A.U: 2022/2023.Nombre de pages: 1. Classes: 1 TA.

Série 4 :Notion de distribution sur \mathbb{R}^n

Exercice 1:

Est ce que les fonctions suivantes sont à support compact? répondre avec justification.

- $\sin(t).$ $\sin(t).\varphi(t), \text{ avec } \varphi \in D(\mathbb{R}^n).$

Exercice 2:

- 1) $T_1(\varphi) = \prec T_1, \varphi \succ = \int_0^1 \varphi(t) dt$ est-elle une distribution? 2) $T_2(\varphi) = \prec T_2, \varphi \succ = \int_0^1 |\varphi(t)| dt$ est-elle une distribution?
- 3) $T_3(\varphi) = \prec T_3, \varphi \succ = \int_0^{+\infty} t^2 \varphi(t) dt$ est-elle une distribution?
- 4) Même question pour $T_4(\varphi) = \prec T_4, \varphi \succ = \int_0^1 \varphi^2(t) dt$.

Exercice 3:

Soient
$$\prec T_1, \varphi \succ = \int_{\mathbb{R}^n} \frac{\partial f}{\partial x_1} dt$$

 $\prec T_2, \varphi \succ = \int_{\mathbb{R}} \left(\int_0^{+\infty} \frac{\partial^2 f}{\partial x_1^2} (t_1, t_2) dt_1 \right) dt_2; \ \prec T_3, \varphi \succ = \int_{\mathbb{R}^2} e^{-x^2 - y^2} f(\sin xy) dx dy.$
Justifiez que T_i , $i = 1, 2, 3$ sont des distributions.

Exercice 4:

- 1) Montrer que $\langle T, \phi \rangle = \int_0^{+\infty} \ln(x) \phi(x) dx$ définit une distribution.
- 2) Trouver la dérivée de cette distribution.

Exercice 5:

Montrer que la fonction $F(x) = \ln(|x|)$ définit une distribution, et que $\frac{d}{dx} \ln(|x|) = vp(\frac{1}{x})$. Exercice 6:

- 1) Montrer que $v_p(\frac{1}{x})$ est une distribution.
- 2) Montrer que $Pf(\frac{1}{x^2})$ est une distribution.