Learning Materials Science from Text

Vahe Tshitoyan Machine Learning @ Goolge ATAP*

December 14, 2019

* The presented work was carried out while I was a Postdoc @ Berkeley Lab

Science is in text

Problem

Solution

Computers speak in numbers

Word vectors (embeddings)

Map each word to a vector in space (sequence of numbers)

Vocabulary:

Man, woman, boy, girl, prince, princess, queen, king, monarch

	Femininity	Youth	Royalty
Man	0	0	0
Woman	1	0	0
Boy	0	1	0
Girl	1	1	0
Prince	0	1	1
Princess	1	1	1
Queen	1	0	1
King	0	0	1
Monarch	0.5	0.5	1

Each word gets a 1x3 vector

Similar words... similar vectors

Vector algebra with embeddings

Vocabulary:

Man, woman, boy, girl, prince, princess, queen, king, monarch

	Femininity	Youth	Royalty
Man	0	0	0
Woman	1	0	0
Boy	0	1	0
Girl	1	1	0
Prince	0	1	1
Princess	1	1	1
Queen	1	0	1
King	0	0	1
Monarch	0.5	0.5	1

Each word gets a 1x3 vector

Similar words... similar vectors

Words with similar meanings have similar vectors

Also...

- queen king = woman man = girl boy
- (prince + princess + queen + king)/4 = monarch

How do we "machine learn" word vectors?

Word2Vec: skip-gram

Sentence: Electrochemical properties of LiCoO2 thin film.

Task: train a neural network to predict the context (target) word given the centre word

Training example 1:

```
of →? Electrochemical
```

of \rightarrow ? properties

of \rightarrow ? LiCoO2

of \rightarrow ? thin

Word2Vec: skip-gram

Sentence: Electrochemical properties of LiCoO2 thin film.

Task: train a neural network to predict the context (target) word given the centre word

Training example 2:

LiCoO2 →? properties

 $LiCoO2 \rightarrow ? of$

 $LiCoO2 \rightarrow ? thin$

LiCoO2 →? film

The Neural Network

Word2Vec: skip-gram

Sentence: Electrochemical properties of LiCoO2 thin film.

Task: train a neural network to predict the context (target) word given the centre word

Training example 2:

LiCoO2 →? properties

 $LiCoO2 \rightarrow ? of$

 $LiCoO2 \rightarrow ? thin$

LiCoO2 →? film

Objective: learn vector representations for words

If two different words have similar contexts, then the neural network needs to output similar results for these two words. The network will output similar context predictions for these two words if the word vectors are similar.

Outcomes of the training

Training Data

- A total of 3.3 million abstracts downloaded
- 1.5 million were classified as inorganic materials science
 - ~300 million words across the abstracts
 - ~500k unique vocabulary words and phrases
 - ~100k unique material formulae

Word similarity

Words most similar to ____ are?

 LiCoO2: LiMn2O4, LiNi0.5Mn1.5O4, LiNi0.8Co0.2O2, LiNi0.8Co0.15Al0.05O2

 ferromagnetic: ferrimagnetic, antiferromagnetic, anti-ferromagnetic, paramagnetic

Analogies

CoO - Co + AI = Al2O3

Li - lithium + helium = He

temperature - K + Pa = pressure

LiCoO2 - cathode + anode = graphite

A famous vector representation in chemistry?

The periodic table of elements

(0, 0)

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Word vectors of elements in 2D

- alkali metal
- alkaline earth metal
- lanthanide
- actinide
- transition metal
- post-transition metal
- metalloid
- polyatomic nonmetal
- diatomic nonmetal
- noble gas

Word vectors of elements in 2D

- alkali metal
- alkaline earth metal
- lanthanide
- actinide
- transition metal
- post-transition metal
- metalloid
- polyatomic nonmetal
- * diatomic nonmetal
- noble gas

Word vectors of elements in 2D

- alkali metal
- alkaline earth metal
- lanthanide
- actinide
- transition metal

- post-transition metal
- metalloid
- polyatomic nonmetal
- * diatomic nonmetal
- noble gas

Directions in latent latent space correspond to elemental properties

Basic linear regression models fit using only the unsupervised, text-derived embeddings as feature vectors.

Similar materials cluster together

BaTiO₃ (piezoelectrics)

In₄Te₃

...what is the most similar material to the word "thermoelectric"?

Predictions of new Thermoelectrics

We can examine the plausibility of these predictions by performing experiments "in the past".

(i.e. remove all abstracts published after a given year, re-train the model, and rank candidates.)

Historical validation

Changing the application is just a matter of changing the query words

Explaining the predictions

https://www.matscholar.com

Database of all published results

Information retrieval from literature:

- Material (MAT)
- Material descriptor (DSC)
- Symmetry / Phase (SPL)
- Property (PRO)
- Application (APL)
- Synthesis method (SMT)
- Characterization method (CMT)

1. Abstracts collected and stored in Matscholar corpus

4. Train model

5. Extract entities with model

Named Entities in Numbers

> 3.3 million

Abstracts Collected

8.8 million

Characterization Methods

31 million

Properties

7.5 million

Applications

19 million

Materials Mentions

5 million

Synthesis Methods

Working on full text extraction

What are the most common applications of a material?

References

- Tshitoyan et al. <u>Nature 571, 95–98 (2019)</u>.
 - https://github.com/materialsintelligence/mat2vec
- Weston et al. <u>J. Chem. Inf. Model. (2019)</u>.
- REST API: https://github.com/materialsintelligence/matscholar
- Website: https://www.matscholar.com

Contact

- Email: <u>vahe.tshitoyan@gmail.com</u>
- LinkedIn: <u>/in/vahe-tshitoyan/</u>
- Project contact: Anubhav Jain ajain@lbl.gov

Extra slides

Formation Energy Prediction

Band gap vs no band gap

Gerbrand Ceder

Anubhav Jain

Kristin Persson

The team at Berkeley

Leigh Weston

John Dagdelen

Alex Dunn

Olga Kononova

Ziqin Rong

