解题报告

周任飞

October 24, 2019

1 Logistical Questions

1.1 题目大意

给定一棵树,边有长度 l_i ,点有权值 w_i 。定义 $\mathrm{dist}(i,j)$ 表示点 i 到点 j 的距离,定义 $\mathrm{cost}(i,j) = \mathrm{dist}(i,j)^{3/2}$ 。你要选择一个顶点 u 举办比赛,最小化 $\sum_{i=1}^{n} w_i \, \mathrm{cost}(i,u)$ (称为"费用")。

1.2 数据范围

 $1 \le n \le 2 \times 10^5$, $0 \le w_i \le 10^8$, $1 \le l_i \le 1000$ 。 你的答案与参考答案的相对或绝对误差不能超过 10^{-6} 。

1.3 解题过程

如果 $\forall i \in [1,n] \quad w_i = 0$,那么选择任意一个顶点,费用为 0。下面假设至少有一个 $w_i \geq 1$ 。

暂时假设我们不仅可以选择顶点,还可以选择边上任意的一点。具体来说,如果有一条边连接 A,B 且长度为 l,则对于所有正实数 d_1,d_2 满足 $d_1+d_2=l$,我们可以选择虚拟的点 C 使得 $\mathrm{dist}(A,C)=d_1$ 且 $\mathrm{dist}(B,C)=d_2$ 。下面将虚拟点和原图的顶点统称为 "广义点",并定义 P(A,B,x) 表示这样一个广义点,它在从 A 到 B 的简单路径上,且与 A 的距离是 x。按照这种方法,上面所说的点 C 可以表示为 $P(A,B,d_1)$ 。

设 f 是定义在广义点上的函数,表示选择这个广义点的费用。定义一条路径 $A \sim B$ 上的 f 为一个关于 x 的函数 h(x),其定义域是 $x \in [0, \operatorname{dist}(A, B)]$;其 值 h(x) = f(P(A, B, x))。

我们列举如下结论:

(a) 设 A 和 B 是两个顶点,则 $A \sim B$ 上的 f 在其定义域内是严格凹函数。

(b) 不存在两个广义点 $A \neq B$,使它们都是 f 的极小点。其中 A 是 f 的极小点是指

 $\exists \varepsilon > 0 \quad \forall B \quad (\operatorname{dist}(A, B) < \varepsilon) \to (f(B) \ge f(A)).$

(c) f 的最小点存在且唯一。

下面设 f 的最小点是 R。以 R 为根定义广义点之间的祖先后代关系,即 A 是 B 的祖先当且仅当 $\operatorname{dist}(R,A) + \operatorname{dist}(A,B) = \operatorname{dist}(R,B)$,这等价于 A 在简单路径 $R \hookrightarrow B$ 上。

- (d) 如果 $A \neq B$ 的祖先且 $A \neq B$, 那么 f(A) < f(B)。
- (e) 设 (A, B) 是树边。则 h(x) = f(P(A, B, x)) 在 x = 0 处有右导数。下面将它记作 g(A, B),称作 $A \to B$ 的梯度。
- (f) 设 A 是一个顶点, 其邻居为 B_1, B_2, \ldots, B_k 。可以在 O(n) 的时间复杂度内,对于每一个 i 求出 $A \to B_i$ 的梯度。
- (g) 如果 (A, B) 是树边且 A 是 B 祖先,那么 g(B, A) < 0。

证明见附录。

定理 1: 设 A 是一个顶点,它的邻居是 B_1, B_2, \ldots, B_k 。则:

- (1) 如果 $\forall i \in [1,k]$ $g(A,B_i) \geq 0$, 那么 $A \in f$ 的最小点。
- (2) 如果对于恰好一个 i 有 $g(A,B_i)<0$,那么删去顶点 A 后 B_i 和 R 属于同一个连通块。

请注意,删去顶点 A 并不会删除和 A 相邻的边,这将导致边 (A, B_i) 存在但是其一个端点 A 已经被删除(也可能两个端点都已被删除)。

(3) 不可能存在两个 i 满足 $g(A, B_i) < 0$ 。

证明见附录。

设 A 是树的重心。如果定理 1 的情况 (1) 成立,那么我们就直接得到了答案;如果情况 (2) 成立,那么我们可以删去点 A,接着删去不包含 R 的那些连通块。对于剩余的连通块找出所有顶点的重心 A',这一步将不考虑只有一个端点的边造成的影响。对于 A' 进行上述过程……如此一直重复下去,直到某一轮中情况 (1) 成立,或者没有任何剩余顶点。在后一种情况中,一条边将被留下来,而它的两个端点都已经被删除,此时可以断言 R 在这条边上。

因为每一轮过后剩余顶点数都变成原来的至多一半,所以 $\lceil \log_2 n \rceil + 1$ 轮之后这个过程就将结束。再结合结论 (f),我们可以在 $O(n \log n)$ 的时间复杂度内求出 R(如果它恰好是一个顶点)或者求出包含 R 的边。

现在让注意力回到原问题上。如果 R 恰好是一个顶点,那么它就是原问题的答案;否则,设 R 在边 (A,B) 上,那么所有的顶点要么是 A 的后代,要么是 B 的后代。结合结论 (d),这说明 A 和 B 之一就是原问题的答案,我们可以单独计算它们的答案并加以比较。至此,我们得到了原问题的完整解法,时间复杂度 $O(n\log n)$ 。

1.4 附录

本题中用到的结论 (a) – (g) 以及定理 1 的证明都不难,但需要用到较为繁琐的公式推导,故放在附录中供读者查阅。

结论 (a) 证明:设 h(x) = f(P(A, B, x)) 是结论中描述的函数。根据定义有

$$h(x) = \sum_{i=1}^{n} w_i \operatorname{dist}(i, P(A, B, x))^{3/2}.$$

下面证明对于任意的 i, $t(x) = \text{dist}(i, P(A, B, x))^{3/2}$ 是严格凹函数。

设路径 $A \leadsto B$ 上距离顶点 i 最近的点是 C , $\mathrm{dist}(C,i) = y_0$, $\mathrm{dist}(A,C) = x_0$, 则有

$$dist(i, P(A, B, x)) = |x - x_0| + y_0,$$

进而

$$t(x) = (|x - x_0| + y_0)^{3/2},$$

令 $t_2(x) = t(x+x_0) = (|x|+y_0)^{3/2}$,则只需证明 $t_2(x)$ 在 \mathbb{R} 上是严格凹函数。根据严格凹函数的定义,需要证明

$$\forall x_1 < x_2 \quad \forall x \in (x_1, x_2) \quad t_2(x) < \frac{(x - x_1)t_2(x_1) + (x_2 - x)t_2(x_2)}{x_2 - x_1}.$$

这个命题是说,如果我们在函数的图像上任取两个点,并用一条线段连接它们,那么它们之间的函数图像都严格位于该线段下方。

因为 $t_2(x)$ 是偶函数,不失一般性地,仅考虑两种情况:

- 1. $0 \le x_1 < x_2$ 。设 $\hat{t}_2(x)$ 是 $t_2(x)$ 在 $[0, +\infty)$ 上的约束(即定义在 $[0, +\infty)$ 上且与 $t_2(x)$ 具有相同的值的函数), $\hat{t}_2(x)$ 在其定义域内可导,且其导数 $\hat{t}_2(x) = \frac{3}{2}\sqrt{x+y_0}$ 严格单调递增。由此可以推出 $\hat{t}_2(x)$ 在 $[0, +\infty)$ 上是严格凹函数(这一步的详细证明可以在任何一本微积分教材上找到,这里不再赘述)。再次根据定义,当 $0 \le x_1 < x_2$ 时上面的命题成立。
- 2. $x_1 < 0 < x_2$ 。利用上面的几何解释,我们设 $P_1 = (x_1, t_2(x_1))$ 表示 $t_2(x)$ 函数图像与 $x = x_1$ 的交点,同理设 $P_2 = (x_2, t_2(x_2))$ 、 $P_0 = (0, t_2(0))$ 。因为 t_2 在 $(-\infty, 0]$ 单调递减、在 $[0, +\infty)$ 单调递增,所以 P_0 在线段 P_1P_2 下方,进而线段 P_1P_0 、 P_0P_2 也在线段 P_1P_2 下方。根据前一段中的分析,区间 $(x_1, 0)$ 上的函数图像在线段 P_1P_0 的下方,区间 $(0, x_2)$ 上的函数图像在线段 P_0P_2 的下方,进而它们都在线段 P_1P_2 的下方;又因为 P_0 也在该线段下方,故整一段函数图像 (x_1, x_2) 都在该线段下方,上面的命题成立。

至此,我们证明了 $t(x) = \operatorname{dist}(i, P(A, B, x))^{3/2}$ 是严格凹函数。回到 h(x) 的定义,和式的每一项要么是 0,要么是一个严格凹函数;又因为至少有一个 $w_i > 0$,所以 h(x) 是至少一个严格凹函数的和,它也是一个严格凹函数。

结论 (b) 证明:用反证法。假设存在两个广义点 A 和 B,它们都是 f 的极小点。不失一般性,假设 $f(A) \geq f(B)$ 。令 h(x) = f(P(A,B,x))。根据结

论 (a), h(x) 是严格凹函数,但根据定义存在 $\varepsilon > 0$ 使 $h(\varepsilon) \ge h(0)$,从而 $h(0) \le h(\varepsilon) \ge h(\operatorname{dist}(A, B))$,与严格凹函数的定义矛盾。

结论 (c) 证明:先证存在。每一条边上的 f 是闭区间上的连续函数,故其能取到最小值;而这 n-1 条边上的广义点的并集等于全集,这些最小值的集合有最小值,故 f 能取到最小值,即存在最小点。

再证唯一。根据定义最小点必定是极小点,如果存在两个最小点,就与结论(b)矛盾。 □

结论 (d) 证明: 用反证法,假设 $f(A) \ge f(B)$ 。设 h(x) = f(P(R, B, x))、 $dist(R, A) = x_1$ 、 $dist(R, B) = x_2$,则有 $h(0) < h(x_1) \ge h(x_2)$,与 h(x) 是严格 凹函数相矛盾。

结论 (e) 证明:根据定义

$$h(x) = \sum_{i=1}^{n} w_i \operatorname{dist}(i, P(A, B, x))^{3/2},$$

根据前面的讨论,对于每一个 i,都存在 x_0, y_0 使得 $dist(i, P(A, B, x)) = |x-x_0| + y_0$ 。设 $t(x) = (|x-x_0| + y_0)^{3/2}$,则在 0 的某个邻域内,要么 $t(x) = (x-x_0+y_0)^{3/2}$,要么 $t(x) = (x_0+y_0-x)^{3/2}$ 。不论哪种情况,t(x) 在 x=0 处的右导数都存在,并且容易计算。

h(x) 是若干个这样的 t(x) 的线性组合,所以它在 x = 0 处也有右导数。 口**结论 (f) 证明**: 在上面的讨论中,t(x) 的具体形式取决于 $x_0 = 0$ 是否成立。

$$\left(\frac{3}{2}, \frac{3}{\operatorname{dist}(i, A)}\right)$$
 if $r_0 = 0$

$$t'(0+) = \begin{cases} \frac{3}{2}\sqrt{\operatorname{dist}(i,A)}, & \text{if } x_0 = 0, \\ -\frac{3}{2}\sqrt{\operatorname{dist}(i,A)}, & \text{otherwise.} \end{cases}$$

而 $x_0=0$ 是否成立取决于,删去顶点 A 后,i 和 B 是否在同一个连通块内(即,i 在以 A 为根 B 的子树内)。进一步推出

$$h'(0+) = \frac{3}{2} \sum_{i=1}^{n} w_i \sqrt{\operatorname{dist}(i, A)} (-1)^{\lambda(i, A, B)},$$

其中 $\lambda(i, A, B)$ 表示 i 是否在以 A 为根 B 的子树内, 其值为 0 或 1。

删去 A 之后树将剩下 k 个连通块, B_1, B_2, \ldots, B_k 分别属于不同的连通块,令 S_i 表示 B_i 所属的连通块的顶点集。则

$$g(A, B_i) = \frac{3}{2} \sum_{j=1}^{k} (-1)^{[i=j]} \sum_{u \in S_j} w_u \sqrt{\operatorname{dist}(u, A)}.$$

首先从 A 出发运行一次 DFS, 对于所有的 u 求出 $\mathrm{dist}(u,A)$, 并对于每一个 S_i 求出

$$G_i = \sum_{u \in S_i} w_u \sqrt{\operatorname{dist}(u, A)}.$$

最后依次计算 $g(A,B_i) = \left(\sum_{j=1}^k G_j\right) - 2G_i$ 。该算法的时间复杂度是 O(n)。 \square

结论 (g) 证明: 设 h(x) = f(P(B,A,x)), 则 h(x) 在定义域内可导且为 凹函数,可以推出其导数 h'(x) 在定义域内单调递增。再根据结论 (d) 有 f(A) < f(B),用拉格朗日中值定理得 $\exists \xi \in (0,L) \quad h'(\xi) = \frac{f(A) - f(B)}{L} < 0$ 。根据 h'(x) 单调递增得出 h'(0+) < 0,即 g(B,A) < 0。

推论: 如果 (A,B) 是树边且删去 A 后 B 和 B 在同一个连通块中,则 g(A,B)<0。

推论证明: 如果 R 在边 (A, B) 上,则对于 B' = A, A' = R 重复结论 (g) 的证明即可;否则 B 是 A 的祖先,根据结论 (g) 即可得出。

定理 1 证明: 设删去 A 后的连通块分别是 S_1, S_2, \ldots, S_k ; 根据前面的讨论,可以计算出 G_1, G_2, \ldots, G_k ,使得 $g(A, B_i) = G_S - 2G_i$,其中 $G_S = \sum_{i=1}^k G_i$ 。

如果 A 是最小点,那么 $\forall i \in [1,k]$ $g(A,B_i) \geq 0$;如果最小点在 S_i 内,则 $g(A,B_i) < 0$ 。还需证明至多有一个 i 满足 $g(A,B_i) < 0$ 。

事实上, $g(A,B_i)=G_S-2G_i<0\Leftrightarrow G_i>\frac{G_S}{2}$,又因为 $\forall i\in[1,k]\quad G_i\geq0$,所以至多有一个 i 满足 $g(A,B_i)<0$ 。

我们已经说明不存在除上述两种情况之外的其他情况,故定理1得证。 □

2 Cool Slogans

2.1 题目大意

给定字符串 S。求最长的字符串序列 s_1, s_2, \ldots, s_k 的长度,满足

- 1. $\forall i \in [1, k]$, s_i 是 S 的非空子串。
- 2. $\forall i \in [2,k]$, s_{i-1} 在 s_i 中作为子串出现了至少两次。多次出现之间可以重叠。

2.2 数据范围

 $1 \le |S| \le 2 \times 10^5$, S 仅包含小写英文字母。

2.3 记号与约定

解题过程中需要用到后缀自动机(简称 SAM), 故在本文中假设读者已经能熟练运用该数据结构。

设 A 是一个字符串,将其中的字符从左到右按照 1 到 n 编号,令 A(i) 表示它的第 i 个字符。定义 A[l,r] 表示字符串的一个子串,它由编号在区间 [l,r] 内的字符组成;l 和 r 分别称作其左端点和右端点。

在不引起混淆的前提下,用"母串"表示原问题中输入的字符串(即S),也将直接使用"子串"来表示母串的子串。

定义一个子串 A 的 right 集合为其在母串中所有出现位置的右端点的集合。严格来说,

$$right(A) = \{ r \in [|A|, n] \mid S[r - |A| + 1, r] = A \}$$

SAM 结点是一个字符串集合,其元素的长度取到某一个区间内的所有值,并且所有元素都是最长的元素的后缀。可以用一个三元组 (L,R,E) 表示一个 SAM 结点,表示 $\{S[i,E]\mid i\in [L,R]\}$ 。 SAM 结点的各个元素拥有相同的 right 集合,也称为这个结点的 right 集合。

SAM 的各个结点之间按照后缀关系形成的树结构,称作反向前缀树。在不引起混淆的前提下,也简称作"树"。

2.4 解题过程

对母串建 SAM,并使用可持久化线段树合并求出每一个结点的 right 集合。 **定理 1**: 如果限制序列中 s_{i-1} 必须是 s_i 的后缀,答案不会改变。

定理 1 证明: 暂时将这一条限制称为"规则"。首先,符合规则的序列一定是原问题中合法的序列,所以答案不会变大,下面证明答案不会变小。

如果原问题的最优解 s_1, s_2, \ldots, s_k 中某个 s_{i-1} 不是 s_i 的后缀,那么违反规则的 i 中存在一个最小的。令 s_i' 是 s_i 的一个最长的前缀,满足 s_{i-1} 是其后缀,

则容易发现 s_{i-1} 在 s_i' 中出现了至少两次, s_i' 在 s_{i+1} (如果存在)中也出现了至少两次。用 s_i' 代替 s_i 后序列同样满足题目中的条件,且这个序列中要么不存在违反规则的 i,要么最小的违反规则的 i 比原序列中大。如此迭代下去可以得到一个相同长度的符合规则的序列。

在本文的剩余部分, 我们将这个约束视为原问题的一部分。

设 A 是某个子串,定义 f(A) 表示最长的以 A 为最后一项的序列长度。那 么

$$f(A) = 1 + \max\{f(B)\}\$$

其中 $B \in A$ 的后缀且在 A 中出现至少两次。如果这个条件成立,就称字符串 B 能转移到 A。

定理 2: 在 SAM 结点 X 中,A 是其最长的元素,B 是任意其他元素。则对于另一个 SAM 结点 Y 的最长元素 C,如果 B 能转移到 C,则 A 也能转移到 C。

定理 2 证明: 因为 B 能转移到 C, 所以 X 和 Y 的 right 集合有交。设 $X=(L_1,R_1,E),Y=(L_2,R_2,E)$ 。令 E' 表示 X 的 right 集合中 E 的前驱,则需要证明

$$(E' + R_1 - E \ge L_2) \to (E' + L_1 - E \ge L_2).$$

用反证法。假设

$$\begin{cases}
E' + R_1 - E \ge L_2, \\
E' + L_1 - E < L_2,
\end{cases}$$

令 $L_1' = E' - E + L_1$ 、 $R_1' = E' - E + R_1$,那么 $X = (L_1', R_1', E')$,上式变为 $L_1' < L_2 \le R_1'$ 。因为 $S[L_2 - 1, E']$ 和 $T = S[L_2, E']$ 在同一个 SAM 结点 X 中,所以它们有相同的 right 集合,即后者在母串中的每一次出现时,左端点都不是第一个字符,且左端点左侧相邻的字符全都相同。此外,由 $T' = S[L_2, E]$ 是 SAM 结点 Y 的最长元素,可知其在母串中的每一次出现时,要么出现左端点是第一个字符的情况,要么左端点左侧的字符不尽相同。但是 T 是 T' 的子串,这与刚才获知的信息矛盾。

容易发现在一个 SAM 结点中,其最长的元素 f 值最大。结合定理 2,这说明我们只需要关心每一个 SAM 结点的最长元素即可。下面兼用一个 SAM 结点的记号来指代其最长的元素。特别地,记 f(X) (X 是一个 SAM 结点)表示该结点最长元素的 f 值。

我们列举如下结论:

- (a) 如果树上 $A \in B$ 的父亲,那么 $f(A) \leq f(B)$ 。
- (b) 如果树上 A 是 B 的父亲,C 是 B 的后代,则 B 能转移到 C 蕴含 A 能转移到 C。
- (c) 如果树上 $A \in B$ 的祖先, $C \in B$ 的孩子,则 A 能转移到 B 蕴含 A 能转移到 C。
- (d) 树上能转移到 A 的那些结点形成一条从根节点到 A 的某个祖先的链。

证明详见附录。

结论 (a)、(d) 共同指出,我们只需要对于每一个 A,求出深度最大的能转移 到 A 的顶点,就可以对于每一个 A 求出 f(A)。设深度最大的能转移到 A 的顶点为 g(A)。

按照深度从小到大的顺序对于每一个点 A 计算 g(A)。假设 A 的父亲是 B,那么有 g(A) 是 g(B) 的后代(可以等于 g(B))。为了计算 g(A),从 g(B) 的孩子开始枚举从 g(B) 到 A 的链上的各个结点,并逐个检测它是否能转移到 A。一旦结果为 "否",就将上一个结点记为 g(A) 并立刻停止枚举。在整个过程中,每一个结点最多作为 A 导致一次结果为 "否"的检测,最多作为上方的结点导致一次结果为 "是"的检测,因此总共的检测次数不超过 SAM 结点数的两倍,即 4n。

为了检测 A 是否能转移到 B,我们任取 right(B) 的任意一个元素 E,找到 right(A) 中其前驱 E',并判断 A 以 E' 为右端点的出现是否完全含在 B 以 E 为右端点的出现之内。其中找前驱需要用到起初建立的线段树结构,一次检测的时间复杂度是 $O(\log n)$ 。

计算出所有 g(A) 之后,再按深度从小到大的顺序计算每一个点的 f(A),这时令 f(A) = f(g(A)) + 1 即可。边界条件是根节点的 f 值为 0。

至此,我们得到原问题的完整解法,时间复杂度 $O(n \log n)$ 。

2.5 附录

结论 (a) 证明 : $A \in B$ 的父亲可以推出 $A \in B$ 的后缀,在以 A 为最项的最长序列中将最后一项替换为 B 并不会违反条件,从而 $f(A) \leq f(B)$	
结论 (b) 证明 :如果 B 能转移到 C ,那么 B 在 C 中出现至少两次,是 B 的子串,所以 A 也在 C 中出现至少两次。	而 A \Box
结论 (c) 证明 :如果 A 能转移到 B ,那么 A 在 B 中出现至少两次,是 C 的子串,所以 A 也在 C 中出现至少两次。	而 B □
结论 (d) 证明 :根据转移的定义,能转移到 A 的结点必定是 A 的后缀树上 A 的祖先;再根据结论 (b) 即可得出。	. 即

3 Two Faced Edges

3.1 题目大意

给定 n 个顶点、m 条边的有向图,对于每一条边回答,将其反向之后图中 SCC(强连通分量)的个数是否会发生变化。

将一条边 $A \to B$ 反向的意思是,删除这条边,并加入边 $B \to A$ 。

3.2 数据范围

 $2 \le n \le 1000$, $1 \le m \le 2 \times 10^5$, 给定的图没有重边或自环。

3.3 解题过程

定理 1: 将一条边 $A \to B$ 反向后 SCC 数量是否发生变化,仅取决于下面两个问题的答案:

- 1. A 是否可以不经过这条边到达 B。
- 2. B 是否可以到达 A。

证明详见附录。

问题 2 是容易解决的。只需要从每一个顶点出发分别运行一次 DFS,求出它能到达哪些顶点,再对每一条边逐一回答即可。时间复杂度 O(nm)。

接下来,我们将用 O(m) 的时间,对所有以 P 为起点的边回答问题 1,其中 P 是任意顶点。

假设以 P 为起点的边共有 k 条,终点分别是 Q_1,Q_2,\dots,Q_k 。对于每一个 Q_i ,我们需要判断,是否有一条简单路径 $P\to Q_j \rightsquigarrow Q_i$,其中 $j\neq i$ 。对于 P 能到达的顶点 X,定义 $\mathrm{Min}(X)$ 是最小的 j,满足存在简单路径 $P\to Q_j \rightsquigarrow X$,这等价于存在一条不经过 P 的路径 $Q_j \rightsquigarrow X$ 。同理可以定义 $\mathrm{Max}(X)$ 是满足条件的最大的 j。

从小到大枚举每一个 i,在不允许经过 P 的前提下,以 Q_i 为起点运行一次 DFS,把所有未被标记过的顶点标记为 "已访问"。对于所有在这一轮新标记的 顶点 X,令 $\mathrm{Min}(X)=i$ 。

这样我们就对于所有的 i 求出了 $\mathrm{Min}(Q_i)$ 。再从大到小枚举每一个 i,执行相同的算法,我们就对于所有的 i 求出了 $\mathrm{Max}(Q_i)$ 。再检查是否有 $\mathrm{Min}(Q_i) = \mathrm{Max}(Q_i) = i$,就可以对 $P \to Q_i$ 这条边回答问题 1。

在上面的过程中,每个顶点只会被标记一次,进而每一条边也只会在 DFS 中被访问一次,时间复杂度是 O(m)。结合前面的转化,我们就以 O(nm) 的时间复杂度解决了原问题。

3.4 附录

为方便下文的叙述,当 G 上存在一条路径以 X 为起点、以 Y 为终点,就 称 $(G \perp) X$ 可达 Y,记作 $X \rightsquigarrow Y$ 。如果 X 和 Y 相互可达,记作 $X \leftrightsquigarrow Y$ 。 为了证明定理 1,我们先提出几个引理。

引理 1: 设有向图 G 加入边 $A \to B$ 后形成图 G', 有 $Count(G') \le Count(G)$, 其中 Count(G) 表示图 G 中 SCC 的数量。

引理 1 证明: 设 G 的 SCC 有 p 个,分别是 S_1, S_2, \ldots, S_p ; G' 的 SCC 有 q 个,分别是 T_1, T_2, \ldots, T_q 。如果 $G \perp X \sim Y$,那么 $G' \perp X \sim Y$;进一步地,如果 $G \perp X \leadsto Y$,那么 G' 上也有 $X \leadsto Y$ 。

对于每一个 T_i ,取出其中任意一个点,设为 K_i ,则存在恰好一个 j 使 $K_i \in S_j$ 。假设 q > p,根据鸽巢原理,一定存在 $i \neq i'$ 使得 K_i 和 $K_{i'}$ 属于同一个 S_j ,即存在 j 使 $(K_i \in S_j) \land (K_{i'} \in S_j)$ 。这说明 $G \perp K_i \leadsto K_{i'}$,但 G'上不是。根据上面的推理,这是不可能的。

引理 2: Count(G') < Count(G) 的充分必要条件是,存在顶点 X 和 Y,它们在 G' 上相互可达,但在 G 上不是。

引理 2 证明: 先证充分性。设 $X \in S_a$, $Y \in S_b$, $X,Y \in T_c$, 对于除 T_c 外的每一个 T_i , 取出其中任意一个点,设为 K_i , 则存在恰好一个 j 使 $K_i \in S_j$, 这个 j 必定满足 $(j \neq a) \land (j \neq b)$ 。假设 (q-1) > (p-2),使用和引理 1 相同的方法可以推出矛盾,于是 $q \leq p-1$ 。

再证必要性。对于每一个 S_i 取出其中任意一个点,设为 K_i' ,则存在恰好一个 j 使 $K_i' \in T_j$ 。因为 p > q,根据鸽巢原理,存在 $i \neq i'$ 使 K_i' 和 $K_{i'}'$ 属于同一个 T_j ,则 $X = K_i'$ 和 $Y = K_{i'}'$ 在 G' 上相互可达,但在 G 上不是。

下面称在 G' 上互相可达、在 G 上不互相可达的无序点对 (X,Y) 是**巧克力 点对**。

推论 1: 如果存在巧克力点对,那么 Count(G') < Count(G);否则,Count(G') = Count(G)。

推论 1 证明: 由引理 1 和引理 2 直接推出。 □

引理 3: 加入边 $A \rightarrow B$ 后存在巧克力点对的充分必要条件是, $A \not\sim B \land B \rightsquigarrow A$.

引理 3 证明: 分三种情况讨论。

- 1. $A \sim B$ 。加入边 $A \rightarrow B$ 不会改变任何点对的可达性,所以不存在巧克力点对。
- 2. $B \not\sim A$ 。设 $G' \perp X \leadsto Y$,但 $G \perp X \not\sim Y$ 。那么 G' 存在路径 $X \leadsto A \to B \leadsto Y$ 。如果 $G' \perp Y \leadsto X$,则推出 $G' \perp B \leadsto A$,进一步推出 $G \perp B \leadsto A$,矛盾,所以 $G' \perp Y \not\sim X$ 。因此不存在巧克力点对。
- 3. $A \not \sim B \land B \leadsto A$ 。(A, B) 是一对巧克力点对。

推论 2: 如果 $A \not \sim B \land B \rightsquigarrow A$, 那么 Count(G') < Count(G); 否则, Count(G') = Count(G)。

推论 2 证明:由引理 3 和推论 1 直接推出。

现在我们关注反转一条边的过程。设图 G 加入边 $A \to B$ 形成图 G', 加入 边 $B \to A$ 形成图 G''。这样 G'' 是 G' 反转 $A \to B$ 这条边形成的图。

引理 4: $\operatorname{Count}(G') = \operatorname{Count}(G)$ 和 $\operatorname{Count}(G'') = \operatorname{Count}(G)$ 至少有一个成立。

推论 3 证明:根据引理 4, $\operatorname{Count}(G') \neq \operatorname{Count}(G'')$ 当且仅当 $\operatorname{Count}(G') < \operatorname{Count}(G)$ 或 $\operatorname{Count}(G'') < \operatorname{Count}(G)$ 。再根据推论 2 即可得到这个条件。

推论 3 不仅说明了定理 1 是正确的,还指出了该如何从两个子问题的答案得到原问题的答案,至此定理 1 得证。