DAQ SET A ANSWER SCHEME (SP015, SESSION 2022/2023)

QUESTION	ANSWER	MARKS
1	$5 \sin 40^{\circ} + (-10) = -6.79 \text{ m}$	JU1
	Direction: downward.	J1
	Bricetion, downward.	31
		2M
2 (a)	$v_{ave} = \frac{s_2 - s_1}{t_2 - t_1}$	R1
	$\iota_2 - \iota_1$	KI
	$=\frac{8-0}{3-0}$	G1
	$-\frac{3-0}{3}$	
	$= 2.67 ms^{-1}$	JU1
	2.575	
4.5	Direction: Positive- <i>x</i> @ same as initial direction	J1
(b)	v = u + at	
	$v - u + u\iota$	
	15 = u + 6.7a	
	u + 6.7a = 15	GJ1
	$a = \frac{15 - u}{6.7}$ (1)	
	$s = ut + \frac{1}{2}at^2$	
	$90 = 6.7u + \frac{1}{2}a(6.7)^2$	GJ1
	$6.7u + 22.445a = 90 \dots (2)$	
	$u = 11.87 \ ms^{-1}$	JU1
	OR	
	$s = \frac{1}{2}(u+v)t$	
	$s = \frac{1}{2}(u+v)t$ $90 = \frac{1}{2}(u+15)(6.70)$	
	$\frac{30 - \frac{1}{2}(u + 13)(0.70)}{2}$	
(c) (i)	$u = 11.87 m s^{-1}$ $s_y = u_y t - \frac{1}{2} g t^2$	
(*) (1)	$s_y = u_y t - \frac{1}{2}gt^2$	
	$-90 = (-u \sin 40^{\circ})(3.5) - \frac{1}{2}(9.81)(3.5^{2})$	G1
	$u = 13.30 m s^{-1}$	JU1
(ii)	$s_x = u_x t$	
	$= (13.30\cos 40^{\circ})(3.5)$ = 35.66 m	GJU1
	_ 55.00 m	
		10M

3 (a)	$F = \frac{J}{t}$	
	mv-mu	
	$J = \frac{mv - mu}{t}$	
	$J = \frac{0.015 (0 - 250)}{10}$	G1
	$F = \frac{(-3.75)}{10}$	
	$F = -0.375 \mathrm{N}$	JU1 J1
	The force experienced by the bullet F= 0.375 N to the left	
3 (b)	Impluse = Area under the graph	K1
	$=\frac{1}{2}(10)(3x10^3)$	
		G1
	= 15000 N s	JU1
3(c) (i)		D3
	y	(1 mark
		for each
	\vec{N}	force)
	300	
3(b) (ii)	For m_1 :	
3(0) (II)	$\Sigma F_x = ma$	K1
	$T - mg\sin 30^0 = m_1 a$	
	$T - (12)(9.81)\sin 30^{0} = 12a$ $-12a + T = (12)(9.81)\sin 30^{0} \dots (1)$	G1
	For m ₂ :	

	$\Sigma E = ma$	
	$\Sigma F_y = ma$	
	$m_2g - T = m_2a$	
	(7)(9.81) - T = 7a	G1
	$7a + T = (7)(9.81) \dots (2)$	
	$a = 0.52 \text{ ms}^{-2}$	
	T= 65.06 N	JU1
	$\therefore a = 0.52 \text{ ms}^{-2}$	
		13M
4(a)(i)	$W=F.s=area\ under\ graph$	K1
	1	C1
	$W = \frac{1}{2}(3+5) 15$	G1
		JU1
	=60 J	301
4(a)(ii)	W. A. 77	
¬(a)(11)	$W = \Delta K$	G1
	$W = \frac{\Delta K}{2} m(v^2 - u^2) = \frac{1}{2} 8(v^2 - 6^2)$	O1
		JU1
	$v = 7.14 ms^{-1}$	
4(b)	Using conservation of energy	
	U = K	K1
	$mgh = \frac{1}{2}mv^2$	
	$mgn = \frac{-mv^2}{2}$	
	K = (0.5) (9, 81) (6)	G1
		JU1
	=29.43J	001
		8M
5 (a)	$v = \frac{200.0}{25.0}$	G1
	$V = \frac{1}{25.0}$	JU1
	$=8\mathrm{ms}^{-1}$	301
5 (b)		K1
5 (0)	$r = \frac{200.0}{2\pi} = 31.83 \mathrm{m}$	111
	$\int_{\Gamma} mv^2$	
	$F_c = \frac{mv^2}{r}$	
	$=\frac{1.5(8)^2}{31.83}$	G1
	$= 3.02 \mathrm{N}$	JU1
	- 5.0214	301
		5M
6 (a) (i)	2π 2π	G1
	$\omega = \frac{2\pi}{T} = \frac{2\pi}{0.2}$	
	$\omega = 10\pi \ rad \ s^{-1}$	JUI
	W 1017 1000 D	

(ii)	$A = \frac{v_{\text{max}}}{\omega} = \frac{3\pi}{10\pi}$	G1
		JU1
(iii)	$A = 0.3 m$ $m = \frac{k}{\omega^2} = \frac{250}{(10\pi)^2}$	G1
	m = 0.253 kg	JUI
(iv)	$K_{\text{max}} = \frac{1}{2} m v_{\text{max}}^2 = \frac{1}{2} (0.253)(3\pi)^2$	G1
	=11.24 J	JU1
(b) (i)	$l = 6 \times 0.02 = 0.12 m$	77.1
	$u - \frac{m}{m} - \frac{0.035}{0.035} - 0.29 \text{kg m}^{-1}$	K1
	$ \begin{array}{c c} \mu - l & 0.12 & 0.25 \text{ kg m} \\ \hline \end{array} $	G1
	$\mu = \frac{m}{l} = \frac{0.035}{0.12} = 0.29 kg m^{-1}$ $v = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{50}{0.29}} = 13.13 m s^{-1}$	GJU1
(ii)	μ μ ν 0.29 wavelength:	
(11)	wavelength. $\lambda = 2 \times 4$	K1
	=8cm or $0.08m$	JU1
	frequency:	
	method 1 or method 2	
	$f = \frac{v}{\lambda} = \frac{13.13}{0.08}$ $f_3 = \frac{nv}{2l} = \frac{(3)(13.13)}{2(0.12)}$	G1
		TT 11
	= 164.13 Hz = 164.13 Hz	JU1
(c) (i)	$f_n = \frac{nv}{2l}$	
		G1
	fundamental frequency, $f_1 = \frac{(1)(343)}{2(0.85)}$	Gi
	= 201.76 Hz	JU1
(ii)	second harmonic, $n = 2$	_
44.11	$f_n = nf_1 = 2(201.76) = 403.52 Hz$	GJU1
(iii)	third overtone, $n = 4$ $f_n = nf_1 = 4(201.76) = 807.04 Hz$	GJU1
		3301
(d) (i)	$f_1 = \left(\frac{v + v_o}{v}\right) f_s = \left(\frac{340 + 30}{340}\right) (400)$	G1
(::)	=435.29 Hz	JU1
(ii)	$f_1 = \left(\frac{v + v_o}{v}\right) f_s = \left(\frac{340 - 30}{340}\right) (400)$	G1
	=364.71 Hz	
	-507.71112	JU1 23M
		231VI

7.(a)(i)	$Y = \frac{stress}{strain} = \frac{\sigma}{\varepsilon}$ $1.3 \times 10^{11} = \frac{\sigma}{0.015}$ $\sigma = 1.95 \times 10^{9} \text{ N m}^{-2}$ $\sigma = \frac{F}{A}$ $F = \sigma A = (1.95 \times 10^{9})(3.75 \times 10^{-7})$ $F = 731.25 \text{ N}$	G1 G1 JU1
	OR	
	stress $\sigma = \frac{F}{A}$ $Y = \frac{stress}{strain} = \frac{\sigma}{\varepsilon} = \frac{\left(\frac{F}{A}\right)}{\varepsilon}$ $Y = \frac{F}{A\varepsilon}$ $1.3 \times 10^{11} = \frac{F}{(3.75 \times 10^{-7})(0.015)}$ $F = 731.25 \text{ N}$	
7.(a)(ii)	Strain energy = $\frac{1}{2}F\Delta l$	
	$= \frac{1}{2}(731.25)(L_o \times \varepsilon)$ $= \frac{1}{2}(731.25)(0.755)(0.015)$ $= 4.14J$ Strain, $\varepsilon = \left(\frac{\Delta l}{L_o}\right)$	G1 JU1

7.(b)	The rate of heat flow in rod in P, $\left(\frac{Q}{t}\right)_P = -k_P A \left(\frac{\Delta T}{L}\right)_P$	
	The rate of heat flow in rod in Q, $\left(\frac{Q}{t}\right)_Q = -k_P A \left(\frac{\Delta T}{L}\right)_Q$	
	At steady state $\left(\frac{Q}{t}\right)_{P} = \left(\frac{Q}{t}\right)_{Q}$	K1
	$-k_{P}A\left(\frac{\Delta T}{L}\right)_{P} = -k_{Q}A\left(\frac{\Delta T}{L}\right)_{Q}$	
	$\frac{k_{P}}{k_{Q}} = \frac{\left(\frac{\Delta T}{L}\right)_{Q}}{\left(\frac{\Delta T}{L}\right)_{P}}$	
	$\frac{k_P}{k_Q} = \frac{\left(\frac{0 - 25}{40 \times 10^{-2}}\right)_Q}{\left(\frac{25 - 100}{80 \times 10^{-2}}\right)_P}$	G1
	$\frac{k_P}{k_Q} = \frac{62.5}{93.75}$	
	= 0.67	JU1 8M
		OIVI
8. (a)(i)	2	
	$<$ K $\ge \frac{3}{2}$ kT	
	$<$ K $>=\frac{3}{2}(1.38\times10^{-23})(273.15+25)$	G1
	<K>=6.17×10 ²¹ J	JU1
(ii)		
	$U=\frac{1}{2}fNkT$	
	$U = \frac{1}{2} f n N_A kT$	
	$U = \frac{1}{2}(3)(1.5)(6.02 \times 10^{23})(1.38 \times 10^{-23})(273.15 + 25)$	G1
	$U=5.57\times10^{3}$ J	JU1

(b)	$v_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{(3)(8.31)(263.15)}{0.046}}$ $v_{rms} = 377.65 \text{ m s}^{-1}$	G1 JU1
(c) (i)	Axes and Label – 1M Shape AB- 1M Shape BC – 1M V (x 10 ⁻² m³)	D3
(ii)	$W_{AB}=nRT \ln \left[\frac{v_f}{v_i}\right]$ $W_{AB}=PV \ln \left[\frac{v_f}{v_i}\right]$ $W_{AB}=(38\times10^3)(7.2\times10^{-2}) \ln \left[\frac{22.5\times10^{-2}}{7.2\times10^{-2}}\right]$	G1
	W _{AB} =3117.49 J	JU1 11M
	TOTAL	80 Marks