Relational Database Management System

Copyright Guideline

© 2017 Infosys Limited, Bangalore, India. All Rights Reserved.

Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

Confidential Information

- This Document is confidential to Infosys Limited. This document contains information and data that Infosys considers confidential and proprietary ("Confidential Information").
- Confidential Information includes, but is not limited to, the following:
 - Corporate and Infrastructure information about Infosys
 - Infosys' project management and quality processes
 - Project experiences provided included as illustrative case studies
- Any disclosure of Confidential Information to, or use of it by a third party, will be damaging to Infosys.
- Ownership of all Infosys Confidential Information, no matter in what media it resides, remains with Infosys.
- Confidential information in this document shall not be disclosed, duplicated or used in whole or in part –
 for any purpose other than reading without specific written permission of an authorized representative of
 Infosys.
- This document also contains third party confidential and proprietary information. Such third party information has been included by Infosys after receiving due written permissions and authorizations from the party/ies. Such third party confidential and proprietary information shall not be disclosed, duplicated or used in whole or in part for any purpose other than reading without specific written permission of an authorized representative of Infosys.

Course Information

- Course Code: CCFP4.1-RDBMS
- Course Name: Relational Database Management System
- Document Number: RDBMS-01
- Version Number: 4.1

Learning Objectives

- Given application requirements and data model, be able to interpret and implement the model, normalize the relational schema and analyze the applicability of a specific normal form
- Given a business scenario and DB design of a relational database be able to create/modify the structure and write optimized SQL queries to extract and modify information from tables or views
- Given a business scenario of an Online Transaction implement the transaction using DB programming language (SQL/PL-SQL)

EasyShop : A snapshot

- 9,000 outlets across the world
- Approximately 40,000 employees working in various outlets
- More than 90,000 items
- More than 3,000 suppliers
- Around 2.5 million customers
- More than a million transactions each day across all outlets

Data

What is Data?

How do you organize the data and Why?

What do you think about the "growth" of data?

What do you think is the volume of this data?

What do you think is the size of this data?

How do you think data is classified?

Collection of facts and figures for processing and analysis

In "Database"
Organized data needs "Processing"

Employees data grows slowly when compared to transactions

Huge

Terabytes +

Structured and unstructured

EasyShop: A snapshot

What operations can be performed on EasyShop application data?

EasyShop: Data operations

- Add new items to the stock
- Modify the details of a customer / employee/items
- Retrieve customer details such as customer type for appropriate bill calculation
- Identify the pattern of items being sold

Purpose of data

Demo: EasyShop application

Ways of data storage

Non persistent

- Data in primary memory for processing
- E.g.: Data in variables, arrays, linked lists etc. used as part of application

Persistent

- Data stored in secondary memory
- E.g.: Data stored in flat files

Data quality criteria

Flat files for data storage

- Challenges to ensure data quality
 - Application is dependent on data
 - Complexity in data retrieval
 - Single user access only
 - Data is not secured
 - Integrity of the data requires additional logic in the application
 - Data redundancy

This necessitates a software to handle these challenges - DBMS

DBMS

• DBMS is a software that facilitates the creation, storage, retrieval and manipulation of data in the database

Modules in EasyShop

Functions of DBMS

Data management

Store, retrieve and modify data

Transaction support

Ensures that modifications to the database must be either successful or not done at all

Concurrency control

Simultaneous data access provided to users

Recovery

Recovery mechanism for data so that nothing is lost

Security

Access to authorized users only

Integrity

Maintains accuracy of data

Utilities

Data import/export, user management, backup, performance analysis, logging & audits

Data perspectives in DBMS

supplierid	id character	
suppliername	character	
emailid	character	

supplierid	TYPE = BYTE (6)	OFFSET = 0
suppliername	TYPE = BYTE (30)	OFFSET = 6
emailid	TYPE = BYTE (30)	OFFSET = 36

Demo: EasyShop application **external view**: supplier report; **conceptual view**: describe supplier table

Few categories of DBMS

Oracle, MySQL, Microsoft SQL Server, DB2,etc.

Relation/ Table Data representation in RDBMS Attributes/Columns/Fields **NULL** Rows/Records/Tuples custid custname custtype cardtype C1001 Regular Jeremy C1002 Privileged Silver No. of Records/ Rows/ Tuples: Larry Cardinality of the Relation C1003 Privileged Henry Gold Privileged C1004 Liza **Platinum** C1005 Allen Regular Name of the relation No. of Attributes/Columns/Fields: Attributes of Degree of the Relation the relation Relation is usually represented as: customer (custid, custname, custtype, cardtype)

Keys in RDBMS

- In EasyShop retail system, how is uniqueness maintained among customers?
- How do you establish the link/association between two relations?

Candidate key

- A minimal set of columns/attributes that can be used to uniquely identify a single row/tuple in a given relation, is called candidate key
- Identified during design time

Primary key

- Database designer selects one of the candidate keys as primary key for the purpose of identification of a row of table uniquely
- Implented during table creation

Foreign key

- A foreign key is a column or combination of columns that is used to establish and enforce a link between the data in two relations
- Implented during table creation

Foreign Key

- The set of attributes whose values are required to match with the values of a column in the same or another table.
- Foreign key values need not be unique and can have NULL values
- To enter the data in child table corresponding data must be present in parent table
- If data is not present in parent table, NULL can be the default value in child table

(Parent /Master/Referenced Table) dept

deptno	dname
D1	IVS
D2	ETA

(Child /Referencing Table) emp

empno	ename	edeptno
1001	Elsa	D1
1002	John	D2
1003	Maria	NULL
1004	Maida	D1

Guided Activity: CCFP4.1-RDBMSAssignments, Database Basics Assignment 1

To Summarize.....

- Database fundamentals
- Data, information and knowledge
- Data quality criteria
- Challenges of storing data in flat files
- Need for DBMS
 - functions of DBMS

Database life cycle

Database life cycle – Data requirements

This stage involves assessing the informational needs of an organization so that a database can be designed to meet those needs

Guided Activity: CCFP4.1-RDBMSAssignments, Database Basics, Assignment 2

(Estimated Time: 20 mins.)

Database life cycle – Logical design

Top down approach (Entity – Relationship (ER) model)

- •This approach is used when application requirements are clear
- •Represents the application requirements in a pictorial form
- •The real world objects and their corresponding attributes are identified from the requirements hence it is top down
- •This model helps in
 - analysis and design
 - re-validating the requirements

Bottom up approach (Normalization)

- •This approach is used when application requirements are not very clear
- •First define the required data items and then group the related data items
- •Further refinement may be carried out depending on the application need

ER diagram

Guided Activity: CCFP4.1-RDBMSAssignments, Database Basics, Assignment 5, 6

(Estimated Time: 30 mins.)

To summarize:

- Logical design in database life cycle
- ER diagram terminologies and notations
 - Degree and cardinality of relationship

Next step: given a case study, draw the ER diagram

Case study – Guided activity

Guided Activity: CCFP4.1-RDBMS-EasyShop Retail Application Case Study

(Estimated Time: 20 mins.)

- One supplier can provide many quotations
- 2. For every item, there will be a separate quotation
- 3. Many suppliers can quote for the same item
- 4. Many items can be outward to the several retail outlets

- One employee works for only one retail outlet
- One retail outlet can have many employees
- 7. Many customers can purchase items from several retail outlets
- 8. One employee can nominate many dependents

Developing ER model – Guided activity

Identify the entities Find the relationships and cardinality Identify the key attributes Identify other relevant attributes Draw the ER diagram

Steps in ER modeling (1 of 5) – Guided activity

Step 1: Identify the entities

- Supplier
- Quotation
- Item
- RetailOutlet
- Employee
- Customer
- Dependent

Steps in ER modeling (2 of 5) – Guided activity

Step 2: Find relationship and cardinality

One supplier can provide many quotations

Many items can be outward to several retail outlets

Many customers can purchase items from several retail outlets

Steps in ER modeling (3 of 5) – Guided activity

Step 3: Identify key attributes

– Supplier: supplierid

– Quotation: quotationid

– Item: itemcode

RetailOutlet: retailoutletid

– Employee: empid

- Customer: customerid

Steps in ER modeling (4 of 5) – Guided activity

Step 4: Identify other relevant attributes

- Supplier: suppliername

Quotation: quotedprice, quotationdate, quotationstatus

- Item: Itemcode, description, price, category, qtyonhand, reorderlevel

RetailOutlet: retailoutletlocation

Employee: empname, designation, emailed, contactno, salary, password

Customer: customertype, customername, emailid, contactno, address

Steps in ER modeling (5 of 5) – Guided activity

Summary

- Database basics
- Relational data model basics
- Keys in RDBMS
- Database design
 - Top down and bottom up approach (ERD)

Self-Study

Refer to NPTEL course: http://nptel.ac.in/courses.php

Course: Course: NPTEL >> Computer Science and Engineering >> Database Design

Videos:

Introduction to Database Management System

Conceptual Designs

Relational Model

Refer to:

https://class.stanford.edu/courses/Home/Databases/Engineering/about

Study Material – RDBMS

References

- http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-830database-systems-fall-2010/lecture-notes/
- http://www.learnerstv.com/Free-Computers-Video-lectures-ltv048-Page1.htm
- http://www.learnerstv.com/video/Free-video-Lecture-23856-Computer-Science.htm
- http://www.htmlgoodies.com/primers/database/article.php/3478051
- http://online.stanford.edu/course/intro-to-databases-winter-2014
- http://www.techopedia.com/6/28832/enterprise/databases/introduction-todatabases

Thank You

© 2013 Infosys Limited, Bangalore, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this documentation nor any part of it may be reproduced, stored in a riverviewal system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

