Please check the examination details belo	w before enteri	ng your candidate information
Candidate surname		Other names
Centre Number Candidate Nu Pearson Edexcel Interr		l Advanced Level
Thursday 9 January	2025	
Morning (Time: 1 hour 30 minutes)	Paper reference	WMA11/01
Mathematics		
International Advanced Su Pure Mathematics P1	bsidiary	/Advanced Level
You must have: Mathematical Formulae and Statistical	Tables (Yello	ow), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
- use this as a guide as to how much time to spend on each guestion.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

1. Find

$$\int \left(8x^3 - 6\sqrt{x} - \frac{2}{5x^3}\right) \mathrm{d}x$$

						C
giving	your	answer	1n	simp	lest	form.

(4)

Question 1 continued	
	Total for Question 1 is 4 marks)

2. In this question you must show all stages of your working. Solutions relying on calculator technology are not acceptable.

Given that

- the point A has coordinates $\left(-2\sqrt{3}, 5\right)$
- the point *B* has coordinates $(7\sqrt{3}, 8)$
- the straight line l_1 passes through A and B
- (a) show that the gradient of l_1 is $p\sqrt{3}$, where p is a rational constant to be found. You must show each step of your working.

(2)

The straight line l_2 is perpendicular to l_1 and passes through A.

(b) Find the equation of l_2 , giving your answer in the form y = mx + c, where m and c are constants.

(3)

Question 2 continued
(Total for Orandon 2 to 5 and 1)
(Total for Question 2 is 5 marks)

3. The population of a town was monitored.

Exactly 5 years after monitoring began, the population was 58 000

Exactly 10 years after monitoring began, the population was 65 000

Given that the population of the town, P thousand, t years after monitoring began can be modelled by the equation

$$P^2 = a + bt^3$$

where a and b are constants,

(a) find the value of a and the value of b.

(3)

According to the model, exactly T years after monitoring began, the population was $85\,000$

Making your method clear,

(b) find the value of T, giving your answer to one decimal place.

(Solutions relying entirely on calculator technology are not acceptable.)

1	7	١
1	4	J

Question 3 continued

Question 3 continued	

Question 3 continued	
	(Total for Question 3 is 5 marks)

4. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

(i) Given that

$$y = a^x$$
 where a is a positive constant

express, in simplest form, in terms of y and a

(a)
$$a^{3x+1}$$

(1)

(b)
$$\frac{5}{(3a^{1-x})^{-2}}$$

(3)

(ii) (a) Use the substitution $p = 9^t$ to show that the equation

$$3(3^{4t+2}+1) = 82 \times 9^t$$

can be rewritten as

$$27p^2 - 82p + 3 = 0$$

(2)

(b) Hence solve

$$3(3^{4t+2}+1) = 82 \times 9^t$$

(3)

Question 4 continued

Question 4 continued

Question 4 continued	
(Total for Question 4	is 9 marks)

5. In this question you must show all stages of your working. Solutions relying on calculator technology are not acceptable.

The curve C has equation

$$y = 4x^3 + \frac{2}{x} + 9 \qquad x > 0$$

(a) Find $\frac{dy}{dx}$, giving your answer in simplest form.

(2)

Given that

- the point *P* lies on *C*
- the line with equation y = k 5x, where k is a constant, is the tangent to C at P
- (b) show that the x coordinate of P satisfies the equation

$$12x^4 + 5x^2 - 2 = 0$$

(2)

(c) Hence find the value of k.

(4)

Question 5 continued

Question 5 continued

Question 5 continued	
(Total	for Question 5 is 8 marks)
(1000)	Tor Question e is o marins)

6. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

The curve C has equation y = f(x), x > 0

Given that

- the point P(4, -5) lies on C
- $f'(x) = \frac{2x^2 + ax + b}{4\sqrt{x}}$, where a and b are constants
- the gradient of the tangent to C at P is 7
- (a) show that

$$4a + b = 24$$

(2)

Given also that a + b = -9

(b) find, in simplest form, f(x)

(7)

Curve C is transformed to the curve with equation y = f(x - 3)

Given that point P is transformed to the point Q,

(c) state the coordinates of Q.

(1)

Question 6 continued

Question 6 continued
(Total for Question 6 is 10 marks)

7. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

The curve C has equation

$$y = \frac{2}{x} - k$$

where k is a **positive** constant.

(a) Sketch the graph of *C*.

Show on your sketch

- the coordinates of any points of intersection of C with the coordinate axes
- the equation of the horizontal asymptote to *C* stating each in terms of *k*.

(3)

The line *l* has equation y = -kx - 6

Given that *l* intersects *C* at 2 distinct points,

(b) find the range of possible values of k.

(5)

Question 7 continued

Question 7 continued

Question 7 continued	
	(Total for Question 7 is 8 marks)
	(10tal 101 Ancetion) is o marke)

Figure 1

Figure 1 shows a sketch of a design for a badge.

The design consists of a triangle OAB joined to a sector OBC of a circle with centre O In the design

- $OB = 3.4 \, \text{cm}$
- $AB = 1.9 \, \text{cm}$
- angle $AOB = \frac{\pi}{6}$ radians
- angle $OAB > \frac{\pi}{2}$ radians

Making your method clear,

- (a) find the size of angle *OAB*, giving your answer in radians to 4 significant figures,
 - (3)
- (b) find the area of triangle *OAB*, in cm², giving your answer to 3 significant figures.
- (2)

Given that the ratio of the area of sector OBC to the area of triangle OAB is 3:2

(c) show that angle BOC is 0.462 radians to 3 significant figures.

- (3)
- (d) Hence find the perimeter of the badge, in cm, to the nearest integer.
- (5)

Question 8 continued

Question 8 continued

Question 8 continued	
<i>(</i> T	otal for Question 8 is 13 marks)

Figure 2

(a) Express $6x - \frac{27}{4} - x^2$ in the form $a + b(x + c)^2$ where a, b and c are constants to be found.

(3)

Figure 2 shows part of a sketch of curve C_1 with equation

$$y = 6x - \frac{27}{4} - x^2$$

Given that the point P is the maximum point on C_1

(b) state the coordinates of P

(2)

Figure 2 also shows part of a sketch of curve C_2 with equation

$$y = \cos(kx)$$

where k is a constant and x is measured in radians.

Given that C_1 and C_2 intersect on the x-axis at point A and at point B, as shown in Figure 2,

- (c) (i) state the x coordinate of B
 - (ii) state the value of k
 - (iii) state the period of C_2

(3)

The line segment L joins P and B.

The region R, shown shaded in Figure 2, is bounded by L, C_1 and C_2

(d) Use inequalities to define R.

(5)

Question 9 continued

Question 9 continued	
	(Total for Question 9 is 13 marks)
•	TOTAL FOR PAPER IS 75 MARKS

