

Cardinality definition

• The values of a categorical variable are selected from a group of categories (also called labels).

The number of different labels is known as <u>cardinality</u>.

Cardinality examples

- The variable gender contains only 2 labels in this example
- Vehicle Make contains 9 labels in the example table
- The variables city or postcode, can contain a huge number of different labels.

Gender	Vehicle Make
Male	Mercedes
Male	Ford
Male	Ford
Male	Renault
Male	Seat
Male	Renault
Female	Citroen
Female	Toyota
Female	Kia
Female	Kia
Female	Nissan
Female	BMW

Gender → 2 Vehicle Make → 9

Are multiple labels in a categorical variable a problem?

Cardinality: Impacts

Strings are incompatible with Scikit-Learn

Uneven distribution between train and test sets

Over-fitting in tree based algorithms

Operational problems

Strings and categorical encoding

Scikit-Learn does not support strings as inputs Categories must be encoded as numbers Encoding techniques impact feature space and variable interactions

More on encoding methods in a dedicated section...

Uneven distribution between train and test sets

For highly cardinal variables:

- Some labels may appear only in train set → over-fitting
- Some labels may appear only in test set → model will not know how to interpret the values

Uneven distribution

Obs	Vehicle Make
1	Mercedes
2	Ford
3	Ford
4	Renault
5	Seat
6	Renault
7	Citroen
8	Toyota
9	Kia
10	Kia
11	Nissan
12	BMW

Obs	Vehicle Make	Train Set
1	Mercedes	
3	Ford	
6	Renault	
7	Citroen	
9	Kia	
11	Nissan	

Obs	Vehicle Make	
2	Ford	
5	Seat	<
4	Renault	
8	Toyota	<
10	Kia	
12	BMW	<

Overfitting

Cardinality and overfitting

Cardinality and operationalisation

Summary

- Strings need to be encoded as numbers for use with Scikit-Learn
- High cardinality may cause overfitting and operationalisation
 problems
- Reducing cardinality may improve model performance

Accompanying Jupyter Notebook

- Read the accompanying Jupyter
 Notebook
- How to quantify cardinality
- Examples of high and low cardinality variables
- Effect of cardinality when preparing train and test sets
- Effect of cardinality on Machine Learning Model performance

THANK YOU

www.trainindata.com