

Comparison of Different Loss Functions

Loss Function	Formula	Derivative	When to Use	When to Avoid	Algorithms That Use It
Mean Squared Error (MSE)	$rac{1}{N}\sum (y_i-\hat{y}_i)^2$	$rac{dL}{d\hat{y}} = -rac{2}{N}(y-\hat{y})$	Regression problems with normally distributed errors	When data has outliers (sensitive to large errors)	Linear Regression, Ridge Regression
Mean Absolute Error (MAE)	(\frac{1}{N} \sum	y_i - \hat{y}_i)	$egin{array}{l} rac{dL}{d\hat{y}} = \ ext{sign}(\hat{y} - \ y)/N \end{array}$	Regression with outliers (robust loss)
Huber Loss	Quadratic for small errors, Linear for large errors	Piecewise function: Linear for small errors, quadratic for large errors	Regression with moderate outliers (balances MSE and MAE)	When outliers are very extreme or negligible	Robust Regression, Outlier- sensitive Models
Log Loss (Binary Cross- Entropy)	$-rac{1}{N}\sum[y_i\log(\hat{y}_i)+\ (1-y_i)\log(1-\hat{y}_i)]$	$rac{dL}{d\hat{y}}=rac{\hat{y}-y}{\hat{y}(1-\hat{y})}$	Binary classification (e.g., logistic regression, neural networks)	When classes are highly imbalanced	Logistic Regression, Neural Networks

Categorical Cross- Entropy	$-rac{1}{N}\sum\!\sum y_{ij}\log(\hat{y}_{ij})$	$rac{dL}{d\hat{y}} = -\sum rac{y_{ij}}{\hat{y}_{ij}}$	Multi-class classification (e.g., softmax classifiers)	When labels are not one- hot encoded	Neural Networks (Softmax), Deep Learning
Hinge Loss	$\sum \max(0,1-y_i\hat{y}_i)$	$rac{dL}{d\hat{y}} = -y_i$ if $y_i\hat{y}_i < 1$, else 0	Classification problems with SVMs (maximizing margin)	When probabilistic outputs are needed	Support Vector Machines (SVM)
KL Divergence	$\sum y_i \log rac{y_i}{\hat{y_i}}$	$rac{dL}{d\hat{y}} = -\sum rac{y_i}{\hat{y_i}}$	When comparing probability distributions	When data distributions do not need comparison	Bayesian Models, Variational Inference

1. Mean Squared Error (MSE)

Formula

$$L(y,\hat{y}) = rac{1}{N}\sum_{i=1}^N (y_i - \hat{y}_i)^2$$

• Penalizes large errors quadratically, making it sensitive to outliers.

Derivative

$$rac{dL}{d\hat{y}_i} = -rac{2}{N}(y_i - \hat{y}_i)$$

• The gradient decreases as the error gets smaller.

Likelihood (Assuming Gaussian Noise)

$$p(y|X,w) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{(y-\hat{y})^2}{2\sigma^2}
ight)$$

· Assumes that errors follow a normal distribution.

Log-Likelihood

$$\log L = -\sum_{i=1}^N rac{(y_i - \hat{y}_i)^2}{2\sigma^2}.$$

· Minimizing negative log-likelihood leads to MSE.

```
import numpy as np
                                                                    vaoO Ҧ
                                                                             ₺ Edit
    def loss(self, y, y_pred):
        return np.mean((y - y_pred) ** 2)
    def gradient(self, y, y_pred):
        return -2 * (y - y_pred) / len(y)
y_{true} = np.array([3.0, -0.5, 2.0])
y_pred = np.array([2.5, 0.0, 2.0])
mse = MSELoss()
print("MSE Loss:", mse.loss(y true, y pred))
print("Gradient:", mse.gradient(y_true, √ pred))
```

2. Mean Absolute Error (MAE)

Formula

$$L(y,\hat{y}) = rac{1}{N} \sum_{i=1}^N |y_i - \hat{y}_i|$$

• Penalizes errors linearly instead of quadratically, making it robust to outliers.

Derivative

$$rac{dL}{d\hat{y}_i} = rac{1}{N} ext{sign}(\hat{y}_i - y_i)$$

• The gradient is constant and does not depend on the error size.

Likelihood (Assuming Laplace Noise)

$$p(y|X,w) = rac{1}{2b} \exp\left(-rac{|y-\hat{y}|}{b}
ight)$$

• Assumes that errors follow a Laplace distribution.

Log-Likelihood

$$\log L = -\sum_{i=1}^N rac{|y_i - \hat{y}_i|}{b}$$

Minimizing negative log-likelihood leads to MAE.

```
vao⊃ Ҧ
                                                                                ₩ Edit
    def loss(self, y, y_pred):
        return np.mean(np.abs(y - y pred))
    def gradient(self, y, y_pred):
        return np.sign(y_pred - y) / len(y)
mae = MAELoss()
print("MAE Loss:", mae.loss(y_true, y_pred))
print("Gradient:", mae.gradient(y_true, y_pred))
                                          \downarrow
```

3. Binary Cross-Entropy (Log Loss)

Formula

$$L(y,\hat{y}) = -rac{1}{N} \sum_{i=1}^{N} [y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i)]$$

· Used for binary classification tasks.

Derivative

$$rac{dL}{d\hat{y}_i} = rac{\hat{y}_i - y_i}{\hat{y}_i(1-\hat{y}_i)}$$

· Used in logistic regression training.

Likelihood (Bernoulli Distribution)

$$p(y|X,w) = \prod_{i=1}^N \hat{y}_i^{y_i} (1-\hat{y}_i)^{(1-y_i)}$$

• Assumes binary labels with probabilities.

Log-Likelihood

$$\log L = \sum_{i=1}^N [y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i)]$$

• Minimizing negative log-likelihood leads to BCE.

Fully Commented Implementation

```
vao⊃ ⊓
                                                                        ₺ Edit
def loss(self, y, y_pred):
    - y pred: Predicted probabilities (numpy array)
    eps = 1e-9 # Small epsilon to prevent log(0)
    y pred = np.clip(y pred, eps, 1 - eps) # Clip predictions to avoid log(0)
    return -np.mean(y * np.log(y_pred) + (1 - y) * np.log(1 - y pred))
```

```
def gradient(self, y, y pred):
        - v: Actual binary values (numpy array)
        eps = 1e-9 # Prevent division by zero
        y_pred = np.clip(y_pred, eps, 1 - eps)
        return (y_pred - y) / (y_pred * (1 - y_pred))
# Example Usage
y_true_class = np.array([1, 0, 1])
y_pred_class = np.array([0.9, 0.2, 0.8])
bce = BinaryCrossEntropyLoss()
print("BCE Loss:", bce.loss(y_true_class, y_pred_class))
print("Gradient:", bce.gradient(y_true_class, y_pred_class))
```

2. Categorical Cross-Entropy (CCE)

Formula

$$L(y, \hat{y}) = -rac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{C} y_{ij} \log(\hat{y}_{ij})$$

- Used for multi-class classification problems.
- C is the number of classes.
- y_{ij} is 1 if the sample belongs to class j, otherwise 0 (one-hot encoding).
- \hat{y}_{ij} is the predicted probability for class j (from softmax output).

Derivative

$$rac{dL}{d\hat{y}_{ij}} = -rac{y_{ij}}{\hat{y}_{ij}}$$

 The gradient is large for small probabilities (forcing the model to adjust incorrect predictions quickly).

Likelihood (Multinomial Distribution)

$$p(y|X,W) = \prod_{i=1}^N \prod_{j=1}^C \hat{y}_{ij}^{y_{ij}}$$

• Each label follows a categorical probability distribution.

Log-Likelihood

$$\log L = \sum_{i=1}^N \sum_{i=1}^C y_{ij} \log(\hat{y}_{ij})$$

• Minimizing negative log-likelihood gives CCE loss.

```
∜ Edit
python
                                                                   Ф Copv
    def loss(self, y, y_pred):
        eps = 1e-9 # Small epsilon to prevent log(0)
        y_pred = np.clip(y_pred, eps, 1 - eps) # Clip predictions
        return -np.mean(np.sum(y * np.log(y pred), axis=1))
    def gradient(self, y, y pred):
        eps = 1e-9 # Prevent division by zero
        y_pred = np.clip(y_pred, eps, 1 - eps)
        return -y / y_pred
```

```
# Example Usage
y_true = np.array([
        [1, 0, 0],  # Class 0
        [0, 1, 0],  # Class 1
        [0, 0, 1]  # Class 2
])

y_pred = np.array([
        [0.7, 0.2, 0.1],  # Probabilities for class 0, 1, 2
        [0.1, 0.6, 0.3],
        [0.2, 0.3, 0.5]
])

cce = CategoricalCrossEntropyLoss()
print("CCE Loss:", cce.loss(y_true, y_pred))
print("Gradient:", cce.gradient(y_true, y_pred))
```

BCE vs. CCE - When to Use Which

Loss Function	Used For	Output Layer Activation	Typical Algorithms
Binary Cross-Entropy (BCE)	Binary classification (2 classes)	Sigmoid ($\sigma(z)$)	Logistic Regression, Binary Neural Networks
Categorical Cross- Entropy (CCE)	Multi-class classification (>2 classes)	Softmax ($rac{e^{z_j}}{\sum_k e^{z_k}}$)	Deep Learning, Image Classification (e.g., CNNs)

- Use BCE if your problem is binary classification.
- Use CCE if your problem has more than two classes and labels are one-hot encoded.

