей:

$$\forall x \in X, \exists \lim_{n \to \infty} f_n(x)$$

Обозначаем этот предел $f(x) = \lim_{n \to \infty} f_n(x)$. Таким образом, последовательность сходится в каждой точке.

По условию:

$$\forall \varepsilon > 0, \exists N : \forall n, m > N, \forall x \in X, |f_n(x) - f_m(x)| < \varepsilon$$

Устремим $m \to \infty$, $\forall x \in X$, тогда:

$$\forall \varepsilon > 0, \exists N : \forall n > N, \forall x \in X, |f_n(x) - f(x)| \le \varepsilon$$

Поскольку $f_n(x)$ - ограничена, то отсюда следует, что и f(x) тоже ограничена, так как отличается от ограниченной на $\varepsilon \Rightarrow f(x) \in B(X)$. Поскольку $\forall x \in X, \ |f_n(x) - f(x)| \le \varepsilon$, то $\sup_{x \in X} |f_n(x) - f(x)| \le \varepsilon$, тогда:

$$\forall \varepsilon > 0, \exists N : \forall n > N, \sup_{x \in X} |f_n(x) - f(x)| \le \varepsilon$$

то есть $\sup_{x \in X}$ стремится к 0, как только $n \to \infty \Rightarrow \|f_n - f\| \to 0$.

В полном нормированном пространстве $(X, \|\cdot\|)$: если $\sum_{n} \|x_n\|$ - сходится $\Rightarrow \sum_{n} x_n$ - сходится.

Следствие 1. (Признак Вейрштрасса) Пусть $f_n \in B(X)$ и $\exists \{a_n\} \colon |f_n(x)| \leq a_n, \ \forall x, n$ и ряд $\sum_n a_n$ - сходится. Тогда ряд $\sum_n f_n(x)$ - сходится в B(X), то есть сходится равномерно.

$$\square$$
 По условию $\sup_{x \in X} |f_n(x)| \le a_n \Leftrightarrow \|f_n\| \le a_n \Rightarrow \sum_n \|f_n\| \le \sum_n a_n < \infty \Rightarrow \sum_n f_n(x)$ - сходится.

Пример: $\sum_{n=1}^{\infty} \frac{\sin nx}{2^n}$ сходится ли на $x \in \mathbb{R}$? $\left| \frac{\sin nx}{2^n} \right| \leq \frac{1}{2^n} \wedge \sum_{n=1}^{\infty} \frac{1}{2^n} < \infty \Rightarrow$ ряд сходится равномерно.

<u>Обозначение</u>: $f_n \xrightarrow{B(X)} f \Leftrightarrow \sup_{x \in X} |f_n(x) - f(x)| \xrightarrow{n \to \infty} 0$ это называется равномерной сходимостью f_n к f на множестве X и обозначается $f_n \overset{X}{\Rightarrow} f$ или $f_n \Rightarrow f$.

Теорема 2. Если f_n непрерывна на [a,b] и $f_n \stackrel{[a,b]}{\Longrightarrow} f$, то f - непрерывна на [a,b].

 \square Возьмем $x_0 \in [a, b]$, покажем, что f(x) непрерывна в точке x_0 :

$$|f(x) - f(x_0)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)|$$

Возьмем $\forall \varepsilon > 0$, используя равномерную сходимость $\exists n : |f_n(x) - f(x)| < \varepsilon, \forall x \in [a, b]$. Тогда

$$|f(x) - f_n(x)| + |f_n(x_0) - f(x_0)| < 2\varepsilon$$

Фиксируем $n \Rightarrow \exists \, \delta > 0 \colon |x - x_0| < \delta \Rightarrow |f_n(x) - f_n(x_0)| < \varepsilon$ по непрерывности f_n . Тогда

$$|f(x) - f(x_0)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)| < 3\varepsilon$$

Теорема 3. C[a,b] - пространство непрерывных функций с $||f|| = \sup_{x \in [a,b]} |f(x)|$ является банаховым пространством.

Rm: 1. Вместо $||f|| = \sup_{x \in [a,b]} |f(x)|$ можно написать $||f|| = \max_{x \in [a,b]} |f(x)|$, поскольку точная верхняя грань у непрерывных функций обязательно достигается, далее для непрерывных функций будем использовать максимум.

 \square По теореме Вейрштрасса функция непрерывна на отрезке \Rightarrow на нем ограничена \Rightarrow $C[a,b] \subset B([a,b])$. Нормы в них одинаковы и задают равномерную сходимость. Возьмем $\{f_n\}$, $f_n \in C[a,b]$: f_n - фундаментальна, то есть:

$$\forall \varepsilon > 0, \exists N : \forall n, m > N, ||f_n - f_m|| < \varepsilon$$

поскольку последовательность фундаментальна по одинаковым нормам и B([a,b]) - банахово пространство, то $\exists f : f_n \to f \in B([a,b])$. Поскольку равномерный предел непрерывных функций - непрерывная функция, то $f \in C[a,b]$.

Будет ли равномерная сходимость сохранять дифференцируемость? Нет, равномерная сходимость не сохраняет дифференцируемость.

Пример: $f_n(x) = x \arctan nx$, $x \in [-1, 1]$, $f_n(x) \Rightarrow \frac{\pi}{2}|x|$. Покажем, что сходимость равномерная: $\forall \varepsilon > 0$ найдем такое большое n, что $\left|x \arctan nx - \frac{\pi}{2}|x|\right| < \varepsilon$ сразу для всех $x \in [-1, 1]$.

При $x \in [-\varepsilon, \varepsilon] \Rightarrow$ отходим от 0 на отрезок длины 2ε , тогда:

$$\forall x \in [-\varepsilon, \varepsilon], \ \frac{\pi}{2}|x| \le \pi\varepsilon \land x \arctan nx \le \frac{\pi}{2}|x| \Rightarrow \left|x \arctan nx - \frac{\pi}{2}|x|\right| \le \pi\varepsilon$$

то есть, на этом отрезке разница маленькая независимо от n.

При x>0, $\left|\arctan nx-\frac{\pi}{2}\right|\leq \left|\arctan n\varepsilon-\frac{\pi}{2}\right|\to 0 \Rightarrow$ выбирая n сразу для всех x мы можем получить $\left|x\arctan nx-\frac{\pi}{2}|x|\right|\leq \pi\varepsilon.$ Для x<0 - аналогично.

Пример: $f_n(x) = (1-x)x^n$, $x \in [0,1]$. Поточечно сходится к 0. Будет ли сходится равномерно? Пусть $0 < \varepsilon < 1$, тогда:

При $x \in [1 - \varepsilon, 1], (1 - x)x^n < (1 - x) < 1 - (1 - \varepsilon) = \varepsilon.$

При $x \in [0, 1 - \varepsilon]$, $(1 - x)x^n < x^n < (1 - \varepsilon)^n \Rightarrow$ выбором n можно это сделать сколь угодно маленьким, например, выбором n сделать $(1 - \varepsilon)^n < \varepsilon$. Таким образом, получили равномерную сходимость.

Пример: $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$, будет ли $f_n(x) \Longrightarrow |x|$?

$$\sqrt{x^2 + \frac{1}{n}} - \sqrt{x^2} = \frac{\frac{1}{n}}{\sqrt{x^2 + \frac{1}{n}} + \sqrt{x^2}} \le \frac{\frac{1}{n}}{\sqrt{\frac{1}{n}}} = \sqrt{\frac{1}{n}}$$

таким образом, оценка не зависит от x и есть равномерная сходимость.

Пример: $f_n(x) = \frac{\sin(n^2x)}{n} \Rightarrow 0$, при дифференцировании получим $f'_n(x) = n\cos(n^2x)$ и эта последовательность никуда не сходится (даже поточечно).

Rm: 2. $f \in C^1[a,b] \Leftrightarrow f$ - непрерывно дифференцируемая функция на отрезке [a,b]:

- (1) f дифференцируема на [a,b];
- (2) f' непрерывна на [a, b];

Теорема 4. Если $f_n \in C^1[a,b], f_n \stackrel{[a,b]}{\Rightarrow} f$ и $f'_n \stackrel{[a,b]}{\Rightarrow} g$, тогда g = f'.

Rm: 3. Требование равномерной сходимости функций нельзя убрать, поскольку можно взять последовательность констант $f_n(x) \equiv c_n \Rightarrow$ производные будут равномерно сходится к нулю, но при этом сама последовательность функций не будет сходится. В будущих курсах, можно будет ослабить данное требование.

 \square Фиксируем $y \in [a,b]$ и введем функцию

$$h_n(x) = \begin{cases} \frac{f_n(x) - f_n(y)}{x - y}, & x \neq y \\ f'_n(y), & x = y \end{cases}$$

Про эту функцию можно сказать следующее:

(1) $h_n(x)$ - непрерывные на [a,b] функции:

При $x \neq y$: f_n - непрерывные \Rightarrow это очевидно.

В точке y: устремим x к $y \Rightarrow \lim_{x \to y} h_n(x) = \lim_{x \to y} \frac{f_n(x) - f_n(y)}{x - y} = f'_n(y) = h_n(y) \Rightarrow$ непрерывны.

(2) Рассмотрим к чему функция сходится поточечно. Пусть $x \in [a, b]$, тогда:

$$h_n(x) \to h(x) = \begin{cases} \frac{f(x) - f(y)}{x - y}, & x \neq y \\ g(y), & x = y \end{cases}$$

Если докажем, что h(x) - непрерывна, то $\lim_{x \to y} h(x) = h(y) \Leftrightarrow f'(y) = g(y)$.

Чтобы доказать непрерывность h(x) достаточно доказать, что предел непрерывных функций - равномерный: $h_n \rightrightarrows h$. Поскольку ни у функции g, ни у функции f мы не знаем конкретных хороших свойств, то будем доказывать не напрямую.

Докажем, что h_n - фундаментальна: $\sup_{x \in [a,b]} |h_n(x) - h_m(x)| \xrightarrow{n,m \to \infty} 0.$

$$x = y \Rightarrow h_n(x) - h_m(x) = f'_n(y) - f'_m(y) \xrightarrow{n,m \to \infty} g(y) - g(y) = 0$$
$$x \neq y \Rightarrow h_n(x) - h_m(x) = \frac{f_n(x) - f_n(y)}{x - y} - \frac{f_m(x) - f_m(y)}{x - y} = \frac{(f_n(x) - f_m(x)) - (f_n(y) - f_m(y))}{x - y}$$

поскольку f_i - дифференцируемы, то используя теорему Лагранжа получим:

$$\frac{(f_n(x) - f_m(x)) - (f_n(y) - f_m(y))}{x - y} = f'_n(c) - f'_m(c) \le \sup_{x \in [a,b]} |f'_n(x) - f'_m(x)| \xrightarrow{n,m \to \infty} 0$$

так как производные сходятся равномерно. Таким образом

$$|h_n(x) - h_m(x)| \le \sup_{x \in [a,b]} |f'_n(x) - f'_m(x)| \to 0$$

Значит последовательность $\{h_n\}$ - фундаментальна \Rightarrow сходится равномерно (а значит и поточечно) $\Rightarrow h_n(x)$ сходится равномерно к $h(x) \Rightarrow h(x)$ - непрерывная функция $\Rightarrow f$ - дифференцируема и её производная в точности равна g.