Exercise 5. Let μ be a measure on (X, \mathscr{A}) , and et f, f_1, f_2, \ldots and g, g_1, g_2, \ldots be real-valued \mathscr{A} -measurable functions on X.

- (a) Show that if μ is finite, if $\{f_n\}$ converges to f in measure, and if $\{g_n\}$ converges to g in measure, then $\{f_ng_n\}$ converges to fg in measure.
- (b) Can the assumption that μ is finite be omitted in part (a)? *Proof.*
 - (a) First, note that $\forall x \in \mathbb{R}$,

$$f_n(x)g_n(x) - f(x)g(x) = (f_n(x) - f(x))(g_n(x) - g(x)) + f(x)(g_n(x) - g(x)) + g(x)(f_n(x) - f(x))$$

Let $\alpha > 0$. For all positive reals $0 < \alpha_1 < \alpha_2 < \alpha_3$ such that $\alpha = \alpha_1 + \alpha_2 + \alpha_3$, we have $\alpha_3 \ge \alpha/3$ (otherwise their sum would be less than α). From this we deduce that:

$$\left\{x \in X \mid |f_n(x)g_n(x) - f(x)g(x)| > 3\alpha\right\} \subset
\left\{x \in X \mid |f_n(x) - f(x)||g_n(x) - g(x)| > \alpha\right\}
\cup \left\{x \in X \mid |f(x)||g_n(x) - g(x)| > \alpha\right\}
\cup \left\{x \in X \mid |g(x)||f_n(x) - f(x)| > \alpha\right\}$$
(1)

Now let $n \in \mathbb{N}$. Define $F_n = \{x \in X \mid |f(x)| > n\}$ and $G_n = \{x \in X \mid |g(x)| > n\}$. Since μ is finite, $\mu(F_n)$ is finite, and we also have $F_{n+1} \subset F_n$. Since f is real-valued, we deduce:

$$\mu\left(\bigcap_{n=0}^{\infty} F_n\right) = \lim_{n \to \infty} \mu(F_n) = 0$$

The same holds for g and G_n .

Let $\epsilon > 0$. Choose $N \in \mathbb{N}$ such that $\mu(F_n) < \epsilon$ and $\mu(G_n) < \epsilon$ for all $n \geq N$.

Note that

$$\left\{x \in X \mid |f(x)| \le N\right\} \cap \left\{x \in X \mid |g_n(x) - g(x)| \le \alpha/N\right\}$$
$$\subset \left\{x \in X \mid |f(x)||g_n(x) - g(x)| \le \alpha\right\}$$

Taking the complement in X, we get

$$\left\{x \in X \mid |f(x)||g_n(x) - g(x)| > \alpha\right\}$$

$$\subset F_n \cup \left\{x \in X \mid |g_n(x) - g(x)| > \alpha/N\right\}$$

which implies

$$\mu\left(\left\{x \in X \mid |f(x)||g_n(x) - g(x)| > \alpha\right\}\right)$$

$$\leq \mu(F_n) + \mu\left(\left\{x \in X \mid |g_n(x) - g(x)| > \alpha/N\right\}\right)$$

Similarly, we have

$$\mu\left(\left\{x \in X \mid |g(x)||f_n(x) - f(x)| > \alpha\right\}\right)$$

$$\leq \mu(G_n) + \mu\left(\left\{x \in X \mid |f_n(x) - f(x)| > \alpha/N\right\}\right)$$

Finally, we also have

$$\left\{x \in X \mid |f_n(x) - f(x)| \le \sqrt{\alpha}\right\} \cap \left\{x \in X \mid |g_n(x) - g(x)| \le \sqrt{\alpha}\right\}$$
$$\subset \left\{x \in X \mid |f_n(x) - f(x)||g_n(x) - g(x)| \le \alpha\right\}$$

which implies

$$\mu\left(\left\{x \in X \mid |f_n(x) - f(x)||g_n(x) - g(x)| > \alpha\right\}\right)$$

$$\leq \mu\left(\left\{x \in X \mid |f_n(x) - f(x)| > \sqrt{\alpha}\right\}\right)$$

$$+ \mu\left(\left\{x \in X \mid |g_n(x) - g(x)| > \sqrt{\alpha}\right\}\right)$$

Summarizing the results above, we get:

$$\mu\left(\left\{x \in X \mid |f_n(x)g_n(x) - f(x)g(x)| > 3\alpha\right\}\right)$$

$$\leq \mu\left(\left\{x \in X \mid |f_n(x) - f(x)| > \sqrt{\alpha}\right\}\right)$$

$$+ \mu\left(\left\{x \in X \mid |g_n(x) - g(x)| > \sqrt{\alpha}\right\}\right)$$

$$+ \mu(F_n) + \mu\left(\left\{x \in X \mid |g_n(x) - g(x)| > \alpha/N\right\}\right)$$

$$+ \mu(G_n) + \mu\left(\left\{x \in X \mid |f_n(x) - f(x)| > \alpha/N\right\}\right)$$

The convergence of $\{f_n\}$ (resp. $\{g_n\}$) to f (resp. g) in measure allows us to choose $M \in \mathbb{N}$ greater than N and such that the 4 measures above involving $|f_n - f|$ and $|g_n - g|$ are simultaneously less than ϵ when $n \geq M$. From this we deduce that $\{f_ng_n\}$ converges to fg in measure.

(b) The hypothesis that μ is finite is necessary. Consider for example for x > 0, $f_n(x) = \exp(x)$ and $g_n(x) = \frac{1}{x} + \frac{1}{n}$ for $n \ge 1$. We have $|g_n(x) - \frac{1}{x}| = \frac{1}{n}$; then $\{g_n\}$ converges uniformly to $x \mapsto \frac{1}{x}$, and therefore converges also in measure.

$$f_n(x)g_n(x) - f(x)g(x) = \exp(x)\left(\frac{1}{x} + \frac{1}{n}\right) - \frac{\exp(x)}{x}$$
$$= \frac{1}{n}\exp(x)$$

Let $\epsilon > 0$, $\{x > 0 \mid \frac{1}{n} \exp(x) > \epsilon\} = [\ln(n\epsilon), +\infty)$, whose Lebesgue measure is always $+\infty$, so $\{f_n g_n\}$ does not converge in measure to fg.