Particle spectrograph

Wave operator and propagator

		14:0:10:14:00
SO(3) Irreps	ientai lieids	Multiplicities
$\tau_0^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$\tau_{1}^{\#2}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}==0$	3
$\sigma_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi}_{\beta} + \partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\beta} == \partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1+}^{\#1}\alpha\beta + \bar{l}k \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}t^{\beta\chi} + \partial_{\chi}\partial^{\beta}t^{\chi\alpha} + \partial_{\chi}\partial^{\chi}t^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\sigma_{2}^{\#1}\alpha\beta\chi==0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\alpha} \sigma^{\delta \varepsilon}_{\kappa} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial_{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\beta \delta \epsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial_{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} ==$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} +$	
	$2 \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta X \delta} + 4 \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta X} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta\epsilon}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial_{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\alpha \delta \epsilon} +$	
	$3 \eta^{\alpha\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial^\epsilon \sigma^{eta \delta}$	
$\tau_{2}^{\#1}\alpha\beta==0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} +$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} ==$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} +$	
	$3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{X}_{X}$	
Total constraints/gauge generators:		77

											7#2
_		, fα! -			- ιθχ						$r_{\tilde{t}}^{\#1}$
27		$S == \iiint (\frac{1}{6} \left(6 \; f^{\alpha \beta} \; \tau_{\alpha \beta} + 6 \; \mathcal{A}^{\alpha \beta \chi} \; \sigma_{\alpha \beta \chi} + 4 t_2 \; \mathcal{A}_{, \theta \alpha} \; \partial^{\theta} f^{\alpha \prime} + 2 t_2 \; \partial_{\alpha} f_{, \theta} \partial^{\theta} f^{\alpha \prime} - 1 \right)$	-α ¹ -	+	$2t_2\mathcal{A}_{\alpha i\theta}(\mathcal{A}^{\alpha i\theta}+2\partial^\theta f^{\alpha i})+8r_2\partial_\beta\mathcal{A}_{\alpha i\theta}\partial^\theta\mathcal{A}^{\alpha \beta i}-$			١,	γ γ _θ γ	x dit	$r_{r}^{#1}$, $r_{r}^{#1}$, $r_{r}^{#2}$
		$t_2 \partial_{\alpha}$	$f_{\theta} e^{i\alpha}$	$f_{\alpha'}$) -	$\mathcal{A}_{lpha \prime heta}$	$\mathcal{A}^{\alpha\beta\prime}$	$\mathcal{A}^{\alpha\beta_l}$	$\mathcal{A}^{\alpha\theta}$	$\alpha^{\partial_{\lambda}\mathcal{F}}$	dy d	#1 0#1
		$\alpha' + 2$	$f_2 \partial_{\theta} f$	$^{9} + ^{6}$	$3r_2\partial_{\mu}$	$\theta^{\alpha} \partial^{\theta}$	$^{\prime }$	$^{\lambda}_{\kappa}{}^{\lambda}\partial^{\kappa}$	$^{\kappa}\mathcal{A}^{\alpha\theta}$	z] d[z	
		$\alpha \partial^{\theta} f$	دα, + ۱	A ant	3 + (,,	$\partial_{eta} \mathcal{A}_{_{l}}$	$\partial_{ heta} \mathcal{A}_{arepsilon}$	$\mathcal{P}_{ heta}$	4 r4 ð'	x, y,	
		$\mathcal{B}_{I, heta}$	$\alpha\theta^{\theta}$	$A_{\alpha\theta_{I}}$ (5 90 £	+4 1/2	+2 r2	12 r ₄	θ + 2,))[t, ,	#1
		+ 4 t ₂	$t_2\partial_{\alpha}f_{\theta_I}\partial^{\theta}f^{\alpha I} - t_2\partial_{i}f_{\alpha\theta}\partial^{\theta}f^{\alpha I} + t_2\partial_{\theta}f_{\alpha I}\partial^{\theta}f^{\alpha I} -$	$t_2\partial_\theta f_{\scriptscriptstyle I\alpha}\partial^\theta f^{\alpha\prime} - 4t_2\mathcal{A}_{\alpha\theta\prime}\left(\mathcal{A}^{\alpha\prime\theta}+\partial^\theta f^{\alpha\prime}\right) +$	ξ+ θι	$4r_2\partial_{\beta}\mathcal{A}_{\alpha\theta_l}\partial^{\theta}\mathcal{A}^{\alpha\beta_l}+4r_2\partial_{\beta}\mathcal{A}_{l\theta\alpha}\partial^{\theta}\mathcal{A}^{\alpha\beta_l}$	$2r_2\partial_{\scriptscriptstyle 1}\mathcal{A}_{\alpha\beta\theta}\partial^{\theta}\mathcal{A}^{\alpha\beta^{\scriptscriptstyle 1}} + 2r_2\partial_{\theta}\mathcal{A}_{\alpha\beta^{\scriptscriptstyle 1}}\partial^{\theta}\mathcal{A}^{\alpha\beta^{\scriptscriptstyle 1}} -$	$4 r_2 \partial_{\theta} \mathcal{A}_{\alpha \prime \beta} \partial^{\theta} \mathcal{A}^{\alpha \beta \prime} - 12 r_4 \partial_{\theta} \mathcal{A}_{\kappa \ \lambda}^{\ \lambda} \partial^{\kappa} \mathcal{A}^{\alpha \theta}_{\ \alpha} -$	$12 r_4 \partial_{\alpha} \mathcal{A}^{\alpha \theta \kappa} \partial_{\lambda} \mathcal{A}^{\lambda}_{\kappa \ \theta} + 24 r_4 \partial^{\kappa} \mathcal{A}^{\alpha \theta}_{\alpha} \partial_{\lambda} \mathcal{A}^{\lambda}_{\kappa \ \theta} -$	$24 r_3 \partial_{\beta} \mathcal{H}_{_{I}\lambda\alpha} \partial^{\lambda} \mathcal{H}^{\alpha\beta^{I}}))[t, x, y, z] dz dy dx dt$	
ators		$\sigma_{lphaeta\chi}$	$f_{\alpha'}$	$f_{\alpha l}$	\mathcal{B}^{α}	ξ _θ ο ′θ ³	$\beta_{\theta} \theta_{\theta}$	$\partial^{\theta} \mathcal{S}_{\mu \nu}$	$\{^{\alpha \theta \kappa}_{} \hat{o}_{}$	$({}_{\prime}{}_{\lambda}{}_{\alpha}\partial^{\prime}$	·
enera		$\mathbf{q}^{\alpha \beta \chi}$	$f_{\theta_I}\partial$	$f_{I\alpha}\partial^{\prime}$	$\mathcal{A}_{lpha \prime heta}$	$\partial_eta \mathcal{H}_{o}$	$\partial_{\mu}\mathcal{H}_{lpha}$	$\partial_{ heta}\mathcal{H}_{_{\mathcal{O}}}$	$_4\partial_{lpha}\mathcal{F}$	3 0 _B B	O#2
ge g	<u>_</u>	+63	$t_2 \partial_c$	$t_2 \partial_{\epsilon}$	$2t_2$	4 1/2	2 1/2	4 1/2	12 r	24 r	
/gau	actio	3 $\tau_{\alpha\beta}$									
aints	ree)	6 <i>f</i> αβ									σ_{\perp}^{*1}
lotal constraints/gauge generators:	Quadratic (free) action	$\int (\frac{1}{6})$									G
tal c	ıadra	== [[]									
0	9	ς,									

action $t_{\alpha\beta} + 6 \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 4t_2 \mathcal{A}_{,\theta\alpha} \partial^{\theta} f^{\alpha\prime} + 5$ $t_2 \partial_{\alpha} f_{\theta\prime} \partial^{\theta} f^{\alpha\prime} - t_2 \partial_{\beta} f_{\alpha\theta} \partial^{\theta} f^{\alpha\prime} + t_2 \partial_{\theta} f^{\alpha\prime} + t_3 \partial_{\theta} f^{\alpha\prime} $	$\sigma_{1}^{\#1}$ $\sigma_{1}^{\#2}$ $\sigma_{1}^{\#2}$ $\sigma_{1}^{\#2}$ $\sigma_{1}^{\#1}$ $\sigma_{1}^{\#2}$ $\sigma_{1}^{\#1}$ $\sigma_{1}^{\#2}$ $\sigma_{1}^{\#1}$
--	--

0 0 0 0

0 0 0 0

0 0

0

0 0 0

0

0

0

0

0 0 0 0

0 0 0

0 0 0

f#1 0 0 0

 $k^2 \left(-2 \, r_3 + r_4 \right)$

0

0

0

0

0

0

0

0

0

0

0

0

0

Massive and massless spectra

?
$$J^{P} = 0^{-}$$
?
?
?

- ?	Massive particle						
	Pole residue:	$-\frac{1}{r_2} > 0$	(INO III daaleaa				
	Polarisations:	1	0				
	Square mass:	$-\frac{t_2}{r_2} > 0$	ט סמי מכוכט/				
	Spin:	0					
	Parity:	Odd					

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$

$\mathcal{A}_{2}^{\#1} + \alpha \beta$ $f_{2}^{\#1} + \alpha \beta$ $\mathcal{A}_{2}^{\#1} + \alpha \beta \chi$ $\begin{array}{c|c} & \frac{lkt_2}{3} \\ & \frac{3}{3} \\ & 0 \\ & 0 \\ & 0 \end{array}$ 0 0 0 0 0 0 0 0 0 0 0 0 $k^2 (2 r_3 - r_4)$ ${\mathscr A}_1^{\#1}{}_{lphaeta}$ 0 0 0 0 0 0 0 0 0 $A_{1}^{#1} + \alpha$ $A_{1}^{#2} + \alpha$ $f_{1}^{#1} + \alpha$ $f_{1}^{#2} + \alpha$ $\sigma_{1}^{\#2} + \alpha \beta$ $\sigma_{1}^{#_{1}} + \alpha$ $\sigma_{1}^{#_{2}} + \alpha$ $\tau_{1}^{#_{1}} + \alpha$ $\tau_{1}^{#_{1}} + \alpha$ $f_1^{\#1} + ^{lphaeta}$ $t_{2}^{#1} +^{\alpha\beta}$ $\sigma_{2}^{#1} +^{\alpha\beta\chi}$ $c_{0}^{#1}$ + $c_{0}^{#1}$ + $c_{0}^{#1}$ + $c_{0}^{#2}$ + $c_{0}^{#2}$ + $c_{0}^{#1}$ + $c_{0}^{#1}$