DATA SCI 8010: Applied Machine Learning

Tozammel Hossain

Basic Info

3 Credit Hours

Prerequisites

- Data Sci 7020: Stat & Math Foundations for Data Science
 - Or instructor's consent

Relevant Computing Skills

- Python Programming
 - Using Python package (sklearn) to learn machine learning
- Familiarity with DSA computing environment + Git
 - Please check module 0
- If you need help on Python, DSA environment and Git, please send me an email

Learning Objectives

- To illustrate the basic methodology of machine learning, beginning from a raw dataset to prediction or latent structure learning
- Hands-on practices to help you identify recurring themes of data analytics/machine learning in different problem domains
- Operationalize ML Models

Course structure

- We aim to employ a "flipped classroom"/ mostly asynchronous model
 - A module(video lectures, slides, coding practices) will be posted online each sat at 6:00 am and you are expected to digest this information before class (on-campus)/office hours (online)
 - Assignment is due by the following Sat 11:59 PM
 - Class times/Office hours will be used to reinforce these concepts and for exploratory discussions
- Your active participation is important for the success of this model!

Tools/Services

Canvas

Announcements + grades

Jupyterhub

Computing enviornment

Git

Committing code

Communication

- Slack (online cohort)
- Teams (on-campus cohort)
- Office hours

Office Hours

Only for online cohort

Wed/Thu/Fri, 7:00 PM - 8:00 PM

On-campus

- Two in-person sessions per week
 - Location: Naka Hall 355
 - Time
 - ► Tue: 9:30 AM -10:45 AM
 - ► Thu: 9:30 AM -10:45 AM
- Office hours
 - Wed/Fri: 7:00 PM 8:00 PM

Module Layout

8 modules

- delivered over 8 weeks
- 6 modules for concepts + 2 modules for final project

No textbook is required

Each module has

- Readings
- Labs (examples done within the script)
- Practices (solutions are provided separately)
 - Grades for completion (2 points)
- Exercises
 - Graded for accuracy (18 points)

Score distribution

- Practices (10%) + Exercises (60%) + Project (30%)
- Project: a problem will be given
 - Need to develop individually

Schedule: On-campus

Module	Release Date	Assign. Due	Comment	
M1	Mar 12	Mar 19		
M2	Mar 19	Apr 02		
Spring Break: Mar 26 - Apr 02				
M3	Mar 26	Apr 09		
M4	Apr 09	Apr 16		
M5	Apr 16	Apr 23		
M6+M7 (FP)	Mar 23	Apr 30	M6 check-in	
		May 07	M6+M7 due	
M8	May 07	May 13		

Schedule: Online

Module	Release Date	Assign. Due	Comment	
M1	Mar 12	Mar 19		
M2	Mar 19	Apr 09		
Spring Break: Mar 26 - Apr 02				
M3	Mar 26	Apr 09	M2+M3 due	
M4	Apr 09	Apr 16		
M5	Apr 16	Apr 23		
M6+M7 (FP)	Mar 23	Apr 30	M6 check-in	
		May 07	M6+M7 due	
M8	May 07	May 13		

Road Map

Module 1: Supervised Learning

- Classification: decision tree
- Model Evaluation: train/test

Module 2: Supervised Learning

- Classification: naïve Bayes
- Regression: tree methods + linear method
- Model Evaluation: cross validation

Module 3: Unsupervised Learning

- Feature selection
- Dimensionality reduction

Road Map

Module 4: Unsupervised Learning

- Clustering
- Anomaly detection

Module 5: Developing ML Pipeline

- Pipeline
- Classification: SVM

Module 6: Project part I

 Using the concepts from M1-M5, solve a classification problem

Road Map

- Module 7: Project part II
 - Using the concepts from M1-M5, solve a classification problem
- Module 8: Intro to Neural Network
 - Basic concepts in neural net