Stat 5100 Handout 3.3.1 – SAS: Influential Observations and Outliers

<u>Example:</u> Data collected on 50 countries relevant to a cross-sectional study of a life-cycle savings hypothesis, which states that the response variable

• SavRatio: aggregate personal saving divided by disposable income

can be explained by the following four predictor variables:

- AvIncome: per-capita disposable income, in USD (yearly average over decade)
- GrowRate: percentage growth rate in per-capita disposable income (over decade)
- PopU15: percentage of the population less than 15 years old (yearly average over decade)
- PopO75: percentage of the population over 75 years old (yearly average over decade)

The decade is 1960-1970. These data are published in section 2.2 of *Regression Diagnostics: Identifying Influential Data and Sources of Collinearity* (1980) by Belsley, Kuh, and Welsch (limited excerpt available through Google books).

```
/* Define options */
ods html image dpi=300 style=journal;
/* Read in the data */
proc import out=work.savings dbms=csv replace
    datafile =
   "<file path here>"
  getnames=yes;
  datarow=2;
run;
/* Look at a regression model to predict SavRatio,
   with diagnostics for influential obs. and outliers */
proc reg data = savings
   plots(label) = (CooksD RStudentByLeverage DFFITS DFBETAS);
 id Country;
model SavRatio = PopU15 PopO75 AvIncome GrowRate /
            partial partialdata;
output out=out1 r=resid p=pred;
 title1 'Predict SavRatio';
run;
```

Predict SavRatio

Number of Observations Read	50
Number of Observations Used	50

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	4	332.91525	83.22881	5.76	0.0008	
Error	45	650.71300	14.46029			
Corrected Total	49	983.62825				

Root MSE	3.80267	R-Square	0.3385
Dependent Mean	9.67100	Adj R-Sq	0.2797
Coeff Var	39.32033		

Parameter Estimates							
Variable	DF Parameter Estimate		Standard Error	t Value	Pr > t		
Intercept	1	28.56609	7.35452	3.88	0.0003		
PopU15	1	-0.46119	0.14464	-3.19	0.0026		
PopO75	PopO75 1		1.08360	-1.56	0.1255		
AvIncome	1	-0.00033690	0.00093111	-0.36	0.7192		
GrowRate	1	0.40969	0.19620	2.09	0.0425		

Obs	Country	partial PopU15	SavRatio partial PopU15	partial PopO75	SavRatio partial PopO75	partial AvIncome	SavRatio partial AvIncome	partial GrowRate	SavRatio partial GrowRate
1	Australia	-1.13831	1.38856	-0.38628	1.51696	768.25943	0.60475	-0.01280	0.85833
•••									
21	Ireland	6.87903	0.21857	1.49268	0.86626	-928.27477	3.70387	-1.59754	2.73663
22	Italy	-3.46588	3.52520	0.02001	1.89291	-530.90583	2.10562	-1.03136	1.50421
23	Japan	-9.48247	9.65473	-1.30002	7.48046	328.00826	5.17098	4.14032	6.97775
24	Korea	-2.03533	-5.16830	-0.44035	-5.36212	-11.96560	-6.10295	1.88266	-5.33567
•••									
44	United States	4.41082	-3.14583	-0.30252	-0.59987	<u>2191.50614</u>	-1.84991	1.46020	-0.51335
45	Venezuela	2.53497	2.46341	-0.11300	3.82366	444.00821	3.48293	-2.30789	2.68698
46	Zambia	-0.70557	10.07632	-0.40325	10.43302	130.21746	9.70704	1.49950	10.36525
•••									
49	Libya	7.98336	-6.51140	0.83739	-4.24597	49.71961	-2.84628	<u>12.47740</u>	2.28240
50	Malaysia	1.93033	-3.86112	-0.13636	-2.74022	243.12949	-3.05278	1.68312	-2.28130

```
/* Check other assumptions */
/* Define shortcut macro, using line copied from
Course Canvas Page */
%macro resid_num_diag(dataset, ...

/* Call shortcut macro */
%resid_num_diag(dataset=out1, datavar=resid,
    label='Residual', predvar=pred, predlabel='Predicted');
run;
```

P-value for Brown-Forsythe test of constant variance in Residual vs. Predicted Value

Obs	t_BF	BF_pvalue
1	2.40263	0.020193

Output for correlation test of normality of Residual (Check text Table B.6 for threshold)

Pearson Correlation Coefficients, N = 50

Prob > r under H0: Rho=0					
	resid	expectNorm			
resid Residual	1.00000	0.99252 <.0001			
expectNorm	0.99252 <.0001	1.00000			

```
/* Alternative thresholds for influential obs.
   and outlier diagnostics */
data temp;
             /* p = # beta's (incl. intercept */
 p=5;
 n = 50; /* n = sample size */
 CooksDsimple = 4/n;
 CooksD10 = finv(.10,p,n-p);
  CooksD20 = finv(.20,p,n-p);
 CooksD50 = finv(.50,p,n-p);
 RStudent95 = tinv((1-.05/2), (n-p));
 RStudent95Bonf = tinv((1-.05/2/n), (n-p));
 Leverage2 = 2*p/n;
 Leverage3 = 3*p/n;
 DFBETAS = 2/n**0.5; if (n <= 30) then DFBETAS = 1;
 DFFITS = 2*(p/n)**0.5; if (n <= 30) then DFFITS = 1;
proc print data=temp;
 var CooksDsimple CooksD10 CooksD20 CooksD50 RStudent95
     RStudent95Bonf Leverage2 Leverage3 DFBETAS DFFITS;
  title1 'Alternative thresholds';
run;
```

Alternative thresholds										
Obs	CooksDsimple	CooksD10	CooksD20	CooksD50	RStudent95	RStudent95Bonf	Leverage2	Leverage3	DFBETAS	DFFITS
1	0.08	0.31729	0.46527	0.88349	2.01410	3.52025	0.2	0.3	0.28284	0.63246

```
/* Now look more closely at distribution of predictors,
    and suspect observations */
proc univariate data=savings noprint;
    var PopU15 PopO75 AvIncome GrowRate;
    histogram    PopU15 PopO75 AvIncome GrowRate;
    title1;
run;
```


	Suspect observations								
Obs Country			SavRatio	PopU15	PopO75	AvIncome	GrowRate		
	21	Ireland	11.34	31.16	4.19	1139.95	2.99		
	23	Japan	21.1	27.01	1.91	1257.28	8.21		
	44	United States	7.56	29.81	3.43	4001.89	2.45		
	46	Zambia	18.56	45.25	0.56	138.33	5.14		
	49	Libya	8.89	43.69	2.07	123.58	16.71		

```
/***************
  Possible Remedial Measures for these data:
   Drop Japan
      -- PopU15 and PopO75 don't match profile
         (influential but not outliers)
   Take log of AvIncome and log of GrowRate
      -- their distributions are skew right
      -- the extreme observation in each is a suspect obs.
           (United States for AvIncome,
            Libya for GrowRate)
 ************************************
/* Create new data set and fit regression model;
   check assumptions */
data newsavings; set savings;
   if country ne 'Japan';
  logAvIncome = log(AvIncome);
  logGrowRate = log(GrowRate);
run;
proc reg data = newsavings
plots(label)=(CooksD RStudentByLeverage DFFITS DFBETAS);
id Country;
model SavRatio = PopU15 PopO75 logAvIncome logGrowRate
   / partial;
output out=out2 r=resid p=pred;
title1 'Predict SavRatio';
 title2 '(after remedial measures)';
run;
```

Predict SavRatio (after remedial measures)

Parameter Estimates						
Variable DF		F Parameter Standard Estimate Error		t Value	Pr > t	
Intercept	1	26.25118	10.52632	2.49	0.0165	
PopU15	1	-0.33837	0.15791	-2.14	0.0377	
PopO75	1	-0.68558	1.13571	-0.60	0.5492	
logAvIncome	1	-0.71860	0.97492	-0.74	0.4650	
logGrowRate	1	1.33042	0.72528	1.83	0.0734	


```
/* Check model assumptions */
%resid_num_diag(dataset=out2, datavar=resid,
   label='New Residual', predvar=pred,
   predlabel='New Predicted Value');
run;
```

P-value for Brown-Forsythe test of constant variance in New Residual vs. New Predicted Value

Obs	t_BF	BF_pvalue
1	2.43339	0.018815

Output for correlation test of normality of New Residual (Check text Table B.6 for threshold)

Pearson Correlation Coefficients, N = 49 Prob > r under H0: Rho=0							
resid expectNorm							
resid New Residual	1.00000	0.99516 <.0001					
expectNorm	0.99516 <.0001	1.00000					

```
/* Look at final model */
proc reg data = newsavings;
    model SavRatio = PopU15 logGrowRate;
    title1 'Final Model';
run;
```

Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t					
Intercept	1	14.27955	2.40166	5.95	<.0001					
PopU15	1	-0.18046	0.05915	-3.05	0.0038					
logGrowRate	1	1.45209	0.71058	2.04	0.0468					

```
/***************************
What if want to add your own reference lines?
*************************
proc reg data = savings ;
   id country;
   model SavRatio = PopU15 PopO75 AvIncome GrowRate /
        influence;
   ods output outputstatistics=out3;
run;
proc print data=out3;
run;
```

Observation	Country	Residual	RStudent	HatDiagonal	CovRatio	DFFITS	 DFB_GrowRate
1	Australi	0.8636	0.2327	0.0677	1.1928	0.0627	-0.0002
2	Austria	0.6164	0.1710	0.1204	1.2678	0.0632	-0.0082
3	Belgium	2.2190	0.6066	0.0875	1.1762	0.1878	-0.0073

```
proc sgplot data=out3;
  scatter x=HatDiagonal y=RStudent / markerchar=country;
  xaxis label='Leverage';
  yaxis label='Studentized Deleted Residual';
  refline 2.01 / axis=Y lineattrs=(pattern=2);
  refline 3.52 / axis=Y;
  refline .2 / axis=X lineattrs=(pattern=2);
  refline .3 / axis=X;
  run;
```

