Amendments to the Claims

Please replace the existing listing of claims with the following:

- (Currently Amended) A method for automated graphics conversion of graphic object data for efficient delivery <u>from a graphic converter</u> to wireless devices connected to a wireless communications network, the graphic object data defining a <u>vector</u> graphics object, the method comprising—steps of:
- (a) converting first the graphic object data defining the <u>vector graphics</u> object from an edge record based format to a path format,

the edge record based format including a plurality of edge records each defining an edge of the graphic object, the edge records including information associating the defined edges with fill styles that the edges border against,

the path format including path elements that are each associated with a fill style and define one or more polygon shapes at least partially filled with the associated fill style, the path elements collectively defining the graphic object;

- (b) converting the graphic object data from the path format to a second format, the path format including path elements that are each associated with a fill style and define one or more polygon shapes at least partially filled with the associated fill style, the path elements collectively defining the graphic object, the conversion including:
 - (i)—redefining the polygon shapes defined by the path elements as groups of triangles; and
 - (ii)—combining at least some triangles in the groups of triangles into further polygon shapes that fall within predetermined complexity thresholds <u>based on predetermined capabilities of a wireless device</u>; and
- $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

2. (Cancelled)

3. (Currently Amended) The method of claim 1 wherein the first converting of first graphic object data step includes:

for each fill style, identifying from the edge records each unique vertex that borders on the fill style and identifying each of the outgoing edges from the identified vertices that border on the fill style; and

for each fill style, creating the associated path element, based on the identified vertices and outgoing edges.

- 4. (Original) The method of claim 3 wherein the path format is an SVG compatible format.
- 5. (Original) The method of claim 3 wherein the edge record based format is an edge record based flash file format.
- (Currently Amended) The method of claim 1 wherein the second format graphic object data includes information defining the further polygonshas predetermined capabilities, and wherein the complexity thresholds are based on the predetermined capabilities of the wireless device.
- (Original) The method of claim 1 wherein the complexity thresholds are selected so that the further polygons each have a continuous interior fill style region without internal island contours.
- 8. (Original) The method of claim 1 wherein the complexity thresholds are selected so that the further polygons each have only convex vertices.
- 9. (Original) The method of claim 1 wherein the complexity thresholds are selected so that the further polygons each have under a predetermined number of sides.
- 10. (Original) The method of claim 1 wherein the complexity thresholds are selected so that the further polygons are each simple polygons.
- (Currently Amended) A method for automated graphics conversion of graphic object data for efficient delivery <u>from a graphic converter</u> to wireless devices connected

to a wireless communications network, the graphic object data defining a vector graphics object, the conversion being from an edge record based format to a path format and then to a path based triangulated format, the edge record based format including a plurality of edge records each defining an edge of the vector graphics object, the edge records including information associating the defined edges with fill styles that the edges border against, the path format including path elements that each define one or more polygon shapes that are filled with an associated fill style, the path elements collectively defining the vector graphics object, the method comprising including steps of:

for each fill style, identifying from the edge records each unique vertex that borders on the fill style and identifying each of the outgoing edges from the identified vertices that border on the fill style;

for each fill style, creating an associated path element defining one or more polygon shapes that are filled with the identified unique fill style, based on the identified vertices and outgoing edges;

converting the graphic object data from the path format to the triangulated format by redefining the polygon shapes defined by the path elements as groups of triangles;

converting the graphic object data from the triangulated format to a further format by combining at least some of triangles in the groups of triangles into further polygon shapes that fall within predetermined complexity thresholds based on predetermined capabilities of a wireless device; and

transmitting the converted <u>vector graphics</u> object <u>in the further format</u> to <u>the [a]</u> wireless device over the wireless communications network for display thereon.

- 12. (Cancelled)
- 13. (Cancelled)
- 14. (Currently Amended) A system for automated graphics conversion of initial graphic object data for efficient delivery <u>from a graphic converter</u> to wireless devices connected to a wireless communications network, the initial graphic object data

defining a <u>vector graphics</u> object, the <u>conversion being from</u> an edge record based format to a path format, the edge record based format including a plurality of edge records each defining an edge of the <u>vector graphics</u> object, the edge records including information associating the defined edges with fill styles that the edges border against, the system for further converting the graphic object data defining the <u>vector graphics</u> object having associated fill styles from the path format to a second format, the path format including path elements that are each associated with a fill style and define one or more polygon shapes at least partially filled with the associated fill style, the path elements collectively defining the <u>vector graphics</u> object, the system comprising:

a first sub-converter for identifying each unique fill style in the edge record based format initial graphic object data, and for each identified unique fill style, identifying from the edge records each unique vertex that borders on the fill style and identifying each of the outgoing edges from the identified vertices that border on the fill style;

a second sub-converter for creating the associated path element, based on the identified vertices and outgoing edges, for each identified unique fill style;

a triangulation module for redefining the polygon shapes defined by the path elements as groups of triangles;

a combining module for combining at least some of triangles in the groups of triangles into further polygon shapes that fall within predetermined complexity thresholds <u>based on predetermined capabilities of a wireless device</u>; and

a transmitter for transmitting the converted <u>vector graphics</u> object to <u>the [a]</u> wireless device over the wireless communications network for display thereon.

15. (Cancelled)

16. (Original) The system of claim 14 wherein the complexity thresholds are configured so that the further polygons each are selected from the group consisting of polygons that have a continuous interior fill style region without internal island contours, polygons that have only convex vertices, polygons that have under a predetermined number of sides, and polygons that are simple polygons.

17. (Currently Amended) A computer software product having a computer-readable medium tangibly embodying computer executable instructions for automated graphics conversion of graphic object data for efficient delivery from a graphic converter to wireless devices connected to a wireless communications network, the graphic object data defining a weetor-graphics object, the computer executable instructions comprising:

computer executable instructions for converting initially the graphic object data defining the vector graphics object from an edge record based format to a path format,

the edge record based format including a plurality of edge records each defining an edge of the vector graphics object, the edge records including information associating the defined edges with fill styles that the edges border against,

the path format including path elements that are each associated with a fill style and define one or more polygon shapes at least partially filled with the associated fill style, the path elements collectively defining the vector graphics object;

computer executable instructions for converting the graphic object data from [a] the path format to a second format, the path format including path elements that are each associated with a fill style and define one or more polygon shapes at least partially filled with the associated fill style, the path elements collectively defining the graphic object, the conversion including:

- (i) redefining the polygon shapes defined by the path elements as groups of triangles; and
- (ii) combining at least some of triangles in the groups of triangles into further polygon shapes that fall within predetermined complexity thresholds <u>based on</u> predetermined capabilities of a wireless device[,]; and

computer executable instructions for converting initially the graphic object data defining the graphic object from an edge record based format to the path format, the edge record based format including a plurality of edge records each defining an edge of the graphic object, the edge records including information associating the defined edges with fill styles that the edges border against; and

computer executable instructions for transmitting the converted <u>vector graphics</u> object in the second format to the [a] wireless device over the wireless communications network for display thereon.

18. (Cancelled)

- (new) The method of claim 1, wherein the edge record based format is SWF and the path format is Scalable Vector Graphics (SVG) format.
- 20. (new) The method of claim 11, wherein the edge record based is SWF and the path format is Scalable Vector Graphics (SVG) format.
- 21. (new) The system of claim 14, wherein the edge record based format is SWF and the path format is Scalable Vector Graphics (SVG) format.
- 22. (new) The computer software product of claim 17, wherein the edge record based format is SWF and the path format is Scalable Vector Graphics (SVG) format.