Econ 703 - Day Three

I. Review, mostly pedantic

- a.) Consider $f: \mathbb{R}_+ \to \mathbb{R}$ where $f(x) = x^{\frac{1}{2}}$. What is the image, $f(\mathbb{R}_+)$? Solution: all reals
- b.) Consider $f: \mathbb{R}_+ \to \mathbb{R}$ where $f(x) = \sqrt{x}$. What is the image, $f(\mathbb{R}_+)$? Solution: all positive reals
- c.) What is the difference between the set

$$A = \{1, 1, 1, \dots\}$$

and the sequence

$$\{x_n\}_{n=1}^{\infty}$$
 where $x_n = 1$ for all $n \in \mathbb{N}$?

Solution: Sequences are ordered so "repeat" elements are in fact distinct. The set $A = \{1\}$ and contains only one element.

II. Relations

a.) Is the relation "is a brother to" symmetric?

Solution: No. If Boris is Anna's brother, that doesn't make Anna the brother of Boris.

aa.) Considering the same relation, does transitivity depend on reflexivity?

Solution: Almost, but no. An argument for yes would go: let Bill (b) and Hank (h be brothers. We have bRh and hRb. By transitivity, bRb, so Bill is his own brother

However, this only works because Bill had a brother to start with. In other words, in arguing for reflexivity of the property we assumed that for any b there exists an h such that bRh. If we have an only child, we can't show reflexivity because there is no transitivity to exploit.

- b.) Irvin has preferences over food according to the following criteria.
 - i.) All vegetarian dishes are preferred to nonvegetarian dishes.
- ii.) Among vegetarian or nonvegetarian items, he prefers mild to spicy food. What kind of preference ordering is this? What's a sensible cartesian product where this relation could be contained?

Solution: This is a lexicographic ordering. We must use a product space like $\{0,1\} \times \mathbb{R}$ where we might order all foods in \mathbb{R} according to a spiciness rating.

III. Sequences

Definition: A real sequence $\{x_n\}$ converges to $a \in \mathbb{R}$ if for all $\epsilon > 0$ there exists an $N \in \mathbb{N}$ (which may depend on ϵ) such that for all $n \geq N$, $|x_n - a| < \epsilon$. Then we can write

$$\lim_{n \to \infty} x_n = a.$$

- a.) (Squeeze Theorem aka Sandwich Theorem) Suppose $\{x_n\}, \{y_n\}, \{w_n\}$ are real sequences. Prove the two parts:
 - i.) If $x_n \to a$ and $y_n \to a$ as $n \to \infty$, and if there is an $N \in \mathbb{N}$ such that

$$x_n \le w_n \le y_n \text{ for } n \ge N,$$

then $w_n \to a$ as $n \to \infty$.

ii.) If $x_n \to 0$ as $n \to \infty$ and $\{y_n\}$ is bounded, then $x_n y_n \to 0$ as $n \to \infty$.

Solution: First we note the definition of convergence:

Definition: A sequence of real numbers $\{x_n\}$ is said to converge to $a \in \mathbb{R}$ if and only if for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ (which in general depends on ϵ) such that

$$n \ge N \implies |x_n - a| < \epsilon.$$

Proof: (i) Given an ϵ , we know there exists $N \in \mathbb{N}$ such that

$$-\epsilon < x_n - a < \epsilon,$$

$$-\epsilon < y_n - a < \epsilon,$$

and

$$-\epsilon + a < x_n < y_n < \epsilon + a$$
.

By hypothesis,

$$-\epsilon + a < x_n \le w_n \le y_n < \epsilon + a.$$

That is, $|w_n - a| < \epsilon$ for $n \ge N$, which shows $w_n \to a$ as $n \to \infty$.

(ii) We know for a given ϵ , there exists an N such that $|x_n| < \epsilon$ for all $n \ge N$. Additionally, there is an M such that $|y_n| < M$ for any n. If M = 0, the proof is trivial, so let's assume M > 0. Then choose an N' such that $|x_n| < \frac{\epsilon}{M}$ for $n \ge N'$. Then for $n \ge N'$,

$$|x_n y_n| < M \frac{\epsilon}{M} = \epsilon$$

and so the proof is finished.

b.) Show that every real sequence has a monotone subsequence.

Solution: The following is a proof sketch.

Given a sequence $\{x_n\}$, construct a set of all "peaks,"

$$A = \{x_m \in \{x_n\} : x_m \ge x_n \ \forall n > m\}.$$

If this set is infinite, we are done. We have a decreasing sequence $\{x_{m_k}\}$ where $x_{m_k} \geq x_{m_{k+1}} \geq \dots$

Now, suppose the set is not infinite. Then there exists a final peak which we may call x_M . Then for every $n \geq M$, there exists a greater element further down the sequence. This must will lead to an infinite increasing sequence.

IV. Vector spaces, topology, etc

a.) Is this a norm for x a vector with length n?

$$||x|| = \sup_{1 \le i \le n} x_i$$

Solution: No, let x = -1. This fails nonnegativity.

b.) Rewrite the definition for convergence of a sequence with open ball notation and for real spaces of any dimension $n \in \mathbb{N}$.

c.) Is $A = [0,1)^2$ an open set in $X = \mathbb{R}^2$?

Solution: No. Take an open ball around the point $(0,0) \in A$ of arbitrary radius $\epsilon > 0$. Then consider the point $y = (-\frac{\epsilon}{2}, -\frac{\epsilon}{2}) \notin A$. Then $||y - \vec{0}|| = \frac{\epsilon}{\sqrt{2}} < \epsilon$, so we have shown that there is always a y in X - A that is contained in any open ball around the point $\vec{0}$. This shows that the set A does not obey the definition of open.

d.) A set $A \subset \mathbb{R}$ contains all its limit points. Is it closed?

Solution: Proof: Choose an arbitrary $x \notin A$, then x is not a limit point. Then, $A^C = X - A$ is a neighborhood of x. Because x was arbitrary, this means that we can always find a neighborhood around x, so A^C is open. Thus, A is closed.

In fact, the statement A is closed and A contains all its limit points are equivalent for any arbitrary set.