

Course > Week 3... > Proble... > Proble...

Problem Set 3

Problems 1-7 correspond to "Linear algebra I: basic notation and dot products"

Problem 1

1/1 point (graded)

A data set consists of 200 points in \mathbb{R}^{80} . If we store these in a matrix, with one point per row, what is the dimension of the matrix?

Submit

Problem 2

3/3 points (graded)

For
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 and $B = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$, compute

a)
$$A^{T} =$$

$$\begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

$$\begin{pmatrix} 6 & 3 \\ 5 & 2 \\ 4 & 1 \end{pmatrix}$$

b)
$$A + B =$$

$$\begin{pmatrix} 2 & 2 & 4 \\ 4 & 6 & 6 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 2 & 4 \\
5 & 4 & 6
\end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 2 \\ 5 & 5 & 6 \end{pmatrix}$$

$$\begin{pmatrix} 6 & 3 & 1 \\ 2 & 4 & 7 \end{pmatrix}$$

c) A - B =

$$\begin{pmatrix} 2 & 1 & 0 \\ 3 & 1 & 1 \end{pmatrix}$$

Submit

Problem 3

2/2 points (graded)

Let
$$x = (1, 0, -1)$$
 and $y = (0, 1, -1)$.

a) What is $x \cdot y$?

b) What is the angle between these two vectors, in degrees (give a number in the range 0 to 180)?

Problem 4

2/2 points (graded)

For each pair of vectors below, say whether or not they are orthogonal.

a)
$$(1, 3, 0, 1)$$
 and $(-1, -3, 0, -1)$

not orthogonal 🔻 🗸

b)
$$(1, 3, 0, 1)$$
 and $(1, 3, 0, -10)$

orthogonal

Submit

Problem 5

1/1 point (graded)

Find the unit vector in the same direction as x = (1, 2, 3).

$$(1,2,3)/\sqrt{7}$$

$$(1,2,3)/\sqrt{14}$$

Submit

Problem 6

1/1 point (graded)

Find all unit vectors in \mathbb{R}^2 that are orthogonal to (1, 1).

 $(1,1)/\sqrt{2}$ and $(-1,-1)/\sqrt{2}$

(1, -1) and (-1, 1)

(1, 1)/2 and (-1, -1)/2

 $(1, -1)/\sqrt{2}$ and $(-1, 1)/\sqrt{2}$

~

Submit

Problem 7

1/1 point (graded)

How would you describe the set of all points $x \in \mathbb{R}^d$ with $x \cdot x = 25$? Select all that apply.

 $lap{All}$ All points of ℓ_2 length 5.

The surface of a sphere that is centered at the origin, of radius 25.

All points of ℓ_2 length 25.

The surface of a sphere that is centered at the origin, of radius 5.

~

Submit

Problems 8-17 correspond to "Linear algebra II: matrix products and linear functions"

Problem 8

1/1 point (graded)

Which of the following is a linear function of $x \in \mathbb{R}^3$? Select all that apply.

Submit

Problem 9

1/1 point (graded)

True or false: the function $f(x) = 2x_1 - x_2 + 6x_3$ can be written as $w \cdot x$ for $x \in \mathbb{R}^3$, where w = (2, -1, 6).

Submit

Problem 10

3/3 points (graded)

Consider the linear function that is expressed by the matrix $\begin{pmatrix} 1 & 2 & 0 \\ 3 & 0 & -1 \end{pmatrix}$.

This function maps vectors in \mathbb{R}^p to \mathbb{R}^q .

a) What is p?

b) What is q?

2	~
---	----------

c) Which of the following vectors are mapped to zero?

$$(1,4,-1)$$

$$(4, -2, 1)$$

Submit

Problem 11

3/3 points (graded)

Compute the product: $\begin{pmatrix} 1 & 0 & -1 \\ 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 3 & 0 & 1 \\ 0 & 0 & 1 \\ 2 & 6 & 0 \end{pmatrix}$:

$$= \begin{pmatrix} 1 & a & 1 \\ 14 & b & c \end{pmatrix}$$

$$a =$$

-6

b =

24

c =

5

Submit

Problem 12

4/4 points (graded)

For a certain pair of matrices A, B, the product AB has dimension 10×20 . Suppose A has 30 columns.

a)
$$A \in \mathbb{R}^{m \times n}$$

m =

n =

b)
$$B \in \mathbb{R}^{r \times s}$$

r =

Problem 14

1/1 point (graded)

Vector x has length 10. What is $x^Txx^Txx^Tx^Tx^Tx^T$?

1000000

Submit

Problem 15

5/5 points (graded)

Suppose
$$x = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}$$

a) What is x^Tx ?

35

b) What is xx^T ?

$$xx^T = \begin{pmatrix} 1 & a & b \\ 3 & 9 & c \\ 5 & 15 & d \end{pmatrix}$$

a =

b =

c =

d =

Submit

Problem 16

1/1 point (graded)

Vectors $x, y \in \mathbb{R}^d$ both have length 2. If $x^Ty = 2$, what is the angle between x and y, in degrees (the answer is an integer in the range 0 to 180)?

Problem 17

2/2 points (graded)

The line shown below can be expressed in the form $w \cdot x = 12$ for $x \in \mathbb{R}^2$. What is w?

$$w = (w_1, w_2)$$

$$w_1 =$$

$$w_2 =$$

Problems 18-24 correspond to "Linear algebra III: square matrices as quadratic functions"

Problem 18

4/4 points (graded)

The quadratic function $f: \mathbb{R}^3 \to \mathbb{R}$ given by

$$f(x) = 3x_1^2 + 2x_1x_2 - 4x_1x_3 + 6x_3^2$$

can be written in the form x^TMx for some **symmetric** matrix M. What are the missing entries in M?

$$M = \begin{pmatrix} a & 1 & b \\ 1 & c & 0 \\ -2 & d & 6 \end{pmatrix}$$

a =

b =

c =

0

~

d =

0

Submit

Problem 19

7/7 points (graded)

Answer the following questions about the quadratic function $f: \mathbb{R}^3 \to \mathbb{R}$ associated with the matrices A.

a) True or false: the quadratic function associated with A = diag(6, 2, -1) is $f(x_1, x_2, x_3) = 6x_1^2 + 2x_2^2 - x_3^2$.

True

False

b)
$$A = \begin{pmatrix} 1 & 2 & 4 \\ 2 & -1 & 4 \\ 2 & -2 & 1 \end{pmatrix}$$

Find the coefficients of the function $f(x_1, x_2, x_3) = ax_1^2 + bx_1x_2 + cx_1x_3 + dx_2^2 + ex_2x_3 + fx_3^2$ generated by this matrix.

a =

b =

c =

6

d =

e =

Submit

Problem 20

1/1 point (graded)

Which of the following matrices is necessarily symmetric? Select all that apply.

 \checkmark AA^T for arbitrary matrix A.

Problem 21

2/2 points (graded) Let A = diag(1, 2, 3, 4, 5, 6, 7, 8).

a) What is |A|?

40320

b) True or false: $A^{-1} = diag(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8})$

Submit

Problem 22

2/2 points (graded)

Vectors $u_1, ..., u_d \in \mathbb{R}^d$ all have unit length and are orthogonal to each other. Let U be the $d \times d$ matrix whose rows are the u_i .

a) What is UU^T ?

b) What is U^{-1} ?

Submit

Problem 23

1/1 point (graded)

Matrix
$$A = \begin{pmatrix} 1 & 2 \\ 3 & z \end{pmatrix}$$
 is singular. What is z ?

11/27/2019

6

Submit

Problem 24

1/1 point (graded)

The *trace* of a $d \times d$ matrix A is defined to be $tr(A) = \sum_{i=1}^{d} A_{ii}$. Which of the following statements is true, for arbitrary $d \times d$ matrices A, B? Select all that apply.

$$\operatorname{tr}(A) = \operatorname{tr}(A^T).$$

$$tr(A+B) = tr(A) + tr(B).$$

$$tr(AB) = tr(A)tr(B)$$
.

$$tr(AB) = tr(BA).$$

Submit

Problems 25-27 correspond to "The multivariate Gaussian"

Problem 25

1/1 point (graded)

A spherical Gaussian has mean $\mu = (1, 0, 0)$. At which of the following points will the density be the same as at (1, 1, 0)? Select all that apply.

(0,0,0)

7/2019	Problem Set 3 Problem Set 3 DSE220x Courseware edX
(1, 1, 1)	
(2, 0, 0)	
(1, 0, 1)	
✓	
Submit	
Problem 26	
1/1 point (graded) How many real-	valued parameters are needed to specify a diagonal Gaussian in \mathbb{R}^d ?
$\bigcirc d$	
• 2 <i>d</i>	

Problems 28-29 correspond to "Gaussian generative models"

Problem 28

3/3 points (graded)

Suppose we solve a classification problem with k classes by using a Gaussian generative model in which the jth class is specified by parameters π_j, μ_j, Σ_j . In each of the following situations, say whether the decision boundary is linear, spherical, or other quadratic.

a) We compute the empirical covariance matrices of each of the k classes, and then set $\Sigma_1 = \Sigma_2 = \dots = \Sigma_k$ to the **average** of these matrices.

b) The covariance matrices Σ_i are all **diagonal**, but no two of them are the same.

c) There are two classes (that is, k=2) and the covariance matrices Σ_1 and Σ_2 are multiples of the identity matrix.

Submit

Problem 29

1/2 points (graded)

Consider a binary classification problem in which we fit a Gaussian to each class and find that they are both centered at the origin but have different covariances: $\mu_1 = \mu_2 = 0$ and $\Sigma_1 \neq \Sigma_2$. Derive the precise form of the **decision boundary**, that is, the points x for which the two classes are equally likely. You will find that it is

$$x^{T}(\Sigma_{2}^{-1} - \Sigma_{1}^{-1})x = a \ln \frac{|\Sigma_{1}|}{|\Sigma_{2}|} + b \ln \frac{\pi_{1}}{\pi_{2}}.$$

What are a and b?

a =

b =

Gaussian

Submit

© All Rights Reserved