AD [HA] zum 6. 11. 2013

Arne Struck, Lars Thoms

4. November 2013

- 1. a) Es liegen k^l Blätter maximal in der l. Ebene. Leicht ersichtlich aus dem Folgenden: 0. Ebene (root): $1=k^0$, 1. Ebene: $k=k^1$, 2. Ebene: $k\cdot k=k^2$, 3. Ebene: $k\cdot k\cdot k=k^3$... l.Ebene: k^l
 - b) Der volle Baum hat $\sum_{i=0}^{l} k^i$ Blätter, die Summe aller Ebenen (eine volle Ebene bemisst sich, wie in a) dargestellt auf k^l).
 - Der vollständige Baum hat $\sum\limits_{i=0}^{l-1} k^i + c \; | c \in \mathbb{N} : 1 \leq c \leq k^l$ Blätter. Der vollständige Baum ist bis zu seiner vorletzten Ebene maximal gefüllt, deswegen die Summe bis l-1, c repräsentiert die Anzahl der Blätter in der letzten Ebene, welche zwischen einem (sonst wäre der Baum voll und hätte l-1 Ebenen) und k^l (ein voller Baum ist vollständig) Blättern.
 - d)
 Der Baum hat n-1 Kanten, da jeder Knoten (bis auf den Wurzelknoten) eine Kante besitzt durch die er mit seinem Elternknoten verbunden ist.
- **2.** a) TODO
 - b) TODO

Order1: NAOEIFMRLUSGARTH Order2: IEOFARMLNGSAUTRH Order3: IEFORLMAGASTHRUN

d) Der LOVELYTREE nach Order 2:

Nach Level-Order: TEEOYRELVL

e)
Ternärer Baum mit vorgegebener Befehlsreihenfolge:

Ausgabe: ALGORITHMSAREFUN

- **3.** a) TODO
 - b) TODO
 - c) TODO
 - d) TODO
 - e) TODO
 - TODO
- **4.** a) TODO
 - b) TODO
 - TODO
- **5.** a) TODO
 - b) TODO