

CSE 151A Intro to Machine Learning

Lecture 10 – Part 01 Convexity in 1-d

Today

When is gradient descent guaranteed to work?

Not here...

Convex Functions

► f is convex if for every a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

► f is convex if for every a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

► f is convex if for every a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

► f is convex if for every a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

Other Terms

- ► If a function is not convex, it is **non-convex**.
- Strictly convex: the line lies strictly above curve.
- **Concave:** the line lines on or below curve.

Convexity: Formal Definition

▶ A function $f : \mathbb{R} \to \mathbb{R}$ is **convex** if for every choice of $a, b \in \mathbb{R}$ and $t \in [0, 1]$:

$$(1-t)f(a) + tf(b) \ge f((1-t)a + tb).$$

Is f(x) = |x| convex?

Another View: Second Derivatives

- ▶ If $\frac{d^2f}{dx^2}(x) \ge 0$ for all x, then f is convex.
- Example: $f(x) = x^4$ is convex.
- Warning! Only works if f is twice differentiable!

Another View: Second Derivatives

- "Best" straight line at x_0 :
 - $h_1(z) = f'(x_0) \cdot z + b$
- "Best" parabola at x_0 :
 - At x_0 , f looks likes $h_2(z) = \frac{1}{2}f''(x_0) \cdot z^2 + f'(x_0)z + c$
 - Possibilities: upward-facing, downward-facing.

Convexity and Parabolas

- \triangleright Convex if for **every** x_0 , parabola is upward-facing.
 - ► That is, $f''(x_0) \ge 0$.

Convexity and Gradient Descent

- Convex functions are (relatively) easy to optimize.
- Theorem: if R(x) is convex and differentiable then gradient descent converges to a **global optimum** of *R* provided that the step size is small enough 3.

¹and its derivative is not too wild

²actually, a modified GD works on non-differentiable functions

³step size related to steepness.

Nonconvexity and Gradient Descent

- Nonconvex functions are (relatively) hard to optimize.
- Gradient descent can still be useful.
- But not guaranteed to converge to a global minimum.

CSE 151A Intro to Machine Karning

Lecture 10 – Part 02 Convexity in Many Dimensions

 $f(\vec{x})$ is **convex** if for **every** \vec{a} , \vec{b} the line segment between

$$(\vec{a}, f(\vec{a}))$$
 and $(\vec{b}, f(\vec{b}))$

Convexity: Formal Definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ is **convex** if for every choice of $\vec{a}, \vec{b} \in \mathbb{R}^d$ and $t \in [0, 1]$:

$$(1-t)f(\vec{a}) + tf(\vec{b}) \ge f((1-t)\vec{a} + t\vec{b}).$$

The Second Derivative Test

- ► For 1-d functions, convex if second derivative ≥ 0 .
- ► For 2-d functions, convex if ???

Second Derivatives in 2-d

► In 2-d, there are 4 second derivatives of $f(\vec{x})$:

$$\frac{\partial f^2}{\partial x_1^2}, \frac{\partial f^2}{\partial x_2^2}, \frac{\partial f^2}{\partial x_1 x_2}, \frac{\partial f^2}{\partial x_2 x_1}$$

Convexity in 2-d

• "Best" quadratic function approximating f at \vec{x} :

$$\begin{split} h_2(z_1,z_2) &= az_1^2 + bz_2^2 + cz_1z_2 + \dots \\ &= \frac{1}{2} \frac{\partial f^2}{\partial x_1^2}(\vec{x}) \cdot z_1 + \frac{1}{2} \frac{\partial f^2}{\partial x_2^2}(\vec{x}) \cdot z_2 + \frac{\partial f^2}{\partial x_1 x_2}(\vec{x}) \cdot z_1 z_2 + \dots \end{split}$$

- a, b, c determine rough shape. Possibilities:
 - Upward-facing bowl.
 - Downward-facing bowl.
 - "Saddle"

Convexity in 2-d

Convex if at any \vec{x} , for any z_1, z_2 :

$$\frac{1}{2} \frac{\partial f^2}{\partial x_1^2} (\vec{x}) \cdot z_1 + \frac{1}{2} \frac{\partial f^2}{\partial x_2^2} (\vec{x}) \cdot z_2 + \frac{\partial f^2}{\partial x_1 x_2} (\vec{x}) \cdot z_1 z_2 \ge 0$$

The Hessian Matrix

Create the Hessian matrix of second derivatives:

$$H(\vec{x}) = \begin{pmatrix} \frac{\partial f^2}{\partial x_1^2} (\vec{x}) & \frac{\partial f^2}{\partial x_1 x_2} (\vec{x}) \\ \frac{\partial f^2}{\partial x_2 x_1} (\vec{x}) & \frac{\partial f^2}{\partial x_2^2} (\vec{x}) \end{pmatrix}$$

In General

▶ If $f : \mathbb{R}^d \to \mathbb{R}$, the **Hessian** at \vec{x} is:

$$H(\vec{x}) = \begin{pmatrix} \frac{\partial f^2}{\partial x_1^2} (\vec{x}) & \frac{\partial f^2}{\partial x_1 x_2} (\vec{x}) & \cdots & \frac{\partial f^2}{\partial x_1 x_d} (\vec{x}) \\ \frac{\partial f^2}{\partial x_2 x_1} (\vec{x}) & \frac{\partial f^2}{\partial x_2^2} (\vec{x}) & \cdots & \frac{\partial f^2}{\partial x_2 x_d} (\vec{x}) \\ \cdots & \cdots & \cdots \\ \frac{\partial f^2}{\partial x_d x_1} (\vec{x}) & \frac{\partial f^2}{\partial x_d^2} (\vec{x}) & \cdots & \frac{\partial f^2}{\partial x_d^2} (\vec{x}) \end{pmatrix}$$

Observations

- ► *H* is square.
- ► *H* is symmetric.

Convexity in 2-d

► Convex if at any \vec{x} , for any z_1, z_2 :

$$\frac{1}{2}\frac{\partial f^2}{\partial x_1^2}(\vec{x}) \cdot z_1 + \frac{1}{2}\frac{\partial f^2}{\partial x_2^2}(\vec{x}) \cdot z_2 + \frac{\partial f^2}{\partial x_1 x_2}(\vec{x}) \cdot z_1 z_2 \ge 0$$

Equivalently, convex if for any \vec{x} and any \vec{z} :

$$\vec{z}^T H(\vec{x}) \vec{z} \geq 0$$

Positive Semi-Definite

A square, $d \times d$ symmetric matrix X is **positive** semi-definite (PSD) if for any \vec{u} :

 $\vec{u}^T X \vec{u} \ge 0$

The Second Derivative Test

A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if for any $\vec{x} \in \mathbb{R}^d$, the Hessian matrix $H(\vec{x})$ is positive semi-definite.

But wait...

How can we tell if a matrix is positive semi-definite?

$$M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

Is $f(x, y) = x^2 + 4xy + y^2$ convex?

CSE 151A Intro to Machine Kearning

Lecture 10 – Part 03
Convex Loss Functions

Convexity and Gradient Descent

- Convex functions are (relatively) easy to optimize.
- **Theorem**: if $R(\vec{w})$ is convex and differentiable⁴⁵ then gradient descent converges to a **global optimum** of *R* provided that the step size is small enough⁶.

⁴and its gradient is not too wild

⁵actually, a modified GD works on non-differentiable functions

⁶step size related to steepness.

Recall the Mean Squared Error:

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}^{(i)} \cdot \vec{w} - y_i)^2$$

Is this convex?

Mean Squared Error

$$R(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(\vec{x}^{(i)} \cdot \vec{w} - y_i \right)^2$$

A Useful Theorem

A square, symmetric matrix M is PSD if and only if M can be written as UU^T for some matrix U.

$$\vec{x}^{T}M\vec{x} = \vec{x}^{T}UU^{T}\vec{x}$$

$$= (\vec{x}^{T}U)(U^{T}\vec{x})$$

$$= (U^{T}\vec{x})^{T}(U^{T}\vec{x})$$

$$= ||U^{T}\vec{x}||^{2}$$

$$\geq 0$$

Mean Squared Error

- ▶ The MSE is a convex function of \vec{w} .
- ▶ We had an explicit solution for the best \vec{w} :

$$\vec{w} = (X^T X)^{-1} X^T \vec{y}$$

But we could also have used gradient descent.

Logistic Regression

► The log-likelihood is concave.

$$\log \mathcal{L}(\vec{w}) = -\sum_{i=1}^{n} \log \left[1 + e^{-y_i \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)})} \right]$$

Status Update

We learned what it means for a function to be convex.

- Convex functions are (relatively) easy to optimize with gradient descent.
- We like convex loss functions, like the mean squared error.