Math 467: Project 2

asif zubair

December 1, 2016

1. Basic Simplex Solver

We provide a basic simplex solver for the linear programming problem.

The problem we solve is $\min_{x \in \mathbb{R}^n} c^T x$ subject to $Ax = b, x \ge 0$. The matrix A is assumed to have the property that there are columns $A_{i_k}, k = 1, \ldots, m$ such that $A_{i_k} = e_k$ and the vector b is assumed to have non-negative components. The function signature is

[Solution, BasicVar, Status] = basicsimplex(A, b, c, BasicVar0)

Here, BasicVar0 is a vector that contains the integer index i_k for the initial basic variables. The function outputs Status which returns the status of linear programming: 0 for successful, -1 if no optimal solution exist and the cost can be as low as possible.

We see that the structure of the augmented matrix is $\begin{bmatrix} A & b \ c^T & 0 \end{bmatrix}$. Assume that the first m columns of $\mathbf A$ are the basic columns. For the given case, these columns form a square $m \times m$ identity matrix $\mathbf I$. The non-basic columns of $\mathbf A$ form an $m \times (n-m)$ matrix $\mathbf D$. We partition the cost vector correspondingly as $c^T = [c_B^T, c_D^T]$. Thus, the augmented matrix can be rewritten as $\begin{bmatrix} I & D & b \ c_B^T & c_D^T & 0 \end{bmatrix}$. We convert this into the cononical tableau corresponding to the basis $\mathbf B$ by applying elementary row operations.

The final canonical matrix with reduced cost coefficients is given by:

$$\begin{bmatrix} I & D & b \\ 0 & c_D^T - c_B^T D & -c_B^T b \end{bmatrix}$$

This is the *canonical form* that we start with in the basicsimplex implementation.

Example

We provide a working of the solver for an example from the course book (Ex, 16.3, Pg. 359).

Here we consider the linear programming problem:

max
$$7x_1 + 6x_2$$
 subject to $2x_1 + x_2 \le 3$, $x_1 + 4x_2 \le 4$, $x_1, x_2 \ge 0$.

We first print the *canonical matrix* and then proceed with pivoting based on cost coefficients.

Current tableau:

Pivot is 1

Current basic feasible solution is

1.5000

0

Current tableau:

1.0000	0.5000	0.5000	0	1.5000
0	3.5000	-0.5000	1.0000	2.5000
0	-2.5000	3.5000	0	10.5000

Pivot is 2

Current basic feasible solution is

1.1429

0.7143

0

Current tableau:

Found feasible solution:

1.1429

0.7143

0

0

We can see the function correctly outputs the feasible solution as $x_1 = 1.1429$ and $x_2 = 0.7143$.

3. Regression

The L^2 regression has a closed form solution given by the normal equations as:

$$\beta = (X^T X)^{-1} X^T y$$

Here, X = [1, x] and β is the estimate of the regression coefficients.

The L^1 regression can be formulated as a linear programming problem as

$$\min_{w \in \mathbf{R}^n} \sum_{k=1}^N |w_k|$$

subject to $w_k = y_k - ax_k - b$ for $k = 1 \dots N$. However, to use the simplex solver we need to have an additional constraint that the variables w_k, a, b should be non-negative.

We can achieve this by reformulating the problem with $w_k = (w_k)_+ - (w_k)_-$, $a = a_+ - a_-$, $b = b_+ - b_-$. Now, we can impose the non-negative constraints on the variables $(w_k)_+, (w_k)_-, a_+, a_-, b_+, b_-$

Thus, the final optimization problem we solve is

 $\min_{w \in \mathbb{R}^2 n} \sum_{k=1}^N ((w_k)_+ + (w_k)_-)$ subject to $(w_k)_+ - (w_k)_- + (a_+ - a_-)x_k + b_+ - b_- = y_k$ for $k = 1 \dots N$ Hence, we have 2n + 4 variables with n constraints.

We provide two examples of correlations - positive and negative. The data was generated by sampling from uniform distribution x and then generating y from ax + b with added uniform noise sampled uniformly on (-0.25, 0.25)

Example 1

Coeff.: b = 4.000, a = 2.000 L1 reg.: b = 4.033, a = 1.946 L2 reg.: b = 4.015, a = 1.963

Example 2

Coeff.: b = 4.000, a = -2.000 L1 reg.: b = 4.020, a = -2.041 L2 reg.: b = 4.018, a = -2.044

The L^1 regression is more robust to outliers because L^2 regression can give too much weightage to large residuals. However, when outliers are not present, we see that the two estimators follow each other closely (as shown above).

Matlab Implementation

Simplex Solver

function [Solution,BasicVar,Status]=basicsimplex(A,b,c,BasicVar0,verbose)
%% Matlab function that implement the basic simplex algorithm to solve a linear programming problem

```
if nargin < 5
    verbose = false;
end

%% Basic Preprocessing - Define variables, check conditions etc.
[m,n] = size(A);
B = BasicVar0;
N = setdiff(1:n, B);
if any(b < 0)
    error('vector b should have non-negative entries.')
end</pre>
```

```
if any(any(A(:,B) \sim= eye(m)))
    error('BasicVar0 do not define a natural basis on R^m.')
end
%% simplex setup
table = zeros(m+1, n+1);
table(1:m,1:n) = A;
table(m+1,N) = c(N)' - c(B)'*A(:,N);
table(1:m,end) = b(:);
table(m+1,n+1) = -c(B)'*b;
%% algorithm
increment = true;
Status = 0;
while increment
    if verbose
        fprintf('*****************\n');
        fprintf('Current tableau:\n');
        disp(table);
    end
    if any(table(end,1:n)<0)%check if there is negative cost coeff.
    [~,index] = min(table(end,1:n));
        % check if corresponding column is unbounded
        if all(table(1:m,index)<=0)</pre>
            Solution = [];
            BasicVar = [];
            Status = -1;
            error('Problem is not bounded. All entries <= 0 in column %d',index);
        else
            pivot = 0;
            min_found = inf;
            for i = 1:m
                if table(i,index)>0
                    tmp = table(i,end)/table(i,index);
                    if tmp < min_found
                        min_found = tmp;
                        pivot = i;
                    end
                end
            end
            if verbose
                fprintf('Pivot is %d\n',pivot);
            end
        %normalize
        table(pivot,:) = table(pivot,:)/table(pivot,index);
            % Make all entries in index column zero.
            for i=1:m+1
                if i ~= pivot
                     table(i,:)=table(i,:)-sign(table(i,index))*...
                        abs(table(i,index))*table(pivot,:);
                end
            end
```

```
end
            if verbose %print current basic feasible solution
                fprintf('Current basic feasible solution is\n');
                [curr_x, ~] = current_x();
                disp(curr_x);
                fprintf('******************************);
            end
        else
            increment = false;
        end
    end
    %internal function, finds current basis vector
    function [curr_x, bv] = current_x()
         curr_x = zeros(n,1);
         bv = [];
         for j=1:n
             if length(find(table(:,j)==0)) == m
                 idx = table(:,j) == 1;
                 try
                     curr_x(j) = table(idx,end);
                 catch ME
                    continue
                 end
                 bv = [bv, j];
             end
         end
    end
    [curr_x, bv] = current_x();
    Solution = curr_x;
    BasicVar = bv;
    if verbose %print current basic feasible solution
        fprintf('Found feasible solution: \n');
        [curr_x, ~] = current_x();
        disp(curr x);
        fprintf('*****************************);
    end
end
L1 Regression
function [a,b] = l1_reg(x, y)
    %% L1 Regression using Linear Programming
    n = length(x);
    c = [0 \ 0 \ 0 \ 0 \ ones(1,2*n)]';
    A = [ones(n,1), -ones(n,1), x, -x, eye(n,n), -eye(n,n)];
    b = y;
    [S,bv] = basicsimplex(A, b, c, 5:n+4);
    a = S(1) - S(2);
    b = S(3) - S(4);
end
```

L2 Regression

Driver Program

```
x = sort(rand(100,1));
b = 4;
a = 2;
y = b+a*x + rand(size(x))-.5;
fprintf('Coeff.: b = %3.3f, a = %3.3f\n', a, b)
[a,b] = 11_{reg}(x, y);
fprintf('L1 reg.: b = \%3.3f, a = \%3.3f\n', a, b)
plot(x,a + b*x,'r-')
title 'L1/L2 Regression lines'
xlabel 'x'
ylabel 'y'
hold on
[a,b] = 12_{reg}(x, y);
fprintf('L2 reg.: b = %3.3f, a = %3.3f\n', a, b)
plot(x,a + b*x,'b-')
plot(x, y, 'ko')
legend('L1 reg.', 'L2 reg.');
hold off
b = 4;
a = -2;
y = b+a*x + rand(size(x))-.5;
fprintf('Coeff.: b = %3.3f, a = %3.3f \ , a, b)
[a,b] = 11_{reg}(x, y);
fprintf('L1 reg.: b = %3.3f, a = %3.3f\n', a, b)
plot(x,a + b*x,'r-')
title 'L1/L2 Regression lines'
xlabel 'x'
ylabel 'y'
hold on
[a,b] = 12_{reg}(x, y);
fprintf('L2 reg.: b = \%3.3f, a = \%3.3f \n', a, b)
plot(x,a + b*x,'b-')
plot(x, y, 'ko')
legend('L1 reg.', 'L2 reg.');
hold off
```