#### 8.3 Congruence





- Congruence Modulo Reduction Property: Let  $d \ge 1$ ,  $d \mid m$ , then  $a \equiv b \pmod{m} \Rightarrow a \equiv b \pmod{d}$ .
  - \*When d is a divisor of m, a congruence modulo m implies a congruence modulo the smaller modulus d.
- Scaling Property of Congruence: Let d≥1, then a≡b(mod m) ⇔ da≡db(mod dm).
  - \*The congruence relation is scalable under multiplication: if you multiply both sides by the same factor d, the congruence remains valid modulo dm.
- Multiplicative Inverse Property of Congruence: Let c and m be coprime, then  $a \equiv b \pmod{m} \Leftrightarrow ca \equiv cb \pmod{m}$ .
  - \* If c is relatively prime to m, then multiplying both sides by c preserves the congruence modulo m.



# Leguivalence Classes and Quotient Set of Congruence



- **Congruence Class Modulo m:** An equivalence class under the congruence relation modulo m. The class of an integer a modulo m is denoted by  $[a]_m$ , or simply [a].
- The quotient set of the integers  $\mathbf{Z}$  under the modulo  $\mathbf{m}$  congruence relation is denoted by  $\mathbf{Z}_m$ , which is the set of all congruence classes modulo  $\mathbf{m}$ .
- **Example:** Partitioning the set of integers under the congruence relation modulo m=3, we obtain the following equivalence classes:
- [0]: The set of integers with remainder  $0, \{..., -6, -3, 0, 3, 6, 9, 12, ...\}$ .
- [1]: The set of integers with remainder 1,  $\{...,-5,-2,1,4,7,10,13,...\}$ .
- [2]: The set of integers with remainder  $2, \{..., -4, -1, 2, 5, 8, 11, 14, ...\}$ .
- The quotient set is:  $\mathbb{Z}_3 = \{[0], [1], [2]\}$





# Addition and Multiplication on the Quotient Set Z<sub>m</sub>

- $\blacksquare$  On the quotient set  $Z_m$  operations of addition, subtraction, and multiplication are defined between equivalence classes, resulting in a new equivalence class.
- The operations of addition and multiplication are defined as follows: :  $\forall a, b, [a]+[b]=[a+b], [a]\cdot[b]=[ab].$
- **Example:** Write out the addition and multiplication operations on **Z**<sub>3</sub> Solve:  $Z_3 = \{[0], [1], [2], \text{ where } [i] = \{3k+i \mid k \in \mathbb{Z}\}, i=0,1,2.$ 
  - All possible results of addition on Z3:

$$[0]+[0]=[0]$$
: Because  $0+0\equiv 0 \mod 3$ .

$$[0]+[1]=[1]$$
: Because  $0+1\equiv 1 \mod 3$ .

$$[0]+[2]=[2]$$
: Because  $0+2\equiv 2 \mod 3$ .



# Addition and Multiplication on the Quotient Set Z<sub>m</sub>



All possible results of addition on Z3

[1]+[1]=[2]: Because 
$$1+1\equiv 2 \mod 3$$
.

[1]+[2]=[0]: Because 
$$1+2\equiv 0 \mod 3$$
.

[2]+[2]=[1]: Because 
$$2+2\equiv 1 \mod 3$$
.

• All possible results of *multiplication* on **Z3**:

$$[0]\times[0]=[0]$$
: Because  $0\times0\equiv0$  mod 3.

$$[0]\times[1]=[0]$$
: Because  $0\times1\equiv0$  mod 3.

$$[0]\times[2]=[0]$$
: Because  $0\times2\equiv0$  mod 3.

[1]
$$\times$$
[1]=[1]: Because 1 $\times$ 1 $\equiv$ 1 mod 3

[1]
$$\times$$
[2]=[2]: Because 1 $\times$ 2 $\equiv$ 2 mod 3.

$$[2]\times[2]=[1]$$
: Because  $2\times2\equiv1$  mod 3.



#### 8.3 Congruence

# Examples of Modular Exponentiation



- **Example:** What is the units digit of  $3^{455}$ ? How can we determine the units digit of  $a^n$ ?
- Solution:
- ①Use the cyclic nature of modular arithmetic to find the pattern of the units digit of  $3^{n}$ . Since the units digit corresponds to modulo 10, we can compute  $3^{n}$  mod 10 to determine the cycle length k, such that  $3^{k} \equiv 1 \mod 10$ .
- ②We find that the units digit of  $3^n$  follows a repeating pattern 3, 9, 7, 1, repeat every k=4 powers.
- ③To find the units digit of  $3^{455}$ , note that 455 mod 4 = 3, Therefore, the units digit corresponds to the 3rd number in the cycle, which is 7.
- 4 For any  $a^n$ , the units digit can be found using:  $a^n \equiv a(n \mod k) \mod 10$  where k is the length of the cycle of a mod 10.
  - What are the last two digits (the tens and units digits) of  $3^{455}$ ?



# 8.3 Congruence • Brief summary



**Objective:** 

**Key Concepts:** 





# Discrete Mathematics 2025 Spring



魏可佶 kejiwei@tongji.edu.cn



# Chapter 8 Elementary Number Theory



- 8.1 Prime Numbers
- 8.2 Greatest Common Divisor and Least Common Multiple
- ■8.3 Congruence
- 8.4 Linear Congruence Equations and the Chinese Remainder Theorem
- 8.5 Euler's Theorem and Fermat's Little Theorem



#### 8.4 Linear Congruence Equations and the Chinese Remainder Theorem



■ 8.4.1 Linear Congruences

Modular Inverses

- 8.4.2 The Chinese Remainder Theorem
- 8.4.3 Arithmetic Operations with Large Integers





- **■** Linear Congruence Equation:  $ax \equiv c \pmod{m}$ , where m>0.
- Solution to the linear congruence equation: The integers that satisfy the equation.
- Example:  $3x \equiv 4 \pmod{7}$ 's solution  $x \equiv 6 \pmod{7}$ , such as 6,13,20,−1  $2x \equiv 1 \pmod{4}$  has no solution.
- Theorem 8.12: The necessary and sufficient condition for the equation  $ax\equiv c \pmod{m}$  to have a solution is that  $gcd(a,m)\mid c$ .
- Number of solutions: gcd(a,m)=1, the equation has a unique solution, >1, there are gcd(a,m) distinct solutions.
- Method for calculating the solutions:
  The solutions can be found by direct observation or by using the multiplicative inverse of a modulo m.





### Proof of Necessity:

- ①Suppose the equation  $ax \equiv c \pmod{m}$  has a solution, then ax c = km, ax km = c, k is integer.
- ②Bezout's identity, if d=gcd(a,m), hen there exist integers u and v such that au+mv=d.
- ③Since both c and d can be expressed as linear combinations of a and m, d must divide c. Therefore,  $(a,m) \mid c$ .

### Proof of Sufficiency:

- ①Suppose gcd(a,m)|c, there exists an integer k such that c=d\*k, where d=gcd(a,m).
- ②By Bezout's identity, if d=gcd(a,m), then there exist integers **u** and **v** such that au+mv=d.
- 3 Replacing d with c=d. k,a(uk)+m(vk)=c. This shows that there exists an integer x=uk such that ax=c is a multiple of m, or equivalently, there exists an x such that ax=c ( $mod\ m$ ). Therefore, if gcd(a,m)|c, the equation ax=c ( $mod\ m$ ) must have a solution.

# Equivalence Class Method for Linear Congruences



- **Example:** Solve the linear congruence equation  $6x\equiv 3 \pmod{9}$ .
- Solution: Using the *equivalence class method* modulo *m*:
- (1) gcd $(6,9)=3 \mid 3$ , which satisfies the necessary and sufficient condition for a solution.
- 2 In modulo 9, any integer belongs to one of the equivalence classes from 0 to 8. We only need to check whether x satisfies the given congruence equation for x=0,1,2,...,8.
- 3 The test results show that x=2,5,8 are solutions to the equation  $6x\equiv 3 \pmod{9}, x=2$  is the particular solution, and x=2+9k (where k is any integer) are the valid solutions.
- Note: Choosing x=-4,-3,-2,-1,0,1,2,3,4 will produce the same set of solutions.



### • Existence and Uniqueness Theorem for Modular Inverses

- **Definition 8.6**: If  $ab\equiv 1 \pmod{m}$ , then b is called the modular inverse of a modulo m, denoted as  $a^{-1} \pmod{m}$  or  $a^{-1}$ .
  - $a^{-1} \pmod{m}$  is the solution to the equation  $ax \equiv 1 \pmod{m}$ .
- Theorem 8.13: (Existence and Uniqueness Theorem )
  - (1) The necessary and sufficient condition for the modular inverse of a modulo m to exist is that a and m are coprime and m> 1(Existence).
  - (2) If *a* and *m* are coprime and *m*>1, then the modular inverse of *a* modulo *m* is unique (*Uniqueness*).







**Proof (1) (existence):** The necessary and sufficient condition for the existence of the modular inverse of a modulo *m* is that *a* and *m* are coprime.

#### • Sufficiency:

- 1 a,m coprime, then there exist integers x and y such that ax+my=1.
- 2 ax-1=my is equivalent to  $ax\equiv 1 \mod m$ , showing that x is the modular inverse of a modulo m.

### Necessity:

- ① Suppose there exists an integer b such that  $ab \equiv 1 \mod m$ , Then there exists an integer such that ab = 1 = km.
- 2 Rearranging gives ab-km=1 which shows that 1 can be expressed as an integer linear combination of a and m.
  - This is only possible when gcd(a,m)=1.







# Proof of the Existence and Uniqueness of Modular Invers

- Proof(2) (Uniqueness): Suppose a and m are coprime, then the modular inverse of a modulo m is unique.
- ① Suppose a has two modular inverses modulo m, say  $b_1$  and  $b_2$ , such that:  $ab_1 \equiv 1 \pmod{m}$ ,  $ab_2 \equiv 1 \pmod{m}$ . This means there exist integers k and l such that:  $ab_1 = 1 + km$ ,  $ab_2 = 1 + lm$ . Subtracting the two equations gives:  $a(b_1 b_2) = (k-l)m$ .
- 2 Therefore  $a(b_1-b_2)\equiv 0 \pmod{m}$ .
- ③ Since a and m are coprime, this implies that  $b_1 b_2$  must be divisible by m, that is,  $b_1 \equiv b_2 \pmod{m}$ .
- 4 Hence, if two integers  $b_1$  and  $b_2$  are both modular inverses of a modulo m, they must be congruent modulo m, that is, the modular inverse is unique modulo m.



#### Trial Methods for Modular Inverse



■ *Trial Method*: This method directly uses the definition of a modular inverse by solving the congruence equation  $ax\equiv 1 \pmod{m}$  to find the modular inverse of a modulo m.

#### Main steps:

- 1 Verify the necessary condition for the existence of the inverse by ensuring that gcd(a,m)=1.
- ② Set up the congruence equation  $ax \equiv 1 \pmod{n}$ , where x is the modular inverse of a that we are looking for.
- 3 Try values of x: For each integer x from 1 to m-1, compute  $ax \pmod{m}$ .
- 4 Identify the solution: The value of x that satisfies  $ax \pmod{m}=1$  the modular inverse of a, denoted as  $a^{-1} \mod m$ .



### Euclidean Algorithm for Modular Inverses



**Euclidean Algorithm:** This method uses the Extended Euclidean Algorithm to find integers x and y such that  $ax + my = \gcd(a,m)$ . When  $\gcd(a,m)=1$ , the value of x is the modular inverse of a modulo m.

#### Main steps:

- ① Apply the Extended Euclidean Algorithm to find integers x and y such that:  $ax+my=\gcd(a,m)$ .
- If a and m are coprime, i.e., then x is the modular inverse of a mod m.
- $\bigcirc$  If x is negative, add m repeatedly until x becomes positive, to ensure that x lies within the standard range modulo m.



# Direct Observation Method for Modular Inverses



- Direct Observation Method: This method involves testing each integer x from 1 to m-1, computing  $ax(mod\ m)$ , and identifying the value of x that yields a remainder of 1. Such an x satisfies the  $ax(mod\ m)=1$  and is the modular inverse of a mod m.
- **Example:** Find the modular inverse of **5** modulo **7**.
  - •Solution 1: Using the direct observation method to find an integer x such that  $5x \equiv 1 \pmod{7}$ .
    - 1 Try values of x from 1 to 6. When x=3,  $5\times 3 \pmod{7}=1$ , satisfied  $5x\equiv 1 \pmod{7}$ .
    - 2 Verify that x=3 is correct:  $5^{-1}\equiv 3 \pmod{7}$ .



# Trial Method for Modular Inverses (e.g.)



- Solution 2: Use the *trial method* to solve the congruence  $ax\equiv 1 \pmod{m}$  and find the modular inverse of a mod m.
  - ① Since gcd(5,7)=1, the modular inverse of 5 modulo 7 exists.
  - 2 solve  $ax \equiv 1 \pmod{1}$ , try values of x(1 to 6) compute  $5x \pmod{7}$ .
  - (3) when x=3,  $5\times 3=15 \pmod{7}=1$ .
  - 4 Therefore, the modular inverse of 5 modulo 7 is 3, that is,  $5^{-1}\equiv 3 \pmod{7}$ .

# Trial Method for Modular Inverses (e.g.)



- Solution 3: Use the Euclidean Algorithm. Since gcd(5,7)=1, we solve the equation 5x + 7y = 1.
  - $17=1\times5+2,5=2\times2+1,$ then  $1=5-2\times2.$
  - ②2=7-1×5, 1=5-2×2, we have  $3\times5-2\times7=1$ , which is the modular inverse of 5 modulo 7,then  $5\times3\equiv1(\text{mod }7)$  holds.

#### 8.4 Linear Congruence Equations and the Chinese Remainder Theorem



- **8.4.1 Linear Congruences**Modular Inverses
- 8.4.2 The Chinese Remainder Theorem
- 8.4.3 Arithmetic Operations with Large Integers

# 8.4.2 The Chinese Remainder Theorem Sunzi Suanjing and the Chinese Remainder Theorem



# ■《孙子算经》"物不知数"问题:今有物,不知其数,三三数之剩

$$x \equiv 2 \pmod{3}$$
$$x \equiv 3 \pmod{5}$$
$$x \equiv 2 \pmod{7}$$

Theorem 8.14 (Chinese Remainder Theorem).

Let  $m_1, m_2,...,m_k$  be pairwise coprime positive integers. Then the system of linear congruences  $x \equiv a_i \pmod{m_i}$ , i=1,2,...,k has an integer solution, and the solution is unique modulo, that is, any two solutions are congruent modulo m.



#### **Proof of the Chinese Remainder Theorem**



- Proof of Existence of Solution:  $x \equiv a_i \pmod{m_i}$ , i=1,2,...,k.  $m_1$ ,  $m_2$ , ...,  $m_k$  are pairwise coprime positive integers:
  - 1 Compute  $M = m_1 m_2 ..., m_k$ .
  - ② Define  $M_i = M / m_i$ , Since  $M_i$  is the product of all moduli except  $m_i$ . Since the moduli are pairwise coprime, we have  $gcd(m_i, M_i) = 1$ .
  - ③ Because  $M_i$  and  $m_i$  coprime, by the theorem on the existence of modular inverses, there exists an integer  $m_i$  such that  $M_i m_i \equiv 1$  mod  $m_i$ .
  - 4 Construct a partial solution for each congruence as  $x_i = a_i M_i m_i'$ , where each  $x_i$  satisfies the congruence  $x \equiv a_i \mod m_i$ , but not affect  $m_i$   $(j \neq i)$ .
  - **(5)** The final solution x is the sum of all  $x_i$ ,  $x = \sum_{i=1}^k x_i$ .



#### Proof of the Chinese Remainder Theorem



- Proof of Existence of Solution:  $x \equiv a_i \pmod{m_i}$ , i=1,2,...,k.  $m_1$ ,  $m_2$ , ...,  $m_k$  are pairwise coprime positive integers:
  - 6 To show that this x satisfies each individual congruence  $x \equiv a_i \mod m_i$ :

Let  $x = \sum_{i=1}^{k} x_i$ , two cases on  $x \mod m_i$ :

- (a) For j=i,  $x_i = a_i M_i m_i'$ , and the result modulo  $m_i$  is  $a_i$ , since  $M_i m_i'$   $\equiv 1 \mod m_i$ .
- (b) When  $j \neq i$ , because  $M_j$  includes  $m_i$  as a factor (since all  $m_i$  are pairwise coprime), we have  $M_i m_i' \equiv 0 \mod m_i$ .

Thus, all  $x_j$  for  $j \neq i$  contribute 0 modulo  $m_i$ , and only  $x_i$  determines the value of  $x \mod m_i$ , yielding  $x \equiv a_i \mod m_i$ .



# 8.4.2 The Chinese Remainder Theorem Proof of the Chinese Remainder Theore



- Proof of Uniqueness of the Solution: To prove that the solution x is unique modulo  $M = m_1 m_2 ... m_k$ , it is sufficient to show that any two solutions x and y are congruent modulo M, i.e.,  $x \equiv y \pmod{M}$ .
- ①Suppose there exist two solutions x and y that satisfy all the congruences in the system. That is, for every  $i, x \equiv a_i \pmod{m_i}$  and  $y \equiv a_i \pmod{m_i}$ .
- ②Since both x and y yield the same remainder modulo each  $m_i$ , it follows that  $x \equiv y \pmod{m_i}$ . This implies that each  $m_i$  divides (x y).
- ③Because  $m_1, m_2, ..., m_k$  are pairwise coprime, it follows from the properties of coprime integers that their product  $M = m_1 m_2 ... m_k$  also divides (x y).
- 4  $M \mid (x-y)$  means  $x \equiv y \pmod{M}$ , which proves that the solution is unique modulo M.

#### **8.4.2** The Chinese Remainder Theorem



### Chinese Remainder Theorem: Solving Linear Congruences

- Solving a System of Linear Congruences  $x \equiv a_i \pmod{m_i}$ , i = 1, 2, ..., k where the positive integers  $m_1, m_2, ..., m_k$  are pairwise coprime.
- Solution: *Using the Chinese Remainder Theorem*.
  - (1) Compute the product of all moduli:  $M = m_1 m_2 ... m_k$
  - (2) For each i=1,2,...,k compute  $M_i = M / m_i$ , i=1,2,...,k.
  - (3) Find the modular inverse of each  $M_i$  modulo  $m_i$ , denoted as  $M_i^{-1}$ .
  - (4) Compute the final solution:  $x = \sum_{i=1}^k a_i M_i M_i^{-1} \mod M$ .

By following the above steps, one can solve a system of linear congruences. In particular, when the moduli are pairwise coprime, the **Chinese Remainder Theorem** provides an efficient method for finding the solution.



#### **8.4.2** The Chinese Remainder Theorem

### Chinese Remainder Theorem: Solving Linear Congruences



- **Example:** Solve the "Problem of the Unknown Quantity," that is, find the positive integer solution to the following system of equations:  $x\equiv 2 \pmod{3}$ ,  $x\equiv 3 \pmod{5}$ ,  $x\equiv 2 \pmod{7}$ .
- Solution:
  - ①  $m_1=3$ ,  $m_2=5$ ,  $m_3=7$ , M=105.
  - (2)  $M_1 = M/m_1 = 105/3 = 35$ ,  $M_2 = M/m_2 = 105/5 = 21$ ,  $M_3 = M/m_3 = 105/7 = 15$ .
  - 3 Solve  $M_1^{-1} = 2$ ,  $M_2^{-1} = 1$ ,  $M_3^{-1} = 1$ .
  - 4 Final solutions x=(2.35.2+3.21.1+2.15.1) mod 105=23. Solution is 105k+23, k=0,1,2,... Least number is 23.
- Finding the Modular Inverse by Observation:
  - 1 Find the inverse of  $M_1 = 35$  modulo m1=3, i.e., find  $M_1^{-1}$  such that  $M_1 \cdot M_1^{-1} \equiv 1 \mod 3$ .
  - (2) (35=2mod 3), we need to make  $2 \cdot M_1^{-1} = 1 \mod 3 M_1^{-1}$ .
  - 3 By simple trial, we find that  $M_1^{-1} = 2$  satisfies the condition.







#### 8.4 Linear Congruence Equations and the Chinese Remainder Theorem



■8.4.1 Linear Congruences

Modular Inverses

- 8.4.2 The Chinese Remainder Theorem
- 8.4.3 Arithmetic Operations with Large Integers

# 8.4.3 Arithmetic Operations with Large Integer Modular Representation and Operations of Integers



- Let  $m_1, m_2, ..., m_k$  be integers greater than 1 and pairwise coprime, and define  $m = m_1 m_2 ... m_k$ . For any integer  $0 \le x < m$ , define  $x_i = x \mod m_i$ , i = 1, ..., k.  $(x_1, x_2, ..., x_k)$  is called the *modular representation of x* with respect to the moduli  $m_1, ..., m_k$ , or simply the **modular** representation of x. It is denoted as:  $x = (x_1, x_2, ..., x_k)$ .
- Modular Representation Operations

Let 
$$x=(x_1,x_2,...,x_k)$$
,  $y=(y_1,y_2,...,y_k)$ , then  $x+y=((x_1+y_1) \mod m_1, (x_2+y_2) \mod m_2, ..., (x_k+y_k) \mod m_k)$ .  $x-y=((x_1-y_1) \mod m_1, (x_2-y_2) \mod m_2, ..., (x_k-y_k) \mod m_k)$ .  $xy=(x_1y_1 \mod m_1, x_2y_2 \mod m_2, ..., x_ky_k \mod m_k)$ .



# 8.4.3 Arithmetic Operations with Large Integer - Advantages of Modular Representation of Integers



- Advantages of Representing an Integer x by Its Remainders Modulo a Set of Moduli:
  - When an integer x is represented by its remainders with respect to a set of pairwise coprime moduli  $m_1, m_2, ..., m_k$ , computations involving x can be carried out independently under each modulus.
  - The results can then be combined using the **Chinese Remainder**Theorem.
  - This approach improves computational efficiency, enhances distributed processing capability, and increases algorithmic flexibility.



#### 8.4.3 Arithmetic Operations with Large Integer





- Challenges in Large Integer Arithmetic and Corresponding Solutions:
  - Computational Complexity: Operations on large integers (such as addition, multiplication, and exponentiation) are very time-consuming using traditional methods.
  - Memory Constraints: Representing large integers using modular decomposition allows more efficient use of memory by storing smaller components.
  - Parallel Processing: The modular representation of large integers enables computations to be performed independently under each modulus, supporting parallel processing.
  - Security: Enhances the efficiency of computations in cryptographic applications.



# 8.4.3 Arithmetic Operations with Large Integer

# Modular Representation and Large Integer Computation(e.g.



- **Example:** Let  $m_1$ =9,  $m_2$ =7,  $m_3$ =5, m=9 $\times$ 7 $\times$ 5=315, Arithmetic operations within the range of 0 to 314 can be performed using arithmetic modulo 9, 7, 5.
- Solve: Let x=20, y=13, then x=(2, 6, 0), y=(4, 6, 3).  $x+y=((2+4) \mod 9, (6+6) \mod 7, (0+3) \mod 5)=(6, 5, 3)$ .  $x-y=((2-4) \mod 9, (6-6) \mod 7, (0-3) \mod 5)=(7, 0, 2)$ .  $xy=(2\times 4 \mod 9, 6\times 6\mod 7, 0\times 3\mod 5)=(8, 1, 0)$ . Find the smallest positive integer solution:

$$\begin{cases} z \equiv 6 \pmod{9} & z \equiv 7 \pmod{9} \\ z \equiv 5 \pmod{7} & z \equiv 0 \pmod{7} \\ z \equiv 3 \pmod{5} & z \equiv 2 \pmod{5} \end{cases} \begin{cases} z \equiv 8 \pmod{9} \\ z \equiv 1 \pmod{7} \\ z \equiv 0 \pmod{5} \end{cases}$$



# 8.4.3 Arithmetic Operations with Large Integer





#### Compute as:

$$M_1=35$$
,  $M_1\equiv -1 \pmod{9}$ ,  $M_1^{-1}=-1$ ,  $M_2=45$ ,  $M_2\equiv 3 \pmod{7}$ ,  $M_2^{-1}=5$ ,  $M_3=63$ ,  $M_3\equiv 3 \pmod{5}$ ,  $M_3^{-1}=2$ ,

#### Then

$$x+y=(6\times(-1)\times35+5\times5\times45+3\times2\times63) \mod 315=33.$$
  
 $x-y=(7\times(-1)\times35+0\times5\times45+2\times2\times63) \mod 315=7.$   
 $xy=(8\times(-1)\times35+1\times5\times45+0\times2\times63) \mod 315=260.$ 

# 8.4 Linear Congruence Equations and the Chinese Remainder Theorem • Brief summary



**Objective:** 

**Key Concepts:** 

