UNIVERSITÉ de LORRAINE TELECOM Nancy

TELECOM Nancy Durée du sujet : 2h

Mathématiques Appliquées pour l'Informatique $1^{\grave{e}re}$ année formation par apprentissage

Date : 19 décembre 2017 Corrigé

Horaire: 14h à 16h

Exercice 1 (Théorie des langages : automates et langages réguliers)

1. Nous exprimons le système associé à l'automate :

$$\begin{cases} (1) L_p = aL_q + bL_p \\ (2) L_q = aL_q + bL_r \\ (3) L_r = aL_q + bL_r + \varepsilon \quad (car \ L_r \ est \ terminal) \end{cases}$$

Comme l'état p est le seul état initial de l'automate \mathcal{A}_1 , le langage $L(\mathcal{A}_1)$, reconnu par \mathcal{A}_1 est le langage $L(\mathcal{A}_1)$

On applique le lemme de Arden aux équations (1) et (2), avec des solutions uniques car $\varepsilon \notin \{a\}$ et $\varepsilon \notin \{b\}$.

$$\begin{cases}
(1) L_p = b^* a L_q \\
(2) L_q = a^* b L_r \\
(3) L_r = a L_q + b L_r + \varepsilon
\end{cases}$$

On substitue dans (1) et (3), la valeur de L_q prise dans (2).

$$\begin{cases}
(1) L_p = b^* a a^* b L_r \\
(2) L_q = a^* b L_r \\
(3) L_r = a a^* b L_r + b L_r + \varepsilon = (a a^* b + b) L_r + \varepsilon
\end{cases}$$

On applique enfin le lemme d'Arden à l'équation (3) (cas $\varepsilon \notin (aa^*b + b)$).

$$\begin{cases} (1) \ L_p = b^* a a^* b L_r \\ (2) \ L_q = a^* b L_r \\ (3) \ L_r = (a a^* b + b)^* \varepsilon = (a a^* b + b)^* \end{cases}$$

On substitue la valeur de L_r prise dans (3), dans l'équation (1) et (2).

$$\begin{cases} (1) \ L_p = b^* a a^* b (a a^* b + b)^* \\ (2) \ L_q = a^* b (a a^* b + b)^* \\ (3) \ L_r = (a a^* b + b)^* \varepsilon = (a a^* b + b)^* \end{cases}$$

 $b^*aa^*b(aa^*b+b)^*$ est une expression rationnelle dénotant le langage $L(\mathcal{A}_1)$.

- 2. Les éléments permettant d'affirmer que A_2 est indéterministe sont les suivants :
 - une transition sur ε : $(3, \varepsilon, 0)$
 - les transitions suivantes :

$$-(1, a, 1)$$
 et $(1, a, 2)$

Déterminisation.

L'état initial de l'automate déterministe obtenu est l'état constitué de l'ensemble des états atteignables à partir des états initiaux de l'automate indéterministe sans consommer de lettres de l'alphabet $\{a, b\}$ (c'est-à-dire les états initiaux de A_2 et ceux qui peuvent être atteints à partir de A_2 par des ε – transitions). Ici l'état initial est $\{0\}$.

Construction de la table intermédiaire :

	a	b
0	{1}	{2}
1	$\{1, 2\}$	$\{0, 3\}$
2	{0}	$\{0, 3\}$
3	$\{1, 2\}$	{2}

Déroulement de l'algorithme : détermination de δ la fonction de transitions de l'automate déterministe. On exécute l'algorithme en partant de l'état initial de l'automate déterministe, c'est-à-dire $\{0, 1\}$ et en utilisant la table intermédiaire. Chaque nouvel état généré est mis en entrée (dans la colonne δ de la table).

δ	a	b
{0}	{1 }	{2 }
{1}	{1 , 2 }	{0 , 3 }
{2}	{0}	$\{0, 3\}$
$\{1, 2\}$	$\{0, 1, 2\}$	$\{0, 3\}$
$\{0, 3\}$	$\{1, 2\}$	{2}
$\{0, 1, 2\}$	$\{0, 1, 2\}$	$\{0, 2, 3\}$
$\{0, 2, 3\}$	$\{0, 1, 2\}$	$\{0, 2, 3\}$

L'automate déterministe obtenu est \mathcal{A}_{d2} tel que

$$\mathcal{A}_{d2} = (\{a, b\}, Q, \{0\}, \delta, \{\{0, 2, 3\}, \{1, 2\}, \{0, 1, 2\}, \{2\}\})$$

où δ est la fonction de transition définie dans la table ci-dessus, et

$$Q = \{\{0, 2, 3\}, \{1, 2\}, \{0, 1, 2\}, \{0, 3\}, \{2\}, \{0\}, \{1\}\}\}$$

3. Minimisation. Déterminons les états accessibles à partir de l'état initial 0, en utilisant l'algorithme vu en TD, on obtient dans l'ordre : 0, 2, 4, 3, 5, donc 1 et 6 sont des états inaccessibles. On exécute l'algorithme :

Donc $3 \sim 5$.

Les quatre classes obtenues sont les quatre états de l'automate obtenu, A_m , qui est formellement défini comme suit :

$$\mathcal{A}_m = (\{a, b\}, \{\{0\}, \{2\}, \{3, 5\}, \{4\}\}, \{0\}, \delta_m, \{\{3, 5\}\})$$

où δ_m est la table de transition suivante :

δ_m	{0}	{2}	${3, 5}$	{4}
a	{4}	{4}	{4}	${3, 5}$
b	{2}	${3, 5}$	{2}	{2}

Exercice 2 (Analyse syntaxique descendante)

1. Soit la grammaire $G_1 = (\{A, B, C, D, E, F\}, \{a, b, c\}, \rightarrow, A)$ dont les règles sont :

$$\left\{ \begin{array}{l} A \rightarrow \ BC \\ B \rightarrow \ aBcD \mid b \\ C \rightarrow \ bC \mid \varepsilon \end{array} \right. \qquad \left\{ \begin{array}{l} D \rightarrow \ aE \mid F \\ E \rightarrow \ aE \mid \varepsilon \\ F \rightarrow \ cFb \mid \varepsilon \end{array} \right.$$

 $P_{\varepsilon} = \{C,\ D,\ E,\ F\} \ \text{à cause des règles}\ C \to \varepsilon,\ E \to \varepsilon,\ F \to \varepsilon \ \text{et}\ D \to F.$

On calcule les premiers et les suivants grâce aux algorithmes vu en cours, ils sont définis dans le tableau suivant :

	A	В	C	D	E	F
Premier	$\{a, b\}$	$\{a, b\}$	<i>{b}</i>	$\{a, c\}$	<i>{a}</i>	{c}
Suivant	{\$}	$\{b, c, \$\}$	{\$}	$\{b, c, \$\}$	$\{b, c, \$\}$	$\{b, c, \$\}$

Les symboles directeurs des règles se calculent directement en utilisant la définition, ils sont donnés comme suit :

2

$$SD(A \rightarrow BC) = \{a, b\}$$

$$SD(B \to aBcD) = \{a\}$$

 $SD(B \to b) = \{b\}$ L'intersection des deux ensembles est vide.

$$\begin{array}{ll} SD(C\to \ \varepsilon)=\{\$\} \\ SD(C\to \ bC)=\{b\} \end{array} \right\}$$
 L'intersection des deux ensembles est vide.

$$\left. \begin{array}{ll} SD(D \to \ F) = \{c, \ b, \ \$\} \\ SD(D \to \ aE) = \{a\} \end{array} \right\} \ \text{L'intersection des deux ensembles est vide}.$$

$$\begin{array}{l} SD(E\to\ \varepsilon)=\{b,\ c,\ \$\}\\ SD(E\to\ aE)=\{a\} \end{array} \ \ \mbox{L'intersection des deux ensembles est vide}.$$

$$SD(F \to \varepsilon) = \{b, c, \$\}$$

 $SD(F \to cFb) = \{c\}$ L'intersection des deux ensembles est non vide.

En conclusion il existe deux règles de la forme $A \to \alpha$ et $A \to \beta$ où $\alpha \neq \beta$ pour lesquelles on a $SD(A \to \alpha) \cap SD(A \to \beta) \neq \emptyset$, la grammaire G_1 n'est donc pas LL(1).

2. (a) Calcul des symboles directeurs :

i.
$$SD(F \rightarrow \ CQ) = \{p,\ q,\ r,\ \neg\}$$

iii.
$$SD(C \rightarrow LD) = \{p, q, r, \neg\}$$

iv.
$$\begin{array}{c} SD(D \rightarrow \varepsilon) = \{\$, \ \lor\} \\ SD(D \rightarrow \land LD) = \{\land\} \end{array} \right\} \ l'intersection \ des \ deux \ ensembles \ est \ vide \\ \end{array}$$

v.
$$SD(L \to V) = \{p, \ q, \ r\}$$

$$SD(L \to \neg V) = \{\neg\}$$

$$l'intersection \ des \ deux \ ensembles \ est \ vide$$
 vi.

vi.
$$SD(V \to p) = \{p\}$$

$$SD(V \to q) = \{q\}$$

$$SD(V \to r) = \{r\}$$

$$les intersections des ensembles pris deux à deux sont vides$$

3

Les calculs précédents (toutes les instersections considérées sont vides) montrent que la grammaire G_2 est LL(1).

(b) Table d'analyse de la grammaire G_2 .

	V	^	П	p	q	r	\$
F			$F \rightarrow CQ$	$F \rightarrow CQ$	$F \rightarrow CQ$	$F \rightarrow CQ$	
Q	$Q \to \lor CQ$						$Q \to \varepsilon$
C			$C \to LD$	$C \to LD$	$C \to LD$	$C \to LD$	
D	$D \to \varepsilon$	$D \to \wedge LD$					$D \to \varepsilon$
L			$L \to \neg V$	$L \to V$	$L \to V$	$L \to V$	
V				$V \to p$	V o q	$V \rightarrow r$	

(c) Analyse du mot $m_1 = \neg p \land q$.

PILE	Entrée	Sortie
\$F	$\neg p \land q\$$	$F \to CQ$
\$QC	$\neg p \land q\$$	$C \to LD$
\$QDL	$\neg p \land q\$$	$L \to \neg V$
$$QDV \neg$	$\neg p \land q\$$	
\$QDV	$p \wedge q$ \$	V o p
\$QDp	$p \wedge q$ \$	
\$QD	$\wedge q\$$	$D \to \wedge LD$
$QDL \wedge$	$\wedge q\$$	
\$QDL	q\$	$L \to V$
\$QDV	q\$	V o q
\$QDq	q\$	
\$QD	\$	$D \to \varepsilon$
\$Q	\$	$Q o \varepsilon$
\$	\$	succes

Le mot m_1 appartient au langage $L(G_2)$, engendré par G_2 .

Dérivation à gauche du mot m_1 en partant de l'axiome F :

$$F \rightarrowtail CQ \rightarrowtail LDQ \rightarrowtail \neg VDQ \rightarrowtail \neg pDQ \rightarrowtail \neg p \land LDQ \rightarrowtail \neg p \land VDQ \\ \rightarrowtail \neg p \land qDQ \rightarrowtail \neg p \land qQ \rightarrowtail \neg p \land q$$

Arbre syntaxique :

Analyse du mot $m_2 = p \vee \wedge r$.

PILE	$Entr\'ee$	Sortie
F	$p \lor \land r\$$	$F \to CQ$
QC	$p \lor \land r\$$	$C \to LD$
\$QDL	$p \lor \land r\$$	$L \to V$
\$QDV	$p \lor \land r\$$	$V \to p$
\$QDp	$p \lor \land r\$$	
\$QD	$\vee \wedge r\$$	$D \to \varepsilon$
\$Q	$\vee \wedge r\$$	$Q \to \vee CQ$
$QC \lor$	$\vee \wedge r\$$	
\$QC	$\wedge r\$$	erreur

On a ici une erreur, car dans la table d'analyse la case correspondant au couple $c(C, \wedge)$ est vide.

Le mot m_2 n'appartient pas au langage $L(G_2)$ engendré par G_2 .

Début de la dérivation à gauche du mot m_2 en partant de l'axiome F :

$$F \rightarrowtail CQ \rightarrowtail LDQ \rightarrowtail VDQ \rightarrowtail pDQ \rightarrowtail pQ \rightarrowtail p \lor CQ \rightarrowtail erreur$$

Arbre syntaxique incomplet :

Exercice 3 (Logique des propositions)

- 1. Les hypothèses f_i $(1 \le i \le 5)$ et la conclusion γ s'écrivent de la façon suivante :
 - $-f_1: (c \wedge v) \Rightarrow e$
 - $f_2 : \neg c \Rightarrow f$
 - $-f_3: \neg v \Rightarrow m$
 - $-f_4: \neg e$
 - $-f_5: s \Rightarrow (\neg f \land \neg m)$
- 2. Mise sous forme clausale des formules f_1, f_2, f_3, f_4 et f_5 . On utilise l'équivalence $a \Rightarrow b \equiv \neg a \lor b$, les lois de de Morgan, la distributivité de \vee par rapport à \wedge et l'équivalence $\neg \neg a \equiv a$.
 - $--f_1 = (c \wedge v) \Rightarrow e = \neg(c \wedge v) \vee e = \neg c \vee \neg v \vee e, \text{ donc } C(f_1) = \{\neg c \vee \neg v \vee e\}$
 - $-f_2 = \neg c \Rightarrow f = \neg(\neg c) \lor f = c \lor f, \text{ donc } C(f_2) = \{c \lor f\}.$ $-f_3 = \neg v \Rightarrow m = \neg(\neg v) \lor m = v \lor m, \text{ d'où } C(f_3) = \{v \lor m\}.$

 - $-- C(f_4) = {\neg e}.$
 - $-f_5 = s \Rightarrow (\neg f \land \neg m) = \neg s \lor (\neg f \land \neg m) = (\neg s \lor \neg f) \land (\neg s \lor \neg m), \text{ d'où } C(f_5) = \{\neg s \lor \neg f, \neg s \lor \neg m\}.$

On note

- $c_1 = \neg c \lor \neg v \lor e,$
- $c_2 = c \vee f$,
- $c_3 = v \vee m$,
- $c_4 = \neg e$,
- $c_5 = \neg s \vee \neg f$,
- $c_6 = \neg s \vee \neg m$

La valuation δ , telle que

δ	c	e	f	m	s	v
	1	0	1	1	0	0

est un modèle de l'ensemble des clauses $\{c_1, c_2, c_3, c_4, c_5, c_6\}$, l'ensemble des formules $\{f_1, f_2, f_3, f_4, f_5\}$ est donc non contradictoire.

- 3. On a $C(\neg \gamma) = \{s\}$, notons $c_7 = s$. On considère les clauses, c_i , pour $1 \le i \le 7$.
 - La résolution entre c_1 et c_4 produit : c_8 : $\neg c \lor \neg v$.
 - La résolution entre c_7 et c_5 produit : c_9 : $\neg f$.
 - La résolution entre c_7 et c_6 produit : c_{10} : $\neg m$.
 - La résolution entre c_3 et c_{10} produit : c_{11} : v.
 - La résolution entre c_2 et c_9 produit : c_{12} : c.
 - La résolution entre c_8 et c_{12} produit : c_{13} : $\neg v$.
 - La résolution entre c_{13} et c_{11} produit : c_{14} : \square .

On vient de montrer que $\{c_i, 1 \le i \le 7\}$ est contradictoire, on a donc $\{c_i, 1 \le i \le 6\} \models \neg s$, on a donc démontré que Superman n'existe pas.