Homework 1

Kyle Hadley

1. Projections

(a)

To compute the projection of $x=[1,2,3]^T$ onto $y=[1,1,-2]^T$, we will use the following equation:

$$proj_y x = y(y^T y)^{-1} y^T x$$

We can perform this calculation using Numpy and built-in matrix multiplication, transpose, and inverse functions.

(b)

To compute the projection of $x=[1,2,3]^T$ onto the range $Y=\begin{bmatrix} 1&1\\-1&0\\0&1 \end{bmatrix}$ we will use the

following equation:

$$proj_Y x = Y(Y^T Y)^{-1} Y^T x$$

We can perform this calculation using Numpy and built-in matrix multiplication, transpose, and inverse functions.

```
In [5]:
    x = np.array([[1], [2], [3]])
    y = np.array([[1, 1], [-1, 0], [0, 1]])

#print(x)
#print(y)

proj_yx = y.dot(np.linalg.inv(np.transpose(y).dot(y)).dot(np.transpose(y).dot(x)))

print(proj_yx)
```

[[1.] [2.]

[3.]]

The result is $proj_y x = [1, 2, 3]^T$.

2. Block Matrix Computations

(a)

$$AB = \begin{bmatrix} A_{11}B_{11} + \dots + A_{1N}B_{N1} & \dots & A_{11}B_{1K} + \dots + A_{1N}B_{NK} \\ \vdots & & & \vdots \\ A_{M1}B_{11} + \dots + A_{MN}B_{N1} & \dots & A_{M1}B_{1K} + \dots + A_{1N}B_{NK} \end{bmatrix}.$$

Given the resulting matrix, we know the required dimensions of the sub-blocks of B are $B_{11} \in \mathbb{R}^{n_1 \times k_1}$, $B_{1K} \in \mathbb{R}^{n_1 \times k_K}$, $B_{N1} \in \mathbb{R}^{n_N \times k_1}$, and $B_{NK} \in \mathbb{R}^{n_N \times k_K}$.

(b)

$$AB = \left[egin{array}{cccc} A_1B_1 & \dots & A_1B_k \\ dots & & dots \\ A_mB_1 & \dots & A_mB_k \end{array}
ight].$$

Given the resulting matrix, we know the required dimensions of the sub-blocks of B are $B_1 \in \mathbb{R}^{n \times 1}$ and $B_k \in \mathbb{R}^{n \times 1}$.

(c)

$$AB = \left[egin{array}{c} ert \ A_1 \ ert \end{array}
ight] \left[egin{array}{cccc} - & B_1 & - \end{array}
ight] + \ldots + \left[egin{array}{c} ert \ A_n \ ert \end{array}
ight] \left[egin{array}{c} - & B_n & - \end{array}
ight].$$

Given the resulting matrix, we know the required dimensions of the sub-blocks of B are $B_1 \in \mathbb{R}^{1 \times k}$ and $B_n \in \mathbb{R}^{1 \times k}$.

• (d)

$$ADB = \left[egin{array}{cccc} A_1DB_1 & \dots & A_1DB_k \ dots & & dots \ A_mDB_1 & \dots & A_mDB_k \end{array}
ight].$$

Given the resulting matrix, we know the required dimensions of the sub-blocks of B are $B_1 \in \mathbb{R}^{n \times 1}$ and $B_k \in \mathbb{R}^{n \times 1}$.

(e)

$$ADB = \sum\limits_{x=1}^{n}\sum\limits_{y=1}^{n} \left[egin{array}{c} | \ A_x \ | \end{array}
ight] D_{xy}\left[egin{array}{c} - & B_y \end{array} -
ight].$$

Given the resulting matrix, we know the required dimensions of the sub-blocks of B are $B_1 \in \mathbb{R}^{1 \times k}$ and $B_k \in \mathbb{R}^{1 \times k}$.

(f)

$$AB = [AB_1 \quad \dots \quad AB_k].$$

Given the resulting matrix, we know the required dimensions of the sub-blocks of B are $B_1 \in \mathbb{R}^{n \times 1}$ and $B_k \in \mathbb{R}^{n \times 1}$.

(g)

$$AB = \begin{bmatrix} A_1B \\ \vdots \\ A_mB \end{bmatrix}.$$

Given the resulting matrix, we know the required dimensions of the sub-blocks of B are $B \in \mathbb{R}^{n \times k}$ (since there are no sub-blocks of B).

3. Linear Transformations of Sets

(a) Affine Sets

Given $\mathcal{X}_1=\{x|x_1+x_2=1,x\in\mathbb{R}^2\}$ and $\mathcal{X}_2=\{x|x_1-x_2=1,x\in\mathbb{R}^2\}$, we can draw the set of points for Ax for $x\in\mathcal{X}_1$ and $x\in\mathcal{X}_2$.

For the condition where $A=\begin{bmatrix}1&0\\0&1\end{bmatrix}$, we can solve for Ax such that

$$Ax = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} x_1 \ x_2 \end{bmatrix}$$

We can now draw the set of points by finding two points and then drawing the line through these two points.

We can now define the set of points for when $x \in \mathcal{X}_1$. When $x_1 = 0$, we find that given $x \in \mathcal{X}_1$,

$$x_2 = 1 - x_1 = 1$$

thus our first point is $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

When $x_1 = 1$, we find that given $x \in \mathcal{X}_1$,

$$x_2 = 1 - x_1 = 0$$

thus our second point is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

```
In [6]: # Given coordinates defined above, define a line y that is the set of points Ax.
    x_1 = [0, 1]
    x_2 = [1, 0]

    x = np.linspace(-5, 5, num=100)
    y = (x_2[1] - x_2[0])/(x_1[1] - x_1[0]) * x + (x_1[0]*x_2[1] - x_1[1]*x_2[0]) / (x_1[0])

    fig, ax = plt.subplots(figsize=(5, 5))
    ax.plot(x, y, label='$Ax$ given $x \in \mathcal{X}_1$', linewidth=2)
    ax.set_xlim([-2, 2])
    ax.set_ylim([-2, 2])
    ax.grid()
    ax.legend()
    plt.show()
```


We can now define the set of points for when $x \in \mathcal{X}_2$. When $x_1 = 0$, we find that given $x \in \mathcal{X}_2$,

$$x_2 = x_1 - 1 = -1$$

thus our first point is $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$.

When $x_1 = 1$, we find that given $x \in \mathcal{X}_2$,

$$x_2 = x_1 - 1 = 0$$

thus our second point is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

```
In [8]: # Given coordinates defined above, define a line y that is the set of points Ax.
    x_1 = [0, 1]
    x_2 = [-1, 0]

    x = np.linspace(-5, 5, num=100)
    y = (x_2[1] - x_2[0])/(x_1[1] - x_1[0]) * x + (x_1[0]*x_2[1] - x_1[1]*x_2[0]) / (x_1[0])

    fig, ax = plt.subplots(figsize=(5, 5))
    ax.plot(x, y, label='$Ax$ given $x \in \mathcal{X}_2$', linewidth=2)
    ax.set_xlim([-2, 2])
    ax.set_ylim([-2, 2])
    ax.set_ylim([-2, 2])
    ax.legend()
    plt.show()
```


For the condition where $A=egin{bmatrix} 1 & 1 \ 0 & -1 \end{bmatrix}$, we can solve for Ax such that

$$Ax = egin{bmatrix} 1 & 1 \ 0 & -1 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} x_1 + x_2 \ -x_2 \end{bmatrix}$$

We can now draw the set of points by finding two points and then drawing the line through these two points.

We can now define the set of points for when $x \in \mathcal{X}_1$. When $x_1 = 0$, we find that given $x \in \mathcal{X}_1$,

$$x_2 = 1 - x_1 = 1$$

thus our first point is $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

When $x_1 = 1$, we find that given $x \in \mathcal{X}_1$,

$$x_2 = 1 - x_1 = 0$$

thus our second point is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

```
In [9]: # Given coordinates defined above, define a line y that is the set of points Ax.
    x_1 = [1, 1]
    x_2 = [-1, 0]

# By inspection, we see from the coordinates that Ax is a vertical line @ x_1 = 1, thus

fig, ax = plt.subplots(figsize=(5, 5))
    ax.axvline(1, label='$Ax$ given $x \in \mathcal{X}_1$', linewidth=2)
    ax.set_xlim([-2, 2])
    ax.set_ylim([-2, 2])
    ax.grid()
    ax.legend()
    plt.show()
```


We can now define the set of points for when $x \in \mathcal{X}_2$. When $x_1 = 0$, we find that given $x \in \mathcal{X}_2$,

$$x_2 = x_1 - 1 = -1$$

thus our first point is $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

When $x_1=1$, we find that given $x\in\mathcal{X}_2$,

$$x_2 = x_1 - 1 = 0$$

thus our second point is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

```
In [10]: # Given coordinates defined above, define a line y that is the set of points Ax.
    x_1 = [-1, 1]
    x_2 = [1, 0]

    x = np.linspace(-5, 5, num=100)
    y = (x_2[1] - x_2[0])/(x_1[1] - x_1[0]) * x + (x_1[0]*x_2[1] - x_1[1]*x_2[0]) / (x_1[0])

    fig, ax = plt.subplots(figsize=(5, 5))
    ax.plot(x, y, label='$Ax$ given $x \in \mathcal{X}_2$', linewidth=2)
    ax.set_xlim([-2, 2])
    ax.set_ylim([-2, 2])
    ax.grid()
    ax.legend()
    plt.show()
```


For the condition where $A=egin{bmatrix} 1 & -1 \ 1 & 1 \end{bmatrix}$, we can solve for Ax such that

$$Ax = egin{bmatrix} 1 & -1 \ 1 & 1 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} x_1 - x_2 \ x_1 + x_2 \end{bmatrix}$$

We can now draw the set of points by finding two points and then drawing the line through these two points.

We can now define the set of points for when $x \in \mathcal{X}_1$. When $x_1 = 0$, we find that given $x \in \mathcal{X}_1$,

$$x_2 = 1 - x_1 = 1$$

thus our first point is $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

When $x_1 = 1$, we find that given $x \in \mathcal{X}_1$,

$$x_2 = 1 - x_1 = 0$$

thus our second point is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

```
In [11]:
# Given coordinates defined above, define a line y that is the set of points Ax.
    x_1 = [-1, 1]
    x_2 = [1, 1]

    x = np.linspace(-5, 5, num=100)
    y = (x_2[1] - x_2[0])/(x_1[1] - x_1[0]) * x + (x_1[0]*x_2[1] - x_1[1]*x_2[0]) / (x_1[0])

    fig, ax = plt.subplots(figsize=(5, 5))
    ax.plot(x, y, label='$Ax$ given $x \in \mathcal{X}_1$', linewidth=2)
    ax.set_xlim([-2, 2])
    ax.set_ylim([-2, 2])
    ax.grid()
    ax.legend()
    plt.show()
```


We can now define the set of points for when $x\in\mathcal{X}_2$. When $x_1=0$, we find that given $x\in\mathcal{X}_2$,

$$x_2 = x_1 - 1 = -1$$

thus our first point is $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

When $x_1=1$, we find that given $x\in\mathcal{X}_2$,

$$x_2 = x_1 - 1 = 0$$

thus our second point is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

```
In [12]:
# Given coordinates defined above, define a line y that is the set of points Ax.
x_1 = [1, 1]
x_2 = [-1, 1]

# By inspection, we see from the coordinates that Ax is a vertical line @ x_1 = 1, thus

fig, ax = plt.subplots(figsize=(5, 5))
ax.axvline(1, label='$Ax$ given $x \in \mathcal{X}_1$', linewidth=2)
ax.set_xlim([-2, 2])
ax.set_ylim([-2, 2])
ax.grid()
ax.legend()
plt.show()
```


(b) Unit Balls

Given $\mathcal{X}_1=\{x\mid |x|_1\leq 1, x\in\mathbb{R}^2\}$, $\mathcal{X}_2=\{x\mid |x|_2\leq 1, x\in\mathbb{R}^2\}$, and $\mathcal{X}_\infty=\{x\mid |x|_\infty\leq 1, x\in\mathbb{R}^2\}$, we can draw the set of points for Ax for $x\in\mathcal{X}_1$, $x\in\mathcal{X}_2$, and $x\in\mathcal{X}_\infty$.

We can generate an initial T-chart of points within the defined sets X_1 , X_2 , and X_{∞} .

For X_1 ,

$$\begin{array}{ccc} x_1 & x_2 \\ \hline 1 & 0 \\ 1/2 & 1/2 \\ 0 & 1 \\ -1/2 & 1/2 \\ -1 & 0 \\ -1/2 & -1/2 \\ 0 & -1 \\ 1/2 & -1/2 \\ \end{array}$$

which implies that the resulting initial set is a diamond shape.

For X_2 ,

$$x_1$$
 x_2

 1
 0

 0.707
 0.707

 0
 1

 -0.707
 0.707

 -1
 0

 -0.707
 -0.707

 0
 -1

 0.707
 -0.707

which implies that the resulting initial set is a circular shape.

For X_{∞} ,

x_1		x_2	
	1		0
	1		1
	0		1
	-1		1

 x_1 x_2

-1	0
-1	-1
0	-1
1	-1

which implies that the resulting initial set is a square shape.

For the condition where $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, the resulting set of points is identical to the initial set of points (because A = I).

```
In [13]:
    A = np.array([[1, 0], [0, 1]])
    x_1 = np.array([1, 1/2, 0, -1/2, -1, -1/2, 0, 1/2, 1])
    x_2 = np.array([0, 1/2, 1, 1/2, 0, -1/2, -1, -1/2, 0])

    x = np.stack((x_1, x_2))
    Ax = A.dot(x)

    fig, ax = plt.subplots(figsize=(5, 5))
    ax.plot(Ax[0,:], Ax[1,:], linewidth=2, label='$Ax$ given $x \in \mathcal{X}_1$')
    ax.set_xlim([-3, 3])
    ax.set_ylim([-3, 3])
    ax.set_ylim([-3, 3])
    ax.set_title('$A_1, \mathcal{X}_{1}$')
    ax.legend()
    ax.grid()
    plt.show()
```



```
In [15]: A = np.array([[1, 0], [0, 1]])
    x_1 = np.array([1, 1, 0, -1, -1, -1, 0, 1, 1])
    x_2 = np.array([0, 1, 1, 1, 0, -1, -1, -1, 0])

x = np.stack((x_1, x_2))
Ax = A.dot(x)

fig, ax = plt.subplots(figsize=(5, 5))
    ax.plot(Ax[0,:], Ax[1,:], linewidth=2, label='$Ax$ given $x \in \mathcal{X}_{\infty}$')
    ax.set_xlim([-3, 3])
    ax.set_ylim([-3, 3])
    ax.set_title('$A_1, \mathcal{X}_{\infty}$')
    ax.legend()
    ax.grid()
    plt.show()
```


For the condition where $A=\begin{bmatrix}1&1\\0&-1\end{bmatrix}$, we can calculate our new T-tables in-code to produce the plots as shown below.

```
In [16]:
    A = np.array([[1, 1], [0, -1]])
    x_1 = np.array([1, 1/2, 0, -1/2, -1, -1/2, 0, 1/2, 1])
    x_2 = np.array([0, 1/2, 1, 1/2, 0, -1/2, -1, -1/2, 0])

    x = np.stack((x_1, x_2))
    Ax = A.dot(x)

    fig, ax = plt.subplots(figsize=(5, 5))
    ax.plot(Ax[0,:], Ax[1,:], linewidth=2, label='$Ax$ given $x \in \mathcal{X}_1$')
    ax.set_xlim([-3, 3])
    ax.set_ylim([-3, 3])
    ax.set_ylim([-3, 3])
    ax.set_title('$A_2, \mathcal{X}_{1}$')
    ax.legend()
    ax.grid()
    plt.show()
```



```
In [17]:
    A = np.array([[1, 1], [0, -1]])
    x_1 = np.array([1, .707, 0, -.707, -1, -.707, 0, .707, 1])
    x_2 = np.array([0, .707, 1, .707, 0, -.707, -1, -.707, 0])

    x = np.stack((x_1, x_2))
    Ax = A.dot(x)

    fig, ax = plt.subplots(figsize=(5, 5))
    ax.plot(Ax[0,:], Ax[1,:], linewidth=2, label='$Ax$ given $x \in \mathcal{X}_2$')
    ax.set_xlim([-3, 3])
    ax.set_ylim([-3, 3])
    ax.set_title('$A_2, \mathcal{X}_{2}$')
    ax.legend()
    ax.grid()
    plt.show()
```



```
In [18]:
    A = np.array([[1, 1], [0, -1]])
    x_1 = np.array([1, 1, 0, -1, -1, -1, 0, 1, 1])
    x_2 = np.array([0, 1, 1, 1, 0, -1, -1, -1, 0])

    x = np.stack((x_1, x_2))
    Ax = A.dot(x)

    fig, ax = plt.subplots(figsize=(5, 5))
    ax.plot(Ax[0,:], Ax[1,:], linewidth=2, label='$Ax$ given $x \in \mathcal{X}_{\text{infty}}$')
    ax.set_xlim([-3, 3])
    ax.set_ylim([-3, 3])
    ax.set_ylim([-3, 3])
    ax.set_title('$A_2, \mathcal{X}_{\text{infty}}$')
    ax.legend()
    ax.grid()
    plt.show()
```


For the condition where $A=\begin{bmatrix}1&-1\\1&1\end{bmatrix}$, we can calculate our new T-tables in-code to produce the plots as shown below.

```
In [19]:
    A = np.array([[1, -1], [1, 1]])
    x_1 = np.array([1, 1/2, 0, -1/2, -1, -1/2, 0, 1/2, 1])
    x_2 = np.array([0, 1/2, 1, 1/2, 0, -1/2, -1, -1/2, 0])

    x = np.stack((x_1, x_2))
    Ax = A.dot(x)

    fig, ax = plt.subplots(figsize=(5, 5))
    ax.plot(Ax[0,:], Ax[1,:], linewidth=2, label='$Ax$ given $x \in \mathcal{X}_1$')
    ax.set_xlim([-3, 3])
    ax.set_ylim([-3, 3])
    ax.set_title('$A_3, \mathcal{X}_{1}$')
    ax.legend()
    ax.grid()
    plt.show()
```



```
In [20]: A = np.array([[1, -1], [1, 1]])
    x_1 = np.array([1, .707, 0, -.707, -1, -.707, 0, .707, 1])
    x_2 = np.array([0, .707, 1, .707, 0, -.707, -1, -.707, 0])

x = np.stack((x_1, x_2))
    Ax = A.dot(x)

fig, ax = plt.subplots(figsize=(5, 5))
    ax.plot(Ax[0,:], Ax[1,:], linewidth=2, label='$Ax$ given $x \in \mathcal{X}_2$')
    ax.set_xlim([-3, 3])
    ax.set_ylim([-3, 3])
    ax.set_title('$A_3, \mathcal{X}_{2}$')
    ax.legend()
    ax.grid()
    plt.show()
```



```
In [21]: A = np.array([[1, -1], [1, 1]])
    x_1 = np.array([1, 1, 0, -1, -1, 0, 1, 1])
    x_2 = np.array([0, 1, 1, 1, 0, -1, -1, -1, 0])

x = np.stack((x_1, x_2))
Ax = A.dot(x)

fig, ax = plt.subplots(figsize=(5, 5))
    ax.plot(Ax[0,:], Ax[1,:], linewidth=2, label='$Ax$ given $x \in \mathcal{X}_{\text{infty}}')
    ax.set_xlim([-3, 3])
    ax.set_ylim([-3, 3])
    ax.set_ylim([-3, 3])
    ax.set_title('$A_3, \mathcal{X}_{\text{infty}}')
    ax.legend()
    ax.grid()
    plt.show()
```


(c) Convex Hulls

Given $\Delta_2=\{x\mid \mathbf{1}^Tx=1, x\geq 0x\in \mathbb{R}^2\}$, $\Delta_3=\{x\mid \mathbf{1}^Tx=1, x\geq 0x\in \mathbb{R}^3\}$, and $\Delta_4=\{x\mid \mathbf{1}^Tx=1, x\geq 0x\in \mathbb{R}^4\}$, we can draw the set of points for Ax for $x\in \Delta_2$, $x\in \Delta_3$, and $x\in \Delta_3$.

We can generate an initial T-chart of values for x within the defined sets.

For Δ_2 , given that $\mathbf{1}^T x = 1$ we know that

$$x_1 + x_2 = 1$$
 where $x \ge 0$

Thus, we can generate a T-chart defined as,

$$\begin{array}{c|cc}
x_1 & x_2 \\
\hline
1 & 0 \\
0 & 1 \\
\hline
1/2 & 1/2
\end{array}$$

For the condition where $A=\begin{bmatrix}1&0\\0&1\end{bmatrix}$, we can plot the results of Ax as shown below.

```
In [7]:
    A = np.array([[1, 0], [0, 1]])
    x_1 = np.array([1, 1/2, 0])
    x_2 = np.array([0, 1/2, 1])
    x = np.stack((x_1, x_2))
```

```
fig, ax = plt.subplots(figsize=(5, 5))
ax.plot(Ax[0,:], Ax[1,:], linewidth=2, label='$Ax$ given $x \in \mathcal{X}_1$')
ax.set_xlim([-3, 3])
ax.set_ylim([-3, 3])
ax.set_title('$A_3, \mathcal{X}_{1}$')
ax.legend()
ax.grid()
plt.show()
```


For Δ_3 , given that $\mathbf{1}^T x = 1$ we know that

$$x_1 + x_2 + x_3 = 1$$
 where $x \ge 0$

Thus, we can generate a T-chart defined as,

x_1		x_2		x_3		
	1		0		0	
	0		1		0	
	0		0		1	

For the condition where $A=\begin{bmatrix} -1 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$, we can plot the results of Ax as shown below.

```
In [28]:
A = np.array([[-1, 1, 1], [0, 1, -1]])
x_1 = np.array([1, 0, 0, 1])
x_2 = np.array([0, 1, 0, 0])
x_3 = np.array([0, 0, 1, 0])
```

```
x = np.stack((x_1, x_2, x_3))
Ax = A.dot(x)

fig, ax = plt.subplots(figsize=(5, 5))
ax.plot(Ax[0,:], Ax[1,:], linewidth=2, label='$Ax$ given $x \in \mathcal{X}_1$')
ax.set_xlim([-3, 3])
ax.set_ylim([-3, 3])
ax.set_title('$A_3, \mathcal{X}_{1}$')
ax.legend()
ax.grid()
plt.show()
```


For Δ_4 , given that $\mathbf{1}^T x = 1$ we know that

$$x_1 + x_2 + x_3 + x_4 = 1$$
 where $x \ge 0$

Thus, we can generate a T-chart defined as,

x_1		x_2	x_3	x_4
	1	0	0	0
	0	1	0	0
	0	0	1	0
	0	0	0	1

For the condition where $A=\begin{bmatrix}1&-1&0&0\\1&1&0&-1\end{bmatrix}$, we can plot the results of Ax as shown below.

```
In [31]: A = np.array([[1, -1, 0, 0], [1, 1, 0, -1]])
```

```
x_1 = np.array([1, 0, 0, 0, 1])
x_2 = np.array([0, 1, 0, 0, 0])
x_3 = np.array([0, 0, 1, 0, 0])
x_4 = np.array([0, 0, 0, 1, 0])

x = np.stack((x_1, x_2, x_3, x_4))
Ax = A.dot(x)

fig, ax = plt.subplots(figsize=(5, 5))
ax.plot(Ax[0,:], Ax[1,:], linewidth=2, label='$Ax$ given $x \in \mathcal{X}_1$')
ax.set_xlim([-3, 3])
ax.set_ylim([-3, 3])
ax.set_title('$A_3, \mathcal{X}_{1}$')
ax.legend()
ax.grid()
plt.show()
```


4. Affine and Half Spaces

• (a)

For $a^T = [\, 1 \quad -1\,]$ and $X = \{x \in \mathbb{R}^2 | a^Tx = 0\}$, the set is defined as:

$$a^T x = 0 \ [1 \quad -1] x = 0 \ x_1 - x_2 = 0 \ x_2 = x_1$$

This is space is a subspace but **not** a affine space nor a half space.

For $a^T = [1 \quad -1]$ and $X = \{x \in \mathbb{R}^2 | a^Tx = 1\}$, the set is defined as:

$$a^T x = 1 \ [1 \quad -1] x = 1 \ x_1 - x_2 = 1 \ x_2 = x_1 - 1$$

This is space is a affine space but **not** a subspace nor a half space.

For $a^T = [1-1]$ and $X = \{x \in \mathbb{R}^2 | a^Tx \leq 1\}$, the set is defined as:

$$a^Tx \leq 1$$
 $[1-1]x \leq 1$ $x_1-x_2 \leq 1$ $x_2 \geq x_1-1$

This is space is a half space but **not** an affine space nor a subspace.

```
In [22]:
    x = np.linspace(-5, 5, num=100)
    y = x - 1
    y2 = -6 + x*0

    fig, ax = plt.subplots(figsize=(5, 5))
    ax.plot(x, y, label='$X = \{ x \in \mathbb{R}^{2} | Ax = 0 \}$', linewidth=2)
    ax.fill_between(x, y, y2)
    ax.legend()
    ax.grid()
    plt.show()
```


(b)

For $a^T = [\ 1 \quad 1 \]$ and $X = \{x \in \mathbb{R}^2 | a^T x = 0 \}$, the set is defined as:

$$a^T x = 0 \ [1 \quad 1 \quad 1] \, x = 0 \ x_1 + x_2 + x_3 = 0 \ x_3 = -x_1 - x_2$$

This is space is a *subspace* but **not** an *affine space* nor a *half space*.

```
fig = plt.figure(figsize=(10, 10))
ax = plt.axes(projection='3d')

# Make data.
x_1 = np.arange(-5, 5, 1)
x_2 = np.arange(-5, 5, 1)
x_2, x_1 = np.meshgrid(x_1, x_2)
x_3 = -x_1 - x_2

# Plot the surface.
surf = ax.plot_surface(x_1, x_2, x_3)
ax.set_xlabel('$x_1$')
ax.set_ylabel('$x_2$')
ax.set_zlabel('$x_3$')
plt.show()
```


For $a^T = [\ 1 \quad 1 \]$ and $X = \{x \in \mathbb{R}^2 | a^Tx = 1\}$, the set is defined as:

$$a^T x = 0 \ egin{bmatrix} 1 & 1 & 1 \end{bmatrix} x = 1 \ x_1 + x_2 + x_3 = 1 \ x_3 = 1 - x_1 - x_2 \ \end{pmatrix}$$

This is space is an affine space but **not** a subspace nor a half space.

```
fig = plt.figure(figsize=(10, 10))
ax = plt.axes(projection='3d')

# Make data.
x_1 = np.arange(-5, 5, 1)
x_2 = np.arange(-5, 5, 1)
x_2, x_1 = np.meshgrid(x_1, x_2)
x_3 = 1 - x_1 - x_2
```

```
# Plot the surface.
surf = ax.plot_surface(x_1, x_2, x_3)
ax.set_xlabel('$x_1$')
ax.set_ylabel('$x_2$')
ax.set_zlabel('$x_3$')
plt.show()
```


For $a^T = [\ 1 \quad 1 \]$ and $X = \{x \in \mathbb{R}^2 | a^Tx \leq 1\}$, the set is defined as:

$$a^T x \leq 0 \ egin{bmatrix} 1 & 1 & 1 \end{bmatrix} x \leq 1 \ x_1 + x_2 + x_3 \leq 1 \ x_3 \leq 1 - x_1 - x_2 \end{bmatrix}$$

This is space is a half space but **not** a subspace nor an affine space.

Note: Due to my limited knowledge of 3D plots in matplotlib, I was unable to generate a 'fill-in' above the surface as shown below. A correct plot would encompass the points on the surface and any value above the surface.

```
In [25]: fig = plt.figure(figsize=(10, 10))
    ax = plt.axes(projection='3d')

# Make data.
    x_1 = np.arange(-5, 5, 1)
    x_2 = np.arange(-5, 5, 1)
    x_2, x_1 = np.meshgrid(x_1, x_2)
    x_3 = 1 - x_1 - x_2

# Plot the surface.
surf = ax.plot_surface(x_1, x_2, x_3)
ax.set_xlabel('$x_1$')
ax.set_ylabel('$x_2$')
ax.set_zlabel('$x_3$')
plt.show()
```


For $A=egin{bmatrix}1&1&1\\1&-1&0\end{bmatrix}$ and $X=\{x\in\mathbb{R}^2|Ax=0\}$, the set is defined as:

$$Ax=0$$

$$\begin{bmatrix}1&1&1\\1&-1&0\end{bmatrix}x=0$$

$$\begin{bmatrix}x_1+x_2+x_3\\x_1-x_2\end{bmatrix}=0$$

From this, we have two equations. We can solve one equation for x_2 with respect to x_1 such that,

$$x_1 - x_2 = 0$$
$$x_2 = x_1$$

Subsiting this in our other equation we find,

$$x_1 + x_2 + x_3 = 0$$

 $x_1 + (x_1) + x_3 = 0$
 $x_3 = -2x_1$

This is space is a *subspace* but **not** an *affine space* nor a *half space*.

```
In [26]:
    fig = plt.figure(figsize=(10, 10))
    ax = plt.axes(projection='3d')

# Make data.
    x_1 = np.arange(-5, 5, 1)
    x_2 = x_1
    x_2, x_1 = np.meshgrid(x_1, x_2)
    x_3 = -2 * x_1

# Plot the surface.
    surf = ax.plot_surface(x_1, x_2, x_3)
    ax.set_xlabel('$x_1$')
    ax.set_ylabel('$x_2$')
    ax.set_zlabel('$x_3$')
    plt.show()
```


For $A=egin{bmatrix}1&1&1\\1&-1&0\end{bmatrix}$, $b=egin{bmatrix}1\\1\end{bmatrix}$, and $X=\{x\in\mathbb{R}^2|Ax=b\}$, the set is defined as:

$$Ax = b$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_1 + x_2 + x_3 \\ x_1 - x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

From this, we have two equations. We can solve one equation for x_2 with respect to x_1 such that,

$$egin{aligned} x_1-x_2&=1\ x_2&=x_1-1 \end{aligned}$$

Subsiting this in our other equation we find,

$$x_1 + x_2 + x_3 = 1$$

$$x_1 + (x_1 - 1) + x_3 = 1$$

 $x_3 = 2 - 2x_1$

This is space is an affine space but **not** a subspace nor a half space.

```
fig = plt.figure(figsize=(10, 10))
ax = plt.axes(projection='3d')

# Make data.
x_1 = np.arange(-5, 5, 1)
x_2 = x_1
x_2, x_1 = np.meshgrid(x_1, x_2)
x_3 = 2 - 2 * x_1

# Plot the surface.
surf = ax.plot_surface(x_1, x_2, x_3)
ax.set_xlabel('$x_1$')
ax.set_ylabel('$x_2$')
ax.set_zlabel('$x_3$')
plt.show()
```


For
$$A=egin{bmatrix}1&1&1\\1&-1&0\end{bmatrix}$$
 , $b=egin{bmatrix}1\\1\end{bmatrix}$, and $X=\{x\in\mathbb{R}^2|Ax\leq b\}$, the set is defined as:

$$Ax \leq b$$
 $egin{bmatrix} 1 & 1 & 1 \ 1 & -1 & 0 \end{bmatrix} x \leq egin{bmatrix} 1 \ 1 \end{bmatrix}$ $egin{bmatrix} x_1 + x_2 + x_3 \ x_1 - x_2 \end{bmatrix} \leq egin{bmatrix} 1 \ 1 \end{bmatrix}$

From this, we have two equations. We can plot both equations on the graph and identify the region that satisfies both equations. We first solve the bottom row,

$$x_1 - x_2 \le 1$$

$$x_2 \geq x_1 - 1$$

Solving the top row,

$$x_1 + x_2 + x_3 \le 1$$

 $x_3 \le 1 - x_2 - x_3$

This is space is a half space but **not** a subspace nor an affine space.

```
In [28]:
          fig = plt.figure(figsize=(10, 10))
          ax = plt.axes(projection='3d')
          # Make data for the bottom row
          n_1 = np.arange(-5, 5, 1)
          n_2 = n_1 - 1
          n_2, n_1 = np.meshgrid(n_1, n_2)
          n_3 = n_1
          # Make data for the top row
          x_1 = np.arange(-5, 5, 1)
          x_2 = x_1
          x_2, x_1 = np.meshgrid(x_1, x_2)
          x_3 = 1 - x_2 - x_3
          # Plot the surface.
          ax.plot_surface(x_1, x_2, x_3, color='blue')
          ax.plot_surface(n_1, n_2, n_3, color='green')
          ax.set_xlabel('$x_1$')
          ax.set_ylabel('$x_2$')
          ax.set_zlabel('$x_3$')
          plt.show()
```


5. Coordinates

(a)

Given $y=\begin{bmatrix} 4\\0 \end{bmatrix}$ and $T=\begin{bmatrix} 1&1\\1&-1 \end{bmatrix}$, we can plot the columns of the matrix T and y to compute the coordinates of the vector y with respect to new basis.

```
In [29]:
    y = np.array([[4], [0]])
    T = np.array([[1, 1], [1, -1]])
    origin = np.array([[0], [0]])

    fig, ax = plt.subplots(figsize=(5, 5))
    origin = np.array([[0, 0, 0], [0, 0, 0]])
    ax.quiver([0], [0], y[0], y[1], angles='xy', color='r', scale_units='xy', scale=1, labe ax.quiver([0], [0], T[0,0], T[1,0], angles='xy', color='b', scale_units='xy', scale=1, ax.quiver([0], [0], T[0,1], T[1,1], angles='xy', color='g', scale_units='xy', scale=1,
```

```
ax.set_xlim([-2, 5])
ax.set_ylim([-3, 3])
ax.grid()
ax.legend()
plt.show()
```


By solving for x where y=Tx, we find that $x=T^{-1}y$. Solving for x, we find that $x=\begin{bmatrix}2\\2\end{bmatrix}$

```
In [30]: x = np.linalg.inv(T).dot(y)
    print('Coordinates of y with respect to new basis:\n', x)
```

Coordinates of y with respect to new basis: [[2.] [2.]]

(b)

Given $y=\begin{bmatrix}0\\2\end{bmatrix}$ and $T=\begin{bmatrix}0&-1\\-1&-1\end{bmatrix}$, we can plot the columns of the matrix T and y to compute the coordinates of the vector y with respect to new basis.

```
ax.quiver([0], [0], T[0, 0], T[1, 0], angles='xy', color='b', scale_units='xy', scale=1
ax.quiver([0], [0], T[0,1], T[1,1], angles='xy', color='g', scale_units='xy', scale=1,
ax.set_xlim([-2, 2])
ax.set_ylim([-3, 3])
ax.grid()
ax.legend()
plt.show()
```


By solving for x where y=Tx, we find that $x=T^{-1}y$. Solving for x, we find that $x=\begin{bmatrix} -2\\0 \end{bmatrix}$.

```
In [32]:     x = np.linalg.inv(T).dot(y)
     print('Coordinates of y with respect to new basis:\n', x)
```

Coordinates of y with respect to new basis: [[-2.] [0.]]

(c)

Given $y=\begin{bmatrix}2\\-2\end{bmatrix}$ and $T=\begin{bmatrix}1&-1\\0&-1\end{bmatrix}$, we can plot the columns of the matrix T and y to compute the coordinates of the vector y with respect to new basis.

```
In [33]:
    y = np.array([[2], [-2]])
    T = np.array([[1, -1], [0, -1]])
    origin = np.array([[0], [0]])
    fig, ax = plt.subplots(figsize=(5, 5))
```

```
origin = np.array([[0, 0, 0], [0, 0, 0]])
ax.quiver([0], [0], y[0], y[1], angles='xy', color='r', scale_units='xy', scale=1, labe
ax.quiver([0], [0], T[0, 0], T[1, 0], angles='xy', color='b', scale_units='xy', scale=1
ax.quiver([0], [0], T[0, 1], T[1, 1], angles='xy', color='g', scale_units='xy', scale=1
ax.set_xlim([-2, 3])
ax.set_ylim([-3, 3])
ax.grid()
ax.legend()
plt.show()
```


By solving for x where y=Tx, we find that $x=T^{-1}y$. Solving for x, we find that $x=\begin{bmatrix} 4\\2 \end{bmatrix}$.

```
In [34]: x = np.linalg.inv(T).dot(y)
    print('Coordinates of y with respect to new basis:\n', x)
```

Coordinates of y with respect to new basis: [[4.] [2.]]

6. Finding a Nullspace Basis

(a) Basis Derivation

Given that
$$A \in \mathbb{R}^{m imes n} (m < n)$$
 and $B = \left[egin{array}{c} -A_1^{-1} A_2 \ I \end{array}
ight].$

(i)

We assume that $v\in \mathcal{N}(A)$ and thus we know that Av=0, i.e. $[egin{array}{cc} A_1 & A_2 \end{array}\ v=0.$

We let $v=\begin{bmatrix}u\\w\end{bmatrix}$ where u and w satisfies the relationship $A_1u+A_2w=0$. Given that A_1 is a square matrix, we can multiply the equation by A_1^{-1} such that

$$u + A_1^{-1} A_2 w = 0$$

$$u = -A_1^{-1}A_2w$$

Given this relationship, we can now consider the product

$$Bw = \left[egin{array}{c} -A_1^{-1}A_2 \ I \end{array}
ight]w$$

$$Bw = \left[egin{array}{c} -A_1^{-1}A_2w \ Iw \end{array}
ight]$$

$$Bw = \left[egin{array}{c} u \ w \end{array}
ight] = v.$$

Thus, we can see that any vector $v \in \mathcal{N}(A)$ can be written as v = Bw for some $w \in \mathbb{R}^{n-m}$.

(ii)

Let us assume there exists a column vector $c = \left[\, c_1 c_2 \ldots c_{n-m} \, \right]^T$ such that Bc = 0.

Given Bc = 0,

$$\left[\begin{array}{c} -A_1^{-1}A_2 \\ I \end{array} \right] c = 0$$

$$\left[\begin{array}{c} -A_1^{-1}A_2c \\ c \end{array} \right] = 0$$

$$c = 0$$
.

Thus, the column vector c is the zero vector, which implies the columns B are linearly independent.

(b) Computation

(i)

Given $A=\begin{bmatrix}1&0&0&1&0&-1\\0&1&0&0&1&0\\0&0&1&2&0&0\end{bmatrix}$, we can solve for the basis of the nullspace as follows,

$$Ax = 0$$

$$egin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \ 0 & 1 & 0 & 0 & 1 & 0 \ 0 & 0 & 1 & 2 & 0 & 0 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \end{bmatrix} = 0$$

$$egin{bmatrix} x_1 + x_4 - x_6 \ x_2 + x_5 \ x_3 + 2x_4 \end{bmatrix} = 0$$

Given that we have 6 variables and 3 equations, there are infinitely many solutions. Thus, we can choose to solve for 3 of the variables - specifically x_1 , x_2 , and x_3 .

$$x_1 = -x_4 + x_6 \ x_2 = -x_5 \ x_3 = -2x_4$$

Writing this in vector form, we see that

$$egin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \end{bmatrix} = egin{bmatrix} -1 \ 0 \ -2 \ 1 \ 0 \ 0 \end{bmatrix} x_4 + egin{bmatrix} 0 \ -1 \ 0 \ 0 \ 1 \ 0 \end{bmatrix} x_5 + egin{bmatrix} 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \end{bmatrix} x_6$$

Therefore, the null space has a basis formed by the set $\left\{ \begin{array}{c|c} 0 \\ -2 \\ 1 \\ 0 \\ 0 \end{array}, \begin{array}{c|c} -1 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} \right\}.$

(ii)

Given $A=egin{bmatrix} 2 & -1 & 1 & 2 \\ 1 & 1 & 3 & 4 \end{bmatrix}$, we can solve for the basis of the nullspace as follows.

First, we must transform the matrix A into reduced row echelon form. This is performed by a series of row operation,

$$A = \begin{bmatrix} 2 & -1 & 1 & 2 \\ 1 & 1 & 3 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1/2 & 1/2 & 1 \\ 1 & 1 & 3 & 4 \end{bmatrix}$$
 (multiply first row by 1/2)

$$\begin{bmatrix} 1 & -1/2 & 1/2 & 1 \\ 0 & 3/2 & 5/2 & 3 \end{bmatrix} \qquad \text{(add } -1 \text{ times the 1st row to the 2nd row)}$$

$$\begin{bmatrix} 1 & -1/2 & 1/2 & 1 \\ 0 & 1 & 5/3 & 2 \end{bmatrix} \qquad \text{(multiply 2nd row by 2/3)}$$

$$\begin{bmatrix} 1 & 0 & 4/3 & 2 \\ 0 & 1 & 5/3 & 2 \end{bmatrix} \qquad \text{(add } 1/2 \text{times the 2nd row to the 1st row)}$$

Now we can solve the equation Ax = 0,

$$Ax = 0$$

$$\begin{bmatrix} 1 & 0 & 4/3 & 2 \ 0 & 1 & 5/3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{bmatrix} = 0$$

$$\begin{bmatrix} x_1 + \frac{4}{3}x_3 + 2x_4 \ x_2 + \frac{5}{3}x_3 + 2x_4 \end{bmatrix} = 0$$

Given that we have 4 variables and 2 equations, there are infinitely many solutions. Thus, we can choose to solve for 2 of the variables - specifically x_1 and x_2 .

$$x_1 = -rac{4}{3}x_3 + 2x_4$$
 $x_2 = -rac{5}{3}x_3 - 2x_4$

Writing this in vector form, we see that

$$egin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{bmatrix} = egin{bmatrix} -rac{4}{3} \ -rac{5}{3} \ 1 \ 0 \end{bmatrix} x_3 + egin{bmatrix} -2 \ -2 \ 0 \ 1 \end{bmatrix} x_4$$

Therefore, the null space has a basis formed by the set $\left\{ \begin{bmatrix} -\frac{4}{3} \\ -\frac{5}{3} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ -2 \\ 0 \\ 1 \end{bmatrix} \right\}$.