MTH1102D Calcul II

Chapitre 10, section 3: Le rotationnel et la divergence

Le rotationnel

Introduction

- Définition et calcul du rotationnel d'un champ vectoriel.
- Interprétation physique du rotationnel.

Définition

Soit $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$ un champ vectoriel dont les dérivées partielles existent. Le rotationnel de \vec{F} est le champ vectoriel

$$\operatorname{rot} \vec{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \vec{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k}.$$

Le rotationnel est un nouveau champ vectoriel obtenu à partir des dérivées partielles des composants de \vec{F} .

Notation

Soit l'opérateur différentiel

$$\nabla = \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}$$

Cet opérateur « agit » sur des fonctions et des champs vectoriels pour donner de nouveaux champs vectoriels.

Par exemple, si $f: \mathbb{R}^3 \to \mathbb{R}$ est une fonction scalaire alors

$$\nabla f = \vec{i} \frac{\partial f}{\partial x} + \vec{j} \frac{\partial f}{\partial y} + \vec{k} \frac{\partial f}{\partial z}$$

est le gradient de f.

Pour le rotationnel, on écrit symboliquement rot $\vec{F} = \nabla \times \vec{F}$.

Si on considère ∇ comme un vecteur alors on calcule

$$\nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ P & Q & R \end{vmatrix}$$
$$= \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \vec{i} - \left(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z} \right) \vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \vec{k}$$

Pour le rotationnel, on écrit symboliquement rot $\vec{F} = \nabla \times \vec{F}$.

Si on considère ∇ comme un vecteur alors on calcule

$$\nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ P & Q & R \end{vmatrix}$$

$$= \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \vec{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \vec{k}$$

$$= \operatorname{rot} \vec{F}$$

- Cette notation est couramment utilisée.
- Le déterminant permet de calculer facilement le rotationnel.

Exemple

Ici,
$$P(x, y, z) = 1$$
, $Q(x, y, z) = xy$ et $R(x, y, z) = xz^2$.

$$\operatorname{rot} \vec{F} = \nabla \times \vec{F}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ 1 & xy & xz^2 \end{vmatrix}$$

Exemple

Ici,
$$P(x, y, z) = 1$$
, $Q(x, y, z) = xy$ et $R(x, y, z) = xz^2$.

$$\operatorname{rot} \vec{F} = \nabla \times \vec{F}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ 1 & xy & xz^2 \end{vmatrix}$$

$$= (0-0)\vec{i}$$

Exemple

Ici,
$$P(x, y, z) = 1$$
, $Q(x, y, z) = xy$ et $R(x, y, z) = xz^2$.

$$\operatorname{rot} \vec{F} = \nabla \times \vec{F}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ 1 & xy & xz^2 \end{vmatrix}$$

$$= (0-0)\vec{i} - (z^2 - 0)\vec{j}$$

Exemple

Ici,
$$P(x, y, z) = 1$$
, $Q(x, y, z) = xy$ et $R(x, y, z) = xz^2$.

$$\operatorname{rot} \vec{F} = \nabla \times \vec{F} \\
= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 1 & xy & xz^2 \end{vmatrix} \\
= (0 - 0)\vec{i} - (z^2 - 0)\vec{j} + (y - 0)\vec{k} \\
= -z^2 \vec{j} + y \vec{k}$$

Interprétation du rotationnel

Si \vec{F} est le champ de vitesses d'un fluide alors proche d'un point P le fluide a tendance à « tourner » autour d'un axe de direction rot $\vec{F}(P)$, orienté selon la règle de la main droite, avec une vitesse de || rot $\vec{F}(P)||$.

Le rotationnel en deux dimensions

Un champ vectoriel en deux dimensions $\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j}$ peut être vu comme un champ en trois dimensions dont les composantes sont indépendantes de z:

$$\vec{F}(x,y,z) = P(x,y)\vec{i} + Q(x,y)\vec{j} + 0\vec{k}.$$

$$\operatorname{rot} \vec{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \vec{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k}$$
$$= (0 - 0)\vec{i} + (0 - 0)\vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k}$$

Le rotationnel en deux dimensions

Un champ vectoriel en deux dimensions $\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j}$ peut être vu comme un champ en trois dimensions dont les composantes sont indépendantes de z:

$$\vec{F}(x,y,z) = P(x,y)\vec{i} + Q(x,y)\vec{j} + 0\vec{k}.$$

$$\operatorname{rot} \vec{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \vec{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k}$$
$$= (0 - 0)\vec{i} + (0 - 0)\vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k}$$

Le rotationnel en deux dimensions

Un champ vectoriel en deux dimensions $\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j}$ peut être vu comme un champ en trois dimensions dont les composantes sont indépendantes de z:

$$\vec{F}(x,y,z) = P(x,y)\vec{i} + Q(x,y)\vec{j} + 0\vec{k}.$$

$$\operatorname{rot} \vec{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \vec{i} - \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k}$$

$$= (0 - 0) \vec{i} + (0 - 0) \vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k}$$

$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k}$$

Le rotationnel en deux dimensions

Un champ vectoriel en deux dimensions $\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j}$ peut être vu comme un champ en trois dimensions dont les composantes sont indépendantes de z:

$$\vec{F}(x,y,z) = P(x,y)\vec{i} + Q(x,y)\vec{j} + 0\vec{k}.$$

$$\operatorname{rot} \vec{F} = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k}$$

Résumé

- Définition du rotationnel.
- Notation et calcul du rotationnel.
- Interprétation du rotationnel.
- Rotationnel en deux dimensions.

MTH1102D Calcul II

Chapitre 10, section 3: Le rotationnel et la divergence

Un critère en trois dimension pour les champs conservatifs

Introduction

 Généralisation du critère pour les champs conservatifs aux champs en trois dimensions.

Critère pour les champs conservatifs

Théorème

Soit $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$ un champ vectoriel dont les dérivées partielles sont continues sur un domaine simplement connexe D de l'espace. Alors

$$\vec{F}$$
 est conservatif sur $D \Leftrightarrow \operatorname{rot} \vec{F} = \vec{0}$.

Remarques

- L'implication \vec{F} conservatif \Rightarrow rot $\vec{F} = \vec{0}$ ne nécessite pas l'hypothèse sur le domaine et est facile à prouver.
- La réciproque exige l'hypothèse sur le domaine et est plus difficile à démontrer.

Critère pour les champs conservatifs

Exemple

Le champ $\vec{F}(x, y, z) = \vec{i} + xy\vec{j} + xz^2\vec{k}$ est-il conservatif?

On a déjà calculé que rot $\vec{F} = -z^2\vec{j} + y\vec{k}$.

Puisque le rotationnel est non nul, le champ n'est PAS conservatif.

Critère pour les champs conservatifs

Le critère en deux dimensions

Si $\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j}$ est un champ vectoriel en deux dimensions alors on a vu que

$$\operatorname{rot} \vec{F} = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k}.$$

Le critère devient

$$\operatorname{rot} \vec{F} = \vec{0} \Leftrightarrow \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k} = \vec{0}$$

$$\Leftrightarrow \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0$$

$$\Leftrightarrow \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$

Résumé

- Critère pour déterminer si un champ vectoriel en trois dimensions est conservatif.
- Ce critère généralise celui vu pour les champs en deux dimensions.

MTH1102D Calcul II

Chapitre 10, section 3: Le rotationnel et la divergence

Exemple 1: utilisation du critère pour les champs conservatifs

Ex. 1 : utilisation du critère pour les champs conservatifs

Soit le champ vectoriel

$$\vec{F}(x, y, z) = [y^3 - 4\alpha xz^2] \vec{i} + [3xy^2 + 2yz^2] \vec{j} + [4\alpha y^2z - 2x^2z] \vec{k}$$

où α est une constante.

Pour quelle(s) valeur(s) de α le champ \vec{F} est-il conservatif?

- Les composantes P, Q et R de \vec{F} sont des polynômes, quelle que soit la valeur de α . Leurs dérivées partielles sont donc continues dans \mathbb{R}^3 , qui est simplement connexe.
- Dans ce cas, \vec{F} conservatif \Leftrightarrow rot $\vec{F} = \vec{0}$.

Ex. 1 : utilisation du critère pour les champs conservatifs

Soit le champ vectoriel

$$\vec{F}(x,y,z) = [y^3 - 4\alpha xz^2] \, \vec{i} + [3xy^2 + 2yz^2] \, \vec{j} + [4\alpha y^2 z - 2x^2 z] \, \vec{k}$$

où α est une constante.

Pour quelle(s) valeur(s) de α le champ \vec{F} est-il conservatif?

On calcule

$$\operatorname{rot} \vec{F} = [8\alpha yz - 4yz]\vec{i} + [-8\alpha xz + 4xz]\vec{j} + 0\vec{k}.$$

• Donc rot $\vec{F} = \vec{0} \Leftrightarrow$

$$\begin{cases} 8\alpha yz - 4yz = 0 \\ -8\alpha xz + 4xz = 0 \end{cases}$$

pour tous $(x, y, z) \Leftrightarrow \alpha = 1/2$.

Ex. 1 : utilisation du critère pour les champs conservatifs

Soit le champ vectoriel

$$\vec{F}(x, y, z) = [y^3 - 4\alpha xz^2] \vec{i} + [3xy^2 + 2yz^2] \vec{j} + [4\alpha y^2z - 2x^2z] \vec{k}$$

où α est une constante.

Pour quelle(s) valeur(s) de α le champ \vec{F} est-il conservatif?

- Le champ est conservatif si et seulement si $\alpha = 1/2$.
- Pour $\alpha = 1/2$, on peut vérifier que $f(x, y, z) = xy^3 x^2z^2 + y^2z^2$ est un potentiel pour \vec{F} .

Résumé

 Application du critère pour les champs conservatifs à un champ en trois dimensions.

MTH1102D Calcul II

Chapitre 10, section 3: Le rotationnel et la divergence

La divergence

Introduction

- Définition de la divergence d'un champ vectoriel et formule de calcul.
- Interprétation de la divergence.
- Relation entre la divergence et le rotationnel.

Définition

Soit $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$ un champ vectoriel dont les dérivées partielles existent. La divergence de \vec{F} est la fonction

$$\operatorname{div} \vec{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

La divergence est une fonction scalaire construite à partir des dérivées partielles des composantes du champ \vec{F} .

Notation

On se rappelle que

$$\nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}.$$

Si on considère ∇ comme un « vecteur » alors on peut écrire

$$\operatorname{div} \vec{F} = \nabla \cdot \vec{F}$$

Exemple

Si
$$\vec{F}(x, y, z) = \vec{i} + xy\vec{j} + xz^2\vec{k}$$
 alors

$$\operatorname{div} \vec{F} = \frac{\partial(1)}{\partial x} + \frac{\partial(xy)}{\partial y} + \frac{\partial(xz^2)}{\partial z} = 0 + x + 2xz = x + 2xz.$$

Interprétation

Interprétation

Interprétation

Théorème

Si $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$ est un champ vectoriel ayant des dérivées partielles secondes continues alors

 $\operatorname{div}\operatorname{rot}\vec{F}=0.$

Preuve:

$$\operatorname{div}\operatorname{rot}\vec{F} = \frac{\partial}{\partial x}\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) + \frac{\partial}{\partial y}\left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) + \frac{\partial}{\partial z}\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)$$
$$= \frac{\partial^2 R}{\partial x \partial y} - \frac{\partial^2 Q}{\partial x \partial z} + \frac{\partial^2 P}{\partial y \partial x} - \frac{\partial^2 R}{\partial y \partial x} + \frac{\partial^2 Q}{\partial z \partial x} - \frac{\partial^2 P}{\partial z \partial y}$$

Théorème

Si $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$ est un champ vectoriel ayant des dérivées partielles secondes continues alors

$$\operatorname{div}\operatorname{rot}\vec{F}=0.$$

Preuve:

$$\operatorname{div}\operatorname{rot}\vec{F} = \frac{\partial}{\partial x}\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) + \frac{\partial}{\partial y}\left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) + \frac{\partial}{\partial z}\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)$$

$$= \frac{\partial^{2}R}{\partial x\partial y} - \frac{\partial^{2}Q}{\partial x\partial z} + \frac{\partial^{2}P}{\partial y\partial z} - \frac{\partial^{2}R}{\partial y\partial x} + \frac{\partial^{2}Q}{\partial z\partial x} - \frac{\partial^{2}P}{\partial z\partial y}$$

$$= 0$$

La divergence

Exemple

Pour le champ

$$\vec{F}(x, y, z) = \vec{i} + xy\vec{j} + xz^2\vec{k}$$

il n'existe PAS un autre champ \vec{G} tel que $\vec{F}=\operatorname{rot} \vec{G}$ car

$$\operatorname{div} \vec{F} = x + 2xz \neq 0.$$

Résumé

- Définition de la divergence d'un champ vectoriel.
- Notation et calcul.
- Interprétation.
- Relation avec le rotationnel.

MTH1102D Calcul II

Chapitre 10, section 4: Le théorème de Stokes

Énoncé du théorème de Stokes

Introduction

- Orientation compatible d'une surface et de son bord.
- Énoncé du théorème de Stokes.

Énoncé du théorème de Stokes

Définition

Soit S une surface orientée et C son bord (sa frontière). On dit que C est orientée *positivement* par rapport à l'orientation de S si la surface est toujours située à gauche lorsqu'on parcourt C.

Énoncé du théorème de Stokes

Définition

Soit S une surface orientée et C son bord (sa frontière). On dit que C est orientée *positivement* par rapport à l'orientation de S si la surface est toujours située à gauche lorsqu'on parcourt C.

- Ceci est essentiellement la règle de la main droite.
- Cette définition n'est pas rigoureuse mais elle suffit à nos besoins.

Énoncé du théorème de Stokes

Définition

Une surface S est *lisse par morceaux* (lpm) si elle est constituée d'un nombre fini de morceaux lisses.

Théorème de Stokes

Soit S une surface orientée lisse par morceaux et C la courbe fermée simple qui forme son bord, orientée positivement par rapport à S. Soit \vec{F} un champ vectoriel dont les dérivées partielles sont continues dans un voisinage de S. Alors

$$\oint_C \vec{F} \cdot \vec{dr} = \iint_S \operatorname{rot} \vec{F} \cdot \vec{dS}.$$

Résumé

- Compatibilité entre l'orientation d'une surface et celle de la courbe qui forme son bord.
- Énoncé du théorème de Stokes.

MTH1102D Calcul II

Chapitre 10, section 4: Le théorème de Stokes

Exemple 1: calcul de l'intégrale curviligne à l'aide du théorème de Stokes

Calculer $\oint_C \vec{F} \cdot \vec{dr}$ où $\vec{F}(x,y,z) = 2yz\vec{i} + xz\vec{j} + ze^{-y}\vec{k}$ et C est la courbe d'intersection du cylindre $x^2 + y^2 = 4$ et du plan z = 3 - y, orientée dans le sens antihoraire lorsque vue du dessus.

Calculer $\oint_C \vec{F} \cdot \vec{dr}$ où $\vec{F}(x,y,z) = 2yz\vec{i} + xz\vec{j} + ze^{-y}\vec{k}$ et C est la courbe d'intersection du cylindre $x^2 + y^2 = 4$ et du plan z = 3 - y, orientée dans le sens antihoraire lorsque vue du dessus.

• C est le bord d'une partie S du plan.

Calculer $\oint_C \vec{F} \cdot \vec{dr}$ où $\vec{F}(x,y,z) = 2yz\vec{i} + xz\vec{j} + ze^{-y}\vec{k}$ et C est la courbe d'intersection du cylindre $x^2 + y^2 = 4$ et du plan z = 3 - y, orientée dans le sens antihoraire lorsque vue du dessus.

- C est le bord d'une partie S du plan.
- L'orientation de *S* compatible avec celle de *C* est donné par un vecteur normal pointant vers le haut.

S est paramétrée par

$$\vec{R}(x,y) = x\vec{i} + y\vec{j} + (3-y)\vec{k}$$
avec $(x,y) \in D = \{(x,y) | x^2 + y^2 \le 4\}.$

Calculer $\oint_C \vec{F} \cdot \vec{dr}$ où $\vec{F}(x,y,z) = 2yz\vec{i} + xz\vec{j} + ze^{-y}\vec{k}$ et C est la courbe d'intersection du cylindre $x^2 + y^2 = 4$ et du plan z = 3 - y, orientée dans le sens antihoraire lorsque vue du dessus.

$$\vec{R}_{x} = \vec{i} \\ \vec{R}_{y} = \vec{j} - \vec{k} \\ \vec{R}_{x} \times \vec{R}_{y} = \vec{j} + \vec{k} \\ \text{rot } \vec{F} = -(x + ze^{-y})\vec{i} + 2y\vec{j} - z\vec{k} \\ \text{rot } \vec{F}(\vec{R}(x,y)) = -(x + (3 - y)e^{-y})\vec{i} + 2y\vec{j} - (3 - y)\vec{k} \\ \text{rot } \vec{F}(\vec{R}(x,y)) \cdot (\vec{R}_{x} \times \vec{R}_{y}) = 3y - 3$$

Calculer $\oint_C \vec{F} \cdot \vec{dr}$ où $\vec{F}(x,y,z) = 2yz\vec{i} + xz\vec{j} + ze^{-y}\vec{k}$ et C est la courbe d'intersection du cylindre $x^2 + y^2 = 4$ et du plan z = 3 - y, orientée dans le sens antihoraire lorsque vue du dessus.

Selon le théorème de Stokes.

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S \operatorname{rot} \vec{F} \cdot d\vec{S} = \iint_D \operatorname{rot} \vec{F}(\vec{R}(x,y)) \cdot (\vec{R}_x \times \vec{R}_y) dA$$

$$= \iint_D (3y - 3) dA = \int_0^{2\pi} \int_0^2 (3r \sin \theta - 3) r dr d\theta$$

$$= \int_0^{2\pi} \int_0^2 -3r dr d\theta = -3 \operatorname{aire}(D) = -12\pi.$$

Résumé

- Choix d'une surface dont le bord est la courbe donnée.
- Détermination de l'orientation compatible de la surface.
- Calcul de l'intégrale curviligne à l'aide du théorème de Stokes.

MTH1102D Calcul II

Chapitre 10, section 4: Le théorème de Stokes

Exemple 3: Utilisation du théorème de Stokes

Exemple 3 : Utilisation du théorème de Stokes

Soit le champ vectoriel $\vec{F}(x,y,z) = (e^x + z)\vec{i} + (e^y + 2x)\vec{j} + (e^z + xy)\vec{k}$ et C une courbe fermée située dans le plan z=1. Montrez que la circulation de \vec{F} autour de C ne dépend que de l'aire de la partie du plan délimitée par C, et non de la courbe elle-même.

• La circulation d'un champ \vec{F} autour d'une courbe fermée C est simplement

$$\oint_C \vec{F} \cdot \vec{dr}$$

- Choisissons d'orienter C dans le sens antihoraire lorsque vue du dessus.
- Soit S la partie du plan délimitée par C, orientée vers le haut $(\vec{n} = \vec{k})$.

Exemple 3 : Utilisation du théorème de Stokes

Soit le champ vectoriel $\vec{F}(x,y,z) = (e^x + z)\vec{i} + (e^y + 2x)\vec{j} + (e^z + xy)\vec{k}$ et C une courbe fermée située dans le plan z=1. Montrez que la circulation de \vec{F} autour de C ne dépend que de l'aire de la partie du plan délimitée par C, et non de la courbe elle-même.

On calcule : rot
$$\vec{F} = x\vec{i} + (1 - y)\vec{j} + 2\vec{k}$$

Selon le théorème de Stokes,

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S \cot \vec{F} \cdot d\vec{S} = \iint_S \cot \vec{F} \cdot \vec{n} \, dS$$

$$= \iint_S (x\vec{i} + (1 - y)\vec{j} + 2\vec{k}) \cdot \vec{k} \, dS$$

$$= \iint_S 2 \, dS = 2 \text{ aire}(S).$$

La circulation dépend seulement de l'aire délimitée par C.

Résumé

- Utilisation du théorème de Stokes pour démontrer une propriété d'un champ vectoriel donné.
- Calcul de l'intégrale de surface sans passer par une paramétrisation.

MTH1102D Calcul II

Chapitre 10, section 4: Le théorème de Stokes

Exemple 2: calcul de l'intégrale de surface à l'aide du théorème de Stokes

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3)\vec{i} + (\cos z^2 + x \sin z)\vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_S \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3)\vec{i} + (\cos z^2 + x \sin z)\vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_{S} \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3)\vec{i} + (\cos z^2 + x \sin z)\vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_{S} \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

• Le bord orienté positivement de S est le cercle $C: x^2 + y^2 = 9$, parcouru dans le sens antihoraire lorsque vu du-dessus.

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3) \vec{i} + (\cos z^2 + x \sin z) \vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_S \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

- Le bord orienté positivement de S est le cercle $C: x^2 + y^2 = 9$, parcouru dans le sens antihoraire lorsque vu du-dessus.
- Selon le théorème de Stokes,

$$\iint_{S} \operatorname{rot} \vec{F} \cdot \vec{dS} = \oint_{C} \vec{F} \cdot \vec{dr}.$$

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3)\vec{i} + (\cos z^2 + x \sin z)\vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_S \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

• La courbe C est aussi le bord du disque $D: x^2 + y^2 \le 9$.

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3)\vec{i} + (\cos z^2 + x \sin z)\vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_S \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

- La courbe C est aussi le bord du disque D : x² + y² ≤ 9.
- L'orientation de D compatible avec celle de C est donnée par un vecteur normal pointant vers le haut.

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3) \vec{i} + (\cos z^2 + x \sin z) \vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_{S} \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

- La courbe C est aussi le bord du disque $D: x^2 + y^2 \le 9$.
- L'orientation de D compatible avec celle de C est donnée par un vecteur normal pointant vers le haut.
- Selon le théorème de Stokes,

$$\iint_{D} \operatorname{rot} \vec{F} \cdot d\vec{S} = \oint_{C} \vec{F} \cdot d\vec{r}.$$

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3)\vec{i} + (\cos z^2 + x \sin z)\vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_{S} \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

On a donc

$$\iint_{S} \operatorname{rot} \vec{F} \cdot d\vec{S} = \oint_{C} \vec{F} \cdot d\vec{r} = \iint_{D} \operatorname{rot} \vec{F} \cdot d\vec{S}.$$

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3)\vec{i} + (\cos z^2 + x \sin z)\vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_{S} \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

D est paramétrée par $\vec{R}(x,y) = x \vec{i} + y \vec{j} + 0 \vec{k}$ avec $(x,y) \in D$.

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3)\vec{i} + (\cos z^2 + x \sin z)\vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_{S} \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

D est paramétrée par $\vec{R}(x,y) = x \vec{i} + y \vec{j} + 0 \vec{k}$ avec $(x,y) \in D$.

$$\vec{R}_x \times \vec{R}_y = \vec{k}$$

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3)\vec{i} + (\cos z^2 + x \sin z)\vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_{S} \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

D est paramétrée par $\vec{R}(x,y) = x \vec{i} + y \vec{j} + 0 \vec{k}$ avec $(x,y) \in D$.

$$\vec{R}_x \times \vec{R}_y = \vec{k}$$

$$\operatorname{rot} \vec{F} = (2z \sin z^2 - x \cos z) \vec{i} - 2z \sin z^2 \vec{j} + (3y^2 + \sin z) \vec{k}$$

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3)\vec{i} + (\cos z^2 + x \sin z)\vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_{S} \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

D est paramétrée par $\vec{R}(x,y) = x \vec{i} + y \vec{j} + 0 \vec{k}$ avec $(x,y) \in D$.

$$\vec{R}_{x} \times \vec{R}_{y} = \vec{k}$$

 $\text{rot } \vec{F} = (2z \sin z^{2} - x \cos z) \vec{i} - 2z \sin z^{2} \vec{j} + (3y^{2} + \sin z) \vec{k}$
 $\text{rot } \vec{F}(\vec{R}(x,y)) = -x \vec{i} + 3y^{2} \vec{k}$

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3)\vec{i} + (\cos z^2 + x \sin z)\vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_S \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

$$\iint_{D} \operatorname{rot} \vec{F} \cdot d\vec{S} = \iint_{D} \operatorname{rot} \vec{F}(\vec{R}(x, y)) \cdot (\vec{R}_{x} \times \vec{R}_{y}) dA$$

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3)\vec{i} + (\cos z^2 + x \sin z)\vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_{S} \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

$$\iint_{D} \operatorname{rot} \vec{F} \cdot d\vec{S} = \iint_{D} \operatorname{rot} \vec{F}(\vec{R}(x, y)) \cdot (\vec{R}_{x} \times \vec{R}_{y}) dA$$
$$= \iint_{D} [-x \vec{i} + 3y^{2} \vec{k}] \cdot \vec{k} dA$$

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3)\vec{i} + (\cos z^2 + x \sin z)\vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_{S} \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

$$\iint_{D} \operatorname{rot} \vec{F} \cdot d\vec{S} = \iint_{D} \operatorname{rot} \vec{F}(\vec{R}(x, y)) \cdot (\vec{R}_{x} \times \vec{R}_{y}) dA$$
$$= \iint_{D} [-x \vec{i} + 3y^{2} \vec{k}] \cdot \vec{k} dA = \iint_{D} 3y^{2} dA$$

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3)\vec{i} + (\cos z^2 + x \sin z)\vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_{S} \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

$$\iint_{D} \operatorname{rot} \vec{F} \cdot d\vec{S} = \iint_{D} \operatorname{rot} \vec{F}(\vec{R}(x, y)) \cdot (\vec{R}_{x} \times \vec{R}_{y}) dA$$

$$= \iint_{D} [-x \vec{i} + 3y^{2} \vec{k}] \cdot \vec{k} dA = \iint_{D} 3y^{2} dA$$

$$= \int_{0}^{2\pi} \int_{0}^{3} 3r^{2} \sin^{2} \theta r dr d\theta$$

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3)\vec{i} + (\cos z^2 + x \sin z)\vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_S \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

$$\iint_{D} \operatorname{rot} \vec{F} \cdot d\vec{S} = \iint_{D} \operatorname{rot} \vec{F}(\vec{R}(x, y)) \cdot (\vec{R}_{x} \times \vec{R}_{y}) dA$$

$$= \iint_{D} [-x \vec{i} + 3y^{2} \vec{k}] \cdot \vec{k} dA = \iint_{D} 3y^{2} dA$$

$$= \int_{0}^{2\pi} \int_{0}^{3} 3r^{2} \sin^{2} \theta r dr d\theta = \frac{243}{4} \pi.$$

Soit
$$\vec{F}(x, y, z) = (\cos z^2 - y^3)\vec{i} + (\cos z^2 + x \sin z)\vec{j} + \sin z^2 \vec{k}$$
. Calculer
$$\iint_{S} \cot \vec{F} \cdot d\vec{S}$$

où S est la partie du paraboloïde $z=9-x^2-y^2$ située au-dessus du plan z=0, orientée vers le haut.

En conclusion, l'intégrale cherchée est

$$\iint_{S} \operatorname{rot} \vec{F} \cdot d\vec{S} = \oint_{C} \vec{F} \cdot d\vec{r} = \iint_{D} \operatorname{rot} \vec{F} \cdot d\vec{S} = \frac{243}{4} \pi.$$

Résumé

 Deux utilisations successives du théorème de Stokes ont permis de remplacer la surface donnée par une surface plus simple.

Résumé

- Deux utilisations successives du théorème de Stokes ont permis de remplacer la surface donnée par une surface plus simple.
- Calcul d'une intégrale de surface à l'aide du théorème de Stokes.