МАТЕМАТИЧЕСКИЕ ОСНОВЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ ЧАСТЬ 1 В.В.УЛЬЯНОВ

Лекция 1.

Definition 1.1. Класс подмножеств X называется полукольцом $(\mathcal{P}),$ если

$$1. \varnothing \in \mathcal{P}.$$

2.
$$A_1, A_2 \in \mathcal{P}$$
, mo $u A_1 \cap A_2 \in \mathcal{P}$.

3.
$$A_1, A_2 \in \mathcal{P} \ u \ A_1 \subseteq A_2$$
, mo $A_2 = \bigcup_{i=1}^n B_i$, ede $B_i \cap B_j = \emptyset$, $i \neq j$, $B_i \in \mathcal{P}$, $B_1 = A_1$.

 Π римеры:

1. Х - произвольное множество.

 $\mathcal{P} = \{ \varnothing,$ все одноточечные подмножества $X \}.$

2.
$$X = \mathbb{R}$$

$$\mathcal{P} = \{[a,b), \ -\infty < a \leq b < \infty, \ a, \ b \in \mathbb{R}\}.$$

Definition 1.2. Класс подмножеств X называется кольцом (\mathcal{R}) , если

1.
$$\varnothing \in \mathcal{R}$$
.

$$2. A_1, A_2 \in \mathcal{R}, mo \ u \ A_1 \bigcup A_2 \in \mathcal{R}.$$

$$3. A_1, A_2 \in \mathcal{R}, mo A_2 \setminus A_1 \in \mathcal{R}.$$

Примеры:

1. Х - произвольное множество.

 $\mathcal{R} = \{ \varnothing,$ все конечные подмножества $X \}.$

2.
$$X = \mathbb{R}$$
.

 $\mathcal{R} = \{$ все конечные объединения [a,b) $\}$

Definition 1.3. Класс подмножеств X называется σ -кольцом (S), если

$$1. \varnothing \in \mathcal{S}.$$

2.
$$A_1, A_2, \dots \in \mathcal{S}$$
, mo $u \bigcup_{i=1}^{\infty} A_i \in \mathcal{S}$.

4 1 Лекция 1.

3.
$$A_1, A_2 \in \mathcal{S}$$
, mo $A_2 \setminus A_1 \in \mathcal{S}$.

Примеры:

 $1. \ X$ - произвольное множество.

 $\mathcal{S} = \{ \varnothing,$ все не более, чем счетные подмножества $X \}.$

2. X- произвольное множество.

 $S = \{$ все подмножества $X \}$

 $Note \ 1.1. \ \Pi$ олукольцо(кольцо, σ -кольцо) называется **полуалгеброй (алгеброй,** σ -алгеброй), если оно содержит само множество X.

Свойства колец и σ -колец.

 Π усть \mathcal{R} - кольцо, тогда

1. Если $A_1, A_2 \in \mathcal{R}$,

то
$$A_1 \cap A_2 \in \mathcal{R}$$
 и $A_1 \triangle A_2 = (A_1 \setminus A_2) \bigcup (A_2 \setminus A_1) \in \mathcal{R}$.
2. Если $A_1, A_2, \dots, A_n \in \mathcal{R}$, то $\bigcap_{i=1}^n A_i \in \mathcal{R}$, и $\bigcup_{i=1}^n A_i \in \mathcal{R}$.

Доказательство. 1.

$$A_1 \cap A_2 = (A_1 \bigcup A_2) \setminus (A_1 \setminus A_2) \setminus (A_2 \setminus A_1)$$

2. Доказывается по индукции. □

Пусть \mathcal{S} - σ -кольцо, тогда если $A_1, A_2 \ldots \in \mathcal{S}$, то $\liminf A_i \in \mathcal{S}$, $\limsup A_i \in \mathcal{S}$, $\bigcap_{i=1}^{\infty} A_i \in \mathcal{S}$, где

$$\lim\inf A_i = \bigcup_{m=1}^{\infty} \bigcap_{m\geq n}^{\infty} A_m$$

$$\limsup A_i = \bigcap_{n=1}^{\infty} \bigcup_{m>n}^{\infty} A_m$$

Доказательство. Достаточно доказать, что $\bigcap_{i=1}^{\infty} A_i \in \mathcal{S}$. Имеем

$$\bigcap_{i=1}^{\infty} A_i = A \setminus \bigcup_{i=1}^{\infty} (A \setminus A_i)$$

где $A=\bigcup\limits_{k=1}^{\infty}A_k$ Следовательно, утверждение вытекает из определения σ -кольца. \square

Definition 1.4. Кольцо (σ -кольцо), порожденное некоторым классом \mathcal{E} подмножеств X - это наименьшее кольцо (σ -кольцо), содержащее \mathcal{E} .

Обозначение : $\mathcal{R}(\mathcal{E})$, $\mathcal{S}(\mathcal{E})$.

Note 1.2. Для получения $\mathcal{R}(\mathcal{E})$ следует взять пересечение всех колец, содержащих \mathcal{E} :

$$\mathcal{R}(\mathcal{E}) = \bigcap \mathcal{R}_{\mathcal{E}},$$

где пересечение берется по всем кольцам $\mathcal{R}_{\mathcal{E}}$, содержащим класс \mathcal{E} .

Аналогично строится $\mathcal{S}(\mathcal{E})$.

- Доказать, что пересечение двух колец является кольцом.
- Привести пример 2-х полуколец, пересечение которых не является полукольцом.
- Доказать, что из способа построения $\mathcal{R}(\mathcal{E})$ и $\mathcal{S}(\mathcal{E})$ следует их единственность.

Theorem 1.1. Пусть \mathcal{E} - некоторый класс подмножеств X. Для любого $A \in \mathcal{S}(\mathcal{E})$ найдется счетный класс $\mathcal{E}_1 \subset \mathcal{E}$, для которого $A \in \mathcal{S}(\mathcal{E}_1)$.

Доказательство. Пусть \mathcal{F} - класс элементов $\mathcal{S}(\mathcal{E})$, такой что $A \in \mathcal{F}$, если найдется счетный класс $\mathcal{E}_1 \subset \mathcal{E}$, для которого выполнено $A \in \mathcal{S}(\mathcal{E}_1)$. Покажем, что $\mathcal{F} = \mathcal{S}(\mathcal{E})$. Для этого достаточно доказать, что $\mathcal{S}(\mathcal{E}) \subset \mathcal{F}$ Последнее включение будет доказано, если мы покажем, что $\mathcal{E} \subset \mathcal{F}$ и \mathcal{F} - σ -кольцо.

 $1.\ \mathcal{E} \subset \mathcal{F}$ - очевидно, так для любого $E \in \mathcal{E}$ имеем $E \subset \mathcal{S}(E)$, что вытекает из определения \mathcal{F} .

 $2. \ \mathcal{F}$ - σ -кольцо.

Пусть A_1 и $A_2 \in \mathcal{F}$, значит найдутся счетные $\mathcal{E}_1, \mathcal{E}_2 \subset \mathcal{E}$ и $A_1 \in \mathcal{S}(\mathcal{E}_1), A_2 \in \mathcal{S}(\mathcal{E}_2)$. Далее, $A_2 \setminus A_1 \in \mathcal{F}$ вытекает из того, что $A_2 \setminus A_1 \in \mathcal{S}(\mathcal{E}_1 \bigcup \mathcal{E}_2)$. Пусть $A_1, A_2, \ldots \in \mathcal{F}$, т.е. найдутся \mathcal{E}_i , такие что $A_i \in \mathcal{S}(\mathcal{E}_i), \mathcal{E}_i$ - счетные множества и $\mathcal{E}_i \subset \mathcal{E}$. Тогда

$$\bigcup_{i=1}^{\infty} A_i \in \mathcal{S}(\bigcup_{i=1}^{\infty} \mathcal{E}_i) \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}.$$

По определению получаем, что \mathcal{F} - σ -кольцо. \square

Theorem 1.2. Пусть $\mathcal E$ - класс подмножеств X, а Y - подмножество X. Тогда

$$\mathcal{S}(\mathcal{E})\bigcap Y=\mathcal{S}(\mathcal{E}\bigcap Y).$$

Доказательство. Напомним, что по определению $\mathcal{E} \cap Y = \{E \cap Y, \text{ где } E \in \mathcal{E}\}.$

1. Покажем, что $\mathcal{S}(\mathcal{E} \cap Y) \subset \mathcal{S}(\mathcal{E}) \cap Y$. В силу того, что

$$(A_1 \setminus A_2) \bigcap Y = (A_1 \bigcap Y) \setminus (A_2 \bigcap Y),$$

$$(\bigcup_{i=1}^{\infty} A_i) \bigcap Y = \bigcup_{i=1}^{\infty} (A_i \bigcap Y)$$
(1)

получаем, что $S(\mathcal{E}) \cap Y$ является σ -кольцом по определению. Действительно, пусть $B_i \in S(\mathcal{E}) \cap Y$, т.е. $B_i = A_i \cap Y$, где $A_i \in S(\mathcal{E})$, i = 1, 2. Тогда

$$B_1 \setminus B_2 = (\underbrace{A_1 \setminus A_2}) \bigcap Y \in \mathcal{S}(\mathcal{E}) \bigcap Y.$$

Аналогично показывается выполнение второго условия из определения σ -кольца для $\mathcal{S}(\mathcal{E}) \cap Y$.

Итак, $\mathcal{S}(\mathcal{E}) \cap Y$ - σ -кольцо, содержащее $\mathcal{E} \cap Y$, а так как $\mathcal{S}(\mathcal{E} \cap Y)$ - наименьшее σ -кольцо, содержащее $\mathcal{E} \cap Y$, $\Rightarrow \mathcal{S}(\mathcal{E} \cap Y) \subset \mathcal{S}(\mathcal{E}) \cap Y$. $\mathcal{S}(\mathcal{E} \cap Y) \supset \mathcal{S}(\mathcal{E}) \cap Y$.

Пусть \mathcal{F} - класс множеств $A \subset X$ таких, что $A \cap Y \in \mathcal{S}(\mathcal{E} \cap Y)$. Тогда \mathcal{F} содержит \mathcal{E} , а в силу (1) \mathcal{F} является σ -кольцом. $\Rightarrow \mathcal{S}(\mathcal{E}) \subset \mathcal{F}$. Таким образом, $\mathcal{S}(\mathcal{E} \cap Y) \supset \mathcal{S}(\mathcal{E}) \cap Y$. \square

Definition 1.5. Класс подмножеств множества X называется монотонным (\mathcal{M}) , если

- $A_1 \supseteq A_2 \supseteq \dots, A_i \in \mathcal{M}$, $mo \bigcap_{1}^{\infty} A_i \in \mathcal{M}$.
- $A_1 \subseteq A_2 \subseteq \dots, A_i \in \mathcal{M}$, $mo \bigcup_{i=1}^{\infty} A_i \in \mathcal{M}$.

или иными словами:

Eсли $A_1,A_2,\ldots\in\mathcal{M}$ и $\{A_i\}$ - монотонная последовательность, тогда $\lim A_i\in\mathcal{M}.$

Definition 1.6. Монотонным классом $\mathcal{M}(\mathcal{E})$, порожденным классом множеств \mathcal{E} , называется наименьший монотонный класс, содержащий \mathcal{E} .

Упражнение. Доказать существование и единственность $\mathcal{M}(\mathcal{E})$.

Theorem 1.3. Кольцо является σ -кольцом, тогда и только тогда, когда оно является монотонным классом.

Доказательство. $1. \Rightarrow$

Пусть \mathcal{R} - σ -кольцо. Из определения σ -кольца вытекает необходимость. \mathcal{Q} . \Leftarrow

Пусть \mathcal{R} - кольцо и монотонный класс.

Пусть $A_1,A_2,\ldots\in\mathcal{R}$. Так как \mathcal{R} - кольцо, то $B_n=\bigcup\limits_1^nA_i\in\mathcal{R}$. И $B_n\subset$

 B_{n+1} . Следовательно, $\bigcup_{i=1}^{\infty} B_i \in \mathcal{R}$, так как \mathcal{R} - монотонный класс. Остается

заметить, что $\bigcup_1^\infty B_i = \bigcup_1^{\infty} A_i$. Таким образом, \mathcal{R} - σ -кольцо. \square

Theorem 1.4. Пусть \mathcal{R} - кольцо, тогда

$$\mathcal{M}(\mathcal{R}) = \mathcal{S}(\mathcal{R}).$$

 \mathcal{A} оказательство. 1. $\mathcal{M}(\mathcal{R}) \subseteq \mathcal{S}(\mathcal{R})$ - очевидно, в силу определения. 2. $\mathcal{M}(\mathcal{R}) \supseteq \mathcal{S}(\mathcal{R})$.

В силу теоремы 3 достаточно доказать, что $\mathcal{M}(\mathcal{R})$ является кольцом. Для любого $B \subset X$ обозначим $\mathcal{K}(B)$ - класс подмножеств $A \subset X$ таких, что

$$A \setminus B, B \setminus A, A \bigcup B \in \mathcal{M}(\mathcal{R}).$$

Из определения $\mathcal{K}(B)$ вытекает, что

$$A \in \mathcal{K}(B) \Leftrightarrow B \in \mathcal{K}(A).$$
 (2)

Пусть A_n - монотонная последовательность из $\mathcal{K}(B)$ Легко видеть, что

$$\lim A_n \setminus B = \lim (A_n \setminus B) \in \mathcal{M}(\mathcal{R}),$$

$$B \setminus \lim A_n = \lim (B \setminus A_n) \in \mathcal{M}(\mathcal{R}),$$

$$B \bigcup \lim A_n = \lim (B \bigcup A_n) \in \mathcal{M}(\mathcal{R}),$$

 $\Rightarrow \mathcal{K}(B)$ является монотонным классом.

Пусть $A, B \in \mathcal{R}$, тогда

$$A \in \mathcal{K}(B) \Rightarrow \mathcal{R} \subset \mathcal{K}(B) \Rightarrow \mathcal{M}(\mathcal{R}) \subset \mathcal{K}(B).$$

В силу симметрии (2) получаем, что для любых $A \in \mathcal{M}(\mathcal{R})$ и $B \in \mathcal{R}$

$$B \in \mathcal{K}(A) \Rightarrow \mathcal{M}(\mathcal{R}) \subset \mathcal{K}(A)$$

Следовательно, $\mathcal{M}(\mathcal{R})$ - кольцо. \square

Theorem 1.5. Пусть \mathcal{P} - полукольцо, тогда

 $\mathcal{R}(\mathcal{P})$ состоит из всех конечных объединений попарно непересекающихся множеств (\mathcal{F}) из $\mathcal{P}.$

Доказательства теоремы достаточно показать, что совокупность ${\mathcal F}$ является кольцом.

Пусть $A, B \in \mathcal{F}$. Тогда

$$\exists A_i, i = 1, \dots, n \quad A_i \cap A_j = \varnothing, i \neq j, A_i \in \mathcal{P},$$

$$\exists B_i, i = 1, \dots, m \quad B_i \bigcap B_j = \varnothing, i \neq j, B_i \in \mathcal{P}$$

такие, что $A = \bigsqcup_{1}^{n} A_{i}$, $B = \bigsqcup_{1}^{m} B_{k}$, где под символом \bigsqcup здесь и в дальнейшем понимается объединение попарно непересекающихся множеств. Далее,

$$A \bigcap B = \bigsqcup_{i,k} \left(\underbrace{A_i \bigcap B_k}_{D_{i,k}} \right)$$

так как $D_{i,k}$ попарно не пересекаются, при этом $D_{i,k} \in \mathcal{P}$ (по определению полукольца)

$$\Rightarrow A \cap B \in \mathcal{F}$$

Теперь докажем $A \setminus B \in \mathcal{F}$.

Упражнение Доказать самостоятельно.

Далее, включение $A \bigcup B \in \mathcal{F}$ вытекает из равенства $A \bigcup B = A \bigcup (B \setminus A)$. \square

Лекция 2.

2.1 Mepa

Definition 2.1. Мерой называется функция множеств μ , заданная на полукольце \mathcal{P}_{μ} со значением в $\overline{\mathbb{R}}^+ = [0, +\infty]$, не тождественно равная $+\infty$ и обладающая свойством σ -аддитивности, т.е. такая, что для

$$\forall \{A_i\} \in \mathcal{P}_{\mu}, \quad \bigcup_{1}^{\infty} A_i \in \mathcal{P}_{\mu}, \quad A_i \cap A_j = \varnothing, i \neq j$$

имеем

$$\mu\left(\bigcup_{1}^{\infty} A_{i}\right) = \sum_{1}^{\infty} \mu\left(A_{i}\right).$$

Definition 2.2. Множество A называется множеством конечной меры, если $\mu(A) < \infty$.

Definition 2.3. Множество A называется множеством σ -конечной меры, если $\exists A_i \in \mathcal{P}_{\mu}$ такие, что $\mu(A_i) < \infty$, а $A \subset \bigcup_{i=1}^{\infty} A_i$.

Definition 2.4. Мера μ называется конечной, если $X \in \mathcal{P}_{\mu}$ и $\mu(X) < \infty$.

Definition 2.5. Мера μ называется σ -конечной, если X - множество σ -конечной меры .

Свойства мер.

Note 2.1. 1.
$$\mu(\emptyset) = 0$$

 $\begin{subarray}{ll} \begin{subarray}{ll} \begin$

$$A = A \bigcup \emptyset \bigcup \emptyset \dots$$

и по определению получаем

$$\mu(A) = \mu(A) + \mu(\emptyset) + \mu(\emptyset) + \dots \Rightarrow \mu(\emptyset) = 0.$$

2. Любая мера является конечно-аддитивной, т.е. для

$$\forall A_1, \dots, A_n \in \mathcal{P}_{\mu}, \bigcup_{1}^{n} A_i \in \mathcal{P}_{\mu}, A_i \bigcap A_j = \emptyset, i \neq j,$$

$$\Rightarrow \mu(\bigcup_{1}^{n} A_i) = \sum_{1}^{n} \mu(A_i)$$

Доказательство. Доказывается непосредственно из определения и пункта 1. Необходимо лишь добавить бесконечное количество пустых множеств.

3. Из конечной аддитивности не вытекает счетная.

Доказательство. Пусть X - множество всех рациональных точек полуинтервала [0,1). Рассмотрим $\mathcal{P}_{\mu}=$ совокупность $[a,b)\bigcap X\ (0\leq a\leq b\leq 1)$ и их всевозможные конечные объединения , а также множества, состоящие из конечного числа рациональных точек из [0,1].

Определим μ так:

$$\mu([a,b) \bigcap X) = b - a,$$

$$\mu(\{r\}) = 0.$$

 μ является конечно-аддитивной, но не является счетно-аддитивной:

$$\mu(X) = \mu([0,1) \bigcap X) \neq \sum_{i=1}^{\infty} \mu(r_i).$$

Theorem 2.1. Любая мера μ на полукольце \mathcal{P}_{μ} может быть единственным образом продолжена на кольцо, порожденное полукольцом \mathcal{P}_{μ} .

Доказательство. Ниже $\mathcal{P} = \mathcal{P}_{\mu}$.

Из теоремы 1.5 вытекает, что, что для любого $A \in \mathcal{R}(\mathcal{P})$ имеем

$$A = \bigcup_{1}^{n} A_{i}, A_{i} \in \mathcal{P}, A_{i} \bigcap A_{j} = \varnothing, i \neq j.$$

Положим

$$\mu(\bigcup_{1}^{n} A_i) \stackrel{df}{=} \sum_{1}^{n} \mu(A_i).$$

Покажем корректность этого определения, т.е. если

$$A = \bigcup_{1}^{m} B_i, B_i \in \mathcal{P}, B_i \cap B_j = \varnothing, i \neq j,$$

то необходимо доказать, что

$$\sum_{1}^{n} \mu(A_i) = \sum_{1}^{m} \mu(B_i). \tag{1}$$

Имеем $B_k = B_k \cap A = \bigsqcup_{i=1}^{n} (B_k A_i)$, откуда получаем $\mu(B_k) = \sum_{i} \mu(B_k A_i)$. Следовательно,

$$\sum_{1}^{m} \mu(B_k) = \sum_{k=1}^{m} \sum_{i=1}^{n} \mu(B_k A_i).$$
 (2)

Аналогично, меняя местами в рассуждении B_k и A_i , получим

$$\sum_{1}^{n} \mu(A_i) = \sum_{i=1}^{n} \sum_{k=1}^{m} \mu(A_i B_k).$$
 (3)

Из (2) и (3) вытекает (1).

Докажем теперь счетную аддитивность μ .

Пусть
$$A = \bigcup_{1}^{\infty} A_i$$
, и $A_i, A \in \mathcal{R}(\mathcal{P}), \ A_i A_j = \emptyset, \ i \neq j$.

Покажем, что $\mu(A) = \sum_{i=1}^{\infty} \mu(A_i)$.

По теореме 1.5 $A = \bigsqcup_{j=1}^n B_j$ и все $B_j \in \mathcal{P}$. Аналогично

$$A_i = \bigsqcup_{r=1}^{n_i} C_{ir} \ , \ C_{ir} \in \mathcal{P}$$

Положим $D_{jir}=B_j \cap C_{ir}.$ Очевидно, что D_{jir} попарно не пересекаются и $D_{jir}\in \mathcal{P}.$ Причем,

$$B_j = \bigsqcup_{i,r} D_{jir}, C_{ir} = \bigsqcup_j D_{jir}.$$

Тогда из определения μ на \mathcal{P}_{μ} получаем

$$\mu(A) = \sum_{j} \mu(B_j) = \sum_{j} \sum_{i,r} \mu(D_{jir}).$$

Но в силу того, что

$$\mu(A_i) = \sum_{1}^{n_i} \mu(C_{ir}) = \sum_{r} \sum_{i} \mu(D_{jir}),$$

имеем

$$\sum_{i} \mu(A_i) = \sum_{j,i,r} \mu(D_{jir}).$$

Откуда и вытекает σ -аддитивность μ .

Осталось показать единственность. Докажем это от противного.

Пусть существует некоторая μ_* - другое продолжение.

Пусть $A \in \mathcal{R}(\mathcal{P})$, тогда по теореме 5 $A = \bigsqcup_{i=1}^n A_i, \ A_i \in \mathcal{P}.$ Из свойства аддитивности и в силу того, что $\mu_* = \mu$ на полукольце

получаем, что

$$\mu_*(A) = \sum_{i=1}^n \mu_*(A_i) = \sum_{i=1}^n \mu(A_i) = \mu(A).$$

Таким образом, μ_* и μ совпадают. \square

Свойства мер.

В дальнейшем, если не оговорено противное, будем считать, что область определения меры есть кольцо.

Theorem 2.2. Справедливы следующие утверждения:

- 1. Пусть $A, B \in \mathcal{R}, A \subseteq B$, тогда $\mu(A) \leq \mu(B)$. Если $\mu(A)$ конечно, то $\mu(B \setminus A) = \mu(B) - \mu(A).$
- 2. Пусть $A_i \in \mathcal{R}, \ B_i \in \mathcal{R}, \ i=1,2,\ldots \ u \ B_iB_j=\varnothing, \ i\neq j$. Тогда
 - a) Ecnu $A \in \mathcal{R}$ u $A \subset \bigcup_{i=1}^{\infty} A_i$, mo

$$\mu(A) \le \sum_{1}^{\infty} \mu(A_i)$$

-свойство счетной полуаддитивности. б) Если $B\supset \bigsqcup_{i=1}^{\infty}B_{i}\,, \ B\in\mathcal{R},$ mo

$$\mu(B) \ge \sum_{1}^{\infty} \mu(B_i).$$

3. a) Ecnu $A_i \in \mathcal{R}, A_i \subseteq A_{i+1}, u \lim A_i \in \mathcal{R}, mo$

$$\mu(\lim A_i) = \lim \mu(A_i).$$

- непрерывность меры по неубывающей последовательности. б) Если $B_i \in \mathcal{R}, \ B_i \supseteq B_{i+1}, \ \lim B_i \in \mathcal{R} \ u \ cyweemsyem j \ make, \ umo \ \mu(B_j) < 0$ ∞ , тогда

$$\mu(\lim B_i) = \lim \mu(B_i).$$

- непрерывность меры по невозрастающей последовательности.

Note 2.2. Требование существования j такого, что $\mu(B_j) < \infty$ существенно, т.к. существует пример:

$$X, S. A \subset X \ \mu(A)$$
 - число элементов, $B_n = [0, \frac{1}{n}) \cap X$, $\lim B_n = \{0\}, \mu(B_n) = \infty, \Rightarrow, \lim \mu(B_n) = +\infty \neq \mu(\lim B_n) = 1$

- 4. Пусть μ конечная неотрицательная конечно-аддитивная функция множеств на \mathcal{R} , обладающая свойствами 3a) или 36) $c \lim B_i = \varnothing$. Тогда μ есть мера на \mathcal{R} .
- Note 2.3. Свойства 1-3 верны для любой меры на полукольце. Достаточно применить теорему 2.1.
- Свойство 3б) без предположения о существовании $j:\mu(B_j)<\infty,$ неверно. Привести пример!

Доказательство. 1. Монотонность меры:

$$A \subseteq B$$
. Тогда $B = A \bigcup (B \setminus A)$. Следовательно,

$$\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A).$$

2. а) $A \subset \bigcup_{1}^{\infty} A_i$. Свойство счетной полуаддитивности. Тогда

$$A = \bigcup_{1}^{\infty} D_i = \bigcup_{1}^{\infty} C_i, \ D_i = A \bigcap A_i$$

и $C_1 = D_1, C_2 = D_2 \setminus D_1, \dots, C_j = D_j \setminus (\bigcup_{i=1}^{j-1} D_i)$. Тогда в силу σ -аддитивности μ мы имеем:

$$\mu(A) = \sum_{1}^{\infty} \mu(C_i) \le \sum_{1}^{\infty} \mu(D_i) \le \sum_{1}^{\infty} \mu(A_i).$$

б) Если $\bigsqcup_{i=1}^{\infty} B_i \subset B$, то $\bigsqcup_{i=1}^{n} B_i \subset B$ для любого n.

В силу пункта 1 получаем

$$\sum_{1}^{n} \mu(B_i) = \mu(\bigsqcup_{1}^{n} B_i) \le \mu(B).$$

Устремляя $n \to \infty$, получаем 26).

3. а) Положим $A_0=\varnothing.A_1\subset A_2\subset\dots$ Имеем

$$\mu(\lim A_i) = \mu(\bigcup_{1}^{\infty} A_i) = \mu(\bigcup_{i=1}^{\infty} (A_i \setminus A_{i-1})) =$$

$$=\sum_{1}^{\infty}\mu(A_i\setminus A_{i-1})=\lim_{n}\sum_{1}^{n}\mu(A_i\setminus A_{i-1})=\lim_{n}\mu(A_n).$$

б) Если $B_i \supseteq B_{i+1} \supseteq \ldots$, то

$$B_r = \bigcup_{i>r}^{\infty} (B_i \setminus B_{i+1}) \bigcup (\bigcap_{1}^{\infty} B_i).$$

Значит $\mu(B_r) = \sum_{i=r}^{\infty} \mu(B_i \setminus B_{i+1}) + \mu(\bigcap_{1}^{\infty} B_i)$. Если r > j такое, что $\mu(B_j) < \infty$, то $\sum_{i=r}^{\infty} \mu(B_i \setminus B_{i+1})$ - остаток сходящегося ряда, и поэтому

$$\lim_{r \to \infty} \mu(B_r) = \mu(\lim_{r \to \infty} B_r).$$

4. Покажем, что из конечной аддитивности и непрерывности по неубыванию последовательности вытекает σ -аддитивность. Пусть $C_i \in \mathbf{R}, \bigcup_{i=1}^{\infty} C_i \in$

$$\mathbf{R},C_iC_j=\emptyset$$
. Положим $A_i=igsqcup_{i=1}^iC_j,\Rightarrow,A_i\subset A_{i+1}$ и $igcup_1^\infty A_i=igcup_1^\infty C_i,\Rightarrow,$ в

силу 3а), $\mu \bigcup_{1}^{\infty} C_i = \mu \bigcup_{1}^{\infty} A_i = \lim \mu(A_n) = \lim_{n} \sum_{1}^{n} \mu(C_j) = \sum_{1}^{\infty} \mu(C_j)$. Это означает счетную аддитивность μ , т.е. μ - мера.

Пусть выполнено условие 36). Положим $D_i = \bigcup_{i=1}^{\infty} A_i$. Имеем $D_i \supset$

$$D_{i+1}\supset\dots$$
 , и $\bigcap_1^\infty D_i=\varnothing$. Так как μ - конечная, значит $\mu(D_i)<\infty$.

В силу 3б) и представления

$$\mu(A) = \sum_{1}^{i-1} \mu(A_j) + \mu(D_i)$$

получаем, что при $i \to \infty$

$$\mu(A) = \sum_{j=1}^{\infty} \mu(A_j),$$

что и требовалось доказать. 🗆

Упраженение.

Используя пример конечно-аддитивной, но не счетно-аддитивной μ , показать, что п.4 предыдущей теоремы не верен для функции μ на полукольцах.

Лекция 3.

3.1 Внешние меры

Definition 3.1. Класс \mathcal{E} подмножеств множества X называется **наследственным классом**, если из $A \subset B \in \mathcal{E}$ следует, что $A \in \mathcal{E}$.

Definition 3.2. *Наследственное* σ -кольцо - это σ -кольцо, являющееся наследственным классом.

В дальнейшем через $\mathcal{H}(A)$ обозначаем наследственное σ -кольцо, порожденное совокупностью подмножеств \mathcal{A} , т.е. наименьшее наследственное σ -кольцо, содержащее \mathcal{A} .

Note 3.1. Любое пересечение наследственных классов есть наследственный класс.

Proposition 3.1. $\mathcal{H}(\mathcal{A})$ - наследственное σ -кольцо, порожденное \mathcal{A} , состоит из подмножеств не более, чем счетных объединений элементов из совокупности

Доказательство. Обозначим класс подмножеств, указанный в формулировке

через \mathcal{F} . Пусть $B\subset\bigcup_1^\infty A_i$, $A_i\in\mathcal{A}$. Имеем $\bigcup_1^\infty A_i\in\mathcal{H}(\mathcal{A})$, т.к. \mathcal{H} - σ -кольцо , и $B\in\mathcal{H}(\mathcal{A})$, т.к. \mathcal{H} - наследственный класс. Т.е. $\mathcal{F}\subset\mathcal{H}(\mathcal{A})$. А так как $\mathcal{A}\subset\mathcal{F}$, то достаточно показать, что \mathcal{F} есть σ -кольцо.

Пусть $B_1, B_2, \dots \in \mathcal{F}$. Тогда

$$\forall B_i \subset \bigcup_{1}^{\infty} A_{ij}, \ A_{ij} \in \mathcal{A} \ \Rightarrow \ \bigcup_{1}^{\infty} B_i \subset \bigcup_{i,j}^{\infty} A_{ij} \ \Rightarrow \ \bigcup_{1}^{\infty} B_i \in \mathcal{F}.$$

Далее рассмотрим $B_1 \setminus B_2$.

$$B_1 \setminus B_2 \subset B_1 \subset \bigcup_{i=1}^{\infty} A_{1i} \Rightarrow B_1 \setminus B_2 \in \mathcal{F},$$

что и требовалось доказать. 🗆

Definition 3.3. Внешней мерой называется функция μ^* , определенная на некотором наследственном σ -кольце \mathcal{H} , принимающая значения в $\overline{\mathbb{R}}^+ = [0, +\infty]$ и такая, что :

- 1. $\mu^*(\emptyset) = 0$.
- 2. Если $A \subset B \in \mathcal{H}$, то $\mu^*(A) \leq \mu^*(B)$.
- 3. Если $A_1, A_2, \dots \in \mathcal{H}$, то

$$\mu^*(\bigcup_{1}^{\infty} A_i) \leq \sum_{1}^{\infty} \mu^*(A_i).$$

Definition 3.4. Пусть μ^* - внешняя мера на \mathcal{H} . Множество $E \in \mathcal{H}$ называется измеримым (относительно μ^*), если для любого $H \in \mathcal{H}$

$$\mu^*(H) = \mu^*(H \cap E) + \mu^*(H \cap E^c) \tag{1}$$

 $Note\ 3.2.\ \mu^*(H) \le \mu^*(H \cap E) + \mu^*(H \cap E^c)$ выполнено всегда в силу определения внешней меры.

Theorem 3.1. Если класс \overline{S} - это совокупность измеримых (относительно μ^*) множеств, то

- 1. \overline{S} σ -кольцо.
- 2. Ecau $H \in \mathcal{H}$ u $E_i \in \overline{S}$, $i = 1, 2, \ldots$ u $E_i \cap E_j = \emptyset$, $i \neq j$, mo

$$\mu^*(H\bigcap(\bigcup_{1}^{\infty}E_i))=\sum_{1}^{\infty}\mu^*(H\bigcap E_i).$$

Доказательство. Сначала докажем, что \overline{S} является кольцом. Пусть $E,F\in \overline{S}$. Из (1) и измеримости F получаем

$$\mu^*(H) = \mu^*(H \bigcap F \bigcap E) + \mu^*(H \bigcap E \bigcap F^c) +$$

$$+\mu^*(H \bigcap E^c \bigcap F) + \mu^*(H \bigcap E^c \bigcap F^c)$$
(2).

Возьмем в (2) $H \cap (F \cup E)$ в качестве H, тогда

$$\begin{split} \mu^*(H\bigcap(F\bigcup E)) &= \mu^*(H\bigcap F\bigcap E) + \\ + \mu^*(H\bigcap E\bigcap F^c) &+ \mu^*(H\bigcap E^c\bigcap F) + \mu^*(\varnothing), \end{split}$$

T.K. $E^c \cap F^c = (E \bigcup F)^c$.

Следовательно, для любого $H \in \mathcal{H}$ в силу (2) имеем

$$\mu^*(H) = \mu^*(H\bigcap (F\bigcup E)) + \mu^*(H\bigcap (F\bigcup E)^c),$$

что означает измеримость $F \bigcup E$, т.е. $(F \bigcup E) \in \overline{S}$.

Докажем теперь, что $E \setminus F \in \overline{S}$. Возьмем в (2) $H = H \cap (E \setminus F)^c$ вместо H. Так как $H \cap (E \setminus F)^c = H \cap (E^c \cup F)$, то, проводя аналогичные рассуждения, получим, что $(E \setminus F) \in \overline{S}$.

Итак доказано, что \overline{S} - кольцо.

Так как \overline{S} - кольцо, то для $E_i \in \overline{S}, \ E_i \cap E_j = \emptyset, \ i \neq j$ имеем

$$\mu^{*}(H) = \mu^{*}(H \cap (\bigcup_{1}^{n} E_{i})) + \mu^{*}(H \cap (\bigcup_{1}^{n} E_{i})^{c}) \ge$$

$$\ge \sum_{1}^{n} \mu^{*}(H \cap E_{i}) + \mu^{*}(H \cap (\bigcap_{1}^{\infty} E_{i}^{c}))$$
(2*),

потому что, если Е и $F \in \overline{S}$ и $E \cap F = \emptyset$, то

$$\mu^*(H\bigcap(E\bigcup F)) = \mu^*(H\bigcap E) + \mu^*(H\bigcap F). \tag{3}$$

Действительно, (3) следует из (2), если взять в (2) $H \cap (E \cup F)$ в качестве Н. По индукции из (3) получаем

$$\mu^*(H\bigcap(\bigsqcup_{i=1}^n E_i)) = \sum_{i=1}^n \mu^*(H\bigcap E_i).$$

Из (2*) получим

$$\mu^*(H) \ge \sum_{i=1}^{\infty} \mu^*(H \cap E_i) + \mu^*(H \cap (\bigcap_{i=1}^{\infty} E_i^c)) \ge$$

$$\ge \mu^*(H \cap (\bigcup_{i=1}^{\infty} E_i)) + \mu^*(H \cap (\bigcup_{i=1}^{\infty} E_i)^c). \tag{4}$$

Поскольку обратное неравенство очевидно, получаем

$$\bigsqcup_{1}^{\infty} E_i \in \overline{S}.$$

Отсюда вытекает, что \overline{S} есть σ -кольцо, так как любое счетное объединение можно представить суммой попарно непересекающихся множеств. Из (4) вытекает, что для любого $H \in \mathcal{H}$ справедливо

$$\mu^*(H) = \sum_{i=1}^{\infty} \mu^*(H \cap E_i) + \mu^*(H \cap (\bigcap_{i=1}^{\infty} E_i^c)).$$

Если теперь взять $H \cap (\bigcup_1^\infty E_i)$ вместо H, то получим утверждение 2 теоремы. \square

Лекция 4.

Definition 4.1. Мера μ на σ -кольце S называется **полной**, если из $A \subset B \in S$ и $\mu(B) = 0$ следует, что $A \in S$ и $\mu(A) = 0$.

Theorem 4.1. Пусть μ^* -внешняя мера на наследственном σ -кольце \mathcal{H} , \overline{S} - класс всех μ^* -измеримых множеств из \mathcal{H} . Тогда если $A \in \mathcal{H}$ и $\mu^*(A) = 0$, то $A \in \overline{S}$ и функция $\overline{\mu}$, определенная на \overline{S} равенством

$$\overline{\mu}(E) = \mu^*(E), \quad E \in \overline{S},$$

является полной мерой на \overline{S} , т.е. $\overline{\mu}$ есть сужение μ^* с \mathcal{H} на \overline{S} .

Доказательство. Пусть $A\in\mathcal{H}$ такое, что $\mu^*(A)=0$. Тогда для любого $H\in\mathcal{H}$ справедливо

$$\mu^*(H) = \mu^*(H) + \mu^*(A) \ge \mu^*(H \cap A) + \mu^*(H \cap A^c).$$

Так как обратное очевидно, получаем

$$\mu^*(H) = \mu^*(H \cap A) + \mu^*(H \cap A^c).$$

Поэтому $A \in \overline{S}$.

Покажем, что $\overline{\mu}$ является мерой. Достаточно доказать, что $\overline{\mu}$ счетно-аддитивна. Для этого в формуле теоремы 3.1 надо взять $H=\bigsqcup_1^\infty E_i,\ E_i\in\overline{S}.$

Внешняя мера, отвечающая мере на кольце.

Theorem 4.2. Пусть μ - мера на кольце \mathcal{R} . $\mathcal{H}(\mathcal{R})$ - наследственное σ -кольцо, порожденное \mathcal{R} . Положим для любого $A \in \mathcal{H}(\mathcal{R})$

$$\mu^*(A) = \inf\{\sum_{1=1}^{\infty} \mu(A_i) : A \subset \bigcup_{1=1}^{\infty} A_i, A_i \in \mathcal{R}\}$$

Тогда μ^* является внешней мерой на $\mathcal{H}(\mathcal{R})$, совпадающей на \mathcal{R} с μ .

Доказательство. Сначала покажем, что если $A \in \mathcal{R}$, то $\mu^*(A)$ совпадает с $\mu(A)$.

Действительно, из свойств меры вытекает, что, если $A \subset \bigcup_1^\infty A_i$ и A , $A_i \in \mathcal{R}$, то

$$\mu(A) \le \sum_{1}^{\infty} \mu(A_i) \Rightarrow \mu(A) \le \mu^*(A).$$

Но так как $A \subset A \bigcup \varnothing \bigcup \varnothing \ldots$, $A \in \mathcal{R}$, то $\mu^*(A) \leq \mu(A)$ и поэтому $\mu(A) = \mu^*(A)$ для $A \in \mathcal{R}$. Теперь докажем, что μ^* -внешняя мера на $\mathcal{H} = \mathcal{H}(\mathcal{R})$.

- 1. $\mu^*(\varnothing) = 0$, т.к. $\varnothing \in \mathcal{R}$ и $\mu^*(\varnothing) = \mu(\varnothing) = 0$.
- 2. Пусть $B_1,B_2\in\mathcal{H},\ B_1\subset B_2.$ Если $B_2\subset\bigcup_1^\infty A_i,\ A_i\in\mathcal{R},$ то $B_1\subset\bigcup_{i=1}^\infty A_i$ и поэтому

 $\mu^*(B_1) \le \mu^*(B_2).$

3. μ^* - полуаддитивна, т.е. надо показать, что, если $A,A_i\in\mathcal{H},\quad A\subset\bigcup_{1}^\infty A_i$, то

$$\mu^*(A) \le \sum_{1}^{\infty} \mu^*(A_i). \tag{5}$$

Действительно, из определения μ^* вытекает, что для $\forall \varepsilon>0, \forall i \;\;\exists\; \{A_{ij}\}, A_{ij}\in\mathcal{R}\;\;:$

$$\mu^*(A_i) + \varepsilon/2^i \ge \sum_j \mu(A_{ij}), \quad A_i \subset \bigcup_{1}^{\infty} A_{ij}.$$

Очевидно, что $A\subset \bigcup_{i,j}A_{ij},\ A_{ij}\in\mathcal{R}.$ Следовательно

$$\mu^*(A) \le \sum_{i,j} \mu(A_{ij}) \le \varepsilon + \sum_{1}^{\infty} \mu^*(A_i).$$

В силу произвольности ε получаем (5). \square

Theorem 4.3. Пусть μ^* - внешняя мера, соответствующая мере μ и построенная в предыдущей теореме. Если μ σ -конечна, то μ^* также σ -конечна.

Доказательство. Если μ σ -конечна, то $X \in \mathcal{R}$ и найдется последовательность $A_i \in \mathcal{R}$ такая, что $X \subset \bigcup_1^\infty A_i$ и $\mu(A_i) < \infty$. Так как μ и μ^* совпадают на \mathcal{R} , получаем σ -конечность μ^* . \square

Theorem 4.4. $S(\mathcal{R}) \subset \overline{S}$ - класс μ^* -измеримых множеств, где μ^* есть внешняя мера, отвечающая мере μ (из теоремы 4.2).

 \mathcal{A} оказательство. Пусть $E\in\mathcal{R},\,H\in\mathcal{H}$ и фиксируем произвольное $\varepsilon>0$. Из определения μ^* вытекает, что найдутся $\{E_n\},\,\,E_n\in\mathcal{R}$ такие, что

$$H \subset \bigcup_{1}^{\infty} E_n , \ \mu^*(H) + \varepsilon \geq \sum_{1}^{\infty} \mu(E_n).$$

Далее,

$$\mu(E_n) = \mu(\underbrace{E_n \bigcap E}) + \mu(\underbrace{E_n \bigcap E^c})$$

$$\Rightarrow \mu^*(H) + \varepsilon \ge \sum_{1}^{\infty} \mu(E_n \bigcap E) + \sum_{1}^{\infty} \mu(E_n \bigcap E^c) \ge$$

$$\ge \mu^*(H \bigcap E) + \mu^*(H \bigcap E^c),$$

так как

$$H \bigcap E \subset \bigcup_{1}^{\infty} (E_n \bigcap E) = (\bigcup_{1}^{\infty} E_n) \bigcap E.$$

В силу произвольности ε получаем, что

$$\mu^*(H) \ge \mu^*(H \cap E) + \mu^*(H \cap E^c).$$

Так как обратное неравенство очевидно, то

$$\mu^*(H) = \mu^*(H \bigcap E) + \mu^*(H \bigcap E^c)$$

Е есть μ^* -измеримое множество по определению. Следовательно, $\mathcal{R} \subset \overline{S}$. Поскольку \overline{S} есть σ -кольцо, получаем $\mathcal{S}(\mathcal{R}) \subset \overline{S}$. \square

Theorem 4.5. Для всякой меры μ на кольце $\mathcal R$ найдется мера $\widetilde{\mu}$ на $\mathcal S(\mathcal R)$, продолжающая μ , m.e.

$$\widetilde{\mu}(A) = \mu(A), \ A \in \mathcal{R}.$$

Eсли μ - σ -конечна, то $\widetilde{\mu}$ - σ -конечна и $\widetilde{\mu}$ есть единственное продолжение.

Доказательство. Существование $\widetilde{\mu}$ следует из теорем 4.1 - 4.4.

Докажем от противного, что $\widetilde{\mu}$ является единственным продолжением. Пусть существуют μ_1,μ_2 продолжающие μ на $\mathcal{S}(\mathcal{R})$, причем одно из них, скажем, μ_1 конечно . Обозначим через \mathcal{M} класс элементов A из $\mathcal{S}(\mathcal{R})$ такой , что

$$\mu_1(A) = \mu_2(A).$$

Очевидно, класс \mathcal{M} не пуст, так как $\mathcal{R} \subset \mathcal{M}$. Легко видеть, что \mathcal{M} - монотонный класс из непрерывности меры.

Ранее доказано (см. теорему 1.4), что $\mathcal{M}(\mathcal{R}) = \mathcal{S}(\mathcal{R})$. Поэтому $\mathcal{S}(\mathcal{R}) \subset \mathcal{M}$, но по определению $\mathcal{M} \subset \mathcal{S}(\mathcal{R})$. Следовательно, $\mathcal{M} = \mathcal{S}(\mathcal{R})$ и поэтому $\mu_1 = \mu_2$ на $\mathcal{S}(\mathcal{R})$.

Отбросим предположение о конечности μ_1 .

Пусть $E \in \mathcal{R}$, $\mu(E) < \infty$. Ранее доказано (см. теорему 1.2), что

$$S(\mathcal{R}) \cap E = S(\mathcal{R} \cap E).$$

Поскольку $\mathcal{S}(\mathcal{R} \cap E)$ - σ -кольцо, на котором μ_1, μ_2 конечны, получаем $\mu_2 = \mu_1$ на $\mathcal{S}(\mathcal{R} \cap E)$.

Пусть F - произвольный элемент $\mathcal{S}(\mathcal{R})$. Покажем, что

$$\mu_1(F) = \mu_2(F).$$

В силу σ -конечности μ имеем

$$\exists \{E_n\}, E_n \in \mathcal{R} : \mu(E_n) < \infty, F \subset \bigcup_{1}^{\infty} E_n.$$

Положим $F_1=E_1,\ldots,F_n=E_n\setminus\bigcup_{i=1}^{n-1}\,E_i$. Тогда

$$F_n \in \mathcal{R}, \ F \subset \bigcup_{1}^{\infty} F_n, \ \mu(F_n) < \infty.$$

Так как μ_i , i = 1, 2, - меры, совпадающие на \mathcal{R} , получаем

$$\mu_1(F) = \sum_{1}^{\infty} \mu_1(F_n \bigcap F) = \sum_{1}^{\infty} \mu_2(F \bigcap F_n) = \mu_2(F)$$
$$\mu_1(F) = \mu_1(F \bigcap (\bigcup_{1}^{\infty} F_n)),$$

где $F_i \cap F_j = \emptyset, i \neq j$

Note 4.1. Требование σ -конечности в предыдущей теореме существенно.

Пример:

Рассмотрим $X = [0,1) \cap \mathbb{Q}$, \mathbb{Q} - множество рациональных чисел. \mathcal{P} - полукольцо подмножеств X вида $[a,b) \cap \mathbb{Q}$.

Как было доказано (см. теорему 1.5) $\mathcal{R}(\mathcal{P})$ есть совокупность конечных объединений попарно непересекающихся элементов из \mathcal{P} .

Легко видеть, что в данном случае $\mathcal{S}(\mathcal{P}) = \mathcal{S}(\mathcal{R})$ есть совокупность всех подмножеств X.

Определим μ на \mathcal{R} формулой $\mu(A) =$ числу точек в A. Очевидно, μ не является σ -конечной. Рассмотрим $\mu_1(A) =$ числу точек в A; $A \in \mathcal{S}(\mathcal{R})$.

Пусть $\mu_2(A) = 2\mu_1(A)$. Функции μ_1 и μ_2 совпадают с μ на \mathcal{R} : все три функции на всех множествах из \mathcal{R} , кроме пустого, равны бесконечности.

Однако μ_1 и μ_2 на $\mathcal{S}(\mathcal{R})$ различны.

Таким образом, требование σ -конечности существенно.

Лекция 5.

Theorem 5.1. $\Pi ycmb \mu \text{ мера на } \mathcal{R}$

1) Множество $E \in \mathcal{H}(\mathcal{R})$ является μ^* -измеримым, если для

$$\forall \varepsilon > 0 \; \exists E_0 \in \mathcal{R} : \quad \mu^*(E \triangle E_0) < \varepsilon. \tag{6}$$

2) Если E является μ^* -измеримым и $\mu^*(E) < \infty$, то для $\forall \varepsilon > 0 \exists E_0 \in \mathcal{R}$ такое, что справедливо (6).

Доказательство. 1) Напомним, что по определению E является μ^* -измеримым, если для любого $H \in \mathcal{H}(\mathcal{R})$ справедливо равенство

$$\mu^*(H) = \mu^*(H \cap E) + \mu^*(H \cap E^c).$$

Как мы отмечали ранее, для доказательства этого равенства достаточно показать, что для любого $H \in \mathcal{H}(\mathcal{R})$ имеем

$$\mu^*(H) \ge \mu^*(H \cap E) + \mu^*(H \cap E^c). \tag{7}$$

Поскольку (7) очевидно для $H \in \mathcal{H}(\mathcal{R})$, для которых $\mu^*(H) = \infty$, достаточно доказать (7) для H, имеющих конечную внешнюю меру. Пусть $\varepsilon > 0$ Возьмем $E_0 \in \mathcal{R}$ такое, что выполняется (6). Заметим, что $\forall A, B \in \mathcal{H} : \mu^*(A) < \infty$, $\mu^*(B) < \infty$ справедливо неравенство

$$\mid \mu^*(A) - \mu^*(B) \mid \le \mu^*(A \triangle B) \tag{8}$$

Действительно, $A\subset B\bigcup (A\triangle B)$ и $B\subset A\bigcup (A\triangle B)$. В силу свойств внешней меры μ^* получаем

$$\mu^*(A) \le \mu^*(B) + \mu^*(A \triangle B).$$

И

$$\mu^*(B) \le \mu^*(A) + \mu^*(A \triangle B).$$

Из последних неравенств вытекает (8). Возьмем $A = E \cap H$ и $B = E_0 \cap H$. Заметим, что

$$A\triangle B = (E\triangle E_0) \bigcap H \subset E\triangle E_0.$$

Тогда из (6) и (8)следует, что

$$\mid \mu^*(E \cap H) - \mu^*(E_0 \cap H) \mid \leq \varepsilon.$$

Поскольку $E^c\triangle E_0^c=E\triangle E_0$, аналогично доказываем неравенство

$$\mid \mu^*(E^c \cap H) - \mu^*(E_0^c \cap H) \mid \leq \varepsilon.$$

Поэтому, учитывая измеримость E_0 , имеем

$$\mu^*(H) = \mu^*(H \cap E_0) + \mu^*(H \cap E_0^c) \ge \mu^*(H \cap E) + \mu^*(H \cap E^c) - 2\varepsilon.$$

В силу произвольности ε неравенство (7) и тем самым измеримость E доказаны.

2) По определению

$$\mu^*(E) = \inf\{\sum_{i=1}^{\infty} \mu(E_i), E \subset \bigcup_{i=1}^{\infty} E_i, E_i \in \mathcal{R}\}.$$

Следовательно, $\exists \{E_i\}, E_i \in \mathcal{R}, E \subset \bigcup_{1}^{\infty} E_i$ такие, что

$$\sum_{1}^{\infty} \mu(E_i) \le \mu^*(E) + \frac{\varepsilon}{2}.$$

Из определения и свойств меры $\overline{\mu}$ (на лекциях $\overline{\mu}$ -сужение внешней меры μ^* на $\overline{\mathcal{S}}$ имеем

$$\infty > \sum_{1}^{\infty} \mu(E_i) \ge \overline{\mu}(\bigcup_{1}^{\infty} E_i) = \lim \overline{\mu}(\bigcup_{1}^{n} E_i).$$

Следовательно, существует n_0 , для которого

$$\overline{\mu}(\bigcup_{1}^{\infty} E_i) \leq \overline{\mu}(\bigcup_{E_0 \in \mathcal{R}}^{n_0} E_i) + \frac{\varepsilon}{2}.$$

Для доказательства (6) достаточно показать, что

$$\mu^*(E \setminus E_0) \le \frac{\varepsilon}{2} \text{ if } \mu^*(E_0 \setminus E) \le \frac{\varepsilon}{2},$$

так как $E\triangle E_0 = (E \setminus E_0) \bigcup (E_0 \setminus E)$. Имеем

$$\mu^*(E \setminus E_0) \le \mu^*((\bigcup_{i=\overline{S}}^{\infty} E_i) \setminus \underbrace{E_0}_{\in \overline{S}}) = \overline{\mu}((\bigcup_{i=1}^{\infty} E_i) \setminus E_0) = \overline{\mu}(\bigcup_{i=1}^{\infty} E_i) - \overline{\mu}(E_0) \le \frac{\varepsilon}{2}.$$

И

$$\mu^*(E_0 \setminus E) \le \mu^*((\bigcup_{1}^{\infty} E_i) \setminus E)$$

$$= \overline{\mu}((\bigcup_{1}^{\infty} E_i) \setminus E) = \overline{\mu}(\bigcup_{1}^{\infty} E_i) - \overline{\mu}(E) \le \frac{\varepsilon}{2}.$$

Theorem 5.2. \mathcal{A}_{AB} scex $E \in \mathcal{H}(\mathcal{R})$ umeem

$$\mu^*(E) = \inf\{\overline{\mu}(F), E \subset F, F \in \overline{S}\} = \inf\{\widetilde{\mu}(F), E \subset F, F \in \mathcal{S}(\mathcal{R})\}.$$

Доказательство. Утверждение вытекает из цепочки неравенств

$$\mu^*(E) = \inf\{\sum_{1}^{\infty} \mu(E_i), E \subset \bigcup_{1}^{\infty} E_i, E_i \in \mathcal{R}\}$$

$$\geq \inf\{\sum_{1}^{\infty} \tilde{\mu}(E_i), E \subset \bigcup_{1}^{\infty} E_i, E_i \in \mathcal{S}(\mathcal{R})\}$$

$$\geq \inf\{\tilde{\mu}(\bigcup_{1}^{\infty} E_i), E \subset \bigcup_{1}^{\infty} E_i, E_i \in \mathcal{S}(\mathcal{R})\}$$

$$\geq \inf\{\overline{\mu}(F), E \subset F, F \in \overline{S}\} \geq \mu^*(E).$$

Definition 5.1. F - называется **измеримой оболочкой** для $E \in \mathcal{H}(\mathcal{R})$, если $F \in \mathcal{S}(\mathcal{R})$, $E \subset F$ и для любого $G \in \mathcal{S}(\mathcal{R})$: $G \subset F \setminus E$ имеем $\tilde{\mu}(G) = 0$.

Theorem 5.3. Если $E \in \mathcal{H}(\mathcal{R})$ имеет σ -конечную внешнюю меру, то E имеет измеримую оболочку F и $\mu^*(E) = \tilde{\mu}(F)$.

Доказательство. Предположим сначала, что $\mu^*(E) < \infty$. По предыдущей теореме

$$\forall n > 0 \exists F_n \in \mathcal{S}(\mathcal{R}) : E \subset F_n, \tilde{\mu}(F_n) \leq \mu^*(E) + \frac{1}{n}$$

Положим $F = \bigcap_{1}^{\infty} F_n \in \mathcal{S}(\mathcal{R})$. Имеем $E \subset F$ и при любом натуральном n

$$\mu^*(E) \le \mu^*(F) = \tilde{\mu}(F) \le \tilde{\mu}(F_n) \le \mu^*(E) + \frac{1}{n}.$$

В силу произвольности n получаем $\mu^*(E) = \tilde{\mu}(F)$.

Проверим, что F есть измеримая оболочка.

Возьмем произвольное $G \subset F \setminus E, G \in \mathcal{S}(\mathcal{R})$. Предположим, что $\tilde{\mu}(G) > 0$. Поскольку $E \subset F \setminus G$, имеем

$$\mu^*(E) \leq \mu^*(\underbrace{F \setminus G}_{\in \mathcal{S}(\mathcal{R})}) = \tilde{\mu}(F \setminus G) = \tilde{\mu}(F) - \tilde{\mu}(G) < \tilde{\mu}(F) = \mu^*(E).$$

Получили противоречие и поэтому $\tilde{\mu}(G)=0,$ т.е. F есть измеримая оболочка.

Пусть E теперь σ -конечно относительно μ^* . Тогда найдутся $E_n \in \mathcal{H}(\mathcal{R})$ такие, что

$$E = \bigcup_{1}^{\infty} (E_n \cap E) : \mu^*(E_n \cap E) < \infty.$$

По первой части доказательства $\exists F_n$ - измеримая оболочка для $E_n \cap E$. Тогда утверждается, что $F_0 = \bigcup_{1}^{\infty} F_n$ является измеримой оболочкой для E.

Упражнение. Доказать самостоятельно

Упражнение. Пусть F_1 и F_2 измеримые оболочки для E показать, что $\tilde{\mu}(F_1\triangle F_2)=0.$

Theorem 5.4. Пусть мера μ является σ конечной на \mathcal{R} . Тогда $\overline{\mu}$ и $\tilde{\mu}$ также являются σ - конечными на $\mathcal{S}(\mathcal{R})$ и $\overline{\mathcal{S}}$ соответственно.

Доказательство. Доказательство аналогично доказательству теоремы 4.3.

Theorem 5.5. Пусть μ -мера на σ -кольце S. Класс множеств вида $E \bigcup N$, где $E \subset S$ и N - нулевое множество, т.е. $\exists F \in S : N \subset F$ и $\mu(F) = 0$, образует σ -кольцо, которое обозначается \overline{S} . Функция $\overline{\mu}$, определенная на \overline{S} формулой $\overline{\mu}(E \bigcup N) = \mu(E)$, является мерой на \overline{S} . При этом $\overline{\mu}$ определяет единственное продолжение μ c S на \overline{S} .

Note~5.1.~ Определенная в теореме мера $\overline{\mu}$ называется пополнением меры $\mu.$

Доказательство. Рассмотрим последовательность $\{E_i \bigcup N_i\}, E_i \in \mathcal{S}, N_i$ - нулевые множества. Имеем

$$\bigcup_{1}^{\infty} (E_i \bigcup N_i) = (\bigcup_{i=S}^{\infty} E_i) \bigcup (\bigcup_{i=S}^{\infty} N_i) \text{ и } F_i \in \mathcal{S} \text{ и } \mu(F_i) = 0$$

$$\Rightarrow \bigcup_{1}^{\infty} F_i \in \mathcal{S}$$
 и $\mu(\bigcup_{1}^{\infty} F_i) \leq \sum_{1}^{\infty} \mu(F_i) = 0.$

Следовательно, $\bigcup_{1}^{\infty} (E_i \bigcup N_i) \in \overline{\mathcal{S}}$.

Пусть $E_1 \bigcup N_1, E_2 \bigcup N_2 \in \overline{\mathcal{S}}$. Имеем

$$(E_1\bigcup N_1)\backslash (E_2\bigcup N_2)=(E_1\bigcup N_1)\bigcap (E_2\bigcup N_2)^c=(E_1\bigcup N_1)\bigcap E_2^c\bigcap N_2^c=\\ =(E_1\bigcap E_2^c\bigcap N_2^c)\bigcup\underbrace{(N_1\bigcap E_2^c\bigcap N_2^c)}_{\subset N_1\subset F_1\text{ HУЛЕВОЕ МНОЖЕСТВО}}.$$

Далее,

$$E_1 \bigcap E_2^c \bigcap N_2^c = \underbrace{(E_1 \bigcap E_2^c \bigcap N_2^c \bigcap F_2^c)}_{E_1 \bigcap E_2^c \bigcap F_2^c \in \mathcal{S}} \bigcup \underbrace{(E_1 \bigcap E_2^c \bigcap N_2^c \bigcap F_2)}_{\subset F_2 \text{ - нулевое множество}}.$$

Таким образом, $(E_1 \bigcup N_1) \setminus (E_2 \bigcup N_2) \in \overline{S}$ и \overline{S} является σ -кольцом. Докажем теперь корректность определения $\overline{\mu}$, т.е. покажем, что если

$$E_1 \bigcup N_1 = E_2 \bigcup N_2, \tag{9}$$

то $\mu(E_1)=\mu(E_2).$ Из (9) вытекает, что $E_1\triangle E_2\subset N_1\bigcup N_2$ и поэтому $\mu(E_1\triangle E_2)=0.$ Поскольку

$$E_1 \subset E_2 \bigcup (E_1 \triangle E_2), E_2 \subset E_1 \bigcup (E_1 \triangle E_2),$$

имеем

$$|\mu(E_1) - \mu(E_2)| \le \mu(E_1 \triangle E_2).$$

Следовательно, $\mu(E_1) = \mu(E_2)$.

Упражнение. Закончить доказательство теоремы, т.е доказать счетную аддитивность $\overline{\mu}$.

Лекция 6.

Theorem 6.1. Пусть μ есть σ -конечная мера на \mathcal{R} , μ^* есть внешняя мера, индуцированная μ на $\mathcal{H}(\mathcal{R})$, $\overline{\mu}$ есть мера на $\overline{\mathcal{S}}$, индуцированная μ^* , u $\tilde{\mu}$, как u выше, сужение $\overline{\mu}$ на $\mathcal{S}(\mathcal{R})$. Тогда пополнение $\tilde{\mu}$ совпадает c $\overline{\mu}$.

Доказательство. Пусть $\overline{\mathcal{S}(\mathcal{R})}$ определено пополнением $\tilde{\mu}$. В силу теоремы 5.5 достаточно доказать, что $\overline{\mathcal{S}(\mathcal{R})} = \overline{S}$.

Очевидно , $\overline{\mathcal{S}(\mathcal{R})} \subset \overline{S}$ и пополнение $\tilde{\mu}$ совпадает с $\overline{\mu}$.

Докажем соотношение $\overline{S} \subset \overline{\mathcal{S}(\mathcal{R})}$. Пусть $E \in \overline{S}$. Ранее доказано, что $\overline{\mu}$ σ -конечна, поэтому имеем

$$E = \bigcup_{i=1}^{\infty} E_i, \ E_i \in \overline{S}, \ \overline{\mu}(E_i) < \infty.$$

Следовательно, для завершения доказательства, достаточно показать, что если $E\in \overline{S}:\overline{\mu}(E)<\infty,$ то $E\in \overline{\mathcal{S}(\mathcal{R})}.$ Пусть F есть измеримая оболочка для E и G - измеримая оболочка для $F\setminus E.$ Поскольку $\overline{\mu}(E)=\mu^*(E)$

по теореме 5.3

$$\overline{\mu}(F \setminus E) = \overline{\mu}(F) - \overline{\mu}(E) = 0.$$

С другой стороны

$$\overline{\mu}(F\setminus E) = \mu^*(F\setminus E) \underbrace{\qquad }_{\text{по теореме } 5.3} \widetilde{\mu}(G) = 0.$$

Таким образом,

$$E = \underbrace{(F \setminus G)}_{\in \mathcal{S}(\mathcal{R})} \bigcup (E \bigcap G) \in \overline{\mathcal{S}(\mathcal{R})},$$

так как $(E \cap G) \subset G$ есть нулевое множество. \square

6.1 Мера Лебега.

Пусть $X=\mathbb{R}$ и \mathcal{P} - полукольцо, образованное множествами вида [a,b), $-\infty < a \leq b + \infty$. На \mathcal{P} определим функцию λ :

$$\lambda([a,b)) = b - a, \quad a \le b \tag{1}$$

Theorem 6.2. λ , определенная (1), является мерой.

Доказательство. Из определения ясно, что функция λ неотрицательна и не тождественно равна бесконечности. Следовательно, остается доказать σ -аддитивность λ . Доказательство этого факта опирается на следующие леммы.

Лемма 1.
$$Ecnu[a_0, b_0] \subset \bigcup_{i=1}^{n} (a_i, b_i), mo b_0 - a_0 \leq \sum_{i=1}^{n} (b_i - a_i).$$

Доказательство. Проводится по индукции. \square

Лемма 2. Пусть $E_0, E_1, E_2, \ldots \in \mathcal{P}, E_0 \subset \bigcup_{i=1}^{\infty} E_i$. Тогда

$$\lambda(E_0) \leq \sum_{1}^{\infty} \lambda(E_i).$$

Доказательство. Пусть $E_i = [a_i,b_i)$ для всех $i \geq 0$. Если $a_0 = b_0$, то утверждение очевидно. Пусть теперь $a_0 < b_0$. Возьмем $\delta: \delta < b_0 - a_0$. Из условия леммы вытекает, что для любого $\varepsilon > 0$ имеем

$$[a_0, b_0 - \delta] \subset \bigcup_{1}^{\infty} (a_i - \varepsilon/2^i, b_i).$$

Поскольку из счетного покрытия отрезка интервалами всегда можно выделить конечное подпокрытие, найдется n, при котором

$$[a_0, b_0 - \delta] \subset \bigcup_{i=1}^{n} (a_i - \varepsilon/2^i, b_i).$$

Отсюда и леммы 1 вытекает, что

$$b_0 - a_0 - \delta \le \sum_{1}^{n} (b_i - a_i + \varepsilon/2^i) \le$$

$$\leq \sum_{1}^{\infty} (b_i - a_i + \varepsilon/2^i) = \sum_{1}^{\infty} \lambda(E_i) + \varepsilon.$$

В силу произвольности δ и ε получаем утверждение леммы. \square

Лемма 3.

Пусть $E_1, \ldots, E_n, E_0 \in \mathcal{P}$ и E_1, \ldots, E_n попарно не пересекаются, при этом для любого і справедливо включение $E_i \subset E_0$. Тогда

$$\sum_{1}^{n} \lambda(E_i) \le \lambda(E_0).$$

Доказательство. Пусть $E_0 = [a_0, b_0), \ E_i = [a_i, b_i)$ и $a_1 < a_2 < \dots < a_n$. Тогда

$$a_0 \le a_1 \le b_1 \le a_2 \le b_2 \le \dots \le a_n \le b_n \le b_0.$$

и поэтому

$$\sum_{1}^{n} \lambda(E_{i}) = \sum_{1}^{n} (b_{i} - a_{i}) \le$$

$$\le \sum_{1}^{n} (b_{i} - a_{i}) + \sum_{1}^{n-1} (a_{i+1} - b_{i}) \le b_{0} - a_{0} = \lambda(E_{0}).$$

Продолжим доказательство теоремы 1.

Пусть $E_0 = \bigcup_{i=1}^{\infty} E_i$, E_i - попарно не пересекаются и $E_0, E_i \in \mathcal{P}$.

По лемме 2 получаем

$$\lambda(E_0) \le \sum_{1}^{\infty} \lambda(E_i).$$

Из леммы 3 следует, что

$$\forall n, \quad \sum_{1}^{n} \lambda(E_i) \leq \lambda(E_0).$$

Устремляя n к бесконечности, получаем

$$\lambda(E_0) = \sum_{1}^{\infty} \lambda(E_i),$$

что и означает σ -аддитивность λ . \square

Итак, λ есть σ -конечная мера, заданная на полукольце полуинтервалов.

Corollary 6.1. λ единственным образом продолжается на σ -кольцо $\mathcal{S}(\mathcal{P})$, порожденное \mathcal{P} .

Доказательство. Вытекает из теоремы о продолжении меры с полукольца на σ -кольцо, им порожденное. \square

 $Note~6.1.~\mathcal{S}(\mathcal{P})$ является σ -алгеброй.

Лемма 4.

$$\mathcal{S}(\mathcal{P}) = \mathcal{S}(\mathcal{U})$$

где \mathcal{U} - класс всех открытых подмножеств \mathbb{R} .

 $Note~6.2.~\mathcal{S}(\mathcal{U}) = \mathcal{B}$ - борелевская σ -алгебра.

Доказательство. 1. Имеем

$$[a,b) = (-\infty,b) \setminus (-\infty,a).$$

Следовательно, $\mathcal{P} \subset \mathcal{S}(\mathcal{U})$ и поэтому $\mathcal{S}(\mathcal{P}) \subset \mathcal{S}(\mathcal{U})$.

2. Поскольку

$$(a,b) = \bigcup_{i=1}^{\infty} [a+1/i,b),$$

получаем

$$(a,b) \in \mathcal{S}(\mathcal{P}).$$

Так как любое открытое подмножество \mathbb{R} представимо в виде счетного объединения интервалов, имеем $\mathcal{S}(\mathcal{U}) \subset \mathcal{S}(\mathcal{P})$. \square

Definition 6.1. Пополнение определенной выше меры λ называется мерой Лебега. Множества, на которых определено пополнение λ , называются измеримыми по Лебегу. Они образуют σ -алгебру, которую мы обозначим \mathcal{L} . Пополнение λ мы будем обозначать так жее λ .

Proposition 6.1. (без доказательства)

Существуют множества, не измеримые по Лебегу.

Введем оператор сдвига:

$$S_aB = \{x + a, \ \forall x \in B\}.$$

В частности,

$$S_a(c,d) = (c+a, d+a).$$

Если \mathcal{A} - некоторый класс множеств, то

$$S_a \mathcal{A} = \{ S_a A, \ \forall A \in \mathcal{A} \}.$$

Лемма 5. Для любого $a \in \mathbb{R}$ имеем $S_a \mathcal{B} = \mathcal{B}$.

Доказательство. Пусть $a \in \mathbb{R}$. Докажем, что $S_a\mathcal{B} \subset \mathcal{B}$. Пусть \mathcal{F} - класс множеств на прямой \mathbb{R} такой, что $A \in \mathcal{F}$, если $S_aA \in \mathcal{B}$. Для (c,d) имеем

$$S_a((c,d)) = (c+a,d+a) \in \mathcal{B}.$$
(2)

Далее, для любых $A_1, A_2, \ldots \subset \mathbb{R}$ имеем

$$S_a(\bigcup_{1}^{\infty} A_i) = \bigcup_{1}^{\infty} (S_a A_i),$$

$$S_a(A_1 \setminus A_2) = S_a A_1 \setminus S_a A_2.$$
(3)

Из (3) вытекает, что \mathcal{F} – σ -алгебра. Из (2) вытекает, что все открытые множества принадлежат \mathcal{F} . Поэтому $\mathcal{B} \subset \mathcal{F}$ и

$$S_a \mathcal{B} \subset \mathcal{B}.$$
 (4)

Применяя к (4) оператор S_{-a} , имеем $S_{-a}(S_a\mathcal{B}) \subset S_{-a}\mathcal{B}$. Поэтому

$$\mathcal{B} \subset \mathcal{S}_{-a}\mathcal{B}.\tag{5}$$

Но в (5) a есть произвольное число. Объединяя (4) и (5), получаем утверждение леммы. \square

Theorem 6.3. 1. Для любых $a \in \mathbb{R}$ $u E \in \mathcal{L}$

$$\lambda(S_a E) = \lambda(E).$$

2. Если мера μ на $\mathcal L$ не тождественно равна 0 и такова, что

$$\mu(\lbrace x \rbrace) = 0 \ u \ \mu(S_a E) = \mu(E), \ \forall x, a \in \mathbb{R}, E \in \mathcal{L}.$$

Тогда $\mu = c\lambda$, где c > 0 – некоторая постоянная.

Доказательство. 1. Фиксируем произвольное $a\in\mathbb{R}$ и положим для $E\in\mathcal{B}$

$$\lambda_1(E) = \lambda(S_a E).$$

Тогда из лемм 4 и 5 следует, что λ_1 есть мера, при этом для $b \leq c$

$$\lambda_1([b,c)) = \lambda(S_a([b,c))) = \lambda([b+a,c+a)) = c - b = \lambda([b,c)).$$

Следовательно, λ_1 и λ совпадают на \mathcal{P} . Из теорем о продолжении меры получаем, что λ_1 и λ совпадают на $\mathcal{B} = \mathcal{S}(\mathcal{P})$.

Для доказательства того, что λ_1 и λ совпадают на $\mathcal L$ достаточно показать, что

$$S_a \mathcal{L} = \mathcal{L}.$$

Пусть $E \in \mathcal{L}$, т.е. $E = E_1 \bigcup N_1$, где $E_1 \in \mathcal{B}$ и N_1 - нулевое множество, т.е. существует $F_1 \in \mathcal{B}$ такое, что $N_1 \subset F_1$ и $\lambda(F_1) = 0$. Имеем

$$S_a E = S_a E_1 \bigcup S_a N_1.$$

При этом по лемме 5 $S_aE_1 \in \mathcal{B}$. Далее, $S_aN_1 \subset S_aF_1$ и $\lambda(S_aF_1) = \lambda(F_1) = 0$. Следовательно, $S_a\mathcal{L} \subset \mathcal{L}$. Повторяя рассуждения из доказательства леммы 5, получаем $S_a\mathcal{L} = \mathcal{L}$.

Для $E \in \mathcal{L}$ имеем

$$\lambda_1(E) = \lambda(\mathcal{S}_a E) = \lambda(\mathcal{S}_a E_1 \bigcup \mathcal{S}_a N_1) =$$

$$=^{(*)} \lambda(\mathcal{S}_a E_1) = \lambda(E_1) =^{(*)} \lambda(E_1 \bigcup N_1) = \lambda(E).$$

Равенства (*) имеют место в силу определения пополнения меры. 2. Пусть $h = \mu([0,1))$. Имеем

$$\forall k \in \mathbb{N}: \quad [0,1) = \bigcup_{i=0}^{k-1} [\frac{i}{k}, \frac{i+1}{k})$$

$$\Rightarrow \quad h = \sum_{i=0}^{k-1} \mu([\frac{i}{k}, \frac{i+1}{k})) = \{\text{t.k. } \mu(\mathcal{S}_a E) = \mu(E)\} = k \mu([0, \frac{1}{k}))$$

$$\Rightarrow \quad \mu([0, \frac{1}{k})) = \frac{h}{k}.$$

Следовательно, если $l \in \mathbb{N}$, то

$$\mu([0,\frac{l}{k})) = \frac{l}{k} h.$$

Если $\alpha \in \mathbb{Q}, \ \alpha > 0$, то

$$\mu([0,\alpha)) = \alpha h$$

Наконец, если $\beta>0$ иррационально, возьмем $\alpha_k\in\mathbb{Q}:\ \alpha_k\downarrow\beta$ и $\beta=\lim\alpha_k.$ Поскольку

$$[0,\beta] = \bigcap_{k=1}^{\infty} [0,\alpha_k) \Rightarrow \mu([0,\beta]) = \beta h.$$

Итак, $\mu([0,\beta))=\beta h$. Следовательно, для любых $\alpha,\beta\in\mathbb{R},\ \alpha<\beta$ имеем

$$\mu([\alpha, \beta)) = (\beta - \alpha)h = h\lambda([\alpha, \beta)).$$

Из теорем о продолжении мер получаем $\mu = \lambda h$ на \mathcal{L} . \square

Лекция 7.

7.1 ИЗМЕРИМЫЕ ПРОСТРАНСТВА И ФУНКЦИИ

Definition 7.1. Измеримым пространством называется пара (X, S), где X – произвольное множество и S – σ -алгебра подмножеств X.

Definition 7.2. Измеримые множества в измеримом пространстве – это множества, принадлежащие S.

Definition 7.3. Борелевская σ -алгебра – это σ -алгебра, порожденная всеми открытыми подмножествами, если таковые определены.

Обычно борелевские σ -алгебры будем обозначать через \mathcal{B} .

Definition 7.4. Пространством с мерой называется тройка (X, S, μ) , где (X, S) – измеримое пространство, μ – мера на S.

Всюду ниже, если не оговорено противное, будем рассматривать меры на σ -алгебрах.

Definition 7.5. Пусть (X_1, \mathcal{S}_1) , (X_2, \mathcal{S}_2) – измеримые пространства. Отображение $f: X_1 \longrightarrow X_2$ называется измеримым, если $f^{-1}(\mathcal{S}_2) \subset \mathcal{S}_1$, т.е. $\forall E \in \mathcal{S}_2, f^{-1}(E) \in \mathcal{S}_1$.

Упражнение. Доказать, что суперпозиция измеримых отображений есть измеримое отображение, т.е. если $(X_i, \mathcal{S}_i), \ i=1,2,3,$ являются измеримыми пространствами $f: X_1 \longrightarrow X_2; \$ и $g: X_2 \longrightarrow X_3 -$ измеримые отображения, то отображение $g(f) = g \circ f: X_1 \longrightarrow X_3$ также измеримо.

 $Note~7.1.~1.~\Pi$ усть \mathcal{S} – вырожденная σ -алгебра, т.е. $\mathcal{S}=(\varnothing,X).~\mathrm{Torga}~f$ – измеримо $\Leftrightarrow f\equiv const.$

2. Если ${\mathcal S}$ – множество всех подмножеств X, то любое отображение, определенное на X, является измеримым.

Definition 7.6. Действительная функция f на X со значениями в \overline{R} называется измеримой, если $f^{-1}(\{+\infty\}) \in \mathcal{S}$, $f^{-1}(\{-\infty\}) \in \mathcal{S}$, $f^{-1}(E) \in \mathcal{S}$ для любого $E \in \mathcal{B}$. В случае, когда $X = \overline{R}$, $\mathcal{S} = \mathcal{B}$, измеримая функция называется измеримой по Борелю.

Если $(X, S) = (\overline{R}, \mathcal{L})$, то измеримая функция измерима по Лебегу.

Свойства измеримых функций

Лемма 1. Пусть E – некоторое множество, (F, S) – измеримое пространство и $\varphi: E \to F$. Тогда

а) $\varphi^{-1}(\mathcal{S})$ является σ -алгеброй подмножеств E;

b) $Ecnu \mathcal{P}$ порождает \mathcal{S} , то $\varphi^{-1}(\mathcal{P})$ порождает $\varphi^{-1}(\mathcal{S})$.

Note 7.2. Очевидно,отображение φ измеримо относительно измеримого пространства $(E, \varphi^{-1}(\mathcal{S}))$.

Доказательство. Часть а) вытекает из равенств

$$\varphi^{-1}(\bigcup_{1}^{\infty} B_i) = \bigcup_{1}^{\infty} \varphi^{-1}(B_i), \quad \varphi^{-1}(A \setminus B) = \varphi^{-1}(A) \setminus \varphi^{-1}(B). \tag{1}$$

Ясно, что $\varphi^{-1}(F) = E \in \varphi^{-1}(S)$.

b) Пусть \mathcal{F} есть σ -алгебра, порожденная $\varphi^{-1}(\mathcal{P})$. Имеем $\varphi^{-1}(\mathcal{P}) \subset \varphi^{-1}(\mathcal{S})$ и поэтому $\mathcal{F} \subset \varphi^{-1}(\mathcal{S})$.

Обозначим через $S_1 = \{A \in \mathcal{S} : \varphi^{-1}(A) \subset \mathcal{F}\}$. В силу (1) и того, что \mathcal{F} есть σ -алгебра, получаем, что S_1 также σ -алгебра. Кроме того, $\mathcal{P} \subset S_1$ и поэтому $S(\mathcal{P}) = S \subset S_1 \Rightarrow \varphi^{-1}(S) \subset \mathcal{F} \Rightarrow \varphi^{-1}(S) = \mathcal{F}$. \square

Theorem 7.1. Пусть (X_1, S_1) и (X_2, S_2) – измеримые пространства и \mathcal{P} – класс подмножеств X_2 , порожедающий S_2 . Пусть $\varphi: X_1 \to X_2$. Для измеримости φ необходимо и достаточно, чтобы $\varphi^{-1}(\mathcal{P}) \subset S_1$.

Доказательство. Необходимость очевидна.

Достаточность. Обозначим через $S(\varphi^{-1}(\mathcal{P}))$ σ -алгебра, порожденную $\varphi^{-1}(\mathcal{P})$. Если $\varphi^{-1}(\mathcal{P}) \subset S_1$, то по лемме 1 получаем

$$\varphi^{-1}(\mathcal{S}_2) = \mathcal{S}(\varphi^{-1}(\mathcal{P})) \subset \mathcal{S}_1.$$

Corollary 7.1. Если f – действительная функция на измеримом пространстве (X, S) со значениями в \overline{R} , то для измеримости f необходимо и достаточно, чтобы $\forall a \in \overline{R} : f^{-1}((-\infty, a)) \subset S$.

Доказательство. Вытекает из предыдущей теоремы и того факта, что борелевская σ -алгебра на \overline{R} порождается классом всех полупрямых $(-\infty, a)$.

Corollary 7.2. Если (X_1, \mathcal{B}_1) и (X_2, \mathcal{B}_2) – измеримые пространства, где X_1, X_2 – конечномерные евклидовы пространства, $\mathcal{B}_1, \mathcal{B}_1$ – борелевские σ -алгебры, то любое непрерывное отображение $\varphi: X_1 \to X_2$ является измеримым.

Доказательство. Вытекает из того, что если φ -непрерывно, то прообраз любого открытого множества открыт.

Theorem 7.2. Пусть (X, \mathcal{S}) – измеримое пространство, f и g – измеримые функции , тогда отображение $h: X \to (f(x), g(x))$ измеримо , если $\overline{R} \times \overline{R}$ наделить борелевской σ -алгеброй.

Доказательство. Пусть $(a,b) \times (c,d))$ – открытый прямоугольник в $\overline{R} \times \overline{R}$. Тогда

$$h^{-1}((a,b)\times(c,d))=\underbrace{f^{-1}((a,b))}_{\in\mathcal{S}}\bigcap\underbrace{g^{-1}((c,d))}_{\in\mathcal{S}}\in\mathcal{S}.$$

Доказательство завершено, т.к. борелевская σ -алгебра в $\overline{R} \times \overline{R}$ порождается классом прямоугольников $(a,b) \times (c,d)$, где a,b,c,d — рациональные числа, потому что любое открытое множество в $\overline{R} \times \overline{R}$ представимо в виде не более, чем счетного объединения указанных прямоугольников.

Theorem 7.3. Пусть $f_1, f_2, ..., f_n$ – измеримые действительные функции на (X, S) со значениями в \overline{R} . Тогда

$$\sum_{1}^{n} f_{i}, \quad \prod_{1}^{n} f_{i}, \quad \max_{1 \le i \le n} (f_{i}), \quad \min_{1 \le i \le n} (f_{i})$$

есть измеримые функции , в частности измеримой является cf_1 .

Доказательство. Достаточно рассмотреть случай n=2. Общий случай рассматривается по индукции. Определим отображения $h,\alpha,\beta,\gamma,\delta$ следующим образом

$$\begin{split} h: x &\to (f(x),g(x)), \ x \in X; \\ \alpha: (x,y) &\to x \times y; \ \beta: (x,y) \to x+y \ ; \\ \gamma: (x,y) &\to \max(x,y); \ \delta: (x,y) \to \min(x,y) \ \text{для} \ x,y \in \overline{R}. \end{split}$$

По теореме 7.2 отображение h измеримо и по следствию 2 к теореме 7.1 отображения $\alpha, \beta, \gamma, \delta$ измеримы как непрерывные. Наконец, f(x) + g(x) есть суперпозиция измеримых отображений h β . Аналогичные рассуждения применимы для остальных функций, указанных в теореме. \square

Theorem 7.4. Пусть f_1, f_2, \dots – последовательность измеримых функций со значениями в \overline{R} . Тогда

$$\sup_{n} f_{n}, \inf_{n} f_{n}, \liminf_{n} f_{n}, \limsup_{n} f_{n}$$

есть измеримые функции.

Множество X_1 , на котором последовательность $f_1, f_2, ...$ сходится поточечно, т.е. $X_1 = \{x \in X : \exists \lim f_n(x)\}$ является измеримым и $\lim f_n$ на X_1 является измеримой функцией относительно $S \cap X_1$.

Доказательство. Для любого $t \in \overline{R}$ имеем

$$\{x : \inf_{n} f_n < t\} = \bigcup_{1}^{\infty} \underbrace{\{x : f_n(x) < t\}}_{\in \mathcal{S}} \in \mathcal{S}$$

и поэтому $\inf f_n$ есть измеримая функция. Поскольку

$$\sup f_n = -\inf(-f_n);$$

$$\limsup f_n = \inf_n (\sup_{m \ge n} f_m);$$

$$\liminf f_n = \sup_n (\inf_{m \ge n} f_m),$$

доказана измеримость других функций.

Далее, $X_1 = \{x : \liminf f_n(x) = \limsup f_n(x)\} \in \mathcal{S}$ и, очевидно, $\lim f_n = \liminf f_n = \limsup f_n$ есть измеримая действительная функция на измеримом пространстве $(X_1, \mathcal{S} \cap X_1)$. \square

Лекция 8.

Пусть (X,\mathcal{S},μ) – измеримое пространство с мерой. Некоторое свойство, зависящее от $x\in X$, назовем выполняющимся почти всюду, если оно выполняется для все x за исключением $x\in A$ и $\mu(A)=0$. В частности, $f_n\to f$ п.в., если $\mu(B)=0$, где $B=\{x:f_n(x)\nrightarrow f(x)\}.$

Theorem 8.1. Пусть $E \in \mathcal{S}$ – измеримое множество конечной меры. f_1, f_2, \ldots – последовательность действительных измеримых функций, почти всюду конечных на E, которая сходится почти всюду. Тогда $\forall \varepsilon > 0 \exists$ измеримое $F \subset E : \mu(F) < \varepsilon$ и на $E \setminus F$ последовательность $\{f_n\}$ равномерно сходится.

Доказательство. Пусть N_n для любого натурального n есть множество, на котором f_n бесконечно. Пусть N — множество в E, на котором нет сходимости последовательности $\{f_n\}$. Тогда на множестве $E_1=E\setminus (N\bigcup \bigcup_{1}^{\infty} N_i)$ все f_n конечны и $f_n\to f$ в каждой точке. Переходя от исходного пространства (X,\mathcal{S},μ) к пространству $(E_1,E_1\bigcap \mathcal{S},\overline{\mu})$,где $\overline{\mu}(F)=\mu(F)$ для $F\in E_1\bigcap \mathcal{S}$, можем считать, что $E_1=X$. Положим для натуральных m и n

$$E_n^m = \bigcap_{i \ge n} \{x : |f_i(x) - f(x)| < \frac{1}{m} \}.$$

Очевидно,

$$E_1^m\subset E_2^m\subset \dots$$

и т.к. f_n сходится к f всюду, имеем $\bigcup_n E_n^m = X$ при всех m. Тогда для каждого m существует n(m), для которого

$$\mu(X \setminus E_{n(m)}^m) < \frac{\varepsilon}{2^m}.$$

Положим

$$F = \bigcup_{m=1}^{\infty} (E_{n(m)}^m)^c.$$

Имеем

$$\mu(F) \underbrace{\leq}_{\text{полуаддитивость меры}} \sum_{1}^{\infty} \mu((E^m_{n(m)})^c) < \varepsilon.$$

С другой стороны $F^c=\bigcap_{m=1}^\infty E^m_{n(m)}$, так что $|f_i(x)-f(x)|<\frac{1}{m}$ для всех $x\in F^c$ при $i\geq n(m)$ и поэтому f_n сходится равномерно к f на F^c . \square

Note 8.1. Покажем, что требование конечности $\mu(E)$ существенно. Пусть $X=\{1,2,...\},~\mathcal{S}=\{$ класс всех подмножеств $X\}.$ Определим $\mu(E)$ как число точек в E. Положим $f_n(x)=1$, если $x\in\{1,2,...n\}$, и $f_n(x)=0$ в противном случае. Тогда $f_n(x)\to 1$ всюду. С другой стороны при $\varepsilon:0<\varepsilon<1$, условие $\mu(E)<\varepsilon$ означает, что $E=\varnothing$. Но $f_n(x)$ не сходится к 1 равномерно на X.

Упражнение. Пусть в предыдущем примере мера определена как $\mu(\{i\}) = 2^{-i}$. Возьмем E = X. Как выбрать множество F, указанное в теореме 8.1 ?

Definition 8.1. Последовательность почти всюду конечных измеримых функций $\{f_n\}$ сходится κ f по мере, если $\forall \varepsilon > 0 : \mu(x:|f_n(x) - f(x)| > \varepsilon) \to 0$ при $n \to \infty$.

Definition 8.2. Последовательность почти всюду конечных измеримых функций $\{f_n\}$ называется фундаментальной по мере, если $\forall \varepsilon > 0: \mu(x:|f_n(x)-f_m(x)|>\varepsilon) \to 0$ при $n,m\to\infty$.

Theorem 8.2. (Теорема Егорова) Пусть $\{f_n\}$ – последовательность почти всюду конечных измеримых функций, фундаментальная по мере. Тогда найдется подпос- ледовательность $\{f_{n_k}\}$, сходящаяся почти равномерно $(m.e. \forall \varepsilon > 0 \exists E_\varepsilon : \mu(E_\varepsilon) < \varepsilon$ и на E_ε^c имеет место равномерная сходимость последователь- ности $\{f_{n_k}\}$).

Доказательство. Для любого натурального k найдется n(k) такое, что при $n,m \geq n(k)$ имеем

$$\mu(x:|f_n(x)-f_m(x)|>\frac{1}{2^k})\leq \frac{1}{2^k}.$$

Положим $n_1=n(1),\ n_2=\max(n_1+1,n(2)),\ldots$ Получаем подпоследовательность $f_{n_1},\ f_{n_2},\ldots$ Покажем, что это и есть требуемая подпоследовательность. Пусть

$$E_k = \{x : |f_{n_k}(x) - f_{n_{k+1}}| > \frac{1}{2^k}\}$$
 и $F_k = \bigcup_{i > k} E_i$.

Имеем

$$\mu(E_i) \le \frac{1}{2^i} \Rightarrow \mu(F_k) \le \frac{1}{2^{k-1}} \tag{2}$$

При всех $x \notin F_k$ и $k \le i \le j$

$$|f_{n_i}(x) - f_{n_j}(x)| \le \sum_{l=1}^{j-1} |f_{n_{l+1}}(x) - f_{n_l}(x)| < \frac{1}{2^{i-1}}.$$

Таким образом, подпоследовательность f_{n_i} является фундаментальной в смысле равномерной сходимости на F_k^c и поэтому f_{n_i} равномерно сходится на F_k^c . В силу (2) подпоследовательность f_{n_i} сходится почти равномерно на X.

Дадим серию простых утверждений о соотношениях между различными видами сходимости.

Proposition 8.1. Последовательность почти всюду конечных измеримых функций $\{f_n\}$, сходящаяся почти равномерно, сходится по мере.

Доказательство. Это непосредственно следует из определений.

Proposition 8.2. Последовательность фундаментальная по мере, является сходящейся по мере.

Доказательство. Пусть $\{f_n\}$ фундаментальна по мере и $\{f_{n_k}\}$ – подпоследовательность, сходящаяся почти равномерно к некоторой функции f(x). Тогда утверждение вытекает из соотношения

$$\{x: |f_n(x)-f(x)|>\varepsilon\}\subset \{x: |f_n(x)-f_{n_k}(x)|>\frac{\varepsilon}{2}\}\bigcup \{x: |f_{n_k}(x)-f(x)|>\frac{\varepsilon}{2}\}.$$

Proposition 8.3. Последовательность, сходящаяся по мере, является фундаментальной по мере.

Доказательство. Пусть f(x) – предел $f_n(x)$ в смысле сходимости по мере. Утверждение вытекает из соотношения

$$\{x: |f_n(x)-f_m(x)|>\varepsilon\}\subset \{x: |f_n(x)-f(x)|>\frac{\varepsilon}{2}\}\bigcup \{x: |f(x)-f_m(x)|>\frac{\varepsilon}{2}\}.$$

Proposition 8.4. Из сходимости почти равномерно следует сходимость почти всюду.

Доказательство. Пусть F_n измеримое множество такое, что $\mu(F_n) < \frac{1}{n}$ и на F_n^c последовательность $\{f_n\}$ сходится к некоторой функции f равномерно. Положим $F = \bigcap_{n=0}^{\infty} F_n$. Тогда $\forall n: \mu(F) \leq \mu(F_n) < 1/n$ и

поэтому $\mu(F)=0$ Для $\forall x\in F^c=\bigcup_{n=1}^\infty F_n^c$ имеем $f_n(x)\to f(x),$ т.е. $f_n\to f$ почти всюду.

Лекция 9.

Интегрирование по мере.

Пусть (X, \mathcal{S}) – измеримое пространство.

Definition 9.1. Измеримая действительная функция на (X, S) называется простой, если множество ее значений конечно.

Proposition 9.1. Функция $f: X \to \mathbb{R}$ является простой тогда и только тогда, когда имеет место представление

$$f(x) = \sum_{i=1}^{k} a_i \cdot I_{X_i}(x), \tag{1}$$

 $ede\ a_1,...,a_k$ – различные действительные числа,

$$X_1 \bigcup ... \bigcup X_k = X, \ X_i \bigcap X_j = \varnothing, \ i \neq j$$

 $u\ I_{X_i}(x)\ ecmь\ uндикатор\ множества\ X_i,\ m.e.\ I_{X_i}(x)=1,\ ecnu\ x\in X_i,\ u\ I_{X_i}(x)=0\ в\ nротивном\ случае.$

Доказательство. Пусть $a_1, ..., a_k$ есть различные значения простой функции f. Достаточно взять $X_i = f^{-1}(a_i)$.

Обозначим через $\mathcal E$ совокупность простых функций на $(X,\mathcal S)$.

Proposition 9.2. Множество $\mathcal E$ является линейным пространством, замкнутым относительно произведения и операций тах u min, m.e. если $f,g\in\mathcal E$, то $f\cdot g\in\mathcal E$, $\max(f,g)\in\mathcal E$ u $\min(f,g)\in\mathcal E$.

Доказательство. Для линейности пространства $\mathcal E$ достаточно доказать, что если $\lambda \in \mathbb R$ и $f \in \mathcal E$, то $\lambda f \in \mathcal E$, что очевидно из (1), и если $f,g \in \mathcal E$, то $f+g \in \mathcal E$.

В силу (1) имеем

$$f(x) = \sum_{i=1}^{k_1} a_i \cdot I_{A_i}(x) = \sum_{i,j} a_i \cdot I_{A_i B_j}(x),$$

$$g(x) = \sum_{j=1}^{k_2} b_j \cdot I_{B_j}(x) = \sum_{i,j} b_j \cdot I_{A_i B_j}(x).$$

И поэтому

$$f(x) + g(x) = \sum_{i,j} (a_i + b_j) \cdot I_{A_i B_j}(x) = \sum_{l} c_l \cdot I_{Z_l}(x),$$

где Z_l получаются как объединения пар A_iB_j , соответствующих одинаковым значениям сумм a_i+b_j . Тот факт, что если $f,g\in\mathcal{E}$, то $f\cdot g\in\mathcal{E}$, доказывается аналогично.

Упражнение. Закончить доказательство утверждения.

Theorem 9.1. Пусть f - произвольная измеримая функция со значениями $\overline{\mathbb{R}}^+$. Существует неубывающая последовательность простых функций f_n со значениями в \mathbb{R}^+ , поточечно сходящаяся κ f.

Доказательство. Положим

$$f_n(x) = \sum_{k=0}^{n \cdot 2^n - 1} \frac{k}{2^n} \cdot I_{\{\frac{k}{2^n} \le f < \frac{k+1}{2^n}\}}(x) + n \cdot I_{\{f \ge n\}}(x).$$

Из определения f_n вытекает, что f_n есть простая функция, т.к. число ее значений конечно и все множества

$$\{x: \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n}\}$$
 и $\{x: f(x) \ge n\}$

измеримы в силу измеримости f. Покажем, что $f_n(x) \leq f_{n+1}(x)$ при всех $x \in X$. Действительно, пусть x таково, что

$$\frac{k}{2^n} \le f(x) < \frac{k+1}{2^n}$$

при некотором $k \in \{0, ..., n \cdot 2^n - 1\}$. Тогда $f_n(x) = k \cdot 2^{-n}$ и

$$f_{n+1}(x) = \frac{2k}{2^{n+1}},$$
 если $x: \frac{2k}{2^{n+1}} \le f(x) < \frac{2k+1}{2^{n+1}},$

либо

$$f_{n+1}(x) = \frac{2k+1}{2^{n+1}}$$
 если $x : \frac{2k+1}{2^{n+1}} \le f(x) < \frac{2(k+1)}{2^{n+1}}$

и, следовательно, $f_{n+1}(x) \ge f_n(x)$.

Если x таково, что $f(x) \ge n$, то $f_n(x) = n$ и

$$f_{n+1}(x) = n + \frac{r}{2^{n+1}}, \ \ 0 \le r < 2^{n+1} - 1,$$

если f(x) < n+1 или

$$f_{n+1}(x) = n+1,$$

если $f(x) \ge n + 1$.

Теперь покажем, что $f_n(x) \to f(x)$ в каждой точке $x \in X$. Действительно, если $x: f(x) = +\infty$, то $f_n(x) = n$ при всех n. С другой стороны, если x таково, что f(x) конечно, то $\exists m: f(x) < m$ и по построению

$$f(x) - 2^{-n} \le f_n(x) \le f(x)$$
 при всех $n \ge m$.

Следствие. Если f — произвольная измеримая функция со значениями в $\overline{\mathbb{R}}$, то существует последовательность $\{f_n\} \in \mathcal{E} : f_n(x) \to f(x)$

Доказательство. вытекает из представления $f = f^+ - f^-$, где $f^+ = \max(f,0), f^- = \max(-f,0)$.

При этом f^+ и f^- есть измеримые функции со значениями в $\overline{\mathbb{R}}^+$. По теореме 9.1 существуют последовательности $\{f_n^+\}$, $\{f_n^-\} \in \mathcal{E}$, поточечно сходящиеся к f^+ и f^- соответственно. Таким образом, искомая последовательность состоит из функций $f_n = f_n^+ - f_n^-$. \square

Пусть (X, \mathcal{S}, μ) – измеримое пространство с мерой. Обозначим $\mathcal{M}(\mathcal{S}, \overline{\mathbb{R}})$ совокупность всех измеримых действительных функций со значениями в $\overline{\mathbb{R}}$ и $\mathcal{M}(\mathcal{S}, \overline{\mathbb{R}}^+)$ – совокупность измеримых функций со значениями в $\overline{\mathbb{R}}^+$.

Theorem 9.2. Существует единственный функционал Φ на $\mathcal{M}(\mathcal{S}, \overline{\mathbb{R}}^+)$ со значениями в $\overline{\mathbb{R}}^+$ такой, что выполнены следующие свойства 1. При всех $f, g \in \mathcal{M}(\mathcal{S}, \overline{\mathbb{R}}^+)$ и $\forall \alpha \in \overline{\mathbb{R}}^+$

$$\begin{split} \varPhi(\alpha \cdot f) &= \alpha \cdot \varPhi(f), \ \varPhi(f+g) = \varPhi(f) + \varPhi(g), \\ ecnu \ f &\leq g \ , mo \ \varPhi(f) \leq \varPhi(g) \end{split}$$

2. Для любой неубывающей последовательности $\{f_n\}\in\mathcal{M}(\mathcal{S},\overline{\mathbb{R}}^+)$ имеем

$$\sup_{n} \Phi(f_n) = \Phi(\sup f_n).$$

3. При всех $E \in S$ имеем $\Phi(I_{\{E\}}) = \mu(E)$.

Доказательство. Докажем сначала единственность. В силу свойств 1 и 3 функционал Φ однозначно определен на простых функциях, т.е. если

$$f = \sum a_i \cdot I_{\{A_i\}}, \quad \text{to } \Phi(f) = \sum a_i \cdot \mu(A_i).$$

Для произвольной функции $f\in\mathcal{M}(\mathcal{S},\overline{\mathbb{R}}^+)$ единственность вытекает из теоремы 9.1 и свойства 2.

Доказательство существования разобьем на несколько частей:

а) Определим Φ на $\mathcal{E}(\mathbb{R}^+) \subset \mathcal{M}(\mathcal{S}, \overline{\mathbb{R}}^+)$ следующим образом: если

$$f(x) = \sum_{1}^{n} a_i \cdot I_{A_i}(x)$$
, где $A_i \bigcap A_j = \emptyset$ при $i \neq j$,

то положим

$$\Phi(f) = \sum_{1}^{n} a_i \cdot \mu(A_i).$$

Ясно, что $\Phi(\alpha \cdot f) = \alpha \cdot \Phi(f)$. Свойство 3 также очевидно выполнено. Далее, пусть

$$f = \sum_{i} a_i \cdot I_{A_i} \quad \text{if} \quad g = \sum_{i} b_j \cdot I_{B_j}.$$

Тогда

$$f + g = \sum_{k} c_k \cdot I_{c_k} = \sum_{i,j} (a_i + b_j) \cdot I_{A_i B_j}$$

и по определению функционала

$$\Phi(f+g) = \sum_{k} c_k \cdot \mu(C_k) = \sum_{i,j} (a_i + b_j) \cdot \mu(A_i B_j)$$

$$= \sum_{i} a_i \sum_{j} \mu(A_i B_j) + \sum_{j} b_j \sum_{i} \mu(A_i B_j)$$

$$= \sum_{i} a_i \cdot \mu(A_i) + \sum_{j} b_j \cdot \mu(B_j) = \Phi(f) + \Phi(g).$$

Для доказательства монотонности Φ запишем

$$f = \sum_{i} a_i \cdot I_{A_i} = \sum_{i,j} a_i \cdot I_{A_i B_j}, \quad g = \sum_{j} b_j \cdot I_{B_j} = \sum_{i,j} b_j \cdot I_{A_i B_j}.$$

Если $f \leq g$, то $a_i \leq b_j$ на $A_i \cap B_j$ и поэтому из определения Φ вытекает $\Phi(f) < \Phi(g)$.

b) **Лемма.** Пусть $h, \{h_p\} \in \mathcal{E}(\mathbb{R}^+)$ и последовательность $\{h_p\}$ – неубывающая. Если $\sup h_p \geq h$, то $\sup \Phi(h_p) \geq \Phi(h)$.

Доказательство. Запишем

$$h = \sum_i a_i \cdot I_{A_i} = \sum_{i,j} a_i \cdot I_{A_i B_j^p}, \quad h_p = \sum_j b_j^p \cdot I_{B_j^p} = \sum_{i,j} b_j^p \cdot I_{A_i B_j^p}.$$

Тогда

$$\Phi(h) = \sum_{i} a_i \sum_{j} \mu(A_i B_j^p) = \sum_{i} a_i \cdot \mu(A_i),$$

$$\Phi(h_p) = \sum_{i} \sum_{j} b_j^p \cdot \mu(A_i B_j^p).$$

Для доказательства леммы достаточно показать, что при любом фиксированном i

$$\lim_{p} \sum_{j} b_{j}^{p} \cdot \mu(A_{i}B_{j}^{p}) \ge a_{i} \cdot \mu(A_{i}). \tag{2}$$

Если $a_i=0$, то (2) очевидно. Если $a_i>0$, то возьмем произвольное $a_i':0< a_i'< a_i$. Поскольку $\sup_p h_p(x)\geq a_i>a_i'$ при $x\in A_i$, имеем $\{\{h_p>a_i'\}\cap A_i\}\cap A_i$ и поэтому в силу свойства непрерывности мер получаем

$$\lim \mu(\{h_p > a_i'\} \bigcap A_i) = \mu(A_i).$$

Далее,

$$\sum_{j} b_{j}^{p} \mu(A_{i}B_{j}^{p}) = \left(\sum_{j:b_{j}^{p} > a_{i}'} b_{j}^{p} \mu(A_{i}B_{j}^{p}) + \sum_{j:b_{j}^{p} \leq a_{i}'} b_{j}^{p} \mu(A_{i}B_{j}^{p})\right)$$

$$\geq \sum_{b_j^p: b_j^p > a_i'} b_j^p \, \mu(A_i B_j^p) > a_i' \sum_{j: b_j^p > a_i'} \mu(A_i B_j^p) = a_i' \, \mu(\{h_p > a_i'\} \cap A_i).$$

Переходя к пределу в левой и правой части при $p \to \infty$, получаем (2) в силу произвольности выбора $a_i' < a_i$.

с) Определим Φ на $\mathcal{M}(\mathcal{S},\overline{\mathbb{R}^+})$ следующим образом: для произвольной функции $f\in\mathcal{M}(\mathcal{S},\mathbb{R}^+)$ положим

$$\Phi(f) = \lim \Phi(f_n),$$

где $\{f_n\} \in \mathcal{E}(\mathbb{R}^+)$ и $f_n \uparrow f$ поточечно. Существование последовательности такого типа вытекает из теоремы 9.1.

Докажем корректность определения. Пусть $g_n \uparrow f$, $g_n \in \mathcal{E}(\mathbb{R}^+)$ Для любого натурального m имеем $f_m \leq f = \lim g_n$. Тогда по лемме, доказанной в части b) получаем

$$\Phi(f_m) \le \lim \Phi(g_n) \Rightarrow \lim \Phi(f_m) \le \lim \Phi(g_n).$$

Меняя местами g_n и f_m , приходим к обратному неравенству и поэтому $\lim \Phi(f_m) = \lim \Phi(g_n)$.

d) Свойство 3 для Φ очевидно выполнено. Покажем справедливость свойства 1

Упражнение. Доказать $\Phi(\alpha f) = \alpha \Phi(f)$.

Пусть $f, g \in \mathcal{M}(\mathcal{S}, \overline{\mathbb{R}}^+)$. Докажем, что

$$\Phi(f+g) = \Phi(f) + \Phi(g). \tag{3}$$

Пусть $f_n \uparrow f$, $g_n \uparrow g$ и f_n , $g_n \in \mathcal{E}(\mathbb{R}^+)$. Ранее мы показали, что (3) верно для простых функций. Для доказательства (3) для f,g достаточно перейти к переделу при $n \to \infty$.

Пусть теперь $f \leq g$. Тогда $f_n \leq g = \lim g_n$ и поэтому в силу пункта b) имеем

$$\Phi(f_n) \le \lim \Phi(g_n) = \Phi(g) \Rightarrow \Phi(f) \le \Phi(g).$$

е) Покажем, что Φ обладает свойством 2. Пусть $f_n, f \in \mathcal{M}(\mathcal{S}, \overline{\mathbb{R}}^+)$ и $f_n \uparrow f$. По пункту d)

$$\lim \Phi(f_n) \leq \Phi(f)$$
.

Обратное неравенство также верно. Действительно, возьмем неубывающие последовательности $\{h_p\}, \{h_p^n\} \in \mathcal{E}$ такие, что $f = \lim_p h_p$ и $f_n = \lim_p h_p^n$ поточечно. Положим $g_p = \sup_{n \leq p} h_p^n$. Очевидно, $g_p \in \mathcal{E}$ и

$$h_p^n \le g_p \le f_p$$
 при $n \le p$. (4)

Следовательно, $f_n=\sup_p h_p^n \leq \sup_p g_p$ и поэтому $h_n \leq \sup_p g_p$ при любом n. По лемме из пункта b) имеем $\Phi(h_n) \leq \sup_p \Phi(g_p)$. Отсюда получаем

$$\Phi(f) = \lim_{n} \Phi(h_n) \le \sup_{p} \Phi(g_p) \underbrace{\le}_{(4)} \sup_{p} \Phi(f_p).$$

Лекция 10.

Definition 10.1. Функционал Φ на $\mathcal{M}(\mathcal{S}, \overline{\mathbb{R}}^+)$, определенный в теореме 9.2, называется внешним интегралом и обозначается

$$\Phi(f) = \int_{-\infty}^{\infty} f(x)\mu(dx) = \int_{-\infty}^{\infty} f(x)d(\mu(x)) = \int_{-\infty}^{\infty} fd\mu.$$

Пусть $A \in \mathcal{S}$. Будем использовать также обозначение

$$\int_{A}^{*} f d\mu = \int_{A}^{*} f \cdot I_{A} d\mu.$$

Theorem 10.1 (Лемма Фату). Для любой последовательности функций $f_n \in \mathcal{M}(\mathcal{S},\overline{\mathbb{R}}^+)$

$$\liminf \int_{-\infty}^{\infty} f_n d\mu \ge \int_{-\infty}^{\infty} \liminf f_n d\mu.$$

 \mathcal{A} оказательство. Очевидно, $f_n \geq \inf_{j \geq p} f_j$ при $n \geq p$. В силу монотонности Φ имеем

$$\int^* f_n d\mu \geq \int^* \inf_{j \geq p} f_j d\mu \ \text{при} \ n \geq p.$$

Следовательно,

$$\inf_{n \ge p} \int_{-\infty}^{\infty} f_n d\mu \ge \int_{-\infty}^{\infty} \inf_{j \ge p} f_j d\mu.$$

Поскольку $h_p=\inf_{j\geq p}f_j$ есть неубывающая последовательность, утверждение теоремы вытекает из теоремы 9.2, п.2. $\ \square$

Свойства внешних интегралов

Theorem 10.2. $\int_{-\pi}^{\pi} f d\mu = 0 \iff \mu(x : f(x) \neq 0) = 0.$

Доказательство. Необходимость. Предположим, что $\mu(f \neq 0) \neq 0$. Поскольку

$$\{f \neq 0\} = \bigcup_n \{f > \frac{1}{n}\} \ \text{ if } \ \{f > \frac{1}{n}\} \subset \{f > \frac{1}{n+1}\},$$

из непрерывности меры относительно монотонной последовательности получаем, что

$$\lim \mu(x: f(x) > \frac{1}{n}) = \mu(f \neq 0) > 0.$$

Следовательно, существует m, при котором $\mu(f>1/m)>0$ и поэтому

$$\int^* f d\mu \geq \int^* f \cdot I_{\{f > 1/m\}} d\mu > \frac{1}{m} \mu(f > \frac{1}{m}) > 0.$$

Пришли к противоречию.

Достаточность. Пусть $\mu(x:f(x)\neq 0)=0$). Имеем

$$\int_{-\infty}^{\infty} f d\mu = \int_{-\infty}^{\infty} f \cdot I_{\{f \neq 0\}} d\mu = \lim_{n \to \infty} \int_{-\infty}^{\infty} f_n \cdot I_{\{f_n \neq 0\}} d\mu,$$

где $f_n(x) = f(x)$, если $f(x) \le n$, и $f_n(x) = n$, если f(x) > n. Далее,

$$\lim_{n} \int_{-\infty}^{\infty} f_n \cdot I_{\{f \neq 0\}} d\mu \le \lim_{n} n \cdot \underbrace{\mu(f \neq 0)}_{=0} = 0.$$

Следствие. Если $\mu(A)=0$, то для любой функции $f\in\mathcal{M}(\mathcal{S},\overline{\mathbb{R}}^+)$ имеем

$$\int_{A}^{*} f d\mu = 0.$$

Доказательство. Имеем

$$\int_{A}^{*} f d\mu = \int_{A}^{*} f \cdot I_{A} d\mu = 0$$

в силу теоремы 10.2.

Definition 10.2. Измеримая функция $f:X\to\overline{\mathbb{R}}$ называется интегрируемой относительно меры $\mu,$ если

$$\int^* f^+ d\mu < \infty, \quad \int^* f^- d\mu < \infty.$$

B этом случае интегралом от функции f по мере μ называется

$$\int f d\mu = \int^* f^+ d\mu - \int^* f^- d\mu.$$

Будем использовать также обозначения

$$\int f(x)d\mu(x) = \int f(x)\mu(dx) = \mu(f).$$

Theorem 10.3. 1. Множество интегрируемых действительных функций есть линейное пространство над полем $\mathbb R$ и отображение $f \to \int f d\mu$ есть линейная форма на этом пространстве.

- 2. Пусть функция f является измеримой, а g интегрируемой, при этом |f| < g. Тогда f интегрируема.
- 3. f интегрируема $\Leftrightarrow |f|$ интегрируема.
- 4. Если f интегрируема, то

$$|\int f d\mu| \le \int |f| d\mu.$$

Доказательство. 1. Достаточно доказать, что

$$\mu(\alpha \cdot f) = \alpha \cdot \mu(f) \quad \text{if} \quad \mu(f_1 + f_2) = \mu(f_1) + \mu(f_2),$$
 (5)

Первое равенство очевидно.

Для доказательства второго сначала покажем, что выполнено следующее свойство. Пусть f=g-h, где $g,\ h\geq 0$ и $g,\ h$ интегрируемы. Покажем, что f интегрируема и

$$\mu(f) = \mu(g) - \mu(h). \tag{6}$$

, где $g,h\in\mathcal{M}(\mathcal{S},\overline{\mathbb{R}}^+)$ Из определения f вытекает, что

$$f^+ = g - \min(g, h) \le g \text{ if } f^- = h - \min(g, h) \le h.$$

Следовательно, f^+ и f^- интегрируемы. Далее,

$$f^+ + \min(g, h) = g \text{ if } f^- + \min(g, h) = h.$$

Из свойств внешнего интеграла получаем

$$\int_{-\infty}^{\infty} f^+ d\mu + \int_{-\infty}^{\infty} \min(g, h) d\mu = \int_{-\infty}^{\infty} g d\mu.$$
$$\int_{-\infty}^{\infty} f^- d\mu + \int_{-\infty}^{\infty} \min(g, h) d\mu = \int_{-\infty}^{\infty} h d\mu.$$

Таким образом,

$$\int f d\mu \underbrace{=}_{\text{IIO OIID.}} \int_{*}^{*} f^{+} d\mu - \int_{*}^{*} f^{-} d\mu = \int g d\mu - \int h d\mu,$$

т.е. (6) доказано.

Пусть теперь $f = f_1 + f_2$ и f_1 , f_2 интегрируемы. Тогда

$$f = \underbrace{f_1^+ + f_2^+}_{g \ge 0} - \underbrace{(f_1^- + f_2^-)}_{h \ge 0}.$$

Выше показано, что в этом случае f интегрируема и

$$\mu(f) = \mu(f_1^+ + f_2^+) - \mu(f_1^- + f_2^-)$$

= в силу свойств внешнего интеграла

$$= \mu(f_1^+) + \mu(f_2^+) - \mu(f_1^-) - \mu(f_2^-) = \mu(f_1) + \mu(f_2),$$

т.е. второе равенство в (5) доказано.

2. Поскольку $|f|=f^++f^-\leq g$, имеем $f^+\leq g$ и $f^-\leq g$. В силу монотонности внешнего интеграла получаем

$$\int^* f^+ d\mu \le \mu(g) < \infty, \quad \int^* f^- d\mu \le \mu(g) < \infty.$$

Следовательно, f интегрируема.

3. Из интегрируемости f вытекает интегрируемость f^+ и f^- . Следовательно, $|f|=f^++f^-$ интегрируема в силу п.1. Обратное следует из п.2 при g=|f|.

4. Имеем

$$|\mu(f)| = |\mu(f^+) - \mu(f^-)| \le \mu(f^+) + \mu(f^-) = \mu(|f|).$$

Лекция 11.

Примеры. 1. Пусть $\mu = \delta_y$, где $\delta_y(E) = 1$, если $y \in E$, и $\delta_y(E) = 0$ в противном случае. Пусть $f \in \mathcal{M}(\mathcal{S}, \overline{\mathbb{R}}^+)$. Легко проверить, что функционал $\Phi(f) = f(y)$ обладает свойствами 1-3 из теоремы 9.2 и в силу единственности является внешним интегралом по мере δ_y . В силу теоремы 10.3 функция f интегрируема тогда и только тогда, когда $|f(y)| < \infty$. В этом случае

$$\int f d\delta_y = f(y).$$

2. Пусть y_1, y_2, \dots – последовательность элементов X и $\alpha_1, \alpha_2, \dots$ – последовательность чисел из $\overline{\mathbb{R}}^+$. Рассмотрим на $\mathcal S$ функцию, заданную формулой

$$\mu(E) = \sum_{k: y_k \in E} \alpha_k = \sum_k \alpha_k \, \delta_{y_k}(E).$$

Легко видеть, что μ есть мера. При этом, если $\alpha_1 + \alpha_2 + ... = 1$ и $X = \mathbb{R}$, то μ есть вероятностная мера на прямой, сосредоточенная в точках $y_1, y_2, ...,$ и соответствующие вероятности равны $f_1, f_2,$ Рассмотрим на $\mathcal{M}(\mathcal{S}, \overline{\mathbb{R}}^+)$ отображение

$$\Phi: f \to \sum_{k} \alpha_k f(y_k).$$
(7)

Легко проверить, что Φ обладает свойствами 1-3 в теореме 9.2 и поэтому является внешним интегралом. В силу теоремы 10.3 функция f является интегрируемой тогда и только тогда, когда

$$\sum \alpha_k |f(y_k)| < \infty,$$

т.е. ряд, стоящий в правой части (7) сходится абсолютно.

Напомним, что если X есть дискретная случайная величина на вероятностном пространстве (Ω, \mathcal{A}, P) такая, что

$$P(X = f_k) = \alpha_k > 0$$
 и $\alpha_1 + \alpha_2 + \dots = 1$,

TO

$$\mathbb{E}X = \int_{\Omega} X(\omega)P(d\omega) = \sum_{k} \alpha_{k} f_{k}$$

при условии, что ряд сходится абсолютно.

Theorem 11.1. Пусть f и g есть измеримые функции на (X, S) со значениями в $\overline{\mathbb{R}}$ и f = g μ -почти всюду. Тогда

- 1. Ecnu $f \geq 0$ u $g \geq 0$, mo $\int_{-\infty}^{\infty} f d\mu = \int_{-\infty}^{\infty} g d\mu$.
- 2. Если f интегрируема, то и g интегрируема и $\int f d\mu = \int g d\mu$.

Доказательство. 1. Пусть $M=\{x: f(x)=g(x)\}\Rightarrow \mu(M^c)=0.$ По следствию теоремы 10.2. имеем

$$\int_{-}^{*} f d\mu = \int_{-}^{*} f I_{\{M\}} d\mu = \int_{-}^{*} g I_{\{M\}} d\mu = \int_{-}^{*} g d\mu.$$

2. Если f и g совпадают μ -п.в., то $f^+ = g^+, \, f^- = g^- \, \mu$ -п.в. В силу п.1 имеем

$$\int_{-\pi}^{\pi} g^{+} d\mu = \int_{-\pi}^{\pi} f^{+} d\mu < \infty, \quad \int_{-\pi}^{\pi} g^{-} d\mu = \int_{-\pi}^{\pi} f^{-} d\mu < \infty.$$

Следовательно, функция д интегрируема и

$$\int f d\mu = \int g d\mu.$$

Theorem 11.2. Если f со значениями в $\overline{\mathbb{R}}$ интегрируема, то f конечна почти всюду.

Доказательство. Достаточно доказать конечность почти всюду функций f^+ и f^- . Поэтому далее можем считать, что $f \geq 0$. Положим $E = \{x: f(x) = \infty\}$. Тогда при любом n получаем

$$\infty > \int f d\mu \ge \int f I_E d\mu \ge n \int I_E d\mu = n \mu(E).$$

Следовательно, $\mu(E) = 0$. \square

Theorem 11.3. Пусть g интегрируема, f_n - измерима $u |f_n| < g, \mu$ -n.в. при всех n. Тогда

1. Справедливы неравенства (обобщенная лемма Фату)

$$\limsup \int f_n d\mu \le \int \limsup f_n d\mu; \tag{8}$$

$$\liminf \int f_n d\mu \ge \int \liminf f_n d\mu. \tag{9}$$

2. {Теорема Лебега о предельном переходе по знаком интеграла} Если существует $f = \lim f_n$ в смысле сходимости μ -почти всюду, то

$$\lim_{n} \int f_n d\mu = \int \lim_{n} f_n d\mu. \tag{10}$$

Доказательство. 1. В силу теоремы 11.2 можем считать, что все рассматриваемые функции конечны. Пусть $E_n = \{x: |f_n(x)| > g(x)\}$ Из условия теоремы вытекает, что $\mu(\bigcup_n E_n) = 0$. Положим $f_n^1 = g(x)$, если $x \in \bigcup_n E_n$, и

 $f_n^1 = f_n(x)$ в противном случае. Поскольку $f_n^1 = f_n$, μ -почти всюду при любом n, по теореме 11.1 имеем

$$\int f_n^1 d\mu = \int f_n d\mu.$$

Следовательно, достаточно доказать теорему для функций f_n^1 . По построению имеем $f_n^1 \leq g$ всюду и поэтому $g - f_n^1 \in \mathcal{M}(\mathcal{S}, \overline{\mathbb{R}}^+)$. По лемме Фату (теорема 10.1) получаем

$$\liminf \int_{-\infty}^{\infty} (g - f_n^1) d\mu \ge \int_{-\infty}^{\infty} \liminf (g - f_n^1) d\mu.$$

Отсюда

$$\int g d\mu - \limsup \int f_n^1 d\mu \ge \int g d\mu - \int \limsup f_n^1 d\mu.$$

Поскольку $\lim_n \sup f_n^1 = \lim_n \sup f_n$ μ -почти всюду, то в силу теоремы 11.1 получаем (8). Аналогично доказывается (9) путем применения леммы Фату к функциям $(g+f_n^1)$.

2. Если существует $\lim f_n$, то $\underline{\lim} f_n = \overline{\lim} f_n$ μ -п.в., и поэтому правые части равны неравенств (8) и (9) равны. Поскольку

$$\limsup \int f_n d\mu \ge \liminf \int f_n d\mu,$$

получаем (10). □

Пусть λ есть мера Лебега на \mathbb{R} .

Proposition 11.1. *Если* f интегрируема по Риману на [a,b], то она интегрируема и относительно меры λ и

$$\int_{a}^{b} f dx = \int_{[a,b]} f d\lambda.$$

Note 11.1. Обратное неверно. Достаточно взять функцию Дирихле f(x) на [0,1], равную 1 в рациональных и равную 0 в иррациональных точках. Как известно, интеграл Римана от f(x) не существует, а

$$\int_{[0,1]} f(x)dx = 0.$$

$$x_k = a + \frac{k}{2^n}(b-a)$$
 для $k = 0, ..., 2^n,$

$$\overline{S}_n = \frac{b-a}{2^n} \sum_{k=1}^{2^n} M_{n_k}, \ \underline{S}_n = \frac{b-a}{2^n} \sum_{k=1}^{2^n} m_{n_k},$$

где

$$M_{n_k} = \sup_{x_{k-1} \le x < x_k} f(x), \quad \text{if} \quad m_{n_k} = \inf_{x_{k-1} \le x < x_k} f(x).$$

Поскольку интеграл Римана от f существует, то

$$\lim \overline{S}_n = \lim \underline{S}_n = \int_a^b f(x) dx. \tag{11}$$

Положим при всех $k = 1, 2, ..., 2^n$

$$\overline{f}_n(x) = M_{n_k}, \ f_n(x) = m_{n_k}$$
 для $x_{k-1} \le x < x_k.$

Наконец, $\overline{f}_n(b)=\underline{f}_n(b)=f(b)$. По построению функции \overline{f}_n и \underline{f}_n являются измеримыми. Далее, \overline{f}_n , $\underline{f}_n\in\mathcal{E}$, при этом для любого $x\in[a,b]$ имеем $\overline{f}_n(x)\downarrow\overline{f}(x)\geq f(x),\quad \underline{f}_n(x)\uparrow\underline{f}(x)\leq f(x),$ а также

$$\overline{S}_n = \int\limits_{[a,b]} \overline{f}_n(x) \lambda(dx) \ \text{ M } \underline{S}_n = \int\limits_{[a,b]} \underline{f}_n(x) \lambda(dx).$$

Из определения интеграла Лебега и (11) получаем

$$\int\limits_{[a,b]} \overline{f} d\lambda = \lim \overline{S}_n = \lim \underline{S}_n = \int\limits_{[a,b]} \underline{f} d\lambda.$$

Следовательно,

$$\int_{[a,b]} (\overline{f} - \underline{f}) d\lambda = 0$$

и поэтому $\overline{f}-\underline{f}=0$ λ -почти всюду. Таким образом, $\overline{f}=\underline{f}=f$ λ -почти всюду. \square

Лекция 12.

$\pmb{\Pi}$ ространства \mathcal{L}_p и L_p .

Definition 12.1. $Ang f \in \mathcal{M}(S, \overline{\mathbb{R}}) \ u \ p \in [1, +\infty] \ nononeum$

$$\mathcal{N}_p(f) = \left(\int_0^* |f|^p d\mu\right)^{1/p}, \quad ecnu \ p < +\infty$$

u

$$\mathcal{N}_{\infty}(f) = \inf \left\{ \lambda : \lambda \in \overline{\mathbb{R}}^+, \ \mu(|f| \ge \lambda) = 0 \right\}.$$

Note 12.1. Если $\lambda_0=\mathcal{N}_\infty(f)$, то для любого $\lambda>\lambda_0$ имеем $|f|\leq \lambda$ μ -п.в. (можно сказать так : $|f|\leq \lambda_0$)

Theorem 12.1. Функционал \mathcal{N}_p обладает следующими свойствами:

1.

$$\mathcal{N}_p(0) = 0$$
 u $\mathcal{N}_p(\lambda f) = |\lambda| \mathcal{N}_p(f)$ dif $\lambda \in \overline{\mathbb{R}}$.
 $Ecnu$ $|f| \leq |g|$ mo $\mathcal{N}_p(f) \leq \mathcal{N}_p(g)$.

2. При p,q таких, что $1 \le p,q \le +\infty$ и 1/p + 1/q = 1, имеем

$$\mathcal{N}_1(fg) \leq \mathcal{N}_p(f) \mathcal{N}_q(g)$$

- неравенство Гельдера.
- 3. При всех p: $1 \le p \le +\infty$ имеем

$$\mathcal{N}_{p}(f+g) \leq \mathcal{N}_{p}(f) + \mathcal{N}_{p}(g)$$

- неравенство Минковского.

Note 12.2. Пусть μ – вероятностная мера, Y и Z – случайные величины на вероятностном пространстве (X, \mathcal{S}, μ) . Тогда неравенство Гельдера будет иметь вид

$$\mathbb{E}|YZ| \le (\mathbb{E}|Y|^p)^{\frac{1}{p}} (\mathbb{E}|Z|^q)^{\frac{1}{q}}$$

B частности, при Z=1 имеем

$$\mathbb{E}|Y| \le (\mathbb{E}|Y|^p)^{\frac{1}{p}}, \quad \forall p \ge 1.$$

Доказательство. 1. Очевидно вытекает из свойств внешнего интеграла. 2. Сначала докажем следующую лемму.

Пемма. Пусть $1 < p, \ q < \infty$ таковы, что 1/p + 1/q = 1. Тогда для любых $a,b \geq 0$ справедливо неравенство

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Доказательство. Если $a\,b=0,$ то утверждение очевидно. Пусть $a\,b>0.$ Поскольку функция $\ln x$ вогнута, имеем

$$\ln ab = \frac{1}{p} \ln a^p + \frac{1}{q} \ln b^q \le \ln \left(\frac{a^p}{p} + \frac{b^q}{q} \right).$$

Таким образом,

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Вернемся к доказательству теоремы.

Если

$$\int^* |f|^p d\mu \cdot \int^* |g|^q d\mu \neq 0,$$

то применим лемму, взяв

$$a = \frac{|f|}{\mathcal{N}_p(f)}$$
, $b = \frac{|g|}{\mathcal{N}_q(g)}$.

Тогда

$$\frac{|fg|}{\mathcal{N}_p(f)\cdot\mathcal{N}_q(g)} \;\leq\; \frac{1}{p}\cdot\frac{|f|^p}{\mathcal{N}_p^p(f)} + \frac{1}{q}\cdot\frac{|g|^q}{\mathcal{N}_q^q(g)}.$$

Взяв интеграл от обеих частей, получим утверждение 2 теоремы при $1 < p, \ q < +\infty.$

Пусть теперь

$$\int^* |f|^p d\mu \cdot \int^* |g|^q d\mu = 0.$$

Тогда один из сомножителей равен 0, скажем, $\int^* |f|^p d\mu = 0$. Отсюда по теореме 10.2 вытекает, что |f| = 0 μ -п.в. Следовательно, $\mathcal{N}_1(fg) = 0$, а значит утверждение 2 справедливо и в этом случае.

Рассмотрим, наконец, случай $p = 1, q = +\infty$.

Возьмем произвольное $\lambda > \mathcal{N}_{\infty}(g)$. Тогда в силу замечания после определения функционала \mathcal{N}_p имеем

$$|fg| \leq \lambda |f|.$$

Интегрируя обе части, получим

$$\mathcal{N}_1(fg) \leq \lambda \mathcal{N}_1(f).$$

В силу произвольности λ приходим к неравентсву

$$\mathcal{N}_1(fq) < \mathcal{N}_1(f) \cdot \mathcal{N}_{\infty}(q).$$

Аналогично рассматривается случай $p = +\infty$, q = 1.

2. Доказательство неравенства Минковского начнем с рассмотрения крайних случаев.

Пусть p = 1, тогда по неравенству треугольника

$$|f+g| \le |f| + |g|.$$

Интегрируя, получаем

$$\mathcal{N}_1(f+g) \leq \mathcal{N}_1(f) + \mathcal{N}_1(g).$$

Пусть $p=\infty$. Возьмем произвольные α и λ :

$$\alpha > \mathcal{N}_{+\infty}(g), \quad \lambda > \mathcal{N}_{+\infty}(f).$$

Поскольку

$$\{x: |f(x)+g(x)| \geq \lambda + \alpha\} \subset \underbrace{\{x: |f(x)| \geq \lambda\}}_A \bigcup \underbrace{\{x: |g(x)| \geq \alpha\}}_B$$

и $\mu(A) = \mu(B) = 0$ в силу выбора α и λ , имеем

$$\mu(x : |f(x) + g(x)| \ge \lambda + \alpha) \le \mu(A) + \mu(B) = 0.$$

Следовательно,

$$\mathcal{N}_{+\infty}(f+q) < \lambda + \alpha.$$

В силу произвольности выбора α и λ получаем

$$\mathcal{N}_{+\infty}(f+g) \leq \mathcal{N}_{+\infty}(f) + \mathcal{N}_{+\infty}(g).$$

Обратимся к оставшемуся случаю 1 . Имеем

$$\int_{-\infty}^{\infty} |f+g|^{p} d\mu \leq \int_{-\infty}^{\infty} |f| \cdot |f+g|^{p-1} d\mu + \int_{-\infty}^{\infty} |g| \cdot |f+g|^{p-1} d\mu \leq^{\infty}$$

$$\leq^{\infty} \left(\int_{-\infty}^{\infty} |f|^{p} d\mu \right)^{\frac{1}{p}} \cdot \left(\int_{-\infty}^{\infty} |f+g|^{q(p-1)} d\mu \right)^{\frac{1}{q}} + \left(\int_{-\infty}^{\infty} |g|^{p} d\mu \right)^{\frac{1}{p}} \cdot \underbrace{\left(\int_{-\infty}^{\infty} |f+g|^{q(p-1)} d\mu \right)^{\frac{1}{q}}}_{\mathcal{N}_{q}(|f+g|^{p-1})}$$

Неравенство (*) непосредственно вытекает из неравенства Гельдера. Так как $p(q-1)=q,\,q(p-1)=p$ неравенства перепишутся в виде

$$\mathcal{N}_p^p(f+g) \leq \mathcal{N}_p(f) \cdot \mathcal{N}_p^{\frac{p}{q}}(f+g) + \mathcal{N}_p(g) \cdot \mathcal{N}_p^{\frac{p}{q}}(f+g).$$

Если $\mathcal{N}_p(f+g) \neq 0$, то поскольку p-p/q=1, получим

$$\mathcal{N}_p(f+g) \leq \mathcal{N}_p(f) + \mathcal{N}_p(g).$$

Доказательство случая $\mathcal{N}_p(f+g)=0$ очевидно. \square

Definition 12.2. Функция $f \in \mathcal{M}(\mathcal{S}, \overline{\mathbb{R}})$ называется интегрируемой в степени p, если

$$\mathcal{N}_p(f) < \infty$$

Множество функций, интегрируемых в степени p, обозначим \mathcal{L}^p .

Note~12.3.~ Функционал $\mathcal{N}_p(f)$ на \mathcal{L}^p является полунормой, т.к. из $\mathcal{N}_p(f)=0$ не следует, что $f=0~\mu$ -п.в.

Definition 12.3. Функции из \mathcal{L}^2 называются интегрируемыми в среднем квадратичном.

Note~12.4.~ Если $f,g\in\mathcal{L}^2,~$ то определим билинейную форму на $\mathcal{L}^2\times\mathcal{L}^2$ формулой

$$(f,g) = \int fg \, d\mu$$

Справа написан знак интеграла, а не внешнего интеграла, т.к. fg есть интегрируемая функция. Действительно, по неравенству Гельдера имеем

$$\mathcal{N}_1(f g) \leq \mathcal{N}_2(f) \cdot \mathcal{N}_2(g) < \infty.$$

Заметим, что билинейная форма является непрерывной по каждому аргументу в следующим смысле:

$$(g, f_n) \to (g, f)$$
 при $\mathcal{N}_2(f_n - f) \to 0$.

Действительно, используя неравенство Гельдера, получим

$$|(g, f_n) - (g, f)| = |(g, f_n - f)| \le \mathcal{N}_2(g) \cdot \mathcal{N}_2(f_n - f) \to 0.$$

Лекция 13.

Theorem 13.1. Пусть $1 \leq p < \infty$ и $f_n \in \mathcal{L}^p$, причем $f_n \to f \in \mathcal{M}(\mathcal{S}, \overline{\mathbb{R}})$ по мере. Предположим, что существует $g \in \mathcal{L}^p : |f_n| \leq g$ μ -n.в. для всех n. Тогда

$$f \in \mathcal{L}^p \ u \ \mathcal{N}_p(f_n - f) \to 0 \ npu \ n \to \infty.$$

Note 13.1. Сходимости вида $\mathcal{N}_p(f_n-f)\to 0$ в теории вероятности отвечает сходимость в среднем порядка p.

Доказательство. По теореме 10.3 из последовательности почти всюду конечных функций, сходящейся по мере, можно выделить подпоследовательность, сходящуюся почти равномерно. Пусть $\{f_{n_k}\}$ – такая подпоследовательность, сходящаяся почти равномерно к некоторой функции $\varphi(x)$.

Покажем, что $\varphi = f$ μ -п.в. Действительно, при любом $\varepsilon > 0$ имеем

$$\mu(|f - \varphi| \ge \varepsilon) \le \mu(|f - f_{n_k}| \ge \varepsilon/2) + \mu(|f_{n_k} - \varphi| \ge \varepsilon/2) \to 0,$$

т.к. $f_{n_k} \to f$ по мере и $f_{n_k} \to \varphi$ почти равномерно. Следовательно,

$$\mu(|f - \varphi| \ge \varepsilon) = 0.$$

Поскольку

$$\{|f-\varphi|>0\}=\bigcup_n\{|f-\varphi|\geq \frac{1}{n}\},$$

получаем f=arphi μ -п.в.

Покажем, что

$$\mathcal{N}_p(f_{n_k} - f) \to 0 \quad \text{при } k \to \infty.$$
 (1)

Положим

$$M_k = \{x : |f_{n_k}| > g\}, \ N = \{x : f_{n_k} \nrightarrow f\}.$$

Тогда $\mu(M_k) = \mu(N) = 0$. Пусть

$$R = N \cup \bigcup_{k=1}^{\infty} M_k.$$

Для любого $x \in R^c$ имеем

$$f_{n_k}(x) \to f(x), |f_{n_k}| \le g \in \mathcal{L}^p.$$

Следовательно, $f \in \mathcal{L}^p$. В силу линейности пространства \mathcal{L}^p имеем

$$\underbrace{|f_{n_k} - f|^p}_{g_k} \in \mathcal{L}^1$$

Т.к. $g_k \to 0$ μ -п.в. и $g_k \le 2^{p-1}(|f_{n_k}|^p + |f|^p) \le 2^p g^p$, (предпоследнее неравентсво справедливо в силу того, что

$$\forall a, b \ge 0, (a+b)^p \le 2^{p-1}(|a|^p + |b|^p)),$$

по теореме Лебега о предельном переходе получаем

$$\int \lim_{k} g_k d\mu = \lim_{k} \int g_k d\mu = \lim_{k} \mathcal{N}_p^p (f_{n_k} - f) = 0$$

Следовательно, при $k\to\infty$ $\lim_k \mathcal{N}_p(f_{n_k}-f)=0$. Предположим, что $\mathcal{N}_p(f_n-f) \nrightarrow 0$, т.е.

$$\exists \varepsilon > 0, \ \exists \{f_{n_k}\} : \mathcal{N}_p(f_{n_k} - f) \ge \varepsilon > 0.$$

Взяв подпоследовательность f_{n_k} в качестве всей последовательности и повторив первую часть доказательства, получаем противоречие с тем, что в $\{f_{n_k}\}$ найдется подпоследовательность, для которой выполнено (1). \square

Theorem 13.2. Пространство \mathcal{L}^p , $1 \leq p \leq +\infty$, является полным относительно полунормы \mathcal{N}_p .

Доказательство. Другими словами, надо доказать, что для любой $\{f_n\} \in \mathcal{L}^p$ такой, что $\mathcal{N}_p(f_n - f_m) \to 0$ при $n, m \to \infty$, существует $f \in \mathcal{L}^p$, для которой

$$\mathcal{N}_p(f_n-f)\to 0.$$

1. Рассмотрим сначала случай $p: 1 \le p < \infty$.

Для любого натурального k определим n_k из условия, что при всех $r \geq n_k$ имеем

$$\mathcal{N}_p(f_r - f_{n_k}) \leq 1/2^k$$
.

Положим $g_k = f_{n_{k+1}} - f_{n_k}$. По лемме Фату (см. теорему 10.1) имеем

$$\mathcal{N}_p(\sum_{k=1}^{\infty}|g_k|)=\mathcal{N}_p(\lim_n\sum_{k=1}^n|g_k|)\leq \lim_n\mathcal{N}_p(\sum_{k=1}^n|g_k|)\leq$$

$$\leq \lim_{n} \sum_{k=1}^{n} \mathcal{N}_{p}(g_{k}) = \sum_{k=1}^{\infty} \mathcal{N}_{p}(g_{k}) \leq \sum_{k=1}^{\infty} 1/2^{k} = 1.$$

Следовательно, $h=\sum\limits_{1}^{\infty}|g_k|\in\mathcal{L}^p$ и поэтому функция h^p интегрируема.

Следовательно, h является μ -п.в. конечной, т.е. ряд $\sum\limits_{k=1}^{\infty}|g_k|$ сходится μ -

п.в. Таким образом, ряд $\sum_{k=1}^{\infty} g_k$ также сходится μ -п.в. Но

$$\sum_{r=1}^{k-1} g_r = f_{n_k} - f_{n_1},$$

так что f_{n_k} сходится μ -п.в., причем

$$|f_{n_k}| \le |f_{n_1}| + \sum_{k=1}^{\infty} |g_k| \in \mathcal{L}^p.$$

В силу предыдущей теоремы существует $f=\lim f_{n_r}$ поточечно и $f\in\mathcal{L}^p,$

$$\mathcal{N}_p(f_{n_r}-f)\to 0.$$

Покажем, что $\mathcal{N}_p(f-f_n) \to 0$. Возьмем $\forall \varepsilon > 0$. Тогда

$$\exists N_1(\varepsilon) : \forall n_r > N_1(\varepsilon) : \mathcal{N}_p(f_{n_r} - f) < \varepsilon/2.$$

С другой стороны, найдется $N_2(\varepsilon)$ такое, что для всех $n>N_2(\varepsilon)$ и любых натуральных r имеем

$$\mathcal{N}_p(f_{n+r} - f_n) \le \varepsilon/2.$$

Таким образом, для любых $n, n_r > \max(N_1, N_2)$ получаем, используя неравенство Минковского,

$$\mathcal{N}_p(f - f_n) \le \mathcal{N}_p(f - f_{n_r}) + \mathcal{N}_p(f_{n_r} - f_n) \le \varepsilon.$$

Итак, рассмотрение первого случая закончено.

2. Пусть теперь $p = +\infty$. Для любой пары натуральных чисел n, n' положим

$$\varepsilon_{n,n'} = \mathcal{N}_{\infty}(f_n - f_{n'}).$$

Имеем

$$\mu(|f_n - f_{n'}| > \varepsilon_{n,n'}) = \mu(\bigcup_k (|f_n - f_{n'}| \ge \varepsilon_{n,n'} + 1/k)) = 0.$$

Обозначим

$$N = \bigcup_{n,n'} \left(|f_n - f_{n'}| > \varepsilon_{n,n'} \right).$$

Поскольку для всех $x \in N^c$ и произвольных n, n' имеем

$$|f_n(x) - f_{n'}(x)| \le \varepsilon_{n,n'},$$

последовательность $\{f_n(x)\}$ является фундаментальной на N^c в смысле равномерной сходимости. Пусть f - функция из $\mathcal{L}^{+\infty}$, совпадающая на N^c с пределом f_n в смысле равномерной сходимости. Тогда имеем

$$\lim_{n} \sup_{x \in N^c} |f_n(x) - f(x)| = 0.$$

Т.к. $\mu(N) = 0$, получаем

$$\mathcal{N}_{\infty}(f - f_n) \le \sup_{x \in N^c} |f - f_n|$$

и поэтому $\mathcal{N}_{\infty}(f-f_n) \to 0$ при $n \to \infty$. \square

$\mathbf{\Pi}$ ространства L^p .

Рассмотрим на \mathcal{L}^p класс функций

$$\mathcal{N} = \{ f \in \mathcal{L}^p : \mathcal{N}_p(f) = 0 \},\,$$

т.е \mathcal{N} состоит из всех измеримых функций, равных 0 μ -п.в.

Definition 13.1. Функции $f, g \in \mathcal{L}^p$ называются **эквивалентными**, если $f - g \in \mathcal{N}$. Эквивалентность f, g будем обозначать $f \sim g$.

Тогда все пространство \mathcal{L}^p разбивается на классы эквивалентности. Будем обозначать через \widetilde{f} все функции из \mathcal{L}^p эквивалентные f. При этом, очевидно, выполнены следующие

Свойства.

1. Если $f \sim f'$ и $g \sim g'$, то

$$f+g \sim f'+g'$$
.

2. Если $f \sim f'$, то

$$\lambda f \sim \lambda f', \quad \forall \lambda \in \mathbb{R}.$$

3. Если $f \sim f'$, то

$$\mathcal{N}_{p}(f) = \mathcal{N}_{p}(f').$$

Поэтому корректны определения

$$\widetilde{f} + \widetilde{g} \ = \ \widetilde{f + g} \ \text{ if } \ \lambda \widetilde{f} \ = \ \widetilde{\lambda f}.$$

Definition 13.2. Пространство L^p – это совокупность классов эквивалентности функций из \mathcal{L}^p .

 $Note\ 13.2.\ {
m Ha}\ L^p$ функционал N_p является нормой.

13.1 Действительные меры

Definition 13.3. Действительной мерой μ на измеримом пространстве (X, S) называется отображение S в $(-\infty, +\infty]$ такое, что a) $\mu(\varnothing) = 0;$

 $b)\ \mu(\bigcup_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}\mu(A_i)\$ для любой последовательности $\{A_i\}\in\mathcal{S}$ такой, что $A_i\cap A_j=\varnothing$ при $i\neq j$.

Note 13.3. 1. В определении можно было в качестве множества значений μ указать $[-\infty, +\infty)$, но не $[-\infty, +\infty]$, т.к. в последнем случае возникает неопределенность вида $+\infty-\infty$.

- **2.** Действительная мера μ является мерой, если $\mu(A) \geq 0$ для любого $A \in \mathcal{S}.$
- **3.** Если μ_1 и μ_2 меры , т.е. неотрицательные , счетно-аддитивные функции на \mathcal{S} , не тождественно равные бесконечности, то $\mu_1 \mu_2$ есть действительная мера.

Definition 13.4. Действительная мера μ называется ограниченной, если

$$\sup_{A\in\mathcal{S}}|\mu(A)|<\infty.$$

Theorem 13.3 (Жордана-Хана). . Существует по крайней мере одно множество $G \in \mathcal{S}$ такое, что

$$\mu(A) \geq 0$$
 для $\forall A \subseteq G, A \in \mathcal{S},$

$$\mu(B) \leq 0$$
 для $\forall B \subseteq G^c$, $B \in \mathcal{S}$.

Если обозначить

$$\mu^+(A) = \sup_{B \subseteq A} \mu(B) \ u \ \mu^-(A) = -\inf_{B \subseteq A} \mu(B),$$

то для любого $A \in \mathcal{S}$ имеем

$$\mu^{+}(A) = \mu(A \cap G) \ u \ \mu^{-}(A) = -\mu(A \cap G^{c})$$

 $u \mu^+, \mu^-$ есть две меры, из которых μ^- ограничена, при этом

$$\mu(A) = \mu^+(A) - \mu^-(A)$$
 dan beex $A \in \mathcal{S}$.

Доказательство. Назовем множество $A \in \mathcal{S}$ отрицательным, если $\mu^+(A) = 0$. Объединение любого конечного или счетного числа отрицательных множеств есть множество отрицательное. Действительно, пусть A_1, A_2, \dots — отрицательные множества. Рассмотрим произвольное $A \in \mathcal{S}: A \subset \bigcup_{i=1}^{\infty} A_m$. Тогда

$$A = \bigcup_{1}^{\infty} (A \bigcap (A_m \setminus \bigcup_{k=1}^{m-1} A_k)).$$

Следовательно,

$$\mu(A) = \sum_{m} \mu(A \cap (A_m \setminus \bigcup_{1}^{m-1} A_k)) \le \sum_{m} \mu^+(A_m) = 0.$$

Обозначим через \mathcal{F}^- класс всех отрицательных множеств. Пусть

$$\beta = \inf_{A \in \mathcal{F}^-} \mu(A).$$

Возьмем последовательность $\{A_n\}, A_n \in \mathcal{F}^-$, для которой $\mu(A_n) \downarrow \beta$, что возможно из определения. Положим $A = \bigcup_{n=0}^{\infty} A_n$. Тогда $A \in \mathcal{F}^-$ и

$$\beta \le \mu(A) \le \mu(A_n) + \mu(A \setminus A_n) \le \mu(A_n) + \mu^+(A \setminus A_n) = \mu(A_n) + 0 \le \mu(A_n) \to \beta.$$

Следовательно, $\mu(A) = \beta > -\infty$, т.е. β конечно.

Покажем, что в качестве множества G из формулировки теоремы можно взять A^c . Для этого достаточно доказать , что $\mu^-(A^c)=0$.

Предположим противное , т.е. существует $E_0\subset A^c$, такое что $\mu(E_0)<0$ Имеем $\mu^+(E_0)>0$, т.к. в противном случае $E_0\in\mathcal{F}^-$, а тогда и $A\cup E_0\in\mathcal{F}^-$. Имеем $A\bigcup E_0$ -отрицательное множество

$$\beta \le \mu(A \bigcup E_0) = \mu(A) + \mu(E_0) < \mu(A) = \beta,$$

т.е. пришли к противоречию.

Пусть k_1 – наименьшее натуральное число такое, что существует измеримое $E_1\subset E_0$, для которого

$$\mu(E_1) > 1/k_1$$
.

Заметим, что $\mu(E_1) < \infty$, т.к. $|\mu(E_0)| < \infty$. Имеем

$$\mu(E_0 \setminus E_1) = \mu(E_0) - \mu(E_1) < \mu(E_0) - 1/k_1 < 0.$$

Повторяя предыдущие рассуждения относительно множества $E_0 \setminus E_1$, получаем наименьшее натуральное k_2 такое, что существует измеримое $E_2 \subset E_0 \setminus E_1$, для которого $\mu(E_2) \ge 1/k_2$.

Продолжая эти рассуждения получаем последовательность $k_i \to \infty$, т.к. в противном случае мера

$$\mu(E_1 \bigcup E_2 \bigcup ...) = +\infty$$

и поэтому

$$\mu(E_0 \setminus (E_1 \bigcup E_2 \ldots)) = \mu(E_0) - \mu(E_1 \bigcup E_2 \bigcup \ldots) = -\infty,$$

что невозможно по определению действительной меры. Таким образом,

$$\mu^+(E_0 \setminus (E_1 \bigcup E_2 \ldots)) = 0,$$

т.е.

$$F_0 = E_0 \setminus (\bigcup_{i=1}^{\infty} E_i)$$

есть отрицательное множество, принадлежащее A^c . С другой стороны,

$$\mu(F_0) = \mu(E_0 \setminus (\bigcup_{i=1}^{\infty} E_i)) = \mu(E_0) - \sum_{i=1}^{\infty} \mu(E_i) \le \mu(E_0) < 0.$$

Так что $A \cup F_0$ есть отрицательное множество и

$$\beta \le \mu(A \cup F_0) = \mu(A) + \mu(F_0) < \mu(A) = \beta,$$

т.е. пришли к противоречию.

Лекция 14.

Ниже будем использовать обозначение $|\mu|(A) = \mu^+(A) + \mu^-(A)$.

Пусть μ и ν – действительные меры на измеримом пространстве (X, \mathcal{S}) .

Definition 14.1. Мера μ называется абсолютно непрерывной относительно ν , если для всех измеримых $E: |\nu|(E) = 0$, имеем $\mu(E) = 0$. В этом случае используем обозначение $\mu \ll \nu$.

Definition 14.2. μ называется сингулярной относительно ν , если $\exists X_1 \in \mathcal{S} : |\mu|(X_1) = |\nu|(X_1^c) = 0$. Сингулярность будем обозначать $\mu \perp \nu$.

Упражнение. Привести пример пары μ, ν такой, что μ не абсолютно непрерывно и не сингулярно относительно ν .

Theorem 14.1. Пусть μ и ν – действительная меры. Три условия:

- 1. $\mu \ll \nu$;
- 2. $\mu^{+} \ll \nu \ u \ \mu^{-} \ll \nu$;
- 3. $|\mu| \ll |\nu|$

эквивалентны.

Упражнение . Доказать самостоятельно, используя предыдущую теорему. \square

Theorem 14.2. Пусть μ и ν – действительные меры, μ конечна и $\mu \ll \nu$. Тогда

$$\forall \varepsilon > 0 \; \exists \delta > 0 : |\nu|(E) < \delta \Rightarrow |\mu|(E) < \varepsilon. \tag{1}$$

Note 14.1. Предположим, что (1) верно, тогда $\mu \ll \nu$. Следовательно, если μ есть конечная мера, то (1) и условие $\mu \ll \nu$ эквивалентны.

Доказательство. Предположим противное, т.е. $\exists \varepsilon_0 > 0$, для которого можно взять $\delta_i : \sum_i \delta_i < \infty$ и измеримые $E_i : |\nu|(E_i) < \delta_i$, но $|\mu|(E_i) \ge \varepsilon_0$. Положим

$$E = \limsup E_i = \bigcap_{m=1}^{\infty} \bigcup_{n>m} E_n.$$

Для любого натурального m имеем

$$|
u|(E) \le |
u|(\bigcup_{n \ge m} E_n) \le \sum_{n=m}^{\infty} |
u|(E_n) \to 0$$
 при $m \to \infty$.

Следовательно, $|\nu|(E)=0$. С другой стороны в силу конечности μ имеем

$$|\mu|(E) = \lim |\mu|(\bigcup_{n>m} E_n) \ge \lim |\mu|(E_m) \ge \varepsilon_0,$$

т.е. μ не является абсолютно непрерывной относительно ν \square .

Упражнение. Почему требуется конечность меры μ ?

Theorem 14.3 (Радона-Никодима). Пусть (X, \mathcal{S}, μ) – измеримое пространство c σ -конечной положительной мерой μ . Пусть ν – действительная σ -конечная мера на \mathcal{S} , абсолютно непрерывная относительно μ . Тогда существует конечная действительная измеримая функция f, такая что f^- интегрируема относительно μ u

$$\mu(E) = \int\limits_E f d\mu \quad \partial$$
ля $\forall E \in \mathcal{S}.$

Функция f единственна с точностью до множества μ -меры θ . Функция f интегрируема тогда и только тогда, когда мера ν конечна.

Note 14.2. Ранее запись $\int f d\mu$ использовалась, если и только если оба интеграла $\int^* f^+ d\mu$, $\int^* f^- d\mu$ конечны. В теореме 6.4 и всюду ниже мы будем писать $\int f d\mu$, если хотя бы один из соответствующих внешних интегралов конечен.

Доказательство. 1. Сначала рассмотрим случай, когда меры μ и ν неотрицательны и конечны. Пусть $\mathcal L$ есть класс неотрицательных измеримых функций таких, что

$$\int\limits_E f d\mu \le \nu(E) \quad \text{для } \forall E \in \mathcal{S}.$$

Класс \mathcal{L} не пуст, например $0 \in \mathcal{L}$. Кроме этого, если $f_1, f_2 \in \mathcal{L}$, то $\max(f_1, f_2) \in \mathcal{L}$. Действительно, положим $F = \{x \in X : f_1(x) \geq f_2(x)\}$. Тогда

$$\int_{E} \max(f_1, f_2) d\mu = \int_{E \cap F} \max(f_1, f_2) d\mu + \int_{E \cap F^c} \max(f_1, f_2) d\mu =$$

$$= \int_{E \cap F} f_1 d\mu + \int_{E \cap F^c} f_2 d\mu \le \nu(E \cap F) + \nu(E \cap F^c) = \nu(E).$$

По индукции можно получить, что $\max(f_1,f_2,\ldots,f_n)\in\mathcal{L}$ Далее, если $f_n\in\mathcal{L}$ и $f_n\uparrow f$ μ -почти всюду, то $f\in\mathcal{L}$. Действительно, для любого измеримого E имеем

$$f_n \cdot I_E \uparrow f \cdot I_E$$
.

Поэтому

$$\nu(E) \geq \int\limits_E f_n d\mu = \int f_n \cdot I_E d\mu \uparrow \int f \cdot I_E d\mu = \int\limits_E f d\mu.$$

Положим

$$\alpha = \sup_{f \in \mathcal{L}} \int f d\mu.$$

Очевидно, $\alpha \leq \nu(X) < \infty$. Возьмем последовательность функций $\{f_n\}$ таких, что

$$\int f_n d\mu \to \alpha.$$

Обозначим $g_n = \max(f_1,..,f_n)$. Согласно доказанному выше $g_n \in \mathcal{L}$ и $g_n \uparrow g \in \mathcal{L}$. Имеем

$$\alpha \ge \int g d\mu = \lim \int g_n d\mu \ge \lim \int f_n d\mu = \alpha.$$

Следовательно,

$$\int gd\mu = \alpha.$$

Поскольку $\alpha < \infty$, функция g как интегрируемая является почти всюду конечной. Поэтому найдется всюду конечная функция g_0 , для которой

$$\int g_0 d\mu = \int g d\mu.$$

Положим

$$\mu'(E) = \nu(E) - \int_E g_0 d\mu$$
 для $\forall E \in \mathcal{S}$.

Докажем, что μ' тождественно равна нулю. Пусть D_n есть множество положительности меры $\mu'-n^{-1}\mu$, т.е. такое множество, что для всех $A\in\mathcal{S}$ имеем

$$(\mu' - n^{-1}\mu)(AD_n) \ge 0$$
 и $(\mu' - n^{-1}\mu)(AD_n^c) \le 0$.

Для произвольного $E \in \mathcal{S}$ имеем

$$\int_{E} (g_0 + n^{-1} I_{D_n}) d\mu = \int_{E} g_0 d\mu + n^{-1} \mu(ED_n)$$

$$\leq \int_{E} g_0 d\mu + \mu'(ED_n) = \int_{ED_n^c} g_0 d\mu + \nu(ED_n)$$

$$\leq \nu(ED_n^c) + \nu(ED_n) = \nu(E).$$

Следовательно, $g_0 + n^{-1} I_{D_n} \in \mathcal{L}$ и поэтому

$$\int (g_0 + n^{-1} I_{D_n}) d\mu \le \alpha.$$

Поскольку

$$\int g_0 d\mu = \alpha,$$

получаем

$$\int n^{-1} I_{D_n} d\mu = 0.$$

Следовательно, $\mu(D_n)=0$. Тогда для $D=\bigcup D_n$ имеем

$$\mu(D) = 0. \tag{2}$$

Запишем для произвольного $E \in \mathcal{S}$

$$\mu'(E) = \mu'(ED) + \mu'(ED^c).$$

Из (2) и условия $\nu \ll \mu$ получаем

$$\mu'(ED) = \nu(ED) - \int_{ED} g_0 d\mu = 0.$$

Далее, поскольку $D^c = \bigcap D_n^c$ и

$$(\mu' - n^{-1}\mu)(ED_n^c) \le 0,$$

для любого натурального n имеем

$$\mu'(ED_n^c) \le n^{-1}\mu(ED_n^c) \le n^{-1}\mu(X).$$

Следовательно,

$$\mu'(ED^c) \le \mu'(ED_n^c) \le \mu(X)/n$$

и поэтому $\mu'(ED^c) = 0$.

Таким образом, $\mu'(E) = 0$ для любого $E \in \mathcal{S}$.

Докажем единственность g_0 . Предположим существование другой функции h такой, что

$$\nu(E) = \int_E h d\mu.$$

Поскольку $\nu(X) < \infty$, функция h интегрируема. Кроме этого, h неотрицательна μ -п.в. Действительно, в противном случае $\exists \varepsilon > 0 : \mu(h \le -\varepsilon) > 0$. Тогда, полагая $F = \{x : h(x) \le -\varepsilon\}$, получаем

$$0 \le \nu(F) = \int_F h d\mu \le -\varepsilon \mu(F) < 0,$$

т.е. приходим к противоречию.

Далее, поскольку

$$\int\limits_{E}(g_{0}-h)d\mu=0$$
 для $orall E\in\mathcal{S}$

имеем $g_0 = h$ μ -почти всюду.

2. Пусть теперь μ и ν конечны, $\mu \geq 0$, а ν – действительная мера. Поскольку $\nu = \nu^+ - \nu^-$, достаточно повторить доказательство для ν^+ и ν^- по отдельности.

3. $\mu, \nu - \sigma$ -конечны. Отсюда вытекает , что $\exists X_1, X_2, \dots : \bigcup X_n = X, X_n \subset$ $X_n+1, |
u|(X_n)<\infty, \mu(X_n)<\infty.$ Применяя доказанные в части 1,2 для множеств X_n . Получаем последовательность функций f_n заданных на X_n .Положим $f=f_n$ на $X_n\setminus X_{n-1},\ f_n$ и f_{n-1} имеют общую область определения X_n , в силу единственности $f_n=f_{n-1},\mu$ -почти всюду на

$$X_{n-1}, \nu(E) = \nu(E \bigcap_n (X_n \backslash X_{n-1})) = \sum_1^\infty \nu(E \bigcap_n (X_n \backslash X_{n-1})) = \sum_1^\infty \int_{E \bigcap_n (X_n \backslash X_{n-1})} f_n d\mu = \int_E f d\mu$$
. Единственность f вытекает из единственности f_n .

Положим $A_n = \{f_n \leq 0\} \bigcap (X_n \setminus X_{n-1})$

$$-\infty < \nu(\bigcup A_n) = \sum_{1}^{\infty} \nu(A_n) = \int_{f < 0} f d\mu = -\int_{X} f^{-} d\mu \qquad (1) \Rightarrow$$

 f^- интегрируема. Аналогично $\nu(f\geq 0)=\int f^+d\mu\Rightarrow f^+$ интегрируема $\Leftrightarrow \nu(f \leq 0) < +\infty$, т.е. вместе (1), когда ν -конечная мера. \square

Theorem 14.4 (**Teopema** Лебега). Пусть μ и ν - σ -конечные действительные меры на (X,\mathcal{S}) . Существуют и единственные σ -конечные действительные меры ν_0 и ν_1 такие что, $\nu = \nu_0 + \nu_1, \nu_0 \perp \mu$ и $\nu_1 \ll \mu$.

Доказательство. Рассмотрим только случай конечных и неотрицательных

Упражнение .Общий случай доказать самостоятельно.

Воспользуемся обозначениями предыдущей теоремы $\acute{\mu}$ и D.

$$\dot{\mu}(E) = \nu(E) - \int_{E} g_0 d\mu \ge 0$$

$$D: \mu(D) = 0, \hat{\mu}(D^c) = 0.$$

74 14 Лекция 14.
$$\text{Для } \forall E \in \mathcal{S}, \dot{\mu}(E) = \dot{\mu}(ED) + \dot{\mu}(ED^c) = \dot{\mu}(ED) = \nu(ED) - \int\limits_{ED} g_0 d\mu, \mu(E) = \int\limits_{E} g_0 d\mu + \mu(ED). \ \text{Положим для } \forall E \in \mathcal{S}, \nu_0(E) = \nu(ED) \geq 0, \nu_1(E) = \int\limits_{E} g_0 d\mu \geq 0 \Rightarrow \nu_1 \ll \mu$$

 ν_0 и ν_1 -неотрицательная, $\sigma-$ аддитивность вытекает из свойств интеграла, а для ν_0 из определения.

 $\exists D: \mu(D)=0, \nu_0(D^c)=0$ Пусть $F: \mu(F)=0 \nu_1(F)=\int\limits_{\Gamma}g_0d\mu$. Доказываем

единственность $\nu = \acute{\nu}_0 + \acute{\nu}_1, \acute{\nu}_0 \perp \mu, \acute{\nu}_1 \ll \mu.$

Пусть $\acute{D}: \mu(\acute{D}) = 0, \acute{\nu}_0((\acute{D})^c) = 0.\nu = \nu_0 + \nu_1 = \acute{\nu}_0 + \acute{\nu}_1 \Rightarrow \lambda = \nu_0 - \acute{\nu}_0 = 0.\nu$ $\acute{\nu}_1 - \nu_1$. Покажем ,что $\forall E \in \mathcal{S}\lambda(E) = 0$.

Мера $\dot{\nu}_1 - \nu_1$ -очевидно, является абсолютно непрерывной относительно μ . Мера $\nu_0 - \acute{
u}_0$ -сингулярна относительно μ . Достаточно рассмотреть $D_1 =$ $D \bigcup \hat{D} \ 0 \le \mu(D \bigcup \hat{D} \le \mu(D) + \mu(\hat{D}) = 0$

$$\begin{split} |\nu_0 - \acute{\nu}_0|(D\bigcup \acute{D})^c &= |\nu_0 - \acute{\nu}_0|(D^c\bigcap (\acute{D})^c) \leq \nu_0(D^c) + \acute{\nu}_0((\acute{D})^c) = \\ \{|\gamma_1 - \gamma_2|(AB) \leq \gamma_1(AB) + \gamma_2(AB) \leq \gamma_1(A) + \gamma_2(B)\}. \\ &\text{Для} \forall E \in \mathcal{S}, \lambda(E) = \lambda(ED_1) + \lambda(ED_1^c) = \\ (\acute{\nu}_1 - \nu_1)(ED_1) + (\nu_0 - \acute{\nu}_0)(ED_1^c) = 0, \end{split}$$

 $\nu \ll \mu, \nu(E) = \int_E f d\mu.$

 $f=rac{d
u}{du}$ —производная Радона-Никодима меры u по мере μ

Theorem 14.5. Пусть $\lambda, \mu - \sigma$ -конечные и неотрицательные меры, $\mu \ll \lambda$ и $\nu - \sigma$ -конечная действительная мера и $\nu \ll \mu$. Тогда $\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda}$

Доказательство. Переходя от ν к ν^+ и ν^- достаточно доказать теорему для $\nu \geq 0$. Обозначим $f=\frac{d\nu}{d\mu}, g=\frac{d\mu}{d\lambda}$. Не ограничивая общности системы $f,g\geq 0$ всюду. Утверждение теоремы иным образом можно записать как

$$\forall E \in \mathcal{S}, \mu(E) = \int_{E} f dd\lambda \tag{2}$$

Поскольку $\nu(E) = \int\limits_{E} f d\mu$, следовательно (2) перепишется в виде

$$\int_{E} f d\mu = \int_{E} f g d\lambda \tag{3}$$

Для $f \ge 0 \exists \{f_n\}$ —последовательность простых функций: $f_n \uparrow f$ -поточечно. Поскольку $\lim \int\limits_E f_n d\mu = \int\limits_E f d\mu$, то для доказательства (3) достаточно показать

$$\int_{E} f_n d\mu = \int_{E} f_n g d\lambda \tag{4}$$

, где f_n -простые функции. Для доказательства (4) достаточно рассмотреть $f_n=I_F, F\in\mathcal{S}.$ Имеем $\int_E I_F d\mu=\mu(E\bigcap F)=\int\limits_{E\bigcap F} gd\lambda=\int I_F gd\lambda\Box$

Theorem 14.6. Пусть λ и $\mu - \sigma$ -конечные, неотрицательные меры и $\mu \ll \lambda$. Если f-измеримая функция, для которой $\int f d\mu$ имеет смысл $(f^+$ либо f^- -конечны), то

$$\int f d\mu = \int \frac{d\mu}{d\lambda} d\lambda \tag{5}$$

Доказательство. Пусть для $\forall E \in \mathcal{S}, \nu(E) = \int\limits_E f d\mu$. Тогда ν мера , σ -

конечная и $\nu \ll \mu$. Тогда (5) вытекает из предыдущей теоремы $\frac{d\nu}{d\mu}$ -существует и $\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu}\frac{d\mu}{d\lambda}$

$$\int\limits_E f \frac{d\mu}{d\lambda} = \int\limits_E f d\mu$$
 и достаточно взять $E = X \square$

Пусть (X,\mathcal{S}) и (Y,\mathcal{T}) измеримые пространства. Отображение $T:X\to Y$ измеримое , т.е. $T^{-1}(\mathcal{T})\subset\mathcal{S}$. Для \forall меры μ на (X,\mathcal{S}) отображение T порождает некоторую меру, обозначим μT^{-1} на (Y,\mathcal{T}) . Действительно, для $\forall E\in\mathcal{T}, \mu T^{-1}(E)=\mu(T^{-1}(E))$

Note 14.3. $(\Omega, \mathcal{A}, P), (\mathbb{R}, \mathcal{B}), \xi : \Omega \to \mathbb{R}, P_{\xi}(B) = P(\omega : \xi(\omega) \in B) = P(\xi^{-1}(B))(\mathbb{R}, \mathcal{B}, P_{\xi})$

 $\gamma:\mathbb{R} \to \mathbb{R}$. Для $\forall r \in \mathbb{R}, \gamma(r) = r, \gamma \stackrel{d}{=} \xi$ -одинаково распределены.

Справедливо равенство

$$T^{-1}(\bigcup_{j} E_j) = \bigcup_{j} T^{-1}(E_j)$$

Если
$$E_i \cap E_j = \emptyset, i \neq j$$
, то $T^{-1}(E_i) \cap T^{-1}(E_j) = \emptyset$
Пусть $E_1, E_2, \ldots \in \mathcal{T}, E_i \cap E_j = \emptyset, i \neq j \Rightarrow \mu T^{-1}(\bigcup E_i) = \mu(T^{-1}(E_i)) = \mu(\bigcup (T^{-1}(E_i))) = \sum \mu(T^{-1}(E_i)) = \sum \mu T^{-1}(E_i)$
 $\mu T^{-1}(\emptyset) = \mu(T^{-1}(\emptyset)) = \mu(\emptyset) = 0 \Rightarrow \mu T^{-1}$ -мера.

$$(X, \mathcal{S}, \mu), (Y, \Gamma)$$

$$T: X \to Y, \mu T^{-1}(E) = \mu(T^{-1}(E)), \forall E \in \Gamma$$

Theorem 14.7. Пусть T -измеримое отображение из (X, \mathcal{S}, μ) в (Y, Γ) и f-измеримая действительная функция на (Y, Γ) со значениями в \mathbb{R} Тогда

$$\int_{Y} f(y)d\mu T^{-1}(y) = \int_{X} f \times T(x)d\mu(X)$$
 (1)

в том смысле , что \exists одного из интегралов влечет \exists другого и в этом случае они равны.

Доказательство.

$$(\Omega, \mathcal{A}, \mathcal{P}), (\mathbb{R}, \mathcal{B}), \xi : \Omega \to \mathbb{R}.$$

$$E\xi = \int\limits_{\Omega} \xi(\omega) P(d\omega) = \int\limits_{\mathbb{R}} x \times P_{\xi}(dx) = \int\limits_{\mathbb{R}} x dF_{\xi}(x) = \{P_{\xi}(B) = P(\xi \in B), \forall B \in \mathcal{B}\} = \int\limits_{\mathbb{R}} x \times \underbrace{g_{\xi}(x)}_{\text{ПЛОТНОСТЬ}} dx$$

$$Ef(\xi) = \int_{\Omega} f(\xi(\omega))P(d\omega) = \int_{\mathbb{R}} f(x) \times P_{\xi}(dx)$$

Легко видеть, что $f^+ \times T - f^- \times T = (f^+ - f^-) \times T = f \times T$ Тогда достаточно доказать теорему для неотрицательной $f.~0 \leq f_n \uparrow f, f_n-$ простые функции , поточечно. $\Rightarrow f_n \times T \uparrow f \times T$ Следовательно из свойств интеграла вытекает, что достаточно доказать (1) для простых функций f_n . Далее, т.к. $(\sum\limits_k \alpha_k I_{A_k}) \times T = \sum\limits_k \alpha_k I_{A_k} \times T$ Следовательно , достаточно доказать для $I_A.A \in \Gamma, \int\limits_Y I_A(y) d\mu T^{-1}(y) = \mu T^{-1}(A) = \mu(T^{-1}(A)) = \int\limits_X I_{T^{-1}(A)} d\mu = \int\limits_X I_A \times T d\mu \Rightarrow (1)$ в случае $I_A \square$

14.1 Произведения пространств с мерой. Теорема Фуббини

Пусть $(X, \mathcal{S}, \mu), (Y, \Gamma, \nu)$ пространства с мерой. $X \times Y$ -совокупность пар (x,y)

Произведения пространств полезно для определения независимых случайных величин.

Definition 14.3. Измеримым прямоугольником в $X \times Y$ называется $\{(x,y): x \in A, y \in B, A \in \mathcal{S}, B \in \Gamma\}$ и обозначается $A \times B$

Theorem 14.8. Совокупность измеримых прямоугольников в произведении $X \times Y$ образует полу-алгебру

Доказательство. Обозначим \mathcal{P} -совокупность измеримых прямоугольников. Очевидно $X \times Y \in \mathcal{P}$. Пусть $A_1 \times B_1, A_2 \times B_2 \in \mathcal{P}, (A_1, B_1) \cap (A_2, B_2) = (A_1 \cap A_2) \times (B_1 \cap B_2)$ Если $A_1 \times B_1 \subset A_2 \times B_2$, то $(A_2 \times B_2) \setminus (A_1 \times B_2) = (A_2 \cap A_1^c) \times B_2 \cup A_1 \times (B_2 \setminus B_1^c) \square$

Definition 14.4. Пусть (X, \mathcal{S}) и (Y, Γ) -измеримые пространства σ -алгебра произведений этих пространств определятся как σ -алгебра подмножеств $X \times Y$, порожденных совокупностью измеримых прямоугольников и обозначается $\mathcal{S} \times \Gamma$

Пусть
$$E \subset X \times Y$$

Definition 14.5. X-сечением множества E, обозначение E_x , называется совокупность точек $y \in Y: (x,y) \in E$ и x-фиксировано. $E_x = \{y: (x,y) \in E\}, E_x = B \cdot I_A(x)$

Definition 14.6. Пусть f(x,y)-действительная функция на $X \times Y$, х-сечением функции f называется функция на $Y: f_x(y) = f(x,y)$

Theorem 14.9. Пусть (X, \mathcal{S}) и (Y, Γ) -измеримые пространства, и пусть $E \in \mathcal{S} \times \Gamma$. Тогда $E_x \in \Gamma$, $E_y \in \mathcal{S}$. Если f(x,y)-измеримая действительная функция на $X \times Y$, то ең x-сечение f_x есть измеримая действительная функция на Y, аналогично f_y измеримая действительная функция на X

Доказательство. Пусть \mathcal{F} -совокупность подмножеств $X \times Y$, для которых утверждение теоремы верно(для множеств). $E = A \times B \in \mathcal{F}$, если $A \in \mathcal{S}, B \in \Gamma$ те \mathcal{F} содержит все измеримые пр-ки \mathcal{P} . Далее , поскольку **Упражнение** $(\cup E_i)_x = \cup (E_i)_x, (E_1 \setminus E_2)_x = (E_1)_x \setminus (E_2)_x$ то \mathcal{F} является σ -алгеброй, $\mathcal{P} \in \mathcal{F} \Rightarrow \mathcal{S} \times \Gamma \in \mathcal{F}$

Пусть f—измеримая функция на $X \times Y$ и $B \in \mathcal{B}$ -борелевское. $f_x^{-1}(B) = \{y: f_x(y) \in B\} = \{y: f(x,y) \in B\} = (f^{-1}(B))_x \in \Gamma$ (в силу доказательства 1-й части)

Theorem 14.10. Пусть (X, S, μ) и (Y, Γ, ν) — измеримые пространства c σ —конечными мерами μ и ν , $E \in S \times \Gamma$. Функции $f(x) = \nu(E_x)$ и $g(y) = \mu(E_y)$ являются измеримыми и

$$\int_{Y} g d\nu = \int_{X} f d\mu \tag{3}$$

Доказательство. Т.к μ и $\nu-\sigma$ -конечны, то \exists последовательность $\{X_n\}$: $X_n\subset X_{n+1}$ и $\{Y_n\}:Y_n\subset Y_{n+1},\cup X_n=X,\cup Y_n=Y$ и $\mu(X_n)<\infty,\nu(Y_n)<\infty$. Положим $E_n=E\cap (X_n\times Y_n)$, имеем $E_n\subset E_{n+1}$ и $E=\cup E_n$ и поскольку $E_x=\cup (E_n)_x, E_y=\cup (E_n)_y$ и $\nu(E_x)\lim_n \underbrace{\nu((E_n)_x)=f(x)}_{n}, f_n(x)\leq \underbrace{\nu(E_n)_x}_{n}$

поскольку $E_x = \cup(E_n)_x, E_y = \cup(E_n)_y$ и $\nu(E_x) \lim_n \underbrace{\nu((E_n)_x) = f(x)}_{f_n(x)}, f_n(x) \le f_{n+1}(x), g(y) = \mu(E_y) = \lim_n \underbrace{\mu((E_n)_y)}_{g_n(y)}, g_n(x) \le g_{n+1}(x)$. Получаем, что для

доказательства (2) достаточно доказать для f_n и g_n , те для множеств E_n , которые являются подмножествами конечных измеримых прямоугольников. \Rightarrow доказательства теоремы сведено к случаю конечных мер μ и ν

Пусть $E = X' \times Y', X' \in \mathcal{S}, Y' \in \Gamma$ Имеем $f(x) = \nu(Y') \cdot I_{X'}(x), g(y) = \mu(X') \cdot I_{Y'}(y)$ $\int\limits_X f(x) d\mu = \nu(Y') \cdot \mu(X') = \int\limits_Y g(y) d\nu.$ Следовательно утверждение (2) верно χ для измеримых прямоугольников. Пусть \mathcal{M} -совокупность измеримых подмножеств $X \times Y$, для которых верно (2). \mathcal{M} -содержит конечными объединениями попарно непересекающихся измеримых прямоугольников, тк если $E = \bigcup_{i=1}^n E_i, E_i \in \mathcal{P}, E_i \cap E_j = \emptyset, i \neq j,$ то $f(x) = \nu(E_x) = \sum_{i=1}^n \nu((E_i)_x), g(y) = \sum_{i=1}^n \mu((E_i)_y)$ и для отдельных слагаемых (2) уже доказано. Вспомним, что совокупность всевозможных конечных объединений попарно непересекающихся измеримых прямоугольников образует алгебру, порожденную \mathcal{P} . Кроме того, \mathcal{M} является монотонным классом, действительно, если $E = \bigcap_{i=1}^\infty E^n$ и $E^n \supset E^{n+1}$ утверждение (2) верно, то $f(x) = \nu(E_x) = \lim_n \nu(E_x^n), g(y) = \mu(E_y) = \lim_n \mu(E_y^n). \int f(x) d\mu = \lim_n \int \nu(E_x^n) d\mu, \int g(y) d\nu = \lim_n \int \mu(E_y^n) d\nu$, тк для E^n - верно $\Rightarrow \int f(x) d\mu = \int g(y) d\nu \Rightarrow \mathcal{M} \supset \mathcal{S} \times \Gamma \square$

Theorem 14.11. Пусть (X, \mathcal{S}, μ) и (Y, Γ, ν) -измеримые пространства с σ -конечными мерами μ и ν . Функция λ на $(X \times Y, \mathcal{S} \times \Gamma)$, определяемая равенствами $\lambda(E) = \int \nu(E_x) d\mu = \int \mu(E_y) d\nu$ есть σ -конечная мера , такая что для $A \in \mathcal{S}, B \in \Gamma$,

$$\lambda(A \times B) = \mu(A) \cdot \nu(B)$$

u последним равенством λ определяется однозначно.

Note 14.4. λ будем обозначать $\mu \times \nu$ -это последний шаг в построения произведения $(X \times Y, \mathcal{S} \times \Gamma, \mu \times \nu)$

Доказательство. $E=\bigcup\limits_{1}^{\infty}E_{i},E_{i}\in\mathcal{S}\times\varGamma,E_{i}\cap E_{j}=\emptyset,i\neq j.$ $\lambda(E)=\int\limits_{X}\nu(E_{x})=\int\sum\limits_{1}^{\infty}\nu((E_{i}))_{x}d\mu=\text{ {по свойствам интегралов}}=\{E_{x}=\bigcup\limits_{1}^{\infty}(E_{i})_{x},(E_{i})_{x}\cap(E_{j})_{x}=\emptyset\}=\sum\limits_{1}^{\infty}\int\nu((E_{i})_{x})d\mu=\sum\limits_{1}^{\infty}\lambda(E_{i})\Rightarrow\lambda\text{-мера.}$ σ -конечность λ , очевидно, вытекает из σ -конечности μ и ν

Theorem 14.12. Пусть $(X, \mathcal{S}, \mu), (Y, \Gamma, \nu)$ — измеримые пространства с σ —конечными мерами. Пусть f—неотрицательная измеримая функция на $X \times Y$ со значениями в \mathbb{R}^+ . Тогда обе функции $\phi(x) = \int^* f_x(y) d\nu, \psi(y) = \int^* f_y(x) d\mu$ — измеримы и $\int^* f d\mu \times \nu = \int^* \phi(x) d\mu = \int^* \psi(y) d\nu$

Доказательство. Из предыдущей теоремы \Rightarrow справедливость данной теоремы , когда $f(x,y)=I_E(x,y)$. Далее, тк для $\forall f_1,...,f_n$ на $X\times Y$ и $\lambda_1,...,\lambda_n\in\mathbb{R}$

 $(\sum_{1}^{n}\lambda_{i}\cdot f_{i})=\sum_{1}^{n}\lambda_{i}\cdot (f_{i})_{x}$, аналогично и для y-сечения. \Rightarrow утверждение теоремы верно для функций вида $\sum_{1}^{n}\alpha_{i}\cdot I_{A_{i}}$, где $\alpha_{i}\in\overline{\mathbb{R}}^{+}$, а $A_{i}\cap A_{j}=\emptyset, i\neq j$, те \forall простой функции на $X\times Y$. Т.к. \forall измеримая функция f на $X\times Y$ со значениями в $\overline{\mathbb{R}}^{+}$ может быть приближена неубывающей последовательностью простых функций, то все доказано в силу свойств внешней интеграла(переход к пределу) \square

Theorem 14.13. (Фуббини). Пусть (X, S, μ) и (Y, Γ, ν) измеримые пространства с σ -конечными мерами и f-интегрируемая функция относительно $\mu \times \nu$. Тогда почти при всех x (относительно μ) функция f_x интегрируема относительно ν , почти при всех y (относительно ν) функция f_y интегрируема относительно μ , кроме того определенная почти всюду функции $\phi(x) = \int f_x(y) d\nu$ и $\psi(y) = \int f_y d\mu$ являются интегрируемыми (относительно ν и μ соответственно) и

$$\int f d\mu \times \nu = \int \phi(x) d\mu = \int \psi(y) d\nu \tag{1}$$

Note 14.5.
$$\int\limits_{X\times Y} f(x,y) \underbrace{d\mu d\nu}_{d\mu \times \nu} = \int\limits_{X} (\int\limits_{Y} f(x,y) d\nu) d\mu = \int\limits_{Y} (\int\limits_{X} f(x,y) d\mu) d\nu$$

Упражнение: Придумать пример, когда кратные интегралы не равны.

Доказательство. $f = f^+ - f^-$ и из свойств линейности интеграла достаточно доказать теорему для неотрицательных функций.

Равенство (1) в этом случае доказано в предыдущей теореме. Из интегрируемости f относительно $\mu \times \nu$ и предыдущей теоремы вытекает, что, если конечен первый интеграл $\int \phi(x) d\mu = \int \psi(y) d\nu$, то и второй тоже конечен. Отсюда вытекает , что $\phi(x)$ $\mu-$ почти всюду конечна, $\Rightarrow f_x$ -интегрируема μ - почти всюду. Аналогично и для f_y \square

14.2 k-мерное произведение измеримых пространств с мерой

Пусть $(X_i, \mathcal{S}_i, \mu_i), i = 1, ..., k$ —измеримые пространства с σ — конечными мерой.

$$\prod\limits_{i=1}^k X_i$$
означает совокупность наборов из $(x_1,...,x_k),$ где $x_i\in X_i$

Definition 14.7. Измеримым прямоугольником в $\prod_{i=1}^k X_i$ называется $\prod_1^k A_i$, где $A_i \in \mathcal{S}_i$

Definition 14.8. Произведением σ -алгебр $S_1, ..., S_k$ называется σ -алгебра порожденная всеми измеримыми прямоугольниками, обозначается $\prod \mathcal{S}_i$

Definition 14.9. На измеримом пространстве $(\prod_{i=1}^{k} X_i, \prod_{i=1}^{k} S_i)$ определяется мера λ такая , что :

$$\lambda(\prod_{1}^{k} A_i) = \prod_{1}^{k} \mu_i(A_i).$$

Такая мера единственна и обозначается $\prod \mu_i$.

$$(\prod_{i=1}^k \mu_i)(\prod_{i=1}^k A_i) = \prod_{i=1}^k \mu_i(A_i)$$

$$f(x_1,..,x_k) \text{ измерима на } (\prod_{i=1}^k X_i,\prod_{i=1}^k \mathcal{S}_i)$$

$$x_1,...,x_p-\text{ сечение функции } f\text{-это функция от переменных } x_{p+1},...,x_k \text{ и}$$

$$f_{x_1,...,x_p}(x_{p+1},...,x_k) = f(x_1,...,x_k),$$
когда $x_1,...,x_p$ -фиксированы.

$$f$$
-интегрируема относительно $\prod\limits_{i=1}^k \mu_i$, то

$$\int f d \prod_{i=1}^{k} \mu_i = \int \dots \int (\int f d\mu_1) d\mu_2 \dots d\mu_k$$

$$\int f d \prod_{i=1}^k \mu_i = \int ... \int (\int f d\mu_1) d\mu_2 ... d\mu_k$$
 Упражнение: Корректно ли даны определения? Проверить равенства:
$$\prod_{i=1}^p X_i \times \prod_{i=p+1}^k X_i = \prod_{i=1}^k X_i, \prod_{i=1}^p \mathcal{S}_i \times \prod_{i=p+1}^k \mathcal{S}_i = \prod_{i=1}^k \mathcal{S}_i, \prod_{i=1}^p \mu_i \times \prod_{i=p+1}^k \mu_i = \prod_{i=1}^k \mu_i.$$
 Бесконечные произведения пространств с мерой

Пусть I— множество индексов (могут быть и интервалы). Пусть $\forall i \in I$ есть $(X_i, \mathcal{S}_i, \mu_i)$ — измеримые пространства с мерой, причем $\mu_i(X_i) = 1.$

 $\prod_{i \in I} X_i$ —совокупность функций x, заданных на I и значения функций $x(i) \in X_i$

Definition 14.10. Прямоугольником в $\prod_{i=1}^{n} X_i$ называется \forall множество вида $\prod_{i\in I}A_i$, где $A_i\subset X_i$ и $A_i=X_i, \forall i\in I$ за исключением , быть может , конечного числа индексов i.

$$X_i = [0,1], I = \{1,2,\ldots\}, \prod_{i \in I} [0,1/2]$$
— не прямоугольник.

Definition 14.11. Измеримым прямоугольником называется прямоугольник , для которого все $A_i \in \mathcal{S}_i$

Утверждение: Совокупность измеримых прямоугольников образует полу-алгебру.

Definition 14.12. Множество в $\prod X_i$ называется измеримым, если оно $npинадлежит \sigma-$ алгебре, nopoжденной cosoкynhocmью измеримых npямоугольников, обозначается $\prod S_i$

Пусть
$$\mathcal{J} \in I$$

Definition 14.13. \mathcal{J} -цилиндром в произведении $X = \prod_{i \in I} X_i$ называется множество вида $\{x \in X : \prod_{i \in I} x(i) \in A \subset \prod_{i \in \mathcal{J}} X_i\}$. Множество A в этом случае называется основанием цилиндра. $I = \{1, 2, 3\}, \mathcal{J} = \{2, 3\}$. $\mathcal{J}-$ цилиндр называется цилиндром с конечномерным основанием , если \mathcal{J} конечно.

Theorem 14.14. Цилиндр с конечномерным основанием

$$\{x \in X : \prod_{i \in \mathcal{J}} x(i) \in A \subset \prod_{i \in \mathcal{J}} X_i\}$$
 (2)

измерим, если $A \in \prod_{i \in \mathcal{I}} \mathcal{S}_i$

Note 14.6. Самостоятельно показать, что справедливо обратное утверждение. (Пусть цилиндр измерим $\Rightarrow A \in \prod_{i \in \mathcal{J}} \mathcal{S}_i)$

Доказательство. Фиксируем конечное подмножество $\mathcal{J} \subset I$. Рассмотрим класс \mathcal{A} - класс подмножеств $\prod_{i\in\mathcal{J}}X_i$: если $A\in\mathcal{A}$, то цилиндр (2) измерим. Покажем, что $\mathcal{A} \supset \prod_{i \in \mathcal{J}} \mathcal{S}_i$. Заметим, что \forall измеримый прямоугольник в $\prod_{i \in \mathcal{J}} X_i$ лежит в \mathcal{A} . Далее, $\{x \in X : \prod_{i \in \mathcal{J}} x(i) \in A\}^c = \{x \in X : \prod_{i \in \mathcal{J}} x(i) \in A^c\}$, $\bigcup_k \{x \in X : \prod_{i \in \mathcal{J}} x(i) \in A_k\} = \{x \in X : \prod_{i \in \mathcal{J}} x(i) \in \bigcup_k A_k\} \Rightarrow \mathcal{A} - \sigma$ - алгебра.

Следовательно, $\prod_{i\in\mathcal{I}}\mathcal{S}_i\subset\mathcal{A}$, как наименьшая $\sigma-$ алгебра, содержащая измеримые прямоугольники в $\prod_{i \in \mathcal{I}} X_i$

Corollary 14.1. σ -алгебру $\prod S_i$ можно было определить, как σ -алгебру порожденную всеми измеримыми цилиндрами с конечномерными основаниями.

$$(X_i, \mathcal{S}_i, \mu_i), i \in I (\prod_{i \in I}, \prod_{i \in I} \mathcal{S}_i, \prod_{i \in I} \mu_i), \mu_i(X_i) = 1$$

 $(\prod_{i\in I},\prod_{i\in I}\mathcal{S}_i,\prod_{i\in I}\mu_i),i\in I$ Пусть \mathcal{A} -совокупность цилиндров с измеримыми конечномерными основаниями. S = S(A)

Proposition 14.1. А-является алгеброй.

Доказательство. Для $X \in \mathcal{A}$ очевидно. $X = \{x : X(1) \in X_1\},$ $\{x \in X : \prod_{i \in J} x(i) \in A\}^c = \{x \in X : \prod_{i \in J} X(i) \in A^c\},$ где J-конечно. $\{x \in X : \prod_{i \in J} x(i) \in A\} \bigcup \{x \in X : \prod_{i \in J_1} x_i \in B\} =$ $= \{x \in X : \prod_{i \in J \cup J_1} x(i) \in \widetilde{A} \cup \widetilde{B}\}$ $\widetilde{A} = \{\prod_{i \in J \cup J_1} x(i) : \prod_{i \in J} x(i) \in A\}, \widetilde{B} = \{\prod_{i \in J \cup J_1} x(i) : \prod_{i \in J_1} x(i) \in B\}$ Определим некую функцию на \mathcal{A} . Пусть $A \in \mathcal{A}, A = \{x \in X : \prod_{i \in J} x(i) \in C \in \prod_{i \in J} \mathcal{S}\}$ $\mu(A) = \prod_{i \in I} \mu_i(A) = \prod_{i \in I} \mu_i(C)$ – является ли данное определение корректным определением меры? Пусть $A = \{x \in X : \prod_{i \in J_1} \in C_1\}$

$$\prod_{i \in J_1} \mu_i(C_1) = \prod_{i \in J} \mu_i(C) \tag{1}$$

Имеем $A=\{x\in X_i:\prod_{i\in J\cup J_1}x(i)\in C\times\prod_{i\in J_1\backslash J}x(i)\}.$ Но $\prod_{i\in J\cup J_1}\mu_i(C\times\prod_{i\in J_1\backslash J}x_i)=\prod_{i\in J}\mu_i(C)$ Аналогично $\prod_{i\in J\cup J_1}\mu_i(C_1\times\prod_{i\in J\backslash J_1}x(i))=\prod_{i\in J_1}\mu_i(C_1)\Rightarrow (1)$

Упражнение Определенная выше функция μ -является конечно-аддитивной на $\mathcal A$

Theorem 14.15. μ — является σ —аддитивной функцией на A, те мерой на A?

 \mathcal{A} оказательство. Достаточно доказать , что \forall последовательности $A_1,A_2,...\in\mathcal{A}:A_i\supset A_{i+1},\cap A_i=\emptyset$ имеем $\mu(A_i)\to 0$ или достаточно доказать , что $\forall A_1,A_2,...\in\mathcal{A},A_i\supset A_{i+1},\mu(A_i)\geq \varepsilon>0$ имеем $\cap A_i\neq 0$. Пусть A_k- цилиндр с основанием F_k в $\prod_{i\in J_k}X_i$.

Положим $J=J_1\cup J_2\cup...$ Не ограничивая общности , имеем что $J=\{j_1,j_2,...\},...,J_K=\{j_1,j_2,...,j_k\}$.Имеем $\varepsilon\leq \mu(A_k)=(\prod\limits_{i=1}^n\mu_i)(F_k)=$

 $\int\limits_{X_{j_1}} (\prod\limits_{i \in J_k'} \mu_i)((F_k)_{X_{j_1}}) d\mu(X_{j_1}) = \{J_k' = J_k \setminus j_1\} = \int\limits_{B_k} + \int\limits_{B_k^c} \leq \\ \leq \{ \text{ выбираем } B_k \text{ и } B_k^c \text{ таким образом } \} \leq \mu_{j_1}(B_k) + \frac{\varepsilon}{2} \text{ , где } B_k = \{x_1 \in X_{j_1}, (\prod\limits_{i \in J_k} \mu_i)((F_k)_{x_{j_1} = x_1} > \frac{\varepsilon}{2})\}$

Следовательно
$$\forall k : \mu_{j_1}(B_k) \ge \frac{\varepsilon}{2}$$
 (2)

и при этом $B_k \supset B_{k+1}$, т.к. μ_{j_1} есть мера , то из $(2) \Rightarrow$, что $\cap B_k \neq \emptyset$. Следовательно $\exists \overline{x}_1 \in \cap B_k, \overline{x}_1 \in X_j$ и это означает , что

$$\mu^{j_1} = \prod_{i \in J \setminus \{j_1\}}, \mu^{j_1}((A_k)_{x_{j_1} = \overline{x}_1}) \ge \frac{\varepsilon}{2}$$

Аналогично получаем \overline{x}_2 из x_{j_2} и так далее . Получаем что последовательность точек $\overline{x}_m \in x_{j_m} \in x_{j_{m+1}}$, покажем , что

$$\{x: x(j_k) = \overline{x}_k, k = 1, 2, \ldots\} \subset \bigcap_{i=1}^{\infty} A_i.$$

 $\begin{aligned} \{x: x(j_k) &= \overline{x}_k, k=1,2,...\} \subset \bigcap_{i=1}^\infty A_i. \\ \text{Действительно по построению } \mu^{j_1,...,j_k}(A_k)_{x_{j_1} = \overline{x}_1,...,x_{j_k} = \overline{x}_k} &= \frac{\varepsilon}{2^k}, A_k\text{-цилиндр} \end{aligned}$ с основанием $F_k \subset \prod^{\infty} X_{ji}$

Следовательно $(\overline{x}_1,...,\overline{x}_k)\in F_k\Rightarrow \{x:x(j_1)=\overline{x}_1,...,x(j_k)=\overline{x}_k\}\subset A_k$ и тем более $V=\{x:x(j_1)=\overline{x}_1,...,x(j_k)=\overline{x}_k,...\}\subset A_k$ и $V\neq\emptyset$, \square

$$\mu = \prod_{i \in I} \mu_i$$
 на (X, \mathcal{S}) конечная мера.

 $\mu = \prod_{i \in I} \mu_i$ на (X, \mathcal{S}) конечная мера. Пример. $(X_i, \mathcal{S}_i, \mu_i)$, где $X_i = \{0; 1\}, \mathcal{S}-$ множество всех подмножеств $X_i, \mu_i(0) = \mu_i(1) = \frac{1}{2}, I = \{1; 2; 3; ...\}$

$$(\prod_{i=1}^{\infty} X_i, \prod_{i=1}^{\infty} S_i, \prod_{i=1}^{\infty} \mu_i) = (\widetilde{X}, \widetilde{S}, \widetilde{\mu})$$

 $\widetilde{X}=[0,1),\widetilde{\mathcal{S}}$ -борелевские $\sigma-$ алгебры подмножеств $X,\widetilde{\mu}-$ мера Лебега на

E'-совокупность последовательностей из 0 и 1, в которых, начиная с некоторого номера, стоят 1. \mathbf{X} сно, что E'-счетное множество. С другой стороны \forall точка X имеет нулевую μ -меру. Действительно

$$\mu(x:x_1=\overline{x}_1,...)=\lim_{n\to\infty}\mu(x:x_1=\overline{x}_1,...,x_n=\overline{x}_n)=\lim_{n\to\infty}2^{-n}=0$$

В дальнейшем будем рассматривать пространство с мерой (X', \mathcal{S}', μ') , где $\mathcal{S}' = \mathcal{S} \cap X', \mu'(E \cap X') = \mu(E), E \in \mathcal{S}$. Рассмотрим отображение

$$f:X o [0,1)$$
 положив $\forall x\in X', f(x)=\sum\limits_{i=1}^\infty \frac{x_i}{2^i}$ -это отображение взаимоодназначно. Действительно , пусть $x\neq y$, т.е. $x_i=y_i$ для $i< n$ и $x_n=1,y_n=0$ имеем $\sum\limits_{i=n}^\infty \frac{x_i}{2^i}\geq \frac{1}{2^n},\sum\limits_{i=n}^\infty <\frac{1}{2^n}\Rightarrow f$ – является взаимоодназначным. Это отображение есть отображение на $[0,1)$, т.к.

$$x_n=1,y_n=0$$
 имеем $\sum\limits_{i=n}^{\infty}rac{x_i}{2^i}\geqrac{1}{2^n},\sum\limits_{i=n}^{\infty}<rac{1}{2^n}\Rightarrow f$ — является

достаточно записать двоичное представление \forall точки из [0,1).

Отображение f – является измеримым. Рассмотрим произвольный интервал вида $[a,b), 0 \le a < b < 1, a = \frac{k}{2^n}, b = \frac{l}{2^n}, k < l$

$$[a,b) = \bigcup_{s=k}^{l-1} \left[\frac{s}{2^n}, \frac{s+1}{2^n}\right)$$

 $[a,b) = \bigcup_{s=k}^{l-1} \left[\frac{s}{2^n}, \frac{s+1}{2^n}\right)$ $f^{-1}(\left[\frac{s}{2^n}, \frac{s+1}{2^n}\right]) = \{x: x_1 = \overline{x}_1, ..., x_n = \overline{x}_n\} \in \mathcal{S}'. \text{ Итак доказана}$ измеримость f с другой стороны $f(\{x: x_1 = \overline{x}_1, ..., x_n = \overline{x}_n\})$ -измерим в $([0,1),\mathcal{B})$ при $\forall \overline{x}_1, ..., \overline{x}_n$, т.е. отображение f^{-1} является измеримым.

$$\mu'f^{-1}([a,b)) = \mu'(f^{-1}([a,b))) = \mu'(f^{-1}(\bigcup_{k=1}^{l-1} [\frac{s}{2^n}, \frac{s+1}{2^n})) = \sum_{k=1}^{l-1} \mu'(x : x_1 = \overline{x}_1, ..., x_n = \overline{x}_n) = \sum_{k=1}^{l-1} \frac{1}{2^n} = \frac{l-k}{2^n} = b - a$$

 $\mu'f^{-1}-$ очевидно является инвариантной относительно сдвигов. $\Rightarrow \mu'f^{-1}-$ есть мера Лебега на [0,1). $(X_i,\mathcal{S}_i), i\in I.(\prod\limits_{i\in I}X_i,\prod\limits_{i\in I}\mathcal{S}_i)=(X,\mathcal{S}).$ $\mathcal{A}-$ совокупность цилиндров с конечномерными основаниями.

 $\pi_J(x) = (x_{i_1}, ..., x_{i_n}), J = (i_1, ..., i_n), x \in X, \text{ Te } x_i = x(i) \in X$

$$\forall A \in \mathcal{A}, \exists J : B \in \prod_{i \in J} X_i, B \in \prod_{i \in J} S_i, A = \pi_J^{-1}(B)$$
 (1)

Если
$$\mu$$
 – мера на $\mathcal{S}, \forall A \in \mathcal{A}, \text{ пользуясь}(1), \mu_J(B) = \mu(A)$ (2)

Если J- фиксировано, то μ_J - мера на $(\prod_{i\in J}X_i,\prod_{i\in J}S_i),\{\mu_J\}$ - семейство мер , когда J- меняется является , если оно определено (2),

согласованной , те пусть $J_1=(i_1,..,i_n), J_2=(j_1,...,j_m), J_1\subset J_2.$ Определим $\pi_{J_2J_1}((x_{j_1},...,x_{j_m}))=(x_{i_1},...,x_{i_n})$ $(\prod\limits_{i\in I}X_i,\prod\limits_{i\in I}\mathcal{S}_)=(X,\mathcal{S})$ \mathcal{A} - совокупность цилиндров с измеримыми конечномерными

основаниями

$$\mu_{J_1}(B) = \mu_{J_2}(\pi_{J_1J_2}^{-1}(B)), \forall$$
 конечного $J_1, J_2 : J_1 \subset J_2, B \in \prod_{i \in J} \mathcal{S}_i$ (3)

Предположим, что \mathcal{A} задано семейство согласованных мер $\Rightarrow \exists$ мера на $S: \mu_J(B)$ — определяется формулой (2)?? Ответ: Нет в общем случае, да если $X_i=\mathbb{R}$ или $X_i=Y$ полное сепарабельное метрическое

Theorem 14.16 (Колмогорова). В случае $X_i = \mathbb{R}, \forall$ системе согласованных мер $\{\mu_J\}$ отвечает мера со свойствами (2).

Доказательство. Система со свойством (3) задает на ${\cal A}$ конечно аддитивную функцию μ . (Проверить самостоятельно). Доказано, что функция μ – является σ — аддитивной . Также как в предыдущей теореме достаточно показать, что если $A_1 \supset A_2..., A_i \in \mathcal{A}$ и $\mu(A_i) \geq L$, то $\cap A_i \neq \emptyset$.

Не ограничивая общности, считаем, что для некоторой последовательности

$$A_n = \pi_{i_1, \dots, i_n}(B_n), B_n \in \prod_{k=1}^n k$$

По определению функции $\mu: L \leq \mu(A_k) = \mu_{i_1, \dots, i_m}(B_n)$

Возьмем замкнутое ограниченное множество $U_n \subset B_n$:

 $\mu_{i_1,\ldots,i_n}(B_n \setminus U_n) < \frac{\varepsilon}{2}$

Пусть $V_n=\pi_{i_1,\dots,i_n}(U_n)\in\mathcal{S}.$ Тогда $\mu(A_n\setminus V)<\frac{\varepsilon}{2^n},$ положим $W_n=V_1\cap\dots\cap V_n.$

Имеем $\mu(A_n\setminus W_n)\leq \mu(\bigcup_{i=1}^n(A_i\setminus V_i)\leq \sum_{i=1}^n\mu(A_i\setminus V_i)<\varepsilon$, т.к. $W_n\subset V_n\subset A_n$ имеем $\mu(W_n)\geq \mu(A_n)-\varepsilon\geq L-\varepsilon>0$ при $\varepsilon< L\Rightarrow W_n$ - не пусто. Возьмем в W_n - точку $W^{(n)}$, у которой по координатам $i_1,...,i_n$ имеем

По построению имеем $W_{n+p}\subset W_n\subset V_n\Rightarrow$ получаем последовательность

 $W^{(n+p)}$ с элементами по координатам $i_1,...,i_n:x_{i_1}^{(n+p)},...,x_{i_n}^{(n+p)}$ ($x_{i_1}^{(n+p)},...,x_{i_n}^{(n+p)}$) $=\pi_{i_1,...,i_n}(W^{(n+p)})\in U_n$ \Rightarrow поскольку U_n -замкнуто и ограничено, диагональным процессом из последовательности $W^{(n)}$ получаем подпоследовательность $W^{(n_i)}$, такую что :

$$x_{i+k}^{(n_i)} \to \overline{x}_k, n_i \to \infty, k = \{1, 2, ...\}$$

Возьмем $w\in X=\prod\limits_{i\in I}X_i, w_{i_k}=\overline{X}_k, k=1,2,...,w_i=0$ для остальных $i\in I$

В следующем замкнутом U_n имеем $(\overline{x}_1,...,\overline{x}_n)\in U_n, \forall n\Rightarrow w\in A_n$ для $\forall n,$ т.к. $V_n\subset A$ и $V_n=\pi_{i_1,...,i_n}^{-1}(U_n)\Rightarrow w\in\cap A\square$