Épreuve blanche PHY 1120 : Éléments de mécanique du point Licence Fondamentale GM, LT, GE, GC, GI/ Semestre 1 Durée : 2h

Barce: 21

Exercice

Dans le système des coordonnées sphériques $(\overrightarrow{u_r}, \overrightarrow{u_\theta}, \overrightarrow{u_\varphi})$. Un point M se déplace sur la surface d'une sphère de rayon R. Ses deux coordonnées sphériques sont :

$$\theta = \left(\overrightarrow{OZ}, \overrightarrow{OM}\right) = \frac{\pi}{6}, \quad \varphi(t) = \omega t^2, \quad \omega = constante \quad positive$$

- 1. Trouver la vitesse et l'accélération de M dans la base sphérique.
- 2. Calculer les modules de la vitesse et de l'accélération,
- 3. en déduire l'accélération normale.

Problème

Dans un repère R(O,XYZ) supposé fixe et muni de la base orthonormée directe $(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$, un cercle (C) de centre O_1 et de rayon a passe par l'origine O. On désigne par R_1 $(O_1,X_1Y_1Z_1)$ le repère lié au cercle et muni de la base orthonormé directe $(\overrightarrow{i_1},\overrightarrow{j_1},\overrightarrow{k})$. Le cercle (C) tourne dans le plan (OXY) avec la vitesse angulaire constante ω telle que $(\overrightarrow{i_1},\overrightarrow{i_1})=(\overrightarrow{j_1},\overrightarrow{j_1})=\varphi(t)=\omega t$, comme l'indique la figure ci-dessous. Un point matériel M se déplace sur le cercle (C) avec une vitesse angulaire constante ω telle que $(\overrightarrow{i_1},\overrightarrow{e_\rho})=(\overrightarrow{j_1},\overrightarrow{e_\varphi})=\varphi(t)=\omega t$. On désigne par R_2 (O_1,X_2Y_2Z) le repère lié au point M et muni de la base orthonormée directe $(\overrightarrow{e_\rho},\overrightarrow{e_\varphi},\overrightarrow{k})$.

FIGURE 1 – Figure d'étude du problème

Toutes les grandeurs vectorielles doivent être exprimées dans la base $(\overrightarrow{i_1}, \overrightarrow{j_1}, \overrightarrow{k})$.

Partie 1 : Étude du mouvement de M dans R

- 1. Exprimer les vecteurs $\overrightarrow{e_{\rho}}$ et $\overrightarrow{e_{\varphi}}$ en fonction des vecteurs $\overrightarrow{i_1}$ et $\overrightarrow{j_1}$.
- 2. Déterminer le vecteur position \overrightarrow{OM} du point M.
- 3. En déduire la vitesse absolue et l'accélération absolue du point M.

Partie 2 : Étude du mouvement de M dans R_1

On suppose que $R_1\left(O_1,\overrightarrow{i_1},\overrightarrow{j_1},\overrightarrow{k}\right)$ est le repère relatif, $R\left(O,\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)$ étant le repère absolu.

- 1. Vérifier que le vecteur rotation $\overrightarrow{\Omega}(R_1/R) = \omega \overrightarrow{k}$.
- 2. Déterminer la vitesse relative $\overrightarrow{V_r} = \overrightarrow{V(M/R_1)}$ et la vitesse d'entrainement $\overrightarrow{V_e}$ du point M.
- 3. Déterminer l'accélération relative $\overrightarrow{a_r} = \overrightarrow{a(M/R_1)}$, l'accélération d'entrainement $\overrightarrow{a_e}$ et l'accélération de Coriolis $\overrightarrow{a_c}$ du point M.
- 4. En déduire la vitesse absolue $\overrightarrow{V(M/R)}$ et l'accélération absolue $\overrightarrow{a(M/R)}$ du point M. Comparer les résultats trouvés avec ceux calculés en **Partie 1-3.**.

Partie 3 : Étude du mouvement de M dans R_2

On suppose dans ce cas que le repère $R_2\left(O_2, \overrightarrow{e_\rho}, \overrightarrow{e_\varphi}, \overrightarrow{k}\right)$ est repère relatif, $R\left(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$ étant le repère absolu.

- 1. Déterminer $\overrightarrow{\Omega}(R_2/R_1)$. En déduire que $\overrightarrow{\Omega}(R_2/R) = 2\omega \overrightarrow{k}$.
- 2. Déterminer la vitesse relative $\overrightarrow{V_r} = \overrightarrow{V(M/R_2)}$ et la vitesse d'entrainement $\overrightarrow{V_e}$ du point M.
- 3. Déterminer l'accélération relative $\overrightarrow{a_r} = \overrightarrow{a(M/R_2)}$, l'accélération d'entrainement $\overrightarrow{a_e}$ et l'accélération de Coriolis $\overrightarrow{a_c}$ du point M.
- 4. En déduire la vitesse absolue $\overrightarrow{V(M/R)}$ et l'accélération absolue $\overrightarrow{a(M/R)}$ du point M. Comparer les résultats trouvés avec ceux calculés en **Partie 1-3.** et en **Partie 2-4.**