Discrete Mathematics and Its Applications

Lecture 2: Basic Structures: Function

MING GAO

DaSE@ ECNU (for course related communications) mgao@dase.ecnu.edu.cn

Sep. 29, 2018

Outline

- Function
- One-to-one and onto functions
- 3 Inverse Functions and Compositions of Functions
- Some important functions
- Take-aways

Motivations

Classifier

Motivations

Classifier

Moore's law

Motivations

Moore's law

Complexity analysis

Motivations

- Functions connect the relationships between different objects;
- A function may tell us a rule;
- Models in data mining, machine learning, etc., are usually presented in functions.

Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by function f to element a of A. If f is a function from A to B, we write $f: A \rightarrow B$.

Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by function f to element a of A. If f is a function from A to B, we write $f: A \rightarrow B$.

Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by function f to element a of A. If f is a function from A to B, we write $f: A \to B$.

Functions are sometimes also called mappings or transformations;

Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by function f to element a of A. If f is a function from A to B, we write $f: A \rightarrow B$.

- Functions are sometimes also called mappings or transformations;
- Functions are specified in many different ways, such as assignment rules, formula, relations, etc;

Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by function f to element a of A. If f is a function from A to B, we write $f: A \rightarrow B$.

- Functions are sometimes also called mappings or transformations;
- Functions are specified in many different ways, such as assignment rules, formula, relations, etc;
- This function is defined by assignment f(a) = b, where (a, b) is the unique ordered pair in the relation that has a as its first element.

Definition

If f is a function from A to B, we say that A is the *domain* of f and B is the *codomain* of f. If f(a) = b, we say that b is the *image* of a and a is a *preimage* of b. The *range*, or *image*, of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f maps A to B.

Definition

If f is a function from A to B, we say that A is the *domain* of f and B is the *codomain* of f. If f(a) = b, we say that b is the *image* of a and a is a *preimage* of b. The *range*, or *image*, of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f maps A to B.

• Let g be the function that assigns a grade to a student in our discrete mathematics class. Note that g(Adams) = A, for instance.

Definition

If f is a function from A to B, we say that A is the *domain* of f and B is the *codomain* of f. If f(a) = b, we say that b is the *image* of a and a is a *preimage* of b. The *range*, or *image*, of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f maps A to B.

- Let g be the function that assigns a grade to a student in our discrete mathematics class. Note that g(Adams) = A, for instance.
- The domain of g is set {Adams, Chou, Goodfriend, Rodriguez, Stevens}, and the codomain is set {A, B, C, D, F}.

Definition

If f is a function from A to B, we say that A is the *domain* of f and B is the *codomain* of f. If f(a) = b, we say that b is the *image* of a and a is a *preimage* of b. The *range*, or *image*, of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f maps A to B.

- Let g be the function that assigns a grade to a student in our discrete mathematics class. Note that g(Adams) = A, for instance.
- The domain of g is set {Adams, Chou, Goodfriend, Rodriguez, Stevens}, and the codomain is set {A, B, C, D, F}.
- The range of g is set $\{A, B, C, F\}$, because each grade except D is assigned to some students.

Add and product

Definition

Let f_1 and f_2 be functions from A to R. Then f_1+f_2 and f_1f_2 are also functions from A to R defined for all $x\in A$ by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x),$$

 $(f_1 f_2)(x) = f_1(x)f_2(x).$

Add and product

Definition

Let f_1 and f_2 be functions from A to R. Then $f_1 + f_2$ and f_1f_2 are also functions from A to R defined for all $x \in A$ by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x),$$

 $(f_1 f_2)(x) = f_1(x)f_2(x).$

Example

Let f_1 and f_2 be functions from R to R such that $f_1(x) = (x+1)^2$ and $f_2(x) = -(x-1)^2$. Thus, we have

$$(f_1+f_2)(x)=f_1(x)+f_2(x)=(x+1)^2-(x-1)^2=4x,$$

$$(f_1f_2)(x) = f_1(x)f_2(x) = -(x+1)^2(x-1)^2 = -(x^2-1)^2.$$

Projection

Definition

Let f be a function from A to B and let S be a subset of A. The image of S under f is the subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so

$$f(S) = \{t | \forall s \in S, t = f(s)\}.$$

Projection

Definition

Let f be a function from A to B and let S be a subset of A. The image of S under f is the subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so

$$f(S) = \{t | \forall s \in S, t = f(s)\}.$$

Example

Let f(x) be function from R to R such that f(x) = x + 1, and Z be the set of integers. Then

$$f(Z) = Z$$
.

One-to-one function

Definition

A function f is said to be one-to-one, or an injunction, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be injective if it is one-to-one.

One-to-one function

Definition

A function f is said to be one-to-one, or an injunction, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be injective if it is one-to-one.

Injunctive function

Remark: f is one-to-one $\Leftrightarrow \forall a \forall b (f(a) = f(b) \rightarrow a = b)$ or $\forall a \forall b (a \neq b \rightarrow f(a) \neq f(b))$.

Onto function

Definition

A function f from A to B is called onto, or a surjection, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function f is called surjective if it is onto.

Onto function

Definition

A function f from A to B is called onto, or a surjection, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function f is called surjective if it is onto.

Surjective function

Remark: A function f is onto if $\forall y \exists x (f(x) = y)$.

Monotonicity

Definition

A function f whose domain and codomain are subsets of the set of real numbers is called increasing if $f(x) \le f(y)$, and strictly increasing if f(x) < f(y), whenever x < y and x and y are in the domain of f. Similarly, f is called decreasing if $f(x) \ge f(y)$, and strictly decreasing if f(x) > f(y), whenever x < y and x and y are in the domain of f.

Monotonicity

Definition

A function f whose domain and codomain are subsets of the set of real numbers is called increasing if $f(x) \le f(y)$, and strictly increasing if f(x) < f(y), whenever x < y and x and y are in the domain of f. Similarly, f is called decreasing if $f(x) \ge f(y)$, and strictly decreasing if f(x) > f(y), whenever x < y and x and y are in the domain of f.

Remarks

- A function f is increasing if $\forall x \forall y (x < y \rightarrow f(x) \le f(y))$, strictly increasing if $\forall x \forall y (x < y \rightarrow f(x) < f(y))$;
- A function f is decreasing if $\forall x \forall y (x < y \rightarrow f(x) \ge f(y))$, strictly increasing if $\forall x \forall y (x < y \rightarrow f(x) > f(y))$.

One-to-one correspondence

Definition

Function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto. We also say that such a function is bijective.

One-to-one correspondence

Definition

Function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto. We also say that such a function is bijective.

Remarks

Remarks: f is a one-to-one correspondence if and only if $\Leftrightarrow \forall a \forall b (a = b \leftrightarrow f(a) = f(b))$.

Inverse function

Definition

Let f be a one-to-one correspondence from set A to set B. The inverse function of f is the function that assigns an element $b \in B$ to a unique element $a \in A$ such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b.

Inverse function

Definition

Let f be a one-to-one correspondence from set A to set B. The inverse function of f is the function that assigns an element $b \in B$ to a unique element $a \in A$ such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b.

Remarks

Inverse function

Definition

Let f be a one-to-one correspondence from set A to set B. The inverse function of f is the function that assigns an element $b \in B$ to a unique element $a \in A$ such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b.

Remarks

Remarks:

- $f^{-1} \neq \frac{1}{f}$;
- A one-to-one correspondence is called invertible because we can define an inverse of this function.

Composition of functions

Definition

Let g be a function from set A to set B and let f be a function from set B to set C. The composition of functions f and g, denoted for all $a \in A$ by $f \circ g$, is defined by

$$(f\circ g)(a)=f(g(a)).$$

Composition of functions

Definition

Let g be a function from set A to set B and let f be a function from set B to set C. The composition of functions f and g, denoted for all $a \in A$ by $f \circ g$, is defined by

$$(f\circ g)(a)=f(g(a)).$$

Remarks

Composition of functions

Definition

Let g be a function from set A to set B and let f be a function from set B to set C. The composition of functions f and g, denoted for all $a \in A$ by $f \circ g$, is defined by

$$(f\circ g)(a)=f(g(a)).$$

Remarks

Remarks: The commutative law does not hold for the composition of functions, i.e.,

 $f \circ g \neq g \circ f$.

Examples

Example I

Let f(x) = 2x + 3 and g(x) = 3x + 2 from Z to Z. What is the composition of f and g? What is the composition of g and f?

•
$$(f \circ g)(x) = f(g(x)) = f(3x+2) = 2(3x+2) + 3 = 6x + 7;$$

•
$$(g \circ f)(x) = g(f(x)) = g(2x+3) = 3(2x+3) + 2 = 6x + 11.$$

Examples

Example I

Let f(x) = 2x + 3 and g(x) = 3x + 2 from Z to Z. What is the composition of f and g? What is the composition of g and f?

- $(f \circ g)(x) = f(g(x)) = f(3x+2) = 2(3x+2) + 3 = 6x + 7;$
- $(g \circ f)(x) = g(f(x)) = g(2x+3) = 3(2x+3) + 2 = 6x + 11.$

Example II

If f(x) = 3x + 2 and $g(x) = \frac{1}{3}x - \frac{2}{3}$, how about the answers?

- $(f \circ g)(x) = f(g(x)) = f(\frac{1}{3}x \frac{2}{3}) = 3(\frac{1}{3}x \frac{2}{3}) + 2 = x;$
- $(g \circ f)(x) = g(f(x)) = g(3x+2) = \frac{1}{3}(3x+2) \frac{2}{3} = x$.

Remarks:

- $(f \circ f^{-1})(b) = f(f^{-1}(b)) = f(a) = b$, i.e., $(f \circ f^{-1}) = \mathcal{I}_B$;
- $(f^{-1} \circ f)(a) = f^{-1}(f(a)) = f^{-1}(b) = a$, i.e., $(f^{-1} \circ f) = \mathcal{I}_A$.

Inverse of composition of functions

Theorem

Let f and g be invertible functions such that their composition $f \circ g$ is well defined. Then $f \circ g$ is invertible and $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

Proof.

Let A, B, and C be sets such that $g:A\to B$ and $f:B\to C$. Then the following two equations must be shown to hold:

$$(g^{-1}\circ f^{-1})\circ (f\circ g)=\mathcal{I}_A$$
, and $(f\circ g)\circ (g^{-1}\circ f^{-1})=\mathcal{I}_B$.

Inverse of composition of functions

Theorem,

Let f and g be invertible functions such that their composition $f \circ g$ is well defined. Then $f \circ g$ is invertible and $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

Proof.

Let A, B, and C be sets such that $g: A \to B$ and $f: B \to C$. Then the following two equations must be shown to hold: $(g^{-1} \circ f^{-1}) \circ (f \circ g) = \mathcal{I}_A$, and $(f \circ g) \circ (g^{-1} \circ f^{-1}) = \mathcal{I}_B$.

In terms of associative rule for function composition (homework), we have

$$(g^{-1} \circ f^{-1}) \circ (f \circ g) = g^{-1} \circ ((f^{-1} \circ f) \circ g)$$
$$= g^{-1} \circ (\mathcal{I}_B \circ g)$$
$$= g^{-1} \circ g = \mathcal{I}_A$$

Similarly, we have $(f \circ g) \circ (g^{-1} \circ f^{-1}) = \mathcal{I}_B$.

Graph of functions

Definition

Let f be a function from set A to set B. The graph of function f is the set of ordered pairs

$$\{(a,b)|a\in A\wedge f(a)=b\}.$$

Graph of functions

Definition

Let f be a function from set A to set B. The graph of function f is the set of ordered pairs

$$\{(a,b)|a\in A\wedge f(a)=b\}.$$

Examples

$$f(n) = 2n + 1$$
 from Z to Z

$$f(x) = x^2 + 1$$
 from Z to Z

Some important functions——Floor and ceiling functions

Definition

- The floor function assigns to a real number x the largest integer that is less than or equal to x. The value of the floor function at x is denoted by |x|;
- The ceiling function assigns to a real number x the smallest integer that is greater than or equal to x. The value of the ceiling function at x is denoted by [x].

Some important functions——Floor and ceiling functions

Definition

- The floor function assigns to a real number x the largest integer that is less than or equal to x. The value of the floor function at x is denoted by |x|;
- The ceiling function assigns to a real number x the smallest integer that is greater than or equal to x. The value of the ceiling function at x is denoted by $\lceil x \rceil$.

Remarks

- $|x| = \max \{ m \in Z : m \le x \};$
- $\bullet [x] = \min \{ m \in Z : m \ge x \}.$
- There are many applications, including data transmission, and data storage, etc;

Graphs of floor and ceiling functions

Graphs of floor and ceiling functions

Examples

- $|\frac{1}{2}| = 0$, $[\frac{1}{2}] = 1$;
- $|-\frac{1}{2}| = -1, [-\frac{1}{2}] = 0;$
- |-2.1| = -3, [-2] = -2;

Properties

Let n be an integer, x be a real number.

• |x| = n if and only if $n \le x < n + 1$;

Properties

- $\lfloor x \rfloor = n$ if and only if $n \le x < n+1$;
- $\lceil x \rceil = n$ if and only if $n 1 < x \le n$;

Properties

- |x| = n if and only if $n \le x < n + 1$;
- $\lceil x \rceil = n$ if and only if $n 1 < x \le n$;
- $\lfloor x \rfloor = n$ if and only if $x 1 < n \le x$;

Properties

- |x| = n if and only if $n \le x < n + 1$;
- $\lceil x \rceil = n$ if and only if $n 1 < x \le n$;
- $\lfloor x \rfloor = n$ if and only if $x 1 < n \le x$;
- $\lceil x \rceil = n$ if and only if $x \le n < x + 1$;

Properties

- |x| = n if and only if $n \le x < n + 1$;
- $\lceil x \rceil = n$ if and only if $n 1 < x \le n$;
- $\lfloor x \rfloor = n$ if and only if $x 1 < n \le x$;
- $\lceil x \rceil = n$ if and only if $x \le n < x + 1$;
- $x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$;

Properties

- |x| = n if and only if $n \le x < n + 1$;
- $\lceil x \rceil = n$ if and only if $n 1 < x \le n$;
- $\lfloor x \rfloor = n$ if and only if $x 1 < n \le x$;
- $\lceil x \rceil = n$ if and only if $x \le n < x + 1$;
- $x 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$;
- $\bullet \ \lfloor -x \rfloor = -\lceil x \rceil;$

Properties

- |x| = n if and only if $n \le x < n + 1$;
- $\lceil x \rceil = n$ if and only if $n 1 < x \le n$;
- $\lfloor x \rfloor = n$ if and only if $x 1 < n \le x$;
- $\lceil x \rceil = n$ if and only if $x \le n < x + 1$;
- $x 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$;
- $\bullet \ \lfloor -x \rfloor = -\lceil x \rceil;$
- $\bullet \ \lceil -x \rceil = -\lfloor x \rfloor;$

Properties

- $\lfloor x \rfloor = n$ if and only if $n \le x < n+1$;
- $\lceil x \rceil = n$ if and only if $n 1 < x \le n$;
- $\lfloor x \rfloor = n$ if and only if $x 1 < n \le x$;
- $\lceil x \rceil = n$ if and only if $x \le n < x + 1$;
- $x 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$;
- $\bullet \ \lfloor -x \rfloor = -\lceil x \rceil;$
- $\bullet \ \lceil -x \rceil = -\lfloor x \rfloor;$
- |x + n| = |x| + n;

Properties

- |x| = n if and only if $n \le x < n + 1$;
- $\lceil x \rceil = n$ if and only if $n 1 < x \le n$;
- $\lfloor x \rfloor = n$ if and only if $x 1 < n \le x$;
- $\lceil x \rceil = n$ if and only if $x \le n < x + 1$;
- $x 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$;
- $\bullet |-x| = -\lceil x \rceil;$
- $\bullet \ \lceil -x \rceil = -\lfloor x \rfloor;$

Example

Theorm

Prove that if x is a real number, then $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$.

Proof.

Let $x = n + \epsilon$, where n is an integer, and $0 \le \epsilon < 1$, i.e., $\lfloor x \rfloor = n$.

Example

Theorm

Prove that if x is a real number, then $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$.

Proof.

Let $x = n + \epsilon$, where n is an integer, and $0 \le \epsilon < 1$, i.e., $\lfloor x \rfloor = n$.

• If $0 \le \epsilon < \frac{1}{2}$. In this case, $2x = 2n + 2\epsilon$ and $\lfloor 2x \rfloor = 2n$. We also have $\lfloor x + \frac{1}{2} \rfloor = n$ since $0 < \epsilon + \frac{1}{2} < 1$. Consequently, $|2x| = |x| + |x + \frac{1}{2}|$.

Example

Theorm

Prove that if x is a real number, then $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$.

Proof.

Let $x = n + \epsilon$, where n is an integer, and $0 \le \epsilon < 1$, i.e., $\lfloor x \rfloor = n$.

- If $0 \le \epsilon < \frac{1}{2}$. In this case, $2x = 2n + 2\epsilon$ and $\lfloor 2x \rfloor = 2n$. We also have $\lfloor x + \frac{1}{2} \rfloor = n$ since $0 < \epsilon + \frac{1}{2} < 1$. Consequently, $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$.
- If $\frac{1}{2} \le \epsilon < 1$. In this case, $2x = 2n + 2\epsilon = (2n + 1) + (2\epsilon 1)$ since $0 \le 2\epsilon 1 < 1$, i.e., $\lfloor 2x \rfloor = 2n + 1$. Because $\lfloor x + \frac{1}{2} \rfloor = \lfloor x + 1 + (\epsilon \frac{1}{2}) \rfloor = n + 1$ since $0 \le \epsilon \frac{1}{2} < 1$. Therefore, $\lfloor 2x \rfloor = 2n + 1 = n + (n + 1) = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$.

Some important functions——Indicator function

Definition

The indicator function of a subset A of set S is a function

$$I_A:X \to \{0,1\},$$

defined as

$$I_A(x) := \left\{ \begin{array}{ll} 1, & \text{if } x \in A; \\ 0, & \text{else.} \end{array} \right.$$

Some important functions——Indicator function

Definition

The indicator function of a subset A of set S is a function

$$I_A: X \to \{0,1\},$$

defined as

$$I_A(x) := \left\{ \begin{array}{ll} 1, & \text{if } x \in A; \\ 0, & \text{else.} \end{array} \right.$$

Example

Some important functions——Indicator function

Definition

The indicator function of a subset A of set S is a function

$$I_A:X\to\{0,1\},$$

defined as

$$I_A(x) := \left\{ \begin{array}{ll} 1, & \text{if } x \in A; \\ 0, & \text{else.} \end{array} \right.$$

Example

- $A = \{(x, y) : x^2 + y^2 \le 1 \land x \ge 0 \land y \ge 0\}$, and $S = \{(x, y) : 1 \ge x \ge 0 \land 1 \ge y \ge 0\}$
- $\forall P_i \in S$, we define $I_A(P_i)$ and $I_{S-A}(P_i)$;
- $\pi \approx 4 \frac{\sum_{i=1}^{n} I_A(P_i)}{\sum_{i=1}^{n} I_A(P_i) + \sum_{i=1}^{n} I_{S-A}(P_i)}$

Set covering problem

Input

Universal set $U = \{u_1, u_2, \cdots, u_n\}$ Subsets $S_1, S_2, \cdots, S_m \subseteq U$ Cost c_1, c_2, \cdots, c_m

Goal

Find a set $S = \{S_i : i \in I\}$ that minimizes $\sum_{i \in I} c_i$, such that $\bigcup_{i \in I} S_i = U$

Set covering problem

Input

Universal set U $\{u_1, u_2, \cdots, u_n\}$ Subsets $S_1, S_2, \cdots, S_m \subseteq U$ Cost c_1, c_2, \cdots, c_m

Goal

Find a set $S = \{S_i : i \in I\}$ that minimizes $\sum_{i \in I} c_i$, such that $\bigcup_{i \in I} S_i = U$

Solution

Let
$$x_i = I_{S_i} = \begin{cases} 1, & \text{if } S_i \in \mathcal{S}; \\ 0, & \text{else.} \end{cases}$$
, $y_{ij} = I_{u_i} = \begin{cases} 1, & \text{if } u_i \in S_j; \\ 0, & \text{else.} \end{cases}$

Objective:
$$\min \sum_{i=1}^{m} x_i$$

s.t. $\sum_{i=1}^{m} x_i y_{ij} \ge 1$.

$$x_i \in \{0,1\}$$
, and $y_{ij} \in \{0,1\}$, where $1 \le i \le m$ and $1 \le j \le n$

Set covering problem

Input

Universal set $U = \{u_1, u_2, \cdots, u_n\}$ Subsets $S_1, S_2, \cdots, S_m \subseteq U$ Cost c_1, c_2, \cdots, c_m

Goal

Find a set $S = \{S_i : i \in I\}$ that minimizes $\sum_{i \in I} c_i$, such that $\bigcup_{i \in I} S_i = U$

Solution

Let
$$x_i = I_{S_i} = \begin{cases} 1, & \text{if } S_i \in \mathcal{S}; \\ 0, & \text{else.} \end{cases}$$
, $y_{ij} = I_{u_i} = \begin{cases} 1, & \text{if } u_i \in S_j; \\ 0, & \text{else.} \end{cases}$
Objective: $\min \sum_{i=1}^m x_i$

objective: $\min \sum_{i=1}^{m} x_i y_{ii} \ge 1$.

 $x_i \in \{0,1\}$, and $y_{ij} \in \{0,1\}$, where $1 \le i \le m$ and $1 \le j \le n$

The problem can be solved by linear programming or submodular.

Some important functions——Sigmoid functions

Definition

A sigmoid function is a mathematical function having a characteristic "S"-shaped curve or sigmoid curve. For example $S(x) = \frac{1}{1+e^{-x}}$.

Some important functions——Sigmoid functions

Definition

A sigmoid function is a mathematical function having a characteristic "S"-shaped curve or sigmoid curve. For example $S(x) = \frac{1}{1+e^{-x}}$.

Logistic function

Graphs

General form

$$f(x) = \frac{L}{1 + e^{-k(x - x_0)}},$$

where x_0 is the x-value of the sigmoid's midpoint, L is the maximum value, and k is the steepness of the curve.

Some important functions——Sigmoid functions

Applications

- Binary classification in logistic regression model;
- Activation function in artificial neurons;
- Cumulative distribution function in statistics.

Other forms

Take-aways

Conclusions

- Function
- One-to-one and onto functions
- Inverse functions and compositions of functions
- Some important functions