Содержание

- 1 Разбиения промежутка: узлы, сетка, свойства разбиений 1
- 2 Интегральные суммы Дарбу и Римана
- 3
- 3 Определение Интеграла Римана. Пример: интеграл ступенчатой функции. Теорема об ограниченности интегрируемой по Риману функции
- 6

8

- 4 Критерий Римана интегрируемости функции. Колебания функции на промежутке. Следствие
- 5 Определение и свойства колебаний функции на множестве. Критерий Римана интегрируемости функции в терминах локальных колебаний 10

1 Разбиения промежутка: узлы, сетка, свойства разбиений

Все рассматриваемые здесь промежутки предполагаются конечными и непустыми. В явном виде это предположение не всегда формулируется далее.

Определение

Разбиением промежутка Δ называется любое конечное множество попарно непересекающихся промежутков $\Delta_1, \Delta_2, \ldots, \Delta_N$, дающих в объединении весь исходный промежуток Δ : $\Delta_j = \langle x_{j-1}, x_j \rangle, \Delta_j \neq \emptyset, j = 1, 2, \ldots, N$,

$$\Delta_i \cap \Delta_j = \emptyset, \ \bigcup_{j=1}^N \Delta_j = \Delta.$$

Заданное разбиение промежутка Δ на N частей условимся обозначать следующим образом:

$$\tau(\Delta) = \{\Delta_1, \Delta_2, \dots, \Delta_N\}. \tag{(\tau_N)}$$

В случае, если рассматривается сразу несколько разбиений промежутка, условимся использовать верхние и нижние индексы, т.е. писать $\tau_1(\Delta), \tau_2(\Delta), \ldots$ либо $\tau'(\Delta), \tau''(\Delta), \ldots$

Условимся также нумеровать образующие разбиение $\tau(\Delta)$ мелкие промежутки слева направо, т.е. таким образом, чтобы для концов мелких промежутков выполнялись неравенства $x_{j-1} \le x_j \le x_{j+1}$ для $j=1,2,\ldots,N$.

Таким образом, для $\Delta = [a,b]$ и его разбиения $\tau(\Delta)$ имеют место неравенства

$$a = x_0 \le x_1 \le x_2 \le x_3 \le \dots \le x_N = b.$$
 (τ'_N)

Определение

Точки x_0, x_1, \dots, x_N называются узлами разбиения $\tau(\Delta)$.

Любой набор точек x_0, x_1, \cdots, x_N , с условием τ'_N задает некоторое разбиение $\tau(\Delta)$ промежутка $\Delta = \langle a, b \rangle$. В случае $N \geq 2$ соответствующих данному набору узлов разбиений промежутка может быть несколько. Это возможно по той причине, что каждый из внутренних узлов $x_1, x_2, \cdots, x_{N-1}$ можно включить в любой из двух соседствующих мелких промежутков, на общей границе которых этот узел лежит.

Пример. Пусть $\Delta = [a, b]$. Тогда точки $x_j = a + \frac{b-a}{N}j, \ j = 0, 1, 2, \dots, N$ задают узлы разбиения отрезка Δ на N равных по длине частей.

Определение

Разбиение $\tau'(\Delta)$ называется продолжением разбиения $\tau(\Delta)$, если любой мелкий промежуток разбиения $\tau'(\Delta)$ содержится в некотором мелком промежутке разбиения $\tau(\Delta)$.

 $\mathit{Пример}$. Пусть $\Delta = [a,b]$. Тогда узлы $x_0 = a, \ x_1 = \frac{b-a}{2}, \ x_2 = b$ задают разбиение отрезка Δ на две равные по длине части. Полагаем, что $x_{01} = \frac{x_1-x_0}{2}, \ x_1 = \frac{x_2-x_1}{2}$. Тогда узлы $x_0, x_{01}, x_1, x_{12}, x_2$ задают разбиение $\tau'(\Delta)$ отрезка Δ на четыре равных по длине части. При этом $\tau'(\Delta)$ является продолжением разбиения $\tau(\Delta)$.

Любое продолжение разбиения $\tau(\Delta) = \{\Delta_1, \Delta_2, \dots, \Delta_N\}$ представляет собой объединение некоторых разбиений мелких промежутков Δ_j из $\tau(\Delta)$.

Если $\tau'(\Delta)$ — это продолжение $\tau(\Delta)$, а $\tau''(\Delta)$ — это в свою очередь продолжение $\tau'(\Delta)$, то $\tau'(\Delta)$ — это также продолжение и разбиения $\tau(\Delta)$ (более мелкое чем $\tau'(\Delta)$).

Лемма

Для любых двух разбиений промежутка Δ существует третье разбиение этого же промежутка, продолжающее оба исходных разбиения.

Доказательство

Пусть $\tau'(\Delta) = \{\Delta'_1, \Delta'_2, \dots, \Delta'_{N_1}\}$ и $\tau''(\Delta) = \{\Delta''_1, \Delta''_2, \dots, \Delta''_{N_2}\}$ — это два произвольных разбиения одного и того же промежутка Δ . Рассмотрим следующее множество: $\{\Delta'_i \cap \Delta''_j | i=1,2,\dots,N_1; j=1,2,\dots,N_2; \Delta'_i \cap \Delta''_j \neq \emptyset\}$.

Заметим, что любое непустое пересечение $\Delta'_i \cap \Delta''_j$ двух промежутков — это снова промежуток числовой оси.

Таким образом, рассматриваемое множество непустых пересечений мелких компонент рассматриваемых разбиений — это снова разбиение исходного промежутка, продолжающее как $\tau'(\Delta)$ так и $\tau''(\Delta)$. \square

2 Интегральные суммы Дарбу и Римана

Пусть функция f(x) задана на промежутке Δ с разбиением $\tau(\Delta) = \{\Delta_1, \Delta_2, \dots, \Delta_N\}$. Введем следующие обозначения: $m_i = \inf_{x \in \Delta_i} f(x), M_i = \sup_{x \in \Delta_i} f(x); m_i \leq M_i$.

Если $\Delta_i = \langle x_{i-1}, x_i \rangle$, то его длина задается равенством $|\Delta_i| = |x_i - x_{i-1}|$ и обозначается иногда как Δ_{x_i} (приращение переменной x на промежутке $\langle x_{i-1}, x_i \rangle$).

Определение

Для заданной функции $f(x), x \in \Delta$, линейные комбинации вида $s(f,\tau) = \sum_{i=1}^N m_i |\Delta_i|$ и $S(f,\tau) = \sum_{i=1}^N M_i |\Delta_i|$ называются нижней и верхней интегральной суммой Дарбу соответственно.

Из этого определения сразу следует неравенство

$$s(f,\tau) \le S(f,\tau). \tag{(D_{\le})}$$

Лемма (поведение сумм Дарбу при измельчении)

Пусть разбиение $\tau(\Delta)$ промежутка Δ продолжает разбиение $\tau'(\Delta)$ этого же промежутка. Тогда справедливы оценки

$$s(f,\tau') \le s(f,\tau) \le S(f,\tau') \le S(f,\tau). \tag{(D,\tau,\tau')}$$

Доказательство

Мелкое разбиение $\tau(\Delta)$ получается из $\tau'(\Delta)$ за конечное число последовательно осуществляемых шагов, на каждом из которых ровно один из образующих разбиение $\tau'(\Delta)$ мелких промежутков делится на два непересекающихся промежутка, принадлежащих уже $\tau(\Delta)$.

Пусть на каком-либо из указанных элементарных измельчений исходного разбиения $\tau'(\Delta)$ его мелкий промежуток Δ_i разделяется на два непересекающихся промежутка Δ_{i_1} и Δ_{i_2} , $\Delta_i = \Delta_{i_1} \cup \Delta_{i_2}$. При этом $\Delta_{i_1} \cap \Delta_{i_2} = \emptyset$, следовательно, $|\Delta_i| = |\Delta_{i_1}| + |\Delta_{i_2}|$.

 $\Delta_{i_1} \cap \Delta_{i_2} = \emptyset$, следовательно, $|\Delta_i| = |\Delta_{i_1}| + |\Delta_{i_2}|$. Введем обозначения $m_{i_1} = \inf_{x \in \Delta_{i_1}} f(x)$, $m_{i_2} = \inf_{x \in \Delta_{i_2}} f(x)$, $M_{i_1} = \sup_{x \in \Delta_{i_1}} f(x)$,

$$M_{i_2} = \sup_{x \in \Delta_{i_2}} f(x).$$

Тогда имеют место соотношения $\Delta_{i_1} \subset \Delta_i \Rightarrow m_{i_1} \geq m_i \ \Delta_{i_2} \subset \Delta_i \Rightarrow m_{i_2} \geq m_i$ и, таким образом, справедливы оценки $m_{i_1}|\Delta_{i_1}| \geq m_i|\Delta_{i_1}|,$ $m_{i_2}|\Delta_{i_2}| \geq m_i|\Delta_{i_2}|.$

Складывая два последних неравенства, получаем $m_{i_1}|\Delta_{i_1}|+m_{i_2}|\Delta_{i_2}| \geq m_i(|\Delta_{i_1}|+|\Delta_{i_2}|)=m_i|\Delta_i|.$

Это означает, что при разделении промежутка на два мелких непересекающихся промежутка нижняя сумма Дарбу не уменьшается, т.е. первая из искомых оценок (D, τ, τ') справедлива: $s(f, \tau') \leq s(f, \tau)$.

Аналогично, для верхних сумм Дарбу имеем $\Delta_{i_1} \subset \Delta_i \Rightarrow M_{i_1} \leq M_i$; $\Delta_{i_2} \subset \Delta_i \Rightarrow M_{i_2} \leq M_i$, и, таким образом, справедливы оценки $M_{i_1}|\Delta_{i_1}| \leq M_i|\Delta_{i_1}|$, $M_{i_2}|\Delta_{i_2}| \leq M_i|\Delta_{i_2}|$.

Складывая два последних неравенства, получаем $M_{i_1}|\Delta_{i_1}|+M_{i_2}|\Delta_{i_2}| \le M_i(|\Delta_{i_1}|+|\Delta_{i_2}|)=M_i|\Delta_i|.$

Таким образом, при разделении промежутка на два мелких непересекающихся промежутка верхняя сумма Дарбу не увеличивается, т.е. справедлива последняя из оценок (D, τ, τ') : $S(f, \tau) \leq S(f, \tau')$.

Объединяя обе полученные оценки с неравенством (D_{\leq}) , получаем требуемое. \square

Лемма

Для заданной функции f(x), $x \in \Delta$, и любых двух разбиений $\tau'(\Delta)$ и $\tau''(\Delta)$ промежутка Δ соответствующие им верхние и нижние суммы Дарбу связаны соотношениями $s(f,\tau') \leq S(f,\tau'')$, $s(f,\tau'') \leq S(f,\tau')$.

Доказательство

Согласно лемме о продолжении двух разбиений найдется разбиение $\tau(\Delta)$ промежутка Δ , являющееся одновременно продолжением как $\tau'(\Delta)$, так и $\tau''(\Delta)$.

По предыдущей лемме при измельчении сетки от $\tau'(\Delta)$ до $\tau(\Delta)$ нижняя сумма Дарбу не уменьшается, а верхняя не увеличивается: $s(f,\tau') \leq s(f,\tau), \, S(f,\tau) \leq S(f,\tau').$

Аналогично, измельчение сетки от $\tau''(\Delta)$ до $\tau(\Delta)$ приводит к неравенствам $s(f,\tau'') \leq s(f,\tau), S(f,\tau) \leq S(f,\tau'').$

Комбинируя последние четыре неравенства с оценкой $s(f,\tau) \leq S(f,\tau)$, получаем первое из доказываемых неравенств $s(f,\tau') \leq s(f,\tau) \leq S(f,\tau) \leq S(f,\tau'')$.

Меняя здесь местами разбиения $\tau'(\Delta)$ и $\tau''(\Delta)$, получаем и второе из доказываемых неравенств. \square

Пусть есть разбиение $\tau(\Delta) = \{\Delta_1, \Delta_2, \dots, \Delta_N\}$ промежутка Δ . В каждом из мелких промежутков Δ_i выберем какую-нибудь точку ξ_i и свяжем с вектором $\xi = (\xi_1, \xi_2, \dots, \xi_N)$ понятие интегральной суммы Римана.

Определение

Для данной функции $f(x), x \in \Delta$, и разбиения $\tau(\Delta)$ промежутка Δ линейная комбинация вида $\sigma(f,\tau) = \sum\limits_{i=1}^N f(\xi_i) |\Delta_i|$, где любая точка ξ_i лежит в промежутке Δ_i называется интегральной суммой Римана функции f.

Иное обозначение интегральной суммы Римана, используемое далее в ряде случаев: $\sigma(f; \tau, \xi)$, где $\xi = (\xi_1, \xi_2, \dots, \xi_N)$.

Для заданной функции f(x), $x \in \Delta$, при любом выборе точек ξ_i из промежутков Δ_i , $i = 1, 2, \ldots, N$, соответствующие этой функции интегральные суммы Римана и Дарбу связаны между собой соотношениями $s(f,\tau) \leq \sigma(f;\tau,\xi) \leq S(f,\tau)$.

Кроме того справедливы следующие равенства $s(f,\tau)=\inf_{\xi}\sigma(f;\tau,\xi),$ $S(f,\tau)=\sup_{\xi}\sigma(f;\tau,\xi).$

3 Определение Интеграла Римана. Пример: интеграл ступенчатой функции. Теорема об ограниченности интегрируемой по Риману функции

Как уже установлено выше, для любых двух разбиений $\tau'(\Delta)$ и $\tau''(\Delta)$ промежутка Δ справедлива оценка $s(f,\tau') \leq S(f,\tau'')$.

Фиксируя здесь разбиение $\tau''(\Delta)$ и заставляя разбиение $\tau'(\Delta)$ пробегать все допускаемые для него значения, получаем оценку $\sup_{\tau} (f,\tau) \leq S(f,\tau'')$.

В свою очередь, заставляя разбиение $\tau''(\Delta)$ в последнем неравенстве пробегать также все допускаемые для него значения, приходим к соотношению

$$\sup_{\tau} s(f,\tau) \le \inf_{\tau} S(f,\tau). \tag{(\underline{J}\overline{J})}$$

Определение

Для данной функции $f(x), x \in \Delta$, величины $\underline{J}(f) = \sup_{\tau} s(f,\tau)$ и $\overline{J}(f) = underset\tau \inf S(f,\tau)$ называются соответственно нижним и верхним интегралом Дарбу от функции f по промежутку Δ .

Перепишем соотношение $(\underline{J}\overline{J})$ с учетом только что данного определения. Тогда получим $\underline{J}(f) \leq \overline{J}(f)$.

Эта оценка объясняет, почему величину $\underline{J}(f)$ называют нижним интегралом Дарбу, а $\overline{J}(f)$ — верхним интегралом.

Определение

Если для данной функции f(x), $x \in \Delta$, нижний и верхний интегралы Дарбу от нее, взятые по промежутку Δ , конечны и равны между собой, то функция f(x) называется интегрируемой по Риману на промежутке

 Δ . При этом число $J(f) = J(f) = \overline{J}(f)$ называют интегралом Римана от функции f по Δ .

Для интеграла Римана, если он существует, используется обозначение $\int\limits_{\Delta} f(x) dx$. Из определения интеграла Римана сразу следует его двусторонняя оценка через суммы Дарбу: $s(f,\tau) \leq \int_{\Delta} f(x) dx \leq S(f,\tau) \ \forall \tau = \tau(\Delta).$

Интеграл от функции f не зависит от того, как обозначена независимая переменная: х, у, z, или как-то еще. Иными словами, справедливы равенства $\int\limits_{\Delta} f(x)dx = \int\limits_{\Delta} f(y)dy = \int\limits_{\Delta} f(z)dz = \dots$ Примеры интегрируемых по Риману функций дают так называемые

ступенчатые функции.

Определение

Функция f(x), $x \in \Delta$, называется ступенчатой на промежутке Δ , если существует такое разбиение $\tau(\Delta) = \{\Delta_1, \Delta_2, \dots, \Delta_N\}$ этого промежутка, что $f(x) = C_i \ \forall x \in \Delta_i; i = 1, 2, \dots, N$, где C_i — это постоянная.

Иными словами, f(x) ступенчатая на промежутке Δ , если она кусочнопостоянна на этом промежутке.

Любая ступенчатая функция интегрируема по Риману и при этом $\int_{\Delta} f(x)dx = \sum_{i=1}^{N} C_i |\Delta_i|.$

Теорема (ограниченность интегрируемых функций)

Если функция интегрируема по Риману на промежутке числовой оси, то она ограничена на этом промежутке.

Доказательство

Пусть функция $f(x), x \in \Delta$, интегрируема по Риману на промежутке Δ . Предположим, что эта функция неограничена сверху на Δ , т.е. что

$$\sup_{x \in \Delta} f(x) = +\infty. \tag{(UnB)}$$

Возьмем произвольное разбиение $\tau(\Delta) = \{\Delta_1, \Delta_2, \dots, \Delta_N\}$ промежутка Δ . Из условия неограниченности (UnB) следует, что найдется такой номер что функция неограничена сверху на мелком промежутке Δ_i разбиения: $\sup f(x) = +\infty, \ |\Delta_i| > 0.$

Но в этом случае верхняя интегральная сумма Дарбу $S(f,\tau)$ также неограничена сверху: $S(f,\tau)=\sum\limits_{j=1}^N M_j|\Delta_j|=M_i|\Delta_i|+\sum\limits_{j\neq i}^N M_j|\Delta_j|=+\infty.$

Учитывая, что разбиение $\tau(\Delta)$ промежутка Δ здесь произвольно, заключаем, что верхний интеграл Дарбу от функции f(x), взятый по промежутку Δ , также бесконечен: $\overline{J}(f)=\inf S(f,\tau)=+\infty$.

Но по условию функция f(x), $x \in \Delta$, интегрируема по Риману на промежутке Δ и, в соответствии с определением, ее верхний интеграл Дарбу $\overline{J}(f)$ должен быть конечен. Это противоречит полученному равенству и, следовательно, сделанное изначально предположение о неограниченности функции f(x) неверно.

Аналогично, предположив, что функция f(x) неограничена снизу на Δ , т.е. что $\inf_{x\in\Delta}f(x)=-\infty$, с необходимостью получим неограниченность снизу соответствующего функции нижнего интеграла Дарбу: $\underline{J}(f)=\sup sups(f,\tau)=-\infty$.

^{$ilde{ au}$} Таким образом, интегрируемая по Риману функция обязана быть ограниченной как снизу так и сверху. \square

4 Критерий Римана интегрируемости функции. Колебания функции на промежутке. Следствие

Укажем некоторые условия, необходимые и достаточные для интегрируемости функций по Риману.

Теорема (критерий Римана)

Функция f(x), $x \in \Delta$, интегрируема по Риману на промежутке Δ тогда и только тогда, когда для любого $\varepsilon > 0$ существует разбиение $\tau_{\varepsilon}(\Delta)$ промежутка Δ такое, что разность соответствующих этому разбиению верхней и нижней сумм Дарбу удовлетворяет неравенству

$$S(f, \tau_{\varepsilon}) - s(f, \tau_{\varepsilon}) < \varepsilon.$$
 ((R₁))

Доказательство

Установим необходимость оценки (R_1) при условии, что исходная функция интегрируема. Согласно определению интеграла Римана J(f) имеют место равенства $J(f) = \sup_{\tau} S(f,\tau)$.

Учитывая это и задавшись любым $\varepsilon > 0$, найдем такие два разбиения $\tau'_{\varepsilon}(\Delta)$ и $\tau''_{\varepsilon}(\Delta)$ промежутка Δ , для которых выполняются неравенства $J(f) - \frac{\varepsilon}{2} < s(f, \tau'_{\varepsilon}) \leq J(f), \ J(f) \leq S(f, \tau''_{\varepsilon}) < J(f) + \frac{\varepsilon}{2}.$

Согласно лемме о продолжении найдется некоторое общее продолжение $\tau_{\varepsilon}(\Delta)$ разбиений $\tau'_{\varepsilon}(\Delta)$ и $\tau''_{\varepsilon}(\Delta)$. При этом соответствующие верхние и нижние суммы Дарбу связаны следующим образом: $s(f,\tau'_{\varepsilon}) \leq s(f,\tau_{\varepsilon})$, $S(f,\tau_{\varepsilon}) \leq S(f,\tau''_{\varepsilon})$, $S(f,\tau'_{\varepsilon}) \leq S(f,\tau''_{\varepsilon})$.

Учитывая еще, что $s(f,\tau_{\varepsilon}) \leq S(f,\tau_{\varepsilon})$, получаем следующие последовательные неравенства: $J(f) - \frac{\varepsilon}{2} < s(f,\tau'_{\varepsilon}) \leq s(f,\tau_{\varepsilon}) \leq S(f,\tau_{\varepsilon}) \leq S(f,\tau'_{\varepsilon}) < S(f,\tau''_{\varepsilon}) < J(f) + \frac{\varepsilon}{2}$.

Исключив из этой цепочки первое и четвертое неравенства, получим $J(f)-\frac{\varepsilon}{2} < s(f,\tau_{\varepsilon}) \leq S(f,\tau_{\varepsilon}) < J(f)+\frac{\varepsilon}{2}.$

Как следствие этих соотношений, имеем для разбиения $\tau_{\varepsilon}(\Delta)$ искомую оценку (R_1) : $S(f, \tau_{\varepsilon}) - s(f, \tau_{\varepsilon}) < \varepsilon$.

Установим достаточность условия (R_1) для интегрируемости функции f(x). Пусть $\tau_{\varepsilon}(\Delta)$ это разбиение промежутка из условия (R_1) . Тогда согласно определению верхнего и нижнего интегралов Дарбу имеем следующие неравенства: $s(f, \tau_{\varepsilon}) \leq \underline{J}(f) \leq \overline{J}(f) \leq S(f, \tau_{\varepsilon})$.

Следовательно, справедливы соотношения $\overline{J}(f) - \underline{J}(f) \leq S(f, \tau_{\varepsilon}) - s(f, \tau_{\varepsilon}) < \varepsilon$.

Последнее неравенство здесь справедливо в силу условия (R_1) .

Таким образом, верхний и нижний интегралы Дарбу связаны отношением $0 \le \overline{J}(f) - \underline{J}(f) < \varepsilon$.

В частности, из полученной оценки следует конечность интегралов Дарбу $\underline{J}(f)$ и $\overline{J}(f)$.

Перейдя к пределу при $\varepsilon \to 0$ в последнем неравенстве, получим в результате равенство $\underline{J}(f)=\overline{J}(f).$

Таким образом, все условия из определения интеграла Римана выполнены. Это означает, что функция f(x) интегрируема по Риману на промежутке Δ . \square

5 Определение и свойства колебаний функции на множестве. Критерий Римана интегрируемости функции в терминах локальных колебаний

Пусть есть функция f(x), $x \in D_f$, и множество $g \subset D_f$. Важной метрической характеристикой поведения функции на множестве g является колебание этой функции на указанном множестве.

Определение

Колебанием функции f(x) на множестве $g \subset D_f$ называется разность $\omega(f;g) = \sup_{x \in g} f(x) - \inf_{x \in g} f(x)$.

Любая ограниченная функция f(x), $x \in D_f$, имеет на произвольном подмножестве g своей области определения, $g \subset D_f$, конечное и неотрицательное колебание $\omega(f;g)$.

Кроме того имеет место оценка $|f(x) - f(y)| \le \omega(f;g) \ \forall x, y \in g$.

Пусть имеется разбиение $\tau(\Delta) = \{\Delta_1, \Delta_2, \dots, \Delta_N\}$ промежутка Δ числовой оси. Тогда разность верхней и нижней сумм Дарбу функции $f(x), x \in \Delta$, по этому промежутку допускает представление в виде линейной комбинации ее колебаний на мелких промежутках разбиения $\tau(\Delta)$. Точнее имеет место равенство

$$S(f,\tau) - s(f,\tau) = \sum_{j=1}^{N} (M_j - m_j)|\Delta_j| = \sum_{j=1}^{N} \omega(f;\Delta_j)|\Delta_j|. \qquad ((\sum_{\omega}))$$

Приведем формулировку критерия Римана интегрируемости функции в терминах ее колебаний.

Теорема

Функция f(x), $x \in \Delta$, интегрируема по Риману на промежутке Δ тогда и только тогда, когда для любого $\varepsilon > 0$ существует разбиение $\tau_{\varepsilon}(\Delta) = \{\Delta_1, \Delta_2, \dots, \Delta_N\}$ промежутка Δ , такое что

$$\sum_{j=1}^{N} \omega(f; \Delta_j) |\Delta_j| < \varepsilon. \tag{(R'_1)}$$

Доказательство

Для обоснования теоремы в приведенной формулировке достаточно вос-
пользоваться уже доказанным критерием интегрируемости функции по
Риману и представлением (\sum_{ω}) разности верхней и нижней сумм Дарбу
в терминах локальных колебаний функции.