CPSC 420 Lecture 7 : Today's announcements:

- ► Examlet 1 on Jan 27 in class. Closed book & no notes
- ► Reading: Maximum Flows & Minimum Cuts [Algorithms by Erickson Ch. 10]

Today's Plan

- Network Flow
 - ► Ford-Fulkerson algorithm
 - Augmenting paths

Network Flows

A **flow network** is a directed graph G = (V, E) in which each edge $(u, v) \in E$ has a positive **capacity** c(u, v) (non-edges have capacity 0).

G contains a **source** vertex s and a **sink** vertex t.

A **flow** is an assignment f of real numbers to edges of G:

- 1. For all $u, v: 0 \le f(u, v) \le c(u, v)$ capacity constraint
- 2. For all $v \neq s, t : \sum_{u} f(u, v) = \sum_{w} f(v, w)$ flow conservation

The size (or value) of a flow is: $size(f) = \sum_{(s,v) \in E} f(s,v)$

Goal: Find flow with maximum size. wax f(s,a)1f(s,b)+f(s,c)

Network Flows [Harris & Ross 1955]

Max Flow via Path Augmentation [Ford & Fulkerson 1962]

- 1. Start with zero flow (a feasible solution)
- 2. Repeat until impossible
 - Choose an augmenting path from s to t
 - Increase flow on this path as much as possible

Max Flow via Path Augmentation [Ford & Fulkerson 1962]

- 1. Start with zero flow (a feasible solution)
- 2. Repeat until impossible
 - ► Choose an **augmenting path** from *s* to *t*
 - Increase flow on this path as much as possible

The **residual network** of flow network G = (V, E) with flow f is

$$G^f = (V, E^f)$$
 where

$$\rightarrow E^f = \{(u, v) | f(u, v) < c(u, v) \text{ or } f(v, u) > 0\}$$

The **residual capacity** of an edge $(u, v) \in E^t$ is

$$c^{f}(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } f(u,v) < c(u,v) \\ f(v,u) & \text{if } f(v,u) > 0 \end{cases}$$

An augmenting path in G is an $s \rightsquigarrow t$ path in G^f

Residual Network Example

source sink

A **cut** is a partition (S, T) of V such that $s \in S$ and $t \in T$. (Cut separates s from t.)

The **capacity** of cut
$$(S, T)$$
 is $c(S, T) = \sum_{u \in S, v \in T} c(u, v)$

The **flow** across cut
$$(S, T)$$
 is $f(S, T) = \sum_{u \in S, v \in T} f(u, v)$

Lemma

For any flow f and any cut (S,T), $size(f)=f(S,T)\leq c(S,T)$

Proof outline

1.
$$f(S, T) \le c(S, T)$$

2.
$$f(S, T) = f(S - \{v\}, T + \{v\})$$

3.
$$f({s}, V - {s}) = size(f)$$

[Capacity Constraint]

[Flow Conservation]

[Definition]

1.
$$f(S,T) = \sum_{a \in S, b \in T} f(a,b) - f(b,a)$$

$$\leq \sum_{a \in S, b \in T} f(a,b)$$

$$\leq \sum_{a \in S, b \in T} c(a,b) = c(S,T)$$

2.
$$f(S - \{v\}, T + \{v\}) = f(S, T)$$

difference = $\sum_{\substack{a \in S - \{v\} \\ b \in T + \{v\}}} f(a, b) - f(b, a) - \sum_{\substack{a \in S, b \in T}} f(a, b) - f(b, a)$

= $\sum_{a \in S - \{v\}} (f(a, v) - f(v, a)) - \sum_{b \in T} (f(v, b) - f(b, v))$

= $\sum_{u \in V} f(u, v) - \sum_{w \in V} f(v, w) = 0$

Repeat until
$$S = \{s\}$$
 implies $size(f) = f(S, T)$

Theorem

If residual network G^f has no augmenting path then f is a max size flow.

Proof: Let $S = \{v | s \rightsquigarrow v \text{ in } G^f\}$. The sink $t \notin S$ since G^f has no augmenting path. Let T = V - S. Size of flow f = f(S, T) equals c(S, T) since f(u, v) = c(u, v) for $u \in S, v \in T$. Size of any flow $\leq c(S, T)$ by Lemma.

Max-Flow Min-Cut Theorem

Size of max-flow f^* equals capacity of min capacity cut (S^*, T^*) . Proof: size $(f^*) \le c(S^*, T^*)$ by Lemma size $(f^*) = c(S, T)$ as defined by $S = \{v | s \leadsto v \text{ in } G^{f^*}\}$ and $c(S, T) > c(S^*, T^*)$ since (S^*, T^*) is min capacity cut.

9/9