Math 134 - Homework 4

1. Consider the ODE

$$\dot{x} = (\cosh(1+x) - 1)(x^2 + 2x - r).$$

- (a) Find a value r_c and corresponding x_c at which a bifurcation occurs.
- (b) Sketch the bifurcation diagram.
- (c) Taking $y = x x_c$ and $s = r r_c$, find a function f(y, s) so that

$$\dot{y} = f(y, s).$$

(d) Compute the Taylor series of f at (y, s) = (0, 0) to fourth order.

<u>Hint:</u> You may wish to use that $\cosh(y) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} y^{2n}$.

- (e) Use both your bifurcation diagram and Taylor series to explain why this is a new type of bifurcation.
- 2. (Strogatz Exercise 3.5.7) Consider the logistic equation $\dot{N}=rN(1-\frac{N}{K})$, with initial condition N_0 .
 - (a) This system has three dimensional parameters r, K, N_0 . Find the dimensions of each of these parameters.
 - (b) Show that the system can be rewritten in the dimensionless form

$$\begin{cases} \frac{dx}{d\tau} = x(1-x), \\ x(0) = x_0. \end{cases}$$

for appropriate choices of the dimensionless variables x, x_0 , and τ .

- (c) Find a different nondimensionalization in terms of variables u and τ , were u is chosen such that the initial condition is always u(0) = 1.
- 3. Show that $\dot{x} = \ln(1+x) rx$ undergoes a transcritical bifurcation at $(x^*, r^*) = (0, 1)$. Use the Transcritical Bifurcation Theorem covered in class.
- 4. Problem 3.5.6, parts a), b), c) and d), from the textbook.