

Differences-in-Differences & two-way fixed effects

Nils Droste

2021 ClimBEco course

Introduction

Diff-in-Diff

potential outcon

estimation

Eivad affact

intuition

estimation

Staggered treatmer

intuition

intuition

solutions

eferences

Synopsis: Today, we will be looking into *the* classical research design for inferring causal effects from observational data (i.e. when experiments are unethical or infeasible), and its recent developments

Introduction

Diff-in-Diff

potential outcon

estimation

Fixed effects

intuition DAGs

estimatior

Staggered treatmer

intuition

intuition

solutions

References

Synopsis: Today, we will be looking into *the* classical research design for inferring causal effects from observational data (i.e. when experiments are unethical or infeasible), and its recent developments

Introduction

Diff-in-Diff

potential outcom

estimation

ived effect

DAGs

estimation

Staggered treatmen

oraggorou troutino

intuition

intuition

solutions

eferences

Synopsis: Today, we will be looking into *the* classical research design for inferring causal effects from observational data (i.e. when experiments are unethical or infeasible), and its recent developments

In particular, we will develop an understanding of

quasi / natural experiments

Introduction

Diff-in-Diff

potential outcon

estimation

Fixed effect:

DAGs

estimation

Staggered treatmen

oraggeroa troattire

intuition

intuition

solutions

Reference

Synopsis: Today, we will be looking into *the* classical research design for inferring causal effects from observational data (i.e. when experiments are unethical or infeasible), and its recent developments

- quasi / natural experiments
 - Difference-in-Differences

Introduction

Diff-in-Diff

potential outcom

estimation

Fixed effects

DAGs

estimatio

Staggered treatmen

Staggered treatmer

intuition

intuition

solution

eferences

Synopsis: Today, we will be looking into *the* classical research design for inferring causal effects from observational data (i.e. when experiments are unethical or infeasible), and its recent developments

- quasi / natural experiments
 - Difference-in-Differences
 - (two-way) fixed-effects regressions

Introduction

Diff-in-Diff

potential outcom

estimation

Fixed effect:

DAGs

estimation

Staggered treatmer

oraggoroa troatmo.

intuition

intuition

solution

References

Synopsis: Today, we will be looking into *the* classical research design for inferring causal effects from observational data (i.e. when experiments are unethical or infeasible), and its recent developments

- quasi / natural experiments
 - Difference-in-Differences
 - (two-way) fixed-effects regressions
 - staggered treatment

Definition

Introduction

Diff-in-Dif

potential outco

antimotion

Fixed offer

intuition

estimatio

Staggered treatme

Staggered treatme

intuition

intuition

7-4----

Quasi- / natural experiment:

A setting where a subpopulation is treated with an intervention of sorts that occurs due to non-random assignment processes (outside of the researchers influence if its called *natural*).

Recall potential outcome approximation

introduction

Diff-in-Diff

potential outco

estimation

Fixed effects

DAGs

estimation

Staggered treatment

oraggeroa troattiro

intuition

solution

References

We may choose to infer an average treatment effect (ATE) I: i.e. $I = \{A, B...\}$ by comparing the average outcomes of treated individuals a from A with the one of untreated individuals $b \in B$:

$$E\{\Delta Y_i\} \approx E\{Y_a(1)\} - E\{Y_b(0)\} \tag{1}$$

For such a case we can exploit *random chance* within sufficiently large samples to make these groups comparable.

Recall potential outcome approximation

Diff-in-Diff

We may choose to infer an average treatment effect (ATE) I: i.e. $I = \{A, B...\}$ by comparing the average outcomes of treated individuals a from A with the one of untreated individuals $b \in B$.

$$E\{\Delta Y_i\} \approx E\{Y_a(1)\} - E\{Y_b(0)\} \tag{1}$$

For such a case we can exploit random chance within sufficiently large samples to make these groups comparable.

But what if we do not have a random assignment (and there may be a selection-bias and / or substantial differences between groups)?

a famous case

By comparing a treated with an untreated group over 2+ periods, we can control for (time-constant) differences between groups.

Introductio

Diff-in-Diff

.....

DAGs

intuition

estimation

Staggered treatmen

intuition

intuition

solutions

Reference

a famous case

Introduction

intuition

estimation

ixed effect

intuition

DAGs

Staggered treatmer

intuition

intuition

solutions

oforoncos

By comparing a treated with an untreated group over 2+ periods, we can control for (time-constant) differences between groups.

A classic example is the Card and Krueger (AER, 1994), comparing fast-food worker employment in Pennsylvania (PA) and New Jersey (NJ) before and after a minimum wage raise in NJ in 1992.

FIGURE 1. AREAS OF NEW JERSEY AND PENNSYLVANIA COVERED BY ORIGINAL SURVEY AND BLS DATA

Image source: Card and Krueger 2000

results

Introductio

Diff-in-Di

intuition

potential outcon

estimation

Fixed effect

intuition DAGs

estimation

Staggered treatmen

intuition

intuition

Here is a (tweaked) version of Card and Krueger 1994, Figure 1.

Image source: Card and Krueger 1994

Introductio

Diff-in-Dif

intuition

potential outcome

DAGs

Fixed effects

intuition

estimation

Staggered treatmer

intuition

intuition

solutions

References

Here, we are interested in the average treatment effect on the treated (ATT)

$$ATT = E[Y_i(1) - Y_i(0)|D = 1]$$
 (2)

Introductio

DITT-IN-DIT

intuition

potential outcome

estimation

Fixed effect

intuition

estimatio

Staggered treatmer

intuitio

intuition

solutions

eference:

Here, we are interested in the average treatment effect on the treated (ATT)

$$ATT = E[Y_i(1) - Y_i(0)|D = 1]$$
 (2)

For this to be a consistent estimator, we will need a set of conditions to hold, some of which we can test, others we will need to assume.

Introduction

Diff-in-Dif

intuition

potential outcome

estimation

Fixed effect

intuition

estimatio

Staggered treatmen

Staggered treatmer

intuition

solutions

References

Here, we are interested in the average treatment effect on the treated (ATT)

$$ATT = E[\underline{Y}_i(1) - \underline{Y}_i(0)|D = 1]$$
 (2)

For this to be a consistent estimator, we will need a set of conditions to hold, some of which we can test, others we will need to assume.

In particular, the parallel-trends assumption:

$$E[Y_{it}(0) - Y_{it-1}(0)|D = 1] = E[Y_{it}(0) - Y_{it-1}(0)|D = 0]$$
(3)

Introductio

Diff-in-Dif

intuition

potential outcome

estimation

Fixed effect

intuition DAGs

estimatio

Staggered treatmen

landarilla an

intuition

solutions

eferences

Here, we are interested in the average treatment effect on the treated (ATT)

$$ATT = E[\underline{Y}_i(1) - \underline{Y}_i(0)|D = 1]$$
 (2)

For this to be a consistent estimator, we will need a set of conditions to hold, some of which we can test, others we will need to assume.

In particular, the parallel-trends assumption:

$$E[Y_{it}(0) - Y_{it-1}(0)|D = 1] = E[Y_{it}(0) - Y_{it-1}(0)|D = 0]$$
(3)

because then, we can assume

$$ATT = E[Y_t - Y_{t-1}|D = 1] - E[Y_t - Y_{t-1}|D = 0]$$
 (4)

Directed acyclic graphs

Introduction

Diff-in-Diff

intuition

DAGs

ixed ellec

DAGs

estimation

Staggered treatmer

intuition

intuition

solutions

leferences

Difference-in-Differences (DID)

Image source: Huntington-Klein 2018

Directed acyclic graphs

Introduction

Diff-in-Diff

intuition

DAGs

estimation

ived effect

intuition

estimation

Staggered treatmen

intuition

intuition

Doforopoo

Difference-in-Differences (DID)

Image source: Huntington-Klein 2018

Directed acyclic graphs

Introduction

Diff in Diff

intuition

DAGs

estimation

rixed effec

intuition

estimation

Staggered treatme

intuition

intuition

Doforonoo

Difference-in-Differences (DID)

Image source: Huntington-Klein 2018

 \rightarrow Accounting for differences between groups over time enables not just the estimation of time and group effects but also the differences-in-differences (i.e. the interaction of time and group effects).

Estimation

ntroductio

Diff-in-Dif

intuition

potential outco

estimation

Fixed effect:

intuition

o o tlos o tlo so

Staggered treatme

intuitior

intuition

solutions

References

DID Estimator

assume n individual units i, and t = 2 time periods, we can estimate the effect of a treatment ocurring at $P_{t=1}$, affecting the treated subpopulation $D_i = 1$

$$Y_{i} = \beta_{0} + \beta_{1}D_{i} + \beta_{2}P_{t} + \beta_{3}D_{i} \times P_{t} + \varepsilon_{i}$$
 (5)

with D_i = Treatment, P_t = Period Dummy.

 β_3 gives us an estimate of the diff-in-diff treatment effect.

Estimation

ntroduction

Diff-in-Diff

intuition

DAGs estimation

Fixed offects

intuition DAGs

estimation

Staggered treatment

Staggered treatme

intuition

intuition

solutions

oforoncos

DID Estimator

assume n individual units i, and t = 2 time periods, we can estimate the effect of a treatment ocurring at $P_{t=1}$, affecting the treated subpopulation $D_i = 1$

$$Y_{i} = \beta_{0} + \beta_{1}D_{i} + \beta_{2}P_{t} + \beta_{3}D_{i} \times P_{t} + \varepsilon_{i}$$
 (5)

with D_i = Treatment, P_t = Period Dummy.

 β_3 gives us an estimate of the diff-in-diff treatment effect.

regression

Introduction

Diff.in-Diff

potential outco

estimation

intuition

estimatio

Staggered treatme

Staggered treatmen

intuition

intuition

Reference

To estimate an example ATT, we can use the Card and Krueger (1994) data

> summary(did_model)

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 23.331 1.072 21.767 <2e-16 *** -2.1661.516 -1.429 0.1535 time 1.194 -2.423 0.0156 * treated -2.892 2.754 1.688 1.631 0.1033 time:treated

Note: heteroskedasticity and autocorrelation robust standard errors should be computed

intermediate summary

estimation

A difference-in-differences approach allows us to

- compare a treatment group with an untreated quasi-counterfactual
- even under conditions of a non-random assignment
- assuming that the groups behave comparably enough

Panel Data

Introduction

Diff-in-Diff

intuition potential outco

DAGs estimation

-ixed effect

intuition

estimation

Staggered treatmer

oraggoroa troatmo

intuition

intuition

solutions

Let us suppose a situation with repeated measurements for multiple individual(s) (units), i.e. cross-sectional time-series, or panel data.

An example panel data structure

individual	time	Υ	X	D
Α	1	0.8	0.3	0
Α	2	0.7	0.2	0
Α	3	0.5	0.2	1
В	1	1.2	0.4	0
В	2	1.1	0.5	0
В	3	0.9	0.6	1

An exemplary study

Jan Maria

potential o

estimation

rixed effects

intuition

estimation

Staggered treatmen

Staggered treatmen

intuition

intuition

solutions

Available online at www.sciencedirect.com

ECOLOGICAL ECONOMICS

Ecological Economics 55 (2005) 527-538

www.elsevier.com/locate/ecolecon

ANALYSIS

Environmental pressure group strength and air pollution: An empirical analysis

Seth Binder, Eric Neumayer*

Department of Geography and Environment and Center for Environmental Policy and Governance (CEPG), London School of Economics and Political Science, Houghton Street, London WC2A 2AE, UK

Received 7 December 2003; received in revised form 22 October 2004; accepted 14 December 2004 Available online 24 February 2005

ntroduction

Diff-in-Diff

intuition potential outco

DAGs estimation

-іхеа епес

intuition DAGs

estimatio

Staggered treatmer

intuition

intuition

solutions

eferences

An exemplary study

Per Capita Income

Theoretical underpinning for Binder and Neumayer 2005: Environmental Kuznets Curve. Image source: Wikipedia

Introduction

Diff-in-Diff

intuition potential outco

estimation

Fixed effect

intuition DAGs

estimatio

Staggered treatmer

intuition

intuition

solutions

Reference

Replicated results from table 1, model 1 Binder and Neumayer 2005

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-57.55012	16.60671	-3.465	0.000548	***
lnengopc	-0.51121	0.11878	-4.304	1.82e-05	***
lnenergy	1.00887	0.60455	1.669	0.095425	
lngdp	13.81819	4.17975	3.306	0.000975	***
lngdpsq	-0.88657	0.27384	-3.238	0.001239	**
polity	-0.05079	0.03023	-1.680	0.093135	

Note: This is not a fixed effects regression but an OLS

Panel Data

One way fixed-Effects (FE) structure

Accounting for individual fixed effects. Image source: Huntington-Klein 2018

Introduction

Diff-in-Dif

intuition potential outco

DAGs estimation

Fixed effect

intuition DAGs

estimation

Staggered treatmen

intuition

intuition

Doforonoo

ntroduction

Diff-in-Diff

intuition

potential outcome

estimation

Fixed effects

intuition

DAGs

Staggered treatment

intuition

intuition

solutions

References

troduction

Diff-in-Diff

intuition

potential outcome

intuition DAGs

estimation

Staggered treatment

intuition

intuition solutions

References

troductio

Diff-in-Dif

intuition

DAGs

intuition

DAGs estimation

Staggered treatmen

Staggered treatmen

intuition

Intuition

solution

FE Estimator

$$Y_i = \alpha_i + \beta X_{it} + \varepsilon_{it}$$
 (6)

with $\alpha_i=$ individual, time-invariant effect, and $X_i=$ a variable of interest. The so called *within* transformation accounts for α_i through demeaning such that we can consistently estimate $\partial Y/\partial X$

Two way fixed-effects

Accounting for individual and time (two-way) fixed effects. Image source: Huntington-Klein 2018

Introduction

Diff-in-Diff

intuition potential outco

linds although

DAGs estimation

Staggered treatmen

intuition intuition

solutions

Reference

Estimator

The two-way fixed effects model can be formulated as

$$Y_{it} = \alpha_i + \theta_t + T_{it} + X_{it} + \varepsilon_i \tag{7}$$

where α individual and θ time fixed effects. T a binary treatment indicator ($T = D \times P$),

possibly a controls vector X_i ,

and error term ε_i , assumed to be normally distributed and centered around 0, independent of everything else.

time-trends

This allows to take both individual differences and shocks in time into account

FIGURE 2. EMPLOYMENT IN NEW JERSEY AND PENNSYLVANIA FAST-FOOD RESTAURANTS, OCTOBER 1991 TO SEPTEMBER 1997

Note: Vertical lines indicate dates of original Card-Krueger survey and the October 1996 federal minimum-wage increase.

Source: Authors: calculations based on BLS ES-202 data.

Introduction

....

intuition

DAGS

ived offect

intuition

estimation

Staggered treatment

intuition

intuition

Potoropoo

intermediate summary

iiitioductioi

Diff-in-Dif

potential ou

actimation

Fixed effect

intuition

estimatio

Staggered treatmen

intuition

intuition

intuition

Reference

A two-way fixed effects approach allows us to

- control for time-constant, unobserved heterogeneity between individuals
- control for common time shocks, that affect all individuals
- a multi-period 2WFE approach resembles DiD when
 - treatment is simultaneous
 - effects are homogeneous

introductio

Diff-in-Diff

intuition

DAGs

intuition

estimation

Staggered treatmen

intuition

intuition

a alestia a

Reference

Over the last 6 or so years, DiD methdology has seen quite some development.

I will briefly introduce

introductio

Diff-in-Diff

notontial

DAGS

estimation

-ixed effect

intuition

estimation

Staggered treatmen

intuition

intuition

intuition

Reference

Over the last 6 or so years, DiD methdology has seen quite some development.

I will briefly introduce

staggered treatment / event-time studies

introductio

Diff-in-Diff

potential o

estimation

-ixed effect

intuition DAGs

estimation

Staggered treatmen

intuitior

intuition

solutions

eferences

Over the last 6 or so years, DiD methology has seen quite some development.

I will briefly introduce

- staggered treatment / event-time studies
- non-parallel trend corrections

introduction

Diff-in-Diff

potential ou

antimotion

Fixed effect

intuition DAGs

estimation

Staggered treatmer

intuitio

intuition

solutions

eferences

Over the last 6 or so years, DiD methdology has seen quite some development.

I will briefly introduce

- staggered treatment / event-time studies
- non-parallel trend corrections
- heterogeneous treatment corrections

What if treatment happened at different times?

Reduction in mortality by Community Health Centers (CHC). Image source: Bailey and Goodman-Bacon 2015

Introduction

Diff-in-Dif

intuition potential outco

DAGs estimation

ived effect

intuition DAGs

estimation

Staggered treatmer

intuition

intuition

solutions

Poforoncos

We may run into time series length related weighting problems

DIGG In Dig

intuition

estimation

Fixed effects

intuition

estimation

Staggered treatmer

intuition

intuition

intuition

References

DiD with variations in treatment timing. Image source: Goodman-Bacon 2018, as reproduced by <u>A.C. Baker</u>
Causal Inference 2021 ClimBEco course

Introduction

Diff-in-Dif

potential outco

estimation

rixed effect

DAGs

estimatio

Staggered treatmen

0111990100 110011110

intuition

solution

Deference

Recall,

$$ATT = E[Y_t - Y_{t-1}|D = 1] - E[Y_t - Y_{t-1}|D = 0]$$

which is a comparison of mean differences between groups over time. Straightforward for 2 periods.

Now, we have multiple periods.

DiD with variations in treatment timing. Image source: Goodman-Bacon 2018, as reproduced by A.C. Baker

25/35

notation

Turns out: 2WFE DiD estimator is a weighted average of these comparisons

Theorem 1. Difference-in-Differences Decomposition Theorem

Assume that the data contain k = 1, ..., K groups of units ordered by the time when they receive a binary treatment, $t_i^* \in (1,T]$. There may be one group, U, that never receives treatment. The OLS estimate. \widehat{B}^{DD} in a two-way fixed-effects model (2) is a weighted average of all possible twoby-two DD estimators

$$\hat{\beta}^{DD} = \sum_{k \neq U} s_{kU} \hat{\beta}_{kU}^{2x2} + \sum_{k \neq U} \sum_{\ell > k} s_{k\ell} \left[\mu_{k\ell} \hat{\beta}_{k\ell}^{2x2,k} + (1 - \mu_{k\ell}) \hat{\beta}_{k\ell}^{2x2,\ell} \right]$$
(7)

Where the two-by-two DD estimators are:

$$\begin{split} \widehat{\boldsymbol{\beta}}_{kU}^{2X2,E} &= \left(\overline{\boldsymbol{y}}_{k}^{POST(\ell)} - \overline{\boldsymbol{y}}_{k}^{PRE(k)} \right) - \left(\overline{\boldsymbol{y}}_{U}^{POST(f)} - \overline{\boldsymbol{y}}_{\ell}^{PRE(f)} \right) \\ \widehat{\boldsymbol{\beta}}_{k\ell}^{2X2,E} &= \left(\overline{\boldsymbol{y}}_{k}^{MID(k,\ell)} - \overline{\boldsymbol{y}}_{k}^{PRE(k)} \right) - \left(\overline{\boldsymbol{y}}_{\ell}^{MID(k,\ell)} - \overline{\boldsymbol{y}}_{\ell}^{PRE(k)} \right) \\ \widehat{\boldsymbol{\beta}}_{k\ell}^{2X2,E} &= \left(\overline{\boldsymbol{y}}_{\ell}^{POST(\ell)} - \overline{\boldsymbol{y}}_{k}^{MID(k,\ell)} - \left(\overline{\boldsymbol{y}}_{\ell}^{POST(\ell)} - \overline{\boldsymbol{y}}_{k}^{MID(k,\ell)} \right) \right) \\ \widehat{\boldsymbol{\beta}}_{k\ell}^{2X2,E} &= \left(\overline{\boldsymbol{y}}_{\ell}^{POST(\ell)} - \overline{\boldsymbol{y}}_{k}^{MID(k,\ell)} - \left(\overline{\boldsymbol{y}}_{k}^{POST(\ell)} - \overline{\boldsymbol{y}}_{k}^{MID(k,\ell)} \right) \right) \end{split}$$

the weights are:

$$s_{RV} = \frac{n_{k}n_{U}\overline{D}_{k}(1-\overline{D}_{k})}{v\overline{ar}\cdot(\overline{D}_{t})}$$

$$s_{k\ell} = \frac{n_{k}n_{\ell}(\overline{D}_{k}-\overline{D}_{\ell})(1-(\overline{D}_{k}-\overline{D}_{\ell}))}{v\overline{ar}\cdot(\overline{D}_{t})}$$

$$\mu_{k\ell} = \frac{1-\overline{D}_{k}}{1-(\overline{D}_{k}-\overline{D}_{\ell})}$$
and $\sum_{k\in I} S_{kU} + \sum_{k\in I} S_{kU} = 1$

Proof: See appendix A.

Bacon decomposition theorem. Image source: Goodman-Bacon 2018, see also his tweet-thread

intuition

intuition

notation

Introduction

Diff in Diff

intuition potential outcom

DAGs estimation

Fixed effect

DAGs

estimation

Staggered treatme

intuition

intuition

solutions

Even worse, a positive but staggered slope change, can even change the sign of the DD estimate

Staggered treatment with linear slope change. Image source: Goodman-Bacon 2018, see also his tweet-thread

Proposed solutions I

Introductio

Diff-in-Dif

intuition

DAGs

Civad offeet

Londo del com

DAGs

estimation

Staggered treatmer

intuition

intuition

solutions

Potoronoo

Several works on the issue:

Causal Inference 2021 ClimBEco course 28/35

Proposed solutions I

Introductio

Diff-in-Diff

intuition

actimation

ixed effect

intuition

estimatio

Staggered treatmen

Staggered treatmen

intuitio

intuition

solutions

References

Several works on the issue:

- Athey and Imbens 2020
 - under random adoption dates, the DID is unbiased
 - comparing treated with not-yet treated

Proposed solutions I

Introductio

Diff-in-Diff

intuition

DAGS

intuition

estimatio

Stangered treatme

Staggered treatmen

intuition

intuition

solutions

References

Several works on the issue:

- Athey and Imbens 2020
 - under random adoption dates, the DID is unbiased
 - comparing treated with not-yet treated
- Goodman-Bacon 2018
 - a time-in-treatment weighted DiD, fixing the weights to gain balance
 - R package <u>bacondecomp</u>

Proposed solutions II

Introduction

Diff-in-Dif

intuition

DAGs

locate dallocate

DAGs

estimation

Staggered treatmer

intuition

intuition

solutions

References

Several works on the issue:

Causal Inference 2021 ClimBEco course 29/35

Proposed solutions II

Introductio

Diff-in-Dif

intuition

actimation

Fixed effec

intuition

estimation

Staggered treatmer

intuition

intuition

solutions

Reference

Several works on the issue:

- Callaway and P. H. Sant'Anna 2020
 - bootstrapped inference with pre-intervention conditioning on co-variates
 - R package <u>did</u>

Proposed solutions II

minoductio

Diff-in-Diff

intuition

DAGS

Fixed effec

intuition

estimatio

Staggered treatmen

Staggered treatmen

intuition

intuition

solutions

References

Several works on the issue:

- Callaway and P. H. Sant'Anna 2020
 - bootstrapped inference with pre-intervention conditioning on co-variates
 - R package <u>did</u>
- Sun and Abraham 2020
 - time-to-treatment (cohort) weighted approach, comparing to never-treated
 - implemented in <u>fixest</u> R package

Heterogeneous Treatment

iiitioductioi

Diff-in-Dif

potential outcom

estimation

Fixed effect

DAGs

estimatior

Staggered treatmer

Staggered treatmen

intuition

colutions

Doforonoo

Further works on DiD design / application issues:

- Chaisemartin and D'Haultfœuille 2020
 - allowing for treatment effects "heterogeneous across groups and over time periods"
 - R package <u>DIDmultiplegt</u>
 - Imai and Kim 2020
 - identify some proplematic negative weigthing in 2WFE
 - they propose weighting or matching <u>Imai 2020</u>

Non-parallel trends

Introductio

Diff-in-Diff

intuition

DAGs

estimation

-ixed effect

intuition

estimation

Staggered treatmen

Staggered treatmen

intuition

intuition

Potoronoo

However, all these approaches, assume (to some extent) parallel trends

- Jonathan Roth 2021
 - test for parallel-trends, R package pretends
 - robust inference strategy under non-parralel trends Rambachan and Roth 2020, R package <u>HonestDiD</u>

Summary

Introduction

Diff-in-Dif

intuition

DAGs

estimation

Fixed effect

intuition

estimatio

Staggered treatmen

intuition

intuition intuition solutions

Summary of DID

Instantaneous (Static) Effects Potential Outcomes	Dynamic Effects
$Y_{it}(d)$ for $d \in \{0, 1\}$	$Y_{it}\left(g ight)$ for $g\in\left\{ 1,,T,\infty ight\}$
Homogeneous Effects	
Target Parameter	- m[v () v () n 1
$\tau = \mathbb{E}\left[Y_{it}\left(1\right) - Y_{it}\left(0\right) \middle D_{it} = 1\right]$	$\tau_{\ell} = \mathbb{E}\left[Y_{ig+\ell}\left(g\right) - Y_{ig+\ell}\left(\infty\right) G_i = g\right]$
Estimators	
$\hat{\tau}_{MM} = (\bar{Y}_{1,post} - \bar{Y}_{1,pre}) - (\bar{Y}_{0,post} - \bar{Y}_{0,pre})$	$\hat{\tau}_{\ell,DDID}$: $Y_{it} = \alpha_i + \gamma_t + \sum_{\ell \in \mathcal{L}} D_i P_t^{\ell} \tau_{\ell} + \epsilon_{it}$
$\hat{\tau}_{OLS}$: $Y_{it} = \mu + \alpha D_i + \gamma P_t + \tau D_i P_t + \varepsilon_{it}$	$\widehat{\tau}_{\ell,ES}: Y_{it} = \alpha_i + \gamma_t + \sum_{\ell \in \mathcal{L}} D_{it}^{\ell} \tau_{\ell} + \varepsilon_{it}$
$\widehat{\tau}_{TWFE}: Y_{it} = \alpha_i + \gamma_t + \tau D_{it} + \varepsilon_{it}$	
Key references	
Card and Krueger (1994)	Ashenfelter and Card (1984)
Bertrand, Duflo, and Mullainathan (2004)	Jacobson, LaLonde, and Sullivan (1993)
Heterogeneous Effects	
Target Parameter	
$\tau_{gt} = \frac{1}{N_{gt}} \sum_{i=1}^{N_{gt}} [Y_{it}(1) - Y_{it}(0)]$	$\tau_t(\mathbf{g}) = \mathbb{E}\left[Y_{it}(\mathbf{g}) - Y_{it}(\infty) G_i = \mathbf{g}\right]$
Estimators	
$DID_{c,t} = \sum_{i,t} \left[\rho_{it}^{h_1(c)} (Y_{it} - Y_{it-1}) - \rho_{it}^{h_2(c)} (Y_{it} - Y_{it-1}) \right]$	$\hat{\tau}_t(g) = (\bar{Y}_{g,t} - \bar{Y}_{\infty,t}) - (\bar{Y}_{g,g-1} - \bar{Y}_{\infty,g-1})$
$\widehat{\tau}_{dCdH} = \sum_{t=2}^{T} (\omega_{t,t} DID_{t,t} + \omega_{-t}DID_{-t})$	$\hat{\tau}_{CS} = \frac{1}{\sum_{t} \sum_{g:g \le t} N_g} \sum_{t} \sum_{g:g \le t} \tau_t(g)$
$L_{dCdH} = L_{t=2} \left(w_{+,t} b_{t} b_{+,t} + w_{-,t} b_{t} b_{-,t} \right)$	$CS = \sum_{t} \sum_{g:g \leq t} N_g \ \angle t \ \angle g:g \leq t \ r(g)$
Key references	
de Chaisemartin and d'Haultfoeuille (2020)	Callaway and Sant'Anna (forthcoming)
Goodman-Bacon (2021)	Sun and Abraham (2021)

Schönholzer 2021, cf. Roth and P. H. C. Sant'Anna 2021

Summary

Introductio

Diff-in-Diff

notential outco

DAGS

03tilliau011

-ixed effect

DAGs

estimation

Staggered treatmen

Staggered treatmen

intuition

intuition

solutions

Reference

Re: DiD and (adjusted) 2WFE estimators

- compare treated individual (units) with a reference group
- who we compare to whom deserves special attention
- software solutions available

References I

DAGs

DAGe

References

- Athey, Susan and Guido W. Imbens (2020), 'Design-based analysis in Difference-In-Differences settings with staggered adoption'. In: Journal of Econometrics. DOI: 10.1016/j.jeconom.2020.10.012.
- Bailey, Martha J and Andrew Goodman-Bacon (2015). 'The war on poverty's experiment in public medicine: Community health centers and the mortality of older Americans', In: American Economic Review 105.3, pp. 1067-1104. DOI: 10.1257/aer.20120070.
- Binder, Seth and Eric Neumayer (2005). 'Environmental pressure group strength and air pollution: An empirical analysis'. In: *Ecological Economics* 55.4, pp. 527–538. DOI: 10.1016/j.ecolecon.2004.12.009.
- Callaway, Brantly and Pedro H.C. Sant'Anna (2020). 'Difference-in-Differences with multiple time periods'. In: Journal of Econometrics xxxx, pp. 1-31. DOI: 10.1016/j.jeconom.2020.12.001.
- Card, David and Alan B Krueger (1994). 'Minimum wages and employment: a case study of the fast-food industry in New Jersey and Pennsylvania'. In: American Economic Review 84.4, pp. 772-793. DOI: 10.3386/w4509.
- (2000). 'Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania: Reply', In: American Economic Review 90.5, pp. 1397–1420, pol:

10 1257/apr 90 5 1397

Chaisemartin, Clément de and Xavier D'Haultfœuille (2020). 'Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects', In: American Economic Review 110.9, pp. 2964–2996, DOI: 10.1257/aer.20181169.

References II

Introduction

Diff-in-Diff

potential outco

estimation

Fixed effec

DAGs

estimation

Staggered treatmen

intuition

intuition

References

Goodman-Bacon, Andrew (2018). 'Difference-in-Differences With Variation in Treatment Timing'. In: National Bureau of Economic Research 17.5, pp. 684–694. DOI: 10.3386/w25018.

Imai, Kosuke and In Song Kim (2020). 'On the Use of Two-Way Fixed Effects Regression Models for Causal Inference with Panel Data'. In: *Political Analysis*, pp. 1–11. DOI: 10.1017/pan.2020.33.

Rambachan, Ashesh and Jonathan Roth (2020). 'An Honest Approach to Parallel Trends'.

Roth, Jonathan (2021). 'Pre-test with Caution: Event-study Estimates After Testing for Parallel Trends'.

Roth, Jonathan and Pedro H. C. Sant'Anna (2021). 'Efficient Estimation for Staggered Rollout Designs'. In: pp. 1–52. arXiv: 2102.01291. URL: http://arxiv.org/abs/2102.01291.

Sun, Liyang and Sarah Abraham (2020). 'Estimating dynamic treatment effects in event studies with heterogeneous treatment effects'. In: *Journal of Econometrics* xxxx, pp. 1–25. DOI:

10.1016/j.jeconom.2020.09.006.