

(ETL/PIPELINE ON DATABRICKS

```
# END TO END ETL PIPELINE ON DATABRICKS

# here we are taking our dataset from (https://datahub.io/core/glacier-mass-balance)

# by using this dataset we will build an ETL PIPELINE

# we will eXtract our data

# then we will load our data into our databrick file system

# we will transform our data
```

MAIN TASK IS TO SPLIT THE DATAFRAME INTO TWO BASED ON THE YEAR AND THEN PERFORM THE TRANSFORMATION FUNCTIONS ON THAT

Creating Spark Session

```
# starting the spark session
spark

SparkSession - hive

SparkContext

Spark UI

Version
v3.3.2

Master
local[8]

AppName
Databricks Shell

# datset url
```

https://datahub.io/core/glacier-mass-balance

Importing Libraries

```
# request is a HTTP library which is used to get the online data onto databaricks
import requests
from pyspark.sql import DataFrame
```

help(requests)

```
Help on package requests:

NAME
requests

DESCRIPTION
Requests HTTP Library

Requests is an HTTP library, written in Python, for human beings.
Basic GET usage:

>>> import requests
>>> r = requests.get('https://www.python.org (https://www.python.org)')
>>> r.status_code
200
>>> b'Python is a programming language' in r.content
True

... or POST:
```

help(requests.get)

```
Help on function get in module requests.api:
get(url, params=None, **kwargs)
   Sends a GET request.

:param url: URL for the new :class:`Request` object.
:param params: (optional) Dictionary, list of tuples or bytes to send
   in the query string for the :class:`Request`.
:param \*\*kwargs: Optional arguments that ``request`` takes.
:return: :class:`Response <Response>` object
:rtype: requests.Response
```

Extracting Data

Loading data on databricks file system (dbfs)

```
# we are writing a function for get data
  # # we will split the url on the basis of (/) slashes . and it will take the last element from the array of file splitted
  # rest we have performed the same function that we have done in cmd 7
   def get_data(url:str):
       filename = url.split('/')[-1]
       with requests.get('https://datahub.io/core/glacier-mass-balance/r/glaciers.csv', stream = True) as r:
          with open("/dbfs/{}".format(filename), 'wb') as f:
              for chunk in r.iter_content(chunk_size = 8192):
                  f.write(chunk)
      return filename
   file_name = get_data('https://datahub.io/core/glacier-mass-balance/r/glaciers.csv')
  file_name
Out[23]: 'glaciers.csv'
Reading data in DataBricks
  #reding our file system
   spark.read.format('csv').option("header","True").load("file:/dbfs/glacier.csv")
Out[26]: DataFrame[<!doctype html>: string]
  # extracting the file format by splitting the file on (.)
   file_format = file_name.split(".")[-1]
```

Reading Data in all the possible formats

```
# we are writing the function to read the files in all the possible format

def read_data(file_name):
    if file_format == 'csv':
        df = spark.read.format(file_format).option("header","true").load("file:/dbfs/{}".format(file_name))
    elif file_format == 'json':
        df = spark.read.format(file_format).load("file:/dbfs/{}".format(file_name))
    elif file_format == 'parquet':
        df = spark.read.format(file_format).load("file:/dbfs/{}".format(file_name))
    elif file_format == 'txt':
        df = spark.read.format(file_format).load("file:/dbfs/{}".format(file_name))
    return df

# calling above function

df = read_data(file_name)
```

Displaying Data

now its time to display our data
display(df)

Table			
	Year 🔺	Mean cumulative mass balance	Number of observations
1	1945	0	null
2	1946	-1.13	1
3	1947	-3.19	1
4	1948	-3.19	1
5	1949	-3.82	3
6	1950	-4.887	3
7	1951	-5.217	3
70 rows	5		

Creating temporary view of our data

we are creating a temporary view of our dataframe so that we can perform some sql operation on that
df.createOrReplaceTempView("df")

Starting Sql session

%sql SELECT * from df

Table			
	Year 🔺	Mean cumulative mass balance	Number of observations
1	1945	0	null
2	1946	-1.13	1
3	1947	-3.19	1
4	1948	-3.19	1
5	1949	-3.82	3
6	1950	-4.887	3
7	1951	-5.217	3
70 rows			

Creating 2 temporary views of our Data

```
%sql
create or replace temp view nintys as select * from df where year like '19%' order by year asc;
create or replace temp view twentys as select * from df where year like '20%' order by year asc;
OK
```

```
nintys_df = spark.sql("select * from nintys")
twentys_df = spark.sql("select * from twentys")
```

Transforming Data

```
# we are creating a function to perform the transformation on our data

def transform_data( df: DataFrame):
    spark.sql("create or replace temp view nintys as select * from df where year like '19%' order by year asc;")
    nintys_df = spark.sql("select * from nintys")
    spark.sql("create or replace temp view twentys as select * from df where year like '20%' order by year asc;")
    twentys_df = spark.sql("select * from twentys")
    return nintys_df , twentys_df
```

```
# splittimg our data into vatiables a and b
a,b = transform_data(df)
```

```
# displaying nintys dataset
display(nintys_df)
```

Table			
	Year 🔺	Mean cumulative mass balance	Number of observations
1	1945	0	null
2	1946	-1.13	1
3	1947	-3.19	1
4	1948	-3.19	1
5	1949	-3.82	3
6	1950	-4.887	3
7	1951	-5.217	3
55 rows	5		

displaying twentys dataset
display(twentys_df)

Table			
	Year 🔺	Mean cumulative mass balance	Number of observations
1	2000	-17.727	37
2	2001	-18.032	37
3	2002	-18.726	37
4	2003	-19.984	37
5	2004	-20.703	37
6	2005	-21.405	37
7	2006	-22.595	37
15 rows	i		

Showing file name according to the dataset

```
# since our dataset is divided into 2 dataset so i want to show the filename according to the dataset divided

# file name for nintys dataset
    nintys_file_names = spark.sql("(select * from nintys order by Year ASC) union (select * from nintys order by Year DESC
    limit 1)")

#file name for twentys dataset
    twentys_file_names = spark.sql("(select * from twentys order by Year ASC) union (select * from twentys order by Year DESC
    limit 1)")
```

display(nintys_file_names)

Table			
	Year 🔺	Mean cumulative mass balance	Number of observations
1	1962	-9.109	20
2	1973	-10.538	32
3	1960	-8.688	14
4	1957	-6.989	9
5	1967	-9.303	29
6	1950	-4.887	3
7	1977	-10.682	37
55 rows	i		

```
twentys_file_names_df= twentys_file_names.collect()
nintys_file_names_df = nintys_file_names.collect()
```

```
# by using getitem we will be appending the first and last dates in order to get the variable name
twentys_file_names_df[0].__getitem__('Year')+ "-"+ twentys_file_names_df[1].__getitem__('Year')
# performing for nintys dataset
nintys_file_names_df[0].__getitem__('Year')+ "-"+ nintys_file_names_df[1].__getitem__('Year')
```

Out[70]: '1962-1973'

Function for creating file names

```
def create_file_names():
    nintys_file_names = spark.sql("(select * from nintys order by Year ASC) union (select * from nintys order by Year DESC
limit 1)")
    twentys_file_names = spark.sql("(select * from twentys order by Year ASC) union (select * from twentys order by Year
DESC limit 1)")
    nintys_file_names_df = nintys_file_names.collect()
    twentys_file_names_df = twentys_file_names.collect()

twentys_file_name = twentys_file_names_df[0].__getitem__('Year')+ "-"+ twentys_file_names_df[1].__getitem__('Year')

nintys_file_name = nintys_file_names_df[0].__getitem__('Year')+ "-"+ nintys_file_names_df[1].__getitem__('Year')
    return nintys_file_name , twentys_file_name
```

m , n = create_file_names()

print(m,n)

1962-1973 2000-2003

writing data in parquet file format

writing our data in parquet format
nintys_df.write.format('parquet').save("/dbfs/nintys_df.parquet")

#writing our data in parquet fomat
twentys_df.write.format('parquet').save("/dbfs/twentys_df.parquet")

Out[79]: [FileInfo(path='dbfs:/dbfs/nintys_df.parquet/', name='nintys_df.parquet/', size=0, modificationTime=0), FileInfo(path='dbfs:/dbfs/twentys_df.parquet/', name='twentys_df.parquet/', size=0, modificationTime=0)]