A Pair of Orthogonal Polynomial Sequences on $[0, \infty]$ That Uniformly Converge to The Bessel functions of the First Kind of Orders 0 and 1

BY STEPHEN CROWLEY
May 31, 2024

Abstract

The even-indexed orthonormalized Fourier transforms of the Chebyshev polynomials of the first kind form a basis in a reproducing-kernel Hilbert space for the Bessel function of the first kind J_0 and likewise for the odd-indexed functions which form a basis that reproduces $\dot{J}_0 = -J_1$. Suprisingly, such a basis for these functions was not known to exist before this.

Table of contents

1 The Type-I Chebyshev Polynomials $T_n(x)$

Let T_n be the Chebyshev polynomials of the first kind, also said to be of Type-I, defined by

$$T_{n}(x) = {}_{2}F_{1}\left(\begin{array}{c} n, & -n \\ \frac{1}{2} & \frac{1}{2} - \frac{x}{2} \end{array}\right)$$

$$= \int_{-\infty}^{\infty} e^{ixy} \hat{T}_{n}(y) dy$$

$$= \int_{-\infty}^{\infty} e^{ixy} \frac{i}{y} \left(e^{-iy} F_{n}^{+}(y) - e^{iy} (-1)^{n} F_{n}^{-}(y)\right) dy$$

$$= \int_{-\infty}^{\infty} e^{ixy} \int_{-\infty}^{\infty} e^{-iyz} T_{n}(z) dz dy$$
(1)

where $_2F_1$ is the (Gauss) hypergeometric function. [?, (13.140)]

2 Section 1

1.1 The Fourier Transforms $\hat{T}_n(y)$ of $T_n(x)$

The functions $\hat{T}_n(y)$ are Fourier transforms of $T_n(x)$ defined by

$$\hat{T}_{n}(y) = \int_{-\infty}^{\infty} e^{-ixy} T_{n}(x) dy = \int_{-1}^{1} e^{-ixy} T_{n}(x) dx
= \int_{-\infty}^{\infty} e^{-ixy} {}_{2}F_{1} \begin{pmatrix} n, & -n \\ \frac{1}{2} & \frac{1}{2} - \frac{x}{2} \end{pmatrix} dx
= \frac{i}{y} \left(e^{-iy} F_{n}^{+}(y) - e^{i(\pi n + y)} F_{n}^{-}(y) \right)$$
(2)

where

$$F_n^{\pm}(y) = {}_{3}F_{1} \left(\begin{array}{cc} 1, & n, & -n \\ & & \frac{1}{2} \end{array} \middle| \frac{\pm iy}{2} \right)$$
 (3)

The L^2 norm of $\hat{T}_n(y)$ is

$$\|\hat{T}_n\| = \sqrt{\int_{-\infty}^{\infty} \hat{T}_n(y)^2 dy} = \sqrt{\frac{4(-1)^n \pi - (2n^2 - 1)}{4n^2 - 1}}$$
 (4)

then define the normalized Fourier transforms $Y_n(y)$ of $T_n(x)$ by

$$Y_{n}(y) = \frac{\hat{T}_{n}(y)}{\|\hat{T}_{n}\|}$$

$$= \frac{i}{y} \left(\frac{e^{-iy} F_{n}^{+}(y) - e^{i(\pi n + y)} F_{n}^{-}(y)}{\sqrt{\frac{4(-1)^{n} \pi - (2n^{2} - 1)}{4n^{2} - 1}}} \right)$$
(5)

1.2 Orthogonalizing $Y_n(y)$ Via The Gram-Schmidt Process

Apply the Gram-Schmidt process to the normalized Fourier transforms of the Type I Chebyshev polynomials $Y_n(y)$ to get $\psi_n(y)$

$$Y_n^{\perp}(y) = Y_n(y) - \sum_{m=1}^{n-1} \frac{\langle Y_n(y), Y_m^{\perp}(y) \rangle}{\langle Y_m^{\perp}(y), Y_m^{\perp}(y) \rangle} Y_m^{\perp}(y)$$

$$(6)$$

Let

$$A_{k,n} = -(-1)^{n + \binom{k}{2}} (k - 2n + 1)! 2^{2n - 1 - k} \binom{k + 1}{k - 2n + 1} \binom{2k + 2 - 2n}{k + 1}$$
(7)

and

$$B_{k,n} = \frac{(-1)^{n+\binom{k}{2}} 2^{k-2n} (k-n)! \binom{\frac{1}{2}-n+k}{k-2n}}{n!}$$
(8)

then defined the associated functions

$$\Psi_n^{\sin}(y) = \frac{\sin(y)\sqrt{2n-1}}{x^n\sqrt{\pi}} \sum_{k=0}^{n-2} x^{2k} A_{k,n-2}$$
(9)

and

$$\Psi_n^{\cos}(y) = \frac{\cos(y)\sqrt{2n-1}}{x^n\sqrt{\pi}} \sum_{k=0}^{n-2} x^{2k+1} B_{k,n-2}$$
(10)

then $Y_n^{\perp}(y)$ can be expressed as

$$Y_n^{\perp}(y) = \Psi_n^{\sin}(y) + \Psi_n^{\cos}(y) \tag{11}$$

so that

$$\psi_n(y) = \lambda_h Y_n^{\perp}(y) \tag{12}$$

$\begin{bmatrix} -3 \end{bmatrix}$	1	0	0	0	0	0]
15	-6	0	0	0	0	0	
105	-45	1	0	0	0	0	
-945	420	-15	0	0	0	0	
-10395	4725	-210	1	0	0	0	
135135	-62370	3150	-28	0	0	0	
2027025	-945945	51975	-630	1	0	0	
-34459425	16216200	-945945	13860	-45	0	0	
-654729075	310134825	-18918900	315315	-1485	1	0	
13749310575	-6547290750	413513100	-7567560	45045	-66	0	
]

Table 1. The first 10 row-vectors of $A_{k,n}$ matrix

2 An Integral Covariance Operator

The eigenvalues λ_k of the integral covariance operator

$$Tf(x) = \int_0^\infty J_0(x - y) f(x) dx \tag{13}$$

where J_0 is the Bessel function of the first kind of order 0 are given by

$$\lambda_{k} = \sqrt{\frac{4k+1}{\pi}} (k+1)^{2}_{-\frac{1}{2}}$$

$$= \sqrt{\frac{4k+1}{\pi}} \frac{\Gamma(k+\frac{1}{2})^{2}}{\Gamma(k+1)^{2}}$$
(14)

Section 2

which, together with the eigenfunctions

$$\psi_k(x) = e^{i\pi k} \sqrt{\frac{4k+1}{\pi}} j_{2k}(y)$$
 (15)

solve the characteristic (eigenfunction) equation $\label{eq:characteristic}$

$$\psi_k(y) = \lambda_k \int_0^\infty J_0(x - y) \psi_k(x) dx$$
(16)

so that

$$J_0(x) = \sum_{k=0}^{\infty} \lambda_k \psi_k(y)$$