

Sean P, Q y R las compuertas NAND en paralelo

$$\overline{P} = A B C$$
  $\overline{Q} = A \overline{B} C$ 

$$\overline{Q} = A \overline{B} C$$

$$\overline{R} = \overline{A} B C$$

$$P = \overline{(A B C)}$$

$$P = \overline{(A B C)}$$
  $Q = \overline{(A \overline{B} C)}$   $R = \overline{(\overline{A} B C)}$ 

$$R = \overline{(\overline{A} B C)}$$

$$F = \overline{I}$$

$$F = \overline{(P \ Q \ R)} = \overline{\left(\overline{(A \ B \ C)} * \overline{\left(A \ \overline{B} \ C\right)} * \overline{\left(\overline{A} \ B \ C\right)}\right)}$$

$$F = (A B C + A \overline{B} C + \overline{A} B C) = C (A B + A \overline{B} + \overline{A} B) = C (A + \overline{A} B) = \overline{C} (A + B)$$

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

|   | ВС             | 00                            | 01               | 11 | 10         |
|---|----------------|-------------------------------|------------------|----|------------|
| Α |                | $\overline{B} \ \overline{C}$ | $\overline{B}$ C | ВС | В <u>С</u> |
| 0 | $\overline{A}$ | 0                             | 0                | 1  | 0          |
| 1 | A              | 0                             | 1                | 1  | 0          |

F = BC + AC

TABLA 1

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |

|   | ВС             | 00                          | 01               | 11 | 10              |
|---|----------------|-----------------------------|------------------|----|-----------------|
| Α |                | $\overline{B} \overline{C}$ | $\overline{B}$ C | ВС | $B\overline{C}$ |
| 0 | $\overline{A}$ | 1                           | 0                | 1  | 1               |
| 1 | A              | 1                           | 0                | 0  | 1               |

$$\overline{F} = \overline{B} C + A C = C (A + \overline{B})$$



Ahora nos piden armar el circuito pero solo usando compuertas NAND y luego solo NOR



Que se puede simplificar un poco más, debido a que 2 NAND en serie = 2 NOT en serie = nada



Veamos ahora si lo podemos hacer solamente con NOR



Nuevamente se puede simplificar donde haya dos compuertas NOR en serie:



Se desea activar una señal de alarma /ALRM cuando se intente encender el motor de un auto y alguno de los dos ocupantes del asiento delantero esté sentado y no haya abrochado su cinturón de seguridad.

Para ello se cuenta con dos sensores de presencia que activan las señales /CONDUCTOR y /ACOMPAÑANTE activas en bajo cuando hay una persona ubicada en los asientos respectivos. Además se deben tener en cuenta las señales CINTUR\_COND y CINTUR\_ACOM que se activan en alto cuando los cinturones de seguridad respectivos han sido abrochados. También hay una señal CONTACTO activa en alto que indica si se activó la llave de encendido.

a) Realice el diagrama de Karnaugh para la generación de la señal /ALRM. A partir de lo obtenido, diseñe el circuito lógico necesario para generar la señal de alarma.

Sea A = CONTACTO

 $\mathbf{B} = \mathsf{CONDUCTOR}$ 

**C** = ACOMPAÑANTE

**D** = CINTUR\_COND

**E** = CINTUR ACOM

 $\mathbf{F} = ALRM$ 

| J | BD             | 00                          | 01               | 11 | 10               |
|---|----------------|-----------------------------|------------------|----|------------------|
| Α |                | $\overline{B} \overline{D}$ | $\overline{B}$ D | BD | $B \overline{D}$ |
| 0 | $\overline{A}$ | 0                           | 0                | 0  | 0                |
| 1 | A              | 1                           | 0                | 0  | 0                |

| K | CE             | 00                          | 01               | 11 | 10               |
|---|----------------|-----------------------------|------------------|----|------------------|
| Α |                | $\overline{C} \overline{E}$ | $\overline{C}$ E | CE | $C \overline{E}$ |
| 0 | $\overline{A}$ | 0                           | 0                | 0  | 0                |
| 1 | Α              | 1                           | 0                | 0  | 0                |

Sea:

**J** = Sonar alarma de Conductor

**K** = Sonar alarma de Acompañante

| F | K              | 0              | 1 |
|---|----------------|----------------|---|
| J |                | $\overline{J}$ | J |
| 0 | $\overline{K}$ | 0              | 1 |
| 1 | K              | 1              | 1 |

$$F = J + K = A \overline{B} \overline{D} + A \overline{C} \overline{E}$$
$$F = A (\overline{B} \overline{D} + \overline{C} \overline{E})$$

Otra forma de encararlo, usando 4 variables:

|    | CE                          | 00                          | 01               | 11  | 10               |
|----|-----------------------------|-----------------------------|------------------|-----|------------------|
| BD |                             | $\overline{C} \overline{E}$ | $\overline{C}$ E | C E | $C \overline{E}$ |
| 00 | $\overline{B} \overline{D}$ | 1                           | 1                | 1   | 1                |
| 01 | $\overline{B}$ D            | 1                           | 0                | 0   | 0                |
| 11 | BD                          | 1                           | 0                | 0   | 0                |
| 10 | $B \overline{D}$            | 1                           | 0                | 0   | 0                |

Esto sí parece tener más sentido, pero recordar que en este caso no estoy considerando A.

Puedo hacer otra tabla para incluir dicha entrada, pero si A = 0 deja todo en cero.

$$F = A \left( \overline{B} \, \overline{D} + \overline{C} \, \overline{E} \right)$$



# Usando solo compuertas NAND:



# Simplificando doble negación:



# EJERCICIO 4

|   | ВС             | 00                          | 01               | 11         | 10               |
|---|----------------|-----------------------------|------------------|------------|------------------|
| Α |                | $\overline{B} \overline{C}$ | $\overline{B}$ C | <i>B C</i> | $B \overline{C}$ |
| 0 | $\overline{A}$ | 1                           | 0                | 0          | 0                |
| 1 | A              | 0                           | 0                | 1          | 0                |

Tabla SOP, busco donde haya dado 1 la salida, dejando las variables como productos y sumando cada caso.

$$F = A B C + \overline{A} \overline{B} \overline{C}$$

$$F = A B C + \overline{(A+B)} \overline{C} = A B C + \overline{(A+B+C)}$$





La Fig. 2 muestra un multiplicador binario de dos bits  $(X = x1 \times 0)$ , (Y = y1 y0). Diseñe su circuito lógico teniendo en cuenta que el resultado se encuentra expresado en cuatro bits (Z = z3 z2 z1 z0).



Tabla para MSB de Z, es decir, z0 (resultado es impar)

| X/Y | 00 | 01             | 11             | 10 |
|-----|----|----------------|----------------|----|
| 00  | 0  | 0              | 0              | 0  |
| 01  | 0  | <mark>1</mark> | <mark>1</mark> | 0  |
| 11  | 0  | <mark>1</mark> | <mark>1</mark> | 0  |
| 10  | 0  | 0              | 0              | 0  |

$$z_0 = x_0 y_0$$

Tabla para el bit 1 de Z, es decir, z1

(resultado es 2, 3 ó 6)

| X/Y | 00 | 01             | 11             | 10             |
|-----|----|----------------|----------------|----------------|
| 00  | 0  | 0              | 0              | 0              |
| 01  | 0  | 0              | <mark>1</mark> | <mark>1</mark> |
| 11  | 0  | <u>1</u>       | 0              | 1              |
| 10  | 0  | <mark>1</mark> | 1              | 0              |

$$z_1 = y_1 \overline{x_1} x_0 + x_1 \overline{y_1} y_0 + x_0 y_1 \overline{y_0} + y_0 x_1 \overline{x_0}$$

Tabla para el bit 2 de Z, es decir, z2 (resultado es 4 ó 6)

| X/Y | 00 | 01 | 11             | 10             |
|-----|----|----|----------------|----------------|
| 00  | 0  | 0  | 0              | 0              |
| 01  | 0  | 0  | 0              | 0              |
| 11  | 0  | 0  | 0              | <mark>1</mark> |
| 10  | 0  | 0  | <mark>1</mark> | <mark>1</mark> |

$$z_2 = x_1 y_1 \overline{y_0} + y_1 x_1 \overline{x_0} = x_1 y_1 (\overline{x_0} + \overline{y_0})$$

Tabla para el MSB de Z, es decir, z3

(resultado es 9)

| X/Y | 00 | 01 | 11 | 10 |
|-----|----|----|----|----|
| 00  | 0  | 0  | 0  | 0  |
| 01  | 0  | 0  | 0  | 0  |
| 11  | 0  | 0  | 1  | 0  |
| 10  | 0  | 0  | 0  | 0  |

$$z_3 = x_0 x_1 y_0 y_1$$

### **EJERCICIO 7**

# Tabla 2

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

|   | ВС             | 00                          | 01               | 11 | 10              |
|---|----------------|-----------------------------|------------------|----|-----------------|
| Α |                | $\overline{B} \overline{C}$ | $\overline{B}$ C | ВС | $B\overline{C}$ |
| 0 | $\overline{A}$ | 0                           | <mark>1</mark>   | 0  | <mark>1</mark>  |
| 1 | A              | <mark>1</mark>              | 0                | 0  | 0               |

$$F = \overline{A} \, \overline{B} \, C + \overline{A} \, B \, \overline{C} + A \, \overline{B} \, \overline{C} = \overline{A} \left( \overline{B} \, C + B \, \overline{C} \right) + A \, \overline{B} \, \overline{C}$$
$$F = \overline{A} \left( B \, XOR \, C \right) + A \, \overline{B} \, \overline{C} = \overline{A} \left( B \oplus C \right) + A \, \overline{B} \, \overline{C}$$

Tabla 3

| A | В | С | D | F |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 |
|   |   |   |   |   |

| Tabla 3 |   |   |   |   |  |  |
|---------|---|---|---|---|--|--|
| 1       | 0 | 0 | 1 | 0 |  |  |
| 1       | 0 | 1 | 0 | 0 |  |  |
| 1       | 0 | 1 | 1 | 1 |  |  |
| 1       | 1 | 0 | 0 | 0 |  |  |
| 1       | 1 | 0 | 1 | 1 |  |  |
| 1       | 1 | 1 | 0 | 1 |  |  |
| 1       | 1 | 1 | 1 | 0 |  |  |

|    | CD                          | 00                          | 01               | 11             | 10               |
|----|-----------------------------|-----------------------------|------------------|----------------|------------------|
| AB |                             | $\overline{C} \overline{D}$ | $\overline{C}$ D | C D            | $C \overline{D}$ |
| 00 | $\overline{A} \overline{B}$ | 0                           | <mark>1</mark>   | 0              | <mark>1</mark>   |
| 01 | $\overline{A} B$            | <mark>1</mark>              | 0                | <mark>1</mark> | 0                |
| 11 | AB                          | 0                           | <mark>1</mark>   | 0              | <mark>1</mark>   |
| 10 | $A \overline{B}$            | <mark>1</mark>              | 0                | <mark>1</mark> | 0                |

$$F = \overline{A} \overline{B} \overline{C} D + \overline{A} \overline{B} C \overline{D} + \overline{A} B \overline{C} \overline{D} + \overline{A} B C D + A B \overline{C} D + A B \overline{C} D + A B \overline{C} D$$

$$+ A B C \overline{D} + A \overline{B} \overline{C} \overline{D} + A \overline{B} C D$$

$$F = \overline{A} \, \overline{B} \, \left( \overline{C} \, D + C \, \overline{D} \right) + \overline{A} \, B \, \left( \overline{C} \, \overline{D} + C \, D \right) + A \, B \, \left( \overline{C} \, D + C \, \overline{D} \right) + A \, \overline{B} \, \left( \overline{C} \, \overline{D} + C \, D \right)$$

$$F = \left(\overline{C}D + C\overline{D}\right)\left(\overline{A}\overline{B} + AB\right) + \left(\overline{C}\overline{D} + CD\right)\left(\overline{A}B + A\overline{B}\right)$$

 $F = (C \ XOR \ D) \ (A \ XNOR \ B) + (C \ XNOR \ D) \ (A \ XOR \ B) = (C \oplus D) \overline{(A \oplus B)} + \overline{(C \oplus D)} (A \oplus B)$ 

| Tabla 4 |   |   |   |   |  |  |
|---------|---|---|---|---|--|--|
| Α       | В | С | D | F |  |  |
| 0       | 0 | 0 | 0 | 1 |  |  |
| 0       | 0 | 0 | 1 | 1 |  |  |
| 0       | 0 | 1 | 0 | X |  |  |
| 0       | 0 | 1 | 1 | 1 |  |  |
| 0       | 1 | 0 | 0 | X |  |  |
| 0       | 1 | 0 | 1 | X |  |  |
| 0       | 1 | 1 | 0 | 1 |  |  |
| 0       | 1 | 1 | 1 | 1 |  |  |
| 1       | 0 | 0 | 0 | 0 |  |  |

| 1 | Tabla 4 |   |   |   |  |  |  |
|---|---------|---|---|---|--|--|--|
| 1 | 0       | 0 | 1 | 1 |  |  |  |
| 1 | 0       | 1 | 0 | 0 |  |  |  |
| 1 | 0       | 1 | 1 | 1 |  |  |  |
| 1 | 1       | 0 | 0 | 0 |  |  |  |
| 1 | 1       | 0 | 1 | 1 |  |  |  |
| 1 | 1       | 1 | 0 | 0 |  |  |  |
| 1 | 1       | 1 | 1 | 1 |  |  |  |
|   |         |   |   |   |  |  |  |

|    | CD                          | 00                         | 01               | 11             | 10               |
|----|-----------------------------|----------------------------|------------------|----------------|------------------|
| AB |                             | $\overline{C}\overline{D}$ | $\overline{C}$ D | C D            | $C \overline{D}$ |
| 00 | $\overline{A} \overline{B}$ | <mark>1</mark>             | _ <mark>1</mark> | <mark>1</mark> | X                |
| 01 | $\overline{A} B$            | X                          | X                | <mark>1</mark> | <mark>1</mark>   |
| 11 | AB                          | 0                          | 1                | <mark>1</mark> | 0                |
| 10 | $A \overline{B}$            | 0                          | 1                | 1              | 0                |

$$F = \overline{A} + D$$

La expresión anterior se obtuvo dejando X = 1, y formando grupos de 8

 Tabla
 5

 A
 B
 C
 D
 F

 0
 0
 0
 0
 1

 0
 0
 0
 1
 0

 0
 0
 1
 0
 0

 0
 0
 1
 1
 0

 0
 1
 0
 1
 0

 0
 1
 1
 0
 0

 0
 1
 1
 1
 0

 0
 1
 1
 1
 0

 1
 0
 0
 0
 1

| Tabla 5 |   |   |   |   |  |  |
|---------|---|---|---|---|--|--|
| 1       | 0 | 0 | 1 | 0 |  |  |
| 1       | 0 | 1 | 0 | 0 |  |  |
| 1       | 0 | 1 | 1 | 0 |  |  |
| 1       | 1 | 0 | 0 | 0 |  |  |
| 1       | 1 | 0 | 1 | 0 |  |  |
| 1       | 1 | 1 | 0 | 0 |  |  |
| 1       | 1 | 1 | 1 | 0 |  |  |
|         |   |   |   |   |  |  |

|    | CD                          | 00                          | 01               | 11  | 10              |
|----|-----------------------------|-----------------------------|------------------|-----|-----------------|
| AB |                             | $\overline{C} \overline{D}$ | $\overline{C}$ D | C D | $C\overline{D}$ |
| 00 | $\overline{A} \overline{B}$ | <mark>1</mark>              | 0                | 0   | 0               |
| 01 | $\overline{A} B$            | 1                           | 0                | 0   | 0               |
| 11 | AB                          | 0                           | 0                | 0   | 0               |
| 10 | $A \overline{B}$            | <mark>1</mark>              | 0                | 0   | 0               |

$$F = \overline{A} \ \overline{C} \ \overline{D} + \overline{B} \ \overline{C} \ \overline{D} = \overline{C} \ \overline{D} \left( \overline{A} + \overline{B} \right) = \overline{(C+D)} \ \overline{(AB)} = \overline{AB+C+D}$$

### **EJERCICIO 8**

Sea **X** = es positivo

Y = es mayor a 3

**Z** = es menor que -4

00

01

1

1

 $\overline{A1} \overline{A0} \overline{A1} A0$ 

11

*A*1 *A*0

1

0

0

11

A1 A0

0

1

0

 $A1 \overline{A0}$ 

0

0

10

 $A1\overline{A0}$ 

0

1

0

A1 A0

 $\overline{A3} \overline{A2}$ 

 $\overline{A3}$  A2

X

A3 A2

00

01

| А3 | A2 | A1 | A0 | NUM | Х | Υ | Z |
|----|----|----|----|-----|---|---|---|
| 0  | 0  | 0  | 0  | 0   | 1 | 0 | 0 |
| 0  | 0  | 0  | 1  | 1   | 1 | 0 | 0 |
| 0  | 0  | 1  | 1  | 3   | 1 | 0 | 0 |
| 0  | 0  | 1  | 0  | 2   | 1 | 0 | 0 |
| 0  | 1  | 1  | 0  | 6   | 1 | 1 | 0 |
| 0  | 1  | 1  | 1  | 7   | 1 | 1 | 0 |
| 0  | 1  | 0  | 1  | 5   | 1 | 1 | 0 |
| 0  | 1  | 0  | 0  | 4   | 1 | 1 | 0 |
| 1  | 0  | 0  | 0  | -8  | 0 | 0 | 1 |
| 1  | 0  | 0  | 1  | -7  | 0 | 0 | 1 |
| 1  | 0  | 1  | 1  | -5  | 0 | 0 | 1 |
| 1  | 0  | 1  | 0  | -6  | 0 | 0 | 1 |
| 1  | 1  | 1  | 0  | -2  | 0 | 0 | 0 |
| 1  | 1  | 1  | 1  | -1  | 0 | 0 | 0 |
| 1  | 1  | 0  | 1  | -3  | 0 | 0 | 0 |
| 1  | 1  | 0  | 0  | -4  | 0 | 0 | 0 |

| 11    | A3 A2                         | 0                             | 0                 |
|-------|-------------------------------|-------------------------------|-------------------|
| 10    | $A3\overline{A2}$             | 0                             | 0                 |
|       |                               |                               |                   |
| Υ     | A1 A0                         | 00                            | 01                |
| A3 A2 |                               | $\overline{A1} \overline{A0}$ | $\overline{A1} A$ |
| 00    | $\overline{A3} \overline{A2}$ | 0                             | 0                 |
| 01    | $\overline{A3}$ A2            | 1                             | <b>1</b>          |
| 11    | A3 A2                         | 0                             | 0                 |
| 10    | $A3\overline{A2}$             | 0                             | 0                 |
|       |                               |                               |                   |
| -     | A1 A0                         | 00                            | 04                |

| $X = \overline{a_3}$      |  |  |  |  |  |
|---------------------------|--|--|--|--|--|
| $Y = \overline{a_3} a_2$  |  |  |  |  |  |
| $Z = a_3  \overline{a_2}$ |  |  |  |  |  |

| Z     | A1 A0                         | 00                           | 01                 | 11    | 10                |
|-------|-------------------------------|------------------------------|--------------------|-------|-------------------|
| A3 A2 |                               | $\overline{A1}\overline{A0}$ | $\overline{A1} A0$ | A1 A0 | $A1\overline{A0}$ |
| 00    | $\overline{A3} \overline{A2}$ | 0                            | 0                  | 0     | 0                 |
| 01    | $\overline{A3}$ A2            | 0                            | 0                  | 0     | 0                 |
| 11    | A3 A2                         | 0                            | 0                  | 0     | 0                 |
| 10    | $A3\overline{A2}$             | 1                            | 1                  | 1     | 1                 |



| S0 | <b>S1</b> | S2 | ٧ |
|----|-----------|----|---|
| 0  | 0         | 0  | 0 |
| 0  | 0         | 1  | 0 |
| 0  | 1         | 1  | 1 |
| 0  | 1         | 0  | 0 |
| 1  | 1         | 0  | 1 |
| 1  | 1         | 1  | 1 |
| 1  | 0         | 1  | 1 |
| 1  | 0         | 0  | 0 |

|    | S1 S2      | 00                             | 01                 | 11             | 10                |
|----|------------|--------------------------------|--------------------|----------------|-------------------|
| S0 |            | $\overline{S1}  \overline{S2}$ | $\overline{S1}$ S2 | S1 S2          | $S1\overline{S2}$ |
| 0  | <u>50</u>  | 0                              | 0                  | <mark>1</mark> | 0                 |
| 1  | <i>S</i> 0 | 0                              | <mark>1</mark>     |                | <mark>1</mark>    |

$$V = S_1 S_2 + S_0 S_2 + S_0 S_1 = S_0 (S_1 + S_2) + S_1 S_2$$



# **EJERCICIO 10**

$$M = \overline{(x_2 \oplus y_2)} * \overline{(x_1 \oplus y_1)} * \overline{(x_0 \oplus y_0)}$$

$$N = x_2 \overline{y_2} + \overline{(x_2 \oplus y_2)} * \left(x_1 \overline{y_1} + \overline{(x_1 \oplus y_1)} * x_0 \overline{y_0}\right)$$

$$P = \overline{x_2} y_2 + \overline{(x_2 \oplus y_2)} * \left(\overline{x_1} y_1 + \overline{(x_1 \oplus y_1)} * \overline{x_0} y_0\right)$$



# **EJERCICIO 11**

| С | S |
|---|---|
| 0 | Α |
| 1 | В |



|      | EF                                                    | 00                          | 01               | 11               | 10              |
|------|-------------------------------------------------------|-----------------------------|------------------|------------------|-----------------|
| ABCD |                                                       | $\overline{E} \overline{F}$ | $\overline{E} F$ | EF               | $E\overline{F}$ |
| 0000 | $\overline{A} \overline{B} \overline{C} \overline{D}$ | 0                           | 0                | 0                | 0               |
| 0001 | $\overline{A} \overline{B} \overline{C} D$            | 0                           | 0                | _ <mark>1</mark> | 0               |
| 0011 | $\overline{A} \overline{B} C D$                       | 0                           | 0                | <mark>1</mark>   | 1               |
| 0010 | $\overline{A} \overline{B} C \overline{D}$            | 0                           | 0                | 0                | 1               |
| 0110 | $\overline{A} B C \overline{D}$                       | 0                           | <mark>1</mark>   | 0                | <mark>1</mark>  |
| 0111 | $\overline{A} B C D$                                  | 0                           | <mark>1</mark>   | <mark>1</mark>   | 1               |
| 0101 | $\overline{A} B \overline{C} D$                       | 0                           | <mark>1</mark>   | <mark>1</mark>   | 0               |
| 0100 | $\overline{A} B \overline{C} \overline{D}$            | 0                           | <mark>1</mark>   | 0                | 0               |
| 1100 | $AB\overline{C}\overline{D}$                          | <mark>1</mark>              | <mark>1</mark>   | 0                | 0               |
| 1101 | $AB\overline{C}D$                                     | _ <mark>1</mark>            | <b>1</b>         | _ <mark>1</mark> | 0               |
| 1111 | ABCD                                                  | <mark>1</mark>              | <mark>1</mark>   | <mark>1</mark>   | <mark>1</mark>  |
| 1110 | $ABC\overline{D}$                                     | <mark>1</mark>              | <mark>1</mark>   | 0                | 1               |
| 1010 | $A \overline{B} C \overline{D}$                       | <mark>1</mark>              | 0                | 0                | <mark>1</mark>  |
| 1011 | $A \overline{B} C D$                                  | 1                           | 0                | 1                | <mark>1</mark>  |
| 1001 | $A \overline{B} \overline{C} D$                       | 1                           | 0                | 1                | 0               |
| 1000 | $A \overline{B} \overline{C} \overline{D}$            | <mark>1</mark>              | 0                | 0                | 0               |

Grupo de 8 = 3 variables

Grupo de 4 = 4 variables

Grupo de 2 = 5 variables

$$S = A \overline{E} \overline{F} + B \overline{E} F + \overline{A} \overline{B} D E F + \overline{A} B D F$$
$$+ A B D F + A \overline{B} D E F$$
$$+ \overline{A} C E \overline{F} + A C E \overline{F}$$

$$S = A \overline{E} \overline{F} + B \overline{E} F + B D F + \overline{B} D E F + C E \overline{F}$$

$$S = \overline{E} (A \overline{F} + B F) + D F (B + \overline{B} E) + C E \overline{F}$$

$$S = \overline{E} (A \overline{F} + B F) + D F (B + E) + C E \overline{F}$$

$$S = \overline{E} (A \overline{F} + B F) + E (C \overline{F} + D F) + B D F$$

$$S = \overline{E} (A \overline{F} + B F) + E (C \overline{F} + D F)$$

$$S = \overline{F} (A \overline{E} + C E) + F (B \overline{E} + D E)$$



### **EJERCICIO 13**

| X4 | Х3 | X2 | X1 | X0 | Y4 | Y3 | Y2 | Y1             | Y0 |
|----|----|----|----|----|----|----|----|----------------|----|
| 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0              | 0  |
| 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0              | 1  |
| 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |                | 0  |
| 0  | 0  | 0  | 1  | 1  | 0  | 0  | 0  | <u>1</u>       | 1  |
| 0  | 0  | 1  | 0  | 0  | 0  | 0  | 1  | 0              | 0  |
| 0  | 0  | 1  | 0  | 1  | 0  | 0  | 1  | 0              | 1  |
| 0  | 0  | 1  | 1  | 0  | 0  | 0  | 1  |                | 0  |
| 0  | 0  | 1  | 1  | 1  | 0  | 0  | 1  | <u>1</u>       | 1  |
| 0  | 1  | 0  | 0  | 0  | 0  | 1  | 0  | 0              | 0  |
| 0  | 1  | 0  | 0  | 1  | 0  | 1  | 0  | 0              | 1  |
| 0  | 1  | 0  | 1  | 0  | 0  | 1  | 0  |                | 0  |
| 0  | 1  | 0  | 1  | 1  | 0  | 1  | 0  | <mark>1</mark> | 1  |

| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0              | 0 |
|---|---|---|---|---|---|---|---|----------------|---|
| 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0              | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |                | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |                | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0              | 0 |
| 1 | 0 | 0 | 0 | 1 |   | 1 | 1 | <mark>1</mark> | 1 |
| 1 | 0 | 0 | 1 | 0 |   | 1 | 1 |                | 0 |
| 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0              | 1 |
| 1 | 0 | 1 | 0 | 0 |   | 1 | 1 | 0              | 0 |
| 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | <mark>1</mark> | 1 |
| 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | <mark>1</mark> | 0 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0              | 1 |
| 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0              | 0 |
| 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | <mark>1</mark> | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1              | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0              | 1 |
| 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0              | 0 |
| 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | <mark>1</mark> | 1 |
| 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1              | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0              | 1 |

| <b>Y4</b> | X1 X0                                            | 00                              | 01                   | 11        | 10                   |
|-----------|--------------------------------------------------|---------------------------------|----------------------|-----------|----------------------|
| X4        |                                                  | $\overline{X_1} \overline{X_0}$ | $\overline{X_1} X_0$ | $X_1 X_0$ | $X_1 \overline{X_0}$ |
| <b>X3</b> |                                                  |                                 |                      |           |                      |
| X2        |                                                  |                                 |                      |           |                      |
| 000       | $\overline{X_4}  \overline{X_3}  \overline{X_2}$ | 0                               | 0                    | 0         | 0                    |
| 001       | $\overline{X_4}  \overline{X_3}  X_2$            | 0                               | 0                    | 0         | 0                    |
| 011       | $\overline{X_4} X_3 X_2$                         | 0                               | 0                    | 0         | 0                    |
| 010       | $\overline{X_4} X_3 \overline{X_2}$              | 0                               | 0                    | 0         | 0                    |
| 110       | $X_4 X_3 \overline{X_2}$                         | 1                               | 1                    | 1         | <mark>1</mark>       |
| 111       | $X_4 X_3 X_2$                                    | 1                               | 1                    | 1         |                      |
| 101       | $X_4 \overline{X_3} X_2$                         | 1                               | 1                    | 1         | <mark>1</mark>       |
| 100       | $X_4 \overline{X_3} \overline{X_2}$              | 0                               | 1                    | 1         | <mark>1</mark>       |

| <b>Y3</b> | X1 X0                                            | 00                               | 01                   | 11               | 10                   |
|-----------|--------------------------------------------------|----------------------------------|----------------------|------------------|----------------------|
| X4        |                                                  | $\overline{X_1}  \overline{X_0}$ | $\overline{X_1} X_0$ | $X_1 X_0$        | $X_1 \overline{X_0}$ |
| <b>X3</b> |                                                  | 1 0                              | 1 0                  |                  | 1 0                  |
| <b>X2</b> |                                                  |                                  |                      |                  |                      |
| 000       | $\overline{X_4}  \overline{X_3}  \overline{X_2}$ | 0                                | 0                    | 0                | 0                    |
| 001       | $\overline{X_4}  \overline{X_3}  X_2$            | 0                                | 0                    | 0                | 0                    |
| 011       | $\overline{X_4} X_3 X_2$                         | 1                                | 1                    | 1                | 1                    |
| 010       | $\overline{X_4} X_3 \overline{X_2}$              | <b>1</b>                         | 1                    | 1                | 1                    |
| 110       | $X_4 X_3 \overline{X_2}$                         | <mark>1</mark>                   | 0                    | 0                | 0                    |
| 111       | $X_4 X_3 X_2$                                    | 0                                | 0                    | 0                | 0                    |
| 101       | $X_4 \overline{X_3} X_2$                         | 1                                | <mark>1</mark>       | _ <mark>1</mark> | <mark>1</mark>       |
| 100       | $X_4 \overline{X_3} \overline{X_2}$              | 0                                | 1                    |                  | <mark>1</mark>       |

| Y2        | X1 X0                                            | 00                              | 01                   | 11             | 10                   |
|-----------|--------------------------------------------------|---------------------------------|----------------------|----------------|----------------------|
| X4        |                                                  | $\overline{X_1} \overline{X_0}$ | $\overline{X_1} X_0$ | $X_1 X_0$      | $X_1 \overline{X_0}$ |
| <b>X3</b> |                                                  |                                 |                      |                |                      |
| X2        |                                                  |                                 |                      |                |                      |
| 000       | $\overline{X_4}  \overline{X_3}  \overline{X_2}$ | 0                               | 0                    | 0              | 0                    |
| 001       | $\overline{X_4}  \overline{X_3}  X_2$            | 1                               | 1                    | 1              | 1                    |
| 011       | $\overline{X_4} X_3 X_2$                         | 1                               | 1                    | 1              | 1                    |
| 010       | $\overline{X_4} X_3 \overline{X_2}$              | 0                               | 0                    | 0              | 0                    |
| 110       | $X_4 X_3 \overline{X_2}$                         | 0                               | 1                    | <mark>1</mark> | <mark>1</mark>       |
| 111       | $X_4 X_3 X_2$                                    | 1                               | 0                    | 0              | 0                    |
| 101       | $X_4 \overline{X_3} X_2$                         | _ <mark>1</mark>                | 0                    | 0              | 0                    |
| 100       | $X_4 \overline{X_3} \overline{X_2}$              | 0                               | 1                    | <mark>1</mark> | <mark>1</mark>       |

| <b>Y1</b> | X1 X0                                            | 00                               | 01                   | 11        | 10                   |
|-----------|--------------------------------------------------|----------------------------------|----------------------|-----------|----------------------|
| X4        |                                                  | $\overline{X_1}  \overline{X_0}$ | $\overline{X_1} X_0$ | $X_1 X_0$ | $X_1 \overline{X_0}$ |
| <b>X3</b> |                                                  | - 0                              | - 0                  |           | 1 0                  |
| <b>X2</b> |                                                  |                                  |                      |           |                      |
| 000       | $\overline{X_4}  \overline{X_3}  \overline{X_2}$ | 0                                | 0                    | 1         | <mark>1</mark>       |
| 001       | $\overline{X_4}  \overline{X_3}  X_2$            | 0                                | 0                    | 1         | <mark>1</mark>       |
| 011       | $\overline{X_4} X_3 X_2$                         | 0                                | 0                    | 1         | <mark>1</mark>       |
| 010       | $\overline{X_4} X_3 \overline{X_2}$              | 0                                | 0                    | 1         | <mark>1</mark>       |
| 110       | $X_4 X_3 \overline{X_2}$                         | 0                                | _ <mark>1</mark>     | 0         | <mark>1</mark>       |
| 111       | $X_4 X_3 X_2$                                    | 0                                | 1                    | 0         | <mark>1</mark>       |
| 101       | $X_4 \overline{X_3} X_2$                         | 0                                | <mark>1</mark>       | 0         | <mark>1</mark>       |
| 100       | $X_4 \overline{X_3} \overline{X_2}$              | 0                                | 1                    | 0         | <mark>1</mark>       |

| Y0  | X1 X0                                            | 00                               | 01                   | 11        | 10                   |
|-----|--------------------------------------------------|----------------------------------|----------------------|-----------|----------------------|
| X4  |                                                  | $\overline{X_1}  \overline{X_0}$ | $\overline{X_1} X_0$ | $X_1 X_0$ | $X_1 \overline{X_0}$ |
| Х3  |                                                  |                                  |                      |           |                      |
| X2  |                                                  |                                  |                      |           |                      |
| 000 | $\overline{X_4}  \overline{X_3}  \overline{X_2}$ | 0                                | 1                    | 1         | 0                    |
| 001 | $\overline{X_4}  \overline{X_3}  X_2$            | 0                                | 1                    | 1         | 0                    |
| 011 | $\overline{X_4} X_3 X_2$                         | 0                                | 1                    | 1         | 0                    |
| 010 | $\overline{X_4} X_3 \overline{X_2}$              | 0                                | 1                    | 1         | 0                    |
| 110 | $X_4 X_3 \overline{X_2}$                         | 0                                | 1                    | 1         | 0                    |
| 111 | $X_4 X_3 X_2$                                    | 0                                | 1                    | 1         | 0                    |
| 101 | $X_4 \overline{X_3} X_2$                         | 0                                | 1                    | 1         | 0                    |
| 100 | $X_4 \overline{X_3} \overline{X_2}$              | 0                                | 1                    | 1         | 0                    |

$$y_0 = x_0$$

$$y_1 = \overline{x_4} x_1 + x_1 \overline{x_0} + x_4 \overline{x_1} x_0$$

$$y_2 = \overline{x_4} \, x_2 + x_4 \, \overline{x_2} \, (x_0 + x_1) + x_4 \, x_2 \, \overline{x_1} \, \overline{x_0}$$

$$y_3 = \overline{x_4} \, x_3 + x_3 \, \overline{x_2} \, \overline{x_1} \, \overline{x_0} + x_4 \, \overline{x_3} \, x_2 + x_4 \, \overline{x_3} \, (x_0 + x_1)$$

$$y_4 = x_4 \, (x_2 + x_3) + x_4 \, (x_0 + x_1) = x_4 \, (x_0 + x_1 + x_2 + x_3)$$

- El rango de valores de la entrada es [-15, 15], y el de la salida es [-16, 15].
- Para ambos casos se usan 5 bits, recordando que en Ca2 no hay doble cero.
- Como son 5 bits de salida, se requieren 5 funciones lógicas diferentes.

Se requiere evaluar 16 entradas (dos números de 8 bits). No es práctico usar K-Maps

Cuestión: Examine la función M, que indica igualdad. Un número será igual a otro solamente si ambos son iguales bit a bit. ¿Cómo se puede expresar esto en forma de función lógica en función de los bits de X e Y? Escriba la función lógica M que indique la igualdad.

Esto lo había hecho, mediante función XNOR con cada par de bit correspondiente.

Desgraciadamente, nuestro problema no termina en detectar la igualdad, y las comparaciones N y P son menos triviales, pero piense un segundo en la forma en la que usted compararía dos números para determinar cuál es mayor:

- 1. Comienzo mirando el dígito más alto de ambos.
- 2. Comparo los dígitos que miro.
  - a) Si uno de los dos es mayor que el otro, el número correspondiente es el mayor de los dos sin importar cuánto valgan los dígitos restantes.
  - b) Si en cambio ambos son iguales entonces la comparación no decide. En ese caso paso mi atención al dígito siguiente y repito desde el paso 2.
- Repito las veces que sea necesario o hasta acabar los dígitos. En este último caso los números son iguales.

Un algoritmo semejante permite decidir la minoridad.

Todo esto también ya lo había pensado!

Una compuerta XOR con 2 entradas me tira un 1 si la cantidad de 1s en la entrada es impar (1).

Tenemos 16 bits de R a comparar, podemos usar  $R_{2k}$  XOR  $R_{2k+1}$   $k \in \mathbb{N}$   $0 \le k \le 15$ 

Luego aplicamos XOR entre pares de salidas de las XOR definidas anteriormente.

Y asi continuamos hasta quedarnos con una única salida, que usaremos con una ultima XOR junto a la entrada P. Si este ultimo resultado da 0 indica ERROR = 0 (paridad 0 XOR 0, 1 XOR 1)

### **EJERCICIO 16**



| E | S(2) | S(1) | S(0) | Υ            |
|---|------|------|------|--------------|
| 0 |      |      |      | 0            |
| 1 | 0    | 0    | 0    | X(0)         |
| 1 | 0    | 0    | 1    | X(1)         |
| 1 | 0    | 1    | 0    | X(2)         |
| 1 | 0    | 1    | 1    | X(3)         |
| 1 | 1    | 0    | 0    | X(4)<br>X(5) |
| 1 | 1    | 0    | 1    | X(5)         |
| 1 | 1    | 1    | 0    | X(6)         |
| 1 | 1    | 1    | 1    | X(7)         |

