

Segmentez des clients d'un site e-commerce

Projet 4 Sofia Velasco

Objectif:

Identifier les bon et les moins bons clients en terme de commandes et de satisfaction

Analyse exploratoire

A. Caractéristiques générales des données

9 datasets: avec variables communes pour certains

'customer_id' → dans d1 et d6
'order_id' → dans d3, d4, d5 et d6
'product_id' → dans d3 et d7
'seller id' → dans d8 et d3

```
d1: olist_customers_dataset.csv
d2: olist_geolocation_dataset.csv
d3: olist_order_items_dataset.csv
d4: olist_order_payments_dataset.csv
d5: olist_order_reviews_dataset.csv
d6: olist_order_reviews_dataset.ods
d7: olist_orders_dataset.csv
d8: olist_products_dataset.csv
```

d9: olist sellers dataset.csv /

B. Fusion des différents dataset

- **1.** d1 et d6
- **2.** d3 et d7
- 3. d3_a (d3+d7) et d8
- **4.** d3_b (d3_a+d8), d4, d5 et d6_a (d1+d6).

À chaque fusion :

- Nombre de lignes,
- 'NaN'
- Doublons
- Choix des variables, valeurs à retenir, et/ou calcul de nouvelles variables plus utiles:

```
'payment_sequantial' → le plus grand (nombre total de moyen de paiement utilisés par le client)
'payment_value_total', 'nombre_total_items', 'Prix_total_produits', 'freight_value_total' (total associé à chaque commande)
'review_score' → 'review_score_moyen' (moyenne associée à chaque commande)
'Respect temps livraison'='order delivered customer date'-'order estimated delivery date' → (variable binaire 0 si respecté)
```

- Conversion 'dates + horaires' en dates uniquement ('datetime64[ns]')

C. Élimination de variables par rapport à notre objectif

Variables retenues éliminables :

Caractéristiques intrinsèques du produit:

Connues avant l'achat → sans influence sur satisfaction

'product_name_lenght', 'product_description_lenght', 'product_photos_qty', 'product_weight_g',

'product_length_cm', 'product_height_cm' et 'product_width_cm'

Données de suivi:

Sans lien avec satisfaction → le client veut juste un colis livré au plus vite 'order approved at' et 'order delivered carrier date'

Identifiant de client unique à chaque commande: 'customer_id'.

On veut identifier les clients concrètement → 'customer unique id'

- la géolocalisation des clients: 'customer_zip_code_prefix', 'customer_city' et 'customer_state' Même chose → on garde celle avec le moins de valeurs différentes possibles: 'customer_state'.
- À plusieurs valeurs associées pour une même commande:
 Empêche d'associer un type de produit ou un vendeur à la satisfaction des clients

 $\label{eq:conditional} \mbox{'product_category_name' et 'seller_id'} \ \to \ \mbox{'Nombres de catégories' et 'Nombres de vendeurs'}$

Liées au types de produits ou au vendeurs:

Devenant inutiles

product_id', 'product_category_name', 'seller_id', 'seller_zip_code_prefix', 'seller_city' et 'seller_state'

Suite au regroupement,

1. Analyse des NaN:

d3_final1_s.isna().sum()	
customer_unique_id	0
order_id	0
review_score_moyen	749
payment_value	1
Prix_total_produits	0
freight value total	0
payment_sequential	1
payment_type	1
payment installments	1
customer_zip_code_prefix	0
customer_city	0
customer_state	0
Nombre total catégories	0
Nombre total vendeurs	0
Nombre total items	0
order status	0
order_purchase_timestamp_NEW	0
Respect_temps_livraison dtype: int64	0

- Celles associés aux variables de 'paiement'
 - → Bug → élimination des lignes.
- Celles associés au 'review_score_moyen'
 → « 0 »

Le 'review score' n'est pas obligatoire, enlever les lignes non renseignées pourrait pénaliser des clients qui peuvent être potentiellement bons

2. Création des variables RFM:

L'analyse **RFM** \bigg\{ - Agréger les données \\ - Segmenter les clients en groupes homogènes (**k-means**)

3 variables à calculer:

R (recency) → A quand remonte le dernier achat de chaque client? (ie. Durée depuis le dernier achat) (Date de dernière commande du dataset entier +1 jour)

(date de la dernière commande)

F (frequency) → Combien de fois un client a-t-il passé des commandes pendant la période d'analyse? Nombre de commandes sur la période d'analyse

M (monetary) → Combien un client a-t-il dépensé au cours de la période analysée? Somme montant achats sur la période de temps pour chaque client

sélectionnée pour chaque client

Valeur des clients

-Engagement / Satisfaction

2. Dernier choix sur les variables:

```
- 'order id' → 'count' → 'F-frequency'
```

- 'order purchase timestamp NEW' → 'max' (plus récente) → R-recency
- -'payment value' → 'sum' → 'M-monetary'
- 'order status' → plus nécessaire.

```
-'Respect temps livraison' → 'sum' → 'Nombre de commandes respectant delais livraison'
```

- 'customer_state'
- 'payment type'

→ Un seul ? → Non, élimination

-'Prix_total_produits' \rightarrow 'Dépenses_période_produits'

-'freight_value_total' → 'Dépenses_période_frais'

→ 'Diff_dépenses_produits_frais'

- Pour toutes les autres variables \rightarrow 'moyenne_par_client'

satisfaction clients?

Impact

3. Élimination des doublons.

Données d'achats depuis septembre 2016, jusqu'à septembre 2018.

customer_unique_id	95419
R-recency	95419
F-frequency	95419
M-monetary M-monetary	95419
Nombre_de_commandes_respectant_delais_livraison	95419
Diff_dépenses_produits_frais	95419
review_score_moyen_moyenne_par_commande_par_client	95419
<pre>payment_sequential_moyenne_par_commande_par_client</pre>	95419
<pre>payment_installments_moyenne_par_commande_par_client</pre>	95419
Nombre_total_catégories_moyenne_par_commande_par_client	95419
Nombre_total_vendeurs_moyenne_par_commande_par_client	95419
Nombre_total_items_moyenne_par_commande_par_client	95419
dtype: int64	

0.0030 0.0025 0.0020 0.0020 0.0015 0.0010 0.0000

E. Distributions des variables

	count	mean	std	min	25%	50%	75%	max
R-recency	95419.0	244.496484	153.153950	1.00	120.0	225.00	354.00	730.00
F-frequency	95419.0	1.034018	0.211235	1.00	1.0	1.00	1.00	16.00
M-monetary	95419.0	166.070491	228.341907	9.59	63.1	107.95	183.27	13664.08

Variables RFM

Seul 3.05% on fait au moins 2 commandes

La plupart ont dépensé

entre 0 et 180

E. Distributions des variables **Autres variables** 10 0.0 0.2 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Diff dépenses produits frais Nombre de commandes respectant delais livraison review_score_moyen_moyenne_par_commande_par_client Nombre_total_vendeurs_moyenne_par_commande_par_client 1.0 25 0.8 20 £ 15 ° 0.4 0.2 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 1.0 1.5 2.0 2.5 3.0 payment sequential moyenne par commande par client Nombre total catégories moyenne par commande par client Nombre_total_items_moyenne_par_commande_par_client payment installments moyenne par commande par client

Corrélations entre les 11 variables → Pearson

E. Analyse des données

K-Means est basé sur la distance → normalisation des données nécessaire pour éviter modèle biaisé.

On garde 2 tableaux : Normalisé et Non

Variables très peu corrélées (data totale ou 3.05 % de meilleurs clients)

Les plus corrélées : - 'F-frequency' et

'Nb_respectant_delais_livraison'

- 'Nb_respectant_delais_livraison' et 'review_score_moyen'
- 'M-monetary' et -02 'payment_installments'
 - 'Nombre_total_catégories' et 'Nombre_total_vendeurs'
 - ' 'Nombre_total_vendeurs' et 'Nombre total items'

Clustérisation

Deux grandes méthodes:

A. K-means

(k → avec méthode 'Elbow')

B. **DBScan** (Density Based Spatial
Clustering of Applications with Noise)
('min_sample' >= D + 1)
('eps' → distance du 'min_sample'ème
voisin le plus proche+Elbow
avec 'KneeLocator')

- → basé sur le centroïde partitionne tous les en K groupes de similarité, elle mesurée à l'aide de la distance euclidienne. (Besoin de données normalisées).
- → basé sur la densité. Ici le voisinage de chaque point d'un cluster qui se trouve dans un rayon donné (eps) doit avoir un nombre minimum de points (min_samples). Détecte les valeurs aberrantes et gère le bruit.

À savoir:

Dans une clustérisation,

- Homogénéité bonne (>=0.8) → les clusters ne contiennent que des points de données qui sont membres d'une seule classe.
- ARI (Adjusted Random Index) bon (>=0.8) correspondance (un accord) entre deux segmentations (clustering).
- AMI (Adjusted Mutual Information) est bon (>=0.8) si les clusters sont purs.
- Complétude bonne (>=0.8) tous les points membres d'une classe sont des éléments du même cluster.

A. Méthode 1: **K-means** sur les RFM continues

K-Means initialisé avec K-Means++→ réduction effets aléatoires d'initialisation des centroïdes ?

Iteration	Inerti	a Homo	AMI
Iter 0	601	0.96	0.965
Iter 1	601	1.00	1.000
Iter 2	601	0.96	0.965
Iter 3	601	1.00	1.000
Iter 4	601	0.96	0.965
Iter 5	601	1.00	1.000
Iter 6	601	0.96	0.965
Iter 7	601	1.00	1.000
Iter 8	601	0.96	0.965
Iter 9	601	0.96	0.965

Inerties proches, homogénéité et score AMI proches de 1 (donc bons) → bonne stabilité des centroïdes.

		ency	F	-frequ	iency			M-mo	M-monetary max count		
	mean	min	max	mean	min	max	mean	min	max	count	
Cluster											
0	92.907507	1	176	1.038040	1	16	170.287758	9.59	7274.88	36619	
1	464.410379	363	730	1.027055	1	6	165.626966	11.63	7571.63	22584	
2	260.635796	177	362	1.034294	1	9	162.082874	10.07	13664.08	36216	

- R-recency:

petit → meilleur, client plus satisfait

- F-fregency:

plus grand → meilleur, client meilleur

- M-monetary: plus grand → meilleur → client meilleur

Clusters avec un nombre d'élément équilibré!

Cluster 0 → Meilleurs: F et M les plus grands (meilleurs clients) et R le plus petit (clients les plus satisfaits).

Cluster 2 → Moyens: R plus grand que cluster 0 mais plus petit que cluster 1 (clients moins satisfait que le 0 mais plus que le 1). F, plus de commandes que le cluster 1 mais moins que le 0. M le plus petit, mais la différence des dépenses moyennes des clusters 2 et 1 est minimale (du même ordre) → effort de marketing à faire pour augmenter le M.

Cluster 1 → Mauvais: R le plus grand R, F le plus petit et M suffisamment mauvais par rapport aux autres.

15

A. Méthode2: **K-means** sur les RFM scorisées

K-Means initialisé avec K-Means++→ réduction effets aléatoires d'initialisation des centroïdes ?

Iteration	Inertia	a Homo	AMI
Iter 0	21517	0.57	0.626
Iter 1	14855	1.00	1.000
Iter 2	14855	1.00	1.000
Iter 3	14855	1.00	1.000
Iter 4	21387	0.60	0.663
Iter 5	14855	1.00	1.000
Iter 6	14855	1.00	1.000
Iter 7	14855	1.00	1.000
Iter 8	14855	1.00	1.000
Iter 9	14855	1.00	1.000

Inerties proches, homogénéité et score AMI proches de 1 (donc bons) → bonne stabilité des centroïdes.

		R-red	ency	F	-frequ	iency			M-mo	M-monetary		
	mean min max			mean	min	max	mean	min	min max cour			
Cluster_2												
0	465.015679	364	730	1.027127	1	6	165.354070	11.63	7571.63	22450		
1	261.508343	178	363	1.034314	1	9	162.221815	10.07	13664.08	36137		
2	93.393815	1	177	1.037929	1	16	170.283220	9.59	7274.88	36832		

- R-recency:

petit → meilleur, client plus satisfait

- F-freqency: plus grand → meilleur, client meilleur

- M-monetary: plus grand → meilleur → client meilleur

Features

Clusters avec un nombre d'élément équilibré!

Cluster 0 → Meilleur: F et M les plus grands et R le plus petit.

Cluster 2 → Moyen: R plus grand que cluster 0 mais plus petit que cluster 1. F, plus de commandes que le cluster 1 mais moins que le 0. M le plus petit, mais la différence des dépenses moyennes des clusters 2 et 1 est minimale → effort de marketing à faire pour augmenter le M.

Cluster 1→ Mauvais: R le plus grand R, F le plus petit et M suffisamment mauvais par rapport aux autres.

16

A. Méthode 3: **K-means** sur les RFM continues + Nouvelles variables

Jusque là:

'satisfaction des clients' ('R-recency') → ressort 3 clusters bien différents.
'qualité des clients' ('F-frequency' et 'M-monetary'), → différences entre les moyennes des 3 cluster très proches.
(pour M-monetary les 2 clusters moins bon seraient inversés).

Besoin de nouvelles variables pour renforcer la 'qualité des clients'.

Seules variables non corrélées (hors variables RFM):

- ✓ 'Diff_dépenses_produits_frais'
- X 'review_score_moyen_moyenne_par_commande_par_client' → satisfaction clients
- 'payment_sequential_moyenne_par_commande_par_client'
 'payment_installments_moyenne_par_commande_par_client'
 → plus parlante

On reste donc avec les 2 variables:

'payment_installments_moyenne_par_commande_par_client' et 'Diff_dépenses_produits_frais'.

Clusters avec un nombre d'élément NON équilibré! R-recency F-frequency M-monetary Diff dépenses produits frais payment installments moyenne par

K-Means initialisé avec **K-Means++** → réduction

Iteration	Inertia	Homo	AMI
Iter 0	2587	1.00	1.000
Iter 1	2587	1.00	1.000
Iter 2	4668	0.51	0.436
Iter 3	2587	0.98	0.983
Iter 4	2587	0.98	0.983
Iter 5	2587	0.99	0.995
Iter 6	2587	0.97	0.973
Iter 7	2587	0.98	0.983
Iter 8	2587	0.99	0.995
Iter 9	2586	0.99	0.985

effets aléatoires d'initialisation des centroïdes ?

8000

6000

4000

2000

Inerties proches, homogénéité et score AMI proches de 1 (donc bons) → bonne stabilité des centroïdes. - R-recency: petit → meilleur, client plus satisfait

- **F-fregency**: plus grand → meilleur, client meilleur

- M-monetary: plus grand → meilleur → client meilleur

Features

RFM moins claires.

Diff_dépenses_produits_frais: binaire, 1 si frais > coûts produits. Moyenne ~1 → frais > coûts produits → clients mécontents achètent moins. Se confirme pour le pire cluster (1).

payment_installments_moyenne_pa r_commande_par_client: plus de paiements différés plus les clients sont moyens voir bons → paiement différés attirant.

- Cluster $0 \rightarrow Meilleurs$
- Cluster 2 → Moyens

(efforts de marketing)

- Cluster $1 \rightarrow Mauvais$

18

B. Méthode 4: **DBScan** sur les RFM continues avec les 'min_sample' et 'eps' optimales

												_
		R-recency			F-frequen	су		M-monetary				
		mean	min	max	mean	min	max	mean	min	max	count	
Cluster_DI	BScan											
	-1	289.955017	12	730	2.321799	1	16	1784.103806	46.86	13664.08	289	H
	0	243.453501	6	607	1.000000	1	1	157.179740	9.59	2713.36	92066	١
	1	697.503448	694	702	1.000000	1	1	175.615172	18.62	982.41	290	
	2	227.681120	1	607	2.000000	2	2	262.197732	34.97	1432.21	2606	
	3	330.222222	321	343	3.000000	3	3	479.023333	383.99	588.71	9	
	4	444.600000	440	453	1.000000	1	1	2028.648000	1938.74	2067.42	10	
	5	398.200000	393	405	3.000000	3	3	244.826000	152.41	342.75	5	
	6	30.185185	7	49	3.000000	3	3	385.650370	88.27	806.63	27	
	7	89.437500	72	105	3.000000	3	3	294.023125	127.65	480.52	16	
	8	161.166667	117	202	3.000000	3	3	249.450278	126.33	486.23	36	
	9	227.428571	203	252	3.000000	3	3	288.788571	87.60	532.44	14	
	10	368.500000	355	379	3.000000	3	3	225.066250	139.60	335.15	8	
	11	122.000000	112	132	3.000000	3	3	591.817778	421.32	725.80	9	
	12	452.800000	447	457	3.000000	3	3	264.492000	126.33	358.89	5	
	13	485.111111	475	496	1.000000	1	1	1881.928889	1679.63	2150.81	9	
	14	109.000000	95	119	1.000000	1	1	2614.465714	2467.17	2759.95	7	
	15	526.400000	519	540	1.000000	1	1	2164.544000	2027.16	2324.99	5	
	16	189.000000	184	194	1.000000	1	1	2149.620000	2028.65	2276.10	4	
	17	235.500000	231	240	1.000000	1	1	2119.340000	2060.20	2204.04	4	1
												1

noise points

Clusters avec un nombre d'élément NON équilibré!

En plus, trop de clusters nuit à l'identification des clients: Bon, Mauvais et Moyens

B. Méthode 5: **DBScan** sur les RFM continues avec valeur optimale de 'min_sample' et 'eps' plus grand

min_sample = 5, car 3 variables RFM (elles s'avèrent les meilleures) \rightarrow 3 dimensions \longrightarrow optimale eps = 0.1

p3 – 0.1		R-recency			F-frequen	су		M-monetary				
		mean	min	max	mean	min	max	mean	min	max	count	
Cluster_DBSc	an_2											_
	-1	276.166667	15	607	4.166667	1	16	5247.554167	110.72	13664.08	12	→ noise points
	0	697.701342	694	730	1.010067	1	2	188.482987	18.62	1423.55	298	
	1	243.072485	1	607	1.033698	1	7	165.359131	9.59	4809.44	95109	
n 'ane' nlue	o ara	and róg	Arrit	lo no	mhre de	s clus	etore	à 2		Cluste nombi NON é	re d'él	lément

Un 'eps' plus grand → réduit le nombre de clusters à 2.

Le cluster 0: clients avec R grands (bas en satisfaction), et achetant peu (F bas). Néanmoins c'est eux qui dépensent le plus (M le plus grand) → effort de marketing à faire.

Les **noice points** représentent le **plus grand capital dépensé**, mauvais signe \rightarrow c'est comme si cette segmentation ne les considérais pas.

1

DBScan NON adéquat pour la segmentation de nos données.

Meilleure segmentation (par rapport aux besoins et information tirées): 'K-Means' sur uniquement les variables RFM non scorées.

Simulation : fréquence de mise à jour

A. Questions et besoins

Les **intervalles** de temps considérés doivent être **'courts mais pas trop'** → robustesse des résultats.

Période: de septembre 2016 à septembre 2018 \rightarrow l'analyse prédictions toutes les semaines adéquat.

On a comme max 729/7=104.14 semaines (ie. un peu plus de 104 semaines).

Entraînement sur la base entière et à reculons pour les prédictions (.predict) → on enlèvera à chaque prédiction les semaines précédentes (lecture à faire à l'envers: 103 semaines → 1ère semaine)

Processus: On clustérise la base entière (obtention 'Cluster1' et du 'Modèle'), puis on fait un '.predict' du 'Modèle' obtenu sur une base avec x semaines en moins (obtention 'Cluster2'). Finalement on compare 'Cluster1' et 'Cluster2' en calculant leur ARI (>=0.8 bon → on garde, inférieur on change).

IMPORTANT:

Les RFM dépendent de la base (dernier achat par client, dernier achat de la base, somme dépensée durant la période), si on enlève des semaines les RFM changent.

À chaque 'semaine enlevée' on a une 'nouvelle base' avec le gros de la base conservé mais aussi avec en quelque sorte 'des nouveaux clients' (car ils auront de nouveaux RFM associés → un bon client semaine x peut être mauvais semaine x-1)

La comparaison adéquate:

"Cluster1" -> cluster résultant du modèle sur base complète, avec

"Cluster2" -> cluster résultant du .predict du modèle calculé sur base complète, mais appliqué sur la base sans x semaines.

B. Automatisation

```
#Automatisation
print("ARI entre les clusters")
  print('Semaine ARI')
  print(53 * ' ')
  for i in range(103):
      #C.1.1 On commence par "loc" la base.
      df t2=df t.loc[(df t['diff jours'] >7*(i+1))]
      #C.1.2 On calcule les nouvelles variable RFM pour cette nouvelle base.
      #'R-recency'
      df t2['Date du dernier achat par client']=df t2.groupby('customer unique id')['order purchase timestamp NEW'].transform(max)
      df t2['Dataset last day']=df t2['order purchase timestamp NEW'].max()
      df t2['R-recency']= ((df t2['Dataset last day']+timedelta(days=1))-df t2['Date du dernier achat par client']).dt.days
      df t2=df t2.drop(['F-frequency', 'M-monetary'], axis=1)
      #'F-frequency'
      F=df t2.groupby(['customer unique id'], as index=False)['order id'].count()
      F.rename(columns={'order id': 'F-frequency'}, inplace=True)
      df t2= pd.merge(df t2, F, how='left', on='customer unique id')
      #'M-monetary'
      M=df t2.loc[:,['customer unique id', 'payment value']]
      M=M.groupby(['customer unique id'], as index=False).sum()
      M.rename(columns={'payment value': 'M-monetary'}, inplace=True)
      df t2= pd.merge(df t2, M, how='left', on='customer unique id')
      #C.1.3 On calcule les prédictions.
      RFM 2=df t2.loc[:,['R-recency','F-frequency','M-monetary']]
      prediction 1=model.predict(RFM 2)
      df t2['Cluster2']=prediction 1
      name="-"+str(i+1)+" sem."
      res= adjusted rand score(df t2['Cluster1'], df t2['Cluster2'])
      results = [name, res]
      print(*results)
```


B. Résultats

-68 sem, 0,9586385203228437

ARI entre les clusters Semaine ARI

```
-1 sem. -0.848902507279809
-2 sem. 0.24394310309047043
-3 sem. -1.227966482905113
-4 sem. -7.719263961512608
-5 sem. 7.058475749745104
-6 sem, 3,7961283896776417
-7 sem. -2.524565396977901
-8 sem. -1.8912713560534609
-9 sem. 1.5798088844895195
-10 sem, 1,718568244906802
-11 sem, 1,9816521949658072
-12 sem, 2.532770972434046
-13 sem. 3.858327318347242
-14 sem, 7,772287367515303
-15 sem. -52.218558468423915
-16 sem. -2.533727863668042
-17 sem, -1.026258909720536
-18 sem. -0.5775910801581022
-19 sem. -0.36201731293190276
-20 sem. -0.2357300603532109
-21 sem. -0.15814268801752185
-22 sem, 0,10661076713054417
-23 sem. 0.08825635733480126
-24 sem. 0.07196614900139046
-25 sem. 0.059139123286636334
-26 sem, 0.047578724310934906
-27 sem. 0.038617414089089475
-28 sem. 0.03470018567602584
-29 sem, 0.035414319160328965
-30 sem, 0.04153651833867275
-31 sem. 0.054600785805710886
```

```
-69 sem. 0.9579306556952029
-33 sem. 0.10505806262341326
                               -70 sem. 0.9580931408006497
-34 sem. 0.14683801808680214
                               -71 sem, 0,9574670142230222
-35 sem. 0.19166823178281178
                               -72 sem, 0.9604665025102214
-36 sem. 0.2383520230194828
-37 sem. 0.301911236375927
                               -73 sem. 0.9627622245085424
-38 sem, 0.3574784731074652
                               -74 sem. 0.9662207279147335
-39 sem. 0.38378287196172445
                               -75 sem, 0,9627539152730259
                               -76 sem. 0.9616962055473558
-40 sem, 0.4131478656930138
-41 sem, 0.4417676708967072
                               -77 sem. 0.9561875242920067
                               -78 sem. 0.9529838888738561
-42 sem, 0.4718180009060616
                               -79 sem. 0.9437869867603009
-43 sem. 0.5020227660071716
                                -80 sem, 0,9367049290327804
-44 sem, 0.5503617213063775
                               -81 sem. 0.9236238159808668
-45 sem. 0.6371577042013974
                                -82 sem. 0.9285458636540475
-46 sem. 0.7115324145940746
-47 sem. 0.7749352680903688
                               -83 sem, 0,9053723192700329
-48 sem, 0.8122570964973386
                                -84 sem, 0.8715698936552548
                               -85 sem. 0.8486340259197677
-49 sem. 0.821808295734641
-50 sem, 0.8270257625769715
                               -86 sem. 0.8247459541298165
                               -87 sem, 0.8623375135472748
-51 sem, 0.8202109988090317
-52 sem. 0.8142490694284393
                                -88 sem, 0.8623375135472748
-53 sem. 0.8022851340451178
                               -89 sem. 0.8623375135472748
-54 sem, 0.7972216046608024
                               -90 sem. 0.8623375135472748
                               -91 sem, 0.8623375135472748
-55 sem. 0.7894701073557282
                               -92 sem. 0.8623375135472748
-56 sem. 0.782937332510906
                               -93 sem. 0.8623375135472748
-57 sem. 0.7780655036044573
                               -94 sem. 0.8623375135472748
-58 sem. 0.7720072438576676
-59 sem. 0.7660051300245877
                               -95 sem, 0.8623375135472748
-60 sem. 0.7592526929716268
                               -96 sem, 0.8623375135472748
-61 sem. 0.7566626620942646
                               -97 sem. 0.8623375135472748
-62 sem. 0.877885948247303
                               -98 sem. 0.8623375135472748
                               -99 sem, 0.8521709940851102
-63 sem, 0.9614992041605783
-64 sem, 0.9593429657062506
                               -100 sem. 1.0
                               -101 sem. 1.0
-65 sem. 0.9570714026102687
```

-32 sem. 0.07462711735347273

À partir de 61 semaines (en lecture à l'envers) le ARI est >0.8, soit au bout de 43 semaines, soit tous les 10,75 mois.

En gros tous les 10-11 mois (plutôt **10,5 mois** pour être prévoyants).

-102 sem. 1.0

-103 sem. 1.0

-66 sem, 0.9580505186778132

-67 sem. 0.9592904781439892

MERCI

