Advanced Statistics

Dr. Syed Faisal Bukhari
Associate Professor
Department of Data Science
Faculty of Computing and Information Technology
University of the Punjab

Textbooks

- ☐ Probability & Statistics for Engineers & Scientists, Ninth Edition, Ronald E. Walpole, Raymond H. Myer
- ☐ Probability and Statistics for Engineers & Scientists, Fourth Edition, Anthony Hayter
- ☐ Elementary Statistics: Picturing the World, 6th Edition, Ron Larson and Betsy Farber
- ☐ Elementary Statistics, 13th Edition, Mario F. Triola

References

- ☐ Probability & Statistics for Engineers & Scientists,
 Ninth edition, Ronald E. Walpole, Raymond H. Myer
- ☐ Probability and Statistics for Engineers & Scientists, Fourth Edition, Anthony Hayter

☐ Elementary Statistics, Tenth Edition, Mario F. Triola

These notes contain material from the above resources.

Is σ is known?

Yes

No

If either the population is normally distributed or $n \ge 30$, then use the use the standard normal distribution or Z-test

If either the population is normally distributed or $n \ge 30$, then use the t-distribution or t-test

Inferences on a Population Mean

- □ Inference methods on a population mean based upon the t-procedure are appropriate for large sample sizes $n \ge 30$ and also for small sample sizes as long as the data can reasonably be taken to be approximately normally distributed.
- Nonparametric techniques can be employed for small sample sizes with data that are clearly not normally distributed.
- In some circumstances an experimenter may wish to use a "known" value of the population standard deviation σ in place of the sample standard deviation s. In this case, the standard normal distribution Z is used.

$$Z_{cal} = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$

$$S = \sqrt{\frac{\sum (\mathbf{X} - \overline{\mathbf{x}})^{2}}{n}}$$

$$S = \sqrt{\frac{1}{n} \left\{ \sum_{i=1}^{n} \mathbf{x}^{2} - \frac{(\sum_{i=1}^{n} \mathbf{X})^{2}}{n} \right\}}$$

$$t_{cal} = \frac{\overline{x} - \mu}{s/\sqrt{n}}$$

$$s = \sqrt{\frac{\sum (\mathbf{x} - \overline{x})^2}{n-1}}$$

$$s = \sqrt{\frac{1}{n(n-1)}} \{ n \sum_{i=1}^n \mathbf{x}^2_i - (\sum_{i=1}^n \mathbf{x}_i)^2 \}$$

A *p*-value is the lowest level (of significance) at which the observed value of the test statistic is significant.

A **p-value less** than or equal to your significance level (typically ≤ 0.05) is **statistically significant**.

A p-value more than the significance level (typically p > 0.05) is **not statistically significant** and indicates strong evidence for the null hypothesis.

P-value method:

 \square Reject H_0 if the P-value $\le \alpha$ (where α is the significance level, such as 0.05). H_0 is called statistically significant.

 \Box Fail to reject H_0 if the P-value > α . H_0 is not statistically significant.

Interpretation of p-Values

- □ The plausibility of a null hypothesis is measured with a p-value, which is a probability that takes a value between 0 and 1.
- ☐ The *p*-value is sometimes referred to as the *observed level of significance*. A *p*-value is constructed from a **data set** as illustrated in the Figure on next slide.
- ☐ A useful way of interpreting a *p*-value is to consider it as the *plausibility* or credibility of the null hypothesis.
- ☐ The *p*-value is directly proportional to the plausibility of the null hypothesis, so that *the smaller the p-value, the less plausible is the null hypothesis*.

P-value construction

P-value interpretation

Rejection of the Null Hypothesis

A *p*-value smaller than 0.01 is generally taken to indicate that the null hypothesis H_0 is not a plausible statement. The null hypothesis H_0 can then be rejected in favor of the alternative hypothesis H_1 .

Acceptance of the Null Hypothesis

- \square A *p*-value larger than 0.10 is generally taken to indicate that the null hypothesis H_0 is a plausible statement. The null hypothesis H_0 is therefore accepted.
- \Box However, this does not mean that the null hypothesis H_0 has been proven to be true.
- ☐ The acceptance of a null hypothesis therefore indicates that the data set does not provide enough evidence to reject the null hypothesis, but it does not indicate that the null hypothesis has been proven to be true.

Intermediate p-Values

□ A *p*-value in the range 1%−10% is generally taken to indicate that the data analysis is **inconclusive**. There is some evidence that the null hypothesis is not **plausible** (or credible), but the evidence is not overwhelming.

Table A.3 Areas under the Normal Curve

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

 ${\bf Table}\ {\bf A.3}\ ({\bf continued})\ {\bf Areas}\ {\bf under}\ {\bf the}\ {\bf Normal}\ {\bf Curve}$

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

P-value calculation for a one-sided problem

 $H_0: \mu \ge \mu_0$ versus $H_A: \mu < \mu_0$

P-value calculation for a one-sided problem

P-value for two-sided t-test

Procedure for Finding P-Values

Testing a Proportion

- 1. H_0 : $p = p_0$.
- One of the alternatives H_1 : $p < p_0$, $p > p_0$, or $p \neq p_0$.
- 2. Choose a level of significance equal to α .
- 3. Test statistic: Binomial variable X with $p = p_0$.

$$Z_{cal} = \frac{x - np_0}{\sqrt{np_0q_0}}$$
 or $Z_{cal} = \frac{\hat{p} - p_0}{\sqrt{p_0q_0/n}}$

Where p_0 is the population proportion and \widehat{p} is the sample proportion

- 4. Computations: Find x, the number of successes, and compute the appropriate P-value.
- 5. Decision: Draw appropriate conclusions based on the *P*-value.

 Dr. Faisal Bukhari, PUCIT, PU, Lahore

EXAMPLE Finding *P*-Values First determine whether the given conditions result in a **right-tailed test**, a **left-tailed test**, or a **two-tailed test**, then use Figure 1 in the previous slide to find the *P*-value, then state a conclusion about the null hypothesis.

a. A significance level of $\alpha = 0.05$ is used in testing the claim that p > 0.25, and the sample data result in a test statistic of $z_{cal} = 1.18$.

b. A significance level of $\alpha = 0.05$ is used in testing the claim that $p \neq 0.25$ and the sample data result in a test statistic of $z_{cal} = 2.34$.

a. With a claim of p > 0.25, the test is right-tailed.

$$Z_{cal} = 1.18$$

$$P(Z_{cal} > 1.18) = 1 - P(Z_{cal} < 1.18)$$

= 1 - .8810
= 0.1190

P-value = 0.1190

P-value $\leq \alpha$ 0.1190 \leq 0.05 (false)

We fail to reject the null hypothesis.

☐ The P-value of 0.1190 is relatively large, indicating that the sample results could easily occur by chance.

b With a claim of the test is two-tailed. Using Figure 1 for a two tailed test, we see that the P-value is *twice* the area to the right of $z_{col} = 2.34$.

$$P(|Z_{cal}| > 2.34) = 1 - P(|Z_{cal}| < 2.34)$$
 $= 1 - 0.9904$
 $= 0.0096$

P-value = 2 × P(|Z_{cal}| > 2.34)

P-value = 2 × 0.0096
 $= 0.0192$

P-value $\leq \alpha$

We reject the null hypothesis.

 $0.0192 \leq 0.05$ (true)

☐ The small *P*-value of 0.0192 shows that the sample results are not likely to occur by chance.

z = -1.96

Single Sample: Tests Concerning a Single Mean

Example: A random sample of 100 recorded deaths in the United States during the past year showed an average life span of 71.8 years. Assuming a population standard deviation of 8.9 years, does this seem to indicate that the mean life span today is greater than 70 years? Use a 0.05 level of significance.

Solution:

```
n =100 (sample size)
```

$$\bar{x} = 71.8$$
 (sample mean)

$$\sigma$$
 = 8.9 (population standard deviation)

$$\alpha = 0.05$$
 (level of significance)

1. We state our hypothesis as:

 H_0 : $\mu = 70$ years

 H_1 : $\mu > 70$ years (one sided test)

2. The level of significance is set $\alpha = 0.05$.

3. Test statistic to be used is

$$Z_{cal} = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$

4. Calculations:

$$Z_{cal} = \frac{71.8 - 70}{8.9 / \sqrt{100}} = 2.02.$$

5. P-value

$$Z_{cal} = 2.02$$

$$P(Z_{cal} > 2.02) = 1 - P(Z_{cal} < 2.02)$$

= 1 - 0.9783
= 0.0217

P-value ≤ α

 $0.0217 \leq 0.05$ (true)

6. Conclusion: We reject H_o

Example: A manufacturer of sports equipment has developed a new synthetic fishing line that the company claims has a mean breaking strength of 8 kilograms with a standard deviation of 0.5 kilogram. Test the hypothesis that $\mu = 8$ kilograms against the alternative that $\mu \neq 8$ kilograms if a random sample of 50 lines is tested and found to have a mean breaking strength of 7.8 kilograms. Use a 0.01 level of significance.

Solution:

```
\mu = 8 (Population mean)
```

$$\sigma$$
 = 0.5 (Population standard deviation)

$$\bar{x} = 7.8$$
 (Sample mean)

$$\alpha = 0.01$$
 (Level of significance)

1. We state our hypothesis as:

$$H_0$$
: $\mu = 8$

$$H_1$$
: $\mu \neq 8$ (Two sided test)

- 2. The level of significance is set $\alpha = 0.01$.
- 3. Test statistic to be used is

$$Z_{cal} = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$

4. Calculations:

$$Z_{cal} = \frac{7.8 - 8}{0.5/\sqrt{50}} = -2.83.$$

$$Z_{tab} = 2.575$$

5. P-value $z_{cal} = 2.83.$ $P(|Z_{cal}| > 2.83) = 1 - P(|Z_{cal}| < 2.83)$ = 1 - 0.9977= 0.0023P-value = $2 \times P(|Z_{cal}| > 2.83)$ **P-value** = 2×0.0023 = 0.0046*P*-value $\leq \alpha$ P-Value=0.0046 $0.0046 \leq 0.05$ (true) 5

z=-2.575

z=2.575

6. Conclusion: We reject H_o

Example: The Edison Electric Institute has published figures on the number of kilowatt hours used annually by various home appliances. It is claimed that a vacuum cleaner uses an average of 46 kilowatt hours per year. If a random sample of 12 homes included in a planned study indicates that vacuum cleaners use an average of 42 kilowatt hours per year with a standard deviation of 11.9 kilowatt hours, does this suggest at the 0.05 level of significance that vacuum cleaners use, on average, less than 46 kilowatt hours annually? Assume the population of kilowatt hours to be normal.

Solution

 $\mu = 46$

n = 12

s = 11.9

 $\overline{x} = 42$

 $\alpha = 0.05$

(Population mean)

(Sample size)

(Sample standard deviation)

(Sample mean)

(Level of significance)

1. We state our hypothesis as:

$$H_0$$
: $\mu = 46$

$$H_1$$
: μ < 46 (One tailed test)

- 2. The level of significance is set $\alpha = 0.05$.
- 3. Test statistic to be used is

$$t_{cal} = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

4. Calculations:

$$t_{cal} = \frac{42 - 46}{11.9/\sqrt{12}} = -1.16$$

5. Critical region:

$$t_{cal} < t_{tab}$$

Where $-t_{tab} = -t_{(\alpha, n-1)} = -t_{(0.05, 11)} = -1.769$

6. Conclusion: Since calculated value of t_{cal} is greater than the tabulate value of t, so we accept H_O

P-value

```
n - 1 = 12 - 1 = 11
t_{cal} = -1.16
P(t_{col} < -1.16) = 0.15
                                  (Searching the t-table
corresponindg to 11 d.f and choosing the closest value of
\alpha corresponding to t_{cal} = 1.16 is 0.15)
p-value = 0.15
P-value \leq \alpha
0.15 \le 0.05 (false)
Conclusion:
so we accept H_0
```

Table A.4 Critical Values of the t-Distribution

Table A.	4 Critical	Values of th	ie t-Distri	bution
----------	------------	--------------	-------------	--------

	α									
v	0.40	0.30	0.20	0.15	0.10	0.05	0.025			
1	0.325	0.727	1.376	1.963	3.078	6.314	12,706			
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303			
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182			
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776			
5	0.267	0.559	0.920	1.156	1.476	2.015	2.57			
6	0.265	0.553	0.906	1.134	1.440	1.943	2.44			
7	0.263	0.549	0.896	1.119	1.415	1.895	2.36			
8	0.262	0.546	0.889	1.108	1.397	1.860	2.30			
9	0.261	0.543	0.883	1.100	1.383	1.833	2.263			
10	0.260	0.542	0.879	1.093	1.372	1.812	2.22			
11	0.260	0.540	0.876	1.088	1.363	1.796	2.20			
12	0.259	0.539	0.873	1.083	1.356	1.782	2.17			
13	0.259	0.538	0.870	1.079	1.350	1.771	2.160			
14	0.258	0.537	0.868	1.076	1.345	1.761	2.143			
15	0.258	0.536	0.866	1.074	1.341	1.753	2.13			
16	0.258	0.535	0.865	1.071	1.337	1.746	2.12			
17	0.257	0.534	0.863	1.069	1.333	1.740	2.11			
18	0.257	0.534	0.862	1.067	1.330	1.734	2.10			
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093			
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086			
21	0.257	0.532	0.859	1.063	1.323	1.721	2.08			
22	0.256	0.532	0.858	1.061	1.321	1.717	2.07			
23	0.256	0.532	0.858	1.060	1.319	1.714	2.06			
24	0.256	0.531	0.857	1.059	1.318	1.711	2.06			
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060			
26	0.256	0.531	0.856	1.058	1.315	1.706	2.05			
27	0.256	0.531	0.855	1.057	1.314	1.703	2.05			
28	0.256	0.530	0.855	1.056	1.313	1.701	2.04			
29	0.256	0.530	0.854	1.055	1.311	1.699	2.04			
30	0.256	0.530	0.854	1.055	1.310	1.697	2.043			
40	0.255	0.529	0.851	1.050	1.303	1.684	2.02			
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000			
20	0.254	0.526	0.845	1.041	1.289	1.658	1.980			
00	0.253	0.524	0.842	1.036	1.282	1.645	1.960			

Table A.4 (continued) Critical Values of the t-Distribution

	α										
20	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0008				
1	15.894	21.205	31.821	42.433	63.656	127.321	636.57				
2	4.849	5.643	6.965	8.073	9.925	14.089	31.60				
3	3.482	3.896	4.541	5.047	5.841	7.453	12.92				
4	2.999	3.298	3.747	4.088	4.604	5.598	8.61				
5	2.757	3.003	3.365	3,634	4.032	4.773	6.86				
6	2.612	2.829	3.143	3,372	3.707	4.317	5.95				
7	2.517	2.715	2.998	3, 203	3.499	4.029	5.40				
8	2.449	2.634	2.896	3.085	3.355	3.833	5.04				
9	2.398	2.574	2.821	2.998	3.250	3.690	4.78				
10	2.359	2.527	2.764	2.932	3.169	3.581	4.58				
11	2.328	2.491	2.718	2.879	3.106	3.497	4.43				
12	2.303	2.461	2.681	2.836	3.055	3.428	4.31				
13	2.282	2.436	2.650	2.801	3.012	3.372	4.22				
14	2.264	2.415	2.624	2.771	2.977	3.326	4.14				
15	2.249	2.397	2.602	2.746	2.947	3.286	4.07				
16	2.235	2.382	2.583	2.724	2.921	3.252	4.01				
17	2.224	2.368	2.567	2.706	2.898	3.222	3.96				
18	2.214	2.356	2.552	2.689	2.878	3.197	3.92				
19	2.205	2.348	2.539	2.674	2.861	3.174	3.88				
20	2.197	2.336	2.528	2.661	2.845	3.153	3.85				
21	2.189	2.328	2.518	2.649	2.831	3.135	3.81				
22	2.183	2.320	2.508	2.639	2.819	3.119	3.79				
23	2.177	2.313	2.500	2.629	2.807	3.104	3.76				
24	2.172	2.307	2.492	2.620	2.797	3.091	3.74				
25	2.167	2.301	2.485	2.612	2.787	3.078	3.72				
26	2.162	2.296	2.479	2.605	2.779	3.067	3.70				
27	2.158	2.291	2.473	2.598	2.771	3.057	3.68				
28	2.154	2.286	2.467	2.592	2.763	3.047	3.67				
29	2.150	2.282	2.462	2.586	2.756	3.038	3.66				
30	2.147	2.278	2.457	2.581	2.750	3.030	3.64				
40	2.123	2.250	2.423	2.542	2.704	2.971	3.55				
60	2.099	2.223	2.390	2.504	2.660	2.915	3.46				
120	2.076	2.196	2.358	2.468	2.617	2.860	3.37				
00	2.054	2.170	2.326	2.432	2.576	2.807	3.29				