29janvier2022CIR 1 et CNB 1

Quiz de Mathématiques

Durée : 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.
— Les questions peuvent présenter une ou plusieurs réponses correctes.
— Noircir les cases, ne pas faire des croix sur les cases.
— En cas d'erreur, utilisez du « blanco ».
— Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
BON COURAGE!
* * * * * * * * * * * * * * * * * * * *
1. Une relation binaire R est une relation d'équivalence dans un ensemble E si :
elle est réflexive, symétrique et transitive elle est réflexive, antisymétrique et transitive (3) $\forall x \in E, \ xRx; \ \forall x, y \in E, \ (xRy \ et \ yRx) \Rightarrow x = y; \ \ \forall x, y, z \in E, \ (xRy \ et \ yRz) \Rightarrow xRz$ (4) $\forall x \in E, \ xRx; \ \forall x, y \in E, \ xRy \Rightarrow yRx; \ \ \forall x, y, z \in E, \ (xRy \ et \ yRz) \Rightarrow xRz$ (5) aucune des réponses précédentes n'est correcte.
2. Soient a et b deux entiers relatifs. Parmi les affirmations suivantes, lesquelles sont vraies?
$ \begin{array}{ll} (1) \square & D(0) = \{0\} \\ (2) \blacksquare & D(1) = \{-1, 1\} \\ (3) \blacksquare & n\mathbb{Z} = \{qn, q \in \mathbb{Z}\} \\ (4) \square & \forall a, b \in \mathbb{Z} \text{ on a : } b a \Leftrightarrow a \in D(b) \Leftrightarrow b \in a\mathbb{Z} \\ (5) \square & \text{aucune des réponses précédentes n'est correcte.} \end{array} $
3. Soient a et b deux entiers relatifs. $\forall (a,b) \in \mathbb{Z}^2, \ b a$ est équivalent à
$a\in D(b)$ $a\in D(b)$ $a\in b\mathbb{Z}$ $a\in b\mathbb{Z}$ $a\in b\mathbb{Z}$ $a\in b\mathbb{Z}$ $a=bq$ $a\in b\mathbb{Z}$ aucune des réponses précédentes n'est correcte.
4. $1^{19} + 2^{19} + 3^{19} + \ldots + 17^{19}$ est congru modulo 19 à
$_{(1)}\square$ -2 $_{(2)}\square$ -1 $_{(3)}\square$ 0 $_{(4)}\blacksquare$ 1 $_{(5)}\square$ aucune des réponses précédentes n'est correcte
5. Soit n un entier naturel. Combien de solutions admet l'équation $2^n x + 3^n y = 6^n$ dans $\mathbb{Z} \times \mathbb{Z}$?
$_{(1)}\square$ zéros $_{(2)}\square$ une unique $_{(3)}\square$ n $_{(4)}\blacksquare$ une infinité
aucune des réponses précédentes n'est correcte

	$_{(1)}\Box$ 0	$_{(2)}\square$ 1 $_{(3)}\square$ 3 $_{(4)}\blacksquare$ 7 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
7. Soit dans $\mathbb{Z} \times \mathbb{Z}$ l'équation $x \times y \equiv 7$. Alors :		
	$(1) \Box$ $(2) \blacksquare$ $(3) \Box$ $(4) \Box$ $(5) \Box$	x et y sont multiples de 7 x ou y sont multiples de 7 soit x , soit y n'est pas un multiple de 7 ni x ni y sont multiples de 7 aucune des réponses précédentes n'est correcte.
8.	Soit la cong	gruence (E) $5x \equiv 2$. (E) est équivalente à :
		(1) \square $x \equiv 0$ (2) \square $x \equiv 2$ (3) \square $x \equiv 7$ (4) \blacksquare $x \equiv 14$ (5) \square aucune des réponses précédentes n'est correcte.
0	O1+ 1-	
9.	Quei est le	reste de la division euclidienne de 5^n par 3 selon les valeurs de l'entier naturel n ?
	₍₁₎ ■ 1	$_{(2)}\square$ -1 $_{(3)}\square$ 0 $_{(4)}\blacksquare$ 2 $_{(5)}\square$ aucune des réponses précédentes n'est correcte
10.	Cocher la(le	es) affirmation(s) correctes.
	(2)	$\mathbb{Z}/n\mathbb{Z}$ se lit \mathbb{Z} divise $n\mathbb{Z}$ Les éléments de $\mathbb{Z}/n\mathbb{Z}$ sont des entiers relatifs. $\mathbb{Z}/n\mathbb{Z} = \{0, 1, 2, \dots, n-1\}$ $\mathbb{Z}/n\mathbb{Z}$ a une infinité d'éléments aucune des réponses précédentes n'est correcte.
11.	On est dans	s $\mathbb{Z}/n\mathbb{Z}$. Cocher les affirmations correctes.
	$(1) \square$ $(2) \square$ $(3) \blacksquare$ $(4) \blacksquare$ $(5) \square$	\overline{x} est toujours un diviseur de zéro $\overline{x} \cdot \overline{y} = \overline{0}$ si et seulement si $\overline{x} = 0$ ou $\overline{y} = 0$ Si $\overline{x} \cdot \overline{y} = \overline{1}, \overline{x}$ est inversible $\overline{x} = \{y \in \mathbb{Z} : y \equiv x\}$ aucune des réponses précédentes n'est correcte.
12. On considère l'ensemble quotient $\mathbb{Z}/5\mathbb{Z}$.		
	$(1) \blacksquare$ $(2) \blacksquare$ $(3) \blacksquare$ $(4) \square$ $(5) \square$	$\mathbb{Z}/5\mathbb{Z}$ a 5 éléments $\overline{3} \cdot \overline{4} = \overline{2}$ $\overline{3} + \overline{4} = \overline{2}$ $\overline{3}$ est diviseur de zéro et inversible. aucune des réponses précédentes n'est correcte.
13.	On considè	re l'ensemble quotient $\mathbb{Z}/10\mathbb{Z}$.
	$(1) \square$ $(2) \square$ $(3) \blacksquare$ $(4) \square$ $(5) \square$	$(\mathbb{Z}/10\mathbb{Z})^* = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}\}\$ $(\mathbb{Z}/10\mathbb{Z})^* = \varnothing$ $\overline{5}$ est un diviseur de zéro. Cette ensemble n'a pas de diviseurs de zéro. aucune des réponses précédentes n'est correcte.
14.	Quel est l'e	nsemble S des solutions de l'équation diophantienne $121x + 33y = 22$?
	$(1) \Box$ $(2) \Box$ $(3) \blacksquare$ $(4) \blacksquare$ $(5) \Box$	$S = \{(1 - 11k; -3 + 3k), k \in \mathbb{Z}\}$ $S = \{(-1 - 3k; 3 + 11k), k \in \mathbb{Z}\}$ $S = \{(1 + 3k; -3 - 11k), k \in \mathbb{Z}\}$ $S = \{(1 - 3k; -3 + 11k), k \in \mathbb{Z}\}$ aucune des réponses précédentes n'est correcte.

6. Quel est le dernier chiffre du nombre $3^{2015}\,?$

15. Aujourd'hui c'est vendredi. Quel jour de la semaine serons-nous dans 4 ³⁰⁰ jours? reste de division par 7			
$_{(1)}\square$ Lundi $_{(2)}\square$ Mardi $_{(3)}\blacksquare$ Samedi $_{(4)}\square$ Dimanche			
$_{(5)}\Box$ aucune des réponses précédentes n'est correcte.			
16. L'entier 4 est un inverse modulo 11 de?			
$_{(1)}\square$ 6 $_{(2)}\square$ -6 $_{(3)}\blacksquare$ 3 $_{(4)}\square$ -3 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.			
17. Parmi les congruences suivantes, lesquelles sont vraies?			
(1) \square $2^6 = 1$ (2) \square $3^4 = 1$ (3) \square $4^2 = 1$ (4) \square $3^4 = 1$ (5) \square aucune des réponses précédentes n'est correcte.			
18. Soient $756 = 2^2 \cdot 3^3 \cdot 7$ et $7344 = 2^4 \cdot 3^3 \cdot 17$. Nous avons :			

19. Soient m le message en clair et x le message crypté avec la méthode RSA, avec (n,e) la clé publique et (n,d) la clé privée.

Parmi les opérations suivantes, la(les) quelle(s) sont correctes?

20. Soient $a, b \in \mathbb{Z}$. Cocher la(les) affirmation(s) qui sont correcte(s).

$$(1) \blacksquare \quad \text{Si } ab \underset{13}{\equiv} 0 \text{, alors } a \underset{13}{\equiv} 0 \text{ ou } b \underset{13}{\equiv} 0 \quad \text{ } (2) \blacksquare \quad (a+b)^3 \underset{3}{\equiv} a^3 + b^3$$

$$(3) \square \quad a^6 \underset{7}{\equiv} 1 \quad \text{ } (4) \blacksquare \quad a^{11} \underset{11}{\equiv} a \quad \text{ } (5) \square \quad \text{aucune des réponses précédentes n'est correcte.}$$
 fermat