# Introduction to Operating Systems and SQL for Data Science

Practice 1 – Processes

# What is a process?

- A process is an instance of a computer program that is being executed
- Code + Memory
- Types of processes:
  - Foreground
  - Background



## Process – C#

```
Process myProcess = new Process();
myProcess.StartInfo.WorkingDirectory =
"C:\\Windows\\System32";
myProcess.StartInfo.FileName = "Notepad.exe";
myProcess.Start();
```

https://msdn.microsoft.com/en-us/library/ccf1tfx0.aspx



## Fork - Linux



- Fork is a system call in Linux for creating a new process
- New created process runs the same code as creator process
- The memory of the father process is copied to the son process
- Return value of fork:
  - On success:
    - For father process Pid (process id) of the created son process
    - For son process 0
  - On failure: return value for father process is -1. No child process created.



# Fork – code example

```
Public Main(){
     for(int i=0; i<7; i++){
          int a = fork();
          print(pid + ":" + I + ",");
          if(a>0)
          break;
     }
```

#### Assumptions:

- Pid of staring process is 1
- Pids are given incrementally
- No other processes are running in the system

#### Questions:

- What is the highest Pid allocated?
- What will be the output?







- Highest Pid allocated is 8
- 2. The output would be:

1:0,2:0,2:1,3:1,3:2,4:2,4:3,5:3,5:4,6:4,6:5,7:5,7:6,8:6

Not necessarily in this order



## Process states:



University

# System utilization - Question

- In  $t_0$  3 process arrive:
  - P1 is 40% busy writing to the printer
  - P2 is 25% busy writing to the disk
  - P3 is 50% busy reading from the disk
  - When all processes are active, which part of the time each of them are: ready, running, blocked?
  - Repeat the question with following priority:
    - P1 with priority 2.
    - P2 with priority 3.
    - P3 with priority 1.



### Without priorities:

|    | Ю   | blocked | ready  | running |
|----|-----|---------|--------|---------|
| P1 | 40% | 0.4     | 0.3    | 0.3     |
| P2 | 25% | 0.25    | 0.3375 | 0,4125  |
| Р3 | 50% | 0.5     | 0.2665 | 0.2375  |

### With priorities:

|    | Ю   | Priority | blocked | ready | running |
|----|-----|----------|---------|-------|---------|
| P1 | 40% | 2        | 0.4     | 0.45  | 0.15    |
| P2 | 25% | 3        | 0.25    | 0     | 0.75    |
| Р3 | 50% | 1        | 0.5     | 0.45  | 0.05    |



#### Marks:

- P(pi = B) probability of process i to be blocked
- P(pi = R) probability of process i to run
- $P(pi = \neg B)$  probality of process I to be read



#### Without priorities:

• 
$$P(p1 = R) = P(p1 = \neg B) * (P(p2 = B) * P(p3 = B) + P(p2 = \neg B) * P(p3 = B)$$
  
\*  $0.5 + P(p2 = B) * P(p3 \neg = B) * 0.5 + P(p2 = \neg B) * P(p3 \neg = B) * \frac{1}{3}$ 

• 
$$P(p2 = R) = P(p2 = \neg B) * (P(p1 = B) * P(p3 = B) + P(p1 = \neg B) * P(p3 = B)$$
  
\*  $0.5 + P(p1 = B) * P(p3 = B) * 0.5 + P(p1 = \neg B) * P(p3 = B) * \frac{1}{3}$ 

• 
$$P(p3 = R) = P(p3 = \neg B) * (P(p1 = B) * P(p2 = B) + P(p1 = \neg B) * P(p2 = B)$$
  
\*  $0.5 + P(p1 = B) * P(p2 = B) * 0.5 + P(p1 = \neg B) * P(p2 = B) * \frac{1}{3}$ 



#### With priorities:

• 
$$P(p1 = R) = P(p1 = \neg B) * P(p2 = B)$$

• 
$$P(p2 = R) = P(p2 = \neg B)$$

• 
$$P(p3 = R) = P(p3 = \neg B) * P(p1 = B) * P(p2 = B)$$

