

Eyecloud OpenNCC Software Development Kit (SDK)

Getting Started Guide

June 2021 Revision 1.0.0

技术支持

扫描下方"eyecloud 小助手"二维码添加微信好友,成功后小助手会邀请您入群。 申请请备注"官方文档"

eyecloud小助手

联系方式

电话: 0571-8535-2616

邮箱: info@eyecloud.tech

版权声明

本手册版权归杭州眼云智家科技有限公式所有。未经本公司书面许可,任何 单位及个人无权以任何形式复制、传播、转载本手册的任何内容,违者将被追究 法律责任。

修订历史

Vesion	Date	Editor	Description
1.0.0	June 2021	Zed	

目录

技术支持	2
联系方式	2
版权声明	2
修订历史	3
目录	4
第一章 介绍	5
1.1 概述	5
1.2 SDK 结构	5
1.3 支持的产品及平台	5
第二章 运行指导	6
2.1 部署运行环境	6
2.1.1 Linux	6
2.1.2 Windows	6
2.2.3 Raspberry Pi	6
2.2.4 Custom(自定义)	7
2.2 运行 Viewer	8
2.2.1 OpenNCC_Linux 操作演示	8
2.2.2 OpenNCC_Windows 操作演示	12
2.2.3 OpenNCC_Raspberry 操作演示	12
2.2.4 运行结果演示	13
第三章 软件概述	14
3.1 应用例程	14
3.2 驱动安装	14
3.2.1 Windows USB 驱动安装	14

第一章 介绍

1.1 概述

该文档用于介绍 OpenNCC Software Development Kit (SDK) 并且包含了启动,运行及开发的所有必要信息。

1.2 SDK 结构

目录	内容
./Platform	包含不同平台生成运行环境的脚本。
./SDK/docs	包含 SDK 相关介绍和文档。
./SDK/Drivers	包含不同平台所必须安装的驱动。
./SDK/Example	包含 SDK 的相关例程。
./SDK/Source	包含固件,模型及 SDK 库文件。
./SDK/Tools	包含相关的编译工具。
./Viewer	包含已编译的 Viewer 及 QT 源码。

1.3 支持的产品及平台

SDK 支持的产品如下:

- OpenNCC DK
- OpenNCC Lite
- OpenNCC USB

SDK 支持的平台如下"

- Linux
- Windows
- Raspberry Pi (树莓派)
- Arm64

提示: 其他平台可通过官方技术支持渠道联系我们实现定制化服务。

第二章 运行指导

2.1 部署运行环境

进入 openncc/Platform,目录如下图: ☐ Custom ☐ Linux ☐ Raspberry ☐ Windows

选择需求的文件目录进入,对应文件夹内包含环境部署的脚本。

警告:环境部署脚本会自动生成和覆盖相关文件,运行前请确认是首次运行或已经完成备份。

2.1.1 Linux

- 进入 openncc/Platform/Linux
- 右键打开终端
- 输入命令 sudo ./linux.sh

2.1.2 Windows

- 进入 openncc/Platform/Windows
- 双击运行 windows.bat
- 结果如下:
 - Example
 Source
 Viewer
 ReadMe.md

windows.bat

- 2.2.3 Raspberry Pi
- 进入 openncc/Platform/Raspberry
 - image
 pi.sh
 ReadMe.md
- 右键打开终端

● 输入命令 sudo ./pi.sh

pi@raspberrypi:~/gitlab/openncc/Platform/Raspberry \$ sudo ./pi.sh Raspberry Please make sure you have backed up what you need?(y or n)y

运行成功后,会生成目录如下:

Raspberry
Example
Source
Viewer
pi.sh
ReadMe.md

2.2.4 Custom (自定义)

2.2 运行 Viewer

SDK 内包含可直接运行的 OpenNCC Viewer 及 QT 开发包。完成环境部署(详见 2.1)后,进入 openncc/Platform/Viewer 目录即可看到。

2.2.1 OpenNCC_Linux 操作演示

- 进入 openncc/Platform/Viewer/OpenNcc Linux 目录。
- 右键打开终端,执行 sudo ./AppRun, 启动软件。
- 连接 OpenNCC 相机到电脑 USB3.0 接口,点击 Get device info 按钮获取设备 信息,此时 log 区域会有两种提示:
 - USB3.0: USB interface is 3.0, yuv outflow is currently available.
 - USB2.0: USB interface is not 3.0, yuv outflow will be disabled.

提示: OpenNCC TYPE-C 接口有正反接入两种模式,分别对应 USB3.0 和 USB2.0。 受传输速率影响, USB2.0 模式下会暂时禁用 YUV420P 格式的视频流输出。

如果需要切换 USB 模式,旋转 TPYE-C 接口再次接入,重新点击 Get device info 按钮即可。如果仍然没有改变,请检查电脑 USB 接口类型或联系我们。

- 任意选择一种视频流格式 yuv420p/H.264/H.265/mjpeg。
- "Stream Resolution": 两种分辨率可供选择,1080p 和 4K。 (具体由 OpenNCC 产品类型决定)

● "1st network model":选择算法模型。 目前支持 10 多种模型可选,选择 None 即不加载模型,仅显示原始视频流。

● 可以通过框选 ROI 区域限制算法区域,算法只对区域内的场景进行识别。 (具体见运行结果展示)。

● "2nd network model":选择二级算法模型。

示例模式: - vehicle-license-plate-detection-barrier-0106-fp16

- "Model Score":设置算法识别的最低分数,达到阈值后才会在画面中框选出识别结果。
- "Display Scaler": 设置视频显示窗体大小,可以调节显示窗口分辨率。

● "Exposure control": 设置曝光,可以选择 Auto 和 Manual,当选择 Manual 时,可以自己设置 Exposure times 和 iso。

- 勾选"show state",选择是否在画面上显示当前状态信息,包括视频流帧率、 算法帧率、分辨率、设备 id。
- 勾选"inference accelerate",选择是否启用算法加速.(必须在加载算法模型前选择)。

● 勾选"save_avi",会在打开视频流后,将视频保存到 avi 文件夹下,文件名称 以时间命名。当关闭视频流后,视频会停止保存。(yuv420p 没有此项)

2.2.2 OpenNCC_Windows 操作演示

提示:运行 OpenNCC_Windows 之前需要安装 USB 驱动程序,详见 3.2

- 进入 openncc/Platform/Viewer/OpenNcc Windows 目录。
- 双击运行 OpenNCC.exe。
- 后续操作同 OpenNCC Linux。

2.2.3 OpenNCC_Raspberry 操作演示

提示:运行 OpenNCC_Raspberry 之前,请先查看设备号并<u>联系我们</u>获取密钥,设备号获取 方法详见 openncc/Platform/Raspberry/ReadMe.md

- 将密钥文件(eyecloud.key)复制到目录 openncc/Platform/Viewer/OpenNcc_Raspberry/Configuration/fw
- 回到目录 openncc/Platform/Viewer/OpenNcc Raspberry/
- 右键打开终端,执行 sudo ./AppRun, 启动软件。
- 后续操作同 OpenNCC Linux。

2.2.4 运行结果演示

以物体分类算法模型为例:

点击"Start running models", 打开视频流。

香蕉在算法区域内结果:

苹果在算法区域内结果:

第三章 软件概述

本章介绍了SDK中包含了相关的的基本应用例程及必要驱动程序的安装。

3.1 应用例程

SDK 中包含了 How_to 及 Linkage_demo 两类例子,下面表格中包含了对示例的简单描述。详细开发细节见各例程目录内 ReadMe 及 OpenNCC SDK API.pdf。

提示: ReadMe 推荐用 Typora 查看 下载地址: https://www.typora.io/

目录	内容	
Example/How_to/How_to_use_sdk	示例程序,如何在项目中使用 SDK 库。	
Example/How_to/Capture_video	示例程序,使用 SDK 库获取视频流。	
Evample/Hew to/Load a model	示例程序,使用 SDK 库下载一个 Blob 格	
Example/How_to/Load_a_model	式的深度学习模型。	
Example/How_to/work_with_multiple_models	示例程序,二级模型的应用。	
Example/How_to/Python_demo	Python 的相关示例。	
Example/Linkage_demo/		
work with AlwaysAI /	人脸模型,使用 AlwaysAl 解析结果显示,	
pedestrian_tracking_demo	并统计通过识别区域的人数。	
Example/Linkage_demo/	人体骨骼模型,使用 OpenVINO 解析结果显示。	
work_with_OpenVINO/		
human_pose_estimation_demo		
Example/Linkage_demo/	人脸、年龄、性别、心情模型,使用 OpenVINO 解析结果显示。	
work_with_OpenVINO/		
interactive_face_detection_demo		

3.2 驱动安装

openncc/SDK/Drivers 目录中包含了对应平台所必须的驱动程序。

3.2.1 Windows USB 驱动安装

完成<u>环境部署</u>后,进入 openncc/Platform/Windows/Drivers 目录, 详细安装步骤见 OpenNCC_USB_Driver_install_guide_win.pdf。