# On counterfactual inference with factors models and nearest neighbors

Raaz Dwivedi, CDT Summer School

## To think about

- Limitations of the model and how to possibly relax it
- Limitations of the analysis and how to possible sharpen it

# Recap: Latent factor model

$$R_{i,t} = R_{i,t}(A_{i,t}) \triangleq \theta_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}^{(A_{i,t})}$$

T time factors



user factor (e.g., personal traits) time factor
(e.g., societal, weather changes)

Nuser  $u_{\bullet}^{(a)}$  $\theta^{(a)}$  $\theta_{1}^{(a)}$ factors  $(u_N^{(a)})$  $\left(\theta_{N,T}^{(a)}\right)$  $\Delta(a)$ 

# Recap: Latent factor model

$$R_{i,t} = R_{i,t}(A_{i,t}) \triangleq \theta_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}^{(A_{i,t})}$$

 $\theta_{i,t}^{(a)} \triangleq \langle u_i^{(a)}, v_t^{(a)} \rangle$ 

- A generalization of mixed effects model
- No parametric assumptions on the **unknown** distributions of latent factors or noise
- Paper also considers  $\theta_{i,t}^{(a)} \triangleq f(u_i^{(a)}, v_t^{(a)})$  for **unknown** Lipschitz f



T time factors

#### User nearest neighbors estimator for treatment a

$$R_{i,t} = R_{i,t}(A_{i,t}) \triangleq \theta_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}^{(A_{i,t})}$$

1. Compute distance between user pairs

i, j under treatment a using all data

$$\rho_{i,j}^{(a)} = \frac{\sum_{t'=1}^{T} (R_{i,t'} - R_{j,t'})^{2} \cdot \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}{\sum_{t'=1}^{T} \mathbf{1}(A_{i,t'} = A_{j,t'} = a)} + \frac{\hat{\sigma}_{\rho}}{\sqrt{\sum_{t'=1}^{T} \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}}$$

2. Average over user neighbors treated with *a* at time *t* 

$$\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} = \frac{\sum_{j=1}^{N} R_{j,t} \mathbf{1}(\rho_{i,j}^{(a)} \leq \eta, A_{j,t} = a)}{\sum_{j=1}^{N} \mathbf{1}(\rho_{i,j}^{(a)} \leq \eta, A_{j,t} = a)}$$



#### User nearest neighbors estimator for treatment a

$$R_{i,t} = R_{i,t}(A_{i,t}) \triangleq \theta_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}^{(A_{i,t})}$$

Note that the estimator is agnostic to sampling policy or the generative model for the latent factors



#### User nearest neighbors estimator for treatment a

$$R_{i,t} = R_{i,t}(A_{i,t}) \triangleq \theta_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}^{(A_{i,t})}$$

Something should bother you about this estimator when treatments are sampled sequentially !!!



Informal theorem: [Dwivedi-Tian-Tomkins-Klasnja-Murphy-Shah '22a]

For suitably chosen  $\eta$  & under regularity conditions on latent factors

- iid latent factors, sub-Gaussian noise
- sequentially adaptive policies with conditionally independent treatments across users that choose a with probability  $\geq p^{\dagger}$

Informal theorem: [Dwivedi-Tian-Tomkins-Klasnja-Murphy-Shah '22a]

For suitably chosen  $\eta$  & under regularity conditions on latent factors

- iid latent factors, sub-Gaussian noise
- sequentially adaptive policies with conditionally independent treatments across users that choose a with probability  $\geq p^{\dagger}$

for each user i at each time t, with high probability

$$(\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} - \theta_{i,t}^{(a)})^2 \lesssim \frac{1}{\sqrt{p^2T}} + \frac{1}{p \cdot \#Neighbors}$$

**Informal theorem:** [Dwivedi-Tian-Tomkins-Klasnja-Murphy-Shah '22a] For suitably chosen  $\eta$  & under regularity conditions

- iid latent factors, sub-Gaussian noise
- sequentially adaptive policies with conditionally independent treatments across users that choose a with probability  $\geq p^{\dagger}$

for each user i at each time t, with high probability

$$(\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} - \theta_{i,t}^{(a)})^2 \lesssim \frac{1}{\sqrt{p^2 T}} + \frac{1}{pN/M}$$

(user factors  $\sim$  uniform over a finite set of size M)

**Informal theorem:** [Dwivedi-Tian-Tomkins-Klasnja-Murphy-Shah '22a] For suitably chosen  $\eta$  & under regularity conditions

- iid latent factors, sub-Gaussian noise
- sequentially adaptive policies with conditionally independent treatments across users that choose a with probability  $\geq p^{\dagger}$

for each user i at each time t, with high probability

$$(\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} - \theta_{i,t}^{(a)})^2 \lesssim \frac{1}{\sqrt{p^2T}} + \frac{1}{pN/M}$$

$$(\hat{\theta}_{i,t,\text{user-NN}}^{(a)} - \theta_{i,t}^{(a)})^2 \lesssim \frac{1}{\sqrt{p^2 T}} + \frac{1}{(pN)^{2/(d+2)}}$$

User factor distribution

(user factors  $\sim$  uniform over a finite set of size M)

(user factors ~ Uniform in  $[-1,1]^d$ )

# User-NN guarantees

• Asymptotic confidence intervals as  $N, T \rightarrow \infty$ :

$$\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} \pm \frac{1.96\widehat{\sigma}}{\sqrt{\text{#neighbors}_{i,t,a}}}$$

Confidence intervals for treatment effect  $\theta_{i,t}^{(1)} - \theta_{i,t}^{(0)}$ 

$$|\hat{\theta}_{i,t,\text{user-NN}}^{(a)} - \theta_{i,t}^{(a)}| = \tilde{O}\left(\frac{1}{T^{1/4}} + \frac{1}{\sqrt{N}}\right)$$

$$|\widehat{\theta}_{i,t,\text{time-NN}}^{(a)} - \theta_{i,t}^{(a)}| = \widetilde{O}\left(\frac{1}{N^{1/4}} + \frac{1}{\sqrt{T}}\right)$$

# Simulation results

Uniform latent factors on  $[-0.5,0.5]^4$ , Gaussian noise, pooled  $\varepsilon$ -greedy policy ( $\varepsilon=0.5$ )





USVT: A baseline algorithm from [Chatterjee 2014]

#### We prove a general error bound for user NN (with actions sampled by learning policies)

$$(\widehat{\theta}_{i,t,\eta}^{(a)} - \theta_{i,t}^{(a)})^2 \lesssim \frac{1}{\lambda_{\star}^2} \left( \eta - 2\sigma^2 + \frac{C}{\sqrt{p^2 T}} \right) + \frac{\sigma^2}{p N_{i,\eta' - e_T}} + c_{noise} \left[ \frac{N_{i,\eta' + e_T} - N_{i,\eta' - e_T}}{p N_{i,\eta' - e_T}} \right]^2$$

NN bias due to threshold

Error in NN distance NN noise variance

NN bias inflation due to learning policy

$$\lambda_{\star} \triangleq \lambda_{\min}(\Sigma_{v}) \text{ where } \Sigma_{v} = \mathbb{E}[v_{t'}v_{t'}^{\top}]$$

$$N_{i,\gamma} \triangleq |\{j \neq i : (u_{i} - u_{j})^{\top} \Sigma_{v}(u_{i} - u_{j}) \leq \gamma\}|$$

# Steps towards deriving the general bound

## User-NN with data split (no missingness)

$$R_{i,t} = R_{i,t}(A_{i,t}) \triangleq \theta_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}^{(A_{i,t})}$$

$$\rho_{i,j}^{(a)} = \frac{\sum_{t' \neq t} (R_{i,t'} - R_{j,t'})^2}{T - 1}$$

$$\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} = \frac{\sum_{j=1}^{N} R_{j,t} \mathbf{1}(\rho_{i,j}^{(a)} \leq \eta)}{\sum_{j=1}^{N} \mathbf{1}(\rho_{i,j}^{(a)} \leq \eta)}$$

Why may we want to do a data split?



$$R_{i,t} = R_{i,t}(A_{i,t}) \triangleq \theta_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}^{(A_{i,t})}$$

• 
$$\hat{\theta}_{i,t,\text{user-NN}}^{(a)} = \frac{\sum_{j \in user\ nbrs} R_{j,t}}{|user\ nbrs|} = \frac{\sum_{j \in user\ nbrs} \theta_{j,t}^{(a)} + \varepsilon_{j,t}^{(a)}}{|user\ nbrs|}$$

$$= \frac{\sum_{j \in user\ nbrs} u_j}{|user\ nbrs|} v_t + \frac{\sum_{j \in user\ nbrs} \varepsilon_{j,t}^{(a)}}{|user\ nbrs|}$$

$$R_{i,t} = R_{i,t}(A_{i,t}) \triangleq \theta_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}^{(A_{i,t})}$$

$$\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} = \frac{\sum_{j \in user\ nbrs} R_{j,t}}{|user\ nbrs|} = \frac{\sum_{j \in user\ nbrs} \theta_{j,t}^{(a)} + \varepsilon_{j,t}^{(a)}}{|user\ nbrs|}$$

$$= \frac{\sum_{j \in user\ nbrs} u_{j}}{|user\ nbrs}| v_{t} + \frac{\sum_{j \in user\ nbrs} \varepsilon_{j,t}^{(a)}}{|user\ nbrs}|$$

$$\hat{u}_{i}$$

$$\bar{\varepsilon}_{t}$$

user-nbrs = 
$$\{j: \rho_{i,j}^{(a)} \leq \eta\}$$

$$\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} = \frac{\sum_{j \in user\ nbrs} R_{j,t}}{|user\ nbrs|} = \frac{\sum_{j \in user\ nbrs} \theta_{j,t}^{(a)} + \varepsilon_{j,t}^{(a)}}{|user\ nbrs|}$$

$$= \frac{\sum_{j \in user\ nbrs} u_j}{|user\ nbrs}| v_t + \frac{\sum_{j \in user\ nbrs} \varepsilon_{j,t}^{(a)}}{|user\ nbrs}|$$

• 
$$|\theta_{i,t}^{(a)} - \hat{\theta}_{i,t,\text{user-NN}}^{(a)}| = |u_i v_t - \hat{\theta}_{i,t,\text{user-NN}}^{(a)}| \le |u_i v_t - \hat{u}_i v_t| + |\bar{\varepsilon}_t|$$

#### Re-expressing the distance without data-split

$$= (u_i - u_j)^2 \frac{\sum_{t'=1}^T v_{t'}^2}{T} + \frac{\sum_{t'=1}^T (\varepsilon_{i,t'} - \varepsilon_{j,t'})^2}{T} + 2(u_i - u_j) \frac{\sum_{t'=1}^T v_t'(\varepsilon_{i,t'} - \varepsilon_{j,t'})}{T}$$

#### Re-expressing the distance without data-split

- $\rho_{i,j}^{(a)}$  depends on noise at time t  $\Longrightarrow$  user-nbrs =  $\{j: \rho_{i,j}^{(a)} \leq \eta\}$  are correlated with noise at time t
- $\bar{\varepsilon}_{t} = \frac{\sum_{j \in user\ nbrs} \varepsilon_{j,t}^{(a)}}{|user\ nbrs|}$

-- need not behave as mean of iid noise and need not decay to 0

#### Re-expressing the distance without data-split

•  $\rho_{i,j}^{(a)}$  depends on noise at time t

$$\implies$$
 user-nbrs =  $\{j: \rho_{i,j}^{(a)} \leq \eta\}$  are correlated with noise at time  $t$ 

$$\bar{\varepsilon}_{t} = \frac{\sum_{j \in user\ nbrs} \varepsilon_{j,t}^{(a)}}{|user\ nbrs|}$$

Data splitting, or, excluding time t data in defining the distance  $\rho_{i,j}^{(a)}$  breaks this dependence and the noise at time t is not correlated with user-nbrs.

-- need not behave as mean of iid noise and need not decay to 0

#### What do these three terms concentrate on?

#### Inverting the distance to get a control on $|u_i - u_j|$

• Assume  $v_t$ ,  $\varepsilon$  are bounded and  $\mathbb{E}[v_t^2] = v_\star^2$  then

• 
$$|\rho_{i,j}^{(a)} - (u_i - u_j)^2 v_\star^2 - 2\sigma^2| \le \frac{C\sqrt{\log(c/\delta)}}{\sqrt{T}}$$
 with probability  $1 - \delta$ 

ullet Treat  $\delta$  as a constant

• Rearranging terms 
$$|u_i - u_j|^2 \le \frac{1}{v_\star^2} \left( \rho_{i,j}^{(a)} - 2\sigma^2 + \frac{C}{\sqrt{T}} \right)$$

# Univariate factors: A general error bound for user NN when $A_{j,t} \equiv a$ and we use data split, ignore time t data while computing distance)

$$(\widehat{\theta}_{i,t,\eta}^{(a)} - \theta_{i,t}^{(a)})^2 \lesssim \frac{1}{v_{\star}^2} \left( \eta - 2\sigma^2 + \frac{C}{\sqrt{T-1}} \right) + \frac{\sigma^2}{N_{i,\eta'-e_T}}$$

$$\eta' \qquad e_T$$
NN bias Error in NN noise due to threshold NN distance variance

$$v_{\star}^2 = \mathbb{E}[v_{t'}^2]$$

$$N_{i,\gamma} \triangleq |\{j \neq i : (u_i - u_i)^2 v_{\star}^2 \leq \gamma\}|$$

#### User-NN with data split under pure exploration $\mathbb{P}(A_{i,t} = a) = p$

$$R_{i,t} = R_{i,t}(A_{i,t}) \triangleq \theta_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}^{(A_{i,t})}$$

users

$$\rho_{i,j}^{(a)} = \frac{\sum_{t'\neq t} (R_{i,t'} - R_{j,t'})^2 \cdot \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}{\sum_{t'\neq t} \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}$$

$$\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} = \frac{\sum_{j=1}^{N} R_{j,t} \mathbf{1}(\rho_{i,j}^{(a)} \leq \eta, A_{j,t} = a)}{\sum_{j=1}^{N} \mathbf{1}(\rho_{i,j}^{(a)} \leq \eta, A_{j,t} = a)}$$



28

#### Univariate factors + pure exploration policy $\mathbb{P}(A_{i,t} = a) = p$ : A general error bound for user NN with data split

$$(\widehat{\theta}_{i,t,\eta}^{(a)} - \theta_{i,t}^{(a)})^2 \lesssim \frac{1}{v_{\star}^2} \left( \eta - 2\sigma^2 + \frac{C}{\sqrt{p^2(T-1)}} \right) + \frac{\sigma^2}{pN_{i,\eta'-e_T}}$$

 $e_{7}$ 

NN bias due to threshold

Error in NN distance

NN noise variance

$$v_{\star}^2 = \mathbb{E}[v_{t'}^2]$$

$$N_{i,\gamma} \triangleq |\{j \neq i : (u_i - u_j)^2 v_{\star}^2 \leq \gamma\}|$$

# User-NN with data split: Will this trivially work when policy is sequential/learning?

$$R_{i,t} = R_{i,t}(A_{i,t}) \triangleq \theta_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}^{(A_{i,t})}$$

users

$$\rho_{i,j}^{(a)} = \frac{\sum_{t'\neq t} (R_{i,t'} - R_{j,t'})^2 \cdot \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}{\sum_{t'\neq t} \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}$$

$$\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} = \frac{\sum_{j=1}^{N} R_{j,t} \mathbf{1}(\rho_{i,j}^{(a)} \leq \eta, A_{j,t} = a)}{\sum_{j=1}^{N} \mathbf{1}(\rho_{i,j}^{(a)} \leq \eta, A_{j,t} = a)}$$



# User-NN with data split: Will this trivially work when policy is sequential/learning?

$$R_{i,t} = R_{i,t}(A_{i,t}) \triangleq \theta_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}^{(A_{i,t})}$$

users

$$\rho_{i,j}^{(a)} = \frac{\sum_{t' < t} (R_{i,t'} - R_{j,t'})^2 \cdot \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}{\sum_{t' < t} \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}$$

$$\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} = \frac{\sum_{j=1}^{N} R_{j,t} \mathbf{1}(\rho_{i,j}^{(a)} \leq \eta, A_{j,t} = a)}{\sum_{j=1}^{N} \mathbf{1}(\rho_{i,j}^{(a)} \leq \eta, A_{j,t} = a)}$$

How about this?



# Back to our original user-NN: No data-split + learning policy

$$R_{i,t} = R_{i,t}(A_{i,t}) \triangleq \theta_{i,t}^{(A_{i,t})} + \varepsilon_{i,t}^{(A_{i,t})}$$

users

$$\rho_{i,j}^{(a)} = \frac{\sum_{t'=1}^{T} (R_{i,t'} - R_{j,t'})^2 \cdot \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}{\sum_{t'=1}^{T} \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}$$

$$\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} = \frac{\sum_{j=1}^{N} R_{j,t} \mathbf{1}(\rho_{i,j}^{(a)} \leq \eta, A_{j,t} = a)}{\sum_{j=1}^{N} \mathbf{1}(\rho_{i,j}^{(a)} \leq \eta, A_{j,t} = a)}$$

How about this?



# A new sandwich argument for user-nbrs = $\{j: \rho_{i,j}^{(a)} \leq \eta\}$

• First using Azuma-Hoeffding concentration, we show that

$$|\rho_{i,j}^{(a)} - (u_i - u_j)^2 v_{\star}^2 - 2\sigma^2| \le \frac{C}{\sqrt{p^2 T}}$$

with high probability for a learning policy with exploration p

# A new sandwich argument for user-nbrs = $\{j: \rho_{i,j}^{(a)} \leq \eta\}$

First using Azuma-Hoeffding concentration, we show that

$$|\rho_{i,j}^{(a)} - (u_i - u_j)^2 v_{\star}^2 - 2\sigma^2| \le \frac{C}{\sqrt{p^2 T}}$$

with high probability for a learning policy with exploration p

• Define 
$$Q_1 \triangleq \{j : (u_i - u_j)^2 v_{\star}^2 \le (\eta - 2\sigma^2 + \frac{C}{\sqrt{p^2 T}})\}$$

and 
$$Q_2 \triangleq \{j : (u_i - u_j)^2 v_{\star}^2 \le (\eta - 2\sigma^2 - \frac{C}{\sqrt{p^2 T}})\}$$

# A new sandwich argument for user-nbrs = $\{j: \rho_{i,j}^{(a)} \leq \eta\}$

• First using Azuma-Hoeffding concentration, we show that

$$|\rho_{i,j}^{(a)} - (u_i - u_j)^2 v_{\star}^2 - 2\sigma^2| \le \frac{C}{\sqrt{p^2 T}}$$

with high probability for a learning policy with exploration p

• Define 
$$Q_1 \triangleq \{j : (u_i - u_j)^2 v_{\star}^2 \le \left(\eta - 2\sigma^2 + \frac{C}{\sqrt{p^2 T}}\right)\}$$

and 
$$Q_2 \triangleq \{j : (u_i - u_j)^2 v_{\star}^2 \le (\eta - 2\sigma^2 - \frac{C}{\sqrt{p^2 T}})\}$$

• Then we have  $Q_2 \subseteq \text{User-nbrs} \subseteq Q_1$ 

#### Applying the sandwich argument for neighbors

$$\bar{\varepsilon}_t^2 = \frac{(\sum_{j \in user\ nbrs} \varepsilon_{j,t}^{(a)} \mathbf{1}(A_{j,t} = a))^2}{(user\ nbrs\ with\ A_{j,t} = a)^2}$$

#### Applying the sandwich argument for neighbors

$$\bar{\varepsilon}_t^2 = \frac{(\sum_{j \in user\ nbrs} \varepsilon_{j,t}^{(a)} \mathbf{1}(A_{j,t} = a))^2}{(user\ nbrs\ with\ A_{j,t} = a)^2}$$

$$= \frac{\left(\sum_{j \in Q_1} \varepsilon_{j,t}^{(a)} \mathbf{1}(A_{j,t} = a) + \sum_{j \in user\ nbrs \setminus Q_1} \varepsilon_{j,t}^{(a)} \mathbf{1}(A_{j,t} = a)\right)^2}{(user\ nbrs\ with\ A_{j,t} = a)^2}$$

Lower part of the sandwich

#### Applying the sandwich argument for neighbors

$$\bar{\varepsilon}_t^2 = \frac{(\sum_{j \in user\ nbrs} \varepsilon_{j,t}^{(a)} \mathbf{1}(A_{j,t} = a))^2}{(user\ nbrs\ with\ A_{j,t} = a)^2}$$

$$= \frac{\left(\sum_{j \in Q_1} \varepsilon_{j,t}^{(a)} \mathbf{1}(A_{j,t} = a) + \sum_{j \in user\ nbrs \setminus Q_1} \varepsilon_{j,t}^{(a)} \mathbf{1}(A_{j,t} = a)\right)^2}{(user\ nbrs\ with\ A_{j,t} = a)^2}$$

Lower part of the sandwich

$$\leq 2 \frac{(\sum_{j \in Q_1} \varepsilon_{j,t}^{(a)} \mathbf{1}(A_{j,t} = a))^2}{(users \in Q_1 \text{ with } A_{j,t} = a)^2} + 2c_{noise} \frac{(\sum_{j \in Q_2 \setminus Q_1} \mathbf{1}(A_{j,t} = a))^2}{(users \in Q_1 \text{ with } A_{j,t} = a)^2}$$

Upper part of the sandwich

#### Applying the sandwich argument for neighbors

$$\bar{\varepsilon}_t^2 = \frac{(\sum_{j \in user\ nbrs} \varepsilon_{j,t}^{(a)} \mathbf{1}(A_{j,t} = a))^2}{(user\ nbrs\ with\ A_{j,t} = a)^2}$$

$$= \frac{\left(\sum_{j \in Q_1} \varepsilon_{j,t}^{(a)} \mathbf{1}(A_{j,t} = a) + \sum_{j \in user\ nbrs \setminus Q_1} \varepsilon_{j,t}^{(a)} \mathbf{1}(A_{j,t} = a)\right)^2}{(user\ nbrs\ with\ A_{j,t} = a)^2}$$

$$\leq 2 \frac{(\sum_{j \in Q_1} \varepsilon_{j,t}^{(a)} \mathbf{1}(A_{j,t} = a))^2}{(users \in Q_1 \text{ with } A_{j,t} = a)^2} + 2c_{noise} \frac{(\sum_{j \in Q_2 \setminus Q_1} \mathbf{1}(A_{j,t} = a))^2}{(users \in Q_1 \text{ with } A_{j,t} = a)^2}$$

$$\lesssim \frac{\sigma^2}{pN_{i,\eta'-e_T}} + c_{noise} \left[ \frac{N_{i,\eta'+e_T} - N_{i,\eta'-e_T}}{pN_{i,\eta'-e_T}} \right]^2$$

## Draw illustration

# Our bound: Obtained by tuning a general error bound for user NN for sequential pooled policies over $\eta$

$$(\widehat{\theta}_{i,t,\eta}^{(a)} - \theta_{i,t}^{(a)})^2 \lesssim \frac{1}{\lambda_{\star}^2} \left( \eta - 2\sigma^2 + \frac{C}{\sqrt{p^2 T}} \right) + \frac{\sigma^2}{p N_{i,\eta' - e_T}} + c_{noise} \left[ \frac{N_{i,\eta' + e_T} - N_{i,\eta' - e_T}}{p N_{i,\eta' - e_T}} \right]^2$$

 $\eta'$ 

1

NN bias due to threshold N

 $e_T$ 

Error in NN distance

NN noise variance

NN bias inflation due to learning policy

$$\lambda_{\star} \triangleq \lambda_{\min}(\Sigma_{v}) \text{ where } \Sigma_{v} = \mathbb{E}[v_{t'}v_{t'}^{\top}]$$

$$N_{i,\gamma} \triangleq |\{j \neq i : (u_{i} - u_{j})^{\top} \Sigma_{v}(u_{i} - u_{j}) \leq \gamma\}|$$

## Proof summary for user-NN

$$\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} = \frac{\sum_{j \in user \ nbrs} R_{j,t}}{|user \ nbrs|} = \frac{\sum_{j \in user \ nbrs} \theta_{j,t}^{(a)} + \varepsilon_{j,t}^{(a)}}{|user \ nbrs|}$$

$$= \frac{\sum_{j \in user \ nbrs} u_j}{|user \ nbrs|} v_t + \frac{\sum_{j \in user \ nbrs} \varepsilon_{j,t}^{(a)}}{|user \ nbrs|}$$

$$\widehat{u}_i : \overline{\varepsilon}_t$$

• 
$$|\theta_{i,t}^{(a)} - \hat{\theta}_{i,t,\text{user-NN}}^{(a)}| = |u_i v_t - \hat{\theta}_{i,t,\text{user-NN}}^{(a)}| \le |u_i v_t - \hat{u}_i v_t| + |\bar{\varepsilon}_t|$$

## Summary of the proof sketch for unit or time nearest neighbors

• 
$$|u_i v_t - \hat{\theta}_{i,t,user-NN}^{(a)}| \le |u_i v_t - \hat{u}_i v_t| + |\bar{\varepsilon}_t| = O(|u_i - \hat{u}_i|)$$

• 
$$|u_i v_t - \hat{\theta}_{i,t,\text{time-NN}}^{(a)}| \le |u_i v_t - u_i \hat{v}_t| + |\bar{\varepsilon}_i| = O(|v_t - \hat{v}_t|)$$

Can we combine both to improve the quality?

#### Can we make the <u>error rates symmetric</u> in N and T?

$$|\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} - \theta_{i,t}^{(a)}| = \widetilde{O}\left(\frac{1}{T^{1/4}} + \frac{1}{\sqrt{N}}\right)$$

$$\downarrow$$

$$|\widehat{??} - \theta_{i,t}^{(a)}| = \widetilde{O}\left(\frac{1}{\sqrt{T}} + \frac{1}{\sqrt{N}}\right)$$

$$\uparrow$$

$$|\widehat{\theta}_{i,t,\text{time-NN}}^{(a)} - \theta_{i,t}^{(a)}| = \widetilde{O}\left(\frac{1}{N^{1/4}} + \frac{1}{\sqrt{T}}\right)$$

#### Can we make the <u>error rates symmetric</u> in N and T?

$$|\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} - \theta_{i,t}^{(a)}| = \widetilde{O}\left(\frac{1}{T^{1/4}} + \frac{1}{\sqrt{N}}\right)$$

$$|\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} - \theta_{i,t}^{(a)}| = \widetilde{O}\left(\frac{1}{\sqrt{T}} + \frac{1}{\sqrt{N}}\right)$$

$$|\widehat{\theta}_{i,t,\text{time-NN}}^{(a)} - \theta_{i,t}^{(a)}| = \widetilde{O}\left(\frac{1}{N^{1/4}} + \frac{1}{\sqrt{T}}\right)$$

Uniform factors on  $[-0.5,0.5]^4$ , Gaussian noise, pooled  $\varepsilon$ -greedy policy ( $\varepsilon=0.5$ )



#### Can we make the <u>error rates symmetric</u> in N and T?

Uniform factors on  $[-0.5,0.5]^4$ , Gaussian noise, pooled  $\varepsilon$ -greedy policy ( $\varepsilon=0.5$ )

$$|\hat{\theta}_{i,t,\text{DR-NN}}^{(a)} - \theta_{i,t}^{(a)}| = \tilde{O}\left(\frac{1}{\sqrt{T}} + \frac{1}{\sqrt{N}}\right)$$

With a suitable variant of nearest neighbors

[**Dwivedi**-Tian-Tomkins-Klasnja-Murphy-Shah '22b]



## Simulation results

Uniform latent factors on  $[-0.5,0.5]^4$ , Gaussian noise, pooled  $\varepsilon$ -greedy policy ( $\varepsilon=0.5$ )



## Personalized HeartSteps results 好力((ロッケ....



Treatments assigned with Thompson sampling independently for 91 users for 90 days, 5 times a day



DR-NN error ≈ min { user-NN error, time-NN error }

## In the search of improved estimator...

• Let's ignore the noise term and consider one nearest neighbor. "j" is a user neighbor so that  $\hat{u}_i = u_j$  and "t" is time neighbor so that  $\hat{v}_t = v_{t'}$ 

• 
$$\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} = R_{j,t} = u_j v_t$$
 and

$$\widehat{\theta}_{i,t,\text{time-NN}}^{(a)} = R_{i,t'} = u_i v_{t'}$$

Can we combine to improve?

• Average the two estimates: 
$$\frac{u_j v_t + u_i v_{t'}}{2} = \frac{R_{j,t} + R_{i,t'}}{2}$$

• Use both neighbors: Outcome of user j at time t':  $u_j v_{t'} = R_{j,t'}$ 

## Discussion questions

- What are the limitations of the factor model and the assumptions made for stating the non-asymptotic guarantee? Can you try to weaken these assumptions, to include states, delayed effects?
- Given all these counterfactual estimates, what kind of quantities could you investigate? How would you use them for between study analyses or to help the design of next study?
- **Hard**: Would the "averaged/merged" combination strategy significantly improve the performance?
  - Can you think of other ways to improve the NN estimator for the current model or more generally?

## Error of the "averaged" estimate

$$|u_{i}v_{t} - \frac{u_{j}v_{t} + u_{i}v_{t'}}{2}| = \frac{|u_{i}v_{t} - u_{j}v_{t} + u_{i}v_{t} - u_{i}v_{t'}|}{2} \le \frac{|u_{i}v_{t} - u_{j}v_{t}| + |u_{i}v_{t} - u_{i}v_{t'}|}{2}$$

$$= \frac{|u_{i} - u_{j}||v_{t}| + |u_{i}||v_{t} - v_{t}'|}{2}$$

$$= \frac{O(|u_i - u_j|) + O(|v_t - v_t'|)}{2}$$

$$=\frac{1}{2}$$
 (User-NN Error + Time-NN Error)

≈ max { User-NN Error, Time-NN Error}

## Error of the "merged" estimate

$$|u_i v_t - u_j v_{t'}| = |u_i v_t - u_j v_t + u_j v_t - u_j v_{t'}| \le |u_i v_t - u_j v_t| + |u_j v_t - u_j v_{t'}|$$

$$= |u_i - u_j| |v_t| + |u_j| |v_t - v_t'|$$

$$= O(|u_i - u_j|) + O(|v_t - v_t'|)$$

= User-NN Error + Time-NN Error

≈ max{User-NN Error, Time-NN Error}

## What do we desire?

• Convert + to  $\times$ :  $|u_i v_t - v_t| = |u_i - u_j| \times |v_t - v_{t'}|$ 

= User-NN Error × Time-NN Error

or max to min:

≈ min {User-NN Error, Time-NN Error}

#### What should be our estimator? Let's expand the RHS...

$$u_{j}v_{t} - ?? = (u_{i} - u_{j}) \times (v_{t} - v_{t'})$$

$$= u_{t}v_{t} - u_{j}v_{t} - u_{i}v_{t'} + u_{j}v_{t'}$$

$$\Rightarrow \qquad ?? = u_{j}v_{t} + u_{i}v_{t'} - u_{j}v_{t'}$$

$$R_{j,t} + R_{i,t'} - R_{j,t'}$$

#### This is our improved nearest neighbors estimator!

$$u_{j}v_{t} - ?? = (u_{i} - u_{j}) \times (v_{t} - v_{t'})$$

$$= u_{t}v_{t} - u_{j}v_{t} - u_{i}v_{t'} + u_{j}v_{t'}$$

$$\Rightarrow ?? = u_{j}v_{t} + u_{i}v_{t'} - u_{j}v_{t'}$$

$$\widehat{\theta}_{i,t,DR-NN}^{(a)} = \frac{\sum_{j,t'} (R_{j,t} + R_{i,t'} - R_{j,t'}) \mathbf{1}_{i,t,j,t'}}{\sum_{j,t'} \mathbf{1}_{i,t,j,t'}}$$

$$\mathbf{1}_{i,t,j,t'} = \mathbf{1}(\rho_{i,j}^{(a)} \le \eta, \ \rho_{t,t'}^{(a)} \le \eta', A_{j,t} = A_{i,t'} = A_{j,t'} = a)$$

#### This is our improved nearest neighbors estimator!

$$u_{i}v_{t} - 2? = (u_{i} - u_{j}) \times (v_{t} - v_{t'})$$

$$= u_{i}v_{t} - u_{j}v_{t} - u_{i}v_{t'} + u_{j}v_{t'}$$

$$= u_{i}v_{t} + u_{i}v_{t'} - u_{i}v_{t'}$$

DR-NN error ≈ user-NN error × time-NN error

min{user-NN error, time-NN error}

#### Doubly robust to heterogeneity in user factors & time factors

Double robustness, double machine learning...

[... Cassel+ '77, Robinson '88, Särndal+ '89, Robins+ '94, '95, '08, '09, Newey+ '94, '18, Bickel+ '98, van der Laan+ '03, Lunceford+ '04, Davidian+ '05, Li+ '11, Jiang+ '15, Chernozhukov+ '18, Hirshberg+ '18, Diaz '19, Arkhangelsky+ '21, Dorn+ '21 ...]

#### Simplified view of doubly robust estimator for uv



| Problem setting                                | u                   | $\mathcal{V}$         |
|------------------------------------------------|---------------------|-----------------------|
| Factor model (this talk)                       | user factor         | time factor           |
| Observational studies (Causal inference)       | propensity function | mean outcome function |
| Off policy evaluation (Reinforcement learning) | importance ratio    | reward function       |

Double robustness, double machine learning...

[... Cassel+ '77, Robinson '88, Särndal+ '89, Robins+ '94, '95, '08, '09, Newey+ '94, '18, Bickel+ '98, van der Laan+ '03, Lunceford+ '04, Davidian+ '05, Li+ '11, Jiang+ '15, Chernozhukov+ '18, Hirshberg+ '18, Diaz '19, Arkhangelsky+ '21, Dorn+ '21 ...]

# Appendix [not covered in lecture]: Further details on derivations

## Disclaimer

• c, C are universal constants that might take a different value in each appearance

## Proof sketch for user-NN

• Simple case: Always assign  $A_{j,t} = a$  and  $\theta_{i,t}^{(a)} \triangleq u_i v_t$ 

$$\widehat{\theta}_{i,t,\text{user-NN}}^{(a)} = \frac{\sum_{j \in user\ nbrs} R_{j,t}}{|user\ nbrs|} = \frac{\sum_{j \in user\ nbrs} \theta_{j,t}^{(a)} + \varepsilon_{j,t}^{(a)}}{|user\ nbrs|}$$

$$= \frac{\sum_{j \in user\ nbrs} u_j}{|user\ nbrs|} v_t + \frac{\sum_{j \in user\ nbrs} \varepsilon_{j,t}^{(a)}}{|user\ nbrs|}$$

• 
$$|u_i v_t - \hat{u}_i v_t| \le \max_{j \in user\ nbrs} |u_i - u_j| |v_t| \lesssim \sqrt{\eta - 2\sigma^2 + \frac{1}{T^{1/4}}}$$

$$\bar{\varepsilon}_{t} = \frac{\sum_{j \in user\ nbrs} \varepsilon_{j,t}^{(a)}}{|user\ nbrs|} \lesssim \frac{\sigma}{\sqrt{|user\ nbrs|}} = \frac{\sigma}{\sqrt{N_{\eta}}}$$

# Our goal: Control $\max_{j \in user\ nbrs} |u_i - u_j| |v_t|$

- $|v_t|$  is bounded so suffices to bound  $\max_{j \in \textit{user nbrs}} |u_i u_j|$
- user neighbours =  $\{\rho_{i,j}^{(a)} \leq \eta\}$

$$\rho_{i,j}^{(a)} = \frac{\sum_{t'=1}^{T} (R_{i,t'} - R_{j,t'})^2 \cdot \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}{\sum_{t'=1}^{T} \mathbf{1}(A_{i,t'} = A_{j,t'} = a)} + \frac{\hat{\sigma}_{\rho}}{\sqrt{\sum_{t'=1}^{T} \mathbf{1}(A_{i,t'} = A_{j,t'} = a)}}$$

• In theory, we ignore the second term

#### Controlling the bias via concentration of distance

• Simple case: Always assign  $A_{j,t} = a$  and  $\theta_{i,t}^{(a)} \triangleq u_i v_t$ 

• 
$$\rho_{i,j}^{(a)} = \frac{\sum_{t'=1}^{T} (R_{i,t'} - R_{j,t'})^2}{T}$$

## Re-expressing the distance

• Simple case: Always assign  $A_{j,t} = a$  and  $\theta_{i,t}^{(a)} \triangleq u_i v_t$ 

#### Re-expressing the distance: Collecting into three terms

#### What do these three terms concentrate on?

• 
$$\rho_{i,j}^{(a)} = (u_i - u_j)^2 \frac{\sum_{t'=1}^T v_{t'}^2}{T} + \frac{\sum_{t'=1}^T (\varepsilon_{i,t'} - \varepsilon_{j,t'})^2}{T} + 2(u_i - u_j) \frac{\sum_{t'=1}^T v_t'(\varepsilon_{i,t'} - \varepsilon_{j,t'})}{T}$$

Recall our assumptions –  $v_t$  are iid  $\varepsilon_{i,t}$  are iid zero mean with variance  $\sigma$   $v_t$  and  $\varepsilon_{i,t}$  are independent of each other

#### What do these three terms concentrate on?

Recall our assumptions –  $v_t$  are iid

 $arepsilon_{i,t}$  are iid zero mean with variance  $\sigma$   $v_t$  and  $arepsilon_{i,t}$  are independent of each other

## Tools for concentration

• Markov's inequality: Let  $X_1, X_2, ..., X_T$  be iid random variables with mean  $\mu$  and variance Var(X), then

$$\mathbb{P}\left[\left|\frac{\sum_{i=1}^{T} X_i}{T} - \mu\right| \le \sqrt{\frac{\operatorname{Var}(X)}{\delta T}}\right] \ge 1 - \delta$$

## Tools for concentration

• Markov's inequality: Let  $X_1, X_2, ..., X_T$  be iid random variables with mean  $\mu$  and variance Var(X), then

$$\mathbb{P} \left| \left| \frac{\sum_{i=1}^{T} X_i}{T} - \mu \right| \le \sqrt{\frac{\text{Var}(X)}{\delta T}} \right| \ge 1 - \delta$$

• Chernoff-Hoeffding bound: If  $X_i$  have mean  $\mu$  and are  $\gamma$ —sub-Gaussian, i.e.,  $\mathbb{E}[e^{t(X-\mu)}] \le e^{t^2\gamma^2/2}$  then

$$\mathbb{P}\left[\left|\frac{\sum_{i=1}^{T} X_i}{T} - \mu\right| \le \gamma \sqrt{2\log(1/\delta)}\right] \ge 1 - \delta$$

• Useful fact if  $|X_i| \le c$ , then we can use  $\gamma = c$ 

#### What do these three terms concentrate around?

#### Their means!

$$\frac{\sum_{t'=1}^{T} v_{t'}^2}{T} - \mathbb{E}[v_{t'}^2] | \lesssim \frac{c\sqrt{\mathsf{Var}(v_{t'}^2)}}{\sqrt{\delta T}} \text{ or } \frac{c\sqrt{\mathsf{Sub-Gauss}(v_{t'}^2) \cdot \log(1/\delta)}}{\sqrt{T}}$$

#### What do these three terms concentrate around?

#### Their means!

• 
$$\rho_{i,j}^{(a)} = (u_i - u_j)^2 \frac{\sum_{t'=1}^T v_{t'}^2}{T} + \frac{\sum_{t'=1}^T (\varepsilon_{i,t'} - \varepsilon_{j,t'})^2}{T} + 2(u_i - u_j) \frac{\sum_{t'=1}^T v_t'(\varepsilon_{i,t'} - \varepsilon_{j,t'})}{T}$$

$$\frac{\sum_{t'=1}^{T} v_{t'}^2}{T} - \mathbb{E}[v_{t'}^2] | \lesssim \frac{c\sqrt{\mathsf{Var}(v_{t'}^2)}}{\sqrt{\delta T}} \text{ or } \frac{c\sqrt{\mathsf{Sub-Gauss}(v_{t'}^2) \cdot \log(1/\delta)}}{\sqrt{T}}$$

$$|\frac{\sum_{t'=1}^{T} (\varepsilon_{i,t'} - \varepsilon_{j,t'})^2}{T} - 2\sigma^2| \lesssim \frac{c\sqrt{2 \text{Var}(\varepsilon^2)}}{\sqrt{\delta T}} \text{ or } \frac{c\sqrt{\text{Sub-Gauss}(\varepsilon^2) \cdot \log(1/\delta)}}{\sqrt{T}}$$

#### What do these three terms concentrate around?

#### Their means!

$$\frac{\sum_{t'=1}^{T} v_{t'}^2}{T} - \mathbb{E}[v_{t'}^2] | \lesssim \frac{c\sqrt{\mathsf{Var}(v_{t'}^2)}}{\sqrt{\delta T}} \text{ or } \frac{c\sqrt{\mathsf{Sub-Gauss}(v_{t'}^2) \cdot \log(1/\delta)}}{\sqrt{T}}$$

$$\frac{\sum_{t'=1}^{T} (\varepsilon_{i,t'} - \varepsilon_{j,t'})^2}{T} - 2\sigma^2 | \lesssim \frac{c\sqrt{2 \text{Var}(\varepsilon^2)}}{\sqrt{\delta T}} \text{ or } \frac{c\sqrt{\text{Sub-Gauss}(\varepsilon^2) \cdot \log(1/\delta)}}{\sqrt{T}}$$

$$|\frac{\sum_{t'=1}^{T} v_t'(\varepsilon_{i,t'} - \varepsilon_{j,t'})}{T} - |\mathbf{0}| \lesssim \frac{c\sqrt{2} \text{Var}(v_t \varepsilon)}{\sqrt{\delta T}} \text{ or } \frac{c\sqrt{\text{Sub-Gauss}(v_t \varepsilon)} \cdot \log(1/\delta)}{\sqrt{T}}$$

### Inverting the distance to get a control on $|u_i - u_j|$

• Assume  $v_t$ ,  $\varepsilon$  are bounded and  $\mathbb{E}[v_t^2] = v_\star^2$  then

• 
$$|\rho_{i,j}^{(a)} - (u_i - u_j)^2 v_\star^2 - 2\sigma^2| \le \frac{C\sqrt{\log(c/\delta)}}{\sqrt{T}}$$
 with probability  $1 - \delta$ 

ullet Treat  $\delta$  as a constant

• Rearranging terms 
$$|u_i - u_j|^2 \le \frac{1}{v_\star^2} \left( \rho_{i,j}^{(a)} - 2\sigma^2 + \frac{C}{\sqrt{T}} \right)$$

### Inverting the distance to get a control on $|u_i - u_j|$

• Assume  $v_t$ ,  $\varepsilon$  are bounded and  $\mathbb{E}[v_t^2] = v_\star^2$  then

• 
$$|\rho_{i,j}^{(a)} - (u_i - u_j)^2 v_\star^2 - 2\sigma^2| \le \frac{C\sqrt{\log(c/\delta)}}{\sqrt{T}}$$
 with probability  $1 - \delta$ 

ullet Treat  $\delta$  as a constant

• Rearranging terms 
$$|u_i - u_j|^2 \le \frac{1}{v_\star^2} \left( \rho_{i,j}^{(a)} - 2\sigma^2 + \frac{C}{\sqrt{T}} \right)$$

• So if 
$$\rho_{i,j}^{(a)} \le \eta \Longrightarrow |u_i - u_j| \lesssim \sqrt{\eta - 2\sigma^2} + \frac{C}{T^{1/4}}$$
 if  $v_\star^2 > 0$ .

## But how many users would satisfy $\rho_{i,j}^{(a)} \leq \eta$ ?

• 
$$N_{i,r} \triangleq |\{j \neq i : (u_i - u_j)^2 v_{\star}^2 \leq r\}|$$

• |User-nbrs| = 
$$|\rho_{i,j}^{(a)} \le \eta| \ge N_{i,\gamma}$$
 for  $\gamma = \eta - 2\sigma^2 - \frac{C\sqrt{\log(c/\delta)}}{\sqrt{T}}$ 

## But how many users would satisfy $\rho_{i,j}^{(a)} \leq \eta$ ?

• 
$$N_{i,r} \triangleq |\{j \neq i : (u_i - u_j)^2 v_{\star}^2 \leq r\}|$$

• |User-nbrs| = 
$$|\rho_{i,j}^{(a)} \le \eta| \ge N_{i,\gamma}$$
 for  $\gamma = \eta - 2\sigma^2 - \frac{C\sqrt{\log(c/\delta)}}{\sqrt{T}}$ 

Why do we care? Variance

• 
$$|\bar{\varepsilon}_t| = \frac{|\sum_{j \in user\ nbrs} \varepsilon_{j,t}^{(a)}|}{|user\ nbrs|} \lesssim \frac{\sigma}{\sqrt{N_{i,\gamma}}}$$

#### Univariate factors:

#### A general error bound for user NN

$$(\hat{\theta}_{i,t,\eta}^{(a)} - \theta_{i,t}^{(a)})^2 \lesssim \frac{1}{v_{\star}^2} \left( \eta - 2\sigma^2 + \frac{C}{\sqrt{T}} \right) + \frac{\sigma^2}{N_{i,\eta'-e_T}}$$

 $\eta'$ 

NN bias due to threshold

 $e_{T}$ 

Error in NN distance

NN noise variance

$$N_{i,\gamma} \triangleq |\{j \neq i : (u_i - u_j)^2 v_{\star}^2 \leq \gamma\}|$$

### Univariate factors + constant policy $\mathbb{P}(A_{i,t} = a) = :$ A general error bound for user NN

$$(\widehat{\theta}_{i,t,\eta}^{(a)} - \theta_{i,t}^{(a)})^2 \lesssim \frac{1}{v_{\star}^2} \left( \eta - 2\sigma^2 + \frac{C}{\sqrt{p^2 T}} \right) + \frac{\sigma^2}{p N_{i,\eta' - e_T}}$$

 $\eta'$ 

NN bias due to threshold

 $e_T$ 

Error in NN distance

NN noise variance

$$N_{i,\gamma} \triangleq |\{j \neq i : (u_i - u_j)^2 v_{\star}^2 \leq \gamma\}|$$

#### Multivariate factors + learning policy with $\mathbb{P}(A_{i,t} = a \mid History_{t-1}) \geq p$ : A general error bound for user NN

$$(\widehat{\theta}_{i,t,\eta}^{(a)} - \theta_{i,t}^{(a)})^2 \lesssim \frac{1}{v_{\star}^2} \left( \eta - 2\sigma^2 + \frac{C}{\sqrt{p^2 T}} \right) + \frac{\sigma^2}{p N_{i,\eta' - e_T}} + c_{noise} \left[ \frac{N_{i,\eta' + e_T} - N_{i,\eta' - e_T}}{p N_{i,\eta' - e_T}} \right]^2$$

NN bias due to threshold  $e_T$ 

Error in NN distance NN noise variance

NN bias inflation due to learning policy

$$N_{i,\gamma} \triangleq |\{j \neq i : (u_i - u_j)^2 v_{\star}^2 \leq \gamma\}|$$

## Scalings of $N_{i,\gamma}$

- When factors are sampled independently and uniformly from a discrete set  $\{\Delta,...,(M-1)\Delta\}$ 
  - $N_{i,r} \ge cN/M$  for any  $r \ge 0$  if  $v_{\star} > 0$ .
- ullet When factors are sampled independently and uniformly from a continuous set [0,1]
  - $N_{i,r} \ge c\sqrt{r/v_{\star}}$  for any  $r \ge 0$ .
- **HW:** You can now tune  $\eta$  to get refined error bounds.

## Multivariate factors: Bias analysis

• Assume  $v_t, \varepsilon$  are bounded and  $\mathbb{E}[v_t v_t^{\mathsf{T}}] = \Sigma_v$  then

$$|\rho_{i,j}^{(a)} - (u_i - u_j)^{\mathsf{T}} \Sigma_{v}(u_i - u_j) - 2\sigma^2| \leq \frac{C\sqrt{\log(c/\delta)}}{\sqrt{T}} \text{ with probability } 1 - \delta$$

ullet Treat  $\delta$  as a constant

• Rearranging terms 
$$||u_i - u_j||_2^2 \le \frac{1}{\lambda_\star^2} \left( \rho_{i,j}^{(a)} - 2\sigma^2 + \frac{C}{\sqrt{T}} \right)$$
 where  $\lambda_\star = \lambda_{\min}(\Sigma_v)$ 

• So if 
$$\rho_{i,j}^{(a)} \le \eta \Longrightarrow \|u_i - u_j\|_2 \lesssim \sqrt{\eta - 2\sigma^2} + \frac{C}{T^{1/4}}$$
 if  $\lambda_{\star}^2 > 0$ .

### Multivariate factors: Variance analysis

• 
$$N_{i,r} \triangleq |\{j \neq i : (u_i - u_j)^T \Sigma_{v}(u_i - u_j) \leq r\}|$$

• |User-nbrs| = 
$$|\rho_{i,j}^{(a)} \le \eta| \ge N_{i,\gamma}$$
 for  $\gamma = \eta - 2\sigma^2 - \frac{C\sqrt{\log(c/\delta)}}{\sqrt{T}}$ 

Why do we care? Variance

$$|\bar{\varepsilon}_t| = \frac{|\sum_{j \in user\ nbrs} \varepsilon_{j,t}^{(a)}|}{|user\ nbrs|} \lesssim \frac{\sigma}{\sqrt{N_{i,\gamma}}}$$

#### Multivariate factors:

### A general error bound for user NN when $A_{i,t}$ is always a

$$(\widehat{\theta}_{i,t,\eta}^{(a)} - \theta_{i,t}^{(a)})^2 \lesssim \frac{1}{\lambda_{\star}^2} \left( \eta - 2\sigma^2 + \frac{C}{\sqrt{T}} \right) + \frac{\sigma^2}{N_{i,\eta'-e_T}}$$

 $\eta'$ 

NN bias due to threshold

 $e_T$ 

Error in NN distance

NN noise variance

$$N_{i,\gamma} \triangleq |\{j \neq i : (u_i - u_j)^{\top} \Sigma_{v} (u_i - u_j) \leq \gamma\}|$$

## Multivariate factors + learning policy with exploration p: A general error bound for user NN

$$(\widehat{\theta}_{i,t,\eta}^{(a)} - \theta_{i,t}^{(a)})^2 \lesssim \frac{1}{\lambda_{\star}^2} \left( \eta - 2\sigma^2 + \frac{C}{\sqrt{p^2 T}} \right) + \frac{\sigma^2}{p N_{i,\eta' - e_T}} + c_{noise} \left[ \frac{N_{i,\eta' + e_T} - N_{i,\eta' - e_T}}{p N_{i,\eta' - e_T}} \right]^2$$

 $\eta'$ 

NN bias due to threshold

 $e_T$ 

Error in NN distance

NN noise variance

NN bias inflation due to learning policy

$$N_{i,\gamma} \triangleq |\{j \neq i : (u_i - u_j)^{\top} \Sigma_{v} (u_i - u_j) \leq \gamma\}|$$

## Constant policy: Bias analysis

- ullet Assume  $A_{j,t}$  are iid Bernoulli random variables p constant MRT Like in HeartSteps V1
  - Let a=1, then what is the distribution of  $B_{i,j,t'} \triangleq \mathbf{1}(A_{i,t'} = A_{j,t'} = a)$ ?

### Bias analysis: The denominator changes

• 
$$\left| (u_i - u_j)^2 \frac{\sum_{t'=1}^T v_{t'}^2 \cdot B_{i,j,t'}}{\sum_{t'=1}^T B_{i,j,t'}} - (u_i - u_j)^2 \mathbb{E}[v_{t'}^2] \right| \lesssim \frac{c_v^2 \sqrt{\log(1/\delta)}}{\sqrt{T_{i,j}}}$$

$$\left| \frac{\sum_{t'=1}^{T} (\varepsilon_{i,t'} - \varepsilon_{j,t'})^2 \cdot B_{i,j,t'}}{\sum_{t'=1}^{T} B_{i,j,t'}} - 2\sigma^2 \right| \lesssim \frac{c_{\varepsilon} \sqrt{\log(1/\delta)}}{\sqrt{T_{i,j}}}$$

• A better bound available:  $T_{i,j} \ge cp^2T$  with probability  $\ge 1 - e^{-cp^2T}$ .

### Bias analysis: The denominator changes

• Assume  $v_t, \varepsilon$  are bounded and  $\mathbb{E}[v_t v_t^{\mathsf{T}}] = \Sigma_v$  then

• Hence 
$$|\rho_{i,j}^{(a)} - (u_i - u_j)^{\mathsf{T}} \Sigma_v(u_i - u_j) - 2\sigma^2| \leq \frac{C\sqrt{\log(c/\delta)}}{\sqrt{p^2T}}$$
 with probability  $1 - \delta$ 

ullet Treat  $\delta$  as a constant

• Rearranging terms 
$$||u_i - u_j||_2^2 \le \frac{1}{\lambda_\star^2} \left( \rho_{i,j}^{(a)} - 2\sigma^2 + \frac{C}{\sqrt{p^2 T}} \right)$$
 where  $\lambda_\star = \lambda_{\min}(\Sigma_v)$ 

• So if 
$$\rho_{i,j}^{(a)} \le \eta \Longrightarrow \|u_i - u_j\|_2 \lesssim \sqrt{\eta - 2\sigma^2} + \frac{C}{p^{1/2}T^{1/4}}$$
 if  $\lambda_{\star}^2 > 0$ .

### Constant policy: Variance analysis: denominator changes

• 
$$N_{i,r} \triangleq |\{j \neq i : (u_i - u_j)^T \Sigma_v (u_i - u_j) \leq r\}|$$

• |User-nbrs| = 
$$|\rho_{i,j}^{(a)} \le \eta| \ge N_{i,\gamma}$$
 for  $\gamma = \eta - 2\sigma^2 - \frac{C\sqrt{\log(c/\delta)}}{\sqrt{p^2T}}$ 

Why do we care? Variance

$$|\bar{\varepsilon}_{t}| = \frac{|\sum_{j \in user\ nbrs} \varepsilon_{j,t}^{(a)} \mathbf{1}(A_{j,t} = a)|}{|user\ nbrs\ with\ A_{j,t} = a|} \lesssim \frac{\sigma}{\sqrt{pN_{i,\gamma}}}$$

# Multivariate factors + constant policy: A general error bound for user NN

$$(\widehat{\theta}_{i,t,\eta}^{(a)} - \theta_{i,t}^{(a)})^2 \lesssim \frac{1}{\lambda_{\star}^2} \left( \eta - 2\sigma^2 + \frac{C}{\sqrt{p^2 T}} \right) + \frac{\sigma^2}{p N_{i,\eta' - e_T}}$$

 $\eta'$ 

NN bias due to threshold

 $e_T$ 

Error in NN distance

NN noise variance

$$N_{i,\gamma} \triangleq |\{j \neq i : (u_i - u_j)^{\top} \Sigma_{v} (u_i - u_j) \leq \gamma\}|$$

# Multivariate factors + learning policy with exploration p: A general error bound for user NN

$$(\widehat{\theta}_{i,t,\eta}^{(a)} - \theta_{i,t}^{(a)})^2 \lesssim \frac{1}{\lambda_{\star}^2} \left( \eta - 2\sigma^2 + \frac{C}{\sqrt{p^2 T}} \right) + \frac{\sigma^2}{p N_{i,\eta' - e_T}} + c_{noise} \left[ \frac{N_{i,\eta' + e_T} - N_{i,\eta' - e_T}}{p N_{i,\eta' - e_T}} \right]^2$$

 $\eta'$ 

NN bias due to threshold

 $e_T$ 

Error in NN distance

NN noise variance

NN bias inflation due to learning policy

$$N_{i,\gamma} \triangleq |\{j \neq i : (u_i - u_j)^{\mathsf{T}} \mathbf{\Sigma}_{\mathbf{v}} (u_i - u_j) \leq \gamma\}|$$

### Learning policy: Sequential dependence between observations



# Learning policy: Bias analysis Similar except now with Martingales

Still goes through using "Azuma-Hoeffing bounds" and careful Martingale construction

$$\left| (u_i - u_j)^2 \frac{\sum_{t'=1}^T v_{t'}^2 \cdot B_{i,j,t'}}{\sum_{t'=1}^T B_{i,j,t'}} - (u_i - u_j)^2 \mathbb{E}[v_{t'}^2] \right| \lesssim \frac{c_v^2 \sqrt{\log(1/\delta)}}{\sqrt{T_{i,j}}}$$

$$\left| \frac{\sum_{t'=1}^{T} (\varepsilon_{i,t'} - \varepsilon_{j,t'})^2 \cdot B_{i,j,t'}}{\sum_{t'=1}^{T} B_{i,j,t'}} - 2\sigma^2 \right| \lesssim \frac{c_{\varepsilon} \sqrt{\log(1/\delta)}}{\sqrt{T_{i,j}}}$$

• A better bound available:  $T_{i,j} \ge cp^2T$  with probability  $\ge 1 - e^{-cp^2T}$ .

# Learning policy: Bias bounds Essentially same as the MRT bound

• If 
$$\rho_{i,j}^{(a)} \leq \eta \implies \|u_i - u_j\|_2 \lesssim \frac{1}{\lambda_{\star}} (\sqrt{\eta - 2\sigma^2} + \frac{C}{p^{1/2}T^{1/4}})$$
 if  $\lambda_{\star}^2 > 0$ .

### Learning policy: Variance analysis — Non-trivial changes

• 
$$N_{i,r} \triangleq |\{j \neq i : (u_i - u_j)^T \Sigma_v (u_i - u_j) \leq r\}|$$

• |User-nbrs| = 
$$|\rho_{i,j}^{(a)} \leq \eta| \geq N_{i,\gamma}$$
 for  $\gamma = \eta - 2\sigma^2 - \frac{C\sqrt{\log(c/\delta)}}{\sqrt{p^2T}}$ 

Why do we care? Variance

$$|\bar{\varepsilon}_t| = \frac{|\sum_{j \in user\ nbrs} \varepsilon_{j,t}^{(a)} \mathbf{1}(A_{j,t} = a)|}{|user\ nbrs\ with\ A_{j,t} = a|}$$
noise at  $t$  correlated with user neighbors (learning policy)

Martingale concentration, new sandwich argument for NN



## Learning policy: Variance bounds — Has a "bias" like term

$$\bar{\varepsilon}_{t}^{2} = \left(\frac{\sum_{j \in user\ nbrs} \varepsilon_{j,t}^{(a)} \mathbf{1}(A_{j,t} = a)}{|user\ nbrs\ with\ A_{j,t} = a|}\right)^{2}$$

$$\lesssim \frac{\sigma^2}{pN_{i,\eta'-e_T}} + c_{noise} \left[ \frac{N_{i,\eta'+e_T} - N_{i,\eta'-e_T}}{pN_{i,\eta'-e_T}} \right]^2$$

Martingale concentration, **new** sandwich argument for NN

# Multivariate factors + learning policy with exploration p: A general error bound for user NN

$$(\widehat{\theta}_{i,t,\eta}^{(a)} - \theta_{i,t}^{(a)})^2 \lesssim \frac{1}{\lambda_{\star}^2} \left( \eta - 2\sigma^2 + \frac{C}{\sqrt{p^2 T}} \right) + \frac{\sigma^2}{p N_{i,\eta' - e_T}} + c_{noise} \left[ \frac{N_{i,\eta' + e_T} - N_{i,\eta' - e_T}}{p N_{i,\eta' - e_T}} \right]^2$$

 $\eta'$ 

NN bias due to threshold

 $e_T$ 

Error in NN distance

NN noise variance

NN bias inflation due to learning policy

$$N_{i,\gamma} \triangleq |\{j \neq i : (u_i - u_j)^{\mathsf{T}} \mathbf{\Sigma}_{\mathbf{v}} (u_i - u_j) \leq \gamma\}|$$