딥러닝 CNN (Convolutional Neural Net)

CONTENTS

01 CNN 구조

02 CNN 구현 설명: 합성곱 연산

O3 CNN 구현 설명 : Keras CNN Layer

01 CNN 구조

A BIT OF HISTORY

Hubel & Wiesel,

1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...

preview:

CNN FILTER

Start with an image (width x height x depth)

32x32x3 image

CNN FILTER

Let's focus on a small area only (5x5x3)

CNN FILTER

Let's look at other areas with the same filter (w)

32x32x3 image

CNN FILTER

Let's look at other areas with the same filter (w)

CNN FILTER

Let's look at other areas with the same filter (w)

32x32x3 image

CNN FILTER

Let's look at other areas with the same filter (w)

MOVING FILTER

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 7 - 24

27 Jan 2016

MOVING FILTER

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter

=> 5x5 output

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 7 - 28

27 Jan 2016

MOVING FILTER

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

MOVING FILTER

N

Output size: (N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$:\

N

ZERO PADDINGS

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1 F = 5 => zero pad with 2 F = 7 => zero pad with 3

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 7 - 37

27 Jan 2016

CONVOLUTIONAL LAYERS

Convolution layers

POOLING LAYER

POOLING LAYER

Pooling layer (sampling)

POOLING LAYER

MAX POOLING

FULLY CONNECTED LAYER

 Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

Fei-Fei Li & Andrei Karpathy & Justin Johnson

Lecture 7 - 58

27 Jan 2016

➤ CNN (Convolutional Neural Network) History

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Figure copyright Kaiming He, 2016. Reproduced with permission.

http://inha-kim.tistory.com/41

➤ CNN (Convolutional Neural Network) History

- ILSVRC 2010: SuperVision (에러율 28.2%)
- ILSVRC 2011: SuperVision (에러율 25.8%)
- ILSVRC 2012: AlexNet (에러율 15.3%)
- ILSVRC 2013: ZFNet (에러율 11.2%)
- ILSVRC 2014: GoogLeNet (에러율 6.7%)
- ILSVRC 2015: ResNet (에러율 3.6%)
- ILSVRC 2016: Ensemble of Multiple Models (에러율 2.99%) https://tensorflow.blog/2016/09/27/imagenet-ilsvrc-2016-results-out/
- ILSVRC 2017: SENet (에러율 2.25%)
- https://deep-learning-study.tistory.com/539
- ILSVRC 2018: SENet (에러율 2.13%)
- ILSVRC 2019: EfficientNet (에러율1.5%)

https://greeksharifa.github.io/computer%20vision/2022/03/01/EfficientNet/

CASE STUDY: ALEXNET

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = 35K

CASE STUDY: ALEXNET

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Parameters: 0!

CASE STUDY: ALEXNET

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0,

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

224 Max pooling 2544 2548

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Fei-Fei Li & Andrei Karpathy & Justin Johnson

Lecture 7 - 69

27 Jan 2016

CASE STUDY: RESNET

CASE STUDY: RESNET

CASE STUDY: RESNET

Case Study: ResNet [He et al., 2015]

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 7 - 82

27 Jan 2016

CASE STUDY: RESNET

Case Study: ResNet [He et al., 2015]

CASE STUDY: SENTENCE CLASSIFICATION

Convolutional Neural Networks for Sentence Classification [Yoon Kim, 2014]

Figure 1: Model architecture with two channels for an example sentence.

CNN (Convolutional Neural Network)

CASE STUDY: DEEPMIND'S ALPHAGO

Case Study Bonus: DeepMind's AlphaGo

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 7 - 87

27 Jan 2016

➤ CNN (Convolutional Neural Network)

CASE STUDY: DEEPMIND'S ALPHAGO

The input to the policy network is a 19×48 image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23×23 image, then convolves k filters of kernel size 5×5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

policy network:

[19x19x48] Input

CONV1: 192 5x5 filters, stride 1, pad 2 => [19x19x192] CONV2..12: 192 3x3 filters, stride 1, pad 1 => [19x19x192]

CONV: 1 1x1 filter, stride 1, pad 0 => [19x19] (probability map of promising moves)

02 CNN 구현 설명 합성곱 연산

➤ CNN

➤ CNN for CT images

➤ Convolution layer and max pooling

max pool with 2x2 filters and stride 2

6	8	
3	4	

Stride: 1x1

Out[2]: <matplotlib.image.AxesImage at 0x10db67dd8>

Toy image

Image: 1,3,3,1 image, Filter: 2,2,1,1, Stride: 1x1, Padding: VALID

Image: 1,3,3,1 image, Filter: 2,2,1,1, Stride: 1x1, Padding: VALID

```
# print("imag:\n", image)
print("image.shape", image.shape)
weight = tf.constant([[[[1.]],[[1.]]],
                      [[[1.]],[[1.]]])
print("weight.shape", weight.shape)
conv2d = tf.nn.conv2d(image, weight, strides=[1, 1, 1, 1], padding='VALID')
conv2d img = conv2d.eval()
print("conv2d img.shape", conv2d img.shape)
conv2d img = np.swapaxes(conv2d img, 0, 3)
for i, one img in enumerate(conv2d img):
    print(one img.reshape(2,2))
    plt.subplot(1,2,i+1), plt.imshow(one img.reshape(2,2), cmap='gray')
image.shape (1, 3, 3, 1)
weight.shape (2, 2, 1, 1)
conv2d img.shape (1, 2, 2, 1)
[[ 12. 16.]
[ 24. 28.]]
 -0.5
 0.0
 1.0
   -0.5 0.0
            0.5
                 1.0
```

Image: 1,3,3,1 image, Filter: 2,2,1,1, Stride: 1x1, Padding: SAME

Image: 1,3,3,1 image, Filter: 2,2,1,1, Stride: 1x1, Padding: SAME

```
# print("imag:\n", image)
print("image.shape", image.shape)
weight = tf.constant([[[[1.]],[[1.]]],
                      [[[1.]],[[1.]]])
print("weight.shape", weight.shape)
conv2d = tf.nn.conv2d(image, weight, strides=[1, 1, 1, 1], padding='SAME')
conv2d img = conv2d.eval()
print("conv2d img.shape", conv2d_img.shape)
conv2d img = np.swapaxes(conv2d img, 0, 3)
for i, one img in enumerate(conv2d img):
    print(one img.reshape(3,3))
    plt.subplot(1,2,i+1), plt.imshow(one img.reshape(3,3), cmap='gray')
image.shape (1, 3, 3, 1)
weight.shape (2, 2, 1, 1)
conv2d img.shape (1, 3, 3, 1)
[[ 12. 16. 9.]
[ 24. 28. 15.]
[ 15. 17. 9.]]
  1.0
 1.5
  2.0 -
```

3 filters (2,2,1,3)

```
# print("imag:\n", image)
print("image.shape", image.shape)
weight = tf.constant([[[[1.,10.,-1.]],[[1.,10.,-1.]]],
                     [[[1.,10.,-1.]],[[1.,10.,-1.]]]]
print("weight.shape", weight.shape)
conv2d = tf.nn.conv2d(image, weight, strides=[1, 1, 1, 1], padding='SAME')
conv2d img = conv2d.eval()
print("conv2d img.shape", conv2d img.shape)
conv2d_img = np.swapaxes(conv2d_img, 0, 3)
for i, one img in enumerate(conv2d img):
    print(one img.reshape(3,3))
    plt.subplot(1,3,i+1), plt.imshow(one_img.reshape(3,3), cmap='gray')
image.shape (1, 3, 3, 1)
weight.shape (2, 2, 1, 3)
conv2d_img.shape (1, 3, 3, 3)
[[ 12. 16. 9.]
[ 24. 28. 15.]
[ 15. 17. 9.]]
[[ 120. 160. 90.]
[ 240. 280. 150.]
[ 150. 170. 90.]]
[[-12. -16. -9.]
[-24. -28. -15.]
[-15. -17. -9.]]
```

Max Pooling

```
4 3 2 1
```

4	3	0
2	1	0
0	0	0

4	3	0
2	1	0
0	0	0

4	3	0
2	1	0
0	0	0

4	3	0
2	1	0
0	0	0

Simple CNN

Deep CNN

➤ VGGNet

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Details:

- ILSVRC'14 2nd in classification, 1st in localization
- Similar training procedure as Krizhevsky 2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other tasks

VGG: 2014 2nd winner, Visual Geometry Group in Oxford tf.keras.applications.VGG19()