Introducing the Strategic Nuclear Forces Dataset (Ver 1.0) Data Note

Kyungwon Suh May 31, 2022

1. Introduction	1
II. Definitions and Sources	2
III. Calculating the Deliverable Strategic Warhead Count, EMT, and CMP	4
IV. Deployed Strategic Nuclear Platforms, 1945-2002	10
V. The List of Strategic Nuclear Platforms and Their Range	33
VI. Accuracy of Strategic Nuclear Platforms	39
VII. Warhead Yield	45
VIII. Multiple Warhead Delivery Platforms	52

I. Introduction

This data note introduces a new dataset of strategic nuclear forces of all nuclear-armed states from 1945 to 2002. Specifically, it describes definitions of key concepts underlying the dataset, the sources used to construct the dataset, key assumptions that are posited to make estimates of important parts of the dataset, and information on key characteristics of states' strategic nuclear delivery platforms, such as their quantity, range, warhead yield, and accuracy. These pieces of information are also used to construct three indicators of the balance of strategic nuclear forces: the total deliverable strategic warhead count, the equivalent megatonnage (EMT), and the counter military potential (CMP) of each nuclear-armed state's nuclear strike.

The second section of this note explains definitions of key concepts used in the dataset and what sources are primarily used to construct the dataset. The third section offers a short explanation of the concepts of the deliverable strategic warhead count, EMT, and CMP of a state's nuclear strike and how each indicator is calculated. The fourth section describes the quantity of all deployed strategic nuclear delivery platforms of all nuclear-armed states from 1945 to 2002. The fifth section provides a list of all strategic nuclear delivery platforms and their operational range. The sixth section provides information about each strategic nuclear platform's accuracy. The seventh section provides information about the yield of nuclear warheads that each strategic nuclear platform can deliver. The last section provides information about the warhead delivery capability of multiple-warhead delivery platforms. Each section also describes the assumptions I made to provide estimates of key characteristics of strategic nuclear platforms, whenever they are made.

CITATION

I ask users of this dataset to employ the following citation:

Suh, Kyungwon. 2022. "Nuclear Balance and the Initiation of Nuclear Crises: Does Superiority Matter?" *Journal of Peace Research*. Online First. Doi: 10.1177/00223433211067899.

II. Definitions and Sources

DEFINITIONS

This dataset contains information about strategic nuclear delivery platforms that all nuclear states have deployed since they acquired the first operational nuclear device. The date of each state's nuclear proliferation is based on Gartzke and Kroenig's list of nuclear weapons proliferation.¹

What is a strategic nuclear delivery platform? A strategic nuclear delivery platform is defined here as a delivery platform that can carry at least one nuclear warhead and be used for strategic nuclear missions. Strategic nuclear missions include counter-value nuclear attacks, which aim at civilian targets such as population centers and major industrial complexes, and counter-force attacks, which aim at military targets such as an adversary's nuclear delivery platforms and command-and-control centers.

While some nuclear platforms can be solely used for strategic nuclear missions due to their inherent technological features (e.g., low accuracy, high yield), other platforms can be employed for both strategic and battlefield nuclear missions. Some states consider all nuclear platforms they have deployed as strategic. I consider all nuclear platforms deployed by Israel, South Africa, India, and Pakistan as strategic. Although Pakistan has recently deployed some battlefield nuclear platforms, including its Nasr short-range tactical nuclear weapons, its early nuclear platforms have been considered strategic by most analysts and policymakers. I also assume that the nuclear platforms that can be used for both strategic and battlefield nuclear missions as strategic, because states are likely to think that such dual-use platforms would be used in an all-out nuclear war should a mutual nuclear exchange occur. Lastly, I only focus on deployed strategic nuclear platforms. Platforms that were tested but never deployed are not considered in this dataset.

SOURCES USED

I refer to a wide array of primary and secondary sources to gather information on each nuclear armed state's strategic nuclear delivery platforms and the specification of each nuclear platform. The Natural Resources Defense Council (NRDC) and Federation of American Scientists' (FAS) *Nuclear Notebook* reports provide the most valuable information. Their information has been considered the most reliable by nuclear experts. The Stockholm International Peace Research Institute (SIPRI)'s *SIPRI Yearbook* editions contain invaluable information about states' nuclear arsenals, which is written by the experts involved in gathering information provided by NRDC and FAS *Nuclear Notebook*. I frequently consult these three sources. In some cases where these sources do not provide enough information, I refer to the International Institute for

-

¹ Erik Gartzke and Matthew Kroenig, "A Strategic Approach to Nuclear Proliferation," *Journal of Conflict Resolution* 53, no. 2 (April 2009): 151-60.

² For instance, see Erik Gartzke, Jeffrey Kaplow, and Rupal N. Mehta, "The Determinants of Nuclear Force Structure," *Journal of Conflict Resolution* 58, no. 3 (2014): 481-508.

Strategic Studies (IISS)' Military Balance, along with other country-specific sources.

Data on nuclear weapons often remain classified, and publicly available sources commonly rely upon experts' estimations. It is natural, therefore, that in many cases different sources provide different information. I attempt to use the source which provides a wide array of information with reasonable reliability to minimize the need for making arbitrary assumptions. I also try to rely upon the latest sources as much as possible because analysts frequently use newly declassified information and update their estimation. In some cases where there are reasons to believe that country-specific sources provide more reliable information than general sources (e.g., country-specific sources use declassified internal sources), I use country-specific sources.

III. Calculating the Deliverable Strategic Warhead Count, EMT, and CMP

This section of the dataset describes how to calculate three dyad-specific indicators of a nuclear-armed state's strategic nuclear force: the deliverable strategic warhead count, the EMT, and the CMP of a state's nuclear strike. These are best understood as estimates of the total firepower a state's nuclear arsenal can generate in a hypothetical nuclear war scenario.

ASSUMPTIONS

I make several assumptions to calculate these indicators. First, I only consider the strategic nuclear platform whose range is greater than the inter-capital distance between a state and its adversary. As nuclear delivery platforms typically have a limited range of operation and a state's potential adversaries might be geographically distant, it is important to consider the dyad-specific geographical distance and delivery platforms' range. Ideally, the best approximation of the maximum reach of a state's nuclear force requires information on the location of both the military bases in which a state's nuclear delivery vehicles are deployed and potential targets that these delivery platforms aim at and assess whether nuclear warheads of the state can be delivered by those platforms to important targets. However, detailed information on states' nuclear weapons deployment and their list of targets remains strictly classified, which hinders the construction of such an ideal measure.

I argue that the inter-capital distance between two states can be a reasonable proxy of the physical distance a state's nuclear warhead has to travel to hit a target in its dyadic counterpart. Here the assumption is that a state's capital is a reasonable proxy for military bases where nuclear weapons are deployed. To be clear, this does not mean that nuclear weapons are typically deployed precisely in a state's capital. It only suggests that nuclear weapons are often located in places distant from a state's border, like a state's capital city, for a good reason. Deploying nuclear delivery vehicles and warheads on a base close to one's border increases their vulnerability to a potential counterforce strike. Even small states such as Israel have buffer zones between their nuclear weapon bases and their borders to reduce the vulnerability and their nuclear forces' exposure to a potential military strike. Likewise, states rarely choose cities located close to land borders as their capital cities because geographical proximity to a potential opponent's border may make an effective defense difficult. Due to the absence of systematic and reliable information on all states' nuclear weapons bases, the location of a state's capital could be a proxy of where nuclear delivery platforms are deployed because both nuclear weapons bases and states' capitals are often physically distant from their borders.

A potential adversary's capital can also be a good proxy for strategic targets that a state threatens to destroy with nuclear weapons. In fact, a state's capital city is often regarded as one of the most important targets for a nuclear strike, given that most government and military apparatus are in the capital. Other attractive targets, such as major industry complexes, are also distant from a state's border and often located close to its capital, for economic and military reasons. If a major industrial complex is close to one's border, even a minor military incursion

of an adversary may significantly impair a state's overall economic capacity. Since capitals are often the source of mass consumption of goods and resources, population centers and industrial complexes are located close to capitals. Therefore, using the inter-capital distance is a conservative and still reliable proxy for the geographic distance that a state's nuclear warhead needs to travel to hit a given opponent.

Submarine-launched ballistic missiles (SLBMs), especially launched from nuclear-powered ballistic missile submarines, are thought to have an infinite range, given that the powerful nuclear reactor gives a nuclear submarine virtually unlimited range. For strategic bombers, I gather the information about each bomber's combat range, the maximum range that an aircraft can fly with (nuclear) payloads.

Below I provide a dyad-specific list of strategic nuclear delivery platforms that are considered in calculations of EMT and CMP indices.

Table 1. A Dyad-Specific List of Strategic Nuclear Platforms that Can Reach the Adversary

State A	Strategic nuclear platforms reachable to State B	Distance (km)	State B	Strategic nuclear platforms reachable to State A
US	All ICBM All SLBM All bombers	5,903	UK	All platforms
US	All ICBM All SLBM All bombers	6,166	France	All SLBM
US	All ICBM All SLBM B-36, B-52, B-58, FB- 111A, B-1B, B-2	7,826	USSR/Russia	All ICBM (except for SS-3, 4, 5, 20) All SLBM All Tu-95, 3M since 1958, Tu-160
US	Titan II, Minuteman III All SLBM B-52, FB-111A, B-1B	12,723	South Africa	-
US	All ICBM All SLBM B-52, B-58, FB-111A, B-1B, B-2	9,503	Israel	-
US	Atlas E/F, Titan II, all Minuteman All SLBM B-52, FB-111A, B-1B, B-2	11,152	China	DF-5 All SLBM
US	Atlas E/F, Titan II, Minuteman II/III All SLBM B-52, FB-111A, B-1B, B-2	12,057	India	-
US	Atlas E/F, Titan II, Minuteman series All SLBM	11,386	Pakistan	-

	B-52, FB-111A, B-1B, B-2			
UK	All platforms	341	France	All platforms
UK	All platforms	2,503	USSR/Russia	All platforms (except for SS-3, 4)
UK	All SLBM	9,679	South Africa	-
UK	All platforms	3,611	Israel	-
UK	Vulcan All SLBM	8,145	China	DF-5 All SLBM
UK	All SLBM	6,717	India	-
UK	All SLBM	6,046	Pakistan	-
France	All platforms	2,490	USSR/Russia	All platforms (except for SS-3, 4)
France	All SLBM	9,352	South Africa	-
France	Mirage IVA/P SSBS S3 All SLBM	3,336	Israel	-
France	All SLBM	8,222	China	DF-5 All SLBM
France	All SLBM	6,595	India	-
France	All SLBM	5,932	Pakistan	-
USSR/Russia	All ICBM (except for SS-3, 4, 5, 13, 17 M3, 19 series, 20, 24 M1, SS- 27) All SLBM All Tu-95, 3M, Tu-160	10,145	South Africa	-
USSR/Russia	All platforms (except for SS-3, 4)	2,675	Israel	-
USSR/Russia	All platforms (except for SS-3, 4, 5, 20)	5,795	China	DF-5 All SLBM H-6
USSR/Russia	All platforms (except for SS-3, 4)	4,347	India	-
USSR/Russia	All platforms (except for SS-3, 4)	3,663	Pakistan	-
South Africa	-	7,522	Israel	-
South Africa	-	12,968	China	DF-5 All SLBM
South Africa	-	9,312	India	-
South Africa	-	9,450	Pakistan	-
Israel	-	7,125	China	DF-5 All SLBM
Israel	-	4,030	India	-
Israel	-	3,539	Pakistan	-
China	DF-4, DF-5 All SLBM Tu-4, H-6	3,784	India	-
China	DF-4, DF-5 All SLBM Tu-4, H-6	3,874	Pakistan	-
India	All platforms	686	Pakistan	All platforms
	•			-

Second, if my estimation of the maximum number of nuclear warheads carried by all strategic platforms exceeds the estimated number of all nuclear warheads possessed by a given nuclear-armed state, then I use the latter as the final estimation of nuclear warheads carried by the state's nuclear delivery platforms, as the actual number of nuclear warheads used in a strike cannot exceed the number of nuclear weapons possessed by the state.³ Additionally, if different models of a specific platform carry different warheads but there is no available information on the number of each model of the platform, I take the average value of the maximum number of warheads delivered by each model of the platform.

FORMULAS

First, the deliverable strategic warhead is an indicator counting the total number of nuclear warheads that can be delivered by a state's strategic nuclear delivery platforms. Rather than assuming that all nuclear warheads a country possesses can be used by all delivery platforms at once, this measure directly takes into account the number of strategic nuclear delivery platforms deployed by each nuclear-armed state, the range of these platforms, the number of nuclear warheads each type of platform can carry. Thus, it can more accurately capture how many targets the state's nuclear strike can cover than merely counting the number of all deployed nuclear warheads.

The procedure for calculating the deliverable strategic nuclear warhead count is as follows.

Deliverable Strategic Warhead Count_{total} =
$$\sum_{i=1}^{M} N_i$$
 (1)

where M represents the total number of distinct types of delivery platforms, and N_i is the total number of nuclear weapons that the *i*th type delivery platform carries.

Second, the EMT index reflects the fact that not all nuclear warheads have equal destructive power. Some nuclear payloads have more than ten megatons, while others may create a yield of a few kilotons. As high-yield weapons can impose greater damage on both civilian and military targets, the total EMT of a state's nuclear arsenal is a more direct measure of the total destructive power of a state's first nuclear strike.

The procedure for calculating the total EMT of a state's nuclear attack is as follows. First, I identify a state's strategic nuclear platforms whose reach is greater than the inter-capital distance between the state and its dyad-specific adversary. Next, I gather information on the yield of the nuclear ordnance delivered by each distinct nuclear platform and the number of warheads that the platform can deliver. Finally, I use the following formulas to calculate the total EMT of a state's nuclear strike.

-

³ The data on nuclear warheads come from Matthew Kroenig, "Nuclear Superiority and the Balance of Resolve: Explaining Nuclear Crisis Outcomes," *International Organization* 67, no. 1 (January 2013): 141-71.

$$EMT_{\text{total}} = \sum_{i=1}^{M} N_i Y_i^{\frac{2}{3}} \text{ if } Y_i \leq 1MT (2)$$

and

$$EMT_{\text{total}} = \sum_{i=1}^{M} N_i Y_i^{\frac{2}{3}} \text{ if } Y_i \leq 1MT (3)$$

where M represents the total number of distinct types of delivery platforms, N_i is the total number of nuclear weapons that the *i*th type delivery platform carries, Y_i is the destructive power (measured by megatonnage) of the weapon.⁴

Next, the total CMP of a state's nuclear strike represents the effectiveness of a nuclear strike against hard targets, mostly the adversary's nuclear forces. Since the key to a successful counterforce nuclear strike is to possess accurate delivery platforms, this measure considers not only the destructiveness of nuclear payloads but also the accuracy of the platforms carrying out an attack. As counterforce capabilities of states' arsenals play a key role in the nuclear competition school's arguments, the relative advantage of states' nuclear forces could be well captured by assessing the total CMP of a state's military nuclear capability.

The total CMP of a state's nuclear strike is calculated in a similar way in which the total EMP of a state's nuclear salvo is measured, except that information on each strategic nuclear platform's accuracy is additionally taken into consideration. The following formulas are used.

$$CMP_{\text{total}} = \sum_{i=1}^{M} N_i \frac{Y_i^{\frac{2}{3}}}{CEP_{Y_i}} \text{ if } Y_i \ge 0.2MT (4)$$

and

 $CMP_{\text{total}} = \sum_{i=1}^{M} N_i \frac{Y_i^{\frac{4}{5}}}{CEP_{Y_i}} \text{ if } Y_i < 0.2MT (5)$

where M represents the total number of distinct types of delivery platforms, N_i is the total number of nuclear weapons that the *i*th type delivery platform carries, Y_i is the destructive power (measured by megatonnage) of the weapon, CEP_{Y_i} is the accuracy, measured by

_

⁴ For discussion of the formula, see Jeffrey T. Richelson, "Evaluating the Strategic Balance," *American Journal of Political Science* 24, no. 4 (November):783-84; Michael Salman, Kevin J Sullivan, Stephen Van Evera, "Analysis or Propaganda? Measuring American Strategic Nuclear Capability, 1969-88," in Lynn Eden and Steven E. Miller, eds., *Nuclear Arguments: Understanding the Strategic Nuclear Arms and Arms Control Debates* (Ithaca, NY: Cornell University Press, 1989), 209; John S. Przemieniecki, *Mathematical Methods in Defense Analyses*, 3rd ed (Reston, VA: American Institute of Aeronautics and Astronautics, 2000), 177.

⁵ Richelson, "Evaluating the Strategic Balance," 785-86.

circular error probable (CEP), of the ith type delivery platform.⁶

Note that I exclude strategic bombers carrying nuclear gravity bombs from the list of delivery platforms when calculating the total CMP of a state's nuclear arsenal because information on the accuracy of gravity bombs is extremely difficult to obtain. This exclusion would not be a significant issue, however, because gravity bombs are rarely used for counterforce nuclear strikes. Bombers armed with gravity bombs are included in the calculation of the total EMT of a state's nuclear strike.

Excel files and Stata do-files that are used to calculate the EMT and CMP of each nuclear-armed state's nuclear strike toward another nuclear-armed state are available upon request. Contact (ksuh01@syr.edu).

-

⁶ For discussion on the formula, see Richelson, "Evaluating the Strategic Balance," 785-87; Przemieniecki, *Mathematical Methods in Defense Analyses*, 179.

IV. Deployed Strategic Nuclear Platforms, 1945-2002

This section provides annual information on the quantity of each distinct strategic nuclear delivery platform of nuclear-armed states from 1945 to 2002. It also describes the assumptions I made to estimate the quantity of each nuclear-armed state's strategic nuclear delivery platforms and provides a country-specific list of sources to code the estimated number of deployed strategic nuclear platforms.

ASSUMPTIONS ABOUT QUANTITY

In several cases (especially the United States during the early Cold War, Israel, India, and Pakistan), data on the number of nuclear platforms are especially either sparse or secretive and, therefore, obtaining necessary information is not always feasible. Whenever necessary, I make some assumptions to provide my own estimates.

U.S. Bomber Capability in the Early Cold War

Not all bombers during the early Cold War (e.g., B-29, B-36, B-50) were modified for carrying out nuclear missions. Though there is available information on the precise number of nuclear-certified bombers between 1945-1950,⁷ there is no publicly available information on the number of nuclear-certified bombers between 1951 and 1957, the final year of the deployment of B-36 bombers. Following NRDC, which assumes that all Primary Authorized Aircrafts (PAA) can carry nuclear bombs during that period, I assume that all B-29, 36, and 50 bombers were nuclear-certified since 1951.

Israel, India, and Pakistan's Nuclear-Certified Aircraft

Similarly, not all aircraft of Israel, Pakistan, and India assume nuclear missions (for example, although Israel's F-16 aircraft has been known as an air-based leg of Israel's nuclear arsenal, it is clear that not all F-16 aircraft are nuclear-certified). Since how many F-16s are nuclear-certified remains unknown, here I need to rely on some assumptions. For Israel, Hans Kristensen and Robert S. Norris argue in the 2014 *Nuclear Notebook* that potentially one or two F-16 squadrons are nuclear-certified; in the 2014 edition, IISS' *Military Balance* reports that Israel has a total of 10 F-16 squadrons. I, therefore, assume that **15%** of Israel's F-16s are nuclear-certified.⁸

As for India, most *Nuclear Notebook* reports argue that some portion of Jaguar IS/IB and Mirage 2000H are capable of launching nuclear strikes.⁹ Based on the *SIPRI Yearbook* series

⁷ David Alan Rosenberg, "U.S. Nuclear Stockpile, 1945 to 1950," *Bulletin of the Atomic Scientists* 38, no. 5 (May 1982): 25-30.

⁸ Assuming a nuclear-certified F-16 carries one nuclear gravity bomb, this assumption is consistent with SIPRI Yearbook's estimation. For instance, since 2008 SIPRI Yearbook estimated that Israel has both 205 F-16 aircrafts and 30 air-deliverable bombs, which corresponds to approximately 15% of the total number of F-16.

⁹ Other country-specific sources seem to agree. See for instance, Ashley J. Tellis, *India's Emerging Nuclear Posture: Between Recessed Deterrent and Ready Arsenal* (Santa Monica, CA: RAND, 2001), 533.

and *Nuclear Notebook*, I assume that all Mirage 2000H bombers are nuclear-certified, ¹⁰ and **50%** of Jaguar attack aircraft are given a nuclear role.

Lastly, *Nuclear Notebook* reports consistently view F-16 as Pakistan's sole air delivery platform. Nuclear Notebook and SIPRI Yearbook have consistently estimated that among 40 F-16s that Pakistan initially obtained, the remaining 32 F-16s are nuclear-certified. Until 2002, therefore, I assume that all Pakistan's F-16 aircraft are given a nuclear role.

These estimations are based on an assumption that the exact portion of nuclear-certified aircraft does not change substantially over time, which I believe is not a particularly strong assumption since these three countries have not faced an especially threatening security environment that requires them to increase the number of nuclear-certified aircraft dramatically.

Israel's Land-Based Missile Force

Unfortunately, information about Israel's Jericho-family missile forces is largely unavailable. While technological specifications of Jericho missiles are available, I was able to obtain information on the number of deployed Jericho missiles only in some years. It does not cover all years since 1967, the date of Israel's acquisition of nuclear weapons. Therefore, I make some assumptions to provide estimates of the number of deployed Jericho missiles, based on publicly available information. Still, such estimates are only available in some years, but not in others.

For instance, some sources argue that two Jericho-I missiles had been delivered to Israel until 1968, and Israel possessed twelve Jericho missiles in 1969. They expected that Israel by the end of 1970 would have 24 to 30 missiles.¹¹ There is another source indicating that Israel originally planned to buy 30 missiles from France, which was stopped due to a French embargo on new military equipment after the 1967 war.¹² Thus, I assume that Israel possessed 30 Jericho missiles in 1970. From 1971 and 1978, Israel was reported to produce additional 50 Jericho-I missiles.¹³ I assume that the missiles were produced at the same pace (6.25 per year) during this period, and round the value of each year. Between 1979 and 2000, however, I cannot

¹⁰ SIPRI Yearbook consistently state that Mirage 2000H aircrafts have been nuclear-certified, without specifying the precise portion, while it specifies the estimated ratio (50%) of nuclear-certified Jaguar aircrafts. *Nuclear Notebook* backs and forth, but recent reports also say a half or all of two squadrons of Mirage aircrafts are nuclear-certified. See for instance, Hans M. Kristensen and Robert S. Norris, "Indian Nuclear Forces, 2017," *Bulletin of the Atomic Scientists* 73, no. 4 (2017): 206.

¹¹ Joint Chiefs of Staff, "Memorandum for the Secretary of Defense—Subject: Nuclear Missile Capability in Israel," in *Israel Crosses the Threshold II: The Nixon Administration Debates the Emergence of the Israeli Nuclear Program (National Security Archive Electronic Briefing Book No. 485)*, ed. William Burr and Avner Cohen (Washington, DC: National Security Archive, 2014), accessed November 27, 2018, https://nsarchive2.gwu.edu//nukevault/ebb485/docs/Doc%204A%205-5-

^{69%20}stash%20re%20Feb%201969.pdf; White House, "Memorandum for President," in *Israel Crosses the Threshold II: The Nixon Administration Debates the Emergence of the Israeli Nuclear Program (National Security Archive Electronic Briefing Book No. 485)*, ed. William Burr and Avner Cohen (Washington, DC: National Security Archive, 2014), accessed November 27, 2018, https://nsarchive2.gwu.edu/nukevault/ebb485/docs/Doc%2010%207-19-69%20circa.pdf.

¹² Robert S. Norris, William M. Arkin, Hans M. Kristensen, and Joshua Handler, "Israeli Nuclear Forces, 2002," *Bulletin of the Atomic Scientists* 58, no. 5 (September/October 2002): 74.

¹³ James C O'Halloran, *IHS Jane's Weapons Strategic: 2016-2017* (United Kingdom: HIS, 2016), 54.

find any publicly available source containing the information about Jericho missiles deployment, except for 1990 when I can obtain the source indicating the number of deployed Jericho missiles. Thus, Israel's land-based strategic delivery platforms category has some missing data points.

Israel's Sea-Based Missile Force

While there are many rumors and ambiguous conjectures, it seems that Israel has deployed its sea-based deterrent force, consisting of the Dolphin-class diesel-powered submarines and Popeye Turbo cruise missiles. There is no available source, however, which contains information about how many nuclear-capable missiles each Israeli submarine carries. Each Dolphin-class submarine is believed to carry six missiles and four torpedoes. ¹⁴ I thus assume that each submarine carries six nuclear-capable missiles. Given that British and French SSBNs have carried nuclear-tipped SLBMs as many as possible, this assumption appears not to be particularly strong.

SOURCES

Below is a country-specific list of sources used to code each nuclear-armed state's number of strategic nuclear platforms.

United States

Land-Based: 1959-2002 (NRDC's Nuclear Data, US ICBM Forces)¹⁵

Sea-Based: 1960-2002 (NRDC's Nuclear Data, <u>US Ballistic Missile Submarine Forces</u>)¹⁶

Air-Based: 1945-1950 (Rosenberg 1982), 1951-2002 (NRDC's Nuclear Data, US Strategic Bomber Forces)¹⁷

United Kingdom

omica migaom

Sea-Based: 1968-2002 (IISS Military Balance, SIPRI Yearbook, Norris, Burrows, and Fieldhouse 1994)¹⁸

_

¹⁴ See, for instance, International Institute for Strategic Studies, *The Military Balance 2018* (London: IISS, 2018), 341.

Natural Resources Defense Council, "US ICBM Forces," Archive of Nuclear Data from NRDC's Nuclear Program, November 25, 2002, accessed March 19, 2022, https://web.archive.org/web/20041027183556/https://www.nrdc.org/nuclear/nudb/datab3.asp.

Natural Resources Defense Council, "US Ballistic Missile Submarine Forces," Archive of Nuclear Data from NRDC's Nuclear Program, November 25, 2002, accessed March 19, 2022. https://web.archive.org/web/20041027183238/https://www.nrdc.org/nuclear/nudb/datab5.asp.

David Alan Rosenberg, "U.S. Nuclear Stockpile, 1945 to 1950," *Bulletin of the Atomic Scientists* 38, no. 5 (1982): 25-30; Natural Resources Defense Council, "US Strategic Bomber Forces." Archive of Nuclear Data from NRDC's Nuclear Program, November 25, 2002, accessed March 19, 2022, https://web.archive.org/web/20041027183038/https://www.nrdc.org/nuclear/nudb/datab7.asp.

¹⁸ Robert S. Norris, Andrew S. Burrows, and Richard W. Fieldhouse, *Nuclear Weapons Databook*, vol. 5, *British*,

Air-Based: 1955-1982 (Laming 1997; Wynn 1994)¹⁹

France

Land-Based: 1971-1994 (Norris, Burrows, and Fieldhouse 1994); 1995-2002 (SIPRI Yearbook)

Sea-Based: 1972-1994 (Norris, Burrows, and Fieldhouse 1994); 1995-2002 (SIPRI Yearbook)

Air-Based: 1964-1994 (Norris, Burrows, and Fieldhouse 1994); 1995-2002 (SIPRI Yearbook)

Soviet Union/Russia

Land-Based: 1960-2002 (NRDC's Nuclear Data, <u>USSR/Russian ICBM</u> Forces)²⁰

Sea-Based: 1956-1957 (Podvig 2001); 1958-1971 (Podvig 2001; NRDC's Nuclear Data, <u>USSR/Russian Ballistic Missile Submarine Forces</u>); 1972-2002 (NRDC's Nuclear Data, <u>USSR/Russian Ballistic Missile Submarine Forces</u>)²¹

Air-Based: 1956-2002 (NRDC's Nuclear Data, <u>USSR/Russian Strategic Bomber Forces</u>)²²

South Africa

Air-Based: 1982-1990 (Albright 1994)²³

Israel

Land-Based: see the "Israel's Land-based Missile Force" section in the data note

Sea-Based: 2000-2002 (Norris, Arkin, Kristensen, and Handler 2002)²⁴

Air-Based: 1981-2002 (IISS Military Balance)

China

French, and Chinese Nuclear Weapons (Boulder, CO: Westview Press, 1994).

¹⁹ Tim Laming, V-Bombers: Vulcan, Victor and Valiant: Britain's Airborne Nuclear Deterrent (Sparkford: Patrick Stephens Limited, 1997); Humphrey Wynn, The RAF Strategic Nuclear Deterrent Forces: Their Origins, Roles and Deployment, 1946-1969: A Documentary history (London: Her Majesty's Stationery Office, 1994).

Natural Resources Defense Council, "USSR/Russian ICBM Forces," Archive of Nuclear Data from NRDC's Nuclear Program, November 25, 2002, accessed March 19, 2022, https://web.archive.org/web/20041027183514/https://www.nrdc.org/nuclear/nudb/datab4.asp.

Pavel Podvig, ed., Russian Strategic Nuclear Forces (Cambridge, MA: MIT Press, 2001); Natural Resources Defense Council, "USSR/Russian Ballistic Missile Submarine Forces," Archive of Nuclear Data from NRDC's Nuclear Program, November 25, 2002, accessed March 19, 2022, https://web.archive.org/web/20041027183456/https://www.nrdc.org/nuclear/nudb/datab6.asp.

²² Natural Resources Defense Council, "USSR/Russian Strategic Bomber Forces," Archive of Nuclear Data from NRDC's Nuclear Program, November 25, 2002, accessed March 19, 2022, https://web.archive.org/web/20041027183159/https://www.nrdc.org/nuclear/nudb/datab8.asp.

²³ David Albright, "South Africa and the Affordable Bomb," *Bulletin of the Atomic Scientists* 50, no. 4 (July/August 1994): 37-47.

²⁴ Robert S. Norris, William M. Arkin, Hans M. Kristensen, and Joshua Handler, "Israeli Nuclear Forces, 2002," *Bulletin of the Atomic Scientists* 58, no. 5 (September/October 2002): 73-75.

Land-Based: 1966-1993 (Norris, Burrows, and Fieldhouse 1994); 1994-2002 (SIPRI Yearbook)

Sea-Based: 1985-1993 (Norris, Burrows, and Fieldhouse 1994); 1994-2002 (SIPRI Yearbook)

Air-Based: 1964-1993 (Norris, Burrows, and Fieldhouse 1994); 1994-2002 (SIPRI Yearbook)

India

Air-Based: 1988-2002 (IISS Military Balance)

Pakistan

Air-Based: 1990-2002 (IISS Military Balance)

Table 2 provides annual data on the number of deployed strategic nuclear platforms of all nuclear-armed states. It differentiates land-based, seabased, and air-based strategic nuclear platforms. It also includes the name of each deployed platform.

Table 2. The Number of Deployed Strategic Nuclear Platforms, 1945-2002

Year	Country	Land-based	Sea-based	Air-based
1945	US	-	-	15 (B-29)
1946	US	-	-	29 (B-29)
1947	US	-	-	23 (B-29)
1948	US	-	-	57 [35 (B-29)/ 4 (B-36)/ 18 (B-50)]
1949	US	-	-	121 [66 (B-29)/17 (B-36)/38 (B-50)]
1950	US	-	-	225 [95 (B-29)/ 34 (B-36)/ 96 (B-50)]
1951	US			569 [290 (B-29)/ 60 (B-36)/ 219 (B-
1931	US	<u>-</u>	-	50)]
1952	US	_	<u>_</u>	660 [360 (B-29)/ 100 (B-36)/ 200 (B-
1752	OB		<u>-</u>	50)]
1953	US	_	_	720 [90 (B-29)/180 (B-36)/135 (B-
1733	CB			50)/ 315 (B-47)]
1954	US	_	_	1,035 [180 (B-36)/ 90 (B-50)/ 765 (B-
				47)]
1955	US	-	-	1,260 [270 (B-36)/ 990 (B-47)]
1956	US	_	_	1,470 [210 (B-36)/1,215 (B-47)/45
1750	0.5			(B-52)]
1957	US	_	_	1,605 [120 (B-36)/ 1,260 (B-47)/ 225
				(B-52)]
1958	US		-	1,620 [1,260 (B-47)/ 360 (B-52)]
1959	US	6 (Atlas D)		1,545 [1,200 (B-47)/ 345 (B-52)]
1960	US	12 (Atlas D)	32 (Polaris A-1)	1,515 [1,065 (B-47)/ 450 (B-52)]
1961	US	57 [30 (Atlas D)/ 27 (Atlas E)]	80 (Polaris A-1)	1,395 [855 (B-47)/ 40 (B-58)/ 450 (B-
1701	CB			52)]
1962	US	203 [30 (Atlas D)/27 (Atlas E)/72 (Atlas	144 [80 (Polaris A-1)/ 64 (Polaris A-	1,306 [675 (B-47)/76 (B-58)/555 (B-
		F)/ 54 (Titan I)/ 20 (Minuteman I)]	2)]	52)]

1963	US	597 [30 (Atlas D)/27 (Atlas E)/72 (Atlas F)/54 (Titan I)/54 (Titan II)/360 (Minuteman I)]	160 [80 (Polaris A-1)/ 80 (Polaris A-2)]	1,055 [450 (B-47)/ 80 (B-58)/ 525 (B-52)]
1964	US	907 [27 (Atlas E)/72 (Atlas F)/54 (Titan I)/54 (Titan II)/700 (Minuteman I)]	320 [80 (Polaris A-1)/ 208 (Polaris A-2)/ 32 (Polaris A-3)]	785 [180 (B-47)/ 80 (B-58)/ 525 (B-52)]
1965	US	854 [54 (Titan II)/800 (Minuteman I)]	384 [208 (Polaris A-2)/ 176 (Polaris A-3)]	650 [45 (B-47)/ 80 (B-58)/ 525 (B-52)]
1966	US	1,004 [54 (Titan II)/800 (Minuteman I)/150 (Minuteman II)]	560 [208 (Polaris A-2)/ 352 (Polaris A-3)]	575 [80 (B-58)/ 495 (B-52)]
1967	US	1,054 [54 (Titan II)/800 (Minuteman I)/200 (Minuteman II)]	656 [208 (Polaris A-2)/ 448 (Polaris A-3)]	558 [78 (B-58)/ 480 (B-52)]
1968	US	1,054 [54 (Titan II)/800 (Minuteman I)/200 (Minuteman II)]	656 [208 (Polaris A-2)/ 448 (Polaris A-3)]	481 [76 (B-58)/ 405 (B-52)]
1969	US	1,054 [54 (Titan II)/500 (Minuteman I)/500 (Minuteman II)]	656 [208 (Polaris A-2)/ 448 (Polaris A-3)]	399 [39 (B-58)/ 360 (B-52)]
1970	US	1,054 [54 (Titan II)/400 (Minuteman I)/500 (Minuteman II)/100 (Minuteman III)]	656 [208 (Polaris A-2)/448 (Polaris A-3)]	390 [360 (B-52)/ 30 (FB-111A)]
1971	US	1,054 [54 (Titan II)/300 (Minuteman II)/500 (Minuteman III)]	656 [144 (Polaris A-2)/400 (Polaris A-3)/112 (Poseidon C3)]	377 [347 (B-52)/ 30 (FB-111A)]
1972	US	1,054 [54 (Titan II)/200 (Minuteman II)/500 (Minuteman II)/300 (Minuteman III)]	656 [96 (Polaris A-2)/368 (Polaris A-3)/192 (Poseidon C3)]	457 [397 (B-52)/ 60 (FB-111A)]
1973	US	1,054 [54 (Titan II)/100 (Minuteman II)/500 (Minuteman II)/400 (Minuteman III)]	656 [48 (Polaris A-2)/288 (Polaris A-3)/320 (Poseidon C3)]	423 [357 (B-52)/ 66 (FB-111A)]
1974	US	1,054 [54 (Titan II)/50 (Minuteman II)/500 (Minuteman II)/450 (Minuteman III)]	656 [304 (Polaris A-3)/352 (Poseidon C3)]	396 [330 (B-52)/ 66 (FB-111A)]
1975	US	1,054 [54 (Titan II)/450 (Minuteman II)/550 (Minuteman III)]	656 [288 (Polaris A-3)/368 (Poseidon C3)]	396 [330 (B-52)/ 66 (FB-111A)]
1976	US	1,054 [54 (Titan II)/450 (Minuteman II)/550 (Minuteman III)]	656 [208 (Polaris A-3)/448 (Poseidon C3)]	382 [316 (B-52)/ 66 (FB-111A)]
1977	US	1,054 [54 (Titan II)/450 (Minuteman II)/550 (Minuteman III)]	656 [192 (Polaris A-3)/464 (Poseidon C3)]	382 [316 (B-52)/ 66 (FB-111A)]
1978	US	1,054 [54 (Titan II)/450 (Minuteman	656 [160 (Polaris A-3)/496 (Poseidon	376 [316 (B-52)/ 60 (FB-111A)]

		II)/550 (Minuteman III)]	C3)]	
1979	US	1,054 [54 (Titan II)/450 (Minuteman	656 [160 (Polaris A-3)/464 (Poseidon	376 [316 (B-52)/ 60 (FB-111A)]
		II)/ 550 (Minuteman III)] 1,054 [54 (Titan II)/ 450 (Minuteman	C3)/ 32 (Trident I)] 592 [96 (Polaris A-3)/ 400 (Poseidon	
1980	US	II)/550 (Minuteman III)]	C3)/96 (Trident I)]	376 [316 (B-52)/ 60 (FB-111A)]
1981	US	1,054 [54 (Titan II)/450 (Minuteman	512 [16 (Polaris A-3)/ 368 (Poseidon	276 [216 (D 52)/60 (ED 111A)]
1981	US	II)/550 (Minuteman III)]	C3)/ 128 (Trident I)]	376 [316 (B-52)/ 60 (FB-111A)]
1982	US	1,049 [49 (Titan II)/450 (Minuteman	520 [304 (Poseidon C3)/ 216 (Trident	328 [272 (B-52)/ 56 (FB-111A)]
		II)/ 550 (Minuteman III)] 1,040 [40 (Titan II)/ 450 (Minuteman	I)] 544 [304 (Poseidon C3)/ 240 (Trident	. , , , , , , , , , , , , , , , , , , ,
1983	US	II)/ 550 (Minuteman III)]	1)]	297 [241 (B-52)/ 56 (FB-111A)]
1004	LIC	1,030 [30 (Titan II)/450 (Minuteman	592 [304 (Poseidon C3)/ 288 (Trident	207 [241 (D. 52)/57 (FD. 111 A)]
1984	US	II)/550 (Minuteman III)]	I)]	297 [241 (B-52)/ 56 (FB-111A)]
1985	US	1,020 [20 (Titan II)/450 (Minuteman	600 [288 (Poseidon C3)/ 312 (Trident	297 [241 (B-52)/ 56 (FB-111A)]
		II)/ 550 (Minuteman III)] 1,005 [5 (Titan II)/ 450 (Minuteman II)/ 540	I)] 616 [256 (Poseidon C3)/ 360 (Trident	
1986	US	(Minuteman III)/10 (Peacekeeper)]	I)]	312 [241 (B-52)/ 56 (FB-111A)/ 15 (B-1B)]
1007	LIC	1,000 [450 (Minuteman II)/520	640 [256 (Poseidon C3)/384 (Trident	361 [241 (B-52)/ 56 (FB-111A)/ 64
1987	US	(Minuteman III)/30 (Peacekeeper)]	[)]	(B-1B)]
1988	US	1,000 [450 (Minuteman II)/500	608 [224 (Poseidon C3)/ 384 (Trident	318 [180 (B-52)/48 (FB-111A)/90
1700	0.5	(Minuteman III)/50 (Peacekeeper)]	[)]	(B-1B)]
1989	US	1,000 [450 (Minuteman II)/ 500 (Minuteman III)/ 50 (Peacekeeper)]	592 [208 (Poseidon C3)/ 384 (Trident I)]	311 [173 (B-52)/ 48 (FB-111A)/ 90 (B-1B)]
1000	TIG	1,000 [450 (Minuteman II)/500	608 [176 (Poseidon C3)/ 384 (Trident	267 [154 (B-52)/ 24 (FB-111A)/ 89
1990	US	(Minuteman III)/50 (Peacekeeper)]	I)/48 (Trident II)]	(B-1B)]
1991	US	550 [500 (Minuteman III)/50	480 [384 (Trident I)/96 (Trident II)]	209 [125 (B-52)/ 84 (B-1B)]
1,,,1	0.5	(Peacekeeper)]	iot [eo i (maent 1)/50 (maent 11)]	
1992	US	550 [500 (Minuteman III)/50 (Peacekeeper)]	488 [368 (Trident I)/120 (Trident II)]	158 [74 (B-52)/84 (B-1B)]
1002	110	550 [500 (Minuteman III)/50	224 F402 (T) 1	150 154 (D. 50) (04 (D. 15) (4 (D. 5))
1993	US	(Peacekeeper)]	336 [192 (Trident I)/144 (Trident II)]	159 [74 (B-52)/ 84 (B-1B)/ 1 (B-2)]
1994	US	580 [530 (Minuteman III)/50	360 [192 (Trident I)/168 (Trident II)]	157 [74 (B-52)/80 (B-1B)/3 (B-2)]

1995	US	(Peacekeeper)] 575 [525 (Minuteman III)/50	384 [192 (Trident I)/ 192 (Trident II)]	122 [56 (B-52)/ 60 (B-1B)/ 6 (B-2)]
1996	US	(Peacekeeper)] 575 [525 (Minuteman III)/50 (Peacekeeper)]	408 [192 (Trident I)/216 (Trident II)]	113 [56 (B-52)/48 (B-1B)/9 (B-2)]
1997	US	550 [500 (Minuteman III)/50 (Peacekeeper)]	432 [192 (Trident I)/240 (Trident II)]	65 [56 (B-52)/ 9 (B-2)]
1998	US	550 [500 (Minuteman III)/50 (Peacekeeper)]	432 [192 (Trident I)/240 (Trident II)]	65 [56 (B-52)/ 9 (B-2)]
1999	US	550 [500 (Minuteman III)/50 (Peacekeeper)]	432 [192 (Trident I)/240 (Trident II)]	72 [56 (B-52)/ 16 (B-2)]
2000	US	550 [500 (Minuteman III)/50 (Peacekeeper)]	432 [192 (Trident I)/240 (Trident II)]	72 [56 (B-52)/ 16 (B-2)]
2001	US	550 [500 (Minuteman III)/50 (Peacekeeper)]	432 [168 (Trident I)/264 (Trident II)]	72 [56 (B-52)/ 16 (B-2)]
2002	US	550 [500 (Minuteman III)/50 (Peacekeeper)]	432 [168 (Trident I)/264 (Trident II)]	72 [56 (B-52)/ 16 (B-2)]
1952	UK	-	-	-
1953	UK	-	-	-
1954	UK	-	-	_
1955	UK	-	-	8 (Valiant)
1956	UK	-	-	48 (Valiant)
1957	UK	-	-	72 [(56 Valiant/16 Vulcan)]
1958	UK	-	-	96 [(56 Valiant/ 16 Victor/ 24 Vulcan)]
1959	UK	-	-	104 [(56 Valiant/24 Victor/24 Vulcan)]
1960	UK	-	-	112 (48 Valiant/32 Victor/32 Vulcan) ²⁵

²⁵ Three Valiant squadrons were given a tactical nuclear role when assigned the Supreme Allied Commander Europe (SACEUR) between 1960 and 1961. Thus, they are removed from the list. Robert S. Norris, Andrew S. Burrows, and Richard W. Fieldhouse, *Nuclear Weapons Databook*, vol.5, *British, French, and Chinese Nuclear Weapons* (Boulder, CO: Westview Press, 1994), 87

1961	UK	-	112 (32 Valiant/32 Victor/48 Vulcan)
			128 [(16 Valiant/48 Victor/64
1962	UK	-	Vulcan)]
1963	UK	-	120 [(48 Victor/72 Vulcan)]
1964	UK	-	120 [(48 Victor/72 Vulcan)]
1965	UK	_	104 [(32 Victor/72 Vulcan)]
1966	UK	_	88 [(16 Victor/ 72 Vulcan)]
1967	UK	-	88 [(16 Victor/ 72 Vulcan)]
1968	UK	- 16 (Polaris A3)	80 [(16 Victor/ 64 Vulcan)]
1969	UK	- 48 (Polaris A3)	64 (Vulcan) ²⁶
1970	UK	- 64 (Polaris A3)	56 (Vulcan)
1971	UK	- 64 (Polaris A3)	56 (Vulcan)
1972	UK	- 64 (Polaris A3)	48 (Vulcan)
1973	UK	- 64 (Polaris A3)	48 (Vulcan)
1974	UK	- 64 (Polaris A3)	48 (Vulcan)
1975	UK	- 64 (Polaris A3)	48 (Vulcan)
1976	UK	- 64 (Polaris A3)	48 (Vulcan)
1977	UK	- 64 (Polaris A3)	48 (Vulcan)
1978	UK	- 64 (Polaris A3)	48 (Vulcan)
1979	UK	- 64 (Polaris A3)	48 (Vulcan)
1980	UK	- 64 (Polaris A3)	48 (Vulcan)
1981	UK	- 64 (Polaris A3)	48 (Vulcan)
1982	UK	- 64 [48 (Polaris A3)/ 16 (Chevalis	
1983	UK	- 64 [48 (Polaris A3)/ 16 (Cheval	ine)] - ²⁸
1984	UK	- 64 [32 (Polaris A3)/ 32 (Cheval	ine)] -

²⁶ Last Victor nuclear bomber squadron was disbanded in December 1968. Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 147.

²⁷ The first Chevaline-equipped submarine, *HMS Renown*, went on patrol. Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 101.

²⁸ Vulcan bombers were officially withdrawn from nuclear bomber role. Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 145. While Vulcan bombers took a tactical nuclear role since 1969, British government maintained that its Vulcan forces still assume a strategic nuclear role, which was substantiated by Vulcan bombers' participation in strategic nuclear mission exercises. Thus, I consider Vulcan bombers as a strategic platform, in contrast to the late Valiant bombers, which also assumed a tactical nuclear role but were never given a similar treatment from British government. Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 123-24.

1985	UK	-	64 [16 (Polaris A3)/ 48 (Chevaline)]	-
1986	UK	-	64 [16 (Polaris A3)/ 48 (Chevaline)]	-
1987	UK	-	64 (Chevaline)	-
1988	UK	-	64 (Chevaline)	-
1989	UK	-	64 (Chevaline)	-
1990	UK	-	64 (Chevaline)	-
1991	UK	-	64 (Chevaline)	-
1992	UK	-	64 (Chevaline)	-
1993	UK	-	48 (Chevaline)	-
1994	UK	-	48 (Chevaline)	-
1995	UK	-	64 [48 (Chevaline)/ 16 (Trident)]	-
1996	UK	-	32 (Trident)	-
1997	UK	-	32 (Trident)	-
1998	UK	-	48 (Trident)	-
1999	UK	-	48 (Trident)	-
2000	UK	-	48 (Trident)	-
2001	UK	-	48 (Trident)	-
2002	UK	-	48 (Trident)	<u>-</u>
1960	France	-	-	-
1961	France	-	-	-
1962	France	-	-	-
1963	France	-	-	_
1964	France	-	-	4 (Mirage IVA/P)
1965	France	-	-	32 (Mirage IVA/P)
1966	France	-	-	36 (Mirage IVA/P)
1967	France	-	-	36 (Mirage IVA/P)
1968	France	-	-	36 (Mirage IVA/P)
1969	France	-	-	36 (Mirage IVA/P)
1970	France		-	36 (Mirage IVA/P)
1971	France	9 (SSBS S2)	-	36 (Mirage IVA/P)
1972	France	18 (SSBS S2)	16 (MSBS M1)	36 (Mirage IVA/P)
1973	France	18 (SSBS S2)	32 (MSBS M1)	36 (Mirage IVA/P)

1974	France	18 (SSBS S2)	32 (MSBS M1)	36 (Mirage IVA/P)
1975	France	18 (SSBS S2)	32 (16 (MSBS M1)/ 16 (M2))	36 (Mirage IVA/P)
1976	France	18 (SSBS S2)	32 (MSBS M2)	32 (Mirage IVA/P)
1977	France	18 (SSBS S2)	48 [32 (MSBS M2)/ 16 (M20)]	32 (Mirage IVA/P)
1978	France	9 (SSBS S2)	64 [32 (MSBS M2)/ 32 (M20)]	32 (Mirage IVA/P)
1979	France	9 (SSBS S2)	64 [32 (MSBS M2)/ 32 (M20)]	32 (Mirage IVA/P)
1980	France	9 (SSBS S3)	64 (MSBS M20)	32 (Mirage IVA/P)
1981	France	9 (SSBS S3)	64 (MSBS M20)	32 (Mirage IVA/P)
1982	France	9 (SSBS S3)	64 (MSBS M20)	32 (Mirage IVA/P)
1983	France	18 (SSBS S3)	64 (MSBS M20)	28 (Mirage IVA/P)
1984	France	18 (SSBS S3)	64 (MSBS M20)	28 (Mirage IVA/P)
1985	France	18 (SSBS S3)	64 [48 (MSBS M20)/16 (M4)]	28 (Mirage IVA/P)
1986	France	18 (SSBS S3)	64 [48 (MSBS M20)/ 16 (M4)]	24 (Mirage IVA/P)
1987	France	18 (SSBS S3)	64 [32 (MSBS M20)/ 32 (M4)]	24 (Mirage IVA/P)
1988	France	18 (SSBS S3)	64 [32 (MSBS M20)/ 32 (M4)]	18 (Mirage IVA/P)
1989	France	18 (SSBS S3)	64 [32 (MSBS M20)/ 32 (M4)]	18 (Mirage IVA/P)
1990	France	18 (SSBS S3)	64 [16 (MSBS M20)/ 48 (M4)]	18 (Mirage IVA/P)
1991	France	18 (SSBS S3)	64 (MSBS M4)	18 (Mirage IVA/P)
1992	France	18 (SSBS S3)	64 (MSBS M4)	18 (Mirage IVA/P)
1993	France	18 (SSBS S3)	64 (MSBS M4)	18 (Mirage IVA/P)
1994	France	18 (SSBS S3)	64 (MSBS M4)	18 (Mirage IVA/P)
1995	France	18 (SSBS S3)	64 (MSBS M4)	18 (Mirage IVA/P)
1996	France	18 (SSBS S3)	64 [48 (MSBS M4)/16 (M45)]	18 (Mirage IVA/P) ²⁹
1997	France	-	64 [48 (MSBS M4)/ 16 (M45)]	45 (Mirage 2000N) ³⁰
1998	France	-	64 [48 (MSBS M4)/ 16 (M45)]	45 (Mirage 2000N)
1999	France	-	64 [48 (MSBS M4)/ 16 (M45)]	45 (Mirage 2000N)
2000	France	-	64 [32 (MSBS M4)/ 32 (M45)]	45 (Mirage 2000N)

²

²⁹ Mirage IVPs were converted from its nuclear role in July 1996. Stockholm International Peace Research Institute (SIPRI), *SIPRI Yearbook 2001: Armaments, Disarmament and International Security* (New York: Oxford University Press, 2001), 472.

³⁰ Mirage 2000Ns have assumed strategic nuclear role. SIPRI, SIPRI Yearbook 1997: Armaments, Disarmament and International Security (New York: Oxford University Press, 1997), 400.

2001	France	-	48 [16 (MSBS M4)/ 32 (M45)]	60 (Mirage 2000N)
2002	France	-	48 [16 (MSBS M4)/ 32 (M45)]	60 (Mirage 2000N)
1949	Russia ³¹	-	-	-
1950	Russia	-	-	-
1951	Russia	-	-	-
1952	Russia	-	-	-
1953	Russia	-	-	-
1954	Russia	-	-	-
1955	Russia		-	_
1956	Russia	48 [48 (SS-3)]	2 [2 (R-11FM)]	40 [20 (Tu-95A)/ 20 (MYA-4)]
1957	Russia	48 [48 (SS-3)]	10 [10 (R-11FM)]	53 [30 (Tu-95A)/ 23 (MYA-4)]
1958	Russia	48 [48 (SS-3)]	18 [12 (R-11FM)/ 6 (SS-N-4)]	85 [45 (Tu-95A)/ 40 (MYA-4)]
1959	Russia	48 [48 (SS-3)]	45 [12 (R-11FM)/ 33 (SS-N-4)]	105 [55 (Tu-95A)/50 (MYA-4)]
1960	Russia	206 [32 (SS-3) / 172 (SS-4)/ 2 (SS-6)]	42 [12 (R-11FM)/ 30 (SS-N-4)]	121 [65 (Tu-95A)/56 (MYA-4)]
1961	Russia	436 [36 (SS-3)/ 373 (SS-4)/ 17 (SS-5)/ 4 (SS-6)/ 6 (SS-7)]	69 [12 (R-11FM)/ 57 (SS-N-4)]	133 [75 (Tu-95A)/58 (MYA-4)]
1962	Russia	558 [36 (SS-3)/458 (SS-4)/28 (SS-5)/4 (SS-6)/32 (SS-7)]	84 [12 (R-11FM)/ 66 (SS-N-4)/ 6 (SS-N-5)]	138 [80 (Tu-95A)/ 58 (MYA-4)]
1963	Russia	753 [36 (SS-3)/564 (SS-4)/54 (SS-5)/4 (SS-6)/90 (SS-7)/5 (SS-8)]	84 [12 (R-11FM)/66 (SS-N-4)/6 (SS-N-5)]	150 [80 (Tu-95A)/12 (Tu-95B/C]/58 (MYA-4)]
1964	Russia	877 [36 (SS-3)/568 (SS-4)/82 (SS-5)/4 (SS-6)/170 (SS-7)/17 (SS-8)]	84 [12 (R-11FM)/ 66 (SS-N-4)/ 6 (SS-N-5)]	173 [85 (Tu-95A)/30 (Tu-95B/C]/58 (MYA-4)]
1965	Russia	990 [36 (SS-3)/572 (SS-4)/101 (SS-5)/4 (SS-6)/197 (SS-7)/23 (SS-8)/57 (SS-11M1)]	87 [12 (R-11FM)/ 66 (SS-N-4)/ 9 (SS-N-5)]	163 [60 (Tu-95A)/ 45 (Tu-95B/C]/ 58 (MYA-4)]
1966	Russia	1,093 [4 (SS-3)/ 572 (SS-4)/ 101 (SS-5)/ 4 (SS-6)/ 197 (SS-7)/ 23 (SS-8)/ 10 (SS-9M2)/ 182 (SS-11M1)]	90 [12 (R-11FM)/66 (SS-N-4)/12 (SS-N-5)]	159 [45 (Tu-95A)/ 60 (Tu-95B/C]/ 54 (MYA-4)]
1967	Russia	1,491 [572 (SS-4)/101 (SS-5)/4 (SS-6)/197 (SS-7)/23 (SS-8)/10 (SS-9M1)/70 (SS-	99 [12 (R-11FM)/54 (SS-N-4)/33 (SS-N-5)]	159 [30 (Tu-95A)/ 75 (Tu-95B/C]/ 54 (MYA-4)]

_

³¹ Tu-4, Tu-16, Tu-22, Tu-26 were also deployed platforms, but I was not able to find any publicly available, annual information about the number of those platforms.

1968	Russia	9M2)/ 514 (SS-11M1)] 1,673 [556 (SS-4)/ 100 (SS-5)/ 197 (SS-7)/ 23 (SS-8)/ 20 (SS-9M1)/ 115 (SS-9M2)/ 3 (SS-9M3)/ 659 (SS-11M1)]	148 [10 (R-11FM)/48 (SS-N-4)/42 (SS-N-5)/48 (SS-N-6M1)]]	159 [30 (Tu-95A)/ 75 (Tu-95B/C]/ 54 (MYA-4)]
1969	Russia	1,902 [532 (SS-4)/ 96 (SS-5)/ 197 (SS-7)/ 23 (SS-8)/ 40 (SS-9M1)/ 130 (SS-9M2)/ 5 (SS-9M3)/ 859 (SS-11M1)/ 20 (SS-13)]	227 [6 (R-11FM)/45 (SS-N-4)/42 (SS-N-5)/128 (SS-N-6M1)/6 (SS-N-8)]	157 [30 (Tu-95A)/ 75 (Tu-95B/C]/ 52 (MYA-4)]
1970	Russia	2,065 [504 (SS-4)/89 (SS-5)/197 (SS-7)/23 (SS-8)/50 (SS-9M1)/170 (SS-9M2)/10 (SS-9M3)/982 (SS-11M1)/40 (SS-13)]	323 [6 (R-11FM)/42 (SS-N-4)/45 (SS-N-5)/224 (SS-N-6M1)/6 (SS-N-8)]	157 [30 (Tu-95A)/ 75 (Tu-95B/C]/ 52 (MYA-4)]
1971	Russia	2,086 [480 (SS-4)/87 (SS-5)/190 (SS-7)/19 (SS-8)/50 (SS-9M1)/200 (SS-9M2)/20 (SS-9M3)/10 (SS-9M4)/990 (SS-11M1)/40 (SS-13)]	409 [2 (R-11FM)/21 (SS-N-4)/60 (SS-N-5)/320 (SS-N-6M1)/6 (SS-N-8)]	157 [30 (Tu-95A)/ 75 (Tu-95B/C]/ 52 (MYA-4)]
1972	Russia	2,071 [480 (SS-4)/ 87 (SS-5)/ 190 (SS-7)/ 19 (SS-8)/ 50 (SS-9M1)/ 200 (SS-9M2)/ 20 (SS-9M3)/ 10 (SS-9M4)/ 955 (SS-11M1)/ 60 (SS-13)]	503 [21 (SS-N-4)/60 (SS-N-5)/416 (SS-N-6M1)/6 (SS-N-8)]	157 [30 (Tu-95A)/ 75 (Tu-95B/C]/ 52 (MYA-4)]
1973	Russia	2,029 [480 (SS-4)/ 87 (SS-5)/ 190 (SS-7)/ 19 (SS-8)/ 50 (SS-9M1)/ 208 (SS-9M2)/ 20 (SS-9M3)/ 10 (SS-9M4)/ 830 (SS-11M1)/ 75 (SS-11M2/M3)/ 60 (SS-13)]	595 [21 (SS-N-4)/60 (SS-N-5)/480 (SS-N-6M1)/34 (SS-N-8)]	157 [30 (Tu-95A)/ 75 (Tu-95B/C]/ 52 (MYA-4)]
1974	Russia	1,934 [480 (SS-4)/87 (SS-5)/190 (SS-7)/19 (SS-8)/50 (SS-9M1)/208 (SS-9M2)/20 (SS-9M3)/10 (SS-9M4)/610 (SS-11M1)/200 (SS-11M2/M3)/60 (SS-13)]	679 [21 (SS-N-4)/60 (SS-N-5)/464 (SS-N-6M1)/48 (SS-N-6M3)/86 (SS-N-8)]	157 [30 (Tu-95A)/ 75 (Tu-95B/C]/ 52 (MYA-4)]
1975	Russia	2,036 [480 (SS-4)/87 (SS-5)/190 (SS-7)/19 (SS-8)/50 (SS-9M1)/200 (SS-9M2)/20 (SS-9M3)/10 (SS-9M4)/490 (SS-11M1)/350 (SS-11M2/M3)/60 (SS-13)/10 (SS-17M1)/10 (SS-18M1/M3)/60 (SS-19M1)]	771 [21 (SS-N-4)/60 (SS-N-5)/432 (SS-N-6M1)/96 (SS-N-6M3)/162 (SS-N-8)]	157 [30 (Tu-95A)/ 75 (Tu-95B/C]/ 52 (MYA-4)]
1976	Russia	2,044 [456 (SS-4)/87 (SS-5)/138 (SS-7)/19	849 [15 (SS-N-4)/60 (SS-N-5)/404	157 [30 (Tu-95A)/75 (Tu-95B/C]/52

		(SS-8)/40 (SS-9M1)/190 (SS-9M2)/20 (SS-	(SS-N-6M1)/144 (SS-N-6M3)/226	(MYA-4)]
		9M3)/ 10 (SS-9M4)/ 430 (SS-11M1)/ 420	(SS-N-8)]	
		(SS-11M2/M3)/ 60 (SS-13)/ 20 (SS-		
		17M1)/ 36 (SS-18M1/M3)/ 100 (SS-		
		19M1)/ 18 (SS-20)]		
		1,911 [448 (SS-4)/79 (SS-5)/78 (SS-7)/9		
		(SS-8)/20 (SS-9M1)/140 (SS-9M2)/20 (SS-	972 [12 (SS-N-4)/60 (SS-N-5)/340	
1077	ъ.	9M3)/10 (SS-9M4)/330 (SS-11M1)/420	(SS-N-6M1)/ 192 (SS-N-6M3)/ 292	157 [30 (Tu-95A)/75 (Tu-95B/C]/52
1977	Russia	(SS-11M2/M3)/ 60 (SS-13)/ 50 (SS-	(SS-N-8)/ 12 (SS-N-17)/ 64 (SS-N-	(MYA-4)]
		17M1)/36 (SS-18M1/M3)/40 (SS-	18)]	, / ,
		18M2)/ 100 (SS-19M1)/ 20 (SS-19M2)/ 51	, , ,	
		(SS-20)]		
		1,827 [404 (SS-4)/ 73 (SS-5)/ 65 (SS-9M2)/ 20 (SS-9M3)/ 230 (SS-11M1)/ 420	1,002 [9 (SS-N-4)/60 (SS-N-5)/260	
		(SS-11M2/M3)/ 60 (SS-13)/ 80 (SS-	(SS-N-6M1)/240 (SS-N-6M3)/292	157 [30 (Tu-95A)/ 75 (Tu-95B/C]/ 52
1978	Russia	17M1)/ 20 (SS-17M2)/ 36 (SS-	(SS-N-8)/12 (SS-N-17)/128 (SS-N-	(MYA-4)]
		18M1/M3)/ 140 (SS-18M2)/ 120 (SS-	18)/1 (SS-N-20)]	(W17A-4)]
		19M1)/ 60 (SS-19M2)/ 99 (SS-20)]	10)/1 (55 11 20)]	
		1,968 [372 (SS-4)/45 (SS-5)/55 (SS-		
		9M2)/ 20 (SS-9M3)/ 220 (SS-11M1)/ 420	_	
		(SS-11M2/M3)/ 60 (SS-13)/ 120 (SS-	993 [3 (SS-N-4)/57 (SS-N-5)/196	
1979	Russia	17M1)/ 20 (SS-17M2)/ 36 (SS-	(SS-N-6M1)/ 288 (SS-N-6M3)/ 292 (SS-N-8)/ 12 (SS-N-17)/ 144 (SS-N-	157 [30 (Tu-95A)/ 75 (Tu-95B/C]/ 52 (MYA-4)]
10,10	110,5510	18M1/M3)/ 154 (SS-18M2)/ 50 (SS-		
		18M4)/ 180 (SS-19M1)/ 60 (SS-19M2)/ 156	18)/ 1 (SS-N-20)]	
		(SS-20)]		
		1,905 [316 (SS-4)/35 (SS-5)/160 (SS-		
		11M1)/ 420 (SS-11M2/M3)/ 60 (SS-13)/ 130	990 [57 (SS-N-5)/180 (SS-N-	
1980	Russia	(SS-17M1)/ 20 (SS-17M2)/ 26 (SS-	6M1)/288 (SS-N-6M3)/292 (SS-N-	157 [30 (Tu-95A)/75 (Tu-95B/C]/52
1980	Russia	18M1/M3)/ 162 (SS-18M2)/ 120 (SS-	8)/12 (SS-N-17)/160 (SS-N-18)/1	(MYA-4)]
		18M4)/ 180 (SS-19M1)/ 40 (SS-19M2)/ 20	(SS-N-20)]	
		(SS-19M3)/ 216 (SS-20)]		
1981	Russia	1,954 [264 (SS-4)/25 (SS-5)/130 (SS-	1,038 [57 (SS-N-5)/160 (SS-N-	157 [30 (Tu-95A)/ 75 (Tu-95B/C]/ 52

		113 (1) (120 (00 113 (0 3 12) (0 (00 12) (120	(3.11)/200 (GG N. (3.12)/202 (GG N.	0.674 4)]
		11M1)/ 420 (SS-11M2/M3)/ 60 (SS-13)/ 130	6M1)/ 288 (SS-N-6M3)/ 292 (SS-N-	(MYA-4)]
		(SS-17M1)/ 20 (SS-17M2)/ 26 (SS-	8)/12 (SS-N-17)/208 (SS-N-18)/21	
		18M1/M3)/ 162 (SS-18M2)/ 120 (SS-	(SS-N-20)]	
		18M4)/ 180 (SS-19M1)/ 40 (SS-19M2)/ 80		
		(SS-19M3)/ 297 (SS-20)]		
		1,989 [224 (SS-4)/ 16 (SS-5)/ 130 (SS-		
		11M1)/ 420 (SS-11M2/M3)/ 60 (SS-13)/ 30	990 [57 (SS-N-5)/96 (SS-N-	_
1982	Russia	(SS-17M1)/ 10 (SS-17M2)/ 110 (SS-	6M1)/ 288 (SS-N-6M3)/ 292 (SS-N-	157 [30 (Tu-95A)/ 75 (Tu-95B/C]/ 52
1902	ixussia	17M3)/ 16 (SS-18M1/M3)/ 92 (SS-	8)/ 12 (SS-N-17)/ 224 (SS-N-18)/ 21	(MYA-4)]
		18M2)/ 200 (SS-18M4)/ 80 (SS-19M1)/ 10	(SS-N-20)]	
		(SS-19M2)/ 240 (SS-19M3)/ 351 (SS-20)]		
		1,858 [112 (SS-4)/100 (SS-11M1)/420 (SS-	978 [45 (SS-N-5)/96 (SS-N-	
1983	Russia	11M2/M3)/ 60 (SS-13)/ 150 (SS-17M3)/ 308	6M1)/ 288 (SS-N-6M3)/ 292 (SS-N-	167 [30 (Tu-95A)/ 75 (Tu-95B/C]/ 10
1903	Kussia	(SS-18M4)/ 330 (SS-19M3)/ 378 (SS-20)]	8)/ 12 (SS-N-17)/ 224 (SS-N-18)/ 21	(Tu-95H16)/ 52 (MYA-4)]
		(55-161/14)/330 (55-191/13)/3/8 (55-20)]	(SS-N-20)]	
		1,861 [112 (SS-4)/ 55 (SS-11M1)/ 420 (SS-	982 [45 (SS-N-5)/80 (SS-N-	160 [30 (Tu-95A)/65 (Tu-95B/C]/10
1984	Russia	11M2/M3)/ 60 (SS-13)/ 150 (SS-17M3)/ 308	6M1)/ 288 (SS-N-6M3)/ 292 (SS-N-	(Tu-95G)/ 10 (Tu-95H16)/ 45 (MYA-
1904	Kussia	(SS-18M4)/ 360 (SS-19M3)/ 396 (SS-20)]	8)/ 12 (SS-N-17)/ 224 (SS-N-18)/ 41	
		(33-161/14)/300 (33-191/13)/390 (33-20)]	(SS-N-20)]	4)]
		1,888 [112 (SS-4)/28 (SS-11M1)/420 (SS-	980 [39 (SS-N-5)/48 (SS-N-	160 [30 (Tu-95A)/ 55 (Tu-95B/C]/ 20
1985	Russia	11M2/M3)/ 60 (SS-13)/ 150 (SS-17M3)/ 308	6M1)/ 288 (SS-N-6M3)/ 292 (SS-N-	(Tu-95G)/25 (Tu-95H16)/30 (MYA-
1903	Kussia	(SS-18M4)/ 360 (SS-19M3)/ 405 (SS-20)/ 45	8)/ 12 (SS-N-17)/ 224 (SS-N-18)/ 61	
		(SS-25)]	(SS-N-20)/ 16 (SS-N-23)]	4)]
		1,887 [112 (SS-4)/ 420 (SS-11M2/M3)/ 60	948 [39 (SS-N-5)/288 (SS-N-	160 [20 (Ty 05 A)/45 (Ty 05D/C]/20
1986	Duraia	(SS-13)/ 150 (SS-17M3)/ 308 (SS-	6M3)/ 292 (SS-N-8)/ 12 (SS-N-	160 [30 (Tu-95A)/45 (Tu-95B/C]/30
1980	Russia	18M4/M5)/ 360 (SS-19M3)/ 405 (SS-20)/ 72	17)/ 224 (SS-N-18)/ 61 (SS-N-20)/ 32	(Tu-95G)/ 40 (Tu-95H16)/ 15 (MYA-
		(SS-25)]	(SS-N-23)]	4)]
		1,871 [48 (SS-4)/420 (SS-11M2/M3)/60	962 [39 (SS-N-5)/272 (SS-N-	155 [20 (Tr. 05 A)/20 (Tr. 05D/C]/40
1007	D:-	(SS-13)/139 (SS-17M3)/308 (SS-	6M3)/286 (SS-N-8)/12 (SS-N-	155 [30 (Tu-95A)/30 (Tu-95B/C]/40
1987	Russia	18M4/M5)/ 360 (SS-19M3)/ 405 (SS-20)/ 5	17)/ 224 (SS-N-18)/ 81 (SS-N-20)/ 48	(Tu-95G)/ 5 (Tu-95H6)/ 50 (Tu-
		(SS-24M1)/ 126 (SS-25)]	(SS-N-23)]	95H16)]
1988	Russia	1,729 [18 (SS-4)/370 (SS-11M2/M3)/60	963 [36 (SS-N-5)/240 (SS-N-	170 [20 (Tu-95A)/30 (Tu-95B/C]/45
			25	

		(SS-13)/ 120 (SS-17M3)/ 308 (SS-18M4/M5)/ 350 (SS-19M3)/ 318 (SS-20)/ 12 (SS-24M1)/ 20 (SS-24M2)/ 153 (SS-25)]	6M3)/ 286 (SS-N-8)/ 12 (SS-N-17)/ 224 (SS-N-18)/ 101 (SS-N-20)/ 64 (SS-N-23)]	(Tu-95G)/ 15 (Tu-95H6)/ 50 (Tu-95H16)/ 10 (Tu-160)]
1989	Russia	1,580 [6 (SS-4)/360 (SS-11M2/M3)/60 (SS-13)/100 (SS-17M3)/308 (SS-18M4/M5)/300 (SS-19M3)/195 (SS-20)/24 (SS-24M1)/56 (SS-24M2)/171 (SS-25)]	949 [18 (SS-N-5)/192 (SS-N-6M3)/286 (SS-N-8)/12 (SS-N-17)/224 (SS-N-18)/121 (SS-N-20)/96 (SS-N-23)]	160 [20 (Tu-95B/C]/ 45 (Tu-95G)/ 25 (Tu-95H6)/ 55 (Tu-95H16)/ 15 (Tu-160)]
1990	Russia	1,297 [310 (SS-11M2/M3)/ 30 (SS-13)/ 50 (SS-17M3)/ 308 (SS-18M4/M5)/ 300 (SS-19M3)/ 36 (SS-24M1)/ 56 (SS-24M2)/ 207 (SS-25)]	908 [176 (SS-N-6M3)/280 (SS-N-8)/12 (SS-N-17)/224 (SS-N-18)/120 (SS-N-20)/96 (SS-N-23)]	127 [30 (Tu-95G)/ 27 (Tu-95H6)/ 55 (Tu-95H16)/ 15 (Tu-160)]
1991	Russia	934 [308 (SS-18M4/M5)/300 (SS- 19M3)/36 (SS-24M1)/56 (SS-24M2)/234 (SS-25)]	832 [96 (SS-N-6M3)/280 (SS-N-8)/224 (SS-N-18)/120 (SS-N-20)/112 (SS-N-23)]	102 [31 (Tu-95H6)/ 56 (Tu-95H16)/ 15 (Tu-160)]
1992	Russia ³²	905 [308 (SS-18M4/M5)/ 235 (SS-19M3)/ 36 (SS-24M1)/ 56 (SS-24M2)/ 270 (SS-25)]	628 [172 (SS-N-8)/224 (SS-N-18)/120 (SS-N-20)/112 (SS-N-23)]	104 [31 (Tu-95H6)/ 56 (Tu-95H16)/ 17 (Tu-160)]
1993	Russia	859 [290 (SS-18M4/5)/ 200 (SS-19M3)/ 36 (SS-24M1)/ 36 (SS-24M2)/ 297 (SS-25)]	520 [64 (SS-N-8)/224 (SS-N-18)/120 (SS-N-20)/112 (SS-N-23)]	107 [31 (Tu-95H6)/ 57 (Tu-95H16)/ 19 (Tu-160)]
1994	Russia	782 [248 (SS-18M4/5)/ 170 (SS-19M3)/ 36 (SS-24M1)/ 10 (SS-24M2)/ 318 (SS-25)]	456 [224 (SS-N-18)/ 120 (SS-N-20)/ 112 (SS-N-23)]	110 [32 (Tu-95H6)/ 56 (Tu-95H16)/ 22 (Tu-160)]
1995	Russia	753 [186 (SS-18M4/5)/ 170 (SS-19M3)/ 36 (SS-24M1)/ 10 (SS-24M2)/ 351 (SS-25)]	440 [208 (SS-N-18)/ 120 (SS-N-20)/ 112 (SS-N-23)]	113 [31 (Tu-95H6)/ 57 (Tu-95H16)/ 25 (Tu-160)]
1996	Russia	746 [180 (SS-18M4/5)/ 160 (SS-19M3)/ 36 (SS-24M1)/ 10 (SS-24M2)/ 360 (SS-25)]	440 [208 (SS-N-18)/ 120 (SS-N-20)/ 112 (SS-N-23)]	113 [31 (Tu-95H6)/57 (Tu-95H16)/25 (Tu-160)]
1997	Russia	746 [180 (SS-18M4/5)/ 160 (SS-19M3)/ 36 (SS-24M1)/ 10 (SS-24M2)/ 360 (SS-25)]	384 [192 (SS-N-18)/ 80 (SS-N-20)/ 112 (SS-N-23)]	113 [32 (Tu-95H6)/56 (Tu-95H16)/25 (Tu-160)]
1998	Russia	756 [180 (SS-18M4/5)/ 160 (SS-19M3)/ 36 (SS-24M1)/ 10 (SS-24M2)/ 360 (SS-25)/ 10 (SS-27)]	348 [176 (SS-N-18)/60 (SS-N-20)/112 (SS-N-23)]	113 [32 (Tu-95H6)/ 56 (Tu-95H16)/ 25 (Tu-160)]

³² Since 1992, some of Russian strategic nuclear forces were left in Belarus, Kazakhstan, and Ukraine. However, Russia was able to maintain a tight control over those forces.

1999	Russia	756 [180 (SS-18M4/5)/ 150 (SS-19M3)/ 36 (SS-24M1)/ 10 (SS-24M2)/ 360 (SS-25)/ 20 (SS-27)]	348 [176 (SS-N-18)/ 60 (SS-N-20)/ 112 (SS-N-23)]	112 [33 (Tu-95H6)/54 (Tu-95H16)/25 (Tu-160)]
2000	Russia	756 [180 (SS-18M4/5)/ 150 (SS-19M3)/ 36 (SS-24M1)/ 10 (SS-24M2)/ 360 (SS-25)/ 20 (SS-27)]	348 [176 (SS-N-18)/60 (SS-N-20)/112 (SS-N-23)]	112 [33 (Tu-95H6)/54 (Tu-95H16)/25 (Tu-160)]
2001	Russia	706 [144 (SS-18M4/5)/ 137 (SS-19M3)/ 36 (SS-24M1) / 360 (SS-25)/ 29 (SS-27)]	284 [112 (SS-N-18)/ 60 (SS-N-20)/ 112 (SS-N-23)]	78 [32 (Tu-95H6)/ 31 (Tu-95H16)/ 15 (Tu-160)]
2002	Russia	706 [144 (SS-18M4/5)/ 137 (SS-19M3)/ 36 (SS-24M1) / 360 (SS-25)/ 29 (SS-27)]	232 [96 (SS-N-18)/40 (SS-N-20)/96 (SS-N-23)]	78 [32 (Tu-95H6)/ 31 (Tu-95H16)/ 15 (Tu-160)]
1982	S.Africa	-	-	6 (Buccaneer) ³³
1983	S.Africa	-	-	6 (Buccaneer)
1984	S.Africa	-	-	6 (Buccaneer)
1985	S.Africa	-	-	6 (Buccaneer)
1986	S.Africa	-	-	6 (Buccaneer)
1987	S.Africa	-	-	5 (Buccaneer)
1988	S.Africa	-	-	5 (Buccaneer)
1989	S.Africa	-	-	5 (Buccaneer)
1990	S.Africa	-	-	5 (Buccaneer)
1967	Israel	-	-	-
1968	Israel	2 (Jericho-I)	-	-
1969	Israel	12 (Jericho-I)	-	-
1970	Israel	30 (Jericho-I)	-	-
1971	Israel	36 (Jericho-I)	-	-
1972	Israel	43 (Jericho-I)	-	-
1973	Israel	49 (Jericho-I) ³⁴	-	-
1974	Israel	55 (Jericho-I)	<u>-</u>	

⁻

³³ The "pre-qualified" device, which could be "kicked out the back of a plane," made in 1982. The first "qualified" model, which was deliverable by Buccaneer bomber, was made in 1987. David Albright, "South Africa and the Affordable Bomb," *Bulletin of the Atomic Scientists* 50, no. 4 (July/August 1994): 43-44.

Nuclear Notebooks point out that 1973 is the first year that Israel deployed its first nuclear-capable Jericho-I missile. Stockholm International Peace Research Institute, SIPRI Yearbook 2003: Armaments, Disarmament and International Security (New York: Oxford University Press, 2003), 627.

1975	Israel	61 (Jericho-I)	-	-
1976	Israel	68 (Jericho-I)	-	-
1977	Israel	74 (Jericho-I)	-	-
1978	Israel	80 (Jericho-I)	-	-
1979	Israel	missing	-	-
1980	Israel	missing	-	-
1981	Israel	missing	-	53 $(F-16A/B)^{35}$
1982	Israel	missing	-	74 (F-16A/B)
1983	Israel	missing	-	72 (F-16A/B)
1984	Israel	missing	-	75 (F-16A/B)
1985	Israel	missing	-	75 (F-16A/B)
1986	Israel	missing	-	75 (F-16A/B)
1987	Israel	missing	-	76 (F-16A/B)
1988	Israel	missing	-	145 (F-16A/B/C/D)
1989	Israel	missing	-	145 (F-16A/B/C/D)
1990	Israel	100 (Jericho 1/2)	-	139 (F-16A/B/C/D)
1991	Israel	missing	-	149 (F-16A/B/C/D)
1992	Israel	missing	-	209 (F-16A/B/C/D)
1993	Israel	missing	-	209 (F-16A/B/C/D)
1994	Israel	missing	-	209 (F-16A/B/C/D)
1995	Israel	missing	-	205 (F-16A/B/C/D)
1996	Israel	missing	-	205 (F-16A/B/C/D)
1997	Israel	missing	-	205 (F-16A/B/C/D)
1998	Israel	missing	-	203 (F-16A/B/C/D)
1999	Israel	missing	-	237 (F-16A/B/C/D)
2000	Israel	100 [50 (Jericho-I)/ 50 (Jericho-II)]	18 (Popeye-Turbo) ³⁶	237 (F-16A/B/C/D)

³⁵ Some of various Israeli F-16s (A/B/C/D/I/Fighting Falcon) are thought to be nuclear-certified. Norris, Arkin, Kristensen, and Handler, "Israeli Nuclear Forces, 2002," 73.

³⁶ It is reported that Israel had two Dolphin-class submarines in 1999 and three in 2000. Norris, Arkin, Kristensen, and Handler, "Israeli Nuclear Forces, 2002," 75. Other sources believe that Israel deployed one Dolphin-class sub in 1999 and additional two in 2000. "SSK Dolphin Class Submarine," Naval Technology, accessed October 12, 2018, https://www.naval-technology.com/projects/dolphin/. The Dolphin class submarines are known to have 10 21-inch tubes capable of launching torpedoes, mines, or cruise missiles. According to IISS' Military Balance, however, each submarine seems to have 6 missiles and 4 torpedoes. In 2000 Israel conducted a test of a submarine-launched cruise missile, though it is unclear whether that missile was a Popeye-Turbo. Hans M. Kristensen and Robert S. Norris, "Israeli Nuclear Weapons, 2014," Bulletin of the Atomic

2001	Israel	100 [50 (Jericho-I)/ 50 (Jericho-II)]	18 (Popeye-Turbo)	237 (F-16A/B/C/D)
2002	Israel	100 [50 (Jericho-I)/ 50 (Jericho-II)]	18 (Popeye-Turbo)	232 (F-16A/B/C/D)
1964	China	-	-	14 [13 (Tu-4)/1 (H-6)]
1965	China	-	-	14 [13 (Tu-4)/ 1 (H-6)]
1966	China	5 (DF-2/2A)	-	15 [13 (Tu-4)/ 2 (H-6)]
1967	China	10 (DF-2/2A)	-	15 [13 (Tu-4)/ 2 (H-6)]
1968	China	15 (DF-2/2A)	-	19 [13 (Tu-4)/ 5 (H-6)/ 1 (H-5)]
1969	China	20 (DF-2/2A)	-	24 [13 (Tu-4)/ 8 (H-6)/ 3 (H-5)]
1970	China	20 (DE 2/2A)		31 [13 (Tu-4)/ 10 (H-6)/ 5 (H-5)/ 3 (Q-
19/0	China	30 (DF-2/2A)	-	5)]
1971	China	45 [40 (DE 2/2A)/5 (DE 2/2A)]		36 [13 (Tu-4)/ 13 (H-6)/ 7 (H-5)/ 3 (Q-
19/1	Cilina	45 [40 (DF-2/2A)/ 5 (DF-3/3A)]	-	5)]
1972	China	60 [45 (DE 2/2A)/15 (DE 2/2A)]		57 [13 (Tu-4)/ 32 (H-6)/ 9 (H-5)/ 3 (Q-
19/2	Cilina	60 [45 (DF-2/2A)/ 15 (DF-3/3A)]	-	5)]
1973	China	65 [45 (DF-2/2A)/ 20 (DF-3/3A)]		79 [13 (Tu-4)/ 50 (H-6)/ 11 (H-5)/ 5
19/3	Cillia	03 [43 (DF-2/2A)/20 (DF-3/3A)]	-	(Q-5)]
1974	China	75 [50 (DF-2/2A)/ 25 (DF-3/3A)]		96 [13 (Tu-4)/60 (H-6)/13 (H-5)/10
19/4	Cillia	75 [50 (DF-2/2A)/25 (DF-5/5A)]	-	(Q-5)]
1975	China	80 [50 (DF-2/2A)/ 30 (DF-3/3A)]		108 [13 (Tu-4)/ 65 (H-6)/ 15 (H-5)/ 15
19/3	Cillia	60 [50 (DF-2/2A)/ 50 (DF-5/5A)]	-	(Q-5)]
1976	China	80 [50 (DF-2/2A)/ 30 (DF-3/3A)]		118 [13 (Tu-4)/70 (H-6)/15 (H-5)/20
1970	Cillia	60 [50 (DF-2/2A)/ 50 (DF-5/5A)]	-	(Q-5)]
1977	China	80 [50 (DF-2/2A)/ 30 (DF-3/3A)]		133 [13 (Tu-4)/75 (H-6)/20 (H-5)/25
19//	Cillia	60 [50 (DF-2/2A)/ 50 (DF-5/5A)]	-	(Q-5)]
1070	China	00 [50 (DE 2/2A)/40 (DE 2/2A)]		148 [13 (Tu-4)/80 (H-6)/25 (H-5)/30
1978	China	90 [50 (DF-2/2A)/ 40 (DF-3/3A)]	-	(Q-5)
1070	China	05 [45 (DE 2/2A)/50 (DE 2/2A)]		163 [13 (Tu-4)/90 (H-6)/30 (H-5)/30
1979	China	95 [45 (DF-2/2A)/ 50 (DF-3/3A)]	-	(Q-5)]
1000	China	105 [45 (DE 2/2A)/(0 (DE 2/2A)]		170 [10 (Tu-4)/100 (H-6)/30 (H-
1980	China	105 [45 (DF-2/2A)/ 60 (DF-3/3A)]	-	5)/ 30 (Q-5)]

Scientists 70, no. 6 (2014): 109.

1981	China	125 [45 (DF-2/2A)/70 (DF-3/3A)/8 (DF-4)/2 (DF-5/5A)]	-	165 [5 (Tu-4)/100 (H-6)/30 (H-5)/30 (Q-5)]
1982	China	135 [45 (DF-2/2A)/80 (DF-3/3A)/8 (DF-4)/2 (DF-5/5A)]	-	165 [105 (H-6)/30 (H-5)/30 (Q-5)]
1983	China	140 [40 (DF-2/2A)/90 (DF-3/3A)/8 (DF-4)/2 (DF-5/5A)]	-	170 [110 (H-6)/30 (H-5)/30 (Q-5)]
1984	China	149 [35 (DF-2/2A)/ 100 (DF-3/3A)/ 10 (DF-4)/ 4 (DF-5/5A)]	-	170 [110 (H-6)/30 (H-5)/30 (Q-5)]
1985	China	139 [30 (DF-2/2A)/95 (DF-3/3A)/10 (DF-4)/4 (DF-5/5A)]	12 (JL-1)	170 [110 (H-6)/30 (H-5)/30 (Q-5)]
1986	China	131 [30 (DF-2/2A)/85 (DF-3/3A)/12 (DF-4)/4 (DF-5/5A)]	12 (JL-1)	175 [115 (H-6)/30 (H-5)/30 (Q-5)]
1987	China	118 [20 (DF-2/2A)/80 (DF-3/3A)/14 (DF-4)/4 (DF-5/5A)]	12 (JL-1)	175 [115 (H-6)/30 (H-5)/30 (Q-5)]
1988	China	116 [10 (DF-2/2A)/80 (DF-3/3A)/16 (DF-4)/4 (DF-5/5A)/6 (DF-21/21A)]	24 (JL-1)	180 [120 (H-6)/30 (H-5)/30 (Q-5)]
1989	China	114 [80 (DF-3/3A)/18 (DF-4)/4 (DF-5/5A)/12 (DF-21/21A)]	24 (JL-1)	180 [120 (H-6)/30 (H-5)/30 (Q-5)]
1990	China	108 [60 (DF-3/3A)/ 20 (DF-4)/ 4 (DF-5/5A)/ 24 (DF-21/21A)]	24 (JL-1)	180 [120 (H-6)/30 (H-5)/30 (Q-5)]
1991	China	110 [50 (DF-3/3A)/20 (DF-4)/4 (DF-5/5A)/36 (DF-21/21A)]	24 (JL-1)	180 [120 (H-6)/30 (H-5)/30 (Q-5)]
1992	China	110 [50 (DF-3/3A)/20 (DF-4)/4 (DF-5/5A)/36 (DF-21/21A)]	24 (JL-1)	180 [120 (H-6)/ 30 (H-5)/ 30 (Q-5)]
1993	China	110 [50 (DF-3/3A)/20 (DF-4)/4 (DF-5/5A)/36 (DF-21/21A)]	24 (JL-1)	180 [120 (H-6)/30 (H-5)/30 (Q-5)]
1994	China	110 [50 (DF-3/3A)/20 (DF-4)/4 (DF-5/5A)/36 (DF-21/21A)]	24 (JL-1)	180 [120 (H-6)/30 (H-5)/30 (Q-5)]
1995	China	110 [50 (DF-3/3A)/20 (DF-4)/4 (DF-5/5A)/36 (DF-21/21A)]	24 (JL-1)	180 [120 (H-6)/30 (H-5)/30 (Q-5)]
1996	China	113 [50 (DF-3/3A)/20 (DF-4)/7 (DF-5/5A)/36 (DF-21/21A)]	12 (JL-1)	180 [120 (H-6)/30 (H-5)/30 (Q-5)]

1997	China	113 [50 (DF-3/3A)/20 (DF-4)/7 (DF-5/5A)/36 (DF-21/21A)]	12 (JL-1)	150 [120 (H-6)/ 30 (Q-5)]
1998	China	113 [50 (DF-3/3A)/20 (DF-4)/7 (DF-5/5A)/36 (DF-21/21A)]	12 (JL-1)	150 [120 (H-6)/ 30 (Q-5)]
1999	China	128 [40 (DF-3/3A)/20 (DF-4)/20 (DF-5/5A)/48 (DF-21/21A)]	12 (JL-1)	150 [120 (H-6)/ 30 (Q-5)]
2000	China	128 [40 (DF-3/3A)/20 (DF-4)/20 (DF-5/5A)/48 (DF-21/21A)]	12 (JL-1)	150 [120 (H-6)/ 30 (Q-5)]
2001	China	128 [40 (DF-3/3A)/20 (DF-4)/20 (DF-5/5A)/48 (DF-21/21A)]	12 (JL-1)	150 [120 (H-6)/ 30 (Q-5)]
2002	China	120 [40 (DF-3/3A)/12 (DF-4)/20 (DF-5/5A)/48 (DF-21/21A)]	12 (JL-1)	150 [120 (H-6)/ 30 (Q-5)]
1988	India	-	-	112 [72 (Jaguar IS/IB)/40 (Mirage 2000H/TH)]
1989	India	-	-	122 [70 (Jaguar IS/IB)/52 (Mirage 2000H/TH)]
1990	India	-	-	126 [80 (Jaguar IS/IB)/ 46 (Mirage 2000H/TH)]
1991	India	-	-	116 [80 (Jaguar IS/IB)/ 36 (Mirage 2000H/TH)]
1992	India	-	-	116 [80 (Jaguar IS/IB)/ 36 (Mirage 2000H/TH)]
1993	India	-	-	116 [80 (Jaguar IS/IB)/ 36 (Mirage 2000H/TH)]
1994	India	-	-	124 [89 (Jaguar IS/IB)/ 35 (Mirage 2000H/TH)]
1995	India	-	-	132 [97 (Jaguar IS/IB)/ 35 (Mirage 2000H/TH)]
1996	India	-	-	123 [88 (Jaguar IS/IB)/ 35 (Mirage 2000H/TH)]
1997	India	-	-	123 [88 (Jaguar IS/IB)/ 35 (Mirage 2000H/TH)]

1998	India	-	123 [88 (Jaguar IS/IB)/35 (Miraş 2000H/TH)]	ge
1999	India	_	123 [88 (Jaguar IS/IB)/35 (Mirag	ge
1777	maia		2000H/TH)]	
2000	India	_	123 [88 (Jaguar IS/IB)/35 (Mirag	ge
2000	Ilidia	-	2000H/TH)]	
2001	India		124 [84 (Jaguar IS/IB)/ 40 (Mirag	ge
2001	muia	-	- 2000H/TH)]	
2002	India		75 [35(Jaguar IS/IB)/40 (Mirag	je
2002	India	-	- 2000H/TH)]	
1990	Pakistan	-	- 39 (F-16A/B)	
1991	Pakistan	-	- 39 (F-16A/B)	
1992	Pakistan	-	- 39 (F-16A/B)	
1993	Pakistan	-	- 35 (F-16A/B)	
1994	Pakistan	-	- 34 (F-16A/B)	
1995	Pakistan	-	- 34 (F-16A/B)	
1996	Pakistan	-	- 34 (F-16A/B)	
1997	Pakistan	-	- 34 (F-16A/B)	
1998	Pakistan	-	- 32 (F-16A/B)	
1999	Pakistan	-	- 32 (F-16A/B)	
2000	Pakistan	-	- 32 (F-16A/B)	
2001	Pakistan	-	- 32 (F-16A/B)	
2002	Pakistan	-	- 32 (F-16A/B)	

V. The List of Strategic Nuclear Platforms and Their Range

This section provides information about the range of each strategic nuclear platform. It should be noted that in many cases, different sources offer different estimates. Accordingly, there could be some discrepancies that cannot be resolved entirely. I consider the highest and lowest estimation of a certain platform's range offered by different sources and choose the highest estimation. For estimating the range of strategic bombers, I try to gather information on a bomber's combat range, the maximum range that an aircraft can fly with (nuclear) payloads whenever such information is available. When information on combat radius, a measure of the maximum range that an aircraft can fly considering its return to the base on which it operates, and combat range is available, I choose to use combat range, because states often envision one-way nuclear mission. Refueling capability is also taken into consideration whenever information on refueling capability and how much it can extend the range of a given bomber is available.

Table 3. Deployed Strategic Nuclear Platforms and Their Estimated Range

Country	Type	Name	Range
		Atlas D	10,180km ³⁷
		Atlas E	12,552km ³⁸
		Atlas F	12,552km ³⁹
		Titan I	10,299km ⁴⁰
	Land-based	Titan II	13,518km ⁴¹
		Minuteman I	11,667km ⁴²
US		Minuteman II	12,472km ⁴³
US		Minuteman III	12,874-14,800km ⁴⁴
		Peacekeeper	10,782km ⁴⁵
		Polaris A1	2,220km ⁴⁶
		Polaris A2	$2,784 \text{km}^{47}$
	Sea-based	Polaris A3	4,634km ⁴⁸
	200 2000	Poseidon C3	4,506km ⁴⁹
		Trident I	$7,402 \text{km}^{50}$

³⁷ Norman Polmar and Robert S. Norris, *The U.S. Nuclear Arsenal: A History of Weapons and Delivery Systems Since 1945* (Annapolis, MD: Naval Institute Press, 2009), 166.

³⁸ Ibid., 166.

³⁹ Ibid., 167.

⁴⁰ Ibid., 182.

⁴¹ Ibid., 183.

⁴² Ibid., 172.

⁴³ Ibid., 172.

⁴⁴ Ibid., 173.

⁴⁵ Ibid., 176.

⁴⁶ Ibid., 188.

⁴⁷ Ibid., 188.

⁴⁸ Ibid., 190.

⁴⁹ Ibid., 191.

⁵⁰ Ibid., 198-99.

		Trident II	$7,402 \text{km}^{51}$
		B-29	6,215km ⁵²
		B-36	10,019-12,842km ⁵³
		B-50	7,483-7,711km ⁵⁴
		B-47	6,311km ⁵⁵
			9,656-11,482km ⁵⁶
	Air-Based	B-52	(14,162-16,000km
			since 1961 ⁵⁷)
		B-58	9,607-10,963km ⁵⁸
		FB-111A	12,070-14,816km ⁵⁹
		B-1B	6,662-19,000km ⁶⁰
		B-2	11,000-12,231km ⁶¹
		Polaris A3	4,350-4,600km ⁶²
	Sea-Based	Chevaline	$4,700 \text{km}^{63}$
UK		Trident II	7,400-11,000km ⁶⁴
UK		Valiant	7,242km ⁶⁵
	Air-Based	Victor	4,022-7,400km ⁶⁶
		Vulcan	7,402-9,253km ⁶⁷
France	Land-Based	SSBS S2	3,300km ⁶⁸

⁵¹ Ibid., 199.

⁵² Ernest R. May, John D. Steinbruner, and Thomas W. Wolfe, eds., *History of the Strategic Arms Competition* 1945-1972, Part II (Washington, DC: Office of the Secretary of Defense, Historical Office, March 1981), 876. For a similar estimate, see Norman Polmar, ed., *Strategic Air Command: People, Aircrafts, and Missiles* (Annapolis, MD: Nautical and Aviation Publishing Company of America, 1979), 149.

⁵³ May, Steinbruner, and Wolfe, *History of the Strategic Arms Competition*, 877; Polmar, ed., *Strategic Air Command*, 158.

⁵⁴ May, Steinbruner, and Wolfe, *History of the Strategic Arms Competition*, 877; Polmar and Norris, *The U.S. Nuclear Arsenal*, 97.

⁵⁵ May, Steinbruner, and Wolfe, *History of the Strategic Arms Competition*, 878.

⁵⁶ B-52B's combat radius is reported as 3,100 nautical miles. May, Steinbruner, and Wolfe, *History of the Strategic Arms Competition*, 878. The range of B-52D, which is also an early model, is estimated as more than 6,000miles. Thomas B. Cochran, William M. Arkin, and Milton M. Hoenig, *Nuclear Weapons Databook*, vol. I, *U.S. Nuclear Forces and Capabilities* (Cambridge, MA: Ballinger, 1984), 149.

⁵⁷ SIPRI, SIPRI Yearbook 2001, 458; Polmar and Norris, The U.S. Nuclear Arsenal, 99.

⁵⁸ B-58's refueled combat radius is reported as 2,960 nautical miles. May, Steinbruner, and Wolfe, *History of the Strategic Arms Competition*, 879; For a different estimate, see Polmar and Norris, *The U.S. Nuclear Arsenal*, 103.

⁵⁹ May, Steinbruner, and Wolfe, *History of the Strategic Arms Competition*, 880; Polmar and Norris, *The U.S. Nuclear Arsenal*, 107-8.

⁶⁰ Polmar and Norris, The U.S. Nuclear Arsenal, 87; SIPRI, SIPRI Yearbook 1997, 394.

⁶¹ SIPRI, SIPRI Yearbook 2001, 458; Polar and Norris, The U.S. Nuclear Arsenal, 89.

⁶² Norris, Burrows, and Fieldhouse, Nuclear Weapons Databook, 163.

⁶³ Ibid., 163.

⁶⁴ Ibid., 169.

⁶⁵ Ibid., 142.

⁶⁶ Nuclear Weapons Databook estimates that Victor's range is 4,022-5,631km. Ibid., 146. Other sources say that its range is 7,400km. "Handley Page Victor: History," Thunder & Lightnings, last modified November 20, 2016, accessed December 28, 2018, http://www.thunder-and-lightnings.co.uk/victor/history.php

⁶⁷ 4,600miles without refueling; 5,750miles with refueling. Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 144.

⁶⁸ Ibid., 291.

_		SSBS S3	$3,500 \text{km}^{69}$
_		MSBS M1	$2,500 \text{km}^{70}$
		MSBS M2	$3,000 \text{km}^{71}$
	Sea-Based	MSBS M20	$3,000 \text{km}^{72}$
		MSBS M4	4,000km ⁷³
		MSBS M45	$4,000 \text{km}^{74}$
- -	A.' D 1	Mirage IVA/P	1,574-3,862km ⁷⁵
	Air-Based	Mirage 2000N	2,750-2,778km ⁷⁶
		SS-3 Shyster	1,200km ⁷⁷
	a Land-based	SS-4 Sandal	$2,080 \text{km}^{78}$
		SS-5 Skean	4,500km ⁷⁹
		SS-6 Sapwood	8,000-12,000km ⁸⁰
		SS-7 Saddler	11,000-13,000km ⁸¹
		SS-8 Sasin	12,500km ⁸²
LICCD /D:-		SS-9 Scarp M1	10,200-15,200km ⁸³
USSR/Russia		SS-9 Scarp M2	10,200-15,200km ⁸⁴
		SS-9 Scarp M3	40,000km ⁸⁵
		SS-9 Scarp M4	10,200-15,200km ⁸⁶
		SS-11 Sego M1	11,000km ⁸⁷
		SS-11 Sego M2/M3	10,600-13,000km ⁸⁸
		SS-13 Savage	9,400-9,500km ⁸⁹
		SS-17 Spanker M1	10,000-10,320km ⁹⁰
		•	

⁶⁹ Ibid., 292

⁷⁰ Ibid., 300.

⁷¹ Ibid.

⁷² Ibid., 301.

⁷³ Ibid., 304.

⁷⁴ Robert S. Norris and Hans M. Kristensen, "French Nuclear Forces, 2008," *Bulletin of the Atomic Scientists* 64, no. 4 (2008): 53.

⁷⁵ 1,574km without refueling; 3,862km with refueling. Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 281.

⁷⁶ Ibid., 283; Robert S. Norris and William M. Arkin, "British, French, and Chinese Nuclear Forces," *Bulletin of the Atomic Scientists* 52, no. 6 (1996): 66.

⁷⁷ Pavel Podvig, ed., *Russian Strategic Nuclear Forces* (Cambridge, MA: MIT Press, 2001), 178-79.

⁷⁸ Ibid., 185.

⁷⁹ Ibid., 188.

⁸⁰ Ibid., 181.

⁸¹ Ibid., 190.

⁸² Ibid., 193.

⁸³ Ibid., 198.

⁸⁴ Ibid.

⁸⁵ Ibid.

⁸⁶ Since this missile was the same SS-9 Scarp Mod 1 with the multiple reentry vehicles (MRV), I assume that its range is equal to Mod 1. Ibid., 199.

⁸⁷ Ibid., 202.

⁸⁸ Ibid.; Thomas B. Cochran, William M. Arkin, Robert S. Norris, and Jeffrey I. Sands, *Nuclear Weapons Databook*, vol. IV, *Soviet Nuclear Weapons* (New York: Ballinger, 1989), 101.

⁸⁹ Podvig, ed., Russian Strategic Nuclear Forces, 207.

⁹⁰ Cochran, Arkin, Norris, and Sands, *Nuclear Weapons Databook*, 125; Podvig, ed., *Russian Strategic Nuclear Forces*, 213.

	SS-17 Spanker M2	10,200-10,320km ⁹¹
	SS-17 Spanker M3	10,000km ⁹²
	SS-18 Satan M1	12,000km ⁹³
	SS-18 Satan M2	11,000km ⁹⁴
	SS-18 Satan M3	16,000km ⁹⁵
	SS-18 Satan M4	11,000km ⁹⁶
	SS-18 Satan M5	11,000-16,000km ⁹⁷
	SS-19 Stiletto M1	10,000km ⁹⁸
	SS-19 Stiletto M2	10,000km ⁹⁹
	SS-19 Stiletto M3	10,000km ¹⁰⁰
		5,000km ¹⁰¹
	SS-20 Saber	
	SS-24 Scalpel M1	$10,000 \mathrm{km}^{102}$
	SS-24 Scalpel M2	$10,450 \text{km}^{103}$
	SS-25 Sickle	$10,500 \mathrm{km^{104}}$
	SS-27 Sickle B	$11,000 \mathrm{km}^{105}$
	D 11FM	150km ¹⁰⁶
	R-11FM	$(+17,594 \text{km})^{107}$
	~~ \ \ .	600km^{108}
Sea-Based	SS-N-4	$(+16,668 \text{km})^{109}$
200 2000		$1,400 \text{km}^{110}$
	SS-N-5	$(+16,668 \text{km})^{111}$
	SS-N-6 Serb	2,400-3,000km ¹¹²
	22-11-0 2010	2, 1 00-3,000kiii

⁹¹ Podvig, ed., Russian Strategic Nuclear Forces, 213.

⁹² Cochran, Arkin, Norris, and Sands, Nuclear Weapons Databook, 125.

⁹³ Ibid., 127.

⁹⁴ Ibid., 127.

⁹⁵ Ibid., 127.

⁹⁶ Ibid., 127-28.

⁹⁷ Podvig, ed., Russian Strategic Nuclear Forces, 218.

⁹⁸ Ibid., 222.

⁹⁹ Ibid.

¹⁰⁰ Cochran, Arkin, Norris, and Sands, Nuclear Weapons Databook, 129.

¹⁰¹ Podvig, ed., Russian Strategic Nuclear Forces, 225.

¹⁰² Cochran, Arkin, Norris, and Sands, Nuclear Weapons Databook, 131.

¹⁰³ Podvig, ed., Russian Strategic Nuclear Forces, 228.

¹⁰⁴ Cochran, Arkin, Norris, and Sands, Nuclear Weapons Databook, 134.

Steven J. Zaloga, *The Kremlin's Nuclear Sword: The Rise and Fall of Russia's Strategic Nuclear Forces, 1945-2000* (Washington, DC: Smithsonian Institution Press, 2002), 237; CSIS Missile Defense Project, "SS-27 "Sickle B" (RT-2PM2 Topol-M)," *Missile Threat*, last modified June 15, 2018, accessed November 24, 2019, https://missilethreat.csis.org/missile/ss-27/.

¹⁰⁶ Podvig, ed., Russian Strategic Nuclear Forces, 311.

¹⁰⁷ Zulu Class submarine's range of operation on snorkel at 8 knots. Norman Polmar and Jurrien Noot, *Submarines of the Russian and Soviet Navies, 1718-1990* (Annapolis, MD: Naval Institute Press, 1991), 283.

¹⁰⁸ Podvig, ed., Russian Strategic Nuclear Forces, 314.

¹⁰⁹ Golf I Class submarine's range of operation on snorkel at 5 knots. Polmar and Noot, *Submarines of the Russian and Soviet Navies*, 288.

¹¹⁰ Podvig, ed., Russian Strategic Nuclear Forces, 318.

Golf I Class submarines' range. Some SS-N-4 missiles were carried by Golf-class, whereas others by Hotel II class submarines, which are nuclear-powered and therefore have virtually unlimited range, since 1964.

¹¹² Podvig, ed., Russian Strategic Nuclear Forces, 321.

		SS-N-8 Sawfly	7,800-9,100km ¹¹³
		SS-N-17 Snipe	$3,900 \text{km}^{114}$
		SS-N-18 Stingray	6,500-8,000km ¹¹⁵
		SS-N-20 Sturgeon	$8,300 \text{km}^{116}$
		SS-N-23 Skiff	8,300km ¹¹⁷
		Tu-4	8,000km ¹¹⁸
		Tu-16	5,800km ¹¹⁹
		Tu-95 Bear A	13,200-16,600km ¹²⁰
		Tu-95 Bear B/C	10,300-16,600km ¹²¹
		Tu-95 Bear G	16,600km ¹²²
		Tu-95 Bear H	10,500-16,600km ¹²³
	Air-Based	Tu-22 Blinder	$2,200 \text{km}^{124}$
			$5,000 \text{km}^{125}$
		MYA-4 Bison	(15,400km since
			1958^{126})
		Tu-26 Backfire	5,000-5,100km ¹²⁷
		Tu-160 Blackjack	14,000km ¹²⁸ , 10,500-
		Tu-100 Blackjack	13,200km ¹²⁹
South Africa	Air-Based	Buccaneer	1,610-1,930km ¹³⁰
Israel	Land-Based	Jericho I	500km ¹³¹
151401	Land-Dased	Jericho II	1,800km ¹³²

¹¹³ Ibid., 326.

¹¹⁴ Ibid., 329.

¹¹⁵ Cochran, Arkin, Norris, and Sands, Nuclear Weapons Databook, 148.

¹¹⁶ Cochran, Arkin, Norris, and Sands, Nuclear Weapons Databook, 150.

¹¹⁷ Ibid., 151.

With aerial refueling. Steven Zaloga, *The Kremlin's Nuclear Sword: The Rise and Fall of Russia's Strategic Nuclear Forces, 1945-2000* (Washington, DC: Smithsonian Institution Press, 2002), 16.

¹¹⁹ Ibid., 372

¹²⁰ Cochran, Arkin, Norris, and Sands, *Nuclear Weapons Databook*, 238; Podvig, ed., *Russian Strategic Nuclear Forces*, 382.

¹²¹ Cochran, Arkin, Norris, and Sands, *Nuclear Weapons Databook*, 238; Podvig, ed., *Russian Strategic Nuclear Forces*, 382.

¹²² Cochran, Arkin, Norris, and Sands, Nuclear Weapons Databook, 238.

¹²³ Podvig, ed., *Russian Strategic Nuclear Forces*, 382; Cochran, Arkin, Norris, and Sands, *Nuclear Weapons Databook*, 238.

¹²⁴ Podvig, ed., Russian Strategic Nuclear Forces, 388.

¹²⁵ "Molot M-4/Mya-4/3M Myasishchev 'Bison'," *Federation of American Scientists*, last modified August 08, 2000, accessed January 18, 2019, https://fas.org/nuke/guide/russia/bomber/m-4.htm.

¹²⁶ The 3M's maximum service range was increased to 15,400km, with refueling capabilities in 1958. Podvig, ed., *Russian Strategic Nuclear Forces*, 375-76.

¹²⁷ Zaloga, The Kremlin's Nuclear Sword, 175.

¹²⁸ Ibid., 397.

¹²⁹ SIPRI, SIPRI Yearbook 2001, 466.

¹³⁰ British Buccaneer's estimated range of operation. Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 153.

Norris, Arkin, Kristensen, and Handler, "Israeli Nuclear Forces, 2002," 74; CSIS Missile Defense Project, "Jericho 1," *Missile Threat*, last modified June 15, 2018, accessed October 10, 2019, https://missilethreat.csis.org/missile/jericho-1/.

¹³² Ibid.

	Sea-Based	Popeye Turbo	350-1,500km ¹³³ (+640km ¹³⁴)
	Air-Based	F-16	1,600km ¹³⁵
		DF-2/2A	1,050-1,250km ¹³⁶
		DF-3/3A	2,650-3,000km ¹³⁷
	Land-Based	DF-4	4,750-5,500km ¹³⁸
		DF-5	12,000-13,000km ¹³⁹
China		DF-21	$1,800 \mathrm{km}^{140}$
	Sea-Based	JL-1	1,000-1,700km ¹⁴¹
	Air-Based	Tu-4	$5,740 \text{km}^{142}$
		Hong-5	1,105-1,200km ¹⁴³
		Hong-6	$6,200 \mathrm{km}^{144}$
T., 41.	Air-Based	Jaguar	1,600km ¹⁴⁵
India		Mirage 2000H	$1,850 \text{km}^{146}$
Pakistan	Air-Based	F-16	1,600km ¹⁴⁷

¹³³ Kristensen and Norris, "Israeli Nuclear Forces, 2014," 108; Joseph Cirincione, Jon B. Wolfsthal, and Miriam Rajkmar, *Deadly Arsenals: Nuclear, Biological, and Chemical Threats*, 2nd ed. (Washington, DC: Carnegie Endowment for International Peace, 2005), 261.

¹³⁴ I add the range of the submarine at an economical speed of 8kt dived, which is roughly 400miles (640km). Naval Technology, "SSK Dolphin Class Submarine," *Naval Technology*, accessed December 5, 2018, https://www.naval-technology.com/projects/dolphin/.

¹³⁵ Kristensen and Norris, "Israeli Nuclear Forces, 2014," 102.

¹³⁶ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 378.

¹³⁷ Ibid., 380; Hans M. Kristensen, "Chinese Nuclear Missile Upgrade Near Dalian," *FAS Strategic Security Blog*, May 21, 2014, accessed November 17, 2018, https://fas.org/blogs/security/2014/05/dengshaheupgrade/.

¹³⁸ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 382; Hans M. Kristensen and Robert S. Norris, "Chinese Nuclear Forces, 2018," *Bulletin of the Atomic Scientists* 74, no. 4 (2018): 290.

¹³⁹ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 384; Kristensen and Norris, "Chinese Nuclear Forces, 2018," 290.

¹⁴⁰ Norris and Arkin, "British, French, and Chinese Nuclear Forces," 67; John Wilson Lewis and Hua Di, "China's Ballistic Missile Programs: Technologies, Strategies, Goals," *International Security* 17, no. 2 (Fall 1992): 10.

Hans M. Kristensen and Robert S. Norris, "Chinese Nuclear Forces, 2016," *Bulletin of the Atomic Scientists* 72, no. 4 (2016), 206; Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 396.

¹⁴² Norris, Burrows, and Fieldhouse, Nuclear Weapons Databook, 389.

¹⁴³ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 390.

¹⁴⁴ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 392.

¹⁴⁵ Hans M. Kristensen and Matt Korda, "Indian Nuclear Forces, 2018," *Bulletin of the Atomic Scientists* 74, no. 6 (2018): 362.

¹⁴⁶ Ibid.

¹⁴⁷ Hans M. Kristensen, Robert S. Norris, and Julia Diamond, "Pakistani Nuclear Forces, 2018," *Bulletin of the Atomic Scientists* 74, no. 5 (2018): 349.

VI. Accuracy of Strategic Nuclear Platforms

This section provides information about the estimated accuracy of each strategic nuclear platform. If different sources provide different estimations, I choose the most reliable estimate given the reliability of the source. If multiple estimates appear to be reliable, I specify the minimum and maximum estimated value of the accuracy of a given delivery platform and take the average of both values.

Table 4. Estimated Accuracy of Strategic Nuclear Platforms

Country	Type	Name	Accuracy
		Atlas D	$3,334$ m 148
		Atlas E	1,852m ¹⁴⁹
		Atlas F	$1,852$ m 150
		Titan I	1,204m ¹⁵¹
	Land-based	Titan II	$1,204 \mathrm{m}^{152}$
		Minuteman I	$2,037 \mathrm{m}^{153}$
		Minuteman II	366-610m ¹⁵⁴ ; 481m ¹⁵⁵
US		Minuteman III	183-213m ¹⁵⁶
		Peacekeeper	$90m^{157}$; $111m^{158}$
		Polaris A1	3,704m ¹⁵⁹
		Polaris A2	$3,704$ m 160
	Sea-based	Polaris A3	$926m^{161}$
		Poseidon C3	$457m^{162}$
		Trident I	$457m^{163}$
		Trident II	90m ¹⁶⁴

¹⁴⁸ Donald Mackenzie, *Inventing Accuracy: A Historical Sociology of Nuclear Missile Guidance* (Cambridge, MA: MIT Press, 1990), 428.

¹⁴⁹ Mackenzie, *Inventing Accuracy*, 428.

¹⁵⁰ Mackenzie, *Inventing Accuracy*, 428.

¹⁵¹ Mackenzie, *Inventing Accuracy*, 428.

¹⁵² Mackenzie, *Inventing Accuracy*, 428.

¹⁵³ Mackenzie, *Inventing Accuracy*, 428.

¹⁵⁴ Polmar and Norris, *The U.S. Nuclear Arsenal*, 172.

¹⁵⁵ Mackenzie, *Inventing Accuracy*, 428.

¹⁵⁶ Congressional Budget Office, Counterforce Issues for the U.S. Strategic Nuclear Forces (Washington, DC: Congressional Budget Office, 1978), 18; Congressional Budget Office, Modernizing U.S. Strategic Offensive Forces: Costs, Effects, and Alternatives (Washington, DC: Congressional Budget Office, 1987), 86; Polmar and Norris, The U.S. Nuclear Arsenal, 173;

¹⁵⁷ CSIS Missile Defense Project, "Peacekeeper," *Missile Threat*, last modified June 15, 2018, accessed October 25, 2019, https://missilethreat.csis.org/missile/lgm-118-peacekeeper-mx/.

¹⁵⁸ Mackenzie, *Inventing Accuracy*, 428.

¹⁵⁹ Mackenzie, *Inventing Accuracy*, 429.

¹⁶⁰ Ibid.

¹⁶¹ Ibid.

Polmar and Norris, The U.S. Nuclear Arsenal, 191.

¹⁶³ Polmar and Norris, *The U.S. Nuclear Arsenal*, 198.

¹⁶⁴ CSIS Missile Defense Project, "Trident D-5," *Missile Threat*, last modified June 15, 2018, accessed October 25, 2019, https://missilethreat.csis.org/missile/trident/; Keir A. Lieber and Daryl G. Press, "The End of MAD?

			165
		B-29	3,080m (1949) ¹⁶⁵ 1,413m (1950) ¹⁶⁶
		B-36	•
		B-50	
		B-47	
	Air-Based	B-52	Hound Dog (1097-1981m) ¹⁶⁷ ;SRAM (430m) ¹⁶⁸ ; ALCM (10-30.5m) ¹⁶⁹ ; ACM (4.9m) ¹⁷⁰ ; gravity bomb (130m-185m) in 1987 ¹⁷¹ ; gravity bomb (116m) in the late 1990s ¹⁷²
		B-58	
		FB-111A	
		B-1B	
		B-2	
		Polaris A3	926m
	Sea-Based	Chevaline	930m ¹⁷³
		Trident II	90m ¹⁷⁴
UK		Valiant	
	Air-Based	Victor	Blue Steel (91-640m) ¹⁷⁵
		Vulcan	Blue Steel (91-640m)
France	Land-Based	SSBS S2	1,000m ¹⁷⁶

The Nuclear Dimension of U.S. Primacy," *International Security* 30, no. 4 (Spring 2006): 18; Keir A. Lieber and Daryl G. Press, "The New Era of Counterforce: Technological Change and the Future of Nuclear Deterrence," *International Security* 41 no. 4 (Spring 2017): 26.

¹⁶⁵ The circular error probable (CEP) of 10,100 feet was obtained during October 1948's military exercise. B-29 was the only nuclear-certified bomber in 1949. Edward Kaplan, *To Kill Nations: American Strategy in the Air-Atomic Age and the Rise of Mutually Assured Destruction* (Ithaca, NY: Cornell University Press, 2015), 31.

¹⁶⁶ In 1950's evaluation, an average CEP of 4.635 feet was achieved. Kaplan, *To Kill Nations*, 33.

¹⁶⁷ Polmar and Norris, The U.S. Nuclear Arsenal, 203.

¹⁶⁸ Strategic Air Command, "Boeing AGM-69 "SRAM"," accessed November 25, 2019, https://web.archive.org/web/20040407003242/http://www.strategic-air-command.com/missiles/Aircraft-Launched Missiles/agm-69 SRAM missile.htm

¹⁶⁹ Ibid., 202. NRDC team's estimate is 10m. Cochran, Arkin, and Hoenig, *Nuclear Weapons Databook*, 177.

¹⁷⁰ Polmar and Norris, The U.S. Nuclear Arsenal, 201.

¹⁷¹ Congressional Budget Office, *Modernizing U.S. Strategic Offensive Forces: Costs, Effects, and Alternatives* (Washington, DC: Congressional Budget Office, 1987), 87.

¹⁷² Drop tests in the late 90s typically obtained a CEP of 116m. "Video Shows Earth-Penetrating Capability of B61-12 Nuclear Bomb," *FAS Strategic Security Blog*, January 14, 2016, accessed November 27, 2019, https://fas.org/blogs/security/2016/01/b61-12 earth-penetration/.

¹⁷³ Christopher Chant, A Compendium of Armaments and Military Hardware (London: Routledge, 1988).

CSIS Missile Defense Project, "Trident D-5," *Missile Threat*, last modified June 15, 2018, accessed October 25, 2019, https://missilethreat.csis.org/missile/trident/; Lieber and Press, "The End of MAD?" 18; Lieber and Press, "The New Era of Counterforce," 26.

¹⁷⁵ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 148.

¹⁷⁶ David Miller, *The Cold War: A Military History* (New York: St. Martin's, 1998), 419.

		SSBS S3	$800 \mathrm{m}^{177}$
_		MSBS M1	610m ¹⁷⁸ ; 1,000m ¹⁷⁹
		MSBS M2	610m; 1,000m
	Sea-Based	MSBS M20	$800 { m m}^{180}$
		MSBS M4	185-480m ¹⁸¹
		MSBS M45	$350 m^{182}$
- -			ASMP (350-400m) ¹⁸³
	Ain Dagad	Mirage IVA/P	Gravity bomb
	Air-Based	<u>-</u>	$(200 \text{m})^{184}$
		Mirage 2000N	ASMP (350-400m)
		SS-3 Shyster	543-652m ¹⁸⁵
		SS-4 Sandal	$2,174$ m 186
		SS-5 Skean	2,174m ¹⁸⁷
		SS-6 Sapwood	3,704m ¹⁸⁸ ; $4,348$ m ¹⁸⁹
		SS-7 Saddler	2,700-4,348m ¹⁹⁰
LICCD/D:	т 11 1	SS-8 Sasin	3,000-3,500m ¹⁹¹ ;
USSR/Russia	Land-based		8,000m ¹⁹²
		SS-9 Scarp M1	2,174m ¹⁹³
		SS-9 Scarp M2	2,174m ¹⁹⁴
		SS-9 Scarp M3	2,174m ¹⁹⁵
		SS-9 Scarp M4	2,174m ¹⁹⁶
		SS-11 Sego M1	900-1,300m ¹⁹⁷ ; 1,400-

¹⁷⁷ Miller, The Cold War, 419.

¹⁷⁸ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 300.

¹⁷⁹ Miller, The Cold War, 419.

¹⁸⁰ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 302.

¹⁸¹ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 305.

¹⁸² CSIS Missile Defense Project, "M45," *Missile Threat*, last modified June 15, 2018, available at < https://missilethreat.csis.org/missile/m45/>

¹⁸³ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 288.

¹⁸⁴ Miller, The Cold War, 419.

¹⁸⁵ Maximum error is 1.25-1.5km. Podvig, *Russian Strategic Nuclear Forces*, 178. The Soviet tradition is to use maximum error, rather than CEP. Following Pavel Podvig's formula, I divide the value of the maximum error by 2.3 with subsequent rounding. Pavel Podvig, "The Window of Vulnerability That Wasn't: Soviet military Buildup in the 1970s—A Research Note," *International Security* 33, no. 1 (Summer 2008), 126 n. 28.

¹⁸⁶ Podvig, ed., Russian Strategic Nuclear Forces, 185

¹⁸⁷ Ibid., 188.

¹⁸⁸ Mackenzie, *Inventing Accuracy*, 428.

¹⁸⁹ Maximum error 10km. Podvig, ed., Russian Strategic Nuclear Forces, 181.

¹⁹⁰ Ibid., 190.

¹⁹¹ "R-9—SS-8 Sasin," *Federation of American Scientists*, last modified August 9, 2000, accessed November 25, 2019, https://fas.org/nuke/guide/russia/icbm/r-9.htm.

Robert S. Norris and Hans M. Kristensen, "Nuclear U.S. and Soviet/Russian Intercontinental Ballistic Missiles, 1959-2008," *Bulletin of the Atomic Scientists* 65, no. 1 (January/February 2009): 67; Zaloga, *The Kremlin's Nuclear Sword*, 232.

¹⁹³ Maximum error 5,000m. Podvig, ed., Russian Strategic Nuclear Forces, 198.

¹⁹⁴ Ibid.

¹⁹⁵ Ibid.

¹⁹⁶ Ibid.

¹⁹⁷ Cochran, Arkin, Norris, and Sands, Nuclear Weapons Databook, 122.

SS-11 Sego M2/M3	2,174m ¹⁹⁸ 960-1,200m ¹⁹⁹ ; 1,100- 1,350m ²⁰⁰
SS-13 Savage	1,500-1,850m ²⁰¹ ; 1,800m ²⁰²
SS-17 Spanker M1	700m^{203}
SS-17 Spanker M2	700m^{204}
SS-17 Spanker M3	350-430m ²⁰⁵ ; 400 m ²⁰⁶
SS-18 Satan M1	700m^{207}
SS-18 Satan M2	700m^{208}
SS-18 Satan M3	700m^{209}
SS-18 Satan M4	$190-260 \mathrm{m}^{210}; 370 \mathrm{m}^{211}$
SS-18 Satan M5	$220m^{212}$
SS-19 Stiletto M1	650m^{213}
SS-19 Stiletto M2	650m^{214}
SS-19 Stiletto M3	350-430m ²¹⁵
SS-20 Saber	435-566m ²¹⁶
SS-24 Scalpel M1	$200 \mathrm{m}^{217}$; $220 \mathrm{m}^{218}$
SS-24 Scalpel M2	$220m^{219}$
SS-25 Sickle	200-400m ²²⁰ ; 391m ²²¹ ; 350-430m ²²²
SS-27 Sickle B	$348m^{223}$

¹⁹⁸ Podvig, ed. Russian Strategic Nuclear Forces, 202.

¹⁹⁹ Podvig, "The Window of Vulnerability That Wasn't," 128.

Cochran, Arkin, Norris, and Sands, Nuclear Weapons Databook, 122.

²⁰¹ Cochran, Arkin, Norris, and Sands, Nuclear Weapons Databook, 124.

Podvig, "The Window of Vulnerability That Wasn't," 128.

²⁰³ Podvig, "The Window of Vulnerability That Wasn't," 128.

²⁰⁴ Podvig, "The Window of Vulnerability That Wasn't," 128.

Podvig, "The Window of Vulnerability That Wasn't," 128.

²⁰⁶ Cochran, Arkin, Norris, and Sands, Nuclear Weapons Databook, 126.

²⁰⁷ Podvig, "The Window of Vulnerability That Wasn't," 128.

²⁰⁸ Podvig, "The Window of Vulnerability That Wasn't," 128.

Podvig, "The Window of Vulnerability That Wasn't," 128.

²¹⁰ Cochran, Arkin, Norris, and Sands, Nuclear Weapons Databook, 128.

²¹¹ Podvig, "The Window of Vulnerability That Wasn't," 128.

²¹² Podvig, "The Window of Vulnerability That Wasn't," 128.

²¹³ Norris and Kristensen, "Nuclear U.S. and Soviet/Russian Intercontinental Ballistic Missiles," 67; Podvig, "The Window of Vulnerability That Wasn't," 128.

²¹⁴ Norris and Kristensen, "Nuclear U.S. and Soviet/Russian Intercontinental Ballistic Missiles," 67; Podvig, "The Window of Vulnerability That Wasn't," 128.

²¹⁵ Podvig, "The Window of Vulnerability That Wasn't," 128.

²¹⁶ Podvig, ed., Russian Strategic Nuclear Forces, 225.

²¹⁷ Cochran, Arkin, Norris, and Sands, Nuclear Weapons Databook, 132.

²¹⁸ Podvig, "The Window of Vulnerability That Wasn't," 128.

²¹⁹ Podvig, "The Window of Vulnerability That Wasn't," 128.

²²⁰ Cochran, Arkin, Norris, and Sands, *Nuclear Weapons Databook*, 134.

²²¹ Maximum error 900m. Podvig, Russian Strategic Nuclear Forces, 232.

²²² Podvig, "The Window of Vulnerability That Wasn't," 128.

²²³ Maximum error 800m. Podvig, Russian Strategic Nuclear Forces, 233.

•		R-11FM	1,500m ²²⁴
		SS-N-4	4,000m ²²⁵
		SS-N-5	$2,800 \mathrm{m}^{226}$
		SS-N-6 Serb M1	1,900m ²²⁷
	C D 1	SS-N-6 Serb M2/3	$1,300-1,800^{228}$
	Sea-Based	SS-N-8 Sawfly	900-1,500m ²²⁹
		SS-N-17 Snipe	$1,400 \mathrm{m}^{230}$
		SS-N-18 Stingray	900-1,400m ²³¹
		SS-N-20 Sturgeon	600m^{232}
		SS-N-23 Skiff	500m^{233}
		Tu-4	
		Tu-16	
		Tu-95 Bear A	
		Tu-95 Bear B/C	AS-3 (1,852- 5,556m) ²³⁴
	Air-Based	Tu-95 Bear G	AS-4 (1,852- 3,704m) ²³⁵
		Tu-95 Bear H	$AS-15 (25m)^{236}$
		Tu-22	, ,
		MYA-4 Bison	
		Tu-26	
		Tu-160 Blackjack	AS-15 (25m)
South Africa	Air-Based	Buccaneer	
	Land-Based	Jericho I	
Israel —	Land-Dased	Jericho II	
	Sea-Based	Popeye Turbo	
	Air-Based	F-16	

. .

²²⁴ Podvig, ed., Russian Strategic Nuclear Forces, 311.

²²⁵ Podvig, ed., Russian Strategic Nuclear Forces, 314.

²²⁶ Podvig, ed., Russian Strategic Nuclear Forces, 318.

²²⁷ Podvig, ed., Russian Strategic Nuclear Forces, 321.

²²⁸ Podvig, ed., Russian Strategic Nuclear Forces, 321.

²²⁹ Cochran, Arkin, Norris, and Sands, *Nuclear Weapons Databook*, 146; Podvig, ed., *Russian Strategic Nuclear Forces*, 326.

²³⁰ Cochran, Arkin, Norris, and Sands, *Nuclear Weapons Databook*, 147; Podvig, ed., *Russian Strategic Nuclear Forces*, 329.

²³¹ Cochran, Arkin, Norris, and Sands, *Nuclear Weapons Databook*, 149. Other sources estimated the accuracy of the platform as a CEP of 900m. Podvig, ed., *Russian Strategic Nuclear Forces*, 331.

²³² Cochran, Arkin, Norris, and Sands, *Nuclear Weapons Databook*, 150; Podvig, ed., *Russian Strategic Nuclear Forces*, 334.

²³³ Podvig, ed., Russian Strategic Nuclear Forces, 336.

²³⁴ Central Intelligence Agency, *Intelligence Handbook: Soviet Guided Missiles*, SR IH 69-2, May 1969 (Langley, VA: Central Intelligence Agency), 43; "Kh-20/AS-3 Kangaroo," *Federation of American Scientists*, last modified August 8, 1997, accessed November 29, 2019, https://fas.org/nuke/guide/russia/bomber/as-3.htm.

²³⁵ Central Intelligence Agency, *Intelligence Handbook*, 43.

November 25, 2019, https://missiledefenseadvocacy.org/missile-threat-and-proliferation/missile-proliferation/russia/as-15-kent-kh-55-granat/.

		DF-2/2A	1,852-3,704m ²³⁷
		DF-3/3A	$1,000 \mathrm{m}^{238}$
	Land-Based	DF-4	1,370m ²³⁹
		DF-5	500m^{240}
China		DF-21	700m^{241}
	Sea-Based	CSS-N-3	300-400m ²⁴²
		Tu-4	
	Air-Based	Hong-5	
		Hong-6	
India	Ain Dagad	Jaguar	
India	Air-Based	Mirage 2000H	
Pakistan	Air-Based	F-16	

²³⁷ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 378.

²³⁸ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 381.

²³⁹ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 382.

²⁴⁰ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 385.

²⁴¹ CSIS Missile Defense Project, "DF-21 (Dong Feng 21/CSS-5)," *Missile Threat*, last modified October 8, 2019, accessed November 2, 2019, https://missilethreat.csis.org/missile/df-21/.

²⁴² "JL-1 [CSS-N-3]," *FAS*, last modified June 10, 1998, accessed November 2, 2019, https://fas.org/nuke/guide/china/slbm/jl-1.htm

VII. Warhead Yield

This section contains information on the estimated yield of nuclear weapons delivered by each strategic nuclear platform. When different sources offer various estimated values of yields, I provide the maximum value of a given warhead's yield.

F

Information on the yield of gravity bombs, often delivered by strategic bombers, remains unknown in many cases. For the **Soviet Union/Russia** case, I assume that the RDS-4, a fission weapon with a yield of 0.042MT, which was delivered by Tu-95 bombers, was the main nuclear ordnance for all Soviet bomber forces.²⁴³ Since 1956, the RDS-37, a thermonuclear bomb that was tested in late 1955 and 1957,²⁴⁴ started to replace the RDS-4. It had a 1.6MT yield when tested in 1955 and a 2.9MT in 1957.²⁴⁵ Thus, I assume that all Soviet strategic bombers' nuclear gravity bombs produced a 1.6MT yield in 1956-1957 and 2.9MT since 1958.²⁴⁶

For **China**, it is believed to have two types of gravity bombs: a fission bomb with a yield of 20-40kt, and a 3MT thermonuclear gravity bomb. The first test of a thermonuclear bomb took place in 1967. I assume that since 1968, all nuclear gravity bombs have 3MT yield. Before 1968, all gravity bombs are assumed to have a yield of 40kt.

For **Pakistan**, I assume that Pakistan's nuclear gravity bombs have a maximum yield of 0.012MT, the same yield of early Pakistan's nuclear warheads carried by missile platforms, which again is estimated based on Pakistan's nuclear tests in 1998.²⁴⁹

Lastly, I assume that **India**'s gravity bombs have a maximum yield of 0.015MT, an estimation produced by experts on Indian nuclear forces.²⁵⁰

Table 5. Estimated Warhead Yield

Country	Type	Name	Accuracy
		Atlas D	W49Y2 $(1.4MT)^{251}$
		Atlas E	W38Y1 $(4.5MT)^{252}$
US	I and based	Atlas F	W38Y1 $(4.5MT)^{253}$
US	Land-based	Titan I	$W38 (4.5MT)^{254}$
		Titan II	$W53Y1 (9MT)^{255}$
		Minuteman I	W59Y1 (1MT) or

²⁴³ Zaloga, The Kremlin's Nuclear Sword, 29.

²⁴⁴ Podvig, Russian Strategic Nuclear Forces, 487.

²⁴⁵ Ibid., 487, 489.

²⁴⁶ Ibid., 29-30.

²⁴⁷ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 358. Similar estimations can be found in several *Nuclear Notebook* reports. See for instance, Hans M. Kristensen and Robert S. Norris, "Chinese Nuclear Forces, 2015," *Bulletin of the Atomic Scientists* 71, no. 4 (2015): 78.

²⁴⁸ Ibid., 420.

²⁴⁹ Kristensen, Norris, and Diamond, "Pakistani Nuclear Forces, 2018," 349.

²⁵⁰ Tellis, *India's Emerging Nuclear Posture*, 519.

²⁵¹ Polmar and Norris, *The U.S. Nuclear Arsenal*, 166.

²⁵² Polmar and Norris, *The U.S. Nuclear Arsenal*, 166.

²⁵³ Polmar and Norris, *The U.S. Nuclear Arsenal*, 167.

²⁵⁴ Polmar and Norris, *The U.S. Nuclear Arsenal*, 182.

²⁵⁵ Polmar and Norris, *The U.S. Nuclear Arsenal*, 183.

	Minuteman II	W56 (1.2MT) ²⁵⁶ W56 Mod 4 (1.2MT) ²⁵⁷ 200xW62 (0.17MT,
	Minuteman III	1970-), 300xW78
		$(0.335MT, 1979-)^{258}$
	Peacekeeper	W87-1 (0.3MT) ²⁵⁹
	Polaris A1	W47Y1 $(0.6MT)^{260}$
	Polaris A2	W47Y2 $(1.2MT)^{261}$
G 1 1	Polaris A3	W58 (0.2MT, x3 MRV) ²⁶²
Sea-based	Poseidon C3	$W68 (0.05MT)^{263}$
	Trident I	$W76(0.1MT)^{264}$
	Trident II	W76 (0.1MT), W88 (0.455MT) ²⁶⁵
		Mk3 (0.021MT) ²⁶⁶ ;
	B-29	Mk4 (0.031MT), ²⁶⁷ B5 (0.12MT), ²⁶⁸ B6
		(0.16MT) ²⁶⁹ Mk3, Mk4, B5, B6,
Air-Based		Mk17 (13.5MT), ²⁷⁰ B18 (0.5MT), ²⁷¹ B24
7 III Dased	B-36	(15MT), ²⁷² B36 (19MT), ²⁷³ B39
	D 50	$(3.8MT)^{274}$
	B-50	Mk3, Mk4, B5, B6
	B-47	Mk4, Mk5, Mk6, Mk8 (0.03MT), ²⁷⁵ B15

Polmar and Norris, The U.S. Nuclear Arsenal, 172.

Polmar and Norris, The U.S. Nuclear Arsenal, 173.

Polmar and Norris, The U.S. Nuclear Arsenal, 173.

Polmar and Norris, The U.S. Nuclear Arsenal, 176.

Polmar and Norris, The U.S. Nuclear Arsenal, 188.

²⁶¹ Polmar and Norris, The U.S. Nuclear Arsenal, 188.

Polmar and Norris, The U.S. Nuclear Arsenal, 190.

Polmar and Norris, The U.S. Nuclear Arsenal, 191.

Polmar and Norris, The U.S. Nuclear Arsenal, 199.

Polmar and Norris, The U.S. Nuclear Arsenal, 199.

²⁶⁶ Polmar and Norris, The U.S. Nuclear Arsenal, 39.

Polmar and Norris, The U.S. Nuclear Arsenal, 40.

Polmar and Norris, The U.S. Nuclear Arsenal, 40.

Polmar and Norris, The U.S. Nuclear Arsenal, 41.

²⁷⁰ Polmar and Norris, The U.S. Nuclear Arsenal, 45.

Polmar and Norris, The U.S. Nuclear Arsenal, 45.

²⁷² Polmar and Norris, *The U.S. Nuclear Arsenal*, 47. ²⁷³ Polmar and Norris, *The U.S. Nuclear Arsenal*, 51.

²⁷⁴ Polmar and Norris, *The U.S. Nuclear Arsenal*, 52.

²⁷⁵ Polmar and Norris, *The U.S. Nuclear Arsenal*, 42.

			(3.4MT), ²⁷⁶ B28 (1.45MT), ²⁷⁷ B36, B39, B41 (25MT), ²⁷⁸ B43 (1MT), ²⁷⁹ B53 (9MT) ²⁸⁰ Mk6, B15, B28, B43, B53, B57 (0.02MT), ²⁸¹ B61 (0.36MT), ²⁸² B83
		B-52	(1MT), ²⁸³ Hound Dogs (1.1MT), ²⁸⁴ SRAM (0.2MT), ²⁸⁵ ALCM (0.15MT) ²⁸⁶
		B-58	B39, B53, B43
		FB-111A	B43, B57, B61, SRAM
		B-1B	B61-7 (0.36MT), B83 (1MT)
		B-2	B61, B83
		Polaris A3	W58 (0.2MT) ²⁸⁷
	Sea-Based	Chevaline	$TK-100 (0.04MT)^{288}$
		Trident II	W76 $(0.1MT)^{289}$
UK		Valiant	Blue Danube $(0.016MT)^{290}$
	Air-Based	Victor	Blue Danube, Red Beard, Yellow Sun Mk2 (1MT), ²⁹¹ Blue Steel (1.6MT) ²⁹²
		Vulcan	Blue Danube, Yellow

__

²⁷⁶ Polmar and Norris, *The U.S. Nuclear Arsenal*, 44.

²⁷⁷ Polmar and Norris, *The U.S. Nuclear Arsenal*, 49.

Polmar and Norris, The U.S. Nuclear Arsenal, 53.

Polmar and Norris, The U.S. Nuclear Arsenal, 54.

²⁸⁰ Polmar and Norris, *The U.S. Nuclear Arsenal*, 58.

²⁸¹ Polmar and Norris, *The U.S. Nuclear Arsenal*, 60.

²⁸² Polmar and Norris, *The U.S. Nuclear Arsenal*, 61.

²⁸³ Polmar and Norris, *The U.S. Nuclear Arsenal*, 68.

²⁸⁴ Polmar and Norris, *The U.S. Nuclear Arsenal*, 204.

²⁸⁵ Polmar and Norris, *The U.S. Nuclear Arsenal*, 208.

²⁸⁶ Polmar and Norris, The U.S. Nuclear Arsenal, 202.

²⁸⁷ Polmar and Norris, The U.S. Nuclear Arsenal, 190.

Norris, Burrows, and Fieldhouse, Nuclear Weapons Databook, 163.

²⁸⁹ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 168.

²⁹⁰ John R. Walker, "British Nuclear Weapon Stockpiles, 1953-1978," *The RUSI Journal* 156, no. 5 (2011): 68. Valiant bombers can carry the Blue Danube and the Red Beard gravity bomb (0.015MT), but I assume that all Valiant bombers carry the Blue Danube due to its greater yield.

Richard Moore, "The Real Meaning of the Words: A Pedantic Glossary of British Nuclear Weapons," UK Nuclear History Working Paper No. 1, Mountbatten Centre for International Studies, last modified March 2004, accessed October 20, 2019, http://nuclear-weapons.info/Working Paper No 1.pdf.

²⁹² Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 148. Two Victor squadrons carry 16 Blue Steel missiles since 1963. Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 149.

			Sun Mk1 (0.4MT) ²⁹³
			and Mk2, Blue
			Steel, ²⁹⁴ WE 177A
			$(0.01MT)^{295}$ WE
			$177B (0.4MT)^{296}$
	Land-Based	SSBS S2	MR 31 $(0.12MT)^{297}$
		SSBS S3	TN 61 $(1MT)^{298}$
_	Sea-Based	MSBS M1	MR 41 (0.5MT) ²⁹⁹
		MSBS M2	MR 41
		MSBS M20	TN 60/61 (1MT)
France		MSBS M4	TN 70/71 (0.15MT) ³⁰⁰
France		MSBS M45	TN 75 (0.1MT) ³⁰¹
	Air-Based		ASMP $(0.3MT)^{302}$; AN
		Mirage IVA/P	11 (0.06MT)/22
		Willage TVA/F	$(0.07MT)^{303}$; AN 52
			$(0.025MT)^{304}$
		Mirage 2000N	ASMP
USSR/Russia	Land-based	SS-3 Shyster	$(0.3MT)^{305}$
		SS-4 Sandal	$(2.3MT)^{306}$
		SS-5 Skean	$(2.3MT)^{307}$
		SS-6 Sapwood	$(5MT)^{308}$
		SS-7 Saddler	$(6MT)^{309}$
		SS-8 Sasin	$(5MT)^{310}$

²⁹³ All Vulcan bombers are assumed to load the Yellow Sun Mk 1 bomb since 1959, when it entered service. Walker, "British Nuclear Weapon Stockpiles," 68.

²⁹⁴ Three Vulcan squadrons carry 24 Blue Steel missiles since 1963. Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 149. Between 1968 and 1970, three Vulcan squadrons stood down. Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 96. I reduce one Blue Steel-equipped Vulcan squadron each year between 1968 and 1970.

²⁹⁵ Walker, "British Nuclear Weapon Stockpiles," 68.

²⁹⁶ Walker, "British Nuclear Weapon Stockpiles," 68.

²⁹⁷ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 291.

²⁹⁸ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 292.

²⁹⁹ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 300.

³⁰⁰ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 218.

³⁰¹ Federation of American Scientists, "M-4/M-45," last modified August 11, 2000, available at https://fas.org/nuke/guide/france/slbm/m-4.htm>.

³⁰² Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 288. The first Mirage IVP squadron equipped with ASMP in May 1986, and the second squadron acquired ASMP in December 1986. All three Mirage IVP were armed with ASMP by December 1987. Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 231. I thus assume that 6 Mirage bombers had ASMP in 1986, 12 in 1987, and 18 in 1988.

³⁰³ Norris, Burrows, and Fieldhouse, Nuclear Weapons Databook, 225.

Norris, Burrows, and Fieldhouse, Nuclear Weapons Databook, 215.

³⁰⁵ Podvig, ed., Russian Strategic Nuclear Forces, 178.

³⁰⁶ Podvig, ed., Russian Strategic Nuclear Forces, 185.

³⁰⁷ Podvig, ed., Russian Strategic Nuclear Forces, 188.

³⁰⁸ Podvig, ed., Russian Strategic Nuclear Forces, 181.

³⁰⁹ Podvig, ed., Russian Strategic Nuclear Forces, 190.

³¹⁰ Podvig, ed., Russian Strategic Nuclear Forces, 193.

SS-9 Scarp M1	$(20MT)^{311}$
SS-9 Scarp M2	$(10MT)^{312}$
SS-9 Scarp M3	$(5MT)^{313}$
SS-9 Scarp M4	$(2MT, x3 MRV)^{314}$
SS-11 Sego M1	$(1.1MT)^{315}$
GG 11 G M2/M2	Mod2 (1MT); Mod3
SS-11 Sego M2/M3	$(0.22MT, x3 MRV)^{316}$
SS-13 Savage	$(0.8MT)^{317}$
SS-17 Spanker M1	$(0.4MT)^{318}$
SS-17 Spanker M2	$(0.5MT)^{319}$
SS-17 Spanker M3	$(0.4MT)^{320}$
SS-18 Satan M1	$(0.9MT)^{321}$
SS-18 Satan M2	(0.9MT)
SS-18 Satan M3	(0.9MT)
SS-18 Satan M4	$(0.75MT)^{322}$
SS-18 Satan M5	$(0.75MT)^{323}$
SS-19 Stiletto M1	$(0.4MT)^{324}$
SS-19 Stiletto M2	(0.4MT)
SS-19 Stiletto M3	(0.4MT)
SS-20 Saber	$(0.15MT)^{325}$
SS-24 Scalpel M1	$(0.4MT)^{326}$
SS-24 Scalpel M2	(0.4MT)
SS-25 Sickle	$(0.8MT)^{327}$
	` /

Norris and Kristensen, "Nuclear U.S. and Soviet/Russian Intercontinental Ballistic Missiles," 67.

³¹² Podvig, ed., Russian Strategic Nuclear Forces, 198.

³¹³ "R-36/SS-9 Scarp," *Federation of American Scientists*, last modified July 29, 2000, accessed November 25, 2019, https://fas.org/nuke/guide/russia/icbm/r-36.htm; Zaloga, *The Kremlin's Nuclear Sword*, 233.

³¹⁴ "R-36/SS-9 Scarp," *Federation of American Scientists*, last modified July 29, 2000, accessed November 25, 2019, https://fas.org/nuke/guide/russia/icbm/r-36.htm; Podvig, ed., *Russian Strategic Nuclear Forces*, 198; Zaloga, *The Kremlin's Nuclear Sword*, 233.

³¹⁵ Podvig, ed., Russian Strategic Nuclear Forces, 202.

³¹⁶ Podvig, "The Window of Vulnerability That Wasn't," 128.

³¹⁷ Norris and Kristensen, "Nuclear U.S. and Soviet/Russian Intercontinental Ballistic Missiles," 67; Podvig, "The Window of Vulnerability That Wasn't," 128.

Norris and Kristensen, "Nuclear U.S. and Soviet/Russian Intercontinental Ballistic Missiles," 67; Podvig, "The Window of Vulnerability That Wasn't," 128.

Norris and Kristensen, "Nuclear U.S. and Soviet/Russian Intercontinental Ballistic Missiles," 67; Podvig, "The Window of Vulnerability That Wasn't," 128.

³²⁰ Norris and Kristensen, "Nuclear U.S. and Soviet/Russian Intercontinental Ballistic Missiles," 67; Podvig, "The Window of Vulnerability That Wasn't," 128.

³²¹ Podvig, ed., Russian Strategic Nuclear Forces, 218.

³²² Podvig, ed., Russian Strategic Nuclear Forces, 218.

³²³ Podvig, ed., Russian Strategic Nuclear Forces, 218.

Norris and Kristensen, "Nuclear U.S. and Soviet/Russian Intercontinental Ballistic Missiles," 67; Podvig, "The Window of Vulnerability That Wasn't," 128.

³²⁵ Warhead yield of a MIRVed version. Podvig, ed., Russian Strategic Nuclear Forces, 225; Zaloga, The Kremlin's Nuclear Sword, 238.

³²⁶ Norris and Kristensen, "Nuclear U.S. and Soviet/Russian Intercontinental Ballistic Missiles," 67; Podvig, "The Window of Vulnerability That Wasn't," 128.

³²⁷ Norris and Kristensen, "Nuclear U.S. and Soviet/Russian Intercontinental Ballistic Missiles," 67; Podvig, "The Window of Vulnerability That Wasn't," 128.

		SS-27 Sickle	$(0.8MT)^{328}$
		R-11FM	$(0.5MT)^{329}$
		SS-N-4	$(1MT)^{330}$
		SS-N-5	$(1MT)^{331}$
		SS-N-6 Serb	(1MT); (0.2MT, x3 MRV) ³³²
	Sea-Based	SS-N-8 Sawfly	$(1MT)^{333}$
	Sea-Based	SS-N-17 Snipe	$(0.5MT)^{334}$
		SS-N-18 Stingray	(0.45MT); MIRV (3, 0.2MT); MIRV (7,
		2 7	$0.1MT)^{335}$
		SS-N-20 Sturgeon	$(0.1MT)^{336}$
		SS-N-23 Skiff	$(0.1MT)^{337}$
-	Air-Based	Tu-4	(0.25-0.35MT)
		Tu-16	(0.25-0.35MT)
		Tu-95 Bear A	(0.25-0.35MT)
		Tu-95 Bear B/C	$AS-3 (3MT)^{338}$
		Tu-95 Bear G	$AS-4 (1MT)^{339}$
		Tu-95 Bear H (6/16)	$AS-15 (0.25MT)^{340}$
		Tu-22	AS-4 (1MT)
		MYA-4 Bison	(0.25-0.35MT)
		Tu-26	AS-4 (1MT); AS-16
			$(0.35MT)^{341}$
		Tu-160 Blackjack	AS-15 (0.25MT)
South Africa	Air-Based	Buccaneer	$(0.018MT)^{342}$
Israel	Land-Based	Jericho I	$(0.02MT)^{343}$
		Jericho II	$(1MT)^{344}$
151661	Sea-Based	Popeye Turbo	?
	Air-Based	F-16	?

Norris and Kristensen, "Nuclear U.S. and Soviet/Russian Intercontinental Ballistic Missiles," 67.

³²⁹ Podvig, ed., Russian Strategic Nuclear Forces, 311.

Podvig, ed., Russian Strategic Nuclear Forces, 314.

³³¹ Podvig, ed., Russian Strategic Nuclear Forces, 318.

³³² Podvig, ed., Russian Strategic Nuclear Forces, 321.

³³³ Podvig, ed., *Russian Strategic Nuclear Forces*, 326.

³³⁴ Podvig, ed., Russian Strategic Nuclear Forces, 329.

³³⁵ Podvig, ed., *Russian Strategic Nuclear Forces*, 329.

³³⁶ Podvig, ed., Russian Strategic Nuclear Forces, 334.

³³⁷ Podvig, ed., *Russian Strategic Nuclear Forces*, 336.

³³⁸ Cochran, Arkin, Norris, and Sands, *Nuclear Weapons Databook*, 163.

³³⁹ Cochran, Arkin, Norris, and Sands, Nuclear Weapons Databook, 164.

³⁴⁰ Cochran, Arkin, Norris, and Sands, *Nuclear Weapons Databook*, 169.

Weaponsystems.net, "KH-15," accessed October 15, available at https://weaponsystems.net/weaponsystem/HH08%20-%20AS-16%20Kickback%20(Kh-15).html.

³⁴² Albright, "South Africa and the Affordable Bomb," 45.

³⁴³ CSIS Missile Defense Project, "Jericho 1," *Missile Threat*, last modified June 15, 2018, available at https://missilethreat.csis.org/missile/jericho-1/

³⁴⁴ CSIS Missile Defense Project, "Jericho 2," *Missile Threat*, last modified June 15, 2018, available at https://missilethreat.csis.org/missile/jericho-2/

China	Land-Based	DF-2/2A	$(0.02MT)^{345}$
		DF-3/3A	$(3.3MT)^{346}$
		DF-4	$(3.3MT)^{347}$
		DF-5	$(5MT)^{348}$
		DF-21	$(0.3MT)^{349}$
	Sea-Based	CSS-N-3	$(0.3MT)^{350}$
		Tu-4	(0.04MT-3MT)
	Air-Based	Hong-5	(0.04MT-3MT)
		Hong-6	(0.04MT-3MT)
India	Air-Based	Jaguar	(0.015MT?)
		Mirage 2000H	(0.015MT?)
Pakistan	Air-Based	F-16	(0.012MT?)

³⁴⁵ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 378.

³⁴⁶ Kristensen and Norris, "Chinese Nuclear Forces, 2015," 78.

³⁴⁷ Kristensen and Norris, "Chinese Nuclear Forces, 2018," 290.

³⁴⁸ Kristensen and Norris, "Chinese Nuclear Forces, 2015," 78.

³⁴⁹ Kristensen and Norris, "Chinese Nuclear Forces, 2018," 290.

³⁵⁰ Kristensen and Norris, "Chinese Nuclear Forces, 2016," 206; Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 396.

VIII. Multiple Warheads Delivery Platforms

This section shows information about how many nuclear warheads a delivery platform can load. In many cases, information about the number of nuclear warheads that are carried by strategic nuclear platforms is publicly available. The warheads that are delivered by the platforms with multiple reentry vehicles (MRVs) are counted as one, as these warheads aim at one target and do not hit multiple targets independently. If a given platform can carry both a single warhead or multiple warheads, I assume that the platform would carry multiple warheads in an all-out nuclear conflict. If various sources provide different estimations about the same platform, I try to rely on either the latest source or choose the most commonly reported value.

Table 6. Multiple Warheads Platforms

State	Platform	Year of Deployment	Number of Warheads
	Minuteman III		3^{351}
	Peacekeeper		10^{352}
	Poseidon C3		10^{353}
	Trident I		8^{354}
US	Trident II		8^{355}
	B-36		1^{356}
	B-47		1.5^{357}
	B-52		$2-16^{358}$
	B-58		4^{359}

³⁵¹ Polmar and Norris, *The U.S. Nuclear Arsenal*, 173.

³⁵² Ibid 176

³⁵³ Each Poseidon normally carries only 10 nuclear warheads, though it technically can carry up to 14 warheads. Ibid., 190-91.

³⁵⁴ Ibid., 199.

³⁵⁵ Ibid.

³⁵⁶ Each B-36 bomber can carry technically two nuclear bombs. Ibid., 95. Following NRDC's counting assumption, however, I assume that each B-36 bomber carries one nuclear bomb. "Table of US Strategic Bomber Forces," *NRDC*, last modified November 25, 2002, accessed November 2, 2019, https://web.archive.org/web/20041027183038/https://www.nrdc.org/nuclear/nudb/datab7.asp

³⁵⁷ Technically, each B-47 bomber can carry two nuclear bombs. Polmar and Norris, *The U.S. Nuclear Arsenal*, 96. However, following NRDC's assumption, I posit that each B-47 bomber carries 1.5 bombs. "Table of US Strategic Bomber Forces," *NRDC*, last modified November 25, 2002, accessed November 2, 2019, https://web.archive.org/web/20041027183038/https://www.nrdc.org/nuclear/nudb/datab7.asp.

Each B-52 bomber can carry up to 20 missiles. Polmar and Norris, *The U.S. Nuclear Arsenal*, 100. Following NRDC's counting assumption, however, I posit that each B-52 bomber can carries the following warheads: 1956-1959: 2 bombs; 1960-62: 3.3 bombs; 1963: 4 bombs; 1964: 4.5 bombs; 1965: 5 bombs; 1966: 5.5 bombs; 1967: 6 bombs; 1968: 7 bombs; 1969-1971: 8 bombs; 1972-: 12 short-range attack missiles (SRAMs), air-launched cruise missiles (ALCMs), advanced cruise missiles (ACMs) and 4 bombs. In addition, each B-52 is assumed to carry two Hound Dog missiles first and then load gravity bombs during 1961-1975. Polmar and Norris, The U.S. Nuclear Arsenal, 100. It should also be noted that not all B-52 bombers since 1972 carry the equal number of nuclear warheads. Some B-52 load SRAMs, ALCMs, or ACMs; after all those missiles are loaded, the remaining B-52s are assumed to carry gravity bombs. For details, see "Table of US Strategic Bomber Forces," NRDC, last modified November accessed 25, 2002, November 2019, https://web.archive.org/web/20041027183038/https://www.nrdc.org/nuclear/nudb/datab7.asp.

³⁵⁹ Polmar and Norris, *The U.S. Nuclear Arsenal*, 103; "Table of US Strategic Bomber Forces," *NRDC*, last modified November 25, 2002, accessed November 2, 2019, https://web.archive.org/web/20041027183038/https://www.nrdc.org/nuclear/nudb/datab7.asp.

	FB-111A	6^{360}
B-1B		8^{361}
	B-2	20^{362}
	Valiant	1 ³⁶³
I IIZ	Victor	$1-2^{364}$
UK	Vulcan	$1-4^{365}$
	Trident II	3^{366}
France	MSBS M4/M45	6^{367}
	SS-17 Spanker	4 ³⁶⁸
	SS-18 Satan	8 ³⁶⁹
	M1/M2/M3	8
USSR/Russia	SS-18 Satan M4	10^{370}
	SS-18 Satan M5	10^{371}
	SS-19 Stiletto M1/M3	6^{372}
	SS-20 Saber	3 ³⁷³
	SS-24 Scalpel	10^{374}
	SS-N-18 Stingray	3^{375}

 ³⁶⁰ 6 SRAMs or 6 bombs. "Table of US Strategic Bomber Forces," NRDC, last modified November 25, 2002, accessed
 November
 2019,

https://web.archive.org/web/20041027183038/https://www.nrdc.org/nuclear/nudb/datab7.asp.

³⁶¹ Each B-1 bomber can carry up to 16 nuclear bombs. Following NRDC's counting assumption, however, I assume that each bomber can carry 8 nuclear bombs. "Table of US Strategic Bomber Forces," *NRDC*, last modified November 25, 2002, accessed November 2, 2019, https://web.archive.org/web/20041027183038/https://www.nrdc.org/nuclear/nudb/datab7.asp

³⁶² Polmar and Norris, *The U.S. Nuclear Arsenal*, 89.

One Blue Danube bomb. Thunder and Lightnings, "Vickers Valiant: History," last modified November 20, 2016, accessed January 28, 2019, http://www.thunder-and-lightnings.co.uk/valiant/history.php

³⁶⁴ A Victor bomber can carry either one Blue Steel missile or two gravity bombs. Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 146.

³⁶⁵ A Vulcan bomber can carry either one Blue Steel missile or four gravity bombs. Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 144.

Robert S. Norris and William M. Arkin, "British Nuclear Forces, 2001," *Bulletin of the Atomic Scientists* 57, no. 6 (2001): 79.

³⁶⁷ Norris, Burrows, and Fieldhouse, *Nuclear Weapons Databook*, 304.

³⁶⁸ Podvig, ed., Russian Strategic Nuclear Forces, 213; Podvig, "The Window of Vulnerability That Wasn't," 123.

³⁶⁹ Podvig, ed., *Russian Strategic Nuclear Forces*, 218; CSIS Missile Defense Project, "SS-18 "Satan"," *Missile Threat*, last modified August 10, 2016, accessed November 1, 2019, https://missilethreat.csis.org/missile/ss-18/; Zaloga, *The Kremlin's Nuclear Sword*, 235.

Podvig, ed., Russian Strategic Nuclear Forces, 218; CSIS Missile Defense Project, "SS-18 "Satan"," Missile Threat, last modified August 10, 2016, accessed November 1, 2019, https://missilethreat.csis.org/missile/ss-18/

³⁷¹ Podvig, "The Window of Vulnerability That Wasn't," 128; Podvig, ed., Russian Strategic Nuclear Forces, 218.

³⁷² Podvig, ed., *Russian Strategic Nuclear Forces*, 222. Mod 2 carries single warhead.

³⁷³ Podvig, ed., Russian Strategic Nuclear Forces, 226; Zaloga, The Kremlin's Nuclear Sword, 238.

³⁷⁴ Podvig, ed., Russian Strategic Nuclear Forces, 228.

³⁷⁵ CSIS Missile Defense Project, "SS-N-18 "Stingray"," *Missile Threat*, last modified August 10, 2016, accessed November 1, 2019, https://missilethreat.csis.org/missile/ss-n-18/; Zaloga, The Kremlin's Nuclear Sword, 239. Some sources state that some SS-N-18 missiles carry seven warheads. See Podvig, ed., *Russian Strategic Nuclear Forces*, 331; Cochran, Arkin, Norris, and Sands, *Nuclear Weapons Databook*, 148. However, NRDC report considers three warheads as their counting assumption. "Table of USSR/Russian Ballistic Missile Submarine Forces," NRDC, last modified November 25, 2002, accessed November 1, 2019, https://web.archive.org/web/20041027183456/https://www.nrdc.org/nuclear/nudb/datab6.asp

SS-N-20 Sturgeon	10^{376}
SS-N-23 Skiff	4 ³⁷⁷
Tu-4	$1-2^{378}$
Tu-16	$1-2^{379}$
Tu-95 Bear A	2^{380}
Tu-95 Bear B/C	1^{381}
Tu-95 Bear G	6^{382}
Tu-95 Bear H6	6^{383}
Tu-95 Bear H16	16^{384}
Tu-22	1^{385}
MYA-4 Bison	$1-2^{386}$
Tu-26	$1-10^{387}$
Tu-160 Blackjack	12 ³⁸⁸

Podvig, ed., *Russian Strategic Nuclear Forces*, 334; "Table of USSR/Russian Ballistic Missile Submarine Forces," NRDC, last modified November 25, 2002, accessed November 1, 2019, https://web.archive.org/web/20041027183456/https://www.nrdc.org/nuclear/nudb/datab6.asp.

³⁷⁷ Cochran, Arkin, Norris, and Sands, *Nuclear Weapons Databook*, 151; Podvig, ed., *Russian Strategic Nuclear Forces*, 336.

³⁷⁸ Tu-4A carries one nuclear free-falling bomb. Tu-4K carries two KS-1 nuclear cruise missiles. Podvig, ed., *Russian Strategic Nuclear Forces*, 369.

³⁷⁹ Various models of Tu-16 carry various combinations of gravity bombs and nuclear cruise missiles. Podvig, ed., *Russian Strategic Nuclear Forces*, 372.

³⁸⁰ Each Tu-95A delivers two gravity bombs. Cochran, Arkin, Norris, and Sands, *Nuclear Weapons Databook*, 238.

³⁸¹ Each Tu-95B/C carries one AS-3 missile. Podvig, ed., *Russian Strategic Nuclear Forces*, 382. Though Tu-95B/C also can carry four bombs, I assume that a nuclear-tipped cruise missile is more suitable payload than gravity bombs, given that cruise missiles increase the bomber's survivability and the chance of a successful strike.

³⁸² Each Tu-95G carries four bombs and two AS-4 missiles. Cochran, Arkin, Norris, and Sands, *Nuclear Weapons Databook*, 238. "Table of USSR/Russian Strategic Bomber Forces," NRDC, last modified November 25, 2002, accessed

November

1,

2019, https://www.nrdc.org/web/20041027183159/https://www.nrdc.org/nuclear/nudb/datab8.asp.

³⁸³ Each Tu-95H6 carries 6 AS-15 missiles. Podvig, ed., *Russian Strategic Nuclear Forces*, 382; "Table of USSR/Russian Strategic Bomber Forces," NRDC, last modified November 25, 2002, accessed November 1, 2019, https://www.nrdc.org/web/20041027183159/https://www.nrdc.org/nuclear/nudb/datab8.asp.

³⁸⁴ Each Tu-95H16 delivers 16 AS-15 missiles. Podvig, ed., *Russian Strategic Nuclear Forces*, 382; "Table of USSR/Russian Strategic Bomber Forces," NRDC, last modified November 25, 2002, accessed November 1, 2019, https://www.nrdc.org/web/20041027183159/https://www.nrdc.org/nuclear/nudb/datab8.asp.

Each Tu-22 carries one AS-4 missile. Podvig, ed., Russian Strategic Nuclear Forces, 388.

³⁸⁶ Each Bison bomber carries one or two nuclear bombs. Podvig, ed., *Russian Strategic Nuclear Forces*, 376.

³⁸⁷ Podvig, ed., Russian Strategic Nuclear Forces, 392.

³⁸⁸ Each Tu-160 bomber delivers up to 12 AS-15 missiles. Podvig, ed., Russian Strategic Nuclear Forces, 397.