INTRODUCTION TO MACHINE LEARNING (ML)

Outline & Content

- What is machine learning?
- Learning system model
- Training and testing
- Performance
- Algorithms
- Machine learning structure
- Learning techniques
- Applications

What is machine learning?

- A branch of artificial intelligence, concerned with the design and development of algorithms that allow computers to evolve behaviors based on empirical data.
- As intelligence requires knowledge, it is necessary for the computers to acquire knowledge.
- Machine learning is concerned with using the right features to build the right models that achieve the right task

Learning system model

Training and testing

Training and testing

- Training is the process of making the system able to learn.
- No free lunch rule:
 - Training set and testing set come from the same distribution
 - Need to make some assumptions or bias

Performance

- There are several factors affecting the performance:
 - Types of training provided
 - The form and extent of any initial background knowledge
 - The type of feedback provided
 - The learning algorithms used
- Two important factors:
 - Modeling
 - Optimization

Algorithms

- The success of machine learning system also depends on the algorithms.
- The algorithms control the search to find and build the knowledge structures.
- The learning algorithms should extract useful information from training examples.

Algorithms

- Supervised learning ($\{x_n \in \mathbb{R}^d, y_n \in \mathbb{R}\}_{n=1}^N$)
 - Prediction
 - Classification (discrete labels), Regression (real values)
- Unsupervised learning ($\{x_n \in \mathbb{R}^d\}_{n=1}^N$)
 - Clustering
 - Probability distribution estimation
 - Finding association (in features)
 - Dimension reduction
- Semi-supervised learning
- Reinforcement learning
 - Decision making (robot, chess machine)

Algorithms

Unsupervised learning

ML Types

Machine learning structure

Supervised learning

12

Supervised learning

- Training data includes desired outputs
- Supervised learning requires labelled training data.
- To evaluate the model, you also need labelled test data that is distinct from training data.
- Example: To train a spam filter, you need a training set of e-mails labelled spam and ham classification.
- Learning from training examples labelled with true function values – regression.

Machine learning structure

Unsupervised learning

14

Unsupervised learning

- Training data does not include desired outputs class labels of data are unknown.
- Unsupervised learning works with unlabelled data and so there is no test data as such.
- Given a set of data, the task is to establish the existence of classes or clusters in the data.
- Example: The partition of data into clusters (instances similarity), learning associations (things that tend to occur together) and identifying hidden variables

Semi-supervised learning

- Training data includes a few desired outputs.
- Data is cheap, but labelled data is expensive.
- Use small labelled training set to build an initial model, which is then refined using the unlabelled data

Reinforcement learning

- In reinforcement learning framework, provide only a reward function which indicates to the learning algorithm that when it is doing correct and when it is doing poorly.
- Then it is the job of learning algorithm to figure out how to choose actions over time so as to obtain large rewards.
- Example: autonomous helicopter flight, robot legged locomotion, chess play, etc.,

Reinforcement learning

What are we seeking?

Supervised: Low E-out or maximize probabilistic terms

$$error = \frac{1}{N} \sum_{n=1}^{N} [y_n \neq g(x_n)]$$

E-in: for training set E-out: for testing set E-out(q)<=E-in(q)

Unsupervised: Minimum quantization error, Minimum distance, MAP, MLE(maximum likelihood estimation)

What are we seeking?

20

Learning techniques

- Supervised learning categories and techniques
 - Linear classifier (numerical functions)
 - Parametric (Probabilistic functions)
 - Naïve Bayes, Gaussian discriminant analysis (GDA), Hidden Markov models (HMM), Probabilistic graphical models
 - Non-parametric (Instance-based functions)
 - K-nearest neighbors, Kernel regression, Kernel density estimation, Local regression
 - Non-metric (Symbolic functions)
 - Classification and regression tree (CART), decision tree
 - Aggregation
 - Bagging (bootstrap + aggregation), Adaboost, Random forest

Learning techniques

- Unsupervised learning categories and techniques
 - Clustering
 - K-means clustering
 - Spectral clustering
 - Density Estimation
 - Gaussian mixture model (GMM)
 - Graphical models
 - Dimensionality reduction
 - Principal component analysis (PCA)

v 1.2

Factor analysis

Machine Learning Applications

Machine Learning Applications

Image Categorization - Training

557

25

Image Categorization - Testing

Classifiers

Learning a classifier

Given some set of features with corresponding labels, learn a function to predict the labels from the features

One way to think about it...

- Training labels dictate that two examples are the same or different, in some sense
- Features and distance measures define visual similarity
- Classifiers try to learn weights or parameters for features and distance measures so that visual similarity predicts label similarity

Machine Learning Problems

Supervised Learning Unsupervised Learning

classification or categorization

clustering

regression

dimensionality reduction

Continuous Discrete

Many classifiers to choose from

- SVM
- Neural networks

Which is the best one?

- Naïve Bayes
- Bayesian network
- Linear / Logistic regression
- Decision tree
- K-nearest neighbor
- Ensemble approach
- Boosting
- Bagging
- Random Forest

AI-ML-DL

Since an early flush of optimism in the 1950's, smaller subsets of artificial intelligence - first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions.

AI-ML-DL-Classification

ML Applications

DL Applications

Check your understanding

•	Dataset without class labels are suitable for
	learning.
•	Learning through reward function is called
•	Machine learning is a sub domain of
•	Learning without feature extraction is called
•	Examples for probabilistic based learning algorithms are
	and

Summary

- AI-ML-DL
- ML types
- Applications of ML
- Algorithm names of ML
- ML problem types

