ANALISIS KETIDAKSEIMBANGAN BEBAN PADA GARDU DISTRIBUSI KA 2085 DI PT. PLN (Persero) DISTRIBUSI BALI RAYON MENGWI BADUNG

R. Suputra¹, A. I. Weking², W. Rinas³

Jurusan Teknik Elektro, Fakultas Teknik, Universitas Udayana Denpasar - Bali Email: r.suputra@yahoo.com¹, tony@ee.unud.ac.id², rinas@ee.unud.ac.id³

Abstrak

Perbedaan nilai arus yang mengalir pada tiap penghantar fasa pada suatu jaringan distribusi tenaga listrik, menyebabkan keadaan tidak seimbang. Keadaan tidak seimbang pada suatu jaringan tenaga listrik akan mengakibatkan terjadinya peningkatan rugi daya Penelitian ini dilakukan dengan menitikberatkan rugi daya keadaan seimbang dan keadaan tak seimbang saat kondisi beban puncak di JTR dan SR gardu distribusi KA 2085, ketidakseimbangan beban pada jaringan distribusi sekunder KA 2085 telah menyebabkan terjadinya rugi-rugi daya beban seimbang kondisi beban puncak sebesar 0,104 kW dengan prosentase rugi-rugi sebesar 0,33%. Namun rugi daya di beban tak seimbang keadaan beban puncak sebesar 0,211 kW dengan prosentase rugi daya senilai 0,69%.

Kata Kunci: beban seimbang dan tidak seimbang, rugi-rugi daya, jaringan distribusi, gardu distribusi

Abstract

The difference in the value of the current flowing in each phase conductor in a power distribution network, causes an unbalanced state. The unbalanced state of a power grid will result in an increase in power losses. This study is conducted by analyzing balanced state power losses and unbalanced state under peak load conditions at JTR and SR of K8585 distribution relay, unbalance burden on secondary distribution network KA 2085 has resulted in the loss of load-balanced power of peak load time of 0.104 kW with a loss-loss prosenase of 0.33%. While the losses for unbalanced load peak load time of 0.211 kW with a percentage loss of 0.69%.

Keywords: balanced and unbalanced load, power loss, distribution network, distribution substation

1. PENDAHULUAN

Transformator KA 2085 ini menyediakan Daya listrik kepada konsumen PT. PLN di wilayah banjar Padang Bali desa Dalung.

Pemakaian daya listrik yang tidak merata, akan mengakibatkan timbulnya ketidakseimbangan arus yang mengalir pada tiap hantaran fasanya. Terbukti pada gardu distribusi KA 2085 dimana pembebanan pada setiap fasanya adalah sebesar: untuk R=31*Ampere*,S=14*Ampere*,T=50*Ampere*, dan kawat Netral =42*Ampere*.

ketidakseimbangan beban adalah salah satu faktor yang mengakibatkan rugirugi daya pada saluran [1].

Selanjutnya harus dilakukan kajian tentang pengaruh ketidakseimbangan

beban terhadap rugi-rugi daya pada transformator distribusi KA 2085, yang mengacu pada permasalahan yang didapat. Dan diadakanlah penelitian yang seperti dibawah ini.

2. TINJAUAN PUSTAKA

2.1 Impedansi Saluran

Konduktor akan selalu memiliki resistansi dan reaktansi. Gabungan diantara keduanya disebut impedansi

2.1.1 Resistansi

Resistansi yang dinyatakan dengan [5].

$$R = \rho \frac{l}{A} \tag{3}$$

Definisi:

R : resistansi (Ohm) ρ : tahanan jenis kawat (Ohm.mm²/m)

I : panjang kawat (meter)

A : luas penampang kawat (mm²)

2.1.2 Reaktansi

Reaktansi penghantar untuk jaringan distribusi pada dasarnya terdiri dari induktansi, maka reaktansinya disebut reaktansi induktif (X_L) .

$$X_L = 2\pi f L \tag{4}$$

Definisi:

XL: reakt|ansi jaringan (Ohm) f: frekuensi jaringan (Hz) L: induktansi (Henry)

2.1.3 Arus Beban Penuh Transformator

Daya transformator apabila dilihat dari sisi tegangan tinggi dapat dihitung dengan Persamaan 5 [7].

$$S = V. I \tag{5}$$

Definisi:

S: daya transformator (kVA)
V: tegangan sisi primer trafo (kV)

I : arus jala-jala (A)

Selanjutnya untuk menghitung arus beban penuh transformator (full load) dapat menggunakan Persamaan 6 [6].

$$I_{FL} = \frac{S}{\sqrt{3}.V} \tag{6}$$

Definisi :

 I_{FL} : arus beban penuh (A) S: daya trafo (kVA)

$$I_{rata-rata} = \frac{I_R + I_S + I_T}{3} \tag{7}$$

Definisi:

Irata-rata: arus ketiga fasa (Ampere)

IR: arus fasa R (Ampere)
IS: arus fasa S (Ampere)
IT: arus fasa T (Ampere)

Prosentase beban transformator, dapat dijumlahkan :

 $\% pembebanan = \frac{I_{rata-rata}}{I_{FL}} x100\%$

(8)

2.1.4 Ketidakseimbangan Beban Transformator

Pada saluran daya dalam keadaan tidak seimbang, besarnya arus tiap fasa dapat dinyatakan dengan koefisien $a,\ b,\$ dan c

Pada keadaan seimbang (1) sama besarnya arus rata-rata (I_{rata})

$$I_R = a.I_{rata-rata} \text{ maka} : a = \frac{I_R}{I_{rata-rata}}$$
 (9)

$$I_S = b.I_{rata-rata} \text{ maka: } b = \frac{I_S}{I_{rata-rata}}$$
 (10)

3. METODE PENELITIAN

Data yang dipakai didalam analisis tugas akhir ini berasal dari data primer yang diperoleh dari hasil pengukuran langsung disetiap pelanggan PT.PLN (Persero) Area Bali Selatan Rayon Mengwi pada Gardu KA 2085.

Tahapan analisis yang dilakukan:

- Pengumpulan dan pengolahan data beban masing-masing pelanggan PT. PLN (Persero) Rayon Mengwi yang bersumber dari gardu distribusi KA 2085,
- Rekapitulasi nilai beban tiap jurusan JTR berdasarkan data beban masingmasing pelanggan.

4. HASIL DAN PEMBAHASAN

4.1 Sistem Kelistrikan di JTR KA 2085

Sistem arus listrik JTR KA 2085 memiliki data teknis seperti dibawah [9].

Arus Beban : 48,8 kVA.
 Total Konsumen : 22 Pelanggan.
 Pola JTR : System Radial.
 Total Jurusan : Dua Jurusan.
 Panjang kabel : 274,1 m.

554,65 m. 6. Macam Penghantar: LVTC (JTR)

NFA2XX (SR).

Maka diperoleh data pengukuran saat

Maka diperoleh data pengukuran saat beban puncak seperti yang terlihat di Tabel 1.

Tabel 1. Hasil pengukuran beban tiap pelanggan

			Pong	antaran k	occur tiap			
No	Uraian	Tarif	Daya	Beban	Pembatas Arus	Hasil	Pengu	kuran
NO	Uraian	Tarif	(VA)	1fasa/3fasa	(A)	R	S	T
1	Load 1	R2T	5500	1	25	16		
2	Load 2	R1T	2200	1	10	5,2		
3	Load 3	R1T	3500	1	16	9,6		
4	Load 4	R1T	3500	1	16	8,6		
5	Load 5	R1T	3500	1	16		4,2	
6	Load 6	R1T	1300	1	6			3,8
7	Load 7	R2T	4400	1	20			12,7
8	Load 8	R1T	1300	1	6			3,1
9	Load 9	R1T	1300	1	6	2,9		
10	Load 10	R1T	2200	1	10	6,3		
11	Load 11	R1T	1300	1	6	2,6		
12	Load 12	R1T	2200	1	10	5,9		
13	Load 13	R1T	1300	1	6	2,2		
14	Load 14	B1T	1300	1	6	2,8		
15	Load 15	B1T	900	1	4			3,17
16	Load 16	B1T	1300	1	6	3,8		
17	Load 17	R1T	1300	1	6	4,5	3,1	15
18	Load 18	B1T	1300	1	6	8,1		
19	Load 19	B1T	1300	1	6			4,4
20	Load 20	R1T	2200	1	10	3,7		
21	Load 21	R1T	2200	1	10			7,7
22	Load 22	R1T	1300	1	6		8,4	

Setiap Jurusan JTR seperti pada Tabel 2 berikut:

Tabel 2. Rekapitulasi beban tiap jurusan

Tare I all total pital as a second trap jar as a						
No	Uraian		Dat	ta Beban	Panjang (m)	
NO	Jurusan A	Jurusan C1	R	S	T	ranjang (iii)
1	JTR 4		9,2			33,1
2	JTR 3		8,6	4,2	3,1	50,1
3	JTR 2		9,6		16,5	45,7
4	JTR 1		21,2			34,2
5		JTR 5	8,1			35
6		JTR 6	3,7	8,4	7,7	28
7		JTR 7				22
8		JTR 8		,	4,4	26

kemudian diakumulasikan seperti tertera dalam Tabel 3

Tabel 3. Rekapitulasi hasil pengukuran

Heel Beneulunen					
	Hasil Pengukuran				
Kondisi	Tegangan (V)	Daya(VA)			
	regarigari (v)	R	S	Т	
Beban Puncak	235	82,2	12,6	34,87	

Tabel 4. Total Daya JTR

	Hasil	Total Beban				
Kondisi	Tegangan	Daya (VA)			(kVA)	
	(V)	R	s	T	R+S+T	
Beban Puncak	235	82,2	12,6	34,87	30,47	

4.2 Persentase Pembebanan Transformator

Aliran Daya beban penuh pada trafo dijumlahkan memakai Persamaan 6, dengan perhitungan sebagai berikut.

$$I_{FL} = \frac{S}{\sqrt{3}V} = \frac{160000}{\sqrt{3}.400} = 230,9A$$

Maka:

$$I_{rata-rata} = \frac{I_R + I_S + I_T}{3}$$
$$= \frac{82,2+12,6+34,87}{3} = 43,2A$$

Prosentase beban trafor dijumlahkan dengan memakai Persamaan 8, dengan perhitungan seperti dibawah.

% pembebanan =
$$\frac{I_{rata-rata}}{I_{FL}} x100\%$$

= $\frac{43, 2}{230, 9} x100\%$ |
= 18.7%

Berdasarkan hasil perhitungan di atas, didapatkan hasil beban trafo waktu beban puncak sebesar 18,7 %.

4.3 Prosentase Beban tidak seimbang

Prosentase tidak seimbanganya beban trafo dijumlahkan memakai Persamaan sembilan, sepuluh,dan sebelas

Rata-rata ketidakseimbangan beban:

$$= \frac{\{|a-1|+|b-1|+|c-1|\}}{3} \times 100\%$$

$$= \frac{\{|1,9-1|+|0,3-1|+|0,8-1|\}}{3} \times 100\%$$

$$= \frac{\{|0,9|+|0,7|+|0,2|\}}{3} \times 100\%$$

$$= 60\%$$

4.4 Analisis Rugi Daya JTR KA 2085 4.4.1 Analisis Pada Kondisi Beban Seimbang

Rugi daya pada penghantar JTR kondisi seimbang, dihitung dengan perhitungan seperti dibawah:

Daya losses pada penghantar JTR 1.

 $I_{JTR1} = I_{JTR1}$ $I_{rata-rata JTR1} = 7,07 \text{ A}$ $I_{JTR1} = 34,2 \text{ meter} = 0,03 \text{ km}$ $R_{JTR1} = 0,5155 \text{ Ohm/km}$ $= 0,5096 \cdot 0,03$ = 0,017 Ohm $\Delta P_{JTR1} = 3 \cdot I^2 \cdot R$ $= 3 \cdot 7,07^2 \cdot 0,017$ = 2,54 Watt

Sehingga diperoleh analisis daya losses semua penghantar JTR yang lain pada masing-masing jurusan seperti Tabel 5.

Tabel 5. Daya losses beban seimbang pada

	penghantar JTR												
No	Ura	Data	Bebai	n (A)	D (M)								
NO	Jurusan A	Jurusan C1	R	S	T	Rugi-rugi Daya (W)							
1	JTR 4		9,2		3,1	2,54							
2	JTR 3		8,6	4,2	16,5	7,36							
3	JTR 2		9,6			30,73							
4	JTR 1		21,2			29,46							
5		JTR 5	8,1			6,2							
6		JTR 6	3,7	8,4	7,7	1,86							
7		JTR 7				0,072							
8		JTR 8			4,4	0,083							
					Total	Total 78,305							

Hasil akumulasi pada Tabel 5 di atas, total rugi-rugi daya beban seimbang pada penghantar JTR sebesar 78,305 Watt ≈ 0.078305 kW..

Rugi-rugi daya yang ada di SR dapat ditinjau melalui, daya losses untuk penghantar SR1.

$$I_{SRI}$$
 = $I_{SRI} + I_{SR2}$
 $I_{rata-rataSRI}$ = 7,06 A
 L_{SRI} = 25,016 meter = 0,025 km
 R_{SRI} = 2,2189 Ohm/km
= 2,2189 . 0,025
= 0,055 Ohm.
 ΔP_{SRI} = 3 . I^2 . R
= 3 . 7,06 2 . 0,055
= 8,29 Watt.

Hasil penghitungan yang sama dengan penghantar SR1, dapat dianalisis untuk seluruh penghantar SR dengan jumlah 22 penghantar seperti pada Tabel 6.

Tabel 6. Daya losses beban seimbang pada penghantar SR

No	Unatan		Data beban (A		Durai aurai Daura (M)
NO	Uraian	R	S	T	Rugi-rugi Daya (W)
1	SR 1	16			8,29
2	SR 2	5,2			0,139
3	SR 3	9,9			1,32
4	SR 4	8,6			1,1
5	SR 5		4,2		0,64
6	SR 6			3,8	0,195
7	SR 7			12,7	6,36
8	SR 8			3,1	0,203
9	SR 9	2,9			0,128
10	SR 10	6,3			0,768
11	SR 11	2,6			0,359
12	SR 12	5,9			2,62
13	SR 13	2,2			0,103
14	SR 14	2,8			0,145
15	SR 15			3,17	0,089
16	SR 16	3,8			0,219
17	SR 17	4,5			0,507
18	SR 18	8,1			0,629
19	SR 19			4,4	0,391
20	SR 20	3,7			0,15
21	SR 21			7,7	1,61
22	SR 22		8,4		0,658
				Total	26,623

Total daya losses beban seimbang pada penghantar SR sebesar 26,626 Watt ≈ 0,026623 kW.

Daya losses total dengan pada kondisi seimbang untuk JTR dan SR dapat dilihat pada Tabel 7.

Tabel 7. Total Rugi daya beban seimbang

	Rugi-ru	gi Daya	Total
Kondisi	Pada Sal	luran (W)	Rugi-rugi Daya
	JTR	SR	(W)
Beban Puncak	78,305	26,623	104,928

Saluran kepada keadaan beban puncak apabila disebutkan pada keadaan yang didalam prosentase:

% rugi – rugi =
$$\frac{total \ rugi \ daya \ pada \ saluran (kW)}{daya \ dari \ PLN (kVA)} x100\%$$
$$= \frac{0.10}{30,47} x100\%$$
$$= 0.33\%$$

4.4.2 Analisis Pada Kondisi Beban Tidak Seimbang

Daya losses beban tidak seimbang pada penghantar JTR, dihitung dengan Persamaan 13 dengan cara.

Rugi-rugi daya untuk penghantar JTR 1:

Ijtri	$=I_{JTR1}$
IR JTR1	= 21,20 A
Is JTR1	= 0 Á
ITJTRI	= 0 A
LJTR1	= 34 meter = 0,034 km
RJTR1	= 0,5096 Ohm/km
	= 0,5096 . 0,034
	= 0,017 Ohm
Arus IRJTRI	
ΔP_{JTRI}	$=I^2$. R
	= 21,20 ² . 0,017
	= 7,83 Watt
Arus Is JTR1	
ΔP_{JTRI}	$=I^{2}$. R
	$= 0^2 . 0.017$
	= 0 Watt

Dari penjumlahan yang diperoleh jumlah rugi daya di JTR 1 pada keadaan beban puncak adalah sebesar $\Delta P_R + \Delta P_S + \Delta P_T = 7,83 + 0 + = 7,83$ Watt.

Hasil diperoleh yang persis dengan tegangan rendah, dapat diteliti untuk semua penghantar di Tabel 8

Tabel 8. Daya losses Beban Tak Seimbang Pada JTR

No Uraian		iian	Data	Bebai	n (A)	Rugi-rugi Daya (W)
INO	Jurusan A	Jurusan C1	R	S	Т	Rugi-rugi Daya (W)
1	JTR 4		9,2		3,1	46,6
2	JTR 3		8,6	4,2	16,5	47,01
3	JTR 2		9,6			21,75
4	JTR 1		21,2			7,83
5		JTR 5	8,1			6,43
6		JTR 6	3,7	8,4	7,7	2,03
7		JTR 7				0,717
8		JTR 8			4,4	0,258
		132,125				

Akumulasi pada Tabel 8 di atas, total rugi daya beban tak seimbang dipenghantar JTR sebesar 132,12 Watt ≈ 0,13212 kW.

Daya losses yang terletak dipenghantar SR kondisi tak seimbang: penghantar SR1.

$$I_{SRI}$$
 = $I_{SRI} + I_{SR2}$
 I_{RSRI} = 21,20 A
 I_{SSRI} = 0 A
 I_{TSRI} |= 0 A
 I_{SRI} = 25,016 meter = 0,025 km
 R_{SRI} = 2,2189 Ohm/km
= 2,2189 . 0,025
= 0,055 Ohm
maka :

Arus
$$I_{R SRI}$$
 = 21,20 A
 $\Delta P_{SR I}$ = $I^2 \cdot R$
= 21,20 $^2 \cdot 0,055$
= 24,94 Watt
Arus $I_{S SRI}$ = 0 A

 ΔP_{SRI} = I^2 . R= 0^2 . 0.055= 0 Watt Arus I_{RSRI} = 0 A ΔP_{SRI} = I^2 . R= 0^2 . 0.055= 0 Watt

Nilai yang diperoleh sama dengan SR1, dapat dijabarkan untuk setiap penghantar dengan banyaknya total 22 penghantar, seperti pada Tabel 9.

Tabel 9. Total Daya losses Penghantar SR Beban Tak Seimbang

No	Uraian		Data beban (A	1)	D D (40)
NO	ULAIAII	R	S	T	Rugi-rugi Daya (W)
1	SR 1	16			24,94
2	SR 2	5,2			0,41
3	SR 3	9,9			4
4	SR 4	8,6			3,3
5	SR 5		4,2		1,98
6	SR 6			3,8	0,6
7	SR 7			12,7	19,4
8	SR 8			3,1	0,614
9	SR 9	2,9			0,4
10	SR 10	6,3			2,304
11	SR 11	2,6			1,102
12	SR 12	5,9			8
13	SR 13	2,2			0,311
14	SR 14	2,8			0,44
15	SR 15			3,17	0,28
16	SR 16	3,8			0,665
17	SR 17	4,5			0,338
18	SR 18	8,1			1,88
19	SR 19			4,4	1,18
20	SR 20	3,7			0,453
21	SR 21			7,7	4,85
22	SR 22		8,4		2
				Total	79,447

Daya losses total pada saat keadaan beban tak seimbang untuk JTR dan SR dapat dilihat di Tabel 10.

Tabel 10. Total Daya Losses Tak Seimbang

	Rugi Day	/a Beban	Total		
Kondisi	Pada Saluran (W)		Rugi-rugi Daya		
	JTR	SR	(W)		
Beban Puncak	132,125	79,447	211,57		

Besarnya nilai rugi daya beban tak seimbang saluran saat keadaan beban tak seimbang jika disebutkan dalam prosentase ialah:

$$\% rugi - rugi = \frac{total \ rugi \ daya \ pada \ saluran (kW)}{daya \ dari \ PLN (kVA)} x100\%$$
$$= \frac{0,211}{30,47} x100\%$$
$$= 0,69\%$$

4.5 Nilai Perbandingan Rugi-Rugi Daya

beban seimbang dan tidak seimbang saat kondisi beban puncak dapat dilihat pada Tabel 14.

Tabel 14. Perbandingan Rugi Daya pada JTR KA 2085

Kondisi	Total	Persentse	
Beban	Rugi Daya	Rugi-rugi	
Puncak	(Watt)	(%)	
Seimbang	104,93	0,33	
Tidak Seimbang	211,58	0,69	

[9] Data Pelanggan JTR KA 2085 PT. PLN (Persero) Distribusi Bali Rayon Mengwi.

5. KESIMPULAN

Setelah dilakukan perhitungan dari data beban pada gardu distribusi KA 2085, prosentase pembebanan transformator pada waktu beban puncak ialah sebesar 18,7%. Persentase pada ketidakseimbangan beban adalah sebesar 60

Ketidakseimbangan beban yang terjadi digardu distribusi KA2085 menyebabkan Daya losses waktu beban puncak pada kondisi beban seimbang 0,104 kW (0,33%) dan 0,211 (0,69%) untuk keadaan beban tak seimbang.

6. DAFTAR PUSTAKA

- [1] Setiadji, 2006. Pengaruh Ketidakseimbangan Beban Terhadap Arus Netral Dan Losses Pada Trafo Distribusi. Jurnal Teknik Elektro, Volume 6, No. 1.
- [2] Arismunandar, A, 1991. Buku Pegangan Tenaga Listrik - Gardu Induk. Jakarta : PT. Pradnya Paramita.
- [3] Barnett. H. G and Parsons. J. S, 1950 *Elektrical Transmission Distribution Reference Book*.Pennsylvania – USA : Westinghouse Electric Corporation.
- [4] Gonen. T, 1986. *Electric Power Distribution System Engineering*. USA: McGraw Hill.
- [5] Grainger. J. J dan Stevenson, Jr. W. D, 1994. *Power System Analisys*. USA: McGraw – Hill.
- [6] Pansini. Antony J. E. E., P. E. 2006. Electrical Distribution Engineering, 3rd Edition. Georgia – USA: The Fairmont Press, Inc.
- [7] John. J, Winers. Jr, 2002. Power Transformers Principles and Applications. Pannsylvania: Marcel Dekker. Inc.
- [8] Suhadi, 2008. Teknik Distribusi Tenaga Listrik Jilid 1. Jakarta : Direktorat Pembinaan Sekolah Kejuruan, Departemen Pendidikan Nasional.