1. Counterpropagating waves, energy transport

Consider a superposition of two y-polarized plane harmonic electromagnetic waves with angular frequency ω and vacuum wavenumber k. Assume that these waves propagate in opposite directions along the z-axis, through a homogeneous, nonmagnetic medium with refractive index n. This relates to an electric field of the form

$$E_y(z,t) = a_f e^{\mathbf{i}(\omega t - knz)} + a_b e^{\mathbf{i}(\omega t + knz)},$$

with complex amplitudes a_f and a_b . Evaluate the time averaged energy density and the time averaged power flux density S. Compare with the absolute squares $|E|^2$, $|H|^2$ of the electric and magnetic field.

2. Reflection of a plane wave at a surface of a potentially attenuating medium

Assume that the x-y-plane spans the interface between two regions (1), (2) filled with linear, nonmagnetic, and uncharged media. While region (1), z < 0, is filled with a lossless dielectric medium with (real) permittivity $\epsilon_1 = n_1^2$ and refractive index n_1 , for the half-space (2), z > 0, we assume a potentially complex permittivity ϵ_2 . There are no free charges or currents on the interface.

This is a 2-D problem; let the coordinates be oriented such that all electromagnetic fields are constant in the y-direction. We restrict things to s-polarized waves. Their propagation is governed by the scalar 2-D TE Helmholtz equation

$$(\partial_x^2 + \partial_z^2 + k^2 \epsilon) E_y = 0 \tag{1}$$

for the principal electric field component $E_y(x,z)$. Continuity of this field and of its normal derivative is required across all interfaces. $k=2\pi/\lambda$ is the vacuum wavenumber, related to the vacuum wavelength λ . All fields oscillate in time $\sim \exp(\mathrm{i}\omega t)$ with angular frequency $\omega=kc$.

Assume that a plane with complex amplitude $E_{\rm I}$ propagates in region 1 towards the interface at an angle of incidence θ . The interface causes a reflected wave in region (1) with amplitude $E_{\rm R}$. For region (2) we start with an ansatz of a separable field and an amplitude E_0 , such that the electric field can be stated in the form

$$E_{y}(x,z) = \begin{cases} E_{I} e^{-ikn_{1}(z\cos\theta + x\sin\theta)} + E_{R} e^{-ikn_{1}(-z\cos\theta + x\sin\theta)} & \text{for } z < 0, \\ E_{0} X(x) Z(z) & \text{for } z > 0. \end{cases}$$
(2)

Here the functions X and Z are yet to be determined. Without loss of generality we choose amplitudes X(0) = 1 and Z(0) = 1.

- (a) Draw a sketch to clarify the geometry. Verify that the ansatz (2) satisfies Eq. (1) in region (1).
- (b) Use the continuity of E_y across the interface to determine X, and to relate E_0 to E_I and E_R .
- (c) E_y needs to satisfy Eq. (1) in region (2). Show that Z is of the form

$$Z(z) = e^{-ik\kappa z}$$
, with $\kappa^2 = \epsilon_2 - n_1^2 \sin^2 \theta$, (3)

where κ is a potentially complex constant.

(d) Further the normal derivative $\partial_z E_y$ needs to be continuous at the interface. Use this requirement to derive the equations

$$E_{R} = \frac{n_{1}\cos\theta - \kappa}{n_{1}\cos\theta + \kappa}E_{I}, \qquad E_{0} = \frac{2n_{1}\cos\theta}{n_{1}\cos\theta + \kappa}E_{I}$$
(4)

that relate the amplitudes of the reflected and "transmitted" waves to the amplitude of the incoming wave. Compare with the Fresnel-equations for s-polarized waves.

- (2., continued)
- (e) First consider the case of a lossless medium in region (2), with $\epsilon_2 \in \mathbb{R}$. Introduce the refractive index n_2 for region (2). Distinguish between two cases with $n_2^2 > n_1^2 \sin^2 \theta$ and $n_2^2 < n_1^2 \sin^2 \theta$.
 - i. For $n_2^2 > n_1^2 \sin^2 \theta$, select a sign for κ such that the field in region (2) is an outgoing travelling wave propagating at an angle θ_2 that is related to the incoming wave by Snell's law. State the field in region (2), and verify that $|E_{\rm R}|^2 < |E_{\rm I}|^2$, due to the power carried by the transmitted wave
 - ii. For $n_2^2 < n_1^2 \sin^2 \theta$, select a sign for κ such that the field in region (2) is damped in the +z-direction. State the field in region (2), and verify that $|E_{\rm R}|^2 = |E_{\rm I}|^2$, i.e. that there is total reflection at the interface.
- (f) Now specialize to a lossy medium in region (2), with $\epsilon_2 \notin \mathbb{R}$. Assume a permittivity $\epsilon_2 = \epsilon' i\epsilon''$ with $\epsilon' < 0$ and $\epsilon'' > 0$, as is the case for many metals.
 - i. Evaluate the wavenumber κ , choosing signs of the roots such that $\text{Re}\kappa > 0$, and $\text{Im}\kappa < 0$. Verify that the field in region (2) is then an outwards (+z) propagating damped wave.
 - ii. Show that $|E_R|^2/|E_I|^2 < 1$, i.e. that the reflection at the metallic surface is always accompanied by losses.
 - iii. Evaluate the reflectance $R=|E_{\rm R}|^2/|E_{\rm I}|^2$ (Why is this correct here?) for the reflection of a plane wave coming in from air $(n_1=1)$ towards a metal surface, as a function of the angle of incidence θ . Use the material properties [1] of silver $\epsilon_{\rm Ag}=-14.5-i1.2$ and copper $\epsilon_{\rm Cu}=-11.7-i2.1$ at the wavelength $\lambda=0.633\,\mu{\rm m}$ of a He-Ne-laser.
 - [1] M. N. Polyanskiy. "Refractive index database", http://refractiveindex.info (accessed May 05, 2016).
- 3. Commercial software dedicated to simulations in photonics / integrated optics is being offered by a number of companies. Examples are (state of early 2022, a list without any claim to completeness):
 - JCMwave,
 - Optiwave,
 - Synopsys (RSoft, PhoeniX),
 - · Photon Design,
 - CST,
 - · Ansys/Lumerical,
 - VPIphotonics.

In view of the classes of typical simulation tasks that we discussed during the lecture: Try to get an overview of what types of solvers are offered, and try to get an idea about the numerical schemes that the programs rely on.