

Introductory Microeconomics ECO/1A1Y

Games – Thinking Strategically

Outline Week 3 Spring 2013

Topics

- Price competition revisited
- Thinking strategically: some game theory
- How to solve games
- Price competition as a two players' game
- A new equilibrium solution (iterated dominance)
- Nash equilibrium (mutual best responses)
- Deterministic versus probabilistic (mixed) strategies

Price Competition

- Duopoly: two firms (A and B) sell an identical good
- TC = Q and AC = MC = 1
 - Firms are price setters (P can be as low as 0, as high as 5, or infinite)

$$-\Pi = TR - TC = pQ - Q = (p-1)Q$$

- Demand is fixed Q = 20
- Two cases:
 - If $P_A = P_B$ then $Q_A = Q_B = 10$
 - If $P_A < P_B$ then $Q_A = 20$ and $Q_B = 0$ (symmetric for B)

Price Competition A simple example of strategic interaction

• Price competition in a simple (payoff) matrix

		Firm B						
		High price=5 (collusion)	Lower price=4 (undercut)					
Firm 1	High price=5 (collusion)	40 for A 40 for B	0 for A 60 for B					
Firm A	Lower price=4 (undercut)	60 for A 0 for B	30 for A 30 for B					

Duopoly And Collusion

- Collusion is bad for consumers, good for firms
- In the real world open collusion is illegal
 - Exceptions: OPEC
 - If firms could, they would run a group monopoly and get highest profit
- Competition Commission monitors such activities
 - But, should we worry about collusion?
 - Can we make a prediction about this game?

Economic Games

- Two firms engaged in patent race or innovation (Blue ray versus DVD)
- Supermarkets contesting for a prime location
- Firms bidding for a government contract
- Competing for a job
- Boeing and Airbus Industries are competing for a lucrative deal with an airline

Game = Players + Actions + Outcomes

- Players: firms, or any other decision maker
- Actions: Quantities or prices or ... move your piece in chess
- Outcomes: Firm's profit, or prize resulting from win, loss or draw

Strategy And Actions

- Strategy is a decision rule over actions
- In games where decisions are one-shot and simultaneous, strategy and action are the same
- In games where decisions are taken in sequence, strategy and actions are different
- There are different types of strategies (see the additional slides: pure and mixed)

How to solve a game?

- There are several methods, depending on the game
- In all cases, a solution is always a **stable** outcome
- In other words: once the solution is reached, it is stable because none can do any better
- Unilateral deviations do not pay: rational thinking
- [How do we get to the solution? That's a different story]

Methods: some intuitions

- Dominant strategy solution
 - There is only one best action (for every action of the other player)
- Nash equilibrium
 - We simultaneously do our best
 - Every dominant strategy solution is a Nash equilibrium, but not the other way
- Iterated dominance
 - We discard bad decisions and reach a solution
- Subgame perfect equilibrium (sequential games)
 - Doing our best over time

Game 1: Prisoners' dilemma

- A simple story
- Two people are arrested on charges of bank robbery (major crime)
- Bad news: Evidence links them together as collaborators and proves them to be at least offenders (minor crime)
- Good news: it cannot be proved that they are the real robbers, unless one of them confesses
- If someone confesses, she benefits from collaborating with the police...

The rules of the game

- The police keep them in two separate cells
- They give them the following choices:
- Confess (**defection**)
- Keep silent (cooperation)
- They are also told that both are given the same choices
- Both will face the prison terms based on their actions

A Normal Form Game

		В					
		Confess (Defect)	Remain silent (Cooperate)				
A	Confess (Defect)	5 years for A 5 years for B	1 year for A 8 years for B				
	Remain silent (Cooperate)	8 years for A 1 year for B	3 years for A 3 years for B				

Player A thinks strategically

		If B Confess (Defect)	Remain silent (Cooperate)	
Α	Confess (Defect)	5 years for A 5 years for B	1 year for A 8 years for B	
	Remain silent (Cooperate)	8 years for A 1 year for B	3 years for A 3 years for B	

Player A keeps thinking strategically

Confess If B remains silent... (Defect) (Cooperate) Confess **5** years for A 1 year for A Α 5 years for B (Defect) 8 years for B 8 years for A 3 years for A Remain silent (Cooperate) 1 year for B 3 years for B

A knows what it is best for him

- Regardless of B's action she is always better off confessing:
 - If B confesses, 5 years is better than 8
 - If B does not confess, I year is better than 3
- Confess is a dominant strategy for player A

• **Dominant strategy:** the strategy in a game that produces better results irrespective of the strategy chosen by one's opponent.

B thinks the same way

Confess Remain silent (Defect) (Cooperate)

If A confesses (Defect)

If A remains silent (Cooperate)

5 years for B

8 years for B

8 years for B

1 year for B

3 years for B

B keeps thinking...

Confess Remain silent (Defect) (Cooperate)

If A confesses (Defect)

5 years for A
5 years for B

8 years for B

If A remains silent (Cooperate)

1 year for B

3 years for B

B also knows what it is best for him

- Regardless of A's action she is always better off confessing:
 - If A confesses, 5 years is better than 8
 - If A does not confess, I year is better than 3
- Confess is a dominant strategy also for player B

• **Dominant strategy:** the strategy in a game that produces better results irrespective of the strategy chosen by one's opponent.

A solution

- We can make a prediction for this game
 - As long as each player's outcome is truly represented, both players are rational, and know the other player is rational
- Both players are better off if both remain silent
 - This is optimal from the collective point of view
 - Is this a (stable) solution of the game?
 - NO

A solution

- No!
- Each player has an incentive to confess
 - Regardless of the other player's action, a player is always better off confessing
- Cooperation (remaining silent) is NOT a stable outcome
- Defection (confessing) is the only equilibrium of the game: it is dominant strategy for both players

Dominant Strategy Solutions

- Some games luckily have dominant strategy solution: easy to solve
- But this is typically not the case in most strategic environments
- In the PD, both players are better off confessing
- In such games, the prediction is clear cut

Back to price competition

A game with only two players

Duopoly/Oligopoly

- Firms in the real world face the prisoners' dilemma games everyday
- Dilemma: whether to compete, or be nice to each other (secretly collude)
- Competition erodes everybody's profit. Why not avoid competition?
- Every firm wants to avoid competition, but ... cannot resist the temptation of making a quick hit-and-run profit!!

Price Competition

- Duopoly: two firms (A and B) sell an identical good
- TC = Q and AC = MC = 1
 - Firms are price setters (P can be as low as 0, as high as 5, or infinite)

$$-\Pi = TR - TC = pQ - Q = (p-1)Q$$

- Demand is fixed Q = 20
- Two cases:
 - If $P_A = P_B$ then $Q_A = Q_B = 10$
 - If $P_A < P_B$ then $Q_A = 20$ and $Q_B = 0$ (symmetric for B)

Back to price competition

	P=5	P=4	P=3	P=2	P=1	P=0
P=5		0				
	40	60				
P=4	60	30				
	0	30				
P=3						
P=2						
P=1						
P=0						

Is (4,4) an equilibrium?

	P=	=5	P=	- 4	P=	=3	P	=2	P=	1	P	P= 0
P=5	40		0		0		0		0		0	
		40		60		40		20		0		-20
P=4	60		30		0		0		0		0	
		0		30		40		20		0		-20
P=3	40		40		20		0		0		0	
		0		0		20		20		0		-20
P=2	20		20		20		10		0		0	
		0		0		0		10		0		-20
P=1	0		0		0		0		0		0	
		0		0		0		0		0		-20
P=0	-20		-20		-20		-20)	-20		-2	0
		0		0		0		0		0		-20

Back to price competition

	P=	=5	P=	-4	P=	=3	P	=2	P=	1	P	P= 0
P=5	40		0		0		0		0		0	
		40		60		40		20		0		-20
P=4	60		30		0		0		0		0	
		0		30		40		20		0		-20
P=3	40		40		20		0		0		0	
		0		0		20		20		0		-20
P=2	20		20		20		10		0		0	
		0		0		0		10		0		-20
P=1	0		0		0		0		0		0	
		0		0		0		0		0		-20
P=0	-20		-20		-20		-20)	-20		-2	0
		0		0		0		0		0		-20

Undercutting the rival

- Is $P_A = P_B = 3$ an equilibrium of the game?
- Both firms make 20
- If $P_A = 2$ (while $P_B = 3$), the profit is still 20 = (2 1) * 20
- But, A may undercut its rival's price a bit:
- $P_A = 2.9 \text{ (and } P_B = 3)$
- A gets the full market and a profit of 38 = (2.9 1) * 20
- Better than 20!!
- Until... P = MC = 1, with no profit at all... bad news for firms!

Takeaway messages

- Price competition generates no profits for firms, even when collusion is a tempting option
- Game theory helps us to understand the logic of strategic interaction
- We may try to find a stable outcome of every interaction: an equilibrium in which no firm has an incentive to unilaterally deviate
- Some games have dominant strategies, so finding the equilibrium of the game is easy (but these cases are the exception, not the rule)

Collective versus individual gains

- In most games, as the PD, a single player would make a different decision: collective rationality is at odds with individual rationality
- Some games are zero-sum games (as in many sports, one's win means other's loss), but most economic situations are not zero-sum games
- We will work on this in the workshop and seminars

Pure and mixed strategies

- **Pure strategy**: When a player prefers to play one action over the other, it is called a pure strategy (paying This or That with certainty)
- Mixed strategy: When a player is uncertain between two (or more)
 actions, he can take a particular action only with some probability. It
 is called mixed strategy

Duopoly: Collusion over time

- The outcome of the prisoners' dilemma game is different, if the players play this game again and again over LONG period of time
- Over time: The prisoners would talk beforehand to avoid confessions. Each could reciprocate by being nice in all future occasions. This is called a Tit for Tat strategy.
- Firms could do the same (playing Tit for Tat) in their long term interests.
- They could limit PRICE WAR to a tolerable degree, and if possible avoid it altogether, or choose a softer form of competition.

Iterated dominance

Finding a stable solution

Iterated dominance

- Most games do not have a dominant strategies
- We may still identify **dominated** strategies
 - A rational player is better off by playing differently
- We then can eliminate this strategy on the ground that rational (self interested and capable of reasoning based on the available information) players do not play strictly dominated strategies!
- By eliminating such dominated strategies one by one we can arrive at a unique pair of strategies (sometimes)

An example

	L	С	R
U	2, 3	6, 4	6, 5
M	4, 3	8, 0	4, 1
D	10, 3	3, 4	5, 5

Thinking rationally (dominated strategies)

	L	С	R
U	2, 3	6, <mark>4</mark>	6, 5
M	4, 3	8, <mark>0</mark>	4, 1
D	10, 3	3, <mark>4</mark>	5, <mark>5</mark>

Compare C to R

Rational players don't play dominated strategies!

	L	R
U	2, 3	6, 5
M	4, 3	4, 1
D	10, 3	5, 5

- Compare C to R
 - C would not be played

	L	R
U	2, 3	6, 5
M	4 , 3	4, 1
D	10 , 3	5 , 5

- Compare C to R
 - C would not be played
- Now compare M to D

	L	R
U	2, 3	6, 5
D	10, 3	5, 5

- Compare C to R
 - C would not be played
- Now compare M to D
 - M would not be played

	L	R
U	2, 3	6, 5
D	10, 3	5, 5

- Compare C to R
 - C would not be played
- Now compare M to D
 - M would not be played
- Compare L to R

D R

R

6, 5

5, 5

- Compare C to R
 - C would not be played
- Now compare M to D
 - M would not be played
- Compare L to R
 - L would not be played

- Compare C to R
 - C would not be played
- Now compare M to D
 - M would not be played
- Compare L to R
 - L would not be played

A solution

- Rational players prefer more to less: they never choose dominated strategies
- Rationality is common knowledge: when both players know they are rational, they can eliminate strategies that will never be played
- Sometimes we arrive at a stable solution: no incentives to do something different (no unilateral incentives to deviate)

Nash equilibrium

Mutual best responses

- Two firms think about a simultaneous investment (in a new technology)
- It is better if they share the cost (and the benefits)

	L	R
U	1, 1	1, 0
D	0, 1	2, 2

• Do they have a dominant (or dominated strategy)?

	L	R
U	1, 1	1, 0
D	0, 1	2, 2

	L	R
U	1 , 1	1, 0
D	0, 1	2, 2

	L	R
U	1, 1	1, 0
D	0, 1	2, 2

	L	R
U	1, 1	1, 0
D	0, 1	2 , 2

Do we have a prediction?

	L	R
U	1, 1	1, 0
D	0, 1	2, 2

- Dominant strategies and iterated dominance are not always useful
- Best response is not unique...
- Homework: what about column player?

Multiple solutions

	L	R
U	1, 1	1, 0
D	0, 1	2, 2

- U,L and D,R are stable solutions of the game (mutual best responses)
- No unilateral incentives to deviate: equilibria
- Nash equilibria

Nash equilibrium

- There are games with no dominant strategies that are not solvable by iterated dominance
- Then we use the concept of Nash equilibrium, which specifies a combination of the mutually best response strategies
- If player I does his best by playing strategy A, when player 2 plays strategy a, and similarly if player 2 does his best by playing strategy a against player I's play of strategy A, then the pair of strategies (A,a) is a Nash equilibrium.
- Nash equilibrium: the combination of strategies in a game such that neither player has any incentive to change strategies given the strategy of his opponent.
 - A Nash equilibrium does not require both players to have a dominant strategy!

Multiple solutions? I need a prediction

- D, R is better than U, L if we care about efficiency (social welfare)
- **Pareto** efficiency: 2,2 > 1,1 (next lecture...)
- U, L is safer than D, R if we try to maximize the minimum payoff (maximin): 1>0

L R

U 1,1 1,0
D 0,1 2,2

• **Maximin strategy:** choosing the option that makes the lowest payoff one can receive as large as possible.

Extra Slides ... Mixed strategies

Playing a probabilistic game

The penalty dilemma

Dominant strategy? Dominated strategies? Nash?

	L	R
U (L)	0, 1	1, 0
D(R)	1, 0	0, 1

I don't want the other player to anticipate...

What if I make him indifferent?

	L	R
U (p)	0, 1	1, 0
D (1-p)	1, 0	0, 1

$$\pi_{COL}^{e}(L) = p \cdot 1 + (1 - p) \cdot 0 = p$$

$$\pi_{COL}^{e}(R) = p \cdot 0 + (1 - p) \cdot 1 = (1 - p)$$

$$\pi_{COL}^{e}(L) = p = \pi_{COL}^{e}(R) = (1 - p) \qquad p = \frac{1}{2}$$

The ROW player does the same

	L (q)	R (1-q)	
U (p)	0, 1	1, 0	
D (1-p)	1, 0	0, 1	

$$\pi_{ROW}^{e}(U) = q \cdot 0 + (1 - q) \cdot 1 = (1 - q)$$

$$\pi_{ROW}^{e}(D) = q \cdot 1 + (1 - q) \cdot 0 = q$$

$$\pi_{ROW}^{e}(U) = (1 - q) = \pi_{ROW}^{e}(L) = q \qquad q = \frac{1}{2}$$

A probabilistic solution

This is the only equilibrium of the game

Can you prove that? (Does a unilateral deviation pay?)

	L (q) R (1-q)	
U (p)	0, 1	1, 0
D (1-p)	1, 0	0, 1

Rock, Paper, Scissors

- A two-player game with *three* strategies how to find the mixed strategy equilibrium in that case?
- Rules are: Two players simultaneously choose Rock, Paper or Scissors with the understanding that Rock beats Scissors; Paper beats Rock; Scissors beats paper. All other outcomes, e.g. Rock, Rock result in ties.
- Denote a win by a I, a loss by -I and a tie by 0

Rock, Paper, Scissors

- The game is symmetric, so it suffices to find one player's mixed strategy, say the Column player.
- Let r = Pr(Rock), p = Pr(Paper) and 1 r p = Pr(Scissors)

	Rock	Paper	Scissors	Expected
Rock	0,0	-1, 1	1,-1	1-r-2p
Paper	١,-١	0,0	-1, 1	2r + p - 1
Scissors	-1, 1	1,-1	0, 0	p-r

• Column chooses r and p the make row indifferent:

-
$$2r + p - 1 = -r + p \rightarrow 3r = 1, r = 1/3;$$

- $1 - r - 2p = 2r + p - 1$ $1 - 1/3 - 2p = 2/3 + p - 1$ $1 = 3p, p = 1/3;$

• It follows that the unique, mixed strategy equilibrium is p=r=1/3, i.e., play all three strategies with equal probability

- Two fast food chains, A and B, decide if they should open a branch in a mall which already has several other food stores
- Strategies: Enter, Don't
- If a firm does not enter, it earns 0 profit
- If a firm enters and the competitor does not, it earns £300K per year
- If both enter, each makes a loss of £100K

Payoffs in 1000s	B: Enter	B: Don't
A: Enter	-1,-1	3,0
A: Don't	0,3	0,0

Payoffs in 1000s	B: Enter	B: Don't
A: Enter	-1,-1	3,0
A: Don't	0,3	0,0

2 Pure Strategy Equilibria

Are there any mixed strategy equilibria?

Market Entry Game Are there any mixed strategy equilibria?

Payoffs in 1000s	B: Enter (q)	B: Don't (I-q)
A: Enter (p)	-1,-1	3,0
A: Don't (I-p)	0,3	0,0

A plays Enter with probability p and Don't enter with 1-p B plays Enter with probability q and Don't enter with 1-q

Payoffs in 1000s	B: Enter (q)	B: Don't (I-q)
A: Enter (p)	-1,-1	3,0
A: Don't (I-p)	0,3	0,0

- A wants to choose p so as to make B indifferent between entering or not entering
 - B's payoff from enter: (p)(-1) + (1-p)(3)
 - B's payoff from don't: (p)(0) + (1-p)(0)
 - Indifferent \rightarrow (p)(-1) + (1-p)(3) = (p)(0) + (1-p)(0) \rightarrow p=3/4
- B wants to choose q so as to make A indifferent between entering or not entering
 - A's payoff from enter: (q)(-1) + (1-q)(3)
 - A's payoff from don't: (q)(0) + (1-q)(0)
 - Indifferent \rightarrow (q)(-1) + (1-q)(3) = (q)(0) + (1-q)(0) \rightarrow p=3/4
- In the mixed strategy Nash equilibrium both firms choose enter with probability 3/4, and Don't Enter with probability 1/4

Takeaway messages

- Dominant and dominated strategies play a limited role in many games. But, they make your life easier
- Nash equilibrium is a very general concept based on mutual best responses (no way to do better), even with more than one equilibria
- Games sometimes have no equilibrium in pure strategies but still have an equilibrium in mixed (probabilistic strategies)