1 Несобствени интеграли - основни понятия

1.1 Дефиниция на сходящ интеграл

Лице на неограничена фигура

Дефиниция

- ullet Нека f(x) е интегруема в [a, u] за всяко $a < u < b \ (b$ е число или $+\infty$)
 - 1. $\int_{a}^{b} f(x)dx$ се нарича **несобствен интеграл** (с особеност b)
 - 2. Несобственият интеграл $\int\limits_a^b f(x)dx$ (с особеност b) се нарича **сходящ**, ако съществува **крайната** граница $\lim\limits_{u \to b,\, u < b} \int\limits_c^u f(x)dx$
 - 3. в противен случай, несобственият интеграл се нарича разходящ
- Нека f(x) е интегруема в [u, b] за всяко a < u < b (a е число или $-\infty$)

- 1. $\int_{a}^{b} f(x)dx$ се нарича **несобствен интеграл** (с особеност a)
- 2. Несобственият интеграл $\int\limits_a^b f(x)dx$ (с особеност a) се нарича **сходящ**, ако съществува **крайната** граница $\lim\limits_{u\to a,\, u>a}\int\limits_u^b f(x)dx$
- 3. в противен случай, несобственият интеграл се нарича разходящ

- 1. Всеки определен интеграл може да се разглежда като сходящ несобствен интеграл.
- $2. \int_{1}^{+\infty} \sin x \, dx \text{ е разходящ.}$

- 3. $\int_{1}^{+\infty} \frac{dx}{x}$ е разходящ.
- 4. $\int_{1}^{+\infty} \frac{dx}{x^{p}}$ е сходящ тогава и само тогава, когато p > 1.
- 5. $\int_{0}^{1} \frac{dx}{x}$ е разходящ.
- 6. $\int_{0}^{1} \frac{dx}{x^{p}}$ е сходящ тогава и само тогава, когато p < 1.
- 7. $\int_{a}^{b} \frac{dx}{(b-x)^{p}}$ е сходящ тогава и само тогава, когато p < 1.

1.2 Свойства

1. Линейност

Нека
$$\int_a^b f(x)dx$$
 и $\int_a^b g(x)dx$ са сходящи. Тогава $\int_a^b (\lambda f(x) + \mu g(x))\,dx$ е сходящ и
$$\int_a^b (\lambda f(x) + \mu g(x))\,dx \,=\, \lambda \int_a^b f(x)dx \,+\, \mu \int_a^b g(x)dx$$

2. Позитивност

Нека $\int\limits_a^b f(x)dx$ е сходящ и $f(x)\geq 0$ за всяко $x\in [a,\,b)$. Тогава

$$\int_{a}^{b} f(x)dx \ge 0$$
и

3. $F(u) = \int_{a}^{u} f(x)dx$ е растяща.

4. Адитивност

 $\int_{-b}^{b} f(x) dx$ (с особеност в b) е сходящ тогава и само тогава, когато за всяко $c \in [a, b)$

интегралът $\int\limits_{c}^{b}f(x)dx$ е сходящ

Дефиниция: $\int_a^b f(x)dx$ (с особености в a и b) е сходящ, ако за някое $c \in (a, b)$ (еквива-

лентно за всяко $c \in (a, b)$) $\int\limits_a^c f(x) dx$ е сходящ \mathbf{M} $\int\limits_c^b f(x) dx$ е сходящ

1.
$$\int_{-\infty}^{+\infty} \frac{dx}{\sqrt{(x^2+1)^3}} = 2$$

 $\int\limits_{0}^{+\infty} \frac{dx}{x^{p}}$ е разходящ за всяко $p \in \mathbb{R}$.

3.
$$\lim_{u \to +\infty} \int_{-u}^{u} \frac{x dx}{x^2 + 1} = 0$$
, но $\int_{-\infty}^{+\infty} \frac{x dx}{x^2 + 1}$ е разходящ.

2 Пресмятане на несобствени интеграли

2.1 Формула на Лайбниц и Нютон

Нека f е непрекъсната в (a, b), а G е примитивна на f в (a, b), за която съществуват границите $\lim_{x\to a+0}G(x)=G(a+0)$ и $\lim_{x\to b-0}G(x)=G(b-0)$.

Тогава:
$$\int_{a}^{b} f(x)dx = G(b-0) - G(a+0).$$

1.
$$\int_{0}^{1} \frac{dx}{\sqrt{x(1-x)}} = \arcsin(2x-1) \Big|_{0}^{1} = \pi$$

2.
$$\int_{0}^{+\infty} \frac{x^2 + 1}{x^4 + 1} dx = \frac{1}{\sqrt{2}} \operatorname{arctg} \left(\frac{x}{\sqrt{2}} - \frac{1}{x\sqrt{2}} \right) \Big|_{0}^{+\infty} = \frac{\pi}{\sqrt{2}}$$

2.2 Смяна на променливите

Нека f е непрекъсната в (a, b), а φ има непрекъсната производна в (α, β) (или (β, α)), като

- 1. $\varphi(\alpha + u(\beta \alpha)) \in (a, b)$ за всяко $u \in (0, 1)$
- 2. $\varphi'(\alpha + u(\beta \alpha)) \neq 0$ за всяко $u \in (0, 1)$
- 3. $\lim_{t \to \alpha} \varphi(t) = a \text{ и } \lim_{t \to \beta} \varphi(t) = b.$

Тогава
$$\int\limits_a^b f(x)dx$$
 е сходящ $\Leftrightarrow \int\limits_\alpha^\beta f(\varphi(t))\varphi'(t)dt$ е сходящ и

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt.$$

1.
$$\int_{1}^{+\infty} \frac{x^2 + 1}{x^4 + 1} dx = \int_{0}^{1} \frac{x^2 + 1}{x^4 + 1} dx$$

2.
$$\int_{-\infty}^{+\infty} \frac{x^2 + 1}{x^4 + 1} dx = 2 \int_{0}^{+\infty} \frac{x^2 + 1}{x^4 + 1} dx$$

3.
$$\int_{-\infty}^{+\infty} \frac{x+1}{(x^2+2x+2)^2} dx = 0$$

4.
$$\int_{0}^{+\infty} \frac{1}{(x^2+1)^n} dx = \int_{0}^{\frac{\pi}{2}} \cos^{2n-2} x \, dx = \frac{(2n-2)!!}{(2n-1)!!} \cdot \frac{\pi}{2}$$

2.3 Интегриране по части

Нека всяка от функциите f и g има непрекъсната производна в $(a,\,b)$. Ако са изпълнени три от следните четири твърдения

1.
$$\int_{a}^{b} f(x)g'(x)dx \in \text{сходящ}$$

2.
$$\int_{a}^{b} f'(x)g(x)dx \in \text{сходящ}$$

- 3. съществува крайната граница $A = \lim_{x \to a, \, x > a} f(x)g(x)$
- 4. съществува крайната граница $B = \lim_{x \to b, \, x < b} f(x)g(x)$

то е вярно и четвъртото и
$$\int\limits_a^b f(x)g'(x)dx \,=\, B-A\,-\,\int\limits_a^b f'(x)g(x)dx$$

$$1. \qquad \int\limits_{0}^{1} x \ln x dx = -\frac{1}{4}$$

$$\int_{0}^{+\infty} x^n e^{-x} dx = n!$$

3.
$$\int_{-\infty}^{+\infty} \frac{1}{(x^2+1)^n} dx = \frac{(2n-2)!!}{(2n-1)!!} \cdot \pi$$

3 Критерии за сходимост

3.1 Общ критерий на Коши

1.
$$\int\limits_a^{+\infty}f(x)dx$$
е сходящ \Leftrightarrow за всяко $\varepsilon>0$ има B такова, че $\left|\int\limits_u^vf(x)dx\right|<\varepsilon$ за всеки $u,\,v\in(B,\,+\infty)$.

2.
$$\int\limits_a^b f(x)dx \ (\text{с особеност в }b) \ \text{е сходящ} \quad \Leftrightarrow \quad \text{за всяко } \varepsilon>0 \ \text{има }\delta \ \text{такова, че} \ \left|\int\limits_u^v f(x)dx\right| < \varepsilon$$
 за всеки $u,\,v\in(b-\delta,\,b)$.

3.2 Критерий за сравнение

1. Нека $0 \le f(x) \le g(x)$ за всяко $x \in (a, b)$. Тогава

- Ако $\int_a^b g(x)dx$ е сходящ, то $\int_a^b f(x)dx$ е сходящ.
- Ако $\int\limits_a^b f(x)dx$ е разходящ, то $\int\limits_a^b g(x)dx$ е разходящ.
- Логически факт: $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$
- 2. Критерий за сравнение гранична форма

Нека 0 < f(x) за всяко $x \in (a, b)$ и $\lim_{x \to b, \, x < b} \frac{g(x)}{f(x)} = L \neq 0$ (число). Тогава

$$\int\limits_a^b g(x)dx$$
 е сходящ $\Leftrightarrow \int\limits_a^b f(x)dx$ е сходящ.

1.
$$\int_{0}^{+\infty} \frac{dx}{x^p + x^q} e \operatorname{сходящ} \quad \Leftrightarrow \quad \max(p, q) > 1 \text{ и } \min(p, q) < 1.$$

2.
$$\Gamma(x) = \int_{0}^{+\infty} t^{x-1}e^{-t}dt$$
 е сходящ за всяко $x > 0$.

3.
$$\int_{2}^{+\infty} \frac{dx}{x^{p} \ln^{q} x} \text{ е сходящ} \quad \Leftrightarrow \quad p > 1 \text{ или } p = 1, \ q > 1.$$

4.
$$\int_{0}^{\frac{1}{2}} \frac{dx}{x^{p} \left|\ln x\right|^{q}} \text{ е сходящ } \Leftrightarrow p < 1 \text{ или } p = 1, q > 1.$$

Странно — на двете места q>1 ?! Обяснение — по-бързо клонене към 0 ; по-бавно клонене към $+\infty$

3.3 Критерий на Абел - Дирихле

- 1. Нека f(x) и g(x) са интегруеми в [a, u] за всяко a < u и
 - f(x) е монотонна и $\lim_{x \to +\infty} f(x) = 0$;
 - функцията $\int\limits_{a}^{u}g(x)dx$ е ограничена.

Тогава
$$\int\limits_a^{+\infty} f(x)g(x)dx$$
 е сходящ.

- 2. Нека f(x) и g(x) са интегруеми в [a, u] за всяко a < u и
 - f(x) е монотонна и $\lim_{x \to +\infty} f(x) = L$ (число);
 - интегралът $\int_{a}^{+\infty} g(x)dx$ е сходящ.

Тогава
$$\int\limits_a^{+\infty} f(x)g(x)dx$$
 е сходящ.

3. Аналогични твърдения са верни, когато $+\infty$ заменим с число b, както и когато особената точка е долната граница.

Примери

$$1. \int_{0}^{+\infty} \frac{\sin x}{x} dx \text{ e сходящ.}$$

2. монотонността е съществена

$$\bullet \int_{1}^{+\infty} \frac{\sin x}{\sqrt[4]{x^3} + \sin x} dx = \text{сходящ.}$$

•
$$\int_{1}^{+\infty} \frac{\sin x}{\sqrt{x} + \sin x} dx$$
 е разходящ.

3.4 Абсолютно сходящи интеграли

Свойства, които не се запазват

1.
$$\int_{0}^{+\infty} \frac{\sin x}{\sqrt{x}} dx$$
 е сходящ, но
$$\int_{0}^{+\infty} \frac{\sin^{2} x}{x} dx$$
 е разходящ.

2.
$$\int_{0}^{+\infty} \frac{\sin x}{x} dx \text{ е сходящ, но } \int_{0}^{+\infty} \frac{|\sin x|}{x} dx \text{ е разходящ.}$$

Абсолютна и условна сходимост

1. Несобственият интеграл $\int\limits_a^b f(x)dx$ (с особеност b) се нарича **абсолютно сходящ**, ако

интегралът $\int_{a}^{b} |f(x)| dx$ е сходящ.

- Ако $\int_a^b f(x)dx$ е абсолютно сходящ, то той е сходящ.
- Обратното не е вярно.
- 2. Несобственият интеграл $\int_a^b f(x)dx$ (с особеност b) се нарича **условно сходящ**, ако е сходящ, но не абсолютно сходящ.

- Ако f(x) не си мени знака в околност на b , то сходимост и абсолютна сходимост съвпадат.
- $\int_{1}^{+\infty} \frac{\cos x}{x^2} dx$ е абсолютно сходящ.
- $\int_{1}^{+\infty} \frac{\cos x}{x} dx$ е условно сходящ.