# Sprint 2 - Accuracy Design Document November 20, 2023

# **Table of Contents**

| 1. EX | KECUTIVE SUMMARY                              | 3                     |
|-------|-----------------------------------------------|-----------------------|
| 1.1   | Project Overview                              | 3                     |
| 1.2   | Purpose and Scope of this Specification       | 3                     |
| 2. PR | RODUCT/SERVICE DESCRIPTION                    | 3                     |
| 2.1   | Product Context                               | 3                     |
| 2.2   | User Characteristics                          | 3                     |
| 2.3   | Assumptions                                   | 3                     |
| 2.4   | Constraints                                   | 3                     |
| 2.5   | Dependencies                                  | 4                     |
| 3. RE | EQUIREMENTS                                   | 4                     |
| 3.1   | Functional Requirements                       | 5                     |
| 3.2   | Security                                      | 5                     |
| 3.2   | 2.1 Protection                                | 5                     |
| 3.2   | 2.2 Authorization and Authentication          | 6                     |
| 3.3   | Portability                                   | 6                     |
| 4. RE | EQUIREMENTS CONFIRMATION/STAKEHOLDER SIGN-OFF | 6                     |
| 5. SY | STEM DESIGN                                   | 3 3 3 3 3 4 4 5 5 6 6 |
| 5.1   | Algorithm                                     | 6                     |
| 5.2   | System Flow                                   | 6                     |
| 5.3   | Software                                      | 6                     |
| 5.4   | Hardware                                      | 6                     |
| 5.5   | Test Plan                                     | 7                     |
| 5.6   | Task List/Gantt Chart                         | 7                     |
| 5.7   | STAFFING PLAN                                 | 7                     |

# 1. Executive Summary

#### 1.1 Project Overview

This project's goal is to make a Bluetooth Sphero robot move in a figure eight.

#### 1.2 Purpose and Scope of this Specification

#### In scope

- Modification of robot programming
- Measurement of tape on room floor
- Frequent communication via text, virtual, or in person

#### **Out of Scope**

- Managing requirements and time
- Fixing colors and distance

# 2. Product/Service Description

#### 2.1 Product Context

This robot functions similarly to other programs. It's like a normal computer program, it requires a set of instructions to perform a task. When the robot is hooked up to someone's computer, they can use the blocks to code the robot to move in a certain direction. When the code is provided to speak, the voice will come out of the computer rather than the robot.

#### 2.2 User Characteristics

The professor has worked with the robots before. He is proficient in how they work since he's used them before. For us, we only had one previous experience with the robots prior to receiving instructions.

#### 2.3 Assumptions

The room might not be available to us, so we might not get accurate measurements for how far the robot should move. A Mac computer is also required for the sensor data diagram. There will also be lots of trial and error since we don't have lots of experience with the Sphero robots and this kind of technology. Also, we might have trouble connecting the Bluetooth to enable the Sphero robots.

#### 2.4 Constraints

- Windows computers won't work
- One audit trail (test table) and don't know all of computer's functions
- Classes and other activities take up access time, need to manage time
- Don't know how to do professional computer evaluation, only evaluate at a normal level
- Possible limits of storage space
- Computer lag is predictable

#### 2.5 Dependencies

- This product requires a computer to function
- The first distance must be measured correctly before the other distances are embedded in

# 3. Requirements

### 3.1 Functional Requirements

| Req#     | Requirement                                     | Comments                                     | Priority | Date<br>Rvwd | SME Reviewed<br>/ Approved |
|----------|-------------------------------------------------|----------------------------------------------|----------|--------------|----------------------------|
| ENDUR_01 | Move around top circle                          | start in middle then start<br>moving to left | 1        | 11/9         | Approved                   |
| ENDUR_02 | Move around bottom circle in opposite direction | start in middle then start<br>moving to left | 1        | 11/9         | Approved                   |
| ENDUR_03 | Move around top circle                          | REPEATS 5 TIMES                              | 1        | 11/9         | Approved                   |
| ENDUR_04 | Move around bottom circle in opposite direction |                                              | 1        | 11/9         | Approved                   |
| ENDUR_05 | Move around top circle                          |                                              | 1        | 11/9         | Approved                   |
| ENDUR_06 | Move around bottom circle in opposite direction |                                              | 1        | 11/9         | Approved                   |
| ENDUR_07 | Move around top circle                          |                                              | 1        | 11/9         | Approved                   |
| ENDUR_08 | Move around bottom circle in opposite direction |                                              | 1        | 11/9         | Approved                   |
| ENDUR_09 | Move around top circle                          |                                              | 1        | 11/9         | Approved                   |
| ENDUR_10 | Move around bottom circle in opposite direction |                                              | 1        | 11/9         | Approved                   |
| ENDUR_11 | Say "I am the winner"                           |                                              | 1        | 11/9         | Approved                   |
| ENDUR_XX | Flash multicolored lights for 5 seconds         |                                              | 1        | 11/9         | Approved                   |

#### 3.2 Security

#### 3.2.1 Protection

- Security and privacy on computer protects data from being stolen
- Activity logging helps keep track of what we've done up to that point
- Robot isn't always with computer, restricting intermodule communication
- Data integrity checks when necessary

#### 3.2.2 Authorization and Authentication

For authorization, Sphero has a privacy policy verifying that the users know how to use the product safety and effectively. For authentication, the computers and logging in to the coding software require usernames and passwords to enter, validating user's identities.

### 3.3 Portability

- The robot must be connected to the computer the code is being made on;
- A Mac is required for the sensor data diagram

# 4. Requirements Confirmation/Stakeholder sign-off

| <b>Meeting Date</b> | Attendees (name and role) | Comments              |
|---------------------|---------------------------|-----------------------|
| 11/9/23             | Andrew                    | Requirements Approved |

# 5. System Design

### 5.1 Algorithm

#### On start

- 1. Set light to cyan.
- 2. Roll 360° for 6 seconds at a speed of 101.
- Stop.
- 4. Roll -360° for 6 seconds at a speed of 101.
- 5. Stop.
- 6. Repeat Steps 1 through 5 for 5 repetitions.
- 7. Have the robot say "I am the winner!"
- 8. Strobe a red light for  $\frac{5}{8}$  second.
- 9. Strobe a orange light for 5/8 second.
- 10. Strobe a yellow light for 5/8 second.
- 11. Strobe a green light for 5/8 second.
- 12. Strobe a cyan light for  $\frac{5}{8}$  second.
- 13. Strobe a blue light for  $\frac{5}{8}$  second.
- 14. Strobe a purple light for \( \frac{5}{8} \) second.
- 15. Strobe a magenta light for 5/8 second.

### 5.2 System Flow



### 5.3 Software





### 5.4 Hardware

An Apple Macbook Air was used to code this robot.

### 5.5 Test Plan

| Reason for Test<br>Case                 | Test<br>Date | Expected Output    | Observed Output                                                                                                                                                                                                              | Staff Name      | Pass/Fail                                                                    |
|-----------------------------------------|--------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------|
| travel in circle                        | 11/10        | robot follow tape  | robot went in circular path<br>that was too short because it<br>wasn't aimed correctly                                                                                                                                       | Alex            | Fail                                                                         |
| travel in figure 8                      | 11/10        | robot follow tape  | robot's path was in front of<br>top tape and below bottom<br>tape for first circle                                                                                                                                           | Alex            | Fail                                                                         |
| travel in figure 8                      | 11/14        | robot follow tape  | robot stayed mostly on the course                                                                                                                                                                                            | Alex            | Mostly Pass                                                                  |
| travel in figure 8 for<br>5 repetitions | 11/14        | robot follow stape | robot mostly stayed on the tape, but didn't stop for long in between each circle                                                                                                                                             | Alex            | Mostly Pass                                                                  |
| travel in figure 8 for 5 repetitions    | 11/15        | robot follow tape  | circles were too small                                                                                                                                                                                                       | Alex,<br>Andrew | Fail                                                                         |
| u »                                     | 11/15        | robot follow tape  | circles were too small                                                                                                                                                                                                       | Alex,<br>Andrew | Fail                                                                         |
| и п                                     | 11/15        | robot follow tape  | robot stayed on for most of<br>the course, but then went too<br>far                                                                                                                                                          | Alex,<br>Andrew | Mostly Fail                                                                  |
| u n                                     | 11/17        | robot follow tape  | robot was pretty much spot on for the first 2 repetitions and then slowly kept getting more off the course for the following 3 repetitions because the robot stopped too far forward on the circumference on the left circle | Alex            | *I'm going to say it stayed enough on the track to be considered acceptable. |

## 5.6 Task List/Gantt Chart

https://docs.google.com/spreadsheets/d/1CpcHduDbsUqz6zqID1UW-WlLSvsmqLS1/edit#gid=1507529980

# 5.7 Staffing Plan

| Name     | Role                   | Responsibility                                                                                                     | Reports To       |
|----------|------------------------|--------------------------------------------------------------------------------------------------------------------|------------------|
| Alex     | group manager          | SDD, gantt chart developer, code writing and testing, uploading to Github repository                               | Professor Eckert |
| Andrew   | group technical writer | SDD, Gantt chart, build requirements<br>and signoff table, algorithm, make<br>outline for block code, code testing | Professor Eckert |
| Kiumbura | group planner          | SDD, flowchart                                                                                                     | Professor Eckert |