Module 1

Computers and the Internet (from 10k feet)

Introduction to Computers

What's Inside a Computer?

- The *motherboard* is the big circuit board that holds all the other parts together
 - It provides fast connectivity between the major components within the computer

CPU and **RAM**

• Connected to the motherboard is a CPU (central processing unit)

- Also called "the processor", it is "the brain" of the computer
- It executes instructions that a programmer wrote to control the processing of data
- It gets HOT when running and is usually attached under a fan and a heat sink!
- Most modern CPUs have more than one processor core (dual-core, quad-core, etc)

• Also connected to the motherboard is *RAM* (random access memory)

- RAM is very fast memory that holds instructions and data while the computer is running
 - * It is *volatile storage* and does NOT provide long-term storage and files; if you turn the computer off, it's erased
- Personal computers often have 8GB or 16GB of RAM, although there may be more or less

Persistent Storage

- Persistent (or non-volatile) storage holds data even when the computer is turned off
- Disk drives provide non-volatile storage for files
 - May be very large (125GB 2TB or more!) and inexpensive, though slower than RAM
 - There are two basic types of disk drives
 - * Hard disk drives (HDD) store data on a magnetically coated platter that spins at a high speed
 - * Solid state drives (SSD) store data on non-volatile semiconductor chips that have no moving parts
- Computers often provide some type of removable storage device as well, including:
 - USB connections for reading/writing to flash drives
 - Optical disc drives for reading/writing to DVDs or CD-ROMs
 - Floppy disk drives for reading/writing to ancient floppy disks

Expansion Cards

- Other important "cards" that plug into expansion slots on the motherboard may include:
 - a NIC card (network interface card) that is an adapter that allows the computer to connect to a network
 - a wireless NIC card that lets a computer use radio signals to connect to a network wirelessly
 - a video or graphics card that is an adapter to let the computer output display on a monitor
 - a sound card to let the computer play sound from speakers
- Finally, there are power-related items within the case
 - a power supply
 - a heat sink and one or more fans to help dissipate the heat

How do you Connect Peripherals to a Computer?

• Connectors provide a way to connect a peripheral device to your computer

- The main ones used today include:
 - USB provides a hot-swappable connection for data and power transfer (includes USB 2.0, USB 3.0, USB-C)
 - HDMI carries high-speed video and sound

Counting Like a Computer

- When we count as human beings, we use numbers that are powers of 10
 - Every digit can be one of 10 different values 0 1 2 3 4 5 6 7 8 9 (decimal numbers)

• But we measure quantity in the computing world with numbers that are powers of 2

- Every digit can be one of 2 different values 0 1 (binary numbers)
- Each binary digit (bit) represents an on / off state

Word Sizes

- When you bought a computer, do you remember if the marketing material said it was a 32-bit or 64-bit CPU processor?
 - A 32-bit computer has a "word size" of 32 bits

 - * Note: Why does the binary number above start with a 0? Signed binary numbers uses the high-order bit to indicate the number is negative!
 - A 64-bit computer has a "word size" of 64 bits
 - * This means the biggest signed whole number that it can fit in a word is 9,223,372,036,854,775,807

Exercise - How Old Are You?

- Let's figure out how old you are using alternate bases...
- in Base 2?

$$\frac{1}{128} \quad \frac{1}{64} \quad \frac{1}{32} \quad \frac{1}{16} \quad \frac{1}{8} \quad \frac{1}{4} \quad \frac{1}{2} \quad \frac{1}{1}$$
 digits are 0 - 1

• in Base 10 (this should be easy)?

What does KB, MB, GB and TB Actually Mean?

- The smallest "unit" of memory you can access is 8 bits... which is called a byte
- Programmers use the term KB for *kilobyte*
 - When describing file sizes, a kilobyte is 1024 bytes
- Not 1000?
 - The International System of Units defines 1K as 1000
 - Software makers use base 2 numbers and define 1K as 1024
- Usually, programmers use the term MB for megabyte.... 1024 units of 1KB
 - That means 1024 x 1024, or 1,048,576 bytes

UNIT	SIZE	BYTES
1 Bit	Single 0 or 1 binary	
	digit	
1 Byte	8 bits	1 byte
1 Kilobyte (KB)	1024 bytes	1024 bytes
1 Megabyte (MB)	1024 KB	1,048,576 bytes
1 Gigabyte (GB)	1024 MB	1,073,741,824 bytes
1 Terabyte (TB)	1024 GB	1,099,511,627,776 bytes

Storage Capacity and Network Speeds

• It gets more confusing when you introduce hardware

- According to software manufacturers, 1 KB = 1024 bytes
 - * Which means 1 TB = 1024 * 1024 * 1024 * 1024 = 1,099,511,627,776 bytes.
- But hard disk makers don't think average consumers can understand this issue about "kilo" so they use 1 KB = 1000 bytes and 1 TB = 1,000,000,000,000 bytes
- Either way you look at it, 1 TB is a lot of capacity!

When we specify internet speeds, we specify in bits per second

- What download speed do you get from your internet provider?
- Today I got 222 Mbps (megabits per second)
 - * That is 232,783,872 bits per second or 29,097,984 bytes per second

Which Holds More Data?

Floppy disk - 1.44 MB

USB thumb drives ... It depends on the size you buy! 8GB? 256GB?

Internal HDD - 10TB drive

Exercise – Decimal to Binary

- 15

- 32

- 117

- 946

Exercise – Binary to Decimal

•	How would you write the following Binary numbers in Decimal (Base10
	- 00000100
	- 00001101
	- 00110101
	
	- 01010101 10101010