Linear Control and Estimation Matrices

Sivakumar Balasubramanian

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

References

▶ S Boyd, Applied Linear Algebra: Chapters 2, 6, 7, 8, 10 and 11.

Matrices

► Matrices are rectangular array of numbers. $\begin{bmatrix} 1.1 & -24 & \sqrt{2} \\ 0 & 1.12 & -5.24 \end{bmatrix}$

 $\hbox{$\blacktriangleright$ Consider a matrix A with n rows and m columns.} \begin{cases} \hbox{${\bf Tall/Skinny}} & n>m \\ \hbox{${\bf Square}} & n=m \\ \hbox{${\bf Wide/Fat}} & n< m \end{cases}$

Matrices

- \blacktriangleright n-vectors can be interpreted as $n \times 1$ matrices. These are called *column vectors*.
- A matrix with only one row is called a *row vector*, which can be referred to as n-row-vector. $x = \begin{bmatrix} 1.45 & -3.1 & 12.4 \end{bmatrix}$
- ▶ Block matrices & Submatrices: $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$. What are the dimensions of the different matrices?
- ▶ Matrices are also compact way to give a set of indexed column n-vectors, $x_1, x_2, x_3 \dots x_m$.

$$X = \begin{bmatrix} x_1 & x_2 & x_3 & \dots & x_m \end{bmatrix}$$

▶ Zero matrix=
$$0_{n \times m} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

Matrices

▶ **Identity matrix** is a square $n \times n$ matrix with all zero elements, except the diagonals where all elements are 1.

$$I_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
 $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix}$

Diagonal matrices is a square matrix with non-zero elements on its diagonal.

$$\begin{bmatrix} 0.4 & 0 & 0 & 0 \\ 0 & -11 & 0 & 0 \\ 0 & 0 & 21 & 0 \\ 0 & 0 & 0 & 9.3 \end{bmatrix} = \mathbf{diag} (0.4, -11, 21, 9.3)$$

▶ Triangular matrices: Are square matrices. Upper triangular $A_{ij} = 0, \forall i > j$; Lower triangular $A_{ij} = 0, \forall i < j$.

Matrix operations

▶ Transpose switches the rows and columns of a matrix. A is a $n \times m$ matrix, then its transpose is represented by A^T , which is a $m \times n$ matrix.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \implies A^T = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix}$$

Transpose converts between column and row vectors.

What is the transpose of a block matrix? $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$

▶ **Matrix addition** can only be carried out with matrices of same size. Like vectors we perform element wise addition.

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix}$$

Matrix operations

- Properties of matrix addition:
 - Commutative: A + B = B + A
 - Associative: (A+B)+C=A+(B+C)

 - ► Addition with zero matrix: A + 0 = 0 + A► Transpose of sum: $(A + B)^T = A^T + B^T$
- **Scalar multiplication** Each element of the matrix gets multiplied by the scalar.

$$\alpha \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} \\ \alpha a_{21} & \alpha a_{22} \end{bmatrix}$$

- ▶ We will mostly only deal with matrices with real entries. Such matrices are elements of the set $\mathbb{R}^{n \times m}$.
- ▶ Given the aforementioned matrix operations and their properties, is $\mathbb{R}^{n \times m}$ a vector space?

- It is possible to multiply two matrices $A \in \mathbb{R}^{n \times p}$ and $B \in \mathbb{R}^{p \times m}$ through matrix multiplication procedure.
- ▶ There is a product matrix $C := AB \in \mathbb{R}^{n \times m}$, if the number of columns of A is equal to the number of rows of B.

$$C_{ij} := \sum_{k=1}^{p} A_{ik} B_{kj} \quad \forall i \in \{1, \dots n\} \quad \& \ j \in \{1 \dots m\}$$

▶ Inner product is a special case of matrix multiplication between a row vector and a column vector.

$$x^{T}y = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}^{T} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^{n} x_i y_i$$

Consider a matrix $A \in \mathbb{R}^{n \times m}$ and a m-vector $x \in \mathbb{R}^m$. We can multiply A and x to obtain $y = Ax \in \mathbb{R}^n$.

$$y = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} \tilde{a}_1^T \\ \tilde{a}_2^T \\ \vdots \\ \tilde{a}_n^T \end{bmatrix} x = \begin{bmatrix} \tilde{a}_{*1}^T x \\ \tilde{a}_2^T x \\ \vdots \\ \tilde{a}_n^T x \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^m a_{1i} x_i \\ \sum_{i=1}^m a_{2i} x_i \\ \vdots \\ \sum_{i=1}^m a_{ni} x_i \end{bmatrix}$$
$$y = \sum_{i=1}^m x_i \begin{bmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{n-1} \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n-1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n-2} \end{bmatrix} + \dots + x_m \begin{bmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{n-2} \end{bmatrix}$$

Multiplying a matrix A by a column vector x produces a linear combination of the columns of matrix A. The column mixture is provided by x.

We see a similar process in play when we multiply a row vector $x^T \in \mathbb{R}^n$ by a matrix $A \in \mathbb{R}^{n \times m}$.

$$y = x^{T} A = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}^{T} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} = x^{T} \begin{bmatrix} a_1 & a_2 & \dots & a_m \end{bmatrix}$$

$$y == \begin{bmatrix} x^T a_1 & x^T a_2 & \dots & x^T a_m \end{bmatrix} = \sum_{i=1}^n x_i \begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{im} \end{bmatrix}$$

Multiplying a row vector x by a matrix A produces a linear combination of the row of matrix A. The row mixture is provided by x.

▶ Multiplying two matrices $A \in \mathbb{R}^{n \times p}$ and $B \in \mathbb{R}^{p \times m}$, we have $C \in \mathbb{R}^{n \times m}$,

$$C = AB = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{p1} & b_{p2} & \dots & b_{pm} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{p1} & c_{n2} & \dots & c_{nm} \end{bmatrix}$$

- ▶ Inner product interpretation: $c_{ij} = \tilde{a}_i^T b_j$, $i \in \{1 \dots n\}$, $j \in \{1 \dots m\}$
- ▶ Column interpretation: $C = A \begin{bmatrix} b_1 & b_2 & \dots & b_m \end{bmatrix} = \begin{bmatrix} Ab_1 & Ab_2 & \dots & Ab_m \end{bmatrix}$

$$\begin{tabular}{|c|c|c|c|c|} \hline \textbf{Row interpretation} : C = \begin{bmatrix} \tilde{a}_1^T \\ \tilde{a}_2^T \\ \vdots \\ \tilde{a}_n^T \end{bmatrix} B = \begin{bmatrix} \tilde{a}_1^T B \\ \tilde{a}_2^T B \\ \vdots \\ \tilde{a}_n^T B \end{bmatrix}$$

▶ Outer product interpretation Consider two n-vectors $x,y \in \mathbb{R}^n$. The outer product is defined as.

$$xy^{T} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & y_{3} & \dots & y_{n} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & x_{1}y_{3} & \dots & x_{1}y_{n} \\ x_{2}y_{1} & x_{2}y_{2} & x_{2}y_{3} & \dots & x_{2}y_{n} \\ x_{3}y_{1} & x_{3}y_{2} & x_{3}y_{3} & \dots & x_{3}y_{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n}y_{1} & x_{n}y_{2} & x_{n}y_{3} & \dots & x_{n}y_{n} \end{bmatrix}$$

ightharpoonup We can represent the product between two matrices as the sum of outer products between the columns and A and rows of B.

$$AB = \begin{bmatrix} a_1 & a_2 & a_3 & \dots & a_p \end{bmatrix} \begin{bmatrix} b_1^T \\ \tilde{b}_2^T \\ \tilde{b}_3^T \\ \vdots \\ \tilde{b}_p^T \end{bmatrix} = \sum_{i=1}^p a_i \tilde{b}_i^T$$

Properties of matrix multiplication

- Not commutative: $AB \neq BA$ The two product might not even be defined always. When it is these two products need not match.
- ▶ **Distributive**: A(B+C) = AB + BC and (A+B)C = AC + BC
- ▶ Associative: A(BC) = (AB)C
- ▶ Transpose: $(AB)^T = B^T A^T$
- ▶ Scalar product: $\alpha(AB) = (\alpha A)B = A(\alpha B)$

Linear equations

 Matrices present a compact way to represent a set of linear equations. Consider the following,

$$\begin{vmatrix}
 a_{11}x_1 + a_{12}x_2 \dots + a_{1n}x_n = b_1 \\
 a_{21}x_1 + a_{22}x_2 \dots + a_{2n}x_n = b_2 \\
 a_{31}x_1 + a_{32}x_2 \dots + a_{3n}x_n = b_3 \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 \dots + a_{mn}x_n = b_m
 \end{vmatrix}
 \longrightarrow Ax = b, A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n, b \in \mathbb{R}^m$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Geometry of linear equations

$$\begin{vmatrix} x_1 + 2x_2 = -1 \\ x_1 + x_2 = 1 \end{vmatrix} \longrightarrow \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Two ways to view this: row view and the column view.

Solving linear equations

$$Ax = b, \ A \in \mathbb{R}^{m \times n}, \ x \in \mathbb{R}^n, \ b \in \mathbb{R}^m$$

- ► Three possible situations: No solution, Infinitely many solutions, or Unique Solution.
- ▶ When do have infinitely many or no solutions? In \mathbb{R}^3 , we can visualize the different situations.

Solving linear equations: Gaussian Elimination

$$a_{11}x_1 + a_{12}x_2 \dots + a_{1n}x_n = b_1 : E_1$$

$$a_{21}x_1 + a_{22}x_2 \dots + a_{2n}x_n = b_2 : E_2$$

$$a_{31}x_1 + a_{32}x_2 \dots + a_{3n}x_n = b_3 : E_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 \dots + a_{mn}x_n = b_m : E_m$$

- Gaussian elimination is a systematic way of simplifying the above equations to an equivalent system that can be easily solved.
- ► Three simple operations are repeatedly performed:
 - ▶ Interchanging of equations E_i and E_j .
 - ▶ Replacing equation E_i by αE_i , $\alpha \neq 0$.
 - ▶ Replacing equation E_i by $E_i + \alpha E_i$, $\alpha \neq 0$.
- ▶ These three operations do not change the solution of the given linear system.

Solving linear equations: Gaussian Elimination

 $\textbf{Augmented matrix} : \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ a_{31} & a_{32} & \cdots & a_{3n} & b_3 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$

- We can work with the augmented matrix instead of the equations.
- Gaussian elimination is carried out on the entire matrix.
- ▶ The matrix is simplified to a point, from where one can easily:
 - find out the nature of the solutions for the system of equations; and
 - find the solution (with a bit of extra work), if they exist.

Solving linear equations: Gaussian Elimination

Gaussian Elimination

$$\begin{bmatrix} \frac{1}{2} & 2 & -1 & 1 \\ 2 & 3 & 4 & 4 \\ -2 & -4 & 1 & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{1}{0} & 2 & -1 & 1 \\ 0 & -1 & 6 & 2 \\ -2 & -4 & 1 & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{1}{0} & 2 & -1 & 1 \\ 0 & \frac{-1}{0} & 6 & 2 \\ 0 & 0 & \frac{-1}{0} & -1 \end{bmatrix}$$

Now, we can perform back substitution on this triangularized system of linear equations,

$$x_3 = 1$$
; $x_2 = 4$; $x_1 = -6$

We can continue the simplification process through the **Gauss-Jordan** method.

Solving linear equations: Gaussian-Jordan Method

Continue the elimination upwards until all elements, except the ones in the main diagonal, are zero.

$$\begin{bmatrix} 1 & 2 & -1 & 1 \\ 0 & -1 & 6 & 2 \\ 0 & 0 & -1 & -1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & -1 & 1 \\ 0 & -1 & 0 & -4 \\ 0 & 0 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & -1 & 1 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & -6 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 1 \end{bmatrix} \implies x_1 = -6; \ x_2 = 4; \ x_3 = 1;$$

Everything worked out well without any problems. What can go wrong here?

Try solving the these systems,
$$\begin{bmatrix} 1 & 2 & -1 & 1 \\ 2 & 3 & 4 & 4 \\ -2 & -4 & 2 & -3 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 2 & -1 & 1 \\ 2 & 3 & 4 & 4 \\ -2 & -4 & 2 & -2 \end{bmatrix}$

What is the difference between these two systems?

Solving linear equations: Rectangular systems and Row Echelon Form

$$\begin{bmatrix} a_{11}x_1 + a_{12}x_2 \dots + a_{1n}x_n = b_1 : E_1 \\ a_{21}x_1 + a_{22}x_2 \dots + a_{2n}x_n = b_2 : E_2 \\ a_{31}x_1 + a_{32}x_2 \dots + a_{3n}x_n = b_3 : E_3 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 \dots + a_{mn}x_n = b_m : E_m \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ a_{31} & a_{32} & \cdots & a_{3n} & b_3 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

Consider the following example,

Solving linear equations: Rectangular systems and Row Echelon Form

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ a_{31} & a_{32} & \cdots & a_{3n} & b_3 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{*}{2} & * & * & * & * & * & * \\ 0 & 0 & \frac{*}{2} & * & * & * & * \\ 0 & 0 & 0 & \frac{*}{2} & * & * & * & * \\ 0 & 0 & 0 & 0 & \frac{*}{2} & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{*}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Things to notice about the echelon form:

- ▶ If a particualr row consists entirely of zeros, then all rows below that row also contain entirely of zeros.
- ▶ If the first non-zero entry in the i^{th} row occurs in the j^{th} position, then all elements below the i^{th} row are zero from columns 1 to j.

Columns containing pivot are called the basic columns.

Rank of a matrix A is defined at the number of basic columns in the row echelon form of the matrix A.

Solving linear equations: Reduced Row Echelon Form

$$\begin{bmatrix} \underbrace{*} & * & * & * & * & * & * & * \\ 0 & 0 & \underbrace{*} & * & * & * & * \\ 0 & 0 & 0 & \underbrace{*} & * & * & * \\ 0 & 0 & 0 & 0 & \underbrace{*} & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & \underbrace{*} & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\mathbf{Gaussian-Jordan}} \begin{bmatrix} \underbrace{1} & * & 0 & 0 & 0 & * & 0 \\ 0 & 0 & \underbrace{1} & 0 & 0 & * & 0 \\ 0 & 0 & 0 & \underbrace{1} & 0 & * & 0 \\ 0 & 0 & 0 & 0 & \underbrace{1} & * & 0 \\ 0 & 0 & 0 & 0 & 0 & \underbrace{1} & * & 0 \\ 0 & 0 & 0 & 0 & 0 & \underbrace{1} & * & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \underbrace{1} & * & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{0} & -2 & 1 & 0 & 1 & 1 \\ 0 & 0 & \frac{-1}{0} & -1 & -4 & 0 \\ 0 & 0 & 0 & \frac{-1}{0} & -5 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{1}{0} & -2 & 0 & -1 & -3 & 1 \\ 0 & 0 & \frac{1}{1} & 1 & 4 & 0 \\ 0 & 0 & 0 & \frac{-1}{1} & -5 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{1}{0} & -2 & 0 & 0 & 2 & 1 \\ 0 & 0 & \frac{1}{1} & 0 & -1 & 0 \\ 0 & 0 & 0 & \frac{1}{1} & 5 & 0 \end{bmatrix}$$

- ▶ All non-basic columns can be represented as a linear combination of the basic columns.
- ▶ A non-basic columns is a linear combination of only the columns before it.
- ► Scaling factors for each basic comlumns noA non-basic columns is a linear combination of only the columns before it.

The reduced row echelon form reveals structure in the original matrix A.

Solving linear equations: Homogenous Systems

$$\begin{array}{c}
a_{11}x_1 + a_{12}x_2 \dots + a_{1n}x_n = 0 \\
a_{21}x_1 + a_{22}x_2 \dots + a_{2n}x_n = 0 \\
a_{31}x_1 + a_{32}x_2 \dots + a_{3n}x_n = 0 \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 \dots + a_{mn}x_n = 0
\end{array}$$

$$\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} & 0 \\
a_{21} & a_{22} & \cdots & a_{2n} & 0 \\
a_{31} & a_{32} & \cdots & a_{3n} & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn} & 0
\end{bmatrix}$$

Consider the following case,

$$\left[\begin{array}{cccc|cccc} 1 & -2 & 1 & 0 & 1 & 0 \\ 2 & -4 & 1 & -1 & -2 & 0 \\ -1 & 2 & 1 & 1 & 2 & 0 \end{array}\right] \longrightarrow \left[\begin{array}{ccccccccc} 1 & -2 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 5 & 0 \end{array}\right]$$

Solving linear equations: Homogenous Systems

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -2 \\ 0 \\ 1 \\ -5 \\ 1 \end{bmatrix}$$
 represents the general solution of the system of equations.

▶ In general, any system $[A \mid 0]$ with rank(A) = r has the general solution of the form,

$$x = x_{f_1}\mathbf{h}_1 + x_{f_2}\mathbf{h}_2 + \ldots + x_{f_r}\mathbf{h}_r$$

where, the variables $x_{f_1}, x_{f_2}, \dots, x_{f_r}$ are called the **free variables**.

- ► Free variables are the one corresponding to the non-basic columns; the variable variables corresponding to the basic columns are the **basic variables**.
- ▶ When does a homogenous system have a unique solution solution? $\longrightarrow rank(A) = m$.

Solving linear equations: Non-homogenous Systems

$$a_{11}x_1 + a_{12}x_2 \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 \dots + a_{3n}x_n = b_3 \longrightarrow [A \mid b]$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 \dots + a_{mn}x_n = b_m$$

Consider the following case,

The general solution of a non-homogenous system is sum of the particular solution and the general solution of the associated homogenous system.

Solving linear equations: Non-homogenous Systems

 $\qquad \qquad \text{The general solution for } \left[A \mid 0 \right] \text{ with } rank \left(A \right) = r \text{,}$

$$x = \mathbf{p} + x_{f_1}\mathbf{h}_1 + x_{f_2}\mathbf{h}_2 + \ldots + x_{f_r}\mathbf{h}_r$$

where, ${f p}$ is the particular solution and $x_{f_1}, x_{f_2}, \ldots, x_{f_r}$ are the free variables.

- ▶ When do we have a unique solution to this system? $\longrightarrow rank(A) = m$.
- lacktriangle What about the case when there are no solutions? When does that happen? \longrightarrow When the system is not consistent.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ a_{31} & a_{32} & \cdots & a_{3n} & b_3 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & * & 0 & 0 & 0 & * & c_1 \\ 0 & 0 & 1 & 0 & 0 & * & c_2 \\ 0 & 0 & 0 & 1 & 0 & * & c_3 \\ 0 & 0 & 0 & 0 & 1 & * & c_4 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & c_m \end{bmatrix}$$

There is a problem when $c_m \neq 0$

- ▶ The augmented matrix $[A \mid b]$ has the same number of basic columns as A.
- ▶ $[A \mid b] \rightarrow [E \mid c]$: c is a non-basic column.
- $ightharpoonup rank(A) = rank(A \mid b)$

LU Factorization of a Matrix

- ▶ A major theme of matrix algebra is to decompose matrices into simpler components that provide insights into the nature of the matrix.
- ▶ A full rank square matrix $A \in \mathbb{R}^{n \times n}$ can be decomosed into the product of a lower triangular and an upper triangular matrix.
- ▶ Matrices associated with the three elementary operations:

Inter-changing	Scaling	Adding a multiple of
rows 2 and 4	row 2	row 2 to row 3
$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$
$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & \alpha & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$
$\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & \alpha & 1 & 0 \end{bmatrix}$
$[0 \ 1 \ 0 \ 0]$	$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$	$[0 \ 0 \ 0 \ 1]$

LU Factorization of a Matrix

- ► Consider the case: $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 0 & 2 \\ 4 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -2 \\ 0 & 0 & -1 \end{bmatrix} = LU$
- process.

 A x b becomes IUx b: This is decomposed into two triangular systems Ux a, Ux b. First

LU factorization can be done only when no zero pivot is encountered during the Guassian elimination

- Ax=b becomes LUx=b: This is decomposed into two triangular systems, $Ux=y,\ Ly=b$. First solve Ly=b and then solve Ux=y
- Properties:
 - ightharpoonup Diagonal elements of L are 1, and U are not equal to zero.
 - ightharpoonup U is the final result of Guassian elimination, and L is the matrix that reverses this process.
 - ▶ Element l_{ij} of L is the multiple of row j used to eliminate the a_{ij} element of A.
- Uses of the LU factorization:
 - ▶ Solving $Ax = b_i$ for several b_i s. LU need to be calculated only once.
 - ▶ Factorization requires not extra space.

PA = LU Factorization of a Matrix

- ► Consider the case: $A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 1 \\ 3 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \neq LU$
- It turns out the second pivot become zero after the first elimination step, so LU factorization cannot be done on A.
- ▶ The following however fixes this issue,

$$PA = LU$$

where, P is the permunation matrix, which is the elementary matrix for row exchanges.

▶ In the current example, the following allows matrix factorization.

$$PA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 1 \\ 3 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = LU$$

Linear functions

 \blacktriangleright We had earlier seen linear functions of the form $f: \mathbb{R}^n \mapsto \mathbb{R}$, which had the form,

$$y = f(x) = w^T x; \ w, x \in \mathbb{R}^n, \ y \in \mathbb{R}$$

▶ A generalization of this is when the range of the function is not in \mathbb{R} but in \mathbb{R}^n :

$$y = f(x); x \in \mathbb{R}^n, y \in \mathbb{R}^m$$

- Such a function has a natural representation of the form y = Ax, $A \in \mathbb{R}^{m \times n}$. Can you prove that y = Ax is linear?
- Any linear function can be represented in the form y = Ax. So, matrices can be viewed as representing a linear transformation.

Another look at matrix multiplication

Why does matrix multiplication have this strange definition?

Consider the following two functions,

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = f\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} ax_1 + bx_2 \\ cx_1 + dx_2 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = g\left(\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}\right) = \begin{bmatrix} \alpha u_1 + \beta u_2 \\ \gamma u_1 + \delta u_2 \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$h\left(u\right) = f\left(g\left(u\right)\right) = f\left(\begin{bmatrix} \alpha u_1 + \beta u_2 \\ \gamma u_1 + \delta u_2 \end{bmatrix}\right) = \begin{bmatrix} a\alpha u_1 + a\beta u_2 + b\gamma u_1 + b\delta u_2 \\ c\alpha u_1 + c\beta u_2 + d\gamma u_1 + d\delta u_2 \end{bmatrix}$$

$$= \begin{bmatrix} (a\alpha + b\gamma) u_1 + (a\beta + b\delta) u_2 \\ (c\alpha + d\gamma) u_1 + (c\beta + d\delta) u_2 \end{bmatrix} = \begin{bmatrix} a\alpha + b\gamma & a\beta + b\delta \\ c\alpha + d\gamma & c\beta + d\delta \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$\implies \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} = \begin{bmatrix} a\alpha + b\gamma & a\beta + b\delta \\ c\alpha + d\gamma & c\beta + d\delta \end{bmatrix}$$

This definition of matrix multiplication is the most natural for dealing with composition of linear functions. It also turns to out to be the most useful.

Four Fundamental Subspaces

ightharpoonup C(A): Column Space of A – the span of the columns of A.

$$C(A) = \{Ax \mid x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$$

▶ N(A): Nullspace of A – the set of all $x \in \mathbb{R}^n$ that are mapped to zero.

$$N\left(A\right) = \left\{x \mid Ax = 0\right\} \subseteq \mathbb{R}^n$$

▶ $C(A^T)$: Row Space of A – the span of the rows of A.

$$C(A^T) = \{A^T y \mid y \in \mathbb{R}^m\} \subseteq \mathbb{R}^n$$

▶ $N\left(A^{T}\right)$: Nullspace of A^{T} – the set of all $y \in \mathbb{R}^{m}$ that are mapped to zero by A^{T} .

$$N\left(A^{T}\right) = \left\{y \mid A^{T}y = 0\right\} \subseteq \mathbb{R}^{m}$$

This is also called the **left nullspace** of A.

Linear Independence

- ▶ Given a set of vectors $\{v_1, v_2, \dots v_n\}$, $v_i \in \mathbb{R}^m$, how can we determine if this set is linear independent? Remember the Gram-Schmit algorithm?
- We need to verify, $\alpha_1v_1 + \alpha_2v_2 + \cdots + \alpha_n = 0$

$$\begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = V\alpha = 0$$

$$N(A) = \{0\}, \quad rank(V) = n$$

- ▶ This is also equivalent to saying that when the $rank(A) = n \implies$ the columns of A form an independent set of vectors.
- ▶ When do the rows of A form an independent set?
- ▶ What about both rows and columns? When does that happen?

Dimension and basis of the four fundamental subspaces

$$A = \begin{bmatrix} 1 & -2 & 1 & 0 & 1 \\ 2 & -4 & 1 & -1 & -2 \\ -1 & 2 & 1 & 1 & 2 \\ 2 & -4 & -2 & -2 & -4 \end{bmatrix}; \ EA = R$$

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -1 & 2 & 1 & 1 \\ 2 & -4 & -2 & -2 \end{bmatrix}}_{E} A = \underbrace{\begin{bmatrix} 1 & -2 & 1 & 0 & 1 \\ 0 & 0 & -1 & -1 & -4 \\ 0 & 0 & 0 & -1 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}}_{R}$$

Pivot columns of
$$A$$
: $\left\{ \begin{bmatrix} 1\\2\\-1\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\-2 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1\\2 \end{bmatrix} \right\}$

Nullspace of
$$A$$
: $x_2h_1 + x_5h_2$; $h_1 \begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix}$, $h_2 = \begin{bmatrix} 2\\0\\-1\\-5\\1 \end{bmatrix}$

We can restructure
$$EA=R
ightarrow egin{bmatrix} E_1 \\ E_2 \end{bmatrix} A = egin{bmatrix} R_1 \\ 0 \end{bmatrix}$$

Consider the matrix $A \in \mathbb{R}^{m \times n}$

- **Column space** N(A)
 - ightharpoonup dim C(A) = rank(A) = r
 - ▶ Basis of C(A) = Pivot colums of A.
- ightharpoonup Nullspace N(A)
 - $ightharpoonup \dim N(A) = n r$
 - ▶ Basis of $N(A) = \{h_1, h_2 \dots h_{n-r}\}.$
- **Row space** $C(A^T)$
 - $\begin{array}{l} \blacktriangleright \ \, \dim C(A) = rank\left(A^T\right) = rank\left(A\right) = r \\ \blacktriangleright \ \, \text{Basis of } C(A^T) = \text{Colums of } R_1^T. \end{array}$
- ightharpoonup Nullspace N(A)
 - $ightharpoonup \dim N(A) = n r$
 - ▶ Basis of $N(A) = \text{Colums of } E_2^T$

Matrix Inverse

- Consider the square matrix $A \in \mathbb{R}^{n \times n}$. $B \in \mathbb{R}^{n \times n}$ is the inverse of A, if $AB = BA = I_n$, and B is represented as A-1.
- Not all matrices have inverses. A matrix with an inverse is called non-singular, and a matrix that does not have an inverse is called singular.
- For a non-singular matrix A, A^{-1} is unique. A^{-1} is both the left and right inverse.
- lacktriangle A matrix A has an inverse, if and only if A is full rank, i.e. $rank\left(A\right)=n$
- ▶ The inverse of a non-signular matrix can be determined through Gauss-Jordan method. $[A|I] \xrightarrow{\mathsf{Gaussian-Jordan}} \big[I|A^{-1}\big]$
- \blacktriangleright Ax=b can be solved as follows, $x=A^{-1}b$. It is never solved like this in practice.
- ▶ Inverse of product of matrices, $(AB)^{-1} = B^{-1}A^{-1}$
- $(A^{-1})^{-1} = A \text{ and } (A^{-1})^T = (A^T)^{-1}$