Date: May 12, 2019

### Design by Mohsen Hassanpourghadi

### AMPSE: VCO Based ADC in TSMC 65nm CMOS

### I. Introduction

In this design a 1GS/s, 6-bit, VCO-based ADC has been implemented. DLL is a commonly used design block for generating multi-phase clocks. The block diagram representation of the design is as follows:

#### **ADC Architecture:**



Figure 1: Architecture of VCO-based ADC with AMPSE

The main analog modules in this design are:

- VCO
- Track and Hold
- Buffers

The regression models for analog part:

- VCO (model vco65.json, model vco65.h5, scY vco65.pkl, scX vco65.pkl)
- Track and Hold (model th65.json, model th65.h5, scY th65.pkl, scX th65.pkl)
- Buffers (model inv65.json, model inv65.h5, scY inv65.pkl, scX inv65.pkl)

# **Description:**



The Top-level cell: ADC\_vcobased\_v1.scs

## **Pin Configuration:**

| Pin Name   | Specification             | Pin Type |  |
|------------|---------------------------|----------|--|
| VDD        | Power Supply, 1.0 V       | Supply   |  |
| VSS        | Ground                    | Ground   |  |
| clkn, clkp | Input Clock               | Input    |  |
| IN1, IN2   | Differential Analog Input | Input    |  |
| reset      | Reset                     | Input    |  |
| out<7:0>   | Output digital codes      | Output   |  |
| Qii<0:9>   | Test points output        | Output   |  |

### **Description of the Cell Library:**

The tabular description below corresponds to design hierarchy.

| #  | <u>Category</u>    | CellName           | <u>Description</u>                            | <u>Figure</u> |
|----|--------------------|--------------------|-----------------------------------------------|---------------|
| 1  |                    | ADC_vcobased_v1    | Top level                                     | VCO_01.png    |
| 2  | ADC_vcobased_v1    | VCO_Dtype1_65      | Pseudo differential VCO                       | VCO_02.png    |
| 3  |                    | TH65_TG_v1         | Track and Hold                                | VCO_03.png    |
| 4  |                    | counter_vco_v2     | 10-bit Counter                                | VCO_04.png    |
| 5  |                    | INV65_v3           | Track and Hold's driver                       | VCO_05.png    |
| 6  |                    | diff2sing_v1       | Differential to single ended output.          | VCO_06.png    |
| 7  | VCO_Dtype1_65      | VCO_type1_65       | VCO single output                             | VCO_07.png    |
| 8  | counter_vco_v2     | counter_onehot2bit | 2-bit counter for up to 20GHz clock frequency | VCO_08.png    |
| 9  |                    | counter_bin4bit    | 4-bit counter for up to 10GHz clock frequency | VCO_09.png    |
| 10 |                    | delay_vco_v2       | 60ps delay                                    | VCO_10.png    |
| 11 | counter_onehot2bit | delay_vco_v1       | 130ps delay                                   | VCO_11.png    |
| 12 | Testbench          | test_VCO65_v1      | Testbench for VCO based ADC                   | VCO_12.png    |

### **Test Bench:**

### Locking time evaluation:

1. test\_VCO65\_v1(cell\_name): Testbench for VCO-based ADC operation

### **Simulation Results:**

**Design Corners:** Process Corner TT, 27 C, Vdd nominal 1V

Typical Current consumption specifications from 1V supply at room temperature:

Measurement Result.pptx