

LOGIKA DLA INFORMATYKÓW

Logiki wielowartościowe

dr hab. Ewa Michalska

Logika trójwartościowa

Jan Łukasiewicz (1878-1956) polski logik, matematyk i filozof, twórca pierwszej nieklasycznej logiki zwanej logiką trójwartościową.

Łukasiewicz rozważa zdanie:
"Od dziś za rok będę w Warszawie"
– w chwili, gdy jest wypowiadane nie
może być uważane ani za zdanie
prawdziwe ani za fałszywe.

- "O zasadzie sprzeczności u Arystotelesa" (1912) – praca przedstawiająca pomysł logiki trójwartościowej
- "O logice trójwartościowej"
 (1920) uzasadniona w artykule
 trzecia możliwość "ani prawdy, ani
 fałszu" wprowadza zmianę w
 dotychczasowym myśleniu o logice
- Logika Łukasiewicza otworzyła drogę nieklasycznym koncepcjom logicznym, np. logice modalnej (dotyczącej przede wszystkim światów możliwych) oraz logice rozmytej (wykorzystywanej w informatyce oraz przy stosowaniu sztucznych sieci neuronalnych).

Aksjomatyka trójwartościowego rachunku zdań (TRZ)

Aksjomatyka rachunku zdań trójelementowej logiki Łukasiewicza (opracowana przez Łukasiewicza, Tarskiego, Wajsberga) składa się z następujących aksjomatów:

1.
$$p \rightarrow (q \rightarrow p)$$

2.
$$(p \rightarrow q) \rightarrow [(q \rightarrow r) \rightarrow (p \rightarrow r)]$$

3.
$$[(p \rightarrow \neg p) \rightarrow p] \rightarrow p$$

4.
$$(\neg p \rightarrow \neg q) \rightarrow (q \rightarrow p)$$

2.
$$(p \rightarrow q) \rightarrow [(q \rightarrow r) \rightarrow (p \rightarrow r)]$$
 5. $[(p \rightarrow q) \rightarrow q] \rightarrow [(q \rightarrow p) \rightarrow p]$

6.
$$[(p \rightarrow q) \rightarrow (q \rightarrow p)] \rightarrow (q \rightarrow p)$$

oraz z dwóch **reguł**:

- reguly odrywania

$$\frac{\alpha, \alpha \to \beta}{\beta}$$

- reguly podstawiania

$$\alpha$$
 $\alpha_{[p::=\beta]}$

(z formuły α , w której występuje zmienna zdaniowa p, wnioskujemy to, co otrzymamy w rezultacie podstawienia dowolnej formuły β za każde wystąpienie zmiennej p)

UWAGA:

Pierwsza aksjomatyka Łukasiewicza była oparta na spójnikach implikacji i negacji. Inne znane spójniki – koniunkcji, alternatywy i równoważności – były definiowane przez implikację i negację.

$$\begin{array}{l} (p \wedge q) \leftrightarrow [(p \rightarrow q) \rightarrow q] \\ (p \vee q) \leftrightarrow \neg(\neg p \rightarrow \neg q) \\ (p \leftrightarrow q) \leftrightarrow [(p \rightarrow q) \land (q \rightarrow p)] \end{array}$$

Logika trójwartościowa:

- 1 prawda
- 0 fałsz
- ½ nieokreśloność, możliwość, niezdeterminowanie, niezdefiniowanie, brak danych

Matryce logiczne:

р	¬р
0	1
1/2	1/2
1	0

\rightarrow	0	1/2	1
0	1	1	1
1/2	1/2	1	1
1	0	1/2	1

^	0	1/2	1
0	0	0	0
1/2	0	1/2	1/2
1	0	1/2	1

V	0	1/2	1
0	0	1/2	1
1/2	1/2	1/2	1
1	1	1	1

\leftrightarrow	0	1/2	1
0	1	1/2	0
1/2	1/2	1	1/2
1	0	1/2	1

Logiki wielowartościowe:

Definiowanie logik wielowartościowych za pomocą działań dla liczb rzeczywistych:

```
(x \land y) = min\{x;y\}

(x \lor y) = max\{x;y\}

(x \to y) = min\{1-x+y;1\}

\neg x = 1-x
```

Przykładowe zbiory wartości logicznych:

- (a) $A_3 = \{0, \frac{1}{2}, 1\}$ logika trójwartościowa
- (b) $A_5 = \{0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1\}$ logika pięciowartościowa
- (c) $A_{11} = \{0, \frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \dots, \frac{9}{10}, 1\}$ logika jedenastowartościowa
- (d) $A_n = \{0, \frac{1}{n-1}, \frac{2}{n-1}, \frac{3}{n-1}, \dots, \frac{n-2}{n-1}, 1\}$ logika n-wartościowa

Uwaga:

Łukasiewicz opisał całą rodzinę skończenie wielowartościowych logik L_n dla $n=3,\,4,\,5,\,...$, oraz jedną nieskończenie wartościową logikę L_{\aleph_0} .

UWAGA:

System L_3 trójwartościowego rachunku zdań (KRZ) różni się od klasycznego rachunku zdań – pewne prawa logiki klasycznej nie są tautologiami L_3 , a inne formuły sprzeczne w (KRZ) są prawdziwe w L_3

```
(a) (p ∨ ¬p ) (prawo wyłączonego środka)
```

- (b) $\neg(p \land \neg p)$ (zasada sprzeczności)
- (c) $(p \leftrightarrow \neg p)$
- (d) $\neg (p \rightarrow q) \leftrightarrow (p \land \neg q)$

Przykład:

Matryce logiczne dla logiki pięciowartościowej określonej na zbiorze $\{0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1\}$:

р	¬р
0	1
1/4	3/4
2/4	2/4
3/4	1/4
1	0

\rightarrow	0	1/4	2/4	3/4	1
0					
1/4					
2/4					
3/4					
1					

Przykład c.d.:

٨	0	1/4	2/4	3/4	1
0					
1/4					
2/4					
3/4					
1					

V	0	1/4	2/4	3/4	1
0					
1/4					
2/4					
3/4					
1					

$ \neg x=1-x (x \land y) = min\{x;y\} (x \lor y) = max\{x;y\} (x \rightarrow y) = min\{1-x+y;1\} (x \leftrightarrow y) = 1- x-y $
$(x \leftrightarrow y) \leftrightarrow [(x \rightarrow y) \land (y \rightarrow x)]$ $(x \leftrightarrow y) = \min\{\min\{1-x+y;1\}; \min\{1-y+x;1\}\}$

\leftrightarrow	0	1/4	2/4	3/4	1
0					
1/4					
2/4					
$\frac{2}{4}$ $\frac{3}{4}$					
1					

Związek między logiką wielowartościową i logiką rozmytą:

Typową logikę rozmytą otrzymamy, jeśli jako zbiór wartości logicznych przyjmiemy cały odcinek [0;1], a działania będą określone według podanych wcześniej wzorów. Wzory te nie są jedynymi możliwymi wzorami (inne propozycje różnią się zwykle sposobem zdefiniowania działania odpowiadającego implikacji).

Przykłady definiowania implikacji rozmytej:

1.
$$(x \rightarrow y) = \begin{cases} 1, & \text{jeśli } x \neq 1 \text{ lub } y = 1 \\ 0, & \text{w przeciwnym razie} \end{cases}$$

2.
$$(x \rightarrow y) = \begin{cases} 1, & \text{jeśli } x \leq y \\ 0, & \text{w przeciwnym razie} \end{cases}$$

3. $(x \rightarrow y) = \begin{cases} 1, & \text{jeśli } x = y \\ 0, & \text{jeśli } x \neq y \end{cases}$

3.
$$(x \rightarrow y) = \begin{cases} 1, & \text{jeśli } x = y \\ 0, & \text{jeśli } x \neq y \end{cases}$$

4.
$$(x \rightarrow y) = \min\{1; y/x\}$$

5.
$$(x \rightarrow y) = min\{1; 1-x+y\}$$

