NIST Decision Tree Report

Summary

Include	Laboratory	Result	Uncertainty	DegreesOfFreedom
TRUE	IRMM	34.30	1.03	60
TRUE	KRISS	32.90	0.69	4
TRUE	NARL	34.53	0.83	18
TRUE	NIST	32.42	0.29	2
TRUE	NMIJ	31.90	0.40	13
TRUE	NRC	35.80	0.38	60

Date: 2023-06-08 Version Number: 1.0.1

Type of DoE: Degrees of Equivalence for Ignoring Dark Uncertainty

Selected Procedure: Adaptive Weighted Average

Consensus estimate: 33.6 Standard uncertainty: 0.745

Standard uncertainty (using parametric bootstrap): 0.7302

95% coverage interval: (32.14, 35.06)

95% coverage interval (using parametric bootstrap): (32.04, 35.17)

Dark uncertainty (tau): 1.711

Decision Tree Hypothesis test results

Cochran's test for Homogeneity:

p-value: p < 0.001

Q = 68.22 (Reference Distribution: Chi-Square with 5 Degrees of Freedom)

 $tau\ est.\,=\,1.711$

tau/median(x) = 0.05093tau/median(u) = 3.14

Shapiro-Wilk test for Normality: p = 0.5301

Miao-Gel-Gastwirth test of Symmetry: p = 0.9336

Plots

DoE Table

	Lab	DoE.x	DoE.U95	DoE.Lwr	DoE.Upr
IRMM	IRMM	0.6996	2.503	-1.8140	3.1960
KRISS	KRISS	-0.7004	2.160	-3.0680	1.3390
NARL	NARL	0.9296	2.188	-1.2670	3.1080
NIST	NIST	-1.1800	1.614	-2.8090	0.3701
NMIJ	NMIJ	-1.7000	1.780	-3.4780	0.0805
NRC	NRC	2.2000	1.679	0.5222	3.8830

MCMC Sampler Diagnostics Table (if applicable)

If one of the Bayesian models is run (Hierarchical Gauss-Gauss, Hierarchical Laplace-Gauss, or Hierarchical Skew-Student-t), then diagnostics for the MCMC sampler will be given below. As a general recommendation, if any of the R-hat values are greater than 1.05, then the sampler may not have reached equilibrium, and the "Total Number of MCMC Steps" should be increased, and the run repeated. The "Number of MCMC Warm-Up Steps" should be about half of the "Total Number of MCMC Steps." The "Effective Sample Size" (n.eff) is approximately the size of the MCMC sample that the results are based on.