Job Search and the Threat of Unemployment Benefit Sanctions

Thomas Walsh European University Institute

University of Bath

13.02.23

Introduction

Unemployment Insurance:

- smoothes consumption while searching
- insurance-incentive tradeoffs

Sanctions policy tool to blunt the tradeoff:

- partial or complete stop of transfers for (e.g.) low search effort
- smoothing with less moral hazard
- jobseekers create worse matches ("market insurance")

Channels:

- · direct: punishment via budget constraint
- indirect: threat, deterrent via expectations
 - much larger group!
 - e.g: if **10**% ever sanctioned, 9X larger

Introduction

Policymakers tend to "toughen up" the UI regime after recessions (GFC, Covid)

- boost labour supply
- fiscal budget / austerity
- UK reform in 2012 (other examples: UK, France, Germany 2022)

Research Questions

Does sanction threat affect search behaviour

• speed of exit from unemployment

To what extent does sanction threat create worse matches?

stability of matches formed

⇒ To answer, empirical strategy uses **UK Sanction Policy Reform in 2012**

- exploit differential responses across districts in sanctioning rate
- spatial heterogeneity in sanction response lends itself to Difference-in-Differences design

Define: sanction threat as **sanctions-per-UI claimant** in the jobseeker's local area

① **Stylised Fact**: sanction threat correlates strongly with earnings losses in the medium term

Define: sanction threat as sanctions-per-UI claimant in the jobseeker's local area

- ① **Stylised Fact**: sanction threat correlates strongly with earnings losses in the medium term
- 2 Sanction threat increases exit speed from unemployment
 - reform increases hazard rate \sim 20 percent (100% direct effect \times 0.05-0.1)
 - a 1ppt increase in sanction threat raises exit hazard by 0.5 ppts (baseline: 4.5)

Define: sanction threat as **sanctions-per-UI claimant** in the jobseeker's local area

- ① **Stylised Fact**: sanction threat correlates strongly with earnings losses in the medium term
- 2 Sanction threat increases exit speed from unemployment
 - reform increases hazard rate \sim 20 percent (100% direct effect \times 0.05-0.1)
 - a 1ppt increase in sanction threat raises exit hazard by 0.5 ppts (baseline: 4.5)
- 3 treated districts experience more spells of unemployment
 - $-\sim$ 10 percent increase in cumulative spells

Define: sanction threat as **sanctions-per-UI claimant** in the jobseeker's local area

- ① **Stylised Fact**: sanction threat correlates strongly with earnings losses in the medium term
- 2 Sanction threat increases exit speed from unemployment
 - reform increases hazard rate \sim 20 percent (100% direct effect \times 0.05-0.1)
 - a 1ppt increase in sanction threat raises exit hazard by 0.5 ppts (baseline: 4.5)
- 3 treated districts experience more spells of unemployment
 - $-\sim$ 10 percent increase in cumulative spells
- 4 treated districts have worse reemployment durations
 - \sim 5-10 percent less likely to reach 12/24/36 months continuously employed

Existing Literature and This Work

- A UI system matters for eqm job characteristics, match quality/suitability to skills:
 Acemoglu (2001): Acemoglu and Shimer (1999, 2000); and Marimon and Zilibotti (1999).
- ...and UI duration for reemployment wages
 Nekoei, Weber (2017) Card, Chetty, Weber (2007)
- Direct Sanction Effect on Exit from unemployment in most studies (typically northern EU)

 Abbring & Van Den Berg* (2003) Boockmann, Thomsen, Walter (2014) Arni, Lalive, van Ours (2013), van der Klaauw & van Ours (2011) Boone, Sadrieh, van Ours (2009), Lalive, Zweimueller, van Ours (2005) Lombardi (2019)*
- ...and inactivity Petrongolo (2009)
- some evidence local average sanction rates also matter Lombardi, 2019

Existing Literature and This Work

- A UI system matters for eqm job characteristics, match quality/suitability to skills:

 Acemoglu (2001); Acemoglu and Shimer (1999, 2000); and Marimon and Zilibotti (1999).
- ...and UI duration for reemployment wages
 Nekoei, Weber (2017) Card, Chetty, Weber (2007)
- Direct Sanction Effect on Exit from unemployment in most studies (typically northern EU)

 Abbring & Van Den Berg* (2003) Boockmann, Thomsen, Walter (2014) Arni, Lalive, van Ours (2013), van der Klaauw & van Ours (2011) Boone, Sadrieh, van Ours (2009), Lalive, Zweimueller, van Ours (2005) Lombardi (2019)*
- ...and inactivity Petrongolo (2009)
- some evidence local average sanction rates also matter Lombardi, 2019

To differentiate my work:

- focus on indirect effect
- approach identification from a new longitudinal angle (DID vs "timing of events")

UK unemployment insurance system

Institutional Details

Unemployment Insurance in UK

search not duration or contribution contingent

Possible Reasons for a sanction:

- Failure to attend advisor meeting / work program
- Unavailable to work
- Ineligible search effort
- Refusing work, voluntarily leaving work
- Dismissal for misconduct

Features of UI/sanctions:

- sanction = UI payments stopped, typically for 4 weeks.
- About 70 GBP/week (80 EUR) , flat over time in real terms.
- Referal from jobcentre caseworker, imposed or cancelled by separate decision maker

Job Displacement, Earnings Losses, and Sanction Threat

Earning losses due to job displacement

Displacement event study regression:

- Staggered Diff-in-Diff (job loss in different years)
- stacking estimator of Cengiz et al (QJE,2019), combines many 2×2 diff-in-diffs
- makes clean comparisons of displaced vs not-yet-displaced / i.e. is stagger-robust

$$y_{ict}(r) - y_{ict}(-1) = \lambda_t + \sum_{r=-7}^{7} \alpha_r \mathbb{1}_{\{r\}} + \sum_{r=-7}^{7} \beta_r \left(\mathbb{1}_{\{r\}} \times displaced in year c_{ic} \right) + \varepsilon_{it}$$
 (1)

- outcome: earnings
- normalised to r = -1 in relative event time

stacking regression

Figure 1: Earnings Losses from Job Loss

Sample: Ever-displaced only. Treated: lose job in year *t*, control: not-yet-treated by *t*. Excludes zero earnings. Including zeroes leads to approx -4opct.

Figure 2: Earnings Losses by high/low sanction threat in early unemployment

High sanction: average sanction rate in first 3 months of spell above/below average

Figure 3: Triple-Differences Estimates comparing displacements with high vs low sanctioning

less conservative sample restriction: employed in r = -1 only. **Employed at time of survey**

UK Sanctions Regime and Reform

Effects of Sanction Reforms:

- changes to minimum sanctions
- large increases in sanctions-per-unemployed estimated +40% of baseline
- heterogeneity in response to reform across districts

Sources of Variation:

- degree of job centre discretion/autonomy
- use of sanction/exit targets

National Audit Office: "The NAO concludes it is likely that management focus and local work coach discretion have had a substantial influence on whether or not people are sanctioned (...) heterogeneity [in sanction rates across areas] not fully explained by jobseeker characteristics"

▶ minimum sanctions

Reform Effect on Sanction Intensity

Figure 4: Sanctioning Rates (%, pre vs post)

$$\mathbf{S}_{gt} = rac{\mathit{number of sanctions issued}_{gt}}{\mathit{number of UI claimants}_{gt}}$$

Defining treatment groups:

- approx movers v stayers
- very similar levels in t
- Treated: upper 25% in t+1
- Control: lower 25% in t+1
- ullet very correlated with changes (t,t+1)

Identifying Variation

Figure 5: sanctioning rate (%)

- Treatment defined in data-driven way
- Threat: local shocks drive policy actions
- examine other variables to look for shocks
- distributions in groups

Figure 6: Equilibrium Labour Market Conditions

District Trends

Figure 7: District-level Output (Real GVA)

*excludes Westminster and City of London due to high business concentration

Figure 8: District-Industry Output Shares ($GVA_{ind,dist,year}/GVA_{dist,year}$)

Datasets

1. Working Life Histories extracted from UKHLS ("Understanding Society")

- longitudinal panel follows 40,000 households from 2009
- monthly history of labour market activity
- annual: income, hours, occupation, transfers, commute time, search effort
- (+) can potentially see items not tracked in admin data
- (-) loss of precision of exact month of transitions

Sample:

- 60,000 person-months in unemployment,
- 2009m1-2015m12
- restricted to ages 18-64
- median unemployment duration 9m, mean 12m, 68% below 1y
- 2. District-level variables and National macro variables sanction information etc.
- \rightarrow Matched assuming no district changes between waves, can't see any very short-term moves.

Economic Activity in UKHLS

Activity state by month:

- "Which best describes your current situation?"
 - Self-employed
 - In paid employment
 - Unemployed
 - Retired
 - On maternity leave
 - Caring for family/home
 - FT student
 - LT sick. disabled
 - Gov training scheme
 - Unpaid worker in family business
 - Apprenticeship
 - Something else
- transitions map well to "event studies" and national statistics (LFS)

Empirical Strategy

Difference-in-differences design

 use changes in controls to infer changes that would have happened in treatment group, absent treatment

Identifying variation in the data

- exploit heterogeneity in intensity responses to common reform
- T,C selected in a data-driven way

Identifying assumptions

A1. No Spillovers

- neither across space nor through time
- outcome depends only on own contemporaneous treatment status

A2. Common Trends.

- Absent treatment, Treated and Controls would have followed the same changes in outcomes
- DiD can tolerate a degree of endogeneous treatment
- can't handle contemporaneous reforms or asymmetric shocks

(A1+A2+panel data): ATT/average treatment effect on the treated is identified

Addressing Potential Threats to Identification

Local idiosyncratic shocks (reverse causality)

- Pre-trends cannot guarantee <u>local shocks in 2012</u> didnt drive policy response
- Test economic conditions for diverging outcomes

Migration driven by policy

- mixing: high to low unemployment, T-C gap closes, biased towards zero
- **polarising**: high to higher S, low to lower S, estimates biased away from zero

Spillovers across space

- weekly jobseeker-advisor meetings, will be updated on current, local sanctioning rate
- T-C gap would close, estimates biased towards zero (again, if mixing spillovers)
- high degree of clustering of T/C poses a problem

Estimating Equation

Canonical 2x2 simultaneous-reform Difference-in-differences:

$$\mathbb{1}\{exit\}_{igt} = \overbrace{\lambda_t + \gamma_g + \theta_{T(i,t)}}^{common trends plus duration} + \underbrace{\sum_{\ell=2009}^{2015} \boldsymbol{\beta}_{\ell} \times (\mathbb{1}\{t=\ell\} \cdot \text{Treated District}_g) + u_{igt}}_{placebo \ effects/treatment \ effects}$$
 (2)

- $\theta_{T(i,t)}$ duration-of-spell effects
- two-stage estimation. $(\lambda, \gamma, \theta)$ using untreatd (controls, pre-reform treated) obs (Gardner,'22)
- if treatment affects exit, it necessarily changes duration-of-spell

Figure 9: Difference-in-Differences Estimates

Figure 10: Exit to retirement

(a) Exit to retirement (% of baseline rate)

Post-reform spike one-and-done effect. Very low precision.

Figure 11: Reemployment Stability

30

¹since start of sample

Estimated ATTs

Table 1: Regression Results: ATT estimates

	Exit rate			Unemp.	Re-employ. duration			Sanction
	total	employed	retired	N _u	>12m	>24m	>36m	
β (ppts)	0.00860*** (3.03)	0.00796*** (2.91)	0.00455 (0.84)	0.112*** (6.65)	-0.0396*** (-2.85)	-0.0410** (-2.45)	-0.0631*** (-3.70)	0.0170*** (14.92)
β (%)	0.191*** (3.03)	0.205*** (2.91)	0.150 (0.84)	0.101*** (6.65)	-0.0504*** (-2.85)	-0.0583** (-2.45)	-0.0952*** (-3.70)	0.418*** (14.92)
NT	59070	59070	12696	59070	59070	59070	59070	58672

Back of Envelope Calculation: Direct and Indirect effects of Sanctions

- worst case scenario: +20% is total effect.
- assume: average sanction duration is 1 month
- incidence (flows) = prevalence (stock) of sanctions
- direct effect estimate +100%
- policy induces +4ppts in prevalence

Total effect =
$$(\Delta prevalence \times hazard estimate from lit) + Indirect Effect$$
 (3)
Indirect Effect = $0.20 - 0.04 \times 1$

 $direct \ \textit{Effect} = 0.20 - 0.04 \times 1 \tag{4}$

Conclusion

Main takeaways:

- Sanctioning policy acts on a wide set of job-seekers, not just the directly punished.
- Effects go beyond exit rates.
- fast exits, less stable jobs with more unemployment risk
 - \Rightarrow optimal UI design with endogeneous unemployment risk
- implies a intensive-extensive margin tradeoff: duration of spell vs number of spells
 (⇒ welfare implications)

Conclusion

Main takeaways:

- Sanctioning policy acts on a wide set of job-seekers, not just the directly punished.
- Effects go beyond exit rates.
- fast exits, less stable jobs with more unemployment risk
 ⇒ optimal UI design with endogeneous unemployment risk
- implies a intensive-extensive margin tradeoff: duration of spell vs number of spells
 (⇒ welfare implications)

Thanks! thomas.walsh@eui.eu

Mapping Sanction Rates, 2010/12 vs. 2012/14

Mapping Sanction Rates, 2010/12 vs. 2012/14

Mapping Sanction Rates, 2010/12 vs. 2012/14; London

Distribution on Sanction Rates within Group

Intensive Margin of Sanction Reform

Infraction Level	Example Reasons	Sanction in weeks		
	-	Before	After	
Lower	Failure to attend advisor meeting Failure to attend work program	1	4,13	
Intermediate	Unavailable to work Ineligible search effort	0	4, 13	
Higher	Refusing, voluntarily leaving work Dismissal for misconduct	1-26	4, 26, 156	

Table 2: Structure of Sanctions

Identifying assumptions

Potential outcomes: $Y_{it}(\mathbf{D})$, where **D**

A1. No Spillovers neither across space nor through time

$$Y_{it}(\textbf{D}) = Y_{it}(D_{gt} \in \{\emptyset, 1\})$$

A2. Common Trends.

Absent treatment, Treated and Controls would have followed the same **changes** in outcomes

$$E\big[Y_{it+1}(\emptyset) - Y_{it}(\emptyset)|D_i = 1\big] = E\big[Y_{it+1}(\emptyset) - Y_{it}(\emptyset)|D_i = \emptyset\big]$$

(A1+A2+panel data): ATT/average treatment effect on the treated is identified

$$E[Y_{it+1}(1) - Y_{it+1}(0)|D_i = 1]$$

Stacking Estimator

- Suppose treatment in each t is a different intervention (losing a job in 1998 \neq in 2002)
- combine many small $2 \times 2s$

$$D_{98}(g,t) = \begin{pmatrix} t & 97 & 98 & 99 & 00 & 01 & 02 \\ g_{97} & 1 & 1 & 1 & 1 & 1 & 1 \\ g_{98} & 0 & 1 & 1 & 1 & 1 & 1 \\ g_{99} & 0 & 0 & 1 & 1 & 1 & 1 \\ g_{00} & 0 & 0 & 0 & 1 & 1 \\ g_{01} & 0 & 0 & 0 & 0 & 1 \\ g_{02} & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \qquad D_{00}(g,t) = \begin{pmatrix} t \\ g_{97} \\ g_{98} \\ g_{99} \\ g_{00} \\ g_{01} \\ g_{02} \\ g_{02} \end{pmatrix}$$

$D_{ m oo}(g,t)=$	$\int t$	97	98	99	00	01	02
	<i>g</i> ₉₇	1	1	1	1	1	1
	g_{98}	0	1	1	1	1	1
	g 99	0	0	1	1		
	g_{00}	0	0	0	1		
	g_{01}	0	0	0	0	1	
	$\backslash g_{\scriptscriptstyle 02}$	0	0	0	0	0	1
							(5)

- Can drop never-treated (NT)
- Top row doesn't have a control (always-treated, AT)
- Last row also left out (last-treated, LT)

d back

Aligned on Event Time

Aligning and averaging the 2x2DiDs

$$D(g,t) = \begin{pmatrix} r & -4 & -3 & -2 & -1 & = 0 & +1 & +2 & +3 & +4 \\ g_{98} & & & 0 & 1 & 1 & 1 & 1 & 1 \\ g_{99} & & & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ g_{00} & & 0 & 0 & 0 & 1 & 1 & 1 & 1 & \times \\ g_{01} & 0 & 0 & 0 & 0 & 1 & 1 & \times & \times \end{pmatrix}$$

- R = 8 relative periods from T = 6
- can see why event-studies have widening error bands

∢ back

(6)

Understanding Society vs Labour Force Survey

Figure 12: Transition Rates

5 5.5

3.5

6

Applied Macroeconomics / Labour / Monetary and Fiscal Policy / Firm Dynamics / Econometrics

1. "Job Search and the Threat of Unemployment Benefit Sanctions"

job search and unemployment / job quality / policy effectiveness

2. "Sectoral Volatility and the Investment Channel of Monetary Policy"

dispesion of productivity shocks / policy effectiveness

3. "Government Spending Multipliers in Firm-level Production Networks"

distribution of procurement / policy effectiveness / budget efficiency

4. "Making the Cut: Close Elections and Local Welfare Policies"

political origins of policy asymmetry in UK

Governance of Institutions and Systems

- Institutions, Incentives and Welfare
- Public Finance
- Political Economy

Innovation and Productivity

(Social Determinants of Health)

• information, taxes and incentives)