

(19) RÉPUBLIQUE FRANÇAISE
INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE
PARIS

(11) N° de publication :
(à n'utiliser que pour les commandes de reproduction)

2 594 626

(21) N° d'enregistrement national : 86 02396

(51) Int Cl⁴ : A 01 B 89/00, 33/02; G 05 D 1/08.

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 21 février 1986.

(30) Priorité :

(43) Date de la mise à disposition du public de la demande : BOPI « Brevets » n° 35 du 28 août 1987.

(60) Références à d'autres documents nationaux apparentés :

(71) Demandeur(s) : Société dite : ISEKI & CO. LTD. — JP.

(72) Inventeur(s) : Yuji Kaneto et Nakashiro Mukai.

(73) Titulaire(s) :

(74) Mandataire(s) : Société de protection des inventions.

(54) Dispositif de commande du roulement d'appareils pour travailler les sols.

(57) L'invention concerne un dispositif de commande du roulement d'appareils pour travailler les sols.

L'édit dispositif est pourvu de détecteurs de course S₂, S₃ de gauche et de droite, pour détecter des courses l, r représentant les distances entre des points arbitraires respectifs sur des bras élévateurs 3 et sur des bielles inférieures 6, 7. De la sorte, il est possible de déterminer un angle d'inclinaison B dans le sens latéral d'un appareil 2 pour travailler les sols, par rapport à un tracteur 1. Cette détermination s'effectue sur la base d'une différence entre les courses détectées l, r de gauche et de droite.

Application à la commande d'appareillages pour travailler les sols.

FR 2 594 626 - A1

D

Vente des fascicules à l'IMPRIMERIE NATIONALE, 27, rue de la Convention — 75732 PARIS CEDEX 15

1

DISPOSITIF DE COMMANDE DU ROULEMENT D'APPAREILS POUR
TRAVAILLER LES SOLS

La présente invention se rapporte à un dispositif de commande de roulement, destiné à commander automatiquement un appareil pour travailler les sols tel qu'un cultivateur rotatif, d'une manière telle que ce cultivateur prenne par exemple une position horizontale dans la direction latérale indépendamment de l'inclinaison de la surface du champ, c'est-à-dire de telle sorte que ledit cultivateur prenne une position latérale pré-
5 glée par l'opérateur. L'invention concerne plus particulièrem-
10 ent un dispositif de commande du type précité, qui ne nécessite aucune variation intervenant dans un détecteur de positions latérales même lorsqu'une variation intervient dans la condition de l'appareil de travail du sol, et qui soit conçu de manière à simplifier
15 l'opération de correction effectuée lors du calcul de la position latérale de l'appareil de travail, et à accom-
plir une commande précise. Ce dispositif de commande peut être appliqué à un tracteur.

L'on connaît un dispositif de commande de roulement, décrit dans la demande de brevet japonais n° 216603/1983 soumise à l'inspection publique. Dans ce dispositif, l'angle d'inclinaison dans le sens latéral d'un tracteur par rapport à la surface du sol est détecté par un capteur fixé audit tracteur, un autre capteur étant assu-
25 jetti à un vérin de levage à tige déployable prévu au-
tour de l'une des barres de levage de gauche et de droite par lesquelles les bras élévateurs et les bielles infé-
rieures du tracteur sont solidarisés, de façon à détecter la longueur de la course de la tige dudit vérin, détec-
30 tion sur la base de laquelle on calcule l'angle d'incli-
naison dans le sens latéral de l'appareil de travail par rapport au tracteur. L'angle d'inclinaison dans le sens latéral de l'appareil par rapport à la surface du sol est calculé sur la base de l'angle d'inclinaison dans le

sens latéral du tracteur par rapport à la surface du sol, et de l'angle d'inclinaison dans le sens latéral de l'appareil par rapport audit tracteur, pour commander de la sorte le déploiement et la rétraction de la tige 5 du vérin de levage, de telle manière que l'angle d'inclinaison dans le sens latéral dudit appareil coïncide avec la position, prérglée par l'opérateur, dans le sens latéral dudit appareil.

Du fait que les deux capteurs ou détecteurs précités 10 sont fixés au tracteur, une intervention de réajustement de ces détecteurs n'est pas nécessaire même lorsqu'une variation intervient dans la condition de l'appareil de travail du sol. Toutefois, les calculs correctifs, effectués avec l'angle d'inclinaison susmentionné dans le 15 sens latéral de l'appareil sur la base des valeurs détectées par les capteurs, s'avèrent très compliqués. Par conséquent, ce dispositif de commande du roulement n'est pas d'une grande applicabilité.

L'angle d'inclinaison du vérin de levage par rapport 20 à la surface du sol, considéré en élévation latérale de ce vérin, varie fortement en fonction des mouvements verticaux des bras élévateurs et des bielles inférieures. En conséquence, la composante verticale de l'ampleur du 25 déploiement et de la rétraction de la tige du vérin, qui constitue une valeur numérique importante pour le calcul de l'angle d'inclinaison dans le sens latéral de l'appareil de travail de sols, varie grandement avec les mouvements verticaux des bras élévateurs et des bielles inférieures. Ainsi, la détermination de la composante 30 verticale susmentionnée, sur la base des valeurs repérées par le détecteur établissant l'ampleur du déploiement et de la rétraction, requiert des calculs complexes de correction géométrique. Dans ce dispositif connu, il est nécessaire de détecter les angles des pivotements 35 des bras élévateurs, au moyen de capteurs indépendants associés à ces bras ; de corriger les hauteurs des bras élévateurs de l'appareil de travail lors du calcul de

l'angle d'inclinaison dans le sens latéral de ce dernier ; et d'ajouter ces valeurs corrigées dans le calcul de cet angle d'inclinaison. L'accomplissement d'un processus de commande du roulement exige de tels calculs de 5 valeurs correctrices nombreux et compliqués. De surcroit, il est difficile de calculer avec précision des valeurs correctrices dans un court intervalle de temps.

Un objet de la présente invention consiste à résoudre les difficultés soulevées par les procédés techniques 10 connus mentionnés ci-avant. Ces difficultés consistent en ce que, du fait que l'angle d'inclinaison, par rapport à la surface du sol, du détecteur prévu sur le vérin de levage varie fortement lorsque les positions verticales des bras élévateurs varient elles aussi, il faut procéder 15 à des calculs compliqués de valeurs correctrices, ce qui implique nécessairement, dans la pratique, un processus de commande du roulement d'une faible précision. Comme le montrent les figures des dessins annexés, le dispositif de commande selon la présente invention est 20 réalisé de la manière exposée ci-dessous.

Le mouvement vertical d'un appareil 2 pour travailler les sols, relié à des bielles inférieures 6 et 7 de gauche et de droite d'un mécanisme articulé 9 de liaison de cet appareil, est commandé à partir des mouvements 25 de bras élévateurs 3 de gauche et de droite, auxquels un mécanisme élévateur hydraulique 11 est destiné à imprimer des pivotements verticaux. Au moins l'une de barres de levage 4 et 5, assurant la solidarisation mutuelle respective des bras élévateurs 3 et des bielles inférieures 6, 7, est constituée par un vérin de levage 12 dont la tige peut être déployée et rétractée par une pression hydraulique. Il s'opère une détection de l'angle 30 d'inclinaison dans le sens latéral d'un tracteur 1 par rapport à la surface du sol ainsi que de l'angle d'inclinaison dans le sens latéral de l'appareil de travail 2 par rapport au tracteur, puis, sur la 35 base des valeurs des angles ainsi détectés, l'on détermi-

mine l'angle d'inclinaison dans le sens latéral de l'appareil 2 par rapport à la surface du sol. Le déploiement et la rétraction de la tige du vérin 12 sont commandés sur la base de l'angle d'inclinaison ainsi déterminé, de manière à assigner par commande à l'appareil de travail un angle d'inclinaison prédéterminé, dans sa direction latérale, par rapport à la surface du sol. Ce dispositif est caractérisé par le fait qu'il est muni de détecteurs de course S_2 et S_3 de gauche et de droite destinés à détecter des courses ℓ et r (c'est-à-dire les distances entre des points arbitraires respectifs sur les bras élévateurs 3 et sur les bielles inférieures 6 et 7), afin de déterminer, sur la base d'une différence entre ces courses détectées ℓ et r de gauche et de droite, un angle d'inclinaison β dans le sens latéral de l'appareil de travail par rapport au tracteur.

Ainsi, les courses ℓ et r sont repérées par les détecteurs de course S_2 et S_3 , l'angle d'inclinaison β dans le sens latéral de l'appareil 2 par rapport au tracteur étant calculé en se fondant sur une différence entre lesdites courses ℓ et r . Par conséquent, si lesdits détecteurs de course S_2 et S_3 sont fixés à des emplacements choisis adéquatement, les angles d'inclinaison dans le sens latéral de ces détecteurs, par rapport à la surface du sol, deviennent sensiblement constants quelles que soient les positions verticales des bras élévateurs 3. De la sorte, les composantes verticales des valeurs établies par les détecteurs S_2 et S_3 deviennent, en permanence, sensiblement proportionnelles à ces valeurs établies. Cela permet de déterminer avec précision un angle d'inclinaison β dans le sens latéral de l'appareil 2 par rapport au tracteur, par un simple calcul se fondant sur la différence entre les valeurs établies par les détecteurs de course S_2 et S_3 . Conséquemment, un processus de commande peut être exécuté avec une grande précision.

L'invention va à présent être décrite plus en détail à titre d'exemples nullement limitatifs, en regard des

dessins annexés sur lesquels :

la figure 1 est une vue en perspective de la forme de réalisation, en cours de fonctionnement ;

5 les figures 2a et 2b sont des élévations schématiques des parties principales des détecteurs de course, accomplissant des mouvements ;

la figure 3 est un schéma synoptique montrant le déroulement d'un processus de commande du roulement ; et

10 la figure 4 est un schéma synoptique d'un circuit de commande.

Comme l'illustre la figure 1, un cultivateur rotatif, constituant un exemple d'appareil 2 pour travailler les sols, est relié à la zone postérieure d'un tracteur 1 servant de moyen de traction ; cet accouplement est assuré par un mécanisme articulé de liaison 9 du type articulation à trois points, qui comprend des bielles inférieures 6 et 7 de gauche et de droite reliées à des bras élévateurs 3 de gauche et de droite par l'intermédiaire de barres de levage 4 et 5 de gauche et de droite, de telle sorte que ces bielles inférieures puissent effectuer des pivotements verticaux ; ainsi qu'une attache supérieure centrale 8. Le mécanisme articulé de liaison 9 est destiné à être mû verticalement par un mécanisme élévateur hydraulique 11, lequel est conçu pour imprimer des pivotements verticaux aux bras élévateurs 3 à l'aide d'un vérin de levage 10, en utilisant une pression hydraulique. Parmi les barres de levage 4 et 5, au moins l'une, 5, de ces dernières est constituée d'un vérin de levage 12 dont la tige est déployée et rétractée pour commander la position occupée par l'appareil de travail 2, dans le sens latéral, par rapport au tracteur 1.

L'inclinaison latérale du tracteur 1 par rapport à la surface du sol est détectée en utilisant un détecteur d'inclinaison latérale S_1 , qui consiste en un niveau à bulle ou en un appareil à contrepoids. Un angle d'inclinaison β dans le sens latéral de l'appareil 2, par rapport au tracteur 1, est calculé à partir des courses

ℓ et r qui représentent, respectivement, la distance entre le bras élévateur 3 de gauche et la bielle inférieure 6 de gauche, ainsi que la distance entre le bras élévateur 3 de droite et la bielle inférieure 7 de droite ; 5 ces courses sont repérées par des détecteurs de course S_2 et S_3 consistant, par exemple, en des potentiomètres à mouvement linéaire. Ces détecteurs S_2 et S_3 sont fixés aux emplacements auxquels les variations intervenant dans les composantes de longueur dans la direction 10 verticale des courses ℓ et r , dans la plage des mouvements verticaux des bras élévateurs 3 et des bielles inférieures 6 et 7 au cours d'une intervention de travail du sol, accusent les valeurs les plus faibles possible.

Il convient à présent de décrire un procédé pour 15 calculer un angle d'inclinaison, dans le sens latéral, de l'appareil de travail de sols par rapport au tracteur.

Pour simplifier la description de ce procédé, l'on admettra que les zones d'assujettissement des détecteurs de course S_2 et S_3 de gauche et de droite se correspondent mutuellement dans le sens latéral. Par conséquent, même 20 si les bras élévateurs 3 sont déplacés verticalement alors que les barres de levage 4 et 5 sont maintenues aux emplacements latéralement correspondants, les régions postérieures des bielles inférieures 6 et 7 de gauche et 25 de droite se trouvent à la même hauteur. Les figures 2a et 2b sont des élévations schématiques illustrant les positions respectives des bras élévateurs 3, des bielles inférieures 6, 7 et des barres de levage 4, 5. Comme on le voit sur ces figures, si la barre de levage 5 de droite 30 est rétractée d'une valeur ΔL , la bielle inférieure 7 de droite prend une position plus haute (d'une différence ΔH) que celle de la bielle inférieure 6 de gauche. De ce fait, l'angle d'inclinaison β dans la direction latérale de l'appareil de travail par rapport au tracteur 35 peut être calculé sur la base de la formule $\beta = \sin^{-1} \frac{\Delta H}{B}$, dans laquelle B représente la distance entre les régions extrêmes postérieures des bielles inférieures 6 et 7 (figure 1).

Concomitamment, la région extrême inférieure du détecteur de course S_3 de droite prend une position plus haute (de la différence Δh) que celle de la région extrême inférieure du détecteur de course S_2 de gauche, ΔH étant déterminé sur cette base. L'on admettra que D et d équivalent respectivement à la longueur de chacune des bielles inférieures 6 et 7, ainsi qu'à la distance entre le point d'articulation pivotante de chacune de ces bielles 6, 7, et des zones 13 et 14 dans lesquelles les détecteurs S_2 et S_3 sont respectivement montés pivotants sur lesdites bielles 6 et 7. L'on peut ensuite établir la formule $\Delta h = \frac{d}{D} \Delta H$. La distance b (figure 1), séparant les zones 13 et 14 dans lesquelles les détecteurs de course S_2 et S_3 sont reliés pivotants aux bielles inférieures 6 et 7, est constante par rapport à la distance B comprise entre les régions extrêmes postérieures desdites bielles 6 et 7. De ce fait, l'angle d'inclinaison β dans le sens latéral de l'appareil de travail, par rapport au tracteur, peut être déterminé par une équation de calcul du premier degré, dans laquelle Δh représente une variable.

Les détecteurs de course S_2 et S_3 peuvent être fixés aux emplacements auxquels la position de l'appareil de travail de sols varie peu par rapport à la surface du sol. Par conséquent, ΔH peut être déterminé sensiblement avec une haute précision en multipliant à chaque fois, par un facteur prédéterminé, la valeur qui est détectée dans chaque position au cours d'un cycle de fonctionnement de l'appareil 2. Ainsi, l'angle d'inclinaison β peut être déterminé avec une grande précision, sur la base des courses l et r de gauche et de droite, sans effectuer de quelconques calculs de correction compliqués. Le procédé de détermination de cet angle β est illustré sur la figure 3.

Il convient à présent, en se référant à la figure 4, de décrire un exemple de dispositif 15 de commande du roulement, destiné à assigner par commande, à l'appareil 2 de travail de sols, un angle d'inclinaison prédéterminé

dans sa direction latérale. Une valeur d'angle d'inclinaison dans le sens latéral de l'appareil 2, par rapport à la surface du sol, est réglée par un cadran gradué de réglage I_1 , d'un organe I de réglage de l'angle d'inclinaison latérale, lequel consiste en un potentiomètre pivotant ou mobile linéairement ; et une valeur d'angle d'inclinaison dans le sens latéral du tracteur 1, par rapport à la surface du sol, est réglée par le détecteur d'inclinaison latérale S_1 . Ces valeurs sont introduites dans un amplificateur différentiel A_1 , dans lequel s'effectue le calcul d'un angle de commande d'inclinaison dans le sens latéral de l'appareil 2 par rapport au tracteur.

Les courses ℓ et r , repérées par les détecteurs S_2 et S_3 , sont appliquées à un amplificateur opérationnel A_2 dans lequel une différence entre les courses est calculée. Dans cet amplificateur opérationnel A_2 , ΔH et l'angle d'inclinaison β dans la direction latérale de l'appareil 2 par rapport au tracteur sont également calculés.

Les signaux de sortie de l'amplificateur différentiel A_1 et de l'amplificateur opérationnel A_2 sont appliqués à un amplificateur différentiel A_3 . Le déplacement d'une valve électromagnétique V est commandé par des amplificateurs d'activation A_4 et A_5 , sur la base d'un signal de sortie provenant de l'amplificateur différentiel A_3 , de telle sorte que l'angle d'inclinaison β dans le sens latéral de l'appareil de travail, par rapport au tracteur, coïncide avec l'angle commandant l'inclinaison latérale par rapport à ce tracteur, afin de délivrer au vérin de levage 12 l'huile sous pression refoulée par une pompe, ou bien d'évacuer vers un réservoir l'huile sous pression provenant de ce vérin. La tige dudit vérin est désignée par la référence 12a sur la figure 4. Dans l'exemple illustré, lorsque la différence entre l'angle d'inclinaison β dans le sens latéral de l'appareil de travail par rapport au tracteur, et l'angle commandant l'inclinaison latérale par rapport à ce tracteur (c'est-à-dire un angle de déviation latérale), se situe par exemple

dans une plage de faibles valeurs déterminées, des comparateurs C_1 et C_2 à enroulements sont actionnés de manière qu'aucun signal de sortie ne soit engendré dans les amplificateurs d'activation A_4 et A_5 , empêchant ainsi la survenance d'à-coups dans le processus de commande.

5 Différents types de circuits remplissant les fonctions susdécrites peuvent être utilisés, dans la pratique, en tant que dispositif 15 de commande du roulement.

10 La barre de levage 4 située à gauche dans la forme de réalisation illustrée peut également être conçue déployable et rétractable, de la même manière que la barre de levage de droite, en utilisant un vérin de levage. Dans ce cas, il est également possible d'employer l'agencement selon la présente invention, décrit ci-avant.

15 Dans le dispositif de commande d'après l'invention, les courses ℓ et r , qui représentent les distances respectives entre les emplacements arbitraires correspondants sur les bras 3 et sur les bielles inférieures 6, 7, sont repérées par les détecteurs de course S_2 et S_3 ; puis, 20 sur la base d'une différence existant entre ces courses ℓ et r , l'on calcule l'angle d'inclinaison β dans le sens latéral de l'appareil 2 par rapport au tracteur. C'est pourquoi les zones d'assujettissement des détecteurs S_2 et S_3 peuvent être choisies de telle manière que les 25 angles d'inclinaison, dans le sens longitudinal desdits détecteurs S_2 et S_3 , soient sensiblement constants quelques que soient les positions occupées par les bras élévateurs 3 dans le sens vertical. Si l'on ajuste de la sorte les zones d'assujettissement des détecteurs S_2 et S_3 , 30 les composantes verticales des valeurs repérées par ces détecteurs S_2 et S_3 deviennent toujours sensiblement proportionnelles à ces valeurs détectées. Par conséquent, l'angle d'inclinaison β peut être déterminé par des calculs simples fondés sur une différence entre les valeurs 35 établies par les détecteurs S_2 et S_3 . Cela permet une commande du roulement s'opérant avec une grande précision.

Il va de soi que de nombreuses modifications peuvent être apportées au dispositif décrit et représenté, sans sortir du cadre de l'invention.

Enfin, les lettres de référence A-H, utilisées dans la figure 3, possèdent la signification suivante :

A : Détection de l'inclinaison latérale du tracteur par rapport à la surface du sol ;

5 B : Réglage d'un angle d'inclinaison latérale de la machine de travail ;

C : Calcul d'un angle contrôlé d'inclinaison dans la direction latérale de la machine de travail du sol par rapport au tracteur.

10 D : Détection de la course latérale gauche (ℓ) ;

E : Détection de la course latérale gauche (r) ;

15 F : Calcul de ΔH à partir de la différence de course (ℓ) - (r) ;

G : Calcul de l'angle (β) d'inclinaison latérale du tracteur ;

20 H : Commande de l'inclinaison latérale de la machine de travail du sol par rapport à la surface du sol.

REVENDICATION

Dispositif de commande du roulement d'appareils pour travailler les sols, dans lequel le mouvement vertical d'un appareil (2) de travail de sols, relié à des bielles inférieures (6, 7) de gauche et de droite dans un mécanisme articulé de liaison (9), est commandé sur la base des mouvements des bras élévateurs (3) de gauche et de droite destinés à accomplir des pivotements verticaux qui leur sont imprimés par un mécanisme élévateur hydraulique (11), au moins l'une de barres de levage (4, 5), assurant la solidarisation mutuelle desdits bras élévateurs (3) de gauche et de droite et desdites bielles inférieures (6, 7) de gauche et de droite, étant constituée par un vérin de levage (12) dont la tige peut être déployée et rétractée par une pression hydraulique, l'angle d'inclinaison dans le sens latéral d'un tracteur (1) par rapport à la surface du sol, et l'angle d'inclinaison (β) dans le sens latéral dudit appareil (2) par rapport à ce tracteur (1) étant détectés, l'angle d'inclinaison dans le sens latéral dudit appareil, par rapport à la surface du sol, étant déterminé sur la base des valeurs de ces angles d'inclinaison, le déploiement et la rétraction de la tige dudit vérin de levage (12) étant commandés sur la base de l'angle d'inclinaison ainsi déterminé, une commande assignant audit appareil (2) un angle d'inclinaison prédéterminé dans son sens latéral par rapport à la surface du sol, dispositif caractérisé par le fait qu'il est muni de détecteurs de course (S_2 , S_3) de gauche et de droite pour détecter des courses (l , r), c'est-à-dire les distances entre des points arbitraires respectifs sur lesdits bras élévateurs (3) et sur lesdites bielles inférieures (6, 7), de façon à déterminer un angle d'inclinaison (β) dans le sens latéral dudit appareil (2) par rapport audit tracteur (1), sur la base d'une différence entre les courses détectées (l , r) de gauche et de droite.

2594626

1-4

FIG. 1

2.4

2594626

FIG. 2a

FIG. 2b

2594626

3,4

2594626

4.4

FIG. 4

