of FFOT

V

MCA MID-ODD SEMESTER EXAMINATION, 2017-2018

BMA-401

Time: 1 Hour

M.W.: 30

Note: Attempt all questions.

1.(a) Examine $P \rightarrow Q$, $Q \rightarrow R$, $S \rightarrow TR$ and PAS for consistency.

(b) Examine (1) and (1) for a functionally complete set of connectives.

(c) Does P follow logically from $(7PV7Q) \rightarrow (RAS)$, $R \rightarrow T$ and T?

2.(a) Develop a recurrence relation model for the number of valid n-digit codewards, each of which is a valid codeword if it contains an even number of o digits. Use genrating functions to solve the model.

Illustrate with examples one application of: (i) Hamilton circuit, (ii) Graph coloring.

(c) Write adjacency matrices for K_n and $K_{m,n}$.

3.(a) Determine which amounts of postage can be formed using just 4-cent and 11-cent stamps only. Prove your answer using strong induction.

(b) Examine a relation defined on $\mathbb{R} \times \mathbb{R}$ by (a, b)R(c, d) iff a + 2b = c + 2d for an

equivalence relation. Determine $[(3,5)]_R$.

(c) Examine the set of positive rational numbers for a countable set.

(b) Examine (D₇₀, 1) for a poset, a lattice and its types and a Boolean algebra.

(b) Illustrate the use of Quine-McCluskey's method to find minimum SOP for:

Hostrate the use of Quine-McCluskey's method to find minimum SOP for: $f(a,b,c,d) = \sum m(2,3,7,9,11,13) + \sum \Phi(1,10,15).$

_ ()

(c) Explain Boolean isomorphism. Examine (D₇₀, |) and (P(2,3,7), ⊆) for isomorphic. Boolean algebras.

5.(a) Establish the validity of the following argument.

"There is a man whom all men adore. Therefore, atleast one man adores himself."

(b) Find the discrete numeric function corresponding to EGF: $E(Z) = e^{Z^3}$

(c) Develop a program in C/C^{++} to compute a transitive closure of a relation on the set $A = \{1,2,3\}$ given by $R = \{<1,2>,<2,3>,<3,1>\}$.

Loomorphim

A.V. Poset. Komorni

ar

5

No. of Printed Pages: 2

Subject Code:

B M A 4 0 1

MCA ODD SEMESTER EXAMINATION, 2017-18

DISCRETE STRUCTURES

Max. Marks: 50 Time: 2:30 Hrs.

Note:	Attempt all questions. All questions carry marks as shown against them.	
1. (a	Use a proof by contraposition to prove the theorem:	2
-	"If $3n + 2$ is odd, then n is odd", where n is an integer.	2
(6	Establish the validity of the argument: "If today is Tuesday, I have a test in Mathematics or Economics. If my Economics Professor is sick, I will not have a test in Economics. Today is Tuesday and my	
_	Economics Professor is sick. Therefore, I have a test in Mathematics.	2
Sc	Examine $P \to Q, Q \to R, S \to R$ and $P \land S$ for consistency.	2
(d	Establish the validity of the argument: "Damini, a student in MCA class knows how to write programs in Java. Every one who knows how to write programs in Java can get a high-paying job. Therefore,	
(e)	someone in this class can get a high-paying job." Write a program in C/C^{++} to examine the logical equivalence of the statements: $(P \to Q) \Lambda(P \to R)$ and $P \to (Q \Lambda R)$	2
2. (a)	Illustrate the application of mathematical induction in the analysis of computer	2
	algorithms/programs.	2
(6)	Examine the set $N \times N \times N$ for a countable set.	2
(c)	(a,b)R(c,d) if $a + 2b = c + 2a$	
	for an equivalence relation. Find [(3,4)].	. 2
(d)	Use the pigeon-hole principle to prove or disaprove the statement: "If five points are selected in the interior of a square with side = lunit, there are	
	atleast two whose distance apart is less than $\frac{1}{\sqrt{2}}$."	2
(e)	State the principle of inclusion-exclusion and illustrate its applications.	
3. (a)	An encoding function is defined by the generator matrix: $G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$	5
	Examine whether the matrix is useful in correcting single errors in	
	(ii) Examine the encoding function for a group code and a Hamming	

(b)

code. Find its rate.

Use the syndrome table to decode 101001 and find original message.

Decode the received word: 110001 and find original word. The operations \oplus and \odot on $R = \{s, t, x, y\}$ of a ring $(R \oplus, \odot)$ are given by the

0	S	t	X	у
S	У	×	S.	. 1
SE	X	у	t	s
x	s	t	×	у
у	t	S	ý	x

0	S	t	X	У
S	У	У	×.	×
t	У	У	X	×
x	x	x	x	х
y	x	x	x	x

(i) Examine (R,⊕, ⊙) for a commutative ring. (ii) Does it has a unity?

(iii) Find a pair of zero divisors.

(iv) Is it an integral domain/field?

5

5

2

2

2

2

Develop a partially ordered structure on the set of all positive integer divisors of 42 and examine it for a partially ordered set, well ordered set, lattice with its types and Boolean algebra.

Use Quine-McCluskey's method to find minimal-sum-of-products representation for $f(a,b,c,d) = \sum m(2,3,7,9,11,13,) + \sum \emptyset (1,10,15).$

A coding system encodes messages using strings of octal (base 8) digits. A codeword is considered valid if and only if it contains an even number of 7s. Develop a recurrence relation model for the number of valid code words of length n.

Determine discrete numeric function corresponding to EGF: e^{z^5} .

Solve the Chinese postman problem for the weighted graph:

(d) Use Prim's algorithm (matrix version) to find MST for the weighted graph :

Find (i) chromatic number of Wn (ii) crossing number of Petersen graph.

eren-3

MCA MID-ODD SEMESTER EXAMINATION, 2019-2020 DISCRETE STRUCTURES

'M.M.: 30 Time: 12 Hour Note: Attempt any Five questions. All questions carry marks as shown against them. (a) Use two proof methods to examine the truth of the statement: "If $m + n \ge 73$, then $m \ge 37$ or $n \ge 37$, where m and n are positive integers." [3] (6) Examine statement formulas: $p \rightarrow q$, $q \rightarrow r$, $s \rightarrow 7r$ and $p \land s$ for consistency. [3] 2.(a) Examine whether 7q follows logically from: $(p \lor q) \to r$, $r \to s$ and 7s. [3] [3] (b) Examine the validity of the argument: "Every faculty member either has a Ph.D. degree or has a Master degree. No officer who is a faculty member has a Ph.D. degree. Therefore, if every officer is a faculty member, then the officer has a Master degree." There are two kinds of particles inside a nuclear reactor. In every second, an α particle will split into three α particles and one β particle, and a β particle will split into two α particles and one β particle. If there is a single α particle in the reactor initially, Develop a recurrence- relation model for the number of α and β particles in the reactor at time r. [3] (ii) Use generating functions to solve the model. Illustrate with an example how the Euler's formula for planar graphs can be used to [3] examine the planarity of graphs. (b) Explain with an example how the Travelling Salesman Problem can be solved. [3] 5.(a) Discuss with an example how the principle of mathematical induction can be used to verify the correctness of a computer program. (b) If there are 5 points inside a square of side lengh 2, prove that at least two of the points [3]

MCA FIRST SEMEST

Time: 1 Hour

Note: Attempt all questions.

M.M.: 15

- 1.(a) Use generating function to prove: $\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}$.
- (b) Illustrate how the graph coloring can be used in animal habitats construction in a zoo.
- 2.(a) Write the adjacency and incidence matrices for Kmn
 - (b) Illustrate three different algorithms to examine the planarity of a graph.
- 3. There are two kinds of particles inside a nuclear reactor. In every second , an a particle will split into three a particles and two & particle, and a B particle will split into two a particles and one β particle. There is a single β particle in the reactor initially.

(i) Develop a recurrence relation model for the number of α and β particles in the

reactor at time r.

- (ii) Use generating functions to solve the recurrence relation model.
- Examine the validity of the following argument. Give a counter example if it is invalid. 4.(a) "All whales are heavy. All elephants are heavy, Therefore, all whales are elephants."
- Establish the validity of the following argument. "There is a man whom all men adore. Therefore, atleast one man adores himself."
- Write a program in C/C++ to Establish the validity of the argument : 5.(a)

 $P \rightarrow Q$ $R \rightarrow 7Q$

(b) Use a proof by contraposition and a proof by contradiction to examine the statement: "If $m+n \ge 73$, then $m \ge 37$ or $n \ge 37$, where m and n are positive integers."

Subject Code: IMA-102

MCA Odd Semester Examination, 2015-16 Time: 3 Hours DISCRETE STRUCTURES Max. Marks: 100 Note: . Attempt all question. All questions carry marks as shown against them. 1. (a) Establish the validity of the following argument or give a counter example to show that it is invalid: [5] invalid: $Q \rightarrow 7R$ $R \rightarrow (PVS)$ [5] : 7PV(Q A TR) Establish the validity of the following argument: $P \rightarrow (Q \rightarrow R)$ 7SVP Q [5] $S \rightarrow R$ (c) Examine the validity of the following argument. No mothers are males. Some males are politicians. Use a proof by contraposition and a proof by contradiction to examine the statement : Therefore, some politicians are not mothers. [5] "If $m + n \ge 73$, then $m \ge 37$ or $n \ge 37$, where m and n are positive integers." [4] (a) The sequence $\langle a_n \rangle$ is defined by $a_0 = 2$, $a_1 = 1$ and $a_{n+2} = a_{n+1} + 2a_n$. Prove by double induction that $a_n = 2^n + (-1)^n$ [4] Examine the set $Z^+ \times Z^+$ for a countable set: [4] For $X = \{0,1\}$, let $A = X \times X$. A relation R an A is defined by (1,6) (2,5) (b) (34) (4,3) (a,b)R(c,d) if (i) a < c; or (ii) a = c and b < d(c) (5,2) (6,1) Examine R for a partial order relation. (d) A relation R on $A = \{1,2,3,4,5,6\} \times \{1,2,3,4,5,6\}$ is defined by [4] (a,b)R(c,d) if ab=cd_ Examine R for an equivalence relation, Determine [(4,3)]. State some elegant applications of the pigeon-hole principle. Prove that any subset of size six from the set $\underline{S} = \{1,2,3,....9\}$ must contain two elements (e) whose sum is 10. 3. (a) An encoding function is defined by the parity-check matrix: [10]

$$\dot{H} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Examine whether the matrix H is useful in correcting single errors in transmission. (i)

6

FIRST SEMESTER II MID-SEMESTER EXAMINATION, 2014-15 DISCRETE STRUCTURES

ime: Thour

M.M.: 15

OTE: Attempt all questions.

(a) Define and verify on the set of positive divisors of 70 a poset, a lattice with its types, and a Boolean algebra.

(b) Use Karnaugh map or Quine-McClusky method to obtain a minimal sum-of-products representation for

 $f(x,y,z,w,t) = \sum m(0,2,4,6,8,10,12,13,14,15,16,17,29,31).$

- (a) Examine $(Z^+ \times Z_i^+, \leq)$ for a well-ordered set, where \leq is a lexicographic order.
- Develop a program in C/C++ to determine the transitive closure of a relation.
- a) Illustrate with example how mathematical induction can play a major role in computer programs verification.
- relation smallest containing b) Find $\{(1,2),(1,4),(3,3),(4,1)\}$ that is
 - symmetric and transitive.
 - (ii) reflexive, symmetric and transitive.
- a) Establish the validity of the following argument: "There is a man whom all men despise." "Therefore, at least one man despises himself."
- b) Examine (i) K2,2,3 for a planar graph. -(if) Km, n for Eulerian and Hamiltonian graphs.
- a) Let $X = \{0, 1, 2\}$ and $A = X \times X$. Define the relation R on A by (a,b)R(c,d) if (i) a < c; or (ii) a = c and b < d.

Examine R for a partial order on A. in the use of the time-complexity functions in the analysis (comparison) of algorithms.

te of showing evaluated answer books: Dec 30, 2014 No. of Printed Pages: 2 Julian Drs 1MA-102 MCA Odd Semester Examination, 2014-15 DISCRETE STRUCTURES Time: 3 Hours Max. Marks: 100 Note: 1. Attempt all parts. 2. All questions carry marks as shown against them. Examine the validity of the following argument: 1.(a) [5] $(A \land Q) \rightarrow M$ $(F \rightarrow Q) \land (7P \rightarrow A)$ $:TM \to (TFVP)$ [5] Establish the validity of the following argument: (b) "A mother is a loving person." "Therefore, the heart of a mother is the heart of a loving person." Establish the validity of the following argument or give a counter example to show that it (c) is invalid: $R \rightarrow (CVL)$ 7C -> TN $7T \rightarrow 7L$ $R \rightarrow (N \ \ \)$ Develop a program in C/C++ to find the principal conjunctive normal form of the (d) statement formula: $(7P \rightarrow R) \land (Q \leftrightarrows P)$ Examine the set $N \times N \times N$ for a countable set. Use a proof by contraposition to prove the pigeonhole principle. Use it to prove or disprove the 2.(a) statement: "If 10 points are selected inside an equilateral triangle of unit side, then atleast two (6) of them are no more than 1/3 of a unit apart". Determine which amounts of postage can be formed using just 4-cents and 11cents stamps only. Prove your answer using strong Induction. Examine the relation $\sim on \, \mathbb{N} \times \mathbb{N}$ given by $(a,b) \sim (c,d) \, if \, a+d=b+c$ for an equivalence relation. If yes, identify the equivalence classes. (d) An encoding function is defined by the generator matrix: Examine the encoding function for a group code. If yes, examine the group code for a Hamming code and find the rate of this code. Encode the message: 1111. Decode the received word: 1110111 Construct a decoding table consisting of the syndromes and coset leaders for this Use the result in part (v) to decode the received word 0010001. The operations \oplus and \bigcirc on $R = \{a, b, c, d\}$ given by the table below: [5]

MCA ODD SEMESTER EXAMINATION, 2019-20

DISCRETE STRUCTURES

Time: 2:30 Hrs. Max. Marks: 50

ote: 1. Attempt *all* questions.
2. All questions carry marks as shown against them.

	(a)	Use a proof by contraposition to examine the statement for its truth: "If $x + y \ge 100$, then $x \ge 50$ or $y \ge 50$, where x and y are real numbers".	2	
	(b)	Establish the validity of the argument: "A researcher is a genius person. Therefore, the brain of a researcher is the brain of a genius person.".		
	(c)	Examine whether $\forall r \to s$ follows logically from $p \to r$, $\forall p \to q$ and $q \to s$.	2	
	(d)	Examine whether the conclusion $\forall x \ [\exists r(x) \to p(x)]$ follows logically from : $\forall x [p(x) \lor q(x)]$ and $\forall x [(\exists p(x) \land q(x)) \to r(x)]$.	2	
	(e)	Write a program in C/C ⁺⁺ to examine the consistency of the statements:	2	
		$p \to (q \to r), q \to (r \to s), p \land q \land 7s$		
	(a)	Let $a_0 = a_1 = a_2 = 1$ and $a_n = a_{n-2} + a_{n-2}$ for $n \ge 3$. Prove by strong	2	
	•	mathematical induction that $a_n \le (4/3)^n$ for each integer $n \ge 0$.	2	
	(b)	Examine the set $\{(a,b,c) a,b,c,\in Z^+\}$ for a countable set.	2	
	(c)	Examine the relation R on $\mathbb{R} \times \mathbb{R}$ defined by:		
		for an equivalence relation. Find [(3,5)].	2	
	(d)	Use the pigeon-hole principle to examine the statement for its truth: "If 10 points are selected in the interior of an equilateral triangle of unit side, there		
		must be at least two whose distance apart is less than $\frac{1}{3}$.		
	(e)	Illustrate one application of $n - ary$ relations.		
	()			
	(a)	An encoding function is defined by the generator matrix: $G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$		
		Examine whether the matrix is useful in correcting single errors in		
	(ii) Examine the encoding function for a group code and a Hamming	,		
		(iii) Decode 000110, 011111 and find original messages. Comment on the error-detection and error-correction capabilities of the code.		

- (b) Examine $(Z_5, \bigoplus_5, \bigotimes_5)$ for (i) a ring, (ii) an integral domain, and (iii) a field, where \bigoplus_5 and \bigotimes_5 are the operations of addition and multiplication modulo 5.
 - , 5
- 4. (a) Develop a partially ordered structure on the set of all positive integer divisors of 110 Boolean algebra.
- 5

5

4

- (b) Find (i) minimal-sum-of-products representation for
 - $f(a,b,c,d) = \sum m(0,1,2,3,4,6,7,8,9,11,15)$ by Quine-McCluskey's method. (ii) the minimal product-of-sums representation for
 - $f(a,b,c,d) = \prod M(1,3,5,7,8,10,11,12,14)$ by Karnaugh map.
- 5. (a) A coding system encodes messages using strings of octal (base 8) digits. A codeword is considered valid if and only if it contains an even number of 5s. Develop a recurrence relation model for the number of valid code words of length r and solve the model using generating functions.
 - (b) Solve the Chinese postman problem for the weighted graph:

(c) Use Prim's algorithm (matrix version) to find MST for the weighted graph:

(d) (i) Find chromatic polynomial of $K_{2,s}$. (ii) Give an example of a self-dual graph.