機器學習實務與應用

Homework #8 Due 2019 April 22 9:00AM

Exercise 1. (**Point Set Registration**) Let **P** and **Q** be two given matrices in $\mathbb{R}^{3\times49}$. Each column of **P** (or **Q**) represents a point in \mathbb{R}^3 . Thus, column vectors of **P** (or **Q**) represent 49 points in \mathbb{R}^3 .

In Figure 1, the blue points are column vectors of \mathbf{P} , while the red points are column vectors of \mathbf{Q} . Our goal is to search for a scaling factor $s \in \mathbb{R}$ and a translation vector $\mathbf{t} \in \mathbb{R}^3$ such that $s\mathbf{q}_i + \mathbf{t}$ is as close as possible to \mathbf{p}_i for i = 1, 2, ..., 49, as shown in Figure 2. To be precise, we aim to solve s and s that minimize the following optimization problem:

$$\min_{s,\mathbf{t}} \sum_{i=1}^{49} \|\mathbf{p}_i - s\mathbf{q}_i - \mathbf{t}\|_2^2 = \min_{s,\mathbf{t}} \sum_{i=1}^{49} (\mathbf{p}_i - s\mathbf{q}_i - \mathbf{t})^T (\mathbf{p}_i - s\mathbf{q}_i - \mathbf{t}) = \min_{s,\mathbf{t}} f(s)$$

where $\mathbf{p}_i \in \mathbb{R}^3$ is the ith column of \mathbf{P} , and $\mathbf{q}_i \in \mathbb{R}^3$ is the ith column of \mathbf{Q} .

You can follow the instructions in the code template Module5_Part2_Template.py to complete this exercise (Please see the comments that begin with **TODO**). Report the optimal solution (s, \mathbf{t}) and plot the curve in which the x-axis denotes the iteration number and the y-axis denotes the loss.

