Конспект по книге Гудфеллоу «Глубокое обучение»*

Содержание

1	Чис	сленные методы	
2	Основы машинного обучения		
	2.1	Точечная оценка	
	2.2	Смещение	
	2.3	Дисперсия	
	2.4	Поиск компромисса между смещением и дисперсией для минимизации среднеквад-	
		ратической ошибки	
	2.5	Состоятельность	
	2.6	Оценка максимального праводподобия	
	2.7	Метод опорных векторов	
	2.8	Метод главных компонент	
Cı	писо	к литературы	

1. Численные методы

2. Основы машинного обучения

2.1. Точечная оценка

Точечное оценивание – это попытка найти единственное «наилучшее» предсказание интересующей величины. Пусть $\{x^{(1)},\dots,x^{(m)}\}$ – множество m независимых и одинаково распределенных точек. Точечной оценкой, или статистикой, называется любая функция этих данных

$$\theta_m = g(x^{(1)}, \dots, x^{(m)}).$$

В этом определении не требуется, чтобы g возвращала значение, близкое к истинному значению θ , ни даже чтобы область значений g совпадала со множеством допустимых значений θ .

Алгоритм k-групповой перекрестной проверки применяется для оценивания ошибки обобщения алгоритма обучения A, когда имеющийся набор данных $\mathbb D$ слишком мал для того, чтобы простое разделение на обучающий и тестовый или обучающий и контрольный наборы могло дать точную оченку ошибки обобщения, поскольку среднее значение потери L на малом тестовом наборе может иметь высокую дисперсию.

^{*}Гудфеллоу Я., Бенджио И., Курвилль А. Глубокое обучение. – М.: ДМК Пресс, 2018. – 652 с.

2.2. Смещение

Смещение оценки определяется следующим образом

$$\operatorname{bias}(\hat{\theta}_m) = \mathbb{E}(\hat{\theta}_m) - \theta,$$

где математической ожидание вычисляется по данным (рассматривается как выборка из случайной величины), а θ – истинное значение параметра, которое определяет порождающее распределение.

Оценка $\hat{\theta}$ называется несмещенной, если

$$(\hat{\theta}_m) = 0$$
, r.e. $\mathbb{E}(\hat{\theta}_m) = \theta$.

Оценка $\hat{\theta}_m$ называется асимптотически несмещенной, если

$$\lim_{m\to\infty} \mathrm{bias}(\hat{\theta}_m) = 0, \text{ r.e. } \lim_{m\to\infty} \mathbb{E}(\hat{\theta}_m) = \theta.$$

2.3. Дисперсия

Для определения смещения мы вычисляли математичесвкое ожидание оценки, но точно так же можем вычислить и ее дисперсию. Дисперсией оценки называется выражение

$$Var(\hat{\theta})$$
.

Cтандартной oшибкой $SE(\hat{\theta})$ называется квадратный корень из дисперсии.

Воспользовавшись центральной предельной теоремой, согласно которой среднее имеет приблизительно нормальное распределение, можем применить стандартную ошибку для вычисления вероятности того, что истинное математическое ожидание находится в выбранном интервале. Например, 95-процентный доверительный интервал вокруг выборочного среднего (вокру оценки) $\hat{\mu}_m = \frac{1}{m} \sum_{k=1}^n x^{(i)} \text{ определяется формулой}$

$$(\hat{\mu}_m - 1.96 \,\mathrm{SE}(\hat{\mu}_m), \hat{\mu}_m + 1.96 \,\mathrm{SE}(\hat{\mu}_m))$$

при нормальном распределении со средним $\hat{\mu}_m$ и дисперсией $\mathrm{SE}(\hat{\mu}_m)^2$.

NB: В экспериментах по машинному обучению принято говорить, что алгоритм A лучше алгоритма B, если верхняя граница 95-процентного доверительного интервала для ошибки алгоритма A меньше нижней границы 95-процентного доверительного интервала для ошибки алгоритма B.

2.4. Поиск компромисса между смещением и дисперсией для минимизации среднеквадратической ошибки

Что, если имеются две оценки, у одной из которых больше смещение, а у другой дисперсия? Какую выбрать?

Самый распространенный подход к выбору компромиссного решения – воспользоваться *пере-крестной проверкой*. Эмпирически продемонстрировано, что перекрестная проверка дает отличные результаты во многих реальных задачах.

Можно также сравнить среднекваратическую ошибку (MSE) обеих оценок

$$MSE = \mathbb{E}[(\hat{\theta}_m - \theta)^2] = bias(\hat{\theta}_m)^2 + Var(\hat{\theta}_m)$$

Желательной является оценка с малой MSE, именно такие оценки держат под контролем и смещение, и дисперсию. Соотношение между смещением и дисперсией тесно связано с возникающими в машинном обучении понятиями емкости модели, недообучения и переобучения.

Если ошибка обобщения измеряется посредством MSE (и тогда смещение и дисперсия становятся важными компонентами ошибки обобщения), то увеличение емкости (то есть усложение модели) влечет за собой повышение дисперсии и снижение смещения.

2.5. Состоятельность

Обычно нас интересует также поведение оценки по мере роста размера обучающего набора. В частности, мы хотим, чтобы при увеличении числа примеров точечные оценки сходились к истинным значениям соответствующих параметров.

Формально это записывается в виде (условие состоятельности)

$$\hat{\theta}_m \xrightarrow{\mathbf{P}} \theta, \ (m \to \infty)$$

Иногда это условие называют слабой состоятельностью, понимая под сильной состоятельностью сходимость почти наверное $\hat{\theta}$ к θ .

Состоятельность гарантирует, что смещение оценки уменьшается с ростом числа примеров. Однако обратное неверно – из асимптотической несмещенности не вытекает состоятельность. Рассмотрим, к примеру, оценивание среднего μ нормального распределения $N(x; \mu, \sigma^2)$ по набору данных, содержащему m примеров: $\{x^{(1)}, \ldots, x^{(m)}\}$.

Можно было бы взять в качестве оценки первый пример: $\hat{\theta} = x^{(i)}$. В таком случае $\mathbb{E}(\hat{\theta})_m = \theta$, поэтому оценка является несмещенной вне зависимости от того, сколько примеров мы видели. Отсюда, конечно, следует, что оценка асимптотически несмещенная. Но она не является состоя-ительной, т.к. неверно, что $\hat{\theta}_m \to \theta$, $(m \to \infty)$.

2.6. Оценка максимального праводподобия

Рассмотрим множества m примеров $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$, независимо выбираемых из неизвестного порождающего распределения $p_{data}(x)$.

Обозначим $p_{model}(x;\theta)$ параметрическое семейство распределений вероятности над одним и тем же пространством, индексированное параметром θ .

Тогда оценка максимального правдоподобия для θ определяется формулой

$$\theta_{ML} = \underset{\theta}{\operatorname{arg max}} p_{model}(\mathbb{X}; \theta) = \underset{\theta}{\operatorname{arg max}} \prod_{i=1}^{m} p_{model}(x^{(i)}; \theta)$$

Такое произведение большого числа вероятностей по ряду причин может быть неудобно. Например, оно подвержено *потере значимости*. Для получения эквивалентной, но более удобной задачи оптимизации заметим, что взятие логарифма правдоподобия не изменяет arg max, но пре-

образует произведение в сумму

$$\theta_{ML} = \operatorname*{arg\,max}_{\theta} \sum_{i=1}^{m} \log p_{model}(x^{(i)}; \theta)$$

Поскольку arg max не изменяется при умножении функции стоимости на константу, мы можем разделить правую часть на m и получить выражение в виде математического ожидания относительно эмпирического распределения \hat{p}_{data} , определяемого обучающими данными

$$\theta_{ML} = \underset{\theta}{\operatorname{arg max}} \mathbb{E}_{x \sim \hat{p}_{data}} [\log p_{model}(x; \theta)]$$

Один из способов интерпретации оценки максимального правдоподобия состоит в том, чтобы рассматривать ее как минимизацию дивергенции (расхождения) Кульбака-Лейблера между этими эмпирическим распределением \hat{p}_{data} , определяемым обучающим набором, и модельным распределением.

Дивергенция Кульбака-Лейблера определяется формулой

$$D_{KL}(\hat{p}_{data} || p_{model}) = \mathbb{E}_{x \sim \hat{p}_{data}} [\log \hat{p}_{data}(x) - \log p_{model}(x)]$$

Первый член разности в квадратных скобках зависит только от порождающего данные процесса, но не от модели. Следовательно, при обучении модели, минимизирующей дивергенцию КЛ, мы должны минимизировать только величину

$$-\mathbb{E}_{x \sim \hat{p}_{data}}[\log p_{model}(x)],$$

а это, конечно, то же самое, что максимизация величины $\theta_{ML} = \arg\max_{\theta} \mathbb{E}_{x \sim \hat{p}_{data}} [\log p_{model}(x; \theta)].$

NB: То есть, другими словами задача максимизации правдоподобия эквивалентна задаче минимизации дивергенции Кульбака-Лейблера между эмпирическим распределением \hat{p}_{data} и модельным распределением p_{model} .

2.7. Метод опорных векторов

Линейную функцию в методе опорных векторов можно переписать в виде

$$w^{T}x + b = b + \sum_{i=1}^{m} \alpha_{i} x^{T} x^{(i)},$$

где $x^{(i)}$ – обучающий пример, α – вектор коэффициентов.

Записав алгоритм обучения в таком виде, мы сможем заменить x результатом заданной функции признаков $\varphi(x)$, а скалярное произведение — функцией $k(x,x^{(i)}) = \varphi(x) \cdot \varphi(x^{(i)})$, которая называется ядром.

Заменив скалярное произведение вычислением ядра, мы можем делать предсказание, пользуясь функцией

$$f(x) = b + \sum_{i} \alpha_i k(x, x^{(i)})$$

Основанная на ядре функция в точности эквивалентна предварительной обработке путем применения $\varphi(x)$ ко всем входным данным с последующим обучением линейной модели в новом преобразованном пространстве.

NB: Трюк с ядром полезен по двум причинам:

- \circ Во-первых, он позволяет обучать модели, *нелинейно* зависящие от x, применяя методы выпуклой оптимизации, о которых точно известно, что они сходятся эффективно
- \circ Во-вторых, *ядерная функция к* часто допускает реализацию, значительно *более эффективную с вычислительной точки зрения*, чем наивное построение двух векторов $\varphi(x)$ и явное вычисление их скалярного произведения

Главный недостаток ядерных методов – тот факт, что сложность вычисления решающей функции линейно зависит от числа обучающих примеров, поскольку i-ый пример вносит член $\alpha_i k(x, x^{(i)})$ в решающую функцию.

В методе опорных векторов эта проблема сглаживается тем, что обучаемый вектор α содержит в основном нули. Тогда для классификации нового примера *требуется вычислить ядерную* функцию только для обучающих примеров с ненулевыми α_i . Эти обучающие примеры и называются опорными векторами.

2.8. Метод главных компонент

Метод главных компонент находит ортогональное линейное преобразование, переводящее входные данные x в представление z.

Рассмотрим матрицу плана X размера $m \times n$. Будем предполагать, что матемаческое ожидание данных $\mathbb{E}[x] = 0$. Если это не так, центрирования легко добиться, вычтя среднее из всех примеров на этапе предварительной обработки.

Hесмещенная выборочная ковариационная матрица, ассоциированная с X, определяется по формуле

$$Var[x] = \frac{1}{m-1}X^TX$$

РСА находит представление (посредством линейного преобразования) $z = W^T x$, для которого $Var[z] - \partial uaronaльnas$.

Главные компоненты можно получить с помощью сингулярного разложения. Точнее, это правые сингулярные веркторы. Чтобы убедиться в этом, предположим, что W – правые сингулярные векторы в разложении $X=U\Sigma W^T$. Тогда исходное уравнение собственных векторов можно переписать в базисе W

$$X^TX = (U\Sigma W^T)^T U\Sigma W^T = W\Sigma^2 W^T$$

Разложение SVD полезно для доказательства того, что PCA приводит к диагональной матрице Var[z]. Применяя сингулярное разложение X, мы можем выразить дисперсию X в виде

$$Var[x] = \frac{1}{m-1}X^{T}X = \frac{1}{m-1}(U\Sigma^{2}W^{T})^{T}U\Sigma W^{T} = \frac{1}{m-1}W\Sigma^{2}W^{T},$$

где используется тот факт, что $U^TU=I$, поскольку матрца U в сингулярном разложении по определению ортогональная. Отсюда следует, что ковариационная матрица z диагональная

$$Var[z] = \frac{1}{m-1} Z^T Z = \frac{1}{m-1} W^T X^T X W = \frac{1}{m-1} W^T W \Sigma^2 W^T W = \frac{1}{m-1} \Sigma^2$$

На этот раз мы воспользовались тем, что $W^TW=I$ – опять же по определению сингулярного разложения.

Проведенный анализ показывает, что представление, полученное в результате проецирования данных x на z посредством линейного преобразования W, имеет диагональную ковариационную матрицу Σ^2 . А отсюда сразу вытекает, что взаимная корреляция отдельных элементов z равна нулю.

Список литературы

- 1. Pамальо Л. Python к вершинам мастерства: Лаконичное и эффективное программирование. М.: МК Пресс, 2022. 898 с.
- 2. Хейдт М., Груздев А. Изучаем pandas. М.: ДМК Пресс, 2019. 682 с.