Fahrzeugmechatronik II Strukturen und Eigenschaften von Mehrgrößenregelkreisen

Prof. Dr.-Ing. Steffen Müller M.Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Einleitung Motivation

Einführung wichtiger **Mehrgrößenregelkreisstrukturen** und Analyse der **Stabilität** und des **stationären Verhaltens** von Mehrgrößenregelkreisen.

Hierauf beziehen sich die später behandelten Analyse- und Entwurfsverfahren.

Struktur von MIMO-Regelkreisen Zustandsrückführung

Für ein System

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) + \mathbf{E}\mathbf{d}(t) \quad \mathbf{x}(0) = \mathbf{x}_0$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

wird durch

$$\mathbf{u}(t) = -\mathbf{K}\mathbf{x}(t)$$

der Zustandsvektor auf die Stellgröße zurückgeführt. Der Regler hat proportionales Verhalten.

Eine Zustandsrückführung ist wichtig, wenn untersucht werden soll, wie das Verhalten idealerweiser verändert werden kann.

Seite 4

Struktur von MIMO-Regelkreisen Zustandsrückführung

Zustandsrückführung

Zustandsrückführung mit Vorfilter (Führungsverhalten)

Struktur von MIMO-Regelkreisen

Zustandsrückführung

Es folgt aus
$$\mathbf{x}(t) = \mathbf{x}(t) + \mathbf{y}(t) + \mathbf{E}\mathbf{y}(t) \quad \mathbf{x}(0) = \mathbf{x}_0$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) \quad \mathbf{x}(t)$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) \quad \mathbf{x}(t)$$

das Zustandsraummodell

die Führungsübertragungsfunktionsmatrix für $\mathbf{x}(0) = \mathbf{0}, \mathbf{d} = \mathbf{0}$

die Störübertragungsfunktionsmatrix für $\mathbf{x}(0) = \mathbf{0}, \mathbf{w} = \mathbf{0}$

Struktur von MIMO-Regelkreisen Zustandsrückführung

Steuerbarkeit und Beobachtbarkeit von Regelkreisen mit Zustandsrückführung (ohne Beweis)

Zustandsrückführungen ändern nichts an der Steuerbarkeit, beeinflussen jedoch die Beobachtbarkeit von Eigenvorgängen.

Struktur von MIMO-Regelkreisen Ausgangsrückführung

Für ein System

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) + \mathbf{E}\mathbf{d}(t) \quad \mathbf{x}(0) = \mathbf{x}_0$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

wird durch

$$\mathbf{u}(t) = -\mathbf{K}_{y}\mathbf{y}(t)$$

der Ausgangssvektor auf die Stellgröße zurückgeführt. Der Regler hat proportionales Verhalten.

Für **eine** Ausgangs- und **eine** Stellgröße folgt ein P-Regler, wie in einem einschleifigen Regelkreis.

Seite 8

Struktur von MIMO-Regelkreisen Ausgangsrückführung

Ausgangsrückführung

$$\mathbf{u}(t) = -\mathbf{K}_{v}\mathbf{y}(t)$$

Ausgangsrückführung mit Vorfilter

$$\mathbf{u}(t) = -\mathbf{K}_{y}\mathbf{y}(t) + \mathbf{V}\mathbf{w}(t)$$

Struktur von MIMO-Regelkreisen Ausgangsrückführung

Es folgt aus

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) + \mathbf{E}\mathbf{d}(t) \quad \mathbf{x}(0) = \mathbf{x}_0 \qquad \mathbf{u}(t) = -\mathbf{K}_y \mathbf{y}(t) + \mathbf{V}\mathbf{w}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

GX4)

das Zustandsraummodell

die Führungsübertragungsfunktionsmatrix für $\mathbf{x}(0) = \mathbf{0}, \mathbf{d} = \mathbf{0}$

die Störübertragungsfunktionsmatrix für $\mathbf{x}(0) = \mathbf{0}, \mathbf{w} = \mathbf{0}$

Struktur von MIMO-Regelkreisen Ausgangsrückführung

Steuerbarkeit und Beobachtbarkeit von Regelkreisen mit Ausgangsrückführung (ohne Beweis)

Ausgangsrückführungen ändern nichts an der Steuerbarkeit und Beobachtbarkeit der Eigenvorgänge.

Struktur von MIMO-Regelkreisen Einheitsrückführung

Zustandsraum

 $\dot{\mathbf{x}}_0(t) = \mathbf{A}_0 \mathbf{x}_0(t) + \mathbf{B}_0 \mathbf{e}(t) \quad \mathbf{x}_0(0) = \mathbf{x}_0$

 $\mathbf{y}_0(t) = \mathbf{C}_0 \mathbf{x}_0(t) + \mathbf{D}_0 \mathbf{e}(t)$

Übertragungsfunktionsmatrix des offenen Systems:

Frequenzbereich

+06)= (CI (SI-A,)1B0+D0)e(

Führungsübertragungs- funktionsmatrix:

Fachgebiet Kraftfahrzeuge • Fakultät Verkehrs- und Maschinensysteme • Technische Universität Berlin

Struktur von MIMO-Regelkreisen PI-Mehrgrößenregler

Regelabweichung

r Integratoren

$$\mathbf{e}(t) = \mathbf{w}(t) - \mathbf{y}(t)$$

$$\dot{\mathbf{x}}_r(t) = -\mathbf{e}(t) = \mathbf{y}(t) - \mathbf{w}(t)$$

Struktur von MIMO-Regelkreisen Verallgemeinerte Zustandsgleichung des geregelten Systems

Die Zustandsgleichung eines geregelten Systems kann in folgende verallgemeinerte Form gebracht werden

$$\dot{\overline{\mathbf{x}}}(t) = \overline{\mathbf{A}}\overline{\mathbf{x}}(t) + \overline{\mathbf{B}}\mathbf{w}(t) + \overline{\mathbf{E}}\mathbf{d}(t) \quad \overline{\mathbf{x}}(0) = \overline{\mathbf{x}}_0$$

$$\mathbf{y}(t) = \overline{\mathbf{C}}\overline{\mathbf{x}}(t)$$

Seite 14

Vielen Dank für Ihre Aufmerksamkeit!