Örnek 1: $y = x^4 - 2x^2 + 2$ eğrisinin yatay teğeti var mıdır? Araştırınız.

Teorem: f ve g fonksiyonları x noktasında türevlenebilir ise f. g çarpımları da x noktasında türevlenebilirdir ve

$$(f.g)'(x) = f'(x).g(x) + f(x).g'(x)$$
 olur.

Örnek 2:
$$y = \left(2\sqrt{x} + \frac{3}{x}\right)\left(3\sqrt{x} - \frac{2}{x}\right)$$
 ise $\frac{dy}{dx} = ?$

Örnek 3: $y = x^2(9 - \frac{1}{2}x^2)$ eğrisinin teğetlerinin yatay olduğu noktaları bulunuz.

Not: f_i ($1 \le i \le n$) fonksiyonları x noktasında türevlenebilirse (f_1 . f_2 ... f_n) fonksiyonu da x noktasında türevlenebilirdir ve

$$(f_1. f_2 ... f_n)' = f_1'. f_2. f_3 ... f_n + f_1 f_2'. f_3 ... f_n + \cdots + f_1. f_2 ... f_n'$$
 olur.

Teorem: f fonksiyonu x noktasında türevlenebilir ve $f(x) \neq 0$ ise $\frac{1}{f}$ de x noktasında türevlenebilirdir ve

$$\left(\frac{1}{f}\right)'(x) = \frac{-f'(x)}{(f(x))^2} \operatorname{dir}.$$

Örnek 4: Aşağıdaki fonksiyonların türevlerini bulunuz.

a-)
$$y = \frac{1}{x^2 + 1}$$
 b-) $f(t) = \frac{1}{t + \frac{1}{t}}$

Örnek 5: $f(x) = \frac{1}{x^2 - 3}$ fonksiyonunun x = 2 noktasındaki türevini bulunuz.

Teorem: f ve g fonksiyonları, x noktasında diferansiyellenebilir ve $g(x) \neq 0$ ise $\frac{f}{g}$ fonksiyonu da x noktasında diferansiyellenebilirdir ve $\left(\frac{f}{g}\right)'(x) = \frac{f'(x).g(x) - f(x).g'(x)}{(g(x))^2}$ olur.

Örnek 6: Aşağıdaki fonksiyonların türevlerini bulunuz.

a-)
$$y = x^2 \sin x$$
 b-) $y = \frac{\sqrt{t}}{3-5t}$ **c-)** $f(\theta) = \frac{a+b\theta}{m+n\theta}$ **d-)** $y = \frac{(x-1)(x^2-2x)}{x^4}$

Örnek 7: $y = \frac{2x}{x+2}$ fonksiyonunun grafiğinin x = 2 noktasındaki teğetinin denklemini yazınız.

Teorem (Zincir Kuralı): y = f(u) fonksiyonu u = g(x) noktasında türevlenebilir ve g(x) fonksiyonu da x noktasında türevlenebilir ise $(f \circ g)(x) = f(g(x))$ bileşke fonksiyonu da x noktasında diferansiyellenebilirdir ve $(f \circ g)'(x) = f'(g(x))$. g'(x) dir.

Leibniz Gösterimine göre; u = g(x) de $\frac{dy}{du}$ hesaplanmak üzere

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

f(g(x)) bileşke fonksiyonunda, f fonksiyonu dışarıdadır, g fonksiyonu da içeridedir. Zincir Kuralı şunu söyler; bileşke fonksiyonun türevi, dışarıdaki fonksiyonun f' türevinin içerideki g(x) teki değeri ile içerideki fonksiyonun g'(x) türevinin çarpılmasıdır.

y = f(u), u = h(v), v = g(x) ve y = f(h(g(x))) olmak üzere eğer v = g(x) fonksiyonu x noktasında, u = h(v) fonksiyonu v noktasında, y = f(u) fonksiyonu v noktasında diferansiyellenebilirse v = f(h(g(x))) de v noktasında diferansiyellenebilirdir ve

$$\frac{dy}{dx} = f'(u).h'(v).g'(x) = \frac{dy}{du}.\frac{du}{dv}.\frac{dv}{dx}$$

dir.

Örnek 8: Aşağıdaki fonksiyonların türevlerini bulunuz.

a-)
$$y = (3x + \frac{1}{(2x+1)^3})^{1/4}$$
 b-) $y = \sqrt{x^2 + 1}$ **c-)** $f(t) = |t^2 - 1|$

d-)
$$y = \sin^2(3x^2 + x - 1)$$

Örnek 9:
$$\frac{d}{dx}(x^2-3)^{10}|_{x=2} = ?$$

Örnek 10:
$$f(t) = \frac{t^2+1}{\sqrt{t^2+2}}$$
 ise $f'(t) = ?$

Örnek 11: Eğer
$$g(x) = (x^2 + 3x + 4)^5 \cdot \sqrt{3 - 2x}$$
 ise $g'(-1) = ?$

TERS FONKSİYONUN TÜREVİ

Teorem: y = f(x) fonksiyonu (a, b) aralığında tanımlı, sürekli ve monoton olsun. $x \in (a, b)$ noktasında sıfırdan farklı f'(x) türevi varsa, buna karşılık olan y noktasında $x = f^{-1}(y)$ ters fonksiyonunun da türevi vardır ve $(f^{-1})'(y) = \frac{1}{f'(x)}$ yani $\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$ olur. Eğer f'(x) = 0 olan $x \in (a, b)$ varsa f(x) = y noktasında, ters fonksiyonun dikey teğeti vardır. veya

f fonksiyonu (a, b) aralığında türevlenebilir ve bu aralıkta birebir ise tersi vardır ve

$$f(f^{-1}(x)) = x \Rightarrow \frac{d}{dx}f(f^{-1}(x)) = \frac{d}{dx}x$$
$$\Rightarrow f'(f^{-1}(x)) \cdot \frac{d}{dx}f^{-1}(x) = 1$$

Eğer $f'(f^{-1}(x)) \neq 0$ ise $\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$ olur.

Leibniz Gösterimi ile $y = f^{-1}(x)$ ve

$$f'(y) \neq 0$$
 ise $\frac{dy}{dx} \Big|_{x} = \frac{1}{\frac{dx}{dy} \Big|_{y=f^{-1}(x)}}$ olur

ve bu durumda (x, y) noktasında f^{-1}

fonksiyonunun grafiğinin eğimi; (y, x) noktasındaki f fonksiyonunun

grafiğinin eğiminin çarpma işlemine göre tersidir.

Uyarı: $a \in D_{f^{-1}}$ ve $f^{-1}(a) = b$ yani f(b) = a için f^{-1} fonksiyonunun a noktasında türevinin olması için $f'(b) \neq 0$ olmalıdır.

Örnek 12: $f(x) = x^3 + x$ fonksiyonu \mathbb{R} üzerinde birebir fonksiyon ve f(2) = 10 olmak üzere $(f^{-1})'(10) = ?$

Örnek 13: $y = x^3$ fonksiyonunun tersinin türevini bulunuz.

Örnek 14: $f(x) = x^3 - 2$ olsun. f^{-1} fonksiyonu için bir formül bulmadan $\frac{df^{-1}}{dx}$ in x = 6 = f(2) noktasındaki değerini bulunuz.

ÜSTEL VE LOGARİTMİK FONKSİYONLARIN TÜREVLERİ

Teorem: Eğer x > 0 ise $\frac{d}{dx} \ln x = \frac{1}{x} \text{dir.}$

İspat: Eğer h > 0 ise ln(x + h) - ln x aşağıdaki taralı bölgenin alanı olur.

 $h \frac{1}{x+h} < Taralı Bölgenin Alanı < h \frac{1}{x}$ $\Rightarrow \frac{h}{x+h} < ln(x+h) - ln x < \frac{h}{x}$ $\Rightarrow \frac{1}{x+h} < \frac{ln(x+h) - ln x}{h} < \frac{1}{x}$

$$\lim_{h\to 0^+} \frac{1}{x+h} = \lim_{h\to 0^+} \frac{1}{x} = \frac{1}{x} \text{ ve Sandviç Teoreminden } \lim_{h\to 0^+} \frac{\ln(x+h) - \ln x}{h} = \frac{1}{x} \text{ dir.}$$

Benzer biçimde eğer 0 < x + h < x ise $\frac{1}{x} < \frac{\ln(x+h) - \ln x}{h} < \frac{1}{x+h}$ ve $\lim_{h \to 0^-} \frac{\ln(x+h) - \ln x}{h} = \frac{1}{x} \text{ dir. Böylece } \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h} = \frac{1}{x} \text{ yani } \frac{d}{dx} \ln x = \frac{1}{x} \text{ dir.}$

Örnek 15: $x \neq 0$ için $\frac{d}{dx} \ln |x| = ?$

Örnek 16: Aşağıdaki fonksiyonların türevlerini bulunuz.

a-)
$$f(x) = ln(\sqrt[3]{\frac{3x^2-5}{x^2+5}})$$
 b-) $y = ln^2x - ln(ln x)$ **c-**) $y = ln(x + \sqrt{x^2+1})$

Teorem: $\frac{d}{dx}e^x = e^x$ dir.

İspat:
$$y = e^x \Rightarrow x = \ln y$$

$$\Rightarrow 1 = \frac{1}{y} \cdot \frac{dy}{dx}$$

$$\Rightarrow y = \frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx} = e^x$$

ve $x = \ln y \Rightarrow \frac{dx}{dy} = \frac{1}{y} \neq 0$ olduğundan $\forall x \in \mathbb{R}$ için $y = e^x$ diferansiyellenebilirdir. Yani \mathbb{R} kümesinde türevlenebilirdir.

Örnek 17:
$$\frac{d}{dx}(5e^x) = ?$$

Örnek 18: Aşağıdaki fonksiyonların türevlerini bulunuz.

a-)
$$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 b-) $y = \sqrt{1 + e^{2x}}$

Örnek 19: $y = e^{\sin(x^3)}$ olduğuna göre y' türevini bulunuz.

Teorem: $\frac{d}{dx}a^x = a^x . \ln a \operatorname{dir} (a > 0).$

İspat:
$$\frac{d}{dx}a^x = \frac{d}{dx}e^{x.\ln a} = e^{x.\ln a}.(x.\ln a)' = \ln a.e^{x.\ln a} = a^x.\ln a$$

Not: x > 0 ve $a \in \mathbb{R}$ için $\frac{d}{dx}x^a = \frac{d}{dx}e^{a.lnx} = e^{a.lnx}$. $a \cdot \frac{1}{x} = \frac{x^a.a}{x} = ax^{a-1}$

Örnek 20: $f(x) = 2^{\sqrt[3]{x}}$ ise f'(x) i bulunuz.

Örnek 21: $y = 5^{\sqrt{3x^2-x+1}}$ fonksiyonunun türevini bulunuz.

Not: 0 < a < 1 ise $\forall x \in \mathbb{R}$ için $\frac{d}{dx}a^x = a^x \cdot \ln a < 0$ ve

a > 1 ise $\forall x \in \mathbb{R}$ için $\frac{d}{dx}a^x = a^x$. $\ln a > 0$ dır.