Sales Prediction:

The aim to Build a model which predicts sales based on the Money spent on different platfoms such as TV, Radio and Newspaper for marketing

```
# Importing the Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
#Reading the dataset
df=pd.read_csv("advertising.csv")
df.head()
```

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9

• Data Pre-Processing

1) Checking for missing values

Conclusion:-The dataset Does not have Missing values

2) Checking the Duplicate Values

```
# Checking the Duplicate Values
df.duplicated().any()
```

np.False_

Conclusion:- There are no duplicate rows present in the dataset

3) Checking the outlier

Conclusion:- There are not Extreme Values Present in the dataset

Exploratory Data Analysis

1) Distribution of the target variable

Conclusion :- It is Normally Distributed

2) How Sales are related with each other

Conclusion :- TV is strongly ,positively, linearly corelated with the target variable.

Radio and Newspaper are seems to uncorrelated

3) Heatmap

Conclusion: TV seems to be most correlated with sales as 0.9 very close to 1

Model Building

1)Simple Linear Regression

```
# Model Building
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3,random_state=1)
```

2) Setting the values for X and Y

Coeffcient: [0.05566076]

```
x=df[['TV']]
y=df['Sales']

from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(xtrain,ytrain)
ypred=lr.predict(xtest)

# Priniting the model Coefficients
print("Intercept",lr.intercept_)
print("Coeffcient:",lr.coef_)
Intercept 6.904032471762278
```

3) Line of Best Fit

```
plt.scatter(xtrain,ytrain,color='Blue')
plt.plot(xtrain,lr.predict(xtrain),color='Red')
```



```
# Predict for any Value
slr_diff=pd.DataFrame({'Actual Value':ytest,'predicated Value' :ypred})
```

+ Code + Markdown

1 slr_diff

	Actual Value	predicated Value
58	23.8	18.637321
40	16.6	18.175337
34	11.9	12.230768
102	19.8	22.500178
184	17.6	21.030734
198	25.5	22.689425
95	16.9	15.993435
4	17.9	16.967499
29	10.5	10.833682
168	17.1	18.893361
171	17.5	16.060228
18	11.3	10.755757
11	17.4	18.854398
89	16.7	13.015584
110	18.4	19.472233
118	15.9	13.900590
159	12.9	14.234555
35	17.8	23.084616
136	9.5	8.328948
59	18.4	18.631755
51	10.7	12.492373
16	12.5	10.677832
44	8.5	8.301118

from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score

```
mae=mean_absolute_error(ytest,ypred)
mse=mean_squared_error(ytest,ypred)
rmse=np.sqrt(mse) # root mean squared error
r2score=r2_score(ytest,ypred)
print(f'MAE:{mae}\nMSE:{mse}\nRMSE:{rmse}\nR2_Score:{r2score}')
```

MAE:1.86239036505223 MSE:5.143558863773587 RMSE:2.267941547697733 R2_Score:0.7984701565892568