Schedule

1. What are models?

Exercise: Python Skills

2. Energy budget of the Earth

Exercise: Simple Energy Balance Model

3. Nonlinearity, Feedback, and Predictability

Exercise: Nonlinearity and Feedbacks

Exercise: Revised Energy Balance Model

4. Parametrization and Sensitivity

5. Radiative budget

Exercise: 1-layer greenhouse model

Exercise: 2-layer greenhouse model

6. Introduction to fluid dynamics

Exercise: Analytical katabatic flow model

7. Finite difference method

Exercise: Heat Equation

Exercise: Advection-Diffusion Equation

Exercise: Boundary layer Evolution

Exercise: Numerical katabatic flow model

8. Implicit finite difference methods

Exercise: Boundary layer evolution

9. Optimization problem

Exercise: Surface energy balance

Exercise: Sublimation

10. COSIPY snow model

Exercise: Simulations with COSIPY

11. Introduction to PALM

Exercise: Simulations with PALM

12. How to write an article

Ground heat flux:

$$Q_G = -k_g \frac{\partial T}{\partial z}$$

(Fourier's law)

Temporal temperature change:

$$\frac{\partial T}{\partial t} = -\left(\frac{1}{c_a}\right) \frac{\partial Q_g}{\partial z}$$

Heat conductivity equation:

$$\frac{\partial T}{\partial t} = v_g \frac{\partial^2 T}{\partial z^2}$$

with k_g : Thermal molecular conductivity [W m⁻¹ K⁻¹]

 c_a : Soil heat capacity [Wm⁻³ K⁻¹]

 v_a : Soil thermal diffusivity ($v_g = k_g/c_g$) [$m^2 s^{-1}$]

Surface	Thermal molecular conductivity k_g in [Wm ⁻¹ K ⁻¹]	Soil heat capacity Cg in 10 ⁶ [Wm ⁻³ K ⁻¹]	Soil thermal diffusivity v_g in 10 ⁻⁶ [m^2s^{-1}]
Granit	2.73	2.13	1.28
Wet sand	2.51	2.76	0.91
Dry sand	0.30	1.24	0.24
Sandy clay	0.92	2.42	0.38
Swamp	0.89	3.89	0.23
Old snow	0.34	0.84	0.40
Fresh snow	0.02	0.21	0.10
Pure ice	2.10	2.09	1.09

Heat conductivity equation:

$$\frac{\partial T}{\partial t} = \nu_g \frac{\partial^2 T}{\partial z^2} = \nu_g \nabla^2 T$$

with v_g : Soil thermal diffusivity ($v_g = k_g/c_g$) [m² s⁻¹]

Strategy:

- > Forward difference in time
- Central difference in space

$$\frac{\partial T}{\partial t} = \nu_g \frac{\partial^2 T}{\partial z^2} \simeq \nu_g \frac{T_{i+1}^n - 2T_i^n + T_{i-1}^n}{\Delta z^2}$$

$$\frac{T_i^{n+1} - T_i^n}{\Delta t} = \nu_g \frac{T_{i+1}^n - 2T_i^n + T_{i-1}^n}{\Delta z^2}$$

$$T_i^{n+1} = T_i^n + \nu_g \frac{\Delta t}{\Delta z^2} (T_{i+1}^n - 2T_i^n + T_{i-1}^n)$$

$$\frac{T_i^{n+1} - T_i^n}{\Delta t} = \nu_g \frac{T_{i+1}^n - 2T_i^n + T_{i-1}^n}{\Delta z^2}$$
forward central

Reordered:

$$T_i^{n+1} = T_i^n + \nu_g \frac{\Delta t}{\Delta z^2} (T_{i+1}^n - 2T_i^n + T_{i-1}^n)$$

Task 1: Integrate the heat equation for several days using a time step of 1 hour and a heat conductivity of $v_g = 1.2e^{-6}$ [m² s⁻¹]. Plot the result. Once the code works, change the integration time. What happens if you integrate over a very long time?

Top BC $T(0,t) = 20 \, {}^{\circ}C$

Bottom BC $T(D,t) = \frac{\partial T(t,z)}{\partial z} = 0 \ K \ m^{-1}$

Initial condition $T(n, 0) = 0 \, {}^{\circ}C$

Hint: 1D Heat Equation using index arrays

A = numpy.arange(0,n+1)

A is an array from 0 to n with Nx = n+1 nodes.

for i in range(0, n, 1): A[i]

Hint: 1D Heat Equation using index arrays

A = numpy.arange(0,n+1)

A is an array from 0 to n with Nx = n+1 nodes.

Task 2: Rewrite the 1D heat equation using index arrays

Exercise: Time-dependent Heat Equation

Task 3: Using the previous code, solve the Heat Equation using a temporal varying surface boundary condition. Use the following discretization: I = [0; 20 m], N = 40 grid points, $v_g = 1.2e^{-6} [\text{m}^2 \text{ s}^{-1}]$, and a daily time step. Integrate the equation for several years, e.g. 5 years. Plot the result as a contour plot. Also plot temperature time series in several depths. Discuss the plot!

Top BC

$$T(t,0) = 0 - 10\sin\left(\frac{2\pi t}{365}\right) {}^{\circ}C$$

Bottom BC

$$T(t,D) = \frac{\partial T(t,z)}{\partial z} = 0 \ K \ m^{-1}$$

Initial condition $T(0,n) = 0 \, {}^{\circ}C$

Exercise: Time-dependent Heat Equation

