NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

Shuttle OFT Level C Navigation Requirements

Onorbit

Supersedes 780-10530

(NASA-TM-8221) SHUTTLE OFT LEVEL C NAVIGATION REQUIREMENTS (NASA) 682 P HC A99/MF A01 CSCL 17G N80-33457

Unclas

G3/16 33863

Mission Planning and Analysis Division

September 1980

National Aeronautics and Space Administration

Lyndon B. Johnson Space Center Houston, Texas

79-FM-10 Rev. 2

SHUTTLE PROGRAM

SHUTTLE OFT LEVEL C

NAVIGATION REQUIREMENTS ONORBIT

By Mathematical Physics Branch, JSC; and McDonnell Douglas Technical Services Co.

Approved:

Emil R. Schiesser, Chief Mathematical Physics Branch

Approved:

Ronald L. Berry, Chief

Mission Planning and Analysic Olvision

Mission Planning and Analysis Division

National Aeronautics and Space Administration

Lyndon B. Johnson Space Center

Houston, Texas

September 1980

CONTENTS

Section		Page
1.0	INTRODUCTION	1-1
1.4	PURPOSE	1-1
1.2	ORGANIZATION AND STRUCTURE	1-3
1.3	THE CHANGE LOG	1-7
2.0	APPLICABLE DOCUMENTS	2-1
3.0	OVERVIEW	3-1
3.1	OPERATIONAL NAVIGATION PROGRAM	3-1
3.2	GN&C SOFTWARE MAJOR FUNCTIONS	3-2
3.3	NAVIGATION SYSTEM OVERVIEW	3-3
3.3.1 3.3.2 3.3.3 3.3.4	Navigation Functions Navigation-Related Functions General Requirements Requirements and Assumptions Overview	3-4 3-6 3-7 3-8
3.4	TRACEABILITY	3-18
3.5	OPERATIONAL SEQUENCES AND MAJOR MODES	3-19
3.6	IMPLEMENTATION CONSTRAINTS	3-20
4.0	DETAILED REQUIREMENTS	4-1
4.1	ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION	4-2
4.1.1 4.1.2	Sequencing Operations and Major Mode Transitions (ONORBIT_REND_WAV_SEQUENCER) Operation Sequence Initialization (OPS_2_OR_8_INITIALIZE)	4-16 4-28
4.2	ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION	4-57
		4-80
4.2.1 4.2.2	Navigation Control (NAV_ONORBIT_RENDEZVOUS)	4-00
	Navigation Data Snap	
4.2.3	State and Covariance Matrix Updates	4-100
4.2.4		4-115
4.2.5	Unmodeled Acceleration State and Covariance Matrix Propagation (REND_BIAS_AND_COV_PROP)	4155

	•	
		79FM10
Section		Page
4.2.6	Rendezvous Sensor Measurement Selection (REND_SENSOR_ SELECT)	. 4-185
4.2.7	Sensor Measurement Initialization (REND_NAV_SENSOR_INIT)	. 4-193
4.2.8 4.2.9	State and Covariance Measurement Incorporation	. 4-203
4.2.9	Measurement Processing Statistics (MEAS_PROCESSING_ STATISTICS_REND)	. 4-250
4.3	ONORBIT PRECISION STATE PREDICTION PRINCIPAL FUNCTION	. 4-256
4.3.1	Integration of the Equations of Motion (RK GILL)	. 4-266
4.3.2	Equations of Motion (PINES_METHOD)	. 4-271
4.4	ONORBIT/RENDEZVOUS USER PARAMETER PROCESSING SEQUENCER PRINCIPAL FUNCTION (ONORBIT_REND_UPP_SEQ)	. 4-278
4.5	USER PARAMETER PROCESSING PRINCIPAL FUNCTION	. 4-283
4.5.1	User Parameter State Propagation (ONORBIT_REND_USER_ PARAM_STATE_PROP)	. 4-288
4.5.2	Onorbit User Parameter Calculations (ONORBIT_USER_	. 4-200
	PARAMETER_CALCULATIONS)	. 4-299
4.6	LANDING SITE UPDATE PRINCIPAL FUNCTION (LANDING SITE UPDATE PRINCIPAL FUNCTION)	. 4-302
. .		-
4.7	INITIALIZATION OF SPECIFIC OPS 2 NAVIGATION PARAMETERS .	. 4-316
4.8	DOWNLIST REQUIREMENTS	. 4-317
4.9	UPLINK REQUIREMENTS	. 4-318
4.9.1	Orbiter State Vector Uplink Parameters (ORBITER_STATE	. 4-319
4.9.2	Rendezvous Vehicle State Vector Uplink Parameters	• 7-313
	(RENDEZVOUS_STATE_VECTOR_UPLINK)	. 4-323
4.9.3	Vent/RCS Body Force Vector Uplink Parameters (VENT_RCS_MODEL_PARAM_UPLINK)	. 4-327
4.9.4	Drag Model Correction Factor Uplink Parameters	. 4-321
-	(DRAG_MODEL_PARAM_UPLINK)	. 4-331
4.9.5	Covariance Matrix Uplink Parameters (COV_MATRIX-	h ook

Transformation From Aries Mean of 1950 to Earth-Fixed . . . 4-351
Earth-Fixed to M50 (EARTH_FIXED_TO_M50_COORD) 4-352

Landing/TACAN Site Table Uplink Processing

Geodetic to Earth-Fixed (GEODETIC_TO_EF) . .

Earth-Fixed to Topodetic (EF_TO_TOPDET) .

Landing Site Selection Parameters .

COORDINATE TRANSFORMATIONS

4.9.6 4.9.7

4.10

4.10.1 4.10.2

4.10.3

Section		Page
4.10.5 4.10.6 4.10.7	Earth-Fixed to Runway (EF_TO_RUNWAY)	4-362 4-366
4.10.8 4.10.9	Coordinates (SBODY_TO_M50) Conversion of a Quaternion to a Matrix (QUAT_TO_MAT) Earth-Fixed to Geodetic (EF_TO-GEODETIC) UVW to M50 (UVW_TO_M50)	4-374 4-377
APPENDIX A -	GENERAL REQUIREMENTS FUNCTIONS	A-1
APPENDIX B -	NAVIGATION SEQUENCER PRINCIPAL FUNCTION AND NAVIGATION PROCESSING PRINCIPAL FUNCTION FLOWCHARTS	B-1
APPENDIX C -	GENERAL REQUIREMENT FUNCTIONS FLOWCHARTS, VARIABLE NAMES, AND DESCRIPTIONS	C-1
APPENDIX D -	USER PARAMETER FLOWCHARTS, VARIABLE NAMES, AND DESCRIPTIONS	D-1
APPENDIX E -	LANDING SITE UPDATE PRINCIPAL FUNCTION FLOWCKARTS AND NAME DESCRIPTIONS	E-1
APPENDIX F -	NAVIGATION UPLINK PROCESSING FUNCTIONS: FLOWCHARTS, VARIABLE NAMES, AND DESCRIPTIONS	F-1
APPENDIX G -	INTERFACE DIAGRAMS FOR THE ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION, THE ONORBIT/ RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION AND THE ONORBIT PRECISION STATE PREDICTION PRINCIPAL FUNCTION	C 1

TABLES

Table		Page
1.3	ONORBIT/RENDEZVOUS CHANGE LOG	1-8
3.4	SOFTWARE REQUIREMENT TRACEABILITY	3-18
3.5	OPERATION SEQUENCE MAJOR MODES	3-19
4.1-1	ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER EVENTS	4-3
4.1-2	ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION INPUT/OUTPUT	4-7
4.1.1	ONORBIT_REND_NAV_SEQUENCER INPUT/OUTPUT	4-22
4.1.1.1	REND_NAV_EXIT INPUT/OUTPUT	4-24
4.1.1.2	NAV_EXIT INPUT/OUTPUT	4-27
4.1.2	OPS_2_OR_8_INITIALIZE INPUT/OUTPUT	4-30
4.1.2.1	SHUTTLE_RESET INPUT/OUTPUT	4-33
4.1.2.2	REND_NAV_INIT INPUT/OUTPUT	4-37
4.1.2.2.1	REND_COV_INIT INPUT/OUTPUT	4-43
4.1.2.2.1.1	COVINIT_UVW INPUT/OUTPUT	4-48
4.1.2.2.1.2	DISPLAY_COUNT_INIT INPUT/OUTPUT	4-51
4.1.2.2.1.3	COV_LAST_RESET INPUT/OUTPUT	4-53
4.1.2.2.2	TARGET_RESET INPUT/OUTPUT	4-56
4.2	ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT	4-61
4.2.1	NAV_ONORBIT_RENDEZVOUS INPUT/OUTPUT	4-87
4.2.2.1	PARAMETER CROSS REFERENCE TABLE BETWEEN IMU RM/SOP, ONORBIT/REND NAVIGATION VARIABLES, AND USER PARAMETER PROCESSING VARIABLES	4-94
4.2.2.2-1	PARAMETER CROSS REFERENCE TABLE BETWEEN RR SOP AND ONORBIT/REND NAV VARIABLES	4-98
4.2.2.2-2	PARAMETER NAME CROSS REFERENCE TABLE BETWEEN STAR TRACK SOP AND ONORBIT/REND NAV VARIABLES	4-99

		(Atmin
Table		Page
4.2.3.1	ONORBIT_REND_AUTO_INFLIGHT_UPDATE INPUT/OUTPUT	. 4-104
4.2.3.1.1	STATE_VECTOR_PREDICT_TASK INPUT/OUTPUT	. 4-110
4.2.3.2	REL_NAV_DISPLAY_UPDATES INPUT/OUTPUT	. 4-114
4.2.4	ONORBIT_REND_R_V_STATE_PROP INPUT/OUTPUT	. 4-120
4.2.4.1	SUPER_G INPUT/OUTPUT	. 4-125
4.2.4.1.1	ACCEL_ONORBIT INPUT/OUTPUT	. 4-140
4.2.4.1.1.1	H_ELLIPSOID INPUT/OUTPUT	. 4-146
4.2.4.1.1.2	V_REL IMPUT/OUTPUT	. 4-149
4.2.4.1.1.3	SOLAR_EPHEM INPUT/OUTPUT	. 4-153
4.2.5	REND_BIAS_AND_COV_PROP INPUT/OUTPUT	. 4-163
4.2.5.1	U_A_BIAS_AND_COVINIT INPUT/OUTPUT	. 4-168
4.2.5.2	MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6 INPUT/OUTPUT	. 4-174
4.2.5.2.1	F_AND_G INPUT/OUTPUT	. 4-181
4.2.6	REND_SENSOR_SELECT INPUT/OUTPUT	. 4-191
4.2.7	REND_NAV_SENSOR_INIT INPUT/OUTPUT	. 4-196
4.2.7.1	SETUP INPUT/OUTPUT	. 4-200
4.2.8.1	RRDOT_NAV INPUT/OUTPUT	. 4-207
4.2.8.1.1	REND_NAV_INTERP INPUT/OUTPUT	. 4-212
4.2.8.1.1.1	ONORBIT_SV_INTERP INPUT/OUTPUT	. 4-218
4.2.8.1.2	REND_NAV_FILTER INPUT/OUTPUT	. 4-225
4.2.8.2	RR_ANGLE_NAV INPUT/OUTPUT	. 4-232
4.2.8.2.1	REND_ANGLE_PARTIALS INPUT/OUTPUT	. 4-235
4.2.8.3	STAR TRACKER NAV INPUT/OUTPUT	. 4-239
4.2.8.3.1	ANGLE_NAV INPUT/OUTPUT	. 4-244
4.2.8.4	COAS_NAV INPUT/OUTPUT	. 4-248

•		79FM10
Table		Page
4.2.9	MBAS_PROCESSING_STATISTICS_REND INPUT/OUTPUT	4-254
4.3-1	ONORBIT PRECISION STATE PREDICTION PRINCIPAL FUNCTION INPUT/OUTPUT	4-261
4.3-2	ONORBIT_PREDICT INPUT/OUTPUT	4-264
4.3-3	PREDICTOR SUGGESTED FLAG SETTINGS	4-265
4.3.1	RK_GILL INPUT/OUTPUT	4-269
4.3.2	PINES_METHOD INPUT/CUTPUT	4-275
4.4-1	ONORBIT/RENDEZVOUS USER PARAMETER PROCESSING SEQUENCER EVENTS	4-280
4.4-2	ONORBIT/RENDEZVOUS USER PARAMETER PROCESSING SEQUENCER PRINCIPAL FUNCTION INPUT/OUTPUT	4–282
4.5	USER PARAMETER PROCESSING PRINCIPAL FUNCTION INPUT/OUTPU	T . 4-284
4.5.1	ONORBIT_REND_USER_PARAM_STATE_PROP_INPUT/OUTPUT	4-292
4.5.1.1	AVERAGE_G_INTEGRATOR INPUT/OUTPUT	4-296
4.5.2	ONORBIT_USER_PARAMETER_CALCULATIONS INPUT/OUTPUT	4-301
4.6-1	CORRESPONDENCE OF NOMINAL END OF MISSION I-LOAD NAMES TO OPS-2 "USE TABLE" NAMES	4–308
₽.6 - 2	LANDING_SITE_UPDATE PRINCIPAL FUNCTION INPUT/OFFPUT	4-309
4.6-3	LANDING_SITE_UPDATE PRINCIPAL FUNCTION I-LOAD PARAMETERS	. 4-311
4.9.1-1	ORBITER STATE VECTOR UPLINK DATA FORMAT	4-321
4.9.1-2	ORBITER STATE VECTOR UPLINK INPUT/OUTPUT	4-322
4.9.2-1	RENDEZVOUS VEHICLE STATE VECTOR UPLINK DATA FORMAT	4-325
4.9.2-2	RENDEZVOUS VEHICLE STATE VECTOR UPLINK INPUT/OUTPUT	4-326
4.9.3-1	VENT/RCS BODY FORCE VECTOR UPLINK DATA FORMAT	4-329
4.9.3-2	VENT/RCS BODY FORCE VECTOR UPLINK INPUT/OUTPUT	4-330
4.9.4-1	DRAG MODEL CORRECTION FACTOR UPLINK DATA FORMAT	4-332
11 0 11 0	DDAC MODEL CODDECATOM BACTOR HELTHER THREE COHERIES	11 222

Table		Page
4.9.5~1	COVARIANCE MATRIX UPLINK DATA FORMAT	4-335
4.9.5-2	COVARIANCE MATRIX UPLINK INPUT/OUTPUT	4-336
4.9.6-1	LANDING SITE UPLINK DATA FORMAT	4-339
4.9.6-2	TACAN SITE UPLINK DATA FORMAT	4-340
4.9.6-3	LANDING/TACAN SITE TABLE UPLINK INPUT	4-341
4.9.6-4	LANDING/TACAN SITE TABLE UPLINK OUTPUT	4-342
4.9.7-1	LANDING SITE SELECTION UPLINK FORMAT (PEG 4 LOAD)	4-347
4.9.7-2	LANDING SITE SELECTION UPLINK FORMAT (PEG 7 LOAD)	4-347
4.9.7-3	LANDING SITE SELECTION UPLINK PROCESSING INPUTS	4-348
4.9.7-4	LANDING SITE SELECTION UPLINK PROCESSING OUTPUT	4-349
4.10.2	EARTH_FIXED_TO_M50_COORD FUNCTION INPUT/OUTPUT	4-354
4.10.3	GEODETIC_TO_EF FUNCTION INPUT/OUTPUT	4-358
4.10.4	EF TO TOPDET FUNCTION INPUT/OUTPUT	
4.10.5	EF TO RUNWAY FUNCTION INPUT/OUTPUT	4-364
4.10.6	EF TO SCANNER FUNCTION INPUT/OUTPUT	4-368
4.10.7	SBODY TO M50 INPUT/OUTFUT	4-372
4.10.8	QUAT TO MAT FUNCTION INPUT/OUTPUT	
4.10.9	EF TO GEODETIC INPUT/OUTPUT	
4.10.10	UVW_TO_M50 FUNCTION INPUT/OUTPUT	

FIGURES

Figure		Page
1.2-1	I/O table format	1-4
1.2-2	Principal function I/O table format	
a. a <u>-</u> 1	Verified OFT transitions	3-17

SHUTTLE OFT LEVEL C NAVIGATION REQUIREMENTS

ONORBIT

1.0 INTRODUCTION

1.1 PURPOSE

This document provides Level C detailed requirements for the orbital operations computer loads, OPS 2 and OPS 8. These requirements represent the total Onorbit/Rendezvous Navigation baseline requirements for the following principal functions.

- A. Onorbit/Rendezvous Navigation Sequencer
- B. Onorbit/Rendezvous UPP Sequencer
- C. Onorbit/Rendezvous Navigation
- D. Onorbit Prediction
- E. Onorbit User Parameter Processing
- F. Landing Site Update

The Onorbit/Rendezvous Navigation Baseline was last issued on May 1, 1979 as FSSR Version C; i.e., as SD 76-SH-0006C. That publication absorbed Version B (published November, 1977) and also the January 19, 1979 and May 1, 1979 block updates.

This publication reflects Version C of the Onorbit/Rendezvous Navigation FSSR plus the following page change numbers (PCN's) written against Version C:

- A. PCN 1 an August 15, 1979 update.
- B. PCN 2 a January 15, 1980 update.
- C. PCN 3 a May 15, 1980 update.

The following is a list of CR's that were incorporated into this document with Version C, PCN 1, PCN 2, and PCN 3.

CR 2599B	CR 12374	CR 19373B
CR 12164	CR 12419	CR 19445A
CR 19167B	CR 12442A	CR 19446A
CR 12266A	CR 12456A	CR 19472A
CR 12285	CR 12478	CR 19571A
CR 12286	CR 12545	CR 19655A
CR 12326	CR 12623	CR 19361A
CR 12661	CR 12803	

CR	12681	CR	12812A	CR	19810B	CR	12024B
CR	12765A	CR	12813A	CR	19874A		12411B
CR	12817		12820		19873A		19484A
CR	12818A	CR	12821		19785B		19575
CR	12819A		12822		19900		19246B
CR	12823		12214A		29300		12809A
	12825B		12019		12600		29500
	12676		29188C		1 Ch52R	VIII	23200

1.2 ORGANIZATION AND STRUCTURE

The organization of the November 1977 baseline was extensively revised with its Version C in order to structure the text closely to the suggested implementation given in the flowcharts of appendices B, C, D, E, and F. In order to accomplish this task the following guidelines were developed for the organization and text structure of this document.

<u>Guideline 1.</u> - Each flowchart in the Appendices B, C, D, E, and F will be classified either as a subroutine, function, or code. The subroutine or function classification will be given for the following reasons:

- (1) to avoid duplication of code, and
- (2) to clarify the function of the flowchart with text and Input/Output (I/C) tables.

<u>Guideline 2.</u> - The requirements for each subroutine and function will be described in one and only one text section of chapter 4.

A flowchart labeled code is to be regarded as in-line code and will be explained in the text section belonging to the subroutine in which the code is located. If a subroutine calls another subroutine or executes code, the CALL or EXECUTE statement will appear in the associated text. Text section descriptions will closely follow the associated flowchart.

Guideline 3. - Those text sections describing subroutines and functions will have Input/Output (I/O) tables.

The determination of Input and Output variables to a given subroutine can be quite subtle so the following simplistic definitions are proposed.

Input Variables

- (1) Those variables needed to be input to the routine for the proper execution of the subroutine or function, e.g. variables used in computations, variables used in logical tests both implicit and explicit, etc.
- (2) Variables in the INLIST to the subroutine.

Output Variables

- (1) Those computed variables needed by other routines.
- (2) Variables in the OUTLIST of the subroutine.
- (3) Variables computed for the DOWNLIST.

Guideline 4. - Each I/O table will have the format given in Figure 1.2-1. The variables in the INLIST and OUTLIST as arguments to the subroutine have only local names so a special arrangement should be made for these variables by listing them under a special section in the Input/Output (I/O) tables with a slightly different format.

INLIST/ INTERNAL NAME	OUTLIST ! EXTERNAL ! NAME !	INPUT SOURCE	! OUTPUT ! DESTINATION !
! ! <u>R</u>	R_FILT	Subroutine A	1
	R_TV	Subroutine B	1
H 1	ALT !	•	! Subroutine A !! Subroutine B
VARIABLE	ZIMAN 2		
V_FIL	r t	Subroutine A	! Subroutine B
<u>R</u> _TV	ngs	Subroutine C	1

Figure 1.2-1.- I/O table format.

*NOTE: If the subroutine has no INLIST or OUTLIST then the INLIST/OUTLIST portion of the I/O table will be omitted.

Input variables may be obtained by looking at the input source column and output variables may be obtained by looking at the cutput destination column.

<u>Guideline 5.</u> - Text sections describing Principal Functions will also have Input/Output Tables.

The Principal Function (PF) I/O will show Input/Output flow between principal functions. The Principal Function I/O variable definitions will be consistent with those used to define I/O variables for subroutines. The Principal Function I/O tables will have the format given by Figure 1.2-2. Local destination refers to the local subroutine needing the PF input variable. Local source refers to the local subroutine outputting the PF output variable.

VARIABLE NAME	! PRINCIPAL ! FUNCTION ! SOURCE	! LOCAL ! DESTINATION	PRINCIPAL FUNCTION DESTINATION	I LOCAL SOURCE
	!!	1	! !	
!	!!	! !	f f	!
	1	1		

Figure 1.2-2.- Principal function I/O table format.

Since one of the more important interfaces between Principal Functions is involved with the "snapping" of data, it is proposed that this type of interface be indicated in a special way by the Principal Function I/O tables. Variables involved in the IMU and Attitude Data Snap (section 4.2.2.1) or the Rendezvous Sensor Data Snap (section 4.2.2.2) will be given the variable name used by the appropriate SOP when that SOP supplies the variable for the Data Snap. The local destination will be labeled DATA SNAP and the reader will be referred to the text section explaining the Data Snap. This section will have tables showing the correspondence between the external SOP variable names and the variable names used by the Principal Function for the "snapped" variables.

Guideline 6. - In the November 1977 baseline document there was quite a bit of redundancy in the information supplied by various tables. For example, precision requirements were frequently given whenever a variable was listed in an I/O table. While such a practice can be defended on the grounds of clarity and convenience, it can lead to inconsistencies between tables. Subsequent versions of the FSSR have employed central tables which collate tabular information in one and only one place. It is intended that the variable list in Appendix A as well as the variable lists of Appendices C, D, E and F now include all of the following information.

- 1. Variable Name The HAL variable name used in the flowcharts.
- 2. Precision and Type This column will contain the following symbols:

DF: double precision floating point scalar

DF(n): double precision floating point n-dimensional array

DF(n,m): double precision floating point n by m matrix

SF: single precision floating point scalar

SF(n): single precision floating point n-dimensional array

SF(n,m): single precision floating point n by m matrix

I: integer (unless otherwise specified all integer quantities are assumed to be single precision)

Bit: variable having only the values 0 or 1

Char: character string

3. Initialization category - This column will categorize the OPS-2 navigation parameters for initialization purposes.

Mission Dependent (I-LOAD)

Design Dependent

Level A constants

Hard Codeable

OPS Transition parameters

Other required initial values

- 4. COMPOOL or Local This column will specify whether or not the variable is local or is required to be in COMPOOL.
- 5. Description This column will provide a definition of the parameter.
- 6. Initial Value This column will supply the numerical value for the Design Dependent and Hard Codeable parameters as well as other required initial values.
- 7. M/S ID This column provides the M/S ID numbers for the variables in the PF I/O Tables.
- 8. Uplink/Downlist This column will state which variables are uplinked or are to be downlisted.

<u>Guideline 7.</u> - Information that can be found in the Central Tables will not be duplicated in any other table unless necessary.

Corollary to guideline 7 is that there will be no collated Mission Dependent Parameter List (I-J.OAD) and no collated Downlist. Rather, these variable lists can be gleaned from the information contained in the Central Tables in the Appendices.

1.3 THE CHANGE LOG

The changes made to the May 1979 baseline through PCN 2 to Version C of this document are tabulated in the following change log (table 1.3).

73BLE 1.3.- CHORBIT/RENDEZYOUS CHAKCE LOG

therefore the controlled factor of the covariance of predictor. Added and modified descriptions of may's usage of orest-controlled flags o state vector propagation scheme orest-controlled flags o state vector propagation scheme Chiy Assumptions Modified description of the covariance propagation rate. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the covariance of the covariance with REL MAY and OMB_UPP. Interface with REL MAY display for the covariance of the	3ection	Section title	Description of change CR's incorporated into this document.
Onorbit/Rendezvous Assumptions of mode and modified descriptions of may's usage of or consecutions of predictors o or consecutions of flags o state vector propagation scheme hodified description of propagation rate. Sequencer Principal Function interface with REL MAY display for the filter rate switch deleted. Interface with REL MAY display for the filter rate switch deleted. INTELLIPPING INTERIOR AND ONE UPP. Interface taken changes made to principal function I/O table. Sequencing Operations and Major I Logic redesigned to ancount for MAY needing to be scheduled at only I state vector propagations I Logic deleted for setting USE INT DAIR, DA INTERSOLD, and M_CTGLE. Logic deleted for setting USE INT DAIR, DA INTERSOLD, and M_CTGLE.	1.3 3.3.4.1	Change Log Requirements OverTiew	tomange and to the second of t
Rendervous Chily Assumptions Modified description of the covariance propagation rate. Occupit/Rendervous Havigation state vector task completely redesigned to take advantage of change to schedule MAV at only state vector propagation rate DT_MAV_STATE_PARP. Sequencer Principal Punction state vector propagation rate DT_MAV_STATE_PARP. Interface with REL MAV display for the filter rate switch deleted. Interface with REL MAV display for the filter rate switch deleted. INTERFACE MAV flag deleted as output to MAV and OMB_UFP. INTERFACE MAY flag added as output to MAV and OMB_UFP. INTERFACE MAY Flag added as output to MAV. An ING_MEND_MAY flag added as output to MAV and OMB_UFP. Significant changes made to principal function I/O table. Significant changes made to principal function I/O table. Significant changes made to principal function I/O table. Index Transitions Index Transitions Index Transitions Index Transitions Index of setting USE_IMU_DATA, DA_THRESHOLD, and M_CYCLE.	3.3.4.2.1	Onorbit/Rendezvovs Assumptions	Added and modified descriptions of mav's usage of to predictor to crear-controlled flags to state vector propagation schame
Operbit/Acndervous Harigation state vector propagation rate DT_MAW_STATE_PMS. Sequencer Principal Function state vector propagation rate DT_MAW_STATE_PMS. Sequencer Principal Function state vector propagation rate DT_MAW_STATE_PMS. Interface with REL MAW display for the filter rate switch deleted. INTERFACE MAY flag deleted as output to MAW and OMB_UPP. DUING_REND_MAW flag added as output to MAW and OMB_UPP. An INTINESSOLD DA_THMESSOLD deleted as output to MAW. Sequencing Operations and Major i Logic redesigned to account for MAW needing to be acheduled at only 1 state vector propagations Mode Transitions Logic deleted for setting USE_IND_DATA, DA_THMESSULD, and M_CYGLE.	3.3.4.2.2	-	Modified description of the covariance propagation rate.
Interface with REL MAY display for the filter rate switch deleted. USE_DATA flag deleted as output to MAY and OMB_UFF. DOING_REND_MAY flag added as output to MAY and OMB_UFF. MAY IND_THRESHOLD — DA_THRESHOLD — deleted as output to MAY. Sequencing Operations and Major i Logic redesigned to account for MAY needing to be acheduled at only 1 state vector proper fransitions. Mode Transitions Logic deleted for setting USE_IND_DATA, DA_THRESHOLD, and M_CYGLE.		 Operbit/Bendervous Mayigation Sequencer Principel Punction	1 Sequencer task completely redesigned to take edvantage of change to schedule MAV at only one 1 state vector propagation rate DIMAV STATE_PMP.
USE_DWI_DATA flag deleted as output to MAV and OMB_UPP. 1 DOTING_REND_MAY flag added as output to MAV and OMB_UPP. 1 An IMU_THRESHOLD — DA_THRESHOLD — deleted as output to MAV. 1 Significant changes made to principal function I/O table. 1 Significant changes made to principal function i/O table. 1 Sequencing Operations and Major i Logic redesigned to account for MAV needing to be achaeuled at only 1 state vector proper interestions. 1 Logic deleted for setting USE_IMU_DATA, DA_THRESHOLD, and M_CYCLE.		T 60	i Interface with REL MAY display for the filter rate switch deleted.
i NOTING_REND_MAY flag added as output to MAY and OMB_UFF. i An IND_THRESHOLD — DA_THRESHOLD — deleted as output to MAY. i Significant changes made to principal function I/O table. i Sequencing Operations and Major i Logic redesigned to account for MAY needing to be acheduled at only 1 state vector proper i Mode Transitions i rate. i Logic deleted for setting USE_IND_DATA, DA_THRESHOLD, and M_CYGLE.		· 104 E4	I USE DATA flag deleted as output to MAY and OMB_UPP.
Significant changes unde to principal function I/O table. Sequencing Operations and Major ! Logic redesigned to account for MAV needing to be acheduled at only 1 state vector proper Transitions Hode Transitions Logic deleted for setting USE_IND_DATA, DA_THRESHOLD, and M_CYCLE.			I DOING REND MAY flag added as output to MAY and OMB_UPP.
1 Significant changes made to principal function I/O table. 1 Sequencing Operations and Major i Logic redesigned to account for MAY needing to be scheduled at only 1 state vactor proper i Mode Transitions 1 rate. 1 Logic deleted for setting USE_IND_DATA, DA_THRESHOLD, and M_CTGLE.		See See	i An ING_THRESHOLD DA_THRESHOLD deleted as output to MAV.
Sequencing Operations and Major ! Logic redesigned to account for MAV needing to be acheduled at only 1 state vector prope Mode Transitions Mode Transitions			i Significant changes made to principal function I/O table.
	#.1.1	Sequencing Operations and Major Mode Transitions	i Logic redesigned to account for MAV needing to be scheduled at only 1 state vector propagation i rate.
			! Logic deleted for setting USE_INU_DATA, DA_THRESHOLD, and H_CTGLE.

TABLE 1.3.- ONORBIT/RENDEZVOUS CHANGE LOG

Section	! Section title !	Description of change
	\$ \$ \$! Logic deleted for responding to DO_PLTR_SLOW_RATE switch and setting the DOING_PLTR_SLOW_RATE ! flag.
4.1.1.1	! REND_NAV_EXIT	! Equations added to turn off rendezvous flags.
4.1.1.2	! MAV_EXIT	! New section added as part of the sequencer redesign effort.
4.1.2	OPS_2_OR_8_INITIALIZE	Changed predictor step size for this task.
	1	Deleted setting powered flight navigation flags and the USE_DEN_DATA flag.
4.1.2.1	! Orbiter State Vector Reset	! Changes made to I/O table.
4.1.2.2	! Rendezvous Mavigation ! Initialization	! Logic modified to delete directly calling the predictor and to schedule instead the state ! vector prediction task.
	1	Equations added for turning on two rendezvous navigation flags.
	•	Call to COV_LAST_RESET deleted (the call was moved to REMD_COV_INIT).
		! Changes made to I/O tables.
4.1.2.2.1	! Covariance Matrix Initialization	Added call to COW_LAST_RESET.
4.1.2.2.1.3	1 Covariance Matrix Parameters	! New section number for existing module.
	! Reset !	! Changes made to I/O tables.
4.1.2.2.2	! ! Target State Vector Reset	Changes made to I/C tables.
4.1.2.2.3	I Covariance Matrix Parameters I Reset	! ! Section number deleted. Module moved to section %.1.2.2.1.3. !
	1	

1-1

		INDLE 1.3 UNDREIT/RENDEZVOUS CHANGE LOU
Section	Section title	Pescription of change
		! Change made to delete the call to the free flight propagator OMORBIT_PRECISE_PROP and I call the SUPER G propagator for both Orbiter and target state propagation for both free and ! powered flight.
		Logic added to make use of the IMU_NAV_ACCEL_THRESH set by the crew.
	·	Logic modified to set the USE_IMU_DATA flag on each navigation cycle.
	1	Logic modified to key on the DOING_REMD_NAV flag to determine when target vehicle propagation is required.
		! Logic modified to use the powered flight potential model only when the computed Orbiter ! acceleration exceeds MEAS_THRESHOLD.
		Changes made to I/O table.
4.2.3.1	Precision Propagation	Section deleted.
	! Integration of the Equations of !!	! Section moved to section number 4.3.1.
	- ADCIGN	Changes made to 1/0 table.
4.2.3.1.1	STATE_VECTOR_PREDICT_TASK	! New section which has assumed the old section number of RK_GHLL.
4.2.3.1.2	Equations of Motion	Section moved to section number 4.3.2.
		Changes made to I/O table.
4.2.3.1.3	Conic Solution	Section moved to section number 4.2.5.2.1.
4.2.3.1.4	Acceleration Models	! Section moved to section number 4.2.4.1.1.
; 	! !	Chenges made to I/O table.

RER 1.3. - CHORGET / PRINTEZ VICES CHANCE 1.04

The second secon

l Description of change I	i Significant changes made to interface with the state vector predict task.	! Local flag, SV_UPDATE, created for use in determining when to call the covariance matrix ! initialization medule.	I Changes made to the I/O table.	Section moved to section number 4.2.3.2.	Changes made to the I/O table.	! Hew section.	Changes made to the I/O table.	: Changes made to the I/O table.	Equations changed to account for S.T. SOP angles being output in radians, not degrees.	! Added 2 new sections RK_GILL and PINES.	Iterative pradiction process modified to iterate on time, not number of steps.	Changes made to principal function I/O table and to ONOWBIT_PREDICT I/O table.	i Mew section number for an existing module.	Her section number for an existing module.	! Change made to interrogate the DOING_NEMB_NAW flag (set by the sequencer) to determine when to ! emercise rendervous functions.	
Section title				MEL_MAY Display Updates		Conic Solution	Measurement Interpolation	Kalman Pilter Opdates	Angle Mesurements	i Omorbit Precision State Prediction Principal Punction		• •••	Integration of the Equations of Motion	Equations of Motion	1 User Parameter Processing Principal Punction	
! Section		·		4.2.5.2		4.2.5.2.1	4.2.8.1.1	4.2.8.1.2	4.2.8.3.1	£.,			1.3.1	1.3.2	5.	

TABLE 1.3.- CHORBIT/RENDEZVOUS CHANCE LOG

Section	Section title	Description of change
		Interface established with the IME ALICH DISPLAT to eccess gree-input IMU threshold.
. . .		Logic added to smalls the UPP to make its own acceleration threshold test to determine when to use IMU data to propagate the Orbiter position and velocity.
- 44 4		The PWHD FILEMAN flag was added as an input for determining when to interrogate the IMP data.
		Changes made to the principal Ametior I/O table.
1.5.1	! User Parameter State Propagation	Test on the PMED_FLI_MAY flag added to determine whether or not to look at the INU data.
* es és é	• 200 800	Orbiter acceleration threshold test added to determine whether or not to use the IMB data in propagating the Orbiter position and velocity.
- 00 00 0		Benderrous phase test modified to interrogate the DOING NEWD MAY fing rather than the REND MAY FIAG.
	· · · · · · · · · · · · · · · · · · ·	Changes made to the I/O table.
4.5.1.1	Integration	Calling argument changed in calls to ACCEL_CHOMBIT.
		Changes made to the I/C table.
£.5.2	! Onorbit Geer Permenter ! Calculations	Renderrous phase test modified to interrogate the DOING_MEMD_MAY flag rather than the NEMD_MAY_FLAG. Appropriate change made to I/O table.
9	! Landing Site Update Principal	Updated test and tables per CR 193738.
	1 Appendires	Changes made corresponding to the changes in the text.

TABLE 4.3-3.- PREDICTOR SUCCESSED FLAG SETTINGS

Orbiter	1 type	1 0400P	900	<u>.</u>	E	att.	PRED_STREP	Comments
	! Precision !	# 01 01		-	0	-	User selects	Full fourth degree potential model. Brag with constant drag coefficient, awa.
Orbiter	I Rupid precision	2	•		0	-	User selects	i 12 only potential model with constant drug coeffinient, area.
Orbiter	Papid two-body	0	•	0	0	0	•	! Single-stap two-body F and G series solution.
Target	Precisio:	# #	#	-	0	~	User selects	! Full fourth degree potential model drag with constant area, drag ! coefficient.
Target	Repld precision	~	•	-	•	~	User selects	1 32 only potential model with constant drag coefficient, area.
Target	I Impld two-body	0	•	-	0	0	•	single-step two-body P and G series sciution.
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~							

2.0 APPLICABLE DOCUMENTS

Document no.	Title
89-P-0002-140	Computer Program Development Specifica- tion, Volume I, Book 4 Downlist/Uplink Software Requirements
SS-P-0002-170	OFT System Level Requirements, Software
SS-P-0002-510	OFT Functional Level Requirements, GN&C
SS-P-0002-520	OFT Detail Level Requirements, GN&C
SS-P-0002-530	OFT Functional Level Requirements, Sys- tems Management
SS-P-0002-540	OFT Detail Level Requirements, Systems Management
SS-P-0002-550	OFT Functional Level Requirements, Vehicle Utility-02
SS-P-0002-560	OFT Detail Level Requirements, Vehicle Utility-02
SS-P-0002-570	OFT Functional Level Requirements, Pay- loads
SS-P-0002-580	OFT Detail Level Requirements, Payloads
SD76-SH-0020	OFT Flight Software System Requirements, Displays and Controls
SS-P-0002-195	OFT I-LOADS Flight Software System Requirements
SS-P-0002-110	OPT System Level Requirements (Level A)

3.0 OVERVIEW

3.1 OPERATIONAL NAVIGATION PROGRAM

For the Orbiter flight tests, the requirements for each Operational Navigation Program (ONP) are specified at three levels: system level (A), functional level (B), and detailed level (C). In addition, the Level B and C requirements are specified in separate documents for guidance, navigation, and control (GN&C); system management (SM); vehicle utility (VU) and payloads (PL). This document is the Onorbit and Rendezvous navigation part of the GN&C Level C OFT ONP requirements.

3.2 GN&C SOFTWARE MAJOR FUNCTIONS

The Orbiter general-purpose computer (GPC) provides the following GN&C major functions:

- Guidance (GUID)
- Navigation (NAV)
- Flight Control (FC)
- Redundancy management/moding, sequencing, and control (RM/MSC)
- Subsystem operation programs (SOP)
- Displays and controls (D&C)
- Other

This document specifies the software functional requirements for the GN&C major function, onorbit and rendezvous navigation.

3.3 NAVIGATION SYSTEM OVERVIEW

The basic function of the navigation system is to provide an accurate estimate of the Orbiter and target state using orbital dynamics (for coasting flight), IMU data (for powered flight) and NAVAID data which may be used with or without IMU data. This document provides detailed navigation software requirements for the onorbit operational sequences:

- Onorbit Operational Sequence (OPS 2)
- Flight Control System Checkout Operational Sequence (OPS 8)

3.3.1 Navigation Functions

In general, the navigation software requirements can be divided into the following major functions:

Navigation Control. Performs the initialization of navigation function parameters and sets up the sequencing of functions to accomplish navigation requirements.

Measurement Scheduler. Selects the appropriate sensor measurements in accordance with selection criteria.

Data Handler. Prepares data for sensor measurement processing.

<u>Navigation Reconfiguration</u>. Initializes state vector and covariance matrix for sensor measurement processing, for manual updates, for ground updates or for changes in sensor type.

State and Covariance Propagation. Propagates the state and the covariance matrix for sensor measurement processing. Also propagates state for user parameter calculations.

State and Covariance Update. Determines and performs the state and the covariance matrix updates.

<u>User Parameter Processing</u>. Computes state-related parameters for guidance and display and control, and provides high rate propagation of the state vector.

In this document, the details of the major functions are presented under the following Level B principal functions:

- (1) Onorbit/Rendezvous Navigation Sequencer
- (2) Onorbit/Rendezvous Navigation
- (3) Onorbit User Parameter Processing Sequencer
- (4) Onorbit User Parameter Processing

The details of each function are shown in Appendices B, C, D and F in the form of flowcharts of the modules comprising each function. The interconnection of the functions and component modules is shown by means of a 'block' diagram in Appendix G.

The navigation software requirements as presented make assumptions about how non-navigation functions will be performed. Completion of the software requirements will require adequate definition of the timing and data time-tagging mechanization and the IOP mechanization. Changes in the navigation software requirements may be necessary, depending on actual implementation of the non-navigation functions.

a the terral and and the second of the secon

3-3.2 Navigation-Related Functions

The navigation-related function is the Landing Site Update principal function. This function provides the capability to reconfigure the dynamic parameters pertaining to the runway and TACAN sites, which are to carry over into OPS 3. The Landing Site Update function is itself a Level B principal function. Flow-charts for this function are given in Appendix E.

3.3.3 General Requirements

This section discusses software requirements in the categories of service, single-use, or multiple-use that are not uniquely related to the navigation function.

The general requirements include, but are not limited to the following: Coordinate transformations (this publication contains transformations required for navigation).

Onorbit Prediction - this function provides the capability to propagate a state vector forward or backward in time over possibly large time intervals when requested by a user. Onorbit prediction is a Level B principal function.

Flowcharts for the general requirements functions are contained in Appendix C.

3.3.4 Requirements and Assumptions Overview

The following two sections present an overview of the requirements and assumptions of the OFT Onorbit/Rendezvous GN&C navigation-related software.

3.3.4.1 Requirements Overview

The following statements are navigation requirements that must not be violated. To illustrate the requirements, references are made to the flowcharts in Appendix B.

- 1. During the time that a state vector is being read by non-navigation application software, that state vector or portions thereof will not be updated by the navigation software. The reset equations in the user parameter propagator shall be so protected.
- 2. Statements that snap data upon entry into navigation shall be made so that a timewise consistent set of data is obtained before the set of data is used.
- 3. The navigation sensor read functions must not be interrupted by other programs until they are completed.
- 4. Since the acceleration models are to be used by both a navigation processing principal function (onorbit or rendezvous navigation) and the predictor principal function, execution of the model (for a given cycle) shall not be interrupted (ACCEL_ONORBIT).
- 5. The specific display interface flags (PWRD_FLT_NAV, REND_NAV_FLAG, MEAS_ENABLE, ANGLES_AIF, RANGE_AIF, RDOT_AIF) shall not have their values changed by any source external to navigation during the execution of a navigation cycle.
- 6. The Onorbit/Rendezvous sequencer principal function shall have the capability to execute at a maximum rate of one cycle each 1.92 seconds.
- During any navigation phase, execution of the Onorbit/Rendezvous Sequencer and the Onorbit/Rendezvous Navigation principal function shall take precedence over the execution of the Onorbit Precision State Prediction principal function. This requirement is needed to assure that both the sequencer and navigation principal function executions will not be delayed by execution of the predictor principal function. This requirement shall not apply to the initialization procedures which take place upon entering OPS 2 or OPS 8.

3.3.4.2 Assumptions Overview

The following sections present the assumptions that were used in the development of the Level C Onorbit/Rendezvous requirements. The first section consists of those assumptions made that affect onorbit requirements as well as assumptions

that affect both onorbit and rendezvous requirements. Section 3.3.4.2.2 contains only rendezvous related assumptions.

3.3.4.2.1 Onorbit/rendezvous assumptions

- 1. Upon entering OPS 2 or OPS 8 the Orbiter position and velocity vectors, obtained from the previous OPS, must be predicted to current time. Since this prediction is essential to the navigation task, the sequencer principal function execution must be dependent on the successful prediction of the Orbiter state vectors. In order to minimize the delay due to the execution of the predictor principal function, the initial step size (PRED_STEP_OPS_INIT), is set to ensure that only one prediction step will be taken by the predictor.
- 2. No onboard external data are processed during the non-rendezvous portion of operational sequence (OPS) 2 (i.e., onorbit coast and onorbit powered flight). One-way Doppler tracking and data relay satellite system (TDRSS) measurement incorporation is not currently planned for the orbital flight test (OFT) program.
- 3. A six-dimensional state vector is maintained during nonrendezvous portions of OPS 2 and during OPS 8 (three position and three velocity).
- 4. Prestored values for a nominal body contact force (due to venting and/or uncoupled thrusting, etc.) and vehicle/payload area configuration are required for acceleration models.
- 5. The inertial measurement unit subsystem operating program (IMU SOF) provides an estimate of the total accumulated IMU velocity at the time of a data snap in the presence of commfaults.
- 6. OPS 2 and OPS 8 computational accuracy is assumed to be of AP101 double precision accuracy where mixed mode arithmetic is employed.
- 7. Incorporation of sensed velocity into the state propagation integrator is controlled by setting the PWRD_FLT_NAV flag in conjunction with an acceleration threshold. This flag is set by either moding, sequencing, and control (MSC), or by the crew via item entry on the REL_NAV display (in OPS 2) or the FCS_DIS_C/O display (OPS 8). MSC will activate the PWRD_FLT_NAV flag upon entrance into Major Mode 202 and deactivate it upon transition from Major Mode 202 to Major Mode 201. The crew can activate/deactivate the PWRD FLT_NAV flag in Major Mode 201 specifically to handle major manual translation maneuvers and auxiliary power unit (APU) venting (during OPS 8) using the REL_NAV display (OPS 2) or the FCS DIS C/O display (OPS 8).
- 8. Use of sensed velocity in the navigation state propagator is triggered by entrance into the onorbit or rendezvous powered flight navigation phase (Event 67 OPS 2, or via crew control on the REL NAV or FCS DIS C/O display in Major Mode 201 or 801) and by testing accelerometer output versus prestored threshold levels. The threshold level, in micro g's, can be changed by crew input

- on the IMU ALIGN DISPLAY. The crew inputted threshold level will be preserved during OPS 2 and OPS 8 transitions.
- 9. Backward and forward integration capability is provided for state prediction and propagation.
- 10. Current attitude is used for propagation.
- 11. The precision state prediction function has accuracy comparable to that of the precision state propagation function and has the option of being executed in a faster (but less accurate) conic mode.
- 12. Acceleration models include both attitude-dependent and constant ballistic coefficient drag, a venting/RCS body contact force, and Earth gravity effects.
- 13. Only one Orbiter and/or target state vector shall be maintained during all navigation phases in OPS 2 and OPS 8.
- 14. The acceleration due to lift force is assumed to be negligible in the atmospheric drag acceleration model.
- 15. An automatic in-flight update capability will be provided by which the ground can uplink either an Orbiter or a target state vector (M50) and associated time tag during any navigation phase (rendezvous or nonrendezvous). The following additional assumptions apply to this capability:
 - a. The ground shall uplink one vehicle state (three position, three velocity, associated time tag, and OPCODE) at a time.
 - b. The onboard software receiving these data (ground uplink high-rate special processing S/W processor) will set the DU_OV_UPLINK or DO_TV_UPLINK flag to ON to specify whether the uplinked data pertains to Orbiter or target, and set up one of the following two variable sets depending on the results of this test:

Orbiter uplink		target uplink	
R _GND		R _TV_GND	
V_GND	or	V _TV_GND	
T_GND		T_TV_GND	
DO_OV_UPLINK = ON		DO_TV_UPLINK = ON	

c. The navigation software has the capability of reinitializing the Orbiter and/or target state vectors (and associated covariance matrix during rendezvous) in a single navigation cycle.

- d. If a target vector is uplinked during a nonrendezvous navigation phase, it is stored for eventual use in a rendezvous phase.
- 16. Propagation of Orbiter and target position and velocity vectors will be performed by use of the super-G integration scheme during all navigation phases.
- 17. If the sensor (including IMU) SOP's are not in the same general-purpose computer (GPC) as the navigation filter software, then:
 - a. Data and time tag must be preserved as a pair.
 - b. ICC transmission rate must be fast enough such that the data time tag and current time (in navigation GPC) difference shall not adversely affect navigation software performance.

If the sensor SOP's and navigation filter reside in the same GPC, then:

- a. Data must be time tagged.
- b. Data must be the latest available at the time of the data snap.
- 18. The onorbit/rendezvous navigation sequencer will always snap IMU data and predict the last available state vector to current time when a memory transition has been performed:

OPS 1 to 2

OPS 2 to 8

OPS 3 to 2

OPS 8 to 2

OPS 0 to 2

- 19. The onorbit/rendezvous navigation sequencer is capable of responding to the following crew-controlled functions on the REL_NAV and FCS_DIS_C/O displays:
 - a. REL_NAV
 - (1) Enable/disable onorbit and rendezvous navigation phases.
 - (2) Set flags for powered flight and coasting flight during Major Mode 201 (refer to Assumption 6).
 - (3) Allow measurement processing during rendezvous navigation, Major Mode 202.
 - b. FCS_DIS_C/O display (OPS 8): Set positive feedback flags to display for indicating powered flight or coasting flight conditions.

3.3.4.2.2 Rendezvous-only assumptions

- 1. Entrance into the rendezvous navigation phase shall require target position and velocity vectors that have successfully been predicted to within a design dependent tolerance of current navigation time. A flag, DOING_REND_NAV, shall be set to indicate to the crew as well as other software that the rendezvous navigation phase is active.
- 2. The onboard navigation software will store premission data for only one target vehicle.
- 3. It is assumed that one of the vehicles (either target or Shuttle) will have an accurately known position and velocity vector throughout the rendezvous navigation phase. The onboard navigation will carry a flag (SHUTTLE_FILTER_FLAG) which will determine whether the Shuttle or target state vector will be updated by the Kalman filter. The present design assumes that the SHUT-TLE_FILTER_FLAG will be a mission dependent (I-LOAD) parameter; however, it is anticipated that future requirements may dictate that this flag be changed via UPLINK or crew display. Accordingly, any implementation should have the flexibility to allow for such a change with minimum impact.
- 4. The state vector maintained for rendezvous navigation will consist of 13 components.

Component no.	Description
1-3	Vehicle position (Shuttle or target)
4-6	Vehicle velocity (Shuttle or target)
7-9	Unmodeled acceleration estimates
10-13	Rendezvous tracker bias estimates

- 5. A capability shall be available to make the unmodeled acceleration states consider parameters only. In this mode, the unmodeled acceleration states are not updated by Kalman processing but the statistics are carried in the covariance matrix to act as state noise. An I-LOAD parameter will determine if this capability is in operation or not and this parameter will not be changed throughout the mission.
- 6. There is no capability to uplink vents or thrusts for the target vehicle.
- 7. A 13 by 13 covariance matrix of Aries mean of 1950 position and velocity, unmodeled acceleration bias errors, and of (at most) four rendezvous tracker (instrument) biases is propagated during rendezvous coast and rendezvous powered flight navigation phases.
- 8. A valid or appropriate target vector shall always be I-LOADED or UPLINKED prior to entry into the rendezvous navigation phase.
- 9. Upon entering rendezvous navigation, the covariance matrix is initialized to values stored in certain memory locations. These values are initialized

- through I-LOAD and the position-velocity submatrix may be redefined with a ground uplink at any time.
- 10. The capability to load a premission determined set of known sensor biases (determined by calibration) into the bias slots of the navigated state vector shall be provided.
- 11. Both target and Orbiter states shall be propagated but only one state will be updated by the Kalman filter.
- 12. The covariance propagation shall be done at a multiple (MCYCLE) of the state propagation rate to allow for slower measurement processing. The following subfunctions shall be done at the covariance propagation rate.
 - a. Sensor measurement selection
 - b. Measurement reconfiguration
 - c. Covariance matrix propagation
 - d. All measurement incorporation subfunctions
 - e. Measurement processing statistics
- 13. All rendezvous tracker bias variances are propagated as exponentially correlated random variables in the error covariance matrix propagation.
- 14. The unmodeled acceleration bias states are propagated as exponentially correlated random variables.
- 15. The covariance matrix can be reinitialized in any of four ways:
 - a. Execution of Orbiter to target state transfer on the REL_NAV display,
 - b. Execution of target to Orbiter state transfer on the REL_NAV d.splay,
 - Execution of covariance matrix reinitialization on the REL_NAV display, or
 - d. Auto inflight update of either the target or the Orbiter.

In each of these cases the covariance matrix is set to the values contained in a specified set of memory locations. The position and velocity portions of the covariance matrix are computed using parameters that can be changed by ground uplink.

16. The following external data will be processed during the rendezvous coast navigation or during rendezvous powered flight when measurement processing is enabled and the acceleration level is below a predetermined threshold.

- a. Rendezvous radar shaft angle, trunnion angle, range, and range rate
- b. Star tracker horizontal and vertical angles
- c. Crew optical alinement sight (COAS) horizontal and vertical angles.
- 17. External measurement angle data are selected and processed mutually exclusively on an instrument basis. The rendezvous radar range and range rate may be processed with COAS, star tracker, or rendezvous radar angles. The display interface processor (DIP) will ensure this by activating the navigation sensor selection ENABLE flag for only the most recently crew-selected instrument.
- 18. External measurement data processing is inhibited for display and state vector updates whenever IMU sensed delta velocities are in excess of a design dependent amount (MEAS_THRESHOLD).
- 19. During Major Mode 202, when the MEAS_ENABLE switch on the REL_NAV display is set to OFF, the measurement statistics will be computed for display (assuming the data are valij), but the measurements will not be incorporated into the state vector update.
- 20. If a sensor AUTO/INHIBIT/FORCE (AIF) flag is switched to FORCE by the crew, this FORCE will be acknowledged by navigation for one navigation cycle only. After one cycle the flag must be reset to FORCE in order to force data. After the AIF flag has been processed, a copy of the AIF flag is communicated to the REL_NAV display by navigation.
- 21. There shall be a bilevel edit criterion in the navigation filter. If the crew attempts to force data, the allowable residual ratio threshold shall be formulated as the larger of either the sum of the last residual ratio for the measurement type being processed and a design dependent amount (DELTA_RESID_RATIO) or the number 1. For angle tata the last residual ratio is equal to the greater of the two angle residual ratios from the previous cycle.
- 22. There shall be a data valid flag for rendezvous radar range and a data valid flag for rendezvous radar range rate. There will be a single rata valid flag for each of the following angle sets: Rendezvous radar angles, star tracker angles, and COAS angles.
- 23. COAS processing is formulated such that data which is stall by more than a design dependent amount (DELTAT_COAS_MAX) is considered invalid data and is not processed. Furthermore, the same data will not be incorporated twice by the filter.
- 24. The star tracker SOP shall supply a flag indicating that the star tracker is in the target tracking mode.
 - If the star tracker is not in the target tracking mode then time angle data are considered invalid and it is not processed by the filter.

- 25. The Rendezvous Radar SOP shall supply a flag indicating if the rendezvous radar is in the self test mode and, if it is, none of the rendezvous radar measurements (range, range rate, or angles) are processed by the filter.
- 26. Kalman filter statistics (residuals and residual ratios) will be calculated and displayed for each sensor type (range, range rate, angles) whenever rendezvous navigation is enabled and the sensor data are valid.

3.3.4.2.3 General requirements

- 1. Figure 3.3-1 presents the assumed verified OFT transitions for OPS 2 and OPS 8 and a summary of the events and major mode (MM) transitions that the Onorbit/Render your Navigation Sequencer principal function must account for. The following list of assumptions applies to these verified transitions:
- 2. There are four navigation phases: onorbit coast, rendezvous coast, onorbit powered flight, and rendezvous powered flight.
- 3. OPS 2 can be entered from OPS 1 and can only begin with the onorbit coast navigation phase of the Onorbit/Rendezvous Navigation principal function.
- 4. A flag, REND_NAV_FLAG, shall be set (and reset) external to the onorbit/rendezvous navigation sequencer and onorbit/rendezvous navigation principal function. It is assumed that the crew will control this flag setting via the REL_NAV display. MSC may also control the flag for automatic transitions.
- 5. Once the onorbit navigation phase or the rendezvous navigation phase has been activated (while in Major Mode 201), the transition from one to the other can be controlled via crew resetting of the REND_NAV_FLAG via the REL_NAV display. This option is also available during Major Mode 202.
- 6. Entry into OPS 2 from OPS 3 can only occur when onorbit navigation is used (i.e., cannot begin OPS 2 with rendezvous navigation when coming from OPS 3).
- 7. Whenever reentering OPS 2 from OPS 00, entry is assumed to be made into Major Mode 201 with onorbit navigation active.
- 8. Transition to OPS 3 from OPS 2 (Major Mode 201) can occur while either onorbit or rendezvous navigation is active.
- 9. Transitions into OPS 2 and OPS 8 can only begin with onorbit navigation active in the coast flight phase.
- 10. It is assumed that OPS 2 and OPS 8 are separate memory loads in which all navigation software for the latter is contained within the former. A memory transition shall take place to transfer those OPS 2 principal functions needed for OPS 8, namely

79FM10

- a. Onorbit/Rendezvous Navigation Sequencer
- b. Onorbit/Rendezvous Navigation
- c. Onorbit/Rendezvous User Parameter Processing Sequencer
- d. Onorbit User Parameter Processing
- e. Onorbit Predictor

The navigation sequencer will currently indicate a cancellation and rescheduling of ONORBIT_RENDEZVOUS_NAVIGATION during the transition from OPS 8 to OPS 2 or OPS 2 to OPS 8, because of this assumption.

EVENT SUMMARY

EVENT NO.	DESCRIPTION	CRITERIA	SOURCE
60	106 201	OPS 201 PRO	CREW
60A	OPS 8-201	OPS 201 PRO	CREW
60B	201 OPS 8	OPS 801 PRO	CREW
67	201 202	PRO OR OPS 202 PRO	CREW
73	202 201	PRO OR OPS 201 PRO	CREW
84	OPS 00 - 201	OPS 201 PRO	CREW
85	201 OPS 3	OPS 301 PRO	CREW
El	OPS 3 201	OPS 201 PRO	CREW
60H	OPS 8 → OPS 3		CREW
83	OPS 2 OPS 00		CREW/MSC

Figure 3.3-1.- Verified OFT transitions.

3.4 TRACEABILITY

Table 3.4 shows the traceability of the software segments in FSSR Level C with respect to the CPDS Level B.

TABLE 3.4 .- SOFTWARE REQUIREMENT TRACEABILITY

CPDS Level B ! Section No. ! Software Segment		FSSR Level C Section No.
4.148	! Onorbit/Rendezvous Navigation Sequencer	! 4.1
4.198	! Onorbit User Parameter Processing ! Sequencer	! ! 4.4 !
4.126	! Onorbit/Rendezvous Navigation	1 4.2
4.246	! Landing Site Update	1 4.6
4.22	! Onorbit User Parameter Processing	4.5
4.224	! ! Onorbit Predictor !	1 1 4.3

3.5 OPERATIONAL SEQUENCES AND MAJOR MODES

Table 3.5 identifies the OPS 2 and OPS 8 operation sequence major modes as referenced in Section 4, Detailed Requirements, and Appendix B. Detailed descriptions may be found in the Level B CPDS.

TABLE 3.5.- OPERATION SEQUENCE MAJOR MODES

! ! Major Mode No. !	Onorbit/Rendezvous Phases	
201 ! !	Onorbit powered flight Onorbit coast	
202 !	Rendezvous powered flight Rendezvous coast Onorbit powered flight Rendezvous powered flight	
OPS 8 !	Onorbit powered flight Onorbit coast	

3.6 IMPLEMENTATION CONSTRAINTS

The navigation subsystem design is capable of recovering from the effects of many transient-type errors. Accordingly, the software design shall not preclude this capability by causing a program halt, permanent discontinuance of navigation processing, or loss of protected data as a result of program check or error interrupts.

Check or error interrupts shall be prevented by software safeguards, or standard fixup and error returns shall be provided which are appropriate in the navigation function as described below.

- 1. Floating Point Overflow. The operation in process should be terminated and the previous stored value of the variable retained.
- 2. Floating Point Underflow. This may be treated in the same manner as floating point overflow, or the variable may be set to zero and processing continued.
- 3. Divide by Zero. This should be treated in the same manner as floating point overflow.
- 4. Square Root. The square root of a negative number should be treated in the same manner as floating point overflow.
- 5. Arc Sine. If the argument is greater than +1, a value of $\pi/2$ should be returned. If the argument is less than -1, a value of $-\pi/2$ should be returned. In either case, processing shall not be terminated.
- 6. Arc Cosine. If the argument is greater than +1, a value of zero should be returned. If the argument is less than -1, a value of T should be returned. In either case, processing shall not be terminated.
- 7. Arc Tangent. If both arguments are zero, a value of zero should be returned.
- 8. Logarithm. If the argument of the logarithm function is negative or zero, the operation in process should be terminated, and the previous value of the result retained.
- 9. Sine and Cosine. The returned value of sine and cosine functions should be limited to the interval -1,1 and the functions shall be capable of accepting any valid floating point numbers as arguments.

4.0 DETAILED REQUIREMENTS

The various subsections of this section specify the detailed requirements for the Shuttle navigation system flight software package. This document contains orbital flight test (OFT) detailed requirements for Navigation and User Parameter Processing principal functions for the orbit operations computer load (on orbit and rendezvous), Operational Sequence (OPS) 2. In addition, requirements dealing with other navigation software functions during OPS 8 and OPS 00 are also addressed.

When viewed in the larger context of the total Shuttle flight software, the navigation software package documented herein is a modular system whose function is to supply various parameters required by other major modular systems, such as guidance, displays, flight control, etc. The requirements placed upon the navigation system by these various users often play a large role in determining the design structure and cyclic rate structure of the navigation system. The required interfaces between the navigation system and the other major software systems that use navigation system data are presented in the Level B CPDS document that controls all the interfaces between principal functions.

4.1 ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION

The Onorbit/Rendezvous Navigation Sequencer principal function must initialize and sequence the Onorbit/Rendezvous navigation principal function during OPS 2 while the following major modes are active:

Major Mode 201 - Onorbit coast

Major Mode 202 - Maneuver execute

The Onorbit/Rendezvous Navigation Sequencer principal function must also initialize and sequence the Onorbit/Rendezvous Navigation principal function OPS 8 (orbital operation checkout).

The Onorbit/Rendezvous Navigation Sequencer principal function must also interface with certain crew controls on the REL_NAV and FDS DIS C/O displays relating to selection of rendezvous navigation (REND_NAV_FLAG), to selection of powered flight versus coasting flight navigation phases, and to selection of measurement processing in Major Mode 202 when in rendezvous navigation.

Detailed requirements for Onorbit/Rendezvous Navigation processing principal function are identified in the specific principal function description section 4.2. Cues (events) for performing the proper navigation initialization and sequencing during OPS 2 and OPS 8 are defined in the Level B GN&C CPDS. The particular events and resulting navigation software actions pertaining to the Onorbit/Rendezvous Navigation Sequencer principal function are shown in table 4.1-1. Dynamic parameter input/output data flow between the Onorbit/Rendezvous Navigation Sequencer principal function and other principal functions are shown in table 4.1-2.

f

Event		! ! Navigation Criteria !	Navigation Action
! ! E1 !	Transition from OPS 3 to MM201 (begin OPS 2)	1 OPS 201 PRO	The REND_NAV_FLAG is assumed to be in the OFF state. Same action as for Event 60.
1		Cret: activates REL_ MAY display control (RMDZ_NAV_ENA)	If the REND_NAV_FLAG = OFF (i.e., entering an onorbit coasting navigation phase): CALL: REND_NAV_EXIT If REND_NAV_FLAG = ON (i.e., entering a rendezvous coast navigation phase): CALL: REND_NAV_INIT
Begin	powered flight navigation phases (onorbit or ren	(esaona)	·
! ! 67 ! !	Transition from M4201 to M4202	7 1 OPS 202 PRO 1 1	SET: PWRD_PLT_MAY = ON DOING_PWRD_FLT_NAY = ON
! Perfo	rs special tasks upon termination of OPS 2.		
1 608 t t t t	Transition from M4201 to OPS 8 (terminate OPS 2)	OPS 801 PRO (refer to VU, Level B CPDS) t t t	

4-6

TABLE 4.1-1.- OMORBIT/RENDEZVOUS NAVIGATION SEQUENCER EVENTS.- Continued

Event			
no.	Description	Navigation Criteria	Navigation Action
	Transition from NM201 to OPS 3 (terminate OPS 2)	1 OPS 301 PRO 1	Same action as for Event 60B except the current Orbiter mass(CURR ORB_MASS) is not saved for the memory transition as MASS_INIT
83	Transition from OPS 2 to OPS 00		Same action as for event 60B
THE PO	ULLOWING PERTAIN TO SEQUENCER FUNCTIONS DURING OP	s 8.	
Begin	coasting flight navigation phase (OPS 8).		SET: NAV_CURR_ORB_MASS = MASS_INIT
	Transition from 194201 to OPS 8 (terminate OPS 2)	OPS 801 PRO (refer to VU, Level B CPDS)	
 		: ! !	SCHEDULE: NAY_OMORBIT_REMDEZVOUS, repeat every: DT_NAY_STATE_PROP
Perfo	m special tasks upon termination of OPS 8		
60A	Transition from OPS 8 to 199201	OPS 201 PRO	SET: MASS_INIT = CURR_ORB_MASS
			R PILT INIT = R PILT V PILT INIT = V PILT T PILT INIT = T LAST PILT
1	1	i · !	CAMCEL: NAV_OMORBIT_REMDEZVOUS
		! !	
1		; !	
		: ! !	

TABLE 4.1-1.- CHORBIT/RENDEZYOUS NAVIGATION SEQUENCER EVENTS.- Concluded

! Event ! no. !	Description	 - Navigation Criteria	
1 60H	Transition from OPS 8 to OPS 3	! MSC	! Same as EVENT_60A except the current Orbiter mass value (CURR ! ORB_MASS) is not saved for the memory transition.
1			1 1 1
† † † † † † † † † † † † † † † † † † †			; 1 1 1
1 1 1			T
1 1 1 1			; ; ; ;
! !			
1			
1 ! 1 !			1
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!			! ! !
i !			

f

TABLE 4.1-2.- ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION INPUT/OUTPUT

! ! Variable ! Name	 	! ! ! Local !Destination	! ! !Principal Function!! Destination !	l local ! Source !
i iatmp i i			Predictor, TLM	OPS 2 OR 8 1 INITIALIZE, 1 IREND_NAV INIT!
COV_ACCEL_UVW_			! !Onorbit/Rend Nav !	REND_COV_INIT
!COV_COR_UPDATE	Ground. Uplink	COVINIT_UVW	!	
CURR_ORB_MASS	: Onorbit Guidance 		!Onorbit/Rend Nav, !Onorbit Guidance	! !ONORBIT_REND_! !NAV_
100 Y PWRD_FLT		: !	Onorbit/Rend Nav	REND_NAV_INIT
COV_PWRD_FLT_		! !	! !Onorbit/Rend Nav !	REND_NAV_INIT
I IDMP				! !OPS_2_OR_8 ! !INITIALIZE, !!
IDO_COAS_ANGLESI I_NAV_LAST			! !Onorbit/Rend Nav ! !	REND_COV_INIT!
DOING MEAS_				ONORBIT_REND_! NAV_SEQUENCER!
DOING_PWRD_FLT		!	TLM,FCS_DIS_C/O	ONORBIT ! IREND_NAV ! SEQUENCER !
DOING_REND_NAV		! ! !	REL_NAV display, ITLM, ONORBIT/REND NAV, ONORBIT/REND USER PARAMETER PROCESSING	
IDO_RR_ANGLES_ I INAV LAST I		: ! !	! !Onorbit/Rend Nav ! !	REND_COV_INIT

TABLE 4.1-2.- ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION INPUT/OUTPUT.- Continued

!	i	ì	l	!
! Variable ! Name !	! !Principal Function! ! Source!	Local Destination		Local Source
! !DO_RRDOT_NAV_ !LAST			Onorbit/Rend Nav	rend_cov_init
IDO_ST_ANGLES_ INAV_LAST			 Onorbit/Rend Nav 	rend_cov_init
DT_FILT		REND_COV_		!
i <u>d</u> v_cov				COV_LAST_
<u>D</u> v_filt	!Onorbit/Rend Nav	REND_COV_		
!E !				COVINIT_UVW, UA_BIAS_AND_
		ONORBIT_ REND_NAV_ SEQUENCER	TLM	
		ONORBIT REND NAV SEQUENCER	ITLM !	
	!	ONORBIT REND_NAV_ SEQUENCER, NAV_EXIT	TLM	
EVENT_60B	!	ONORBIT REND NAV SEQUENCER, NAV_EXIT	TLM	
! !			: !	

TABLE 4.1-2.- ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION INPUT/OUTPUT.- Continued

!	1	1	!	!
! ! Variable ! Name !	! !Principal Function! ! Source !	Local Destination		Local I Source I
		! !Onorbit !rend_nav_ !Sequencer	! !TLM !	! ! ! ! ! !
		! !ONORBIT !REND_NAV_ !SEQUENCER	ITLM ! !	! ! ! ! !
		ONORBIT REND NAV SEQUENCER	ITLM ! !	! ! !
	1	ONORBIT PREND NAV SEQUENCER, NAV_EXIT	!TLM !	
		! !ONORBIT_ !REND_NAV_ !SEQUENCER	I ITLM I	! ! ! ! !
		! !ONORBIT_ !REND_NAV_ !SEQUENCER	! !TLM !	! ! ! ! ! !
! !FILT_UPDATE !	! ! !	!	! !Onorbit/Rendezvous !User Parameter !Processing	! !Shuttle_reset! !
I IGMDP	1 1 1	! ! !		! !OPS_2_OR_8_ ! !INITIALIZE, ! !REND_NAV_INIT!
! !GMOP !	: ! !	: ! !		OPS_2_OR_8 ! INITIALIZE, ! IREND_NAV_INIT!
! !G_TV_LAST !	! ! !	; ! !	! !Onorbit/Rend Nav ! ! !	! !REND_COV_INIT! !

TABLE 4.1-2.- ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION INPUT/OUTPUT.- Continued

!	1	<u> </u>	1	1
! Variable ! Name !	! !Principal Function ! Source !	! ! Local !Destination !	! !Principal Function! ! Destination !	Local Source
I_CYCLE	! !		! !Onorbit/Rend !Nav, TLM	! !REND_COV_INIT!
I IDRAG		! !REND_COV_ !INIT		! ! ! ! !
! !IGD		REND_COV_		
IGO		PEND_COV_	! ! !	! !
IVENT		!REND_COV_ !INIT		!
_		_		NAV_EXIT
MEAS_ENABLE		! !		ONORBIT_REND_! INAV_SEQUENCER!
INAV_CURR_ IORB_MASS	! !			! !ONORBIT_REND_! !NAV_SEQUENCER!
N ACCEPT			! !Onorbit/Rend Nav, !TLM	! !DISPLAY_COUNT! !_INIT
NOISY_NAV_MEAS			Onorbit/Rend Nav	REND_NAV_INIT!
N REJECT			!!!Onorbit/Rend Nav, !! !TLM	DISPLAY_COUNT!
OPS_2 OR 8_ INITIALIZE_ COMPLETE		!	Onorbit/Rend User Parameter Proces- Sing Seq, MSC	
PRED_ORB_AREA I			 Onorbit Predictor, TLM	OPS_2_OR_8_ ! INITIALIZE !
PRED_ORB_CD			Onorbit Predictor,! TLM	OPS 2 OR 8 ! INITIALIZE !

TABLE 4.1-2.- ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION INPUT/OUTPUT.- Continued

! ! Variable ! Name	! ! !Principal Function ! Source !		! ! !Principal Function! ! Destination	
! !PRED_ORB_MASS	! ! !		! !Onorbit Predictor, !TLM	OPS 2 OR 8 INITIALIZE
! PRED_STEP !	! ! !		!Predictor, TLM	OPS_2_OK_8_ INITIALIZE, REND_NAV_INIT
PRED_USE			1	REND_NAV_ INIT, STATE_ I VECTOR_ IPREDICT_TASK
!PWRD_FLT_NAV ! !	! ! !		!TLM, Onorbit/ !Rend Nav, ORB UPP ! !	
!REND_NAV_FLAG ! ! !	1 - · · · · · · · · · · · · · · · · · ·	ONORBIT PREND NAV SEQUENCER, PREND NAV	ITLM ! !	REND_NAV_INIT
!R_FILT !	! 	REND_COV INIT, NAV EXIT, COV ILAST_RESET		OPS 2 OR 8 !
!	ASC NAV SEQ., D/L NAV SEQ., Onorbit/Rend Nav Seq	INITIALIZE	ID/L Nav Seq, Onorbit/Rend Nav I Seq	NAV_EXIT
IR LAST			Onorbit/Rend Nav	COV_LAST_ :
!				! !

TABLE 4.1-2.- ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION INPUT/OUTPUT.- Continued

·	,	 	1	· · · · · · · · · · · · · · · · · · ·
! ! Variable ! Name !	! !Principal Function! ! Source !	Local Destination	Principal Function Destination	Local Source
PRED FINAL.	! ! !	POPS 2 OR 8 INITIALIZE, PREND NAV INIT, STATE PREDICT PREDICT	! !	
PRED INIT	: ! ! !		1 1 !	OPS_2_OR_8_ INITIALIZE, IREND_NAV_ INIT, STATE_ IVECTOR IPREDICT_TASK
i <u>r</u> reset !	! !	!	!Onorbit/Rend !User Parameter !Processing	SHUTTLE_RESET
	!Nav		! !Onorbit/Rend !Nav !	REND_NAV_INIT
! !R _TV_LAST !	! ! !			COV_LAST_ RESET
! <u>R</u> _TV_RESET !	! ! !	!	! !Onorbit/Rend !User Parameter !Processing	TARGET_RESET
! !SEQ_ACCEPT !	: ! !			DISPLAY_COUNT
! !SEQ_REJECT !	: ! !			DISPLAY_COUNT:
SIG_UPDATE	! !Ground Uplink	COVINIT_UVW	! !	! !
! !SQR_EMU !	! ! !		! !Onorbit/Rend Nav, !Onorbit Predictor	

TABLE 4.1-2.- ONOREIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION INPUT/OUTPUT.- Continued

!	1	!	1	!
! ! Variable ! Name !	I IPrincipal Function I Source	! ! Local !Destination !	! !Principal Function! ! Destination	Local! Source!
! TAU_UNMOD_ACC_! COV	! ! !	i ! !	! !Onorbit/Rend Nay !	REND_NAV_INIT
T_COV_LAST	! ! !	! !		COV_LAST_ !
T_CURRENT_FILT	! ! !	! ! !		CPS_2_OR_8_ !
!		IINITIALIZE	!D/L Nav Seq, !Onorbit/Rend Nav !Seq	NAV_EXIT
T_IMUS_GA		IMU DATA ISNAP	!	!
T_LAST_FILT	! !	NAV_EXIT, IREND_COV_ INIT, COV_ ILAST_RESET		OPS 2 OR 8 ! INITIALIZE !
TOT_ACC_LAST	! !		! !Onorbit/Rend Nav	REND_COV_INIT
T_PRED_FINAL			!Predictor, TLM !	OPS 2 OR 8 1 INITIALIZE, ! STATE VECTOR ! PREDICT_TASK !
T_PRED_INIT	! !		!Predictor, TLM ! ! !	OPS_2 OR 8 ! INITIALIZE, ! REND_NAV ! INIT, STATE_!
T_RESET	! !	IVECTOR_ IPREDICT_	! ! !	VECTOR ! PREDICT TASK ! SHUTTLE RESET!

TABLE 4.1-2.- CNORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION INPUT/OUTPUT.- Continued

1	1	·····	<u> </u>	
! Variable ! Name !	! !Principal Function! ! Source !		! !Principal Function ! Destination !	Local Source
! !T_TV !			! !TLM, Onorbit/Rend !Nav	 REND_NAV_INIT
TV_PREDICT_			! !TLM !	! !REND_NAV_INIT!
!UNMOD_ACC_BIAS			!Nav ! !	REND NAV EXIT, OPS 2 OR 8 INITIAL- IZE, U A BIAS AND COV INIT
VAR_UNMOD_ACC			! !Onorbit/Rend Nav	REND_NAV_INIT
V CURRENT		! !		OPS 2 OR 8 INITIALIZE
PILT	! ! !	REND_COV_ INIT, NAV EXIT, COV_ LAST_ RESET		OPS_2_OR_8_
‡ :	Asc. Nav Seq, ID/L Nav Seq, ICnorbit/Rend Nav ISequencer	INITIALIZE	D/L Nav Seq, Onorbit/Rend Nav Sequencer	NAV_EXIT
IV _IMU_CURRENT		IMU DATA		
IV_IMU_RESET		!	Onorbit/Rend User Parameter Processing, TLM	SHUTTLE_RESET
IV LAST				COV_LAST_
! ! <u>V</u> _LAST_FILT !	! ! !	! ! !		OPS_2_OR_8 ! INITIALIZE !

TABLE 4.1-2. ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION INPUT/OUTPUT. - Concluded

!		!	!	!
! Variable ! ! Variable ! ! Name !	Principal Function Source		! !Principal Function ! Destination !	! ! Local ! Source !
IVMP I	·	! !		I IOPS 2 OR 8 INITIALIZE, IREND NAV INIT
	Predictor ! ! !	REND_NAV INIT, OPS_ !2_OR_8_ !INITIALIZE, !STATE_ !VECTOR_ !PREDICT_ !TASK	ITLM	
PRED_INIT !			!Predictor, TLM ! ! ! !	IOPS 2 OR 8 INITIALIZE, IREND NAV INIT, STATE IVECTOR IPREDICT TASK
V RESET		!!!!	Onorbit/Rend User Parameter Processing	SHUTTLE_RESET
V_TV	•	REND_NAV_ IMIT, COV_ LAST_RESET	Onorbit/Rend Nav	REND_NAV_INIT
V_TV_LAST	! !			COV_LAST_ RESET
V_TV_RESET !	!	!!!	Onorbit/Rend User Parameter Processing	TARGET_RESET
!	dip; Ascent man- !	ONORBIT_ REND_NAV_ SEQUENCER		

4.1.1 Sequencing Operations and Major Mode Transitions (ONORBIT_REND_NAV_ SEQUENCER)

The Onorbit/Rendezvous Navigation Sequencer principal function performs specific actions which control the execution of the Onorbit/Rendezvous Navigation principal function based on navigation phase and major mode transitions. These tasks are performed by the Sequencing Operations and Major Mode Transitions subfunction and include the following tasks for OPS 2 control:

- response to events for entering OPS 2
- response to events for exiting OPS 2
- response to events for major mode transitions within OPS 2
- response to crew entry on the REL NAV DISPLAY regarding selection of powered flight phase (both onorbit and rendezvous)
- response to crew entry (REL NAV DISPLAY) regarding selection of onorbit or rendezvous navigation phase (powered or coasting flight)

For OPS 8 control the following tasks are performed:

- response to events for entering OPS 8
- response to events for exiting OPS 8
- response to crew entry on the FCS/DED DISP C/O DISPLAY regarding selection of powered flight phase

The events for OPS 2 and OPS 8 navigation control are summarized below. Detailed requirements are specified separately below for OPS 2 and OPS 8.

- Events to enter OPS-2

- Events to exit OPS-2

- Events to enter OPS-8

- 60B OPS-2 * OPS-8

- Events to exit OPS-8

- 60A OPS-8 + OPS-2 - 60H OPS-8 + OPS-3

- Events during OPS-2 & 8

- 73 MM202 + 201 - 67 MM201 + 202

A. Detailed requirements.

Part I .- OPS 2 Requirements

The detailed sequencing and major mode transition requirements for the OPS 2 portion of the Onorbit/Rendezvous Navigation Sequencer principal function are described as follows:

- 1. If an onorbit coast navigation phase is begun by entry into Major Mode 201 from OPS 1, OPS 3, OPS 8 or OPS 00 (EVENTS E1, 60, 60A, or 84), the Onorbit/Rendezvous Navigation Sequencer principal function shall provide the capability to initialize the Orbiter state vector, mass, and other required navigation parameters on the basis of prestored computer locations unaffected by the computer program memory load reconfiguration. The following sequence should be followed:
 - a. Compute the value for Orbiter mass as follows:

If OPS 2 is to be entered from OPS 1 or OPS 3 the Orbiter mass shall be calculated as:

Otherwise, Orbiter mass shall be reset to a saved value:

CURR_ORB_MASS = MASS_INIT

b. Store the computed mass value into a NAV slot for use by navigation.

NAV CURR ORB MASS = CURR ORB MASS

c. An initialization operation shall now be performed to obtain current IMU data, predict the last saved OPS sequence Orbiter position and velocity vectors to current time, reset parameters for user parameter state propagation, and initialize flags to OPS 2 or OPS 8 initial values (refer to section 4.1.2.1 for detailed requirements):

F3 This equation shall be protected against division by zero (reference 3.6-3).

CALL: OPS 2 OR 8 INITIALIZE

- d. After completion of initialization, the capability shall be provided for sequencing the Onorbit/Rendezvous Navigation principal function at the designated repetition rate, DT_NAV_STATE_PROP.
- 2. If OPS 2 is not being entered, tests for detecting leaving OPS 2 to go to OPS 8 (EVENT 60B), OPS 00 (EVENT 83), or OPS 3 (EVENT 85) are made. If any of these 3 transitions is detected,

CALL: NAV_EXIT

(section 4.1.1.2) to store the necessary information into protected locations for the new OPS sequence.

- 3. If transitions into or out of OPS 2 have not been detected, tests for transitions in major mode in OPS 2 are made.
 - a. The test for transition from MM202 to MM201 (EVENT_73) is made. If EVENT_73 is ON, the powered flight flag, MM202 measurement enable flag, and the measurement enable positive feedback flag (for REL_NAV_DISPLAY) must be set to OFF.

PWRD_FLT_NAV = OFF

MEAS_ENABLE = OFF

DOING_MEAS_ENABLE = OFF

b. If EVENT 73 is OFF, the test for transition from MM201 to MM202 (EVENT 67) is made. If EVENT_67 is ON, the powered flight flag is set to ON.

PWRD FLT NAV = ON

In any event, the positive feedback flag for powered flight is set for the REL NAV display to the value of the powered flight navigation flag.

DOING PWRD FLT NAV = PWRD FLT NAV

- 4. A test is made to detect the following:
 - A transition into or out of the rendezvous mavigation phase, or
 - the rendezvous navigation initialization target prediction task has been initiated but not completed.
 - a. If REND_NAV_FLAG ≠ REND_NAV_FLAG_LAST, a transition has occurred; or if REND_NAV_INIT_PRED = ON, then the target prediction task has not been completed. Thus the REND_NAV_FLAG and REND_NAV_INIT_FLAG are interrogated to determine the nature of the transition and the state of the target prediction.

(1) If REND_NAV_FLAG = ON or REND_NAV_INIT_PRED = ON then the rendezvous navigation initialization subfunction is invoked

CALL: REND_NAV_INIT

(See section 4.1.2.2)

(2) If REND_NAV_FLAG = OFF and REND_NAV_INIT_PRED = OFF, the rendezvous navigation phase will be exited.

CALL: REND NAV EXIT

(See section 4.1.1.1)

b. If REND_NAV_FLAG = REND_NAV_FLAG_LAST and REND_NAV_INIT_PRED = OFF, then a transition has not occurred; and the rendezvous navigation initialization prediction task is not in progress. Thus the sequencer control logic has been completed for this navigation cycle.

Part II. - OPS 8 Requirements:

The detailed sequencing and major mode transition requirements for the OPS 8 portion of the Onorbit/Rendezvous Navigation Sequencer principal function are described as follows:

- 1. If the onorbit coast navigation phase is begun by entry into GN&C OPS 8 from OPS 2 (Event 60B), the Onorbit/Rendezvous Navigation Sequencer principal function shall provide the capability to initialize the Orbiter state vector and other required navigation parameters on the basis of prestored data and OPS 2 data obtained from protected computer locations unaffected by the computer program memory load reconfiguration. A flag, REND_NAV_FLAG, will be maintained in the OFF state (by MSC) throughout OPS 8 as rendezvous navigation phase is not available in this OPS sequence. This following initialization sequence shall be performed:
 - a. Initialize the current Orbiter mass as saved from OPS 2:

NAV CURR ORB MASS = MASS INIT

b. Perform an initialization operation to obtain current IMU data, predict the last saved OPS sequence Orbiter position and velocity vectors to current time, reset parameters for user parameter state propagation, and initialize flags to OPS 2 or OPS 8 initial values (refer to section 4.1.2.1 for detailed requirements):

CALL: OPS_2_OR_8_INITIALIZE

分

- c. After completion of this initialization, the capability shall be provided for sequencing the Onorbit/Rendezvous Navigation principal function at the designated repetition rate (DT_NAV_STATE_PROP) during OPS 8.
- 2. If a transition for entering OPS 8 was not detected, tests are made to detect leaving OPS 8 to enter OPS 2 (EVENT 60A) or OPS 3 (EVENT 60H). If either event is "ON",

CALL: NAV EXIT

to store necessary information into protected locations for the next OPS sequence.

3. If transitions into and out of OPS 8 have not been detected, the positive feedback flag for powered flight navigation is set (for the FCS/DED DISP C/O DISPLAY) to the value of the powered flight navigation flag.

DOING PWRD FLT NAV = PWRD_FLT_NAV

- B. <u>Interface Requirements</u>. Input and output parameters are given in Table 4.1.1.
- C. Processing Requirements. None
- D. <u>Constraints</u>. The following additional constraints apply to the requirements presented in Section A:
 - The following flags are set by either REL_NAV (via crew input) or FCS/DED DIGP C/O DISPLAY (crew input):

REND_NAV_FLAG

PWRD_FLT_NAV

MEAS_ENABLE

and should not be changed (in value) by these external functions during any given cycle of the Onorbit/Rendezvous Navigation principal function during any navigation phase since a timewise consistent set of navigation data is required (i.e., a completion of a navigation cycle) to perform the various navigation functions.

- 2. Memory transitions shall only be performed following the completion of a navigation cycle.
- 3. The maximum repetition rate for the Onorbit/Rendezvous Navigation Sequencer principal function shall be 1.92 seconds.

E. <u>Supplemental Information</u>. A suggested implementation of these requirements is illustrated in the Appendix B flow diagrams:

ONORBIT_REND_NAV_SEQUENCER (OPS 2)

ONORBIT_REND_NAV_SEQUENCER (OPS 8)

NAV_EXIT

TABLE 4.1.1.- ONORBIT_REND_NAV_SEQUENCER INPUT/OUTPUT

l Variable Name	! Input Source!	! Output Destination !
! CURR ORE MASS ! DOING MEAS ENABLE ! DOING PWRD FLT NAV ! DOING REND NAV ! DT NAV STATE PROP		!
! EVENT_E1 ! EVENT_60 ! EVENT_60B ! EVENT_60H ! EVENT_67 ! EVENT_73 ! EVENT_83		
! EVENT_85 ! G_2_FPS2		! * * * * * * * * * * * * * * * * * * *
! MASS_INIT ! MEAS_ENABLE ! NAV_CURR_ORB_MASS ! ! PWRD_FLT_NAV	!	! *, ACCEL_ONORBIT, ! OPS_2_OR_8_INITIALIZE
PREND_NAV_FLAG REND_NAV_FLAG_LAST	! *, REND_NAV_INIT ! **, REND_NAV_INIT,	1 1 1
! REND_NAV_INIT_PRED! ! WT_DISP	! REND_NAV_EXIT ! ! **, REND_NAV_INIT !	I I I I I
! ! ! !	! ! ! !	! ! ! !
! !	! !	! !

^{*}See principal function I/O table for the Onorbit/Rendezvous Mavigation Sequencer (table 4.1-2)

^{**}See initialization parameters, section 4.7

Section of the sectio

4.1.1.1 Rendezvous Navigation Phase Termination (REND_NAV_EXIT)

The purpose of the rendezvous navigation phase termination subfunction is to perform the necessary operations required when a rendezvous navigation phase is terminated in preparation for a transition to an onorbit navigation phase. This action occurs during OPS 2 when the crew or MSC changes the value of the REND_NAV_FLAG from a value of CN to OFF (crew control of the REND_NAV_FLAG is via the REL_NAV display control, RNDZ_NAV_ENA). This subfunction is invoked by the sequencing operations and major mode transitions subfunction (section 4.1.1, ONORBIT_REND_NAV_SEQUENCER).

A. <u>Detailed Requirements</u>. When called, this su function shall first set the unmodeled acceleration biases to zero. These lias terms were solved for by the rendezvous navigation filter and need to be set to zero for non-rendezvous navigation phases.

UNMOD_ACC_BIAS = 0.

The display parameters initialization subfunction shall now be executed to zero the ACCEPT/REJECT counters for display and measurement processing requirements:

CALL: DISPLAY COUNT_INIT

Detailed requirements for the above subfunction are stated in section 4.1.2.2.1.2.

The "last" flag is turned OFF to indicate the rendezvous navigation is no longer active.

REND NAV FLAG LAST = OFF

The positive feedback flag for the Rel Nav Display is set to OFF to indicate that rendezvous navigation is no longer active.

DOING REND NAV = OFF

- B. <u>Interface Requirements</u>. Input and output parameters for this subfunction may be found in table 4.1.1.1.
- C. <u>Processing Requirements</u>. This subfunction shall be called by the sequencing operations and major mode transitions subfunction (ONORBIT_REND_NAV_SEQUENCER) when it is required to transition from rendezvous to onorbit navigation phases during OPS 2.
- D. Constraints. None
- E. <u>Supplemental Information</u>. A suggested implementation of this subfunction may be found in Appendix B flow diagrams:

REND NAV EXIT

TABLE 4.1.1.1.- REND_NAV_EXIT INPUT/OUTPUT

	Input Source	! Output Destination
UNMOD_ACC_BIAS		•
REND_NAV_FLAG_LAST		ONORBIT_REND_NAV_ SEQUENCER
DOING_REND_NAV		•
i 1		
! ! !		! ! !
! !		! !
! !		
! !		
!		
: ! !		! ! !
!		!
: ! !	! !	! !
! !		1
! ! !		! ! !
- ! !		! !
! ! !	!	! !
: ! !		: ! !
		!!

^{*}See principal function Input/Output table 4.1-2 for the Onorbit/Rendezvous Navigation Sequencer

4.1.1.2 Operation Sequencer Termination (NAV_EXIT)

Specific actions are required by the onboard navigation software when either the OPS-2 or OPS-8 operational sequence is terminated in preparation for transition to another OPS sequence. These actions are primarily concerned with protecting special memory locations to preserve data required for the next OPS sequence.

- A. Detailed Requirements. The Operations Sequence Termination subfunction shall provide the capability to save off (in protected memory locations) certain navigation-related data sets for transmission across a memory transition from one operational sequence to another and, once the data has been saved, terminate the Onorbit/Rendezvous Navigation principal function. This subfunction shall perform these functions for the termination of OPS-2 and OPS-8 as follows:
 - 1. If OPS-2 or OPS-8 is being terminated for a transition to either OPS-8 (from OPS-2, Event 60B), or to OPS-2 (from OPS-8, Event 60A), or to OPS-00 (from OPS-2, Event 83) the current Orbiter mass must be saved prior to termination:

MASS_INIT = CURR_ORB_MASS

2. In all cases where OPS-2 or OPS-8 is terminated, the following parameters shall be saved off prior to termination:

R _FILT_INIT = R _FILT

V FILT INIT = V FILT

T_FILT_INIT = T LAST_FILT

Although the variable names with the _INIT have been designated as unique variables, this may not be required if the same physical core location can be used for R _FILT (for example) in each memory load. The _INIT notation has been used for visibility purposes only.

3. During OPS-2 and OPS-8 once the above data have been stored, execution of the Onorbit/Rendezvous Navigation principal function shall be cancelled.

CANCEL: NAV_ONORBIT_RENDEZVOUS

- B. <u>Interface Requirements</u>. Input and output requirements for this subfunction are defined in table 4.1.1.2.
- C. <u>Processing Requirements</u>. This subfunction is called by the following subfunction:

ONORBIT REND NAV SEQUENCER (section 4.1.1)

D. Constraints. None

E. <u>Suggested Implementation</u>. A suggested implementation in the form of a detailed flowchart may be found in Appendix B under the name NAV_EXIT.

TABLE 4.1.1.2 NAV_EXIT INPUT/OUTPUT

! ! Variable Name !	! Input Source !	! Output Destination !
PEVENT_60B EVENT_60A EVENT_83	! ! * ! *	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
CURR_ORB_MASS	i i	1
! ! R_FILT	! !	1
V_FILT	: ! #	1
T_LAST_FILT	: ! #	1
MASS_INIT	!	•
R_FILT_INIT	1	1
V_FILT_INIT	1	•
T_FILT_INIT	• •	
	• !	1
	! !	1
 	! !	!
<u> </u> 	! !	1
	! !	! !
! !	! !	1 1
l I	! !	1 1
	! !	1 1
]	!	1

^{*}See principal function I/O table for ONORBIT_REND_NAV_SEQUENCER.

4.1.2 Operation Sequence Initialization (OPS_2_OR_8_INITIALIZE)

The purpose of the operation sequence initialization subfunction is to perform specific functions required when either operations sequence 2 (OPS 2) or 8 (OPS 8) is entered from another OPS sequence (i.e., OPS 1, OPS 3, OPS 00, OPS 2 or OPS 8).

A. Detailed Requirements.

1. Snap current accumulated inertial measurement unit (IMU)-sensed velocity data and associated time tag (section 4.2.2.1), SNAP (V_CURRENT FILT, T_CURRENT_FILT) and immediately store the snapped IMU and time data in local variable locations.

2. Initialize the unmodeled acceleration biases solved for in the filter to zero. These bias terms are solved for by the rendezvous navigation filter and need to be zeroed for non-rendezvous navigation phases:

- Compute the square root of MU of the Earth for the precise predictor and precision state propagation:

$$SQR_EMU = SQRT(EARTH_MU)$$

3. Set up the proper parameters to predict the stored Orbiter state vector to current time (refer to section 4.3 for predictor requirements; the following are unique COMPOOL locations for use by the predictor):

PRED ORB AREA = REF ORB AREA

PRED ORB MASS = NAV CURR ORB MASS

PRED_ORB_CD = REF_ORB_CD

GMDP = GM DEG

GMOP = GM ORD

DMP = DFL

VMP = VFLOV PRED

ATMP = 1

PRED STEP = PRED STEP OPS INIT

T_PRED_INIT = T_FILT_INIT

R PRED_INIT = R FILT_INIT

V PRED_INIT = V FILT_INIT

T_PRED_FINAL = T_LAST_FILT

Then call the onorbit precise prediction principal function

CALL: ONORBIT PREDICT

4. Finally, reset the following onorbit navigation parameters:

R FILT = R PRED FINAL

V FILT = V PRED FINAL

5. Initialize those parameters required by the user parameter state propagation subfunction (section 4.5.1) through the use of the Orbiter state vector reset task (section 4.1.2.1) for the Crbiter vehicle only:

CALL: SHUTTLE RESET

6. Set a flag that indicates use of the coasting flight state propagation algorithm.

PWRD_FLT_NAV = OFF

7. Signal that the proper initialization has been accomplished to allow the Onorbit/Rendezvous User Parameter Processing Sequencer principal function to begin scheduling.

SET: OPS_2_OR_8_INITIALIZE COMPLETE = ON

- B. <u>Interface Requirements</u>. The input and output requirements for this subfunction are described in table 4.1.2.
- C. <u>Processing Requirements</u>. This subfunction is called by the sequencing operations and major mode transitions subfunction, section 4.1.1; ONORBIT_REND_NAV_SEQUENCER.
- D. Constraints. None
- E. <u>Supplemental Information</u>. A suggested implementation of this module can be found in Appendix B; OPS 2 OR 8 INITIALIZE.

TABLE 4.1.2. - OPS 2 OR 8 INITIALIZE INPUT/OUTPUT

! Variable Name	! ! Input Source !	! ! Output Destination !
V CURRENT FILT TCURRENT FILT	! IMU DATA SNAP ! IMU DATA SNAP	•
! <u>V</u> _LAST_FILT	! !	! ! *,Shuttle_reset
! ! T_LAST_FILT	! !	! ! *,Shuttle_reset
! ! BARTH_MU	* *	
! SQR_EMU	! !	
! REF_ORB_AREA	* *	! !
! REF_ORB_CD	* *	
! NAV_CURR_ORB_MASS	! ! ON ORBIT_REND_NAV_ ! SEQUEN CER	! ! !
! GM_DEG	* *	!
: : GM_ORD		! !
! DFL		!
! VFLOV_PRED	• •	!
PRED_STEP_OPS_INIT	: • • •	!
! R _FILT_INIT	: !	!
V_FILT_INIT	•	
T_FILT_INIT	•	; !
R_FILT	: 	*,Shuttle_reset
V_FILT	: !	*,Shuttle_reset
T_PRED_INIT		*
! !	! !	! !

^{*}See principal function Input/Output table 4.1-2 for the Onorbit/Rendezvous Navigation Sequencer

See Initialization parameters, section 4.7

TABLE 4.1.2.- OPS_2_OR_8_INITIALIZE INPUT/OUTPUT.- Concluded

! Variable Name	! ! Input Source !	Output Destination
! GMDP		
! GMOP		•
! DMP		•
i VMP		•
! ATMP		•
PRED_STEP	• !	₩.
R PRED_INIT	! !	*
. V PRED_INIT	• !	•
PWRD_FLT_NAV	!	. *,ONORBIT_REND_NAV_ I SEQUENCER
! ! OPS_2_OR_8_ ! INITIALIZE_COMPLETE	 	•
R PRED_FINAL	*	
V PRED_FINAL	•	
UNMOD_ACC_BIAS		*
PRED_ORB_AREA		•
PRED_ORB_CD	! !	•
PRED_ORB_MASS	! !	•
T_PRED_FINAL	! !	•
! !	! !	
! !	! !	! !
! !	! !	

^{*}See principal function Input/Output table 4.1-2 for the Onorbit/Rendezvous Navigation Sequencer

4.1.2.1 Orbiter State Vector Reset (SHUTTLE_RESET)

The purpose of the Orbiter state vector reset subfunction is to provide updated state vector associated parameters to the user parameter state propagation subfunction (section 4.5.1) at the beginning of OPS sequence 2 or OPS 8 and at the end of every navigation cycle through the use of navigated state parameters.

A. <u>Detailed Requirements</u>. At the completion of each OPS sequence 2 or 8 initialization procedure and at the completion of a navigation cycle, the Orbiter state vector reset subfunction shall be called:

CALL: SHUTTLE RESET

1. This subfunction shall then initialize the reset Orbiter state vector and associated IMU sensed velocity reading as follows:

R RESET = R FILT

V RESET = V FILT

V IMU RESET = V LAST_FILT

T RESET = T LAST FILT

2. Additionally, a flag shall be set to indicate to the user parameter state propagation subfunction that a navigated state update has occurred.

FILT UPDATE = ON

These parameters are required by the user parameter propagator to reinitialize the user parameter state following the completion of each navigation cycle.

- B. <u>Interface Requirements</u>. The input and output requirements for this subfunction are shown in table 4.1.2.1.
- C. Processing Requirements. This subfunction is called by the following modules:

OPS_2_OR_8_INITIALIZE

NAV_ONORBIT_RENDEZVOUS

- D. Constraints. None
- E. Supplemental Information. A suggested implementation of this subfunction can be found in Appendix B in the form of a flow diagram:

SHUTTLE RESET

TABLE 4.1.2.1. - SHUTTLE_RESET INPUT/OUTPUT

Variable Name	! ! Input Source !	! ! Output Destination !
R_FILT	OPS 2 OR 8 INITIALIZE, ONORBIT REND R V STATE PROP, REND NAV FILTER	
V_FILT	OPS_2_OR_8_INITIALIZE, ONORBIT_REND_R_V_STATE PROP, REND_NAV_FILTER	
T_LAST_FILT	OPS_2_OR_8_INITIALIZE, ONORBIT_REND_R_V_STATE_ PROP	
v _last_filt	OPS 2 OR 8 INITIALIZE, ONORBIT REND R V STATE PROP	
R_RESET		
V_RESET		
v _imu_reset		•
T_RESET		*, STATE_VECTOR_ PREDICT_TASK
FILT_UPDATE		•
: !	! !	! !
	!	! !
	!	!
	! !	! !
	! !	! !

^{*}See principal function Input/Output table 4.1-2 for the Onorbit/Rendezvous Navigation Sequencer outputs and table 4.2 for the Onorbit/Rendezvous Navigation outputs

4.1.2.2 Rendezvous Navigation Initialization (REND_NAV_INIT)

The Rendezvous Navigation Initialization subfunction is responsible for the proper initialization of selected rendezvous related parameters whenever the Onorbit/Rendezvous Navigation Sequencer principal function has detected the following:

- (a) There is a request to initalize the rendezvous navigation phase, or
- (b) The prediction of the target vehicle has been initiated by the rendezvous ravigation initialization subfunction but the prediction has not been completed.

This subfunction shall be responsible for the following tasks.

- Schedule the state vector prediction task in order to predict the target position and velocity vectors to current time.
- Set selected flags to OFF to insure the proper functioning of the Onorbit/Rendezvous Navigation principal function should the rendezvous navigation phase be canceled and then re-entered.
- Set certain parameters for the unmodeled acceleration bias propagation to values used for coasting flight.
- Initialize the covariance matrix.
- Store the current target position and velocity vectors for use by the User Parameter Processing principal function.
- A. <u>Detailed Requirements</u>. This subfunction shall perform the following steps in the order indicated:
 - 1. The prediction task indicator flag, PRED_USE, is interrogated for a zero value to determine if the state vector prediction task is available for scheduling. If PRED_USE = 0 then the following parameters are defined preceding the scheduling of the state vector prediction task.

REND_NAV_INIT_PRED = ON
PRED_USE = 4

TV_PREDICT_FAIL = OFF

GMDP = GM_DEG

GMOP = GM_ORD

DMP = DFL

VMP = VFLTV_PRED

ATMP = ATFL_TV

PRED_STEP = PREC_STEP_PRED

R_PRED_INIT = R_TV

V_PRED_INIT = T_TV

The state vector prediction task is then scheduled.

SCHEDULE: STATE_VECTOR_PREDICT_TASK

2. If the PRED_USE flag is nonzero, it is tested for a value of 6 which indicates that the state vector prediction task has determined that the prediction interval is too large; hence no prediction will take place.

If PRED_USE = 6 then the following flags are set.

PRED_USE = O
TV_PREDICT_FAIL = ON
REND_NAV_INIT_PRED = OFF
REND_NAV_FLAG = OFF

The rendezvous navigation flag is set to OFF so that the rendezvous navigation initialization subfunction will not be invoked again until the REND_NAV_FLAG is reset to ON by the crew.

3. If the PRED_USE flag is not set to 6, then it is tested for a value of 5 which indicates that the state vector prediction task has successfully predicted the target state vectors.

If PRED USE = 5 then the following actions are taken.

(a) The predictor outputs are stored, and flags are set to free the predictor for other navigation users.

PRED_USE = O
T_TV = T_PRED_FINAL
R_TV = R_PRED_FINAL
V_TV = V_PRED_FINAL
REND_NAV_INIT_PRED = OFF

- (b) Next, the REND_NAV_FLAG is tested for an ON value to determine if the crew request for activating the rendezvous navigation phase is still valid. If the REND_NAV_FLAG is on, the following actions are taken:
 - (1) Flags are set to indicate that the unmodeled acceleration bias state statistics are to be initialized to their coast values.

NOISY_NAV_MEAS = OFF COV_PWRD_FLT = OFF COV_PWRD_FLT_LAST = OFF

(2) Unmodeled acceleration bias state statistical parameters are initialized to their coast values.

TAU_UNMOD_ACC_COV = TAU_U_A_COAST VAR_UNMOD_ACC = VAR_U_A_COAST COV_ACCEL_UVW_INIT = COV_U_A_COAST (3) The rendezvous covariance initialization function is called to initialize the covariance matrix as described in section 4.1.2.2.1.

CALL: REND_COV_INIT

(4) The target state vector reset subfunction resets the user parameter processing state vectors as described in section 4.1.2.2.2.

CALL: TARGET_RESET

(5) The flags REND_NAV_FLAG_LAST and DOING_REND_NAV are set to ON to indicate that the rendezvous navigation phase is now active.

REND_NAV_FLAG_LAST = ON DOING_REND_NAV = ON

- B. Interface Requirements. Input and output parameters are specified in table 4.1.2.2.
- C. <u>Processing Requirements</u>. The subfunction is called by ONORBIT_REND_NAV_ SEQUENCER (section 4.1.1).
- D. Constraints. None
- E. Supplemental Information. A suggested implementation of these requirements is illustrated in Appendix B with REND NAV INIT.

TABLE 4.1.2.2.- REND_NAV_INIT INPUT/OUTPUT

Variable Name	! Input Source	! ! Output Destination !
ATFL_TV		!
ATMP	!	•
COV_ACCEL_UVW_INIT	!	U_A_BIAS_AND_COVINIT,*
COV_PWRD_FLT	; ;	• • • • • • • • • • • • • • • • • • •
COV_PWRD_FLT_LAST	!	•
COV_U_A_COAST	**	i
DFL	**	1
DMP	!	•
DOING_REND_NAV	!	! !
GM_DEG	. **	•
GMDP	!	•
GMOP	!	•
GM_ORD	. **	•
NOISY_NAV_MEAS	!	! *
PREC_STEP_PRED	**	!
PRED_STEP	:	
PRED_USE	! **,*, STATE_VECTOR_ ! PREDICT_TASK	! *, STATE_VECTOR_ ! PREDICT_TASK
R PRED_FINAL	<u>;</u> *	<u> </u>
R PRED_INIT	!	<u>;</u> *
	!	1
! !	!	!

^{*}Onorbit/Rendezvous Navigation Sequencer principal function, see section 4.1 **Initialization parameters, see section 4.7

TABLE 4.1.2.2.- REND_NAV_INIT INPUT/OUTPUT.- Continued

l Variable Name	! Input Source !	! Output Destination !!
R_TV	! ! **,* !	*,REND_COV_INIT, TARGET_RESET, COV_LAST_RESET
REND_NAV_FLAG	: ! # !	, ONORBIT_REND_NAV_ SEQUENCER
! ! REND_NAV_FLAG_LAST !	1 1 1	ONORBIT_REND_NAV_
REND_NAV_INIT_PRED	! !	ONORBIT_REND_NAV_ SEQUENCER
TAU_U_A_COAST	1 **	!
! TAU_UNMOD_ACC_COV	! !	*
! ! T_PRED_INIT !	I I I	! *, STATE_VECTOR_ ! PREDICT_TASK
! ! T_PRED_FINAL !	! STATE_VECTOR_PREDICT_ ! TASK	
! ! T_TV	! ! **,*	! *, REND_COV_INIT
TV_PREDICT_FAIL	! !	*
! VAR_U_A_COAST	! ! ##	!
! VAR_UNMOD_ACC	!	*
! ! VFLTV_PRED	! ! **	!
! ! VMP	1	I ! *
! V PRED_FINAL	! ! *	! !
V PRED_INIT	! !	: ! *
	! !	! !
	!	

^{*}Onorbit/Rendezvous Navigation Sequencer principal function, see section 4.1 **Initialization parameters, see section 4.7

TABLE 4.1.2.2.- REND_NAV_INIT INPUT/OUTPUT.- Concluded

l Variable Name	! Input Source	Output Destination
! <u>V</u> _TV !	*,**	! *,REND_COV_INIT, ! ! TARGET_RESET, ! ! COV_LAST_RESET !
1 1 1 1	! ! ! !	1 1 1 1
! ! ! !	! ! !	! ! ! ! ! !
		! ! ! !
	! !	! ! ! !
	! ! !	! ! ! ! ! !
! ! !		! ! !
	; 1 !	! !

^{*}Onorbit/Rendezvous Navigation Sequencer principal function, see section 4.1 **Initialization parameters, see section 4.7

4.1.2.2.1 Covariance matrix initialization (REND_COV_INIT)

The covariance matrix initialization subfunction shall perform the following tasks upon entering the rendezvous phase, whenever there is an automatic inflight update during the rendezvous phase, or whenever the crew requests a covariance matrix reinitialization or a state vector transfer.

- 1. Initialize the covariance matrix.
- 2. Zero the counter (I-CYCLE) for the asynchronous covariance propagation.
- 3. Set certain flags to OFF so that the rendezvous sensor initialization subfunction will properly execute.
- 4. Zero measurement Accept/Reject counters used for display purposes.
- A. <u>Detailed Requirements</u>. In circumstances in which the filter vehicle position and velocity elements of the on-board filter covariance matrix are to be initialized to UVW values, the following steps shall be performed (in the order indicated):
 - 1. Zero the entire 13 by 13 dimensional covariance matrix

$$E_{1}$$
 to 13. 1 to 13 = 0.0

- 2. Test the SHUTTLE_FILTER_FLAG to determine if the Shuttle vehicle or the target vehicle state is being used by the Kalman filter.
 - a. If the Shuttle vehicle is the filter vehicle

(1) Call the UVW parameters initialization subfunction to initialize the position-velocity portion of the covariance matrix with the Shuttle state vector statistics (see section 4.1.2.2.1.1)

(2) Calculate the last acceleration vector for the Shuttle vehicle for use in the covariance matrix propagation subfunction.

F3-This equation shall be protected against division by zero(reference 3.6-3).

where IGD is the degree of the gravitational potential model, IGO is the order of the gravitational potential model, IDRAG is the drag model flag, IVENT is the vent model flag, all set by the state propagation, and ATFL_OV is from I-Load.

(For detailed requirements, see section 4.2.4.1.1)

b. If the target vehicle is the filter vehicle

(SHUTTLE FILTER FLAG = OFF)

(1) Call the UVW parameters initialization subfunction to initialize the position-velocity portion of the covariance matrix with the target state vector statistics (see section 4.1.2.2.1.1)

CALL: COVINIT_UVW

IN LIST: R_TV, V_TV

(2) Calculate the last acceleration vector for the target vehicle for use in the covariance matrix propagation subfunction,

G_TV_LAST = ACCEL_ONORBIT (GM_DEG, GM_ORD, DFL, VFL_TV, ATFL_

TV, R TV, V TV, TTV)

where GM_DEG is the degree of the gravitational potential model, GM_ORD is the order of the gravitational potential model, DFL is the drag model flag, VFL_TV is the vent model flag, and ATFL_ TV is the attitude flag, all for the target vehicle.

(For detailed requirements, see section 4.2.4.1.1)

3. The covariance matrix propagation cycle counter shall be reset

I_CYCLE = 0

4. The covariance reset subfunction is called to store copies of the Shuttle state vector, the target state vector and their time tag, as well as to zero the covariance accumulated delta velocity.

CALL: COV LAST RESET

5. Reset the DO_NAV_LAST flags for all sensors so that the sensor bias portions of the covariance matrix will be reconfigured for active sensors

EXECUTE: DO_NAV_LAST_SETUP CODE

DO_COAS_ANGLES_NAV_LAST = OFF

DO_RR_ANGLES_NAV_LAST = OFF

DO_RRDOT_NAV_LAST = OFF

DO_ST_ANGLES_NAV_LAST = OFF

6. Reset the measurement ACCEPT/REJECT counters

(Refer to section 4.1.2.2.1.2)

CALL: DISPLAY_COUNT_INIT

- B. <u>Interface Requirements</u>. The input and output variables for this subfunction are defined in table 4.1.2.2.1.
- C. Processing Requirements. This subfunction is called by the following subfunctions:

ONORBIT_REND_AUTO_INFLIGHT_UPDATE (section 4.2.3.1)

REL_NAV_DISPLAY_UPDATES (section 4.2.3.2)

REND_NAV_INIT (section 4.1.2.2)

- P. Constraints. None
- E. <u>Supplementary Information</u>. A suggested implementation in the form of a detailed flowchart can be found in Appendix B under the name:

REND_COV_INIT

TABLE 4.1.2.2.1.- REND_COV_INIT INPUT/OUTPUT

! ! Variable Name !	Input Source	! Output Destination
ATFL_OV	**	ACCEL_ONORBIT
ATFL_1V	**	ACCEL_ONORBIT
DFL	**	ACCEL_ONORBIT
DT_FILT	ONORBIT_REND_R_V_STATE_	
DV_FILT	ONORBIT REND R V STATE PROP, ***	
GM_D EG	**	ACCEL_ONORBIT
GM_ORD	#4	ACCEL_ONORBIT
IDRAG	ONORBIT_REND_R_V_STATE_	ACCEL_ONORBIT
IGD	ONORBIT_REND_R_V_STATE_	ACCEL_ONORBIT
IGO	ONORBIT REND R V STATE PROP, ***	ACCEL_CNORBIT
IVENT	ONORBIT_REND_R_V_STATE_	ACCEL_ONORBIT
R_FILT	ONORBIT REND AUTO INFLIGHT UPDATE, ONORBIT REND R V STATE PROP, REL NAV DISFLAY UPDATES, REND NAV FILTER,	
R_TV	ONORBIT REND AUTO INFLIGHT UPDATE, REND NAV_INIT, ONORBIT REND R V STATE PROP, REL NAV DISPLAY_UPDATES, REND NAV_FILTER, #	ACCEL_UNORBIT, COVINIT_UVW

[#]Onorbit/Rendezvous principal function, see section 4.2
##Initialization parameters, see section 4.7
###Onorbit/Rendezvous Navigation Sequencer principal function, see section 4.1

TABLE 4.1.2.2.1.- REND_COV_INIT INPUT/OUTPUT (Continued)

! Variable Name !	Input Source	Output Destination
! SHUTTLE_FILTER_FLAG	**	
! T_LAST_FILT	ONORBIT_REND_AUTO INFLIGHT_UPDATE,ONORBIT_ REND_R_V_STATE_PROP,***	
! <u>V</u> _FILT ! ! !	ONORBIT REND R V STATE PROP, CNORBIT REND AUTO INFLIGHT UPDATE, REL NAV DISPLAY UPDATES, ***, REND NAV FILTER, *	ACCEL_ONORBIT, COVINIT_UVW
VFL_TV	**	ACCEL_ONORBIT
! <u>V</u> _TV !! !! !! !! !! !! !! !! !! !! !! !! !!	ONORBIT PEND R V STATE PROP, REND NAV INIT, ONORBIT REND AUTO INFLIGHT UPDATE, REL NAV DISPLAY UPDATES, REND NAV FILTER, *	ACCEL_ONORBIT,
! ! †	ACCEL_ONORBIT	
! DO_COAS_ANGLES_NAV_LAST		REND_NAV_SENSOR_INIT,
DO_RR_ANGLES_NAV_LAST		REND_NAV_SENSOR_INIT.
DO_RRDOT_NAV_LAST		REND_NAV_SENSOR_INIT,
DO_ST_ANGLES_NAV_LAST	! !	REND_NAV_SENSOR_INIT,
! E !! ! E !!	 	REND_BIAS_AND_COV_PROP,! REND_NAV_FILTER,*,*** !
! !		!

^{*}Onorbit/Rendezvous principal function, see section 4.2
**Initialization parameters, see section 4.7
***Onorbit/Rendezvous Navigation Sequencer principal function, see section 4.1 +Value returned from the function

TABLE 4.1.2.2.1. - REND_COV_INIT_INPUT/OUTPUT (Concluded)

! Variable Name	! Input Source	Output Destination
I G _TV_LAST		REND_BIAS_AND_COV_PROP,
! ! I_CYCLE !	! !	! NAV_ONORBIT_RENDEZVOUS,!
! ! TOT_ACC_LAST !	! !	REND_BIAS_AND_COV_PROP,
! T_TV ! ! T_TV ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	ONORBIT_REND_R_V_STATE_ PROP,ONORBIT_REND_AUTO_ INFLIGHT_UPDATE,REND_ NAV_INIT,*	;
		! !
: ! !	; 	:
	! ! !	! !

^{***}Onorbit/Rendezvous Navigation Sequencer principal function, see section 4.1

4.1.2.2.1.1 UVW parameters initialization (COVINIT_UVW)

The UVW parameters initialization subfunction initializes the covariance matrix when rendezvous navigation is initialized, or when an auto-inflight update or REL_NAV display update to the state vectors or covariance matrix is performed.

A. <u>Detailed Requirements</u>. This subfunction has an inlist with the following internal names

INLIST: R, V

where \underline{R} is the filter vehicle position vector and \underline{V} is the filter vehicle velocity vector.

This subfunction performs the following steps.

1. Initialize the first six diagonal elements of the covariance with the square of prestored standard deviations.

 $E_{I,I} = SIG_UPDATE_I SIG_UPDATE_I$ for I = 1 to 6

2. Initialize the off-diagonal correlation terms of the covariance matrix in the upper left 6 by 6 portion using prestored correlation coefficients along with the prestored sigmas.

E_{1.2} = COV_COR_UPDATE₁ SIG_UPDATE₂

E1.4 = COV_COR_UPDATE2 SIG_UPDATE1 SIG_UPDATE4

E_{1.5} = COV_COR_UPDATE₃ SIG_UPDATE₁ SIG_UPDATE₅

 $E_{2,4} = COV_COR_UPDATE_4 SIG_UPDATE_2 SIG_UPDATE_4$

E2.5 = COV_COR_UPDATE5 SIG_UPDATE2 SIG_UPDATE5

E3.6 = COV_COR_UPDATE6 SIG_UPDATE3 SIG_UPDATE6

E4.5 = COV_COR_UPDATE7 SIG_UPDATE4 SIG_UPDATE5

 $E_{2,1} = E_{1,2}$

 $E_{5.4} = E_{4.5}$

3. Call the unmodeled acceleration bias and covariance initialization subfunction (section 4.2.4.1) to initialize the unmodeled acceleration bias states and the unmodeled acceleration bias slots of the covariance matrix.

CALL: U_A_BIAS_AND_COVINIT

INLIST: R, V

4. Convert the upper left 6 by 6 portion of the covariance matrix from UVW to mean of '50 coordinates with the following equations

E1to3, 1to3 = M_UVW_M50 E1to3, 1to3 M_UVW_M50^T

E4to6, 4to6 = M_UVW_M50 E4to6, 4to6 M_UVW_M50^T

E1to3, 4to6 = M_UVW_M50 E1to3, 4to6 M_UVW_M50^T

E4to6, 1to3 = (E1to3, 4to6)^T

where the $\underline{\text{M_UVW_M50}}$ transformation matrix was computed by $\underline{\text{U_A_BIAS_AND}}$ COVINIT.

- B. <u>Interface Requirements</u>. The inputs and outputs for this subfunction are given in table 4.1.2.2.1.1.
- C. <u>Processing Requirements</u>. This subfunction is called by REND_COV_INIT (section 4.1.2.2.1)
- D. Constraints. None
- E. Supplementary Information. A suggested implementation of this subfunction is given by the flowchart COVINIT_UVW in Appendix B.

TABLE 4.1.2.2.1.1.- COVINIT_UVW INPUT/OUTPUT

! !In list	/Outlist	1	
! Internal ! Name	! External! Name	! Input Source	Output Destination
! <u>R</u>	! ! R_FILT	! REND_COV_INIT	
<u>v</u>	V_FILT	! REND_COV_INIT	
! <u>R</u>	I R _TV	REND_COV_INIT	
! <u>Y</u>	! V _TV	REND_COV_INIT	
!	!	!	!
! !	1	1 1	1 1
! !	1 1	1 1	! !
1 1	1 1	1	! !
1	1	1	
! !	1	1	
! !	1	1	
! !	1	1	!
!	!		
1	1		
! !	! !	1	!
!	!	1	! !
1	1	1	! !
! !	1	1	! !
! !	!	1	• !
! !	1	1 1	1

^{*}Onorbit/Rendezvous principal function, see section 4.2 **Initialization parameters, see section 4.7

TABLE 4.1.2.2.1.1.- COVINIT_UVW INPUT/OUTPUT (Concluded)

Variable Name	Input Source	Output Destination
_OV_COR_UPDATE	**,***,*	
E		*,***, REND_BIAS_AND_ COV_PROP, REND_NAV_ FILTER
M_UVW_M50	U_A_BIAS_AND_COVINIT	
<u>R</u>		U_A_BIAS_AND_COVINIT
SIG_UPDATE	**,***,* !	! !
<u>v</u>		U_A_BIAS_AND_COVINIT
! !	!	! !
! !		
!		
! !		! !
! !	! !	! !
1		! !
; !		;
: ! !		
!	· 	·

^{*}Onorbit/Rendezvous principal function, see section 4.2

^{**}Initialization parameters, see section 4.7
***Onorbit/Rendezvous Navigation Sequencer principal function, see section 4.1

4.1.2.2.1.2 Display parameter initialization (DISPLAY COUNT INIT)

The display initialization subfunction shall reset measurement ACCEPT/REJECT counters whenever the covariance initialization subfunction is invoked, whenever exiting a rendezvous navigation phase, or whenever the magnitude of the IMU sensed accelerations exceed a design dependent threshold for measurement incorporation.

A. <u>Detailed Requirements</u>. The following steps shall be performed (in the order indicated):

Zero the ACCEPT/REJECT counters. N ACCEPT (N REJECT) is a 4x1 array which counts the total number of accepted (rejected) measurements during the current mark sequence. SEQ ACCEPT (SEQ_REJECT) counts the number of sequential accepted (rejected) measurements during the current mark sequence.

- B. Interface Requirements. The input and output data are shown in table 4.1.2.2.1.2.
- C. <u>Processing Requirements</u>. This subfunction is called by the following subfunctions:

```
REND_COV_INIT (section 4.1.2.2.1)
REND_NAV_EXIT (section 4.1.1.1)
REND_BIAS_AND_COV_PROP (section 4.2.5)
```

- D. Constraints. None
- E. <u>Supplementary Information</u>. A suggested implementation in the form of a detailed flowchart may be found in Appendix B under the name of DISPLAY_COUNT INIT.

TABLE 4.1.2.2.1.2.- DISPLAY_COUNT_INIT INPUT/OUTPUT

! ! Variable Name !	Input Source	Output Destination
! ! <u>N</u> _ACCEPT !		MEAS_PROCESSING_ 1 STATISTICS_REND,*,***
! <u>N</u> _REJECT !		! MEAS_PROCESSING_ !! STATISTICS_REND,*,*** !
! ! SEQ_ACCEPT !	i i	! MEAS_PROCESSING_ !! ! STATISTICS_REND,*,*** !
! ! SEQ_REJECT !	<i>,</i> , , , , , , , , , , , , , , , , , ,	MEAS_PROCESSING! STATISTICS_REND,*,***
! ! !		
! !		
: ! !		
• ! !		! !
! !	<i>;</i>	!
1 1 1	1 1	! ! !
! ! !	! !	! ! !
1 1 1	 	! ! !
! ! !	! !	! ! !
! ! !	!	! ! !

^{*}Onorbit/Rendezvous principal function, see section 4.2
***Onorbit/Rendezvous Navigation Sequencer principal function, see section 4.1

4.1.2.2.1.3 Covariance matrix parameters reset (COV_LAST_RESET)

The covariance matrix parameters reset subfunction saves certain navigation parameters at the end of a covariance matrix propagation subcycle for use in the next subcycle. These parameters include the Orbiter and target position and velocity vectors as well as the current time. Also, a variable used for summing the IMU sensed delta velocities over the subcycle interval is zeroed for use in the next subcycle.

A. Detailed Requirements. The following steps shall be performed:

Store the Orbiter position and velocity vectors (\underline{R} _FILT, \underline{V} _FILT), the target position and velocity vectors (\underline{R} _TV, \underline{V} _TV), last filter time (\underline{T} _LAST_FILT), and zero the delta velocity accumulator ($\underline{D}V$ _COV).

R_LAST = R_FILT

V_LAST = V_FILT

R_TV_LAST = R_TV

V_TV_LAST = V_TV

DV_COV = 0.

T_COV_LAST = T_LAST_FILT

- B. Interface Requirements. The input and output data are shown in table 4.1.2.2.1.3.
- C. <u>Processing Requirements</u>. This subfunction is called by the following subfunctions:

NAV_ONORBIT_RENDEZVOUS (section 4.2.1)

REND_COV_INIT (section 4.1.2.2.1)

- D. Constraints. None
- E. <u>Supplementary Information</u>. A suggested implementation in the form of a detailed flowchart may be found in Appendix B under the name COV_LAST_RESET.

TABLE 4.1.2.2.1.3.- COV_LAST_RESET INPUT/OUTPUT

Variable Name	Input Source	Output Destination
! !	ONORBIT REND AUTO INFLIGHT UPDATE, REND NAV FILTER, ONORBIT REND R V STATE PROP, REL NAV DISPLAY UPDATES,*,***	
! ! !	ONORBIT_REND_AUTO INFLIGHT UPDATE, REND_ NAV_FILTER, ONORBIT_ REND_R_V_STATE_PROP, REL_NAV_DISPLAY_UPDATES, REND_NAV_INIT	
! V_FILT !	ONORBIT_REND_AUTO	
! !	ONORBIT_REND_AUTO_ INFLIGHT_UPDATE, REND_ NAV_FILTER, ONORBIT_ REND_R_V_STATE_PROP, REL_NAV_DISPLAY_UPDATES, REND_NAV_INIT	
I DV_COV		NAV_ONORBIT_ RENDEZVOUS, REND_BIAS_
R LAST		REND_BIAS_AND_COV_PROP,! REND_NAV_INTERP,*
! ! R _TV_LAST !		REND_BIAS_AND_COV_PROP, REND_NAV_INTERP,
T_LAST_FILT	ONORBIT_REND_R_V_STATE_ 1 PROP,*	

^{**}Onorbit/Rendezvous Navigation Sequencer principal function, see section 4.1 ***Initialization parameters, see section 4.7

^{****}Onorbit/Rendezvous Navigation principal function, see section 4.2

TABLE 4.1.2.2.1.3. - COV_LAST_RESET INPUT/OUTPUT (Concluded)

! Variable Name	! Input Source	Output Destination
! T_COV_LAST ;	! !	REND_BIAS_AND_COV_
! V LAST	! !	REND_BIAS_AND_COV_PROP, IREND_NAV_INTERP, #
! ! <u>v</u> _tv_last !	! !	REND_BIAS_AND_COV_PROP,! REND_NAV_INTERP,*
! ! !	: :	
! !	: !	
: ! !	! !	
! ! !	! !	
1 1 1	! !]
1 1	1 1	! ! !
1 1 1	! !	! ! !
† † †	! !	! !
1 1 1	! ! !	! ! !
1 1 !	1 1 1	! !
1 1 1	! !	! ! !
! !	1	

^{*}Onorbit/Rendezvous Navigation Sequencer principal function, see section 4.1

Upon entering the rendezvous navigation phase this subfunction is exercised to store the current target state vector (position and velocity) for user parameter processing. Thereafter, while still in the rendezvous navigation phase this subfunction is exercised at the end of each navigation cycle.

A. <u>Detailed Requirements</u>. This subfunction shall reset the user parameter processing (section 4.5) copy of navigated target position and velocity:

R = TV = RESET = R = TV

V TV RESET = V TV

- B. <u>Interface Requirements</u>. The input and output parameters for this subfunction are found in table 4.1.2.2.2.
- C. <u>Processing Requirements</u>. This subfunction is called by the following subfunctions:

NAV ONORBIT RENDEZVOUS (

(section 4.2.1)

REND NAV INIT

(section 4.1.2.2)

D. Constraints. None

一大きないのできないというというないというというという

E. <u>Supplementary Information</u>. A suggested implementation of this subfunction is found in Appendix B, TARGET_RESET.

TABLE 4.1.2.2.2. TARGET_RESET INPUT/OUTPUT

Variable Name	Input Source	Output Destination
R_TV	ONORBIT_REND_R_V STATE_PROP,REND_NAV_ FILTER,REND_NAV_INIT	
<u>V</u> _TV	**,ONORBIT_REND_R_V_ STATE_PROP,REND_NAV_ FILTER,REND_NAV_INIT	
R_TV_RESET		*,***
V_TV_RESET		*,***
! !	 	
! !]

^{*}Onorbit/Rendezvous principal function, see section 4.2

^{**}Initialization parameters, see section 4.7

^{****}Onorbit/Rendezvous Navigation Sequencer principal function, see section 4.1

4.2 ONORBIT/RENDEZVOUC NAVIGATION PRINCIPAL FUNCTION

The Onorbit/Rendezvous Navigation principal function is the name given to the collection of all subfunctions whose major task is to supply users of this principal function with accurate estimates of the Orbiter and target state vectors. This section presents an overview of this principal function.

The Onorbit/Rendezvous Navigation principal function contains nine primary subfunctions.

- Navigation Control (section 4.2.1)

- Navigation Data Snap (section 4.2.2)
- State and Covariance Matrix Updates (section 4.2.3)
- Position and Velocity State Propagation (section 4.2.4)
- Unmodeled Acceleration State and Covariance Matrix Propagation (section 4.2.5)
- Sensor Measurement Selection (section 4.2.6)
- Sensor Measurement Initialization (section 4.2.7)
- State and Covariance Measurement Incorporation (section 4.2.8)
- Measurement Processing Statistics (section 4.2.9)

This Onorbit/Rendezvous Navigation design makes use of a Kalman filter with a 13 component state vector in order to produce an accurate estimate of position and velocity for the Orbiter and target. The state vector is composed of the following components.

- Orbiter or target position and velocity in the mean of 1950 coordinate system six elements
- Orbiter or target unmodeled acceleration biases in mean of 1950 coordinates three elements
- Systematic sensor biases four elements

A flag (SHUTTLE_FILTER_FLAG) with a premission specified value determines whether the Orbiter or the target position and velocity are to be updated with the Kalman filter. This same flag also indicates which vehicle is to be associated with the unmodeled acceleration bias states.

The Navigation Control subfunction supplies the navigation trunk logic, which sequences the other eight primary subfunctions in the proper order and at the proper rates. The covariance matrix propagation, sensor selection, sensor initialization, measurement incorporation and measurement processing statistics

subfunctions can be performed at a rate slower than the data snap, state propagation and state and covariance matrix update subfunctions. This subrate is determined by the setting of the DO FLTR SLOW RATE switch on the onboard REL NAV display. The switch causes the value of a cycle count, N_CYCLE, to be set to 1 of 2 I-Load values. When the cycle counter, I_CYCLE, reaches the value N_CYCLE, the slow rate subfunctions are executed. This subrate capability is basically intended to be used when it is undesirable to perform the computationally complex covariance matrix propagation and measurement incorporation at the state vector propagation rate. The Navigation Control subfunction is scheduled by the Onorbit/Rendezvous Navigation Sequencer principal function at the proper rate for the active navigation phase and operational sequence.

All external flags input to NAV are snapped at the same time and stored into locations for use by NAV. The Navigation Data Snap subfunction copies frequently changing measurement data buffers into static memory locations local to the navigation processing. During the rendezvous navigation phase, the IMU, the rendezvous radar, the star tracker, and the Crew Optical Alinement Sight (COAS) sensors are available to the navigation. During non-rendezvous, only IMU data is available.

The State and Covariance Matrix Updates subfunction implements ground updates to the Orbiter or target state vector via uplink and performs state vector transfers and covariance matrix reinitialization when requested by the crew on the REL NAV display. All of these types of updates require reinitialization of the covariance matrix. For ground updates the prediction task must be invoked to bring the Shuttle or target state vector to current time. Due to the priority of the Precise Predictor principal function in the onboard computer, the prediction can proceed only after navigation has completed a cycle. The prediction can possibly require more than one navigation interval to complete the prediction. The update to the navigation state vectors will not take place until the prediction has completed.

The Position and Velocity State 'ropagation subfunction must maintain a current estimate of the Orbiter position and velocity during rendezvous and non-rendezvous navigation phases and a current estimate of the target position and velocity during the rendezvous navigation phase only. The subfunction will provide a unit vector from the center of the Earth in the direction of the Sun for use by the Universal Pointing Processor principal function at a frequency of once every navigation cycle. When the powered flight navigation phase is active, IMU sensed delta velocities and a model of the Earth's gravitational acceleration are used to propagate the Orbiter position and velocity to current time. When in the coasting flight navigation phase, models of the Earth's gravitational acceleration acceleration, aerodynamic drag, and venting or uncoupled RCS thrusting acceleration are used to propagate the Orbiter. The target propagation uses models of the Earth's gravitational acceleration and aerodynamic drag during either powered flight or coasting flight.

The task of propagating the statistics of the state vector to current time as well as the propagation of the unmodeled sceleration bias states is performed by the Unmodeled Acceleration State and Covariance Matrix Propagation subfunction. The unmodeled acceleration bias state elements are propagated exponentially (the sensor bias state elements are assumed constant over the

propagation interval) so this subfunction will determine the appropriate time constant and variances used for propagation dependent on whether or not IMU sensed delta velocities were used to propagate the position and velocity vectors for the Orbiter.

The unmodeled acceleration bias states actually represent different quantities depending on whether the IMU sensed delta velocities were used to propagate the state or not. In the former case the unmodeled acceleration biases represent the errors in the IMU accelerometers. In the latter case they represent unmodeled body forces such as drag, venting and RCS uncoupled thrusting. In each case, a different time constant and variance are used for the exponentially correlated random variable statistics.

A 13 by 13 covariance matrix represents the statistics of the 13 element state vector. The position and velocity statistics are propagated using an analytic partial called the mean conic partial transition matrix. The unmodeled acceleration bias statistics and the sensor bias statistics are propagated as exponentially correlated random variables. A model of platform drift supplies state noise whenever the IMU sensed delta velocities are used to propagate the state.

The Sensor Measurement Selection subfunction must select a measurement set for processing by the Kalman filter. The following measurements are available:

- Rendezvous radar range and range rate

The second secon

The second of th

- Rendezvous radar shaft and trunnion angles
- Startracker horizontal and vertical angles
- Crew Optical Alinement Sight (COAS) horizontal and vertical angles

Up to four measurements can be chosen for processing - rendezvous radar range and range rate along with one pair of angles selected by the crew on the REL_NAV display. When a measurement type is selected for the first time, statistical parameters associated with the newly selected measurement type must be initialized for use in the Kalman estimation of systematic sensor biases. This task is performed by the Navigation Sensor Initialization subfunction.

The State and Covariance Measurement Incorporation subfunction performs the final step in the Kalman processing, namely, the incorporation of the selected measurements. The covariance matrix is updated. The position and velocity vectors of the vehicle state selected for Kalman processing (determined by SHUT-TLE_FILTER_FLAG) are updated. The sensor biases are updated. A flag from the ILOAD (UNMOD_ACC_UPDATE_FLAG) determines whether the unmodeled acceleration states are to be updated or to be left zero, leaving only their statistical influence on the Kalman processing. Measurements can be incorporated into the state vector only when all the following criteria are satisfied.

- Rendezvous navigation phase is active (REND_NAV_FLAG = ON)
- The measurement type is selected

- The measurement data is valid
- The IMU sensed acceleration is below a premission specified threshold (MEAS THRESHOLD)
- The covariance matrix has been propagated on the current navigation cycle
- The estimated distance between the Orbiter and the target is greater than a premission specified distance
- The measurement is not in the INHIBIT mode as selected by the crew on the REL NAV display
- The measurement does not fail to pass the edit criteria which rejects measurements which are not commensurate with the estimated measurement
- When in Major Mode 202 the MEAS_ENABLE switch is set to ON ty the crew

After Kalman processing has been completed, the Measurement Processing Statistics subfunction shall compute parameters to be displayed on the REL NAV display. The parameters calculated are the measurement residuals and residual ratios, the mark histories, and the edit status.

The only direct user of the onorbit/rendezvous navigated state vector is the User Parameter Processing principal function. This principal function integrates the state vector using a high rate, less precise propagator (average-g) then that used by the navigation. The user parameter processing state vector is updated with the navigation state vector at the navigation rate. Other principal functions which require state vectors get them from the User Parameter Processing principal function at the higher rate.

In table 4.2 (the Onorbit/Rendezvous Navigation Principal Function Inputs/ Outputs), there are some parameters which are being output to telemetry (TLM) which were not set by NAV. For these situations, the local source is listed as "NONE".

TABLE 4.2.- ONCRBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT

	1			
Variable Name	! Principal Function Source 	! Local !Destination	! !Principal Function! ! Destination !	l local l Source
ALT_SS			! !TLM	ACCEL_ONORBIT
ANGLES_AIF		INAV IONORBIT I RENDEZVOUS		
ANGLES_AIF_ DISPLAY				REND_SENSOR_ ! ISELECT !
ANGLES_ENABLE_ DISPLAY			!REL_NAV display, !TLM	REND_NAV SENSOR_INIT
ATMP				ONORBIT_REND_! AUTO_INFLIGHT! _UPDATE!
AXN		Sensor Data Snap	1	
COAS_DATA_GOOD				INAV_ONORBIT_ ! RENDEZVOUS !
COAS_ENABLE			ITLM	inone !
COAS_HORIZ		 Sensor Data Snap	! !	! !
COAS_ID		!		NAV_ONORBIT_ !
COAS_MARK_NUM		!	ITLM !	NAV_ONORBIT_ !
COAS_VERT		 Sensor Data Snap		
CONT_ACC			!	ONORBIT_REND_! R_V_STATE! PROP!
INIT	 Onorbit/Rendezvous Navigation Sequencer	U_A_BIAS_ IAND_COVINIT		

TABLE 4.2.- CNORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Continued)

Variable !	! Principal Function		! 	
Name 1	Source	Destination	Destination	Source
COV_COR_UPDATE	 Uplink Processor 	 COVINIT_UVW		
• • • •		REND_BIAS_ IAND_COV_ IPROP	! !	! !
LAST		REND_BIAS_ AND_COV_ PROP	! ! !	: ! !
!	10norbit/Rendezvous Navigation Sequencer, Onorbit Guidance	ONORBIT_		: ! ! !
DATA_GOOD		! !Sensor Data !Snap	! !	1 1 1 1
DID_COVAR_ REINIT			ITLM	IREL_NAV_ IDISPLAY_ !UPDATES
DID_ORB_TO_TGT			ITLM	PREL_NAV_ IDISPLAY_ IUPDATES
DID_TGT_TO_ORB	! ! !		ITLM	! !REL_NAV_ !DISPLAY_ !UPDATES
DISP_DELQ	I ! !	 	ITLM I	I IMEAS_ IPROCESSING_ ISTATISTICS_ IREND
DISP_EDIT		•	! !REL_NAV display, !GN&C Communication !Interface, TLM	i imeas_

TABLE 4.2.- ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Continued)

	<u> </u>	1		!
Variable Name	Principal Function Source	 Local Destination 	 Principal Function Destination 	l Local l Source
DISP_SIG			ITLM	IMEAS IPROCESSING ISTATISTICS IREND
DMP :			 Onorbit Predictor 	!ONORBIT_REND_!!AUTO_INFLIGHT
DO_COAS_ ANGLES_NAV				REND_SENSUR_ ISELECT
_nāv_lašt !	Onorbit/Rendezvous Navigation Sequencer	NEND NAV SENSOR_INIT	-	! !
DO_COVAR_ REINIT		INAV_ IONORBIT_ IRENDEZVOUS	·	: ! !
DO_FLTR_SLOW_ RATE		INAV_ IONORBIT IRENDEZVOUS		• ! !
DOING_FLTR_ SLOW_RATE	! !			!NAV_ONORBIT_!RENDEZVOUS
NAV – –	!Sequencer ! ! ! ! !	PREND R V STATE PROP, STATE PR	! ! !	
DOING_MEAS_ ENABLE				! ! ! rend_sensor_ !select !
	! !	! !	! !	! !

TABLE 4.2.- ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Continued)

				
Variable Name	! !Principal Function ! Source !	! ! Local !Destination !	! !Principal Function! ! Destination!	Local Source
DO_ORB_TO_TGT		! !nav_ !onorbit_ !rendezvous	1 1 1 1	
DO_OV_UPLINK	l	! !NAV_ !ONORBIT_ !RENDEZVOUS !		ONORBIT_REND AUTO_INFLIGHT LUPDATE
IDO_RR_ANGLES_ I		! ! !		! ! REND_SENSOR ! !SELECT
INAV_LÄST !	Onorbit/Rendezvous Navigation Sequencer	REND_NAV SENSOR_INIT	! !	
LLAST :	!Onorbit/Rendezvous !Navigation !Sequencer	!rend_nav_ !sensor_init !	! !	
IDO_ST_ANGLES_ NAV		! ! !		REND_SENSOR_
inav_lāst —	Onorbit/Rendezvous Navigation Sequencer	REND_NAV_ ISENSOR_INIT	! !	
DO_TV_UPLINK	1	INAV IONORBIT IRENDEZVOUS I		ONORBIT_REND AUTO_INFLIGHT UPDATE
IDO_TGT_TO_ORB]	! !nav_ !onorbit_ !rendezvous	! ! !	
D_SS		!	ITLM	ACCEL_ONORBIT
IDT_COV		; ! !		REND_BIAS_AND
	! !	! !	1 1	!

TABLE 4.2.- ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Continued)

l	Î	!	1	!
! Variable ! Name !	! !Principal Function ! Source !	! ! Local !Destination !	! !Principal Function ! Destination !	! !ocal ! Source !
I IDV_COV	1Sequencer 1	INAV_ONORBIT I_RENDEZVOUS, IREND_BIAS_ IAND_COV IPROP, REND_INAV_INTERP	t t	! INAV_ONORBIT_! RENDEZVOUS, !COV_LAST_! RESET
IDT_FILT ! !	! ! !	!		ONORBIT_REND R V STATE PROP
IDV_FILT	1 1 1	!		ONORBIT_REND_ IR_V_STATE_ IPROP
IE I I I		REND_BIAS_ IAND_COV_ IP ROP	! ! ! ! !	REND_BIAS IAND_COV_PROP, IREND_NAV_ IFILTER, ICOVINIT_UVW, IU_A_BIAS_AND_ ICOVINIT, ISETUP, IREND_COV_INIT
FILT_UPDATE	! !		!User Parameter !Processing	SHUTTLE_RESET
IGMDP	• • • • • • • • • • • • • • • • • • •			ONORBIT REND AUTO_INFLIGHT _UPDATE
IGMOP	! !			ONORBIT_REND_ AUTO_INFLIGHT _UPDATE
G_NEW	1		!	ONORBIT_REND_ R_V_STATE_ PROP
<u>G</u> _TV	! ! !		!	IONORBIT_REND_ IR_V_STATE_ IPROP

TABLE 4.2.- ONORBIT/RENDEZVOU. NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Continued)

The state of the s		البندية كالكوارية والماكات والمحارج والمتاريخ	The same of the sa	
! ! Variable ! Name !	i ! !Principal Function ! Source !	! ! Local !Destination !	! !Principal Function ! Destination !	i i.ccal i Source !
		I IREND_BIAS_ IAND_COV_ IPROP	! ! ! !	! ! ! ! ! !
! !H_NAV !		! !Sensor Data !Snap	1 ! !	! ! ! !
II_CYCLE	!Onorbit/Rendezvous !Navigation !Sequencer	INAV_ONORBIT !_RENDEZVOUS !	1	NAV_ONORBIT_ RENDEZVOUS, REND_COV_INIT!
IIDRAG !	: ! !			ONORBIT REND ! IR V STATE ! IP ROP
!IMU_NAV_ACCEL_ !THRESH !	1	ONORBIT_ IREND_R_V_ ISTATE_PROP	! !TLM !	NONE !
! !IVENT !	I I I	: ! !		IONORBIT_REND ! IR_V_STATE ! IP ROP !
! !IGD !	I I I			ONORBIT_REND ! IR_V_STATE ! IP ROP !
! !IGO !		! ! !		ONORBIT_REND_! IR_V_STATE! IP_ROP
!KFACTOR		!ACCEL_ !ONORBIT	: ! !	: ! ! !
1	!Onorbit/Rendezvous	INAV IONORBIT IRENDEZVOUS	! ! !	! ! ! !
I IM_M50_T0_B0DY_ !COAS I	! ! !			INAV_ONORBIT_ : RENDEZVOUS !

TABLE 4.2.- ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Continued)

				 _
! Variable ! Name !	 Principal Function Source 	Local Destination	Principal Function Destination	Local Source
! !M_M50_TO_ST !				NAV ONORBIT RENDEZVOUS
! !MM_202 !		NAV_ONORBITI PENDEZVOUS		
1 !	!Sequencer	MEAS IPROCESSING ISTATISTICS IREND	display	IMEAS IPROCESSING ISTATISTICS IREND, DISPLAY I COUNT INIT, ISETUP
! NAV_MEAS				NAV_ONORBIT_ RENDEZVOUS
!NAV_ANGLES_AIF	!			NAV_ONORBIT_ RENDEZVOUS
NAV_CURR_ORB_	1			NAV_ONORBIT_ IRENDEZVOUS
!NAV_DO_COVAR_!REINIT				!NAV_ONORBIT_! !RENDEZVOUS
INAV_DO_FLTR_ ISLOW_RATE	!		! !TLM !	NAV_ONORBIT_ RENDEZVOUS
INAV_DO_ORB_TO_	!			NAV_ONORBIT_ RENDEZVOUS
INAV_DO_OV_				NAV_ONORBIT_
!NAV_DO_TGT_TO_!ORB	!	; ! !		NAV_ONORPIT_
INAV_DO_TV_		1		NAV_ONORBIT_
!NAV_MEAS_ !ENABLE !		! !		!NAV_ONORBIT_! !RENDEZVOUS

TABLE 4.2.- ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Continued)

 Variable Name 	 Principal Function Source 	! ! Local !Destination!	! !Principal Function!! Destination!!	Local ! Source !
I INAV_MM_202		! !		INAV_ONORBIT_ ! IRENDEZVOUS !
! !NAV_PWRD_FLT_ !NAV	1	: ! !	ITLM I	NAV_ONORBIT_! IRENDEZVOUS_!
! !NAV_RANGE_AIF !		! !		INAV_ONORBIT_ ! !RENDEZVOUS !
! !NAV_RDOT_AIF' !	!	! ! !		INAV_ONORBIT_ I IRENDEZVOUS I
! !NAV_RR_ANGLES_! !ENABLE	! !			INAV_ONORBIT_ ! IRENDEZVOUS !
! !NAV_ST_ENABLE !		! ! !		INAV_ONORBIT_ ! !RENDEZVOUS !
! !NAV_SIGHT !		! !Sensor Data !Snap		1
INAV_TARGET		! !Sensor Data !Snap	: ! !	: !
! !	—	IREND_BIAS_ IAND_COV_ IPROP		!
I !	!Sequencer	! !MEAS_ !PROCESSING_ !STATISTICS_ !REND !	!display !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	IMEAS_ ! IPROCESSING_ ! ISTATISTICS_ ! IREND, ! IDISPLAY_ ! ICOUNT_INIT, ! ISETUP !
OP_CODE	•	: ! !	ITLM	Inone I
OV_PREDICT_ FAIL 	! !	! !	!	ONORBIT_REND_! AUTO_INFLIGHT! LUPDATE !
	! !	l I	!	1

TABLE 4.2. - ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Continued)

!	1	<u> </u>	1	1
! ! Variable ! Name !	! !Principal Function ! Source !	l Local Destination	 Principal Function Destination 	l Local I Source I
! !PRED_ORB_AREA !	1 1 1 1			! !ONORBIT_REND_! !AUTO_INFLIGHT! !_UPDATE_!
! !PRED_ORB_CD !	! ! !			IAUTO_INFLIGHT I
PRED_ORB_MASS	! ! ! !		!Onorbit Predictor,	UPDATE ONORBIT_REND_! AUTO_INFLIGHT! UPDATE
IPRED_STEP ! !	• ! !			ONORBIT_REND_! !AUTO_INFLIGHT! _UPDATE!
! -	!Sequencer	!REND_AUTO_	Sequencer, TLM	ONORBIT_REND_! IAUTO_INFLIGHT! I_UPDATE, ! ISTATE_VECTOR_! IPREDICT_TASK !
1 — — 1 1	10norbit/Rendezvous	IONORBIT_ IRENDEZVOUS	ITLM I	Inone ! ! ! ! ! !
		IMU Data ISnap		
Q_COAS_HORIZ	!	! !		NAV_ONORBIT_ ! RENDEZVOUS !
Q_COAS_VERT		!		NAV_ONORBIT_ !
Q_M50BODY_IMU	!			NAV_ONORBIT_ !
		Sensor Data Snap	TLM	NAV ONORBIT !

TABLE 4.2.- ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Continued)

Variable Name	Principal Function Source	! ! Local !Destination !	! !Principal Function ! Destination !	Local Source
Q_ST_HORIZ		! !		INAV_ONORBIT_ RENDEZVOUS
Q_ST_VERT	·	! !		INAV_ONORBIT_ IRENDEZVOUS
Q_RR_RNG		! ! !		! !nav_onorbit_ !rendezvous
Q_RR_RNG_DOT		: : !		: !NAV_ONORBIT_ !RENDEZVOUS
Q_RR_SHFT		! !	!TLM	NAV ONORBIT
Q_RR_TRUN	!	! !		NAV_ONORBIT_ RENDEZVOUS
RANGE_AIF		!NAV_ONORBIT_!RENDEZVOUS	: ! !	! !
RANGE_AIF_ DISPLAY				!REND_SENSOR_ !SELECT
RDOT_AIF		!NAV_ONORBIT_!RENDEZVOUS	! !	- ! !
RDOT_AIF_ DISPLAY	! !	! !		!REND_SENSOR_ !SELECT
RDOT_DATA_GOOD	! !	! !	!TLM !	!NAV_ONORBIT_!RENDEZVOUS
 !	!Sequencer ! ! ! !	!REND_R_V_	!Sequencer!!	!ONORBIT_REND_ !R_V_STATE_ !PROP,REND_ !NAV_FILTER ! !
R_FILT_TLM	: ! !	!	ITLM	!NAV_ONORBIT_!RENDEZVOUS

TABLE 4.2.- ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Continued)

!	!	ì		
! Variable ! Name !	! !Principal Function ! Source !	! ! Local !Destination !	 Principal Function Destination	Local Source
! !R_GND ! !	! !	IONORBIT IREND_AUTO_ IINFLIGHT_ IUPDATK		
!	Sequencer 	PREND_BIAS_ IAND_COV_ IPROP, PREND_NAV_ INTERP		
RNG_DATA_GOOD		: ! !		NAV_ONORBIT_ RENDEZVOUS
R PRED FINAL ! ! ! !	! ! !	ONORBIT_ IREND_AUTO_ INFLIGHT_ IUPDATE,STATE VECTOR_ IPREDICT_TASK	I I I I	none
R PRED INIT			! !	ONORBIT REND LAUTO_INFLIGHT LUPDATE,STATE VECTOR PREDICT_TASK
		! !Sensor Data !Snap		
RR_ANGLE_DATA_	!	: ! !		NAV_ONORBIT_ RENDEZVOUS
! !RR_ANGLE_MARK_ !NUM	: ! !	; ! !	! !TLM !	NAV_ONORBIT_ RENDEZVOUS
IRR_ANGLES_ IENABLE		!NAV_ONORBIT_!RENDEZVOUS	; ! !	
! !RRDOT_MARK_NUM! !	: ! !	: ! !	I ITLM I I	NAV_ONORBIT_ ! !RENDEZVOUS _ !

TABLE 4.2.- CNORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Continued)

1	1	1	•	,
l ! Variable ! Name !	! !Principal Function ! Source !	! Local !Destination	! !Principal Function ! Destination !	Local I Source I
! !R _reset	! !		! !User Parameter !Processing	!SHUTTLE_RESET!
! !RR_PITCHO!		! !Sensor Data !Snap	! ! !	
! !RR_RANGEO !		! !Sensor Data !Snen	! !	! !
I IRR_RNG_DG !		! !Sensor Data !Snap	1 1 1	
! !RR_RNGR_DG !	-	! !Sensor Data !Snap	! ! !	
! !RR_RNGRO !		! !Sensor Data !Snap	! !	
! !RR_ROLLO !		! !Sensor Data !Snap	! ! !	
irr_self_test		!Sensor Data !Snap	: ! !	
!RR_TIM		!Sensor Data !Snap	: ! !	
!R _TV ! ! ! ! ! ! ! ! ! ! ! !	!Sequencer ! ! ! ! ! ! ! !! !! !! !! !! !! !! !!	!REND R V !STATE PROP, !REL NAV_ !DISPLAY_ !UPDATES, !COV LAST !RESET, REND_ !COV_INIT, !NAV_ONORBIT_ !RENDEZVOUS !	!Sequencer ! ! ! !	ONORBIT REND ! IR_V_STATE ! IPROP,REND ! INAV_FILTER ! ! !
!	1	!REND_AUTO_ !INFLIGHT_ !UPDATE	! !	! ! !1

TABLE 4.2.- ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Continued)

!				
! Variable ! Name !	! !Principal Function ! Source !	! Local !Destination!	 Principal Function Destination: 	Local Source
1 .	!Sequencer !	REND_BIAS_ IAND_COV_ IPROP, IREND_NAV_ IINTERP		
!R_TV_RESET	! ! !		User Parameter Processing	itarget_reset
IR_TV_TLM				NAV_ONORBIT_ I IRENDEZVOUS
SENSON_BIAS_ TLM	! !			NAV_ONORBIT_ RENDEZVOUS
SENSOR_EDIT			! ! !	REND_SENSOR_ ISELECT, IRRDOT_NAV, IRR_ANGLE_NAV, I
! !SELF_TEST_FLAG! !	! !	! !		NAV_ONORBIT_ RENDEZVOUS
! 1	!Sequencer	IMEAS_ IPROCESSING_ ISTATISTICS_ IREND		ISETUP, IMEAS_ IPROCESSING_ ISTATISTICS_ IREND, IDISPLAY_COUNTI
! - !	!Sequencer	IMEAS IPROCESSING_ ISTATISTICS_ IREND		SETUP, IMEAS_ IPROCESSING_ ISTATISTICS_ IREND, IDISPLAY_COUNTI

TABLE 4.2.- ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Continued)

Variable Name	Principal Function Source	Local Destination	 Principal Function Destination	Local ! Source !
ISHUTTLE_FILTER			ITLM	Inone !
SIG_UPDATE	Uplink Processor	COVINIT_UVW		
t :	! Sequencer ! !	MEAN_CONIC_ IPARTIAL_ ITRANSITION_ IMATRIX_6X6, IONORBIT_SV_ IINTERP	! !	
ST_DATA_GOOD	: !	! !		NAV_ONORBIT_ !
ST_ENABLE	! !REL_NAV display !	INAV_ONORBIT PENDEZVOUS		
ST_MARK_NUM	!	! !		NAV_ONORBIT_ I
ICOV		REND_BIAS_ !AND_COV_ !P ROP		
T_COAS	! !	!		NAV_ONORBIT_ !
		REND_BIAS_ IAND_COV_ IPROP		
T_CURRENT_FILT	! ! !	! ! !	I ITLM !	NAV ONORBIT I
! ! TFOFF !		! !ACCEL_ !ONORBIT	! !TLM !	none
I ITFON I		! !ACCEL !ONORBIT !	I ITLM I	i Inone I
l	!	!	<u> </u>	!!

TABLE 4.2.- ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Continued)

				
Variable Name	Principal Function Source	Local Destination	Principal Function Destination	l Local Source
T_GND	1 1	! !ONORBIT_ !REND_AUTO_ !INFLIGHT_ !UPDATE		
TIME		!Sensor Data !Snap		! !
T_IMUS_GA		!IMU Data !Snap	1	! !
T_LAST_FILT	!Sequencer		!Sequencer !	IONORBIT_REND_ IR_V_STATE_ IPROP I
T_LAST_FILT_ TLM	: !	: ! !	! !TLM !	INAV_ONORBIT_ IRENDEZVOUS
T_M50_BODY		! !Sensor Data !Snap	! ! !	! !
T_M50_ST		!Sensor Data !Snap	: ! !	: ! !
T_ORB_STATE_ UPDATE	1 1 1	: ! !	!	! !ONORBIT_R END !AUTO_INFLIGHT !_UPDATE
TOT_ACC	1 1 1	! !		! !REND_BIAS_AND !_COV_PROP
TOT_ACC_LAST		! !REND_BIAS_ : !AND_COV_ !P ROP		
T_PRED_FINAL	1 1 1 1		! !Onorbit Predictor, !TLM !	STATE_VECTOR_ IPREDICT_TASK I
	1	!	<u> </u>	t

TABLE 4.2.- ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Continued)

! ! Variable ! Nume	 	Local Destination	 Principal Function Destination	Local Source
! !T_PRED_INIT ! !				IONORBIT_REND_IONORBIT_REND_IONORBIT_REND_IONORBITION IOUPDATE,STATE!IOUPDATE.IOUPDATE,STATE!IOUPDATE.IOUPDA
! !T_REND_RADAR !	! !] 		NAV_ONORBIT_ RENDEZVOUS
1	Sequencer	IVECTOR	User Parameter Processing, Onorbit/Rendezvous Navigation	Shuttle_reset
TRG_TRK_MODE		! !		NAV_ONORBIT_ IRENDEZVOUS
IT_STAR_TRACKER	! !			NAV_ONORBIT_ RENDEZVOUS
! !T_TARLOS !		! Sensor Data Snap	!	; ! !
1	!Onorbit/Rendezvous !Navigation !Sequencer !	INIT TINI	Rendezvous Naviga- !tion Sequencer !	IONORBIT_REND_ IR_V_STATE_ IPROP, IONORBIT_REND_! IAUTO_INFLIGHT! I_UPDATE (TLM ! Ionly)
! !T_TV_GND !	! !	IONORBIT IREND_AUTO_ INFLIGHT_ IUPDATE		: ! ! !
IT_TV_STATE_ !UPDATE !	; ! !	; ! !	f	! !ONORBIT_REND_! !AUTO_INFLIGHT! !_UPDATE !

TABLE 4.2.- ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Continued)

				<u> </u>
Variable Name	! !Principal Function! ! Source !	l Local Destination	! !Principal Function ! Destination !	! ! Local ! Source !
TV_PREDICT_ FAIL	! !		1	! !On orbit_rend !auto_inflight !_update
	!Sequencer ! !	ACCEL_ IONORBIT, IREND_BIAS_ IAND_COV_ IPROP, MAV_ IONORBIT_ IRENDEZVOUS	: ! ! ! !	
UNMOD_ACC_ BIAS_TLM				NAV_ONORBIT_ RENDEZVOUS
UR_SUN				!ONORBIT_REND !R_V_STATE_ !PROP
USE_IMU_DATA			İ	ONORBIT_REND IR_V_STATE_ IPRCP
		REND_BIAS_ IAND_COV_ IP ROP	: ! !	: ! !
V _CURRENT_ FILT	! !			! !NAV_ONORBIT_ !RENDEZVOUS
vent_ss	! !	!	ITLM	ACCEL_ONORBI
- -	!Sequencer ! !		!Sequencer	! !ONORBIT_REND_ !R_V_STATE_ !PROP,REND_NAV !_FILTER !
V _FILT_TLM	• •	!		!nav_onorbit_!rendezvous

TABLE 4.2.- ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Continued)

l	1	!	1	· · · · · · · · · · · · · · · · · · ·
! ! Variable ! Name !	! !Principal Function ! Source !	! ! Local !Destination!	! !Principal Function! ! Destination!!	Local ! Source !
! !VFORCE		IACCEL_ IONORBIT	I ITLM I	inone
! _ GND ! !	! !	ONORBIT_ IREND_AUTO_ INFLIGHT_ IUPDATE		
	•	!IMU Data !Snap		
Y _ IMU_RESET	: ! !		!User Parameter !Processing, TLM	Shuttle_reset
1 -	!Sequencer	PREND_BIAS_PROP, PROP, PREND_NAV_PINTERP	! ! !	
!		!ONORBIT !REND_R_V_ !STATE_PROP	! !	
! !VMP ! !	! ! !	: ! !		ONORBIT_REND_! AUTO_INFLIGHT! _UPDATE
! !V_NAV ! !		! !Sensor Data !Snap !	! ! !	
I'Y PRED_FINAL I I I I I I I I I I	1 ? 1 1 1	!ONORBIT !REND_AUTO_ !INFLIGHT_ !UPDATE, !STATE_ !VECTOR_ !PREDICT_ !TASK	!TLM ! ! ! ! !	none
! !	! !	! !	! !	

TABLE 4.2.- ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION INPUT/OUTPUT (Concluded)

Variable Name		Local Destination	Principal Function Destination	Local Source
V PRED INIT			!Predictor ! !	I IONORBIT_REND I AUTO_INFLIGHT I_UPDATE,STATE I_VECTOR_ IPREDICT_TASK
<u>v</u> _reset	1		! !User Parameter !Processing	i Shuttle_reset
<u>v</u> _tv_gnd	!Sequencer ! ! ! ! ! ! !! !! !! !! !! !! !! !! !!	!REND R V !STATE PROP, !REL NAV_ !DISPLAY_ !UPDATES, !COV_LAST_ !RESET, REND_ !COV_INIT, !NAV_ONORBIT ! RENDEZVOUS !	Sequencer ! ! ! ! !	CONORBIT_REND_ IR_V_STATE_ IPROP, REND_ INAV_FILTER I
	1	!REND_AUTO_ !INFLIGHT_ !UPDATE	! ! !	1 1 1
<u>v</u> _tv_last	!Sequencer	PREND_BIAS_ PAND_COV_ PROP, REND_NAV_ INTERP	; 1 1 1 1	! ! !
V TV_RESET	1		! !User Parameter !Processing	!TARGET_RESET!
V _TV_TLM	t † †	1 	! TLM 	i inav_onorbit_ irendezvous

4.2.1 Navigation Control (NAV_ONORBIT_RENDEZVOUS)

The navigation control subfunction is responsible for providing the executive logic for the proper execution of the Onorbit/Rendezvous navigation principal function. This subfunction shall perform the following tasks.

- Store the Orbiter and target state vectors from the previous navigation cycle into protected locations for downlist
- Snap all external flags input to NAV, the IMU data, and rendezvous sensor data
- Provide for possible automatic inflight updates of either the Orbiter or target position and velocity vectors
- When in rendezvous phase, the navigation control subfunction will provide the capability to respond to crew requests, via the REL_NAV display, to reinitialize the covariance matrix or to do state vector transfers between the Orbiter position and velocity vectors and the target position and velocity vectors
- Provide for the propagation of the position and velocity vectors for the Orbiter and, when in rendezvous phase, propagate the target position and velocity vectors also
- Wher in rendezvous phase, this subfunction shall perform the scheduling of the asynchronous covariance propagation and will invoke the Rendezvous Bias and Covariance propagation subfunction when scheduled
- When in rendezvous phase, the navigation control subfunction will provide for the proper processing of the rendezvous sensor data. If the IMU sensed acceleration magnitude falls below a design dependent threshold, then the sensor data will be processed
- Finally, the navigation control subfunction shall invoke the Shuttle reset subfunction to store the updated Shuttle position and velocity vectors for the User Parameter Processing principal function. When in rendezvous phase, the target reset subfunction is called to store the target position and velocity vectors.
- A. <u>Detailed Requirements</u>. This subfunction shall perform the following steps in the order indicated.
 - 1. Execute the SNAP_INPUTS code which consists of the following tasks:
 - a. Store the Orbiter and target state vectors and time tag from the previous navigation cycle into protected locations for downlist.

T_LAST_FILT_TLM = T_LAST_FILT R_FILT_TLM = R_FILT V_FILT_TLM = V_FILT R_TV_TLM = R_TV V TV TLM = V TV SENSOR BIAS TLM = SENSOR BIAS UNMOD ACC BIAS TLM = UNMOD ACC BIAS

b. Store the external flags input to NAV and the Orbiter mass into protected locations for NAV.

NAV_ANGLES_AIF = ANGLES_AIF

NAV_RANGE_AIF = RANGE_AIF

NAV_RDOT_AIF = RDOT_AIF

NAV_CURR_ORB_MASS = CURR_ORB_MASS

NAV_DO_COVAR_REINIT = DO_COVAR_REINIT

NAV_DO_ORB_TO_TGT = DO_ORB_TO_TGT

NAV_DO_TGT_TO_ORB = DO_TGT_TO_ORB

NAV_DO_OV_UPLINK = DO_OV_UPLINK

NAV_DO_TV_UPLINK = DO_TV_UPLINK

NAV_DO_FLTR_SLOW_RATE = DO_FLTR_SLOW_RATE

NAV_MEAS_ENABLE = MEAS_ENABLE

NAV_MMM_2O2 = MM_2O2

NAV_PWRD_FLT_NAV = PWRD_FLT_NAV

NAV_RR_ANGLES_ENABLE = RR_ANGLES_ENABLE

NAV_ST_ENABLE = ST_ENABLE

- c. Snap the measurement data input to NAV, which consist of the following steps:
 - (1) Snap the IMU accumulated velocity count, time tag, and mean of 50 body quaterni n as described in section 4.2.2.1.

SNAP(V _CURRENT_FILT, T_CURRENT_FILT, Q_M50BODY_IMU)

(2) Snap the sensor measurement data as described in section 4.2.2.2. For the rendezvous radar this includes the shaft, trunnion, range and range rate measurements; the range, range rate and angle data validity flags; the mean of 50 to body additude quaternion at the time of the snap; the time tag for the measurements; and finally a self-test indicator.

SNAP REND RADAR (Q RR SHFT, Q RR TRUN, Q RR RNG, Q RR RNG DOT, RNG DATA GOOD, RDOT DATA GOOD, RT ANGLE DATA GOOD, Q M50BODY RR, T REND RADAR, SELF TEST FLAG)

For startracker, snap the horizontal and vertical measurements; angle data validity flag; the mean of 50 to startracker transformation matrix; the time tag for the startracker measurements, and the target tracking mode indicator.

SNAP STAR TRACKER (Q ST HORIZ, Q ST VERT, ST DATA GOOD, M M50 TO ST, T STAR TRACKER, TRG TRK MODE)

For COAS, snap the horizontal and vertical angle measurements, the data validity indicator, mean of 50 to body transformation matrix at the time of COAS data snap, the COAS identification, and the COAS time tag.

SNAP COAS (Q_COAS_HORIZ, Q_COAS_VERT, COAS_DATA_GOOD, M_M50_TO_BODY_COAS, COAS_ID, T_COAS)

2. Convert the mean of 50 to body quaternion from the IMU into a mean of 50 to body transformation matrix by calling the quaternion to matrix function described in section 4.10.8.

M_BODYM50 = (QUAT_TO_MAT(Q_M50BODY_IMU)) T

- 3. Test the value of the DOING_REND_NAV flag to determine if rendezvous phase is active.
 - a. If the rendezvous phase is active (DOING_REND_NAV = ON), perform the following steps:
 - (1) Subtract any known time bias from the measurement time for each sensor.

T REND RADAR = T REND RADAR - T BIAS REND RADAR
T STAR TRACKER = T STAR TRACKER-T BIAS ST
T COAS = T COAS-T BIAS COAS

(2) Call the onorbit rendezvous auto inflight updates subfunction to perform any required ground updates to the Shuttle or target state vectors as described in section 4.2.3.1.

CALL: ONORBIT_REND_AUTO_INFLIGHT_UPDATE

(3) Call the REL_NAV display updates subfunction to perform any required updates to the state vectors or to the covariance matrix as selected by the crew as described in section 4.2.3.2.

CALL: REL_NAV_DISPLAY_UPDATES

(4) Invoke the onorbit rendezvous state propagation function described in section 4.2.4 to propagate the position and velocity vectors to current time.

CALL: ONORBIT_REND_R_V_STATE_PROP

- (5) Test the value of the NAV_DO FLTR SLOW RATE switch.
 - If the switch is on, set

N_CYCLE = N_CYCLE_SLOW

so that the slower of the 2 rates for processing the rendezvous measurements will be used.

- If the switch is off, set

N_CYCLE = N_CYCLE_FAST

so that the faster rate will be used.

(6) Set the positive feedback flag to inform the REL NAV display which measurement processing rate is being used in navigation.

DOING FLTR SLOW RATE = NAV DO FLTR SLOW RATE

(7) Increment the covariance matrix propagation counter.

I_CYCLE = I_CYCLE+1

Then execute the covariance propagation setup code,

EXECUTE: COV_PROP_SETUP CODE,

which consists of the following tasks:

- If IMU sensed delta velocity was used by the state propagation subfunction on the present navigation cycle (USE_IMU DATA = ON) then accumulate the delta velocity into the total delta velocity for the covariance propagation interval and set the covariance powered flight indicator to ON.

DV_COV = DV_COV+DV_FILT

COV PWRD FLT = ON

- If the contact acceleration (CONT_ACC) for the Shuttle is greater than a design dependent threshold for measurement processing (CONT_ACC MEAS_THRESHOLD) then a flag is set to indicate that measurements will not be processed on the current covariance propagation subcycle.

NOISY NAV MEAS = ON

- (8) If the covariance matrix propagation cycle counter is greater than or equal to the covariance propagation subcycle count (I CYCLE N CYCLE) then perform the following tasks:
 - Zero the cycle counter

I CYCLE = 0

 Call the rendezvous bias and covariance matrix propagation subfunction described in section 4.2.5.

CALL: REND_BIAS_AND_COV_PROP

This subfunctions propagates the covariance matrix and propagates the ECRV bias statistics and sets a flag (NAV_MEAS) which determines whether sensor measurements will be incorporated into the state vector on the current covariance propagation cycle.

- (9) If the unmodeled acceleration bias and covariance propagation sub-function has set NAV_MEAS = ON, i.e., NOISY_NAV_MEAS = OFF and we are on a covariance propagation cycle, the measurements shall be processed on this cycle by performing the following tasks.
 - Call the sensor measurement selection subfunction to select a measurement set for processing as described in section 4.2.6.

CALL: REND SENSOR SELECT

- Call the sensor measurement initialization subfunction to initialize filter statistics and sensor bias states for newly selected measurement types as described in section 4.2.7.

CALL: REND NAV SENSOR INIT

- Call the rendezvous radar range and range rate measurement subfunction as described in section 4.2.8.1.

CALL: RRDOT NAV

This subfunction incorporates the rendezvous radar range and range rate measurements using the Kalman filter update equations. Increment the mark counter for downlist.

RRDOT_MARK_NUM = RRDOT_MARK_NUM+1

- If rendezvous radar angles have been selected for processing (DO_RR_ANGLES_NAV = ON) then call the rendezvous radar angles measurement subfunction described in section 4.2.8.2.

CALL: RR_ANGLE_NAV

This subfunction incorporates the rendezvous radar shaft and trunnion measurements using the Kalman update.

Increment the mark counter for this measurement

RR_ANGLE_MARK_NUM = RR_ANGLE_MARK_NUM+1

Otherwise (DO_RR_ANGLES_NAV = OFF), if startracker angles have been selected (DO_ST_ANGLES_NAV = ON) then call the startracker angles measurement subfunction described in section 4.2.8.3.

CALL: STAR TRACKER NAV

This subfunction incorporates the horizontal and vertical startracker measurements by using the Kalman filter update equations.

Increment the mark counter for this measurement

ST_MARK_NUM = ST_MARK_NUM+1

Otherwise (DO_RR_ANGLES_NAV = OFF and DO_ST_ANGLES_NAV = OFF), call the COAS angles measurement subfunction described in section 4.2.8.4.

CALL: COAS_NAV

This subfunction incorporates the horizontal and vertical COAS measurements using the Kalman update equations.

Increment the mark counter for this measurement

COAS_MARK_NUM = COAS_MARK_NUM+1

- Call measurement processing statistics to calculate display parameters as described in section 4.2.9.

CALL: MEAS PROCESSING STATISTICS REND

Set the measurement processing indicator to OFF

NAV MEAS = OFF

(10) If the covariance matrix was propagated on this navigation cycle (I__CYCLE = 0) then call the covariance matrix parameters reset subfunction.

CALL: COV_LAST_RESET

(11) Call the target state vector reset subfunction to reset the user parameter processing state vector as described in section 4.1.2.2.2.

CALL: TARGET_RESET

(12) Call the Orbiter state vector reset subfunction to reset the user parameter processing state vector as described in section 4.1.2.1.

CALL: SHUTTLE_RESET

- b. If the rendezvous phase is not active (DOING_REND_NAV = OFF) then the following steps shall be performed.
 - (1) Repeat step (2) under Item a, i.e., call the onorbit rendezvous auto inflight updates to perform any required ground updates to the Shuttle or target position and velocity vectors.

CALL: ONORBIT_REND_AUTO_INFLIGHT_UPDATE

(2) Invoke the onorbit rendezvous state propagation subfunction (see section 4.2.4) to propagate the Orbiter position and velocity vectors to current time.

CALL: ONORBIT_REND_R_V_STATE_PROP

(3) Repeat step (12) under Item a, i.e., call the Orbiter State Vector Reset subfunction to reset the user parameter processing Orbiter state vector as described in section 4.1.2.1.

CALL: SHUTTLE_RESET

- B. <u>Interface Requirements</u>. The inputs and outputs for this subfunction are listed in table 4.2.1.
- C. <u>Processing Requirements</u>. This subfunction is called by ONORBIT_REND_NAV SEQUENCER (section 4.1.1).
- D. Constraints. None
- E. <u>Supplementary Information</u>. During OPS 8 rendezvous navigation cannot be active, hence it is not necessary to implement the DOING_REND_NAV = ON branch of the logic for the OPS 8 computer load.

A suggested implementation of this subfunction can be found in Appendix B.

NAV_ONORBIT_RENDEZVOUS

SNAP INPUTS CODE

COV_PROP_SETUP CODE

TABLE 4.2.1.- NAV_ONORBIT_RENDEZVOUS INPUT/OUTPUT

! Variable Name	! ! Input Source !	! Output Destination
! !angles_aif		
ICOAS_DATA_GOOD	! !Sensor Data Snap	COAS_NAV,*
!COAS_ID	: Sensor Data Snap	COAS_NAV,*
COAS_MARK_NUM	; * #	! !#
! !CONT_A CC !	! !ONORBIT_REND_R_V_STATE_ !PROP	,
! !COV_PWRD_FLT	! !	REND_BIAS_AND_COV_PROP
I ICURR_ORB_MASS	! !*	
! !DO_COVAR_REINIT	•	
IDO_FLTR_SLOW_RATE	1 1#	
IDO_ORB_TO_TGT	: 	
iDO_OV_UPLINK	! !# ,##	
IDO_TGT_TO_ORB	! !*	
IDO_TV_UPLINK	! !*,**	!
IDOING_FLTR_SLOW_RATE	!	•
!DO_RR_ANGLES_NAV	! !rend_sensor_select	! !
IDO_ST_ANGLES_NAV	! !REND_SENSOR_SELECT	
! !DOING_REND_NAV		; !
! !DV_cov !	! !*,cov_last_reset !	! !REND_BIAS_AND_COV_PROP, !*,REND_NAV_INTERP
	! !ONORBIT_REND_R_V_STATE_ !PROP	; ; !
! !	! !	<u> </u>

^{**}Onorbit/Rendezvous principal function, see section 4.2 ***Initialization parameters, see section 4.7

TABLE 4.2.1.- NAV_ONORBIT_RENDEZVOUS INPUT/OUTPUT (Continued)

Variable Name	! Input Source	! Output Destination
I_CYCLE	! *, REND_COV_INIT	•
M_BODYM50		ACCEL_ONORBIT
MEAS_ENABLE	•	
MEAS_THRESHOLD	**	
M_M50_TO_BODY_COAS	!Sensor Data Snap	+, COAS_NAV
M_M50_TO_ST	!Sensor Data Snap	*,Star_tracker_nav
MM_202		! !
NAV_MEAS	! **, REND_BIAS_AND_COV_PROP	: !
NAV_ANGLES_AIF		, rend_sensor_select
NAV_CURR_ORB_MASS	1	! !*,ACCEL_ONORBIT, !ONORBIT_REND_AUTO_ !INFLIGHT_UPDATE
NAV_DO_COVAR_REINIT	!	! !*,rel_nav_display_update
NAV_DO_FLTR_SLOW_RATE		! ! *
NAV_DO_ORB_TO_TGT		!#,REL_NAV_DISPLAY_UPDATE
NAV_DO_OV_UPLINK		! , ONORBIT_REND_AUTO_ !INFLIGHT_UPDATE
NAV_DO_TGT_TO_ORB		: ! # , rel_nav_display_update
NAV_DO_TV_UPLINK		! !*,ONORBIT_REND_AUTO_ !INFLIGHT_UPDATE
NAV_MM_202	!	! !*,rend_sensor_select
NAV_MEAS_ENABLE	! ! !	! ! * , rend_sensor_select !
	!	! !

 $^{^{*}}$ Onorbit/Rendezvous principal function, see section 4.2 * Initialization parameters, see section 4.7

TABLE 4.2.1.- NAV_ONORBIT_RENDEZVOUS INPUT/OUTPUT (Continued)

Variable Name	! ! Input Source !	! Output Destination
NAV_PWRD_FLT_NAV		! !*,ONORBIT_REND_R_V_ !STATE_PROP
NAV_RR_ANGLES_ENABLE	! !	! ! * , rend_sensor_select
NAV_RANGE_AIP	! !	. Rend_Sensor_select
NAV_RDOT_AIF	! !	. Rend_sensor_select
NAV_ST_ENABLE	; ! •	, rend_sensor_select
in_cycle	: ! # !	: 1 1
N_CYCLE_SLOW	••	
N_CYCLE_FAST	40	! !
NOISY_NAV_MEAS	**	REND_BIAS_AND_COV_PROP
PWRD_FLT_NAV		
Q COAS VERT Q M50BODY IMU Q M50BODY RR Q RR RNG DOT Q RR SHFT Q RR TRUN Q ST HORIZ Q ST VERT T	Sensor Data Snap IMU Data Snap Sensor Data Snap	ICOAS NAV, * ICOAS NAV, * IQUAT TO MAT, * IRR_ANGLE NAV, * IRRDOT NAV, * IRR ANGLE NAV, * IRR_ANGLE NAV, * IRR_ANGLE NAV, * ISTAR_TRACKER_NAV, * ISTAR_TRACKER_NAV, * ISTAR_TRACKER_NAV, *
! !	! !	!

^{*}Onorbit/Rendezvous principal function, see section 4.2

^{**}Initialization parameters, see section 4.7

TABLE 4.2.1.- NAV_ONORBIT_RENDEZVOUS INPUT/OUTPUT (Continued)

Variable Name	I Input Source	! Output Destination
RDOT_AIF	!•	1
R_FILT_TLM		10
R_TV_TLM		•
RANGE_AIF	ie	1
RDOT DATA GOOD RNG DATA GOOD RR AN "LE DATA GOOD RR ANGLE MARK NUM RR ANGLES ENABLE RRDOT MARK NUM	!Sensor Data Snap !Sensor Data Snap !Sensor Data Snap !**	!RRDOT_NAV,* !RRDOT_NAV,* !RR_ANGLE_NAV,* !*
SELF_TEST_FLAG	! !Sensor Data Snap !	! !RRDOT_NAV, !RR_ANGLE_NAV,"
SENSOR_BIAS	SETUP, REND_NAV_FILTER, **	1
SENSOR_BIAS_TLM	!	•
ST_DATA_GOOD ST_ENABLE ST_MARK_NUM	Sensor Data Snap	ISTAR_TRACKER_NAV, * !
IT BIAS COAS IT BIAS REND RADAR IT BIAS ST IT COAS	! !## !## !Sensor Data Snap	! ! ! !COAS_NAV,* !*,ONORBIT_REND_R_V_STATE
T_CURRENT_FILT	!IMU Data Snap ! ! ! ! !	! PROP, ONORBIT SV INTERP, !REND BIAS AND COV PROP, !RRDOT NAV, RR ANGLE NAV, !STAR TRACKER NAV, !COAS NAV
T_LAST_FILT	! !ONORBIT_REND_R_V_STATE_ !PROP,*	1 1 1
	<u> </u>	1

^{*}Onorbit/Rendezvous principal function, see section 4.2 **Initialization parameters, see section 4.7 †Value returned from the function

TABLE 4.2.1.- NAV_ONORBIT_RENDEZVOUS INPUT/OUTPUT (Concluded)

Variable Name	! Input Source	! Output Destination !
T_LAST_FILT_TLM		i.
T_REND_RADAR	Sensor Data Snap	IRRDOL NAV, IRR_ANGLE_NAV,*
TRG_TRK_MODE T_STAR_TRACKER	!Sensor Data Snap !Sensor Data Snap	ISTAR_TRACKER_NAV,* ISTAR_TRACKER_NAV,*
UNMOD_ACC_BIAS	! ! # ,U_A_BIAS_AND_COVINIT, ! REND_NAV_FILTER, REND_!BIAS_AND_COV_PROP	
UNMOD_ACC_BIAS_TLM	i !	10
USE_IMU_DATA	IONORBIT_REND_R_V_STATE_ IPROP	! !
V _CURRENT_FILT	IIMU Data Snap	!ONORBIT_REND_R_V_STATE_!PROP,*
V_FILT	! ONORBIT_REND_R_V_STATE_ !PROP,REND_NAV_FILTER	! ! !
V _TV	! **, *, ONORBIT_REND_R_V_ !STATE_PROP, REND_NAV_ !FILTER	! !
V_PILT_TLM		! !*
V_TV_TLM		14
	!	: !
	1	: !
	1	1
	! !	!
	!	• !
	i	i I

^{**}Onorbit/Rendezvous principal function, see section 4.2 ***Initialization parameters, see section 4.7

4.2.2 Navigation Data Snap

The Onorbit/Rendezvous navigation principal function shall accomplish the task of snapping navigation data to obtain Orbiter IMU-sensed accumulated velocities, the current attitude quaternic., and sensor data from the rendezvous radar, the star tracker, and the crew optical alinement sight (COAS). The total accumulated sensed velocity is required to account for nongravitional accelerations during integration of Orbiter equations of motion. The sensor data are collected and stored for use in navigation processing during the rendezvous navigation phase.

4.2.2.1 IMU and Attitude Data Snap

The IMU and attachde data snap task will provide the capability to obtain Orbiter IMU-sensed accomulated velocities (expressed in M50 coordinates) and the current attitude quaternion, along with their associated GMT time tag. These data will be obtained through IMU RM/SOP and stored for use in the navigation and user parameter propagation subfunctions.

A. <u>Detailed Requirements</u>. Data from at least one good IMU are required as indicated in the following example:

where \underline{V} IMU_SNAP and \underline{T} IMU are respective copies of IMU-sensed accumulated velocities and their associated time tag in the user parameter state propagation.

If a consistent set of IMU and attitude data are required, this is indicated by the following second example:

where <u>V</u>_CURRENT_FILT and T_CURRENT_FILT are respective copies of IMU-sensed accumulated velocities, their associated time tag, and mean of 50 to body quaternion in the navigation control subfunction.

- B. <u>Interface Requirements</u>. The parameter crossreference table between IMU RM/SOP names and their copies of Onorbit/Rendezvous navigation variables is shown in table 4.2.2.1.
- C. Processing Requirements. The data from IMU RM/SOP (time tag, accumulated velocities, and attitude quaternions) must be made available for the collection and storage process. The collection rate is indicated by the onorbit/rendezvous navigation sequencer. However, this rate assumes that the available data are fresh. This implies that SOP's processing must be at a rate equal to or greater than the collection rate. This data snap is called by

NAV_ONORBIT_RENDEZVOUS (section 4.2.1)
ONORBIT_REND_USER_PARAM_STATE_PROP (section 4.5.1)
OPS_2_OR_8_INITIALIZE (section 4.1.2)

- D. <u>Constraints</u>. The data collections should occur after a complete current set is available and just prior to use in navigation in order to supply current data.
- E. Supplementary Information. The snap statement above implies the assignment of current IMU RM/SOP values to the variable names shown in parentheses. The suggested implementation of this subfunction is not described in this document because the discussion involves the processor level interface design concept, which is beyond the scope of this document. However, extreme care must be exercised to provide sequentially time homogeneous data set to the appropriate subfunctions.

ONORBIT/REND NAVIGATION VARIABLES, AND USER PARAMETER PROCESSING VARIABLES

INU RM & IMU SOP	I ONORBIT/REND NAV	! USER PARAMETER ! PROCESSING !
T_IMUS_GA	T_CURRENT_FILT	i T_IMU
V _ IMU_CURRENT	! V_CURRENT_FILT	V_IMU_SNAP
Q _BOD_M50	I Q _MEOBODY_IMU	
	: •	1

4.2.2.2 Rendezvous Sensor Data Snap

During the rendezvous navigation phase, this subfunction collects and stores sensor data from the rendezvous radar, the star tracker, and the crew optical alinement sight (COAS).

The purpose of the rendezvous sensor data snap is to properly save the data sets used in navigation processing for use in the appropriate rendezvous sensor navigation subfunction (section 4.2.8) whereas the actual data may continue to be refreshed by hardware sensor reading and sensor SOP processing.

- A. Detailed Requirements. During the rendezvous navigation phase, data from the external sensors, together with the corresponding data good flags, associated time tags, and the appropriate attitude information valid at those times shall be obtained. A premission-loaded time bias shall then be subtracted from the time tag for each sensor. The equations are:
 - 1. For the rendezvous radar:

SNAP REND_RADAR (Q_RR_SHT, _Q_RR_TRUN, Q_RR_RNG, Q_RR_RNG_DOT, RNG_DATA_GOOD, RDOT_DATA_GOOD, RR_ANGLE_DATA_GOOD, Q_M50BODY_RR, T_REND_RADAR, SELF_TEST_FLAG)

where Q_RR_SHFT is the shaft angle measurement

Q_RR_TRUN is the trunnion angle measurement

RR_ANGLE_DATA_GOOD is the validity flag of the above measurements

Q_RR RNG is the radar range measurement

RNG_DATA_GOOD is the respective data good flag

Q RR RNG DOT is the radar range rate reading

RDOT_DATA GOOD is the respective validity indicator

 T_REND_RADAR is the time at which these measurements are considered to have been effected

Q_M50BODY_RR is the gimbal angle quaternion array

SELF_TEST_FLAG is the flag indicating whether the rendezvous radar is operating in the self-test mode

T_REND_RADAR = T_REND_RADAR - T_BIAS_REND_RADAR

2. For the star tracker,

SNAP STAR TRACKER (Q ST HORIZ, Q ST_VERT, ST_DATA_GOOD, M M50 TO ST, T STAR TRACKER, THG TRK MODE)

where:

Q_ST_HORIZ is the horizontal angle measurement

Q ST VERT is the vertical angle measurement

ST_DATA_GOOD is the data good flag relative to these angle measurements

M_M50_TO_ST is the M50-to-star tracker sensor coordinate system rotation matrix at the time T_STAR_TRACKER

T_STAR_TRACKER is the time tag

TRG_TRK_MODE Is the flag indicating whether the star tracker is in the target tracking mode

T_STAR_TRACKER = T_STAR_TRACKER - T_BIAS_ST

3. For the COAS,

SNAP COAS (Q_COAS_HORIZ, Q_COAS_VERT, COAS_DATA_GOOD, M_M50_TO_BODY_COAS, COAS_ID, T_COAS)

where:

Q_COAS_HORIZ is the horizontal angle measurement

Q COAS VERT is the vertical angle measurement

COAS_DATA_GOOD is the data good flag relative to these angle measurements

COAS_ID is the COAS select indicator

T_COAS is the time of the measurement

M_M50_T0_BODY_COAS is the M50-to-COAS sensor coordinate system transformation matrix at the time T_COAS $\,$

T_COAS = T_COAS - T_BIAS_COAS

- B. Interface Requirements. The parameter name cross reference between rendezvous radar SOP and Onorbit/Rendezvous Navigation variables is shown in table 4.2.2.2-1. The cross reference table between star tracker SOP and Onorbit/Rendezvous Navigation variables is given in table 4.2.2.2-2.
- C. Processing Requirements. The data from the sensors (measurements, ID's, validity flags, rotation matrices, and time tags) must be made available for the collection and storage process. The collection rate (not necessarily sensor interrogations) is indicated by the Onorbit/Rendezvous Navigation Sequencer. However, this rate assumes that the available data are fresh.

This implies that SOP's processing must be at a rate equal to or greater than the collection rate. This data is called by NAV_ONORBIT_RENDEZVOUS (section 4.2.1).

- D. <u>Constraints.</u>— The data collections should occur after a complete current set is available and just prior to use in navigation in order to supply current data.
- E. <u>Supplementary Information.</u>— The snap statement above implies the assignment of current SOP values to the variable names shown in parentheses. The suggested implementation of this subfunction is not described in this document because the discussion involves the processor level interface design concept which is beyond the scope of this document. However, extreme care must be exercised to provide sequentially time homogeneous data sets to the appropriate subfunctions.

TABLE 4.2.2.2-1.- PARAMETER CROSS REFERENCE TABLE BETWEEN RR SOP AND ONORBIT/REND NAV VARIABLES

RR SOP	ONORBIT/REND NAV
RR_ROLLO	Q_RR_SHFT
RR_PITCHO	Q_RR_TRUN
RR_RANGEO	Q_RR_RNG
RR_RNGRO	Q_RR_RNG_DOT
RR_RNG_DG	RNG_DATA_GOOD
RR_RNGR_DG	RDOT_DATA_GOOD
RR_ANG_DG	RR_ANGLE_DATA_GOOD
Q_M5OBODY_RR	Q_M50BODY_RR
RR_TIM	T_REND_RADAR
rr_self_test	SELF_TEST_FLAG

TABLE 4.2.2.2-2.- PARAMETER NAME CROSS REFERENCE TABLE BETWEEN STAR TRACK SOP AND ONORBIT/REND NAV VARIABLES

STAR TRCK SOP	ONORBIT/REND NAV
H_NAV	Q_ST_@ORIZ
V_NAV	C_ST_VERY
DAT A_GOOD	ST_DATA_GOOD
T_M50_ST	M_M50_T0_ST
TIME	T_STAR_TRACKER
NAV_TARGET	TRG_TRK_MODE
COAS_HORIZ	Q_COAS_HORIZ
COAS_VERT	Q_COAS_VERT
NAV_SIGHT	COAS_DATA_GOOD
T_M50_BODY	M_M50_TU_BODY_COAS
AXN	COAS_ID
T_TAKLOS	T_CUAS

4.2.3 State and Covariance Matrix Updates

The Onorbit/Rendezvous Navigation principal function shall provide for the capability to perform automatic inflight updates of the Orbiter and/or target position and velocities, crew requested covariance matrix reinitialization, and crew requested state vector transfers. The capability to perform the position-velocity update of either the Orbiter or target will be handled by the automatic inflight updates subfunction while the capability to handle crew requests for state vector transfers and covariance matrix reinitialization will be done by the REL NAV display updates subfunction.

4.2.3.1 Auto Inflight Updates (ONORBIT_REND_AUTO_INFLIGHT UPDATE)

The automatic inflight updates subfunction shall determine when an update to the shuttle or target state vector is required by the ground and then schedule the state vector prediction task to predict the uplinked state vectors to the time tag T RESET, established by the Orbiter state vector reset subfunction (see section $\P.1.2.1$). If a state vector update has occurred during rendezvous navigation phase, the covariance matrix shall be reinitialized.

A. Detailed Requirements.

- 1. First, a local flag SV_UPDATE, which indicates whether a state vector update has occurred, is set to OFF.
- If the ground has indicated that the Orbiter vector is uplinked (NAV_DO_ OV_UPLINK = ON) then the following tasks will be performed in the order indicated.
 - a. The prediction task indicator flag, PRED_USE, is interrogated for a zero value to determine if the state vector prediction task is available for scheduling. If the state vector prediction task is available then the following tasks are performed.
 - (1) The following parameters are defined preceding the scheduling of the state vector prediction task:

PRED_USE = 1

OV PREDICT_FAIL = OFF

PRED_ORB_MASS = NAV_CURR_ORB_MASS

PRED_ORB_AREA = REF_ORB_AREA

PRED_ORB_CD = REF_ORB_CD

GMOP = GM_DEG

GMOP = GM_ORD

DMP = DFL

VMP = VFLOV_PRED

ATMP = 1

PRED_STEP = PREC_STEP_PRED

R_PRED_INIT = R_GND

V_PRED_INIT = V_GND

T_PRED_INIT = T_GND

(2) Next, the state vector prediction task is scheduled.

SCHEDULE: STATE_VECTOR_PREDICT_TASK

b. If the PRED_USE flag is nonzero, it is tested for a value of 3 which indicates that the state vector prediction task has determined that the prediction interval is too large; hence no prediction will take place. If PRED_USE = 3 then the following flags are set.

PRED_USE = 0, indicating the state vector prediction task is available.

DO_OV_UPLINK = OFF
OV_PREDICT_FAIL = ON, indicating that no prediction
will take place for the Orbiter
state vectors.

c. If the PRED_USE flag is not set to 3 then it is tested for a value of 2 which indicates that the state vector prediction task has successfully predicted the Orbiter state vector. If PRED_USE = 2 then the following actions are taken.

PRED_USE = 0, indicating that the state vector prediction task is available.

T_LAST_FILT = T_PRED_FINAL predicted Orbiter

R_FILT = R_PRED_FINAL vectors and time tag

V_FILT = V_PRED_FINAL are stored.

SV_UPDATE = ON, indicating that an inflight update has taken place.

T_ORB_STATE_UPDATE

= T_LAST_FILT, the time tag of the inflight update is saved for downlist.

DO_OV_UPLINK = OFF

- 3. If the ground has indicated that the target vector is uplinked (NAV_DO_TV_UPLINK = ON) then the DOING_REND_NAV flag and the PRED_USE flags are interrogated to determine if the uplinked target state vectors are to be stored or if the target state prediction logic should be exercised.
 - a. If rendezvous navigation is active, DOING_REND_NAV = ON, or the target state prediction logic is in progress, PRED_USE > 7, then the PRED_USE flag is tested to determine the appropriate action to follow.
 - (1) If PRED_USE = 0, target prediction is to be scheduled. The following actions are taken:
 - The prediction parameters are initialized.

PRED_USE = 7 TV_PREDICT_FAIL = OFF GMDP = GM DEG GMOP = GM_ORD
DMP = DFL
VMP = VPLTV_PRED
ATMP = ATFL_TV
PRED_STEP = PREC_STEP_PRED
R PRED_INIT = R TV_GND
V PRED_INIT = V TV_GND
T_PRED_INIT = T_TV_GND

- The state vector prediction task is scheduled.

SCHEDULE: STATE_VECTOR_PREDICT_TASK

(2) If the PRED_USE flag is equal to 9, the state vector prediction task has determined that the prediction interval is too large; hence no prediction will take place. The following flags are set.

PRED_USE = 0, indicating the state vector prediction task is available.

DO_TV_UPLINK = OFF
TV_PREDICT_FAIL = ON, indicating that no prediction
will take place for the target
state vectors.

(3) If the PRED_USE flag is equal to 8, the state vector prediction task has successfully predicted the target state vectors. The following actions are taken.

PRED_USE = 0, indicating that the state vector prediction task is available.

T_TV = T_PRED_FINAL predicted target vectors and R_TV = R_PRED_FINAL time tag are stored.

V_TV = V_PRED_FINAL

SV_UPDATE = ON, indicating that an inflight update has taken place.

T_TV_STATE_UPDATE = T_TV, the time tag of the inflight update is saved for downlist.

DO_TV_UPLINK = OFF

b. If rendezvous navigation phase is not active, DOING_REND_NAV = OFF, and the target state prediction task is not in progress for an inflight update, PRED_USE < 7, then the uplinked state vector and associated time tag are stored, the time of the uplink is stored, and the DO_TV_UPLINK flag is turned OFF.

T_TV = T_TV GND
R TV = R TV GND
V TV = V TV GND
T TV STATE UPDATE = T_TV
DO TV UPLINK = OFF

4. Finally, the covariance initialization subfunction is invoked if the SV_UPDATE flag is ON and DOING_REND_NAV = ON, indicating that the rendezvous navigation phase is active.

CALL: REND_COV_INIT

- B. <u>Interface Requirements.</u> The inputs and outputs for this subfunction are given in table 4.2.3.1.
- C. Processing Requirements. This subfunction is called by

NAV_ONORBIT_RENDEZVOUS (section 4.2.1)

- D. Constraints. None
- E. <u>Supplementary Information</u>. A suggested implementation of this subfunction is given in Appendix B.

ONORBIT_REND_AUTO_INFLIGHT_UPDATE

TABLE 4.2.3.1.- ONORBIT_REND_AUTO_INFLIGHT_UPDATE INPUT/OUTPUT

! Variable Name	! Input Source	Output Destination
I IATPL_TV	1	
I IATMP	1	•
I IDFL *		
I IDMP I		•
IDO OV UPLINK	•	•
IDO_TV_UPLINK	1	•
!DOING_REND_NAV	je, es	
IGM_DEG I	1 40	
IGMDP	1	•
IGMOP	1	•
IGM_ORD	1 00	
NAV_CURR_ORB_MASS	! NAV_ONORBIT_RENDEZVOUS	
NAV_DO_OV_UPLINK	INAV_ONORBIT_RENDEZVOUS	•
!NAV_DO_TV_UPLINK	INAV_ONORBIT_RENDEZVOUS	•
OV_PREDICT_FAIL	1	•
!PRED_ORB_AREA!	1	•
!PRED_ORB_CD	1	•
!PRED_ORB_MASS	1	•
!Pred_Step	1	•
! Pred_use	10,00,STATE_VECTOR_ 1PREDICT_TASK	•,STATE_VECTOR_ PREDICT_TASK
!	1	

^{**}Onorbit/Rendezvous principal function, see section 4.2
**Initialization parameters, see section 4.7

TABLE 4.2.3.1.- ONORBIT_REND_AUTO_INFLIGHT_UPDATE INPUT/OUTPUT.- Continued

! Variable Name	! Input Source	! Output Destination !
PREC_STEP_PRED	! **	!
REF_ORB_AREA	**	!
PREC_STEP_PRED	**	
REF_ORB_AREA	**	! !
! !REF_ORB_CD	**	1
R_FILT	1 1 1 1	! !REL_NAV_DISPLAY_UPDATES, !REND_COV_INIT, !ONORBIT_REND_R_V_STATE_ !PROP, !COV_LAST_RESET
I I <u>R</u> _GND	•	1
R PRED_FINAL	•	!
R PRED_INIT	! !	1 14
IR_TV	! ! ! !	! !REL_NAV_DISPLAY_UPDATES, !REND_COV_INIT, !ONORBIT_REND_R_V_STATE_ !PROP, !COV_LAST_RESET
R_TV_GND	•	!
T_GND		! !
T_ORB_STATE_UPDATE	!	
T_LAST_FILT	1 1 1 1	! !ONORBIT_REND_R_V_STATE_ !PROP, !REND_COV_INIT
T_PRED_FINAL	! !STATE_VECTOR_PREDICT_T/	ASK!

^{*}Onorbit/Rendezvous principal function, see section 4.2 **Initialization parameters, see section 4.7

TABLE 4.2.3.1.- ONORBIT_REND_AUTO_INFLIGHT_UPDATE INPUT/OUTPUT.- Concluded

Variable Name	Input Source	! Output Destination
T_PRED_INIT	! ! !	! !*,STATE_VECTOR_PREDICT_ !TASK
T_TV	1	. , rend_cov_init
T_TV_GND	1	1
T_TV_STATE_UPDATE	1	i.
TV_PREDICT_FAIL	1	•
V_FILT	! ! ! !	!REL_NAV_DISPLAY_UPDATES, !REND_COV_INIT, !ONORBIT_REND_R_V_STATE_ !PROP, !COV_LAST_RESET
VFLOV_PRED	**	
VFLTV_PRED		!
V GND	! !#	
VMP	1	•
V PRED_FINAL	1	
V PRED_INIT	1	•
<u>v</u> _tv	I I I I I	! REL_NAV_DISPLAY_UPDATES ! REND_COV_INIT , !ONORBIT_REND_R_V_STATE_! !PROP , !COV_LAST_RESET
V_TV_GND	! ** !	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
	! !	1

^{*}Onorbit/Rendezvous principal function, see section 4.2 **Initialization parameters, see section 4.7

4.2.3.1.1 State vector prediction task (STATE_VECTOR_PREDICT_TASK).- It is a requirement that the execution of either the Onorbit/Rendezvous Sequencer or the Onorbit/Rendezvous Navigation principal function has priority over the execution of the Onorbit Precision State Prediction principal function. The purpose of the state vector prediction task is to provide logic, to be executed at the same priority as the predictor, which will allow the navigation and sequencer principal functions to execute in a nominal manner despite delays in the predictor due to its low priority execution.

This task shall be scheduled by the Rendezvous Navigation Initialization subfunction and the Auto Inflight Updates subfunction to provide for the prediction of either the Orbiter and/or target state vectors to the time tag specified by the Orbiter State Vector Reset subfunction. The state vector prediction task shall also test the prediction interval size against a gross reasonability design dependent threshold to prevent the Onorbit Precision State Prediction principal function from predicting over inordinately large time intervals. The state vector prediction task shall also set the value of the PRED_USE flag which indicates the status of prediction to the scheduling subfunction. The PRED_USE flag has the following values.

Value of PRED USE	<u>Definition</u>
0	Prediction task is available for scheduling
1	Prediction task scheduled for Orbiter inflight update
2	Prediction task completed for Orbiter inflight update
3	Prediction task failed for Orbiter inflight update
4	Prediction task scheduled for rendezvous navigation
	initialize
5	Prediction task completed for rendezvous navigation
	initialize
6	Prediction task failed for rendezvous navigation
	initialize
7	Prediction task scheduled for target inflight update
8	Prediction task completed for target inflight update
9	Prediction task failed for target inflight update

The scheduling subfunction will set PRED_USE to the values of 0, 1, 4, or 7. All other values are set by the prediction task.

A. Detailed Requirements.

1. A local flag, PRED_TASK_COMPLETE, which signals when the prediction task is completed, is initialized to OFF upon entering the state vector prediction task.

PRED_TASK_COMPLETE = OFF

2. Next, the absolute value of the difference between the initial prediction time tag, T_PREDICT_INIT, and the time tag T_RESET is tested against a gross reasonability (design dependent) threshold in order to prevent the Onorbit Precision State Prediction principal function from predicting over excessively large time intervals.

T_PRED_INIT - T_RESET | > MAX_TIME_TOL

a. If the time threshold is exceeded then the flag PRED_USE is incremented by 2 in order to communicate to the invoking subfunction that the prediction task has failed.

PRED_USE = PRED_USE + 2

b. If the maximum time tolerance MAX_TIME_TOL is not exceeded, then the following logic (steps (1), (2), (3), and (4)) is executed in a cyclic fashion until the PREDICT_TASK_COMPLETE flag is turned ON.

D^{\$\Phi\$} UNTIL
PREDICT_TASK_COMPLETE = ON

(1) First, the time tag for the final predicted state vectors is set to the current value of T_RESET as defined by the navigation task.

T_PRED_FINAL = T_RESET

(2) Next, the Onorbit Precision State Prediction principal function is invoked.

CALL: ONORBIT_PREDICT

(3) The predicted state vectors and time tag are saved for the next state vector prediction task cycle.

R PRED_INIT = R PRED_FINAL V PRED_INIT = V PRED_FINAL T PRED_INIT = T PRED_FINAL

(4) Using NAV's current value for T_RESET, the prediction interval magnitude is tested against a hard coded time tolerance SV_TIME_TAG_DIFF to determine if the predicted vectors are close to the time tag T_RESET.

T PRED INIT - T RESET | SV_TIME_TAG_DIFF

(It should be noted that any value for SV_TIME_TAG_DIFF which is smaller than the length of a single navigation cycle will cause the predictor task to predict to current time (T_RESET).)

If the predicted state vector time tag is close to the current reset time tag (i.e., less than or equal to SV_TIME_TAG_DIFF), then the prediction complete flag is set to ON and the PRED_USE flag is incremented by one to indicate to the proper navigation subfunction that the prediction task is completed and predicted state vectors are available.

PRED_TASK_COMPLETE = ON

PRED USE = PRED_USE + 1

Steps (1), (2), (3), and (4) are repeated until PRED_TASK_COMPLETE is ON as specified in step b.

- B. Interface Requirements. Input and output parameters for the state vector prediction task are specified in table 4.2.3.1.1. Since the STATE_VECTOR_PREDICT_TASK (SVPT) executes in parallel to the navigation task, the value of T_RESET can update in NAV while the SVPT is in process. The SVPT makes cyclic use of T_RESET in two places in its logic and should be provided NAV's current value of T_RESET each time it uses the parameter.
- C. <u>Processing Requirements</u>. The following subfunctions schedule the state vector prediction task.

Rendezvous Navigation Initialization
(REND_NAV_INIT, Section 4.1.2.2)
Auto Inflight Updates
(ONORBIT_REND_AUTO_INFLIGHT_UPDATE, Section 4.2.3.1)

- D. <u>Constraints</u>. The STATE_VECTUR_PREDICT_TASK is one of several users of the onorbit predictor. Since the same compool locations are used by all users of this principal function for setup and output and since the use of the predictor by the STATE_VECTOR_PREDICT_TASK may be interrupted by other users, it is required that its predictor parameters be protected from alteration by other users during execution of this principal function.
- E. <u>Supplemental Information</u>. A suggested implementation of the state vector prediction task may be found in the Appendix B flowchart STATE_VECTOR_PREDICT_TASK.

TABLE 4.2.3.1.1. - STATE_VECTOR_PREDICT_TASK INPUT/OUTPUT

Variable Name	! Input Source	! Output Destination
MAX_TIME_TOL	1	·
PRED_USE	ONORBIT_REND_AUTO_ INFLIGHT_UPDATE, IREND_NAV_INIT	ONORBIT_REND_AUTO_ INFLIGHT_UPDATE, IREND_NAV_INIT,*,***
R_PRED_INIT		.,
R PRED_FINAL		
SV_TIME_TAG_DIFF	1 **	
T_PRED_INIT	!ONORBIT_REND_AUTO_ !INFLIGHT_UPDATE, !REND_NAV_INIT	1
T_PRED_FINAL	: !	!*,***,REND_NAV_INIT, !ONORBIT_REND_AUTO_ !INFLIGHT_UPDATE
T_RESET	! !SHUTTLE_RESET, !*,***	: 1 1
V_PRED_INIT	1	.,***
V_PRED_FINAL	. ,	!
	!	
	; !	i
	i 1	1
	1	1
	!	† †
	!	!!!
	! !	! !

^{*}Onorbit/Rendezvous principal function, see section 4.2

^{**}Initialization parameters, see section 4.7

^{***}Onorbit/Rendezvous Navigation Sequencer Principal Function, see section 4.1

4.2.3.2 REL_NAV Display Updates (REL_NAV_DISPLAY_UPDATES)

This subfunction is required to respond to crew request, made via item entries on the REL_NAV display, to reinitialize the covariance matrix or to perform a state vector transfer from the Orbiter state vector to the target state vector, or vice versa. This subfunction is exercised on each state vector propagation cycle by the NAV control logic.

- A. <u>Detailed Requirements</u>. The following steps shall be performed (in the order indicated) in response to crew request while rendezvous navigation is active:
 - 1. Turn off the positive feedback flags to the REL_NAV display.

DID_COVAR REINIT = OFF

DID_ORB_TO_TGT = OFF

DID TGT TO ORB = OFF

- 2. Test the NAV_DO_COVAR_REINIT flag to determine if the crew has requested that the covariance matrix be reinitialized. If NAV_DO_COVAR_REINIT = ON, perform the following steps:
 - a. Call the covariance matrix initialization subfunction to reinitialize the covariance matrix, to zero the unmodeled acceleration states, and compute the total filter vehicle acceleration vector (see section 4.1.2.2.1):

CALL: REND_COV_INIT

b. Reset the covariance matrix initialization indicator flag and the positive feedback flag (to the REL_NAV display) as follows:

DO_COVAR REINIT = OFF

DID COVAR REINIT = ON

- 3. Test the NAV_DO_ORB_TO_TGT flag to determine if the crew has requested a state vector transfer (Orbiter to target).
 - a. If NAV_DO ORB TO TGT = ON, the following steps are taken:
 - (1) The target state vectors are set equal to the Orbiter state vectors:

R = TV = R = FILT

 \underline{V} $\underline{T}V = \underline{V}$ $\underline{F}ILT$

(2) The covariance matrix initialization subfunction is called to reinitialize the covariance matrix, to zero the unmodeled acceleration states, and compute the total filter vehicle acceleration vector (see section 4.1.2.2.1):

CALL: REND_COV_INIT

(3) The flags indicating the Orbiter-to-target state vector transfer and the positive feedback (to the REL NAV display) shall be set:

DO_ORB_TO_TGT = OFF

DID_ORB_TO_TGT = ON

- b. If the NAV_DO_ORB_TO_TGT flag is off, test the NAV_DO_TGT_TO_ORB flag to determine if the crew has requested a state vector transfer (target to Orbiter). If NAV_DO_TGT_TO_ORB = ON, the following steps are taken:
 - (1) The Orbiter state vector shall be set equal to the target state vector:

R FILT = R TV

 \underline{V} FILT = \underline{V} TV

(2) The covariance matrix initialization subfunction is called to reinitialize the covariance matrix, to zero the unmodeled acceleration state, and compute the total filter vehicle acceleration vector (see section 4.1.2.2.1):

CALL: REND COV INIT

(3) The flags indicating target-to-Orbiter state vector transfer and the positive feedback (to the REL_NAV display) shall be set:

DO_TGT_TO_ORB = OFF

DID_TGT_TO_ORB = ON

- B. Interface Requirements. Input and output parameters are listed in table $\frac{4.2.3.2}{}$.
- C. Processing Requirements. This subfunction is called by

NAV_ONORBIT_RENDEZVOUS (section 4.2.1)

D. <u>Constraints</u>. Covariance matrix reinitialization as well as the state vector transfer must be activated via crew input to the <u>REL_NAV</u> display and only while the Rendezvous Navigation principal function is active.

E. Supplementary Information. A suggested implementation in the form of a detailed flowchart can be found in Appendix B under the name:

REL_NAV_DISPLAY_UPDATES

TABLE 4.2.3.2.- REL_NAV_DISPLAY_UPDATES INPUT/OUTPUT

l ! Variable Name !	! ! Input Source !	! ! Output Destination !
DID_COVAR_REINIT	!	!
DID_ORB_TO_TGT	1 	•
DID_TGT_TO_ORB	1	•
NAV_DO_COVAR_REINIT	! !NAV_ONORBIT_RENDEZVOUS	1
NAV_DO_ORB_TO_TGT	! NAV_ONORBIT_RENDEZVOUS	
NAV_DO_TGT_TO_ORB	NAV_ONORBIT_RENDEZVOUS	
	!PROP,ONORBIT_REND_AUTO_ !INFLIGHT_UPDATE,	REND_COV_INIT, ICOV_LAST_RESET, IONORBIT_REND_R_V_STATE IPROP
	!PROP,ONORBIT_REND_AUTO_ !INFLIGHT_UPDATE,*,	REND_COV_INIT, COV_LAST_RESET, ONORBIT_REND_R_V_STATE_
 	!PROP,ONORBIT_REND_AUTO_ !INFLIGHT_UPDATE,	PREND_COV_INIT, ICOV_LAST_RESET, IONORBIT_REND_R_V_STATE_ IPROP
	PROP, ONORBIT_REND_AUTO_ INFLIGHT_UPDATE, *,	REND_COV_INIT, COV_LAST_RESET, CONORBIT_REND_R_V_STATE_ PROP
! !	! !]]
! !	! !	
! !	! !	! !
	 	- ! !
	! !	• !

^{*}Onorbit/Rendezvous principal function, see section 4.2

4.2.4 Position and Velocity State Propagation (ONORBIT_REND_R_V_STATE_PROP)

The position and velocity state propagation subfunction is contained within the Onorbit/Rendezvous Navigation principal function and is used to perform a number of tasks related to the propagation of the Orbiter and target vehicle state vectors. The subfunction will be employed to propagate the Orbiter and target vehicle state vectors from the time of the previous navigation cycle to the current navigation cycle time.

Prior to state vector propagation, the task of snapping IMU and attitude data shall be performed to obtain the current time (T_CURRENT_FILT), accumulated IMU sensed velocity (V_CURRENT_FILT), and on attitude quaternion (Q_M50BODY_IMU). For detailed requirements of these data snaps, see IMU and Attitude Data Snap, section 4.2.2.1.

During vehicle state propagation, various acceleration models are available for use in the determination of perturbing acceleration values and include gravitational accelerations (always used) and nongravitational accelerations (drag, and a limited venting and uncoupled RCS thrusting model). The nongravitational acceleration models shall be used only when the vehicle sensed acceleration (DV FILT), obtained from the IMU accumulated sensed velocity (V CURRENT FILT), is judged to be insignificant; that is, below a predetermined value (DA THRESHOLD TEST). A detailed description of the acceleration models may be found in section 4.2.4.1.1. State vector propagation will employ only 1 scheme for integration of the equations of motion, the SUPER G algorithm (see section 4.2.4.1). This algorithm will be used for propagating both the Orbiter and target state vectors in both coasting and powered flight.

A. <u>Detailed Requirements.</u>— The computations that shall be performed for propagation of the position and velocity vectors are initiated by a call to the Onorbit/Rendezvous position and velocity state propagation subfunction (ONORBIT_REND_R_V_STATE_PROP) in the following form:

CALL: ONORBIT_REND_R_V_STATE_PROP

The following will be performed in the order indicated.

1. The IMU navigation acceleration threshold value initialized by ILOAD and updated by the crew on the IMU ALIGN DISPLAY will be loaded into the DA_ THRESHOLD parameter:

DA_THRESHOLD = IMU_NAV_ACCEL_THRESH

2. The acceleration model flags shall be set up for Orbiter coasting flight propagation:

IGD = GM_DEG IGO = GM_ORD IDRAG = 1

IVENT = 1

4-115

3. Next the change in velocity (<u>DV_FILT</u>) and the corresponding time interval (<u>DT_FILT</u>) used in the advancement of both Orbiter and target state vectors shall be calculated by subtraction of the previous cycle values (<u>V_LAST_FILT</u> and T_LAST_FILT) from the current IMU snapped values.

DV_FILT = V _CURRENT_FILT - V _LAST_FILT DT_FILT = T_CURRENT_FILT- T_LAST_FILT

4. An acceleration averaged over the desired interval is next determined by:

CONT_ACC = [DV_FILT | / DT_FILT

F3

- 5. Next the powered flight navigation flag, NAV_PWRD_FLT_NAV, shall be tested, and flags specifying the acceleration models to be used to propagate the Orbiter state vector on this navigation cycle shall be defined.
 - a. If the NAV_PWRD_FLT_NAV flag is found to be ON, acceleration threshold tests must be made to determine the acceleration models to be used in propagating the Orbiter state vector. The procedure is as follows:
 - (1) Convert the DA_THRESHOLD value from micro g's to feet/sec², normalize according to the propagation time interval (DT_FILT), and store the new value into DA_THRESHOLD_TEST.

DA_THRESHOLD_TEST = DA_THRESHOLD (GO) (10⁻⁶)/DT_FILT F3

("GO" is the micro G's to feet/sec² conversion factor.)

- (2) Test the acceleration value (CONT_ACC) against the converted threshold value, DA_THRESHOLD_TEST.
 - If CONT_ACC > DA_THRESHOLD_TEST, turn the IMU data-use flag
 ON and set the flags for modeling drag and vent forces to 0 (OFF).

USE_IMU_DATA = ON IDRAG = O IVENT = O

- Otherwise, set the IMU data-use flag to OFF, and force the accumulated velocity for the propagation interval to zero.

USE_IMU_DATA = OFF DV_FILT = 0.

F3 This equation shall be protected against division by zero (Reference 3.6-3).

- (3) Test the acceleration value (CONT_ACC) against the ILOADED MEAS_ THRESHOLD value to determine if the powered flight gravitational potential model should be used.
 - If CONT_ACC > MEAS_THRESHOLD, use the powered flight values for the potential models

IGD = GM_DEG_LOW IGO = GM_ORD_LOW

- Otherwise, the gravitational parameters will remain set to the free flight values.
- b. In the situation where the NAV_PWRD_FLT_NAV is found to be OFF, the Orbiter sensed acceleration is not used in propagating the Orbiter state vector. Therefore, set

DV_FILT = 0. USE_IMU_DATA = OFF

6. Next the SUPER_G algorithm is called to propagate the Orbiter state vector, using the acceleration models computed above.

CALL: SUPER_G

IN LIST: IGD, IGO, IDRAG, IVENT, ATFL_OV, R_FILT, V_FILT, T_

LAST_FILT,T_CURRENT_FILT,DT_FILT,DV_FILT

OUT LIST: R FILT, V FILT, G NEW

The values of R_FILT and V_FILT output by SUPER_G are the required propagated position and velocity vectors of the Orbiter during a powered or coasting flight mode. The vector \underline{G} NEW is a modeled total acceleration vector obtained according to the specified flag settings and corresponding to \underline{R} FILT, \underline{V} _FILT and \underline{T} _CURRENT_FILT.

7. Once the Orbiter state vector has been propagated, the DOING_REND_NAV flag will be tested to determine if propagation of the target vehicle state is required.

DOING_REND_NAV

If the DOING_REND_NAV flag is ON, the target vehicle state vector will be propagated to time T_CURRENT_FILT from time T_TV using the SUPER_G algorithm.

CALL: SUPER G

IN LIST:

GM_DEG, GM_ORD, DFL, VFL_TV, ATFL_TV, R_TV, Y_TV, T_CURRENT_FILT, DT_FILT,

TDV_FILT

OUT LIST: R_TV, V_TV, G_TV

The out list variables represent the required advanced target vehicle state vector and total target acceleration vector. Here R TV is the target position vector, \underline{V} TV the target velocity vector, and G TV the corresponding acceleration vector, all determined for the time T_CURRENT_FILT.

The time T_CURRENT_FILT is saved as T_TV.

T TV = T CURRENT FILT

8. After satisfaction of the operations caused by the DOING_REND_NAV flag value, T LAST FILT and V LAST FILT will be updated to T_CURRENT_FILT and V CURRENT FILT in preparation for the next cycle through CNORBIT_ REND R V STATE PROP.

> T LAST FILT = T CURRENT FILT V LAST FILT = V CURRENT FILT

- 9. A call to the solar ephemeris subfunction will provide sine and cosine functions of the sun's current position preparatory to calculation of the Earth-sun unit vector. The unit vector will be constructed as follows:
 - (a) CALL: SOLAR EPHEM

IN LIST: T CURRENT FILT

OUT LIST: SDEC, CDEC1, COS_SOL_RA, SIN_SOL_RA

(b) UR_SUN1 = COS_SOL_RA CDEC1 UR SUN = SIN SOL RA COEC1 UR SUN 2 = SDEC

The solar unit vector is required by the Universal pointing processing principal function.

- B. Interface Requirements. Input and output parameters for the position and velocity state propagation subfunction trunk logic are given in table 4.2.4.
- C. Processing Requirements. This subfunction shall be called by the Onorbit/ Rendezvous Navigation principal function (NAV ONORBIT_RENDEZVOUS).

- D. Constraints. The following constraints apply:
 - 1. The acceleration models task is needed not only by the navigation state propagation subfunction, but also by the Onorbit Precision State Prediction principal function and by the User Parameter state propagation subfunction. Each user of acceleration models shall set its own flags and therefore requires a different calculation. To protect against interference in the acceleration computations, it is important that these computations not be interrupted.
 - 2. The current Orbiter mass (CURR_ORB_MASS) will be initialized for use by NAV by the Onorbit/Rendezvous Navigation Sequencer principal function and will be maintained for NAV by the Onorbit Guidance principal function.
- E. <u>Supplementary Information</u>. A suggested implementation of this subfunction in the form of detailed flow diagrams may be found in Appendix D under the following:

ONORBIT_REND_R_V_STATE_PROP

TABLE 4.2.4. - ONORBIT_REND_R_V_STATE_PROP INPUT/OUTPUT

! Variable Name	! Input Source!	! Output Destination !
ATFL_OV		SUPER_G
ATFL_TV	**	SUPER_G
CDEC1	SOLAR_EPHEM	
COS_SOL_RA	SOLAR_EPHEM	
CONT_ACC	!	NAV_ONORBIT_RENDEZVOUS,
DFL		SUPER_G
DOING_REND_NAV	*,**	
DT_FILT	!	REND_COV_INIT, *, SUPER_G
DV_FILT	1 1 1	REND_COV_INIT, SUPER_G,! NAV_ONORBIT_RENDEZVOUS,!
! ! GM_DEG ! GM_DEG_LOW	! ! ** ! **	!!SUPER_G!!
GM_CRD_ GM_CRD_LOW	1 **	SUPER_G !
G _NEW	! SUPER_G	REND_BIAS_AND_COV_PROP, I
<u>G</u> _TV	! ! SUPER_G !	REND_BIAS_AND_COV_PROP,! REND_NAV_INTERP,#
IDRAG	! !	SUPER_G, REND_COV_INIT,
IGD	· !	SUPER_G,REND_COV_INIT, ! REND_NAV_INTERP,*
IGO	!	SUPER_G,REND_COV_INIT, REND_NAV_INTERP,*
IVENT	1	SUPER_G,REND_COV_INIT, REND_NAV_INTERP,*

^{*}See Onorbit/Rendezvous Nav P.F. I/O

^{**}Initialization parameters, see section 4.7

TABLE 4.2.4. - ONORBIT_REND_R_V_STATE_PROP INPUT/OUTPUT. - Continued

! Variable Name	! ! Input Source !	! Output Destination
! MEAS_THRESHOLD	**	
! NAV_PWRD_FLT_NAV	NAV_ONORBIT_RENDEZVOUS	
! R_FILT ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	! AUTO INFLIGHT UPDATE, ! REL_NAV_DISPLAY_UPDATES,! ! REND_NAV_PILTER,*	SUPER G, REND COV INIT, COV LAST RESET, REND NAV FILTER, REND NAV INTERP, REL NAV DISPLAY UPDATES, REND BIAS AND COV PROP, *, SHUTTLE RESET, NAV ONORBIT RENDEZVOUS
! R _TV ! ! ! ! ! !	! NAV_DISPLAY_UPDATES, !! REND_NAV_FILTER, #, !! SUPER G	COV_LAST_RESET, REND_ COV_INIT, TARGET_RESET, REND_NAV_FILTER, REND_ BIAS_AND_COV_PROP, REL_ NAV_DISPLAY_UPDATES, REND_NAV_INTERP,*, SUPER_G,NAV_ONORBIT_ RENDEZVOUS
! SDEC ! SIN_SOL_RA	SOLAR_EPHEM SOLAR_EPHEM	
T_CURRENT_FILT	NAV_ONORBIT_RENDEZVOUS	SUPER_G
! T_LAST_FILT !	*,ONORBIT_REND_AUTO_ INFLIGHT_UPDATE	SUPER_G,*,SHUTTLE_ RESET, COV_LAST_RESET, REND_COV_INIT,NAV_ ONORBIT_RENDEZVOUS
! T_TV		*, REND_COV_INIT, SUPER_G
! UR_SUN	!	*
! ! <u>T</u> DV_FILT	**	SUPER_G
! ! USE_IMU_DATA !		NAV_ONORBIT_ RENDEZVOUS,**

^{**}Onorbit/Rendezvous principal function, see section 4.2
***Initialization parameters, see section 4.7

TABLE 4.2.4.- ONORBIT_REND_R_V_STATE_PROP INPUT/OUTPUT.- Concluded

Variable Name	Input Source	Output Destination
V _CURRENT_FILT	NAV_ONORBIT_RENDEZVOUS	
V_FILT	FILTER, ONORBIT REND	SUPER G, REND COV INIT, COV_LAST_RESET, SHUTTLE RESET, REND_BIAS_AND_COV_PROP, REND_NAV_COV_PROP, REND_NAV_CONTERP, REL_NAV_CONTERP, REL_NAV_CONTERP, RENDEZVOUS
VFL_TV	**	SUPER_G
V_LAST_FILT	•	SHUTTLE_RESET
<u>V</u> _TV	INFLIGHT UPDATE, REL INAV DISPLAY UPDATES, INEND_NAV_FILTER,*,	COV_LAST_RESET, REL_ NAV_DISPLAY_UPDATES, REND_COV_INIT,TARGET_ RESET, REND_NAV_INTERP, REND_NAV_FILTER,* SUPER_G, REND_BIAS_ AND_COV_PROP,NAV_ ONORBIT_RENDEZVOUS

^{*}Onorbit/Rendezvous principal function, see section 4.2

^{**}Initialization parameters, see section 4.7

4.2.4.1 Position and Velocity Propagation (SUPER C)

During powered flight navigation phases, the equations of motion used for Orbiter state propagation have the form of a Taylor series truncated at the term in h³, where h is the step size. The integration scheme used, called SUPER G, is an improved version of the AVERAGE G method, containing a correction cycle.

During Orbiter powered flight conditions, non-gravitational accelerations sensed by the IND's are incorporated into the state vector in the SUPER_G state propagation algorithm when above a pre-set threshold. For Orbiter coasting flight or target state vector propagation, the accelerations are always modeled in the SUPER_G algorithm.

A. Detailed Requirements .-

ញ ការ ប្រទេសអនុស៊ី 🦠

有特別的

The SUPER G subfunction shall be invoked whenever the following statement is encountered:

CALL: SUPER C

IN LIST: GMD, GNO, DM, VM, ATM, R IN, V IN, T IN, T FIN, DT FILT, DV IN

THE STATE A STATE OF THE PARTY.

OUT LIST: R FIN, V FIN, G OUT

1. Upon initiation of SUPER_G, an initial total acceleration, G_INT, will be calculated by the ACCEL_ONORBIT function as:

G INT = ACCEL ONORBIT (GMD, GMD, DM, VM, ATM, R IN, V IN, T IN)

where the function arguments are the appropriate flag settings (that is, the degree and order of the gravitational potential model, drag mode, vent mode, and attitude mode flag settings), current position vector, current velocity vector, and previous time.

2. Next the position vector is advanced using the current position and velocity vectors, **e time interval DT_FILT, initial acceleration vector G_INT calculated in the previous step, and the value of DV_FILT:

$$R = FIN = R = IN + DT FILT (Y IN + .5 (DV_IN + DT_FILT G_INT))$$

3. Find a new value of the total acceleration vector, based on the advanced position vector, velocity vector, and time tag:

 \underline{G} _OUT = \underline{A} CCEL_ONORDIT (GMD,GMO,DM,VM,ATM, \underline{R} _FIN, \underline{V} _IN,T_FIN)

4. The vehicle velocity vector is corrected using an average total acceleration difference.

 \underline{V} FIN = \underline{V} IN + $\underline{D}V$ IN + .5 DT FILT (\underline{G} INT + \underline{G} OUT)

5. Finally, the vehicle position vector is corrected by:

The velocity and position vectors calculated in steps 4 and 5 constitute the required propagated state.

- B. <u>Interface Requirements</u>. The input and output required for the SUPER_G subfunction are listed in table 4.2.4.1. Required inputs for use of the ACCEL_OMORBIT function are given in section 4.2.4.1.1.
- C. <u>Processing Requirements.-</u> The SUPER G subfunction is called by the following:

ONORBIT REND R V STATE PROP

- D. <u>Constraints.</u> The SUPER G subroutine will be called to integrate the Orbiter and target state vectors during coasting and powered flight.
- B. <u>Supplementary Information</u>. A suggested implementation of the SUPER_G subroutine, in the form of a detailed flowchart, is presented in Appendix B under

SUPER G

TABLE 4.2.4.1.- SUPER_G INPUT/OUTPUT

Inlist	:/Outlist	1	
Internal Name	! External ! Name	I Input Source	! Output Destination !
GMD	I IGD	! ONORBIT_REND_R_V_ ! STATE_PROP	! !
GMO	i IGO	ONORBIT_REND_R_V_	
DM	! IDRAG	! ONORBIT_REND_R_V_ ! STATE_PROP	: ! !
VM.	! IVENT	! ONORBIT_REND_R_V_ ! STATE_PROP	! !
MTM	ATFL_OV	! ONORBIT_REND_R_V_ ! STATE_PROP	! !
R_IN	R_FILT	! ONORBIT_REND_R_V_ ! STATE_PROP	! !
A TIN	Y_FILT	! ONORBIT_REND_R_V_ ! STATE_PROP	: ! !
T_IN	T_LAST_FILT	! ONORBIT_REND_R_V_ ! STATE_PROP	! !
T_FIN	! T_CURRENT_ ! FILT	! ONORBIT_REND_R_V_ ! STATE_PROP	! !
DT_FILT	DT_FILT	! ONORBIT_REND_R_V_ ! STATE_PROP	- ! !
<u>D</u> V_IN	DV_FILT	! ONORBIT_REND_R_V_ ! STATE_PROP	! !
C2MD	! GM_DEG	! ONORBIT_REND_R_V_ ! STATE_PROP	- ! !
QMO	I GM_ORD	! CNORBIT_REND_R_V ! STATE_PROP	- ! !
	1	! !	1 1

TABLE 4.2.4.1. - SUPER_G INPUT/OUTPUT. - Continued

Inlist/Outlist			
Internal Name	! External ! Name	! Input Source	Output Destination
I DM	! ! DFL !	ONORBIT REND R V STATE PROP	
VM	VFL_TV	ONORBIT_REND_R_V_	
ATM	! ! ATFL_TV !	ONORBIT_REND_R_V_	
<u>r</u> _in	<u>R</u> _TV	ONORBIT_REND_R_V_	
<u>v</u> _in	<u> </u>	ONORBIT_REND_R_V_	
T_IN	i T_TV	ONORBIT_REND_R_V_	
T_FIN	: T_CURRENT_ ! FILT	! ONORBIT_REND_R_V_ ! STATE_PROP	
DT_FILT	DT_FILT	ONORBIT_REND_R_V_	
<u>D</u> V_IN	TDV_FILT	ONORBIT_REND_R_V_ STATE_PROP	
! ! R_FIN	! ! R_FILT !	! ! !	ONORBIT_REND_R_V_
! <u>V</u> _PIN	! ! <u>V</u> PILT !	: ! !	ONORBIT_REND_R_V_ STATE_PROP
G _OUT	! ! <u>G</u> _NEW !	T 1 1	! ONORBIT_REND_R_V_ ! STATE_PROP
R_FIN	: ! ! <u>R</u> _TV !	! ! !	ONORBIT_REND_R_V_ STATE_PROP

TABLE 4.2.4.1.- SUPER_G INPUT/OUTPUT.- Continued

0

! Inlist/Outlist ! ! Internal ! External !		! Input Source	 Output Destination !
l Name	! Name	t input source	output restriction
<u>v</u> _fin	! ! <u>V</u> _TV !		ONORBIT_REND_R_V_ STATE_PROP
i <u>G</u> _out	! <u>G</u> _TV !		ONORBIT_REND_R_V_
[]	1 ! !		
 	1 1 1	! ! !	
! !	! ! !		
	1 ! !	! !	
	: ! !	: ! !	
! ! !	! !	! !	
 	1 1 1	! !	! ! !
! !	! ! !	! ! !	
 	! ! !	! ! !	
: ! !	1 1 1	: ! !	
! !	: ! !	: ! !	

TABLE 4.2.4.1. - SUPER_G INPUT/OUTPUT. - Concluded

! ! Variable Name !	! Input Source	! Output Destination !
I GMD	1	I ACCEL_ONORBIT
GMO ·		ACCEL_ONORBIT
I DM		ACCEL_ONORBIT
I VM	1	ACCEL_ONORBIT
ATM	1	ACCEL_ONORBIT
R_IN	1	ACCEL_ONORBIT
R_FIN	•	ACCEL_ONORBIT
N IN	1	ACCEL_ONORBIT
T_IN	1	ACCEL_ONORBIT
T_FIN		ACCEL_ONORBIT
+	ACCEL_ONORBIT	; !
; { }	1	; 1
: !		•
6 6 6	1	
1	i	! !
! !	!	! !
; }	•	; !
: *	!	; !
ī 1	1	I
; {		! !
: !	!	! !

tOnly the value of $\underline{A}CCEL_ONORBIT$ is passed

- 4.2.4.1.1 Acceleration models (ACCEL_CNORBIT). During orbital operations, models to account for gravitational, vent and thrust, and vehicle aerodynamic drag accelerations shall be available. These models are to be used in the Orbiter state vector propagation whenever the IMU sensed acceleration magnitude is below a given threshold level. When the sensed acceleration magnitude is above the threshold level, the gravitational acceleration model only will be used. In the Orbiter state prediction mode, only the gravitational and drag acceleration models may be used. During propagation or prediction of a target vehicle state, the gravitational and drag acceleration models may be used. Additionally, during the target state propagation mode, capability exists to incorporate the unmodeled acceleration biases as determined by the Kalman filter in REND_NAV_FILTER.
- A. <u>Detailed Requirements</u>. This function is activated whenever the statement <u>ACCEL_ONORBIT (GMD,GMO,DM,VM,ATM,R,V,T)</u> is encountered,

where:

- GMD input degree of Earth gravitational potential model (ACCEL_EARTH_GRAV)
- GMD input order of Earth gravitational potential model (ACCEL_EARTH_GRAV)
- IM flag indicating use (1) or non-use (0) of vehicle drag acceleration model (ACCEL_ONORBIT_DRAG)
- VM flag indicating use (1) or non-use (0) of vent ind thrust model (ACCEL_ONORBIT_VENT_AND_THRUST)
- ATM attitude mode flag (used when DM and/or VM are set to 1.)
- R position vector of vehicle in M50 coordinates
- velocity vector of vehicle in M50 coordinates
- T position and velocity vectors time tag

The following steps will be performed (in the order indicated) whenever the ACCEL_ONORBIT function is activated.

1. The values of <u>G</u>, the gravitational acceleration due to the <u>Barth's non-spherical shape</u>, <u>D</u>, the drag model acceleration vector, and <u>VENT</u>, the acceleration due to vent and thrusting shall be initially nulled.

 The current Earth fixed to M50 transformation FIFTY will be constructed.

Here, the EARTH_FIXED_TO_M50_COORD function is defined in section 4.10.2.

Next the input M50 position vector will be transformed to Earth fixed coordinates.

Components of the Earth fixed position unit vector will be determined by the following:

$$R_{INV} = 1./|R|$$

F3

The acceleration vector due to the Earth's gravitational attraction as a point mass will be determined by:

2. Next the value of GMD shall be tested to determine if the gravitational acceleration vector due to the Earth's non-sphericity (\underline{G}) shall be determined.

- a. If GMD is equal to or greater than 2, the ACCEL_EARTH_GRAV code will be executed which is a model formulated using S. Pines' spherical harmonics development.
 - (1) The following variables are to be set up to serve as starting values for recursive relations used in the Pines formulation:

$$A_{1,2} = 3. UR_3$$

$$A_{2,2} = 3.$$

L = 1

F3 This equation shall be protected against division by zero (Reference 3.6-3).

AUXILIARY = 0.

ZETA REAL 1 = 1.

ZETA IMAG1 = 0.

A is a two-column array used for temporary storage of Legendre polynomials and derived Legendre functions (which are latitude-dependent terms), and RO_N is the distance-related term. AUXILIARY is an intermediate scalar variable.

(2) Recursive calculations shall then proceed, using as many components of the one-column arrays ZETA_REAL and ZETA_IMAG as required to account for the effects of tesseral harmonics.

ZETA_REAL and ZETA_IMAG are the only terms that depend on the vehicle's longitude.

Do for I = 1 to GMO:

ZETA_REALI+1 = UR 1 ZETA_REALI - UR2 ZETA_IMAGI

 $ZETA_IMAG_{I+1} = UR_1 ZETA_IMAG_I + UR_2 ZETA_REAL_I$

(3) The derived Legendre functions shall then be obtained by means of recursion formulas, multiplied by appropriate combinations of tesseral harmonics (Legendre polynomials shall be multiplied by zonal harmonics coefficients), and stored as certain auxiliary variables F1, F2, F3, and F4.

Do for N = 2 to GMD the following three steps:

- $A_{N+1,1} = 0$. $A_{N+1,2} = (2. N + 1.) A_{N,2}$ $A_{N,1} = A_{N,2}$ $A_{N,2} = UR_3 A_{N+1,2}$
- Do for J = 2 to N:

 $A_{N-J+1,1} = A_{N-J+1,2}$ $A_{N-J+1,2} = (UR_3 A_{N-J+2,2} - A_{N-J+2,1})/J$

- F1 = 0.

F2 = 0.

 $F3 = -A_{1,1}$ ZONALN

 $F4 = -A_{1,2} ZONAL_N$

(These account for the zonal harmonics contributions.)

(4) If the maximum order of tesserals wanted has not been attained (i.e., if $N \le GMO$), do for N1 = 1 to N:

F1 = F1 + N1 AN1.1 (CL CETA_REALN1 + SL ZETA_IMAGN1)

 $F2 = F2 + N1 A_{N1,1} (S_L ZETA_REAL_{N1} - C_L ZETA_IMAG_{N1})$ $DNM = C_L ZETA_REAL_{N1+1} + S_L ZETA_IMAG_{N1+1}$ $F3 = F3 + DNM A_{N1+1,1}$ $F4 = F4 + DNM A_{N1+1,2}$ L = L + 1

(These take into account the contributions of the tesseral and sectorial harmonics.)

(5) RO_N = RO_N RO_ZERC

G₁ = G₁ + RO_N F1

G₂ = G₂ + RO_N F2

G₃ = G₃ + RO_N F3

AUXILIARY = AUXILIARY + RO_N F4

(These equations multiply the sum of zonal and tesseral effects by appropriate distance-related factors, store the results as components of the acceleration vector $\underline{\mathbf{G}}$, and prepare for final computation by obtaining the intermediate scalar variable AUXILIARY, which accounts for an additional effect proportional to the unit radius vector $\underline{\mathbf{U}}$ R).

b. Once these calculations have been completed (N \approx QMD) and stored, the Earth-fixed acceleration vector shall be obtained and rotated to the M50 coordinate system.

G = G - AUXILIARY UR

G = FIFTY G

This is the gravitational acceleration vector needed for equations of motion of the Shuttle. Values of GMD and of GMO may be set by the user independently. However, it is necessary that GMO \leq GMD. A maximum value of 4 for GMD shall be used, which will make the array ZOHAL have 4 components, the arrays C and S have 9 components each, ZETA_REAL and ZETA_IMAG have 5 each, and A has a maximum dimension of 5 by 2.

Terms shown in Earth's gravity calculations as C_L and S_L are usually represented by $C_{n,m}$ and $S_{n,m}$, respectively, but were renumbered for single subscript utilization; the terms called ZOMAL_N correspond to $J_N = -C_{N,Q}$.

The S. Pines formulation of gravitational potential may be found, in condensed form, in the paper "Uniform Representation of the Gravitational Potential and its Derivatives," AIAA Journal, Vol. 11, No. 11, November 1973. In expanded form, and with an earlier draft of the computer program herein presented, it is contained in MDC Report W0013, NASA CR 14/478, of 9 February 1976, Pines' Nonsingular Gravitational Potential: Derivation, Description and Implementation.

3. Next a test will be performed to determine if vent and thrust accelerations are to be modeled. It should be noted that the vent and thrust acceleration model is used only during state propagation (i.e., this model is not used for Orbiter or target vehicle state prediction).

- a. If VM is equal to 1, vent and thrust accelerations are to be modeled for use during Orbiter or target vehicle propagations. The ACCEL_ONORBIT_VENT_AND_THRUST CODE will be executed as follows:
 - (1) A check of the ATM flag will be made to determine if the modeled vent and thrust acceleration will apply to the Orbiter state propagation (ATM = 0), or target vehicle propagation (ATM = 2).

- If ATM is equal to 2, the vent and thrust acceleration is for the target vehicle. A check of the SHUITLE_FILTER_FLAG will be made to determine if the unmodeled acceleration bias (UNMOD_ACC_BIAS) applies to the Orbiter (SHUTTLE_FILTER_FLAG = ON), or the target vehicle (SHUTTLE_FILTER_FLAG = OFF).

SHUTTLE_FILTER_FLAG = OFF

If the Shuttle filter flag is OFF, the target vehicle vent and thrust vector (VEMT) will be set equal to the unmodeled acceleration bias; otherwise the value of VENT will remain at its initialized value. The value of UNMOD ACC BIAS is determined in the Onorbit/Rendezvous Navigation principal function by the Kalman filter. The bias acceleration is applicable to either the Shuttle or target vehicle as indicated by setting of the SHUTTLE FILTER FLAG as mentioned above.

- If the value of ATM does not equal 2 in step 3a(1), the vent and thrust modeled acceleration will be for the Orbiter. The value of the SHUTTLE_FILTER_FLAG will next be checked

! SHUTTLE_FILTER_FLAG ! = ON and if on, the vent and thrust acceleration vector YENT is set equal to UNMOD_ACC_BIAS.

VENT=UNMOD_ACC_BIAS

(2) The value of time (T) is tested to determine if it lies within the vent and thrust model action time span as specified by the values of TFON and TFOFF,

! T > TFON ! and ! T < TFOFF

and if so, a body contact force vector (VFORCE) and the current Orbiter mass (NAV_CURR_ORB_MASS) will be used to construct the Orbiter venting and acceleration vector. A multiplication by M_BODYM50 transforms the vector from body to M50 coordinates. This acceleration vector is then added to VENT.

VENT = VENT + M BODYM50 (VFORCE/NAV_CURR_ORB_MASS) F3

- The value <u>VENT</u>, the Orbiter vent and thrust modeled acceleration vector, is stored as <u>VENT_SS</u> to be available for downlist.
- 4. After the ACCEL_ONORBIT_VENT_AND_THRUST logic has been satisfied, the drag model flag (DM) shall be tested

! DM = 1

and if true (DM = 1), the vehicle drag acceleration vector shall be determined.

a. The first step to be performed in the vehicle drag computational flow will be to exercise the SOLAR_EPHEM subfunction by the following:

CALL: SOLAR EPHEM

INLIST: T

OUTLIST: SDEC, CDEC1, COS SOL_RA, SIN SOL_RA

F3 This equation shall be protected against division by zero (Reference 3.6-3).

Where:

CDEC1 = cosine of the solar declination

COS_SOL_RA = cosine of the solar right ascension

SDEC = sine of the solar declination

SIN_SOL_RA = sine of the solar right ascension

T = time of desired computation

b. Next the ONORBIT_DENSITY code will be exercised to provide the atmospheric density value associated with the vehicle position. This section of code is initiated with determination of the vehicle altitude (ALT) above the reference ellipsoid through use of the H_ELLIPSOID function (see section 4.2.4.1.1.1).

 $ALT = H_ELLIPSOID(R)$

where R is the vehicle M50 position vector.

(1) The next series of expressions will be performed to determine GDI, one of the Babb-Mueller atmospheric density diurnal factors.

CDEC1 = CDEC1 R_INV
SDEC = SDEC R_INV R₃

CSFST = R₁ COS_SOL_RA COS_LAG

CSSND = R₁ SIN_SOL_RA SIN_LAG

SIFST = R₂ SIN_SOL_RA COS_LAG

SSND = R₂ COS_SOL_RA SIN_LAG

COS_PSI = SDEC + CDEC1 (CSFST-CSSND + SIFST + SSND)

GDI = ((1.0 + COS_PSI)/2.0)

where COS_LAG, SIN_LAG and GDIE are design dependent parameters (see section 4.7).

(2) A check of the vehicle altitude above the reference ellipsoid (ALT) will be made to see if it is greater than ALT_L (the Babb-Mueller density layer altitude).

If the statement is true, the layering index integer K will be set to 2; otherwise K will be set to 1.

(3) The night-time vertical density profile factor (AFH) will be determined

 $AFH = ABM_{1,K} + ABM_{2,K} ALT + ABM_{3,K} / ALT$ F3

where $ABM_{1\ TO\ 3,K}$ are mission dependent calibration coefficients (see section 4.7). The diurnal density effect will be determined next.

$$BFH = (BM_1 + BM_2 ALT + BM_3/ALT) GDI$$

F3

The BM₁ $_{70~3}$ are mission dependent calibration coefficients (see section 4.7). A seasonal-latitudinal term will be determined as follows,

CBM1 = ALT - C_DENSEA

 $CBM1 = (CBD1(R^{-}INV)^{2} ABS (R_{3})R_{3})CBM1 EXP (CBD2 CBM1)$

C_DENSEA, CBD1 and CBD2 are design dependent parameters (see section 4.7).

· (4) The atmospheric density will now be determined as

RHO = RREF EXP (AFH + BFH + CBM1 CBM2)

Here RREF is a design dependent parameter and CBM2 is a seasonallatitudinal mission dependent parameter (see section 4.7).

c. Next the ACCEL_ONORBIT_DRAG code will be executed using the atmospheric density value of (RHO) previously determined. The code will begin with calculation of the vehicle velocity vector in Earth-relative M50 coordinates as determined by

$$\underline{V} R = \underline{V} REL (\underline{V}, \underline{R})$$

where \underline{V} REL $(\underline{V},\underline{R})$ is the Earth relative velocity function (see section 4.2.4.1.1.2), and $\underline{V},\underline{R}$ are the vehicle velocity and position vectors in M50 coordinates.

(1) A test to determine if ATM is greater than 0 is performed:

! ATM > 0

- If ATM is greater than 0, a second test will be performed to determine if ATM is equal to 1.

ATM = 1

F3 This equation shall be protected against division by zero (Reference 3.6-3).

If ATM is equal to 1, the drag computation will be for Orbiter state prediction and will use the following configuration parameters:

VEH_MASS = PRED_ORB_MASS CD = PRED_ORB_CD AREA = PRED_ORB_AREA

The values of PRED_ORB_MASS, PRED_ORB_CD and PRED_ORB_AREA to be used will be determined by that principal function which initiates a call to the Onorbit predictor.

If in the test of ATM, ATM does not equal 1, the ensuing drag computation will be used for a target vehicle state propagation or prediction mode. The following configuration parameters will be set:

VEH_MASS = TARGET_MASS CD = TARGET_CD AREA = TARGET_AREA

Here TARGET MASS, TARGET_CD and TARGET_AREA are mission dependent parameters (I-LOAD parameters - section 4.7).

(2) If in the test of ATM, ATM is not greater than 0, the computation of drag will be used for Orbiter state propagation.

In the above event, VEH_MASS and AREA will be designated by:

VEH_MASS = NAV_CURR_ORB MASS AREA = REF_ORB_AREA

where NAV_CURR_ORB_MASS was set by NAV_ONORBIT_RENDEZVOUS and REF_ORB_AREA is a design dependent parameter (see section 4.7).

The coefficient of drag, CD, shall be determined as follows for Orbiter state propagation.

- First, <u>V</u> REL_BODY, the vehicle velocity vector relative to the atmosphere, but expressed in body coordinates, is determined as:

 \underline{V} _REL_BODY = $(\underline{M}$ _BODYM50) $^{\underline{T}}$ \underline{V} _R

where M_BODYM50 is the transformation matrix of body to M50 coordinates and \underline{V} R has been determined in c.

- Next the square of the sine of the vehicle angle of attack (SA) will be determined as:

$$SA = (V_REL_BODY_3)^2/(V_REL_BODY_1^2 + V_REL_BODY_3^2)$$
 F3

The sine of the vehicle sideslip angle, SB, will be determined by the following:

$$SB = |V_RCL_BODY_2|/|V_R|$$
 F3

The sine of twice the sideslip angle S2B will be determined by:

$$S2B = 2. SB SQRT (1.-SB2)$$
 F4

- The Orbiter coefficient of drag CD may now be determined as:

The vehicle configuration constants CDF,CDN,EXP_SHAPE_FACTOR, CDS and CDA are design dependent parameters (see section 4.7). KFACTOR is the drag coefficient adjustment factor and is mission dependent (see section 4.7) and included as an uplink parameter (see section 4.9). The parameter KFACTOR is included to allow adjustments to the vehicle drag coefficient due to configuration parameter uncertainties, atmospheric density model deviations or other causes during Orbiter state propagation.

(3) After vehicle parameters VEH MASS, AREA and CD have been determined by one of the logic paths of 4c(1) or of 4c(2) as dictated by the value of the ATM flag, a vehicle drag acceleration vector D in M50 coordinates will be determined by:

$$\underline{D} = -0.5$$
 CD RHO AREA $| \underline{V}_R | \underline{V}_R / VEH_MASS$ F3

(4) If the drag acceleration <u>D</u> is being computed for the Orbiter during state propagation, ATM=0, it shall be stored in <u>D</u>_SS for downlist. ALT, the vehicle altitude above the Earth's reference ellipsoid, will be also saved in ALT_SS for downlist.

F3 This equation shall be protected against division by zero (Reference 3.6-3).

F4 This equation shall be protected against square roots of a negative number (Reference 3.6-4).

5. Finally, the acceleration values G, D and VENT determined by the non-spherical Earth gravitational, vehicle drag, and vent and thrust models, respectively, will be combined with the value of point mass Earth gravitational acceleration (G_CENTRAL) to result in the final ACCEL_ONORBIT function M50 output vector.

 $\underline{\underline{A}}$ CCEL_ONORBIT = $\underline{\underline{G}}$ _CENTRAL + $\underline{\underline{G}}$ + $\underline{\underline{D}}$ + $\underline{\underline{V}}$ ENT

- B. Interface Requirements. The input and output data are shown in table 4.2.4.1.1. It should be noted that ACCEL ONORBIT is treated as a function subprogram; that is, the computed value of the acceleration vector will be returned and occupy the position of the function name.
- C. <u>Processing Requirements</u>. This function subprogram shall be performed each time the function name is encountered with suitable expressions for arguments such as:

ACCEL_ONORBIT (GMD,GMO,DM,VM,ATM,R,V,T)

The ACCEL_ONORBIT function is used by the following:

SUPER G ONORBIT SV INTERP REND COV INIT PINES METHOD AVERAGE G INTEGRATOR

- D. <u>Constraints</u>. The currently functioning propagator and a predictor may need different acceleration models at the same time. It is therefore necessary that execution of the acceleration calculations be protected from interruption by other users.
- E. <u>Supplementary Information</u>. A suggested implementation of the <u>ACCEL</u> ONORBIT in the form of detailed flowcharts may be found in Appendix B under the names:

ACCFL_ONORBIT FUNCTION
ACCEL_EARTH_GRAV CODE
ACCEL_ONORBIT_VENT_AND_THRUST CODE
SOLAR_EPHEM
ONORBIT_DENSITY CODE
H_ELLIPSOID FUNCTION
ACCEL_ONORBIT_DRAG CODE
V_REL_FUNCTION

and the following from Appendix C:

EARTH_FIXED_TO_M50_COORD FUNCTION

TABLE 4.2.4.1.1.- ACCEL_ONORBIT INPUT/OUTPUT

Taliat	/0v+1 t =+	1	1
Internal	Outlist External	! Input Source	! Output Destination
lName	i External	i input source	e output bestination
WTMA	t wanne		
MTA	. ATM	! SUPER_G	i
DM		! SUPER_G	!
i (Pad)	! CEMID	! SUPER G	!
CIMO !		! SUPER_G	1
I VM		! SUPER_G	I
R T	RIN	! SUPER G	!
		! SUPER G	
<u>v</u>	<u>v</u> in	! SUPER_G	
ATM	! ATM	! SUPER G	: !
! DM		! SUPER G	1
I GMO		! SUPER G	İ
CPMD		! SUPER G	!
. VM		! SUPER G	1
! <u>R</u>	! R FIN	! SUPER_G	1
l T	! T_FIN	! SUPER_G	1
!	!	! SUPER G	!
<u>v</u>	<u>v</u> in	! SUPER_G	1
	!	!	!
ATM	! IATM	! ONORBIT_SV_INTERP	!
! DM	! IDM	! ONORBIT_SV_INTERP	1
i GMD i GMO	! IGD	! ONORBIT_SV_INTERP	1
VM	! IGO ! IVM	! ONORBIT_SV_INTERP ! ONORBIT_SV_INTERP	1
R	R RESID	! ON ORBIT_SV_INTERP	: •
T	! T RESID	! ONORBIT_SV_INTERP	1
. V	V RESID	! ON ORBIT_SV_INTERP	i
_	1	!	1
! ATM	! ATFL OV	! REND COV INIT	!
DM .	I IDRAG	! REND_COV_INIT	!
! IGD	! IGD	! REND_COV_INIT	1
IGO	! IGO	! REND_COV_INIT	!
! VM	! IVENT	! REND_COV_INIT	1
! <u>R</u>	! R_FILT	! REND_COV_INIT	1
! T	! T_LAST_FILT	! REND COV INIT	!
<u> </u>	! V_FILT	! REND_COV_INIT	I
!	I •	i .	!
1	I •	I 4	I •
; }	; 1	1 1	; !
1	; •	1	i •
	<u> </u>		<u> </u>

TABLE 4.2.4.1.1.- ACCEL_ONORBIT INPUT/OUTPUT.- Continued

0

! Inite			
! Internal! Name	! External ! Name	Input Source	Output Destination
I ATM I DM I IGD I IGO I IGO I T I DM I DM I V I T I DM I GMD I GMD I T I VM I VM I VM I VM I VM I T	! ATFL_TV ! DFL . ! GM_DEG ! GM_ORD ! R_TV ! T_TV ! VFL_TV ! VFL_TV ! U_TV ! GMD ! GMD ! GMO ! T_ACCEL ! VM ! X1to3	! REND COV INIT ! REND COV INIT ! REND COV INIT ! REND COV INIT ! REND COV INIT ! REND COV INIT ! REND COV INIT ! REND COV INIT ! REND COV INIT ! PINES METHOD ! PINES METHOD ! PINES METHOD ! PINES METHOD ! PINES METHOD ! PINES METHOD ! PINES METHOD ! PINES METHOD ! PINES METHOD	
I ATM I DM I IGD I IGO I I V I VM I ATM I DM I IGD I V I VM I IGD I IGO I I V I VM I V I VM I V I VM I V I VM I V I V I V	! X4to6 ! ATFL_OV ! DFL_AVG ! GM_DEG_LOW ! GM_ORD_LOW ! T_STATE ! V_AV ! VFLTV_PRED ! ATFL_OV ! DFL_AVG ! GM_DEG_LOW ! GM_ORD_LOW ! T_TMU ! V_AV ! T_TMU ! V_FLTV_PRED !	PINES METHOD PINES METHOD AVERAGE G INTEGRATOR	

TABLE 4.2.4.1.1. - ACCEL_ONORBIT INPUT/OUTPUT. - Continued

t Variable Name	! ! Input Source !	Output Destination
! ABM(K = 1 to 2)	**	
ALT_L	1 1 42	
BM		
<u>C</u>	; ##	
1. CBD1	***	
. CBD2	**	
! CBM2	: !	
! CDA	: !	
! CDEC1	! SOLAR_EPHEM	
C_DENSBA	; • **	
! CDF	: ! ***	
! CDN	: ! ***	
! CDS	! ! ##	
COS_LAG	1 1	
COS_SOL_RA	SOLAR_EPHRM	
! +	! EARTH_FIXED_TO_M50 ! COORD(T)	; !
EARTH_MU	i cookb(1)	
! EARTH_RADIUS_GRAV	: ! ## !	
! EXP_SHAPE_FACTOR	; *** *	
GDIE	i 44	
! !	! !	! !!

^{*}See P.F. I/O tables of section 4.2

^{**}Initialization parameters, see section 4.7

[†]The function value of EARTH_FIXED_TO_M50_COORD(T) is used

TABLE 4.2.4.1.1.- ACCEL_ONORBIT INPUT/OUTPUT.- Continued

! Variable Name	Input Source	Output Destination
KFACTOR	** ,*	
M_BODYM50	NAV_ONORBIT_RENDEZVOUS	
NAV_CURR_ORB_MASS	ONORBIT_REND_NAV_ SEQUENCER,NAV_ONORBIT_ RENDEZVOUS	
PRED_ORB_A REA	***	
PRED_ORB_CD	***	
PRED_ORB_MASS	***	
REF_ORB_AREA	**	
RRESP	88	
<u>s</u>	**	
SDEC	SOLAR_EPHEM	
SHUTTLE_FILTER_FLAG	40	
SIN_LAG	**	
SIN_SOL_RA	SOLAR_EPHEM	
TARGET_AREA	**	
TARGET_CD	**	
TARGET_MASS	**	
TFOFF	**,*	
! !		! !

^{*}See P.F. I/O table of sections 4.1, 4.2, 4.3, 4.4 and 4.5

^{**}Initialization parameters, see section 4.7

^{***}See Onorbit precision state prediction P.F. I/O

TABLE 4.2.4.1.1.- ACCEL_ONORBIT INPUT/OUTPUT.- Concluded

! Variable Name	! ! Input Source !	! Output Destination
I TFON	** ,*	
UNMOD_ACC_BIAS	POPS 2 OR 8 INITIALIZE, REND NAV EXIT, U A BIAS AND COVINIT, REND BIAS AND COV PROP, REND NAV FILTER,	
<u>v</u> force	**,*	
! ZONAL	**	
! † ! ! !		AVERAGE G INTEGRATOR, ONORBIT SV INTERP, PINES METHOD, REND COV_INIT, SUPER G
! ALT_SS		***
<u>D</u> _SS		***
G _CENTRAL		PINES_METHOD
! VENT_SS		***
! <u>R</u>		H_ELLIPSOID,V_REL
ĭ <u>X</u>		<u>v</u> _rel
I T		EARTH_FIXED_TO_M50_ COORD (T),SOLAR_EPHEM
<u> </u>	Y_REL	
: ! +	H_ELLIPSOID	
! ! !	! ! !	

^{*}See P.F. I/O tables of sections 4.1, 4.2, 4.3, 4.4 and 4.5 *Initialization parameters, see section 4.7

^{***}See P.F. I/O tables of section 4.2

¹⁰nly the value of the function is passed

- 4.2.4.1.1.1. Altitude above the reference ellipsoid (H_ELLIPSOID): Altitude above the Earth's reference ellipsoid in M50 coordinates will be determined using the H_ELLIPSOID function.
- A. <u>Detailed Requirements</u>.- Altitude above the Earth's reference ellipsoid will be calculated each time the statement H_ELLIPSOID (R) is encountered. Here R is the vehicle M50 position vector. The value of altitude above the Earth's reference ellipsoid will be determined using the following:

 $H_{ELLIPSOID(R)} =$

$$\frac{|R|}{\sqrt{1 + ((1-ELLIPT)^2 - 1) (1 - (UNIT(R) \cdot EARTH POLE)^2)}}$$
F3

where ELLIPT, EARTH_RADIUS_EQUATOR, and EARTH_POLE are constants defined in section 4.7 (Initialization parameters).

- B. <u>Interface Requirements.</u>— The input and output data are shown in table 4.2.4.1.1.1. It should be noted that only the value of H_ELLIPSOID is passed.
- C. <u>Processing Requirements.</u> The H_ELLIPSOID function will be processed each time the function name is encountered with a suitable expression for the argument such as: $H_ELLIPSOID$ (R). The $H_ELLIPSOID$ function is used by the following.

ACCEL_ONORBIT

- D. Constraints .- None
- E. <u>Supplementary Information</u>. A suggested implementation of the H_ELLIPSOID function in the form of a detailed flowchart may be found in Appendix B under the name:

H ELLIPSOID FUNCTION

F3 This equation shall be protected against division by zero (Reference 3.6-3).

F4 This equation shall be protected against square roots of a negative number (Reference 3.6-4).

TABLE 4.2.4.1.1.1.- H_ELLIPSOID INPUT/OUTPUT

Inlist/Outlist				
Internal Name	External Name	Input Source	Output Destination	
<u>R</u>	<u>R</u>	ACCEL_ONORBIT (ONORBIT_DENSITY CODE)		
! ! !				
! ! ! !				
t t t	! ! !		! ! !	
† † † !	1 ! ! !	1 ! ! ! !	1 1 1 1	
1 1 1 1	! ! ! ! !	! ! ! !	1 1 1 1	
! ! ! !	Y ! ! ! !	! ! ! !	! ! ! !	
! ! ! !	! ! ! !	† † † †	1 1 1 1	
! !	! !	! !	! !	

TABLE 4.2.4.1.1.1.- H_ELLIPSOID INPUT/OUTPUT.- Concluded

Variable Name	! Input Source !	! Output Destination !
EARTH_POLE	***	
BARTH_RADIUS_EQUATOR	**	1
ELLIPT	##	1
i †		ACCEL_ONORBIT
	! !	!
!	! !	1
		1
!	i !	1
!	1 1	1
! !	! !	† †
		1 1
	! !	1
	<u>.</u>	1 1
l 1	! !	1
	!	1
	! !	1 · · · · · · · · · · · · · · · · · · ·
	! !	; 1
!	! !	1
	!	!!
<u> </u>	! !	!

^{**}Initialization parameters, see section 4.7
†The value of H_ELLIPSOID only is passed to output destination

- 4.2.4.1.1.2 Earth relative velocity computation $(V_REL)_1$. The velocity vector relative to the Earth but expressed in M50 coordinates will be determined using the V_REL function.
- A. Detailed Requirements.— The function is activated whenever the statement $V_REL(V,\underline{R})$ is encountered. The function arguments are the M50 velocity vector (V) and M50 position vector (\underline{R}) . The vector V_REL is determined by the following:

 $V_{REL}(V,R) = V - EARTH_RATE (EARTH_POLE \times R)$

where EARTH RATE and EARTH POLE are constants defined in section 4.7 (Initialization parameters).

- B. Interface Requirements. The input and output data are shown in table 4.2.4.1.1.2. It should be noted that only the value of V_REL is passed.
- C. Processing Requirements.— The V_REL function will be processed each time the function name is encountered with a suitable expression for the arguments such as $V_REL(V,R)$. The V_REL function is used by ACCEL_ONORBIT
- D. Constraints .- None
- E. <u>Supplementary Information</u>. A suggested implementation of the V_REL function in the form of a detailed flowchart may be found in Appendix B under the name:

V_REL FUNCTION

TABLE 4.2.4.1.1.2.- V_REL_INPUT/OUTPUT

t/Outlist	I Input Source	
f External f Name		Output Destination
! ! <u>R</u> !	! ACCEL_ONORBIT ! (ACCEL_ONORBIT_DRAG ! CODE)	in de la composition br>En la composition de la composition de la composition de la composition de la composition de la composition de
1 V 1	ACCEL_ONORBIT DRAG (CODE)	
! ! !		÷
i ! !	!	! !
1 1	1	
! ! !	1	
i !	1 1	
1	1 1	
	! External Name ! R ! !	! External ! Input Source ! Name ! ! ACCEL_ONORBIT ! (ACCEL_ONORBIT_DRAG ! CODE) ! ACCEL_ONORBIT ! ACCEL_ONORBIT ! ACCEL_ONORBIT DRAG ! (ACCEL_ONORBIT_DRAG

TABLE 4.2.4.1.1.2. - V_REL INPUT/OUTPUT. - Concluded

Variable Name	Input Source	Output Destination
ARTH_POLE		
EARTH_RATE		
•		! ACCEL_ONORBIT ! (ACCEL_ONORBIT_DRAG ! CODE)
	1 1	! !
	t t	1
		! !
	7 1 1	I ! !
		! !
	1	† †
		!
	: !	: ! !
	1	! !
	1	! !
		! !
		† †
	1	: !
	!	†
	1	: !
	1	!

^{***}Initialization parameters, see section 4.7 $+\underline{V}$ _REL value only is passed to output destinations

4.2.4.1.1.3 Solar ephemeris model (SCLAR EPHEM)

Output from the solar ephemeria model will provide sine and cosine functions of the solar right ascension and declination. These outputs are to be used in the acceleration models (ACCEL_ONORBIT) for determination of atmospheric density and in position and velocity state propagation (ONORBIT_REND_R_V_STATE_PROP) for computation of a unit vector from earth center to the center of the sun in MSO coordinates to be available for the universal pointing processing principal function.

A. Detailed Requirements.

The solar ephemeris subfunction shall be invoked whenever the following statement is encountered:

CALL: SOLAR EPHEM

IN LIST: T

OUT LIST: SDEC, CDEC1, COS_SOL_RA,SIN_SOL_RA

where:

CDEC1 = cosine of the solar declination COS_SOL_RA = cosine of the solar right ascension SDEC = sine of the solar declination SIN_SOL_RA = sine of the solar right ascension T = time of desired computation

The SOLAR_EPHEM subfunction will initiate the following calculations in the indicated order:

1. The longitude of the Sun in M50 coordinates, LOS, will be determined as

LOS = LOS ZERO + T LOS R - LOC SIN(T OMEG C + PHASE C). F9

Here, LOS_ZERO,LOS_R,LOS,OMEG_C and PHASE_C are design dependent parameters (see section 4.7).

2. The sine and cosine of the solar declination SDEC and CDEC1 are calculated by

SDEC = LCSK3 SIN(LOS)
CDEC1 = SQRT(1. - SDEC²)

F9

FU

 F^{4} This operation shall be protected against square roots of a negative number (Reference 3.6-4).

F9 This equation shall be protected against return value of sine or cosine with magnitude greater than unity (Reference 3.6-9).

F9,F3

F3

3. The cosine and sine of the solar right ascension are determined by

COS_SOL_RA = COS(LOS)/CDEC1
SIN_SOL_RA = LOSK1 SIN(LOS)/CDEC1

LOSK1 and LOSK3 are design dependent parameters (see section 4.7).

- B. <u>Interface Requirements</u>. The input and output required of the SOLAR EPHEN subfunction are listed in table 4.2.4.1.1.3.
- C. <u>Processing Requirements</u>. The SOLAR_EPHEM subfunction shall be called by the acceleration subfunction program ACCEL_ONORBIT and the ONORBIT_REND_R_V_STATE_PROP.
- D. Constraints. None
- E. <u>Supplementary Information</u>. A suggested implementation of the SOLAR_EPHEM function in the form of a detailed flowchart may be found in Appendix B under the name:

SOLAR_EPHEM

F3 This equation shall be protected against division by zero Reference 3.6-3).

F9 This equation shall be protected against return value of sine or cosine with magnitude greater than unity (Reference 3.6-9).

TABLE 4.2.4.1.1.3- SOLAR_EPHEM INPUT/OUTPUT

i Inlis	t/Outlist	National state of the state	Markey of Lephage
	External Name	Input Source	Output Destination
t t T	T	ACCEL_ONORBIT	
T	T_CURRENT_	ONORBIT_REND_R_V_ STATE_PROP	
COEC1	CDEC1		ACCEL_ONORBIT
COS_SOL_RA	COS_SOL_RA		ACCEL_ONORBIT
SDEC	SDEC .		ACCEL_ONORBIT
SIN_SOL_RA	SIN_SOL_RA		ACCEL_ONORBIT
COEC1	CDE C1		ONORBIT_REND_R_V_ STATE_PROP
OS_SOL_RA	COS_SOL_RA		ONORBIT REND R V STATE PROP
SDEC	SDEC		ONORBIT_REND_R_V_ STATE_PROP
! ! SIN_SOL_RA ! !	SIN_SOL_RA		ONORBIT_REND_R_V_ STATE_PROP
! !	!		
t !	1	!	1
! !			
!	!		
	! !	•	
	'		
	!		
! !	!		
		!	

TABLE 4.2.4.1.1.3.(Conoluded)- SOLAR_EPHEM INPUT/OUTPUT

Variable Name	! Input Source	Output Destination
roc	••	
LOSK 1	**	
LOSK3	**	
LOS_R	**	
LOS_ZERO	**	
OMEG_C	**	
PHASE_C	1 44	
		4
	1 1	
	1 1	
	1 1	
	!!!!!!	
	!!!!!!!!	
	1 1	
	!	

^{**} Initialization parameters, see section 4.7

4.2.5 Unmodeled Acceleration State and Covariance Matrix Propagation (REND_BIAS_AND_COV_PROP)

The unmodeled acceleration state and covariance matrix propagation subfunction will be executed only during the rendezvous navigation phase and will be scheduled by the Onorbit/Rendezvous control subfunction, ONORBIT_RENDEZVOUS_NAV, at an N_CYCLE multiple of the state propagation rate. The rate at which this subfunction is executed will be called the filter subcycle rate. The following tasks will be performed during each execution.

- If IMU sensed accelerations were used at any time during the previous covariance propagation interval but are not used at all during the current propagation interval, or if IMU sensed accelerations were not used at all during the previous covariance propagation interval but are used at some time during the current propagation interval, then the unmodeled acceleration bias vector as well as the unmodeled acceleration portions of the covariance matrix are reinitialized.
- The unmodeled acceleration bias vector will be propagated to current time as an exponentially correlated random variable (ECRV).
- A 13-by-13 covariance matrix, E, shall be propagated to current time by using a state transition matrix.
- Additive process noise will be incorporated into the covariance matrix to account for unmodeled state and dynamic errors.
- Finally, a flag (NAV_MEAS) is set to ON, to allow measurement incorporation, only if the magnitude of the IMU sensed acceleration vector is below a design dependent threshold.

The 13-by-13 state transit on matrix ϕ is mathematically defined as the partial of the current state with respect to the previous state. For propagation of the filter vehicle covariance matrix, ϕ will be formulated as shown below.

	! ! !	PHI 6x9	03x4
φ =	1 ! !		1 0 _{3x} 4
	1 0 _{3x6}	PHI_UNMOD_ACC	03x4
	! ! 04x6	! 04x3 !	PHI_BIAS

State Transition Matrix Composition

The submatrices ϕ_1 to 9, 10 to 13, ϕ_7 to 9, 1 to 6, and ϕ_{10} to 13, 1 to 9 are null matrices.

The state noise matrix, NOISE, shall be formulated as shown below. The matrix is to be used to account for unmodeled state errors, unmodeled acceleration errors, and sensor bias errors.

NOISE = | 0 6x3 | 0 6x4 | 0 3x4 | 0 4x6 | 0 4x3 | 15 BIAS

State Noise Matrix Composition

The submatrices NOISE $_1$ to $_6$, $_7$ to $_{13}$, NOISE $_7$ to $_9$, $_1$ to $_9$, $_1$ to $_9$, and NOISE $_{10}$ to $_{13}$. $_1$ to $_9$ are null matrices.

The above formulations for both the state transition and the state noise transition matrices were made for clarity and code efficiency.

The unmodeled acceleration state and covariance matrix propagation subfunction will also propagate the unmodeled acceleration bias states as ECRV's.

- A. <u>Detailed Requirements</u>.- The following steps shall be performed:
 - 1. If there has been a change in the value of the COV_PWRD_FLT flag (COV_PWRD_FLT = CN indicates that the sensed delta velocity has exceeded a threshold value since the previous covariance propagation cycle) since the last filter cycle, then reinitialize the unmodeled acceleration states.
 - a. EXECUTE: UNMOD_ACC_REINIT CODE
 - (1) Zero the unmodeled acceleration state portions of the covariance matrix.

- (2) Set up the time constants and variances as a function of the COV_PWRD_FLT flag.
 - If the sensed delta velocity is above the threshold

(COV_PWRD_FLT = CN), then
TAU_UHMOD_ACC_COV = TAU_U_A_PWRD_FLT
VAR_UMMOD_ACC = VAR_U_A_PWRD_FLT
COV_ACCEL_UVW_INIT = COV_U_A_PWRD_FLT

- If the sensed delta velocity is less than or equal to the threshold (COV_PWRD_FLT = OFF), then

TAU_UNMOD_ACC_COV = TAU_U_A_COAST VAR_UNMOD_ACC = VAR_U_A_COAST COV_ACCEL_UVW_INIT = COV_U_A_COAST

- (3) Reinitialize the unmodeled acceleration biases and the unmodeled acceleration slots of the covariance matrix.
 - If the Shuttle is the filter vehicle (SHUTTLE_FILTER_FLAG = ON), then

CALL: U_A_BIAS_AND_COVINIT IN LIST: R_FILT, V_FILT

(Refer to section 4.2.5.1 for detailed requirements.)

If the target is the filter vehicle (SHUTTLE_FILTER_FLAG = OFF), then

CALL: U_A_BIAS_AND_COVINITIN LIST: R_TV, Y_TV

(Refer to section 4.2.5.1 for detailed requirements.)

- (4) Save the last value of COV_PWRD_FLT.
 COV_PWRD_FLT_LAST = COV_PWRD_FLT
- 2. Compute the change in time since the last covariance propagation subcycle

DT_COV = T_CURRENT_FILT - T_COV_LAST

where T_COV_LAST is the time of the last covariance matrix propagation subcycle. Also TOT_ACC, the total acceleration vector for the Shuttle, shall be calculated for use in the state vector interpolation routine

 \underline{TOT} $\underline{ACC} = \underline{G}$ $\underline{NEW} + \underline{DV}$ \underline{COV} \underline{DT} \underline{COV}

F3

where \underline{DV} _COV is the total accumulated sensed delta velocity since the time of the last covariance matrix propagation subcycle and \underline{G} _NEW is the Shuttle acceleration vector.

F3 This equation shall be protected against division by sero (Reference 3.6-3).

- 3. The SHUTTLE FILTER FLAG is tested to determine which vehicle is used to calculate the 6-by-6 submatrix, PHI 1 to 6, 1 to 6 (\$\phi\$1 to 6, 1 to 6), composed of the filter vehicle position and velocity portion of the total state transition matrix. This submatrix is calculated by calling the mean conic partials subfunction (described in section 4.2.5.2).
 - a. If the Shuttle is the filter vehicle

(SHUTTLE_FILTER_FLAG = ON)

(1) CALL: MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6x6

IN LIST: n LAST, V LAST, TOT ACC LAST, R FILT, Y FILT, TOT ACC, DT COV

OUT LIST: PHI1 to 6, 1 to 6

(2) Compute a UVW to mean of 1950 transformation matrix for the Shuttle for use in the state noise formulation.

 $MAT = UVW_TO_M50 (R_FILT, V_FILT)$

(Refer to section 4.10.10 for a detailed description.)

The current inertial Orbiter vehicle acceleration shall be saved for the next filter subcycle

TOT_ACC_LAST = TOT_ACC

b. If the target is the filter vehicle

(SHUTTLE_FILTER_FLAG = OFF)

(1) CALL: MEAN CONIC PARTIAL TRANSITION MATRIX 6x6

IN LIST: $\frac{R}{G}$ _TV_LAST, $\frac{V}{U}$ _TV_LAST, $\frac{G}{U}$ _TV, $\frac{V}{U}$ _TV, $\frac{V}{U}$ _TV,

OUT LIST: PHI1 to 6, 1 to 6

(2) Compute a UVW to mean of 1950 transformation matrix for the target vehicle for use in the state noise formulation.

 $MAT = UVW_TO_M50 (R_TV,V_TV)$

(Refer to section 4.10.10 for a detailed description.)

The current inertial target vehicle acceleration vector shall be saved for the next filter subcycle.

G _TV_LAST = G _TV

4. Calculate a scalar, PHI_UNMOD_ACC, which will be stored into the diagonal elements of the unmodeled acceleration bias portion of the state transition matrix (ϕ 7 to 9, 7 to 9)

F2

A value used to compute the : emainder of the PHI matrix is also calculated.

DIAG = TAU_UNMOD_ACC_COV (1. - PHI_UNMOD_ACC)

where DIAG is in mean of 1950 coordinates.

5. The unmodeled acceleration bias states shall be propagated as ECRV's as follows:

UNMOD_ACC_BIAS = exp(-DT_COV/TAU_UNMOD_ACC_STATE . UNMOD_ACC_BIAS) F2

6. Calculate a 3-by-3 diagonal matrix S_UNMOD_ACC (MOISE7 to 9,7 to 9) composed of the unmodeled acceleration errors where

 $S_{UNMOD_ACC_{I,I}} = VAR_{UNMOD_ACC_{I}}(1._-PHI_{UNMOD_ACC}^2)$ (for I = 1 to 3) $S_{UNMOD_ACC} = MAT S_{UNMOD_ACC} = MAT^T$

and MAT is the UVW to mean of 1950 coordinate transformation matrix for the filter vehicle.

7. Calculate a 6-by-3 submatrix, PHI $_1$ to 6,7 to 9 (ϕ 1 to 6,7 to 9), composed of two 3-by-3 diagonal submatrices that correlate the position and velocity with the estimated unmodeled accelerations where

PHI I+3,I+6 = DIAG PHI I,I+6 = TAU_UNMOD_ACC_COV (DT_COV-DIAG)

(for I = 1 to 3)

8. Calculate a vector, PHI_BIAS, which will be stored into the diagonal elements of the sensor bias portion of the total state transition matrix (\$\phi\$ 10 to 13.10 to 13).

 $PHI_BIAS_I = exp (-DT_COV/TAU_SENS_I)$

(for I = 1 to 4)

F2

F2 This equation shall be protected against floating point underflow (Ref. 3.6-2).

9. Calculate a vector, \underline{S} BIAS, which will be stored into the diagonal elements of the sensor bias portion of the total state noise matrix (NOISE10 to 13.10 to 13)

$$S_BIAS_I = VAR_SENS_I (1. - PHI_BIAS_I^2)$$
(for I = 1 to 4)

10. Propagate the covariance matrix

EXECUTE: PHI_E_PHI_TRANSPOSE CODE

a.
$$E \phi^{T} \begin{cases} TEMP1 \text{ to } 13,1 \text{ to } 6 = E1 \text{ to } 13,1 \text{ to } 9 \text{ PHI}^{T} \\ TEMPJ,I+6 = EJ,I+6 & PHI_UNMOD_ACC \text{ (for } I=1 \text{ to } 3,J=1 \text{ to } 13) \\ TEMPJ,K+9 = EJ,K+9 & PHI_BIAS_K \text{ (for } J=1 \text{ to } 13,K=1 \text{ to } 4) \end{cases}$$
b.
$$\Phi E \phi^{T} \begin{cases} E1 \text{ to } 6,1 \text{ to } 13 = PHI & TEMP1 \text{ to } 9,1 \text{ to } 13 \\ EI+6,J = PHI_UNMOD_ACC & TEMPI+6,J \text{ (for } I=1 \text{ to } 3,J=1 \text{ to } 13) \\ EK+9,J = PHI_BIAS_K & TEMPK+9,J \text{ (for } J=1 \text{ to } 13,K=1 \text{ to } 4) \end{cases}$$
c.
$$\Phi E \phi^{T} \begin{cases} E7 \text{ to } 9,7 \text{ to } 9 = E7 \text{ to } 9,7 \text{ to } 9 + S_UNMOD_ACC \\ EK+9,K+9 = EK+9,K+9 + S_BIAS_K \text{ (for } K=1 \text{ to } 4) \end{cases}$$

- d. If IMU sensed acceleration data have been used (COV_PWRD_FLT=ON) since the last covariance matrix propagation subcycle, then
 - (1) Reset the COV PWRD_FLT flag

EXECUTE: PWRD FLT NOISE CODE

- Calculate a 6-by-6 matrix S (NOISE_{1 to 6,1 to 6}) composed of misalinement errors:

$$S4,4 = DV_{COV_3}^2 + DV_{COV_2}^2$$

 $S5,5 = DV_{COV_1}^2 + DV_{COV_3}^2$
 $S6,6 = DV_{COV_1}^2 + DV_{COV_2}^2$
 $S4,5 = -DV_{COV_1} DV_{COV_2}$
 $S4,6 = -DV_{COV_1} DV_{COV_3}$

$$S_{5,6} = -DV_{COV_2} DV_{COV_3}$$

$$S_{6.4} = S_{4.6}$$

$$S_1$$
 to 3.4 to 6 = 0.5 (DT_COV) S_4 to 6.4 to 6

$$S_1$$
 to 3,1 to 3 = 0.5 (DT_COV) S_1 to 3,4 to 6

(2) Add the powered flight noise to the covariance matrix

- e. Test the flag NOISY_NAV_MEAS to see if the sensed contact acceleration has exceeded the measurement threshold
 - (1) If NOISY_NAV_MEAS = ON
 - Reset NOISY_NAV_MEAS to OFF for the next covariance matrix propagation subcycle.
 - Reset the measurement ACCEPT/REJECT counters. (See section 4.1.2.2.1.2)

CALL: DISPLAY COUNT_INIT

- (2) If NOISY NAV MEAS = OFF
 - Set the flag NAV_MEAS to ON so that the sensor measurements may be incorporated on the current filter subcycle.
- 11. As a final step in the covariance propagation, the entire 13-by-13 covariance matrix shall be made symmetric:

$$E_{J,I} = E_{I,J}$$
 (for I = 1to12, J = I+1to13)

- B. Interface Requirements .- The input and output data are shown in table 4.2.5.
- C. Processing Requirements. The subfunction is called by NAV_ONORBIT_RENDEZVOUS (section 4.2.1).
- D. <u>Constraints.</u> Either uplinked or mission dependent data are to be used for initialization. The propagated matrix must remain symmetric.
- E. <u>Supplementary Information</u>. A suggested inplementation in the form of detailed flowcharts can be found in Appendix B under the following names:

PHI_E_PHI_TRANSPOSE_CODE PWRD_FLT_HOUSE_CODE REND_BIAS_AND_COV_PROP UNMOD_ACC_REINIT_CODE

TABLE 4.2.5.- REND_BIAS_AND_COV_PROP INPUT/OUTPUT

Variable Name	Input Source	Output Destination
CON_ACCEL_UVW_INIT		U_A_BIAS_AND_COVINIT
COV_PWRD_FLT	NAV_ONORBIT_RENDEZVOUS,	
COV_PWRD_FLT_LAST	•	
OV_U_A_COAST	**	
COV_U_A_PWRD_FLT	**	
DA_COA	NAV_ONORBIT_RENDEZVOUS, COV_LAST_RESET,*	
2	COVINIT_UVW,SETUP, REND_NAV_FILTER, REND_COV_INIT,U_A_BIAS_ AND_COVINIT,*	rend_nav_filter,*
G _NEW	NORBIT_REND_R_V_STATE_PROP,SUPER_G	
<u>G</u> _TV	ONORBIT_REND_R_V_STATE_	MEAN_CONIC_PARTIAL_ TRANSITION_MATRIX_ 6x6
G_TV_LAST	REND_COV_INIT,*	MEAN_CONIC_PARTIAL_ TRANSITION_MATRIX_6x6
NOISY_NAV_MEAS	NA V_ONORBIT_RENDEZVOUS,	1
PHI 1to6, 1to6	MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6x6	! ! !
R_FILT	ONORBIT_REND_R_V_STATE_ PROP	MEAN_CONIC_PARTIAL_ TRANSITION_MATRIX_6x6, UVW_TO_M50,U_A_BIAS_ AND_COVINIT
R_FILT	ONORBIT_REND_R_V_STATE_ PROP	TRANSITION_MATRIX_6 UVW_TO_M50,U_A_BIAS

^{**}Onorbit/Rendezvous principal function. see section 4.2
**Initialization parameters, see section 4.7

TABLE 4.2.5.- REND_BIAS_AND_COV_PROP INPUT/OUTPUT.- Continued

! Variable Name	Input Source	Output Destination
R LAST	COV_LAST_RESET,*	MEAN_CONIC_PARTIAL_
! <u>R</u> _TV !	ONORBIT_REND_R_V_STATE_ PROP	MEAN_CONIC_PARTIAL_ TRANSITION_MATRIX_6x6, UVH_TO_M50,U_A_BIAS_ AND_COVINIT
R_TV_LAST	COV_LAST_RESET,*	MEAN_CONIC_PARTIAL_ TRANSITION_MATRIX_6x6
SHUTTLE_FILTER_FLAG	**	
I TAU SENS	SETUP,**	
TAU_U_A_COAST	**	
TAU_U_A_PWRD_FLT	**	
TAU_UNMOD_ACC_COV	•	
TAU_UNMOD_ACC_STATE	**	
T_COV_LAST	COV_LAST_RESET,*	
T_CURRENT_FILT	NAV_ONORBIT_RENDEZVOUS	
TOT_ACC_LAST	REND_COV_INIT,*	MEAN_CONIC_PARTIAL_ TRANSITION_MATRIX_6x6
UNMOD_ACC_BIAS	U A BIAS AND COVINIT, REND_NAV_FILTER,*	REND_NAV_FILTER,ACCEL_ ! CNORBIT,NAV_ONORBIT_ RENDEZVOUS
! 1	! !	
<u>!</u>	! !	! !
!	!	! !
	!	! !!

^{*}Onorbit/Rendezvous principal function, see section 4.2 **Initialization parameters, see section 4.7

TABLE 4.2.5.- REND BIAS AND COV PROP INPUT/SUTPUT. - Continued

! Variable Name	! Input Source	! Output Destination
VAR_IMU_ALIGN	**	
VAR_SENS	! ! Set up	
VAR_U_A_COAST	**	
VAR_U_A_PWRD_FLT	**	
VAR_UNMOD_ACC	•	
<u>v</u> _filt !	ONORBIT_REND_R_V_STATE_	MEAN_CONIC_PARTIAL_ TRANSITION_MATRIX_6x6, UVW_TO_M50,U_A_BIAS_ AND_COVINIT
<u>v</u> last	COV_LAST_RESET,*	MEAN_CONIC_PARTIAL_ TRANSITION_MATRIX_6x6
V_TV	ONORBIT_REND_R_V_STATE_	MEAN_CONIC_PARTIAL TRANSITION_MATRIX_6x6, UVW_TO_M50,U_A_BIAS_ AND_COVINIT
V_TV_LAST	COV_LAST_RESET,*	MEAN_CONIC_PARTIAL_ TRANSITION_MATRIX_6x6
+	UVW_TO_M50	
DT_COV		MEAN_CONIC_PARTIAL_ TRANSITION_MATRIX_6x6, ONORBIT_SV_INTERP,*
! !		

^{**}Onorbit/Rendezvous principal function, see section 4.2
**Initialization parameters, see section 4.7
†Value returned from the function

TABLE 4.2.5. - REND BIAS AND COV PROP INPUT/OUTPUT. - Concluded

Variable Name	! Input Source	! Output Destination
NAV_MEAS	!	NAV_ONORBIT_RENDEZVOUS
TOT_ACC	! !	MEAN_CONIC_PARTIAL TRANSITION_MATRIX 6x6,REND_NAV_INTERP,*
	1	
 	1 1 1	
	! !	1
	!	
	: ! !	1 1
	1 1 1	1
	1	1
	† †	1 1
	! !	1
	i !	
	: !	1
	1 1 1	1
	!	

^{*}Onorbit/Rendezvous principal function, see section 4.2

4.2.5.1 Unmodeled Acceleration Bias and Covariance Initialization (U_A_BIAS_AND_COVINIT)

The initialization subfunction initializes the unmodeled acceleration bias states and the corresponding elements of the covariance matrix whenever the covariance matrix is reinitialized or whenever the unmodeled acceleration bias and covariance propagation subfunction has detected a change in the value of the flag COV_PWRD_FLT, which indicates whether the magnitude of the IMU sensed acceleration has exceeded the threshold value DA_THRESHOLD on the current covariance propagation subcycle.

A. Detailed Requirements In This subfunction is called with the following intermal variables in the IN LIST:

IN LIST: R,V

where R and V are the input position and velocity vectors of the filter vehicle in mean of 1950 coordinates.

The following steps shall be performed (in the order indicated):

1. Zero the unmodeled acceleration bias states

UNMOD_ACC_BIAS = O.

2. Compute the UVW to mean of 1950 coordinate transformation matrix

 $M_UVW_M50 = UVW_TO_M50 (R,V)$

(refer to section 4.10.10 for a detailed description).

3. Initialize the unmodeled acceleration bias slots of the covariance matrix to initial UVW values and transform to mean of 1950 coordinates,

 $E_{I+6.I+6} = COV_ACCEL_UVW_INIT_I$ (for I = 1 to 3)

 $E_{7 \text{to}9,7 \text{to}9} = M_UVW_M50 E_{7 \text{to}9,7 \text{to}9} M_UVW_M50 ^T$

- B. Interface Requirements. The input and output data are shown in table 4.2.5.1.
- C. Processing Requirements. This subfunction is called by

REND_BIAS_AND_COV_PROP (section 4.2.5) and by COVINIT UVW (section 4.1.2.2.1.1)

- D. Constraints. Mission dependent (ILOAD) data are used for initialization.
- E. <u>Supplementary Information</u>. A suggested implementation in the form of a detailed flowchart may be found in Appendix B under the name of U_A_BIAS_AND_COVINIT.

TABLE 4.2.5.1.- U_A_BIAS_AND_COVINIT INPUT/OUTPUT

Inlist	/Outlist	!!!!	
Internal Name	! External!! Name	! Input Source !	Output Destination
! ! <u>R</u> ! <u>V</u>	! <u>R</u> ! <u>V</u> .	COVINIT_UVW !	
<u>R</u> ! <u>V</u>	R FILT V FILT	REND BIAS AND COV PROPERED BIAS AND COV PROP	
<u>R</u> <u>V</u>	$\begin{array}{ccc} & \underline{R} & \underline{TV} \\ & \underline{V} & \underline{TV} \end{array}$	REND_BIAS_AND_COV_PROP!	4
	!!!		
	: ! !		
	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	i !	
	1		
	1		
	1		
	1 1 1		! !
	1 1 1		! !
	1 1 1	1 ! 1 !	! !
] 	1 1 1	1 1	!
! !	1 1 ,	1 1	
		1	

TABLE 4.2.5.1.- U_A_BIAS_AND_COVINIT INPUT/OUTPUT.- Concluded

Variable Name	Input Source	1 Output Destination
COV_ACCEL_UVW_INIT	! !REND_NAV_INIT, !REND_BIAS_AND_COV_PROP,*	
†	IUVW_TO_M50	! !
^E 7to9,7to9		! REND_BIAS_AND_COV_PROP, ! REND_NAV_FILTER, *, ***
M_UVW_M50		COVINIT_UVW
<u>R</u>	; !	IUVW_TO_M50
UNMOD_ACC_BIAS	! ! !	!REND_BIAS_AND_COV_PROP, !ACCEL_ONORBIT,REND_NAV_ !FILTER,***, NAV_ONORBIT !RENDEZVOUS
<u>u</u>		I IUVW_TO_M50
	1	₹ 1
•	1	: !
	1	!
	!	1 1
	i i	1
	1	! !
	1	! !
	1 1	1 1
	!	! !
	! !	! !
	!	! !

0

[†]Value returned from the function
*Onorbit/Rendezvous principal function, see section 4.2
***Onorbit/Rendezvous Nav Sequencer principal function, see section 4.1

4.2.5.2 Position-Velocity Submatrix of the State Transition Matrix (MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6)

This subfunction computes a 6 by 6 submatrix (PHI_MC) of a larger state transition matrix for use in propagating the covariance matrix. This subfunction is also invoked by the rendezvous navigation interpolation subfunction for use in calculating the partial derivative vector.

A. <u>Detailed Requirements</u>. This subfunction is called with the following internal variables in the INLIST and OUTLIST:

INLIST: R ONE, V ONE, G ONE, R TWO, V TWO, G TWO, DELTIM

OUTLIST: PHI MC

where

R ONB	initial position vector
R ONE V ONE	initial velocity vector
G ONE TWO TWO	initial total acceleration vector
R TWO	final position vector
V TWO	final velocity vector
<u>G</u> _TWO	final total acceleration vector
Deltim	time step

The following steps shall be performed (in the order indicated):

1. A formulation is used that assumes that a mean conic section may be used to describe the path taken between the initial position and velocity (\underline{R} _ONE and \underline{V} _ONE) at initial total acceleration (\underline{G} _ONE) and the final position and velocity (\underline{R} _TWO and \underline{V} _TWO) at final total acceleration (\underline{G} _TWO) over a time step DELTIM.

The following local variables are computed:

2. The ergodic semi-major axis SMA, is computed by using the average of the reciprocal of the semi-major axis derived from combination of the respective vis-viva computations at the initial and final orbital states, and is given by:

SMA = 1.
$$\sqrt{\frac{\text{R_ONE_INV} + \text{R_TWO_INV} - (\underline{\text{V}_ONE})}{\text{V_TWO}}} \cdot \underline{\text{V}_ONE} + \underline{\text{V}_TWO}/(2. \text{ EARTH_MU})}$$
F3

F3 This equation shall be protected against division by zero (Reference 3.6-3).

where EARTH_MU is the Earth's gravitational constant. The Stumpff constant, C1, predicated on the mean conic semi-major axis, is computed by:

C1 = SQRT (SMA)/SQR_BMU

F3,F4

3. The F_AND_G subfunction is then invoked to compute the F and G functions, the derivatives of F and G, as well as the auxiliary variables SO, S1, S2 and S3. These quantities are fundamental to the computation of the mean conic transition matrix.

CALL: F_AND_G

IN LIST: SMA, DELTIM, C1, R ONE, R ONE INV, R TWO INV, V ONE, D ONE, D TWO

CUT LIST: F,G,FDOT,GDOT,SO,S1,S2,S3,R TWO,R TWO INV, THETA

For this case, R TWO and R TWO INV are not updated since R TWO INV is supplied as a non-zero quantity. However, THETA, the eccentric anomaly angle, is generated as an output in any case.

4. Compute auxiliary constants:

FM1 = F-1

GDM1 = GDOT-1

S1 = C1 S1

 $C_2 = C_1^2$

CONST = C2 (BARTH MU C2 (3. S3 C1-S1 S2) + G S2)

S2 = C2 S2

which represent common functionals and Stumpff series summations for circular or elliptical orbits.

5. The partial derivatives are now calculated. The equation for the partial derivatives are written algebraically for clarity, with R₀ representing R ONE, R representing R TWO, R₀ representing V ONE, R representing G ONE, R representing G TWO, f representing F, g representing G, f representing FDOT, g representing GDOT and U representing CONST, as well as having lower case letters

F3 This equation shall be protected against division by zero (Reference 3.6-3). F4 This equation shall be protected against square roots of a negative number (Reference 3.6-4).

representing the scalar magnitude of the respective upper case letter vectors.

$$\begin{split} \text{PHI_MC1 to 3, 1 to 3} &= \frac{\partial R}{\partial R_0} = -\left[\frac{\hat{\mathbf{f}} \ S_1 + (\hat{\mathbf{f}} - 1)/r_0}{r_0}\right] \ R \ R_0 \ T \\ &\quad - \hat{\mathbf{f}} \ S_2 \ R \ \hat{\mathbf{g}}_0 \ T \\ &\quad + \frac{(\hat{\mathbf{f}} - 1)S_1}{r_0} \hat{\mathbf{R}} \ R_0 \ T + (\hat{\mathbf{f}} - 1) \ S_2 \ \hat{\mathbf{R}} \ \hat{\mathbf{R}}_0 \ T \\ &\quad + U \ \hat{\mathbf{R}} \ R_0^T + \hat{\mathbf{f}} \ I \\ \end{split}$$

$$\begin{split} \text{PHI_MC1 to 3, 4 to 6} &= \frac{\partial R}{\partial \hat{R}_0} = - \hat{\mathbf{f}} \ S_2 \ R \ R_0 \ T - (\hat{\mathbf{g}} - 1) \ S_2 \ \hat{\mathbf{R}} \ \hat{\mathbf{R}}_0 \ T \\ &\quad + (\hat{\mathbf{f}} - 1) \ S_2 \ \hat{\mathbf{R}} \ \hat{\mathbf{R}}_0 \ T \\ &\quad + (\hat{\mathbf{f}} - 1) \ S_2 \ \hat{\mathbf{R}} \ \hat{\mathbf{R}}_0 \ T \\ &\quad + g \ I - U \ \hat{\mathbf{R}} \ \hat{\mathbf{R}}_0 \ T \\ &\quad + g \ I - U \ \hat{\mathbf{R}} \ \hat{\mathbf{R}}_0 \ T \\ &\quad - \left[\frac{\hat{\mathbf{f}} \ S_1 + (\hat{\mathbf{f}} - 1)/r_0}{r}\right] \ R \ \hat{\mathbf{R}}_0 \ T \\ &\quad + \left[\frac{\hat{\mathbf{f}} \ S_1 + (\hat{\mathbf{f}} - 1)/r_0}{r_0}\right] \ \hat{\mathbf{R}} \ R_0 \ T + \hat{\mathbf{f}} \ S_2 \ \hat{\mathbf{R}} \ \hat{\mathbf{R}}_0 \ T \end{split}$$

+ f I + U R Ro T

F3 This equation shall be protected against division by zero (Reference 3.6-3).

PHI_MC4 to 6, 4 to 6 =
$$\frac{3\dot{R}}{3\dot{R}_{0}} = -\left[\frac{\dot{r} S_{1} + (\dot{g} - 1)/r}{r}\right] R R_{0}^{T}$$

$$-\left[\frac{(\dot{g} - 1) S_{1}}{r}\right] R \dot{R}_{0}^{T} + \dot{r} S_{2} \dot{R} R_{0}^{T}$$

$$+ (\dot{g} - 1) S_{2} \dot{R} \dot{R}_{0}^{T} + \dot{g} I - U \ddot{R} \dot{R}_{0}^{T}$$

Certain recurring groups of symbols may be collected to facilitate ease of coding and minimization of error. Each 3-by-3 submatrix of the 6-by-6 matrix PHI_MC results from the summation of 3-by-3 matrices generated by the dyadic product of groups of vectors of length three.

- B. <u>Interface Requirements</u>. The input and output data are shown in table 4.2.5.2.
- C. <u>Processing Requirements</u>. This subfunction is called by the following subfunctions:

- D. Constraints. None
- E. <u>Supplementary Information</u>. A suggested implementation in the form of a detailed flowchart may be found in Appendix B under the name of MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6.

F3 This equation shall be protected against division by zero (Reference 3.6-3).

TABLE 4.2.5.2.- MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6 INPUT/OUTPUT

l Toliet	/Outlint		•
Inlist/Outlist Internal External		! Input Source !	Output Destination
1 Name) Name	t input bource :	
1	1		
PELTIM	IDT CUY	IREND BIAS AND COV PROPI	
IG ONE	ITOT_ACC_LAST	!REND_BIAS_AND_COV_PROP!	
1 <u>a</u> _two	ITOT_ACC	!REND_BIAS_AND_COV_PROP!	
IR OMB	i <u>r</u> last	!REND_BIAS_AND_COV_PROP!	
I <u>R</u> TWO	IR FILT	IREND_BIAS_AND_COV_PROPI	
IV ONE	I <u>V</u> _LAST	!REND_BIAS_AND_COV_PROP!	
INO TWO	IV FILT	IREND_BIAS_AND_COV_PROP	
1	1	1	
IDELTIM	IDT_COV	IRRND BIAS AND COV PROPI	
IG ONE	IG TV_LAST	IREND BLAS AND COV PROP!	
IG TWO	IG TV	PREND BIAS AND COV PROPI	
I <u>R</u> CNE IR TWO	!R _TV_LAST !R _TV	I REND BIAS AND COV PROPI	
IN ONB	IV _TV_LAST	REND BLAS AND COV PROPE	
IA _ IMO	IV TY	REND_BLAS_AND_COV_PROP!	
' <u>-</u>	<u>i</u> - "	1	
Ideltim	IDELTAT GO	!REND NAV_INTERP	
IG ONE	ITOT_ACC	I REND NAV INTERP	
I <u>G</u> Two	IA RESID	!REND NAV INTERP	1
IR ONE	IR FILT	!REND_NAV_INTERP !	
I <u>R</u> _TWO	IR RESID	!REND_NAV_INTERP !	•
IA ONE	I <u>V</u> FILT	!REND_NAV_INTERP !	
IA TAO	IV RESID	!REND_NAV_INTERP	!
!	1	1 1	
IDELTIM	IDELTAT_GO	!REND_NAV_INTERP	
IG _ONE	IG _TV	! REND_NAV_INTERP	
ig _two	IA TV_RESID	IREND_NAV_INTERP	
!R_ONE !R_TWO	IR TV	! REND NAV INTERP !	<u> </u>
	!R _TV_RESID	IREND NAV INTERP	
IV ONE IV TWO	IV TV RESID	!REND_NAV_INTERP ! !REND_NAV_INTERP !	; !
<u> </u>	IV TV_RESID	turnfuka tutru :	
!	•	į	
İ	i	i	
•	1	i	
1	1	1 1	
!	1	1 1	
!	!	1 1	
!	1	1	1
!	1	1 1	
t	1	1 1	<u> </u>

TABLE 4.2.5.2. MEAN CONIC PARTIAL TRANSITION MATRIX 6X6 INPUT/OUTPUT. - Continued

Inlis	t/Outlist !	e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	The second of th
Internal Name	! External ! ! Name !	Input Source	! Output Destination
PHI_MC	PHI itob, itob		REND_BIAS_AND_COV_PROP
PHI_MC	PHI 1to6, 1to6		REND_BIAS_AND_COV_PROP
PHI_MC	PHI_PATCH		REND_NAV_INTERP
PHI_MC	PHI_PATCH		REND_NAV_INTERP
<i>;</i>			
*			
!	! ! ! !		
			1 1 1
			1 1 1 49
	!		!
			1 .
	!!!!!!!		1
			1
	! !		1
	!		1

TABLE 4.2.5.2. MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6x6 INPUT/OUTPUT. — Concluded

Variable Name	Input Source Cutput Destination
EARTH_NU FDOT GDOT	F_AND_G F_AND_G F_AND_G F_AND_G F_AND_G
ID_MATRIX_3X3 R_TWO_INV SQR_EMU SO S1 S2 S3	F AND G F AND G F AND G F AND G F AND G F AND G F AND G F AND G
THETA C1 DELTIM D_ONE D_TWO R_ONE R_ONE R_ONE_INV SMA	FANDG! FANDG! FANDG! FANDG! FANDG! FANDG! FANDG! FANDG! FANDG!
<u>V</u> _ONE	F_AND_G
•	

^{*}Onorbit/Rendezvous principal function, see section 4.2 **Initialization parameters, see section 4.7

4.2.5.2.1 Conic solution (F_AND_G) .- The conic solution subfunction utilized by the state vector interpolation, position-velocity submatrix of state transition matrix, and precision integration subfunctions shall provide the capability to trace the progress of a point along its orbit assuming pure Replerian motion, by means of the F and G series algorithm in terms of the eccentric anomaly:

The variables F and G and F and G shall be calculated as functions of the difference in eccentric anomaly between an initial time at which a position and a velocity vector are known and a final time at which they are required with the

If the final position and velocity are known, the difference in eccentric

anomaly can be easily calculated and the F, G, F and G expressions can be obtained with the use of certain auxiliary variables called here SO, S1, S2, and

If the final position and velocity are not known but only the transfer time, it is necessary to solve a form of Kepler's equation to obtain the difference in eccentric anomaly.

A. Detailed Requirements .- fhe conic solution (F_AND_G) subfunction will be initiated by the call statement of the following form:

CALL: F_AND_G

IN LIST: SMA, DELTAT, C1, R IN, R IN INV, R FIN INV, V IN, D IN, D FIN

OUT LIST: F,G,FDOT,GDOT,SO,S1,S2,S3,R FIN,R FIN INV,THETA

where:

SMA = semi-major axis of the conic

DELTAT = transfer time

C1 = an auxiliary constant, equal to the square root of SMA divided by the square root of Earth's gravitational constant

= the initial position vector (M50) R IN

 R_{IN} INV = the reciprocal of the magnitude of R_{IN} IN

R_FIN_INV = the reciprocal of the magnitude of R_FIN (if unknown,

a zero shall be input)

V IN = the initial velocity vector (M50)

D_IN = the dot product of the initial position and velocity vectors

Mary - 12

. the dot product of the final position and velocity D FIN vectors (if unknown, a zero shall be input)

HARRY CONTRACTOR

North the state of the state of the state of the state of the

and the market and an aid agreement of the themselves

The conic solution subfunction shall perform the following in the order: A transfer indicated:

1. Check the value of R FIN INV to see if Kepler's equation is to be solved very process of a second secon

! IF R FIN INV = O

2. The Company of the Company of If $R_{FIN}INV \neq 0$, which indicates that the final position vector is already known, the difference in eccentric anomaly shall be obtained from the expression

THETA = (C1(D FIN-D IN) + DELTAT/C1)/SMA F3

- b. If R FIN INV = 0., the final position vector is to be calculated. This requires solving a modified form of Kepler's equation, which shall be accomplished by an iterative process that consists of the following steps:
 - (1) Two auxiliary quantities shall be obtained from the input data:

ONEMRIN = (SMA - 1./R_IN_INV)/SMA

F3 F3

D MN AN = DELTAT/(C1 SMA)

D MN AN is the difference in mean anomaly, which shall be taken as a first approximation to the difference in eccentric anomaly, THETA. An iteration counter shall also be started.

THETA = D MN AN

I = 1

Then THETA and THETA COR shall be recalculated until the number of iterations attains a predetermined maximum.

DO UNTIL

I = NUM KEP_ITER

F3 This equation shall be protected against division by zero (Reference 3.6-3).

by repeatedly evaluating the equations

SO = COS (THETA)

F9

S1 = SIN (THETA)

F9

S2 = 1. - S0

ERR = D_MN_AN-THETA-D_IN C1 S2/SMA + ONEMRIN S1 F

13

THETA_COR = ERR/(1. + D_IN C1 S1/SMA - ONEMRIN SO) F3

THETA = THETA + THETA COR

I = I + 1

2. When the difference in eccentric anomaly is determined, certain auxiliary variables shall be calculated.

SO = COS (THETA)

F9

S1 = SIN (THETA)

F9

S2 = 1. -S0

S3 = THETA - S1

3. The values of F and G shall then be determined.

F = 1. - SMA S2 R IN INV

G = DELTAT - C1 SMA S3

4. If the final position vector and the reciprocal of its magnitude were not known, they shall be calculated:

IF R FIN_INV = 0., then set

R FIN = F R IN + G V IN

 $R_FIN_INV = 1./|R_FIN|$

F3

5. The functions F and G, required for the calculation of the final velocity vector, shall be evaluated:

F3 This equation shall be protected against division by zero (Reference 3.6-3).

F9 This equation shall be protected against return value of sine or cosine with magnitude greater than unity (Reference 3.6-9).

FDOT = - EARTH MU C1 S1 R IN INV R FIN INV

GDOT = 1. - SMA S2 R FIN_INV

Finally, the out list of the conic solution subfunction shall contain the following quantities (different users require different sets of these):

F, G, FDOT, GDOT, SO, S1, S2, S3, R FIN, R FIN INV, THETA

- B. <u>Interface Requirements.</u>— Input and output parameters for the conic solution (F_AND_G) are given in table 4.2.5.2.1.
- C. <u>Processing Requirements.</u> The following are the code names of those subfunctions which call the F_AND_G conic solution subfunction:

PINES_METHOD

MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6x6

ONORBIT_SV_INTERP

- D. Constraints .- None
- B. Supplementary Information. A suggested implementation of this subfunction in the form of a detailed flow diagram may be found in Appendix B under the following:

F_AND_G

TABLE 4.2.5.2.1.-F_AND_G INPUT/OUTPUT

Inlist	/Outlist		
I Internal Name	External	! Input Source	Output Destination
C1 DELTAT	I DELTAT	PINES METHOD PINES METHOD	
D_FIN D_IN R_FIN_INV	! D FIN TEMP ! D IN ! R FIN TEMP ! INV	PINES METHOD PINES METHOD PINES METHOD	ver in Jan
R IN R IN INV SMA	! XN _{1to 3}	PINES METHOD PINES METHOD PINES METHOD	
<u>v</u> _in	! XN4 to 6	! PINES METHOD	
C1	1 C1 1	MEAN_CONIC_PARTIAL TRANSITION_MATRIX_6x6	
DELTAT	! DELTIM !	! MEAN_CONIC_PARTIAL ! TRANSITION_MATRIX_6X6	
D_FIN	! C_TWO !	MEAN_CONIC_PARTIAL TRANSITION_MATRIX_6X6	
D_IN	D_ONE	MEAN_CONIC_PARTIAL TRANSITION_MATRIX_6X6	
R_FIN_INV	! R_TWO_INV	MEAN_CONIC_PARTIAL_ 1 TRANSITION_MATRIX_6X6	
<u>R</u> _IN	! <u>R</u> ONE !	! MEAN_CONIC_PARTIAL_ ! TRANSITION_MATRIX_6X6! !	
R_IN_INV	! R_ONB_INV ! !	! MEAN_CONIC_PARTIAL_ ! ! TRANSITION_MATRIX_6x6! !	! ! !
SMA	! SMA ! !	! MEAN_CONIC_PARTIAL_ ! TRANSITION_MATRIX_6X6! !	! ! ! !
ā Tin	i i ā onb	MEAN_CONIC_PARTIAL_ ! TRANSITION_MATRIX_6x6!	! ! !
C1 DELTAT D_FIN	! C1 ! -DELTAT_GO ! D_FIN_TEMP	ONORBIT_SV_INTERP ONORBIT_SV_INTERP ONORBIT_SV_INTERP	! ! ! ! ! !

TABLE 4.2.5.2.1.- F_AND_G INPUT/OUTPUT.- Continued

Tables	10.431-4	1	
Internal	:/Outlist ! External	I Input Source	1 Output Destination
l Name	1 Name		
1 D. TN	1	ANADERS OF TIMESO	
! D_IN ! R_FIN_INV	I D TWO I R FIN TEMP	! ONORBIT_SV_INTERP ! ONORBIT_SV_INTERP	
1 ULTUTUA	I INA	1 OROMALI ST INTERP	. III Programme to the state of the state o
I R IN	I R TWO	! ONORBIT SV INTERP	
! RÎN INV	! R TWO INV	! ONORBIT_SV_INTERP	
! SMA	1 SMA	! ONORBIT_SV_INTERP	
i Ā TIN	I V _TWO	! ONORBIT_SV_INTERP	
i F	! F		! PINES METHOD
! FDOT	! FDOT		I PINES METHOD
t G	t G	1	! PINES_METHOD
! GDOT	1 GDOT		! PINES METHOD
! R FIN ! R FIN INV	! X _{1to} 3 ! R_FIN_INV	1 · · · · · · · · · · · · · · · · · · ·	! PINES METHOD !! PINES METHOD !!
! SO	1 80	•	! PINES METHOD
! S1	! S1	•	! PINES METHOD
1 S2	1 52	İ	I PINES_METHOD
!	!	1	1 1 1
! S3	! S3		PINES_METHOD
! THETA	! THETA	1	! PINES_METHOD
! F	! F	1	! MEAN CONIC PARTIAL
1	f	t	! TRANSITION_MATRIX_6X6 !
I Spom	!	1	I I DAN CONTA DAGGETA
! FDOT	! FDOT	: •	! MEAN_CONIC_PARTIAL_ ! TRANSITION_MATRIX_6X6 !
•	1	•	1 THRUSTITON PRINTEY OND
1 G	1 G	1	I MEAN CONIC PARTIAL I
!	t	1	! TRANSITION_MATRIX_6X6 !
! GDOT	! GDOT	Į,	I AMBAN CONTO DARBOTAL
i dibor	י מחסד	1 }	! MEAN_CONIC_PARTIAL_! TRANSITION_MATRIX 6X6 !
i	i	1	1
! R_FIN	! R _TWO	1	! MEAN_CONIC_PARTIAL_
!	!	1	! TRANSITION_MATRIX_6X6 !
! ! R_FIN_INV	! ! R_TWO_INV	1	! MEAN CONIC PARTIAL _
		i	! TRANSITION MATRIX 6X6
i	Ī	1	1
! SO	! SO	t	! MEAN_CONIC_PARTIAL_
1	1	1	TRANSITION_MATRIX_6X6
!	!	!	1

TABLE 4.2.5.2.1.- F_AND_G INPUT/OUTPUT.- Continued

Inlist/Outlist !			
Internal Name	! External ! ! Name !	Input Source	1 Output Destination
! ! \$1 !	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !		MEAN_CONIC_PARTIAL_ TRANSITION_MATRIX_6X6
! ! S2 !	! S2		MBAN_CONIC_PARTIAL_ TRANSITION_MATRIX_6X6
: 1 S3 !	i S3		MEAN_CONIC_PARTIAL TRANSITION_MATRIX_6X6
THETA	! THETA !		! MEAN_CONIC_PARTIAL ! TRANSITION_MATRIX_6x6
F FDOT G	! F ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !		! ONORBIT_SV_INTERP ! ONORBIT_SV_INTERP ! ONORBIT_SV_INTERP
! GDOT ! R FIN ! R FIN INV	! GDOT ! ! R_RESID ! ! R_FIN_INV !		! ONORBIT SV INTERP ! ONORBIT SV INTERP ! ONORBIT SV INTERP
! SO	! S0 ! ! S1 ! ! S2 ! ! S3 ! !		! ONORBIT SV INTERP ! ONORBIT SV INTERP ! ONORBIT SV INTERP ! ONORBIT SV INTERP
i theta !	! THETA !		ONORBIT_SV_INTERP
! ! !	1 1 1 1		i ! !
! ! !	! ! ! !		! ! !
! !	1 1		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! ! !	1 ! ! !		! ! !
; ! !	: : ! !		1
!	i		i

TABLE 4.2.5.2.1.- F_AND_G INPUT/OUTPUT.- Concluded

Variable Name !	Input Source	l Output Destination
EARTH_MU !	**	
NUM_KEP_ITER I	**	1
	•	
! !		
] 		1 1
! !		1
! !		!
 		1
1		
• •		
!		1
1		1
!		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! !		1
! !		
!		1
		1
!		1

^{**}Initialization parameters, see section 4.7

4.2.6 Rendezvous Sensor Measurement Selection (REND_SENSOR_SELECT)

The rendezvous sensor measurement selection subfunction shall perform the following tasks when in the rendezvous navigation phase, when the magnitude of the IMU sensed accelerations are below a predetermined threshold, and when on a covariance propagation cycle.

- Supply certain positive feedback flags to the REL_NAV display
- Select the proper rendezvous sensor navigation measurement incorporation subfunctions (section 4.2.8) to process the sensor angle data
- Select the type of data processing by the rendezvous navigation Kalman filter, REND_NAV_FILTER (sec. 4.2.8.1.2). Data are used to compute statistical parameters for display only, or data are used to update the state and covariance matrix as well as for the statistical computations
- Select the proper type of edit criteria to be used by the rendezvous navigation filter, REND_NAV_FILTER (section 4.2.8.1.2), in the bilevel edit test which determines if data are to be edited
- Reset the AUTO/INHIBIT/FORCE (AIF) flags so that a FORCE will be in effect for only one navigation filter cycle without being reset by the crew

A. Detailed Requirements.

- 1. The rendezvous sensor measurement selection subfunction initially sets certain positive feedback display parameters and then sets other appropriate flags to OFF so that the selection tasks are correctly accomplished. The following flags are required to be initialized upon each execution of the rendezvous sensor measurement selection subfunction.
 - a. Certain positive feedback flags are defined for the REL_NAV display.

RDOT_AIF_DISPLAY = NAV_RDOT_AIF

RANGE AIF DISPLAY = NAV RANGE AIF

ANGLES_AIF_DISPLAY = NAV_ANGLES_AIF

DOING_MEAS_ENABLE = NAV_MEAS_ENABLE

b. In order for this subfunction to properly select the appropriate rendezvous sensor navigation measurement incorporation subfunction for the proper angle set, the following flags (DO NAV flags) are initially set to OFF.

DO RR ANGLES NAV = OFF DO ST ANGLES NAV = OFF DO COAS ANGLES NAV = OFF

- c. In order to properly process and record the type of processing of the data, the following flags are initially set to GfF.
 - (1) Statistical processing flags

RDOT_STAT = OFF ST_ANGLES_STAT = OFF COAS_ANGLES_STAT = OFF RANGE_STAT = OFF RR_ANGLES_STAT = OFF

(2) EDIT OVERRIDE flags for the bilevel edit test

RANGE EDIT_OVERRIDE = OFF
RDOT_EDIT_OVERRIDE = OFF
RR_ANGLES_EDIT_OVERRIDE = OFF
ST_ANGLES_RDIT_OVERRIDE = OFF
COAS_ANGLES_EDIT_OVERRIDE = OFF

(3) A 4-dimensional array to record the type of processing of the data by the rendezvous sensor navigation measurement incorporation subfunction

SENSOR EDIT = OFF

- 2. Next, a local flag (MEAS_STAT) is set to control measurement processing for statistical display purposes when in Major Mode 202.
 - a. MEAS_STAT = ON when NAV_MEAS_ENABLE = OFF and NAV_MM_202 = ON. This will result in measurement processing proceeding as if all the measurement AIF flags are set to INHIBIT, i.e., measurements are only used to compute statistical parameters for display purposes.
 - b. MEAS_STAT = OFF when NAV_MEAS_ENABLE = ON or NAV_MM_202 = OFF. This will result in the measurement data being processed in the nominal manner.
- The NAV_RANGE_AIF switch and the MEAS_STAT flag are tested to appropriately set the RANGE_STAT flag and the RANGE_EDIT_OVERRIDE flag.
 - a. If either NAV_RANGE_AIF = INHIBIT or MEAS_STAT = ON then

RANGE STAT = ON

resulting in the range measurement being processed for statistical display only.

b. If NAV_RANGE_AIF is not set to INHIBIT and MEAS_STAT = OFF then the NAV_RANGE_AIF flag is tested for a FORCE value.

(1) If NAV RANGE AIF = FORCE then

RANGE_EDIT_OVERRIDE = ON

so that the edit criteria will be relaxed for the bilevel residual edit test.

- 4. Mext, the NAV_RDOT_AIF switch and the MEAS_STAT flag are tested to appropriately set the RDOT_STAT flag and the RDOT_EDIT_OVERRIDE flag.
 - a. If either NAV_RDOT_AIF = INHIBIT or MEAS_STAT = ON then

RDOT STAT = ON.

resulting in the range rate measurement being processed for statistical display only.

- b. If MAV_RDOT_AIF is not set to INHIBIT and AMAS_STAT = OFF then the MAV_RDOT_ AIF flag is tested for a FORCE value.
 - (1) If NAV_RDOT_AIF = FORCE then

RDOT_EDIT_OVERRIDE = ON

so that the edit criteria will be relaxed for the bilevel residual edit test.

- 5. The NAV_RR ANGLES_ENABLE switch is tested to see if the rendezvous radar angle set has been selected by the crew.
 - a. If NAV RR ANGLES ENABLE = ON then sat

DO RR ANGLES NAV = ON

so that the proper initialization procedure will take place for the angle data, and the rendezvous radar angles measurement incorporation subfunction will be executed.

- (1) Next, the NAV_ANGLES_AIF switch and the MEAS_STAT flags are tested to set the RR_ANGLES_STAT flag and the RR_ANGLES_EDIT_OVERRIDE flag.
 - If either NAV_ANULES_AIF = INHIBIT or MEAS_STAT = ON then

RR ANGLES STAT = ON,

resulting in the rendezvous radar angle measurements being processed for statistical display only.

- If NAV_ANGLES_AIF is not set to INHIBIT and MEAS_STAT = OFF the NAV_ANGLES_AIF flag is tested for a FORCE value.

If NAV_ANGLES_AIF = FORCE then

RR_ANGLES_EDIT_OVERRIDE = ON

so that the edit criteria will be relaxed for the bilevel residual edit test.

- b. If NAV_RR_ANGLES_ENABLE is not ON then the NAV_ST_ENABLE switch is tested to see if the star tracker angles set has been selected by the crew.
 - (1) If NAV_ST_ENABLE = ON then set

DO_ST_ANGLES_NAV = ON

so that the proper initialization procedure will take place for the angle data and the star tracker measurement incorporation subfunction will be executed.

 Next, the NAV_ANGLES_AIF switch and the MEAS_STAT flags are tested to set the ST_ANGLES_STAT flag and the ST_ANGLES_EDIT_ OVERRIDE flag.

If either NAV_ANGLES_AIF = INHIBIT or MEAS_STAT = ON then

ST_ANGLES_STAT = ON,

resulting in the star tracker angle measurements being processed for statistical display only.

If NAV_ANGLES_AIF is not set to INHIBIT and MEAS_STAT = OFF the NAV_ANGLES_AIF flag is tested for a FORCE value.

If NAV_ANGLES_AIF = FORCE then

ST_ANGLES EDIT_OVERRIDE = ON

so that the edit criteria will be relaxed for the bile all reaidual edit test.

c. If NAV_RR ANGLES_ENABLE = OFF and NAV_ST_ENABLE = OFF then the COAS angle data set is assumed to be enabled, thus

DO_COAS_ANGLES_NAV = ON

so that the proper initialization procedure will take place for the angle data and the COAS measurement incorporation subfunction will be executed.

- (1) Next, the NAV_ANGLES_AIF switch and the MEAS_STAT flags are tested to set the COAS_ANGLES_STAT flag and the COAS_ANGLES_EDIT_OVERRIDE flag.
 - If either NAV_ANGLES_AIF = INHIBIT or MEAS_STAT = ON then

COAS ANGLES STAT = ON.

resulting in the COAS angle measurements being processed for statistical display only.

- If NAV ANGLES AIF is not set to INHIBIT and MEAS STAT = OFF the NAV ANGLES AIF flag is tested for a FORCE value.

If NAV_ANGLES_AIF = FORCE then ___

COAS ANGLES EDIT OVERRIDE = ON

so that the edit criteria will be relaxed for the bilevel residual edit test.

- 6. The NAV_RANGE_AIF flag is tested so that a FORCE value will be acknowledged for one navigation cycle without being reset by the crew.
 - a. If NAV_RANGE_AIF = FORCE then

RANGE AIF = RANGE AIF LAST.

where the RANGE_AIF_LAST .lag is a local flag which records the last non force value of the RANGE AIF flag.

b. If NAV_RANGE_AIF is not equal to FORCE then

RANGE AIF LAST = RANGE AIF.

- 7. Next, the NAV_RDOT_AIF flag is tested for the same reasons as given in 6.
 - a. If NAV_RDOT_AIF is equal to FORCE then

RDOT AIF = RDOT AIF LAST.

b. If NAV_RDOT_AIF is not equal to FORCE then

RDOT AIF LAST = RDOT AIF.

- 8. Finally, the NAV_ANGLES_AIF flag is tested similarly to 6 and 7.
 - a. If NAV_ANGLES_AIF = FORCE then

ANGLES AIF = ANGLES AIF LAST.

- b. If NAV_ANGLES_AIF is not equal to FORCE then
 ANGLES_AIF_LAST = ANGLES_AIF.
- B. Interface Requirements. The input and output parameters for this subfunction are indicated in table 4.2.6.
- C. Processing Requirements. The sensor measurement selection subfunction shall be performed only when on a covariance propagation cycle and when the INU sensed accelerations are below a design dependent threshold (MEAS_THRESHOLD), i.e., NAV_MEAS = ON. This subfunction is called by the onorbit/rendezvous trunk logic, ONORBIT_RENDEZVOUS_NAV, and shall be executed before the sensor measurement initialization subfunction. REND NAV SENSOR INIT.
- D. Constraints. The RANGE AIF LAST, ROOT AIF LAST and ANGLES AIF LAST flags need to be initialized to INHIBIT.
- E. <u>Supplementary Information</u>. A suggested implementation of this subfunction may be found in the Appendix B flowchart

REND_SENSOR_SELECT.

TABLE 4.2.6.- REND_SENSOR_SELECT INPUT/OUTPUT

l Variable Name	! Input Source	Output Destination
NAV_ANGLES_AIF	I NAV_ONORBIT_RENDEZVOUS	
I ! ANGLES_AIF_LAST		1
NAV_MEAS_ENABLE	! NAV_ONORBIT_RENDEZVOUS	
i NV A WW 505	! NAV_ONORBIT_RENDEZVOUS	
! ! nav_range_aif	! NAV_ONORBIT_RENDEZVOUS	
! !range_aif_last		
! !NAV_RDOT_AIF	! !NAV_ONORBIT_RENDEZVOUS	i i i i i i i i i i i i i i i i i i i
! !rdot_aif_last	• •	1
! ! nav_rr_angles_enable	! !NAV_ONORBIT_RENDEZVOUS	. !
I I NAV_ST_ENABLE	! !NAV_ONORBIT_RENDEZVOUS	!
! !angles_aif_display	1	! !
! !COAS_ANGLES_EDIT_ !OVERRIDE	1	COAS_NAV
! !COAS_ANGLES_STAT	1	! COAS_NAV
! !Do_coas_angles_nav	1	! !rend_nav_sensor_init,*
! !doing_meas_enable	1	1 .
! !	1	!
\$	1	1
! !	1	1
· •	1	1
! !	1	1
I	i	

()

^{*}Onorbit/Rendezvous principal function I/O Table, table 4.2 **Initialization parameters, see section 4.7

TABLE 4.2.6.- REND_SENSOR_SELECT INPUT/OUTPUT.- Concluded

t Variable Name	! ! Input Source !	! Output Destination :
! !DO_RR_ANGLES_NAV !		! ! REND_NAV_SENSOR_INIT, !NAV_ONORBIT_RENDEZVOUS,*
! !DO_ST_ANGLES_NAV !		! !REND_NAV_SENSOR_INIT, !NAV_ONORBIT_RENDEZVOUS,*
! !RANGB_AIF_DISPLAY		
RANGE_EDIT_OVERRIDE		RRDOT_NAV
RANGE_STAT		RRDOT_NAV
RDOT_AIF_DISPLAY		# E ₁ State ₁ St
RDOT_EDIT_OVERRIDE		RRDOT_NAV
RDOT_STAT		RRDOT_NAV
RR_ANGLES_EDIT_OVERRIDE	; · ·	RR_ANGLE_NAV
RR_ANGLES_STAT	!	rr_angle_nav
i <u>s</u> ensor_edit		MEAS_PROCESSING_ STATISTICS_REND,*
ST_ANGLES_EDIT_OVERRIDE		STAR_TRACKER_NAV
IST_ANGLES_STAT		STAR_TRACKER_NAV
		1
		!
		! !
!		- ! !
- ! !		
		! !
		; ! !

^{*}Onorbit/Rendezvous principal function I/O Table, table 4.2

4.2.7 Sensor Measurement Initialization (REND_NAV_SENSOR_INIT)

This sensor measurement initialization subfunction shall be invoked on each covariance propagation subcycle when the IMU sensed accelerations fall below a design dependent threshold (MEAS_THRESHOLD). The reinitialization of the sensor bias portion of the state vector and covariance matrix shall be performed upon entering rendezvous navigation, whenever the measurement type configuration has changed to include new measurements, or when an automatic in-flight update or a REL_NAV display update occurs while the Onorbit/Rendezvous Navigation principal function is active. The sensor covariance and bias setup subfunction (section 4.2.7.1) shall be invoked to account for the change in the measurement status.

- A. <u>Detailed Requirements</u>. The following steps shall be performed (in the order indicated):
 - 1. If the rendezvous radar range and range rate data set was off (DO_RRDOT_NLY_LAST = OFF) on the previous covariance propagation subcycle:

Call the sensor covariance and bias setup subfunction to reconfigure the bias portions of the state vector and the covariance matrix for this data set (see section 4.2.7.1)

CALL: SETUP

IN LIST: 2, TAU_RRDOT, BIAS_VAR_RRDOT, VAR_RRDOT, RRDOT_BIAS_INIT

- Test to determine if a new angle sensor has been selected by the crew.
 - a. If the rendezvous radar angle data set has been made available since the previous covariance propagation subcycle (DO_RR_ANGLES_NAV = ON and DO_RR_ANGLES_NAV_LAST = OFF):

Call the sensor covariance and bias setup subfunction to reconfigure the bias portions of the state vector and the covariance matrix for this data set (see section 4.2.7.1).

CALL: SETUP

IN LIST: 0, TAU_RR_ANGLES, BIAS_VAR_RR_ANGLES, VAR_RR
ANGLES, RR_ANGLES_BIAS_INIT

Also set the positive feedback flag to the display for rendezvous radar angles:

ANGLES_ENABLE_DISPLAY = 2

b. If the star tracker angle data set has been made available since the previous covariance propagation subcycle (DO_ST_ANGLES_NAV = ON and DO_ST_ANGLES_NAV_LAST = OFF): Call the sensor covariance and bias setup subfunction to reconfigure the bias portions of the state vector and the covariance matrix for this data set (see section 4.2.7.1).

CALL: SETUP

IN LIST: O, TAU_ST_ANGLES, BIAS_VAR_ST_ANGLES, VAR_ST_ANGLES, ST_ANGLES_BIAS_INIT

Also set the positive feedback flag to the display for star tracker angles:

ANGLES_ENABLE_DISPLAY = 0

c. If the COAS angle data set has been made available since the previous covariance propagation subcycle (DO_COAS_ANGLES_NAV = ON and DO_COAS_ANGLES_NAV_LAST = OFF):

Call the sensor covariance and bias setup subfunction to reconfigure the bias portions of the state vector and the covariance matrix for this data set (see section 4.2.7.1).

CALL: SETUP

IN LIST: 0, TAU COAS ANGLES, BIAS VAR COAS ANGLES, VAR COAS ANGLES, COAS ANGLES BIAS INIT

Also set the positive feedback flag to the display for COAS angles:

ANGLES_ENABLE_DISPLAY = 1

3. Save the current values of the "DO_NAV" flags for the next execution of this subfunction.

DO RRDOT_NAV_LAST = ON

DO_RR_ANGLES_NAV_LAST = DO_RR_ANGLES_NAV

DO ST ANGLES NAV LAST = DO ST ANGLES NAV

DO_COAS_ANGLES_NAV_LAST = DO_COAS_ANGLES_NAV

- B. <u>Interface Requirements</u>. The input and output variables for this subfunction are described in table 4.2.7.
- C. Processing Requirements. This subfunction is called by

NAV ONORBIT RENDEZVOUS (section 4.2.1)

D. Constraints. None

E. <u>Supplementary Information</u>. A suggested implementation in the form of a detailed flowchart can be found in Appendix B under the name:

REND_NAV_SENSOR_INIT

TABLE 4.2.7.- REND NAV_SENSOR_INIT INPUT/OUTPUT

7	· · · · · · · · · · · · · · · · · · ·	1
! Input	Source	! Output Destination
1	•	SETUP
*	*	Setup
		! Setup
•	•	! Setup
•	•	SETUP
REND_SENSOR	_select	1
REND_COV_IN	IT,*	1
REND_SENSOR	_SELECT	1
REND_COV_INT	IT ,*	1
REND_COV_IN	IT,*	1
! REND_SENSOR_	_SELECT	!
REND_COV_IN	IT,*	
! *	*	! SETUP
1 *	•	! SETUP
! *	*	! ! SETUP
! *	*	! SETUP
: ! *	•	! SETUP
! *	•	SETUP
1 *	*	! ! SETUP
! *		! ! SETUP
!		1
	REND_SENSOR REND_COV_IN REND_COV_IN REND_COV_IN REND_COV_IN	Input Source " " " " " " " " " " " " " " " " " " "

^{*}Onorbit/Rendezvous principal function, see section 4.2 **Initialization parameters, see section 4.7

TABLE 4.2.7.- REND_NAV_SENSOR_INIT INPUT/OUTPUT.- Concluded

Variable Name 1	Input Source	1 Output Destination
VAR_RR_ANGLES	• •	SETUP
VAR_RRDOT	• •	SETUP
VAR_ST_ANGLES	• •	! Setup
ANGLES_ENABLE_DISPLAY		
1		1
		1
1		1
!		· · · · · · · · · · · · · · · · · · ·
!		1 1
t 1		1 1
!		<u>!</u>
1		1
1		
i		i
1		•
!		
1		1
		! !
1		! !
1 1		† †
1		1 1
i		į

^{*}Onorbit/Rendezvous principal function, see section 4.2 **Initialization parameters, see section 4.7

4.2.7.1 Sensor Covariance and Bias Setup (SETUP)

The sensor measurement initialization subfunction (section 4.2.7) shall invoke the sensor covariance and bias setup subfunction to reconfigure the bias portions of the state vector and the covariance matrix whenever the covariance matrix initialization subfunction (REND_COV_INIT) has been exercised since the last covariance propagation subcycle, or when a new measurement set has been selected since the previous covariance propagation subcycle. New exponentially correlated time constants and process noise variances are also selected from premission values for use in the computation of the state transition matrix and in the addition of process noise.

A. <u>Detailed Requirements</u>. This subfunction is called with the following internal variables in the IN LIST:

INLIST: I, TAU, BIAS VAR, BIAS COV VAR, BIAS INIT

where

I is a pointer for the desired measurement set

= 0 for all angle data

= 2 for rendezvous range and range rate data

TAU sensor time constants

BIAS VAR sensor bias variances

BIAS_COV_VAR sensor bias variance terms for the covariance matrix

BIAS_INIT initial sensor bias

The following steps shall be performed for J = 1 to 2:

- 1. K = I + J
- 2. The state vector is to be reconfigured by setting its bias slots associated with the new measurement types to premission values. Bias values of measurement types no longer needed do not have to be zeroed.

TAU_SENSK = TAU_I

SENSOR BIASK = BIAS INIT.

VAR SENSK = BIAS_VAR_T

3. The covariance matrix is to be reconfigured by zeroing the off-diagonal terms associated with the new measurement type. The diagonal terms are then set equal to premission variance values of the new measurement type. The rows and columns associated with the discontinued measurement types do not have to be zeroed unless they are used by a new measurement type.

E9+K.1to13 = 0.0

E1to13,9+K = 0.0

Eg+K.9+K = BIAS_COV_VARJ

4. The accept/reject counters and the edit ratio of the residual edit test for each measurement group must be reset to zero for use by the measurement processing statistics subfunction (section 4.2.9).

N ACCEPTK = 0

N_REJECTK = C

SEQ ACCEPTK = 0

SEQ REJECTK = 0

NAV_SIGK = 0.0

- B. <u>Interface Requirements</u>. The input and output variables for this subfunction are defined in table 4.2.7.1.
- C. Processing Requirements. This subfunction is called by

REND NAV SENSOR INIT (section 4.2.7)

- D. Constraints. None
- 8. Supplementary Information. A suggested implementation in the form of a detailed flowchart can be found in Appendix B under the following name:

TABLE 4.2.7.1.- SETUP INPUT/OUTPUT

Inlist/Outlist			
Internal Name	! External ! Name	Input Source	Output Destination
BIAS_COV_VAR	IVAR_RRDOT	REND_NAV_SENSOR_INIT	
BIAS_INIT	PROT_BIAS_	REND_NAV_SENSOR_INIT	
BIAS_VAR	BIAS_VAR_RRDOT	rend_nav_sensor_init	
I	12	rend_nav_sensor_init	
<u>T</u> AU	ITAU_RRDOT	REND_NAV_SENSOR_INIT	
BIAS_COV_VAR	YAR_RR_ANGLES	rend_nav_sensor_init	
BIAS_INIT	RR_ANGLES_BIAS	REND_NAV_SENSOR_INIT	
BIAS_VAR	IBIAS_VAR_RR_ ! ANGLES	REND_NAV_SENSOR_INIT	
I	10	rend_nav_sensor_init	! !
<u>T</u> AU	TAU_RR_ANGLES	rend_nav_sensor_init	
BIAS_COV_VAR	VAR_ST_ANGLES	REND_NAV_SENSOR_INIT	! !
BIAS_INIT	!ST_ANGLES_BIAS !_INIT	rend_nav_sensor_init	
BIAS_VAR	!BIAS_VAR_ST_ !ANGLES	REND_NAV_SENSOR_INIT	
I	10	REND_NAV_SENSOR_INIT	
<u>T</u> AU	TAU_ST_ANGLES	REND_NAV_SENSOR_INIT	; [
BIAS_COV_VAR	!VAR_COAS_ !ANGLES	REND_NAV_SENSOR_INIT	
BIAS_INIT	!COAS_ANGLES_ !BIAS_INIT	irend_nav_sensor_init	; ! !

TABLE 4.2.7.1.- SETUP INPUT/OUTPUT.- Continued

Inlia	t/Outlist	!	1
Internal Name	! External!! Name	i Input Source	Output Destination
<u>B</u> IAS_VAR	!BIAS_VAR_COAS_!ANGLES	! ! rend_nav_sensor_init !	i ! !
I	io	!REND_NAV_SENSOR_INIT	
<u>T</u> AU	I_TAU_COAS_ I ANGLES	REND_NAV_SENSOR_INIT	; ! !
		!	!
	! !	t 1	! !
	1	!	!
	!	I !	! !
	1	ī t	I !
	•	: !	I I •
	!	!	! !
	1	! !	! !
	!	! !	! !
	!	! !	! !
	!	1	! !
	!	! !	!
	: !	: !	: ! !
	: !	: !	! !
	!	!	! !
	1	!	!

TABLE 4.2.7.1. - SETUP INPUT/OUTPUT. - Concluded

Variable Name	! Input Source	! Output Destination
В	1	! REND_NAV_FILTER,
	1	REND_BIAS_AND_COV_PROP,
N _ACCEPT		IMEAS_PROCESSING_
	!	STATISTICS_REND,
MAV_SIG	1	! ! RRDOT_NAV,
	1	IRR ANGLE NAV.
	1	!ANGLB_NAV,
	!	!anglb_nav, !mras_processing_
	1	STATISTICS_REND
n _reject		!MEAS PROCESSING_
	1	STATISTICS_REND,*
Sensor_bias		! !rend_nav_filter,
		! RRDOT_NAV,
,	i	IRR_ANGLE_NAV,
	i	IANGLE NAV.
	1	INAV_ONORBIT_RENDEZVOUS
SEQ_ACCEPT	1	! !MEAS PROCESSING
	i	STATISTICS_REND,*
QPA DEIRCT	1	! !MEAS PROCESSING
<u>seq_reject</u>		!STATISTICS_REND,"
	i	!
TAU_SENS	1	!REND_BIAS_AND_COV_PROP
VAR SENS	1	! !REND_BIAS_AND_COV_PROP
	1	!
	1	!
	i	i
		1
	1	1 •
		i
	1	1
	1	•
	1	1
		!
	1	Ţ

 $^{^{4}}$ Onorbit/Rendezvous principal function, see section $^{4}.2$

4.2.8 State and Covariance Measurement Incorporation

This section documents the requirements for the following four rendezvous sensor navigation measurement incorporation subfunctions:

- Rendezvous radar range and range rate measurements
- Rendezvous radar shaft and trunnion angle measurements
- Star tracker horizontal and vertical angle measurements
- COAS horizontal and vertical angle measurements

Each measurement incorporation subfunction updates the state vector and covariance matrix with the corresponding rendezvous sensor data using a 13-state process noise Kalman filter.

4.2.8.1 Rendezvous Radar Range and Range Rate Measurements (RRDOT_NAV)

This subrunction is responsible for the proper processing of the rendezvous radar range and range rate measurements. This subfunction shall perform the following tasks only when the rendezvous radar is not in the self test mode and the measurement data is labeled valid.

- Calculate the partial derivative of the measurement with respect to the estimated state at measurement time
- Compute the estimated measurement and the measurement residual
- Select the proper variances to model the uncorrelated measurement errors
- Store the old residual ratio, the EDIT OVERRIDE flag, and the STAT flags into temporary locations used by the Kalman Filter Updates subfunction (section 4.2.8.1.2)
- Schedule the Kalman Filter Updates subfunction to process the data
- Store the current residual ratio, the EDIT flag, and the measurement residual for display purposes
- A. Detailed Requirements. The following steps shall be performed (in the order indicated):
 - 1. If the rendezvous radar is not in the self test mode (SELF_TEST_FLAG = OFF), then continue with the measurement processing; otherwise exit this subfunction.
 - a. The time interval between the current filter time and the time of the radar measurement shall be computed:

DELTAT GO = T CURRENT FILT - T REND RADAR

- b. Test the range data good flag. If the data is good, parform the following steps:
 - (1) Call the measurement interpolation subfunction to interpolate the Orbiter state vector and the target state vector to the time of the range measurement (see section 4.2.8.1.1):

CALL: REND_NAV_INTERP

REND_NAV_INTERP subfunction shall also compute an Orbiter or target patch transition matrix PHI_PATCH, the normalized line of sight vector $\underline{\mathbf{I}}$ _RHO, and the magnitude of the relative position vector $\underline{\mathbf{R}}$ _RHO used in this subfunction.

(2) The rendezvous radar range measurement partial vector is computed with the following equations:

 $B_{1 \text{ to } 6} = -(PHI_PATCH_{1 \text{ to } 3}, 1 \text{ to } 6)^{T} \underline{I} _RHO$ $B_{12} = 1.0$

(3) The estimated range measurement and the range measurement residual are then calculated:

RNG = R_RHO_MAG + SENSOR_BIAS3

DELQ = Q_RR_RNG-RNG

(4) The variance of the uncorrelated range measurement noise is computed:

 $VAR = (SIG_RR_RNG + SLOPE_SIG_RR_RNG R_RHO_MAG)^2$

VAR = MAXIMUM VAR, VAR RR RNG MIN

(5) The residual test ratio from the previous filter cycle and the measurement processing control flags shall be set as follows:

where RANGE_EDIT_OVERRIDE and RANGE_STAT come from the sensor measurement selection subfunction (section 4.2.6) and the NAV_SIG₃ comes from the previous navigation cycle's execution of this subfunction as given in the forthcoming step (7).

(6) The Kalman filter update subfunction (section 4.2.8.1.2) shall then be called to update the state and the covariance matrix:

CALL: REND_NAV_FILTER

(7) The measurement edit flag, the residual test ratio, and the range measurement residual shall then be stored for subsequent computation of measurement processing statistics, as described in section 4.2.9:

SENSOR_EDIT3 = EDIT_FLAG

NAV_SIG3 = RESID_TEST_RATIO

SENSOR_DELQ3 = DELQ

- c. Test the range rate data good flag. If the data is good, perform the following steps:
 - (1) Call the measurement interpolation subfunction (section 4.2.8.1.1) to interpolate the Orbiter state vector and the target state vector to the time of the range rate measurement:

CALL: REND_NAV_INTERP.

REND_NAV_INTERP subfunction shall also compute an Orbiter or target patch transition matrix PHI_PATCH, the normalized line of sight vector $\underline{\mathbf{I}}$ _RHO, and the magnitude of the relative position vector $\underline{\mathbf{R}}$ _RHO used in this subfunction.

(2) The rendezvous radar range rate measurement partial vector is computed with the following equations:

U = RDOT = V = RHO/R = RHO = MAG

F3

 B_1 to 3 = I _RHO X (I _RHO X U _RDOT)

 B_{4} to 6 = -I _RHO

 B_1 to 6 = $(PHI_PATCH)^TB_{1to6}$

 $B_{13} = 1.0$

(3) The estimated range rate measurement and the measurement residual are then calculated:

 $RNG_DOT = R RHO \cdot U RDOT + SENSOR_BIAS4$

DELQ = Q_RR_RNG_DOT- RNG_DOT

where R RHO comes from the interpolation process.

F3 This equation shall be protected against division by zero (Reference 3.6-3).

(4) The variance of the uncorrelated range rate measurement error is defined:

VAR = VAR_RANGE_DOT

(5) The residual test ratio from the previous filter cycle and the filter processing control flags shall be set as follows:

RESID_RATIO_OLD = NAV_SIG4

MANUAL EDIT OVERRIDE = ROOT EDIT OVERRIDE

STAT_FLAG = RDOT_STAT

where RDOT_EDIT_OVERRIDE and RBOT_STAT come from the sensor measurement selection subfunction (section 4.2.6) and the NAV_SIGH comes from the previous navigation cycle's execution of this subfunction as given in the forthcoming step (7).

(6) The Kalman filter subfunction (section 4.2.8.1.2) shall then be called to update the state and the covariance matrix:

CALL: REND_NAV_FILTER

(7) The measurement edit flag, the residual test ratio, and the range rate measurement residual shall then be stored for subsequent computation of measurement processing statistics, as described in section 4.2.9:

SENSOR_EDIT4 = EDIT_FLAG

NAV SIGH = RESID TEST_RATIO

SENSOR DELQ4 = DELQ

- B. <u>Interface Requirements</u>. The input and output variables for the rendezvous radar range and range rate measurement subfunction are given in table 4.2.8.1.
- C. Processing Requirements. This subfunction is called by

NAV_ONORBIT_RENDEZVOUS (section 4.2.1)

- D. Constraints. None
- E. Supplementary Information. A suggested implementation in the form of a detailed flowchart can be found in Appendix B under the name:

RRDOT NAV

TABLE 4.2.8.1.- RRDOT_NAV INPUT/OUTPUT

Variable Name	! Input Source	! Output Destination
В	A CONTRACTOR OF THE STATE	REND_NAV_FILTER
DELQ		! REND_NAV_FILTER
DELTAT_GO	! !	! REND_NAV_INTERP, !ONORBIT_SV_INTERP
EDIT_FLAG	! !REND_NAV_FILTER	
I_RHO	!REND_NAV_INTERP	
MANUAL_EDIT_OVERRIDE	!	!REND_NAV_FILTER
MAV_SIG	! !SETUP !	MEAS_PROCESSING_ ISTATISTICS_REND
PHI_PATCH	REND_NAV_INTERP	į
Q_RR_RNG	NAV_ONORBIT_RENDEZVOUS	!
Q_RR_RNG_DOT	NAV_ONORBIT_RENDEZVOUS	!
RANGE_EDIT_OVERRIDE	REND_SENSOR_SELECT	
RANGE_STAT	REND_SENSOR_SELECT	!
RDOT_DATA_GOOD	NAV_ONORBIT_RENDEZVOUS	
RDOT_EDIT_OVERRIDE	! rend_sensor_select	!
RDOT_STAT	! REND_SENSOR_SELECT	!
RESID_RATIO_OLD	: !	REND_NAV_FILTER
RESID_TEST_RATIO	irend_nav_filter	•
RNG_DATA_GOOD	NAV_ONORBIT_RENDEZVOUS	!
R _RHO	! REND_NAV_INTERP	•
R_RHO_MAG	REND_NAV_INTERP	1

^{**}Onorbit/Rendezvous principal function, see section 4.2 ***Initialization parameters, see section 4.7

TABLE 4.2.8.1. - RRDOT_NAV INPUT./OUTPUT. - Concluded

Variable Name	Input Source	Output Destination
SELF_TEST_FLAG	! NAV_ONORBIT_RENDEZVOUS	
SENSOR_BIAS	SETUP, REND_NAV_FILTER	
<u>s</u> ensor_delq		MEAS_PROCESSING_ !STATISTICS_REND
SENSOR_BDIT		!MEAS_PROCESSING_ !STATISTICS_REND, *
SIG_RR_RNG	1 **	!
SLOPE_SIG_RR_RNG	! ! ##	!
STAT_FLAG		! ! REND_NAV_FILTER
T_CURRENT_FILT	! NAV_ONORBIT_RENDEZVOUS	1
T_REND_RADAR	! !NAV_ONORBIT_RENDEZVOUS	!
VAR .	!	! ! REND_NAV_FILTER
VAR_RANGE_DOT	! ! **	! !
VAR_RR_RNG_MIN	!	!
V RHO	!REND_NAV_INTERP	!
		! !
		: !
	; !	!
	• •	!
	!	!
	!	!

^{*}Onorbit/Rendezvous principal function, see section 4.2 **Initialization parameters, see section 4.7

- 4.2.8.1.1 Measurement interpolation (REND_NAV_INTERP). The rendezvous navigation interpolation subfunction is invoked by the rendezvous sensor measurement incorporation subfunctions and is responsible for providing parameters that have been interpolated from current filter time back to the appropriate sensor measurement time. Specifically, this subfunction is charged with the following tasks.
 - Invoke the onorbit state vector interpolation subfunction to interpolate both the Shuttle and target position and velocity vectors from current filter time to the time of the measurement
 - Invoke the mean conic partial transition matrix subfunction to calculate a patch transition matrix from current filter time to the measurement time for either the Shuttle or target vehicle, depending on which vehicle state is to be updated by the Kalman filter
 - Calculate the relative velocity, relative position vector, range, and the line of sight vector between the Shuttle and target. Each of these parameters is computed using the interpolated positions and velocities
- A. Detailed Requirements. The following steps shall be performed (in the order indicated):
 - 1. The Orbiter state vector shall be interpolated to the time of the measurement with the use of the state vector interpolation subfunction as described in section 4.2.8.1.1.1.

CALL: ONORBIT SV INTERP

IN LIST: R_LAST, V_LAST, R_FILT, V_FILT, DV_COV, IGD, IGO, IDRAG, IVENT, ATFL_OV

OUT LIST: R RESID, V RESID, A RESID

2. The target state vector shall be interpolated to the time of the measurement with the use of the state vector interpolation subfunction as described in section 4.2.8.1.1.1.

CALL: ONORBIT SV_INTERP

IN LIST: R_TV_LAST, V_TV_LAST, R_TV, V_TV, O. GM DEG, GM_ORD, DFL, VFL_TV, ATFL_TV

OUT LIST: R TV RESID, V TV RESID, A TV RESID

- 3. Next, the SHUTTLE FILTER FLAG is tested to see if the Shuttle state or the target state is to be included in the Kalman filter.
 - a. If the Shuttle vehicle is the filter vehicle, then the positionvelocity state transition submatrix subfunction is used to construct

an Orbiter patch transition matrix as described in section 4.2.5.2 for use in the measurement partial calculations.

CALL: MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6

IN LIST: R FILT, V FILT, TOT ACC, R RESID, V RESID, A RESID, -DELTAT GO

OUT LIST: PHI_PATCH .

b. If the target vehicle is the filter vehicle, then the positionvelocity state transition submatrix subfunction is used to construct a target patch transition matrix as described in section 4.2.5.2 for use in the measurement partials calculation.

CALL: MRAN_CONIC_PARTIAL_TRANSITION_MATRIX_6X6

IN LIST: R TV, V TV, G TV, R TV_RESID, V TV_RESID, F TV_RES

OUT LIST: PHI_PATCH

4. The following auxiliary parameters will be calculated for use by the measurement subfunctions.

 $\underline{\mathbf{V}}$ RHO = $\underline{\mathbf{V}}$ TV RESID - $\underline{\mathbf{V}}$ RESID

 \underline{R} RHO = \underline{R} TV_RESID - \underline{R} RESID

 $R_RHO_MAG = R_RHO.$

If R_RHO_MAG is less than a premission determined constant, SENSOR_EPS, then

I RHO_T = SENSOR DELTA FOR I = 1 to 3

R RHO MAG = SENSOR DELTA

Otherwise.

I RHO = R RHO/R RHO MAG

F3

- B. Interface Requirements. The input and output data are shown in table 4.2.8.1.1.
- C. Processing Requirements. This subfunction is called by the following subfunctions:

F3 This equation shall be protected against division by zero (Reference 3.6-3).

ANGLE_NAV (section 4.2.8.3.1)

RR_ANGLE_NAV (section 4.2.8.2)

RRDOT_NAV (section 4.2.8.1)

D. Constraints. None

E. <u>Supplementary Information</u>. A suggested implementation in the form of a detailed flowchart may be found in Appendix B under the name REND_NAV_INTERP.

TABLE 4.2.8.1.1.- REND_NAV_INTERP INPUT/OUTPUT

Variable Name	! Input Source !	Output Destination
A _RESID	i ionorbit_sv_interp !	! !MEAN_CONIC_PARTIAL !TRANSITION_MATRIX_6X6
ATFL_OV	! !##	ONORBIT_SV_INTERP
ATFL_TV	; # 0	ONORBIT_SV_INTERP
<u>a</u> _tv_resid		MEAN_CONIC_PARTIAL TRANSITION_MATRIX_6X6
DELTAT_GO	!COAS_NAV, RR_ANGLE_NAV, !RRDOT_NAV, STAR_TRACKER_ !NAV	MEAN_CONIC_PARTIAL_ TRANSITION_MATRIX_6X6
DFL	: : **	ONORBIT_SV_INTERP
DA_COA	! NAV_ONORBIT_RENDEZVOUS,*	ONORBIT_SV_INTERP
GM_DEG	: ! ** !	ONORBIT_SV_INTERP
GM_ORD	: **	ONORBIT_SV_INTERP
<u>g</u> _TV		MEAN_CONIC_PARTIAL TRANSITION_MATRIX_6X6
	ONORBIT_REND_R_V_STATE_	! !Onorbit_sv_interp !
IGD	!ONORBIT_REND_R_V_STATE_ !PROP	!ONORBIT_SV_INTERP !
	IONORBIT_REND_R_V_STATE_ IPROP	! !ONORBIT_SV_INTERP !
IVENT	! !ONORBIT_REND_R_V_STATE_ !PROP	!ONORBIT_SV_INTERP
	I IMEAN_CONIC_PARTIAL ITRANSITION_MATRIX_6X6	! !rend_angle_partials, !rrdot_nav

^{**}Onorbit/Rendezvous principal function, see section 4.2 ***Initialization parameters, see section 4.7

TABLE 4.2.8.1.1.- REND_NAV_INTERP IMPUT/OUTPUT.- Continued

C

O

()

C

C

Variable Name	! Input Source	! Output Destination
		1
R_FILT	IONORBIT_REND_R_V_STATE_	IONORBIT SV_INTERP, IMBAN_CONIC_PARTIAL ITRANSITION_MATRIX_6X6
R_LAST	COV_LAST_RESET,*	ONORBIT_SV_INTERP
R RESID	ONORBIT_SV_INTERP	IMBAN_CONIC_PARTIAL ITRANSITION_MATRIX_6X6
R_TV	IONORBIT_REND_R_V_STATE_	IONORBIT_SV_INTERP, IMBAN_CONIC_PARTIAL ITRANSITION_MATRIX_6X6
R_TV_LAST	COV_LAST_RESET,*	ONORBIT_SV_INTERP
R _TV_RESID	ONORBIT_SV_INTERP	MEAN_CONIC_PARTIAL ITRANSITION_MATRIX_6X6
SHUTTLE_FILTER_FLAG	an-	!
TOT_ACC	REND_BIAS_AND_COV_PROP	MEAN_CONIC_PARTIAL TRANSITION_MATRIX_6X6
<u>V</u> _FILT	ONORBIT_REND_R_V_STATE_	ONORBIT_SV_INTERP, IMBAN_CONIC_PARTIAL ITRANSITION_MATRIX_6X6
VFL_TV	i de	IONORBIT_SV_INTERP
<u>v</u> _last	! !COV_LAST_RESET,*	IONORBIT_SV_INTERP
V_RESID	!ONORBIT_SV_INTERP	IMEAN_CONIC_PARTIAL_ ITRANSITION_MATRIX_6X6
V _TV	!ONORBIT_REND_R_V_STATE_ !PROP	ONORBIT SV_INTERP, MEAN_CONIC_PARTIAL TRANSITION_MATRIX_6X6
V_TV_LAST	COV_LAST_RESET,*	IONORBIT_SV_INTERP
	1	1

^{*}Onorbit/Rendezvous principal function, see section 4.2 **Initialization parameters, see section 4.7

TABLE 4.2.8 1.1. REND_NAV_INTERP INPUT/OUTPUT. - Concluded

Variable Name	! Input Source	! Output Destination
V TV_RESID	! ONORBIT_SV_INTERP	IMEAN_CONIC_PARTIAL_ ITRANSITION_MATRIX_6X6
I _RHO	! ! !	! ! Rend_Angle_Partials, ! Rrdot_Nav, Rr_Angle_Nav
R _RHO	! !	! rend_angle_partials, ! rrdot_nav
R_RHO_MAG	1 1	! !REND_MAV_FILTER, !RRDOT_NAV
<u>v</u> _RHO	!	! RRDOT_NAV
Sensor_eps	**	
SENSOR_DELTA	**	
		1
	!	
	!	
		!
		1
	i	!
	i	
	1	1

^{**} Initialization parameters, see section 4.7.

4.2.8.1.1.1. State vector interpolation (ONORBIT_SV_INTERP): The state vector interpolation subfunction shall provide the approximate position, velocity, and acceleration of either the Orbiter or target at a specified time within a given propagation interval given that the position, velocity and acceleration vectors are known at both ends of the interval.

The time at which vectors are desired is the time of an external sensor measurement, and the purpose of the interpolation is to enable the navigation filter to calculate measurement residuals at that time.

The method utilized for interpolation shall consist of defining a mean conic on the basis of positions and velocities of the vehicle in question at both ends of the propagation interval, and obtaining the desired vectors as if the vehicle moved along this mean conic. That is, a calculation shall be made to determine the point on the mean conic corresponding to the time of the measurement, and the velocity and position of such a point shall be taken as the state of the vehicle.

A. <u>Detailed Requirements</u>. This subfunction is called with the following internal variables in the IN LIST and the OUT LIST:

IN LIST: \underline{R} ONE, \underline{V} ONE, \underline{R} TWO, \underline{V} TWO, \underline{V} IMU_DIF, IGD, IGO,

IDM, IVM, IATM

OUT LIST: R RESID, V RESID, A RESID

where

 $\frac{R}{C}$ ONE position and velocity of the vehicle at the previous propagation step;

V ONE

R_TWO

current position and velocity

V _TWO)

V_IMU_DIF difference between IMU accumulated sensed velocities at the current time and the previous time

IGD

IGO

flags for the call to the acceleration function ACCEL_ONORBIT (refer to section 4.2.3.1.4 for details of these flags)

IVM

IDM

MTAI

The following steps shall be performed (in the order indicated):

1. A check of the absolute value of DELTAT_GO (where DELTAT_GO is the current filter time minus the time of the sensor measurement) against a premission-specified tolerance level will be performed:

DELTAT_CO | SPS_TIME

a. It is found that DELTAT_GO in absolute value is less than or equal to the tolerance, the values of the position and velocity of the vehicle at the current time shall be used as the state at the measurement time; the time tag at the measurement instant shall also be set equal to the current time:

R _RESID = R _TWO

V RESID = V TWO

T RESID = T CURRENT FILT

- b. If, on the other hand, the difference between the time of the measurement and the current time exceeds the tolerance, perform the following:
 - (1) Certain parameters associated with the mean conic shall be obtained

$$R_TWO_INV = 1./I_R_TWOI$$
 F3

SMA =
$$1./(1./|R| ONE| + R_TWO_INV$$

- $(\underline{V} ONE \cdot \underline{V} ONE + \underline{V} TWO \cdot \underline{V} TWO)/(2. EARTH_MU)$ F3

$$D_TWO = R_TWO \cdot V_TWO$$

and the time tag of the state vector at measurement time shall be set:

T_RESID = T_CURRENT_FILT-DELTAT_GO

Additionally, set R_FIN_TEMP_INV = 0.

(2) The F and G series subfunction shall then be called (refer to section 4.2.5.2.1 for the description of this subfunction)

CALL: F_AND_G

F3 This equation shall be protected against division by zero (Reference 3.6-3).

^{#4} This equation shall be protected against square roots of a negative number (Reference 3.6-4).

IN LIST: SMA, - DELTAT GO, C1, R TWO, R TWO INV, R FIN TEMP INV, Y TWO, D TWO, D FIN TEMP

OUT LIST: F, G, FDOT, GDOT, SO, S1, S2, S3, R RESID, R FIN INV, THETA

The position vector (\underline{R} RESID) comes out of this call; the velocity vector (\underline{V} RESID) does not, but it can be calculated on the basis of FDOT and GDOT, which are also obtained from the F and G series call:

\underline{V} RESID = FDOT \underline{R} 1.0 + GDOT \underline{V} TWO

2. Finally, the modeled acceleration shall be obtained by invoking the acceleration function with the position, velocity, and time (determined by the above process) in the calling arguments and adding the central force term. The sensed acceleration shall be found by dividing the difference in accumulated sensed velocities at both ends of the propagation interval by the duration of the interval. Total acceleration will be the sum of these two.

(refer to section 4.2.4.1.1 for the description of this subfunction)

- B. <u>Interface Requirements</u>. The input and output data are shown in table 4.2.8.1.1.1.
- C. Processing Requirements. This subfunction is called by

REND NAV_INTERP (section 4.2.8.1.1)

- D. Constraints. None
- E. <u>Supplementary Information</u>. A suggested implementation in the form of a detailed flowchart may be found in Appendix B under the name of ONORBIT_SV_INTERP.

F3 This equation shall be protected against division by zero (Reference 3.6-3).

TABLE 4.2.8.1.1.1.- ONORBIT_SV_INTERP INPUT/OUTPUT

1			1
I Inlist	/Outlist	i	į
i Internal	! External	I Input Source	! Output Destination
! Name	! Name		1
I !IATM	! ATFL_OV	!REND NAV_INTERP	
! IDM	! IDRAG	!REND NAV INTERP	i
IIGD	! IGD	!REND NAV INTERP	i
!IGO	11GO	!REND NAV INTERP	!
!IVM	! IVENT	!REND_NAV_INTERP	1
IR ONE	!RLAST	! REND_NAV_INTERP	!
IR TWO	!R_FILT	!REND_NAV_INTERP	I .
IV IMU DIF	IDA COA	!REND_NAV_INTERP	!
IV ONE	IV LAST	!REND_NAV_INTERP	!
IV TWO	IV FILT	!REND_NAV_INTERP	
! !IATM	! !ATFL_TV	!REND NAV INTERP	I 1
!IDM	IDFL	! REND NAV INTERP	• •
!IGD	IGM DEG	IREND NAV INTERP	i
11G0	IGM ORD	! REND NAV INTERP	1
!IVM	IVEL TV	! REND NAV INTERP	•
IR ONE	IR TV LAST	!REND NAV INTERP	!
!R TWO	!R TV	!REND_NAV_INTERP	!
IN IMU DIE	1 <u>0</u> .	!REND_NAV_INTERP	1
IV ONE	IV TV LAST	!REND_NAV_INTERP	!
IA TMO	! <u>▼</u> _Tv	! REND_NAV_INTERP	!
! !A RESID	!A RESID		! !REND NAV INTERP
IR RESID	R RESID		REND NAV INTERP
IV RESID	IV RESID		REND NAV INTERP
1	1	•	!
!A RESID	IA TV RESID	1	REND NAV INTERP
IR RESID	IR TV RESID		REND NAV INTERP
IV RESID	IV TV RESID	1	REND_NAV_INTERP
1	1 .	1	
!	1	1	!
!	!	1	
I •			!
; !	I 1	1	•
; 1	•	•	I .
!	ĭ 	•	•
!	!	•	
!	!	1	•
!	!	•	- !
l	!	1	1

TABLE 4.2.8.1.1.1.- ONORBIT_SV_INTERP INPUT/OUTPUT.- Continued

Variable Name	! ! Input Source !	! ! Output Destination !
1	! !COAS_NAV, RR_ANGLE_NAV, !RRDOT_NAV, STAR_TRACKER_ !NAV	! !F_AND_G !
DT_COV	REND_BIAS_AND_COV_PROP	
EARTH_MU	: ##	
!EPS_TIME	: ! ***	!
! !P	F_AND_G	!
! !FDOT	F_AND_G	!
iG	F_AND_G	! !
IGDOT	F_AND_G	!
R_FIN_INV	F_AND_G	
! <u>R</u> _RESID	F_AND_G	ACCEL_ONORBIT
!SQR_EMU	•	!
i so	F_AND_G	
isi	F_AND_G	!
182	F_AND_G	
183	F_AND_G	
IT_CURRENT_FILT	NAV_ONORBIT_RENDEZVOUS	
ITHETA	F_AND_G	: !
i †	ACCEL_ONORBIT	
ic1		F_AND_G
! !	! !	1

^{**}Onorbit/Rendezvous principal function, see section 4.2
***Initialization parameters, see section 4.7
†Value returned from the function

TABLE 4.2.8.1.1.1.- ONORBIT_SV_INTERP_INPUT/OUTPUT.- Concluded

Variable Name !	Input Source	! Output Destination
D_FIN_TEMP	**	F_AND_G
D_TWO		F_AND_G
IATM !		ACCEL_ONORBIT
IDM !		ACCEL_ONORBIT
IGD		ACCEL_ONORBIT
IGO		ACCEL_ONORBIT
IVM !		ACCEL_ONORBIT
R_FIN_TEMP_INV	<i>y</i>	F_AND_G
R_TWO		F_AND_G
R_TWD_INV		F_AND_G
SMA !		F_AND_G
T_RESID		!ACCEL_ONORBIT
V_RESID		IACCEL_ONORBIT
<u>v</u> _two		F_AND_G
•		1
1		1
!	·	1
		1
!		1
		1
! !		1
1		1

4.2.8.1.2 <u>Kalman filter updates (REND_NAV_FILTER)</u>. - The Kalman Filter Updates subfunction shall be responsible for the processing of the rendezvous sensor measurement data. If the estimated range between the Orbiter and target vehicles is greater than or equal to a design dependent minimum range threshold, then the Kalman Filter Updates subfunction will perform the following major tasks.

- A bilevel residual edit test will be performed to determine whether the Kalman filter scheme will be used to update the state vector. This subfunction shall be able to respond to crew requests to relax the edit criteria thereby increasing the likelihood of incorporating the measurement data into the state vector.
- This subfunction shall be able to update the covariance matrix as well as the state vector by means of the Kalman update equations. The Kalman filter scheme shall be modified to allow for underweighting of the estimated sensor variance and the selective updating of the unmodeled acceleration bias states.
- Finally, the Kalman Filter Updates subfunction shall record the type of data processing that has occurred for crew display.
- A. Detailed Requirements. For the measurement type to be processed on this cycle, test the magnitude of the relative position vector (R_RHO_MAG) against the minimum separation distance (RNG_MIN) to determine whether or not to exercise the Kalman filter update equations.

If R RHO MAG < RNG MIN, the EDIT FLAG is to be set to OFF in order to blank the display. (Note: The measurement subfunction generates the partial vector, the residual, the magnitude of the relative position vector, and the a priori variance.) The logic then exits REND_NAV_FILTER without exercising the Kalman filter equations.

If $R_RHO_MAG \ge RNG_MIN$, exercise the Kalman filter update equations, as follows:

1. Test the SHUTTLE_FILTER_FLAG. If the target is the filter vehicle (SHUTTLE_FILTER_FLAG = OFF), the sign is changed on the measurement partials vector.

$$B_1$$
 to 6 = $-B_1$ to 6

 The scalar quantity BT_E_B is to be calculated from the covariance matrix E and vector measurement partials B,

$$EB$$
 COPY = E B

$$BT_B = B \cdot EB_{COPY}$$

where the second equation requires a dot product. The partials vector \underline{B} shall then be set equal to zero so that subsequent measurement subroutines will only be required to calculate nonzero elements.

B = 0.

The quantity MS_DELQ, which represents the expected variance in the residual, is then to be computed by

MS_DELQ = BT_E_B + VAR.

3. If the trace of the filter vehicle position portion of the covariance matrix $(\mathbb{E}_{1,1} + \mathbb{E}_{2,2} + \mathbb{E}_{3,3})$ is greater than a threshold, MS_POS_UND_WGT, then the denominator of the Kalman gains is underweighted in order to improve the transient response of the filter.

MS_DELQ = MS_DELQ + K_UND_WGT(BT_E_B)

4. The residual test quantity (RESID_TEST) shall be computed for the residual edit test and for display purposes,

RESID_TEST = (K_RES_EDIT) MS_DELQ

where K RES EDIT is a premission constant.

5. The residual edit test ratio (RESID_TEST_RATIO) is to be computed.

RESID_TEST_RATIO = ABS(DELQ)/VRESID_TEST. F4

 Test STAT_FLAG to determine if the residual and residual ratio have been computed on this cycle for display purposes only. If STAT_FLAG = ON, set

EDIT FLAG = STAT

for display (section 4.2.9) and exit REND_NAV_FILTER. If STAT_FLAG is OFF, proceed to the next step in the logic.

7. Preparations for a residual edit test shall be performed. If the manual edit override is inactive, the test quantity (TEST_VALUE) shall be set

OLD is the value of the residual ratio for the state and covariance measurement incorporation subfuncton during the previous navigation cycle.

F3 This equation shall be protected against division by zero (Reference 3.6-3). F4 This equation shall be protected against square roots of a negative number (Reference 3.6-4).

- 8. The edit test (RESID_TEST_RATIO \leq TEST_VALUE) is performed.
 - a. If the test fails, the edit flag is set to ON for crew information.

EDIT FLAG = ON

b. If the measurements are to be incorporated, then update the state and the covariance matrix.

EXECUTE: REND STATE AND COV_UPDATE CODE

(1) Compute the Kalman filter gain and update and symmetrize the covariance matrix.

Finally, $E_{13.13} = E_{13.13} - OMEGA_{13} EB_COPY_{13}$.

- (2) Test the SHUTTLE FILTER FLAG.
 - If the Shuttle vehicle is the filter vehicle (SHUTTLE_FILTER_FLAG = ON), then this subfunction shall update the shuttle state vector by application of the following equations:

- If the target vehicle is the filter vehicle (SHUTTLE_FILTER_FLAG = QFF), then this subfunction shall update the target state vector by application of the following equations:

$$\underline{R}$$
 _TV = \underline{R} _TV + OMEGA₁ to 3 DELQ
 \underline{V} _TV = \underline{V} _TV + OMEGA₄ to 6 DELQ

(3) If the unmodeled acceleration bias states are to be updated (UNMOD_ACC_BIAS_UPDATE_FLAG = ON), then this subfunction shall update the unmodeled acceleration bias states by application of the following equation:

F3 The equation shall be protected against division by zero (Reference 3.6-3).

UNMOD_ACC_BIAS = UNMOD_ACC_BIAS + OMEGAY to 9 DELQ

(4) The sensor bias states shall be updated by application of the following equation:

SENSOR_BIAS = SENSOR_BIAS + OMEGA 10 to 13 DELQ

where DELQ corresponds to the appropriate measurement residual.

After executing REND_STATE_AND_COV_UPDATE code, if the manual edit override is active (MANUAL_EDIT_OVERRIDE = ON), the edit flag is set to FORCED.

EDIT_FLAG = FORCED

Otherwise, set the edit flag to PROCESSED.

EDIT_FLAG = PROCESSED

Both the FORCED and the PROCESSED conditions result from measurement incorporation.

It is required that the residual, the residual test quantity (RESID_TEST_RATIO), and the residual edit flag corresponding to each measurement subfunction be saved for display purposes.

- B. <u>Interface Requirements</u>. The inputs and outputs for this subfunction are given in table 4.2.8.1.2.
- C. <u>Processing Requirements</u>. This subfunction is called by the following subfunctions:

ANGLE NAV

(section 4.2.8.3.1)

RR ANGLE NAV

(section 4.2.8.2)

RRDOT NAV

(section 4.2.8.1)

- D. Constraints. None
- E. Supplementary Information. A suggested implementation in the form of detailed flowcharts can be found in Appendix B under the following names:

REND_NAV_FILTER

REND STATE AND COV UPDATE CODE

TABLE 4.2.8.1.2. - REND_NAV_FILTER INPUT/OUTPUT

Variable Name	I Input Source	i Output Destination
<u>B</u>	! RRDOT_NAV, RR_ANGLE_NAV, !REND_ANGLE_PARTIALS, ! ANGLE_NAV	1 1 1 1
DELTA_RESID_RATIO		1
IDELQ	RRDOT_NAV, RR_ANGLE_NAV, ANGLE_NAV	1 1
E	REND BIAS AND COV PROP, REND COV INIT, COVINIT UVW, U A BIAS AND COVINIT, SETUP	REND_BIAS_AND_COV_PROP,#
EDIT_FLAG	I I	!RRDOT_NAV, RR_ANGLE_NAV, !ANGLE_NAV
K_RESID_EDIT	: !**	1
K_UND_WGT	**	1
MANUAL_EDIT_OVERRIDE	!RRDOT_NAV, RR_ANGLE_NAV, !ANGLE_NAV	: !
MS_POS_UND_WGT	**	1
RESID_RATIO_OLD	!RRDOT_NAV, RR_ANGLE_NAV, !ANGLE_NAV	1 1
RESID_TEST_RATIO		!RRDOT_NAV, RR_ANGLE_NAV, !ANGLE_NAV
R_FILT	!PROP!!!!!	COV LAST RESET, SHUTTLE !RESET, ONORBIT_REND_R V_ !STATE_PROP, *, REL_NAV_ !DISPLAY_UPDATES, REND_ !COV_INIT, NAV_ONORBIT_ !RENDEZVOUS
	; 1 1	: ! !

^{**}Onorbit/Rendezvous principal function, see section 4.2 ***Initialization parameters, see section 4.7

TABLE 4.2.8.1.2.- REND_NAV_FILTER INPUT/OUTPUT.- Continued

Variable Name	! Input Source	1 Output Destination
RNG_MIN	40	!
R_RHO_MAG	REND_NAV_INTERP	1
R_TV	IONORBIT REND R V STATE	COV_LAST_RESET, TARGET !RESET, ONORBIT_REND_R_V !STATE_PROP, *, REL_NAV_!DISPLAY_UPDATES, REND_!COV_INIT, NAV_ONORBIT_!RENDEZVOUS
SENSOR_BIAS	ISETUP !	RR ANGLE NAV, RRDOT NAV, ANGLE NAV, NAV_ONORBIT_RENDEZVOUS
SHUTTLE_FILTER_FLAG	**	1
STAT_FLAG	! RRDOT_NAV, RR_ANGLE_NAV, ! ANGLE_NAV	! !
UNMOD_ACC_BIAS	PREND_BIAS_AND_COV_PROP, U_A_BIAS_AND_COVINIT	!ACCEL_ONORBIT, !REND_BIAS_AND_COV_PROP, !NAV_ONORBIT_RE!*DEZVOUS
UNMOD_ACC_UPDATE_FLAG	1 **	!
VAR	PRODI_NAV, RR_ANGLE_NAV, PANGLE_NAV, PANGLE_NAV	! ! !
<u>v</u> _filt	ONORBIT_REND_R_V_STATE_ PROP	COV_LAST_RESET,SHUTTLE !RESET, ONORBIT_REND_R_V !STATE_PROP,*,REL_NAV_!DISPLAY_UPDATES,REND_COV !INIT,NAV_ONORBIT_ !RENDEZVOUS
	T S E E	T 1 1 !

^{*}Onorbit/Rendezvous principal function, see section 4.2 **Initialization parameters, see section 4.7

TABLE 4.2.8.1.2.- REND_NAV_FILTER INPUT/OUTPUT.- Concluded

Variable Name	! Input Source	l Output Destination
<u>v</u> _tv	! ONORBIT_REND_R_V_STATE_!PROP!!!!!!	! COV_LAST RESET, TARGET ! RESET, ONORBIT_REND_R_V_! STATE PROP, **, REL_NAV !DISPLAY UPDATES, REND_! COV_INIT, NAV_ONORBIT_! RENDEZVOUS
	1 1 1 1	1 1 1 · · · · · · · · · · · · · · · · ·
]
	! !	i ! !
	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	! ! !
	: ! !	! ! !
	! ! !	! ! !
	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	
	1 ! !	1 1 1
	! ! noinel function see section	1 1 1,2

4.2.8.2 Rendezvous Radar Shaft and Trunnion Angle Measurements (RR_ANGLE_NAV)

This subfunction is responsible for the proper processing of the rendezvous radar shaft and trunnion angle measurements. This subfunction shall perform the following tasks only when the rendezvous radar is not in the self test mode and the measurement data is labeled valid.

- Calculate the partial derivative of the measurement with respect to the estimated state at measurement time.
- Compute the estimated measurement and the measurement residual.
- Select the proper variances to model the uncorrelated measurement errors.
- Store the old residual ratio, the EDIT OVERRIDE flag, and the STAT flags into temporary locations used by the Kalman Filter Updates subfunction (section 4.2.8.1.2).
- Schedule the Kalman Filter Updates subfunction to process the data.
- Store the current residual ratio, the EDIT flag and the measurement residual for display purposes.
- A. Detailed Requirements. Process the rendezvous radar angle data only if the data are valid and the rendezvous radar is not in the self test mode (SELF_TEST_FLAG = OFF). The following steps shall be performed in the order indicated.
 - 1. Compute the mean of 1950 to sensor coordinate transformation matrix.

M_M50_TO_SENSOR = M_BODY_TO_RR QUAT_TO_MAT(Q_M50BODY_RR)

2. Compute the time difference between current filter time and the time of the rendezvous radar angle data measurements.

DELTAT_GO = T_CURRENT_FILT - T_REND_RADAR

3. Call the measurement interpolation subfunction and interpolate the Orbiter and target state vectors to the time of the shaft angle measurement (see section 4.2.8.1.1)

CALL: REND NAV INTERP

4. Call the angle partials subfunction to compute the partial vector (see section 4.2.8.2.1)

CALL: REND ANGLE PARTIALS

IN LIST: -M_M50_TO_SENSOR3.1 to 3

5. Calculation of the partial vector is completed by setting the appropriate value in the bias slot of that vector.

 $B_{10} = 1.0$

The state of the s

6. Compute the estimated shaft angle measurement and the shaft angle measurement residual.

SHAFT = ARCTAN2 (-U_M2, U_M1) + SENSOR_BIAS1

F7

DELQ = Q RR SHFT RAD_PER_DEG - SHAFT

7. If measurement residual (DELQ) falls outside the range - π to π , adjust DELQ such that it falls inside the range.

If DELQ > 0. DELQ = DELQ - 2π

DELQ \leq 0. DELQ = DELQ + 2 π

8. Assign the appropriate variance for the rendezvous radar shaft angle.

VAR = VAR SHAFT

9. The residual test ratio from the previous filter cycle and the measurement processing control flags shall be set as follows:

RESID_RATIO_OLD = MAX (NAV_SIG_1, NAV_SIG_2)
MANUAL_EDIT_OVERRIDE = RR_ANGLES_EDIT_OVERRIDE
STAT_FLAG = RR_ANGLES_STAT

(where RR ANGLES EDIT OVERRIDE and RR ANGLES STAT come from the sensor measurement selection subfunction (section 4.2.0) and NAV SIG comes from the previous execution of this subfunction as given in step 11).

10. Call the Kalman filter subfunction to process the rendezvous radar shaft angle measurement (see section 4.2.8.1.2)

CALL: REND_NAV_FILTER

11. Store the output data from the Kalman filter subfunction in the appropriate variables for use by the measurement processing statistics subfunction.

SENSOR_EDIT 1 = EDIT_FLAG

NAV_SIG1 = RESID_TEST_RATIO

SENSOR DELQ1 = DELQ

F7 This equation shall be protected against are tangents with both arguments equal to zero (Reference 3.6-7).

12. Call the measurement interpolation subfunction to interpolate the Orbiter and target state vectors to the time of the trunnion angle measurement (see section 4.2.8.1.1)

CALL: REND NAV INTERP

13. Call the angle partials subfunction to compute the partial vector (see section 4.2.8.2.1)

CALL: REND ANGLE PARTIALS

IN LIST: UNIT(I_RHO x M_M50_TO_SENSOR3,1to3)

14. Calculation of the partial vector is completed by setting the appropriate value in the bias slot of that vector.

 $B_{11} = 1.0$

15. Compute the estimated trunnion angle measurement and the trunnion angle measurement residual.

TRUN = ARCSIN(U_M3) + SENSOR_BIAS2

P5

DELQ = Q RR TRUN HAD PER DEG - TRUN

16. Assign the appropriate variance for the rendezvous radar trunnion angle

VAR = VAR TRUN

17. Call the Kalman filter to process the rendezvous radar trunnion angle measurement (see section 4.2.8.1.2)

CALL: REND_NAV_FILTER

B. Interface Requirements. - The input and output variables for this subfunction are defined in table 4.2.8.2.

F5 This equation shall be protected against arc sine of arguments with magnitudes greater than unity (Reference 3.6-5).

79FM10

- C. Processing Requirements. This subfunction is called by NAV_ONORBIT_RENDEZVOUS (section 4.2.1).
- D. Constraints. None
- E. Supplementary Information A suggested implementation in the form of a detailed flowchart can be found in Appendix B under the name RR_ANGLE_NAV.

TABLE 4.2.8.2.- RR_ANGLE_NAV INPUT/OUTPUT

Variable Name	! ! Input Source	! Cutput Destination
EDIT_FLAG	REND_NAV_FILTER	1
I _RHO	rend_nav_interp	1
M_BCDY_TO_RR	**	! !
NAV_SIG	! ! SETUP !	! MEAS PROCESSING_ ! STATISTICS_REND
PI	**	I !
Q _M50B0DY_RR	NAV_ONORBIT_RENDEZVOUS	I QUAT_TO_MAT
Q_RR_SHFT	! NAV_ONORBIT_RENDEZVOUS	: !
Q_RR_TRUN	NAV_ONORBIT_RENDEZVOUS	: !
RAD_PER_DEG	**	I !
RESID_TEST_RATIO	REND_NAV_FILTER	!
RR_ANGLE_DATA_GOOD	NAV_ONORBIT_RENDEZVOUS	: !
RR_ANGLES_EDIT_OVERRIDE	REND_SENSOR_SELECT	: !
RR_ANGLES_STAT	REND_SENSOR_SELECT	: !
SELF_TEST_FLAG	NAV_ONORBIT_RENDEZVOUS	: !
SENSOR_BIAS	SETUP, REND_NAV_FILTER	‡ ‡ ŧ
T_CURRENT_FILT	NAV_ONORBIT_RENDEZVOUS	: 1 !
	!	!
	 	!
		!
		- 1

Initialization parameters, see section 4.7

TABLE 4.2.8.2- RR_ANGLE_NAV INPUT/OUTPUT.- Concluded

! Variable Name	Input Source	Output Destination
T_REND_RADAR	NAV_ONORBIT_RENDEZVOUS	
. <u>u</u> _w	REND_ANGLE_PARTIALS	
VAR_SHAFT	##	
! VAR_T RUN	**	4.
! B		REND_NAV_FILTER
! DELQ		REND_NAV_FILTER
! DELTAT_GO		REND NAV INTERP, ONORBIT SV INTERP
MANUAL_EDIT_OVERRIDE		REND_NAV_FILTER
! M_M50_TO_SENSOR		REND_ANGLE_PARTIALS
RESID_RATIO_OLD		REND_NAV_FILTER
! SENSOR_DELQ		MEAS_PROCESSING_ STATISTICS_REND
! SENSOR_EDIT		MEAS_PROCESSING_ STATISTICS_REND,*
! STAT_FLAG		REND_NAV_FILTER
I VAR		REND_NAV_FILTER
! †	QUAT_TO_MAT	
UNIT(I RHO x M_M50_TO_		REND_ANGLE_PARTIALS
1 1 1 1		

^{**}Onorbit/Rendezvous principal function, see section 4.2
**Initialization parameters, see section 4.7
†Value returned from the function

4.2.8.2.1 Angle partials (REND_ANGLE_PARTIALS)

The angle partials subfunction (REND ANGLES PARTIALS) is a utility subfunction whose purpose is to compute the angle measurement partial derivatives, with respect to the Orbiter position and velocity, for all sensor angle measurements. The partials vector is used by the Kalman filter update subfunction, REND NAV FILTER (section 4.2.8.1.2).

A. Detailed Requirements .-

1. First, we compute RHO_PLANE, which is the projection of the Shuttle/target relative position vector, R_RHO, into the orthogonal complement plane of the axis of rotation of the angle measurement,

where I N is a unit vector along the axis of rotation.

2. Next, the partial derivative of the angle measurement with respect to the Shuttle position and velocity is computed.

B₁ to 6 =
$$(PHI_PATCH_1 \text{ to 3, 1 to 6})^T$$
.

F3

(UNIT(RHO PLANE x I N)/ RHO PLANE

PHI_PATCH is the position-velocity part of the state transition matrix calculated in the measurement interpolation subfunction, REND_NAV_INTERP (section 4.2.8.1.1).

3. Finally, the unit vector in the line of sight direction, I RHO, is rotated into sensor coordinates

- B. <u>Interface Requirements</u>.- Input and output parameters are listed in table 4.2.8.2.1.
- C. <u>Processing Requirements</u>.- This subfunction is called by the following subfunctions:

- D. Constraints.- None
- E. <u>Supplemental Information.- A suggested implementation of the angle partials subfunction may be found in the Appendix B flowchart REND ANGLE PARTIALS.</u>

F3 This equation shall be protected against division by zero (Reference 3.6-3).

TABLE 4.2.8.2.1.- REND_ANGLE_PARTIALS INPUT/DUTPUT

のできたがある。これでは、これのでは、日本の

] T- 34-4	(0-13-1-1		
Internal Name	/Outlist External Name	Input Source	Output Destination
! ! <u>I</u> _N !	-M_M50_T0_ SENSOR3,1to3	RR_ANGLE_NAV	
<u>I</u> _N	UNIT(<u>I</u> RHO! x M_M50_T0_ SENSOR3,1to3)!	RR_ANGLE_NAV	
<u> </u>	-M_M50_T0_ SENSOR2,1to3	ANGLE_NAV	
<u>I</u> _N	-M_M50_TO _SENSOR1,1to3	ANGLE_NAV	
• ! !			
! !			
! !			
! !	! ! !		! ! !
]] !	! ! !	·	! ! !
! !	! !	!	· · · · · · · · · · · · · · · · · · ·
! !	! !		
! !	! !	!	
! !	! !		
			<u> </u>

^{***}Onorbit/Rendezvous principal function, see section 4.2
***Initialization parameters, see section 4.7

TABLE 4.2.8.2.1.- REND_ANGLE_PARTIALS INPUT/OUTPUT.- Concluded

l Variable Name	! Input Source	Output Destination
R _RHO	REND_NAV_INTERP	
PHI_PATCH	REND_NAV_INTERP	
M_M50_TO_SENSOR	RR_ANGLE_NAV, STAR_TRACKER_NAV, COAS_NAV	1
<u>п</u> _м		RR_ANGLE_NAV, !
<u>B</u>		REND_NAV_FILTER
I _RHO	REND_NAV_INTERP	: : :
		! !
!	!	! !
		!
	!	!
!	!	! !
		! !
		!
! !	 	!
		1

4.2.8.3 Star Tracker Horizontal and Vertical Measurements (STAR_TRACKER_NAV)

This subfunction is responsible for the proper processing of the star tracker vertical and horizontal measurement data. This subfunction shall perform the following tasks provided the star tracker is in the target track mode and the angle data are valid.

- Store the mean of '50 to star tracker transformation matrix for use in the angle measurements subfunction.
- Compute the time difference between current filter time and measurement time.
- Invoke the angle measurement subfunction for the processing of the angle data with the proper IN LIST arguments.

If the star tracker time tag is too close in value to the star tracker time tag on the last filter cycle the angle measurement subfunction is not invoked in order to avoid the processing of the same measurement twice.

- A. Detailed Requirements. If the star tracker data is good (ST_DATA_GOOD = ON) and the star tracker is in the target track mode (TRG_TRK_MODE = ON), then the following steps shall be performed in the order indicated.
 - 1. Store the mean of 1950 to star tracker transformation matrix into the mean of 1950 to sensor transformation matrix for use in the angle measurements subfunction (section 4.2.8.3.1)

M_M50_TO_SENSOR = M_M50_TO_ST

 Compute both the time difference between the current time and the star tracker measurement time and the time difference between the current star tracker measurement time and the time of the last processed measurement.

DELTAT GO = T_CURRENT_FILT-T_STAR_TRACKER
DELTAT_ST = T_STAR_TRACKER-T_ST_LAST

3. Test the time difference between the current star tracker measurement time and the time of the last processed measurement to avoid the redundant processing of the star tracker data.

If DELTAT_ST is larger than a premission time difference, then

a. Invoke the angle measurement subfunction to incorporate the star tracker angle data into the filter vehicle state.

CALL: ANGLE NAV

IN LIST: VAR ST HORIZ, Q ST HORIZ, VAR ST VERT, Q ST VERT, ST ANGLES EDIT OVERRIDE, ST ANGLES STAT

- b. Set the time of the last Star tracker measurement.
 - T_ST_LAST = T_STAR_TRACKER
- B. <u>Interface Requirements</u>.—The input and ou put variables for this subfunction are defined in table 4.2.8.3.
- C. <u>Processing Requirements</u>.— This subfunction is called by NAV_ONORBIT_ RENDEZVOUS (section 4.2.1).
- D. Constraints .- None
- E. <u>Supplementary Information</u>. A suggested implementation in the form of a detailed flowchart can be found in Appendix B under the name STAR_TRACKER_NAV.

TABLE 4.2.8.3.- STAR_TRACKER_NAV INPUT/OUTPUT

l Variable Name	! ! Input Source	Output Destination
M_M50_TO_ST	NAV_ONORBIT_RENDEZVOUS	
Q_ST_HORIZ	NAV_ONORBIT_RENDEZVOUS	ANGLE_NAV
Q_ST_VERT	NAV_ONORBIT_RENDEZVOUS	ANGLE_NAV
ST_ANGLES_EDIT_OVERRIDE	rend_sensor_select	ANGLE_NAV
ST_ANGLES_STAT	REND_SENSOR_SELECT	ANGLE_NAV
ST_DATA_GOOD	NAV_ONORBIT_RENDEZVOUS	
T_CURRENT_FILT	NAV_ONORBIT_RENDEZVOUS	
TRG_TRK_MODE	NAV_ONORBIT_RENDEZVOUS	
T_STAR_TRACKER	NAV_ONORBIT_RENDEZVOUS	
VAR_ST_HORIZ	**	ANGLE_NAV
VAR_ST_VERT	**	ANGLE_NAV
DELTAT_GO		REND_NAV_INTERP, ONORBIT_SV_INTERP
M_M50_TO_SENSOR	·	ANGLE_NAV, REND_ANGLE_PARTIALS
DELTAT_ST_MIN	**	
		!
	! !	!
! !		! !
		! !
[]	!	! !
 	! !	
		-

Initialization of parameters, see section 4.7

4.2.8.3.1 Angle measurements (ANGLE_NAV)

This utility subfunction is responsible for the proper processing of vertical and horizontal angle measurements taken by either the COAS or star tracker. This subfunction shall perform the following tasks when called by either the COAS or star tracker vertical and horizontal measurements subfunction (see sections 4.2.8.4 and 4.2.8.3, respectively):

- Calculate the partial derivative of the measurement with respect to the estimated state at measurement time.
- Compute the estimated measurement and the measurement residual.
- Select the proper variances to model the uncorrelated measurement errors.
- Store the old residual ratio, the EDIT OVERRIDE flag, and the STAT flags into temporary locations used by the Kalman filter Updates subfunction (section 4.2.8.1.2).
- Schedule the Kalman filter Updates subfunction to process the data.
- Store the current residual ratio, the EDIT flag, and the measurement residual for display purposes.
- A. Detailed Requirements. This subfunction is called with the following internal variables in the IN LIST:

IN LIST: VAR_HORIZ, Q_HORIZ, VAR_VERT, Q_VERT,
ANGLES_MANUAL_EDIT_OVERRIDE, ANGLES_STAT_FLAG

where

VAR HORIZ variance of the horizontal measurement

Q HORIZ horizontal angle measurement

VAR VERT variance of the vertical measurement

Q VERT vertical angle measurement

ANGLES_MANUAL_EDIT_OVERRIDE manual edit override flag

ANGLES_STAT FLAG stat flag

The following steps shall be performed (in the order indicated):

1. Call the measurement interpolation subfunction to interpolate the Orbiter and target state vectors to the time of the vertical angle measurement (see section 4.2.8.1.1).

CALL: REND NAV INTERP

2. Call the angle partials subfunction to compute the partial vector (see section 4.2.8.2.1)

CALL: REND_ANGLE_PARTIALS

IN LIST: -M_M50_TO_SENSOR2.1 to 3

3. Calculation of the partial vector is completed by setting the appropriate value in the bias slot of that vector:

 $B_{11} = 1.0$

4. Compute the estimated vertical angle measurement and the vertical angle measurement residual.

VERT = ARCTAN2(-U_M1, U_M3) + SENSOR_BIAS2

F7

DELQ = C_VERT - VERT

5. Assign the appropriate variance for the vertical angle

VAR = VAR_VERT

6. Set up the required inputs to the Kalman filter subfunction:

RESID_RATIO_OLD = MAX (NAV_SIG1, NAV_SIG2)

MANUAL_EDIT_OVERRIDE = ANGLES_MANUAL_EDIT_OVERRIDE

STAT_FLAG = ANGLES_STAT_FLAG

7. Call the Kalman filter subfunction to process the vertical angle measurement (see section 4.2.8.1.2).

CALL: REND NAV_FILTER

8. Store the output data from the Kalman filter subfunction in the appropriate variables for use by the measurement processing statistics subfunction.

SENSOR_DELQ2 = DELQ

NAV_SIG2 = RESID_TEST_RATIO

SENSOR_EDIT2 = EDIT_FLAG

F7 This equation shall be protected against arc tangents with both arguments equal to zero (Reference 3.6-7).

9. Call the measurement interpolation subfunction to interpolate the Orbiter and target state vectors to the time of the horizontal angle measurement (see section 4.2.8.1.1).

CALL: REND_NAV_INTERP

10. Call the angle partials subfunction to compute the partial vector (see section 4.2.8.2.1).

CALL: REND ANGLE PARTIALS

IN LIST: -M_M50_TO_SENSOR1. 1 to 3

11. Calculation of the partial vector is completed by setting the appropriate value in the bias slot of that vector:

 $B_{10} = 1.0$

12. Compute the estimated horizontal angle measurement and the horizontal angle measurement residual.

HORIZ = ARCTAN2 (U_M2,U_M3) + SENSOR_BIAS1

F7

DELC = Q HORIZ - HORIZ

13. Assign the appropriate variance for the horizontal angle

VAR = VAR HORIZ

14. Call the Kalman filter subfunction to process the horizontal angle measurement (see section 4.2.8.1.2).

CALL: REND_NAV FILTER

15. Store the output data from the Kalman filter subfunction in the appropriate variables for use by the measurement processing statistics subfunction.

SENSOR DELQ 1 = DELQ

NAV SIG1 = RESID TEST RATIO

SENSOR_EDIT 1 = EDIT_FLAG

B. <u>Interface Requirements.- The input and output variables for this subfunction are defined in table 4.2.8.3.1.</u>

F7 This equation shall be protected against arc tangents with both arguments equal to zero (Reference 3.6-7).

79FM10

C. <u>Processing Requirements.</u> This subfunction is called by the following subfunctions:

COAS_NAV (section 4.2.8.4) STAR_TRACKER_NAV (section 4.2.8.3)

- D. Constraints .- None
- E. <u>Supplementary Information</u>. A suggested implementation of this subfunction in the form of a detailed flowchart can be found in Appendix B under the name

ANGLE_NAV.

TABLE 4.2.8.3.1.- ANGLE_NAV INPUT/OUTPUT

! ! In list	/Outlist			
Internal ! External !		Input Source	! Output Destination	
l Name	! Name !			
!	1			
I ANGLES_MANUAL_		COAS_NAV		
	EDIT !			
	OVERRIDE !	and water		
IANGLES_STAT_		COAS_NAV		
	ISTAT	6045 WAY		
IQ_HORIZ	IQ_COAS_HORIZ !	COAS_NAV		
		COAS_NAV		
	IVAR COAS HORIZI			
! VAR_VERT	IVAR_COAS_VERT	CUAS_NAV		
: ! angles_manual_	IST ANGLES I	STAR TRACKER NAV		
	BDIT !			
	OVERRIDE !			
		STAR_TRACKER_NAV		
IFLAG	!			
	Q ST HORIZ !	STAR TRACKER NAV		
		STAR TRACKER NAV		
		STAR TRACKER NAV		
	IVAR ST VERT	STAR TRACKER NAV	1	
1	1		,	
1	!	1	!	
1	! !	·	!	
!	1		1	
!	! !	· · · · · · · · · · · · · · · · · · ·	!	
	! !	!		
	!	!	!	
	!			
	1	1		
	!			
		3		
	, , , , , , , , , , , , , , , , , , ,			
• 1	; !	T a	; !	
) 	; !			
!	i			
1	i			
	, !	f	1	
	ĺ	1		
•	1	1	1	
İ	Ì	•		
	<u>!</u>			

TABLE 4.2.8.3.1.- ANGLE_NAV INPUT/OUTPUT.- Concluded

	7	1
Variable Name	! Input Source	1 Output Destination
RDIT_FLAG	REND_NAV_FILTER	
M_M50_TO_SENSOR	! COAS_NAV, ! STAR_TRACKER_NAV	! REND_ANGLE_PARTIALS !
MAV_SIG	! SETUP !	! MEAS_PROCESSING_ ! STATISTICS_REND
RESID_TEST_RATIO	rend_nav_filter	
SENSOR_BIAS	! SETUP, REND_NAV_FILTER	: !
<u>u</u> _w	! REND_ANGLE_PARTIALS	! !
	1	• •
В	!	! REND_NAV_FILTER
DELQ	1	! REND_NAV_FILTER
MANUAL_EDIT_OVERRIDE	I 1	! REND_NAV_FILTER
RESID_RATIO_OLD	!	! REND_NAV_FILTER
sensor_delq	!	MEAS_PROCESSING_ STATISTICS_REND
SENSOR_EDIT	! !	! MRAS_PROCESSING ! _STATISTICS_REND, #
STAT_FLAG	!	! ! rend_nav_filter
VAR	1 1	! ! rend_nav_filter
	!	!
	!	: !
! !	1 1	1
I I	I I	! !

^{*}Onorbit/Rendezvous principal function, see section 4.2

4.2.8.4 COAS Horizontal And Vertical Angle Measurements (COAS_NAV)

This subfunction is responsible for the proper processing of the COAS norizontal and vertical angle measurements. This subfunction shall perform the following task if the COAS data are labeled valid.

- Compute the time difference between current filter time and measurement time. Also we will compute the time difference (DELTAT_COAS) between the current COAS measurement and the measurement last used by this subfunction.
- If DELTAT COAS satisfies criteria for staleness and is not greater than a design dependent threshold, the angle measurement subfunction shall be invoked to process the vertical and horizontal angle data.
- If the COAS horizontal and vertical angle measurement subfunction is not to process the angle data for statistical display purposes only, then the time of the last COAS measurement is reset.
- A. <u>Detailed Requirements.-</u> If the COAS data is good (COAS DATA GOOD = ON), then the following steps shall be performed (in the order indicated):
 - 1. Determine the delta time between the current time and the time of the COAS measurements and also determine the delta time since the last processing of COAS data.

DELTAT_GO = T_CURRENT_FILT - T_COAS DELTAT_COAS = T_COAS - T_COAS_LAST

2. This subfunction will only process COAS data if the COAS data have not been previously processed and the time elapsed since the COAS data snap is smaller than a design dependent time delta.

i.e., if DELTAT_COAS > DELTAT_COAS_MIN

AND

DELTAT_GO < DELTAT_COAS_MAX

a. Compute the mean of 1950 to sensor coordinate transformation matrix.

M_M50_TO_SENSOR = M_BODY_TO_COAS_COAS_ID M_M50_TO_BODY_COAS

b. Call the angle measurements subfunction to incorporate the COAS angle data (see section 4.2.8.3.1).

CALL: ANGLE NAV

IN LIST: VAR_COAS_HORIZ, Q_COAS_HORIZ, VAR_COAS_VERT, Q_COAS_VERT, COAS_ANGLES_EDIT_OVERRIDE, COAS_ANGLES_STAT

. If the COAS data were processed (COAS ANGLES STAT = OFF), save the time of the COAS data for use on the next filter subcycle.

T_COAS_LAST = T_COAS

- Interface Requirements. The input and output variables for this subfunction are defined in table 4.2.8.4.
- D. Constraints .- None
- E. Supplementary Information A suggested implementation in the form of a detailed flowchart can be found in Appendix B under the name COAS_NAV.

TABLE 4.2.8.4.- COAS_NAV INPUT/OUTPUT

Variable Name	! Input Source	! Output Destination !
COAS ANGLES EDIT OVERRIDE	REND_SENSOR_SELECT	ANGLE_NAV
COAS_ANGLES_STAT	! REND_SENSOR_SELECT	! ANGLE_NAV
COAS_DATA_GOOD	! NAV_ONORBIT_RENDEZVOUS	
I COAS_ID	! NAV_ONORBIT_RENDEZVOUS	
DELTAT_COAS_MAX	**	! !
DELTAT_COAS_MIN	**	
M_BODY_TO_COAS	**	! !
M_M50_TO_BODY_COAS	NAV_ONORBIT_RENDEZVOUS	!
Q_COAS_HORIZ	NAV_ONORBIT_RENDEZVOUS	! ANGLE_NAV
Q_COAS_VERT	NAV_ONORBIT_RENDEZVOUS	! ANGLE_NAV
T_COAS	NAV_ONORBIT_RENDZVOUS	
T_COAS_LAST	**	! !
T_CURRENT_FILT	NAV_ONORBIT_RENDEZVOUS	: :
VAR_COAS_HORIZ	**	angle_nav
VAR_COAS_VERT	**	! Angle_nav
ı		1 1
	! !	!
	!	

Initialization parameters, see section 4.7

TABLE 4.2.8.4. COAS_NAV INPUT/OUTPUT. - Concluded

! Variable Name	Input Source	Output Destination
DELTAT_GO		REND_NAV_INTERP, ONORBIT_SV_INTERP
M M50 TO SENSOR		ANGLE_NAV, REND_ANGLE_PARTIALS
1 1 1		
	`	
! ! !		
! ! ! !		
t : : : : : : : : : : : : : : : : : : :		ā
! ! !		
; ! ! !		

4.2.9 Measurement Processing Statistics (MEAS_PROCESSING_STATISTICS_REND)

During rendezvous navigation phases that utilize external measurements, the measurement processing statistics subfunction will compute for display certain parameters that are indicative of the condition of the navigation filter and the external sensor measurements that it utilizes. These display parameters serve as the basis for the crew decision as to how external measurement data are to be processed by the nav filter.

The measurement processing statistics subfunction will be performed after the state and covariance measurement incorporation subfunctions have been performed. Filter edit indicators, which will have been initialized to a default value during the sensor measurement selection subfunction, will be redefined during performance of the state and covariance measurement incorporation subfunctions. This will indicate to the measurement processing statistics subfunction, for each measurement type being utilized, which of the following five cases has occurred:

- Edit indicator = OFF The filter was not configured for the measurement type or the data were bad and the filter did not attempt to process data of that type.
- Edit indicator = ON The filter did attempt to process the measurement type but automatically edited the data.
- Edit indicator = PROCESSED The filter processed the measurement type as a result of the data satisfying the edit criterion.
- Edit indicator = STAT The filter was used solely for producing the residual and ratio parameters for display.
- Edit indicator = FORCED The filter processed the data as a result of a crew edit override.

Moreover, the state and covariance measurement incorporation subfunction will provide the measurement processing statistics subfunction with the value of each measurement residual and the corresponding residual edit ratio value. The data supplied to the measurement processing statistics subfunction are used to compute statistics for the sensor measurement type selected.

For each measurement type, the following parameters are to be computed for display to show how well the navigation filter is processing external measurements of that particular type:

DISP_DELQ $_{
m I}$ - The actual measurement residual computed by the nav filter for the $\bar{
m I}$ th measurement type.

DISP_SIG_ - The residual edit ratio for the Ith measurement type. The ratio is the absolute value of the measurement residual divided by the square root of the scaled value of the residual variance for the measurement type. (See section 4.2.8.1.2 for the definition of RESID TEST RATIO.)

 N_ACCEPT_I - The number of data marks for the Ith measurement type which have been used to update the nav state vector.

 N_REJECT_I - The number of data marks for the Ith measurement type which have been automatically rejected as a result of failing the nav filter edit criterion.

DISP_EDIT_I - The status indicator which shall be displayed as a BLANK unless the nav filter has edited a predetermined number of sequential data marks for the Ith type. In this case, the status indicator shall be displayed as the symbol, \downarrow . Once set, the down arrow symbol shall continue to be displayed until a predetermined number of sequential data marks have been processed by the nav filter, or until a data mark has been processed by the nav filter as a result of the crew setting the appropriate AUTO/INHIBIT/FORCE flag to FORCE.

If valid data were not presented to the filter or if the estimated distance between vehicles is less than a specified value (RANGE_MIN), then these parameters will maintain the values defined during the previous filter subcycle.

The ACCEPT/REJECT counters are initialized to zero whenever the covariance matrix is reinitialized, when leaving rendezvous navigation, when the corresponding sensor type is changed, or when the IMU sensed accelerations exceed a premission specified amount (MEAS_THRESHOLD).

Sensor data will consist of two types: angular data and range data. The angular data will consist of a pair of angles from one of three mutually exclusive sources - COAS, star tracker (ST), or rendezvous radar (RR). The range data will consist of range and range rate from the rendezvous radar. Angular data, from whichever source has been chosen, can be utilized in conjunction with range data.

A. <u>Detailed Requirements.-</u> The correspondence between the measurement type and the subscript, I, shall be as follows:

I = 1 - COAS horizontal angle, ST horizontal angle, or RR shaft

For each value of the integer I in the interval (1,4), the following steps shall be performed (in the order indicated) when SENSOR_EDIT_I \neq OFF:

1. DISP_DELQI and DISP_SIGI are given the values:

The same of the sa

DISP_DELQI = SENSOR_DELQI

DISP_SIGT = NAV_SIGT

where SENSOR_DELQ_I and NAV_SIG_I were computed in the state and covariance measurement incorporation subfunctions (sections 4.2.8.1 through 4.2.8.4).

2. For the range measurement,

I = 3,

the residual is converted to kilofeet:

DISP_DELQI = DISP_DELQI / 1000.0

3. For the angle measurements,

I = 1 or 2.

the residuals are converted to degrees:

DISP_DELQI = DISP_DELQI DEG_PER_RAD

- 4. Test the SENSOR EDIT value for the Ith measurement type
 - a. If SENSOR EDIT; = STAT, DISP_EDIT; shall be given the value BLANK:

DISP_EDITT = BLANK

The logic then exits from MEAS_PROCESSING_STATISTICS_REND.

- b. If SENSOR_EDITI # STAT, then test SENSOR_EDIT again.
 - (1) If <u>SENSOR_EDIT</u> = ON, the sequential accept counter shall be set to zero:

SEQ_ACCEPT_T = 0,

the counter for the number of marks rejected by the nav filter shall be incremented by one:

 $N_{REJECT_{I}} = N_{REJECT_{I}} + 1,$

and the sequential reject counter shall be incremented by one:

SEQ REJECT $_{T}$ = SEQ REJECT $_{T}$ + 1

If SEQ_REJECT_I is found to exceed a predetermined number, REJ_MAX, DISP_EDIT_I shall be set to + to indicate that a number of sequential data marks have been edited.

DISP_EDIT = + "

(2) If SENSOR_EDIT_I ≠ ON, then the sequential reject counter shall be set to zero:

 $SEQ_REJECT_I = 0,$

the counter for the number of marks processed by the nav filter shall be incremented:

N_ACCEPT_ = N_ACCEPT_ + 1,

and the sequential accept counter shall be also incremented:

SEQ_ACCEPT_ = SEQ_ACCEPT_ + 1

If SEQ_ACCEPT_I exceeds a pre-determined number ACC_MIN, or SENSOR EDIT_I has a value of FORCED, DISP_EDIT_I is given the value BLANK:

DISP_EDIT = BLANK

If the indicator SENSOR_EDIT $_{\rm I}$ is found to have the value OFF on the initial check, both DISP_DELQ $_{\rm I}$ and DISP_SIG $_{\rm I}$ shall maintain the previous values from the prior filter subcycle.

- B. Interface Requirements. Input and output parameters are listed in table 4.2.9.
- C. Processing Requirements. This subfunction is called by NAV_ONORBIT_RENDEZVOUS (section 4.2.1).
- D. Constraints .- None
- E. <u>Supplementary Information</u>. A suggested implementation for this subfunction may be found in the detailed flow chart of Appendix B entitled MEAS_PROCESSING STATISTICS REND.

. TABLE 4.2.9.- MEAS_PROCESSING_STATISTICS_REND INPUT/OUTPUT

Variable Name	! Input Source	Output Destination
ACC_HIN	**	
DEG_PER_RAD	***	
DISP_DELQ		•
DISP_EDIT	**	•
DISP_SIG		•
N _ACCEPT	! SETUP, ! DISPLAY_COUNT_INIT	
NAV_SIG	RRDOT_NAV, RR_ANGLE NAV, ANGLE_NAV, SETUP	
N_REJECT	SETUP, DISPLAY_COUNT_INIT	•
REJ_MAX	**	
SENSOR_DELQ	RRDOT_NAV, RR_ANGLE_NAV, ANGLE_NAV	
Sensor_edit	! REND_SENSOR_SELECT, ! RRDOT_NAV, RR_ANGLE_NAV, ! ANGLE_NAV	
	1	
	1 1	!
	1	
	1	
	1	! !
·	!	

Onorbit/Rendezvous principal function, see section $\frac{1}{4}$.? Initialization parameters, see section $\frac{1}{4}$.?

TABLE 4.2.9.- MEAS_PROCESSING_STATISTICS_REND INPUT/OUTPUT.- Concluded

Variable Name	! Input Source !	Output Destination
SEQ_ACCEPT	! SETUP, ! DISPLAY_COUNT_INIT	•
SEQ_REJECT	SETUP, DISPLAY_COUNT_INIT	
	1 1 1 1	
	1 1 1	
	! ! !	
	! ! !	
	! ! !	
! !	1 1 1	
	! !	

Onorbit/Rendezvous principal function, see section 4.2 Initialization parameters, see section 4.7

4.3 ONORBIT PRECISION STATE PREDICTION PRINCIPAL FUNCTION

A capability shall be provided for predicting the position and velocity of the Orbiter or target at some final time in the future or past, when an initial state and time are given.

The Onorbit Precision State Prediction principal function shall make no use of the IMU accumulated sensed velocities and therefore is a free-flight prediction process even though it may be performed during periods of flight in which navigation is using accumulated sensed velocities.

Since this principal function shall be used for different purposes having different environmental requirements in various navigation phases, the user shall, by setting the control flags to the appropriate values and by choosing the prediction method or integration step size, have the option to trade off the accuracy of the integration and the fidelity of the mathematical models in favor of the shorter execution time. This is accomplished with parameters specified prior to the invoking of the Onorbit Precision State Prediction principal function.

Table 4.3-1 is the principal function input and output list and shows data flow between the Onorbit Precision State Prediction principal function and other principal functions.

This principal function, which provides for Onorbit precision state prediction and rapid state prediction of the Orbiter or target position and velocity states, shall use either a fourth-order Runge-Kutta numerical integration technique, modified with Gill's coefficients, or a single-step two-body method (rapid state prediction). The S. Pines formulation of the equations of motion shall be used with each technique. Detailed requirements for the Runge-Kutta-Gill integration technique and the Pines formulation are provided in sections 4.3.1 and 4.3.2. Noncentral body accelerations shall be generated by the user-selected acceleration models (section 4.2.4.1.1) to account for perturbations due to drag, venting and uncoupled thrusting, and variations in the Earth's gravitational potential.

- A. <u>Detailed Requirements</u>. The Onorbit Precision State Prediction principal function computational scheme shall be performed as follows:
 - 1. The desired gravity (GMDP and GMOP), drag (DMP), venting and uncoupled thrusting (VMP), and vehicle-attitude (ATMP) mode flags shall be obtained from the user, together with the prediction integration step size (FRED_STEP), initial state and time (R_PRED_INIT, V_PRED_INIT, and T_PRED_INIT), and final time at the end of the prediction interval (T_PRED_FINAL). If prediction is being performed for the Orbiter (i.e., ATMP = 1), the Orbiter mass to be used during prediction shall be user specified (PRED_ORB_MASE) along with an Orbiter reference area (PRED_ORB_AREA) and drag coefficient (PRED_ORB_CD).

The initial state vector shall then be renamed for use in the Pines equations-of-motion formulation and the seventh variable of integration (XN7) initialized to zero:

$$XN_1$$
 to $3 = R$ _PRED_INIT

$$XN_7 = 0.$$

In the above equations, the seventh variable of integration (XN_7 , required by the Pines technique), is the integrated initial time T_PRED_INIT .

2. A check shall now be made on the gravity mode flag (GMDP) to determine if prediction is to be accomplished through the use of a simple two-body solution of a more precise integration technique.

a. If a two-body solution is required, (i.e., GMDP = 0) the prediction interval is computed as

- b. If a more precise integration technique is required (i.e., GMDP \$\neq\$0), several steps shall be performed to set up parameters required for the integration process.
 - (1) The input prediction step (PRED_STEP) is checked against a permission loaded maximum stepsize (DT_MAX) to verify its reasonability:

If the input step is greater than the allowable maximum, then the value is reset to the maximum stepsize pre-mission loaded:

Otherwise, the prediction stepsize input is left unchanged.

(2) Next, the total prediction time interval is calculated from the input initial and final times, and the current integrator time is set to zero:

TIME_DEL = T_PRED_FINAL - T_PRED_INIT
T_CUR = 0.

(3) If the total prediction time interval, TIME_DEL, is less than zero, a backward prediction has been requested and the internal integration step (DT_STEP) is set to a negative value of the input stepsize:

If: TIME_DEL < 0.

Then: DT_STEP = - PRED_STEP

Otherwise, TIME_DEL $_{\geq}$ O., the internal prediction step is set to the input prediction step:

DT_STEP = PRED_STEP

(4) The actual integration of the Orbiter or target state equations (formulated according to the Pines technique) shall now be performed by proceeding as follows for each step in the integration interval. Note that, in the Pines equations-of-motion formulation, it is the initial conditions (R_PRED_INIT, V_PRED_INIT, and T_PRED_INIT) that are integrated and then used in the closed-form solution of a two-body, unperturbed orbital problem using an F and G series.

The fourth-order Runge-Kutta-Gill integration technique shall be invoked in conjunction with the Pines equation-of-motion formulation for each predictor step (as discussed in section 4.3.1) until the prediction interval has been covered as follows (i.e. until T_CUR = TIME_DEL):

! DO UNTIL ! |T_CUR - TIME_DEL| ! & PRED_TIME_TOL

- Check, on each step, to determine if the absolute value of the prediction step is greater than the absolute value of of the prediction interval remaining; If,

|DT_STEP | > |TIME_DEL - T_CUR!

DT STS? = TIME DEL - T CUR then:

- The Runge-Kutta-Gill integrator shall then be invoked, with the input or adjusted value of DT STEP:

CALL: RK GILL

IN LIST: XN, DT STEP, T_CUR, GMOP, GMDP, DMP, VMP, ATMP, T_PRED_INIT

OUT LIST: XN, T_CUR

The output vector (XN), are the adjusted initial conditions to be used in the Pines equations of motion for a precision prediction comic solution.

After the calculations, as diotated by the testing of step 2, have been performed, the Pines equations of motion will be invoked to solve for the position and velocity vectors corresponding to T_PRED FINAL:

CALL: PINES_METHOD

IN LIST: XN, T_CUR, CMOP, CMDP, DMP, VMP, ATMP, T_PRED_INIT

OUT LIST: DERIV, X

4. Upon being calculated (whether by a precise technique or a single step two-body solution), the final position and velocity are renamed for output:

R PRED FINAL a X1 to 3

V _ PRED_FINAL * X4 to 6

- Interface Requirements .- Input and output requirements are contained in table 4.3-2.
- C. Processing Requirements .- This principal function requires user-supplied values of gravity (GMOP and GMDP), drag (DMP), venting and uncoupled thrusting (VMP), and vehicle-attitude (ATMP) mode flags, in conjunction with the initial state and time (R_PRED_INIT, \underline{V} _PRED_INIT, T_PRED_INIT) and the final time (T_PRED_FINAL). Appropriate acceleration models may be found in section 4.2.4.1.1. When using this function for Orbiter or target vehicle state prediction, the venting and uncoupled thrusting flag (VMP) shall be set to zero. Additionally, if drag modeling is desired for Orbiter or target state prediction, the drag mode flag (DMP) should be set to one and the

attitude mode flag (ATMP) set equal to one for the Orbiter or equal to two for the target. For prediction of the Orbiter's state, an Orbiter reference area (PRED_ORB_AREA), an Orbiter drag coefficient (PRED_ORB_CD), and an Orbiter mass (PRED_ORB_MASS) are also to be supplied. The Onorbit Precision State Prediction principal function is called by the following modules in the Onorbit/Rendezvous Navigation Sequencer principal function:

OPS 2 OR 8 INITIALIZE STATE_VECTOR_PREDICT_TASK

and by the following module in the Onorbit/Rendezvous Navigation principal function:

STATE_VECTOR_PREDICT_TASK

In addition it may be called by other users outside of navigation.

D. <u>Constraints.</u>— Vent thrust is not to be modeled in prediction. Hence, the vent thrust flag (VMP) is to be set to zero. Atmospheric drag is to be modeled with constant coefficients. Hence, whenever drag is to be modeled in a prediction, the vehicle attitude flag (ATMP) is not to be set to zero (see section 4.2.4.1.1).

Since the same compool locations are used by all users of this principal function for setup and output, it is required that these parameters be protected from alteration by other users during execution of this principal function. Variables to be protected are listed as follows: GMOP, GMDP, DMP, VMP, ATMP, PRED_STEP, R PRED_INIT, V PRED_INIT, T PRED_INIT, R PRED_FINAL, V PRED_FINAL, T PRED_FINAL, PRED_ORB_AREA, PRED_ORB_CD, PRED_ORB_MASS.

E. <u>Supplementary Information</u>. The Onorbit Precision State Prediction principal function shall be used for both precision and rapid state prediction. Rapid state prediction consists of a less accurate, single-step two-body F and G series solution involving no numerical integration. Table 4.3-3 lists several examples of input variable list combinations for the various types of prediction performed. A suggested implementation of this principal function may be found in Appendix C under the following:

ONORBIT PREDICT

TABLE 4.3-1.- CHORBIT PRECISION STATE PREDICTION PRINCIPAL FUNCTION INPUT/OUTPUT

Variable Name			 Principal Function Destination	Local Source
ATMP	! !Onorbit/Rendezvous !Nav, Onorbit !Guidance, Onorbit/! !Rendezvous Nav !Seq, ORB MNVR DIP	METHOD, RK	TLM 15, 400 (100 (100 (100 (100 (100 (100 (100	NONB
	!Onorbit/Rendezvous !Nav, Onorbit !Guidance, Onorbit/ !Rendezvous Nav !Seq, ORB !NVR DIP	! METHOD, RK_ ! GILL !		
	!Onorbit/Rendezvous !Nav, Onorbit !Guidance, Onorbit/! !Rendezvous Nav !Seq, ORB MNVR DIP	! Method, RK_ ! Gill !		
	!Onorbit/Rendezvous !Nav, Onorbit !Guidance, Onorbit/! !Rendezvous Nav !Seq, ORB MNVR DIP	! METHOD, RK_ ! GILL !		
	!Onorbit/Rendezvous !Nav, Onorbit !Guidance, Onorbit/! !Rendezvous Nav !Seq, ORB MNVR DIP	! ONORBIT!!		
— —	! !Onorbit/Rendezvous !Nav, Onorbit !Guidance, Onorbit/! !Rendezvous Nav !Seq, ORB MNVR DIP	! ONORBIT	I	1
	1 1 1	1 1 1	! ! !	

TABLE 4.3-1.- ONORBIT PRECISION STATE PREDICTION PRINCIPAL FUNCTION INPUT/OUTPUT.- Continued

1200

l ! ! Variable ! Name !	! ! !Principal Function ! Source !	! ! ! Local !Destination!	 	Local ! Source !
PRED ORB MASS	Onorbit/Rendezvous Nav, Onorbit Guidance, Onorbit/ Rendezvous Nav Seo, ORB MNVR DIP	ONORBÎT		
PRED_STEP	! !Onorbit/Rendezvous !Nav, Unorbit !Guidance, Onorbit/!Rendezvous Nav !Seq, ORB MNVR DIP	PREDICT	rin	NONE !
R PRED FINAL	I I I I I	! !	! Onorbit/ ! Rendezvous Nav, ! Onorbit Guidance,! Onorbit/ ! Rendezvous Nav ! Seq, TLM, ORB ! MNVR DIP	ONORBIT !
R PREDINIT	!Onorbit/Rendezvous !Nav, Onorbit !Guidance, Onorbit/ !Rendezvous Nav !Seq, ORB MNVR DIP	PREDICT	TLM	NONE !
SQR_EMU	!Onorbit/Rendezvous !Nav Seq	PINES 1	1	1
T_PRED_FINAL	!Onorbit/Rendezvous! !Nav, Onorbit !Guidance, Onorbit/! !Rendezvous Nav !Seq, ORB MNVR DIP!!	PREDICT :	TLM !	2000 2 1 1 1 1
	<u>t</u>			i

TABLE 4.3-1.- ONORBIT PRECISION STATE PREDICTION PRINCIPAL FUNCTION INPUT/OUTPUT.- Concluded

l Variable Name			 	Local Source
T_RRED_INIT	! !Onorbit/Rendezvous !Nav, Onorbit !Guidance, Onorbit/ !Rendezvous Nav !Seq, ORB MNVR DIP	METHOD, RK_GILL	TLM	NONE
VNP	!Onorbit/Rendezvous !Nav, Onorbit !Guidance, Onorbit/ !Rendezvous Nav !Seq, ORB MNVR DIP	METHOD,		
V PRED_ FINAL			Onorbit/Rendezvous Nav, Onorbit Guidance, Onorbit/ Rendezvous Nav ISeq, TLM, ORB MNVR	PREDICT
]	!Onorbit/Rendezvous !Nav, Onorbit !Guidance, Onorbit/! !Rendezvous Nav !Seq, ORB MNVR DIP	PREDICT	TLM	ЗИОИ
	1			
	1			

TABLE 4.3-2.- ONORBIT_PREDICT INPUT/OUTPUT

! ! Variable Name	! ! Input Source !	! ! Output Destination
ATMP	! !	! ! Pines_method, RK_gill
DERIV	PINES_METHOD	
DMP		PINES_METHOD,RK_GILL
DT_MAX	**	
DT_STEP		RK_GILL
GMDP		PINES_METHOD, RK_CILL
GMOP		PINES_METHOD, RK_GILL
PRED_STEP	•	
PRED_TIME_TOL	**	
R PRED_FINAL	·	*
R_PRED_INIT	1	
T_CUR	RK_GILL	PINES_METHOD, RK_GILL
T_PRED_FINAL		
T_PRED_INIT	•	PINES_METHOD, RK_GILL
VMP	•	PINES_METHOD, RK_GILL
V PRED_FINAL		•
V PRED_INIT	*	
X	PINES_METHOD	
<u>x</u> xv	RK_GILL	PINES_METHOD, RK_GILL
!		

^{*}P.F. I/O for onorbit precision state prediction principal function, see section 4.3
**Initialization parameters, see section 4.7

Vehicle	Prediction type	GMDP#	GMOP*	DMP	VMP	ATHP	PRED_STEP	Comments
Orbiter	! ! Precision !	4	i i	! 1	0	1	! ! User selects	! Full tourth degree potential model. Drag with constant drag ! coefficient, area.
Orbiter	I Rapid precision	2	0	1	0	1	User selects	¹ J ₂ only potential model with constant drag coefficient, area.
Orbiter	Rapid two-body	0	0	. 0		0	q	! Single-step two-body F and G series solution.
Target	Precision	4	4	! 1 !		2	! User selects !	! Full fourth degree potential model drag with constant area, drag a coefficient.
Target	! Rapid precision!	2	! 0	1 1	. 0	. 5	User selects	! Je only potential model with constant drag coefficient, area.
Target	! Rapid two-body !	0	. 0	! 0	0	0	0	Single-step two-body F and G series solution.
							2	

When prediction is being performed for both vehicles (Orbiter and target) over a similar trajectory, the same degree and order potential model should be used for each prediction so that potential model errors will be avoided.

4.3.1 Integration of the Equations of Motion (RK_GILL)

A fourth-order Runge-Kutta-Gill integration technique is used for prediction of the Orbiter and target state vectors. The technique is actually a fourth-order Runge-Kutta numerical integration technique, modified with Gill's coefficients, used in conjunction with S. Pines' formulation for the equations of motion (see section 4.3.2).

A. <u>Detailed Requirements.</u> The Runge-Kutta-Gill (RK GILL) integration subfunction will be activated each time a call statement of the following form is encountered:

CALL: RK GILL

IN LIST: XN,DT_STEP, T_CUR,GMO,GMD,DM,VM,ATM,T_IN

OUT LIST: XN,T CUR

where:

XN = an array containing the seven variables of integration (i.e., integrated initial conditions)

DT STEP = the integration step size

T_CUR = the RK_GILL step size subinterval time (i.e., there are

four cycles of RK GILL per integration step size)

GMO = the Earth gravitational potential model order GMO = the Earth gravitational potential model degree

DM = the drag acceleration model flag

VM = the vent and uncoupled thrust acceleration model flag

ATM = the vehicle attitude mode flag

T IN = the initial state time

The computations initiated by call to the Runge-Kutta-Gill subfunction will be the following and in the order indicated.

1. The initial time of the current integration step, T_CUR, shall be saved in T STOR.

T_STOR = T_CUR

2. Next a counter, J, shall be tested to ensure that four evaluations of Runge-Kutta-Gill are determined.

a. If the evaluation cycle is 4 or less, a new value of T_CUR (the integration step time) shall be determined as:

b. Next the Pines method will be called to calculate derivatives (DERIV), of the initial conditions.

CALL: PINES_METHOD

IN LIST: XN,T_CUR,GMO,GMD,DM,VM,ATM,T_IN

OUT LIST: DERIV,X

The call arguments are as previously described, and details of the Pines method are given in section 4.3.2.

c. The Runge-Kutta-Gill integration continues with the numerical integration of derivatives of the initial conditions (XNL) in the following manner:

where:

 \underline{AA} , \underline{BB} , \underline{CC} , \underline{DD} = premission-loaded arrays (J = 1 to 4) containing coefficients required for this formulation of the Runge-Kutta-Gill integration technique

XN = an array containing the seven variables of integration (i.e., integrated initial conditions)

P = integration variable used in Runge-Kutta-Gill technique

Q_L = integration variable used in the Runge-Kutta-Gill technique

After the seven variables of integration have been obtained, the RK GILL will return to repeat step 2, and cycle through until J is greater than 4.

- B. <u>Interface Requirements.</u> Input and output parameters for the Runge-Kutta-Gill integration subfunction are given in table 4.3.1.
- C. <u>Processing Requirements.</u> The Runge-Kutta-Gill subfunction is called by

 Onorbit precision state prediction (ONORBIT PREDICT)
- D. <u>Constraints.</u>— Because the Runge-Kutta-Gill subfunction is used by precision prediction subfunctions which may be executed by multiple users at the same time, it should be protected against interruption.
- E. <u>Supplementary Information</u>.— A suggested implementation of this subfunction in the form of detailed flow diagrams may be found in Appendix C under the following:

RK GILL

TABLE 4.3.1.- RK_GILL INPUT/OUTPUT

(;

! ! Inlist.	/Outlist	1	
	! External ! Name	! Input Source	Output Destination
I ATM I DM I DT_STEP I GND I GNO I T_CUR	I ATMP I ATMP I DMP I DT STEP I GMDP I CMOP I T CUR	! ONORBIT_PREDICT ! ONORBIT_PREDICT ! CNORBIT_PREDICT ! CNORBIT_PREDICT ! ONORBIT_PREDICT ! ONORBIT_PREDICT ! ONORBIT_PREDICT ! CNORBIT_PREDICT ! ONORBIT_PREDICT ! ONORBIT_PREDICT ! ONORBIT_PREDICT	
! T_CUR ! XN	! ! T_CUR ! <u>X</u> N	: 1	ONORBIT_PREDICT ONORBIT_PREDICT
t t t t t t	! — ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	1	
1 ! !	! ! !	1 ! !	! ! !
1 1 1	! ! !	1 1	
! !	! !	1 1	
: !	! !	1 1	
: ! !	! !	• • • • • • • • • • • • • • • • • • •	
: :	: ! !	1	
! !	! !	1	

TABLE 4.3.1.- RK_GILL INPUT/OUTPUT.- Concluded

Variable Name	! ! Input Source !	! ! Output Destination !
W	99	
MTA	: [PINES_METHOD
<u>B</u> B	**	
<u>c</u> c	**	
<u>D</u> D		
DM		PINES_METHOD
DERIV	PINES_METHOD	
GMD		PINES_METHOD
GMO	•	PINES_METHOD
T_CUR		PINES_METHOD
T_IN	1	PINES_METHOD
VM	! !	PINES_METHOD
X	PINES_METHOD	
<u>x</u> n] 	PINES_METHOD
	·	
	! !	
	! !	: •
] i	
	! !	
	- ! !	

^{**}Initialization parameters, see section 4.7

4.3.2 Equations of motion (PINES_METHOD)

For predicting the Orbiter and target state vectors, the equations of motion are to take the form of a variation-of-parameters method devised by S. Pines, where parameters to be varied are the Cartesian initial conditions of the motion. The integration scheme to be used in connection with these equations is the Gill modification of the Runge-Kutta technique (see section 4.3.1).

A. <u>Detailed Requirements.</u> The Pines equations of motion subfunction will be invoked whenever a call statement of the following form is encountered:

CALL: PINES METHOD

IN LIST: XN,T_CUR,GMO,GMD,DM,VM,ATM,T_IN

OUT LIST: DERIV,X

where:

XN = the seven variables of integration

T_CUR = the initial integration time of the current step

GMO = Earth's gravitational potential model order

GMD = Earth's gravitational potential model degree

DM = drag model acceleration computation flag

VM = vent and thrusting acceleration model flag

ATM = attitude mode flag

T IN = initial time

and:

DERIV = the output total derivatives of integration

<u>x</u> = output two body position and velocity vectors of conic

The PINES METHOD subfunction will cause the following calculations to be made in the order given:

1. Several terms used in the F and G series calculations for the closed-form two-body equations are computed.

R_IN = | XN₁ to 3 |

R_IN_INV = 1./R_IN F3

SMA = 1./(2. R_IN_INV - (XN4 to 6 · XN4 to 6)/EARTH_MU) F3

C1 = SQRT (SMA)/SQR_RMU F3

DELTAT = T_CUR - XN₇

D_IN, = XN1 to 3 . XN4 to 6

 $R_{IN}TEMP_{INV} = 0.$

2. The conic solution subfunction (F_AND_G) shall then be invoked to calculate several terms used in computation of the conic velocity vector (X_{4} to 6) and initial condition derivatives and compute the two-body conic position vector (X_{1} to 3) as follows (see section 4.2.5.2.1).

CALL: F_AND_G

IN LIST: SMA, DELTAT, C1, XN₁ to 3, R_IN_INV, R_FIN_TEMP_INV, XN₄ to 6, D_IN, D_FIN_TEMP

OUT LIST: F, G, FDOT, GDOT, S0, S1, S2, S3, x_1 to 3, x_1 to x_2

3. The two-body velocity vector shall then be computed:

 $X_{4 to 6} = FDOT XN_{1 to 3} + GDOT XN_{4 to 6}$

4. Perturbation accelerations shall now be calculated and several computations shall then be performed to compute perturbation derivatives for F and G series terms used in calculating total derivatives of the seven variables of integration.

T_ACCEL = T_IN + T_CUR

 $\underline{P} = \underline{A}CCEL$ _ONORBIT (GMD, GMO, DM, VM, ATM, X₁ to 3, X₄ to 6, T_ACCEL)

P = P - G CENTRAL

D_TAU = X1 to 3 . P

D_AUX = X4 to 6 ' P

 $C2 = C1^2$

F3 This equation shall be protected against division by zero (Reference 3.6-3).

F4 This equation shall be protected against square roots of a negative number (Reference 3.6-4).

S1 = C1 S1

S2 . C2 S2

C3 = 1./C2

F3

were the said the said of the

33 = SMA 32

S4 = 2. 83 D_AUX

C4 = C2 D_AUX

C5 = C4 S1

35 . 32 D_TAU

DD = S1 C3 R_IN (SMA R_IN_INV-1.) + SO D_IN

S6 = 2. S2 C4 DD + S5

R IN TAU = S4 - C2 S1 D AUX DD - S1 D TAU

R_IN_AUX = R_IN_INV R_IN_TAU

F_TAU = (S3 C3 R_IN_AUX - S4) R_IN_INV

G_TAU = C5/R_FIN_INV - S6

F3

FD_TAU = FDOT (C4 - R_IN_AUX)

GD_TAU = - S4 R_FIN_INV

5. Finally, the total derivatives of the variables of integration are to be computed as follows:

DERIVI to 3 = GD_TAU X1 to 3 - G_TAU X4 to6 - G P

DERIVA to 6 = - FD_TAU X1 to 3 + F_TAU X4 to 6 + F P

DERIV₇ = S6 - 3. C4 SMA (C1 THETA-S1) - C5/R FJM_INV F3

- B. <u>Interface Requirements.-</u> Input and output for the Pines method subfunction are given in table 4.3.2.
- C. <u>Processing Requirements.</u> The following is a list of subfunctions and principal functions that call the Pines method.

RK_GILL ONORBIT_PREDICT

F3 This equation shall be protected against division by zero (Reference 3.6-3).

- D. <u>Constraints.</u>— The <u>ACCBL_ONORBIT</u> function shall not be invoked by any other software module during the computation of the perturbation acceleration vector, \underline{P} , to maintain the correct value of the central force term, \underline{G} <u>CENTRAL.</u>
- E. <u>Supplementary Information</u>. A suggested implementation of the Pines method of the equations of motion in the form of detailed flowcharts may be found in Appendix C under the following:

PINES_METHOD

TABLE 4.3.2.- PINES_METHOD INPUT/OUTPUT

Inllst/Outlist		Property of the second	। । ଲକ୍ଲେମ୍ବର୍ଷ ବ୍ୟବସ୍ଥ ପ୍ରତ୍ୟୁ
Internal Name	f External Name	I Input Source	! Output Destination
ATM	t atm	! RK GILL AND A MARKET AND A	
DM	! DM	! RK GILL	
QMD	1 GMD	1 RK GILL	
GMO	1 (240)	! RK GILL	1000
T_CUR	! T_CUR	! RK GILL	1:
T_IN	! T_IN	! RK_GILL	10 No. 10
VM	ı vm	! RK_GILL	¥1
VIX.	1 <u>X</u> N	! RK_GILL	1
.	! _	1	1 × 100
	1	1	ા પ્રાથમ
ATM	! ATMP	! ONORBIT_PREDICT	● 10.00 mm = 10.00
DM	2 DMP	! ONORBIT PREDICT	🚺 in the contract of the cont
GMD	! CMDP	ONORBIT_PREDICT	1
CIMO	! GMOP	! ONORBIT PREDICT	第
T_CUR	! T_CUR	! ONORBIT_PREDICT	1,
TIN	! T_PRED_INIT	! ONORBIT_PREDICT	1
VM	! VMP	! ONORBIT_PREDICT	I · · · ·
<u>X</u> N	1 <u>X</u> N	! ONORBIT_PREDICT	<u>t</u>
<u>D</u> ERIV	! DERIV! X	! ! !	RK_GILL RK_GILL
DERIV X	! DERLY ! X	! ! !	! ONORBIT_PREDICT ! ONORBIT_PREDICT !
	1	1	!
	1	!	
		i	i
	i i	! !	1 1
	!	! !	1 1
	1	!	!
	1	1	!
	i	!	: !

()

TABLE 4.3.2.- PINES_METHOD INPUT/OUTPUT.- Continued

Variable Name		I Input Source	1 Output Destination
ATM	**************************************	ACCEL_ONORBIT	ACCEL_ONORBIT
î ! C1			I F_AND_G
! ! DELTAT	* * * 1		! F_AND_G
D_FIN_TEMP		**	F_AND_G
D_IN			F_AND_G
DM		·	! ACCEL_ONORBIT
EARTH_MU	1	**	1
F	\$ t	F_AND_G	1
FDOT	, ,	F_AND_G	1
G		F_AND_G	1
G _CENTRAL		ACCEL_ONORBIT	1
GDOT	1	F_AND_G	1
GMD			ACCEL_ONORBIT
GNO	1		ACCEL_ONORBIT
R_FIN_INV	1	F_AND_G	1
R_FIN_TEMP_INV	!	1 	F_AND_G
R_IN_INV			F_AND_G
1 1 S0		F_AND_G	1
1 1 S1		F_AND_G	•
1	i		1

^{**}Initializations parameters, see section 4.7 Tonly the value of ACCEL_ONORBIT is used

TABLE 4.3.2.- PINES_METHOD INPUT/OUTPUT.- Concluded

Variable. Name	Input Source	
82 1. The control of the control of	F_AND_G P_AND_G P_AND_G P_AND_G P_AND_G P_AND_G	eta uri et en l'Especial personale Les dans extrances (4) è parti
Xu to 6		ACCEL_ONORBIT F_AND_G

 \bigcirc

(_)

^{*}Precision State Prediction principal function, see section 4.3

4.4 ONORBIT/RENDEZVOUS USER PARAMETER PROCESSING SEQUENCER PRINCIPAL FUNCTION (ONORBIT_REND_UPP_SEQ)

This principal function will provide a capability for initialization and control of the principal functions and subfunctions associated with the computations of user parameters during the conorbit/rendezvous operational sequence. This sequencer will provide initialization and control of the conorbit user parameter state propagation subfunction and those user parameter processing principal functions used for this operational sequence.

Events to be used as cues by the sequencer for performing the required initialization and sequencing are defined in the Level B GN&C CPDS. The particular events and a summary of the associated user parameter actions pertaining to this user parameter sequencer are given in table 4.4-1.

- A. <u>Detailed Requirements</u>. The Onorbit/Rendezvous User Parameter Frocessing Sequencer will be initiated upon the occurrence of any of the following events:
 - Major mode transition from 106 to 201
 - Major mode transition from 301 to 201
 - Transition from OPS 2 to OPS 8
 - Transition from OPS 00 to Major Mode 201
 - Transition from OPS 8 to Major Mode 201

This sequencer shall be terminated upon the transition from OPS 2 or OPS 8 to OPS 3 or OPS 00.

The following paragraphs specify the detailed requirements that are summarized in table 4.4-1. These requirements specify, for each of the event cues to be utilized by the sequencer, the actions that the sequencer is to initiate.

- EVENT 60A; transition from OPS 8 to Urs 2
- EVENT_60B; transition from OPS 2 to OPS 8
- a. If any of the above event flags has been set to "ON" by Moding, Sequencing, and Control (MSC), or crew input and detected "ON" by

79FM10

this sequencer, a check shall be made on a flag set by the Onorbit/ Rendezvous Navigation Sequencer:

OPS_2_OR_8_INITIALIZE_

COMPLETE - ON

TABLE 4.4-1.- CNORBIT/RENDEZVOUS USER PARAMETER PROCESSING SEQUENCER EVENTS

Event No.	! ! Event ! Name/Description !	! Action Taken by Sequencer in ! Response to Event!
60	! Transition from ! OPS 1 to OPS 2	! Initiate cyclic execution of onorbit user ! parameter state propagation and onorbit ! user parameter calculations at a repetition ! rate of 0.52 Hertz
B1	Transition from	! Same as Event 60 action
84	! ! Transition from ! OPS 00 to 201	! Same as Event 60 action !
	! Transition from ! OPS 8 to 201	! Same as Event 60 action
73	Transition from	! Cancel and reschedule the onorbit user! parameter state propagation to change the! cyclic repetition rate of onorbit user! parameter state propagation to repetition! rate of 0.52 Hertz.
69	! Initiate guidance !	! Cancel onorbit user parameter state ! propagation. Reschedule cyclic processing ! of onorbit user parameter state propagation ! at a repetition rate of 1.04 Hertz
60B	Transition from 201 to OPS 8	Same as Event 60 action
	 	1 1 1

This signal (=CN) indicates that the necessary initialization of certain state parameters has been accomplished within the Onorbit/Rendezvous Navigation Sequencer (section 4.1) and that the conorbit/rendezvous user parameter state propagation and conorbit user parameter calculations subfunctions shall commence at a repetition rate of 0.52 Hertz.

- 2. Next, a check shall be made to detect a transition from Major Mode 202 to 201; EVENT_73. Based upon this cue, execution of the onorbit user parameter state propagator shall be cancelled and rescheduled at a rate of 0.52 Hertz.
- 3. A check shall now be made on the EVENT_69 cue (initiate guidance). Based upon this cue, the current scheduling of the user parameter state propagator is to be cancelled. Cyclic execution of this task is to be rescheduled at a repetition rate of 1.04 Hertz beginning with this event. The purpose of cancelling and rescheduling the onorbit user parameter state propagator upon the initiate guidance signal is to not only change the execution rate, but to also get the execution of this module in synchronization with the execution of onorbit guidance, which is to be initiated at this time. This cancelling and rescheduling is to be done "y" seconds prior to OMS ignition, such that a subsequent user state update will occur, as nearly as possible, at the time of ignition.
- B. <u>Interface Requirements</u>.- Input and output requirements for this principal function are presented in table 4.4-2.
- C. Processing Requirements.- None
- D. Constraints. None
- E. <u>Supplemental Information</u>.- A suggested implementation of the onorbit/ rendezvous UPP sequencer in the form of detailed flow charts is shown in Appendix D under ONORBIT_REND_UPP_SEQ.

TABLE 4.4-2.- ONORBIT/RENDEZVOUS USER PARAMETER PROCESSING SEQUENCER PRINCIPAL FUNCTION INPUT/OUTPUT

Variable Name	! ! !Principal Function ! Source !	! ! ! Local !Destination		Local Source
EVENT_60	imsc i	ONORBIT REND_UPP_	TLM	
EVENT_60A	! !MSC !	ONORBIT_ REND_UPP_ SEQ	TLM	
EVENT_E1	imsc ! ! !	ONORBIT_ REND_UPP_ SEQ	TLM I	
BVENT_60B	! !MSC !	ONORBIT REND_UPP_	I TLM I	
EVENT_69	IMSC !	ONORBIT_ REND_UPP_ SEQ	TLM !	
EVENT_73	:MSC !	ONORBIT_ REND_UPP_ SEQ	TLM !	
EVENT_84	IMSC !	ONORBIT_ REND_UPP_ SEQ	TLM	
	!Onorbit/Rendezvous!!Nav Seq !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	ONORBIT REND_UPP_ I		
	! ! ! !		! ! !	! !

1.5 USER PARAMETER PROCESSING PRINCIPAL FUNCTION

This principal function shall serve as the interface between navigation and users of navigation-related data during the onorbit operational sequence. This function shall maintain the vehicle state within the user parameter state propagation subfunction and shall:

- Provide this state to users who require vehicle state parameters in M50 coordinates (see User Parameter State Propagation, section 4.5.1 and Onorbit User Parameter Calculations, section 4.5.2).
- Provide the software to transform this state for users who require nav state-related parameters (see User Parameter Calculations, section 4.5.2).

Interface parameters between this principal function and other GN&C principal functions are presented in table 4.5.

TABLE 4.5.- USER PARAMETER PROCESSING PRINCIPAL FUNCTION INPUT/OUTPUT

! ! ! Variable ! Name !	! ! !Principal Function ! Source !	l ! ! Local !Destination	 Principal Function Destination	Local ! Source !
! A _SENSED!			TLM	ONORBIT_REND! USER PARAM_! STATE_PROP_!
DEL_R_TARG	; ! !		Pointing, TLM	ONORBIT_ USER_ PARAMETER CALCULATIONS
DEL_V_IA *G	: ! ! !			ONORBIT_ ! USER_ ! PARAMETER_ ! CALCULATIONS!
DOING_REND_ NAV	ISBQUENCER ! ! ! !	ONORBIT_ PARAM PARAM PROP, ONORBIT_ USER_ PARAMETER CALCULA— TIONS		! ! ! ! ! !
! -	! !Onorbit/Rendezvous !Nav, Onorbit/ !Rendezvous Nav Seq! !	rend_user_!	!	! ! !
IMU_NAV ACCEL_THRESH	imu_align_display ! ! !	ONORBIT REND USER PARAM STATE PROP	1	· !
	IFCS/DED DISP c/o	ONORBIT_ REND_ USER_ PARAM_ STATE PROP		! ! !

TABLE 4.5.- USER PARAMETER PROCESSING PRINCIPAL FUNCTION INPUT/OUTPUT.- Continued

				1
Variable Name	Principal Function Source	Local Destination	Principal Function Destination !	Local ! Source !
R AVOG				ONORBIT ! REND_USER ! PARAM_STATE ! PROP !
R_EF			GN&C/SM-PL	ONORBIT ! USBR ! PARAMETER ! CALCULATIONS!
!	!Onorbit/Rendezvous !Nav, Onorbit/ !Rendezvous Nav Seq!	rend_user_	l 1	1 1 1 1
R TARGET		! !	Star Tracker SOP, I Rend Target, REL ! NAV SPEC FUNC, I TLM	
	!Onorbit/Rendezvous! !Nav, Onorbit/ !Rendezvous Nav Seq!	rend_user_:	1	1 1 1 1
T_IMU			TLM	ONORRIT ! REND USER ! PARA & STATE ! PRO:
T_IMUS_GA	IMU INT PROC	IMU DATA SNAP		

0

TABLE 4.5.- USER PARAMETER PROCESSING PRINCIPAL FUNCTION INPUT/C!TPUT.- Continued

Variable Name	!Principal Function ! Source	Local Destination	Principal Function Destination	Local Source
T_RESET	! !Onorbit/Rendezvous !Nav, Onorbit/ 'Rendezvous Nav Seq !	REND_USER_	!	
T_SEC_CYT	• • • • • • • • • • • • • • • • • • •		GN&C/SM-PL	ONORBIT_USER PARAMETER CALCULATIONS
T_STATE	! ! ! !			ONORBIT_ PARAM STATE_ PROP
UPP_USE_IMU_ DATA		!	TLM	ONORBIT_REND USER_PARAM_ STATE_PROP
V_AVGG		! ! !	Attitude Proc, Orbit Maneuver DIP,TLM,Star Tracker SOP,REL NAV SPEC FUNC, Rendezvous Targeting, Onorbit Guidance	ONORBIT_REND USER_PARAM_ STATE_PROP
V _IMU_CUR- RENT	! IMU_RM	IMU DATA SNAP		
V_IMU_OLD	1 1 1 1 1		!	ONORBIT_ REND_USER_ PARAM_STATE_ PROP
	! !		! !	

TABLE 4.5.- USER PARAMETER PROCESSING PRINCIPAL FUNCTION INPUT/OUTPUT.- Concluded

	1 2 3 4 4			22 1
Variable Name	Principal Function Source	Local Destination	Principal Function Destination	Local Source
V _ IMU_RESET	! !Onorbit/Rendezvous !Nav, Onorbit/ !Rendezvous Nav Seq !	rend user)	を 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (
v_reset	!Onorbit/Rendezvous !Nav, Onorbit/ !Rendezvous Nav Seq	rend user		
V_RHO_BF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Gnac/SM-Pl	ONORBIT_ USER_ PARAMETER_ CALCULATIONS
V_TARGET	1 1 1 1			ONORBIT REND USER PARAM STATE PROP
V_TV_RESET	!Onorbit/Rendezvous !Nav, Onorbit/ !Rendezvous Nav Seq!	REND_USER_	! !	
V _IMU_SNAP	1 1 1 1 1		TLM	ONORBIT_REND
	! ! !			

4.5.1 User Parameter State Propagation (OMORBIT_REND_USER_PARAM_STATE_PROP)

The onorbit and rendezvous navigation state propagation subfunctions advance the navigation state vector at relatively large intervals, at the end of which external measurement data processed by the filter are incorporated when appropriate. Users, such as guidance and displays, require a knowledge of the state vector at shorter intervals. The onorbit and rendezvous user parameter state propagation subfunction will satisfy the requirements of such users by integrating the equations of motion within the intervals of the navigation propagation with use of a simplified computation of the gravitational acceleration in conjunction with a small step size.

The integration of the Orbiter and target state vectors is to be performed by an average-g process, using a modeled acceleration that contains a simplified Earth gravitational force model. In the case of the Orbiter, if the acceleration derived in the UPP state propagator from the INU sensed velocities is above a certain threshold level, this acceleration is to be used in the integration process. If the sensed acceleration falls below the threshold level, only the modeled acceleration is to be utilized in the integration.

In the rendezvous phases it is also necessary to propagate the target vehicle state. There being no IMU's in this vehicle, only the modeled acceleration is to be used in the integration.

This process will be restarted after each filter update with the filter states. The values of the filter updated position and velocity vectors, together with their time tag and the total accumulated IMU velocity, are stored (at each navigation cycle) in special locations for use by the user parameter state propagation subfunction. This prevents the errors resulting from use of a less accurate integrating scheme from becoming too large and, at the same time, provides a synchronization between the propagation tasks.

A. Detailed Requirements.— A capability shall be provided for a fast computation of the position and velocity of the Orbiter during all phases of OPS 2 and OPS 8, and of the position and velocity of the target vehicle during all rendezvous phases OPS 2. This computation shall provide the required state vectors in an M50 coordinate system by the integration of the equations of motion that include gravity accelerations and, for the Orbiter, the IMU sensed velocities, if they give a significant contribution.

The following steps shall be performed (in the order indicated):

1. Snap the IMU accumulated sensed velocity and time tag:

 $SNAP(V _IMU_SNAP ,T_IMU)$

(see section 4.2.2.1)

- 2. In the case of the Orbiter, the value of the state that is to be advanced (integrated forward in time) may be from one of two sources (the one used depends on the tested value of the flag (FILT_UPDATE), which indicates the availability of a filter updated state):
 - a. If an update from the filter is available (FILT_UPDATE = CN), the navigation filter updated state, together with its time tag and associated IMU accumulated sensed velocity, is to replace the previous propagated state, time tag, and accumulated velocity. The filter updated values are R_RESET, V_RESET, T_RESET and V_INU_RESET; the vectors maintained by the user parameter state propagator are R_AVGG and V_AVGG. The time tag is T_STATE. Thus, if FILT_UPDATE = CN, the following will be done:

R AVOG = R RESET

V AVGG = V RESET

V IMU OLD = V IMU RESET

T_STATE = T_RESET

- b. If an update from the filter is not available (FILT_UPDATE = OFF), the propagated state, saved from the previous cycle, is to be advanced. The value of the INU-accumulated sensed velocity saved from the previous cycle is available for state advancement purposes.
- 3. Compute the interval over which advancement is required:

DT_IMU = T_IMU - T_STATE

interval (DT_IMU).

DA_THRESHOLD_IMU = IMU_NAV_ACCEL_THRESH

 $(GO 10^{-6}) / DT_IMU$

F3

F3 This equation shall be protected against division by zero (Reference 3.6-3).

(3) Test the magnitude of the sensed acceleration (A SENSED) for this UPP cycle against the computed IMU threshold.

A _ SENSED > DA_THRESHOLD_IMU

If |A SENSED| > DA_THRESHOLD_IMU, set a flag to ON for telemetry
UPP USE IMU DATA = ON

Otherwise, turn the telemetry flag OFF, and set the acceleration value to zero.

UPP_USE_IMU_DATA = OFF

A _ SENSED = O.

b. If the PWRD_FLT_NAV flag is OFF, turn the telemetry flag to OFF, and set the acceleration value to zero.

UPP_USE_IMU_DATA = OFF

A _SENSED = O.

5. The position and velocity vectors of the Orbiter shall then be obtained by a call to the user parameter state integrator (see section 4.5.1.1).

CALL: AVERAGE G INTEGRATOR

IN LIST: R AVGG, V AVGG, DT IMU, A SENSED, T STATE, T IMU

OUT LIST: R _AVGG, V _AVGG

The calculations performed up to this point refer to the Orbiter's state. Propagation of the target state is required only during the rendezvous phases. A flag (DOING_REND_NAV), which has the value ON only during these phases, shall then be consulted by the user parameters state propagator.

- 6. Test the DOING_REND_NAV flag. If it is found to be ON, perform the following steps:
 - a. Test the FILT_UPDATE flag to determine if a target state is available from NAV.

If FILT_UPDATE = ON, set

R TARGET = R TV_RESET

V TARGET = V TV RESET

where R_TARGET and V_TARGET represent the position and velocity vectors of the target vehicle advanced by the user parameter state propagator, and R_TV_RESET and V_TV_RESET represent the target state vectors from the navigation filter.

b. Advance the target state by a call to the integrator. In this call, the vector that contains the sensed acceleration shall be set to zero.

A _SENSED = 0

CALL: AVERACE_G_INTEGRATOR

IN LIST: R_TARGET, Y_TARGET, DT_IMU, A_SENSED, T_ STATE, T_IMU

OUT LIST: R TARGET, V TARGET (see section 4.5.1.1)

After the state vector updates have been completed, the following steps are to be executed:

7. Save the time tag output for use in the next cycle:

T STATE = T IMU

8. Save the latest IMJ accumulated sensed velocity:

V IMU_OLD = V IMU_SNAP

9. Set the FILT UPDATE flag to OFF.

This completes the sequence of calculations of a user parameter state propagation cycle.

- B. <u>Interface Requirements</u>.- The input and output variables are listed in table 4.5.1.
- C. Processing Requirements .- None
- D. Constraints. None
- E. <u>Supplementary Information</u>.- A suggested implementation in the form of a detailed flowchart is found in Appendix <u>D</u> under the name ONORBIT_REND_USER_PARAM_STATE_PROP.

TABLE 4.5.1.- ONORBIT_REND_USER_PARAM_STATE_PROP_INPUT/OUTPUT

! Variable Name	! Input Source	Output Destination
DOING_REND_NAV		
! FILT_UPDATE		
! R_TV_RESET	**	ist Konson Alekarot (1997) Proposition
! ! T_IMU !		! **, AVERACE_G_ ! ! INTEGRATOR
! ! T_RESET	**	
UPP_USE_IMU_DATA		**
! V _ IMU_SNAP ! ! V _ IMU_RESET	**	! ## !
Y_RESET	••	
Y_TV_RESET	**	
! <u>A</u> _SENSED !		! **, AVERAGE_G_ ! ! INTEGRATOR !
DT_IMU		AVERAGE_G_INTEGRATOR
R_AVGG	AVERAGE_G_INTEGRATOR	**, AVERAGE_G
R_TARGET	AVERAGE_G_INTEGRATOR	**, AVERAGE_G ! INTEGRATUR,ONORBIT_ ! USER_PARAMETER_ ! CALCULATIONS !
တ	. ***	
PWRD_FLT_NAV	**	! !

User parameter processing principal function, see section 4.5

TABLE 4.5.1.- ONORBIT_REND_USER_PARAM_STATE_PROP_ INPUT/OUTPUT.- Concluded

! Variable Name!!	Input Source	Output Destination
T_STATE		**, Average g_ Integrator, onorbit_ USER PARAMETER_ CALCULATIONS
Y_AVGG	AVERACE_G INTEGRATOR	**, AVERACE G INTEGRATOR, ONORBIT USER PARAMETER CALCULATIONS
A TWO OFD	<u> </u>	en .
<u>V</u> TARGET	AVERAGE_G_ INTEGRATOR	**, AVERAGE G_ INTEGRATOR, ONORBIT_ USER PARAMETER_ CALCULATIONS
	je je	

[&]quot;"User parameter processing principal function, see section 4.5

4.5.1.1 Integration (AVERAGE_G_INTEGRATOR)

The integration subfunction is called by the user parameter state propagation subfunction to propagate the Shuttle and target state vectors to current time.

A. <u>Detailed Requirements.</u> This subfunction is called with the following internal variables in the IN LIST and OUT LIST:

IN LIST: R AV, V AV, DTIME, AC, T_STATE, T_IMU

OUT LIST: R AV, V AV

where

R _AV user parameter state vector

<u>v _av)</u>

DTIME interval to propagate state vector over

AC acceleration vector

T_STATE user parameter time tag

T_IMU current time

The following steps shall be performed (in the order indicated);

1. By means of a call to the acceleration function, compute the gravitational acceleration for the input state vector and corresponding time tag (see section 4.2.4.1.1):

2. Advance the position vector by the average-g method:

 $\underline{R} = \underline{AV} = \underline{R} = \underline{AV} + \underline{DTIME} (\underline{V} = \underline{AV} + .5 \underline{DTIME} (\underline{AC} + \underline{GR}))$

3. Use this updated position vector and the current time to find a new value of the gravitational acceleration (see section 4.2.4.1.1):

GR1 = ACCEL_ONORBIT (GM_DEG_LOW, GM_ORD_LOW, DFL_AVG, VFLTV_PRED, ATFL_OV, R_AV, Y_AV, T_IMU)

4. Advance the velocity vector by the average-g method:

 \underline{V} $\underline{AV} = \underline{V}$ $\underline{AV} + DTIME (\underline{AC} + .5 (\underline{GR} + \underline{GR1}))$

The quantities GM_DEG_LOW, GM_ORD_LOW, VFLTV_PRED, DFL_AVG, and ATFL_OV are pad-loaded values of the various acceleration constants, designed for high usage rates (see section 4.7 for values).

79FM10

- B. <u>Interface Requirements</u>.— The input and output variables are listed in table 4.5.1.1.
- C. Processing Requirements. None
- D. <u>Constraints</u>.- None
- B. <u>Supplementary Information</u>. A suggested implementation in the form of a detailed flow chart is found in Appendix D under the name

AVERAGE_G_INTEGRATOR.

TABLE 4.5.1.1.- AVERAGE_G_INTEGRATOR INPUT/OUTPUT

T., 3.4 -4	/0.434.64	!	!
Iniist Internal Name	:/Outlist ! External ! Name	! Input Source	! Output Destination
<u>A</u> C	! A _SERSED	! OMORBIT_REND_USER_ ! PARAM_STATE_PROP	
DTIME	I DT_IMU	! ONORBIT_REND_USER_ ! PARAM_STATE_PROP	!
R_AV	R _AVGG	! ONORBIT_REND_USER_ ! PARAM_STATE_PROP	! !
T_IMU	T_IMU	! ONORBIT_REND_USER_ ! PARAM_STATE_PROP	1 1
T_STATE	! T_STATE	! ONORBIT_REND_USER_ ! PARAM_STATE_PROP	: ! !
Ā TVA	! V _AVGG	ONORBIT_REND_USER_ PARAM_STATE_PROP	! ! !
<u>A</u> C	! A _SENSED	! ONORBIT_REND_USER_ ! PARAM_STATE_PROP	! !
DTIME	DT_IMU	ONORBIT_REND_USER_ PARAM_STATE_PROP	
R _AV	! R _TARGET	! ONORBIT_REND_USER_ ! PARAM_STATE_PROP	
T_IMU	! T_IMU	! ONORBIT_REND_USER_ ! PARAM_STATE_PROP	
T_STATE	! T_STATE	! ONORBIT_REND_USER_ ! PARAM_STATE_PROP	: ! !
A ¬w	! V _TARGET	ONORBIT_REND_USER_ PARAM_STATE_PROP	
R _AV	I <u>R</u> _AVGG	1 1 1	ONORBIT_REND_USER_ I PARAM_STATE_PROP I
	! !	!	! !!

TABLE 4.5.1.1.- AVERAGE_G_INTEGRATOR IMPUT/OUTPUT.- Continued

C

Inlist	t/Outlist	1	
Internal	! External !_ Name	! Input Source	Output Destination
<u> </u>	Y _AVGG	!	ONORBIT_REND_USBR_ PARAM_STATE_PROP
<u>R</u> _AV	! R _TARGET	: ! !	ONORBIT_REND_USER_ PARAM_STATE_PROP
1 <u>v</u> _av 1	! V _TARGET	! !	ONORBIT_REND_USER_ PARAM_STATE_PROP
! !	! !	1 1 1	
	! !	! !	
	1	! !	
	1	: ! !	
	! !	1 1	
!	! !	! ! !	! ! !
	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	! !	
	! !	1 1 1	
	: ! !	: ! !	
	: ! !	• • •	

TABLE 4.5.1.1. - AVERAGE_G_INTEGRATOR INPUT/OUTPUT. - Concluded

Variable Mame	i Input Source	! Output Destination
ATFL_OV		ACCEL_ONORBIT
DFL_AVG	••	ACCEL_ONORBIT
GM_DEG_LOW		ACCRL_ONORBIT
GM_ORD_LOW	••	ACCEL_ONORBIT
VFLTV_PRED	••	ACCEL_ONORBIT
†	ACCEL_ONORBIT	
R_AV		ACCEL_ONORBIT
Ā TVA		ACCEL_ONORBIT
T_STATE	1	ACCEI_GHORBIT
T_IMU		ACCEL_ONORBIT
		1
		1
	!	1
	1	! !
	! !	! !
	1	! !
	!	1

Initialization parameters, see section 4.7 TValue returned from the function

4.5.2 Onorbit User Parameter Calculations (OMORBIT_USER_PARAMETER_CALCULATIONS)

This subfunction contains software to compute quantities required by the GN&C/SM-PL interface and the universal pointing principal function. These calculations are required during OPS 2.

- A. <u>Detailed Requirements</u>. The following steps shall be performed (in the order indicated):
 - 1. If the rendezvous nav flag is set on (DOING_REND_NAV = ON), the delta position and velocity vectors in the M50 system are computed. These vectors represent position and velocity vectors from the Shuttle to the rendezvous target.

<u>DEL_R_TARG = R_TARGET - R_AVGG</u>

DEL_V_TARG = V _TARGET - V _AVGG

2. The M50 to Greenwich-true-of-date transformation matrix is computed at the time of the state vectors, T_STATE.

M50_TO_EF = EARTH_FIXED_TO_M50_COORD(T_STATE)T

3. The Shuttle state vector (\underline{R} _AVGG, \underline{V} _AVGG) is transformed into the Greenwich-true-of-date, and the Earth's rotational effects are added to the X and Y components to yield the Earth-relative velocity vector.

R EF = M50_TO_EF R _AVGG

V EF = M50 TO EF V AVGG

V_RHO_EF1 = V_EF1 + EARTH_RATE R_EF2

V_RHO_EF2 = V_EF2 - EARTH_RATE R_EF1

V_RHO_EF3 = V_EF3

4. The Greenwich mean time associated with the position and velocity vectors is then saved:

T_SEC_GMT = T_STATE

- B. <u>Interface Requirements.</u> Input and output parameters for this subfunction are shown in table 4.5.2.
- C. <u>Processing Requirements.- Processing requirements for this subfunction are specified in the ONORBIT_REND_UPP_SEQUENCER.</u>
- D. Constraints. None

E. <u>Supplemental Information. - A suggested implementation in the form of a detailed flowchart can be found in Appendix D under the name:</u>

ONORBIT_USER_PARAMETER_CALCULATIONS

TABLE 4.5.2.- ONORBIT_USER_PARAMETER_CALCULATIONS INPUT/OUTPUT

l Variable Name	Input Source	Output Destination
EARTH_RATE	40	
R _AVGG	ONORBIT_REND_USER_PARAM_	
DOING_REND_NAV	2 101	
R_TARGET	ONORBIT_REND_USER_PARAM_ STATE_PROP	
T_STATE	ONORBIT_REND_USER_PARAM_ STATE_PROP	
V AVGG	ONOREIT_REND_USER_PARAM_ STATE_PROP	
V_TARGET	ONORBIT_REND_USER_PARAM_ STATE_PROP	•
†	EARTH_FIXED_TO_M50_COORD	
DEL_R_TARG		***
DEL_V_TARG		***
T_SEC_GMT		***
V_RHO_EF	,	***
R_EF		***
! !	! !	!
<u> </u>	! !	
	! !!	

^{***}Initialization parameters, see section 4.7
User parameter processing principal function, see section 4.5
TValue returned from the function

4.6 LANDING SITE UPDATE PRINCIPAL FUNCTION (LANDING SITE UPDATE PRINCIPAL FUNCTION)

This function provides the capability to reconfigure the dynamic parameters pertaining to the runway and TACAN sites, which are to carry over into OPS 3 for use during the deorbit through landing operational sequence. This section describes the software processing for data transfer from maxi to mini tables for runway and TACAN parameters. Output from this function is via the OPS 2 data list. The requirements of this function are to give the crew specific control via keyboard input to:

- Effect a maxi to mini table transfer of runway data (including MSBLS where available) and the TACAN's appropriate for the primary runway selection.
- View the current (latest) choice of runway identifying parameters on the orbit OPS display.
- Provide the current mini table data at the end of OPS 2 to be available for use in OPS 3. If this function is not executed in OPS 2, the I-Loaded mini tables contain default values appropriate for nominal end of mission use in OPS 3.

The guidance targeting uplink OPS formats (PEG 4 and PEG 7) also contain parameters identifying a request for maxi to mini data transfer. Thus the appropriate uplink processors may also invoke this process and provide the necessary input data.

A. Detailed Requirements. - The landing site update principal function may be invoked during OPS 2 by the universal pointing display function. This function may be performed whenever the OPS display is active and will respond to crew input from the keyboard. This function may also be invoked by the uplink processors for the PEG 4 and PEG 7 command uplink.

The principal function requires two tables in memory for both runways and TACAN:

- Runway and TACAN maxi tables
- Runway and TACAN mini tables

The runway maxi table consists of data sets for 18 runways and 4 MSBLS to support contingency landing sites which are grouped by geographic location.

and the second s	Runway Maxi Table	Broker Helphall	
Runways		Geographi	c Locations
1-3 4-6	1-2 3-4		A THE SALE
(9-10) (11-12)			(D)
(13-14) (15-16) (17-18)			(G)

The runway mini table contains data for three runways and two MSBLS installations. The data in this table is normally I-Loaded to support the nominal end of mission (OPS-3); however, these data may be overwritten by invoking the principal function to transfer contingency site data. The mini table is considered to consist of runways 19, 20 and 21 initially, that is:

Runway Mini Table

Runway No	Runway Designation
19 **	PRIMARY (Runway and associated MSBLS site data)
20	SECONDARY (Runway and associated MSBLS site data)
21	ALTERNATE (Runway site data)

The parameters PRI MAXI CURRENT, SEC MAXI CURRENT, and ALT MAXI CURRENT are used to specify which of the maxi table runways have been transferred to the respective mini table locations. Prior to any such transfer, the parameters should be initialized to the values 19, 20, and 21, respectively, to indicate that the I_Loaded mini table values are current and have not been overwritten. Following any transfer of data, the appropriate parameters will be updated to identify the current contents in the runway mini table. These three parameters are output to the universal pointing display.

The runway tables consist of data sets of the following parameters:

Geodetic latitude
Longitude
Runway azimuth
Altitude above reference ellipsoid
An for MSL at runway site (from reference ellipsoid)
Magnetic variation
Runway name (six character string; example: EDW17)
MLS_AVAIL (primary and secondary runways only)

MSBLS installations are available for runways 1, 2, 4 and 5.
For any of these initial contents which are overwritten, it may thereafter consist only of runway number 1 to 18.

The following parameters are associated with available MSBLS SITES; i.e., for runways in maxi table slots 1, 2, 4, and 5 and for the I-Loaded mini table runways designated PRIMARY and SECONDARY.

LAT MLS R AZ
LONG MLS R AZ
ALT MLS R ĀZ
R AZ SCANNER BEARING
LAT MLSEL
LONG MLSEL
ALT MLSEL
EL SCANNER BEARING
BIAS MLS RANGE
BIAS AZMLS
BIAS ELMLS
X DMEAZ RW
Y DMEAZ RW

The TACAN maxi table consists of 50 TACAN's grouped according to proximity to the approach path to landing at a particular runway site; they are grouped as follows:

TACAN	Runway Geographic Location
1-10	A
11-20	В
(21-25)	(C)
$\binom{21-25}{26-30}$	(D)
(31-35)	/E \
(36-40)	(F)
(41-45)	(G \
\46 - 50/	(H)

The TACAN mini table is I-Loaded to support the initial (I-Load) mini table runways, but it shall be reconstructed automatically by a transfer of a maxi table runway to the mini table <u>primary</u> runway. For example, if any maxi table runway in geographic area B is transferred to the mini table <u>primary</u> runway, then the TACAN's for area B (# 11-20) will also be transferred to the TACAN mini table.

The TACAN tables contain the following data for each TACAN site:

TACAN channel number

{Positive for X-mode} {Negative for Y-mode}

Geodetic latitude
Longitude
Height above reference ellipsoid
An for MSL correction at TACAN site
Magnetic variation

TACAN bearing bias * TACAN range bias *

The runway maxi table to mini table transfer is parformed on demand and expects one or more of the discretes, ITEM1 IN, ITEM2 IN, or ITEM3 IN to be ON. If ITEM1 IN (primary runway) or ITEM2 IN (secondary runway) is set to CN, both runway site data and the corresponding MSBLS site data (if available, that is, for choice of runway = 1, 2, 4, or 5) from the maxi table is to be loaded into the primary or secondary data locations, respectively, within the mini table. If ITEM3 IN (alternate runway) is set to ON, only runway site data are to be loaded into the alternate runway data locations within the mini table. The integers PRI MAXI SELECT, SEC MAXI SELECT, and ALT MAXI SELECT indicate which data set within the maxi table is to be transferred to the corresponding data set within the mini table. After performing the data transfer, the appropriate ITEM1 IN, ITEM2 IN, or ITEM3 IN is set to ON for output.

Whenever the primary runway data has been altered by a maxi to mini data transfer, TACAN data are to be automatically transferred from the maxi TACAN table to the mini TACAN table according to the primary runway's geographic location; specifically, if ITEM1 IN is "ON" and PRI MAXI SELECT has a value of 1, 2, or 3, then TACAN data sets 1-10 from the maxi TACAN table are to be transferred to the mini table. Likewise, if PRI MAXI SELECT has a value of 4, 5, or 6, then TACAN data sets 11-20 from the maxi TACAN table are to be transferred to the mini table. Finally, whenever PRI MAXI SELECT is 7 through 10, or 11 through 14, or 15 through 18, TACAN data sets 21-30 or 31-40 or 41-50, respectively, from the maxi table are to be transferred to the mini table. Note that transfer into secondary or alternate mini table runway slots does not cause additional TACAN transfers; this is operationally redundant.

The ORBIT OPS display also provides additional identification of the mini table contents. That is, it displays RUNWAY NAME PSL, RUNWAY NAME SSL, and RUNWAY NAME ASL, which are contained in the runway mini table. These parameters consists of 6 characters - three letters and two numbers and a blank - e.g: KSC15 or KSC33 for the RTLS runways at KSC.

B. Interface Requirements.— The initial values of data for the landing site and TACAN minitables are defined in the I-load by the parameter names given in table 4.6-1 (left-most column); normally these data are provided to support the nominal end of mission for the entry through landing in OPS 3. The parameter names for the minitables configured in this OPS for use in OPS 3 are given also in table 4.6-1 (right-most column). It is only these latter minitables (right-most column) which may be updated by the maxi to minitables (right-most column) which may be updated by the maxi to minitables column) are preserved for subsequent transitions into OPS 2. Therefore, for certain transitions into OPS 2, it may be necessary to ensure that those

^{*}Contained only in the mini table; assumed equal to zero for maxi table TACANs.

parameters in the right-hand column are initialized with the I-load values, while for other transitions into OPS 2 reinitialization must be avoided. Specific conditions for these initializations are given in paragraph C, Processing Requirements.

The maxitables are I-loaded with the parameter names which are used by the software; therefore, they are always initialized by the I-load values whenever OPS 2 is entered.

The inputs and outputs for this function are shown in table 4.6-2. The maxitables (4.6-2, Inputs) are initilized directly by I-loads, but may be updated by uplink. The minitables (4.6-2, Outputs) may (depending on previous OPS) be initialized by I-load, may be updated by uplink, and may be updated by this spec function.

The maxitable locations of the current primary, secondary, and alternate runways selected are initialized to 19, 20, and 21 (parameters PRI_MAXI_CURRENT, SEC_MAXI_CURRENT, and ALT_MAXI_CURRENT, respectively). The I-load parameters interface is shown in table 4.6-1 and table 4.6-3.

C. Processing Requirements. - As stated in paragraph B, it was necessary to determine whether the minitables which are reconfigured in this OPS (OPS 2) are to be initialized to the values provided by the I-load, or whether values from the previous OPS should be retained. If the transition into OPS 2 is from either OPS 1 or OPS 3, then the I-load values are to be used; but if the transition into OPS 2 is from any OPS other than OPS 1 or OPS 3, the values from that preceding OPS should be retained.

It is not intended that this spec function be invoked for a <u>nominal</u> mission; therefore, the orbit OPS display should show current values prior to execution of this spec. The minitable carried across the OPS 2 to OPS 3 transition should contain the I-loaded data if the spec is not invoked and an uplink has not occurred; it should contain the current reconfiguration data if the spec had been invoked or an uplink had occurred.

- D. Constraints. Any initializations that may be required by the implementation of paragraph C to provide the appropriate data for the interface tables of paragraph B must precede the execution of this spec function, precede uplink to the minitables, precede the use of outputs from this function, and precede the transition out of OPS 2. Because outputs support the orbit OPS display, it is recommended that any special processing required be accomplished at the beginning of the OPS 2.
- E. <u>Supplementary Information.</u> The flight software I-load contains three minitables of Runway and TACAN site data:

One table appropriate for RTLS (used in OPS 1/6).

One table appropriate for AOA (used in OPS 3, but only when OPS 3 is entered from OPS 1).

One table appropriate for End of Mission (used in OPS 3, but initialized in OPS 2 for nominal End of Mission). The End of Mission table may be reconfigured during OPS 2 via maxi mini transfers and/or uplink with several alternate data sets; the reconfigured tables should be used in OPS 3 except for AOA, which should use data provided by I-load for an AOA.

The tabular I-loaded RTLS data are identified by "use table" parameter names which have a specification of memory configuration 01. The AOA tables have unique I-load parameter names ending with "-E"; and a specification of MCO3.

The nominal End-of-Mission tables have unique I-load parameter names ending with "-0" and a specification of MCO2.

A suggested implementation of these requirements is illustrated by a detailed flow diagram shown in appendix E under the following name:

LANDING SITE UPDATE

TABLE 4.6-1.- CORRESPONDENCE OF MOMINAL END OF MISSION I-LOAD NAMES TO OPS-2 "USE TABLE" NAMES

RW_LON(1)_O RW_AZIMUTH(1)_O RW_AZIMUTH_PSL RUNWAY_ALT(1)_O RW_MAG_VAR(1)_O RW_MAG_VAR_PSL AT_MLS_R_AZ(1)_O RAZ_RADAR_BEARING(1)_O RAZ_RADAR_BEARING(1)_O LAT_MLS_R_AZ_PSL ALT_MLS_R_AZ(1)_O LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL BLAT_MLS_R_AZ_PSL L BLAS_AZMLS_PSL BLAS_AZMLS_PSL BLAS_BLMLS_PSL K_DMEAZ_RW_PSL	OPS-2 Nominal End-of-Mission Parameters	1 OPS-2 1 Use Table Parameters 1
RW_AZIMUTH(1) O RW_AZIMUTH_PSL RUNWAY_ALT(1)_O RW_DBLH(1)_O RW_MAG_VAR(1)_O RW_MAG_VAR_PSL LAT_MLS_R_AZ(1)_O LAT_MLS_R_AZ_PSL LONG_MLS_R_AZ_PSL ALT_MLS_R_AZ(1)_O LAT_MLS_R_AZ_PSL ALT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL LA	RW_LAT(1)_O	RW_LAT_PSL
RUNWAY_ALT_PSL RW_DELH(1)_O RW_MAG_VAR(1)_O RW_MAG_VAR_PSL LAT_MLS_R_AZ(1)_O LAT_MLS_R_AZ(1)_O LAT_MLS_R_AZ_PSL ALT_MLS_R_AZ(1)_O R_AZ_RADAR_BEARING(1)_O LAT_MLS_R_AZ_PSL ALT_MLS_R_AZ(1)_O LAT_MLS_R_AZ_PSL LAT_MLS_R_	RW_LON(1)_O	RW_LON_PSL
RW_DELH(1)_O RW_MAG_VAR(1)_O RW_MAG_VAR_PSL RW_MAG_VAR_PSL LAT_MLS_R_AZ(1)_O LAT_MLS_R_AZ_PSL R_AZ_RADAR_BEARING(1)_O R_AZ_RADAR_BEARING_PSL ALT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ_PSL LONG_MLS_R_AZ_PSL LONG_MLS_R_AZ_PSL LONG_MLS_R_AZ_PSL LONG_MLS_R_AZ_PSL LONG_MLS_R_AZ_PSL LONG_MLS_R_AZ_PSL LONG_MLS_R_AZ_PSL BLAT_MLS_R_AZ_PSL BLAS_AZMLS_PSL BLAS_AZMLS_PSL BLAS_BLMLS_PSL RW_DMEAZ_RW_PSL	RW_AZIMUTH(1)_O	RW_AZIMUTH_PSL
RW_MAG_VAR(1)_O RW_MAG_VAR_PSL LAT_MLS_R_AZ(1)_O LONG_MLS_R_AZ(1)_O R_AZ_RADAR_BEARING(1)_O R_AZ_RADAR_BEARING_PSL ALT_MLS_R_AZ(1)_O LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ_RAZ_PSL LAT_MLS_R_AZ_PSL LAT_MLS_R_AZ	RUNWAY_ALT(1)_O	RUNWAY_ALT_PSL
LAT_MLS_R_AZ(1)_O LONG_MLS_R_AZ(1)_O LONG_MLS_R_AZ_PSL R_AZ_RADAR_BEARING(1)_O R_AZ_RADAR_BEARING_PSL ALT_MLS_R_AZ_(1)_O LAT_MLS_R_AZ_PSL LAT_MLSEL_PSL LONG_MLSEL_PSL LONG_MLSEL_PSL LONG_MLSEL_PSL ALT_MLSEL_PSL BL_SCANNER_BEARING_(1)_O BLAT_MLSEL_PSL BLAS_MLSRANGE_PSL BLAS_MLSRANGE_PSL BLAS_MLSRANGE_PSL BLAS_MLSRANGE_PSL BLAS_AZMLS_PSL BLAS_AZMLS_PSL BLAS_AZMLS_PSL BLAS_AZMLS_PSL BLAS_AZMLS_PSL BLAS_BLMLS_PSL	RW_DELH(1)_O	RW_DELH_PSL
LONG MLS_R_AZ_(1)_O R_AZ_RADAR_BEARING(1)_O R_AZ_RADAR_BEARING(1)_O ALT_MLS_R_AZ_PSL LAT_MLSEL(1)_O LONG_MLSEL_PSL LONG_MLSEL_PSL LONG_MLSEL_PSL ALT_MLSEL_PSL ALT_MLSEL_PSL BL_SCANNER_BEARING(1)_O BLAS_MLSRANGE(1)_O BLAS_MLSRANGE_PSL BLAS_MLSRANGE_PSL BLAS_AZMLS_PSL BLAS_AZMLS_PSL BLAS_AZMLS_PSL BLAS_ELMLS_PSL BLAS_BLMLS_PSL	RW_MAG_VAR(1)_O	! RW_MAG_VAR_PSL
R_AZ_RADAR_BEARING(1)_O R_AZ_RADAR_BEARING_PSL ALT_MLS_R_AZ(1)_O LAT_MLS_L_PSL LONG_MLSEL(1)_O LONG_MLSEL_PSL ALT_MLSEL(1)_O ALT_MLSEL_PSL ALT_MLSEL_PSL BL_SCANNER_BEARING(1)_O BLAS_MLS_RANGE_PSL BLAS_MLS_RANGE_PSL BLAS_AZMLS_PSL BLAS_AZMLS_PSL BLAS_AZMLS_PSL BLAS_ELMLS_PSL BLAS_ELMLS_PSL BLAS_ELMLS_PSL COMEAZ_RW(1)_O R_AZ_RADAR_BEARING_PSL ALT_MLS_R_AZ_PSL BLAS_MLS_RANGE_PSL BLAS_AZMLS_PSL COMEAZ_RW(1)_O R_AZ_RADAR_BEARING_PSL ALT_MLS_R_AZ_PSL ALT_MLS_R_AZ_PSL ALT_MLS_R_AZ_PSL ALT_MLS_R_AZ_PSL ALT_MLS_R_AZ_PSL ALT_MLS_R_AZ_PSL ALT_MLS_R_PSL ALT_MLS_R_AZ_PSL ALT_MLS_	LAT_MLS_R_AZ(1)_O	LAT_MLS_R_AZ_PSL
ALT_MLS_R_AZ(1)_O LAT_MLSEL(1)_O LONG_MLSEL(1)_O LONG_MLSEL_PSL LONG_MLSEL_PSL ALT_MLSEL_PSL ALT_MLSEL_PSL BL_SCANNER_BEARING(1)_O BL_SCANNER_BEARING_PSL BIAS_MLSRANGE_PSL BIAS_AZMLS_PSL BIAS_AZMLS_PSL BIAS_ELMLS_PSL BIAS_ELMLS_PSL COMEAZ_RW(1)_O X_DMEAZ_RW_PSL	LONG_MLS_R_AZ(1)_0	LONG_MLS_R_AZ_PSL
LAT_MLSEL(1)_O LONG_MLSEL_PSL LONG_MLSEL_PSL ALT_MLSEL(1)_O ALT_MLSEL_PSL BL_SCANNER_BEARING(1)_O BLAS_MLSRANGE(1)_O BLAS_MLSRANGE_PSL BIAS_AZMLS(1)_O BIAS_AZMLS_PSL BIAS_ELMLS(1)_O BIAS_ELMLS_PSL COMEAZ_RW(1)_O X_DMEAZ_RW_PSL	R_AZ_RADAR_BEARING(1)_O	! R_AZ_RADAR_BEARING_PSL
LONG_MLSEL(1)_O ALT_MLSEL(1)_O ALT_MLSEL_PSL BL_SCANNER_BEARING(1)_O BLAS_MLSRANGE(1)_O BIAS_MLSRANGE_PSL BIAS_AZMLS(1)_O BIAS_AZMLS_PSL BIAS_ELMLS_PSL BIAS_ELMLS_PSL COMMERCE_RW(1)_O LONG_MLSEL_PSL ALT_MLSEL_PSL BIAS_MLSRANGE_PSL BIAS_AZMLS_PSL COMMERCE_RW(1)_O LONG_MLSEL_PSL ALT_MLSEL_PSL ALT_MLSEL_PSL BIAS_MLSRANGE_PSL COMMERCE_RW(1)_O LONG_MLSEL_PSL ALT_MLSEL_PSL ALT_MLSEL_PSL ALT_MLSEL_PSL ALT_MLSEL_PSL ALT_MLSEL_PSL BIAS_MLSRANGE_PSL ALT_MLSEL_PSL	ALT_MLS_R_AZ(1)_O	ALT_MLS_R_AZ_PSL
ALT_MLSEL(1)_O BL_SCANNER_BEARING(1)_O BL_SCANNER_BEARING_PSL BIAS_MLSRANGE_PSL BIAS_AZMLS_PSL BIAS_ELMLS_PSL BIAS_ELMLS_PSL K_DMEAZ_RW(1)_O X_DMEAZ_RW_PSL	LAT_MLSEL(1)_0	LAT_MLSEL_PSL
BL SCANNER BEARING(1) O EL SCANNER BEARING PSL BIAS_MLSRANGE(1) O BIAS_AZMLS_PSL BIAS_ELMLS(1) O BIAS_ELMLS_PSL K DMEAZ_RW(1) O X DMEAZ_RW_PSL	Long_mlsel(1)_0	LONG_MLSEL_PSL
BIAS_MLSRANGE(1)_0 BIAS_MLSRANGE_PSL BIAS_AZMLS(1)_0 BIAS_AZMLS_PSL BIAS_ELMLS(1)_0 BIAS_ELMLS_PSL K_DMEAZ_RW(1)_0 X_DMEAZ_RW_PSL	ALT_MLSEL(1)_0	! ALT_MLSEL_PSL
BIAS_AZMLS(1)_O BIAS_AZMLS_PSL BIAS_ELMLS(1)_O BIAS_ELMLS_PSL K_DMEAZ_RW(1)_O X_DMEAZ_RW_PSL	BL_SCANNER_BEARING(1)_O	! EL_SCANNER_BEARING_PSL
BIAS_ELMLS(1)_O BIAS_ELMLS_PSL K_DMEAZ_RW(1)_O	BIAS_MLSRANGE(1)_0	BIAS_MLSRANGE_PSL
K_DMEAZ_RW(1)_O	BIAS_AZMLS(1)_O	BIAS_AZMLS_PSL
i i	BIAS_ELMLS(1)_0	BIAS_ELMLS_PSL
K_EL_RW(1)_O ! X_EL_RW_PSL	X_DMEAZ_RW(1)_O	! X_DMEAZ_RW_PSL
▲	X_EL_RW(1)_O	! ! X_EL_RW_PSL

TABLE 4.6-2.- LANDING_SITE_UPDATE PRINCIPAL FUNCTION INPUT/OUTPUT

Variable Mame	! ! !Principal Function ! Source !	 	 	Local Source
! ALT MAXI_ ! SELECT	Univ Point(6.27), Uplink PROC.	LANDING : SITE : UPDATE :		
item1_in	Univ Point(6.27), Uplink PROC.	LANDING_ SITE_ UPDATE		1
ITEM2_IN	Univ Point(6.27), Uplink PROC.	Landing Site Update		!
item3_in	Univ Point(6.27), Uplink PROC.	LANDING SITE UPDATE		1
PRI MAXI_ SELECT	! Univ Point(6.27),! ! Uplink PROC.	LANDING_ ! ! SITE UPDATE		
SEC_MAXI_ SELECT	! Univ Point(6.27),!! Uplink PROC.	LANDING_ ! SITE_ UPDATE		9 9 1
ALT_MAXI_ CURRENT	!		Univ Point (6.27)!	LANDING ! SITE ! UPDATE !
PRI MAXI CURRENT			Univ Point (6.27)!	LANDING_SITE!
RUNWAY_NAME_	! ! !		Univ Point (6.27) Univ Point (6.27) 	MAXI_RWY_ ! TRANSFER ! CODE !
RUNWAY_NAME_ PSL	! ! !		! Univ Point (6.27)! ! Univ Point (6.27)! !	MAXI_RWY_ ! TRANSFER ! CODE !
 				:

TABLE 4.6-2.- LANDING SITE_UPDATE PRINCIPAL FUNCTION INPUT/OUTPUT.- Concluded

,			·	
! Variable ! Name !	 Principal Function Source	Local Destination	Principal Function Destination	Local Source
PUNWAY_NAMB_	· !		Univ Point (6.27)	MAXI_RWY_ TRANSFER_ CODE
SEC_MAXI_	! ! !		Univ Point (6.27)	LANDING_SITE
RUNWAY MAXI TABLE PARAMETERS (SEE TABLE 4.6-3)	I I-LOAD			
! TACAN MAXI ! TABLE ! PARAMETERS ! (SEE TABLE ! 4.6-3)	I I-LOAD I I			
! RUNWAY MINI ! TABLE ! PARAMETERS ! (SEE TABLE ! 4.6-3)	! ! ! !		I -LOAD	
! TA CAN MINI ! TABLE ! PARAMETER ! (SEE TABLES ! 4.6-3)			I-LOAD	
7 8 1 1			! ! !	! ! !
! !				
!	!	! !	! !	!

TABLE 4.6-3.- LANDING TE_UPDATE PRINCIPAL FUNCTION I-LOAD PARAMETERS

Level C Symbol	Input Source
RUNWAY MINI TABLE	
RW_LAT_PSL	
RW_LON_PSL	
RW_AZIMUTH_PSL	••
runway_alt_psl	••
RW_DELH_PSL	**
RW_MAG_VAR_PSL	**
LAT_MLS_R_AZ_PSL	**
LONG_MLS_R_AZ_PSL	**
R_AZ_RADAR_BEARING_PSL	**
ALT_MLS_R_AZ_PSL	**
LAT_MLSEL_PSL	**
Long_mlsel_psl	**
ALT_MLSEL_PSL	**
EL_SCANNER_BEARING_PSL	
BIAS_MLSRANGE_PSL	
BIAS_AZMLS_PSL	**
BIAS_ELMLS_PSL	**
X_DMEAZ_RW_PSL	44
X_EL_RW_PSL	!
Y_DMEAZ_RW_PSL	***

Initialization parameters, see section 4.7 (These parameters may also be dynamically updated.)

TABLE 4.6-3.- LANDING_SITE_UPDATE PRINCIPAL FUNCTION I-LOAD PARAMETERS.- Continued

Level C Symbol	i ! ! Input Source
MLS_AVAIL_PSL	**
RUNWAY_NAME_PSL	**
RW_LAT_SSL	40
RW_LON_SSL	**
RW_AZIMUTH_SSL	**
RUNWAY_ALT_SSL	; • 40
RW_DELH_SSL	•
RW_MAG_VAR_SSL	
LAT_MLS_R_AZ_SSL	••
! LONG_MLS_R_AZ_SSL	
R_AZ_RADAR_BEARING_SSL	**
ALT_MLS_R_AZ_SSL	••
LAT_MLSEL_SSL	
LONG_MLSEL_SSL	
ALT_MLSEL_SSL	46
! EL_SCANNER_BEARING_SSL	**
! BIAS_MLSRANCE_SSL	**
BIAS_AZMLS_SSL	**
BIAS_ELMLS_SSL	**
! X_DMBAZ RW_SSL !	## ·

Initialization parameters, see section 4.7 (These parameters may also be dynamically updated.)

TABLE 4.6-3.- LANDING SITE UPDATE PRINCIPAL FUNCTION I-LOAD PARAMETERS.- Continued

! Level C ! Symbol	! Input Source
x_bl_rw_ssl	! **
Y_DMRAZ_RW_SSL	
MLS_AVAIL_SSL	••
! RUNWAY_NAME_SSL	
rw_lat_asl	••
RW_LON_ASL	
RW_AZIMUTH_ASL	••
runway_alt_asl	••
rw_delh_asl	
RW_MAG_VAR_ASL	••
i i runway_name_asl	
TACAN MINI TABLE LATITUDE_GEODETIC	1 40
LONGITUDE_EAST	**
ALT_ABOVE_ELLIPSOID	
MSL_ABOVE_ELLIPSOID	••
MAGNETIC_VARIATION	1 00
TAC_ID	
! ! RUNWAY MAXI TABLE	1
! ! <u>Rw_</u> LAT ! !	! ! ** !

Initialization parameters, see section 4.7 (These parameters may also be dynamically updated.)

TABLE 4.6-3.- LANDING_SITE_UPDATE PRINCIPAL FUNCTION I-LOAD PARAMETERS.- Continued

Level C Symbol	! ! ! Input Source !
/	**
RW_AZIMUTH	[
! RUNWAY_ALT	. **
! RW_DELH	**
RW_MAG_VAR	**
! RUNWAY_NAME:	**
! LAT_MLS_R_AZ	**
! ! LCNG_MLS_R_AZ	**
! R _AZ_RADAR_BEARING	**
! ! ALT_MLS_R_AZ	**
! LAT_MLSEL	**
LONG_MLSEL	**
! ! ALT_MLSEL	**
! EL_SCANNER_BEARING	**
! ! BIAS_MLS_RANGE	**
BIAS_AZML	**
BIAS_ELMLS	**
X _DMEAZ_RW	**
! X _EL_RW	**
! Y _DMEAZ_RW	##

Initialization parameters, see section 4.7 (These parameters may also be dynamically updated.)

TABLE 4.6-3.- LANDING SITE UPDATE PRINCIPAL FUNCTION I-LOAD PARAMETERS.- Concluded

Symbol	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
TACAN MAXI TABLE	
TACAN_ID_MAXI	**
LATITUDE_GEODETIC_MAXI	**
LONGITUDE_EAST_MAXI	**
ALT_ABOVE_ELLIPSOID_	**
MSL_ABOVE_ELLIPSOID_ MAXI	**

Initialization parameters, see section 4.7 (These parameters may also be dynamically updated.)

4.7 INITIALIZATION OF SPECIFIC OPS 2 NAVIGATION PARAMETERS

It is required that initial values for certain specific parameters be made available for use by the navigation flight software. These parameters can be divided into six categories:

- 1. Level A Constants Those parameters with values that are not mission related nor design dependent. These parameters and values are defined in Level A CPDS (SS-P-0002-170D).
- 2. Mission Dependent Parameters Those parameters with values that may change from mission to mission. These parameters and their values will be defined in an I-LOAD FSSR that has not been written as of the date of this document.
- 3. Design Dependent Parameters Those parameters whose values are considered to be a part of the software design. These parameters and values are defined in this book.
- 4. Hard Codeable Parameters Those parameters whose values must be defined but are neither mission dependent nor design dependent and are not defined by the Level A CPDS.
- 5. Other required initial values Those parameters whose values do not fit in any of the four above categories.
- 6. OPS Transition Parameters Those parameters whose values are needed by the OPS 2 or OPS 8 navigation flight software, or calculated by OPS 2 for an OPS transition to OPS 8, OPS 3, or OPS 00, or calculated by OPS 8 for an OPS transition to OPS 2, OPS 3, or OPS 00.

These six categories of initialization parameters are denoted in the INITIALIZATION CATEGORY column of the variable lists in the appendices by the following abbreviations:

C - Level A constants

MD - Mission dependent parameters

DD - Design dependent parameters

HC - Hard codeable parameters

IV - Other required initial values

OPS - OPS transition parameters

4.8 DOWNLIST REQUIREMENTS

Downlist requirements for the Onorbit/Rendezvous (OPS-2) operations computer load are given in the Computer Program Development Specification (CPDS) Vol 1, Book 4, Downlist/Uplink Software Requirements (SS-P-0002-140F). Data that will be available for downlist may be found in the principal function input/output tables marked with TLM as output destination. They may also be found in the variable lists of appendices A, C, D, E and F indicated by the word "downlist" in the Uplink/Downlist column of the variable lists.

4.9 UPLINK REQUIREMENTS

The following subsections identify uplink requirements to support the orbital operations computer load onboard navigation software. Each subsection identifies a specific set of parameters which are candidates for uplink and details the structure of the formatted load, specifies any OP-CODE checking and/or special processing required as a result of the occurrence of the particular uplinked data, and describes any special constraints involved. All navigation related uplink parameter requirements are grouped into the following categories:

- Orbiter state vector uplink parameters (section 4.9.1)
- Rendezvous vehicle state vector uplink parameters (section 4.9.2)
- Vent/RCS thrust body force vector uplink parameters (section 4.9.3)
- Drag model correction factor uplink parameter (section 4.9.4)
- Covariance matrix uplink parameters (section 4.9.5)
- Landing/TACAN table uplink processing (section 4.9.6)
- Landing site selection parameters (section 4.9.7)

4.9.1 Orbiter State Vector Uplink Parameters (ORBITER_STATE_VECTOR_UPLINK)

The parameters to be candidates for change via command uplink associated with the Crbiter state vector update include the Orbiter M50 position and velocity vectors, and the associated time tag.

- A. Detailed Requirements. The Orbiter M50 position and velocity vectors with the associated time tag (GMT) can be changed via a formatted load structured as described in table 4.9.1-1. The following high-rate special processing is required upon receipt of an Orbiter state vector command uplink load:
 - 1. A bit-string (OP-CODE) shall have been set to the "Orbiter state vector uplink" OP-CODE value (0001001) by the ground uplink processing software when data are received from the ground.
 - 2. The bit-string (OP-CODE) shall first be tested by the special processing software to determine if it equals the value specified for an Orbiter state uplink:

! ! OP-CODE = 0001001

3. If the above is true, a flag (DO_OV_UPLINK) shall be set to ON, and the uplinked Orbiter state vector with associated time tag shall be stored in special locations:

DO_OV_UPLINK = CN
R GND = BUFFER_R
V GND = BUFFER_V
T_GND = BUFFER_T

and the OP-CODE shall be nulled.

OP - CODE = 0000000

Once the special high-rate special processing has been performed by the ground uplink software, additional low-rate special processing is required to be performed at a particular point during execution of the next navigation cycle. Detailed requirements for the low-rate special processing requirements are presented in section 4.2.5.1.

- B. <u>Interface Requirements.</u>- The input/output required for the high-rate special processing s/w are listed in table 4.9.1-2. Required input and output for low-rate special processing s/w are listed in table 4.2.5.1.
- C. <u>Processing Requirements</u>. The high rate special processing detailed in this section shall be performed at a fast enough rate so that if two command uplinks (Orbiter and target) are transmitted between navigation cycles, both sets of data (including the DO_OV_UPLINK and DO_TV_UPLINK flags) will be

available to the low - (nav) - rate special processing software. The low-rate special processing (section 4.2.5.1) shall be performed during a navigation cycle immediately following the normal state vector propagation and during rendezvous navigation phases covariance matrix propagation subfunctions.

- D. Constraints. Because of a system software requirement to clear uplink data buffers in a relatively short amount of time, and because of the relatively slow rate at which the onorbit/rendezvous navigation principal function will be operating, a fast-rate special processing function is required to buffer off the data and set flags. There is also a requirement to be able to update both the Orbiter and the target states in a single navigation cycle, if such data has been uplinked.
- E. Supplementary Information. A suggested implementation of the Orbiter state vector formatted load special processing requirements in the form of detailed flowcharts, are presented in Appendix F under:

ONCRBIT_REND_AUTO_INFLIGHT_UPDATE (low-rate special processing)
CRBITER STATE_VECTOR_UPLINK (high-rate special processing)

TABLE 4.9.1-1.- ORBITER STATE VECTOR UPLING DATA FORMAT

	UPLINE	BUFFER DATA		-]
Level B Mnemonic	! Name	Description	Command ! Data ! Word ! Type ! ! !		Units !
! !	! BUFFER_R 1 !	X-Position in M50 1 coord	! CW3, CW4 	! ! DF !	ft !
	BUFFER_R ₂	Y-Position in M50 coord	CW5, CW6	! DF	ſt
	BUFFER_R3	Z-Position in M50 ! coord	CW7, CW8	DF	ft
	BUFFER_V ₁	X-Velocity in M50 coord	: ! CH9 !	! SF ! SF	ft/sec
	BUFFER_V2	Y-Velocity in M50	CW10	sp !	ft/sec
	BUFFER_V3	Z-Velocity in M50 coord	CW11	sf ! Sf	ft/sec
	BUFFER_T	Time Tag in M50	CW1, CW2	DF	sec !
				: ! !	
				! !	! !
				: ! !	!
				: ! !	!
				! !	! !
			: 	: ! !	: ! !
			 	! !	: !!

TABLE 4.9.1-2.- ORBITER STATE VECTOR UPLINK INPUT/OUTPUT

Variable Name	Input Source	! Output Destination . !
Buffer R	GROUND UPLINK PROCESSOR	! ! !
! Buffer_v	i Ground Uplink I Processor	! ! !
Buffer_t	GROUND UPLINK PROCESSOR	
DO_OV_UPLINK		NAV_ONORBIT_RENDEZVOUS
R_GND		ONORBIT_REND_AUTO_INFLIGHT_!
T_GND		ONORBIT_REND_AUTO_INFLIGHT_!
V _GND		ONORBIT_REND_AUTO_INFLIGHT_! UPDATE !
		! ! !
		! !

The parameters to be candidates for change via command uplink associated with the rendezvous vehicle state vector update include the rendezvous vehicle M50 position and velocity vectors, and the associated time tag.

- A. Detailed Requirements. The rendezvous vehicle M50 position and velocity vectors can be changed via a formatted load structured as described in table 4.9.2-1. Each load contains a time tag (GMT) associated with the state vector. The following high-rate special processing is required upon receipt of a rendezvous vehicle state vector command uplink load.
 - 1. A bit-string (OP_CODE) shall have been set to the "rendezvous vehicle state vector" OP_CODE value (0001010) by the ground uplink processing software when data are received from the ground.
 - 2. The bit string (OP_CODE) shall first be tested by the special processing software to determine if it equals the value specified for the rendezvous vehicle state uplink,

! OP_CODE = 0001010

3. If the above is true, a flag (DO_TV_UPLINK), shall be set to ON, and the rendezvous vehicle state vector and associated time tag shall be stored in special locations:

DO_TV_UPLINK = QN
R_TV_GND = BUFFER_RT
V_TV_GND = BUFFER_VT
T_TV_GND = BUFFER_TT

and the OP_CODE shall be nulled signifying that the state vector has been transferred to the locations:

OP CODE = 0000000

Once the above high-rate special processing has been performed by the ground uplink software, additional low-rate special processing is required to be performed at a particular point during execution of the next navigation cycle. This latter class of special processing will actually re-initialize the rendezvous vehicle state vector using the uplinked data. Detailed requirements for this (low-rate) portion of the special processing requirements are presented in section 4.2.5.1.

B. <u>Interface Requirements.</u> The input and output required for the high-rate special processing software are listed in table 4.9.2-2. Input and output for the low-rate special processing software are listed in table 4.2.5.1.

- C. Processing Requirements. The high-rate special processing detailed in this section shall be performed at a fast enough rate so that if two command uplinks (Orbiter and/or target) are transmitted between navigation cycles, both data sets (including the DO_OV_UPLINK and DO_TV_UPLINK flags) will be available to the low -(nav)- rate special processing software. The low-rate special processing (section 4.2.5.1) shall be performed during a navigation cycle immediately following normal state vector propagation and, during rendezvous, covariance matrix propagation subfunctions.
- D. Constraints. Because of a system software requirement to clear uplink data buffers in a relatively short amount of time, and because of the relatively slow rate at which the onorbit/rendezvous navigation principal function will be operating, a fast-rate special processing function is required to buffer off the data and set flags. There is also a requirement to be able to update both the Orbiter and rendezvous vehicle state vectors on a single navigation cycle if such data have been uplinked.
- E. <u>Supplementary Information</u>.- A suggested implementation of the formatted rendezvous vehicle state vector load special processing requirements, in the form of detailed flowcharts are presented in Appendix F under:

ONORBIT_REND_AUTO_INFLIGHT_UPDATE (low-rate special processing)
RENDEZVOUS_STATE_VECTOR_UPLINK (high-rate special processing)

TABLE 4.9.2-1- RENDEZVOUS VEHICLE STATE VECTOR UPLINE DATA FORMAT

	UPLIN	BUPFER DATA		l !	!
! Level B ! ! Mnemonic	! Name	Description	Command Word	Data ! Type	Units
	Buffer_RT 1	X-Position in M50 coord	CN3, CN4	DP	r
	BUFFER_RT2	Y-Position in M50 coord	CW5, CW6	DP	rt
! !	BUFFER_RT3	Z-Position in M50 coord	CW7, CW8	! DF !	ſŧ
	BUFFER_VT1	X-Velocity in M50 coord	: CN9	SF	ft/sec
	BUFFER_VI2	Y-Velocity in M50 coord	CW10	sp :	ft/sec
! !	BUFFER_VT3	Z-Velocity in M50 coord	CW11	! SF	ft/sec
1	BUFFER_TT	Time Tag in M50	CW1, CW2	DF :	sec !
				: ! !	
				: !	
! !		! !			
! !				! !	
! !	! !			! ! !	! !
! !	! !!	!	! !	! !	! !!

TABLE 4.9.2-2.- RENDEZVOUS VEHICLE STATE VECTOR UPLINK INPUT/OUTPUT

Variable Name	! ! Input Source !	Output Destination
BUFFER_RT	! ! Ground uplink ! Processor	1 1 1
BUFFSR_VT	! GROUND UPLINK ! PROCESSOR	! ! !
BUFFER_TT	! Ground uplink ! Processor	
DO_TV_UPLINK		I NAV_ONORBIT_RENDEZVOUS
R_TV_GND	! ! !	! ONORBIT_REND_AUTO_INFLIGHT_! ! UPDATE
V_TV_GND	! ! !	ONORBIT_REND_AUTO_INFLIGHT_E UPDATE
T_TV_GND		! ONORBIT_REND_AUTO_INFLIGHT_! ! UPDATE
	; !	!
	: 1	: ! !
	! !	!
!	!	! !
	! !	! !
<u> </u>		! !
	: !	; ! !
		! !

4.9.3 Vent/RCS Rody Force Vector Uplink Parameters (VENT_RCS_MODEL_PARAM_UPLINK)

The parameters to be candidates for change via the Vent/RCS thrusting uplink command load include a body contact force $\underline{V}FCRCE$, to account for venting and uncoupled RCS thrusting and other body contact forces if desired, and the associated action ON/OFF times (TFON and TFOFF). These data are specified by premission I-load values (see section 4.7) or uplinked to be used by the Onorbit/Rendezvous Navigation principal function in both OPS 2 and OPS 8.

ONORBIT_RENDEZVOUS_NAV

- A. Detailed Requirements. The values of the body contact force (VFORCE) and associated on-off times (TFON and TFOFF) may be changed via a formatted command load structured as described in table 4.9.3-1. The following processing will be initiated upon receipt of a Vent/RCS uplink from the ground.
 - 1. A bit-string (OP_CODE) shall have been set to the "Vent/RCS Body Force Vector uplink" OP_CODE value (0101001) by the ground uplink processing software when data are received from the ground.
 - 2. The bit-string (OP_CODE) shall first be tested by the processing soft-ware to determine if it equals the value specified for a Vent/RCS uplink:

! OP_CODE = 0101001

3. If the above is true, the Vent/RCS Body Contact Force Vector VFORCE and ON/OFF action times (TFON/TFOFF) shall be stored in special locations:

VFORCE = BUFFER B TFON = BUFFER O₁ TFOFF = BUFFER O₂

and the OP_CODE shall be nulled.

OP CODE = 0000000

- B. <u>Interface Requirements.-</u> The input and output required for a Vent/RCS uplink are shown in table 4.9.3-2.
- C. <u>Processing Requirements</u>.- The uplink Vent/RCS command load will cause revision of all entries; i.e.,

VFORCE TFON TFOFF For this reason, all entries of the Vent/RCS command load shall be filled with their desired values (those values desired immediately after the completion of the uplink) even if some of the entries are to remain the same.

D. Constraints .- None

3

85

E. <u>Supplementary Information.</u> A suggested implementation of the Vent/RCS body contact force parameter uplink in the form of a detailed flowchart (VENT_RCS_MODEL_PARAM_UPLINK) is presented in Appendix F.

100 mg/2000 100 mg/2000 100 mg/2000 100 mg/2000 100 mg/200 100 mg/

TABLE 4.9.3-1.- VENT/RCS BODY FORCE VECTOR UPLINK DATA FORMAT

!	UPLINK BUFFER DATA					! !
Level B ! Mnemonic! !	Name	! ! Description !		Command ! Word	Data Type	! Units ! !
1	BUFFER Bo	! Vent/RCS X-Body force ! Vent/RCS Y-Body force	in ! body !	CW5 CW6	SF SF	! ! 1b ! 1b
1		! Vent/RCS Z-Body force	coord!	1	SF	! 1b !
: 1 1	BUFFER_01	Vent/RCS ON time	!	CW1, CW2	! DF	! sec !
!	BUFFER_02	Vent/RCS OFF time		CW3, CW4	DF	sec
i	!		i	1		!
!	!					: !
1	`. !		. 1	1	!	: !
! !	!		! !	! !		! !
1	.:	! !	!	! !	!	! !
!	!	ī	i			!
!						!
!			!	1	1	! !
! !	!		!		<u> </u>	! !
!	!		!		<u> </u>	! !
!	!		!	•		!
				•		: !
1			!			: !
!	!		!	!		! !
!	!	!	1	! 9	!	! !
1	!	1	!	1	1	! !
į	!	!	!		<u> </u>	!
!	1		!	1		I !

TABLE 4.9.3-2.- VENT/RCS BODY FORCE VECTOR UPLINK INPUT/OUTPUT

Variable name	Input Source	Output Destination
BUFFER_B	GROUND UPLINK PROCESSOR	
BUFFER_O1	GROUND UPLINK PROCESSOR	
BUFFER_02	GROUND UPLINK PROCESSOR	
<u>v</u> force		ACCEL_ONORBIT
TFON		ACCEL_ONORBIT
TFOFF	• .	ACCEL_ONORBIT
		1
	÷ .	! ! ! !
	;	! !
		1
^		
! ! !		! !
! ! !	!	! !
! !		! !
		•

4.9.4 Drag Model Correction Factor Uplink Parameters (DRAG_MODEL_PARAM_UPLINK)

The drag model parameter which is a candidate for change via uplink is KFACTOR. Command load uplink expability of this parameter ensures that there exists a means whereby the Orbiter drag coefficient may be adjusted if necessary during an Orbiter propagation mode. The drag model is used by the onorbit/rendezvous navigation principal function during OPS 2 and OPS 8:

ONORBIT RENDEZVOUS NAV

- A. Detailed Requirements. The value of the drag model correction factor (KFACTOR) can be changed via a formatted command load structured as described in table 4.9.4-1. The following processing will be initiated upon receipt of a drag model correction factor uplink from the ground.
 - 1. A bit-string (OP_CODE) shall have been set to the "Drag Model Correction Factor Uplink" OP_CODE (01010:10) by the ground uplink processing software when data are received from the ground.
 - 2. The bit-string (OP_CODE) shall first be tested by the processing software to determine if it equals the value specified for a drag model correction factor uplink.

! OP_CODE = 0101010

3. If the above is true, the drag model correction factor (KFACTOR) shall be stored in a special location:

KFACTUR = BUFFER K

and the OP_CODS shall be nulled.

 $OP_CODE = 0000000$

- B. <u>Interface Requirements</u>.- The input and output required for a drag model correction factor uplink are shown in table 4.9.4-2.
- C. Processing Requirements .- None
- D. Constraints. None
- E. Supplementary Information. A suggested implementation of the KFACTOR update capability is presented in Appendix F in the form of a detailed flow-chart, DRAG MODEL PAPAM UPLINK.

TABLE 4.9.4-1.- DRAG NODEL CORRECTION FACTOR UPLINK DATA FORMAT

! Level B !! Mnemonic	UPLINI Name	C BUFFER DATA Description	l Command l Word	Data Type	Units
!	BUFFER_K	Drag Model Correction Facter	CW1, CW2	DF	n.d.
:					
! ! ! ! ! !					
! ! ! !				1	
! ! ! ! ! !					
! ! ! ! ! !	· !				
! ! ! ! ! !					
	1 1 1		 		
! ! ! ! ! !	!		!		! !

TABLE 4.9.4-2.- DRAG MODEL CORRECTION FACTOR UPLINK INPUT/OUTPUT

 Variable Name	! ! Input Source !	! Output Destination
BUFFER_K	! GROUND UPLINK ! PROCESSOR	
KFACTOR	1 1 1	ACCEL_ONORBIT
	‡ ! •	1 1
	!	!
	! !	! !
	! · · · · · · · · · · · · · · · · · · ·	! !
	!	
	: ! !	! !
	! !	
	1	
	! !	
	! ! !	
,	- !	
	; ; ;	! !
	! !	

4.9.5 Covariance Matrix Uplink Parameters (COV_MATRIX_PARAM_UPLINK)

The parameters to be candidates for change via uplink associated with the covariance matrix update include diagonal elements (standard deviations) of the filter state covariance matrix in UVW coordinates and selected correlation coefficients.

- A. Detailed Requirements.- Values of the pre-stored (I-Load) UVW covariance matrix can be changed via a formatted command load structured as described in table 4.9.5-1. Each load will contain data entries to replace the values of the UVW standard deviations (SIG UPDATE). Detailed descriptions of these parameters can be found in section 4.2.5 and section 4.7. The following processing is required upon receipt of the covariance matrix uplink command load.
 - 1. A bit-string (OP_CODE) shall have been set to the "Covariance Matrix Uplink" OP_CODE (0101011) by the ground uplink processing software when data are received from the ground.
 - 2. The bit-string (OP_CODE) shall first be tested by the processing software to determine if it equals the value specified for a covariance matrix uplink:

3. If the above is true, the standard deviations (SIG_UPDATE) and correlation coefficients (COV_COR_UPDATE) shall be stored in special locations:

and the OP_CODE shall be nulled.

$$OP CODE = 0000000$$

- B. <u>Interface Requirements.-</u> The input and output required for covariance matrix parameters uplink can be found in table 4.9.5-2.
- C. <u>Processing Requirements</u>.- Changes to <u>SIG_UPDATE</u> and <u>COV_COR_UPDATE</u> will be made each time the covariance matrix parameters uplink is performed.
- D. <u>Constraints.</u>— The user shall perform the covariance matrix uplink prior to the state vector uplink when rendezvous navigation is active and it is desired that the uplinked covariance matrix parameters be incorporated along with an uplinked state vector.
- E. <u>Supplementary Information</u>.- A suggested implementation of the covariance matrix parameters uplink in the form of a detailed flowchart (COV_MATRIX_PARAM_UPLINK) is presented in Appendix F.

TABLE 4.9.5-1.- COVARIANCE MATRIX UPLINK DATA FORMAT

! !	! UPLINK BUFFER DATA		!	!	!!!!
Level B Menonic	! ! Name !	! Description !	! Command ! Word !	! Data ! Type !	! Units ! ! !
! !	BUFFER_S1	! U position ! standard ! deviation	CW1	!	ft
: ! ! !	BUFFER_S2	! V position ! standard ! deviation	! CW2	! SF !	ft !
: ! !	BUFFER_S3	! W position ! standard ! deviation	CW3	! SF !	ft!
: ! !	BUFFER_S4	! ! U velocity ! standard ! deviation	: CW4 !	! SF ! !	ft/sec
	BUFFER_S5	! Y velocity ! standard ! deviation	CW5	! ! SF !	! ft/sec ! !
	BUFFER_S6	W velocity Standard deviation	! CW6	! SF !	! ft/sec !
! !	BUFFER_C1	! U-V correlation ! coeff	CW7	! SF !	! - ! !
	BUFFER_C ₂	! U-U correlation ! coeff	: cw8	! ! SF !	
	BUFFER_C3	U-V correlation coeff	CW9	! ! SF ! !	! - ! ! - !
		. ! V-U correlation ! coeff	! CW10	! ! SF !	! - !
		. V-V correlation coeff	! CW11	! ! SF !	! - ! ! - !
	BUFFER_C6	! W-W correlation ! coeff	! CW12 !	! SF !	:
		U-V correlation	CW13	SF	!

TABLE 4.9.5-2.- COVARIANCE MATRIX UPLINK INPUT/OUTPUT

! Variable Name	! Input Source !	! Output Destination
! ! Buffer_s !	! ! Ground uplink ! Processor	
! ! Buffer_C !	GROUND UPLINK PROCESSOR	
! ! SIG_UPDATE	·	COVINIT_UVW
1 COV_COR_UPDATE	: 1 1	COAINIT_NAM
!	• !	
t 1	·	
I I	!	
! !	! !	! !
! !	! !	
! !		
! !		
- 		: ! !
- ! !		!
! !	!	!
! !	! !	!
	<u> </u>	

4.9.6 Landing/TACAN Site Table Uplink Processing

This subsection provides the software requirements associated with data uplink to the landing site maxi-table, the landing site mini-table, the TACAN site maxi-table, and the TACAN site mini-table.

A. Detailed Requirements. The data set associated with the landing site maxiand mini-tables and the uplink is as follows.

Geodetic latitude
Longitude
Runwa; azimuth with regard to true north
Magnetic variation
Runway altitude above ellipsoid
MSL altitude above ellipsoid

Runway name identifier (one six character string word in maxi/mini tablestwo four character string words required for uplink). In addition, the uplink data set contains a landing site location number which identifies which slot in the landing site maxi-or mini-table is to be changed.

The following special processing is required upon receipt of a landing site uplink as indicated by a flag, DO_LND_SITE_UPLINK, having been set to ON by the ground uplink processing software. The integer, LND_SITE_NO, shall be tested and, if found to lie in the range 1 to 18, the uplink data set (see table 4.9.6-1) shall be loaded into the corresponding slot in the landing site maxi-table. If LND_SITE_NO has a value of 19, 20 or 21, then the uplink data set shall be loaded into the primary, secondary, or alternate table slot, respectively, in the landing site mini-table. Whenever landing site data are loaded into the maxi-or mini-table, the MSBLS availability flag associated with that runway shall be reset to OFF. After the uplinked data have been transferred to the appropriate table slot, the DO_LND_SITE_UPLINK flag shall be reset to OFF.

When LND_SITE_NO lies outside the range 1 to 21, no data transfer shall occur.

The uplink data set associated with the TACAN site maxi- and mini-tables is as follows:

Gecdetic latitude
Longitude
Magnetic variation
TACAN altitude above ellipsoid
MSL altitude above ellipsoid
TACAN channel/mode identifier
TACAN bearing bias (not stored in maxi table)
TACAN range bias (not stored in maxi table)

In addition, the TACAN uplink data set contains a TACAN site location number which identifies which slot in the TACAN site maxi- or mini-table is to be changed.

The following special processing is required upon receipt of a TACAN site table uplink as indicated by a flag, DO_TACAN_SITE_UPLINK, having been set to ON by the ground uplink processing software. The integer, TAC_SITE_NO, shall be tested and, if found to lie in the range 1 to 50, the uplink data set (see table 4.9.6-2) shall be loaded into the corresponding slot in the TACAN site maxi-table. If TAC_SITE_NO lies in the range 51 to 60, the uplink data shall be loaded into the TACAN site mini-table slot corresponding to TAC_SITE_NO minus 50. Finally the DO_TACAN_SITE_UPLINK flag shall be reset to OFF.

If TAC_SITE_NO lies outside the range 1 to 60, no data transfer shall occur.

- B. Interface Requirements. The input and output requirements for this subfunction are listed in tables 4.9.6-3 and 4.9.6-4, respectively.
- C. <u>Processing Requirements</u>. To be executed on demand and provided with required input data. If the uplink data words are in units other than radians for angles and feet for lengths, onboard conversion to these units are required before storing into maxi or mini tables.
- D. <u>Constraints</u>. The task of setting up the uplink buffer data sets and the uplink data availability flags (DO_LND_SITE_UPLINK, DO_TAC_SITE_UPLINK) is assumed to have been performed by some uplink interface software prior to execution of the processing identified in this section. The data availability flags are to be reset to OFF to prevent re-execution of this software.
- E. Supplementary Information. A suggested implementation, in the form of detailed flowcharts, can be found in Appendix F.

LANDING_SITE_MAXI_MINI_UPLINK

TACAN SITE MAXI MINI UPLINK

TABLE 4.9.6-1.- LANDING SITE UPLINK DATA FORMAT

! ! Name	! ! Description	! ! Command ! Word	i i Data i Type	!
l LND_SITE_NO	! Landing site table slot ! (1 to 18 - maxi, ! 19 to 21 - mini)	CW1	I I	1 1 1 1 1 1
RUNWAY_NAME_UL	! Runway name identifier	! CW2+	l C	
SPARE_UL	! Runway name identifier- ! plus fill	1 CW3+	C	! - !
RW_LAT_UL	! Runway geodetic latitude	i CM4	! SF	! rad !
RW_LON_UL	! Runway longitude	: CW5	! SF	! rad !
RW_AZIMUTH_UL	! Runway azimuth measured ! from true north	! CW6	! SF !	rad !
RW_MAG_VAR_UL	! Runway magnetic variation	: CW7	! SF	rad!
RUNWAY_ALT_UL	Runway altitude above reference ellipsoid	: CW8	! SF !	i ft i
RW_DELH_UL	! Altitude of mean sea level ! above ellipsoid at runway !	! CW9	i sp i sp i	i n

^{*}CW2 contains a four character string word.
CW3 contains one additional character, left justified.

These are constructed to form a five string character word for storing (i.e., four characters in CW2 and the left most character in CW3 are combined).

, where bbb are fill characters which are ignored.

^{**}If the uplinked data words are in units other than those shown, onboard conversion to these units is required before storing into the maxi or minitables.

TABLE 4.9.6-2. - TACAN SITE UPLINK DATA FORMAT

Uplink Buffer Data		Command		1 00
Name	Description		Туре	1 Units
MAGNETIC_ VARIATION_UL	! Magnetic variation at TACAN ! site	CW1	! ! SF !	! ! rad !
BIAS_TAC_BRG_UL	! TACAN bearing bias	CM2	! ! 55°	i rad
BIAS_TAC_R_UL	TACAN range blas	CW3	! ! SEP	n
TAC_SITE_NO	TACAN site table slot (1 to 50 - maxi, 51 to 60 - mini)	CW4	I !	!
TA CAN_ID_UL	! TACAN channel/mode identifier	CW5	I	
LATITUDE_ GEODETIC_UL	! TACAN site geodetic latitude	CW6	! SF	rad
LONGITUDE_EAST_UL	TACAN site longitude	CW7	! ! SF	! rad
ALT_ABOVE_ ELLIPSOID_UL	TACAN altitude above reference ellipsoid	CW8	: ! SF !	ft
MSL_ABOVE_ ELLIPSOID_UL	Altitude of mean sea level above ellipsoid at TACAN site	CW9	SF ! !	i n
!		!		1 · · · · · · · · · · · · · · · · · · ·
				! !
1		! ! !		1

Biases are stored only in mini tables; thus CW-2 and CW-3 are ignored if maxitable is addressed.

If the uplink data words are in units other than those shown, onboard conversion to these units is required before storing into the max! or mini tables.

TABLE 4.9.6-3.- LANDING/TACAN SITE TABLE UPLINK INPUT

! ! Symbol !	Input Source
DO_LND_SITE_	GROUND UPLINK PROCESSER
LND_SITE_NO	UPLINK
RUNWAY_NAME_UL	UPLINK
SPARE_UL	UPLINK
RW_LAT_UL	UPLINK
RW_LON_UL	UPLINK
RW_AZIMUTH_UL	UPLINK
RW_MAG_VAR_UL	UPLINK
RUNWAY_ALT_UL	UPLINK
rw_delh_ul	UPLINK
DO_TACAN_SITE_UPDATE	GROUND UPLINK PROCESSOR
TAC_SITE_NO	UPLINK
TA CAN_ID_UL	UPLINK
LATITUDE_GEODETIC_UL	UPLINK
LCNGITUDE_EAST_UL	UPLINK
ALT_AROVE_ELLIPSOID_UL	UPLINK
MSL_ABOVE_ELLIPSOID_UL	UPLINK
	UPLINK
BIAS_TAC_BRG_UL	UPLINK
BIAS_TAC_R_UL	UPLINK

TABLE 4.9.6-4.- LANDING/TACAN SITE TABLE UPLINE OUTPUT

Symbol	! Output ! Destination
DO_LND_SITE_ UPLINK	! Landing Site! Table Special! Ground Uplink! Processing! Software
RW_LAT PSL	•
RW_LON_PSL	•
RW_AZIMUTH_PSL	1 *
! ! Runway_alt_psl !	•
rw_delh_psl	•
RW_MAG_VAR_PSL	! *
MLS_AVAIL_PSL	•
RUNWAY_NAME_PSL	•
RW_LAT_SSL	•
RW_LON_SSL	
RW_AZIMUTH_SSL	i •
runway_alt_ssl	•
RW_DELH_SSL	•
RW_MAG_VAR_SSL	1
MLS_AVAIL_SSL	1 *
runway_name_ssl	1 •
RW_LAT_ASL	1
RW_LON_ASL	i *

^{*}Update I-Load parameters in Landing Site Update principal function

TABLE 4.9.6-4.- LANDING/TACAN SITE TABLE UPLINK OUTPUT.- Continued

! ! Symbol	Output Destination
rn_azimuth_asl	*
runway_alt_asl	•
RW_DELH_ASL	1 4
RW_MAG_VAR_ASL	
RUNWAY_NAME_ASL	•
<u>r</u> unway_name	
RW_LAT	•
RW_LON	
<u>Rw_azimuth</u>	•
RUNWAY_ALT	
RW_DELH	
RW_MAG_VAR	*
MLS_AVAIL	•
DO_TACAN_SITE_UPLINK	! TACAN SITE ! TABLE UPLINK ! SPECIAL GROUND ! UPLINK ! PROCESSING ! SOFTWARE
MINI - TABLE LATITUDE GEODETIC	! •
LONGITUDE_BAST	
ALT_ABOVE_ELLIPSOID) W

^{*}Update I-Loaded parameters in Landing Site Update principal function

TABLE 4.9.6-4. LANDING/TACAN SITE TABLE UPLIME OUTPUT. - Concluded

Symbol	! Output! Destination
MSL_ABOVE_ELLIPSOID	*
MAGNETIC_VARIATION	•
TAC_ID	•
BIAS_TAC_BRG	•
BIAS_TAC_R	•
MAXI-TABLE TACAN_ID_MAXI	*
LATITUDE GEODETIC MAXI	
LONGITUDE_BAST_MAXI	a .
ALT_ABOVE_BILLIPSOID_	•
MSL_ABOVE_ELLIPSOID_	•
MAGNETIC_VARIATION_ MAXI	•
!	
	,

Update I-Loaded parameters in Landing Site Update principal function

4.9.7 Landing Site Selection Parameters

This subsection provides the requirements associated with the landing site selection uplink which is contained within the Deorbit Guidance PEG-4 and the Deorbit Guidance PEG-7 command uplink loads.

A. Detailed Requirements. The Deorbit Guidance PEG-4 and PEG-7 command uplinks each contain three integer parameters which represent the maxi table slot locations from which landing site data is to be transferred to the landing site mini table primary, secondary and alternate runway slots. The uplink of these parameters is to cause the activation of the Landing Site Update principal function (see section 4.6) which in turn will accomplish the data transfer. Since the Landing Site Update principal function is designed to also respond to crew inputs via the CRT keyboard, certain special processing is required to provide compatibility with these requirements.

In response to a deorbit guidance uplink, as indicated by the flag, DO GUID UPLINK, having been set to ON by the ground uplink processing software, the following is to occur. The uplinked parameters PRI MAXI_UL, SEC MAXI_UL, and ALT MAXI_UL (see tables 4.9.7-1 and 4.9.7-2) are integer values which specify which of the maxi table runways are to be transferred to the respective mini table locations. Each of these parameters is to be tested and the corresponding Landing Site Update input parameters set as follows:

If PRI MAXI UL > 0 and PRI MAXI_UL < 19, then

set ITEM? IN = ON

PRI_MAXI_SELECT = PRI_MAXI_UL

If SEC MAXI UL > 0 and SEC MAXI_UL < 19, then

set ITEM2 IN = ON

SEC MAXI SELECT = SEC_MAXI_UL

If ALT MAXI UL > 0 and ALT MAXI_UL < 19, then

set ITEM3 IN = ON

ALT MAXI SELECT = ALT MAXI UL

Thus, if it is desired to uplink a deorbit guidance target data set without changing part (or all) of the mini table slots, the respective maxi/mini indicators are uplinked with values outside the 1 to 18 range.

If any of the "ITEM_IN" discretes has been set to ON by the above processing, the Landing Site Update specialist function software is invoked to accomplish the data transfer. Note that the "ITEM_IN" discretes are reset to OFF by the Landing Site Update software after completing the data transfer.

Finally the flag DO_GUID_UPLINK is reset to QFF to indicate that the appropriate processing has occurred.

- B. <u>Interface Requirements</u>. The input and output requirements for this subfunction are listed in tables 4.9.7-3 and 4.9.7-4, respectively.
- C. <u>Processing Requirements</u>. To be executed on demand and provided with the required input data.
- D. <u>Constraints</u>. The task of setting up the uplink buffer data sets and the uplink data availability flag is assumed to have been performed by uplink interface software prior to the execution of the processing identified in this section.
- E. Supplemental Information. A suggested implementation, in the form of a detailed flowchart can be found in Appendix E,

SITE_SELECTION_UPLINK

一日本 の人の一日本本の

TABLE 4.9.7-1.- LANDING SITE SELECTION UPLINK FORMAT (PEG 4 LOAD)

Name	Description	Command Word	! ! Data ! Type !	! ! Units !
FRI_MAXI_UL	Runway selection index for maxi table to primary run- way data transfer		! I !	 #
	Runway selection index for maxi table to secondary runway data transfer	CW-13 (Bits 33-48)	: ! ! I !	1
ALT_MAXI_UL	Runway selection index for maxi table to alternate runway data transfer	CW-14 (Bits 17-32)	! ! I !	! ! ! !

TABLE 4.9.7-2.- LANDING SITE SELECTION UPLINK FORMAT (PEG 7 LOAD)

Name	Description	Commend Word	l Data I Type	! i ! Units !
PRI_MAXI_UL	Runway selection index for maxi table to primary run- way data transfer		I	! ! !
	Runway selection index for maxi table to secondary runway data transfer	CW-12 (Bits 17-32) 	I	! !
	Runway selection index for maxi table to alternate runway data transfer	CW-12 (Bits 33-48) 	I I	! ! ! !

Table 4.9.7-3.- Landing Sits Selection uplink processing input

Symbol	Input I Source I
PRI_MAXI_UL	UPLINK
SBC_MAXI_UL	UPLINK !
ALT_MAXI_UL	UPLINK !
DO_GUID_UPLINK	GROUND ! UPLINK ! PROCESSOR !
	: : !
	i i
· ·	! !
	1
	! ! !
	! !
1	!
' ! !	1
	1
! !	1
!	1

TABLE 4.9.7-4. - LANDING SITE SELECTION UPLINK PROCESSING OUTPUT

	100	and the state of t
Symbol	Output Destination	i version service (122) in the constant general constant service (122) form constant service (122)
PRI_MAXI_SELECT	Landing Site Update (4.246)	
SEC_MAXI_SELECT	Landing Site Update (4.246)	
ALT_MAXI_SELECT	Landing Site Update (4.246)	! ! !
ITEM1_IN	Landing Site Update (4.246)	: ! !
ITEM2_IN	Landing Site Update (4.246)	; ! !
ITEM3_IN	Landing Site Update (4.246)	! ! !
DO_GUID_UPLINK	Ground Uplink Processor (4.246)	! ! !
		! ! !
		: ! !
		; ! !

4.10 COORDINATE TRANSFORMATIONS

These ten subfunctions provide the capability for transforming parameters specified (or computed) in one coordinate system to another coordinate system. Coordinate system definitions are provided in Appendix C.

Each of the ten subfunctions described in sections 4.10.1 through 4.10.10 may be executed separately. With two exceptions, these subfunctions do not actually perform the coordinate transformation; only the rotation matrix is computed. The two exceptions convert between Barth-fixed coordinates and geodetic parameters.

For consistency, it is assumed that all coordinate systems located on the surface of the Earth are specified in terms of geodetic parameters (i.e., geodetic latitude, longitude, and altitude above the reference ellipsoid) and that all azimuth angles are referenced to true (not magnetic) north.

4.10.1 Transformation From Aries Mean of 1950 to Earth-Fixed

The purpose of this subfunction is to provide a transformation matrix (M_MSOTOEF AT_EPOCH) from Aries M50 coordinates to Earth-fixed coordinates that account for the rotation, nutation, and precession motion of the Earth at a specified time, T_EPOCH.

This subfunction is not part of the actual onorbit Navigation Software. Its output parameters, M_M50TOEF_AT_EPOCH and their corresponding time, T_EPOCH, are to be supplied to the enerbit Navigation Software via I-Load as Mission-Dependent Parameters (see section 4.7 and Appendix C Variable List).

The software will not be designed to preclude any particular value of T_EPOCH, whether future or past except that, if the time desired is in a year other than the one of the mission's commencement, the general time variable is to be continuous over year-end/year-beginning transitions.

4.).2 Earth-Fixed to M50 (EARTH_FIXED_TO_M50_COORD)

The purpose of this subfunction is to propagate the matrix M_M50TCEF_AT_EPOCH from the last epoch time to the time of interest. This propagation accounts for the Earth's daily rotation effects only. (The nutation and precession computations are lengthy.)

The Earth-fixed coordinate frame of the time of interest is rotated about its Z-axis to obtain the Earth-fixed coordinate frame of the time of the M_N50TOEF_AT_EPOCH matrix. The angle of rotation is the product of the Earth's mean rotational rate relative to the mean of data system and the difference between the matrix's time tag and the time of interest. A matrix that represents this Z-axis rotation is calculated. The matrix that represents the transformation from the Earth-fixed frame of the last epoch time to the mean of 1950 frame is the M_N50TOEF_AT_EPOCH matrix's transpose. Then the desired Earth-fixed to mean of 1950 matrix is the product of the transpose of the M_M50TOEF_AT_EPOCH matrix postmultiplied by the Z-axis rotation matrix.

A. Detailed Requirements. This function is designated in calling routines as

BARTH_FIXED_TO_M59_COORD(TIME)

where TIME - time of interest measured from the beginning of the particular mission year

EARTH_FIXED_TO_M50_COORD -- Earth fixed to mean of 1950 coordinate transformation matrix of the time of interest

The following steps shall be performed (in the order indicated):

1. The time difference from the epoch time to the current time is calculated:

DELT = TIME - T_EPOCH

(T_BPOCH is the apoch time).

2. The angle of rotation about the Earth-fixed Z-axis is obtained.

LAM = EARTH RATE DELT

3. The Earth-fixed Z-axis rotation matrix is then defined:

$$M = \begin{pmatrix} \cos (LAM) & -\sin (LAM) & 0 \\ \sin (LAM) & \cos (LAM) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
F9

F9 This equation shall be protected against return value of sine or cosine with magnitude greater then unity (Reference 3.6-9).

4. The Earth-fixed to mean of 1950 coordinate transformation matrix is then computed as follows:

BARTH_FIXED_TO_MSO_COORD = M_MSOTOSF_AT_EPOCHT M

Because of the sparseness of the matrix M, both core and execution time will be conserved by use of the following formulation: For notational convenience, let N denote the matrix M_M50TOEF_AT_EPOCH. The sine and cosine of LAM will be computed once and denoted by CLAM = COS (LAM) and SLAM = SIN (LAM). Then EARTH_FIXED_TO_M50_COORD will be computed as follows:

EARTH_FIXED_TO_M50_COORD1,1 = N1,1 CLAM + N2,1 SLAM

EARTH_FIXED_TO_M50_COORD1,2 = -N1,1 SLAM + N2,1 CLAM

EARTH_FIXED_TO_M50_COORD1,3 = N3,1

EARTH_FIXED_TO_M50_COORD2,1 = N1,2 CLAM + N2,2 SLAM

EARTH_FIXED_TO_M50_COORD2,2 = -N1,2 SLAM + N2,2 CLAM

EARTH_FIXED_TO_M50_COORD2,3 = N3,2

EARTH_FIXED_TO_M50_COORD3,1 = N1,3 CLAM + N2,3 SLAM

EARTH_FIXED_TO_M50_COORD3,2 = -N1,3 SLAM + N2,3 CLAM

EARTH_FIXED_TO_M50_COORD3,2 = -N1,3 SLAM + N2,3 CLAM

EARTH_FIXED_TO_M50_COORD3,3 = N3,3

- B. <u>Interface Requirements</u>. The input and output data are shown in table 4.10.2.
- C. <u>Processing Requirements</u>. This function may be executed as needed. The time (TIME) at which the output transformation matrix (EARTH_FIXED_TO_M50_COORD) is desired must be supplied by the user in elapsed seconds from the beginning of the year of mission commencement.

A valid M_M50TOEF_AT_EPOCH must be available before this subfunction can be executed.

- D. Constraints. None
- E. Supplementary Information. The Aries mean of 1950 and the Earth-fixed coordinate systems are shown in Aprandix C. A suggested implementation in the form of a detailed flowchart may be found in Appendix C under the name:

EARTH_FIXED_TO_M50_COORD FUNCTION

TABLE 4.10.2. - BARTH_FIXED_TO_M50_COORD FUNCTION INPUT/OUTPUT

Inlist	/Outlist		
Internal Name	! External ! Name	! Input Source !	Output Destination
i time	! ! T	ACCEL_ONORBIT FUNCTION	
TIME	! T_STATE	IONORBIT_USER_PARAMETER	
	t t		
	! ! !	! ! ! ! ! !	
	1 1 !	1 1 1 1	h .
	! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1 1 1	1 1	
	: ! !	1 1	
	1 1 1		
	ī t	† † †	
	T ! !		
	: ! !	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	
[] -	; ; ;		! !
	! ! !	! ! ! !	

TABLE 4.10.2.- EARTH FIXED TO M50 COORD FUNCTION INPUT/OUTPUT.- Concluded

Variable Name	! Input Source	! Output Destination
191 TO N.C. 110MG	!	- Output Pestiliation
EARTH_RATE	i## 1	
M_M50TOEF_AT_EPOCH	į## 1	
T_EPOCH	tas	
†		!A CCEL_ONORBIT FUNCTION, !ONORBIT_USER_PARAMETER_ !CALCULATIONS
1		
		!
		i i
	1	1
÷.	!	I 1
	v t	!
	**	1
•	!	
		I I
		1
	1	!
	!	t t
	!	!
	1	!

[†]Only the values of EARTH_FIXED_TO_M50_COORD's elements are passed to output destination.

^{##}Initialization parameters, see section 4.7

4.10.3 Geodetic to Earth-Fixed (GEODETIC_TO_EF)

This submodule accepts the geodetic parameters of a point and computes the Earth-fixed Cartesian coordinates of that point.

A. <u>Detailed Requirements</u>. This function is addressed in calling modules as GEODETIC_TO_EF(LAT_GEOD_LON_ALT)

This function is referred to internally as

GEODETIC_TO_EF(LAT_GEOD,LON,ALT) = P _EF

where ALT -- altitude above reference ellipsoid of point of interest

LAT_GEOD -- geodetic latitude of point of interest

LON -- longitude of point of interest

R_EF -- Earth-fixed position vector of point of interest

These equations shall transform the geodetic parameters to Earth-fixed coordinates:

$$R_{EF_{2}} = \begin{bmatrix} & & & & & & & & \\ & & & & & & \\ \hline & (\cos^{2}(\text{LAT GEOD}) + (1 - \text{ELLIPT})^{2} \sin^{2}(\text{LAT GEOD}))^{1/2} + \text{ALT} \end{bmatrix} .$$

$$\cos (\text{LAT GEOD}) \sin (\text{LON}) \qquad \qquad F3.$$

$$R_{2} = \begin{bmatrix} (1 - ELLIPT)^{2} & EARTH_RADIUS_EQUATOR \\ (\cos^{2}(LAT GEOD) + (1 - ELLIPT)^{2} & \sin^{2}(LAT GEOD))^{1/2} + ALT \end{bmatrix}.$$

$$\sin(LAT GEOD)$$
F3,
F9, F4

F3 This equation shall be protected against division by zero (Reference 3.6-3).

F9 This equation shall be protected against return value of sine or cosine with magnitude greater than unity (Reference 3.6-9).

F4 This equation shall be protected against square roots of a negative number (Reference 3.6-4).

79FM10

- B. Interface Requirements. The input and output data are shown in table 4.10.3.
- C. Processing Requirements. The input angles must be in radians.
- D. Constraints. None
- E. <u>Supplementary Information</u>. The geodetic parameter set and the Earth-fixed coordinate system are illustrated in Appendix C. A suggested implementation in the form of a detailed flowchart may be found in Appendix C under the name:

GEODETIC_TO_EF FUNCTION

TABLE 4.10.3.- GEODETIC_TO_EF FUNCTION INPUT/OUTPUT

Internal	/Outlist	Input Source	! Output Destination
Name	! Name		
ALT	1 1	Various Users	1 1
	1		1
LAT_GEOD	1	Various Users	1
LON	i	Various Users	i
<u>r</u> ef	1 1†		! ! Various Users
	i		!
	! !		: :
	i		!
	} !		! !
	!		i
	!		!
	•		i
	!		† •
	į		•
	!		1
	•		i
	!	•	!
	i	•	i
	!		!
	: !		1
	!!!		!
	: ! !		1
	!		!
	; ;		! !
	!		!
	! !		I I
	i		i
	!		İ

 $[\]dagger 0$ nly the values of R EF's components are passed to output destination.

TABLE 4.10.3.- GEODETIC_TO_EF FUNCTION INPUT/OUTPUT.- Concluded

Variable l	Name	! ! Input Source !	! Output Destination !
EARTH_RADIUS_E	QUATOR	1 ***	
ELLIPT	• •	100	
		1 1	
		1 1 1	
	,	1 1	i ! !
	:	t t	! ! !
		! ! !	! ! !
		: ! !	1 1 1
		! ! !	! ! ! ! !
		1	! ! ! !
		1 1 1	; ; ;
		! !	! ! !

^{**}Initialization parameters, see section 4.7

4.10.4 Earth-Fixed to Topodetic (EF_TO_TOPDET)

This subfunction accepts the geodetic latitude and longtitude of a point in radians and computes the rotation matrix from Earth-fixed coordinates to a topodetic coordinate system for the input location.

Formulation: This subfunction creates the rotation matrix as an Euler Z, Y sequence through the longitude angle (LON) and the geodetic latitude angle plus 90 degrees (LAT_GEOD + $\pi/2$), respectively.

A. Detailed Requirements. Calling modules address this function as

EF_TO_TOPDET(LAT_GEOD, LON)

This function is referred to internally as

 EF_{TO} TOPDET(LAT_GEOD, LON) = M

where LAT_GEOD -- geodetic latitude of point of interest

LON -- longitude of point of interest

M -- desired Earth-fixed to topodetic coordinate transforma-

The transformation matrix shall be calculated as shown here:

- B. Interface Requirements. The input and output data are shown in table 4.10.4.
- C. Processing Requirements. The input variables must be in radians.
- D. Constraints. None
- E. Supplementary Information. The Earth-fixed and topodetic coordinate systems, and a suggested implementation of this module are provided in Appendix C. A suggested implementation in the form of a detailed flowchart may be found in Appendix C under the name:

EF_TO_TOPDET FUNCTION

F9 This equation shall be protected against return value of sine or cosine with magnitude greater than unity (Reference 3.6-9).

TABLE 4.10.4.- EF_TO_TOPDET FUNCTION INPUT/OUTPUT

Inlis	t/Outlist		
Internal Name	f External Name	! Input Source	l Output Destination
LAT_GEOD	!LAT_GEOD	! !EF_TO_RUNWAY FUNCTION	
LON	ILON C	IEF_TO_RUNWAY FUNCTION	
M	! !†		! !EF_TO_RUNWAY FUNCTION
j.			
:	† †		
,	1	The second secon	
	! ! !		
	1 1		! ! !
		; !	
		1	
	1		
	1 1 1	1 1	

TOnly the values of M's elements are passed to output destination.

4.10.5 Earth-Fixed to Runway (EF_TO_RUNWAY)

This subfunction accepts the geodetic latitude, longitude, and azimuth of the runway and computes the rotation matrix from the Earth-fixed coordinate system to the runway coordinate system.

Formulation: The Earth-fixed to topodetic subfunction is used to obtain an Earth-fixed to topodetic rotation matrix. Then the Earth-fixed to topodetic matrix is multiplied by an Euler Z rotation matrix through the runway azimuth angle (AZ), measured from true north to the +X-axis of the runway.

A. Detailed Requirements. Other routines designate this function as

in which LAT_GEOD -- runway's geodetic latitude

LON -- runway's longitude

AZ -- runway's azimuth

EF_TO_RUNWAY -- desired Earth-fixed to runway coordinate transformation matrix

The following steps shall be performed (in the order indicated):

1. The Euler Z rotation matrix is calculated.

$$M = \begin{bmatrix} (\cos AZ) & (\sin AZ) & 0 \\ (-\sin AZ) & (\cos AZ) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2. The Earth-Fixed to Topodetic Function is called and its rotation matrix is premultiplied by the Euler Z rotation matrix to produce the Earth-fixed to runway rotation matrix.

- B. <u>Interface Requirements</u>. The input and output data are shown in table 4.10.5.
- C. Processing Requirements. Input angles must be in radians.
- D. Constraints. None

F9 This equation shall be protected against return value of sine or cosine with magnitude greater than unity (Reference 3.6-9).

79FM10

E. Supplementary Information. The Earth-fixed, runway, and topodetic coordinate systems are shown in Appendix C. A suggested implementation in the form of a detailed flowchart may be found in Appendix C under the name:

EF_TO_RUNWAY FUNCTION

TABLE 4.10.5.- EF_TO_RUNWAY FUNCTION INPUT/OUTPUT

_			
Inlia Internal Name	st/Outlist ! External ! Name	I Input Source	Output Destination
AZ	I IAZ	EF_TO_SCANNER FUNCTION	
LAT_GROD	LAT_GEOD	EF_TO_SCANNER FUNCTION	
LON	i Lon	IEF_TO_SCANNER FUNCTION	
	i		
	!	1	!
	1	1 1	!
	1	1 1	
	1	1 1	
	!	1	
	!		
	1	1	
	!		
		1	
	1		
		1	
	!	1	
		1	
	!	1	
	1	1	

TABLE 4.10.5. - EF_TO_RUNWAY FUNCTION INPUT/OUTPUT. - Concluded

C

! Variable Name 	! Input Source	! Output Destination
†	! !EF_TO_TOPDET(LAT_GEOD, !LON)	
	1 1	EF_TO_SCANNER FUNCTION
	1	
	1	
	i 1	1
	1	1
	1	
	1	i
	1	1
	1	
	1	: !
	1	!
	1	1
	!!	1
	; !	1
	1	1
	i 1	1
~		<u>!</u>

TOnly EF_TO TOPDET's element values are passed from input source, and only values of EF_TO_RUNWAY's elements are passed to output destination.

4.10.6 Earth-Fixed to Scanner (EF_TO_SCANNER)

The purpose of this subfunction is to compute the rotation matrix from Barthfixed to scanner coordinates.

Formulation: The Earth-fixed to runway subfunction is executed, with use of the geodetic latitude and longitude of the scanner and the azimuth of the scanner boresight (AZ) from the true north to obtain a rotation matrix.

The rotation matrix is then multiplied by a rotation matrix representing a 180-degree rotation about the X-axis.

A. Detailed Requirements. This function is designated

in calling routines.

where LAT_CEOD -- geodetic latitude of scanner

LON -- longitude of scanner

AZ -- azimuth of scanner boresight

EF_TO_SCANNE.. -- desired Earth-fixed to sommer coordinate transformation matrix

This step shall be performed:

The evaluation of the Earth-Fixed to Runway Function is premultiplied by the 180 degree X-axis rotation matrix

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

to obtain the Earth-fixed to scanner rotation matrix.

- B. Interface Requirements. The input and output data are given in table $\frac{4.10.6}{}$.
- C. Processing Requirements. Input angles must be in radians.
- D. Constraints. None

E. <u>Supplementary Information</u>. The scanner, runway, topodetic, and Earth-fixed coordinate systems are shown in Appendix C. A suggested implementation in the form of a detailed flowchart may be found in Appendix C under the name:

BF_TO_SCANNER FUNCTION

TABLE 4.10.6.- EF_TO_SCANNER FUNCTION INPUT/OUTPUT

Internal	Outlist	Input Source	! Output Destination
Name	l Name		1
AZ	! !	Various Users	! !
			1
LAT_(ÆOD] [Various Users	1 !
LON	1	Various Users	1
	1		•
	!		!
			i
	! !		: !
			i
	! !		! !
			į
	! !		1 1
			1
	! !		1
	!		1
	! !		! !
	1		1
'			1 1
!	!		!
			! !
	!		İ
	! !		1 1
	! ! !		! !
			!
	! ! ! !		! !
·	!		i

TABLE 4.10.6.- EF_TO_SCANNER FUNCTION INPUT/OUTPUT.- Concluded

Variable Name	! Input Source	! Output Destination
	! !EF_TO_RUNWAY (LAT_GEOD, !LON, AZ)	
• :	: : { : • }	! Various Users
	!	! !
	1 1	! !
	! !	! !
	!	!
		! !
	: [; ! •
		: ! !
	1	· !
	! !	! !
	1	! !
	!	
	!	
	1	
	!	
	- ! !	!
	!	
		!
	i	<u> </u>

†Only the values of EF_TO_RUNWAY's elements are passed from input source; and only the values of EF_TO_SCANNER's elements are passed to output destination.

4.10.7 Transformation From Structural Body to M50 Coordinates (SBODY_TO_M50)

The transformation matrix from structural body to M50 coordinates (MAT) is computed by postmultiplying the transformation matrix from body to M50 coordinates by a matrix representing a 180-degree rotation about the Y-axis.

The transformation from body to M50 coordinates is the transpose of the matrix derived from the quaternion Q_FIFTY_BODY by employing the special purpose matrix function QUAT_TO_MAT.

A. <u>Detailed Requirements</u>. This subfunction is called with the following internal variables in the IN LIST and the OUT LIST:

IN LIST:

Q FIFTY BODY

OUT LIST:

MAT

where

Q FIFTY BODY

mean of 1950 to body rotation quaternion

MAT

desired structural body to mean of 1950 coordinate transformation matrix

The following steps shall be performed (in the order indicated):

1. The special purpose matrix function QUAT_TO_MAT is called to obtain a mean of 1950 to body rotation matrix.

MATRIX = QUAT TO MAT (Q FIFTY BODY)

2. Rotate the transpose of the output matrix 180° about the Y-axis.

MAT1,1 = -MATRIX1,1 MAT1,2 = MATRIX2,1 MAT1,3 = -MATRIX3,1 MAT2,1 = -MATRIX1,2 MAT2,2 = MATRIX2,2 MAT2,3 = -MATRIX3,2 MAT3,1 = -MATRIX1,3 MAT3,2 = MATRIX2,3 MAT3,3 = -MATRIX3,3

- B. <u>Interface Requirements</u>. Input and output parameters are listed in table 4.10.7.
- C. Processing Requirements. This subfunction may be executed as needed.
- D. Constraints. None

E. <u>Supplementary Information</u>. A suggested implementation in the form of a detailed flowchart can be found in Appendix C under the name:

SBODY_TO_M50

TABLE 4.10.7.- SBODY_TO_M50 INPUT/OUTPUT

Inlist/	Outlist		
Internal ! Name	External Name	Input Source	! Output Destination
Q_FIFTY_BODY		Various Users	
I TAM			Various Users
! !	· [
! !	!		·
!			
1 1	!	!	
! ! !	!		
1	!		
1			!
1			1
! !			
1	1	! !	! !
: !			! !
! ! !	!		! !
1	!		!
i			!
! !	· · · · · · · · · · · · · · · · · · ·		! !
! !	!		!
!			
1 !	!		! !
! !	!		! !
!		!	! •
			<u> </u>

TABLE 4.10.7.- SBODY_TO_M50 INPUT/OUTPUT.- Concluded

Variable Name	! Input Source	! Output Destination
†	QUAT_TO_MAT (Q_FIFTY_	
		e formation of the particle of the second
	1	
	1	: !
	•	
	!	
	!	
	t 1	
	!	
	! !	
	1 1	! !
	1	!
	1	
	1	
	! !	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>!</u>
	! !	·
	1 1	
	1	·
	!	!
	i	!

<code>†Only</code> the values of QUAT_TO_MAT's elements are passed from input source.

4.10.8 Conversion of a Quaternion to a Matrix (QUAT_TO_MAT)

The special purpose matrix function QUAT_TO_MAT computes the transformation matrix, A, associated with a quaternion, Q, as $QUAT_TO_MAT(Q) = A$.

A. Detailed Requirements. Calling modules designate this function

QUAT_TO MAT(Q)

This function is referred to internally as

 $QUAT_TO_MAT(Q) = A$

where Q - quaternion

A - corresponding transformation matrix

The following steps shall be performed (in the order indicated).

 $P2 = Q_2 + Q_2$

 $P3 = Q_3 + Q_3$

P4 = Q4 + Q4

 $P5 = P2 Q_2$

P6 = P4 Q4

TEMP = $1.0 - P3 Q_3$

 $A_{1.1} = TEMP - P6$

 $A_{2.2} = 1.0 - P5 - P6$

 $A_{3,3} = TEMP - P5$

P5 = P2 Q3

 $P6 = P4 Q_1$

 $A_{1.2} = P5 - P6$

 $A_{2,1} = P5 + P6$

P5 = P2 Q4

P6 = P3 Q1

 $A_{1,3} = P5 + P6$

 $A_{3.1} = P5 - P6$

- B. Interface Requirements. Input and output parameters are listed in table 4.10.8.
- C. Processing Requirements. None
- D. Constraints. None
- E. Supplementary Information. A suggested implementation in the form of a detailed flowchart can be found in Appendix C under the name:

QUAT_TO_MAT FUNCTION

TABLE 4.10.8.- QUAT_TO_MAT FUNCTION INPUT/OUTPUT

i ! Inlist	t/Outlist		
! Internal! Name	! External ! Name	Input Source	Output Destination
9	1	i NAV_ONORBIT_RENDEZVOUS	
9	19 MEOBODY_RR	RR_ANGLE_NAV	
9	Q _FIFTY_BODY	SBODY_TO_N50	1 1
: 1 1	it 1		NAV_ONORBIT_RENDEZVOUS, IRR_ANGLE_NAV, ISBODY_TO_N50
! !	1		
! ! !	! ! !		
! ! !	1 1 1	! !	
! ! !	1 1 1	! !	!
! !	1		
! ! !	1		
! !	I !		
: ! !	1		
I 1 1	† †		
: ! !	1 1		

[†]Only values of A's components are passed to output destination.

F4

4.10.9 Earth-Fixed to Geodetic (EF_TO_GEODETIC)

This function is required to transform a Cartesian position vector in the Earth-fixed (Greenwich) coordinate system to the geodetic parameters: geodetic altitude, longitude, and geodetic latitude.

A. Detailed Requirements. This subfunction is called with the following internal variables in the IN LIST and the OUT LIST:

IN LIST: R EF

OUT LIST: LAT_GEOD, LON, ALT

where

R R Cartesian position vector

LAT_GEOD geodetic latitude

LON geodetic longitude

ALT geodetic altitude

The following steps shall be performed (in the order indicated):

1. The computation for longitude is:

LON = ATAN
$$\left(\frac{R_EF_2}{R_EF_1}\right)$$
, $0 \le LON \le 2 \pi$ F3,F7

2. Computations for geodetic latitude, LAT_GEOD, and height above the reference ellipsoid, ALT, are as follows:

$$R_XY = R_EF_1^2 + R_EF_2^2$$

$$R = (R_XY + R_EF_3^2)^{1/2}$$

FLATCON = 1.0 - (1.0-ELLIPT)², where ELLIPT = flattening of the reference ellipsoid

F3 This equation shall be protected against division by zero (Reference 3.6-3).

F7 This equation shall be protected against arc tangents with both arguments equal to zero (Reference 3.6-7).

F4 This equation shall be protected against square roots of a negative number (Reference 3.6-4).

	79 FN 10
SIN_P = R_EF3/R	F3
$\cos_P = (R_XY)^{1/2}/R$	F3, F4
RAD_P = EARTH_RADIUS_EQUATOR	F3,
$\sqrt{1.0 + \text{FLATCON SIN } P^2/(1.0 - \text{FLATCON})}$	F4
DEL = FLATCON SIN_P COS_P 1.0 - FLATCON COS P2	F3
DEL_LAT = RAD_P DEL	F3
PHI = ATAN (SIN_P/COS_P), -π/2 < PHI < π/2	F3, F7
LAT_GEOD = PHI + DEL_LAT (in radians)	

and

- B. Interface Requirements. The input and output data are shown in table 4.10.9.
- C. Processing Requirements. This subfunction may be executed on demand.
- D. Constraints. None
- B. <u>Supplementary Information</u>. The Barth-fixed coordinate system and geodetic parameters are defined in Appendix C. A suggested implementation in the form of a detailed flowchart may be found in Appendix C under the name:

EF_TO_GEODETIC

F3 This equation shall be protected against division by zero (Reference 3.6-3).

 F^{4} This equation shall be protected against square roots of a negative number (Reference 3.6-4).

F7 This equation shall be protected against arc tangents with both arguments equal to zero (Reference 3.6-7).

TABLE 4.10.9.- EF_TO_GEODETIC INPUT/OUTPUT

Internal	Outlist !	Input Source	i Output Destination
Name	Name !	anpao oouros	t darker sessimment
EF		Various Users	i di di di di di di di di di di di di di
L T			! Various Users
AT_GEOD			l Various Users
.ON	!		l Various Users
	! ! ! !		1
1	1		1
!	!		1
!	!		!
	! !		
!	1		
!	1		i
	! ! !		1
!	! !		1
!	! ! ! !		!
!	! !		1
!	! ! !		1
! !	! ! !		!
!	!		!
!	! ! ! !		1
!	!		1

TABLE 4.10.9.- EF_TO_GEODETIC IMPUT/OUTPUT.- Concluded

Variable Name	! Input Source !	Output Destination
EARTH_RADIUS_BQUATOR	1	
BLLIPT	1	
on the second of the second o		<u>.</u>
	1	
$\mathbf{v} = \{v_i, v_i\}$	1	
	! !	
	!	
	1	
•	1	
	!	1
	1	
	!	
	i i	
	1	
	! !	
	: 1 1	
	! !	
	!	

^{**}Initialization parameters, see section 4.7

4.10.10 UVW to M50 (UVW_TO_M50)

The purpose of this subfunction is to compute the transformation matrix from UVW coordinates to Aries M50 coordinates, given the position and velocity of the vehicle.

The orientation of the U, V, W system is determined by the Orbiter inertial position and velocity vectors $(\underline{R}, \underline{V})$ at the point (or time) of interest.

A. Detailed Requirements. Users of this function designate it:

UVW_TO_M50(R,V)

-- position vector (mean of 1950) where -- velocity vector (mean of 1950)

UVW TO M50 -- UVW to mean of 1950 coordinate transformation matrix

The following steps shall be performed (in the order indicated):

The UVW coordinate frame axes unit vectors in mean of 1950 coordinates are determined. (Z represents the V-axis unit vector to avoid confusion with the velocity vector.)

> U = R/RF3 F3

 $W = (R \times V) / R \times V$

Z = W x U

The transformation matrix from UVW coordinates to Aries mean of 1950 is then given by

UVW TO M50 = U Z W

- B. Interface Requirements. The input and output data are given in table 4.10.10.
- C. Processing Requirements. All computations are to be performed in double precision.
- D. Constraints. None
- E. Supplementary Information. The UVW coordinate system and the Aries M50 system are defined in Appendix C. A suggested implementation in the form of a detailed flowchart may be round in Appendix C under the name:

UVW_TO_M50 FUNCTION

F3 This equation shall be protected against division by zero (Reference 3.6-3).

TABLE 4.10.10.- UVW_TO_M50 FUNCTION INPUT/OUTPUT

t tInlist	t/Outlist	1	
Internal Hame	! Externol ! Name	! Input Source !	Output Destination
! <u>R</u>	IR_PILT	IREND_BIAS_AND_COV_PROP	! !
<u> </u>	IR_TV	REND_BIAS_AND_COV_PROP	
<u> </u>	! <u>R</u>	U_A_BIAS_AND_COVINIT	
i <u>v</u>	Y_FILT	IRBND_BIAS_AND_COV_PROPI	
<u> </u>	IV_TV	REND_BIAS_AND_COV_PROP	
i <u>v</u>	iĀ	IU_A_BIAS_AND_COVINIT	
t 1	!		! !
1	!	1 1	!
!!	!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	
1	!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!
! !	!	1 1	!
! !	!		
! !	!		
I !	! !		
: !	: !		
!	!		;
!	!	1	! !
! !	!	!	!
! !	!	!	!
! !	!	· !	

TABLE 4.10.10.- UVW_TO_M50 FUNCTION INPUT/OUTPUT.- Concluded

Variable Name !	input Source	! Output Destination
		PREND_BIAS_AND_COV_PROP, U_A_BIAS_AND_COVINIT U_A_BIAS_AND_COVINIT
		: ! ! !
! ! ! !		! ! ! !
! ! ! !		1 1 1 1
1 1 1 1		1 1 1 1
! ! ! !		! ! ! !
! ! !		! ! ! !
1 1		1 1 1

tOnly the values of UVW_TO_M50's components are passed to output destination.

APPENDIX A

GENERAL REQUIREMENTS FUNCTIONS

:a	CONTENTS	/ YEMIU
•	Subject	Page
	Variables List	A-7

O

()

()

PRECEDING PAGE BLANK NOT FILMED

VARIABLES LIST DEFINITIONS

CODE USED FOR VARIABLE DATA TYPE

- F: floating point quantity. An n-dimensional floating point vector will be denoted F(n). Similarly, a nxm floating point matrix will be denoted by F(n,m).
- I: integer quantity; I(n) will denote an n-dimensional integer vector
- B: bit, i.e., data having only values of 0 or 1
- C: character; C(n) will denote an n-dimensional character string

CODE USED FOR VARIABLE PRECISION

- D: double precision
- S: single precision; integer quantities are assumed single precision unless otherwise specified

VARIABLE LOCATION

Compool: Variable value located in common storage, accessible by all functions

Local: Variable is used by one function only, and usable to other functions through call argument only

VARIABLE INITIALIZATION CATEGORY

blank: display is vacant

C: constant (unchanging)

DD: design dependent

HC: hard coded

MD: mission dependent (I-LOAD)

OPS: OPS transition parameter

IV: other required initial values

PRECEDING PAGE BLANK NOT FILMED

VARIABLE INITIAL VALUE

initial operation sequence computer inputs

VARIABLE UPLINK AND DOWNLIST STATUS

UPLINK: variable is an uplink item

DOWNLIST: variable is a downlist item

UNITS DEFINITIONS

deg: angular measurement, degrees

ft: feet

lb: pounds

n.d.: non-dimensional

rad: radian

sec: time measurement, seconds

slugs: mass measurement, slugs

vary: units have different values which depend on variable use

79FM10

reci- ! lon & ! /pe !	Compool ! or ! local !	Initial-! ization ! category !	Initial ! value !	Uplink/ downlist	Units	Description
7(5,2) !	local !	!				! Legendre functions array in gravitational acceleration ! calculation.
?(3,2) ! !	local !	MD !		1	11/ft	! Variable used in ACCEL_OMORBIT atmospheric density code. !!
!	local !) DD 1	2		! !	! Minimum number of sequential marks accepted by the residual ! edit test to blank the display edit status indicator ! (DISP_EDIT).
P !	local !	!				! Density model night time vertical coefficient.
P 1	compool !	-	-	downlist	! !ft !	! Altitude of the Shuttle for downlist.
7 1	local !	!			! !ft	Altitude above reference ellipsoid used in ACCEL_ONOMNIT.
? ! !	local !	MD I	-		! !ft !	! Density model upper bound of lower layer used in ACCEL_ ! CNORDIT drag model.
1	compool !	!		-	! ! ! !	! ! Auto/Inhibit/Force switch associated with the currently ! enabled angles data set.
1	compool !	_	-	downlist	! ! — !	! Flag indicating to display that the angles auto/inhibit/ ! force flag (AMGLES_AIF) has been acknowledged by mavigation.
!	local !	IV :	inhibit !	- :	!	! The last nonforce value of the ANGLES_AIF flag.
!	compool !	!	-	downlist	! ! !	! Positive feedback flag to the display indicating the angle ! set currently enabled.
!	!	1			; ! •	· · · · · · · · · · · · · · · · · · ·
71 ?((?)	pe 1	pe local	local category	pe ! local ! category ! value	pe ! local ! category ! value ! downlist	

Wariable name (M/S ID)	Preci- sion & I type	Compool or or l	Initial- ization category	Initial P	Uplink/ downlist	Unite	Description
IANGLES MANUAL BOIT	6 0	i local	:	1	1	·	Local value of the manual edit override flag.
ANGLES STAT PLAG	<u>.</u>	local	·	1		!	Local value of the stat flag.
IARA	35	local	·	1	1	25	Area used in ACCEL CHORBIT drag model.
RESTO	(£)	local	1	ł		ft/sec ²	Acceleration of the Orbiter interpolated to a spetified in measurement time (1950).
IATR_OV	1-4 20 20 20 20 4	compoo!	2	0	1		Flag controlling use or nonuse of carrent attitude of
ATPL_TV	>=1 >=1	compool	£	N,	! !		Flag controlling use of mas, ares, and drag coefficient of f target vehicle.
T	H	f local		1		1	Plag indicating if current or prestored configuration con- stants are to be used in drug computations within ACLEL.
IATHP 1 (794J3999C)	H	combool	1	1	downlist ?	1	i Flag indicating target or Orbiter CB, mass and area for I prediction.
A TV RESID	1 06(3)	1 10cal		1		11./90g ²	Acceleration of the target weblate interpolated to a series openitied measurement time (MEG).
MOTILIARY	Ès .	f local		1		1/sec ²	Scalar variable used in gravitational scools sation model in 1 ACCL CHOMBIT.
	5	local		ł		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Temporary variables in mean conic partials transition astrial computations.

Variable name (M/S ID)	f Preci- f sion & f type	or I	Initial- ization nategory	! ! Initial ! walue	f f ! Uplink/ ! downlist !	! ! ! ! Units	! ! ! Description !
! <u>B</u>	1 1 DP(13) 1	t compool i	-	_	! -	l lvary !	Partial derivative of the measurement with respect to the ! filter vehicle state.
BPH	I SP	local	_	! !	-	! !	Atmospheric density model diurnal coefficient used in ACCEL_OMORBIT.
BIAS_COV_VAR	SP(2)	local		-	_	!vary !	Copy of the bias variance terms for the covariance matrix of the sensor data currently being processed.
BIAS_INIT	: ! SP(2) !	local	_		-	ivary !	! Copy of the initial sensor bias of the sensor data currently! being processed.
IBIAS_VAR	! SP(2) !	local		-	: ! !	i ivary !	Copy of the sensor bias variances for the sensor data currently being processed.
IBIAS VAR COAS AMOLES (T9605069C=70C)	1 SF(2)	local	DD	5.E-6 5.E-6	-	trad ²	Variance of the COAS angle biases.
!BIAS VAR RR ANGLES ! (V96U907TC-2C)	SF(2)	local	DD .	3.0E-4 3.0B-4	; ! !	l rad ²	! Variance of the rendezvous radar angle biases.
TELAS VAR REDOT (V96U9073C-4C)	! SF(2)	l local	; ; DD ;	711.0	!	in ² ,	! Variance of the rendezvous radar range and range rate ! blaces.
: !BIAS VAR ST ANGLES ! (V96U9075C-6C)	1 1 SP(2)	local	DD	1.28-6 1.28-6	!	ired ²	! Variance of the star tracker angle biases.
1 1 BM 1 (49609077 C-9C) 1	! ! SF(3) !	local	; ! 190 !	- ! -	: ! !	Ind II/ft Ift	! Atmospheric density model diurnal coefficients used in ! ACCEL_ONOREST. !
! !BT_E_B	! ! DP	! local	-	·	!	! !vary	! Variable used to store the dot product of B and EB
1 <u>1 </u>	! DP(9) !	local !	! C !	; ! !	; ! — !	! ! !	! Tosocral hermonics coefficients used in AGCEL_OMMENT!! ! Barth gravity code.

Variable	! ! Preci-	f 1 Composi	! ! Initial-	f 1	!	î 1	1
	t sion & ! type !		ization category	Initial	Uplink/ downlist	f ! Units !	! Description !
(1960) (1960) (1960)	! ! SP !	 local) DD	! ! 1 . 40 368-5 !	! ! — !	! !!/R	! ! Coefficient used in ACCEL_OMORBIT atmospheric dennity ! ! seasonal latitudinal effect.
(805) (806)	: ! SF !	local	i iz	!-1.3716E !-5	<u> </u>	!!/ft	! Coefficient used in ACCEL_OMORBIT atmospheric density ! seasonal latitudinal effect.
 CBM1 	! SP !	local		-		! !	Coefficient used in ACCEL_ONORBIT atmospheric density seasonal latitudinal effect.
CBH2 (V96U9089 C)	! SP !	local	HD	! !	_	!	Coefficient used in ACCEL_OWORBIT atmospheric density seasonal latitudinal effect.
(CD)	! SP!	local			_	! !	! Vehicle drag occfficient used in ACCEL_OMORBIT drag ! acceleration calculations.
CDA (V97U528 1C)	! SP !	local	. DD	9 0.64592	-	! !	Constant used to model drag coefficient used in ACCEL_
CDEC 1	! DP !	compool		<u> </u>	<u> </u>	<u>-</u>	Cosine of solar declination used in ACCEL_OMORBIT density i calculations.
C_DENSEA (V96U9094C)	! SP !	local	. DD	295274.7		in	Constant used in ACCEL_CHORBIT density model.
CDP (¥97¥6002C)	! SP !	local	DID !	0.78590			Constant used in ACCEL_GROBBIT drug coefficient calculation.
CDM (¥97U5282C)	SP !	local	DD	2.41256 1	!	! !	! Constant used in ACCEL_ONCESIT drag coefficient calculation.
CDS (¥97 (¥6010C)	1 SE? !	local	DD .	1.92837 !	!	! !	Constant used in ACCEL_OMDREIT drag coefficient calculation.
COAS ANGLES BIAS INIT (V96U90840-50)	! SP(2) !	local	HD	! !	!	irad !	I Initial value of the COAS angle bias alote in the state ! rector.
COAS ANGLES_EDIT_ OVERRIDE	B	local		_	-	! !	Plag used to override (ON) the residual edit test for the ! ONS angles data.

79PH10

1	!	!	1	!	ľ	1 .	
! Variable	! Presi-		! Initial-		ł	1 1	1
f name	f sion #		ization		! Uplink/	t 1	<u>!</u>
! (M/S ID) !	i type !	! local	category	walue	! downlist	! Units	! Description !
! !COAS_ANGLES_STAT !	! ! B	! ! local !		_	! ! !	? ! !	Plag indicating that COAS angles data are to be processed for statistical display purpose only (OM).
: !COAS_DATA_GOOD ! (¥90X+849X) !	: : B :	! composi !	-	! ! —	! ! downlist !	!	I Snapped COAS flag indicating the use of COAS to track a I target. This is used by navigation as a DATA 0000 flag. I (STAR TRCK SOP HAL name HAY_SIGHT,PL/SID # V95Z47*9X).
! !0045_EMABLE ! (¥93x6225x)	! ! B	! ! compool !	-	_	! downlist !	! !	! ! COAS angle EMABLE flag not used in the software but is ! included here for downlist notification.
!COAS_ID (¥90J48540)	1	compool			downlist	: !	! Snapped COAS selection flag (STAR TRCK SOP HAL name AXE, ! M/S ID# 795X4972X).
 COAS_HARK_NUM (¥90J4827C)	I	f composi	I	0	! downlist	: ! !	COAS measurement mark counter.
! !CONST !	! ! DP !	! ! local !	 	. –	!	!sec ³ /n ²	f Temporary variable used in transition matrix computation.
POORT ACC E (\$90A4944C) E	. SP	! compcol !		_	! downlist !	!ft/sec ² !	! Contact acceleration (magnitude of the INU mensed ! acceleration) used to determine whether INU data and/or ! measurement data are to be used.
!COS_LAG ! (V96U9086C)	: : 37 !	! local	DD	0.798 63551	! — !	! !	Cosine of atmospheric bulge lag angle used in ACCEL_DWORDIT tensity model.
COS_PSI	SF	local	-		. ~		! Variable used in ACCEL_GHORSIT atmospheric density model.
00S_ S OL_RA	DP	composi	-			! !	! Cosine of solar right ascension used in ACCEL_OMORBIT! density model.
1 (A30HA330C=35C)	: SF(3)	! compool '		-	: ! !	rt²/sec ⁴	! Vector of unmodeled ecceleration bias error wariaboes in ! UVW coordinates.
1 COV COR UPDATE 	SP(7)	composi	MD	-	i uplink i	! ! !	! Vector of correlation coefficients associated with UTW ! standard deviations (SIG_MPDATE) used for Orbiter/target ! covariance initialization (ground update).
; •	!	!	!		!	1	

VANTABLES LIST

						-	
Wariable name (M/S ID)	Preci- sion &	Composi or local	Initial- isation category	Initial walue	Uplink/	Units !	Description
COV PVID FLT (V90X4936X)		compool	1	1	1	1	Fing indicating (OB) that the IMU use flag has been turned on at least once aince the last COV prop.
COV PURD PLT LAST (V9CKT845)		1 compact	1	1	1		The last value of COV_PWND_FLI.
COF U A COAST (V§609095C-7C)	1 SF(3)	Codeoo	8	3º 1.E-8	1	Le /240	Unmodeled acceleration bias variances for coesting flight.
ON U A PUND PLE (V9609096C-100C)	3	10001	8	1365.366~2	1	1 2/30c/ 1	Unmodeled acceleration bias variances for powered flight.
CSPST	81	local	;	1	1		Variable used in ACCEL_CHOREST atmospheric density model.
CSSMD	81	10001	1	1	1	. <u></u>	Variable used in ACLL_OWORBIT atmospheric density model.
CURR ORB MASS (V9001961C)	b .	0000001	1		1	islugs .	Current Orbiter mass
5	<u>k</u>	10081	1	1	1	300/12	Scratch variable used in mean comic partials calemiations.
5	<u> </u>	lage	1	l	1		Auxiliary variable used in F and G meries computations and in Pines method.
8	8	loom	1	1	1	3005/R2	Scretch variable used in mean comic partials calquistions.
3	b	10081		1	1	_1	Auxillary variable used in F and G series computations and in Pines method.
A I	36(3)	loom	1	1	1	irvaec ² i	Tariable used in ACCEL_GROWEIT to define vehicle drag scoeleration.
DA_THRESHOLD (V90AA747C)	, b	10081	1	1		atero G'at	Threshold value for magnitude of seased acceleration.
DA_THERSHOLD_TEST	bs	i local	i . 	1	1	17/90c2 !	Threshold test value for magnitude of sensed acceleration.
DBC_PER_RAD	3	1 compool	U	1	1	ideg/rad	Conversion factor from redisms to degrees.

C

VANTABLES LIST

i Wariable	- Lucut	Compool	Initial- !		- -		
(N/S ID)	type t	local	ization category	Initial wales	Uplink/	Units 1	Description
DELQ	8	compool i	1	1		Y877	Hessurgeof residuals.
DELTA RESID RATIO (VSCU) NOTC)	bs	100al	8	~	1	1	Increment on the residual edit test ratio when data is forced.
POELTAT	5	10001	1	1	1		Time interval between two positions in a conte (F and G series).
IDELTAT_COAS	B)	1 100m]		1	1	9	Time since last COAS measurement processing.
IDELTAT COAS HAX (V96U9108C)	b s	1 1002 1	8	8	1	9	Nazimum age of COAS measurement before navigation will not process it.
IDELTAT COAS HIN	bs	l local i	8	<u>.</u>	1	<u> </u>	Minimum change in COAS time tag before it is considered by navigation to be a new measurement.
identat Go	h	combool i	·	1	1	9	Time interval between two positions in a conic.
IDELTAT_ST	B;	l local	!	1		2	Time difference between current star tracker measurement time and last star tracker measurement time.
PELTAT ST MIN (175617/110C)	3 5	lasol 1	8	<u>.</u>		ů,	Minimum change in star tracker time tag meeded to werify that the star tracker data has changed.
102.TIM	ħ.	local		1	1	9	Time interval for the mess conic partial transition metrix ealcalation.
117-0-1	8 5	l local !		1	1	1	Temporary storage variable used in Pines formulation (call argument to F and G).
ID_FIN_TENE	b a	compool			1	17.2/300	Temporary storage for D_VIH (Pines method).
70.		1 codes	<u>2</u>	-	1		Plag indicating activation (1) or descrivation of drag model.
IDIAG	<u> </u>	1 10081		1	1	1300	Seratoh variable.
			-				

Naciable name (M/S ID)	Preci-	Compool or local	Initial- ization category	Initial I	Uplink/ downlist	Gaits	Description
ID CCVAR REINIT (V90X1615X)	.	composi	2	\$	down11st	1	Posicive feedback flag indicating (OM) that a covariance relatialisation has been performed.
TO ONE TO TOT (1900E14T3X)		1 0000001	B	•	downlist		: ! Positive feedback flag indicating (GH) that a state vector ! transfer has been performed (TGT = OMB).
ND TOT TO ONE (WOOK! WIEK)		000000	E	8	down11st	1	Positive feedback flag indicating (UN) that a state vector i transfer has been performed (OND : TUT).
	ħ.	1000	1	1	ı	rr2/300	Not product of position and velocity used in Pines method in eall to F and G series.
(\$9040212C,14C,21C,1	SP(2)	loodeo		1	downlist	6	Display measurement residual.
(\$9000213X,15x,23X,0	3	ocanoo]	2		down list	1	Display edit status indicator.
(\$900216C,17C,22C,1 713C)	(*) 28.	compool	1	1	down Lat	1	Display residual edit ratio.
	.	10001	4	•	1		Plug indicating use of or nonuse of drag model in ACCEL UNDERIT.
	.	l local	1	1	1	P	Difference in mean anomalies used to solve Kepler's equations, used in F and G series.
(#94139691)	en e	combool		1	1	1	Plag indicating use or arranse of drag exceleration in prediction.
	.	local		1	1		Local variable used in ACCEL_GHOMBIT gravitational ecoeleration computation.
O COAS MICLES HA	a	1 10001		1	down 11 st.	1	On-off switch indicating (OM) that COMS angles data have been selected for processing.

! Variable ! Variable ! name ! (M/3 ID)	! Preci- ! sion & ! type !	Compool or local	! Initial- ! ization ! category	Initial	! ! ! Uplink/ ! downlist	! ! ! ! Units !	! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! !DO_COAS_ANGLES_NAV_ !LAST ! (V90X4725X)	! ! B !	! ! compool ! !	 !	-	! ! !	! ! !	! On-off switch indicating (ON) that COAS angles data were ! selected for processing in the last filter cycle. !
IDO_COVAR_REINIT ! (V93X6233X)	! ! B !	! compool !	:		! ! !	! ! !	Flag indicating (ON) the performance of covariance matrix ! reinitialization.
PDO FLTR SLOW RATE (V93X6235X)	: ! B !	! compool ! !	IV	! ON!	! !	! !	! Flag indicating rendezvous filter rate: ! (N = slow rate ! OFF = fast rate
POING FLTR SLOW RATE (V90X1365X)	! ! B !	! compool	rv	! ON!	downlist.	! ! !	! Flag indicating (ON) rendezvous filter rate is slow, and ! (OFF) rendezvous filter rate is fast. Provides positive ! feedback to REL_NAV DISPLAY.
PDOING MEAS ENABLE (V90x1477x)	: ! B !	! compool !	IV	OPF	downlist	! ! !	Flag indicating (OR) measurement data are being processed and (OFF) measurement data are not being processed. Provides positive feedback to REL_NAV DISPLAY.
I DOING PWRD_FLT_NAV ! (V90X1289X) !	! ! B !	compool	IV !	CPP	downlist	! ! !	! Plag indicating (ON) that a powered flight navigation phase! is currently active and (OFF) a nonpowered flight nav phase! is active. Provides positive feedback to REL_NAV DISPLAY.
IDOING_REND_NAV I (V90X4765X)	! ! B !	compool	I IV	! OFF	! downlist !	! ! !	Plag indicating (ON) a rendezvous navigation phase is active! and (OFF) a non-rendezvous navigation phase is active. Provides positive feedback to REL_NAV DISPLAY.
ID_ONES	t DP	local	! -	! !	! !	! !ft ² /sec	! ! Dot product of position and velocity vectors for transition ! ! matrix computation and F and G series.
! !DO_ORB_TO_TGT ! (V93X6215X)	! ! B !	! compool!	! ! '	! ! !	! !	! ! !	! ! Flag indicating (ON) state vector transfer (TOT = ONB). ! !
t t t	! !	t ! !	! ! !	! ! !	! ! !	! ! !	

							!
Dame !	Preci-		Initial-! ization ! category !	Initial value	Uplink/ ! downlist !	Unit:	Description
(H/S ID)	1	! ! ! !	IA ;	OPF	!		Flag indicating (OH) that data have been uplinked for !! Orbiter state vector update.
1DO OW UPLINK 1 (490x4754x) 1	!	! !	!		i ! downlist	! !	! ! Plag indicating (OS) that rendezvous radar angles data have ! ! have selected for processing.
DO RR ANGLES NAV (V90X4866X)	! B !	1 1	! !	-	! -	!	Flag indicating (OB) that rendezvous radar angles data were to selected for processing in the last filter cycle.
IDO BR ANGLES MAY LAST (V90X4726X)	! B ! !	compool !	1	! !	! -	! ! !	! Flag indicating (ON) that rendezvous radar range and range ! Flag indicating (ON) that rendezvous radar range and range ! rate data were selected for processing in the last filter
IDO_RHDOT_HAY_LAST (V90X 4727X)	! B !	! compool !	! — !	<u>.</u>	!	1	! cycle. ! Switch indicating (ON) that star tracker angles data have
IDO_ST_ANGLES_NAV	! ! B	i compool	! ! –	¦	i downlist	!	t been selected for processing.
(V90X4868X)	! ! B	! compool	!	!	¦ -	! !	t entented for processing is the
1 (490X4728X) 1 DO TOT TO_ORB	! ! ! B	i composi	<u>:</u>	!	!	! ! !	! Plag indicating (OM) state vector transfer (OMB = TGT).
1 (¥93x6216x)	! ! ! B	! ! compool	! ! IV	077	! -	! ! !	! ! Flag indicating (OM) that data have been uplinked for ! target state vector update.
100_TV_UPLINK 1 (V90X4757X)	! ! ! SF(3)	! ! compool	! -	! -	i downlis	! Ift/sec ²	! Drag of Shuttle for downlist.
1 (A30A#8#5C-##C)	1	! ! ! compos!	t t	! -	i i i downlis	t isec	Change in time since the last COV propagation.
i (A30M 1399C)	! DF ! !	!	1 !	!	!	! ! !sec	Interval over which to propagate the state vector.
DT_FILT (V90W4946C)	1 DF	1 compoo	!	i !	!	! !	
1		i	1				

Variable name (M/S ID)	! Preci- ! sion & ! ! type		! Initial~ !! ization !! category !	Initial	! ! Uplink/ ! downlist !	! ! ! Unita !	Pescription
DT_MAY_STATE_PROP (V95U8683C)	! ! SP !	composi	! DD ! ! DD !	4	! ! !	l Isec I	! ! Onorbit/rendezvous may state wector propagation rate. !
DT_STEP	1 DP	local	! {		!	! !sec	! Integration step size for prediction or propagation.
D_THO	! DP	l local	! ! ! !		!		! Dot product of the position and velocity vectors for the ! transition matrix computation and F and G series.
DV_COV (v90L4772C, 891C, 892C)	1 SF(3) 1 1 1	composi !	! ! ! !		! downlist ! !	ift/med ! !	! Change in velocity since the last COV propagation. !
DV_PILT (v90L4953C -55C)	1 SF(3) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	compool	! !	!	! !	 ft/sec 	! Differences between accumulated sensed IMU readings on the ! present cycle and the previous cycle (M50).
DA_IR	1 SP(3)	local				ft/sec	Input change in velocity used in SUPER_G integrator.
E (IDF(13,13); ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	compool			downlist downlist f f f f f f f f f f f f f	ivary i i i i i i i i i i i i i i i i i i i	Pilter covariance matrix. ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
BARTH_HU	! ! DP 1	! ! composi !	i C	-	!	! !ft ³ /sec ² :	! ! Gravitational constant of the Earth.

! Variable ! name ! (M/S ID)	Preci- sion & type	! Compool ! or ! ! local	Initial- ization category	! ! Initial ! walue	! ! Uplink/ ! downlist	! ! ! ! Units !	Description
! !EARTH_POLE	P(3)	compool i	С			! !	Unit vector in direction of Earth's axis of rotation.
EARTH_RADIUS_EQUATOR	i DF	compool	С			ire	Earth's equatorial radius.
!EARTH_RADIUS_GRAV	DF i	local !	С		!	irt !	Earth's radius used for gravitational accelerations in ACCEL_ONORBIT.
EARTH_RATE	DP	compool	C	-	-	!rad/sec	Barth's angular rotation rate.
EB_COPY	DF(13)	local	-	-		Ivary	Covariance matrix times the partials vector.
PRDIT_FLAG	C	compool		-	- .	! ! ! ! !	Pive valued flag used to indicate the status of the sensor measurement processing: OFF - not suitable for processing ON - edited by the residual edit test STAT - processed for statistical display only PROCESSED - processed normally FORCED _ processed through force command
ELLIPT	! DP	compool	С		-	!	Barth's ellipticity constant.
EPS_TIME ! (V96U9115C)	sp	local	DD	.01	_	: !sec !	! Minimum time separation for state vector interpolation.
SERR !	: ! DP	local		!	-	rad !	Auxiliary variable used in F and G series (conic solution)
EVENT E	B	compool	IA	OPF	downlist	: ! !	1 OPS 3 to 199201
EVENT_60 (V90x8189x) 	: B !	compool i	17	OFF	downlist	! ! !	MM106 to MM201
t t	! !	• !	! !	! !	! !	! !	

Variable name (M/S ID)	Prest- aton & type	Compool or or local	Initial- 1 ization 1 category 1	Initial walue	Uplink/ I downlist I	i Units !	Description
EVERT GOA EVERT GOA	8	compool 1	34 54	2 40	downlist !		OFS 8 to 18201
Brint 608 1 v9ax8645x)	60	0000000	2	8	downlist		M201 to 0P3 8
EVENT 60H (VÝOLBÉALX)	.	000000	A	&	downlist 1	1	OPS 8 to OPS 3
EFERT 67 (19008646x)		000000	A	8	down11st		M201 to M202
EVENT 73 (Výsarezoox)		compool	A	1	downlist !		HE02 to HE01
Byruit 82 (Vyax8655x)		00m001	A	&	downlist		ME01 to 008 00
EVERT 84 (VGOX8148X)	<u>m</u>	oodmoo I	A	t	downlist		OPS 00 to 19201
EVENT 95 (VGOX 8180X)	m	comboo	A .	è	downlist	1	W201 to 0PS 3
ISTO SHAPE PACTOR	b _i	10001	8	0.65793 1	1	 !	Constant used in drag model drag coefficient calculation.
	<u>8</u>	local		1	1	1	Closed form version of the F time series.
Proc	a	local	1	1	1	[aec_1	Closed form version of the time derivative of P series.
YTTY	DP(3,3)	10001		1	1		Transformation matrix Earth fired to M50 used in ACCEL.
				-			

! Variable ! name ! (M/S ID)	! ! Preci- ! sion & ! type !	! Compool ! or ! local	! Initial- ! ization ! ! category !		Uplink/	l - Units 	
PILT UPDATE (V90X0224X)	! ! B	ecomposi !	IA	0 277 1		f !	Flag indicating (ON) that current mavigation cycle is stomplete.
IPM1	DP	local	-		-	: !	Auxiliary variable for F minus 1.
. IF1 !P2 !F3 !F4	! ! DF !	l local	-		_	: ! !	I Auxiliary variables in gravitational acceleration !! I duxiliary variables in gravitational acceleration !! I calculations used in ACCEL_OMORBIT. !!
iG	! ! DP !	local		1	_	! !sec	Closed form version of the G time series.
<u>1G</u>	: : DF(3)	local				ft/sec ²	Gravitational acceleration in ACCEL_OHORBIT.
IG _CENTRAL	DF(3)	compool		-	_	ft/sec ²	Gravitational acceleration due to Earth as a point mass.
igdi i	SF	local		!		! !	Atmospheric density diurnal coefficient used in ! ACCEL_OHORBIT. !
(V96U9116C)	! SP !	local	DD .	1.375		! ! !	Exponent of atmospheric density diurnal coefficient used in ACCEL_OMORBIT.
!GDM1	DP	local				!	Auxiliary variable for GDOT minus 1.
IGDOT	DF :	local				! !	Closed form version of the time derivative of the G series.
IG_INT	DF(3)	local		-	-	ft/sec ²	Intermediate value of acceleration used in SUPSR-C ! integration.
iceo	l I	local	-			! ! !	Flag indicating degree of gravitional potential model in ! ACCEL_CHORBIT.
! (W96U9 117C)	! ! I !	: ! compool !	DD !	14 <u>1</u>	,	; ! !	! ! Flag indicating the degree of gravitational potential model.! !

Wariable ! name ! (M/S ID)	! ! Preci- ! sion & ! ! type	! Compool ! or ! local	! Initial- ! ization ! category	! ! ! Initial ! value	! ! ! Uplink/ ! downlist !	! ! ! ! Units !	! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 1GM_DEG_LOW 1 (V96U9118C) 1	I	: compost 	9 1 DID 1	2	! !	! ! !	!
10MDP 1 (V94J3975C) 1	I	! ! compool ! !			! ! !	! ! !	Flag indicating the degree of gravitional potential model : for prediction.
(GHO	I	local			! ! ·	! ! !	Flag indicating order of gravitional potential model to be is used in ACCEL_OMORBIT.
1GHDP 1 (Y94J3963C)	r	compool	-			! !	! Flag indicating the order of the gravitional potential model! to be used for prediction.
1GM_ORD 1 (V9609119C)	I I	compool	פע ו	2	!	! !	Flag indicating the order of the gravitational potential : sodel.
10H_0R0_LOW 1 (V96U9120C)	I	compool	DID	0	: – !	! !	Lowest order of potential model in calls to the acceleration: function; used for sensed velocity powered flight integration.
1G NEW 1 (49004940C-42C)	DP(3)	compoci	-	-	downlist	ft/sec ²	! Orbiter acceleration vector (M50).
igo	SP 1	composit	С	-	! !	! !ft/sec ² / !g	! Barth gravity acceleration constant.
IG ONE	DF(3)	loca1	_		!	ft/sec ²	Acceleration vector in transition matrix calculation.
ig _out	∂F(3)	local	-	-	-	!ft/sec ²	Acceleration vector used in SUPER_G.
: IG_TV I (V90L4961C-63C) !	DP(3)	composi			! ! downlist ! !	! [t/sec ² ! !	! Target vehicle acceleration vector (150). !

! Variable ! name ! (M/S ID)	! Preci- ! sion & ! type !	Compool or local	! Initial- ! ization ! category	! ! ! Initial ! walue	! ! ! Uplink/ ! downlist !	! ! ! ! Units !	Description
1	1 ! DF(3) !	compool :			-	! !ft/sec ² !	Target vehicle acceleration vector, last value (M50).
1 <u>G</u> _TW0	! DF(3)	local	! —	!	_	!fc/sec ²	Acceleration vector in transition matrix calculation.
IG_2_PP\$2	SF	compool	C	-	-	llb/slug	Mass to weight conversion.
HORIZ	SF	local	<u> </u>			!rad .	Filter estimate of the horizontal angle measurement.
i.	1 1	l local	_		-	!	! Counter
I IATM	: ! I !	local	-	*	! !	! ! !	Attitude mode flag that controls the use or nonuse of prestored average area, mass, and drag coefficient of Orbiter or target vehicle.
! !1_CYCLE ! (V90J4889C)	! ! I !	compool	! !	-	downlist	! ! !	Counter for the mavigation cycle.
I IDH I	8	local		_	_	! !	! Flag indicating the activation (1) or deactivation (0) of ! the drag model.
! !ID_MATRIX_3X3 !	! SF(3,3) ! !	local	t HC ! t	[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]	 	! !	! 3 by 3 identity matrix.
! !IDRAG ! (V90X4950X)	! ! B !	! compool	-	! ! !	! ! !	! ! !	Prag model flag used by state prop.
1 !IGD ! (4307#3#44C)	† ! I :	compoct		-	! ! –	! ! !	! Temporary storage for the potential model degree used by ! state prop.
! !IGO ! (¥90J4948C) !	: ! I !	compool	! !	 	! ! !	: ! !	! ! Temporary storage for the potential model order used by !! ! temporary storage for the potential model order used by !!
!	1	i	1		<u> </u>	!	

A-24

f Wariable f name f (M/3 ID) f	! ! Preci- ! sion & ! type !	t or	Initial- I ization I I category	Initial	! ! ! Uplink/ ! downlist	! ! ! ! Units	! ! ! ! Description
; ;;	! ! SF(3) !	! ! local !	! !		! ! –	! !	! Raw vector of M50 to sensor transformation matrix used in ! angles partials calculation.
II _RHO	! SF(3)	composi	-	-	!	irt	! Unit line-of-sight vector.
IMU RAV ACCEL THRESH (V93A6710C)	! SF	composi	110		downlist	!miero-g's	Crew selected acceleration threshold value for incorporating DAU data into may.
! IVENT ! (V90X4951X)	! B	compool !			!	! !	Temporary value of venting model flag used in state propagator.
eivh !	! 8 !	local	-		! !	! !	Plag indicating activation (1) or deactivation (0) of the venting and RCS uncoupled thrusting model.
!J	i	local		_	<u> </u>	ļ !	Counter.
!K	1	local		-	_	!	Counter.
KPACTOR (V 96 U8 173C)	t SF	compool !	HD I	-	: ! uplink !	!	Drag model correction factor used in ACCEL_OMORBIT drag
IK_RESID_EDIT ! (V9609121C)	SP	local	. DD	225.		! !	Residual edit test scale factor.
!K_UND_WGT ! (V97U5350C)	! SP !	local	DO	0.2	! !	!	Filter underweighing factor.
i.	1	local	_	-	! –	!	Counter.
1LOC 1 (49609 122C)	! DF	! local	190		: ! !	! !	! Coefficient used in ACCEL_OMORBIT solar ephemeria model.
!L03	t DP	local				rad !	I Longitude of the Sun in H50 goordinates.
i	<u>i </u>	<u>i</u>			<u>i </u>	<u>i </u>	<u> </u>

! Variable ! name ! (M/S ID)	Preci- sion & type	Compool or local	Initial- ization category	! ! Initial ! ! walue	 Uplink/ downlist	! ! ! ! Units	! ! ! Description
! !LQSK1 ! (V96U9123C)	DF	iocal	MD	_	-	! ! !	! Coefficient used in ACCEL_ONORBIT solar ephemeris model. !
! LOSK3 ! (V96U9124C)	DP	local	MD		-	! ! !	Coefficient used in ACCEL_GMORBIT solar ephomeris model.
! LOS_R !! ! (V96U9 125C)	DP	local	DD ,	1 .9909865 1 948-7		! !rad/sec ! !	! Coefficient used in ACCEL_ONORBIT solar eph weris model. !
! !LOS_ZENO ! (V96U9 126C)	DP	local	MD		_	rad !	! Coefficient used in ACCEL_CHONBIT solar epheneria model.
!MANUAL_EDIT_OVERRIDE !	В	compool				! !	Copy of the manual edit override flag of sensor data type currently being processed that is sent to the filter.
! (V90U4938C)	SP	composi	QPS			: !slugs !	! Used for OPS 2, 8, 0 initialization of current Orbiter mass.!
INAT	SP(3,3) !	local		-	-	! ! ! !	UVW to M50 transformation matrix for the filtered vehicle in COV prop.
MAX TIME TOL. (49608685C) -	SF	local	DID	54000.	-	!sea ! !	Haximum time threshold for the state vector prediction task. If the absolute value of the difference between current filter time and the state vector exceeds this threshold, no state vector prediction will take place.
IN_BODYN50	SF(3,3)	composi			-	! ! !	! Body to M50 transformation matrix.
! ! !					! ! !	! ! !	I ! !
₹ } 						! !	
!						: !	! !

Wariable name (M/S ID)	Preci-	Compool 1 Or 1 100al 1	Initial- ization category	Initial walue !	Uplink/ P downlist P	i i i i i i i	Description
BODY TO COAS (196097270-44C)	18F(3,3,2)!		8	00000			Body to COMS coordinates transformation matrix.
1 BODY TO BA (79309 1450–530)	SP(3,3)	COMPOO2	8		1		Body to AR coordinates transformation matrix.
MBAS EMBLE (V93x6232x)		0000001	A	å:		1	Plag indicating that measurement processing is enabled during MEVOZ.
HEAS_STAT		local	1	!	1		Temporary flag used in measurement selection.
MEAS THRESHOLD (79609154C)	8	000000	8	91000.01	1	1.7.380 ²	Threshold value for the magnitude of nommed accelerations for nomine of measurement data.
PM 202 (V9018656X)		combool	;	1	1		Major mode 202 indicator.
N 450 TO BOOT COLS (V9001857C65C)	38(3,3)	comboo!	1		downlist !		Snapped variable for the M56 to body coordinates transformation matrix at the time of COMS data crap (SIAR INCK SOP HML name I_M50_BGDY, W/S ID 0.05510-509-17C).
N MO TO SBISOR	SF(3,3)	compool	1	1	1		MEO to sensor coordinates transformation matrix for the sensor type being processed.
N 160 TO ST (19001920c -28c)	SF(3,3)	compool 1	1	1	down)ist	1	Snapped variable for N50 to star tracker coordinate transformation matrix (STAR TBCK SOP NML name I_M50_ST, M/S ID FF95UM600 -8C).
	. ==		-			-	

Wartable name (N/S ID)	Preci- t sion &	Composition of the control of the co	Initial- ization category	Initial Palue	Uplink/ downlist	Pasts	Description
S_967.4	2	l local	1	1	1	Vacy	Estimated variance of the computed pensor measurement.
S POS UND MOT (VOTUSATIC)	B s	local	8	5.08	1	25	Threshold of the Shuttle position variance for filter underweighing.
UNIT 150	1 DP(3,3)	1 0000001	1	. 1	1		UNV to MSO transformation matrix.
	.	lacol :	1		1	1	Counter.
ACCEPT (V90J1402C, 03C, 00C, 1 01C)	(4)	1 0000001	2	0	downlist i	1	Counter for the number of data marks that have been used to update the pavigation state vector.
AV ANOLES ATP (V90J4253C)	U	l compool	1	1	downlist !		Auto/Inhibit/Force switch used in may for the currently emabled angles data set.
AV CURA OND HASS (VYOUNZSAC)	81	l compool	1	1	downlist !	Sm(s)	Current Orbiter mass used in tav.
AV DO COVAR REINIT (V9GRA256E)	.	1 compool 1	1	1	downlist !	1	Haw flag tested to determine when to reinitialise the the covariance metriz
NV_DO_PLTP_S.CM_NATE (V9CE4257X)	a	compool !		1	down11st	1	Nav flag indicating renderwous filter rate: ON = alow rate OFF = fast rate
NY DO OND TO TOT (VYÖX 1258X)	<u></u>	compool 1	1	1	downlist !		Haw flag indicating (OH) crew - requested state vector transfer (Orbiter to target)
AV DO OV UPLINK (V9ÖX42602)		1 0000001		1	downlist !		Haw flag indicating (Off) Orbiter state vector uplink has consurred.
AV EC TUT TO ONE (V90142591)	6	i compool i	1	1	downlist f		Haw flag indicating (OM) a crew requested state wester transfer (target to Orbiter)

C

PARTABLES LIST

Mariable name (K/S ID) 1947 TO TY UPLINE (\$95845618)	Preci- sion 4 type	Composition of the composition o	Initial - 1 isation outefory	Initial	Uplink/ downlist downlist	Salts	Description Hav flag indicating (OH) target state wechor/uplink has
INV NEAS	<u> </u>	1 000000	A	5	downlist	_1_	Fing indicating (Off) that sensor measurements are to be ! processed.
INV MEAS EMBLE (V90XL262X)	m	Compost I	r	ı	down11st	1	Nav flag indicating (OH) that measurement processing is ! enabled in PM 202.
(MAY 181, 202 (7990x4253x)	a	1 00000001	1	ì	down Lat	1_1_	Major mode 202 indicator for MAV.
HAV PURD FLT MAY (VYGX WZ 64X)	70	compool !	1	1	de l'Ist	1_	Fing indicating (OH) to MAV that powered flight marigation i should be emercised.
IMAV RAHOR AIP	U	Common I	1	1	downing at	1	Auto/Inhibit/Force switch used in MAV in prorresing the rendezvous reder range assesurements.
HAV ROOT AIP 1 (V90JEZ69C)	U	codmoo	1	ı	downlist	1_	Auto/Inhibit/Ferce switch used in MMV in processing the frendezvous reder range rate measurements.
HAV AN ANCLES EMBLE	8	Compool 1	1	i	downlist	1_	Mendezvous rader angles enable flag for MAV.
INA SIG	(f)	i compool i	!	1	ı	1	Copy of the residual edit test ratios for the sensor immediately processed.
HAV ST EMBLE (Negarazykk)	<i>a</i>	1 0000000			downlist		Star tracker angles croble flag for MAT.
## CYCLE ('Y90M773C)	H	i compool		1	1	1	Prequency at which massurements are to be processed and the I covariance matrix propagated.

Mrtable name (M/S ID)	Preci- sion E type	Cumpool or local	Initial- ization i category	Initial P	Uplink/ I downlist I	i Units !	Description
IN CYCLE SLOW		comboo!	8		1	1	Maltiplier for frequency of covariance matrix propegation.
H CTCLE PAST	H	comboo!	8	~	 		Multiplier for frequency of coveriance whils propagation.
180131 18A WEAS 1 (790x4937x)	m	1	E	t o			Flag indicating (OH) that the sensed scorlaration is above 1 MEAS_THRESHOLD and measurement data are not to be used.
11 18.18.CT 1	9	(Compos)	2	0	downlist	_ 1	Counter for the number of data marks that have been edited if by the navigation filter.
IN STEPS	H	local	1	ł			Number of integration steps in the prediction or propagation!
HUM KRP_ITER	ы	local	2 2	v.		1	Maximus number of iterations in the solution of Kepler's i equation (F and G).
***	H	1008	1		1	<u>.</u>	Yariable used in ACCEL_UNCHBIT Earth gravitational cour.
1 (89609 157C)	5	1000	8	1.990968	1	rad/sec	Coefficient used in ACCEL DROMBIT solar ophemoris model.
NO BEGY	DF(13)	loom		1	1	Į.	Kalesa gains vector.
CONSTRU	ħ	10081		1	1		Auxiliary variable used in solving Repler's equation (P and G series).
10FS 2 OR 6 INTIALIZE 1COMPLETE (V9OX 1242X)	a	000 000 000 000 000 000 000 000 000 00		1			Signal to MSC indicating that initialization of user parameter state propagation quantities is complete.

! Variable ! tame ! (M/S ID)	! Preci- ! sion & ! type	f or	! Initial- ! ization ! ! category !		! ! ! Uplink/ ! downlist !	! ! ! ! Units !	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! !OV PREDICT PAIL ! (V90X4770X) !	! ! B !	t compool t			t ! downlist !	! ! ! !	! Plag which indicates that the tip: threshold, MAX_TIME_TOL, ! has been exceeded and consequently no Orbiter state vector ! prediction will take place.
! !PHASE_C ! (V96U9158C)	! DF !	l local	MD :		! !	! ! rad !	! ! Coefficient used in ACCEL_OMORBIT scler ephemeris model. ! !
! !PHI !	! ! DF(6,9) !	local	. IA	0.	!!	! !vary !	! ! State transition matrix from previous filter time to current!! time.
!PHI_BIAS !	! ! DF(4) !	local	~-		!	! ! !	! I Diagonal elements of the sensor bias portion of the state ! transition matrix.
PHI_MC	DF(6,6)	local			<u> </u>	! !vary	! Patch transition matrix computed by mean conic partials. !
!PHI_PATCH	DF(6,6)	compool	-		! !	! !vary !	! Transition matrix for converting from time of measurement !! to current time.
!PHI_UNMOD_ACC	i DP	local			: ! !	; ! !	! Diagonal elements of the unmodeled acceleration portion of ! the state transition matrix.
! !PI !	! DP	local	С		! ! — !	! ! !	I Transcendental constant which is the ratio of the I circumference of a circle its diameter.
PREC STEP PRED! (V98U8726C)	! SF	compool!	DD !	300.0	!	i !sec !	! Integration step size for precise prediction. !!
PRED ORB AREA (V93U5955C)	! ! SF !	compool	-		! downlist	! !ft ² !	! ! Orbiter's cross-sectional area for use in prediction. ! !
! !PRED_ORB_CD ! (V93U6954C)	! SF	compool	-		! ! downlist !	! ! !	! ! Orbiter's drag coefficient for use in prediction. ! !
; ! !	: ! !	!			! !	? ! !	

! ! Variable ! name ! (M/S ID) !	! Preci- ! sion & ! type	! Compool ! or ! local	! ! Initial- ! ization ! ! category !		! ! ! Uplink/ ! downlist !	! ! ! ! Units !	! ! ! ! Description !
! !PRED_GRB_HASS ! (¥93U6953C)	! ! SP !	t compool !		-	f ! downlist !	: !slugs !	! Orbiter mass used in prediction.
! !Pred step ! (V94W3964C)	SP	compool	_	-	! downlist	! !sec !	! Prediction step size.
PRED STEP OPS INIT (V96U8686C)	DP	l local	DO I	610.	! !	! !sec !	! Initial predictor step size used in OPS_2_CR_8_INITIALIZE. !
! !PRED_TASK_COMPLETE !	! ! B	! ! local !	_		! ! !	! ! !	! ! A flag, local to the state vector prediction tank, ! indicating that the prediction tank is complete.
PRED USE ! (V90J4768CA)	i I	compool :	IV	0	r ! downlist !	! ! !	! A flag, having values 0 thru 9, which indicates to the user! of the state vector prediction task the status of the! prediction task.
! !PWRD_PLT_NAV ! (V93X5408X)	! ! B	r composi			! downlist !	! ! !	! Flag indicating use of powered flight propagation (OH) or ! coasting flight propagation (OFF).
19_COAS_HORIZ 1 (V9GU4847C)	SP	: ! compool !	-		! downlist	! !rad !	! Snapped variable for the COAS horizontal angle measurement ! (STAR TRCK SOP HAL name COAS_hORIZ, M/S ID #795U4969C).
!Q_COAS_VERT ! (V90U4848C)	SF !	compool			downlist	! ! rad !	! Snapped variable for the COAS vertical angle measurement ! (STAR TRCK SOP HAL name COAS_VERT, M/S ID #V95UR992C).
Q_HORIZ	SF	local	_		!	!rad	! Measurement from horizontal measurement sensor.
10 M50BODY IMU 1 (V95U0B73C -6C)	SF(4)	compool	-		: ! downlist !	: ! !	I Snapped variable for the Shuttle attitude quaternion at the I time of the IMU data snap (JRB ATT PROC HAL name g_BOD_M59, M/S ID# V90U2240-3C).
I 10 M5080DY RR ! (V90U4829C -32C) !	SP(4) 	compool	! — ! !	! ! !	! ! downlist ! !	: ! ! !	! Snapped Shuttle attitude quaternion at the time of the ! rendezvous radar data snap (RR SOP HAL name Q_M50B0DT_RR, !! M/S ID# V95U4312-15C). !

A-32

Sance.

Variable name (M/S ID)	! Preci- ! sion & ! type		! Initial- ! ization ! category	Initial value	: ! Uplink/ ! downlist	! ! ! Units !	Description
Q_RR_RNG (\$9004895C)	! ! SF !	i ! compool !			! ! downlist !	! ! [t !	! Snapped variable for the rendezvous radar range measurement ! (RR SOP HAL name RR_RANGEO, M/S ID# V95HA287C).
Q_RR_RNG_DOT (V90U4896C)	t SP	compool	-		downlist	ft/sec	! Snapped variable for the rendezvous radar range rate ! measurement (RR SOP HAL name RR_RMGRO, M/S ID# V95R4288C).
Q_RR_SHPT (79004893C)	! SF	compact!	 ,	-	downlist	: !deg !	! Snapped variable for the rendezvous radar shaft angle i measurement (RR SOP HAL name RR_ROLLO, M/S ID € V95H4264C).
Q_RR_TRUN (V90U4894C)	! SP	composi	-		downlist	l deg	I Snapped variable for the rendezvous radar trunnion angle measurement (RR SQP HAL name RR_PITCHO, M/S ID # V95H4281C)
Q_ST_HORIZ (\$\tilde{V}90U4833C)	! SP !	compool			downlist	rad !	Shapped variable for the star tracker horizontal angle measurement (STAR TRCK SOP HAL name H_NAV, M/S ID # 995H4753C).
Q_S T_VB RT (V 90U4834C)	SF	compool			! downlist !	! !rad !	! Snapped variable for the star tracker vertical angle ! measurement (STAR TRCK SOP HAL name V_NAV, M/S ID ! # V95H4754C).
Q_VERT	! SP	local		-		! rad	! Measurement from vertical measurement sensor.
R	1 DF(3)	local			_	ist	Temporary M50 position vector used in ACCEL_OMORBIT.
RAD_PER_DEG	! SP	! compool !	С	_	!	rad/deg	! Conversion factor from degrees to radians.
RANGE_AIF (V93J6241C)	i c	: ! compool !		-	! 	: ! !	! Auto/inhibit/force switch associated with the rendezvous ! radar range measurement.
RANGE_AIF_DISPLAY (V90J1362C)	C	! compool	_	_	! downlist	! ! !	! Flag indicating to displays that the range auto/inhibit/! force flag has been processed.
RANGE_AIP_LAST	; ; c	! local	! IV	inhibit !	! !	! ! !	! Last value of RANGE_AIP.

Variable name (M/S ID)	! ! Preci- ! sion & ! type !	! Compool ! cr ! local	! Initial- ! ization ! category	! ! ! Initial ! walue	! ! ! Uplink/ ! downlist	! ! ! ! Units !	Pescription
RANGE_EDIT_OVERRIDE	! ! B !	! ! local !	! !		! !	! !	! Flag indicating (OW) that the crew wishes to force ! rendezvous radar range measurement.
range_stat	! B	! local	!		: :	: ! !	! Flag indicating (ON) that rendezvous radar range data is to ! be processed for statistical display only.
RDOT AIF (V93J6247C)	i c	compool	! ! !		! -	! ! !	! Auto/inhibit/force switch associated with the rendezvous ! radar range rate measurement.
RDOT AIP_DISP!AY (\$90J1368C)	i c	compool	-		downlist	: ! !	Plag indicating to displays that the range rate auto/inhibit! /force flag has been processed.
RDOT_AIP_LAST	C	local	IV :	inhibit	!	! !	! Last value of RDOT_AIF.
RDOT DATA GOOD (V90X490GX)	! B !	compool 	: ! 	-	downlist ! downlist !	! ! ! !	I Snapped data validity flag for the rendezvous radar range frate measurement (RR SOP HAL name RR_RNGR_DG, M/S ID 1 # V95X4294X).
RDOT_EDIT_OVERRIDE	! ! B !	local	! ! ! !		<u>:</u> –	! ! !	! ! Flag indicating (ON) that the crew wishes to force ! rendezvous radar range rate measurement.
RDOT_STAT	! B	l local	_	-	! !	: ! !	Plag indicating (ON) that rendezvous radar range rate data is to be processed for statistical display only.
<u>B</u> _EP	DF(3)	local			. –	ire	! Earth fixed position vector used in ACCEL_ONOFBIT.
REP_ORB_AREA (V9609 160C)	! SF	composi:	י פפ ו י	2690.	! -	irt²	! Orbiter reference cross sectional area used in propagation ! drag calculations.
REF_0880_CD (V96009161C)	i SF	compool	t to	2.0	!	: ! !	! Orbiter reference drag coefficient.
REND_NAV_INIT_PRED	! ! B !	: composit !	i IV :	0 FF	! ! !	! ! !	! Plag indicating prediction task in progress as scheduled ! by REND_NAV_INIT.

A Production

	i ! Preci- ! sion & ! ! type !		! ! Initial- ! ization ! category !	! ! Initial ! ! walue	i ! ! Uplink/ ! downlist	! ! ! ! Units	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! !REJ_MAX ! (496u91620) !	! ! I !	f f local f	! DD	! 3 !	! !	! ! !	I Maximus number of sequential marks; rejected by the residual identities, before DISP_EDIT for the corresponding is seasurment is set to
REND MAY PLAG (V93x6220x)	. B	! compool	IV !	OFF	downlist	! ! !	Flag indicating whether rendezvous navigation (OS) or on-
REMO_HAY_FLAG_LAST	В	local	IA	OFP		!	Last value of REND NAV_PLAG.
RESID_RATIO_OLD	: 3P	! compool	-		!	1	! Value of residual ratio from the previous cycle for the ! measurement being processed.
i Presid_test I	! ! SF : !	! ! local ! !] 	_	- ! !	t !vary !	1 Scaled value of the estimated measurement variance for 1 comparision with the measurement deviation squared in the 1 residual edit test.
RESID_TEST_RATIO	! ! S# !	! ! compool !	! !		-	[! !	Retio of the magnitude of the measurement residual and the soale value of the estimated measurement standard deviation to be used in the residual edit test.
! <u>R_PILT</u> !(V90H0584C6C)	DP(3)	r compool			_	i !ft !	Orbiter position vector (M50).
: IR PILT INIT (DF(3)	composi	OPS		 !	ire !	1 Orbiter position vector saved across semory recoeffiguration : I and used for navigation initialization.
IR FILT TLM (V90H4277C-79C)	DF(3)	compool		-	downlist	ire !	! Orbiter position vector for downlist (M50).
1 1 ³ - 210 1	DF(3)	l local	! — !		! !	irt !	! Position vector at the end of a time interval in N50. Used t in F & G series and in SUPER_G.
: IR_PIN_DIV !	t DF	! local !	! : ! :	-	: ! – !	!ft ⁻¹	! Reciprocal of the magnitude of R _FIN.

! Variable ! name ! (M/S ID) !	Preci- sion & type	Compool or local	Initial- ization category	l I Initial value	Uplink/ downlist	! ! ! ! Units	! ! ! Description
R_PIN_TEMP_INV	DF I	local				! !ft ⁻¹	Dummy variable used in the call to F_AND_G.
IR _GHD ! (V96H3500C=02C)	DF(3)	: compool 		1	: ! uplink !	ift i	Uplink Orbiter position vector in M50.
PRIO	SF	loca1	-	-		 slugs/ft ³	! Atmospheric density used in ACCEL_OMORBIT drag model.
RHO_PLANE	SF(3)	local	-			ift	In-plane component of the line of sight.
ig Ir	DF(3)	local			-	ift !	Position vector at the beginning of a time interval in M50. Used in F & G series and in SUPER_G.
R_IN_INV	DF :	local		-	_	n-1	Reciprocal of the magnitude of R IN.
IR_INV	DF 1	local				11/st	Inverse of M50 position used in ACCEL_OMORBIT.
R _LAST (V9084782C -4C)	DF(3)	composi			-	ift !	Position vector of the Orbiter at the end of the last filter cycle (M50).
i Rai G	SF	local	_		-	in	Computed range measurement.
RNG DATA GOOD (490x4899x)	B	composi	-		downlist	! ! !	! Snapped data validity flag for range measurement (RR SOP HAL! name RR_RNG_DG, M/S ID # V95X4293K).
RNG_DOT	SF !	local		!	-	ft/sec	Computed range rate measurement.
IRNG_MIN I (49609163C)	SF 1	local	. DD 1	1.0	_	!ft	Minimum separation between the Orbiter and the target.
1 RO_N	DP	local		-	-	lft/sec ²	1 Distance term used in ACCEL_OMORBIT gravitational acceler- 1 ation model.
IR_OMB	DF(3)	local			-	irt !	Position vector at the beginning of an interpolation interval (M50).

1-36

Variable name	! ! Preci- ! sion &	l or	! Initial- ! ization		! ! ! Uplink/	!	! ! !
(M/S ID)	type	! local	! category	value	! downlist	! Units !	! Description !
R_OMB_INV	! ! DP	! ! compool :	: ! !		! -	! !n-1	Reciprocal of the magnitude of R _OME.
RO_ZERO	! DP	local		-	! !	! !	! Distance term in ACCEL_ONORBIT gravitational acceleration ! model.
R _PRED_FINAL (V95H0811C -3C)	! DF(3)	compool	. –		downlist	ire !	Position vector as output from precise state predictor (M50).
R PRED INIT (V94H4002C -4C)	DF(3)	! compool	! !	-	downlist	irt !	Position vector input for prediction (M50).
RR_AMGLE_DATA_GOOD (V90X49G1X)	! B	composi	! !		! downlist	: !=== !	! Snapped data validity flag for the rendezvous radar angles ! measurement (RR SOP HAL name RR_ANG_DG, M/S ID #995%4295%).
RP_ANGLE_MARK_NUM	! I	compool	i IV	0	downlist	! !	! Rendezvous radar angle (shaft plus trunnion) mark counter.
RR_ANGLES_BIAS_INIT (V96U9164C-5C)	! SF(2)	! local	1 HD		! !	! !rad !	! Initial value for the rendezvous radar angles bias slot of ! the state vector.
RR_AMGLES_EDIT_	! B	! local	t !		! !	! !	! Flag indicating (OH) that the erew wishes to force ! rendezvous radar angles data.
RR_ANGLES_EMABLE (V93X6230X)	! B	! nompool	! !			: ! !	! Rendezvous radar angles enable flag.
RR_AMGLES_STAT	! B	local	!		! !	! ! !	Flag indicating (ON) that rendezvous radar angles data is to be processed for statistical display only.
RRDOT_BIAS_INIT (V96U9166C-7C)	! SF(2)	local	: ! HD !			ift, !ft/sec	! Initial value for the rendezvous radar range and range rate ! bias slots of the state vector.
RRDOT_MARK_NUM (V90J4825C)	i I	! compool	i Iy :	0	downlist	! !	! Range and range rate data mark counter. !

- Apply Design

!						!	
! Wariable ! ! name ! ! (M/S ID) !	Preci- siun & type		Initial- ization category	Initial Value	Uplink/ downlist	! ! ! Units ! !	Description
!B_THO_INV	DP !	local		-		rt-1	Reciprocal of the magnitude of R _TMO.
1 <u>8</u>	DP(9)	local	С	-	-	! !	Tesseral harmonics coefficients used in ACCEL_OMORBIT gravitational acceleration.
!S	DF(6,6)	local	IA	0.	_	!vary	State noise matrix for the covariance propagation.
isa !	SP	local	<u> </u>			! !	Square of the sine of the angle of attack used in ACCSL_
!SB	SF	local				! !	Absolute value of the sine of side slip angle used in ACCSL_OMORBIT drag model.
IS_BIAS !	DP(4)	local	-		! !	!(rag ² , !rag ² , !ft ² ,ft ² / !sec ²)	State noise terms for the sensor bims slots.
SDEC	DP :	compool			-	! ! !! ! !	Sine of solar declination used in ACCEL_OWORDIT atmospheric density model.
ISELF TEST FLAG ! (V90X4888X) ! !	В	compool	-		downlist	! !	Snapped flag indicating that rendezvous radar is in the self-test mode. (RR SQP HAL name RR_SELF_TEST, M/S ID # 195X4309X.)
SENSOR_BIAS	SP(4)	compool	IA	0,0,0,0		! !rad,rad, ! !ft,ft/sec!	Sensor biases, part of state vector (M50).
ISBNSOR BIAS TLM (V90U4295C-98C)	SP(4)	composi		-		! !rad,rad, ! !ft,ft/sec!	Sensor biases (part of state vector) for TLM (M50).
I SENSOR_DELLQ	SF(4)	compool	-			!vary	Measurement residuals.
SSPASOR_DELTA	DF	local	DD	1∕ √3	-	! !	An increment used to adjust the relative unit vector for measurement processing.

! Variable ! name ! (M/S ID)	Preci- sion & type	Composi or local	Initial- isation category	! ! ! Initial ! walue !	! ! ! Uplink/ ! downlist	! ! ! ! Units !	! ! ! Description
! !SEMSOR EDIT ! (49508% 1C, ! 490J8880C-82C) ! !	C(#)	compool			downlist	1 1 ! ! !	Five-valued parameter defining use of measurement data by the navigation filter. ON - rejected by the residual edit test OFF - no processing attempted PROCESSED - accepted by residual edit test and used to update the state vector STAT - used to generate display parameters FORCED - used to update state vector as a result of manual edit override
!SENSOR_EPS	DF	local	DD .	! - !	-	r.	Minimum allowable distance between target and shuttle for seasurement processing.
ISEQ ACCEPT [I(4)	compool	IA	! O	downlist 	! !	Number of sequential sensor marks accepted by the
	I(4)	compool	IA	! 0 !	downlist	! ! !	Number of sequential sensor marks rejected by the
!SHAFT	SF	locel	-		-	! !rad	Estimate of the rendezvous radar shaft measurement.
SHUTTLE_FILTER_FLAG ! (V90X4952X)	В	compool (MD	! !	downlist	!	Plag indicating which vehicle state is to be used by the filter; (ON) Shuttle state (OFP) target state.
IS IFST	SP !	100ml		!	<u> </u>	in	Variable used in atmospheric density model in ACCEL_OWOSBIT.
SIG RR RNG ! (49509168C)	SP 1	local	DD !	0.		feet	One sigma statistic of rendezvous radar range measurement.
ISIG UPDATE ! (V96H1284C-9C)	SF(6)	compool	MD	! !		ift, ift/sec	Standard deviations (UVW) for the filter wehicle position/ velocity covariance initialization.
ISIN LAG ! (V96U9 169C)	SP .	local	DD	1.601815023 1	_	! !	Sine of atmospheric density bulge lag angle used in ACCRL_OMCRET.

A-40

VARIABLES LIST

Variable name (M/S ID)	! Preci- ! sion & ! type !		Initial- ization category	Initial	! ! Uplink/ ! downlist !	t 1 ! Units !	Description
SIN_SOL_RA	! ! DF	! ! compool	-	_	! –	! ! !	Sine of solar right ascension used in ACCEL_OMORBIT density model.
SLOPE_SIG_RR_RNG (V96U9170C)	! SP	l local	DD	3.B-3	: ! — !	! ! ! !	Rate of change of rendezvous radar range statistics with respect to range.
SHA	1 DP	compool	,	-	<u> </u>	it	Semimajor axis of conic.
SQR EMU (49001541C)	DF	compool		-	! !	ift ^{3/2} /sec	Square root of EARTH MU used in onorbit prediction/ propagation equations of motion (Pines method).
SSND	SF	local			! !	in	Variable used in ACCEL_ONORBIT atmospheric density calculation.
ST_ANGLES_BLAS_INIT (V96U9171C-2C)	SF(2)	local	MD	-	! !	rad !	! Initial value for the atar tracker angles bias slots of the state vector.
ST_AXCLES_EDIT_ OVERRIDE	! B	! local	_		! — !	! !	! Flag used (ON) to override the residual edit test for star! tracker angles data.
ST_ANGLES STAT	! B	i local		-	<u> </u>	! ! !	Flag indicating (ON) that star tracker angles data are to be processed for statistical display only.
STAT_FLAG	i c	! compool	-	- !	: : !	!	Copy of the stat flag associated with the measurement type currently being processed.
ST_DATA_GOOD (V90X4835X)	1 B	compool	_	! –	! downlist	! !	Snapped data validity flag for Star tracker data (STAR TRCK SOP HAL name DATA_GOOD, M/S ID # V95X4771%).
ST_FMABLE (V93X6223X)	! ! B !	! compool	_	! —	! !	! ! !	! ! Star tracker angle EMABLE flag. !
ST_MARK_NUM (V90J4826C)	: ! I !	! compool	I IV	! ! 0 !	! ! downlist !	! ! !	! ! Star tracker measurement mark counter. !

_ · · - - · · ·	Preci- sion & type		! Initial- ! ization ! category	! ! ! Initial ! walue !	Uplink/ downlist	! ! ! ! Units !	! ! ! Description										
S UNMOD_ACC	! ! DF(3,3) !	local			! !	!ft ² /sec ⁴	! Unmodeled acceleration noise terms.										
SV_TIME_TAG_DIFF	: : SP :	local	HC	0.5	: !	laec	! Time tolerance used to test the time tag of the predicted ! state against the reset time tag of navigation.										
ISV_UPDATE	! B	local	-		-	! ! !	A flag, local to the auto-inflight update subfunction, which indicates (ON) that a state vector update has occurred.										
150 151 152 153	DF	iocal		: ! — !		! !vary !vary !vary	Auxiliary variables used in F & G series and Pines computations, St & S2 also used as auxiliary variables in mean conic partials transition matrix computations.										
152B	SF	local	-	-	_	! !	! Absolute value of sine of twice the side slip angle used in ! ACCEL_OMORBIT drag model.										
17	DF :	local			-	sec	Time variable (GMT) used in ACCEL_OMORBIT.										
: !TARGET_AREA ! (V95U9 173C)	! SP :	compool	HD	. –	_	in ²	Target vehicle reference cross-sectional area.										
1 TARGET CD 1 (49609 174C)	SF 1	compool	140		 !	!	! Target vehicle reference drag coefficient.										
TARCET_MASS (SF	compool	HD	: ! !	_	isluga !	! Target vehicle reference mass.										
UAT	SC(2)	local				laec	Local variable for sensor time constants.										
! TAU_COAS_ANGLES ! (V96U9176C-7C)	! ! SF(2) !	local	DD	! ! 1300., ! 1300.		l lsec l	! Time constant for the COAS angles sensor.										
TAU_RR_ANGLES (V9609 1780-90)	! \$F(2)	local	. DD	! !1.86,1.86 !		! !sec	! Correlation time constant for the rendezvous radar angle ! measurement.										
! !	: {	: !		! !	! !	<u> </u>	!										

Preci- sion & ! type	Compool or local	Initial- ization category	Initial walue	! ! Uplink/ ! downlist !	! ! ! Units !	! ! Description							
DP !	local				! ! sec	! Current integration time within the predictor or propagator.							
DP I	compool		_	downlist	sec	! Snapped time tag of the current IMU/ATT data (IMU SOP HAL ! name T_IMUS_GA, M/S ID # V95W0002C).							
SP(3)	iocal	i BC	0,0,0	_	ift/sec	! Dammy vector for target accumulated velocity.							
DF(13,13)	local	<u>.</u>	-	-	! !vary !	Temporary matrix used during covariance matrix propagation to give the intermediate calculation of E_{φ}^{-1} during the type $+$ S computation.							
DP(3)	local	_		-	sec/feet	! Temporary ventor used by the mean comic partial.							
SF	local	-			! :	! Value against which the residual ratio is tested. If the ! residual ratio is greater than TEST_VALUE, the measurement ! is edited.							
DIF 1	composi	QPS		-	tsec	! Time tag of navigation initialization data carried across ! memory transition.							
DF I	local	·		_	: !sec !	! Final time at end of prediction or propagation, used in ! SUPER_G.							
DF !	compool	MD				! Vant/RCS thrust force off time used in ACCEL_OMORBIT.							
iMP !	composi	MD	-			! Vent/RCS thrust force on time used in ACCEL_OMORBIT.							
DF 1	compool	-		uplink	; !sec !	! ! Uplinked time tag of Orbiter state vector. !							
DP :	local				red I red	! Difference of eccentric anomaly.							
	sion & type DP DP SP(3) DF(13,13) DP(3) SP DP DP	sion & t or local type 1 local	sion & for firstion type flocal category DF flocal for category DF flocal for category DF flocal for category SF(3) flocal for category DF(13,13) local for category DF(13,13) local for category DF(13,13) local for category DF flocal flocal for category DF flocal flocal for category DF flocal	Sign &	Sign & Or	SP							

! Variable ! name ! (M/S ID)	! Preci- ! sion & ! type		! Initial- ! ization ! category	Initial walue	! ! Uplink/ ! downlist	! ! ! ! Units !	! ! ! ! Description
! !THETA_COR !	! ! DF	i ! local !	! !		! ! —	t ! rad !	! Correction to THETA in the solution of Kepler's equation, ! used in F and G.
T_IN	! DF	local	-		!	l Isec	! Initial time input for state propagation, used in SUPER G.
T_LAST_FILT (V90W1252C)	1 DF	compool	_		! –	: !sec !	! Time tag of \underline{V} _LAST_FILT and of filter state at last ! navigation cycle.
IT_LAST_FILT_TLM I (Y90W4285C)	! DF	comport			downlist	i isec i	! Time tag of Orbiter and target state vector at last ! navigation cycle (for TLM)
T_ORB_STATE_UPDATE (V94W3727C)	l DF	compool	1 MD		! downlist	i łsec !	! Time tag of most recent Orbiter state vector update ! (for TLM).
!TCT_ACC ! (V90A4874C-76C)	1 DF(3)	compool	! !		downlist	ift/sec ²	! Orbiter M1950 total acceleration vector.
!	! ! DF(3) !	compool	: ! –		! ! !	! !ft/sec ² !	! Value of TOT_ACC at the end of the previous cycle.
! !T_PRED_FINAL ! (V94W3979C)	DF	compool	! !		downlist	lsec !	! Time tag for prediction (associated with R PRED_FINAL and ! Y PRED_FINAL).
: !T_PRED_INIT ! (V94W3970C)	DF	compool	_		! downlist	i Isec !	I Time tag for prediction (associated with R PRED_INIT and I V PRED_INIT).
t T_REND_RADAR ! (V90W4841C)	! DF	r ! compool !	! !		! downlist 	t I sec !	! Snapped time tag of the rendezvous radar measurement (RR ! SOP HAL name RR_TIM, M/S ID # V95W4292C).
! !T_RESET ! (V90W0225C)	! ! DF !	! compool	! — ! —		! !	! !sec !	! ! Time associated with reserved reset state. !
! !T_RESID	! ! DF	! ! local	!		!	l !sec	! Time tag of interpolated state vector.
! !TRG_TRK_MODE ! (V90U4836C) !	! ! B !	! compool!	! ! !		! ! downlist !	1	! Snapped flag indicating (ON) that the star tracker is in the ! target tracking mode (STAR TRCK SOP HAL name NAV_TARGET, ! M/S ID # V95X4778X).

7-45

! Variable ! name ! (M/S ID)	Preci- sion & type	! Compool ! or ! ! local	! Initial- ! ization ! ! category !	! ! ! Initial ! ! walue	! ! ! Uplink/ ! downlist !	f f f ! Units !	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !								
KI NI	DF(3)	! ! local		-	!	 ft/sec 	! Orbiter or target velocity vector at T_IN used in P & G !! or SUPER_G.								
Y LAST (V90L4785C -7C)	DF(3)	compool	-	-	! ! !	! !ft/sec !	! Velocity vector of the Shuttle at the end of the last filter! subcycle.								
!V LAST_FILT ! (V90L0621C -3C)	DF(3)	compool			! ! !	! !ft/sec !	! ! Total accumulated IMU sensed velocity. !								
! VM !	В	local	-			! ! !	! Flag used in ACCEL ONORBIT to indicate if Vent/RC3 model is ! to be used.								
!VMP ! (V94x3971x)	В	compool		-	! !	! !	! Flag indicating use or nonuse of the went model in ! prediction.								
I OME	DP(3)	local			-	! !ft/sec !	! Velocity vector at the beginning of a time interval used to ! ! generate a transition matrix.								
1V PRED FINAL 1 (V95L0814C -6C)	DF(3)	composi			downlist	: ft/sec 	! Velocity vector as output from precision state predictor. !								
Y PRED INIT (V94L4006C -8C)	DP(3)	compool			downlist	! !ft/sec !	! Initial velocity vector for prediction.								
<u>!V</u> _R	SP(3)	local			-	: !ft/sec : !	! Velocity of vehicle relative to atmosphere used in ACCEL_ ! ONORBIT drag model.								
Y REL BODY	SP(3)	local	-		-	ift/sec	Orbiter velocity relative to the atmosphere.								
Y RECET (V90L0239C -41C)	DP(3)	compoci	-			 ft/sec 	Orbiter vehicle velocity vector after all navigation updates! I reserved for reset of user parameter state propagator I velocity vector.								
Y RESID	DP(3)	local				! !ft/sec !	M1950 velocity vector interpolated to the measurement time.								

A-20

The second secon

! name	! ! Preci- ! sion & ! type !	or	! ! Initial- ! ization ! category	! Initial	! ! ! Uplink/ ! downlist	t ! ! ! Units	t
i kho	! ! SF(3)	! ! compool		-	! -	! !ft/sec	Relative M1950 velocity vector.
V _TV (V90L0310C -12C)	: ! DP(3) :	compool	1 M20 !	! !	; ! !	! !ft/sec !	Target vehicle M1950 velocity vector.
IV _TV_GND IV _(V96L1280C -2C)	! ! DP(3) !	! compool	-	-	! !uplink !	! !ft/sec !	! ! Uplinked target velocity vector. !
! !V_TV_LAST ! (V90L4792C -4:C)	! ! DF(3) !	! ! compool !	! ! !	! ! – !	! ! – .	! !ft/sec ! !	! Last value of the target vehicle velocity vector. !
! !V _TV_RESET ! (V90L1380C -2C) !	! ! DF(3) !	t t compool t	_	! !	! ! !	! !ft/sec !	! ! Target vehicle velocity vector after all mavigation updates, ! reserved for reset of user parameter state propagator ! velocity vector.
Y _TY_RESID	DF(3)	local	-	! !	!	! !ft/sec	! ! Velocity vector of the target vehicle at measurement time.
V TV_TLM (V90L4291C -93C)	! DP(3)	composi	_	- ! -	downlist	!ft/sec	! Target velocity vector for TLM (M50).
Y _TWO	! DF(3)	l local	!	! !	-	ft/sec	! Velocity vector at the end of a time interval used to ! generate a transition matrix.
! !WT_DISP ! (V93G6940C)	i ! SF !	! ! compool !	t OPS	! ! !	! !	! !lbs !	! ! Displayed weight transferred from OPS 1 to OPS 2, or ! OPS 3 to OPS 2.
: ! <u>X</u> ! !	! DF(6) ! ! !	! local ! ! !	: ! ! !	! — ! !	!	! !ft,ft,ft, !ft/sec, !ft/sec, !ft/sec	Temporary array for the Orbiter or target state vector, sused in Pines method.
! ! <u>X</u> N ! !	! ! DP(7) ! !	f local f f f	! ! — ! !	! ! ! !	!		! Array of integrated initial conditions for onorbit ! prediction and propagation. ! !

! Variable ! name ! (M/S ID)	! Preci- ! sion & ! type	t or i	! Initial- ! ization ! ! category	Initial	! ! Uplink/ ! downlist	! ! Units	! ! ! Description !										
! !ZETA_IMAG !	! ! DF(5) !	local	I	!	-		! ! Coefficients used in ACCEL_OMORBIT gravitational ! acceleration which are longitude dependent.										
! !Zeta_real !	! ! DF(5) !	! local !	-		! ! !	! !	! ! Coefficients used in ACCEL_OHORBIT gravitational ! acceleration which are longitude dependent. !										
! !ZONAL !	! ! DF(4) !	local	c c		! !	! !	! ! Zonal harmonics coefficients used in ACCEL_ONORBIT ! gravitational acceleration.										
† † †	† !	! ! !			; ; !	! !	! !										
! ! !	! ! !	f : ! ! !		! !	! ! !	! ! !	! ! !										
! !	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	† †			! ! !	! ! !	! !										
! ! !	! !	! !. !		! ! !	! ! !	! ! !	1 ! !										
! !	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	; ;			! !	! !	† †										
! ! !	!!!	! ! !			! ! !	f ! !	! ! !										
! !	† † †	: ! !	! !		; ! !	: ! !	: 1 1										

A-52

APPENDIX B

NAVIGATION SEQUENCER PRINCIPAL FUNCTION

AND NAVIGATION PROCESSING PRINCIPAL FUNCTION

FLOWCHARTS

CONTENTS

Figure		Page
B-1	ONORBIT_REND_NAV_SEQUENCER (OPS 2)	B-5
B-2	ONORBIT_REND_NAV_SEQUENCER (OPS 8)	B-6
B-3	REND NAV EXIT	B-7
B-4	NAV_EXIT	B-8
B-5	OPS_2_OR_8_INITIALIZE	B-9
B-6	SHUTTLE_RESET	B-11
B-7	REND_NAV_INIT	B-12
B-8	REND_COV_INIT	B-14
B-9	COV_LAST_RESET	B-15
B-10	DO_NAV_LAST_SETUP CODE	B-16
B-11	COVINIT_UVW	B-17
B-12	DISPLAY_COUNT_INIT	B-18
B-13	TARGET_RESET	B-19
B-14	NAV_ONORBIT_RENDEZVOUS	B-20
B-14A	SNAP_INPUTS CODE	B-24
B-15	COV_PROP_SETUP CODE	B-26
B-16	ONORBIT_REND_AUTO_INFLIGHT_UPDATE	B-27
B-17	STATE_VECTOR_PREDICTION_TASK	B-29
B-18	REL_NAV_DISPLAY_UPDATES	B-30
E-19	ONORBIT_REND_R_V_STATE_PROP	B-31
B-20	SUPER_G	B-33
B-21	ACCEL_ONORBIT FUNCTION	B-34
B-22	ACCEL_EARTH_GRAV CODE	B-35
B-23	ACCEL_ONORBIT_VENT_AND_THRUST CODE	B-37
B-24	SOLAR_EPHEM	B-38
B-25	ONORBIT_DENSITY CODE	B-39
B-26	ACCEL_ONORBIT_DRAG CODE	B-40
B-27	H_ELLIPSOID FUNCTION	B-42
B-28	Y_REL FUNCTION	B-43
B-29	REND_BIAS_AND_COV_PROP	B-44
B-30	UNMOD_ACC_REINIT CODE	B-46
B-31	PHI_E_PHI_TRANSPOSE CODE	B-47
B-32	PWRD_FLT_NOISE CODE	B-49
B-33	U_A_BIAS_AND_COVINIT	B-50
B-34	MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6 x 6	B-51
B-35	F_AND_G	B-53
B-36	REND_SENSOR_SELECT	B-54
B-37	REND_NAV_SENSOR_INIT	B-57
B-38	SETUP	B-58
E-39	RRDOT_NAV	B-59
B-40	REND_NAV_INTERP	B-61
B-41	ONORBIT_SV_INTERP	B-62
B-42	REND_NAV_FILTER	B-63
B-43	REND_STATE_AND_COV_UPDATE CODE	B-65
B-44	RR_ANGLE_NAV	B-66
B-45	REND_ANGLE_PARTIALS	B-68
B-46	STAR_TRACKER_NAV	B-69

Figure																										79FM10
	ANGLE NAV																									Page
B-48	ANGLE_NAV COAS_NAV MEAS_PROC	• • •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	B-70
3-49	MEAS_PROC	ESSING	S	TA:	ri:	ST	TC:	ς.	RR.	עמ	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	B-72
			_				- •		A 1.44	110	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	B-73

Figure B-1.- ONORBIT_REND_NAV_SEQUENCER (CFS-2).

5-5

OF POOR QUALITY

Figure 6-2. - ONORBIT_REND_MAY_SEQUENCER (CFS-8).

Figure B-3.- REND_NAV_EXIT.

Exit OPS-2 or OPS-8?

 $^\Delta These$ parameters, in addition to landing site and tacan table data, must be saved across the memory transitions.

Figure B-4.- NAV_EXIT

3-B

Figure B-5.- OPS_2_OR_8_INITIALIZE (Sheet 1 of 2).

Figure B-5.- OPS_2_OR_8_INITIALIZE (Sheet 2 of 2).

R _RESET = R _FILT

Y _RESET = Y _FILT

T_RESET = T_LAST_FILT

Y_IMU_RESET = Y_LAST_FILT

FILT_UPDATE = ON

Figure B-6.- SHUTTLE_RESET.

Figure B-7.- REND_NAV_INIT (Sheet 1 of 2).

7

Figure B-7.- REND_HAV_INIT (Sheet 2 of 2).

Figure B-8.- REND_COV_INIT.

R_LAST = R_FILT

Y_LAST = Y_FILT

R_TV_LAST = R_TV

Y_TV_LAST = Y_TV

DV_COV = Q.

T_COV_LAST = T_LAST_FILT

Figure B-9.- COV_LAST_RESET.

DO_RR_A%GLES_NAV_LAST = OFF

DO_R'.DOT_NAV_LAST = OFF

DO_ST_ANGLES_NAV_LAST = OFF

DO_COAS_ANGLES_NAV_LAST = OFF

ORIGINAL PAGE IS OF POOR QUALITY

Figure B-10.- DO_NAV_LAST_SETUP CODE.

```
IN LIST: R, Y
                                      EI. I = SIG_UPDATEI SIG_UPDATEI
 E1.2 = COV_COR_UPDATE1 SIG_UPDATE1 SIG_UPDATE2
 E1.4 = COV_COR_UPDATE2 SIG_UPDATE1 SIG_UPDATE4
 E1.5 = COV_COR_UPDATE3 SIG_UPDATE1 SIG_UPDATE5
E2.4 = COV_COR_UPDATE4 SIG_UPDATE2 SIG_UPDATE4
E2.5 = COV_COR_UPDATE5 SIG_UPDATE2 SIG_UPDATE5
E3,6 = COV_COR_UPDATE6 SIG_UPDATE3 SIG_UPDATE6
E4.5 = COV_COR_UPDATE7 SIG_UPDATE4 SIG_UPDATE5
E_{2,1} = E_{1,2}
 B5.4 = B4.5
  CALL: U_A_BIAS_AND_COVINIT
  IN LIST: R, Y
 E_{1 \text{ to } 3}, 1 to 3 = M_UVW_M50 E_{1 \text{ to } 3}, 1 to 3 M_UVW_M50<sup>T</sup>
 E4 to 6, 4 to 6 = M_UVW_M50 E4 to 6, 4 to 6 M_UVW_M50<sup>T</sup>
 E1 to 3, 4 to 6 = M_UVW_M50 E1 to 3, 4 to 6 M_UVW_M50T
 E_4 to 6, 1 to 3 = (E_1 to 3, 4 to 6)<sup>T</sup>
```

Figure B-11.- COVINIT_UVW.

M_ACCEPT = Q

H_RBJECT = Q

SEQ_ACCEPT = Q

SEQ_REJECT = Q

Figure R-12.- DISPLAY_COUNT_INIT.

R_IV_RESET = R_IV Y_IV_RESET = Y_IV

Figure 8-13.- TARGET_RESET.

Pigure B-14.- MAV_CHORBIT_MENDEZVOUS (Sheet 1 of 4).

Figure B-14.- NAV_ONORBIT_RENDEZVOUS (Sheet 2 of 4).

P.2

The state of the s

And solve

Pigure B-14.- MAY_ONORBIT_RENDEZVOUS (Sheet 3 of 4)

Figure B-14.- HAV_ONORBIT_RENDEZVONS (Sbeet & of 4).

SNAP_INPUTS CODE

STORE STATE VECTORS FOR ORBITER AND TARGET

T_LAST_FILT_TLM = T_LAST_FILT R_FILT_TLM = R_FILT V_FILT_TLM = V_FILT R_TV_TLM = R_TV

V TV TLM = V TV

SENSOR BIAS TLM = SENSOR BIAS

UNNOD ACC BIAS TLM = UNNOD ACC BIAS

STORE EXTERNAL FLAGS AND ORBITER MASS INPUT TO NAV

NAV_ANGLES_AIF = ANGLES_AIF

NAV_RANGE_AIF = RANGE_AIF

NAV_RDOT_AIF = RDOT_AIF

NAV CURR ORB MASS = CURR ORB MASS

NAV_DO_COVAR_REINIT = DO_COVAR_REINIT

NAV_DO_ORB_TO_TGT = DO_ORB_TO_TGT

NAV_DO_TGT_TO_ORB = DO_TGT_TO_ORB

NAV_DO_OV_UPLINK = DO_OV_UPLINK

NAV_DO_TV_UPLINK = DO_TV_UPLINK

NAV_DO_FLTR_SLOW_RATE = DO_FLTR_SLOW_RATE

NAV_MEAS_ENABLE = MEAS_ENABLE

 $NAV_MM_202 = MM_202$

NAV_PWRD_FLT_NAV = PWRD_FLT_NAV

NAV_RR_ANGLES_ENABLE = RR_ANGLES_ENABLE

NAV_ST_ENABLE = ST_ENABLE

SNAP MEASUREMENT DATA INPUT TO NAV

SNAP (V CURRENT_FILT, T_CURRENT_FILT, Q_M50BODY_IMU)

(CONT'D)

Figure B-14A.-SNAP_INPUTS CODE (Sheet 1 of 2).

(CONT'D)

SNAP REND_RADAR (Q_RR_SHFT, Q_RR_TRUN, Q_RR_RNG, Q_RR_RNG_DOT, RNG_DATA_GOOD, RDOT_DATA_GOOD, RR_ANGLE_DATA_GOOD; Q_M50BODY__RR, T_REND_RADAR, SELF_TEST_FLAG)

SNAP STAR_TRACKER (Q_ST_HORIZ, Q_ST_VERT, ST_DATA_GOCD, M_M50_TO_ST, T_STAR_TRACKER, TRG_TRK_MODE)

Par ロー・ようと グライ ブドル(漢) **!

SNAP COAS (Q_COAS_HORIZ, Q_COAS_VERT, COAS_DATA_GOOD, M_M50_TO_BODY_COAS, COAS_ID, T_COAS)

Figure B-14A. - SNAP_INPUTS CODE (Sheet 2 of 2).

Figure B-15.- COV_PROP_SETUP CODE.

Figure B-16.- ONORBIT_REND_AUTO_IMPLIGHT_UPDATE (Sheet 1 of 2).

The second second

Pigure B-16.- CHORBIT_BEND_AUTO_INFLIGHT_UPDATE (Sheet 2 of 2).

C

(

Pigure B-17.- STATE_VECTOR_PREDICT_TASE

- 1. THE DO_COVAR_REINIT FLAG MUST BE ACTIVATED ONLY DURING THE RENDEZVOUS NAVIGATION PHASE.
- 2. STATE VECTOR TRANSFER MUST BE ACTIVATED VIA CREW INPUT TO THE REL_MAY DISPLAY AND ONLY DURING THE RENDEZVOUS NAVIGATION PHASE.

Figure B-18.- REL_NAV_DISPLAY_UPDATES.

B-31

*IDV_FILT is a HC vector (3) 0, 0, 0.

Figure B-19.- CHORBIT_REND_R_V_STATE_PROP (Sheet 2 of 2).

IN LIST: GMD, GMO, DM, VM, ATM, R_IN, Y_IN, T_IN, T_FIN, DT_FILT, DV_IN OUT LIST: R_FIN, Y_FIN, Q_OUT

! G _INT = ACCEL_ONORBIT (GMD, GMO, DM, VM, ATM, R _IM, Y _IM, T_IM)

 $|R_FIN = R_IN + DT_FILT[Y_IN + 0.5(DV_IN + DT_FILTG_INT)]$

G_OUT = ACCEL_ONORBIT (GND, GNO, DM, VM, ATM, R_FIM, Y_IM, T_FIM)

Y _FIN & Y _IN + DY_IN + 0.5 DT_FILT (G _INT + G _OUT)

 $R_{\text{pin}} = R_{\text{pin}} + (\underline{G}_{\text{out}} - \underline{G}_{\text{int}}) \text{ dt_pilt}^2)/6.$

Figure B-20.- SUPER_G.

```
IN LIST: CMD, CMO, DM, VM, ATM, R, Y, T
 Q = Q. D = Q.
 YEST = 0.
| FIFTY = BARTH FIXED TO M50_COORD(T)
 R_RF = FIFTY R
R_INV = 1./|R|
LUR = R_IDIV A _EF
 Q _CENTRAL = - EARTH_MU R_INV3 R
  GMD ≥ 2
                 EXECUTE: ACCEL_RARTH_GRAV CODE
                EXECUTE: ACCEL OMORBIT
                 VENT_AND_THRUST CODE
                      | CALL: SOLAR_EPHEM
                        IN LIST: T
                        OUT LIST: SDEC, CDEC1, COS_SOL_RA, SIN_SOL_RA
                        EXECUTE: ONORBIT_DENSITY CODE!
                        EXECUTE: ACCEL_ONORBIT_DRAG CODE
 ACCEL_ONORBIT = G _CENTRAL + G + D + YENT
     CONTROLS THE DEGREE OF THE GRAVITY MODEL.
GMO CONTROLS THE ORDER OF THE GRAVITY MODEL.
DM
     CONTROLS THE USE OR MONUSE OF DRAG ACCELERATION MODEL.
VM
     CONTROLS THE USE OR MONUSE OF VENTING AND UNCOUPLED THRUSTING MODEL.
ATM CONTROLS THE INCORPORATION OF UNMODELED ACCELERATIONS (IN CONJUNCTION WITH
     THE SHUTTLE_FILTER_FLAG) AND WHEN COMPUTING DRAG, THE VARIOUS DRAG MODEL
     OPTIONS USED (i.e., CURRENT ATTITUDE, AREA, DRAG COEFFICIENT, ETC.).
A, Y ARE THE POSITION AND VELOCITY VECTORS OF THE VEHICLE IN M50 COORDINATES.
T IS THE TIME IN GMT SECONDS.
```

Figure B-21.- ACCEL_CHORBIT FUNCTION.

```
RO_ZERO = EARTH_RADIUS_GRAV R_INV
 RO_N = RO_ZERO EARTH_MU R_INV2
 A1.2 = 3. UR3
                  ZETA_REAL1 = 1
                  ZETA_IMAG1 = 0
 AUXILIARY = 0
 DO FOR
                    I = 1
 TO GMD
 DO FOR
                    A_{N+1,2} = (2. N + 1.) A_{N,2}
 N = 2 TO
                   A_{N,1} = A_{N,2}
A_{N,2} = UR_3 A_{N+1,2}
 G = G - AUXILIARY UR
 \underline{G} = FIFTY \underline{G}
                      DO FOR \
                      J = 2
                                      ^{A_{N}} -J + 1,1 = ^{A_{N}} -J + 1,2

^{A_{N}} -J + 1,2 = (UR<sub>3</sub> ^{A_{N}} -J + 2,2 -^{A_{N}} -J + 2,1)/J
                      TO N
                      F1 = 0
                     | F2 = 0
                     F3 = -A1,1 ZONALN
                     F4 = -A_{1,2} ZONALN
                        (CONT'D)
```

Figure B-22.- ACCEL_BARTH_GRAV CODE (Sheet 1 of 2).

Figure B-22.- ACCEL_EARTH_GRAV CODE (Sheet 2 of 2).

Figure B-23.- ACCEL_ONORBIT_VENT_AND_THRUST CODE.

IN LIST: T

CARLY TO

OUTLIST: SDEC, CDEC1, COS_SOL_RA, SIN_SOL_RA

LOS = LOS_ZERO + T LOS_R - LOC SIN (T OMBO_C + PHASE_C)

SDEC = LOSK3 SIN(LOS)

THE RESERVE OF THE PROPERTY OF

CDEC1 = SQRT(1. - SDEC2)

COS_SOL_RA = COS(LOS)/CDEC1

SIN_SOL_RA = LOSK1 SIN(LOS)/CDEC1 |

Figure B-24.- SOLAR_BPHEM.

```
ALT = H_ELLIPSOID (R)
CDEC1 = CDEC1 R_INV
SDEC = SDEC R_INV R3
CSFST = R<sub>1</sub> COS_SOL_RA COS_LAG
CSSND = R1 SIN_SOL_RA SIN_LAG
SIFST = R2 SIN_SOL_RA COS_LAG
SSND = R<sub>2</sub> COS_SOL_RA SIM_LAG

COS_PSI = SDEC + CDEC1 (CSFST - CSSND + SIFST + SSND)

GDI = [(1.0 + COS_PSI)/2.0]GDIE
ALT > ALT_L
AFH = ABM_{1,K} + ABM_{2,K} ALT + ABM_{3,K}/ALT
BFH = (BM_1 + BM_2 ALT + BM_3/ALT) GDI
CBM1 = ALT - C_DENSEA
CBM1 = [CBD1 (R_INV)^2 ABS (R_3) R_3] CBM1 EXP (CBD2 CBM1)
           RHO = RREF EXP (AFH + BFH + CBM1 CBM2)
```

Figure B-25.- ONORBIT_DENSITY CODE.

Figure B-26.- ACCEL_ONORDIT_DRAG CODE (Sheet 1 of 2).

0

CONNECTION OF THE CONTRACT OF

Figure B-26.- ACCEL_CMORBIT_DRAG CODE (Sheet 2 of 2).

$$H_{ELLIPSOID}(R) = |R| - \frac{(1 - ELLIPT) EARTH_RADIUS_EQUATOR}{\sqrt{1 + ((1 - ELLIPT)^2 - 1) (1 - (UNIT(R) \cdot EARTH_POLE)^2)}}$$

Figure B-27.- H_ELLIPSOID FUNCTION.

 $\underline{\underline{Y}}$ _REL($\underline{\underline{Y}}$, $\underline{\underline{R}}$) = $\underline{\underline{Y}}$ - EARTH_RATE (EARTH_POLE X $\underline{\underline{R}}$)

Figure B-28.- Y _REL FUNCTION.

Figure B-29.- HEND_BIAS_AND_COV_PROP (Sheet 1 of 2).

B-44

4

.

EXECUTE OF A PERSON OF THE PROPERTY OF THE PRO

(

C.

Pigure B-29.- REND_BIAS_AND_COF_PROP (Speet 2 of 2).

Figure B-30.- UNMOD_ACC_REINIT CODE.

(

Figure B-31.- PHI_E_PHI_TRANSPOSE CODE (Sheet 1 of 2).

Figure B-31.- PHI_R_PHI_TRAMSPOSE CODE (Sheet 2 of 2).

$$S_{4,4} = DV_{COV_3^2} + DV_{COV_2^2}$$

$$S_{5,5} = DV_{COV_1}^2 + C_{COV_3}^2$$

$$S_{6,6} = DV_{COV_1}^2 + DV_{COV_2}^2$$

$$s_{4,5} = -DV_{COV_1} DV_{COV_2}$$

$$S_{4,6} = -DV_COV_1 DV_COV_3$$

$$s_{5,6} = -DV_{COV_2} DV_{COV_3}$$

$$S_{5,4} = S_{4,5}$$

$$S_{\mu}$$
 TO 6, μ TO 6 = (VAR_IMU_ALIGN) S_{μ} TO 6, μ TO 6

$$S_{1 \text{ TO } 3,1 \text{ TO } 3} = 0.5(DT_COV)S_{1 \text{ TO } 3,4 \text{ TO } 6}$$

IN LIST: R , Y

Figure B-33.- U_A_BIAS_AND_COVINIT.

IN LIST: R _ONE, Y _ONE, G _ONE, R _TWO, Y _TWO, G _TWO, DELTIM OUT LIST: PHI_MC

```
R_ONE_INV = 1./R_ONE D_ONE = R_ONE . Y_ONE
F_TWQ_INV = 1./R_TWO; D_TWO = R_TWO . Y_TWO
SMA = 1./[R_ONE_INV + R_TWO_INV - (Y_ONE_Y_ONE + Y_TWO_Y_TWO)/(2. EARTH_MD)]
C1 = SQRT(SMA)/SQR EMU
      CALL: F_AND_G
      IN LIST:
                SMA, DELTIM, C1, R ONE, RONE_INV, R_TWO_INV, Y ONE,
                D_ONE, D_TWO
      OUT LIST: F, G, FDOT, GDOT, SO, S1, S2, S3, R _TWO, R_TWO_INV, THETA
                  FM1 = F-1
                  GDM1 = GDOT-1
                  S1 = C1 S1
                  C2 = C1^2
                  CONST = C2 [EARTH_MU C2 (3. S3 C1 - S1 S2) + G S2]
                  S2 = C2 S2
A1 = (FDOT S1 + FM1 R_ONE_INV) R_ONE_INV; A2 = FDOT S2; A3 = FM1 S1 R_ONE_INV;
A4 = FM1 S2; A5 = GDM1 S2; A6 = G S2; A7 = FDOT (S0 R_ONR_INV R_TNO_INV + R_ONE
_INV2 + R_TWO_INV2); A8 = (FDOT S1 + GDM1 R_TWO_INV, R_TWO_INV;
A9 = GDM1 S1 R_TWO_INV
    (COMT'D)
```

THE RESIDENCE OF THE PROPERTY

Figure B-34.- MEAN_COMIC_PARTIAL_TRANSITION_MATRIX_6 X 6 (Sheet 1 of 2).

(CONT'D)

IEMP = A4 Y _TWO-A2 R _TWO

PHI_MC1 TO 3, 1 TO 3 = F ID_MATRIX_3 X 3 + CONST Y _TWO G _ONE + (A3 Y _TWO-A1 R _TWO) R _ONE + _TEMP Y _ONE

TEMP = A2 Y _TWO - A8 R _TWO

PHI_MC₄ TO 6, 1 TO 3 = FDOT ID_MATRIX_3 X 3 + CONST G _TWO G _ONE + (A1 Y _TWO - A7 R _TWO) R _ONE + IRMP Y _ONE

PHI_MC& TO 6, & TO 6 = GDOT ID_MATRIX_3 X 3 - CONST G _TWO Y _ONE + ZEMP R _ONE + (A5 Y _TWO - A9 R _TWO) Y _ONE

Figure B-34.- MEAN_CONIC_PARTIAL_TRANSITION_MATRIX_6 x 6 (Sheet 2 of 2).

IN LIST: SMA, DELTAT, C1, R _IN, R_IN_INV, R_FIN_INV, Y _IN, D_IN, D.FIN OUT LIST: F, G, FDOT, GDOT, SO, S1, S2, S3, R FIN, R FIN INV, THETA (SOLVE KEPLER'S EQUATION FOR PINES METHOD OR SV_INTERP) ONEMRIN = (SMA - 1./R_IN_INV)/SMA D_MN_AN = DELTAT/(C1 SMA) IF R_FIN_INV = 0 ' THETA = D_MN_AN I = 1 (FIND THE DIFFERENCE IN SO = COS (THETA) ECCENTRIC ANOMALY S1 = SIN (THETA) FOR MEAN CONIC S2 = 1.-30TRANSITION DO UNTIL ERR = D_MM_AN-THETA-D_IN C1 S2/SMA MATRIX) I = NUM_KEP_ITER / + ONEMRIN ST THETA_COR = ERR/(1. + D_IN C1 S1/SMA - ONEMRIN SO) SO = COS (THETA) THETA = THETA + THETA_COR | S1 = SIN (THETA) I = I + 1 1 S2 = 1. - S0S3 = THETA - S1 THETA = [C1(D_FIN-D_IN) + DELTAT/C1]/SMA F = 1. - SMA S2 R_IN_INV G = DELTAT - C1 SMA S3 IF R_FIN_INV = 0 R_FIN = PR_IN + GY_IN R_FIN_INV = 1./|R_FIN| FDOT = -BARTH_MU C1 S1 R_IN_INV R_FIN_INV GDOT = 1. - SMA S2 R_FIN_INV

Figure B-35.- F_AND_G.

Figure B-36.- REND_SENSOR_SELECT (Sheet 1 of 3).

B-54

The state of the s

A CONTRACTOR OF SALES

(CONT'D)

Figure B-36.- REND_SENSOR_SELECT (Sheet 2 of 3).

Figure B-36.- REND_SENSOR_SELECT (Sheet 3 of 3).

Figure B-37.- REND_NAV_SENSOR_INIT.

IN LIST: I, TAU, BIAS_VAR, BIAS_COV_VAR, BIAS_INIT

DO FOR J = 1 TO 2TAU_SENS_K = TAU_J

SENSOR_BIAS_K = BIAS_INIT_J

VAR_SENS_K = BIAS_VAR_J

E9 + K, 1 TO 13 = 0.0

E1 TO 13, 9 + K = 0.0

E9 + K, 9 + K = BIAS_COV_VAR_J

M_ACCEPT_K = 0

M_REJECT_K = 0

SEQ_ACCEPT_K = 0

SEQ_REJECT_K = 0

MAV_SIG_K = 0.0

Figure B-38.- SETUP.

Figure B-39.- RRDOT_NAV (Sheet 1 of 2).

Figure B-39.- RRDOT_MAV (Sheet 2 of 2).

Figure B-40.- REND_MAY_INTERP.

Ţ

R_ONR, Y_ONE, R_TWO, Y_TWO, Y_IMU_DIF, IGD, IGO, IDM, IVM, IATM IN LIST:

OUT LIST: R _RESID, Y _RESID, A _RESID

Figure B-41.- ONORBIT_SV_INTERP.

Figure B-42.- REND_NAV_FILTER (Sheet 1 of 2).

Figure B-42.- REND_NAV_FILTER (Sheet 2 of 2).

Figure B-43.- REND_STATE_AND_COV_UPDATE CODE.

Figure B-44.- RR_ANGLE_MAV (Sheet 1 of 2).

Figure B-44.- RR_ANGLE_NAV (Sheet 2 of 2).

IN LIST: I_N

RHO_PLANE = R _RHO - (R _RHO · I _N) I _N

B1 TO 6 = (PHI_PATCH1 TO 3, 1 TO 6) [UNIT(RHO_PLANE X I _N)

/ RHO_PLANE |]

U _M = M_M50_TO_SENSOR I _RHO

Figure B-45.- REND_ANGLE_PARTIALS.

Figure B-46.- STAR_TRACKER_NAV.

IN LIST: VAR_HORIZ, Q_HORIZ, VAR_VERT, Q_VERT, ANGLES_MANUAL_EDIT_OVERRIDE, ANGLES_STAT_FLAG CALL: REND_NAV_INTERP CALL: REND_ANGLE_PARTIALS IN LIST: -M_M50_TO_SENSOR2, 1 TO 3 $B_{11} = 1.0 i$ VERT = ARCTAN2 (-U_M₁, U_M₃) + SENSOR_BIAS₂ DELQ = Q_VERT - VERT VAR = VAR_VERT | RESID_RATIO_OLD = MAX[NAV_SIG1, NAV_SIG2] MANUAL_EDIT_CVERRIDE = ANGLES_MANUAL_EDIT_OVERRIDE STAT_FLAG = ANGLES_STAT_FLAG CALL: REND_NAV_FILTER SENSOR_DELQ2 = DELQ NAV_SIG2 = RESID_TEST_RATIO SENSOR_EDIT₂ = EDIT_FLAG

(CONT'D)

Figure B-47.- ANGLE_NAV (Sheet 1 of 2).

Figure B-47.- ANGLE_NAV (Sheet 2 of 2).

Figure B-48.- COAS_NAV.

Figure B-49.- MEAS_PROCESSING_STATISTICS_REND.

APPENDIX C GENERAL REQUIREMENT FUNCTIONS FLOWCHARTS, VARIABLE NAMES, AND DESCRIPTIONS

CURTERTS	
Subject	Page
Variables List Definitions	C -5
Variables List	C-9
Coordinate System	C-15
Flowcharts Coordinate System Flowcharts EARTH_FIXED_TO_M50_COORD FUNCTION	C-32 C-33 C-34
EF_TO_SCANNER FUNCTION	C-35 C-36 C-37
UVW_TO_M50 FUNCTION	C-38 C-39 C-40
Onorbit Precision State Prediction Flowchart ONORBIT_PREDICT	C-41 C-42 C-43

79FM10

PRECEDING PAGE BLANK NOT FILMED

VARIABLE LIST

PRECEDING PAGE BLANK NOT FILMED

VARIABLES LIST DEFINITIONS

CODE USED FOR VARIABLE DATA TYPE

- F: floating point quantity; an n-dimensional floating point vector will be denoted F(n); similarly, an n x m floating point matrix will be denoted by F(n,m)
- I: integer quantity; I(n) will denote an n-dimensional integer vector
- B: bit, i.e., data having only values of 0 or 1
- C: character; C(n) will denote an n-dimensional character string

CODE USED FOR VARIABLE PRECISION

- D: double precision
- S: single precision; integer quantities are assumed single precision unless otherwise specified

VARIABLE LOCATION

COMPOOL: Variable value located in common storage, accessible by all functions

LOCAL: Variable is used by one function only, and usable to other functions

through call argument only

VARIABLE INITIALIZATION CATEGORY

blank: display is vacant

C: constant (unchanging)

DD: design dependent

HC: hard coded

MD: mission dependent (I-LOAD)

VARIABLE INITIAL VALUE

initial operation sequence computer inputs

VARIABLE UPLINK AND DOWNLIST STATUS

UPLINK: variable is an uplink item

DOWNLIST: variable is a downlist item

UNITS DEFINITIONS

deg: angular measurement, degrees

ft: feet

lb: pounds

n.d. (or -) non-dimensional

rad: radian

さいというできないというできないというないかられているというないかられているというないかられているというないかられているというないかられているというないかられているというないかられているというないので

sec: time measurement, seconds

slugs: mass measurement, slugs

vary: units have different values which depend on variable use

79PH10:APP:C

VARIABLES LIST

Variable name (M/S ID)	! Precision ! & type		Initial- ization category	! Initial !	Uplink/	! ! ! ! Units	! ! ! ! Description !
A	! SF(3,3)	local	-	-	-	! -	! Temporary matrix used in QUAT_TO_MAT
AA (V96U9057C-60C)	! DF(4)	local	D D .	1/2 1 - √1/2 1 + √1/2 1/6		-	Array of coefficients required by the RK_GILL integrator !
ALT	! DP	local	-	-	-	rt	! Current Orbiter altitude above reference ellipsoid
A_0	t DF	l local	-	-	-	-	! One minus eccentricity squared of Earth (ellipsoid), ! 1.0-FLATCON, initialized only
MTA	I I	local	-	-	-	-	Plag indicating if current or prestored configuration constants are to be used in drag computations within ACCEL_OMORBIT
ATTEP (V94J3999C)	ir	cumpool i	-	-	downlist	-	Flag indicating vehicle attitude mode to be used for prediction
AZ	! SP	local	-	-	-	red	Bearing from true north (EF_TO_RUNMAY, EF_TO_SCANNER)
BB (V96U908 0C-3C	1 DF(4)	local	DD	0. 1. 1. 2.	-	-	! Array of coefficients used by the RK_GILL integrator !
CAZ	i i SF	local	-		-	-	! ! Cosine of AZ
CC (79609090C-3C)	! ! DF(4) !	local	DD 1	! 1. ! 1. !2(1- 1/2) ! !2(1+1/2)!	-	-	! ! Array of coefficients used by the RK_GILL integrator ! !
CLAT	! ! SF	local	-	-	-	! ! -	! Cosine of LAT_GEOD (EP_TO_TOPDET)
CLON	! SF	local	-	-	-	-	! Cosine of LON (EF_TO_TOPDET)
COS_P	! SP	local	-	: - ! -	-	! -	! Cosine of geocentric latitude to Shuttle !

Variable Variable name (M/S ID)	! ! ! Precision ! & type !	! or	! Initial- ! ization ! category		! ! ! Uplink/ ! downlist	! ! ! Units !	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! C1	! ! DP !	! ! local :	! ! - :	! ! - '	! ! - !	! ! -	! If Auxiliary variable used in F and G series computations and ! In Fines method !
. c2	DP :	local	- 1	- :	- !	- !	! Auxiliary variable used in F and G series computations and !!
C3	DF :	local	-	- !	- !	-	f Auxiliary variable used in Pines variation of parameters !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
C4	DP	local	- 1	- !	- !	-	: Method : ! I Auxiliary variable used in Pines variation of parameters ! I method : !
	i DP	local :	- !	! - !	- 1	-	Auxiliary variable used in Pines variation of parameters
! ! D_AUX !	t 1 DP !	local	! ! - !	-	-	ft ² /sec	! ! Dot protect of velocity vector and perturbing acceleration, ! ! used in Pines method
D_TAU	DP :	llocal	- !	-	- 1	ft ² /sec ²	Variable used in Pines method
. DD	DF :	local	- :	- 1	- !	ft ² /sec	Temporary variable used in Pines method
<u> DD</u> (¥9609103C-6C)	: ! DF(4) ! !	local		0. -2 + 3 V -2 - 3 V	-	-	! Array of coefficients used by the RK_GILL integrator ! ! ! ! !
PEL	! ! SP	local	! -	-		n	Radius correction factor at geocentric radius of Earth
DBL_LAT	: ! SP !	local	-	-	-	red	Correction angle from geocentric latitude of radius vector to Shuttle to geodetic subvehicle latitude
DELTAT	! ! D# !	local :	-	-	: ! -	sec	! Time interval between two positions in a conic (F and G !! series)
i deria	! ! DP(7) !	! local	! ! - !	! - !	- !	! ft/sec ! ft/sec ! n.d.	
D_FIN_TEMP	! ! DP	! ! compool	! HC	0.	-	ft ² /sec	Temporary storage for D_FIM (Pines method)
D_IN	: ! DP !	local	: ! - !	! - !	! - ! -	ft ² /sec	I Dot product of position and velocity used in Pines method ! in call to F and G series !

79PM10:APP:C

VARIABLES LIST

Variable name (M/S ID)	Frecision & type		Initial- ization category		Uplink/ downlist	! ! ! ! Units	! ! ! ! Description !
! DMP ! (V94X3969X)	В	compool	-	-	-	-	! ! Flag indicating if model for acceleration due to drag is ! to be used for prediction
DT_MAX (V96U9227C)	DP	local	200	180.	-	sec	! Maximum integration step size used for prediction !
DT_STEP	DP .	local	-	-	-	sec	Integration step size for prediction or propagation
DUM	DF I	10021	-	- !	-	- !	Dummy variable (GEODETIC_TO_EF)
DUM1	DF .	local	-	-	-	ft	Dummy variable (GEODETIC_TO_EF)
BARTH_RADIUS_EQUATOR	DF .	compool i	С	- !	-	ft.	Earth's equatorial radius
BARTH_RATE	DEF 1	compool	С	- !	-	rad/sec	Earth's rotation rate
BLLIPT	DP:	compool i	С	- :	-	-	Earth's ellipticity constant
P	DP .	local	-	- 1	-	- !	! Closed form version of the F time series
PDOT	DP .	local	-	-	-	sec ⁻¹	Closed form version of the time derivative of F series
PD_TAU	DF	local	-	-	-	-	Variable used in Pines method
PLATCON (V96U9216C)	DP :	local !	DD !	.006693 42162	-	-	Eccentricity squared of reference ellipsoid (FISCHER), initialized only
P_TAU	DF I	local	-	-	-	-	Auxiliary variable used in Pines method
G	DF .	local	-	-	-	sec	Closed form version of the G time series
G_CENTRAL	DF(3)	compool	-	-	-	ft/sec ²	Gravitational acceleration due to Earth as a point mass
CDOT	DF	local	-	-	-	-	! Closed form version of the time derivative of the G series
CD_TAU	DF	local	-	-	-	-	! Auxiliary variable used in Pines method
(1960P (1941)3975C)	I	compool	! -	-	-	! - !	Flag indicating degree of gravitational potential model

Variable name (M/S ID)	! ! Precision ! & type !		Initial- ization category		! ! Uplink/ ! downlist !	! ! Units !	: ! ! ! Description !
GHOP (¥94J3963C)	! ! I !	compool i	-	-	! - !	-	! ! Flag indicating order of gravitational potential model ! used for prediction
G_TAU	! DP	local	-	-	! -	-	! Perturbation derivative of GDG7 in Fines method
1	! I	local	-	-	! -	-	Counter
LAM	! SP	local	-	-	! -	red	Earth's rotation angle from epoch
LAT_GEOD	! SP	local	-	-	-	rad	Geodetic latitude of R _EF
LON	! SF	local	-	-	-	red	Longitude of B_EF
н	SF(3,3)	local	-	-	-		General transformation matrix
MAT	SP(3,3)	local	-	-	- 1	-	! Transformation matrix (SBODY_TO_M50)
MATRIX	SF(3,3)	local	-	-	! -	-	! Temporary matrix
M_M50T0EP_AT_EPOCH (V97U5738C-46c)	! DF(3,3)	compool	НО	-	-	-	! Transformation matrix from M50 to Earth-fixed at T_EPOCH !
M_STEPS	! I	local	-	-	-	-	Mumber of integration steps in prediction or propagation interval
P	! DP	local	-	-	-	-	Yariable used in the RK_GILL integrator
<u>P</u>	DP(3)	local	-	-		ft/sec	! Variable used in Pines method as perturbing acceleration
PHI	: SF	local	-	-	! -	red .	! Geocentric latitude of position vector to Shuttle
PRED ORB AREA (V9306955C)	! SP	composi	-	-	downlist	n²	! Orbiter cross-sectional area
PRED ORB_CD (V93U6954C)	SF	compool !	-	-	: ! downlist ! !		1 Orbiter coefficient of drag
PRED_ORE_MASS (V9306953C)	! SP :	compool	-	-	! downlist ! downlist	slugs	! Orbiter mass !

C-12

Variable name	! ! Precision	! or !	! ! Initial- ! ization	! Initial		! ! !	!
(M/S ID)	! & type	! local	category	! value !	! downlist !	! Units !	! Description !
PRED_STEP (V94W3964C)	! ! SF	i compooli	! ! - !	-	! ! downlist ! !	! ! sec !	! Input integration step size for prediction !
P1 P2 P3 P4 P5	! ! ! SP !	local	- ! !	! ! ! - !	: : : : :	! ! ! ! ~ !	! ! ! Temporary variables ! !
q	SF(4)	local	-	-	: ! - !	-	Input quaternion to QNAT_TO_MAT
9	DF(7)	local	- !	0.	-	-	Local array used in RK_GILL integration
Q_FIFTY_BODY	1 SP(4)	local	- !	-	-	i - !	! Quaternion representing current Orbiter attitude
R	! DF	locel i	-	- :	-	ft :	Radius vector to Shuttle in Greenwich true-of-date system
<u>R</u>	! DF(3)	local	-	-	: ! - !	n	! Shuttle position vector
PRED_TIME_TOL	! SF	local	HC!	10~8		sec	! Time tolerance for predictor
RAD_P	I DP	local	-	-	-	ft :	Geocentric radius of Earth at geocentric latitude of Shuttle
R_EP	1 DF(3)	local	-	-	-	n	Position vector of Shuttle in Earth-fixed coordinates
R _EP_EQUAT	! DIP	local	-	- !	•	ft	Position of vehicle position vector in the equatorial plane
R_FIN_INV	I DP	local	-	-	-	ft ⁻¹	Reciprocal of the magnitude of R _FIM
R_FIN_TEMP_INV	I DIP	local	-	-	-	ft ⁻¹	Dummy variable used in the call to F_AMD_G
R_IN	1 DF(3)	local	-	-	-	ft	Position vector at the beginning of a time interval in M50. Used in F and G series and in SUPER_G
R_IN_AUX	1 DF	local	-	-	-	n-1	! Reciprocal of the magnitude of the position vector
R_IM_INV	! DF	local	! -	-	!	n-1	<pre>! Reciprocal of the magnitude of R _IN f</pre>
	!	!	!	1	1	<u>t</u>	!

Variable name (M/S ID)	! ! Precision ! & type !	! or	! Initial- ! ization ! category	! Initial	! ! ! Uplink/ ! downlist !	! ! ! ! Units !	! ! ! ! Description !
R_IN_TAU	! ! DF	l local	-	! ! -	! ! -	-	! Auxiliary variable used in the Pines method
R PRED FINAL (V95H0811C -3C)	1 DF(3)	compool :	: ! - !	: ! - !	i downlist :	ft!	Orbiter or target position vector at T_PMED_FIMAL
R PRED INIT	! ! DP(3) !	! ! compool !	! ! - !	! ! - !	! !downlist !	i i n	! ! Orbiter or target position vector at T_PRED_INIT!
R_XY	I DIP	llocal (-	: ! -	! ! - !	Lt2	! Projection squared of radius vector in X-Y plane of ! Greenwich true-of-date system
SAZ	! SF	local	-	-	<u> </u>	-	! Sine of AZ
SIN_P	SP	local	-	-	! -	-	! Sine of geocentric latitude to Shuttle
SLAT	: SF	local	-	-	! ! -	-	! Sine of geocentric latitude
SLOW	! SF	local	<u> </u>	<u> </u>	! ! -	-	! Sine of longitude
SMA	DP	compool	-	! -	! -	n	! Semimajor axis of conic
SQR_EMU (V90U1241C)	DP	compool	-	! ! -	! ! -	103/2	! Square root of the Earth's gravitational constant
\$0) \$1\ \$2(\$3)	I I DP I	! local	: ! ! - !	: 1 : - ! !	! ! - !	! ! vary ! vary ! vary	! ! Auxiliary variables used in F and G series and Pines ! computations, S1 and S2 also used as auxiliary variables ! in mean conic partials transition matrix computations
S4) S5 (S6)	! ! DP	local	! -	! -	! -	! ! vary !	! Auxiliary variables used in Pines method !
T_ACCEL	! ! DP	local	: ! -	! -	! -	! ! sec	! Time of acceleration function evaluation in Pines method
T_CUR	! DP	local	! -	! ! -	<u>.</u>	! ! sec	! Current integration time within the predictor or propagator
TEMP	! ! DF	! ! local	! -	! -	! -	! ! -	! Temporary variable
	•	7 !	! !	T I	! !	T !	! !

C-14

VARIABLES LIST

! Variable ! name ! (M/S ID)	! ! Precision ! ! & type		! Initial- ! ization ! category		! ! Uplink/ ! downlist	! ! ! ! Units	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! T_EPOCH ! (¥9705528C)	! ! DP !	local	! ! MD	-	-	! ! sec	! Time of M_M50TOEP_AT_EPOCH !
THETA	DF	local	-	-	-	red	Difference of eccentric anomaly
TIME	. DF	local	-	-	-	sec	! General time variable !
TIME_DEL	DF	local	-	-	-	sec	! Difference between initial and final predictor times
T_IN	DP	local	-	-	-	l sec	Initial time input for state propagation, used in SUPER_G
T PRED FINAL (V94W3979C)	DF	compool	-	-	downlist	sec	Pinal time input for enorbit prediction
1 T PRED INIT ! (V94W3970C)	! DF	composi	-	-	downlist	sec	I Initial time input for onorbit prediction
T_STOR	DF	local	-	-	-	sec	! Initial time of each Runge-Kutta integration step !
<u>U,Z,W</u>	DF(3)	local	-	-	-	-	Columns of the UVW_TO_M50 temporary matrix
<u>i </u>	DF(3)	local	-	-	-	ft/sec	! Shuttle velocity vector (local)
i VH	. B	local	-	-	-	-	! Flag used in ACCEL_OMORBIT to indicate if Vent/RCS model is ! ! to be used
! VMP ! (V94X3971X)	В	compool	-	-	- !	-	! Flag indicating whether venting accelerations are to be !! modeled for prediction
1 V PRED FINAL 1 (V95L0814C -6C)	DP(3)	compool	-	-	downlist	ft/sec	Orbiter or target velocity vector at T_PRED_FINAL
! Y PRED_INIT ! (V94L4006C-8C)	DF(3)	compool (-	-	downlist	ft/sec	! ! Orbiter or target velocity vector at T_PRED_INIT ! !
! ! <u>X</u> ! !	DP(6)	local	-	-	! !	! !ft,ft,ft,! !ft/sec, ! !ft/sec ! !ft/sec !	! ! Temporary array for Shuttle or target state vector used ! in Pines method !! !

Variable name (M/S ID)	! Precision ! & type	f or f local	! Initial- ! ization ! category	! Initial			Description
! ! NX ! ! ! ! ! !	! DF(7) ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	! local ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	! - ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	! - : : : : : : : : : : : : : : : : : :	; ! !	! !ft,ft,ft,! !ft/sec, !ft/sec, !ft/sec, !sec !	Array of integrated initial conditions for onorbit prediction and propagation
	1 1 1 1 1 2 1 2 1	• 9 9 9 9 9 9 9 1 1 1 2	! ! ! ! !	! ! ! ! ! !	! ! ! ! !	• • • • • • • • • • • • • • • • • • •	
	! ! ! ! ! !	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	? ! ! ! ! !	1 2 1 1 1 1 1 1	2	
 	1 1 1 1 1 1	1 2 2 2 2 1 1 1 1 1	: ! ! ! ! !	1 1 1 1 1 1 1 1	! ! ! ! !	2 1 2 3 3 3 3 3 3 3 3 3	
	1 ! ! !	1 1 1 1	t 1 1 !	! ! ! !	! ! ! !	! ! !	

COORDINATE SYSTEMS

Aries mean of 1950, Cartesian, coordinate system

ORIGIN:

The center of the Earth

ORIENTATION:

The epoch is the beginning of Besselian Year 1950 or

Julian ephemeris date 2433282.423357.

The X_M-Y_M plane is the mean Earth's equator of epoch.

The $X_{\mbox{\scriptsize M}}$ axis is directed toward the mean vernal equinox

of epoch.

The Z_{M} axis is directed along the Earth's mean rotational

axis of epoch and is positive north.

The Y_M axis completes a right-handed system.

CHARACTERISTICS:

Inertial, right-handed Cartesian system

Figure C-1.- Aries Mean of 1950, Cartesian.

Earth fixed (Greenwich true of date) coordinate system

ORIGIN:

The center of the Barth

ORIENTATION:

The X_G-Y_G plane is the Earth's true-of-date equator.

The $\,Z_{G}\,\,$ axis is directed along the Earth's true-of-date rotational axis and is positive north.

The $+X_G$ axis is directed toward the prime meridian.

The YG axis completes a right-handed system.

CHARACTERISTICS:

Rotating, right-handed Cartesian. Velocity vectors expressed in this system are relative to a rotating reference frame fixed to the Earth, whose rotation rates are expressed relative to the Aries mean of 1950 system.

Figure C-2.- Earth-Fixed Greenwich True of Date.

Aries true of date, Cartesian, coordinate system

ORIGIN:

The center of the Earth

ORIENTATION:

The epoch is the current time of interest.

The $X_{TR}-Y_{TR}$ plane is the Earth's true equator of epoch.

The \mathbf{X}_{TR} axis is directed toward the true vernal equinox of epoch.

The Z_{TR} axis is directed along the Earth's true rotational axis of epoch and is positive north.

The Y_{TR} axis completes the right-handed system.

CHARACTERISTICS:

Quasi-inertial, right-handed Cartesian

Figure C-3.- Aries True of Date, Cartesian.

Geodetic parameters

ORIGIN:

This system consists of a set of parameters rather than a coordinate system; therefore, no origin is specified.

ORIENTATION:

This system of parameters is based on an ellipsoidal model of the Earth (c.g., the Fischer ellipse of 1960). For any point of interest we define a line known as the geodetic local vertical which is perpendicular to the ellipsoid and which contains the point of interest.

h, geodetic altitude, is the distance from the point of interest to the reference ellipsoid, measured along the geodetic local vertical, and is positive for points outside the ellipsoid.

 λ is the lengitude measured in the plane of the Earth's true equator from the Prime (Greenwich) Meridian to the local meridian, measured positive eastward.

 $\phi_{\rm D}$ is the geodetic latitude, measured in the plane of the local meridian from the Earth's true equator to the geodetic local vertical, measured positive north from the equator.

CHARACTERISTICS:

Rotating polar coordinate parameters. Only position vectors are expressed in this coordinate system. Velocity vectors should be expressed in the Aries mean of 1950 or the Aries true-of-date polar for inertial or quasi-inertial representations, respectively.

Figure C-4.- Geodetic Parameters (Basic Definitions) (Sheet 1 of 2)

Geodetic parameters

DEFINITIONS:

h is the altitude of Point P, measured perpendicular from the surface of the referenced ellipsoid.

- n is the geodetic latitude of Point P.
- is the geocentric latitude of Point P.
- $^{\delta}$ is the angle between radius vector and equatorial plane (declination).
- $^{\lambda}$ is the longitude of Point P. Angle (+ east) between plane of the figure and the plane formed by the Greenwich Meridian.

Figure C-4.- Geodetic Parameters (Detailed Explanation) (Sheet 2 of 2).

Runway coordinate system

ORIGIN:

Runway center at approach threshold

ORIENTATION AND DEFINITIONS:

 $Z_{
m LF}$ axis is normal to the ellipsoid model through the runway centerline at the approach threshold and positive toward the center c. the Earth.

 ${\tt X_{LF}}$ axis is perpendicular to the ${\tt Z_{LF}}$ axis and lies in a plane containing the ${\tt Z_{LF}}$ axis and the runway centerline (positive in the direction of landing).

YIF axis completes the right-handed system.

ALF is the runway azimuth measured in the XLFYLF plane from true north to the +XLF axis (positive clockwise).

CHARACTERISTICS:

Rotating, Earth-referenced

Figure C-5.- Runway Coordinate System.

Topodetic coordinate system

ORIGIN:

Orbiter center of mass*

ORIENTATION:

 \mathbf{Z}_{TD} is normal to a geodetic local tangent plane and is positive toward the Earth's center.

positive toward the Earth's Center.

 \textbf{X}_{TD} is perpendicular to \textbf{Z}_{TD} axis and is positive northward along the meridian plane containing the Orbiter.

 Y_{TD} completes the right-handed orthogonal system.

CHARACTERISTICS:

Rotating, right-handed Cartesian system. Velocity vectors are expressible in this system for the Orbiter, given relative velocity V_{TD} in this system.

$$\gamma_{TD} = \sin^{-1} \left(\frac{-\dot{z}_{TD}}{v_{TD}} \right)$$

$$\psi_{TD} = \tan^{-1} \left(\frac{\dot{x}_{TD}}{\dot{x}_{TD}} \right)$$

*A similar system may be defined for any point of interest.

Figure C-6.- Topodetic Coordinate System.

MSBLS radar coordinate system

ORIGIN:

MSBLS radar position

ORIENTATION AND DEFINITIONS:

 $\mathbf{Z}_{\mbox{RAD}}$ is normal to the ellipsoidal model, positive away from the center of the Earth.

 X_{RAD} is in the local horizontal plane of the radar in the boresight direction of the radar antenna. The angle A_Z is measured positively clockwise from true north to

X_{RAD}.

CHARACTERISTICS:

Rotating, Earth-referenced

Figure C-7.- MSBLS Radar Coordinate System.

Body coordinate system (structural)

ORIGIN:

In the Orbiter plane of symmetry, 400 inches below the centerline of the payload bay and at Orbiter X-station = 0

ORIENTATION:

The X_O axis is in the vehicle plane of symmetry, parallel to and 400 inches below the payload bay centerline.

Positive sense is from the nose of the vehicle toward the

tail.

The $\, z_{0} \,$ axis is in the vehicle plane of symmetry, perpendicular to the $\, x_{0} \,$ axis and positive upward in landing

attitude.

The Yo axis completes a right-handed system.

CHARACTERISTICS:

Rotating, right-handed Cartesian

Figure C-8.- Body Coordinate System (Structural).

Stable member (IMU)

ORIGIN:

The intersection of the innermost gimbal axis and the measurement plane of the XY two-axis accelerometer

ORIENTATION:

The $\mathbf{Z}_{\mathbf{I}}$ axis is coincident with the innermost gimbal axis.

The X_I axis is determined by the projection of the X accelerometer input axis (IA) onto a plane orthogonal to Z_I . Y_I completes a right-handed triad.

The X accelerometer and X gyro IA's are parallel to the $\mathbf{X}_{\mathbf{I}}$ axis.

The Y accelerometer and Y gyro IA's are parallel to the $\mathbf{Y}_{\mathbf{I}}$ axis.

The Z accelerometer and Z gyrc IA's are parallel to the $\mathbf{Z}_{\bar{\mathbf{I}}}$ axis.

Figure C-9.- Stable Member (IMU) (Sheet 1 of 2).

CHARACTERISTICS:

Nonrotating, right-handed, Cartesian system

The reference alinement for the gimbal case is defined with the four gimbal angles at zero and with the vehicle in a horizontal position. In a perfect IMU, with all misalinements zero and with all gimbal angles at zero, the following relationships hold.

 $x_{NB},\ \ x_{NB},\ \ z_{NB}$ are Cartesian components of the navigation base coordinate system.

The outer roll axis and the X_I -axis will be parallel to X_{NB} . Positive X_I will be in the forward direction. Positive roll gimbal angles will be in the sense of a right-handed rotation of the gimbal case relative to the platform about the plus outer roll axis.

The pitch axis and Y_I will be parallel to Y_{NB} . Positive Y_I will be to the right of an observer looking forward in the vehicle. Positive pitch gimbal angles will be in the sense of a right-handed rotation of the gimbal case relative to the platform about the plus pitch axis.

The inner roll axis will be parallel to the outer roll axis, with the sense of rotation the same as for the outer roll axis.

The azimuth axis and Z_I will be parallel to Z_{NB} . Positive Z_I will be down, relative to an observer standing in the vehicle. Positive azimuth gimbal angles will be in the sense of a right-handed rotation of the gimbal case relative to the platform about the plus azimuth axis.

Figure C-9.- Stable Member (IMU) (Sheet 2 of 2).

NAME:

NWU geographic coordinate system

ORIGIN:

Point of interest

ORIENTATION:

U is positive up along the Earth's astronomic or plumb-

bob vertical.

W is positive along the cross product of U and the

Earth's spin axis.

N completes the right-handed orthogonal system

 $(N = W \times U)$.

CHARACTERISTICS:

Rotating, right-handed, Earth-referenced coordinate system

Figure C-10.- NWU Geographic Coordinate System.

NAME:

Body axis coordinate system

ORIGIN:

Center of mass

ORIENTATION:

 \mathbf{X}_{BY} axis is parallel to the Orbiter structural body \mathbf{X}_{O} axis, positive toward the nose.

 \mathbf{Z}_{BY} axis is parallel to the Orbiter plane of symmetry and is perpendicular to $\mathbf{X}_{BY},$ positive down with respect to the Orbiter fuselage.

 Y_{RY} axis completes the right-handed orthogonal system.

CHARACTERISTICS:

Rotating, right-handed, Cartesian system

L, M, N: Moments about $X_{\mbox{\footnotesize{BY}}}$, $Y_{\mbox{\footnotesize{BY}}}$, and $Z_{\mbox{\footnotesize{BY}}}$ axes, respectively

p, q, r: Body rates about $\textbf{X}_{BY},~\textbf{Y}_{BY},~\text{and}~\textbf{Z}_{BY}~\text{axes,}~\text{respectively}$

p, q, r: Angular body acceleration about $X_{\mbox{\footnotesize{BY}}}$, $Y_{\mbox{\footnotesize{EY}}}$, and $Z_{\mbox{\footnotesize{BY}}}$ axes, respectively

The Euler sequence that is commonly associated with this system is a yaw, pitch, roll sequence, where ψ = yaw, θ = pitch, and ϕ = roll or bank. This attitude sequence is yaw, pitch, and roll around the Z_{BY} , Y_{BY} , and X_{BY} axes, respectively.

Figure C-11.- Body Axis.

NAME:

UVW coordinate system

ORIGIN:

Point of interest

ORIENTATION:

The U-V plane is the instantaneous orbit plane at epoch.

The U axis lies along the geocentric radius vector to the vehicle and is positive radially outward.

The W axis lies along the instantaneous orbital angular momentum vector at epoch and is positive in the direction of the angular momentum vector.

The V axis completes a right-handed system (V = W x U).

CHARACTERISTICS:

Quasi-inertial, right-handed Cartesian coordinate system. This system is quasi-inertial in the sense that it is treated as an inertial coordinate system, but it is redefined at each point of interest.

Figure C-12.- UVW Coordinate System

FLOWCHARTS

EARTH_FIXED_TO_M50_COORD(TIME) = M_M50TOEF_AT_EPOCH^T(M)

WHERE:

M_M50TOEF_AT_EPOCH IS THE TRANSFORMATION FROM MEAN OF 1950 TO EARTH-FIXED COURDINATES AT TIME = T_EPOCH. THIS MATRIX, T_EPOCH, AND EARTH_RATE INITIAL VALUES ARE DISCUSSED IN SECTION 4.10.2.

M IS COMPUTED WITHIN THE FUNCTION (EARTH_FIXED_TO_M50_COORD) AS

LAM = EARTH_RATE(TIME - T_EPOCH)

 $M = \begin{pmatrix} CUS(LAM) & -SIN(LAM) & 0\\ SIN(LAM) & COS(LAM) & 0\\ 0 & 0 & 1 \end{pmatrix}$

Figure C-13.- EARTH_FIXED_TO_M50_COORD FUNCTION.

EF_TO_TOPDET(LAT_GEOD, LON) = M

WHERE

M IS CALCULATED WITHIN THE FUNCTION AS

CLON = COS(LON), SLON = SIN(LON)

CLAT = COS(LAT_GEOD), SLAT = SIN(LAT_GEOD)

M = -SLAT CLON -SLAT SLON CLAT -SLON CLON O -CLAT CLON -CLAT SLON -SLAT

Figure C-14.- EF_TO_TOPDET FUNCTION.

EF_TO_RUNWAY(LAT_GEOD, LON, AZ) = (M) EF_TO_TOPDET(LAT_GEOD, LON)

WHERE

M IS CALCULATED WITHIN THE FUNCTION AS

CAZ = COS(AZ), SAZ = SIN(AZ)

$$M = \begin{pmatrix} CAZ & SAZ & 0 \\ -SAZ & CAZ & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Figure C-15.- EF_TO_RUNWAY FUNCTION.

EF_TO_SCANNER(LAT_GEOD, LON, AZ) = (M) EF_TO_RUNWAY(LAT_GEOD, LON, AZ)

WHERE

M IS CALCULATED WITHIN THE FUNCTION AS

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Figure C-16.- EF_TO_SCANNER FUNCTION.

IN LIST: R _EF

OUT LIST: LAT_GEOD, LON, ALT

FLATCON = $1.0 - (1.0-ELLIPT)^2$

 $A_0 = 1.0 - FLATCON$

 $R_XY = R_BF_1^2 + R_BF_2^2$

 $R = (R_XY + R_EF_3^2)^{1/2}$

 $SIN_P = R_EF_3/R$

 $COS_P = (R_XY)^{1/2}/R$

RAD P = _______EARTH_RADIUS_EQUATOR

 $(1.0 + FLATCON SIN_P^2/A_0)^{1/2}$

DEL = (FLATCON SIN_P COS_P)/(1.0-FLATCON COS_P²)

DEL_LAT = RAD_P DEL/R

 $PHI = TAN^{-1} (SIN_P/COS_P)$

LAT_GEOD = PHI + DEL_LAT

LON = $ARCTAN2(R_EF_2, R_EF_1)$

ALT = (R-RAD_P) (1.0-0.50 DEL DEL_LAT)

Figure C-17.- EF_TO_GEODETIC.

GEODETIC_TO_EF(LAT_GEOD, LON, ALT) = R _EF

WHERE

R _EF IS CALCULATED WITHIN THE FUNCTION AS

CLAT = COS(LAT_GEOD), SLAT = SIN(LAT_GEOD)

DUM = $(1 - ELLIPT)^2$

DUM1 = EARTH RADIUS EQUATOR/ V CLAT2 + SLAT2 DUM

R_EF_EQUAT = (DUM1 + ALT)CLAT

Figure C-18.- GEODETIC_TO_EF FUNCTION.

IN LIST: R, Y

U = R/R

 $\mathbf{H} = (\mathbf{R} \times \mathbf{Y})/|\mathbf{R} \times \mathbf{Y}|$

Z = (W x 11)

UVW_TO_M501 TO 3,1 = U

UVW_TO_M501 TO 3,2 = Z

UVW_TO_M501 TO 3,3 = H

Figure C-19.- UVW_TO_M50 FUNCTION.

IN LIST: Q FIFTY BODY OUT LIST: MAT

MATRIX = QUAT_TO_MAT (Q_FIFTY_BODY)

 $MAT_{1,1} = -MATRIX_{1,1}$

MAT1,2 = MATRIX2,1

MAT1,3 = -MATRIX3,1

MAT2,1 = -MATRIX1,2

MAT2,2 = MATRIX2,2

 $MAT_{2,3} = -MATRIX_{3,2}$

 $MAT_{3,1} = -MATRIX_{1,3}$

 $MAT_{3,2} = MATRIX_{2,3}$

 $MAT_{3,3} = -MATRIX_{3,3}$

 $QUAT_TO_MAT(Q) = A$

WHERE A IS CALCULATED WITHIN THE FUNCTION AS

Figure C-21.- QUAT_TO_MAT FUNCTION.

Figure C-22.- ONORBIT_PREDICT.

IN LIST: XN, DT_STEP, T_CUR, GMO, GMD, DM, VM, ATM, T_IN OUT LIST: XN, T_CUR

Figure C-23.- RK_GILL.

OUT LIST: DERIV, X | R_IN = |XN₁ TO 3| | R_IN_INV = 1./R_IN $SMA = 1./[2.R_IM_INV - (XM4_{TO} 6) - XM4_{TO} 6)/BARTH_MU]$ D_IN = XN₁ TO 3 R_FIN_TEMP_INV = 0. CALL: F_AND_G IN LIST: SMA, DELTAT, C1, XN1 TO 3, R_IN_INV, R FIN TEMP INV, XN4 TO 6, D IN, D FIN TEMP OUT LIST: F, G, FDOT, GDOT, SO, S1, S2, S3, X1 TO 3, R FIN INV, THETA $1 \times_{4} \times_{70} 6 = FDOT \times 11_{1} \times_{70} 3 + GDOT \times 11_{4} \times_{70} 6$ | T_ACCEL = T_IN + T_CUR P = ACCEL_ONORBIT (GMD, GMO, DM, VM, ATM, X1 TO 3, X4 TO 6, T_ACCEL) P = P - G _CENTRAL D_TAU = X1 TO 3. P D_AUX = X4 TO 6. P. (CONT'D)

IN LIST: XN, T_CUR, GMO, GMD, DM, VM, ATM, T_IN

Figure C-24.- PINES_METHOD (Sheet 1 of 2).

```
(CONT'D)
  C2 = C1^2
  S1 = C1 S1
  S2 = C2 S2
  C3 = 1./C2
  S3 = SMA S2
  S4 = 2. S3 D_AUX
  C4 = C2 D_AUX
   C5 = C4 S1
   S5 = S2 D_TAU
1 DD = S1 C3 R_IN(SMA R_IN_INV-1.) + SO D_IN
1 S6 = 2. S2 C4 DD + S5
R_IN_TAU = S4 - C2 S1 D_AUX DD - S1 D_TAU
RIN_AUX = RIN_INV RIN_TAU
| F_TAU = (S3 C3 R_IN_AUX - S4) R_IN_INV
GTAU = C5/R_FIN_INV - S6
| FD_TAU = FDOT (C4-R_IN_AUX)
 GD_TAU = -S4 R_FIN_INV
   DERIV<sub>1</sub> TO 3 = GD_TAU \times_{1} TO 3 - G_TAU \times_{4} TO 6 - G P.

DERIV<sub>4</sub> TO 6 = -FD_TAU \times_{1} TO 3 + F_TAU \times_{4} TO 6 + F P.

DERIV<sub>7</sub> = S6 - 3. C4 SMA (C1 THETA - S1) - C5/R_FIN_INV
```

Figure C-24.- PINES_METHOD (Sheet 2 of 2).

APPENDIX D

USER PARAMETER FLOWCHARTS, VARIABLE NAMES,
AND DESCRIPTIONS

CONTENTS

Subject													Page
Variables List Definitions	•	•	•	•	•	•	•	•	•	•	•	•	D-5
Variables List	•	•	•	•	•	•	•	•	•	•	•	•	D-7
Flowcharts													
Onorbit/Rendezvous User Parameter													
Processing Sequencer Principal Function													
ONORBIT_REND_UPP_SEQ	•	•	•	•	•	•	٠	•	•	•	•	•	D-15
Onorbit/Rendezvous User Parameter													
Processing Principal Function													
ONORBIT_REND_USER_PARAM_STATE_PROP .		•		•									D-16
AVERAGE_G_INTEGRATOR													D-18
ONORBIT_USER_PARAMETER_CALCULATIONS													D-19

PRECEDING PAGE BLANK NOT FILMED

VARIABLES LIST DEFINITIONS

CODE USED FOR VARIABLE DATA TYPE

- F: floating point quantity; an n-dimensional floating point vector will be denoted F(n); similarly, an $n \times m$ floating point matrix will be denoted by F(n,m)
- I: integer quantity; I(n) will denote an n-dimensional integer vector
- B: bit, i.e., data having only values of 0 or 1
- C: character. C(n) will denote an n-dimensional character string

CODE USED FOR VARIABLE PRECISION

- D: double precision
- S: single precision; integer quantities are assumed single precision unless otherwise stated

VARIABLE LOCATION

COMPOOL: Variable value located in common storage, accessible by all functions

LOCAL: Variable is used by one function only, and usable to other functions through call argument only

VARIABLE INITIALIZATION CATEGORY

blank: display is vacant

C: constant (unchanging)

DD: design dependent

HC: hard coded

MD: mission dependent (I-LOAD)

PRECEDING PAGE BLANK NOT FILMED

VARIABLE INITIAL VALUE

initial operation sequence computer inputs

VARIABLE UPLINK AND DOWNLIST STATUS

UPLINK: variable is an uplink item

DOWNLIST: variable is a downlist item

UNITS DEFINITIONS

deg: angular measurement, degrees

fi: feet

lb: pounds

n.d.: non-dimensional

rad: radian

sec: time measurement, seconds

slugs: mass measurement, slugs

vary: units have different values which depend on variable use

VARIABLES LIST

! Variable ! name ! (M/3 ID)	! ! Presision ! & type !	! or !	! Initial- ! ization ! category		 - Uplink/ downlist	! ! ! ! Units !	! ! ! ! Description !
A.C.	1 ! SP (3) !	i iocal		_		i ift/sec ²	! Sensed acceleration (local variable used in AVERAGE G ! IMTEGRATOR).
! ! <u>A</u> _SENSED (¥95A0902C -AC)	! ! 3P (3; !	t compoci		!	downlist	! !ft/sec ² !	Ratio of difference of selected accelerometer readings to 1 difference of their time tags.
ATPL_OV	: 1	: compool :	HC :	0			Attitude flag for Orbiter and for UPP.
DA_TERESHOLD_ING	387	local	-	-	-	ft/sec ²	1 Threshold value for IMU acceleration in UPP.
: IDEL_R_TARG ! (795H08550 -70)	1 1 DF (3)	compool !	!	- !	trllawob	ist !	1 M50 vector from Shuttle to target.
i !Del_v_targ ! (¥95108580 -500)	1 1 DF (3) 1	compool	-	-	downlist	! !ft/sec !	1 M50 delta velocity vector between Shuttle and target.
i idpl_avg	! ! 5	l l local	f BC	þ	-	! !	! Drag flag used in average-G integration.
! !DC:ING REND_NAN ! (V90X4765X)	! ! B !	l campool f	-	_	downlist	; ! !	<pre>! Flag indicating whether rendezvous navigation is active (OW) ! or onorbit mavigation is active (CFF).</pre>
! Idtine !	! SP	l local	_	-	 !	; lsec !	! Step size for state vector advancement (local variable used ! in AVERACE G INTEGRATOR).
idt_inu	! SP '	local	-	_		! !sec	! State vector average-G integration time step.
! !EARTH_RATE	DP	: ! composi !	C			I !rad/sec	! Rotation rate of Earth in radians per second.
! !EVENT_60# ! (790186441)	! ! B	! camposl ! !	-	097	 downlist 	t f t	! I Transition from OPS 8 to OPS 3.
! !EVZNT_E1 ! (V90X8164X)	1 D .	! compoci !		ŒF	! downlist	1 ! !	! Transition to 199201 from 199301 event flag.
•	!	!	9 •	! !	1	!	[

! Variable ! name ! (M/S ID)	! ! Precision ! & type !	! or !	Initial~ ization category		! ! Uplink/ ! downlist	! ! ! ! Units !	! ! ! Description
! !EVENT_60 ! (V90x8189x)	! ! B	! ! compool ! !		OPF	downlist	! !	! ! Transition to HM201 from MM106 event flag. !
! !EVENT_60A ! (V90X3160X)	! ! B !	! ! compool !	-	!	 downlist 	! !	Transition to MM201 from OPS 8 event flag.
! ! EVENT 60B ! (V90x8645x)	! B	! ! compool !		OPF	! downlist !	! ! !	Transition to OPS 8 from 194201.
! EVENT_67 ! (V90x8646x)	! ! B	compool	-	QPP	 downlist 	! :	Transition from 184201 to 184202.
! !EVENT_69 ! (V90x8191x)	1 1 B 1	! ! compool ! !	-	OPF	! ! downlist !	! ! !	Guidance instrate event flag.
! !EVENT_73 ! (¥90x8200x)	! ! B !	! ! compool ! !	!	l ! OPF	! ! downlist !	! ! : !	! ! Transition to MM201 from MM202 event flag.
! !EVENT_83 ! (TBD)	t tB t	! ! composi! !	I	! ! OPF ! !	! ! downlist !	! ! ! !	! ! Transition from 199201 to OP3 00. !
! !EVENT 84 ! (\overline{V}90X8148X)	! ! B	! composi: ! composi:	! ! –	! ! OFF !	! ! downlist !	f ! ! ! f !	! ! Transition to MM201 from OPS 00 event. !
! !PILT_UPDATE ! (V90X0224X)	! ! B	: ! compool ! !	! ! 	! ! OPF ! !	! downlist 	! ! ! !	! Flag indicating the availability of a filter updated state. !
! !GM_DEG_LOW ! (V96U9118C)	! I	: ! compcol ! !	, DD	! ! 2 !	! ! -	! !	! ! Prestored value of potential model degree indicator. !
! (V96U9 120C)	! ! I	i Composi i I	ם מכל ב	! ! 0 !	! ! !	! — !	Prestored value of potential model order indicator.
! !GR !	! DF (3)	! local	-	! !	! ! !	! !ft/sec ² !	! Gravitational acceleration (local variable used in ! AVERAGE_G_INTEGRATOR).

D-8

! Variable ! name ! (M/S ID)	Precision La type		! Initial- ! ization ! ! category !	! ! Initial ! ! value	Uplink/	! ! ! ! Units !	: ! ! ! Description !
! !GR1 !	DF (3)	l local			 !	! !ft/sec ² !	! Gravits ional acceleration (local variable used in ! AVERAGE_G_INTEGRATOR).
IMU NAV ACCEL THRESH (V93A6710C)	! SF	compool	MD	! ! 592 !	downlist	i ^µ g	! IMU Navigation acceleration threshold value in "g's.
M50_TO_EF	DF (3,3)	local		- !		! ! !	! Mean of 1950 to Earth-fixed Greenwich coordinate ! transformation matrix.
OPS 2 OR 8 INITIALIZE COMPLETE (V90X1242X)	B	composi	_	 !	-	: ! !	! Signal to MSC indicating that initialization of user ! parameter state propagation is complete. !
! AV	DF (3)	local	-	! !	! -	irt !	! Position vector (local variable used in AVERAGE_G_ ! INTEGRATOR).
IB _AVGG I (V95H0185C -7C)	DF (3)	compool :		! !	! ! dcwnlist !	! !ft !	! Current Orbiter position vector updated by user parameter ! propagator.
!R EF ! (V95H0155C -7C)	DF (3)	compool	_		_	! !ft !	! Orbiter position vector in Earth-fixed coordinates.
IR _RESET ! (V90H0235C -7C)	DF (3)	composi:		_	-	irt I	Copy of filter updated Orbiter position vector for user parameter propagator reset.
R_TARGET (V95H0862C -4C)	DF (3)	compool	-		downlist	: !ft !	Position vector of the target vehicle updated by the user parameter propagator.
IR _TY_RESET ! (V90H1383C -5C)	DP (31	compool :				ift !	! Copy of filter updated target position vector for user ! parameter propagator reset.
!T_INU ! (V95W0901C)	DF	compool		!	downlist	: !sec !	! Current time tag snapped from the IMU SQP (IMU SQP name ! T_IMUS_GA M/SID V95W0002C).
1		!	·		<u> </u>	!	·

7

Self-Manhard Statement Statement

VARIABLES LIST

! Variable ! name ! (M/S ID)	l ! ! Precision ! ! & type !		Initial- ization category	! Initial	Uplink/ downlist	! ! ! Units	Pescription
! V_RHO_EP (V95138840 -60)	! DF (3)	compool		! -	-	i ft/sec 	! ! Earth-fixed velocity vector for Shuttle. !
! !Y _ TARGET !	1 1 DP (3)	compool		! — ! ! —	! ! downlist !	 ft/sec 	! Velocity vector of target vehicle updated by the user ! parameter propagator.
! <u>V</u> _TV_RESET !(\(\nabla\)90l1380c -2c)	1 ! DP (3) !	compool !	- -	! ! — : !	: ! !	 ft/sec 	! Copy of filter updated target velocity vector for user ! parameter propagator reset.
! !]] !	• •		! !	! ! !	! !	f f t
! !	! ! !	! !	! !	f : ! !	! ! !	! ! !	1 1 1
	? \$!		! ! !	1 E t	! 2 !	! ! !	! ! !
! ! !	f : f :		! !	! !	! ! !	! !	f ! !
	5 2	! !	!	! !	! ! !	! ! !	
!	: ! !	! !	; 	: ! !	: ! !	: ! !	
! !	! !	! !	- ! !	1 1 1	! !	t !	† !
! ! !	! !	: ! !	! !] ! !	! !	t !	

Flowcharts

PRECEDING PAGE BLANK NOT FILMED

Figure D-1.- ONORBIT_REND_UPP_SEQ.

^{*}THE PURPOSE OF THIS CANCELLATION AND RESCHEDULING IS TO SYNCHRONIZE THIS MODULE WITH THE EXECUTION OF ONORBIT GUIDANCE, WHICH IS TO BEGIN COMPUTATIONS AT THIS TIME.

Figure D-2.- ONORBIT_REND_USER_PARAM_STATE_PROP (Sheet 1 of 2).

CALL: AVERAGE_G_INTEGRATOR
IN LIST: R_TARGET, Y_TARGET, DT_IMU, A_SENSED, T_STATE, T_IMU
OUT LIST: R_TARGET, Y_TARGET

T_STATE = T_IMU
Y_IMU_OLD = Y_IMU_SNAP
FILT_UPDATE = OFF

Figure D-2.- ONORBIT_REND_USER_PARAM_STATE_PROP (Sheet 2 of 2).

IN LIST: R _AV, Y _AV, DTIME, AC, T_STATE, T_IMU

OUT LIST: R AV, Y AV

GR = ACCEL_ONORBIT (GM_DEG_LOW, GM_ORD_LOW, DFL_AVG, VFLTV_PRED, ATFL_OV, R_AV, Y_AV, T_STATE)

R_AV = R_AV + DTIME [Y_AV + 0.5 DTIME (AC + GR)]

GR1 = ACCEL_ONORBIT (GM_DEG_LOW, GM_ORD_LOW, DFL_AVG, VPLTV_PRED, ATFL_OV, R _AV, Y _AV, T_IMU)

Y = Y = AV + DTIME (AC + 0.5 (GR + GR1))

Figure D-3.- AVERAGE_G_INTEGRATOR.

Figure D-4. - ONORBIT_USER_PARAMETER_CALCULATIONS.

APPENDIX E LANDING SITE UPDATE PRINCIPAL FUNCTION FLOWCHARTS AND NAME DESCRIPTIONS

CONTENTS	
Subject	Page
Variables List Definitions	E-5
Variables List	E-7
Flowcharts Landing Site Update Principal Function	E-23 E-24 E-26

79FM10

PRECEDING PAGE BLANK NOT FILM

VARIABLES LIST DEFINITIONS

CODE USED FOR VARIABLE DATA TYPE

- F: Floating point quantity. An n-dimensional floating point vector will be denoted F(n). Similarly, an n x m floating point matrix will be denoted by F(n,m).
- I: Integer quantity; I(n) will denote an n-dimensional integer vector
- B. Bit, i.e., data having only values of 0 or 1
- C: Character; C(n) will denote an n-dimensional character string

CODE USED FOR VARIABLE PRECISION

- D: Double precision
- S: Single precision; integer quantities are assumed single precision unless otherwise stated

VARIABLE LOCATION

COMPOOL: Variable value located in common storage, accessible by all functions.

LOCAL: Variable is used by one function only, and usable to other functions through call argument only

VARIABLE INITIALIZATION CATEGORY

blank: Display is vacant

C: Constant (unchanging)

DD: Design dependent

HC: Hard coded

MD: Mission dependent (I-LOAD)

VARIABLE INITIAL VALUE

Initial operation sequence computer inputs

PRECEDING PAGE BLANK NOT FILMED

VARIABLE UPLINK AND DOWNLIST STATUS

UPLINK: Variable is an uplink item

DOWNLIST: Variable is a downlist item

UNITS DEFINITIONS

deg: angular measurement, degrees

ft: feet

1b: pounds

n.d.: non-dimensional

rad: radian

sec: time measurement, seconds

Slugs: mass measurement, slugs

Vary: Units have different values which depend on variable use

Variable name (N/S ID)	! Precision ! & type !	l or	! Initial- ! ization ! category	! ! Initial ! walue !	! ! Uplink/ ! downlist !	! ! Units	Description
ALT_ABOVE ELLIPSOID(1)_0	! ! SP(10) !	! ! compool !	! ! HD !	! ! -	1 1 - 1	! ft !	! ! Height of TACAN site above reference ellipsoid in maxi and ! mini tables.
ALT_ABOVE_ELLIPSOID_ MAXI	! SF(50) !	compool	MĐ	! ! - !	! ! - !	i fi	t ! !
ALT_MLSEL	! ! SF(4) !	compool :	· MD	-	! ! - !	ft	! Geodetic altitude of MSBLS elevation antenna location for ! primary, secondary, and maxi table landing sites.
ALT_MLSEL(1)_G	! SF	compool	MD	-	-	n	: !
ALT_MASEL(2)_0	I SF	compool	MD	-	-	l n	7 1
ALT_MLS_R_AZ	SF(4)	compool	MD	-	- !	! ! n !	! Geodetic altitude of the MSBLS range/azlmuth antenna ! location for primary, secondary, and maxi table landing ! aites.
ALT_MLS_R_AZ(1)_0	! SF	compoul i	MD :	-	! -	! ! n	! !
ALT_MLS_R_AZ(2)_0	SF	! compocl !	. MD	! ! -	! -	! ! f t	[
ALT_RWY_MAXI_SELECT	SI	compool !	. MD	! ! -	! -	i ft	! ! Runway selection index from maxi table for alternate runway.
BIAS_AZMLS	SF(4)	ospool!	MD	! - !	! - !	! ! rad	! ! MSBLS azimuth data bias for the primary, secondary, and
BIAS_AZMLS(1)_0	SF	compool !	MD	! -	-	rad	! maxi table landing sites.
BIAS_AZMLS(2)_O	SP	composi	MD .	-	- :	rad	! !
BIAS_ELMLS	SF(4)	compool 1	MD 1	! -	-	rad	! MSBLS elevation data bias for the primary, secondary, and ! maxi table runway sites.
BIAS_ELMLS(1)_0	SF :	compool !	MD 1	- !	•	rad !	

! Yariable ! name ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	Precision (! Initial- ! ization ! ! category !	! ! ! Initial ! walue	f ! ! Uplink/ ! downlist !	! ! ! Units	! ! ! ! Description
! ! BIAS_ELMLS(2)_0	SF	campool (, ND	-	! - !	y rad	!
! BIAS_HLSRANCE !	SP(4)	compoci	! ! HED !	-	! ! - :	! ft	! ! MSBLS range data bias for the primary and secondary maxi!! ! table landing sites.
BIAS_MLS RANGE(1)_0	. SP	composi	МО	-	! -	n	
BIAS_MARANCE(2)_O	SF .	compocl	Ю	! -	-	n	
BIAS_TAC_BRG	SF(10)	compool	ИО		-	rad :	! Bias in TACAN bearing in maxi and mini tables.
BIAS_TAUR	SF(10)	compool	140	-	! -	n	! Bias in TACAN range in waxi and mini tables.
EL_SCANNER_BEARING	! 37 (4)	compool	! HD	! ! - !	! ! ~ !	rad	! Bearing from true north of MLS elevation scanner boresight ! ! axis from maxi tables.
! ! EL_SCANNER_BEARING(1): !0	. S.P	: :composi : :	! ! HD ! !	! ! - !	! ! - !	! ! rad : !	! ! MSBLS elevation antenna boresight for primary landing site. !
EL_SCANNER_BEARING(2)	SF	! compool !	! HD	! ! - !	! ! - !	! ! rad	! HSBLS elevation antenna boresight for secondary landing ! site.
ITEM1_IN	B 1	composi	!	! OPF	-	-	! Maxi to primary runway transfer discrete.
ITEN2_IN	B 1	r compool	! [. 077	! -	-	! Maxi table to secondary runkay data transfer discrete.
ITEN3_DI	B :	: campool :	; !	! ! 08F	! -	! ! -	! Maxi table to alternate runway data transfer discrete.
LATITUDE_GEODETIC(1)	 SF(10) 	! ! campool !	! ! HD : !	! ! !	! ! -	! ! rad : !	! Geodetic latitude at TACAN site from maxi and mini tables. !
LATITUDE_CEODETIC_		! compool ! compool	! ! HD !	! ! - !	† ! - !	! ! rad !] []
! ! LAT_MLSEL !	SF(4)	! campool ! 	! ! HD !!	! ! - !	! ! - ?	! ! rad !	! Geodetic latitude of MSBLS elevation antenna from maxi ! table.

Variable Came (И/S ID)	Precision & type		Initial-	! ! Initial ! walue	! ! ! Uplink/ ! downlist	! ! ! Onita	! ! ! Description !
LAT_MLSEL(1)_0	3P	composi i	. 19] -	! ! - !	rad !	! Goodetic latitude of the MSDLS elevation antenna location ! for the primary and secondary landing sites.
LAT_MLSEL(2)_0	SF	compool	MD	-	-	rad .	
LAT_MLS_R_AZ	SP(4)	composi	MD	: ! - !	! - !	rad !	! Latitude of MSBLS range/azimuth scanner site from maxi ! table.
LAT_MLS_R_AZ(1)_0	SP :	: compool !	MD	; ! - !	!	rad !	Geodetic latitude of range/azimuth MSBLS antenna location for the primary and secondary landing sites.
LAT_MLS_R_AZ(2)_0	S7	compool	Ю			red	
LONGITUDE_EAST(1)_0	SF(10)	compool	110	: ! -	-	! red	I Geodetic longitude at TACAN site in maxi and mini tables.
LONGITUDE_EAST_MAXI	SP(50)	compoul	MD	! -		! rad	
Long_Misel	SF(4)	compool	ИΟ	! -	! -	rad I	! Genetic longitude of the MSBLS elevation antenna from maxi ! table.
Long_Mlsel(1)_0	SF .	r composit	MD	! ! - !	: ! - !	rad I	! Longitude of the MSBLS elevation antenna location for the ! primary and secondary landing sites.
LONG_MLSEL(2)_0	SF	r composi	10		-	red .	A Section 1
ONG_MLE_R_AZ	SP(4)	composi	М	; - ;	! - ! -	rad	! Longitude of MSBLS range/eximuth scanner site from maxi ! table.
LGGG_MES_R_AZ(1)_O	SP	: compool !	MD	; ! - !	! ! - !	! rad !	! ! Longitude of range/azimuth MSBLS antenna location for ! primary and secondary landing sites.
LONG_MLS_R_AZ(2)_0	3 7	compool	HD	! -	! ~	! rad	: 1 •
MAGNETIC_VARIATION(1)	5F(10)	compool	HD	! - !	! - !	rad !	! Magnetic variation of TACAN site in maxi and mini tables.

Variable name (M/S ID)	Pr-cision & type		! Initial- ! ization ! category	! ! Initial ! value !	! ! Uplink/ ! downlist	! ! ! Units	
MAGNETIC_VARIATION_ MAXI	SF(50)	i composi !	1 ! 10 !	-	! ! - !	! ! rad !	
HLS_AVAIL(1)_0	В	. compoor	: 1 HD	! ! -	! ! -	! -	MSBLS available discrete for primary and secondary runways.
HLS_AVAIL(2)_0	В	compool	! HD	! -	: : -	: ! -	
MSL_ABOWE_ ELLIPSOID(1)_0	SP(10)	nompool	1 HD	: ! - !	1 - !	in !	MSL correction to reference ellipsoid at the TACAN site in maxi and mini tables.
MSL_ABOVE_ELLIPSOID_	SF(50)	: compool !	; ! HD !	: ! - !	! - !	i i i	
R AZ RADAR BEARING	SP(4)	! !compocl	! I HD	! -	! -	rad i	
R_AZ_RADAR_BEARING(1)	SF	compool	: HD	: ! - !	! -	rad !	! MSBLS azimuth boresight relative to true north for the primary, secondary, and maxi table runways.
R_AZ_RADAR_BEARING(2)	SP	! compool	, ! HD !	: ! -	: ! !	! rad !	
RUMMAY_ALT	SF(18)	composi	! HD	! ! - !	: ! -	! n	! Altitude above reference ellipsoid of runway reference point! for maxi table runways.
RUNKAY_RAME	C(18)	compool	, 1 HD		: ! -	: ! -	Name of landing site from maxi table.
RUNNAY_MAME(3)_0	c :	composi	. HD	! -		-	Name of landing site from mini table for alternate runway.
PWWAY_MAME(1)_0	C	empool	90	-	<u> </u>	i -	;
BUMINAY_MAME(2)_0	C .	composi	! HD	! -	: ! - !	! - !	Name of landing situ from mixi table for primary and secondary runways.
RUMWAY_ALT(3)_0	SF	composi	! HD	! ! - !	: ! - !	i n	1 1

E-1

RUMMAY_ALT(2)_O SF compool MD - - ft for primary, secondary, and alternate runways. RW_AZIMUTH SF(18) compool MD - - rad Bearing from true north of runway coordinate system +X axis for maxi table. RW_AZIMUTH(3)_O SF compool MD - - rad Bearing from true north of runway coordinate system +X axis for maxi table. RW_AZIMUTH(1)_O SF compool MD - - rad Rearing from true north of runway coordinate system +X for primary, secondary, and alternate runways. RW_AZIMUTH(2)_O SF compool MD - - rad Rearing from true north of runway coordinate system +X for primary, secondary, and alternate runways. RW_AZIMUTH(2)_O SF compool MD - - rad Rearing from true north of runway coordinate system +X for primary, secondary, and alternate runways. RW_AZIMUTH(2)_O SF compool MD - - rad Rearing from true north of runway coordinate system +X axis for maxi table. RW_AZIMUTH(2)_O SF compool MD - - rad Rearing from true north of runway coordinate system +X axis for maxi table. RW_LAT(1)_O SF compool MD - - rad Rearing from true north of runway coordinate system +X axis for maxi table. RW_LAT(1)_O SF compool MD - - rad Rearing from true north of runway coordinate system +X axis for maxi table. RW_LAT(1)_O SF compool MD - - rad Rearing from true north of runway coordinate system +X axis for maxi table. RW_LAT(1)_O SF compool MD - - rad Rearing from true north of runway coordinate system +X axis for maxi table.	Variable (name (M/S ID)	Precision		Initial- ization category	! ! Initial ! value !	! ! ! Uplink/ ! downlist	! ! ! ! Units !	! ! ! ! Description !
RW_AZIMUTH SF(18) compool MD - - rad	RUNWAY_ALT(1)_O	SF	! ! campool !	! ! HD	-	1 ! - !	! ! rt !	! Altitude above reference ellipsoid of runway reference point! for primary, secondary, and alternate runways.
RM_AZIMUTH(3)_0 SF compool MD - - rad Bearing from true north of runway coordinate system +X for primary, secondary, and alternate runways. RM_AZIMUTH(1)_0 SF compool MD - - rad for primary, secondary, and alternate runways. RM_AZIMUTH(2)_0 SF compool MD - - rad	RUNNAY_ALT(2)_0	SP :	compool !	1 110	! -	! - 1	l ft	1
HM_AZIMUTH(1)_0 SF compool MD - - rad For primary, secondary, and alternate runways. HM_AZIMUTH(2)_0 SF compool MD - - rad HM_INCLS SF(18) compool MD - - ft MSL correction to ellipsoid at runway site for maxi table runways. HM_DELH(2)_0 SF compool MD - - ft MSL correction to ellipsoid at runway site for primary, secondary, and alternate runways. HM_DELH(1)_0 SF compool MD - - ft HM_LAT_1 SF(18) compool MD - - ft HM_LAT(3)_0 SF compool MD - - rad Geodetic latitude of Ith runway is maxi table. HM_LAT(1)_0 SF compool MD - - rad Geodetic latitude of primary, secondary, and alternate runways. HM_LAT(1)_0 SF compool MD - - rad Geodetic latitude of primary, secondary, and alternate runways.	RW_AZIMUTH	SP(18)	composi	MD I	! - !	! -	lrad !	
##_AZIMUTH(1)_0	RW_AZIMUTH(3)_O	SP	composi	: 1 HD !	: ! - !	: ! - !	red !red	
RM_LAT(3)_0 SF compool MD - -	RW_AZIMUTH(1)_0	SF	composi	1 MD	! -	! -	red	
HY_DELH(?)_0 SF compool MD - - ft MSL correction to ellipsoid at runway site for primary, secondary, and alternate runways. HM_DELH(1)_0 SF compool MD - - ft RM_DELH(?)_G SF compool MD - - ft RM_LAT_1 SP(18) compool MD - - rad Geodetic latitude of Ith runway is maxi table. RM_LAT(3)_0 SF compool MD - - rad Geodetic latitude of primary, secondary, and alternate runways. RM_LAT(1)_0 SF compool MD - - rad RM_LAT(2)_0 SF compool MD - - rad RM_LAT(2)_0 SF compool MD - - rad	BN_AZIMUTH(2)_O	SP	compocl	. HD	: -	: ! -	rad	r ! !
HM_DELH(1)_0 SF compool HD - - ft RW_DELH(2)_G SF compool HD - - ft RW_LAT_1 SF(18) compool HD - - rad Geodetic latitude of Ith runway in maxi table. RW_LAT(3)_0 SF compool HD - - rad Geodetic latitude of primary, secondary, and alternate runways. RW_LAT(1)_0 SF compool HD - - rad RW_LAT(2)_0 SF compool HD - - rad RW_LAT(2)_0 SF compool HD - - rad	RW_14SL2I	SP(18)	compool	MD !	!	i -	i n	
RW_DELH(?)_G SF c-mpon1 MD - - ft	HV_DELH(?)_0	SF	! ! compool ! !	; ! HD '	! ! - !	! ! - !	! ! ft !	
RW_LAT_1 SP(18) compool MD - - rad Geodetic latitude of Ith runway in maxi table. RW_LAT(3)_0 SP compool MD - - rad Geodetic latitude of primary, secondary, and alternate	M_DELH(1)_0	SP	compool	. MD		! -	n	: ! !
RW_LAT(3)_0 1 SF compool MD - - rad Geodetic latitude of primary, secondary, and alternate runnings. RW_LAT(1)_0 SF compool MD - - rad	RM_DETH(3)_C	SF	e-mponl	110		! -	i n	, 1 (
##	RW_LATI	SP(18)	compool	. MD	! -	! -	! rad	! Geodetic latitude of Ith runnay in maxi table.
RW_LAT(2)_0	RW_LAT(3)_O	SF	r rompool	: I MD !	! ! -	! ! - !	rad Imad	
	RW_L4T(1)_0	SP :	r ! campool !	! HD	! ! -	! ! - !	! rad	\$ 1 4
FW_LCNI SP(18) compool MD	RW_LAT(2)_0	SP :	! compool !	. MD	! -		rad	t
	PATCAI	! ! SP(18) !	! composi !	i ! MD : !	! ! - !	! ! - ! !	f Imad ! I	! ! Geodetic longitude of Ith runway in maxi table. !

Description	1. Acomponent of MSBLS elevation antenna in runmay ocordinates! for primary and secondary landing sites.	Y-component of range/azimuth antenna in runmay coc.dinates of the 1th runmay in maxi tables.		Y-component of MSBLS renge/extincth antenna in runmy coordinates for primary and secondary landing sites.	Annay selection index mani table to mini table primary, it			Indicators of which maxi table runway has been transferred in	CO CHIEF MILIT CROSS CANADA TO CONCOUNT OF THE STATE OF T					em 61		
Units	ų	Ł	و	٤	1		•			•					_ •	
Uplink/ downlist	•	•		•	•	•	•	•	•	•						
Initial value !	,	1	1		6	8	5	6	8	2						
Initial- ization category	Ð	2	2	2												
Composi i	compool 1	coepool 1	camboo!	combool	compool !	compool !	compool 1	compool !	compool 1	compool !						-
Precision i	क	SP(4)	8 7	55 55	31	IS	IS	SI .	31	SI	- -			- 		_
Variable insection (H/S ID)	X_EL_RW(2)_0	Y_DHEAZ_SMI	Y_DHEAZ_RW(1)_O	T - HEAZ_HW(2)_0	PRI MAXI SELECT	SEC HAXI SELECT	ALT HAKE SELECT	PIC HAXI CURRENT	SEC_HAZI_CURRENT	ALT MAXI CURRENT						

Warisble name (M/S ID)	Precision Precision P & type	Compool in or in local in loca	Initial- ! ization !	Initial P	Uplink/ 1 downlist 1	Units	Description
ALT_ABOTE_ELLIPSOID	1 1 SF(10) 1	comboo!	2 <u>8</u>	,	,	2	Height of IACAM site above reference ellipsoid in mini table.
ALT_MSBL_PSL	3	combool	8	1	,	e	
ALT_MESEL_SSC	3	[codmoo]	8		,	e	Primary and secondary with table tanding sites.
ALT_MS_R_AZ_PSZ		compool	8	,		2	Geodetic altitude of the MSBLS reage/azimuth enterna
ALT_MES_B_AZ_SSE	S 7	comboo!	88	•		Ľ	TOCALLON FOR PRIMARY AND SECONDARY MAIN CASES LANGUAGE STATES
BIAS_AZMES_PSE	3 5	compool	8	•	•	2	NSBLS stiguth data bies for the primary and secondary sint
BIAS AZMAS SSE	3 5	compool	\$		•	20	table landing sites.
BIAS_EIMS_PSE	. Bi	compool	8			Ę	
BIAS ELM.S SSE.	54	compoo!	8	,		20	table running sites.
BIAS_HLSIMINGE_PSL	3 7	combool	8		•	Ľ	
BIAS MASMINER SSL.	. Br	combool	8	1	•	e	capte Landing Sives.
BL SCAMBER BEARTHG PSL	. bi	compool	;;	1	•	ę	MSBLS eleration entenne boresight for primary landing site.
EL SCAMEN BEARING SSL	b,	1 codino	8	,	1	ž	HSBLS elevation antenna boresight for secondary landing is its.
LATITUDE GEODETIC(1)	1 37(10)	comboo	8	, . .	•	P	Geodetic latitude at TACAN site from mini table.
LAT_MASE_PSE	85	1 006,0001	88	,	•	Ē	Georatic latitude of the MSBLS elevation antenna location
LAT_MSEL_SSL	b i	[compoo]	8	1	,	ě	for the principle and secondary immoring artea.
			'				

()

VANTABLES LIST

Variable name (M/S ID)	Precision !	Composition of the control of the co	Initial- ization category	Initial	Uplink/ : downlint !	Onits	Description
LAT_MES_R_AZ_PSE	85	compool	880	•		Ē	Geodette latitude of range/azimuch MMLS antenne location
LAT MLS B AZ SSL	8	compool	g	1	1	ž	The state of the s
LONGITUDE RAST(1)	(0). 35	1 000000	8	1		2	Geodetic longitude at TACAM site in mini table.
LONG MASEL PSL	8	1 0000000	8	1	1	3	Longitude of the MSBLS elevation antenna location for the
CONG. M.SRL. SS.	b	combool	8	1		2	The second secon
LONG MLS R AZ PSC.	bi	1000000	8	,	, e	č	Longitude of range/azimuth MSGLS antonne location for
LONG MES R AZ SSL	8	t compost i	20	,	· ·	2	The second second tendency of the second sec
PASHTIC VARIATION	1 38(10)	i componi i	8		•	è	Machine variation of ThOM site in min table.
PLS_AVAIL_PSL		1 0000001	g	,	- gad 4		MEBLS available disorcte for primary and secondary runnys.
M.S. AVA.TI, SSE.		comboo!	8	,	, ,,,,	1	
NEL ABOTE ELLIPSOED	1 38(10)	7000000	g	•	•	2	MSL correction to reference ellipsoid at the IMCM site in finit table.
R AZ PADAR BRAKTING. P.M.	b	i compos i	£	•		2	MSBLS azimuth boresight relative to true morth for the primary and secondary wint table runways.
R AZ MOAR BEARING	b	1 (occurry)	g	•		2	
ENTER MARE ASL.		compost i	8			1	Name of landing site from mini table for alternate running.
KONTANT MANE P.S.		1 0000001	8				

Variable name (N/3 ID)	Precision & type	Composition or control	Initial- ization ostogory	Initial P	Uplink/ Edownlist E	Opites !	Description
HUTAT WHE SE	Ü	l loodings	828	,	,	,	Name of landing site from mini table for primary and secondary runways.
HORMAY ALT ASL	b	l coapoo l	ř	,	i	. . .	
MONINA ALT POL	Dr.	100dmco 1	S			٠ <u>٠</u> .	Altitude above reference ellipsoid of rammay reference point!
MINION ALT SSL	b	1000000	8		, en q	٤.	Tor primary, secondary, and attended remarks.
IN AZINTH ASE.	8	compos)	8	,		Ę	Bearing from true north of russay econdinate system +1 for
NV AZINGTH PSL	3	compos!	S		, = ,	PE	principy, accordany, and attended recomps.
NA AZ INUTE, SSL.	b s	compos	S.	,	p. =+	P	
RIL DELIK ASE.	3.5	combool	88	,	,	۳	Mit correction to allipsoid at runnay site for primery,
THE DELIE POL	a. S	1 coapoo 1	Š	,		e .	secondary, and attendate runnings.
NU DELH SS.	SE	000000	S		,	د .	
Ny LAT ASE.	F. 83	f compool i	Ses	. 	1	7	Geodetic latitude of primary, secondary, and alternate
TW LAT PS.	10	t compost t	8	,	,	PE	
THE SE	3.5	1 composi	80	1	,	ě	
IN COL ASI.	35	confico ;	5	1	,	200	Goodelic longitude of primary, secondary, and alternate
IN LOS PSI.	35	1 codinos 1	8	,	1	ě	
M LG SG.	,	Compoo!	g	,	1		
			- "		. er es		

Variable name (M/S ID)	! ! Precision! ! & type	or 1	! Initial- ! ization ! category	! ! ! Initial ! walue !	! ! ! Uplink/ ! downlist !	! ! ! Units	! ! ! ! Description
RW_MAG_VAR_ASL	! ! SF	! compool	! OPS	-	! -	! I rad	! Angle of magnetic variation from true north at primary,
RW_MAG_VAR_PSL	! SF	compool	! OPS	: ! -	! -	rad	! secondary, and alternate mini table runways.
RW_MAG_VAR_SSL	! SF	: !compool	e ops	-		! ! rad	
TACAN_ID(1)	SI(10)	compool:	! ! OPS !	! - !	! ! - !	! ! - !	! TACAN channel number from mini table ! Positive for x-mode ! Negative for y-mode
X_DMEAZ_RW_PSL	! SF	composi:	e ops	: ! -	! ! -	in	
X_DMEAZ_RW_SSL	SF	compool	OPS	-	! ! - '	! ft !	! X-component of MSBLS range/azimuth antenna in runway ! coordinates for primary and secondary landing sites.
X_EL_RW_PSL	SF	compool	! OPS		<u> </u>	i n	
X_EL_RW_SSL	! SF	compool	t OPS	: : - :	: : - !	nt	! X-component of MSBLS elevation antenna in runway coordinates ! for primary and secondary landing sites.
Y_DMEAZ_RW_PSL	. SF	compool	! OPS	-	-	n	
Y_DMEAZ_RW_SSL	SF	compool:	: ! OPS !	! - !	: ! - !	i ft !	Y-component of MSBLS range/azimuth antenna in runway toordinates for primary and secondary landing sites.
	1		: !		•		
					!		
					!		!
	į	!		!	•		!
			!	!		•	•

E-10

Flowcharts

FRECEDING PAGE BLANK NOT FILMED

Figure E-1.- Landing Site Update Principal Function.

```
I < 3
       I = 4 OR
        I = 5
                  K = 0
                            (transfer to primary)
                ! RW_LAT_PSL = RW_LAT_
                  RW_LON_PSL = RW_LON_
                  RW_AZIMUTH_PSL = RW_AZIMUTHI
                  RUNWAY_ALT_PSL = RUNWAY_ALTI
                  RW_DELH_PSL = RW_DELHI
                  RW_MAG_VAR_PSL = RW_MAG_VART
                  RUNWAY_NAME_PSL = RUNWAY_NAME_T
                                  MLS_AVAIL_PSL = OFF
                LAT_MLS_R_AZ_PSL = LAT_MLS_R_AZ_K
                LONG_MLS_R_AZ_PSL = LONG_MLS_R_AZK
                ! R_A2_RADAR_BEARING_PSL = R_AZ_RADAR_BEARINGK
                 ALT_MLS_R_AZ_PSL = ALT_MLS_R_AZ_R
                | LAT_MLSEL_PSL = LAT_MLSEL<sub>K</sub>
                LONG_MLSEL_PSL = LONG_MLSELK
                | ALT_MLSEL_PSL = ALT_MLSELK
                | EL_SCANNER_BEARING_PSL = EL_SCANNER_BEARINGK
                BIAS_MLSRANGE_PSL = BIAS_MLSRANGEK
                | BIAS_AZMLS_PSL = BIAS_AZMLSK
                | BIAS_ELMLS_PSL = BIAS_ELMLSK
                X_DMEAZ_RW_PSL = X_DMEAZ_RWK
                X_EL_RW_PSL = X_EL_RWK
                Y_DMEAZ_RW_PSL = Y_DMEAZ_RWK
                | MLS_AVAIL_PSL = ON
      (CONT'D)
```

Figure E-2.- MAXI_RWY_TRANSFER CODE (Sheet 1 of 2).

```
(CONT'D)
                    (transfer to secondary)
          RW_LAT_SSL = RW_LATT
          RW_LON_SSL = RW_LON_
          | RW_AZIMUTH_SSL = RW_AZIMUTH_
          RUNWAY_ALT_SSL = RUNWAY_ALT_
           RW_DELH_SSL = RW_DELHT
           RW_MAG_VAR_SSL = RW_MAG_VART
           RUNWAY_NAME_SSL = RUNWAY_NAME_T
                             MLS_AVAIL_SSL = OFF
          | LAT_MLS_R_AZ_SSL = LAT_MLS_R_AZ<sub>K</sub>
           LONG_MLS_R_AZ_SSL = LONG_MLS_R_AZK
           R_AZ_RADAR_BEARING_SSL = R_AZ_RADAR_BEARING_
          | ALT_MLS_R_AZ_SSL = ALT_MLS_R_AZK
           LAT_MLSEL_SSL = LAT_MLSELW
           LONG_MLSEL_SSL = LONG_MLSELK
          ALT_MLSEL_SSL = ALT_MLSELK
           EL_SCANNER_BEARING_SSL = EL_SCANNER_BEARINGK
           BIAS_MLSRANGE_SSL = BIAS_MLSRANGE_
           BIAS_AZMLS_SSL = BIAS_AZMLS_
          BIAS_ELMLS_SSL = BIAS_ELMLSK
           X_DMEAZ_RW_SSL = X_DMEAZ_RWK
           X_EL_RW_SSL = X_EL_RW_K
           Y_DMEAZ_RW_SSL = Y_DMEAZ_RW_K
           MLS_AVAIL_SSL = ON
                    (transfer to alternate)
     = 2 | RW_LAT_ASL = RW_LAT_
          RW_LON_ASL = RW_LONT
          RW_AZIMUTH_ASL = RW_AZIMUTHT
           RUNWAY_ALT_ASL = RUNWAY_ALT_
           RW_DELH_ASL = RW_DELHT
           RW_MAG_VAR_ASL = RW_MAG_VART
           RUNWAY_NAME_ASL = RUNWAY_NAME_T
```

Figure E-2.- MAXI_RWY_TRANSFER CODE (Sheet 2 of 2).

Figure E-3.- MAXI_TAC_TRANSFER CODE.

APPENDIX F

NAVIGATION UPLINK PROCESSING FUNCTIONS: FLOWCHARTS,
VARIABLE NAMES, AND DESCRIPTIONS

CONTENTS

Subject	Page
Variables List Definitions	F-5
Variables List	F-7
Flowcharts	
ORBITER_STATE_VECTOR_UPLINK	F-19
RENDEZVOUS_STATE_VECTOR_UPLINK	F-20
VENT_RCS_MODEL_PARAM_UPLINK	F-21
DRAG_MODEL_PARAM_UPLINK	F-22
COV_MATRIX_PARAM_UPLINK	F-23
LANDING_SITE_MAXI_MINI_UPLINK	F-24
TACAN_SITE_MAXI_MINI_UPLINK	F-26
SITE_SELECTION_UPLINK	F-27

PRECIDING PAGE BLANK NOT FILMED

VARIABLES LIST DEFINITIONS

CODE USED FOR VARIABLE DATA TYPE

F: floating point quantity; an n-dimensional floating point vector will be denoted F(n); similarly, an n x m floating point matrix will be denoted by F(n,m)

I: integer quantity; I(n) will denote an n-dimensional integer vector

B: bit, i.e., data having only values of 0 or 1

C: character; C(n) will denote an n-dimensional character string

CODE USED FOR VARIABLE PRECISION

D: double precision

S: single precision. Integer quantities are assumed single precision unless otherwise stated.

VARIABLE LOCATION

COMPOOL: Variable value located in common storage, accessible by all functions

LOCAL: Variable is used by one function only, and usable to other functions

through call argument only

VARIABLE INITIALIZATION CATEGORY

blank: display is vacant

C: constant (unchanging), Level A

DD: design dependent

HC: hard coded

MD: mission dependent (I-Load)

VARIABLE INITIAL VALUE

Initial operation sequence computer inputs

PRECEDING PAGE PLANK NOT FRAMED

VARIABLE UPLINK AND DOWNLIST STATUS

UPLINK: variable is an uplink item

DOWNLIST: variable is a downlist item

UNITS DEFINITIONS

deg: angular measurement, degrees

ft: feet

1b: pounds

n.d.: non-dimensional

rad: radian

sec: time measurement, seconds

slugs: mass measurement, slugs

vary: units have different values which depend on variable use

79FM10

Variable name (M/S ID)	! ! Precision ! ! & type !		Initial- ization category	-	Uplink/ downlist	! ! ! Units !	! ! Description !
COV_COR_UPDATE - (V96H1290C -6C)	t t SF (7) t	! ! campool ! !	 MD -	! ! !	! ! uplink !	! !vary !	! Vector of correlation coefficients associated with UVW ! standard deviations (SIG_UPDATE) used for Urbiter position/! velocity covariance initialization (ground update).
DO_CY_UPLINE (V90X4754X)	! ! B	t compool :		! ! OFF !	! ! !	! !	! Flag indicating (ON) that data has been uplinked for ! Orbiter state vector update.
DO_TY_UPLINK (V90X4757X)	! ! B !	composi	-	OPP	! ! !	! ! !	! Flag indicating (OM) that data has been uplinked for target ! state vector update.
R _GND (¥96H3500C =02C)	DF (3)	compool (! ! !	uplink	ire !	Uplink Orbiter position vector (M50).
R _ TV_GMD (V96H1 <i>2</i> 77C -79C)	: DP (3)	compool	-	<u> </u>	! !uplink !	in !	! Uplinked target vehicle position vector at T_TV_GND.
SIG_UPDATE (V96H1284C -9C)	SF (6)	compool !	MD :	! !	uplink !	!	Pector of standard deviations for Orbiter position/velocity covariance initialization (ground update).
T_CND (V96W352OC)	DF	: ! compool	_	! 	: !uplink !	l fsec !	Uplinked time tag of Orbiter state vector (R_GHD, Y_GHD).
T_TY_GND (496W1283C)	t DF	compool		! !	! ! uplink !	l sec	Uplinked target state time tag.
Y _GMD =12C)	1 DF (3)	compool	-	! !!	uplink !	!ft/sec	! Uplinked Orbiter velocity vector.
¥ _TY_GND (¥96L1280C -82C)	! DF (3)	t compool (! ! !	! ! uplink !	! !ft/sec !	! Uplinked M1950 target vehicle velocity vector at T_TV_GRD.
MLS_AVAIL_PSL	! ! B	t compool	t MD	!	!	!	! MSBLS available discrete for primary and secondary runways.
MLS AVAIL SSL	! ! B	! ! compool	: ! MD	! !	<u> </u>	! !	τ !

				. 			
Veriable t name t (N/S ID)	! ! Precision ! ! & type		Initial- isation category	! Initial	! ! Uplink/ ! downlist !	! ! ! Units !	t t t t Concription t
! !#UNVAY_ALT	! ! SP (18)	compool !	! ! 150 !	! ! '	! !	i i	! Altitude above reference ellipsoid of runnay reference point! for maxi table runnays.
HUNIWAY_ALT_ASL	SP	composi	110	-	-	in	! Altitude above reference ellipsoid of runnay reference point ! for primary, secondary, and alternate runnays.
ROWWAY_ALT_PSL	SP	composi	MD	i :		in	: for primary, secondary, and alternate remanys.
HUMWAY_ALT_SSL	SP :	composi	MD	!	-	in	
RUMMAY_MANE	C (18)	composi	MD		-	!	! Hame of landing site in maxi table.
RUNNAY_NAME_PSL	С	compool	HD	: ! !	-	!	I Hame of landing site in mini table for primary, secondary. I and alternate runways.
NUNIAY_NAME_SSL	c :	composi i	: ! 140 !	<u> </u>	-	<u>-</u>	i and albasusta l'unmaga. !
NUMBAT_NAME_ASL	C	compool	MD !			! !	
IRW_AZIMUTH	SP (18)	compcol (MD	:	<u>-</u>	rad 1	Bearing from true north of runway coordinate system +X axis ! for maxi table runways.
RV_AZDAITH_ASL	SF	composi	HD	-	-	Ired	Bearing from true north of runniny coordinate system +X axis
RW_AZINUTH_PSL	SF	compool	MD		. –	!rad	t for primary, secondary, and alternate mini table runways.
RW_AZEMOTH_SSL	SP	compos!	MD	!	!	red	!
LIND_SITE_NO ! (V96U1207C)	SI	composi	_	-	: ! uplink !	! ! !	! Landing site table alot (1 to 18 - maxi, 19 to 21 - mini). !
! !ALT_ABOVE_ELLIPSOID !	SF (10)	compcol i	ND !	! ! '	! ! !	! !re !	! Height of TACAN site above reference ellipsoid in min; ! table.
ALT_ABOVE_ELLIPSOID_	SF (50)	composi	160	! !	·	in !	! Height of TACAM site above reference ellipsoid is maxi ! table.
!		!		: !	<u>.</u> 1	1	! !

F-10

Variable name (M/S ID)	Precision	t or	! Initial- ! ization ! ontegory	! Initial	f ! ! Uplink/ ! downlist !	! ! ! ! Units	! ! ! ! Description
BIAS_TAC_BRG	SF (10)	t compool t	. HD 1	! !	!	l !rad	Bias in TACAN bearing in mini table.
BIAS_TAC_R	SF (10)	compool !	MD			in	! Bias in TACAN range in mini table.
LATITUDE_GEODETIC	SF (10)	: !compcol	MD 1		-	tred	Geodetic latitude at TACAN site in mini table.
LATITUDE_GEODETIC_HAXI	SF (50)	! ! compool !	HD .			tred	! Geodetic latitude at TACAN site in waxi table.
LONGITUDE_EAST !	: SF (10)	r ! compoul!	1 MBD :	! !	!	rad	! Longitude at TACAN site in mini table.
LONGITUDE_EAST_NAXI I	SF (50)	! ! compool !	! HD !	! !	!	! !rad	! Longitude at TACAN site in maxi table.
MAGNETIC_VARIATION	SF (10)	i composi	! ! 150 !	! !	! !	i Ind	! Hagnetic variation of TACAN site in mini table.
 MAGNETIC_VARIATION MAXI	SF (50)	! !compool! !	190		! ! !	! !rad !	! Hagnetic variation at TACAM sit* in eaxi table. !
MSL_ABOVE_ELLIPSOID	SF (10)	i ! compool !	! MD	! !	! ! ~- !	in 1	! I MSL correction to reference ellipsoid at the TACAN site in ! mini table.
MSL_ABOVE_ELLIPSOID_	SF (50)	t ! compool ! !	HD !		! !	ire	! MSL correction to reference ellipsoid at the TACAN site in ! maxi table.
ITAC_ID	SI (10)	t compool	1 110		! !	!	! TACAN channel number in mini table.
	!	! !	! ! !	! ! :	! ! !	!	Positive for y-mode. Hegative for y-mode.
TACAN_ID_N.XI	SI (50)	compool	1 NBO 1		!	!	! TACAN channel number in maxi table.
		, ! !	; } ?	I 1 8	! ! !	; ! !	Positive for x-mode. Hegative for y-mode.
		į	į	•	•	i	•

! Variable ! name ! (M/S ID)	Precision & type	or 1	Initial- ization category		 - Uplink/ downlist	! ! ! Units !	! ! ! Description
! !ALT_ABOVE_ELLIPSOID_UL! ! (V96H122OC)	SF	compool			! ! uplink !	i ift !	! Height of uplinked TACAN site above reference ellipsoid. !
BIAS TAC BRG UL (V96H1223C)	SF	compool	_	! !	! ! uplink !	! !rad !	! ! Uplinked TACAH bearing bias. !
! !BIAS_TAC_R_UL ! (V96H1224C)	SF	compool!			! ! uplink !	! !ft ! !	! ! Uplinked TACAN range tias. !
! !! !! !! !! !! !! !! !! !! !! !! !! !	SF	compoor	-		! ! uplink '	! !rad ! !	! ! Geodetic latitude at uplinked TACAN site. !
! !LONGITUDE_BAST_UL ! ! (V96H1219C)	SP	: compool i			uplink	! !rad ! !	! Longitude of uplinked TACAN site. !
! !MAGNITUDE_VARIATION_UL! ! (V96H1222C)	SF	composi	-		uplink/ downlist	l !rad !	! ! Magnetic variation at uplinked TACAN site. !
! !MSL_ABOVE_ELLIPSOID_UL! ! (V96H1221C)	SF	: compool !			uplink/ downlist	! !ft !	! Altitude of mean sea level above reference ellipsoid at ! uplinked TACAN site.
DO_TACAN_SITE_UPLINK	В	compool	_		uplink/ downlist	! !	! TACAN site uplink command.
! !TAC_SITE_NO !! ! (V96J1216C)	SI	! !compool! !	! ! !		! ! uplink/ ! downlist	! ! !	! TACAN site table slot number.
! !TACA'i_ID_UL ! _(V96J1217C)	SI	compool	_	! !	! ! uplink/ ! downlist	! ! !	! Channel/mode identifier for uplinked TACAN site. !
! !Buffer_b	SF (3)	local	! ! !	-	! !	! !lba	! Buffer area associated with VENT/RCS vector uplink.
! !BUFFER_C	SF (7)	! ! local	! !	: ! !	! ! !	: ! !	! Buffer area associated with covariance matrix uplink. !

F-12

! Variable ! name ! (M/S ID) !	! ! Precision ! ! & type	t or 1	Initial- ization category		! ! Uplink/ ! downlist	! ! ! Units !	Pescription
1 1BUPPER_K 1	! ! SP	! ! local !	_		- !	! !	Puffer location associated with drag model correction factor.
IBUFFER_O	SP (2)	local	-	-	. –	!sec	Buffer area associated with Vent/RCS ON-OFF times uplink.
!BUPPER_R	1 DF (3)	local	-	-	! ! !	ift!	Buffer area associated with Orbiter state position vector uplink.
1 BUPPER_RT	DF (3)	local !		!	! !	in I	Buffer area associated with target vehicle position vector uplink.
!BUFFZR_S	SP (6)	local			! ! — !	 ft,ft/sec 	Buffer designations for UVW standard deviations associated with covariance matrix uplink.
! BUFFER_T	! DP	local			: ! !	! !sec	Buffer location associated with Orbiter state vector uplink i (time tag).
!BUPFER_TT	DF	local	-		! -	! !sec	Buffer location associated with rendezvous vehicle state vector uplink (time tag).
!BUPPER_V	! SF (3)	local	-	!	! ! !	! !ft/sec !	! Buffer area associated with Orbiter state vector uplink ! (velocity).
! !BUFFER_VT !	! SP (3)	local			_	/ !ft/sec ! !	Buffer area associated with target webicle state vector uplink (velocity).
! !KPACTOR ! (V9608173C)	! ! SF	f compool (I MD I	a.a.	! ! uplink !	! ! ! !	Drag model correction coefficient.
! !OP_CODE !	t SI	! compocl ! compocl	_	!	! ! uplink/ ! downlist	! !	7-BIT string code to define command load uplink type.
1 TFOFF (V96W8178c)	! ! DF	! compoci (! ! HD !	! ! -	uplink/ downlist	! !sec !	! Went/RCS off time.
! !	! !	! !	!	! !	; }	! !	! !

						,	
! Variable ! name ! (M/S ID) !	Precision & type		Initial- ization category	 Initial value	 - Uplink/ downlist	! ! ! ! Units ! !	
! ! TPON(¥96W8177C)	DP	t composit 	i MD	! !	! uplink ! downlist	l Isec I	! Vent/RCS on time. !!
! !YPORCE(¥96U8174C -76C) !	SF (3)	compool	МО		uplink downlist	llba	! Vent/RCS body force vector.
PRI MAXI UL ! (V96U8281C)	SI	compool			uplink/	; ! :	Runway selection index for maxi table to primary runway data! I transfer.
SEC MAXI_UL (V96U8282C)	SI	compool			uplist/.	! !	1 Runway selection index for maxi table to secondary runway 1 data transfer.
IALT MAXI_UL I (V96UB283C)	SI :	compool:		- :	uplink/ ! downlist	!	Runway selection index for maxi table to alternate runway ! data transfer.
IDO_GUID_UPLINK	B	compool		! !	uplink/	!	Plag indicating (ON) that landing site selection parameters ! have been uplinked.
iPRI_MAXI_SELECT	az I	compoci	!	! 19 !	!	! !	Rummay selection index for maxi table to primary runway data! transfer.
ISEC_MAXI_SELECT	31	compoci	! !	! 20 !	! !	! !	! Runway selection index for maxi table to secondary runway !! data transfer.
IALT_MAXI_SELECT	SI !	compsol	:	21 !	t t	! !	Runway selection index for maxi table to elternate runway
ITEM1_IN	! B	! compool	-	i OPP	!	!	! Maxi table to primary runway transfer discrete.
ITBN2_IN	! B	compool	-	! OPP	<u> </u>	!	Haxi table to secondary runway transfer discrete.
!ITEH3_IN	! В !	t compool	 !	! OPP	! !	! !	Haxi table to alternate runway transfer discrete.
i	- !	i	i	i	į	l .	i

Variatle name (M/S ID)	! Precision ! & type !		Initial- ization category	! Initial	Uplink/ downlist	! ! ! Units !	: ! ! Description !
DO LND SITE UPLINK (V96X1274X)	! ! B	i compool	! ! !	† !	uplink/ downlist	! !	! Landing site uplink command.
RUNWAT HAME_UL (V96J1208C)	! ! SF !	: ! compool	; 1 !	l !uplink !	uplink	! ! !	! Hame of runway at uplinked landing site. !
RUNWAY ALT_UL (V96H12T4C)	: SP	composi	; ! !	: !uplink ! !	: uplink !	ist !	
RW_LAT_UL (V96H1210C)	! SF	compoci	: ! !	: !uplink !	uplink .	rad !	! Geodetic latitude at uplinked landing site.
RW_LON_UL (V96H1211C)	! SF !	composi:	: ! !	: luplink !	uplink	: rad !	! Longitude at uplinked landing site.
RW_AZIMUTH_UL (V96H1212C)	! SF	eompocl	; ! !	luplink 	uplink	! !rad !	1 Runway heading for uplinked landing site.
RW_DELH_UL (V96H1215C)	i SP	compool :	: ! !	: luplink !	: uplink !	! !st	! Altitude at mean sea level above reference ellipsoid at uplinked landing site.
RW MAG VAR UL (V96H1213C)	! SP	compool	: ! !	luplink !	uplink	! !rad !	! Magnetic variation at uplinked landing site.
	!	! !	! ! !	! !		: ! !	: ! !
	1	! !	; ! !	: ! !		: ! !	
	1 1	: ! !	; ; !	! ! !	; ! !	: ! !	
	!	! !	; !	! !	: !	: !	: !

Flowcharts

PRECEDING PAGE PLANK NOT FILMED

ORBITER_STATE_VECTOR_UPLINK

PRECEDING PAGE BLANK NOT FILMED

RENDEZ VOUS_STATE_VECTOR_UPLINK

VENT_RCS_MODEL_PARAM_UPLINK

DRAG_MODEL_PARAM_UPLINK

COV_MATRIX_PARAM_UPLINK

LANDING_SITE_MAXI_MINI_UPLINK (Sheet 1 of 2).

^{*}Implies catenation of first character string with first character of second character string.

LANDING_SITE_MAXI_MINI_U?LINK (Sheet 2 of 2).

^{*}Implies catenation of first character string with first character of second character string.

TACAN_SITE_MAXI_MIN1_UPLINK.

SITE_SELECTION_UPLINK.

APPENDIX G

INTERFACE DIAGRAMS FOR THE ONORBIT/RENDEZVOUS NAVIGATION SEQUENCER PRINCIPAL FUNCTION, THE ONORBIT/RENDEZVOUS NAVIGATION PRINCIPAL FUNCTION AND THE ONORBIT PRECISION STATE PREDICTION PRINCIPAL FUNCTION

PRECEDING PAGE BLANK NOT FREED

This appendix provides supplementary interface information concerning the following principal functions:

- Onorbit/Rendezvous Navigation Sequencer
- Onorbit/Rendezvous Navigation
- Onorbit Precision State Prediction

The intent of this appendix is to provide block diagrams for each principal function in order to supply the following information:

- a. The constituent subfunctions of each principal function.
- b. A calling diagram for each subfunction in each principal function.
- c. The interrelationship of the principal functions.

The information contained in this appendix is intended to be supplementary only.

PRECEDING PAGE PLANE NOT FILMED

79FM10

CONTENTS

Figure		Pag
G-1	The onorbit/rendezvous navigation sequencer principal function	G-7
G-2	Module interface for onorbit/rendezvous navigation	G-8
G-3	The onorbit precision state prediction principal function	G-9

PRECEDING PAGE PLACE NOT FURD

with my of the house and with the

त्रकारणाच्या प्रकार क्र**ाम्बर क्रिकेट क्रि**केट क्रिकेट क्रिकेट के देश क्रिकेट के प्रकार के जाता है। जिल्लाका के प्रस्ति क्रिकेट

Figure G-1.- The onorbit/rendezvous navigation sequencer principal function.

G-8

Figure G-3.- The onorbit precision state prediction principal function.