

Model-based Exception Mining for Relational Data

Fatemeh Riahi and Oliver Schulte

School of Computing Science Simon Fraser University, Vancouver, Canada

Exception Mining Task

- Identify exceptional individuals whose statistical patterns deviate from the general population
- Can also be used for outlier/ anomaly detection
- Our approach: apply the Exceptional Model Mining framework (EMM) to multi-relational data (Duivesteijn, W.; Feelders, A. J. & Knobbe, A. 2016.)

Highlights

- Leverage: Framework applies to any relational learning method
- Ranking: Provides single score for individual entities
- •Interpretability: Scores can be explained by statistical differences in local feature distributions

Other Approaches

- Association Rules, e.g. Maervoet, J.; Vens, C.; Vanden Berghe, G.; Blockeel, H. & De Causmaecker, P. (2012), 'Outlier Detection in Relational Data: A Case Study in Geographical Information Systems', Expert Systems With Applications **39**(5), 4718--4728.
- Clustering, e.g.

Sun, Y.; Han, J.; Zhao, P.; Yin, Z.; Cheng, H. & Wu, T. (2013), Community Distribution Outlier **Detection in Heterogeneous Information** Networks., in 'ECML/PKDD', pp. 557-573.

Extracting network features, e.g. ODDBALL

Akoglu, L.; Mcglohon, M. & Faloutsos, C. (2010), OddBall: Spotting Anomalies in Weighted Graphs, in 'PAKDD', pp. 410-421.

• Propositionalization, e.g. Riahi, F. & Schulte, O. (2016), Propositionalization for Unsupervised Outlier Detection in Multi-Relational Data, in 'FLAIRS', 448-453

EMM for I.I.D. Data

EMM for Relational Data

Entire Observed Network Individual Subnetwork aka "egnoet"/"interpretation"

population model

We investigate several metrics based on log-linear likelihood functions

Example

population model B_{p0} for random actor A

individual model B_o for A = Brad Pitt

gender(brad_p)

Gender Drama CP

L	ActsIn(brad	d_p,M)	
		Drama (M)	CP ActsIr (B.P.,N

Drama(M)

(A)	(M)	ActsIn (A,M)
М	Т	1/2
M	F	0
W	Т	0
W	F	1

Gender (B.P.)	Drama (M)	CP ActsIn (B.P.,M)
M	Т	0
M	F	0

Outlierness Metrics

- Starting point is KLD between population and individual model
- Promising novel variant ELD= mutual information decomposition + absolute values to avoid cancellations

$$KLD(B_o \parallel B_p) = \sum_{\text{nodes } i \text{ values } k} \sum_{\text{parent-state } j} P_{B_o}(X_i = x_{ik}, Pa(X_i) = pa_j) \times \ln(\frac{P_{B_o}(X_i = x_{ik} \mid Pa(X_i) = pa_j)}{P_{B_p}(X_i = x_{ik} \mid Pa(X_i) = pa_j)})$$

summation over local features

log-difference in empirical conditional probabilities (confidences)

B_p models the population network

B_o models the individual network

Evaluation

AUC for detecting ground-truth outliers (e.g. Goalies injected into set of Strikers)

Dataset	ELD	KLD
PL: Strikers	0.89	0.65
PL: Midfielders	0.66	0.55
IMDb: Drama	0.70	0.66

Case Studies

For each individual, drill down on the aggregate outlierness score to find

- 1. most unusual feature
- 2. most unusual feature value.

					Individual	Group
Individual	Group	Rank	Max Node	Max Value	Probability	Probability
Edin Dzeko	Striker		Dribble Efficiency	DE = Low	0.16	0.5
Paul			Saves	SM =		
Robinson	Goalie	2	Made	Medium	0.3	0.04
Brave			Actor	a_quality=		
Heart	Drama	1	Quality	4	0.93	0.42
Austin			Cast	cast_num		
Powers	Comedy	2	position	=3	0.78	0.49

Conclusion and Future Work

- •Exceptional Model Mining: New approach for applying SRL models to relational exception mining
- •New log-linear outlierness metric
- •New Model and new metric showed promising results on Soccer and IMDB datasets.
- •Future work:
- 1) explore other SRL models (e.g. Markov Logic Networks) 2) incorporate difference in model structure as well as parameters

Datasets

- •Soccer Data: The Opta dataset released by Manchester City.
- •IMDB Data: From The Internet Movie Database.
- •For synthetic data please see paper

References

Duivesteijn, W.; Feelders, A. J. & Knobbe, A. (2016), 'Exceptional model mining', Data Mining and Knowledge Discovery 30(1), 47--98.

Tutorial on Learning Bayesian Networks for Complex Relational Data, Schulte and Kirkpatrick 2017, https://oschulte.github.io/srl-tutorial-slides/