This material will be published by Cambridge University Press as Bandit Algorithms by Tor Lattimore and Csaba Szepesvari. This pre-publication version is free to view and download for personal use only. Not for re-distribution, sale, or use in derivative works. © Tor Lattimore and Csaba Szepesvari 2017.

The latest version is available at http://banditalgs.com. Feedback on any aspect is very welcome: banditalgs@gmail.com

1 Introduction

Bandit problems were introduced by William R. Thompson in an article published in 1933 in Biometrika. Thompson was interested in medical trials and the cruelty of running a trial blindly, without adapting the treatment allocations on the fly as the drug appears more or less effective [Thompson, 1933].

The name comes from the 1950s when Frederick Mosteller and Robert Bush decided to study animal learning and ran trials on mice and then on humans [Bush and Mosteller, 1953]. The mice faced the dilemma of choosing to go left or right after starting in the bottom of a T-shaped maze, not knowing each time at which end they will find food. To study a similar learning setting in humans, a 'two-armed bandit' machine was commissioned where humans could choose to pull either the left or the right arm of the

Figure 1.1 Mouse learning a T-maze.

machine, each giving a random payoff with the distribution of payoffs for each arm unknown to the human player. The machine was called a 'two-armed bandit' in homage to the one-armed bandit, an old-fashioned name for a lever operated slot machine ('bandit' because they steal your money).

There are many reasons to care about bandit problems. Decision making with uncertainty is a challenge we all face and bandits are the simplest example of this demon. Bandit problems also have practical applications. We already mentioned clinical trial design, which researchers have used to motivate their work for eighty years. We can't point to an example where bandits have actually been used in clinical trials, but adaptive experimental design is gaining popularity and is actively encouraged by the US Food and Drug Administration with the justification that not doing so can lead to the withholding of effective drugs until long after a positive effect has been established.

While clinical trials are an important application for the future, there are applications where bandit algorithms are already in use. Major tech companies use bandit algorithms for configuring web interfaces, where applications would include news recommendation, dynamic pricing and ad placement. As of writing of the book, Google analytics even offers running multi-armed bandit based

service for their users. A bandit algorithm plays a role in Monte-Carlo Tree Search, an algorithm made famous by the recent success of AlphaGo [Kocsis and Szepesvári, 2006, Silver et al., 2016].

Finally, the mathematical formulation of bandit problems leads to a rich structure with connections to other branches of mathematics. In writing this book (and previous papers) we have read books on information theory, convex analysis/optimization, Brownian motion, probability theory, concentration analysis, statistics, differential geometry, information theory, Markov chains, computational complexity and more. What fun!

A combination of all these factors has lead to an enormous growth in research over the last two decades. Google scholar reports less than 1000, then 2700, and 7000 papers when searching for the phrase bandit algorithm for the periods of 2001–2005, 2006–2010, and 2011–2015 respectively and the trend just seems to have strengthened since then with 5600 papers coming up for the period of 2016 to the middle of 2018. Even if these numbers are somewhat overblown, they are indicative of a rapidly growing field. This could be a fashion or maybe there is something interesting happening here? We think that the latter is true.

Imagine you are playing a two-armed bandit machine and you already pulled each lever 5 times, resulting in the following payoffs (in dollars):

> <u>Left arm</u>: 0, 10, 0, 0, 10 <u>Right arm</u>: 10, 0, 0, 0

The left arm appears to be doing slightly better. The average payoff for this arm is 4 dollars per round, while the average for the right arm is only 2 dollars per round. Let's say, you have 20 more trials (pulls) altogether. How would you pull the arms in the remaining trials? Will you

Figure 1.2
Two-armed bandit

keep pulling the left arm, ignoring the right? Or would you attribute the poor performance of the right arm to bad luck and try it a few more times? How many more times? This illustrates one of the main interests in bandit problems. They capture the fundamental dilemma a learner faces when choosing between uncertain options. Should one explore an option that looks inferior or exploit by going with the option that looks best currently? Finding the right balance between exploration and exploitation is the heart of all bandit problems.

1.1 The language of bandits

A bandit problem is a sequential game between a **learner** and an **environment**. The game is played over n rounds where $n \in \mathbb{N}^+$ is a positive natural number called the **horizon**. In each round the learner first chooses an action A_t from a given set \mathcal{A} and the environment then reveals a reward $X_t \in \mathbb{R}$.

Of course the learner cannot peek into the future when choosing their

actions, which means that A_t should only depend on the **history** $H_{t-1} = (A_1, X_1, \ldots, A_{t-1}, X_{t-1})$. A **policy** is a mapping from histories to actions. An environment is a mapping from history sequences ending in actions to rewards. Both the learner and the environment may randomize their decisions, but this detail is not so important for now. The most common objective of the learner is to choose actions that lead to the largest possible cumulative reward over all n rounds, which is $\sum_{t=1}^{n} X_t$.

The fundamental challenge in bandit problems is that the environment is unknown to the learner. All the learner knows is that the true environment lies in some set \mathcal{E} called the **environment class**. Most of this book is about designing policies for different kinds of environment classes, though in some cases the framework is extended to include side observations as well as actions and rewards.

The next question is how to evaluate a learner? We discuss several performance measures throughout the book, but most of our efforts are devoted to understanding the **regret**. There are several ways to define this quantity, so to avoid getting bogged down in details we start with a somewhat informal definition.

DEFINITION 1.1 The regret of the learner relative to a policy π is the difference between the total expected reward using policy π for n rounds and the total expected reward collected by the learner over n rounds. The regret relative to a set of policies Π is the maximum regret relative to any policy $\pi \in \Pi$.

We usually measure the regret relative to a set of policies Π that is large enough to include the optimal policy for all environments in \mathcal{E} . In this case the regret measures the loss suffered by the learner due to its lack of knowledge of the true environment. The set Π is often called the **competitor class**. Another way of saying all this is that the regret measures the performance of the learner relative to the best policy in the competitor class.

EXAMPLE 1.1 Suppose the action-set is $\mathcal{A} = \{1, 2, \dots, K\}$. An environment is called a **stochastic Bernoulli bandit** if the reward $X_t \in \{0, 1\}$ is binary-valued and there exists a vector $\mu \in [0, 1]^K$ such that the probability that $X_t = 1$ given the learner chose action $A_t = a$ is μ_a . The class of stochastic Bernoulli bandits is the set of all such bandits, which are characterized by their mean vectors. If you knew the mean vector associated with the environment, then the optimal policy is to play the fixed action $a^* = \operatorname{argmax}_{a \in \mathcal{A}} \mu_a$. This means that for this problem the natural competitor class is the set of K constant polices $\Pi = \{\pi_1, \dots, \pi_K\}$ where π_k chooses action k in every round. The regret over n rounds becomes

$$R_n = n \max_{a \in \mathcal{A}} \mu_a - \mathbb{E}\left[\sum_{t=1}^n X_t\right],$$

where the expectation is with respect to the randomness in the environment and

policy. The first term in this expression is the maximum expected reward using any policy while the second term is the expected reward collected by the learner.

For a fixed policy and competitor class the regret depends on the environment. The environments where the regret is large are those where the learner is behaving worse. Of course the ideal case is that the regret be small for all environments. The **worst-case regret** is the maximum regret over all possible environments.

One of the core questions in the study of bandits is to understand the growth rate of the regret as n grows. A good learner achieves sublinear regret. Letting R_n denote the regret over n rounds, this means that $R_n = o(n)$ or equivalently that $\lim_{n\to\infty} R_n/n = 0$. Of course one can ask for more. Under what circumstances is $R_n = O(\sqrt{n})$ or $R_n = O(\log(n))$? And what are the leading constants? How does the regret depend on the specific environment in which the learner finds themselves? We will discover eventually that for the environment class in Example 1.1 the worst case regret for any policy is at least $\Omega(\sqrt{n})$ and that there exist policies for which $R_n = O(\sqrt{n})$.

A large environment class corresponds to less knowledge by the learner. A large competitor class means the regret is a more demanding criteria. Some care is sometimes required to choose these sets appropriately so that (a) guarantees on the regret are meaningful and (b) there exist policies that make the regret small.

The framework is general enough to model almost anything by using a rich enough environment class. This cannot be bad, but with too much generality it becomes impossible to say much. For this reason we usually restrict our attention to certain kinds of environment classes and competitor classes.

A simple problem setting is that of **stochastic stationary bandits**. In this case the environment is restricted to generate the reward in response to each action from a distribution that is specific to that action and independent of the previous action choices and rewards. The environment class in Example 1.1 satisfies these conditions, but there are many alternatives. For example, the rewards could follow a Gaussian distribution rather than Bernoulli. This relatively mild difference does not change too much. A more drastic change is to assume the action-set \mathcal{A} is a subset of \mathbb{R}^d and that the mean reward for choosing some action $a \in \mathcal{A}$ follows a linear model, $X_t = \langle a, \theta \rangle + \eta_t$ for $\theta \in \mathbb{R}^d$ and η_t a standard Gaussian. The unknown quantity in this case is θ and the environment class corresponds to its possible values ($\mathcal{E} = \mathbb{R}^d$).

For some applications the assumption that the rewards are stochastic and stationary may be too restrictive. The world mostly appears deterministic, even if it is hard to predict and often chaotic looking. Of course, stochasticity has been enormously successful to explain patterns in data and this may be sufficient reason to keep it as the modeling assumption. But what if the stochastic assumptions fail to hold? What if they are violated for a single round? Or just for one action,

at some rounds? Will our best algorithms suddenly perform poorly? Or will the algorithms developed be robust to smaller or larger deviations from the modeling assumptions?

An extreme idea is to drop all assumptions on how the rewards are generated, except that they are chosen without knowledge of the learner's actions and lie in a bounded set. If these are the only assumptions we get what is called the setting of **adversarial bandits**. The trick to say something meaningful in this setting is to restrict the competitor class. The learner is not expected to find the best sequence of actions, which may be like finding a needle in a haystack. Instead, we usually choose Π to be the set of constant policies and demand that the learner is not much worse than any of these. By defining the regret in this way we move the stationarity assumption into the definition of regret rather than the environment.

Of course there are all shades of gray between these two extremes. Sometimes we consider the case where the rewards are stochastic, but not stationary. Or one may analyze the robustness of an algorithm for stochastic bandits to small adversarial perturbations. Another idea is to isolate exactly which properties of the stochastic assumption are really exploited by a policy designed for stochastic bandits. This kind of inverse analysis can help explain the strong performance of policies when facing environments that clearly violate the assumptions they were designed for.

1.1.1 Why the regret?

One might wonder why bother with the regret at all? If all we really care about is the cumulative rewards, perhaps we should just state our theorems in terms of the rewards. The first observation is that nothing is lost by considering the regret, which simply translates the expected cumulative reward by some environment-dependent constant. There are a few reasons why the regret is useful. One is that it supplies a degree of normalization because it is invariant under translation of rewards. Another benefit is the interpretation as the price paid by the learner for not knowing the true environment. Be warned, however, that this only holds if the competitor class includes the optimal policy.

1.1.2 Other learning objectives

We already mentioned that the regret can be defined in several ways, each capturing slightly different aspects of the behavior of a policy. Because the regret depends on the environment it becomes a multi-objective criteria. One way to convert a multi-objective criteria into a single number is to take averages. This corresponds to the Bayesian viewpoint where the objective is to minimize the average cumulative regret with respect to a prior on the environment class.

Maximizing the sum of rewards is not always the objective. Sometimes the learner just wants to find a near-optimal policy after n rounds, but the actual

rewards accumulated over those rounds are unimportant. We will see examples of this shortly.

1.1.3 Limitations of the bandit framework

The presentation in this section makes it seem like bandits can model almost anything. One of the distinguishing features of all bandit problems studied in this book is that the learner never needs to plan for the future. More precisely, we will invariably make the assumption that the learner's choices and rewards tomorrow are not affected by their decisions today. Problems that require this kind of long-term planning fall into the realm of **reinforcement learning**, which is the topic of the final chapter. Assuming away the need to plan *is* limiting, but as we shall see, it buys you a great deal in terms of simplicity and fits with many applications.

1.2 Applications

After this short preview, and as an appetizer before the hard work, we briefly describe the formalizations of a variety of applications.

A/B testing

The designers of a company website are trying to decide whether the 'buy it now' button should be placed at the top of the product page or the bottom. In the old days they would commit to a trial of each version, where splitting incoming users into two groups of ten thousand. Each group is shown a different version of the site and a statistician examines the data at the end to decide which version is better. One problem with this approach is the non-adaptivity of the test. For example, if the effect size is large, then the trial could be stopped early.

One way to apply bandits to this problem is to view the two versions of the site as actions. Each time t a user makes a request, a bandit algorithm is used to choose an action $A_t \in \mathcal{A} = \{\text{SITEA}, \text{SITEB}\}$ and the reward is $X_t = 1$ if the user purchased the product and $X_t = 0$ otherwise.

In traditional A/B testing the objective of the statistician is to decide which website is better. When using a bandit algorithm there is no need to end the trial. The algorithm automatically decides when one version of the site should be shown more often than another. Even if the real objective is to identify the best site, then adaptivity or early stopping can be added to the A/B process using techniques from bandit theory. While this is not the focus of this book, some of the basic ideas are explained in Chapter 33.

Advert placement

In advert placement each round corresponds to a user visiting a website and the set of actions \mathcal{A} is the set of all available adverts. One could treat this as a standard multi-armed bandit problem, where in each round a policy chooses $A_t \in \mathcal{A}$ and the reward is $X_t = 1$ if the user clicked on the advert and $X_t = 0$ otherwise. This might work for specialized websites where the adverts are all likely to be appropriate. But for a company like Amazon the advertising should be targeted. If I bought rock climbing shoes recently then I'm much more likely to buy a harness than another user. Clearly an algorithm should take this into account.

The standard way to incorporate this additional knowledge is to use the information about the user as **context**. In its simplest formulation this might mean clustering users and implementing a separate bandit algorithm for each cluster. Much of this book is devoted to the question of how to use side information to improve the performance of a learner.

This is a good place to emphasize that the world is messy. The set of available adverts is changing from round to round. The feedback from the user can be delayed for many rounds. Finally, the real objective is rarely just to maximize clicks. Other metrics such as user satisfaction and fairness are important too. These are the kinds of issues that make implementing bandit algorithms in the real world a difficult task. This book will not address all these issues in detail. Instead we focus on the foundations and hope this provides enough understanding that you can invent solutions for whatever peculiar challenges arise in your problem.

Recommendation services

Netflix has to decide which movies to place most prominently in your 'Browse' page. Like in advert placement, users arrive at the page sequentially and the reward can be measured as some function of (a) whether or not you watched a movie and (b) whether or not you rated it positively. There are many challenges. First of all, Netflix shows a whole list of movies, so the set of possible actions is combinatorially large. Second, each user watches relatively few movies and individual users are different. This suggests approaches such as low rank matrix factorization (a popular approach in 'collaborative filtering'). But notice this is not an offline problem. The learning algorithm gets to choose what users see and this affects the data. If the users are never recommended the AlphaGo movie, then few users will watch it and the amount of data about this film will be scarce.

Network routing

Another problem with an interesting structure is network routing, where the learner tries to direct internet traffic through the shortest path on a network. In each round the learner receives the start/end destinations for a packet of data. The set of actions is the set of all paths starting and ending at the appropriate points on some known graph. The feedback in this case is the time it takes for the packet to be received at its destination and the reward is the negation of

this value. Again the action set is combinatorially large with even relatively small graphs possessing an enormous number of paths. The routing problem can obviously applied to more physical networks such as transportation systems used in operations research.

Dynamic pricing

In dynamic pricing a company is trying to automatically optimize the price of some product. Users arrive sequentially and the learner sets the price. The user will only purchase the product if the price is lower than their valuation. What makes this problem interesting is (a) the learner never actually observes the valuation of the product, only the binary signal that the price was too low/too high and (b) there is a monotonicity structure in the pricing. If a user purchased an item priced at \$10 then they would surely purchase it for \$5, but whether or not it would sell when priced at \$11 is uncertain. Also, the set of possible actions is close to continuous.

Waiting problems

Every day you travel to work, either by bus or by walking. Once you get on the bus the trip only takes five minutes, but the timetable is unreliable and the bus arrival time unknown and stochastic. Sometimes the bus doesn't come at all. Walking, on the other hand, takes thirty minutes along a beautiful river away from the road. The problem is to devise a policy for choosing how long to wait at the bus stop before giving up and walking. Walk too soon and you miss the bus and gain little information. But waiting too long also comes at a price.

While waiting for a bus is not a problem we all face, there are other applications of this setting. For example, deciding the amount of inactivity required before putting a hard drive into sleep mode or powering off a car engine at traffic lights. The statistical part of the waiting problem concerns estimating the cumulative distribution function of the bus arrival times from data. The twist is that the data is censored on the days you chose to walk before the bus arrived, which is a problem analyzed in the subfield of statistics called survival analysis. The interplay between the statistical estimation problem and the challenge of balancing exploration and exploitation is what makes this problem interesting.

Resource allocation

High speed cache memory is still a scarce resource for computer processors and the consequence in terms of running time for cache misses is quite extreme. Many algorithms are optimized to match the cache process, for example by carefully choosing the order of dimensions in arrays or using cache-oblivious trees. A less-explored avenue of improvement is to try and learn the optimal allocation of cache resources between processes. This can be modeled by a bandit problem where the set of actions is the set of allocations and the reward is the negation of the number of cache misses. For this problem the learner might reasonably make

a monotonicity assumption in the sense that increasing the allocation for one process should decrease the number of cache misses.

Tree search

The UCT algorithm is a tree search algorithm commonly used in perfect-information game playing algorithms. The idea is to iteratively build a search tree where in each iteration the algorithm takes three steps: (1) Chooses a path from the root to a leaf. (2) Expands the leaf (if possible). (3) Performs a Monte-Carlo roll-out to the end of the game. The contribution of a bandit algorithm is in selecting the path from the root to the leaves. At each node in the tree a bandit algorithm is used to select the child based on the series of rewards observed through that node so far. The resulting algorithm can be analyzed theoretically, but more importantly has demonstrated outstanding empirical performance in game playing problems.

1.3 Bibliographic remarks

We already mentioned that the first paper on bandits was by Thompson [1933]. Much credit for the popularization of the field must go to famous mathematician and statistician, Herbert Robbins, whose name appears on many of the works that we reference, with the earliest being: [Robbins, 1952]. Another early pioneer was Herman Chernoff, who wrote papers with titles like "Sequential decisions in the control of a spaceship" [Bather and Chernoff, 1967].

Besides these seminal papers, there are already a number of books on bandits that may serve as useful additional reading. The most recent (and also most related) is by Bubeck and Cesa-Bianchi [2012] and is freely available online. This is an excellent book and is warmly recommended. The main difference between their book and ours is that (a) we have the benefit of six years additional research in a fast moving field and (b) our longer page limit permits more depth. Another relatively recent book is "Prediction, Learning and Games" by Cesa-Bianchi and Lugosi [2006]. This is a wonderful book, and quite comprehensive. But its scope is 'all of' online learning, which is so broad that bandits are not covered in great depth. We should mention there is a recent book on bandits by Slivkins [2018] that is currently in progress and freely available on-line. Conveniently it covers some topics not covered in this book (notably Lipschitz bandits and bandits with knapsacks). The reverse is also true, which should not be surprising since our book is currently 400 pages longer. There are also three books on sequential design and multi-armed bandits in the Bayesian setting, which we will address only a little. Both are based on relatively old material, but are still useful references for this line of work and are well worth reading [Chernoff, 1959, Berry and Fristedt, 1985, Gittins et al., 2011].

Without trying to be exhaustive, here are a few articles applying bandit algorithms to applications. The papers themselves will contain more useful pointers to the vast literature. Le et al. [2014] applies bandits to wireless monitoring where the problem is challenging due to the large action space. Lei et al. [2017] design specialized contextual bandit algorithms for just-in-time adaptive interventions in mobile health: In the typical application the user is prompted with the intention of inducing a long-term beneficial behavioral change. See also the article by Greenewald et al. [2017]. Rafferty et al. [2018] applies Thompson sampling to educational software and notes the tradeoff between knowledge and reward. That bandit algorithms have not been used in clinical trials was explicitly noted by Villar et al. [2015]. Microsoft offers a 'Decision Service' that uses bandit algorithms to automate decision-making [Agarwal et al., 2016. We already mentioned that bandit algorithms are a cornerstone of Monte-Carlo Tree Search [Kocsis and Szepesvári, 2006]. Muller et al. [2017] uses bandits for estimating the H_{∞} -gain of linear systems; the problem here is to excite a linear control system by designing clever inputs so that the magnitude of the highest frequency amplification in the input is estimated. Knowing the H_{∞} -gain is helpful for assessing the robustness of a control loop.