Suites convergentes et suites de Cauchy dans \mathbb{R}

Chapitre II

27 septembre 2020

1 Suites

Intuitivement, une suite numérique est la donnée pour tout $n \in \mathbb{N}$ d'un réel, noté u_n .

Définition 1.1. *Une suite est une application de* \mathbb{N} *vers* \mathbb{R} :

$$u: \mathbb{N} \to \mathbb{R}$$
 $n \mapsto u(n)$ souvent noté u_n .

La suite sera notée u ou bien $(u_n)_{n\in\mathbb{N}}$. u_n s'appelle le terme général de la suite. On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ converge vers le réel L (ou tend vers le réel L) si

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N \ on \ a \ que \ |u_n - L| < \epsilon.$$

Ce réel s'appelle alors la limite de la suite $(u_n)_{n\in\mathbb{N}}$ et on note

$$\lim_{n \to \infty} u_n = L.$$

Une suite qui ne converge pas s'appelle suite divergente.

On remarque la propriété suivante de la notion de limite : si elle existe, alors elle est unique : en fait, si L_1 et L_2 sont deux limites d'une même suite $(u_n)_{n\in\mathbb{N}}$, on montre que $L_1=L_2$. Pour ce faire, il suffit de démontrer que quelque soit $\epsilon>0$, on a que $|L_1-L_2|<\epsilon$. En fait, soient

$$N_1 \in \mathbb{N} \text{ tel que } n \geq N_1 \Rightarrow |u_n - L_1| < \frac{\epsilon}{2}$$

$$N_2 \in \mathbb{N} \text{ tel que } n \ge N_2 \Rightarrow |u_n - L_2| < \frac{\epsilon}{2}.$$

Alors, pour tout $n \ge \max\{N_1, N_2\}$ on a que

$$|L_1 - L_2| = |L_1 - u_n + u_n - L_2|$$

$$\leq |L_1 - u_n| + |u_n - L_2|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

Exemple 1.2. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_n=\frac{1}{n}$ pour tout $n\geq 1$. Alors $\lim_{n\to\infty}u_n=0$. En fait, soit $\epsilon>0$. Comme \mathbb{R} est Archimédien, il existe $N\in\mathbb{N}$ tel que $N\epsilon>1$. Or, pour tout $n\geq N$ on a que $n\epsilon>1$ et donc $0<\frac{1}{n}<\epsilon$. C'est à dire, $|\frac{1}{n}-0|<\epsilon$.

Définition 1.3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Nous dirons que

 $(u_n)_{n\in\mathbb{N}}$ est majorée s'il existe M tel que $u_n\leq M$ pour tout $n\in\mathbb{N}$; $(u_n)_{n\in\mathbb{N}}$ est minorée s'il existe m tel que $u_n\geq m$ pour tout $n\in\mathbb{N}$; $(u_n)_{n\in\mathbb{N}}$ est bornée si elle est à la fois minorée et majorée.

Proposition 1.4. Toute suite convergente est bornée.

Démonstration. On pose $L = \lim_{n \to \infty} u_n$. Soit $N \in \mathbb{N}$ tel que $|u_n - L| < 1$ pour tout $n \ge N$. On pose

$$r = \max\{1, |u_1 - L|, |u_2 - L|, \dots, |u_{N-1} - L|\}.$$

Alors $|u_n - L| \le r$ pour tout $n \in \mathbb{N}$. C'est à dire $L - r \le u_n \le L + r$.

Proposition 1.5. Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites telles que $\lim_{n\to\infty} a_n = L$ et $\lim_{n\to\infty} b_n = M$. Soit $c\in\mathbb{R}$. Alors

- (1) $\lim_{n\to\infty} (a_n + b_n) = L + M;$
- (2) $\lim_{n\to\infty} (ca_n) = cL;$
- (3) $\lim_{n\to\infty}(a_nb_n)=LM;$
- (4) $\lim_{n\to\infty} \left(\frac{1}{a_n}\right) = \frac{1}{L} \text{ si } a_n \neq 0 \text{ pour tout } n \in \mathbb{N} \text{ et } L \neq 0.$

Démonstration. Pour (1), soit $\epsilon > 0$ et soient

$$N_1 \in \mathbb{N} \text{ tel que } n \geq N_1 \Rightarrow |a_n - L| < \frac{\epsilon}{2}$$

$$N_2 \in \mathbb{N}$$
 tel que $n \ge N_2 \Rightarrow |b_n - M| < \frac{\epsilon}{2}$.

Alors, pour tout $n \ge \max\{N_1, N_2\}$ on a que

$$|a_n + b_n - (L+M)| \le |a_n - L| + |b_n - M|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon.$$

Pour (2), si c=0 alors le résultat est immédiat. Pour $c\neq 0$, soient $\epsilon>0$ et $N\in\mathbb{N}$ tels que $|a_n-L|<\frac{\epsilon}{|c|}$ pour tout $n\geq N$. Alors pour tout $n\geq N$ on a que $|ca_n-cL|=|c||a_n-L|<\epsilon$.

Pour (3), soit $\epsilon > 0$ et soient

$$N_1 \in \mathbb{N}$$
 tel que $n \geq N_1 \Rightarrow |a_n - L| < \sqrt{\epsilon}$

$$N_2 \in \mathbb{N} \text{ tel que } n \ge N_2 \Rightarrow |b_n - M| < \sqrt{\epsilon}.$$

Alors, pour tout $n \ge \max\{N_1, N_2\}$ on a que

$$|(a_n - L)(b_n - M)| < \epsilon$$

et donc que

$$\lim_{n \to \infty} (a_n - L)(b_n - M) = 0.$$

Or,

$$a_n b_n - LM = (a_n - L)(b_n - M) + L(b_n - M) + M(a_n - L).$$

De plus,

$$\lim_{n \to \infty} (a_n - L) = \lim_{n \to \infty} (b_n - M) = 0.$$

En utilisant (1) et (2), on en déduit que

$$\lim_{n \to \infty} (a_n b_n - LM) = 0.$$

Pour (4), soit $N_1 \in \mathbb{N}$ tel que $|a_n| > \frac{|L|}{2}$ pour tout $n \geq N_1$. Étant donné $\epsilon > 0$ il existe $N_2 > N_1$ tel que

$$|a_n - L| < \frac{|L|^2 \epsilon}{2}$$

pour tout $n \geq N_2$. Alors pour tout $n \geq N_2$ on a

$$\left| \frac{1}{a_n} - \frac{1}{L} \right| = \left| \frac{a_n - L}{a_n L} \right| < \frac{2}{|L|^2} |a_n - L| < \frac{2}{|L|^2} \frac{|L|^2 \epsilon}{2} = \epsilon.$$

Proposition 1.6. Soit $(u_n)_{n\in\mathbb{N}}$ une suite qui converge vers L et soit $\lambda \in \mathbb{R}$. Supposons que pour tout $n_0 \in \mathbb{N}$ il existe $n \geq n_0$ tel que $u_n \geq \lambda$. Alors $L \geq \lambda$.

Démonstration. On raisonne par l'absurde et on suppose que $\lambda > L$. Alors il existe $N \in \mathbb{N}$ tel que

$$|a_n - L| < \frac{\lambda - L}{2}$$

pour tout $n \geq N$. Soit $n \geq N$ tel que $u_n \geq \lambda$. On obtient ainsi

$$0 < \lambda - L \le u_n - L \le |u_n - L| < \frac{\lambda - L}{2}$$

une contradiction.

Proposition 1.7. Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites qui converge respectivement vers L et M. Supposons qu'à partir d'un certain rang N on ait $a_n \geq b_n$. Alors $L \geq M$.

Démonstration. On applique la proposition précédente à la suite $(c_n)_{n\in\mathbb{N}}$ définie par $c_n=a_n-b_n$ qui converge vers L-M avec $\lambda=0$.

Theorem 1.8 (Théorème des Gendarmes). Soient $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$ trois suites. On suppose qu'il existe $N\in\mathbb{N}$ tel que $a_n\leq b_n\leq c_n$ pour tout $n\geq N$. On suppose aussi que les suites $(a_n)_{n\in\mathbb{N}}$ et $(c_n)_{n\in\mathbb{N}}$ converge vers une même limite L. Alors $\lim_{n\to\infty}b_n=L$.

Démonstration. Soit $\epsilon > 0$ et soient

$$N_1 \in \mathbb{N} \text{ tel que } n \geq N_1 \Rightarrow |a_n - L| < \varepsilon$$

$$N_2 \in \mathbb{N}$$
 tel que $n \ge N_2 \Rightarrow |c_n - L| < \epsilon$.

Alors, pour tout $n \ge \max\{N, N_1, N_2\}$ on a que

$$-\epsilon < a_n - L < b_n - L < c_n - L < \epsilon$$

et donc $\lim_{n\to\infty} b_n = L$.

2 Suites Extraites

Définition 2.1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite. On appelle suite extraite ou sous-suite de $(u_n)_{n\in\mathbb{N}}$ toute suite $(u_{n_k})_{k\in\mathbb{N}}$ où $(n_k)_{k\in\mathbb{N}}$ est une suite strictement croissante d'entiers positifs.

Proposition 2.2. Toute suite extraite d'une suite convergente converge vers la même limite.

Démonstration. Soit $(u_n)_{n\in\mathbb{N}}$ une suite qui converge vers $L\in\mathbb{R}$. Soient $\epsilon>0$ et $N\in\mathbb{N}$ tels que $|u_n-L|<\epsilon$ pour tout $n\geq N$. Donc pour tout $k\geq N$, comme $n_k\geq k\geq N$, on a que $|u_{n_k}-L|<\epsilon$.

Proposition 2.3. Si une suite $(u_n)_{n\in\mathbb{N}}$ ne converge pas vers L, alors il existe $\epsilon > 0$ et une suite extraite $(u_{n_k})_{k\in\mathbb{N}}$ tel que $|u_{n_k} - L| \ge \epsilon$ pour tout $k \ge 1$.

Démonstration. Comme la suite $(u_n)_{n\in\mathbb{N}}$ ne converge pas vers L, il existe $\epsilon>0$ tel que pour tout $N\in\mathbb{N}$, il existe $n\geq N$ tel que $|u_n-L|\geq \epsilon$. On construit une suite extraite par récurrence : Il existe $n_0\in\mathbb{N}$ tel que $|u_{n_0}-L|\geq \epsilon$. Ayant trouvé $n_0< n_1< n_2< \cdots < n_k$ tel que $|u_{n_i}-L|\geq \epsilon$ pour tout $0\leq i\leq k$, il existe $n_{k+1}>n_k$ tel que $|u_{n_{k+1}}-L|\geq \epsilon$. \square

Theorem 2.4. Soit $M \in \mathbb{R}$ et soit $(u_n)_{n \in \mathbb{N}}$ une suite croissante et majorée par M. Alors il existe $L \leq m$ tel que $\lim_{n \to \infty} u_n = L$.

Démonstration. On pose $A = \{u_n : n \in \mathbb{N}\}$. Alors A est une partie de \mathbb{R} majorée par M. On pose $L = \sup A$ et on montre que $\lim_{n \to \infty} u_n = L$. Soit $\epsilon > 0$. Alors il existe N tel que $L - \epsilon < u_N$. Comme la suite $(u_n)_{n \in \mathbb{N}}$ est croissante, on a que $L - \epsilon < u_n$ pour tout $n \geq N$. Ainsi, pour tout $n \geq N$ on a

$$L - \epsilon < u_n < L < L + \epsilon$$
.

Définition 2.5. Deux suites $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ seront dites adjacentes si

 $(a_n)_{n\in\mathbb{N}}$ est croissante;

 $(b_n)_{n\in\mathbb{N}}$ est décroissante;

 $\lim_{n\to\infty} (b_n - a_n) = 0.$

Proposition 2.6. Soient $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ deux suites adjacentes. Alors $a_n \leq b_n$ pour tout $n \in \mathbb{N}$.

Démonstration. Supposons au contraire qu'il existe $n_0 \in \mathbb{N}$ tel que $a_{n_0} > b_{n_0}$. Alors pour tout $n \ge n_0$ on a que $a_n - b_n \ge a_{n_0} - b_{n_0}$ et donc par la Proposition 1.6 on a

$$\lim_{n \to \infty} (a_n - b_n) \ge a_{n_0} - b_{n_0} > 0,$$

une contradiction.

Proposition 2.7. Deux suites adjacentes de \mathbb{R} converge vers une même limite.

Démonstration. Soient $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ deux suites adjacentes. Alors pour tout $n\in\mathbb{N}$ on a $a_0\leq a_n\leq b_n\leq b_0$. Comme $(a_n)_{n\in\mathbb{N}}$ est une suite croissante et majorée, elle converge vers un certain $L\in\mathbb{R}$. De même, comme $(b_n)_{n\in\mathbb{N}}$ est une suite décroissante et minorée, elle converge vers un certain $M\in\mathbb{R}$. Or, $\lim_{n\to\infty}(b_n-a_n)=M-L$ et par hypothèse $\lim_{n\to\infty}(b_n-a_n)=0$. Donc, L=M.

Theorem 2.8 (Bolzano-Weierstrass). *De toute suite bornée on peut extraire une sous suite convergente.*

Démonstration. Soit $(u_n)_{n\in\mathbb{N}}$ une suite minorée par m et majorée par M. Nous allons construire par récurrence deux suites adjacentes $(m_k)_{k\in\mathbb{N}}$ et $(M_k)_{k\in\mathbb{N}}$ ainsi qu'une sous-suite $(u_{n_k})_{k\in\mathbb{N}}$ de la suite $(u_n)_{n\in\mathbb{N}}$ telles que $m_k \leq u_{n_k} \leq M_k$ pour tout $k\in\mathbb{N}$. Par la proposition précédente on a que les suites $(m_k)_{k\in\mathbb{N}}$ et $(M_k)_{k\in\mathbb{N}}$ convergent vers la même limite L, et par le Théorème des Gendarmes on aura que la sous-suite $(u_{n_k})_{k\in\mathbb{N}}$ converge aussi vers L.

On pose $m_0=m,\,M_0=M,\,$ et $l_0=\frac{M_0+m_0}{2}.$ Alors soit $[m_0,l_0],\,$ soit $[l_0,M_0]$ contient une infinité de terme de la suite $(u_n)_{n\in\mathbb{N}}.$ Si l'intervalle $[m_0,l_0],\,$ contient une infinité de terme de la suite $(u_n)_{n\in\mathbb{N}},\,$ alors on pose $m_1=m_0$ et $M_1=l_0.$ Autrement on pose alors $m_1=l_0$ et $M_1=M_0.$

Supposons avoir construit une suite d'intervalles emboîtés

$$[m_i, M_i] \subset [m_{i-1}, M_{i-1}] \subset \cdots \subset [m_1, M_1] \subset [m_0, M_0]$$

tels que chaque intervalle contienne une infinité de terme de la suite $(u_n)_{n\in\mathbb{N}}$. On pose alors $l_i=\frac{M_i+m_i}{2}$. Alors un des deux intervalles $[m_i,l_i],[l_i,M_i]$ contient une infinité de terme de la suite $(u_n)_{n\in\mathbb{N}}$. Si l'intervalle $[m_i,l_i]$ contient une infinité de terme de la suite $(u_n)_{n\in\mathbb{N}}$, alors on pose $m_{i+1}=m_i$ et $M_{i+1}=l_i$. Autrement on pose $m_{i+1}=l_i$ et $M_{i+1}=M_i$. On construit ainsi par récurrence une famille d'intervalles emboîtés tels que chacun de ces intervalles contient une infinité de termes de la suite $(u_n)_{n\in\mathbb{N}}$. Ainsi la suite $(m_k)_{k\in\mathbb{N}}$ est bien croissante et la suite $(M_k)_{k\in\mathbb{N}}$ est décroissante. De plus pour tout $k\in\mathbb{N}$ on a que

$$M_{k+1} - m_{k+1} = \frac{M_k - m_k}{2}.$$

On en déduit que la suite $(M_k - m_k)_{k \in \mathbb{N}}$ converge vers 0 et donc les suites $(m_k)_{k \in \mathbb{N}}$ et $(M_k)_{k \in \mathbb{N}}$ sont adjacentes. Pour tout $k \in \mathbb{N}$ on choisit un terme $u_{n_k} \in [m_k, M_k]$ en sorte que $n_k > n_{k-1}$. On a ainsi construit deux suites adjacentes $(m_k)_{k \in \mathbb{N}}$ et $(M_k)_{k \in \mathbb{N}}$ et une sous suite $(u_{n_k})_{k \in \mathbb{N}}$ avec $m_k \leq u_{n_k} \leq M_k$.

3 Suites de Cauchy

Définition 3.1. Une suite $(u_n)_{n\in\mathbb{N}}$ sera dite de Cauchy si pour tout $\epsilon > 0$ il existe $N \in \mathbb{N}$ tel que $|u_n - u_m| < \epsilon$ pour tout $m, n \ge N$.

Proposition 3.2. *Toute suite convergente est de Cauchy.*

Démonstration. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de \mathbb{R} qui converge vers $L\in\mathbb{R}$. Soit $\epsilon>0$ et $N\in\mathbb{N}$ tel que $|u_n-L|<\frac{\epsilon}{2}$ pour tout $n\geq N$. Alors, pour $m,n\geq N$ on a

$$|u_n - u_m| \le |u_n - L| + |u_m - L| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Proposition 3.3. Toute suite de Cauchy est bornée.

Démonstration. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de Cauchy et soit $N\in\mathbb{N}$ tel que $|u_n-u_N|<1$ pour tout $n\geq N$. Ainsi, pour tout $n\geq N$ on a $|u_n|<1+|u_N|$. On en déduit que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée par $\max\{|u_0|,|u_1|,\ldots,|u_{N-1}|,|u_N|+1\}$.

Theorem 3.4 (Complétude de \mathbb{R}). *Toute suite de Cauchy converge.*

Démonstration. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de Cauchy. Pour tout $n\in\mathbb{N}$ on pose $A_n=\{u_k:k\geq n\}$. Alors on a

$$A_0 \supseteq A_1 \supseteq \cdots \supseteq A_n \supseteq A_{n+1} \supseteq \cdots$$
.

De plus, chaque A_n est une partie bornée de \mathbb{R} . On pose $\alpha_n = \inf A_n$ et $\beta_n = \sup A_n$. Alors $(\alpha_n)_{n \in \mathbb{N}}$ est une suite croissante et $(\beta_n)_{n \in \mathbb{N}}$ une suite décroissante. Soit $\epsilon > 0$ et $N \in \mathbb{N}$ tel que $u_n < u_m + \epsilon$ pour tout $m, n \geq N$. On a donc que $\beta_N \leq u_m + \epsilon$ pour tout $m \geq N$. Or, $\beta_N - \epsilon$ est in minorant de A_N et donc $\beta_N - \epsilon \leq \alpha_N$. On en déduit que $\beta_N - \alpha_N \leq \epsilon$ et comme $(\beta_n)_{n \in \mathbb{N}}$ est décroissante et $(\alpha_n)_{n \in \mathbb{N}}$ est croissante on en déduit que $\beta_n - \alpha_n \leq \epsilon$ pour tout $n \geq N$. Ainsi $\lim_{n \to \infty} (\beta_n - \alpha_n) = 0$. Les suites $(\alpha_n)_{n \in \mathbb{N}}$ et $(\beta_n)_{n \in \mathbb{N}}$ sont donc adjacentes. Soit $L \in \mathbb{R}$ leur limite commune. Comme $\alpha_n \leq u_n \leq \beta_n$ pour tout $n \in \mathbb{N}$, le Théorème des Gendarmes implique que $\lim_{n \to \infty} u_n = L$.

4 Valeurs d'adhérence d'une suite

Définition 4.1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de \mathbb{R} et $L\in\overline{\mathbb{R}}=\mathbb{R}\cup\{\pm\infty\}$. On dit que L est une valeur d'adhérence $(u_n)_{n\in\mathbb{N}}$ s'il existe une suite extraite (sous-suite) de $(u_n)_{n\in\mathbb{N}}$ qui converge vers L.

Proposition 4.2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de \mathbb{R} . Alors $L\in\mathbb{R}$ est une valeur d'adhérence si et seulement si pour tout $\epsilon>0$ il existe une infinité d'indices n tel que $|u_n-L|<\epsilon$.

Démonstration. Soit $(u_{n_k})_{k\in\mathbb{N}}$ une suite extraite de la suite $(u_n)_{n\in\mathbb{N}}$ qui converge vers L. Alors pour tout $\epsilon>0$ il existe $N\in\mathbb{N}$ tel que $|u_{n_k}-L|<\epsilon$ pour tout $k\geq N$. On a donc que $|u_n-L|<\epsilon$ pour tout $n\in\{n_k:k\geq N\}$. Inversement, on suppose que pour tout $k\geq 1$ il existe une partie infinie $A_k\subseteq\mathbb{N}$ tel que $|u_n-L|<\frac{1}{k}$ pour tout $n\in A_k$. On peut donc trouver $n_1< n_2< n_3< \cdots$ tel que $|u_{n_k}-L|<\frac{1}{k}$ pour tout $k\geq 1$. On a donc que la sous-suite $(u_{n_k})_{k\in\mathbb{N}}$ converge vers L.

Exercice 4.3. Montrer que $+\infty$ est une valeur d'adhérence d'une suite $(u_n)_{n\in\mathbb{N}}$ si et seulement si pour tout $M \in \mathbb{R}$ il existe une infinité d'indices n tel que $u_n \geq M$.

Définition 4.4. *Soit* $(u_n)_{n\in\mathbb{N}}$ *une suite de* \mathbb{R} . *On pose*

$$\limsup_{n \to \infty} u_n = \lim_{n \to \infty} \sup_{k \ge n} u_k.$$

et

$$\liminf_{n \to \infty} u_n = \lim_{n \to \infty} \inf_{k \ge n} u_k.$$

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de \mathbb{R} bornée. Alors il existe $m,M\in\mathbb{R}$ tel que

$$m \le u_n \le M$$

pour tout $n \in \mathbb{N}$. Pour $n \in \mathbb{N}$ on pose $A_n = \{u_k \in \mathbb{N} : k \geq n\}, v_n = \sup A_n$ et $w_n = \inf A_n$. On a donc que

$$m \le w_n \le v_n \le M$$
.

De plus la suite $(v_n)_{n\in\mathbb{N}}$ est décroissante et la suite $(w_n)_{n\in\mathbb{N}}$ est croissante. On a donc que la suite $(v_n)_{n\in\mathbb{N}}$ converge dans \mathbb{R} vers $\limsup_{n\to\infty} u_n$. De même, la suite $(w_n)_{n\in\mathbb{N}}$ converge dans \mathbb{R} vers $\liminf_{n\to\infty} u_n$ et on a que

$$-\infty < \liminf_{n \to \infty} u_n \le \limsup_{n \to \infty} u_n < +\infty.$$

D'autre part, si la suite $(u_n)_{n\in\mathbb{N}}$ n'est pas majorée, alors $\limsup_{n\to\infty}u_n=+\infty$ et si la suite $(u_n)_{n\in\mathbb{N}}$ n'est pas minorée, alors $\liminf_{n\to\infty}u_n=-\infty$.

Theorem 4.5. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de \mathbb{R} . Alors la suite $(u_n)_{n\in\mathbb{N}}$ converge dans \mathbb{R} si et seulement si $\lim\inf_{n\to\infty}u_n=\lim\sup_{n\to\infty}u_n$.

Démonstration. On pose $m=\liminf_{n\to\infty}u_n,\,M=\limsup_{n\to\infty}u_n,\,A_n=\{u_k\in\mathbb{N}:k\geq n\},\,v_n=\sup A_n$ et $w_n=\inf A_n$. Alors on a que la suite $(w_n)_{n\in\mathbb{N}}$ converge vers m et la suite $(v_n)_{n\in\mathbb{N}}$ converge vers M. Si m=M, comme $w_n\leq u_n\leq v_n$ pour tout $n\in\mathbb{N}$, d'après le Théorème de Gendarmes on a que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers m=M. Inversement, si la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un réel L, alors pour tout $\epsilon>0$ il existe $N\in\mathbb{N}$ tel que

$$L - \epsilon < u_n < L + \epsilon$$

pour tout $n \geq N$. Il s'ensuit que

$$L - \epsilon \le w_n \le v_n \le L + \epsilon$$

pour tout $n \geq N$. On a donc que $|w_n - L| \leq \epsilon$ et $|v_n - L| \leq \epsilon$ pour tout $n \geq N$. On en déduit que $\lim_{n \to \infty} w_n = \lim_{n \to \infty} v_n = L$ et donc $\liminf_{n \to \infty} u_n = \limsup_{n \to \infty} u_n = L$.

Theorem 4.6. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de \mathbb{R} . On pose $L=\limsup_{n\to\infty}u_n$. Alors L est la plus grande valeur d'adhérence dans $\overline{\mathbb{R}}$ de la suite $(u_n)_{n\in\mathbb{N}}$.

Démonstration. Commençons par montrer que pour toute valeur d'adhérence l de la suite $(u_n)_{n\in\mathbb{N}}$ on a que $l\leq L$. Si $l=-\infty$ ou si $L=+\infty$ alors il n'y a rien à montrer. Autrement, soit $\epsilon>0$. Comme précédemment, pour $n\in\mathbb{N}$ on pose $v_n=\sup\{u_k:k\geq n\}$. Alors in existe N tel que $v_n< L+\epsilon$ pour tout $n\geq N$ et donc $u_k< L+\epsilon$ pour tout $k\geq N$. Soit $(u_{n_k})_{k\in\mathbb{N}}$ une sous-suite de la suite (u_n) qui converge vers l. Comme $n_k\geq k$ pour tout $k\in\mathbb{N}$, on a que $u_{n_k}< L+\epsilon$ pour tout $k\geq N$ et donc $l\leq L+\epsilon$. Comme ϵ est arbitraire, on a que $l\leq L$. Il reste à montrer que L est une valeur d'adhérence de la suite $(u_n)_{n\in\mathbb{N}}$. Or, pour chaque $\epsilon>0$, il y a seulement un nombre fini d'indices n tel que $u_n>L+\epsilon$. Mais, il y a une infinité d'indices n tel que u_n appartient à l'intervalle l=0. C'est à dire, il y a une infinité d'indices n tel que l=00 a que l=01 que l=01 que l=02 que l=03 que l=04. D'après la Proposition 4.2 on a que l=04 est une valeur d'adhérence de la suite l=03 que l=04 que l=04 que l=04 que l=05 que l=05 que l=06 que l=06 que l=06 que l=07 que l=07 que l=08 que l=09 q

Exercice 4.7. Montrer que $\liminf_{n\to\infty} u_n$ est la plus petite valeur d'adhérence le suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 4.8. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de \mathbb{R} . Montrer que

$$\lim \sup_{n \to \infty} u_n = \sup \{ x \in \mathbb{R} : \forall N \in \mathbb{N}, \ \exists n \ge N \ \textit{tel que } u_n > x \}$$

et que

$$\liminf_{n\to\infty} u_n = \inf\{x \in \mathbb{R} : \forall N \in \mathbb{N}, \ \exists n \ge N \ \textit{tel que } u_n < x\}.$$

Exercice 4.9. Soient $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ de suites de \mathbb{R} . Montrer que

$$\lim\sup_{n\to\infty}(x_n+y_n)\leq \lim\sup_{n\to\infty}x_n+\limsup_{n\to\infty}y_n$$

et que

$$\liminf_{n \to \infty} (x_n + y_n) \ge \liminf_{n \to \infty} x_n + \liminf_{n \to \infty} y_n$$