Hopf Algebras Acting on Quantum Planes

Brandon Mather

1 Hopf Algebra Definitions

Definition 1.1. A Hopf Algebra, $(H, \nabla, \eta, \triangle, \varepsilon, S)$, is a bialgebra H over a field $\mathbb C$ with an antipode $S: H \to H$ where the bialgebra has product $\nabla: H \otimes H \to H$, unit $\eta: \mathbb C \to H$, coproduct $\Delta: H \to H \otimes H$, counit $\varepsilon: H \to \mathbb C$ such that the following diagrams commute

$$Associativity: \begin{array}{c} H \otimes H \otimes H \\ \downarrow id \otimes \nabla \\ H \otimes H \end{array} \begin{array}{c} \downarrow \\ \downarrow \downarrow id \otimes \nabla \\ \end{pmatrix} \begin{array}{c} \downarrow \\ \downarrow \downarrow \\ \downarrow \downarrow \downarrow \\ \end{pmatrix} \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \downarrow \\ \end{pmatrix} \begin{array}{c} \downarrow \\ \downarrow \\ \end{pmatrix} \end{array} \begin{array}{c} \downarrow \\ \end{pmatrix} \begin{array}{c} \downarrow \\ \end{pmatrix} \begin{array}{c} \downarrow \\ \end{pmatrix} \begin{array}{c} \downarrow \\ \end{pmatrix} \end{array} \begin{array}{c} \downarrow \\ \end{pmatrix} \begin{array}{c} \downarrow \\ \end{pmatrix} \begin{array}{c} \downarrow \\ \end{pmatrix} \end{array} \begin{array}{c} \downarrow \\ \end{pmatrix} \begin{array}{c} \downarrow \\ \end{pmatrix} \end{array} \begin{array}{c} \downarrow \\ \end{pmatrix} \begin{array}{c} \downarrow \\ \end{pmatrix} \end{array} \begin{array}{c} \downarrow \\ \end{pmatrix} \begin{array}{c} \downarrow \\ \end{pmatrix} \end{array} \begin{array}{c} \downarrow \\ \end{pmatrix} \begin{array}{c} \downarrow \\ \end{pmatrix} \end{array} \begin{array}{c} \downarrow \\ \end{pmatrix} \begin{array}{c} \downarrow \\ \end{pmatrix} \end{array} \begin{array}{c} \downarrow \\ \end{pmatrix} \end{array} \begin{array}{c} \downarrow \\ \end{pmatrix} \begin{array}{c} \downarrow \\ \end{pmatrix} \end{array} \begin{array}{c} \downarrow \\ \end{pmatrix} \end{array} \begin{array}{c} \downarrow \\ \end{pmatrix} \end{array} \begin{array}{c} \downarrow \\ \end{pmatrix} \begin{array}{c} \downarrow \\ \end{pmatrix} \end{array} \begin{array}{c} \downarrow \\ \end{pmatrix} \end{array} \begin{array}{c} \downarrow \\ \downarrow \\ \end{pmatrix} \end{array} \begin{array}{c} \downarrow \\ \end{pmatrix} \end{array} \begin{array}{c} \downarrow \\ \downarrow \\ \end{pmatrix} \begin{array}{c} \downarrow \\ \\ \downarrow \\ \end{array} \begin{array}{c} \downarrow \\ \\ \downarrow \\ \end{array} \begin{array}{c} \downarrow \\ \\ \downarrow \\ \end{array} \end{array} \begin{array}{c} \downarrow \\ \\ \downarrow \\ \end{array} \begin{array}{c} \downarrow \\ \\ \\ \downarrow \\ \end{array} \begin{array}{c} \downarrow \\ \\ \\ \downarrow \\ \end{array} \begin{array}{c} \downarrow \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \downarrow \\ \\ \\ \\ \end{array} \begin{array}{c} \downarrow \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \downarrow \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \downarrow \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\$$

For the sake of brevity, we write in general that $\triangle(h) = \sum h_{(1)} \otimes h_{(2)}$, this is called Sweedler notation.

Definition 1.2. A left action of a Hopf algebra on a vector space V is a tuple (α, V) so that $\alpha: H \otimes V \to V$ is a map satisfying the diagrams

In this case, V is called a left Hopf-module.

Definition 1.3. When an algebra A is a left Hopf-module with action α , we call it a left Hopf-module algebra if it also satisfies the diagrams

Definition 1.4. Let $Q = (q_{ij})$ be an $n \times n$ matrix of roots of unity where $q_{ii} = 1 = q_{ij}q_{ji}$. A quantum polynomial ring is $\mathbb{C}_Q[v_1, \ldots, v_n] = \mathbb{C}\langle v_1, \ldots, v_n | v_j v_i = q_{ij}v_iv_j \rangle$.

Definition 1.5. A quantum group is a Hopf algebra H with a bijective antipode and an element $R \in H \otimes H$ satisfying

1.
$$R\left(\sum h_{(1)} \otimes h_{(2)}\right) = \sum h_{(2)} \otimes h_{(1)}$$

2.
$$\triangle \otimes id(R) = R_{1,3}R_{2,3}$$

3.
$$id \otimes \triangle(R) = R_{1,3}R_{1,2}$$

where writing $R = \sum R_{(1)} \otimes R_{(2)}$, then $R_{1,2} = \sum R_{(1)} \otimes R_{(2)} \otimes 1$, $R_{1,3} = \sum R_{(1)} \otimes 1 \otimes R_{(2)}$, and $R_{2,3} = \sum 1 \otimes R_{(1)} \otimes R_{(2)}$.

2 Examples

Example 2.1. In his seminal book, "Hopf Algebras", Sweedler defined a 4-dimensional non-commutative, non-cocommutative Hopf algebra

$$H_4 = \langle g, x \mid g^2 = 1, x^2 = 0, gx = -xg \rangle$$

with operations

$$\triangle g = g \otimes g, \quad \triangle x = x \otimes 1 + g \otimes x, \quad \varepsilon(g) = 1, \quad \varepsilon(x) = 0,$$

$$S(g) = g^{-1} \quad S(x) = -xg^{-1}.$$

$$\mathbb{C}_{-1}[v_1,v_2] \text{ is an H_4-module algebra via } g \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ x \mapsto \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

$$H_4 \text{ has the R-matrix } R = R = 1 \otimes 1 - 2\frac{1-g}{2} \otimes \frac{1-g}{2} + x \otimes x + 2x\frac{1-g}{2} \otimes x\frac{1-g}{2} - 2x \otimes x\frac{1-g}{2}.$$

Example 2.2. In "Finite Ring Groups", Kac and Paljutkin defined an 8-dimensional non-commutative, non-cocommutative Hopf Algebra

$$H_8 = \langle x, y, z \mid x^2 = y^2 = 1, xy = yx, xz = zy, yz = zx, z^2 = \frac{1}{2}(1 + x + y - xy) \rangle$$

with operations

 H_8 has the module-algebras $\mathbb{C}_q[v_1, v_2]$ with $q^2 = -1$, $\mathbb{C}_Q[v_1, v_2, v_3, v_4]$ with $q_{12} = q_{34}^{-1}, q_{13} = q_{24}^{-1}, q_{14}^2 = 1$ and $q_{23}^2 = -1$, and $\mathbb{C}_{-1}[v_1, v_2]$. H_8 has 6 non-isomorphic quasitriangular structures.

Example 2.3. Described by P. Kulish and N. Reshetikhin in "Quantum linear problem for the sine-Gordon equation and higher representations".

$$\mathcal{U}_q(\mathfrak{sl}_2) = \langle E, F, K, K^{-1} \mid EF - FE = (q - q^{-1})^{-1}(K - K^{-1}), KEK^{-1} = q^2E, KFK^{-1} = q^{-2}F, KK^{-1} = 1 = K^{-1}K \rangle$$

with operations

 $\mathcal{U}_q(\mathfrak{sl}_2)$ has $\mathbb{C}_q[v_1, v_2]$ as a module algebra where $q^2 \neq 1$ via $E \mapsto \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, F \mapsto \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix},$

$$K \mapsto \begin{bmatrix} q & 0 \\ 0 & q^{-1} \end{bmatrix}, K^{-1} \mapsto \begin{bmatrix} q^{-1} & 0 \\ 0 & 1 \end{bmatrix}.$$

The R-matrix of $\mathcal{U}_q(\mathfrak{sl}_2)$ is in a completion of $\mathcal{U}_q(\mathfrak{sl}_2) \otimes \mathcal{U}_q(\mathfrak{sl}_2)$.

3 Smash Product Algebras

Definition 3.1. Given a Hopf algebra H and a left Hopf-module algebra A, the smash product algebra A#H is the algebra where $A\#H = A\otimes H$ as a \mathbb{C} -vector space and has product

$$(a \otimes h)(b \otimes k) = \sum a(h_{(1)} \cdot b) \otimes h_{(2)}k.$$

Definition 3.2. Let H be a Hopf algebra, $G(H) = \{h \in H \mid \triangle(h) = h \otimes h\}$ is called the collection of group-like elements and $P(H) = \{h \in H \mid \triangle(h) = h \otimes 1 + 1 \otimes h\}$ is called the collection of primitive elements.

Theorem 3.3 (Cartier-Kostant-Milnor-Moore). Let H be a cocommutative Hopf algebra over \mathbb{C} , then as Hopf algebras

$$H \cong \mathcal{U}(P(H)) \# \mathbb{C}G(H).$$