Host-INT* for packettelemetry

Intel Corporation 2021-Jun-30

* Other names and brands may be claimed as the property of others.

- The full name of this project is "Host-INT for packet-telemetry"
 - We will usually refer to it as Host-INT in conversation.

Host-INT project structure (with TC egress source)

Host INT project structure

hostintd, hostintcol

from other hosts

hostintctl

source & sink EBPF programs

Example event sequence

Boot time, before Host INT software started

After hostintd started & loads sink EBPF

Notes on state after only sink is loaded

- Assumption:
 - In this example network, there is no hardware or software that will ever add INT headers to packets, except Host INT software
- Since no hosts have loaded source EBPF programs
 - No packets will have INT headers added to them
- For any received packet without INT header, the sink EBPF program will only:
 - parse packets up to IPv4 header
 - determine from DSCP field that packets do not have INT header
 - Pass the packet unmodified to the Linux kernel
 - No reports will be generated
 - Should be very quick and light on CPU resources
- But all hosts are now <u>ready</u> to receive packets with INT headers

After source loaded on host Brenda

Notes on state after source loaded on Brenda

- In this example, we have configured all hosts to send INT reports back to the sender of the packet that caused the report to be generated.
- Thus no central collector of all INT reports
 - Host INT does support sending INT reports to both the sender of the packet,
 AND one or more central INT report collectors

Host Brenda app 1 sends more to Host Alex app N

XDP source program scenarios

XDP source program

- Previous figures have shown a deployment scenario using the TC egress hook EBPF program for adding INT headers at source host
 - Both the source (on TC egress hook) and sink (on XDP receive hook) EBPF programs can be loaded into kernel within the default Linux kernel network namespace
 - TBD: does it work if they are installed within a non-default network namespace?
- There may be some deployments involving containers and/or non-default network namespaces where it would be useful to instead:
 - Load an XDP receive hook EBPF program on a veth interface that adds INT headers at the source host
 - The next figure is one example of this, using a Linux kernel bridge to forward packets between network interfaces (some physical, some virtual) in the default network namespace.
 - Many other arrangements are possible.

Host INT project structure (with XDP source)

NIC