Load Dataset

```
In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

import warnings

# Suppress only a specific future warning
warnings.filterwarnings("ignore", message=".*use_inf_as_na option is depr
warnings.filterwarnings("ignore", message=".*Pass `(name,)` instead of `n
```

Dataset info:

Extracted Datasets for GEE:

MOD13A1(Frequency: 15days)

- NDVI
- EVI
- DetailedQA
- sur_refl_b01
- sur_refl_b02
- sur_refl_b03
- sur_refl_b07

ERA5_LAND(HOURLY)

- temperature_2m
- dewpoint_temperature_2m
- surface_pressure
- skin_temperature
- soil_temperature_level_1
- soil_temperature_level_2
- soil_temperature_level_3
- soil_temperature_level_4
- volumetric_soil_water_layer_1
- volumetric_soil_water_layer_2
- volumetric_soil_water_layer_3
- volumetric_soil_water_layer_4

CHIRPS (Weekly):

precipitation

```
In [3]: | data path = {
             'sentinel': "/kaggle/input/climate-crop/Sentinel 2 NDVI Timeseries.cs
             "MOD13A1": '/kaggle/input/climate-crop/NDVI Timeseries 3km MyRegion 2
             "MOD11A1" : '/kaggle/input/climate-crop/MODIS11A1 MyRegion 26july.csv
             "ERA5_LAND": '/kaggle/input/climate-crop/ERA5_land_3km_MyRegion_26jul
             "CHIRPS": '/kaggle/input/climate-crop/CHIRPS 3km MyRegion 26july.csv'
        }
        data_description = {
             "MOD13A1":[
                 {
                     "feature_name": "NDVI",
                     "unit":",
                     "scale":0.0001,
                     "offset": 0,
                     "min": -2000,
                     "max": 10000,
                     "description" : "Normalized Difference Vegetation Index"
                 },
                 {
                     "feature name": "EVI",
                     "unit":"",
                     "scale":0.0001,
                     "offset": 0,
                     "min": -2000,
                     "max": 10000,
                     "description": "Enhanced Vegetation Index"
                 },
                 {
                     "feature_name":"DetailedQA",
                     "unit": "",
                     "scale": 1,
                     "offset" : 0,
                     "description": "VI quality indicators"
                 },
                 {
                     "feature_name": "sur_refl_b01",
                     "unit": "",
                     "scale": 0.0001,
                     "offset" : 0,
                     "min":0,
                     "max": 10000,
                     "wavelength": "645mm",
                     "description": "Red surface reflectance"
                 },
                     "feature name": "sur refl b02",
                     "unit": "",
                     "scale": 0.0001,
                     "offset" : 0,
                     "min":0,
                     "max": 10000,
                     "wavelength": "645mm",
                     "description": "NIR surface reflectance"
                 },
                     "feature_name": "sur_refl_b03",
                     "unit": "",
                     "scale": 0.0001,
                     "offcot" . A
```

```
טווטפנ . ט,
        "min":0,
        "max": 10000,
        "wavelength": "645mm",
        "description": "Blue surface reflectance"
    },
        "feature_name": "sur_refl_b07",
        "unit": "",
        "scale": 0.0001,
        "offset" : 0,
        "min":0,
        "max": 10000,
        "wavelength": "2130nm/2105 - 2155nm",
        "description": "MIR surface reflectance"
    },
    {
        "feature name": "SummaryQA",
        "unit": "",
        "scale": 1,
        "offset" : 0,
        "description": "Quality reliability of VI pixel"
    }
    ],
"MOD11A1":[
    {
        "feature name": "LST_Day_1km",
        "unit": "K".
        "scale": 0.02,
        "offset": 0,
        "min":7500,
        "max": 65535,
        "description": "Daytime Land Surface Temperature"
    },
        "feature name": "QC_Day",
        "unit": "",
        "scale": 1,
        "offset": 0,
        "description": "Daytime LST Quality Indicators"
    },
        "feature_name": "LST_Night_1km",
        "unit": "K",
        "scale": 0.02,
        "offset": 0,
        "min":7500,
        "max": 65535,
        "description": "Nighttime Land Surface Temperature"
    }
],
"ERA5 LAND":[
    {
        "feature name": "temperature 2m",
        "unit": "K",
        "scale": 1,
        "offset" : 0,
        "description": "Temperature to which the air, at 2 meters abo
    },
```

```
{
    "feature name": "dewpoint temperature 2m",
    "unit": "K",
    "scale": 1,
    "offset" : 0,
    "description": "Temperature to which the air, at 2 meters abo
},
{
    "feature name": "surface pressure",
    "unit": "Pa",
    "scale": 1,
    "offset" : 0,
    "description": "Pressure (force per unit area) of the atmosph
},
{
    "feature name": "skin temperature",
    "unit": "K",
    "scale": 1,
    "offset" : 0,
    "description": "Temperature of the surface of the Earth."
},
{
    "feature name": "soil_temperature_level_1",
    "unit": "K",
    "scale": 1,
    "offset": 0,
    "description": "Temperature of the soil in layer 1 (0 - 7 cm)
},
{
    "feature_name": "soil_temperature_level_2",
    "unit": "K",
    "scale": 1,
    "offset" : 0,
    "description": "Temperature of the soil in layer 2 (7-28 cm)"
},
{
    "feature name": "soil temperature level 3",
    "unit": "K",
    "scale": 1,
    "offset": 0,
    "description": "Temperature of the soil in layer 2 (28-100 cm
},
{
    "feature_name": "soil_temperature_level_4",
    "unit": "K",
    "scale": 1,
    "offset": 0,
    "description": "Temperature of the soil in layer 2 (100-289 c
},
{
    "feature name": "volumetric_soil_water_layer_1",
    "unit": "Volume fraction",
    "scale": 1,
    "offset": 0,
    "description": "Volume of water in soil layer 1 (0 - 7 cm)"
},
```

```
{
        "feature_name": "volumetric_soil_water_layer_2",
        "unit": "Volume fraction",
        "scale": 1,
        "offset" : 0,
        "description": "Volume of water in soil layer 2 (7 - 28 cm)"
    },
    {
        "feature_name": "volumetric_soil_water_layer_3",
        "unit": "Volume fraction",
        "scale": 1,
        "offset" : 0,
        "description": "Volume of water in soil layer 3 (28 - 100 cm)
    },
    {
        "feature_name":"volumetric_soil_water_layer_4",
        "unit": "Volume fraction",
        "scale": 1,
        "offset": 0,
        "description": "Volume of water in soil layer 4 (100 - 289 cm
    }
],
"sentinel": [
        {'feature_name': 'QA20',
          'unit': '',
          'scale': 1,
          'offset': 0,
          'description': ''},
         {'feature name': 'B2',
          'unit': '',
          'scale': 0.0001,
          'offset': 0,
          'description': ''},
         {'feature_name': 'B10',
          'unit': '',
          'scale': 0.0001,
          'offset': 0,
          'description': ''},
         {'feature_name': 'B11',
          'unit': ¯',
          'scale': 0.0001,
          'offset': 0,
          'description': ''},
         {'feature_name': 'B8',
           'unit': '',
          'scale': 0.0001,
          'offset': 0,
          'description': ''},
         {'feature_name': 'B9',
          'unit': "',
          'scale': 0.0001,
          'offset': 0,
          'description': ''},
         {'feature_name': 'B7',
          'unit': <sup>'</sup>',
          'scale': 0.0001,
          'offset': 0,
          'description': ''},
         {'feature name': 'NDVI',
```

```
'unit': '',
                'scale': 1,
                'offset': 0,
                'description': ''},
              {'feature_name': 'B3',
                'unit': \(\bar{\tau}\)',
                'scale': 0.0001,
                'offset': 0,
                'description': ''},
              {'feature name': 'B5',
                'unit': \(\bar{\tau}\)',
                'scale': 0.0001,
                'offset': 0,
                'description': ''},
              {'feature name': 'B12',
                'unit': T',
                'scale': 0.0001,
                'offset': 0,
                'description': ''},
              {'feature_name': 'B4',
  'unit': '',
               'scale': 0.0001,
                'offset': 0,
                'description': ''},
              {'feature name': 'B8A',
                'unit': '',
                'scale': 0.0001,
                'offset': 0,
                'description': ''},
               {'feature_name': 'B1',
                'unit': <sup>T</sup>',
                'scale': 0.0001,
                'offset': 0,
               'description': ''},
              {'feature_name': 'B6',
                'unit': '',
                'scale': 0.0001,
                'offset': 0,
                'description': ''},
             ],
    "CHIRPS":[
         {
             "feature_name": "precipitation",
             "unit": "mm/pentad",
             "scale": 1,
             "offset" : 0,
             "min": 0,
             "max": 1072,
             "description": "Precipitation"
         }
    ]
}
```

Read Data

```
In [4]: data_collection = {}
        for name,path in data path.items():
            df = pd.read_csv(path)
            for feature_disc in data_description[name]:
                feature_name = feature_disc['feature_name']
                stats = [" mean"," max"," min"," stdDev"]
                feature_name_stat = [feature_name + s for s in stats ]
                if('scale' in feature_disc):
                        scale = feature_disc['scale']
                else:
                    scale = 1
                if('offset' in feature_disc):
                    offset = feature_disc['offset']
                    offset = 0
                for fn in feature_name_stat:
                    df[fn] = df[fn]*scale + offset
                if('.geo' in df.columns):
                    df.drop(columns = '.geo',inplace = True)
                data_collection[name] = df.copy()
```

columns arrangements

```
####
In [5]:
         'NDVI_max', 'NDVI_mean', 'NDVI_min', 'NDVI_stdDev', 'SummaryQA_max
                 'SummaryQA_mean', 'SummaryQA_min', 'SummaryQA_stdDev', 'sur_refl_b
'sur_refl_b01_min', 'sur_refl_b01_stdDev', 'sur_refl_b02_max',
'sur_refl_b02_mean', 'sur_refl_b02_min', 'sur_refl_b02_stdDev',
'sur_refl_b03_max', 'sur_refl_b03_mean', 'sur_refl_b03_min',
                 'sur_refl_b03_stdDev', 'sur_refl_b07_max', 'sur_refl_b07_mean',
                 'sur refl b07 min', 'sur refl b07 stdDev']
         data collection['MOD13A1'] = data collection['MOD13A1'][columns modis 13A
         data collection['MOD13A1']['date'] = pd.to datetime(data collection['MOD1
         data collection['MOD13A1'] = data collection['MOD13A1'].sort values(['dat
         #####
         columns_modis_11A1 = [ 'date', 'region', 'state' , 'buffer_km', 'LST_Day_
                 'LST_Day_1km_min', 'LST_Day_1km_stdDev', 'LST_Night_1km_max',
                 'LST_Night_1km_mean', 'LST_Night_1km_min', 'LST_Night_1km_stdDev', 'QC_Day_max', 'QC_Day_mean', 'QC_Day_min', 'QC_Day_stdDev']
         data collection['MOD11A1'] = data collection['MOD11A1'][columns modis 11A
         data collection['MOD11A1']['date'] = pd.to datetime(data collection['MOD1
         data collection['MOD11A1'] = data collection['MOD11A1'].sort values(['dat
         data collection['CHIRPS'].columns
         ####
         CHIRPS_columns = [ 'date', 'state', 'region', 'buffer_km', 'precipitation_max
                 data collection['CHIRPS'] = data collection['CHIRPS'][CHIRPS columns]
         data collection['CHIRPS']['date'] = pd.to datetime(data collection['CHIRP
         data collection['CHIRPS'] = data collection['CHIRPS'].sort values(['date'
         ####
         ERA5_LAND_columns = ['date','state','buffer_km','region','dewpoint_temper
                 'dewpoint temperature 2m mean', 'dewpoint temperature 2m min',
                 'dewpoint temperature 2m stdDev', 'skin temperature max',
                 'skin_temperature_mean', 'skin_temperature_min',
                 'skin_temperature_stdDev', 'soil_temperature_level_1_max',
                 'soil_temperature_level_1_mean', 'soil_temperature_level_1_min',
                 'soil_temperature_level_1_stdDev', 'soil_temperature_level_2_max'
                 'soil temperature level 2 mean', 'soil temperature level 2 min',
                 'soil_temperature_level_2_stdDev', 'soil_temperature_level_3_max'
                 'soil_temperature_level_3_mean', 'soil_temperature_level_3_min', 'soil_temperature_level_3_stdDev', 'soil_temperature_level_4_max' 'soil_temperature_level_4_mean', 'soil_temperature_level_4_min',
                 'soil_temperature_level_4_stdDev', 'surface_pressure_max',
                 'surface pressure mean', 'surface pressure min',
                 'surface_pressure_stdDev', 'temperature_2m_max', 'temperature_2m_m
                 'temperature_2m_min', 'temperature_2m_stdDev',
                 'volumetric_soil_water_layer_1_max',
                 'volumetric_soil_water_layer_1_mean',
                 'volumetric_soil_water_layer_1_min',
                 'volumetric soil water layer 1 stdDev',
                 'valumetric coil water layer 2 may!
```

```
vutumetitt_Sutt_water_tayer_z_max ,
                'volumetric_soil_water_layer_2_mean',
                'volumetric soil water layer 2 min',
                'volumetric_soil_water_layer_2_stdDev',
                'volumetric_soil_water_layer_3_max',
                'volumetric soil water layer 3 mean',
                'volumetric soil water layer 3 min',
                'volumetric_soil_water_layer_3_stdDev',
                'volumetric_soil_water_layer_4_max',
                'volumetric_soil_water_layer_4_mean',
                'volumetric_soil_water_layer_4_min',
                'volumetric soil water layer 4 stdDev']
        data collection['ERA5 LAND'] = data collection['ERA5 LAND'][ERA5 LAND col
        data collection['ERA5 LAND']['date'] = pd.to datetime(data collection['ER
        data collection['ERA5 LAND'] = data collection['ERA5 LAND'].sort values([
In [6]: # data collection['sentinel'].columns , ['NDVI max', 'NDVI mean', 'NDVI m
In [7]: senitenl columns =[ 'date','state','region','buffer km'] + ['NDVI max',
        data_collection['sentinel'] = data_collection['sentinel'][senitenl_column
        data collection['sentinel']['date'] = pd.to datetime(data collection['sen
        data collection['sentinel'] = data collection['sentinel'].sort values(['d
```

Mark months to crop

```
In [8]: # !pip install --upgrade seaborn -q
         import warnings
         warnings.simplefilter(action='ignore', category=FutureWarning)
 In [9]: | df = data_collection['MOD13A1'].copy()
         df['month'] = df['date'].map(lambda x: x.month)
         df['year'] = df['date'].map(lambda x: x.year)
         df = df.sort_values("date")
         data collection['MOD13A1'] = df
         df = data collection['sentinel'].copy()
         df['month'] = df['date'].map(lambda x: x.month)
         df['year'] = df['date'].map(lambda x: x.year)
         df = df.sort_values("date")
         data collection['sentinel'] = df
         data collection['sentinel'] = data collection['sentinel'].dropna(axis=0)
In [10]: def ema(data, alpha):
             ema_vals = [data[0]] # start with the first data point
             for val in data[1:]:
                 ema vals.append(alpha * val + (1 - alpha) * ema vals[-1])
             return ema vals
In [11]: \# df 2 = df 1.groupby(['state','region','year','crop'])[['NDVI mean','ND
```

```
In [12]: ##classify crop based on the months
         def func_crop_mp(x):
             if(x \ge 7 and x < 11):
                  return 'kharif'
             elif(x>=11 or x<=4):
                 return 'rabi'
             else:
                  return 'nocrop'
         def func crop MH(x):
             if (x>=6 and x<10):
                  return 'kharif'
              elif(x>=10 or x<6):
                  return 'rabi'
              else:
                  return 'nocrop'
         def fun mark crop(data):
              state = data.state.unique()
             dfs = []
              for s in state:
                  if(s == 'MP'):
                      df = data[data.state == s].copy()
                      df['crop'] = df['month'].map(func crop mp)
                      dfs.append(df)
                  elif(s == 'MH'):
                      df = data[data.state == s].copy()
                      df['crop'] = df['month'].map(func_crop_MH)
                      dfs.append(df)
              dfs = pd.concat(dfs,axis =0)
              return dfs
         data_collection['sentinel'] = fun_mark_crop(data_collection['sentinel'])
         data_collection['MOD13A1'] = fun_mark_crop(data_collection['MOD13A1'])
```

```
In [12]: df 1 = data collection['sentinel'].copy()
         df 2 = data collection['MOD13A1'].groupby(['state','region','year','crop'
         crops = ['kharif','rabi']
         state = ['MH','MP']#,'MH']
         # state = ['MP']#,'MH']
         for s in state:
             df 3 = df 1[(df 1.state == s)].copy().iloc[:2000]
             # NDVI mean plot
             for region in df 3.region.unique():
                 data = df_3[df_3.region == region]['NDVI_mean'].values
                 date = df 3[df 3.region == region]['date'].values
                 data = np.array(list(data))
                 if(s == 'MH'):
                      alpha = 0.3
                 else:
                      alpha = 0.3
                 ema_vals = np.array(ema(data, alpha=alpha))
                 df 3 = df 3[df 3.region == region]
                 df_3_ = df_3_.loc[df_3_[['month','year']].drop_duplicates(keep =
                 plt.figure(figsize = (30,5))
                 sns.lineplot(x =date , y = ema_vals,alpha=0.9,label = 'exponentia')
                 sns.lineplot(x =date , y = data,alpha=0.1,label = 'NVDI')
                 def add_vertical_line(dates,color,label):
                      added_label = False
                      for d in dates:
                          if not added label:
                              plt.axvline(x=d, color=color, linestyle='--', label=l
                              added label = True
                          else:
                              plt.axvline(x=d, color=color, linestyle='--')
                 if(s == 'MP'):
                      months = [7,11,4]
                      labels = ['July','November','April']
                      colors = ['black','red','blue']
                 else:
                      months = [6,11]
                      labels = ['June','November']
                      colors = ['black','red']
                 for m ,c ,l in zip(months,colors,labels):
                      date_vertical_line = df_3_[df_3_['month'] ==m]['date'].values
                      add_vertical_line(date_vertical_line,color = c ,label = l )
                 plt.legend()
                 plt.title(f"state:{s} region:{region} - Timeseries NVDI")
                  n1+ chau/\
```


- MP region has clear distinct on kharif and rabi crop
 - Kharif July November
 - Rabi November April
- MH region has continous peak
 - Kharif July November
 - rabi November/Decemeber May/June

Precepitation analysis

```
In [13]: data_chirps = data_collection['CHIRPS'].copy()

data_chirps['month'] = data_chirps['date'].map(lambda x: x.month)
    data_chirps['year'] = data_chirps['date'].map(lambda x: x.year)

# data_chirps['crop'] = data_chirps['month'].map(func_crop)
    data_chirps = fun_mark_crop(data_chirps)

data_chirps = data_chirps.sort_values("date")
    data_collection['CHIRPS'] = data_chirps
```

```
data chirps grp = data chirps.groupby(['year','month','state','region','
In [16]:
         # data chirps grp['month year']
         data_chirps_grp['month-year'] = data_chirps_grp[['month','year']].apply(f
         crops = ['kharif']
         state = ['MP','MH']
         for s in state:
             for crop in crops:
                 print(f"state:{s} crop:{crop}")
                 df = data chirps grp.copy()
                 df = df[(df.state == s)].copy()
                 \# df 1 = df[(df.crop == region)].copy()
                 # NDVI mean plot
                 plt.figure(figsize = (30,5))
                 ax = sns.lineplot(data = df, x='month-year', y='precipitation_mea
                 ax.set_title(f'state: {s} - NDVI_mean over time by crop')
                 xticks = df['month-year'].unique()[::5] # every 4th tick
                 ax.set xticks([])
                 ax.set_xticks(xticks)
                 ax.tick_params(axis='x', rotation=45)
                 plt.show()
```


state:MH crop:kharif

- MP: During 2013,2016,2022 There was was heavy rainfall
- MH:
 - Mundhewadi had very less precipitation: That is clearly seen this region has no Kharif Peaks.

7/30/25, 15:59 14 of 30

```
In [14]: | ### Merge NDVI and precipitation data
         def func(x,df 2):
             offset = pd.DateOffset(months=0, days=15)
             x1 = x.iloc[0]
             x2 = x.iloc[1]
             if(pd.isna(x1)):
                 return np.NaN
             elif(pd.isna(x2)):
                 x2 = x1 - offset
             else:
                 pass
             df_2 = df_2[(df_2['date'] \le x1) & (df_2['date'] > x2)]
             mean_val = df_2[['precipitation_max','precipitation_mean', 'precipita']
             mean val['date'] = x1
             return mean_val
         data_ndvi = data_collection['MOD13A1'].copy()
         data_ndvi_pre = []
         for (s,r),grp in data_ndvi.groupby(['state','region']):
             grp['prev date'] = grp['date'].shift(1)
             df_2 = data_chirps[(data_chirps['state'] == s) & (data_chirps['region
             mean_val = grp[['date','prev_date','state','region']].apply(lambda x
             mean_val['state'] = s
             mean val['region'] = r
             data ndvi pre.append(mean val)
         data_ndvi_pre = pd.concat(data_ndvi_pre,axis = 0)
         data ndvi precipitation = data ndvi.merge(data ndvi pre , on =['date','r
```

Analysis on NVDI peak over preciptation

Out[16]: NDVI_peak precipitation_mean precipitation_max precipitation_std state MH NDVI_peak 1.000000 0.861122 0.739630 0.655773 precipitation_mean 0.861122 1.000000 0.790803 0.853197 precipitation_max 0.739630 0.853197 1.000000 0.957131 precipitation_std 0.655773 0.790803 0.957131 1.000000 MP NDVI_peak 1.000000 0.391582 0.385511 0.357111 precipitation_mean 0.391582 1.000000 0.864270 0.814800 precipitation_max 0.973891 0.385511 0.864270 1.000000 precipitation_std 0.814800 0.973891 1.000000 0.357111 In [17]: plt.title(f"NVDI_peak ")

NVDI peak is correlating with precipitation

7/30/25, 15:59 16 of 30

```
In [60]: | #'EVI_max', 'EVI_mean', 'EVI_min', 'EVI_stdDev',
         columns to corr = [ 'NVDI peak', 'precipitation mean', 'precipitation std
         # regions = data nvdi precipitation[data nvdi precipitation.state == 'MP'
         for state in data_nvdi_year_crop.state.unique():
             df = data nvdi year crop[data nvdi year crop.state == state ].copy()
             sns.scatterplot(x = 'NVDI_peak',y = 'precipitation_mean',data = df[ (
             plt.title(f"state:{state} precipitation vs NVDI peak")
             plt.show()
             # fig,axis = plt.subplots(nrows = 1,ncols = 3,figsize = (30,5))
             for i,region in enumerate(df.region.unique()):
                 print(f"region:{region}")
                 grp = df[ (df.crop == 'kharif') &
                            ( df.region == region ) ]
                 corr = grp[columns_to_corr].corr()
                 print(f"",corr['NVDI peak'].to dict())
                 # sns.scatterplot(x = 'NVDI_peak',y = 'precipitation_mean',data =
                 # plt.title(f'state:{s} region:{region}- plot ')
                 # plt.show()
```


region:jethabhawda
 {'NVDI_peak': 1.0, 'precipitation_mean': -0.03296094341898041, 'precipit
ation_std': -0.10295944202284003}
region:mundhewadi
 {'NVDI_peak': 1.0, 'precipitation_mean': 0.6093342342239988, 'precipitat
ion_std': 0.2895558937319416}
region:tadklas
 {'NVDI_peak': 1.0, 'precipitation_mean': 0.25343896516580444, 'precipitat
tion_std': 0.3025331967625471}


```
region:ankia
    {'NVDI_peak': 1.0, 'precipitation_mean': 0.6333165313716916, 'precipitat
ion_std': 0.7003937873767907}
region:chholya
    {'NVDI_peak': 1.0, 'precipitation_mean': 0.39135190160073674, 'precipitation_std': 0.2578683551461847}
region:kalyanpur
    {'NVDI_peak': 1.0, 'precipitation_mean': 0.16938443195431488, 'precipitation_std': 0.14056152811403586}
```

• MH show signficant correlation with precipitation, unitl 0.6 and 30mm precipitation and after than it's governerd by other factors.

Tempreture and Moisutre Analysis

```
In [17]: data era = data collection['ERA5 LAND'].copy()
         data era['month'] = data era['date'].map(lambda x:x.month)
         data era['year'] = data era['date'].map(lambda x:x.year)
         data_era["dewpoint_depression"] = data_era["temperature_2m_mean"] - data
         data_era["surface_air_Temp_Diff"] = data_era["skin_temperature_mean"] - d
         data_era["ratio_surface_air_temp"] = (data_era["temperature_2m_mean"]
         columns plot = ['temperature 2m mean','dewpoint temperature 2m mean','ski
                         'dewpoint depression', 'surface air Temp Diff', 'ratio surfa
         data era month = data era.groupby(['region','month','year','state'])[col
         data_era_month = data_era_month.reset_index().sort_values(['region','mont
         data_era_month['year_month'] = data_era_month[ ['year', 'month']].apply(la
         data_era_month = data_era_month.sort_values('year_month')
         # data era month['diff temp2m surface'] = (-data era month['temperature 2
In [18]: # data era month
In [28]: crops = ['kharif','rabi']
         state = ['MP','MH']
         for s in state:
             # for crop in crops:
             # print(f"state:{s} crop:{crop}")
             # tempreture plot
             plt.figure(figsize = (30,5))
             ax = sns.lineplot(data=data_era_month[data_era_month.state == s], x='
             ax.set_title(f'state: {s} - temperature_plot')
             xticks = list(data era month[data era month.state == s]['year month']
             plt.xticks(xticks,rotation=45)
             plt.title('temperature 2m mean')
             plt.show()
             # tempreture plot
             plt.figure(figsize = (30,5))
             ax = sns.lineplot(data=data_era_month[data_era_month.state == s], x='
             ax.set title(f'state: {s} - temperature plot')
             xticks = list(data era month[data era month.state == s]['year month']
             plt.xticks(xticks,rotation=45)
             plt.title('skin_temperature_mean')
             plt.show()
                                            temperature_2m_mean
```



```
In [19]: ### merge all data sets
         def func(x,df 2):
             offset = pd.DateOffset(months=0, days=15)
             x1 = x.iloc[0]
             x2 = x.iloc[1]
             if(pd.isna(x1)):
                 return np.NaN
             elif(pd.isna(x2)):
                 x2 = x1 - offset
             else:
                 pass
             df_2 = df_2[(df_2['date'] \le x1) & (df_2['date'] > x2)]
             columns = ['temperature_2m_mean','dewpoint_temperature_2m_mean','skin
           'soil_temperature_level_4_mean', 'surface_pressure_mean','volumetric_so
          'dewpoint depression','surface air Temp Diff','ratio surface air temp']
             mean_val = df_2[columns].mean()
             mean_val['date'] = x1
             return mean val
         data merged = []
         for (s,r),grp in data_ndvi_precipitation.groupby(['state','region']):
             grp['prev date'] = grp['date'].shift(1)
             df_2 = data_era[(data_era['state'] == s) & (data_era['region'] == r)]
             mean val = grp[['date','prev date','state','region']].apply(lambda x
             mean val['state'] = s
             mean_val['region'] = r
             data_merged.append(mean_val)
         data merged = pd.concat(data merged,axis = 0)
         # data nvdi precipitation = data nvdi.merge(data ndvi pre , on =['date',
         data merged = data ndvi precipitation.merge(data merged , on =['date','r
 In [ ]:
```

Plot on Temp, Volumetric soil

```
columns_to_corr = [ 'NDVI_max', 'NDVI_mean', 'NDVI_min'] + ['temperature 2
In [21]:
                'soil temperature level 4 mean', 'surface pressure mean', 'volumetric so
             columns_plot = ['skin_temperature_mean','soil_temperature_level_3_mean','
             for state in data_merged.state.unique():
                   grp = data merged[(data merged.state == state ) ]
                   # corr = grp[columns to corr].corr()
                   # print(corr['NDVI_mean'].to_dict())
                   for col in columns plot:
                        fig,axes = plt.subplots(nrows = 1,ncols = 2,figsize = (20,5))
                        sns.scatterplot(data = grp[ (grp.crop == 'kharif')], x = col ,y
                        sns.scatterplot(data = grp[ (grp.crop == 'rabi')], x = col ,y =
                        axes[0].set_title(f'state:{state} Kharif: {col} vs NDVI')
                        axes[1].set_title(f'state:{state} Rabi: {col} vs NDVI')
                        plt.show()
                   print('\n\n\n')
                                                                                state:MH Rabi: skin_temperature_mean vs NDVI
                         state:MH Kharif: skin_temperature_mean vs NDVI
                                                      region
jethabhawda
mundhewadi
tadklas
                                                                                                            region
jethabhawda
mundhewadi
tadklas
             0.5
              0.2
              0.1
                                                         312
                                                                                       skin_temperature_m
                       state:MH Kharif: soil_temperature_level_3_mean vs NDVI
                                                                              state:MH Rabi: soil_temperature_level_3_mean vs NDVI
              0.8
              0.7
              0.3
              0.2
                                                                    0.3
                               304 306
soil_temperature_level_3_mean
                                                                                      300.0 302.5 305.0 soil_temperature_level_3_mean
                      state:MH Kharif: volumetric_soil_water_la
              0.7
             0.5
ueau
                               0.30 0.35 0.40
volumetric_soil_water_layer_3_mean
```


• Select Feature above 0.6 correlation.

```
In [24]: pd.set_option("display.max_rows",100)
    corr = corr[(np.abs(corr['NDVI_mean'])>0.6) | (np.abs(corr['EVI_mean'])>0
    corr
```

Out[24]: EVI_mean NDVI_mean

state	region	crop			
МН	jethabhawda	kharif	soil_temperature_level_4_mean	-0.611169	-0.656061
			volumetric_soil_water_layer_4_mean	0.627993	0.613521
		rabi	volumetric_soil_water_layer_1_mean	0.737807	0.777476
			volumetric_soil_water_layer_2_mean	0.835457	0.879255
			volumetric_soil_water_layer_3_mean	0.877224	0.924978
			volumetric_soil_water_layer_4_mean	0.873363	0.920780
			dewpoint_depression	-0.858495	-0.905209
			surface_air_Temp_Diff	-0.718841	-0.763784
	mundhewadi	kharif	soil_temperature_level_4_mean	-0.666648	-0.692576
			volumetric_soil_water_layer_3_mean	0.625681	0.568772
			volumetric_soil_water_layer_4_mean	0.616920	0.532675
		rabi	temperature_2m_mean	-0.782975	-0.756373
			skin_temperature_mean	-0.825953	-0.814764
			soil_temperature_level_1_mean	-0.828818	-0.815588
			soil_temperature_level_2_mean	-0.826330	-0.809697
			soil_temperature_level_3_mean	-0.800639	-0.774155
			volumetric_soil_water_layer_2_mean	0.810662	0.826061
			volumetric_soil_water_layer_3_mean	0.842076	0.852765
			dewpoint_depression	-0.773677	-0.808108
			surface_air_Temp_Diff	-0.831518	-0.841218
			ratio_surface_air_temp	0.724422	0.726318
	tadklas	kharif	temperature_2m_mean	-0.633732	-0.597927
			skin_temperature_mean	-0.635747	-0.586711
			soil_temperature_level_1_mean	-0.678819	-0.633784
			soil_temperature_level_2_mean	-0.718544	-0.678716
			soil_temperature_level_3_mean	-0.729211	-0.703128
			soil_temperature_level_4_mean	-0.560743	-0.600949
			volumetric_soil_water_layer_3_mean	0.679666	0.634551
			dewpoint_depression	-0.621069	-0.590191
			surface_air_Temp_Diff	-0.617921	-0.539198
		rabi	temperature_2m_mean	-0.611591	-0.649650
			skin_temperature_mean	-0.691745	-0.734500

				EVI_mean	NDVI_mean
state	region	crop			
			soil_temperature_level_1_mean	-0.691253	-0.735641
			soil_temperature_level_2_mean	-0.685620	-0.730105
			soil_temperature_level_3_mean	-0.645672	-0.681623
			volumetric_soil_water_layer_2_mean	0.714079	0.768112
			volumetric_soil_water_layer_3_mean	0.814815	0.848517
			volumetric_soil_water_layer_4_mean	0.689735	0.713446
			dewpoint_depression	-0.786956	-0.832554
			surface_air_Temp_Diff	-0.764836	-0.803318
MP	ankia	rabi	temperature_2m_mean	-0.737209	-0.830130
			skin_temperature_mean	-0.699115	-0.796956
			soil_temperature_level_1_mean	-0.726158	-0.819518
			soil_temperature_level_2_mean	-0.758524	-0.843822
			soil_temperature_level_3_mean	-0.829401	-0.871911
			surface_pressure_mean	0.573292	0.678332
	chholya	rabi	temperature_2m_mean	-0.899947	-0.903519
			skin_temperature_mean	-0.891641	-0.905717
			soil_temperature_level_1_mean	-0.897818	-0.908432
			soil_temperature_level_2_mean	-0.900256	-0.900449
			soil_temperature_level_3_mean	-0.815868	-0.782452
			surface_pressure_mean	0.800828	0.814225
			dewpoint_depression	-0.736079	-0.794171
	kalyanpur	rabi	temperature_2m_mean	-0.892532	-0.885147
			skin_temperature_mean	-0.888958	-0.889377
			soil_temperature_level_1_mean	-0.885239	-0.882922
			soil_temperature_level_2_mean	-0.872958	-0.865073
			soil_temperature_level_3_mean	-0.747742	-0.716336
			surface_pressure_mean	0.763122	0.774025
			dewpoint_depression	-0.696972	-0.745905
			surface_air_Temp_Diff	-0.553081	-0.609246

Kharif Season Observations:

- Surface-Air Temperature Difference and Soil Temperature at Level 4 (mean) are negatively correlated with NDVI.
- Soil moisture volume is positively correlated with NDVI.
- This is expected higher surface-air temperature differences indicate more heat stress on crops.
- Similarly, higher soil moisture supports healthier vegetation, leading to higher NDVI.

Rabi Season Observations:

- Surface-Air Temperature Difference and Soil Temperature at Level 4 (mean) are negatively correlated with NDVI.
- The Surface-Air Temperature Ratio is positively correlated, which suggests that when the surface temperature is closer to the dew point, vapor near the surface condenses, increasing moisture availability.
- Similarly, soil moisture volume shows a positive correlation with NDVI, indicating that higher moisture supports healthier crop growth.

```
In [26]: | selected_feature = corr.reset_index()['level_3'].unique()
         selected_feature_str = '\n'.join(selected_feature)
         print(f"selected_feature\n{selected_feature_str}")
         selected feature
         soil temperature level 4 mean
         volumetric_soil_water_layer_4_mean
         volumetric_soil_water_layer_1_mean
         volumetric_soil_water_layer_2_mean
         volumetric_soil_water_layer_3_mean
         dewpoint depression
         surface_air_Temp_Diff
         temperature_2m_mean
         skin_temperature_mean
         soil_temperature_level_1_mean
         soil temperature level 2 mean
         soil temperature level 3 mean
         ratio_surface_air_temp
         surface_pressure_mean
```

Relative Comparison of NDVI

Compare low NDVI with high NDVI periods to analyze how climatic factors or changes contribute to a decrease in NDVI.

```
columns = ['NDVI mean', 'EVI mean'] + ['precipitation mean', 'temperature 2
In [27]:
            'soil temperature level 4 mean', 'surface pressure mean','volumetric so
         columns = ['NDVI_mean','EVI_mean'] + list(selected_feature)
         data_merged_ndvi_peak = data_merged.groupby(['region','state','year','cr
             NDVI peak = pd.NamedAqq(column = 'NDVI mean',aqqfunc = 'max') ,
             precipitation mean = pd.NamedAgg(column = 'precipitation mean',aggfun
              **{col:pd.NamedAgg(column = col,aggfunc = 'mean') for col in selecte
         )
         data_merged_ndvi_peak = data_merged_ndvi_peak.reset_index()
In [29]:
         # data_merged_ndvi_peak[(data_merged_ndvi_peak['year'] < 2024) &
         #
                                           (data_merged_ndvi_peak.state == 'MH') &
         #
                                           (data_merged_ndvi_peak.region == 'tadkla
         #
                                            (data_merged_ndvi_peak.NDVI_peak > 0.6)
In [30]:
         columns = ['NDVI peak', 'precipitation mean'] + list(selected feature)
         columns best = [col + ' best' for col in columns]
         columns diff = [col + '_diff' for col in columns]
         ##cross join
         data merged ndvi peak compare = data merged ndvi peak.merge(data merged
         # data merged nvdi peak compare = data merged nvdi peak compare[data mer
         data_merged_ndvi_peak_compare = data_merged_ndvi_peak_compare.reset_index
         data_diff = -data_merged_ndvi_peak_compare[columns_best].values + data_m
         df_diff = pd.DataFrame(data_diff,columns = columns_diff )
         data merged ndvi peak compare = pd.concat([data merged ndvi peak compare
         ###filter out
         columns location = ['region', 'state', 'year', 'crop']
         data_merged_ndvi_peak_compare = data_merged_ndvi_peak_compare[(data_merge
                                             (data merged ndvi peak compare['crop']
         # data merged ndvi peak compare
```

```
In [32]: # df.groupby( ['region', 'state', 'year', 'crop'])
         data merged compare = []
         data_merged_ndvi_peak_compare = data_merged_ndvi_peak_compare[data_merged
         for ,grp in data merged ndvi peak compare.groupby(['region', 'state', 'y
             grp = grp.sort_values('NDVI_peak_diff',ascending = True)[columns_loca
             grp = grp.iloc[:3] # select top 3 most difference point
             if(grp.shape[0]==0):
                 continue
             grp = grp.groupby(columns_location + ['NDVI_peak']).agg(
                     year_comparision = pd.NamedAgg(column = "year_best", aggfunc
                     NDVI_peak_compare_mean = pd.NamedAgg(column = "NDVI_peak_best")
                     **{col : pd.NamedAgg(column = col, aggfunc = 'mean' ) for col
             )
             data_merged_compare.append(grp)
         data_merged_compare = pd.concat(data_merged_compare,axis=0).reset_index()
In [33]: pd.set option("display.max rows",100)
         pd.set option("display.max columns",100)
In [34]: | data_merged_compare
```

Out[34]:	region	state	year	crop	NDVI_peak	year_comparision	NDVI_peak_compare_mean
_	0 ankia	MP	2008	kharif	0.413144	[2024, 2020, 2023]	0.798610
	1 chholya	MP	2008	kharif	0.362551	[2009, 2022, 2012]	0.774188
	2 chholya	MP	2008	rabi	0.403128	[2020, 2022, 2021]	0.684985
	3 chholya	MP	2009	rabi	0.468439	[2020, 2022]	0.706330
	4 chholya	MP	2010	rabi	0.496936	[2020]	0.725693
	5 chholya	MP	2011	rabi	0.477868	[2020, 2022]	0.706330
	6 chholya	MP	2012	rabi	0.439636	[2020, 2022, 2021]	0.684985
	7 chholya	MP	2013	rabi	0.483926	[2020, 2022]	0.706330
	8 kalyanpur	MP	2008	kharif	0.365796	[2023, 2009, 2010]	0.834287
	9 kalyanpur	MP	2013	kharif	0.518719	[2023, 2009, 2010]	0.834287
1	0 kalyanpur	MP	2016	kharif	0.625774	[2023, 2009, 2010]	0.834287
1	1 kalyanpur	MP	2018	kharif	0.513593	[2023, 2009, 2010]	0.834287
1	2 kalyanpur	MP	2019	kharif	0.577027	[2023, 2009, 2010]	0.834287
1	3 mundhewadi	МН	2009	kharif	0.371694	[2024]	0.589234
1	4 mundhewadi	МН	2011	kharif	0.383520	[2024]	0.589234
1	5 mundhewadi	МН	2012	kharif	0.352186	[2024]	0.589234
1	6 tadklas	МН	2015	kharif	0.577370	[2024, 2022, 2023]	0.834395

The above table presents a comparison across different years to identify which climatic variables may be contributing to a decline in NDVI.

Cross Verify some of the facts

Year	State	Region	What Happened(referred from above table)	Source to Verify
2013	MP	Kalyanpur	Excessive Rainfall during Kharif season	In 2013, Madhya Pradesh did experience excessive rainfall during the monsoon season, which led to crop damage in some areas
2016	MP	Kalyanpur	Excessive Rainfall during Kharif season	https://reliefweb.int/report/india/casa-report-floods-situation-madhya-pradesh)
2008	MP	chholya	Excessive Heat During Rabi (+2 deg)	https://imdpune.gov.in/library/public/ Disastrous%20Weather%20Events%202008.pdf

In [36]: # corr[corr.level_3 == 'precipitation_mean']