Попов Л., Соколов А., Трещев В. группа: 9-3 *08 ноября 2018 г.*

Теория чисел

Хорошо бы вспомнить формулировки теоремы Вильсона и малой теоремы Ферма

- **1.** Докажите, что число $40^{81} + 17^{160}$ является составным.
- **2.** Пусть p простое число.
 - (а) Докажите, что для любых чисел a и b верно, что $(a+b)^p \equiv a^p + b^p$.
 - (b) Выведите из этой задачи малую теорему Ферма.
- **3.** (а) На доске написаны числа $\frac{100}{1}, \frac{99}{2}, ..., \frac{2}{99}, \frac{1}{100}$. Можно ли выбрать какие-то пять из них, произведение которых равняется единице?
 - (b) Пусть произведение каких-то 2k+1 чисел, написанных на доске, равно $\frac{m}{n}$. Докажите, что $m \equiv -n$.
- **4.** Отметим на бумаге произвольным образом p-1 точку. Каждой точке сопоставим какой-то ненулевой остаток при делении на p. Проведём из остатка k стрелочку в остаток ka.
 - (а) Убедитесь, что из каждой точки выходит одна стрелочка, и в каждую точку входит одна стрелочка.
 - (b) Поймите, что тогда все точки разбиваются на циклические маршруты.
 - (c) Докажите, что у всех циклических маршртутов одна и та же длина, и она делит p-1.
 - (d) Выведите отсюда малую теорему Ферма.
- **5.** Докажите, что любой нечетный простой делитель a^2+1 , где a натуральное, имеет вид 4m+1.
- **6.** Пусть $a_1, ..., a_p$ конечная арифметическая прогрессия с разницей не кратной p. Докажите, что существует некоторый член a_k , такой что $a_k + a_1 \cdot a_2 \cdot ... a_p$ делится на p^2 .
- **7.** (а) Найдите все простые числа p, такие что (p-2)! не делится на (p-1).
 - (b) Дано простое число p. При каких n число $p^{n}-1$ делится на $(p-1)^{2}$.
 - (**c**) Для каких натуральных n число (n-1)!+1 является точной степенью n.