'SafeBite' Al-Enhanced Nutritional Label Extraction and Diabetic Health Assessment

Team Members

Aarogya Bhandari (THA077BCT001)

Aayush Pokharel (THA077BCT002)

Piyush Luitel (THA077BCT031)

Prashant Bhusal (THA077BCT034)

Supervised By:

Er. Ganesh Kumal

Assistant Campus Chief, Thapathali Campus

Department of Electronics and Computer Engineering Institute of Engineering, Thapathali Campus

Presentation Outline

- Motivation
- Objectives
- Scope of Project
- Project Applications
- Methodology
- Results
- Results Analysis
- Remaining Tasks
- References

Motivation

- Empower individuals with diabetes to make informed dietary decisions
- Improve blood glucose management through personalized food recommendations
- Leverage advanced technology for accurate glycemic index predictions
- Enhance user quality of life with healthier choices

Objectives

- To create a user-friendly mobile application where users can input their recent blood sugar levels and current medications
- To develop a nutritional label scanner and analysis model that provides users with insights into whether the scanned foods are suitable for them based on their profile information

Scope of Project

□ Project Capabilities

- Provides personalized nutritional advice for diabetes management.
- Simplifies understanding of food labels and nutrition details.
- Offers a user-friendly platform for health management.

□ Project Limitations

- May not cover all health conditions or restrictions.
- Dietary advice can vary between regions and cultures.

Project Application

- □ Personalized Health Profiles
 - Create profiles with blood sugar, medications, recommendations
- □Nutritional Label Scanner
 - Uses YOLO & OCR to extract nutritional information from labels
- ☐ Machine Learning-Driven Recommendation
 - Analyzes data to generate personalized dietary recommendations
- □User Empowerment
 - Provides insights and tools for informed health decisions

Methodology - [1] (System Architecture)

Methodology - [2] (Nutritional Analysis Model)

Methodology - [3] (Nutritional Analysis Model)

☐GI Predictor Model

- Scanned food's nutritional information which is extracted by image processing model is passed as input to this model.
- Trained on dataset with features as nutritional facts and target variable as Glycemic Index(GI) value.
- It predicts GI value for scanned food.
- Glycemic Index (GI) of a food is a numerical value (0-100) which represents how quickly the food raises blood glucose levels after consumption.

Methodology - [4] (Nutritional Analysis Model)

□GL Calculator

- Glycemic load (GL) is a measure that assesses the impact of carbohydrate consumption on blood sugar levels.
- It combines both the Glycemic Index and quantity of carbohydrates in a food.
- This calculator calculates the GL value from the predicted GI value by the below given formula:

$$Glycemic\ Load = \frac{Glycemic\ Index*amount\ of\ carbohydrate\ in\ gram}{100}$$

Methodology - [5] (Nutritional Analysis Model)

- ☐ Interpretation of GL Values
 - Low GL (10 or less): Foods with a low glycemic load have a minimal impact on blood sugar levels.
 - Medium GL (11-19): Foods with a medium glycemic load have a moderate impact on blood sugar levels. These can be included in a balanced diet but should be consumed in moderation, especially by those sensitive to changes in blood sugar.
 - High GL (20 or more): Foods with a high glycemic load can cause significant spikes in blood sugar levels. These should be limited, particularly for individuals with diabetes.

Methodology - [6] (Nutritional Analysis Model)

☐ Analysis model

- Receives Glycemic Load(GL) value stored in the database and threshold GL value as input.
- Compares total sum of GL value of previous foods and scanned food from the database with threshold value.
- If the total GL value of the user is less than or equal to the threshold value, then the food is recommended to consume otherwise not.
- This information is passed as an output to the summarizer model for further processing.

Methodology - [7] (Summarizer)

□ Summarizer

- Uses Large Language Models (LLMs) like Llama or Mistral to generate summaries.
- Processes detailed nutritional information, GL calculations, and comparison results.
- Produces clear summaries indicating whether a food item is suitable for consumption.
- Includes detailed explanations to ensure users understand the reasoning behind the recommendations.

Methodology - [8] (Nutritional Label Extraction)

B/2**1**/2024

Methodology - [9] (Nutritional Label Extraction)

The process starts with an input image containing the nutritional label.

- □YOLO Model (Label Detection):
- Trained specifically for detecting nutritional labels,
- Processes the input image and outputs bounding boxes around the detected text regions.
- □ Bounding Box Extraction:
- Extract the bounding box coordinates from the YOLO model's output.
- Use these coordinates to crop the detected regions from the original image.

Methodology - [10] (Nutritional Label Extraction)

- □OCR (Text Recognition):
- Apply OCR on the cropped regions to extract the text within the bounding boxes.
- Tesseract OCR is a commonly used library for this purpose.
- □ Post-Processing (Text Refinement):
- Post-process the OCR results to refine and format the extracted text.
- It includes correcting OCR errors, structuring the text in tabular format, and parsing the text into nutrient information.

□ Nutrient Information:

The final structured and refined text is then stored as nutrient information.

Methodology - [11] (Dataset Annotation)

Results

Results Analysis – [1] (Mean Average Precision)

- mAP50 starts at approximately 0.1 and increases to around 0.5 as training progresses.
- There is significant fluctuation initially, but it stabilizes after about 50 epochs.
- Orange dotted line represents a smoothed trend, showing a clear upward trajectory.

- mAP50-95 starts at around 0.05 and increases to approximately 0.3.
- There is considerable fluctuation initially, with stabilization occurring after about 50 epochs.
- The orange dotted line again represents a smoothed trend, showing a steady increase.

Result Analysis – [2] (Recall-Confidence Curves)

- Nutritional-Labels (Orange line) maintains higher recall at lower confidence levels compared to other classes.
- Text (Red line) shows the lowest recall across most confidence levels.
- The aggregated performance (Thick Blue line) has a recall of 0.77 at a confidence level of 0.000, indicating overall model performance.
- Recall decreases for all classes as confidence increases, highlighting the trade-off between recall and confidence.

Result Analysis – [3] (Precision-Confidence Curves)

Column Class: Recall starts high and decreases gradually, dropping sharply after 0.5 confidence.

Nutritional-Labels Class: Recall remains high up to 0.7 confidence, then drops sharply.

Row Class: Recall decreases gradually, with a significant drop after 0.7 confidence.

Text Class: Recall drops steeply compared to other classes, indicating a challenge in maintaining high recall as confidence increases.

All Classes: Overall recall is 0.77 at 0.0 confidence, with a gradual decrease as confidence increases, representing average performance across all classes.

Results Analysis – [4] (Training Loss)

- Box Loss: Rapid initial decrease, then gradual decline, stabilizing around 1.0 after 100 epochs.
- Classification Loss: Sharp drop initially, followed by a steady decrease, approaching 0.5 by 100 epochs.
- **DFL Loss:** Fast initial reduction, then consistent decrease, stabilizing near 1.0 towards the end.

Result Analysis – [5] (Validation Losses)

- Box Loss: Starts above 2.5, rapidly decreases, and stabilizes around 1.0 after 100 epochs.
- Classification Loss: Begins at 3.5, sharply drops, and gradually declines to about 0.5 by 100 epochs.
- **DFL Loss:** Initially over 2.2, quickly reduces, and levels off near 1.0 by 100 epochs.

Remaining Tasks

- Implementation of OCR on the output given by the YOLO model
- Post processing the extracted text into usable format
- Exploration of the dataset for calculation of GI values
- Training a model for GI value prediction
- Exploration of the summarizer model
- Mobile Application development
- Integration of all the models

References-[1]

- [1] "Diabetes," World Health Organization. Accessed: Jun. 17, 2024. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/diabetes%7D
- [2] Sandesh Lamsal, "Diabetes is becoming one of the biggest killers in Nepal. Here's everything you need to know about the risk," Onlinekhabar, Nov. 14, 2022. Accessed: Jun. 17, 2024. [Online]. Available: https://english.onlinekhabar.com/diabetes-in-nepal-explained.html
- [3] Ma, Qingyun and Huang, Xubin, 'Research on recognizing required items based on opency and machine learning', SHS Web Conf., vol. 140, p. 01016, 2022.
- [4] M. Hussain, 'YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection', Machines and Tooling, vol. 11, p. 677, 06 2023.

References-[2]

- [5] C. Patel, A. Patel, and D. Patel, "Optical Character Recognition by Open source OCR Tool Tesseract: A Case Study," Int J Comput Appl, vol. 55, no. 10, pp. 50–56, Oct. 2012, doi: 10.5120/8794-2784.
- [6] A. Evwiekpaefe, M. Akpa, O. Amrevuawho, and Ng, "A Food Recommender System for Patients with Diabetes and Hypertension," SLU Journal of Science and Technology, vol. 7, pp. 83–96, Jun. 2023, doi: https://doi.org/10.56471/slujst.v7i.342.
- [7] V. Dhanushka, D. Dilhan, and T. Srimal, "Food Recommendation System Using Machine Learning for Diabetic Patients," Peradeniya.
- [8] M. Phanich, P. Pholkul, and S. Phimoltares, "Food Recommendation System Using Clustering Analysis for Diabetic Patients," in 2010 International Conference on Information Science and Applications, IEEE, 2010, pp. 1–8. doi: 10.1109/ICISA.2010.5480416

References-[3]

- [9] K. R. Devi, D. J.Bhavithra, and A.Saradha, "Personalized Nutrition Recommendation For Diabetic Patients Using Improved K-Means And Krill-Herd Optimization," International Journal of Scientific & Technology Research, vol. 9, pp. 1076–1083, 2020, [Online]. Available: https://api.semanticscholar.org/CorpusID:216276694
- [10] F. Rehman, O. Khalid, N. Haq, A. ur R. Khan, K. Bilal, and S. Madani, "Diet-Right: A Smart Food Recommendation System," KSII Transactions on Internet and Information Systems, vol. 11, pp. 2910–2925, Jun. 2017, doi: 10.3837/tiis.2017.06.006.
- [11] Madhura, S. NS, A. Rao, and M. V. Devi, "CALORIFIC FOOD RECOGNITION AND RECOMMENDATION IN MACHINE LEARNING PERSPECTIVE," International Research Journal of Modernization in Engineering Technology and Science, vol. 04, no. 06, Jun. 2022.

THANK YOU