Kolloquium zur Bachelorarbeit

Untersuchung von Knotenreduktionsregeln beom Knotenüberdeckungsproblem

Referent: Benedikt Lüken-Winkels

Prüfer: Prof. Dr. Henning Fernau

Prof. Dr. Stefan Näher

07. März 2018

Universität Trier

Knotenüberdeckungsproblem

Knotenüberdeckung

EINGABE: Graph G = (V, E), natürliche Zahl $k \le |V|$

AUSGABE: $S \subseteq V$ mit $|S| \le k$, sodass jede Kante aus E einen

Endpunkt in S hat.

- NP vollständig
- Naive Algorithmen haben eine Laufzeit von $O(n^k)$
- Suchbaumalgorithmen laufen in $O(2^k \cdot (m+n))$

Knotenüberdeckung

EINGABE: Graph G = (V, E), natürliche Zahl $k \leq |V|$

AUSGABE: $S \subseteq V$ mit $|S| \le k$, sodass jede Kante aus E einen

Endpunkt in S hat.

- NP vollständig
- Naive Algorithmen haben eine Laufzeit von $O(n^k)$
- Suchbaumalgorithmen laufen in $O(2^k \cdot (m+n))$

Knotenüberdeckung

EINGABE: Graph G = (V, E), natürliche Zahl $k \le |V|$ AUSGABE: $S \subseteq V$ mit $|S| \le k$, sodass jede Kante aus E einen Endpunkt in S hat.

- NP vollständig
- Naive Algorithmen haben eine Laufzeit von $O(n^k)$
- Suchbaumalgorithmen laufen in $O(2^k \cdot (m+n))$

Knotenüberdeckung

EINGABE: Graph G = (V, E), natürliche Zahl $k \le |V|$ AUSGABE: $S \subseteq V$ mit $|S| \le k$, sodass jede Kante aus E einen Endpunkt in S hat.

- NP vollständig
- Naive Algorithmen haben eine Laufzeit von $O(n^k)$
- Suchbaumalgorithmen laufen in $O(2^k \cdot (m+n))$

Graphreduktion für das Knotenüberdeckungsproblem

- Entfernen von Knoten und Kanten aus G
- Verkleinerung von k
- Problemkern G' = (V', E'): $VC(G, k) = VC(G', k') \cup VC(G \setminus G', k - k')$

Graphreduktion für das Knotenüberdeckungsproblem

Graph
$$G = (V, E)$$
, natürliche Zahl k ; $VC(G, k)$

- Entfernen von Knoten und Kanten aus G
- Verkleinerung von k
- Problemkern G' = (V', E'): $VC(G, k) = VC(G', k') \cup VC(G \setminus G', k - k')$

Graphreduktion für das Knotenüberdeckungsproblem

- Entfernen von Knoten und Kanten aus G
- Verkleinerung von k
- Problemkern G' = (V', E'): $VC(G, k) = VC(G', k') \cup VC(G \setminus G', k - k')$

Graphreduktion für das Knotenüberdeckungsproblem

- Entfernen von Knoten und Kanten aus G
- Verkleinerung von k
- Problemkern G' = (V', E'): $VC(G, k) = VC(G', k') \cup VC(G \setminus G', k - k')$

Graphreduktion für das Knotenüberdeckungsproblem

- Entfernen von Knoten und Kanten aus G
- Verkleinerung von k
- Problemkern G' = (V', E'): $VC(G, k) = VC(G', k') \cup VC(G \setminus G', k - k')$

Einfache Reduktionsregeln

Reduktionsregeln

- 1. $v \in V$ hat keine Kanten $\Rightarrow V = V \setminus v$ (Grad₀-Regel)
- 2. $v \in V$ hat genau eine Kante $\Rightarrow V = V \setminus (v \cup N(v))$; k = k 1 (Grad₁-Regel)
- 3. $v \in V$ hat mehr als k Kanten $\Rightarrow V = V \setminus (v)$; k = k 1 (Buss-Regel)

Reduktionsregeln

- 1. $v \in V$ hat keine Kanten $\Rightarrow V = V \setminus v$ (Grad₀-Regel)
- 2. $v \in V$ hat genau eine Kante $\Rightarrow V = V \setminus (v \cup N(v))$; k = k 1 (Grad₁-Regel)
- 3. $v \in V$ hat mehr als k Kanten $\Rightarrow V = V \setminus (v)$; k = k 1 (Buss-Regel

Reduktionsregeln

- 1. $v \in V$ hat keine Kanten $\Rightarrow V = V \setminus v$ (Grad₀-Regel)
- 2. $v \in V$ hat genau eine Kante $\Rightarrow V = V \setminus (v \cup N(v)); k = k 1$ (Grad₁-Regel)
- 3. $v \in V$ hat mehr als k Kanten $\Rightarrow V = V \setminus (v)$; k = k 1 (Buss-Regel

Reduktionsregeln

- 1. $v \in V$ hat keine Kanten $\Rightarrow V = V \setminus v$ (Grad₀-Regel)
- 2. $v \in V$ hat genau eine Kante $\Rightarrow V = V \setminus (v \cup N(v))$; k = k 1 (Grad₁-Regel)
- 3. $v \in V$ hat mehr als k Kanten $\Rightarrow V = V \setminus (v)$; k = k 1 (Buss-Regel

Reduktionsregeln

- 1. $v \in V$ hat keine Kanten $\Rightarrow V = V \setminus v$ (Grad₀-Regel)
- 2. $v \in V$ hat genau eine Kante $\Rightarrow V = V \setminus (v \cup N(v))$; k = k 1 (Grad₁-Regel)
- 3. $v \in V$ hat mehr als k Kanten $\Rightarrow V = V \setminus (v)$; k = k 1 (Buss-Regel)

- 900 Graphen mit 1000 Knoten und bis zu 10000 Kanten
- LEDA:random_simple_undirected_graph
- Anwendung bis sich keine Änderung mehr ergibt

- 900 Graphen mit 1000 Knoten und bis zu 10000 Kanten
- LEDA:random_simple_undirected_graph
- Anwendung bis sich keine Änderung mehr ergibt

- 900 Graphen mit 1000 Knoten und bis zu 10000 Kanten
- LEDA:random_simple_undirected_graph
- Anwendung bis sich keine Änderung mehr ergibt

- 900 Graphen mit 1000 Knoten und bis zu 10000 Kanten
- LEDA:random_simple_undirected_graph
- Anwendung bis sich keine Änderung mehr ergibt

Grad₁ - **Ergebnisse**

Kronenregel

Krone

- 1. H = N(I),
- 2. $\forall v, w \in I \text{ gilt } (vw) \notin E \text{ und}$
- 3. die Kanten zwischen H und I enthalten ein Matching indem alle Knoten aus H enthalten sind.

Krone

- 1. H = N(I)
- 2. $\forall v, w \in I \text{ gilt } (vw) \notin E \text{ und}$
- 3. die Kanten zwischen H und I enthalten ein Matching indem alle Knoten aus H enthalten sind.

Krone

- 1. H = N(I),
- 2. $\forall v, w \in I \text{ gilt } (vw) \notin E \text{ und}$
- 3. die Kanten zwischen H und I enthalten ein Matching indem alle Knoten aus H enthalten sind.

Krone

- 1. H = N(I),
- 2. $\forall v, w \in I \text{ gilt } (vw) \notin E \text{ und}$
- 3. die Kanten zwischen H und I enthalten ein Matching indem alle Knoten aus H enthalten sind.

Krone

- 1. H = N(I),
- 2. $\forall v, w \in I \text{ gilt } (vw) \notin E \text{ und}$
- 3. die Kanten zwischen H und I enthalten ein Matching indem alle Knoten aus H enthalten sind.

```
0
   G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
```

```
G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
1
   M_1 := Maximal Matching von G
```

```
G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
1
    M_1 := Maximal Matching von G
    M_1 := \emptyset
3
  \forall e \in E:
```

```
G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
    M_1 := Maximal Matching von G
    M_1 := \emptyset
3
  \forall e \in E:
         M_1 = M_1 \cup e
```

```
G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
   M_1 := Maximal Matching von G
    M_1 := \emptyset
3
  \forall e \in E:
4
        M_1 = M_1 \cup e
5
        Entferne e und N(e) aus der weiteren Betrachtung
```

```
G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
   M_1 := Maximal Matching von G
    M_1 := \emptyset
3
   \forall e \in E:
4
        M_1 = M_1 \cup e
5
        Entferne e und N(e) aus der weiteren Betrachtung
6
   O := nicht gepaarte Knoten in M_1
```

```
G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
   M_1 := Maximal Matching von G
   M_1 := \emptyset
 \forall e \in E:
4
        M_1 = M_1 \cup e
5
        Entferne e und N(e) aus der weiteren Betrachtung
6
   O := nicht gepaarte Knoten in M_1
   M_2 := Maxmimum Matching von B = (O, N(O), \{uv | u \in O \land v \in N(O)\})
```

```
G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
   M_1 := Maximal Matching von G
    M_1 := \emptyset
  \forall e \in E:
        M_1 = M_1 \cup e
5
        Entferne e und N(e) aus der weiteren Betrachtung
6
   O := nicht gepaarte Knoten in M_1
   M_2 := Maxmimum Matching von B = (O, N(O), \{uv | u \in O \land v \in N(O)\})
7
8
   I := nicht gepaarte Knoten aus O in M_2
```

```
G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
   M_1 := Maximal Matching von G
    M_1 := \emptyset
  \forall e \in E:
        M_1 = M_1 \cup e
5
        Entferne e und N(e) aus der weiteren Betrachtung
6
   O := nicht gepaarte Knoten in M_1
   M_2 := Maxmimum Matching von B = (O, N(O), \{uv | u \in O \land v \in N(O)\})
7
8
   I := nicht gepaarte Knoten aus O in M_2
9
   I' := \emptyset
```

7 / 30

```
G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
    M_1 := Maximal Matching von G
    M_1 := \emptyset
   \forall e \in E:
 4
         M_1 = M_1 \cup e
 5
         Entferne e und N(e) aus der weiteren Betrachtung
 6
    O := nicht gepaarte Knoten in M_1
    M_2 := Maxmimum Matching von B = (O, N(O), \{uv | u \in O \land v \in N(O)\})
7
    I := nicht gepaarte Knoten aus O in M_2
9
    I' := \emptyset
10
    while I' \neq I
```

```
G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
    M_1 := Maximal Matching von G
    M_1 := \emptyset
  \forall e \in E:
 4
         M_1 = M_1 \cup e
 5
         Entferne e und N(e) aus der weiteren Betrachtung
 6
    O := nicht gepaarte Knoten in M_1
    M_2 := Maxmimum Matching von B = (O, N(O), \{uv | u \in O \land v \in N(O)\})
7
    I := nicht gepaarte Knoten aus O in M_2
9
    I' := \emptyset
10
    while I' \neq I
    I' := I
11
```

7 / 30

```
G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
   M_1 := Maximal Matching von G
    M_1 := \emptyset
  \forall e \in E:
         M_1 = M_1 \cup e
 5
         Entferne e und N(e) aus der weiteren Betrachtung
 6
    O := nicht gepaarte Knoten in M_1
    M_2 := Maxmimum Matching von B = (O, N(O), \{uv | u \in O \land v \in N(O)\})
7
    I := nicht gepaarte Knoten aus O in M_2
9
    I' := \emptyset
10
    while I' \neq I
    I' := I
11
12
  H := N(I)
```

```
G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
   M_1 := Maximal Matching von G
   M_1 := \emptyset
 3 \quad \forall e \in E:
         M_1 = M_1 \cup e
 5
          Entferne e und N(e) aus der weiteren Betrachtung
 6
    O := nicht gepaarte Knoten in M_1
    M_2 := Maxmimum Matching von B = (O, N(O), \{uv | u \in O \land v \in N(O)\})
    I := nicht gepaarte Knoten aus O in M_2
9
    I' := \emptyset
10
    while I' \neq I
    I' := I
11
12 H := N(I)
13
   I := I \cup \{ \forall u \in O | \exists v \in H \ (uv \in M_2) \}
```

```
G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
   M_1 := Maximal Matching von G
   M_1 := \emptyset
 3 \quad \forall e \in E:
         M_1 = M_1 \cup e
 5
          Entferne e und N(e) aus der weiteren Betrachtung
 6
    O := nicht gepaarte Knoten in M_1
    M_2 := Maxmimum Matching von B = (O, N(O), \{uv | u \in O \land v \in N(O)\})
    I := nicht gepaarte Knoten aus O in M_2
9
    I' := \emptyset
10
    while I' \neq I
    I' := I
11
12 H := N(I)
13 I := I \cup \{ \forall u \in O | \exists v \in H \ (uv \in M_2) \}
   Entferne N(I) aus G
14
```

```
G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
   M_1 := Maximal Matching von G
   M_1 := \emptyset
 3 \quad \forall e \in E:
         M_1 = M_1 \cup e
 5
          Entferne e und N(e) aus der weiteren Betrachtung
 6
    O := nicht gepaarte Knoten in M_1
    M_2 := Maxmimum Matching von B = (O, N(O), \{uv | u \in O \land v \in N(O)\})
    I := nicht gepaarte Knoten aus O in M_2
9
    I' := \emptyset
10
    while I' \neq I
    I' := I
11
12 H := N(I)
13 I := I \cup \{ \forall u \in O | \exists v \in H \ (uv \in M_2) \}
   Entferne N(I) aus G
14
```

```
0 G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
   M_1 := Maximal Matching von G
   M_1 := \emptyset
 3 \quad \forall e \in E:
 4
      M_1 = M_1 \cup e
 5
          Entferne e und N(e) aus der weiteren Betrachtung
 6
    O := nicht gepaarte Knoten in M_1
    M_2 := Maxmimum Matching von B = (O, N(O), \{uv | u \in O \land v \in N(O)\})
    I := nicht gepaarte Knoten aus O in M_2
    I' := \emptyset
10 while I' \neq I
11 I' := I
12 \quad H := N(I)
13 I := I \cup \{ \forall u \in O | \exists v \in H \ (uv \in M_2) \}
14 Entferne N(I) aus G
```

7eilen 1-5: *m* ⋅ *d*

```
0 G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
   M_1 := Maximal Matching von G
   M_1 := \emptyset
 3 \quad \forall e \in E:
 4
      M_1 = M_1 \cup e
 5
          Entferne e und N(e) aus der weiteren Betrachtung
 6
    O := nicht gepaarte Knoten in M_1
    M_2 := Maxmimum Matching von B = (O, N(O), \{uv | u \in O \land v \in N(O)\})
    I := nicht gepaarte Knoten aus O in M_2
    I' := \emptyset
10 while I' \neq I
11 I' := I
12 \quad H := N(I)
13 I := I \cup \{ \forall u \in O | \exists v \in H \ (uv \in M_2) \}
14
   Entferne N(I) aus G
```

7eile 6: n

```
G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
    M_1 := Maximal Matching von G
   M_1 := \emptyset
\forall e \in E:
         M_1 = M_1 \cup e
 4
         Entferne e und N(e) aus der weiteren Betrachtung
 6
    O:= nicht gepaarte Knoten in M_1
7 M_2:= Maxmimum Matching von B = (O, N(O), \{uv | u \in O \land v \in N(O)\})
    I := nicht gepaarte Knoten aus O in M_2
9
   I' := \emptyset
10 while I' \neq I
11 I' := I
12 H := N(I)
13 I := I \cup \{ \forall u \in O | \exists v \in H \ (uv \in M_2) \}
14 Entferne N(I) aus G
    Zeile 7 (1): nd/2
```

```
G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
   M_1 := Maximal Matching von G
2 M_1 := \emptyset
\forall e \in E:
     M_1 = M_1 \cup e
 4
         Entferne e und N(e) aus der weiteren Betrachtung
 6 O := nicht gepaarte Knoten in M_1
7 M_2:= Maxmimum Matching von B = (O, N(O), \{uv | u \in O \land v \in N(O)\})
    I := nicht gepaarte Knoten aus O in M_2
9 I' := \emptyset
10 while I' \neq I
11 I' := I
12 H := N(I)
13 I := I \cup \{ \forall u \in O | \exists v \in H \ (uv \in M_2) \}
14 Entferne N(I) aus G
```

Zeile 7 (2): $\sqrt{n} \cdot m$ (LEDA:mcb_matching, Hopcroft und Karp)

```
G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
   M_1 := Maximal Matching von G
   M_1 := \emptyset
 3 \quad \forall e \in E:
 4
      M_1 = M_1 \cup e
 5
          Entferne e und N(e) aus der weiteren Betrachtung
 6
    O := nicht gepaarte Knoten in M_1
    M_2 := Maxmimum Matching von B = (O, N(O), \{uv | u \in O \land v \in N(O)\})
    I := nicht gepaarte Knoten aus O in M_2
    I' := \emptyset
10 while I' \neq I
11 I' := I
12 \quad H := N(I)
13 I := I \cup \{ \forall u \in O | \exists v \in H \ (uv \in M_2) \}
14
   Entferne N(I) aus G
```

7eile 8: n

```
0 G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
   M_1 := Maximal Matching von G
   M_1 := \emptyset
 3 \quad \forall e \in E:
 4
      M_1 = M_1 \cup e
 5
          Entferne e und N(e) aus der weiteren Betrachtung
 6
    O := nicht gepaarte Knoten in M_1
    M_2 := Maxmimum Matching von B = (O, N(O), \{uv | u \in O \land v \in N(O)\})
    I := nicht gepaarte Knoten aus O in M_2
    I' := \emptyset
10 while I' \neq I
11 I' := I
12 \quad H := N(I)
13 I := I \cup \{ \forall u \in O | \exists v \in H \ (uv \in M_2) \}
14 Entferne N(I) aus G
```

Benedikt Lüken-Winkels

7eilen 10-13: n · d

$$m \cdot d + n + nd/2 + \sqrt{n} \cdot m + n + n \cdot d$$

$$= d(m+n) + 2n + nd/2 + \sqrt{n} \cdot m$$

$$\Rightarrow O(\sqrt{n} \cdot m)$$

$$m \cdot d + n + nd/2 + \sqrt{n} \cdot m + n + n \cdot d$$

$$= d(m+n) + 2n + nd/2 + \sqrt{n} \cdot m$$

$$\Rightarrow O(\sqrt{n} \cdot m)$$

$$m \cdot d + n + nd/2 + \sqrt{n} \cdot m + n + n \cdot d$$

$$= d(m+n) + 2n + nd/2 + \sqrt{n} \cdot m$$

$$\Rightarrow O(\sqrt{n} \cdot m)$$

Tabelle 1: Mindestens ein Knoten mit Einschränkung

Grad der Knoten	Anwendungen	Reduktion
keine Einschränkung	0.29	13.04
>1	0.29	13.04
>2	0.29	13.22
>3	0.27	12.92
>4	0.3	13.71
>5	0.31	13.38
Größte Anzahl	0.32	13.44
Durchschnittliche Anzahl		12.98

Tabelle 1: Mindestens ein Knoten mit Einschränkung

Grad der Knoten	Anwendungen	Reduktion
keine Einschränkung	0.29	13.04
>1	0.29	13.04
>2	0.29	13.22
>3	0.27	12.92
>4	0.3	13.71
>5	0.31	13.38
Größte Anzahl	0.32	13.44
Durchschnittliche Anzahl	0.29	12.98

Tabelle 2: Beide Knoten mit Einschränkung

Grad der Knoten	Anwendungen	Reduktion
keine Einschränkung	0.29	13.04
>1	0.36	15.34
>2	0.41	16.96
>3	0.39	16.52
>4	0.4	15.78
>5	0.4	15.72
Größte Anzahl		13.06
Durchschnittliche Anzahl	0.46	19.77

Tabelle 2: Beide Knoten mit Einschränkung

Grad der Knoten	Anwendungen	Reduktion
keine Einschränkung	0.29	13.04
>1	0.36	15.34
>2	0.41	16.96
>3	0.39	16.52
>4	0.4	15.78
>5	0.4	15.72
Größte Anzahl	0.29	13.06
Durchschnittliche Anzahl	0.46	19.77

Kronenregel - Ergebnisse

Nemhauser-Trotter-Theorem

- 1. C₀ in einer minimalen Knotenüberdeckung von G enthalten ist.
- 2. der Teilgraph $G[V_0]$ eine Knotenüberdeckung der Größe $\leq |V_0|/2$ hat,
- 3. und $VC(G) = VC(G[V_0]) \cup C_0$ gilt.

Nemhauser-Trotter-Theorem

- 1. C₀ in einer minimalen Knotenüberdeckung von G enthalten ist,
- 2. der Teilgraph $G[V_0]$ eine Knotenüberdeckung der Größe $\leq |V_0|/2$ hat,
- 3. und $VC(G) = VC(G[V_0]) \cup C_0$ gilt.

Nemhauser-Trotter-Theorem

- 1. C₀ in einer minimalen Knotenüberdeckung von G enthalten ist,
- 2. der Teilgraph $G[V_0]$ eine Knotenüberdeckung der Größe $\leq |V_0|/2$ hat,
- 3. und $VC(G) = VC(G[V_0]) \cup C_0$ gilt.

Nemhauser-Trotter-Theorem

- 1. C₀ in einer minimalen Knotenüberdeckung von G enthalten ist,
- 2. der Teilgraph $G[V_0]$ eine Knotenüberdeckung der Größe $\leq |V_0|/2$ hat,
- 3. und $VC(G) = VC(G[V_0]) \cup C_0$ gilt.

- 0 G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
- 1 Bipartiden Graphen erstellen B = (V, V', E')
- 2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$
- 3 Maximum Matching M von B bestimmen
- $4 \quad C_B := VC(B)$
- 5 $C_0 := \{ x \in V \mid x \in C_B \text{ und } x' \in C_B \}$
- 6 $V_0 := \{x \in V \mid entweder \ x \in C_B \ oder \ x' \in C_B \}$

- 0 G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
- 1 Bipartiden Graphen erstellen B=(V,V',E')
- 2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$
- 3 Maximum Matching M von B bestimmen
- $4 \quad C_B := VC(B)$
- 5 $C_0 := \{ x \in V \mid x \in C_B \text{ und } x' \in C_B \}$
- 6 $V_0 := \{x \in V \mid entweder \ x \in C_B \ oder \ x' \in C_B\}$

- 0 G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
- 1 Bipartiden Graphen erstellen $B=(V,V^{\prime},E^{\prime})$
- 2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$
- 3 Maximum Matching M von B bestimmen
- $4 \quad C_B := VC(B)$
- 5 $C_0 := \{ x \in V \mid x \in C_B \text{ und } x' \in C_B \}$
- 6 $V_0 := \{x \in V \mid entweder \ x \in C_B \ oder \ x' \in C_B\}$

- 0 G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
- 1 Bipartiden Graphen erstellen B = (V, V', E')
- 2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$
- 3 Maximum Matching M von B bestimmen
- 4 $C_B := VC(B)$
- 5 $C_0 := \{x \in V \mid x \in C_B \text{ und } x' \in C_B\}$
- 6 $V_0 := \{x \in V \mid entweder \ x \in C_B \ oder \ x' \in C_B\}$

- 0 G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
- 1 Bipartiden Graphen erstellen $B=(V,V^{\prime},E^{\prime})$
- 2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$
- 3 Maximum Matching M von B bestimmen
- 4 $C_B := VC(B)$
- 5 $C_0 := \{ x \in V \mid x \in C_B \text{ und } x' \in C_B \}$
- 6 $V_0 := \{x \in V \mid entweder \ x \in C_B \ oder \ x' \in C_B \}$

- 0 G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
- 1 Bipartiden Graphen erstellen $B=(V,V^{\prime},E^{\prime})$
- 2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$
- 3 Maximum Matching M von B bestimmen
- 4 $C_B := VC(B)$
- 5 $C_0 := \{x \in V \mid x \in C_B \text{ und } x' \in C_B\}$
- 6 $V_0 := \{x \in V \mid entweder \ x \in C_B \ oder \ x' \in C_B\}$

- 0 G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
- 1 Bipartiden Graphen erstellen B = (V, V', E')
- 2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$
- 3 Maximum Matching M von B bestimmen
- 4 $C_B := VC(B)$
- 5 $C_0 := \{x \in V \mid x \in C_B \text{ und } x' \in C_B\}$
- 6 $V_0 := \{x \in V \mid entweder \ x \in C_B \ oder \ x' \in C_B\}$

Zeilen 1-2: *n* ⋅ 2*d*

- 0 G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
- 1 Bipartiden Graphen erstellen B=(V,V',E')
- 2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$
- 3 Maximum Matching M von B bestimmen
- 4 $C_B := VC(B)$
- 5 $C_0 := \{ x \in V \mid x \in C_B \text{ und } x' \in C_B \}$
- 6 $V_0 := \{x \in V \mid entweder \ x \in C_B \ oder \ x' \in C_B\}$

Zeilen 3-4: $\sqrt{n} \cdot m$ (LEDA:mcb_matching, Hopcroft und Karp)

- 0 G = (V, E), n := |V|, m := |E|, d := maximaler Grad eines Knoten aus G
- 1 Bipartiden Graphen erstellen B=(V,V',E')
- 2 mit $E' := \{\{x, y'\}, \{x', y\} | \{x, y\} \in E\}$
- 3 Maximum Matching M von B bestimmen
- 4 $C_B := VC(B)$
- 5 $C_0 := \{ x \in V \mid x \in C_B \text{ und } x' \in C_B \}$
- 6 $V_0 := \{x \in V \mid entweder \ x \in C_B \ oder \ x' \in C_B\}$

Zeilen 5-6: $2n + k \cdot d$

$$n \cdot 2d + \sqrt{n} \cdot m + 2n + k \cdot d$$

$$\Rightarrow O(n + \sqrt{n} \cdot m)$$

$$n \cdot 2d + \sqrt{n} \cdot m + 2n + k \cdot d$$

$$\Rightarrow O(n + \sqrt{n} \cdot m)$$

NT-Regel - Ergebnisse

Vergleich

Vergleich der Ergebnisse

Tabelle 3: Anwendung einzelner Reduktionsregeln

Reduktionsregel	Anwendungen	Reduktion	CPU-Zeit
Nemhauser-Trotter	0.27	50.3	0.041s
Kronenregel	0.46	19.77	0.004s
Grad 1	1.32	99.06	0.0006s

Anwendung

Tabelle 4: Anwendung kombinierter Reduktionsregeln

Kombination			Anwendungen ₃	Reduktion
K - G ₁	3.63	4.3	-	331.8
G ₁ - K	4.37	3.22	-	331.17
K - NT	0.8	0.38	-	68.28
NT - K	0.45	0.56	-	68.6
G ₁ - NT	1.33	0.017	-	99.87
NT - G ₁	0.28	1.13	-	99.87

Tabelle 5: Anwendung kombinierter Reduktionsregeln

Kombination		Anwendungen ₂	Anwendungen ₃	Reduktion
K - G ₁ - NT	3.61	4.29	0.11	334.67
K - NT - G ₁	3.6	0.87	3.39	334.83
G ₁ - NT - K	4.36	0.12	3.2	334.17
G ₁ - K - NT	3.61	3.2	0.65	334.16
NT - K - G ₁	0.39	3.44	4.03	335.2
NT - G ₁ - K	0.91	3.42	3.2	334.16

Tabelle 6: Besondere Graphen für die Dreierkombinationen von Regeln

Graph	Reduktionsregeln	Anwend. ₁	Anwend. ₂	Anwend. ₃	Reduktion
$Graph_1$	NT - K - G ₁	1	5	6	195
	G ₁ - NT - K	6	0	5	195
	Nemhauser-Trotter	1	-	-	11
	Kronenregel	1	-	-	11
	$Grad_1$	2	-	-	91
	$Kronenregel$ - $Grad_1$	6	5	-	195
$Graph_2$	NT - K - G ₁	1	9	2	762
	Nemhauser-Trotter	0	-	-	0
	Kronenregel	0	-	-	0
	$Grad_1$	1	-	-	2
	$Kronenregel$ - $Grad_1$	9	3	-	762

Benedikt Lüken-Winkels

Fazit und Ausblick

Ausblick

- Form von randomgraphen untersuchen
 - Welche Form hinterlassen die Reduktionsregeln
 - Welche Form wäre für die Nemhauser Trotter am besten
- Warum ist die Nemhauser-Trotter-Regel in der Praxis so schlecht?
- Wie ergibt sich in bei den Reduktionen (Abbildung ??) der Große Unterschied zwischen den Graphen im Bereich der Kantenmenge zwischen 3000 und 4600?
- Wieso ist das Matching M1 so wichtig f
 ür die Kronenregel?

Quellen i

- E. C. Sewell, S. H. Jacobson, and H. Kaul, "Reductions for the stable set problem," *Algorithmic Operations Research Vol. 6 40–55*, 2011.
- F. N. Abu-Khzam, M. A. Langston, P. Shanbhag, and C. T. Symons, "Scalable parallel algorithms for fpt problems," *Algorithmica, Volume* 45, *Number 3, 269-284*, 2006.
- F. Abu-Khzam, R. Collins, M. Fellows, M. Langston, and W. S. C. Symons, "Kernelization algorithms for the vertex cover problem: Theory and experiments," *Proceedings of the 6th Workshop on Algorithm Engineering and Experiments (ALENEX), ACM/SIAM, Proc. Applied Mathematics* 115, 2004.
- J. Chen, I. A. Kanj, and W. Jia, "Vertex cover: further observations and further improvements," *Journal of Algorithms 41, 280 301*, 2001.

Quellen ii

- S. R. aniel Mölle and P. Rossmanith, "Enumerate and expand: New runtime bounds for vertex cover variants," *Computing and Combinatorics. Lecture Notes in Computer Science, vol 4112, 265-273,* 2006.
- R. Niedermeier, *Invitation to Fixed-Parameter Algorithms*. Oxford University Press, 2006.
- K. Mehlhorn and S. Näher, *LEDA: A Platform for Combinatorial and Geometric Computing.* Cambridge University Press, 2006.
- M. Cygan, Parameterized algorithms. Springer Cham, 2015.
- F. Gurski, *Exakte Algorithmen für schwere Graphenprobleme*. Springer Heidelberg, 2010.
- R. G. Downey and M. R. Fellows, *Fundamentals of parameterized complexity*. Springer London, 2013.
- Parametrized Complexity. Springer New York, 1997.

Quellen ii

- M. R. Garey and D. S. Johnson, *Computers and Intractability : a guide to the theory of NP-completeness*. Freeman New York, 2007.
- G. Valiente, *Algorithms on Trees and Graphs*. Springer, Berlin, Heidelberg, 2002.