PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-054518

(43)Date of publication of application: 05.03.1993

(51)Int.CI.

G11B 19/00

G11B 20/10

G11B 27/10

(21)Application number: 03-237404

(71)Applicant: SONY CORP

(22)Date of filing:

23.08.1991

(72)Inventor: OBATA HIDEO

(54) OPTICAL DISK RECORDER

(57)Abstract:

PURPOSE: To effectively utilize recording contents of an optical disk 2 by storing TOC information in a RAM when a main power source is dropped. CONSTITUTION: Bit compression digital data from an encoder 15 is magneto- optically recorded on a magneto-optical disk 2. The TOC information of recording contents is stored in a RAM 9. Whether a main power source voltage from a voltage stabilizer circuit 32, detected by a voltage detector 34 is below a prescribed threshold or not is checked by a system controller 8. At the time when the voltage is dropped, the TOC information of hitherto recording contents is stored in the RAM 9, and a power source is supplied from a backup battery 36 to this RAM 9. When the main power source is restored, the TOC information stored in the RAM 9 is recorded to the optical disk 2.

LEGAL STATUS

[Date of request for examination]

14.08.1998

[Date of sending the examiner's decision of

20.11.2001

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's

decision of rejection]

[Date of requesting appeal against examiner's

Searching PAJ

2/2 ページ

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

特開平5-54518

(43)公開日 平成5年(1993)3月5日

(51) Int.Cl. ⁵		識別記号	庁内整理番号	FI	技術表示箇所
	19/00 20/10 27/10	301 Z A	6255-5D 7923-5D 8224-5D		

		番食請求 未請求 請求項の数1(全 13 頁)
(21)出願番号	特顧平3-237404	(71)出願人 000002185 ソニー株式会社
(22)出顧日	平成3年(1991)8月23日	東京都品川区北品川6丁目7番35号 (72)発明者 小幡 英生 東京都品川区北品川6丁目7番35号 ソニ
		一株式会社内 (74)代理人 弁理士 小池 晃 (外3名)
		(19)(全人)(全上)(18) 无 (19)

(54)【発明の名称】 光デイスク記録装置

(57) 【要約】

【構成】 エンコーダ15からのビット圧縮ディジタル データを光磁気的に光磁気ディスク2に記録する。記録 内容のTOC情報がRAM9に記憶される。システムコ ントローラ8は、電圧検出器34で検出された電圧安定 化回路32からのメイン電源電圧が所定の閾値を下回っ たか否かをチェックして、電圧低下時にはそれまでの記 録内容のTOC情報をRAM9に記憶し、このRAM9 にパックアップ電池36から電源供給する。メイン電源 が復帰したときにはRAM9に記憶されたTOC情報を 光ディスク2に記録する。

【効果】 メイン電源が低下したときにはTOC情報が RAM9に記憶されて保持されるため、光ディスク2の 記録内容を有効に利用することができる。

1

【特許請求の範囲】

【請求項1】 メイン電源を供給するメイン電源供給手 段と、

パックアップ用電源供給手段と、

上記メイン電源供給手段の電圧を検出する電圧検出手段

記録内容のTOC情報を一時記憶するTOC情報記憶手 段と、

装置各部の動作制御用の制御手段とを有し、

上記電圧検出手段により上記メイン電源供給手段の出力 10 電圧が所定の閾値に対して低いことが検出されたとき、 上記パックアップ用電源供給手段からの電源を少なくと も上記制御手段及びTOC情報記憶手段に供給すること を特徴とする光ディスク記録装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光磁気ディスク等の記 録可能光ディスクに信号を記録する光ディスク記録装置 に関する。

[0002]

【従来の技術】本件出願人は、先に、入力されたディジ タルオーディオ信号をビット圧縮し、所定のデータ量を 記録単位としてパースト的に記録するような技術を、例 えば特顧平2-169977号、特顧平2-22136 4号、特願平2-221365号、特願平2-2228 21号、特願平2-222823号の各明細書及び図面 等において提案している。

【0003】この技術は、記録媒体として光磁気ディス ク等を用い、例えばいわゆるCD-I(CD-インタラ オーマットに規定されているAD(適応差分)PCMオ ーディオデータ、あるいは他のフォーマットに従ってビ ット圧縮符号化されたディジタルオーディオデータを記 録再生するものである。このピット圧縮されたディジタ ルオーディオデータは所定データ量を記録単位として、 例えば32セクタ分毎に、隣接セクタのデータとの間の インターリープを考慮して繋ぎ用のセクタ(リンキング セクタ) を前後に付加し、パースト的 (間歇的) にセク 夕連続で記録するようにしている。

【0004】ここで、例えばいわゆる標準的なCD (コ 40 ンパクトディスク) のフォーマット (CD-DAフォー マット)のデータ、あるいはアナログオーディオ信号を 単純に直線量子化して得られるいわゆるストレートPC Mオーディオデータを、略々1/4にピット圧縮して記 録再生する場合を考察する。この略々1/4にピット圧 縮されて記録されたディスクの再生時間(プレイタイ ム)は、圧縮前の上記ストレートPCMデータ、例えば 上配CD-DAフォーマットのデータを記録する場合の 略々4倍となる。これは、より小型のディスクで標準1

から、装置の小型化が図れることになる。また、記録再 生の(瞬時的な)ビットレートを上記標準的なCD-D Aフォーマットと同じにしておくことにより、実際に記 録や再生を行うのに要する時間もそれぞれ略々1/4で 済むことから、残りの略々3/4の時間をいわゆるリト ライ等に割り当てることができる。具体的に例えばデー 夕の記録時においては、記録が正常に行えたか否かの確 認(ベリファイ)動作や、正常に記録が行えなかった場 合の再售き込み動作等であり、また再生時においては、 再生データの誤り率が高い場合の再読み取り動作等であ る。これにより、例えば外乱によって機構部が振動して フォーカスやトラッキング等が外れるような悪条件下で も、記録再生がより確実に行えることになり、操帯用小 型装置への適用が可能となる。

【0005】このような略々1/4にピット圧縮された ディジタルオーディオデータを記録再生するためには、 圧縮データの記録及び/又は再生用のバッファメモリが 必要とされる。このメモリは、記録時には、圧縮データ が一定レートで連続的に書き込まれ、略々4倍の速度で 20 パースト的あるいは間歇的に読み出される。このパース ト読み出しの際の1回のデータ量は、上記記録単位とな る所定データ量、例えば32セクタ分であり、上述した ように前後にリンキング用の数セクタが付加され、ディ スク上に空間的に連続して(先の記録部分に続けて)記 録される。また再生時には、ディスク上からバースト的 あるいは間歇的に上配略々4倍の速度で上配所定記録単 位のデータ量(例えば32セクタ+リンキング用の数セ クタ) のデータを再生し、前後の上記リンキング用のセ クタを除去して上記パッファ用メモリに書き込む。この クティブ)やCD-ROM ХАのオーディオデータフ 30 メモリから上記一定レートで連続的に圧縮データを読み 出す。

> 【0006】ここで、上記記録及び/又は再生用のバッ ファメモリの全記憶容量をMrとするとき、上記圧縮デ ータが書き込まれて未だ読み出されていないデータ量 (未読出データ量) と、この未読出データを破壊しない で書き込み可能なメモリの残りの記憶容量(書込可能容 量)との和はMr となる。このようなメモリに対する書 き込みや読み出しの制御について以下に説明する。

【0007】記録時には、上記パッファメモリに対して 一定データレートで上記圧縮データを書き込み制御する と共に、上記未読出データ量が所定量Mr 以上になる と、この書込データレートよりも速い読出レートで所定 の記録単位毎(例えば上記32セクタ+数セクタ毎)に パースト的に読み出し、ディスク等の記録媒体に記録す るように制御している。この記録媒体に未だ記録されて いないデータは上記メモリ上で上記未読出データとされ る。ここで、振動等の外乱等により上記記録媒体への記 録動作が中断されたときや記録が正常に行えなかったと きには上記メモリ内の未読出データ量が減らず、未読出 2 cmのCDと同じ程度の記録再生時間が得られること 50 データ量が上記メモリの全記憶容量Mr に近いときには

一定レートで書き込まれる圧縮データによりこの未読出 データが破壊されることがある。この点を考慮して、バ ッファメモリの上記書込可能容量が(Mr - Mr)を下 回る段階で記録媒体への記録を行わせることにより、す なわち書込可能領域の記憶容量に余裕を持たせておくこ とにより、媒体への記録が中断されたり正常に行えなか ったりした場合の上記未読出データの破壊を防止するも のである。上記(Mr - Mr)は、媒体への記録の中断 状態の復帰や再記録等に要する時間を想定して、この時 間分だけ上記一定データレートで圧縮データをメモリに 10 書き込む動作を続け得る程度に設定しておけばよい。

【0008】また、再生時には、記録媒体からパースト 的に読み取られた圧縮データがメモリに書き込まれて一 定データレートで読み出されるように制御されるが、こ のとき、メモリ内の上記未読出データ量が所定量M_L を 下回ると記録媒体からパースト的に読み出してメモリへ の書き込みを行うように制御している。これは、ディス ク等の記録媒体からのデータ読み取りが外乱等により正 常に行えなかった場合でも、残りの未読出データ量ML を読み出し続けることができ、一定レートでの読み出し 20 動作が中断されて再生が中断されることがないようにし たものである。この未読出データ量Mi は、例えば記録 媒体に対して記録データを再度読み取るのに要する時間 分だけ上記一定レートで圧縮データをメモリから読み出 す動作を続け得る程度に設定すればよい。

[0009]

【発明が解決しようとする課題】ところで、一般に光デ ィスクシステムにおいては、ディスクの最内周等の所定 位置にいわゆるTOC(テーブルオヴコンテンツ)デー タの記録領域が散けられており、この領域 (TOC領 30 域)内には、曲数(ファイル数)、各曲が記録されてい る絶対時間、未記録領域の絶対時間等のTOC情報が記 録されるようになっている。再生や記録はこのTOC情 報を基に行われ、例えば録音中は、TOC情報をRAM (ランダムアクセスメモリ) 等に一時的に記憶してお き、録音終了後に該RAM等の内部のTOC情報をディ スクの上記所定のTOC領域に記録している。すなわ ち、配録時においては、配録が終了した時点でその記録 内容についてのTOC情報が確定し、これをディスクに 記録するわけである。再生時には、このTOC情報に基 40 づいて記録位置をサーチし、再生を行うわけである。

【0010】ところが、光ディスク記録装置で記録を行 っている最中に電源電圧が低下し、回路が正常に動作し なくなった場合には、上記TOC情報がディスク上に記 録されないため、記録内容の再生が事実上行えなくなっ てしまうことになる。これは例えば、商用交流電源駆動 タイプでは、配録中に停電や電圧低下が発生したり、電 源コードのプラグがコンセント(アウトレット)から外 れるような場合が考えられ、また電池駆動タイプでは、

れる。このような場合に、記録開始時点から上記電圧低 下や電源遮断等が生じて記録できなくなる時点までの一 連の記録内容の全てについて再生が行えなくなるわけで あり、プランクディスクに連続して記録し続けていた最

中に電圧低下等が生じた場合には、途中で記録終了(停 止)操作をしていない限り、ディスク全ての記録内容が 再生できないことになる。

【0011】本発明は、このような実情に鑑みてなされ たものであり、簡単な構成で、上述のような記録中の電 源電圧低下や遮断等によりそれまでの記録内容が無効と なって再生等が行えなくなる欠点を防止し得るような光 ディスク記録装置の提供を目的とする。

[0012]

【課題を解決するための手段】本発明に係る光ディスク 記録装置は、メイン電源を供給するメイン電源供給手段 と、パックアップ用電源供給手段と、上記メイン電源供 給手段の電圧を検出する電圧検出手段と、記録内容のT 〇C情報を一時記憶するTOC情報記憶手段と、装置各 部の動作制御用の制御手段とを有し、上記電圧検出手段 により上記メイン電源供給手段の出力電圧が所定の閾値 に対して低いことが検出されたとき、上記バックアップ 用電源供給手段からの電源を少なくとも上記制御手段及 びTOC情報記憶手段に供給することにより、上述の課 題を解決する。

[0013]

【作用】上記メイン電源電圧の検出出力が上記閾値より 低くなったときに上記パックアップ用電源供給手段から の電源を少なくとも上記制御手段及び上記TOC情報記 億手段に供給しているため、ディスクへの記録が行えな くなってもTOC情報が保持され、ディスクの記憶内容 を有効に利用可能となる。

[0014]

【実施例】先ず図1は、本発明に係る光ディスク記録装 置の一実施例となる光ディスク記録再生装置の概略構成 を示すプロック回路図である。この図1において、光デ イスク2等の記録媒体にはビット圧縮ディジタルオーデ イオ信号が記録される。この記録信号を光学ヘッド3に より所定記録単位(例えば32セクタ+数セクタ)毎に パースト的に読み取り、デスクランブルや誤り訂正復号 化のためのデコーダ21を介してビット圧縮オーディオ データを得る。この圧縮データをRAM(ランダムアク セスメモリ) 等のメモリ22に書き込み、このメモリ2 2から一定のデータレートで読み出し、記録側でのビッ ト圧縮処理を復元(伸長)して復号化するためのデコー ダ23を介して、オーディオ信号の再生を行う。

【0015】ここで、上記メモリ22に対する圧縮デー 夕の書込動作制御は、該メモリ22内のデータ量が一定 量以下となるとき、上記光ディスク2等の記録媒体から 上記圧縮データを読み取ってメモリ22に書き込み、メ 電池寿命が尽きて電圧が急速に低下する事などが考えら 50 モリ22内にデータ書込可能な空き領域が残っている間

は次々とデータを読み取って書き込み続けるが、空き領 域が一定値以下となって書き込めなくなると、すなわち 実質的なメモリフル状態になると、記録媒体からの読み 取りを停止し、例えば光学ヘッド3は光ディスク2上の 同じトラック位置をトレースし続けたり、次に読み取る べき位置付近で待機状態となるような制御が行われる。

【0016】また、光ディスク2上には、上記ピット圧 縮ディジタルオーディオデータと共に、曲数(データフ アイル数)、各曲が記録されている絶対時間(アプソル ートタイム)、未記録領域の絶対時間等のいわゆるTO 10 C情報が、ディスク最内周等の所定位置のTOC領域 (あるいはディレクトリ領域) に記録されるようになっ ている。この場合の絶対時間情報とは、例えば標準的な CDフォーマットで記録再生する際の曲の開始時間や終 了時間を表すアドレス情報であり、この終了時間から開 始時間を引いた時間が、上記オーディオデータのデータ 量を標準再生時間で表したものである。例えばビット圧 縮率が4のときには、標準再生時間の4倍だけ実際の再 生(曲の演奏、いわゆるプレイ)時間が得られることに なる。

【0017】光磁気ディスク等の記録可能な光ディスク 2には、トラッキングのために予め形成されたプリグル ーヴを、所定周波数でウォブリング(トラック幅方向に 微小振動)させ、FM変調等により上記絶対時間(アブ ソルートタイム)を記録しておくようないわゆるATI P(アプソルートタイムインプリグルーヴ)が採用され ているが、このATIP信号をATIP検出器7で取り 出して、CPU(中央処理プロセッサ)を有して成るシ ステムコントローラ8に送っている。システムコントロ ーラ8は、曲の開始、終了時点での上記ATIP情報を RAM9等のメモリに送って、曲番号、開始時間及び終 了時間等から成るTOC情報を一時的に記憶させる。記 録(録音)を終了させるストップ操作等が行われたとき に、システムコントローラ8は、このRAM9に記憶さ れたTOC情報を光ディスク2上の上記TOC領域に書 き込んだ後、記録動作を停止させる。この光ディスク2 に記録されたTOC情報に基づいて、所望の曲の頭を検 索(サーチ)してその曲を再生したり、未記録領域の先 頭位置をサーチして次の新たな曲を記録(録音)したり することができるわけである。

【0018】ここで本実施例においては、乾電池や充電 式電池等の電池31からの出力、あるいは商用交流を整 流平滑した直流出力等を、メイン電源用の電圧安定化 (ボルテージレギュレータ) 回路32に送って安定化 し、各部回路にメインのVcc1 電源として供給してい る。また、電池31からの出力(あるいは整流平滑出力 等)を第2の電圧安定化回路33に送り、その出力を第 2のVcc2 電源として、少なくとも上記システムコント ローラ8及びRAM9に供給している。電圧安定化回路 3 1 からのメインの V cc1 電源の電圧は、電圧検出器 3 50

4により検出され、所定の閾値Vthでレベル弁別されて その出力が上記システムコントローラ8に送られてい る。上配第2のVcc2 電源供給ラインには、ダイオード 35を介してパックアップ用電源となるパックアップ電 池36が接続されている。上記閾値Vthは例えば装置の 有効な動作を補償する最低電圧値、あるいはこの最低電 圧値よりもやや高めの電圧値に設定されており、上記メ インのVcci 電源の電圧がこの閾値Vthを下回るときに は、パックアップ用電源となるパックアップ電池36か ら、ダイオード35を介してシステムコントローラ8及 びRAM9にVccz 電源が供給されるようになってい る。

6

【0019】より具体的には、例えばダイオード35と Vccz 電源ラインとの間にスイッチを接続し、このスイ ッチをシステムコントローラ8によってオン・オフ制御 するようにすればよい。上記メイン電源電圧が閾値Vth 以上のときにはスイッチをオフし、閾値Vthを下回ると きにはスイッチをオンするわけである。また、パックア ップ電池36として、大容量コンデンサや充電式電池等 20 を使用する場合には、定常時(メイン電源が正常なと き)には上記第2の電圧安定化回路33からのVcc2 電 源をシステムコントローラ8やRAM9等に供給すると 共に、充電式のパックアップ電池36を充電状態にお き、メイン電源がダウンしたときには充電式のバックア ップ電池36からの放電電流をシステムコントローラ8 やRAM9等に供給するようにしてもよい。

【0020】上記メイン電源電圧が上記閾値Vthを下回 ったとき(メイン電源ダウン時)に電圧検出器34から 検出出力がシステムコントローラ8に送られると、シス テムコントローラ8は、それまで記録した部分を1曲と し、TOC情報をRAM9にストアする。次にメイン電 源電圧が上がるのを待ち、上がったところでRAM9に ストアされていたTOC情報をディスク2に記録する。 上記RAM9としてはいわゆるCMOSメモリ等のよう な低消費電力型のメモリを用いることが好ましい。ま た、メイン電源がダウンしている間は、光ディスク2を 装置から取り出すことを禁止するような機構、あるいは 取り出そうとすると警告が発せられるような構成を設け ることが必要とされる。さらに、メイン電源ダウン時に パックアップ電池36からの電源供給がされている間 は、システムコントローラ8のCPU等をいわゆるスタ ンパイモード等の低消費電流モードにすることが望まし

【0021】このような構成により、記録(録音)中に 電池 (パッテリ) 31の電圧が低下しても、それまでの 記録内容のTOC情報がRAM9に記憶されて保持さ れ、次にメイン電源が回復したときに該TOC情報が光 ディスク2に記録されるため、メイン電源がダウンする 直前までの記録内容を後で再生することができる。これ は、従来において、途中で記録が中断された場合にはT

OC情報がディスクに記録されず、TOC情報が記録さ れていないオーディオデータは再生のためのヘッドアク セスが行えず再生することができないため、ユーザにと っては記録されていないことに等しくなる、という不都 合があったわけであるが、本発明実施例によれば、電源 ダウンによって記録が中断される直前までのTOC情報 が保存されるため、それまでの配録内容全ての再生が可 能となる。

【0022】以下、図1に示す具体的な構成及びその動 作について詳細に説明する。スピンドルモータ1により 回転駆動される光ディスク2としては、記録が可能な例 えば光磁気ディスク等が用いられる。ただし、再生専用 の場合には、通常のCD(コンパクトディスク)と同様 なアルミニウム反射膜タイプの光ディスクを用いること もできる。この光ディスク (例えば光磁気ディスク) 2 に対して記録及び/又は再生を行うための 光学ヘッド 3は、例えば、レーザダイオード等のレーザ光源、コリ メータレンズ、対物レンズ、偏光ビームスプリッタ、シ リンドリカルレンズ等の光学部品及び所定パターンの受 光部を有するフォトディテクタ等から構成されている。 この光学ヘッド3は、光磁気ディスク2を介して上記磁 気ヘッド4と対向する位置に設けられている。光磁気デ ィスク2にデータを記録するときには、後述する記録系 のヘッド駆動回路16により磁気ヘッド4を駆動して記 録データに応じた変調磁界を印加すると共に、光学ヘッ ド3により光磁気ディスク2の目的トラックにレーザ光 を照射することによって、磁界変調方式により熱磁気記 録を行う。またこの光学ヘッド3は、目的トラックに照 射したレーザ光の反射光を検出し、例えばいわゆる非点 収差法によりフォーカスエラーを検出し、例えばいわゆ るプッシュプル法によりトラッキングエラーを検出す る。光磁気ディスク2からデータを再生するとき、光学 ヘッド3は上記フォーカスエラーやトラッキングエラー を検出すると同時に、レーザ光の目的トラックからの反 射光の偏光角(カー回転角)の違いを検出して再生信号 を生成する。

【0023】光学ヘッド3の出力は、RFアンプ回路5 に供給される。このRFアンプ回路5は、光学ヘッド3 の出力から上記フォーカスエラー信号やトラッキングエ ラー信号を抽出してサーボ制御回路6に供給するととも に、再生信号を2値化して後述する再生系のデコーダ2 1に供給する。また、RFアンプ回路5は、上記ATI P(アプソルートタイムインプリグルーヴ)信号を取り 出して上記ATIP検出回路7に送っている。

【0024】サーボ制御回路6は、例えばフォーカスサ ーポ制御回路やトラッキングサーポ制御回路、スピンド ルモータサーボ制御回路、スレッドサーボ制御回路等か ら構成される。上記フォーカスサーポ制御回路は、上記 フォーカスエラー信号がゼロになるように、光学ヘッド

ングサーボ制御回路は、上記トラッキングエラー信号が ゼロになるように光学ヘッド3の光学系のトラッキング 制御を行う。さらに上記スピンドルモータサーポ制御回 路は、光磁気ディスク2を所定の回転速度(例えば一定 線速度) で回転駆動するようにスピンドルモータ1を制 御する。また、上記スレッドサーボ制御回路は、システ ムコントローラ8により指定される光磁気ディスク2の 目的トラック位置に光学ヘッド3及び磁気ヘッド4を移 動させる。このような各種制御動作を行うサーボ制御回 路6は、該サーボ制御回路6により制御される各部の動 作状態を示す情報をシステムコントローラ8に供給して

【0025】システムコントローラ8にはキー入力操作 部38や表示部39が接続されている。このシステムコ ントローラ8は、キー入力操作部38による操作入力情 報により指定される動作モードで記録系及び再生系の制 御を行う。またシステムコントローラ8は、光磁気ディ スク2から再生される上記ATIP信号や、再生データ 中のヘッダタイムやサブコードのQデータ等に基づくセ クタ単位のアドレス情報(時間情報)に基づいて、光学 ヘッド3及び磁気ヘッド4がトレースしている上記記録 トラック上の記録位置や再生位置を管理する。表示部3 9には、この記録位置又は再生位置の情報や、上記キー 操作により選択された機能の情報等が必要に応じて表示 される。

【0026】次にこのディスク記録再生装置の記録系に ついて説明する。入力端子10からのアナログオーディ オ入力信号Aixがローパスフィルタ11を介してA/D 変換器12に供給されている。A/D変換器12は上記 アナログオーディオ入力信号Ainを量子化し、得られた ディジタルオーディオ信号は、例えばAD (適応差分) PCM等の高能率符号化処理のためのエンコーダ13に 供給される。また、外部からのディジタルオーディオ信 号を、ディジタル入力インターフェース回路(図示せ ず)を介してエンコーダ13に供給するようにしてもよ い。このエンコーダ13に入力されるディジタルオーデ イオPCM信号は、圧縮処理等の施されていないいわゆ るストレートPCMデータであり、具体例として、標準 的なCD (コンパクトディスク) のフォーマット (CD -DAフォーマット)と同様に、サンプリング周波数が 44. 1kHzで、量子化ピット数が16ピットのPCM データとする。この入力されたオーディオPCMデータ は、エンコーダ13により、例えば略々1/4のピット レートとなるような高能率ピット圧縮処理が行われる。

【0027】次にメモリ14は、データの書き込み及び 読み出しがシステムコントローラ8により制御され、エ ンコーダ13から供給されるピット圧縮データを一時的 に記憶しておき、必要に応じてディスク上に記録するた めのパッファメモリとして用いられている。すなわち例 3の光学系のフォーカス制御を行う。また上記トラッキ 50 えば上記1/4のピット圧縮モードにおいては、標準的 なCD-DAフォーマットのデータ転送速度(ピットレート)の略々1/4に低減された一定ピットレートの圧縮データが、メモリ14に連続的に書き込まれる。この圧縮データを光磁気ディスク2に記録する際には、上記標準的なCD-DAフォーマットと同じディスク回転速度(線速度一定)の下に同じデータ転送速度でパースト的あるいは離散的に記録している。すなわち記録モードの際の実際に信号を記録している時間は、全体の略々1/4であり、残りの3/4の時間は記録を行っていない休止期間である。ただし、光磁気ディスク2上では、休10止期間の直前に記録された領域に続けて次の記録が行われ、媒体表面上では連続した記録が行われるようにしている。これによって、例えば標準的なCD-DAフォー

【0028】このため、メモリ14からは上記標準的な CD-DAフォーマットのデータ転送速度に応じたビッ トレートでパースト的に上記圧縮データが読み出され、 この読み出された圧縮データは、インターリーブ処理や 誤り訂正符号化処理やEFM変調処理等を行うためのエ 20 ンコーダ15に供給される。ここで、メモリ14からエ ンコーダ15に供給されるデータ列において、所定の複 数セクタ (例えば32セクタ) から成る1クラスタ分を 1回の記録で連続記録される単位としており、これがエ ンコード処理されると、該1クラスタ分のデータ量にク ラスタ接続用の数セクタ分が付加されたデータ量とな る。このクラスタ接続用セクタは、エンコーダ15での インターリープ長より長く設定しており、インターリー プされても他のクラスタのデータに影響を与えないよう にしている。このクラスタ単位の記録の詳細について 30 は、図2を参照しながら後述する。

マットと同じ記録密度、記録パターンの記録が行われる

【0029】エンコーダ15は、メモリ14から上述したようにパースト的に供給される記録データについて、エラー訂正のための符号化処理(パリティ付加及びインターリープ処理)やEFM符号化処理などを施す。このエンコーダ15による符号化処理の施された記録データが、磁気ヘッド駆動回路16に供給される。この磁気ヘッド駆動回路16は、磁気ヘッド4が接続されており、上記記録データに応じた変調磁界を光磁気ディスク2に印加するように磁気ヘッド4を駆動する。

【0030】また、システムコントローラ8は、メモリ14に対する上述の如きメモリ制御を行うとともに、このメモリ制御によりメモリ14からパースト的に読み出される上記記録データを光磁気ディスク2の記録トラックに連続的に記録するように記録位置の制御を行う。この記録位置の制御は、システムコントローラ8によりメモリ14からパースト的に読み出される上記記録データの記録位置を管理して、光磁気ディスク2の記録トラック上の記録位置を指定する制御信号をサーボ制御回路6に供給することによって行われる。

10

【0031】次に、このディスク記録再生装置の再生系について説明する。この再生系は、上述の記録系により光磁気ディスク2の記録トラック上に連続的に記録された記録データを再生するためのものであり、光学ヘッド3によって光磁気ディスク2の記録トラックをレーザ光でトレースすることにより、光磁気ディスク2から記録信号が読み取られる。ここで、光磁気ディスク2は、上記標準的なCD-DAフォーマットと同じ回転速度(線速度一定)で回転駆動されており、該CD-DAフォーマットと同じデータ転送速度でパースト的(離散的)に記録信号が読み取られ、RFアンプ回路5により2値化されてデコーダ21に供給される。

【0032】デコーダ21は、上述の記録系におけるエンコーダ15に対応するものであって、RFアンプ回路5により2値化された再生出力について、デインターリーブ処理や誤り訂正のための復号化処理やEFM復調処理等の処理を行い上述の1/4圧縮データを、例えば上記標準的なCD-DAフォーマットと同じデータ転送速度でパースト的に出力する。このデコーダ21により得られる再生データは、メモリ22に供給される。

【0033】メモリ22は、データの書き込み及び読み出しがシステムコントローラ8により制御され、デコーダ21から上記標準的なCD-DAフォーマットと同じデータ転送速度でパースト的に供給される再生データが書き込まれる。また、このメモリ22は、上記パースト的に書き込まれた上記再生データが、一定のビットレート、すなわち上記標準的なCD-DAフォーマットの略々1/4のデータ転送速度で連続的に読み出される。

【0034】システムコントローラ8は、このようなメモリ22に対する上配再生データの書込/読出のメモリ制御を行うと共に、このメモリ制御によりメモリ22からバースト的に書き込まれる上記再生データを光磁気ディスク2の記録トラックから連続的に再生するように再生位置の制御を行う。この再生位置の制御は、システムコントローラ8によりメモリ22からバースト的に読み出される上記再生データの再生位置を管理して、光磁気ディスク2の記録トラック上の再生位置を指定する制御信号をサーボ制御回路6に供給することによって行われる。

40 【0035】メモリ22から上記標準の略々1/4の転送速度(ピットレート)で連続的に読み出された再生データとして得られる圧縮データは、デコーダ23に供給される。このデコーダ23は、上記記録系のエンコーダ13に対応するもので、例えば上記1/4の圧縮データを例えば4倍にデータ伸張(ピット伸張)することで16ピットのディジタルオーディオデータを再生する。このデコーダ23からのディジタルオーディオデータは、D/A変換器24に供給される。

【0036】D/A変換器24は、デコーダ23から供 50 給されるディジタルオーディオデータをアナログ信号に 変換し、ローパスフィルタ25を介して出力端子26か らアナログオーディオ出力信号Aout を出力する。

【0037】次に、乾電池や充電式電池等の電池 (パッ テリ)31、あるいは商用交流を整流平滑して得られる 直流電源が用いられており、この電源電圧を電圧安定化 (ポルテージレギュレータ)回路32で安定化して、各 部にメインのVcc1 電源として供給している。また、電 池31からの出力(あるいは整流平滑出力等)を第2の 電圧安定化回路33に送り、その出力を第2のVcca 電 源として、システムコントローラ8及びRAM9に供給 10 している。電圧安定化回路31からのメインのVcc1 電 源の電圧は、電圧検出器34により検出され、所定の閾 値Vthでレベル弁別されてその出力が上記システムコン トローラ8に送られている。この電圧検出器34の入力 を、電池31等の電源端子に接続して、この電源電圧を 監視するように構成してもよい。上記第2のVcc2 電源 供給ラインには、ダイオード35を介してパックアップ 用電源となるパックアップ電池36が接続されている。 上記メイン電源電圧が上記閾値VIhを下回ったときに、 電圧検出器34から検出出力がシステムコントローラ8 20 に送られ、このときシステムコントローラ8は、それま で光磁気ディスク2に記録した部分を1曲としてTOC 情報を生成し、このTOC情報をRAM9に記憶させ る。このRAM9にはCMOS等の低消費電力型メモリ が用いられ、パックアップ電池36からの電源供給を受 けてメイン電源電圧が回復するまで上記TOC情報を保 持する。メイン電源が回復すると、システムコントロー ラ8はRAM9に記憶されていた上記TOC情報を光磁 気ディスク2に記録する。

【0038】ところでこのようなディスク記録再生装置 30 に用いられる光磁気ディスク2は、ステレオオーディオ 信号で60分~74分以上を記録可能な容量とすること が望ましく、例えば上記1/4のデータ圧縮率を採用す るとき、約130Mパイト程度以上が必要となる。ま た、携帯用あるいはポケットサイズ程度の記録及び/又 は再生装置を構成するためには、ディスク外径は8c m、あるいはより小さな径のディスクを用いることが望 ましい。さらに、トラックピッチ及び線速度について は、CDと同じトラックピッチ1.6 µm、線速度1. 2~1. 4m/s とすることが望まれる。これらの条件 40 を満足するディスクとしては、例えばディスク外径を6 4 mmとし、データ記録領域の外径を61 mm、データ記録 領域の内径を31㎜とし、この内側に幅1.5㎜のリー ドイン領域を形成する。データ記録領域の外径より外側 には幅0.5㎜のリードアウト領域を形成する。このデ ィスクを、縦横が70mx74mmのディスクキャディに 収納して市場に供給するようにすれば、ポケットサイズ 程度の記録再生装置により該ディスクに対する記録再生 が可能となる。なお上記1/4のデータ圧縮モードで7 2分~76分以上の記録再生を可能とするためのディス 50

クのデータ記録領域の内径及び外径の寸法の範囲として

は、内径を28mmとするときの外径58mm~62mmか ら、内径を50mとするときの外径71mm~73mmまで の範囲で適当に設定すればよい。

12

【0039】次に、以上説明したようなディスク記録再 生装置による基本的な記録再生動作について、さらに詳 細に説明する。先ず、記録データ(メモリ14から読み 出されたデータ)は、一定数 (例えば32個) のセクタ (あるいはプロック)毎にクラスタ化され、これらのク ラスタの間にクラスタ接続用のいくつかのセクタが配さ れた形態となっている。具体的には図2に示すように、 クラスタCは32個のセクタ (プロック) BO~B31 から 成っており、これらのクラスタCの間にそれぞれ4個の 接続用(リンキング用)セクタL1~L4が配されて隣のク ラスタと連結されている。ここで、1つのクラスタ、例 えばk番目のクラスタCkを記録する場合には、このク ラスタC₁ の32個のセクタBO~B31 のみならず、前方 に3セクタ、後方に1セクタの接続用セクタ、すなわち クラスタ C_{k-1} 側にランーインプロック用の 2 個のセク タL2、L3及びサプデータ用の1個のセクタL4と、クラス タC₁₊₁ 側にラン-アウトプロック用の1個のセクタL1 とを含めて、計36セクタを単位として記録を行うよう にしている。このとき、これらの36セクタ分の記録デ ータがメモリ14からエンコーダ15に送られ、このエ ンコーダ15でインターリーブ処理が行われることによ り、最大108フレーム(約1.1セクタに相当)の距 離の並べ換えが行われるが、上記クラスタC、内のデー タについては、上記リンキング用のセクタL1~L4の範囲 内に充分に収まっており、他のクラスタCx-1 やCx+1 に影響を及ぼすことがない。なお、セクタL1~L3には例 えば0等のダミィデータが配され、セクタL4には補助的 なサブデータが配されており、インターリーブ処理によ る本来のデータに対する悪影響を回避できる。ここで、 メインデータ用のセクタB0~B31には8ピットの2進数 (2桁の16進数)で 0000 0000 (00H) ~ 0001 11 11 (1 F H) のセクタ番号がそれぞれ付され、リンキン グ部分のセクタL1には 0010 0000 (20H)、L2~L4に は 0011 1101 (3 DH) ~ 00111111 (3 FH) のセク 夕番号がそれぞれ付されている。また、上記クラスタと しては、リンキング用セクタを含めた例えば36セクタ

【0040】このようなクラスタ単位の記録を行わせる ことにより、他のクラスタとの間でのインターリープに よる相互干渉を考慮する必要がなくなり、データ処理が 大幅に簡略化される。また、フォーカス外れ、トラッキ ングずれ、その他の誤動作等により、記録時に記録デー 夕が正常に記録できなかった場合には上記クラスタ単位 で再記録が行え、再生時に有効なデータ読み取りが行え なかった場合には上記クラスタ単位で再読み取りが行え

を1クラスタとしてもよい。

【0041】ところで、1セクタ(プロック)は2352パイトから成り、先頭から同期用の12パイト、ヘッダ用の4パイト、及びデータD0001~D2336となる2336パイトが、この順に配列されている。このセクタ構造(プロック構造)における上記同期用の12パイトは、最初の1パイトが00H(Hは16進数を示す)で10パイトのFFHが続き、最後の1パイトが00Hとなっている。次の4パイトのヘッダは、それぞれ1パイトずつの分、秒、プロックのアドレス部分に続いて、モード情報用の1パイトから成っている。このモード情報は、主としてCD-ROMのモードを示すためのものであり、図2に示すセクタの内部構造は、CD-ROMフォーマットのモード2に相当している。CD-Iは、このモード2を用いた規格である。

【0042】図2の具体例では、さらに、圧縮オーディオデータ記録のためのフォーマットを示しており、上記2336バイトの領域の先頭から、8バイトのサブヘッダ、各128バイトで18グループのサウンドグループSG01~SG18、20バイトのスペース領域、及び4バイトのリザープ領域の順に配列されている。上記820バイトのサブヘッダは、各1バイトのファイル番号、チャンネル番号、サブモード、及びデータタイプが2回繰り返されて配置されたものである。

【0043】ところで、このようなセクタ構造のデータがディスク上に記録される際には、エンコーダ15によりパリティ付加やインターリーブ処理等を含む符号化処理が施され、EFM(8-14変調)処理が施されて、図3に示すような記録フォーマットにて記録が行われる。

【0044】この図3において、1プロック(1セク タ)が第1フレームから第98フレームまでの98フレ 30 ームから成り、1フレームはチャンネルクロック周期T の 588倍(588T) で、1フレーム内には、24T(+接 **続ビット3T)のフレーム同期パターン部分、14T** (+接続ビット3T) のサブコード部分、及び 544Tの データ(オーディオデータ及びパリティデータ)部分が **設けられている。 544Tのデータ部分は、12パイト** (12シンボル) のオーディオデータ、4パイトのパリ ティデータ、12パイトのオーディオデータ、及び4パ イトのパリティデータがいわゆるEFM変調されたもの であり、1フレーム内のオーディオデータは24パイト 40 (すなわちオーディオサンプルデータの1ワードが16 ピットであるから12ワード)となっている。上記サブ コード部分は8ビットのサブコードデータがEFM変調 されたものであり、98フレーム単位でプロック化され て、各ピットが8つのサブコードチャンネルP~Wを構 成している。ただし第1及び第2フレームのサブコード 部分は、EFM変調の規則外(アウトオヴルール)のブ ロック同期パターンSo, Si となっており、各サプコー ドチャンネルP~Wは第3フレームから第98フレーム までのそれぞれ96ビットずつとなっている。

14

【0045】上記オーディオデータはインターリーブ処理されて記録されているが、再生時にはデインターリーブ処理されて時間の順序に従ったデータ配列のオーディオデータとされる。このオーディオデータの代わりに、一般のCD-Iデータ等を記録することができる。

【0046】ところで、上記図1のディスク記録再生装置において、システムコントローラ8は、図4に示すように、メモリ14のライトポインタWを上記圧縮データのピットレートに応じた速度で連続的にインクリメントして連続的に書き込み、このメモリ14内に記憶されている上記圧縮データの未読出データ量が所定量Mx以上になると、メモリ14のリードポインタRを上記標準的なCDーDAフォーマットに準じた転送速度でバースト的にインクリメントして所定の記録単位(例えば32セクタ分)毎に読み出すようにメモリ制御を行う。従って、メモリ14内では、上記未読出データを破壊することなく書き込めるデータ量、すなわち記録可能容量が、所定量(Mr - Mr)を下回ることが防止されることになる。

【0047】ここで、メモリ14からバースト的に読み出される記録データは、システムコントローラ8により光磁気ディスク2の記録トラック上の記録位置を制御することによって、光磁気ディスク2の記録トラック上で連続する状態に記録することができる。しかも上述のようにメモリ14には常に所定量以上のデータ書き込み領域が確保されているので、外乱等によりトラックジャンプ等が発生したことをシステムコントローラ8が検出して光磁気ディスク2に対する記録動作を中断した場合にも、上記所定量以上の上記記録可能な領域に入力データを書き込み続け、その間に復帰処理動作を行うことができ、光磁気ディスク2の記録トラック上には、入力データを連続した状態に記録することができる。

【0048】なお、上記光磁気ディスク2には、上記セクタの物理アドレスに対応するヘッダタイムデータ等が上記ディジタルオーディオ圧縮データにセクタ毎に付加されて記録される。また、その記録領域と記録モードを示す目録データがTOC領域等の目録領域に記録される。

【0049】次に、図1のディスク記録再生装置における再生系では、システムコントローラ8は、図5に示すように、メモリ22のライトポインタWを標準的なCDーDAフォーマットに準じた転送速度でインクリメントしてパースト的に書き込むとともに、メモリ22のリードポインタRを上記圧縮データのピットレートに応じた速度で連続的にインクリメントして読み出し、上記ライトポインタWが上記リードポインタRに迫い付いた(書込可能領域が0となった)ときに書き込みを停止し、メモリ22内に記憶されている上記未読出データ量が所定量M. 以下になると書き込みを行うようにメモリ制御を50行う。従って、メモリ22内に常に所定量M. 以上の未

読出データ量のデータ読み出し領域を確保しながら、再 生データを該メモリ22から連続的に読み出すことがで きる。

【0050】メモリ22にパースト的に書き込まれる再生データは、システムコントローラ8により光磁気ディスク2の記録トラック上の再生位置を制御することによって、光磁気ディスク2の記録トラック上で連続する状態で再生することができる。しかも、上述のようにメモリ22には常に所定量ML以上のデータ読み出し領域が確保されているので、外乱等によりトラックジャンプ等 10 が発生したことをシステムコントローラ8が検出して光磁気ディスク2に対する再生動作を中断した場合にも、上記所定量ML以上のデータ読み出し領域から再生データを読み出してアナログオーディオ信号の出力を継続することができ、その間に復帰処理動作を行うことができる。

【0051】次に、上記システムコントローラ8及び電圧検出器34により、メイン電源電圧低下時に、TOC情報をRAM9に自動的に記憶させる動作について、図6を参照しながら説明する。

【0052】図6のステップS1において記録(録音) が開始されると、ステップS2に進んで、上記電圧検出 器34からのメイン電源電圧検出出力のチェック動作が システムコントローラ8において行われる。このステッ プS2でOK(メイン電源電圧が低下していない)と判 別されたときには、次のステップS3に進んで、曲番変 更チェックが行われる。この曲番変更チェックとは、1 曲が終わると次の曲の記録(録音)を行うために曲番が 変更 (例えば1番だけインクリメント) されることを判 別するものであり、YES (曲が終わった) と判別され 30 たときにはステップS4に進んで当該曲の終了時間等の 情報を上記RAM9に記憶(ストア)した後、ステップ S5に進む。ステップS3でNO(曲が終わっていな い)と判別されたときには直接ステップS5に進む。ス テップS5では、停止(STOP)ボタンが操作された か否かの判別がなされ、OFF (操作されていない) と 判別されたときには上記ステップS2に戻って電源電圧 チェックを行う。ステップS5でON(停止ボタンが操 作された)と判別されたときには、ステップS6に進ん で記録終了モードに移行する。このとき、次のステップ 40 S7では、曲情報として現在の絶対時間を終了時間とし て上記RAM9に記憶させ、次のステップS8でこのR AM9内に記憶されている全てのTOC情報を上記光磁 気ディスク2に配録した後、記録動作を停止させる。

【0053】次に、上記ステップS2でNG(メイン電源電圧が低下した)と判別されたときには、ステップS11に進んでディスクへの記録を終了させ、次のステップS12にてそれまでの記録内容を1曲とする曲情報(TOC情報)をRAM9に記憶(ストア)する。次のステップS13では、システムコントローラ8において50

16

上記電圧検出器34からのメイン電源電圧検出出力のチェック動作が行われ、NG(メイン電源ダウン状態)のときはステップS13に戻り、OK(メイン電源回復)のときは上記ステップS8に進んで、RAM9に記憶されたTOC情報を上記光磁気ディスク2に記録した後、記録動作を停止させる。

【0054】なお、メイン電源がダウンしている間は、 光ディスク2を装置から取り出すことを禁止するような 機構、あるいは取り出そうとすると警告が発せられるよ うな構成を設けることが必要とされる。また、メイン電 源ダウン時にパックアップ電池36からの電源供給がさ れている間は、システムコントローラ8のCPU等をい わゆるスタンパイモード等の低消費電流モードにするこ とが望ましい。

【0055】以上のような動作によれば、メイン電源の電圧チェックにより、NG(所定の関値電圧より低下した)と判別された時点で、そのときまでの曲情報を含むTOC情報をRAM9に強制的に記憶(ストア)し、次にメイン電源が回復したときに光磁気ディスク2に該TOC情報を記録しているため、停電や電池寿命等に起因する電源電圧の低下により記録が行えなくなっても、上記TOC情報を記録した所までの記憶内容が有効に使用可能となり、再生をすることが可能となる。

【0056】なお、本発明は上記実施例のみに限定されるものではなく、例えば光ディスクの記録再生装置のみならず、記録専用装置にも本発明を適用できる。また、バックアップ電池36と第2のVcc2 電源供給ラインとの間にスイッチを挿入接続してシステムコントローラ8によりメイン電源ダウン時にのみ該スイッチをオンさせるように構成してもよい。電圧検出器34は、電池31側の直流電源電圧を検出するように構成してもよい。さらに、バックアップ電池36には、充電式電池や大容量コンデンサ等を用いて、メイン電源が正常なときには電圧安定化回路33からの電源電流により充電しておき、メイン電源ダウン時に該充電された電荷を放電してバックアップするようにしてもよい。

[0057]

【発明の効果】以上の説明から明らかなように、本発明に係る光ディスク記録装置によれば、メイン電源供給手段と、パックアップ用電源供給手段とを設け、メイン電源供給手段の電圧が所定の閾値に対して低いことが検出されたとき、上記パックアップ用電源供給手段からの電源を少なくともTOC情報記憶手段に供給しているため、メイン電源低下によってディスクへの記録が行えなくなってもTOC情報が保持され、次にメイン電源が回復したときに該TOC情報をディスクに記録することで、ディスクの記憶内容を有効に利用可能となり、例えば該記録内容の再生が可能となる。

【図面の簡単な説明】

【図1】本発明に係る光ディスク記録装置の一実施例と

してのディスク記録再生装置の構成例を示すプロック回 路図である。

【図2】記録媒体への記録単位となるクラスタ構造のフ ォーマットを示す図である。

【図3】 いわゆるCD(コンパクトディスク)の規格に おけるフレーム及びセクタ(プロック)のフォーマット を示す図である。

【図4】上記実施例のディスク記録再生装置の記録系に おいてメモリ制御されたメモリの状態を示す図である。

【図5】上記実施例のディスク記録再生装置の再生系に 10 23・・・・・データ伸長用デコーダ おいてメモリ制御されたメモリの状態を示す図である。

【図6】上記実施例の要部動作を説明するためのフロー チャートである。

【符号の説明】

2・・・・光磁気ディスク

3・・・・光学ヘッド

4・・・・磁気ヘッド

6・・・・サーボ制御回路

8・・・・・システムコントローラ

 $9 \cdot \cdot \cdot \cdot RAM$

10・・・・アナログオーディオ信号入力端子

18

13・・・・データ圧縮用エンコーダ

14、22・・・・メモリ

15・・・・エンコーダ

16・・・・磁気ヘッド駆動回路

21・・・・デコーダ

24····D/A変換器

26・・・・アナログオーディオ信号出力端子

31・・・・・電池 (パッテリ)

32、33・・・・電圧安定化回路

34・・・・ 電圧検出器

36・・・・バックアップ電池

【図2】

【図4】

【図1】

[図3]

【図5】

【図6】

