Conjuntos Abstractos

Los ejercicios de esta sección se deben resolver en la categoría de conjuntos abstractos, \mathcal{S} , a menos que se indique lo contrario.

Ejercicio 1 Sea **A** una categoría con productos fibrados. Demuestra que un producto fibrado de $f: A \to C \leftarrow B: q$ es único salvo iso.

Ejercicio 2 Muestra que el clasificador de subobjetos Ω es coseparador, es decir, dadas f, g: $A \to B$ si para cualquier ϕ : $B \to \Omega$ el diagrama

$$A \xrightarrow{f \atop g} B \xrightarrow{\varphi} \Omega$$

conmuta, entonces f = g.

Ejercicio 3 Sea A una categoría localmente pequeña con coproductos. Demuestra que

$$\mathbf{A}(A,C) \times \mathbf{A}(B,C) \cong \mathbf{A}(A+B,C).$$

Ejercicio 4 Sean ev: $A \times \Omega^A \to \Omega$, $x: X \to A$ y $m: S \to A$. Además, considera la característica de m y su nombre en la exponencial, $\lceil \chi_m \rceil : 1 \to \Omega^A$. Muestra que $x \in_A m$ si y sólo si $ev(x \times \lceil \chi_m \rceil) = v_{X \times 1}$.

Ejercicio 5 Demuestra las siguientes leyes exponenciales:

I)
$$A^0 = 1$$
 II) $A^1 = A$ III) $A^{B+C} \cong A^B \times A^C$ IV) $A^{B\times C} \cong (A^B)^C$

Sugerencia: usa, sin demostrar, que la biyección generada por la exponencial es natural en todas las entradas y el lema de Grothendieck-Yoneda.

Ejercicio 6 Considera la categoría de espacios vectoriales sobre un campo k, **Vect**. Da un ejemplo que muestre que el dual de un espacio no es natural, es decir, que el siguiente diagrama no conmuta:

$$\begin{array}{ccc}
V & \xrightarrow{()^*} & V^* \\
T \downarrow & & \uparrow T^* \\
W & \xrightarrow{()^*} & W^*.
\end{array}$$

Además, muestra que doble dual sí es natural, es decir, que el siguiente diagrama conmuta:

$$V \xrightarrow{()^{**}} V^{**}$$
 $T \downarrow \qquad \qquad \downarrow T^{**}$
 $W \xrightarrow{()^{**}} W^{**}$.

Ejercicio 7 Sean x un conjunto y f una función con dominio x. Prueba lo siguiente:

- I) Si $A \in \mathcal{P}(\mathcal{P}(X))$ es no vacío, entonces $f[\bigcap A] \subseteq \bigcap \{f[a] \mid a \in A\}$.
- II) f es inyectiva si y sólo si para cada $A \in \mathscr{P}(\mathscr{P}(X))$ no vacío se tiene que $\bigcap \{f[\mathfrak{a}] \mid \mathfrak{a} \in A\} \subseteq f[\bigcap A]$.

Ejercicio 8 Dada una relación R, demuestra las siguientes equivalencias:

- R es reflexiva si y solo si $\Delta_{dom(R)} \subseteq R$.
- R es reflexiva en un conjunto A si y solo si $\Delta_A \subseteq R$.
- lacksquare R es simétrica si y solo si $R^{-1}\subseteq R$.
- R es transitiva si y solo si $R \circ R \subseteq R$.
- R es irreflexiva si y solo si $R \cap \Delta_V = \emptyset$.
- R es antisimétrica si y solo si $R \cap R^{-1} \subseteq \Delta_V$.
- R es asimétrica si y solo si $R \cap R^{-1} = \emptyset$.

Ejercicio 9 Si R es un orden parcial sobre A, definimos $R' = R \cup \Delta_A$ como el orden parcial reflexivo asociado; por otro lado si R es reflexivo, definimos $R^* = R \setminus \Delta_A$ como su orden estricto asociado.

Demuestra los siguientes puntos:

- $A \subseteq B \to (B \setminus A) \cup A = B.$
- $A \cap B = \varnothing \to (B \cup A) \setminus A = B.$
- R' es efectivamente un orden parcial reflexivo sobre A.
- R* es efectivamente un orden estricto sobre A.
- $R'^* = R$ cuando R es estricto.
- $R^{*'} = R$ cuando R es reflexivo. Esto junto al inciso anterior prueba que los órdenes estrictos y reflexivos están asociados mediante unaa biyección.

Ejercicio 10 Dadas R, S relaciones transitivas y antisimétricas, definimos $R \sim S$ como $\exists A(R\Delta S = \Delta_A)$. Además, definamos al conjunto $\mathcal{X}_A = \{R \subseteq A^2R \text{ es transitiva y antisimétrica.}\}$. Demuestra los siguientes incisos:

- 1. ~ es reflexiva, transitiva y simétrica.
- 2. $\sim_{|_{\mathcal{X}_A}}$ es una relación de equivalencia sobre \mathcal{X}_A . A partir de aquí, nos referiremos a esta relación como \sim .
- 3. Dada $R \in \mathcal{X}_A$, $([R]_{\sim}, \subseteq)$ es un retículo completo. Prueba que el infimo y supremo son la intersección y unión respectivamente siempre que el conjunto es no vacío.
- 4. Prueba que el mínimo es un orden estricto y que el máximo es un orden reflexivo.
- 5. Prueba que el el mínimo y máximo están asociados.
- 6. Si $R \sim S$, aRb y bSc entonces $a(R \cap S)c$.

Ejercicio 11 Un morfismo de órdenes $f:(A, \leq_A) \to (B, \leq_B)$ es una función creciente, es decir, si $a \leq_A b$ implica $f(a) \leq_B f(b)$. Considerando que los órdenes parciales junto con las funciones crecientes forman una categoría, tenemos una definición de isomorfismo.

Con esto en cuenta, demuestra o refuta con un contraejemplo la siguiente afirmación: (A, \leqslant_A) es isomorfo a (B, \leqslant_B) si y solo si existe un morfismo de orden biyectivo.

Ejercicio 12 Sea (A, \leq) una reticula y X un conjunto, definimos la siguiente relación sobre A^X :

$$\preccurlyeq = \{(f, g) \in (A^X)^2 \forall x (x \in X \to f(x) \leqslant g(x))\}$$

Demuestra que (A^X, \preccurlyeq) es una retícula.

Ejercicio 13 Demuestra que todo orden parcial reflexivo es isomorfo a un conjunto ordenado por contención.