COGS118C: Neural Signal Processing

Analytic Signal & Hilbert Transform

Lecture 10 July 18, 2019

Course Outline: Road Map

Goals for Today

- Motivate "analytic signals"
- 2. Understand & derive negative frequencies & DFT symmetry
- 3. Conceptualize Hilbert Transform

Amplitude (power) and frequency can change very quickly for non-stationary signals like AM & FM radio.

Our proposed solution so far: **Time-Frequency Analysis (STFT)**

Our proposed solution so far:

Time-Frequency Analysis (STFT)

data inside the short window

We can only distinguish a frequency resolution of ____, at a time resolution of ____

How can we improve both?

STFT Parameters (Choice) M = window length (s) R = step length (s) L = overlap length (s) * M = R + L

How can we improve both?

$$M = 1s$$
, $R = 0.5s$

My Spectrogram

Output

Description:

My Spectrogram

Output

Description:

Time

Time

$$M = 5s, R=0.5s$$

M = 5s, R=0.01s

Increase M: better frequency resolution

Decrease R: smaller steps, better time localization

But there is a limit on both, and it's a huge waste.

In the Brain: Neural Signals

Neural oscillations are never stationary:

power and frequency change very quickly.

Andreas Wutz, David Melcher, and Jason Samaha

Frequency modulation of neural oscillations according to visual task demands

Article | OPEN | Published: 12 December 2017

Fluctuations in instantaneous frequency predict alpha amplitude during visual

perception

Stephanie Nelli™, Sirawaj Itthipuripat, Ramesh Srinivasan & John T. Serences ™

Fluctuations in Oscillation Frequency Control Spike Timing and Coordinate Neural Networks

Michael X Cohen

Journal of Neuroscience 2 July 2014, 34 (27) 8988-8998; DOI: https://doi.org/10.1523/JNEUROSCI.0261-14.2014

rat hippocampus

In Neural Signals

instantaneous frequency Φ : derivative of phase θ (rate of phase change)

$$\phi(t) = \frac{d\theta(t)}{dt}.$$

How to Define/Compute?

How do we actually compute these quantities?

What are their definitions?

Analytic Signal

This real-valued signal does not have defined instantaneous measures.

Intuition: if I gave you a single time point, can you know its amplitude & phase?

Amplitude & phase both change, so you need 2 pieces of information (numbers)

Analytic Signal: Complex Time-Series

Has well-defined instantaneous time-varying amplitude and phase (and rate of phase change)

Amplitude: magnitude

Phase: angle

How to Define/Compute?

500

Real

1500

Better Time and Frequency Resolution

STFT

Analytic Signal

time resolution: **dt** frequency resolution: **df**

For a "well-behaved" signal: (usually) narrowband & denoised

Goals for Today

- 1. Motivate "analytic signals"
- 2. Understand & derive negative frequencies & DFT symmetry
- 3. Conceptualize Hilbert Transform

DFT: Negative Frequencies

$$X_k=\sum_{n=0}^{N-1}x_n\cdot e^{-rac{i2\pi}{N}kn}$$
 (Eq.1) $=\sum_{n=0}^{N-1}x_n\cdot [\cos(2\pi kn/N)-i\cdot\sin(2\pi kn/N)],$

If you do FT on the first 1s of data, what are the X_k's (which ones are not 0)?

hint: orthogonality

$$x(n) = \cos(2\pi 14n/N + \theta)$$

 $X_{14} = a - bi$, rest are 0s...

or are they?

DFT: Negative Frequencies

What we've been looking at: positive frequencies

High School Trig Gymnastics

$$X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-rac{i2\pi}{N}kn} \ = \sum_{n=0}^{N-1} x_n \cdot [\cos(2\pi kn/N) - i \cdot \sin(2\pi kn/N)],$$
 (Eq.1)

k = 0, 1, 2, ... N-1

$$cos(2\pi - \theta) =$$

$$sin(2\pi - \theta) =$$

$$X_{N-k} = X_{-k}$$

$$k = N/2$$
 is the end freq(k) = ?

High School Trig Gymnastics

$$X_k=\sum_{n=0}^{N-1}x_n\cdot e^{-rac{i2\pi}{N}kn}$$
 (Eq.1) $=\sum_{n=0}^{N-1}x_n\cdot [\cos(2\pi kn/N)-i\cdot\sin(2\pi kn/N)],$

$$k = 0, 1, 2, ... N-1$$

$$cos(2*pi*k*n/N) = cos(-2*pi*k*n/N) = cos(2*pi*k*n/N)$$

$$sin(2*pi*k*n/N) = sin(-2*pi*k*n/N) = -sin(2*pi*k*n/N)$$

if x(n) **real**, and

$$X_k = a - bi$$

$$X_{N-k} = ?$$

X_k and X_{-k} are complex conjugates.

DFT: Negative Frequencies

Here's the full spectrum: with negative frequencies

Filter Response is Symmetric Too

Cancellation of Imaginary Component

Analytic (Complex) Signal: a single complex exponential

Real Signal: sum of 2 complex exponential conjugates

How to retrieve the analytic signal from the real signal?

Goals for Today

- Motivate "analytic signals"
- 2. Understand & derive negative frequencies & DFT symmetry
- 3. Conceptualize Hilbert Transform

scipy.signal.hilbert

scipy.signal.hilbert(x, N=None, axis=-1)

Compute the analytic signal, using the Hilbert transform.

The transformation is done along the last axis by default.

scipy.signal.hilbert

scipy.signal.hilbert(x, N=None, axis=-1)

Compute the analytic signal, using the Hilbert transform.

The transformation is done along the last axis by default.

Parameters: x: array_like

Signal data. Must be real.

N: int, optional

Number of Fourier components. Default: x.shape[axis]

axis: int, optional

Axis along which to do the transformation. Default: -1.

Returns: xa: ndarray

Analytic signal of x, of each 1-D array along axis

See also:

scipy.fftpack.hilbert Return Hilbert transform of a periodic sequence x.

Notes

The analytic signal $x_a(t)$ of signal x(t) is:

$$x_a = F^{-1}(F(x)2U) = x + iy$$

where F is the Fourier transform, U the unit step function, and y the Hilbert transform of x. [1]

The analytic signal $x_a(t)$ of signal x(t) is:

$$x_a = F^{-1}(F(x)2U) = x + iy$$

where F is the Fourier transform, U the unit step function, and y the Hilbert transform of x. [1]

U is the unit step function: U(x) = 1 for x>0, 0 for x<0

analytic signal: FT -> lose the negative spectrum -> inverse FT

y is the "Hilbert Transform" of x.

"Hilbert Transform" is also the operation.

You might also hear "Hilbert Transform" to mean the analytic signal.

The analytic signal $x_a(t)$ of signal x(t) is:

$$x_a = F^{-1}(F(x)2U) = x + iy$$

where F is the Fourier transform, U the unit step function, and y the Hilbert transform of x. [1]

U is the unit step function: U(x) = 1 for x>0, 0 for x<0

analytic signal: FT -> lose the negative spectrum -> inverse FT

Time Domain Convolution

$$H(u)(t) = rac{1}{\pi} \int_{-\infty}^{\infty} rac{u(au)}{t- au} \, d au,$$

$$1/(\pi t)$$

Frequency Domain Multiply

$$\mathcal{F}(H(u))(\omega) = (-i\operatorname{sgn}(\omega))\cdot\mathcal{F}(u)(\omega)$$

$$\sigma_H(\omega) = egin{cases} i = e^{+rac{i\pi}{2}}, & ext{for } \omega < 0 \ 0, & ext{for } \omega = 0 \ -i = e^{-rac{i\pi}{2}}, & ext{for } \omega > 0 \end{cases}$$

Next | Prev | Up | Top | Index | JOS Index | JOS Pubs | JOS Home | Search

Analytic Signals and Hilbert Transform Filters

A signal which has no negative-frequency components is called an *analytic signal*. Therefore, in continuous time, every analytic signal z(t) can be represented as

$$z(t) = \frac{1}{2\pi} \int_{0}^{\infty} Z(\omega)e^{j\omega t} d\omega$$

where $Z(\omega)$ is the complex coefficient (setting the amplitude and phase) of the positive-frequency complex sinusoid $\exp(j\omega t)$ at frequency ω .

Any real sinusoid $A\cos(\omega t + \phi)$ may be converted to a positive-frequency complex sinusoid $A\exp[j(\omega t + \phi)]$ by simply generating a phase-quadrature component $A\sin(\omega t + \phi)$ to serve as the ''imaginary part":

$$Ae^{j(\omega t + \phi)} = A\cos(\omega t + \phi) + jA\sin(\omega t + \phi)$$

Summary

- Motivate "analytic signals"
- 2. Understand & derive negative frequencies & DFT symmetry
- 3. Conceptualize Hilbert Transform

https://tinyurl.com/cogs118c-att

Final Project

Bloom's Taxonomy

create

Produce new or original work

Design, assemble, construct, conjecture, develop, formulate, author, investigate

evaluate

Justify a stand or decision

appraise, argue, defend, judge, select, support, value, critique, weigh

analyze

Draw connections among ideas

differentiate, organize, relate, compare, contrast, distinguish, examine, experiment, question, test

apply

Use information in new situations

execute, implement, solve, use, demonstrate, interpret, operate, schedule, sketch

understand

Explain ideas or concepts

classify, describe, discuss, explain, identify, locate, recognize, report, select, translate

remember

Recall facts and basic concepts define, duplicate, list, memorize, repeat, state