

ENE 111881 Laboratório de Conversão Eletromecânica de Energia

Laboratório 1: Correção do fator de potência

1. Objetivos

São objetivos desse ensaio:

- a) Familiarizar o aluno com a bancada de trabalho utilizada em todos os ensaios da disciplina;
- b) Aprender a utilizar equipamentos de medição: voltímetro, amperímetro e wattímetro;
- c) Verificar as potências ativa, reativa e aparente, consumidas por uma carga alimentada em corrente alternada;
- d) Verificar as potências aparente, ativa e reativa consumidas antes e depois da correção do fator de potência.

2. Revisão de conceitos básicos

Fator de potência é a relação entre a energia ativa e a energia total, conforme equação:

$$FP = \frac{kWh_{medido}}{\sqrt{kWh_{medido}^2 + kVAr_{medido}^2}}$$

Esta relação demonstra se a unidade consumidora consome energia elétrica adequadamente ou não; pois relaciona o uso eficiente da energia ativa e reativa de uma unidade consumidora, sendo um dos principais indicadores de eficiência energética. O fator de potência próximo de 1 (um) indica pouco consumo de energia reativa em relação à energia ativa. Uma vez que a energia ativa é aquela que efetivamente produz trabalho, quanto mais próximo da unidade for o fator de potência, maior é a eficiência da instalação elétrica. O fator de potência é classificado em indutivo ou capacitivo. Fator de potência indutivo significa que a instalação elétrica está absorvendo a energia reativa. A maioria dos equipamentos elétricos possui características indutivas em função das suas bobinas (ou indutores), que induzem o fluxo magnético necessário ao seu funcionamento. Fator de potência capacitivo significa que a instalação elétrica está fornecendo a energia reativa. São características dos capacitores que normalmente são instalados para fornecer a energia reativa que os equipamentos indutivos absorvem. O fator de potência torna-se capacitivo quando são instalados capacitores em excesso. Isso ocorre, principalmente, quando os equipamentos elétricos indutivos são desligados os capacitores permanecem ligados na instalação elétrica (http://servicos.celpe.com.br).

Responda as questões a seguir para melhor compreender o ensaio a ser realizado.
a) Qual a importância da correção do fator de potência?
b) Por que são utilizados capacitores para corrigir o fator de potência?

c) Qual a relação entre potência ativa (P), potência reativa (Q), potência aparente (S) e fato de potência (FP)?
d) Para uma instalação com P = 3 kW e Q = 4 kVAr, como corrigir o fator de potência para 0.8

e) Para os valores indicados no circuito da figura 1,

Figura 1. Circuito elétrico com correção de fator de potência

considerando inicialmente a chave S aberta, ou seja, com o banco de capacitores desligado:

- I) Qual a corrente na linha de transmissão em 60Hz?
- II) Calcule:

- P _{CARGA} :	W	
- P _{DISSIPADA} na lir	nha de transmissão:	V
- P _{TOTAL} fornecie	da pelo gerador:	W
- S _{TOTAL} fornecio	da pelo gerador:	VA
- Q _{CARGA} :	VAr	
- S _{CARGA} :	VA	
- FP _{CARGA} :		

Considerando a chave S fechada, ou seja, com o banco de capacitores corrigindo o fator de potência: III) Qual a corrente na linha de transmissão? IV) Calcule: - P_{CARGA}: _____ W - P_{DISSIPADA} na linha de transmissão: _____ W - P_{TOTAL} fornecida pelo gerador: W - S_{TOTAL} fornecida pelo gerador: ______ VA - Q_{CARGA}: VAr - S_{CARGA}: _____ VA - FP_{CARGA}: _____ Levando em conta os resultados obtidos, responda: - Com a utilização do banco de capacitores, o que aconteceu com a corrente no condutor? É possível utilizar um condutor de menor seção? - O que aconteceu com a potência aparente fornecida pela fonte? Se fosse necessário utilizar um transformador entre a fonte e o condutor, qual deveria ser a sua potência nominal, em VA, antes e depois da correção do fator de potência? ______ - Houve redução das perdas por efeito Joule no condutor? Qual foi o percentual de redução? Compare o percentual da corrente com as perdas no condutor.

3. Introdução para o Laboratório 1

Apresentamos, a seguir, algumas fotos e informações úteis dos principais equipamentos que são utilizados no Ensaio 1 do Laboratório de Conversão Eletromecânica de Energia.

a) Bancada de Trabalho

Figura 2 – Bancada de trabalho

Conforme as indicações na Figura 2, a bancada de trabalho é constituída dos seguintes elementos:

- A) Varivolt que regula as tensões das fontes F2 e F3;
- B) Varivolt que regula as tensões das fontes F4 e F5;
- C) Chave para ligar e desligar a bancada;
- D) Conjunto de três voltímetros CA (para medições em corrente alternada);
- E) Conjunto de três amperímetros CA (para medições em corrente alternada);
- F) Conjunto de três voltímetros CC (para medições em corrente contínua);
- G) Conjunto de três amperímetros CC (para medições em corrente contínua);
- H) Frequencímetro analógico com sistema de lâminas vibráveis;
- I) Wattímetro analógico trifásico;
- J) Fontes CA, trifásicas, F1(220V / 8,0A) e F2(0...240V / 4,5A);
- K) Fontes CC: F3(0...300V / 5,5A), F5(0...220V / 2,0A), F6(12V / 3,0A)
 - e fonte CA monofásica: F4(0...240V / 2,0A)

b) Wattímetro Analógico

Um wattímetro faz um trabalho complexo, medindo a potência que flui através de um circuito eléctrico. Ele mede simultaneamente os valores de tensão e corrente e multiplica-os para obter a potência em watts. O Wattímetro analógico funciona por meio de três bobinas: duas fixas ligadas em série com a carga elétrica e uma bobina móvel, em paralelo com a carga. As bobinas em série, que têm impedância muito baixa (próxima de zero) fazem a medida da corrente que flui através do circuito, enquanto a bobina em paralelo mede a tensão. Um resistor em série limita a corrente através da bobina móvel que está situada entre as duas bobinas fixas e é fixada a uma agulha indicadora. Os campos magnéticos em todas as três bobinas influenciam o movimento de uma agulha. Uma mola retorna a agulha ao valor zero quando não há corrente ou tensão presentes.

O wattimetro da Figura 2 possui duas escalas: uma para correntes até 1A e outra para correntes até 5A. Deve-se optar pela menor escala que suporte a corrente que atravessa a bobina durante a medição. No caso do emprego da escala de 5A, o valor indicado pelo ponteiro deve ser multiplicado por 5. A bobina de tensão apresenta uma impedância muito alta (próxima do infinito) e seus terminais devem estar conectados nos dois pontos em que se deseja medir a potência.

Figura 2 – Wattímetro Analógico

c) Módulos de Cargas Resistivas, Capacitivas e Indutivas, trifásicas

Figura 3 – Visão geral dos módulos de cargas trifásicas

Figura 4 – (a) Identificação do módulo trifásico. (b) Chaves de ativação das resistências.

O módulo de cargas resistivas possui três conjuntos de resistências (A, B e C). Isso permite a utilização das suas resistências em circuitos monofásicos ou trifásicos conectados em delta ou em estrela. Quando uma chave está posicionada para cima, aquela resistência encontra-se desligada. O fato de uma chave estar voltada para baixo significa que aquela resistência está inserida no circuito em questão. A Figura 5 mostra o esquema de ligação do módulo de cargas resistivas.

Figura 5 – Esquema do circuito elétrico do módulo de cargas resistivas

Os valores das potências (P) indicadas são relativos uma fonte de tensão de 220 V. Portanto, o valor da resistência associada a cada chave pode ser calculado de acordo com a equação:

$$R[\Omega] = \frac{\left(220[V]\right)^2}{P[W]}$$

Os módulos de cargas capacitivas e indutivas são similares ao módulo de cargas resistivas. A Figura 6 mostra as chaves de ativação destes módulos.

Figura 6 – Chaves de ativação das capacitâncias (a) e indutâncias (b).

4. Atividades experimentais

Equipamentos utilizados

Fontes da bancada, voltímetros, amperímetros, wattímetro analógico, conectores, módulos de resistências, indutâncias e capacitâncias.

Os capacitores conservam sua carga por um longo período, mesmo depois de desenergizados. Tome muito cuidado ao manusear estes componentes. Há risco de choque elétrico!

O circuito da Figura 7 será utilizado como base para todos os ensaios com valores de carga especificados. Ajuste a fonte monofásica CA para que a tensão eficaz nos seus terminais, com carga, seja de 200V. Obtenha as leituras do voltímetro, amperímetro e wattímetro e preencha os espaços em branco para cada uma das condições de carga do respectivo ensaio.

Figura 7 – Esquema básico para a ligação de cargas resistivas, indutivas e capacitivas

Observações: a resistência a ser conectada ao circuito é de 485 Ω (\cong), especificada no banco de resistências como sendo de 100 W; a indutância a ser conectada com o circuito tem o valor de 0,585 H; a capacitância a ser conectada ao circuito tem o valor de 12 μF.

Quais são os valores das reatâncias indutivas e capacitivas? $X_L = \underline{\hspace{1cm}} \Omega$; $X_C = \underline{\hspace{1cm}} \Omega$

Para cada ensaio, deverão ser calculados:

Os valores teóricos:

- W_T: valor teórico da potência ativa (Ensaios 1, 2, 3 e 4);
- I_T: valor teórico da corrente (Ensaios 1, 2, 3 e 4);
- V_T: valor teórico da tensão (Ensaios 1, 2, 3 e 4);
- R_T: valor teórico da resistência (Ensaios 1, 3 e 4);
- X_{LT}: valor teórico da indutância (Ensaios 2, 3 e 4);
- X_{CT}: valor teórico da capacitância (Ensaio 4);
- Z_T: valor teórico da impedância (Ensaios 1, 2, 3 e 4)
- S_T: valor teórico da potência aparente (Ensaios 1, 2, 3 e 4);
- Q_T : valor teórico da potência reativa (Ensaios 1, 2, 3 e 4);
- FP_T: valor teórico do fator de potência (Ensaios 1, 2, 3 e 4);

Os valores práticos:

- IP: valor prático da corrente (Ensaios 1, 2, 3 e 4);

- V_P: valor prático da tensão (Ensaios 1, 2, 3 e 4);

- R_P: valor prático da resistência (Ensaios 1, 3 e 4);

- XL_P: valor prático da indutância (Ensaios 2, 3 e 4);

- XC_P: valor prático da capacitância (Ensaio 4);

- Z_P: valor prático da impedância (Ensaios 1, 2, 3 e 4).

- S_P: valor prático da potência aparente (Ensaios 1, 2, 3 e 4);

- Q_P: valor prático da potência reativa (Ensaios 1, 2, 3 e 4);

- FP_P: valor prático do fator de potência (Ensaios 1, 2, 3 e 4);

Ensaio 1: Conectar a resistência R, conforme o circuito a Figura 8, realizar as leituras dos instrumentos e calcular os valores indicados:

Figura 8 – Esquema básico para a ligação da carga resistiva

Ensaio 2: Desconectar a resistência R, conectar a indutância L, conforme o circuito da Figura 9, realizar as leituras dos instrumentos e calcular os valores indicados:

Figura 9 – Esquema básico para a ligação da carga indutiva

Ensaio 3: Conectar a resistência R e a indutância L, conforme o circuito da Figura 10, realizar as leituras dos instrumentos e calcular os valores indicados:

Figura 10 - Esquema básico para a ligação da carga resistiva e indutiva

Ensaio 4: Conectar a resistência R, a indutância L, a capacitância C conforme o circuito da Figura 11, realizar as leituras dos instrumentos e calcular os valores indicados:

Figura 11 - Esquema básico para a ligação da carga resistiva, indutiva e capacitiva

5. Análise dos resultados:

1) Preencha a tabela abaixo com os dados medidos:

Grandeza	Carga R (Ensaio 1)	Carga L (Ensaio 2)	Carga R-L (Ensaio 3)	Carga R-L-C (Ensaio 4)
Р				
Q				
S				
FP				
I				

Laboratório 1 – Correção do fator de potência 12

3) Por que a potência ativa não é igual para todos os casos (quando a resistência esta conectada ao circuito)? 4) Quais são suas conclusões sobre os ensaios?
conectada ao circuito)?
4) Quais são suas conclusões sobre os ensaios?
4) Quais são suas conclusões sobre os ensaios?
4) Quais são suas conclusões sobre os ensaios?
4) Quais são suas conclusões sobre os ensaios?
4) Quais são suas conclusões sobre os ensaios?
4) Quais são suas conclusões sobre os ensaios?
4) Quais são suas conclusões sobre os ensaios?