Lab Manual# 7

Objectives:

- To learn and understand how to design a multiple output combinational circuit using XOR and XNOR
- To learn and understand the working of different types of decoders
- To learn and understand how to design a multiple output combinational circuit using Decoders

Exclusive-OR & Exclusive-NOR gates:

The figure given below shows the symbol of Exclusive-OR (XOR) and Exclusive-NOR (XNOR) gates.

Boolean expression of XNOR gate is $AB + \bar{A}\bar{B}$ and Boolean expression of XOR is $\bar{A}B + \bar{A}\bar{B}$. Boolean expression of XNOR gate can be implemented using XOR gate as shown in figure below:

Function Table:

Inp	outs	Output				
A	В	Y				
L	L	L				
L	Н	Н				
Н	L	Н				
Н	Н	L				

H= Logic High, L= Logic Low

Connection Diagram:

74LS86 IC will be used for implementation of XOR gate function. **74LS86 IC** contains four 2-input XOR gates. The function table and connection diagram for this IC are shown below:

2-to-4 line decoders:

74LS139 IC contains two fully independent 2-to-4 line decoders with active low enables. The function table and connection diagram for this IC are shown below:

Function Table:

Enable	Selec Inp	ction outs	Outputs						
G	В	A	Y0	Y1	Y2	Y3			
Н	X	X	Н	Н	Н	Н			
L	L	L	L	Н	Н	Н			
L	L	Н	Н	L	Н	Н			
L	Н	L	Н	Н	L	Н			
L	Н	Н	Н	Н	Н	L			

H= Logic High, L= Logic Low, X= Don't Care

Connection Diagram:

3-to-8 line decoders:

74LS138 IC contains 3-to-8 line decoder. The function table and connection diagram for this IC are shown below:

Function Tables

DM74LS138

	Inputs				Outputs							
Enable Select			Outputs									
G1	G2 (Note 1)	С	В	А	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	Н	X	X	х	Н	Н	Н	Н	Н	н	Н	н
L	×	×	×	×	н	н	н	н	н	н	н	н
н	L	L	L	L	L	н	н	н	н	н	н	н
н	L	L	L	н	н	L	н	н	н	н	н	н
н	L	L	н	L	н	н	L	н	н	н	н	н
н	L	L	н	н	н	н	н	L	н	н	н	н
н	L	н	L	L	н	н	н	н	L	н	н	н
н	L	н	L	н	н	н	н	н	н	L	н	н
н	L	н	н	L	н	н	н	н	н	н	L	н
н	L	Н	Н	н	н	н	н	н	н	н	н	L

H = HIGH Level L = LOW Level X = Don't Care

Note 1: G2 = G2A + G2B

Connection Diagram:

Dual-in-Line Package

Lab Tasks:

Question 1:

Make a <u>truth table</u> and <u>implement</u> **2x4 Decoder with a low enable** using **8 AND gates and 3 NOT gates.**

Question 2:

Implement 3x8 decoder using two 2x4 decoders and NOT gate

Question 3:

4 bit parity Checker

<u>Implement</u> a circuit that receives **4-bit message** and outputs **Error** (E=1) **if its parity is ODD**

(Implement it using XOR and XNOR gates)

Question 4:

<u>Implement</u> a doubler circuit. It takes a **3 bit input** and multiplies it by two and gives a **5 bit output.**

(Implement it using XOR and XNOR gates)