Linear Algebra; Notes

February 2, 2020

Contents

1	Vector Spaces			
	1.1	Fields (optional)	2	
	1.2	Vector Spaces		
		1.2.1 Subspaces	4	
2	Finite Dimensional Vector Spaces			
	2.1	Span and Linear Independence	4	

Some conventions:

- $\mathbb{N} = \{0, 1, 2, \ldots\},\$
- A_+ with $A = \mathbb{R}, \mathbb{Q}, \mathbb{N}, \mathbb{Z}$, refers to the respective subset of positive elements,
- A_{-} is the same as above but for negative elements.

1 Vector Spaces

1.1 Fields (optional)

Definition 1.1. A *field* is a set \mathbb{F} together with the two following binary operations. Addition is a map:

$$+: \mathbb{F} \times \mathbb{F} \to \mathbb{F}; \quad (a, b) \mapsto a + b,$$

such that, if $\alpha, \beta \in \mathbb{F}$, then the following properties are satisfied:

- 1. Addition is commutative, i.e., $\alpha + \beta = \beta + \alpha$;
- 2. It is associative, i.e., if $\gamma \in \mathbb{F}$ then $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$;
- 3. There exists an element (called *additive identity*) $z \in \mathbb{F}$, such that $\alpha + z = \alpha$. It will be shown that this element is unique, thus it will always be denoted by 0 and called zero;
- 4. Every element is invertible, that is, there exists l such that $\alpha + l = 0$. As in the previous property, the additive inverse of an element α in uniquely determined, and thus will be denoted by $-\alpha$.

Multiplication, frequently denoted by \times or \cdot , is a map:

$$\cdot : \mathbb{F} \times \mathbb{F} \to \mathbb{F}; \quad (a, b) \mapsto a \cdot b = ab,$$

satisfying, for all $\alpha, \beta \in \mathbb{F}$:

- 1. $\alpha\beta = \beta\alpha$;
- 2. If $\gamma \in \mathbb{F}$ then $(\alpha \beta) \gamma = \alpha(\beta \gamma)$;
- 3. There exists $e \in \mathbb{F}$ (called an *multiplicative identity*) such that $e \neq 0$ and $e\alpha = \alpha$ for every $\alpha \in \mathbb{F}$. This element is unique and denoted by 1;
- 4. For every $\alpha \neq 0$, there exists $\gamma \in \mathbb{F}$ such that $\alpha \gamma = 1$. The element γ is uniquely determined by α so it will be denoted by α^{-1} .
- 5. Multiplication is distributive over addition, i.e., $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$.

Example 1.1. \mathbb{R} , \mathbb{C} and \mathbb{Q} are the most commonly encountered fields.

Example 1.2. The set $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ together with the usual addition and multiplication is a field.

Proposition 1.1. Let \mathbb{F} be a field.

- 1. Both additive and multiplicative identities are unique;
- 2. For all $\alpha \in \mathbb{F}$, $\alpha 0 = 0$;
- 3. For all $\alpha \in \mathbb{F}$, $-\alpha = (-1)\alpha$.
- *Proof.* 1.): Let $e, e' \in \mathbb{F}$ both additive identities, then e = e + e' = e' + e = e'. The uniqueness of the multiplicative identity follows from an identical argument.
- **2.)** Let $\alpha \in \mathbb{F}$, $\alpha 0 = \alpha(0+0) = \alpha 0 + \alpha 0$, add the additive inverse of $\alpha 0$ to both sides and we get the desired equality. **3.)** $\alpha + (-1)\alpha = (1+(-1))\alpha = 0\alpha$ which is equal to 0 by the previous proposition. Thus we get $\alpha + (-1)\alpha = \alpha \alpha \Leftrightarrow (-1)\alpha = -\alpha$.

1.2 Vector Spaces

Definition 1.2. Let V be a set and \mathbb{F} an arbitrary field, provided with with the mappings:

- $(\alpha, \beta) \mapsto \alpha + \beta$; $V \times V \to V$, called addition;
- $(x, \alpha) \mapsto x\alpha$; $\mathbb{F} \times V \to V$, called scalar multiplication.

V is said to be a vector space over \mathbb{F} with respect to these operations if:

- 1. For all $\alpha, \beta, \gamma \in V$ the equation $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$ holds;
- 2. For all $\alpha, \beta \in V$, $\alpha + \beta = \beta + \alpha$;
- 3. There exists $0 \in V$ such that $\alpha + 0 = \alpha$ for all $\alpha \in V$;
- 4. For every $\alpha \in V$, there exists $\beta \in V$ such that $\alpha + \beta = 0$;
- 5. Let $1 \in \mathbb{F}$ be its multiplicative identity, then $1\alpha = \alpha$ for all $\alpha \in V$;
- 6. For all $x, y \in \mathbb{F}$ and $\alpha, \beta \in V$, $x(\alpha + \beta) = x\alpha + x\beta$ and $(x + y)\alpha = x\alpha + y\alpha$.

If $\mathbb{F} = \mathbb{R}$ then V is said to be a real vector space. If $\mathbb{F} = \mathbb{C}$ then V is said to be a complex vector space.

Example 1.3. Consider the set \mathbb{C} of complex numbers. This set, together with a scalar multiplication map $(r, z) \in \mathbb{R} \times \mathbb{C} \mapsto rz \in \mathbb{C}$ and the usual complex number addition, form a real vector space.

Notation 1. Let F and A be sets. By F^A we mean the set of functions from A to F. Consider $\mathbb{R}^{\mathbb{R}}$ as an example, this is the set of all real-valued functions of one real variable.

Example 1.4. The set \mathbb{R}^A , where A is an arbitrary set, under the natural operations of addition of two functions and multiplication of a function by a real number, is a real vector space. Note that \mathbb{R}^n with $n \in \mathbb{N}$ is a particular example of such sets, since $\mathbb{R}^{\{1,\dots,n\}} = \mathbb{R}^n$.

1.2.1 Subspaces

2 Finite Dimensional Vector Spaces

2.1 Span and Linear Independence

¹To be more precise, they are isomorphic. This concept will be explored later.