

Encoding Schemes

Objectives

• Explore how computers store data in different numeration systems including binary, decimal, hex, and ASCII.

Examine how to convert between different numeration systems.

Explore the properties of the XOR operation.

- CyberChef
- Binary to Decimal E-mates [Link]
- Hex Numbers E-Mates [Link]

Binary Data

0

Binary refers to a number system where there are only two possible outcomes (1 or 0). Computers use transistors and capacitors to store electrical charges. These charges represent either a 1 or a 0. A bit represents a single outcome.

Bits to Bytes

We called groupings of 8 bits a byte. Since each bit can have two possible outcomes, a byte can store $2^8 = 256$ possible values.

Bytes to Decimal

To convert bytes to decimal (base 10 numbering), we sum each enabled bit raised to the power of its position. So, 01000001 = 26 + 20 = 64 + 1 = 65

Sencyber

Practice #1

What is the decimal value? = $2^6 + 2^5 + 2^0 = 97$

Practice #2

What is the decimal value? _____

Practice #3

What is the decimal value? _____

Decimal to Hex

- Normally, we count in base-10 (decimal) numbering system. It uses the symbols 0-9
- However, with computers we often represent numbers in base-16 (hexadecimal.) It uses the symbols, 0-9, a-f.
- We also use the notation 0x??, to indicate hexadecimal.

Decimal	Hex
1	0x01
2	0x02
3	0x03
4	0x04
5	0x05
6	0x06
7	0x07
8	0x08
9	0x09
10	0x0a
11	0x0b
12	0x0c
13	0x0d
14	0x0e
15	0x0f
16	0x10

Hexadecimal

- We use hexadecimal often to compactly represent a byte.
- Since the largest byte (255 = Oxff), a single byte can be represented by two symbols.

Decimal	Hex
10	0x0a
20	0x14
30	0x1e
40	0x28
50	0x32
60	0x3c
70	0x46
80	0x50
90	0x5a
100	0x64
110	0x6e
120	0x78
130	0x82
140	0x8c
150	0x96
255	0xff

Decimal to ASCII

```
>>> import string
>>> print(string.printable)
0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~
>>> print(len(string.printable))
100
>>> chr(65)
'A'
```

Since computers can't store letters, they just create tables to represent letters, where each letter has a specific decimal value. For example, the number 65 represents the letter A and the number 66 represents B.

А	В	С	 а
65	66	67	 97

CyberChef

 CyberChef is a tool that can assist us in converting between different numeration systems.

XOR Boolean Operation

Α	В	Result
0	0	0
0	1	1
1	0	1
1	1	0

$$A = B \rightarrow 0$$
$$A != B \rightarrow 1$$

XOR is a Boolean logic operation that we use in cryptography. Its pretty simple, we compare two bits, if they are the same the result is a 0. If they are different, the result is a 1.

XOR Symmetric Key

Plaintext	Key	Ciphertext
0	0	0
0	1	1
1	0	1
1	1	0

Imagine a soldier transmitted a ciphertext message of "1" that was XOR encrypted with the key "1". What was the original plaintext message?

Α	=	В	\rightarrow	0
Α	!=	В	\rightarrow	1

Plaintext	Key	Ciphertext
0	0	0
0	1	1
1	0	1
1	1	0

Imagine a soldier transmitted a ciphertext message of "1" that was XOR encrypted with the key "1". What was the original plaintext message?

Plaintext	Key	Ciphertext
0	0	0
0	1	1
1	0	1
1	1	0

Notice how the soldier CAN ONLY DECRYPT

the message if she has the key? Without knowing the key, the plaintext could be a 1 or 0.

Operations	Recipe		^ 🖥		Input + 🗅	⋺	î =
binary	XOR		^	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	GENCYBER		
To Binary	Key 65		Scheme Standard				
From Binary			Staridard				
AMF Decode	Null preserving						
AMF Encode	To Binary		^	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
BSON deserialise	Delimiter	Byte Leng	gth	•			
BSON serialise	Space	0		V			
CBOR Decode							
CBOR Encode					ac 8 = 1 Tr	Raw By	tes ← L
From B CD					Output		a C3
From MessagePack					00000110 00000100 00001111 00000010 00011000 000000		
To BCD							
To MessagePack							
YARA Rules							
Favourites *							
Data format							
Encryption / Encoding							
Public Key							
Arithmetic / Logic	STEP	💆 BAKE!	A	Auto Bake			

