云南大学 2019 秋季学期物理与天文学院

2018 级《概率论与数理统计》考试题 B 卷参考答案及评分标准

–、 填空题(每空 2 分,共 20 分)

1,
$$0$$
 2, $\frac{7}{8}$ 3, $N(b,a^2)$ 4, $N(0,14)$ 5, 48

6、
$$\frac{1}{5}$$
 7、 $\frac{0.7}{5}$ 8、 $\frac{(1-p)^3+3p(1-p)}{5}$ 或 $\frac{1-p^3}{5}$ 9、 $\frac{\chi^2(3)}{5}$ 或

$$\Gamma\left(\frac{3}{2},2\right)$$
 10. $\underline{5}$

二、选择题(每题 2 分,共 20 分)

$$6, \underline{c}$$
 $7, \underline{c}$ $8, \underline{d}$ $9, \underline{c}$ $10, \underline{d}$

三、证明: ① (X,Y)关于X,Y的边缘概率密度为:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

$$= \begin{cases} \int_0^1 (2-x-y) dy = \frac{3}{2} - x & 0 \le x \le 1 \\ 0 & \text{if } t \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

$$= \begin{cases} \int_{0}^{1} (2-x-y) dx = \frac{3}{2} - y & 0 \le y \le 1 \\ 0 & \text{if the } \end{cases} (2.5)$$

••
$$f_X(x)f_Y(y) = \begin{cases} (\frac{3}{2}-x)(\frac{3}{2}-y) & 0 \le x \le 1, 0 \le y \le 1 \\ 0 & \text{item} \end{cases} \neq f(x,y)$$

∴ X,Y 不相互独立。

$$X : E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_0^1 x (\frac{3}{2} - x) dx = \frac{5}{12}$$

$$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy = \int_0^1 y (\frac{3}{2} - y) dy = \frac{5}{12}$$

$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x y f(x, y) dx dy = \int_0^1 dx \int_0^1 x y (2 - x - y) dy = \frac{1}{6}$$
(1 17)

$$D(X) = E(X^{2}) - \left[E(X)\right]^{2} = \int_{0}^{1} x^{2} \left(\frac{3}{2} - x\right) dx - \left(\frac{5}{12}\right)^{2} = \frac{11}{144} \qquad (15)$$

$$D(Y) = E(Y^2) - \left[E(Y)\right]^2 = \int_0^1 y^2 \left(\frac{3}{2} - y\right) dy - \left(\frac{5}{12}\right)^2 = \frac{11}{144}$$
 (15)

$$\rho_{XY} = \frac{E(XY) - E(X)E(Y)}{\sqrt{D(X)}\sqrt{D(Y)}} \neq 0$$
 (2 5)

: X和Y相关。

四、解: 令事件 A 表示系统可靠,则: $A = (A_1 \cup B_1)(A_2 \cup B_2)(A_3 \cup B_3)$

(2 分) 因 $A_i, B_i (i=1,2,3)$ 相互独立,且 $P(A_i) = P(B_i) = r$ 故所求概率为:

$$P(A) = P((A_1 \cup B_1)(A_2 \cup B_2)(A_3 \cup B_3))$$
 (2 分)

$$= \prod_{i=1}^{3} P(A_i \cup B_i) = \prod_{i=1}^{3} [P(A_i) + P(B_i) - P(A_i)P(B_i)]$$
 (2.5)

$$= r^3 (2-r)^3$$
 (4 分)

五、解 (1) 由 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1$ 有 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A \exp\left[-(2x+y)\right] dx dy = 1$

得
$$A=2$$
 (4分)

(2) :
$$P\{Y \ge X\} = 1 - P\{Y \le X\}$$

满足条件 $Y \le X$ 在 xOy 平面上为平面上直线 y = x 及其下方的区域 G

$$P(Y \le X) = P\{(X,Y) \in G\} = \iint_G f(x,y) dx dy$$

$$= \int_0^\infty \int_y^\infty 2 \exp[-(2x+y)] dx dy$$

$$= \frac{1}{2} \qquad (4 / 2)$$

故
$$P{Y \ge X} = 1 - P{Y \le X} = \frac{2}{3}$$
 (2分)

$$X_i \sim N(20,3)$$
 ($i = 1,2,...10$) $Y_j \sim N(20,3)$ ($j = 1,2,...,15$)

$$\overrightarrow{X} = \frac{1}{10} \sum_{i=1}^{10} X_i \sim N(20, \frac{3}{10}) \qquad (1 \cancel{2}) \qquad \overline{Y} = \frac{1}{15} \sum_{j=1}^{15} Y_j \sim N(20, \frac{3}{15}) \qquad (1 \cancel{2})$$

$$\therefore \quad \overline{X} - \overline{Y} \sim \mathbf{N}(\mathbf{0}, \frac{1}{2}) \quad \mathbf{g} \quad \frac{\overline{X} - \overline{Y}}{\frac{1}{\sqrt{2}}} \sim N(0, 1) \qquad \mathbf{(2 分)}$$

所求概率为:

$$P\{\left|\overline{X} - \overline{Y}\right| > 0.3\} = P\{\overline{X} - \overline{Y} > 0.3\} + P\{\overline{X} - \overline{Y} < -0.3\}$$

$$= 1 - P\left\{\frac{\overline{X} - \overline{Y}}{\frac{1}{\sqrt{2}}} \le 0.3\sqrt{2}\right\} + P\left\{\frac{\overline{X} - \overline{Y}}{\frac{1}{\sqrt{2}}} < -0.3\sqrt{2}\right\}$$

$$= 1 - \Phi(0.3\sqrt{2}) + \Phi(-0.3\sqrt{2})$$

$$= 2\left[1 - \Phi(0.3\sqrt{2})\right] \qquad (2 \cancel{2})$$

$$= 0.6744 \qquad (2 \cancel{2})$$

七、 总体X的一阶、二阶矩为:

$$\mu_1 = E(X) = \mu$$
 (2 $\%$)

$$\mu_2 = E(X^2) = D(X) + [E(X)]^2 = \sigma^2 + \mu^2$$
即 $\mu_2 = \sigma^2 + \mu^2$ ② (2 分)

由 ①、② 联立求得
$$\mu = \mu_1 \quad \sigma^2 = \mu_2 - \mu_1^2$$
 (2分)

由于总体的k 阶矩 $\mu_k = E(X^k)$ 与样本的k 阶矩 $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$ 的关系为

$$A_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k \xrightarrow{P} \mu_k \quad k = 1, 2,$$

.. 分别以样本的一阶、二阶矩 A_1, A_2 代替总体的一阶、二阶矩 μ_1, μ_2 ,得未知参数 μ 和 σ^2 的矩估计量为:

$$\hat{\mu} = A_1 = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\hat{\sigma}^2 = A_2 - A_1 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$$

即未知参数 μ 和 σ^2 的矩估计量为:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i \tag{2 \%}$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2 \tag{2 5}$$

$$\iint_{-\infty}^{+\infty} f(x) dx = 1$$

$$\int_0^1 (ax+b) dx = 1 \qquad \text{EP: } \frac{1}{2}a+b=1$$

曲
$$E(X) = \frac{1}{3}$$
 得: $\int_0^1 x(ax+b)dx = \frac{1}{3}$

$$\mathbb{E} \mathbf{P} : \qquad \frac{1}{3}a + \frac{1}{2}b = \frac{1}{3}$$

联立①、②求解得:
$$a = -2, b = 2$$

2

<u>(4分)</u>

(2分)