

Examen d'obtention du Brevet de Technicien Supérieur Session Mai 2014

Pa	ige
1	$\overline{}$
	3

Filières:	DSI – SRI - MCW	Durée:	2 Heures
Épreuve:	MATHÉMATIQUES	Coefficient:	15

6 points Exercice 1:

1

1

On considère la matrice :

$$A = \begin{pmatrix} 7 & 2 \\ -4 & 1 \end{pmatrix}.$$

0.5 1.a- Calculer les valeurs propres de A.

b- Déterminer une base de vecteurs propres de ${\it A}$.

1,5 $\hspace{.1in}$ 2. En déduire qu'il existe une matrice inversible P et une matrice diagonale D telles que

$$A = PDP^{-1}$$
, calculer P^{-1} .

1,5 3. Exprimer, pour tout entier naturel n, A^n sous forme de tableau matriciel.

4. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles définies par :

$$\begin{cases} u_0 = 1 \\ v_0 = 1 \end{cases} \text{ et pour tout entier naturel } n, \begin{cases} u_{n+1} = 7 u_n + 2 v_n \\ v_{n+1} = -4 u_n + v_n \end{cases}$$

0,5 a- On note $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$. Exprimer X_{n+1} en fonction de A et de X_n .

b- En déduire l'expression, pour tout entier naturel n , de u_n et de v_n en fonction de n .

Filières: DSI - SRI - MCW

6 points | Exercice 2 :

Considérons la série numérique $\sum_{n>2} u_n$ avec, pour tout entier naturel n:

$$u_n = \frac{\left(-1\right)^n}{\sqrt{n^\alpha + \left(-1\right)^n}} \text{ et } \alpha > 0$$

- 1 1. a- Donner un équivalent simple de u_n lorsque n tend vers $+\infty$.
- 0,5 b- Montrer que $\sum_{n\geq 2} u_n$ est absolument convergente si et seulement si $\alpha>2$.
 - 2. Supposons que $\alpha = 1$.
- 1,5 a-Montrer qu'au voisinage de $+\infty$, on a : $u_n = \frac{\left(-1\right)^n}{n^{\frac{1}{2}}} \frac{1}{2n^{\frac{3}{2}}} + o\left(\frac{1}{n^{\frac{3}{2}}}\right)$.
- 0,5 b- Établir que $\sum_{n\geq 2} \frac{\left(-1\right)^n}{n^{\frac{1}{2}}}$ est une série convergente. (justifier votre réponse)
- 0,5 c- Quelle est la nature de la série numérique $\sum_{n\geq 2} \frac{1}{n^{\frac{3}{2}}}$? (justifier votre réponse)
- 0,5 d- En déduire la nature de la série numérique $\sum_{n\geq 2} u_n$.
- 1,5 3. Étudier la convergence de la série numérique : $\sum_{n\geq 2} \frac{\left(-1\right)^n}{\sqrt{n^2 + \left(-1\right)^n}}$.

3 points Exercice 3:

1+1 1. Montrer que les intégrales suivantes sont convergentes, calculer leurs valeurs :

$$A = \int_0^{+\infty} x e^{-\frac{x}{2}} dx$$

$$B = \int_0^{+\infty} \frac{1}{(x+1)\sqrt{x}} dx$$
 (On peut poser: $t = \sqrt{x}$)

2. Déterminer la nature de l'intégrale suivante : $C = \int_0^1 \frac{\sqrt{x}}{\ln(x+1)} dx$.

Fin de l'épreuve