Problem 6

- a) $d_{prop} = m/s$ seconds.
- b) $d_{trans} = L/R$ seconds.
- c) $d_{end-to-end} = (m/s + L/R)$ seconds.
- d) The bit is just leaving Host A.
- e) The first bit is in the link and has not reached Host B.
- f) The first bit has reached Host B.
- g) Want

$$m = \frac{L}{R} s = \frac{120}{56 \times 10^3} (2.5 \times 10^8) = 536 \text{ km}.$$

Problem 10

The first end system requires L/R_1 to transmit the packet onto the first link; the packet propagates over the first link in d_1/s_1 ; the packet switch adds a processing delay of d_{proc} ; after receiving the entire packet, the packet switch connecting the first and the second link requires L/R_2 to transmit the packet onto the second link; the packet propagates over the second link in d_2/s_2 . Similarly, we can find the delay caused by the second switch and the third link: L/R_3 , d_{proc} , and d_3/s_3 .

Adding these five delays gives

$$d_{end-end} = L/R_1 + L/R_2 + L/R_3 + d_1/s_1 + d_2/s_2 + d_3/s_3 + d_{proc} + d_{proc}$$

To answer the second question, we simply plug the values into the equation to get 6 + 6 + 6 + 20 + 16 + 4 + 3 + 3 = 64 msec.

Problem 22

Probability of successfully receiving a packet is: $p_s = (1-p)^N$.

The number of transmissions needed to be performed until the packet is successfully received by the client is a geometric random variable with success probability p_s . Thus, the average number of transmissions needed is given by: $1/p_s$. Then, the average number of re-transmissions needed is given by: $1/p_s$ -1.

第二章

Problem 1

- a) F
- b) T
- c) F
- d) F
- e) F

Problem 3

Application layer protocols: DNS and HTTP

Transport layer protocols: UDP for DNS; TCP for HTTP

Problem 7

The total amount of time to get the IP address is

$$RTT_1 + RTT_2 + \cdots + RTT_n$$
.

Once the IP address is known, RTT_0 elapses to set up the TCP connection and another

 RTT_o elapses to request and receive the small object. The total response time is

$$2RTT_o + RTT_1 + RTT_2 + \dots + RTT_n$$