The Transformer Network for the Dial-a-Ride Problem - Semester Project (12 Credits) -

Student: Aoyu Gong

Section: Communication Science Supervisor: Prof. Alexandre Alahi

École Polytechnique Fédérale de Lausanne

Background

1. Dial-a-Ride Problem (DARP)

- The DARP consists of designing vehicle routes and schedules for n
 users who specify pick-up and drop-off requests between origins and
 destinations.
- In the standard version, transport is supplied by a fleet of *K* identical vehicles based at the same depot.
- The aim is to plan a set of K minimum cost vehicle routes capable of accommodating as many users as possible, under a set of constraints.

2. Application

The most common application arises in healthcare services, e.g.,
 door-to-door transportation services for elderly or disabled people.

Problem Statement

Formulation (Sec. 3, Cordeau 2006)

- Let *n* denote the number of users (or requests) to be served.
- Let K denote the number of vehicles providing a shared serve.
- The DARP may be defined on a complete directed graph $G = (\mathcal{N}, \mathcal{A})$, where $\mathcal{N} = \mathcal{P} \cup \mathcal{D} \cup \{0, 2n + 1\}$.
 - Subsets $\mathcal{P} = \{1, 2, ..., n\}$ and $\mathcal{D} = \{n + 1, n + 2, ..., 2n\}$ contain pick-up and drop-off nodes, respectively.
 - Nodes 0 and 2n + 1 represent the origin and destination depots.
- Each user i has a maximum ride time L and associates with an origin node i and a destination node n + i.
- Each vehicle $k \in \mathcal{K}$ has a maximum vehicle capacity Q_k and a maximum route duration T_k .
 - Set $\mathcal{K} = \{1, 2, \dots, K\}$ is the set of vehicles.

4 D > 4 A > 4 B > 4 B > B 9 Q Q

Problem Statement (cont'd)

Formulation (Sec. 3, Cordeau 2006)

- A load q_i and a non-negative service duration d_i are associated with each node $i \in \mathcal{N}$.
 - For $i \in \{0, 2n + 1\}$, $q_i = 0$. For $i \in \mathcal{P}$, $q_i = -q_{n+i}$.
 - For $i \in \{0, 2n + 1\}$, $d_i = 0$. For $i \in \mathcal{P} \cup \mathcal{D}$, $d_i \ge 0$.
- A time window $[e_i, l_i]$ is specified either for the origin node or for the destination node of a user i, but not both.
 - e_i and l_i represent the earliest and latest time, respectively, at which service may begin at the origin node or the destination node.
- A routing cost c_{ij} and a travel time t_{ij} are associated with each arc $(i,j) \in \mathcal{A}$.
 - c_{ii} and t_{ii} are calculated based on the Euclidean distance.
- The DARP can be formulated as a mixed-integer programming.
 - The objective is to minimize the total routing cost.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

1. Problem Domain

- The vehicle routing problem (VRP) is a popular and widely studied combinatorial problem (Golden et al. 2008, Toth et al. 2014).
- The DARP is a difficult problem because it generalizes the VRP by incorporating time windows and maximum ride-time constraints.
 - Finding a feasible solution for the DARP is NP-hard.
 - Approaches for exact solutions can only be designed to solve small to medium-size instances.

2. Technical Domain

- In the last decade, deep learning (DL) has significantly improved computer vision, natural language processing, and speech recognition by replacing hand-crafted features by features learned from data.
- For combinatorial problems, the main question is whether DL can learn better heuristics from data than hand-crafted heuristics?

Generate and Solve Instances

1. Generate Instances

- We generate instances using a method proposed in 2006¹.
 - We consider 2 types of instances: type-a and type-b instances.
 - For each type of instances, we consider 8 kinds of instances.
 - a2-16, a2-20, a2-24, a3-24, a3-36, a4-32, a4-40, a4-48
 - b2-16, b2-20, b2-24, b3-24, b3-36, b4-32, b4-40, b4-48

2. Solve Instances

• We solve instances using an algorithm proposed in 2021².

3. Prepare for Supervised Learning

- For each kind of instances, we generate and solve
 - 10,000 instances for creating training and validation sets,
 - and 100 instances for evaluating models.

Aoyu Gong (EPFL) Transformer4DARP Nov. 2022 6 / 20

¹J.-F. Cordeau, "A branch-and-cut algorithm for the dial-a-ride problem," Oper. Res., vol. 54, no. 3, pp. 573–586, 2006.

²Y. Rist and M. A. Forbes, "A new formulation for the dial-a-ride problem," Transp. Sci., vol. 55, no. 5, pp. 1113–1135, 2021.

Inputs and Outputs (Instance b2–16)

1. Inputs

By using the method (Cordeau 2006), we have the following inputs:

- n=16, K=2, $Q_k=6$ and $T_k=480$ for each vehicle $k\in\mathcal{K}$, L=45
- x_i , y_i , q_i , d_i , $[e_i, l_i]$ for each node $i \in \mathcal{N}$

2. Outputs

By using the algorithm (Rist 2021), we have the following outputs:

- The total routing cost: 242.0676
- The **route** and **schedule** of Vehicle 1:

```
- 0 | 59.14 \rightarrow 11 | 63.00 \rightarrow 27 | 67.12 \rightarrow 14 | 93.00 \rightarrow 30 | 107.14 \rightarrow \cdots
```

- The **route** and **schedule** of Vehicle 2:
 - $0 \mid 52.76 \rightarrow 3 \mid 59.00 \rightarrow 5 \mid 71.12 \rightarrow 21 \mid 94.00 \rightarrow 19 \mid 105.00 \rightarrow \cdots$

Working Procedure (Instance b2–16)

The route and schedule of Vehicle 1:

• The **route** and **schedule** of Vehicle 2:

Figure: The working procedure of the two vehicles.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Simulator

Prepare for Supervised Learning

- Given the inputs and outputs, we can simulate the working procedure.
- The simulator will be used to create training and validation sets.

Figure: The working procedure of the two vehicles.

Proposed Formulation

1. States

- At time step t, the system occupies a state, represented by \mathbf{s}_t .
- A state consists of K + 11 features for each user.
- At time step t, User i have the following features.
 - Travel time from its pick-up or drop-off nodes to K vehicles
 - Load q;
 - Serve duration d_i
 - Shifted pick-up time window $[e_i t, l_i t]$
 - Shifted drop-off time window $[e_{n+i} t, I_{n+i} t]$
 - Ride time *Li*
 - ID of the vehicle which is serving this user $a_t \in \mathcal{K} \cup \{\text{None}\}$
 - Status $\alpha_t \in \{0, 1, 2\}$
 - α_t : 0 waiting, 1 being served by Vehicle a_t , 2 done
 - ID of the vehicle which will perform an action $b_t \in \mathcal{K}$
 - Status $\beta_t \in \{0, 1, 2\}$
 - β_t : 0 waiting, 1 being served by Vehicle b_t , 2 unable to be served

Aoyu Gong (EPFL) Transformer4DARP Nov. 2022

10 / 20

Proposed Formulation (cont'd)

2. Actions

- At time step t, Vehicle b_t observes the system in state \mathbf{s}_t and then performs an action.
- An action is defined to be the ID of the next user to be served by Vehicle b_t , represented by $i_t \in \{1, 2, ..., n\} \cup \{2n + 1\}$.
 - 2n + 1 represents the ID of the destination depot.

3. Environment

• The environment is shown as follows.

Figure: The environment.

Create Dataset

Observation

• A state-action pair can be generated whenever at least one vehicle becomes free, e.g., Vehicle 1 at t_1 , Vehicle 2 at t_1 , Vehicle 2 at t_2 , Vehicle 1 at t_3 , Vehicle 1 at t_4 , Vehicle 2 at t_5 , and so on.

Figure: The simulator of the b2-16 instance.

Nov. 2022

Create Dataset (cont'd)

Figure: The method of creating state-action (i.e., feature-label) pairs.

Aoyu Gong (EPFL) Transformer4DARP Nov. 2022

13 / 20

Create Dataset (cont'd)

1. Generate and Solve Instances (Recall)

- We generate instances using the method proposed by Cordeau et al.
 - We consider 16 kinds of instances.
 - a2-16, a2-20, a2-24, a3-24, a3-36, a4-32, a4-40, a4-48
 - b2-16, b2-20, b2-24, b3-24, b3-36, b4-32, b4-40, b4-48
- We solve instances using the algorithm proposed by Rist et al.
- For each kind of instances, we generate and solve
 - 10,000 instances for creating training and validation sets.

2. Create Dataset

- A dataset can be created by the simulator on 10,000 instances.
 - For b2-16 instances, a dataset consists of 340,000 state-action pairs.
- A dataset is split into training and validation sets with a 98-2 split.

Proposed Model

1. Model Architecture

- The proposed model architecture consists of a input block, an encoder, and an output block.
 - The input block converts a state to n vectors of dimension d_{model} .
 - The encoder is a standard transformer encoder with an input sequence length of n.
 - The output block takes the encoder's output as inputs and predicts user probabilities.
- The cross entropy loss is used as the loss function.

Figure: The proposed model architecture.

Proposed Model (cont'd)

2. User-Encoder Architecture

- The user-encoder architecture consists of a embedding layer, an encoder, and a linear layer.
 - The embedding layer uses 9 lookup tables to store embeddings for K+11 features. It converts them to K+11 vectors of dimension d_{model} .
 - The encoder is a transformer encoder with an input sequence length of K + 11.
 - The linear layer applies a linear transformation to the encoder's output. It outputs 1 vector of dimension d_{model} .

Figure: The user-encoder architecture.

16 / 20

Evaluation Metrics

1. Standard Instances

- For each kind of instances, we have 1 standard instance.
- We propose three metrics to evaluate models.

$$-\Delta$$
: $\frac{\mathsf{Cost}\;(\mathsf{Predicted}) - \mathsf{Cost}\;(\mathsf{Rist}\;2021)}{\mathsf{Cost}\;(\mathsf{Rist}\;2021)} \times 100\%$

- $-N_{TW}$: the number of users whose time windows are not satisfied
- $-N_{\rm RT}$: the number of users whose ride time exceeds the maximum ride time

2. Random Instances

- For each kind of instances, we have 100 random instances.
- We compute the average of the metrics on the 100 instances.

$$-\; \bar{\Delta} \colon \; \frac{\overline{\mathsf{Cost}}(\mathsf{Predicted}) - \overline{\mathsf{Cost}}(\mathsf{Rist}\; 2021)}{\overline{\mathsf{Cost}}(\mathsf{Rist}\; 2021)} \times 100\%$$

- $-\bar{N}_{TW}$: the average of N_{TW} on the 100 instances
- $-\bar{N}_{RT}$: the average of N_{RT} on the 100 instances

Results

1. Standard Instances

• For each kind of instances, we have 1 standard instance.

	Cost (Rist)	Cost (Pred.)	Δ	N_{TW}	N_{RT}
b2-16	309.41	302.41	+2.26	2	1
b2-20	332.64	347.25	-4.39	1	0
b2-24	444.71	458.53	-3.11	2	1

2. Random Instances

For each kind of instances, we have 100 random instances.

	Cost (Rist)	\overline{Cost} (Pred.)	$ar{\Delta}$	\bar{N}_{TW}	\bar{N}_{RT}
b2-16	281.14	299.65	-6.59	1.55	1.27
b2-20	349.83	370.72	-5.97	1.75	1.51
b2-24	413.06	443.12	-7.28	1.80	1.66

Aoyu Gong (EPFL)

Results

b2-20 (Standard Instance)

- $\Delta = -4.39\%$
 - Cost (Rist 2021): 332.64
 - Cost (predicted): 347.25
- $N_{TW} = 1$
 - The drop-off time window of User 9 is broken: 118.71 ∉ [102.0, 117.0]
- $N_{RT} = 0$
- The routes of two vehicles (Rist 2021)
 - 9, 7, 7, 15, 9, 15, 13, 13, 14, 11, 11, 14, 2, 2, 8, 8, 19, 19, 10, 10, 16, 16, 1, 1
 - 5, 5, 20, 20, 3, 3, 17, 17, 12, 12, 6, 6, 4, 4, 18, 18
- The routes of two vehicles (predicted)
 - 7, 7, 15, 9, 9, 15, 13, 13, 14, 11, 11, 14, 2, 2, 8, 8, 19, 19, 16, 16
 - 5, 5, 20, 20, 3, 3, 17, 17, 12, 12, 6, 6, 10, 10, 4, 4, 18, 18, 1, 1

◆ロト ◆卸ト ◆恵ト ◆恵ト ・恵 ・ 釣り(で)

Nov. 2022

Future Work

1. Formulation

- Change the formulation and create new datasets.
 - Change states to represent the environment more efficiently.
 - Change actions to allow users to wait after the beginning of time windows.

2. Model Architecture

Change the model architecture and test new models.

3. Machine Learning Paradigm

- Combine supervised and reinforcement learning.
 - First, we train a model with supervised learning and save it.
 - Next, we load the model and train it with reinforcement learning.

Aoyu Gong (EPFL) Transformer4DARP Nov. 2022 20 / 20