LINEAR ALGEBRA FOR DATA SCIENCE

ISEP 1ère année

2023-2024

SESSION 12th - December 22nd 2023

Cours partially based on ... see the References

Outline

- Linear Algebra Basics
- Eigenvalue Decomposition
- Singular Value Decomposition (SVD)*

Outline

- Linear Algebra Basics
- Eigenvalue Decomposition
- Singular Value Decomposition (SVD)*

- Vector in Rⁿ is an ordered set of n real numbers.
 - e.g. v = (1,6,3,4) is in R^4
 - A column vector:
 - A row vector:
- m-by-n matrix is an object in R^{mxn} with m rows and n columns, each entry is filled with a (typically) real number:

$$\begin{array}{c} (1 \ 6 \ 3 \ 4) \\ \hline \\ (1 \ 6 \ 3 \ 4) \\ \hline \\ (4 \ 78 \ 6) \\ \hline \\ (9 \ 3 \ 2) \\ \end{array}$$

Vector norms: A norm of a vector ||x|| is informally a measure of the "length" of the vector.

- The p-norm
$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Common norms: L₁, L₂ (Euclidean)

$$||x||_1 = \sum_{i=1}^n |x_i| \qquad ||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

L_{infinity}

$$||x||_{\infty} = \max_{i} |x_{i}|$$

We will use lower case letters for vectors. For instance, we denote the vector x and its elements x_i .

Vector dot (inner) product:

$$x^T y \in \mathbb{R} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ x_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i.$$

If $u \cdot v = 0$, $||u||_2 \neq 0$, $||v||_2 \neq 0 \rightarrow u$ and v are orthogonal If $u \cdot v = 0$, $||u||_2 = 1$, $||v||_2 = 1 \rightarrow u$ and v are orthonormal

Vector outer product:

$$xy^{T} \in \mathbb{R}^{m \times n} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} = \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_n \\ x_2y_1 & x_2y_2 & \cdots & x_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_my_1 & x_my_2 & \cdots & x_my_n \end{bmatrix}$$

We will use upper case letters for matrices. The elements are referred to as a_{ij} .

Matrix product:

$$A \in \mathbb{R}^{m \times n}$$
 $B \in \mathbb{R}^{n \times p}$ $C = AB \in \mathbb{R}^{m \times p}$ $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

e.g.

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

$$C = AB = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

Basic concepts: Special matrices

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$$
 diagonal also denoted $diag(a,b,c)$

$$\begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix}$$
 upper-triangular
$$\begin{pmatrix} a & 0 & 0 \\ b & c & 0 \\ d & e & f \end{pmatrix}$$
 lower-triangular

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 I (identity matrix)
$$\mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 the null vector in dimension 3

Orthogonal projection of a vector a on (or onto) another vector b (different from the null vector)

Let a and b be two vectors such that $b \neq 0$, then, the orthogonal projection of a onto b is a vector a_1 given by:

$$a_1 = \frac{a \cdot b}{b \cdot b} b = \parallel a \parallel (\cos \theta) \frac{b}{\parallel b \parallel}$$

<u>Definition</u>: Given a *n* x *m* matrix **A**, the transpose of **A** is the *m* x *n* matrix, denoted A^{T} whose element (i,j) corresponds to the element (j,i) of A^{T}

Transpose: You can think of it as

"flipping" the rows and columns

OR

– "reflecting" vector/matrix on line

e.g.
$$\begin{pmatrix} a \\ b \end{pmatrix}^T = \begin{pmatrix} a & b \end{pmatrix}$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

Properties:

$$\bullet \ (A^T)^T = A$$

$$\bullet \ (AB)^T = B^T A^T$$

Determinant (1/2)

The determinant of a $n \times n$ matrix \mathbf{A} , denoted $det(\mathbf{A})$ or $|\mathbf{A}|$ is a real number, some examples:

- For a 1x1 matrix $\mathbf{A} = [a]$, $det(\mathbf{A}) = a$
- For a 2x2 matrix $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $det(\mathbf{A}) = (ad-cb)$

• For a 3x3 matrix
$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 is:

$$det(\mathbf{A}) = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

Determinant (2/2)

General definition:

For $n \ge 2$, the **determinant** of an $n \times n$ matrix $A = [a_{ij}]$ is the sum of n terms of the form $\pm a_{1j} \det(A_{1j})$, with plus and minus signs alternating, where the entries $a_{11}, a_{12}, \ldots, a_{1n}$ are from the first row of A. In symbols,

$$\det(A) = a_{11} \det(A_{11}) - a_{12} \det(A_{12}) + \dots + (-1)^{1+n} a_{1n} \det(A_{1n})$$

$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(A_{1j})$$

Where the submatrix \mathbf{A}_{ij} is obtained by crossing out row i and column j

Determinant - geometrical interpretation

• For a 2x2 matrix A, $|det(A)| = \{area of the parallelogram determined by the columns of <math>A\}$

Determinant - geometrical interpretation

 For a 3x3 matrix A, |det(A)|={volume of the parallelepiped determined by the columns of A}

Determinant - properties

Properties of Determinants

Let A and B be two n x n matrices.

- A is invertible if and only if $det(A) \neq 0$.
 - ightharpoonup A is invertible if there exists another matrix denoted A^{-1} such that $AA^{-1}=A^{-1}A=I$
- det(AB) = (det(A))(det(B)) (if they exist).
- $det(A^T) = det(A)$.
- If *A* is triangular, then det(A) is the product of the entries on the main diagonal of *A*.

Linear combination

Given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ in \mathbb{R}^n and given scalars c_1, c_2, \dots, c_p , the vector \mathbf{y} defined by :

$$\mathbf{y} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_p \mathbf{v}_p$$

is called a **linear combination** of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ with weights c_1, c_2, \dots, c_p .

• The weights can be any real number, including zero.

Linear combination example

$$\mathbf{v}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Linear combinations of \mathbf{v}_1 and \mathbf{v}_2 .

$$\mathbf{u} = 3\mathbf{v}_1 - 2\mathbf{v}_2$$
 $\mathbf{w} = \frac{5}{2}\mathbf{v}_1 - \frac{1}{2}\mathbf{v}_2$

Linear independence

- A set of vectors is linearly independent if none of them can be written as a linear combination of the others.
- Vectors $v_1,...,v_k$ are linearly independent if $c_1v_1+...+c_kv_k=0$

implies
$$c_1 = \dots = c_k = 0$$

$$\begin{pmatrix} | & | & | \\ v_1 & v_2 & v_3 \\ | & | & | \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{array}{ccc} \mathbf{e.g.} & \begin{pmatrix} 1 & 0 \\ 2 & 3 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \end{array}$$

e.g. $\begin{pmatrix} 1 & 0 \\ 2 & 3 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ The equality holds <u>if and only if</u> (u,v)=(0,0), i.e. the columns are linearly independent.

$$x_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 $x_2 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}$ $x_3 = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$ They are not linearly independent since $x_3 = -2x_1 + x_2$

$$x_3 = \left[\begin{array}{c} 2 \\ -3 \\ -1 \end{array} \right]$$

Span of a vector space

- If all vectors in a vector space may be expressed as linear combinations of a set of vectors $v_1,...,v_k$, then $v_1,...,v_k$ spans this space.
- The cardinality of this set is the dimension of the vector space.

• A basis of a vector space V is a maximal set of linearly independent vectors that span V. A basis is also called a linearly independent spanning set.

Rank of a Matrix

- rank(A) (the rank of a m-by-n matrix A) is
 - The maximal number of linearly independent columns
 - =The maximal number of linearly independent rows
 - =The dimension of col(A)
 - =The dimension of row(A)
- If A is n by m, then
 - $\operatorname{rank}(A) \le \min(m,n)$
 - If n=rank(A), then A has full row rank
 - If m=rank(A), then A has full column rank

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$$

Inverse of a matrix

- Inverse of a square matrix A, denoted by A^{-1} is the *unique* matrix such that.
 - $-AA^{-1}=A^{-1}A=I$ (identity matrix)
- A^{-1} exists if and only if $det(A) \neq 0$
- If A^{-1} and B^{-1} exist, then

$$-(AB)^{-1} = B^{-1}A^{-1},$$

- $(A^T)^{-1} = (A^{-1})^T$
- For orthonormal matrices $\mathbf{A}^{-1} = \mathbf{A}^{\mathsf{T}}$
- For diagonal matrices $\mathbf{D}^{-1} = \mathrm{diag}\{d_1^{-1},\ldots,d_n^{-1}\}$ - If $d_i^{-1} \neq 0 \; \forall \; i$.

Outline

- Linear Algebra Basics
- Eigenvalue Decomposition
- Singular Value Decomposition (SVD)*

Eigenvalues & Eigenvectors

• **Eigenvectors** (for a square $m \times m$ matrix S)

$$\mathbf{S}\mathbf{v} = \lambda\mathbf{v}$$
 (right) eigenvector eigenvalue $\mathbf{v} \in \mathbb{R}^m
eq \mathbf{0}$ λ scalar

 ${f V}$ is an eigenvector of ${f S}$ associated to the eigenvalue λ

Example
$$\begin{pmatrix} 6 & -2 \\ 4 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Eigenvalues & Eigenvectors interpretation

Let
$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

A only *stretches* or *dilates* v. In contrast, u is not an eigenvector of A.

How to calculate Eigenvalues & Eigenvectors?

If λ is an eigenvalue of an mxm matrix **S**, then, we can find the associated eigenvectors by solving the equation:

$$(S - \lambda I) v = 0.$$

This equation has a non-zero solution if $|\mathbf{S} - \lambda \mathbf{I}| = 0$

The equation $|\mathbf{S} - \lambda \mathbf{I}| = 0$ is called the **characteristic equation** of **S**. It is a m-th order equation in λ and can have **at most** m **distinct solutions**.

Remark:

- Eigenvectors are non-zero vectors
- Eigenvalues can be zero, and even complex.

Exercice 1

What are the eigenvalues and eigenvectors of the following matrix?

$$S = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Solution exercice 1

• Let
$$S = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

• Then
$$S - \lambda I = \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \Rightarrow (2 - \lambda)^2 - 1 = 0.$$

- The eigenvalues are 1 and 3.
- The eigenvectors:

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Plug in these values and solve for eigenvectors.

The case of symmetric matrices

For symmetric matrices, eigenvectors for distinct eigenvalues are orthogonal

$$Sv_{\{1,2\}} = \lambda_{\{1,2\}} v_{\{1,2\}}, \text{ and } \lambda_1 \neq \lambda_2 \implies v_1 \bullet v_2 = 0$$

- All eigenvalues of a real symmetric matrix are <u>real</u>.
- Reminder: The covariance matrix is symmetric!

The case of symmetric matrices

A symmetric $n \times n$ real matrix **A** is said to be **positive** semi definite if

$$\forall \mathbf{x} \in \mathbb{R}^n \quad \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} \ge 0$$

<u>Consequence</u>: All eigenvalues of a positive semidefinite matrix are non-negative

$$\forall \mathbf{x} \in \mathbb{R}^n \quad \mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0 \text{ then if } \mathbf{S} \mathbf{v} = \lambda \mathbf{v} \Rightarrow \lambda \ge 0$$

Clue: The variance matrix is positive semidefinite

Consider our example

$$S = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \leftarrow \text{Real, symmetric matrix}$$

- The eigenvalues are 1 and 3 are real nonnegative, then S is positive semidefinite*.
- The eigenvectors are orthogonal:

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

^{*}Plus specifically, positive definite car all eigenvalues are positive.

Diagonalization

Matrix diagonalization theorem

- Let $S \in \mathbb{R}^{m \times m}$ be a square matrix with m linearly independent eigenvectors.
- Theorem: it exists an eigen decomposition diagonal

$$\mathbf{S} = \mathbf{U} \overset{\downarrow}{\mathbf{\Lambda}} \mathbf{U}^{-1}$$

Columns of *U* are eigenvectors of *S*

• Diagonal elements of Λ are eigenvalues of S

$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_m), \ \lambda_i \ge \lambda_{i+1}$$

Unique

for

distinct

eigen-

values

Diagonal decomposition: why/how

Let ${m U}$ have the eigenvectors as columns: $U = ig|_{{m v}_1}$... ${m v}_n$

Then, **SU** can be written

$$SU = S \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} = \begin{bmatrix} \lambda_1 v_1 & \dots & \lambda_n v_n \end{bmatrix} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \dots & \lambda_n \end{bmatrix}$$

Thus $SU=U\Lambda$, or $U^{-1}SU=\Lambda$

And $S=U \Lambda U^{-1}$.

Diagonal decomposition – example (1/2)

Recall
$$S = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
; $\lambda_1 = 1, \lambda_2 = 3$.

The eigenvectors
$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ form $U = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$

Inverting, we have

$$U^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$$
 Recall VUU-1 =I.

Then,
$$S=U \wedge U^{-1} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1/2 & -1/2 \\ -1 & 1 & 0 & 3 & 1/2 & 1/2 \end{bmatrix}$$

Diagonal decomposition – example (2/2)

Let's divide U (and multiply U^{-1}) by $\sqrt{2}$ so they are orthonormal

Then, **s**=
$$\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$Q \qquad A \qquad (Q^{-1} = Q^T)$$

A square matrix **Q** is said **orthogonal** if its column (row) vectors are orthonormal. Consequence If **Q** orthogonal, then $Q^{-1} = Q^T$

Symmetric Eigen Decomposition

- If $\mathbf{S} \in \mathbb{R}^{m \times m}$ is a symmetric matrix:
- Theorem: Exists a (unique) eigen decomposition $S = Q\Lambda Q^T$
- where Q is orthogonal:
 - $-\mathbf{Q}^{-1}=\mathbf{Q}^{T}$
 - Columns of *Q* are normalized eigenvectors
 - Columns are orthogonal.
 - The eigenvalues are real.

Outline

- Linear Algebra Basics
- Eigenvalue Decomposition
- Singular Value Decomposition (SVD)*

Singular Value Decomposition

For an $m \times n$ matrix \mathbf{A} of rank r there exists a factorization (Singular Value Decomposition = SVD) as follows:

The columns of \boldsymbol{U} are orthogonal eigenvectors of $\boldsymbol{A}\boldsymbol{A}^T$.

The columns of V are orthogonal eigenvectors of A^TA .

Eigenvalues $\lambda_1 \dots \lambda_r$ of AA^T are the eigenvalues of A^TA .

$$\sigma_{i} = \sqrt{\lambda_{i}}$$

$$\Sigma = diag(\sigma_{1}...\sigma_{r})$$
 Singular values.

Singular Value Decomposition

Illustration of SVD dimensions and sparseness

SVD example

Let
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Thus m=3, n=2. Its SVD is

$$\begin{bmatrix} 0 & 2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & -1/\sqrt{3} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{3} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

Typically, the singular are values arranged in decreasing order.

References

- David Lay « Linear Algebra and Its
 Applications », 5th Edition. Publisher: Pearson (2011).
- "Review of Linear Algebra » Recitation by Leman Akoglu (2010).
- Thomas Hoffman "Linear algebra background". Visited on September 2018 https://web.stanford.edu/class/cs276a/handouts/lecture15.pdf