ΣΤΟΧΑΣΤΙΚΕΣ ΑΝΕΛΙΞΕΙΣ - Εξεταστική Ιούνη 2011

Διάρκεια Εξέτασης 2 ώρες και 30 λεπτά.

Άσχηση 1 Θεωρήστε τυχαίο περίπατο $X_n=X_0+Y_1+\cdots+Y_n,\;n=1,2,\ldots$ με $X_0=0,$ και αριθμούς $\mathbf{a},b>0.$ Έστω $\tau=\inf\{n:\ X_n\notin (-\mathbf{a},b)\}$ ο χρόνος πρώτης εξόδου από το $(-\mathbf{a},b)$. Αν g είναι η ροπογεννήτρια συνάρτηση των ανεξάρτητων τ.μ. Y_i με πεδίο ορισμού $S\subset\mathbb{R}$

α. Δείξτε ότι $\mathbb{E}\left[\left(g(s)\right)^{-\tau}e^{sX_{\tau}}\right]=1, \ \forall s\in S.$

β. Αν $\mu = \mathbb{E}[Y_i]$ δείξτε ότι $\mathbb{E}[X_\tau] = \mu \mathbb{E}[\tau]$.

γ. Αν $\sigma^2 = \operatorname{Var}[Y_i]$ και $\mu = 0$ δείξτε ότι $\mathbb{E}[X_\tau^2] = \sigma^2 \mathbb{E}[\tau]$.

δ. Αν $X_{\tau} \in \{-a,b\}$ και α,β οι πιθανότητες απορρόφησης στα -a,b αντίστοιχα (δηλαδή $\alpha = \mathbb{P}[X_{\tau}=-a],\ \beta=$ $\mathbb{P}[X_{\tau}=b]$), δείξτε ότι

$$\mathbb{E}[\tau] = \begin{cases} \frac{-\alpha \mathbf{a} + \beta b}{\mu} & , \mu \neq 0 \\ \frac{\alpha \mathbf{a}^2 + \beta b^2}{\sigma^2} & , \mu = 0. \end{cases}$$

Άσκηση 2 Έστω τυχαίος περίπατος $X_n = X_0 + Y_1 + \cdots + Y_n, \ n=1,2,\ldots$, όπου $X_0 = 0$ και $Y_i = 1$ ή -1 ή 0με πιθανότητες 1/4, 1/2, 1/4 αντίστοιχα.

α. Να βρείτε τις πιθανότητες απορρόφησης α, β στα -4 και 2 αντίστοιχα.

β. Να βρείτε την $\mathbb{E}[\tau]$ όπου $\tau = \inf\{n: X_n \notin (-4,2)\}.$

Άσχηση ${f 3}$ Θεωρήστε μια μαρχοβιανή αλυσίδα $\{X_n\}_{n\geq 0}$ στο σύνολο καταστάσεων ${\Bbb X}=\{1,2,3,4,5\}$ με πίνακα μετάβασης

$$P = \begin{pmatrix} 1/4 & 1/4 & 1/4 & 1/4 & 0 \\ 0 & 1/4 & 1/2 & 1/4 & 0 \\ 0 & 1/2 & 1/4 & 0 & 1/4 \\ 0 & 0 & 0 & 1/4 & 3/4 \\ 0 & 0 & 0 & 1/2 & 1/2 \end{pmatrix}$$

- α. Ταξινομήστε τις καταστάσεις σε κλάσεις επικοινωνίας. Ποιες κλάσεις είναι παροδικές και ποιες επαναληπτικές;
- β. Αν $X_0=4$ υπολογίστε την πιθανότητα $\mathbb{P}[X_n=4]$ για κάθε $n\in\mathbb{N}$. Η \mathbb{N} βρείτε την $\mathbb{P}[X_n=4]$ γ. Αν $X_0=1$ υπολογίστε την πιθανότητα η αλυσίδα να βρεθεί κάποια στιγμή στο 3. Συγκεκριμένα αν S είναι ο χρόνος άφιξης στο 3, $S=\inf\{k\geq 0: X_k=3\}$ υπολογίστε την $\mathbb{P}_1[S<+\infty]$.
- δ. Αν $X_0=2$ και T είναι ο χρόνος άφιξης της αλυσίδας στο σύνολο $\{4,5\},$ δηλαδή $T=\inf\left\{k\geq 0:\; X_k\in\{4,5\}\right\}$ υπολογίστε την μέση τιμή του T.

Άσχηση 4 Ο χύριος Χ αντιμετωπίζει ένα σοβαρό πρόβλημα μνήμης. Κάθε νύχτα ξεχνά ένα μέρος από τα πρόσωπα που γνωρίζει. Συγκεκριμένα, αν θυμάται i πρόσωπα πριν πέσει για ύπνο, το πλήθος των προσώπων που εξαχολουθεί να θυμάται μόλις ξυπνήσει μπορεί να είναι $0,1,2,\ldots,i$ με πιθανότητα 1/(i+1) το καθένα. Ο γιατρός που τον παραχολουθεί του μαθαίνει κάθε μέρα ένα πρόσωπο, διαφορετικό από αυτά που εκείνη τη στιγμή θυμάται. Aν X_n είναι το πλήθος των προσώπων που θυμάται ο χύριος X το βράδυ της n-στής ημέρας

α. Βρείτε τις πιθανότητες μετάβασης p_{ij} της αλυσίδας X_n , για κάθε $i,j\in\mathbb{N}$.

β. Δείξτε ότι η αλυσίδα αυτή είναι μη αναγώγιμη. $+ \frac{1}{2}$ USOS CE GOVES, γ. Δείξτε ότι η κατανομή π_* με $\pi_*(k) = \frac{1}{e(k-1)!}$ για $k=1,2,\ldots$ είναι αναλλοίωτη κατανομή για την X_n .

δ. Αν χάποια μέρα ο κύριος Χ θυμάται 5 πρόσωπα πριν πέσει για ύπνο, ποια είναι η μέση τιμή των ημερών που θα μεσολαβήσουν μέχρι το επόμενο βράδυ που θα θυμάται πάλι 5 πρόσωπα;