Project Structure:

- Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images. To multilayered deep problem, we propose a convolutional neural network. The proposed model works in two blocks: Block-I convolutional neural network (B-I CNN), for detection and occurrence of disasters, and Block-II convolutional neural network (B-II CNN), for classification of natural disaster intensity types with different filters and parameters. The model is tested on 4428 natural images and performance is calculated and expressed as different statistical values: sensitivity (SE), 97.54%; specificity (SP), 98.22%; accuracy rate (AR), 99.92%; precision (PRE), 97.79%; and F1-score (F1), 97.97%. The overall accuracy for the whole model is 99.92%, which is competitive and comparable with state-of-the-art algorithms.
- Deep learning, natural disasters intensity and classification, convolutional neural network

- Natural disasters are inevitable, and the occurrence of disasters drastically affects the economy, ecosystem and human life. Buildings collapse, ailments spread and sometimes natural disasters such as tsunamis, earthquakes, and forest fires can devastate nations. When earthquakes occur, millions of buildings collapse due to seismological effect. Many machine learning approaches have been used for wildfire predictions since the 1990s. A recent study used a machine learning approach in Italy. This study used the random forest technique for susceptibility mapping of wildfire. Floods are the most devastating natural disaster, damaging properties, human lives and infrastructures. To map flood susceptibility, an assembled machine learning technique based on random forest (RF), random subspace (RS) and support vector machine (SVM) was used. As the population is growing rapidly, people need to acquire land to live on, and as a result the ecosystem is disturbed horrifically, which causes global warming and increases the number of natural disasters. Populations in underdeveloped countries cannot afford damages disasters cause to infrastructures. The aftermath of disasters leaves the humans in miserable situations, and sometimes the devastating effects cannot be detected; additionally, rescue operations cannot take place in most of the places and victims are unable to be identified due to geographical factors of the different areas. Disasters such as forest fires spread rapidly in dense areas. so firefighting is difficult to carry out; in this case, development of the strategy to predict such circumstances is crucial so that such disasters can be prevented beforehand.
- As the technologies are continuously improving, aviation systems have begun adopting smart technologies to develop unmanned aerial vehicles (UAVs) equipped with cameras, which can reach distant areas to identify aftereffects of natural disasters on human life, infrastructure, and transmission lines by capturing images and videos. Data acquired from these UAVs helps to identify the facial expressions of victims, the intensity of their situation and their needs in a post disaster scenario. It helps to take actions and carry out necessary operations to tackle devastating scenarios. Raw images obtained from camera-equipped UAVs are processed

and neural network-based feature extraction techniques are applied to analyze the intensity.

- A deep learning method for the reconstruction of twodimensional cardiac magnetic resonance images was proposed to enhance the image data acquisition process. Cascade deep convolutional neural networks use a 10-fold method to reconstruct the feature map for the MR images. In this way, feature extraction sequence becomes very fast and it takes less than 5 to 10 s to extract the feature matrix. Neural networks provide multilevel network architectures, where Convolutional Neural Networks (CNNs) are the most frequently implemented architecture as the direct input of multidimensional vector images, speech recognition, and image processing can be carried out with low complexity. CNNs efficiently perform feature extraction by denoising the images and removing interference and achieve highly accurate results.
- The proposed multilayered deep convolutional neural network method works in two blocks of convolutional neural networks. The first block, known as Block-I Convolutional Neural Network (B-I CNN), detects the occurrence of a natural disaster and the second one, known as Block-II Convolutional Neural Network (B-II CNN), defines the intensity of the natural disaster. Additionally, the first block consists of three mini convolutional blocks with four layers each and includes an image input and fully connected layers. On the other hand, the second block also consists of three mini convolutional blocks with two layers each, including an image input layer and fully connected layer.