The Relevance of *t*-Statistics for Small Sample Sizes

An Introductory Class to Higher Statistics

Xinyu Chen

December 6, 2024

Outline

Answering a lot questions, e.g.,

- How was *t*-statistic developed?
- **②** Standard normal distribution vs. student *t*-distribution?
- What is *t*-statistic?
- **4** What types of *t*-tests there are?
- What the hypotheses and the assumptions are?
- **1** How a t-test is calculated?
- How you interpret results?
- Huge real-world applications

Development

Revisiting Normal Distribution

Probability density function of standard normal distribution

Revisiting Normal Distribution

Probability density function of standard normal distribution

Z-Test

"Statistical tests are used to test the fit between a hypothesis and the data." Example

Probability density function (w/ random variable x):

$$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} (1 + \frac{x^2}{\nu})^{-\frac{\nu+1}{2}}$$

- $\circ \ \ \nu \in \mathbb{Z}^+ \colon \operatorname{Degrees} \ \operatorname{of} \ \operatorname{freedom}$
- o $\Gamma(\cdot)$: The Gamma function
- Example of $\nu = 5$ degrees of freedom:

$$f(x) = \frac{\Gamma(3)}{\sqrt{5\pi}\Gamma(2.5)} \left(1 + \frac{x^2}{5}\right)^{-3}$$

95% Confidence Interval

For the population mean μ (given) and standard deviation σ (given or not?)

• If σ is known

$$\bar{x} \pm 1.96 imes \frac{\sigma}{\sqrt{n}}$$

Standard normal distribution

• If σ is not known

$$\bar{x} \pm ? \times \frac{s}{\sqrt{n}}$$

Student t-distribution

Development

ullet The t-statistic depends on the type of test, but for a one-sample t-test:

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

- \circ \bar{x} sample mean
- \circ μ population mean
- \circ sample standard deviation
- \circ n sample size
- The *t*-statistic quantifies the difference relative to variability in the data.
- (Interpretation) A high absolute value of t (larger than the critical value from the t-table) suggests a statistically significant difference.

t-Table

Method

use math
use figures
use examples
use data
use codes
use latex to create all examples

Thanks for your attention!

Any Questions?

About me:

★ Homepage: https://xinychen.github.io

■ How to reach me: chenxy346@gmail.com