SME0821 - Análise de Sobrevivência e Confiabilidade

Amanda Caroline de Oliveira Pires

April 2024

1 Questão 1

Demonstre que a variância do estimador de Kaplan-Meier é dada por

$$\operatorname{Var}\left[\hat{S}(t)\right] = \left[\hat{S}(t)\right]^{2} \sum_{j:t_{j} < t} \frac{d_{j}}{n_{j}(n_{j} - q_{j})}$$

Em que d_j é o número de falhas em t_j e nj é o número de indivíduos sob risco em t_j .

Como a probabilidade de se obter d_i falhas em n_i casos segue uma distribuição binomial com probabilidade de falha h_i .

$$\hat{h}_i = \frac{d_i}{n_i} \in E\left(\hat{h}_i\right) = h_i$$

$$\operatorname{Var}\left(\hat{h}_i\right) = h_i \left(1 - h_i\right) / n_i$$

Tomamos o logaritmo da função de sobrevivência e usamos o Método Delta para retornar a escala original.

$$\operatorname{Var}(\log \widehat{S}(t)) \sim \frac{1}{\widehat{S}(t)^2} \operatorname{Var}(\widehat{S}(t)) \Rightarrow$$

$$\operatorname{Var}(\widehat{S}(t)) \sim \widehat{S}(t)^2 \operatorname{Var}(\log \widehat{S}(t))$$

$$\log \widehat{S}(t) = \sum_{i: t_i \leq t} \log \left(1 - \widehat{h}_i\right)$$

Podemos escrever

$$\operatorname{Var}(\widehat{S}(t)) \sim \widehat{S}(t)^{2} \operatorname{Var}\left(\sum_{i:t_{i} \leq t} \log\left(1 - \widehat{h}_{i}\right)\right)$$

$$\operatorname{Var}(\widehat{S}(t)) \sim \widehat{S}(t)^{2} \sum_{i:t_{i} \leq t} \operatorname{Var}\left(\log\left(1 - \widehat{h}_{i}\right)\right)$$

$$\operatorname{Var}(\widehat{S}(t)) \sim \widehat{S}(t)^{2} \sum_{i:t_{i} \leq t} \left(\frac{\partial \log\left(1 - \widehat{h}_{i}\right)}{\partial \widehat{h}_{i}}\right)^{2} \operatorname{Var}\left(\widehat{h}_{i}\right)$$

$$\operatorname{Var}(\widehat{S}(t)) = \widehat{S}(t)^{2} \sum_{i:t_{i} \leq t} \left(\frac{1}{1 - \widehat{h}_{i}}\right)^{2} \frac{\widehat{h}_{i}\left(1 - \widehat{h}_{i}\right)}{n_{i}}$$

$$\operatorname{Var}(\widehat{S}(t)) = \widehat{S}(t)^{2} \sum_{i:t_{i} \leq t} \frac{\widehat{h}_{i}}{n_{i}\left(1 - \widehat{h}_{i}\right)}$$

E substituímos $\hat{h}_i = \frac{d_i}{n_i}$

$$Var(\widehat{S}(t)) = \widehat{S}(t)^{2} \sum_{i:t_{i} \leq t} \frac{d_{i}}{n_{i} (n_{i} - d_{i})}$$

2 Questão 2

Com base na teoria e o seguinte gráfico, responda às seguintes perguntas.

2.1 a)

Qual é o objetivo principal do TTT plot na análise de sobrevivência?

É um gráfico empírico e independente de escala baseado em dados de falha. Tem o objetivo de fornecer análises gráficas a respeito do comportamento do tempo de sobrevivência, identifica quaisquer padrões ou tendências nos dados e se torna uma ferramenta útil quando há informações qualitativas sobre a curva de risco. Além disso, é usado para verificar quão bem um modelo se ajusta aos dados.

2.2 b)

Qual é o significado do eixo x no TTT plot? E o eixo y?

O eixo x representa o tempo acumulado de observação durante o período do estudo e o eixo y equivale ao número cumulativo de indivíduos em risco ou sob observação em cada ponto do tempo acumulado.

2.3 c)

O que representa a linha traçada no gráfico?

Representa a Função de risco constante.

2.4 d)

Como você interpretaria o ponto onde a linha atinge 0.7 no eixo y?

Cerca de 70% dos itens ou eventos foram observados até esse ponto específico no tempo.

2.5 e)

O que pode ser interpretado/inferido com base na inclinação da linha no TTT plot?

A linha do TTT apresenta forma de banheira. Podemos dizer que de 0 até aproximadamemte 0.5 a curva se mantém crescente e côncava, de 0.5 até 1 apresenta comportamento decrescente e convexa. Por isso fica em formato de banheira.

3 Questão 3

Considere os dados de sobrevivência abaixo (em semanas) para 2 tratamentos. 6MP (novo tratamento) e placebo (controle). Os dados do grupo controle foram completos e os dados do grupo tratamentos foram censurados progressivamente.

Grupo	Tempos				
Droga (6MP)	6, 6, 6, 6+, 7, 9+, 10, 10+, 11+, 13, 16, 17+, 19+, 20+, 22, 23, 25+, 32+, 32+, 34+, 35+				
Placebo	1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23				

3.1 a)

Encontrar os estimadores produto limite, Kaplan-Meier e Nelson Alaen para os dois grupos.

Estimador de Kaplan-Meier

$$\hat{S}(t) = \prod_{j: t_j \le t} \left(1 - \frac{d_j}{n_j} \right).$$

```
# Bibliotecas
2 library(survival)
3 library(survminer)
4 library(ggplot2)
5 library(tidyverse)
6 library(EstimationTools)
8 # Kaplan-Meier
9 Droga <- data.frame(</pre>
    droga = c
10
      (6,6,6,6,7,9,10,10,11,13,16,17,19,20,22,23,25,32,32,34,35),
    11
12 )
13
14 Droga_km <- survfit(Surv(droga, cens1) ~ 1, data = Droga)</pre>
# Modelo de riscos proporcionais (Cox)
17 cox_model1 <- coxph(Surv(droga, cens1) ~ 1, data = Droga)
18 fit1_na <- survfit(cox_model1)</pre>
20 # Resultados
print(summary(Droga_km))
```

```
95% CI upper
                                                                   95% CI
     n.risk n.event survival
                                   std.err lower
_{
m time}
   6
                                                                     1.000
          21
                     3
                           0.857
                                         0.0764
                                                           0.720
   7
          17
                     1
                           0.807
                                         0.0869
                                                           0.653
                                                                     0.996
  10
          15
                     1
                           0.753
                                         0.0963
                                                           0.586
                                                                     0.968
  13
          12
                     1
                           0.690
                                         0.1068
                                                           0.510
                                                                     0.935
  16
          11
                     1
                           0.627
                                         0.1141
                                                           0.439
                                                                     0.896
  22
           7
                     1
                           0.538
                                         0.1282
                                                           0.337
                                                                     0.858
  23
           6
                     1
                           0.448
                                         0.1346
                                                           0.249
                                                                     0.807
```

```
# Kaplan-Meier
Placebo <- data.frame(
    placebo = c(1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23),
    cens2 = c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

Placebo_km <- survfit(Surv(placebo, cens2) ~ 1, data = Placebo)

Modelo de riscos proporcionais (Cox)
    cox_model2 <- coxph(Surv(placebo, cens2) ~ 1, data = Placebo)

fit2_na <- survfit(cox_model1)

# Resultados
    print('Estimador de Kaplan-Meier Placebo:')
    print(summary(Placebo_km))</pre>
```

$_{ m time}$	n.risk	n.event	survival	std.err lower 95% CI upper	95% CI	
1	21	2	0.9048	0.0641	0.78754	1.000
2	19	2	0.8095	0.0857	0.65785	0.996
3	17	1	0.7619	0.0929	0.59988	0.968
4	16	2	0.6667	0.1029	0.49268	0.902
5	14	2	0.5714	0.1080	0.39455	0.828
8	12	4	0.3810	0.1060	0.22085	0.657
11	8	2	0.2857	0.0986	0.14529	0.562
12	6	2	0.1905	0.0857	0.07887	0.460
15	4	1	0.1429	0.0764	0.05011	0.407
17	3	1	0.0952	0.0641	0.02549	0.356
22	2	1	0.0476	0.0465	0.00703	0.322
23	1	1	0.0000	NaN	NA	NA

Nelson-Aalen

print(summary(fit1_na))
print(summary(fit2_na))

Droga

$_{ m time}$	n.risk	n.event	survival	std.err lower	95% CI upper	95% CI
6	21	3	0.860	0.0747	0.726	1.000
7	17	1	0.811	0.0851	0.661	0.996
10	15	1	0.759	0.0943	0.595	0.968
13	12	1	0.698	0.1045	0.521	0.936
16	11	1	0.638	0.1116	0.452	0.899
22	7	1	0.553	0.1249	0.355	0.861
23	6	1	0.468	0.1314	0.270	0.811

Placebo

$_{\rm time}$	n.risk	n.event	survival	std.err	lower 95% CI upper	95% CI
1	21	2	0.9070	0.0626	0.79219	1.000
2	19	2	0.8140	0.0839	0.66509	0.996
3	17	1	0.7675	0.0911	0.60821	0.968
4	16	2	0.6745	0.1010	0.50290	0.905
5	14	2	0.5815	0.1064	0.40631	0.832
8	12	4	0.3955	0.1054	0.23462	0.667
11	8	2	0.3026	0.0990	0.15936	0.575
12	6	2	0.2097	0.0877	0.09241	0.476
15	4	1	0.1633	0.0796	0.06286	0.424
17	3	1	0.1170	0.0691	0.03680	0.372
22	2	1	0.0710	0.0549	0.01558	0.323
23	1	1	0.0261	0.0330	0.00219	0.311

3.2 b)

Encontrar as variâncias dos estimadores de Kaplan-Meier e intervalos de confiança.

```
1 # Droga
2 Droga <- data.frame(</pre>
    temp = c
     (6,6,6,6,7,9,10,10,11,13,16,17,19,20,22,23,25,32,32,34,35),
    5)
7 # Placebo
8 Placebo <- data.frame(</pre>
    temp = c(1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23),
    10
11 )
12
varg <- function(grupos) {</pre>
    km_fit = survfit(Surv(temp, cens) ~ 1, data = grupos)
14
    variance = sum(km_fit$std.err^2)
15
    ci_low = km_fit$lower
16
    ci_high = km_fit$upper
17
    return(list(variance = variance, ci_low = ci_low, ci_high = ci_
18
     high))
19 }
20
grupo1resultado = varg(Droga)
grupo2resultado = varg(Placebo)
print(paste0("Vari ncia: ", round(grupo1resultado$variance, 3)))
print(sprintf("Intervalo de Confian a (IC): [%s, %s]",
         round(grupo1resultado$ci_low, 3),
26
               round(grupo1resultado$ci_high, 3)))
print(paste0("Vari ncia: ", round(grupo2resultado$variance, 3)))
29 print(sprintf("Intervalo de Confian a (IC): [%s, %s]",
               round(grupo2resultado$ci_low, 3),
               round(grupo2resultado$ci_high, 3)))
31
```

Droga

```
[1] "Variância: 0.728"
[1] "Intervalo de Confiança (IC): [0.72, 1]"
[2] "Intervalo de Confiança (IC): [0.653, 0.996]"
 [3] "Intervalo de Confiança (IC): [0.653, 0.996]"
 [4] "Intervalo de Confiança (IC): [0.586, 0.968]"
[5] "Intervalo de Confiança (IC): [0.586, 0.968]"
[6] "Intervalo de Confiança (IC): [0.51, 0.935]"
[7] "Intervalo de Confiança (IC): [0.439, 0.896]"
[8] "Intervalo de Confiança (IC): [0.439, 0.896]"
[9] "Intervalo de Confiança (IC): [0.439, 0.896]"
[10] "Intervalo de Confiança (IC): [0.439, 0.896]"
[11] "Intervalo de Confiança (IC): [0.337, 0.858]"
[12] "Intervalo de Confiança (IC): [0.249, 0.807]"
[13] "Intervalo de Confiança (IC): [0.249, 0.807]"
[14] "Intervalo de Confiança (IC): [0.249, 0.807]"
[15] "Intervalo de Confiança (IC): [0.249, 0.807]"
[16] "Intervalo de Confiança (IC): [0.249, 0.807]"
```

Placebo

```
"Variância: Inf"

"Intervalo de Confiança (IC): [0.788, 1]"

"Intervalo de Confiança (IC): [0.658, 0.996]"

"Intervalo de Confiança (IC): [0.6, 0.968]"

"Intervalo de Confiança (IC): [0.493, 0.902]"

"Intervalo de Confiança (IC): [0.395, 0.828]"

"Intervalo de Confiança (IC): [0.221, 0.657]"

"Intervalo de Confiança (IC): [0.145, 0.562]"

"Intervalo de Confiança (IC): [0.079, 0.46]"

"Intervalo de Confiança (IC): [0.05, 0.407]"

"Intervalo de Confiança (IC): [0.025, 0.356]"

"Intervalo de Confiança (IC): [0.007, 0.322]"

"Intervalo de Confiança (IC): [NA, NA]"
```

3.3 c)

Faça o gráfico das curvas de sobrevivência estimadas.

Curva de sobrevivência da droga

Curva de sobrevivência do placebo

3.4 d)

Calcule o tempo médio de vida dos pacientes para os dois grupos.

3.5 e)

Com apoio computacional obtenha todos os estimadores e faça os gráficos.

3.6 f)

Faça uma conclusão para os resultados encontrado.

Observa-se que as curvas de sobrevivência e os intervalos de confiança da droga e do placebo são diferentes. O grupo que recebeu a droga apresenta um tempo de sobrevida maior em comparação com o grupo que recebeu apenas o placebo. Portanto, há indícios que o tratamento com a droga é eficaz.

3.7 g

Construa o gráfico TTT plot considerando os grupos droga e placebo. Em relação à função de risco associada a cada um desses grupos, o que podemos concluir?

```
1 library(tidyverse)
2 library(EstimationTools)
4 # TTT PLOT PARA DADOS N O -CENSURADOS (Placebo)
t = c(1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23)
7 TTT = TTTE_Analytical(t~1, method='Barlow')
9 dadosTTT = tibble(
  x = TTT$^i/n,
10
    y = TTT$phi_n
11
12 )
13 G =
    dadosTTT %>%
14
    ggplot(aes(x=x, y=y)) +
15
    geom_step() +
16
17
    geom_point() +
    geom_abline(slope=1, intercept=0, linetype="dashed") +
    lims(y=c(0,1), x=c(0,1)) +
19
    labs(x = bquote(u[i]), y = bquote(varphi[i])) +
20
theme_minimal(); G
```

Placebo


```
1 # =====
2 # TTT PLOT PARA DADOS CENSURADOS
3 #
5 droga = c(6,6,6,6,7,9,10,10,11,13,16,17,19,20,22,23,25,32,32,34,35)
TTT = TTTE_Analytical(Surv(droga,cens)~1, method='censored')
9
10 dadosTTT = tibble(
   x = TTT$`i/n`,
11
12
    y = TTT $phi_n
13 )
14
15 G =
16
    dadosTTT %>%
    ggplot(aes(x=x, y=y)) +
17
18
    geom_step() +
    geom_point() +
19
    geom_abline(slope=1, intercept=0, linetype="dashed") +
20
    lims(y=c(0,1), x=c(0,1)) +
21
labs(x = bquote(u[i]), y = bquote(varphi[i])) +
```

Droga

Conclusão: O gráfico TTT do placebo apresenta curva crescente, ou seja, tem um aumento na taxa de falha, isso pode indicar que mais pessoas estão morrendo conforme o tempo passa. O TTT da droga apresenta a curva quase em forma de banheira, indicando um crescimento nos tempos iniciais, um decaimento no meio e por fim um decrescimento no final, isso poderia indicar que a droga está surtindo efeito no tratamento contra certa doença.