东南大学考试卷 (A卷)

课程名称 高等数学AB(上)期中 考试学期 12-13-2 得分 ______ 适用专业 选学高数AB的各类专业 考试形式 闭卷 考试时间长度 120 分钟

题号	_	=	Ξ	四	五	六
得分						
评阅人						

- 一、填空题(本题共6小题,前5题每题4分,第6题9分,共29分)
- 1. 设斜率为 $-\frac{1}{2}$ 的直线L是曲线 $y = \frac{2}{x}(x > 0)$ 的切线,则L的方程为______;

- 4. 设 $y = f(\ln(x + \sqrt{a^2 + x^2}))$, 其中 f(u) 为可微函数, 则微分dy =_______;
- 5. 函数 $f(x) = e^{\sin x}$ 带Peano余项的 2 阶Maclaurin公式是 ;
- 6. 分别举出符合下列各题要求的一例,并将其填写在横线上:
- (1) 极限 $\lim_{n\to\infty} |a_n|$ 存在, 但极限 $\lim_{n\to\infty} a_n$ 不存在的数列 $a_n = ______;$
- (2) 极限 $\lim_{x\to 0} f(x)$ 与 $\lim_{x\to 0} f(x)g(x)$ 都存在,但极限 $\lim_{x\to 0} g(x)$ 不存在的函数 $f(x) = \underline{\qquad}, g(x) = \underline{\qquad};$
- (3) 在 x = 0 处导数不存在,但 x = 0 是极值点的连续函数有______
- 二、 单项选择题(本题共3小题, 每小题4分, 满分12分)

(A)
$$a = b = e$$
 (B) $a = b = e^{-1}$ (C) $a = -b = e^{-1}$ (D) $a = -b = -e^{-1}$

2. 设
$$f(x) = (x + |\sin x|)\cos x$$
, 则

(A)
$$f'(0) = 2$$
 (B) $f'(0) = 0$ (C) $f'(0) = 1$ (D) $f(x)$ 在 $x = 0$ 处不可导

3. 下列命题正确的是:

- (A)任何两个无穷小量之比的极限必存在(极限值为有限实数或∞);
- (B)若数列 $\{a_{2k-1}\}$ 和 $\{a_{2k}\}$ 都收敛,则数列 $\{a_n\}$ 也收敛;
- (C)若数列 $\{a_n\}$ 收敛,数列 $\{b_n\}$ 发散,则数列 $\{a_nb_n\}$ 必发散;
- (D)若数列 $\{a_n\}$ 单调增加,数列 $\{b_n\}$ 单调减少,且 $\lim_{n\to\infty}(a_n-b_n)=0$,则 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$.
- 三、 计算下列各题(本题共5小题,每小题7分,满分35分)
- 1. 求极限 $\lim_{x\to 0} \frac{\sqrt{1+x^4}-\sqrt[3]{1-2x^4}}{(1-\cos x)\sin^2 x}$.
- 2. 求极限 $\lim_{n\to\infty} \sqrt[n]{n^4+4^n}$.

3. 设 y = y(x) 是由方程 $x + y = \arctan(x - y)$ 所确定的隐函数,求导数 $\frac{dy}{dx}$.

四、(本题满分8分) 证明: 当x > 0时, $x^2 + 1 > \ln x$.

五、(本题满分8分) 设函数f(x)在闭区间[0,3a] (a>0)上连续,在开区间(0,3a)内可导,且f(3a)=f(a)< f(0)< f(2a). 证明: 至少存在一点 $\xi\in(0,2a)$, 使得 $f'(\xi)=f'(\xi+a)$.

六、 (本题满分8分) (1) 证明不等式: $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$;

(2) 设 $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$, 利用单调有界原理证明数列 $\{x_n\}$ 收敛.