Appendix C: Monte Carlo simulation for feature selection

To find the most relevant features for each research question composite scores were constructed using principal component analysis (PCA). PCA tries to identify the space in which the data points approximately lie (Jolliffe, 2011). It computes new variables called principle components which are obtained from linear combinations of the original features. By doing so, the goal of the PCA is to extract the most important features (Abdi & Williams, 2010). To find how many principal components should be computed a subset of the training data, which included the sliding windows and additional features for consumer sentiment and the value of Y_t, was used to compute the proportion of variance explained.

The principal components with the highest weights were then used in the Monte Carlo simulation. Monte Carlo is a simulation method that relies on repeated random sampling. The algorithm creates subsets of randomly chosen features and divides the objects in each subset in train and test sets (Komorowski, 2015). For each combination of features 10-fold cross validation was performed and the Mean Squared Errors (MSE) were computed on the test set. The combination of features with the lowest test MSE score were the features considered most relevant to each research question.

C1. MSE per feature combination

Experiment	Target value	Features	MSE
1 & 3.1	change _{bpt+3;bpt+2}	CS _{max} , CS _{min} , CS _{median} , CS _{CQD}	1.228 E-4
2	rs_{t+3}	CS_{max} , CS_{min} , CS_{CQD} , CS_{t+1}	8.811 E-2
3.2	change _{cit+3;cit+2}	CS_{max} , CS_{min} , CS_{CR} , $C\dot{l}_t$	4.255 E-2
4.1	$change_{cst+3;cst+2}$	bp_{min} , bp_{CR} , bp_{COD} , cs_t	17.577
4.2	$change_{cst+3;cst+2}$	rSmax, rSmin, rSt	17.637
4.3	$change_{cst+3;cst+2}$	$ci_{\bar{x}}$, ci_{σ^2} , , ci_{t+2} , cs_t	17.456

C2. Predictions with feature selection

Experiment 1

Part	Model	MSE train	MSE test	Parameters
I	Baseline	2.721	8.675	-
	Elastic Net	1.230	3.754	alpha = 0.2121425; $lambda = 0.001205047$
	SVM	1.227	3.770	method = eps-regression; kernel = radial;
				C = 1; gamma = 0.25; epsilon = 0.1; support vectors: 2591
	Random Forest	0.993	3.440	ntree = 5000; importance = TRUE
II	Baseline	2.135	5.826	-
	Elastic Net	1.021	2.892	alpha = 0.006356115; $lambda = 0.006691759$
	SVM	0.983	2.830	method = eps-regression; kernel = radial;
				C = 1; $gamma = 0.25$; $epsilon = 0.1$; $support$
				vectors: 316
	Random Forest	0.809	2.680	ntree = 5000; $importance = TRUE$

Experiment 2

Part	Model	Acc. train	Acc. test	F1 train	F1 test	Parameters
I	Baseline	0.985	0.985	0.991	0.991	-
	SVM	0.902	0.895	0.944	0.940	method = C-classification; $kernel =$
						radial; C = 1; gamma = 0.25;
						support vectors: 1302
	PART	0.940	0.935	0.966	0.963	-
	Bagging	0.941	0.937	0.966	0.964	-
	RandomForest		0.938	0.966	0.964	ntree = 5000; importance = TRUE
	k-NN	0.940	0.938	0.965	0.964	method = knn; trControl = cv
						(number: 5); $k = 5$
II	Baseline	0.894	0.901	0.0217	_	-
	SVM	0.946	0.951			method = C-classification; kernel =
				-	-	radial; $C = 1$; $gamma = 0.25$;
						support vectors: 105
	PART	0.955	0.947	0.345	0.286	-
	Bagging	0.957	0.951	0.400	0.364	-
	RandomForest	0.957	0.951	0.400	0.364	ntree = 5000; importance = TRUE
	k-NN	0.953	0.947	0.286	0.211	method = knn; trControl = cv
						(number: 5); $k = 7$

Experiment 3.1

Cl.	Model	MSE train	MSE test	Parameters
1	Baseline	3.034	52.600	-
	Elastic Net	1.469	25.782	alpha = 0.06905604; $lambda = 0.00229073$
	SVM	1.476	26.220	method = eps-regression; kernel = radial;
				C = 1; $gamma = 0.25$; $epsilon = 0.1$;
				support vectors: 616
	Random Forest	1.202	23.097	ntree = 5000; importance = TRUE
2	Baseline	7.705	15.539	-
	Elastic Net	3.722	5.899	alpha = 0.2426044; $lambda = 6.790757$
	SVM	3.688	5.794	method = eps-regression; kernel = radial;
				C = 1; $gamma = 0.25$; $epsilon = 0.1$;
				support vectors: 253
	Random Forest	2.391	6.544	ntree = 5000; importance = TRUE
3	Baseline	0.967	0.977	-
	Elastic Net	0.444	0.437	alpha = 0.1274343; $lambda = 0.001274972$
	SVM	0.453	0.455	method = eps-regression; kernel = radial;
				C = 1; $gamma = 0.25$; $epsilon = 0.1$;
				support vectors: 1285
	Random Forest	0.226	0.307	ntree = 5000; importance = TRUE
4	Baseline	3.354	0.345	-
	Elastic Net	1.251	0.152	$alpha = 0.2827089; \ lambda = 0.002055782$
	SVM	1.236	0.149	method = eps-regression; kernel = radial;
				C = 1; $gamma = 0.25$; $epsilon = 0.1$;
				support vectors: 532
	Random Forest	0.953	0.185	ntree = 5000; importance = TRUE

Experiment 3.2

Cl.	Model	MSE train	MSE test	Parameters
1	Baseline	0.126	0.070	-
	Elastic Net	0.042	0.024	alpha = 0.3073374; $lambda = 0.00926526$
	SVM	0.041	0.023	method = eps-regression; kernel = radial;
				C = 1; $gamma = 0.25$; $epsilon = 0.1$;
				support vectors: 1357
	Random Forest	0.023	0.023	ntree = 5000; $importance = TRUE$
2	Baseline	0.144	0.134	-
	Elastic Net	0.057	0.046	alpha = 0.8686318; $lambda = 0.008117249$
	SVM	0.055	0.045	method = eps-regression; kernel = radial;
				C = 1; $gamma = 0.25$; $epsilon = 0.1$;
				support vectors: 541
	Random Forest	0.023	0.049	ntree = 5000; importance = TRUE
3	Baseline	0.124	0.187	-
	Elastic Net	0.046	0.070	alpha = 0.4247356; $lambda = 0.002565703$
	SVM	0.043	0.070	method = eps-regression; kernel = radial;
				C = 1; $gamma = 0.25$; $epsilon = 0.1$;
				support vectors: 2188
	Random Forest	0.025	0.072	ntree = 5000; importance = TRUE
4	Baseline	0.088	0.122	-
	Elastic Net	0.029	0.042	alpha = 0.5303174; lambda = 0.007506053
	SVM	0.029	0.042	method = eps-regression; kernel = radial;
				C = 1; $gamma = 0.25$; $epsilon = 0.1$;
				support vectors: 1098
	Random Forest	0.014	0.044	ntree = 5000; $importance = TRUE$

Experiment 4

Prt.	Model	MSE train	MSE test	Parameters
1	Baseline	35.284	35.291	-
	Elastic Net	17.567	17.614	alpha = 0.1561852; $lambda = 0.1073471$
	SVM	17.620	17.919	method = eps-regression; kernel = radial; $C = 1; gamma = 0.25; epsilon = 0.1; $ $support vectors: 5185$
	Random Forest	4.578	10.578	ntree = 5000; importance = TRUE
2	Baseline	35.284	35.291	-
	Elastic Net	17.623	17.743	alpha = 0.09788889; lambda = 0.005984826
	SVM	17.660	17.795	method = eps-regression; kernel = radial; $C = 1; gamma = 0.25; epsilon = 0.1;$ $support vectors: 5329$
	Random Forest	17.661	17.711	ntree = 5000; importance = TRUE
3	Baseline	35.284	35.291	-
	Elastic Net	17.432	17.526	alpha = 0.2203477; $lambda = 0.003436149$
	SVM	16.919	17.433	method = eps-regression; kernel = radial;
				C = 1; gamma = 0.25; epsilon = 0.1; support vectors: 5235
	Random Forest	2.742	11.486	ntree = 5000; importance = TRUE

Appendix D: States in state clusters

Cluster	Train set	Test set
1. Financial cluster	Connecticut, Maine, Maryland, Massachusetts,	California
	New Hampshire, New Jersey, New York, Rhode	
	Island, Vermont, Virginia	
2. Oil cluster	Louisiana, North Dakota, Oklahoma, Texas	Alaska, Wyoming, New Mexico
3. Manufacturing cluster	Alabama, Illinois, Indiana, Iowa, Kansas,	Washington, Montana
	Kentucky, Michigan, Minnesota, Mississippi,	
	Missouri, Ohio, Pennsylvania, South Carolina,	
	Tennessee, West Virginia, Wisconsin	
4. Mixed economy cluster	Arkansas, Delaware, Florida, Georgia, Hawaii,	Oregon, Idaho, Colorado,
	Nebraska, North Carolina, South Dakota	Nevada, Arizona, Utah

Appendix E: Multiple Imputation

Variable	Imputation method
sixmonthsout	Logistic regression
Oil price	Bayesian linear regression
Oil state	PMM
Agriculture	PMM
Mining	PMM
Construction	PMM
Manifacutring	PMM
Durable goods	PMM
Nondurable goods	PMM
Current coincident index	PMM

Appendix F: Results of experiment 1

Experiment 1.1

\mathbf{n}	$\boldsymbol{\cap}$	1	1
K	U	L	·L

1.19/1	
Feature	Coefficient
Intercept	0.00230
CS_t	0.00018
CS_{t+1}	0.00006
CS_{t+2}	0.00004
CS_{max}	0.00006
CS_{min}	0.00001
$CS\sigma^2$	0.00092
$CS_{\bar{X}}$	0.00011
CS_{median}	0.00023
CSCR	-0.00019
CSCQD	-0.00029
bp_t	0.00229
-	

RO1.1

1.19/1	
Feature	Importance
CS_t	7.460
CS_{t+1}	2.219
CS_{t+2}	1.492
CS_{max}	2.403
CS_{min}	-
$CS\sigma^2$	40.009
$CS\bar{x}$	4.208
CS_{median}	9.682
CSCR	7.670
CSCQD	12.276
bp_t	100.000
Flastic N	et feature importance

RQ1.1

KQ1.1	
Feature	Importance
CS_t	71.211
CS_{t+1}	81.072
CS_{t+2}	79.080
CS_{max}	65.682
CS_{min}	67.426
$CS\sigma^2$	98.415
$CS_{\bar{X}}$	73.329
CS_{median}	73.616
CSCR	85.855
CSCQD	89.923
bp_t	70.350

Elastic Net feature importance RQ1.1

Random Forest feature importance RQ1.1

Elastic Net coefficients RQ1.1

Experiment 1.2

RQ1.2

Feature	Coefficient
Intercept	-0.00012
CS_t	-
CS_{t+1}	-
CS_{t+2}	-
CS_{max}	-
CS_{min}	-
CS_{σ^2}	-
$CS\bar{x}$	-
CS_{median}	-
CSCR	-
CSCQD	-
bp_t	-

RO1.2

NQ1.2	
Feature	Importance
CS_t	-
CS_{t+1}	-
CS_{t+2}	-
CS_{max}	-
CS_{min}	-
CS_{σ^2}	-
$CS_{\bar{x}}$	-
CS_{median}	-
CSCR	-
CS_{CQD}	-
bp_t	-
Elastic N	et feature importar

Elastic Net feature importance RQ1.2

RO1.2

NQ1.2	
Feature	Importance
CS_t	30.655
CS_{t+1}	20.624
CS_{t+2}	46.361
CSmax	21.741
CS_{min}	31.887
CS_{σ^2}	28.235
$CS_{\bar{x}}$	22.810
CSmedian	23.275
CSCR	25.958
CS_{CQD}	28.758
bp_t	-6.333
D I E	<i>c</i>

Random Forest feature importance RQ1.2

Elastic Net coefficients RQ1.2

Appendix G: Results of experiment 2

Experiment 2.1

_		_
R	(Y2.	1

R	n	2	1
- 1/	v	∕⊿.	1

11/2-11			
Feature	Importance	Feature	Importance
CS_t	0	CS_t	14.733
CS_{t+1}	0	CS_{t+1}	17.830
CS_{t+2}	0	CS_{t+2}	17.781
CS_{max}	0	CS_{max}	547.502
CS_{min}	1	CS_{min}	571.022
CS_{σ^2}	0	\mathcal{CS}_{σ^2}	17.582
$CS\bar{x}$	0	$CS\bar{x}$	532.179
CS_{median}	1	CS_{median}	476.344
CSCR	1	CS_{CR}	18.150
CS_{CQD}	0	cs_{CQD}	22.460
rst	1	rst	1277.657

582PART feature importance RQ2.1 Bagging feature importance RQ2.1

DO2 1

DO2 1

RQ2.1		RQ2.1	
Feature	Importance	Feature Importance	
CS_t	28.899	CS_t	56.60
CS_{t+1}	29.911	CS_{t+1}	59.05
CS_{t+2}	28.133	CS_{t+2}	60.53
CS_{max}	107.108	CS_{max}	61.21
CS_{min}	138.206	CSmin	61.89
CS_{σ^2}	18.001	\mathcal{CS}_{σ^2}	-
$CS\bar{x}$	88.650	$CS_{\bar{x}}$	62.54
CS_{median}	59.538	CS _{median}	62.13
CSCR	20.517	CSCR	27.07
cs_{CQD}	19.236	cs_{CQD}	27.43
rst	773.681	rst	100.00

Random Forest feature importance k-NN feature importance RQ2.1 RQ2.1

Experiment 2.2

RQ2.2

Feature Importance CS_t 0 CS_{t+1} 0 CS_{t+2} 0 CS_{max} CS_{min} $CS\sigma^2$ $CS_{\bar{x}}$ CS_{median} CSCR0 CSCQD

RQ2.2

1102:2	
Feature	Importance
CS_t	11.020
CS_{t+1}	12.405
CS_{t+2}	9.641
CS_{max}	16.998
CS_{min}	16.407
CS_{σ^2}	15.325
$CS_{\bar{X}}$	7.106
CS_{median}	5.312
CSCR	18.763
CSCQD	17.881
rst	-

PART feature importance RQ2.2

0

Bagging feature importance RQ2.2

RQ2.2

rst

Feature	Importance
CS_t	2.389
CS_{t+1}	2.677
CS_{t+2}	2.320
CS_{max}	2.548
CS_{min}	2.948
CS_{σ^2}	5.193
$CS_{\bar{X}}$	2.647
CS_{median}	2.839
CSCR	5.472
CS_{CQD}	5.569
rst	<u>-</u> _

RO2.2

KQ2.2	
Feature	Importance
CS_t	82.26
CS_{t+1}	78.36
CS_{t+2}	80.73
CS_{max}	85.33
CS_{min}	93.34
$CS\sigma^2$	79.34
$CS\bar{x}$	87.90
CS_{median}	85.19
CSCR	99.08
CS_{CQD}	100.00
rst	

Random Forest feature importance RQ2.2

k-NN feature importance RQ2.2

Appendix H: Results of experiment 3

Experiment 3.1

-	-	~	-
		· .	•

116511	
Feature	Coefficient
Intercept	0.00248
CS_t	-
CS_{t+1}	-
CS_{t+2}	0.00042
CS_{max}	-
CS_{min}	-
CS_{σ^2}	0.00020
$CS\bar{x}$	-
CS_{median}	-
CSCR	-
CS_{CQD}	-
bp_t	0.00256

DO2 1

RQ3.1	
Feature	Importance
CS_t	-
CS_{t+1}	-
CS_{t+2}	16.475
CS_{max}	-
CS_{min}	-
$CS\sigma^2$	7.922
$CS\bar{x}$	-
CS_{median}	-
CSCR	-
CSCQD	-
bp_t	100.000
Elastic N	let feature importance

DO2 1

RQ3.1	
Feature	Importance
CS_t	39.455
CS_{t+1}	51.794
CS_{t+2}	53.928
CS_{max}	41.509
CS_{min}	39.952
CS_{σ^2}	44.923
$CS_{\bar{x}}$	44.720
CS_{median}	43.813
CSCR	42.749
CSCQD	45.261
bp_t	52.540
Random Forest for	eature importance

Elastic Net coefficients

RQ3.1 - Cluster 1

RQ3.1

Feature	Coefficient
Intercept	0.00388
CS_t	0.00033
CS_{t+1}	0.00028
CS_{t+2}	-
CS_{max}	0.00023
CS_{min}	-
$CS\sigma^2$	0.00232
$CS_{\bar{X}}$	0.00015
CS_{median}	0.00036
CSCR	-0.00022
CS_{CQD}	-0.00037
bp_t	0.00443

Elastic Net coefficients RQ3.1 - Cluster 2

DO21

RQ3.1 - Cluster 1

KQ3.1		
Feature	Importance	
CS_t	7.463	
CS_{t+1}	6.301	
CS_{t+2}	-	
CS_{max}	5.215	
CS_{min}	-	
CS_{σ^2}	52.475	
$CS\bar{x}$	3.374	
CS_{median}	8.107	
CSCR	5.114	
CSCQD	8.248	
bp_t	100.000	

Elastic Net feature importance RQ3.1 - Cluster 2

RQ3.1 - Cluster 1

RQ3.1	
Feature	Importance
CS_t	36.917
CS_{t+1}	32.903
CS_{t+2}	36.041
CS_{max}	36.177
CS_{min}	34.714
CS_{σ^2}	34.773
$CSar{x}$	41.640
CS_{median}	34.401
CSCR	35.380
CSCQD	36.010
bp_t	3.209

Random Forest feature importance RQ3.1 - Cluster 2

RQ3.1		RQ3.1		RQ3.1	
Feature	Coefficient	Feature	Importance	Feature	Importance
Intercept	0.00201	CS_t	24.026	CS_t	89.817
CS_t	0.00014	CS_{t+1}	16.636	CS_{t+1}	86.980
CS_{t+1}	0.00009	CS_{t+2}	-	CS_{t+2}	88.329
CS_{t+2}	-	CS_{max}	14.143	CS_{max}	72.722
CS_{max}	0.00008	CS_{min}	9.507	CS_{min}	80.380
CS_{min}	0.00005	CS_{σ^2}	6.811	CS_{σ^2}	120.125
cs_{σ^2}	0.00004	$CS_{\bar{X}}$	14.405	$CS_{\bar{x}}$	83.692
$CS_{\bar{X}}$	0.00008	CS_{median}	18.528	CS_{median}	80.356
CS_{median}	0.00010	CSCR	-	CSCR	113.053
CSCR	-	CSCQD	-	CSCQD	117.660
CS_{CQD}	-	bp_t	100.000	bp_t	117.701
bp_t	0.00056		Net feature importance Cluster 3	Random Forest RQ3.1 - Cluster	feature importance
RQ3.1		RQ3.1		RQ3.1	
Feature	Coefficient	Feature	Importance	Feature	Importance
Intercept	0.00187	CS_t	10.913	CS_t	25.177
CS_t	0.00016	CS_{t+1}	13.026	CS_{t+1}	32.803
CS_{t+1}	0.00019	CS_{t+2}	2.117	CS_{t+2}	30.940
CS_{t+2}	0.00003	CS_{max}	9.991	CS_{max}	22.138
CS_{max}	0.00015	CS_{min}	1.079	CS_{min}	28.151
CS_{min}	0.00002	CS_{σ^2}	40.204	CS_{σ^2}	36.063
CS_{σ^2}	0.00059	$CS_{\bar{x}}$	9.674	$CS_{\bar{X}}$	22.662
$CS\bar{x}$	0.00014	CS_{median}	18.041	CS_{median}	27.743
CS_{median}	0.00027	CSCR	-	CSCR	20.707
CC an					30.797
CSCR	-	CSCQD	-	CSCQD	30.797 33.887

 bp_t 100.000

RQ3.1 - Cluster 4

Elastic Net feature importance

Elastic Net coefficients RQ3.1 - Cluster 4

0.00147

 CS_{CQD}

 bp_t

Random Forest feature importance RQ3.1 - Cluster 4

 bp_t

9.663

Experiment 3.2

n	$\boldsymbol{\cap}$	1	1
K	u	.)	.Z

KQ3.2	
Feature	Coefficient
Intercept	0.00126
CS_t	-
CS_{t+1}	-
CS_{t+2}	-
CS_{max}	-
CS_{min}	-
$CS\sigma^2$	-
$CS_{\bar{X}}$	-
CS_{median}	-
CSCR	-
CS_{CQD}	-
ci_t	-0.01594

Elastic Net coefficients RQ3.2 - Cluster 1

RQ3.2

<u> </u>		
Feature	Importance	
CS_t	-	
CS_{t+1}	-	
CS_{t+2}	-	
CS_{max}	-	
CS_{min}	-	
CS_{σ^2}	-	
$CS\bar{x}$	-	
CS_{median}	-	
CSCR	-	
CS_{CQD}	-	
ci_t	100.000	

Elastic Net feature importance RQ3.2 - Cluster 1

RQ3.2

Feature	Importance
CS_t	39.896
CS_{t+1}	36.362
CS_{t+2}	46.558
CS_{max}	36.385
CS_{min}	37.466
CS_{σ^2}	37.892
$CS_{\bar{X}}$	40.229
CS_{median}	39.030
CSCR	36.579
cs_{CQD}	34.459
ci_t	58.357
	0 .

Random Forest feature importance RQ3.2 - Cluster 1

RQ3.2

Feature	Coefficient
Intercept	-0.00041
CS_t	-
CS_{t+1}	-0.04367
CS_{t+2}	0.03794
CS_{max}	0.00192
CS_{min}	0.06428
CS_{σ^2}	0.05880
$CS_{\bar{X}}$	-
CS_{median}	-0.07384
CSCR	-0.04943
CS_{CQD}	-
ci_t	-0.03451

Elastic Net coefficients RQ3.2 - Cluster 2

RQ3.2

	
Feature	Importance
CS_t	-
CS_{t+1}	59.145
CS_{t+2}	51.377
CS_{max}	2.594
CS_{min}	87.059
CS_{σ^2}	79.630
$CS\bar{x}$	-
CS_{median}	100.000
CSCR	66.944
CSCQD	-
ci_t	46.740
Flastic N	let feature importanc

Elastic Net feature importance RQ3.2 - Cluster 2

RO3.2

Importance
24.080
23.418
21.541
19.196
18.977
22.545
22.346
22.986
22.543
23.462
19.543

Random Forest feature importance RQ3.2 - Cluster 2

RQ3.2	
Feature	Coefficient
Intercept	0.00018
CS_t	-0.00203
CS_{t+1}	-0.00104
CS_{t+2}	-
CS_{max}	-
CS_{min}	-
CS_{σ^2}	0.05051
$CS_{\bar{X}}$	-
CS_{median}	-
CSCR	-
CS_{CQD}	-0.05214
ci_t	-0.04133

Elastic Net coefficients RQ3.2 - Cluster 3

RQ3.2	
Feature	Importance
CS_t	3.895
CS_{t+1}	1.994
CS_{t+2}	-
CS_{max}	-
CS_{min}	-
CS_{σ^2}	96.871
$CS\bar{x}$	-
CS_{median}	-
CSCR	-
cs_{CQD}	100.000
ci.	79 270

Elastic Net feature importance RQ3.2 - Cluster 3

RQ3.2	
Feature	Importance
CS_t	62.331
CS_{t+1}	53.597
CS_{t+2}	61.540
CS_{max}	62.584
CS_{min}	58.320
CS_{σ^2}	42.867
$CS_{\bar{X}}$	63.918
CS_{median}	60.370
CSCR	52.421
cs_{CQD}	52.225
ci₊	131 339

Random Forest feature importance RQ3.2 - Cluster 3

RQ3.2

Feature	Coefficient
Intercept	0.00060
CS_t	-
CS_{t+1}	0.00265
CS_{t+2}	-
CS_{max}	-
CS_{min}	-
CS_{σ^2}	-
$CS\bar{x}$	-
CS_{median}	-
CSCR	-
CS_{CQD}	-
ci_t	-0.01978

Elastic Net coefficients RQ3.2 - Cluster 4

RQ3.2

I cutuit II	mportance_
CS_t	-
CS_{t+1}	-
CS_{t+2}	13.37
CS_{max}	-
CS_{min}	-
CS_{σ^2}	-
$CS_{\bar{X}}$	-
CS_{median}	-
CSCR	-
CS_{CQD}	-
ci_t	100.000

Elastic Net feature importance RQ3.2 - Cluster 4

RO3.2

IQ3.2	
Feature	Importance
CS_t	55.299
CS_{t+1}	57.078
CS_{t+2}	46.606
CS_{max}	49.063
CS_{min}	52.805
CS_{σ^2}	50.079
$CS_{\bar{X}}$	52.304
CS_{median}	56.769
CSCR	48.915
CS_{CQD}	48.120
ci_t	53.226

Random Forest feature importance RQ3.2 - Cluster 4

Appendix I: Experiment 3.1 with 70/30 partitioning

Experiment 3.1 (10⁻⁴)

	Model	MSE train		MSE test		Parameters
1.	Baseline	6.382	_	8.053	_	-
	Elastic Net	2.820	(55.81%)	4.382	(45.56%)	alpha = 0.2954246; $lambda = 0.001006681$
	SVM	3.226	(49.45%)	4.572	(43.23%)	method = eps-regression; kernel = radial; C = 1; gamma = 0.09090909; epsilon = 0.1; support vectors: 468
	Random Forest	0.890	(86.05%)	0.433	(94.62%)	ntree = 5000; importance = TRUE
2.	Baseline	15.766	-	4.126	_	-
	Elastic Net	5.470	(65.31%)	1.928	(53.27%)	alpha = 0.1503563; $lambda = 0.001694307$
	SVM	5.524	(64.96%)	2.065	(49.95%)	method = eps-regression; kernel = radial; $C = 1; gamma = 0.09090909; epsilon = 0.1;$ $support vectors: 233$
	Random Forest	2.472	(84.32%)	2.915	(29.35%)	ntree = 5000; importance = TRUE
3.	Baseline	0.963	-	0.846	-	-
	Elastic Net	0.433	(55.04%)	0.405	(52.13%)	alpha = 0.02349696; $lambda = 0.001108925$
	SVM	0.456	(52.65%)	0.431	(49.05%)	method = eps-regression; kernel = radial; C = 1; gamma = 0.09090909; epsilon = 0.1; support vectors: 1001
	Random Forest	0.112	(88.37%)	0.201	(76.24%)	ntree = 5000; importance = TRUE
4.	Baseline	2.843	-	0.696	_	-
	Elastic Net	0.920	(67.64%)	0.320	(54.02%)	alpha = 0.1480629; $lambda = 0.001153624$
	SVM	0.928	(67.36%)	0.329	(52.73%)	method = eps-regression; kernel = radial;
						C = 1; $gamma = 0.09090909$; $epsilon = 0.1$;
	D 1 E	0.450	(00.150)	0.221	(50 440)	support vectors: 731
	Random Forest	0.479	(83.15%)	0.331	(52.44%)	ntree = 5000; importance = TRUE

Appendix J: Experiment 3.2 with 70/30 partitioning

Experiment 3.2

Cl.	Model	MSE train		MSE test		Parameters
1.	Baseline	0.113	-	0.095	-	-
	Elastic Net	0.041	(63.72%)	0.040	(57.89%)	alpha = 0.03792504; $lambda = 0.009532534$
	SVM	0.040	(64.60%)	0.040	(57.89%)	method = eps-regression; kernel = radial;
						C = 1; gamma = 0.09090909; epsilon = 0.1; support vectors: 1063
	Random Forest	0.021	(81.41%)	0.043	(54.74%)	ntree = 5000; importance = TRUE
2.	Baseline	0.119	-	0.159	_	-
	Elastic Net	0.046	(61.34%)	0.069	(56.60%)	alpha = 0.8567382; $lambda = 0.008085317$
	SVM	0.044	(63.03%)	0.070	(55.97%)	method = eps-regression; kernel = radial;
						C = 1; gamma = 0.09090909; epsilon = 0.1;
	D 1 F (0.020	(92.100/)	0.074	(52.460/)	support vectors: 694
	Random Forest	0.020	(83.19%)	0.074	(53.46%)	ntree = 5000; importance = TRUE
3.	Baseline	0.124	-	0.095	_	-
	Elastic Net	0.050	(59.68%)	0.044	(53.68%)	alpha = 0.07239164; $lambda = 0.003337746$
	SVM	0.047	(62.10%)	0.043	(54.74%)	method = eps-regression; kernel = radial;
						C = 1; $gamma = 0.09090909$; $epsilon = 0.1$;
						support vectors: 1684
	Random Forest	0.026	(79.03%)	0.044	(53.68%)	ntree = 5000; importance = TRUE
4.	Baseline	0.090	-	0.076	-	-
	Elastic Net	0.034	(62.22%)	0.035	(53.95%)	alpha = 0.01827431; $lambda = 0.006731816$
	SVM	0.033	(63.33%)	0.035	(53.95%)	method = eps-regression; kernel = radial;
						C = 1; $gamma = 0.09090909$; $epsilon = 0.1$;
						support vectors: 1306
	Random Forest	0.019	(78.89%)	0.037	(51.32%)	ntree = 5000; importance = TRUE

Appendix K: Results of experiment 4

Experiment 4.1

_	_	_	-
n	11	1	1
ĸ	.,	4	

NQ+.1	
Feature	Coefficient
Intercept	0.03949
bp_t	-
bp_{t+1}	0.00289
bp_{t+2}	0.00226
bp_{max}	-
bp_{min}	-
bp_{σ^2}	-
$bp_{ar{x}}$	-
bp_{median}	-
bp_{CR}	-0.05817
bp_{CQD}	0.00692
CS_t	-0.30534

Elastic Net coefficients RQ4.1

RO4.1

I.Fyzi	
Feature	Importance
bp_t	-
bp_{t+1}	0.948
bp_{t+2}	0.741
bp_{max}	-
bp_{min}	-
bp_{σ^2}	-
$bp_{ar{x}}$	-
bp_{median}	-
bp_{CR}	19.050
bp_{CQD}	2.268
CS_t	100.000
T71 3.7	

Elastic Net feature importance RQ4.1

RO4.1

11711			
Feature	Importance		
bp_t	93.033		
bp_{t+1}	93.779		
bp_{t+2}	90.071		
bp_{max}	87.340		
bp_{min}	87.703		
bp_{σ^2}	142.421		
$bp_{ar{x}}$	93.767		
$bp_{\it median}$	94.672		
$bp_{\it CR}$	102.711		
bp_{CQD}	109.283		
CS_t	258.137		

Random Forest feature importance RQ4.1

Experiment 4.2

RQ4.2

116	
Feature	Coefficient
Intercept	0.03949
rs_t	0.35703
rs_{t+1}	0.00248
rs_{t+2}	-0.54901
rs_{max}	-
rs_{min}	-
rs_{σ^2}	-0.10267
$rs_{\bar{x}}$	-
rs_{median}	0.01632
rs_{CR}	-0.06562
rs_{CQD}	-
CS_t	-0.45370

Elastic Net coefficients RQ4.2

RO4.2

Importance
65.032
0.452
100.000
-
-
18.699
-
2.973
11.952
-
82.639

Elastic Net feature importance RQ4.2

RO4.2

NQ4.2	
Feature	Importance
rs_t	35.366
rs_{t+1}	14.968
rs_{t+2}	39.025
rs_{max}	25.026
rs_{min}	18.867
rs_{σ^2}	34.862
$rs_{\bar{x}}$	28.787
r _{Smedian}	14.901
rscr	34.796
rs_{CQD}	24.016
CS_t	77.292

Random Forest feature importance RQ4.2

Experiment 4.3

RQ4.3

NQ+.5	
Feature	Coefficient
Intercept	0.03949
ci_t	-0.33595
ci_{t+1}	-0.16706
ci_{t+2}	0.58840
ci_{max}	-0.00005
ci_{min}	0.01761
ci_{σ^2}	0.13447
$ci_{ar{x}}$	-
ci_{median}	-0.01800
ci_{CR}	-0.02495
ci_{CQD}	0.01279
CS_t	-0.38059

Elastic Net coefficients RQ4.3

RO4.3

KŲ4.3	
Feature	Importance
ci_t	57.096
ci_{t+1}	28.393
ci_{t+2}	100.000
ci_{max}	0.0084
ci_{min}	2.992
ci_{σ^2}	22.854
$ci_{ar{x}}$	-
ci_{median}	3.059
ci_{CR}	4.241
ci_{CQD}	2.174
CS_t	64.682

Elastic Net feature importance RQ4.3

RQ4.3

110 110	
Feature	Importance
ci_t	116.425
ci_{t+1}	107.359
ci_{t+2}	115.332
ci_{max}	99.967
ci_{min}	111.285
ci_{σ^2}	108.662
$ci_{ar{x}}$	100.335
ci_{median}	107.319
ci_{CR}	105.841
ci_{CQD}	103.137
CS_t	220.702

Random Forest feature importance RQ4.3

Appendix L: Sliding window approach

	Window 1	Window 2	Window 3	Window 4	Window 5
Year	2005 to 2018	2005 to 2018	2005 to 2018	2005 to 2017	2005 to 2017
Month 1	January	February	March	April	May
Month 2	February	March	April	May	June
Month 3	March	April	May	June	July
	Window 6	Window 7	Window 8	Window 9	Window 10
Year	2005 to 2017				
Month 1	June	July	August	September	October
Month 2	July	August	September	October	November
Month 3	August	September	October	November	December

Appendix M – Software and packages

This appendix provides a global overview of the packages that were used in the experimental procedure. All analyses and experiments were implemented using R Studio.

mice. The "mice" package is used to perform multiple imputation. The mice::quickpred() function is used to quick select predictors from the data. The mincor parameter that specifies the minimum threshold is set to 0.25. The *mice::mice* is used to replace the missing values. The parameter of the number of imputations m is set to 1 with the number of iterations maxit set to 1 too. The seed is set to '314159'. Mice::complete extracts the subset of complete cases. TSPred. "TSPred" is used for the sliding window method. TSPred::slidingWindows extracts all possible subsequences of a time series. The parameter swSize is set to 3. **zoo.** The "zoo" package is used for the extraction of features from the sliding window data. With zoo::rollapply the functions for the construction of the features is applied to rolling margins of the data. The parameter width is set to 3. stats. The "stats" package is used to perform PCA with the use of stats::prcomp. This function performs a principal components analysis on the data and returns the weights of the components. glmnet. "glmnet" is used to create an OLS model for the Monte Carlo simulation. The parameter *intercept* is set to TRUE, the parameters *alpha* and *lambda* to 0 and standardize to FALSE. e1071. The package "e1071" is used for training SVM. The parameters of e1071::svm are presented in the results section. **RWeka**. RWeka::PART is used for the PART algorithm. ipred. ipred::bagging is used to implement the bagging classification model. randomForest. The "randomForest" package is used for the implementation of the Random Forest algorithm. The parameters of the function randomForest::randomForest are listed in the results section. caret. "caret" is used to fit Elastic Net and k-NN to the data. caret::confusionMatrix is used for calculating crosstabulations of the observed and predicted classes. caret::createDataPartition() is used to partition the data for experiment 3. ggplot2, tidyr. Packages used for creating visualizations of the data.