Math 2130 - Engineering Mathematical Analysis 1

Tutorial Questions for §12.2 - 12.6.

12.2.1. Find the limit:
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2+1}$$
.

12.2.2. Find the limit:
$$\lim_{(x,y)\to(0,0)} \frac{(x+y)^2}{x^2+y^2}$$
.

12.2.3. Find the limit:
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$
.

Show that the limit exists along every straight line through the origin, and these give the same value. Then consider the limit along parabolas through the origin.

12.2.4. Let
$$f(x,y) = \begin{cases} \frac{e^{3x+2y} - 1 - (3x+2y)}{(3x+2y)^2}, & \text{if } 3x + 2y \neq 0; \\ \beta, & \text{if } 3x + 2y = 0. \end{cases}$$

Note that the first line of the definition of f is undefined whenever 3x + 2y = 0.

Can we find a value for β so that f is continuous on the whole xy plane?

12.3.1. If
$$f(x,y) = x^3 y \sin(y^2/x^2)$$
, find and simplify $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$.

12.4.1. (a) Given a surface with equation z = f(x, y), the two vectors $\vec{u} = (1, 0, f_x)$ and $\vec{v} = (0, 1, f_y)$ are tangent to the surface. Note: f_x and f_y denote partial derivatives.

Define G(x, y, z) = f(x, y) - z. Then, the surface is given by G = 0.

Show that ∇G is normal to the surface by showing that it is perpendicular to each of \vec{u} and \vec{v} .

- (b) For the surface, $z=x^2+y^2$, form $\vec{N}=\nabla G$, as above. Then, on the intersection of this surface with the plane y=0, find a tangent vector, \vec{T} , to the resulting curve. Show that \vec{N} and \vec{T} are perpendicular and draw this curve and a few examples of the \vec{N} and \vec{T} vectors.
- **12.5.1.** Let $f(x,y) = xy^2$. Calculate $\frac{\partial f}{\partial x}$ at the point (0,2).
- **12.5.2.** Let $f(x,y) = e^{x^2y} + x^2y^3$. Calculate all its first-order and second-order partial derivatives.
- **12.5.3.** For what value, or values, of the constant b is the function $f(x,y) = e^{bx} \cos 5y$ harmonic in the entire xy-plane?
- **12.6.1.** (a) You are told that z = f(u, v, t), u = g(x, y, t), v = h(x, y, t), and y = k(t). What is the chain rule for $\frac{\partial z}{\partial t}$?
 - (b) Verify your answer to (a) if z = uvt, u = xyt, v = 2xyt, and $y = t^2$.

Answers:

12.2.1: 0.

12.2.2: On x = 0 or y = 0, the limit is 1; on y = x, the limit is 2. Alternatively, on y = -x, the limit is 0.

12.2.3: On x = 0 or y = mx, the limit is 0; on $x = y^2$, the limit is $\frac{1}{2}$. Thus, the limit DNE.

12.2.4: Yes. Let u=3x+2y. Then, $\beta=\lim_{u\to 0}\frac{e^u-1-u}{u^2}$. Use L'Hospital's Rule twice to obtain: $\beta=\frac{1}{2}$.

Thus, the limit DNE (does not exist).

12.3.1: $4x^3y\sin(y^2/x^2)$.

12.4.1: (a) $\nabla G = (f_x, f_y, -1)$, so that $\nabla G \cdot \vec{u} = \nabla G \cdot \vec{v} = 0$. (b) $\vec{N} = (2x, 2y, -1)$. The curve is: $x = t, y = 0, z = t^2$. Thus, $\vec{T} = (1, 0, 2t)$. Thus, $\vec{N} = (2t, 0, -1)$ and $\vec{N} \cdot \vec{T} = 0$.

12.5.1: 4.

12.5.2:
$$f_x = 2xye^{x^2y} + 2xy^3$$
,
 $f_y = x^2e^{x^2y} + 3x^2y^2$,
 $f_{xx} = e^{x^2y}[2y + 4x^2y^2] + 2y^3$,
 $f_{xy} = f_{yx} = e^{x^2y}[2x + 2x^3y] + 6xy^2$,
 $f_{yy} = x^4e^{x^2y} + 6x^2y$.

12.5.3: $b = \pm 5$.

12.6.1: (a):
$$\frac{\partial z}{\partial u} \frac{\partial u}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial z}{\partial u} \frac{\partial u}{\partial t} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial t} + \frac{\partial z}{\partial t}$$
.

(b): Answer (a) yields: $2xvt^3 + xyvt + 4xut^3 + 2xyut + uv$ = $(4+2+4+2+2)x^2t^6 = 14x^2t^6$.

Direct substitution gives: $z = 2x^2t^7$. Thus, $\frac{\partial z}{\partial t}\Big)_x = 14x^2t^6$.