e-Edge Education Centre Regal

A Premier Institute for ENGINEERING and MEDICAL Entrance

Celebrating 11 Years of glory & success

1. In rule method the null set is represented by

(a) {}

(b) ¢

(c) $\{x: x = x\}$

(d) $\{x: x \neq x\}$

2. $A = \{x : x \neq x\}$ represents

 $(a) \{0\}$

(b) {}

(c) {1}

 $(d) \{x\}$

3. If $A = {\phi, {\phi}}$, then the power set of *A* is

(a) A

(b) $\{\phi, \{\phi\}, A\}$

(c) $\{\phi, \{\phi\}, (\{\phi\}\}, A\}$

(d) None of these

 $Q = \left\{ x : x = \frac{1}{y}, \text{ where } y \in N \right\}, \text{ then}$

(a) $0 \in Q$

(b) 1∈ Q

(c) $2 \in Q$

(d) $\frac{2}{3} \in Q$

5. Which set is the subset of all given sets

(a) {1, 2, 3, 4,.....}

(b) {1}

 $(c) \{0\}$

(d) {}

6. Let $S = \{0,1,5,4,7\}$. Then the total number of subsets of S is

(a) 64

(b) 32

(c) 40

(d) 20

7. The number of non-empty subsets of the set {1, 2, 3, 4} is

(a) 15

(b) 14

(c) 16

(d) 17

8. If $A=\{1,2,3,4,5\}$, then the number of proper subsets of A is

[Karnataka CET 1997]

(a) 120

(b) 30

(c) 31

(d) 32

9. Let $A = \{1, 2, 3, 4\}, B = \{2, 3, 4, 5, 6\}$, then $A \cap B$ is equal to

 $(a) \{2, 3, 4\}$

(b) {1, 2, 3}

 $(c) \{5, 6\}$

 $(d) \{1\}$

10. The smallest set A such that $A \cup \{1, 2\} = \{1, 2, 3, 5, 9\}$ is

 $(a) \{2, 3, 5\}$

(b) {3, 5, 9}

(c) {1, 2, 5, 9}

(d) None of these

11. If $A \cap B = B$, then

(a) $A \subset B$

(b) $B \subset A$

(c) $A = \phi$

(d) $B = \phi$

12. For two sets $A \cup B = A$ iff

(a) $B \subseteq A$

(b) $A \subseteq B$

(c) $A \neq B$

(d) A = B

Celebrating 11 Years of glory & success

Set Theory and Relations

13. If A and B are two sets, then $A \cup B = A \cap B$ iff

	(a) $A \subseteq B$	(b) $B \subseteq A$	(c) $A = B$	(d) None of these			
14.	Let A and B be two sets. Then						
	$(a) A \cup B \subseteq A \cap B$	(b) $A \cap B \subset A \cup B$	(c) $A \cap B = A \cup B$	(d) None of these			
15.	Let $A = \{(x,y): y = e^x, x \in A \}$	$= R$, $B = \{(x,y): y = e^{-x}, x \in R\}$	^{R}.} Then				
	(a) $A \cap B = \phi$	(b) $A \cap B \neq \phi$	(c) $A \cup B = R^2$	(d) None of these			
16.	If $A = \{2, 3, 4, 8, 10\}$ to	, B = {3, 4, 5, 10, 12}, C =	= {4, 5, 6, <mark>12</mark> , 14} then (A	$(A \cap B) \cup (A \cap C)$ is equal			
17.		(b) $\{2, 8, 10\}$ sets, then $A \cap (A \cup B)$ is		(d) {3, 5, 14}			
	(a) <i>A</i>	(b) B	(c) A^c	(d) B^c			
18.	If A, B, C be three sets	s such that $A \cup B = A \cup C$	and $A \cap B = A \cap C$, the	n			
	[Roorkee 1991]						
	(a) A = B	(b) B = C	(c) $A = C$	(d) $A = B = C$			
19.	Let $A = \{a, b, c\}, B = \{a, b, c\}$	<mark>b, c</mark> , <i>d</i> }, C = {a, b, d, e}, th	en $A \cap (B \cup C)$ is				
	[Kurukshetra CEE	<mark>: 19</mark> 97]					
	(a) { <i>a</i> , <i>b</i> , <i>c</i> }	(b) {b, c, d}	(c) {a, b, d, e}	(d) {e}			
20.	If $A = \{2, 3, 4, 8, 10\}, A$	B <mark>= {3, 4</mark> , 5, 10, 12}, C = {4	4, 5, 6, 12, 14} <mark>then (</mark> A u	$(B) \cap (A \cup C)$ is equal to			
	(a) {2, 3, 4, 5, 8, 10, 12 {2, 8, 10}	2} (b)	{2, 4, 8, 10, 12}	(c) {3, 8, 10, 12} (d)			
21.	If A and B are sets, the	en $A \cap (B - A)$ is					
	(a) ^{ϕ}	(b) A	(c) B	(d) None of these			
22.	Two sets A, B are disjo	oint iff					
	(a) $A \cup B = \phi$	(b) $A \cap B \neq \phi$	(c) $A \cap B = \phi$	(d) $A-B=A$			
23.	23. Let A and B be two non-empty subsets of a set X such that A is not a subset of B, then [UPSEAT 1995]						
	(a) A is always a subse	et of the complement of B	(b) B is always a subse	et of A			
	(c) A and B are always complement of B are a	•		(d) A and the			
24.	If $A \subseteq B$, then $A \cap B$ is	equal to					
	(a) A	(b) <i>B</i>	(c) A ^c	(d) B ^c			

e-Edge Education Centre Regal

A Premier Institute for ENGINEERING and MEDICAL Entrance Celebrating 11 Years of glory & success

25 . If	A and	B are	two sets	then	$A \cap (A \cup B)'$	is eq	ual to
----------------	-------	-------	----------	------	----------------------	-------	--------

(a) A

(b) B

(c) *\phi*

(d) None of these

26. Let $\bigcirc = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 5\}, B = \{6, 7\}$, then $A \cap B'$ is

(a) B'

(b) A

(c) A'

(d) B

27. If A is any set, then

(a) $A \cup A' = \phi$

(b) $A \cup A' = \cup$

(c) $A \cap A' = \bigcup$

(d) None of these

28. If $N_a = [an: n \in N]$, then $N_6 \cap N_8 =$

(a) N_6

(b) N_8

(c) N_{24}

(d) N_{44}

29. If $aN = \{ax: x \in N\}$, then the set $3N \cap 7N$ is

(a) 21 *N*

(b) 10 N

(c) 4 N

(d) None of these

30. The shaded region in the given figure is

(a) $A \cap (B \cup C)$

(b) $A \cup (B \cap C)$

(c) $A \cap (B - C)$

(d) $A - (B \cup C)$

31. If A = [x : f(x) = 0] and B = [x : g(x) = 0], then $A \cap B$ will be

(a) $[f(x)]^2 + [g(x)]^2 = 0$

(b) $\frac{f(x)}{g(x)}$

(c) $\frac{g(x)}{f(x)}$

(d) None of these

32. If A and B are two sets then $(A - B) \cup (B - A) \cup (A \cap B)$ is equal to

(a) *A* ∪ *B*

(b) $A \cap B$

(c) A

(d) B'

33. Let A and B be two sets then $(A \cup B)' \cup (A' \cap B)$ is equal to

(a) A'

(b) A

(c) B'

(d) None of these

34. Let U be the universal set and $A \cup B \cup C = U$. Then $\{(A-B) \cup (B-C) \cup (C-A)\}'$ is equal to

(a) $A \cup B \cup C$

(b) $A \cup (B \cap C)$

(c) $A \cap B \cap C$

(d) $A \cap (B \cup C)$

35. If n(A)=3, n(B)=6 and $A\subseteq B$. Then the number of elements in $A\cup B$ is equal to

(a)3

(b) 9

(c) 6

(d) None of these

36. If n(A)=3 and n(B)=6 and $A\subseteq B$. Then the number of elements in $A\cap B$ is equal to

A Premier Institute for ENGINEERING and MEDICAL Entrance

Celebrating 11 Years of glory & success

Set Theory and Relations

(a) x = 39

H.Q 4/469 Vaishali GZB UP

(b) x = 63

	(a) 3	(b) 9	(c) 6	(d) None of these		
37.	Let A and B be two set [JMIEE 2001]	s such that $n(A) = 0.16, n(B) =$	$0.14, n(A \cup B) = 0.25$. Then	$^{=0.25}$. Then $^{n(A \cap B)}$ is equal to		
	(a) 0.3	(b) 0.5	(c) 0.05	(d) None of these		
38.	s. If A and B are disjoint, then $n(A \cup B)$ is equal to					
	(a) ^{n(A)}	(b) n(B)	(c) $n(A) + n(B)$	(d) n(A).n(B)		
39.	If A and B are not disjo	oint sets, then $n^{(A \cup B)}$ is e	qual to			
	-	[Kerala (Engg.) 2001]				
	(a) $n(A) + n(B)$	(b) $n(A) + n(B) - n(A \cap B)$	(c) $n(A) + n(B) + n(A \cap B)$	(d) $n(A)n(B)$ (e)		
	n(A) – n(B)					
40.	In a battle 70% of the the four limbs. The min	combatants lost one eye	, 80% an ear, 75% an ai	rm, 85% a leg, <i>x</i> % lost all		
	(a) 10	(b) 12	(c) 15	(d) None of these		
41.	In a certain town 25% families own a phone and 15% own a car, 65% families own neither a phone nor a car. 2000 families own both a car and a phone. Consider the following statements in this regard: 1. 10% families own both a car and a phone 2. 35% families own either a car or a phone 3. 40,000 families live in the town					
Which of the above statements are correct?						
42.	Of the total, 64 playe	(b) 1 and 3 school, 224 played cricked d both basketball and he ckey; 24 played all the the	ockey; 80 played cricke	et and basketball and 40		
	(a) 128	(b) 216	(c) 240	(d) 160		
43.	A survey shows that 6 Americans like both ch	63% of the Americans lik leese and apples, then	e cheese whereas 76%	like apples. If x% of the		

(c) $39 \le x \le 63$

44. 20 teachers of a school either teach mathematics or physics. 12 of them teach mathematics

<u>www.eeeclasses.info</u> 0120-4568775, 9818949775

while 4 teach both the subjects. Then the number of teachers teaching physics only is

(d) None of these

(a) 12

e-Edge Education Centre Telegraphic Regd.

45. Of the members of three athletic teams in a school 21 are in the cricket team, 26 are in the

hockey team and 29 are in the football team. Among them, 14 play hockey and cricket, 15 play

(c) 16

(d) None of these

A Premier Institute for ENGINEERING and MEDICAL Entrance

Celebrating	11	Years	of gl	lory	L success
-------------	----	-------	-------	------	-----------

(b) 8

	hockey and football, and 12 play football and cricket. Eight play all the three games. The to number of members in the three athletic teams is						
	(a) 43	(b) 76	(c) 49	(d) None of these			
46.							
	(a) 22	(b) 33	(c) 10	(d) 45			
47.	In a college of 300 students, every student reads 5 newspaper and every newspaper is read 60 students. The no. of newspaper is						
	(a) At least 30	(b) At most 20	(c) Exactly 25 (d)	None of these			
48.	If A and B are two sets	s, then $A \times B = B \times A$ iff					
	(a) $A \subseteq B$	(b) $B \subseteq A$	(c) A = B	(d) None of these			
49.	If A, B be any two sets	s, then $(A \cup B)$ is equal to					
	(a) A'∪B'	(b) A'∩B'	(c) A∩B	(d) A∪B			
50.	. If A and B be any two sets, then $(A \cap B)^{r}$ is equal to						
	(a) ^{A'} ∩ ^{B'}	(b) A' ∪ B'	(c) $A \cap B$	(d) $A \cup B$			
51.	Let A and B be subsets of a set X. Then						
	(a) $A-B=A\cup B$	(b) $A-B=A\cap B$	(c) $A-B=A^c\cap B$	(d) $A-B=A\cap B^c$			
52 .	Let A and B be two sets in the universal set. Then $A-B$ equals						
	(a) $A \cap B^c$	(b) $A^c \cap B$	(c) A \cap B	(d) None of these			
53.	If A, B and C are any three sets, then $A-(B\cap C)$ is equal to						
	(a) $(A-B) \cup (A-C)$	(b) $(A-B) \cap (A-C)$	(c) $(A-B)\cup C$	(d) $(A-B) \cap C$			
54.	If A, B, C are three sets, then $A \cap (B \cup C)$ is equal to						
	$(a) (A \cup B) \cap (A \cup C)$	(b) $(A \cap B) \cup (A \cap C)$	(c) $(A \cup B) \cup (A \cup C)$	(d) None of these			
55 .	If $A = \{1, 2, 4\}$, $B = \{2, 4, 5\}$, $C = \{2, 5\}$, then $(A - B) \times (B - C)$ is						
	(a) {(1, 2), (1, 5), (2, 5))} (b) {(1, 4)}	(c) (1, 4)	(d) None of these			
56 .	If (1, 3), (2, 5) and (3,	3) are three elements of A	$A \times B$ and the total numb	per of elements in $A \times B$ is			
	6, then the remaining	elements of $A \times B$ are					
		(b) (5, 1); (3, 2); (5, 3)					
57	Let $A = \{1, 2, 3, 4, 5\}$	$B = \{2, 3, 6, 7\}$ Then the	number of elements in ($(A \times B) \cap (B \times A)$ is			

A Premier Institute for ENGINEERING and MEDICAL Entrance

Celebrating 11 Years of glory & success

Set Theory and Relations

(a) 18

(b) 6

(c) 4

(d) 0

58. $A = \{1, 2, 3\}$ and $B = \{3, 8\}$, then $(A \cup B) \times (A \cap B)$ is

(a) $\{(3, 1), (3, 2), (3, 3), (3, 8)\}$

 $(b)\{(1, 3), (2, 3), (3, 3), (8, 3)\}$

(c) $\{(1, 2), (2, 2), (3, 3), (8, 8)\}$

(d) {(8, 3), (8, 2), (8, 1), (8, 8)}

59. If $A = \{2, 3, 5\}$, $B = \{2, 5, 6\}$, then $(A - B) \times (A \cap B)$ is

(a) $\{(3, 2), (3, 3), (3, 5)\}$ (b) $\{(3, 2), (3, 5), (3, 6)\}$ (c) $\{(3, 2), (3, 5)\}$

(d) None of these

