

Discrete Mathematics MH1812

Topic 7.1 - Set Theory I Dr. Guo Jian

SINGAPORE

What's in store...

By the end of this lesson, you should be able to...

- Explain the concepts of sets.
- Use Venn diagrams to show the relationship between sets.
- Explain what is cartesian product.
- Explain what is a partition of a set.

Introduction to Set: Definition

A set is a collection of abstract objects (e.g., prime numbers, domain in predicate logic).

• Determined by (distinct) elements/members:

$$-$$
 E.g., $\{1, 2, 3\} = \{3, 1, 2\} = \{1, 3, 2\} = \{1, 1, 1, 2, 3, 3, 3\}$

- Two common ways to specify a set:
 - Explicit: enumerate the members
 - E.g., $A = \{2, 3\}$
 - Implicit: description using predicates $\{x \mid P(x)\}$
 - E.g., $A = \{x \mid x \text{ is a prime number}\}$

Introduction to Set: Membership

We write $x \in S$ iff x is an element (member) of S.

- E.g., $\{1, 2, 3\} = \{3, 1, 2\} = \{1, 3, 2\} = \{1, 1, 1, 2, 3, 3, 3\}$
- E.g., $A = \{x \mid x \text{ is a prime number}\}\$ then $A = \{2, 3, 5, 7,...\}$ $2 \in A, 3 \in A, 5 \in A,..., 1 \notin A, 4 \notin A, 6 \notin A, ...$

Introduction to Set: Subset

A set A is a subset of the set B, denoted by $A \subseteq B$ iff every element of A is also an element of B.

I.e.,:

- $A \subseteq B \triangleq \forall x(x \in A \rightarrow x \in B)$
- $A \not\subset B \triangleq \neg (A \subseteq B)$ $\equiv \neg \forall x (x \in A \rightarrow x \in B)$ $\equiv \exists x (x \in A \land x \notin B)$
- E.g., $B = \{1, 2, 3\}, A = \{1, 2\} \subseteq B$

Introduction to Set: Empty Set

The set that contains no element is called the empty set or null set.

- The empty set is denoted by Ø or by { }.
- Note: $\emptyset \neq \{\emptyset\}$

Introduction to Set: Set Equality

$$A = B \triangleq \forall x(x \in A \leftrightarrow x \in B)$$

Two sets A and B are equal iff they have the same elements.

$$A \neq B \triangleq \neg \forall x (x \in A \leftrightarrow x \in B)$$

$$\equiv \exists x [(x \in A \land x \notin B) \lor (x \in B \land x \notin A)]$$

• Two sets are not equal if they do not have identical members, i.e., there is at least one element in one of the sets which is absent in the other.

$$-$$
 E.g., $\{1, 2, 3\} = \{3, 1, 2\} = \{1, 3, 2\} = \{1, 1, 1, 2, 3, 3, 3\}$

Introduction to Set: Cardinality

The cardinality |S| of S is the number of elements in S. (E.g., for $S = \{1, 3\}, |S| = 2$)

- If |S| is finite, S is a finite set; otherwise S is infinite.
 - The set of positive integers is an infinite set.
 - The set of prime numbers is an infinite set.
 - The set of even prime numbers is a finite set.

• Note: $|\emptyset| = 0$

Introduction to Set: Power Set

The power set P(S) of a given set S is the set of all subsets of S: $P(S) = \{A \mid A \subseteq S\}$.

- E.g., for $S = \{1,2,3\}$ $P(S) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}\}$
- If a set S has n elements, then P(S) has 2^n elements.
 - Hint: Try to leverage the Binomial theorem.

$$(x+y)^n = \binom{n}{0}x^ny^0 + \binom{n}{1}x^{n-1}y^1 + \binom{n}{2}x^{n-2}y^2 + \dots + \binom{n}{n-1}x^1y^{n-1} + \binom{n}{n}x^0y^n,$$

Venn Diagram: Definition

A Venn diagram is used to show/visualise the possible relations among a collection of sets.

John Venn (1834 - 1923)

John Venn under WikiCommons (PD-US)

"Stained glass window by Maria McClafferty in the dining hall of Gonville and Caius College" by Schutz is licensed under CC BY 2.5

Venn Diagram: Union and Intersection

The union of sets A and B is the set of those elements that are either in A, in B, or both.

$$A \cup B \triangleq \{x \mid x \in A \lor x \in B\}$$

The intersection of the sets A and B is the set of all elements that are in both A and B.

$$A \cap B \triangleq \{x \mid x \in A \land x \in B\}$$

Venn Diagram: Disjoint Sets

Sets A and B are disjoint iff $A \cap B = \emptyset$

$$|A \cap B| = 0$$

What about the Merlion?

Venn Diagram: Cardinality of Union

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Venn Diagram: Set Difference and Complement

The difference of A and B (or complement of B with respect to A) is the set containing those elements that are in A but not in B.

$$A - B \triangleq \{x \mid x \in A \land x \notin B\}$$

Venn Diagram: Set Difference and Complement

The complement of A is the complement of A with respect to U.

$$\overline{A} = U - A \triangleq \{x \mid x \notin A\}$$

Cartesian Product: Definition

The Cartesian product $A \times B$ of the sets A and B is the set of all ordered pairs (a,b) where $a \in A$ and $b \in B$.

$$A \times B \triangleq \{(a,b) \mid a \in A \land b \in B\}$$

René Descartes (1596 - 1650)

Portrait of René Descartes by André Hatala under WikiCommons (PD-US)

Cartesian Product: Example

$$A = \{1,2\}, B = \{x,y,z\}$$

$$A \times B = \{(1,x), (1,y), (1,z), (2,x), (2,y), (2,z)\}$$

$$B \times A = \{(x,1), (x,2), (y,1), (y,2), (z,1), (z,2)\}$$

In general: $A_1 \times A_2 \times ... \times A_n \triangleq \{(a_1, a_2, ..., a_n) \mid a_i \in A_i \text{ for } i = 1, 2, ..., n\}$

$$|A_1 \times A_2 \times ... \times A_n| = |A_1| |A_2| ... |A_n|$$

Partition: Definition

A collection of nonempty sets $\{A_1, A_2, ..., A_n\}$ is a partition of a set A, iff $A = A_1 \cup A_2 \cup ... A_n$ and $A_1, A_2, ..., A_n$ are mutually disjoint, i.e., $A_i \cap A_j = \emptyset$ for all i, j = 1, 2, ..., n, and $i \neq j$.

Let's recap...

- · Sets:
 - Membership
 - Subset
 - Null set
 - Equality
- Venn diagram

Let's recap...

- Set operations:
 - Union
 - Intersection
 - Complement
 - Difference
- Cartesian Product
- Partition

Discrete Mathematics MH1812

Topic 7.2 - Set Theory II Dr. Guo Jian

SINGAPORE

What's in store...

By the end of this lesson, you should be able to...

- Explain the different types of set identities.
- Apply the three methods to prove set identities.

Set Identities: Set Difference

$$A \cap \overline{B} = A - B$$

Compare $A \cap \overline{B}$ with $A - B = \{x \mid x \in A \land x \notin B\}$

Set Identities: Set Difference

$$\overline{A \cap \overline{B}} = \overline{A} \cup B$$

- Consider $\overline{A-B}=A\cap \overline{B}$
- This is De Morgan's Law $\overline{X \cap Y} = \overline{X} \cup \overline{Y}$ with X = A and $Y = \overline{B}$

Set Identities: Laws

Identity	Name	
$A \cup \emptyset = A$ $A \cap U = A$	l Identity laws	
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws	
$A \cup A = A$ $A \cap A = A$	ldempotent laws	
${\overline{A}} = A$	Double Complement laws	

Set Identities: Laws

Identity

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Associative laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Distributive laws

$$\overline{\overline{A \cup B}} = \overline{\overline{A}} \cap \overline{\overline{B}}$$
$$\overline{A \cap B} = \overline{\overline{A}} \cup \overline{\overline{B}}$$

De Morgan's laws

Set Identities: Laws

Identity

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

$$A - B = A \cap \overline{B}$$

Name

Absorption laws

Alternate representation for set difference

Proving Set Identities: Three Methods

• Recall: two sets are equal if and only if they contain exactly the same elements, i.e., iff $A \subseteq B$ and $B \subseteq A$.

Three Methods to Prove Set Identities

- Show that each set is a subset of the other
- Apply set identity theorems
- Use membership table

Proving Set Identities: Each Others' Subset

Show that
$$(B-A) \cup (C-A) = (B \cup C) - A$$

For any $x \in LHS$, $x \in (B-A)$ or $x \in (C-A)$ (or both)

When
$$X \in B - A$$

$$\Rightarrow (x \in B) \land (x \notin A)$$

$$\Rightarrow (x \in B \cup C) \land (x \notin A)$$

$$\Rightarrow x \in (B \cup C) - A$$

When
$$X \in C - A$$

$$\Rightarrow (x \in C) \land (x \notin A)$$

$$\Rightarrow (x \in B \cup C) \land (x \notin A)$$

$$\Rightarrow x \in (B \cup C) - A$$

Therefore LHS ⊆ RHS

Proving Set Identities: Each Others' Subset

Show that
$$(B-A) \cup (C-A) = (B \cup C) - A$$

For any $x \in RHS$, $x \in (B \cup C)$ and $x \notin A$

When
$$x \in B$$
 and $x \notin A$ $(x \in B) \land (x \notin A)$ $\Rightarrow x \in B - A$

$$(x \in B) \land (x \notin A)$$

$$\Rightarrow X \in B - A$$

$$\Rightarrow X \in (B-A) \cup (C-A)$$

When
$$x \in C$$
 and $x \notin A$ $(x \in C) \land (x \notin A) \Rightarrow X \in C - A$

$$(x \in C) \land (x \notin A)$$

$$\Rightarrow X \in C - A$$

$$\Rightarrow X \in (B-A) \cup (C-A)$$

Therefore RHS ⊂ LHS

With LHS \subset RHS and RHS \subset LHS, we can conclude that LHS = RHS.

Proving Set Identities: Using Set Identity Theorems

Show that
$$(A - B) - (B - C) = A - B$$

$$(A-B)-(B-C)=(A\cap\overline{B})\cap(B\cap\overline{C}) \quad \text{(By alternate representation for set difference)}$$

$$=(A\cap\overline{B})\cap(\overline{B}\cup C) \quad \text{(By De Morgan's laws)}$$

$$=[(A\cap\overline{B})\cap\overline{B}]\cup[(A\cap\overline{B})\cap C] \quad \text{(By Distributive laws)}$$

$$=[A\cap(\overline{B}\cap\overline{B})]\cup[A\cap(\overline{B}\cap C)] \quad \text{(By Associative laws)}$$

$$=(A\cap\overline{B})\cup[A\cap(\overline{B}\cap C)] \quad \text{(By Idempotent laws)}$$

$$=A\cap[\overline{B}\cup(\overline{B}\cap C)] \quad \text{(By Distributive laws)}$$

$$=A\cap[\overline{B}\cup(\overline{B}\cap C)] \quad \text{(By Distributive laws)}$$

$$=A\cap\overline{B} \quad \text{(By Absorption laws)}$$

$$=A-B \quad \text{(By alternate representation for set difference)}$$

Proving Set Identities: Using Membership Tables

Similar to truth table (in propositional logic):

- Columns for different set expressions
- Rows for all combinations of memberships in constituent sets
- "1" = membership, "0" = non-membership
- Two sets are equal iff they have identical columns

Proving Set Identities: Using Membership Tables

Prove that $(A \cup B) - B = A - B$

A	В	$A \cup B$	(A ∪ B) – B	A - B
0	0	0	0	0
0	1	1	0	0
1	0	1	1	1
1	1	1	0	0

Let's recap...

- Set identities
- Prove set identities:
 - Each others' subset
 - Set identity theorems
 - Membership table

19