Álgebra

Ignacio Cordón Castillo

Extensiones separables

Definición. Elemento separable

Un elemento algebraico u sobre un cuerpo K se llama separable si Irr(u, K) no tiene raíces múltiples.

Definición. Extensión separable

Una extensión algebraica F/K se llama separable si todo elemento de F es separable sobre K.

Proposición 1. Torres separables

Sea $E \supset F \supset K$ torre de cuerpos tal que E/K es extensión separable. Entonces E/F y F/K son extensiones separables.

F/K es separable, por tener menos elementos que E. E/F es separable porque Irr(u,F)|Irr(u,K) y Irr(u,K) no tiene raíces múltiples, luego Irr(u,F) tampoco.

Pongamos un ejemplo de cuerpo normal no separable.

$$\mathbb{Z}_p(t^p)(t)\supset\mathbb{Z}_p(t^p)$$

con p primo y t trascendente sobre \mathbb{Z}_p

Tenemos que es extensión normal, por tenerse que $\mathbb{Z}_p(t^p)(t)$ es cuerpo de descomposición de $(X^p - t^p) = (X - t)^p$.

Y no es separable puesto que $4Irr(t,\mathbb{Z}_p) = (X-t)^p$ con raíces repetidas. Para demostrar esto último, supongamos $gr(Irr(t,\mathbb{Z}_p)) = m < p$. Entonces se tendría $(X-t)^m = f(t^p)$ \$, lo que negaría que t fuera transitivo sobre \mathbb{Z}_p

Definición. Grado separable

Sea una torre de cuerpos

$$\bar{K}\supset F\supset K$$

donde \bar{K} es una clausura algebraica de K

 $LLamamos \ grado \ separable \ de \ F \ sobre \ K \ al \ conjunto:$

$$[F:K]_s = |\{\sigma: F/K \to \bar{K}/K \mid homomorfismo\}|$$

Proposición 2. Grado separable de una torre de cuerpos

$$\bar{K} \supset E \supset F \supset K$$

donde \bar{K} es una clausura algebraica de K. Entonces:

$$[E:K]_s = [E:F]_s[F:K]_s$$

Proposición 3. Sea F/K extensión finita. Entonces $[F:K]_s$ divide a [F:K].

Proposición 4. Caracterización de separabilidad

Sea E/K extensión finita. La extensión E/K es separable si y sólo si $[E:K]_s = [E:K]$

Por inducción sobre el grado de la extensión. Si [E:K]=1 se cumple trivialmente.

Supuesto cierto para extensiones de hasta grado n-1:

Si E/K es separable debe tenerse E/K(u), K(u)/K separables y por hipótesis de inducción

$$[E:K] = [E:K(u)][K(u):K] = [E:K(u)]_s[K(u):K]_s = [E:K]_s$$

Supuesto $[E:K]_s = [E:K]$ entonces dado $u \in F \setminus K$,

 $[E:K(u)][K(u):K]=[E:K(u)]_s[K(u):K]_s$ y por la proposición anterior $[E:K(u)]_s \leq [E:K(u)]$ y $[K(u):K]_s \leq [K(u):K]$ deberíamos tener la igualdad

Entonces Irr(u,K) no podría tener raíces múltiples, porque en ese caso el grado de separabilidad sería menor que [K(u):K] porque tendríamos menos formas de permutar las raíces para obtener homomorfismos $K(u)/K \to \bar{K}/K$ distintos.

Luego todo polinomio irreducible sobre K tiene raíces únicas.

Proposición 5. Sea $E \supset F \supset K$ torre de cuerpos con E/K finita. Entonces $[E:K]_s = [E:K]$ si y solo si $[E:F]_s = [E:F]$ y $[F:K]_s = [F:K]$.

Proposición 6. Sea F/K extensión algebraica y $S \subset F$ tal que F = K(S). Entonces la extensión F/K es separable sii todo elemento es separable sobre K

- Proposición 7. 1. Sea $E \supset F \supset K$ torre de cuerpos con E/K algebraica. La extensión E/K es separable sii lo son las extensiones E/F y F/K
 - 2. Sean E/K extensión algebraica separable y F/K extensión arbitraria. Etnocnes EF/F es separable.
 - 3. Sean E/K, F/K dos extensiones algebraicas separables. Entonces EF/K es separable.

Corolario 1. La clausura normal de una extensión separable es separable

Definición. Definimos como clausura separable de K cuerpo, y lo notamos como K^{sep} al subcuerpo formado por todos los elementos de \bar{K} separables sobre K forman un subcuerpo de \bar{K}

Teorema 1. Teorema del elemento primitivo Sea F/K extensión finita. La extensión es **simple** sii el conjunto de cuerpos intermedios $\{E: F \supset E \supset K\}$ es finito.

Si una extensión F/K es finita y separable, entonces es simple.

Definición. Endomorfismo de Frobenius Sea K un cuerpo de característica p. El homomorfismo $\phi: K \to K$ definido por $\phi(u) = u^p$ se llama endomorfismo de Frobenius del cuerpo K.

Teorema 2. Caracterizaciones de cuerpos perfectos

Para un cuerpo K son equivalentes:

- 1. Todo polinomio $f \in K[X]$ irreducible tiene sólo raíces simples.
- 2. Toda extensión algebraica es separable.
- 3. Toda extensión finita es separable.
- 4. car(K) = 0 o car(K) = p y el endomorfismo de Frobenius es sobreyectivo.

En este caso el cuerpo se llama **cuerpo perfecto**

Las implicaciones $1 \Longrightarrow 2 \Longrightarrow 3$ son claras. Para la implicación $3 \Longrightarrow 1$, dado $f \in K[X]$ polinomio irreducible, con raíces $\alpha_1, \ldots \alpha_n$ en una extensión algebraica, $K(\alpha_1, \ldots \alpha_n)$ es finita, y 3 acaba.

Como ejemplos: cuerpos de característica 0, cuerpos finitos, cuerpos algebraicamente cerrados.

Derivada y raíces multiples

Definición. Multiplicidad de raíces

Sea $f \in F[X]$ polinomio, $u \in F$ es raíz de f de multiplicidad k si $f = (X - u)^k f_1$ con $f_1(u) \neq 0$.

El elemento u es una raíz simple si k = 1 y es una raíz múltiple si k > 1.

Definición. Derivada de un polinomio en un cuerpo K

Dado
$$f = \sum_{i=0}^{n} a_i X^i$$
 definimos la derivada de f como:

$$f' = \sum_{i=0}^{n} i a_i X^{i-1}$$

Proposición 8. 1. (f+g)' = f' + g'

- 2. (fg)' = f'g + fg'
- 3. $(f^m)' = mf^{m-1}f'$

Corolario 2. Condiciones para que las raíces sean simples

- 1. f irreducible, $f' \neq 0$. Entonces las raíces de f son simples.
- 2. car(K) = 0 y f irreducible sobre K. Entonces las raíces de f son simples.
- 3. car(K) = p > 0. El polinomio f irreducible tiene raíces múltiples sii $f(X) = g(X^p)$

Definición. Polinomio separable

Un polinomio $f \in K[X]$ se llama separable sobre K si sus factores irreducibles tienen solo raíces múltiples.