

Grundbegriffe der Informatik Tutorium 38

Automaten und reguläre Sprachen
Patrick Fetzer, uxkln@student.kit.edu | 01.02.2018

Mealy-Automat

Ein Mealy-Automat ist ein Tupel $A = (Z, z_0, X, f, Y, h)$ mit...

- Z endliche, nichtleere Zustandsmenge
- $z_0 \in Z$ Startzustand
- X Eingabealphabet
- $f: Z \times X \rightarrow Z$ Zustandsübergangsfunktion
- Y Ausgabealphabet
- $h: Z \times X \rightarrow Y^*$ Ausgabefunktion

Patrick Fetzer, uxkln@student.kit.edu - Grundbegriffe der Informatik

Darstellung als Graph

- Zustände → Knoten
- Startzustand → Pfeil an diesen Knoten (nicht vergessen!)
- Zustandsüberführungsfunktion \rightarrow Kanten mit Beschriftung $w \in X$
- Ausgabefunktion \rightarrow zusätzliche Kantenbeschriftung $w \in Y^*$

2/29

Beispiel Mealy-Automat

$$f_*:Z\times X^* o Z$$

$$f_*\left(z,\varepsilon\right):=z$$
 $orall w\in X^*orall x\in X:f_*\left(z,wx
ight):=f\left(f_*\left(z,w
ight),x
ight)$

Anschaulich: "Endzustand"

$$f_{**}: Z \times X^* \to Z^*$$

$$f_{**}\left(z, \varepsilon\right) \coloneqq z$$
 $\forall w \in X^* \forall x \in X: f_{**}\left(z, wx\right) \coloneqq f_{**}\left(z, w\right) \cdot f\left(f_*\left(z, w\right), x\right)$

Anschaulich: "durchlaufene Zustände"

$$g_*: Z \times X^* o Y^*$$
 $g_*\left(z, \varepsilon\right) \coloneqq \varepsilon$ $orall w \in X^* orall x \in X: g_*\left(z, wx\right) \coloneqq g\left(f_*\left(z, w
ight), x
ight)$

Anschaulich: "letzte Ausgabe"

$$g_{**}: Z \times X^* \to Y^*$$

$$g_{**}(z, \varepsilon) \coloneqq \varepsilon$$

$$\forall w \in X^* \forall x \in X: f_{**}(z, wx) \coloneqq g_{**}(z, w) \cdot g_*(z, wx)$$

Anschaulich: "alle Ausgaben konkateniert"

Beispiel Mealy-Automat

- $f_*(A, aabba) = D$
- $f_{**}(A, aabba) = ABBCCD$
- $g_*(A, aabba) = x$
- $g_{**}(A, aabba) = 1010x$

Für welche $w \in X^*$ gilt $f_*(A, w) \neq D$?

Moore-Automat

Moore-Automat

Ein Moore-Automat ist ein Tupel $A = (Z, z_0, X, f, Y, h)$ mit...

- Z endliche Zustandsmenge
- $z_0 \in Z$ Anfangszustand
- X Eingabealphabet
- $f: Z \times X \rightarrow Z$ Zustandsübergangsfunktion
- Y Ausgabealphabet
- → Bis hierhin alles wie bei Mealy!
 - $h: Z \to Y^*$ Ausgabefunktion

Patrick Fetzer, uxkln@student.kit.edu - Grundbegriffe der Informatik

- Zustände → Knoten
- Startzustand → Pfeil an diesen Knoten (nicht vergessen!)
- Zustandsüberführungsfunktion \rightarrow Kanten mit Beschriftung $w \in X$
 - Ausgabefunktion \rightarrow zusätzliche Knotenbeschriftung $w \in Y^*$

Funktionen

- f_* und f_{**} wie beim Mealy-Automaten
- $g_* := h \circ f_*$
- $g_{**} := h_{**} \circ f_{**}$ Dabei bezeichnet h_{**} den durch h induzierten Homomorphismus.

Beispiel

- $f_*(A, aabba) = D$
- $f_{**}(A, aabba) = ABACCD$
- $g_*(A, aabba) = x$
- $g_{**}(A, aabba) = 11100x$

Wann gilt $g_*(A, w) = 0$?

Genau dann, wenn $w \in \{aa\}^*\{b\}^+$.

Umwandlung

Bemerkung

Für jeden Mealy-Automaten kann man einen Moore-Automaten konstruieren, der genau die gleiche Aufgabe erfüllt, und umgekehrt.

Umwandlung Mealy- in Moore-Automat

Links ein Mealy-, rechts ein Moore-Automat

Abbildung: Mealy

Abbildung: Moore

- Sonderfall von Moore-Automaten
- Bei einem Akzeptor will man nur wissen, ob die Eingabe akzeptiert wurde oder nicht (also reicht ein Bit als Ausgabealphabet)
- Statt der Ausgabefunktion h schreibt man einfach die Menge der akzeptierenden Zustände $F \subseteq Z$ auf
- Zustände, die nicht akzeptieren, heißen ablehnend
- Im Graphen werden akzeptierende Zustände einfach mit einem doppelten Kringel gekennzeichnet

Akzeptierte Wörter und Sprachen

Akzeptierte Wörter

Ein Wort $w \in X^*$ wird vom endlichen Akzeptor akzeptiert, wenn man ausgehend vom Anfangszustand bei Eingabe von w in einem akzeptierenden Zustand endet.

Bemerkung

Wird ein Wort nicht akzeptiert, dann wurde es abgelehnt

Akzeptierte formale Sprache

Die von einem Akzeptor A akzeptierte formale Sprache L(A) ist die Menge aller von ihm akzeptierten Wörter.

Aufgabe zu endlichen Akzeptoren

Konstruiere einen endlichen Akzeptor, der die Sprache

$$L_1(A) = \{w \in \{a,b\}^* : (\textit{N}_{\textit{a}}(w) \geq 3 \land \textit{N}_{\textit{b}}(w) \geq (2)\} \text{ erkennt.}$$

Lösung

Aufgabe zu endlichen Akzeptoren

Konstruiere einen endlichen Akzeptor, der die Sprache $L_2(A) = \{w_1 ababbw_2 | w_1, w_2 \in \{a, b\}^*\}$ erkennt.

Lösung

Aufgabe

Konstuiere einen endlichen Akzeptor der die Sprache $L_3 = \{w \in \{a,b\}^* | w \notin L_2\}$ akzeptiert.

Lösung

Ablehnende Zustände wereden zu akzeptierenden und andersrum.

Automaten

Turingmaschinen 0000000

Aufgaben zu endlichen Akzeptoren

- Gebe für den unten stehenden Automaten an, welche Sprache dieser akzeptiert.
- Gebe für die folgende Sprache über dem Alphabet $\{a,b\}$ einen endlichen Akzeptor an: $L = \{w \in \Sigma^* | N_a(w) \mod 3 > N_b(w) \mod 2\}$

Lösungen

Lösung 1

 $L = \{w \in \Sigma^* ||w| \text{ mod } 2 = 1\}$ (Worte ungerader Länger)

Lösung 2

Wann wird das leere Wort ε von einem endlichen Akzeptor akzeptiert? $\varepsilon \in L(A)$ gilt genau dann, wenn der Startzustand akzeptiert wird.

Gibt es einen endlichen Akzeptor, der die Sprache $L_1=\{w\in\{1\}^*|w\text{ ist Teilwort der Binärdarstellung von }\pi\}$ erkennt Gibt es einen endlichen Akzeptor, der die Sprache $L_2=\{0^k1^k|k\in\mathbb{N}_0\}$ erkennt

Turingmaschinen

Was sind Turingmaschinen?

- Sehr mächtige Erweiterung Automat
 - Was heißt m\u00e4chtig?
 - Turingmaschinen k\u00f6nnen eine gro\u00dfe Vielfalt von Problemen l\u00f6sen, einschlie\u00dflich vieler in GBI besprochener Probleme
- Gesteuert durch einen endlichen Automaten, aber mit einem unendlichen Arbeitsband zum Zwischenspeichern von Informationen
- Besitzen einen Kopf um auf dem Band zu lesen und zu schreiben
- Turingmaschinen sind sozusagen genauso m\u00e4chtig wie Computer
 - können also benutzt werden, um für Probleme zu entscheiden, ob sie gelöst werden können oder nicht

Definition von Turingmaschinen

Definition von Turingmaschinen

Eine Turingmaschine $T = (Z, z_0, X, f, g, m)$ besteht aus:

- Z Zustandsmenge
- $z_0 \in Z$ Startzustand
- X Bandalphabet
- ☐ Blanksymbol (sozusagen Markierung für Leerzeichen)
- $f: Z \times X \rightarrow Z$ partielle Zustandsübergangsfunktion
- ullet $g: Z \times X \rightarrow X$ partielle Ausgabefunktion
- $m: Z \times X \rightarrow \{L, N, R\}$ partielle Bewegungsfunktion

Anmerkung: partielle Funktionen sind nicht linkstotal, also manche Elemente des Definitionsbereichs werden nicht abgebildet.

Beispiel einer Turingmaschine

Beispiel einer Turingmaschine

Turingmaschinen 000●0000 25/29

Funktionen von Turingmaschinen

Wie sehen die konkreten Abbildungsvorschriften der linken vier Pfeile aus?

•
$$f: Z \times X \rightarrow Z$$

$$g: Z \times X \to X$$

$$m: Z \times X \rightarrow \{L, N, R\}$$

0 0, N	$(s1,0)\mapsto s6$	$(s1,0)\mapsto 0$	$(s1,0)\mapsto N$
1 0, R	$(s1,1) \mapsto s2$	$(s1,1)\mapsto 0$	$(s1,1)\mapsto R$
4 4 D	(-0.1)0	(-0 1) 1	(-0.1)

0,0,74	(31,0) / 700	(31,0) 7 0	(31,0) . / /4
1 0, R	$(s1,1) \mapsto s2$	$(s1,1)\mapsto 0$	$(s1,1) \mapsto R$
	$(s2,1) \mapsto s2$		
0 0, R	$(s2,1)\mapsto s3$	$(s2,1)\mapsto 0$	$(s2,1)\mapsto R$

m

Das Band einer Turingmaschine

 Unendliche Anreihung von Zeichen, die nach links und rechts unbegrenzt weiter geht

- Die Turingmaschine hat einen Kopf, mit dem sie das aktuelle Zeichen lesen oder überschreiben kann, oder kann ihn nach links oder rechts bewegen.
- Das Band einer Turingmaschine wird benutzt als...
 - Erhalten der Eingabe: Bevor die Turingmaschine startet, steht das Eingabewort auf dem Band, der Kopf steht auf dem ersten Zeichen der Eingabe.
 - Rückgabe der Ausgabe: Nach Beenden steht auf dem Band die Ausgabe (und der Kopf irgendwo).
 - Zwischenspeicher: Die Turingmaschine kann überall Informationen zwischenspeichern, diese müssen von der TM am Ende aber gelöscht

Beispielabarbeitungen

Gemeinsame Übung

Arbeite folgende Wörter mit der Turingmaschine ab:

- 0
- 1
- 11
- **111**

Was macht die Turingmaschine?

Automaten

Patrick Fetzer, uxkln@student.kit.edu - Grundbegriffe der Informatik

Turingmaschinen 000000●

01.02.2018