Introducción a la Lógica y la Computación

Mariana Badano Héctor Gramaglia Pedro Sánchez Terraf Mauricio Tellechea Guido Ivetta

FaMAF, 15 de septiembre de 2021

Contenidos estimados para hoy

- Repaso
- Semántica de la lógica proposicional
 - Asignaciones y valuaciones/semánticas
 - Teorema de Extensión
 - Abreviaciones: Conectivos nuevos
 - La relación de consecuencia y tautologías
 - Lema de Coincidencia
 - Tablas de verdad
- 3 Sustitución
 - La regla de Leibnitz

Tres componentes de la lógica

■ Sintaxis: qué objetos usamos: proposiciones (= "fórmulas proposicionales", "fórmulas"), cómo se escriben.

- Sintaxis: qué objetos usamos: proposiciones (= "fórmulas proposicionales", "fórmulas"), cómo se escriben.
 - Símbolos/variables proposicionales: $\frac{\checkmark}{}$:= $\{p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$
 - Conectivos: \bot , \land , \lor , \rightarrow .
 - $At := \{\bot\} \cup \mathscr{V}; \Sigma := At \cup \{\}, (, \land, \lor, \to); PROP \subseteq \Sigma^*.$

- Sintaxis: qué objetos usamos: proposiciones (= "fórmulas proposicionales", "fórmulas"), cómo se escriben.
 - Símbolos/variables proposicionales: \checkmark := $\{p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$
 - Conectivos: \bot , \land , \lor , \rightarrow .
 - $At := \{\bot\} \cup \mathscr{V}; \Sigma := At \cup \{\}, (, \land, \lor, \to)\}; PROP \subseteq \Sigma^*.$
- Semántica: cómo asignamos significado a las proposiciones: valor de verdad.
- Cálculo: cómo se **deducen** proposiciones a partir de otras y se obtienen **teoremas**.

- Sintaxis: qué objetos usamos: proposiciones (= "fórmulas proposicionales", "fórmulas"), cómo se escriben.
 - Símbolos/variables proposicionales: \forall := $\{p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$
 - **Conectivos**: \bot , \land , \lor , \rightarrow .
 - $At := \{\bot\} \cup \mathscr{V}; \Sigma := At \cup \{\ \}, (, \land, \lor, \to\}; PROP \subseteq \Sigma^*.$
- Semántica: cómo asignamos significado a las proposiciones: valor de verdad.

 Ahora
- Cálculo: cómo se deducen proposiciones a partir de otras y se obtienen teoremas.

 Después

- Sintaxis: qué objetos usamos: proposiciones (= "fórmulas proposicionales", "fórmulas"), cómo se escriben.
 - Símbolos/variables proposicionales: \checkmark := $\{p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$
 - Conectivos: \bot , \land , \lor , \rightarrow .
 - $\blacksquare At := \{\bot\} \cup {}^{\sim}V; \Sigma := At \cup \{\), (, \land, \lor, \rightarrow\}; \ PROP \subseteq \Sigma^* \ .$
- Semántica: cómo asignamos significado a las proposiciones: valor de verdad.

 Ahora
- Cálculo: cómo se **deducen** proposiciones a partir de otras y se obtienen **teoremas**.

Nuestras proposiciones son sólo cadenas de símbolos.

Nuestras proposiciones son sólo cadenas de símbolos. Para "interpretarlas", diremos para cada símbolo proposicional en \mathscr{V} si es "falso" (valor 0) o "verdadero" (valor 1).

Nuestras proposiciones son sólo cadenas de símbolos.

Para "interpretarlas", diremos para cada símbolo proposicional en ${\cal V}$ si es "falso" (valor 0) o "verdadero" (valor 1).

Definición

Una **asignación** será una función $v:\{p_0,p_1,\dots\} \to \{0,1\}$.

Nuestras proposiciones son sólo cadenas de símbolos.

Para "interpretarlas", diremos para cada símbolo proposicional en ${}^{\sim}\!\!V$ si es "falso" (valor 0) o "verdadero" (valor 1).

Definición

Una **asignación** será una función $v : \{p_0, p_1, \dots\} \rightarrow \{0, 1\}.$

Ahora podemos dar significado a todas las proposiciones.

Nuestras proposiciones son sólo cadenas de símbolos.

Para "interpretarlas", diremos para cada símbolo proposicional en ${}^{\sim}\!\!V$ si es "falso" (valor 0) o "verdadero" (valor 1).

Definición

Una **asignación** será una función $v:\{p_0,p_1,\dots\} \to \{0,1\}.$

p & Prop

Ahora podemos dar significado a todas las proposiciones.

Definición

Una función $[\![\cdot]\!]:PROP \to \{0,1\}$ es una **semántica** o **valuación** si:

- $[\![\bot]\!] = 0.$
- $2 \ \llbracket (\varphi \wedge \psi) \rrbracket = \min \{ \llbracket \varphi \rrbracket, \llbracket \psi \rrbracket \}.$

Nuestras proposiciones son sólo cadenas de símbolos.

Para "interpretarlas", diremos para cada símbolo proposicional en ${}^{\sim}\!\!V$ si es "falso" (valor 0) o "verdadero" (valor 1).

Definición

Una **asignación** será una función $v : \{p_0, p_1, \dots\} \rightarrow \{0, 1\}.$

Ahora podemos dar significado a todas las proposiciones.

Definición

Una función $[\![\cdot]\!]: PROP \rightarrow \{0,1\}$ es una **semántica** o **valuación** si:

- 1 $[\![\bot]\!] = 0$. \longleftarrow Develado el misterio de \bot !!
- $\qquad \qquad \boxed{2} \ \ \llbracket (\varphi \wedge \psi) \rrbracket = \min \{ \llbracket \varphi \rrbracket, \llbracket \psi \rrbracket \}.$
- $\qquad \qquad \mathbf{3} \ \ \llbracket (\varphi \vee \psi) \rrbracket = \max \{\llbracket \varphi \rrbracket, \llbracket \psi \rrbracket \}.$
- $\hspace{0.1in} \boxed{\hspace{0.1in} \boxed{\hspace{0.1in} [(\varphi \to \psi)]\hspace{0.1in} = 0 \text{ si y s\'olo si } [\hspace{-0.1in} [\varphi]\hspace{-0.1in}] = 1 \text{ y } [\hspace{-0.1in} [\psi]\hspace{-0.1in}] = 0. }$

Teorema (de Extensión)

Para toda asignación f, existe una única función semántica $[\![\cdot]\!]_f$ tal que $[\![\varphi]\!]_f=f(\varphi)$ para toda $\varphi\in\mathscr{V}$.

Teorema (de Extensión)

Para toda asignación f, existe una única función semántica $[\![\cdot]\!]_f$ tal que $[\![\varphi]\!]_f=f(\varphi)$ para toda $\varphi\in {}^\circ\!V$.

Demostración.

$$\varphi \in At$$
 $\llbracket p_n \rrbracket_f := f(p_n)$ para $n \in \mathbb{N}_0$ y $\llbracket \bot \rrbracket_f := 0$.

Teorema (de Extensión)

Para toda asignación f, existe una única función semántica $[\![\cdot]\!]_f$ tal que $[\![\varphi]\!]_f=f(\varphi)$ para toda $\varphi\in \mathcal{V}$.

Demostración.

$$\boxed{arphi\in At} \ \llbracket p_n
rbracket_f:=f(p_n) ext{ para } n\in \mathbb{N}_0 ext{ y } \llbracket ot
ceil_f:=0.$$

$$\overline{(\varphi \wedge \psi)} \quad \llbracket (\varphi \wedge \psi) \rrbracket_f := \min \{ \llbracket \varphi \rrbracket_f, \llbracket \psi \rrbracket_f \}.$$

Teorema (de Extensión)

Para toda asignación f, existe una única función semántica $[\![\cdot]\!]_f$ tal que $[\![\varphi]\!]_f=f(\varphi)$ para toda $\varphi\in \mathscr{V}$.

Demostración.

$$\boxed{arphi\in At} \ \llbracket p_n
rbracket_f:=f(p_n) ext{ para } n\in \mathbb{N}_0 ext{ y } \llbracket ot
ceil_f:=0.$$

$$\boxed{(\varphi \wedge \psi)} \ [\![(\varphi \wedge \psi)]\!]_f := \min\{[\![\varphi]\!]_f, [\![\psi]\!]_f\}.$$

$$\begin{array}{c|c} \hline (\varphi \to \psi) & \llbracket (\varphi \to \psi) \rrbracket_f \coloneqq 0 \text{ si } \llbracket \varphi \rrbracket_f = 1 \text{ y } \llbracket \psi \rrbracket_f = 0, \text{ y } \llbracket (\varphi \to \psi) \rrbracket_f \coloneqq 1 \text{ en } \\ \hline \text{caso contrario.} \end{array}$$

Teorema (de Extensión)

Para toda asignación f, existe una única función semántica $[\![\cdot]\!]_f$ tal que $[\![\varphi]\!]_f=f(\varphi)$ para toda $\varphi\in\mathscr{V}$.

Demostración.

$$\boxed{arphi\in At}\ \llbracket p_n
rbracket_f:=f(p_n) ext{ para } n\in \mathbb{N}_0 ext{ y } \llbracket ot
rbracket_f:=0.$$

$$\boxed{(\varphi \wedge \psi)} \ [\![(\varphi \wedge \psi)]\!]_f := \min\{[\![\varphi]\!]_f, [\![\psi]\!]_f\}.$$

$$\boxed{(\varphi \vee \psi)} \ \llbracket (\varphi \vee \psi) \rrbracket_f := \max \{ \llbracket \varphi \rrbracket_f, \llbracket \psi \rrbracket_f \}.$$

Teorema (de Extensión)

Para toda asignación f, existe una única función semántica $[\![\cdot]\!]_f$ tal que $[\![\varphi]\!]_f=f(\varphi)$ para toda $\varphi\in\mathscr{V}$.

Demostración.

Existencia: Construimos la semántica $[\cdot]_f$ por recursión en subfórmulas.

$$otag ec{arphi} \in At \mid \llbracket p_n
Vert_f := f(p_n) \text{ para } n \in \mathbb{N}_0 \text{ y } \llbracket \bot
Vert_f := 0.$$

$$\overline{(\varphi \wedge \psi)} \quad \llbracket (\varphi \wedge \psi) \rrbracket_f := \min \{ \llbracket \varphi \rrbracket_f, \llbracket \psi \rrbracket_f \}.$$

 H_{\wedge}

 H_{At}

Teorema (de Extensión)

Demostración.

Unicidad:

Teorema (de Extensión)

Demostración.

Unicidad:

Por definición, una valuación debe cumplir con los casos inductivos de la definición recursiva anterior (las H_{\odot}).

Teorema (de Extensión)

Para toda asignación f, existe una única función semántica $[\![\cdot]\!]_f$ tal que $[\![\varphi]\!]_f=f(\varphi)$ para toda $\varphi\in \mathcal{V}$.

Demostración.

Unicidad:

Por definición, una valuación debe cumplir con los casos inductivos de la definición recursiva anterior (las H_{\odot}).

Y el caso base (la H_{At}) está fijado por la hipótesis y la definición de valuación en \perp .

Teorema (de Extensión)

Para toda asignación f, existe una única función semántica $[\![\cdot]\!]_f$ tal que $[\![\varphi]\!]_f = f(\varphi)$ para toda $\varphi \in {}^{\sim}\!\!V$.

Demostración.

Unicidad:

Por definición, una valuación debe cumplir con los casos inductivos de la definición recursiva anterior (las H_{\odot}).

Y el caso base (la H_{At}) está fijado por la hipótesis y la definición de valuación en \perp .

Luego el Teorema de Recursión nos dice que hay a lo sumo una función que satisface todo esto.

Teorema (de Extensión)

Para toda asignación f, existe una única función semántica $[\![\cdot]\!]_f$ tal que $[\![\varphi]\!]_f=f(\varphi)$ para toda $\varphi\in\mathscr{V}$.

Teorema (de Extensión)

Para toda asignación f, existe una única función semántica $\llbracket \cdot \rrbracket_f$ tal que $\llbracket \varphi \rrbracket_f = f(\varphi)$ para toda $\varphi \in {}^{\sim}V$.

Corolario

$$[\![\varphi]\!]_1 = [\![\varphi]\!]_2$$
 para toda $\varphi \in At \implies [\![\varphi]\!]_1 = [\![\varphi]\!]_2$ para toda $\varphi \in PROP$.

Teorema (de Extensión)

Para toda asignación f, existe una única función semántica $[\![\cdot]\!]_f$ tal que $[\![\varphi]\!]_f = f(\varphi)$ para toda $\varphi \in \mathscr{V}$.

Corolario

$$[\![\varphi]\!]_1=[\![\varphi]\!]_2$$
 para toda $\varphi\in At\implies [\![\varphi]\!]_1=[\![\varphi]\!]_2$ para toda $\varphi\in PROP$.

Demostración.

Por la unicidad en el Teorema de Extensión

Teorema (de Extensión)

Para toda asignación f, existe una única función semántica $[\![\cdot]\!]_f$ tal que $[\![\varphi]\!]_f=f(\varphi)$ para toda $\varphi\in\mathscr{V}$.

Corolario

$$[\![\varphi]\!]_1 = [\![\varphi]\!]_2$$
 para toda $\varphi \in At \implies [\![\varphi]\!]_1 = [\![\varphi]\!]_2$ para toda $\varphi \in PROP$.

Demostración.

Por la unicidad en el Teorema de Extensión; ambas valuaciones son extensiones de la misma asignación $\|\cdot\|_1 \mid \mathcal{V} = \|\cdot\|_2 \mid \mathcal{V}$.

Conectivos nuevos

Introducimos nueva notación.

Conectivos nuevos

Introducimos nueva notación.

Abreviaturas

- \blacksquare $(\neg \varphi)$ denotará $(\varphi \to \bot)$.
- $\blacksquare \ (\varphi \leftrightarrow \psi) \ \text{denotará} \ ((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)).$

Conectivos nuevos

(1φ)=(φxt) 7??

Introducimos nueva notación.

Abreviaturas

- \blacksquare $(\neg \varphi)$ denotará $(\varphi \to \bot)$.
- $\qquad \qquad (\varphi \leftrightarrow \psi) \text{ denotará } ((\varphi \to \psi) \land (\psi \to \varphi)).$

Ejercicio

Para toda valuación [:]: $PROP \rightarrow \{0,1\}$

- $\boxed{2} \ \llbracket (\varphi \leftrightarrow \psi) \rrbracket = 1 \iff \llbracket \varphi \rrbracket = \llbracket \psi \rrbracket.$

Sea $\Gamma \subseteq PROP$ y v una asignación.

Sea $\Gamma \subseteq PROP$ y v una asignación.

Definición

■
$$v$$
 valida $\Gamma \iff \text{para toda } \psi \in \Gamma$, $\llbracket \psi \rrbracket_{v} = 1$. $\sigma (\rho_{0}) = 1$

$$\Gamma (\rho_{1}) = 0$$

$$\Gamma (\rho_{1}) = 0$$

$$\Gamma (\rho_{2}) = 1$$

$$\Gamma (\rho_{2} \vee \rho_{3}) = 0$$

$$\Gamma (\rho_{3} \vee \rho_{3}) = 0$$

$$\Gamma$$

Sea $\Gamma \subseteq PROP$ y v una asignación.

Definición

lacksquare ν valida $\Gamma\iff$ para toda $\psi\in\Gamma$, $[\![\psi]\!]_{\nu}=1$. (notación: $[\![\Gamma]\!]_{\nu}=1$)

Sea $\Gamma \subseteq PROP$ y v una asignación.

Definición

- v valida $\Gamma \iff$ para toda $\psi \in \Gamma$, $\llbracket \psi \rrbracket_v = 1$. (notación: $\llbracket \Gamma \rrbracket_v = 1$)
- φ es **consecuencia** de $\Gamma \longleftrightarrow$ toda asignación v que valida Γ hace verdadera a φ :

$$[\![\Gamma]\!]_v = 1 \implies [\![\varphi]\!]_v = 1$$

Sea $\Gamma \subseteq PROP$ y v una asignación.

Definición

- v valida $\Gamma \iff$ para toda $\psi \in \Gamma$, $\llbracket \psi \rrbracket_v = 1$. (notación: $\llbracket \Gamma \rrbracket_v = 1$)
- φ es **consecuencia** de $\Gamma \iff$ toda asignación v que valida Γ hace verdadera a φ :

Sea $\Gamma \subseteq PROP$ y v una asignación.

Definición

- lacksquare v valida $\Gamma \iff$ para toda $\psi \in \Gamma$, $[\![\psi]\!]_v = 1$. (notación: $[\![\Gamma]\!]_v = 1$)
- φ es **consecuencia** de $\Gamma \longleftrightarrow$ toda asignación v que valida Γ hace verdadera a φ :

$$[\![\Gamma]\!]_v=1 \implies [\![\varphi]\!]_v=1$$

(notación: $\Gamma \models \varphi$)

lacksquare φ es una **tautología** \iff $[\![\varphi]\!]_v = 1$ para toda asignación v.

La relación de consecuencia y tautologías

Sea $\Gamma \subseteq PROP$ y v una asignación.

Definición

- v valida $\Gamma \iff$ para toda $\psi \in \Gamma$, $\llbracket \psi \rrbracket_v = 1$. (notación: $\llbracket \Gamma \rrbracket_v = 1$)
- φ es **consecuencia** de $\Gamma \longleftrightarrow$ toda asignación v que valida Γ hace verdadera a φ :

$$[\![\Gamma]\!]_v=1 \implies [\![\varphi]\!]_v=1$$

(notación: $\Gamma \models \varphi$)

 φ es una **tautología** $\iff \llbracket \varphi \rrbracket_{v} = 1$ para toda asignación v. (**notación**: $\models \varphi$)

La relación de consecuencia y tautologías

Sea $\Gamma \subseteq PROP$ y v una asignación.

Definición

- v valida $\Gamma \iff$ para toda $\psi \in \Gamma$, $\llbracket \psi \rrbracket_v = 1$. (notación: $\llbracket \Gamma \rrbracket_v = 1$)
- $m \varphi$ es **consecuencia** de $\Gamma \iff$ toda asignación v que valida Γ hace verdadera a φ :

$$[\![\Gamma]\!]_v = 1 \implies [\![\varphi]\!]_v = 1$$

(notación: $\Gamma \models \varphi$)

 φ es una **tautología** $\iff \llbracket \varphi \rrbracket_v = 1$ para toda asignación v. (**notación**: $\models \varphi$)

Ejercicio

$$\models \varphi \iff \emptyset \models \varphi. \quad \left(y \quad \models \left(\left(\gamma(\gamma \varphi) \right) \rightarrow \varphi \right) \right)$$

 $\blacksquare \models (\varphi \to \varphi).$

Tenemos que ver que para toda asignación v, $[\![(\varphi \to \varphi)]\!]_v = 1$.

Tenemos que ver que para toda asignación v, $[(\varphi \to \varphi)]_v = 1$. Equivalentemente, $[(\varphi \to \varphi)]_v \neq 0$.

$$\begin{bmatrix}
 (\varphi \rightarrow \varphi) \downarrow_{\sigma} \neq 0 \\
 sii no([\varphi]_{v} = 1 \times [\varphi]_{\sigma} = 0
 \end{bmatrix}$$

$$sii no([\varphi]_{v} = 1 \times [\varphi]_{\sigma} = 0
 \end{bmatrix}$$

$$sii verdsdvo.$$

- $\ge | = ((\neg(\neg\varphi)) \to \varphi) \text{ (Ejercicio)}.$

- $= (\varphi \to \varphi).$ Tenemos que ver que para toda asignación v, $[(\varphi \to \varphi)]_v = 1$. Equivalentemente, $[(\varphi \to \varphi)]_v \neq 0$.
- $\ge | = ((\neg(\neg\varphi)) \to \varphi) \text{ (Ejercicio)}.$
- 3 $\{\varphi, (\varphi \to \psi)\} \models \psi$. Debemos ver que si v valida $\{\varphi, (\varphi \to \psi)\}$, entonces $[\![\psi]\!]_v = 1$

- $= (\varphi \to \varphi).$ Tenemos que ver que para toda asignación v, $[(\varphi \to \varphi)]_v = 1$. Equivalentemente, $[(\varphi \to \varphi)]_v \neq 0$.
- $\models ((\neg(\neg\varphi)) \to \varphi) \text{ (Ejercicio)}.$
- 3 $\{\varphi, (\varphi \to \psi)\} \models \psi$. Debemos ver que si v valida $\{\varphi, (\varphi \to \psi)\}$, entonces $[\![\psi]\!]_v = 1$:

$$\begin{split} & [\![\varphi]\!]_v = [\![(\varphi \to \psi)]\!]_v = 1 \Longrightarrow [\![\psi]\!]_v = 1. \\ & \text{Bard shows}: [\![\psi]\!]_v = 0 \cdot \text{lego lenero}: \\ & ([\![\varphi]\!]_v = 1 \times [\![\psi]\!]_v = 0 \cdot) \text{Sii} [\![(\varphi \to \psi)]\!]_v = 0. \\ & \text{Sii} \quad \text{Absorb}. \end{split}$$

- $\begin{tabular}{l} $\models (\varphi \to \varphi).$ \\ Tenemos que ver que para toda asignación v, $$[(\varphi \to \varphi)]]_v = 1.$ \\ Equivalentemente, $$[(\varphi \to \varphi)]]_v \ne 0.$ \\ \end{tabular}$
- $\models ((\neg(\neg\varphi)) \to \varphi) \text{ (Ejercicio)}.$
- 3 $\{\varphi, (\varphi \to \psi)\} \models \psi$. Debemos ver que si ν valida $\{\varphi, (\varphi \to \psi)\}$, entonces $[\![\psi]\!]_{\nu} = 1$:

$$\llbracket \varphi \rrbracket_{v} = \llbracket (\varphi \to \psi) \rrbracket_{v} = 1 \implies \llbracket \psi \rrbracket_{v} = 1.$$

 $\not= p_1$

- $\begin{tabular}{l} $\models (\varphi \to \varphi).$ \\ Tenemos que ver que para toda asignación v, $$[(\varphi \to \varphi)]]_v = 1.$ \\ Equivalentemente, $$[(\varphi \to \varphi)]]_v \ne 0.$ \\ \end{tabular}$
- $\models ((\neg(\neg\varphi)) \to \varphi) \text{ (Ejercicio)}.$
- 3 $\{\varphi, (\varphi \to \psi)\} \models \psi$. Debemos ver que si ν valida $\{\varphi, (\varphi \to \psi)\}$, entonces $[\![\psi]\!]_{\nu} = 1$:

$$[\![\varphi]\!]_v = [\![(\varphi \to \psi)]\!]_v = 1 \implies [\![\psi]\!]_v = 1.$$

4 $\not\models p_1$ Sale negando la definición

- $\begin{tabular}{l} $\models (\varphi \to \varphi).$ \\ Tenemos que ver que para toda asignación v, $$[(\varphi \to \varphi)]]_v = 1.$ \\ Equivalentemente, $$[(\varphi \to \varphi)]]_v \ne 0.$ \\ \end{tabular}$
- 3 $\{\varphi, (\varphi \to \psi)\} \models \psi$. Debemos ver que si ν valida $\{\varphi, (\varphi \to \psi)\}$, entonces $[\![\psi]\!]_{\nu} = 1$:

4 $\not\models p_1$ Sale negando la definición:

 p_1 no es una tautología \iff existe alguna v tal que $[p_1]_v = 0$.

La verdad de una proposición se determina localmente.

La verdad de una proposición se determina localmente.

Lema (de Coincidencia)

 $Si \ v(p_i) = v'(p_i) \ para \ todos \ los \ p_i \ que \ ocurran \ en rac{oldsymbol{arphi}}{oldsymbol{arphi}}, \ entonces \ \llbracket arphi
rbrack
rbrack _v = \llbracket arphi
rbrack
rbrack _v .$

HI: P(n) => Q(n) Q(n) (Ord: P(nos)) => Q(n) P(nos)

La verdad de una proposición se determina localmente.

Lema (de Coincidencia)

 $\operatorname{Si} v(p_i) = v'(p_i)$ para todos los p_i que ocurran en φ , entonces $[\![\varphi]\!]_v = [\![\varphi]\!]_{v'}$.

Demostración.

$$\varphi \in At$$
 Si $\varphi = p_n$, sólo ocurre p_n en φ .

La verdad de una proposición se determina localmente.

Lema (de Coincidencia)

Si $v(p_i) = v'(p_i)$ para todos los p_i que ocurran en φ , entonces $[\![\varphi]\!]_v = [\![\varphi]\!]_{v'}$.

Demostración.

La verdad de una proposición se determina localmente.

Lema (de Coincidencia)

 $\operatorname{Si} v(p_i) = v'(p_i)$ para todos los p_i que ocurran en φ , entonces $[\![\varphi]\!]_v = [\![\varphi]\!]_{v'}$.

Demostración.

$$\varphi \in At$$
 Si $\varphi = p_n$, sólo ocurre p_n en φ . Luego $[\![\varphi]\!]_v = v(\varphi) = v'(\varphi) = [\![\varphi]\!]_{v'}$. Además, $[\![\bot]\!]_v = [\![\bot]\!]_{v'} = 0$ siempre.

La verdad de una proposición se determina localmente.

Lema (de Coincidencia)

 $\operatorname{Si} v(p_i) = v'(p_i)$ para todos los p_i que ocurran en φ , entonces $[\![\varphi]\!]_v = [\![\varphi]\!]_{v'}$.

Demostración.

$$\boxed{\varphi\in At}$$
 Si $\varphi=p_n$, sólo ocurre p_n en φ . Luego $[\![\varphi]\!]_v=v(\varphi)=v'(\varphi)=[\![\varphi]\!]_{v'}$. Además, $[\![\bot]\!]_v=[\![\bot]\!]_{v'}=0$ siempre.

 $(\varphi \wedge \psi)$ Supongamos que v y v' coinciden en las variables de $(\varphi \wedge \psi)$

La verdad de una proposición se determina localmente.

Lema (de Coincidencia)

Si
$$v(p_i) = v'(p_i)$$
 para todos los p_i que ocurran en φ , entonces $[\![\varphi]\!]_v = [\![\varphi]\!]_{v'}$.

Demostración.

$$\boxed{arphi \in At}$$
 Si $arphi = p_n$, sólo ocurre p_n en $arphi$. Luego $\llbracket arphi
rbracket_v = v(arphi) = v'(arphi) = \llbracket arphi
rbracket_{v'}$. Además, $\llbracket \bot
rbracket_v = \llbracket \bot
rbracket_{v'} = 0$ siempre.

 $(\varphi \wedge \psi)$ Supongamos que v y v' coinciden en las variables de $(\varphi \wedge \psi)$

La verdad de una proposición se determina localmente.

Lema (de Coincidencia)

 $\operatorname{Si} v(p_i) = v'(p_i)$ para todos los p_i que ocurran en φ , entonces $[\![\varphi]\!]_v = [\![\varphi]\!]_{v'}$.

Demostración.

 $\boxed{\varphi \in At}$ Si $\varphi = p_n$, sólo ocurre p_n en φ . Luego $\llbracket \varphi \rrbracket_v = v(\varphi) = v'(\varphi) = \llbracket \varphi \rrbracket_{v'}$. Además, $\llbracket \bot \rrbracket_v = \llbracket \bot \rrbracket_{v'} = 0$ siempre.

 $(\varphi \wedge \psi)$ Supongamos que v y v' coinciden en las variables de $(\varphi \wedge \psi)$ Probamos que $[(\varphi \wedge \psi)]_v = [(\varphi \wedge \psi)]_{v'}$.

 $(arphi\odot\psi)$ El resto de los casos queda como ejercicio.

Recordemos que una asignación es una función de $\mathcal{V} = \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$ en $\{0, 1\}$.

Recordemos que una asignación es una función de

$$\mathcal{V} = \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\} \text{ en } \{0, 1\}.$$

Pregunta

¿Cuántas asignaciones posibles hay?

Recordemos que una asignación es una función de

$$\mathcal{V} = \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\} \text{ en } \{0, 1\}.$$

Pregunta

¿Cuántas asignaciones posibles hay?

→ Actividad en Aula virtual!

Recordemos que una asignación es una función de

$$\mathcal{V} = \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\} \text{ en } \{0, 1\}.$$

Pregunta

¿Cuántas asignaciones posibles hay?

→ Actividad en Aula virtual!

Demasiadas.

Recordemos que una asignación es una función de

$$\mathcal{V} = \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\} \text{ en } \{0, 1\}.$$

Pregunta

¿Cuántas asignaciones posibles hay?

 \longrightarrow Actividad en Aula virtual!

Demasiadas.

¿Hay que chequear todas para saber si $\models ((p_0 \land p_2) \rightarrow p_2)$?

Recordemos que una asignación es una función de

$$\mathcal{V} = \{p_0, p_1, \dots, p_n, p_{n+1}, \dots\} \text{ en } \{0, 1\}.$$

Pregunta

¿Cuántas asignaciones posibles hay?

 \longrightarrow Actividad en Aula virtual!

Demasiadas.

¿Hay que chequear todas para saber si $\models ((p_0 \land p_2) \rightarrow p_2)$? Por el Lema de Coincidencia, no.

	p_0	p_1	p_2	p_3	
v_1	1	0	1	1	
v_2	1	1	0	1	

				p_3	
v_1	1	0	1	1	
v_2	1	1	0	1	
<i>v</i> ₃	1	0	1	0	

	p_0	p_1	p_2	p_3	
v_1	1	0	1	1	
v_2	1	1	0	1	
v_3	1	0	1	0	
v_4	0	0	1	1	

	p_0	p_1	p_2	p_3	
v_1	1	0	1	1	
v_2	1	1	0	1	
<i>v</i> ₃	1	0	1	0	
v_4	0	0	1	1	
<i>v</i> ₅	0	1	0	0	

	p_0	p_1	p_2	p_3	
$\overline{v_1}$	1	0	1	1	
v_2	1	1	0	1	
<i>v</i> ₃	1	0	1	0	
v_4	0	0	1	1	
<i>v</i> ₅	0	1	0	0	
:			:		٠

	p_0	p_1	p_2	p_3		$(p_0 \wedge p_2)$	$((p_0 \land p_2) \to p_2)$
v_1	1	0	1	1			
v_2	1	1	0	1			
<i>v</i> ₃	1	0	1	0			
v_4	0	0	1	1			
÷			÷		٠		

	p_0	p_1	p_2	p_3		$(p_0 \wedge p_2)$	$((p_0 \land p_2) \to p_2)$
v_1	1	0	1	1		1	1
v_2	1	1	0	1			
v_3	1	0	1	0			
v_4	0	0	1	1			
<i>v</i> ₅	0	1	0	0		1	
:			÷		٠		

	p_0	p_1	p_2	p_3		$(p_0 \wedge p_2)$	$((p_0 \land p_2) \to p_2)$
v_1	1	0	1	1		1	1
v_2	1	1	0	1		0	1
v_3	1	0	1	0			
v_4	0	0	1	1			
v_5	0	1	0	0			
:			:		٠		

	p_0	p_1	p_2	p_3		$(p_0 \wedge p_2)$	$((p_0 \land p_2) \to p_2)$
v_1	1	0	1	1		1	1
v_2	1	1	0	1		0	1
<i>v</i> ₃	1	0	1	0		1	1
v_4	0	0	1	1			
<i>v</i> ₅	0	1	0	0		1 0 1	
:			÷		٠		

	p_0	p_1	p_2	p_3		$(p_0 \wedge p_2)$	$((p_0 \land p_2) \to p_2)$
v_1	1	0	1	1		1	1
v_2	1	1	0	1		0	1
<i>v</i> ₃	1	0	1	0		1	1
v_4	0	0	1	1		0	1
				0			
:			:		٠		

	p_0	p_1	p_2	p_3		$(p_0 \wedge p_2)$	$((p_0 \land p_2) \to p_2)$
v_1	1	0	1	1		1	1
						0	1
v_3	1	0	1	0		1	1
v_4	0		1			0	1
	i	1	0	0		0	1
:			:		٠		

	p_0	p_1	p_2	p_3		$(p_0 \wedge p_2)$	$((p_0 \land p_2) \to p_2)$
$\overline{v_1}$	1	0	1	1		1	1
v_2	1	1	0	1		0	1
v_3	1	0	1	0		1	1
	0		1	1		0	1
v_5	0	1	0	0		0	1
:			:		٠.		

	p_0	p_1	p_2	p_3	$(p_0 \wedge p_2)$	$((p_0 \land p_2) \to p_2)$
$\overline{v_1}$	1	0	1	1 .,.	1	1
v_2	1	1	0	1	. 0	1
V3	1	0	-1	0	. 1	1
v_4	0	0	1	1	0	1
<i>V</i> 5	0	1	0	0	. 0	1
				·.		

	p_0	p_2	$(p_0 \wedge p_2)$	$((p_0 \wedge p_2) \to p_2)$
v_1	1	1	1	1
v_2	1	0	0	1
v_4	0	1	1 0 0 0	1
<i>V</i> 5	0	0	0	1

Definición

Definición

 $\varphi[\psi/p] :=$ **sustitución** del símbolo proposicional p **por** la proposición ψ **en** φ :

$$\boxed{arphi \in At}$$
 Si $arphi = p$ entonces $\boxed{arphi[\psi/p]} := \psi.$

Definición

 $\varphi[\psi/p] :=$ **sustitución** del símbolo proposicional p **por** la proposición ψ **en** φ : $\varphi \in At$ Si $\varphi = p$ entonces $\varphi[\psi/p] := \psi$. Caso contrario, $\varphi[\psi/p] := \varphi$.

fo[4/ps] = po

Definición

 $\varphi[\psi/p] :=$ sustitución del símbolo proposicional p por la proposición ψ en φ :

$$\boxed{\varphi \in At} \ \ \text{Si} \ \varphi = p \ \text{entonces} \ \varphi[\psi/p] := \psi. \ \ \text{Caso contrario,} \ \varphi[\psi/p] := \varphi.$$

$$(\varphi \odot \chi) \mid (\varphi \odot \chi)[\psi/p] := (\varphi[\psi/p] \odot \chi[\psi/p]).$$

Definición

 $\varphi[\psi/p] :=$ **sustitución** del símbolo proposicional p **por** la proposición ψ **en** φ : $\varphi \in At$ Si $\varphi = p$ entonces $\varphi[\psi/p] := \psi$. Caso contrario, $\varphi[\psi/p] := \varphi$.

$$\varphi \in Ai$$
 Si $\varphi = p$ entonces $\varphi[\psi/p] := \psi$. Caso contrano, $\varphi[\psi/p] := \varphi$

$$(\varphi \odot \chi)$$
 $(\varphi \odot \chi)[\psi/p] := (\varphi[\psi/p] \odot \chi[\psi/p]).$

$$p_1[(p_1 \wedge p_2)/p_3] = p_1.$$

Definición

 $\varphi[\psi/p] :=$ **sustitución** del símbolo proposicional p **por** la proposición ψ **en** φ : $\varphi \in At$ Si $\varphi = p$ entonces $\varphi[\psi/p] := \psi$. Caso contrario, $\varphi[\psi/p] := \varphi$.

$$\overline{(\varphi\odot\chi)}\ (\varphi\odot\chi)[\psi/p]:=(\varphi[\psi/p]\odot\chi[\psi/p]).$$

- $p_1[(p_1 \wedge p_2)/p_3] = p_1.$
- $p_1[(p_1 \wedge p_2)/p_1] = (p_1 \wedge p_2).$

Definición

 $\varphi[\psi/p] :=$ **sustitución** del símbolo proposicional p **por** la proposición ψ **en** φ : $\varphi \in At$ Si $\varphi = p$ entonces $\varphi[\psi/p] := \psi$. Caso contrario, $\varphi[\psi/p] := \varphi$.

$$\overline{ (\varphi \odot \chi) } \ (\varphi \odot \chi) [\psi/p] := (\varphi[\psi/p] \odot \chi[\psi/p]).$$

- $p_1[(p_1 \wedge p_2)/p_3] = p_1.$
- $p_1[(p_1 \wedge p_2)/p_1] = (p_1 \wedge p_2).$

Definición

 $\varphi[\psi/p] :=$ **sustitución** del símbolo proposicional p **por** la proposición ψ **en** φ : $\varphi \in At$ Si $\varphi = p$ entonces $\varphi[\psi/p] := \psi$. Caso contrario, $\varphi[\psi/p] := \varphi$.

$$\overline{ (\varphi \odot \chi) } \ (\varphi \odot \chi) [\psi/p] := (\varphi[\psi/p] \odot \chi[\psi/p]).$$

- $p_1[(p_1 \wedge p_2)/p_3] = p_1.$
- $p_1[(p_1 \wedge p_2)/p_1] = (p_1 \wedge p_2).$

Definición

 $\varphi[\psi/p] :=$ **sustitución** del símbolo proposicional p **por** la proposición ψ **en** φ : $\varphi \in At$ Si $\varphi = p$ entonces $\varphi[\psi/p] := \psi$. Caso contrario, $\varphi[\psi/p] := \varphi$.

$$\overline{(\varphi\odot\chi)} \ (\varphi\odot\chi)[\psi/p] := (\varphi[\psi/p]\odot\chi[\psi/p]).$$

- $p_1[(p_1 \wedge p_2)/p_3] = p_1.$
- $p_1[(p_1 \wedge p_2)/p_1] = (p_1 \wedge p_2).$
- $(p_1 \wedge p_2)[(p_3 \wedge p_4)/p_1] = ((p_3 \wedge p_4) \wedge p_2).$

Definición

 $\varphi[\psi/p] :=$ **sustitución** del símbolo proposicional p **por** la proposición ψ **en** φ : $\varphi \in At$ Si $\varphi = p$ entonces $\varphi[\psi/p] := \psi$. Caso contrario, $\varphi[\psi/p] := \varphi$.

$$\varphi \in \mathcal{H}$$
 Si $\varphi = p$ entonces $\varphi[\psi/p] := \psi$. Caso contrant, $\varphi[\psi/p] := \varphi$

$$(\varphi \odot \chi) \quad (\varphi \odot \chi)[\psi/p] := (\varphi[\psi/p] \odot \chi[\psi/p]).$$

Ejemplo

- $p_1[(p_1 \wedge p_2)/p_3] = p_1.$
- $p_1[(p_1 \wedge p_2)/p_1] = (p_1 \wedge p_2).$
- $(p_1 \wedge p_2)[(p_3 \wedge p_4)/p_1] = ((p_3 \wedge p_4) \wedge p_2).$

Ejercicio

$$\varphi \in At$$
 $p[\psi/p] := \psi.$ $\varphi \neq p \implies \varphi[\psi/p] = \varphi.$

$$(\varphi \odot \chi)$$
 $(\varphi \odot \chi)[\psi/p] := (\varphi[\psi/p] \odot \chi[\psi/p]).$

$$\varphi \in At$$
 $p[\psi/p] := \psi.$ $\varphi \neq p \implies \varphi[\psi/p] = \varphi.$

$$(\varphi \odot \chi)$$
 $(\varphi \odot \chi)[\psi/p] := (\varphi[\psi/p] \odot \chi[\psi/p]).$

Teorema (Regla de Leibnitz)

$$\begin{array}{c}
\varphi \in At \\
\varphi \in At
\end{array} p[\psi/p] := \psi. \qquad \varphi \neq p \implies \varphi[\psi/p] = \varphi. \\
\varphi \circ \chi) \qquad (\varphi \circ \chi)[\psi/p] := (\varphi[\psi/p] \circ \chi[\psi/p]).$$

Teorema (Regla de Leibnitz)

$$Si \models \varphi_1 \leftrightarrow \varphi_2 \ \ \text{entonces} \models \psi[\varphi_1/p] \leftrightarrow \psi[\varphi_2/p].$$

Lema

$$\varphi \in At$$
 $p[\psi/p] := \psi.$ $\varphi \neq p \implies \varphi[\psi/p] = \varphi.$

$$\boxed{(\varphi\odot\chi)}\ (\varphi\odot\chi)[\psi/p] := (\varphi[\psi/p]\odot\chi[\psi/p]).$$

Teorema (Regla de Leibnitz)

$$Si \models \varphi_1 \leftrightarrow \varphi_2 \text{ entonces } \models \psi[\varphi_1/p] \leftrightarrow \psi[\varphi_2/p].$$

Lema

$$\llbracket \varphi_1 \rrbracket = \llbracket \varphi_2 \rrbracket \text{ implica } \llbracket \psi[\varphi_1/p] \rrbracket = \llbracket \psi[\varphi_2/p] \rrbracket.$$

Demostración.

Inducción en ψ .

$$\varphi \in At$$
 $p[\psi/p] := \psi.$ $\varphi \neq p \implies \varphi[\psi/p] = \varphi.$

Teorema (Regla de Leibnitz)

$$Si \models \varphi_1 \leftrightarrow \varphi_2 \text{ entonces } \models \psi[\varphi_1/p] \leftrightarrow \psi[\varphi_2/p].$$

Lema

$$\llbracket \varphi_1 \rrbracket = \llbracket \varphi_2 \rrbracket \text{ implica } \llbracket \psi[\varphi_1/p] \rrbracket = \llbracket \psi[\varphi_2/p] \rrbracket.$$

Demostración.

Inducción en ψ . En cada caso, suponemos en antecedente y probamos el consecuente.

