

# Two Way Sign Language Detection System Using Advanced Deep Learning



# INTRODUCTION



- ➤ Sign language is a crucial mode of communication for the people with hearing disability and hard-of-hearing community, but it is often a barrier to interaction with the hearing population.
- The proposed functionality aims to bridge communication gaps and promote inclusivity, making interactions more accessible for individuals using sign language in English.
- ➤ Our project addresses this challenge by developing a two-way sign language translation system in English. This proposed system enables both conversion from sign language to speech and from speech to sign language.







- ➤ For the sign-to-speech conversion, we employ a modified Convolutional Neural Network (CNN) architecture that classifies various signs and translates them into spoken language using Google Text-to-Speech (GTTS).
- Conversely, for speech-to-sign conversion, the system uses PySpeech recognition to transcribe spoken language into text, which is then mapped to the corresponding sign language gestures using open source computer vision(OpenCV).



# **NEED FOR CURRENT WORK**

- KARPAGAM
  COLLEGE OF ENGINEERING
  Rediscover | Refine | Redefine
  (Autonomous)
- There's a crucial need for a system that can seamlessly translate both sign language to speech and speech to sign language in English.
- Two-way communication allows professionals to interact with others and build relationships.

#### **OBJECTIVE OF THE WORK:**

• Our project aims to bridge the communication gap with a comprehensive system that enables two-way communication between sign language and speech in English using advanced technologies like Modified CNN(Modified Convolution Neural Network) for sign recognition and speech-to-text conversion.





# LITERATURE REVIEW



| - |      |                                                                                                      |                                                                                                                     |                                                                           |                                                                                                                                                                                                                                                                                                          |
|---|------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | S.NO | TITLE OF THE PAPER                                                                                   | AUTHOR                                                                                                              | JOURNAL NAME AND YEAR                                                     | REMARKS & LIMITATIONS                                                                                                                                                                                                                                                                                    |
|   | 1.   | SignNet II: A Transformer-<br>Based Two- Way Sign<br>Language Translation Model                      | Lipisha Chaudhary, Tejaswini<br>Ananthanarayana, Enjamamul<br>Hoq, Ifeoma Nwogu                                     | IEEE Transactions on Pattern<br>Analysis and Machine Intelligence<br>2022 | <ul> <li>SignNet II is a sign language processing architecture that uses transformer networks for two-way communication</li> <li>Outperforms singly-trained networks on German Sign Language benchmark dataset.</li> </ul>                                                                               |
|   |      | Collaborative Multilingual<br>Continuous Sign Language<br>Recognition: A Unified<br>Framework        | Hezhen Hu,Junfu Pu,Wengang<br>Zhou,Houqiang Li                                                                      | IEEE Transactions on Multimedia 2022                                      | <ul> <li>Addresses multilingual sign language recognition with a unified framework.</li> <li>Includes a shared visual encoder, language-dependent sequential modules, and a universal sequential module.</li> <li>Outperforms individually trained recognition models on multiple benchmarks.</li> </ul> |
|   | 3.   | Recognizing British Sign Language Using Deep Learning: A Contactless and Privacy-Preserving Approach | Hira Hameed,Kashif<br>Ahmad,Amir<br>Hussain,Muhammad Ali<br>Imran,Qammer H. Abbasi                                  | IEEE Transactions on<br>Computational Social Systems 2022                 | <ul> <li>Proposes a contactless and privacy-preserving system for British Sign Language (BSL) recognition.</li> <li>Uses radar data and deep learning models to extract and classify spatiotemporal features of BSL signs.</li> </ul>                                                                    |
|   |      | Deep sign: Sign Language Detection and Recognition Using Deep Learning                               | Kothadiya, Deep, Chintan<br>Bhatt, Krenil Sapariya, Kevin<br>Patel, Ana-Belén Gil-González,<br>and Juan M. Corchado | IEEE Electronics 2022                                                     | Since, it is based on thermal processing, high accuracy of 99.52% can be achieved.                                                                                                                                                                                                                       |



| 1 |      |                                                                                                     |                                                                                                                       |                                                                     |                                                                                           |  |  |
|---|------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|
|   | S.NO | TITLE OF THE PAPER                                                                                  | AUTHOR                                                                                                                | JOURNAL NAME AND YEAR                                               | REMARKS & LIMITATIONS                                                                     |  |  |
|   |      | Automated Sign Language<br>Alphabet Detection                                                       | van der Merwe, Ashwin,<br>Elie Ngomseu Mambou, and<br>Theo G. Swart.                                                  | IEEE Communications of the Association for Information Systems 2021 | Only limited signs can be detected using this method.                                     |  |  |
|   |      | Deep Learning-Based Sign Language Digits Recognition From Thermal Images With Edge Computing System | Breland, Daniel S., Simen B.Skriubakken, Aveen Dayal Ajit Jha, Phaneendra K. Yalavarthy, and Linga Reddy Cenkeramaddi | IEEE Sensors Journal 2021                                           | Since, it is based on thermal processing, high accuracy of 99.52% can be achieved.        |  |  |
|   |      | Deep Learning for Sign Language Recognition: Current Techniques, Benchmarks, and Open Issues        | Al-Qurishi, Muhammad,<br>Thariq Khalid, and Riad<br>Souissi                                                           | IEEE Access 2021                                                    | Many SLR tools can be used along with image processing for future applications.           |  |  |
|   |      | Deep learning-based sign Language recognition system for static signs                               |                                                                                                                       | Springer Neural computing and applications 2021                     | System is robust enough to learn 100 different static manual signs with lower error rates |  |  |



|   | S.NO | TITLE OF THE PAPER      | AUTHOR                        | JOURNAL NAME AND YEAR        | REMARKS & LIMITATIONS                                 |
|---|------|-------------------------|-------------------------------|------------------------------|-------------------------------------------------------|
|   | 9.   | Sign language detection | I.A. Adeyanju, O.O. Bello b   | Elsevier Intelligent Systems | • There is a need for more research that fuses images |
|   |      | and recognition         | , M.A. Adegboye               | with Applications 2021       | from multiple devices such as a camera                |
|   | 10.  | Sign Language           | Rastgoo, Razieh, Kourosh      | Expert Systems with          | • It covers various aspects of the field, including   |
|   |      | Recognition: A Deep     | Kiani, and Sergio Escalera    | Applications                 | data collection, preprocessing, feature extraction,   |
|   |      | Survey                  |                               | 2021                         | and classification methods.                           |
|   |      |                         |                               |                              | • The survey summarizes the advancements,             |
|   |      |                         |                               |                              | challenges, and future directions in sign language    |
|   |      |                         |                               |                              | recognition using deep learning.                      |
|   | 11.  | A Comprehensive Study   | Adaloglou, Nikolas,           | IEEE Transactions on         | Evaluates recent deep neural network methods on       |
|   |      | on Deep Learning-Based  | Theocharis Chatzis, Ilias     | Multimedia                   | multiple publicly available datasets.                 |
|   |      | Methods for Sign        | Papastratis, Andreas          | 2021                         |                                                       |
|   |      | Language Recognition    | Stergioulas, Georgios Th      |                              | Introduces new sequence training criteria and         |
|   |      |                         | Papadopoulos                  |                              | discusses various pretraining schemes.                |
|   |      |                         |                               |                              |                                                       |
| ŀ | 12.  | Hear Sign Language: A   | Wang, Zhibo, Tengda Zhao,     | IEEE Transactions on Mobile  | DeepSLR, a real-time end-to-end sign language         |
|   |      | Real-Time End-to-End    | Jinxin Ma, Hongkai Chen,      | Computing                    | recognition (SLR) System is introduced and it is      |
|   |      | Sign Language           | Kaixin Liu, Huajie Shao, Qian | 2020                         | implemented on a smartphone.                          |
|   |      | Recognition             | Wang, and Ju Ren              |                              |                                                       |
|   |      | System                  |                               |                              | • Achieving an average word error rate of 10.8%       |
|   |      |                         |                               |                              | and less than 1.1s recognition time for 4 sign        |
|   |      |                         |                               |                              | words.                                                |
|   |      |                         |                               | 1                            | _                                                     |

# PROBLEM STATEMENT



- ❖ The lack of real-time, accurate, and user-friendly translation tools creates barriers in various contexts, including education, professional settings, and everyday interactions to impaired people.
- ❖ Effective communication between sign language users and non-users is challenging, as current solutions often only handle both-way translation rather than providing a comprehensive bidirectional approach.
- ❖ This project seeks to address these issues by developing a two-way sign language translation system that seamlessly translates between sign language and speech.



DUAL COMMUNICATION

# **EXISTING METHOD**

KARPAGAM
COLLEGE OF ENGINEERING
Rediscover | Refine | Redefine
(Autonomous)

- ✓ Current sign language translation systems are often limited in scope, focusing primarily on either converting sign language to speech or speech to sign language in English.
- ✓ Current sign-to-speech systems often use pre defined databases or simple rules, lacking flexibility and accuracy, while speech-to-sign systems depend on basic voice recognition and limited gesture databases, missing the full range of sign language.





✓ While some systems integrate machine learning techniques, they often fall short in real-time performance and bidirectional translation capabilities. Current technologies also face challenges in ensuring high accuracy and user-friendliness, particularly in dynamic, conversational settings.

I WANT TO GO REST ROOM





# PROPOSED METHOD



• **Sign-to-Speech Conversion:** The system employs a modified Convolutional Neural Network (CNN) to classify hand signs captured through a webcam. Once the signs are recognized, they are converted into text and then translated into spoken language using Google Text-to-Speech (GTTS).

#### **WORK PROCESS:**



# **WORKING PRINCIPLE OF CNN**



- A convolutional neural network consists of an input layer, hidden layers and an output layer.
- In a convolutional neural network, the hidden layers include one or more layers that perform convolutions.
- Typically this includes a layer that performs a dot product of the convolution kernel with the layer's input matrix.











• Speech-to-Sign Conversion: For the reverse process, the system utilizes PySpeech recognition to capture spoken language, transcribe it into text, and map the text to corresponding sign language gestures using OpenCV.

#### **WORK PROCESS:**



# **SPEECH RECOGNITION**



A speech recognition system, also known as automatic speech recognition (ASR) or speech-to-text, is a technology that converts spoken words into text or commands.

# **Speech Processing**



# FLOW CHART TO SPEECH TO SIGN





# **IDENTIFICATION OF HARDWARE AND SOFTWARE**



### **HARDWARE:**

• Webcam: Captures real-time video input of hand signs for processing by the CNN model in the sign-to-speech module.

#### **SPECIFICATION:**

✓ Resolution : 1080p (Full HD)

✓ Pixel Count : Approximately 2 megapixel

✓ Lens Type : Fixed focus or Autofocus

✓ Features : Improved image clarity





• Microphone: Records spoken language to be transcribed into text in the speech-to-sign module.

#### **SPECIFICATION:**

- ✓ Type: Dual-Array or multiple microphones
- ✓ Frequency response: 50HZ to 20kHZ
- ✓ Range:
  - Distance = up to 1 meter(3.3 feet)
  - Angle = 360° (Omnidirectional) or 60° to 120° (Unidirectional)
- ✓ Features : Noise cancellation, Echo cancellation





• **Speakers:** Outputs the spoken translation of recognized signs, providing auditory feedback in the sign-to-speech module.

#### **SPECIFICATION:**

✓ Type: Stereo or sometimes with small subwoofers

✓ Frequency response : 60HZ to 20kHZ

 $\checkmark$  Range: up to 5 to 8 feet (1.5-2.5 meters)

✓ Features : Better sound Quality and volume

# **SOFTWARE:**

Language: Python 3.7

**IDE:** Thonny







## Libraries:

• TensorFlow/Keras: Utilized for developing and training the modified Convolutional Neural Network (CNN) model to classify sign language gestures.





**PySpeech:** A Python library used for speech recognition, transcribing spoken language into text for processing.

• **OpenCV:** Employed for mapping transcribed text to corresponding sign language gestures, enabling visual representation of signs.



# **RESULTS**



# **Validation Accuracy and Loss**







- 300

- 250

- 200

- 150

- 100

- 50

- 0

#### **Confusion Matrix**





# Table Of True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN)

| Class | True Positive (TP) | False Positive (FP) | False Negative(FN) | True Negative(TN) |
|-------|--------------------|---------------------|--------------------|-------------------|
| 0     | 304                | 43                  | 8                  | 8028              |
| 1     | 269                | 54                  | 3                  | 8057              |
| 2     | 318                | 9                   | 4                  | 8052              |
| 3     | 320                | 16                  | 7                  | 8040              |
| 4     | 308                | 0                   | 0                  | 8075              |
| 5     | 290                | 5                   | 6                  | 8082              |
| 6     | 290                | 1                   | 14                 | 8078              |
| 7     | 268                | 0                   | 8                  | 8107              |
| 8     | 274                | 9                   | 21                 | 8079              |
| 9     | 305                | 6                   | 6                  | 8066              |
| 10    | 311                | 5                   | 17                 | 8050              |
| 11    | 270                | 8                   | 11                 | 8094              |
| 12    | 264                | 0                   | 2                  | 8117              |
| 13    | 278                | 3                   | 0                  | 8103              |
| 14    | 284                | 11                  | 28                 | 8060              |
| 15    | 316                | 5                   | 0                  | 8062              |
| 16    | 276                | 0                   | 1                  | 8106              |
| 17    | 286                | 12                  | 20                 | 8065              |
| 18    | 264                | 5                   | 4                  | 8110              |
| 19    | 296                | 1                   | 0                  | 8086              |
| 20    | 282                | 5                   | 3                  | 8093              |
| 21    | 299                | 65                  | 24                 | 7995              |
| 22    | 259                | 5                   | 47                 | 8072              |
| 23    | 282                | 12                  | 38                 | 8051              |
| 24    | 284                | 0                   | 0                  | 8099              |
| 25    | 293                | 2                   | 13                 | 8075              |
| 26    | 325                | 1                   | 0                  | 8057              |

Calculation of [TP,FP,FN,TN]:

TP = Diagonal Value From the Matrix

FP = Sum of Column 0 (excluding TP)

FN = Sum of row 0 (excluding TP)

TN Total Sum of all Elements - (TP+FP+FN)



# **Classification Report**





## **Deaf or Dumb Prompt**





# **Conversion of Speech to Sign**

















# **Conversion of Sign to Speech**







# **Conversion of Sign to Speech**











# **CONCLUSION**



- The system bridges communication gaps between the deaf and hearing communities through a two-way sign language translator.
- **Sign-to-Speech Conversion** uses a modified Convolutional Neural Network (CNN) to classify hand signs, convert them into text, and generate speech using Google Text-to-Speech (GTTS).
- Speech-to-Sign Conversion uses PySpeech for speech recognition, transcribes speech into text, and maps it to sign gestures using OpenCV.
- The system achieves high validation accuracy with minimal loss, ensuring reliable sign-to-speech and speech-to-sign translation.
- The confusion matrix analysis confirms strong performance, with high true positives and low false detections. the classification report validates the model's effectiveness in real-time communication.
- Results Achieved 96% recognition accuracy and real-time processing.

# **REFERENCES**



- 1. Chaudhary, L., Ananthanarayana, T., Hoq, E., & Nwogu, I. (2022). Signnet ii: A transformer-based two-way sign language translation model. *IEEE Transactions on Pattern Analysis and Machine Intelligence*.
- 2. Hu, H., Pu, J., Zhou, W., & Li, H. (2022). Collaborative multilingual continuous sign language recognition: A unified framework. *IEEE Transactions on Multimedia*.
- 3. Hameed, H., Usman, M., Tahir, A., Ahmad, K., Hussain, A., Imran, M. A., & Abbasi, Q. H. (2022). Recognizing British Sign Language Using Deep Learning: A Contactless and Privacy-Preserving Approach. *IEEE Transactions on Computational Social Systems*.
- 4. Kothadiya, D., Bhatt, C., Sapariya, K., Patel, K., Gil-González, A. B., & Corchado, J. M. (2022). Deepsign: Sign language detection and recognition using deep learning. *Electronics*, 11(11), 1780.
- 5. van der Merwe, A., Mambou, E. N., & Swart, T. G. (2021, September). Automated Sign Language Alphabet Detection. In 2021 IEEE AFRICON (pp. 1-6). IEEE.
- 6. Breland, D. S., Skriubakken, S. B., Dayal, A., Jha, A., Yalavarthy, P. K., & Cenkeramaddi, L. R. (2021). Deep learning-based sign language digits recognition from thermal images with edge computing system. *IEEE Sensors Journal*, 21(9), 10445-10453.



- 7. Al-Qurishi, M., Khalid, T., & Souissi, R. (2021). Deep learning for sign language recognition: Current techniques, benchmarks, and open issues. *IEEE Access*, *9*, 126917-126951.
- 8. Wadhawan, A., & Kumar, P. (2020). Deep learning-based sign language recognition system for static signs. *Neural computing and applications*, 32, 7957-7968.
- 9. Rastgoo, R., Kiani, K., & Escalera, S. (2021). Sign language recognition: A deep survey. *Expert Systems with Applications*, 164, 113794.
- 10. Adaloglou, N., Chatzis, T., Papastratis, I., Stergioulas, A., Papadopoulos, G. T., Zacharopoulou, V., ... & Daras, P. (2021). A comprehensive study on deep learning-based methods for sign language recognition. *IEEE Transactions on Multimedia*, 24, 1750-1762.
- 11. Wang, Z., Zhao, T., Ma, J., Chen, H., Liu, K., Shao, H., ... & Ren, J. (2020). Hear sign language: A real-time end-to-end sign language recognition system. *IEEE Transactions on Mobile Computing*, 21(7), 2398-2410.

