Part I A First Course in General Relativity 1

I'm migrating

Chapter 1

Special Relativity

On "Principle of relativity (Galileo)"

Galilean invariance

Newton's laws of motion hold in all frames related to one another by a Galilean transformation. In other words, all frames related to one another by such a transformation are inertial (meaning, Newton's equation of motion is valid in these frames).² The proof has been given by the book on page 2.

1.5 - Construction of the coordinates used by another observer

Why would the tangent of the angle is the speed in Fig. 1.2?

Suppose O and \overline{O} both start out at the same position where \overline{O} moves along the x at some speed. After t_1 , observer O sees \overline{O} at position x_1 :

$$\bar{\mathbb{O}}_1 = (x_1, t_1)$$

Observer $\bar{\mathbb{O}}$, however, still sees themself at x = 0:

$$\bar{O}_1 = (0, t_1)$$

By definition where " \bar{t} is the locus of events at constant $\bar{x}=0$ ", \bar{t} is the straight line that passes the origin and the (x_1,t_1) :

1.6 - Why $(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2 - (\Delta t)^2 = 0$ for two events in the same light beam?

Let's say, in a simplified 1D case, event $\mathcal{E}=(x_0,t_0)$ and $\mathcal{P}=(x_1,t_1).$

$$(\Delta x)^2 - (\Delta t)^2 = (x_1 - x_0)^2 - (t_1 - t_0)^2$$

Since the speed of light is 1,

$$(x_1-x_0)^2-(t_1-t_0)^2=(x_1-x_0)^2-(t_1\times 1-t_0\times 1)^2=(x_1-x_0)^2-(x_1-x_0)^2=0$$

Why do we have a 2nd term in equation 1.3 on p.10?

$$\Delta \bar{s}^2$$

Bibliography

 $^{^{\}rm 1}$ Bernard Schutz. A First Course on General Relativity. 2009.

 $^{^2\,\}mathrm{Wikipedia.}$ Galilean invariance.