STATISTIC

RICARDO

Departamento de matemática y física, FIMGC-USNCH

 $E ext{-}mail:$ ricardomallqui6@gmail.com

URL: www.fractales.com

Estadística en artistas Ricardo Michel Mallqui Baños

Un libro de estadística, basado en código Asymptote y LaTeX.

Bibliografia.

Incluye Indice.

1. Estadística descriptiva 2. Estadística Inferencial

Todos los derechos reservados. Ninguna parte de esto libro puede ser reproducido en cualquier forma, o por cualquier medio, sin permiso por escrito del editor.

Departamento de matemática y física, FIMGC-USNCH

 $\emph{E-mail:}$ ricardomallqui6@gmail.com

URL: www.fractales.com

Índice general

Ín	dice general	I										
Lis	Lista de figuras											
Li	sta de tablas	ш										
Pr	resentación	V										
Ι	Estadística descriptiva	VI										
1.	Preliminares	1										
	1.1. Conceptos básicos	1 1 1										
	1.2. Organización de datos en tablas de frecuencias	2 2										
	1.2.2. Distribución de frecuencias continuas	4 4 4 4										
	1.3.3. Diagrama de barras	4										
2.	2.1. Medidas de tendencia central	7 7 8 8										
	2.2. Medidas de dispersión	8										
3.	Variables estadísticas bidimensionales	9										
II	Cálculo de probabilidades	12										
4.	Variables aleatorias	13										
5.	www	14										

6. Variables aleatorias discretas	15
7. Variables aleatorias continuas	16
III Inferencial estadística	19
8. Distribuciones muestrales 8.1. wwww	21 21
Referencias	22
Índices	22
Δ Sistemas de coordenadas	т

Lista de figuras

1.1.															5
1.2.	Histograma de frecuencias														5
1.3.	Circular														5
1.4.	Diagrama de barras														6
	Meadiana														
3.1.	$f(x)$ wwww $\left(x, \frac{f(x)+g(x)}{2}\right)$	W	ww	7				•							11
5.1.							•							•	14
	www2														
	wwwww														
7.3.	wwwww														18
8.1.	Normal														21

Lista de tablas

1.1.	Combinaciones de los tres segmentos de la seccion aurea	
2.1.	Combinaciones de los tres segmentos de la seccion aurea	7
	Combinaciones de los tres segmentos de la seccion aurea	
$\mathfrak{d}.Z.$	www	1(

Presentación

Parte I Estadística descriptiva

Preliminares

1.1. Conceptos básicos

1.1.1. Parámetros

Definición 1.1 (Poblacion) A statistical population is a data set (usually large, sometimes conceptual) that is our target of interest.

wwwwww

Figura 1.1:

Definición 1.2 (Poblacion) A statistical population is a data set (usually large, sometimes conceptual) that is our target of interest.

Definición 1.3 (Poblacion) A statistical population is a data set (usually large, sometimes conceptual) that is our target of interest.

Definición 1.4 (Poblacion) A statistical population is a data set (usually large, sometimes conceptual) that is our target of interest.

Definición 1.5 (Poblacion) A statistical population is a data set (usually large, sometimes conceptual) that is our target of interest.

Teorema 1.6 wwwwwwwwwwwwwwww

i

1.1.2. Variables estadísticas

Definición 1.7 (Variables cuantitativas) Una variable estadística es una característica que puede fluctuar y cuya variación es susceptible de adoptar diferentes valores, los cuales pueden medirse u observarse. Las variables adquieren valor cuando se relacionan con otras variables, es decir, si forman parte de una hipótesis o de una teoría. Existen dos clases de variables: Cualitativas y cuantitativas.

- Cualitativas. Son aquellas variables que están propensos a ser nominadas textualmente.
 - a) Nominales. Son características que simplemente nominan y están propensos a ser jerarquizados u ordenados tales como: El estado civil (soltero, casado, divorciado, viudo), Religión (católica, evangélico, judío, etc).
 - b) Ordinales. Son características que que si están propensos a ser jerarquizados tales como: Nivel de instrucción (inicial, primaria, secundaria, superior).
- 2. Cuantitativas. Son aquellas variables que están propensos a ser medidas mediante números ya sean números enteros o reales.
 - a) Discretas. Aquellas que solo son medidos mediante números enteros por ejemplo: Número de hijos y número de habitaciones.
 - b) Continuas. Aquellas que solo son medidos mediante números reales es decir este incluye a los números racionales e irracionales. Estatura, volumen, peso.

1.2. Organización de datos en tablas de frecuencias

1.2.1. Distribución de frecuencias

El uso de tablas de distribución de frecuencias y gráficas como un medio para presentar la información de un conjunto de datos de forma resumida. En grados anteriores ya se ha trabajado con gráficas para variables cuantitativas discretas, por lo que esta será la primera vez que el estudiante trabajará con gráficas que son adecuadas para presentar información de variables cuantitativas continuas.

Definición 1.8 La tabulación es un proceso en el cual los datos son ordenados en grupos llamados clases para un análisis más eficaz de estos, los datos podrían estar clasificados mediante una variable cualitativa o cuantitativa en el caso de las variables cualitativas Y_i , se considera la siguiente Tabla 1.1

En el caso de variables cuantitativas además si los datos son muy variados, que para se clasificados adecuadamente, necesitan generarse particiones de longitudes semejantes entonces se utiliza el siguiente proceso; el número de las particiones r se consideran de acuerdo a tres criterios.

- $1. \ \ Criterio\ del\ investigador\ r\ no\ puede\ ser\ m\'as\ de\ 20\ ni\ menos\ de\ 5$
- 2. $r = \sqrt{n}$ donde n es el número de datos
- 3. La regla de Starges que consiste en considerar la fórmula $r=3,322 \cdot \log_{10} n$ Una vez establecido el número de particiones se procede a generar los límites laterales de cada una de las particiones, sea L la longitud de todo el conjunto es decir $L=x_{max}-x_{min}$ entonces la longitud de las particiones o amplitud interválica se obtiene con $l=\frac{L}{r}$

Cuadro 1.1: Combinaciones de los tres segmentos de la seccion aurea.

$\overline{Y_i}$	f_i	F_{i}	F_i*	h_i	H_i	H_i	$h_i \%$	$H_i \%$	$H_i * \%$
2	1	1.00	20.00	0.05	0.05	0.0025	0.25	0.25	0.2500
3	2	3.00	19.00	0.10	0.15	0.0050	0.50	0.50	0.7500
4	5	8.00	<i>17.00</i>		0.40	0.0125	1.25	1.25	2.0000
5	γ	15.00	12.00		0.75	0.0175	1.75	1.75	3.7500
6	4	19.00	5.00		0.95	0.0100	1.00	1.00	4.7500
7	1	20.00	1.00		1.00	0.0025	0.25	0.25	5.0000
\sum	20						5		

Tenga en cuenta que n es el número de datos, es decir

$$n = f_1 + f_2 + \ldots + f_r = \sum_{i=1}^r f_i$$

donde f_i es número de datos en la partición X_i , una de las r particiones del conjunto total de datos.

- 1. Las frecuencias absolutas f_i indican el número de datos con la característica X_i .
- 2. Las frecuencias absolutas acumuladas menor que F_i se obtienen mediantela fórmula

$$F_m = f_1 + f_2 + \ldots + f_m = \sum_{i=1}^m f_i.$$

3. Las frecuencias absolutas acumuladas mayor que F_i^* obedecen a la fórmula

$$F_m^* = f_m + f_{m+1} + \dots + f_r$$

$$= \sum_{i=m}^r f_i = n - \sum_{i=1}^{m-1} f_i = n - (f_1 + f_2 + \dots + f_{m-1})$$

4. Las frecuencias absolutas relativas se obtienen mediante la fórmula

$$h_m = \frac{f_m}{n}$$

5. Las frecuencias absolutas relativas menor que obedecen a la fórmula

$$H_m = \frac{f_m}{n}$$

6. Las frecuencias absolutas relativas mayor que

$$H_m^* = \frac{F_m}{n}$$

- 7. Las frecuencias absolutas relativas porcentuales $h_i \% = 100 \cdot h_i$
- 8. Las frecuencias absolutas relativas menor que porcentuales $H_i \% = 100 \cdot H_i$
- 9. Las frecuencias absolutas relativas mayor que porcentuales $H_i^* \% = 100 \cdot H_i^*$
- 10. Y_i marca de clase o punto medio de la clase i

1.2.2. Distribución de frecuencias continuas

1.3. Gráficos estadísticos

1.3.1. Histograma de frecuencias

Figura 1.2: Histograma de frecuencias

1.3.2. Gráficos circulares

Si se tiene n clases entonces el sector circular tendra una radio de $360 \cdot h_i$

Figura 1.3: Circular

1.3.3. Diagrama de barras

Este tipo de diagramas repesentan aquellos datos cuantitativos, clasificados en clases $\,$

Figura 1.4: Diagrama de barras

Figura 1.5: Meadiana

Medidas estadísticas de variables cuantitativas

2.1. Medidas de tendencia central

Son aquellas medidas que buscan un dato representivo central de un conjunto de datos tales como la media, la moda y la mediana.

Definición 2.1 (Datos agrupados y no agrupados) La principal diferencia entre los datos agrupados y los no agrupados es que los agrupados están clasificados según un criterio y los no agrupados se encuentran en el mismo formato que cuando se

Comentario 2.1 ()

.

Cuadro 2.1: Combinaciones de los tres segmentos de la seccion aurea.

Clase	Y_i	f_i	F_i		$H_i^* \%$
$\overline{[y_1, y_2)}$	y_1	f_1			$H_1^*\%$
$[y_2,y_3)$	y_2	f_2			$H_1^*\%$
$[y_3,y_4)$	y_3	f_3		• • •	$H_1^*\%$
:	:	:			:
$[y_{r-1}, y_r]$					$H_1^*\%$

2.1.1. Media o promedio

- 1. Datos no agrupados. $\overline{x} = \frac{\sum_{1}^{n} x_{i}}{n}$ donde n es el número de datos.
- 2. Datos agrupados. $\overline{x} = \frac{\sum_{1}^{m} f_i y_i}{n}$ donde m < n, m número de clases y n es el número de datos.

- 2.1.2. Mediana
- 2.1.3. Moda
- 2.2. Medidas de dispersión
- 2.3. Medidas de variacion

Variables estadísticas bidimensionales

When we put (vertically) large expressions inside of parentheses (or brackets, or curly braces, etc.), the parentheses don't resize to fit the expression and instead remain relatively small. For instance,

$$f(x) = \pi(\frac{\sqrt{x}}{x - 1})$$

comes out as

When we put (vertically) large expressions inside of parentheses (or brackets, or curly braces, etc.), the parentheses don't resize to fit the expression and instead remain relatively small. For instance,

$$f(x) = \pi(\frac{\sqrt{x}}{x-1})$$

comes out as

When we put (vertically) large expressions inside of parentheses (or brackets, or curly braces, etc.), the parentheses don't resize to fit the expression and instead remain relatively small. For instance,

$$f(x) = \pi(\frac{\sqrt{x}}{x-1})$$

comes out as

Cuadro 3.1: Combinaciones de los tres segmentos de la seccion aurea.

Y_i	f_i	F_i	F_i*	h_i	H_i	H_i	$h_i\%$	$H_i \%$	$H_i * \%$
2	1	1.0000	20.0000		0.0500	0.0025	0.2500	0.2500	0.2500
3	2	3.0000	19.0000	0.1000	0.1500	0.0050	0.5000	0.5000	0.7500
4	5	8.0000	17.0000		0.4000	0.0125	1.2500	1.2500	2.0000

Continúa en la proxima página

Cuadro 3.1 - continua de la página anterior

Y_i	f_i	F_i	F_i*	h_i	H_i	H_i	$h_i\%$	$H_i \%$	$H_i * \%$
5	γ	15.0000	12.0000		0.7500	0.0175	1.7500	1.7500	3.7500
6	4	19.0000	5.0000		0.9500	0.0100	1.0000	1.0000	4.7500
7	1	20.0000	1.0000		1.0000	0.0025	0.2500	0.2500	5.0000
	20						5		

Cuadro 3.2: www.

Variables	y_1	y_2	 y_j	 y_n	Total
x_1	f_{11}	f_{12}	 f_{1j}	 f_{1e}	f_1
x_2	f_{21}	f_{22}	 f_{2j}	 f_{2e}	f_2
x_i	f_{i1}	f_{i2}	 f_{ij}	 f_{ie}	f_j
x_k	f_{k1}	f_{k2}	 f_{kj}	 f_{ke}	f_k
Total	f_{1}	$f \cdot_2$	 $f \cdot_j$	 f_n	$n = \sum_{1}^{n} \sum_{1}^{n} f_{ij}$

Figura 3.1: f(x) wwww $\left(x, \frac{f(x) + g(x)}{2}\right)$ www

Parte II Cálculo de probabilidades

Variables aleatorias

Definición 4.1 (Experimento aleatorio) El porceso en el cual
Definición 4.2 (Espacio muestral) El porceso en el cual
Definición 4.3 (Suceso) El porceso en el cual Se donta con ϵ
Definición 4.4 (Evento) El porceso en el cual
$Definici\'on~4.5~(title)~wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww$
Comentario 4.1 (title) wwwwwwwwwwwwwwwwwwww
Teorema 4.6 (title) wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
Proposición 1.6.1 (title) ของของของของของของของ

$\mathbf{w}\mathbf{w}\mathbf{w}$

Figura 5.1:

Variables aleatorias discretas

Variables aleatorias continuas

Figura 7.1: www2

Figura 7.2: wwwwww

Figura 7.3: wwwwww

Parte III Inferencial estadística

La inferencia estadística es primordialmente de naturaleza inductiva y llega a generalizar respecto de las características de una población valiéndose de observaciones empíricas de la muestra.

Al utilizar estadísticas muestrales para estudiar un parámetro de la población es muy normal que ambos sean diferentes y la igualdad entre ambos sea mera coincidencia. La diferencia entre la estadística muestral y el correspondiente parámetro de la población se suele llamar error de estimación. Solo conoceríamos dicho error si se conociera el parámetro poblacional que por lo general se desconoce. La única forma de tener alguna certeza al respecto es hacer todas las observaciones posibles del total de la población; en la mayoría de las aplicaciones prácticas es imposible o impracticable.

Distribuciones muestrales

La inferencia estadística es primordialmente de naturaleza inductiva y llega a generalizar respecto de las características de una población valiéndose de observaciones empíricas de la muestra. Hellow

Teorema~8.1~wwwwwwwwwwwwwww

Teorema 8.2 w_w wwwwwwwwwwwwwwwwww

8.1. wwww

wwwwwwww (8.1)

- 1. wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
- 2. wwwwwwwwwwwwwwwwwwww

Figura 8.1: Normal

(Figueiras y Deulofeu, s.f.) (Haberman, 2004) Mathematical Models

(Hilbert y Cohn-Vossen, 2020). "Geometry and the Imagination" this environment shares the counter of the previously defined thm environment. (Gutiérrez, 2015) (Gallego, Cid, Brito, y Rojas, 2020)

Referencias

- Figueiras, L., y Deulofeu, J. (s.f.). Atribuir un significado a la matemática a través de la visualización. Descargado 2018-05-17, de \url{http://www.raco.cat/index.php/Ensenanza/article/download/22019/332762}
- Gallego, J. C., Cid, C. D. V., Brito, J. G., y Rojas, A. V. (2020). Introducción a las técnicas de investigación social.
 (Google-Books-ID: 3HGUDAAAQBAJ)
- Gutiérrez, S. J. (2015). Competencia matemática y mediación del aprendizaje, en estudiantes de la escuela de formación profesional de educación primaria, unsch 2015, (tesis de maestría). UNSCH, Ayacucho. Descargado de http://repositorio.unsch.edu.pe/handle/UNSCH/1357
- Haberman, R. (2004). Mathematical models (U. o. W. Robert E. O'Malley Jr., Ed.). SIAM's Classics in Applied Mathematics.
- Hilbert, D., y Cohn-Vossen, S. (2020). Geometry and the imagination. American Mathematical Society. Descargado de https://books.google.com.pe/books?id=5y1tzqEACAAJ

Índice alfabético

```
frecuencias absolutas, 3
frecuencias absolutas acumuladas me-
nor que, 3
frecuencias absolutas relativas, 3
frecuencias absolutas relativas menor
que, 3

www, 21
wwww, 21
wwww, 21
wwww, 21
wwww, 21
wwww, 21
```

Apéndice A Sistemas de coordenadas