Hewlett PackardEnterprise

いまさら聞けない Wi-Fi 6

日本ヒューレットパッカード株式会社 Aruba事業統括本部 池田 豊

アジェンダ

•Wi-Fi6技術の構成要素

-Wi-Fi6ユースケース(デモ動画)

-Wi-Fi6と5Gの違い

・まとめ

802.11 の進化

2009年

802.11n (Wi-Fi4)

802.11ac (Wi-Fi5)

2019年

802.11ax (Wi-Fi6)

- ✓ MIMO (最大 4 ストリーム)
- ✓ チャネルボンディング
- ✓ フレームアグリゲーション

- ✓ 8 ストリーム MIMO
- ✓ マルチューザー MIMO (DL)
- ✓ 80MHz, 160MHz
- ✓ 256 QAM

- ✓ OFDMA
- ✓ UL マルチユーザ送信
- ✓ 1024 QAM

High Throughput

Very High Throughput

High Efficiency

802.11ax(Wi-Fi6) の特徴

- 802.11n/ac では「比較的クリーンな環境におけるピークデータレートの向上」に主眼が置かれていた
- Wi-Fi 機器が広く普及したことにより、混雑時に期待通りのスループットが得られないケースが増加
- 802.11ax では方向転換し、「<mark>混雑した環境</mark>での<mark>平均スループット</mark>(ピークレートではなく、安定して通信できる スループット)の向上」をタスクグループ設立時にゴールとして定義

The 802.11ax shall provide at least one mode of operation capable of achieving at least four times improvement in the average throughput per station in a dense deployment scenario, while maintaining or improving the power efficiency per station.

- IoT 機器で必要とされる以下のような要件もサポート
 - 低データレート、省電力、長距離通信

802.11進化のイメージ

11ax(Wi-Fi6) 新機能

目的	技術要素
ピークレートの向上	より狭い OFDM サブキャリア間隔による、効率的な周波数利用 (+12.5%[20MHz])
	より高度な変調方式: 1024 QAM (+25%)
混雑時の効率向上	MU-MIMO 端末数増加 : 4 → 8
	アップリンク MU-MIMO
	OFDMA による同時アクセス (UL/DL)
	BSS Color を使用した Spatial Re-use
省電力	Target Wake Time
	20MHz のみサポート端末の許容
通信距離の延長	より長いガードインターバル (11ac最大0.8µs → 11ax最大3.2µs)
	Extended Range フレーム形式
	Dual Carrier Modulation

物理レイヤー比較

	802.11ac (Wi-Fi5)	802.11ax (Wi-Fi6)	
周波数帯	5GHz	2.4GHz ≥ 5GHz	
チャネル幅	20~160MHz	同じ	
OFDM サブキャリア間隔/数	312.5kHz (64波/20MHz)	78.125kHz (256波/20MHz)	
データ用サブキャリア (20MHz/40MHz/80MHz)	52 / 108 / 234	234 / 468 / 980	
OFDM シンボル周期	3.2µs	12.8µs	
ガードインターバル	0.4µs / 0.8µs	0.8µs / 1.6µs / 3.2µs	
最高変調方式	256 QAM	1024 QAM	
マルチユーザ伝送	DL MU-MIMO	DL/UL MU-MIMO, DL/UL OFDMA	
MU-MIMO 最大端末数	4	8	
最大PHYレート	433 Mbps (80MHzチャネル, 1ss) 6933 Mbps (160MHzチャネル, 8ss)	600 Mbps (80MHzチャネル, 1ss) 9608 Mbps (160MHzチャネル, 8ss)	

サブキャリア

Hewlett Packard Enterprise

- サブキャリア周波数間隔を4分の1に縮小し、サブキャリア数を4倍に
 - シンボル周期は4倍に延長(3.2µsec → 12.8µsec)
 - ガードインターバル(遅延波によるシンボル間の干渉を防ぐためのしくみ) 0.4µsec → 0.8µsec

- ✓ より効率的に周波数を利用
 - ▶ 20MHz チャネルではデータ伝送に使用できる周波数帯域 +12.5%
- ✓ OFDMA によるきめ細かいサブチャネル(RU)割り当てが可能
- ✓ ガードインターバルのオーバーヘッド減(約11%→6%)

OFDMA

- チャネルをさらに周波数方向に分割した「RU (Resource Unit)」を各端末に割り当てる
- RU 同士は干渉しないので同時通信が可能
- 4G(LTE) で採用されている技術を流用
- 使用するチャネル幅は小さくなるため、1端末が使用する PHY レートは落ちる

OFDMA RU (サブチャネル) の割り当て

- 20MHz チャネルは最大 9 つ、80MHz チャネルは最大 37 の RU (サブチャネル) に分割可能
- 異なるサブチャネル幅を混在させることが可能

RU	RU26	RU52	RU106	RU242	RU484	RU996
サブキャリア数	26	52	106	242	484	996
周波数幅	2MHz	4.1MHz	8.3MHz	18.9MHz	37.8MHz	77.8MHz
パイロット信号	2	4	4	8	16	16
データ用サブキャリア数	24	48	102	234	468	980
最大PHYレート (1SS)	11.8Mbps	23.5Mbps	50.0Mbps	143.4Mbps	286.8Mbps	600.5Mbps

1024 QAM

- OFDM 1 シンボルあたり 10 ビット伝送
 - 256 QAM に比ベビットレートが 25%向上
- 256 QAM よりさらに 6dB 高い SNR が必要
 - AP との距離が非常に近い端末においてのみ、1024 QAM の恩恵が見込める

MCS	変調方式	コーディング比
0	BPSK	1/2
1	QPSK	1/2
2	QPSK	3/4
3	16 QAM	1/2
4	16 QAM	3/4
5	64 QAM	2/3
6	64 QAM	3/4
7	64 QAM	5/6
8	256 QAM	3/4
9	256 QAM	5/6
10	1024 QAM	3/4
11	1024 QAM	5/6

Hewlett Packard Enterprise

アップリンクマルチューザ伝送

- ダウンリンク (AP \rightarrow 端末) 方向の通信に加え、アップリンク方向もマルチューザ同時送信が可能に
 - マルチアクセス方式として MU-MIMO または OFDMA を利用
- AP がスケジューリングを実施し、必ず AP が送信するトリガフレームをきっかけに送信開始しなければならない
 - スケジューリング・・・どの端末が、どれぐらいの長さのフレームを、どのサブチャネルを使って送信するかを AP が決定
- トリガフレームには端末のパケット送信方法を細かく指定されている
 - マルチユーザフレーム送信時間、サブチャネル、MCS、ストリーム数、RSSI(APにおける受信信号強度)

スケジューラ

Hewlett Packard

Enterprise

- アップリンクマルチユーザ通信は、AP によってスケジューリングされる
 - どの端末をマルチユーザ送信グループに割り当てるか
 - マルチユーザ送信する端末にどれぐらいのリソースを割り当てるか
- AP は常に端末のトラフィック量やキューサイズを監視し、最適なスケジューリングを行う必要がある
- 端末の状態を通知するためのサブフィールドを規定
 - Queue Size サブフィールド・・・ 端末の送信バッファサイズ(=送信待ちとなっているバイト数)を AP に通知
 - Bandwidth Query Report サブフィールド・・・ 端末側で使用したい 20MHz サブチャネルを AP に通知 (36~48 の 80MHz のうち、端末から見て 40 と 48 がクリーンな場合、それを AP に通知できる)

ダウンリンクマルチューザ通信のパフォーマンスも改善

- 11ac(Wi-Fi5) ではダウンリンクの MU-MIMO をサポートしていたが、Ack は個別に送信される
- 11ax(Wi-Fi6) では Ack も同時に送信できる

BSS Coloring & Spatial re-use

- 6 ビットの BSS カラー値 (1~63)
 - ビーコンの HE Operation element で通知
 - パケットのプリアンブル(HE-SIG-A)で通知 → MAC ヘッダ(BSSID) を受信する前に識別可能
- BSSカラーはランダムに割り当てるが以下の理由で変更する
 - コンフィグ変更
 - コリジョンの検知時
- フレームにつけられたカラーによって、Power Detection 閾値を使い分ける
 - 閾値は -82dBm~-62dBm の間を送信出力によって変化させる
 - 送信出力が大きい場合は、より小さな閾値を使用
 - カラーが異なる → Overlapping BSS(OBSS)とみなし、閾値を上げる(=弱い電波は無視する)

BSS Coloring 概念図

Target Wake Time

- 802.11ah で提案されたパワーセーブの新しい方式を流用
- めったにデータを送受信しないような 特殊なIoT デバイスを想定
 - TWT によるスリープ中の端末は DTIM ビーコンを受信する必要がない
- Wake-up する周期と長さを端末とAPでネゴシエーション
- AP 主導で Wake-up タイミングを決めるため、端末ごとにタイミングを分散させることができ、衝突を回避
- マルチユーザー送受信にも対応 (複数端末を同時に wake-up させ、同時にパケットを配送)

長距離通信

- 最長ガードインターバル 0.8µsec → 3.2µsec
 - 長距離伝送時の遅延波の影響を抑える
- Extended Range フレーム形式
 - プリアンブルのフィールドを繰り返すことで、エラー耐性を上げる
- Dual Sub-Carrier Modulation
 - サブキャリアをコピーし、同じものを2つ送信
 - 低 MCS のみ使用可能 (MCS0~4)
 - 周波数効率は半分になるが、エラーレートが改善し、距離が延長

Wi-Fi6 端末40台 動画再生検証 (Wi-Fi6 AP使用: Aruba AP-515)

Wi-Fi6 端末40台 動画再生検証 (11ac AP使用: 企業向け他社製品)

Wi-Fi6 と 3GPP(5G)技術の比較

Wi-Fi は インドアの高密度環境に強く より低遅延

5G は カバーエリアの広さと 高速移動でのローミングに強い

Source: ITU-R, "IMT Vision – Framework and Overall Objectives for the Future Development of IMT for 2020 and Beyond," Sept 2015.

Source: WBA, "5G Networks: The Role of Wi-Fi and Unlicensed Technologies," Sept 2017

5GとWi-Fi6のユースケースは異なるが、融合した活用が可能

5Gでは、屋外における高速化&低遅延など、 従来よりも高いモビリティ性を実現。 Wi-Fi (Wi-Fi6) は、屋内 (企業内) における高密度環境下での速度低下や遅延が改善。長期の下位互換性で、使いやすさ向上 + 安価!

まとめ

- •Wi-Fi6は従来型の進化(ピークレートの向上)ではなく、 実環境に近い用途を想定したHigh Efficiencyな進化!
- ●5G(ローカル5Gも)とWi-Fi6はお互いの強みを生かして共生します!
- •Wi-Fiのエンジニアもっと増やしたい!

Thank you