Propriedades Termodinâmicas de Fluidos a Partir de Equações de Estado Cúbicas

Diversas equações de estado cúbicas podem ser escritas da seguinte maneira:

$$P = \frac{RT}{V - b} - \frac{\theta(T)}{(V + \sigma b)(V + \epsilon b)}$$

onde σ e ϵ são constantes. Alguns exemplos comuns podem ser vistos na tabela abaixo:

			~	
	van der Waals	Redlich-Kwong	Soave	Peng-Robinson
σ	0	0	0	$1 + 2^{1/2}$
3	0	1	1	$1-2^{1/2}$
a	$27R^2T_c^2/(64P_c)$	$0,42748R^2T_c^{5/2}/P_c$	$0,42748R^2T_c^2/P_c$	$0,45724R^2T_c^2/P_c$
b	$RT_c/(8P_c)$	$0,08664RT_{c}/P_{c}$	$0.08664RT_{c}/P_{c}$	$0,07780 RT_{c}/P_{c}$
κ			$0,48508 + 1,55171\omega$	$0,37464 + 1,54226\omega$
			$-0.15613\omega^{2}$	$-0.26992\omega^{2}$
θ(T)	a	$aT^{-1/2}$	$a[1+\kappa-\kappa(T/T_c)^{1/2}]^2$	$a[1+\kappa-\kappa(T/T_c)^{1/2}]^2$
θ'(T)	0	$-0.5aT^{-3/2}$	$-a\kappa[(1+\kappa)(T/T_c)^{-1/2}-\kappa]/T_c$	$-a\kappa[(1+\kappa)(T/T_c)^{-1/2}-\kappa]/T_c$

Portanto, para dados R, T, T_c, P_c e ω, é possível calcular todos os parâmetros da tabela acima.

Cálculo do Volume Molar

Pode-se escrever a equação de estado na forma polinomial $f(V) = V^3 + \alpha V^2 + \beta V + \gamma = 0$, onde

$$\alpha = (\sigma + \varepsilon - 1)b - \frac{RT}{P}$$

$$\beta = \sigma \varepsilon b^{2} - \left(\frac{RT}{P} + b\right)(\sigma + \varepsilon)b + \frac{\theta(T)}{P}$$

$$\gamma = -\left(\frac{RT}{P} + b\right)\sigma \varepsilon b^{2} - \frac{b\theta(T)}{P}$$

Tal polinômio pode ter uma ou três raízes reais. Para encontrar a primeira (ou única) raiz real, basta usar o volume molar de gás ideal ($V^{ig} = RT/P$) como estimativa inicial para o método de Newton-Raphson, isto é, iterando $V \leftarrow V \not \equiv f(V)/f'(V)$ até a convergência. Esta iteração equivale a

$$V \leftarrow \frac{2V^3 + \alpha V^2 - \gamma}{3V^2 + 2\alpha V + \beta}$$

Chamando-se de υ o valor obtido após a convergência, as demais raízes serão aquelas que zeram o polinômio quadrático obtido pela divisão de f(V) por $V-\upsilon$. Definindo-se $\phi=-(\alpha+\upsilon)/2$, tais raízes são dadas por

$$V = \phi \pm \sqrt{\Delta}$$
, onde $\phi = -(\alpha + \upsilon)/2$ e $\Delta = \phi + 2\phi\upsilon - \beta$.

Estas duas raízes só poderão ter algum significado físico se $\Delta \ge 0$. No caso de haver três raízes reais, a escolha daquela que será utilizada nos cálculos posteriores dependerá se o fluido for um líquido ou um gás nas dadas T e P.

Cálculo de Propriedades Residuais

O próximo passo é o cálculo da entalpia e da entropia molares residuais do fluido em T e P, que podem ser obtidas por

$$H^{R}(T,P) = PV - RT + [T\theta'(T) - \theta(T)]\Psi$$

$$S^{R}(T,P) = R \ln \frac{P(V-b)}{RT} + \theta'(T)\Psi$$

onde:

$$\Psi = \begin{cases} \frac{1}{b(\epsilon - \sigma)} \ln \frac{V + \epsilon b}{V + \sigma b} & \text{se} \quad \epsilon \neq \sigma \\ \frac{1}{V + \sigma b} & \text{se} \quad \epsilon = \sigma \end{cases}$$

As equações acima podem ser aplicadas tanto para líquido quanto para gás, bastando-se utilizar o volume molar (V) adequado. A fase mais estável será aquela que tiver a menor energia livre de Gibbs molar residual, que pode ser calculada por $G^R = H^R - TS^R$.

Cálculo de Propriedades de Gás Ideal

O primeiro passo para se calcular propriedades termodinâmicas de um fluido real em dada condição de T e P é adotar um gás ideal em uma temperatura T_0 e pressão P_0 (arbitrariamente escolhidas, mas sendo as mesmas para todos os cálculos) como estado de referência. Então, a entalpia e a entropia molares do fluido como gás ideal em quaisquer T e P serão dadas por $H^{ig}(T,P) = \int_{T_0}^T C_P^{ig} dT$ e $S^{ig}(T,P) = \int_{T_0}^T (C_P^{ig}/T) dT - R \ln(P/P_0)$. Em geral, modelos para C_P de gás ideal são apresentados na forma $C_P^{ig}/R = a_0 + a_1T + a_2T^2 + a_3T^3 + a_4T^4$. Neste caso, tem-se que

$$\begin{split} H^{ig}(T,P) &= R \Bigg[a_0(T-T_0) + \frac{a_1}{2}(T^2-T_0^2) + \frac{a_2}{3}(T^3-T_0^3) + \frac{a_3}{4}(T^4-T_0^4) + \frac{a_4}{5}(T^5-T_0^5) \Bigg] \\ S^{ig}(T,P) &= R \Bigg[a_0 \ln \Bigg(\frac{T}{T_0} \Bigg) + a_1(T-T_0) + \frac{a_2}{2}(T^2-T_0^2) + \frac{a_3}{3}(T^3-T_0^3) + \frac{a_4}{4}(T^4-T_0^4) - \ln \Bigg(\frac{P}{P_0} \Bigg) \Bigg] \end{split}$$

Cálculo de Propriedades do Fluido Real

Finalmente, tem-se a entalpia, a entropia e a energia livre de Gibbs molares do fluido dadas por

$$H(T,P) = H^{ig}(T,P) + H^{R}(T,P)$$
$$S(T,P) = S^{ig}(T,P) + S^{R}(T,P)$$
$$G(T,P) = H(T,P) - TS(T,P)$$