Logic Design Example or

How To Fly a Drone in 5 Easy Steps

ENCE260: Computer Architecture Topic 6

Specificaitons

- Drone has a safety switch: motors won't turn without S = 1.
- To bank left, drive motors 2 & 4 (M2 & M4)
- To fly forward, drive motors 3 & 4 (M3 & M4)

Design Process

- 1. Define the function using a truth table
- 2. Convert the truth table to Karnaugh maps
- 3. Derive a simplified Boolean expression from each K-map
- 4. Map Boolean operators to logic gates

Define the Truth Table

State	Inputs	Outputs
	SABC	MI M2 M3 M4
Left	1000	
Right	1001	
Forward	1010	
Backward	1011	
Up	1100	
Down	1101	
Safety	0XXX	
Unused States	111X	

Define the Truth Table

State	Inputs	Outputs
	SABC	MI M2 M3 M4
Left	1000	0101
Right	1001	1010
Forward	1010	0011
Backward	1011	1100
Up	1100	1111
Down	1101	0000
Safety	0XXX	0000
Unused States	111X	0000

State	Inputs	Outputs
	SABC	MI M2 M3 M4
Left	1000	0101
Right	1001	1010
Forward	1010	0011
Backward	1011	1100
Up	1100	1111
Down	1101	0000
Safety	0XXX	0000
Unused States	111X	0000

	\overline{sa}	$\overline{s}a$	sa	$s\overline{a}$
$\overline{b}\overline{c}$				
$\overline{b}c$				
bc				
$b\overline{c}$				

State	Inputs	Outputs
	SABC	MI M2 M3 M4
Left	1000	0101
Right	1001	1010
Forward	1010	0011
Backward	1011	1100
Up	1100	1111
Down	1101	0000
Safety	0XXX	0000
Unused States	111X	0000

MI	\overline{sa}	$\overline{s}a$	sa	$s\overline{a}$
$\overline{b}\overline{c}$	0	0	—	0
$\overline{b}c$	0	0	0	I
bc	0	0	0	I
$b\overline{c}$	0	0	0	0

State	Inputs	Outputs
	SABC	MI M2 M3 M4
Left	1000	0101
Right	1001	1010
Forward	1010	0011
Backward	1011	1100
Up	1100	1111
Down	1101	0000
Safety	0XXX	0000
Unused States	111X	0000

МІ	\overline{sa}	$\overline{s}a$	sa	$s\overline{a}$
$\overline{b}\overline{c}$	0	0	—	0
$\overline{b}c$	0	0	0	
bc	0	0	0	
$b\overline{c}$	0	0	0	0

$$M1 = s\overline{a}c + sa\overline{b}\overline{c}$$

$$M1 = s\left(\overline{a}c + a\overline{b}\overline{c}\right)$$

State	Inputs	Outputs
	SABC	MI M2 M3 M4
Left	1000	0101
Right	1001	1010
Forward	1010	0011
Backward	1011	1100
Up	1100	1111
Down	1101	0000
Safety	0XXX	0000
Unused States	111X	0000

M2	\overline{sa}	$\overline{s}a$	sa	$s\overline{a}$
$\overline{b}\overline{c}$	0	0	—	I
$\overline{b}c$	0	0	0	0
bc	0	0	0	I
$b\overline{c}$	0	0	0	0

State	Inputs	Outputs
	SABC	MI M2 M3 M4
Left	1000	0101
Right	1001	1010
Forward	1010	0011
Backward	1011	1100
Up	1100	1111
Down	1101	0000
Safety	0XXX	0000
Unused States	111X	0000

M2	\overline{sa}	$\overline{s}a$	sa	$s\overline{a}$
$\overline{b}\overline{c}$	0	0	—	_
$\overline{b}c$	0	0	0	0
bc	0	0	0	—
$b\overline{c}$	0	0	0	0

$$M2 = s\overline{b}\overline{c} + s\overline{a}bc$$

$$M2 = s\left(\overline{b}\overline{c} + \overline{a}bc\right)$$

State	Inputs	Outputs
	SABC	MI M2 M3 M4
Left	1000	0101
Right	1001	1010
Forward	1010	0011
Backward	1011	1100
Up	1100	1111
Down	1101	0000
Safety	0XXX	0000
Unused States	111X	0000

M3	\overline{sa}	$\overline{s}a$	sa	$s\overline{a}$
$\overline{b}\overline{c}$	0	0	—	0
$\overline{b}c$	0	0	0	I
bc	0	0	0	0
$b\overline{c}$	0	0	0	I

State	Inputs	Outputs	
	SABC	MI M2 M3 M4	
Left	1000	0101	
Right	1001	1010	
Forward	1010	0011	
Backward	1011	1100	
Up	1100	1111	
Down	1101	0000	
Safety	0XXX	0000	
Unused States	111X	0000	

M3	\overline{sa}	$\overline{s}a$	sa	$s\overline{a}$
$\overline{b}\overline{c}$	0	0	_	0
$\overline{b}c$	0	0	0	—
bc	0	0	0	0
$b\overline{c}$	0	0	0	

$$M3 = s\overline{a}(b \oplus c) + sa\overline{b}\overline{c}$$

$$M3 = s\left(\overline{a}(b \oplus c) + a\overline{b}\overline{c}\right)$$

State	Inputs Outputs	
	SABC	MI M2 M3 M4
Left	1000	0101
Right	1001	1010
Forward	1010	0011
Backward	1011	1100
Up	1100	1111
Down	1101	0000
Safety	0XXX	0000
Unused States	111X	0000

M4	\overline{sa}	$\overline{s}a$	sa	$ s\overline{a} $
$\overline{b}\overline{c}$	0	0	—	I
$\overline{b}c$	0	0	0	0
bc	0	0	0	0
$b\overline{c}$	0	0	0	I

State	Inputs Output	
	SABC	MI M2 M3 M4
Left	1000	0101
Right	1001	1010
Forward	1010	0011
Backward	1011	1100
Up	1100	1111
Down	1101	0000
Safety	0XXX	0000
Unused States	111X	0000

M4	\overline{sa}	$\overline{s}a$	sa	$s\overline{a}$
$\overline{b}\overline{c}$	0	0	—	_
$\overline{b}c$	0	0	0	0
bc	0	0	0	0
$b\overline{c}$	0	0	0	

$$M4 = s\overline{b}\overline{c} + s\overline{a}\overline{c}$$

$$M4 = s\overline{c}(\overline{b} + \overline{a})$$

Build logic circuit from expressions and the second expressions and the second expressions are also as a second expression and the second expressions are also as a second expression and the second expression and the second expression are also as a second expression and the second expression are also as a second expression and the second expression are also as a second expression and the second expression are also as a second expression and the second expression are also as a second expression and the second expression are also as a second expression and the second expression are also as a second expression are also as a second expression and the second expression are also as a second expression and the second expression are also as a second expression are also as a second expression are a second express

$$M1 = s \left(\overline{a}c + a\overline{b}\overline{c} \right)$$

Build logic circuit from expressions and the second expressions and the second expressions are also as a second expression and the second expressions are also as a second expression and the second expression and the second expression are also as a second expression and the second expression are also as a second expression and the second expression are also as a second expression and the second expression are also as a second expression and the second expression are also as a second expression and the second expression are also as a second expression and the second expression are also as a second expression are also as a second expression and the second expression are also as a second expression and the second expression are also as a second expression are also as a second expression are a second express

$$M1 = s (\overline{a}c + a\overline{b}\overline{c})$$

$$M2 = s (\overline{b}\overline{c} + \overline{a}bc)$$

Build logic circuit from expressions

$$M1 = s \left(\overline{a}c + a\overline{b}\overline{c} \right)$$

$$M2 = s \left(\overline{b}\overline{c} + \overline{a}bc \right)$$

$$M3 = s \left(\overline{a} \left(b \oplus c \right) + a\overline{b}\overline{c} \right)$$

Build logic circuit from expressions

$$M1 = s (\overline{a}c + a\overline{b}\overline{c})$$

$$M2 = s (\overline{b}\overline{c} + \overline{a}bc)$$

$$M3 = s (\overline{a}(b \oplus c) + a\overline{b}\overline{c})$$

$$M4 = s\overline{c}(\overline{b} + \overline{a})$$

Summary

- 1. Define the function using a truth table
- 2. Convert the truth table to Karnaugh maps
- 3. Derive a simplified Boolean expression from each K-map
- 4. Map Boolean operators to logic gates