Review Questions 3

Combinational Logic and Functions

1 – Use NAND gates, NOR gates or combinations of both to implement the following logic expressions:

(a)
$$X = A'B + CD + (A + B)'[ACD + (BE)']$$

(b)
$$X = ABC'D' + DE'F + (AF)'$$

(c)
$$X = A'[B + C'(D + E)]$$

2 - Implement a logic circuit for the following truth table.

Α	В	С	X (Output)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	1	1
1	0	0	0
1	1	1	1
1	1	0	1

3 - Simplify the circuit in the figure as much as possible and verify that the simplified circuit is equivalent to the original by showing that the truth tables are identical.

4 – Show how the following expressions can be implemented by using only NOR gates:

a)
$$X = A + B + C'$$

b)
$$X = (A + B)(C + D)$$

5 - Show how the following expressions can be implemented by using only NAND gates:

a)
$$X = (AB)' + (CD)'$$

a)
$$X = (AB)' + (CD)'$$
 b) $X = AB(C[(DE)' + (AB)'] + [BCE]')$

6 - For the input waveforms in the figure. What logic circuit will generate the output waveform shown?

7 - What are the full-adder inputs/outputs for each of the following outputs/inputs:

a)
$$S = 0$$
, $C_{out} = 0$

b)
$$S = 1$$
, $C_{out} = 1$

8 - When a HIGH is on the output of each of the decoding gates in the following figure, what is the binary code appearing on the inputs? The MSB is A₃.

9 - For the decimal-to-BCD encoder logic of following figure, assume that the 9 input and the 3 input are both HIGH. What is the output code? Is it a valid BCD (8421) code?

10 - For the multiplexer in the figure, determine the output for the following input states:

a)
$$D_0 = 0$$
, $D_1 = 1$, $D_2 = 1$, $D_3 = 0$, $S_0 = 1$, $S_1 = 0$

b)
$$D_0 = 0$$
, $D_1 = 1$, $D_2 = 0$, $D_3 = 1$, $S_0 = 0$, $S_1 = 1$

