Exercice 1.

1. La matrice A est de format 2×3 et B est de format 3×2 : le nombre de colonnes de la matrice A est égale au nombre de lignes de matrice B donc le produit AB existe bien et la matrice produit est de format 2×2 .

On a aisément $AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ soit la matrice I_2 .

2. Les matrices A et B ne sont pas carrées donc elles ne peuvent être l'inverse l'une de l'autre.

Exercice 2.

- 1. On trouve $6M M^2 = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$ soit $6M M^2 = 5I_2$ donc k = 5.
- 2. $6M M^2 = 5I_2 \iff M \times \frac{1}{5}(6I_2 M) = \frac{1}{5}(6I_2 M) \times M = I_2$ ce qui prouve que la matrice M est inversible et son inverse est $A^{-1} = \frac{6}{5}I_2 \frac{1}{5}M$ ainsi $\alpha = \frac{6}{5}$ et $\beta = -\frac{1}{5}$.

Exercice 3.

- 1. On a aisément : $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.
- 2. (a) $B = A + I_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ et $B^2 = \begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{pmatrix}$ et par suite on a $B^2 = 3B$.
 - (b) Supposons B inversible, soit B^{-1} son inverse. On multiplie l'égalité précédente par B^{-1} à gauche, il vient $B^{-1} \times B^2 = 3B^{-1} \times B$ soit $B = 3I_2$: absurde car $B \neq 3I_2$ donc B n'est pas inversible.
 - (c) On a $B^2 = 3B$ donc $(A + I_3)^2 = 3(A + I_3)$ et en développant : $A^2 + 2A + I_3 = 3A + 3I_3$ soit $A^2 A = 2I_3$ ou encore : $A \times \left(\frac{1}{2}A \frac{1}{2}I_3\right) = \left(\frac{1}{2}A \frac{1}{2}I_3\right) \times A = I_3$ donc la matrice A est inversible et son inverse est :

$$A^{-1} = \frac{1}{2}A - \frac{1}{2}I_3 = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

Exercice 4.

- 1. On a $A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 4 \end{pmatrix} = 3A 2I_3$.
- 2. Soit \mathcal{P}_n : « $A^n = (2^n 1)A + (2 2^n)I_3$ ».

Initialisation: vérifions que \mathcal{P}_1 est vraie.

Si n = 1 dans le membre de gauche de l'égalité on a A.

Dans le membre de droite $(2^1 - 1)A + (2 - 2^1)I_3 = A$ ce qui prouve que \mathcal{P}_1 est vraie.

Hérédité. Soit $n \in \mathbb{N}^*$. Supposons \mathscr{P}_n vraie c'est-à-dire $A^n = (2^n - 1)A + (2 - 2^n)I_3$ et montrons que \mathscr{P}_{n+1} est vraie c'est-à-dire $A^{n+1} = (2^{n+1} - 1)A + (2 - 2^{n+1})I_3$. Or

$$A^{n+1} = A \times A^{n}$$

$$= A \times \left[(2^{n} - 1)A + (2 - 2^{n})I_{3} \right] \text{ en utilisant H.R}$$

$$= (2^{n} - 1)A^{2} + (2 - 2^{n})A$$

$$= (2^{n} - 1)(3A - 2I_{3}) + (2 - 2^{n})A \text{ en utilisant } A^{2} = 3A - 2I_{3}$$

$$= (3 \times 2^{n} - 3 + 2 - 2^{n})A + (2 - 2^{n+1})I_{3}$$

$$= (2^{n+1} - 1)A + (2 - 2^{n+1})I_{3}$$

Ce qui prouve que \mathcal{P}_{n+1} est vraie.

Conclusion: \mathcal{P}_1 est vraie et \mathcal{P}_n est héréditaire à partir du rang n = 1.

 \mathcal{P}_n est donc vraie pour tout entier naturel n non nul c'est-à-dire :

$$\forall n \in \mathbb{N}^*, A^n = (2^n - 1)A + (2 - 2^n)I_3$$