

Projektionen

COMPUTERGRAPHIK

Inhaltsverzeichnis

- 6 Projektionen
 - 6.1 Einleitung
 - 6.2 Perspektivische Projektionen
 - 6.3 Parallele Projektionen
 - 6.4 Perspektivische Projektion -- Berechnung
 - 6.5 Unmögliche Strukturen
 - 6.6 Möbiusband

- Eine Projektion ist eine Abbildung
 - aus einem Raum der Dimension n
 - in einen Raum der Dimension m < n
- Objekte werden in n = 3 dimensionalem Raum dargestellt
- Bildschirm ist m=2 dimensionaler Raum

- Ein Raumpunkt wird entlang eines Projektionsstrahls auf eine vorgegebene Projektionsebene abgebildet
 - Projektionsstrahl:
 - Projektionszentrum
 - Raumpunkt
 - Projizierter Raumpunkt:
 Schnittpunkt des Projektionsstrahls
 mit der Projektionsebene

- Geometrisch planare Projektionen:
 - Perspektivische Projektion (Zentralprojektion)
 - Parallelprojektion
 - Projektionszentrum liegt in einem unendlich fernen Punkt

- Im Rahmen der projektiven
 Geometrie stellt die
 Parallelprojektion einen Spezialfall der Zentralprojektion dar
- Dies lässt sich bei der praktischen Umsetzung der Projektionen als Matrizen gewinnbringend anwenden

Klassifikation der gängigen Projektionsarten

UNIVERSITAT Computergraphik

- Alle Projektionsstrahlen laufen durch das Projektionszentrum
- Projektionszentrum fällt mit dem Auge des Beobachters zusammen
- Das Verfahren erzeugt eine optische Tiefenwirkung
- Geht in seinen Anfängen bis in die Malerei der Antike zurück

Raffael Schule von Athen

UNIVERSITÄT LEIPZIG Computergraphik

Eigenschaften

- Je zwei parallele Geraden, die nicht parallel zur Projektionsebene sind, treffen sich in einem Punkt, dem Fluchtpunkt
- Es gibt unendlich viele
 Fluchtpunkte, je einen pro Richtung nicht parallel zur Projektionsebene

- Hervorgehoben werden die Fluchtpunkte der Hauptachsen
 - Geraden, die parallel zur x-Achse verlaufen, treffen sich im x-Fluchtpunkt
 - für die anderen Hauptachsen wird dies ähnlich definiert

Klassifikation

- Nach der Anzahl der Hauptachsen, die von der Projektionsebene geschnitten werden
 - 1-Punkt-Perspektiven
 - 2-Punkt-Perspektiven
 - 3-Punkt-Perspektiven

Beispiel

1-Punkt-Perspektive

Beispiel

2-Punkt-Perspektive

Beispiel

- Bei der Parallelprojektion ist das Projektionszentrum im Unendlichen
- Alle Projektionsstrahlen verlaufen parallel in einer Richtung
- Die Parallelprojektion ist
 - weniger realistisch als die perspektivische Projektion
 - besser, um exakte Maße aus dem projizierten Bild zu bestimmen

- Orthographische Projektion:
 - Die Projektionsstrahlen stehen senkrecht gegen die Projektionsebene
 - Projektionsrichtung fällt mit der Ebenennormalen zusammen

- Schiefe Projektion:
 - Die Projektionsstrahlen stehen schief gegen die Projektionsebene

Orthographische Projektion: Hauptrisse

- Grundriss (Top View)
- Aufriss (Front View)
- Kreuzriss (Side View)
- Die Projektionsebene schneidet nur eine Hauptachse
- Die Normale der Projektionsebene ist parallel zu einer der Hauptachsen

Orthographische Projektion: Axonometrie

- Die Projektionsebene ist nicht orthogonal zu einer der Koordinatenachsen
- Parallele Linien werden auf parallele Linien abgebildet
- Winkel bleiben nicht erhalten
- Abstände können längs der Hauptachsen gemessen werden (i.A. in jeweils einem anderen Maßstab)

- Häufigstes Fall: isometrische Axonometrie
- Die Projektionsebene bildet mit allen Hauptachsen den gleichen Winkel
 - Gleichmäßige Verkürzung aller Koordinatenachsen
 - Es gibt nur acht mögliche isometrische Projektionen

Orthographische Projektion

- Dimetrische Projektion
 - Projektionsebene hat mit zwei
 Hauptachsen den gleichen Winkel
 - Skalierung ist in zwei
 Achsenrichtungen gleich

- Trimetrische Projektion
 - Projektionsebene hat mit jeder
 Achse einen anderen Winkel
 - Skalierungen sind in allen drei Achsenrichtungen verschieden

Schiefe Parallelprojektion

 Projektionsrichtung unterscheidet sich von der Normale der Projektionsebene

Schiefe Parallelprojektion: Kavalierprojektion

- Der Winkel zwischen
 Projektionsrichtung und Bildebene beträgt 45°
- Die Länge der Projektion einer Linie, die senkrecht zur Bildebene steht, bleibt unverändert
- Es gibt unendlich viele Kavalierprojektionen, eine für jede Richtung in der Bildebene

projizierte Einheitsvektoren

Schiefe Parallelprojektion: Kabinettprojektion

 Länge der Projektion einer zur Projektionsebene senkrechten Linie soll die Hälfte ihrer Originallänge werden

projizierte Einheitsvektoren

Beispiele

- Die Berechnung der perspektivischen Projektion erfolgt je nach Anwendung in unterschiedlichsten Konfigurationen
- Diese k\u00f6nnen mittels geeigneter Transformationen des Koordinatensystems erreicht werden

- Beispiel:
 - Projektionszentrum Z und der Augpunkt fallen zusammen
 - Beide liegen
 - auf der positiven z-Achse
 - mit Abstand d > 0 zum Ursprung

$$\rightarrow Z = (0,0,d)$$

- Blickrichtung ist die negative z-Achse
- Bildebene liegt in der (x, y)-Ebene

– Aus dem Strahlensatz folgt:

$$\frac{x'}{d} = \frac{x}{d-z} \qquad \Longrightarrow \quad x' = \frac{x \cdot d}{d-z}$$

$$\frac{y'}{d} = \frac{y}{d-z} \qquad \Longrightarrow \quad y' = \frac{y \cdot d}{d-z}$$

$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} \frac{x \cdot d}{d - z} \\ \frac{y \cdot d}{d - z} \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} x \cdot d \\ y \cdot d \\ 0 \\ d - z \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}^{T} \cdot \begin{pmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & d \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}^{T} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{d} \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}^{T} \cdot M$$

Zerlegung der perspektivischen Projektion

- Perspektivische Transformation M_T ($\mathbb{R}^3 \Rightarrow \mathbb{R}^3$)
- Parallele Projektion M_P auf die Ebene z=0 ($\mathbb{R}^3 \Rightarrow \mathbb{R}^2$)

$$M = M_T \cdot M_P \Rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{d} \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -\frac{1}{d} \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Erweiterung

- In der Bildebene wird ein Sichtfenster (View Window) spezifiziert:
 - Breite b
 - Höhe h
 - Verhältnis Breite zu Höhe: aspect ratio
 - Das Sichtfenster ist symmetrisch um den Ursprung angeordnet

- Die Projektoren durch die Ecken der Bildebene definieren das so genannte Sichtvolumen (Viewing-Frustum)
- Zusätzlich begrenzen zwei zur Bildebene parallele Ebenen das Sichtvolumen in z-Richtung
 - Nahclipebene mit znah
 - Fernclipebene mit zfern

Erweiterung

- Das Sichtvolumen begrenzt den Teil des Raums, der dargestellt werden soll
 - ⇒ Clipping

28

6.5 Unmögliche Strukturen

29

6.5 Unmögliche Strukturen

UNIVERSITÄT Computergraphik

6.6 Möbiusband

UNIVERSITÄT Computergraphik 31