PROBLEM 1a

$$P[3,4](x) = \frac{a_0 + a_1x + a_2x^2 + a_3x^3}{1 + b_1x + b_2x^2 + b_3x^3 + b_4x^4}$$

$$(a_0 + a_1x + a_2x^2 + a_3x^3)(1 + b_1x + b_2x^2 + b_3x^3 + b_4x^4) = e^x$$

$$a_0 + (a_0b_1 + a_1)x + (a_0b_2 + a_1b_1 + a_2)x^2 + (a_0b_3 + a_1b_2 + a_2b_1 + a_3)x^3 + (a_0b_4 + a_1b_3 + a_2b_2 + a_3b_1)x^4 + (a_1b_4 + a_2b_3 + a_3b_2)x^5 + (a_2b_4 + a_3b_3)x^6 + a_3b_4x^7$$

$$= 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5 + \frac{1}{720}x^6 + \frac{1}{5040}x^7$$

$$a_0 = 1$$

$$a_0b_1 + a_1 = 1$$

$$a_0b_2 + a_1b_1 + a_2 = \frac{1}{2}$$

$$a_0b_3 + a_1b_2 + a_2b_1 + a_3 = \frac{1}{6}$$

$$a_0b_4 + a_1b_3 + a_2b_2 + a_3b_1 = \frac{1}{24}$$

$$a_1b_4 + a_2b_3 + a_3b_2 = \frac{1}{120}$$

$$a_2b_4 + a_3b_3 = \frac{1}{720}$$

$$a_3b_4 = \frac{1}{5040}$$

$$a_3b_4 = \frac{1}{5040}$$

$$b_1 = \frac{1}{840}$$

$$P[2,5](x) = \frac{a_0 + a_1x + a_2x^2}{1 + b_1x + b_2x^2 + b_3x^3 + b_4x^4 + b_5x^5}$$

$$(a_0 + a_1x + a_2x^2)(1 + b_1x + b_2x^2 + b_3x^3 + b_4x^4 + b_5x^5) = e^x$$

$$a_0 + (a_0b_1 + a_1)x + (a_0b_2 + a_1b_1 + a_2)x^2 + (a_0b_3 + a_1b_2 + a_2b_1)x^3$$

$$+ (a_0b_4 + a_1b_3 + a_2b_2)x^4 + (a_0b_5 + a_1b_4 + a_2b_3)x^5 + (a_1b_5 + a_2b_4)x^6$$

$$+ a_2b_5x^7 = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5 + \frac{1}{720}x^6 + \frac{1}{5040}x^7$$

$$a_0 = 1$$

$$a_0b_1 + a_1 = 1$$

$$a_0b_2 + a_1b_1 + a_2 = \frac{1}{2}$$

$$a_0b_3 + a_1b_2 + a_2b_1 = \frac{1}{6}$$

$$a_0b_4 + a_1b_3 + a_2b_2 = \frac{1}{24}$$

$$a_0b_5 + a_1b_4 + a_2b_3 = \frac{1}{120}$$

$$a_1b_5 + a_2b_4 = \frac{1}{720}$$

$$a_2b_5 = \frac{1}{5040}$$

$$\Rightarrow$$

$$a_2b_5 = \frac{1}{5040}$$

$$\Rightarrow$$

$$a_0 = 1$$

$$a_1 = \frac{2}{7}$$

$$a_2 = \frac{1}{42}$$

$$b_1 = \frac{-5}{7}$$

$$b_2 = \frac{5}{21}$$

$$b_3 = \frac{-1}{21}$$

$$b_4 = \frac{1}{168}$$

$$b_5 = \frac{-1}{2520}$$

Х	Error P[0,7]	Error P[3,4]	Error P[2,5] 0.27156995830143	
0.5	1.0254536642e-07	4.9025365989e-09		
1	2.7860205077e-05	2.25856657154e-06 0.00195932473710	1.93062858316323 14.8890560989306	
2	0.00810371797827			
5	19.79411148352898	77.0285437179610	150.594977284395	

PROBLEM 2

k	x_k	$f(x_k)$	$f[x_k, x_{k+1}]$	$f[x_k, x_{k+1}, x_{k+2}]$	$f[x_k, x_{k+1}, x_{k+2}, x_{k+3}]$
0	4	1	1	3/8	1/12
1	6	3	5/2	7/8	
2	8	8	6		
3	10	20			

$$P(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

$$+ f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2)$$

$$= 1 + (x - 4) + \frac{3}{8}(x - 4)(x - 6) + \frac{1}{12}(x - 4)(x - 6)(x - 8)$$

$$= \frac{1}{24}(2x^3 - 27x^2 + 142x + 240)$$