Welcome to CHE 384T: Computational Methods in Materials Science

Simulating Finite Systems

LeSar Ch. 3

Announcements

HW2 released, due Sept 26, 11:59pm - lattice sums

PS1 peer review reflection, due Sept 16, 11:59pm

Lecture Outline

Sums for pair-wise interactions

Cutoffs

Periodic Boundary Conditions

Long-ranged potentials
Ewald summation
Fast Multipole Method

Why is understanding crystallography important?

Material anisotropymaterial properties have diretionality

Table 3.4 Modulus of Elasticity Values for Several Metals at Various Crystallographic **Orientations**

Metal	Modulus of Elasticity (GPa)			
	[100]	[110]	[111]	
Aluminum	63.7	72.6	76.1	
Copper	66.7	130.3	191.1	
Iron	125.0	210.5	272.7	
Tungsten	384.6	384.6	384.6	

Source: R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd edition. Copyright © 1989 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.

Amorphous carbon

400

500

300

Temperature (K)

10

0.1

0.01

Crystallographic planes and surface facets

(110) plane for BCC

(110) plane for FCC

Cubic crystal structures (monoatomic)

Simple Cubic

Body-Centered Cubic

Face-Centered Cubic

Cubic crystal structures (monoatomic)

(a) conventional unit cell

(b) primitive unit cell

The Unit Cell

Figure 4 A primitive cell may also be chosen following this procedure: (1) draw lines to connect a given lattice point to all nearby lattice points; (2) at the midpoint and normal to these lines, draw new lines or planes. The smallest volume enclosed in this way is the Wigner-Seitz primitive cell. All space may be filled by these cells, just as by the cells of Fig. 3.

Physics: "Wigner-Seitz cell"

A side note on Reciprocal Space:

$$\mathbf{b}_1 = rac{2\pi}{V} \, \mathbf{a}_2 imes \mathbf{a}_3$$

$$\mathbf{b}_2 = rac{2\pi}{V} \, \mathbf{a}_3 imes \mathbf{a}_1$$

$$\mathbf{b}_3 = rac{2\pi}{V} \, \mathbf{a}_1 imes \mathbf{a}_2$$

Reciprocal cell of FCC lattice, aka first Brillouin Zone

$$\mathbf{G} = v_1 \mathbf{b_1} + v_2 \mathbf{b_2} + v_3 \mathbf{b_3}$$

A side note on Reciprocal Space:

Why bother with reciprocal space?

Falls out naturally in the math (complex exponentials)

Corresponds to experimental measurements (where you probe the sample with light or beam source)

X-ray diffraction → Bulk crystal structure

Reciprocal space

Low-energy electron diffraction (LEED)

→ Surface crystal structure

How XRD works

Image from link

Figure 14 Indices of important planes in a cubic crystal. The plane (200) is parallel to (100) and to (100).

Lecture Outline

Sums for pair-wise interactions

Cutoffs

Periodic Boundary Conditions

Long-ranged potentials
Ewald summation
Fast Multipole Method

Interacting pairs of objects

e.g., between spins, dislocations, atoms
For evaluating energies and forces → thermodynamics, kinetics

Perfect crystals

Periodic Boundary Conditions

- Mimic the real (essentially infinite) system with a finite number of objects of a manageable simulation cell
- Natural correspondence to the concept of a unit cell
- A constant concern: interactions between images
- Converge with respect to simulation cell size

Cutoffs

$$\Sigma \to \sum_{\omega} \sum_{\omega}$$

$$R = n_1 \bar{a}_1 + n_2 \bar{a}_2 + n_3 \bar{a}_3$$

$$n_{11} n_{21} n_3$$

$$\in \mathbb{Z}$$

For estimated error 4 cutoff
$$r_c$$

$$\Delta U = \int_{r_c}^{\infty} 4\pi r^2 \cdot \phi(r) \cdot \rho dr$$

$$Typical form $\phi(r) \sim \frac{1}{r^n}$

$$= 4\pi \rho \frac{1}{3-n} r^{3-n} \begin{vmatrix} \infty & 4\pi \rho & 3-n \\ r_c & n-3 & r_c \end{vmatrix}$$$$

Lennard-Jones potential
$$n = 1$$
 "Long-range potentials"

Electrostatic energy

e.g., a system of point charges

Ewald method: convert a conditionally convergent sum to convergen sum

Interactions needed to compute

(screened)

1) Coulomb potential of point particles

(periodic array, compensating /background) 2) Electrostatic potential of Gaussian charges

3) Spurious self-interaction b/t Gaussian charges + point particles

Ewald method

1) Coulomb potential of screened point particles

$$V = \frac{1}{2} \sum_{i \neq j} \frac{9i}{1 \cdot r_{ij} \cdot l}$$

short-range ble screening

Ewald method: need to include interactions from compensating Gaussian charges

Take advantage of mathematical properties of Fourier transform of Asisson equation - ν φ(ř)= 4πρ(ř) real space Fourier/reciprolal space $k^2 \tilde{\phi}(\bar{k}) = 4\pi \tilde{\phi}(\bar{k})$ Green's func. son charge for unit point charge

Ewald method: need to include interactions from compensating Gaussian charges

Ewald method: need to include interactions from compensating Gaussian charges

Ewald method: total energy

$$U_{e} = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{\mathbf{R}} \frac{q_{i}q_{j}\operatorname{erfc}(\sqrt{\alpha}|\mathbf{R} + \mathbf{r}_{j} - \mathbf{r}_{i}|)}{|\mathbf{R} + \mathbf{r}_{j} - \mathbf{r}_{i}|} + \frac{2\pi}{V} \sum_{k \neq 0} \frac{1}{k^{2}} \rho(\mathbf{k})|^{2} e^{-k^{2}/4\alpha^{2}}$$

$$-\left(\frac{\alpha}{\pi}\right)^{1/2} \sum_{i=1}^{n} q_{i}^{2}$$

Spurious self-interaction b/t
Gaussian charge and point charge

Fast Multipole Method

3	3		3	3	3
;	3	3		3	3
2	2	2	2	2	2
1	1	1	2	3	3
1	0	1	2	3	3
1	1	1	2		