

14-15 NOVEMBER 2022 PARIS

Sales Forecasting and Fraud Detection

Jean-Francois Puget (CPMP)

Organizers

LOGICNI

kaggle LVMH

SEPHORA

LOUIS VUITTON

Dior

Christian Dior

CELINE

GIVENCHY

BVLGARI

MoëtHennessy

TIFFANY & CO.

Sales Forecasting and Fraud Detection

- Sales forecasting
 - Cast as regression
 - Time based validation
 - Recency and seasonality bias
 - Sequence to sequence
 - More data
- Recommender systems
- Fraud Detection
 - Common traps

About me

CPMP

RAPIDS and deep learning at NVIDIA

France

Joined 10 years ago · last seen in the past day

in https://rapids.ai/

Competitions (84) Datasets (15) Code (932) Discussion (9,790) Followers (6,124) Notifications Account

Edit Public Profile

Followers 6124

Sales forecasting

- Predict sales in the future
- From Historical data
 - Several (many) time series, per product, region, and aggregated
- Mind the gap!
 - There is a delay between when training data is collected and prepared and when the model can be put in production

Many models

- Facebook Prophet
- VAR
- ARIMA
- TFT (best deep learning model?)
- •

Auto regressive models and sequence to sequence models, usually for single series

There is another way!

Cast as regression

Forecasting as Regression

- Sequence to value: single prediction
 - We need to forecast one value
- Generalize to Sequence prediction
 - Iterate single prediction
 - Train several models
 - Train one model

- Create training instances by shifting train end date and target date: keep the gap constant!
- Features are aggregates of the history data

ıllı kaggle

- Create training instances by shifting train end date and target date: keep the gap constant!
- Features are aggregates of the history data
 - Last value
 - Min, Max, Median, Mean, Std of last week
 - Min, Max, Median, Mean, Std of last month
 - ..

History features

History features

History features

History features

History features

Now time

- We then get a regression problem
- Features can come from more than one time series -> multivariate time series

- Cross validation
- Never ever use for training data which is in the future of validation
- Example with 2 folds

- Cross validation
- Never ever use for training data which is in the future of validation
- Example with 2 folds

- Cross validation
- Never ever use for training data which is in the future of validation
- Example with 2 folds

De-trending

- Gradient boosting (e.g. XGBoost) cannot extrapolate!
 - Often heard to dismiss it for forecasting
- Predict the residual of the trend
 - Modify the target!
- New target is original target minus
 - Mean value over last month
 - Same value a year ago (yearly seasonality)
 - Same value last week (weekly seasonality)
 - A linear baseline that combines the above
- Baseline can be even more complex!
 - I won a 2nd prize using a sequence to sequence NN model as baseline
 - XGBoost to predict the residuals

Recency bias

ıllı kaggle

- Last known value is a great predictor
- More recent samples are more important
- Weight samples by recency when training
- Weight last year same period more If there is a yearly seasonality

- We have shown how to train a model to predict one time period in the future
- How do we predict a sequence in the future with it?
- XGBoost cannot predict sequences!

• If gap is negligible, predict next period, then use the prediction as additional history to predict one period more, etc

• Main disadvantage: prediction errors accumulate, and compound effect can be really bad

Train N models where N is the length of the sequence to predict, with increasing gaps

ıllı kaggle days

Sequence to sequence

- Train one model
- Each sample becomes N samples, with increasing gap values

Combine with time-based split

	G	30
History features	0	
History features	1	
History features	2	
History features	3	
History features	0	
History features	1	
History features	2	
History features	3	

time

Sales forecasting

- Target is not symmetric, over predicting maybe fine
 - Unsold products can be sold later
 - Missing products cannot be sold
- Not true for some products
 - Limited shelf life, e.g. dairy
 - Deadline, e.g. Christmas tree
- Quantile regression
 - Weight over prediction error differently than under prediction error

More Data Than Past Sales

- History data
 - Actual sales, not demand
 - Sales may have been limited by inventory
 - Sales maybe impacted by pricing, marketing campaigns, holidays, events
- Include inventory information in model input
 - Estimate unmet demand in the past
 - Product cannibalization
- Include pricing, campaigns, holidays, events
 - Multivariate time series

Recommender Systems

Fraud detection

- Can be cast as a binary forecasting
- Given some history, is the current tentative payment a fraud?

Many issues

- Very imbalanced (fortunately)
- Ground truth is known with some delay
 - Large gap
- Little relevant history (when a fraud pattern is detected then fraudsters adapt)

Maybe better to see it as anomaly detection

- Model usual behavior (amounts, frequency, locations, etc)
- Flag large deviations

- Hard to get
- In one case I was asked to build a credit card fraud detection
- I got access to a 300M credit card transactions
- "The labels are in this other file"

- Hard to get
- In one case I was asked to build a credit card fraud detection.
- I got access to a 300M credit card transactions
- "The labels are in this other file"
- The file had 1800 transactions and 6 frauds among them

- Hard to get
- In one case I was asked to build a credit card fraud detection.
- I got access to a 300M credit card transactions
- "The labels are in this other file"
- The file had 1800 transactions and 6 frauds among them
- The bank should spend time to label more data instead of exhausting all ML vendors...

- Hard to get
- In one case I was asked to build a credit card fraud detection
- I got access to a 300M credit card transactions
- "The labels are in this other file"
- The file had 1800 transactions and 6 frauds among them
- The bank should spend time to label more data instead of exhausting all ML vendors...
- In another case I was asked to help on a difficult wire transfer fraud
- Great data
- All labelled as fraud/non fraud!

- Hard to get
- In one case I was asked to build a credit card fraud detection
- I got access to a 300M credit card transactions
- "The labels are in this other file"
- The file had 1800 transactions and 6 frauds among them
- The bank should spend time to label more data instead of exhausting all ML vendors...
- In another case I was asked to help on a difficult wire transfer fraud
- Great data
- All labelled as fraud/non fraud!
- I got suspicious as this NEVER is the case
- Got assurance that this was real ground truth

- Hard to get
- In one case I was asked to build a credit card fraud detection
- I got access to a 300M credit card transactions
- "The labels are in this other file"
- The file had 1800 transactions and 6 frauds among them
- The bank should spend time to label more data instead of exhausting all ML vendors...
- In another case I was asked to help on a difficult wire transfer fraud
- Great data
- All labelled as fraud/non fraud!
- I got suspicious as this NEVER is the case
- Got assurance that this was real ground truth
- Once I delivered a model I learned that the GT was in fact the output of a legacy pipeline the customer wanted to replace...

Online Commerce Topics

- Decompose the problem into a regression
- Proper sampling for training
- Avoid future leaking into training
- Sales forecasting is more than univariate time series forecasting
- Lessons relevant to recys
- Fraud detection deserves a full presentation

ıllı kaggle days

