Miranda Remmer DS-GA-23 Final Project

BACKGROUND

What makes a good first impression?

What influences dating decisions?

How does gender influence selection?

How do perceptions play into choices?

THE DATA SET

Data pulled from a experimental speed dating event, from 2002-2004, sheds insight into dating decisions and outcomes, particularly with first impressions.

Participants were asked a series of questions throughout the experiment; (roughly) 1/3 in the signup survey, 1/3 during the experiment, and 1/3 at the conclusion of the experiment. To standardized observations, six attributes were used throughout: attractiveness, sincerity, intelligence, fun, ambition, and shared interests.

Scores assigned to each attribute at different points in the experiment can be used to predict matches.

THE PROBLEM

Can one's perception of self predict his/her dating outcome?

Does this differ by gender?

THE HYPOTHESIS

Individuals with lower self-esteem (i.e. give themselves lower scores during self-evaluation), receive fewer dates (i.e. matches) than those who provide more positive ratings.

THE DATA BREAKDOWN

- 195 features
- 8378 observations
 a few features -
- IID#
- Gender (F=0 | M=1)
- Dec: decision (yes = 1 | no = 0)
- Dec_o: decision of partner at event (yes = 1 | no = 0)
- Match: partner and subject both said 'yes' = 1
- Met_Count: number of people subject met with
- Match_es: number of matches a participant expects

THE DATA BREAKDOWN

Variable	Description
attr	Attractive
sinc	Sincere
intel	Intelligent
fun	Fun
amb	Ambitious
shar	Shared Interests/Hobbies

Aside from demographic questions (e.g. age, religion) or questions that are only asked once (e.g. match_es); each survey question that uses the 6 attributes, are coded with numbers to indicate when during the survey they are administered.

Example:

A. How do you think others perceive you? (signup survey)

Rate each attribute on a scale of 1-10

attr3_1

sinc3_1

intel3_1

fun3_1

amb3_1

B. How do you think others perceive you? (after experiment)

Rate each attribute on a scale of 1-10

attr3_2

sinc3_2

intel3_2

fun3_2

amb₃_2

THE DATA BREAKDOWN cont.

Variable Description
attr Attractive
sinc Sincere
intel Intelligent
fun Fun
amb Ambitious
shar Shared Interests/Hobbies

C. What do you think the opposite sex looks for in a date? (signup survey)

Rate each attribute on a scale of 1-10

attr2_1

sinc2_1

intel2_1

fun2_1

amb2_1

D. Based on what you think the opposite sex looks for in a data, how do you measure up? (signup survey)

Rate each attribute on a scale of 1-10

attr3_1

sinc3_1

intel3_1

fun3_1

amb3_1

THE DATA BREAKDOWN cont.

Variable	Description
attr	Attractive
sinc	Sincere
intel	Intelligent
fun	Fun
amb	Ambitious
shar	Shared Interests/Hobbies

Scorecards are also administered to each participant asking him/her to rate the partners he/she meets with (filled out after each 'date'):

- Rate their attributes on a scale of 1-10: (1=awful, 10=great)
 - Attractive
 - Sincere
 - Intelligent
 - Fun
 - Ambitious
 - Shared Interests/Hobbies
- Decision: yes/no
- Like: overall how much do you like this person (1=don't like at all, 10=like a lot)
- Prob: how probable do you think it is that this person will say 'yes' to you? (1=not probable, 10=extremely probable)

Partner's rating of subject also coded as a feature: attr_o, sinc_o, intel_o, prob_o....etc.

THE PROCESS

- Selecting which questions pertain to research question
 - Some questions are scaled at 100pts across all attributes; others at 10pts per attribute
- View & Clean the data
 - Logistic regression: classification (match vs. no match)
- IID#s what to do...

df_raw

	iid	id	gender	idg	condtn	wave	round	position	positin1	order	 attr3_3	sinc3_3	intel3_3	fun3_3	amb3_3	attr5_3
O	1	1.0	0	1	1	1	10	7	NaN	4	 5.0	7.0	7.0	7.0	7.0	NaN
1	1	1.0	0	1	1	1	10	7	NaN	3	 5.0	7.0	7.0	7.0	7.0	NaN
2	1	1.0	0	1	1	1	10	7	NaN	10	 5.0	7.0	7.0	7.0	7.0	NaN
3	1	1.0	0	1	1	1	10	7	NaN	5	 5.0	7.0	7.0	7.0	7.0	NaN
4	1	1.0	0	1	1	1	10	7	NaN	7	 5.0	7.0	7.0	7.0	7.0	NaN
8373	552	22.0	1	44	2	21	22	14	10.0	5	 8.0	5.0	7.0	6.0	7.0	9.0
8374	552	22.0	1	44	2	21	22	13	10.0	4	 8.0	5.0	7.0	6.0	7.0	9.0
8375	552	22.0	1	44	2	21	22	19	10.0	10	 8.0	5.0	7.0	6.0	7.0	9.0
8376	552	22.0	1	44	2	21	22	3	10.0	16	 8.0	5.0	7.0	6.0	7.0	9.0
8377	552	NaN	1	44	2	21	22	2	10.0	15	 8.0	5.0	7.0	6.0	7.0	9.0

8378 rows x 195 columns

THE PROCESS cont.

- Re-Selecting questions pertaining to research question
 - Get all attributes scaled 1-10pts
- CLEAN THE DATA ©
 - Drop columns with incomplete data
 - NaN values? Two options...
 - Remove NaN values
 - Replace NaN values with 'o'
 - *Create functions*

```
In [8]: df nan exp ratings all = subset df clean[(subset df clean.attr o.isnull()) & (subset df clean.sinc o.isnul
         1()) & (subset df clean.fun o.isnull()) &
                             (subset df clean.intel o.isnull()) & (subset df clean.amb o.isnull()) & (subset df cle
         an.shar o.isnull()) & (subset df clean.attr.isnull()) & (subset df clean.sinc.isnull()) &
         (subset df clean.fun.isnull()) &
                            (subset df clean.intel.isnull()) & (subset df clean.amb.isnull()) & (subset df clean.s
         har.isnull())]
         len(df nan exp ratings all)
 Out[8]: 132
 In [9]: len(subset df clean) #test
 Out[9]: 8378
In [10]: # Dropping Data
         subset df clean = dropData(subset df clean, df nan exp ratings all)
In [11]: len(subset df clean) #test
Out[11]: 8246
```

Example of dropping data: participant didn't score partner but said 'yes'

```
Look at data where subject didn't rate partner:
n [15]: # Grabbing subject data with no scores for partner
        ##(partner has scored subject)
       df atr null = subset df clean[(subset df clean.attr.isnull()) & (subset df clean.sinc.isnull())
                                 & (subset df clean.fun.isnull()) & (subset df clean.intel.isnull())
                                  & (subset df clean.amb.isnull()) & (subset df clean.shar.isnull())]
        # View data
       df_atr_null[['iid', 'pid', 'like', 'prob', 'like_o', 'prob_o']]
ut[15]:
                           prob like o prob o
                 pid
                       like
                 53.0
                      NaN NaN 7.0
                                     6.0
             50
                 32.0
                       7.0 7.0 6.0
                                     3.0
                                               In [16]: # Look at data where subject didnt rate any attributes of parter but subject said 'yes'
                                                          ##looking at values where dec = 1 from above DF (can drop)
                       7.0 8.0
             50
                 38.0
                                7.0
                                     6.0
        712
             50
                 39.0
                      8.0 NaN 7.0
                                     5.0
                                                          df atr null dec1 = df atr null[(df atr null.dec == 1)]
             67
                 58.0
                      NaN NaN 6.0
                                     7.0
                                                          # View data
                                                          df atr null dec1 [['iid', 'pid', 'dec', 'prob', 'like']]
        8002 535 529.0 NaN NaN 5.0
                                                          #includes'like' = NaN but subject said 'yes' (dec = 1)
        8003 535 530.0 NaN NaN 8.0
                                     5.0
                                                          ##remove; doesn't makse sense to late put '0' in attribute ratings
        8045 537 528.0 NaN NaN 1.0
                                     1.0
        8067 538 528.0 NaN NaN 2.0
                                     2.0
                                               Out[16]:
                                                                iid
                                                                     pid
                                                                           dec prob
        8337 551 512.0 NaN NaN 5.0
                                     5.0
                                                                50
                                                                     32.0
                                                                                      7.0
                                                           705
       58 rows x 6 columns
                                                           711
                                                                50
                                                                     38.0
                                                                                8.0
                                                           7216 488 476.0
                                                                                NaN
                                                                                     NaN
                                               In [17]: subset df clean = dropData(subset df clean, df atr null dec1)
```

Example of adding o for NaN values : participant scored for at least 1 of the other attributes but left others blank (esp. if dec=o)

Look where all values for attribute_ratings_other are null (aka partner's ratings)

Out[58]:

	i	iid	pid	gender	age	round	match	dec	dec_o	exphappy	expnum	 intel	fun	amb	shar	attr_o	sinc_o	intel_o	fun
73	9 8	52	28.0	1	21.0	19	0	0	0	5.0	1.0	 7.0	5.0	6.0	5.0	NaN	NaN	NaN	Nat
75	3 8	53	23.0	1	28.0	19	0	1	0	6.0	9.0	 8.0	7.0	8.0	6.0	NaN	NaN	NaN	Nat
17	55	122	NaN	1	22.0	10	0	0	0	6.0	10.0	 8.0	8.0	8.0	8.0	NaN	NaN	NaN	Nat
17	65	123	NaN	1	18.0	10	0	0	0	5.0	1.0	 5.0	4.0	5.0	5.0	NaN	NaN	NaN	Nat
17	75	124	NaN	1	22.0	10	0	1	0	6.0	10.0	 7.0	6.0	7.0	7.0	NaN	NaN	NaN	Nat
83	66 8	552	519.0	1	25.0	22	0	0	0	10.0	NaN	 7.0	6.0	6.0	0.0	NaN	NaN	NaN	Nai
24	51	178	187.0	0	35.0	10	0	0	0	5.0	NaN	 7.0	5.0	0.0	0.0	NaN	NaN	NaN	Nat
59	65	390	409.0	0	30.0	19	0	1	0	6.0	NaN	 8.0	6.0	0.0	0.0	NaN	NaN	NaN	Nat
78	54 8	529	535.0	0	22.0	22	0	1	0	5.0	NaN	 5.0	5.0	0.0	0.0	NaN	NaN	NaN	Nat
91	1 6	66	59.0	1	29.0	10	0	0	0	5.0	3.0	 0.0	0.0	0.0	0.0	NaN	NaN	NaN	Nai

65 rows x 52 columns

```
Created a function to drop the index of where all the feature info is blank; use this to fill other attribute ratings
with null values as 'o'
def cleanDF(main_df, df_all_feature_null, feature):
atr_nan = main_df[main_df[feature].isnull()] #look where partner did not rate subject on feature
atr_cleaned = atr_nan.drop(df_all_feature_null.index) #returning just rows with NaN data in feature
but have other columns with data within feature set
fillNaN([feature], atr_cleaned) ##calling function fillNaN to replace NaN values with 0
main_df = main_df.drop(atr_cleaned.index) #removing old values
main_df = pd.concat([main_df, atr_cleaned]) #adding cleaned data back into df
return main df
```

In [59]: #looking at values where dec_o = 0 from above DF; can make attribute ratings 0
 df_atr_o_null_deco0 = df_atr_o_null[df_atr_o_null.dec_o ==0]
 df_atr_o_null_deco0

Out[59]:

	iid	pid	gender	age	round	match	dec	dec_o	exphappy	expnum	 intel	fun	amb	shar	attr_o	sinc_o	intel_o	fun
739	52	28.0	1	21.0	19	0	0	0	5.0	1.0	 7.0	5.0	6.0	5.0	NaN	NaN	NaN	Nat
753	53	23.0	1	28.0	19	0	1	0	6.0	9.0	 8.0	7.0	8.0	6.0	NaN	NaN	NaN	Nat
1755	122	NaN	1	22.0	10	0	0	0	6.0	10.0	 8.0	8.0	8.0	8.0	NaN	NaN	NaN	Nat
1765	123	NaN	1	18.0	10	0	0	0	5.0	1.0	 5.0	4.0	5.0	5.0	NaN	NaN	NaN	Nat
1775	124	NaN	1	22.0	10	0	1	0	6.0	10.0	 7.0	6.0	7.0	7.0	NaN	NaN	NaN	Nat
8366	552	519.0	1	25.0	22	0	0	0	10.0	NaN	 7.0	6.0	6.0	0.0	NaN	NaN	NaN	Nat
2451	178	187.0	0	35.0	10	0	0	0	5.0	NaN	 7.0	5.0	0.0	0.0	NaN	NaN	NaN	Nat
5965	390	409.0	0	30.0	19	0	1	0	6.0	NaN	 8.0	6.0	0.0	0.0	NaN	NaN	NaN	Nat
7854	529	535.0	0	22.0	22	0	1	0	5.0	NaN	 5.0	5.0	0.0	0.0	NaN	NaN	NaN	Nat
911	66	59.0	1	29.0	10	0	0	0	5.0	3.0	 0.0	0.0	0.0	0.0	NaN	NaN	NaN	Nat

65 rows x 52 columns

4

Within this DF, look at where like_o has no value; added a 'o' to NaN values (no ratings for partner, decision = no, like _o = NaN)

In [59]: #looking at values where dec_o = 0 from above DF; can make attribute ratings 0
df_atr_o_null_deco0 = df_atr_o_null[df_atr_o_null.dec_o ==0]
df_atr_o_null_deco0

Out[59]:

	iid	pid	gender	age	round	match	dec	dec_o	exphappy	expnum	 intel	fun	amb	shar	attr_o	sinc_o	intel_o	fun
739	52	28.0	1	21.0	19	0	0	0	5.0	1.0	 7.0	5.0	6.0	5.0	NaN	NaN	NaN	Nat
753	53	23.0	1	28.0	19	0	1	0	6.0	9.0	 8.0	7.0	8.0	6.0	NaN	NaN	NaN	Nat
1755	122	NaN	1	22.0	10	0	0	0	6.0	10.0	 8.0	8.0	8.0	8.0	NaN	NaN	NaN	Nat
1765	123	NaN	1	18.0	10	0	0	0	5.0	1.0	 5.0	4.0	5.0	5.0	NaN	NaN	NaN	Nat
1775	124	NaN	1	22.0	10	0	1	0	6.0	10.0	 7.0	6.0	7.0	7.0	NaN	NaN	NaN	Nat
8366	552	519.0	1	25.0	22	0	0	0	10.0	NaN	 7.0	6.0	6.0	0.0	NaN	NaN	NaN	Nat
2451	178	187.0	0	35.0	10	0	0	0	5.0	NaN	 7.0	5.0	0.0	0.0	NaN	NaN	NaN	Nat
5965	390	409.0	0	30.0	19	0	1	0	6.0	NaN	 8.0	6.0	0.0	0.0	NaN	NaN	NaN	Nat
7854	529	535.0	0	22.0	22	0	1	0	5.0	NaN	 5.0	5.0	0.0	0.0	NaN	NaN	NaN	Nat
911	66	59.0	1	29.0	10	0	0	0	5.0	3.0	 0.0	0.0	0.0	0.0	NaN	NaN	NaN	Nat

65 rows x 52 columns

Function to Convert Values from Old DF to New Condensed DF:

```
In [12]: def ConvertDF(DF, df): #DF = old dataframe #df = new data frame
              df['iid'] = DF.iid.unique() #returning iid# (1 unique value per person - 1 row per subject)
             df['gender'] = getValueSet('gender', DF) #returning 1 row per iid with subject's gender
             df['age'] = getValueSet('age', DF) #returning 1 row per iid with subject's age
             df['met count'] = getValueSet('met count', DF) #returning 1 row per iid with met count info (how many
          people each person met with)
             df['exphappy'] = getValueSet('exphappy', DF) #returning rating for exphappy per iid
             df['expnum'] = getValueSet('expnum', DF) #returning expnum per iid (1 value)
             df['match es'] = getValueSet('match es', DF)
             df['attr iMeasUp 1'] = getValueSet('attr iMeasUp 1', DF)
             df['sinc iMeasUp 1'] = getValueSet('sinc iMeasUp 1', DF)
             df['intel iMeasUp 1'] = getValueSet('intel iMeasUp 1', DF)
             df['fun iMeasUp 1'] = getValueSet('fun iMeasUp 1', DF)
             df['amb iMeasUp 1']= getValueSet('amb iMeasUp 1', DF)
             df['attr iMeasUp 2'] = getValueSet('attr iMeasUp 2', DF)
             df['sinc iMeasUp 2'] = getValueSet('sinc iMeasUp 2', DF)
             df['intel iMeasUp 2'] = getValueSet('intel iMeasUp 2', DF)
             df['fun_iMeasUp_2'] = getValueSet('fun_iMeasUp_2', DF)
             df['amb iMeasUp 2']= getValueSet('amb iMeasUp 2', DF)
             df['attr oPercveMe 1'] = getValueSet('attr oPercveMe 1', DF)
             df['sinc oPercveMe 1'] = getValueSet('sinc oPercveMe 1', DF)
             df['intel oPercveMe 1'] = getValueSet('intel oPercveMe 1', DF)
              df['fun oPercveMe 1'] = getValueSet('fun oPercveMe 1', DF)
             df['amb oPercveMe 1'] = getValueSet('amb oPercveMe 1', DF)
             df['attr oPercveMe 2'] = getValueSet('attr oPercveMe 2', DF)
             df['sinc oPercveMe 2'] = getValueSet('sinc oPercveMe 2', DF)
             df['intel oPercveMe 2'] = getValueSet('intel oPercveMe 2', DF)
             df['fun oPercveMe 2'] = getValueSet('fun oPercveMe 2', DF)
             df['amb oPercveMe 2'] = getValueSet('amb oPercveMe 2', DF)
             df['attr_iRateMe_exp'] = getValueSet('attr_iRateMe_exp', DF)
             df['sinc_iRateMe_exp'] = getValueSet('sinc_iRateMe_exp', DF)
             df['intel iRateMe exp'] = getValueSet('intel iRateMe exp', DF)
             df['fun iRateMe exp'] = getValueSet('fun iRateMe exp', DF)
             df['amb iRateMe exp'] = getValueSet('amb iRateMe exp', DF)
             df['match sum'] = getSum('match', DF)
             df['dec_sum'] = getSum('dec', DF) #sum of subject's decisions (num of 'yes'')
             df['dec o sum'] = getSum('dec o', DF) #sum of parnter's decisions (num of 'yes'')
             df['match_es_ave'] = getAve('match_es', DF) #MATCH_ES_AVE = % of people they think they'll match wit
```

- Recount met_count
- Rename features
- Separate between male and female datasets
- Condense the data (combine iids)
 - dec_sum: sum of subject's decisions (# of 'yes')
 - dec_o_sum: sum of partner's decisions (# of 'yes')
 - attr_ave: average 'attractive' rating subject gave partners he/she met with (sum of 'attractive' ratings/met_count)
 - attr_o_ave: average attractive rating partners gave subject

DATA EXPLORATION & ANALYSIS

```
In [124]: #returning an array of correlation values that are the highest

c = df_female_condensed.corr()

s = c.stack().nlargest(115)

s.sort(ascending=False, inplace=True); s.iloc[59:]

/Users/Miranda/anaconda2/lib/python2.7/site-packages/ipykernel/__main__.py:7: FutureWarning: sort is depre cated, use sort_values(inplace=True) for INPLACE sorting
```

Out[124]: exphappy

expnappy	expnappy_ave	1.000000
exphappy_ave	exphappy	1.000000
match_sum	match_ave	0.885822
match_ave	match_sum	0.885822
match_es	match_es_ave	0.875759
match_es_ave	match_es	0.875759
like_o_ave	attr_o_ave	0.856744
attr_o_ave	like_o_ave	0.856744
dec_sum	dec_ave	0.840868
dec_ave	dec_sum	0.840868
amb_iRateMe_exp	amb_iMeasUp_2	0.830971
amb_iMeasUp_2	amb_iRateMe_exp	0.830971
attr_oPercveMe_2	attr_iMeasUp_2	0.815613
attr_iMeasUp_2	attr_oPercveMe_2	0.815613
dec_o_ave	attr_o_ave	0.811872
attr_o_ave	dec_o_ave	0.811872
attr_iMeasUp_2	attr_iRateMe_exp	0.808513
attr_iRateMe_exp	attr_iMeasUp_2	0.808513
dec_o_sum	dec_o_ave	0.798661
dec_o_ave	dec_o_sum	0.798661
fun_iMeasUp_2	fun_oPercveMe_2	0.797956
fun_oPercveMe_2	fun_iMeasUp_2	0.797956
like o ave	dec o ave	0 70/100

0.885822
0.600592
0.58332
0.558067
0.486358
0.459059
0.434573
0.389363
0.379035
0.350454
0.315399

Correlations on female DF:

like_o_ave | attr_o_ave : 0.856744

dec_o_ave | attr_o_ave : 0.811872

like_o_ave | fun_o_ave : 0.779505

like_ave | attr_ave : 0.730203

like_ave | fun_ave : 0.727753

dec_match_ave | attr_o_ave : 0.620261

like_o & attr_o_ave

(had a correlation of: 0.856744 for females)

```
In [136]: #female DF
          pd.tools.plotting.scatter_matrix(df_female_condensed[['like_o_ave', 'attr_o_ave']], diagonal = 'kde', s
          = 500, figsize = (8, 8))
Out[136]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x121372790>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x121e7ac10>],
                  [<matplotlib.axes._subplots.AxesSubplot object at 0x12201d350>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x12207f650>]], dtype=object)
                          like_o_ave
                                                       attr_o_ave
```

Observations: the more attractive a man found a woman he met with, the higher 'like' rating he gave her

```
On female dataset; as other, these results refer to what men think of the women they met with
In [137]: #female DF
           pd.tools.plotting.scatter_matrix(df_female_condensed[['like_o_ave', 'attr_o_ave', 'dec_o_sum']], diagona
          1 = 'kde', s = 500, figsize = (8, 8))
Out[137]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x12217d590>,
                   <matplotlib.axes._subplots.AxesSubplot object at 0x12231e7d0>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x1223c1710>],
                  [<matplotlib.axes._subplots.AxesSubplot object at 0x122422f10>,
                   <matplotlib.axes._subplots.AxesSubplot object at 0x1224a4e90>,
                  <matplotlib.axes._subplots.AxesSubplot object at 0x12250bc90>],
                  [<matplotlib.axes._subplots.AxesSubplot object at 0x122594dd0>,
                   <matplotlib.axes._subplots.AxesSubplot object at 0x12274ed50>,
                   <matplotlib.axes._subplots.AxesSubplot object at 0x12179e190>]], dtype=object)
                                                             dec_o_sum
```

FEMALES

MALES

View data match_sum vs. match_es

FEMALES MALES

```
In [133]: df_male_condensed[ ['match_sum', 'match_es'] ].describe()
In [131]: df_female_condensed[ ['match_sum', 'match_es'] ].describe()
                                                                              Out[133]:
Out[131]:
                                                                                                match_sum | match_es
                 match_sum | match_es
                           238.000000
                                                                                          count 276.000000
                                                                                                           238.000000
           count 271.000000
                2.535055
                            2.892857
                                                                                                2.467391
                                                                                                           3.178151
           mean
                                                                                          mean
                 2.359706
                            2.375613
           std
                                                                                                2.199757
                                                                                                           2.319525
                                                                                          std
                 0.000000
                            0.000000
           min
                                                                                          min
                                                                                                0.000000
                                                                                                            0.000000
           25%
                 1.000000
                            1.000000
                                                                                                            2.000000
                                                                                          25%
                                                                                                1.000000
           50%
                 2.000000
                            2.000000
                                                                                          50%
                                                                                                2.000000
                                                                                                           3.000000
           75%
                 3.500000
                            4.000000
                                                                                                4.000000
                                                                                                            4.000000
                                                                                          75%
                 14.000000
                            12.000000
           max
                                                                                                11.000000
                                                                                                            18.000000
                                                                                          max
```

View data match_sum vs. match_es

FEMALES

```
In [161]: #female dataset
          df_female_condensed[ ['attr_oPercveMe_1', 'attr_oPercveMe_2', 'attr_iMeasUp_1', 'attr_iMeasUp_2', 'attr_i
          RateMe_exp', 'attr_o_ave', 'attr_ave'] ].plot(kind = 'box', figsize = (10, 10))
Out[161]: <matplotlib.axes._subplots.AxesSubplot at 0x129d33c10>
```

attr_oPercveMe_1attr_oPercveMe_2 attr_iMeasUp_1 attr_iMeasUp_2 attr_iRateMe_exp attr_o ave

MALES

View data for all self-ratings of 'attractiveness' as well as ratings by partners

MODELS

predicting match_sum

```
In [253]: model = smf.ols(formula = 'match_sum ~ 0 +attr_o_ave + fun_o_ave * attr_oPercveMe_2', of model.summary()
```

Out[253]:

OLS Regression Results

Dep. Variable:	match_sum	R-squared:	0.624
Model:	OLS	Adj. R-squared:	0.603
Method:	Least Squares	F-statistic:	28.68
Date:	Tue, 12 Jul 2016	Prob (F-statistic):	4.78e-14
Time:	19:00:25	Log-Likelihood:	-155.63
No. Observations:	73	AIC:	319.3
Df Residuals:	69	BIC:	328.4
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
attr_o_ave	0.5058	0.366	1.382	0.171	-0.224 1.236
fun_o_ave	-0.1194	0.422	-0.283	0.778	-0.962 0.723
attr_oPercveMe_2	-0.6597	0.259	-2.544	0.013	-1.177 -0.142
fun_o_ave:attr_oPercveMe_2	0.1023	0.050	2.055	0.044	0.003 0.202

Omnibus:	7.171	Durbin-Watson:	1.426
Prob(Omnibus):	0.028	Jarque-Bera (JB):	7.092
Skew:	0.763	Prob(JB):	0.0288
Kurtosis:	3.053	Cond. No.	104.

MODELS

transformations

```
Transforming Variables
In [221]: subsetdf OPME1[ ['amb iRateMe exp Log', 'amb iMeasUp 2 Log', 'attr oPercveMe 1 Log',
                            'sinc_oPercveMe_1_Log', 'intel_oPercveMe_1_Log', 'fun_oPercveMe_1_Log',
                            'amb oPercveMe 1 Log', 'attr iRateMe exp Log', 'fun iRateMe exp Log' ] ] =
          subsetdf OPME1[ ['amb iRateMe exp', 'amb iMeasUp 2', 'attr oPercveMe 1',
                              'sinc_oPercveMe_1', 'intel_oPercveMe_1', 'fun_oPercveMe_1',
                             'amb oPercveMe 1', 'attr iRateMe exp', 'fun iRateMe exp'] |.apply(np.log10)
          subsetdf OPME1[ ['amb iRateMe exp Sqrt', 'amb iMeasUp 2 Sqrt', 'attr oPercveMe 1 Sqrt',
                            'sinc_oPercveMe_1_Sqrt', 'intel_oPercveMe_1_Sqrt', 'fun_oPercveMe_1_Sqrt',
                           'amb_oPercveMe_1_Sqrt', 'attr_iMeasUp_2_Sqrt', 'attr_iMeasUp_1_Sqrt'] ] = subsetdf
           ['amb_iRateMe_exp', 'amb_iMeasUp_2','attr_oPercveMe_1',
                              'sinc_oPercveMe_1', 'intel_oPercveMe_1', 'fun_oPercveMe_1',
                             'amb oPercveMe 1', 'attr iMeasUp 2', 'attr iMeasUp 1'] ].apply(np.sqrt)
          subsetdf_OPME1[ ['amb_iRateMe_exp_Square', 'amb_iMeasUp_2_Square', 'attr_oPercveMe_1_Square',
                           'sinc_oPercveMe_1_Square', 'intel_oPercveMe_1_Square', 'fun_oPercveMe_1_Square',
                            'amb oPercveMe 1 Square', 'attr iMeasUp 2 Square', 'attr iMeasUp 1 Square'] ] = subsetdf
          OPME1[ ['amb_iRateMe_exp', 'amb_iMeasUp_2', 'attr_oPercveMe_1',
                             'sinc oPercveMe 1', 'intel oPercveMe 1', 'fun oPercveMe 1',
                              'amb_oPercveMe_1', 'attr_iMeasUp_2', 'attr_iMeasUp_1'] ].apply(np.square)
```

```
In [257]: formula = 'match_sum ~ attr_iMeasUp_2_Square + attr_iMeasUp_1_Square + attr_oPercveMe_1_Square * dec_o_sum * match_e
    formula += ' + attr_oPercveMe_1_Square * fun_oPercveMe_1_Square * intel_oPercveMe_1_Square + attr_o_ave * fun_o_ave
    formula += ' + attr_oPercveMe_1_Square * sinc_oPercveMe_1_Square * amb_oPercveMe_1_Square * fun_oPercveMe_1_Square +
    #formula += ' + amb_iRateMe_exp_Log * attr_iRateMe_exp_Log * fun_iRateMe_exp_Log'

smf.ols(formula = formula, data = subsetdf_OPME1).fit().summary()
```

Out[257]: OLS Regression Results

Dep. Variable:	match_sum	R-squared:	0.891
Model:	OLS	Adj. R-squared:	0.789
Method:	Least Squares	F-statistic:	8.675
Date:	Tue, 12 Jul 2016	Prob (F-statistic):	1.06e-09
Time:	19:04:14	Log-Likelihood:	-81.806
No. Observations:	73	AIC:	235.6
Df Residuals:	37	BIC:	318.1
Df Model:	35		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95 Co Int
Intercept	-70.9941	71.711	-0.990	0.329	-21 74.
attr_iMeasUp_2_Square	0.0045	0.016	0.282	0.779	-0. 0.0
attr_iMeasUp_1_Square	0.0105	0.016	0.647	0.521	-0.

MODELS

returned better when predicting dec_match_ave

```
dec_match_ave ~ 0 +attr_oPercveMe_1 + intel_oPercveMe_1 + amb_oPercveMe_1 + fun_oPercveMe_1
```

forcing intercept to 0

```
9]: model = smf.ols(formula = 'dec_match_ave ~ 0 + attr_oPercveMe_1 + intel_oPercveMe_1 + amb_oPercveMe_1 + fu
n_oPercveMe_1' , data = subsetdf_OPME1).fit()
model.summary()
```

Dep. Variable:	dec_match_ave	R-squared:	0.655
Model:	OLS	Adj. R-squared:	0.635
Method:	Least Squares	F-statistic:	33.25
Date:	Mon, 11 Jul 2016	Prob (F-statistic):	1.57e-15
Time:	21:47:45	Log-Likelihood:	-22.303
No. Observations:	74	AIC:	52.61
Df Residuals:	70	BIC:	61.82
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P>ltl	[95.0% Conf. Int.]
attr_oPercveMe_1	0.0332	0.032	1.032	0.306	-0.031 0.097
intel_oPercveMe_1	0.0368	0.033	1.117	0.268	-0.029 0.103
amb_oPercveMe_1	-0.0192	0.028	-0.676	0.502	-0.076 0.038
fun_oPercveMe_1	0.0083	0.026	0.315	0.753	-0.044 0.061

Omnibus:	8.480	Durbin-Watson:	1.525
Prob(Omnibus):	0.014	Jarque-Bera (JB):	3.229
Skew:	0.167	Prob(JB):	0.199
Kurtosis:	2.032	Cond. No.	15.9

FURTHER RESEARCH & & EXPLORATION

- Look at gender perceptions; how does that predict dating outcomes
 - Does one's perception of their gender generalizations differ from their own evaluations of what's important when it comes to selecting mates?
 - E.g.: do men rate 'attractiveness' as less important for their own dating choices but more important for other men?*
 - men will rate 'attractiveness' as less important for their own dating choices but more important for other men's decisions when choosing a partner
- Look at probability rating and score; i.e. if person gave high score but thought the prob of other person choosing them was low, how that affects decision (y/n); ultimately predicting match

ACKNOWLEDGMENTS

Kaggle

Ivan Corneillet

Bob Stark

Tim Payne

Classmates

Google