Chapter 15

Apply It 15.1

- 1. $S(t) = \int -4te^{0.1t} dt$ Let u = -4t and $dv = e^{0.1t} dt$, so du = -4 dt, and $v = \int e^{0.1t} dt = \frac{1}{0.1}e^{0.1t} = 10e^{0.1t}$. $\int -4te^{0.1t} dt = (-4t)(10e^{0.1t}) - \int (10e^{0.1t})(-4)dt$ $= -40te^{0.1t} + \int 40e^{0.1t} dt$ $= -40te^{0.1t} + 40\frac{e^{0.1t}}{0.1} + C$ $= -40te^{0.1t} + 400e^{0.1t} + C$ $S(t) = -40te^{0.1t} + 400e^{0.1t} + C$ and S(0) = 5000 $5000 = 0 + 400e^{0} + C$ C = 4600 $S(t) = -40te^{0.1t} + 400e^{0.1t} + 4600$
- 2. $P(t) = \int 0.1t(\ln t)^2 dt$ Let $u = (\ln t)^2$ and dv = 0.1t dt, so $du = 2(\ln t) \left(\frac{1}{t}\right) dt = \frac{2\ln t}{t} dt$ and $v = \int 0.1t dt = 0.1\frac{t^2}{2} = 0.05t^2$ $\int 0.1t(\ln t)^2 dt$ $= 0.05t^2(\ln t)^2 - \int \left(0.05t^2\right) \left(\frac{2\ln t}{t}\right) dt$ $= 0.05(t \ln t)^2 - \int 0.1t \ln t dt$ For $\int 0.1t \ln t dt$, let $u = \ln t$ and dv = 0.1t dt, so $du = \frac{1}{t} dt$ and $v = 0.05t^2$. $\int 0.1t \ln t dt = 0.05t^2 \ln t - \int \left(0.05t^2\right) \left(\frac{1}{t}\right) dt$ $= 0.05t^2 \ln t - \int 0.05t dt$ $= 0.05t^2 \ln t - 0.05\frac{t^2}{2} + C$ $= 0.05t^2 \ln t - 0.025t^2 + C$

Thus,

$$P(t) = 0.05(t \ln t)^{2} - \left(0.05t^{2} \ln t - 0.025t^{2}\right) + C$$

$$= 0.05(t \ln t)^{2} - 0.05t^{2} \ln t + 0.025t^{2} + C$$

Problems 15.1

1.
$$\int f(x)dx = uv - \int v \ du$$

$$= x \cdot \frac{2}{3}(x+5)^{\frac{3}{2}} - \int \frac{2}{3}(x+5)^{\frac{3}{2}} dx$$

$$= \frac{2}{3}x(x+5)^{\frac{3}{2}} - \frac{2}{3} \cdot \frac{2}{5}(x+5)^{\frac{5}{2}} + C$$

$$= \frac{2}{3}x(x+5)^{\frac{3}{2}} - \frac{4}{15}(x+5)^{\frac{5}{2}} + C$$

2.
$$\int xe^{3x+1}dx$$

If $u = x$ and $dv = e^{3x+1}dx$, then $du = dx$ and $v = \frac{1}{3}e^{3x+1}$.

$$\int xe^{3x+1}dx = \frac{x}{3}e^{3x+1} - \int \frac{1}{3}e^{3x+1}dx$$

$$= \frac{x}{3}e^{3x+1} - \frac{1}{3} \cdot \frac{1}{3} \int e^{3x+1}[3 dx]$$

$$= \frac{x}{3}e^{3x+1} - \frac{1}{9}e^{3x+1} + C$$

$$= \frac{1}{9}e^{3x+1}(3x-1) + C$$

3.
$$\int xe^{-x} dx$$

Letting $u = x$, $dv = e^{-x} dx$, then $du = dx$, $v = -e^{-x}$.
 $\int xe^{-x} dx = -xe^{-x} - \int -e^{-x} dx$
 $= -xe^{-x} - \int e^{-x} [-dx] = -xe^{-x} - e^{-x} + C$
 $= -e^{-x} (x+1) + C$

- 4. $\int xe^{ax} dx$ Letting u = x, $dv = e^{ax} dx$, then du = dx, $v = \frac{1}{a}e^{ax}.$ $\int xe^{ax} dx = \frac{x}{a}e^{ax} \int \frac{1}{a}e^{ax} dx$ $= \frac{x}{a}e^{ax} \frac{1}{a^2}e^{ax} + C$
- 5. $\int y^{3} \ln y \, dy$ Letting $u = \ln y$, $dv = y^{3} dy$, then $du = \left(\frac{1}{y}\right) dy$, $v = \frac{y^{4}}{4}$ $\int y^{3} \ln y \, dy = \frac{y^{4} \ln y}{4} \int \frac{y^{4}}{4} \left(\frac{1}{y} dy\right)$ $= \frac{y^{4} \ln y}{4} \int \frac{y^{3}}{4} dy = \frac{y^{4} \ln y}{4} \frac{y^{4}}{16} + C$ $= \frac{y^{4}}{4} \left[\ln(y) \frac{1}{4}\right] + C$
- 6. $\int x^2 \ln x \, dx$ Letting $u = \ln x$, $dv = x^2 dx$, then $du = \frac{1}{x} dx$, $v = \frac{x^3}{3}$ $\int x^2 \ln x \, dx = \frac{x^3 \ln x}{3} - \int \frac{x^3}{3} \left(\frac{1}{x} dx \right)$ $= \frac{x^3 \ln x}{3} - \frac{x^3}{9} + C = \frac{x^3}{3} \left[\ln(x) - \frac{1}{3} \right] + C$
- 7. $\int \ln(4x) dx$ Letting $u = \ln(4x)$, dv = dx, then $du = \left(\frac{1}{x}\right) dx$, v = x. $\int \ln(4x) dx = x \ln(4x) \int x \left(\frac{1}{x} dx\right)$ $= x \ln(4x) \int dx = x \ln(4x) x + C$ $= x \left[\ln(4x) 1\right] + C$

- 8. $\int \left(\frac{t}{e^t}\right) dt$ Letting u = t, $dv = e^{-t} dt$, then du = dt, $v = -e^{-t}$ $\int \left(\frac{t}{e^t}\right) dt = -te^{-t} \int -e^{-t} dt$ $= -te^{-t} e^{-t} + C = -e^{-t} (t+1) + C$
- 9. $\int x\sqrt{ax+b} \, dx$ Letting u = x, $dv = \sqrt{ax+b} \, dx$, then du = dx, $v = \frac{1}{a} \cdot \frac{(ax+b)^{3/2}}{\frac{3}{2}} = \frac{2}{3a} (ax+b)^{3/2}.$ $\int x\sqrt{ax+b} \, dx$ $= \frac{2x}{3a} (ax+b)^{3/2} \int \frac{2}{3a} (ax+b)^{3/2} \, dx$ $= \frac{2x}{3a} (ax+b)^{3/2} \frac{2}{3a^2} \cdot \frac{(ax+b)^{5/2}}{\frac{5}{2}} + C$ $= \frac{2x}{3a} (ax+b)^{3/2} \frac{4}{15a^2} (ax+b)^{5/2} + C$
- 10. $\int \frac{12x}{\sqrt{1+4x}} dx$ Letting u = 12x, $dv = (1+4x)^{-\frac{1}{2}} dx$,
 then du = 12dx, $v = \frac{1}{2}(1+4x)^{\frac{1}{2}}$ $\int \frac{12x}{\sqrt{1+4x}} dx = 12x \cdot \frac{\sqrt{1+4x}}{2} \int \frac{(1+4x)^{\frac{1}{2}}}{2} \cdot 12dx$ $= 6x\sqrt{1+4x} (1+4x)^{\frac{3}{2}} + C$ $= \sqrt{4x-1}[6x (1+4x)] + C$ $= (2x-1)\sqrt{4x+1} + C$
- 11. $\int \frac{x}{(5x+2)^3} dx$ Letting u = x, $dv = (5x+3)^{-3} dx$, then du = dx and $v = -\frac{1}{10} (5x+3)^{-2}$.

$$\int \frac{x}{(5x+2)^3} dx$$

$$= -\frac{x}{10(5x+3)^2} - \int -\frac{1}{10} (5x+3)^{-2} dx$$

$$= -\frac{x}{10(5x+3)^2} + \frac{1}{10} \cdot \frac{(5x+3)^{-1}}{5(-1)} + C$$

$$= -\frac{x}{10(5x+3)^2} - \frac{1}{50(5x+3)} + C$$

12.
$$\int \frac{\ln(x+1)}{2(x+1)} dx = \frac{1}{2} \int \ln(x+1) \left[\frac{1}{x+1} dx \right]$$
(Form: $\int u^n du$)
$$\int \frac{\ln(x+1)}{2(x+1)} dx = \frac{\ln(x+1)^2}{4} + C$$

13.
$$\int \frac{\ln x}{x^2} dx$$
Letting $u = \ln x$, $dv = x^{-2} dx$, then $du = \frac{1}{x} dx$,
$$v = -x^{-1}$$
.
$$\int \frac{\ln x}{x^2} dx = -\frac{\ln x}{x} - \int -x^{-1} \left(\frac{1}{x} dx\right)$$

$$= -\frac{\ln x}{x} + \int x^{-2} dx = -\frac{\ln x}{x} - \frac{1}{x} + C$$

$$= -\frac{1}{x} (1 + \ln x) + C$$

14.
$$\int \frac{2x+7}{3^{3x}} dx$$
Letting $u = 2x+7$, $dv = e^{-3x} dx$, then $du = 2 dx$ and $v = -\frac{1}{3}e^{-3x}$.
$$\int \frac{2x+7}{e^{3x}} dx = -\frac{2x+7}{3e^{3x}} + \frac{2}{3} \int e^{-3x} dx$$

$$= -\frac{2x+7}{3e^{3x}} - \frac{2}{9e^{3x}} + C$$

15.
$$\int_{1}^{2} 4xe^{2x} dx$$
Letting $u = 4x$, $dv = e^{2x} dx$, then $du = 4dx$,
$$v = \frac{1}{2}e^{2x}$$

$$\int_{1}^{2} 4xe^{2x} dx = \left[2xe^{2x} - \int 2e^{2x} dx\right]_{1}^{2}$$

$$= \left[2xe^{2x} - e^{2x}\right]_{1}^{2} = e^{2x}(2x-1)\Big|_{1}^{2}$$

$$= e^{4}(3) - e^{2}(1) = e^{2}\left(3e^{2} - 1\right)$$

16.
$$\int_{1}^{2} 2xe^{-3x} dx$$
Letting $u = 2x$, $dv = e^{-3x} dx$, then $du = 2 dx$ and
$$v = -\frac{1}{3}e^{-3x}.$$

$$\int_{1}^{2} 2xe^{-3x} dx$$

$$= \left[-\frac{2xe^{-3x}}{3} - \int_{1}^{2} -\frac{2}{3}e^{-3x} dx \right]_{1}^{2}$$

$$\int_{1}^{2} 2xe^{-3x} dx \\
= \left[-\frac{2xe^{-3x}}{3} - \int -\frac{2}{3}e^{-3x} dx \right]_{1}^{2} \\
= \left[-\frac{2xe^{-3x}}{3} + \frac{2}{3} \cdot \frac{e^{-3x}}{-3} \right]_{1}^{2} \\
= \left[-\frac{2xe^{-3x}}{3} - \frac{2e^{-3x}}{9} \right]_{1}^{2} \\
= \left[-\frac{2e^{-3x}}{3} \left(x + \frac{1}{3} \right) \right]_{1}^{2} \\
= \left[-\frac{2e^{-6}}{3} \left(2 + \frac{1}{3} \right) \right] - \left[-\frac{2e^{-3}}{3} \left(1 + \frac{1}{3} \right) \right] \\
= -\frac{2e^{-6}}{3} \left[\frac{7}{3} - e^{3} \left(\frac{4}{3} \right) \right] \\
= -\frac{2}{9e^{6}} [7 - 4e^{3}]$$

17.
$$\int_0^1 x e^{-x^2} dx = -\frac{1}{2} \int_0^1 e^{-x^2} (-2x \ dx) \text{ (Form: } \int e^u du \text{)}$$
$$= -\frac{1}{2} e^{-x^2} \Big|_0^1 = -\frac{1}{2} \Big(e^{-1} - 1 \Big) = \frac{1}{2} \Big(1 - e^{-1} \Big)$$

18.
$$\int \frac{3x^3}{\sqrt{4-x^2}} dx$$
Letting $u = 3x^2$, $dv = x(4-x^2)^{-\frac{1}{2}} dx$, then $du = 6x dx$,
$$v = -(4-x^2)^{\frac{1}{2}}.$$

$$\int \frac{3x^3}{\sqrt{4-x^2}} dx$$

$$= -3x^2 (4-x^2)^{\frac{1}{2}} - \int -(4-x^2)^{\frac{1}{2}} (6x dx)$$

$$= -3x^2 (4-x^2)^{\frac{1}{2}} - 2(4-x^2)^{\frac{3}{2}} + C$$

$$= -\sqrt{4-x^2} \left[3x^2 + 2(4-x^2) \right] + C$$

$$= -(x^2+8)\sqrt{4-x^2} + C$$

19.
$$\int_{5}^{8} \frac{4x}{\sqrt{9-x}} dx$$
Letting $u = 4x$, $dv = (9-x)^{-1/2} dx$, then
$$du = 4 dx \text{ and } v = -1 \cdot \frac{(9-x)^{1/2}}{\frac{1}{2}} = -2(9-x)^{1/2}.$$

$$\int_{5}^{8} \frac{4x}{\sqrt{9-x}} dx$$

$$= -8x\sqrt{9-x} \Big|_{5}^{8} + 8 \int_{5}^{8} \sqrt{9-x} dx$$

$$= -8(8)\sqrt{9-8} + 8(5)\sqrt{9-5} - \frac{8(9-x)^{3/2}}{\frac{3}{2}} \Big|_{5}^{8}$$

$$= -64 + 80 - \frac{16}{3} [(9-8)^{3/2} - (9-5)^{3/2}]$$

$$= 16 - \frac{16}{3} (1-8)$$

$$= 160$$

20.
$$\int (\ln x)^2 dx$$
Letting $u = (\ln x)^2$, $dv = dx$, then
$$du = \left[\frac{2\ln x}{x}\right] dx, v = x.$$

$$\int (\ln x)^2 dx = x(\ln x)^2 - \int x \left[\frac{2\ln x}{x} dx\right]$$

$$= x(\ln x)^2 - 2\int \ln(x) dx$$

For
$$\int \ln(x)dx$$
, let $u = \ln x$, $dv = dx$. Then
$$du\left(\frac{1}{x}\right)dx$$
, $v = x$, so
$$\int \ln(x)dx = x \ln x - \int x\left(\frac{1}{x}dx\right) = x[\ln(x) - 1] + C_1$$
. Thus $\int (\ln x)^2 dx = x \left[(\ln x)^2 - 2\ln(x) + 2 \right] + C$.

21.
$$\int 3(2x-2)\ln(x-2)dx$$
Letting $u = 3\ln(x-2)$, $dv = (2x-2)dx$, then
$$du = \frac{3}{x-2}dx \text{ and } v = x^2 - 2x = x(x-2).$$

$$\int 3(2x-2)\ln(x-2)dx$$

$$= 3x(x-2)\ln(x-2) - \int x(x-2) \cdot \frac{3}{x-2}dx$$

$$= 3x(x-2)\ln(x-2) - \int 3x dx$$

$$= 3x(x-2)\ln(x-2) - \frac{3}{2}x^2 + C$$

22.
$$\int \frac{xe^{x}}{(x+1)^{2}} dx$$
Letting $u = xe^{x}$, $dv = (x+1)^{-2} dx$, then
$$du = (x+1)e^{x} dx, \quad v = -(x+1)^{-1}.$$

$$\int \frac{xe^{x}}{(x+1)^{2}} dx = -\frac{xe^{x}}{x+1} + \int e^{x} dx$$

$$= -\frac{xe^{x}}{x+1} + e^{x} + C$$

$$= e^{x} \left(1 - \frac{x}{x+1} \right) = e^{x} \left(\frac{x+1-x}{x+1} \right) + C = \frac{e^{x}}{x+1} + C$$

23.
$$\int x^2 e^x dx$$
Letting $u = x^2$, $dv = e^x dx$, then $du = 2x dx$ and $v = e^x$.
$$\int x^2 e^x dx = x^2 e^x - \int e^x (2x dx)$$

$$= x^2 e^x - 2 \int x e^x dx$$
For $\int x e^x dx$, let $u = x$, $dv = e^x dx$. Then $du = dx$, $v = e^x$ and
$$\int x e^x dx = x e^x - \int e^x dx = x e^x - e^x + C_1$$

$$= e^x (x - 1) + C_1$$
.

Thus
$$\int x^2 e^x dx = x^2 e^x - 2 \Big[e^x (x-1) \Big] + C$$

= $e^x \Big(x^2 - 2x + 2 \Big) + C$.

24.
$$\int_{1}^{4} \sqrt{x} \ln(x^{9}) dx = 9 \int_{1}^{4} x^{1/2} \ln x \, dx$$
Letting $u = \ln x$ and $dv = x^{1/2} dx$, then $du = \frac{1}{x} dx$
and $v = \frac{2}{3} x^{3/2}$.
$$9 \int_{1}^{4} x^{1/2} \ln x \, dx$$

$$= 9 \cdot \ln x \cdot \frac{2}{3} x^{3/2} \Big|_{1}^{4} - 9 \cdot \frac{2}{3} \int_{1}^{4} \frac{x^{3/2}}{x} \, dx$$

$$= 6x^{3/2} \ln x \Big|_{1}^{4} - 6 \int_{1}^{4} x^{1/2} \, dx$$

$$= 6(4^{3/2} \ln 4 - 1^{3/2} \ln 1) - 6 \cdot \frac{x^{3/2}}{\frac{3}{2}} \Big|_{1}^{4}$$

$$= 48 \ln 2^{2} - 4(4^{3/2} - 1^{3/2})$$

$$= 96 \ln 2 - 28$$

25.
$$\int (x - e^{-x})^2 dx = \int (x^2 - 2xe^{-x} + e^{-2x}) dx$$
$$= \frac{x^3}{3} - \frac{e^{-2x}}{2} - 2\int xe^{-x} dx$$
Using Problem 3 for $\int xe^{-x} dx$,
$$\int (x - e^{-x})^2 dx = \frac{x^3}{3} - \frac{e^{-2x}}{2} + 2e^{-x}(x+1) + C$$

26.
$$\int x^{2}e^{3x}dx$$
Letting $u = x^{2}$, $dv = e^{3x}dx$, then $du = 2x dx$ and $v = \frac{1}{3}e^{3x}$.
$$\int x^{2}e^{3x}dx = \frac{1}{3}x^{2}e^{3x} - \int \frac{1}{3}e^{3x} \cdot 2x dx$$

$$= \frac{1}{3}x^{2}e^{3x} - \frac{2}{3}\int xe^{3x}dx$$
For $\int xe^{3x}dx$, let $u = x$, $dv = e^{3x}dx$, then $du = dx$, $v = \frac{1}{3}e^{3x}$, and
$$\int xe^{3x}dx = \frac{1}{3}xe^{3x} - \int \frac{1}{3}e^{3x}dx$$

$$= \frac{1}{3}xe^{3x} - \frac{1}{9}e^{3x} + C_{1}.$$

Thuc

28. $\int x^5 e^{x^2} dx$

$$\int x^2 e^{3x} dx = \frac{1}{3} x^2 e^{3x} - \frac{2}{3} \left(\frac{1}{3} x e^{3x} - \frac{1}{9} e^{3x} \right) + C$$
$$= \frac{1}{27} e^{3x} (9x^2 - 6x - 2) + C$$

27. $\int x^3 e^{x^2} dx$ Letting $u = x^2$, $dv = xe^{x^2} dx$, then du = 2x dx, $v = \left(\frac{1}{2}\right) e^{x^2}.$ $\int x^3 e^{x^2} dx = \frac{x^2 e^{x^2}}{2} - \int \frac{e^{x^2}}{2} (2x dx)$ $= \frac{x^2 e^{x^2}}{2} - \frac{e^{x^2}}{2} + C = \frac{e^{x^2}}{2} \left(x^2 - 1\right) + C$

Letting $u = x^4$ and $dv = xe^{x^2} dx$, then $du = 4x^3 dx$ and $v = \frac{1}{2}e^{x^2}$. $\int x^5 e^{x^2} dx = \frac{x^4}{2} e^{x^2} - \int \frac{1}{2} e^{x^2} \cdot 4x^3 dx$ $= \frac{x^4}{2} e^{x^2} - 2 \int x^3 e^{x^2} dx$

Using Problem 27 for
$$\int x^3 e^{x^2} dx$$
,

$$\int x^5 e^{x^2} dx = \frac{x^4}{2} e^{x^2} - 2 \cdot \left[\frac{1}{2} e^{x^2} (x^2 - 1) \right] + C$$

$$= \frac{x^4}{2} e^{x^2} - e^{x^2} (x^2 - 1) + C$$

$$= \frac{1}{2} e^{x^2} (x^4 - 2x^2 + 2) + C$$

29.
$$\int (e^{x} + x)^{2} dx = \int (e^{2x} + 2xe^{x} + x^{2}) dx$$

$$= \int e^{2x} dx + \int 2xe^{x} dx + \int x^{2} dx$$
For $\int 2xe^{x} dx$, let $u = 2x$, $dv = e^{x} dx$. Then
$$du = 2dx, \ v = e^{x}, \text{ and}$$

$$\int 2xe^{x} dx = 2xe^{x} - 2\int e^{x} dx = 2xe^{x} - 2e^{x} + C.$$
Thus $\int (e^{x} + x)^{2} dx = \frac{1}{2}e^{2x} + 2xe^{x} - 2e^{x} + \frac{x^{3}}{3} + C$

$$= \frac{1}{2}e^{2x} + 2e^{x}(x - 1) + \frac{x^{3}}{3} + C$$

30.
$$\frac{d}{dx} \left[\ln \left(x + \sqrt{x^2 + 1} \right) \right]$$

$$= \frac{1}{x + \sqrt{x^2 + 1}} \left(1 + \frac{x}{\sqrt{x^2 + 1}} \right)$$

$$= \frac{1}{x + \sqrt{x^2 + 1}} \left(\frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}} \right) = \frac{1}{\sqrt{x^2 + 1}}$$
For $\int \ln \left(x + \sqrt{x^2 + 1} \right) dx$, let
$$u = \ln \left(x + \sqrt{x^2 + 1} \right), dv = dx. \text{ Then}$$

$$du = \frac{1}{\sqrt{x^2 + 1}} dx, v = x, \text{ and}$$

$$\int \ln \left(x + \sqrt{x^2 + 1} \right) dx$$

$$= x \ln \left(x + \sqrt{x^2 + 1} \right) - \int x \left(x^2 + 1 \right)^{-\frac{1}{2}} dx$$

$$= x \ln \left(x + \sqrt{x^2 + 1} \right) - \frac{1}{2} \int \left(x^2 + 1 \right)^{-\frac{1}{2}} [2x \ dx]$$

$$= x \ln \left(x + \sqrt{x^2 + 1} \right) - \sqrt{x^2 + 1} + C$$

- 31. Area = $\int_{1}^{e^{3}} (\ln x) dx$. Letting $u = \ln x$, dv = dx, then $du = \left(\frac{1}{x}\right) dx$, v = x. $\int_{1}^{e^{3}} (\ln x) dx = \left[(x \ln x) \int x \cdot \frac{1}{x} dx \right]_{1}^{e^{3}}$ $= \left[(x \ln x) \int dx \right]_{1}^{e^{3}} = \left[x \ln(x) x \right]_{1}^{e^{3}}$ $= \left[e^{3} \cdot 3 e^{3} \right] \left[1 \cdot 0 1 \right] = 2e^{3} + 1$ The area is $(2e^{3} + 1)$ sq units.
- 32. Area = $\int_0^1 x^2 e^x dx$. Letting $u = x^2$, $dv = e^x dx$, then du = 2x dx and $v = e^x$. $\int x^2 e^x = x^2 e^x - 2 \int x e^x dx$ For $\int x e^x dx$, let u = x and $dv = e^x dx$, then du = dx and $v = e^x$.

$$\int xe^x = xe^x - \int e^x dx = xe^x - e^x = e^x (x - 1).$$
Thus
$$\int_0^1 x^2 e^x dx = (x^2 e^x - 2[e^x (x - 1)]) \Big|_0^1$$

$$= (e^x [x^2 - 2x + 2]) \Big|_0^1$$

$$= e - 2$$

The area is (e-2) sq units.

- 33. Area = $\int_{1}^{2} x^{2} \ln x \, dx$. Letting $u = \ln x$, $dv = x^{2} dx$, then $du = \frac{1}{x} dx$, $v = \frac{x^{3}}{3}$. $\int_{1}^{2} x^{2} \ln x \, dx = \left(\frac{x^{3}}{3} \ln x - \int \frac{x^{3}}{3} \cdot \frac{1}{x} \, dx\right)\Big|_{1}^{2}$ $= \left(\frac{x^{3}}{3} \ln x - \frac{1}{3} \int x^{2} dx\right)\Big|_{1}^{2}$ $= \left(\frac{x^{3}}{3} \ln x - \frac{1}{9} x^{3}\right)\Big|_{1}^{2}$ $= \left(\frac{8}{3} \ln 2 - \frac{8}{9}\right) - \left(0 - \frac{1}{9}\right)$ $= \frac{8}{3} \ln(2) - \frac{7}{9}$ The area is $\left(\frac{8}{3} \ln(2) - \frac{7}{9}\right)$ sq units.
- 34. $p = 5(q+5)e^{-(q+5)/5} = 5(q+5)e^{-0.2q-1}$ When q = 7, $p = 60e^{-2.4}$. $CS = \int_0^7 [5(q+5)e^{-0.2q-1} - 60e^{-2.4}]dq$ $= 5\int_0^7 (q+5)e^{-0.2q-1}dq - 60\int_0^7 e^{-2.4}dq$ For the first integral, let u = q + 5, $dv = e^{-0.2q-1}dq. \text{ Then } du = dq, \ v = -5e^{-0.2q-1},$ and $5\int_0^7 (q+5)e^{-0.2q-1}dq$ $= 5\left[(q+5)(-5e^{-0.2q-1}) \Big|_0^7 + 5\int_0^7 e^{-0.2q-1}dq \right]$ $= 5\left[12(-5e^{-2.4}) - 5(-5e^{-1}) + 5 \cdot \frac{e^{-0.2q-1}}{-0.2} \Big|_0^7 \right]$ $= 5[-60e^{-2.4} + 25e^{-1} - 25(e^{-2.4} - e^{-1})]$ $= -425e^{-2.4} + 250e^{-1}$

Thus,
$$CS = -425e^{-2.4} + 250e^{-1} - 60e^{-2.4}q\Big|_0^7$$

= $-425e^{-2.4} + 250e^{-1} - 60e^{-2.4}(7)$
 $\approx 15.31

- **35. a.** Consider $\int p \ dq$. Letting u = p, dv = dq, then $du = \frac{dp}{dq} dq$, v = q. Thus $\int p \ dq = pq \int q \frac{dp}{dq} dq = r \int q \frac{dp}{dq} dq$ (since r = pq).
 - **b.** From (a), $r = \int p \ dq + \int q \frac{dp}{dq} dq$. Combining the integrals gives $r = \int \left(p + q \frac{dp}{dq} \right) dq$.
 - c. From (b), $\frac{dr}{dq} = p + q \frac{dp}{dq}$. Thus $\int_0^{q_0} \left(p + q \frac{dp}{dq} \right) dq$ $= \int_0^{q_0} \frac{dr}{dq} dq = r(q_0) r(0) = r(q_0)$ [since r(0) = 0].
- 36. $\int f(x)e^{x}dx$ Letting u = f(x), $dv = e^{x}dx$, then du = f'(x)dx, $v = e^{x}$. Using integration by parts, $\int f(x)e^{x}dx = f(x)e^{x} \int f'(x)e^{x}dx$. Thus $\int f(x)e^{x}dx + \int f'(x)e^{x}dx = f(x)e^{x} + C$
- 37. f and its inverse f^{-1} satisfy the equation $f(f^{-1}(x)) = x$. Differentiating this equation using the Chain Rule we get: $f'(f^{-1}(x)) \cdot (f^{-1})'(x) = 1$. Thus $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$. Now to evaluate $\int f^{-1}(x) dx$ we will use integration by parts, letting $u = f^{-1}(x)$ and dv = dx. Then $du = \frac{1}{f'(f^{-1}(x))} dx$ and v = x.

So
$$\int f^{-1}(x) dx = xf^{-1}(x) - \int \frac{x}{f'(f^{-1}(x))} dx$$
.
To evaluate $\int \frac{x}{f'(f^{-1}(x))} dx$ we will use the fact that $x = f(f^{-1}(x))$ and $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$.
Hence $\int \frac{x}{f'(f^{-1}(x))} dx = \int f(f^{-1}(x)) \cdot (f^{-1})'(x) dx$

$$f'(f^{-1}(x)) = F(f^{-1}(x))$$
= $F(f^{-1}(x))$
since $F' = f$. Finally,

$$\int f^{-1}(x) dx = xf^{-1}(x) - F(f^{-1}(x)) + C.$$

Apply It 15.2

3.
$$r(q) = \int r'(q)dq = \int \frac{5(q+4)}{q^2 + 4q + 3}dq$$

Express $\frac{5(q+4)}{q^2 + 4q + 3}$ as a sum of partial fractions.

$$\frac{5(q+4)}{q^2 + 4q + 3} = \frac{5(q+4)}{(q+1)(q+3)} = \frac{A}{q+1} + \frac{B}{q+3}$$

$$5(q+4) = A(q+3) + B(q+1)$$
When $q = -3$, we get $5(1) = -2B$, so $B = -\frac{5}{2}$.
When $q = -1$, we get $5(3) = A(2)$, so $A = \frac{15}{2}$.

$$r(q) = \int \frac{5(q+4)}{q^2 + 4q + 3}dx$$

$$= \int \frac{\frac{15}{2}}{q+1}dq - \int \frac{\frac{5}{2}}{q+3}dq$$

$$= \frac{15}{2}\ln|q+1| - \frac{5}{2}\ln|q+3| + C$$

$$= \frac{5}{2}\ln\left|\frac{(q+1)^3}{q+3}\right| + C$$
Since $r(0) = 0$, $0 = \frac{5}{2}\ln\left|\frac{1}{3}\right| + C$ so $C = \frac{5}{2}\ln 3$ and $r(q) = \frac{5}{2}\ln\left|\frac{3(q+1)^3}{q+3}\right|$.

4.
$$V(t) = \int V'(t)dt = \int \frac{300t^3}{t^2 + 6}dt$$

Since the degree of the numerator is greater than the degree of the denominator, we first divide $300t^3$ by $t^2 + 6$ to reduce the fraction.

$$\frac{300t^3}{t^2 + 6} = \frac{300t^3 + 1800t - 1800t}{t^2 + 6}$$
$$= \frac{300t(t^2 + 6) - 1800t}{t^2 + 6} = 300t - \frac{1800t}{t^2 + 6}$$

 $t^2 + 6$ is irreducible. To integrate $\frac{1800t}{t^2 + 6}$, let

$$u = t^{2} + 6, \text{ so } du = 2t dt$$

$$\int \frac{300t^{3}}{t^{2} + 6} dt = \int 300t dt - \int \frac{1800t}{t^{2} + 6} dt$$

$$= 150t^{2} - 900 \ln \left| t^{2} + 6 \right| + C$$

$$V(t) = 150t^{2} - 900 \ln \left(t^{2} + 6 \right) + C$$

Problems 15.2

1.
$$\frac{10x}{x^2 + 7x + 6} = \frac{10x}{(x+6)(x+1)} = \frac{A}{x+6} + \frac{B}{x+1}$$

$$10x = A(x+1) + B(x+6)$$
If $x = -1$, then $-10 = 5B$, or $B = -2$. If $x = -6$, then $-60 = -5A$, or $A = 12$.

Answer
$$\frac{12}{x+6} - \frac{2}{x+1}$$

2.
$$\frac{x+5}{x^2-1} = \frac{x+5}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}$$

$$x+5 = A(x+1) + B(x-1)$$
If $x = -1$, then $4 = -2B$, or $B = -2$. If $x = 1$, then $6 = 2A$, or $A = 3$.

Answer
$$\frac{3}{x-1} - \frac{2}{x+1}$$

3.
$$\frac{2x^2}{x^2 + 5x + 6} = 2 + \frac{-10x - 12}{x^2 + 5x + 6}$$
$$\frac{-10x - 12}{x^2 + 5x + 6} = \frac{-10x - 12}{(x + 2)(x + 3)} = \frac{A}{x + 2} + \frac{B}{x + 3}$$
$$-10x - 12 = A(x + 3) + B(x + 2)$$
If $x = -3$, then $18 = -B$, or $B = -18$. If $x = -2$, then $8 = A$.
Answer: $2 + \frac{8}{x + 2} - \frac{18}{x + 3}$

4.
$$\frac{2x^2 - 15}{x^2 + 5x} = 2 + \frac{-10x - 15}{x^2 + 5x}$$
 (by long division).

$$\frac{-10x - 15}{x^2 + 5x} = \frac{-10x - 15}{x(x+5)} = \frac{A}{x} + \frac{B}{x+5}$$

$$-10x - 15 = A(x+5) + Bx. \text{ If } x = 0, \text{ then } -15 = 5A, \text{ or } A = -3. \text{ If } x = -5, \text{ then } 35 = -5B, \text{ or } B = -7.$$
Answer:
$$2 - \frac{3}{x} - \frac{7}{x+5}$$

5.
$$f(x) = \frac{3x-1}{x^2 - 2x + 1} = \frac{3x-1}{(x-1)^2} = \frac{A}{x-1} + \frac{B}{(x-1)^2}$$

 $3x - 1 = A(x-1) + B$
If $x = 1$, then $2 = B$. If $x = 0$, then $-1 = -A + B$, $A = 1 + B = 1 + 2 = 3$, or $A = 3$.
Answer: $\frac{3}{x-1} + \frac{2}{(x-1)^2}$

6.
$$\frac{2x+3}{x^2(x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1}$$

$$2x+3 = Ax(x-1) + B(x-1) + Cx^2$$
If $x = 0$, then $3 = -B$, or $B = -3$. If $x = 1$, then $5 = C$. If $x = -1$, then $1 = 2A - 2B + C$, $1 = 2A + 6 + 5$, or $A = -5$.

Answer: $-\frac{5}{x} - \frac{3}{x^2} + \frac{5}{x-1}$

7.
$$\frac{x^2 + 3}{x^3 + x} = \frac{x^2 + 3}{x(x^2 + 1)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1}$$

$$x^2 + 3 = A(x^2 + 1) + (Bx + C)x$$

$$x^2 + 3 = (A + B)x^2 + Cx + A$$
Thus $A + B = 1$, $C = 0$, $A = 3$. This gives $A = 3$, $B = -2$, $C = 0$.
Answer: $\frac{3}{x} - \frac{2x}{x^2 + 1}$

8.
$$\frac{3x^2 + 5}{\left(x^2 + 4\right)^2} = \frac{Ax + B}{x^2 + 4} + \frac{Cx + D}{\left(x^2 + 4\right)^2}$$
$$3x^2 + 5 = (Ax + B)\left(x^2 + 4\right) + (Cx + D)$$
$$3x^2 + 5 = Ax^3 + Bx^2 + (4A + C)x + (4B + D)$$
Thus $A = 0, B = 3, 4A + C = 0, 4B + D = 5$. This

gives
$$A = 0$$
, $B = 3$, $C = 0$, $D = -7$.
Answer: $\frac{3}{x^2 + 4} - \frac{7}{(x^2 + 4)^2}$

9.
$$\frac{5x-2}{x^2-x} = \frac{5x-2}{x(x-1)} = \frac{A}{x} + \frac{B}{x-1}$$

$$5x-2 = A(x-1) + Bx$$
If $x = 1$, then $3 = B$. If $x = 0$, then $-2 = -A$, or $A = 2$.
$$\int \frac{5x-2}{x^2-x} dx = \int \left(\frac{2}{x} + \frac{3}{x-1}\right) dx$$

$$= 2\ln|x| + 3\ln|x-1| + C = \ln|x^2(x-1)^3| + C$$

10.
$$\frac{15x+5}{x^2+5x} = \frac{15x+5}{x(x+5)} = \frac{A}{x} + \frac{B}{x+5}$$

$$15x+5 = A(x+5) + Bx$$
If $x = 0$, then $5 = 5A + 0$, or $A = 1$.

If $x = 1$, then $20 = 6A + B = 6 + B$, or $B = 14$.
$$\int \frac{15x+5}{x^2+5x} dx = \int \left(\frac{1}{x} + \frac{14}{x+5}\right) dx$$

$$= \ln|x| + 14 \ln|x+5| + C$$

11.
$$\frac{x+10}{x^2 - x - 2} = \frac{x+10}{(x+1)(x-2)} = \frac{A}{x+1} + \frac{B}{x-2}$$

$$x+10 = A(x-2) + B(x+1)$$
If $x = 2$, then $12 = 3B$, or $B = 4$. If $x = -1$, then $9 = -3A$, or $A = -3$.
$$\int \frac{x+10}{x^2 - x - 2} dx = \int \left(\frac{-3}{x+1} + \frac{4}{x-2}\right) dx$$

$$= -3\ln|x+1| + 4\ln|x-2| + C = \ln\left|\frac{(x-2)^4}{(x+1)^3}\right| + C$$

12.
$$\frac{2x-1}{x^2 - x - 12} = \frac{2x-1}{(x-4)(x+3)} = \frac{A}{x-4} + \frac{B}{x+3}$$

$$2x - 1 = A(x+3) + B(x-4)$$
If $x = -3$, then $-7 = -7B$, or $B = 1$. If $x = 4$, then $7 = 7A$, or $A = 1$.
$$\int \frac{2x-1}{x^2 - x - 12} dx = \int \left(\frac{1}{x-4} + \frac{1}{x+3}\right) dx$$

$$= \ln|x-4| + \ln|x+3| + C = \ln|(x-4)(x+3)| + C$$

13.
$$\frac{3x^3 - 3x + 4}{4x^2 - 4} = \frac{1}{4} \cdot \frac{3x^3 - 3x + 4}{x^2 - 1}$$

$$= \frac{1}{4} \left(3x + \frac{4}{x^2 - 1} \right)$$

$$\frac{4}{x^2 - 1} = \frac{4}{(x - 1)(x + 1)} = \frac{A}{x - 1} + \frac{B}{x + 1}$$

$$4 = A(x + 1) + B(x - 1)$$
If $x = -1$, then $4 = -2B$, or $B = -2$. If $x = 1$, then $4 = 2A$, or $A = 2$.
$$\int \frac{3x^3 - 3x + 4}{4x^2 - 4} dx = \frac{1}{4} \int \left(3x + \frac{2}{x - 1} + \frac{-2}{x + 1} \right) dx$$

$$= \left(\frac{1}{4} \right) \left[\frac{3x^2}{2} + 2\ln|x - 1| - 2\ln|x + 1| \right] + C$$

$$= \left(\frac{1}{4} \right) \left[\frac{3x^2}{2} + \ln\left|\frac{x - 1}{x + 1}\right|^2 \right] + C$$

14.
$$\frac{7(4-x^2)}{(x-4)(x-2)(x+3)} = \frac{7(2+x)(2-x)}{(x-4)(x-2)(x+3)}$$

$$= \frac{-7(x+2)}{(x-4)(x+3)} = \frac{A}{x-4} + \frac{B}{x+3}$$

$$-7(x+2) = A(x+3) + B(x-4)$$
If $x = -3$, then $7 = -7B$, or $B = -1$. If $x = 4$, then $-42 = 7A$, or $A = -6$.
$$\int \frac{7(4-x^2)}{(x-4)(x-2)(x+3)} dx = \int \left(\frac{-6}{x-4} + \frac{-1}{x+3}\right) dx$$

$$= -6\ln|x-4| - \ln|x+3| + C$$

$$= -\ln|(x-4)^6(x+3)| + C$$

15.
$$\frac{19x^2 - 5x - 36}{2x^3 - 2x^2 - 12x} = \frac{19x^2 - 5x - 36}{2x(x - 3)(x + 2)}$$
$$= \frac{A}{2x} + \frac{B}{x - 3} + \frac{C}{x + 2}$$
$$19x^2 - 5x - 36$$
$$= (x - 3)(x + 2)A + 2x(x + 2)B + 2x(x - 3)C$$
If $x = 0$, then $-36 = -6A$, or $A = 6$. If $x = 3$, then $120 = 30B$, or $B = 4$.

If
$$x = -2$$
, then $50 = 20C$, or $C = \frac{5}{2}$.

$$\int \frac{19x^2 - 5x - 36}{2x^3 - 2x^2 - 12x} dx$$

$$= \int \frac{6}{2x} dx + \int \frac{4}{x - 3} dx + \frac{5}{2} \int \frac{1}{x + 2} dx$$

$$= 3\ln|x| + 4\ln|x - 3| + \frac{5}{2}\ln|x + 2| + C$$

16.
$$\frac{4-x}{x^4 - x^2} = \frac{4-x}{x^2(x+1)(x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1} + \frac{D}{x-1}$$
$$4-x = Ax(x+1)(x-1) + B(x+1)(x-1) + Cx^2(x-1) + Dx^2(x+1)$$

If x = 0, then 4 = -B, or B = -4. If x = -1, then 5 = -2C, or $C = -\frac{5}{2}$. If x = 1, then 3 = 2D, or $D = \frac{3}{2}$. If x = 2, then 2 = 6A + 3B + 4C + 12D, 2 = 6A - 12 - 10 + 18, or 2 = 6A - 4, so A = 1.

$$\int \frac{4-x}{x^4 - x^2} dx = \int \left(\frac{1}{x} - \frac{4}{x^2} + \frac{-\frac{5}{2}}{x+1} + \frac{\frac{3}{2}}{x-1} \right) dx$$

$$= \ln|x| + \frac{4}{x} - \frac{5}{2}\ln|x+1| + \frac{3}{2}\ln|x-1| + C$$

$$4 \quad 1 \quad |x^{2}(x-1)^{3}| \quad -$$

$$= \frac{4}{x} + \frac{1}{2} \ln \left| \frac{x^2 (x-1)^3}{(x+1)^5} \right| + C$$

17.
$$\int \frac{2(3x^5 + 4x^3 - x)}{x^6 + 2x^4 - x^2 - 2} dx = \int \frac{1}{x^6 + 2x^4 - x^2 - 2} \left[\left(6x^5 + 8x^3 - 2x \right) dx \right]$$
Form:
$$\int \left(\frac{1}{u} \right) du$$
 (Partial fractions not required.)

Answer: $\ln |x^6 + 2x^4 - x^2 - 2| + C$

18.
$$\frac{x^4 - 2x^3 + 6x^2 - 11x + 2}{x^3 - 3x^2 + 2x} = x + 1 + \frac{7x^2 - 13x + 2}{x^3 - 3x^2 + 2x}$$

$$\frac{7x^2 - 13x + 2}{x^3 - 3x^2 + 2x} = \frac{7x^2 - 13x + 2}{x(x - 1)(x - 2)} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x - 2}$$

$$7x^2 - 13x + 2 = A(x-1)(x-2) + Bx(x-2) + Cx(x-1)$$

If x = 0, then 2 = 2A, or A = 1. If x = 1, then -4 = -B, or B = 4. If x = 2, then 4 = 2C, or C = 2.

$$\int \frac{x^4 - 2x^3 + 6x^2 - 11x + 2}{x^3 - 3x^2 + 2x} = \int \left(x + 1 + \frac{1}{x} + \frac{4}{x - 1} + \frac{2}{x - 2}\right) dx$$

$$= \frac{x^2}{2} + x + \ln|x| + 4\ln|x - 1| + 2\ln|x - 2| + C$$

$$= \frac{x^2}{2} + x + \ln|x(x - 1)^4 + (x - 2)^2| + C$$

19.
$$\frac{2x^2 - 5x - 2}{(x - 2)^2(x - 1)} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{C}{(x - 2)^2}$$

$$2x^2 - 5x - 2 = A(x - 2)^2 + B(x - 1)(x - 2) + C(x - 1)$$
If $x = 1$, then $-5 = A$. If $x = 2$, then $-4 = C$.
If $x = 0$, then $-2 = 4A + 2B - C$, $-2 = -20 + 2B + 4$, or $B = 7$.
$$\int \frac{2x^2 - 5x - 2}{(x - 2)^2(x - 1)} dx = \int \left[\frac{-5}{x - 1} + \frac{7}{x - 2} + \frac{-4}{(x - 2)^2} \right] dx$$

$$= -5\ln|x - 1| + 7\ln|x - 2| + \frac{4}{x - 2} + C = \frac{4}{x - 2} + \ln\left| \frac{(x - 2)^7}{(x - 1)^5} \right| + C$$

20.
$$\frac{5x^3 + x^2 + x - 3}{x^4 - x^3} = \frac{5x^3 + x^2 + x - 3}{x^3(x - 1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{D}{x - 1}$$

$$5x^3 + x^2 + x - 3 = Ax^2(x - 1) + Bx(x - 1) + C(x - 1) + Dx^3$$
If $x = 0, -3 = -C$, or $C = 3$.
If $x = 1, 4 = D$.
If $x = -1, -8 = -2A + 2B - 2C - D$, or $2 = -2A + 2B$ and $1 = -A + B$.
If $x = 2, 43 = 4A + 2B + C + 8D$, or $8 = 4A + 2B$ and $-4 = -2A - B$.

This gives
$$A = 1$$
 and $B = 2$.

$$\int \frac{5x^3 + x^2 + x - 3}{x^4 - x^3} dx = \int \frac{1}{x} dx + 2 \int \frac{1}{x^2} dx + 3 \int \frac{1}{x^3} dx + 4 \int \frac{1}{x - 1} dx$$

$$= \ln|x| + 2 \cdot \frac{x^{-1}}{-1} + 3 \frac{x^{-2}}{-2} + 4 \ln|x - 1| + C$$

$$= \ln|x(x - 1)^4| - \frac{2}{x} - \frac{3}{2x^2} + C$$

21.
$$\frac{2(x^2+8)}{x^3+4x} = \frac{2x^2+16}{x(x^2+4)} = \frac{A}{x} + \frac{Bx+C}{x^2+4}$$
$$2x^2+16 = A(x^2+4) + (Bx+C)x$$
$$2x^2+16 = (A+B)x^2 + Cx + 4A$$

Thus A + B = 2, C = 0, 4A = 16. This gives A = 4, B = -2, C = 0.

$$\int \frac{2(x^2+8)}{x^3+4x} dx = \int \left(\frac{4}{x} + \frac{-2x}{x^2+4}\right) dx = 4\int \frac{1}{x} dx - \int \frac{1}{x^2+4} [2x \ dx] = 4\ln|x| - \ln(x^2+4) + C = \ln\left[\frac{x^4}{x^2+4}\right] + C$$

22.
$$\frac{4x^3 - 3x^2 + 2x - 3}{(x^2 + 3)(x + 1)(x - 2)} = \frac{Ax + B}{x^2 + 3} + \frac{C}{x + 1} + \frac{D}{x - 2}$$

$$4x^3 - 3x^2 + 2x - 3 = (Ax + B)(x + 1)(x - 2) + C(x^2 + 3)(x - 2) + D(x^2 + 3)(x + 1)$$
If $x = -1$, then $-12 = -12C$, or $C = 1$.
If $x = 2$, then $21 = 21D$, or $D = 1$.
If $x = 0$, then $-3 = -2B - 6C + 3D$, $-3 = -2B - 6 + 3$, $0 = -2B$, or $B = 0$.

If
$$x = 1$$
, then $0 = -2(A + B) - 4C + 8D$, $0 = -2A - 4 + 8$, $-4 = -2A$, or $A = 2$.

$$\int \frac{4x^3 - 3x^2 + 2x - 3}{(x^2 + 3)(x + 1)(x - 2)} dx = \int \left(\frac{2x}{x^2 + 3} + \frac{1}{x + 1} + \frac{1}{x - 2}\right) dx$$

$$= \ln(x^2 + 3) + \ln|x + 1| + \ln|x - 2| + C$$

$$= \ln|(x^2 + 3)(x + 1)(x - 2)| + C$$

23.
$$\frac{-x^3 + 8x^2 - 9x + 2}{\left(x^2 + 1\right)(x - 3)^2} = \frac{Ax + B}{x^2 + 1} + \frac{C}{x - 3} + \frac{D}{(x - 3)^2}$$

$$-x^3 + 8x^2 - 9x + 2 = (Ax + B)(x - 3)^2 + C(x - 3)\left(x^2 + 1\right) + D\left(x^2 + 1\right)$$

$$= (Ax + B)\left(x^2 - 6x + 9\right) + C\left(x^3 - 3x^2 + x - 3\right) + D\left(x^2 + 1\right)$$

$$= (A + C)x^3 + (B - 6A - 3C + D)x^2 + (9A - 6B + C)x + (9B - 3C + D)$$
Thus $A + C = -1$, $B - 6A - 3C + D = 8$, $9A - 6B + C = -9$, $9B - 3C + D = 2$. This gives $A = -1$, $B = 0$, $C = 0$, $D = 2$.
$$\int \frac{-x^3 + 8x^2 - 9x + 2}{\left(x^2 + 1\right)(x - 3)^2} dx = \int \left(\frac{-x}{x^2 + 1} + \frac{0}{x - 3} + \frac{2}{(x - 3)^2}\right) dx = -\frac{1}{2}\ln\left(x^2 + 1\right) - \frac{2}{x - 3} + C$$

24.
$$\frac{5x^4 + 9x^2 + 3}{x(x^2 + 1)^2} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1} + \frac{Dx + E}{(x^2 + 1)^2}$$

$$5x^4 + 9x^2 + 3 = A(x^2 + 1)^2 + (Bx + C)x(x^2 + 1) + (Dx + E)x$$

$$= A(x^4 + 2x^2 + 1) + (Bx + C)(x^3 + x) + Dx^2 + Ex$$

$$= (A + B)x^4 + Cx^3 + (2A + B + D)x^2 + (C + E)x + A$$
Thus, $A + B = 5$, $C = 0$, $2A + B + D = 9$, $C + E = 0$, and $A = 3$. This gives $A = 3$, $B = 2$, $C = 0$, $D = 1$, and $E = 0$.
$$\int \frac{5x^4 + 9x^2 + 3}{x(x^2 + 1)^2} dx = \int \left(\frac{3}{x} + \frac{2x}{x^2 + 1} + \frac{x}{(x^2 + 1)^2}\right) dx$$

$$= 3\ln|x| + \ln|x^2 + 1| - \frac{1}{2(x^2 + 1)} + C$$

$$= \ln|x^3(x^2 + 1)| - \frac{1}{2(x^2 + 1)} + C$$

25.
$$\frac{7x^3 + 24x}{(x^2 + 3)(x^2 + 4)} = \frac{Ax + B}{x^2 + 3} + \frac{Cx + D}{x^2 + 4}$$

$$7x^3 + 24x = (Ax + B)(x^2 + 4) + (Cx + D)(x^2 + 3)$$

$$= (A + C)x^3 + (B + D)x^2 + (4A + 3C)x + (4B + 3D)$$
Thus $A + C = 7$, $B + D = 0$, $4A + 3C = 24$, $4B + 3D = 0$.
This gives $A = 3$, $B = 0$, $C = 4$, and $D = 0$.

$$\int \frac{7x^3 + 24x}{(x^2 + 3)(x^2 + 4)} dx = \int \frac{3x}{x^2 + 3} dx + \int \frac{4x}{x^2 + 4} dx$$

$$= \frac{3}{2} \int \frac{2x}{x^2 + 3} dx + 2 \int \frac{2x}{x^2 + 4} dx$$

$$= \frac{3}{2} \ln |x^2 + 3| + 2 \ln |x^2 + 4| + C$$

$$= \ln |(x^2 + 3)^{3/2} (x^2 + 4)^2| + C$$

26.
$$\frac{12x^{3} + 20x^{2} + 28x + 4}{3(x^{2} + 2x + 3)(x^{2} + 1)} = \frac{1}{3} \left(\frac{Ax + B}{x^{2} + 2x + 3} + \frac{Cx + D}{x^{2} + 1} \right)$$

$$12x^{3} + 20x^{2} + 28x + 4 = (Ax + B)(x^{2} + 1) + (x^{2} + 2x + 3)(Cx + D)$$

$$= (A + C)x^{3} + (B + D + 2C)x^{2} + (A + 2D + 3C)x + (B + 3D)$$
Thus, $A + C = 12$, $B + D + 2C = 20$, $A + 2D + 3C = 28$, $B + 3D = 4$. This gives $A = 4$, $B = 4$, $C = 8$, $D = 0$.
$$\int \frac{12x^{3} + 20x^{2} + 28x + 4}{3(x^{2} + 2x + 3)(x^{2} + 1)} dx = \frac{1}{3} \int \left(\frac{4x + 4}{x^{2} + 2x + 3} + \frac{8x}{x^{2} + 1} \right) dx$$

$$= \frac{1}{3} \left[2\ln\left(x^{2} + 2x + 3\right) + 4\ln\left(x^{2} + 1\right) \right] + C$$

$$= \ln\left[\left(x^{2} + 2x + 3\right)^{\frac{2}{3}} \left(x^{2} + 1\right)^{\frac{4}{3}} \right] + C$$

27.
$$\frac{3x^3 + 8x}{(x^2 + 2)^2} = \frac{Ax + B}{x^2 + 2} + \frac{Cx + D}{(x^2 + 2)^2}$$

$$3x^3 + 8x = (Ax + B)(x^2 + 2) + Cx + D$$

$$= Ax^3 + Bx^2 + (2A + C)x + (2B + D)$$
Thus, $A = 3$, $B = 0$, $2A + C = 8$, $2B + D = 0$.
This gives $A = 3$, $B = 0$, $C = 2$, $D = 0$.
$$\int \frac{3x^3 + 8x}{(x^2 + 2)^2} dx = \int \left(\frac{3x}{x^2 + 2} + \frac{2x}{(x^2 + 2)^2}\right) dx$$

$$= \frac{3}{2} \ln(x^2 + 2) - \frac{1}{x^2 + 2} + C$$

28.
$$\int \frac{3x^2 - 8x + 4}{x^3 - 4x^2 + 4x - 6} dx$$

$$= \int \frac{1}{x^3 - 4x^2 + 4x - 6} \left[\left(3x^2 - 8x + 4 \right) dx \right]$$
(Form:
$$\int \left(\frac{1}{u} \right) du$$
) (Partial fractions not required.)
Answer:
$$\ln \left| x^3 - 4x^2 + 4x - 6 \right| + C$$

29.
$$\frac{2-2x}{x^2+7x+12} = \frac{2-2x}{(x+3)(x+4)} = \frac{A}{x+3} + \frac{B}{x+4}$$

$$2-2x = A(x+4) + B(x+3)$$
If $x = -4$, then $10 = -B$, or $B = -10$. If $x = -3$, then $8 = A$.
$$\int_0^1 \frac{2-2x}{x^2+7x+12} dx = \int_0^1 \left(\frac{8}{x+3} + \frac{-10}{x+4}\right) dx$$

$$= \left[8\ln|x+3| - 10\ln|x+4|\right]_0^1$$

$$= 8\ln 4 - 10\ln 5 - (8\ln 3 - 10\ln 4)$$

$$= 18\ln(4) - 10\ln(5) - 8\ln(3)$$

30.
$$\frac{x^2 + 5x + 5}{x^2 + 3x + 2} = 1 + \frac{2x + 3}{x^2 + 3x + 2} = 1 + \frac{2x + 3}{(x + 2)(x + 1)}$$
$$\frac{2x + 3}{(x + 2)(x + 1)} = \frac{A}{x + 2} + \frac{B}{x + 1}$$
$$2x + 3 = (x + 1)A + (x + 2)B$$
If $x = -1$, $1 = B$. If $x = -2$, $-1 = -A$, or $A = 1$.
$$\int_0^1 \frac{x^2 + 5x + 5}{x^2 + 3x + 2} dx = \int_0^1 dx + \int_0^1 \frac{1}{x + 2} dx + \int_0^1 \frac{1}{x + 1} dx$$
$$= x\Big|_0^1 + \ln|x + 2|\Big|_0^1 + \ln|x + 1|\Big|_0^1$$
$$= 1 + \ln 3 - \ln 2 + \ln 2 - \ln 1$$
$$= 1 + \ln 3$$

31. Note that
$$\frac{6(x^2+1)}{(x+2)^2} \ge 0$$
 on $[0, 1]$.
Area $= \int_0^1 \frac{6(x^2+1)}{(x+2)^2} dx$
 $\frac{6(x^2+1)}{(x+2)^2} = 6 + \frac{-24x-18}{(x+2)^2}$ (by long division)
 $\frac{-24x-18}{(x+2)^2} = \frac{A}{x+2} + \frac{B}{(x+2)^2}$
 $-24x-18 = A(x+2) + B$
If $x = -2$, then $30 = B$. If $x = 0$, then $-18 = 2A + B$, $-18 = 2A + 30$, or $A = -24$.

$$\int_{0}^{1} \frac{6(x^{2}+1)}{(x+2)^{2}} dx$$

$$= \int_{0}^{1} \left[6 + \frac{-24}{x+2} + \frac{30}{(x+2)^{2}} \right] dx$$

$$= \left[6x - 24\ln|x+2| - \frac{30}{x+2} \right]_{0}^{1}$$

$$= 6 - 24\ln 3 - 10 - (-24\ln 2 - 15)$$

$$= 11 + 24\ln\frac{2}{3}$$

The area is $11 + 24 \ln \frac{2}{3}$ sq units.

32.
$$CS = \int_0^{10} \left[\frac{200(q+3)}{q^2 + 7q + 6} - \frac{325}{22} \right] dq$$

$$\frac{200(q+3)}{q^2 + 7q + 6} = \frac{200(q+3)}{(q+6)(q+1)} = \frac{A}{q+6} + \frac{B}{q+1}$$

$$200(q+3) = A(q+1) + B(q+6)$$
If $q = -1$, then $400 = 5B$, or $B = 80$. If $q = -6$, then $-600 = -5A$, or $A = 120$.
$$CS = \int_0^{10} \left[\frac{120}{q+6} + \frac{80}{q+1} - \frac{325}{22} \right] dq$$

$$= \left[120 \ln|q+6| - 80 \ln|q+1| - \frac{325}{22} q \right]_0^{10}$$

$$= \left[120 \ln(16) + 80 \ln(11) - \frac{3250}{22} \right] - [120 \ln(6)]$$

$$= 120 \ln \frac{8}{2} + 80 \ln(11) - \frac{1625}{11} \approx \$161.80$$

Problems 15.3

1. Let
$$u = x$$
, $a^2 = 6$. Then $du = dx$.
$$\int \frac{dx}{(6 - x^2)^{3/2}} = \frac{x}{6\sqrt{6 - x^2}} + C$$

2. Let u = 2x, $a^2 = 25$. Then du = 2dx.

$$\int \frac{dx}{\left(25 - 4x^2\right)^{\frac{3}{2}}} = \frac{1}{2} \int \frac{(2dx)}{\left[25 - (2x)^2\right]^{\frac{3}{2}}}$$
$$= \frac{1}{2} \left[\frac{(2x)}{25\sqrt{25 - (2x)^2}}\right] + C$$
$$= \frac{x}{25\sqrt{25 - 4x^2}} + C$$

3. Let u = 4x, $a^2 = 3$. Then du = 4 dx.

$$\int \frac{dx}{x^2 \sqrt{16x^2 + 3}} = 4 \int \frac{(4 dx)}{(4x)^2 \sqrt{(4x)^2 + 3}}$$
$$= 4 \left[-\frac{\sqrt{(4x)^2 + 3}}{3(4x)} \right] + C$$
$$= -\frac{\sqrt{16x^2 + 3}}{3x} + C$$

4. Let $u = x^2$, $a^2 = 9$. Then du = 2x dx.

$$\int \frac{3 dx}{x^3 \sqrt{x^4 - 9}} = \frac{3}{2} \int \frac{(2x dx)}{(x^2)^2 \sqrt{(x^2)^2 - 9}}$$
$$= \frac{3}{2} \left[-\frac{-\sqrt{(x^2)^2 - 9}}{9x^2} + C \right]$$
$$= \frac{\sqrt{x^4 - 9}}{6x^2} + C$$

5. Formula 5 with u = x, a = 6, b = 7. Then du = dx.

$$\int \frac{dx}{x(6+7x)} = \frac{1}{6} \ln \left| \frac{x}{6+7x} \right| + C$$

6. Formula 8 with u = x, a = 2, b = 3. Then du = dx.

$$\int \frac{5x^2 dx}{(2+3x)^2}$$

$$= 5 \left[\int \frac{x^2 dx}{(2+3x)^2} \right]$$

$$= 5 \left[\frac{x}{9} - \frac{4}{27(2+3x)} - \frac{4}{27} \ln|2+3x| \right] + C$$

7. Formula 28 with u = x, a = 3. Then du = dx.

$$\int \frac{dx}{x\sqrt{x^2 + 9}} = \frac{1}{3} \ln \left| \frac{\sqrt{x^2 + 9} - 3}{x} \right| + C$$

8. Formula 32 with u = x, $a^2 = 7$. Then du = dx.

$$\int \frac{dx}{(x^2+7)^{3/2}} = \frac{x}{7\sqrt{x^2+7}} + C$$

9. Formula 12 with u = x, a = 2, b = 3, c = 4, k = 5. Then du = dx.

$$\int \frac{x \, dx}{(2+3x)(4+5x)}$$

$$= \frac{1}{2} \left[\frac{4}{5} \ln|4+5x| - \frac{2}{3} \ln|2+3x| \right] + C$$

10. Formula 37 with u = 5x, a = 2. Then du = 5 dx.

$$\int 2^{5x} dx = \frac{1}{5} \int 2^{5x} (5 \ dx) = \frac{1}{5} \cdot \frac{2^{5x}}{\ln 2} + C$$

11. Formula 45 with u = x, a = 1, b = 2, c = 3. Then

$$du = dx$$
. $\int \frac{dx}{1 + 2e^{3x}} = \frac{1}{3} \left(3x - \ln \left| 1 + 2e^{3x} \right| \right) + C$

12. Formula 14 with u = x, a = 1, b = 1. Then du = dx

$$\int x^2 \sqrt{1+x} \, dx = \frac{2\left(8-12x+15x^2\right)(1+x)^{\frac{3}{2}}}{105} + C$$

13. Formula 9 with u = x, a = 5, b = 2. Then du = dx.

$$\int \frac{7 dx}{x(5+2x)^2} = 7 \left[\int \frac{dx}{x(5+2x)^2} \right]$$
$$= 7 \left[\frac{1}{5(5+2x)} + \frac{1}{25} \ln \left| \frac{x}{5+2x} \right| \right] + C$$

14. Formula 20 with $u = \sqrt{11}x$, $a = \sqrt{5}$. Then $du = \sqrt{11} dx$.

$$\int \frac{dx}{x\sqrt{5-11x^2}} = \int \frac{\sqrt{11}dx}{\left(\sqrt{11}x\right)\sqrt{\left(\sqrt{5}\right)^2 - \left(\sqrt{11}x\right)^2}}$$
$$= -\frac{1}{\sqrt{5}}\ln\left|\frac{\sqrt{5} + \sqrt{5-11x^2}}{\sqrt{11}x}\right| + C$$

15. Formula 3 with u = x, a = 2, b = 1. Then du = dx. $\int_0^1 \frac{x \, dx}{2 + x} = \left(x - 2 \ln |2 + x| \right) \Big|_0^1 = 1 - 2 \ln 3 + 2 \ln 2$

$$= 1 - \ln 9 + \ln 4 = 1 + \ln \left(\frac{4}{9}\right)$$

16. Formula 4 with u = x, a = 2, b = -5. Then du = dx.

$$\int \frac{-3x^2 dx}{2 - 5x} = -3 \int \frac{x^2 dx}{2 - 5x}$$

$$= -3 \left(\frac{x^2}{-10} - \frac{2x}{25} + \frac{4}{-125} \ln|2 - 5x| \right) + C$$

$$= 3 \left(\frac{x^2}{10} + \frac{2x}{25} + \frac{4}{125} \ln|2 - 5x| \right) + C$$

17. Formula 23 with u = x, $a^2 = 3$. Then du = dx.

$$\int \sqrt{x^2 - 3} \, dx = \frac{1}{2} \left(x \sqrt{x^2 - 3} - 3 \ln \left| x + \sqrt{x^2 - 3} \right| \right) + C$$

18. Formula 11 with u = x, a = 1, b = 5, c = 3, k = 2. Then du = dx.

$$\int \frac{dx}{(1+5x)(2x+3)} = \frac{1}{13} \ln \left| \frac{1+5x}{2x+3} \right| + C$$

19. Formula 38 with u = x, a = 12. Then du = dx.

$$\int_0^{1/12} x e^{12x} dx = \frac{e^{12x}}{144} (12x - 1) \Big|_0^{1/12} = \frac{1}{144} [e(0) - 1(-1)] = \frac{1}{144}$$

20. Formula 46 with u = 3x, a = 2, b = 5.

Then du = 3 dx.

$$\int \sqrt{\frac{2+3x}{5+3x}} dx = \frac{1}{3} \int \sqrt{\frac{2+3x}{5+3x}} (3 \ dx) = \frac{1}{3} \left[\sqrt{(2+3x)(5+3x)} - 3\ln\left(\sqrt{2+3x} + \sqrt{5+3x}\right) \right] + C$$

21. Formula 39 with u = x, n = 3, a = 1. Then du = dx.

$$\int x^3 e^x dx = x^3 e^x - 3 \int x^2 e^x dx$$

Applying Formula 39 to $\int x^2 e^x dx$ with u = x, n = 2, and a = 1 (so du = dx) gives $\int x^2 e^x dx = x^2 e^x - 2 \int x e^x dx$.

Applying Formula 38 to $\int xe^x dx$ with u = x, a = 1 (so du = dx) gives $\int xe^x dx = e^x(x-1) + C_1$. Thus

$$\int x^3 e^x dx = x^3 e^x - 3x^2 e^x + 6e^x (x-1) + C.$$

22. Formula 6 with u = x, a = 1, b = 1. Then du = dx.

$$\int_{1}^{2} \frac{4 \, dx}{x^{2} (1+x)} = 4 \int_{1}^{2} \frac{dx}{x^{2} (1+x)} = 4 \left(-\frac{1}{x} + \ln \left| \frac{1+x}{x} \right| \right) \Big|_{1}^{2} = 4 \left(-\frac{1}{2} + \ln \frac{3}{2} \right) - 4(-1 + \ln 2) = 2 + 4 \ln \frac{3}{4}$$

23. Formula 26 with $u = \sqrt{5}x$, $a^2 = 1$. Then $du = \sqrt{5} dx$.

$$\int \frac{\sqrt{5x^2 + 1}}{2x^2} dx = \frac{5}{2\sqrt{5}} \int \frac{\sqrt{5x^2 + 1}}{5x^2} \left(\sqrt{5} dx\right)$$
$$= \frac{\sqrt{5}}{2} \left(-\frac{\sqrt{5x^2 + 1}}{\sqrt{5}x} + \ln\left|\sqrt{5}x + \sqrt{5x^2 + 1}\right|\right) + C$$

24. Formula 17 with u = x, a = 2, b = -1. Then du = dx.

$$\int \frac{dx}{x\sqrt{2-x}} = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{2-x} - \sqrt{2}}{\sqrt{2-x} + \sqrt{2}} \right| + C$$

25. Formula 7 with u = x, a = 1, b = 3. Then du = dx.

$$\int \frac{x \, dx}{(1+3x)^2} = \frac{1}{9} \left(\ln \left| 1 + 3x \right| + \frac{1}{1+3x} \right) + C$$

26. Formula 47 with u = 2x, a = 1, b = 3. Then du = 2 dx.

$$\int \frac{2 dx}{\sqrt{(1+2x)(3+2x)}} = \ln\left|2 + 2x + \sqrt{(1+2x)(3+2x)}\right| + C$$

27. Formula 34 with $u = \sqrt{5}x$, $a = \sqrt{7}$. Then $du = \sqrt{5}dx$

$$\int \frac{dx}{7 - 5x^2} = \frac{1}{\sqrt{5}} \int \frac{1}{\left(\sqrt{7}\right)^2 - \left(\sqrt{5}x\right)^2} \left(\sqrt{5}dx\right) = \frac{1}{\sqrt{5}} \left(\frac{1}{2\sqrt{7}} \ln \left| \frac{\sqrt{7} + \sqrt{5}x}{\sqrt{7} - \sqrt{5}x} \right| \right) + C$$

28. Formula 24 with $u = \sqrt{3}x$, $a^2 = 6$. Then $du = \sqrt{3}dx$.

$$\int 7x^2 \sqrt{3x^2 - 6} \, dx = \frac{7}{\left(\sqrt{3}\right)^3} \int \left(\sqrt{3}x\right)^2 \sqrt{\left(\sqrt{3}x\right)^2 - 6\left(\sqrt{3} \, dx\right)}$$
$$= \frac{7}{3\sqrt{3}} \left[\frac{\sqrt{3}x}{8} (6x^2 - 6)\sqrt{3x^2 - 6} - \frac{36}{8} \ln\left|\sqrt{3}x + \sqrt{3x^2 - 6}\right| \right] + C$$

29. Formula 42 with u = 3x, n = 5. Then du = 3 dx.

$$\int 36x^5 \ln(3x) dx = 36 \int x^5 \ln(3x) dx = \frac{36}{3^6} \int (3x)^5 \ln(3x) (3 \ dx)$$
$$= \frac{4}{81} \left[\frac{(3x)^6 \ln(3x)}{6} - \frac{(3x)^6}{36} \right] + C = x^6 [6 \ln(3x) - 1] + C$$

30. Formula 10 with
$$u = x$$
, $a = 3$, $b = 2$. Then $du = dx$.

$$\int \frac{5 dx}{x^2 (3+2x)^2} = 5 \left[\int \frac{dx}{x^2 (3+2x)^2} \right]$$
$$= 5 \left[-\frac{3+4x}{9x(3+2x)} + \frac{4}{27} \ln \left| \frac{3+2x}{x} \right| \right] + C$$

31. Formula 13 with u = x, a = 1, b = 2. Then du = dx.

$$\int 5x\sqrt{1+2x}dx = 5\int x\sqrt{1+2x}dx = 5\left[\frac{2(6x-2)(1+2x)^{\frac{3}{2}}}{15\cdot 4}\right] + C$$
$$= \frac{1}{3}(3x-1)(1+2x)^{3/2} + C$$

- 32. Formula 42 with u = x, n = 2. Then du = dx. $\int 9x^2 \ln x \, dx = 9 \int x^2 \ln x \, dx$ $= 9 \left(\frac{x^3 \ln x}{3} - \frac{x^3}{9} \right) + C = 3x^3 (\ln x) - x^3 + C$
- 33. Formula 27 with u = 2x, $a^2 = 13$. Then du = 2 dx. $\int \frac{dx}{\sqrt{4x^2 13}} = \frac{1}{2} \int \frac{1}{\sqrt{(2x)^2 13}} (2 dx)$ $= \frac{1}{2} \ln \left| 2x + \sqrt{4x^2 13} \right| + C$
- **34.** Formula 44 with u = 2x. Then du = 2 dx. $\int \frac{dx}{x \ln(2x)} = \int \frac{(2 dx)}{(2x) \ln(2x)}$ $= \ln|\ln(2x)| + C$

35. Formula 21 with u = 3x, $a^2 = 16$. Then

- du = 3 dx. $\int \frac{2 dx}{x^2 \sqrt{16 9x^2}} = 2(3) \int \frac{(3 dx)}{(3x)^2 \sqrt{16 (3x)^2}}$ $= 6 \left(-\frac{\sqrt{16 9x^2}}{16(3x)} \right) + C$ $= -\frac{\sqrt{16 9x^2}}{8x} + C$
- 36. Formula 22 with u = x, $a = \sqrt{3}$. Then du = dx. $\int \frac{\sqrt{3 x^2}}{x} dx$ $= \int \frac{\sqrt{(\sqrt{3})^2 (x)^2}}{x} dx$ $= \sqrt{3 x^2} \sqrt{3} \ln \left| \frac{\sqrt{3} + \sqrt{3 x^2}}{x} \right| + C$

- 37. Formula 45 with $u = \sqrt{x}$, $a = \pi$, b = 7, c = 4.

 Then $du = \frac{1}{2\sqrt{x}} dx$ $\int \frac{dx}{\sqrt{x} \left(\pi + 7e^{4\sqrt{x}}\right)} = 2 \int \frac{1}{\pi + 7e^{4\sqrt{x}}} \left(\frac{1}{2\sqrt{x}} dx\right)$ $= 2 \left[\frac{1}{4\pi} \left(4\sqrt{x} \ln\left|\pi + 7e^{4\sqrt{x}}\right|\right)\right] + C$ $= \frac{1}{2\pi} \left(4\sqrt{x} \ln\left|\pi + 7e^{4\sqrt{x}}\right|\right) + C$
- 38. Formula 2 with $u = x^3$, a = 1, b = 2. Then $du = 3x^2 dx$. $\int_0^1 \frac{3x^2 dx}{1 + 2x^3} = \frac{1}{2} \ln |1 + 2x^3| \Big|_0^1$ $= \frac{1}{2} \ln |3| \frac{1}{2} \ln |1| = \ln \sqrt{3}$
- 39. Can be put in the form $\int \frac{1}{u} du$. $\int \frac{x \, dx}{x^2 + 1} = \frac{1}{2} \int \frac{1}{x^2 + 1} (2x \, dx)$ $= \frac{1}{2} \ln(x^2 + 1) + C$
- **40.** Can be put in the form $\int e^{u} du$. $\int 3x \sqrt{x} e^{x^{5/2}} dx = 3 \cdot \frac{2}{5} \int e^{x^{5/2}} \left[\frac{5}{2} x^{3/2} dx \right]$ $= \frac{6}{5} e^{x^{5/2}} + C$
- **41.** Can be put in the form $\int u^n du$. $\int \frac{(\ln x)^3}{x} dx = \int (\ln x)^3 \left[\frac{1}{x} dx \right] = \frac{1}{4} (\ln x)^4 + C$
- **42.** $\int \frac{5x^3 \sqrt{x}}{2x} dx = \int \left(\frac{5}{2}x^2 \frac{1}{2}x^{-\frac{1}{2}}\right) dx$ $= \frac{5}{6}x^3 \sqrt{x} + C$

43. $\int \frac{1}{x^2 - 5x + 6} dx = \int \frac{1}{(x - 3)(x - 2)} dx$ Formula 11 with u = x, a = -3, b = 1, c = -2

Formula 11 with u = x, a = -3, b = 1, c = -2, and k = 1. Then du = dx.

$$\int \frac{1}{x^2 - 5x + 6} dx = \int \frac{1}{(x - 3)(x - 2)} dx$$
$$= \ln \left| \frac{x - 3}{x - 2} \right| + C$$

44. Can be put in the form $\int u^n du$.

$$\int \frac{e^{2x}}{\sqrt{e^{2x} + 3}} dx = \frac{1}{2} \int \left(e^{2x} + 3\right)^{-\frac{1}{2}} (2e^{2x} dx)$$
$$= \sqrt{e^{2x} + 3} + C$$

45. Formula 42 with u = x and n = 3. Then du = dx.

$$\int x^3 \ln x \, dx = \frac{x^4}{4} \left[\ln(x) - \frac{1}{4} \right] + C$$

46. Formula 38 with u = 3x - 2, a = -10. Then du = 3 dx.

$$\int (9x-6)e^{-30x+20}dx$$

$$= \int 3(3x-2)e^{-10(3x-2)}dx$$

$$= \frac{e^{-30x+20}}{100}[-10(3x-2)-1] + C$$

$$= \frac{100}{100}e^{-30x+20}(-30x+19) + C$$

47. Formula 38 with $u = x^2$ and a = 3. Then du = 2x dx.

$$\int 4x^3 e^{3x^2} dx = 2 \int x^2 e^{3x^2} [2x dx]$$

$$= 2 \left[\frac{e^{3x^2}}{9} (3x^2 - 1) \right] + C$$

$$= \frac{2}{9} e^{3x^2} (3x^2 - 1) + C$$

48. Formula 14 with u = x, a = 3 and b = 2. Then du = dx.

$$\int_{1}^{2} 35x^{2} \sqrt{3 + 2x} dx = 35 \int_{1}^{2} x^{2} \sqrt{3 + 2x} dx$$

$$= 35 \cdot \frac{2(72 - 72x + 60x^{2})(3 + 2x)^{\frac{3}{2}}}{840} \bigg|_{1}^{2}$$

$$= 98\sqrt{7} - 25\sqrt{5}$$

- **49.** Formula 43 and then Formula 41. For Formula 43, let u = x, n = 0, and m = 2. Then du = dx. $\int \ln^2 x \, dx = x \ln^2 x 2 \int \ln x \, dx$ Now we apply Formula 41 to the last integral with u = x (so du = dx). $\int \ln^2 x \, dx = x(\ln x)^2 2x(\ln x) + 2x + C$
- **50.** Formula 41 with $u = x^2$. Then du = 2x dx. $\int_{1}^{3} 3x \ln x^2 dx$ $= \frac{3}{2} \int_{1}^{e} \ln(x^2) [2x dx] = \frac{3}{2} [x^2 \ln(x^2) - x^2] \Big|_{1}^{e}$ $= \frac{3}{2} [(e^2 \ln(e^2) - e^2) - (1 \cdot \ln 1 - 1)]$ $= \frac{3}{2} (e^2 + 1)$
- **51.** Formula 15 with u = x, a = 3, and b = 1. Then du = dx.

$$\int_{-2}^{1} \frac{x \, dx}{\sqrt{3+x}} = \frac{2(x-6)\sqrt{3+x}}{3} \Big|_{-2}^{1}$$
$$= -\frac{10}{3}\sqrt{4} + \frac{16}{3}\sqrt{1}$$
$$= -\frac{4}{3}$$

52. Formula 13 with u = x, a = 2, and b = 3. Then du = dx.

$$\int_{2}^{3} x \sqrt{2+3x} \, dx = \frac{2(9x-4)(2+3x)^{3/2}}{135} \bigg|_{2}^{3}$$
$$= \frac{2}{135} [23(11)^{3/2} - 14(8)^{3/2}]$$
$$= \frac{2}{135} (253\sqrt{11} - 224\sqrt{2})$$

53. Can be put in the form $\int u^n du$.

$$\int_{0}^{1} \frac{2x \, dx}{\sqrt{8 - x^{2}}} = -\int_{0}^{1} \left(8 - x^{2}\right)^{-\frac{1}{2}} (-2x \, dx)$$

$$= -\frac{\left(8 - x^{2}\right)^{\frac{1}{2}}}{\frac{1}{2}} \Big|_{0}^{1}$$

$$= -2\left(8 - x^{2}\right)^{\frac{1}{2}} \Big|_{0}^{1} = -2\left(\sqrt{7} - \sqrt{8}\right)$$

$$= -2\left(\sqrt{7} - 2\sqrt{2}\right)$$

$$= 2\left(2\sqrt{2} - \sqrt{7}\right)$$

54. Formula 39 with u = x, n = 2, a = 3. Then du = dx

$$\int x^2 e^{3x} \, dx = \frac{x^2 e^{3x}}{3} - \frac{2}{3} \int x e^{3x} \, dx$$

For $\int xe^{3x} dx$, use Formula 38 with u = x and a = 3. Then du = dx.

$$\int x^2 e^{3x} dx = \frac{x^2 e^{3x}}{3} - \frac{2}{3} \left[\frac{e^{3x}}{9} (3x - 1) \right]$$
$$= \frac{e^{3x}}{27} [9x^2 - 6x + 2]$$

$$\int_0^{\ln 2} x^2 e^{3x} \, dx = \left(\frac{e^{3x}}{27} [9x^2 - 6x + 2] \right) \Big|_0^{\ln 2}$$
$$= \frac{8}{27} [9(\ln 2)^2 - 6\ln 2 + 2] - \frac{1}{27} [2]$$
$$= \frac{2}{27} [36(\ln 2)^2 - 24\ln 2 + 7]$$

55. Integration by parts or Formula 42. For Formula 42, let u = 2x, n = 1. Then du = 2 dx.

$$\int_{1}^{2} x \ln(2x) dx = \frac{1}{4} \int_{1}^{2} (2x) \ln(2x) [2 \ dx]$$

$$= \frac{1}{4} \left[\frac{(2x)^{2} \ln(2x)}{2} - \frac{(2x)^{2}}{4} \right]_{1}^{2}$$

$$= 2 \ln(4) - 1 - \frac{1}{2} \ln(2) + \frac{1}{4}$$

$$= 2 \ln(2^{2}) - \frac{1}{2} \ln(2) - \frac{3}{4}$$

$$= 4 \ln(2) - \frac{1}{2} \ln(2) - \frac{3}{4}$$

$$= \frac{7}{2} (\ln 2) - \frac{3}{4}$$

56. Can be put in the form $\int k \ dx$.

$$\int_{3}^{5} dA = \int_{3}^{5} 1 \, dA = A \Big|_{3}^{5} = 5 - 3 = 2$$

57. Formula 5 with u = q, a = 1, and b = -1. Then du = dq.

$$\int_{q_0}^{q_n} \frac{dq}{q(1-q)} = \ln \left| \frac{q}{1-q} \right|_{q_0}^{q_n} = \ln \left| \frac{q_n}{1-q_n} \right| - \ln \left| \frac{q_0}{1-q_0} \right|$$

$$= \ln \left| \frac{q_n (1-q_0)}{q_0 (1-q_n)} \right|$$

58. Formula 6 with u = q, a = 1 and b = -1. Then du = dq.

$$n = -\frac{1}{0.4} \int_{0.3}^{0.1} \frac{dq}{q^2 (1 - q)}$$

$$= -\frac{1}{0.4} \left[-\frac{1}{q} - \ln \left| \frac{1 - q}{q} \right| \right]_{0.3}^{0.1}$$

$$= -\frac{1}{0.4} \left\{ [-10 - \ln 9] - \left[-\frac{10}{3} - \ln \frac{7}{3} \right] \right\}$$

$$= -\frac{1}{0.4} \left(-\frac{20}{3} - \ln 9 + \ln \frac{7}{3} \right) \approx 20$$

59. a. For $\int_0^9 1000e^{-0.04t} dt$, the form $\int e^u du$ can be applied.

$$\int_{0}^{9} 1000e^{-0.04t} dt$$

$$= \frac{1000}{-0.04} \int_{0}^{9} e^{-0.04t} (-0.04 dt)$$

$$= -\frac{1000}{0.04} e^{-0.04t} \Big|_{0}^{9}$$

$$= -\frac{1000}{0.04} (e^{-0.36} - 1)$$

$$\approx $7558.09$$

b. For $\int_0^{10} 500te^{-0.06t} dt$ use Formula 38 with t = u and a = -0.06, so du = dt.

$$\int_{0}^{10} 500te^{-0.06t} dt$$

$$= 500 \int_{0}^{10} te^{-0.06t} dt$$

$$= 500 \left[\frac{e^{-0.06t}}{0.0036} (-0.06t - 1) \right]_{0}^{10}$$

$$= \frac{500}{0.0036} [e^{-0.6} (-1.6) - (-1)]$$

$$\approx $16,930.75$$

- **60.** $\int_0^T ke^{-rt} dt = k \left(-\frac{1}{r} \right) \int_0^T e^{-rt} (-r \ dt) = \frac{-ke^{-rt}}{r} \bigg|_0^T$ $= -\frac{ke^{-rT}}{r} + \frac{k}{r} = k \left(\frac{1 e^{-rT}}{r} \right)$
- **61. a.** $\int_{0}^{10} 100e^{0.02(10-t)} dt = 100 \int_{0}^{10} e^{0.2-0.02t} dt$ $= 100 \int_{0}^{10} e^{0.2} e^{-0.02t} dt$ $= 100e^{0.2} \int_{0}^{10} e^{-0.02t} dt$ $= 100e^{0.2} \left(\frac{1}{-0.02} \right) \int_{0}^{10} e^{-0.02t} (-0.02 \ dt)$ $= -5000e^{0.2} e^{-0.02t} \Big|_{0}^{10}$ $= -5000e^{0.2} \Big[e^{-0.2} 1 \Big]$ $\approx 1107.01

b.
$$\int_{0}^{10} 200e^{0.01(10-t)} dt$$

$$= 200 \int_{0}^{10} e^{0.1-0.01t} dt$$

$$= 200e^{0.1} \int_{0}^{10} e^{-0.01t} dt$$

$$= 200e^{0.1} \left(\frac{1}{-0.01}\right) \int_{0}^{10} e^{-0.01t} (-0.01 dt)$$

$$= -20,000e^{0.1} \cdot e^{-0.01t} \Big|_{0}^{10}$$

$$= -20,000e^{0.1} (e^{-0.1} - 1)$$

$$\approx $2103.42$$

62. Use Formula 38 with u = t and a = -0.07, so du = dt.

$$\int_{0}^{5} 50,000te^{-0.07t} dt = 50,000 \int_{0}^{5} te^{-0.07t} dt$$

$$= 50,000 \left[\frac{e^{-0.07t}}{0.0049} (-0.07t - 1) \right]_{0}^{5}$$

$$= \frac{50,000}{0.0049} [e^{-0.35} (-1.35) - 1(-1)]$$

$$= $496,640$$

Problems 15.4

- 1. $\overline{f} = \frac{1}{3 (-1)} \int_{-1}^{3} x^2 dx = \frac{1}{4} \cdot \frac{x^3}{3} \Big|_{-1}^{3} = \frac{1}{4} \left(9 + \frac{1}{3} \right) = \frac{7}{3}$
- **2.** $\overline{f} = \frac{1}{1-0} \int_0^1 (2x+1) dx = (x^2+x) \Big|_0^1 = 2-0 = 2$
- 3. $\overline{f} = \frac{1}{2 (-1)} \int_{-1}^{2} (2 3x^2) dx$ = $\frac{1}{3} (2x - x^3) \Big|_{-1}^{2} = -1$
- **4.** $\overline{f} = \frac{1}{3-1} \int_{1}^{3} (x^2 + x + 1) dx$ $= \frac{1}{2} \left(\frac{x^3}{3} + \frac{x^2}{2} + x \right) \Big|_{1}^{3} = \frac{22}{3}$

- 5. $\overline{f} = \frac{1}{3 (-3)} \int_{-3}^{3} 2t^5 dt$ $= \frac{1}{6} \cdot \frac{t^6}{3} \Big|_{-3}^{3}$ $= \frac{1}{18} [3^6 (-3)^6]$ = 0
- **6.** $\overline{f} = \frac{1}{4-0} \int_0^4 t \sqrt{t^2 + 9} dt$ $= \left(\frac{1}{4}\right) \left(\frac{1}{2}\right) \int_0^4 \sqrt{t^2 + 9} [2t \ dt]$ $= \frac{1}{8} \left[\frac{2\left(t^2 + 9\right)^{\frac{3}{2}}}{3}\right]_0^4 = \frac{49}{6}$
- 7. $\overline{f} = \frac{1}{1-0} \int_0^1 \sqrt{x} \, dx = \frac{2}{3} x^{3/2} \Big|_0^1 = \frac{2}{3}$
- **8.** $\overline{f} = \frac{1}{3-1} \int_{1}^{3} \frac{5}{x^{2}} dx = \frac{1}{2} \cdot -\frac{5}{x} \Big|_{1}^{3} = \frac{1}{2} \left(-\frac{5}{3} + 5 \right)$ $= \frac{5}{3}$
- 9. $\overline{P} = \frac{1}{100 0} \int_0^{100} \left(369q 2.1q^2 400 \right) dq$ $= \frac{1}{100} \left(184.5q^2 - 0.7q^3 - 400q \right) \Big|_0^{100}$ $= \frac{1}{100} (1,845,000 - 700,000 - 40,000) - 0$ = 11,050 Answer: \$11,050
- 10. $\overline{c} = \frac{1}{500 100} \int_{100}^{500} \left(4000 + 10q + 0.1q^2 \right) dq$ $= \frac{1}{400} \left(4000q + 5q^2 + \frac{0.1q^3}{3} \right) \Big|_{100}^{500} \approx 17,333.33$ Answer: \$17,333.33

- 11. $\frac{1}{2-0} \int_0^2 3000e^{0.05t} dt$ $= \frac{3000}{2} \cdot \frac{1}{0.05} \int_0^2 e^{0.05t} [0.05 \ dt]$ $= 30,000e^{0.05t} \Big|_0^2 = 30,000 \Big(e^{0.1} 1 \Big) \approx 3155.13$ Answer: \$3155.13
- 12. $\overline{C} = \frac{1}{T 0} \int_0^T \frac{R}{F(t)} dt = \frac{1}{T} \int_0^T \frac{R(1 + \alpha t)^2}{F_1} dt$ $\frac{R}{TF_1} \cdot \frac{1}{\alpha} \int_0^T (1 + \alpha t)^2 [\alpha \ dt] = \frac{R}{\alpha TF_1} \left[\frac{(1 + \alpha t)^3}{3} \right]_0^T$ $= \frac{R}{\alpha TF_1} \left[\frac{(1 + \alpha T)^3}{3} \frac{1}{3} \right]$ $= \frac{R}{3\alpha TF_1} \left[1 + 3\alpha T + 3\alpha^2 T^2 + \alpha^3 T^3 1 \right]$ $= \frac{R}{3\alpha TF_1} (3\alpha T) \left(1 + \alpha T + \frac{1}{3}\alpha^2 T^2 \right)$ $= \frac{R(1 + \alpha T + \frac{1}{3}\alpha^2 T^2)}{F_1}$
- 13. Average value $=\frac{1}{q_0-0}\int \frac{dr}{dq}dq$. $=\frac{1}{q_0}\Big[r\big(q_0\big)-r(0)\Big]$ But r(0)=0, so avg. value $=\frac{r\big(q_0\big)}{q_0}$. Since $r\big(q_0\big)$ = [price per unit when q_0 units are sold] $\cdot q_0$, we have

avg. value =
$$\frac{\begin{bmatrix} \text{price per unit} \\ \text{when } q_0 \text{ units} \\ \text{are sold} \end{bmatrix} \cdot q_0}{q_0}$$

= price per unit when $\cdot q_0$ units are sold.

14.
$$\overline{f} = \frac{1}{1-0} \int_0^1 \frac{1}{x^2 - 4x + 5} dx \approx 0.32$$

Apply It 15.5

5. Separating variables, we have

$$\frac{dI}{dx} = -0.0085I$$

$$\frac{dI}{I} = -0.0085 dx$$

$$\int \frac{1}{I} dI = -\int 0.0085 \ dx$$

$$\ln|I| = -0.0085x + C_1$$

To solve for *I*, we convert to exponential Formula

$$I = e^{-0.0085x + C_1} = Ce^{-0.0085x}$$
. Since $I = I_0$

when
$$x = 0$$
, $I_0 = Ce^0 = C$, so

$$I(x) = I_0 e^{-0.0085x}$$
.

Problems 15.5

1. $v' = 2xv^2$

$$\frac{dy}{dx} = 2xy^2$$

$$\frac{dy}{x^2} = 2x \ dx$$

$$\int y^{-2} dy = \int 2x \ dx$$

$$-\frac{1}{y} = x^2 + C$$

$$y = -\frac{1}{x^2 + C}$$

2. $y' = x^2 y^2$

$$\frac{dy}{dx} = x^2 y^2$$

$$\frac{dy}{dx} = x^2 y^2$$

$$\frac{dy}{y^2} = x^2 dx$$

$$\int \frac{dy}{y^2} = \int x^2 dx$$

$$-\frac{1}{y} = \frac{x^3}{3} + C_1$$
$$-\frac{1}{y} = \frac{1}{2}(x^3 + 3C_1)$$

$$\frac{1}{v} = -\frac{1}{3}(x^3 + C)$$

$$y = -\frac{3}{x^3 + C}$$

3. $\frac{dy}{dx} - 2x \ln(x^2 + 1) = 0$

$$dy = 2x \ln(x^2 + 1)dx$$
$$\int dy = \int 2x \ln(x^2 + 1)dx$$
$$\int dy = \int \ln(x^2 + 1)[2x dx]$$

Using Formula 41 gives

$$y = (x^2 + 1) \ln(x^2 + 1) - (x^2 + 1) + C.$$

 $4. \quad \frac{dy}{dx} = \frac{x}{y}$

$$y dy = x dx$$

$$\int y \, dy = \int x \, dx$$

$$\frac{y^2}{2} = \frac{x^2}{2} + C_1$$

$$y^2 = x^2 + 2C_1$$

$$y^2 = x^2 + C$$

5. $\frac{dy}{dx} = y$, where y > 0.

$$\frac{dy}{y} = dx$$

$$\int \frac{dy}{y} = \int dx$$

$$\ln y = x + C_1$$

$$y = e^{x+C_1} = e^{C_1}e^x = Ce^x$$
, where $C = e^{C_1}$. Thus

$$y = Ce^x$$
, where $C > 0$.

6. $y' = e^x y^3$

$$\frac{dy}{dx} = e^x y^3$$

$$\frac{dy}{v^3} = e^x dx$$

$$\int \frac{dy}{y^3} = \int e^x dx$$

$$-\frac{1}{2v^2} = e^x + C$$

$$y^2 = -\frac{1}{2(e^x + C)}$$

7.
$$y' = \frac{y}{x}$$
, where $x, y > 0$.

$$\frac{dy}{dx} = \frac{y}{x}$$

$$\frac{dy}{y} = \frac{dx}{x}$$

$$\int \frac{dy}{y} = \int \frac{dx}{x}$$

$$\ln y = \ln x + C_1$$

$$\ln y = \ln x + \ln C, \text{ where } C > 0.$$

$$\ln y = \ln(Cx) \Rightarrow y = Cx, \text{ where } C > 0.$$

8.
$$\frac{dy}{dx} - x \ln x = 0$$

$$dy = x \ln x \, dx$$

$$\int dy = \int x \ln x \, dx$$
Using Formula 42 gives
$$y = \frac{x^2 \ln x}{2} - \frac{x^2}{2^2} + C$$

$$= \frac{1}{2} x^2 \ln x - \frac{1}{4} x^2 + C.$$

9.
$$y' = \frac{1}{y^2}$$
 where $y(1) = 1$.

$$\frac{dy}{dx} = \frac{1}{y^2}$$

$$y^2 dy = dx$$

$$\int y^2 dy = \int dx$$

$$\frac{y^3}{3} = x + C$$
Given $y(1) = 1$, we obtain $\frac{1^3}{3} = 1 + C$, so

$$C = -\frac{2}{3}$$
. Thus $y^3 = 3\left(x - \frac{2}{3}\right) = 3x - 2$,
 $y = \sqrt[3]{3x - 2}$.

10.
$$y' = e^{x-y}$$
, where $y(0) = 0$

$$\frac{dy}{dx} = \frac{e^x}{e^y}$$

$$e^y dy = e^x dx$$

$$\int e^y dy = \int e^x dx$$

$$e^y = e^x + C$$

Since
$$y(0) = 0$$
, we have $e^0 = e^0 + C$, $1 = 1 + C$, $C = 0$. Thus $e^y = e^x$, so $y = x$.

11.
$$e^y y' - x^2 = 0$$
, where $y = 0$ when $x = 0$.
 $e^y \frac{dy}{dx} = x^2$
 $e^y dy = x^2 dx$
 $\int e^y dy = \int x^2 dx$
 $e^y = \frac{x^3}{3} + C$

Given that
$$y(0) = 0$$
, we have $e^0 = 0 + C$, so $1 = C \Rightarrow e^y = \frac{x^3}{3} + 1$, $e^y = \frac{x^3 + 3}{3}$, so $y = \ln \frac{x^3 + 3}{3}$.

12.
$$x^2 y' + \frac{1}{y^2} = 0$$
, where $y(1) = 2$
 $x^2 \frac{dy}{dx} = -\frac{1}{y^2}$
 $y^2 dy = -\frac{dx}{x^2}$
 $\int y^2 dy = -\int \frac{dx}{x^2}$
 $\frac{y^3}{3} = \frac{1}{x} + C$
Now, $y(1) = 2$ implies $C = \frac{5}{3}$. Thus

Now,
$$y(1) = 2$$
 implies $C = \frac{1}{3}$. Thus $\frac{y^3}{3} = \frac{1}{x} + \frac{5}{3}$, $y^3 = \frac{3}{x} + 5$, $y = \sqrt[3]{\frac{3}{x} + 5}$.

13.
$$(3x^2 + 2)^3 y' - xy^2 = 0$$
, where $y(0) = 2$.

$$(3x^2 + 2)^3 \frac{dy}{dx} = xy^2$$

$$\frac{dy}{y^2} = \frac{x}{(3x^2 + 2)^3} dx$$

$$\int \frac{dy}{y^2} = \int \frac{x}{(3x^2 + 2)^3} dx$$

$$\int y^{-2} dy = \frac{1}{6} \int (3x^2 + 2)^{-3} [6x dx]$$

$$-\frac{1}{y} = -\frac{1}{12(3x^2 + 2)^2} + C$$
Given that $y(0) = 2$ we have

$$-\frac{1}{2} = -\frac{1}{12(0+2)^2} + C = -\frac{1}{48} + C, \text{ so } C = -\frac{23}{48}.$$
Thus,
$$-\frac{1}{y} = -\frac{1}{12(3x^2+2)^2} - \frac{23}{48} = -\frac{4+23(3x^2+2)^2}{48(3x^2+2)^2}.$$
Hence, $y = \frac{48(3x^2+2)^2}{4+23(3x^2+2)^2}.$

14.
$$y' + x^3 y = 0$$
 and $y = e$ when $x = 0$.

$$\frac{dy}{dx} = -x^3 y$$

$$\frac{dy}{y} = -x^3 dx$$

$$\int \frac{dy}{y} = -\int x^3 dx$$

$$\ln|y| = -\frac{x^4}{4} + C$$
Given $y(0) = e$, $\ln e = 0 + C$, so $C = 1$.
Thus $\ln y = -\frac{x^4}{4} + 1$, so $y = e^{-\frac{x^4}{4} + 1}$.

15.
$$\frac{dy}{dx} = \frac{3x\sqrt{1+y^2}}{y}$$
, where $y > 0$ and $y(1) = \sqrt{8}$.

$$\frac{y \, dy}{\sqrt{1+y^2}} = 3x \, dx$$

$$\frac{1}{2} \int (1+y^2)^{-\frac{1}{2}} [2y \, dy] = 3 \int x \, dx$$

$$(1+y^2)^{\frac{1}{2}} = \frac{3x^2}{2} + C$$

$$y(1) = \sqrt{8} \Rightarrow (1+8)^{\frac{1}{2}} = \frac{3}{2} + C$$

$$C = \frac{3}{2}$$

Thus
$$(1+y^2)^{\frac{1}{2}} = \frac{3x^2}{2} + \frac{3}{2}$$

$$1+y^2 = \left[\frac{3x^2}{2} + \frac{3}{2} \right]^2$$

$$y^2 = \left[\frac{3x^2}{2} + \frac{3}{2} \right]^2 - 1$$
Since $y > 0$, $y = \sqrt{\left[\frac{3x^2}{2} + \frac{3}{2} \right]^2 - 1}$.

16.
$$2y(x^3 + 2x + 1)\frac{dy}{dx} = \frac{3x^2 + 2}{\sqrt{y^2 + 9}}$$
, where $y(0) = 0$.

$$\int 2y\sqrt{y^2 + 9}dy = \int \frac{3x^2 + 2}{x^3 + 2x + 1}dx$$

$$\int (y^2 + 9)^{\frac{1}{2}}[2y \ dy] = \int \frac{1}{x^3 + 2x + 1}\Big[(3x^2 + 2)dx\Big]$$

$$\frac{2}{3}(y^2 + 9)^{\frac{3}{2}} = \ln|x^3 + 2x + 1| + C$$
Now $y(0) = 0$ implies that $\frac{2}{3}(27) = \ln(1) + C$, so $C = 18$. Thus
$$\frac{2}{3}(y^2 + 9)^{\frac{3}{2}} = \ln|x^3 + 2x + 1| + 18.$$

17.
$$2\frac{dy}{dx} = \frac{xe^{-y}}{\sqrt{x^2 + 3}}$$
, where $y(1) = 0$.
 $e^y dy = \frac{1}{2}x(x^2 + 3)^{-\frac{1}{2}}dx$
 $\int e^y dy = \frac{1}{2} \cdot \frac{1}{2} \int (x^2 + 3)^{-\frac{1}{2}} [2x \ dx]$
 $e^y = \frac{1}{2}(x^2 + 3)^{\frac{1}{2}} + C$
Now, $y(1) = 0 \Rightarrow e^0 = \frac{1}{2}(2) + C$, so $C = 0$. Thus $e^y = \frac{1}{2}(x^2 + 3)^{\frac{1}{2}} \Rightarrow y = \ln\left(\frac{1}{2}\sqrt{x^2 + 3}\right)$.

18.
$$dy = 2xye^{x^2} dx$$
, where $y > 0$ and $y(0) = e$.

$$\frac{dy}{y} = 2xe^{x^2} dx$$

$$\int \frac{dy}{y} = \int 2xe^{x^2} dx$$

$$\int \frac{dy}{y} = \int e^{x^2} [2x dx]$$

$$\ln y = e^{x^2} + C$$
Now $y(0) = e$ gives $\ln e = 1 = e^0 + C = 1 + C$, so $C = 0$. Thus $\ln y = e^{x^2}$, or $e^{\ln y} = y = e^{e^{x^2}}$.

19.
$$(q+1)^2 \frac{dc}{dq} = cq$$

$$\int \frac{1}{c} dc = \int \frac{q}{(q+1)^2} dq$$
Using partial fractions or Formula 7 for
$$\int \frac{q}{(q+1)^2} dq$$
, we obtain
$$\ln c = \ln(q+1) + \frac{1}{q+1} + C$$
. Now, fixed cost is given to be e , which means that $c = e$ when $q = 0$. This implies $1 = 0 + 1 + C$, so $C = 0$. Thus

 $\ln c = \ln(q+1) + \frac{1}{q+1} \Rightarrow c = e^{\ln(q+1) + \frac{1}{q+1}},$ $c = e^{\ln(q+1)} e^{\frac{1}{q+1}}, \text{ or } c = (q+1)e^{\frac{1}{q+1}}.$

20.
$$\frac{dy}{dx} = xe^{x-y} = \frac{xe^x}{e^y}$$

$$\int e^y dy = \int xe^x dx$$
Using integration by parts or formula 38 gives
$$e^y = e^x(x-1) + C \text{ . Now,}$$

$$f(1) = 0 \Rightarrow 1 = e(0) + C \text{ , } 1 = C \text{, so}$$

$$e^y = e^x(x-1) + 1 \text{ , } y = \ln\left[e^x(x-1) + 1\right] \text{ . Thus}$$

$$f(2) = \ln\left(e^2 + 1\right).$$

21.
$$\frac{dy}{dt} = -0.025y$$

$$\int \frac{1}{y} dy = -0.025 \int dt$$

$$\ln|y| = -0.025t + C$$
Given that $y = 1000$ when $t = 0$, we have $\ln 1000 = -0 + C = C$. Thus

$$\ln |y| = -0.025t + \ln 1000$$
. To find t when money is 95% new, we note that y would be $5\%(1000) = 50$. Solving $\ln 50 = -0.025t + \ln 1000$ gives $t = \frac{\ln 1000 - \ln 50}{0.025} \approx 120$ weeks.

22.
$$\frac{dr}{dq} = (50 - 4q)e^{-\frac{r}{5}}$$

$$\int e^{\frac{r}{5}} dr = \int (50 - 4q)dq$$

$$5e^{\frac{r}{5}} = 50q - 2q^2 + C$$
Since $r = 0$ when $q = 0$, we have $5(1) = C$, $C = 5$.
$$5e^{\frac{r}{5}} = 50q - 2q^2 + 5$$

$$e^{\frac{r}{5}} = 10q - \frac{2}{5}q^2 + 1$$

$$\frac{r}{5} = \ln\left|10q - \frac{2}{5}q^2 + 1\right|$$

$$r = 5\ln\left|10q - \frac{2}{5}q^2 + 1\right|$$
Since $r = pq$, $p = \frac{1}{q}r = \frac{5}{q}\ln\left|10q - \frac{2}{5}q^2 + 1\right|$.

23. Let *N* be the population at time t, where t = 0

- corresponds to 1990. Since N follows exponential growth, $N = N_0 e^{kt}$. Now, N = 60,000 when t = 0, so $N_0 = 60,000$.

 Therefore $N = 60,000e^{kt}$. Since N = 64,000 when t = 10, we have $64,000 = 60,000e^{10k}$, $\frac{16}{15} = e^{10k}$, $\ln \frac{16}{15} = 10k$, $k = \frac{\ln \frac{16}{15}}{10}$ Thus $N = 60,000e^{\left(\ln \frac{16}{15}\right)\left(\frac{t}{10}\right)}$ $= 60,000\left(e^{\ln \frac{16}{15}}\right)^{t/10}$ $= 60,000\left(\frac{16}{15}\right)^{t/10}$ $= 60,000\left(\frac{16}{15}\right)^{20/10} \approx 68,267$
- **24.** Exponential growth applies, so $N = N_0 e^{kt}$. When t = 0, then N = 50,000, So $N_0 = 50,000$. Thus $N = 50,000e^{kt}$. When t = 50, then

$$N = 100,000, \text{ or } 100,000 = 50,000e^{50k} \text{ or } k = \frac{\ln 2}{50} \text{ . Thus}$$

$$N = 50,000e^{\frac{t \ln 2}{50}} \qquad (*)$$

$$N = 50,000e^{\left(\frac{0.69}{50}\right)t}$$

$$N = 50,000e^{\left(\frac{0.69}{50}\right)t} \qquad (\text{First form})$$

$$\text{From (*), } N = 50,000\left[e^{\ln 2}\right]^{\frac{t}{50}}, \text{ so }$$

$$N = 50,000(2)^{\frac{t}{50}}. \qquad (\text{Second form})$$

$$\text{When } t = 100, \text{ then }$$

$$N = 50,000(2)^{\frac{100}{50}} = 50,000(2)^{2} = 200,000$$

25. Let *N* be the population (in billions) at time *t*, where *t* is the number of years past 1930. *N* follows exponential growth, so $N = N_0 e^{kt}$.

When t = 0, then N = 2, so $N_0 = 2$. Thus $N = 2e^{kt}$. Since N = 3 when t = 30, then $3 = 2e^{30k}$ $\frac{3}{2} = e^{30k}$ $30k = \ln \frac{3}{2}$ $k = \frac{\ln \frac{3}{2}}{30}$

Thus
$$N = 2e^{\frac{t}{30}\ln{\frac{3}{2}}}$$
.
In 2015, $t = 85$ and so
$$N = 2e^{\frac{85}{30}\ln{\frac{3}{2}}} \approx 2e^{1.14882}$$
 billion.

26. Let N = population at time t and $N_0 =$ population at t = 0. Then $N = N_0 e^{kt}$. When t = 100, then $N = 3N_0$, so $3N_0 = N_0 e^{100k} \text{ or } k = \frac{\ln 3}{100}.$ Setting $N = 2N_0$ and solving for t gives $2N_0 = N_0 e^{\frac{t \ln 3}{100}}$

$$2N_0 = N_0 e^{\frac{t \ln 3}{100}}$$

$$2 = e^{\frac{t \ln 3}{100}}$$

$$\ln 2 = \frac{t \ln 3}{100}$$

$$t = \frac{100 \ln 2}{\ln 3} \approx 63.$$

The population will double in approximately 63 years.

- 27. Let N be amount of sample that remains after t seconds. Then $N = N_0 e^{-\lambda t}$, where N_0 is the initial amount present. When t = 100, then $N = 0.3N_0$. Thus $0.3N_0 = N_0 e^{-100\lambda}$ $0.3 = e^{-100\lambda}$ $-100\lambda = \ln 0.3$ $\lambda = -\frac{\ln 0.3}{100}$ Thus $\lambda \approx 0.01204$. The half-life is $\frac{\ln 2}{\lambda} = \frac{\ln 2}{-\frac{\ln 0.3}{\ln 0.3}} = -100 \frac{\ln 2}{\ln 0.3} \approx 57.57 \text{ s.}$
- 28. $N = N_0 e^{-\lambda t}$ After 100 s, 80% remains. $0.8N_0 = N_0 e^{-100\lambda}$ $0.8 = e^{-100\lambda}$ $-100\lambda = \ln 0.8$ $\lambda = -\frac{\ln 0.8}{100}$ $\lambda \approx 0.0022314$ The half-life is $\frac{\ln 2}{\lambda} = \frac{\ln 2}{-\frac{\ln 0.8}{100}} = -100 \frac{\ln 2}{\ln 0.8} \approx 310.63 \text{ s.}$
 - We must find t when $N = 0.7N_0$. $0.7N_0 = N_0 e^{-\lambda t}$ $0.7 = e^{-\lambda t}$ $-\lambda t = \ln 0.7$ so $t = -\frac{\ln 0.7}{\lambda}$. By Equation 15 in the text, $\lambda = \frac{\ln 2}{5730}$, so $t = -\frac{\ln 0.7}{\frac{\ln 2}{5730}} = -\frac{5730 \ln 0.7}{\ln 2} \approx 2900 \text{ years.}$

29. Let *N* be the amount of ^{14}C present in the scroll *t* years after it was made. Then $N = N_0 e^{-\lambda t}$,

where N_0 is amount of ^{14}C present when t = 0.

30.
$$N = N_0 e^{-\lambda t}$$
$$0.1N_0 = N_0 e^{-\lambda t}$$
$$0.1 = e^{-\lambda t}$$
$$-\lambda t = \ln(0.1)$$

$$t = -\frac{\ln 0.1}{\lambda}$$

By Equation 15 in the text, $\lambda = \frac{\ln 2}{5730}$, so

$$t = -\frac{\ln 0.1}{\frac{\ln 2}{5730}} = -\frac{5730 \ln 0.1}{\ln 2} \approx 19,000 \text{ years.}$$

$$31. \quad \frac{dN}{dt} = kN$$

$$N = Ae^{kt}$$

$$N_0 = Ae^{kt_0}$$

$$A = \frac{N_0}{e^{kt_0}}$$

Thus
$$N = \frac{N_0}{e^{kt_0}} (e^{kt}) = N_0 e^{kt - kt_0}$$
, or

$$N = N_0 e^{k(t-t_0)}$$
, where $t \ge t_0$.

32. a. From Equation 15 in the text, $140 = \frac{\ln 2}{\lambda}$.

Thus
$$\lambda = \frac{\ln 2}{140}$$
.

b.
$$N = N_0 e^{-\lambda t} = N_0 e^{-\frac{t \ln 2}{140}} = N_0 e^{-\frac{365 \ln 2}{140}}$$

$$\frac{N}{N_0} = e^{-\frac{365 \ln 2}{140}} \approx 0.164$$

$$33. \quad N = N_0 e^{-\lambda t}$$

When t = 2, then N = 12. Thus $12 = N_0 e^{-2\lambda}$,

 $N_0 = 12e^{2\lambda}$. By Equation 15 in the text,

$$6 = \frac{\ln 2}{\lambda}$$

$$\lambda = \frac{\ln 2}{6}$$

Thus

$$N_0 = 12e^{2\frac{\ln 2}{6}} = 12e^{\frac{\ln 2}{3}} = 12 \cdot 2^{1/3} \approx 15.1$$
 units.

34.
$$N = N_0 e^{-\lambda t}$$

We want to find t when

$$N = \left(\frac{3}{5}\right) N_0$$

$$\left(\frac{3}{5}\right)N_0 = N_0 e^{-\lambda t}$$

$$\frac{3}{5} = e^{-\lambda t}$$

$$-\lambda t = \ln\left(\frac{3}{5}\right)$$

$$t = -\frac{\ln\frac{3}{5}}{\lambda}$$

By Equation 15 in the text, $8 = \frac{\ln 2}{\lambda}$, $\lambda = \frac{\ln 2}{8}$.

Thus
$$t = -\frac{\ln \frac{3}{5}}{\frac{\ln 2}{8}} = -\frac{8 \ln \frac{3}{5}}{\ln 2} \approx 5.9$$
 days.

35.
$$\frac{dA}{dt} = 200 - 0.50A$$

$$\int \frac{dA}{200-0.50A} = \int dt$$

$$-\frac{1}{0.50}\ln(200 - 0.50A) = t + C_1$$

$$\ln(200 - 0.50A) = -0.50t - 0.50C_1$$
$$= -0.50t + C_2$$

$$200 - 0.50A = e^{-0.50t + C_2} = e^{-0.50t}e^{C_2}$$

$$200 - \frac{A}{2} = Ce^{-0.50t}$$

Given that A = 0 when t = 0, we have C = 200,

so
$$200 - \frac{A}{2} = 200e^{-\frac{t}{2}}$$

$$200 - 200e^{-\frac{t}{2}} = \frac{A}{2}$$

$$200\left(1-e^{-\frac{t}{2}}\right) = \frac{A}{2}$$

Thus
$$A = 400 \left(1 - e^{-\frac{t}{2}} \right)$$
. If $t = 1$,

$$A = 400 \left(1 - e^{-\frac{1}{2}} \right) \approx 157$$
 grams per square meter.

36.
$$\frac{dP}{dx} = k(150,000 - 2P)$$

$$\int \frac{dP}{150,000 - 2P} = \int k \, dx$$

$$-\frac{1}{2} \ln[150,000 - 2P] = kx + C$$
Since $P(0) = 15,000$, we have
$$-\frac{1}{2} \ln[150,000 - 30,000] = C, \text{ so}$$

$$-\frac{1}{2} \ln[150,000 - 2P] = kx - \frac{1}{2} \ln[120,000].$$
Since $P(1000) = 70,000$,
$$-\frac{1}{2} \ln[150,000 - 140,000]$$

$$= 1000k - \frac{1}{2} \ln[120,000]$$
Thus
$$-\frac{1}{2} \ln[150,000 - 2P] = \frac{\ln 12}{1000} x - \frac{1}{2} \ln[120,000]$$

$$\ln[150,000 - 2P] = -\frac{\ln 12}{1000} x + \ln[120,000]$$

$$150,000 - 2P = e^{-\frac{\ln 12}{1000}x} e^{\ln[120,000]}$$

$$150,000 - 2P = 120,000e^{-\frac{\ln 12}{1000}x}$$

$$P = \frac{1}{2} \left(150,000 - 120,000e^{-\frac{\ln 12}{1000}x}\right)$$

$$= 75,000 - 60,000 \left(12^{-\frac{x}{1000}}\right)$$
If $x = 2000$, then
$$P = 75,000 - 60,000(12^{-2}) \approx $74,583.$$

37. **a.**
$$\frac{dV}{dt} = kV$$

$$\int \frac{1}{V} dV = \int k \ dt$$

$$\ln V = kt + C_1$$

$$V = e^{kt} e^{C_1}$$
or $V = Ce^{kt}$. Now $t = 0$ corresponds to July 1, 1996 where $V = 0.75 \cdot 80,000 = 60,000$, so $60,000 = C(1)$. Thus $V = 60,000e^{kt}$. Also $V = 38.900$ for $t = 9.5$, so

$$38,900 = 60,000e^{9.5k}$$

$$\frac{389}{600} = e^{9.5k}$$

$$9.5k = \ln\left(\frac{389}{600}\right)$$

$$k = \frac{1}{9.5}\ln\left(\frac{389}{600}\right)$$
Thus $V = 60,000e^{\frac{t}{9.5}\ln\left(\frac{389}{600}\right)}$

b.
$$14,000 = 60,000e^{\frac{t}{9.5}\ln\left(\frac{389}{600}\right)}$$

 $\frac{7}{30} = e^{\frac{t}{9.5}\ln\left(\frac{389}{600}\right)}$
 $\ln\left(\frac{7}{30}\right) = \frac{t}{9.5}\ln\left(\frac{389}{600}\right)$
 $t = \frac{9.5\ln\left(\frac{7}{30}\right)}{\ln\left(\frac{389}{600}\right)} \approx 31.903$

This corresponds to about 31 years and 11 months after July 1, $1996 \Rightarrow \text{June } 2028$.

Problems 15.6

1.
$$N = \frac{M}{1 + be^{-ct}}$$

 $M = 100,000$
Since $N = 50,000$ at $t = 0$ (1995), we have
 $50,000 = \frac{100,000}{1 + b}$, so $1 + b = \frac{100,000}{50,000} = 2$, or $b = 1$.
Hence, $N = \frac{100,000}{1 + e^{-ct}}$. If $t = 5$, then $N = 60,000$, so $60,000 = \frac{100,000}{1 + e^{-5c}}$
 $1 + e^{-5c} = \frac{100,000}{60,000} = \frac{5}{3}$
 $e^{-5c} = \frac{5}{3} - 1 = \frac{2}{3}$
 $e^{-c} = \left(\frac{2}{3}\right)^{1/5}$
Hence, $N = \frac{100,000}{1 + \left(\frac{2}{3}\right)^{t/5}}$. In 2005, $t = 10$, so $N = \frac{100,000}{1 + \left(\frac{2}{3}\right)^2} \approx 69,200$.

2.
$$N = \frac{M}{1 + be^{-ct}}$$

Since M = 500, and N = 200 when t = 0, we have

$$200 = \frac{500}{1+b}$$

$$1+b = \frac{500}{200} = \frac{5}{2} \Rightarrow b = \frac{3}{2}$$
.

Hence $N = \frac{500}{1 + \frac{3}{2}e^{-ct}}$. When t = 1 we are given

$$N = 300$$
. Thus

$$300 = \frac{500}{1 + \frac{3}{2}e^{-c}}$$

$$1 + \frac{3}{2}e^{-c} = \frac{500}{300} = \frac{5}{3}$$

$$\frac{3}{2}e^{-c} = \frac{2}{3}$$

$$e^{-c} = \frac{4}{9}$$

Hence $N = \frac{500}{1 + \frac{3}{2} \left(\frac{4}{9}\right)^t}$. When t = 2, then

$$N = \frac{500}{1 + \frac{3}{2} \left(\frac{4}{9}\right)^2} \approx 386.$$

$$3. \quad N = \frac{M}{1 + be^{-ct}}$$

M = 40,000, and N = 20 when t = 0, so

$$20 = \frac{40,000}{1+b}$$

$$1 + b = \frac{40,000}{20} = 2000$$

$$b = 1999$$

Hence
$$N = \frac{40,000}{1 + 1999e^{-ct}}$$
.

Since N = 100 when t = 1, $100 = \frac{40,000}{1 + 1999e^{-c}}$,

$$1+1999e^{-c} = \frac{40,000}{100} = 400$$
$$e^{-c} = \frac{399}{1999}$$

Hence
$$N = \frac{40,000}{1 + 1999 \left(\frac{399}{1999}\right)^t}$$
.

If
$$t = 2$$
, then $N = \frac{40,000}{1 + 1999 \left(\frac{399}{1999}\right)^2} \approx 500$.

4.
$$N = \frac{M}{1 + be^{-ct}}$$

Since M = 50,000, and N = 500 when t = 0, we have

$$500 = \frac{50,000}{1+b}$$

$$1 + b = \frac{50,000}{500} = 100$$

$$b = 99$$

Hence $N = \frac{50,000}{1 + 99e^{-ct}}$. If t = 1, then N = 1500.

Thus

$$1500 = \frac{50,000}{1 + 99e^{-c}}$$

$$1+99e^{-c} = \frac{50,000}{1500} = \frac{100}{3}$$

$$99e^{-c} = \frac{97}{3}$$

$$e^{-c} = \frac{97}{297}$$

Hence
$$N = \frac{50,000}{1 + 99(\frac{97}{297})^t}$$
.

5.
$$N = \frac{M}{1 + be^{-ct}}$$

M = 100,000, and since N = 500 when t = 0, we have

$$500 = \frac{100,000}{1+b}$$

$$1 + b = \frac{100,000}{500} = 200$$

$$b = 199$$

Hence
$$N = \frac{100,000}{1+199e^{-ct}}$$
. If $t = 1$, then

$$N = 1000$$
. Thus

$$1000 = \frac{100,000}{1+199e^{-c}}$$

$$1+199e^{-c} = \frac{100,000}{1000} = 100$$

$$199e^{-c} = 99$$

$$e^{-c} = \frac{99}{199}$$
Hence $N = \frac{100,000}{1+199\left(\frac{99}{199}\right)^t}$. If $t = 2$, then
$$N = \frac{100,000}{1+199\left(\frac{99}{199}\right)^2} \approx 1990$$
.

6. a.
$$\frac{dN}{dt} = N(1-N)$$

$$\frac{dN}{N(1-N)} = dt$$

$$\int \frac{dN}{N(1-N)} = \int dt$$
Using Formula 5 in the Table of Integrals, for $\int \frac{dN}{N(1-N)}$, we get $\ln \left| \frac{N}{1-N} \right| = t + C$.

Since
$$N(0) = \frac{1}{2}$$
, $\ln \left| \frac{\frac{1}{2}}{1 - \frac{1}{2}} \right| = \ln 1 = 0 = C$.

Also,
$$N > 0$$
, and since $M = 1$, $N < 1$. Thus
$$\ln\left(\frac{N}{1-N}\right) = t.$$

$$\frac{N}{1-N} = e^t$$

$$N = (1-N)e^t$$

$$N(e^t + 1) = e^t$$

$$N = \frac{e^t}{e^t + 1} = \frac{1}{1+e^{-t}}$$

b.
$$\frac{dN}{dt} = N(1-N) = N - N^2$$

$$\frac{d^2N}{dt^2} = 1 - 2N$$

$$\frac{d^2N}{dt^2} = 0 \text{ when } N = \frac{1}{2}.$$

$$1 - 2N > 0 \text{ when } N < \frac{1}{2} \text{ and } 1 - 2N < 0$$
when $N > \frac{1}{2}$, so there is an inflection point

when
$$N = \frac{1}{2}$$
.
 $\frac{1}{2} = \frac{1}{1 + e^{-t}}$
 $1 + e^{-t} = 2$
 $e^{-t} = 1$
 $t = 0$

Thus the point $\left(0, \frac{1}{2}\right)$ is an inflection point on the graph.

c.
$$f(t) = \frac{1}{1 + e^{-t}} - \frac{1}{2}$$
$$= \frac{2 - (1 + e^{-t})}{2(1 + e^{-t})}$$
$$= \frac{1 - e^{-t}}{2(1 + e^{-t})}$$
$$= \frac{e^{t} - 1}{2(e^{t} + 1)}$$

Replace t by -t then multiply numerator and denominator by e^t .

$$\frac{e^{-t} - 1}{2(e^{-t} + 1)} = \frac{1 - e^t}{2(1 + e^t)} = -\frac{e^t - 1}{2(e^t + 1)} = -f(t)$$
Thus, $f(t)$ is symmetric about the origin.

d. The graph of N(t) is the graph of f(t) shifted $\frac{1}{2}$ unit upward. Thus, since f(t) is symmetric about (0, 0), N(t) is symmetric about $\left(0, \frac{1}{2}\right)$.

$$N(t) = f(t) + \frac{1}{2}$$

$$N(-t) = f(-t) + \frac{1}{2}$$

$$= -f(t) + \frac{1}{2}$$

$$= -\left[f(t) + \frac{1}{2}\right] + 1$$

$$= 1 - N(t)$$

7. **a.**
$$N = \frac{375}{1 + e^{5.2 - 2.3t}} = \frac{375}{1 + e^{5.2}e^{-2.3t}}$$
$$\approx \frac{375}{1 + 181.27e^{-2.3t}}$$

b.
$$\lim_{t \to \infty} N = \frac{375}{1 + 181.27(0)} = 375$$

8. a.
$$N = \frac{0.2524}{e^{-2.128x} + 0.005125}$$
$$= \frac{\frac{0.2524}{0.005125}}{\frac{e^{-2.128x} + 0.005125}{0.005125}}$$
$$\approx \frac{49.25}{\frac{e^{-2.128x}}{0.005125} + 1} \approx \frac{49.25}{1 + 195.1e^{-2.128x}}$$

b. If
$$x = 0$$
, then $N \approx \frac{49.25}{1 + 195.1} \approx 0.2511 \text{ cm}^2$.

9.
$$\frac{dT}{dt} = k(T - a)$$
 where $a = -5$.

$$\frac{dT}{T+5} = k dt$$

$$\int \frac{dT}{T+5} = \int k dt$$

Thus $\ln(T+5) = kt + C$. At t = 0, we have T = 27, so $\ln(27+5) = 0 + C$, $C = \ln 32$, and $\ln(T+5) = kt + \ln 32$.

$$\ln(T+5) - \ln 32 = kt$$

Hence
$$\ln\left(\frac{T+5}{32}\right) = kt$$
.

If t = 1, then T = 19. Thus $\ln\left(\frac{19+5}{32}\right) = k \cdot 1$, so

$$k = \ln \frac{24}{32} = \ln \frac{3}{4}$$
. Hence $\ln \left(\frac{T+5}{32} \right) = \left(\ln \frac{3}{4} \right) t$.

If
$$T = 37$$
, then $\ln\left(\frac{42}{32}\right) = \left(\ln\frac{3}{4}\right)t$
$$t = \frac{\ln\frac{42}{32}}{\ln\frac{3}{4}} \approx -0.945 \text{ hr}$$

which corresponds to 57 minutes. Time of murder: 3:17 A.M. - 57 min = 2:20 A.M.

10.
$$\frac{dp}{dt} = kp(I-p)$$

This is logistic growth, so the maximum rate of formation (growth) occurs when $p = \frac{I}{2}$, which is when there are equal amounts of both enzymes.

11.
$$\frac{dx}{dt} = k(200,000 - x)$$

$$\int \frac{dx}{200,000 - x} = \int k \ dt$$

$$-\ln(200,000 - x) = kt + C$$

$$\ln(200,000 - x) = -kt - C$$

$$200,000 - x = e^{-kt - C} = e^{-C}e^{-kt} = Ae^{-kt}$$
, where

$$A = e^{-C}$$
. Thus $x = 200,000 - Ae^{-kt}$. If $t = 0$,

then x = 50,000, so

$$50,000 = 200,000 - A \Rightarrow A = 150,000$$
. Thus

$$x = 200,000 - 150,000e^{-kt}$$
. If $t = 1$, then

x = 100,000, so

$$100,000 = 200,000 - 150,000e^{-k}$$

$$150,000e^{-k} = 100,000$$

$$e^{-k} = \frac{100,000}{150,000} = \frac{2}{3}$$

Thus
$$x = 200,000 - 150,000 \left(\frac{2}{3}\right)^t$$
. If $t = 3$, then

$$x = 200,000 - 150,000 \left(\frac{8}{27}\right) \approx $155,555.56.$$

12.
$$\frac{dN}{dt} = kN^2$$

$$\int \frac{dN}{N^2} = \int k \ dt$$

$$-\frac{1}{N} = kt + C$$

If
$$t = 0$$
, then $N = N_0$. Thus $-\frac{1}{N_0} = C$, so

$$-\frac{1}{N} = kt - \frac{1}{N_0}$$

$$\frac{1}{N} = \frac{-kN_0t + 1}{N_0}$$

$$N = \frac{N_0}{1 - kN_0t}$$
As $t \to \left(\frac{1}{kN_0}\right)^-$, then $1 - kN_0t \to 0^+$, so $N \to \infty$.

13.
$$\frac{dN}{dt} = k(M - N)$$

$$\int \frac{dN}{M - N} = \int k \, dt$$

$$-\ln(M - N) = kt + C$$
If $t = 0$, then $N = N_0$, so $-\ln(M - N_0) = C$.

Thus we have
$$-\ln(M - N) = kt - \ln(M - N_0)$$

$$\ln(M - N_0) - \ln(M - N) = kt$$

$$\ln\frac{M - N_0}{M - N} = kt$$

$$\ln\frac{M - N_0}{M - N} = -kt$$

$$\ln\frac{M - N}{M - N_0} = -kt$$

$$\frac{M - N}{M - N_0} = e^{-kt}$$

$$M - N = (M - N_0)e^{-kt}$$

$$N = M - (M - N_0)e^{-kt}$$

Apply It 15.7

6.
$$\int_{0}^{\infty} \left(3e^{-0.1t} - 3e^{-0.3t}\right) dt$$

$$= \lim_{r \to \infty} \int_{0}^{r} \left(3e^{-0.1t} - 3e^{-0.3t}\right) dt$$

$$= \lim_{r \to \infty} \left(-30e^{-0.1t} + 10e^{-0.3t}\right) \Big|_{0}^{r}$$

$$= \lim_{r \to \infty} \left[-\frac{30}{e^{-0.1r}} + \frac{10}{e^{0.3r}} - \left(-30e^{0} + 10e^{0}\right)\right]$$

$$= \lim_{r \to \infty} \left[-\frac{30}{e^{0.1r}} + \frac{10}{e^{0.3r}} - (-20)\right]$$

$$= 0 + 0 + 20 = 20$$

The total amount of the drug that is eliminated is approximately 20 milliliters.

Problems 15.7

1.
$$\int_{3}^{\infty} \frac{1}{x^{3}} dx = \lim_{r \to \infty} \int_{3}^{r} x^{-3} dx$$
$$= \lim_{r \to \infty} \frac{x^{-2}}{-2} \Big|_{3}^{r} = -\frac{1}{2} \lim_{r \to \infty} \frac{1}{x^{2}} \Big|_{3}^{r}$$
$$= -\frac{1}{2} \lim_{r \to \infty} \left(\frac{1}{r^{2}} - \frac{1}{9} \right) = -\frac{1}{2} \left(0 - \frac{1}{9} \right) = \frac{1}{18}$$

2.
$$\int_{1}^{\infty} \frac{1}{(3x-1)^{2}} dx = \lim_{r \to \infty} \frac{1}{3} \int_{1}^{r} (3x-1)^{-2} [3 dx]$$
$$= \lim_{r \to \infty} \left[-\frac{1}{3(3x-1)} \right]_{1}^{r}$$
$$= \lim_{r \to \infty} \left[-\frac{1}{3(3r-1)} + \frac{1}{6} \right]$$
$$= 0 + \frac{1}{6}$$
$$= \frac{1}{6}$$

3.
$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{r \to \infty} \int_{1}^{r} \frac{1}{x} dx = \lim_{r \to \infty} \ln|x| \Big|_{1}^{r}$$
$$= \lim_{r \to \infty} \left(\ln|r| - 0 \right)$$
$$= \lim_{r \to \infty} \ln|r| = \infty \Rightarrow \text{ diverges}$$

4.
$$\int_{2}^{\infty} \frac{1}{\sqrt[3]{(x+2)^{2}}} dx = \lim_{r \to \infty} \int_{2}^{r} (x+2)^{-\frac{2}{3}} dx$$
$$= \lim_{r \to \infty} \frac{(x+2)^{\frac{1}{3}}}{\frac{1}{3}} \Big|_{2}^{r}$$
$$= \lim_{r \to \infty} 3 \left[\sqrt[3]{r+2} - \sqrt[3]{4} \right]$$
$$= \infty \Rightarrow \text{diverges}$$

5.
$$\int_{37}^{\infty} e^{-x} dx = \lim_{r \to \infty} -\int_{37}^{r} e^{-x} [-dx] = \lim_{r \to \infty} (-e^{-x}) \Big|_{37}^{r}$$
$$= \lim_{r \to \infty} \left(-e^{-r} + e^{-37} \right) = \lim_{r \to \infty} \left(-\frac{1}{e^{r}} + \frac{1}{e^{37}} \right)$$
$$= 0 + \frac{1}{e^{37}} = \frac{1}{e^{37}} = e^{-37}$$

6.
$$\int_0^\infty \left(5 + e^{-x}\right) dx = \lim_{r \to \infty} \int_0^r \left(5 + e^{-x}\right) dx$$
$$= \lim_{r \to \infty} \left(5x - e^{-x}\right) \Big|_0^r = \lim_{r \to \infty} \left[\left(5r - e^{-r}\right) - (0 - 1)\right]$$
$$= \lim_{r \to \infty} \left(5r - \frac{1}{e^r} + 1\right) = \infty \implies \text{diverges}$$

7.
$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx = \lim_{r \to \infty} \int_{1}^{r} x^{-\frac{1}{2}} dx = \lim_{r \to \infty} 2x^{\frac{1}{2}} \Big|_{1}^{r}$$
$$= \lim_{r \to \infty} \left(2\sqrt{r} - 2 \right) = \infty \Rightarrow \text{ diverges}$$

8.
$$\int_{4}^{\infty} \frac{x}{\sqrt{(x^2 + 9)^3}} dx = \lim_{r \to \infty} \frac{1}{2} \int_{4}^{r} (x^2 + 9)^{-\frac{3}{2}} [2x \, dx]$$
$$= \lim_{r \to \infty} \left[-(x^2 + 9)^{-\frac{1}{2}} \right]_{4}^{r} = \lim_{r \to \infty} \left[-\frac{1}{\sqrt{r^2 + 9}} + \frac{1}{5} \right]$$
$$= 0 + \frac{1}{5} = \frac{1}{5}$$

9.
$$\int_{-\infty}^{-3} \frac{1}{(x+1)^2} dx = \lim_{r \to -\infty} \int_r^{-3} (x+1)^{-2} dx$$
$$= \lim_{r \to -\infty} -\frac{1}{x+1} \Big|_r^{-3}$$
$$= \lim_{r \to -\infty} \left[\frac{1}{2} + \frac{1}{r+1} \right]$$
$$= \frac{1}{2} + 0$$
$$= \frac{1}{2}$$

10.
$$\int_{1}^{\infty} \frac{1}{\sqrt[3]{x-1}} dx = \lim_{r \to \infty} \int_{1}^{r} (x-1)^{-1/3} dx$$
$$= \lim_{r \to \infty} \frac{3}{2} (x-1)^{2/3} \Big|_{1}^{r}$$
$$= \lim_{r \to \infty} \frac{3}{2} [(r-1)^{2/3} - 0]$$
$$= \infty \Rightarrow \text{diverges}$$

11.
$$\int_{-\infty}^{\infty} 2xe^{-x^2} dx = \int_{-\infty}^{0} 2xe^{-x^2} dx + \int_{0}^{\infty} 2xe^{-x^2} dx$$

$$\int_{-\infty}^{0} 2xe^{-x^2} dx = \lim_{r \to -\infty} -\int_{r}^{0} e^{-x^2} [-2x dx]$$

$$= \lim_{r \to -\infty} -e^{-x^2} \Big|_{r}^{0}$$

$$= \lim_{r \to -\infty} \left[-1 + \frac{1}{e^{r^2}} \right] = -1 + 0 = -1$$

$$\int_{0}^{\infty} 2xe^{-x^2} dx = \lim_{r \to \infty} -\int_{0}^{r} e^{-x^2} [-2x dx]$$

$$= \lim_{r \to \infty} -e^{x^2} \Big|_{0}^{r}$$

$$= \lim_{r \to \infty} \left[-\frac{1}{e^{r^2}} + 1 \right] = 0 + 1 = 1$$
Thus
$$\int_{-\infty}^{\infty} 2xe^{-x^2} dx = -1 + 1 = 0.$$

12.
$$\int_{-\infty}^{\infty} (5-3x)dx = \int_{-\infty}^{0} (5-3x)dx + \int_{0}^{\infty} (5-3x)dx$$
$$\int_{-\infty}^{0} (5-3x)dx = \lim_{r \to -\infty} \int_{r}^{0} (5-3x)dx$$
$$= \lim_{r \to -\infty} \left(5x - \frac{3}{2}x^{2} \right) \Big|_{r}^{0}$$
$$= \lim_{r \to -\infty} \left[(0-0) - \left(5r - \frac{3}{2}r^{2} \right) \right]$$
$$= \lim_{r \to -\infty} \left(-5r + \frac{3}{2}r^{2} \right) = \infty$$

Thus
$$\int_{-\infty}^{\infty} (5-3x)dx$$
 diverges

13. a.
$$\int_{800}^{\infty} \frac{k}{x^2} dx = 1$$

$$\lim_{r \to \infty} k \int_{800}^{r} x^{-2} dx = 1$$

$$\lim_{r \to \infty} -\frac{k}{x} \Big|_{800}^{r} = 1$$

$$\lim_{r \to \infty} \left(-\frac{k}{r} + \frac{k}{800} \right) = 1$$

$$0 + \frac{k}{800} = 1$$

$$k = 800$$

b.
$$\int_{1200}^{\infty} \frac{800}{x^2} dx = \lim_{r \to \infty} 800 \int_{1200}^{r} x^{-2} dx$$
$$= \lim_{r \to \infty} -\frac{800}{x} \Big|_{1200}^{r}$$
$$= \lim_{r \to \infty} \left(-\frac{800}{r} + \frac{800}{1200} \right) = 0 + \frac{2}{3} = \frac{2}{3}$$

14.
$$\int_{1}^{\infty} ke^{-2x} dx = 1$$

$$\lim_{r \to \infty} -\frac{k}{2} \int_{1}^{r} e^{-2x} [-2 dx] = 1$$

$$\lim_{r \to \infty} -\frac{ke^{-2x}}{2} \Big|_{1}^{r} = 1$$

$$\lim_{r \to \infty} \left(-\frac{k}{2e^{2r}} + \frac{k}{2e^{2}} \right) = 1$$

$$0 + \frac{k}{2e^{2}} = 1$$

Thus $k = 2e^2$

15.
$$\int_{0}^{\infty} 500,000e^{-0.02t} dt$$

$$= \lim_{r \to \infty} \frac{500,000}{-0.02} \int_{0}^{r} e^{-0.02t} [-0.02 \ dt]$$

$$= \lim_{r \to \infty} -\frac{500,000}{0.02} e^{-0.02t} \Big|_{0}^{r}$$

$$= \lim_{r \to \infty} -\frac{500,000}{0.02} \left(\frac{1}{e^{0.02r}} - 1\right)$$

$$= -\frac{500,000}{0.02} (-1) = 25,000,000$$

16.
$$\alpha = \int_{x_c}^{\infty} e^{-x} dx = \lim_{r \to \infty} -\int_{x_c}^{r} e^{-x} [-dx]$$

$$= \lim_{r \to \infty} -e^{-x} \Big|_{x_c}^{r}$$

$$= \lim_{r \to \infty} \left(-\frac{1}{e^r} + e^{-x_c} \right) = 0 + e^{-x_c} = e^{-x_c}$$

$$\beta = \int_{x_c}^{\infty} \frac{1}{8} e^{-\frac{x}{8}} dx = \lim_{r \to \infty} -\int_{x_c}^{r} e^{-\frac{x}{8}} \left[-\frac{1}{8} dx \right]$$

$$= \lim_{r \to \infty} -e^{-\frac{x}{8}} \Big|_{x_c}^{r}$$

$$= \lim_{r \to \infty} \left[-\frac{1}{e^{\frac{r}{8}}} + e^{-\left(\frac{1}{8}\right)x_c} \right]$$

$$= 0 + e^{-\left(\frac{1}{8}\right)x_c}$$

$$= e^{-\left(\frac{1}{8}\right)x_c}$$

17. Area =
$$-\int_{-\infty}^{0} -e^{3x} dx = \lim_{r \to -\infty} \frac{1}{3} \int_{r}^{0} e^{3x} [3 dx]$$

= $\lim_{r \to -\infty} \frac{1}{3} \cdot e^{3x} \Big|_{r}^{0} = \lim_{r \to -\infty} \left[\frac{1}{3} - \frac{1}{3} e^{r} \right]$
= $\frac{1}{3} - 0 = \frac{1}{3}$ sq units

18.
$$V = \pi_0 \int_0^\infty e^{\theta t} e^{-\rho t} dt = \pi_0 \lim_{r \to \infty} \int_0^r e^{(\theta - \rho)t} dt$$

$$= \pi_0 \lim_{r \to \infty} \frac{1}{\theta - \rho} \int_0^r e^{(\theta - \rho)t} [(\theta - \rho) dt]$$

$$= \lim_{r \to \infty} \frac{\pi_0}{\theta - \rho} e^{(\theta - \rho)t} \Big|_0^r = \lim_{r \to \infty} \frac{\pi_0}{\theta - \rho} \Big[e^{(\theta - \rho)r} - 1 \Big]$$

$$= \frac{\pi_0}{\theta - \rho} [0 - 1] \qquad \text{(since } \theta - \rho < 0 \text{)}$$

$$= -\frac{\pi_0}{\theta - \rho}$$
Thus $V = -\frac{\pi_0}{\theta - \rho} = \frac{\pi_0}{\rho - \theta}$.

19.
$$\int_0^\infty \frac{40,000}{(t+2)^2} dt = \lim_{r \to \infty} \int_0^r \frac{40,000}{(t+2)^2} dt$$
$$= \lim_{r \to \infty} -\frac{40,000}{t+2} \Big|_0^r$$
$$= \lim_{r \to \infty} \left[-\frac{40,000}{r+2} + \frac{40,000}{2} \right]$$
$$= 0 + \frac{40,000}{2} = 20,000 \text{ increase}$$

Chapter 15 Review Problems

1. Use Formula 42 with u = x and n = 2. Then du = dx.

$$\int x^2 \ln x \, dx = \frac{x^3 \ln x}{3} - \frac{x^3}{3^2} + C$$
$$= \frac{1}{3} x^3 \left(\ln x - \frac{1}{3} \right) + C$$

2. Use Formula 27 with u = 2x, $a^2 = 1$. Then du = 2 dx.

$$\int \frac{1}{\sqrt{4x^2 + 1}} dx = \frac{1}{2} \int \frac{1}{\sqrt{(2x)^2 + 1}} (2 \ dx)$$
$$= \frac{1}{2} \ln \left| 2x + \sqrt{4x^2 + 1} \right| + C$$

3. Use Formula 23 with u = 3x, $a^2 = 16$. Then du = 3 dx.

$$\int_{0}^{2} \sqrt{9x^{2} + 16} \, dx = \frac{1}{3} \int_{0}^{2} \sqrt{(3x)^{2} + 16} \, (3 \, dx)$$

$$= \frac{1}{3} \left[\frac{1}{2} \left((3x) \sqrt{9x^{2} + 16} + 16 \ln \left| 3x + \sqrt{9x^{2} + 16} \right| \right) \right]_{0}^{2}$$

$$= \left(2\sqrt{13} + \frac{8}{3} \ln \left(6 + 2\sqrt{13} \right) \right) - \left(0 + \frac{8}{3} \ln 4 \right)$$

$$= 2\sqrt{13} + \frac{8}{3} \ln \left(\frac{6 + 2\sqrt{13}}{4} \right)$$

$$= 2\sqrt{13} + \frac{8}{3} \ln \left(\frac{3 + \sqrt{13}}{4} \right)$$

4. By long division, $\int \frac{16x}{3-4x} dx = \int \left(-4 + \frac{12}{3-4x} \right) dx = -4x - 3\ln|3 - 4x| + C$

Or, by Formula 3 with u = x, a = 3, and b = -4. Then du = dx.

$$\int \frac{16x}{3 - 4x} dx = 16 \int \frac{x}{3 - 4x} dx = 16 \left[\frac{x}{-4} - \frac{3}{16} \ln|3 - 4x| \right] + C = -4x - 3\ln|3 - 4x| + C$$

5. $\int \frac{15x - 2}{(3x + 1)(x - 2)} dx = \int \left(\frac{15x}{(3x + 1)(x - 2)} - \frac{2}{(3x + 1)(x - 2)} \right) dx$

For $\int \frac{15x}{(3x+1)(x-2)} dx$, use Formula 12 with u = x, a = 1, b = 3, c = -2, and k = 1. Then du = dx.

$$\int \frac{15x}{(3x+1)(x-2)} dx = 15 \int \frac{x}{(3x+1)(x-2)} dx = 15 \left[\frac{1}{-7} \left(-2\ln|x-2| - \frac{1}{3}\ln|3x+1| \right) \right] + C$$

For
$$\int \frac{2}{(3x+1)(x-2)} dx$$
, use Formula 11 with

u = x, a = 1, b = 3, c = -2, and k = 1. Then du = dx.

$$\int \frac{2}{(3x+1)(x-2)} dx = 2\int \frac{dx}{(3x+1)(x-2)} = 2\left(\frac{1}{-7} \ln \left| \frac{3x+1}{x-2} \right| \right) + C$$

Thus,
$$\int \frac{15x - 2}{(3x + 1)(x - 2)} dx$$

$$= \frac{30}{7} \ln|x - 2| + \frac{5}{7} \ln|3x + 1| + \frac{2}{7} \ln\left|\frac{3x + 1}{x - 2}\right| + C$$

$$= \frac{30}{7} \ln|x - 2| + \frac{5}{7} \ln|3x + 1| + \frac{2}{7} \ln|3x + 1| - \frac{2}{7} \ln|x - 2| + C$$

$$= 4 \ln|x - 2| + \ln|3x + 1| + C$$

6. The integral can be put in the form $\int \frac{1}{u} du$ with $u = \ln x$.

$$\int_{e^{a}}^{e^{b}} \frac{1}{x \ln x} dx = \int_{e^{a}}^{e^{b}} \frac{1}{\ln x} \left[\frac{1}{x} dx \right] = \ln \left| \ln x \right|_{e^{a}}^{e^{b}}$$
$$= \ln \left| \ln e^{b} \right| - \ln \left| \ln e^{a} \right| = \ln |b| - \ln |a|$$

7. Use Formula 9 with u = x, a = 2, and b = 1. Then du = dx.

$$\int \frac{dx}{x(x+2)^2} = \frac{1}{2(x+2)} + \frac{1}{4} \ln \left| \frac{x}{x+2} \right| + C$$

8. Use Formula 35 with u = x and a = 1. Then du = dx.

$$\int \frac{dx}{x^2 - 1} = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C$$

9. Use Formula 21 with u = 4x and $a^2 = 9$. Then du = 4 dx.

$$\int \frac{dx}{x^2 \sqrt{9 - 16x^2}} = 4 \int \frac{(4 dx)}{(4x)^2 \sqrt{9 - (4x)^2}} = 4 \left[-\frac{\sqrt{9 - 16x^2}}{9(4x)} \right] + C$$
$$= -\frac{\sqrt{9 - 16x^2}}{9x} + C$$

10. Use Formula 42 with $u = x^2$ and n = 1. Then du = 2x dx.

$$\int x^3 \ln x^2 dx = \frac{1}{2} \int (x^2) \ln(x^2) [2x dx]$$

$$= \frac{1}{2} \left(\frac{(x^2)^2 \ln x^2}{2} - \frac{(x^2)^2}{2^2} \right) + C$$

$$= \frac{1}{4} x^4 \ln x^2 - \frac{1}{8} x^4 + C$$

11. Use Formula 35 with u = x and a = a. Then du = dx.

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

12. Use Formula 15 with u = x, a = 2, and b = 5. Then du = dx.

$$\int \frac{x}{\sqrt{2+5x}} \, dx = \frac{2(5x-4)\sqrt{2+5x}}{75} + C$$

13. Use Formula 38 with u = x and a = 7. Then du = dx.

$$\int 49xe^{7x} dx = 49 \int xe^{7x} du$$

$$= 49 \left[\frac{e^{7x}}{49} (7x - 1) \right] + C = e^{7x} (7x - 1) + C$$

14. Use Formula 45 with u = x, a = 2, b = 3, and c = 4. Then du = dx.

$$\int \frac{dx}{2+3e^{4x}} = \frac{1}{8} \left[4x - \ln\left(2 + 3e^{4x}\right) \right] + C$$

15. The integral has the form $\int_{u}^{1} du$.

$$\int \frac{dx}{2x \ln x^2} = \frac{1}{4} \int \frac{1}{\ln x^2} \left[\frac{2}{x} dx \right] = \frac{1}{4} \ln \left| \ln x^2 \right| + C$$

16. Use Formula 5 with u = x, a = a, and b = 1. Then du = dx.

$$\int \frac{dx}{x(x+a)} = \frac{1}{a} \ln \left| \frac{x}{x+a} \right| + C$$

17. Long division or Formula 3. For long division,

$$\int \frac{2x}{3+2x} dx = \int \left[1 - \frac{3}{3+2x} \right] dx$$
$$= x - 3 \cdot \frac{1}{2} \int \frac{1}{3+2x} [2 \ dx]$$
$$= x - \frac{3}{2} \ln|3 + 2x| + C.$$

For Formula 3, use u = x, a = 3, and b = 2. Then du = dx.

$$\int \frac{2x}{3+2x} dx = 2\int \frac{x}{3+2x} dx$$
$$= 2\left(\frac{x}{2} - \frac{3}{4}\ln|3+2x|\right) + C = x - \frac{3}{2}\ln|3+2x| + C$$

18. Use Formula 30 with u = 2x and $a^2 = 9$. Then du = 2 dx.

$$\int \frac{dx}{x^2 \sqrt{4x^2 - 9}} = 2\int \frac{(2 dx)}{(2x)^2 \sqrt{(2x)^2 - 9}}$$
$$= 2\left(-\frac{-\sqrt{4x^2 - 9}}{9(2x)}\right) + C = \frac{\sqrt{4x^2 - 9}}{9} + C$$

19. Partial fractions

$$\frac{5x^2 + 2}{x^3 + x} = \frac{5x^2 + 2}{x(x^2 + 1)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1}$$

$$5x^2 + 2 = A(x^2 + 1) + (Bx + C)x$$

$$= (A + B)x^2 + Cx + A$$
Thus, $A + B = 5$, $C = 0$, $A = 2$. This gives
$$A = 2, B = 3, C = 0.$$

$$\int \frac{5x^2 + 2}{x^3 + x} dx = \int \left[\frac{2}{x} + \frac{3x}{x^2 + 1}\right] dx$$

$$= 2\ln|x| + \frac{3}{2}\ln(x^2 + 1) + C$$

20. Partial fractions

$$\frac{3x^3 + 5x^2 + 4x + 3}{x^4 + x^3 + x^2} = \frac{3x^3 + 5x^2 + 4x + 3}{x^2(x^2 + x + 1)}$$

$$= \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + x + 1}$$

$$3x^3 + 5x^2 + 4x + 3$$

$$= Ax(x^2 + x + 1) + B(x^2 + x + 1) + (Cx + D)x^2$$

$$= (A + C)x^3 + (A + B + D)x^2 + (A + B)x + B$$
Thus, $A + C = 3$, $A + B + D = 5$, $A + B = 4$, $B = 3$.
This gives $A = 1$, $B = 3$, $C = 2$, $D = 1$.
$$\int \frac{3x^3 + 5x^2 + 4x + 3}{x^4 + x^3 + x^2} dx$$

$$= \int \left[\frac{1}{x} + \frac{3}{x^2} + \frac{2x + 1}{x^2 + x + 1} \right] dx$$

$$= \ln|x| - \frac{3}{x^2} + \ln(x^2 + x + 1) + C$$

21. Integration by parts $u = \ln(x + 1)$

$$dv = (x+1)^{1/2} dx$$
Then $du = \frac{1}{x+1} dx$ and $v = \frac{2}{3}(x+1)^{3/2}$.
$$\int \ln(x+1)\sqrt{x+1} dx$$

$$= \frac{2}{3}(x+1)^{3/2} \ln(x+1) - \int \frac{2}{3}(x+1)^{3/2} \frac{1}{x+1} dx$$

$$= \frac{2}{3}(x+1)^{3/2} \ln(x+1) - \frac{2}{3} \int (x+1)^{1/2} dx$$

$$= \frac{2}{3}(x+1)^{3/2} \ln(x+1) - \frac{2}{3} \cdot \frac{(x+1)^{3/2}}{\frac{3}{2}} + C$$

$$= \frac{2}{3}(x+1)^{3/2} \left[\ln(x+1) - \frac{2}{3} \right] + C$$

22. Integration by parts

$$u = x^2$$

$$dv = e^x dx$$

Then du = 2x dx and $v = e^x$.

$$\int x^2 e^x dx = x^2 e^x - \int 2x e^x dx$$

For $\int 2xe^x dx$, use integration by parts again.

$$u = 2x$$

$$dv = e^x dx$$

Then du = 2 dx and $v = e^x$.

$$\int 2xe^x dx = 2xe^x - \int 2e^x dx = 2xe^x - 2e^x + C$$
$$\int x^2 e^x dx = x^2 e^x - (2xe^x - 2e^x) + C$$
$$= e^x (x^2 - 2x + 2) + C$$

- 23. $\overline{f} = \frac{1}{4-2} \int_{2}^{4} (3x^{2} + 2x) dx = \frac{1}{2} (x^{3} + x^{2}) \Big|_{2}^{4}$ = $\frac{1}{2} [(64+16) - (8+4)] = 34$
- **24.** $\overline{f} = \frac{1}{1-0} \int_0^1 t^2 e^t dt$

For $\int t^2 e^t dt$, use Formula 39 with u = t, n = 2,

and a = 1. Then du = dt.

$$\int t^2 e^t \, dt = t^2 e^t - 2 \int t e^t \, dt$$

For $\int te^t dt$, use Formula 38 with u = t and a = t

1. Then du = dt.

$$\int t^2 e^t dt = t^2 e^t - 2[e^t (t-1)] + C$$

$$= e^t (t^2 - 2t + 2) + C$$

Thus.

$$\overline{f} = \int_0^1 t^2 e^t dt = e^t (t^2 - 2t + 2) \Big|_0^1 = e(1) - 1(2)$$

$$= e - 2.$$

25. $y' = 3x^2y + 2xy$, y > 0

$$\frac{dy}{y} = (3x^2 + 2x)dx$$

$$\int \frac{dy}{y} = \int \left(3x^2 + 2x\right) dx$$

ln $y = x^3 + x^2 + C_1$, from which $y = e^{x^3 + x^2 + C_1}$, $y = Ce^{x^3 + x^2}$, where C > 0.

26.
$$y' - f'(x)e^{f(x)-y} = 0$$
, $y(0) = f(0)$

$$\frac{dy}{dx} - f'(x)e^{f(x)}e^{-y} = 0$$

$$dy = f'(x)e^{f(x)}e^{-y}dx$$

$$e^{y}dy = f'(x)e^{f(x)}dx$$

$$\int e^{y}dy = \int e^{f(x)}[f'(x)dx]$$

$$e^{y} = e^{f(x)} + C$$

$$y(0) = f(0) \text{ implies } e^{f(0)} = e^{f(0)} + C, C = 0.$$
Thus $e^{y} = e^{f(x)}$ or $y = f(x)$.

27.
$$\int_{1}^{\infty} \frac{1}{x^{2.5}} dx = \lim_{r \to \infty} \int_{1}^{r} x^{-2.5} dx$$
$$= \lim_{r \to \infty} \frac{x^{-1.5}}{-1.5} \Big|_{1}^{r}$$
$$= \lim_{r \to \infty} -\frac{2}{3x^{1.5}} \Big|_{1}^{r}$$
$$= \lim_{r \to \infty} \left(-\frac{2}{3r^{1.5}} + \frac{2}{3} \right)$$
$$= 0 + \frac{2}{3}$$
$$= \frac{2}{3}$$

28.
$$\int_{-\infty}^{0} e^{2x} dx = \lim_{r \to -\infty} \int_{r}^{0} e^{2x} dx = \lim_{r \to -\infty} \frac{e^{2x}}{2} \Big|_{r}^{0}$$
$$= \lim_{r \to -\infty} \left[\frac{1}{2} - \frac{1}{2} e^{2r} \right] = \frac{1}{2} - 0 = \frac{1}{2}$$

29.
$$\int_{1}^{\infty} \frac{1}{2x} dx = \lim_{r \to \infty} \int_{1}^{r} \frac{1}{2x} dx = \lim_{r \to \infty} \frac{1}{2} \ln|x| \Big|_{1}^{r}$$
$$= \lim_{r \to \infty} \left[\frac{1}{2} \ln|r| - 0 \right] = \infty \Rightarrow \text{ diverges}$$

30.
$$\int_{-\infty}^{\infty} x e^{1-x^2} dx = \int_{-\infty}^{0} x e^{1-x^2} dx + \int_{0}^{\infty} x e^{1-x^2} dx$$

$$\int_{-\infty}^{0} x e^{1-x^2} dx = \lim_{r \to -\infty} -\frac{1}{2} \int_{r}^{0} e^{1-x^2} [-2x \, dx]$$

$$= \lim_{r \to -\infty} -\frac{1}{2} e^{1-x^2} \Big|_{r}^{0}$$

$$= \lim_{r \to -\infty} \left[-\frac{1}{2} e + \frac{1}{2} e^{1-r^2} \right] = -\frac{1}{2} e - 0 = -\frac{1}{2} e$$

$$\int_{0}^{\infty} x e^{1-x^2} dx = \lim_{r \to \infty} -\frac{1}{2} \int_{0}^{r} e^{1-x^2} [-2x \, dx]$$

$$= \lim_{r \to \infty} -\frac{1}{2} e^{1-x^2} \Big|_{0}^{r}$$

$$= \lim_{r \to \infty} \left[-\frac{1}{2} e^{1-r^2} + \frac{1}{2} e \right] = 0 + \frac{1}{2} e = \frac{1}{2} e$$
Thus
$$\int_{-\infty}^{\infty} x e^{1-x^2} = -\frac{1}{2} e + \frac{1}{2} e = 0$$

Since $N = N_0 e^{kt}$ Since N = 500,000 when t = 0 (1980), $N_0 = 500,000$. Thus $N = 500,000e^{kt}$. Since N = 1,000,000 when t = 20, then $1,000,000 = 500,000e^{20k}$ $2 = e^{20k}$ $\ln 2 = 20k$, or $k = \frac{\ln 2}{20}$. Thus $N = 500,000e^{t\frac{\ln 2}{20}}$ $= 500,000(e^{\ln 2})^{t/20}$ $= 500,000(2)^{t/20}$ For the year 2020, we have t = 40 and $N = 500,000(2)^{40/20}$ $= 500,000(2)^2$

= 2,000,000.

32. $N = N_0 e^{kt}$ When t = 0, then N = 40,000. Thus $N_0 = 40,000$ and $N = 40,000 e^{kt}$. When t = 10, then N = 80,000, so $80,000 = 40,000 e^{10k}$ $2 = e^{10k}$ $10 k = \ln 2$, or $k = \frac{\ln 2}{10}$. Thus $N = 40,000 e^{\frac{t \ln 2}{10}}$.

33.
$$N = N_0 e^{-\lambda t}$$
, where N_0 is the original amount present. When $t = 100$, then $N = 0.95N_0$, so we have $0.95N_0 = N_0 e^{-100\lambda}$ $0.95 = e^{-100\lambda}$ $-100\lambda = \ln 0.95$ $\lambda = -\frac{\ln 0.95}{100} \approx 0.0005$ (decay constant). After 200 years, $N = N_0 e^{-200\lambda}$. Thus $\frac{N}{N_0} = e^{-200\lambda} = e^{-200\left[\frac{-\ln 0.95}{100}\right]} = e^{2\ln 0.95}$ $\approx 0.90 = 90\%$

34.
$$\frac{dq}{dt} = -kq$$

$$\frac{dq}{q} = -k dt$$

$$\int \frac{dq}{q} = \int -k dt$$

$$\ln q = -kt + C$$
When $t = 0$, $q = q_0$, so $\ln q_0 = 0 + C = C$. Thus
$$\ln q = -kt + \ln q_0$$

$$q = e^{-kt}e^{\ln q_0} = q_0e^{-kt}$$
When $t = \frac{7}{k}$, $\frac{q}{q_0} = e^{-7} \approx 0.09\%$.

35.
$$N = \frac{450}{1 + be^{-ct}}$$

If $t = 0$, then $N = 2$. Thus $2 = \frac{450}{1 + b}$,
 $1 + b = \frac{450}{2} = 225$, $b = 224$, so $N = \frac{450}{1 + 224e^{-ct}}$.
If $t = 6$, then

$$N = 300 \Rightarrow 300 = \frac{450}{1 + 224e^{-6c}}$$

$$1 + 224e^{-6c} = \frac{450}{300} = \frac{3}{2}$$

$$224e^{-6c} = \frac{3}{2} - 1 = \frac{1}{2}$$

$$e^{-6c} = \frac{1}{448}$$

$$e^{6c} = 448$$

$$6c = \ln 448$$

$$c = \frac{\ln 448}{6} \approx 1.02$$
Thus $N \approx \frac{450}{1 + 224e^{-1.02t}}$.

36.
$$N = \frac{20,000}{1+be^{-ct}}$$

When $t = 0$ (last year), then $N = 10,000$. Thus $10,000 = \frac{20,000}{1+b}$
 $1+b = \frac{20,000}{10,000} = 2$
 $b = 1$
So $N = \frac{20,000}{1+e^{-ct}}$. When $t = 1$ then $N = 11,000$. Thus $11,000 = \frac{20,000}{1+e^{-c}}$
 $1+e^{-c} = \frac{20,000}{11,000} = \frac{20}{11}$
 $e^{-c} = \frac{9}{11}$
Hence $N = \frac{20,000}{1+(\frac{9}{11})^t}$. When $t = 2$, then $N = \frac{20,000}{1+(\frac{9}{11})^2} \approx 11,980$.

37.
$$\frac{dT}{dt} = k(T - 25)$$
$$\frac{dT}{T - 25} = k \ dt$$
$$\int \frac{dT}{T - 25} = \int k \ dt$$
$$\ln(T - 25) = kt + C$$

If
$$t = 0$$
, then $T = 35$. Thus $\ln 10 = C$, so $\ln(T - 25) = kt + \ln 10$, or $\ln\left(\frac{T - 25}{10}\right) = kt$. If $t = 1$, then $T = 34$ and $\ln\left(\frac{9}{10}\right) = k$. Thus $\ln\left(\frac{T - 25}{10}\right) = (\ln 0.9)t$. If $T = 37$, $\ln\frac{12}{10} = (\ln 0.9)t$ $\ln 1.2 = (\ln 0.9)t$, $t = \frac{\ln 1.2}{\ln 0.9} \approx -1.73$

Note that 1.73 hr corresponds approximately to 1 hr 44 min. Thus 6:00 P.M. - 1 hr 44 min = 4:16 P.M.

- 38. Use Formula 38 with u = t, and a = -0.06, so du = dt. $\int_{0}^{12} 10te^{-0.06t} dt = 10 \left[\frac{e^{-0.06t}}{0.0036} (-0.06t 1) \right]_{0}^{12}$ $= \frac{10}{0.0036} [e^{-0.72} (-0.72 1) (-1)]$
- 39. $\int_{0}^{\infty} f(x)dx$ $= \lim_{r \to \infty} \int_{0}^{r} (0.007e^{-0.01x} + 0.00005e^{-0.0002x})dx$ $= \lim_{r \to \infty} (-0.7e^{-0.01x} 0.25e^{-0.0002x})\Big|_{0}^{r}$ $= \lim_{r \to \infty} \left[-\frac{0.7}{e^{0.01r}} \frac{0.25}{e^{-0.0002r}} (-0.7 0.25) \right]$ = 0 0 + 0.7 + 0.25 = 0.95

40.
$$\int_{-\infty}^{t_1} A_0 e^{kt} dt = \lim_{r \to -\infty} \int_r^{t_1} A_0 e^{kt} dt$$

$$= \lim_{r \to -\infty} A_0 \cdot \frac{1}{k} \int_r^{t_1} e^{kt} (k \ dt)$$

$$= \lim_{r \to -\infty} \frac{A_0 e^{kt}}{k} \Big|_r^{t_1} = \lim_{r \to -\infty} \frac{A_0}{k} \left(e^{kt_1} - e^{kr} \right)$$

$$= \frac{A_0}{k} e^{kt_1} \text{ since } e^{kr} \to 0 \text{ as } r \to -\infty \text{ for } k > 0.$$

$$\begin{split} &\int_{t_1}^{t_2} A_0 e^{kt} dt = \frac{A_0 e^{kt}}{k} \bigg|_{t_1}^{t_2} = \frac{A_0}{k} \Big(e^{kt_2} - e^{kt_1} \Big) \\ &= \frac{A_0}{k} e^{kt_1} \Big(e^{kt_2} e^{-kt_1} - 1 \Big) \\ &= \frac{A_0}{k} e^{kt_1} \bigg[e^{k(t_2 - t_1)} - 1 \bigg]. \qquad (1) \\ &\text{If } A_0 e^{kt_2} = 2A_0 e^{kt_1} \text{, then } e^{kt_2} = 2e^{kt_1} \text{,} \\ &2 = \frac{e^{kt_2}}{e^{kt_1}} = e^{k(t_2 - t_1)} \text{. Substituting into (1) gives} \\ &\frac{A_0}{k} e^{kt_1} [2 - 1] = \frac{A_0}{k} e^{kt_1} \text{.} \end{split}$$

41. a. Total revenue = $r(12) - r(0) = \int_0^{12} \frac{dr}{da} dq$.

$$f(q) = \frac{dr}{dq}$$

$$n = 4, a = 0, b = 12$$

$$h = \frac{b-a}{n} = \frac{12-0}{4} = 3$$

Trapezoidal

$$f(0) = 25$$

$$2f(3) = 44$$

$$2f(6) = 36$$

$$2f(9) = 26$$

$$f(12) = \frac{7}{138}$$

$$TR \approx \frac{3}{2}(138) = 207$$

Simpson's

$$f(0) = 25$$

$$4f(3) = 88$$

$$2f(6) = 36$$

$$4f(9) = 52$$

$$f(12) = \frac{7}{208}$$

$$TR \approx \frac{3}{3}(208) = 208$$

b. Total variable cost $c(12) - c(0) = \int_0^{12} \frac{dc}{da} dq$

$$f(q) = \frac{dc}{dq}$$

$$a = 0, b = 12$$

Using as few data values as possible, we choose n = 1 for Trapezoidal and n = 2 for Simpson's (*n* must be even).

Trapezoidal (n = 1)

$$h = \frac{b-a}{n} = \frac{12-0}{1} = 12$$

$$f(0) = 15$$

$$f(12) = \frac{7}{22}$$

$$VC \approx \frac{12}{2}(22) = 132$$

$$h = \frac{b-a}{n} = \frac{12-0}{2} = 6$$

$$f(0) = 15$$

$$4f(6) = 48$$

$$f(12) = \frac{7}{70}$$

$$VC \approx \frac{6}{3}(70) = 140$$

To each of our results we must add on the fixed cost of 25 to obtain total cost. Thus for trapezoidal we get $TC \approx 132 + 25 = 157$, and for Simpson's we have

$$TC \approx 140 + 25 = 165$$
.

c. We use the relation

$$P(12) = \int_0^{12} \left[\frac{dr}{dq} - \frac{dc}{dq} \right] dq - 25$$
. First we

determine variable cost for each rule with

$$n = 4$$
 and $h = \frac{b-a}{n} = \frac{12-0}{4} = 3$.

Trapezoidal

$$f(0) = 15$$

 $2f(3) = 28$

$$2f(3) = 28$$

$$2f(6) = 24$$

$$2f(9) = 20$$

$$f(12) = \frac{7}{94}$$

$$VC \approx \frac{3}{2}(94) = 141$$

Simpson's

$$f(0) = 15$$

$$4f(3) = 56$$

$$4f(12) = 40$$

Simpson's
$$f(0) = 15$$

$$4f(3) = 56$$

$$2f(6) = 24$$

$$4f(12) = 40$$

$$f(12) = \frac{7}{142}$$

$$VC \approx \frac{3}{3}(142) = 142$$

Using these results and those of part (a), we have:

Trapezoidal
$$P(12) \approx 207 - 141 - 25 = 41$$
 Simpson's $P(12) \approx 208 - 142 - 25 = 41$

Explore and Extend—Chapter 15

1.
$$C = 2000$$
, $w_0 = 200$
 $w_{eq} = \frac{C}{17.5} = \frac{2000}{17.5} \approx 114$
 $w(t) = \frac{C}{17.5} + \left(w_0 - \frac{C}{17.5}\right)e^{-0.005t}$
 $= \frac{2000}{17.5} + \left(200 - \frac{2000}{17.5}\right)e^{-0.005t}$
Letting $w(t) = 175$ and solving for t gives $175 = \frac{2000}{17.5} + \left(200 - \frac{2000}{17.5}\right)e^{-0.005t}$
 $175 - \frac{2000}{17.5} = \left(200 - \frac{2000}{17.5}\right)e^{-0.005t}$
 $\frac{175 - \frac{2000}{17.5}}{200 - \frac{2000}{17.5}} = e^{-0.005t}$
 $-0.005t = \ln\left[\frac{175 - \frac{2000}{17.5}}{200 - \frac{2000}{17.5}}\right]$
 $t = \frac{\ln\left[\frac{175 - \frac{2000}{17.5}}{200 - \frac{2000}{17.5}}\right]}{-0.005}$
Thus $w_{eq} = 114$ and $t = 69$ days.

2.
$$\frac{dw}{dt} = \frac{1}{3500}(C - 17.5w)$$
$$\frac{dw}{C - 17.5w} = \frac{1}{3500}dt$$
$$\int \frac{dw}{C - 17.5w} = \int \frac{1}{3500}dt$$
$$-\frac{1}{17.5}\ln|C - 17.5w| = \frac{1}{3500}t + C_1$$

$$\ln |C - 17.5w| = -\frac{17.5}{3500}t - 17.5C_1 = -0.005t + C_2$$
$$|C - 17.5w| = e^{-0.005t + C_2}$$

$$|C-17.5w| = e^{-0.005t+C_2}$$

= $e^{C_2}e^{-0.005t} = C_3e^{-0.005t}$

Thus
$$C-17.5w = C_4 e^{-0.005t}$$
, where C_4 is a constant and $C_4 = \pm C_3$. When $t = 0$, then $w = w_0$, so

$$C-17.5w_0 = C_4. \text{ Thus}$$

$$C-17.5w = (C-17.5w_0)e^{-0.005t}$$

$$-17.5w = -C + (C-17.5w_0)e^{-0.005t}$$

$$w = \frac{C}{17.5} + \left(-\frac{C}{17.5} + \frac{17.5}{17.5}w_0\right)e^{-0.005t}$$

$$w = \frac{C}{17.5} + \left(w_0 - \frac{C}{17.5}\right)e^{-0.005t}$$
which is Equation 2.

3.
$$w(t) = \frac{C}{17.5} + \left(w_0 - \frac{C}{17.5}\right)e^{-0.005t}$$

Since $\frac{C}{17.5} = w_{eq}$, we have $w(t) = w_{eq} + \left(w_0 - w_{eq}\right)e^{-0.005t}$. Simplifying the equation $w(t+d) = w(t) - \frac{1}{2}\left[w(t) - w_{eq}\right]$ gives $w(t+d) = \frac{1}{2}\left[w(t) + w_{eq}\right]$. Thus $w_{eq} + \left(w_0 - w_{eq}\right)e^{-0.005(t+d)}$ $= \frac{1}{2}\left[w_{eq} + \left(w_0 - w_{eq}\right)e^{-0.005t} + w_{eq}\right]$, or $w_{eq} + \left(w_0 - w_{eq}\right)e^{-0.005t}$ Solving for d gives $e^{-0.005t}e^{-0.005t} = \frac{1}{2}e^{-0.005t}$ $e^{-0.005t}e^{-0.005d} = \frac{1}{2}e^{-0.005t}$ $e^{-0.005d} = \frac{1}{2}e^{-0.005t}$ $e^{-0.005d} = \ln\frac{1}{2} = -\ln 2$ $d = \frac{\ln 2}{0.005}$

as was to be shown.

4. BMI =
$$\frac{w}{h^2}$$
, so $w = BMI \cdot h^2$ with w in kilograms and h in meters. 5 feet, 8 inches equals 68 inches, or 1.7272 meters. The upper BMI limit then corresponds to a weight of $24.9(1.7272)^2 \approx 74.28$ kilograms, or about 163 pounds. So the woman would need to lose

27 pounds. On a 2200 calorie-per-day diet, $w_{\rm eq} = \frac{2200}{17.5} \approx 125.71$ lb and the weight function is $w(t) = 125.71 + (190 - 125.71)e^{-0.005t} = 125.71 + 64.29e^{-0.005t}$. The solution of the equation $163 = 125.71 + 64.29e^{-0.005t}$ is $t \approx 109$. It would take about 109 days.

5. Answers may vary.