Parcial I

Alejandro Salazar Mejía

24/4/2021

Lectura de Datos

)

```
library(readr)
library(MASS)
library(hdrcde)
## Warning: package 'hdrcde' was built under R version 4.0.5
## This is hdrcde 3.4
library(knitr)
source('~/Semestre 2021-1/R Programming/Estadística Bayesiana/Gráfico Histograma Decil.R')
numServiciosExp1 <- read_table2("~/Semestre 2021-1/R Programming/Estadística Bayesiana/Parcial I/numSer
## Parsed with column specification:
## cols(
     NumServicios = col_double(),
     Creencia = col_double()
##
## )
numBarberosExp1 <- read_table2("~/Semestre 2021-1/R Programming/Estadística Bayesiana/Parcial I/numBarb
## Parsed with column specification:
## cols(
    NumBarberos = col_double(),
##
     Creencia = col_double()
## )
precioServicioExp1 <- read_table2("~/Semestre 2021-1/R Programming/Estadística Bayesiana/Parcial I/prec</pre>
## Parsed with column specification:
## cols(
   Precios = col_double(),
    Creencia = col_double()
##
```

```
numServiciosExp2 <- read_table2("~/Semestre 2021-1/R Programming/Estadística Bayesiana/Parcial I/numSer
## Parsed with column specification:
   NumServicios = col_double(),
   Creencia = col_double()
##
## )
numBarberosExp2 <- read_table2("~/Semestre 2021-1/R Programming/Estadística Bayesiana/Parcial I/numBarb
## Parsed with column specification:
## cols(
   NumBarberos = col_double(),
##
    Creencia = col_double()
## )
precioServicioExp2 <- read_table2("~/Semestre 2021-1/R Programming/Estadística Bayesiana/Parcial I/prec</pre>
## Parsed with column specification:
## cols(
   Precios = col_double(),
##
   Creencia = col_double()
## )
numServiciosExp3 <- read_table2("~/Semestre 2021-1/R Programming/Estadística Bayesiana/Parcial I/numSer
## Parsed with column specification:
## cols(
   NumServicios = col_double(),
##
   Creencia = col_double()
## )
numBarberosExp3 <- read_table2("~/Semestre 2021-1/R Programming/Estadística Bayesiana/Parcial I/numBarb
## Parsed with column specification:
    NumBarberos = col_double(),
    Creencia = col_double()
## )
precioServicioExp3 <- read_table2("~/Semestre 2021-1/R Programming/Estadística Bayesiana/Parcial I/prec</pre>
## Parsed with column specification:
## cols(
   Precios = col_double(),
##
   Creencia = col_double()
## )
```

Eli número de servicios

```
a <- 30
par(yaxt="n")
# win.graph(12,7)
plot(c(30,150),c(0,1),type="n",ylab="",xlab='Número de servicios',
     main="Número de servicios a clientes en un mes\nsegún Experto 1", xaxt = "n")
axis(1, at = seq(50, 150, 10))
abline(v=seq(50, 150, 5), lty=2, col="grey")
abline(h=0)
abline(h=c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1),lty=2,col="grey")
legend(a,2/50,"Esto nunca pasaría!",cex=0.75,bg="white")
legend(a,11.75/50,"No muy probable",cex=0.75,bg="white")
legend(a,21.75/50,"Dudosamente",cex=0.75,bg="white")
legend(a,31.75/50,"Algo posible",cex=0.75,bg="white")
legend(a,41.75/50,"Es aceptable",cex=0.75,bg="white")
legend(a,51.75/50,"Muy probable!",cex=0.75,bg="white")
lines(numServiciosExp1$NumServicios, numServiciosExp1$Creencia,
      lwd = 3, col = "chocolate1", lty = 2)
points(numServiciosExp1$NumServicios, numServiciosExp1$Creencia,
       col = "dodgerblue3", pch = 16, cex = 1.2)
```

Número de servicios a clientes en un mes según Experto 1

a <- 55+20
par(yaxt="n")
#win.graph(12,7)
plot(c(55+20,175+25+5),c(0,1),type="n",ylab="",xlab='Número de servicios',</pre>

```
main="Número de servicios a clientes en un mes\nsegún el Experto 2",
     xaxt= "n")
axis(1, at = seq(75+25, 150+25+25, 10))
abline(v=seq(50+25+25, 150+25+25+5, 5),lty=2,col="grey")
abline(h=0)
abline(h=c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1),lty=2,col="grey")
legend(a,2/50,"Esto nunca pasaría!",cex=0.75,bg="white")
legend(a,11.75/50,"No muy probable",cex=0.75,bg="white")
legend(a,21.75/50,"Dudosamente",cex=0.75,bg="white")
legend(a,31.75/50,"Algo posible",cex=0.75,bg="white")
legend(a,41.75/50,"Es aceptable",cex=0.75,bg="white")
legend(a,51.75/50,"Muy probable!",cex=0.75,bg="white")
lines(numServiciosExp2$NumServicios, numServiciosExp2$Creencia,
      lwd = 3, col = "chocolate1", lty = 2)
points(numServiciosExp2$NumServicios, numServiciosExp2$Creencia,
       col = "dodgerblue3", pch = 16, cex = 1.2)
```

Número de servicios a clientes en un mes según el Experto 2

Número de servicios

Número de servicios a clientes en un mes según el Experto 3

Eli número de barberos

Número de barberos en Medellín según el Experto 1

Número de barberos

Número de barberos en Medellín según el Experto 2

Número de barberos

Número de barberos en Medellín según el Experto 3

Eli precio por servicios

```
precioServicioExp1$Creencia <- ceiling(precioServicioExp1$Creencia)
hist(rep(precioServicioExp1$Precios, precioServicioExp1$Creencia),
    breaks = seq(2000,35000, 3000), xaxt = 'n',
    main="Número de servicios al mes dentro de un rango de precios
    \nsegún el Experto 1 ",
    xlab = "Precios de los servicios",
    ylab = "Frecuencia de servicios")
axis(1,at = seq(2000,35000, 3000))</pre>
```

Número de servicios al mes dentro de un rango de precios

hist(rep(precioServicioExp2\$Precios, precioServicioExp2\$Creencia),
 breaks = seq(2000,29000, 3000), xaxt = 'n',
 main="Número de servicios al mes dentro de un rango de precios
 \nsegún el Experto 2 ",
 xlab = "Precios de los servicios",
 ylab = "Frecuencia de servicios")
axis(1,at = seq(2000,29000, 3000))

Número de servicios al mes dentro de un rango de precios


```
hist(rep(precioServicioExp3$Precios, precioServicioExp3$Creencia),
    breaks = seq(2000,21000, 3000), xaxt = 'n',
    main="Número de servicios al mes dentro de un rango de precios
    \nsegún el Experto 3 ",
    xlab = "Precios de los servicios ($)",
    ylab = "Frecuencia de servicios")
axis(1,at = seq(2000,21000, 3000))
```

Número de servicios al mes dentro de un rango de precios

Unificación número de servicios a clientes

```
muestraNumServExp1 <- sample(numServiciosExp1$NumServicios, 10000,</pre>
                              replace = T, prob = numServiciosExp1$Creencia)
muestraNumServExp2 <- sample(numServiciosExp2$NumServicios, 8000,</pre>
                              replace = T, prob = numServiciosExp2$Creencia)
muestraNumServExp3 <- sample(numServiciosExp3$NumServicios, 8000,</pre>
                              replace = T, prob = numServiciosExp3$Creencia)
res11 <- prop.table(numServiciosExp1$Creencia)</pre>
res12 <- prop.table(numServiciosExp2$Creencia)
res13 <- prop.table(numServiciosExp3$Creencia)
res14 <- prop.table( table( c(muestraNumServExp1, muestraNumServExp2,</pre>
                               muestraNumServExp3) ) )
plot(seq(70,130,5), xlim = c(70,210),res11, type='b',ylab='Densidad',xlab='Número de servicios a Client
title(main='Número de Servicios a Clientes en un mes')
points(seq(100,205,5), res12, type='b',col='blue')
points(seq(95,210,5), res13, type='b',col='green')
points(res14, type='b',col='red')
```

Número de Servicios a Clientes en un mes

Número de servicios a Clientes

Distribución del número promedio de servicios a clientes en un mes de los barberos en Medellín

histo.decil(medias1) # x = Ingreso en millones de pesos

Gráfico Histograma Decil

boxplot(medias1, main = "Distribución del número promedio de servicios a clientes\nen un mes de los barhorizontal = T)

Distribución del número promedio de servicios a clientes en un mes de los barberos en Medellín

hdrNumSer <- hdr.den(medias1, main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes\nen un main = "Distribución del número promedio de servicios a clientes a clie

Distribución del número promedio de servicios a clientes en un mes de los barberos en Medellín

Número promedio de servicios

kable(hdrNumSer\$hdr, col.names = c("Límite inferior", "Límite superior"))

	Límite inferior	Límite superior
99% 95%	110.1996 115.7692	160.3846 154.7688
50%	128.3311	141.9231

```
a <- summary(medias1)
kable(t(as.list(a)), col.names = names(a) )</pre>
```

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
99.6153846153846	128.461538461538	135	135.227615384615	141.923076923077	170.384615384615

```
aa <- round(quantile(medias1,probs=c(0.05,1:9/10,0.95)))
kable(t(as.list(aa)), col.names = names(aa))</pre>
```

5%	10%	20%	30%	40%	50%	60%	70%	80%	90%	95%
119	122	127	130	133	135	138	140	144	148	152

Desviación Estándar	Rango Intercuartil	Moda
9.98327111650301	13.4615384615385	135.106007237431

Unificación número de barberos en Medellín

```
muestraNumBarExp1 <- sample(numBarberosExp1$NumBarberos, 5000,</pre>
                              replace = T, prob = numBarberosExp1$Creencia)
muestraNumBarExp2 <- sample(numBarberosExp2$NumBarberos, 8000,</pre>
                              replace = T, prob = numBarberosExp2$Creencia)
muestraNumBarExp3 <- sample(numBarberosExp3$NumBarberos, 8000,</pre>
                              replace = T, prob = numBarberosExp3$Creencia)
res21 <- prop.table(numBarberosExp1$Creencia)</pre>
res22 <- prop.table(numBarberosExp2$Creencia)</pre>
res23 <- prop.table(numBarberosExp3$Creencia)</pre>
res24 <- prop.table( table( c(muestraNumBarExp1, muestraNumBarExp2,</pre>
                               muestraNumBarExp3) ) )
plot(numBarberosExp1$NumBarberos, xlim = c(1000,9000),res21, type='b',ylab='Densidad',xlab='Número de b
title(main='Creencia del número de Barberos en la ciudad de Medellín')
points(numBarberosExp2$NumBarberos, res22, type='b',col='blue')
points(numBarberosExp3$NumBarberos, res23, type='b',col='green')
points(res24, type='b',col='red')
legend(7200,0.08,c('Experto 1','Experto 2', 'Experto 3','Promedio'),lty=c(1,1,1,1),
       col=c('black','blue','green','red'))
```

Creencia del número de Barberos en la ciudad de Medellín

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
1750	3750	5000	4764.275	5750	7750

```
aa <- round(quantile(muestras2,probs=c(0.05,1:9/10,0.95)))
kable(t(as.list(aa)), col.names = names(aa))</pre>
```

5%	10%	20%	30%	40%	50%	60%	70%	80%	90%	95%
2250	2750	3250	4000	4500	5000	5250	5750	6000	6500	7000

Desviación Estándar	Rango Intercuartil	Moda
1400.17803304702	2000	5500

Unificación precio por servicios a clientes en un mes

```
muestraPrecServExp1 <- sample(precioServicioExp1$Precios, 10000,</pre>
                              replace = T, prob = precioServicioExp1$Creencia)
muestraPrecServExp2 <- sample(precioServicioExp2$Precios, 8000,</pre>
                              replace = T, prob = precioServicioExp2$Creencia)
muestraPrecServExp3 <- sample(precioServicioExp3$Precios, 8000,</pre>
                              replace = T, prob = precioServicioExp3$Creencia)
res31 <- prop.table(precioServicioExp1$Creencia)</pre>
res32 <- prop.table(precioServicioExp2$Creencia)</pre>
res33 <- prop.table(precioServicioExp3$Creencia)</pre>
res34 <- prop.table( table( c(muestraPrecServExp1, muestraPrecServExp2,</pre>
                               muestraPrecServExp3) ) )
plot(precioServicioExp1$Precios, xaxt = 'n',res31, type='b',ylab='Densidad',xlab='Precio de servicio ($
axis(1, at = seq(3500, 33500, 3000))
title(main='Proporción de ingresos por Servicio a Clientes')
points(precioServicioExp2$Precios, res32, type='b',col='blue')
points(precioServicioExp3$Precios, res33, type='b',col='green')
points(res34, type='b',col='red')
legend(24500,0.5,c('Experto 1', 'Experto 2', 'Experto 3', 'Promedio'), lty=c(1,1,1,1),
       col=c('black','blue','green','red'))
```

Proporción de ingresos por Servicio a Clientes

Distribución del ingreso promedio por servicio de los barberos en Medellín

histo.decil(medias3) # x = Ingreso en millones de pesos

Gráfico Histograma Decil

boxplot(medias3, main = "Distribución del ingreso promedio por servicio\nde los barberos en Medellín", serviciontal = T)

Distribución del ingreso promedio por servicio de los barberos en Medellín

hdrIngSer<- hdr.den(medias3, main = "Distribución del ingreso promedio por servicio\nde los barberos es

Distribución del ingreso promedio por servicio de los barberos en Medellín

kable(hdrIngSer\$hdr, col.names = c("Límite inferior", "Límite superior"))

	Límite inferior	Límite superior
99%	10423.08	19543.54
95%	11576.92	18369.06
50%	13730.23	16192.31

a <- summary(medias3)
kable(t(as.list(a)), col.names = names(a))</pre>

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
8807.69230769231	13884.6153846154	15038.4615384615	14992.5615384615	16192.3076923077	21961.5384615385

aa <- round(quantile(medias3,probs=c(0.05,1:9/10,0.95)))
kable(t(as.list(aa)), col.names = names(aa))</pre>

5%	10%	20%	30%	40%	50%	60%	70%	80%	90%	95%
12269	12731	13423	14115	14577	15038	15500	15962	16423	17346	18038

Desviación Estándar	Rango Intercuartil	Moda
1767.72554553995	2307.69230769231	14973.8343686795

Ingreso total del rector por mes

```
total <- medias1*muestras2*medias3
total2 <- total/1000000
hist(total2, freq = F, main = "Distribución del ingreso total del sector de los barberos\n por mes en M
s <- log(mean(total2)) - mean(log(total2))
k \leftarrow (3 - s + sqrt((s-3)^2 + 24*s))/(12*s)
theta <- mean(total2)/k
lines(xxx <- seq(min(total2), max(total2), len = 1000), dgamma(xxx, shape = k, scale = theta))</pre>
k <- mean(total2)^2 / var(total2)</pre>
theta <- var(total2)/mean(total2)
lines(xxx <- seq(min(total2), max(total2), len = 1000), dgamma(xxx, shape = k,</pre>
                                                                  scale = theta),
      lty = 2)
mu <- mean(log(total2))</pre>
sigma <- sd(log(total2))</pre>
lines(xxx <- seq(min(total2), max(total2), len = 1000), dlnorm(xxx, mu, sigma), lty = 3)
lines(density(total2, bw = 1000), lwd = 2)
legend(15000,0.00012,c('Gamma por MM','Gamma por MLE', 'Log-normal','No-paramétrica'),
       lty=c(1,2,3,1), lwd = c(1, 1, 1, 2), col = rep("black", 4))
```

Distribución del ingreso total del sector de los barberos por mes en Medellín

Ingreso en millones de pesos

histo.decil(total2) # x = Ingreso en millones de pesos

Gráfico Histograma Decil

boxplot(total2, main = "Distribución del ingreso total del sector de los barberos\n por mes en Medellín

Distribución del ingreso total del sector de los barberos por mes en Medellín

Ingreso en millones de pesos

Distribución del ingreso total del sector de los barberos por mes en Medellín

kable(hdrTotal\$hdr, col.names = c("Límite inferior", "Límite superior"))

	Límite inferior	Límite superior
99%	2859681066	17078707544
95%	3706614870	15283162216
50%	7561952663	12166782157

```
a <- summary(total)
kable(t(as.list(a)), col.names = names(a) )</pre>
```

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
2763017751.47929	7290842270.71006	9665710059.1716	9658250223.7426	11899152181.9527	21161956360.9467

```
aa <- round(quantile(total,probs=c(0.05,1:5/10)))
aaa <- round(quantile(total,probs=c(6:9/10,0.95)))
kable(t(as.list(aa)), col.names = names(aa))</pre>
```

5%	10%	20%	30%	40%	50%
4597303439	5356490385	6660236686	7807915311	8772470414	9665710059

kable(t(as.list(aaa)), col.names = names(aaa))

60%	70%	80%	90%	95%
10506523669	11441660503	12424008876	13797170118	14886683062

Desviación Estándar	Rango Intercuartil	Moda
3162750751.66839	4608309911.2426	9928582581.36095

Distribución conjunta del Número promedio de servicios al mes y Ingreso promedio por servicio

Número promedio de servicios al mes