General Overview and Legal Frameworks

Introduction to Privacy Engineering

Daniel Aranki University of California, Berkeley

General Overview and Legal Frameworks

Administrative: Objectives of the Course

Introduction to Privacy Engineering Daniel Aranki University of California, Berkeley

What is the Course About?

- Engineering-applicable techniques to protect privacy in data
- Different settings and scenarios
- Privacy trade-offs
- Preserving utility from data

Objectives

By the end of the semester you will be able to:

- Describe the different technical paradigms of privacy applicable in engineering
- Critique the strengths and weaknesses of the different paradigms
- Implement the different privacy paradigms
- Keep up with the state-of-the art

Weekly Cycle

- Readings
- Asynchronous elements (use handouts)
- Self work
- Live session

General Overview and Legal Frameworks

A Brief History of Privacy: From Ancient Greece To Modern Photography and the Printing Press

Introduction to Privacy Engineering Daniel Aranki University of California, Berkeley

Old Concepts of Privacy

- Aristotle's two spheres:
 - Public sphere (polis) political life
 - Private sphere (oikos) domestic life
- Attorney-client privilege
- Doctor-patient privilege

Concept(s) of Privacy

- Ability to seclude oneself
- Ability to express oneself selectively
- Physical privacy: one's space or solitude
 'The right of the people to be secure in their persons, houses, papers, and effects, against unreasonable searches and seizures" Fourth amendment

Other Aspects

- Trade-offs
 - "Those who would give up essential liberty to purchase a little temporary safety, deserve neither liberty nor safety." Benjamin Franklin
 - Utility
 - Cost
 - Freedom of information
- Cultural context
- Time evolution
- Secrecy versus privacy

General Overview and Legal Frameworks

A Brief History of Privacy: Modern Photography and Beyond

Introduction to Privacy Engineering Daniel Aranki University of California, Berkeley

The Right to Privacy

According to Warren and Brandeis (1890)1:

- "Right to life" evolved; expanded remedies: physical vs "sensation;" Examples: battery vs assault, slander and libel, intellectual property
- Domestic sphere (oikos) is being invaded by instantaneous photography and wide-spread press
- Remedies for circulating portraits of people? "Gossip" by newspapers?
- "The right to be left alone." Judge Cooley
- New nuances of invasion of privacy

The Integration of Information Systems

- Information systems are emerging (data banks)
- Lack of memory loss
- Four states of privacy²:
 - Solitude: physical
 - Intimacy: close relationship
 - 3 Anonymity: "public privacy"
 - Reserve: psychological
- Even more nuance

General Overview and Legal Frameworks

A Brief History of Privacy: Artificial Intelligence and the Inference Threat

Introduction to Privacy Engineering Daniel Aranki University of California, Berkeley A Brief History of Privacy: Artificial Intelligence and the Inference Threat (General Overview)

Inference Threat

Yet another wave of nuances:

• Information can be inferred about us; AI, statistical learning, etc...

Netflix Prize De-Anonymization

Figure: De-anonymization probability (Narayanan and Shmatikov, 2008)

Language identification in VoIP

Figure: Attack setting (Wright et al., 2007)

Language identification in VoIP

Figure: Attack results (Wright et al., 2007)

HTTPS: which page have you visited?

Figure: Attack pipeline (Miller et al., 2014)

HTTPS: Which Page Have You Visited?

Figure: Attack results (Miller et al., 2014)

Utility vs Privacy

- Rule of thumb: as privacy protection grows, utility decreases
- Impossibility result in statistical databases³
- Perhaps achievable in other scenarios?

³Cynthia Dwork (July 2006). "Differential Privacy". In: 33rd International Colloquium on Automata, Languages and Programming, part II (ICALP 2006). Vol. 4052. Venice, Italy: Springer Verlag, pp. 1–12. ISBN: 3-540-35907-9. URL: https://www.microsoft.com/en-us/research/publication/differential-privacy/.

General Overview and Legal Frameworks

Legal Frameworks of Privacy: US Privacy Act of 1974

Introduction to Privacy Engineering Daniel Aranki University of California, Berkeley

Motivation

- Watergate scandal: curb illegal surveillance and investigation
- Increasing use of databanks and computer systems

Features of the US Privacy Act of 1974

- Covers data about individuals (US citizens or "aliens lawfully admitted for permanent residence")⁴
- Applicable only to government agencies
- Commercial arena? Federal Trade Commission's Fair Information Practices
- "The right to privacy is a personal and fundamental right protected by the Constitution of the United States."
- Served as a model for privacy legislation worldwide

US Privacy Act Fair Information Practices

- Openness and transparency
- Individual participation
- Collection limitation
- Data quality
- Use limitation
- Reasonable security
- Accountability

FTC's Fair Information Practices

- Federal Trade Commission report on online privacy⁵
- Notice/Awareness
- Choice/Consent
- Access/Participation
- Integrity/Security
- Enforcement/Redress

General Overview and Legal Frameworks

Legal Frameworks of Privacy: General Data Protection Regulation (GDPR)

Introduction to Privacy Engineering Daniel Aranki University of California, Berkeley

Driving Force and Scope

- Driving concept: Privacy is a fundamental human right.
- Primary motivation: Adapt to changes in the data ecosystem
- Covers personal data of all people residing in the EU by any data collector or processor

Features of the GDPR

- Opt-in and consent
- Right to access
- Right to be forgotten
- Liability includes processors as well as controllers
- Data Protection Officer
- Regulation of design and retention
- Security: impact assessment
- Breach procedures: notification and penalties
- Transparency
- Age protection: minimum age is 16

Comparing GDPR to the US Privacy Act of 1974

- Scope: GDPR is broader, covering all individuals in the EU, applicable to industry and government (controllers and processors).
- GDPR consent concept is stronger.
- GDPR provides the right to be forgotten.
- GDPR requires documentation and a designated "Data Protection Officer."

General Overview and Legal Frameworks

Course Overview: What Will This Course Cover

Introduction to Privacy Engineering Daniel Aranki University of California, Berkeley Course Overview: What Will This Course Cover (General Overview)

Publishing Types

Microdata: Detailed records, each of an entity (person, company, etc.)

Macrodata: Derived statistics from the dataset

Interactive: Can be queried

Noninteractive: A snapshot is released

Utility Landscape

- Databases
- Data mining
- Information disclosure
- Learning and inference

Privacy Threats Landscape

Membership Disclosure: being able to tell that a person is in (or not in) a dataset (confidentiality)

Identity Disclosure: being able to tell the identity of the person to whom the record corresponds (anonymity)

Inference Threat: being able to tell that a person has a specific (sensitive) attribute:

- Attribute disclosure.
- Inference of undisclosed attributes.

Membership Disclosure

• Being able to tell that a person is in (or not in) a dataset (confidentiality)

Gender	Age	Group?
Male	[31-35]	Treatment
Male	[31-35]	Control
Male	[31-35]	Control
Male	[31-35]	Treatment
Female	[26-30]	Control
Female	[26-30]	Control
Female	[26-30]	Treatment
Female	[26-30]	Treatment

Identity Disclosure

• Being able to tell the identity of the person to whom the record corresponds (anonymity)

Gender	Age	Medical Condition	Fully paid bill?
Male	[31-35]	Back injury	Yes
Male	[36-40]	Flu	No
Male	[31-35]	Cancer	Yes
Male	[31-35]	Healthy	No
Female	[26-30]	Flu	No
Female	[26-30]	Sprained ankle	No
Female	[26-30]	Back injury	Yes
Female	[26-30]	Sprained ankle	Yes

Attribute Disclosure

• Being able to tell that a person has a specific (sensitive) attribute

Gender	Age	Medical Condition	Fully paid bill?
Male	[31-35]	Flu	Yes
Male	[31-35]	Flu	No
Male	[31-35]	Flu	Yes
Male	[31-35]	Flu	No
Female	[26-30]	Flu	No
Female	[26-30]	Sprained ankle	No
Female	[26-30]	Back injury	Yes
Female	[26-30]	Sprained ankle	Yes

Inference Threat

• Being able to tell something new (undisclosed) about a person

Movie	Like/Dislike
Fahrenheit 9/11	Like
Inside Job	Like
Fahrenhype $9/11$	Dislike
2016: Obama's America	Dislike

Course Overview

- Privacy by Design
- Background knowledge: probability theory, information theory and machine learning
- Randomized Response (Warner, 1965)
- k-Anonymity (Sweeney, 2002)
- ℓ-Diversity (Machanavajjhala et al., 2007)
- t-Closeness (N. Li, T. Li, and Venkatasubramanian, 2007)
- δ -Presence (Nergiz, Atzori, and Clifton, 2007)
- ϵ -Differential Privacy (Dwork, 2006)
- Honest but curious (Pin Calmon and Fawaz, 2012)
- Private Disclosure of Information (Aranki and Bajcsy, 2015)

References I

Aranki, Daniel and Ruzena Bajcsy (2015). "Private Disclosure of Information in Health Tele-monitoring". In: arXiv preprint arXiv:1504.07313.

Dwork, Cynthia (July 2006). "Differential Privacy". In: 33rd International Colloquium on Automata, Languages and Programming, part II (ICALP 2006). Vol. 4052. Venice, Italy: Springer Verlag, pp. 1–12. ISBN: 3-540-35907-9. URL:

https://www.microsoft.com/en-us/research/publication/differential-privacy/.

Li, N., T. Li, and S. Venkatasubramanian (Apr. 2007). "t-Closeness: Privacy Beyond k-Anonymity and I-Diversity". In: 2007 IEEE 23rd International Conference on Data Engineering, pp. 106–115. DOI: 10.1109/ICDE.2007.367856.

Machanavajjhala, Ashwin et al. (Mar. 2007). "L-diversity: Privacy Beyond K-anonymity". In: ACM Trans. Knowl. Discov. Data 1.1, pp. 3–54. ISSN: 1556-4681. DOI: 10.1145/1217299.1217302. URL: http://doi.acm.org/10.1145/1217299.1217302.

Miller, Brad et al. (2014). "I Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis". In: *Privacy Enhancing Technologies*. Ed. by Emiliano De Cristofaro and Steven J. Murdoch. Cham: Springer International Publishing, pp. 143–163. ISBN: 978-3-319-08506-7.

Narayanan, Arvind and Vitaly Shmatikov (2008). "Robust de-anonymization of large sparse datasets". In: Security and Privacy, 2008. SP 2008. IEEE Symposium on. IEEE, pp. 111–125.

References II

Nergiz, Mehmet Ercan, Maurizio Atzori, and Chris Clifton (2007). "Hiding the Presence of Individuals from Shared Databases". In: *Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data*. SIGMOD '07. Beijing, China: ACM, pp. 665–676. ISBN: 978-1-59593-686-8. DOI: 10.1145/1247480.1247554. URL: http://doi.acm.org/10.1145/1247480.1247554.

Pin Calmon, F. du and N. Fawaz (Oct. 2012). "Privacy against statistical inference". In: 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1401–1408. DOI: 10.1109/Allerton.2012.6483382.

Pitofsky, Robert et al. (1998). Privacy online: A report to congress. Commission Findings. Federal Trade Commission.

Privacy Act (1974). "US Congress". In: 5 U.S.C. §552a.

Sweeney, Latanya (2002). "k-anonymity: A model for protecting privacy". In: *International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems* 10.05, pp. 557–570.

Warner, Stanley L (1965). "Randomized response: A survey technique for eliminating evasive answer bias". In: Journal of the American Statistical Association 60.309, pp. 63–69.

Warren, Samuel D and Louis D Brandeis (1890). "The right to privacy". In: *Harvard law review*, pp. 193–220.

Westin, Alan F (1968). "Privacy and freedom". In: Washington and Lee Law Review 25.1, p. 166.

References III

Wright, Charles V. et al. (2007). "Language Identification of Encrypted VoIP Traffic: Alejandra Y Roberto or Alice and Bob?" In: *Proceedings of 16th USENIX Security Symposium on USENIX Security Symposium*. SS'07. Boston, MA: USENIX Association, 4:1–4:12. ISBN: 111-333-5555-77-9. URL:

 $\verb|http://dl.acm.org/citation.cfm?id=1362903.1362907|.$