Теория категорий Функторы

Валерий Исаев

10 марта 2021 г.

План лекции

Определение

(Ко)индуктивные типы данных

Изоморфизм категорий

Определение функторов

- ▶ Функторы между категориями С и D это морфизмы категорий.
- lackbox Функтор F состоит из функции $F: Ob(\mathbf{C}) o Ob(\mathbf{D})$ и функций $F: \mathrm{Hom}_{\mathbf{C}}(X,Y) o \mathrm{Hom}_{\mathbf{D}}(F(X),F(Y))$ для всех $X,Y \in Ob(\mathbf{C})$.
- Эти функции должны сохранять тождественные морфизмы и композиции:

$$F(id_X)=id_{F(X)}$$

$$F(g \circ f) = F(g) \circ F(f)$$

Забывающие функторы

- ▶ Забывающий функтор **Grp** → **Set**, сопоставляющий каждой группе множество ее элементов.
- ▶ Для других алгебраических структур тоже существуют забывающие функторы $\mathbf{Ring} \to \mathbf{Set}$, $\mathbf{Ab} \to \mathbf{Set}$, и так далее.
- Можно задавать функторы, которые забывают не всю информацию.
- Например, существует два забывающих функтора $\mathbf{Ring} \to \mathbf{Grp}$ и $\mathbf{Ring} \to \mathbf{Ab}$.

Примеры функторов

- Функторы между категориями предпорядков это в точности монотонные функции.
- Если M и N пара моноидов, и \mathbf{C}_M и \mathbf{C}_N категории на одном объекте, соотетствующие этим моноидам, то функторы между \mathbf{C}_M и \mathbf{C}_N это в точности гомоморфизмы моноидов M и N.
- ▶ Пусть **C** декартова категория и A объект **C**, тогда $A \times : \mathbf{C} \to \mathbf{C}$ функтор, сопоставляющий каждому объекту B объект $A \times B$ и каждому морфизму $f : B \to B'$ морфизм $id_A \times f : A \times B \to A \times B'$.

Примеры функторов

- ► Существует очевидный функтор $I: \Lambda \to \mathbf{Set}$ интерпретации лямбда-исчисления в категории \mathbf{Set} (или в любой декартово замкнутой категории).
- Функторам в хаскелле соответствуют функторы
 Hask → Hask (игнорируя факт, что Hask не является категорией).
- ▶ Пусть I(M) группа обратимых элементов моноида M. Если $f: M \to N$, и x обратимый элемент M, то f(x) обратимый элемент N. Таким образом, f сужается до гомоморфизма $I(M) \to I(N)$, и, следовательно, $I: \mathbf{Mon} \to \mathbf{Grp}$ функтор.

Функторы и дуальность

- ightharpoonup Каждому функтору $F: \mathbf{C} o \mathbf{D}$ можно сопоставить функтор $F^{op}: \mathbf{C}^{op} o \mathbf{D}^{op}$.
- ▶ Другими словами существует биекция между множествами функторов **C** → **D** и **C** op → **D** op .
- ightharpoonup С другой стороны, функторы вида $m {f C}^{op}
 ightarrow {f D}$ никак не связаны с функторами вида $m {f C}
 ightarrow {f D}$.
- Первые называются контравариантными функторами, а вторые – ковариантными.

Пределы и копределы функторов

- ▶ Для любого функтора $F: \mathbf{J} \to \mathbf{C}$ можно определить понятие предела $lim\ F$ и копредела $colim\ F$. Определение такое же как и для диаграмм.
- Категории **J** можно рассматривать как обобщение графов, а функтор $F: \mathbf{J} \to \mathbf{C}$ как обощение диаграмм в \mathbf{C} .
- Любой диаграмме можно сопоставить функтор, и наоборот. (Эти конструкции не взаимообратные)
- Но пределы и копределы соответствующих диаграмм и функторов будут совпадать.
- ightharpoonup Функторы $F: \mathbf{J}
 ightharpoonup \mathbf{C}$ тоже называют диаграммами.

План лекции

Определение

(Ко)индуктивные типы данных

Изоморфизм категорий

Индуктивные типы данных

- Допустим мы хотим описать объект в произвольной категории, являющийся аналогом какой-либо структуры данных (списки, деревья, и так далее).
- В теории множеств они строятся индуктивно, то есть мы сначала определяем, скажем, множества $L_n(A)$ списков длины не больше n, а потом говорим, что множество всех списков это объединение множеств конечных списков $L(A) = \bigcup_{n \in \mathbb{N}} L_n(A)$.
- В теории категорий можно сделать аналогичную конструкцию.
- Во-первых, определим объект $L_n(A)$ списков длины не больше n следующим образом:

$$1 + A + A^2 + \ldots + A^n$$

Примеры бесконечных (ко)пределов

ightharpoonup Теперь мы можем определить объект L как следующий копредел:

$$L_0 \to L_1 \to L_2 \to \dots$$

Рассмотрим вместо копредела следующий предел:

$$\ldots \to L_2 \to L_1 \to L_0$$

где функция $L_{n+1} o L_n$ сопоставляет каждому списку $[x_1, \dots x_{n+1}]$ список $[x_2, \dots x_{n+1}]$, а остальные списки не меняет.

▶ Тогда предел этой последовательности — это множество (потенциально) бесконечных списков.

Общее определение индуктивных типов данных

- ightharpoonup Любой (ко)индуктивный тип данных можно задать в виде функтора $F: \mathbf{C} \to \mathbf{C}$.
- lacktriangle Функтор, соответствующий, спискам определяется как $L_A(X) = 1 + A imes X$.
- lacktriangle Функтор, соответствующий, бинарным деревьям определяется как $T_A(X)=1+A imes X imes X$.
- В общем случае $F_D(X)$ задается как правая часть определения типа данных D, в котором все рекурсивные вхождения этого типа заменены на X.
- lacktriangle Таким образом, если X является интерпретацией D, то он должен удовлетворять уравнению $X\simeq F(X)$.

Алгебры над эндофунктором

- ightharpoonup Существует два канонических способа найти решение уравнения $X\simeq F(X)$, как начальную F-алгебру или конечную F-коалгебру.
- ▶ Если $F: \mathbf{C} \to \mathbf{C}$ некоторый эндофунктор, то F-алгебра это пара (X,α) , где X объект \mathbf{C} , а $\alpha: F(X) \to X$ морфизм \mathbf{C} .
- ▶ Морфизм F-алгебр (X,α) и (Y,β) это морфизм $f:X\to Y$ в ${\bf C}$ такой, что следующая диаграмма коммутирует:

$$F(X) \xrightarrow{\alpha} X$$

$$F(f) \downarrow \qquad \qquad \downarrow f$$

$$F(Y) \xrightarrow{\beta} Y$$

Начальные алгебры

- ightharpoonup Легко видеть, что определения на предыдущем слайде задают категорию, которую мы будем обозначать $F ext{-alg}$.
- Начальный объект этой категории называется начальной F-алгеброй, и если она существует, то она является решением уравнения $X \simeq F(X)$.
- Если категория С достаточно хорошая, то начальную F-алгебру можно определить как копредел следующей диаграммы:

$$0 \xrightarrow{!_{F(0)}} F(0) \xrightarrow{F(!_{F(0)})} F(F(0)) \xrightarrow{F(F(!_{F(0)}))} F(F(F(0))) \to \dots$$

Начальные алгебры и индуктивные типы

- ► Начальные *F*-алгебры можно использовать для интерпретации индуктивных типов данных.
- Если $N(X) = X \coprod 1$ функтор, соответствующий типу данных унарных натуральных чисел, то начальная N-алгебра это в точности объект натуральных чисел.
- **Е**СЛИ $L_A(X) = 1 \coprod A \times X$ функтор, соответствующий спискам, то начальная L_A -алгебра в **Set** это множество конечных списков элементов A.
- ▶ В общем случае начальная L_A -алгебра это копроизведение объектов 1, A, A^2 , A^3 , ...

Коалгебры над эндофунктором

- **К**оалгебры над $F: \mathbf{C} \to \mathbf{C}$ определяются дуальным образом как пары (X, α) , где X объект \mathbf{C} , а $\beta: X \to F(X)$ морфизм \mathbf{C} .
- ightharpoonup По дуальности конечные F-коалгебры тоже являются решением уравнения $X\simeq F(X)$.
- Если категория С достаточно хорошая, то конечную F-коалгебру можно определить как предел следующей диаграммы:

$$\ldots \to F(F(F(1))) \xrightarrow{F(F(!_{F(1)}))} \to F(F(1)) \xrightarrow{F(!_{F(1)})} F(1) \xrightarrow{!_{F(1)}} 1$$

- Конечные коалгебры являются интерпретацией коиндуктивных типов данных.
- ▶ Например, конечная L_A -коалгебра в **Set** это множество потенциально бесконечных списков.

План лекции

Определение

(Ко)индуктивные типы данных

Изоморфизм категорий

Изоморфные категории

- ightharpoonup Для любой категории m C существует тождественный функтор $Id_{
 m C}:
 m C
 ightharpoonup
 m C$, отправляющий каждый объект и морфизм в себя.
- ightharpoonup Если $F: \mathbf{C} o \mathbf{D}$ и $G: \mathbf{D} o \mathbf{E}$, то функтор $G \circ F: \mathbf{C} o \mathbf{E}$ определяется на объектах и на морфизмах как композиция F и G.
- Композиция функторов ассоциативна, тождественный функтор является единицей для композиции.
- ▶ Функтор $F: \mathbf{C} \to \mathbf{D}$ называется *изоморфизмом* категорий, если существует функтор $G: \mathbf{D} \to \mathbf{C}$ такой, что $G \circ F = Id_{\mathbf{C}}$ и $F \circ G = Id_{\mathbf{D}}$.
- **N** Категории **C** и **D** *изоморфны*, если существует изоморфизм $F: \mathbf{C} \to \mathbf{D}$.

Злые понятия

- Как правило, имея две группы, не имеет смысла спрашивать равны ли они; нужно спрашивать об их изоморфности.
- Это верно для объектов в любой категории.
- Любое понятие, которое говорит о равенстве объектов некоторой категории, называют злым.
- Изоморфизм категорий злое понятие.

Полные и строгие функторы

- Функтор F называется строгим, если функция $F: \operatorname{Hom}(X,Y) \to \operatorname{Hom}(F(X),F(Y))$ является инъективной для любых X и Y. Он называется полным, если эта функция является сюръективной.
- Любой забывающий функтор является строгим.
- ▶ Любой функтор, "забывающий свойства"является полным и строгим. Например, забывающие функторы $\mathbf{Ab} \to \mathbf{Grp}$ и $\mathbf{Grp} \to \mathbf{Mon}$ являются таковыми.