Ensemble Methods

Christos Dimitrakakis

November 28, 2023

Bagging

Algorithm

- ▶ Input: Data D, bags K, base learner λ
- ightharpoonup For $k = 1, \dots, K$
- Sample with replacement $D_k \sim \mathrm{Unif}(D)$ Obtain predictor $\pi_k = \lambda(D_k)$.
 - ightharpoonup Return $\{\pi_k\}$

The bagged predictor

$$\pi = f\left(\sum_{k} \pi_{k}\right)$$

Bagging classifiers

Classification setting

- ▶ Weak learner $\lambda : D \rightarrow \Pi$
- ▶ Base hypotheses $\pi_k: X \to \{-1, 1\}$

with

$$\pi_k = \lambda(D_k), \qquad D_k \sim D$$

Aggregate hypothesis

$$\pi(x) = \operatorname{sgn}\left(\sum_{k=1}^K \pi_k(x)\right)$$

PAC property

For any $\delta \in (0,1)$, and any $\pi^*: X \to \{-1,1\}$ and a hypothesis class Π with with VC dimension d, for T data points, and $K \in [0.02T,T]$ bootstrap samples, then

$$\mathbb{L} \in O\left(\frac{1}{T}[d + \ln(1/\delta)]\right), \qquad \text{w.p.} 1 - \delta.$$

Sub-sample-and-aggregate

Algorithm

- ▶ Input: Data D, number of experts K, base learner λ
- ▶ For k = 1, ..., K
- Sample without replacement $D_k \sim \mathrm{Unif}(D)$ Obtain predictor $\pi_k = \lambda(D_k)$.
 - ▶ Return $\{\pi_k\}$

The aggregated predictor

$$\pi = f\left(\pi_1, \ldots, \pi_k\right)$$