THE UNIT CIRCLE

it's a circle that has a radius of 1 (a unit), and its center is where the x and y axis cross

OBSERVATION 1:

If **X** and **Y** \in The unit circle

Then [$x^2 + y^2 = 1$] according to Pythagorean Theorem $X \in [-1, 1] \text{ and } Y \in [-1, 1]$

If x or y are not in that range then we use this formula

THE MAIN TRIGINOMIC FUNCTIONS ARE

• Sin
$$\Theta = \frac{opposite}{hypotenuse} = \frac{y}{1} = y$$

• $\cos \Theta = \frac{adjacent}{hypotenuse} = \frac{x}{1} = x$

•
$$\cos \Theta = \frac{adjacent}{hypotenuse} = \frac{x}{1} = x$$

•
$$\tan \Theta = \frac{opposite}{adjacent} = \frac{y}{x}$$

OBSERVATION 2:

- you can say (cos Θ , sin Θ) instead of (x , y)
- you can say that tan is = $\frac{\sin \theta}{\cos \theta}$
- sin⊖ ∈ [-1 , 1]
- cosθ ∈ [-1,1]

The reciprocal trig ratios

Secant (sec) =
$$\frac{1}{\cos}$$

cosecant (csc) =
$$\frac{1}{\sin}$$

cotan (cot) =
$$\frac{1}{tan} = \frac{cos}{sin}$$

Directed angle

What is the difference from saying angle (ABC) to saying

angle (CBA)

Well, in normal angles, it doesn't make a difference

But in **Directed Angles**

The type and sign of the angle will change

Firstly, what is a directed angle

It's an ordered pair of rays that are the sides of the angle where the **x** is called the **beginner ray** and **y** is called the **end ray** and they have a connection point which is the angle's vertex point

B

Angle ABC -> (BA, BC)

Angle CBA -> (BC, BA)

If the angle is moving **clockwise**, then we have a **negative** angle

If the angle is moving **counter-clockwise**, then we have a **positive** angle

ato have a directed angle, the angle should be in a standard position, AKA

- the vertex of the angle is on the origin point
- and the initial side is on the positive x axis

Co-terminal/equivelant angles

It's a directed angle that has the same end ray, which means that you can get a coterminal angle by subtracting or adding 360°

So any to get a coterminal angle it has the law of

Coterminal angle = angle \pm (n x 360)

So 60, 420, -300, 780 are all coterminal angles

Which means that any angle – its coterminal angle = 360

For example -> 60 - 300 = 360

When an angle is either 0, 90, 180, 270, 360

It's a quadrantal angle

To get what quadrant we are on, we need the smallest positive angle

So if we are less than 0 we add 360 until we aren't

And if we are bigger than 360 we subtract 360

we can use these laws to get the ref angle

- 1st angle = ref
- 2nd ref = 180 angle
- 3^{rd} ref = angle 180
- 4th ref = 360 angle

Quadrants and trig functions relation

The mentioned one for each quad is + while the unmentioned is -

2nd quadrant -> y (sin, secant)

3rd quadrant -> (tan, cotan)

4th quadrant -> x (cosine, secant)

Related Angles

Complementary -> when the sum of two unconnected angles is 90°

Supplementary -> when the sum of two unconnected angles is 180°

126/ /88

Adjacent -> when two angles are connected

Linear pair ->

O complementary adjacent -> when the sum of two connected angles is 90°

O supplementary adjacent -> when the sum of two connected angles is 180°

vertically opposite angles -> when two angles are equal and opposite of each other

IF
$$A + B = 180$$
 (SUPPLEMENTARY)

$$Sin(180 - \Theta) = sin(\Theta)$$

$$Sin(A) = sin(B)$$

$$Cos(A) = cos(B)$$

$$Tan(A) = tan(B)$$

$$Sin(A) - Sin(B) = 0$$

IF
$$A + B = 90$$
 (COMPLEMENTARY)

$$Sin(90 - \Theta) = cos(\Theta)$$

Sin A = Cos B

Cos A = Sin B

Tan A = Cotan B

$$Cos(-\Theta) = cos(\Theta)$$

Law of sines

it states that the sine of an angle divided by the length of the opposite side is the same ratio for the other 2 angles

$$\frac{\sin 3o}{2} = \frac{\sin 45}{b} = \frac{\sin 105}{a}$$

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

If we want to get the area of a triangle area = $\frac{1}{2}ab$. sin (θ)

Law of cosines

it states that you can get the length of side when the opposite angle is between two known sides

$$\mathsf{a} = \sqrt{b^2 + c^2 - 2bc.\cos(\theta)}$$

Angle of elavation and Angle of depression

LET'S DO AN EXAMPLE

So let's say you where walking and you saw superman, you dum child

TYPES OF MEASURING ANGLES

Radian – Degree – Gradian

Degree

We assume a circle is 360°

Where
$$1^{\circ} = 60'$$

And
$$1' = 60''$$

Radian

$$\Theta^{\text{rad}} = \frac{l}{r}$$

We have two types of angles

Central and inscribed

Central is in the middle

Inscribed is on the edge

$$\Pi = 180$$

How to convert between degree and radian

$$\frac{\theta^{rad}}{\pi} = \frac{\theta^o}{180}$$

Let's say
$$\Theta^{\text{rad}} = \frac{5\pi}{12}$$

We can replace π with 180 to get the degree angle So it is 75°

The unit of degree is 60°40′23″

The unit of rad is either 2.4^{rad} or $\frac{\pi}{5}$

NOTES

- HOW TO GET THE INTERIOR ANGLES OF A REGULAR SHAPE Angle = $\frac{180(n-2)}{n}$
- Cyclic quadrilateral's opposite angles are supplementary
- The sum of all exterior angles in any shape is 360, so to get a single exterior angle in a regular shape you should just $\frac{360}{n}$

Trigonometry - ASTC Rule

• When the problem is in radian mode, change the mode in your calculator to radian