

Gruppenmitglied 01: Holtermann, Lukas Matrikelnummer: 10022034

Gruppenmitglied 02: Duc Nguyen, Nam Matrikelnummer: 10006592

Gruppenmitglied 03: Lünsmann, Mario Matrikelnummer: 10016353

e-Mail 01: Lukas.Holtermann@gmx.de

e-Mail 02: nguyennam1995@icloud.com

e-Mail 03: mr.mpaotq@t-online.de

Übungsblattnummer: Hausübungsblatt 6

Status: Lösung 01

Punkte/Prozente:

Tutor: None

Anmerkungen/Verbesserungsvorschläge:

Logik und Formale Systeme

Hausübungsblatt 6 - Abgabetermin 10.06.2019

1 Hausübungen

1.1 Aufgabe 1

Es gilt:
$$\neg(\varphi \lor \psi) \vdash \neg \varphi \land \neg \psi$$

Nun gilt: Zeigen durch Kalkül des natürlichen Schließens, also gilt:

$$\frac{\frac{[\varphi]}{(\varphi \lor \psi)_{\land I}} \frac{[\psi]}{\neg (\varphi \lor \psi)}}{(\varphi \lor \psi)_{\land I}} \frac{[\psi]}{\neg (\varphi \lor \psi)}}{(\neg \varphi \land \neg \psi)_{\land I}}$$

1.2 Aufgabe 2

Es gilt: Beweisen von p_1

Also gilt:

$$\frac{\neg p_3 \lor \neg p_1 \qquad p_3}{\neg p_{1MP}}$$

Somit gilt p_1 nicht aber Φ gilt da nach Satz von Henkin, $\Phi \vdash \neg p_1$ gilt.

Es gilt: Beweisen von p_2

Also gilt:

$$\frac{\frac{\neg p_3 \vee \neg p_1}{p_1 \vee p_2} \quad \frac{p_3}{\neg p_{1MP}}}{p_{2MP}}$$

Somit gilt p_2 und es gilt: $\Phi \vdash p_2$ nach Satz von Henkin.

Nun gilt: Beweisen von p_3

Da p_3 bereits ggb. ist, gilt somit: $\Phi \vdash p_3$

Somit gilt insgesamt nach Satz von Henkin, dass Φ ein Modell hat mit $\Phi \vdash \neg p_1, p_2, p_3$