

- Ensemble 기법: 여러 분류 모형의 결과를 결합하는 기법
- Random Forest: 앙상블 학습 방법의 일종으로, 훈련 과정에서 구성한 다수의 Decision Tree로부터 Voting을 통해 결과 예측
- Bagging: 주어진 데이터에서 랜덤하게 여러 개의 같은 크기의 부분집합을 생성
- Out of Bag과 Voting: Out of Bag(OOB)는 Bagging에서 제외되는 데이터들을 의미하며, Voting은 Random Forest내 여러 Decision Tree의 결과 중 다수의 결과를 선택하는 방법

Random Forest

- Breiman의 "bagging " 과 변수 랜덤 선택 아이디어 기반
- 처음에는 random decision forests로 시작하여 발전
- 데이터의 다양한 경우를 반영할 수 있도록 보완
- 다양한 경우에 대한 Decision Tree를 통해 성능과 안정성을 제고

Random forest (or random forests)

Ensemble classifier that consists of many decision trees and outputs the class that is the mod
e of the class's output by individual trees

Algorithm

- ① N: # of training cases / M: 분류기의 변수
- ② M개 중 m개의 변수가 Tree의 각 노드에서 분류 에 사용
- ③ N개의 training case 중에서 각 tree에 사용되는 n개의 case를 선택 (예: bootstrap sample). 선택되지 않은 Case는 error 추정에 사용
- ④ 각 tree의 각 노드에서, m개의 변수를 무작위 선택하여 분류에 사용. 이후 m개의 변수로 가장 분류를 잘하도록 계산
- ⑤ 각 Tree fully grown and not pruned

Random Forest

- 데이터의 다양한 경우를 반영할 수 있도록 보완
- 안정성을 제고

Random Forest

- 몇 개의 Decision Tree를 만들 것인지? 몇 개의 X변수를 Random하게 선택할 것인지?

- Adaboost는 Ensemble 기법의 Boosting을 DT에 적용
- Stump로 부터 학습을 시작
 - Stump: 단순한 형태의 Tree, Weak learner

- Forest of stumps를 활용
 - Random Forest: 모든 tree는 같은 weight을 갖음
 - Adaboost: Stump마다 중요도의 차이가 존재
- Random Forest에서는 Tree가 같은 중요도를 지님

• Adaboost에서의 stump의 중요도: Amount of say로 표현, 클 수록 결과에 큰 영향을 미침

- Forest of stumps
 - 첫 stump는 다음 stump에 영향, 순차적으로 다음 stump에 영향을 주는 방식

Example

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Υ	Y	205	Υ	1/8
N	Y	180	Υ	1/8
Υ	N	210	Υ	1/8
Υ	Y	167	Υ	1/8
N	Y	156	N	1/8
N	Y	125	N	1/8
Υ	N	168	N	1/8
Υ	Υ	172	N	1/8

Target

Sample Weight의 합은 1

• 각 변수별 Target과의 관계

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Υ	Υ	205	Υ	1/8
N	Υ	180	Υ	1/8
Υ	N	210	Υ	1/8
Υ	Υ	167	Υ	1/8
N	Υ	156	N	1/8
N	Υ	125	N	1/8
Υ	N	168	N	1/8
Υ	Υ	172	Ν	1/8

• 각 변수별 Target과의 관계

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Υ	Υ	205	Υ	1/8
N	Υ	180	Υ	1/8
Υ	N	210	Υ	1/8
Υ	Υ	167	Υ	1/8
N	Υ	156	N	1/8
N	Υ	125	N	1/8
Υ	N	168	N	1/8
Υ	Υ	172	N	1/8

• 각 변수별 Target과의 관계

- 1) Weight 오름차순
- 2) 인접 몸무게 평균
- 3) 각 평균으로 지니불순도
- 4) 가장 작은 지니불순도인 몸 무게 평균 176

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Υ	Υ	205	Υ	1/8
N	Υ	180	Υ	1/8
Υ	N	210	Υ	1/8
Υ	Υ	167	Υ	1/8
N	Υ	156	N	1/8
N	Υ	125	N	1/8
Υ	N	168	N	1/8
Υ	Υ	172	N	1/8

• 각 stump별 지니 계수

• 첫 stump의 Total Error

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Υ	Υ	205	Υ	1/8
N	Υ	180	Υ	1/8
Υ	N	210	Y	1/8
Υ	Υ	167	Υ	1/8
N	Y	156	N	1/8
N	Υ	125	N	1/8
Υ	N	168	N	1/8
Υ	Υ	172	N	1/8

• 첫 stump의 Total Error

Amount of Say =
$$\frac{1}{2}log(\frac{1-Total\ Error}{Total\ Error})$$

• AoS 계산 예: Chest Pain (실제 stump는 아님)

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Υ	Υ	205	Υ	1/8
N	Υ	180	Υ	1/8
Υ	N	210	Υ	1/8
Υ	Υ	167	Υ	1/8
N	Υ	156	N	1/8
N	Υ	125	N	1/8
Υ	N	168	N	1/8
Υ	Υ	172	Ν	1/8

• 두 번째 Stump 계산

- 첫 Stump가 잘못 분류한 Sample의 Weight를 높여줌
 - 이후 원래 데이터에서 샘플링을 통해 새롭게 데이터 구성
 - Weight를 활용한 샘플링
- 첫 Stump에서 오분류된 Sample이 높은 Weight으로 더 많이 Sampling됨
 - 다음 Stump에서 이전 단계에 오분류된 Obs.에 집중

New Sample Weight = Sample Weight
$$\times$$
 $e^{amount\ of\ say}$
AoS가 크면 Weight도 증가

• 첫 stump에서의 4번째 행

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Υ	Υ	205	Υ	1/8
N	Υ	180	Υ	1/8
Y	N	210	Υ	1/8
Υ	Υ	167	Υ	1/8
N	Y	156	N	1/8
N	Υ	125	N	1/8
Υ	N	168	N	1/8
Υ	Υ	172	N	1/8

New Sample Weight =
$$\frac{1}{8} \times e^{0.97} = 0.125 \times 2.64 = 0.33$$

• 두 번째 Stump 계산

- 첫 Stump에서 정분류된 Sample은 낮은 Weight으로 덜 Sampling
 - 다음 Stump에서 이전 단계에 정분류된 Obs.는 덜 고려함

New Sample Weight = Sample Weight
$$\times e^{-amount \ of \ say}$$

AoS가 크면 Weight는 감소

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Υ	Υ	205	Υ	1/8
N	Υ	180	Υ	1/8
Y	N	210	Υ	1/8
Υ	Υ	167	Υ	1/8
N	Y	156	N	1/8
N	Υ	125	N	1/8
Υ	N	168	N	1/8
Υ	Υ	172	N	1/8

New Sample Weight =
$$\frac{1}{8} \times e^{-0.97} = 0.125 \times 0.38 = 0.05$$

· <u>Weight의 합이 1이 되도록 정규화</u>

• 두 번째 Stump를 위한 Sampling

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight	New Weight	Sampling 을 위한 값
Υ	Υ	205	Υ	1/8	0.07	0~0.07
N	Υ	180	Υ	1/8	0.07	0.07~0.14
Y	N	210	Y	1/8	0.07	0.14~0.21
Υ	Υ	167	Υ	1/8	0.49	0.21~0.7
N	Y	156	N	1/8	0.07	0.7~0.77
Ν	Υ	125	N	1/8	0.07	0.77~0.84
Υ	N	168	N	1/8	0.07	0.84~0.91
Υ	Υ	172	N	1/8	0.07	0.91~1

- 0~1사이 난수 생성
- 해당 난수 값이 속하는 행을 선택
- 중복해서 선택 가능
- Weight가 높은 행이 Sampling될 확률이 높음

• 다음 Stump를 위한 Sampling 및 학습 반복

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight	New Weight	Sampling 을 위한 값				
Υ	Y	205 \	Υ	1/8	0.07	0~0.07				
N	Υ	180	Υ	1/8	0.07	0.07~0.14		_		베 기즈+I ★기칭
Υ	N	210	Y	1/8	0.07	0.14~0.21		• [r음 계산을 취약	배 가중치 초기화
Υ	Υ	167	Y	1/8	0.49	0.21~0.7				()
N	Υ	156	N	1/8	0.07	0.7~0.77				100
N Y	Y	125	M	1/8	Ch	est Pain	Blocked	Patient	Heart	Sample
Y	N Y	168 172	N	1/8 1/8			Arteries	Weight	Disease	Weight
			1			N	Υ	156	N	1/8
						Υ	Υ	167	Υ	1/8
			`			N	Υ	125	N	1/8
						Υ	Υ	167	Υ	1/8
						Υ	Y	167	Υ	1/8
						Υ	Y	172	N	1/8
					1	Υ	Υ	205	Υ	1/8
						Υ	Υ	167	Υ	1/8

• Adaboost의 예측 방식

• 주어진 X값에 대해 Forest of Stump 내의 Stump에 적용

• Adaboost의 예측 방식

• 주어진 X값에 대해 Forest of Stump 내의 Stump에 적용

Adaboost VS Gradient Boost

• Adaboost: 여러 Stump의 순차적 계산

• GB: leaf로 부터 시작

• Leaf: Target에 대한 초기 추정값(예: 평균, log(odds ratio) 등)

• Stump가 아닌 Tree를 생성: 각 tree는 leaf가 8~32개 크기 수준으로 생성

X1	X2	Х3	Target
Υ	12	Blue	0
Υ	87	Green	0
N	44	Blue	X
Υ	19	Red	X
N	32	Green	0
N	14	Blue	0

- Gradient Boost for Classification, Step 1
 - Leaf의 계산
 - X 범주 2개 대비 O범주는 4개, Odds = 4/2, leaf는 log(odds) = 0.7

X1	X2	X3	Target
Υ	12	Blue	0
Υ	87	Green	0
N	44	Blue	X
Υ	19	Red	X
N	32	Green	0
N	14	Blue	0

- Gradient Boost for Classification, Step 1
 - Leaf의 계산: X 범주 2개 대비 O범주는 4개, Odds = 4/2, leaf는 log(odds) = 0.7
 - Leaf를 통한 O 범주의 확률?
 - Exponential(log(odds)) / (1+exponential(log(odds))) = 0.7
 - 이 값이 기준인 0.5와 비교하여 O, X 분류
 - Residual을 계산: 예를 들어 O는 확률 1이고, leaf 는 0.7이어서 Residual은 0.3

같은 X변수들로 Residual에 대한 Tree

범주 O	의 Prob.
1	0000
0.5 -	
0	ХX

i X1	X2	Х3	Target	Residual
Υ	12	Blue	0	0.3
ΙΥ	87	Green	0	0.3
N	44	Blue	Х	-0.7
ΙΥ	19	Red	Х	-0.7
N	32	Green	0	0.3
N	14	Blue	0	0.3
L				

- Gradient Boost, Step 1
 - 1st Tree
 - leaf의 수를 8~32로 제한하며 그 범위내에서 tree 생성

- Gradient Boost, Step 1
 - 1st Tree

 $\frac{\sum Residuals}{\sum (\textit{Previous Prob} \times (1 - \textit{Previous Prob}))}$

- Gradient Boost, Step 2
 - Leaf 의 initial prediction에 tree에 학습율 반영하여 계산
 - Leaf + 1st Tree

Gradient Boost for Classification, Step 3

- 각 범주에 대한 발생 확률 계산
 - 1st Obs의 업데이트된 log(odds)는 1.8
 - Leaf 0.7 + 1.4(from tree) X 0.8 = 1.8
 - 1st Obs의 확률: $\frac{e^{1.8}}{1+e^{1.8}}$

X1	X2	Х3	Target	Residual	Prob
Y	12	Blue	0	0.3	0.9
Υ	87	Green	0	0.3	0.5
N	44	Blue	X	-0.7	0.5
Y	19	Red	X	-0.7	0.1
N	32	Green	0	0.3	0.9
N	14	Blue	0	0.3	0.9

- Gradient Boost for Classification, Step 3
 - Residual 다시 계산, 다음 tree 생성

			7		İ	
X1	X2	Х3	Target	Residual	Prob.	New Residual
Y	12	Blue	0	0.3	0.9	1-0.9
Υ	87	Green	0	0.3	0.5	1-0.5
N	44	Blue	Х	-0.7	0.5	0-0.5
Υ	19	Red	Х	-0.7	0.1	0-0.1
N	32	Green	0	0.3	0.9	1-0.9
N	14	Blue	0	0.3	0.9	1-0.9

• Gradient Boost, Step 3

• Learning Rate: 0~1사이, 이 예에서는 0.1 사용

Gradient Boost for Regression

- GB: leaf로 부터 시작
 - Leaf: Target에 대한 초기 추정값(예: 평균, log(odds ratio) 등)
 - Stump가 아닌 Tree를 생성: 각 tree는 leaf가 8~32개 크기 수준으로 생성

Target

Height	Color	Gender	Weight
1.6	В	M	88
1.6	G	F	76
1.5	В	F	56
1.8	R	M	73
1.5	G	M	77
1.4	В	F	57

Gradient Boost, Step 1

- Leaf의 계산
- Target인 Weight의 평균: 71.2
- Residual을 계산: 실제값과 예측값의 차이(error)

같은 X변수들로 Residual에 대한 Tree

Height	Color	Gender	Weight	Residual
1.6	В	М	88	16.8
1.6	G	F	76	4.8
1.5	В	F	56	-15.2
1.8	R	М	73	1.8
1.5	G	М	77	5.8
1.4	В	F	57	-14.2
			I	
			L.	

- Gradient Boost, Step 1
 - Leaf + 1st Tree

- Male, Blue인 경우 예측 예시:
 - 71.2 + 16.8 = 88 (관측치와 동일하지만 과적합)
 - Bias는 작지만 Variance 큰 상태

Gradient Boost, Step 2

- 과적합 방지, 학습속도 조절을 위한 학습율 도입
- Learning Rate: 0~1사이, 이 예에서는 0.1 사용

- Male, Blue인 경우 예측 예시: 71.2 + 0.1 X 16.8 = 72.9
 - 실제값에 가까워지지만, 그 정도가 조절됨 (Gradient의 개념)
 - Variance를 낮게 유지할 수 있음

Gradient Boost, Step 3

• Learning Rate: 0~1사이, 이 예에서는 0.1 사용

• H=1.6, Male, Blue인 경우 예측 예시: 71.2 + 0.1 X 16.8 + 0.1 X 15.1 = 74.4

Gradient Boost, Step 3

• 학습율 반영 예측값을 통한 두 번째 Residual 계산

같은 X변수들로 New Residual에 대한 Tree

		i i			ī
Height	Color	Gender	Weight	Residual	Residual(new)
1.6	В	M	88	16.8	15.1
1.6	G	F	76	4.8	4.3
1.5	В	F	56	-15.2	-13.7
1.8	R	М	73	1.8	1.4
1.5	G	М	77	5.8	5.4
1.4	В	F	57	-14.2	-12.7

Residual 크기 감소

Gradient Boost

- 위의 과정을 계속 반복
 - 정해진 iteration한도 까지 반복
 - 또는 이전 단계와 이후 단계의 Residual 차이가 없을 때까지 반복
- 매 iteration에서의 Tree의 leaf는 8~32개 사이에서 생성
- 매 iteration마다 다르게 생성
 - 1st tree: leaf 8개
 - 2nd tree: leaf 327H
 - 3rd tree: leaf 16개
 - ...

