ECE253/CSE208 Introduction to Information Theory

Lecture 4: Convexity and Inequalities

Dr. Yu Zhang ECE Department University of California, Santa Cruz

• Chap 2 of Elements of Information Theory (2nd Edition) by Thomas Cover & Joy Thomas

Convex Functions

Definition (Convexity of functions)

ullet A function f(x) is convex over an interval (a,b) if and only if

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

holds for any $x_1, x_2 \in (a, b)$ and $\lambda \in [0, 1]$.

Figure: Any *chord* of a convex function is always above the function itself: The 0th-order condition of convexity.

Convex Functions

Definition (Convexity of functions)

ullet A function $f(\cdot)$ that is differentiable everywhere in (a,b) is convex if and only if

$$f(y) \ge f(x) + f'(x)(y - x)$$

for any $x, y \in (a, b)$.

Figure: Tangent lines are always global under-estimator of the function: The 1st-order condition of convexity.

Convex Functions

Definition (Convexity of functions)

• A function f(x) that is twice differentiable over (a,b) is convex if and only if

$$f''(x) \ge 0$$

for any $x \in (a, b)$.

Figure: Convex functions always curve upward (positive curvature).: The 2nd-order condition of convexity.

Examples. Convex functions: ax + b, |x|, x^2 , x^4 , $e^{\pm x}$, $x \log x$.

If f(x) is convex, then -f(x) is concave. Affine functions are both convex and concave.

Convexity in High-dimensional Spaces

Definition (Convex function)

A function $f(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$ is *convex* iif for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we have one of the following:

- 0th-order condition: $f(\lambda \mathbf{x} + (1 \lambda)\mathbf{y}) \leq \lambda f(\mathbf{x}) + (1 \lambda)f(\mathbf{y})$ for any $\lambda \in [0, 1]$.
- 1st-order condition: $f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} \mathbf{x})$
- 2nd-order condition: $\mathbf{H}_f := \nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$; i.e., the *Hessian* matrix is positive semi-definite (all eigenvalues are nonnegative), where $\mathbf{H}_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$.
- Strictly convex: if strict inequality always holds when $\mathbf{x} \neq \mathbf{y}$ and $\lambda \in (0,1)$.
- Strongly convex: $\mathbf{H}_f \succeq a\mathbf{I}$ for some constant a > 0 (the Hessian is positive definite).

Convexity-preserving Operations

restriction to a line: f convex $\iff f(\mathbf{x}_0 + t\mathbf{h})$ convex in t for all \mathbf{x}_0, \mathbf{h}

positive weighted sum: $\{f_i(\mathbf{x})\}_{i=1}^n$ convex and $w_i \geq 0 \Longrightarrow \sum_{i=1}^n w_i f_i(\mathbf{x})$ convex

integrals: for every $\mathbf{y} \in \mathcal{A}$, $w(\mathbf{y}) \ge 0$ and $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x}

 $\implies g(\mathbf{x}) := \int_{\mathcal{A}} w(\mathbf{y}) f(\mathbf{x}, \mathbf{y}) d\mathbf{y}$ is convex in \mathbf{x}

pointwise maximum: $f_1, f_2 \text{ convex} \implies \max\{f_1(\mathbf{x}), f_2(\mathbf{x})\}$ convex

composition with affine mapping: f convex $\implies g(\mathbf{x}) := f(\mathbf{A}\mathbf{x} + \mathbf{b})$ is convex in \mathbf{x} .

Convex Sets

Definition (Convex sets)

A set $S \subseteq \mathbb{R}^n$ is convex if and only if $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in S, \forall \ \mathbf{x}_1, \mathbf{x}_2 \in S, \lambda \in [0, 1].$

Geometrically, a convex set contains line segment between any two points in the set.

Convex sets are solid body without holes and curve outward.

examples (one convex, two nonconvex sets)

Figure: Convex and nonconvex sets (source: Stephen Boyd, Stanford).

Epigraph and Sublevel Set

• α -sublevel set of $f: \mathbb{R}^n \to \mathbb{R}$:

$$C_{\alpha} = \{ \mathbf{x} \in \text{dom} f : f(\mathbf{x}) \le \alpha \}$$

sublevel sets of convex functions are convex (converse is false)

• epigraph of $f: \mathbb{R}^n \to \mathbb{R}$:

$$\operatorname{epi} f = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} : \mathbf{x} \in \operatorname{dom} f, \ f(\mathbf{x}) \le t\}$$

f is a convex function \iff epif is a convex set

Convex Optimization Problem

Convex optimization problem in standard form:

$$\min_{\mathbf{x}} f_0(\mathbf{x})$$
s.to $f_i(\mathbf{x}) \le 0, \quad i = 1, ..., m$

$$\mathbf{a}_i^{\top} \mathbf{x} = b_i, \quad i = 1, ..., p$$

- f_0, f_1, \ldots, f_m are convex
- ullet equality constraints are affine (alternatively $\mathbf{A}\mathbf{x}=\mathbf{b})$

Important properties:

- 1. For convex problems, any local solution is also global.
- 2. If $f_0()$ is strictly convex, the minimizer is unique.
- 3. The optimal set X_{opt} is convex.

Jensen's Inequality

Lemma (Jenson's Inequality)

If X is a random variable and $f(\cdot)$ is a convex function, then

$$E(f(X)) \ge f(E(X))$$

Moreover, if f(X) is strictly convex, equality implies X = E(X) with probability 1.

Proof of Jensen's Inequality

1) For a two-point distribution $X \in \{x_1, x_2\}$, the convexity of $f(\cdot) \Longrightarrow$

$$p_1 f(x_1) + p_2 f(x_2) \ge f(p_1 x_1 + p_2 x_2).$$

2) Proof by induction: Assume Jenson's inequality holds for a (k-1)-mass point distribution. To show the inequality holds for a k-mass point distribution, define $p_i' = \frac{p_i}{1-p_k}$ for all i=1,2,...,k-1:

$$\sum_{i=1}^{k} p_i f(x_i) = p_k f(x_k) + (1 - p_k) \sum_{i=1}^{k-1} p'_i f(x_i)$$

$$\geq p_k f(x_k) + (1 - p_k) f\left(\sum_{i=1}^{k-1} p'_i x_i\right)$$

$$\geq f\left(p_k x_k + (1 - p_k) \sum_{i=1}^{k-1} p'_i x_i\right) = f\left(\sum_{i=1}^{k} p_i x_i\right)$$

where the 1st inequality is from the induction while the 2nd inequality is due to the convexity of $f(\cdot)$.

Log-sum Inequality

Lemma (Log-sum inequality)

For nonnegative numbers a_1, \ldots, a_n and b_1, \ldots, b_n , we have

$$\sum_{i=1}^n a_i \log \frac{a_i}{b_i} \geq \left(\sum_{i=1}^n a_i\right) \log \left(\frac{\sum_{i=1}^n a_i}{\sum_{i=1}^n b_i}\right)$$

with equality iif $\frac{a_i}{b_i} = constant$.

Proof: $f(t) = t \log t$ is convex $(f''(t) > 0) \implies \sum \lambda_i f(t_i) \ge f(\sum \lambda_i t_i)$;

Setting $\lambda_i = \frac{b_i}{\sum b_i}$ and $t_i = \frac{a_i}{b_i}$ yields the log-sum inequality.

Example: When $n = 2 \implies a_1 \log \frac{a_1}{b_1} + a_2 \log \frac{a_2}{b_2} \ge (a_1 + a_2) \log \left(\frac{a_1 + a_2}{b_1 + b_2}\right)$.

Gibbs' Inequality (Information Inequality)

Theorem (Gibbs' Inequality)

Let p(x) and q(x) be two probability mass functions. Then, $D(p||q) \ge 0$ with equality if and only if p(x) = q(x) for all x.

Proof:
$$-D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{q(x)}{p(x)} \le \log \left(\sum_{x \in \mathcal{X}} p(x) \frac{q(x)}{p(x)} \right) = \log \left(\sum_{x \in \mathcal{X}} q(x) \right) = 0.$$

Corollary (Nonnegativity of mutual information)

For any two RVs X and Y, we have $I(X;Y) \ge 0$ with equality iff X and Y are independent.

Corollary (Conditional mutual Information)

$$I(X;Y|Z) \ge 0$$

with equality iff X and Y are conditionally independent given Z, which is denoted as $(X \perp\!\!\!\perp Y) \mid Z$.

Gibbs' Inequality (cont'd)

Theorem (Conditioning reduces entropy (information cannot hurt))

 $H(X|Y) \leq H(X)$ with equality iif $X \perp \!\!\! \perp Y$.

- Intuitively, knowing Y can only reduce the uncertainty in X.
- Caveat: This is true only in the average sense. That is, H(X|Y=y)>H(X) can happen for a specific y.

Theorem (Independence bound on entropy)

Let RVs $\{X_i\}_{i=1}^n$ be drawn from the PMF $p(x_1,\ldots,x_n)$. Then,

 $H(X_1,\ldots,X_n) \leq \sum_{i=1}^n H(X_i)$

with equality iff $\{X_i\}_{i=1}^n$ are independent.

Proof: By chain rule: $H(X_1, X_2, ..., X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, ..., X_1) \le \sum_{i=1}^n H(X_i)$.

Maximum Entropy

Theorem (Uniform distribution has the maximum entropy)

$$H(X) \le \log |\mathcal{X}|$$

where $|\mathcal{X}|$ is the cardinality of the set \mathcal{X} (i.e., the number of elements in the set) with equality iff X has a uniform distribution over \mathcal{X} .

Proof: Let $u(x) = \frac{1}{|\mathcal{X}|}$ be the uniform PMF, and p(x) be the PMF of X over \mathcal{X} , respectively. Then, $D(p\|u) = \sum\limits_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{u(x)} = \log |\mathcal{X}| - H(X) \geq 0$.

Convexity of Information Measures

Theorem (Concavity of entropy)

 $H(\mathbf{p})$ is a concave function of \mathbf{p} , where $\mathbf{p} := [p_1, \dots, p_k]$ denotes an arbitrary k-point discrete probability mass function.

Proof 1: Let $X_i \sim \mathbf{p}_i (i=1,2)$ be two RVs defined on the same set. For any $\lambda \in [0,1]$, define

$$\theta = \begin{cases} 1, \text{ with prob } \lambda \\ 2, \text{ with prob } 1 - \lambda. \end{cases}$$

Hence, the new RV $X_{\theta} \sim \lambda \mathbf{p}_1 + (1 - \lambda)\mathbf{p}_2$.

$$\therefore H(X_{\theta}) \ge H(X_{\theta}|\theta) \implies H(\lambda \mathbf{p}_1 + (1-\lambda)\mathbf{p}_2) \ge \lambda H(\mathbf{p}_1) + (1-\lambda)H(\mathbf{p}_2).$$

Proof 2: $H(\mathbf{p}) = -\sum_i p_i \log(p_i)$. Note that each term in the sum is convex and only depends on one p_i . Hence, $H(\mathbf{p})$ is concave.

Proof 3: $H(\mathbf{p}) = \log |\mathcal{X}| - D(\mathbf{p}||\mathbf{u})$, where \mathbf{u} is the uniform distribution. Since $D(\mathbf{p}||\mathbf{u})$ is convex in \mathbf{p} , $H(\mathbf{p})$ is concave.

16 / 33

Convexity of Information Measures (cont'd)

Theorem (Convexity of relative entropy)

D(p||q) is convex in the pair (p,q). That is, if (p_1,q_1) and (p_2,q_2) are two pairs of PMFs. Then, $D(\lambda p_1 + (1-\lambda)p_2 \| \lambda q_1 + (1-\lambda)q_2) \le \lambda D(p_1 \| q_1) + (1-\lambda)D(p_2 \| q_2)$ holds for any $\lambda \in [0,1]$.

Proof: By log-sum inequality, we have

$$[\lambda p_1(x) + (1 - \lambda)p_2(x)] \log \left(\frac{\lambda p_1(x) + (1 - \lambda)p_2(x)}{\lambda q_1(x) + (1 - \lambda)q_2(x)} \right)$$

$$\leq \lambda p_1(x) \log \frac{p_1(x)}{q_1(x)} + (1 - \lambda)p_2(x) \log \frac{p_2(x)}{q_2(x)}$$

Summing this over all $x \in \mathcal{X}$ completes the proof.

Convexity of Information Measures (cont'd)

Theorem (Convexity of mutual information)

Let $(X,Y) \sim p(x,y) = p(x)p(y|x)$. I(X;Y) is a concave function of p(x) for fixed p(y|x) and a convex function of p(y|x) for fixed p(x).

Proof: part i)
$$I(X;Y) = H(Y) - H(Y|X) = H(Y) - \sum_x p(x)H(Y|X=x)$$

- $p(y) = \sum_{x} p(x)p(y|x) \implies p(y)$ is linear in p(x) for fixed p(y|x).
- H(Y) is concave in p(y) and hence in p(x).
- The second term in linear in p(x). Hence, the difference is concave in p(x).

part ii)

- p(x,y) = p(x)p(y|x) is linear in p(y|x) for fixed p(x).
- I(X;Y) = D(p(x,y)||p(x)p(y)) is convex in p(x,y), and hence convex in p(y|x).
- Regarding the capacity of conveying information, mixing two channels is always worse than using the two channels separately.

Yu Zhang (UCSC)

 $^{^1} See$ alternative proofs in https://vvvvalvalval.github.io/posts/2019-12-18_

 $[\]hbox{2-proofs-in-Information-Theory-channel-convex} ity-\hbox{of-mutual-information.html}\\$

Data Processing Inequality (DPI)

Definition

Random variables X,Y,Z are said to form a Markov chain in the $X\to Y\to Z$ if the joint PMF can be written as p(x,y,z)=p(x)p(y|x)p(z|y).

Note: p(x,y,z) = p(x)p(y,z|x) = p(x)p(y|x)p(z|y,x) = p(x)p(y|x)p(z|y).

Corollary

 $X \to Y \to Z$ iff X and Z are conditionally independent given Y, denoted as $(X \perp\!\!\!\perp Z) \mid Y$. Markovity implies conditional independence since

$$p(x, z|y) = \frac{p(x, y, z)}{p(y)} = \frac{p(x, y)p(z|y)}{p(y)} = p(x|y)p(z|y).$$

Corollary $(X \leftrightarrow Y \leftrightarrow Z)$

$$X \to Y \to Z \Leftrightarrow Z \to Y \to X$$
.

DPI

Theorem (Data Processing Inequality (DPI))

If $X \to Y \to Z$ then $I(X;Y) \ge I(X;Z)$ with equality iif I(X;Y|Z) = 0 (i.e., $X \to Z \to Y$).

Proof: By the chain rule, we expand mutual information in two different ways:

$$I(X;Y,Z) = I(X;Y) + I(X;Z|Y) = I(X;Z) + I(X;Y|Z)$$

Corollary

- 1. If $X \to Y \to Z$, then $H(X|Z) \ge H(X|Y)$.
- 2. $I(X;Y) \ge I(X;g(Y))$ for any function $g(\cdot)$; i.e., post-processing decreases the info.
- 3. If $X_1 \to X_2 \to \cdots \to X_n$, for any i, j, k, l such that $1 \le i \le j \le k \le l \le n$, we have $I(X_i; X_l) \le I(X_j; X_k)$.

Proof:

1.
$$H(X) - H(X|Z) = |I(X;Z)| \le I(X;Y) = H(X) - H(X|Y)$$
.

Yu Zhang (UCSC) ECE253/CSE208: Lecture 4 20 / 33

DPI (cont'd)

Corollary

If $X \to Y \to Z$, then $I(X;Y|Z) \le I(X;Y)$.

Generally, it is possible to have I(X;Y|Z) > I(X;Y); see the following example when X,Y,Z do not form a Markov chain.

Example

Consider Z = X + Y for two i.i.d. $X, Y \sim \text{Bern}(0.5)$. Find I(X; Y|Z).

$$\begin{split} I(X;Y|Z) &= H(X|Z) - H(X|Y,Z) \\ &= \Pr(Z=0)H(X|Z=0) + \Pr(Z=2)H(X|Z=2) + \Pr(Z=1)H(X|Z=1) \\ &= \left[\Pr(X=1,Y=0) + \Pr(Y=1,X=0)\right] \times H(X|Z=1) \\ &= 2 \times \frac{1}{4} \times H(1/2,1/2) = 0.5 > I(X;Y) = 0 \end{split}$$

Sufficient Statistics

- A statistic is any quantity computed from values in a sample which is considered for
 a statistical purpose; i.e., statistic is a function of a sample; e.g., sample mean and
 sample variance. We estimate things all the time. Estimation help us understand the
 behavior of a large population with a small sample.
- Example 1: we want to know the average height of students in a school district with a population of 10,000. We take a sample of 100 students, measure them and find that the mean height, which is the sample mean, the statistic (estimator).
- Example 2: we survey the people in a neighborhood about their preference of candidate. Using this limited amount of data, we can estimate the likeliness of a candidate to win an election in a larger area.
- How do we know if every bit of information in data has been explored to estimate the parameter?
- A statistic is sufficient w.r.t. a statistical model and its associated unknown parameter if "no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter."

Sufficient Statistics (cont'd)

Given a family of distributions $\{f_{\theta}(x)\}$, let X be a sample drawn from a distribution in this family, and T(X) be any statistic. Hence, $\theta \to X \to T(X) \Rightarrow I(\theta; X) \geq I(\theta; T(X))$.

Definition (Sufficient Statistic)

A function T(X) is a sufficient statistic relative to the family $\{f_{\theta}(x)\}$ if X is independent of θ given T(X) for any distribution on θ ($\theta \perp \!\!\! \perp X \mid T(X)$); i.e., $\theta \to T(X) \to X$ forms a Markov chain, and

$$I(\theta; X) = I(\theta; T(X)).$$

Implication

- 1. Given a set X of i.i.d. data conditioned on an unknown parameter θ , a sufficient statistic is a function T(X) whose value contains all the information needed to compute any estimate of θ .
- 2. A statistics is sufficient for θ if it contains all information in X about θ :

 Once we know T(X), the remaining randomness in X does not depend on θ .

Examples of Sufficient Statistic

Definition (Sufficient Statistic, SS)

Let X be a random sample from a distribution with parameter θ . T(X) is a sufficient statistic for θ if the conditional probability $\Pr(X \mid T(X) = k)$ does not depend on θ .

Note that from Bayesian's view, we also have $\Pr(\theta \mid X, T(X) = k) = \Pr(\theta \mid T(X) = k)$

Example

Given i.i.d. $X_1, \ldots, X_n \sim \mathrm{Bern}(\theta)$. Let $X := (X_1, \ldots, X_n)$, a sufficient statistic of θ is $T(X) = \sum_{i=1}^n X_i$.

Proof: We need to show that Pr(X) is independent of θ given T(X).

$$\Pr((X_1,...,X_n) = (x_1,...,x_n)) = \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i} = \theta^{\sum x_i} (1-\theta)^{(n-\sum x_i)}.$$

$$T(X) \sim B(n,\theta) \implies \Pr(T(X) = k) = \binom{n}{k} \theta^k (1-\theta)^{n-k}$$
. Hence, we get

$$\Pr\left((X_1, ..., X_n) = (x_1, ..., x_n) \middle| \sum_{i=1}^n X_i = k\right) = \begin{cases} 0, & \text{if } \sum_{i=1}^n x_i \neq k \\ \binom{n}{k}^{-1}, & \text{if } \sum_{i=1}^n x_i = k \end{cases}$$

Example 2: For $X_i \sim \text{Unif}(\theta, \theta + 1)$, a SS for θ is: $T(X) = (\max\{X_i\}, \min\{X_i\})$.

Factorization Theorem

Theorem (Fisher-Neyman factorization theorem)

A statistic T(X) is sufficient for θ if and only if functions g and h can be found such that the probability density or mass function can be factorized as

$$f_{\theta}(\mathbf{x}) = h(\mathbf{x})g_{\theta}(T(\mathbf{x})),$$

where $h(\cdot)$ does not depend on θ while $g_{\theta}(\cdot)$ depends on \mathbf{x} only through $T(\mathbf{x})$.

The Bernoulli distribution:

$$f_{\theta}(\mathbf{x}) = \theta^{\sum x_i} (1 - \theta)^{(n - \sum x_i)} = \underbrace{\theta^{T(\mathbf{x})} (1 - \theta)^{(n - T(\mathbf{x}))}}_{g_{\theta}(T(\mathbf{x}))} \times \underbrace{1}_{h(\mathbf{x})}$$

• The uniform distribution $Unif(\theta, \theta + 1)$:

$$f_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} \mathbb{1}_{\{\theta \le X_i \le \theta + 1\}} = \underbrace{\mathbb{1}_{\{\theta \le \min\{X_i\} \le \max\{X_i\} \le \theta + 1\}}}_{g_{\theta}(T(\mathbf{x}))} \times \underbrace{1}_{h(\mathbf{x})}$$

Minimal Sufficient Statistic

- A statistic T(X) is a minimal sufficient statistic if it is a function of every other sufficient statistic U(X). In terms of DPI, θ → T(X) → U(X) → X.
- Minimal sufficient statistic is a statistic that has smallest mutual information with X while having largest mutual information with θ . That is,

$$T(X) \in \mathop{\arg\min}_{U(X)} I(X; U(X)) \text{ s.t. } I(\theta; U(X)) = \mathop{\max}_{T'(X)} I(\theta; T'(X))$$

- For every two sample points x and y, $\frac{f_{\theta}(x)}{f_{\theta}(y)}$ is independent of $\theta \iff T(x) = T(y)$. Then, T(X) is a minimal sufficient statistic for θ .
- Minimal sufficient statistic is not unique. Any one-to-one function of a minimal sufficient statistic is also a minimal sufficient statistic.
- · Minimal sufficient statistic may not even exist.
- Minimal sufficient statistic most efficiently captures (i.e., maximally compresses) the information about θ in the sample; see more discussions here².

²https://bookdown.org/jkang37/stat205b-notes/lecture04.html

Fano's Inequality

Consider a Markov chain $X \to Y \to \hat{X}$. In the context of communication:

- Send X through a noisy channel that possibly yields the received symbol $Y \neq X$.
- Recover X by post-processing Y to get an estimate $\hat{X} = g(Y)$ for some function g.
- Define the probability of error as $P_e := \Pr(\hat{X} \neq X)$.

Fano's inequality: We may estimate X with small P_e when H(X|Y) is small.

For any estimator \hat{X} such that $X \to Y \to \hat{X}$, define $P_e = \Pr(X \neq \hat{X})$, we have

$$H(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X}) \ge H(X|Y) \implies P_e \ge \frac{H(X|Y) - 1}{\log |\mathcal{X}|}.$$

If $\hat{X} \in \mathcal{X}$, we then have a slightly better upper bound for H(X|Y):

$$H(P_e) + P_e \log(|\mathcal{X}| - 1) \ge H(X|Y)^{s}.$$

 $[^]aH(X|Y)$ was called the 'equivocation', which corresponds to effect of channel noise; i.e., the uncertainty in the channel input from the receiver's perspective. Hence, the inequality relates the equivocation (as an information measure) to the probability of error (as the traditional measure).

Fano's Inequality (cont'd)

$$H(X|\hat{X}) \le H(P_e) + P_e \log(|\mathcal{X}| - 1) \le H(P_e) + P_e \log|\mathcal{X}|$$

Intuition & implication:

- $H(X|\hat{X})$ is how much uncertainty left in X after we know its estimate \hat{X} . Intuitively, if P_e is small, then $H(X|\hat{X})$ should also be small.
- Coding view: $H(X|\hat{X})$ quantify how many bits need for measuring X from \hat{X} . Fano' ineq gives us an upper bound of it. First, use $H(P_e)$ bits to show if $\hat{X}=X$. If yes, no more bits needed. If no (with probability P_e), we must use $\log |\mathcal{X}|$ bits to describe X in the worst case. Furthermore, if $\hat{X} \in \mathcal{X}$, then X can be any one of the other $|\mathcal{X}|-1$ symbols in the alphabet.
- Fano's ineq establishes the fundamental limits of data compression and transmission. It can be used to characterize when a perfect reconstruction of the sent code is not possible, i.e., P_e is bounded away from zero. This is useful to prove converse results of coding theorems.

Permissible Region of Fano's Inequality

Figure: The boundary (blue curve) of the permissible region (green area) is given by the function: $H(X|\hat{X}) = H(P_e) + P_e \log(|\mathcal{X}| - 1)$.

Fano's Inequality Proof

Proof: Define $E = \mathbb{1}_{\{\hat{X} \neq X\}}$. By chain rule, we have

$$H(E, X|\hat{X}) = H(X|\hat{X}) + \underbrace{H(E|X, \hat{X})}_{=0}$$

$$= \underbrace{H(E|\hat{X})}_{\leq H(P_e)} + \underbrace{H(X|E, \hat{X})}_{\leq P_e \log |\mathcal{X}|}$$

$$\leq H(P_e) + \Pr(E = 0) \underbrace{H(X|\hat{X}, E = 0)}_{=0} + \Pr(E = 1)H(X|\hat{X}, E = 1)$$

$$\leq H(P_e) + P_e \log |\mathcal{X}|$$

$$\implies H(X|Y) \le H(X|\hat{X}) \le H(P_e) + P_e \log |\mathcal{X}|.$$

If
$$X, \hat{X} \in \mathcal{X} \implies H(X|\hat{X}, E = 1) \le P_e \log(|\mathcal{X}| - 1)$$
.

Corollary

For any two RVs X and Y, let $p = \Pr(X \neq Y)$. We have $H(p) + p \log |\mathcal{X}| \ge H(X|Y)$.

Proof: Let $\hat{X} = Y$ in Fano's inequality.

Yu Zhang (UCSC)

Fano's Inequality is Sharp

Example

Let $X\in\{1,2,\ldots,m\}$ and $p_1\geq p_2\geq\cdots\geq p_m$. Then the best guess of X is $\hat{X}=1$ and the resulting probability of error is $P_e=1-p_1$. Fano's inequality becomes

$$H(P_e) + P_e \log(m-1) \ge H(X).$$

The PMF $(p_1,p_2,\ldots,p_m)=\left(1-P_e,\frac{P_e}{m-1},\ldots,\frac{P_e}{m-1}\right)$ achieves the lower bound with equality. To see this,

$$H(X) = -(1 - P_e) \log(1 - P_e) - (m - 1) \times \frac{P_e}{m - 1} \log \frac{P_e}{m - 1}$$
$$= -(1 - P_e) \log(1 - P_e) - P_e \log P_e + P_e \log(m - 1)$$
$$= H(P_e) + P_e \log(m - 1).$$

Entropy and Probability of Errors

Lemma

Consider two independent RVs defined over the same set: $X \sim p(x), X' \sim r(x')$. Then,

$$\Pr(X = X') \ge \max \left\{ 2^{-H(p,r)}, 2^{-H(r,p)} \right\}.$$

Proof: $2^{-H(p,r)} = 2^{\mathbb{E}_p(\log_2 r(X))} \le \mathbb{E}_p\left(2^{\log_2 r(X)}\right) = \sum_{x \in \mathcal{X}} p(x)r(x) = \Pr(X = X').$

Swapping p and r in the cross entropy, we have $2^{-H(r,p)} \leq \Pr(X = X')$.

Corollary

Let X, X' are i.i.d. with entropy H(X). Then,

$$\Pr(X = X') \ge 2^{-H(X)},$$

with equality iif X has a uniform distribution.

Thank You!

Email: <zhangy@ucsc.edu>

Homepage: https://people.ucsc.edu/~yzhan419/