Devoir maison 6

Exercice 1 On considère un cube ABCDEFCH dont le dessin sera à faire sur la copie. On note M le milieu du segment [EH], N celui de [FC] et P le point tel que $\overrightarrow{HP} = \frac{1}{4}\overrightarrow{HG}$.

- **1. a.** Justifier que les droites (MP) et (FG) sont sécantes en un point L. Construire le point L
 - **b.** On admet que les droites (LN) et (CG) sont sécantes et on note T leur point d'intersection. On admet que les droites (LN) et (BF) sont sécantes et on note Q leur point d'intersection.
 - i. Construire les points T et Q en laissant apparents les traits de construction.
 - ii. Construire l'intersection des plans (MNP) et (ABF).
 - c. En déduire une construction de la section du cube par le plan (MNP).
- **2.** L'espace est rapporté au repère $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.
 - a. Donner les coordonnées des points M, N et P dans ce repère.
 - **b.** Déterminer les coordonnées du point L.
 - **c.** On admet que le point T a pour coordonnées $(1; 1; \frac{5}{8})$. Le triangle TPN est-il rectangle en T?

Exercice 2 Étudier sur \mathbb{R} la fonction $f(x) = xe^x$.

Exercice 3 Étudier sur un ensemble de définition à établir la fonction $f(x) = \frac{e^x}{x}$.

Exercice 4 *La suite* (u_n) *est définie par* :

$$\begin{cases} u_0 = 1 \\ u_1 = 2 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n^2}{u_{n-1}} \end{cases}$$

Calculer les premières valeurs de la suite (u_n) . En déduire une expression de u_n en fonction de n, que l'on démontrera par récurrence.

Exercice 5 Soit la suite (u_n) géométrique de raison positive q telle que :

$$u_0 + u_1 = \frac{13}{2}$$
$$u_0 u_2 = \frac{25}{4}$$

Déterminer u_0 et q.

Exercice 6 (Lohann, Noah et Valentin) *Soit la suite* (u_n) *définie par :*

$$\begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} + u_n = n + 1 \end{cases}$$

Déterminer l'expression de u_n en fonction de n.