

(51) Int. Cl.6:

BUNDESREPUBLIK

DEUTSCHLAND

Offenlegungsschrift

® DE 195 04 967 A 1

DEUTSCHES

PATENTAMT

21) Aktenzelchen:

195 04 987.5

2 Anmeldetag:

15. 2.95

3 Offenlegungstag:

22. 8. 96

B 23 K 26/00

HOIL ZI/60 E

H 01 L 23/50 H 05 K 3/32 H 01 L 21/60

H 01 L 21/603

① Anmelder:

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80636 München, DE

4 Vertreter:

Patentanwälte Böck, Tappe und Kollegen, 97072 Würzburg (72) Erfinder:

Azdasht, Ghassem, 14052 Berlin, DE; Zakel, Elke, 12163 Berlin, DE; Reichl, Herbert, 14193 Berlin, DE

Entgegenhaltungen:

DD 1 40 942 US 53 41 979 US 52 50 469

US 49 70 365 JP 05-2 06 220 A

JP 1-161725 A (engl. Abstract);

JP 5-109824 A (engl. Abstract); JP 6-69273 A (engl. Abstract);

US-Z: IBM Technical Disclosure Bull., Bd. 31, 1988,

S. 206-207;

Prüfungsantrag gem. § 44 PatG ist gestellt

- (S) Verfahren zur Verbindung eines flexiblen Substrats mit einem Chip
- Verfahren zur thermischen Verbindung von Kontaktelementen (14, 15) eines flexiblen Substrats (10) mit Kontaktmetallisierungen (17) eines elektronischen Bauelements (12) , wobel das flexible Substrat eine Trägerschicht (13) eus Kunststoff aufwelst und eine Energlebeaufschlagung der Kontaktelemente von deren Rückseite her erfolgt, mit einer Beaufschlagung mit Laserstrahlung (11), wobei die Transperenz des Substrets (19), die Absorption der Kontaktelemente (14, 15) und die Wellenlänge der Laserstrahlung (11) derart aufelnander abgestimmt sind, daß die Laserstrehlung Im wesentlichen durch die Trägerschicht (13) hindurchgeleitet und in den Kontaktelementen (14, 15) absorbiert wird, und einer Druckbeaufschlegung des Substrats (10) derart, daß die Kontaktelemente (14, 15) des Substrats (10) und die Kontaktmetellisierungen (17) des Bauelements (12) während der Beaufschlagung mit Laserstrahlung (11) aneinander anliegen.

Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur thermischen Verbindung von Kontaktelementen eines flexiblen Substrats mit Kontaktmetallisierungen eines elektronischen Bauelements, wobei das flexible Substrat eine Trägerschicht aus Kunststoff aufweist und eine Energiebeaufschlagung der Kontaktelemente von deren Rückseite her erfolgt.

elektronischen Bauelement, beispielsweise ein Chip, wird bislang üblicherweise das Thermokompression-Verfahren eingesetzt, bei dem eine sogenannte Thermode unter Einwirkung von Druck und Temperatur gegen mit Kontaktmetallisierungen des Chips zu verbinden. Um hierbei Beschädigungen der temperaturempfindlichen Kunststoff-Trägerschicht des Substrats, die in der Regel eine Zersetzungstemperatur aufweist, die im Beliegt, zu verhindern, ist es bei dem bekannten Verfahren erforderlich, vor Beaufschlagung der Kontaktelemente mit Druck und Temperatur die Trägerschicht und gegebenenfalls eine die Trägerschicht mit den Kontaktelementen verbindende Kleberschicht zu entfernen, so daß ein unmittelbarer Zugriff auf die Kontaktelemente des Substrats von deren Rückseite her möglich ist. Die Entfernung der Trägerschicht erweist sich in der Praxis als sehr aufwendig; in der Regel werden hierzu in einem separaten Verfahren als "windows" bezeichnete Öffnun- 30 des Bauelements anzupassen. gen in die Trägerschicht des Substrats geätzt. Derart vorbereitete Substrate lassen sich dann mittels einer als "inner-lead-bonding" bezeichneten Verbindungstechnik im Rahmen eines als "tape-automated-bonding" be-

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren vorzuschlagen, das ohne das vorstehend geschilderte separate Verfahren eine Verbindung von flexiblen Substraten mit elektronischen Bau- 40 elementen ermöglicht.

Gemäß einer ersten durch die Merkmale des Anspruchs 1 gegebenen Lösung ist bei dem erfindungsgemäßen Verfahren eine Beaufschlagung der Kontaktelemente mit Laserstrahlung vorgesehen, wobei die Trans- 45 parenz des Substrats bzw. die Absorption der Kontaktelemente genutzt wird, um mit einer entsprechend darauf abgestimmten Laserstrahlungs-Wellenlänge die Strahlung im wesentlichen durch das Substrat hindurchzuleiten und in den Kontaktelementen zu absorbieren. 50 Weiterhin wird erfindungsgemäß der Beaufschlagung mit Laserstrahlung eine Druckbeaufschlagung überlagert, derart, daß während der Beaufschlagung mit Laserstrahlung die Kontaktelemente des Substrats und die Kontaktmetallisierung des Bauelements aneinanderge- 55 drückt werden.

Diese Druckbeaufschlagung erweist sich als besonders wichtig, da hiermit die Ausbildung von Luftspalten zwischen den Kontaktelementen und den Kontaktmetallisierungen verhindert wird und eine sichere Wärme- 60 kopplung zwischen diesen gegeben ist. Eine unzureichende Wärmekopplung könnte zu einem Wärmestau im Bereich der Kontaktelemente führen, was wiederum eine unerwünschte Temperaturbelastung des Substrats bzw. der Trägerschicht und gegebenenfalls einer die 65 Trägerschicht mit den Kontaktelementen verbindenden Kleberschicht bewirken würde.

Durch Verwendung von Strahlungsenergie zur Tem-

peraturbeaufschlagung der Kontaktelemente werden die im Normalfall beispielsweise bei einer aus Polyimid gebildeten Kunststoff-Trägerschicht gegebenen guten Transparenzeigenschaften ausgenutzt, um aufgrund der guten Absorptionseigenschaften der metallischen Kontaktelemente die für die thermische Verbindung notwendige Temperatur lediglich im Verbindungsbereich zu erzeugen.

Als besonders vorteilhaft erweist es sich, wenn die Zur Verbindung von flexiblen Substraten mit einem 10 Energiebeaufschlagung mit einer Lichtleitfaser erfolgt, die sowohl zur Einleitung der Laserstrahlung in das Substrat als auch zur Druckbeaufschlagung dient. Bei Anwendung einer derartigen Variante des erfindungsgemäßen Verfahrens wird die Verfahrensdurchführung Kontaktelemente des Substrats gedrückt wird, um diese 15 mit einem minimalen Aufwand für die zur Durchführung des Verfahrens benötigten Vorrichtungen möglich.

Wenn darüber hinaus zur Druckbeaufschlagung die Lichtleitfaser mit ihrer Faserendfläche unmittelbar gegen die Trägerschicht des Substrats gedrückt wird, wird reich der zur Verbindung notwendigen Temperatur 20 noch eine weitere Vereinfachung in der Durchführung des Verfahrens ermöglicht.

Gemäß weiteren vorteilhaften Ausführungen des Verfahrens besteht auch die Möglichkeit, die Energiebeaufschlagung mittels einer Lichtleitsaser oder einer Lichtleitoptik vorzunehmen, und zur Druckbeaufschlagung eine separate, also hiervon unabhängige, Andruckeinrichtung zu verwenden. Hierdurch ist es möglich, die Andruckeinrichtung in ihrer Ausführung den jeweils gegebenen, aktuellen Abmessungen des Substrats bzw.

Eine Möglichkeit zur Druckbeaufschlagung besteht darin, in einem Kontaktbereich zwischen dem Substrat und dem Bauelement Unterdruck zu erzeugen.

Gemäß einer zweiten Lösung, deren Merkmale durch zeichneten, automatisierten Verbindungsverfahrens 35 den Gegenstand des Anspruchs 6 gegeben sind, erfolgt die Verbindung des Substrats mit dem Bauelement in zwei Phasen. Erfindungsgemäß erfolgt in einer ersten Phase eine Beaufschlagung der Trägerschicht mit Ultraschall-induzierten mechanischen Schwingungen und Druck, derart, daß ein einen Anschlußbereich eines Kontaktelements überdeckender Trägerschichtbereich freigelegt wird. In einer nachfolgenden zweiten Phase erfolgt eine Beaufschlagung des nunmehr im Anschlußbereich rückseitig freigelegten Kontaktelements mit Druck und Temperatur und/oder Ultraschall-induzierten mechanischen Schwingungen zur Verbindung mit der zugeordneten Kontaktmetallisierung.

Auch dieses zweite erfindungsgemäße, zum ersten erfindungsgemäßen Verfahren alternative Verbindungsverfahren ermöglicht eine Kontaktierung zwischen einem Substrat und einem Bauelement ohne eine getrennt vom Verbindungsvorgang und unabhängig von diesem durchgeführte Vorbehandlung des Substrats in einem separaten Verfahren. Vielmehr erfolgen gemäß der zweiten erfindungsgemäßen Lösung die erste Phase, die zur Vorbereitung der eigentlichen Kontaktierung dient. und die zweite Phase, die eigentliche Kontaktierungsphase, miteinander kombiniert in einem Arbeitsgang. Dabei wird für die "Freilegung" der Kontaktelemente im Anschlußbereich eine Energiebeaufschlagung gewählt, die im wesentlichen durch Ultraschall-induzierte Schwingungen und Druck gekennzeichnet ist, also Energieformen, die sich für die Kunststoff-Trägerschicht als unschädlich erweisen, da sie nur diskret wirksam sind und nicht wie eine Temperaturbeaufschlagung der Trägerschicht zu großslächigen Zersetzungen der Trägerschicht oder zu Delaminationen zwischen den Kontaktelementen und der Trägerschicht führen. Die zur Her-

stellung der thermischen Verbindung notwendige Temperaturbeaufschlagung erfolgt bei dieser zweiten erfindungsgemäßen Erfahrungsalternative übereinstimmend mit der ersten rfindungsgemäßen Verfahrensalternative lediglich im Verbindungsbereich zwischen den Kontaktelementen des Substrats und den Kontaktmetallisierungen des Bauelements.

Als besonders vorteilhaft erweist sich die vorgenannte erfindungsgemäße Verfahrensalternative, wenn die Energiebeaufschlagung mittels einer stiftförmigen 10 Thermode erfolgt, die während der ersten Phase zur Beaufschlagung der Trägerschicht mit Ultraschall und während der zweiten Phase zur Beaufschlagung des Kontaktelements mit Temperatur und/oder Ultraschall beaufschlagt wird. Hierdurch wird es nämlich möglich, 15 beide Phasen mit ein und demselben Werkzeug durchzuführen, so daß sich das Verfahren als besonders einfach in der Durchführung erweist und auch nur eine entsprechend einfach ausgebildete Vorrichtung zu dessen Durchführung notwendig ist.

Nachfolgend werden die beiden erfindungsgemäßen Verfahrensalternativen beispielhaft anhand der Zeich-

nungen näher erläutert. Es zeigen:

Fig. 1 ein Verbindungsverfahren unter Verwendung von Laserstrahlung;

Fig. 2 ein Verbindungsverfahren unter Anwendung einer aus Ultraschall und Temperatur kombinierten Energiebeaufschlagung.

Fig. 1 zeigt eine Variante der ersten erfindungsgemä-Ben Verfahrensalternative, bei der eine Beaufschlagung 30 eines Substrats 10 mittels einer Laserstrahlung 11 zur Verbindung mit einem Chip 12 erfolgt.

Das Substrat 10 weist eine Trägerschicht 13 aus Polyimid auf, die zur Ausbildung von Kontaktelementen 14, strats 10 etwa durch Sputtern aufgebrachten Metallisierung 16 besteht.

Der Chip 12 weist auf seiner den Kontaktelementen 14, 15 des Substrats 10 zugewandten Oberseite erhöhte, üblicherweise als Bumps bezeichnete Kontaktmetalli- 40 sierungen 17 auf, die zur Verbindung mit den Kontaktelementen 14, 15 dienen.

Die Kontaktelemente 14, 15 des Substrats 10 bestehen im wesentlichen aus Kupfer, das mit einer dünnen Oberflächenbeschichtung aus Gold versehen ist. Die 45 Kontaktmetallisierungen 17 des Chips bestehen bei diesem Ausführungsbeispiel aus einer Gold-/Zinn-Legierung (Au-Sn 80/20 mit einer Schmelztemperatur von etwa 280°C).

Die in Fig. 1 dargestellte, nachfolgend erläuterte Ver- 50 bindungstechnik ist ebenso beim Tape-Automated-Bonding-Verfahren wie beim Flip-Chip-Verfahren anwendbar.

Zur Beaufschlagung des Substrats 10 mit Laserstrahrungsbeispiel eine Lichtleitfaser 18, die auf die den Kontaktelementen 14, 15 gegenüberliegende Rückseite 19 der Trägerschicht 13 mit ihrer Faserendfläche 20 aufgesetzt wird. Die Aufsetzstelle ist dabei so gewählt, daß sich eine Überdeckung mit einem Anschlußbereich 21 60 des Kontaktelements 14 ergibt. Allgemein gilt, daß das Substrat 10 und der Chip 12 so zueinander positioniert sind, daß die einzelnen Anschlußbereiche 21 der Kontaktelemente 14 bzw. 15 den jeweiligen Kontaktmetallidung der einzelnen Kontaktelemente 14, 15 mit den zugeordneten Kontaktmetallisierungen 17 kann im sogenannten "single-point-bonding"-Verfahren erfolgen, bei

dem nacheinander die Verbindungen zwischen den einzelnen Paarungen aus Kontaktelementen 14 bzw. 15 und Kontaktmetallisierungen 17 durchgeführt werden.

Zur thermischen Verbindung zwischen einem Kon-5 taktelement 14 und einer zugeordneten Kontaktmetallisierung 17 wird das Substrat 10 mit der Faserendfläche 20 der Lichtleitfaser 18 gegen den Chip. 12 gepreßt, so daß das Kontaktelement 14 und die Kontaktmetallisierung 17 spaltfrei aneinander anliegen. Die Beaufschlagung des Substrats 10 mit der Laserstrahlung 11 erfolgt über eine an die Lichtleitfaser 18 angekoppelte Laserquelle 22, für die sich bei der vorstehend angegebenen Kombination aus dem Material für die Trägerschicht 13 und dem Material für das Kontaktelement 14 besonders ein Nd:YAG-Laser eignet, der eine Laserstrahlung mit einer Wellenlänge von 1065 nm emittiert. Bezogen auf diese Wellenlänge weist die Polyimid-Trägerschicht 13 eine Transmission von 88% auf. Ein erheblicher Anteil der nicht hindurchgeleiteten Strahlung wird reflektiert, 20 so daß lediglich ein vergleichsweise geringer Strahlungsanteil absorbiert wird. Die Absorption der Laserstrahlung 11 erfolgt im wesentlichen in dem aus Kupfer gebildeten Kontaktelement 14, das sich entsprechend erwärmt. Über die vorstehend beschriebene spaltfreie 25 Ankopplung des Kontaktelements 14 an die Kontaktmetallisierung 17 erfolgt eine im wesentlichen verlustfreie Weiterleitung der in Wärmeenergie umgesetzten Laserenergie in die Kontaktmetallisierung 17, so daß sich diese auf die erforderliche Schmelztemperatur erwärmt

Um zu verhindern, daß es zu einer Überhitzung im Verbindungsbereich zwischen dem Kontaktelement 14 und der Kontaktmetallisierung 17 mit Ausbildung eines entsprechenden Wärmestaus kommt, ist es insbesonde-15 mit einer bei diesem Ausführungsbeispiel des Sub- 35 re in dem Fall, daß die Leistung der verwendeten Laserquelle noch nicht 100% ig auf die miteinander kombinierten Materialen des Substrats, der Kontaktelemente und der Kontaktmetallisierungen 17 abgestimmt ist, vorteilhaft, wenn die im Verbindungsbereich erzielte Verbindungstemperatur, insbesondere die sich daraus in der Trägerschicht 13 ergebende Temperatur, durch eine hier nicht näher dargestellte Temperaturregelung überwacht wird. Dies kann beispielsweise unter Zuhilfenahme eines Infrarot-Detektors 23 erfolgen, der die von der Trägerschicht 13 bzw. der Faserendfläche 20 reflektierte Infrarotstrahlung umgelenkt über ein Prisma 24 erfaßt und als entsprechendes Regelsignal an eine hier nicht näher dargestellte Temperaturregeleinrichtung weiterleitet.

> Fig. 2 erläutert eine Variante einer weiteren erfindungsgemäßen Verfahrensalternative, bei der die Energiebeaufschlagung eines Substrats 25 mittels einer Thermode 26 erfolgt.

Das Substrat 25 unterscheidet sich von dem Substrat lung 11 dient bei dem in Fig. 1 dargestellten Ausfüh- 55 10 darin, daß die Kontaktelemente 14, 15 nicht unmittelbar auf die Trägerschicht 13 aufgebracht sind, sondern zwischenliegend eine Kleberschicht 27 zur Verbindung der Kontaktelemente 14, 15 mit der Trägerschicht 13 vorgesehen ist. Bei einem derartig ausgebildeten Substrat können die Kontaktelemente aus einer auf die Tragerschicht auf laminierten Kupferfolie herausgearbeitet sein. Es wird betont, daß die Ausbildung des Substrats 10 bzw. 25 keinen wesentlichen Einfluß auf die Anwendbarkeit des in Fig. 1 und in Fig. 2 dargestellten Verfahsierungen 17 des Chips 12 zugeordnet sind. Die Verbin- 65 rens hat. Vielmehr könnten die hier beispielhaft dargestellten Substrate 10 oder 25 auch gegeneinander ausgetauscht werden.

Bei der in Fig. 2 dargestellten Verfahrensvariante

wird die Thermode 26 mit ihrem stiftförmigen Thermodenkopf 28, der im Durchmesser in etwa mit der in Fig. 1 dargestellten Lichtleitfaser 18 übereinstimmt, gegen die Rückseite 19 der Trägerschicht 13 gefahren. Der Thermodenkopf 28 wird in einer ersten Phase des Verbindungsvorgangs gegen den Anschlußbereich 21 des Kontaktelements 14 bewegt. Hierzu wird im wesentlichen durch Ultraschall-induzierte mechanische Mikroschwingungen der Thermode 26 bzw. des Thermodenkopfs 28 unter gleichzeitiger Druckeinwirkung bzw. 10 einer Vorschubbewegung die Trägerschicht 13 sowie die Kleberschicht 27 im Trägerschichtbereich 29 entfernt. Erst wenn der Thermodenkopf 28 im Anschlußbereich 21 rückwärtig am Kontaktelement 14 anliegt, erfolgt in der zweiten Phase eine zum Aufschmelzen der 15 Kontaktmetallisierung 17 ausreichende Energiebeaufschlagung der Thermode 26, wobei gleichzeitig zur Si-

de 26 gegen das Kontaktelement 14 gedrückt wird.

Die Art der Energiebeaufschlagung wird im wesentlichen durch die miteinander zu verbindenden Materialien der Kontaktelemente bzw. der Kontaktmetallisierungen bestimmt. Bei einer Gold/Gold-Kontaktierung erfolgt beispielsweise in der zweiten Phase eine Beaufschlagung mit Ultraschall, Temperatur und gegenüber der ersten Phase erhöhtem Druck, um die Materialien durch eine Preßschweißung miteinander zu verbinden. Bei einer Gold/Zinn-Kontaktierung ist es vorteilhaft für die zweite Phase eine Beaufschlagung mit Temperatur und einem im Vergleich zum vorhergehenden Beispiel geringeren Druck zu wählen, um die Materialien in einem Lötvorgang miteinander zu verbinden.

cherstellung einer guten Wärmekopplung die Thermo-

Die zum Aufschmelzen der Kontaktmetallisierung 17 und zur Verbindung der Kontaktmetallisierung 17 mit dem Kontaktelement 14 notwendige Temperatur liegt 35 bei etwa 400°C. Diese Temperatur liegt im Bereich der Zersetzungstemperatur von Polyimid (etwa 400°C), so daß deutlich wird, daß eine unmittelbare Beaufschlagung der Trägerschicht 13, also ohne vorhergehende Entfernung des Trägerschichtbereichs 29, eine Beschädigung der Trägerschicht 13 zur Folge hätte.

Patentansprüche

1. Verfahren zur thermischen Verbindung von 45 Kontaktelementen eines flexiblen Substrats mit Kontaktmetallisierungen eines elektronischen Bauelements, wobei das flexible Substrat eine Trägerschicht aus Kunststoff aufweist und eine Energiebeaufschlagung der Kontaktelemente von deren 50 Rückseite her erfolgt, gekennzeichnet durch eine Beaufschlagung mit Laserstrahlung (11), wobei die Transparenz des Substrats (10), die Absorption der Kontaktelemente (14, 15) und die Wellenlänge der Laserstrahlung (11) derart aufeinander abgestimmt sind, daß die Laserstrahlung im wesentlichen durch die Trägerschicht (13) hindurchgeleitet und in den Kontaktelementen (14, 15) absorbiert wird, und

eine Druckbeaufschlagung des Substrats (19) derart, daß die Kontaktelemente (14, 15) des Substrats (10) und die Kontaktmetallisierungen (17) des Bauelements (12) während der Beaufschlagung mit Laserstrahlung (11) aneinander anliegen.

2. Verfahren nach Anspruch 1, dadurch gekenn-65 zeichnet, daß die Energiebeaufschlagung mittels einer Lichtleitfaser (18) erfolgt, die sowohl zur Einleitung der Laserstrahlung (11) in das Substrat (10) als

auch zur Druckbeaufschlagung dient.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Lichtleitfaser (18) zur Druckbeaufschlagung mit ihrer Faserendfläche (20) unmittelbar gegen die Trägerschicht (13) des Substrats (10) gedrückt wird.

4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Energiebeaufschlagung mittels einer Lichtleitfaser (18) oder einer Lichtleitoptik erfolgt, und zur Druckbeaufschlagung eine hiervon unabhängige Andruckeinrichtung eingesetzt wird.

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß zur Druckbeaufschlagung in einem Kontaktbereich zwischen dem Substrat (10) und dem Bauelement (12) Unterdruck erzeugt wird.

6. Verfahren zur thermischen Verbindung von

6. Verfahren zur thermischen Verbindung von Kontaktelementen eines flexiblen Substrats mit Kontaktmetallisierungen eines elektronischen Bauelements, wobei das flexible Substrat eine Trägerschicht aus Kunststoff aufweist und eine Energiebeaufschlagung der Kontaktelemente von deren Rückseite her erfolgt, dadurch gekennzeichnet, daß in einer ersten Phase eine Beaufschlagung der Trägerschicht (13) mit Ultraschall-induzierten mechanischen Schwingungen und Druck erfolgt, derart, daß ein einen Anschlußbereich (21) eines Kontaktelements (14, 15) überdeckender Trägerschichtbereich (29) freigelegt wird, und in einer zweiten Phase eine Beaufschlagung des Kontaktelements (14, 15) mit Druck und Temperatur und/oder Ultraschall-induzierten mechanischen Schwingungen zur Verbindung mit der zugeordneten Kontaktmetallisierung (17) erfolgt.

7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Energiebeaufschlagung mittels einer stiftförmigen Thermode (26) erfolgt, wobei die Thermode (26) während der ersten Phase zur Beaufschlagung der Trägerschicht (13) mit Ultraschall und während der zweiten Phase zur Beaufschlagung des Kontaktelements (14, 15) mit Temperatur und/oder Ultraschall beaufschlagt wird.

Hierzu 2 Seite(n) Zeichnungen

Nummer: Int. Cl.⁶: Offenlegungstag: DE 195 04 967 A1 H 01 L 21/603 22. August 1996

FIG. 2

Numm r: Int. Cl.⁶: Offenlegungstag: DE 195 04 967 A1 H 01 L 21/603 E 22. August 1996

FIG.1