

Guia do Professor

Vídeo

Jogos

Série Matemática na Escola

Objetivos

Apresentar conceitos e classificação básicos da Teoria dos Jogos.

ATENÇÃO Este Guia do Professor serve apenas como apoio ao vídeo ao qual este documento se refere e não pretende esgotar o assunto do ponto de vista matemático ou pedagógico.

LICENÇA Esta obra está licenciada sob uma licença Creative Commons @@\$

Jogos

Série

Matemática na Escola

Conteúdos

Teoria dos jogos

Duração

Aprox. 10 minutos.

Objetivos

Apresentar conceitos e classificação básicos da Teoria dos Jogos

Sinopse

Sinopse

Beto diz a Heitor que está estudando a Teoria dos Jogos e passa a lhe exemplificar conceitos básicos dessa teoria.

Material relacionado

Áudios: Como conhecer a

verdade;

Vídeos: O príncipe de Sofia; Experimentos: Torres de Hanói.

Introdução

Sobre a série

A série Matemática na Escola aborda o conteúdo de matemática do ensino médio através de situações, ficções e contextualizações. Os programas desta série usualmente são informativos e introdutórios de um assunto a ser estudado em sala de aula pelo professor. Os programas são ricos em representações gráficas para dar suporte ao conteúdo mais matemático e pequenos documentários trazem informações interdisciplinares.

Sobre o programa

No vídeo, Beto diz a Heitor que está estudando a Teoria dos Jogos através de um livro introdutório.

Teoria dos Jogos é um ramo da <u>matemática aplicada</u> que estuda situações estratégicas em que os participantes – os jogadores – escolhem diferentes ações na tentativa de melhorar seu retorno. Atualmente, várias áreas do desenvolvimento humano a utilizam como ferramenta, tais como a inteligência artificial e a cibernética.

Beto passa a exemplificar alguns conceitos importantes relacionados a essa teoria. Primeiramente, ele diz que uma partida de bolinha-degude é um **jogo de soma zero**, porque desde o início sabe-se a quantidade que está sendo disputada: o ganho de um jogador (no caso as bolinhas) é a perda do outro. Já o conhecido jogo de tabuleiro Banco Imobiliário é um jogo que não tem soma zero, pois nesse caso a quantidade de dinheiro varia durante a disputa e a perda de um não é o exato ganho do outro.

Figura 1: Jogo de bolinha-de-gude

Num **jogo simétrico** de dois jogadores, todas as regras e possibilidades são conhecidas por eles e não há favorecimentos prévios. Dessa forma, o resultado final da partida só depende das jogadas ou movimentos de cada jogador, como num jogo de damas.

Beto explica também o conceito de **estratégia**: é um conjunto de ações permitidas pelas regras do jogo.

Beto ilustra **jogos assimétricos** através de um simples pleito eleitoral: a identidade dos jogadores determina a estratégia – os eleitores decidem em quem votar influenciados pelas identidades dos candidatos.

Futebol é um exemplo de **jogo simultâneo**, porque as decisões são tomadas a cada instante, antes de saber qual o movimento do adversário - nesse caso, o movimento de cada jogador acontece ao mesmo tempo em relação aos movimentos de outros jogadores.

Leilão é um exemplo de **jogo sequencial**, porque cada jogador toma sua decisão baseada no que outros jogadores já fizeram.

Figura 2: Beto, explicando que o leilão é um exemplo de jogo sequencial

Vale lembrar que várias categorizações podem ser feitas para cada jogo; o xadrez, por exemplo, é um jogo seqüencial, de soma zero e de **informações perfeitas**. Essa última categoria é atribuída àqueles jogos em que as jogadas e estratégias são conhecidas pelos jogadores. Heitor conclui corretamente que somente jogos sequenciais podem ser de informações perfeitas. Heitor ainda deduz que em uma partida de futebol temos **informações imperfeitas**, pois são permitidas novas estratégias ao longo do jogo, como o drible.

Beto salienta que o jogo de xadrez é um bom exemplo de jogo de **informações completas**, em que todos os jogadores conhecem as possibilidades de movimentos e também os ganhos. Já um mercado de ações é um exemplo de jogo de **informações incompletas**, pois nesse caso as estratégias e ganhos são parcialmente conhecidos.

Figura 3: No jogo de xadrez todos os jogadores conhecem as possibilidades de movimentos e também os ganhos.

Finalmente, o **jogo competitivo** e o **jogo cooperativo** se distinguem pela relação que se estabelece entre os participantes. No primeiro, há a essência da competição, caracterizando-se por um estímulo ou motivação inerentes a muitos jogos. Já no segundo, combinam-se as diferentes habilidades de cada jogador para um fim comum.

Sugestões de atividades

Antes da execução

Sugerimos que o professor discuta com os alunos diversos tipos de jogos. Procure ensinar aos alunos a importância de se analisar determinada situação levando em consideração unicamente seus aspectos essenciais, para depois determinar quais as estratégias tenderão a ser tomadas por cada jogador, lançando mão de uma série de técnicas específicas. Com isso, em sendo o sujeito que faz a análise um dos jogadores, poderá este determinar que estratégias de atuação potencializarão seu ganho, com razoável nível de certeza.

Depois da execução

Após a execução do vídeo, o professor poderia iniciar o ensino do conteúdo de teoria dos jogos enfatizando o aspecto da análise dos ganhos de cada jogador.

Exemplo 1: Anete e Jorgina aprenderam as técnicas e adquiriram experiências para montar um salão de beleza. Elas são amigas, mas sabem que negócios devem ser tratados de maneira racional e objetiva. Para isto analisam uma vizinhança carente de salão de beleza e procuram lugares para seus salões. Nesta vizinhança há dois locais comerciais apropriados. O Sixmall que atrairia naturalmente 60% da população potencial e o Quatrishoping que atrairia 40% da vizinhança. Qual é a melhor estratégia para ambas?

Solução: Se ambas ficarem no mesmo local, provavelmente vão dividir a clientela da vizinhança. Se uma ficar no Sixmall e outra no Quatrishoping, elas vão dividir a vizinhança nas proporções 60% e 40% respectivamente. Assumindo que elas são independentes, o jogo não é seqüencial, pois cada uma pode fazer sua escolha sem esperar ou avisar a outra – são as oportunidades. Anete pode colocar numa tabela as proporções que ela teria em acordo com as opções que ela e a Jorgina tomarem: A pode ir para S ou Q; J pode ir para S ou Q. Há quatro possibilidades.

	J em S	J em Q
A em S	50%	60%
A em Q	40%	50%

A Jorgina faria uma tabela simétrica a esta. Analisando esta tabela, Anete concluir que a melhor estratégia para ela é se estabelecer no Sixmall, pois ela pode dividira a vizinhança, se J ficar em S ou ganhar 60% da clientela se J ficar em Q.

Se a Jorgina analisar a sua tabela, vai tomar a mesma decisão de ficar em S.

Exemplo 2: Torres de Hanoi. Ganha o jogo que atingir o objetivo com o menor número de movimentações.

São dados 6 discos de diâmetro 1,2,3,...,6 dispostos por ordem decrescente de diâmetro num de 3 postes. Pretende-se transferir todos os discos de A para C, utilizando o menor número de movimentos, de tal modo que as seguintes restrições sejam satisfeitas:

- 1. apenas um disco pode ser movido de cada vez,
- 2. apenas se podem mover os discos do topo (isto é, apenas discos que não têm um outro disco colocado em cima),
- 3. nenhum disco pode ser colocado sobre outro menor.

Solução:

Este é um jogo de **informação completa**, de **soma zero** (um ganha e o outro perde, ou há empate) e **seqüencial**, pois cada jogador faz a transferência em sua cada vez. No entanto, se ambos os jogadores conhecerem bem as estratégias e um pouco de matemática, o jogo vai ficar empatado, isto é, ambos conseguiriam concluir a transferência com o mesmo número de movimentos.

Para conhecer a solução do jogo proposto - qual o número mínimo de movimentos que precisaremos fazer para alcançar o objetivo? - se o jogo só tivesse um disco, seria fácil movê-lo (segundo as regras!) de A para C. Para isso precisamos de apenas um movimento. Vejamos a figura.

Vamos considerar o caso de dois discos. Movemos o disco menor para B; o segundo para C e depois o menor de B para C: acabou. Fizemos três movimentos. Vejamos as figuras.

Consideremos agora um caso geral com *n* discos. Vamos imaginar que os discos tenham sido numerados de cima para baixo: 1, 2, 3, 4, 5 e 6. O menor disco é o 1, e o maior é o 6. Para remover o disco *n* é preciso tirar todos de cima, ou seja, tirar todos os *n-1* discos que estão acima dele, lembrando-se que queremos mover os discos todos para a haste C, e o disco *n* é o que deve ficar mais embaixo nesta haste. Então é preferível colocar os outros discos na haste B, ou seja, devemos mover os *n-1* discos menores, de A para B, um de cada vez respeitando as regras. Feito isso removemos o disco *n* para a haste C. Agora, para mover os *n-1* discos para C, só é possível se for repetido o jogo, de modo a passar todos os discos (um a um) de B para C. Podemos observar que temos que fazer o jogo com *n-1* discos duas vezes: primeiro movemos os *n-1* discos de A para B (usando C como

intermediário). Isto descobre o disco n. Movemos então n para C. Agora jogamos com os n-1 discos mais uma vez: de B para C, usando A como intermediário e com isto empilhamos todos em C sem violar as regras.

Vamos então verificar qual é o número mínimo de movimentos.

Para facilitar, vamos dizer que o número mínimo de movimentos necessários para completar o jogo de n discos é T(n). Como não há como chegar ao disco n sem mover os n-1 de cima, então o número de movimentos que fizemos para isto é T(n-1). Como movemos os n-1 para a haste B, a haste C está livre, logo podemos mover o disco n para C, ou seja, o número de movimentos desde o começo do jogo é de T(n-1) +1. Então, falta mover os n-1 discos de B para C, para ficarem em cima do disco n, ou seja, o número mínimo de movimentos para fazer isto é T(n-1).

Logo, desde o começo do jogo fizemos: T(n-1)+1+T(n-1)=2T(n-1)+1 movimentos. Pelo que vimos na análise do jogo, mostramos que não é possível fazer um número menor de movimentos, então T(n) é o menor número de movimentos para completar o jogo de n discos, ou seja T(n)=2T(n-1)+1. Já vimos que T(1)=1. Logo, T(2)=2T(1)+1=3, T(3)=7, T(4)=15, T(5)=31, T(6)=63.

Por meio de tentativas, descobrimos que para um disco, o número de movimentos é apenas um, colocando o disco direto na haste C. Para dois discos é 3 se começarmos na haste B ou 6 se começarmos na haste C. Para três discos é 7 se começarmos na haste C ou 14 se começarmos na haste B. Repetindo o processo para 4, 5 e 6 discos, podemos observar que se o número inicial de discos da torre inicial for ímpar, o primeiro disco da torre deverá ser colocado, inicialmente, na haste C e, se o número inicial de discos da torre for par, o primeiro disco da torre deverá ser colocado, inicialmente, na haste B. Tabelando estes resultados temos:

Nº de discos	Quantidade mínima de movimentos	
1	1	
2	3	
3	7	
4	15	
5	31	
6	63	

Observando a tabela vemos que:

$$1 \rightarrow 3 \rightarrow 7 \rightarrow 15 \rightarrow 31 \rightarrow 63,...$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$+2 \qquad +4 \qquad +8 \qquad +16 \qquad +32$$

Podemos notar então, que o número somado é sempre o dobro do anterior, que já havia sido somado. Analisando mais atentamente a tabela, temos que o resultado da quantidade mínima de movimentos é sempre uma unidade a menos do número que foi somado, ou resumidamente:

nº de discos	Quantidade mínima de movimentos	nº somado
1	1	-1 ←+2
2	3	-1 ←+4
3	7	-1 ←+8
4	15	-1←+16
5	31	-1←+32
6	63	-1←+64

Como obtivemos a fórmula a partir de alguns dados numéricos, queremos saber se é mesmo verdadeira. Para isso vamos usar o princípio de indução finita. Já vimos que T(1) = 1, ou seja, $2^1 - 1 = 1$; a fórmula vale neste caso. Admitamos a validade da fórmula para n = k, ou seja, $T(k) = 2^k - 1$. Do resultado obtido anteriormente T(n) = 2T(n-1) + 1, tem se que T(n+1) = 2T(n) + 1. E dá hipótese de indução vem:

$$T(k+1) = 2T(k) + 1 = 2(2^{k} - 1) + 1 = 2^{k+1} - 1$$

Logo, a fórmula $T(n) = 2^n - 1$ vale para todo n inteiro positivo.

Sugestões de leitura

DANTE, L.R., Matemática - Contexto e Aplicações - Vol. Ùnico. Editora Àtica.

FIANI, Ronaldo; Teoria dos Jogos, Editora campus, 2004.

IMENES, L.M.P. e outros - Matemática Aplicada, Vol.2. Editora Moderna. SANTOS, J.P.O. e outros - INTRODUÇÃO À ANÁLISE COMBINATÓRIA. Editora Ciência Moderna.

Ficha técnica

Autor Luiz Antonio Mesquiari Revisor José Plínio de Oliveira Santos Coordenador de audiovisual Prof. Dr. José Eduardo Ribeiro de Paiva Coordenador acadêmico Prof. Dr. Samuel Rocha de Oliveira

Universidade Estadual de Campinas

Reitor *Fernando Ferreira Costa* Vice-reitor *Edgar Salvadori de Decca* Pró-Reitor de Pós-Graduação *Euclides de Mesquita Neto*

Instituto de Matemática, Estatística e Computação Científica Diretor Jayme Vaz Jr. Vice-diretor Edmundo Capelas de Oliveira