

Description

Image

Caption

1. Filament of an incandescent lamp in pure tungsten. © Granta Design 2. Spark plug with tungsten electrodes, having to survive in the combustion chamber and tolerate spark discharges. © Granta Design

The material

Tungsten is remarkable for its melting point of 3410 °C when pure. This is a problem if you want to process it, but an attraction if you want to use it at high temperatures. Processing is solved by using powder methods -- the same methods used to shape refractory ceramics. Its high melting point gives tungsten excellent creep resistance up to 1400 °C (the temperature listed below as the maximum service temperature), but if not under load it can be used at much higher temperatures: photoflood bulbs reach 2200 °C, though they have a short life.

Composition (summary)

> 99% W

General properties

Density	1.78e4	-	1.96e4	kg/m^3
Price	* 65.1	-	75.8	USD/kg
Date first used	1783			

Mechanical properties

moonamour proportion				
Young's modulus	310	-	380	GPa
Shear modulus	120	-	148	GPa
Bulk modulus	224	-	296	GPa
Poisson's ratio	0.27	-	0.29	
Yield strength (elastic limit)	525	-	800	MPa
Tensile strength	720	-	3e3	MPa
Compressive strength	555	-	800	MPa
Elongation	1	-	17	% strain
Hardness - Vickers	280	-	600	HV
Fatigue strength at 10^7 cycles	* 265	-	495	MPa

Fracture toughness	* 50	-	60	MPa.m^0.5
Mechanical loss coefficient (tan delta)	* 1e-4	-	3e-4	

Thermal properties

Melting point	3.2e3	-	3.41e3	$\mathcal C$
Maximum service temperature	1.35e3	-	1.4e3	$\mathcal C$
Minimum service temperature	-273			$\mathcal C$
Thermal conductor or insulator?	Good co	ndu	ctor	
Thermal conductivity	100	-	142	W/m.℃
Specific heat capacity	130	-	140	J/kg.℃
Thermal expansion coefficient	4	-	5.6	µstrain/℃

Electrical properties

Electrical conductor or insulator?	Good conductor
Electrical resistivity	10.2 - 13.6 μohm.cm

Optical properties

Transparency	Opaque
--------------	--------

Critical Materials Risk

Processability

Castability	1		
Formability	1	-	2
Machinability	1	-	2
Weldability	3	-	4
Solder/brazability	1	-	2

Durability: water and aqueous solutions

Water (fresh)	Excellent
Water (salt)	Acceptable
Soils, acidic (peat)	Excellent
Soils, alkaline (clay)	Excellent
Wine	Acceptable

Durability: acids

Acetic acid (10%)	Acceptable
Acetic acid (glacial)	Acceptable
Citric acid (10%)	Acceptable
Hydrochloric acid (10%)	Acceptable
Hydrochloric acid (36%)	Limited use

Hydrofluoric acid (40%)	Unacceptable
Nitric acid (10%)	Limited use
Nitric acid (70%)	Limited use
Phosphoric acid (10%)	Limited use
Phosphoric acid (85%)	Limited use
Sulfuric acid (10%)	Unacceptable
Sulfuric acid (70%)	Unacceptable

Durability: alkalis

Sodium hydroxide (10%)	Acceptable
Sodium hydroxide (60%)	Acceptable

Durability: fuels, oils and solvents

Amyl acetate	Excellent
Benzene	Excellent
Carbon tetrachloride	Excellent
Chloroform	Excellent
Crude oil	Acceptable
Diesel oil	Excellent
Lubricating oil	Excellent
Paraffin oil (kerosene)	Excellent
Petrol (gasoline)	Excellent
Silicone fluids	Excellent
Toluene	Excellent
Turpentine	Excellent
Vegetable oils (general)	Excellent
White spirit	Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Excellent
Acetone	Excellent
Ethyl alcohol (ethanol)	Excellent
Ethylene glycol	Excellent
Formaldehyde (40%)	Excellent
Glycerol	Excellent
Methyl alcohol (methanol)	Excellent

Durability: halogens and gases

Chlorine gas (dry)	Excellent
Fluorine (gas)	Limited use
O2 (oxygen gas)	Limited use

EDUPACK						
Sulfur dioxide (gas)	Aco	cepta	ble			
Durability: built environments						
Industrial atmosphere	Exc	cellen	nt			
Rural atmosphere	Excellent					
Marine atmosphere	Aco	Acceptable				
UV radiation (sunlight)	Exc	cellen	nt			
Durability: flammability						
Flammability	Noi	n-flam	nma	ble		
Durahility: thormal anyironments						
Durability: thermal environments Tolerance to cryogenic temperatures	Ev	cellen	\ 1			
Tolerance up to 150 C (302 F)		cellen				
Tolerance up to 250 C (482 F)						
Tolerance up to 450 C (842 F)		Excellent Excellent				
Tolerance up to 450 C (442 F) Tolerance up to 850 C (1562 F)		Excellent				
Tolerance above 850 C (1562 F)		Excellent				
Tolerance above 650 C (1502 I ,	LX	CIICII	IL			
Geo-economic data for principal component						
Annual world production, principal component	5.8	e4			tonne/yr	
Reserves, principal component	2.8	e6			tonne	
Primary material production: energy, CO2 and w	votor					
Embodied energy, primary production	* 511		-	564	MJ/kg	
CO2 footprint, primary production	* 32.	7	_	36.1	kg/kg	
Water usage	* 147		-	162	l/kg	
Material processing: energy						
Casting energy	* 8.9		-	9.88	MJ/kg	
Extrusion, foil rolling energy	* 10.		-	11.2	MJ/kg	
Rough rolling, forging energy	* 5.2	1	-	5.76	MJ/kg	
Wire drawing energy	* 37.	3	-	41.2	MJ/kg	
Metal powder forming energy	* 55.	6	-	61.4	MJ/kg	
Vaporization energy	* 7.6	8e3	-	8.49e3	MJ/kg	
Coarse machining energy (per unit wt removed)	* 1.2	1	-	1.34	MJ/kg	
Fine machining energy (per unit wt removed)	* 7.8	7	-	8.7	MJ/kg	
Grinding energy (per unit wt removed)	* 15.	3	-	16.9	MJ/kg	
Non-conventional machining energy (per unit wt removed	76.	8	-	84.9	MJ/kg	
Metaviel processing COO to straight						
Material processing: CO2 footprint	* 0.6	7		0.744	ka/ka	
Casting CO2	Ü.6	1	-	0.741	kg/kg	

Extrusion, foil rolling CO2	* 0.761	-	0.841	kg/kg
Rough rolling, forging CO2	* 0.391	-	0.432	kg/kg
Wire drawing CO2	* 2.79	-	3.09	kg/kg
Metal powder forming CO2	* 4.45	-	4.91	kg/kg
Vaporization CO2	* 576	-	637	kg/kg
Coarse machining CO2 (per unit wt removed)	* 0.0911	-	0.101	kg/kg
Fine machining CO2 (per unit wt removed)	* 0.59	-	0.652	kg/kg
Grinding CO2 (per unit wt removed)	* 1.14	-	1.27	kg/kg
Non-conventional machining CO2 (per unit wt removed	5.76	-	6.37	kg/kg

Material recycling: energy, CO2 and recycle fraction

, , , , , , , , , , , , , , , , , , ,	
Recycle	✓
Embodied energy, recycling	* 68.7 - 75.9 MJ/kg
CO2 footprint, recycling	* 5.4 - 5.97 kg/kg
Recycle fraction in current supply	34 - 38 %
Downcycle	✓
Combust for energy recovery	×
Landfill	✓
Biodegrade	×
Toxicity rating	Non-toxic
A renewable resource?	×

Environmental notes

Tungsten is a skin and eye irritant and is noxious if ingested.

Supporting information

Design guidelines

Tungsten is heavy, relatively expensive and difficult to process -- it is a choice of last-resort. Most of its applications exploit its very high melting point (spark plug electrodes and lamp filament), its exceptional tensile strength when drawn to wire (reinforcement in metal, ceramic and polymer-matrix composites) or it very high density (armour-piercing penetrators). Because of the difficulty of processing tungsten it is generally available only as wire, rod or sheet.

Technical notes

Tungsten is produced by a chemical route that delivers the metal as a fine powder. The powder is pressed into billets, sintered and swaged to rod, then drawn to wire or rolled to sheet. Wires as fine as 5 microns in diameter are available. They can be woven into fabric or used as reinforcement in other metals, ceramics or polymers.

Typical uses

Applications are of four types.

- 1. Those using the high-temperature capability of tungsten: spark-plug electrodes, lamp filaments, heating elements and furnace windings and electrodes for TIG welding.
- 2. Those using the high density: balance weights, anti-vibration tooling, armour-piercing penetrators and radiation shielding, and X and gamma-ray shielding
- 3. Those using the high strength: reinforcement in composites, surface coatings for abrasion resistance
- 4. Those using its ability to harden steel: tool steels and armor.

ın	vc

Reference	
ProcessUniverse	
Producers	