# 高等数学 A II 习题课讲义

## 龚诚欣

gongchengxin@pku.edu.cn

2023年2月21日

## 目录

| 1 | 第 1 次习题课: 二重积分          | 3  |
|---|-------------------------|----|
|   | 1.1 问题                  | 3  |
|   | 1.2 解答                  | 3  |
|   | 1.3 补充 (不要求掌握!)         | 3  |
| 2 | 第 2 次习题课: 三重积分          | 4  |
|   | 2.1 问题                  | 4  |
|   | 2.2 解答                  | 4  |
|   | 2.3 补充 (不要求掌握!)         | 5  |
| 3 | 第3次习题课:曲线积分,格林公式        | 5  |
|   | 3.1 问题                  | 5  |
|   | 3.2 解答                  | 6  |
|   | 3.3 补充 (不要求掌握!)         | 7  |
| 4 | 第 4 次习题课: 曲面积分          | 7  |
|   | 4.1 问题                  | 7  |
|   | 4.2 解答                  | 7  |
|   | 4.3 补充 (不要求掌握!)         | 8  |
| 5 | 第 5 次习题课: 高斯公式, 斯托克斯公式  | 8  |
|   | 5.1 问题                  | 8  |
|   | 5.2 解答                  | 9  |
|   | 5.3 补充 (不要求掌握!)         | 10 |
| 6 | 第 6 次习题课: 初等积分法         | 10 |
|   | 6.1 问题                  | 10 |
|   | 6.2 解答                  | 11 |
|   | 6.3 补充 (不要求掌握!)         | 11 |
| 7 | 第7次习题课:解的存在唯一性,高阶线性微分方程 | 11 |
|   | 7.1 问题                  | 11 |
|   | 7.2 解答                  | 12 |
|   | 7.3 补充 (不要求掌握!)         | 13 |

| 8         | 第 8 次习题课: 常数变易法          | 13        |
|-----------|--------------------------|-----------|
|           | 8.1 问题                   | 13        |
|           | 8.2 解答                   | 13        |
|           | 8.3 补充 (不要求掌握!)          | 15        |
| 9         | 第 9 次习题课: 数项级数           | 15        |
|           | 9.1 问题                   | 15        |
|           | 9.2 解答                   | 15        |
|           | 9.3 补充 (不要求掌握!)          | 15        |
| 10        | 第 10 次习题课: 数项级数,函数项级数    | 15        |
|           | 10.1 问题                  | 15        |
|           | 10.2 解答                  | 15        |
|           | 10.3 补充 (不要求掌握!)         | 15        |
| 11        | 第 11 次习题课: 幂级数, 泰勒级数     | 15        |
|           | 11.1 问题                  | 15        |
|           | 11.2 解答                  | 15        |
|           | 11.3 补充 (不要求掌握!)         | 15        |
| 12        | 第 12 次习题课: 广义积分, 含参积分    | 15        |
|           | 12.1 问题                  | 15        |
|           | 12.2 解答                  | 15        |
|           | 12.3 补充 (不要求掌握!)         | 15        |
| 13        | 第 13 次习题课: 含参广义积分, 傅里叶级数 | 15        |
|           | 13.1 问题                  |           |
|           | 13.2 解答                  |           |
|           | 13.3 补充 (不要求掌握!)         | 15        |
| 14        | 第 14 次习题课: 傅里叶级数         | <b>15</b> |
|           | 14.1 问题                  | 15        |
|           | 14.2 解答                  | 15        |
|           | 14.3 补充 (不要求掌握!)         | 15        |
| <b>15</b> | 综合复习                     | 15        |
|           | 15.1 问题                  | 15        |
|           | 15.2 解答                  | 15        |
| <b>16</b> | 致谢                       | <b>15</b> |

## 第 1 次习题课: 二重积分

#### 1.1 问题

- 1. 累次积分变序:  $\int_0^1 dy \int_y^{\sqrt{y}} f(x,y) dx$ ,  $\int_0^a dx \int_x^{\sqrt{2ax-x^2}} f(x,y) dy$ .
- 2. 求  $z = 1 \frac{x^2}{a^2} \frac{y^2}{b^2}$  与 xoy 平面所围的体积. 3. 计算积分  $\int_0^1 dx \int_x^{\sqrt{x}} \frac{\sin y}{y} dy$ .
- 4. 区域 D 由  $y=x^3, y=0, x=1$  围成, 计算积分  $I=\iint_D \sqrt{1-x^4}d\sigma$ .
- 5. 区域 D 由 y = 0, x = 1, y = x 围成, 计算积分  $I = \iint_D \sqrt{4x^2 y^2} d\sigma$ .
- 6. 区域 D 由  $x^2 + y^2 = 4$  和  $y = -x^2 + 1, y = x^2 1$  两线在  $|x| \le 2$  部分所围成, 计算积分  $I = \iint_D (x^2 + y^3) d\sigma$ .
- 7.  $0 \le p(x) \in R[a,b], f(x), g(x)$  于 [a,b] 单调递增,证明  $\int_a^b p(x)f(x)dx \int_a^b p(x)g(x)dx \le \int_a^b p(x)dx \int_a^b p(x)f(x)g(x)dx$ .
- 8. 计算极限  $\lim_{a \to +\infty} \int_{-a}^{a} e^{-x^2} dx$ .

#### 1.2 解答

- 1. 这种题最好画图. 答案是  $\int_0^1 dx \int_{x^2}^x f(x,y) dy$ ,  $\int_0^a dy \int_{a-\sqrt{a^2-y^2}}^y f(x,y) dx$ .
- 2. 区域  $D = \{(x,y): \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\}, D_0 = \{(x,y): 0 \le x \le a, 0 \le y \le \frac{b}{a}\sqrt{a^2 x^2}\}.$  则体积  $V = \iint_D z d\sigma = 4\iint_{D_0} z d\sigma$  $4\int_0^a dx \int_0^{\frac{b}{a}\sqrt{a^2-x^2}} \left(1-\frac{x^2}{a^2}-\frac{y^2}{b^2}\right) dy = 4\int_0^a \frac{2}{3}\frac{b}{a^3}(a^2-x^2)^{\frac{3}{2}} dx = \cdots ($  换元法)  $\cdots = \frac{\pi}{2}ab.$
- 3. 区域  $D = \{(x,y): 0 \le x \le 1, x \le y \le \sqrt{x}\}$ . 累次积分时先对 x 积分,则原积分  $= \int_0^1 dy \int_{y^2}^y \frac{\sin y}{y} dx = \int_0^1 (\sin y y) dx$
- $4. \ I = \int_0^1 dx \int_0^{x^3} \sqrt{1 x^4} dy = \int_0^1 x^3 \sqrt{1 x^4} dx = -\frac{1}{6} (1 x^4)^{\frac{3}{2}} \Big|_0^1 = \frac{1}{6}.$   $5. \ I = \int_0^1 dx \int_0^x \sqrt{4x^2 y^2} dy = \int_0^1 dx \left[ \frac{y}{2} \sqrt{4x^2 y^2} + \frac{4x^2}{2} \arcsin \frac{y}{2x} \right]_{y=0}^{y=x} = \int_0^1 (\frac{x}{2} \sqrt{3x^2} + 2x^2 \arcsin \frac{1}{2}) dx = \frac{1}{3} (\frac{\sqrt{3}}{2} + \frac{\pi}{3}).$
- 6. 首先, 因为积分区域关于 y=0 对称, 所以  $\iint_D y^3 d\sigma = 0$ . 记  $D_1$  为 D 的第一象限部分,  $D_2 = \{(x,y): x^2 + y^2 \le 1\}$  $4, x \ge 0, y \ge 0$ },  $D_3 = \{(x, y) : 0 \le x \le 1, 0 \le y \le -x^2 + 1$ }. 因此  $I = 4 \iint_{D_1} x^2 d\sigma = 4 \iint_{D_2} x^2 d\sigma - 4 \iint_{D_3} x^2 d\sigma = 4 \iint_{D_3} x$
- 7. 利用二重积分.

$$\begin{split} \text{RHS} - \text{LHS} &= \int_a^b p(x) dx \int_a^b p(x) f(x) g(x) dx - \int_a^b p(x) f(x) dx \int_a^b p(x) g(x) dx \\ &= \int_a^b p(y) dy \int_a^b p(x) f(x) g(x) dx - \int_a^b p(y) f(y) dy \int_a^b p(x) g(x) dx \\ &= \int_a^b \int_a^b [p(x) p(y) f(x) g(x) - p(x) p(y) f(y) g(x)] d\sigma = \int_a^b \int_a^b p(x) p(y) g(x) [f(x) - f(y)] d\sigma \end{split}$$

同理 RHS - LHS  $=\int_a^b\int_a^bp(x)p(y)g(y)[f(y)-f(x)]d\sigma$ . 两式相加得  $2(\text{RHS}-\text{LHS})=\int_a^b\int_a^bp(x)p(y)[g(x)-g(y)][f(x)-f(x)]d\sigma$ .  $f(y)|d\sigma \geq 0.$ 

8. 记  $I(a) = \int_{-a}^{a} e^{-x^2} dx$ , 则  $I^2(a) = \int_{-a}^{a} e^{-x^2} dx \int_{-a}^{a} e^{-y^2} dy = \int_{-a}^{a} \int_{-a}^{a} e^{-x^2-y^2} d\sigma$ . 记区域  $D(a) = \{(x,y) : x^2 + y^2 \le a^2\}$ , 积分  $J(a) = \iint_{D(a)} e^{-x^2-y^2} d\sigma$ . 由简单的二维区域包含关系知  $J(a) \le I^2(a) \le J(\sqrt{2}a)$ . 再利用二重积分极坐标换元知  $J(a) = \int_{0}^{a} dr \int_{0}^{2\pi} r e^{-r^2} d\theta = -\pi e^{-r^2} \Big|_{r=0}^{r=a} = \pi (1 - e^{-a^2})$ . 因此  $\lim_{a \to +\infty} J(a) = \pi$ . 由夹逼原理知  $\lim_{a \to +\infty} I(a) = \sqrt{\pi}$ .

### 补充 (不要求掌握!)

类似于累次极限和整体极限的关系, 累次积分和二重积分也不具有相互决定性, 即二重积分存在并不保证累次积分存 在. 例如设  $\{x_k\}_{k=1}^{\infty}$  是区间 [0,1] 上的所有有理数组成的序列, 定义矩形  $D=[0,1]\times[0,1]$  上的函数为 f(x,y)=

 $\begin{cases} \frac{1}{k}, & \text{if } x = x_k, y \in \mathbb{Q}, k \in \mathbb{N} \\ & \text{. 可以证明 } f(x,y) \in R(D) \text{ 且 } \iint_D f(x,y) d\sigma = 0. \text{ 但是, 由于 } f(x_k,y) = \frac{1}{k} \text{Dirichlet}(y) \end{cases}$ 

导致  $\int_0^1 f(x_k,y)dy$  eta, 所以  $\iint_D f(x,y)d\sigma$  不能使用累次积分  $\int_0^1 dx \int_0^1 f(x,y)dy$  计算. 但是若固定 y, f(x,y) 要么是 Riemann 函数要么恒为 0, 积分值都是 0, 因此  $\iint_D f(x,y)d\sigma$  可以使用累次积分  $\int_0^1 dy \int_0^1 f(x,y)dx$  计算.

#### 第 2 次习题课: 三重积分 $\mathbf{2}$

#### 2.1 问题

- 1. 区域  $\Omega$  由 x = 0, y = 0, z = 0, x + 2y + z = 1 围成, 计算积分  $I = \iiint_{\Omega} x dv$ .
- 2. 区域  $\Omega = \{(x, y, z) : \sqrt{x^2 + y^2} \le z \le \sqrt{R^2 (x^2 + y^2)}\}$ , 计算积分  $I = \iiint_{\Omega} z dv$ .
- 3. 区域  $\Omega = \{(x,y,z): \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1\}$ , 计算积分  $I = \iiint_{\Omega} (x+y+z)^2 dv$ .
- 4. 区域 D 由  $(x-a)^2+y^2=a^2(y>0), (x-2a)^2+y^2=4a^2(y>0), y=x$  围成, 计算积分  $I=\iint_D \sqrt{x^2+y^2}d\sigma$ .
- 5. 计算椭圆抛物面  $z = x^2 + 2y^2$  及抛物柱面  $z = 2 x^2$  所围成立体的体积.
- 6. 区域  $D = \{(x,y) : 0 \le x + y \le 1, 0 \le x y \le 1\}$ , 计算积分  $I = \iint_D (x+y)^2 e^{x^2 y^2} d\sigma_{xy}$ .
- 7. 区域  $\Omega$  由  $z = \frac{x^2 + y^2}{m}, z = \frac{x^2 + y^2}{n}, xy = a^2, xy = b^2, y = \alpha x, y = \beta x (0 < m < n, 9 < a < b, 0 < \alpha < \beta)$  围成且在第一 卦限的部分, 计算积分  $I = \iiint_{\Omega} xyzdv$ .
- 8. 设  $h = \sqrt{\alpha^2 + \beta^2 + \gamma^2}$ ,  $f(x) \in C[-h, h]$ , 证明  $\iiint_{\Omega} f(\alpha x + \beta y + \gamma z) dv_{xyz} = \pi \int_{-1}^{1} (1 \zeta^2) f(h\zeta) d\zeta$ , 其中区域  $\Omega$  是单 位球内部.
- 9. 区域  $\Omega = \{(x, y, z) : x^2 + y^2 + z^2 \le 2z\}$ , 计算积分  $I = \iiint_{\Omega} (x^2 + y^2 + z^2) dv$ .
- 10. 区域  $\Omega = \{(x,y,z): \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1\}$ , 计算积分  $I = \iiint_{\Omega} (x^2 + y^2 + z^2) dv$ .
- 11. 区域  $D = \{(x,y) : -1 \le x \le 1, 0 \le y \le 1\}$ , 计算积分  $I = \iint_D \max\{xy, x^3\} d\sigma$ .

#### 2.2 解答

- 1. 记区域  $D_{xy} = \{(x,y): x \geq 0, y \geq 0, x + 2y \leq 1\}$ , 累次积分时依次对 z,y,x 积分,有  $I = \iint_{D_{xy}} [\int_0^{1-x-2y} x dz] d\sigma_{xy} = \int_0^{1-x-2y} x dz$
- $\iint_{D_{xy}} x(1-x-2y)d\sigma_{xy} = \int_0^1 dx \int_0^{\frac{1}{2}(1-x)} [x(1-x)-2xy]dy = \int_0^1 [\frac{1}{2}x(1-x)^2 \frac{1}{4}x(1-x)^2] = \frac{1}{48}.$ 2. 记区域  $D_{xy} = \{(x,y): x^2 + y^2 \leq \frac{R^2}{2}\}$ , 累次积分时先对 z 积分再极坐标换元, 有  $I = \iint_{D_{xy}} [\int_{\sqrt{x^2+y^2}}^{\sqrt{R^2-(x^2+y^2)}} zdz]d\sigma_{xy} = \int_0^1 \frac{1}{2}x(1-x)^2 \frac{1}{4}x(1-x)^2 \frac{1}$

- $\iint_{D_{xy}} \frac{1}{2} [R^2 2(x^2 + y^2)] d\sigma_{xy} = \int_0^{2\pi} d\theta \int_0^{\frac{R}{\sqrt{2}}} \frac{1}{2} (R^2 2r^2) r dr = \frac{\pi R^4}{8}.$ 3. 由对称性,  $I = \iint_{\Omega} (x^2 + y^2 + z^2) dv + 2 \iint_{\Omega} (xy + yz + zx) dv = \iint_{\Omega} (x^2 + y^2 + z^2) dv$ . 先计算  $I_1 = \iiint_{\Omega} z^2 dv$ . 记 区域  $D_z = \{(x,y): \frac{x^2}{a^2(1-\frac{z^2}{c^2})} + \frac{y^2}{b^2(1-\frac{z^2}{c^2})} \le 1\}$ , 累次积分时先对  $\sigma_{xy}$  积分再对 z 积分,有  $I_1 = \int_{-c}^{c} dz \iint_{D_z} z^2 d\sigma_{xy} = \frac{1}{2} \int_{-c}^{c} dz \int_{-c$
- $\int_{-c}^{c} z^{2} \pi a b (1 \frac{z^{2}}{c^{2}}) dz = \frac{4\pi a b c^{3}}{15}. \quad \square \perp I = \frac{4\pi a b c}{15} (a^{2} + b^{2} + c^{2}).$   $4. \quad \diamondsuit \begin{cases}
  x = r \cos \theta \\ y = r \sin \theta
  \end{cases}, \quad \boxed{\uparrow} \begin{cases}
  (x a)^{2} + y^{2} = a^{2} \Rightarrow r^{2} 2ar \cos \theta = 0 \Rightarrow r = 2a \cos \theta \\ (x 2a)^{2} + y^{2} = 4a^{2} \Rightarrow r = 4a \cos \theta \end{cases}, \quad \boxed{\downarrow} \qquad \boxed{\downarrow}$

 $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{56}{3} a^3 \cos^3 \theta d\theta = \frac{112 - 70\sqrt{2}}{9} a^3.$ 

- 5. 联立方程  $\begin{cases} z = x^2 + 2y^2 \\ z = 2 x^2 \end{cases} \Rightarrow x^2 + y^2 = 1,$  因此区域  $D = \{(x,y) : x^2 + y^2 \le 1\},$  体积  $V = \iint_D [(2 x^2) (x^2 + y^2)]$

- $1,0 \le x-y \le 1\} \Rightarrow D_{\xi\eta} = \{(\xi,\eta): 0 \le \xi \le 1, 0 \le \eta \le 1\},$  所以换元后  $I = \iint_{D_{\xi\eta}} \xi^2 e^{\xi\eta} |J| d\sigma_{\xi\eta} = \frac{1}{2} \int_0^1 d\xi \int_0^1 \xi^2 e^{\xi\eta} d\eta = 0$
- 7. 令  $\begin{cases} u = \frac{z}{x^2 + y^2} \\ v = xy \end{cases}, \quad \emptyset \begin{cases} x = \sqrt{\frac{v}{w}} \\ y = \sqrt{wv} \end{cases}, \quad \text{Jacobi 行列式 } J = |\frac{\partial(x,y,z)}{\partial(u,v,w)}| = \frac{v}{2w}(w + \frac{1}{w}), \quad \boxtimes \ \Omega \to \Omega_{uvw} = \{(u,v,w) : x \in \mathbb{Z} \} \\ \frac{1}{n} \leq u \leq \frac{1}{m}, \quad \alpha^2 \leq v \leq b^2, \quad \alpha \leq w \leq \beta \}, \quad \text{所以换元后 } I = \iiint_{\Omega_{uvw}} \sqrt{\frac{v}{w}} \sqrt{wv} uv(w + \frac{1}{w}) \frac{v}{2w}(w + \frac{1}{w}) du dv dw = \iiint_{\Omega_{uvw}} v^3 u(w + \frac{1}{w})^2 \frac{1}{w} du dv dw = \int_{\frac{1}{n}}^{\frac{1}{m}} u du \int_{a^2}^{b^2} v^3 dv \int_{\alpha}^{\beta} (w + \frac{2}{w} + \frac{1}{w^3}) dw = \frac{1}{32} (\frac{1}{m^2} \frac{1}{n^2}) (b^8 a^8) [(\beta^2 \alpha^2)(1 + \frac{1}{\alpha^2 \beta^2}) + 4 \log \frac{\beta}{\alpha}]. \end{cases}$

8. 作正交变换  $\begin{cases} \xi = a_1 x + b_1 y + c_1 z \\ \eta = a_2 x + b_2 y + c_2 z \end{cases}$  (旋转),则  $\left| \frac{\partial(x, y, z)}{\partial(\xi, \eta, \zeta)} \right| = 1$ ,所以换元后 LHS =  $\iiint_{\xi^2 + \eta^2 + \zeta^2 \le 1} f(h\zeta) d\xi d\eta d\zeta = \int_{\xi} \frac{1}{2\pi} \left( \frac{\partial(x) + \partial(y)}{\partial(\xi, \eta, \zeta)} \right) d\xi d\eta d\zeta = 0$ 

 $\zeta = \frac{1}{h}(\alpha x + \beta y + \gamma z)$   $\int_{-1}^{1} d\zeta \iint_{\xi^2 + \eta^2 \le 1 - \zeta^2} f(h\zeta) d\xi d\eta = \pi \int_{-1}^{1} (1 - \zeta^2) f(h\zeta) d\zeta = \text{RHS}.$ 9. 作球坐标变换, 区域  $\Omega : 0 \le r \le 2\cos\phi$ , 积分  $I = \int_{0}^{2\pi} d\theta \int_{0}^{2\pi} d\phi = \int_{0}^{2\cos\phi} r^2 r^2 \sin\phi dr = 2\pi \int_{0}^{\frac{\pi}{2}} \sin\phi d\phi \int_{0}^{2\cos\phi} r^4 dr = 2\pi \int_{0}^{\frac{\pi}{2}} \sin\phi d\phi = -\frac{64}{5}\pi \int_{0}^{\frac{\pi}{2}} \cos^5\phi d\cos\phi = -\frac{64}{5}\frac{\cos^6\phi}{6}\Big|_{0}^{\frac{\pi}{2}} = \frac{32}{15}\pi.$ 

10. 作广义球坐标系变换 
$$\begin{cases} x = ar\sin\phi\cos\theta \\ y = br\sin\phi\sin\theta \end{cases}$$
, Jacobi 行列式为  $J = abcr^2\sin\phi$ , 所以换元后  $z = cr\cos\phi$ 

$$\begin{split} I &= \int_0^{2\pi} d\theta \int_0^{\pi} d\phi \int_0^1 dr \, r^2 a b c \sin\phi (a^2 r^2 \sin^2\phi \cos^2\theta + b^2 r^2 \sin^2\phi \sin^2\theta + c^2 r^2 \cos^2\phi) \\ &= \frac{a b c}{5} \int_0^{2\pi} d\theta \int_0^{\pi} -[(a^2 \cos^2\theta + b^2 \sin^2\theta)(1 - \cos^2\phi) + c^2 \cos^2\phi] d\cos\phi \\ &= \frac{a b c}{5} \int_0^{2\pi} [\frac{4}{3} (a^2 \cos^2\theta + b^2 \sin^2\theta) + \frac{2}{3} c^2] d\theta = \frac{4 a b c \pi}{15} (a^2 + b^2 + c^2) \end{split}$$

11. 引入辅助积分  $J = \iint_D \min\{xy, x^3\} d\sigma$ .  $I + J = \iint_D (xy + x^3) d\sigma = \int_0^1 dy \int_{-1}^1 (xy + x^3) dx = 0$ ,  $I - J = \iint_D |xy - x^3| d\sigma = \iint_D |x| |y - x^2| d\sigma = 2 \int_0^1 dy \int_0^1 x |y - x^2| dx \stackrel{u = x^2}{=} \int_0^1 dy \int_0^2 |y - u| du \stackrel{\text{L何意义}}{=} \frac{1}{2} \int_0^1 [y^2 + (1-y)^2] dy = \frac{1}{3} \Rightarrow I = \frac{1}{6}$ .

### 补充 (不要求掌握!)

n 维空间中的球坐标系: 一个向径 r,n-1 个角度  $\theta_1,\theta_2,\cdots,\theta_{n-1},$  其中, 一个角度转一圈  $(\theta_{n-1}),n-2$  个角度转半圈

 $\begin{cases} x_1 = r\cos\theta_1 \\ x_2 = r\sin\theta_1\cos\theta_2 \\ x_3 = r\sin\theta_1\sin\theta_2\cos\theta_3 \\ \dots \\ x_{n-2} = r\sin\theta_1\cdots\sin\theta_{n-3}\cos\theta_{n-2} \\ x_{n-1} = r\sin\theta_1\cdots\sin\theta_{n-2}\cos\theta_{n-1} \\ x_n = r\sin\theta_1\cdots\sin\theta_{n-2}\sin\theta_{n-1} \end{cases}$ 

, 利用归纳法可以证明 Jacobi 行列式为

$$x_{n-2} = r \sin \theta_1 \cdots \sin \theta_{n-3} \cos \theta_{n-2}$$

$$x_{n-1} = r \sin \theta_1 \cdots \sin \theta_{n-2} \cos \theta_{n-1}$$

$$x_n = r \sin \theta_1 \cdots \sin \theta_{n-2} \sin \theta_{n-1}$$

 $|J| = r^{n-1} \sin^{n-2} \theta_1 \sin^{n-3} \theta_2 \cdots \sin \theta_{n-2}$ 

n 维空间中半径为 R 的球体  $\Omega: x_1^2+\cdots+x_n^2 \leq R^2$  的体积  $V_n$ : 作球坐标变换知

$$V_{n} = \int \cdots \int_{\Omega} dx_{1} \cdots dx_{n} = \int_{0}^{2\pi} d\theta_{n-1} \int_{0}^{\pi} d\theta_{n-2} \cdots \int_{0}^{\pi} d\theta_{1} \int_{0}^{R} r^{n-1} \sin^{n-2}\theta_{1} \sin^{n-3}\theta_{2} \cdots \sin\theta_{n-2} dr$$

$$= \frac{R^{n}}{n} 2\pi \int_{0}^{\pi} \sin\theta_{n-2} d\theta_{n-2} \int_{0}^{\pi} \sin^{2}\theta_{n-3} d\theta_{n-3} \cdots \int_{0}^{\pi} \sin^{n-2}\theta_{1} d\theta_{1}$$

$$= \frac{R^{n}}{n} 2\pi \operatorname{Beta}(\frac{1}{2}, 1) \operatorname{Beta}(\frac{1}{2}, \frac{3}{2}) \cdots \operatorname{Beta}(\frac{1}{2}, \frac{n-2}{2}) \operatorname{Beta}(\frac{1}{2}, \frac{n-1}{2})$$

关于 Beta 函数,参见后述的含参积分.

## 第 3 次习题课: 曲线积分, 格林公式

#### 3.1 问题

- 1. 曲线  $\Gamma: x^2 + y^2 = x$ , 计算积分  $I = \int_{\Gamma} \sqrt{1 x^2 y^2} ds$ .
- 2. 曲线 C 是  $y=0,y=x(x\geq 0),x^2+y^2=a^2$  所围成图形的边界, 计算积分  $I=\int_C e^{\sqrt{x^2+y^2}}ds$ .

3. 曲线 
$$L:$$
 
$$\begin{cases} x=a\cos t\\ y=a\sin t &, 0\leq t\leq 2\pi, \text{ 计算积分 }I=\int_{L}\frac{z^{2}ds}{x^{2}+y^{2}}.\\ z=at \end{cases}$$
 4. 曲线  $C:$  
$$\begin{cases} x=a\cos \theta\\ y=a\sin \theta \end{cases}, 0\leq \theta\leq 2\pi, \text{ 计算积分 }I=\int_{C}(x^{2}+y^{2})^{n}ds.$$

- 5. 曲线  $C: x^2 + y^2 = a^2$ , 计算积分  $I = \oint_C \frac{(x+y)dx (x-y)dy}{x^2 + y^2}$ , 方向是逆时针.
- 6. 曲线  $\widehat{AB}$  为单位圆周  $x^2 + y^2 = 1$  的上半部分, 计算积分  $I = \int_{\widehat{AB}} -y dx + x dy$ , 方向为从 A(1,0) 到 B(-1,0).
- 7. 曲线  $\Gamma$  是从 (0,0) 沿函数  $y = x^{\alpha}$  到 (1,1) 的部分, 计算积分  $I = \int_{\Gamma} (x^2 y^2) dx 2xy dy$ .
- 8. 曲线  $\Gamma$  是球面  $x^2 + y^2 + z^2 = 1$  与平面 x + y + z = 0 的交线, 计算积分  $\int_{\Gamma} x dx + y dy + z dz$ , 方向是从 z 轴正向看 回来的逆时针方向.
- 9. 区域 D 是由点  $A(x_1, y_1), B(x_2, y_2), C(x_3, y_3)$  围成的三角形, 计算积分  $I = \iint_D x^2 dx dy$ .
- 10. 曲线  $C: 741x^8 + 886e^xy^2 + \sin(x^9\cos(y)) = 5$ , 计算积分  $I = \oint_C \frac{xdy ydx}{x^2 + y^2}$ .
- 11. 证明或否定: 曲线积分  $I = \int_{\Gamma} \frac{xdy ydx}{x^2 + y^2} \frac{(x-1)dy ydx}{(x-1)^2 + y^2}$  在  $\mathbb{R}^2$  内积分与路径无关.
- 12. (格林第二公式) 设闭区域 D 是由有限条逐段光滑曲线围成的,  $u = u(x,y), v = v(x,y) \in C^2(D)$ , 证明  $\iint_D (v \triangle u v) dv$  $u\triangle v)d\sigma = \oint_{\partial D} \left(v\frac{\partial u}{\partial \overrightarrow{x}} - u\frac{\partial v}{\partial \overrightarrow{x}}\right)ds$ , 其中  $\overrightarrow{n}$  为  $\partial D$  的单位外法向量.
- 13. 求函数 u(x,y) 使得  $du = \frac{2x(1-e^y)}{(1+x^2)^2}dx + \frac{e^y}{1+x^2}dy$ .

- 1. 曲线参数方程  $x = \frac{1}{2} + \frac{1}{2}\cos t, y = \frac{1}{2}\sin t, 0 \le t \le 2\pi$ , 则  $ds = \sqrt{\frac{1}{4}\sin^2 t + \frac{1}{4}\cos^2 t}dt = \frac{1}{2}dt$ , 原积分  $I = \int_{\Gamma} \sqrt{1-x}ds = \int_{\Gamma} \sqrt{1 \frac{1}{2} \int_0^{2\pi} \sqrt{\frac{1-\cos t}{2}} dt = \frac{1}{2} \int_0^{2\pi} |\sin \frac{t}{2}| dt = \int_0^{\pi} \sin \frac{t}{2} dt = 2.$
- 2. 记  $C_1, C_2, C_3$  分别为曲线 C 的下、右上、左上部分,则原积分  $I = \int_{C_1} e^{\sqrt{x^2+y^2}} ds + \int_{C_2} e^{\sqrt{x^2+y^2}} ds + \int_{C_3} e^{\sqrt{x^2+y^2}} ds = \int_{C_3} e^{\sqrt{x^2+y^2}} ds + \int_{C_3} e^{\sqrt{x^2+y^2}} ds = \int_{C_3} e^{\sqrt{x^2+y^2}} ds + \int_{C_3} e^{\sqrt{x^2+y^2}} ds = \int_{C$  $\int_{0}^{a} e^{x} dx + \int_{0}^{\frac{\pi}{4}} e^{a} a d\theta + \int_{0}^{\frac{a}{\sqrt{2}}} e^{\sqrt{2}x} \sqrt{2} dx = (e^{a} - 1) + \frac{\pi}{4} a e^{a} + e^{\sqrt{2}x} \Big|_{0}^{\frac{a}{\sqrt{2}}} = \frac{\pi}{4} a e^{a} + 2(e^{a} - 1).$ 3. 直接使用公式,  $I = \int_{0}^{2\pi} \frac{a^{2}t^{2}}{a^{2}\cos^{2}t + a^{2}\sin^{2}t} \sqrt{a^{2}\sin^{2}t + a^{2}\cos^{2}t + a^{2}} dt = \int_{0}^{2\pi} t^{2} \sqrt{2} a dt = \frac{8\sqrt{2}}{3} a \pi^{3}.$ 4. 直接使用公式,  $I = \int_{0}^{2\pi} a^{2n} a d\theta = 2\pi a^{2n+1}.$

- 5. 曲线参数方程  $x = a \cos t, y = a \sin t$ , 因此  $I = \oint \frac{a^2(\cos t + \sin t)(-\sin t) a^2(\cos t \sin t)\cos t}{a^2} dt = \int_0^{2\pi} (-1)dt = -2\pi$ . 6. 由  $x^2 + y^2 = 1$  知 xdx + ydy = 0 得  $dy = -\frac{x}{y}dx$ , 从而有  $\int_{\widehat{AB}} -ydx + xdy = \int_1^{-1} -ydx + x(-\frac{x}{y}dx) = \int_{-1}^1 (\frac{x^2 + y^2}{y})dx = \int_{-1}^1 (\frac{x^2 + y^2}{y})dx$  $\int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}} = \pi.$
- 7. 直接计算得  $I = \int_0^1 (x^2 x^{2\alpha}) dx 2xx^{\alpha} (\alpha x^{\alpha 1}) dx = \int_0^1 (x^2 (2\alpha + 1)x^{2\alpha}) dx = -\frac{2}{3}$ .
- 8. 球面的单位法向量为  $\overrightarrow{n_1}=(x,y,z)$ , 平面的单位法向量为  $\overrightarrow{n_2}=\frac{\sqrt{3}}{3}(1,1,1)$ . 所以曲线  $\Gamma$  的单位切向量为  $\overrightarrow{\tau}=\overrightarrow{n_1}\times\overrightarrow{n_2}$ . 从而积分为  $\int_{\Gamma} x dx + y dy + z dz = \int_{\Gamma} (x, y, z) \cdot \overrightarrow{\tau} ds = \int_{\Gamma} (x, y, z) \cdot (\overrightarrow{n_1} \times \overrightarrow{n_2}) ds = \int_{\Gamma} 0 ds = 0.$
- 9. AB 的方程为  $y = y_1 + \frac{y_2 y_1}{x_2 x_1}(x x_1)$ , BC 的方程为  $y = y_2 + \frac{y_3 y_2}{x_3 x_2}(x x_2)$ , CA 的方程为  $y = y_3 + \frac{y_1 y_3}{x_1 x_3}(x x_3)$ . 由格林公式,知原积分  $I = \iint_D \frac{\partial}{\partial x} (\frac{1}{3}x^3) d\sigma = \oint_{\partial D} \frac{1}{3}x^3 dy = \int_{\overline{AB}} \frac{1}{3}x^3 dy + \int_{\overline{BC}} \frac{1}{3}x^3 dy + \int_{\overline{CA}} \frac{1}{3}x^3 dy = \int_{x_1}^{x_2} \frac{1}{3}x^3 \frac{y_2 y_1}{x_2 x_1} dx + \int_{\overline{CA}} \frac{1}{3}x^3 dy = \int_{x_1} \frac{1}{3}x^3 dy + \int_{\overline{CA}} \frac{1}{3}x^3 dy + \int_{\overline{CA}} \frac{1}{3}x^3 dy = \int_{x_1} \frac{1}{3}x^3 dy + \int_{\overline{CA}} \frac{1}{3}x^3 dy = \int_{x_1} \frac{1}{3}x^3 dy + \int_{\overline{CA}} \frac{1}{3}x^3$  $\int_{x_2}^{x_3} \frac{1}{3} x^3 \frac{y_3 - y_2}{x_3 - x_2} dx + \int_{x_3}^{x_1} \frac{1}{3} x^3 \frac{y_1 - y_3}{x_1 - x_3} dx = \frac{1}{12} [(y_2 - y_1)(x_2^2 + x_1^2)(x_2 + x_1) + (y_3 - y_2)(x_3^2 + x_2^2)(x_3 + x_2) + (y_1 - y_3)(x_1^2 + x_3^2)(x_1 + x_3)].$
- 10. 容易验证圆点 O 是闭曲线 C 所围成区域的内点. 记  $C_\epsilon: x^2+y^2=\epsilon^2$ , 取  $\epsilon$  足够小使  $C_\epsilon$  围成的区域完全在曲线 C内侧. 在 C 与  $C_{\epsilon}$  围成的区域 D 上使用格林公式知  $\oint_{\partial D} \frac{xdy-ydx}{x^2+y^2} = \iint_{D} (\frac{\partial}{\partial x}(\frac{x}{x^2+y^2}) + \frac{\partial}{\partial y}(\frac{y}{x^2+y^2})) d\sigma = 0 \Rightarrow \oint_{C} \frac{xdy-ydx}{x^2+y^2} = \iint_{D} (\frac{\partial}{\partial x}(\frac{x}{x^2+y^2}) + \frac{\partial}{\partial y}(\frac{y}{x^2+y^2})) d\sigma = 0 \Rightarrow \oint_{C} \frac{xdy-ydx}{x^2+y^2} = \iint_{D} (\frac{\partial}{\partial x}(\frac{x}{x^2+y^2}) + \frac{\partial}{\partial y}(\frac{y}{x^2+y^2})) d\sigma = 0 \Rightarrow \oint_{C} \frac{xdy-ydx}{x^2+y^2} = \iint_{D} (\frac{\partial}{\partial x}(\frac{x}{x^2+y^2}) + \frac{\partial}{\partial y}(\frac{y}{x^2+y^2})) d\sigma = 0 \Rightarrow \oint_{C} \frac{xdy-ydx}{x^2+y^2} = \iint_{D} (\frac{\partial}{\partial x}(\frac{x}{x^2+y^2}) + \frac{\partial}{\partial y}(\frac{y}{x^2+y^2})) d\sigma = 0 \Rightarrow \oint_{C} \frac{xdy-ydx}{x^2+y^2} = \iint_{D} (\frac{\partial}{\partial x}(\frac{x}{x^2+y^2}) + \frac{\partial}{\partial y}(\frac{y}{x^2+y^2})) d\sigma = 0 \Rightarrow \oint_{C} \frac{xdy-ydx}{x^2+y^2} = 0$  $\oint_{C_\epsilon} \frac{x dy - y dx}{x^2 + y^2} \stackrel{x = \epsilon \cos\theta, y = \epsilon \sin\theta}{=} \int_0^{2\pi} d\theta = 2\pi.$
- 积分值可能为  $2\pi$ (第 10 题结论), 不包含瑕点的区域内积分值必为 0, 因此原积分与路径有关, 结论不对.
- 12. 由格林公式,  $\iint_{D} \nabla \cdot (P,Q) d\sigma = \iint_{D} (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y}) d\sigma = \oint_{\partial D} P dy Q dx = \oint_{\partial D} (P,Q) \cdot (dy,-dx) = \oint_{\partial D} (P,Q) \cdot \overrightarrow{n} \, ds.$  因此  $\oint_{\partial D} v \frac{\partial u}{\partial \overrightarrow{\pi}} ds = \oint_{\partial D} v \nabla u \cdot \overrightarrow{\pi} ds = \iint_{D} \nabla \cdot (v \nabla u) d\sigma = \iint_{D} (\nabla v \cdot \nabla u + v \triangle u) d\sigma,$  类似有  $\oint_{\partial D} u \frac{\partial v}{\partial \overrightarrow{\pi}} ds = \iint_{D} (\nabla u \cdot \nabla v + u \triangle v) d\sigma.$ 两式相减即得结果.
- 13. 令  $P(x,y) = \frac{2x(1-e^y)}{(1+x^2)^2}$ ,  $Q(x,y) = \frac{e^y}{1+x^2}$ , 则有  $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = -\frac{2xe^y}{(x^2+1)^2}$ .  $\int P(x,y)dx = \frac{e^y-1}{x^2+1} + C'$ , Q(x,y) 删除掉含 x 的 项后为 0, 因此  $u(x,y) = \frac{e^y - 1}{1 + x^2} + C$ .

### 3.3 补充 (不要求掌握!)

格林公式的物理意义: 平面定常流体 (各点流速只与位置有关, 与时间无关) 于 (x,y) 点的流 速为  $\overrightarrow{v}(x,y) = P(x,y)\overrightarrow{i} + Q(x,y)\overrightarrow{j}$ . 对于固定的 x,  $\frac{\partial P}{\partial y}$  决定了 x 方向向 y 方向的旋转, 所 以若以逆时针方向为正向,则x方向向y方向的旋转度量为 $-\frac{\partial P}{\partial y}$ . 对于固定的y,  $\frac{\partial Q}{\partial x}$  决定了 y 方向向 x 方向的旋转, 其度量为  $\frac{\partial Q}{\partial x}$ . 从而, (x,y) 点的流体的旋转度的度量为  $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ , 命 名为 (平面流场的旋度), 记为  $rot \overrightarrow{v}$ .



物理现象: 边界线  $\partial D$  上的环流量等于区域 D 上各点旋转量的迭加.

## 4 第 4 次习题课: 曲面积分

### 4.1 问题

- 1. 计算球面  $x^2 + y^2 + z^2 = 1$  被柱面  $(x \frac{1}{2})^2 + y^2 = \frac{1}{4}$  割下的部分的面积.
- 2. 求螺旋面  $\Sigma$ :  $\begin{cases} x = u \sin v \\ y = u \cos v \end{cases}$  在  $0 \le u \le R, 0 \le v \le 2\pi$  部分的面积, 其中 a > 0 是常数.
- 3. 求抛物面  $x^2 + y^2 = 2az$  包含在柱面  $(x^2 + y^2)^2 = 2a^2xy(a > 0)$  内的那部分面积.
- 4.  $\Sigma$  为上半球面  $z = \sqrt{R^2 x^2 y^2}$ , 计算积分  $I = \iint_{\Sigma} x^2 y^2 dS$ .
- 5.  $\Sigma$  是圆柱面  $x^2 + y^2 = R^2, 0 \le z \le H$ , 计算积分  $I = \iint_{\Sigma} (x^2 + y^2 + z^2) dS$ .
- 6. 求均匀物质曲面  $\Sigma: z=2-(x^2+y^2), z\geq 0$  的质心坐标.
- 7.  $\Sigma$  是平面 2x+2y+z=6 于第一卦限部分上侧, 计算积分  $I=\iint_{\Sigma}\overrightarrow{F}\cdot\overrightarrow{n}dS$ , 其中  $\overrightarrow{F}=(xy,-x^2,x+z)$ .
- 8.  $\Omega = \{(x, y, z) : x^2 + y^2 + z^2 \le 1, x \ge 0, y \ge 0\}, \Sigma$  是  $\partial\Omega$  的外侧, 计算积分  $I = \iint_{\Sigma} xyz dx dy$ .
- 9.  $\overrightarrow{x}$   $\overrightarrow{v} = xy\overrightarrow{i} + yz\overrightarrow{j} + xz\overrightarrow{k}$ ,  $\overrightarrow{x}$   $\overrightarrow{y}$   $= xy\overrightarrow{i} + yz\overrightarrow{j} + xz\overrightarrow{k}$ ,  $\overrightarrow{x}$   $= xy\overrightarrow{k}$   $= xy\overrightarrow{k}$  =
- 10.  $\Sigma$  是  $z = \sqrt{x^2 + y^2}$   $(0 \le z \le h)$  外侧, 计算积分  $I = \iint_{\Sigma} x dy dz + y dx dz + z dx dy$ .
- 11.  $\Sigma$  是由三个坐标平面及 x+y+z=1 所围成四面体外侧, 计算积分  $I=\iint_{\Sigma}xdydz+ydzdx+zdxdy$ .
- 12. S 是曲面  $x^2 + y^2 = 1(0 \le z \le 2)$  的外侧, 计算积分  $I = \iint_S x(y-z)dydz + (x-y)dxdy$ .
- 13. S 是椭球  $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$  的外表面, 计算积分  $I = \iint_S \frac{dxdy}{z}$ .

#### 4.2 解答

- 1. 由对称性, 所求面积 S 为 xy 平面上方曲面的面积的两倍. 割下部分  $z=f(x,y)=\sqrt{1-x^2-y^2}, (x,y)\in D, D=$  $\{(x,y): (x-\frac{1}{2})^2+y^2\leq \frac{1}{4}\}$ . 则面积  $S=2\iint_D\sqrt{1+f_x^2+f_y^2}d\sigma_{xy}=2\iint_D\frac{1}{\sqrt{1-x^2-y^2}}d\sigma_{xy}$ . 利用极坐标变换知 S=0
- $4\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\cos\theta} \frac{rdr}{\sqrt{1-r^{2}}} = 4\int_{0}^{\frac{\pi}{2}} \sqrt{1-r^{2}} \Big|_{0}^{\cos\theta} d\theta = 4\int_{0}^{\frac{\pi}{2}} (1-\sin\theta) d\theta = 2\pi 4.$   $2. \ \overrightarrow{\tau_{1}} = (\sin v, \cos v, 0), \overrightarrow{\tau_{2}} = (u\cos v, -u\sin v, a), |\overrightarrow{\tau_{1}} \times \overrightarrow{\tau_{2}}| = \sqrt{u^{2}+a^{2}} \Rightarrow S = \iint_{\Sigma} |\overrightarrow{\tau_{1}} \times \overrightarrow{\tau_{2}}| d\sigma_{uv} = \int_{0}^{2\pi} dv \int_{0}^{R} \sqrt{u^{2}+a^{2}} du = 2\pi \left[\frac{u}{2}\sqrt{u^{2}+a^{2}} + \frac{a^{2}}{2}\log(u+\sqrt{u^{2}+a^{2}})\right]_{0}^{T} = \pi R\sqrt{R^{2}+a^{2}} + \pi a^{2}\log(\frac{R+\sqrt{R^{2}+a^{2}}}{a}).$
- 3. 由抛物面方程得  $\frac{\partial z}{\partial x} = \frac{x}{a}, \frac{\partial z}{\partial y} = \frac{y}{a}, dS = \sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2} = \frac{\sqrt{a^2 + x^2 + y^2}}{a}$ . 从曲线表达式  $\begin{cases} (x^2 + y^2)^2 = 2a^2xy \\ z = 0 \end{cases}$

知 (x,y) 落在第一、四象限. 做极坐标变换,知柱面方程为  $r^2=a^2\sin 2\theta (0\leq \theta\leq \frac{\pi}{2}$ 或 $\pi\leq \theta\leq \frac{3\pi}{2})$ . 因此由对称性知  $S=4\int_0^{\frac{\pi}{4}}d\theta\int_0^{a\sqrt{\sin 2\theta}}\frac{\sqrt{a^2+r^2}}{a}rdr=\frac{4}{3a}\int_0^{\frac{\pi}{4}}(a^2+r^2)^{\frac{3}{2}}|_0^{a\sqrt{\sin 2\theta}}d\theta=\frac{4a^2}{3}\int_0^{\frac{\pi}{4}}[(1+\sin 2\theta)^{\frac{3}{2}}-1]d\theta=\frac{4a^2}{3}\int_0^{\frac{\pi}{4}}(1+\sin 2\theta)^{\frac{3}{2}}d\theta-\frac{\pi a^2}{3}=\frac{8\sqrt{2}a^2}{3}\int_0^{\frac{\pi}{4}}\sin^3(\theta+\frac{\pi}{4})d\theta-\frac{\pi a^2}{3}=\frac{8\sqrt{2}a^2}{3}\int_{\frac{\pi}{4}}\sin^3udu-\frac{\pi a^2}{3}=\frac{8\sqrt{2}a^2}{3}(-\frac{1}{3}\sin^2u\cos u-\frac{2}{3}\cos u)|_{\frac{1}{4}\pi}^{\frac{1}{2}\pi}-\frac{\pi a^2}{3}=\frac{20}{9}a^2-\frac{\pi a^2}{3}=\frac{20}{9}a^2-\frac{\pi a^2}{3}=\frac{8\sqrt{2}a^2}{3}\int_0^{\frac{\pi}{4}}\sin^3udu-\frac{\pi a^2}{3}=\frac{8\sqrt{2}a^2}{3}(-\frac{1}{3}\sin^2u\cos u-\frac{2}{3}\cos u)|_{\frac{1}{4}\pi}^{\frac{1}{2}\pi}-\frac{\pi a^2}{3}=\frac{20}{9}a^2-\frac{\pi a^2}{3}=\frac{8\sqrt{2}a^2}{3}\int_0^{\frac{\pi}{4}}\sin^3udu-\frac{\pi a^2}{3}=\frac{8\sqrt{2}a^2}{3}\int_0^{\frac{\pi}{4}}\sin^3udu-\frac{\pi$  $\frac{a^2}{9}(20-3\pi)$ .

 $4. \ \Sigma \ \text{在 } xoy \ \text{平面的投影区域为} \ D: x^2 + y^2 \leq R^2. \ \ \text{又有} \ \frac{\partial z}{\partial x} = -\frac{x}{z}, \frac{\partial z}{\partial y} = -\frac{y}{z}, \ \text{所以} \ \sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2} = \frac{R}{\sqrt{R^2 - x^2 - y^2}},$   $I = \iint_{\Sigma} x^2 y^2 dS = \iint_{D} x^2 y^2 \frac{R}{\sqrt{R^2 - x^2 - y^2}} d\sigma_{xy} = \int_{0}^{2\pi} d\theta \int_{0}^{R} r^4 \cos^2\theta \sin^2\theta \frac{R}{\sqrt{R^2 - r^2}} r dr = R \int_{0}^{2\pi} \cos^2\theta \sin^2\theta d\theta \int_{0}^{R} \frac{r^5}{\sqrt{R^2 - r^2}} dr.$   $\text{分开计算: } \int_{0}^{R} \frac{r^5}{\sqrt{R^2 - r^2}} dr = \frac{1}{2} \int_{0}^{R} \frac{r^4}{\sqrt{R^2 - r^2}} dr^2 \stackrel{R^2 - r^2}{=} \frac{1}{2} \int_{0}^{R^2} \frac{(R^2 - t)^2}{\sqrt{t}} dt = \frac{1}{2} \int_{0}^{R^2} (R^4 t^{-\frac{1}{2}} - 2R^2 t^{\frac{1}{2}} + t^{\frac{3}{2}}) dt = \frac{1}{2} [2R^4 t^{\frac{1}{2}} - \frac{4}{3} r^2 t^{\frac{3}{2}} + \frac{2}{5} t^{\frac{5}{2}}]_{0}^{R^2} = \frac{8}{15} R^5, \int_{0}^{2\pi} \cos^2\theta \sin^2\theta d\theta = \frac{1}{4} \int_{0}^{2\pi} \sin^22\theta d\theta = \frac{1}{8} \int_{0}^{2\pi} (1 - \cos 4\theta) d\theta = \frac{\pi}{4}. \ \text{所以} \ I = R \frac{\pi}{4} \frac{8}{15} R^5 = \frac{2}{15} \pi R^6.$ 

- 5.  $\Sigma$  可以表示为  $x = \pm \sqrt{R^2 y^2}$ , 其在 yoz 平面的投影区域为  $D_{yz} : -R \le y \le R, 0 \le z \le H$ . 又  $\frac{\partial x}{\partial y} = -\frac{y}{\sqrt{R^2 y^2}}, \frac{\partial x}{\partial z} = 0$ ,  $\sqrt{1 + (\frac{\partial x}{\partial y})^2 + (\frac{\partial x}{\partial z})^2} = \frac{R}{\sqrt{R^2 y^2}}$ . 再考虑对称性,  $I = 2 \iint_{D_{yz}} (R^2 + z^2) \frac{R}{\sqrt{R^2 y^2}} d\sigma_{yz} = 2R \int_{-R}^{R} \frac{dy}{\sqrt{R^2 y^2}} \int_{0}^{H} (R^2 + z^2) dz = 2R \arcsin \frac{y}{R} |_{-R}^{T} (R^2 z + \frac{1}{3} z^3)|_{0}^{H} = 2RH\pi(R^2 + \frac{H^2}{3})$ .
- 6. 设其质心坐标为  $(x_0, y_0, z_0)$ , 由对称性有  $x_0 = y_0 = 0$ ,  $z_0 = \frac{\iint_{\Sigma} z dS}{\iint_{\Sigma} dS}$ . 易知  $\sqrt{1 + (z_x')^2 + (z_y')^2} = \sqrt{1 + 4x^2 + 4y^2}$ , 因此  $\iint_{\Sigma} dS = \iint_{D_{xy}} \sqrt{1 + 4x^2 + 4y^2} d\sigma_{xy} = \int_0^{2\pi} d\theta \int_0^{\sqrt{2}} \sqrt{1 + 4r^2} r dr = 2\pi \cdot \frac{1}{2} (1 + 4r^2)^{\frac{3}{2}} \Big|_0^{\sqrt{2}} = \frac{13}{3}\pi$ ,  $\iint_{\Sigma} z dS = \iint_{D_{xy}} (2 x^2 y^2) \sqrt{1 + 4x^2 + 4y^2} d\sigma_{xy} = \int_0^{2\pi} d\theta \int_0^{\sqrt{2}} r(2 r^2) \sqrt{1 + 4r^2} dr = \frac{37}{10}\pi$ . 所以  $z_0 = \frac{111}{130}$ .
- 7.  $\overrightarrow{n} = (\frac{2}{3}, \frac{2}{3}, \frac{1}{3}), z = 6 2x 2y, D = \{(x, y) : x \ge 0, y \ge 0, x + y \le 3\}, dS = \sqrt{1 + (z_x')^2 + (z_y')^2} d\sigma_{xy} = 3d\sigma_{xy}, \ \mathbb{N}$   $I = \iint_{\Sigma} \overrightarrow{F} \cdot \overrightarrow{n} dS = \iint_{\Sigma} [\frac{2}{3}xy \frac{2}{3}x^2 + \frac{1}{3}(x+z)]dS = \iint_{D} [\frac{2}{3}xy \frac{2}{3}x^2 + \frac{1}{3}(x+6-2x-2y)] \cdot 3d\sigma_{xy} = \iint_{D} [2xy 2x^2 x 2y + 6]d\sigma_{xy} = \int_{0}^{3} dx \int_{0}^{3-x} [2xy 2x^2 x 2y + 6]dy = \frac{27}{4}.$
- 8. 记  $\Sigma_1, \Sigma_2$  分别为  $\Sigma$  在第一卦限和第五卦限的部分, $D = \{(x,y): x \geq 0, y \geq 0, x^2 + y^2 \leq 1\}$ . 由对称性, $I = 2\iint_{\Sigma_1} xyzdxdy = 2\iint_D xy\sqrt{1-x^2-y^2}d\sigma_{xy} = 2\int_0^{\frac{\pi}{2}} d\theta \int_0^1 r^2\cos\theta\sin\theta\sqrt{1-r^2}rdr = \int_0^{\frac{\pi}{2}}\cos\theta\sin\theta d\theta \int_0^1 r^2\sqrt{1-r^2}dr^2 = \frac{1}{2}\int_0^1 u\sqrt{1-u}du \stackrel{t=\sqrt{1-u}}{=} \frac{1}{2}\int_1^0 (1-t^2)t(-2t)dt = \frac{2}{15}$ .
- 9.  $\overrightarrow{n} = (\cos \alpha, \cos \beta, \cos \gamma), Q = \iint_{\Sigma} \overrightarrow{v} \cdot \overrightarrow{n} dS = \iint_{\Sigma} P dy dz + Q dx dz + R dx dy = \iint_{\Sigma} xy dy dz + yz dx dz + xz dx dy \stackrel{\forall \text{fifth}}{=} 3 \iint_{\Sigma} xz dx dy = 3 \iint_{x^2 + y^2 \le 1} \underset{x \ge 0}{x \ge 0} x \sqrt{1 x^2 y^2} d\sigma_{xy} = \frac{3\pi}{16}.$
- $3\iint_{\Sigma} xz dx dy = 3\iint_{x^2+y^2 \le 1, x \ge 0, y \ge 0} x\sqrt{1-x^2-y^2} d\sigma_{xy} = \frac{3\pi}{16}.$   $10. \ I = \iint_{\Sigma} (x, y, z) \cdot \overrightarrow{n} dS = \iint_{\Sigma} (x, y, z) \cdot \frac{(x, y, -z)}{\sqrt{x^2+y^2+z^2}} dS = \iint_{\Sigma} \frac{x^2+y^2-z^2}{\sqrt{x^2+y^2+z^2}} dS = 0.$
- 11. 记  $\Sigma$  落在 xy,yz,zx 平面上的部分分别为  $\Sigma_z,\Sigma_x$  和  $\Sigma_y$ , 在平面 x+y+z=1 的部分记为  $\Sigma_1$ . 则在  $\Sigma_z$  上, z=0,dydz=dzdx=0,从而  $\iint_{\Sigma_z}xdydz+ydzdx+zdxdy=0$ . 同理在  $\Sigma_y$  与  $\Sigma_z$  上的积分都为零. 因此  $I=\iint_{\Sigma_1}xdydz+ydzdx+zdxdy$ . 记  $D=\{(x,y):x\geq 0,y\geq 0,x+y\leq 1\}$ , 则由对称性  $I=3\iint_D(1-x-y)d\sigma_{xy}=3\int_0^1dx\int_0^{1-x}(1-x-y)dy=\frac{1}{2}$ .
- 12. 注意到曲面 S 在  $O_{xy}$  平面上的投影为一曲线,所以  $\iint_S (x-y) dx dy = 0$ . 为了计算另一个积分,将曲面分成两部分  $\begin{cases} S_1: x = \sqrt{1-y^2} (0 \le z \le 2) \\ S_2: x = -\sqrt{1-y^2} (0 \le z \le 2) \end{cases}$  . 记  $D = \{(y,z): -1 \le y \le 1, 0 \le z \le 2\}$ ,由对称性, $I = 2 \iint_{S_1} x(y-z) dy dz = 2 \iint_{S_2} dz \int_{-1}^1 \sqrt{1-y^2} (y-z) dy = -2\pi.$
- 13.  $\ \ id\ D = \{(x,y): \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\},\$ 由对称性知  $\ I = 2\iint_D \frac{dxdy}{c\sqrt{1-x^2/a^2-y^2/b^2}} = \frac{2}{c}\int_{-a}^a dx \int_{-b\sqrt{1-x^2/a^2}}^{b\sqrt{1-x^2/a^2}} \frac{dy}{\sqrt{(1-x^2/a^2)-y^2/b^2}} = \frac{2}{c}\int_{-a}^a \frac{b\pi}{2} dx = \frac{2\pi ab}{c}.$

### 4.3 补充 (不要求掌握!)

如何定义某条曲线是"可求长度"的?如何定义某张曲面是"可求面积"的?有兴趣的同学可以参考https://wqgcx.github.io/courses/Functions\_of\_Real\_Variables.pdf.

事实上, 有些集合是不可求长的. 用 m(A) 表示集合 A 的 "长度", 在 [0,1] 中根据规则 " $x_1 \sim x_2$  当且仅当  $x_1 - x_2 \in \mathbb{Q}$ " 划分等价类, 每个等价类选取一个元素  $x_{\alpha}$ (依赖于选择公理), 这样构成了集合 A. 假设 A 可求长, 那么  $A_q = (A+q) \cap [0,1], \forall q \in \mathbb{Q}$  也可求长, 且对于  $q \neq p$  有  $A_q \cap A_p = \emptyset$ . 这表明  $1 = m([0,1]) = \sum_{q \in \mathbb{Q}} m(A_q)$ , 即 A 不是零长度的. 注意 到对任意的  $q \in \mathbb{Q}$  成立  $m(A_q) \geq m(A) - q$ , 这样只需考虑所有在区间  $[0,\frac{1}{2}m(A)]$  中的有理数便知矛盾! 这说明集合 A 是不可求长的.

## 5 第 5 次习题课: 高斯公式, 斯托克斯公式

### 5.1 问题

- 1.  $\Sigma$  是锥面  $x^2 + y^2 = z^2 (0 \le z \le 1)$  外侧, 计算积分  $I = \iint_{\Sigma} (y-z) dy dz + (z-x) dx dz + (x-y) dx dy$ .
- 2. S 是单位球面  $x^2 + y^2 + z^2 = 1$  上半部分上侧, 计算积分  $I = \iint_S (\sin yz + x) dy dz + (e^{xz} + y) dz dx + (xy + z) dx dy$ .
- 3. 设  $S \subset \mathbb{R}^3$  为一封闭光滑曲面,以它为边界的闭区域为 D,  $(\xi, \eta, \zeta) \in \mathbb{R}^3$  不在 S 上. 计算积分  $I = \iint_S \frac{\cos(\overrightarrow{r}, \overrightarrow{n})}{r^2}$ , 其中  $\overrightarrow{r} = (x \xi, y \eta, z \zeta), r = |\overrightarrow{r}|, |\overrightarrow{n}|$  是 S 的单位外法向量.
- 4. 设 f(x,y,z) 表示从原点到椭球面  $\Sigma: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$  上点 P(x,y,z) 的切平面的距离, 计算积分  $I = \iint_{\Sigma} \frac{dS}{f(x,y,z)}$ .

- 5. L 是平面 x+y+z=1 被三个坐标面所截得三角形  $\Sigma$  的边界, 其正向与此三角形上侧成右手系, 计算积分 I= $\oint_L z dx + x dy + y dz$ .
- 6. L 为椭圆  $\begin{cases} x^2+y^2=a^2 \\ \frac{x}{a}+\frac{z}{b}=1 \end{cases}$ ,方向与椭圆面上侧构成右手系,计算积分  $I=\oint_L(y-z)dx+(z-x)dy+(x-y)dz.$
- 7.  $\Gamma_h$  是平面 x+y+z=h 与球面  $x^2+y^2+z^2=1$  的交线, 从 z 轴正向看去逆时针方向, 计算积分  $I=\oint_{\Gamma_1}(y^2-y^2)$  $(z^{2})dx + (z^{2} - x^{2})dy + (x^{2} - y^{2})dz.$
- 8. *C* 是平面  $x + y + z = \frac{3}{2}a$  切立方体  $\Omega = \{(x, y, z) : 0 \le x, y, z \le a\}$  的表面所得的切痕, 方向是从 *x* 轴正向看去逆时 针方向, 计算积分  $I = \oint_C (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz$ .
- 9. S 是柱面  $x^2 + y^2 = R^2, -R \le z \le R$  所围成的立体表面外侧, 计算积分  $I = \iint_S \frac{x dy dz + z^2 dx dy}{x^2 + y^2 + z^2}$
- 10. S 是锥面  $z = \sqrt{x^2 + y^2}$  及平面 z = 1, z = 2 所围立体的表面外侧, 计算积分  $\iint_S \frac{e^z}{\sqrt{x^2 + y^2}} dx dy$ .
- 11. 函数  $P(x,y), Q(x,y) \in C^2(\mathbb{R}^2)$ , 且曲线积分  $\int_{\Gamma} Pdx Qdy$  和  $\int_{\Gamma} Pdy + Qdx$  在  $\mathbb{R}^2$  中与路径无关, 求证 P(x,y) = $\label{eq:energy_equation} \tfrac{1}{2\pi} \int_0^{2\pi} P(x + \cos\theta, y + \sin\theta) d\theta, \forall (x,y) \in \mathbb{R}^2.$

- 1.  $\exists \Omega = \{(x, y, z) : \sqrt{x^2 + y^2} \le z \le 1\}, \Sigma_0 = \{(x, y, z) : x^2 + y^2 \le 1, z = 1\}, \ \ \ \ \ \ \ \ I = \oiint_{\partial\Omega}(y z)dydz + (z x)dxdz +$  $(x-y)dxdy-\iint_{\Sigma_0}(y-z)dydz+(z-x)dxdz+(x-y)dxdy:=I_1-I_2.$ 根据高斯公式,  $I_1=\iiint_{\Omega}[0+0+0]dv=0$ , 而  $I_2 = \iint_{\Sigma_0} (x - y) dx dy = \iint_{\Sigma_0} x d\sigma_{xy} - \iint_{\Sigma_0} y d\sigma_{xy} = 0 - 0 = 0.$  因此 I = 0.
- 2. 取  $S_1 = \{(x,y,z): x^2 + y^2 \le 1, z = 0\}$ , 方向向下, 则  $S \cup S_1$  构成了上班单位球体 D 的边界外侧. 由高斯公式得  $\iint_{S \cup S_1} (\sin yz + x) dy dz + (e^{xz} + y) dz dx + (xy + z) dx dy = 3 \iiint_D dv = 2\pi. \text{ fill } \iint_{S_1} (xy + z) dx dy = -\iint_{x^2 + u^2 < 1} xy d\sigma_{xy} = 0.$ 因此  $I=2\pi$ .
- $3. \ \cos(\overrightarrow{r'},\overrightarrow{n'}) = \tfrac{1}{r}\overrightarrow{r'}\cdot\overrightarrow{n'} \Rightarrow I = \iint_S \tfrac{\overrightarrow{r'}}{r^3}\cdot\overrightarrow{n'}dS = \iint_S \tfrac{x-\xi}{r^3}dydz + \tfrac{y-\eta}{r^3}dzdx + \tfrac{z-\zeta}{r^3}dxdy. \ \ \boxplus \ \tfrac{\partial}{\partial x}(\tfrac{x-\xi}{r^3}) = \tfrac{1}{r^3} \tfrac{3(x-\xi)^2}{r^5}, \tfrac{\partial}{\partial y}(\tfrac{y-\eta}{r^3}) = \tfrac{1}{r^3} \tfrac{3(x-\xi)^2}{r^5}$  $\frac{1}{r^3} - \frac{3(y-\eta)^2}{r^5}, \frac{\partial}{\partial z}(\frac{z-\zeta}{r^3}) = \frac{1}{r^3} - \frac{3(z-\zeta)^2}{r^5} \ \text{知} \ \frac{\partial}{\partial x}(\frac{x-\xi}{r^3}) + \frac{\partial}{\partial y}(\frac{y-\eta}{r^3}) + \frac{\partial}{\partial z}(\frac{z-\zeta}{r^3}) = 0. \ \ \text{当} \ (\xi,\eta,\zeta) \not\in D \ \text{时,} \ 根据高斯公式成立$  $I = \iint_D \left[ \frac{\partial}{\partial x} \left( \frac{x-\xi}{r^3} \right) + \frac{\partial}{\partial y} \left( \frac{y-\eta}{r^3} \right) + \frac{\partial}{\partial z} \left( \frac{z-\zeta}{r^3} \right) \right] dv = 0.$  当  $(\xi, \eta, \zeta) \in D$  时, 取  $\epsilon$  充分小使得球面  $S_{\epsilon} = \{(x, y, z) : (x-\xi)^2 + (y-\eta)^2 \}$  $\eta)^2 + (z - \zeta)^2 = \epsilon^2 \}$  完全落在 D 的内部. 如果取  $S_\epsilon$  的内侧  $S_\epsilon^-$ ,设区域  $D_\epsilon$  以 S 与  $S_\epsilon^-$  为边界,则  $\iint_{S \cup S_\epsilon^-} \frac{\cos(\overrightarrow{r}, \overrightarrow{n})}{r^2} dS = 0$  $\iint_{D_{\epsilon}} 0 dv = 0$ . 注意到在  $S_{\epsilon}$  上,  $\overrightarrow{r}$  与  $\overrightarrow{n}$  平行, 从而  $I = -\iint_{S_{\epsilon}^{-}} \frac{\cos(\overrightarrow{r}, \overrightarrow{n})}{r^2} dS = \iint_{S_{\epsilon}} \frac{dS}{\epsilon^2} = \frac{1}{\epsilon^2} 4\pi \epsilon^2 = 4\pi$ .
- 4. 对 Σ 的方程两边微分得到  $\frac{xdx}{a^2} + \frac{ydy}{b^2} + \frac{zdz}{c^2} = 0$ , 因此 P 处的外法向量为  $\overrightarrow{n} = (\frac{x}{a^2}, \frac{y}{b^2}, \frac{z}{c^2})$ , 切平面方程为  $\frac{x}{a^2}(X a) + \frac{z}{a^2}$  $\frac{y}{b^2}(Y-y) + \frac{z}{c^2}(Z-z) = 0,$ 原点到切平面距离  $f(x,y,z) = \frac{1}{\sqrt{(\frac{x}{a^2})^2 + (\frac{y}{b^2})^2 + (\frac{z}{c^2})^2}},$  因此  $I = \iint_{\Sigma} \sqrt{(\frac{x}{a^2})^2 + (\frac{y}{b^2})^2 + (\frac{z}{c^2})^2} dS = \frac{1}{\sqrt{(\frac{x}{a^2})^2 + (\frac{y}{b^2})^2 + (\frac{z}{c^2})^2}}$  $\iint_{\Sigma} (\tfrac{x}{a^2}\cos\alpha + \tfrac{y}{b^2}\cos\beta + \tfrac{z}{c^2}\cos\gamma) dS = \iint_{\Sigma} \tfrac{x}{a^2} dy dz + \tfrac{y}{b^2} dz dx + \tfrac{z}{c^2} dx dy. \ \ 记 \ V = \{(x,y,z) : \tfrac{x^2}{a^2} + \tfrac{y^2}{b^2} + \tfrac{z^2}{c^2} \leq 1\}, \ \text{由高斯公}$ 式有  $I = \iiint_V (\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}) dv = \frac{4\pi abc}{3} (\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}).$
- $\begin{vmatrix} dydz & dzdx & dxdy \end{vmatrix}$  $\left| \frac{\partial}{\partial z} \right| = dydz + dzdx + dxdy$ , 因此由斯托克斯公式,  $I = \iint_{\Sigma} dydz + dxdz + dxdy = 3\iint_{\Sigma} dxdy = \frac{3}{2}$ .
- 6. 记椭圆面上侧为  $\Sigma$ ,  $\begin{vmatrix} dydz & dzdx & dxdy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix} = -2dydz 2dzdx 2dxdy$ , 因此由斯托克斯公式,  $I = \iint_{\Sigma} -2dydz 2dzdx 2dxdy$

 $2dzdx - 2dxdy = -2\iint_{\Sigma} dydz + dxdy = -2[\iint_{D_{yz}} d\sigma_{yz} + \iint_{D_{xy}} d\sigma_{xy}] = -2(\pi ah + \pi a^2).$ 

7. 设平面 x+y+z=h 被圆周  $\Gamma_h$  所围成部分为  $S_h$ , 则  $S_h$  是一半径为  $\sqrt{1-\frac{h^2}{3}}$  的圆盘. 由斯托克斯公式, I=

$$\iint_{S_h} \begin{vmatrix} dydz & dzdx & dxdy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 - z^2 & z^2 - x^2 & x^2 - y^2 \end{vmatrix} = -\frac{4}{\sqrt{3}}(x + y + z)dS = -\frac{4h}{\sqrt{3}}\iint_{S_h} dS = -\frac{4h}{\sqrt{3}}\pi(1 - \frac{h^2}{3}).$$

8. 令  $\Sigma$  是 C 所围的区域,方向为上侧,由斯托克斯公式知  $I=\iint_{\Sigma}\begin{vmatrix}\cos\alpha&\cos\beta&\cos\gamma\\\frac{\partial}{\partial x}&\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\y^2-z^2&z^2-x^2&x^2-y^2\end{vmatrix}dS=-\frac{4}{\sqrt{3}}\iint_{\Sigma}(x+y+y)dS$ 

 $z)dS=-rac{4}{\sqrt{3}}\iint_{\Sigma}rac{3}{2}adS=-2\sqrt{3}a\iint_{\Sigma}dS.$  最后, 因为  $\Sigma$  是边长为  $rac{\sqrt{2}}{2}a$  的正六边形, 面积为  $rac{3\sqrt{3}}{4}a^2$ , 所以  $I=-rac{9}{2}a^3$ .

9. 记  $S_1, S_2, S_3$  分别为 S 的下表面、上表面和侧面,积分项拆分为  $I = \iint_S \frac{xdydz}{x^2+y^2+z^2} + \iint_S \frac{z^2dxdy}{x^2+y^2+z^2} := I_1 + I_2$ . 先看第一项,显然  $\iint_{S_1} \frac{xdydz}{x^2+y^2+z^2} = \iint_{S_2} \frac{xdydz}{x^2+y^2+z^2} = 0$ . 记  $D_{yz} = \{(y,z): -R \leq y, z \leq R\}$ ,从而  $\iint_{S_3} \frac{xdydz}{x^2+y^2+z^2} = 2 \iint_{D_{yz}} \frac{\sqrt{R^2-y^2}dydz}{R^2+z^2} = 2 \iint_{C_{R}} \frac{1}{R^2+z^2} dz \int_{-R}^{R} \sqrt{R^2-y^2}dy = 2 \times \frac{1}{2}\pi R^2 \times \frac{\pi}{2R} = \frac{1}{2}\pi^2 R$ . 再看第二项,显然  $\iint_{S_1+S_2} \frac{z^2dxdy}{x^2+y^2+z^2} = 0$ , $\iint_{S_3} \frac{z^2dxdy}{x^2+y^2+z^2} = 0$ (前者是因为对称性,后者是因为  $S_3$  在 xoy 平面上的投影是一曲线). 因此  $I = \frac{1}{2}\pi^2 R$ . 请读者注意,本题由于区域内存在 瑕点 (0,0,0),不可直接使用高斯公式.

10. 记  $S_1, S_2, S_3$  分别为 S 的下表面、上表面和侧面,积分项拆分为  $(\iint_{S_1} + \iint_{S_2} + \iint_{S_3}) \frac{e^z}{\sqrt{x^2 + y^2}} dxdy$ . 投影  $D_1 = \{(x, y) : x^2 + y^2 \le 1\}$ ,从而  $\iint_{S_1} \frac{e^z}{\sqrt{x^2 + y^2}} dxdy = -\iint_{D_1} \frac{e}{\sqrt{x^2 + y^2}} dxdy = -\int_0^{2\pi} d\theta \int_0^1 edr = -2\pi e$ . 投影  $D_2 = \{(x, y) : x^2 + y^2 \le 4\}$ ,从而  $\iint_{S_2} \frac{e^z}{\sqrt{x^2 + y^2}} dxdy = \iint_{D_2} \frac{e^2}{\sqrt{x^2 + y^2}} dxdy = \int_0^{2\pi} d\theta \int_0^2 e^2 dr = 4\pi e^2$ . 投影  $D_3 = \{(x, y) : 1 \le x^2 + y^2 \le 4\}$ ,从而  $\iint_{S_3} \frac{e^z}{\sqrt{x^2 + y^2}} dxdy = -\iint_{D_3} \frac{e^{\sqrt{x^2 + y^2}}}{\sqrt{x^2 + y^2}} dxdy = \int_0^{2\pi} \int_1^2 e^r dr = -2\pi e(e-1)$ . 因此  $I = -2\pi e + 4\pi e^2 - 2\pi e(e-1) = 2\pi e^2$ . 11. 积分与路径无关意味着  $\frac{\partial P}{\partial y} = -\frac{\partial Q}{\partial x}, \frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y} \Rightarrow \frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2} = 0$ . 由格林公式知  $\forall$  区域 D, $\oint_{\partial D} \frac{\partial P}{\partial \pi} ds = \iint_{D} \triangle P d\sigma = 0$ . 从而  $0 = \oint_{\partial B((x,y),r)} \frac{\partial P}{\partial \pi} ds = \oint_{\partial B((x,y),r)} \frac{\partial P}{\partial r} ds = \int_0^{2\pi} \frac{\partial P(x + r\cos\theta, y + r\sin\theta)}{\partial r} r d\theta = r \frac{\partial}{\partial r} (\int_0^{2\pi} P(x + r\cos\theta, y + r\sin\theta) d\theta) \Rightarrow \int_0^{2\pi} P(x + r\cos\theta, y + r\sin\theta) d\theta \equiv C$ .  $\diamondsuit$   $r \to 0$  知  $\int_0^{2\pi} P(x + r\cos\theta, y + r\sin\theta) \to 2\pi P(x,y) \Rightarrow P(x,y) = \frac{1}{2\pi} \int_0^{2\pi} P(x + r\cos\theta, y + r\sin\theta) d\theta$ 

### 5.3 补充 (不要求掌握!)

 $\cos \theta, y + \sin \theta) d\theta (\diamondsuit r = 1 \ \Box \Box).$ 

高斯公式的物理意义: 类似于之前 3.3 节的讨论, 对于流苏  $\overrightarrow{F} = (P,Q,R)$ , 定义其散度为  $\operatorname{div}\overrightarrow{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = \nabla \cdot \overrightarrow{F}$ .  $\operatorname{div}\overrightarrow{F} > 0$  表示点为 "源", 即能生流;  $\operatorname{div}\overrightarrow{F} < 0$  表示点为 "汇", 即能 "吸流";  $\operatorname{div}\overrightarrow{F} = 0$  表示点非源非汇. 因此高斯公式的向量形式为  $\oint_{\Sigma^+}\overrightarrow{F} \cdot \overrightarrow{n} dS = \iiint_{\Omega} \operatorname{div}\overrightarrow{F} dv$ , 即: 流在某区域  $\Omega$  上的总散度等于流通过  $\Omega$  的边界的总流量. 斯托克斯公式的物理意义: 类似于之前 3.3 节的讨论, 对于流速  $\overrightarrow{F} = (P,Q,R)$ , 定义其旋度为  $\operatorname{rot}\overrightarrow{F} = (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z})\overrightarrow{i} + \frac{\partial Q}{\partial z}$ 

 $(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x})\overrightarrow{j} + (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})\overrightarrow{k} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \nabla \times \overrightarrow{F},$  因此斯托克斯公式的向量形式为  $\iint_{\Sigma} \operatorname{rot} \overrightarrow{F} \cdot \overrightarrow{n} dS = \oint_{L} \overrightarrow{F} \cdot d\overrightarrow{s},$ 

即:流在闭路 L 上的循环量 (环流量),就是旋度在以 L 为边界的光滑曲面上的流量 (旋流量).

## 6 第 6 次习题课: 初等积分法

#### 6.1 问题

- 1. 求解微分方程  $(2x\sin y + 3x^2y)dx + (x^3 + x^2\cos y + y^2)dy = 0$ .
- 2. 求解微分方程  $(x^2+1)(y^2-1)dx + xydy = 0$ .
- 3. 质量为 m 的物体在空中下落, 初速度为  $v_0$ , 空气阻力与物体速度的平方成正比, 阻尼系数为 k > 0. 沿垂直地面向下的方向取定坐标轴 x, 计算 t 时刻的速度.
- 4. 求解微分方程  $\frac{dy}{dx} + \frac{1}{x}y = x^3(x \neq 0)$ .
- 5. 设微分方程  $\frac{dy}{dx} + ay = f(x)$ , 其中 a > 0 为常数, 而 f(x) 是以  $2\pi$  为周期的连续函数. 试求方程的  $2\pi$  周期解.
- 6. 求解微分方程  $\frac{dy}{dx} = \frac{x+y}{x-y}$ .
- 7. 考虑里卡蒂方程  $\frac{dy}{dx} + ay^2 = bx^m$ , 其中  $a \neq 0, b, m$  都是常数,  $x \neq 0, y \neq 0$ . 证明当  $m = 0, -2, \frac{-4k}{2k+1}, \frac{-4k}{2k-1} (k = 1, 2, \cdots)$  时, 方程可通过适当的变换化为变量分离的方程.
- 8. 证明: 若  $\mu = \mu(x,y)$  是方程 P(x,y)dx + Q(x,y)dy = 0 的一个积分因子使得  $\mu P(x,y)dx + \mu Q(x,y)dy = d\Phi(x,y)$ , 则  $\mu(x,y)g(\Phi(x,y))$  也是一个积分因子, 其中  $g(\cdot)$  是任一可微的非零函数.
- 9. 求解微分方程  $(x^3y 2y^2)dx + x^4dy = 0$ .
- 10. 证明: 若 P(x,y)dx + Q(x,y)dy = 0 是齐次方程, 则  $\mu(x,y) = \frac{1}{xP(x,y) + yQ(x,y)}$  是一个积分因子.
- 11. 求解微分方程  $(3x^2y + 2xy + y^3)dx + (x^2 + y^2)dy = 0$ .
- 12. 假设微分方程  $\frac{dy}{dx} = H(x,y)$  在 (x,y) 平面上给出了一个以 C 为参数的曲线族  $\mathscr{C}$ . 试求另一个微分方程, 其给出了一个以 K 为参数的曲线族  $\mathscr{K}$ , 并且  $\mathscr{C}$  中的每一条曲线和  $\mathscr{K}$  中的每一条曲线相交成定角  $\alpha(-\frac{\pi}{2} < \alpha \leq \frac{\pi}{2})$  以逆时针方向为正).

- 1.  $\frac{\partial P}{\partial y} = 2x \cos y + 3x^2 = \frac{\partial Q}{\partial x}$ , 因此是恰当方程. 注意到  $d(x^2 \sin y + x^3y + \frac{1}{3}y^3) = (2x \sin y + 3x^2y)dx + (x^3 + x^2 \cos y + y^2)dy$ , 因此通积分为  $x^2 \sin y + x^3y + \frac{1}{2}y^3 = C$ .
- 2. 当因子  $x(y^2-1)\neq 0$  时,用它除方程两端,得到等价方程  $\frac{x^2+1}{x}dx+\frac{y}{y^2-1}dy=0$ . 积分得到  $x^2+\log x^2+\log |y^2-1|=C_1\Rightarrow x^2e^{x^2}|y^2-1|=e^{C_1}\Rightarrow y^2=1+C\frac{e^{-x^2}}{x^2}$ ,其中  $C\neq 0$ . 当因子  $x(y^2-1)=0$  时,得到特解 x=0 和  $y=\pm 1$ . 因此 通积分为  $y^2=1+C\frac{e^{-x^2}}{x^2}$  或 x=0.
- 3. 由牛顿第二运动定律知  $m\ddot{x} = mg k\dot{x}^2 \Rightarrow \frac{dv}{dt} = g \frac{k}{m}v^2 \Rightarrow \frac{dv}{g \frac{k}{m}v^2} = dt \Rightarrow v = \sqrt{\frac{mg}{k}} \frac{Ce^{2\sqrt{kg/m}t} + 1}{Ce^{2\sqrt{kg/m}t} 1}$ . 代入初值条件知  $C = (v_0 \sqrt{\frac{mg}{k}})^{-1}(v_0 + \sqrt{\frac{mg}{k}})$ .
- 4. 积分因子是  $e^{\int \frac{1}{x} dx} = |x|$ . 用它乘方程两侧得到  $\frac{d}{dx}(xy) = x^4 \Rightarrow y = \frac{1}{5}x^4 + \frac{C}{x}$ .
- 5. 方程通解为  $y(x) = Ce^{-ax} + \int_0^x e^{-a(x-s)} f(s) ds$ , 现在选择常数 C, 使 y(x) 成为  $2\pi$  周期函数. 代入  $y(2\pi) = y(0)$  得到  $y(x) = \frac{1}{e^{2a\pi}-1} \int_x^{x+2\pi} e^{-a(x-s)} f(s) ds$ , 容易验证它确实是  $2\pi$  周期解.
- 6. 令 y=ux, 则  $x\frac{du}{dx}+u=\frac{1+u}{1-u}\Rightarrow \frac{1-u}{1+u^2}du=\frac{dx}{x}\Rightarrow \arctan u-\log \sqrt{1+u^2}=\log |x|-\log C$ . 从而  $|x|\sqrt{1+u^2}=Ce^{\arctan u}$ . 以 u=y/x 代回得到通积分  $\sqrt{x^2+y^2}=Ce^{\arctan \frac{u}{x}}$ .
- 7. 不妨设 a=1(否则作变换  $\bar{x}=ax$ ). 因此考虑  $\frac{dy}{dx}+y^2=bx^m$ . m=0 时显然是一个变量分离的方程. 当 m=-2 时,作变换 z=xy,代入方程得到  $\frac{dz}{dx}=\frac{b+z-z^2}{x}$ ,这也是一个变量分离的方程. 当  $m=\frac{-4k}{2k+1}$ ,作变换  $x=\xi^{\frac{1}{m+1}},y=\frac{b}{m+1}\eta^{-1}$ ,则方程变为  $\frac{d\eta}{d\xi}+\eta^2=\frac{b}{(m+1)^2}\xi^n$ ,其中  $n=\frac{-4k}{2k-1}$ . 再作变换  $\xi=\frac{1}{t},\eta=t-zt^2$ ,方程变为  $\frac{dz}{dt}+z^2=\frac{b}{(m+1)^2}t^l$ ,其中  $l=\frac{-4(k-1)}{2(k-1)+1}$ . 比较 m 与 l 对 k 的依赖关系知只要将上述变换的过程重复 k 次,就能把原方程化为 m=0 的情形. 当  $m=\frac{-4k}{2k-1}$  时,注意上述过程中 n 对 k 的依赖关系知可以化归到 m=0 的情形.
- 8. 直接验证  $\frac{\partial}{\partial y}[\mu(x,y)g(\Phi(x,y))P(x,y)] = \frac{\partial}{\partial x}[\mu(x,y)g(\Phi(x,y))Q(x,y)]$ 即可.
- 9. 改写为  $(x^3ydx + x^4dy) 2y^2dx = 0$ . 前一组有积分因子  $x^{-3}$  和通积分 xy = C, 后一组有积分因子  $y^{-2}$  和通积分 x = C. 根据上一题结果,只需找可微函数  $g_1, g_2$  使得  $\frac{1}{x^3}g_1(xy) = \frac{1}{y^2}g_2(x)$ . 只需取  $g_1(xy) = \frac{1}{(xy)^2}$  和  $g_2(x) = \frac{1}{x^5}$ ,得到原方程的积分因子  $\frac{1}{x^5y^2}$ . 用它乘原方程得到全微分方程  $\frac{1}{(xy)^2}d(xy) \frac{2}{x^5}dx = 0$ ,因此通积分为  $y = \frac{2x^3}{2Cx^4+1}$ . 注意到方程还有特解 x = 0 和 y = 0,它们实际上是在用积分因子乘方程时丢失的解.
- 10. 代入  $P(x,y) = x^m P_1(\frac{y}{x}), Q(x,y) = x^m Q_1(\frac{y}{x})$  直接验证即可.
- 11.  $\frac{\partial P}{\partial y} \frac{\partial Q}{\partial x} = 3x^2 + 3y^2$ , 因此不是恰当方程, 但是  $\frac{1}{Q}(\frac{\partial P}{\partial y} \frac{\partial Q}{\partial x}) = 3$  不依赖于 y, 因此有积分因子  $e^{3x}$ , 用它乘原方程得到  $e^{3x}(3x^2y + 2xy + y^3)dx + e^{3x}(x^2 + y^2)dy = d[e^{3x}(x^2y + \frac{1}{3}y^3)] = 0$ , 因此通积分为  $e^{3x}(x^2y + \frac{1}{3}y^3) = C$ .
- 12. 设曲线族  $\mathscr C$  中过点 (x,y) 的线素斜率为  $y_1'$ , 与它相交成  $\alpha$  角的线素斜率记为 y'. 当  $\alpha \neq \frac{\pi}{2}$  时, 有  $\tan \alpha = \frac{y'-y_1'}{1+y'y_1'}$ , 即  $y_1' = \frac{y'-\tan \alpha}{y'\tan \alpha+1}$ . 因为  $y_1' = H(x,y)$ , 所以等角轨线的微分方程为  $\frac{y'-\tan \alpha}{y'\tan \alpha+1} = H(x,y)$ , 即  $\frac{dy}{dx} = \frac{H(x,y)+\tan \alpha}{1-H(x,y)\tan \alpha}$ . 当  $\alpha = \frac{\pi}{2}$  时有  $y' = -\frac{1}{y_1'}$ , 即微分方程为  $\frac{dy}{dx} = -\frac{1}{H(x,y)}$ .

### 6.3 补充 (不要求掌握!)

皮亚诺存在定理: 设函数 f(x,y) 在矩形区域  $|x-x_0| \le a, |y-y_0| \le b$  内连续, 则初值问题  $\frac{dy}{dx} = f(x,y), y(x_0) = y_0$  在区间  $|x-x_0| \le \min\{a, \frac{b}{M}\}(M > \max_{(x,y) \in \mathbb{R}} |f(x,y)|)$  上至少有一个解 y = y(x). 证明过程较为复杂, 有兴趣的同学可以参考《常微分方程教程》(丁同仁、李承治) 第二版 3.2 节.

## 7 第 7 次习题课:解的存在唯一性,高阶线性微分方程

#### 7.1 问题

1. 设初值问题 
$$\frac{dy}{dx} = F(x,y), y(0) = 0$$
, 其中函数  $F(x,y) = \begin{cases} 0, & \exists x = 0, -\infty < y < \infty \\ 2x, & \exists 0 < x \leq 1, -\infty < y < 0 \\ 2x - \frac{4y}{x}, & \exists 0 < x \leq 1, 0 \leq y < x^2 \\ -2x, & \exists 0 < x \leq 1, x^2 \leq y < \infty \end{cases}$ . 考虑区域  $S: 0 \leq x \leq 1$ 

 $x \le 1, -\infty < y < \infty$ , 求其皮卡序列.

2. 设函数 f(x,y) 在  $(x_0,y_0)$  的某个邻域上关于 y 单调下降, 证明初值问题  $\frac{dy}{dx} = f(x,y), y(x_0) = y_0$  至多有一个右行解.

- 3. 设函数 f(x,y) 在区域 G 内连续, 且满足不等式  $|f(x,y_1) f(x,y_2)| \le F(|y_1 y_2|)$ , 其中 F(r) > 0 是 r > 0 的连续 函数, 且  $\lim_{\epsilon \to 0+0} \int_{\epsilon}^{r_1} \frac{dr}{F(r)} = +\infty (r_1 > 0$  是常数). 证明微分方程  $\frac{dy}{dx} = f(x,y)$  在 G 内经过每一点的解都是唯一的.
- 4. 设函数 p(x), q(x), f(x) 在区间 [a, b] 上连续, 证明初值问题  $\begin{cases} y'' + p(x)y' + q(x)y = f(x) \\ y(x_0) = c, y'(x_0) = d & (x_0 \in (a, b)) \end{cases}$ 在区间 [a,b] 内
- 5. 考虑线性齐次方程  $y^{(n)} + p_1(x)y^{(n-1)} + \cdots + p_{n-1}(x)y'(x) + p_n(x)y = 0$ , 其中  $p_i(x) \in C(\mathbb{R})$ , 证明其有且仅有 n 个 线性无关的解.
- 6. 求解微分方程 y''' y'' 2y' = 0.
- 7. 求解微分方程  $y^{(5)} 3y^{(4)} + 4y''' 4y'' + 3y' y = 0$ .
- 8. 求解微分方程  $y''' + 3y'' + 3y' + y = e^{-x}(x-5)$ .
- 9. 求解微分方程  $y'' + 4y' + 4y = \cos 2x$ .
- 10. 求解微分方程  $\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ .

- 1.  $y_1(x) = \int_0^x F(t,0) dt = x^2, y_2(x) = \int_0^x F(t,t^2) dt = -x^2$ , 由数学归纳法知  $y_n(x) = (-1)^{n+1} x^2$ . 本题的例子告诉我们 没有 Lipschitz 条件, 皮卡序列可能不收敛.
- 2. 假设不然. 则设方程有两个右行解  $y_1(x), y_2(x)$ , 且至少存在一个值  $x_1 > x_0$  使得  $y_1(x_1) \neq y_2(x_1)$ . 不妨设  $y_1(x_1) > x_0$  $y_2(x_1)$ . 令  $\bar{x} = \sup_{x \in [x_0, x_1]} \{x : y_1(x) = y_2(x)\}$ ,显然有  $x_0 \leq \bar{x} < x_1$ ,而且  $r(x) := y_1(x) - y_2(x) > 0$ , $\forall \bar{x} < x \leq x_1$  和  $r(\bar{x}) = 0$ . 因此, 我们有  $r'(x) = y_1'(x) - y_2'(x) = f(x, y_1(x)) - f(y_2(x)) < 0$ , 进而  $r(x_1) = \int_{\bar{x}}^{x_1} r'(t) dt < 0$ , 矛盾.
- 3. 假设不然. 则在 G 内可以找到一点  $(x_0, y_0)$  使得方程有两个解  $y = y_1(x)$  和  $y = y_2(x)$  都经过  $(x_0, y_0)$ , 且至少存在 一个值  $x_1 \neq x_0$  使得  $y_1(x_1) \neq y_2(x_1)$ . 不妨设  $x_1 > x_0$ , 且  $y_1(x_1) > y_2(x_1)$ . 令  $\bar{x} = \sup_{x \in [x_0, x_1]} \{x : y_1(x) = y_2(x)\}$ , 显 然有  $x_0 \leq \bar{x} < x_1$ ,而且  $r(x) := y_1(x) - y_2(x) > 0, \forall \bar{x} < x \leq x_1$  和  $r(\bar{x}) = 0$ . 因此,我们有  $r'(x) = y_1'(x) - y_2'(x) = x_1'(x) - y_1'(x) - y_2'(x) = x_1'(x) - y_1'(x) - y_1'(x) - y_2'(x) = x_1'(x) - y_1'(x) - y_1'(x)$  $f(x,y_1(x)) - f(x,y_2(x)) \leq F(|y_1(x) - y_2(x)|) = F(r(x)), \ \mathbb{P}(\frac{dr(x)}{F(r(x))}) \leq dx(\bar{x} < x \leq x_1). \ \text{从 $\bar{x}$ 到 $x_1$ 积分上式, 得到 $x_1$ 和分上式, $\bar{x}$ 的 $x_1$ 和分上式, $\bar{x}$ 和分土式, $\bar{x}$ 和分土式,$  $\int_0^{r_1} \frac{dr}{F(r)} \le x_1 - \bar{x}$ , 其中  $r_1 = r(x_1) > 0$ . 但这不等式左端是  $+\infty$ , 右端是一个有限的数, 矛盾.
- 4. 令  $y_1 = y, y_2 = y'$ , 则原微分方程可改写为  $\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -q(x) & -p(x) \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} 0 \\ f(x) \end{pmatrix} (y_1(x_0) = c, y_2(x_0) = d)$ , 即

是  $\frac{dy}{dx} = \mathbf{A}(x)\mathbf{y} + \mathbf{f}(x)(\mathbf{y}(x_0) = (c, d)^T)$ . 固定 x, 等式右边显然对  $\mathbf{y}$  满足 Lipschitz 条件, 因此解存在唯一.

- 5. 令  $y_1=y,y_2=y',\cdots,y_n=y^{(n-1)}$ ,可以将原微分方程改写为  $\frac{d\mathbf{y}}{dx}=\mathbf{A}(x)\mathbf{y}$ . 固定  $x_0$ ,由存在唯一性定理知对于任何 常数向量  $y_0 \in \mathbb{R}^n$ , 存在唯一的元素 y(x) 使得  $y(x_0) = y_0$ . 这样得到一个映射  $H: y_0 \mapsto y(x), \mathbb{R}^n \to S$ (记解空间为 S). 显然对于任何  $y(x) \in S$ , 我们有  $y(x_0) \in \mathbb{R}^n$ ,  $H(y(x_0)) = y(x)$ , 所以 H 是满的. 由唯一性又知 H 是单的. 容易验 证 H 是线性的. 因此 H 是一个从  $\mathbb{R}^n$  到 S 的同构映射, 从而 S 是 n 维的, 即原微分方程有且仅有 n 个线性无关的解.
- 6. 特征方程  $\lambda^3 \lambda^2 2\lambda = \lambda(\lambda + 1)(\lambda 2) = 0$ , 因此有通解  $y = C_1 + C_2 e^{-x} + C_3 e^{2x}$ .
- 7. 特征方程  $\lambda^5 3\lambda^4 + 4\lambda^3 4\lambda^2 + 3\lambda 1 = (\lambda 1)^3(\lambda^2 + 1) = 0$ , 因此有通解  $y = (C_1 + C_2 x + C_3 x^2)e^x + C_4 \cos x + C_5 \sin x$ .
- 8. 特征方程  $\lambda^3 + 3\lambda^2 + 3\lambda + 1 = (\lambda + 1)^3 = 0$ , 因此齐次方程通解为  $(C_1 + C_2 x + C_3 x^2)e^{-x}$ . 设有特解  $y^* = x^3(a + bx)e^{-x} = 0$  $(ax^3 + bx^4)e^{-x}$ ,代入微分方程得  $a = -\frac{5}{6}, b = \frac{1}{24}$ . 因此原方程通解为  $y = (C_1 + C_2x + C_3x^2 - \frac{5}{6}x^3 + \frac{1}{24}x^4)e^{-x}$ .
- 9. 特征方程  $\lambda^2 + 4\lambda + 4 = (\lambda + 2)^2 = 0$ , 因此齐次方程通解为  $(C_1 + C_2 x)e^{-2x}$ . 设有特解  $y^* = a\cos 2x + b\sin 2x$ , 代入 微分方程得  $a=0, b=\frac{1}{8}$ . 因此原方程通解为  $y=(C_1+C_2x)e^{-2x}+\frac{1}{8}\sin 2x$ .
- 10. 传统方法很容易,但这里笔者希望使用另一种方法. 设  $\boldsymbol{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ ,原方程可写为  $\boldsymbol{y}' = \boldsymbol{A}\boldsymbol{y}$ ,其中  $\boldsymbol{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ . 回顾一元情形  $\boldsymbol{y}' = a\boldsymbol{y}$  的解为  $Ce^{ax}$ ,启发式地,似乎我们也可以把现在这个方程的解写为  $e^{\boldsymbol{A}x}\boldsymbol{C}$ . 运用一点线性代数知识可

一元情形 
$$y' = ay$$
 的解为  $Ce^{ax}$ ,启发式地,似乎我们也可以把现在这个万程的解与为  $e^{Ax}C$ . 运用一点线性代数知识可知  $A = P\Lambda P^{-1}$ ,其中  $\Lambda = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$ , $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ . 冥冥之中, $e^{Ax} = Pe^{\Lambda x}P^{-1} = \begin{pmatrix} \frac{1}{2}e^{3x} + \frac{1}{2}e^{-x} & \frac{1}{2}e^{3x} - \frac{1}{2}e^{-x} \\ \frac{1}{2}e^{3x} - \frac{1}{2}e^{-x} & \frac{1}{2}e^{3x} + \frac{1}{2}e^{-x} \end{pmatrix}$ . 因此,通解可以写成  $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} C_1(e^{3x} + e^{-x}) + C_2(e^{3x} - e^{-x}) \\ C_1(e^{3x} - e^{-x}) + C_2(e^{3x} + e^{-x}) \end{pmatrix}$ . 由此可见,这是一个多么和谐的数学世界啊!

## 7.3 补充 (不要求掌握!)

皮卡存在唯一性定理的另一种证明方法: 考虑连续函数空间上的映射  $F: y \mapsto y_0 + \int_{x_0}^x f(x,y) dx$ ,由于  $|F(y_1) - F(y_2)| = |\int_{x_0}^x [f(x,y_1) - f(x,y_2)] dx| \le \int_{x_0}^x |f(x,y_1) - f(x,y_2)| dx \le \int_{x_0}^x L|y_1 - y_2| dx = L|x - x_0||y_1 - y_2|$ . 回顾连续函数空间上的度量为  $\rho_{[a,b]}(y_1,y_2) = \max_{x \in [a,b]} |y_1(x) - y_2(x)|$ ,因此当  $|x - x_0| < \frac{1}{L}$  时,映射 F 是一个压缩映射.由压缩映像原理,F 的不动点存在且唯一,这就意味着  $y = y_0 + \int_{x_0}^x f(x,y) dx$  的解存在且唯一.

## 8 第 8 次习题课: 常数变易法

8.1 问题

1.

8.2 解答

1.

| 8.3  | 补充 (不要求掌握!)                 |
|------|-----------------------------|
|      | 9 第 9 次习题课: 数项级数            |
| 9.1  | 问题                          |
| 9.2  | 解答                          |
| 9.3  | 补充 (不要求掌握!)                 |
|      | 10 第 10 次习题课: 数项级数, 函数项级数   |
| 10.1 | 问题                          |
| 10.2 | 解答                          |
| 10.3 | 补充 (不要求掌握!)                 |
|      | 11 第 11 次习题课: 幂级数, 泰勒级数     |
| 11.1 | 问题                          |
| 11.2 | 解答                          |
| 11.3 | 补充 (不要求掌握!)                 |
|      | 12 第 12 次习题课: 广义积分, 含参积分    |
| 12.1 | 问题                          |
| 12.2 | 解答                          |
| 12.3 | 补充 (不要求掌握!)                 |
|      | 13 第 13 次习题课: 含参广义积分, 傅里叶级数 |
| 13.1 | 问题                          |
| 13.2 | 解答                          |
| 13.3 | 补充 (不要求掌握!)                 |
|      | 14 第 14 次习题课: 傅里叶级数         |
| 14.1 | 问题                          |
| 14.2 | 解答                          |
| 14.3 | 补充 (不要求掌握!)                 |
|      | 15 综合复习                     |
| 15.1 | 问题                          |
| 15.2 | 解答                          |

16<sup>15</sup>致谢

题课9班的全体同学,他们提供了很多有意思的做法和反馈.