Grothendieck ring of birational permutations

Kuan-Wen Lai

1 Introduction

Let X be a variety defined over an arbitrary field k and $\operatorname{Bir}_k(X)$ be the group of birational self-maps on X. An element of $\operatorname{Bir}_k(X)$ is called a *birational permutation* if it induces a permutation on the set X(k) of k-rational points on X. Clearly, birational permutations form a subgroup $\operatorname{BBir}_k(X) \subseteq \operatorname{Bir}_k(X)$, and there is a canonical group homomorphism

$$\sigma \colon \mathrm{BBir}_k(X) \longrightarrow \mathrm{Sym}(X(k))$$

where Sym(X(k)) is the symmetric group of the set X(k).

The main goal of this note is to construct a Grothendieck ring $K_0(\mathcal{P}_k)$ over a perfect field k, where each element $[X, \alpha]$ in the ring is represented by a variety X equipped with a birational permutation α . We will prove the existence of a group homomorphism

$$p: K_0(\mathcal{P}_k) \longrightarrow (\mathbb{Z}/2\mathbb{Z}, +, 0), \qquad p([X, \alpha]) = \begin{cases} 0 & \text{if } \sigma(\alpha) \text{ is even} \\ 1 & \text{if } \sigma(\alpha) \text{ is odd} \end{cases}$$

which respects the ring structure via the following rule

$$p([X, \alpha] \cdot [Y, \beta]) = |Y(k)| \cdot p([X, \alpha]) + |X(k)| \cdot p([Y, \beta]).$$

Note that this is analogous to Leibniz's rule.

We will carry out the construction of $K_0(\mathcal{P}_k)$ in Section 2 and formulate the homomorphism p in Section 3. In fact, we will proceed the construction for both birational self-maps and birational permutations parallelly as there is no much difference, and in the hope to inspire similar constructions for other meaningful types of birational self-maps. Inspired by the Weil conjecture, we will discuss shortly in Section 4 the rationality conjecture of certain zeta functions constructed from automorphisms of varieties.

1.1 Grothendieck ring of varieties: a brief review Here is a brief review on the definition of the ordinary Grothendieck ring, namely, the Grothendieck ring of varieties. Let \mathcal{V}_k be the category of algebraic varieties over a perfect field k. Recall that the Grothendieck group $K_0(\mathcal{V}_k)$ is constructed by first taking the free abelian group generated by the isomorphism classes of objects in \mathcal{V}_k , and then taking quotient under the relations

$$[X] \sim [Z] + [X \setminus Z]$$

where Z is a closed subvariety of X. The group $K_0(\mathcal{V}_k)$ can be equipped with a ring structure by defining the ring multiplication to be

$$[X] \cdot [Y] = [X \times Y]. \tag{1.1}$$

The product on the right hand side is understood as a fiber product over $\operatorname{Spec}(k)$. In particular, the identity element of this multiplication is $[\operatorname{Spec}(k)]$.

Remark 1.1. In general, the direct product of two varieties over an arbitrary field k may be non-reduced, so (1.1) should be modified as

$$[X] \cdot [Y] = [(X \times Y)_{red}].$$

For example, consider the function field $k = \mathbb{F}_p(t)$, where p is a prime, and the k-algebra

$$K := k[x]/(x^p - t) = k[\sqrt[p]{t}] = \mathbb{F}_p(\sqrt[p]{t}).$$

The algebra K is a field and thus reduced. However, the tensor product

$$K \otimes_k K = K \otimes_k k[x]/(x^p - t) = K[x]/(x^p - t)$$

is non-reduced as $x - \sqrt[p]{t}$ is a non-zero nilpotent. This can be avoided by assuming that k is perfect since in this case the tensor product of reduced k-algebras is always reduced [Bou03, Chapter V, §15.5, Theorem 3 (d)].

2 Construction of the Grothendieck ring

Let us denote by \mathcal{B}_k (resp. \mathcal{P}_k) the category whose objects are pairs (X, α) , where X is a variety over a perfect field k and $\alpha \in \operatorname{Bir}_k(X)$ (resp. $\alpha \in \operatorname{BBir}_k(X)$), and a morphism $\varphi \colon (X, \alpha) \to (Y, \beta)$ is given by a morphism $\varphi \colon X \to Y$ of varieties that satisfies $\varphi \alpha = \beta \varphi$, that is, the following diagram commutes

$$\begin{array}{ccc}
X & \xrightarrow{\varphi} Y \\
 & & | & | \\
 & & | & | \beta \\
 & & X & \xrightarrow{\varphi} Y.
\end{array}$$

Two morphisms $\varphi \colon (X, \alpha) \to (Y, \beta)$ and $\psi \colon (Y, \beta) \to (Z, \gamma)$ compose as

$$\psi \circ \varphi \colon (X, \alpha) \longrightarrow (Z, \gamma),$$

which is well-defined as the following diagram commutes

In this setting, $\varphi: (X, \alpha) \to (Y, \beta)$ is an isomorphism if there exists $\psi: (Y, \beta) \to (X, \alpha)$ such that $\psi\varphi = \mathrm{id}_X$ and $\varphi\psi = \mathrm{id}_Y$, where the compositions are taking within \mathcal{V}_k .

Definition 2.1. Consider an embedding of a subvariety $\iota: Z \hookrightarrow X$. We say Z is invariant under $\alpha \in \operatorname{Bir}_k(X)$ (resp. $\operatorname{BBir}_k(X)$) if there exists $\alpha_Z \in \operatorname{Bir}_k(Z)$ (resp. $\operatorname{BBir}_k(X)$) such that the diagram commutes:

$$Z \xrightarrow{\iota} X$$

$$\alpha_{Z \mid} \qquad | \alpha$$

$$\downarrow \qquad \downarrow \alpha$$

$$Z \xrightarrow{\iota} X.$$

That is, there exists a morphism $\iota: (Z, \alpha_Z) \longrightarrow (X, \alpha)$ in the category \mathcal{B}_k (resp. \mathcal{P}_k). We call the map α_Z a restriction of α to Z.

Lemma 2.2. Let α_Z and α'_Z be restrictions of α to Z. Then $\alpha_Z = \alpha'_Z$.

Proof. By definition, we have $\alpha \iota = \iota \alpha_Z$. Pre-composing both sides of this equation with α_Z^{-1} , we get $\alpha \iota \alpha_Z^{-1} = \iota$. Similarly, we have $\alpha \iota \alpha_Z'^{-1} = \iota$. On the other hand, if we pre-compose both sizes of $\alpha \iota = \iota \alpha_Z$ with $\alpha_Z'^{-1}$, we get $\alpha \iota \alpha_Z'^{-1} = \iota \alpha_Z \alpha_Z'^{-1}$, which implies $\iota \alpha_Z \alpha_Z'^{-1} = \iota$. Since ι is a monomorphism, we conclude that $\alpha_Z \alpha_Z'^{-1} = \mathrm{id}_Z$, hence $\alpha_Z = \alpha_Z'$.

Remark 2.3. Let $\varphi: (X, \alpha) \to (Y, \beta)$ be an isomorphism in \mathcal{B}_k (resp. \mathcal{P}_k), and let $\iota: Z \hookrightarrow X$ be a subvariety invariant under α . Note that the *image* of Z in Y should be understood as the subvariety given by the inclusion map $\varphi\iota: Z \hookrightarrow Y$. Now we have the commutative diagram

$$Z \xrightarrow{\iota} X \xrightarrow{\varphi} Y$$

$$\alpha_{Z} \mid \qquad \mid \alpha \qquad \mid \beta$$

$$\downarrow^{\iota} \downarrow \qquad \downarrow^{\iota} X \xrightarrow{\varphi} Y.$$

This implies that the restriction of β to Z coincides with α_Z .

Remark 2.4. Let $U \subseteq X$ be an open subvariety. Then it is invariant under every $\alpha \in \operatorname{Bir}_k(X)$ as the restriction α_U always induces a birational self-map on U. Note that this is not true if we are working with \mathcal{P}_k because α_U may not induce a bijection on U(k). However, if a closed subvariety $Z \subseteq X$ is invariant under $\alpha \in \operatorname{BBir}_k(X)$, then the open complement $U := X \setminus Z$ is invariant under α as well.

Let $\{X, \alpha\}$ denote the isomorphism class of $(X, \alpha) \in \mathcal{B}_k$ (resp. \mathcal{P}_k), and define

$$G(\mathcal{B}_k) := \bigcup_{(X,\alpha)\in\mathcal{B}_k} \mathbb{Z}\{X,\alpha\} \qquad \left(\text{resp. } G(\mathcal{P}_k) := \bigcup_{(X,\alpha)\in\mathcal{P}_k} \mathbb{Z}\{X,\alpha\}\right)$$

to be the free abelian group generated by these isomorphism classes. This group can be equipped with a ring multiplication defined by

$$\{X,\alpha\} \cdot \{Y,\beta\} = \{X \times Y, \alpha \times \beta\} \tag{2.1}$$

where $\{\operatorname{Spec}(k), \operatorname{id}_{\operatorname{Spec}(k)}\}$ plays as the multiplicative identity.

Lemma 2.5. The multiplication (2.1) is well-defined.

Proof. Let (X', α') and (Y', β') be representatives of $\{X, \alpha\}$ and $\{Y, \beta\}$, respectively, so that there are isomorphisms

$$\varphi \colon (X, \alpha) \to (X', \alpha'), \qquad \psi \colon (Y, \beta) \to (Y', \beta').$$

Taking direct product in \mathcal{V}_k gives an isomorphism $\varphi \times \psi \colon X \times Y \to X' \times Y'$ that satisfies

$$(\varphi \times \psi)(\alpha \times \beta) = (\varphi \alpha) \times (\psi \beta) = (\alpha' \varphi) \times (\beta' \psi) = (\alpha' \times \beta')(\varphi \times \psi).$$

Therefore, we have an isomorphism between pairs

$$\varphi \times \psi \colon (X \times Y, \alpha \times \beta) \to (X' \times Y', \alpha' \times \beta').$$

It follows that

$$\{X',\alpha'\}\cdot\{Y',\beta'\}=\{X'\times Y',\alpha'\times\beta'\}=\{X\times Y,\alpha\times\beta\}=\{X,\alpha\}\cdot\{Y,\beta\}$$

which completes the proof.

Now consider the equivalence relation on $G(\mathcal{B}_k)$ (resp. $G(\mathcal{P}_k)$) generated by

$$\{X, \alpha\} \sim \{Z, \alpha_Z\} + \{U, \alpha_U\} \tag{2.2}$$

where $Z \subseteq X$ is an α -invariant closed subvariety, $U = X \setminus Z$, and α_Z and α_U are the restrictions of α to Z and U, respectively.

Lemma 2.6. The relation (2.2) is well-defined.

Proof. Let (Y, β) be any representative of the isomorphism class $[X, \alpha]$, so that there exists an isomorphism $\varphi \colon (X, \alpha) \to (Y, \beta)$, which gives commutative diagrams

$$Z \xrightarrow{\iota} X \xrightarrow{\varphi} Y \qquad U \xrightarrow{\kappa} X \xrightarrow{\varphi} Y$$

$$\alpha_{Z \mid \iota \mid \iota \alpha \mid \iota \beta} \qquad \alpha_{U \mid \iota \mid \alpha \mid \iota \beta}$$

$$Z \xrightarrow{\iota} X \xrightarrow{\varphi} Y$$

$$\alpha_{U \mid \iota \mid \alpha \mid \iota \beta} \qquad \vdots$$

$$U \xrightarrow{\kappa} X \xrightarrow{\varphi} Y$$

$$U \xrightarrow{\kappa} X \xrightarrow{\varphi} Y$$

Consider Z and U as subvarieties of Y via the inclusions φ_{ℓ} and φ_{κ} , respectively. Then they are both invariant under β , and the restrictions of β to Z and U coincide with α_Z and α_U , respectively. By definition, we get $\{Y,\beta\} \sim \{Z,\alpha_Z\} + \{U,\alpha_U\}$ as desired. \square

Let $K_0(\mathcal{B}_k)$ (resp. $K_0(\mathcal{P}_k)$) be the quotient of $G(\mathcal{B}_k)$ (resp. $G(\mathcal{P}_k)$) by the relation (2.2), and denote by $[X, \alpha]$ the element in the quotient represented by $\{X, \alpha\}$.

Lemma 2.7. The ring multiplication (2.1) descends to $K_0(\mathcal{B}_k)$ (resp. $K_0(\mathcal{P}_k)$).

Proof. Pick $\{X, \alpha\}, \{Y, \beta\} \in G(\mathcal{B}_k)$ (resp. $G(\mathcal{P}_k)$), and let $Z \subseteq X$ be a closed subvariety invariant under α with open complement $U := X \setminus Z$. Note that $Z \times Y$ is a closed subvariety of $X \times Y$ invariant under $\alpha \times \beta$, and its complement in $X \times Y$ equals $U \times Y$. Moreover, the restrictions of $\alpha \times \beta$ to $Z \times Y$ and $U \times Y$ coincides with $\alpha_Z \times \beta$ and $\alpha_U \times \beta$, respectively. As a consequence,

$${X \times Y, \alpha \times \beta} \sim {Z \times Y, \alpha_Z \times \beta} + {U \times Y, \alpha_U \times \beta}.$$

Therefore,

$$\{X,\alpha\} \cdot \{Y,\beta\} = \{X \times Y, \alpha \times \beta\} \sim \{Z \times Y, \alpha_Z \times \beta\} + \{U \times Y, \alpha_U \times \beta\}$$
$$= \{Z,\alpha_Z\} \cdot \{Y,\beta\} + \{U,\alpha_U\} \cdot \{Y,\beta\} = (\{Z,\alpha_Z\} + \{U,\alpha_U\}) \cdot \{Y,\beta\}.$$

We conclude that

$$[X, \alpha] \cdot [Y, \beta] = ([Z, \alpha_Z] + [U, \alpha_U]) \cdot [Y, \beta],$$

which completes the proof.

Definition 2.8. We call $K_0(\mathcal{B}_k)$ (resp. $K_0(\mathcal{P}_k)$) the Grothendieck ring of birational self-maps (resp. Grothendieck ring of birational permutations).

3 The parity homomorphism

Given a finite set A, let us denote by $\mathbf{s} \colon \mathrm{Sym}(A) \longrightarrow (\mathbb{Z}/2\mathbb{Z}, +, 0)$ the group homomorphism that maps a permutation to its parity.

Lemma 3.1. Let A, B be finite sets and $\alpha \in \text{Sym}(A)$, $\beta \in \text{Sym}(B)$. Then the parity of $\alpha \times \beta$ acting on $A \times B$ satisfies $\mathbf{s}(\alpha \times \beta) = |B| \cdot \mathbf{s}(\alpha) + |A| \cdot \mathbf{s}(\beta)$.

Proof. The action of $\alpha \times \beta$ equals the composition $(\alpha \times id_B)(id_A \times \beta)$. Therefore,

$$\mathbf{s}(\alpha \times \beta) = \mathbf{s}((\alpha \times \mathrm{id}_B)(\mathrm{id}_A \times \beta)) = \mathbf{s}((\alpha \times \mathrm{id}_B)) + \mathbf{s}((\mathrm{id}_A \times \beta))$$
$$= \mathbf{s}(\alpha^{|B|}) + \mathbf{s}(\beta^{|A|}) = |B| \cdot \mathbf{s}(\alpha) + |A| \cdot \mathbf{s}(\beta).$$

Theorem 3.2. Over a finite field k, there exists a group homomorphism

$$p: K_0(\mathcal{P}_k) \longrightarrow (\mathbb{Z}/2\mathbb{Z}, +, 0)$$

such that $p([X, \alpha)] = 0$ if α acts on X(k) as an even permutation and $p([X, \alpha]) = 1$ if the action is odd. Moreover,

- (1) given $\alpha, \alpha' \in \mathrm{BBir}_k(X)$, we have $\mathsf{p}([X, \alpha \alpha']) = \mathsf{p}([X, \alpha]) + \mathsf{p}([X, \alpha'])$, and
- (2) it satisfies the Leibniz-type relation

$$p([X, \alpha] \cdot [Y, \beta]) = |Y(k)| \cdot p([X, \alpha]) + |X(k)| \cdot p([Y, \beta]).$$

Proof. Note that an isomorphism $\varphi: (X, \alpha) \xrightarrow{\sim} (Y, \beta)$ implies that $\alpha = \varphi^{-1}\beta\varphi$. Because ϕ is an isomorphism, it induces a bijection between X(k) and Y(k), thus the above equation implies that the permutations induced by α on X(k) and β on Y(k) have the same parity. Therefore, assigning to each $(X, \alpha) \in G(\mathcal{P}_k)$ the parity of α acting on X(k) well defines a group homomorphism

$$\mathsf{p}_G\colon G(\mathcal{P}_k) {\:\longrightarrow\:} (\mathbb{Z}/2\mathbb{Z},+,0) \;, \quad \mathsf{p}_G(\{X,\alpha\}) = \left\{ \begin{array}{ll} 0 & \text{if the action is even,} \\ 1 & \text{if the action is odd.} \end{array} \right.$$

Let $Z \subseteq X$ be a closed subvariety invariant under $\alpha \in \mathrm{BBir}_k(X)$ and let $U := X \setminus Z$ be the complement. Since the action of α on X(k) is a multiplication of its restrictions to Z(k) and U(k), which are disjoint permutations, we have

$$\mathsf{p}_G(\{X,\alpha\}) = \mathsf{p}_G(\{Z,\alpha_Z\}) + \mathsf{p}_G(\{U,\alpha_U\}).$$

Therefore, p_G factors through $K_0(\mathcal{B}_k)$ via the homomorphism

$$p: K_0(\mathcal{B}_k) \longrightarrow (\mathbb{Z}/2\mathbb{Z}, +, 0), \quad p([X, \alpha]) = p_G(\{X, \alpha\}).$$

Property (1) is trivial as it reflects how parities of permutations change under compositions. On the other hand, Lemma 3.1 implies that

$$\mathsf{p}([X,\alpha]\cdot[Y,\beta]) = \mathsf{p}([X\times Y,\alpha\times\beta]) = |Y(k)|\cdot\mathsf{p}([X,\alpha]) + |X(k)|\cdot\mathsf{p}([Y,\beta])$$

which proves property (2).

Remark 3.3. This construction could possibly be extended so that an object is a pair $[X, \alpha]$ where X is a variety over k and $\alpha \colon X \dashrightarrow X$ is a "locally open" rational map. The dynamical degree of such a rational map α was proved to be invariant under birational conjugations [DS05]. This may be used to construct a homomorphism that maps $[X, \alpha]$ to the dynamical degree of α .

Question 3.4. Over a number field k, how does a birational permutation interact with the height of a k-rational point?

4 Parity zeta function of automorphisms

Let X be a smooth projective variety over a finite field $k = \mathbb{F}_q$. The Hasse-Weil zeta function of X is defined as

$$\zeta(X;s) = \exp\left(\sum_{m=1}^{\infty} \frac{|X(\mathbb{F}_{q^m})|}{m} q^{-ms}\right).$$

This function is usually considered as a formal power series in $t := q^{-s}$, so one may define

$$Z(X;t) = \exp\left(\sum_{m=1}^{\infty} \frac{|X(\mathbb{F}_{q^m})|}{m} t^m\right).$$

The (proved) Weil conjecture asserts that Z(X,t) is a rational function in t.

Let α be an automorphism of X. Then α induces a permutation on $X(\mathbb{F}_{q^m})$ for all $m \geq 1$. Define $\mathsf{p}_m(\alpha)$ to be the parity of α when acting on $X(\mathbb{F}_{q^m})$. By modifying the coefficients in the zeta function with the factor $(-1)^{\mathsf{p}_m}$, we obtain the parity zeta function

$$\zeta(X,\alpha;s) := \exp\left(\sum_{m \geq 1} \frac{(-1)^{\mathsf{p}_m(\alpha)}|X(\mathbb{F}_{q^m})|}{m} q^{-ms}\right).$$

This function encodes how the parity induced by α alters via extensions of the ground field. One may also consider

$$Z(X, \alpha; t) := \exp\left(\sum_{m \ge 1} \frac{(-1)^{\mathsf{p}_m(\alpha)} |X(\mathbb{F}_{q^m})|}{m} t^m\right).$$

Question 4.1. Is $Z(X, \alpha, t)$ a rational function in t?

Let $X^n := X \times \cdots \times X$ be the direct product of $n \geq 0$ copies of X with $X^0 := \operatorname{Spec}(k)$. The symmetric product $S^n(X)$ is defined as the quotient of X^n by the group of permutations on the factors. Kapranov's motivic zeta function is defined as

$$\zeta_{\text{mot}}(X;t) := \sum_{n>0} [S^n(X)]t^n \in 1 + tK_0(\mathcal{V}_k)[t].$$

It is known that, if X is a smooth, geometrically connected, projective curve over a perfect field k carrying a k-rational point, then $\zeta_{\text{mov}}(X;t)$ is rational (modulo certain relations, see Remark 4.3). Moreover, if X has genus g, the rational function has the form

$$\zeta_{\text{mov}}(X;t) = \frac{f(t)}{(1-t)(1-[\mathbb{A}^1]t)}$$

where $f \in K_0(\mathcal{V}_k)[t]$ is a polynomial of degree $\leq 2g$.

Every $\alpha \in \operatorname{Aut}_k(X)$ induces an automorphism α^n on X^n , where $\alpha^0 := \operatorname{id}_{\operatorname{Spec}(k)}$. One can verify that α^n commutes with the permutations on the factors, so it descends to an automorphism $S^n(\alpha)$ on $S^n(X)$. We define in a similar way that

$$\zeta_{\text{mot}}(X,\alpha;t) := \sum_{n>0} [S^n(X), S^n(\alpha)]t^n \in 1 + tK_0(\mathcal{P}_k)[t].$$

Question 4.2. Assume that X is a smooth, geometrically connected, projective curve over a perfect field k carrying a k-rational point. Let α be an automorphism of X. Is $\zeta_{\text{mot}}(X, \alpha; t)$ rational (modulo some suitable relation)?

Remark 4.3. The definitions in the last part about the motivic zeta functions are not in their original or most suitable forms. Let $R(\mathcal{V}_k) \subseteq K_0(\mathcal{V}_k)$ be the subgroup generated by elements of the form [X] - [Y] where X and Y admit a morphism $h: X \to Y$ that is surjective and radicial (see [Mus11, A.3] for the definition). In the discussion about the rationality of $\zeta_{\text{mov}}(X;t)$, the ring $K_0(\mathcal{V}_k)$ should be replaced by the quotient

$$\widetilde{K}_0(\mathcal{V}_k) := K_0(\mathcal{V}_k) / R(\mathcal{V}_k).$$

5 Connections to Ekedahl's work

Two varieties X and Y are stably birational if $X \times \mathbb{P}^n$ is birational to $Y \times \mathbb{P}^m$ for some $n, m \geq 0$. The materials in the previous sections are partially motivated by the following result: if two varieties X and Y over \mathbb{F}_q are stably birational, then [Eke83]

$$|X(\mathbb{F}_q)| \equiv |Y(\mathbb{F}_q)| \mod q.$$

In general, one may anticipate a motivic version of this relation:

Conjecture 5.1. If two varieties X and Y are stably birational, then

$$[X] \equiv [Y] \mod [\mathbb{A}^1]$$

in the Grothendieck ring $K_0(\mathcal{V}_k)$.

In fact, this conjecture holds over an algebraically closed field of characteristic zero due to the weak factorization theorem [LL03].

Suppose that $k = \mathbb{F}_{2^r}$ where $r \geq 2$. It seems that Conjecture 5.1 could potentially provide an easy way to prove [ALNZ22, Theorem 1.1] and its generalization. The reason is as follows: consider the ring homomorphism

$$f: K_0(\mathcal{P}_k) \longrightarrow K_0(\mathcal{V}_k) : [X, \alpha] \longmapsto [X].$$

If (X, α) and (Y, β) are birational to each other, then Conjecture 5.1 implies that

$$[X, \alpha] \equiv [Y, \beta] \mod \mathsf{f}^{-1}([\mathbb{A}^1]).$$

Now, we make the naive assumption:

$$[X, \alpha] \equiv [Y, \beta] \mod [\mathbb{A}^1, \delta] \text{ for some } \delta \in \operatorname{Aut}_k(\mathbb{A}^1).$$
 (5.1)

Every $\delta \in \operatorname{Aut}_k(\mathbb{A}^1)$ extends to an automorphism of \mathbb{P}^1 fixing a point. Thus δ acts as an even permutation on $\mathbb{A}^1(k)$ by [ALNZ22, Proposition 3.5]. This implies that for every $[Z, \gamma] \in K_0(\mathcal{V}_k)$, it holds that

$$p([\mathbb{A}^1, \delta][Z, \gamma]) = |Z(k)| \cdot p([\mathbb{A}^1, \delta]) + |\mathbb{A}^1(k)| \cdot p([Z, \gamma])$$
$$= |Z(k)| \cdot 0 + 0 \cdot p([Z, \gamma]) = 0.$$

Together with (5.1), this implies that $p([X, \alpha]) = p([Y, \beta])$.

References

- [ALNZ22] Shamil Asgarli, Kuan-Wen Lai, Masahiro Nakahara, and Susanna Zimmermann, *Bijective Cremona transformations of the plane*, Selecta Math. (N.S.) **28** (2022), no. 3, Paper No. 53, 58.
 - [Bou03] Nicolas Bourbaki, Algebra II. Chapters 4–7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2003. Translated from the 1981 French edition by P. M. Cohn and J. Howie, Reprint of the 1990 English edition [Springer, Berlin; MR1080964 (91h:00003)].
 - [DS05] Tien-Cuong Dinh and Nessim Sibony, Une borne supérieure pour l'entropie topologique d'une application rationnelle, Ann. of Math. (2) **161** (2005), no. 3, 1637–1644.
 - [Eke83] Torsten Ekedahl, Sur le groupe fondamental d'une variété unirationnelle, C. R. Acad. Sci. Paris Sér. I Math. **297** (1983), no. 12, 627–629.
 - [LL03] Michael Larsen and Valery A. Lunts, *Motivic measures and stable birational geometry*, Mosc. Math. J. **3** (2003), no. 1, 85–95, 259.
 - [Mus11] Mircea Mustață, Zeta functions in algebraic geometry, 2011. online book.