Garbage Collection: Basics

Kenjiro Taura

2024/06/09

Contents

Contents

Introduction	. 2
How GC basically works	. 6
The two major GC methods (traversing GC and reference counting)	. 9
Evaluating GCs	16

Introduction

Two ways memory management goes wrong

- **premature free:** reclaim/reuse space for data when it may still be used in future
- memory leak: do not reclaim/reuse space for date when it is no longer used

What is Garbage Collection (GC)?

- GC automates memory management, by identifying when data becomes "never used in future"
 - ▶ or, conversely, by identifying which data "may be" used in future

Data that "may be" used in future?

```
int * s, * t;
void h() { ... }
void g() {
  h();
  ... = p->x ... 
void f() {
  . . .
  g()
  \dots = q \rightarrow y \dots 
int main() {
  . . .
  f()
  ... = r -> z ...
```

- global variables
- local variables of active function calls (calls that have started but have not finished)
- and ...

Data that "may be" used in future?

```
int * s, * t;
void h() { ... }
void g() {
  h();
  ... = p->x ... 
void f() {
  g()
  \dots = q \rightarrow y \dots 
int main() {
  . . .
  f()
  ... = r -> z ...
```

- global variables
- local variables of active function calls (calls that have started but have not finished)
- objects reachable from them by pointers

How GC basically works

Terminologies and the basic principle

- *an object:* the unit of data subject to memory allocation/release (malloc in C; objects in Java; etc.)
- *the root:* objects accessible without traversing pointers, such as global variables and local variables of active function calls
- *(un)reachable objects:* objects (un)reachable from the root by traversing pointers
- *live objects*: objects that may be accessed in future
- *dead objects* or *garbage*: objects that are never accessed in future

Terminologies and the basic principle

- *collector*: the program (or the thread/process) doing GC
- *mutator*: the user program
 - very GC-centric terminology, viewing the user program as someone simply "mutating" the graph of objects

the basic principle of GC:

objects unreachable from the root are dead

The two major GC methods (traversing GC and reference counting)

The two major GC methods (1) — traversing GC

- simply traverses pointers from the root, to find (or *visit*) objects *reachable from the root*
- reclaim objects not visited
- two basic traversing methods
 - mark&sweep GC
 - copying GC

The two major GC methods (2) — reference counting (or RC)

- during execution, *maintain the number of pointers* pointing to each object *(reference count)*
- reclaim an object when its reference count drops to zero
 - : an object's reference count is zero \rightarrow it's unreachable from the root
- note: "GC" sometimes narrowly refers to the traversing GC only

traverse pointers from the root

- traverse pointers from the root
- when no more "visited →
 unvisited" pointers are found,
 objects that have not been visited
 are garbage

- each object has a *reference count (RC)*, the number of pointers referencing it
- update RCs during execution; e.g., upon p = q
 - ▶ the RC of the object p points to -= 1
 - ▶ the RC of the object q points to += 1

reclaim an object when its RC drops to zero

- reclaim an object when its RC drops to zero
- RCs of objects pointed to by the reclaimed object decrease, which may result in reclaiming them too

- reclaim an object when its RC drops to zero
- RCs of objects pointed to by the reclaimed object decrease, which may result in reclaiming them too

- reclaim an object when its RC drops to zero
- RCs of objects pointed to by the reclaimed object decrease, which may result in reclaiming them too

- reclaim an object when its RC drops to zero
- RCs of objects pointed to by the reclaimed object decrease, which may result in reclaiming them too

• *note*: unreachable cycles cannot be reclaimed (RC = $0 \Rightarrow$ unreachable, but *not vice versa*)

When an RC changes

- a pointer variable is updated
- a reference is passed to a function

- a variable goes out of scope or a function returns
- \approx any point when pointers get copied / dropped
- summary: expensive

```
p = q; p \rightarrow f = q; etc.
int main() {
  object * q = \dots;
  f(q); /* rc of q += 1 */
void f(object * p) {
    object * r = \dots;
  } /* RC of r -= 1 */
  . . .
  return ...; /* RC of p -= 1 */
```

Evaluating GCs

Evaluating GCs

- preciseness:
 - garbage that can be collected
- memory allocation cost:
 - the work (including GC) required to allocate memory
- pause time:
 - the (worst case) time the mutator has to (temporarily) suspend for GC to function
- mutator overhead:
 - the overhead imposed on the mutator for GC to function

Criteria 1: preciseness

- reference counting cannot reclaim cyclic garbage
- reference counting < traversing GC (better)

Criteria 2: memory allocation cost (details ahead)

- traversing GC:
 - determined by the ratio "reachable objects" / "unreachable (reclaimed)
 objects" (later)
 - ▶ an advanced technique: generational GC
- reference counting:
 - the cost of reclaiming an object once its RC drops to zero is small and constant
 - constant even if memory is scarce (good)

Criteria 3: pause time

- (better) reference counting < traversing GC
- traversing GC:
 - stop the user program while it is traversing live objects
 - traverse *all* live objects, *en masse*, and reclaim *all* unreached objects
 - why so? troubled if the mutator runs (= changes the graph of objects)during traversing
 - a solution: incremental GC
 - generational GCs mitigate it too
- reference counting:
 - when an object's RC drops to zero (as a result of mutator's action), it can be reclaimed *immediately*
 - reclaim garbage as they arise

Criteria 4: mutator overhead

- (better) traversing < reference counting
- reference counting has a large overhead for updating RCs
- e.g., object * p, * q; p = q;will perform: **if** (p) p->rc--; if (q) q->rc++; p = q;
- moreover,

Criteria 4: mutator overhead

- what if it is multithreaded?
- what if the counter overflows (how to check it)?
- techniques: deferred reference counting, sticky reference counting, 1 bit reference counting
- remark: some traversing GCs (e.g., generational and incremental) add overhead to pointer updates too

Summary

	traversing GC	reference counting
preciseness	+	
allocation cost	? (*)	?
pause time	- (†)	+
mutator overhead	+ (‡)	_

- (*) depends on size of reachable graph and memory; *generational* GC helps
- (†) incremental GC helps
- (‡) both *generational* and *incremental* GC impose some mutator overheads

mark&sweep GC vs. copying GC

they differ in what to do on reachable objects

- mark&sweep GC: mark them as "visited"
- copying GC: copy them into a distinct (contiguous) region

Mark&sweep GC

• mark-phase:

- traverses objects from the root, marking encountered objects as visited
- maintains *mark stack*, the set of objects marked but whose children may have not been marked

• sweep phase:

- reclaims all memory blocks not visited in the mark phase
- free memory blocks are not contiguous, so must be managed by an appropriate data structure (*free lists*)

Copying GC

- \approx copying a graph (possibly with merges and cycles)
- the crux : pointers to the same object must remain the same after copy
- *semi-space GC*: splits the available memory into equal-sized two spaces
 - when one space fills up, copy all reachable objects to the other

```
void *free, *scan;
void copy gc() {
free = scan = to space;
 redirect ptrs(root);
while (scan < free) {</pre>
  redirect ptrs(scan);
  scan += the size of object scan points to;
 swap to space and from space;
void redirect ptrs(void * o) {
for (f : pointer fields of o) {
 if ([o->f] has been copied) {
  o->f = [o->f]'s forward pointer;
 } else {
  copy [o->f] to to free;
   [o->f]'s forward pointer = free;
  o->f = free;
  free += the size of [o->f];
 } } }
```



```
void *free, *scan;
void copy gc() {
free = scan = to space;
 redirect ptrs(root);
while (scan < free) {
  redirect ptrs(scan);
  scan += the size of object scan points to;
 swap to space and from space;
void redirect ptrs(void * o) {
for (f : pointer fields of o) {
 if ([o->f] has been copied) {
  o->f = [o->f]'s forward pointer;
 } else {
  copy [o->f] to to free;
   [o->f]'s forward pointer = free;
  o->f = free;
  free += the size of [o->f];
 } } }
```



```
void *free, *scan;
void copy gc() {
free = scan = to space;
 redirect ptrs(root);
while (scan < free) {
  redirect ptrs(scan);
  scan += the size of object scan points to;
 swap to space and from space;
void redirect ptrs(void * o) {
for (f : pointer fields of o) {
 if ([o->f] has been copied) {
  o->f = [o->f]'s forward pointer;
 } else {
  copy [o->f] to to free;
   [o->f]'s forward pointer = free;
  o->f = free;
  free += the size of [o->f];
 } } }
```



```
void *free, *scan;
void copy gc() {
free = scan = to space;
 redirect ptrs(root);
while (scan < free) {
  redirect ptrs(scan);
  scan += the size of object scan points to;
 swap to space and from space;
void redirect ptrs(void * o) {
for (f : pointer fields of o) {
 if ([o->f] has been copied) {
  o->f = [o->f]'s forward pointer;
 } else {
  copy [o->f] to to free;
   [o->f]'s forward pointer = free;
  o->f = free;
  free += the size of [o->f];
 } } }
```



```
void *free, *scan;
void copy gc() {
free = scan = to space;
 redirect ptrs(root);
while (scan < free) {</pre>
  redirect ptrs(scan);
  scan += the size of object scan points to;
 swap to space and from space;
void redirect ptrs(void * o) {
for (f : pointer fields of o) {
 if ([o->f] has been copied) {
  o->f = [o->f]'s forward pointer;
 } else {
  copy [o->f] to to free;
   [o->f]'s forward pointer = free;
  o->f = free;
  free += the size of [o->f];
 } } }
```



```
void *free, *scan;
void copy gc() {
free = scan = to space;
 redirect ptrs(root);
while (scan < free) {</pre>
  redirect ptrs(scan);
  scan += the size of object scan points to;
 swap to space and from space;
void redirect ptrs(void * o) {
for (f : pointer fields of o) {
 if ([o->f] has been copied) {
  o->f = [o->f]'s forward pointer;
 } else {
  copy [o->f] to to free;
   [o->f]'s forward pointer = free;
  o->f = free;
  free += the size of [o->f];
 } } }
```



```
void *free, *scan;
void copy gc() {
free = scan = to space;
 redirect ptrs(root);
while (scan < free) {</pre>
  redirect ptrs(scan);
  scan += the size of object scan points to;
 swap to space and from space;
void redirect ptrs(void * o) {
for (f : pointer fields of o) {
 if ([o->f] has been copied) {
  o->f = [o->f]'s forward pointer;
 } else {
  copy [o->f] to to free;
   [o->f]'s forward pointer = free;
  o->f = free;
  free += the size of [o->f];
 } } }
```



```
void *free, *scan;
void copy gc() {
free = scan = to space;
 redirect ptrs(root);
while (scan < free) {</pre>
  redirect ptrs(scan);
  scan += the size of object scan points to;
 swap to space and from space;
void redirect ptrs(void * o) {
for (f : pointer fields of o) {
 if ([o->f] has been copied) {
  o->f = [o->f]'s forward pointer;
 } else {
  copy [o->f] to to free;
   [o->f]'s forward pointer = free;
  o->f = free;
  free += the size of [o->f];
 } } }
```


Simi-space copying GC: algorithm

- invariants
 - $p < \text{free} \Rightarrow p \text{ has been visited}$
 - $p < \text{scan} \Rightarrow p$ has been visited; so has its direct children
- area between scan and free serve a role similar to the mark stack

Simi-space copying GC: algorithm

- invariants
 - $p < \text{free} \Rightarrow p \text{ has been visited}$
 - $p < \text{scan} \Rightarrow p$ has been visited; so has its direct children
- area between scan and free serve a role similar to the mark stack

Mark&sweep vs. copying GC

- copying GC pros:
 - live objects occupy a contiguous region after a GC
 - ightharpoonup the free region becomes contiguous too
 - ► → the overhead for memory allocation is small (no need to "search" the free region)

Mark&sweep vs. copying GC

- copying GC cons:
 - copying is more expensive than marking, obviously
 - the free region must be reserved to accommodate objects copied (low memory utilization)
 - must ensure "size of objects that may be copied" ≤ "size of the region to copy them into"
 - \rightarrow "from space" = "to space" (semi-space)
 - pointers must be "precisely" distinguished from non-pointers (ambiguous pointers are not allowed)
 - − : pointers are updated to the destinations of copies
 - a disaster occurs if you update non-pointers