Support Vector Machine, SVM Loss and Softmax Loss

Binary Classification with a Linear Model

- Classification: Predict a discrete-valued target
- Binary classification: Targets $t \in \{-1, +1\}$
- Linear model:

$$z = \mathbf{w}^{\top} \mathbf{x} + b$$
$$y = sign(z)$$

Separating Hyperplanes

Suppose we are given these data points from two different classes and want to find a linear classifier that separates them.

Find the hyperplane:

The decision boundary looks like a line because $\mathbf{x} \in \mathbb{R}^2$, but think about it as a D-1 dimensional hyperplane.

Recall that a hyperplane is described by points $\mathbf{x} \in \mathbb{R}^D$ such that $f(\mathbf{x}) = \mathbf{w}^\top x + b = 0$.

There are multiple separating hyperplanes, described by different parameters (\mathbf{w}, b) .

Optimal Separating Hyperplane

Optimal Separating Hyperplane: A hyperplane that separates two classes and maximizes the distance to the closest point from either class, i.e., maximize the **margin** of the classifier.

Geometry of Points and Planes

- Recall that the decision hyperplane is orthogonal (perpendicular) to w.
- The vector $\mathbf{w}^* = \frac{\mathbf{w}}{\|\mathbf{w}\|_2}$ is a unit vector pointing in the same direction as \mathbf{w} .
- The same hyperplane could equivalently be defined in terms of w*.

注: 为什么 w 垂直于 decision hyperplane。

The (signed) distance of a point \mathbf{x}' to the hyperplane is

$$\frac{\mathbf{w}^{\top}\mathbf{x}' + b}{\|\mathbf{w}\|_2}$$

Maximizing Margin as an Optimization Problem

The classification for the i-th data point is correct when

$$\operatorname{sign}\left(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b\right) = t^{(i)}$$

This can be rewritten as

$$t^{(i)}\left(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b\right) > 0$$

注:
$$t^{(i)} \in \{-1, +1\}$$
, $\mathbf{w}^{\top} \mathbf{x}^{(i)} + b$ 和 $t^{(i)}$ 正负号一致,下同。

Enforcing a margin of C:

$$t^{(i)} \cdot \underbrace{ egin{pmatrix} (\mathbf{w}^ op \mathbf{x}^{(i)} + b) \ \|\mathbf{w}\|_2 \ ext{signed distance} \end{pmatrix}}_{ ext{signed distance}} \geq C$$

Max-margin objective:

$$\max_{\mathbf{w},b} C$$
s.t.
$$\frac{t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b)}{\|\mathbf{w}\|_{2}} \geq C \qquad i = 1, \dots, N$$

Plug in $\mathit{C}=1/\left\|\mathbf{w}\right\|_2$ and simplify:

$$\underbrace{\frac{t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b)}{\|\mathbf{w}\|_{2}} \geq \frac{1}{\|\mathbf{w}\|_{2}}}_{\text{geometric margin constraint}} \iff \underbrace{t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b) \geq 1}_{\text{algebraic margin constraint}}$$

Equivalent optimization objective:

$$\min \|\mathbf{w}\|_2^2$$

s.t. $t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b) \ge 1$ $i = 1, ..., N$

SVM

Algebraic max-margin objective:

$$egin{aligned} \min_{\mathbf{w},b} \|\mathbf{w}\|_2^2 \ & ext{s.t.} \ t^{(i)}(\mathbf{w}^{ op}\mathbf{x}^{(i)}+b) \geq 1 \qquad i=1,\ldots,N \end{aligned}$$

这就是 <u>SVM (Support Vector Machine)</u> 的原理: 找到一个 hyperplane 使得类之间的距离 最大。SVM-like algorithms are often called **max-margin** or **large-margin**.

找到这个 hyperplane 实际上只需参考距离最近的几个 training examples (or closest point),而 closest point 到 hyperplane 的向量就是 support vector(closest point is the one with algebraic margin 1)。

Non-Separable Data Points

How can we apply the max-margin principle if the data are **not** linearly separable?

Main Idea:

- Allow some points to be within the margin or even be misclassified; we represent this with **slack variables** ξ_i .
- But constrain or penalize the total amount of slack.
- Soft margin constraint:

$$\frac{t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)}+b)}{\|\mathbf{w}\|_2} \geq C(1-\xi_i),$$

for $\xi_i \geq 0$.

• Penalize $\sum_i \xi_i$

注: 上式中分为两种情况:

1. point 被正确分类:

这种情况下,
$$\xi_i$$
为 0,式子还是 $\frac{t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)}+b)}{\|\mathbf{w}\|_2} \geq C$ 。

2. point 在 margin 内 或 被误分类:

假如被误分类,在这种情况下, $\xi_i > 1$ (or $\xi_i > \frac{1}{\|w\|_2}$)。假如 $x^{(i)}$ 的实际类别为 1,那 么 $t^{(i)} = 1$;但被误分类后, $\left(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b\right) = -1$,因此式子的左边现在变成了 $-\frac{(\mathbf{w}^{\top}\mathbf{x}'+b)}{\|\mathbf{w}\|_2}$ 。现在看式子右边, $1-\xi_i$ 是点到决策面的距离(现在我们把 $\frac{1}{\|w\|_2}$ 当作 1来处理是为了方便,实际上 $\frac{1}{\|w\|_2}$ 肯定不是 1,所以可以把它看作一个比例), $1-\xi_i$ 为负号,然后 $C(1-\xi_i)$ 就是点到决策面的距离。

Soft-margin SVM objective:

$$\begin{aligned} \min_{\mathbf{w},b,\xi} \frac{1}{2} \|\mathbf{w}\|_2^2 + \gamma \sum_{i=1}^N \xi_i \\ \text{s.t.} \quad t^{(i)} (\mathbf{w}^\top \mathbf{x}^{(i)} + b) \geq 1 - \xi_i \qquad i = 1, \dots, N \\ \xi_i \geq 0 \qquad \qquad i = 1, \dots, N \end{aligned}$$

注:我们一直的目标是 max margin,因为 margin = C = $\frac{1}{\|\mathbf{w}\|_2}$,所以要 min $\frac{1}{\|\mathbf{w}\|_2}$ 。我们当然不希望有一个被误分类的点离决策面很远,因此要 min $\sum_{i=1}^N \xi_i$ 。

- ullet γ is a hyperparameter that trades off the margin with the amount of slack.
 - For $\gamma = 0$, we'll get $\mathbf{w} = 0$. (Why?)
 - As $\gamma \to \infty$ we get the hard-margin objective.

注: 1. 当 $\gamma=0$,意为着不对 ξ_i 进行 min。那么假如有一个离决策面无限远的点,它到决策面的距离为 $\frac{\mathbf{w}^\top\mathbf{x}'+b}{\|\mathbf{w}\|_2}=\infty$,解为 $\mathbf{w}=0$ 。

2. 当 $\gamma = \infty$,意味着将所有 ξ_i 都 min。假如我们已经将所有 ξ_i 都变成了 0,那么所有的点都不在 margin 内,也没有被误分类,这就是 hard-margin objective。

From Margin Violation to Hinge Loss

Let's simplify the soft margin constraint by eliminating ξ_i . Recall:

$$t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)}+b) \geq 1-\xi_i$$
 $i=1,\ldots,N$
 $\xi_i \geq 0$ $i=1,\ldots,N$

- Rewrite as $\xi_i \geq 1 t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b)$.
- Case 1: $1 t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b) \leq 0$
 - ▶ The smallest non-negative ξ_i that satisfies the constraint is $\xi_i = 0$.
- Case 2: $1 t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b) > 0$
 - ▶ The smallest ξ_i that satisfies the constraint is $\xi_i = 1 t^{(i)}(\mathbf{w}^\top \mathbf{x}^{(i)} + b)$.
- Hence, $\xi_i = \max\{0, 1 t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b)\}.$
- Therefore, the slack penalty can be written as

$$\sum_{i=1}^{N} \xi_i = \sum_{i=1}^{N} \max\{0, 1 - t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b)\}.$$

注:在 case 2 中,假如点被误分类到了 1 中,那么 $t^{(i)}=-1$,它的作用是控制符号。 $\left(\mathbf{w}^{\top}\mathbf{x}^{(i)}+b\right)$ 是一个正值,它代表着到决策面的距离,所以 $1-t^{(i)}\left(\mathbf{w}^{\top}\mathbf{x}^{(i)}+b\right)$ 代表 γ

If we write $y^{(i)}(\mathbf{w}, b) = \mathbf{w}^{\top} \mathbf{x} + b$, then the optimization problem can be written as

$$\min_{\mathbf{w},b,\xi} \sum_{i=1}^{N} \max\{0,1-t^{(i)}y^{(i)}(\mathbf{w},b)\} + \frac{1}{2\gamma} \left\|\mathbf{w}\right\|_{2}^{2}$$

- The loss function $\mathcal{L}_{\mathrm{H}}(y,t) = \max\{0,1-ty\}$ is called the **hinge** loss.
- The second term is the L_2 -norm of the weights.
- Hence, the soft-margin SVM can be seen as a linear classifier with hinge loss and an L_2 regularizer.

Multiclass SVM loss

Given an example (x_i, y_i) where x_i , is the image and where y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W) = Wx_i$.

The SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max\left(0, s_j - s_{y_i} + 1
ight)$$

注: s_j 是对 x_i 的预测值, s_{y_i} 是数据 x_i 的正确 label。

现在我们有3个training example,和3个类别,它们的预测结果如下:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

然后计算出它们的 SVM loss:

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

		Charles (Marine)	
cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	29		

注: 计算 SVM loss 时,不算正确的那一类 (即 $j \neq y_i$)

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 5.1 - 3.2 + 1)$$

$$+ \max(0, -1.7 - 3.2 + 1)$$

$$= \max(0, 2.9) + \max(0, -3.9)$$

$$= 2.9 + 0$$

$$= 2.9$$

Softmax Classifier (Multinomial Logistic Regression)

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{aligned} oldsymbol{s}=f(x_i;W) \end{aligned}$

3.2 cat

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$oxed{L_i = -\log P(Y = y_i | X = x_i)}$$

5.1 car

-1.7 frog

注: $P(Y = k \mid X = x_i)$ 意为在 $X = x_i$ 的条件下, Y = k 的概率。

Softmax Classifier (Multinomial Logistic Regression)

注:以 3.2 为例,从 unnormalized log probabilities 到 unnormalized probabilities,要 进行 $e^{3.2}$ = 24.5, 即公式分子的操作。然后是 24.5 / (24.5 + 164.0 + 0.18) = 0.13, 这是公式 括号里面的操作。最后得到 Li 作为 loss。

Softmax loss vs. SVM loss

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

assume scores:

 $\begin{bmatrix} 10, -2, 3 \\ [10, 9, 9] \\ [10, -100, -100] \\ \text{and} \quad \boxed{y_i = 0}$

Q: Suppose I take a datapoint and I jiggle a bit (changing its score slightly). What happens to the loss in both cases?

注:上面的后两个, SVM loss 都是 0,因此 SVM 无法很好的表现优化的情况。