

23 de agosto de 2016.

Gerardo Daniel Naranjo Gallegos, A01209499.

Medición de resistencia y cálculo de circuitos equivalentes.

Introducción:

Esta práctica dará continuidad al concepto de resistencia. Las analizaremos en base al código de color, mediremos sus valores reales y compararemos los valores teóricos con los reales en cada resistencia; así mismo, compararemos ambos (real y teórico) con el valor obtenido al medir la resistencia en dos circuitos distintos.

Marco Teórico:

La resistencia (eléctrica) de un cuerpo es el impedimento del mismo ante el paso de una corriente eléctrica. (Hayt, 2012)

El código de colores se ilustra en la siguiente imagen:

			4	1
Color	1ra. Banda	2da. Banda	3ra. Banda Multiplicador	Tolerancia %
Negro	0	0	x1	
Cafe	1	1	x10	
Rojo	2	2	x100	2%
Varanja	3	3	x1000	
Amariilo	d	4	x10000	
Verde	5	5	x100000	
Azul	6	6	x1000000	
Violeta	7	7	x10000000	
Gris	8	8	x100000000	
Blanco	9	9	x1000000000	
O: 'I D / '				Dorado 5%
Circuitos Básicos				Plata 10%

(Lozano, 2013)

Recordemos que la suma de resistencias en paralelo se expresa con la fórmula $R_T=\frac{1}{\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}+\cdots+\frac{1}{Rn}}$ y la suma de resistencias en serie con la fórmula $R_T=R1+R2+R3+\cdots+Rn$.

También, vamos a requerir la fórmula para calcular el porcentaje de error, que es: % $de\ error = \frac{Valor\ teórico-Valor\ real}{Valor\ teórico} x 100.$

Desarrollo Experimental:

Resistencias:

Para comenzar, debemos elegir diez resistencias al azar. Con ellas, determinar su valor, de acuerdo al código de colores.

Posteriormente, medir con un multímetro su resistencia real, para comparar el valor real y teórico de las resistencias y obtener su porcentaje de error.

Resistencias en serie:

Ahora, analizaremos los valores de las resistencias al estar conectadas en serie, como se muestra en el circuito, para comparar los valores esperados teóricos, reales y los obtenidos de la implementación.

Resistencias en paralelo:

Continuando, repetimos el proceso anterior, pero con las resistencias conectadas en paralelo, como se muestra en el siguiente circuito. El objetivo es comparar los valores teóricos y reales esperados con los obtenidos de la ejecución del circuito en el protoboard.

Resistencias en el circuito:

Por último, comparamos la resistencia real esperada, la resistencia teórica esperada y la resistencia obtenida del siguiente circuito, donde mezclaremos resistencias en serie con resistencias en paralelo.

Análisis de los resultados obtenidos:

Resistencias:

Los resultados se presentan en la siguiente tabla:

Color	Valor teórico	Valor real	% de error
Café Negro Naranja Dorado	10ΚΩ	9.72K Ω	2.8%
Verde Azul Naranja Dorado	56ΚΩ	55ΚΩ	1.7857%
Café Negro Rojo Dorado	1ΚΩ	0.975ΚΩ	2.5%
Café Morado Naranja Dorado	17ΚΩ	17.68ΚΩ	4%
Café Rojo Rojo Dorado	1.2ΚΩ	1.17ΚΩ	2.5%
Café Verde Naranja Dorado	15ΚΩ	14.82ΚΩ	1.2%
Rojo Café Rojo Dorado	2.1ΚΩ	2.17ΚΩ	3.3333%
Naranja Naranja Rojo Dorado	3.3ΚΩ	3.22K Ω	2.4242%
Naranja Blanco Rojo Dorado	3.9ΚΩ	3.9ΚΩ	0%
Rojo Rojo Naranja Dorado	22ΚΩ	21.4ΚΩ	2.7272%
Sumatoria total	131.5ΚΩ	130.055ΚΩ	

Resistencias en serie:

Adjunto una fotografía del momento de la medición en el circuito, así como la tabla de los resultados obtenidos:

Valor Teórico	Valor Real	Valor Obtenido
131.5ΚΩ	130.055K Ω	130.8 ΚΩ

Resistencias en paralelo:

Para el valor teórico:

$$R_{T} = \frac{1}{\frac{1}{10K\Omega} + \frac{1}{56K\Omega} + \frac{1}{1K\Omega} + \frac{1}{17K\Omega} + \frac{1}{1.2K\Omega} + \frac{1}{15K\Omega} + \frac{1}{2.1K\Omega} + \frac{1}{3.3K\Omega} + \frac{1}{3.9K\Omega} + \frac{1}{22K\Omega}}}{R_{T} = 0.3167K\Omega}$$

Para el valor real:

$$R_T = \frac{\frac{1}{9.72K\Omega} + \frac{1}{55K\Omega} + \frac{1}{0.975K\Omega} + \frac{1}{17.68K\Omega} + \frac{1}{1.17K\Omega} + \frac{1}{14.82K\Omega} + \frac{1}{2.17K\Omega} + \frac{1}{3.22K\Omega} + \frac{1}{3.9K\Omega} + \frac{1}{21.4K\Omega}} = 0.3125K\Omega$$

Valor Teórico	Valor Real	Valor Obtenido
0.3167ΚΩ	0.3125ΚΩ	0.314ΚΩ

Resistencias en el circuito:

La fórmula empleada es:

$$R_T = R1 + R2 + \frac{1}{\frac{1}{R3} + \frac{1}{\frac{1}{R4} + \frac{1}{R5}} + \frac{1}{\frac{1}{R6} + \frac{1}{R7}}} + \frac{1}{R8} + \frac{1}{R9 + R10}$$

Para el valor teórico esperado:

$$R_T = 10K\Omega + 56K\Omega + \frac{1}{\frac{1}{1K\Omega} + \frac{1}{\frac{1}{17K\Omega} + \frac{1}{1.2K\Omega}} + \frac{1}{\frac{1}{15K\Omega} + \frac{1}{2.1K\Omega}}} + \frac{1}{3.3K\Omega} + \frac{1}{3.9K\Omega + 22K\Omega} = 66.594$$

Para el valor real esperado:

$$R_T = 9.72K\Omega + 55K\Omega + \frac{1}{\frac{1}{0.975K\Omega} + \frac{1}{\frac{1}{17.68K\Omega} + \frac{1}{1.17K\Omega}} + \frac{1}{\frac{1}{14.82K\Omega} + \frac{1}{2.17K\Omega}}} + \frac{1}{3.22K\Omega} + \frac{1}{3.9K\Omega + 21.4K\Omega} = 65.3$$

Valor Teórico	Valor Real	Valor Obtenido
66.594K Ω	65.3191KΩ	65.8K Ω

Conclusiones:

Analizando los resultados obtenidos en la primera etapa, el porcentaje de error siempre es menor al 5%, tal como lo indica la misma resistencia con su banda dorada.

La suma de resistencias en serie no presenta un gran desafío. En cambio, la suma de resistencias en paralelo es un poco más compleja. Pero, como se aprecia en el último circuito, la mezcla de resistencias en serie con resistencias en paralelo aumenta la complejidad de las sumas.

Para finalizar, las lecturas obtenidas del protoboard están dentro del rango creado por el valor teórico esperado y el valor real esperado; pero, siempre estos tres datos son distintos.

Referencias:

- Hayt, W. (2012). Análisis de circuitos en ingeniería. México D.F.: McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V. .
- Lozano, A. F. (mayo de 2013). Código de colores (condensadores, capacitores, resistencias, fibras ópticas). Obtenido de Blogginred: http://www.blogginred.com/2013/05/codigo-de-colores-condensadores.html#.V70GHZh942w