2018年普通高等学校招生全国统一考试

上海 数学试卷

考生注意

- 1. 本场考试时间 120 分钟, 试卷共 4 页, 满分 150 分, 答题纸共 2 页.
- 2. 作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.
- 3. 所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位,在试卷上 作答一律不得分.
- 4. 用 2B 铅笔作答选择题, 用黑色字迹钢笔、水笔或圆珠笔作答非选择题.
- 一、填空题 (本大题共有 12 题,满分 54 分,第 1~6 题每题 4 分,第 7~12 题每题 5 分)考生应在答题纸的相应位置直接填写结果.
- 4 1. 行列式 | 4 1 | 1 的值为 ______.
- 4 2. 双曲线 $\frac{x^2}{4} y^2 = 1$ 的渐近线方程为 ______.
- [4] 3. 在 $(1+x)^7$ 的二项展开式中, x^2 项的系数为 ______ (结果用数值表示).
- 4. 设常数 $a \in \mathbf{R}$, 函数 $f(x) = \log_2(x + a)$, 若 f(x) 的反函数的图像经过点 (3,1),则 a = -
- 4 5. 已知复数 z 满足 (1 + i)z = 1 7 i (i 是虚数单位),则 |z| = _____.
- [4] 6. 记等差数列 $\{a_n\}$ 的前 n 项和为 S_n . 若 $a_3 = 0$, $a_6 + a_7 = 14$, 则 $S_7 =$ ______.
- 5 7. 已知 $\alpha \in \left\{-2, -1, -\frac{1}{2}, \frac{1}{2}, 1, 2, 3\right\}$. 若幂函数 $f(x) = x^{\alpha}$ 为奇函数,且在 $(0, +\infty)$ 上 递减,则 $\alpha =$ ______.
- 8. 在平面直角坐标系中,已知点 A(-1,0) 、 B(2,0) , E 、 F 是 y 轴上的两个动点,且 $|\overrightarrow{EF}| = 2$,则 $\overrightarrow{AE} \cdot \overrightarrow{BF}$ 的最小值为 ______.
- [5] 9. 有编号互不相同的五个砝码,其中 5 克、3 克、1 克砝码各一个, 2 克砝码两个. 从中随机选取三个,则这三个砝码的总质量为 9 克的概率是 ______(结果用最简分数表示).

5 10.	设等比数列 $\{a_n\}$ 的通项公式为 $a_n=q^{n+1}$	$(n \in \mathbf{N}^*)$,前 n 项和为 S_n . 若 $\lim_{n \to \infty}$	$n \frac{S_n}{a}$	$=\frac{1}{2}$,
	则 $q = $		α_{n+1}	_

5 11. 已知常数
$$a > 0$$
,函数 $f(x) = \frac{2^x}{2^x + ax}$ 的图像经过点 $P\left(p, \frac{6}{5}\right)$ 、 $Q\left(q, -\frac{1}{5}\right)$,若 $2^{p+q} = 36pq$,则 $a =$ _______.

5 12. 已知实数
$$x_1$$
、 x_2 、 y_1 、 y_2 满足: $x_1^2 + y_1^2 = 1$, $x_2^2 + y_2^2 = 1$, $x_1x_2 + y_1y_2 = \frac{1}{2}$, 则
$$\frac{|x_1 + y_1 - 1|}{\sqrt{2}} + \frac{|x_2 + y_2 - 1|}{\sqrt{2}}$$
 的最大值为 ______.

二、选择题 (本大题共有4题,满分20分,每题5分) 每题有且只有一个正确选项,考 生应在答题纸的相应位置,将代表正确选项的小方格涂黑。

- [5] 13. 设 P 是椭圆 $\frac{x^2}{5} + \frac{y^2}{3} = 1$ 上的动点,则 P 到该椭圆的两个焦点的距离之和为 (
 - (A) $2\sqrt{2}$
- (B) $2\sqrt{3}$
- (C) $2\sqrt{5}$
- - (A) 充分非必要条件

(B) 必要非充分条件

(C) 充要条件

- (D) 既非充分又非必要条件
- 5 15. 《九章算术》中, 称底面为矩形而有一侧棱垂直于底面的四 棱锥为阳马. 设 AA1 是正六棱柱的一条侧棱,如图. 若阳 马以该正六棱柱的顶点为顶点,以 AA_1 为底面矩形的一边, 则这样的阳马的个数是(

- (A) 4 (B) 8 (C) 12 (D) 16

[5] 16. 设 D 是含数 1 的有限实数集,f(x) 是定义在 D 上的函数. 若 f(x) 的图像绕原点逆时 针旋转 $\frac{\pi}{6}$ 后与原图像重合,则在以下各项中,f(1) 的可能取值只能是(

- (A) $\sqrt{3}$
- (B) $\frac{\sqrt{3}}{2}$
- (C) $\frac{\sqrt{3}}{3}$
- (D) 0

三、解答题 (本大题共有 5 题,满分 76 分) 解答下列各题必须在答题纸的相应位置写出必要的步骤。

17. (本题满分 14 分)

已知圆锥的顶点为P,底面圆心为O,半径为2.

- 6 (1) 设圆锥的母线长为 4, 求圆锥的体积;
- 图 (2) 设 PO = 4, $OA \setminus OB$ 是底面半径, 且 $\angle AOB = 90^{\circ}$, M 为线段 AB 的中点, 如图. 求异面直线 PM 与 OB 所成的角的大小.

.....

18. (本题满分 14 分)

设常数 $a \in \mathbf{R}$, 函数 $f(x) = a \sin 2x + 2 \cos^2 x$

- [6] (1) 若 f(x) 为偶函数,求 a 的值;
- [8] (2) 若 $f\left(\frac{\pi}{4}\right) = \sqrt{3} + 1$,求方程 $f(x) = 1 \sqrt{2}$ 在区间 $[-\pi, \pi]$ 上的解.

19. (本题满分 14 分)

某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时,某地上班族 S 中的成员仅以自驾或公交方式通勤. 分析显示: 当 S 中 x % (0 < x < 100) 的成员自驾时,自驾群体的人均通勤时间为

$$f(x) = \begin{cases} 30, & 0 < x \le 30, \\ 2x + \frac{1800}{x} - 90, & 30 < x < 100 \end{cases} (\mathring{\text{$\parsum}$} \mathring{\text{$\parsum}$}} \mathring{\text{$\parsum}$} \mathring{\text{$\parsum}$} \mathring{\text{$\parsum}$}} \mathring{\text{$\parsum}$} \mathring{\text{$\parsum}$}} \mathring{\text{$\parsum}$} \mathring{\text{$\parsum}$}} \mathring{\text{$\parsum}$} \mathring{\text{$\parsum}$}} \mathring{\text{$\parsum}$}} \mathring{\text{$\parsum}$}} \mathring{\text{$\parsum}$}} \mathring{\text{$\parsum}}} \mathring{\text{$\parsum}$}} \mathring{\text{$\parsum}$}} \mathring{\text{$\parsum}$}} \mathring{\text{$\parsum}$}} \mathring{\text{$\parsum}$}} \mathring{\text{$\parsum}$}} \mathring{\text{$\parsum}$}} \mathring{\text{$\parsum}}} \mathring{\text{$\parsum}$}} \mathring{\text{$\parsum}}} \mathring{\text{$\parsum}$}} \mathring{\text{$\parsum}}} \mathring{\text{$\parsum}} \mathring{\text{$\parsum}}} \mathring{\text{$\parsum}}} \mathring{\text{$\parsum}}} \mathring{\text{$\parsum}}} \mathring{\text{$\parsum}}} \mathring{\text{$$

而公交群体的人均通勤时间不受 x 影响, 恒为 40 分钟. 试根据上述分析结果回答下列问题:

|6| (1) 当 x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?

8	(2) 求该地上班族 S 的人均通勤时间 $g(x)$ 的表达式; 讨论 $g(x)$ 的单调性,并说明其实际意义.
	20. (本题满分 16 分) 设常数 $t>2$, 在平面直角坐标系 xOy 中,已知点 $F(2,0)$,直线 $l:x=t$,曲线 $\Gamma:y^2=8x$ $(0\leq x\leq t,y\geq 0)$. l 与 x 轴交于点 A 、与 Γ 交于点 B . P 、 Q 分别是曲线 Γ 与线段 AB 上的动点.
4	(1) 用 t 为表示点 B 到点 F 的距离;
6	(2) 设 $t=3$, $ FQ =2$, 线段 OQ 的中点在直线 FP 上,求 $\triangle AQP$ 的面积;
6	(3) 设 $t=8$, 是否存在以 FP 、 FQ 为邻边的矩形 $FPEQ$, 使得点 E 在 Γ 上? 若存在,求点 P 的坐标;若不存在,说明理由.
	21. (本题满分 18 分) 给定无穷数列 $\{a_n\}$,若无穷数列 $\{b_n\}$ 满足: 对任意 $n\in \mathbb{N}^*$,都有 $ b_n-a_n \le 1$,则称 $\{b_n\}$ 与 $\{a_n\}$ "接近".
4	(1) 设 $\{a_n\}$ 是首项为 1 ,公比为 $\frac{1}{2}$ 的等比数列, $b_n = a_{n+1} + 1$, $n \in \mathbb{N}^*$,判断数列 $\{b_n\}$ 是否与 $\{a_n\}$ 接近,并说明理由;
6	(2) 设数列 $\{a_n\}$ 的前四项为: $a_1=1$, $a_2=2$, $a_3=4$, $a_4=8$, $\{b_n\}$ 是一个与 $\{a_n\}$ 接近的数列,记集合 $M=\{x x=b_i, i=1,2,3,4\}$,求 M 中元素的个数 m ;
8	(3) $\{a_n\}$ 是公差为 d 的等差数列. 若存在数列 $\{b_n\}$ 满足: $\{b_n\}$ 与 $\{a_n\}$ 接近,且在 $b_2-b_1,b_3-b_2,\cdots,b_{201}-b_{200}$ 中至少有 100 个为正数,求 d 的取值范围.