SEQUENCE LISTING

```
<110> Friddle, Carl Johan
      Hilbun, Erin
<120> Novel Human Proteases and Polynucleotides Encoding the Same
<130> LEX-0241-USA
<150> US 60/236,689
<151> 2000-09-29
<160> 7
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 966
<212> DNA
<213> homo sapiens
<400> 1
                                                                        60
atgcttctgc tgggcatcct aaccctggct ttcgccgggc gaaccgctgg aggctctgag
                                                                       120
ccagagcggg aggtagtcgt tcccatccga ctggacccgg acattaacgg ccgccgctac
tactggcggg gtcccgagga ctccggggat cagggactca tttttcagat cacagcattt
                                                                       180
caggaggact tttacctaca cctgacgccg gatgctcagt tcttggctcc cgccttctcc
                                                                       240
                                                                       300
actgagcatc tgggcgtccc cctccagggg ctcaccgggg gctcttcaga cctgcgacgc
                                                                       360
tgcttctatt ctggggacgt gaacgccgag ccggactcgt tcgctgctgt gagcctgtgc
ggggggctcc gcggagcctt tggctaccga ggcgccgagt atgtcattag cccgctgccc
                                                                       420
                                                                       480
aatgctagcg cgccggcggc gcagcgcaac agccagggcg cacaccttct ccagcgccgg
                                                                       540
ggtgttccgg gcgggccttc cggagacccc acctctcgct gcggggtggc ctcgggctgg
                                                                       600
aaccccgcca tcctacgggc cctggaccct tacaagccgc ggcgggcggg cttcggggag
                                                                       660
agtegtagee ggegeaggte tgggegegee aagegttteg tgtetateee geggtaegtg
                                                                       720
gagacgctgg tggtcgcgga cgagtcaatg gtcaagttcc acggcgcgga cctggaacat
                                                                       780
tatctgctga cgctgctggc aacggcggcg cgactctacc gccatcccag catcctcaac
                                                                        840
cccatcaaca tcgttgtggt caaggtgctg cttcttagag atcgtgactc cgggcccaag
gtcaccggca atgcggccct gacgctgcgc aacttctgtg cctggcagaa gaagctgaac
                                                                       900
                                                                        960
aaagtgagtg acaagcaccc cgagtactgg gacactgcca tcctcttcac caggcaggag
                                                                        966
agttga
<210> 2
<211> 321
<212> PRT
<213> homo sapiens
Met Leu Leu Gly Ile Leu Thr Leu Ala Phe Ala Gly Arg Thr Ala
                                     10
Gly Gly Ser Glu Pro Glu Arg Glu Val Val Val Pro Ile Arg Leu Asp
                                 25
                                                     3.0
Pro Asp Ile Asn Gly Arg Arg Tyr Tyr Trp Arg Gly Pro Glu Asp Ser
                             40
                                                 45
Gly Asp Gln Gly Leu Ile Phe Gln Ile Thr Ala Phe Gln Glu Asp Phe
                         55
                                             60
Tyr Leu His Leu Thr Pro Asp Ala Gln Phe Leu Ala Pro Ala Phe Ser
```

```
65
                    70
Thr Glu His Leu Gly Val Pro Leu Gln Gly Leu Thr Gly Gly Ser Ser
                                    90
                85
Asp Leu Arg Arg Cys Phe Tyr Ser Gly Asp Val Asn Ala Glu Pro Asp
                                105
            100
Ser Phe Ala Ala Val Ser Leu Cys Gly Gly Leu Arg Gly Ala Phe Gly
                                                125
                            120
        115
Tyr Arg Gly Ala Glu Tyr Val Ile Ser Pro Leu Pro Asn Ala Ser Ala
                                            140
                        135
Pro Ala Ala Gln Arg Asn Ser Gln Gly Ala His Leu Leu Gln Arg Arg
                                        155
                    150
Gly Val Pro Gly Gly Pro Ser Gly Asp Pro Thr Ser Arg Cys Gly Val
                                    170
                165
Ala Ser Gly Trp Asn Pro Ala Ile Leu Arg Ala Leu Asp Pro Tyr Lys
                                                     190
                                185
            180
Pro Arg Arg Ala Gly Phe Gly Glu Ser Arg Ser Arg Arg Arg Ser Gly
                                                 205
                            200
Arg Ala Lys Arg Phe Val Ser Ile Pro Arg Tyr Val Glu Thr Leu Val
                        215
                                             220
Val Ala Asp Glu Ser Met Val Lys Phe His Gly Ala Asp Leu Glu His
                    230
                                         235
Tyr Leu Leu Thr Leu Leu Ala Thr Ala Ala Arg Leu Tyr Arg His Pro
                                    250
                245
Ser Ile Leu Asn Pro Ile Asn Ile Val Val Val Lys Val Leu Leu Leu
                                                     270
                                 265
            260
Arg Asp Arg Asp Ser Gly Pro Lys Val Thr Gly Asn Ala Ala Leu Thr
                             280
        275
Leu Arg Asn Phe Cys Ala Trp Gln Lys Lys Leu Asn Lys Val Ser Asp
                         295
                                             300
Lys His Pro Glu Tyr Trp Asp Thr Ala Ile Leu Phe Thr Arg Gln Glu
                                         315
                    310
Ser
<210> 3
<211> 2853
<212> DNA
<213> homo sapiens
<400> 3
atgettetge tgggeateet aaccetgget ttegeeggge gaacegetgg aggetetgag
ccagagcggg aggtagtcgt tcccatccga ctggacccgg acattaacgg ccgccgctac
tactggcggg gtcccgagga ctccggggat cagggactca tttttcagat cacagcattt
caggaggact tttacctaca cctgacgccg gatgctcagt tcttggctcc cgccttctcc
actgagcatc tgggcgtccc cctccagggg ctcaccgggg gctcttcaga cctgcgacgc
tgcttctatt ctggggacgt gaacgccgag ccggactcgt tcgctgctgt gagcctgtgc
ggggggctcc gcggagcctt tggctaccga ggcgccgagt atgtcattag cccgctgccc
aatgctagcg cgccggcggc gcagcgcaac agccagggcg cacaccttct ccagcgccgg
ggtgttccgg gcgggccttc cggagacccc acctctcgct gcggggtggc ctcgggctgg
 aaccccgcca tcctacgggc cctggaccct tacaagccgc ggcgggcggg cttcggggag
agtcgtagcc ggcgcaggtc tgggcgcgcc aagcgtttcg tgtctatccc gcggtacgtg
 gagacgctgg tggtcgcgga cgagtcaatg gtcaagttcc acggcgcgga cctggaacat
```

tatctgctga cgctgctggc aacggcggcg cgactctacc gccatcccag catcctcaac

cccatcaaca tcgttgtggt caaggtgctg cttcttagag atcgtgactc cgggcccaag

gtcaccggca atgcggccct gacgctgcgc aacttctgtg cctggcagaa gaagctgaac

aaagtgagtg acaagcaccc cgagtactgg gacactgcca tcctcttcac caggcaggac

60 120

180 240

300

360 420

480

540

600 660

720

780

840 900

960

```
1020
ctgtgtggag ccaccacctg tgacaccctg ggcatggctg atgtgggtac catgtgtgac
                                                                     1080
cccaagagaa gctgctctgt cattgaggac gatgggcttc catcagcctt caccactgcc
cacgagetgg gecacgtgtt caacatgeee catgacaatg tgaaagtetg tgaggaggtg
                                                                     1140
tttgggaagc tccgagccaa ccacatgatg tccccgaccc tcatccagat cgaccgtgcc
                                                                     1200
aacccctggt cagcctgcag tgctgccatc atcaccgact tcctggacag cgggcacggt
                                                                     1260
gactgcctcc tggaccaacc cagcaagccc atctccctgc ccgaggatct gccgggcgcc
                                                                     1320
agctacaccc tgagccagca gtgcgagctg gcttttggcg tgggctccaa gccctgtcct
                                                                     1380
tacatgcagt actgcaccaa gctgtggtgc accgggaagg ccaagggaca gatggtgtgc
                                                                      1440
cagaccegee actteceetg ggeogatgge accagetgtg gegagggeaa getetgeete
                                                                      1500
                                                                     1560
aaaggggeet gegtggagag acacaacete aacaagcaca gggtggatgg tteetgggee
                                                                     1620
aaatgggatc cctatggccc ctgctcgcgc acatgtggtg ggggcgtgca gctggccagg
                                                                     1680
aggcagtgca ccaaccccac ccctgccaac gggggcaagt actgcgaggg agtgagggtg
aaataccgat cctgcaatct ggagccctgc cccagctcag cctccggaaa gagcttccgg
                                                                     1740
                                                                     1800
gaggagcagt gtgaggcttt caacggctac aaccacagca ccaaccggct cactctcgcc
                                                                     1860
gtggcatggg tgcccaagta ctccggcgtg tctccccggg acaagtgcaa gctcatctgc
                                                                     1920
cgagccaatg gcactggcta cttctatgtg ctggcaccca aggtggtgga cggcacgctg
                                                                     1980
tgctctcctg actccacctc cgtctgtgtc caaggcaagt gcatcaaggc tggctgtgat
gggaacctgg gctccaagaa gagattcgac aagtgtgggg tgtgtgggggg agacaataag
                                                                     2040
                                                                      2100
agctgcaaga aggtgactgg actcttcacc aagcccatgc atggctacaa tttcgtggtg
                                                                     2160
gccatccccg caggegecte aagcategae atccgccage geggttacaa agggetgate
                                                                     2220
ggggatgaca actacetgge tetgaagaac agecaaggea agtacetget caacgggcat
                                                                     2280
ttegtggtgt eggeggtgga gegggaeetg gtggtgaagg geagtetget geggtaeage
ggcacgggca cagcggtgga gagcctgcag gcttcccggc ccatcctgga gccgctgacc
                                                                     2340
                                                                     2400
gtggaggtcc tctccgtggg gaagatgaca ccgcccggg tccgctactc cttctatctg
                                                                     2460
cccaaagagc ctcgggagga caagtcctct catcccaagg acccccgggg accctctgtc
                                                                     2520
ttgcacaaca gcgtcctcag cctctccaac caggtggagc agccggacga caggccccct
                                                                     2580
gcacgctggg tggctggcag ctgggggccg tgctccgcga gctgcggcag tggcctgcag
                                                                     2640
aagcgggcgg tggactgtcg gggctccgcc gggcagcgca cggtccctgc ctgtgatgca
gcccatcggc ccgtggagac acaagcctgc ggggagccct gccccacctg ggagctcagc
                                                                     2700
gcctggtcac cctgctccaa gagctgcggc cggggatttc agaggcgctc actcaagtgt
                                                                     2760
gtgggccacg gaggccggct gctggcccgg gaccagtgca acttgcaccg caagccccag
                                                                     2820
                                                                     2853
gagctggact tctgcgtcct gaggccgtgc tga
```

<210> 4 <211> 950

<212> PRT

<213> homo sapiens

<400> 4

Met Leu Leu Gly Ile Leu Thr Leu Ala Phe Ala Gly Arg Thr Ala 5 10 Gly Gly Ser Glu Pro Glu Arg Glu Val Val Val Pro Ile Arg Leu Asp 20 25 Pro Asp Ile Asn Gly Arg Arg Tyr Tyr Trp Arg Gly Pro Glu Asp Ser 40 Gly Asp Gln Gly Leu Ile Phe Gln Ile Thr Ala Phe Gln Glu Asp Phe 55 Tyr Leu His Leu Thr Pro Asp Ala Gln Phe Leu Ala Pro Ala Phe Ser 75 65 70 80 Thr Glu His Leu Gly Val Pro Leu Gln Gly Leu Thr Gly Gly Ser Ser 90 Asp Leu Arg Arg Cys Phe Tyr Ser Gly Asp Val Asn Ala Glu Pro Asp 100 105 110 Ser Phe Ala Ala Val Ser Leu Cys Gly Gly Leu Arg Gly Ala Phe Gly 120 125 Tyr Arg Gly Ala Glu Tyr Val Ile Ser Pro Leu Pro Asn Ala Ser Ala

	130					135					140					
Pro 145	Ala	Ala	Gln	Arg	Asn 150	Ser	Gln	Gly	Ala	His 155	Leu	Leu	Gln	Arg	Arg 160	
Gly	Val	Pro	Gly	Gly 165	Pro	Ser	Gly	Asp	Pro 170	Thr	Ser	Arg	Cys	Gly 175	Val	
Ala	Ser	Gly	Trp 180	Asn	Pro	Ala	Ile	Leu 185	Arg	Ala	Leu	Asp	Pro 190	Tyr	Lys	
Pro	Arg	Arg 195	Ala	Gly	Phe	Gly	Glu 200	Ser	Arg	Ser	Arg	Arg 205	Arg	Ser	Gly	
Arg	Ala 210	Lys	Arg	Phe	Val	Ser 215	Ile	Pro	Arg	Tyr	Va1 220	Glu	Thr	Leu	Val	
Val 225	Ala	Asp	Glu	Ser	Met 230	Val	Lys	Phe	His	Gly 235	Ala	Asp	Leu	Glu	His 240	
_				245					250	_	Leu	_	_	255		
			260					265			Lys		270			
		275					280				Asn	285				
	290			_		295		_			Asn 300	_				
305					310					315	Phe				320	
				325					330		Met			335		
		_	340		_			345			Ile		350			
		355					360				Gly	365				
	370					375					Val 380					
385					390					395	Gln				400	
				405					410		Thr			415		
	_		420	_				425			Ser		430			
		435					440				Leu	445				
	450			_		455		_		_	Pro 460	_				
465					470					475	Gly				480	
Gln	Thr	Arg	His	Phe 485	Pro	Trp	Ala	Asp	Gly 490	Thr	Ser	Cys	Gly	Glu 495	Gly	
-		_	500	_	_		-	505		_	His		510		_	
		515	_	_			520	_			Pro	525				
	530		_	_	_	535					Arg 540	_		_		
545					550					555	Glu				560	
_				565					570		Ser			575	_	
Lys	Ser	Phe	Arg	Glu	Glu	Gln	Cys	Glu	Ala	Phe	Asn	Gly	Tyr	Asn	His	

			580					585					590		
Ser	Thr	Asn 595	Arg	Leu	Thr	Leu	Ala 600	Val	Ala	Trp	Val	Pro 605	Lys	Tyr	Ser
Gly	Val 610	Ser	Pro	Arg	Asp	Lys 615	Cys	Lys	Leu	Ile	Cys 620	Arg	Ala	Asn	G1y
Thr 625	Gly	Tyr	Phe	Tyr	Val 630	Leu	Ala	Pro	Lys	Val 635	Val	Asp	Gly	Thr	Leu 640
Сув	Ser	Pro	Asp	Ser 645	Thr	Ser	Val	Cys	Val 650	Gln	Gly	Lys	Cys	Ile 655	Lys
Ala	Gly	Cys	Asp 660	Gly	Asn	Leu	Gly	Ser 665	Lys	Lys	Arg	Phe	Asp 670	Lys	Cys
Gly	Val	Cys 675	Gly	Gly	Asp	Asn	Lys 680	Ser	Cys	Lys	Lys	Val 685	Thr	Gly	Leu
Phe	Thr 690	Lys	Pro	Met	His	Gly 695	Tyr	Asn	Phe	Val	Val 700	Ala	Ile	Pro	Ala
Gly 705	Ala	Ser	Ser	Ile	Asp 710	Ile	Arg	Gln	Arg	Gly 715	Tyr	Lys	Gly	Leu	Ile 720
Gly	Asp	Asp	Asn	Tyr 725	Leu	Ala	Leu	Lys	Asn 730	Ser	Gln	Gly	Lys	Tyr 735	Leu
Leu	Asn	Gly	His 740	Phe	Val	Val	Ser	Ala 745	Val	Glu	Arg	Asp	Leu 750	Val	Val
Lys	Gly	Ser 755	Leu	Leu	Arg	Tyr	Ser 760	Gly	Thr	Gly	Thr	Ala 765	Val	Glu	Ser
Leu	Gln 770	Ala	Ser	Arg	Pro	Ile 775	Leu	Glu	Pro	Leu	Thr 780	Val	Glu	Val	Leu
Ser 785	Val	Gly	Lys	Met	Thr 790	Pro	Pro	Arg	Val	Arg 795	Tyr	Ser	Phe	Tyr	Leu 800
Pro	Lys	Glu	Pro	Arg 805	Glu	Asp	Lys	Ser	Ser 810	His	Pro	Lys	Asp	Pro 815	Arg
_			820					825					830	Gln	
Glu	Gln	Pro 835	Asp	Asp	Arg	Pro	Pro 840	Ala	Arg	Trp	Val	Ala 845	Gly	Ser	Trp
Gly	Pro 850	Cys	Ser	Ala	Ser	Cys 855	Gly	Ser	Gly	Leu	Gln 860	Lys	Arg	Ala	Val
865					870					875				Asp	880
				885				,	890					Pro 895	
_			900		_			905		_		_	910	Arg	
		915					920		_			925		Leu	
	930					Leu 935	His	Arg	Lys	Pro	Gln 940	Glu	Leu	Asp	Phe
Cys 945	Val	Leu	Arg	Pro	Cys 950										
<210> 5															
<211> 1104															
<212	2> DI	ΙA													

<213> homo sapiens

<400> 5

atgettetge tgggeateet aaccetgget ttegeeggge gaacegetgg aggetetgag ceagageggg aggtagtegt teceateega etggaeeegg acattaaegg eegeegetae

60 120 tactggcggg gtcccgagga ctccggggat cagggactca tttttcagat cacagcattt 180 caggaggact tttacctaca cctgacgccg gatgctcagt tcttggctcc cgccttctcc 240 300 actgagcate tgggegteec cetecagggg cteacegggg getetteaga cetgegaege tgcttctatt ctggggacgt gaacgccgag ccggactcgt tcgctgctgt gagcctgtgc 360 ggggggctcc gcggagcctt tggctaccga ggcgccgagt atgtcattag cccgctgccc 420 480 aatgetageg egeeggegge geagegeaac ageeagggeg cacacettet eeagegeegg ggtgttccgg gcgggccttc cggagacccc acctctcgct gcggggtggc ctcgggctgg 540 aaccccgcca tcctacgggc cctggaccct tacaagccgc ggcgggcggg cttcggggag 600 agtcgtagcc ggcgcaggtc tgggcgcgcc aagcgtttcg tgtctatccc gcggtacgtg 660 gagacgctgg tggtcgcgga cgagtcaatg gtcaagttcc acggcgcgga cctggaacat 720 780 tatctgctga cgctgctggc aacggcggcg cgactctacc gccatcccag catcctcaac cccatcaaca tcgttgtggt caaggtgctg cttcttagag atcgtgactc cgggcccaag 840 gtcaccggca atgcggccct gacgctgcgc aacttctgtg cctggcagaa gaagctgaac 900 aaagtgagtg acaagcaccc cgagtactgg gacactgcca tcctcttcac caggcaggac 960 ctgtgtggag ccaccacctg tgacaccctg ggcatggctg atgtgggtac catgtgtgac 1020 cccaagagaa gctgctctgt cattgaggac gatgggcttc catcagcctt caccactgcc 1080 cacgagetgg gtaaggetgg ataa 1104

<210> 6 <211> 367

<212> PRT

<213> homo sapiens

<400> 6

Met Leu Leu Gly Ile Leu Thr Leu Ala Phe Ala Gly Arg Thr Ala 10 Gly Gly Ser Glu Pro Glu Arg Glu Val Val Val Pro Ile Arg Leu Asp 20 25 Pro Asp Ile Asn Gly Arg Arg Tyr Tyr Trp Arg Gly Pro Glu Asp Ser 40 Gly Asp Gln Gly Leu Ile Phe Gln Ile Thr Ala Phe Gln Glu Asp Phe 55 60 Tyr Leu His Leu Thr Pro Asp Ala Gln Phe Leu Ala Pro Ala Phe Ser 70 75 Thr Glu His Leu Gly Val Pro Leu Gln Gly Leu Thr Gly Gly Ser Ser 90 Asp Leu Arg Arg Cys Phe Tyr Ser Gly Asp Val Asn Ala Glu Pro Asp 100 105 110 Ser Phe Ala Ala Val Ser Leu Cys Gly Gly Leu Arg Gly Ala Phe Gly 120 125 Tyr Arg Gly Ala Glu Tyr Val Ile Ser Pro Leu Pro Asn Ala Ser Ala 135

Tyr Arg Gly Ala Glu Tyr Val Ile Ser Pro Leu Pro Asn Ala Ser Ala 130 135 140

Pro Ala Ala Gln Arg Asn Ser Gln Gly Ala His Leu Leu Gln Arg Arg 145 150 155 160

Gly Val Pro Gly Gly Pro Ser Gly Asp Pro Thr Ser Arg Cys Gly Val 165 170 175

Ala Ser Gly Trp Asn Pro Ala Ile Leu Arg Ala Leu Asp Pro Tyr Lys

180

185

190

Pro Arg Arg Ala Gly Phe Gly Glu Ser Arg Ser Arg Arg Arg Ser Gly

Pro Arg Arg Ala Gly Phe Gly Glu Ser Arg Ser Arg Arg Ser Gly
195 200 205

Arg Ala Lys Arg Phe Val Ser Ile Pro Arg Tyr Val Glu Thr Leu Val 210 220

Val Ala Asp Glu Ser Met Val Lys Phe His Gly Ala Asp Leu Glu His 225 230 235 240

Tyr Leu Leu Thr Leu Leu Ala Thr Ala Ala Arg Leu Tyr Arg His Pro 245 250 255

```
Ser Ile Leu Asn Pro Ile Asn Ile Val Val Lys Val Leu Leu Leu
            260
                                265
                                                     270
Arg Asp Arg Asp Ser Gly Pro Lys Val Thr Gly Asn Ala Ala Leu Thr
        275
                            280
Leu Arg Asn Phe Cys Ala Trp Gln Lys Lys Leu Asn Lys Val Ser Asp
                        295
                                            300
Lys His Pro Glu Tyr Trp Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp
305
                    310
                                        315
Leu Cys Gly Ala Thr Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly
                325
Thr Met Cys Asp Pro Lys Arg Ser Cys Ser Val Ile Glu Asp Asp Gly
            340
                                                     350
                                345
Leu Pro Ser Ala Phe Thr Thr Ala His Glu Leu Gly Lys Ala Gly
                            360
<210> 7
<211> 3446
<212> DNA
<213> homo sapiens
<400> 7
```

gtggcgctga ttgggccgtc caaagaggag ggggccttta ataggctcgc ccagcgcctg 60 gettgetgeg etgegagtgg etgeggttge gagaageege eeggeaeett eegetagtte 120 teggetgeaa atettegtee ttgeacttga cagegattgt acttaagete ecagggegeg 180 ctttgcttgg aaaggcacag gtaggaagcg cgggctgccg ggtgcacgct cgccgccctg 240 ggaggagtct ccctcccttg gctctccttt ctgggaactg ccggctgtcc cgtagcgttg 300 360 geggtteeag agtgeggget geaeggagae egeggagage geeggagage eeggeeage 420 ccettcccac agegeggegg tgcgctgccc ggegccatgc ttctgctggg catcctaacc 480 ctggctttcg ccgggcgaac cgctggaggc tctgagccag agcgggaggt agtcgttccc atccgactgg acccggacat taacggccgc cgctactact ggcggggtcc cgaggactcc 540 600 ggggatcagg gactcatttt tcagatcaca gcatttcagg aggactttta cctacacctg 660 acgccggatg ctcagttctt ggctcccgcc ttctccactg agcatctggg cgtcccctc 720 caggggctca cegggggctc ttcagacctg cgacgctgct tctattctgg ggacgtgaac 780 gccgagccgg actcgttcgc tgctgtgagc ctgtgcgggg ggctccgcgg agcctttggc 840 taccgaggcg ccgagtatgt cattagcccg ctgcccaatg ctagcgcgcc ggcggcgcag 900 cgcaacagcc agggcgcaca ccttctccag cgccggggtg ttccgggcgg gccttccgga gaccccacct ctcgctgcgg ggtggcctcg ggctggaacc ccgccatcct acgggccctg 960 1020 gaccettaca ageegeggeg ggegggette ggggagagte gtageeggeg eaggtetggg 1080 cgcgccaagc gtttcgtgtc tatcccgcgg tacgtggaga cgctggtggt cgcggacgag 1140 tcaatggtca agttccacgg cgcggacctg gaacattatc tgctgacgct gctggcaacg geggegegae tetacegeea teccageate etcaacecea teaacategt tgtggtcaag 1200 gtgctgcttc ttagagatcg tgactccggg cccaaggtca ccggcaatgc ggccctgacg 1260 ctgcgcaact tctgtgcctg gcagaagaag ctgaacaaag tgagtgacaa gcaccccgag 1320 tactgggaca ctgccatcct cttcaccagg caggacctgt gtggagccac cacctgtgac 1380 accotgggca tggctgatgt gggtaccatg tgtgacccca agagaagctg ctctgtcatt 1440 gaggacgatg ggcttccatc agccttcacc actgcccacg agctgggcca cgtgttcaac 1500 atgccccatg acaatgtgaa agtctgtgag gaggtgtttg ggaagctccg agccaaccac 1560 1620 atgatgtccc cgaccctcat ccagatcgac cgtgccaacc cctggtcagc ctgcagtgct 1680 gccatcatca ccgacttcct ggacageggg cacggtgact gcctcctgga ccaacccagc 1740 aagcccatct ccctgcccga ggatctgccg ggcgccagct acaccctgag ccagcagtgc gagetggett ttggegtggg etecaageee tgteettaca tgeagtactg caccaagetg 1800 tggtgcaccg ggaaggccaa gggacagatg gtgtgccaga cccgccactt cccctgggcc 1860 1920 gatggcacca gctgtggcga gggcaagctc tgcctcaaag gggcctgcgt ggagagacac aacctcaaca agcacagggt ggatggttcc tgggccaaat gggatcccta tggcccctgc 1980 2040 tegegeacat gtggtggggg cgtgcagctg gccaggaggc agtgcaccaa ccccacccct 2100 gccaacgggg gcaagtactg cgagggagtg agggtgaaat accgatcctg caatctggag

ccctgcccca	gctcagcctc	cggaaagagc	ttccgggagg	agcagtgtga	ggctttcaac	2160
ggctacaacc	acagcaccaa	ccggctcact	ctcgccgtgg	catgggtgcc	caagtactcc	2220
ggcgtgtctc	cccgggacaa	gtgcaagctc	atctgccgag	ccaatggcac	tggctacttc	2280
tatgtgctgg	cacccaaggt	ggtggacggc	acgctgtgct	ctcctgactc	cacctccgtc	2340
tgtgtccaag	gcaagtgcat	caaggctggc	tgtgatggga	acctgggctc	caagaagaga	2400
ttcgacaagt	gtggggtgtg	tgggggagac	aataagagct	gcaagaaggt	gactggactc	2460
ttcaccaagc	ccatgcatgg	ctacaatttc	gtggtggcca	tccccgcagg	cgcctcaagc	2520
atcgacatcc	gccagcgcgg	ttacaaaggg	ctgatcgggg	atgacaacta	cctggctctg	2580
aagaacagcc	aaggcaagta	cctgctcaac	gggcatttcg	tggtgtcggc	ggtggagcgg	2640
gacctggtgg	tgaagggcag	tctgctgcgg	tacagcggca	cgggcacagc	ggtggagagc	2700
ctgcaggctt	cccggcccat	cctggagccg	ctgaccgtgg	aggtcctctc	cgtggggaag	2760
atgacaccgc	cccgggtccg	ctactccttc	tatctgccca	aagagcctcg	ggaggacaag	2820
tcctctcatc	ccaaggaccc	ccggggaccc	tctgtcttgc	acaacagcgt	cctcagcctc	2880
tccaaccagg	tggagcagcc	ggacgacagg	cccctgcac	gctgggtggc	tggcagctgg	2940
gggccgtgct	ccgcgagctg	cggcagtggc	ctgcagaagc	gggcggtgga	ctgtcggggc	3000
tccgccgggc	agcgcacggt	ccctgcctgt	gatgcagccc	atcggcccgt	ggagacacaa	3060
gcctgcgggg	agccctgccc	cacctgggag	ctcagcgcct	ggtcaccctg	ctccaagagc	3120
tgcggccggg	gatttcagag	gcgctcactc	aagtgtgtgg	gccacggagg	ccggctgctg	3180
gcccgggacc	agtgcaactt	gcaccgcaag	ccccaggagc	tggacttctg	cgtcctgagg	3240
ccgtgctgag	tggggtcatc	gctttctccc	cctcactctc	caccccactg	atatgccagc	3300
gttctgccag	ctggagtagc	gggcagagga	cggtggccag	gggctcacgc	cacgatgtca	3360
cccacatccg	gggacaagga	ccatgggctg	gggcgagagg	ttccttcttc	ttcccttgga	3420
ctgggcaaaa	agggaaaacc	cccagg				3446