TRIBHUVAN UNIVERSITY 01 INSTITUTE OF ENGINEERING

Examination Control Division 2068 Chaitra

Exam. Level	Regular		
	BE	Full Marks	80
Programme	ALL	Pass Marks	32
Year / Part	I/I	Time	3 hrs

Subject: - Engineering Mathmatics I (SH 401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ All questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. If $y^{1/m} + y^{-1/m} = 2x$ Show that:

 - a) $(x^2-1)y_2+xy_1-m^2y=0$ b) $(x^2-1)y_{n+2}+(2n+1)xy_{n+1}+(n^2-m^2)y_n=0$.
- χ 2. State the Rolle's theorem and use it to prove Lagrange's mean value theorem.
- 3. Evaluate: $\lim_{x \to 0} \left(\frac{1}{x^2} \frac{1}{\sin^2 x} \right)$
- 4. Find the asymptotes of the curve $a^2b^2 + 2ab^2x + b^2x^2 + a^2x^2 + 2ax^3 + x^4 x^2y^2 = 0$.
- 5. Find the pedal equation of the curve $r^m = a^m cosm\theta$.
- 6. Show that $\int_{0}^{\frac{\pi}{2}} \frac{x}{(\sin x + \cos x)} dx = \frac{\pi}{2\sqrt{2}} \log(\sqrt{2} + 1)$ $\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{2}} \log(\sqrt{2} + 1)$ 7. Apply differentiation under integral sign to evaluate $\int_{0}^{\infty} \frac{e^{-x} \sin bx}{x} dx$
- 8. Use Gamma function to evaluate $\int_0^1 x^6 \sqrt{1-x^2} dx$
- 29-71-29-
- \approx 9. Find the area of curve $y^2(2a x) = x^3$ and its asymptotes.

Find the volume of solid formed by the revolution of the cardiode $r = a(1 + \cos\theta)$ about the initial line. Seg der

- 10. Solve the differential equation $\frac{dy}{dx} 2y \tan x = y^2 \tan x$
- 11. Solve the differential equation $xp^2 2yp + ax = 0$ where p = dy/dx.
- 5×12 . Solve (D² –2D + 5)y = 10 sinx
 - 13. Solve the differential equation $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$
- £14. Derive the equation of an ellipse in standard form.
 - 15. Prove that the normal at a point t of the rectangular Hyperbola $xy = c^2$ meets the curve again at a point t_1 such that $t^3t_1 = -1$.
 - 16. Find the equation of axes and length of axes of conic $x^2 4xy 2y^2 + 10x + 4y = 0$