

Chapter overview

- ECU State- BSW Mode- Manager
- Watchdog Management
- Communication Management
 - Communication Manager ComM
 - State Management
 - Network Management

Overview of all states

STARTUP - EcuM

STARTUP - BswM

SHUTDOWN - BswM

SHUTDOWN - EcuM

SLEEP - BswM

SLEEP - EcuM

WAKEUP - EcuM

WAKEUP - BswM

BswM - Rule

BswM - ports

EcuM - ports

20

- Within SWCs, a Supervised Entiy (SE) indicates to the Watchdog Manager that a Checkpoint within a Supervised Entity has been reached
- The Watchdog Manger (WdgM) and the Watchdog Interface (WdgIf) determine the Trigger condition of the underlying Watchdog(s) based on different Supervision Mechanisms:
 - Alive Supervision
 - Deadline Supervision*
 - Logical Supervision (Program Flow Monitoring)*
- The WdgM also determines the Global Supervision status

^{*}These features require additional licensing

Checkpoint Supervision

- Every **supervised entity (SE)** must provide live indications to the WdgM
- Checkpoint Supervision is done by calling WdgM CheckpointReached()
 - Indications are proofed
 - Local Supervision Status is calculated (Local → for individual SE)
 - Global supervision status is calculated (Global → for all SEs)
 - Supervision statuses are provided via RTE ports
 - GetLocalStatus, GetGlobalStatus
- Escalation steps for the Global Supervision Status:
 - WDGM_GLOBAL_STATUS_OK
 - WDGM_GLOBAL_STATUS_FAILED
 - WDGM_GLOBAL_STATUS_EXPIRED
 - WDGM_GLOBAL_STATUS_STOPPED

Interaction of Watchdog Stack modules

- Initialisation
 - by calling WdgM Init() and Wdg Init()
 - Usually performed by EcuM
 - Done on the first WdgM MainFunction() (not AUTOSAR specific)
- Periodic scheduling of the WdgM_MainFunction()
 - Examination of configured Supervised Entitys in respect to the configured values
- The WdgM reports via the WdgIf the triggering condition to the Watchdog Driver
- The Wdg driver will trigger the Watchdog (e.g. via timer interrupt) as long as the trigger condition is fulfilled

WdgM ports

- WdgMModePort
 - reports global alive supervision status
 - WDGM_GLOBAL_STATUS_OK
 - WDGM_GLOBAL_STATUS_FAILED
 - WDGM_GLOBAL_STATUS_EXPIRED
 - WDGM_GLOBAL_STATUS_STOPPED
 - WDGM_GLOBAL_STATUS_DEACTIVATED
- WdgMServicePortSE<nnn>
 - Reporting of CheckpointReached of SE to WdgM

WdgM - Modes

- The WdgM allows to configure different modes, e.g.
 - 1 mode for ECU startup
 - 1 mode for Normal Operation
- You may configure a list of supervised entities for each mode. This list of entities is to be supervised for the mode specified
- You may switch between the settings configured during runtime with the API call WdgM_SetMode

ComM overview

- Handles communication modes for each channel
- Collects and coordinates the bus communication access requests from communication requestors
- Offers an API to disable sending of signals to prevent the ECU from (actively) waking up the communication bus
- Handles Bus error management
- Supports Partial Networking

ComM States

- A channel is an abstraction of physical Controller (in case of Ethernet also applies to a Virutal LAN)
- Each Channel has its own communication Mode
- A user can request "Full communication" or "no communication" only

State	Message Transmission	Message Reception	Nm / bus communication	Wake-up capability
Full communication / network requested	On	On	Requested	Not applicable
Full communication / ready sleep	On	On	Released	Not applicable
Silent communication	Off	On	Released	User/diagnostic request Network indication
No communication	Off	Off	Released	User/diagnostic request Passive wakeup

ComM state machine (simplified)

ComM ports

Partial Network handling

- The status of all partial networks is exchanged on the bus in PN bit vector (Partial Network Information)
- Each bit in the PN bit vector represents the status of one partial network cluster (PNC)
- ComM realizes on state machine for each PNC
- PN bit vector is exchanged between <Bus>NM modules and ComM by using PduR and Com signals
- EIRA (external and internal request array)
 - Aggregated state of external and internal requests
- ERA (external request array)
 - Used by gateways to collect external requests
 - PNC gateway

State manager overview

- The state management is handled by the bus specific modules **CanSm**, **FrSm**, **LinSm and EthSm** and controlled by the Com Manger
- The *Sm modules perform the following tasks:
 - Provide bus-independent interface towards the ComM module
 - Handle bus-specific wakeup
 - CAN and Flexray only:
 - Set transceiver mode
 - Set controller mode
 - Ethernet only:
 - Set Ethernet switch mode
 - Handle bus-specific "go to sleep" sequence
 - LIN only: Switch schedule table

Network Management modules

- The Nm is controlled by the ComM which sees only Nm channels
- The generic Nm module coordinates the bus-specific *Nm modules
- The Nm messages are sent/received via the bus specific Interface module (*If)

Tasks of the Network Management

- Detecting bus activity
 - are other nodes active?
 - Allows vendor-specific extension to identify active nodes
- Synchronizing bus sleep
 - coordination algorithm to ensure that all nodes go to sleep in the same moment*)
- Preventing bus sleep
 - keep the bus (and other nodes) active, while needed
- Coordination of busses
 - synchronize AUTOSAR / OSEK-NM busses
- Least important: Sending (arbitrary) "User Data"

Network Management Basic Facts

- A network management "cluster" consists of a set of nodes, which form a logical network.
- Special NM-messages are broadcast from/to any node to indicate activity
- NM messages may contain an ID identifying the node (unique inside the logical network)
 - If so, it is possible to detect if all required network nodes are active
- NM messages may contain a "User Data" field
- NM messages may contain partial network information

39

CanNm State Machine, Simplified

- Repeat Message State is mainly used to enable node detection upon NM startup.
- In Normal Operation State, a bus load reduction mechanism can be enabled.
- Ready Sleep State: The NM stays in this state until the bus falls silent.
- In Bus Sleep State, the NM is disabled until the ComM (re-)starts it
- In Prepare Bus Sleep State, the (unexpected) recommencing of network activity triggers a special indication to the ComM
- It is possible to detect if all nodes but the own are asleep (Remote Sleep Indication)

Bus-specific Features

- For FlexRay, the Nm state machine looks a bit different, with states for handling Bus startup & recovery
- As sending Nm messages cannot be suspended in the static segment under FlexRay, a "voting" flag can be used to void a Nm message

Summary

- ECU State- BSW Mode- Manager
- Watchdog Management
- Communication Management
 - Communication Manager ComM
 - State Management
 - Network Management

