

Chapter 4 Roadmap

Slide 2

- Week 8: Orbital Motion
 - Math Basics
 - Spherical Trigonometry
 - Keplerian Motion from First Principles

- Week 10: Orbit Representation
 - Coordinates
 - Dates & Times
 - Orbital Elements

- Week 9: Orbit Properties
 - Constants of Motion
 - Eccentricity Vector
 - Conic Sections

- Week 11: Time Dependence
 - Eccentric Anomaly
 - Hyperbolic Anomaly
 - Kepler's Equations

Questions

Any questions on previous weeks content?

Constants of Motion

Learning outcomes

- Define and recognize dependent and independent constants of motion
- List and prove constants of motion of the 2BP
- Use constants of motion to relate position, velocity, and orbit shape
- Determine orientation of orbit in space

Constants of motion / Integrals of motion

A constant of motion (CoM) in an ODE

 Can be expressed as functions of position and velocity (state variables)

- Constant along the orbit
- Can take values in some domain
- (In)dependence:
 Does one or more constants of motion imply the value of another one?
- Also called "integral" of motion

the values

Bill Watterson

Advanced Astronautics (SESA 3039)

© Dr. Alexander Wit

Grank cutagory

2023/20

Constants of motion / Integrals of motion

A constant of motion (CoM) in an ODE

- Can be expressed as functions of position and velocity (state variables)
- Constant along the orbit
- Can take values in some domain
- (In)dependence: value of another characters

 • Also called see inotion

n imply the

Bill Watterson

Advanced Astronautics (SESA 3039) © Dr. Alexander Wittig 2023/2024 Slide 7

Career:

- Doctorate in Mathematics (Universität Erlangen, 1907)
- various Lectureships (Universitäten Erlangen, Professor (Princeton University, 1933) The Chieven

Achievements:

- Noether's theorem: linking symmetries in physical equations to conserved quantities
- "Most important women in history of math" (A. Einstein, J. Dieudonné, H. Weyl, N. Wiener)

Recap: Central force problem

$$\ddot{\vec{x}} = -\frac{GM}{|\vec{x}|^3} \vec{x} = -\frac{\mu}{|\vec{x}|^3} \vec{x}$$

$$r(\theta) = \frac{p}{1 + e\cos(\theta)}$$

Geometrical description of solution

Examples of CoM in 2BP

- Energy Judythieg.
 - Angular momentum
 - Areal velocity
 - Orbit shape parameters (eccentricity, semi-major axis, orientation)

منسا

Specific angular momentum

Vectorial quantity with 3 independent components

$$\vec{h} = \vec{r} \times \dot{\vec{r}}$$

Norm is scalar angular momentum

$$|\vec{h}| = h = r^2 \dot{\theta}$$

Orthogonal to position and velocity at all times: planar motion!

$$\vec{h} \perp \vec{r}$$

$$ec{h}\perp\dot{ar{r}}$$

Areal velocity

$$dA = \frac{1}{2}r \ r \ d\theta = \frac{1}{2}r^2 \frac{d\theta}{dt} dt = \frac{h}{2}dt$$

- Same as h, no new information
- Kepler's second law: radial vector sweeps out equal area in equal time

areal relations from conce and when the strains

 $r d\theta$

Specific energy

$$\epsilon = \frac{v^2}{2} - \frac{\mu}{r} = -\frac{\mu}{2a} = -\frac{\mu^2}{2h^2} (1 - e^2)$$

- Vis-viva or energy equation
- Obviously time independent: kinetic + potential energy
- Relates kinematic quantities to orbit shape!

-redly useful

Geometric quantities

All of these geometric properties are constants of motion, too!

New kid in town: the eccentricity vector

on be used with petire orbin

$$\vec{e} = \frac{\dot{\vec{r}} \times \vec{h}}{\mu} - \frac{\vec{r}}{r}$$

Exercise

Expand the cross product to write this only in terms of vectors r and v.

Is constant of motion

 $\dot{\vec{e}} = 0$

Lies in plane of motion

 $\Rightarrow \vec{e} \cdot \vec{h} = 0$

Has norm equal to eccentricity

 $|\vec{e}| = e$

Points along line from apoapsis (or focal point) to periapsis

New kid in town: the eccentricity vector
$$\vec{e} = \frac{\vec{r} \times \vec{h}}{\mu} - \frac{\vec{r}}{r}$$

$$\vec{e$$

$$\vec{P} \cdot \vec{h} = 0$$

$$|\vec{e}| = e$$

Fight for independence

Too many constants: 2 vectors with 3 each, 3 geometric ones (a, p, e), 1-2 kinematic

Can have maximum of 5 independent ones (else everything is constant!)

• Indeed the 2BP has 5 independent constants of motion (hence "integrable")

• All other constants are interdependent

Fight for independence

5 independent constants from

 \vec{e}, \vec{h}

Interdependent because

are perpendicular!
$$\vec{e} \cdot \vec{r}$$

- Others can be derived from these, e.g.
 - scalar eccentricity
 - scalar angular momentum
 - specific energy
 - semi-latus rectum

Exercise: Orbit Shape from position and velocity

Where is the apogee of a satellite in orbit around Earth ($\mu=3.986\cdot10^5$ km³/s²)

with state:

Sketch! Don't know real orientation and shape yet!

Summary

lacktriangle Two vectorial constants $ec{e}, \dot{h}$

Provide full information about solution

 Other physical, kinematic and geometric constants can be derived from there

 Relations between constants allow conversion from any set of known constants to another

© xkcd 2006 https://www.xkcd.com/21/

Conic Sections

Geometry of the solution

Solution of the two body problem: Conic Section

Wikipedia/Pbroks13

https://upload.wikimedia.org/wikipedia/commons/9/9a/Conic section interactive visualisation.svg

■ *e=0*

■ 0<e<1

■ *e*=1

■ *e>1*

Types of Conics

■ *e=0*

circle

■ 0<e<1

ellipse

■ *e*=1

parabola

■ *e>1*

hyperbola

not struck
red relevant
for e<0??

What happens for *e*<*0*??

Types of Conics

$$r(\theta) = \frac{p}{1 + e\cos(\theta)}$$

$$= \frac{p}{1 - e\cos(\theta + 180^\circ)}$$
Megative eccentrising flips the periodish and departs!

Types of Conics

- No new information: same shapes, just mirrored
- Can restrict to positive e

2023/2024

Circular orbits

- Eccentricity e=0
- Constant radius p

From energy equation:

From energy equation:

$$r(\theta) = \frac{p}{1 + e \cos(\theta)} = p$$

$$a = p$$

$$r_p = p$$

$$r_a = p$$

$$v^2 = \mu \left(\frac{2}{r} - \frac{1}{r}\right) = \frac{\mu}{r}$$

$$\epsilon = -\frac{\mu}{2a} < 0$$

Elliptic orbits

Advanced Astronautics (SESA 3039)

© Dr. Alexander Wittig

2023/2024

Elliptic orbits

Parabolic orbits

Eccentricity e=1

- Minimum escape velocity
- Velocity at infinity

$$r(\theta) = \frac{p}{1 + \cos(\theta)}$$

$$a = \frac{p}{1 - e^2} \to \pm \infty$$

$$r_p = p/2$$

$$\epsilon = 0$$

$$r(\theta \to 180^\circ) \to \infty$$

$$v_{esc,min} = \sqrt{\frac{2\mu}{r}}$$

$$v_{\infty} = 0$$

Parabolic orbits

• Eccentricity
$$e=1$$

$$r(\theta) = \frac{p}{1 + \cos(\theta)}$$
 • Eccentricity $e=1$
$$r(\theta) = \frac{p}{1 + \cos(\theta)}$$
 • $e=1$ • Velocity at infinity
$$v=1$$
 • Velocity at infinity
$$v=1$$
 • Velocity at infinity
$$v=1$$
 • Velocity at infinity
$$v=1$$

Hyperbolic orbits

Eccentricity e>1

- hyperbolic excess velocity
- escape angle
 - deflection angle

Mystal pretati

from incomily

$$r(\theta) = \frac{p}{1 + e\cos(\theta)}$$

$$a = \frac{p}{1 - e^2} < 0$$

$$r_p = p/(1+e)$$

$$\epsilon = -\frac{\mu}{2a} > 0$$

$$v_{\infty} = \sqrt{-\mu/a}$$

$$\theta_{\infty} = \arccos(-1/e)$$

$$\delta = 2\arcsin(1/e)$$

rotation

Hyperbolic orbits

- escape angle
- deflection angle

$$\epsilon = -\frac{\mu}{2a} > 0$$

$$v_{\infty} = \sqrt{-\mu/a}$$

$$\theta_{\infty} = \arccos(-1/e)$$

$$\delta = 2\arcsin(1/e)$$

Summary

- Orbit shape is defined by eccentricity
- Expressions with semi-latus rectum p are always valid
- Expressions with a need to be treated with care
- Each shape has different geometric properties
- Negative eccentricity just mirrors orbits
- Know relations between shape and kinetic quantities!

