Making 3'UTR files for additional species

Morten Muhlig Nielsen

5/6/2021

Obtain sequences from Ensembl

In a browser, navigate to https://www.ensembl.org/biomart/martview/.

Choose 'Ensembl Genes' under 'CHOOSE DATABASE'. At the time of writing, the version was 104.

Now choose the species of interest:

Add a filter so that only protein coding genes are returned, and choose the attributes '3'UTR sequence', 'Gene Stable ID', 'Transcript Stable ID', 'Strand' and 'Gene Name'.

Export the results as a fasta file by pressing the 'Results' button. You can now download the fasta file by pressing 'Go'. You may choose to export a zipped file and get notified by mail when it is ready.

Save the file to an appropriate location. Now use the command line to create a one line fasta file:

```
cat /path/to/mart_export.txt | awk '/^>/&&NR>1{print "";}{ printf "%s",/^>/ ? $0" ":$0 }'
| awk '{print($1" "$2)}'> /desired/path/to/oneLineFasta.fa
# the cryptic step is to avoid three fields when sequence unavailable.
```

Now do the following in R to produce the seq dataframe and seqlist needed in miReact:

```
# checkup that there are four columns,
# of which the last contains the sequence as well as the strand direction.
colnames(seqs) <- c("gid","tid","gsym","sequence")</pre>
head(seqs$gid) # check
seqs$gid<-sub(">","",seqs$gid) # remove the fasta '>' separator.
seqs$strand <- sub(" .*","",seqs$sequence) # Fetch the strand from the 'sequence' col.
table(seqs$strand) # should be '1' and '-1' only
seqs$sequence <- sub("^-","",seqs$sequence) # remove strand info from sequence field.
seqs$sequence <- sub("1 ","",seqs$sequence)</pre>
seqs$sequence<-toupper(seqs$sequence) # sequence to upper case.</pre>
seqs$nchar <- nchar(seqs$sequence) # sequence lengths</pre>
hist(seqs$nchar) # look at seq length distribution
min(seqs$nchar)
sum(seqs$nchar==1) # 44
head(seqs[grep("S",seqs$sequence),]) # See if some have 'SEQUENCE' dummy annotation.
sum(!grepl("S",seqs$sequence))
seqs$sequence <- sub("^SEQUENCE","",seqs$sequence) # make these have length 0</pre>
seqs$nchar <- nchar(seqs$sequence) # re-define sequence lengths accordingly.</pre>
hist(seqs$nchar) # checks...
min(seqs$nchar)
sum(seqs$nchar==0)
# get rid og segs < 20 and > 10000
seqs <- seqs[seqs$nchar>20&seqs$nchar<10000,]</pre>
dim(seqs) # check reduction in size.
# order by gene ID and length
seqs <- seqs[order(seqs$gid,-seqs$nchar),]</pre>
# and save
saveRDS(seqs, file="/path/to/miReact/installation/folder/seqs/dm.utr3.seqs.rds")
# save to the miReact installation folder in the sub folder 'seqs'
# Note that the species name. here 'dm', for drosophila melanogaster,
# is needed as input in the 'species' parameter in miReact in the downstream process...
# Produce the seglist, list of 3'UTR sequences with nucleotide probabilities
# This requires the Regmex package installed:
# install it with devtools::install_github("muhligs/Regmex")
require(Regmex)
require(parallel) # to speed up, run parallel by specifying cores > 1 below
seqlist <- Regmex::seq.list.com(seqlist = seqs$sequence, cores=1)</pre>
# it is imperative that the seglist exactly corresponds to the segs object above,
# i.e. the sequences must match.
# Now save to the segs installation folder.
saveRDS(seqs, file="/path/to/miReact/installation/folder/seqs/dm.utr3.seqlist.rds")
####################################
```

And thats basically it...