

KAIST Summer Session 2018

Module 3. Deep Learning with PyTorch

Convolutional Neural Network

KAIST College of Business

Jiyong Park

20 August, 2018

• A typical example of CNN

- ➤ Inputs (2-dimension × channels) \rightarrow [Convolution -> ReLu -> Pooling] \rightarrow ...
 - → [Convolution -> ReLu -> Pooling] → Fully connected layer
 - → Output prediction (Multi-class classification)

Convolution

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

Image data

Convolution filter

Image

Convolved Feature

ReLU

Output = Max(zero, Input)

Max pooling

Hierarchical feature representation (multiple convolution layers)

CNN in PyTorch

Convolution

self.conv1 = torch.nn.Conv2d(num_of_channels, num_of_kernels, kernel_size)

self.conv2 = torch.nn.Conv2d(num_of_channels, num_of_kernels, kernel_size)

CNN in PyTorch

MNIST Classifier using CNN

M3.5 Convolutional Neural
Network_MNIST.ipynb

Improving Performance (1) Dropout

Dropout avoids overfitting of neural networks

(a) Standard Neural Net

(b) After applying dropout.

Improving Performance (2) Inception

- CNN can have filters with multiple sizes operating on the same level.
 - > CNN with inception tends to be more efficient and has better performance (Szegedy et al. 2015)

Improving Performance (2) Inception

MNIST Classifier using CNN

M3.5 Convolutional Neural Network (with inception)_MNIST.ipynb

Projects for CNN

Image Classification using CNN

• The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes.

CIFAR10 Classifier using CNN

M3.5 Convolutional Neural Network_CIFAR10.ipynb

- For economining research, classification for texts is one of the most popular applications of machine learning.
 - Example (See Module 1.8 for more examples)

(Lee et al. 2018)

Sample Messages	Content Tags	
Welcome to the unveiling of the Pro Staff RF97 that I co-designed with Wilson	BRANDMENTION,	
Tennis. Learn more at http://bit.ly/29JXLdA. #FromFederer	PRODMENTION,	
	PRODLOCATION, HTTP	
Coach Seve and me. Excited to be back in Brisbane! Happy we got the 1st practice of	SMALLTALK, EMOTION	
year out of the way!		
Hello fans from Colombia! I am very happy to see you at the exo I am playing vs	EMOTION, SMALLTALK,	
Tsonga on Saturday, December 15th! Buy your tickets starting September 12th on	TARGET, PRODAVAIL,	
www.tuboleta.com. I hope to see you all there!	PRODLOCATION,	
	PRODMENTION, HTTP	
The Walking Dead Season 1 DVD/Blu-ray is now available, purchase it now!!!	BRANDMENTION,	
http://blogs.amctv.com/the-walking-dead/2011/03/season-1-dvd-blu-ray.php	PRODMENTION, PRODAVAIL,	
	PRODLOCATION, HTTP	
Daryl makes a funny. What are some of your favorite #TheWalkingDead quotes? The	SMALLTALK, EMOTION,	
highest rated quote will be turned into a graphic! $\# tbt$	QUESTION, BRANDMENTION,	
	ASKCOMMENT	

(Moreno and Terwiesch 2014)

Lee, D., Hosanagar, K. and Nair, H.S., 2018. Advertising Content and Consumer Engagement on Social Media: Evidence from Facebook. *Management Science*. forthcoming Moreno, A. and Terwiesch, C., 2014. Doing Business with Strangers: Reputation in Online Service Marketplaces. *Information Systems Research*, 25(4), pp.865-886.

- CNN performs well in sentence classification (Kim 2014)
 - Pre-trained data is also helpful (e.g., word2vec trained on Wikipedia)

Kim, Y., 2014. Convolutional Neural Networks for Sentence Classification. *In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*.

- Word embedding (dense representation)
 - ➤ Word vectors can represent semantic relationship between words.

Sparse representation

M3.5 Convolutional Neural Network_Sentence
Classification.ipynb

End of Document

