Questions de Cours (4pts)

- Quelle est la loi des circuits magnétiques qui offre une analogie avec les circuits électriques. Définir chacun de ses paramètres.
- 2) Donner au moins deux grandeurs influant les pertes fer et citer une solution pour réduire ces pertes.
- 3) Exprimer le rapport entre le nombre de spires (N₁ et N₂) d'un transformateur parfait en fonction du rapport de tensions primaire et secondaire (U₁ et U₂), puis en fonction du rapport de courant primaire et secondaire (I₁ et I₂).

Exo1: (6 pts Interrogation 1)

Soit le circuit ci-dessous avec : $C = 125 \mu F$, $R = 3 \Omega$ L= 15mH, $R_1 = 10 \Omega$ f = 50Hz et U = 110 V

- Calculer l'impédance complexe du circuit.
- 2- Calculer l'intensité complexe I.
- 3- Calculer l'intensité complexe I1.
- 4- Quelles conditions doivent satisfaire les données pour que i₁ soit indépendant de R₁.
- 5- Calculer le facteur de puissance du montage.
- 6- Donner la représentation de Fresnel (sans respect de l'échelle) de <u>U</u>, <u>I</u>, <u>I</u>₁, <u>I</u>₂, <u>Uab</u>

Exo2: (4 pts)

Une installation électrique est composée de 4 ensembles de charges en parallèle sur une tension alternative monophasée de 220 V 50Hz. On y trouve :

- 5 radiateurs de 200W (résistif)
 6 lampes à incandescence 60W chacune.
- 2 moteurs absorbant un courant de 3 A avec un $\cos \varphi = 0.65$
- Une charge capacitive S= 0.5 kVA cosφ =0.6.
- 1) Quelle est la puissance active P et réactive Q consommée par l'installation.
- 2) Quel est le courant total absorbé ainsi que le facteur de puissance de l'installation.
- On veut relever le facteur de puissance à 0.92. Quel sera alors la valeur du condensateur à placer en parallèle. Calculer le nouveau courant.
- 4) Quelle est la solution pour que le courant total soit en phase avec la tension.

Exo3: (6 pts Interrogation 2)

Soit une source triphasée 220/380V 50Hz alimentant une charge équilibrée (figure ci dessous) avec $R=90\Omega$ et L=0.1H.

- Donner la représentation des tensions simples et composées ainsi que des courants en ligne (préciser les déphasages).
- 2) Calculer le courant en ligne.
- 3) Déterminer le facteur de puissance.
- 4) Calculer la puissance active et réactive
- 5) On désire relever le facteur de puissance à 0.9. Quelle est.la valeur des capacités en étoile qu'on doit placer (Donner le schéma).

Corrigé EF ELT 2012

SIV-+ France

Questions de cours

Loi d'Hopkinson Ni = R.Φ

0.5 pts

Ni les ampères tours R la réluctance et Φ le flux magnétique.

0.5 pts

- Les paramètres la fréquence et le volume du circuit magnétique ou B_M 0.5 +0.5
 Pour réduire circuit en tôles mince 0.5 pts
- 3) $u = e1 = N1 d\Phi/dt$ et $u2 = -e2 = N2 . d\Phi/dt$ U2/U1 = N2/N1 = m 0.5pts

N1.i1-N2.i2 = $R.\Phi = 0$ (R= 0 transfo parfait)

N2/N1 = I1/I2 = m 1

1pts

Exo1

Bobine R+jl ω C parallèle avec R1 - Z_{Rc} = R1 / (1+ j CR1 ω) 0.25pts

 \underline{Z} = $jl\omega + R + R1 / (1 + j CR1 <math>\omega$)

0.25pts

= 11.73 \cdot e ^{j6.4} Ω

0.5pts

2) $\underline{i} = \underline{U}/\underline{Z} = 110. e^{j0}/11.73. e^{j6.4} = 9.38. e^{-j6.4}$ A

1pts

3) $\underline{I} = \underline{I1} + \underline{I2}$ et i1 R1 = i2 /jc ω

11 = 1 . M / (1 + j c R1 w)

 $\underline{I1} = \underline{U} / ((1 + j c R1 w) (jl\omega + R + R1 / (1 + j CR1 \omega))$

 $= \underline{U} / (-R1 L cw^2 + j R1 R cw + jLw + R1 + R)$

LL =0

- 4) I1 independent de R1 si:
 - $L cw^2 = 1$ et

0.75 pts

- Rcw = 0 en pratique R = 0 0.75 pts
- 5) $\cos \varphi$ du montage = $\cos(\arctan \dim / \text{réel Z}) = 0.99$. 0.5 pts

Diagramme de fresnel 1945

U U_R Uab

Exo2

= 5 200 + 6 60+2 (220 3 0 65)= 2218W 0.5pts

1) P= 5.200 + 6.60+2. (220.3.0.65)= 2218W 0.5pts 6.3711 Q= 2. (220.3. sin (arccos(0.65)) 500. sin(arccos0.6) = 1403.11 var 0.5pts

818+300

