Multivariable Calculus Self-Learning Module

Exercises

Contents

\mathbf{Exe}	ercise 1
1.1	Hint 1
1.2	Hint 2
1.3	Hint 3
1.4	Solution
Exe	ercise 2
2.1	Hint 1
2.2	Hint 2
2.3	Solution
Exe	ercise 3
	Hint 1
	Hint 2
•	Hint 3
0.0	Hint 4
3.5	Hint 5
3.6	Solution
Exe	ercise 4
4.1	Hint 1
4.2	Hint 2
4.3	Hint 3
4.4	Hint 4
4.5	Solution
Exe	ercise 5
5.1	Hint 1
5.2	Hint 2
5.3	Hint 3
5.4	Hint 4
5.5	Solution
	1.1 1.2 1.3 1.4 Exe 2.1 2.2 2.3 Exe 3.1 3.2 3.3 3.4 3.5 3.6 Exe 4.1 4.2 4.3 4.4 4.5 Exe 5.1 5.2 5.3 5.4

Calculate the length of curve C, where C is the curve:

$$t \mapsto (\cos(t) + t\sin(t), \sin(t) - t\cos(t))$$

for $0 \le t \le 2\pi$.

1.1 Hint 1

There is a formula for calculating the length of the curve. You must know this one! The formula is of the form:

$$\int_{\cdots}^{\cdots} |\ldots| \, dt$$

1.2 Hint 2

The formula for the length is:

$$\int_0^{2\pi} |f'(t)| \, dt$$

1.3 Hint 3

$$f'(t) = \frac{d}{dt}(\cos(t) + t\sin(t), \sin(t) - t\cos(t))$$

$$= (-\sin(t) + \sin(t) + t\cos(t), \cos(t) - \cos(t) + t\sin(t))$$

$$= (t\cos(t), t\sin(t))$$

So

$$|f'(t)| = \sqrt{t^2 \cos^2(t) + t^2 \sin^2(t)}$$
$$= \sqrt{t^2}$$
$$= |t|$$

1.4 Solution

Since $t \ge 0$, we have |t| = t, so:

$$\int_0^{2\pi} |f'(t)| dt = \int_0^{2\pi} t dt$$
$$= \left[\frac{t^2}{2}\right]_0^{2\pi}$$
$$= 2\pi^2$$

Consider the curve C given by f(x, y) = 0, where

$$f(x,y) = (x-y)^2 + 4(x+y) - 4$$

Determine the point on C at which x + y is maximal.

2.1 Hint 1

We want to maximize g(x, y) = x + y subject to the constraint f(x, y) = 0. Use Lagrange.

2.2 Hint 2

Solve the equation $\nabla g = \lambda \nabla f$.

2.3 Solution

$$\nabla g(x,y) = \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$\nabla f(x,y) = \begin{pmatrix} 2(x-y) + 4\\ -2(x-y) + 4 \end{pmatrix}$$

So

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 2(x-y) + 4 \\ -2(x-y) + 4 \end{pmatrix}$$

Note that $\lambda = 0$ gives

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

which is a contradiction, so $\lambda \neq 0$ and we get the system:

$$\begin{cases} 2(x-y) + 4 = \frac{1}{\lambda} \\ -2(x-y) + 4 = \frac{1}{\lambda} \end{cases}$$

Subtracting the two equations gives:

$$2(x-y) + 4 + 2(x-y) - 4 = \frac{1}{\lambda} - \frac{1}{\lambda} \Leftrightarrow 4(x-y) = 0 \Leftrightarrow x = y$$

Since we are looking for the point that maximizes x + y on C, we substitute y = x in f(x, y) = 0:

$$(x-x)^2 + 4(x+x) - 4 = 0 \Leftrightarrow 8x = 4 \Leftrightarrow x = \frac{1}{2}$$

So

$$(x,y) = \left(\frac{1}{2}, \frac{1}{2}\right)$$

and the maximum is

$$g\left(\frac{1}{2},\frac{1}{2}\right)=1.$$

Consider the function

$$f(x, y, z) = \frac{1}{x} + \frac{1}{8y} + \frac{1}{27z}$$

Find the point on the unit sphere (i.e. the sphere centered at (0,0,0) of radius 1) at which f is maximal and the point at which it is minimal. Calculate also these maximum and minimum values.

3.1 Hint 1

The surface of a sphere centered at (x_0, y_0, z_0) of radius R has the formula

$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = R^2$$

3.2 Hint 2

Let

$$g(x, y, z) = x^2 + y^2 + z^2 - 1.$$

We want to maximize f(x, y, z) given the constraint g(x, y, z) = 0. Use Lagrange.

3.3 Hint 3

Solve the equation $\nabla f = \lambda \nabla g$.

3.4 Hint 4

$$\nabla f(x, y, z) = \begin{pmatrix} -\frac{1}{x^2} \\ -\frac{1}{8y^2} \\ -\frac{1}{27z^2} \end{pmatrix}$$

$$\nabla g(x, y, z) = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}$$

So

$$\begin{pmatrix} -\frac{1}{x^2} \\ -\frac{1}{8y^2} \\ -\frac{1}{27x^2} \end{pmatrix} = \lambda \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}$$

Note that the left-hand side is always non-zero, so $\lambda \neq 0$. Hence:

$$\begin{cases} -\frac{1}{x^2} = 2\lambda x \\ -\frac{1}{8y^2} = 2\lambda y \end{cases} \Leftrightarrow \begin{cases} x^3 = -\frac{1}{2\lambda} \\ y^3 = -\frac{1}{8 \cdot 2\lambda} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ y = -\frac{1}{2}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ y = -\frac{1}{2}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{2}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{2}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{2}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{2}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{2}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{2}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{2}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{2}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{2}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{2}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{3}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{3}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{3}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{3}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{3}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{3}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{3}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{3}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{3}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{3}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{3}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{3}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{3}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\frac{1}{3}\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt[3]{\frac{1}{2\lambda}} \\ z = -\sqrt[3]{\frac{1}{2\lambda}} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases}$$

3.5 Hint 5

The points lie on the unit sphere, so $x^2 + y^2 + z^2 = 1$ must also hold.

3.6 Solution

$$x^{2} + \left(-\frac{1}{2} \cdot x\right)^{2} + \left(-\frac{1}{3} \cdot x\right)^{2} = 1$$

$$\Leftrightarrow x^{2} \cdot \left(1 + \frac{1}{4} + \frac{1}{9}\right) = 1$$

$$\Leftrightarrow x^{2} \cdot \frac{49}{36} = 1$$

$$\Leftrightarrow x^{2} = \frac{36}{49}$$

$$\Leftrightarrow x = \pm \frac{6}{7}$$

We get two solutions:

$$x = \frac{6}{7}$$

$$y = -\frac{1}{2} \cdot x = -\frac{3}{7}$$

$$z = -\frac{1}{3} \cdot x = -\frac{2}{7}$$

and

$$x = -\frac{6}{7}$$

$$y = -\frac{1}{2} \cdot x = \frac{3}{7}$$

$$z = -\frac{1}{3} \cdot x = \frac{2}{7}$$

In order to determine which one gives the minimum and which one the maximum, we substitute in f:

$$\begin{split} f\left(\frac{6}{7}, -\frac{3}{7}, -\frac{2}{7}\right) &= \frac{1}{-6/7} + \frac{1}{8 \cdot (-3/7)} + \frac{1}{27 \cdot (-2/7)} \\ &= -\frac{7}{6} - \frac{7}{24} - \frac{7}{54} \\ &= -\frac{373}{216} \end{split}$$

and

$$\begin{split} f\left(-\frac{6}{7},\frac{3}{7},\frac{2}{7}\right) &= \frac{1}{6/7} + \frac{1}{8\cdot 3/7} + \frac{1}{27\cdot 2/7} \\ &= \frac{7}{6} + \frac{7}{24} + \frac{7}{54} \\ &= \frac{373}{216} \end{split}$$

So f achieves a maximum value of 373/216 at

$$\left(-\frac{6}{7},\frac{3}{7},\frac{2}{7}\right)$$

and a minimum value of -373/216 at

$$\left(\frac{6}{7}, -\frac{3}{7}, -\frac{2}{7}\right).$$

Consider the function

$$f(x,y) = \frac{x^2 + y^2}{xy}$$

defined on the set

$$K = \{(x, y) : 0 < x \le 1, 0 < y \le 1\}.$$

Determine where f assumes its minimum, and what that minimum value is.

4.1 Hint 1

Calculate ∇f .

4.2 Hint 2

$$\frac{\partial f}{\partial x} = \left(\frac{xy \cdot 2x - (x^2 + y^2) \cdot y}{x^2 y^2}\right)$$
$$= \frac{x^2 y - y^3}{x^2 y^2}$$
$$= \frac{x^2 - y^2}{x^2 y}$$

By symmetry, we have:

$$\frac{\partial f}{\partial y} = \frac{y^2 - x^2}{xy^2}$$

So

$$\nabla f(x,y) = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{x^2 - y^2}{x^2 y} \\ \frac{y^2 - x^2}{xy^2} \end{pmatrix}$$

4.3 Hint 3

Solve $\nabla f = 0$.

4.4 Hint 4

$$\begin{pmatrix} \frac{x^2 - y^2}{x^2 y} \\ \frac{y^2 - x^2}{xy^2} \end{pmatrix} = 0 \Leftrightarrow x^2 - y^2 = 0 \Leftrightarrow x = \pm y$$

4.5 Solution

Note that since x, y > 0 on K, we cannot have x = -y. Substituting y = x in f we get:

$$f(x,x) = \frac{x^2 + x^2}{x^2} = 2$$

So f achieves its minimum value 2 on the entire line segment $x = y, 0 < x \le 1, 0 < y \le 1$.

Consider the surface S defined by f(x, y, z) = 0, where

$$f(x, y, z) = x^2 + y^2 + z^2 + 3xy - z - 11$$

- 1. Check that A = (1, 1, 3) lies on S.
- 2. Give an equation of the form $\alpha x + \beta y + \gamma z = \delta$ describing the tangent plane to S at point A.

5.1 Hint 1

1. Substitute x = 1, y = 1, z = 3 in f to get:

$$1^2 + 1^2 + 3^2 + 3 \cdot 1 \cdot 1 - 3 - 11 = 0.$$

5.2 Hint 2

2. There are several ways to go about this, but in most (if not all) you need to compute ∇f at the point A.

5.3 Hint 3

$$\nabla f(x, y, z) = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix} = \begin{pmatrix} 2x + 3y \\ 3x + 2y \\ 2z - 1 \end{pmatrix}$$

So

$$\nabla f(1,1,3) = \begin{pmatrix} 2 \cdot 1 + 3 \cdot 1 \\ 3 \cdot 1 + 2 \cdot 1 \\ 2 \cdot 3 - 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \\ 5 \end{pmatrix}$$

5.4 Hint 4

The gradient of f at A is a vector orthogonal to the tangent plane to S at point A. How do you find an equation of a plane if you know a vector orthogonal to it and a point on it?

5.5 Solution

The tangent plane is perpendicular to the vector $\nabla f(1,1,3) = (5,5,5)$ and passes through the point (1,1,3), so its equation is:

$$5 \cdot (x-1) + 5 \cdot (y-1) + 5 \cdot (z-3) = 0 \Leftrightarrow 5x + 5y + 5z = 25$$

Remark: There is also a formula given in the book as the linearization of f at $A = (x_0, y_0, z_0)$:

$$L(x, y, z) = f(A) + f_x(A) \cdot (x - x_0) + f_y(A) \cdot (y - y_0) + f_z(A) \cdot (z - z_0)$$

(this is essentially a first order Taylor expansion). The formula will yield the exact same answer. However, applying formulas without understanding is like eating your food without chewing!