Key obseration for classifying Finite groups: Gack on itself by conjugation: g acts by h -> ghgi. We've seen that his does define a group hammaylism G -> Aut(G) < Perm(G), so it is indeed an action.

· The orbits of this action are conjugacy clases in G, and the stabilizer of an element $h \in G$ is $Stab(h) = \{g \in G/ghg^{-1} = h\} = \{g \in G/gh = hg\},$ the subgroup of elevents which community with h. This is called the communities of h, $Z(h) \subset G$. Note $\binom{1}{2}Z(h) = Z(G)$ the center of G is the kenel of the action (ie. the subgroup of elements which act trivially)

So: The action is trival when G is aselian; faithful iff Z(G) = {e}.

4 How does his help?

The conjugacy classes form a parkhon of G, so $|G| = \sum_{C \in G} |C|$, |G| = |G| The conjugacy class form a parkhon of G, so $|G| = \sum_{C \in G} |C|$, |G| = |G| dride |G|. For each caringary class, $|C_h| = \frac{|G|}{|Z(h)|} dride |G|$. Morrare |C|=1 for the identity elever, and |C|=1 iff he Z(G).

(A) is called the class equation of the group G.

This is extendy useful. For example:

Theorem: If $|G| = p^2$ for p prime, then G next be abelian.

Proof: conjugacy classes have order $|C| \in \{1, p, p^2\}$, and $\sum |C| = p^2$. Thus, the number of carjugacy claves s.t. |C|=1, ie. of central elevers of G, mut be a multiple of p. Hence p/12(6).

- · Z(G) is a subgroup of G, so |Z(G)| dride p2: it's p or p2. If $|Z(G)| = p^2$ then G is a Letian!
- . Now assume |Z(G)| = p, and let $g \notin Z(G)$. Then g compares with itself and with Z(G), so Z(g) > Z(G) U {g} hence |Z(g)| > p. But Z(g) is a subgroup of G, so $|Z(g)| |p^2$. This implies Z(g) = G, ie. g countles with all elements of G, ie. g ∈ Z(G), contradiction. So Z(G)=G, G is abelian. []

(Hence the only groups of order p up to iso are Z/2 and Z/p × Z/p).

· Proposition; There are exactly 5 groups of order 8 up to isom.

We know the 3 abolian ones: 2/8, 2/2 < 2/4, (2/2).

We know Dy = symphies of the square.

mult by -1 flips signs

Finally: queterion group $\{\pm 1, \pm i, \pm j, \pm k\}$ with $i^2=j^2=k^2=-1$,

ij=k, jk=i, ki=j

Two ways to show there's only two non abelian groups of order 8:

· "by hand" - see HW hint: IF |G| = 8 and G not abelian.

Sty 1: a group where every element has $g^2 = 1$ must be abelian, so her mut be an elevent a of order 4 (order 8 would make G=7/8)

Sty 2: the order 4 subgroup generaled by a is normal. Work out possibilities for null. by an eleves b such that ab 7 ba.

· using conjugacy and class equation:

Stop 1: class equation $8 = \Sigma |C|$, $|C| \in \{1,2,4,8\}$, $|C_{e}| = 1$

=> Z(G)={g/|Cg|=1} has order 2,4, or 8. 8=> G abelian.

4 is impossible by same argument as for p^2 above. So |Z(G)|=2.

Sty 2: if $g \notin Z(G)$ then $Z(g) \subsetneq G$, but $Z(G) \cup \{g\} \subset Z(g)$. So |Z(g)| = 4,

and $|C_g|=2$. Hence class egration is 8=1+1+2+2+2

e and the other central element 3 other conj. classes

Then work not the possibilities!

Conjugacy classes in the symmetric group Sn:

 $q_1 \mapsto q_2$

• A k-cycle $\sigma = (a_1 a_2 \dots a_k) \in S_n$ is a penthalian mapping $a_k \longrightarrow a_1$

is dother elements of {1. n} and all other elements to themselves.

· Two cycles are <u>disjoint</u> if the subsets of elements they cycle are disjoint.

Disjoint cycles communite.

· Prop. | any permulation can be expressed as a product of dijoint cycles, uniquely up to reordering the factors (disjoint cycles commute so order doesn't make)

Algorithm: look at successive mayor of I under 6, this gives a subset of elements that are eyelically paramed by o. Then consider elevers not in this subset, and appeal.

In other terms: the vaious cycles are the restrictions of 6 to the orbits of <0> < S_n on {1...n}.

Ex: 6= (123456) = (136)(25), same for other elements not in the previous cycles.

Successive images of 1 under 6 until returns to 1

 $\frac{P_{rop}}{|t|}$ Let $\sigma = (a_1 ... a_k)$ k-cycle, $\tau \in S_n$ any penntation, then $\tau = \overline{\tau}' = (\tau(a_i) ... \tau(a_k))$

 $Pf: calculate: T(a_i) \mapsto a_i \mapsto a_{i+1} \mapsto T(a_{i+1})$, so action on $\{T(a_i)\}$ is as claimed. other elements $\tau(6) \mapsto b \mapsto \tau(6)$.

Corollay: All k-cycles are conjugate in Sn.

More generally, $\sigma, \tau \in S_n$ are conjugate iff they have the same cycle lengths in their disjoint cycle decompositions.

Hence, conjugacy classes in S_n correspond to partitions of n

ie. ways to write n as sum of positive integers (up to reordering the terms).

Ex: n=3, partitions are 3=1+1+1 identity (only "1-ydes") |conj.class = 1 3=2+1 transpositions (ij) 3 = 3 3. ydes

Ex: n=4:	patition	description	size of cry. class
	1+1+1+1	id	1
	2+1+1	transposition	6
	2+2	2 transpositions	3
	3+1	3-cycle	8
	4	4-cycle	6

The class equation if S4 is 24 = 1+3+6+6+8.

This helps up find normal subgroups of S4; HCG normal iff aHa-1=H VaEG So a normal subgroup is a union of conjugacy classes! Also, next include id, and IHI drides IGI. Here: apart from {id} and S4, the only consider are 1+3=4/24. {id} U {(ij)(kl)}. This is indeed a normal sugge. (~7/2 × Z/2) 1+3+8 = 12/24 : {id} \(\delta\)\(\left\)\(\delta\)\(\del

Ex; n: 5:	patition	desciption	size of canji class
_	1+1+1+1+1	<i>id</i>	1
	2+1+1+1	transposition	10
	2+2+1	2 transpositions	15
	3+/+1	3-cycle	20
	3+2	3-ycle + transposition	n 20
	4+1	4-yde	30
	5	5-cycle	24

Class equation: 120 = 1+10+15+20+20+24+30.

Search for nound subgroups (broikes {id} and S5):

only options are 1+15+24=40 {id} \cup {(ij)(kl)} \cup {5-ycles} This is not a subgroup, (12345)(12)(34)=(135)

and 1+15+20+24=60: id, (ij)(kl), 5-cycles, and either 3-cycles C_2 possibilities

or $(3 \cdot cycle)(branspoirtion)$

By the above, only the first option (3-cycles) works, & gives A5 = S5.

The alterating group:

Recall we've defined the sign homomorphism $S_n \longrightarrow \{\pm 1\}$ by $sgn(\prod_{i=1}^{n} hranpsihon_i) = (-1)^k$ using that hranspositions generate S_n ; still need to check this is independent of how we express σ as a product of hranspositions. I method: $sgn(\sigma) = (-1)^{inversion_i}$ where $inversion_i = \{(i,j) \mid 1 \le i < j \le n \text{ and } \sigma(i) > \sigma(j)\}$. (by then... check it's a homomorphism?).

take a vector space $V \simeq \mathbb{R}^n$, with basis (e_1, \cdot, e_n) , then to each $\sigma \in S_n$ we associate an element of $GL(V) \simeq GL(n)$: the linear map $T_i:V \to V$ of $e_i \mapsto e_{\sigma(i)}$. This gives an injective homomorphism $S_n \hookrightarrow GL(n)$ (with image the subgroup of "permulation matrice")

Now, T_{σ} has finite order (since σ does) hence $det(T_{\sigma}) \in \mathbb{R}$ is a root of unity,

hence $\in \{\pm 1\}$. Can define $sgn(\sigma) = det(T_{\sigma}) - clearly well def^d and homomorphism. Concretely, to compute the sign: <math>\Lambda^m T_{\sigma}$ acts on $\Lambda^m V$ by $e_1 a... ne_n \mapsto e_{\sigma(1)} n... ne_{\sigma(n)}$ and the sign is the number of transpositions needed to switch these back in order, so this agrees with the other defit.

* Observe: a k-cycle has sign $(-1)^{k-1}$. (since $(i_1 \dots i_k) = (i_1 i_2)(i_2 i_3) \dots (i_{k-1} i_k)$). So if $6 \in S_n$ has cycle lengths $k_1, -, k_l$ (incl. the 1's) is corresponds to partition $n = k_1 + \dots + k_l$, then $sgn(6) = (-1)^{\sum (k_1 - 1)} = (-1)^{n-l}$.

Def: $A_n = \ker(sgn) \subset S_n$ (a nearl subgrap of index 2 in S_n). the alternating grap.

* Pap: If CeSn is a conjugacy class then either (1) C is odd, CnAn=\$, or (2a) CeAn is a conjugacy class in An, (2b) CeAn splits into 2 conjugacy classes in An.

(5)

Case 2a vs.26: 0EC, Z(0)={TESn/Toi'=0} centralize,

is Z(6) C An or not? if yes then carjugates of o by old penutations are difficult from conjugates by even penutations, form two conj. classes in An. if not then all conjugates of 6 in Sn are conjugates by elements of An.

 $Ex: n=5: A_5 = \{id\} \cup \{(ij)(kl)\} \cup \{3-cycle\} \cup \{5-cycle\}.$

3. cycles still form a single conjugacy class in A_5 ; also for (ij)(kl)'s ((ij) $\in \mathbb{Z}((ij)(kl))$)

5-cycles split into 2 conjugacy classes in As.

So the class equation of A5 is 60 = 1+15+20+12+12.

Can now look for normal subgroups of A5. Can't reach a divisor of 60 in any nonhival way, here only {1} and A5:

=> Prop: A5 is simple.