

#### **Lecture Poll**

Please use your mobile or computer to go to:

#### pollev.com/mshepperd

We will need it in a few minutes. Thanks!

# Lecture protocol

- 1. I will start at 1105 prompt; please be ready
- 2. Be aware, lectures will be recorded
- 3. Feel free to ask questions as we go along or ...
- 4. ... ask during in a question gap (2-3 per lecture)
- 5. Be **considerate** of others (fellow students and me) and don't chat.
- 6. Thanks!

# Agenda

- 1. The idea of rich data
- 2. Data sources
- 3. Complex data structures in R
- 4. Files in R
- 5. Databases and R
- 6. Very large data sets
- 7. Week 2 goals

#### 1. The idea of rich data

#### Multiple dimensions:

- Volume
- Variety
- **V**elocity
- Veracity

# Velocity of data

Wisdom of crowds



# Veracity of data

Wisdom of crowds



# 2. Data sources Where does data come from?

Wisdom of crowds



# 3. Complex data structures in R

- 3.1 Data types recap
- 3.2 Data frames

# 3.1 Data types (of variables)

- A variable is a named container for data; it can be set, modified or referenced.
- R determines the data type from what you assign/force.

```
> n <- 10L  # The L (for Long) makes an integer type
> is.numeric(n)
[1] TRUE
> is.integer(n)
[1] TRUE
> n <- 10.1  # Coerce from integer to numeric
> is.integer(n)
    [1] FALSE
```

#### Data types matter

```
> # Make a logical vector x
> # T is short for TRUE, F for FALSE
> x <- c(T, T, T, F, F)
> min(x)
```

#### Wisdom of crowds: What do you think happens?

Sometimes we can get unxpected results! So be careful with types.

# Some operations are polymorphic <sup>0</sup>

```
> # NB there's no built in mode function to Base R
> library(modeest)
> # Or you can specify the library as
> # modeest::mlv(x)
> mlv(x)
[1] TRUE
```

<sup>&</sup>lt;sup>0</sup> Polymorphism describes the situation where you can access objects of different types through the same function and its implementation will depend upon the target type.

#### Data and scales

Classical measurement theory <sup>1</sup>.

- 1. Nominal, e.g., country or sex
- 2. Ordinal e.g., rank or Likert scale
- 3. Interval e.g., centigrade
- 4. Ratio e.g., length or degrees Kelvin
- 5. (Absolute e.g., counts)

<sup>&</sup>lt;sup>1</sup> Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677-680.

#### Data classification and data type

#### 1. Categorical

- Nominal (restricted) **factor** e.g., sex
- Nominal (unrestricted) character e.g., tweet
- Binary logical, special case of nominal

#### 2. Numeric

- Ordinal assume(?) equal intervals e.g., Likert scale
- Interval+ratio treat as numeric type
- Absolute non-negative integer (L in R!)
- 3. Audio, image, video, ...

# Repeating groups<sup>2</sup>

- vector (repeating group of the same data type)
- more generally ...

| Table of more complex data structures in R |                                |  |  |  |  |  |
|--------------------------------------------|--------------------------------|--|--|--|--|--|
| Homogeneous type                           | Heterogeneous types            |  |  |  |  |  |
| vector                                     | list                           |  |  |  |  |  |
| matrix                                     | data frame                     |  |  |  |  |  |
| array                                      | n.a.                           |  |  |  |  |  |
|                                            | Homogeneous type vector matrix |  |  |  |  |  |

<sup>&</sup>lt;sup>2</sup> See the Modern Data book Chapter 2.4.

#### 3.2 Data frames

- The data frame is one of the most useful data structures in R
- Analgous to a spreadsheet but you can't directly edit
- Easy to View() and manipulate
- Efficient as each column is a vector so simple code and fast processing



## Data frames and data type

- Very easy to import files into data frames
- Think about the variables (columns) e.g., use head() or str() to examine them
- Be careful about numeric values/levels for factors (why?)

#### 3.3 Text

The "golden age" of text processing or natural language processing (NLP). 3

let

above

ship

sausage

moon

blood

death

read

her

11.48

Kall

delicate | 01

language

trud my said

honey

day

smooth

CS5702 > Lecture 2: Rich Data

out

this

W. esearch

head

mean

<sup>&</sup>lt;sup>3</sup> A worked example in R or for a very detailed book "Text Mining with R: A Tidy Approach" by David Robinson and Julia Silge (2017).

#### 4. Files in R

- Very often, the data we need to analyse is stored in external files.
- Frequently as comma-separated variable (CSV) files
- Many built in functions to help e.g., read.csv()
- Great deal of flexibility

# R code to read a remote file (on GitHub) into a data frame pubsDataFrame
# Because the path url is quite long I've first copied it to a character string fname
# to improve readability

fname <- "https://raw.githubusercontent.com/mjshepperd/CS5702-Data/master/pubs.csv"
pubsDataFrame <- read.csv(fname, header = TRUE, stringsAsFactors = FALSE)</pre>

head(pubsDataFrame)

#### 249 head(pubsDataFrame) 250 \* ```

|   |                               |               |                     |                            | <i>□</i>                 |  |
|---|-------------------------------|---------------|---------------------|----------------------------|--------------------------|--|
|   | <b>pubName</b><br><chr></chr> | open<br>< g > | town<br><chr></chr> | weeklySales<br><int></int> | foodSales<br><int></int> |  |
| 1 | The Dead Albatross            | TRUE          | Uxbridge            | 2735                       | 1209                     |  |
| - | TI 11 10                      | <b>TD115</b>  |                     | 2644                       | •                        |  |

| 2 | The Island Queen | TRUE         | Islington   | 3644 | 0  |
|---|------------------|--------------|-------------|------|----|
| 3 | Johnnys Bar      | FALSE        | Vladivostok | 0    | 0  |
| 4 | Red Lion         | TRUE         | Habrough    | 3263 | NA |
| 5 | The Crown        | FALSE        | Haccombe    | 0    | 0  |
| 6 | Royal Oak        | <b>FALSE</b> | Haceby      | 0    | 0  |

6 rows

251

#### A useful file reading tip

```
# The user is prompted
# to locate the file
myDF <- read.csv(file.choose())</pre>
```



# Writing files

- It's also useful to output files
- Analogous to the read.csv() function is the write.csv()
- Don't forget the **append** argument (False means if the file already exists it will be overwritten)

```
write.csv(myDF, "mydata.csv", sep=",", append = FALSE)
```

#### 5. Databases and R

- Sometimes data sets are stored as databases, e.g., relational database such as SQLite, MySQL or Oracle
- Typically collections of tables that need to be organised, into a single rectangular data frame
- helps manage very large volumes of data
- offers the possibility of only accessing data as and when it is needed
- R offers multiple approaches including embedding sql within your R code



## 6. Very large data sets

- over last 10 years growing interest in so-called "Big Data"
- now think in zettabytes rather than exabytes
- but challenges lie in data complexity as well as volume

## R and large data set restrictions

- 1. R can only process data that fits into your computer's memory, ~4-16Gb
- 2. but you will be manipulating your data, so a good rule of thumb: twice the amount of RAM that the data occupies
- 3. R reads entire data set into RAM all at once: time to pull a very large data set into memory can be far slower than executing the analysis
- 4. There is a two 2 billion vector index limit

# Big data solutions

- 1. specialised packages (actually implemented in C++) e.g., {bigmemory} that enable access the data set without reading the entire set into R.
- 2. parallelisation using some cloud facility or use a hadoop distributed system via the {RHadoop} package.

Nevertheless, our focus in Modern Data is on 'small', inmemory datasets.

#### 7. Week 2 goals

```
By the end of this week you should:
[ ] have an appreciation of the richness of data e.g. list
different characteristics and types
[ ] be familiar with some of the major sources of free and
publicly available data
[ ] use R to create and manipulate vector and data frame
variables
[ ] use R to import and export csv files
[ ] complete the Week 2 worksheet and quiz
```

# **Further Reading**

- 1. For more details on R basics, file handling and databases see the Modern Data, chapter two
- 2. Alternatively see chapters 1, 2 and 4 from Kabacoff (2015) R in Action: Data Analysis and Graphics with R
- 3. Grolemund and Hadley (2018) R for Data Science, Chapter 13 for more details of working with relational databases such as MySQL and sqlite in R

# Questions