Математический анализ, Коллоквиум 3

Балюк Игорь @lodthe, GitHub

Дата изменения: 2020.02.16 в 19:55

Содержание

1	Выпуклые и вогнутые функции. Выпуклость в терминах производной. Неравенство Йенсена. Примеры. 1.1 Выпуклые и вогнутые функции и их свзяь с производной 1.2 Неравенство Йенсена 1.3 Примеры	2 3 3
2	Первообразная и неопределенный интеграл. Линейность интеграла, формула интегрирования по частям и замены переменной. 2.1 Первообразная и неопределенный интеграл 2.2 Линейность интеграла, формула интегрирования по частям и замены переменной	3 3
3	Вычислиение интеграла от рациональной функции. Примеры сведения интеграла к интегралу от рациональной функции.	5
4	Интегралы Римана: определение, примеры интегрриуемых и неинтегрируемых функций, линейность и монотонность интеграла, ограниченность интегрируемой функции.	5
5	Нижние и верхние суммы Дарбу. Критерий Дарбу интегрируемости ограниченной функции.	5
6	Переформулировка критерия Дарбу в терминах колебаний. Интегрируемость модуля и произвдеения интегрируемых функций. Интегрируемость на подотрезке, аддитивность интеграла.	5
7	Интегрируемость монотонных функций. Равномерная непрерывность. Примеры. Равновероятная непрерывность непрерывной на отрезке функции. Интегрируемость непрерывных функций.	5
8	Формула Тейлора с остаточным членом в интегральной форме. Ряд Тейлора для функций e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^p$ (обоснование сходимости для e^x и $\ln(1+x)$). Площадь криволинейной трапеции и длина кривой.	5
9	Формула Стирлинга.	5
10	Несобственный интеграл Римана: определение и примеры. Регулярность и линейность несобственного интеграла, независимость сходимости интеграла от его «начала». Формула интегрирования по частям и замены переменной для несобственного интеграла.	5
11	Абсолютная и условная сходимость несобственных интегралов. Пример функции, интеграл от которой сходится условно. Исследования сходимости интеграла от неотрицательной функции с помощью неравенств и эквивалентности. Признаки Дирихле-Абеля сходимости несобственного интеграла.	5

1 Выпуклые и вогнутые функции. Выпуклость в терминах производной. Неравенство Йенсена. Примеры.

1.1 Выпуклые и вогнутые функции и их свзяь с производной

Определение. Функция f на интервале I называется **выпуклой**, если $\forall x,y \int I$ и для каждого $t \in [0;1]$ выполнено $f(tx+(1-t)y) \leqslant tf(x)+(1-t)f(y)$.

Функция f на интервале I называется вогнутой, если функция -f — выпуклая.

Лемма. Функция f на интервале I выпукла тогда и только тогда, когда для всех точек x < y < z из этого интервала выполенно

$$\frac{f(z) - f(x)}{z - x} \leqslant \frac{f(y) - f(z)}{y - z}$$

Доказательство. Зафиксируем $t \in [0;1]$. Пусть z = tx + (1-t)y. Тогда $t = \frac{y-z}{y-x}$ и выпуклость f равносильна выполнению неравенства:

$$f(z) = f(tx + (1-t)y) \le tf(x) + (1-t)f(y) = \frac{y-z}{y-x}f(x) + \frac{z-x}{y-x}f(y)$$

Так как y - x = y - z + z - x, полученное неравенство равносильно неравенству из формлуировки леммы:

$$f(z) \leqslant \frac{y-z}{y-x} f(x) + \frac{z-x}{y-x} f(y)$$

$$f(z) \cdot (y-z+z-x) \leqslant (y-z) f(x) + (z-x) f(y)$$

$$yf(z) - zf(z) + zf(z) - xf(z) \leqslant yf(x) - zf(x) + zf(y) - xf(y)$$

$$yf(z) - zf(z) - yf(x) + zf(x) \leqslant zf(y) - xf(y) - zf(z) + xf(z)$$

$$(f(z) - f(x)) \cdot (y-z) \leqslant (f(y) - f(z)) \cdot (z-x)$$

$$\frac{f(z) - f(x)}{z-x} \leqslant \frac{f(y) - f(z)}{y-z}$$

Теорема. Дифференцируемая функция f на интервале I выпукла тогда и толко тогда, когда f' — неубывает.

Доказательство. Если f выпукла, то по предыущей лемме для x < y выполнено

$$f'(x) \leqslant \frac{f(y) - f(x)}{y - x} \leqslant f'(y).$$

Первая часть неравенства выполняется, если в лемме приближать z к x справа. Вторая часть неравенства выполняется, если значение z из леммы приближать к y слева. Полученное неравенство означает неубывание f'.

Наоборот, пусть теперь f' неубывает. По теореме Лагранжа для всех точек x < z < y найдутся точки $\xi_1 \in (x;z)$ и $\xi_2 \in (z;y)$ для которых

$$\frac{f(z) - f(x)}{z - x} = f'(\xi_1), \quad \frac{f(y) - f(z)}{y - z} = f'(\xi_2)$$

Так как $f'(\xi) \leq f'(\xi_2)$, то по предудыщей лемме получаем выпуклость f.

Заметим, что дважды дифференцируемая функция f на интервале I выпукла тогда и только тогда, когда $f''(x) \geqslant 0 \forall x \in I$.

1.2 Неравенство Йенсена

Теорема (Неравенство Йенсена) Пусть функция f выпукла на интервале I. Тогда для всех точек $x_1, \ldots, x_n \in I$ и для всех чисел $t_1 \geqslant 0, \ldots, t_n \geqslant 0$, для которых $t_1 + \cdots + t_n = 1$, выполнено $f(t_1x_1 + \cdots + t_nx_n) \leqslant t_1f(x_1) + \cdots + t_nf(x_n)$.

 \mathcal{A} оказательство. Докажем утверждение индукцией по n.

База: n = 2, по определению выпуклости.

Пусть утверждение выполнено для n точек. Проверим, что оно выполнено для n+1 точки. Пусть $t:=t_1+\cdots+t_n$. Так как $\frac{t_1}{t}x_1+\cdots+\frac{t_n}{t}x_n\in I$ (проверяется подстановкой во все t_i минимального/максимального из t), то

$$f(t_1x_1 + \dots + t_nx_n + t_{n+1}x_{n+1}) \leqslant tf\left(\frac{t_1}{t}x_1 + \dots + \frac{t_n}{t}x_n\right) + f_{n+1}f(x_{n+1})$$

$$\leqslant t\left(\frac{t_1}{t}f(x_1) + \dots + \frac{t_n}{t}f(x_n)\right) + t_{n+1}f(x_{n+1}) = t_1f(x_1) + \dots + t_{n+1}f(x_{n+1})$$

Первое неравенство верно из определения выпуклости, второе — воспользовались предположением индукции для n.

1.3 Примеры

С помощью неравенства Йенсена докажем неравенство о средних. Пусть $x_1,\dots,x_n>0$. Тогда $\sqrt[n]{x_1\times\dots\times x_n}\leqslant \frac{x_1+\dots+x_n}{n}$.

Доказательство. Действительно, рассмотрим функцию $f(x) = e^x$. Так как $f''(x) = e^x \geqslant 0$, то f — выпуклая функция. Теперь заметим, что

$$\sqrt[n]{x_1 \times \dots \times x_n} = f\left(\frac{1}{n}\ln x_1 + \dots + \frac{1}{n}\ln x_n\right) \leqslant \frac{1}{n}f(\ln x_1) + \dots + \frac{1}{n}f(\ln x_n) = \frac{x_1 + \dots + x_n}{n}$$

2 Первообразная и неопределенный интеграл. Линейность интеграла, формула интегрирования по частям и замены переменной.

2.1 Первообразная и неопределенный интеграл

Определение. Функция F называется **первообразной** функции f на некотором интервале I, если F дифференцируема на I и $F'(x) = f(x) \forall x \in I$.

Лемма. Любимые две первообразные F_1 и F_2 функции f на интервале I отличаются на константу.

Доказательство. По теореме Лагранжа, применимой к функции $F:=F_1-F_2$, для произвольных точек $x,y\in I$ выполнено $F(x)-F(y)=F'(\xi)(x-y)=0$. Что означает, что для двух первообразных, для каждой пары точек из интервала, их разность равна.

$$F'(\xi)(x-y)=0$$
, так как $F'(\xi)=F_1'(\xi)-F_2'(\xi)=f(\xi)-f(\xi)=0$.

Определение. Множество всех первообразных функции f на некотором задонном интервале I называется **неопределенным интегралом** от f и обозначается $\int f(x) \, dx$.

Если F — некоторая первообразная функции f на некотором интервале I, то $\int f(x) \, dx = F + C$, где C — константа.

2.2 Линейность интеграла, формула интегрирования по частям и замены переменной

Теорема (Свойства неопределенного интеграла)

1. (Линейность)
$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx + C$$

2. (Формула интегрирования по частям)
$$\int f(x)g'(x)\,dx = f(x)g(x) - \int f'(x)g(x)\,dx$$

$$3.$$
 (Формула замены переменной) $\int f(x)\,dx = [x=\phi(t)] = \int f(\phi(t))\phi'(t)\,dt$

Доказательство.

1. Пусть F и G — первообразные f и g соответственно. Тогда $\alpha F + \beta G$ — первообразная функции $\alpha f + \beta g$, то есть $\int \left(\alpha f(x) + \beta g(x)\right) dx = \alpha F + \beta G + C$.

В то же время

$$\int f(x) dx + \beta \int g(x) dx = \alpha F + \alpha C_1 + \beta G + \beta C_2 = \alpha F + \beta G + C$$

2. Так как (fg)' = f'g + fg', то по линейности интеграла

$$\int f'(x)g(x) \, dx + \int f(x)g'(x) \, dx = f(x) + g(x) + C.$$

3. Если F — первообразная для f, то $(F(\phi(t))') = F'(\phi(t))\phi'(t)$.

- 3 Вычислиение интеграла от рациональной функции. Примеры сведения интеграла к интегралу от рациональной функции.
- 4 Интегралы Римана: определение, примеры интегрриуемых и неинтегрируемых функций, линейность и монотонность интеграла, ограниченность интегрируемой функции.
- 5 Нижние и верхние суммы Дарбу. Критерий Дарбу интегрируемости ограниченной функции.
- 6 Переформулировка критерия Дарбу в терминах колебаний. Интегрируемость модуля и произвдеения интегрируемых функций. Интегрируемость на подотрезке, аддитивность интеграла.
- 7 Интегрируемость монотонных функций. Равномерная непрерывность. Примеры. Равновероятная непрерывность непрерывной на отрезке функции. Интегрируемость непрерывных функций.
- 8 Формула Тейлора с остаточным членом в интегральной форме. Ряд Тейлора для функций e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^p$ (обоснование сходимости для e^x и $\ln(1+x)$). Площадь криволинейной трапеции и длина кривой.
- 9 Формула Стирлинга.
- 10 Несобственный интеграл Римана: определение и примеры. Регулярность и линейность несобственного интеграла, независимость сходимости интеграла от его «начала». Формула интегрирования по частям и замены переменной для несобственного интеграла.
- 11 Абсолютная и условная сходимость несобственных интегралов. Пример функции, интеграл от которой сходится условно. Исследования сходимости интеграла от неотрицательной функции с помощью неравенств и эквивалентности. Признаки Дирихле-Абеля сходимости несобственного интеграла.