Plasma Membrane

Chapter 5.1

Biol 1A

California State University, Fresno

Learning Goals

Describe the components of the plasma membrane

Identify factors that affect the fluidity of the cell membrane

The Plasma Membrane

- > The plasma membrane has many functions, but the most basic one is to define the borders of the cell and keep the cell functional.
- > The plasma membrane is selectively permeable.

Fluid Mosaic Model

- The explanation proposed by Singer and Nicolson is called the fluid mosaic model.
- The fluid mosaic model describes the structure of the plasma membrane as a mosaic of components—including phospholipids, cholesterol, proteins, and carbohydrates—that gives the membrane a fluid character.

FIGURE 5.2 The fluid mosaic model of the plasma membrane describes the plasma membrane as a fluid combination of phospholipids, cholesterol, and proteins. Carbohydrates attached to lipids (glycolipids) and to proteins (glycoproteins) extend from the outward-facing surface of the membrane.

Phospholipids

Lipid Bilayer

Lipid-bilayer sheet

Proteins

Integral proteins are integrated completely into the membrane structure, and their hydrophobic membrane-spanning regions interact with the hydrophobic region of the phospholipid bilayer.

This type of protein has a hydrophilic region or regions, and one or several mildly hydrophobic regions.

Membrane Proteins

Six major functions of membrane proteins:

- 1. Transport
- 2. Enzymatic activity
- 3. Signal transduction
- 4. Cell-cell recognition
- 5. Intercellular joining
- 6. Attachment to the cytoskeleton and extracellular matrix (ECM)

(a) Transport

(d) Cell-cell recognition

(b) Enzymatic activity

(e) Intercellular joining

(c) Signal transduction

(f) Attachment to the cytoskeleton and extracellular matrix (ECM)

Carbohydrates

- Carbohydrates are the third major component of plasma membranes.
- They are always found on the exterior surface of cells and are bound either to proteins (forming glycoproteins) or to lipids (forming glycolipids).
- Collectively called the glycocalyx

Membrane Fluidity

Phospholipids in the plasma membrane can move within the bilayer

Determinants of membrane fluidity

- temperature
- saturation of fatty acid tails
- cholesterol

Temperature

Increased temperature = increased fluidity

cis double bonds in fatty acid tails make membranes more fluid

Cholesterol has dual effects on fluidity

- at high temperature, cholesterol restricts movement of phospholipids
- at lower temperature, it prevents packing of phospholipids

Consider a fish that lives in extremely cold waters near Antarctica. Develop a hypothesis to explain how the plasma membranes of the cell resist freezing.

Take Home

- ► The plasma membrane is dynamic and made of a phospholipid bilayer, membrane proteins, carbohydrates and cholesterol.
- ► The temperature, saturation of phospholipid fatty acids and cholesterol affect the fluidity of the membrane.
- ▶ Fluidity increases as temperature increases.
- ► Fluidity increases with an increase in unsaturated fatty acids.
- Cholesterol acts as a buffer, increasing fluidity at low temperature and decreasing fluidity at high temperatures