Unsupervised Learning & Data Clustering

Problem Set-up

Objective

Objective

Define the set-up of unsupervised learning

Learning from Unlabeled Data

Given a training set of *n* unlabeled samples {x⁽ⁱ⁾}

What can we learn from the samples?

- → We could estimate the overall distribution of the data without knowing their label.
- → We could figure out the groupings of the samples (if any).
- → We could identify some features that may be more important than others.

An Example

Illustrating structures/groupings of unlabeled samples may relate to the (unknown) labels of the samples

→ If we know the labels, we may find the densities of the classes →

→ What may we see if we have no label for the data samples?

Another Example

A density estimated from unlabeled samples may help us to identify densities of different classes

If we know there are three classes in the data, each having a normal distribution ...

A Mixture-Density Model

Assume a parametric model like this:

- The samples come from C classes.
- -The prior probabilities $P(\omega_j)$ for each class are known, for j = 1, ..., C.
- The form of $p(\mathbf{x} \mid \omega_i, \theta_i)$ (j = 1, ..., C) are known.
- -The C parameter vectors θ_1 , θ_2 , ..., θ_C are unknown.

Samples from this distribution are given, but the labels of the training samples are *unknown*.

A Mixture-Density Model (cont'd)

What is the PDF of the unlabeled samples?

$$p(\mathbf{x} \mid \mathbf{\theta}) = \sum_{j=1}^{C} p(\mathbf{x} \mid \omega_j, \mathbf{\theta}_j) P(\omega_j)$$

where
$$\theta = (\theta_1, \theta_2, ..., \theta_C)$$

Can we learn θ from unlabeled samples from this mixture density?

Illustrating Mixture-Density Model

An example: with the assumption of 4 classes

Illustrating Mixture-Density Model

An example: with the assumption of 2 classes

The Question of Identifiability

Can we learn a unique θ from a set of unlabeled samples from a mixture density?

- For continuous features (with PDFs), the answer is often "Yes".

An example in discrete case (with PMF).

- Two coins with P(head) being p & q respectively.
- Randomly pick one and toss it; Record the outcome.
- With only the outcomes of N tosses, but not knowing which coin was used each time (→ unsupervised), can we figure out p and q?

Unsupervised Learning Gaussian Mixture Models and the EM Algorithm

Objective

Objective

Define the Gaussian Mixture Model

Objective

Illustrate the Expectation-Maximization Algorithm

The Gaussian Mixture Models

The mixture model:

$$p(\mathbf{x} \mid \mathbf{\theta}) = \sum_{j=1}^{C} p(\mathbf{x} \mid \omega_j, \mathbf{\theta}_j) P(\omega_j)$$

GMM: each component density is a Gaussian distribution.

 Can be a good approximation to many real data distributions.

If We Do Have Labels...

$$p(\mathbf{x} \mid \mathbf{\theta}) = \sum_{j=1}^{C} p(\mathbf{x} \mid \omega_j, \mathbf{\theta}_j) P(\omega_j)$$

This becomes supervised learning for each component (class).

It is more difficult without labels.

Unsupervised Case

Consider an iterative method using the maximum likelihood estimation concept.

Consider a 3component 1-d example.

What are the parameters in this case?

We might have some initial (imprecise) guesses for the parameter, e.g., vs the *k-means algorithm*.

– How to improve the initial guesses?

Unsupervised Case (cont'd)

Iterate on t

Given parameter estimates at iteration t-1

An example of **Expectation-Maximization** Algorithm.

Step 1. For a sample j, compute its probability of being from class k

$$P(y_{3}=k[x_{3},0^{(t-1)}]\propto P_{k}^{(t-1)}P(x_{3}|u_{k},v_{k}^{(t-1)},v_{k}^{(t-1)}), \forall k=1,2,3$$

Step 2. Update the estimates of the parameters

Step 2. Update the estimates of the parameters
$$\mathcal{L}_{\mathcal{X}_{j}}^{(t)} = \frac{\sum_{j} \sum_{j} \sum_{$$

Unsupervised Learning The k-Means Algorithm

Objective

Objective
Discuss the basics of data clustering

Objective
Illustrate the kMeans Algorithm

Finding the Clusters/Groupings of the Samples

A few basic questions to answer

- How to represent the clusters?
 - → We will use the centroid to represent a cluster.
- Which cluster a sample should be assigned to (e.g., membership)?
 - → We will use the similarity to the centroid to determine the membership.
- What similarity measure to use?
 - E.g., Euclidean distance

More on Similarity Measures

If we use Euclidean distance as the measure:

- It is invariant to translations & rotations of the feature space.
- -But not to more general transformations.

E.g., if one feature is scaled.

More on Similarity Measures (cont'd)

Other types of similarity measures

E.g., cosine similarity

E.g., distance on a graph, like shortest path.

$$S(\mathbf{x}, \mathbf{x'}) = \frac{\mathbf{x'}\mathbf{x'}}{\|\mathbf{x}\| \|\mathbf{x'}\|}$$

Clustering as Optimization

The sum-of-squarederror criterion/cost

- Let D_i be the subset of samples from class i.
- Let n_i be the number of samples in D_i , and \mathbf{m}_i the mean of those samples

$$\mathbf{m}_{i} = \frac{1}{n_{i}} \sum_{\mathbf{x} \in D_{i}} \mathbf{x}$$

-The sum of squared error is: $J_e = \sum_{i=1}^{C} \sum_{\mathbf{x} \in D_i} \left\| \mathbf{x} - \mathbf{m}_i \right\|^2$

→ Well-separated, compact data "clouds" tend to give small errors when the clusters coincide with the clouds.

Clustering as Optimization (cont'd)

$$J_e = \sum_{i=1}^{C} \sum_{\mathbf{x} \in D_i} \|\mathbf{x} - \mathbf{m}_i\|^2$$

- \rightarrow An optimization problem to solve for finding a "good" clustering: to find the partition of the data that minimizes J_e
- If the membership of a sample is determined by the distance to the means **m**;
 - → Then the task is to find the optimal set of {m_i}
 - → The problem is NP-hard.

k-Means Clustering

Input: Given n data samples

Goal: Partition them into k clusters/sets D_i , with respective center/mean vectors μ_1 , μ_2 , ..., μ_{k_i} so as to minimize

$$\sum_{i=1}^k \sum_{\mathbf{x} \in D_i} ||\mathbf{x} - \mathbf{\mu}_i||^2$$

Comparing with the mixture models:

 Here we do "hard" assignment of the membership to a sample (simply based on its distance to the cluster center).

The Basic k-Means Algorithm

```
Given: n samples, a number k.
Begin
    initialize \mu_1, \mu_2, ..., \mu_k (randomly
    selected)
           do classify n samples according to
                         nearest \mu_{\text{+}}
               recompute \mu_i
           until no change in \mu_i
    return \mu_1, \mu_2, ..., \mu_k
 End
```

Illustrating the Algorithm

Unsupervised Learning Analyzing the k-Means Algorithm

Objective

Objective

Discuss the weaknesses of the k-means algorithm

Objective

Discuss a few common techniques for potential improvement

Properties of the k-Means Algorithm

The algorithm will converge when the cluster centers no longer change.

But the results may not be an optimal solution.

→ Sensitivity to initialization

Another Example

- → The natural grouping seems to be so well defined.
- → For k=3, what will be the clusters?

What can we do to improve?

A Few Common "Tricks"

Choosing the point furthest from the previous centers.

 Drawback: might be sensitive to "outlies".

Multiple runs with different initial centers.

Other Variants of Basic k-Means

k-Means++:

- New centers are chosen with probabilities (as a function of distance to closest prior centers).
- Kind of between "random" and "furthest point" techniques.

Hierarchical approaches

Agglomerative vs divisive.

The Question of Choosing k

Two trivial extremes

- If k=1, the error is the variance of the samples.
- If k=n, the error can become 0.

What is a proper 1<k<n for capturing the structure of the samples?

Some tricks

- Trick 1: Will the cost function drop dramatically at some point?
- Trick 2: Cross-validation (on, e.g., a classification task)