

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15100078802

FCC REPORT

(BLE)

Applicant: USA111 INC.

Address of Applicant: 5885 Green Pointe Dr. Suit B Groveport, Ohio, United States

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: V4

Trade mark: iRULU

FCC ID: 2ADOV-V4

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 14 Oct., 2015

Date of Test: 14 Oct., to 30 Oct., 2015

Date of report issued: 30 Oct., 2015

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	30 Oct., 2015	Original

Tested by: Over Open Date: 30 Oct., 2015

Test Engineer

Reviewed by: Date: 30 Oct., 2015

Project Engineer

3 Contents

			Page				
1	CO	/ER PAGE	1				
2	VER	VERSION					
3		NTENTS					
4	TES	T SUMMARY	4				
5	GEN	NERAL INFORMATION	5				
	5.1	CLIENT INFORMATION	5				
	5.2	GENERAL DESCRIPTION OF E.U.T.					
	5.3	TEST ENVIRONMENT AND MODE					
	5.4	DESCRIPTION OF SUPPORT UNITS					
	5.5	LABORATORY FACILITY					
	5.6	LABORATORY LOCATION					
	5.7	TEST INSTRUMENTS LIST					
6	TES	T RESULTS AND MEASUREMENT DATA	9				
	6.1	ANTENNA REQUIREMENT:	9				
	6.2	CONDUCTED EMISSION	10				
	6.3	CONDUCTED OUTPUT POWER	13				
	6.4	OCCUPY BANDWIDTH	15				
	6.5	POWER SPECTRAL DENSITY	18				
	6.6	BAND EDGE	20				
	6.6.	1 Conducted Emission Method	20				
	6.6.2	2 Radiated Emission Method	22				
	6.7	Spurious Emission	27				
	6.7.	1 Conducted Emission Method	27				
	6.7.2	2 Radiated Emission Method	30				
7	TES	T SETUP PHOTO	35				
8	EUT	CONSTRUCTIONAL DETAILS	36				

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	USA111 INC.
Address of Applicant:	5885 Green Pointe Dr. Suit B Groveport, Ohio, United States
Manufacturer/ Factory:	IDEA INTERNATIONAL DEVELOPMENT LIMITED
Address of Manufacturer/ Factory:	8/F, Building A, Huazhong University of Science and Technology Mansion, Yuexing 3 Rd, High-techSouthZone, Nanshan District, Shenzhen, China.

5.2 General Description of E.U.T.

_	
Product Name:	Mobile Phone
Model No.:	V4
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2500mAh
AC adapter:	Model: TPA-655100UU
	Input:100-240V AC,50/60Hz 0.2A
	Output:5V DC MAX 1000mA

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

Report No: CCIS15100078802

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radiated Emission:									
Item	Test Equipment	Manufacturer	Manufacturer Model No.		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016			
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016			
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016			
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016			
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016			
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016			
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016			
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016			
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016			

Con	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016				
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part

15.203 requirement:

FCC Part 15 C Section 15.203 /247(c)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7					
Test Method:	ANSI C63.4: 2009						
Test Frequency Range:	150 kHz to 30 MHz						
. , ,	Class B						
Class / Severity:							
Receiver setup:	RBW=9kHz, VBW=30kHz	1	ID 10				
Limit:	Frequency range (MHz) Limit (dBuV) Quasi-peak Average						
	0.15-0.5 66 to 56* 56 to 46*						
	0.5-5 56 46						
	5-30	60	50				
	* Decreases with the logarithm						
Test procedure	 The E.U.T and simulators a line impedance stabilize 50ohm/50uH coupling impound for the peripheral devices through a LISN that prowith 50ohm termination. test setup and photograph Both sides of A.C. line interference. In order to positions of equipment changed according to measurement. 	zation network (L.I.S.Network) pedance for the measure are also connected ovides a 500hm/50uH (Please refer to the hs). The are checked for a find the maximum of and all of the interface.	N.), which provides a uring equipment. to the main power coupling impedance block diagram of the maximum conducted emission, the relative				
Test setup:	LISN 40cm		er — AC power				
Test Uncertainty:			±3.28 dB				
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

Neutral:

Trace: 13

Site

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL Condition

Ror : 788RF

EUT : Mobile Phone Model : V4

Test Mode : BLE mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

Remark

Vellark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>	₫B	dBu∜	dBu∜	<u>dB</u>	
1	0.154	26.34	0.25	10.78	37.37	65.78	-28.41	QP
2	0.194	23.27	0.25	10.76	34.28	63.84	-29.56	QP
3	0.277	13.52	0.26	10.74	24.52	50.90	-26.38	Average
4	0.299	14.88	0.26	10.74	25.88	50.28	-24.40	Average
4 5 6 7 8 9	0.318	22.25	0.26	10.74	33.25	59.75	-26.50	QP
6	0.318	14.50	0.26	10.74	25.50	49.75	-24.25	Average
7	0.381	23.45	0.25	10.72	34.42	58.25	-23.83	QP
8	0.686	14.33	0.19	10.77	25.29	46.00	-20.71	Average
	0.697	22.16	0.18	10.77	33.11	56.00	-22.89	QP
10	1.077	8.62	0.23	10.88	19.73	46.00	-26.27	Average
11	2.384	6.28	0.29	10.94	17.51	46.00	-28.49	Average
12	2.636	20.66	0.29	10.93	31.88	56.00	-24.12	QP

Report No: CCIS15100078802

Line:

Trace: 11

Site : CCIS Shielding Room Condition : FCC CLASS-B QP LISN LINE

Ror : 788RF

EUT : Mobile Phone

Model : V4
Test Mode : BLE mode
Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Carey

Remark

	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
-	MHz	dBu∀	₫B	₫B	dBu₹	dBu∀	dB	
1	0.150	30.04	0.27	10.78	41.09	66.00	-24.91	QP
2	0.190	11.23	0.28	10.76	22.27	54.02	-31.75	Average
	0.194	26.19	0.28	10.76	37.23	63.84	-26.61	QP
4 5	0.289	22.15	0.26	10.74	33.15	60.54	-27.39	QP
5	0.299	14.10	0.26	10.74	25.10	50.28	-25.18	Average
6 7	0.318	13.71	0.26	10.74	24.71			Average
7	0.385	21.62	0.28	10.72	32.62	58.17	-25.55	QP
8 9	0.712	22.91	0.22	10.78	33.91	56.00	-22.09	QP
9	0.739	13.27	0.22	10.79	24.28	46.00	-21.72	Average
10	1.032	9.44	0.25	10.87	20.56	46.00	-25.44	Average
11	1.829	22.31	0.26	10.95	33.52	56.00	-22.48	QP
12	2.110	8.29	0.26	10.95	19.50	46.00	-26.50	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-2.14		
Middle	0.23	30.00	Pass
Highest	-2.19		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.776		
Middle	0.764	>500	Pass
Highest	0.776		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.112		
Middle	1.106	N/A	N/A
Highest	1.106		

Test plot as follows:

Highest channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2
Limit:	8 dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-2.43		
Middle	0.18	8.00	Pass
Highest	-2.30		

Test plots as follow:

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:					
	Spectrum Analyzer				
	E.U.T				
	Non-Conducted Table				
	Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plots as follow:

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2	2013 and KDE	B 558074v03r	03 section	12.1			
Test Frequency Range:	2.3GHz to 2.5G	Hz						
Test site:	Measurement D	Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above 1G112	RMS	1MHz	3MHz	Average Value			
Limit:	Freque	ency	Limit (dBuV		Remark			
	Above 1	IGHz -	54.0 74.0		Average Value Peak Value			
Test Procedure:	the ground to determing to determing antenna, we tower. 3. The antennather ground Both horizon make their second to find the specified E. 5. The test-respecified E. 6. If the emission the limit specified EUT have 10 de	at a 3 meter ne the position was set 3 meter which was mount and height is value to determine ontal and vertime asurement, uspected emithen the antend the rota table maximum reaspeciver system and width with sion level of the recified, then the would be rep margin would	camber. The n of the highes ers away from unted on the taried from one the maximum ical polarizationssion, the EU na was tuned e was turned ding. In was set to Ph Maximum Hale EUT in peal esting could be orted. Otherwood be re-tested.	table was rest radiation. If the interference meter to for a value of the consofthe and to heights from 0 degreeak Detect lold Mode. It was arranded to heights and the consofthe and the consof	e 0.8 meters above otated 360 degrees rence-receiving able-height antenna our meters above he field strength. Intenna are set to reged to its worst from 1 meter to 4 rees to 360 degrees. Function and s 10 dB lower than and the peak values issions that did not e using peak, quasi-ported in a data			
Test setup:	AE SOCM	EUT Gro	Horn Anti	Antenna To Controller	wer			
Test Instruments:	Refer to section	5.7 for detail	S					
Test mode:	Refer to section	5.3 for detail	s					
Test results:	Passed							

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 788 Condition

Pro

EUT : Mobile Phone

: V4 Model

: BLE-L mode Test mode Power Rating: AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: Carey

Remark

	Freq					Preamp Factor Level		Over Limit	Remark	
-	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>		
	2390.000 2390.000		27.58 27.58		0.00 0.00				Peak Average	

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro 788 :

EUT Mobile Phone :

Model : V4

Test mode : BLE-L mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

Remark

mar.		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq		Factor						Remark	
ē	MHz	dBu₹	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
1	2390.000	17.55	27.58	6.63	0.00	51.76	74.00	-22.24	Peak	
2	2390.000	7.78	27.58	6.63	0.00	41.99	54.00	-12.01	Average	

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro 788

EUT : Mobile Phone

: V4 Model

Test mode : BLE-H mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

Remark

-marr			Antenna Factor						Remark
-	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2483.500	20.01	27.52	6.85	0.00	54.38	74.00	-19.62	Peak
2	2483.500	7.87	27.52	6.85	0.00	42.24	54.00	-11.76	Average

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 788 Condition

Pro

: Mobile Phone **EUT**

Model : V4

Test mode : BLE-H mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

Remark

	Freq		Antenna Factor						
5	MHz	dBu₹	dB/m	d₿	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
	2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 23.0CT.2015 19:45:58

30MHz~25GHz

Middle channel

Date: 23.OCT.2015 19:49:00

30MHz~25GHz

Highest channel

Date: 23.0CT.2015 19:48:19

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205							
Test Method:	ANSI C63.10:2009									
Test Frequency Range:	9KHz to 25GHz									
Test site:	Measurement D	istance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark					
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value Peak 1MHz 3MHz Peak Value									
	LL Above 1GHz									
	Above 1GHz RMS 1MHz 3MHz Average									
Limit:	Frequency Limit (dBuV/m @3m) Remark									
	30MHz-88MHz 40.0 Quasi-peak Value									
	88MHz-216MHz 43.5 Quasi-peak Value									
		216MHz-960MHz 46.0 Quasi-peak Value								
	960MHz-1GHz		54.0		Quasi-peak Value					
	Above 1GHz		54.0		Average Value					
			74.0		Peak Value le 0.8 meters above					
Test Procedure:	the ground to determin 2. The EUT of antenna, we tower. 3. The antenry the ground Both horizon make the make the make the make the make to find the meters and to find the make the limit specified B for the EUT have 10 dB	at a 3 meter e the position was set 3 m hich was month and ver easurement auspected en the rota table maximum reasurement significant would be resured to the rota table and width with sion level of the cified, then the margin would be resured to the simulation of	camber. The nof the highest teters away funted on the trained from one the maximutical polarizations of the maximutical polarizations was turned ding. In Maximum Hamilton Maximum Hamilton Could be ported. Other do be re-tested.	table was a st radiation. Tom the in op of a variance meter to um value or ions of the EUT was and to height from 0 degrate Deak Dold Mode. The stopped wise the end one by one stopped to be stopped wise the end one by one	rotated 360 degrees					

Below 1GHz

Horizontal:

: 3m chamber

: FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 788 Condition

Pro

EUT : Mobile Phone

Model : V4 Test mode : ble mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

Remark

Mark	Freq		Antenna Factor					Over Limit	Remark	
-	MHz	dBu∜	dB/m	d₿	dB	dBuV/m	dBu√/m	dB		
1	48.332	42.96	13.35	0.59	29.83	27.07	40.00	-12.93	QP	
1 2 3	55.221	35.93	13.03	0.65	29.80	19.81	40.00	-20.19	QP	
3	84.405	36.63	10.16	0.88	29.60	18.07	40.00	-21.93	QP	
4	127.218	38.23	9.32	1.17	29.35	19.37	43.50	-24.13	QP	
5	300.367	32.98	13.06	1.77	28.45	19.36	46.00	-26.64	QP	
4 5 6	734.491	32.56	19.24	3.00	28.54	26.26	46.00	-19.74	QP	

Vertical:

Site

Condition

Pro EUT : Mobile Phone

Model : V4

Test mode : ble mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C

Huni:55%

Test Engineer: Carey

Remark

•								
Freq								Remark
MHz	dBu∜	dB/m	dB	dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
47.826	38.17	13.38	0.59	29.84	22.30	40.00	-17.70	QP
55.415	38.54	13.01	0.65	29.80	22.40	40.00	-17.60	QP
132.221	40.51	8.77	1.21	29.32	21.17	43.50	-22.33	QP
145.861	39.39	8.23	1.30	29.24	19.68	43.50	-23.82	QP
210.786	37.25	10.90	1.44	28.76	20.83	43.50	-22.67	QP
	MHz 47.826 55.415 92.462 132.221 145.861	Freq Level MHz dBuV 47.826 38.17 55.415 38.54 92.462 38.65 132.221 40.51 145.861 39.39	Freq Level Factor MHz dBuV dB/m 47.826 38.17 13.38 55.415 38.54 13.01 92.462 38.65 12.41 132.221 40.51 8.77 145.861 39.39 8.23	MHz dBuV dB/m dB 47.826 38.17 13.38 0.59 55.415 38.54 13.01 0.65 92.462 38.65 12.41 0.92 132.221 40.51 8.77 1.21 145.861 39.39 8.23 1.30	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 47.826 38.17 13.38 0.59 29.84 55.415 38.54 13.01 0.65 29.80 92.462 38.65 12.41 0.92 29.56 132.221 40.51 8.77 1.21 29.32 145.861 39.39 8.23 1.30 29.24	MHz dBuV dB/m dB dB dBuV/m 47.826 38.17 13.38 0.59 29.84 22.30 55.415 38.54 13.01 0.65 29.80 22.40 92.462 38.65 12.41 0.92 29.56 22.42 132.221 40.51 8.77 1.21 29.32 21.17 145.861 39.39 8.23 1.30 29.24 19.68	MHz dBuV dB/m dB dB dBuV/m dBuV/m 47.826 38.17 13.38 0.59 29.84 22.30 40.00 55.415 38.54 13.01 0.65 29.80 22.40 40.00 92.462 38.65 12.41 0.92 29.56 22.42 43.50 132.221 40.51 8.77 1.21 29.32 21.17 43.50 145.861 39.39 8.23 1.30 29.24 19.68 43.50	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dB 47.826 38.17 13.38 0.59 29.84 22.30 40.00 -17.70 55.415 38.54 13.01 0.65 29.80 22.40 40.00 -17.60 92.462 38.65 12.41 0.92 29.56 22.42 43.50 -21.08 132.221 40.51 8.77 1.21 29.32 21.17 43.50 -22.33

Above 1GHz

Test channel:			Lowest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	50.95	31.53	10.57	40.24	52.81	74.00	-21.19	Vertical
4804.00	49.80	31.53	10.57	40.24	51.66	74.00	-22.34	Horizontal

Т	Test channel:			Lowest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	41.35	31.53	10.57	40.24	43.21	54.00	-10.79	Vertical
4804.00	39.75	31.53	10.57	40.24	41.61	54.00	-12.39	Horizontal

Т	Test channel:			Middle		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	48.52	31.58	10.66	40.15	50.61	74.00	-23.39	Vertical
4884.00	48.80	31.58	10.66	40.15	50.89	74.00	-23.11	Horizontal

Т	Test channel:			Middle		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	38.35	31.58	10.66	40.15	40.44	54.00	-13.56	Vertical
4884.00	38.45	31.58	10.66	40.15	40.54	54.00	-13.46	Horizontal

Т	Test channel:			Highest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	49.98	31.69	10.73	40.03	52.37	74.00	-21.63	Vertical	
4960.00	49.24	31.69	10.73	40.03	51.63	74.00	-22.37	Horizontal	

Test channel:			Highest		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	34.74	31.69	10.73	40.03	37.13	54.00	-16.87	Vertical
4960.00	34.15	31.69	10.73	40.03	36.54	54.00	-17.46	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366