1.9 Genetické programovanie (GP)

Neznáma štruktúra aj neznáme parametre hľadaného objektu

GA neznáme parametre

GP neznáme parametre neznáme väzby

Porovnanie GP / GA

- GA optimalizácia dát (parametrov) v pevne definovanej štruktúre systému
- GP optimalizácia štruktúry aj dát, optimalizácia vnútorných väzieb systému
- Pri GA je dĺžka chromozómu konštantná lebo štruktúru objektu poznáme
- Pri GP je dĺžka chromozómu premenlivá lebo štruktúru objektu nepoznáme

Cieľ optimalizácie v GP

- funkcie (symbolická regresia)
- programy
- logické automaty
- grafy
- schémy
- elektrické obvody, evolúcia hardvéru
- regulačné obvody
- konštrukcie

Prvky reťazcov (gény)

- aritmetické operácie: +, -, *, /
- funkcie: sin, cos, exp, log, ln ...
- logické funkcie: and, or, not, xor
- priradenie hodnoty premennej: napr. x=1
- inštrukcie programu príslušného jazyka:
 if, else, then, switch, goto, call, while-do, for-do, ...
- podprogramy, makroinštrukcie alebo výkonné časti programu: načítanie informácie zo snímača, akčný zásah o určenej veľkosti, zatočenie doprava, zatočenie doľava ...
- prvky (orientovaných) grafov, prvky schém zapojenia, spojenia medzi prvkami schém ...

Reprezentácia jedincov v GP

- Stromová
- Lineárna
- Grafová
- Iné (tabuľky, dátové polia ...)

Stromová reprezentácia

$$(a \land true) \rightarrow ((a \lor b) \lor (z \leftrightarrow (a \land b)))$$


```
k=1;
while (k<100)
 k=k+1
                                         while
                        =
                                   <
                   k
                                     100
                              k
                                             k
                                                    +
                                                k
```

Algoritmus GP

Readov lineárny kód - transformácia stromovej štruktúry do lineárneho reťazca znakov

Valencia uzlov stromu

Readov kód stromu

Kompletný readov kód stromu

 $[(2,-),(1,\exp),(2,+),(0,x),(0,1),(2,+),(2,/),(0,y),(2,),(2,^{\wedge}),(0,y),(0,3),(0,2),(2,^{*}),(0,0.7),(0,\pi)]$

Alebo: [2,1,2,0,0,2,2,0,2,2,0,0,0,2,0,0,-,exp,+,x,1,+,/,y,-,^,y,3,2,*,0.7, π] 15

Mutácie stromu

náhrada uzla iným uzlom

funkcia → funkcia

premenná → premenná/konštanta

konštanta → premenná/konštanta

Náhrada podstromu iným podstromom

Mutácia odstránením podstromu

Mutácia pridaním podstromu

Kríženie stromov

Príklady praktických aplikácií genetického programovania

Príklad 1: symbolová regresia

$$f(x)=x^2+1;$$

 $x=\{-2,-1,0,1,2\}; f(x)=\{5,2,1,2,5\}.$

$$f(x) = x^2 + 5\sin(2x) + 2$$

$$F(x) = 4.179 * \sin(x+x) + (0.8165 * 0.7806 * 3.1551) + x * x$$
$$F(x) = x^2 + 4.9179 * \sin(2x) + (2.0109)$$

Rôzne konštrukčné aplikácie

Návrh antény satelitu

Mechanické konštrukcie

Evolučný hardvér (Evolvable Hardware)

Evolúcia elektrických obvodov

Vyhodnotenie fitness:

- simulačný softvér elt.
 obvodov
- rekonfigurovatelné elt. obvody (číslicové/analógové, logické obvody, hradlové polia, polia operač.zosil. atď...)

Evolúcia logických obvodov

Návrh (riadiaceho) programu – genetické programovanie stromová reprezentácia jedinca

```
IfWF
Right
else
Move
IfXR
Right
else
Left
end
end
```


Výsledná trajektória robota

IfWF Right IfXF IfWL IfWF Left else IfWF Move Left else Move end Left end else Move Right end 10 20 15 else

29

. . .

Move

1.10 Paralelné GA (PGA)

GA s viacerými subpopuláciami

Ostrovné Paralelné GA

Výpočtová platforma pre PGA

- Môžu sa realizovať na 1 alebo mnohých výpočtových jednotkách (jadrách, procesoroch, počítačoch).
- N jadier zvyšuje výpočtový výkon (takmer) N-krát, (skracuje výpočtový čas N-krát – čas sa distribuuje).
- Môže sa uvažovať ľubovoľná architektúra PGA (jednopopulačná / mnohopopulačná).
- Vhodnou topológiou a migráciou v PGA sa môže (výrazne)
 redukovať aj sumárny počet potrebných vyhodnotení fitness
 funkcie.

Matlab - parallel computing

Parallel Computing Toolbox

- Umožňuje paralelizovať výpočty v Matlabe
- Ponúka 2 módy:
 - 1) parfor parallelný for cyklus
 - 2) spmd Single Program Multiple Data
- Iné...

Matlab Distributed Computing Server

- Lokálny režim paralelizácie: do 12 výpočtových uzlov (max. 12 jadier na 1 procesore 1 PC). Dokáže rozdeliť úlohu v Matlabe na viac jadier na 1 PC bez inštalácie MDCS.
- Pokiaľ chceme využiť viac PC, je potrebné inštalovať MDCS

Príklad: Eggholder fn.

$$f_1(X) = \sum_{i=1}^{n-1} \left(-x_i \sin\left(\sqrt{|x_i - (x_{i+1} + 47)|}\right) - (x_{i+1} + 47) \sin\left(\sqrt{|x_{i+1} + 47 + \frac{x_i}{2}|}\right) \right)$$

Paralelný GA potrebuje menej vyhodnotení účelovej funkcie (fitness) v porovnaní s GA s jednou populáciou (s rovnakým počtom jedincov).

1.11 Praktické aplikácie evolučných optimalizačných metód v konštrukčných úlohách

Aké majú byť parametre objektu (zariadenia),

Optimalizácia tvaru prekážky v potrubí pretekanom tekutinou

Populácia v 1. generácii výpočtu GA

Populácia v 10. generácii výpočtu GA

výsledok

Účelová funkcia reprezentuje mieru turbulencií v potrubí, ktoré sa minimalizujú

Optimalizácia distribúcie teploty v byte (SW: Comsol)

Optimalizácia trajektórie robotického ramena – príklad (Robot ABB IRB 6400)

http://www.youtube.com/watch?v=p2wCSyI_f6M

Návrh tvaru vačky otáčavého stroja (GA)

Reťazec: tvar a rozmery vačky zakódované pomocou parametrov B-spline funkcie

<u>Účelová funkcia:</u> simulácia a vyhodnotenie dynamických a statických mechanických a tepelných vlastností časti

stroja

Optimalizácia platne namáhanej silou (GA) (SW: ANSYS)

Optimalizácia ustáleného stavu napätí v ES SR (TRN)

S – činné straty, N – počet vedení, M – počet uzlov siete

Zhrnutie: Bio-inšpirované optimalizačné metódy

- veľmi efektívne/výkonné metódy v porovnaní s bežnými optimalizačnými prístupmi
- širokospektrálne, univerzálne použiteľné
- jednoduché použitie z hľadiska používateľa prenášajú ťažisko riešenia problému z človeka na počítač
- Vysoká výpočtová/časová náročnosť