

CSC349A Numerical Analysis Lecture 15

Rich Little

University of Victoria

2023

R. Little 1/1

Table of Contents I

Barycentric Lagrange Interpolation

Lagrange can suffer from round-off error instability due to the number of computations, but there is a form of Lagrange where we can reduce the number of computations significantly. Recall, given $(x_i, f(x_i)), 0 \le i \le n$,

$$P(x) = \sum_{i=0}^{n} L_i(x) f(x_i)$$

where

$$L_i(x) = \prod_{i=0}^n \frac{x - x_j}{x_i - x_j}, \text{ for } i = 0, 1, 2, \dots, n$$

R. Little 3/1

Barycentric Lagrange Interpolation II

Note,

$$L_{i}(x) = \prod_{j=0, j \neq i}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}$$

$$= \prod_{j=0, j \neq i}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} \cdot \frac{x - x_{i}}{x - x_{i}}$$

$$= \prod_{j=0}^{n} (x - x_{j}) \cdot \prod_{j=0, j \neq i}^{n} \frac{1}{x_{i} - x_{j}} \cdot \frac{1}{x - x_{i}}$$

$$= \prod_{i=0}^{n} (x - x_{j}) \cdot \frac{1}{\prod_{i=0, i \neq i}^{n} (x_{i} - x_{j})} \cdot \frac{1}{x - x_{i}}$$

R. Little 4/1

Barycentric Lagrange Interpolation III

Let $L(x) = \prod_{j=0}^{n} (x - x_j)$ and $w_i = \frac{1}{\prod_{j=0, j \neq i}^{n} (x_i - x_j)}$, for each $i = 0, 1, 2, \dots, n$, then

$$L_i(x) = L(x) \frac{w_i}{x - x_i}, \text{ for } i = 0, 1, 2, \dots, n$$

and

$$P(x) = L(x) \sum_{i=0}^{n} \frac{w_i}{x - x_i} f(x_i)$$

Note, if $x = x_i$, then $P(x_i) = f(x_i)$ so there is no need to calculate. Just test for x_i in computation.

R. Little 5/1

Example 1

Evaluate In(2) using Lagrange polynomial interpolation, given that

$$ln 1 = 0$$

$$ln 4 = 1.386294$$

$$\ln 6 = 1.791760$$

R. Little 6/1

Example 1 continued

R. Little 7/1

Table of Contents I

Finding the coefficients of the interpolating polynomial

Although the Langrange polynomial is well-suited to solving intermediate values it does not give you a polynomial in simple form

$$P(x) = a_0 + a_1 x + \dots + a_n x^n$$

The coefficients of such an interpolating polynomial can be determined by solving a system of linear equations.

R. Little 9/1

Finding the coefficients of the interpolating polynomial

Given a function f(x) and distinct points $x_0, x_1, ..., x_n$, let P(x) be the polynomial of degree $\leq n$ for which $P(x_i) = f(x_i)$ for i = 0, 1, ..., n. Then.

$$a_{0} + a_{1}x_{0} + \dots + a_{n}x_{0}^{n} = f(x_{0})$$

$$a_{0} + a_{1}x_{1} + \dots + a_{n}x_{1}^{n} = f(x_{1})$$

$$\vdots$$

$$a_{0} + a_{1}x_{n} + \dots + a_{n}x_{n}^{n} = f(x_{n})$$

Finding the coefficients of the interpolating polynomial

In matrix form, solve

$$\begin{bmatrix} 1 & x_0 & \dots & x_0^n \\ 1 & x_1 & \dots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}$$

So, if n=2, we let $P(x)=a_0+a_1x+a_2x^2$ and solve

$$\begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ f(x_2) \end{bmatrix}$$

11 / 1

Example 2

Let $f(x) = \sin x$, $x_0 = 0.2$, $x_1 = 0.5$, and $x_2 = 1$ and find the interpolating polynomial.

R. Little 12/1

Note

An interpolating polynomial can be specified in many different forms.

- 1 For example the form can be $a(x-x_2)^2 + b(x-x_2) + c$ or
- 2 using the Lagrange form for n = 2:

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2)$$

$$= \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}f(x_1)$$

$$+ \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}f(x_2)$$

or

simply as $P(x) = Ax^2 + Bx + C$.

We will show that all of these forms are identical as the interpolating polynomial is unique.

Table of Contents I

Uniqueness

Theorem: Given any n+1 distinct points x_0, x_1, \ldots, x_n and any n+1 values $f(x_0), f(x_1), \ldots, f(x_n)$, there exists a unique polynomial P(x) of degree $\leq n$ such that

$$P(x_i) = f(x_i)$$
 for $i = 0, 1, ..., n$

Proof:

Existence: by construction of the Lagrange interpolating polynomial

Uniqueness proof

R. Little 16/1

Table of Contents I

R. Little 17/1

Error term of polynomial interpolation

Theorem:

Let $x_0, x_1, \ldots x_n$ be any distinct points in [a, b]. Let $f(x) \in C^{n+1}[a, b]$ and let P(x) interpolate f(x) at x_i . Then for each $\hat{x} \in [a, b]$, there exists a value ξ in (a, b) such that

$$f(\hat{x}) = P(\hat{x}) + \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (\hat{x} - x_i)$$

for example for n = 3

$$f(\hat{x}) = P(\hat{x}) + \frac{f^{(4)}(\xi)}{24}(\hat{x} - x_0)(\hat{x} - x_1)(\hat{x} - x_2)(\hat{x} - x_3)$$

The limitation of this error bound for polynomial interpolation is the need to find an upper bound for $f^{(n+1)}(x)$ on [a, b].

The Runge Phenomenon

The following example is the classical example to illustrate the oscillatory nature and thus the unsuitability of high order interpolating polynomials.

Example: Consider the problem of interpolating

$$f(x) = \frac{1}{1 + 25x^2}$$

on the interval [-1,1] at n+1 equally-spaced points x_i by the interpolating polynomial $P_n(x)$.

Graphs of f(x), $P_5(x)$, and $P_{20}(x)$

Figure: The Runge function

Runge's Theorem

- Runge proved that as $n \to \infty$, $P_n(x)$ diverges from f(x) for all values of x such that $0.726 \le |x| < 1$ (except for the points of interpolation x_i).
- The interpolating polynomials do approximate f(x) well for |x| < 0.726.
- One way to see that the difference between f(x) and $P_n(x)$ becomes arbitrarily large as n becomes large is to consider the error term for polynomial interpolation

$$f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

As $n \to \infty$, it can be shown that $f(x) - P_n(x) \to \infty$ (at some points x in [-1,1]).

R. Little 21/1