Multilingual Distributional Semantics

Benno Kruit Sara Veldhoen

January 13, 2015

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction related work

Multimigual Divi

Multilingual Doow

rvesuits

Graphics and concluding words

Outline

Introduction - related work

Multilingual DM

Multilingual Dbow

Evaluation

Results

Graphics and concluding words

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction - related work

Multilingual DM

Multilingual Dbow

Evaluatio

Results

Graphics and concluding words

Multilingual DM

Figure: Bilingual distributed memory. The same architecture is trained with English context and word prediction replaced by the other language(s).

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction - related work

Multilingual DM

Multilingual Dbov

Result

Graphics and concluding words

Figure: Bilingual dbow

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction - related work

Multilingual Divi

Multilingual Dbow

Evaluatio

Result

Graphics and concluding words

- ► Training a single embedding for parallel sentences
- Word embeddings are not trained
- ► Can be extended to more than two languages

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction related work

Multilingual DM

Multilingual Dbow

Result

Graphics and concluding words

Result

Graphics and concluding words

F1 baseline

▶ Use the sentence embeddings to obtain word vector:

$$emb(w) = \frac{1}{freq(w, D)} \sum_{s \in D} freq(w, s) emb(s)$$

Quite good performance (as we will see later)

▶ Recall the model by Hermann and Blunsom:

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction - related work

Multilingual DM

Multilingual Dbow

Result

Graphics and concluding words

Multilingual DM

Multilingual Dbow

Result

Graphics and concluding words

F1 baseline

- We could have a similar training procedure
- Only: we are not training the sentences, but assume fixed 'gold standard' sentence embeddings

▶ So, we could plug in any compositional model

Evaluation

- Training word embeddings: on Europarl data (50k or 500k sentences)
- ► Monolingual (English) evaluation: analogy task
- Crosslingual evaluation: document classification

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction related work

Multilingual DM

Multilingual Dbow

 ${\sf Evaluation}$

Result

Graphics and concluding words

.

Result

Graphics and concluding words

F1 baseline

Crosslingual Doccument classification:

 Given word embeddings, obtain document representation for train and test documents in all languages

$$emb(doc) = \sum_{w \in doc} idf(w) * emb(w)$$

- ► Train a classifier (averaged perceptron) on the training document representations for one language
- ► Test classifier performance on the test document representations for another language

Evaluation

RCV (Reuters) data:

- ► English-German
- Multiclass classification:
 each document is assigned a single class (topic)
- ▶ Performance measure: accuracy
- ► Baseline: majority class

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction related work

Multilingual DM

Multilingual Dbow

Evaluation

Result

Graphics and concluding words

Evaluation

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction related work

Multilingual DM

Evaluation

Results

Graphics and concluding words

F1 baseline

TED data:

- Many languages
- Binary classification: each class (topic) has positive and negative examples
- ▶ Performance measure: F1 score
- ▶ Baseline: ??

Results

Monolingual evaluation on English:

		RCV (1000)	TED
Setting	Length	accuracy	F1
Baseline		.468	.118
$I ext{-}Matrix$	40	.861	.154
Paragraph mono	256		
Paragraph bi	256		
Paraword mono	256		
Paraword bi	256	.898	.216
Paraword multi	256	.903	.245
Google News	300	.951	.486

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction related work

Multilingual DM

Multilingual Dbow

Evaluation

Results

Graphics and concluding words

Evaluatio

Results

Graphics and concluding words

•	Word vectors	as	average	of the	dbow-trained	sentences
	they occur in.					

- Sentences trained on 50k Europarl data in specified languages.
- Mono- and bilingual evaluation on TED data (F1 scores):

Sentences	Classification train-test					
trained on:	EN-EN	DE-DE	EN-DE	DE-EN		
EN	.186	.134	.084	.153		
DE	.132	.091	.076	.132		
DE-EN	.216	.189	.201	.220		
multi	.404	.368	.387	.339		

Evaluation

Results

Graphics and concluding word

- Word vectors as average of the dbow-trained sentences they occur in.
- Sentences trained on 50k Europarl data in specified languages.
- ► Mono- and bilingual evaluation on RCV data with 10000 training examples (accuracy):

Sentences	Classification train-test					
trained on:	EN-EN	DE-DE	EN-DE	DE-EN		
EN	.866	.456	.398	.661		
DE	.850	.449	.389	.704		
DE-EN	.898	.467	.415	.708		
multi	.903	.473	.431	.705		

- Word vectors as average of the dbow-trained sentences they occur in.
- Sentences trained on 50k Europarl data in all languages.
- multilingual evaluation on TED data (F1 scores):

F1	Tested on						
Trained on	de	en	es	fr	it	nl	pb
de	0,36753	0,33879	0,4028	0,368	0,28221	0,37315	0,31928
en	0,38686	0,40439	0,38929	0,32149	0,35167	0,37379	0,35102
es	0,39853	0,30125	0,42759	0,38709	0,3536	0,36173	0,35515
fr	0,39842	0,41654	0,54487	0,40679	0,38499	0,33246	0,40565
it	0,40612	0,40535	0,37698	0,43608	0,37289	0,40004	0,35872
nl	0,4265	0,39681	0,41736	0,39255	0,41243	0,42775	0,32053
pb	0,40317	0,33343	0,36931	0,35449	0,37403	0,40549	0,31451

Multilingual

Kruit, Veldhoen

related work

Multilingual DM

Results

Multilingual DM

Multilingual Dbow

Evaluation

Result

Graphics and concluding words

F1 baseline

$$Prec = \frac{TP}{TP + FP},$$

$$Rec = \frac{TP}{TP + FN},$$

$$Acc = \frac{TP + TN}{TP + FP + TN + FN}$$

Majority class:

$$neg > pos \rightarrow \begin{cases} Acc = \frac{TP + TN}{TP + FP + TN + FN} = \frac{TN}{TN + FN} = \frac{neg}{total} \\ Prec = \frac{TP}{TP + FP} = 0 \rightarrow F1 = 0 \end{cases}$$

Now assume a stochastic classifier:
$$P = P(pos) = \frac{pos}{total}, \ P(neg) = 1 - P$$

$$pos = P * |X|, \ neg = (1 - P) * |X|$$

$$TP = P * pos = P^2 * |X|$$

$$FP = P * neg = P * (1 - P) * |X|$$

$$FN = (1 - P) * pos = (1 - P) * P * |X|$$

$$F1 = \frac{2 * TP}{2 * TP + FN + FP}$$

$$= \frac{2 * P2 * |X|}{2 * P * P * |X| + (1 - P) * P * |X| + (1 - P) * P * |X|}$$

$$= \frac{2 * P^2}{2 * P^2 + (1 - P) * P + (1 - P) * P}$$

$$= \frac{2 * P}{2 * P + (1 - P) + (1 - P)} = \frac{2P}{2} = P$$

Multilingual Distributional Semantics

Kruit, Veldhoen

Introduction related work

Multilingual DM

Multilingual Dbow

Evaluation

Result

Graphics and concluding words