Bar-induction, GCH and combinatorial properties

from an ongoing work with Laura Fontanella

Realizability Workshop - CIRM

Jacopo Furlan

LIPN - USPN & LACL - UPEC

April 8, 2025

Realizability algebra is a tuple $\mathcal{K} = (\Lambda_c, \Pi, \succ, \bot)$.

To build a model of ZF, we associate to any formula F a set of stacks $||F|| \subseteq \Pi$.

F is realized by t, in symbols $t \Vdash F$, if

for any $\pi \in ||F||, t \star \pi \in \bot$ + technical property.

If t doesn't feature such particular (and mysterious) property, but satisfies $t \star \pi \in \bot$, we write $t \in ||F||^{\bot}$.

Let $\kappa \in Ord$ be a cardinal, $\mathcal{K} = (\Lambda_{\mathsf{c}}, \Pi, \succ, \bot)$ a realizability algebra such that

$$\Lambda_c = \Lambda^{\circ}(\mathsf{cc}; k_{\pi}; \chi; \underline{\alpha} \mid \pi \in \Pi, \alpha < \kappa)$$

satisfying

$$(\underline{s})\underline{\alpha} \succ \underline{\alpha + 1}$$
$$(\chi)\underline{\alpha} t u \underline{\beta} \succ \begin{cases} (t)\underline{\beta} & \beta < \alpha \\ u & \beta \ge \alpha \end{cases}$$

Observe that χ allows to encode sequences of terms. It is helpful to think at the previous term as

$$\chi \underline{\alpha} t u \sim \langle \underbrace{(t)\underline{0}, (t)\underline{1}, \dots, (t)\underline{\beta}, \dots}_{\text{first } \alpha \text{ terms}}, u, u, u, \dots \rangle$$

(that's just syntactic sugar for the following).

In this setting, we can define bar-induction as

$$\Psi := \lambda g u.(Y) \lambda h k t.(u) (\chi k t)(g) \lambda z. h(\underline{s}) k)(\chi) k t z$$

which has the following reduction for $H := \Psi GU$

$$H\underline{\alpha}t \succ U(\chi)\underline{\alpha}tK_{\alpha}[H,t]$$

with $K_{\alpha}[H, t] := (G)\lambda z.H(\underline{s})\underline{\alpha}(\chi)\underline{\alpha}tz.$

$$H\underline{\alpha}t \succ U(\underline{\chi}\underline{\alpha}t)K_{\alpha}[H, t],$$

$$K_{\alpha}[H, t] \equiv (G)\lambda z.H(\underline{s})\underline{\alpha}(\underline{\chi})\underline{\alpha}tz$$

 Ψ applies U to the sequence

$$\langle (t)\underline{0},\ldots,(t)\underline{\beta},\ldots,K_{\alpha}[H,t],\ldots\rangle$$

where the tail of the sequence is recursively extending the sequence. Indeed, in $K_{\alpha}[H,t]$, the sub-term $\lambda z.H(\underline{s})\underline{\alpha}(\chi)\underline{\alpha}tz$ is a function which returns U applied to the sequence

$$\langle (t)\underline{0},\ldots,(t)\underline{\beta},\ldots,z,K_{\alpha+1}[G,U,t],\ldots\rangle.$$

In order to deal with sequences of λ_c -terms we fix some definition.

Definition

Given a sequence $(t_{\alpha})_{\alpha < \gamma}$ for some ordinal γ , we say that $v \in \Lambda_{\mathsf{c}}$ reduces to $(t_{\alpha})_{\alpha < \gamma}$ if for any $\alpha < \gamma$ and for any $\pi \in \Pi$, $v \star \underline{\alpha} \cdot \pi \succ t_{\alpha} \star \pi$.

A sequence $(v_{\alpha})_{\alpha < \gamma}$ reduces to $(t_{\alpha})_{\alpha < \gamma}$ if for any $\alpha < \gamma$, for any $\beta < \alpha$ and $\pi \in \Pi$, $v_{\alpha} \star \underline{\beta} \cdot \pi \succ t_{\beta} \star \pi$.

Definition

For a fixed $u \in \Lambda_{\mathsf{c}}$, $v \in \Lambda_{\mathsf{c}}$ is *compatible* with u if there exists $\pi \in \Pi$ such that $u \star v \cdot \pi \not\in \bot$. v is *incompatible* with u if it is not compatible.

Eventually we come to κ -closure as defined by Krivine.

Definition

A realizability algebra \mathcal{K} is κ -closed for some $\kappa \in Ord$ if, and only if, for any $\gamma < \kappa$, $(t_{\alpha})_{\alpha < \gamma} \subseteq \Lambda_{\mathsf{c}}$ and $u \in \Lambda_{\mathsf{c}}$, if there exists a sequence $(v_{\alpha})_{\alpha < \gamma}$ reducing to $(t_{\alpha})_{\alpha < \gamma}$, then there exists a term v reducing to $(t_{\alpha})_{\alpha < \gamma}$ such that if for any $\alpha < \gamma$, v_{α} is compatible with u, then v compatible with u.

Roughly speaking, we ask any γ -sequence to have a "limit", and that compatibility is preserved by the limit.

One more definition before some results.

Definition

Define the functional $@: M^{\mathcal{K}} \times M^{\mathcal{K}} \mapsto M^{\mathcal{K}}$ as

$$@(f,c) := \{ \langle d, \pi \rangle \in M^{\mathcal{K}} \mid \langle \mathsf{op}(c,d), \pi \rangle \in f \}.$$

@ represents the set of images of c through f in the realizability model.

Definition

For an ordinal $\gamma < \kappa$, we define the @, γ -axiom of choice, $(AC_{\hat{\gamma},@})$ as the following schema of formulæ

$$\forall x \exists y F(x,y) \to \exists f \forall x^{\hat{\gamma}} \exists y (F(x,y) \land y \in @(f,x)))$$

Theorem

For any $\gamma < \kappa$, $\lambda xy.\Psi xy\underline{0}\,\underline{0} \Vdash AC_{\hat{\gamma},\underline{0}}$.

(Proof's idea)'s idea

We consider $G \in ||\forall x \exists y F(x,y)||^{\perp \perp}$, $U \in ||\forall f(\forall x^{\hat{\gamma}} \exists y (F(x,y) \land y \in @(f,x))) \rightarrow \bot||^{\perp \perp}$ and show that $\Psi GU \underline{00} \in ||\bot||^{\perp \perp}$. The proof proceeds by contradiction.

Bar-induction and G assure the existence of a sequence of terms $(u_{\alpha})_{\alpha<\gamma}$ such that $u_{\alpha}\in ||F[\hat{\alpha},c_{\alpha}]||^{\perp}$.

We can find a sequence $(v_{\alpha})_{\alpha<\gamma}$, reducing to $(u_{\alpha})_{\alpha<\gamma}$ and compatible with u. Recollecting it via κ -closure generates a term $v \in ||\forall x^{\hat{\gamma}} F_{@}[x, f]||^{\perp}$ such that $(U)v \in ||\bot||^{\perp}$, which contradicts the preservation of compatibility.

For a fixed cardinal κ , we can define $\operatorname{CH}_{\kappa}$ as the statement that the powerset $\mathscr{D}(\kappa)$ is in bijection with the successor cardinal κ^+ ; then we can denote $\operatorname{CH}_{<\kappa} := \forall \alpha < \kappa \operatorname{CH}_{\alpha}$ and $\operatorname{GCH} := \forall \kappa \operatorname{CH}_{\kappa}$.

Corollary

Suppose $\mathcal{M} \models GCH$ and \mathcal{K} is κ -closed. Then the realizability model \mathcal{N} satisfies $CH_{\leq \hat{\kappa}}$.

Proof's idea

@ operator allows to define for any function $f: \hat{\gamma} \stackrel{\varepsilon}{\longmapsto} \{ \exists 0, \exists 1 \}$ in realizability model a subset g_f contained in the submodel $\mathcal{M}_{\mathcal{D}} \subseteq \mathcal{N}$.

As $\mathcal{M}_{\mathcal{D}} \models GCH$ and powersets cardinals lower than $\hat{\kappa}$ are contained in there, we get the result.

Given a boolean algebra $\mathbb{B} = (B, \mathbb{O}, \mathbb{1}, \wedge, \vee, \neg)$, we can built a realizability algebra $\mathcal{K}(\mathbb{B}) = (\Lambda_{\mathsf{c}}, \Pi, \succ_{\mathbb{B}}, \mathbb{L}_{\mathbb{B}})$, using elements in B as atomic stacks.

We fix $\Pi_0 = B$ and we define a function $\cdot^{\mathbb{B}} : \Lambda_{\mathsf{c}} \cup \Pi \mapsto \mathbb{B}$ by induction:

$$\begin{split} x^{\mathbb{B}} &= \mathbb{1} = \mathsf{cc}^{\mathbb{B}}, k_{\pi}^{\mathbb{B}} = \pi^{\mathbb{B}}, \\ (\lambda x.t) &= t^{\mathbb{B}}, ((t)u)^{\mathbb{B}} = t^{\mathbb{B}} \wedge u^{\mathbb{B}}, \\ \pi_0^{\mathbb{B}} &= \pi_0, (t \cdot \pi)^{\mathbb{B}} = t^{\mathbb{B}} \wedge \pi^{\mathbb{B}}. \end{split}$$

The relation $\succ_{\mathbb{B}}$ is defined as

$$t \star \pi \succ_{\mathbb{B}} u \star \rho \stackrel{def}{\iff} (t \star \pi)^{\mathbb{B}} \leq (u \star \pi)^{\mathbb{B}}$$

for $(t \star \pi)^{\mathbb{B}} := t^{\mathbb{B}} \wedge \pi^{\mathbb{B}}$, and the pole as

$$\perp\!\!\!\perp_{\mathbb{B}} = \{ t \star \pi \in \Lambda_{\mathsf{c}} \star \Pi \mid (t \star \pi)^{\mathbb{B}} = 0 \}.$$

Definition

A boolean-algebra \mathbb{B} is κ -closed if, and only if, for any $\gamma < \kappa$, and any descending sequence $(b_{\alpha})_{\alpha < \gamma} \subseteq B^+$, there exists $b \in B^+$ such that $b \leq b_{\alpha}$.

Theorem

If $\mathbb B$ is κ -closed, no new function $\check{\kappa} \mapsto \check{M}$ is added in the forcing model.

Theorem

 \mathbb{B} is κ -closed if, and only if, $\mathcal{K}(\mathbb{B})$ is κ -closed.

In forcing setting there exists a weaker version of κ -closure, whose effects in the forcing extension resemble what we obtained before.

Definition

A boolean-algebra \mathbb{B} is κ -distributive if, and only if, for any γ -family of open denses $(D_{\alpha})_{\alpha<\gamma}$, $\bigcap_{\alpha<\gamma} D_{\alpha}$ is open dense, for any $\gamma<\kappa$.

Theorem

If \mathbb{B} is κ -closed, then it is κ -distributive. The reverse holds if, and only if, $\mathrm{DC}_{<\kappa}$ holds.

Theorem

If a forcing condition is κ -distributive, then any γ -sequence of element of the ground model is preserved.

Perspective

Finding a suitable translation of $\kappa\text{-distributivity}.$

S. Berardi, M. Bezem, T. Coquand

"On the Computational Content of the Axiom of Choice" The Journal of Symbolic Logic, vol. 63, no. 2, 1998, pp. 600–22.

J.-L. Krivine

"Bar Recursion in Classical Realisability: Dependent Choice and Continuum Hypothesis"

Proceedings CSL 2016 LIPIcs vol. 62, 2016, pp. 25:1–25:11

Thank you!