

Machine Learning with the Chicago Ridesharing Trips Data Set

Lisa Taylor Completed as Capstone Assignment 1 Springboard Data Science Bootcamp

Chicago Rideshare Dataset

Chicago requires "Transportation Network Providers" (Lyft, Uber, etc.) to report basic rideshare information

Trips Dataset:

- > 70 million individual trips.
- November 2018 through March 2019
- Anonymized: Locations generalized to the nearest census tract. No specific driver/rider info.
- Fields: start/end census tract, start/end XY coords, start/end datetime, fare, distance, duration, tip, whether pooling authorized, number of trips in pool.

Business Case

Why does Chicago collect this data?

- Gain insight on travel patterns within the City.
- Target improvements in public transit offerings
- Improve infrastructure planning
- Ensure that access to rideshare is provided equitably
- Quantify costs incurred by the City by allowing rideshare services

Other Potential Data Users:

- Rideshare Drivers: Where can I find rides?
- <u>Environmental agencies/citizen groups</u>: How much ridesharing occurs? What are air quality/traffic impacts?

Big Questions

- How do the residents of Chicago use Ridesharing?
- What usage patterns can we see?
- Can we predict usage?

Process

- Cleaning, Wrangling
- Data Enhancement
- EDA
- Statistical Tests
- Machine Learning
 - Clustering
 - Demand Prediction (Regression)

Cleaning and Wrangling, Enhancement

- Download and import
 - o 12 GB file
 - Use 5% random subsample for evaluation
- Remove unusable records (zero fare, no census tract)
- Aggregate by hour
 - Datetime manipulation
 - o Calculate ride counts, average trip distance, duration, fare by census tract, hour
- Integrate weather data
 - Hourly precipitation, temperature, wind speed from Midway Alrport (NOAA)
 - Merge on ride date time after synchronizing to nearest hour.

More Enhancement

Census geodata

- Import census tract geojson to geopandas geodataframe object
- Enables mapping of data by census tract and geospatial operations on the data (distance, area, etc.)
- Join rideshare data (multiindex on census tract, time) to census geodataframe with pandas merge

Census population data

- Use Census API to acquire population and income data, merge on ride pickup census tract
- Derived fields (per tract):
 - Distance from downtown
 - Direction relative to downtown
 - Population density
 - Median Income

EDA Findings: Temporal Pattern

- Usage is cyclical
- Hourly pattern superimposed on weekly pattern
- Holiday effects

EDA Findings: Spatial Pattern

EDA Findings: Spatiotemporal Patterns

EDA Findings: Weather Effects?

- Not apparent at daily level
- Focused effect within specific time windows

EDA Findings: Tipping

Overall 20% tipping rate

 Statistically significant increase in probability of tipping for airport pickups.

Decrease in tipping probability for

pooled rides

AirportPU

Machine Learning

Business Goal	ML Application
Target improvements in public transit offerings	Clustering analysis to uncover common utilization patterns
Improve infrastructure planning	Regression to predict rideshare utilization by location and time
Ensure that access to rideshare is provided equitably	Data mining to determine relative effect of income on usage *

^{*} Not part of this evaluation

Clustering Analysis

- Customer Segmentation: cluster by behavior
- Data structure:
 - Rows indexed by Route (MultiIndex, unique pairing of Pickup and Dropoff location)
 - o Columns of ride counts for each of the following periods:
 - Weekday morning
 - Weekday mid-day

 - Weekend evening
 - Weekend late evening
 - Average Fare
 - Is Airport (PU or DO)
- All fields scaled

Model Selection

- KMeans
- DBSCAN
- Agglomerative Clustering
- Spectral Clustering

KMeans: Selection of K

Elbow method

Silhouette

KMeans, K=7

Visualizing Clusters - City Center

Visualizing Clusters - Airport

Clustering - Results

Found clusters representing distinct rideshare patterns:

- Commuting near downtown: morning vs evening patterns
- Rides within the city center
- Airport Pickups
- Longer commute rides
- Low frequency routes with higher fares: commute pattern, random times

Higher K → more difficult to interpret

Using distance, ride time instead of fare \rightarrow similar outcomes

Data structure has strong influence on the clustering model outcome.

Clustering - Future Work

- Weighting parameters
- Finer spatial scale
- Incorporate demographics

Demand Prediction by Regression

- Goal: predict ride counts per pickup location given DOW, hour
- EDA: cyclical, focus on downtown, airport
- Method: Assume future rideshare usage will be consistent with historical pattern.

Dataset

- Group on pickup tract, ride start time (rounded)
- Average fare, tip, distance per grouping
- Count rides per grouping (~5% of total)
- Derived fields: Hour, DOW, IsHoliday, IsAirport
- Enriched fields: distance to downtown, income, population density, temperature, precipitation

Linear Regression - Statsmodels

Advantage: Explainable model, infer parameter effects

Potential Issues:

- Correlated features (distance, time, fare)
- Is underlying model linear?
- Y (Number of Rides) not normally distributed.

OLS Regression Results

results=smf.ols('NumRides ~ DistToDowntown + TripTotal + C(Precip) + C(IsAirportPU) + C(DayPeriod) + C(IsWeekday)' ,data=agg_hourly_all).fit()

Dep. Variable:	NumRides	R-squared:	0.149
Model:	OLS	Adj. R-squared:	0.149
Method:	Least Squares	F-statistic:	9429.
Date:	Fri, 25 Oct 2019	Prob (F-statistic):	0.00
Time:	14:30:18	Log-Likelihood:	-1.5281e+06
No. Observations:	537380	AIC:	3.056e+06
Df Residuals:	537369	BIC:	3.056e+06
Df Model:	10		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975
Intercept	4.5931	0.022	210.937	0.000	4.550	4.636
C(Precip)[T.Wet]	0.1839	0.031	6.003	0.000	0.124	0.244
C(IsAirportPU)[T.1]	9.2190	0.060	153.052	0.000	9.101	9.337
C(DayPeriod)[T.morning]	0.3546	0.020	17.369	0.000	0.315	0.395
C(DayPeriod)[T.midday]	0.4401	0.021	21.235	0.000	0.399	0.481
C(DayPeriod)[T.afternoon]	0.7442	0.022	34.596	0.000	0.702	0.786
C(DayPeriod)[T.evening]	1.6513	0.021	79.566	0.000	1.611	1.692
C(DayPeriod)[T.lateevening]	0.9898	0.022	44.611	0.000	0.946	1.033
C(IsWeekday)[T.1]	-0.2841	0.012	-22.974	0.000	-0.308	-0.260
DistToDowntown	-0.3834	0.001	-280.178	0.000	-0.386	-0.381
TripTotal	0.0166	0.001	18.116	0.000	0.015	0.018

Non-Parametric Regression

Does not assume functional form for Y=f(X)

Candidates:

- KNN Regression
- RBF-kernel SVM
- Tree-Based Models

Baseline Models

NumRides = F(DistToDowntown,Hour,IsWeekday,TripMiles,Precip)

TrainTestSplit: (Time series) Before: 67%, After 33%

Remove airport pickups and holidays

Test Results:

Baseline Model	R-squared	RMSE
Random Forest	0.82	1.9
Gradient Boosting	0.68	2.5
Bagging	0.82	1.9

Data Enhancement

- New Fields
 - Bearing direction relative to downtown
 - IsWeekday —>DOW
 - TripTotal -> Mean Fare
 - Add demographics
 - Remove precip
- Fit RandomForestRegressor

NumRides = F(DistToDowntown, Bearing, Hour, DOW, MeanFare, PopDensity)

Test Results: R-Squared: 0.84 (was 0.82), RMSE: 1.7 (was 1.9)

Hyperparameter Tuning

Cross-Validation with Time Series Split, 4 partitions:

Number of Estimators

n_estimators	10	20	30	50
R-squared	0.825	0.830	0.832	0.834

Grid Search: Parameter Selection Method, Tree Depth

For max_depth=16:

max_features	Log2	Square Root	None (Bagging)
R-squared	0.833	0.829	0.841

Final Model

Hyperparameters:

N_estimators = 50

 $Max_depth = 16$

Feature_Selection = None

Fit to training set and score on test:

R-squared: 0.86

RMSE: 1.65

Train Vs Test

Plot Tree

DistToDowntown <= 1.363 mse = 18.253 samples = 223238 value = 2.794

DistToDowntown <= 0.208 mse = 97.346 samples = 20742 value = 9.661 DistToDowntown <= 1.955 mse = 4.882 samples = 202496 value = 2.093

Hour <= 10.5 mse = 436.621 samples = 1351 value = 23.395 Hour <= 15.5 mse = 60.909 samples = 19391 value = 8.736 MeanFare <= 5.089 mse = 17.207 samples = 12942 value = 4.911 IsAirport <= 0.5 mse = 3.466 samples = 189554 value = 1.902

DistToDowntown <= | DistToDowntown <= 17.695

mse = 49.402 samples = 584 value = 7.773

Hour <= 7.5

DOW <= 4.5 mse = 407.328 samples = 767 value = 35.068

mse = 34.919 samples = 12072 value = 6.609

Hour <= 7.5

mse = 84.072 samples = 7319 value = 12.26 mse = 1.921 samples = 2358 value = 1.932 mse = 18.2 samples = 10584 value = 5.582

Hour <= 7.5

mse = 2.56 samples = 18716 value = 1.825 mse = 37.723 samples = 2393 value = 7.784

DistToDowntown <= 1.21 MeanFare <= 2.812

Feature Importances

Example of Results - Single Census Tract

Visualize Results

Why does this work?

Why was random forest/bagging successful at fitting spatiotemporal prediction model?

- Time series stationary (no trends) and very repeatable.
- Spatial variables explained spatial variation in demand
- Same time period resampled each week resulting in duplicate measurements of dependent variable
- Model predicts future behavior from an average of past behavior, with some randomization due to the bootstrapping performed by the algorithms.

Future Work - Usage Prediction

- Use Full Trips Dataset
- Spatiotemporal Visualizations
- Demographic Effects
- Other City Features
- ARIMA model for each census tract

Conclusion

- Developed rideshare customer segmentation and usage prediction tools
- Built dashboards to enable inspection of results and prediction
- Demonstrated methods for gaining insight from rideshare datasets