# НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО» Факультет прикладної математики Кафедра прикладної математики

Пояснювальна записка до курсового проекту
із дисципліни
«Алгоритми і системи комп'ютерної математики»
на тему
«Автоматична аннотація зображень за допомогою нейронних мереж»

Виконав: Керівник: студент групи КМ-01 асистент кафедри ПМА Скорденко Д. О. Ковальчик-Химюк Л. О.

## **RIJATOHA**

В даній роботі описано мультимодальну систему маркування зображень, в якій зроблено акцент на трьох апспектах: висока точність, використання тексту в якості додаткової інформації, явна підсистема для передбачення к-сті лейблів. Всі ці рішення значно підвищують точність в порівннянні із існуючими рішеннями.

### ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ, СКОРОЧЕНЬ І ТЕРМІНІВ

- \* DNN Глибинна нейронна мережа (Deep Neural Network)
- \* CNN Згорткова нейронна мережа (Convolutional Neural Network)
- \* RNN Рекурсивна нейронна мережа (Recursive Neural Network)
- \* Анотація зображень, маркування зображень, мульти-лейбел класифікація взаємозамінні поняття
- \* Тег (Tag) шумна інформація надана користувачем у формі тексту (наприклад "Cat, Canada, Dog, Cola")
  - \* Лейбл (Label) синонім слова ground truth для класифікації

# 3MICT

| релік умовних позначень, скорочень і термінів | 3  |
|-----------------------------------------------|----|
| Вступ                                         | 5  |
| Огляд існуючих рішень                         | 6  |
| Моделювання                                   | 8  |
| 3.1 VCNN                                      | 8  |
| 3.2 MLP                                       | 9  |
| 3.3 LP                                        | 9  |
| 3.4 LQP                                       | 10 |
| 3.5 Процес тренування                         | 10 |
| 3.6 Процес тестування                         | 11 |
| СНОВКИ                                        | 12 |
| релік посилань                                | 13 |
| даток А Код лістинг                           | 15 |

Задача класифікації — це одна із основних задач в аналізі зображень, вона полягає у присвоєнні кожному зображенню один із класів. Таким чином дане формулювання накладає обмеження — зображення містить тільки один об'єкт. Поява DNN [3] та її подальший розвитком у CNN [12, 11] разом із створенням великих датасетів як-от ІтадеNet [4] дало змогу вирішувати задачу класифікації зображень значно швидше і якісніше ніж люди.

Зрозуміло, що зображення — це той тип даних, який у абсолютній більшості випадків містить більше одного об'єкта. Для поглиблення опису існує задача маркування зображень (image labeling). На відміну від класифікації, вона полягає у маркуванні зображення більше ніж одним класом. Таким чином якість опису зображення кратно зростає у порівннянні із звичайною класифікацією, однак привносить декілька складних завдань.

По-перше, наявність декількох класів у одного зображення створює можливість описувати значно ширший спектр візуальної інформації: різні об'єкти, стилі, дії, і тд. Поява великих хостингів зображень таких як Imgur, Flickr, та ін., де користувачі можуть як завантажувати різноманітні зображення, так і додавати до них описову інформацію у вигляді тегів / анотацій, дала змогу створити досить різноманітні датасети: ImageNet [4], MS-COCO [10], NUS-WIDE [2], та ін.

По-друге, анотація зображень передбачає не лише маркування більше ніж одним класом, а і передбачення к-сті класів. Для опису зображенням із широким спектром понятть необхідно N класів, для зображення із простим вмістом - 2-3 класи.

По-третє, анотація зображень потребує оцінки якості проведеного маркування. Оскільки будь який датасет буде містити в собі дизбаланс класів в тій чи іншій мірі, важливо оцінювати маркування із урахуванням цього.

Все це робить задачу маркування зображення досить складною.

#### Базове рішення

Базовим рішенням для більшості робіт із маркування зображення є використання СNN. Більшість робіт використовує різні архітектури ResNet [6], AlexNet [1], GoogleNet [14]. Спільним між ним є те що вони вже натреновані на великому датасеті, здебільшого ІтадеNet [4]. Для адаптації моделі до обраного контексту така модель дотреновуєтсья (fine tune), замінюючи базовий класифікатор на такий же простий із адаптованою к-стю вихідних класів [5], або ж на більш складний класифікатор (який надає більш точні результати) [17]. Це працює завдяки тому, що всі архітектури сучасних СNN моделей є багатошаровими, і в них перші шари розпізнають базові особливості (features) зображення, які можна навіть візуалізувати, однак останні шари вивчають більш глибинні особливості зображення, таким чином роблячи модель більш універсальною при зміні класифікатора.

## Додаткова інформація

Більш нові роботи також розглядають додавання сторонньої інформації для класифікації зображень. Існує два основних підходів:

- а) Семантичний аналіз лейблів. Даний підхід аналізує зв'язок між різними класами. Схожі за контекстом лейбли знаходяться поруч (наприклад: риба, вода) [7, 9]
- б) Аналіз додаткової інформації. Даний підхід аналізує додаткову до зображення інформацію. Це може бути як текстова інформація (теги / анотації) [19], так і метадані зображення [8, 15]

#### К-сть лейблів

Всі наведені вище роботи розглядаєють задачу вибору к-сті лейблів як найкращі k (top k) маркувань. k найбільше ймовірних класів, де k - наперед задана константа. Очевидно, що такий вибір к-сті класів не є оптимальним,

так як більш змістовні зображення будуть містити менше описової інформації і навпапки - менш змістовні будуть містити лишню інформацію, яка до того ж може не мати нічого спільного із цим зображенням (Рис.2.1)

| lmage      |                                         |                                                  |                                                  |                                        |
|------------|-----------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------|
| Truth      | fire                                    | grass                                            | person                                           | grass<br>person<br>water               |
| Top 5 pred | red<br>night<br>asia<br>island<br>child | red<br>green<br>trees<br>tree<br>interestingness | people<br>photography<br>asia<br>china<br>adults | water<br>sea<br>ocean<br>pink<br>rocks |
| Model pred | fire                                    | grass<br>house<br>plants<br>sky                  | person                                           | person<br>water                        |

Рис. 2.1 - Приклад адаптивної к-сті лейблів

Один із сучасних підходів як-от CNN-RNN [16], розглядає задачу маркування як задачу перекладу зображення в текст (image to text), де CNN - це кодувальник (encoder), а RNN (decoder) автоматично виконує як задачу маркування, так і задачу динамічного вибору кількості лейблів, однак є певні обмеження накладенні на порядок класів.

#### 3 МОДЕЛЮВАННЯ

На основі проведного аналізу альтернатив, дана робота пропонує розглянути мультимодальну систему, яка складається із чотирьох компонентів (Рис.3.1)



Рис. 3.1 - Архітектура композитної системи

#### **3.1 VCNN**

Модель VCNN (Рис.3.1) призначена для вивчення особливостей (features) із зображення. Отримує на вхід піселі зображення I, у формі матриці розмірності (B,C,W,H), де B – к-сть зображень у групі для тегування, C – к-сть каналів у зображеннях зазвичай 1 або 3, Grey або RGB відповідно, W,H – розмірність зображень.

За базове рішення використовуєтсья ResNext101\_32x8d [18] (сучасна версія resnet), із адаптованим класифікатором, натреновану на датасеті ImageNet [4].

На виході даної моделі ми отримуємо вектор вірогідностей vf (visual feature vector), який вказує вірогідність маркування зображення класом j

на основі візуальної інформації.

#### 3.2 MLP

MLP (Рис.3.1) – аналізує текстові особливості (text features) тегів до зображення. Теги до зображення i репрезентуються як бінарний вектор I=[1,0,1,0,...,N], де 1 – це наявність тегу, а N – к-сть тегів.

Головна причина вибору звичайної MLP моделі для аналізу текстової інформації — це те, що вхідна інформація — це шумні теги (наприклад: для фото кота — теги "Канада", "Кіт").

На виході даної моделі ми отримуємо вектор tf вірогідностей (text feature vector), який вказує вірогідність маркування зображення класом j на основі текстової інформації.

#### 3.3 LP

LP (Рис.3.1) – аналізує вектор вірогідності v, який є композицією векторів vf та tf.

На виході даної моделі ми отримуємо вектор вірогідностей, який комбінує інформацію отриману як із візуальної так і з текстової інформації.

Модель LQP (Рис.3.1) аналізує кількість лейблів на основі вектору вірогідностей v, який є композицією векторів vf та tf.

Існує два підходи до визначення к-сті за допомогою нейронних мереж: класифікація та регресія. LQP - регресійна модель.

Оскільки регресійні моделі досить швидко перенавчаються (overfitting), то необхідно задіяти регуляризацію. В даній роботі, в якості регуляризатора задіяні Dropout шари [13], із вірогідністю відкидання (dropout rate) 0.5.

На виході даної моделі є число, яке вказує на кількість лейблів у зображенні.

## 3.5 Процес тренування

Система є мультимодальною, і містить досить багато параметрів, тому тренувати її за один раз, буде складно.

Тому під час тренування відбуваєтсья у декілька стадій, у якому кожна із моделей тренується окремо (деякі з них можна тренувати синхронно).

## Тренування VCNN

Тренування моделі ResNext [18] з нуля є досить складною задачою, адже для цього потрібні значні обчислювальні потужності.

Саме тому вироистовується натренована модель, яка підганяється (finetuned) на обраному датасеті. Існує два підходи для підгонки:

1) Підгонка всієї моделі: afsdgfsdfg

3.6 Процес тестування

# ВИСНОВКИ

#### ПЕРЕЛІК ПОСИЛАНЬ

- [1] Krizhevsky Alex, Sutskever Ilya та Hinton Geoffrey. "ImageNet Classification with Deep Convolutional Neural Networks". В: Advances in Neural Information Processing Systems. За ред. F. Pereira та ін. Т. 25. Curran Associates, Inc., 2012. URL: https://proceedings.neurips.cc/paper\_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.
- [2] Tat-Seng Chua та ін. "NUS-WIDE: A Real-World Web Image Database from National University of Singapore". B: *Proc. of ACM Conf. on Image and Video Retrieval (CIVR'09)*. Santorini, Greece., July 8-10, 2009.
- [3] Dan Cireşan, Ueli Meier ta Juergen Schmidhuber. "Multi-column Deep Neural Networks for Image Classification". B: (2012). arXiv: 1202. 2745.
- [4] Li Deng та ін. "Imagenet: A large-scale hierarchical image database". В: 2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009, C. 248—255.
- [5] Yunchao Gong та ін. Deep Convolutional Ranking for Multilabel Image Annotation. 2013. eprint: arXiv:1312.4894.
- [6] Kaiming He та ін. Deep Residual Learning for Image Recognition. 2015. eprint: arXiv:1512.03385.
- [7] Hexiang Hu та ін. Learning Structured Inference Neural Networks with Label Relations. CVPR 2016. 2016.

- [8] Justin Johnson, Lamberto Ballan та Li Fei-Fei. Love Thy Neighbors: Image Annotation by Exploiting Image Metadata. ICCV 2015. 2015.
- [9] Qing Li та iн. Learning Category Correlations for Multi-label Image Recognition with Graph Networks. 2019. eprint: arXiv:1909.13005.
- [10] Tsung-Yi Lin та ін. "Microsoft COCO: Common Objects in Context". B: CoRR abs/1405.0312 (2014). arXiv: 1405.0312. URL: http://arxiv.org/abs/1405.0312.
- [11] Keiron O'Shea та Ryan Nash. An Introduction to Convolutional Neural Networks. 2015. eprint: arXiv:1511.08458.
- [12] Karen Simonyan τα Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. 2014. eprint: arXiv:1409.1556.
- [13] Nitish Srivastava та ін. "Dropout: A Simple Way to Prevent Neural Networks from Overfitting". B: Journal of Machine Learning Research 15.56 (2014), С. 1929—1958. URL: http://jmlr.org/papers/v15/srivastava14a.html.
- [14] Christian Szegedy та ін. Going Deeper with Convolutions. 2014. eprint: arXiv:1409.4842.
- [15] Kevin Tang та ін. *Improving Image Classification with Location Context*. 2015. eprint: arXiv:1505.03873.
- [16] Wei Wang та ін. "CNN-RNN: A Unified Framework for Multi-Label Image Classification". B: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Черв. 2016.

- [17] Yunchao Wei та ін. "CNN: Single-label to Multi-label". В: (2014). DOI: 10.1109/TPAMI.2015.2491929. eprint: arXiv:1406.5726.
- [18] Saining Xie та ін. "Aggregated residual transformations for deep neural networks". В: (листоп. 2016). arXiv: 1611.05431 [cs.CV].
- [19] Fengtao Zhou, Sheng Huang Ta Yun Xing. Deep Semantic Dictionary
  Learning for Multi-label Image Classification. AAAI 2021. 2021.

Додаток А Код лістинг