TDDC17: Introduction to Automated Planning

Jonas Kvarnström

Automated Planning Group

Department of Computer and Information Science

Linköping University

jonas.kvarnstrom@liu.se - 2016

I: Introduction to Planning

One way of defining planning:

Using **knowledge** about the world, including possible actions and their results, to **decide** what to do and when in order to achieve an **objective**, **before** you actually start doing it

Domains 1: Blocks World

Classical example: The Blocks World

Domains 2: Shakey

- Classical robot example:Shakey (1969)
 - Available **actions**:
 - Moving to another location
 - Turning light switches on and off
 - Opening and closing doors
 - Pushing movable objects around
 - ...
 - Goals:
 - Be in room 4 with objects A,B,C
 - http://www.youtube.com/watch?v=qXdn6ynwpiI

Domains 3

Logistics:

Use a fleet of trucks to efficiently deliver packages

On-board planning

to view interesting natural events:

http://ase.jpl.nasa.gov/

SIADEX – plan for firefighting

Limited resources Plan execution is dangerous!

Domains 4: Dock Worker Robots (DWR)

Containers shipped in and out of a harbor

Cranes move containers between "piles" and robotic trucks

Problem description

Solver: Planning Algorithm

Solution

Could be a customized solver

plan = [];

= current state of the world;

while (exists b1,b2 [s.isOn(b1,b2)]):

"unstack(b1,b2)" plan

apply(unstack(b1,b2), s) S

"putdown(b1)" plan

apply(putdown(bI), s)

while (exists b1,b2 [goal.isOn(b1,b2) & !s.isOn(b1,b2) &

s.isClear(b1) & s.isClear(b2)]):

"pickup(b1)" þlan

apply(pickup(bI), s)

"stack(b1,b2)" þlan

return plan

apply(stack(b1,b2), s)

Rebuild in the right order

Tear down

all towers

Efficient plans -> more complex solvers Complex domains → more complex solvers Programming is time-consuming Problem changes → more programming required

We want general + efficient algorithms!

Al Planning: A Simplified View

You have already planned – using general <u>search</u> algorithms!

But the **representation** was problem-specific...

States: triple (x,y,z) with $0 \le x,y,z \le 3$, where x, y, and z represent the number of missionaries, cannibals and boats currently on the original bank.

And so was the search **guidance**!

Straight line distance from city n to goal city n'

 $h_2(n)$: The sum of the manhatten distances for each tile that is out of place.

(3+1+2+2+2+3+3+2=18) . The manhatten distance is an under-estimate because there are tiles in the way.

How to **generalize**?

Classical Planning

First requirement: A formal language for planning problems!

- We want a <u>general</u> language:
 - Allows a wide variety of domains to be modeled

- We want good <u>algorithms</u>
 - Generate plans quickly
 - Generate high quality plans
- Easier with more <u>limited</u> languages

Conflicting desires!

- Many early planners made <u>similar tradeoffs</u>
 - Later called "classical planning"Restricted, but a good place to start

Modeling Classical Planning Problems

Planning Domain, Problem Instance

Split knowledge into two parts

Planning Domain

- General properties of DWR problems
 - There are containers, cranes, ...
 - Each object has a location
 - Possible actions:
 Pick up container, put down container, drive to location, ...

Problem Instance

- Specific problem to solve
 - Which containers and cranes exist?
 - Where is everything?
 - Where should everything be? (More general: What should we achieve?)

Objects 1: First-Order → Objects Exist

- Many planning languages have their roots in <u>logic</u>
 - Great you've already seen this!
- Propositional syntax
 - Plain propositional facts: ~B1,1,~S1,1,OK1,1,OK2,1,OK1
 - Used in some planners to simplify parsing, ...

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
OK 1,1 A OK	2,1 OK	3,1	4,1

- First-order syntax
 - Objects and predicates (relations):
 On(B,A), On(C,Floor), Clear(B), Clear(C)
 - Used in most implementations

Objects 2: Object Types

Essential: Determine what is **relevant** for the **problem** and **objective**!

Objects 3: In the problem instance

Objects are generally specified in the **problem instance**

robot: { r1 }

location: {loc1, loc2}

{ k1 } crane:

{ p1, p2 } pile:

container: { c1, c2, c3, pallet }

Facts

- In **first-order representations** of planning problems:
 - Any <u>fact</u> is represented as a logical <u>atom</u>: Predicate symbol + arguments
 - Properties of the world
 - raining - it is raining [not a DWR predicate!]
 - Properties of single objects...
 - empty(crane) - the crane is not holding anything
 - Relations between objects
 - attached(pile, location) - the pile is in the given location
 - **Relations** between >2 objects
 - can-move(robot, location, location)

Essential: Determine what is **relevant** for the **problem** and **objective**!

Facts / Predicates in DWR

All predicates for DWR, and their intended meaning:

"Fixed/Rigid" (can't change)	adjacent attached belong	(loc1, loc2) (p, loc) (k, loc)	; can move from <i>loc1</i> directly to <i>loc2</i> ; pile p attached to <i>loc</i> ; crane k belongs to <i>loc</i>
"D"	at occupied loaded unloaded	(r, loc) (loc) (r, c) (r)	; robot <i>r</i> is at <i>loc</i> ; there is a robot at <i>loc</i> ; robot <i>r</i> is loaded with container <i>c</i> ; robot <i>r</i> is empty
"Dynamic" (modified by actions)	holding empty	(k, c) (k)	; crane k is holding container c ; crane k is not holding anything
	in top on	(c, p) (c, p) (c1, c2)	; container <i>c</i> is somewhere in pile <i>p</i> ; container <i>c</i> is on top of pile <i>p</i> ; container <i>c</i> 1 is on container <i>c</i> 2

States 1: State of the World

A <u>state (of the world)</u> should specify exactly which facts (<u>ground atoms</u>) are true/false in the world at a given time

We can find all possible states!

Every assignment of true/false to the ground atoms is a distinct state

Number of states: 2^{number of atoms} – enormous, but finite (for classical planning!)

States 2: Efficient Representation

- Efficient specification and storage for a single state:
 - Specify which atoms are true
 - All other atoms have to be false what else would they be?
 - A <u>state of the world</u> is specified as a <u>set</u> containing all <u>variable-free atoms</u> that [are, were, will be] true in the world

```
• s_0 = \{ on(A,B), on(B,C), in(A,2), in(B,2), in(C,2), top(A), bot(C) \}
```



```
top(A) \in s_0 \rightarrow top(A) is true in s_0

top(B) \notin s_0 \rightarrow top(B) is false in s_0
```

States 3: Initial State

- Initial states in classical STRIPS planning:
 - We assume complete information about the initial state (before any action)

Complete relative to the model:
We must know everything
about those predicates and objects
we have specified...
But not whether it's raining!

So we can use a set of true atoms

```
attached(p1, loc1), in(c1, p1), on(c1, pallet), in(c3, p1), on(c3, c1), top(c3, p1),
attached(p2, loc1), in(c2, p2), on(c2, pallet), top(c2, p2),
belong(crane1, loc1), empty(crane1),
at(r1, loc2), unloaded(r1), occupied(loc2),
adjacent(loc1, loc2), adjacent(loc2, loc1),
}
```


States 4: Goal States

- Classical STRIPS planning: Reach one of possibly many goal states
 - Can be specified as a <u>set of literals</u> that must hold
 - Example: Containers I and 3 should be in pile 2
 - We don't care about their order, or any other fact
 - { in(c1,p2), in(c3,p2) }

Actions 1: Intro

- Actions in <u>plain search</u> (lectures 2-3):
 - Assumed a transition / successor function

<u>Result(State, Action)</u> - A description of what each action does (Transition function)

But how to <u>specify</u> it <u>succinctly</u>?

Actions 2: Operators

- Define <u>operators</u> or <u>action schemas</u>:
 - move(robot, location1, location2)

Precondition: at(robot, location1) A

adjacent(location1, location2) A

¬ **occupied**(location2)

in a state s
if its precond is true in s

The action is **applicable**

■ Effects: ¬**at**(robot, location1),

at(robot, location2),
¬occupied(location1),

occupied(location2)

action in state s: s – negated effects + positive effects

The result of applying the

Classical planning:

Known initial state, known state update function → <u>deterministic</u>, can completely predict the state of the world after a sequence of actions!

Actions 3: Instances

- The planner **instantiates** these schemas
 - Applies them to any combination of parameters of the correct type
 - **Example: move**(r1, loc1, loc2)

■ Precondition: at(r1, loc1) ∧

adjacent(loc1, loc2) ∧
¬ occupied(loc2)

• Effects: \neg **at**(r1, loc1),

at(r1, loc2),

¬occupied(loc1), occupied(loc2)

Actions 4: Step by Step

In <u>classical</u> planning (the basic, limited form):

We know the initial state Each action corresponds to **one** state update

Time is not modeled, and never multiple state updates for one action

We know how states are changed by actions

→ <u>Deterministic</u>, can completely predict the state of the world after a sequence of actions!

The <u>solution</u> to the problem will be a <u>sequence</u> of actions

Plan Generation

With or Without Search

- Important distinction:
 - Planning means deciding in advance
 which actions to perform in order to achieve a goal
 - Search will often be a useful tool, but you can get by without it

```
\begin{array}{lll} plan & = [\ ];\\ s & = \text{current state of the world;}\\ \text{while (exists } b1,b2\ [\ s.\text{isOn}(b1,b2)\ ]);\\ plan & += & \text{"unstack}(b1,b2)"\\ s & = & \text{apply(unstack}(b1,b2), s)\\ plan & += & \text{"putdown}(b1)"\\ s & = & \text{apply(putdown}(b1), s)\\ \text{while (exists } b1,b2\ [\ goal.\text{isOn}(b1,b2)\ \&\ s.\text{isOn}(b1,b2)\ \&\ s.\text{isClear}(b1)\ \&\ s.\text{isClear}(b2)\ ]);\\ plan & += & \text{"pickup}(b1)"\\ s & = & \text{apply(pickup}(b1), s)\\ plan & += & \text{"stack}(b1,b2)"\\ s & = & \text{apply(stack}(b1,b2), s)\\ return plan & & \end{array}
```

If we use search: What search space?

Plan Generation Method 1: Forward State Space Search

Introduction

- Forward state space search: As explored in the <u>Vacuum World</u>
 - A <u>search node</u> is simply a <u>world state</u>
 - Successor / transition function:
 - One outgoing edge for every executable (applicable) action
 - The action specifies where the edge will lead

Find a path (not necessarily shortest) - SRS, RSLS, LRLRLSSSRLRS, ...

How does a state space **look**?

State Spaces 1: Towers of Hanoi

Toy Problem 1: Towers of Hanoi has a very regular state space...

General Knowledge: Problem Domain

- There are pegs and disks
- A disk can be on a peg
- One disk can be above another
- Actions:
 Move topmost disk from x to y, without placing larger disks
 on smaller disks

Specific Knowledge and Objective: Problem Instance

- 3 pegs, 7 disks
- All disks currently on peg 2, in order of increasing size
- We want: All disks on the third peg, in order of increasing size

State Spaces 2: ToH, Actions

State Spaces 3: Larger Example

- Larger state space interesting symmetry
 - 7 disks

2187 states

State Spaces 4: Blocks World

- A common blocks world version, with <u>4 operators</u>
 - takes x from the table • pickup(x)
 - putdown(x) - puts x on the table
 - <u>unstack</u>(x, y) - takes x from on top of ?y
 - **<u>stack</u>**(x, y) - puts x on top of y

- Predicates (relations) used:
 - <u>on</u>(x, y) block x is on block y
 - ontable(x) - x is on the table
 - clear(x) - we can place a block on top of x
 - holding(x) - the robot is holding block x
 - the robot is not holding any block handempty

clear(A) on(A, C) ontable(C) clear(B) ontable(B) clear(D) ontable(D) handempty

State Spaces 5: Blocks World, 3 blocks

State Spaces 6: Blocks World, 4 blocks

125 reachable states 272 transitions

State Spaces 7: Blocks World, 5 blocks

State Spaces 8: Reachable State Space

Blocks	States reachable from "all on table"	Transitions (edges) in reachable part
0	1	0
1	2	2
2	5	8
3	22	42
4	125	272
5	866	2090
6	7057	18552
7	65990	186578
8	695417	2094752
9	8145730	25951122
10		
30	>197987401295571718915006598239796851	

Forward Search 1

- Forward search:
 - Start in the initial state
 - Apply a search algorithm
 - Depth first

Breadth first

• ...

Terminate when a

goal state is found

Forward Search 2: Step by step

Extremely many states - must generate the graph as we go

- Generate the initial node == initial state
 - From the initial state description in the input

Forward Search 3: Step by step

- Incremental expansion: Choose a node (using search strategy)
- Expand all possible successors
 - "What actions are applicable in the current state, and where will they take me?"
 - Generates new states by applying effects

Dijkstra

- Which search strategy to use?
 - Breadth first, depth first, iterative deepening depth first, ...
- One possible strategy: <u>Dijkstra's algorithm</u>
 - Uniform-cost search, but terminate when a goal state is found
 - **Efficient**: $O(|E| + |V| \log |V|)$
 - |V| = the number of nodes
 - |E| = the number of edges
 - And generates <u>optimal</u> (cheapest) paths/plans!

Would this algorithm be a solution?

Dijkstra's Algorithm: Analysis

- Blocks world, 400 blocks initially on the table, goal is a 400-block tower
 - Given that all actions have the same cost,
 Dijkstra will first consider <u>all</u> plans that stack <u>less than 400 blocks!</u>

• Stacking 1 block: = 400*399 plans, ...

Stacking 2 blocks: > 400*399 * 399*398 plans, ...

More than

 $163056983907893105864579679373347287756459484163478267225862419762304263994207997664258213955766581163654137118\\ 163119220488226383169161648320459490283410635798745232698971132939284479800304096674354974038722588873480963719\\ 240642724363629154726632939764177236010315694148636819334217252836414001487277618002966608761037018087769490614\\ 847887418744402606226134803936935233568418055950371185351837140548515949431309313875210827888943337113613660928\\ 318086299617953892953722006734158933276576470475640607391701026030959040303548174221274052329579637773658722452$

54973845940445258650369316934 27432025699299231777374983037 8105852178191464766293002360 39438655119417119333314403154 72535893398611212735245298803 777685901637435541458440833878

 $1.63*10^{1735}$

188265744484456318793090779661572990289194 1372350568748665249021991849760646988031691 1302649432305620215568850657684229678385177 3087201742432360729162527387508073225578630

 $051332104820413607822206465635272711073906611800376194410428900071013695438359094641682253856394743335678545824\\320932106973317498515711006719985304982604755110167254854766188619128917053933547098435020659778689499606904157\\077005797632287669764145095581565056589811721520434612770594950613701730879307727141093526534328671360002096924\\483494302424649061451726645947585860104976845534507479605408903828320206131072217782156434204572434616042404375\\21105232403822580540571315732915984635193126556273109603937188229504400$

Efficient in terms of the **search space size**: $O(|E| + |V| \log |V|)$

The search space is **exponential** in the size of the input description...

Fast Computers, Many Cores

- But computers are getting very fast!
 - Suppose we can check 10^20 states per second
 - >10 billion states per clock cycle for today's computers, each state involving complex operations
 - Then it will only take 10^1735 / 10^20 = 10^1715 seconds...

But we have <u>multiple cores!</u>

- The universe has at most 10^87 particles, including electrons, ...
- Let's suppose every one is a CPU core
- → only 10^1628 seconds> 10^1620 years
- The universe is around 10^10 years old

Hopeless? No:We need informed search!