Problem 1

Let \mathbb{F} be a field. Show that the following hold:

(i)
$$-1(a) = -a$$

(ii)
$$-(-a) = a$$

(iii)
$$-(a+b) = (-a) + (-b)$$

(iv)
$$(-a)^{-1} = -(a^{-1})$$

(v)
$$(ab)^{-1} = a^{-1}b^{-1}$$

(i)

$$0 = (1 + (-1))$$

$$0(a) = (1 + (-1))a$$

$$0 = 1(a) + (-1)(a)$$

$$0 = a + (-1)(a)$$

$$-a = (-1)(a)$$

(ii

$$0 = -(-a) + (-a)$$

$$a = -(-a) + ((-a) + a)$$

$$a = -(-a)$$

(iii

$$0 = -(a+b) + (a+b)$$

$$-b = -(a+b) + a + (b-b)$$

$$-a + (-b) = -(a+b) + (a-a)$$

$$(-a) + (-b) = -(a+b)$$

(iv

$$1 = (-a)^{-1}(-a)$$
$$-1 = (-a)^{-1}(a)$$
$$-1(a^{-1}) = (-a)^{-1}$$
$$-(a^{-1}) = (-a)^{-1}$$

 (\mathbf{v})

$$1 = (ab)^{-1}(ab)$$
$$b^{-1} = (ab)^{-1}(a)$$
$$a^{-1}b^{-1} = (ab)^{-1}$$

Problem 2

Consider the set

$$K := \{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \}$$

Show that:

(i) $x, y \in K \Rightarrow x + y \in K \hat{x} y \in K$

(ii) $x \neq 0 \Rightarrow x^{-1} \in K$

(i)

Let $x, y \in K$. Then, $x = a + b\sqrt{2}$ and $y = c + d\sqrt{2}$, where $a, b, c, d \in \mathbb{Q}$.

 $x+y=(a+c)+(b+d)\sqrt{2}\in K,$ as $\mathbb Q$ is closed under addition.

 $xy = (ac + 2bd) + (ad + bc)\sqrt{2} \in \mathbb{Q}$, as \mathbb{Q} is closed under multiplication.

(ii)

Let $x = a + b\sqrt{2} \neq 0 \in K$. Thus, at least one of $a, b \neq 0$.

$$x^{-1} = \frac{1}{a + b\sqrt{2}}$$

$$= \frac{a - b\sqrt{2}}{a^2 - 2b^2}$$

$$= \frac{a}{a^2 - 2b^2} + \frac{-b\sqrt{2}}{a^2 - 2b^2}$$

Since $a/(a^2-2b^2)$ and $(-b)/(a^2-2b^2)$ are both in \mathbb{Q} , $x^{-1} \in K$.

Problem 3

Suppose F is a field admitting $P \subseteq F$ with the following properties:

- (C1) If $x, y \in P$, then $x + y \in P$ and $xy \in P$
- (C2) For all $x \in F$, $x \in P$ or $-x \in P$
- (C3) If $x, -x \in P$, then x = 0.

Show that there is an ordering on F making it into an ordered field.

Let $x \leq_F y$ be defined as follows:

$$x \leq_F y \Leftrightarrow \exists p \in P \ni x + p = y$$

Symmetry: If $x \leq_F x$, that implies $p = 0 \in P$.

Transitivity: If $x \leq_F y$ and $y \leq_F z$, we let $x + p_1 = y$ and $y + p_2 = z$ for $p_1, p_2 \in P$. Then, $x + (p_1 + p_2) = z$, and since $p_1 + p_2 \in P$ by definition, $x \leq_F z$.

Antisymmetry: If $x \leq_F y$ and $y \leq_F x$, then $\exists p_1, p_2 \in P$ such that $x + p_1 = y$ and $y + p_2 = x$. Therefore, $(x + p_1) + p_2 = x$, so $p_1 = -p_2$. Since $p_1, p_2 \in P$ and $p_1 = -p_2, p_1, p_2 = 0$, so x = y.

Totality: Let $x, y \in F$, and $x \not\leq_F y$. Then, $\forall p \in P, x + p \neq y$. So $x \neq y$, as $0 \in P$, but then x = y + p' for some $p' \in P$. Therefore, $y \leq_F x$.

 \therefore the ordering is total.

(i)

Let $s \leq t$ and $x \leq y$. Then, for some $p_1, p_2 \in P$, we have the following:

$$t = s + p_1$$
$$y = x + p_2$$

Adding, we have:

$$t + y = s + x + (p_1 + p_2)$$

 $s + x \le t + y$

since $p_1 + p_2 \in P$

Problem 4

Let $a, b \in \mathbb{R}$. Prove the following:

- (i) If $0 \le a \le \varepsilon$ for all $\varepsilon > 0$, then a = 0.
- (ii) If $a \le b + \varepsilon$ for all $\varepsilon > 0$, then $a \le b$.

(i)

Suppose toward contradiction that $a \neq 0$. Since $a \geq 0$, it must be that a > 0, so $\frac{1}{2}a > 0$. Let $\varepsilon = \frac{1}{2}a$. Therefore, $0 < \frac{1}{2}a < a$, which can't be true as $a \leq \varepsilon$ for all $\varepsilon > 0$. \bot

(ii

Let a > b. Then, $\exists \varepsilon > 0$ such that $a \ge b + \varepsilon$, where $0 \le \varepsilon \le b - a$. Therefore, $a \not \le b + \varepsilon$ for all $\varepsilon \ge 0$.

Problem 5

If $a, b \in \mathbb{R}$, show that

$$\left(\frac{1}{2}(a+b)\right)^2 \le \frac{1}{2}(a^2+b^2)$$

$$\left(\frac{1}{2}(a+b)\right)^2 = \frac{1}{4}a^2 + \frac{1}{4}b^2 + \frac{1}{2}ab$$

WLOG, let $a \ge b$. There are three cases: $a, b \in \mathbb{R}^+, a \in \mathbb{R}^+, -b \in \mathbb{R}^+, \text{ or } -a, -b \in \mathbb{R}^+.$

CASE 1: If $a, b \in \mathbb{R}^+$, then $\frac{1}{2}ab \leq \frac{1}{2}a^2$. Since $a^2 \geq b^2$ (as $a \geq b$), it must be that $\frac{1}{2}a^2 \geq \frac{1}{4}a^2 + \frac{1}{4}b^2$.

$$\begin{split} \left(\frac{1}{2}(a+b)\right)^2 &= \frac{1}{4}a^2 + \frac{1}{4}b^2 + \frac{1}{2}ab \\ &\leq \frac{1}{2}a^2 + \frac{1}{2}b^2 \\ &= \frac{1}{2}(a^2 + b^2) \end{split}$$

CASE 2: If $a \in \mathbb{R}^+$ and $-b \in \mathbb{R}^+$, then $-\frac{1}{2}ab \in \mathbb{R}^+$, or $\frac{1}{2}ab < 0$.

$$\begin{split} \left(\frac{1}{2}(a+b)\right)^2 &= \frac{1}{4}a^2 + \frac{1}{4}b^2 + \frac{1}{2}ab \\ &\leq \frac{1}{4}a^2 + \frac{1}{4}b^2 \\ &\leq \frac{1}{2}a^2 + \frac{1}{2}b^2 \\ &= \frac{1}{2}(a^2 + b^2) \end{split}$$

CASE 3: If $-a, -b \in \mathbb{R}^+$, then $\frac{1}{2}ab \in \mathbb{R}^+$, so we use similar logic to Case 1.

Problem 6

For $x \in \mathbb{R}$, show that $\sqrt{x^2} = |x|$.

Recall:

$$|x| = \begin{cases} x, & x \in \mathbb{R}^+ \\ -x, & x \notin \mathbb{R}^+ \end{cases}$$

Suppose $x \in \mathbb{R}^+$. Then, since $\sqrt{x^2} \in \mathbb{R}^+$, and $y^2 = x^2 \Rightarrow y = \pm x$, it must be the case that $\sqrt{x^2} = x$.

Suppose $x \notin \mathbb{R}^+$. Then, $x^2 \in \mathbb{R}^+$, so $\sqrt{x^2} \in \mathbb{R}^+$, so $\sqrt{x^2} = -x$.

Thus, $\sqrt{x^2} = |x|$.

Problem 7

Let $x, y, a, b \in \mathbb{R}$ and $\varepsilon > 0$.

- (i) Show that $|x a| < \varepsilon$ if and only if $a \varepsilon < x < a + \varepsilon$
- (ii) If a < x < b and a < y < b, show that |x y| < b a. What does this mean geometrically?

(i)

- $(\Rightarrow) \ \text{Let } |x-a|<\varepsilon. \ \text{Then, } x-a<\varepsilon \ \text{and } -(x-a)<\varepsilon. \ \text{Thus, } x< a+\varepsilon \ \text{and } -x<\varepsilon-a, \ \text{so} \\ a-\varepsilon< x< a+\varepsilon.$
- (\Leftarrow) Let $a \varepsilon < x < a + \varepsilon$. Then, $-\varepsilon < (x a) < \varepsilon$. Therefore, $|x a| < \varepsilon$.

(ii

Let a < x < b and a < y < b. In the second case, we have that -b < -y < -a (by multiplying all the inequalities by -1). Adding, we get a - b < x - y < b - a, or -(b - a) < x - y < b - a. Therefore, |x - y| < b - a.

Problem 8

Find all $x \in \mathbb{R}$ that satisfy:

$$4 < |x+2| + |x-1| < 5$$

Case 1: x < -2

$$\begin{aligned} 4 &< -(x+2) + -(x-1) < 5 \\ -5 &< (x+2) + (x-1) < -4 \\ -5 &< 2x + 1 < -4 \\ -6 &< 2x < -5 \\ -3 &< x < -2.5 \end{aligned}$$

Case 2: $-2 \le x < 1$

$$4<(x+2)+-(x-1)<5$$

$$4<2<5$$
 \bot

Case 3: $1 \le x$

$$4 < (x+2) + (x-1) < 5$$
$$4 < 2x + 1 < 5$$
$$1.5 < x < 2$$

So the solution is:

$$x \in (-3, -2.5) \cup (1.5, 2)$$

Problem 9

Let $a, b \in \mathbb{R}$. Show that

$$\max(a, b) = \frac{1}{2}(a + b + |a - b|)$$
$$\min(a, b) = \frac{1}{2}(a + b - |a - b|)$$

WLOG, let a > b. Then:

$$\frac{1}{2}(a+b+|a-b|) = \frac{1}{2}(a+b+(a-b))$$

$$= a$$

$$\frac{1}{2}(a+b-|a-b|) = \frac{1}{2}(a+b-(a-b))$$

Similarly, if a = b, then we have that $\max(a, b) = \min(a, b) = a = b$.

Problem 10

If $x \neq y$ in \mathbb{R} , show that there is a $\delta > 0$ such that $V_{\delta}(x) \cap V_{\delta}(y) = \emptyset$.

Let $\delta = \frac{1}{2}|x-y|$. Then

$$V_{\delta}(x)\cap V_{\delta}(y)=\left(x-\frac{1}{2}|x-y|,x+\frac{1}{2}|x-y|\right)\cap \left(y-\frac{1}{2}|x-y|,y+\frac{1}{2}|x-y|\right)=\emptyset$$