

Redes Neuronales Multilayer Perceptron

Cristian López Del Alamo
clopezd@utec.edu.pe
IPRODAM3D - Research group

2022

Programa

- 1. Introducción
- 2. Multilayer Perceptron
- 3. Arquitectura
- 4. Algoritmo Back Propagation
- 5. Entrenamiento
- 6. Testing
- 7. Aplicaciones

Inteligencia Artificial Cristian López Del Alamo

¿Qué hemos visto?

Aprendizaje supervisado (Clasificación)

- Regresión Logística
- SVM
- KNN
- Árboles de Decisión
- Ensemble method
 - Random Forest
 - Boosting
 - Bagging

Métricas

- Matriz de confusión
- Precision, Recall
- F1 Score

Aprendizaje no supervisado (clustering)

- Kmeans
- DBSCAN
- Mean Shift
- GMM
- Algoritmos Aglomerativos

Métricas

- Silhouette
- Purity
- Entropy
- MI
- Rand Index

Redes Neuronales Artificiales

1. Objetivo

- Comprender qué es y cómo funciona una red Neuronal como clasificador.
- Comprender qué le ocurre a un vector cuando lo multiplicamos a una matriz
- Qué hace realmente una MLP a los datos y cómo es que los clasifica.

IPRODAM3D Dr. Cristian López Del Alamo

Fuente: Click

Fuente: Click

Neurona Biológica

Fuente: Click

Neurona Artificial

Fuente: Click

Red Neuronal Biológica

- 100000 neuronas
- Millones de Millones de conexiones

Fuente: Click

Red Neuronal Artificial

Fuente: Click

2. Redes Neuronales : Aproximador Universal

2. Redes Neuronales : Aproximador Universal

Cualquier función continua definida en un hipercubo unitario n-dimensional puede ser aproximado por una suma finita de :

$$\sum_{i=0}^{n} v_i \phi(WX + B),$$

Donde $v_i, b_i \in R, W \in R^n, \ y \ \phi \ es$ una función continua discriminatoria

2. Redes Neuronales: Regression Model

Model:
$$f(x) = w_0 + w_1 x$$

Parameters:
$$w_0, w_1$$

loss:
$$loss(y, f(x)) = \frac{1}{2n} \sum_{i=0}^{n} (y_i - f(x_i))^2$$

gradiente:
$$\frac{\partial loss}{\partial w_0} = \frac{1}{n} \sum_{i=0}^{n} (y_i - f(x_i))(-1)$$

$$\frac{\partial loss}{\partial w_0} = \frac{1}{n} \sum_{i=0}^{n} (y_i - f(x_i))(-x_i)$$

change parameters:
$$w_i = w_i - \alpha \frac{\partial loss}{\partial w_i}$$

Models: Regression Model

2. Redes Neuronales: Regresión Logística

$$f(x) = w_0 + w_1 * x_i$$
 Model: $f(x) = \frac{1}{1 + e^{-W^T X}}$

Parameters: $w_0, w_1, w_2, ..., w_p$

loss:

$$\sigma(f(x)) \le 0.5$$
 $loss(y, f(x)) = -\frac{1}{n} \sum_{i=0}^{n} [y_i log(f(x_i)) + (1 - y_i) log(1 - log(f(x_i)))]$

gradiente:
$$\frac{\partial loss}{\partial w_j} = \frac{1}{n} \sum_{i=0}^{n} (y_i - f(x_i))(-x_{ij})$$

change parameters: $w_i = w_i - \alpha \frac{\partial loss}{\partial w_i}$

2. Redes Neuronales : Regresión Logística

Explicación

Inteligencia Artificial Cristian López Del Alamo

Inteligencia Artificial Cristian López Del Alamo

¿Qué realmente está ocurriendo?

¿Qué le hace una matriz a un vector cuando se multiplican?

Forward

- Incrementa dimensión
- Rota
- Escala
- Aplica no linealidad

Clasificación

Retropropagación capa hidden - output

Back Propagation : hidden - output

$$Net_{j} = s_{1}^{h}w_{1j}^{ho} + s_{2}^{h}w_{2j}^{ho} + \ldots + s_{i}^{h}w_{ij}^{ho} + \ldots + s_{k}^{h}w_{kj}^{ho}$$

$$s_j = \frac{1}{1 + e^{-Net}}$$

$$L = \sum_{i=1}^{n} (s_j^o - s_j^d)/2$$

$$L = (s_1^o - s_1^d)/2 + (s_2^o - s_2^d)/2 + \dots + (s_j^o - s_j^d)/2 + \dots + (s_{N_o}^o - s_{N_o}^d)/2$$

~ <u>«</u>

Retropropagación capa hidden - output

Back Propagation : hidden - output

$$\frac{\partial L}{\partial w_{ij}^{ho}} = \left[\frac{\partial L}{\partial s_j^o} \right] * \left[\frac{\partial s_j^o}{\partial Net_j} \right] * \left[\frac{\partial Net_j}{\partial w_{ij}^{ho}} \right]$$

Regla de la cadena

Retropropagación capa hidden - output

Back Propagation: hidden - output

$$\frac{\partial L}{\partial s_j^o} = (s_j^o - s_j^d)$$

$$\frac{\partial L}{\partial s_j^o} = (s_j^o - s_j^d) \qquad \frac{\partial s_j^o}{\partial Net_j} = s_j^o (1 - s_j^o) \qquad \frac{\partial Net_j}{\partial w_{ij}^{ho}} = s_i^h$$

$$\frac{\partial Net_j}{\partial w_{ij}^{ho}} = s_i^h$$

$$\frac{\partial L}{\partial w_{ij}^{ho}} = (s_j^o - s_j^d) s_j^o (1 - s_j^o) s_i^h$$

Retropropagación capa hidden - hidden

Back Propagation : hidden - hidden

$$\frac{\partial L}{\partial w_{ij}^{hh+1}} = \sum_{k=1}^{N_o} \left(\frac{\partial L}{\partial s_k^o} * \frac{\partial s_k^o}{\partial Net_k} \right) * \frac{\partial s_j^{h+1}}{\partial Net_j} * \frac{\partial Net_j}{\partial w_{ij}^{hh+1}}$$

$$\frac{\partial L}{\partial w_{ij}^{ho}} = \left(\frac{\partial L}{\partial s_j^o} * \frac{\partial s_j^o}{\partial Net_j}\right) * \frac{\partial Net_j}{\partial w_{ij}^{ho}}$$

$$\delta_j = (s_j^o - s_j^d) s_j^o (1 - s_j^o)$$

$$\frac{\partial L}{\partial w_{ij}^{hh+1}} = \sum_{k=1}^{N_o} (\delta_k) * \frac{\partial s_j^{h+1}}{\partial Net_j} * \frac{\partial Net_j}{\partial w_{ij}^{hh+1}}$$

Back Propagation : hidden - output

$$\frac{\partial L}{\partial w_{ij}^{hh+1}} = \sum_{k=1}^{N_o} (\frac{\partial L}{\partial s_k^o} * \frac{\partial s_k^o}{\partial Net_k}) * \frac{\partial s_j^{h+1}}{\partial Net_j} * \frac{\partial Net_j}{\partial w_{ij}^{hh+1}}$$

$$\frac{\partial L}{\partial w_{ij}^{hh+1}} = \sum_{k=1}^{N_o} (\delta_k) * \frac{\partial s_j^{h+1}}{\partial Net_j} * \frac{\partial Net_j}{\partial w_{ij}^{hh+1}}$$

$$\frac{\partial L}{\partial w_{ij}^{hh+1}} = \sum_{k=1}^{N_o} (\delta_k) s_j^{h+1} (1 - s_j^{h+1}) s_i^h$$

Inteligencia Artificial Cristian López Del Alamo

Inteligencia Artificial Cristian López Del Alamo

