Digital Electronic Circuits Section 1 (EE, IE)

Lecture 15

Sign-Magnitude Number

0000 0001 : +1 1000 0001 : -1

0001 0110 : +22 1001 0110 : -22

0111 1111 : +127 1111 1111 : -127

Range: -127 to +127 i.e. with 8 bits 255 numbers can be represented. (-127 to -1, 0, +1 to +127)

0 is represented twice: 0000 0000 and 1000 0000

1's Complement Number

0000 0001 : +1 1111 1110 : -1

0001 0110 : +22

1110 1001 : -22

0111 1111 : +127

1000 0000 : -127

Negative number representation is obtained by taking **1's complement or inversion** of positive counterpart.

Range: -127 to +127 i.e. with 8 bits 255 numbers can be represented.

(-127 to -1, 0, +1 to +127)

0 is represented twice: 0000 0000 and 1111 1111

2's Complement Number

Negative number representation is obtained by adding 1 to 1's complement of positive counterpart.

Range: -128 to +127 i.e. with 8 bits 256 numbers can

be represented. (-128 to -1, 0, +1 to +127)

0 is represented once: 0000 0000

0001 0110 : +22 1's C 1110 1010 : -22 + 1

0111 1110 : +126 1110 1010 (2's C)

1000 0010 : -126

0111 1111 : +127

1000 0001 : -127

1000 0000 : -128

2's Complement of 2's Complement

0000 0000

$$X \xrightarrow{2's C} -X \xrightarrow{2's C} -(-X) = X$$

Binary Addition and Subtraction

$$0 + 0 = 0$$
, $0 + 1 = 1$, $1 + 1 = 10$

 $(21)_{10}$

0 001 0101

$$0-0=0$$
, $1-0=1$, $1-1=0$, $0-1=(1)0-1=(1)1$

1 Borr	OW	
0 001 0101	$(21)_{10}$	
- 0 000 0010	$(2)_{10}$	
0 001 0011	(19) ₁₀	
	, , TO	

- (1): Borrow
- Done here as done for standard decimal subtraction; borrowed is 2 (binary) instead of 10 (decimal) from next higher position.
- Sign is changed if smaller number is subtracted from larger number as in decimal e.g. 5 8 = (8 5) = -3

 i.e. 0 0101 0 1000
 = 1 0011

- Addition follows standard process.
- Subtraction by taking 2's complement of subtrahend (i.e. making it negative) and adding it with minuend

$$(83)_{10} - (16)_{10} = (83)_{10} + (-16)_{10}$$

Subtrahend $(16)_{10} = (0001\ 0000)_2$

If carry is generated, discard it and answer is positive.

$$(0100\ 0011)_2 = (67)_{10}$$

Carry 1

 $(83)_{10} + (16)_{10}$ \Rightarrow $(83)_{10} : 0101 0011 + (16)_{10} : + 0001 0000$

 $(99)_{10}: 01100011$

Minuend - Subtrahend

Difference

Subtraction of larger number from smaller number

Minuend Subtrahend

Difference

$$(16)_{10} - (83)_{10} = (16)_{10} + (-83)_{10}$$

Subtrahend $(83)_{10} = (0101\ 0011)_2$

If no carry and the sign bit is 1, the answer is negative and in 2's Complement form.

Note: 1010 1101 1's C 0101 0010 0101 0011

2's C
$$(0100\ 0011)_2 = (67)_{10}$$

 $(1011\ 1101)_2 = (-67)_1$

Subtraction from a negative number

$$(-83)_{10} - (16)_{10} = (-83)_{10} + (-16)_{10}$$

$$(-83)_{10} = 1010 \ 1101$$
 1010 1101 + 1111 0000 (-16)₁₀ = 1111 0000 11001 1101

If carry then discard it, if the sign bit is 1 then the answer is negative and in 2's Complement form.

1001 1101
$$\xrightarrow{1's C}$$
 0110 0010

2's C
$$\begin{cases} (0110\ 0011)_2 = (99)_{10} \\ (1110\ 1101)_2 = (-99)_{10} \end{cases}$$

Minuend Subtrahend

Difference

Subtraction of a negative number

$$(83)_{10} - (-16)_{10} = (83)_{10} + (16)_{10}$$

$$(83)_{10} = 0101\ 0011$$

$$(-16)_{10} = 1111\ 0000$$

$$2's\ C$$

$$(16)_{10} = 0001\ 0000$$

For subtraction,

- (i) Take 2's C of the subtrahend
- (ii) Add it with Minuend
- (iii) Discard carry, if any
- (iv) If sign bit is 0, answer positive and can be directly read.
- (v) If sign bit is 1, answer is negative and in 2's C form

(Take 2's C to find the magnitude in binary coding i.e. number with position weights ..8421).

Minuend Subtrahend

Difference

Half Adder

Augend
$$\longrightarrow$$
 A
Addend \longrightarrow B

C ← Carry Sum \longrightarrow S

$$C = A.B$$

 $S = A'.B + A.B' = A \oplus B$

Full Adder

Input	Output

C _{in}	Α	В	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$C_{out} = A.B + A.C_{in} + B.C_{in}$$

 $S = A \oplus B \oplus C_{in}$

Ripple Carry Adder

Intermediate

Carry

 $C_2 C_1 C_0$

 $A_3 A_2 A_1 A_0$

 $B_3 B_2 B_1 B_0$

 $C_3 S_3 S_2 S_1 S_0$

Final Carry and Sum

Subtraction using Adder Circuit

References:

☐ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &

Applications 8e, McGraw Hill