كد فرم : FR/FY/11

(فرم طرح سئوالات امتحانات پایان ترم) دانشکده ریاضی

ويرايش : صفر

گروه آموزشی : **ریاضی** امتحان درس : **معادلات دیفرانسیل (۶ گروه هماهنگ**) نیمسال (**اول**/دوم) ۹۳–۱۳۹۲ نام مدرس: نام و نام خانوادگی : شماره دانشجویی : تاریخ : ۱۳۹۲/۱۰/۸ وقت : ۱۳۵ دقیقه

توجه:

مطالب صفحه اول پاسخنامه را به دقت مطالعه نمایید. در طول برگزاری امتحان به هیچ سوالی پاسخ داده نمی شود.

سوال ۱- معادله مرتبه دوم زیر را حل کنید.

۱۵ نمره

$$y'' = \sqrt{1 + (y')^{\gamma}}$$
 ; $y(\cdot) = y'(\cdot) = \cdot$

سوال ۲- ابتدا معادله همگن y'' + xy' - y = 0 را حل کنید و سپس جواب عمومی معادله

۲۰ نمره

$$y'' + \frac{1}{x}y' - \frac{1}{x'}y = \frac{7x+1}{x'}$$

را بيابيد.

۱۵ نمره

سوال
$$y'' + y'' + \Delta y = e^{-x} \sin y$$
 بیابید. یک جواب خصوصی برای معادله مرتبه دوم

۲۰ نمره

سوال
$$x''y'' + x(x-1)y' + y = 0$$
 را به صورت سری فروبنیوس حول نقطه صفر و به ازای ریشه کوچکتر معادله مشخصه بیابید.

۱۵ نمره

$$\begin{cases} x' + y' + \Delta x - y = \sin t \\ x' - y' - x = t \end{cases}$$

۲۰ نمره

سوال
$$f(t)=\int\limits_{\cdot}^{t} \frac{(1-\cos u)\sin(t-u)}{t-u}\,du$$
 را محاسبه کنید. $f(t)=\int\limits_{\cdot}^{t} \frac{(1-\cos u)\sin(t-u)}{t-u}\,du$ را محاسبه کنید. ب نبدیل لاپلاس معکوس تابع $F(s)=\ln\frac{s+r}{s-r}$ را محاسبه کنید.

۱۵ نمره

سوال ۷- اگر
$$\pi \leq t$$
 به کمک تبدیل لاپلاس، مساله مقدار اولیه $f(t) = \begin{cases} t & \cdot \leq t < \pi \\ \cdot & \pi \leq t \end{cases}$ سوال $y'' + y = f(t)$; $y(\cdot) = \mathsf{Y}$, $y'(\cdot) = \mathsf{Y}$

را حل كنيد.

پاسخ سوالات امتحان پایان ترم درس معادلات دیفرانسیل (۶ گروه هماهنگ) نیمسال اول ۹۳–۱۳۹۲

سوال $u' = \sqrt{1 + u'}$ که یک معادله جداییپذیر است. y'' = u' و y' = u داریم y'' = u' که یک معادله جداییپذیر است. $u = \sinh(x+c)$ و یا $u = \sinh(x+c)$ پس داریم $u = \sinh(x+c)$ و طبق شرط اولیه $u = \sinh(x+c)$ داریم $u = \sinh(x+c)$ و جواب نهایی مساله عبارت است از $u = \sinh(x+c)$ و طبق شرط اولیه $u = \sinh(x+c)$ داریم $u = \sinh(x+c)$ و جواب نهایی مساله عبارت است از $u = \sinh(x+c)$

 $r_{\gamma}=-1$ و $r_{\gamma}=1$ که دارای ۲ ریشه $r_{\gamma}=-1$ و $r_{\gamma}=-1$ که دارای ۲ ریشه $r_{\gamma}=-1$ و $r_{\gamma}=-1$ که دارای ۲ ریشه $r_{\gamma}=-1$ و $r_{\gamma}=-1$ این معادله یک معادله اویلر است و معادله مشخصه آن برابر است با $y_{\gamma}=ax+\frac{b}{x}$: است. جواب معادله همگن عبارت است از

 $y_1 = x$, $y_2 = \frac{1}{x}$, $w(y_1, y_2) = \frac{-1}{x}$, $h(x) = \frac{1}{x}$: براى حل معادله غير همگن از روش تغيير پارامتر استفاده مى كنيم. داريم

 $y_{p} = -x \int \frac{\frac{1}{x} \times \frac{rx+1}{x^{r}}}{\frac{-r}{x}} dx + \frac{1}{x} \int \frac{x \times \frac{rx+1}{x^{r}}}{\frac{-r}{x}} dx = \frac{x}{r} \int (\frac{r}{x} + \frac{1}{x^{r}}) dx - \frac{1}{rx} \int (rx+1) dx$ $= \frac{x}{r} (r \ln x - \frac{1}{r}) - \frac{1}{r} (x^{r} + x) = r \ln x - 1 - \frac{x}{r}$

 $= \frac{x}{r} (r \ln x - \frac{1}{x}) - \frac{1}{rx} (x^r + x) = x \ln x - 1 - \frac{x}{r}$ $y_g = ax + \frac{b}{r} + x \ln x - 1$: i limit like

 $y_g = ax + rac{b}{x} + x \ln x - 1$: به کمک قسمت اول مساله، جواب عمومی معادله غیر همگن عبارت است از

 $y_p = \frac{1}{D^{\mathsf{T}} + \mathsf{T}D + \Delta} (e^{-x} \sin \mathsf{T}x)$ و در نتیجه : $(D^{\mathsf{T}} + \mathsf{T}D + \Delta)y = e^{-x} \sin \mathsf{T}x$ و در نتیجه : $(D^{\mathsf{T}} + \mathsf{T}D + \Delta)y = e^{-x} \sin \mathsf{T}x$ و در نتیجه :

 $y_p = e^{-x} \frac{1}{(D-1)^{x} + x(D-1) + a} (\sin xx) = e^{-x} \frac{1}{D^{x} + b} (\sin xx)$

.چون نمی توانیم به جای $D^{^{\mathsf{T}}}$ نمی توانیم مقدار - با قرار دهیم از اعداد مختلط کمک می گیریم

 $y_{p} = e^{-x} \frac{1}{D^{r} + f} (\operatorname{Im}(e^{rix})) = e^{-x} \operatorname{Im}(\frac{1}{D^{r} + f}(e^{rix})) = e^{-x} \operatorname{Im}(e^{rix} \frac{1}{(D + fi)^{r} + f}(1))$

 $y_p = e^{-x} \operatorname{Im}(e^{xix} \frac{1}{D(D+xi)}(x)) = e^{-x} \operatorname{Im}(e^{xix} \frac{1}{D}(\frac{1}{xi} + \frac{D}{x} + \cdots)(x)) = e^{-x} \operatorname{Im}(e^{xix} \frac{1}{D}(\frac{1}{xi}))$

 $y_p = e^{-x} \operatorname{Im}(\frac{x}{\epsilon i} e^{\epsilon ix}) = e^{-x} \operatorname{Im}(\frac{x}{\epsilon i} (\cos \tau x + i \sin \tau x)) = -\frac{x}{\epsilon} e^{-x} \cos \tau x$

 $y_p = -\frac{x}{\epsilon}e^{-x}\cos tx$: یک جواب خصوصی معادله داده شده عبارت است از

سوال ۴- نقطه x=1 یک نقطه غیر عادی منظم معادله است زیرا اگر معادله را به صورت x=1 نقطه $y''+\frac{rx-1}{rx}y'+\frac{rx-1}{rx}y'=1$ وجود دارند پس x=1 یک نقطه غیر عادی است. اما چون حدهای x=1 است. اما چون حدهای x=1 و جود دارند پس x=1 و جود دارند پس x=1 یک نقطه غیر عادی منظم معادله است. معادله مشخصه عبارت است از x=1 و x=1 و یا x=1 که دو ریشه x=1 که دو ریشه x=1 و یا x=1 که دو ریشه x=1 که دو ریشه دارد. چون x=1 عددی صحیح نیست پس معادله، دو جواب به صورت سری فروبنیوس دارد.

به ازای ریشه کوچکتر، جواب معادله را محاسبه می کنیم.

پاسخ سوالات امتحان پایان ترم درس معادلات دیفرانسیل (۶ گروه هماهنگ) نیمسال اول ۹۳–۱۳۹۲

: داریم. داریم و در معادله قرار می دهیم. داریم
$$y=x^{\frac{1}{7}}\sum_{n=\cdot}^{\infty}a_nx^n=\sum_{n=\cdot}^{\infty}a_nx^{\frac{n+\frac{1}{7}}{7}}$$
 , $a_{\cdot}\neq\cdot$ تر نظر گرفته و در معادله قرار می دهیم. داریم

$$\Upsilon x^{\mathsf{T}} \sum_{n=1}^{\infty} (n+\frac{1}{\mathsf{Y}})(n-\frac{1}{\mathsf{Y}}) a_n x^{n-\frac{\mathsf{T}}{\mathsf{Y}}} + x(\Upsilon x-1) \sum_{n=1}^{\infty} (n+\frac{1}{\mathsf{Y}}) a_n x^{n-\frac{1}{\mathsf{Y}}} + \sum_{n=1}^{\infty} a_n x^{n+\frac{1}{\mathsf{Y}}} = \mathbf{1}$$

$$\sum_{n=\cdot}^{\infty} (\forall n^{\tau} - \frac{1}{\tau}) a_n x^{n+\frac{1}{\tau}} + \sum_{n=\cdot}^{\infty} (\forall n+1) a_n x^{n+\frac{\tau}{\tau}} - \sum_{n=\cdot}^{\infty} (n+\frac{1}{\tau}) a_n x^{n+\frac{1}{\tau}} + \sum_{n=\cdot}^{\infty} a_n x^{n+\frac{1}{\tau}} = \cdot$$

$$\sum_{n=1}^{\infty} (\forall n^{\tau} - \frac{1}{\tau}) a_n x^{n + \frac{1}{\tau}} + \sum_{n=1}^{\infty} (\forall n - \tau) a_{n - \tau} x^{n + \frac{1}{\tau}} - \sum_{n=1}^{\infty} (n + \frac{1}{\tau}) a_n x^{n + \frac{1}{\tau}} + \sum_{n=1}^{\infty} a_n x^{n + \frac{1}{\tau}} = \cdot$$

$$\sum_{n=1}^{\infty} [(\Upsilon n^{\Upsilon} - n)a_n + (\Upsilon n - \Upsilon)a_{n-\Upsilon}]x^{n+\frac{\Upsilon}{\Upsilon}} = \cdot$$

$$a_n = \frac{-1}{n} a_{n-1}$$
 , $n = 1,7,7,\cdots$ و یا $(7n^7 - n) a_n + (7n - 1) a_{n-1} = \cdot$, $n = 1,7,7,\cdots$ اکنون باید

ز این رابطه نتیجه میشود

$$a_{\scriptscriptstyle 1} = -a_{\scriptscriptstyle 1}, \ a_{\scriptscriptstyle 2} = \frac{-1}{2} a_{\scriptscriptstyle 1} = \frac{1}{2} a_{\scriptscriptstyle 1}, \ a_{\scriptscriptstyle 2} = \frac{-1}{2} a_{\scriptscriptstyle 1}, \ a_{\scriptscriptstyle 3} = \frac{-1}{2} a_{\scriptscriptstyle 1}, \ a_{\scriptscriptstyle 4} = \frac{-1}{2} a_{\scriptscriptstyle 1}, \ a_{\scriptscriptstyle 5} = \frac{-1}{2} a_{\scriptscriptstyle 7} = \frac{1}{2} a_{\scriptscriptstyle 7} = \frac$$

اینون با فرض
$$y = x^{\frac{1}{7}} \sum_{n=.}^{\infty} \frac{(-1)^n}{n!} x^n = x^{\frac{1}{7}} \sum_{n=.}^{\infty} \frac{(-x)^n}{n!} = \sqrt{x} e^{-x}$$
 به دست می آید.

$$y = 7x' + 5x - t - \sin t$$
 . یعنی $7x' + 5x - y = t + \sin t$. یعنی کنیم داریم کنیم داریم کنیم داریم ایم دو معادله دستگاه را با هم جمع کنیم داریم

$$\begin{cases} (D+\Delta)x + (D-1)y = \sin t \\ (D-1)x - Dy = t \end{cases}$$

: بنابر این کافی است تابع
$$x$$
 را پیدا کنیم. به کمک عملگر

$$\begin{cases} D(D+\Delta)x + D(D-1)y = \cos t \\ (D-1)^{r}x - D(D-1)y = 1-t \end{cases}$$

: داریم در
$$(D-1)$$
 داریم در و ضرب معادله دوم در $(D-1)$ داریم

$$(\Upsilon D^{\Upsilon} + \Upsilon D + \Upsilon)x = \Upsilon - t + \cos t$$

و در نتیجه :

$$x_h = Ae^{-t} + Be^{-t \over r}$$
 اکنون اگر $D^r + rD + r = 0$ یعنی جواب معادله همگن عبارت است از $D^r + rD + r = 0$ اکنون اگر

$$x_p = \frac{1}{PD^{r} + PD + 1}(1 - t) + \frac{1}{PD^{r} + PD + 1}\cos t$$

$$x_p = (\mathbf{1} - \mathbf{r}D + \cdots)(\mathbf{1} - t) + \frac{\mathbf{1}}{-\mathbf{1} + \mathbf{r}D + \mathbf{1}}\cos t \rightarrow x_p = \mathbf{1} - t + \mathbf{r} + \frac{\mathbf{r}D + \mathbf{1}}{\mathbf{1}D^{\mathsf{T}} - \mathbf{1}}\cos t \rightarrow x_p = \mathbf{r} - t + \frac{\mathbf{r}D + \mathbf{1}}{-\mathbf{1}}\cos t$$

$$x_p = \mathbf{r} - t + \frac{1}{1}(\mathbf{r} \sin t - \cos t)$$
 : و جواب خصوصی عبارت است از

$$x_g = Ae^{-t} + Be^{rac{-t}{r}} + r - t + rac{r}{r}(r\sin t - \cos t)$$
 اکنون جواب عمومی تابع x محاسبه شده است :

. اکنون از تساوی $y = \mathbf{r} x' + \mathbf{f} x - t - \sin t$ استفاده می کنیم

$$y_g = -\Upsilon A e^{-t} - B e^{\frac{-t}{\Upsilon}} - \Upsilon + \frac{\Upsilon}{\Delta} (\Upsilon \cos t - \sin t) + \Upsilon A e^{-t} + \Upsilon B e^{\frac{-t}{\Upsilon}} + \Lambda - \Upsilon t + \frac{\Upsilon}{\Delta} (\Upsilon \sin t - \cos t) - t - \sin t$$

$$y_g = \Upsilon A e^{-t} + \Upsilon B e^{\frac{-t}{\Upsilon}} + S - \Delta t + \frac{1}{\Delta} (\Upsilon \sin t - \Upsilon \cos t)$$

پاسخ سوالات امتحان پایان ترم درس معادلات دیفرانسیل (۶ گروه هماهنگ) نیمسال اول ۹۳–۱۳۹۲

$$L\{f\} = L\{g\}L\{h\} \quad \text{ actions } f(t) = (g*h)(t) \quad \text{ which } g(t) = \mathsf{I} - \mathsf{cost} \quad \mathsf{g} \quad h(t) = \frac{\mathsf{sin} t}{t} \quad \mathsf{get}_{\mathsf{g}} \in \mathsf{get}_{\mathsf{g}} = \mathsf{get}_{$$