

```
4. Addressing Mode:
1. ISA 的 定義: " Hardware 和最店層軟件 [ machine language ] 間的 interface
                                                                              I. MIPS addressing mode
              d. 相同ISA,不同implementation的 processor 可執行相同軟体
              3. 不同 implementation 曾因 physical size, monotory couf 不同、性能不同
                                                                                    Register:
                                                                                   ef R-type
              4. ISA $30 FO IC. CPI, clock cycle time
                                                                                     add, sub
2. CPU& Register: I. Spilling register 双急: :: Program 中的支数多於Reg 數目
                     : 將不常用変數放到MEM中,再用load / store 指定做存取
                  II. Reg 数目:
                                                                                   eg I-type
                                                                                     addi, slt:
                     MIPS中Reg 数目為32个是基於 smaller is faster 設計厚則
                     Reg 越少, 解碼時間越小, clock cycle time 越短, 效能越高
                     1旦对Complier东敦 Reg 散越多:
                        分面已变散给 Rag 逻辑变多, 不用 spilling register, 節省 lond l store 時間
                      10. 解决重覆命台的 antidopendency. 用 loop unrolling 時報 T Reg renaming
                  TL $zero的用途?實作方式?
                  IV. $5p. $fp. $ra, $00~$a3?
                  V. 为何 register set 要分为 GPR, floating register, SIMD register?
                  PI. Register 大小會為 CPU-次存取 资料大小(字组大小)
3. <u>Memory</u> : I. <u>Memory alignment</u> : 岩字组太小為4byte , 表示CPV - 次可存取 4 byte 资料
                            软资料的記憶体位证要為4N [2胜位, 後面2个0]
                            eg Ox FOOABCCC
                       big endian: 作及组货料将 MSB 從 MEM 最低值址 開始放起, eg. MIPS
                       little endion: 作只组资料将LSB 從MEM最低值证開始放起, e.j. AMD
                       要什麽資料,以 big edian or little edian 放这差?
                        0. -1: 1111 -- 1
                        9. IEEE 754 + 65 0.0 = 000 -- 0
                          C + b) null pointer = 00...0
                        @. 0:00---0
                        O. AB CD CD AB
```

PC Prendo - direct addressin a eg J-type address PC ARARA II. MIPS LX St 65 Addressing Mode ^{©.} 若有 immediate, direct, register, indexed 的 Addressing Mode, 即夠處理大部份運算了 Addressing Mode | Example |Complier 1可时需使用 為何を引 Add R4, #3 做常數運算時 immediate 存取 local variable 時 Add R4. 100(R1) displacement

存取指挥步数

Add RI, 100(Rd)[R]] 存取不同 array 相同index

Displacement:

IW \$50, 41\$t0)

beg \$1. \$52. Ll

PC-rolative addressing

eg I-type

eg I-type

op pr re pd shoot fine

register Registers

op rs rd immediate

Add R4. (R1)

R4 + R4 + [MEMIR4+R1]

RI & RI+MEMI 100+RR

register indirect

scaled

rs rd Address

Register

op rs rd Address

Memory

Memory

	\$51	slt \$10, \$51, \$52	
1.	% = y	beg \$51, \$52, lable	ヨ岩 52> SI 則 to=1
	x ≠ y	bne \$51, \$12. lable	sæ≤si to=0
	, , , , , , , , , , , , , , , , , , ,	slt \$t0, \$51, \$52	有= = beg
	* c y	bne \$to. \$0, lable	沒有= = bne
	x≤y	s/t \$t0, \$52. \$5/	
		beg \$to, \$0, lable	
	0.	slt \$to, \$sd. \$s)	
	x > y	bne \$to. \$0. label	
		slt \$t0, \$s1. \$s2	
	x≥y	beg \$10.\$0, label	
	\$00 €		
ત્ર.		sll \$t0. \$50, 2 11 to= 42	
ν,	\$fl + A[i]	add \$10, \$10. \$0 // address = 0014;	
	+ c1		
		slt \$10, \$50, \$51	
3.	if 1 (> y)	beg \$10, \$0, end	
	statement	state ment	
	\$51		
	if (x ≥ y)	slt \$t0, \$s1, \$sd	
4.	Statement - 1	bne \$10. \$0. else	
T·	else	statement _ l) exi-t	
	eve Statement_ 2	else: statement - 2	
		exit:	
	\$51 € X	1	
	while $(x < y)$	Loop: slt \$10, \$51, \$52	
5.	statement	beg \$10, \$0, exit // x≥y. exit	
		statement j Loop	
		exit:	
	\$40 4 V[], \$al = k. \$t0 < temp		
6.	Void swaplint v C J, Int k) { int temp;	sl \$tl. \$al, Q // tl=4k all \$tl, \$tl, \$al // \$t \$v[k] MEM 12th	
0.	temp = v'Ek];	IW \$10, 0[\$1] # \$10 4 V[k]	
	v[k] = v[k+1]; v[k+1] = temp;		
		sw \$t2,0(\$t1)	

7.	For (i=0;i<10;i++) Statement	add \$\$1, \$0, \$0 " \$\$ \$\$\tilde{A} \$\$\tilde{A} \$\$\tilde{A} \$\$\tilde{A}\$\$	
	\$51 + a, \$50		
8.	b=B[A[a+a]+1]	sll \$t0, \$s1, 2 add \$t0, \$t0, \$s3 lw \$t1, \$t0, \$t0 sll \$t1, \$t1, 2 add \$t2, \$t1, \$s4 lw \$s2,4(\$t2)	
	\$a1 ÷ a , \$	ial + b. \$63 + c	f =9.9: funcla. 61
9.	int flinta, intb.intc) return Func(funcla, h 3	→ Sunc (Sunc (a, b), c) 19	
	'		

\$51 6 ½

	\$ a 0 \in n	步马联40下:	
10.	int fact (int n) { if [n <] { 0. return ; 3 else { 0. return (n x fact (n-1)); } 3	fact addi ssp. ssp6 sw \$in. 4(ssp) \$w \$a0. 0(\$sp) 0. { beg \$it. \$0. \$a0. // \$to-1 if acc beg \$it. \$0. \$a. \$0. \$c addi \$\$10. \$0. \$0. cloe: addi \$\$a0. \$a01 // \$\delta \delta \de	1. calleo 存 ra.ax a. 執行 if. elve 判為 3. 自教・9. 9 得多改変 4. 運厚 ra.ax 5. 電入 return value 到 VX 6. 返回 caller
11	\$AO & n int sum (int n) & if (n < 1) return 0: elce & return (n + sum (n - 1)); } 3	sum: addi \$sp, \$sp, -8 Sw \$ra. 41\$sp! sw \$a0.01\$sp) slt: \$t0. \$a0. 1/a0<1. to =1 beg \$t0. \$0, else add \$v0. \$0. \$0 add: \$sp. \$sp. & jr \$ra else: add: \$a0. \$a0, -1 jal sum 1w \$ra. 41\$sp! add: \$sp. \$sp. & add: \$sp. \$sp. gal sum 1w \$ra. 41\$sp! add: \$sp. \$sp. & add: \$sp. & add	格式同上面的 fac 差别在返回信引 collec 含义 VO值不)