## Question 1

On the homework you saw that  $3^5$  could be expressed as a sequence of squaring and multiplying:  $(((1^2*3)^2)^2*3)$ 

Using this same notation write the sequence of squaring and multiplying for 4<sup>11</sup>. Begin with 1^2 as your first squaring operation, and include a close-parenthesis after each SQ or SQ-MULT step, as demonstrated in the example. Do not include any spaces. Note: 4 in binary is 100 and 11 in binary is 1011. Your answer should have 4 open-parenthesis and 4 close-parenthesis.

1.5 / 1.5 pts

You may paste your text into <a href="https://www.wolframalpha.com">https://www.wolframalpha.com</a> and it should give you the correct answer (4194304).

((((1^2\*4)^2)^2\*4)^2\*4)

Step 1: Convert exponent to binary

Step 2: 40

12

Step 3: 401

12 . 4

Step 4: 4010

Step 5: 40101

$$((1^2 \cdot 4)^2)^2 \cdot 4$$

Step 6: 401011

$$(((((1^2 \cdot 4)^2)^2 \cdot 4)^2 \cdot 4)$$

## Question 2 1.5 / 1.5 pts

Let's say you are generating RSA keys and you choose p=43 and q=47. What is the smallest value of e that qualifies as an encryption exponent?

You may use <a href="https://www.wolframalpha.com">https://www.wolframalpha.com</a> at to aid with these problems. Some useful queries might be things like "11^3 mod 11", "gcd(50,35)" or "inverse of 7 mod 13".

5

$$p = 43$$
  $q = 47$   $e = ?$ 
 $n = pq = (43)(47) = 2021$ 
 $p = 43$ 
 $p = 43$ 
 $p = 47$ 
 $p = 6$ 
 $p = 6$ 

## 1.5 / 1.5 pts Question 3 Let's say you are generating RSA keys and you choose p=101, q=103 and encryption exponent e=7. What value d do you choose for the decryption exponent? You may use <a href="https://www.wolframalpha.com">https://www.wolframalpha.com</a> ne to aid with these problems. Some useful queries might be things like "11^3 mod 11", "gcd(50,35)" or "inverse of 7 mod 13". 8,743 p = 101 q = 103 e = 7 Let n = pq let d = e-1 mod O(n) n= (101)(103) = 10,403 d = 7 1 mod 10,200 $\Phi(n) = (p-1)(q-1)$ d = 8743 = (100)(102)

$$d = 7^{-1} \mod \Phi(n)$$

$$d = 7^{-1} \mod 10,200$$

$$d = 8743$$

$$= (101)(103) = 10,1$$

$$\Phi(n) = (p-1)(q-1)$$

$$= (100)(102)$$

$$= 10,200$$

