Measuring Performance: Evaluating Normalization

$Spiro\ Stilianoudakis$

Contents

Loading Packages	1
Setting Working directory	2
Log tranformed and standardized	2
Log tranformed and un-standardized	4
Not Log tranformed and Standardized	6
Not Log tranformed and Un-Standardized	8
Comparing additional performance metrics across all normalization techniques	10
Comparing Models	11
Loading Packages	
library(caret)	
## Warning: package 'caret' was built under R version 3.4.4	
## Loading required package: lattice	
## Loading required package: ggplot2	
## Warning: package 'ggplot2' was built under R version 3.4.4	
#library(data.table) library(gbm)	
## Loading required package: survival	
## ## Attaching package: 'survival'	
<pre>## The following object is masked from 'package:caret': ## ## cluster</pre>	
## Loading required package: splines	
## Loading required package: parallel	
## Loaded gbm 2.1.3	
library(pROC)	
## Warning: package 'pROC' was built under R version 3.4.4	

Type 'citation("pROC")' for a citation.

```
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
       cov, smooth, var
library(plyr)
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.4.4
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
##
       arrange, count, desc, failwith, id, mutate, rename, summarise,
##
##
       summarize
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
#library(DMwR)
library(gridExtra)
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
       combine
library(ggplot2)
library(leaps)
library(knitr)
## Warning: package 'knitr' was built under R version 3.4.4
```

Setting Working directory

setwd("C:/Users/Spiro Stilianoudakis/Documents/TAD_data/RData/GM12878/comparing_normalization")

Log tranformed and standardized

```
enetlst_ls <- readRDS("C:/Users/Spiro Stilianoudakis/Documents/TAD_data/RData/GM12878/comparing_normalis
#Mean AUC across 100 bootstrap samples
enetlst_ls[[3]]</pre>
```

```
## [1] 0.8153019 0.8013215 0.8070258 0.8138884 0.7944170

auc.ls <- round(mean(enetlst_ls[[3]]),3)

auc.ls
```

```
## [1] 0.806

#roc curve
fpr.ls <- rowMeans(enetlst_ls[[2]])
tpr.ls <- rowMeans(enetlst_ls[[1]])
rocdat.ls <- data.frame(fpr=fpr.ls, tpr=tpr.ls)
ggplot(rocdat.ls, aes(x=fpr, y=tpr)) +
    geom_line(size=1, color="#4D4D4D") +
    xlab("1-Specificity") +
    ylab("Sensitivity") +
    xlim(0, 1) +
    ylim(0, 1) +
    geom_abline(intercept=0, slope=1) +
    theme_minimal() +
    ggtitle("ROC Curve: Log Transformed & Standardized")</pre>
```

ROC Curve: Log Transformed & Standardized

Log Transformed & Standardized

Log tranformed and un-standardized

```
enetlst_lns <- readRDS("C:/Users/Spiro Stilianoudakis/Documents/TAD_data/RData/GM12878/comparing_normal
#Mean AUC across 100 bootstrap samples
enetlst_lns[[3]]</pre>
```

[1] 0.8150594 0.8014177 0.8032703 0.8138675 0.7917615

```
auc.lns <- round(mean(enetlst_lns[[3]]),3)
auc.lns</pre>
```

[1] 0.805

```
#roc curve
fpr.lns <- rowMeans(enetlst_lns[[2]])
tpr.lns <- rowMeans(enetlst_lns[[1]])
rocdat.lns <- data.frame(fpr=fpr.lns, tpr=tpr.lns)
ggplot(rocdat.lns, aes(x=fpr.lns, y=tpr.lns)) +
    geom_line(size=1, color="#000000") +
    xlab("1-Specificity") +
    ylab("Sensitivity") +
    xlim(0, 1) +
    ylim(0, 1) +
    geom_abline(intercept=0, slope=1) +
    theme_minimal() +
    ggtitle("ROC Curve: Log Transformed & Un-Standardized")</pre>
```

ROC Curve: Log Transformed & Un-Standardized

Log Transformed & Un–Standardized

Not Log tranformed and Standardized

```
enetlst_nls <- readRDS("C:/Users/Spiro Stilianoudakis/Documents/TAD_data/RData/GM12878/comparing_normal
#Mean AUC across 100 bootstrap samples
enetlst_nls[[3]]</pre>
```

[1] 0.8084435 0.8001046 0.7821470 0.7936183 0.7838993

```
auc.nls <- round(mean(enetlst_nls[[3]]),3)
auc.nls</pre>
```

[1] 0.794

```
#roc curve
fpr.nls <- rowMeans(enetlst_nls[[2]])
tpr.nls <- rowMeans(enetlst_nls[[1]])
rocdat.nls <- data.frame(fpr=fpr.nls, tpr=tpr.nls)
ggplot(rocdat.nls, aes(x=fpr.nls, y=tpr.nls)) +
    geom_line(size=1, color="#E6E6E6") +
    xlab("1-Specificity") +
    ylab("Sensitivity") +
    xlim(0, 1) +
    ylim(0, 1) +
    geom_abline(intercept=0, slope=1) +
    theme_minimal() +
    ggtitle("ROC Curve: Not Log Transformed & Standardized")</pre>
```

ROC Curve: Not Log Transformed & Standardized

Not Log Transformed & Standardized

Not Log tranformed and Un-Standardized

```
enetlst_nlns <- readRDS("C:/Users/Spiro Stilianoudakis/Documents/TAD_data/RData/GM12878/comparing_norma
#Mean AUC across 100 bootstrap samples
enetlst_nlns[[3]]</pre>
```

[1] 0.7940741 0.7707093 0.7912596 0.7875418 0.7750335

```
auc.nlns <- round(mean(enetlst_nlns[[3]]),3)
auc.nlns</pre>
```

[1] 0.784

```
#roc curve
fpr.nlns <- rowMeans(enetlst_nlns[[2]])
tpr.nlns <- rowMeans(enetlst_nlns[[1]])
rocdat.nlns <- data.frame(fpr=fpr.nlns, tpr=tpr.nlns)
ggplot(rocdat.nlns, aes(x=fpr.nlns, y=tpr.nlns)) +
    geom_line(size=1, color="#999999") +
    xlab("1-Specificity") +
    ylab("Sensitivity") +
    xlim(0, 1) +
    ylim(0, 1) +
    geom_abline(intercept=0, slope=1) +
    theme_minimal() +
    ggtitle("ROC Curve: Not Log Transformed & Un-Standardized")</pre>
```

ROC Curve: Not Log Transformed & Un-Standardized

Not Log Transformed & Standardized

Comparing additional performance metrics across all normalization techniques

```
options(scipen = 999)
enetperf_ls <- readRDS("C:/Users/Spiro Stilianoudakis/Documents/TAD_data/RData/GM12878/comparing_normal
enetperf_lns <- readRDS("C:/Users/Spiro Stilianoudakis/Documents/TAD_data/RData/GM12878/comparing_norma</pre>
```

```
enetperf_nls <- readRDS("C:/Users/Spiro Stilianoudakis/Documents/TAD_data/RData/GM12878/comparing_norma</pre>
enetperf_nlns <- readRDS("C:/Users/Spiro Stilianoudakis/Documents/TAD_data/RData/GM12878/comparing_norm</pre>
lstab <- round(as.matrix(rowMeans(enetperf_ls)),2)</pre>
lnstab <- round(as.matrix(rowMeans(enetperf_lns)),2)</pre>
nlstab <- round(as.matrix(rowMeans(enetperf_nls)),2)</pre>
nlnstab <- round(as.matrix(rowMeans(enetperf_nlns)),2)</pre>
lstab[1:5,1] <- round(lstab[1:5,1],0)</pre>
lnstab[1:5,1] <- round(lnstab[1:5,1],0)</pre>
nlstab[1:5,1] <- round(nlstab[1:5,1],0)</pre>
nlnstab[1:5,1] <- round(nlnstab[1:5,1],0)</pre>
perfdat <- cbind.data.frame(rownames(enetperf_ls),</pre>
                               1stab,
                               lnstab,
                               nlstab,
                               nlnstab)
rownames(perfdat) <- NULL</pre>
colnames(perfdat) <- c("Metric", "Log/Std", "Log/Un-Std", "No Log/Std", "No Log/Un-Std")</pre>
kable(perfdat)
```

Metric	Log/Std	Log/Un-Std	No Log/Std	No Log/Un-Std
TN	335.00	333.00	301.00	278.00
FN	109.00	109.00	82.00	76.00
FP	153.00	155.00	187.00	210.00
TP	381.00	381.00	408.00	414.00
Total	978.00	978.00	978.00	978.00
Sensitivity	0.78	0.78	0.83	0.84
Specificity	0.69	0.68	0.62	0.57
Kappa	0.46	0.46	0.45	0.41
Accuracy	0.73	0.73	0.72	0.71
Precision	0.71	0.71	0.69	0.66
FPR	0.31	0.32	0.38	0.43
FNR	0.22	0.22	0.17	0.16
FOR	0.25	0.25	0.21	0.22
NPV	0.75	0.75	0.79	0.78
MCC	0.47	0.46	0.46	0.43
F1	0.87	0.87	0.91	0.92

Comparing Models

```
auc.nls,
                             auc.nlns))
auc.plot <- auc.plot[order(auc.plot$auc, decreasing=TRUE),]</pre>
auc.plot$Normalization.Technique <-factor(auc.plot$Normalization.Technique,
                                      levels=auc.plot$Normalization.Technique)
p<-ggplot(data=auc.plot, aes(x=Normalization.Technique, y=auc, fill=Normalization.Technique)) +
  xlab("Normalization Technique") + ylab("AUC") +
  geom_bar(stat="identity") + ylim(0,1) +
  scale_fill_manual(values=grey(c(0,.3,.6,.9)), guide=FALSE) +
  scale_x_discrete(labels= c("Log/ \n Un-Standardaized",
             "Log/ \n Standardaized",
             "No Log/ \n Un-Standardaized",
              "No Log/ \n Standardaized")) +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
  ggtitle("Model Performance for Different \n Normalization Techniques")
p
```

Model Performance for Different Normalization Techniques

#datatable(auc.plot)
kable(auc.plot)

Normalization. Technique	auc
Log/Standardaized	0.806

Normalization. Technique	auc
Log/Un-Standardaized No Log/Standardaized No Log/Un-Standardaized	0.805 0.794 0.784

```
rocdat.ls$Technique <- "ls"</pre>
rocdat.lns$Technique <- "lns"</pre>
rocdat.nls$Technique <- "nls"</pre>
rocdat.nlns$Technique <- "nlns"</pre>
allrocdat <- rbind.data.frame(rocdat.ls, rocdat.lns, rocdat.nls, rocdat.nlns)</pre>
ggplot(data=allrocdat, aes(x=fpr, y=tpr, color=Technique)) +
  geom_line(size=1) +
  scale_colour_manual(name="Technique",
    labels=c("Log/ \n Un-Standardaized",
             "Log/ \n Standardaized",
             "No Log/ \n Un-Standardaized",
              "No Log/ \n Standardaized"),
    values=grey(c(0,.3,.6,.9))) +
  xlab("1-Specificity") +
  ylab("Sensitivity") +
  xlim(0, 1) +
  ylim(0, 1) +
  geom_abline(intercept=0, slope=1) +
  theme_minimal() +
  ggtitle("ROC Curves for Different \n Normalization Techniques")
```


grid.arrange(p.ls,p.lns,p.nls,p.nlns,ncol=2)

