In <u>week 2 lab</u> we learnt how to control *Kobo* mobile base (referred to as **robot** here onwards). The control command for this robot is a **Twist** message. Here's how we create a **Twist** message

```
velocity_msg = Twist()
velocity_msg.linear.x = 0.2
velocity_msg.angular.z = 0.2
```

The two components being set are equivalent to *V* and *W* command for a Unicycle.

The current exercise requires you to control the robot to make it move along an 8 curve (as depicted in the accompanying animation). We will do this incrementally:

Part A)

Write a python script to generate waypoints (x,y) and plot them:

$$x = A \cos(at)$$

 $y = A \sin(bt)$

with A = 4, a=1, b=2

Part B)

Write a ROS node that takes one waypoint at a time, use this waypoint as a target/goal point and using the robots current location (from/odom) as a start point. Calculate following error terms

E_pos = Euclidean distance between start point and target point

E_theta = Difference between the current heading and desired heading (angle made by the straight line connecting the start and target points)

Plot these two quantities for each of the waypoints.

Part C)

Write a ROS node that uses E_pos and E_theta and applies the following proportional control law to obtain values of v and w and publish a Twist message to steer the robot towards the target. You will need to tune the values of constants **K1** and **K2**.

Plot the motion of the robot (x,y values from /odom data) for various values of K1 and K2.

Part D)

In the report, add a section for each of the parts (A, B and C). Add code and plots.