Ay190 – Worksheet 09 David Vartanyan Date: February 10, 2014

1

The goal is to solve the linear system of equations:

$$Ax = b \tag{1}$$

for nxn matrices A and nx1 vectors b. I write a fanciful code that checks that each matrix A is square and of same dimension as the vector b. I find the determinant, which is nonzero in every case. Thus these matrices can be solved. For matrices LSE4_m and LSE5_m I find the natural log of the determinant because attempting to calculate the determinant itself encounters overflow error.

The dimensions and determinants are available for any of the LSEs in ws9.py.

	LSE1	LSE2	LSE3	LSE4	LSE5
Det Sign	1	-1	-1	-1	1
Det Natural Log	-4.53358731971	77.1114857221	226.07016741	1930.40191136	4563.75910742
Matrix Dim	10	100	200	1000	2000

2

I use the code available at http://shiftycow.net/gauss-elimination-functions-in-python-and-matlab/. Note this code does not pivot the matrices. It takes as an input an $n \times n + 1$ matrix whose n + 1th column is the vector b. Code is available at ws9b1.py. I use time.clock to time the evaluation.

	LSE1	LSE2	LSE3	LSE4	LSE5
time (s)	0.0	0.08	0.3	21.42	173.52

3

I used scipy.linalg to solve the system of equations using time.clock to time the results as above. Code is available at ws9c.py.

	LSE1	LSE2	LSE3	LSE4	LSE5
time (s)	0.0	0.0	0.1	0.24	1.78

Clearly scipy.linalg runs much faster (by two orders for the last three matrices), but we again see exponential growth in run time. Double the array dimension increases evaluation time by 9 and not 4 as we would expect for an evaluation of time order n^2 .