

Math Methods for Political Science Lecture 1

Outline

1 Organization

2 Foundations

The basics

Course website:

https://tvatter.github.io/gu4700_2017/

- Lectures:
 - focus on introducing the theory and deriving the main results.
 - 4:10-5:25pm on Mondays & Wednesdays
 - Room 825, Seeley W. Mudd Building
- Exercise sessions:
 - ▶ focus on clarifying the theory, improving your math skills, help with the problem sets and preparation for the midterm/final.
 - To be determined
 - ▶ Please fill the form on the website!
- TA: Thomas Leavitt, t12624@columbia.edu

Before the midterm

■ Linear Algebra:

- System of linear equations
- Matrix algebra
- Vector spaces
- Eigenvalues and eigenvectors
- Orthogonality and least squares
- Symmetric matrices and quadratic forms

■ Differential Calculus:

- Functions and limits
- Continuity
- Derivatives
- Analysis of functions
- Multivariate calculus

After the midterm

■ Integral Calculus:

- Concept of integral
- Integration techniques

Optimization:

- Unconstrained optimization
- Linear programming
- Convex optimization

■ Probability and statistics:

- Combinatorics and probabilities
- Random variables and vectors
- Stochastic convergence
- Statistical inference
- Hypothesis testing

Grading and important dates

- 8 HW assignments (40%):
 - 2 for Linear Algebra (due 9/18 and 9/27)
 - 2 for Differential Calculus (due 10/9 and 10/18)
 - ▶ 1 for Integral Calculus (due 11/1)
 - ▶ 1 for Optimization (due 11/15)
 - 2 for Proba & Stats (due 11/27 and 12/6)

- Midterm (30% on 10/23):
 - Linear Algebra
 - Differential Calculus
- Final (30% on 12/11):
 - Integral Calculus
 - Optimization
 - Probability and Statistics

Maths are hard!

- No late HWs.
- Grades based on academic performance only.
- How to succeed:
 - Attend lectures AND exercise sessions.
 - Work on your own and only seek help when stuck.
 - Stay on top of things.
 - Practice.

Outline

1 Organization

2 Foundations

Definition 1 (Set)

A **set** *S* is a collection of distinct objects (its **elements**).

Definition 2 (Cardinality)

|S|, the **cardinality** of set S, is the number of elements in S.

Example 1

$$S_1 = \{1, 2, 3, 4, 5, 6\},$$
 $|S_1| = 6$
 $S_2 = \{Chris, Michael, Sara\},$ $|S_2| = 3$
 $S_3 = \emptyset,$ $|S_3| = 0$

Relations between sets

Let S and T be sets.

Definition 3 (Set equality, subset and proper subset)

- Sets S, T are equal, or S = T, when $x \in S \Leftrightarrow x \in T$.
- *S* is a **subset** of *T*, or $S \subseteq T$, if $x \in S \Rightarrow x \in T$.
- S is a **proper subset** is of T, or $S \subset T$, if $x \in S \Rightarrow x \in T$ and $\exists y \in T$ s.t. $y \notin S$ (i.e., $S \subseteq T$ but $S \neq T$).

 $S \subseteq T$ and $T \subseteq S$ imply that S = T.

Example 2 (Set equality, subset and proper subset)

- Sets $S = \{A, B, C\}$ and $T = \{C, B, A\}$ are equal.
- $S = \{A, B, C\}$ is a proper subset of $T = \{A, B, C, D\}$.
- \bullet $\emptyset \subset S \ \forall S$

Relations between sets cont'd

Definition 4 (Union, intersection, disjoint and complement)

- The union is $S \cup T = \{x \mid x \in S \text{ or } x \in T\}$.
- The intersection is $S \cap T = \{x \mid x \in S \text{ and } x \in T\}$.
- S, T are **disjoint** if $S \cap T = \emptyset$.
- The **complement** of *S* in *T* is $T \setminus S = \{x \mid x \in T, x \notin S\}$.

For S_1, \dots, S_n , the union is $\bigcup_{i=1}^n S_i$ and the intersection is $\bigcap_{i=1}^n S_i$.

Example 3 (Union, intersection, disjoint and complement)

- $S \cup T = \{1, 2, 3, A, B\}$ when $S = \{1, 2, 3\}$ and $T = \{A, B\}$.
- $S = \{A, B\}$ and $T = \{snake, bumblebee\}$ are disjoint.
- For $S = \{A, B\}$ in $T = \{A, B, C, D, E\}$, $T \setminus S = \{C, D, E\}$.

Laws of set operations

Definition 5 (Laws of set operations)

■ Commutative laws:

$$A \cup B = B \cup A;$$
$$A \cap B = B \cap A.$$

Associative laws:

$$(A \cup B) \cup C = A \cup (B \cup C);$$

$$(A \cap B) \cap C = A \cap (B \cap C).$$

■ Distributive laws:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C);$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Lists of numbers

Definition 6 (\mathbb{N} , \mathbb{Q} , \mathbb{Z} and \mathbb{R})

- Natural numbers (also called counting numbers):
 - $ightharpoonup \mathbb{N} = \{0,1,2,\cdots\}$ and $\mathbb{N}_+ = \mathbb{N} \setminus \{0\}$ (positive natural numbers)
- Integers (positive and negative counting numbers):

$$\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}.$$

- Rational numbers (ratios of integers to non-zero integers):
 - $p \in \mathbb{Q}$ if $\exists x, y \in \mathbb{Z}, y > 0$ s.t. q = x/y.
- Real numbers:
 - ▶ $r \in \mathbb{R}$ if r has a "decimal representation" that has a finite or infinite sequence of digits to the right of the decimal point.

Note that $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

Definition 7 (Completeness and transitivity of \mathbb{R})

Let $x, y \in \mathbb{R}$.

- **Completeness**: for all x, y, we have $x \ge y$ or $y \ge x$.
- Transitivity: if $x \ge y$ and $y \ge z$, then $x \ge z$.

Definition 8 (Intervals)

Let $a, b \in \mathbb{R}, a < b$.

- **Open interval**: $(a, b) = \{x \mid a < x < b\}.$
- Closed interval: $[a, b] = \{x \mid a \le x \le b\}.$

Necessary and sufficient conditions

Definition 9 (Necessary and sufficient conditions)

- **•** x is **necessary** for y if $y \Rightarrow x$.
- x is sufficient for y if $x \Rightarrow y$.
- x is necessary and sufficient for y if $x \Leftrightarrow y$ (i.e., x and y are logically equivalent).

Example 4 (Necessary and sufficient conditions)

- "being a woman" is necessary for "being a Finnish woman".
- "being a Finnish woman" is sufficient for "being a woman".
- "Germany lost WW2" is necessary and sufficient for "Other countries prevailed over Germany in WW2".

Methods of proofs

Proof by deduction

- ▶ If *P* is true and we establish that $P \Rightarrow Q$, then *Q* is also true.
- ▶ Usually through series of steps, such as $P \Rightarrow A \Rightarrow B \Rightarrow Q$.

■ Proof by contraposition

▶ If we can prove that $\neg Q \Rightarrow \neg P$, then $P \Rightarrow Q$.

■ Proof by contradiction

- ▶ If we can prove that $\neg P$ is false, then P must be true.
- In practice, use the following logic:
 - 1. Suppose $\neg P$ is true;
 - 2. Prove that it violates another proposition Q known to be true;
 - 3. Conclude that $\neg P$ cannot be true and that P must be true.

Proof by deduction

- If P is true and we establish that $P \Rightarrow Q$, then Q is also true.
- Usually through series of steps, such as $P \Rightarrow A \Rightarrow B \Rightarrow Q$.

Example 5 (Proof by deduction)

Suppose $x, y \in \mathbb{R}$ and x, y > 0. Then $x^2 < y^2 \Rightarrow x < y$. Proof:

$$x^{2} < y^{2} \Rightarrow 0 < y^{2} - x^{2}$$
 | $-x^{2}$;
 $\Rightarrow 0 < (y+x)(y-x)$ | factor;
 $\Rightarrow 0 < y-x$ | $x, y > 0$;
 $\Rightarrow x < y$ | $+x$.

Proof by contraposition

■ If we can prove that $\neg Q \Rightarrow \neg P$, then $P \Rightarrow Q$.

Example 6 (Proof by contraposition)

Suppose $x, y \in \mathbb{R}$ and x, y > 0. Then $x^2 < y^2 \Rightarrow x < y$. **Proof:**

$$x > y \Rightarrow x - y > 0$$
 | $-y$;
 $\Rightarrow (y + x)(x - y) > 0$ | $x, y > 0$;
 $\Rightarrow x^2 - y^2 > 0$ | distribute;
 $\Rightarrow x^2 > y^2$ | $+y^2$.

Since $x > y \Rightarrow x^2 > y^2$, we conclude that $x^2 < y^2 \Rightarrow x < y$.

Proof by contradiction

- If we can prove that $\neg P$ is false, then P must be true.
- In practice, use the following logic:
 - 1. Suppose $\neg P$ is true;
 - 2. Prove that it violates another proposition Q known to be true;
 - 3. Conclude that $\neg P$ cannot be true and that P must be true.

Example 7 (Proof by contradiction)

If $a, b \in \mathbb{Z}$, then $a^2 - 4b \neq 2$.

Proof:

1. Suppose $\exists a, b \in \mathbb{Z}$ s.t. $a^2 - 4b = 2$;

2.
$$a^2 - 4b = 2 \Rightarrow a^2 = 2 + 4b$$
 | +4b;
 $\Rightarrow a^2 = 2(1 + 2b)$ | factor;
 $\Rightarrow a^2$ is even | definition.

Proof by contradiction cont'd

Example 7 (Proof by contradiction cont'd)

If $a, b \in \mathbb{Z}$, then $a^2 - 4b \neq 2$.

Proof cont'd:

2.
$$a^2 - 4b = 2 \Rightarrow a^2$$
 is even | previous;
 $\Rightarrow a$ is even | property;
 $\Rightarrow \exists c \in \mathbb{Z} \text{ s.t. } a = 2c$ | definition;
 $\Rightarrow (2c)^2 - 4b = 2$ | initial assumption;
 $\Rightarrow 2c^2 - 2b = 1$ | divide by 2;
 $\Rightarrow 2(c^2 - b) = 1$ | factor;
 $\Rightarrow 1$ is even | definition.

3. Because 1 is not even, we conclude that $a^2 - 4b = 2$ is false and $a^2 - 4b \neq 2$ must be true.