Teoria de Homotopia Abstrata

Edmundo Martins

17 de agosto de 2023

1 Categorias modelo

1.1 Definição. Seja M uma categoria localmente pequena, completa e co-completa. Uma estrutura modelo em M consiste de três classes de morfismos \mathcal{W} , \mathcal{F} , $\mathcal{C} \subseteq \operatorname{Mor}(M)$ cujos elementos são chamados, respectivamente, equivalências fracas, fibrações e cofibrações, as quais devem satisfazer as seguintes condições:

- (M1) (Propriedade 2-de-3) Dados morfismos $f: X \to Y$ e $g: Y \to Z$ em M, se dois dos morfismos do conjunto $\{f, g, g \circ f\}$ estiverem em \mathcal{W} , então o terceiro também deve estar.
- (M2) (Propriedade de retração) Se um morfismo $f:A\to X$ é retração de um morfismo $g:B\to Y$, ou seja, se existe um diagrama comutativo como abaixo,

$$A \xrightarrow{\operatorname{id}_{A}} B \xrightarrow{A} A$$

$$f \downarrow \qquad \downarrow g \qquad \downarrow f$$

$$X \xrightarrow{\operatorname{id}_{X}} X$$

e g pertence a \mathcal{W} (ou a \mathcal{F} , ou a \mathcal{C}), então f também pertence a \mathcal{W} (ou a \mathcal{F} , ou a \mathcal{C} , respectivamente). Em suma, as classes \mathcal{W} , \mathcal{F} e \mathcal{C} são todas fechadas por retrações.

(M3) (Propriedade de levantamento) Dado um diagrama comutativo como abaixo,

$$\begin{array}{ccc} A & \longrightarrow & X \\ \downarrow & & & \downarrow p \\ B & \longrightarrow & Y \end{array}$$

onde i é uma cofibração, e p é uma fibração; se um dos dois morfismos i ou p é também uma equivalência fraca, então o diagrama admite um levantamento, ou seja, existe um morfismo $f: B \to X$ que faz comutar o diagrama abaixo.

$$\begin{array}{ccc}
A & \longrightarrow & X \\
\downarrow i & \downarrow & \uparrow & \downarrow p \\
B & \longrightarrow & Y
\end{array}$$

1

(M4) (Propriedade de fatoração) Qualquer morfismo $f: X \to Y$ em M pode ser fatorado nas duas formas mostradas abaixo,

onde p é simultaneamente uma fibração e uma equivalência fraca, enquanto j é simultaneamente uma cofibração e uma equivalência fraca.

Vamos introduzir um pouco de terminologia antes de fazermos alguns comentários sobre a definição acima. Os morfismos de M que pertencem à classe $\mathcal{W} \cap \mathcal{F}$ são chamados de **fibrações** triviais ou fibrações acíclicas, enquanto os morfismos que pertencem à classe $\mathcal{W} \cap \mathcal{C}$ são chamados de **cofibrações** triviais ou **cofibrações** acíclicas.

1.2 Observação. Lembremos que, dados objetos X e Y de uma categoria C qualquer, dizemos que X é um **retrato** de Y se existem morfismos $s: X \to Y$ e $r: Y \to X$ tais que $r \circ s = \mathrm{id}_X$. Comumente nos referimos ao morfismo s por **seção** e ao morfismo r por **retração**. A condição $r \circ s = \mathrm{id}_X$ garante que s seja um monomorfismo. De fato, se $f, g: W \to X$ são morfismos tais que $s \circ f = s \circ g$, então

$$f = id_X \circ f = r \circ s \circ f = r \circ s \circ g = id_X \circ g = g.$$

Isso nos permite encarar X como um subobjeto de Y, e o morfismo r então intuitivamente deforma Y para esse subobjeto, mas de forma a mantê-lo fixado. Note que a condição $r \circ s = \operatorname{id}_X$ garante também que o morfismo r seja um epimorfismo.

A noção de retração que aparece nos axiomas de uma estrutura modelo enunciados acima pode ser interpretada nesse sentido em uma categoria adequada. Lembremos que toda categoria C dá origem a uma categoria de setas Ar(C). Os objetos dessa categorias são precisamente morfismos $f:A\to B$ na categoria incial C, e dados dois tais objetos $f:A\to B$ e $g:X\to Y$, um morfismo do tipo $(f:A\to B)\to (g:X\to Y)$ na categoria de setas Ar(C) é dado por um par de morfismos $(\alpha:A\to X,\ \beta:B\to Y)$ satisfazendo a igualdade $\beta\circ f=g\circ\alpha$. Podemos então visualizar esse morfismo em Ar(C) na forma de um quadrado comutativo como mostrado abaixo.

A composição de morfismos é definida "colando" quadrados comutativos adjacentes. Mais precisamente, dados três objetos $f: X_1 \to Y_1, g: X_2 \to Y_2$ e $h: X_3 \to Y_3$ da categoria $Ar(\mathsf{C})$, e dados também dois morfismos componíveis

$$(\alpha_1: X_1 \to X_2, \, \beta_1: Y_1 \to Y_2)$$
 $(\alpha_2: X_2 \to X_3, \, \beta_2: Y_2 \to Y_3),$

sua composição é o morfismo

$$(\alpha_2, \beta_2) \circ (\alpha_1, \beta_1) : (f : X_1 \to Y_1) \to (h : X_3 \to Y_3)$$

dado pelo par

$$(\alpha_2, \beta_2) \circ (\alpha_1, \beta_1) := (\alpha_2 \circ \alpha_1, \beta_2 \circ \beta_1).$$

Essa composição pode também ser visualizada como mostrado abaixo.

$$\begin{array}{ccccc} X_1 & \xrightarrow{f} & Y_1 \\ & & \downarrow & \downarrow & \downarrow \\ X_1 & & & \downarrow & \downarrow \\ X_2 & \xrightarrow{g} & Y_2 & \Rightarrow & X_1 & \xrightarrow{f} & Y_1 \\ & & & & \downarrow & \downarrow \\ \alpha_2 \downarrow & & \downarrow & \beta_2 & & \downarrow \\ X_3 & \xrightarrow{h} & Y_3 & & & \end{array}$$

A associatividade dessa composição via colagem segue diretamente da associatividade da composição na categoria inicial C. Por fim, dado um objeto $f:X\to Y$ qualquer, o morfismo idêntico associado a ele é dado pelo par $\mathrm{id}_f\coloneqq(\mathrm{id}_X,\mathrm{id}_Y)$, conforme mostrado no quadrado comutativo abaixo.

$$X \xrightarrow{f} Y$$

$$id_X \downarrow \qquad \downarrow id_Y$$

$$X \xrightarrow{f} Y$$

Note agora que, se o objeto $f:A\to B$ é um retrato do objeto $g:X\to Y$ na categoria de setas $\operatorname{Ar}(\mathsf{M})$, então por definição existem morfismos $s_1:A\to X,\,s_2:B\to Y,\,r_1:X\to A$ e $r_2:Y\to B$ tais que $(r_1,r_2)\circ(s_1,s_2)=\operatorname{id}_f$, o que também pode ser expresso pelo diagrama comutativo abaixo.

$$A \xrightarrow{f} B$$

$$id_{A} \begin{pmatrix} s_{1} \downarrow & & \downarrow s_{2} \\ X \xrightarrow{g} Y & & \downarrow r_{2} \\ r_{1} \downarrow & & \downarrow r_{2} \\ A \xrightarrow{f} B \end{pmatrix} id_{B}$$

O diagrama acima (a menos de uma rotação de 90 graus e de algumas nomenclaturas adicionais para morfismos) é precisamente o diagrama que aparece no axioma de retração na definição de uma estrutura modelo. Podemos então reformular tal axioma dizendo que as classes de equivalências fracas, fibrações e cofibrações são todas fechadas por retrações na categoria de setas Ar(C).