Genome Project, Computer Scientific Approach

Mohammad Saleh Bahrami

2023

What is Locality sensitive Hashing:

- Find Nearest Neighbor Query in High Dimension:
 - Approximately But Fast(necessity for Large Data).
 - In low dim there are many choices like: kd tree, voronoi diagram etc.
- Given Two text T_1 , T_2 with $dist(T_1, T_2) \le \varepsilon$
- Text as a high Dim. point
- Here we prefer to design such a Hash Function like H such that:
 - $H(T_1) \approx H(T_2)$ in some sense, then hash collision find our solution (unlike before)
- Has application in wide range of areas such as:
 - Web mining, compressed sensing, etc.

Genome as Long Text

- Length = $O(10^9)$
- Operations :
 - search,
 - compare two text (normal & anomaly),
 - Find repetitive patterns and interconection betweens patterns
 - in some sense learn language Models,
 - But! even read the text is challenge! (and rewrite also)
- need Text Mining, Advanced Algorithmic Technique
- Must be in O(n), exact as much as possible

How to read text? (sequencing)

- pieces of puzzles are given:
 - reads {short : 300 , long : 10 ^5 but noisy }
 - reconstruct whole shape
 - Overlapping and Coverage also exists

Assembly

- Genome assembly is the process of reconstructing a genome from a collection of short sequencing reads.
- Called Genome project
- May be we have Reference genome, may be we don't have ...
- de novo assembly is without references reconstruction.
- An accurate reconstruction is crucial
- repetitive sequences make assembly difficult when the repeat length exceeds the read length

repetitive sequences

- unfortunately Its common and effect short reads
- Recent advances : Long Reads
 - pacBio SMRT sequencing:
 - suffer from low accuracy (82–87% PacBio11, 78–85% MinION9) exact matching doesn't work new algorithm developes such that : by oversampling the genome at sufficient coverage (e.g., 50× of PacBio P5C3), SMRT sequencing can be used to produce highly accurate and continuous assemblies

We deal with Noisy String Matching

Edit distance:

DP & Edit distance:

Not just Grids it work in every low dim DAG

DP & DAG & hamming distance

DP & DAG & hamming distance

DP & DAG & edit distance

- early assemblies of noisy, long reads have been successful, but have
- suffered from a substantial computational cost
- assembly of D. melanogaster from SMRT reads
- 600,000 CPU hours
- where is bottleneck?
- 95% of the total runtime
- all-pairs overlapping will remain a substantial
- bottleneck in overlap-layout-consensus assembly

Locality sensitive Hashing:

- n pages which pairs are more similar:
 - Naïve : O(n^2)
 - O(n),Big-Foot of CS
- probabilistic algorithm for efficiently detecting overlaps

between noisy, long reads. MHAP uses a dimensionality reduction technique named Min-Hash originally developed to determine the similarity of web pages

99.99% accurate when compared with available reference genomes.

Jaccard distance/similarity

The Jaccard similarity of two sets is the size of their intersection divided by the size of their union:
sim(C₁, C₂) = |C₁∩C₂|/|C₁∪C₂|

■ Jaccard distance: $d(C_1, C_2) = 1 - |C_1 \cap C_2| / |C_1 \cup C_2|$

3 in intersection 8 in union Jaccard similarity= 3/8 Jaccard distance = 5/8

3 Essential Steps for Similar

- 1. Shingling: Convert documents to sets
- 2. Min-Hashing: Convert large sets to short signatures, while preserving similarity
- 3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - Candidate pairs!

Min-Hash, Jaccard similarity:

Which k is the most suitable?

- \Box Choose a random permutation π
- □ Proof:
 - Consider 3 types of rows:

type X: C_i and C_i both have 1s

type Y: only one of C_i and C_i has 1

type Z: C_i and C_j both have 0s

■ After random permutation π , what if the first X-type row is before the first Y-type row?

$$h_{\pi}(\mathbf{C}_{\mathbf{i}}) = h_{\pi}(\mathbf{C}_{\mathbf{j}})$$

	Ci	C_{j}	
X	7	1	
Υ	1	0	
Z	0	0	
Z	0	0	
Z	0	0	
X	1	1	
Υ	1	0	

Input Matrix

□ What is the probability that the first not-Z row is of type X?

$$\frac{|X|}{|X|+|Y|}$$

$$\square \Pr[h_{\pi}(C_i) = h_{\pi}(C_j)] = \frac{|X|}{|X| + |Y|}$$

Permutation π Input matrix (Shingles x Documents) Signature matrix M Similarities: 1-3 2-4 1-2 3-4 **Col/Col** 0.75 0.75 0 **Sig/Sig** 0.67 1.00 0

Don't worry about uncertainty ...

- Suppose we need to find near-duplicate documents among N=1 million documents
- Naïvely, we would have to compute pairwise
 Jaccard similarities for every pair of docs
 - $N(N-1)/2 \approx 5*10^{11}$ comparisons
 - At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
- For N = 10 million, it takes more than a year...

Documents

Shingles	1	1	1	0
	1	1	0	1
	0	1	0	1
	0	0	0	1
	1	0	0	1
	1	1	1	0
	1	0	1	0

2	1	4	1
1	2	1	2
2	1	2	1

LSH: First Cut

2	1	4	1
1	2	1	2
2	1	2	1

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)
- LSH General idea: Use a function f(x,y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated
- For Min-Hash matrices:
 - Hash columns of signature matrix M to many buckets
 - Each pair of documents that hashes into the same bucket is a candidate pair

Partition M into b Bands

2	2	1	4	1
	1	2	1	2
2	2	1	2	1

Hashing Bands

we can go deeper, Minia

Signature Matrix

Buckets

Candidate pairs: {(2,4);

Buckets

Candidate pairs: {(2,4);

Signature Matrix

 1
 0
 0
 0
 2
 4
 2
 4

 3
 2
 1
 2
 2
 3
 2
 3

 0
 1
 3
 1
 1
 0
 5
 5

 2
 2
 1
 2
 5
 2
 5
 5

 4
 3
 4
 3
 5
 4
 4
 3

 3
 1
 2
 1
 0
 3
 0
 0

5 3 2 1 2 0 2 2 1 2 5 2 0 1 0 5 **Buckets**

Candidate pairs: {(2,4); (1,6)

Signature Matrix

Buckets

Candidate pairs: {(2,4); (1,6) (3,8)}

Signature Matrix

1 3 0	1	3	1	2 2 1	0	2 2 5	4 3 5	
2 4 3	2 3 1	1 4 2	2 3 1	5 5 0	2 4 3	5 4 0	5 3 0	
2 5 1	1 3 2	0 2 5	1 1 2		2 0 1	1 2 0	0 2 5	

True positive

Signature Matrix

1 3 0	0 2 1	0 1 3		2 2 1	4 3 0	2 2 5	4 3 5	
2 4 3	2 3 1	1 4 2	2 3 1	5 5 0		5 4 0	5 3 0	
2 5 1	1 3 2	0 2 5	1 1 2	0 2 0	2 0 1	1 2 0	0 2 5	

True positive

Signature Matrix

1 3 0	0 2 1	0 1 3	0 2 1	2 2 1	4 3 0	2 2 5	4 3 5	
2 4 3	2 3 1	1 4 2	2 3 1	5 5 0	2 4 3	5 4 0	5 3 0	
2 5 1	1 3 2	0 2 5	1 1 2	0 2 0	2 0 1	1 2 0	0 2 5	

False positive?

Signature Matrix

1 3 0	0 2 1	0 1 3	0 2 1	2 2 1	4 3 0	2 2 5	4 3 5	
2 4 3	2 3 1	1 4 2	2 3 1	5 5 0	2 4 3	5 4 0	5 3 0	
2 5 1	1 3 2	0 2 5	1 1 2	0 2 0	2 0 1	1 2 0	0 2 5	

False negative?

b bands, r rows/band

- Columns C₁ and C₂ have similarity t
- Pick any band (r rows)
 - Prob. that all rows in band equal

tr

Prob. that some row in band unequal

Prob. that no band identical

$$(1-t^r)^b$$

Prob. that at least 1 band identical

$$1 - (1 - t^r)^b$$

What we wish to have:

Picking r and b: The S-curve

- Picking r and b to get the best S-curve
 - 50 hash-functions (r=5, b=10)

Green area: False Positive rate

Blue area: False Negative rate

Can we use LSH for other distance measures?

- Jaccard distance
- Cosine distance
- Euclidean distance , l_2 , $l_1\ etc$.
- We could go beyond

Epilogue

- Biology face with large mysterious text with specific structure .so computer scientific techniques could give us many good tools to deal with this complexities.
- Beside LSH, many other algorithmic techniques (such as Bloom Filter) Has been developed to study genomic structure as efficient as we can.

Thanks for your Attention ©

References:

- Assembling large genomes with single-molecule sequencing and locality-sensitive hashing
- leskovec et al.:Massive-Data-Mining/CS246W/stanford
- Dr.Koohi lec notes bio Informatic algorithms course CE 1402.01
- Dr.Gholampour lec notes Data Mining course EE 1402.01