CMSC 173 - MP 2

Instructions:

- 1. Create an overview of the problem being solved, e.g., what was the story behind the collection of the data, description of the attributes/features used,etc.
- 2. (Data Preprocessing and Exploratory Analysis) Present descriptive statistics as applicable (e.g., distribution, central tendency, variability) of the data before training the models. Clean the data if there are missing values, etc. You may perform feature engineering (i.e., creating new features out of the given features), but be sure to document your justifications.
- 3. Split your data into proportions of 70% training set and 30% testing set.
- 4. Train the following models: (a) logistic regression classifier and (b) naive Bayes classifier on the dataset.
- 5. Evaluate the performance of the trained model. You may use additional performance measures if you want, but for now I will only require the calculation of the accuracy. The accuracy measures the fraction of correct classifications. With this, you need to generate the confusion matrix. You may read this if you haven't encountered this concept before: https://www.sciencedirect.com/topics/engineering/confusion-matrix#:~:text=A%20confusion%20matrix%20represents%20the,by%20model%20as%20oth Remember to compute this matrix from the test set (not the training set).

```
In []: using Random
    using StatsBase
    using CSV
    using DataFrames
    using Plots
    using Base

In []: dataset = CSV.read("passenger_flight.csv",DataFrame)
    Random.seed!(123)
    dataset = dataset[shuffle(axes(dataset, 1)), :]
```

Out[]: 25976×23 DataFrame

25951 rows omitted

Row	Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arrival time convenient	E C b
	Int64	Int64	Int64	Int64	Int64	Int64	Int64	Int64	lı
1	1	1	50	1	1	3744	5	5	
2	0	1	53	1	1	2661	4	5	
3	1	1	20	0	0	541	2	4	
4	0	1	52	0	1	944	1	2	
5	1	1	33	1	1	406	1	1	
6	0	1	51	0	0	621	2	4	
7	1	1	25	1	1	3547	2	2	
8	0	1	51	1	1	547	4	4	
9	0	1	60	0	1	438	2	4	
10	1	1	26	1	1	2085	1	1	
11	1	1	17	0	0	505	3	4	
12	0	0	22	1	0	329	3	1	
13	1	1	25	0	0	479	3	4	
:	:	:	÷	:	÷	:	:	:	
25965	0	1	27	1	1	1716	2	1	
25966	1	0	26	1	1	591	1	1	
25967	0	1	63	0	0	1024	4	4	
25968	1	1	39	1	1	2131	2	2	
25969	0	1	40	0	0	369	3	1	
25970	1	1	38	0	0	633	2	1	
25971	1	1	32	1	1	1635	2	2	
25972	0	1	43	1	1	1055	5	5	
25973	1	1	61	1	1	2273	4	4	
25974	1	1	37	1	1	695	2	4	
25975	0	1	38	0	0	1313	4	5	
25976	1	0	26	1	1	447	1	0	
4									•

Data Preprocessing

```
In []: # REMOVE MISSING
    has_missing = .!completecases(dataset)

# check rows with missing values
    rows_with_missing_values = dataset[has_missing, :] # 83 rows have missing values in

# remove missing values since it is difficult to fill the missing values
    dataset = dataset[.!has_missing, :]

# rename column names
    col_names = names(dataset)
    new_col_names = map(lowercase, String.(col_names)) # convert to lower case
    new_col_names .= replace.(new_col_names, " "=>"_", "-"=>"", "/"=>"_") # replace spa
    rename!(dataset, new_col_names)
```

Out[]: 25893×23 DataFrame

25868 rows omitted

Row	gender	customer_type	age	type_of_travel	class	flight_distance	inflight_wifi
	Int64	Int64	Int64	Int64	Int64	Int64	Int64
1	1	1	50	1	1	3744	
2	0	1	53	1	1	2661	
3	1	1	20	0	0	541	
4	0	1	52	0	1	944	
5	1	1	33	1	1	406	
6	0	1	51	0	0	621	
7	1	1	25	1	1	3547	
8	0	1	51	1	1	547	
9	0	1	60	0	1	438	
10	1	1	26	1	1	2085	
11	1	1	17	0	0	505	
12	0	0	22	1	0	329	
13	1	1	25	0	0	479	
:	:	÷	:	:	:	:	
25882	1	1	39	0	0	1476	
25883	0	1	27	1	1	1716	
25884	1	0	26	1	1	591	
25885	0	1	63	0	0	1024	
25886	1	1	39	1	1	2131	
25887	0	1	40	0	0	369	
25888	1	1	38	0	0	633	
25889	1	1	32	1	1	1635	
25890	0	1	43	1	1	1055	
25891	1	1	61	1	1	2273	
25892	1	1	37	1	1	695	
25893	0	1	38	0	0	1313	
4							>

In []: # split dataframe into 2 df depending on pct
function splitdf(df, pct)

```
@assert 0 <= pct <= 1
  ids = collect(axes(df, 1))
  shuffle!(ids)
  sel = ids .<= nrow(df) .* pct
  train = view(df, sel, :)
  test = view(df, .!sel, :)

# println(hcat(train[:,1:end-1], DataFrame("satisfaction"=>train[:,end])) == tr

return train[:,1:end-1], DataFrame("satisfaction"=>train[:,end]), test[:,1:end-end

(x_train, y_train, x_test, y_test) = splitdf(dataset, 0.7)
```

Out[]: **(18125×22 DataFrame**

(10113/11	L Dataii	diffe					
Row	gender	customer_type	age	type_of_travel	class	flight_distance	•••
	Int64	Int64	Int64	Int64	Int64	Int64	•••
1	1	1	50	1	1	3744	•••
2	0	1	52	0	1	944	
3	1	1	33	1	1	406	
4	1	1	25	1	1	3547	
5	0	1	51	1	1	547	•••
6	0	1	60	0	1	438	
7	1	1	26	1	1	2085	
8	1	1	17	0	0	505	
9	0	0	22	1	0	329	
10	1	1	25	0	0	479	
11	0	1	24	0	0	678	
:	:	:	:	:	:	i	
18116	0	1	31	1	1	1136	
18117	0	1	53	0	0	224	
18118	1	0	56	1	0	132	
18119	0	1	32	1	1	1269	
18120	1	1	39	0	0	1476	
18121	0	1	27	1	1	1716	
18122	1	0	26	1	1	591	
18123	0	1	63	0	0	1024	
18124	0	1	40	0	0	369	
18125	1	1	32	1	1	1635	

16 columns and 18104 rows omitted,

18125×1 DataFrame

Row	satisfaction Int64
1	1
2	0
3	1
4	1
5	1
6	0
7	1
8	0
9	0
10	0
11	0
:	:
18116	1
18117	0
18118	0
18119	0
18120	0
18121	0
18122	0
18123	1
18124	0
18125	1

18104 rows omitted, 7768×22 DataFrame

Row	gender	customer_type	age	type_of_travel	class	flight_distance	•••
	Int64	Int64	Int64	Int64	Int64	Int64	• • •

	ļ									
1	0		1	53		1	1		2661	
2	1		1	20		0	0		541	
3	0		1	51		0	0		621	
4	0		1	47		0	0		483	
5	1		0	28		1	0		731	•••
6	0		1	27		1	1		2380	
7	1		1	66		0	0		3904	
8	1		1	63		0	0		622	
9	0		0	35		1	0		1010	•••
10	0		0	21		1	0		408	
	1									
11	0		1	17		0	1		912	
	0 :	:	1	17 :	:	0 :	1	÷		
11	'	:	1		÷		1	÷	912	
: 11 :	<u>.</u>	:		:	÷	:		ŧ	912 ∙.	
11 : 7759	 1	:	1	: 68	i	:	1	i	912 ·. 1678	
11 : 7759 7760	: 1 1	:	1 1	: 68 53	:	1 1	1 1	÷	912 ·. 1678 3435	
11 : 7759 7760 7761	; 1 1 1	:	1 1 1	68 53 36	ŧ	1 1 1	1 1 0	:	912 ·. 1678 3435 190	
11 : 7759 7760 7761 7762	: 1 1 1 0	:	1 1 1	: 68 53 36 57	÷	: 1 1 1	1 1 0 1	÷	912 ·. 1678 3435 190 1197	
11 : 7759 7760 7761 7762 7763	: 1 1 1 0 1	:	1 1 1 1	68 53 36 57 39	÷	: 1 1 1 1	1 1 0 1	:	912 ·. 1678 3435 190 1197 2131	
11 : 7759 7760 7761 7762 7763 7764	; 1 1 1 0 1	:	1 1 1 1 1	: 68 53 36 57 39 38	i	1 1 1 1 1 0	1 1 0 1 1	:	912 ·. 1678 3435 190 1197 2131 633	
11 : 7759 7760 7761 7762 7763 7764 7765	: 1 1 1 0 1 1	:	1 1 1 1 1 1	: 68 53 36 57 39 38 43	:	1 1 1 1 1 0 1	1 1 0 1 1 0	•	912 1678 3435 190 1197 2131 633 1055	

16 columns and 7747 rows omitted,

7768×1 Row	DataFrame satisfaction Int64
1	 0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0
10	1
11	0
: [:
7759	1
7760	1
7761	1
7762	1
7763	1
7764	0
7765	1
7766	1
7767	0
7768	1
77/	17 nous omitted

7747 rows omitted)

Naive Bayes

```
In [ ]: # build conditional probability table
        cont_col_names = ["age", "flight_distance", "departure_delay_in_minutes", "arrival_
        disc col names = [name for name in names(dataset) if name ∉ cont col names && name≠
        train = hcat(x_train, y_train)
        # calculate discrete probabilities
        function count_disc_prob(df, col_name)
            return combine(groupby(df, [col_name, "satisfaction"]), nrow)
        end
        cond_prob_table = Dict()
        for name in disc_col_names
            cond_prob_table[name] = count_disc_prob(train, name)
        end
        # calculate continuous probabilities
        function count_cont_prob(df, col_name)
            a = combine(groupby(df, "satisfaction"), [col_name] => mean, [col_name] => std)
        end
        for name in cont_col_names
            cond_prob_table[name] = count_cont_prob(train, name)
        end
```

2×3 DataFrame

Row	satisfaction Int64	age_mean Float64	
1	0	38.0589	16.5255
2	1	41.6782	12.955

```
In [ ]: # calculate likelihood for continuous data
        function likelihood(cond_prob_table, feature, satisfaction, x)
             feature_table = cond_prob_table[feature]
             prob_values = filter(row -> row.satisfaction == satisfaction, feature_table)
             # get mean and variance
             \mu = \text{prob values}[1,2]
             \sigma = prob_values[1,3]
             return (1/(\sigma * sqrt(2\pi))) * exp((-1/2) * ((x-\mu)/\sigma)^2)
        end
         # calculate probabilities for discrete (categorical) data
         function disc_cond_prob(cond_prob_table, feature, satisfaction, x)
             feature_table = cond_prob_table[feature]
             feature_table = filter(row -> row.satisfaction==satisfaction, feature_table)
             total = sum(feature_table[:,:nrow])
             val = 0
                 val = filter(row -> row[feature] == x, feature_table)[1,end]
             catch
                 val = 0
             end
```

```
# apply laplace smoothing
     return (val+1)/(total+1)
 end
 # run test
 function test()
     correct = 0
     not correct = 0
     # iterate all training data
     for i in 1:size(x_train)[1]
         test_case = x_train[i,:]
         p_satisfied_proportional = 1
         p not satisfied proportional = 1
         # get probabilities of all features
         for col_name in names(test_case)
             # treat discrete and continuous features separately
             if col_name ∈ disc_col_names
                 p_satisfied_proportional *= disc_cond_prob(cond_prob_table, col_nam
                 p_not_satisfied_proportional *= disc_cond_prob(cond_prob_table, col
             else
                 p_satisfied_proportional *= likelihood(cond_prob_table, col_name, 1
                 p_not_satisfied_proportional *= likelihood(cond_prob_table, col_nam
             end
         end
         # calculate probabilities
         p_satisfied = (p_satisfied_proportional / (p_satisfied_proportional+p_not_s
         p_not_satisfied = (p_not_satisfied_proportional / (p_satisfied_proportional
         # count correct and incorrect predictions
         if (p_satisfied > p_not_satisfied && y_train[i,1] == 1) || (p_satisfied < p</pre>
             correct += 1
         else
             not correct += 1
         end
     end
     println("Correct predictions: ", correct)
     println("Incorrect predictions: ", not_correct)
     println("Accuracy: ", (correct / (correct + not_correct))*100)
 end
 test()
Correct predictions: 15924
```

Correct predictions: 15924 Incorrect predictions: 2201 Accuracy: 87.85655172413793

```
In [ ]:
```