Задание 11-3. Морской хронометр.

Первые попытки создать морской хронометр, работающий независимо от качки и прочих факторов, были предприняты в конце XVII века. Известны разработки Христиана Гюйгенса, Уильяма Дерема и других учёных. Но в уже упомянутом 1714 году Комиссия долгот учредила приз в 10 000 фунтов, впоследствии сумму подняли до 20 000 фунтов. Эта сумма сейчас превышает 2 миллиона фунтов стерлингов!

Преуспел в итоге английский часовщик-самоучка Джон Гаррисон. Они с братом Джеймсом были специалистами по «часовым шкафам», большим напольным часам с длинными маятниками. За разработку Гаррисон взялся в 1730 году в возрасте 37 лет, и свой первый морской хронометр продемонстрировал в 1736-м.

На фото показана точная модель хронометра Гаррисона, хранящаяся в музее Гринвичской лаборатории.

В данном задании вам необходимо проанализировать колебательную систему этого устройства. На рис. 1 показана упрощенная схема маятниковой системы, которая состоит из двух одинаковых вертикальных маятников. Каждый из них состоит из жесткого стержня длины l (массой стержня можно пренебречь), который может вращаться в вертикальной плоскости вокруг горизонтальной оси O, на противоположном конце стержня закреплен массивный шар массы m (его можно считать материальной точкой). Маятники соединены пружиной жесткости k (массой пружины также можно пренебречь), которая прикреплена к стержням на середине их длины.

Пружина «работает» только на растяжение: при растяжении пружины возникает сила упругости, подчиняющаяся закону Гука; при сжатии пружины силы упругости отталкивания не возникает, пружина просто провисает. При анализе возможных режимов движения маятников удобно использовать безразмерный параметр

$$\gamma = \frac{2mg}{kl} \,, \tag{1}$$

где *g* - ускорение свободного падения. Этот параметр легко изменять, изменяя массу шаров.

Будем рассматривать случай, когда оба маятника колеблются симметрично (рис.2). Положение стержня будем характеризовать углом отклонения стержня от вертикали φ (рис. 3).

В первой попытке создания хронометра длина пружины в недеформированном состоянии в точности равнялась расстоянию между стержнями *а* в вертикальном положении (см. рис. 1).

- 1. Запишите зависимость потенциальной энергии системы от угла отклонения стержней $U(\varphi)$, полагая, что при $\varphi=0$ U=0. Постройте схематические графики этой зависимости при двух значениях параметра a) $\gamma<1$; б) $\gamma>1$.
- 2. Покажите, что колебания стержней в этом случае, невозможны ни при каких значениях параметра γ .

Для того, чтобы стержни могли колебаться изобретатели предложили использовать удлиненную пружину. В этом случае пружина оказывается недеформированной при симметричном отклонении стержней на угол φ_0 .

- 3. Запишите уравнение, для определения положений равновесия стержней.
- 4. Найдите, при каких значениях параметра γ , существуют положения равновесия стержней.
- 5. Укажите, вблизи какого положения равновесия возможны колебания.

Пусть $\varphi_0 = 10^\circ$; $\gamma = 0.30$.

- 6. Найдите значение угла φ_1 , при котором стержни могут находиться в положении равновесия.
- 7. Получите формулу для периода малых колебаний стержней вблизи положения равновесия φ_1 .
- 8. Чему равна максимально возможная амплитуда колебаний в этом случае.

 $\underline{\textit{Подсказка}}$. Для углов меньших 20° можно считать, что

$$\sin \varphi \approx \varphi$$

$$\cos \varphi \approx 1 - \frac{\varphi^2}{2} \,. \tag{2}$$

Задание 11-3. Морской хронометр. Листы ответов

1. Зависимость потенциальной энергии системы от угла отклонения стержней $U(\varphi)$ =

Схематические графики зависимости $U(\varphi)$ при двух значениях параметра а) $\gamma < 1$; б) $\gamma > 1$.

3. Уравнение, для определения положений равновесия стержней

4. Значения параметра γ , при которых существуют положения равновесия стержней γ

5. Колебания возможны вблизи

6. Значение угла (формула, численное значение)

 $\varphi_1 =$

Третий этап республиканской олимпиады по учебному предмету «Физика» 2022-2023 учебный год

7. Формула для периода колебаний		
T =		
1 —		

8. Максимальная амплитуда колебаний

$$\varphi_{\rm max} =$$