

IONOSPHERIC DATA

ISSUED MAY,1945 "This document contains information affecting the national defense of the United States within the meaning of the Espionage Act,50 U.S.C., 31 and 32. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law."

IRPL-F9

INTERSERVICE RADIO PROPAGATION LABORATORY NATIONAL BUREAU OF STANDARDS WASHINGTON, D.C.

Issued 20 May. 1945

Organized under Joint U.S. Communications Board

IONOSPHERIC DATA

TERMINOLOGY	Page 3
Provisional data (received by telephone or telegraph)	
April, 1945	
Baffin I. (Median values)	Table 1
Fairbanks, Alaska (Median values)	
Reykjavik, Iceland (Median values)	
Churchill, Canada (Median values)	
Ottawa, Canada (Median values)	
San Francisco, Calif. (Median values)	
Baton Rouge, Louisiana (Median values)	
Maui, Hewaii (Median values)	
Huancayo, Peru (Median values)	
March, 1945	
Cape York, Q., Australia (Mean values)	Table 10
Rarotonga I. (Mean values)	
Pitcairn I. (Mean values)	Table 12
Brisbane, Q., Australia (Mean values)	
Kermadec Is. (Mean values)	· · · Table 14
Watheroo, W. Australia (Mean values)	Table 15
Mt. Stromlo, N.S.W., Australia (Mean values)	Table 16
Campbell I. (Mean values)	Table 17
Final data	
April, 1945	
Washington, D.C. (Median values)	Table 18
	Figs. 1 and 2
March, 1945	
Fairbanks, Alaska (Median values)	Table 19
	Figs. 3 and 4
Churchill, Canada (Median values)	
	Figs. 5 and 6
Maui, Hawaii (Median values)	Table 21
	Figs. 7 and 8
Huancayo, Peru (Median values)	Table 22
	Figs.9 and 10

Final data (continued)

1	February, 1945									
	Burghead, Scotland (Median values)				0				Table 23	2
	The Strome & Doorsman (There are a married) a						4		Fig. 11	
	Slough, England (Median values)		_							
	prought Distrant (medican Authan)		٠			•				
	West We see the lie (Malies less)								Fig. 12	
	Watheroo, W. Australia (Median values)		0		•	•	•			
									3 and 14	
	Simonstown, Union of S. Africa (Median	T A	alu	(88)	•	•				
									Fig. 15	
	Christohurch, N.Z. (Median values)	•					•		Table 27	
								Figs. 1	6 and 17	
	January, 1945									
400	Slough, England (Median values)		•						Table 28	
									Fig. 18	
	Watheroo, W. Australia (Median values)					-				
	AND					•	•		9 and 20	
								LTER. T	S MIN 20	
	2000-200									
1	December, 1944								4	
	Baffin I. (Median values)		•		•	•	•			
								Figs. 2	1 and 22	
1	November, 1944									
6	Baffin Is (Median values)				0				Table 31	
								Figs. 2	3 and 24	
(October, 1944									
•	Baffin I. (Median values)					_			Tehle 32	
	nare and		69	9 0				Figs. 2		
	Clouds Fredand (Medden malus)									
	Slough, England (Median values)	•	8		0	0	•	0 0 0 0		
									Fig. 27	
S	September, 1944									
que	Baffin I. (Median values)	0	0	9 9	•	0	•			
								Figs. 2	8 and 29	
IONO	OSPHERIC DATA FOR EVERY DAY AND HOUR		0		•		•		Page 5	
A	April, 1945									
· CO	Washington, D.C.									
	h172								Table 35	
	f ⁰ F2									
									Table 38	
	h'Fl	-	_							
	forl		-	-		0			Table 39	
	h'E		-	0 0		0	•		Table 40	
	for		0	• •		•	•		Table 41	
	Es		0		0		•		Table 42	
	F2-M1500			0 0	0	0			Table 43	
	F2-M3000	0	•			•	•		Table 44	
	F2-M3500				0		•		Table 45	
	F1-M3000								Table 46	
	E-M1500									
	M-10000 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		-		-	9	-		20020 21	

TOROG	PHI	RI	D	IS	Tu	RI	BAR	IC1	35		•			•	0		6		•	•			e				٥	•	•		•		. 0	Page	5
I	5000	p	er	10		te	ore	nd.	101	3.6			•	0	•	٠		9			•						•		•		•			Table	48
		10	HO	sp	he	7	0	0	18.1	ac	te	or	8.	nd	p	ri	ns	1	a.	l e	to	T	10	do	66	TT	ed								
									tor																										
																																		Table	
I.	to	Q4	A	E.	11	-	ud	d	M	Ic	n	1000	ph	\$ 4		D1	21	ar	be	inc	05	0			۰	0	•	0		•	•	0		Page	6
ERRAS	PA.							9			•	0					0		4	• •		0	0		•		6	0			•	٥	0	Page	7

TERMINOLOGY

The symbols and terminology used in this report are those adopted by the International Radio Propagation Conference, and given in detail on pages 24 to 26 of the report IRPL-C61, "Report of International Radio Propagation Conference", and on pages 4 and 5 of the previous F-series reports IRPL-F1, 2, 3, 4, 5.

MONTHLY AVERAGES AND MEDIAN VALUES OF IONOSPHERIC DATA

The tables and graphs of ionospheric data presented here are assembled by the Interservice Radio Propagation Laboratory for analysis and correlation principally incidental to IRPL predictions of radio propagation conditions. These data are furnished by the following:

Carnegie Institution of Washington (Department of Terrestrial Magnetism)
Baffin I., Canada
Christmas I.
Fairbanks, Alaska (University of Alaska, College, Alaska)
Roykjavik, Iceland
Maui, Hawaii
Trinidad, Brit. West Indies
Huancayo, Peru
Wathereo, W. Australia

British National Physical Laboratory, and Inter-Services Ionosphere Bureau Radio Research Station, Slough, England Great Baddow, England Burghead, Scotland Delhi, India Madras, India Simonstown, Union of S. Africa

Australian Council for Scientific and Industrial Research Radio Research Board, Australia Brisbane, Q., Australia Mt. Stromlo, Canberra, NSW, Australia Cape York, Q., Australia.

Canadian Department of National Defence, Naval Service Churchill, Canada Ottawa, Canada

New Zealand Radio Research Committee

Kermadec Is.

Christchurch (Canterbury University College Observatory)

Campbell Is.

Pitcairn I.

Rarotonga I.

Ionospheric Interdepartmental Bureau, U.S.S.R. Scientific Experimental Institute of Terrestrial Magnetism, Moscow, U.S.S.R.

Tykhi Bay, U.S.S.R. Tomak, U.S.S.R. Sverdlovak, U.S.S.R. Moscow, U.S.S.R.

National Bureau of Standards, Washington, D.C. Stanford University, (San Francisco), California Louisiana State University, Baton Rouge, Louisiana University of Puerto Rice, San Juan, P.R. United States Army Air Forces, Pacific Ocean Area Guan I.

GRAD T.

Kwajalein Atoll

Harvard University, Boston, Mass.

It is to be noted that following the recommendations of the International Radio Propagation Conference, held in Washington 17 April to 5 May 1944, median values of all ionospheric characteristics are reported, beginning with data for January, 1945, for Washington, for all stations reporting to the IRPL, and for the Canadian stations at Churchill and Ottawa, Canada. Conventions used in determining median values are given on page 5.

The "provisional data" tables give values as reported to the IRPL by telephone or telegraph, Any errors in these values will be corrected in later issues of the F-series reports.

The "final data" tables and graphs are correct for the values reported to the IRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of these errors are due to:

a. Differences in scaling records where spread echoes are present.

- b. Omission of values where for is less than or equal to for l, leading to erroneously high values of monthly average or median values.
- o. Omission of values where critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series reports, IRPL-F1, 2, 3, 4, and 5. Discrepancies between predicted and observed values are often ascribable to these effects.

IONOSPHERIC DATA FOR EVERY DAY AND HOUR

These data, observed at Washington, D.C., follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference", pages 36 to 39.

In determining the median values presented in this report, the following Conventions have been adopted:

a. For all characteristics where the value is missing because of A, B, or C (see IRPL-C61, loc. cit.), that hour is omitted from the median count.

b. in addition.

- (1) For critical frequencies:

 For all layers, where a value is missing because of E

 (see IRPL-C61, loc. cit.), it is counted as less than the
 lower limit of the recorder.

 Where a value is missing because of G (see IRPL-C61, loc.
 cit.), it is counted as less than the median count.
- (2) For virtual heights:

 Values missing for any reason are omitted from the median count.
- (3) For muf factors:

 Values missing for any reason are omitted from the median count.

IONOSPHERE DISTURBANCES

Table 48 presents ionospheric character figures for Washington, D.C., during April, 1945, as determined by the criteria presented in the report IRPL-R5, "Criteria for Ionospheric Storminess", together with American magnetic K-figures which are usually covariant with them.

Note on April Sudden Ionosphere Disturbances

The sudden ionosphere disturbances (SID) listed in Table 49 began coincidentally with the appearance of a large group of sunspots near the sast limb of the sun on 25 April. Occurring over a period of five days, they were not followed by geomagnetic or ionosphere disturbances, as were those observed in December 1944.

The SID at 1303 on 25 April was observed on the British stations GLH (13525 ke) and GSP (15310 ke) only, as it occurred too early to be noted on paths not going eastward from Washington. On the other hand, the SID at 2224 on 25 April and at 2044 and 2143 on 28 April occurred too late to be observed on these paths, but were noted on the paths going westward and southward from Washington.

The SID occurring at 2224 on 25 April and at 1227 on 26 April and at 1200, 2044, and 2143 on 28 April were the only ones which were observed to affect WQXR, New York, (1560 kc). At these times propagation was normally by E layer, before the beginning and after the ending of normal daytime D-layer propagation.

During the SID some of the propagated energy of the emitted waves must have been absorbed in penetrating the D layer. However, these SID were not very intense, so it seems reasonable to assume that the increased ionization of the D layer during the SID caused a good deal of the energy of the incident waves to be reflected obliquely in the D layer below the height of maximum absorption. The received wave them is assumed to have been composed of waves propagated by D layer and slightly attenuated, combined with waves propagated by E layer but attenuated by the SID, the net result being a received intensity somewhat weaker than what would normally have resulted at that time of day when propagation would have been wholly by E layer with absorption in the D region much less than at times of SID.

On the vertical-incidence field-intensity records of WWI (2080.69 kc), some of the SID were not nearly as intense as on the higher frequency WWI records; this is evidence of reflection of these waves, like medium-frequency broadcast waves, at or below the level of maximum ionospheric absorption in the D layer.

The lowest frequency regularly recorded at Washington is WIW (700 kg), Mason, O., which was not affected by the SID, either as to strengthening of the sky wave because of increase in D-layer conductivity, or decrease of intensity because of D-layer absorption.

The SID on 26 April at 1227 GCT was more intense on the record of WVKF (12935 kc), Recife, Brazil, than on W8XAL (6080 kc), Mason, O., but less intense than on GIH (13525 kc) at Dorchester, England. This last condition possibly arose because the path to England was more in the daylight region, outweighing the fact that the path from Brazil passed closer to the subsolar point. The effect of passing closer to the subsolar point was probably illustrated in the SID of 25 Dec. 1944 at 1720 GCT

when the SID on WVKF was more intense than that on W8XAL and XEWW (9500 kc) Mexico City, although midday conditions prevailed over all the paths at that time.

ERRATA

In the section entitled "NEW STATIONS", in IRPL-F8, p.6, the last sentence under B reading "see Table 21 and Figs. 9 and 10" should read "see Table 18 and Figs. 3 and 4.

In the section entitled "IONOSPHERE DATA FOR EVERY DAY AND HOUR" the first sentence under b(3), for muf factors, "Where a value is missing etc." in IRPL-F6 through F8 should appear as a second sentence under b(1), for critical frequencies, as it does in this issue.

	040	25.52
,	000	101
	400	7404
	1000	2
,	_	+
	0	0 10
ł	5	ď

Table 2 (Provisional Data)

F2-M3000	######################################			1945	F2-M3000	၀၀၀၀တတ္တလုံး လူလူလူလုံး လုံလုံလိုက်ကိုလိုလိုလိုလိုလိုလိုလိုလိုလိုလိုလိုလိုလိ
f.Ks		autes		April 1945	fRs	
FOE		teen mil	its)		EOE.	
h'E		5 Mc in fifteen minutes	lonal De		h'B	
Laor 1	0	to 65 Mg	(Provisional Data)	94°504)	POFI	
h'Fl	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	16 Mc	Table 4	(58.8°N, 94	h'Fl	
FOF2 h'F	พพพพ-สพพ ผ ผพส ผ พ-พ พ พ พ พ พ พ พ พ พ พ พ พ พ พ พ พ พ	sweep:		Canada (58	£0F2	ಸ ಸ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ
h'F2	300 300 310 310 310 310 310 310 310 310	1500 W of time			h'F2	
Time	3855835577777555833885858585858585858585	Time: Length		Church111,	Time	81818181818188848888888888888888888888
10		1			اما	
F2-M3000				45	F2-M3000	 ๑๐๓๓๒๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓๓
fRe F2-M3000	<u> </u>			pril 1945	fRs F2-M3000	0, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2
		nite.	ate.)	Apr11 1945		
fRe	တတ္တတ္တတ္တတ္တတ္ မ်ားဆီရီပီကီကီကီလီမီ မ်ာ	n one mimite.	sional Date)	Apr11 1945	fRs	
E for fre	တတ္တတ္တတ္တတ္တတ္ မေဆရိက်လ်လ်လ်လ် ရေသ	Mc on one	(Provisional		for fra	೯೬೬೦ ಲಹಾ ಚರಾದ್ದಾ ೬೨
h'E for fra	3.3 116 2.3 3.5 112 2.3 3.7 111 2.5 5.8 110 2.6 5.8 110 2.6 5.7 110 2.6 5.7 111 2.5 5.7 111 2.5 5.5 111 2.5	Mc to 16 Mc on one	Table 3 (Provisional Date)	21, 70W)	h'E for fra	111 119 100 100 100 100 100 100 100 100
forl h'E for fre	250 250 260 3.3 116 2.3 260 3.6 3.114 2.3 250 3.6 112 2.6 250 3.7 111 2.6 240 3.7 110 2.6 250 3.7 111 2.6 250 3.7 111 2.5 240 3.7 111 2.5 240 3.3 240 3.3	sweep; 2 Mc to 16 Mc on one	3 (Provisional	21, 70W)	forl h'E for fra	3.4 4.5 6.0 110 7.6 110 7.6 100 100 100 100 100 100 100 100 100 10
h'Fl fOFI h'E fOE fRe	3.5 3.5 3.6 3.6 4.0 4.0 4.1 2.6 4.1 2.6 4.2 2.6 4.2 2.6 4.3 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	2 Mc to 16 Mc on one	3 (Provisional		h'Fl fOFI h'E fOE fRe	220 3.4 111 2.5 200 4.0 100 2.7 200 4.0 100 2.7 200 4.2 100 2.7 210 4.2 100 2.8 210 4.1 119 3.2 220 4.1 119 2.9 220 4.1 119 2.9 220 3.8 119 2.7 220 3.8 119 2.7

g g g g g g g g g g g g g g g g g g g	93 Mc to 13.5 Mc Manual operations	Apr.1 1945	f.Rs F2-M3000	, , , , , , , , , , , , , , , , , , ,	
					•
868888888888888888888888888888888888888	Time: Length	Maud .	Pime	0.000 0.000	
	120° W	Have 11	h * F2	202236000000000000000000000000000000000	
ဆင္း ေင့္ေတြက လည္သည္ အေတြက လည္သည္ မွာ လည္သည္ မွာ လည္သည္ မွာ လည္သည္ မွာ လည္သည္ မွာ လည္သည္ မွာ လည္သည့္အေတြက လည္သည လည္သည္ မွာ လည္သည္ မွာ လည္သည့္သည့္သည့္သည့္သည့္သည့္သည့္သည့္သည့္သည	Sweep:	(20,8°W,	£0₹2	で で み み み か み ら ら ら ら は は は は は は は は は は は は は は は	
	oenter	Table 8	hFl	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	o 12 Mc ed on th	(Provision)	POFI	ပစ္စေတက္သားသား ျပစ္ အိအိအိအိအိအိအိ	
	ln six m e hour.	nal Date	n'E	1100	
	fnutes.		Tok	ಇಗಳ ಕನಾರಾಜಂವ ಇಗಳ ಕನಾರಾಜಂವ	
	lecord	ril 1945			
		1200 W	1200 W 5.05 Thme Sweep!	3.8 3.9 3.9 3.8 3.7 3.7 3.7 3.7 3.7 3.7 3.6 4.3 5.6 6.8 6.8 6.8 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	3.8 3.6 3.6 5.0 5.0 6.8 6.4 6.8 6.4 6.8 6.9 6.9 6.9 6.9 6.9 6.9 6.9

Table 6 (Provisional Data)

Table 5 (Frovisional Data)

Data)	
visionel	
10 (Pro	
Table	

	345	F2-M3000	ಪಟ್ಟಳು ಪ್ರವಹಗೆ ಕೆ ಪ್ರವಹಿಸಿ ಕೆ ಕೆ ಪ್ರವಹಿಸಿ ಪ್ರವಹಿಸಿ ಪ್ರವಹಿಸಿ ಪ್ರವಹಿಸಿ ಪ್ರವಹಿಸಿ ಪ್ರವಹಿಸಿ ಪ್ರವಹಿಸಿ ಪ್ರವಹಿಸಿ ಪ್ರವಹ ಪ್ರವಹಿಸಿ ಪ್ರವಹಿಸಿ ಪ್ರ			1945	F2-M3000												
	March 1945	fRe F				March 1945	£78s												
(8)		TOE			~		Log												
onel Dat	(Tone	h'E			nal Date		P.E												
Table 10 (Provisional Data)	Australia (11.00S, 142,40E)	POFI			Table 12 (Provisional Data)	_	POF1				e :	\$6° \$	£9"±	16.4	#°.33				
ble 10	11e (11.	h'F1			1e 12 (F	130.0°K")	h'Fl				800	S I	199	8	225				
	, Austra	POF2	, , , , , , , , , , , , , , , , , , ,	_	Tab	(25.008,	POF2	₽.79		2022	7.59	7,48	10,13	9.35	80 80		0.0	5.48	
	Jupe Tork, Q.,	P. 25		Time: 150° E		Pitcairn I. (h F2	238		200	235	000	267	261	259		r G	293	
	Cupe	Time	86666666666666666666666666666666666666	Tine:		P4 ton	Time	85	000	9.6	900	9 6 0 0	2 1	25	1 57	0 1-1	3 67 8	ខ្ល	225
	April 1945	TRE F2-H3000	<u>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</u>			March 1945	f#s F2-M3000												
	A _j	E _Q J		en minu	~		IoJ.				2,3	3.0	3.2	म्°€	3.2	2.6	2.5		
		p, E		in fifte	nal Dete		P.E												
Table 9		roll		Me to .5 Me in fifteen minutes.	1 (Provisional Data)	ж)	ror1					ग भ	h.7	μ.7	व व	3.8			
	75.304)	h'Fl		16 Mc t	Table 11 ((21°408, 159,60%)	h'Fl					233	225	235	236	245			
		£0₽2	#m-umouwwm#-mommmmum4000	sweep:	84	(21°408	f°F2	100 21	Ф.ф	3.7	7.0	9.0	10,1	10.5	9.6	80 Q.	1.1	6.3	5.9
	Huancayo, Peru (120S,	h'F2		75° W. of time	Values.	Rarontongs I.	h'r2				2 ⁴ 7	274	596	261	281	260			
	luencey	Time	888888444444488886888888888888888888888	Times	Median	Raron	Time	88	N 10 0	5 87	868	5 8 8	21	21.5	# 2 ,7	27.5	3 22 8	ឧដ	23 23

Time: 150° W Length of Time sweep: Menual operation. Mean values.

Time: 157.5° W.

1945	F2-H3000		
Merch 1945	fRe		
	F ^O E	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	h'R	11.5 11.5 11.5 11.7 11.7 11.7 11.7 11.7	
	rorı	2004 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
(Mo6.771	h'F1	24.2 22.2 22.2 22.2 22.2 23.2 25.3 25.3 25	•
29.2°8,	fOF2	44,47,47,500,600,600,600,600,600,600,600,600,600	
Kermadec Is. (29.2°S, 177.9°W)	h'F2	2992 293 293 293 293 293 293 293 293 293	
Kermad	Time		
March 1945	F2-H3000	ဝဝ႕ရရမ္ (သော ကကရေရရရရကောင်္ကေရီကိုကိုကိုကိုကိုကိုကိုကိုကိုကိုကိုကိုကိုက	
Marc	£78e		
	LOE	•	
(Fig	a, u		
s, 130°	ror1		
a (27.5	h'Fl		
Australi	£°₹2	よれれば そろうごう ひょう こうしょ とっしょ とっしょ とっしょ かんしょ ひょう こうしょ きょうしょ きょうしょ きょう でんしょ きょうしょ きょうしょ きょうしょ きょうしょ きょうしょ きょうしょう オール・ストール アンドラー・ストール アンドラー・ストール アン・ストール アン・ストールール アン・ストール アン・ストールール アン・ストール アン・ストール アン・ストールール アン・ストール アン・ストール アン・ストールール アン・ストールールール アン・ストールール アン・ストールールールール アン・ストールールールールールールールールールールールールールールールールールールール	
Brisbane, C., Australia (27.50S, 130°E)	h'F2		
Brisba	Time	22 22 22 23 24 17 11 12 12 12 12 12 12 12 12 12 12 12 12	E

Time: Local Length of time sweep: 2,2 Mc to 12,5 Mc in two minutes thirty seconds, Keen values.

TRULE 15 (Provisional Data)

Watheroo, W. Australia (30.30S, 115.90E)

F2-M3000

fRs

LOE

P, E

h'Fl

£015

Time h'F2

March 1945

Table 16 (Provisional Data)

Time: Local. Mean values.

Merch 1945	F2-H3000	
, A	fRe	
	₹0E	
Stromlo, NSW, Australia (35,30S, 149,00E)	n a	
35. 30S.	for1	
ralia (h'Fl	.
ISW, Aust	ror2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
romio, N	h'F2	
Mt. St	Time	322232323232333233333333333333333333333

Time: 120°E. Length of time sweep: 16 Mc to 0.5 Mc in fifteen minutes. Held values.

Time: 150° \pm Length of time sweep: 16 Mc to 12,5 Mc in two minutes. Mean walues.

(Mott - LL
(39°0°N,
Washington
March 1945

1	-	combiner + Ocean as Tol	19 000				March	merch 1945	7770 91	LE WOLL I	"ABILING COLL () COL III	/ H + + 0 /				Apr 11 1945	1945
	h'F2	£ºF2	hFl	ror1	n'E	FOE	fRe	F2-M3000	Time	b FP2	£0F2	h'F1	ror1	Nº B	FOE	fRe	F2-M3000
									00	280	3.7						80
									10	280	3.4						5.9
									02	280	2,7					1.0	0
									03	260	ผู้					1,0	0
_									も	260	200						1 12
	292	2.73							90	280	# 0						3.0
_									90	240	3.9			120	H 00	0,0	3,2
	254	4.31	219	3.14					20	560	5.0	240	3.7	120	N° %	3.0	5.2
_									90	300	5.3	220	0.4	120	. to	7°1	7,1
	293		220	3,86	103	2,81			60	320	5.5	220	رد ت ت	128	3.1	3.2	3,0
									10	350	J. 00	220	ta or	120	3	3.1	3.1
	295		212	3,98	106	2,96			11	320	6.2	220	μ°.5	120	P		3,0
			212	3.87	101	3.05			12	330	₽°7	220	1. 6	120	ual:		3.0
			220		108	2,92			13	320	9°9	220	4.5	120	3.4		3.1
_									4	320	t .9	28,	파	120	1 PC	3.4	3.1
	277		220	3.78	106	2,73			15	310	0,21	220	4.3	120	20		3.0
		,							16	300	†°9	230	1.1	120	000	3.0	3.1
	249	5.43							17	280	# °9	240	3.7	120	S.	5.9	3,1
									100	560	9°9	240	3,5	120	1.0	بت دن	3,7
	263	5.24							19	240	9°9					I.º08	3.1
									8	240	200 PM						3,0
	284	3.82							ผ	S _T O	5.0						3.0
_									25	270	ग [°] ग						0.0
	324	3,31							23	280	0°4						000

Time: 750W.
Length of time sweep: .8 We to 14 Me in 2 minutes.
Median values.

Table 20

(Corrections and additions to previously published provisional data)

Table 19

Time: 165º E. Mean values. Mer ch 1945

LOF

Time h'F2 fore h'Fl fort h'E

2.0

Fairbanks, Alaska (64.90N, 147.80W)

2,0

(Corrections and additions to previously published provisional data) March 1945 Ohuzchill, Canada (58.8%, qu. 201)

		Churck	1111, car	Churchill, Canada (58.8 M, 94.20W)	8 M 94.	. 2014)			Man	March 1945
fra F2-M3000	0000	Time	h'F2	FOFE	h'Fl	Porl	対。対	FO.	fRe	F2-M3000
w. R.		8	230						9.9	
3.6		03	350	3.1					5.6	
3°5		05	200						₩ 	
3.5		03	320	6,8					°° 00	
% %		き	370						3.6	
3.1		05	310						0.4	
1.6		90	320						3,00	
2,1		20	290						0.4	
2,3		90	350		245	3,4				
		60	335		240	3.7	120	00		
		2	350		240	. pc.	115	6.5		
		11	330		240	3.9	120	3.0		
		12	32		240	100	120	3.0		
		13	330		240	3.9	120	3,1		
		7	3		2,5	3.9	120	5.0		
		15	325	S)	240	3.7	125	ໜ່		
		16	310	500	2,10	3.5	120	2,7		3.0
,		17	8	5,2	255	200	120	2,2	2.7	
1.6		18	280						30.31	
1,6		19	280	라					100	
٥ ر ر		8	310	0°4					200	
3.0		21	8	3°4					0.4	
3.2		22	380						5,6	3.0
¥.3		23	310	3.5					6.0	3.0

Time: 150°M. Length of time sweep: 16 Mc to 0.5 Mc in fifteen minutes. Median values.

2,5

940

305

1.3

Time: 900W. Length of time sweep: 2 Mo to 16 Mc in one minute. Median values.

Table 21

(Gorrections and additions to previous) w published provisions data)	Merch 1945	F2-M3000	
rovisio	Merch	fRe	ი ლუ ქალ გა ლა ლა და ლა და
ished p		LOE	ಇದರ ಇರಬ್ಬಿಸ ಕ
lana ac		a q	
proland		roh!	
008 50 1	5.30W)	h'Fl	2 2 3 6 2 2 3 6 2 2 3 6 2 2 2 2
d additi	(12°S, 7	POF2	0 20 L. 2 02 8
tions an	Huancayo, Peru (12°S, 75.3°W)	h'F2	\$28282828282828282828282828282828282828
(Correc	Huancay	Time	03.22.25.25.25.25.25.25.25.25.25.25.25.25.
(Corrections and Additions to previously published provisional data)	Merch 1945	F2-M3000	3,3
rovisio	March	fRe	ਹ•ਾ ਤ ਸੇ
lished y		LOE	
aly pub		h E	105 105 105 105 115
previous		POFI	
tons to	156.5°W)	hFI	205 205 215 215
nd eadlt	20.8°N,	r ^o F2	
ctions a	Maul, Hawaii (20.8°N, 156.5°W)	P. 172	225 285 285 285 285 285 285
(Corre	Mauf.	Time	800000000000000000000000000000000000000

Time: 75°W. Length of time sweep: 16 Me to 0,5 Me in fifteen minutes. Median values. Table 24

(Additions to previously published provisions! data)

(Corrections and additions to previously published provisional data)

Burghead, Scotland (57.7°N, 3.5°W)

Table 23

Time: 1500W.
Length of time sweep: 2 Mo to 16 Mo in one minute.
Median values.

F2-M3000

£0E

P E

h'Fl

Time h'F2

February 1945 fRe

Time high for a high for the for the formal for the formal for the formal forma	Slougi	Slough, England (51.5°N, 0.59W)	ad (51.5	M. 0.594	(2)			February 1945	y 1945
	Time	P. F.2	£0F2	hFT	f°F1	h'E	FOE	fRe	F2-M3000
	8		3.1						
	01		200						
	05		3.2						
	03		3.0						
	70		S S						
	05		2						
	90		S°S						
	10		3,1						
	90		4,9						
	60		5,5						
	2		7						
	11		6,3						
	12		6,5				-		
	13		6,3						
	1/1		7°9						
	15		6.2						
	16		5.9						
	17		5.5						
	120		9.						
	19		3.9						
	8		3°₩						
	ส 8		ار ا ا						
	25		N 0						

えるら

Time: 0º Median values.

Median values. Time: 00

2,3

(Corrections and additions to previously published provisional data)

Table 26

February 1945	F2-M3000	ဝေ့ရှင်းလို့ မရိုင်းမှု မရိုင်းမှု မရိုင်းမှု မရိုင်းမှု မရိုင်းမှု မရိုင်းမှု မရိုင်းမှု မရိုင်းမှု မရိုင်းမှ မြော်များမှု မရိုင်းမှု မရိုင်းမှု မရိုင်းမှု မရိုင်းမှု မရိုင်းမှု မရိုင်းမှု မရိုင်းမှု မရိုင်းမှု မရိုင်းမှ		e) Jenuary 1945	F2-M3000		
Febru	f.Ke			Jenue	£Re		
	F _O E	0	minute.	onel de	100 st		
	h'E	•	00 00 00 00 00 00 00 00 00 00 00 00 00	rovies	h R		
	roFl		to 16 Mc in one	(Corrections to previously published provisional dats)	£°F1		
	h'Fl		Me to 1	Jand &			
South Africa			N	swiousl	, u		
	f ^O F2	พพพพพพพพพ ระหากับ กับ การสำนักการการการการการการการการการการการการการ	15°E. of time sweep: values.	to pre	5 Pag 5	လွယ္တိုက္ရ ကို သူ သူ လွ လွယ္လူသူ ကို စလာသာလ က မတ္က လ လာ လူလူသူ ကို	
Simonstown U.	h'F2		150E. of time	(Corrections to previously publ	h 32		
Simone	Time	3855631871871871688388388550550	Time: Length Median	(Corre	Time	22222222222222222222222222222222222222	Median
1945	F2-M3000	3.2 3.1		ovisional data) February 1945	F2-H3000		
February 1945	fRe	ทูญนูพูพูพูญพูพูพูพูสุนุนุนุพูพูพูญญ ตอนน์ตัดอโมตตตตลน์นาอีตตตลน์กัดดีพูด	nutes.	rovisio Februs	£78e	မွယ့်ယွယ်တွေတို့ ကွယ်လွယ်လွယ်လွယ်လွယ်လွယ်လွယ်လွယ်သို့နဲ့နဲ့ ကို ဝဝမမတ်အဆည်အသည်သည်လွယ်လွယ်လွယ်လွယ်လုံးနဲ့နဲ့ ကို	
	f.og	ကလေး ၉၀လက္ကက္ကလေး တင္ ဝ မိလိလိုက်ကိုကိုကိုကိုလိုလိုလိ	. nee	shed pa	FOE	. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	inutes
	h'E		in fift	r Publi	h'E	188	n two n
306	POFI	០ ២ ភ ដ ហេ ហ ដ ២ ២ និន និង និង និង និង ២	to 0.5 Mc in fifteen minutes. Table 27	ditions to previously published provisional data) (43.50s, 172.60g) Tebrusry 1945	for		to 12 Mc in two minutes.
(30,30	h'Fl	222 222 222 222 222 222 222 222 222 22	16 Mg	ditions to (43.59S, 1	h'F1	240 210 210 210 250 250	2.5 Mo
âustralia	£0172	ວຣູດທາວທານຄຸດຄານຄຸດຄານຄຸດຄານຄຸດຄານຄຸດຄວານຄຸດ ຊື່ຊື່ຂໍ້ຄືນີ້ ນີ້ ນີ້ ນີ້ ນີ້ ນີ້ ຄູ່ຄູ່ຄູ່ຄູ່ຄູ່ຄູ່ຄູ່ຄູ່ຄູ່ຄູ່ຄູ່ຄູ່ຄູ່ຄ	2	and ad	£°F2	အက တ ယဝ႕ ၁ဝ႕ လေလာပ္ျပား နိသို လိုယ်တို့သို့ လိုယ်တို့သို့ လိုင်းသို့သို့သို့ မိုး	sweep:
`æ	h'F2	865 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1200E, of time values.	Corrections (b'F2	260 280 280 280 300 300 300 300 300 300 300 300 300 3	of time
Watheroo,	Time	385,585,585,585,585,585,585,585,585,585,	Time: Length Median	(Corrections Christchurch,	Time	28228282828282828282828282828282828282	Length

(Corrections and additions to previously published provisional data)	John Tonne
published	
previously	115, 90E)
40	10 S
additions	ralta (40.
श्चत	Aust
(Corrections	Watheroo, W. Australia (40, 40S, 115, 90E)
	-

fRs F2-M3000

h'E

ror1

December 1944

3.2

(Corrections and additions to previously published provisional data)

Table 30

f ⁰ F1									-															
h'F1																								
rorz							200	1																
7 L F 2				,																				
Time	8	38	2		* 2	9	Š	20	- N	8 8	36	1	10	12	\4	¥	74	1.	- %	9 0	38	1 2	2	1 6
F2-M3000				4,0	6	200		3.0					80			7.0				1.1	4			0 0
£Re	0"#	t, 2	0	12	180	, 08	2,5	200	7	1	, ri	4,1	7,5	7	8 4	1,7	7	7	7	2	0	2,7	0	0
for							1,0%	2,5	80 လ	3.0	200	[M]	1	2,5	3,3	, e	3,0	2.7	2.7	ì				
ब ्य																								
roll.								3.8	T° 7	4.3	파	¥. €.5	1,00	4°5	त्र प्र	# 23	i cu	3,9	ı -					
h'F1								230	220	210	230	220	212	212	215	220	220	215						
r ^o F2	9°4	1,4	3.7	3,3		0.6	0.4	4.7	5.2	5.5	5.00	6,3	9.9	7.2			9°9	6,2	η γ	5,1	5.3			4.6
h'F2	270	265	560	260	260	265	245	315	350	350	370	360	355	£,	320	300	300	280	265	250	250	260	280	272
Time	8	01	02	03	する	0,5	90	10	90	60	10	11	12	13	17	15	16	17	100	19	8	21	SI SI	23

Time: 120°E. Length of time sweep: 16 Mc to 0.5 Mc in fifteen minutes. Median values.

(Corrections and additions to previoualy published provisional data)

F2-M3000 **~~~** November 1944 f^OE fRe **≈** č, h'E POFI Baffin Is., Canada (70,5°N., 68,6°W) fore hift h'F2 Time

Time: 75°W. Length of time sweep: 2 Mc to 16 Mc in one minute. Mean values.

Thes. 750W. Length of time sweep: 2 Mc to 16 Mc in one minute. Mean values.

Time: $75^{\circ}\text{W}_{\bullet}$ Length of time sweep: 2 Mc to 16 Mc in one minute. Mean values.

2°#

(Corrections and additions to proviously published provisional data) October 1944 Baffin Island, Canada (70.50K, 68.60W)

000 001 002 003 004 005 006 006 007 008 008 009 009 009 009 009 009	Time	h'F2	£0162	hFl	f°F1	P. 8	FOE	fRe	F2-M3000
25th 22th 22th 25th 25th 25th 25th 25th	0								3.3
2.4 2.6 3.10 2.5 2.98 2.98	050								ئ د ت
250 3,10 2,2 2,98 2,98	63							± °€	3,3
250 3,10 2,2	₹ 8							ವ† ಕರ လီ လ	3,2
250 3,10 2,2	9							5,6	3,2
3,10 2,2	07	OKO							W. K.
2.98	8 8	3			3,10			2,2	7,00
2.98	91								W, W
2.98	121								, w,
2,*3	24				2,98				2 Kg (
€.*2	55								ม กับ เ
2,°3	17								₩, H
£°°2	19								, 50°
2,3	ಜನ								3.3
	225							2,3	F. C.

Table 33

(Additions to previously published final data)

F2-M3000

fRe

FOR

h'E

ស ស ស ស ស ស ស ស ហ ស ហ ហ ហ ស ស

30

122

September 1945

(Corrections and additions to previously published provisional data)

Table 34

for1	
hiFl	
P.J.	
P132	592
Time	010000000000000000000000000000000000000
F2-M3000	စစစတ္ခရန္ ကလေးမာဆ္ဆန္ လာသာ ကက္ကေလာစ လီလိလိလိုက်ကိုကိုကိုကိုကိုကိုကိုကိုကိုကိုကိုကိုကိုက
fRe	
FO.F	
p, g	
FOF.	
h'Fl	
₹0¥2	
h'F2	21
Time	818888888888888888888888888888888888888

Time: 00 Mean Values.

Time: 75°W. Langth of time sweep: 2 Mo to 16 Mo in one minute. Supplemented by manual apparatus with low frequency limit 1.6 Mo.

ស ស ស ស ស ស

IONOSPHERE DATA-I TABLE

Ionosphere Station

Standards

National Bureau Of

(Institution)

Washington, D.C.

Bourly values of h'F2 in tra for

April (Wonth)

RESTRICTED Records measured by: M.R.R.

TABLE 36

IONOSPHERE DATA-2

Ionosphere Station

Hourly values of FE2 in tor April 1945

decords negatived of: M. R. M.

(Location)

National Bureau Of Standards (Institution)

7.1 7.0 7.6 (7.6) 7.0 [7.0] 6.8 (8.6) 7.1 (8.6) 7.2 (9.6) 7.3 (9.6
(6.6) 6.6 6.4 (7.2) 7.6 7.6 6.8 6.8 6.8 6.8 6.0 6.0 6.3 6.8 6.8 6.8 7.2 6.7 (7.0) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
K 424 k 4.6 k 4.8 k 5.0 k 5.1 k 5.1 k 5.0 k 5.1 k 5.1 k 5.0 k 5.1 k 5.2 k <
5.7 5.8 5.9 6.2 6.2 6.4 6.2 6.0 5.7 5.7 6.4 6.6 6.6 6.6 6.8 6.4 6.4 6.4 6.6 6.6 6.6 6.8 6.4 6.4 6.4 6.6 6.6 6.6 6.6 6.2 6.4 6.4 6.4 6.7 7.2 5.7 5.8 5.0 6.4 6.4 6.4 6.7 7.2 5.3 5.6 5.7 5.6 5.7 5.8 5.6 5.7 5.8 5.6 5.7 5.8 5.6 5.7 5.8 5.6 5.7 5.8 5.6 5.7 5.8 5.6 5.7 5.8 5.6 5.7 5.8 5.6 5.7 5.8 5.7 5.8 5.6 5.7 5.8 5.7 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.7 5.8 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7
45 x 5.1 x 5.2 x 49 x 41 c x 5.1 x 5.0 x 5.0 x 5.0 x 5.4 x 57 C.4 C.4 C.4 C.4 C.4 C.7 7.2 5.3 5.6 5.7 5.6 5.7 5.8 5.6 5.7 5.8 5.6 5.0 5.1 5.6 5.3 5.7 5.9 C.2 5.8 5.8 5.8 5.0 5.1 5.6 5.3 5.7 5.9 C.2 5.8 5.8 5.8 5.0 5.1 5.6 5.3 5.7 5.9 C.2 5.8 5.7 5.0 5.1 5.6 5.3 5.7 5.9 C.1 5.8 5.7 5.1 5.4 5.9 5.8 C.0 6.1 5.8 5.9 C.1 (6.9) 5.2 5.7 5.8 6.0 5.8 6.0 5.8 5.9 C.1 (6.9) 5.4 5.4 6.8 6.0 6.1 5.7 5.8 5.9 C.0 6.6 5.5 5.7 6.8 6.9 6.9 6.0 6.0 5.8 5.9 C.0 6.0 5.8 5.9 5.6 5.6 5.8 5.6 5.8 5.0 5.0 5.8 5.9 5.9
5.7 6.4 6.4 6.6 6.4 6.4 6.4 6.7 7.2 5.3 5.6 5.7 5.6 5.8 5.6 5.7 5.8 5.6 5.0 5.1 5.6 5.3 5.7 5.9 6.2 5.8 5.8 5.4 5.4 5.4 5.8 6.0 5.8 6.1 5.8 5.7 5.6 5.7 5.8 6.0 6.1 5.7 5.8 5.9 6.4 (6.2) 6.1 6.1 6.4 6.3 6.4 6.4 6.7 (6.9) (6.3) 6.2 6.7 6.5 6.4 6.6 6.2 6.0 6.6 6.4 6.4 (6.8) (6.1) 6.0 5.9 6.0 5.8 5.9 5.6 5.6 5.8 5.6 5.8 6.0 5.8 5.9 5.7 5.8 5.6 5.8 5.8 5.9 6.0 5.9 5.8 5.9
50 51 5.6 5.3 5.7 5.9 6.2 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8
3.4 6.4 6.6 6.7 6.9 6.0 6.9 6.9 6.9 6.9 6.9 6.0 6
5.4 5.4 5.8 6.0 5.8 6.1 5.8 5.7 5.6 5.7 5.8 6.0 6.1 5.7 5.8 5.9 6.4 (6.2) 6.1 6.1 6.4 6.3 6.4 6.4 6.7 (6.9) (6.4) 6.2 6.7 6.8 6.4 6.6 6.6 6.6 6.4 6.4 6.8 6.0 6.0 6.4 6.5 6.6 5.6 5.6 5.6 5.6 5.6 5.6 5.9 5.9 5.6 5.6 5.6 5.6 5.6 5.6 5.9 5.9 5.6 5.6 5.6 5.6 5.6 5.6 5.9 5.9 5.6 5.6 5.6 5.6 5.6 5.6 5.9 5.9 5.7 5.6 5.6 5.6 5.6 5.6 5.6 5.6
5.6 5.7 5.8 6.0 6.1 5.7 5.8 5.9 6.4 (6.2) 6.1 6.1 6.4 6.3 6.4 6.4 6.7 (6.9) (6.3) 6.2 6.0 6.6 6.2 6.0 6.6 6.2 6.0 6.6 6.2 6.0 6.6 6.2 6.0 6.6 6.2 6.0 6.6 6.2 6.0 6.6 6.2 6.0 6.0 6.0 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6
(6.2) 6.1 6.2 6.7 6.5 6.4 6.6 6.2 6.0 6.6 6.4 6.4 6.5 6.4 6.5 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6
5.6 5.6 5.8 5.6 5.8 6.0 6.0 5.9 6.0 6.4 6.5 (7.2)
56 5.6 5.8 5.6 5.8 6.0 6.0 5.8 5.9
(1.0) 6.0 6.0 [64] 6.1
2 6.4 6.5 6.2 7.0 6.4 5.4 5.8
5.8 7.2 6.6 6.7 [6.5] 6.8 6.5 6.5 6
0 6.2 6.5 6.6 6.8 6.8 6.6 6.6 (6.5)
4 6.6 6.6 6.8 5.0 [6.6]8 (6.6) (6.7) 6
6.3 70 6.6 6.8 6.7 (8.4) 8.0 7.6
4 7.2 6.7 (80) 8.0 7.8 7.7 (7.2) (7.4) 6.
3 6.5 6.4 (6.9) (6.8) 9.
-
55 5.8 6.2 6.4 6.6 6.4 6.5 6.4 6.4 6.6 6.6

TABLE 37
IONOSPHERE DATA-3

	ED		2330	23/K	3.4	3.9	4.3	2.4 F	3.9	¥1.4	3.8	A CR	2.9 F	3.64	4.0	35	3.45	2.4K	3.27	3.5	30	39	(S. 3)	4.2)	4.3	4.2	4.6	3.9	48	44	5.1	4.8	5./			39
253	HICTED		2230		3.6	4.1	4.8	5.77	4.0	1.3.A	3.0 A	367	(32)	¥ 650	(%%)	36 F	3.7F	A(20)	3.7	3.6	4.1	4.2	3.6	4.8 F	4.5	4.4	4.7	4.1	4.9	4.7	5.4		5.5			17
Æ	Œ	A. F.	2130	15.67 x 13.47 k	3.6	4.3	50	1289	87	4.4	(u)	407	3.75	4.3K	(5.0)	_	4.0 F	C.A	4.2	00	4.8	3.6	4.6	5.15	4.8	2.9	5.0	6%	21	5.4	00	5.0	5.7			46
		Ą	2030	3.37K	4.4	4.8	5.6	3.57	5.5	5.5 X	3.7	8.7	49	5.3 4	5.4	43	4.6	3.44	4.7	45	6	5.3	-	5.5	2.8	5.5	5.6	6.0	0	6.4	4.9	0	0.0			24
	Records measured by:		1930	13.71K	5.3	6.6		깂	6.2	6.4)4	42	5.7	6.2	6.5 X	(89)	5.5	5.3	1.3K	-	0.0	(6.5)	(5.4)	(8.9)	9.9	9.9	5.9	5.2	0.9	5.8	8.9	20	9	4.9			6./
	ecords		1830	43 M	5.8	2.2	20	6.6	(99)	8.0)	5.0	5.7	6.7	500	(24)	5.7	5.7	7	5.6	10.0	(6.9)	6.5	6.6	0.9	1237	5.7	20	6.4	9.9	2.0)	000	00			9
	щ		1730	[47]K	6.0	6.9	(20)	(4.8)	20 (6.8	8./K	6.6	6.6	5.37	28 (5.5	5.8	1.	5.6	62	9	6.2	6.6	5.9	20 (5.9	9	6.6	9.0	6.6		-	2.6			9.9
	<u>ا</u> کا		1630	14.874	5.7	27	2.0 (80) (5	8.9	6.6	×6%	6.0	9.9	X84	30	5.7	_		5.9	5.7	6.6	3	-	2.0	(6.6)	9	(23)	6.5	4.9	0.670	24) (26) 6	(8.6)			17.9
	18 J		1530	1 w 2 14	6.3	2.0	20	12.4) (28	8.9	5.0 X	W.	4.9	5.0 A	9.9	5.7	5.8	4.7 K	0.9	5.00	6.5	6.6	U	0.0	0.0	20	8.9	6.5	6.6	6.6	\sim	7.4)	9.0			9.9
A-3	April	(Month)	1430	7.6x	6.	2.0	2.6)	6.5	26	24	5.14	6.2	6.6	5:/4	8.9	5.6	000	4.64		6.0	6.4	9.9	5.8	5.9	(9.9)	6.6	0.0	6.5	6.7	9.9	(8.2)	22 (6.5
E DATA	for		1330	45%	0.9	23	(26)	-	20.	(59)	5.0 ×	6.2	6.6	*7×	22	5.00	5.6	7		6,16	(6.2)	6.3	6.4	00.00	6.6 (4	6.4	24) 6	6.7	6.6 6	6.6)	7	6.8	21) (12			7.9
IONOSPHERE	2		1230	~ 42 K		73)	25 6	G.D	2.0	6.7 (5.0x	6.0	99	4.94	6.4	59	_		5.8	5.8	6.3	8.9	69	5.8	6.6	6.4	2.2	20 6	6.6	6.4 (7.0) 6.	6.9	\vdash			6.4
IONO	f° F2 in 16 1		1130	~4/6	5.6	2.0 (7.2	5.8	80	0.9	XC T	5.7	6.4	5,24	6.4	5.8	5.4 (441	5.7	5.8	6.3	6.6	6.6	5.6	20)	7	00.9	9	1	9	6.8	6.6		1		¥
	lues of		1030	3,9k L	5.6	2.0	£ 00	5.00	6.5	6.0	14.2K	5.7	5.9	5/4	5.0	5.6		4.6K	5.5	5.7	6.2	6.3	6.4	5.6	(20)	5.8 6	20) 6	6.2 6.	26	5	6.6	20	6.4 6			6.0 6.
	Haff Hourly values of		06 30	< [3.8] [8.6] ×	12.11	4.9	5.7	6	6.2	6.0	F	5.9	5.6	42x	500	5.0	45 5	7	\perp	7	6.3	5.8	(5.2)	5.7	0	54 5	5.8 (6.0	13	4	5	6	n	1		5.7
	Haif Be	Z	08 30	[4.3]C </td <td></td> <td>5.6 6</td> <td>5.5</td> <td>5.5 5</td> <td>5.87</td> <td>5.6</td> <td>454</td> <td>55 1</td> <td>5-9</td> <td>4.2.X</td> <td>5.0</td> <td>4.0</td> <td>10</td> <td></td> <td></td> <td>5.5 (5.</td> <td>21/6</td> <td>5.</td> <td>66 (5</td> <td>0.6</td> <td>6.0)</td> <td>1</td> <td>6</td> <td>2</td> <td>4.6.</td> <td>0</td> <td>6.0</td> <td>5.9 6.</td> <td>5</td> <td></td> <td>+</td> <td>6</td>		5.6 6	5.5	5.5 5	5.87	5.6	454	55 1	5-9	4.2.X	5.0	4.0	10			5.5 (5.	21/6	5.	66 (5	0.6	6.0)	1	6	2	4.6.	0	6.0	5.9 6.	5		+	6
sphere Station		MERIDIAN	0220	1407K [4	13.07 /	[5.5] 5	5.6 5	00	12/5	7	X	,0		53.6K 3	45		× 400 ×	KHOK 4	466	5.0	N	8.00	(6.2) 6	5.5	59 (6	17 4	54) 6.	9 5	7	53 6.	η	6	5	1		0 5
osphere		_	0630	OX IN	[36] [4	675 [5	2	9	12 [5.	15 5	2x	3	9	3.6 KIC	7			4.0 K	1.3	4.6	6 5		(5.2) (6	1	0	13	49 (5	9		6.0 6.	00	4 5	1		5 3
Iono	ards	75°	0530	[3.8]x 4.0	3 K	137 F. 6	3.0 5	3.0	3.7 F 14	2.9 4	2. 22 X	23 5 4	2.8 7	2.4 5	23 7 4.0	27 4	4	29 4		327	W.	1	3.8 (5	3.6 1	50.00	4	0	3.	8	3.9 5.	48.6	2 4.	(c)			3.2 4
	Standards	TIME: 75° W	06 40	3.1 K 3	O) K D	[1.7] B.3] B	2.7 3	U.		2.3	14 K 2		19 5	3	(16/K a	75		3	1.175	0	2.3 3.	200		2.2	19	5	26 3.	2.0 3.	0	2953		2 3	2.9 43	+	+	22
	0f			3/4	9)FC	[2.0]	2.96		7	ų.	7		\rightarrow	1			_	4	Y Y	7	2.7	30	2.5	_ (3.9) (2	3.1	0	m	3.1	3.4	7	3,6	5	1		23
D.C.	Buredu		0230	[3.3] K/7.5]4 [3.3]4	1.578 (0.9)E	[2.5] [J	3,3		U.	2.2 2.2	LX		20.76	2.3 20	3.4 K (22) K	3.15	22 1		441	6	02.9	33	20	L	(3.1) (2	6	4	3.2	4	00	5	N.0 B	5.7	1	+	00
ton,	l l		0130	31 KT	81% L	[39]° [2	3.5 3	3.4 3	[35]C 21	(2.8)	2.9 K 2.1		2.8 F	26 5	3.64		-	_		0.7 t 2.	(3.1		2.8		6	9	-	35) 3	m	42 3.	40 B.	4 4 4	30 0	+		8
Washington, D.C	National	1011	0030	40 [3	L 3/4 [1.8]K	3.2 5	r. 1	3.6	0.1	SF (9	Y	5.5	29 F a	-		-	3.0 5	3.3			3	3.5	3.8		3.0	+		0	3.6 3.	454	n	404	7	+	+	9
W	Nation	171118011	Day		2 2		T T	Ľ	0	7 (3	(v)	6	10	11 2	12 3.	13	14	15 3		17 2	18	5 61	20	21	22	23 4	24	25 4.	26 3	27 3	288	29 4	30 4	31	mig.	Median

ONOSPHERE DATA-4 TABLE

Ionosphere Station

Standards

of

National Bureau Washington, D.C.

(Inetitution)

April Hourly values of hFl in km for

(Month)

194 5

Records measured by: M R R

TABLE

Ionosphere Stat. r.

Washington, D.C.

Bureau Of Standards

National

(anstitut or,

IONOSPHERE DATA-5

decords negatived by: M.R.R.

194 U

Hourly values of FF in Fig for

23 25 21 20 19 F (E) (A.S.) 3.2 3.2 18 3.5 X 3.6 7 3.7 139 (3.7) 3.9 3.6 3.7 Çο Ĉ 13.7 (y) 30 4.0 30 50 4.1 3.6 36 3.9 4.0 3.6 17 40x K1478 1391K × 65 (40) (4.2) 13 4.3 4.2 4.3 4.0 40 ¥ 4.1 0%. 1.4 4.0 11 4.2 4.1 4.1 4.1 3,9 3.9 16 4.2 4.1 43 40 7. 43 4. 1 7 1 1 X 44 43 43 4.5 43 4.5 10 4.5 4.0 4.4 4.82 45 14 1/ April (Wonth, 4/K 42K 4/K 43 43 77 4.5 44 4.4 4.0 15 1.3 4.4 4.4 4.6 4.6 4.7 47 4.7 4.7 14 XX XX X 4.6 (4.5) 4.4 4.5 4.4 4.7 4.5 4.2 4.0 4.6 4.6 4.6 (47) 4.4 4.6 4.00 11 4.6 3.9 40 4.2 4.2 44 3.94 418 418 428 428 (46) (4.6) 4.4 4.4 4.7 F. 7 (44) (45) 46 4.33 4.5. 43 4.5 4.5 11 4.7 10 48 47 4.0 46 47 17 1.6 140x (44) [4.5]A (45) (4.4) (4.5) 41 (44) 45 4.64 4.3 40 40 43 43 4.5 4.5 4.5 4.5 4.6 4.6 4.2 4.4 4.6 11 4.5 4.6 42 44 44 100 4 Ħ 43 X 41 K 404 40K 13.374 (36)4 (38)4 3.9 K (4.6) 4.4 4.6 (39) 43 42 3.9 4.2 43 44 40 4.7 44 4.6 1 4.6 10 4.5 1.0 13 (43) 44 (4.1) 40 X S 4.82 45 10 (3.9) 42 3.9 40 (4.5) 4.3 (3.5) (4.0) 4.3 4.2 43 13 4.0 44 4.4 60 1 80 U 394 42 4.2 4.0 4.2 4.7 40 TIME: 75° W MERIDIAN 40 7 45 H (3.97° (32) (3.8) 36 00 (3.9) 3.9 3.7 107 3 03 3 ुं 3 - F 15 17. 16 10 25 23 77 25 26 27 30 ۷ 77 18 20 21 28 29 Dey 10 = d 60 6 9 7 7 7

3.7 3.2

11

4.4 4.3

4.5

4.0

4.5

42 44

4.0

3.7

Medien

3 Sinn

IONOSPHERE DATA-6 TABLE

Ichosphere Station

Standards

Of

Bureau D.C.

National

(Institution)

Washington,

April (Wonth) Hourly values of h'E in km

19.5

by: M.R. Records measured

07/

[120] 120

0/

120Jc

Sun Median

IONOSPHERE DATA-7 TABLE

Ionosphere Station

Standards

ó

National Bureau Washington, D.C.

(Institution)

1945 April (Month) Hourly values of E in MG for

Records measured by: M.R.R.R.

8 25 21 20 13 1.90 × 6:1 1.9 K 1.9 11 (2.0) (8.1) - 8 (1.8) 2.0 6:1 (6:1) 00. 6:1 (61) 1.7 6. (8/) 7 7.7 J Ð T T T T T 18 [2.5] 8 2.3 K [2.3]8 7.4× 2.3 K [2.8] (4.2) 7.4 2.5 4.4 7.4 4.4 24 (3.6) 2.0 25 7.5 in in Z,S 3.4 4 3.6 4.5 6.0 3 00 2.5 8 2.7 3.6 7.7 2.8 K 2.9 x 13.0x 13.0g [3.18 12.78 (30) 0.0 3.2 3.2 0.0 2.9 6.3 2.9 s. 30 3.2 3.0 30 30 00 2.0 4.0 0 2.0 ₩. O 0-2.9 3. 3. i 3.0 K 四個。 (3.2) (3.2) 3.1 K 3.1 K [3.3] (3.3) 3.2 (3.1) (3.2) 3.2 33 3.0 3.2 3.7 3.7 3.2 3.2 ы ы (3.3) 3.4 ы ы 2 3.1 3.1 3.4 3 2 3 B 00 ń (3.5]8 3.2 K 3.3 K [3.5] " 3.2 K (3.5]8 (3.2) (3.4) (33) (3.3) 3.2 (3.3) 3.4 3.4 (3.2) (3.2) ed es 3.2 3.3 34 3.4 (3.3) (3.4) (3.3) [3 2]4 (3.3) 33 is) 3 ħ Œ Ø 8 (3.2)K [3.5] 8 [3.4] [33] & (3.3)K (C) [3.3]6 8 Fr. E] [3.4]4 [3.5]8 (3.4) (3.3) (3.3) 3.4 3.4 (3.3) (3.3) (3.3) (35) 13 13 4 (3.5) C 35 Ø Œ 80 B B 8 8 3 (3.2)K [3.3]8 63.514 [3.5] 8 [3.5] 8 (33) Æ v [3.4]8 13.4BB (3.4) 3.2 3.4 (3.3) 3.4 . B (35) 3.4 3.3 (3.4) 3.3 3.3 3.4 00 ¢ 0 20 ω T 00 (3.1)K (3.3)K æ [3.3] V V (3.2) [3.2] [3.4]8 (3.3) 3.2 (3.4) (3.4) 3.3 (3.3) 3.7 3.4 32 3 ري زي 3.5 Ġ Ħ T 00 Ø 8 Ø ∢ 00 T K ₹ 3.3 K (30)K 3.2× 3.0 K (33) (3.3) 3.2 3 (3.5) (3.3) 3,7 3.2 3.5 3.2 (3.3) (3.4) 3.5 **6**) 3.4 33 2 ω C Ø Ø ¢ 8 B T Œ B [2.8]8 [3.2] 2.9 K 3.0 K (2.7) [2.9]4 2.7K 3.0K 5.9 3.0 0 (3.3) 6.0 (3.2) 32 3. 3.1 (3.2) 3,3 3.1 3.1 3.2 E) U U T 3./ 3 3. T ¢ P 8 2.7K [2.3] E [2.9] B. 719 (2.6)# X (3.8) [3.9" 2.9 12. Oc 2.7 3.50 (2.7) 2.7 2.7 2.9 37 4 2.0 (3.9) (2.9) 2.7 2.7 3 3.00 Sign 3 3 90 TIME: 75°W MERIDIAN [2.]k [2.3]c [2.1]4 [2.3] 8 2.3 K [2.2] 12.6° [25] c 23 1230 [2.5] 2. G. x (4.2) 7.4 7.4 6.4 6. 2.2 5.3 33 2.50 3 3 3.3 4 4 20 3 T × 8./ (2.3) (8:1) 1.7 # 0.3 e : [8.1] 2.0 00 -1 (1:3) 61 0, 1.7 #. 90 T T T ₹ T 0 ₫ 60 08 0 8 Median Printerior Barbara 60 13 15 17 19 4 98 98 17 3.6 30 7 BILE Day 9 9 7 7 7 79 7 20 3

DATA -8 42 IONOSPHERE TABLE

Ionosphere Station

Standards

O

Bureau

National

(Location)

(Institution)

Washington, D.C.

Hourly values of ES in the

April (Wonth) for

19#SI

Records measured by: M.R.R.R.

4.3/20 24/20 3.1/20 3.8/20 3.2/20 3.5/20 3.0/20 30/20 32/20 3.9/20 2.8/20 120 23 U U 2,120 34 120 2.3 24110 140 58 120 29 120 2.2 120 28/20 2.7/20 30/20 26/20 43/20 25/20 Ö 23 U 23 120 24 2.7/20 23/20 24/20 2.3 110 U U U 21 2.7/20 3.0/20 3.1 140 2.6/20 31,120 1.9,20 3. 160 29 120 3.2/20 30 20 20 23 20 J 20 J 4.5 /20 120 32/40 34/20 33/40 27/20 31/20 (34),20 40,20 31/20 41/20 29/20 34 110 29/20 30/30 27/40 3.0/20 4.2/20 120 120 04/ 6.2 04/ 31/20 31/30 23/30 20/40 29 160 (36),20 3.4130 2.5 140 30/80 29/10 23/20 24/20 150 140 U 19 U 2.8 180 2.4 160 3.4 ,20 2.8 2.9 31/20 25/20 18 2.9 160 2.3 140 2.1 2.0/10 30 120 22/40 160 30 140 (2.9)40 33 120 3/120 30 140 33/20 2.5/60 2.2/40 4.3 120 3.2 120 2.4 110 120 4.0/30 36/20 3.4/20 4.2,20 3.2 110 2.3 120 31 140 (30) 140 2.1 120 160 188 130 3.3 /20 34 6.1 0.4 32 110 27 150 150 140 140 3.0 120 17 3.2/40 3.2 4 28/60 16 3.3 32/40 36 110 3.6/40 3.44/20 4.5/20 34,20 150 3.4,40 34 /70 3.4 /60 36 110 42/20 34/40 36/20 34,20 3.4 /40 3.2,40 (3.5)/20 3.2/60 3.9/40 34/10 38 100 3.9 100 3.8 140 3.4,00 3.4,110 3.4,120 34 110 3.4 140 3.2 140 140 32/60 15 0 3.4 160 3.4/40 120 #1 3.4/60 3.4 4.3 34/20 34 140 34 140 34/20 3.4/20 4.0/20 4.2/30 13 011 40/20 3.6,20 39,20 15 U 0110# 3.4/60 3.7 /20 4.0/20 36/20 5.8 3.6 40 33/40 3.4,40 34,20 3.4/20 4.1 100 11 U 4.1 1.4 4.0/20 34,40 0110+ 5.2 110 110 3.2,20 3.4,20 3.5,20 041 120 31/20 31/20 33/20 2.9/40 3.0/40 3.1/20 3.5/20 3.8/20 31/20 3.2,20 (38),20 120 2 U 3.0,20 3.5 /10 4.9 2.9/20 3.2.110 3.3 **≯** 34/20 34/20 43/20 44/20 3.9/10 3.4/20 (29/20 33/30 33/20 34 110 120 39 120 2.9/30 3.1/20 3.2/20 3.2/20 011 140 35,20 36,20 U 8 3.4 30 /20 3.2 4.7/30 2.9 140 3.2.40 3.9 110 3.1/20 3.0 /20 31,120 3.1/20 30/40 TIME: 75° W MERIDIAN 80 U 25/20 29,20 31/203 3.4/20 5/20 4.0/20 3.0/20 2.4/60 4.7/20 30/20 27/20 24 160 3.3/20 3.1/20 32/20 32 140 30/20 41/20 29/20 32/20 (50)20 31/20 23/20 3/110 2.3,20 29,30 3.0/20 34/20 120 U Ú 07 20/40 3.1 (3.1) 21/20 2.9/20 3.4/20 3 3.1 31/20 3,120 1.8 140 33/20 36/20 2.8/30 2.9 ,20 35,20 29,20 (2.7),20 31/20 2.8/20 4.2/20 30/20 29/20 2.3/20 120 90 8204/50 2.2,20 3 30,20 120 3.4/40 29/20 120 140 34 120 U 2.2/20 2.3/40 3.1 23/20 28/20 2.5 /20 3.0 /20 2.9 120 2.9 /20 2.3/20 70 04/ 1/ 041.01 28/00 24 120 120 24 120 36 110 29 120 34 120 120 120 29 120 25 120 27 110 30120 34/20 30/20 44 120 41 120 34 120 160 120 120 30,2028,20 120 03 0 6 45 120 120 120 140 011 120 (2.3) 120 0// 140 120 25 120 3.5 140 26 0 3. 3.6 0 3.9 120. 120 0/ 120 J 0,1 120 21 0 8 120 0/ 120 140 120 120 011 160 U 8 0 + 77 22 15 20 27 2 10 16 23 26 11 13 14 19 2 7 7 9 51 22 28 Day

* Less than median fe, or less than lower frequency limit of apparatus.

*

*

*

*

00

4.4

8

0

ġ

*

34

*

*

*

(A)

Ц

ġ

J.

3.0

5.9

*

*

ó

0

*

*

Median

TABLE

Ionosphere Station

Standards

9

Washington, D.C. National Bureau

(Loostion)

IONOSPHERE DATA-9

April Sourly values of F2-MISOOfor

Records measured by; M.R.R.

1945

(0.7) 0 0 1.9 K 194 (20) 0 0 6. 0 000 (0.0) 0 0 0 0 (6:1) 6. 6.0 00 0: 1.9 8 (2.0)F 2.0 K 0 0 N u 0 (0.0) 0.00 2.0 (0.0) 50 6. 0 61 6 21 2 2 (0.0) (0.0) 8.0 (2.0) 70 2.0 30 0 0.0 3 9 7 2.0 0 0 0 S 7 A 2.0 K 2.1 K 33 (7.7)2.2 13 13 7.7 7 7 2,2 13 2.1 K (22) 200 3.7 (2.3) 2.0 7 2.2 3 2.2 0. 2.1 7. 3 1.9 K 2.0 K 20x 2,2 (2.3) 30 9 30 (2.E) 20 (2.2) (2.0) 2.2 3 23 ~ 2.1 J 7 3 2. 2. 7 17 7 2.0 K 19 * 20 23 2.0 7.7 (0.0) 20 20 7.7 ر 0 9 2,0 4 n n 7.7 0.0 7.7 16 7 / 8 X 1. 6 K 1.9× 2.0 0 2.0 7.7 80 2.0 (0.0) 6. S. 0 7 7 7 6: 6.1 15 7 2. マ 7.6 3.1 \otimes (0.0) (2.2) 30 9 3 3 7.7 7. 7 6. 0 in 0,0 4.4 (61) 0 7 1.8 7.7 و -7 73 U 3 7. ń (1.5) 1.8 K (2.7) (2,2) 2.0 (2.1) 2.0 3 2.2 2.2 in 3 ci ci 2 7. 7. っって 2. 7. 13 0. 18 K P 20 0 0 (2.2) 2.0 (2.2) 20 3 0 2.0 3 00 0 30 7.7 5 ~ 7 200 B , C. 2.0 0 5.0 2.0 2.0 2.0 7 7.0 30 4 22 11 20 6 0 2.2 20.0 7 S Ħ 1.8 K 1.5× (2.3) (0.0) (2.0) 2.0 7.7 20 20 6.1 7 (2.3) 1.9 3 10 9 3 G 1.5 K 2. 0 30 (0.0) 20 7 0 6 0 7. 2.0 8 7 20.8 7 2.4 0 7 2.3 23 7 7. なび b 9. 61 7 90 i Z TIME: 75° W MERIDIAN (2.3) 0.0 (2.2) 234 2.5 83 ~ 0 (2.2) 30 (61) 33 3 2.2 3 07 3 O 3 ά スース (7.7) 2.2 23 25.5 7 2.4 6 6 3 is 3 30 3 8 O ή (2.1)A (0.0) (00) 0 (2.0) 0.8 (2,2) 20 (2.2) ٥ 0.5 61 20 3 0 23 05 γį ή ή N (1.9) R (20) (20) [(19) (19) 2.0. 2.0 0 (00) (2.1) (2.0) (77) 8.0 8 (2.0) 20 9 1.9 C U à 0 す (1.9) E 20 F (0.0) 1.9F 1.8 K (2.2) E (2.1) F (2.0) (0.0) 0.0) 207 (4.2) 0.0 0 2.0 6.7 1.9 Ø. 6.1 61 6.0 6.1 0 0 6. 9 30 6 O (1.9)E C. 17 (2.0) 195 0 8 0 (6.7) (61) (61) 6.1 000 3 9 9 08 2.0 F 1.8K (1.9) 18F (19) × ا 20 F (0.0) 20 (61) 6.1 6.1 6.1 0 3.0 0 9 0 6:1 6.1 7 30 30 00. 0. 0 (2.0) 1 (0.7) 18 K (1.9)? 1819 (8.1)F (61) (8. (1.9) 6. 20 0.0 20.0 9 (Institution) 1.91 6.1 6.1 61 6. 6. 2.0 6.1 6. 6. V 0: 6.1 6. 8 Medien 2 2 Day 2

Ionosphere Station

Standards

Of

Bureau

National

D.C.

Washington,

TABLE 44

145 April (Month) Hourly values of F2-M3000for_

measured by: M.R.R. Records

(3.8) 200 308 29 600 30 (3.0) 3.0 400 2.7 28 50 300 2.7 3 Š 300 5.5 30 マダ 100 X (2.9)8 (2.8) F (2.9)F (3 1) (3.1) i O (2.9) (30) 200 0 5.0 00 3.0 80 30 00 2.8 2.0 7 ς οο 8 4 40 8 4 7 U 22 (3.0) R 30 (3.0) 5.0 (6 7) 2.9 2.4 5.0 (3) 9 2.9 9 3.2 30 7.7 8 30 2.9 4 5 32 3.0 9 3 3 3 Ü 3. U U 21 2.9 K 3.1× 3. (0.0) (3.0) 3.2 0.0 (6.8) 3.0 3.2 9 2.9 2.9 ы 0 33 9 8 30 9 0.0 3 3.1 9 0 30 U 3. 3.1 80 U K Ý 29 K (3.3)K 3 - x (3.0) (3.3) 3.1 3.0 (3.1) 32 3.2 (3.4) 32 0.0 3.3 32 90 00 3.2 32 33 3. 32 3.5 3. 9 3.1 3 19 U 2 8 X 3./ × (3.1)K 3 / (32) (32) 3.0 32 32 3.2 (3.2) 3 3.2 Ч (3.7) 3 / 2.9 3.0 3.4 3.2 33 (3.4) 3 33 ر س 3./ 3./ 18 3 'n $^{\circ}$ ń 3.0 x (3.0) (3.4) 7.85 0 (34) 32 3.2 3.2 0.0 3.2 3. 3 3.1 3. 2.9 3.1 33 37 3.2 3.2 (32) (3:1) 3.1 *G* رج ري 3.1 5.9 رن ا 17 U ń 29K X & X 3./ K (30) 30 32 3.2 30 3.1 0.0 32 32 9 3 3 30 3 Ч 3.1 33 3.0 **w** 0 3.1 3. 3 \ ښ 3 U 16 U a Ŋ 3 29x (3.0) 2 9 x 32 0 0 3.8 3.0 3.2 32 29 00 9 3.2 3 2.9 3.2 3 9 30 50 3.4 3.1 3 3. 3. \ ا <u>_</u> ق 3 15 B Ŋ N (8.8) (2 5)K 0 2.8 (3.2) Co 3.5 3.7 9 000 32 32 3.2 (30) 3.2 3.1 7 3.00 3 -3.2 9 3. 2 3/ 3. ∄ U (n) m m 3 × 1× (3.2) 4 3.1 (3.5) 3 0 3.7 32 (35) S, Oo 0.0 3.2 0 32 3.2 3.7 (3) (22) 3.1 8 3 / 3 8 9 % 3/ 3 r.) W U 3 W) 7 2.7k X 00. (3.2) 2.9 (3.2) 0.0 3.1 34 3.2 90 0 0 9 0 30 0.0 9. 9 30 0 0.0 0 (3.1) 2 3 32 37 r) 12 b b 9 m 4 (2 C) X ص 0 3.2 3,7 32 30 3.5 3.7 30 3.2 0 00 9 5 00 (3.2) 2 32 32 3.2 00 3.0 9 3.2 3. 3 3. 29 3 H 0 Œ 27x 32 (33) (3.0) 5 (3.0) 2 (3.3) 30 (3.5) 4 32 0 3 30 7 3 70 3 3 3 3.7 3 27 9 3 3 3. 0,0 P 2 t 2000 2.9x 0 (00) 3 3 30 2.9 9 3. w 0 30 32 3.2 ω 0 30 (r) 3.3 30 32 J 8 3 3 3 3. 33 3 U J J 8 Ŋ m 29x 2.9x 34 32 (30) 3.7 3 32 4 3 3 3.2 32 ζ (ς 3 / 3 32 32 N 3 *E* 30 3 / 3 3 9 U U 0 90 U b m W MERIDIAN (32) 3 (2.8)k (2.7) (33) (3.3) 3 3 34 2 3.2 3 -0.0 80 3.4 30 32 9 3 34 3 8 32 3 U V 07 U U Ø O 3/4 328 (34) 3.2 3/4 3 34 3/ 34 3 32 (n) 3 32 3 32 3.7 3 2 3 3 9 32 ξ 6 3 3. 90 U 0 0 750 (32)F (3 /)F (2.9)F 30 2.9F 3.0 (29)F (60) 30) 30 0 3. (3.2) 50 (31) (2.7) (6 x) 0.0 (28) 200 3.1 9 3.0 3 3 3 9 U 9 U U 3 TIME (3.2)F 31F (28) (J. 2) T (28)F 30 30 (31) (30) 300 38 30 3.1 8 30 30 30 0.0 0 3.2 30 00 3.00 3 3/ 30 2 U U U ま Ý α (2.9)E (3.2) F (3 /) K 30 5 (60) (30) (68) 8 2 6 30 € (2.8) 4 2.9 33 3.0 (33) 8 (30) 29 8 30 00 29 00 3 8 00 U U U 03 9 (2.7)F 29F 2 gr 295 (31)F (29)F (2.8)° (28)F 629 27 (2.8) 00 (2.7) 30 27 8.9 8 2.9 27 30 30 0 3. N 3 0 U U U Ь 4 4 2.9× (29)F (2.9) 8 (38)F (30) 28 (31) 29 5.5 0 00 'Y 50 8 5 0 30 9 ⟨V 5 0 300 2 30 S o V 8 U 0 U 0 \bigcirc N (2.9)E 1(8 E)F (7 7) (30) (82) 30 300 00 80 39 (Institution) (28) 2 (23) 2.7 8 29 8 00 00 8 2 50 00 29 30 8 8 J U 8 Med1an 26 27 25 2 2 2 17 77 15 16 7 108 2 21 22 23 쿥 28 Day 7

TABLE 45

Washington, D.C.
(Location)
National Bureau Of
(Institution)

TE			2	
RESTAICTE,			22	CK
«	œ.	A. F.	2.1	x
	2	∢	2,	\ \ \ \ \
	decorns the Trans. M. R. R.		19	K C
	decorre		18	×
			17	×
t	ارً		16	Z U
	April 19# 3		15	2.7 K
IONOSPHERE DAJA - II	Apr	(Mont	1/4	127)K
ก์ AU	for		13	(2.4)K
SPHE	3500,		13	× 5
20	F2-M		11	Gr
	Hourly values of F2-M3500for		10	S,
	Hourly 1		8	S
		NAI	90	ر ر
Tonosphere Stat:	1	IERID	20	يد ن
Conosphe		№	90	ر ان
or Shandards 4C	2	TIME:75°W MERIDIAN	04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 2 21 22	2 C C C C C C C C C
Cton	2	F	70	CA
7	5			×

					Ξ	I IME (D		אאוטואטו	1															
Day	00	0.1	02	03		- 1		- 4	- 1	ŀ	91	11	12	13	77.	15	16	Ę	18	- 1		- 1	25	23
14	3.2	C K					× ن	× ر)	ر ک	ر ک	ر ب	<u>*</u> ڻ	, x	(2.4)K	(2.7)K	2.7 x	Ž U	× U	× د)	۶ ز)	ر ا	x	V	ť
2	بر ور	× C)	S S	()	C	C)	C	C	J	J	3.2	A.	3.1	3.1	(3.2)	8.3	3.3	3.3	3.4	3.3	3.1	3.1	30	3.0
1	U	c)	S	U	J	J	C	J	3.5	J	3.3	3.4 ((3.3)	3.5	3.4	34	3.4	3.5	3.3	3.3	3.3	3.4	3.0	3.1
at	3.0	3.1	(3.1)	(3.1)F	3.3 F	(3.4)F		3.5	3.6	(32)	3.2	3.3	3.1	3.4	(3.4)	3.3	J	3.3	3.3	3.2	3.1	3.1	30	3.2
u	3.	3.2	3.1	5.	Н	3.1		В	3.4	3.2	5.3	3.4	3.3	3.0	3.1	(3.1)	(3.2)	(3.3)	3,3	J	υ	J	ب ل	J
v	(3.0)	U	()	(3.2)	3 F	(30)	3.6	IJ	U	3.2	(3.2)	3.4	3.6	(3.3)	3.4	3.3	3.4	3.5	3.3	33	3.3	(32)	3.0	2.9
7	2.9	(3.0)	3.4F	3.2F		(3.3)F	32	3.5	3.5	34	3.3	3.2	3.4	3.3	3.4	3.4	3.3	(3.6)	(3.3)*	(3.5)K	3.3 K	3.4K	3.0 K	304
1 100	30K	3.1 r	(2.9)E	3.1/	30/5	(2.9)£	3.3 K	(3.0)K	3.1 K	3.1 K	٠ ا	2.7K	2.9 K	3.0 K	3.0 K	3.1 K	3.3 ^k	33 K	33	3.2	$(3.1)^{7}$	(3.1)F	(3.1)	(3.0)
0	(3.9)	3.0 F	3	(3.1) F	(3.0)F	(3.3)F	(3.6)	34	3.4	3.5	5	3.4	3.2	3.2	3.2	3.2	3.3	3.3	8.0	3.5	(3.2)	(3.2)	(3.1)F	(3.0)F
10	(3.1)	(3.1)	3.1 F	3.1 F	(3.2)	(3.1)	3.5	3.5	3.5	3.4	3.3	3.2	3.2	3.4	3.3	3.4	3.5	3.4	3.5	3.4	3.4	3.2	(3.1)	(3-1)9
1	(30)	3.0 F	(3.0)	3:1 F	(3.2)	(3.1)F	3.4K	(3.1)K	S. K	2.8 K	2.5 K	2.8 K	3.0K	9 K	2.7K	3.1 K	3.0 K	3.0 K	3.1 K	3.1 K	33 K	LX	3.1 K	3.0 K
2	V	3.04	2.9 K	(3.4) F	(3.1)K	(3.1)F	3.2	3.3		3.2		3.4	3.2	3.3	3.3	3.1	3.2	3.2	3.2	(8.3)	3.2	3.3	(3.2)	3.0)
	(32)	3.1)F	(3.1)	(3.2)F	(32)A	(32)	3.3		3.3	3.1	3.0	3.2	3.2	3.4	3.3	3.2	3.2	3.3	3.1	3.2	(3.1)		2.9	(31) F
	(3.0) (3.2)	2.9F	3.0 F	(3.0)	(3.1)	-	(3.4)	2.7	3.0	/	3.0	3.2	3.3	3.3	3.1	32	5.3	3,3	3.3	3	3.1	3.0	3.2.8
	3.0 F	32		3.1	(3.2)	(3.3)	3.3 K	3.5 K	3.1 K	2.5 K	2.9K	(S.S)*	x G	2.8K	3.0 K	3.0K	3.1 K	3.18	3.34	3.3 K	3.1 K	3.2K	(3.0)/2	3.0 F
	(31)	3.0)F	(3.1) F	(3.3)E	4 50	318	3.4	3.6	3	3.3	3.3	3.2	3.2	3.2	U	3.2	3.3	3.4	3.4	3.4	3.2	3.1	3.2	32 7
1.7	30F	3.2F	(35)F	(3.1) F	(3.3)	(3.4)F	3.5	(3.5)	3.3	3.1	3.4	3.2	3.2	3.2	3.3	3.2	3.4	w. W.	3.4	3.5	3.4	(3.3)	(3.3) F	3
18	31	3.1	3.1F	3.2F	3.2	3.2	3.4	3.5	3.4	32	(3.5)	3.3	3.3	3.4	3.2	3.4	3.4	3.4	(3.4)	34	H	31	3.1	2.9
61	30		3.0	3.1	3.3	3.2	3.4	3.1	3.3	3.3		3.0		3.4	3.3	3.3	3.2	3.2	3.2	34	3.1	3.1	3.0	2.9
02	30	1.5	(6.2)		3.1	3.0	3.6	(3.8)		3.5	3.3	3.1 ((3.4) ((3.4)	3.5	3.2	3.3		3.3	(3.2)	(3.3)	3.3	3.2	3.0
21	3.1 F		3.1	\vdash	3.1	3.0	3.4	3.4	3.3	3.5	3.5	3.4	3.2	3.3	3.3	3.3	3.2	3.4	3.4	3.3	3.2	3.1	(3.3)	(3.2)
25	(3.1)	(3.3)	(33)	4)5	3.2F	3.5	3.4	3,5		3.3	(3.5)	(3.4)	7	J	3.4	3.2	3.3	3.5	3.6 ((3.6)	3.3	3.2	3.1	3.0
23	3.0	30		3.1	3.3	3.3	3.3	3.1	3.4	3.2	3.4	7	3.1	3.4	(3.5)	3.2	3.4	3.4	3.4	3.2	3.2	3.1	3.7	3.0
24	3.0	3.1	3.0	3.2	3.4	3.3	3.5	3.6	(3.2)	3.3	3.2	3.4 ((3.4)	3.4	3.4	3.3	3.4	3.4	3.5	(3.5)	3.2	3.1	3.1	3.1
25	3.1	2	7	(3.5)	B	3.0	3.2	3.2	3.3	3.2	(3.3)	3.2	3.2	3,5	3.3	B	3.4	3.4	3.3	3.4	3.2	3.4	3.2	3.2
25	3.1	3.2	30	3.1	3.0	3.3	3.4	3.4	3.4	3.4	3.3	3.1	3.2	3.5	3.4	5.3	3.4	5,73	3.4	3.4	3.3	3.	3.1	30
27	3.0	3.1	3.2	3.3	3.2	3.2	3.3	3.5	3.4	3.2	3.3	3.5	3.5	3.5	3.3	3.3	B	(3.6)	(3.6)	3.7	3.5	3.2	3.1	J. J.
28	3.5	30	3.0	1.5	3.3		3.4	U	J	3.4	2.9	3.2	3.5	3.4	3.4	(3.0)	3.3	3.1	3.3	(3.3)	3.2	3.2	3.0	3.1
58	3.1	3.1	3.1	32	3.2	3.3	3.3	3.4	3.4	3.4	3.2	3.3	3.4 ((3.3)	(3.0)	3.4	3.2	3.8	(3.4)	3.4	3.2	3.2	3.0	3.0
3.0	3.0	30	3.1	3,1	3.0		3.4	3.2	3.0	3.1	3.2	3.4	3.4	(3.4)	3.2	3/	3.2	(3.3)	9. 9.	3.3	3.1	U	6.8	43
13																								5
976	Ì								- 1		· i	+	1		- 1			- 1	- 1		- 1			and organized
Median	3.0	3.1	3.1	3.1	3.2	3.2	3.4	3.4	3.3	3.2	W.W	32	3.2	33	3.3	3.2	33	3.3	W.W	3.3	3.2	2	3	3.0

TABLE 46 IONOSPHERE DATA-12

Ionosphere Station

Standards

Ó

Bureau

National

Washington, D.C

19 3 April (Wonth) Hourly values of FI-M3000 for

Records measured by: M.R.R A.F.

23 25 21 20 19 X 6 8 (3.7) (5.5) 3.7 3.6 3.7 F 100 S. J. S. m) 3.7 3.5 (3, 5) 3.6 19.4 3.5 3.5 (3:6) (n) 35 (3.7) 3.7 3 6 3 3.5 3,7 3 17 J \mathcal{Q} W £ 50.83 J. 5. X 3.9 3.5 (a, c) 3 3 3.5 3.0 5 6 n (O M) b m 3 3 r) 3.8 3.5 (3.8) la mi (3) 3.3 (८.५) 7.5 My X 6 m 3 Ò 16 (A) 3.4 3.5x 3.6 35 3.6 (g) 3.4 (a) m 30 3.5 3.6 (A) 3.5 3.5 3 53 3.8 3.0 3,5 3 3.6 3 153 7.8 5.7 3 15 3 3.7 Q 13.75 364 3 3.6 3 3 (A) 3 7.19 3.6 (0 m 00 mj ξ0 (ή) 3.7 3.6 (1) 3.5 3.7 J M 3 J. (A) 3.4 3.4 3,5 3.6 3.7 3 34 3.4 J (3.5) X S. E. 30 8 XC.83 (3.8) 3,6 (3.6) (y) 3 5.7 5 3.7 3 7.5 S S 3.4 9 5.5 *E* (C) 3 3.2 35 3 3 3 3 3.5 3 3.4 13 3.74 (3.8) 3.75 TA S (3.6) (3.5) 3 40,3 (m) ly. 3 10 m 69 3.6 3 (3.8) 5 (A) (n) 9 3 3.6 nj 3 (y) 3.6 (j) 3.6 7 12 37 37)# (3.3) (3,6) (3.6) (3.8) 3.9K 3.6) (35) 3 35 5 3 3 00 (1) 3.5 37 3.6 3.9 3.5 3.6 Q Nj 5.7 3.6 (0) mj 3.6 w 11 T 3.6 ACE. *OK (36) 37 (3.5) (3.5) 3 (3.8) 3.7 6 w) ∞ mj 30 (3) 5.7 (4.E) 10 m 53 3.7 00 00 mj 3 3.7 w) Oo 35 Q mj 3.6 35 3 10 00 M FC M XC.S. (8.8) 3.6 3.5 (7) 0a mj 3.7 10.00 3.6 3.7 3.6 3 3.6 3.7 3.6 13.7 5 35 3.6 3.4 3.6 30 3 3.6 3.6 3.6 U 8 U J 3.4× (b) (T X) (3.7) 63 3.7 (A) (34) lo m 3.5 (3.4) 3 3 3.3 3.5 5 3 6 ξο (ή 3 13.4 3 90 O TIME: 75°W MERIDIAN (3.8) 3.5% (3.2) 3.6 (3.7) 3.6) 5 3 9 8) 3 3.6 07 in m (C X X 90 60 ₹ 03 05 10 (Institution) 8 Median 15_ 7 9 16 7 5 S 2 23 12 26 27 28 2 2 2 2 = 7 7 77 7 21 73 Day

TABLE

Ionosphere Station

Standards

ð

National Bureau Washington, D.C.

IONOSPHERE DATA-13

Records measured by: M.R.R.

19#57

Hourly values of E - M1500 for

23 25 21 S 13 3.94 x 2 (41)H (33) (3.8) (0%) (3.9) (3.9) 4.0 (O) 4.0 (0%) 30 6.5 40 43 6.6 1 7:1 I U 8 18 Ø D H Ø A 40x 4.0X (6%) 4.0 (4.2) 6.0 4.0) 40 40 4.0 3.7 0.6 40 39 00 10 4.0 17 30 60 ω) 00 3 4.1 P 17 I Q X0X NOX. (3.9) 30) 10 X (s) 40 4.0 (1.4) 0% 30 6.0 4.0 3.9 40 0 1.7 1.1 40 14 16 I 3.9K (40) 4.03 (x,2) (4.0) 40 4.0 3.00 (4.0) (4/) 4.0 (21.0) 00 mj 40 3.9 40 00 10 00 40 6.8 40 15 Q I 00 April (Wonth) (3.8) (4.0)X (0.6) (%) (3.9) (44) (50) (4:0) 4.0 (3.9) (4.1) 4 2 (4.0) 40 (J) 600 4.1 (40) (04) (68 3.9 (17) 00 ŧ 4.0 Ø Ø 0 0 Ò D 7 (40) (X U (4,0)x DX 39) (3.9) (1/4) 107 00 m (h) 40 (40) 4.0 (20) Þ 0 A 13 Ø Q 3 U d t 0 D AK Z X (4.0) 4.0 (1/4) 4.0 10.1 10) (3.9) * 4.0 8.9 75 Q 9 A n \mathcal{D} 3 Q A 3 (40) (42) (4.0) 100 4.0 (40) (88) 4.0 40 1.1 7 1 7 11 0 Ø ϕ Q 00 D B Ø A F I a (3.9) 40.4 4.0 4.0 (2%) 0 (4.0) 1 3.9 00 40 (41) (0%) B 20 00 D Q ω Q A 7 3.94 20.00 40 1/8 3.00 (4.1) (3.8) (4.0) (41) (39) 4.0 4.0 4.0 3 4.0 (4.1) (42) (41) 4.0 4.1 В Œ 7 C Ø. 8 U a T a-7 40× 3.9K 3.8)4 ×(0,4) (3.6) 40 (38) (40) (4.2) (0.75) 4.0 (h) 4.2 1.1 (4.1) 7. 40 6.5 3.9 1 1 TIME: 75° W MERIDIAN 98 C Œ U U 39 X (3.8) 3.9 K × U (3.8) (3.8) (0%) (77) 40 XO 3.9 3.6 40 3.9 18 40 0 D I ala A Ø B C 1 (3.9) 3.94 (40) 368) (3.6) 40 (1:4) (39) (4.0) 3.7 4.0 00 0 90 Œ T U A a a 05 ₹ 6 05 5 (Institution) 8 Median 20 SIE Day 6 9 2 7 큐 15 97 7 2 9 ន 21 22 23 콗 26 27 28 29

Table 48

Ionospheric Storwiness, April, 1945

Day	Ionospher 00-12 GCT	ic Character* 12-24 GCT	Principa Beginnir GCT	el Storms ag End GCT	Magnetic 00-12 GC	Characters** T 12-24 GCT
April 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	4 4 2 1 3 2 4 3 2 3 4 1 2 2 2 2 2 2 2 2 2 0 1 1 1 1 1 1 1 1 1	613303242141235222112112101333	2300	1100	432113331134333211231123201012	421233220143232111221232111122

^{*}Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D.C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

#Dashes indicate continuance of disturbance.

^{**}Average for 12 hours of American magnetic K-figure, determined by a number of observatories, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

Table 49. Sudden Ionosphere Disturbances Observed at Washington, D.C.

	GCT		Locations of	Relative	Other	
Day	Beginning	End transmitters		intensity at mini- mum*	phenomena	
April						
25	1303	1315	England	0.1		
25	1948	2015	Ohio, D.C., England, Mexico, Brazil, Chile	0.0	Terr.mag.pulso** 1949-1954	
25	2224	2250	Ohio, D.C., New York, Mexico, Hawaii	0.05	Terr.mag.pulse** 2225-2228	
26	1227	1245	Ohio, D.C., New York, England, Brazil	0.2	Terr.mag.pulse**	
26	1909	1935	Onio, D.C., England, Mexico, Brazil, Chile, Hawaii	0.05	Terr.mag.pulse** 1908-1919	
27	1823	1845	Ohio, D.C., England, Mexico, Chile, Hawaii	0.05	Terr.mag.pulse**	
27	2051	2140	Ohio, D.C., England, Mexico, Chile, Hawaii	0.0	Terr.mag.pulse** 2049-2054	
28	1200	1240	Ohio, D.C., New York, England, Brazil	0.05		
28	2044	2110	Ohio, D.C., New York, Mexico, Brazil, Chile, Hawaii	0.1	Terr.umg.pulse** 2041-2100	
28	2143	2225	Ohio, D.C., New York, Mexico, Chile, Hawaii	\$0.0	Terr.mag.pulse** 2142-2209	
29	1427	1450	Ohio, D.C., England, Mexico	0.1		

^{*}Ratio of received field intensity during SID to average field intensity before and after, for station WSXAL, 6080 kilocycles, 600 kilometers distant, for all SID except first, which is for station GLH, 13525 kilocycles, 5340 kilometers distant.

**As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

Daily:

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic and radio propagation data from various places.

Radio disturbance warnings.

Semiweekly:

IRPL-J. Radio Propagation Forecast.

Semimonthly:

IRPL-Ja. Semimonthly Frequency Revision Factors for IRPL Basic Radio
Propagation Prediction Reports. (Issued with IRPL-J series
from 4 to 7 days in advance).

Monthly:

IRPL-D. Basic Radio Propagation Predictions - Three months in advance.

(War Dept. TB 11-499-, Monthly supplements to TM 11-499;

Navy Dept. DNC-13-1 (), Monthly supplements to DNC-13-1).

IRPL-F. Ionospheric Data.

Bimonthly:

IRPL-G. Correlation of D.F. Errors with Ionospheric Conditions.

Quarterly:

IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.*

IRPL-B. Recommended Frequency Bands for Submarines in the Pacific.

IRPL-H. Frequency Guide for Operating Personnel.*

IRPL-M. Frequency Guide for Merchant Ships.

Special Reports, etc.:

IRPL Radio Propagation Handbook, Part 1. (War Dept. TM 11-499; Navy Dept. DNC-13-1).

IRPL-Cl through C61. Reports and Papers of the International Radio Propagation Conference, 17 April to 5 May 1944.

IRPL-R. Unscheduled reports:

Rl. Maximum Usable Frequency Graph Paper

R2.and R3. Obsolete.

R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.

R5. Criteria for Ionospheric Storminess.

R6. Experimental Studies of ionospheric propagation as applied to a navigation system.

R7. Further studies of ionospheric propagation as applied to a navigation system.

R8. The Prediction of Usable Frequencies Over a Path of Short or Medium Length, Including the Effects of Es.

R9. An Automatic Instantaneous Indicator of Skip Distance and MUF.

R10. A method for study of the ionosphere.

IRPL-T. Reports on Tropospheric Propagation.

T1. Radar Operation and Weather. (Superseded by JANP 101).

T2. Radar coverage and weather. (Superseded by JANP 102).

*Now published only by U.S. Navy in NON-REGISTERED PUBLICATIONS MEMORANDA (NRPM)

