Poznámky k předmětu Numerická lineární algebra I. (přednáška 12)

Michal Merta*

^{*}Katedra aplikované matematiky, VŠB-Technická univerzita Ostrava, e-mail: michal.merta@vsb.cz

1 Mocninná metoda pro hledání dominantního vlastního čísla

V následující kapitole budeme řešit částečný problém vlastních čísel (hledáme největší číslo v absolutní hodnotě).

Definice Buď $\lambda_1, \lambda_2, \dots, \lambda_n$ vlastní čísla čísla matice $A \in \mathbb{R}^{n \times n}$. Pak λ_1 nazveme dominantním vlastním číslem A, platí-li

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \ldots \ge |\lambda_n|$$
.

Vlastní vektor odpovídající dominantnímu vlastnímu číslu se nazývá dominantní vlastní vektor.

K nalezení dominantního vlastního čísla a vektoru můžeme použít mocninnou metodu. Její princip je jednoduchý:

- 1. Předpokládáme, že A má dominantní vlastní číslo.
- 2. Zvolíme nenulovou počáteční aproximaci \boldsymbol{x}^0 dominantního vlastního vektoru.
- 3. Vytvoříme posloupnost aproximací ve tvaru

Tato posloupnost při splnění určitých podmínek konverguje k dominantnímu vlastnímu vektoru.

Omezme se v následujícím textu na symetrické reálné matice ${\sf A}$. Ty mají n lineárně nezávislých vlastních vektorů a reálná vlastní čísla.

 ${\bf Věta}~{\bf Je-li}~{\bf \it x}$ vlastní vektor reálné symetrické matice ${\sf A},$ pak odpovídající vlastní číslo je dáno výrazem

$$\lambda = \frac{(\mathbf{A}\boldsymbol{x})^T \boldsymbol{x}}{\boldsymbol{x}^T \boldsymbol{x}}.\tag{1.1}$$

Důkaz

$$\frac{(\mathsf{A}\boldsymbol{x})^T\boldsymbol{x}}{\boldsymbol{x}^T\boldsymbol{x}} = \frac{(\lambda\boldsymbol{x})^T\boldsymbol{x}}{\boldsymbol{x}^T\boldsymbol{x}} = \lambda$$

Výraz (1.1) nazýváme Rayleighův kvocient.

Věta Buď $A \in \mathbb{R}^{n \times n}$ matice s n lineárně nezávislými vlastními vektory a dominantním vlastním číslem. Pak existuje nenulový vektor x^0 takový, že posloupnost

$$Ax^0, A^2x^0A^3x^0, \dots, A^kx^0, \dots$$

konverguje k násobku dominantního vlastního vektoru A.

Důkaz Předpokládejme, že pro vlastní čísla matice A platí $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \dots |\lambda_n|$. Odpovídající vlastní vektory $v_1, v_2, v_3, \dots, v_n$ jsou lineárně nezávislé a tvoří bázi \mathbb{R}^n . Zvolme vektor x^0 tak, aby koeficient c_1 v lineární kombinaci

$$\boldsymbol{x}^0 = c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \ldots + c_n \boldsymbol{v}_n$$

byl nenulový (pro $c_1=0$ nemusí metoda konvergovat). Přenásobme předchozí rovnost maticí A

$$\mathbf{A}\mathbf{x}^{0} = \mathbf{A}(c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} + \dots + c_{n}\mathbf{v}_{n})$$

$$= c_{1}\mathbf{A}\mathbf{v}_{1} + c_{2}\mathbf{A}\mathbf{v}_{2} + \dots + c_{n}\mathbf{A}\mathbf{v}_{n}$$

$$= c_{1}\lambda_{1}\mathbf{v}_{1} + c_{2}\lambda_{2}\mathbf{v}_{2} + \dots + c_{n}\lambda_{n}\mathbf{v}_{n}.$$

Odtud

$$A^{k} \boldsymbol{x}^{0} = c_{1} \lambda_{1}^{k} \boldsymbol{v}_{1} + c_{2} \lambda_{2}^{k} \boldsymbol{v}_{2} + \ldots + c_{n} \lambda_{n}^{k} \boldsymbol{v}_{n}$$

$$= \lambda_{1}^{k} \left(c_{1} \boldsymbol{v}_{1} + c_{2} \frac{\lambda_{2}^{k}}{\lambda_{1}^{k}} \boldsymbol{v}_{2} + \ldots + c_{n} \frac{\lambda_{n}^{k}}{\lambda_{1}^{k}} \boldsymbol{v}_{n} \right)$$

$$= \lambda_{1}^{k} \left(c_{1} \boldsymbol{v}_{1} + c_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} \boldsymbol{v}_{2} + \ldots + c_{n} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} \boldsymbol{v}_{n} \right).$$

Protože předpokládáme, že λ_1 je v absolutní hodnotě větší než všechna ostatní vlastní čísla, platí

$$\left| \frac{\lambda_2}{\lambda_1} \right| < 1, \dots, \left| \frac{\lambda_n}{\lambda_1} \right| < 1.$$

Pro $k\to\infty$ tedy výraz A^0x^0 konverguje k $\lambda_1^kc_1v_1,$ což je násobek dominantního vlastního vektoru. \square

Celý algoritmus je shrnut v následujícím výpisu

function Mocninna metoda (A, x^0)

$$q^0 = rac{oldsymbol{x}^0}{\|oldsymbol{x}^0\|}$$
 for $k=1,2,\ldots$ do $oldsymbol{x}^k = \mathsf{A}oldsymbol{q}^{k-1}$ $oldsymbol{q}^k = rac{oldsymbol{x}^k}{\|oldsymbol{x}^k\|}$ $\lambda = (oldsymbol{q}^k)^T \mathsf{A}oldsymbol{q}^k$ $\left(= rac{(oldsymbol{x}^k)^T \mathsf{A}oldsymbol{x}^k}{\|oldsymbol{x}^k\|^2} = rac{(oldsymbol{x}^k)^T \mathsf{A}oldsymbol{x}^k}{(oldsymbol{x}^k)^T oldsymbol{x}^k}
ight)$ end for

end function

Všimněte si, že z důvodu zachování numerické stability vektor v každé iteraci normujeme. V každé iteraci taktéž produkujeme odhad dominantního vlastního čísla pomocí Rayleighova kvocientu. Jednou z možností, jak zvolit ukončovací podmínku, je sledovat normu vektoru $\mathbf{A} \boldsymbol{q}^k - \lambda \boldsymbol{q}^k$. Ta by se měla blížit nule pro $k \to \infty$.

Poznámka Má-li A vlastní čísla $\lambda_1 > \lambda_2 \geq \ldots \geq \lambda_n$ a odpovídající vlastní vektory v_1, v_2, \ldots, v_n , jak vypadají vlastní čísla a vektory matice $A - \sigma I$, kde $\sigma \in \mathbb{R}$? Vyjděme z rovnosti

$$A\mathbf{v}_k = \lambda_k \mathbf{v}_k$$

a odečtěme od obou stran σ násobek vlastního vektoru v_k :

$$A \boldsymbol{v}_k - \sigma | \boldsymbol{v}_k = \lambda_k \boldsymbol{v}_k - \sigma \boldsymbol{v}_k.$$

Vytknutím získáme

$$(\mathsf{A} - \sigma \mathsf{I}) \boldsymbol{v}_k = (\lambda_k - \sigma) \boldsymbol{v}_k.$$

Vidíme tedy, že v_k je také vlastním vektorem matice $A - \sigma I$. Odpovídajícím vlastním číslem je $\lambda_k - \sigma$.

Tohoto poznatku lze využít k nalezení nejmenšího vlastního čísla λ_n symetrické pozitivně definitní matice A, pokud známe její největší vlastní číslo λ_1 . Sestavme matici B = A - λ_1 I. Ta bude mít dle předchozího poznatku vlastní čísla $\lambda_n - \lambda_1, \lambda_{n-1} - \lambda_1, \ldots$ Předpokládejme, že $\lambda_n \neq \lambda_{n-1}$. Protože symetrická pozitivně definitní matice má všechna vlastní čísla kladná (tedy $0 < \lambda_n < \lambda_{n-1} \leq \ldots$), můžeme vlastní čísla matice s takto posunutým spektrem seřadit

$$|\lambda_n - \lambda_1| > |\lambda_{n-1} - \lambda_1| \ge \dots$$

Použijeme-li tedy mocninnou metodu na matici $B = A - \lambda_1 I$, nalezneme její dominantní vlastní číslo $\hat{\lambda} = \lambda_n - \lambda_1$. Odtud snadno dopočítáme nejmenší vlastní číslo původní matice A:

$$\lambda_n = \hat{\lambda} + \lambda_1.$$

References

[1] Trefethen, L. N, Bau, D. Numerical Linear Algebra. SIAM. 1997.