Devoir de synthèse : Electronique analogique

Enseignant: M. YAHIA

Département GCR

Groupes: GCR1A et GCR1B

Durée: 2h

Documents non autorisés

EX1 Schéma simplifié de l'amplificateur opérationnel bipolaire μΑ741

AU: 2023/2024

On considère le montage de la figure 1.

- 1) Donner le nom de chaque étage.
- 2) Quel est l'intérêt de faire ces trois étages en cascades.

Etage 1.

- 3) Quel est l'intérêt d'utiliser deux entrées au lieu d'une.
- 4) Donner le nom et le rôle des deux sous-bloques (en pointillé)

Etage 2.

- 5) Quel est le rôle de cet étage.
- 6) Donner le nom et le rôle du sous-bloque qui contient les transistors T₈ et T₉.

Etage 3.

- 7) Quel est le rôle de l'étage.
- 8) Donner le nom et le rôle du sous-bloque qui contient les deux diodes.

EX 2

Les amplificateurs opérationnels sont supposés parfaits. $R = 1 k\Omega$, $R_1 = 10 k\Omega$, $R_2 = 10 k\Omega$

Exprimer le courant de sortie is en fonction de la différence vei - vez des tensions d'entrée ver et vez

EX 3:

On considère le montage amplificateur suivant qui utilise à 25 °C, deux transistors : T1 et T2

 $\beta_1 = 200$, $\beta_2 = 100$ et les résistances internes r_{ee} élevées, seront négligées.

- 1) Les courants de repos de collecteur des transistors T_1 et T_2 sont respectivement : $I_{CI} = 1.7$ mA et $I_{CI} = 2$ mA.
 - a) En négligeant les courants de base, indiquer sur le schéma la valeur des tensions remarquables par rapport à la masse.
 - b) En déduire la valeur à donner aux résistances R et R₁.
- 2) Dessiner uniquement le schéma équivalent aux petites variations et aux fréquences moyennes de l'étage T_2 .
- 3) Calculer l'expression de la résistance d'entrée $R_{\rm e2}$ de l'étage $T_{\rm 2}$ ainsi que son gain en tension. Faire les applications numériques.
- 4) Compte tenu de la question précédente, en utilisant la résistance $R_{\rm e2}$, dessiner le schéma équivalent aux petites variations et aux fréquences moyennes de l'étage $T_{\rm l}$.
- 5) Déterminer l'expression du gain en tension du 1° étage. Faire l'application numérique.
- 6) Donner l'expression et calculer la résistance de sortie R_s du montage complet. Faire le schéma qui permet de déterminer R_s.