Réactions de précipitation

Au programme

Savoirs

- \diamond Constante de l'équation de dissolution, produit de solubilité K_s
- ♦ Solubilité et condition de précipitation, domaine d'existence, facteurs influençant la solubilité.

Savoir-faire

- ♦ Déterminer la valeur de la constante d'équilibre pour une équation de réaction, combinaison linéaire d'équations dont les constantes thermodynamiques sont connues.
- ♦ Déterminer la composition chimique du système dans l'état final, en distinguant les cas d'équilibre chimique et de transformation totale, pour une transformation modélisée par une réaction chimique unique.
- ♦ Prévoir l'état de saturation ou de non saturation d'une solution.
- ♦ Utiliser les diagrammes de prédominance ou d'existence pour prévoir les espèces incompatibles ou la nature des espèces majoritaires.
- ♦ Exploiter les courbes d'évolution de la solubilité d'un solide en fonction d'une variable.
- ♦ Illustrer un procédé de retraitement, de recyclage, de séparation en solution aqueuse.

Sommaire

Ι	Équilibre d'un solide en solution	3
	I/A Dissolution et précipitation	3
	I/B Équilibre	4
	I/C Condition d'existence d'un précipité $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	5
II	Facteurs influençant la solubilité	7
	II/A Température	7
	II/B Effet d'ions communs	7
	II/C Influence du pH	8

	Liste des définitions Définition 4.1 : Solubilité
i I	
	Liste des rappels Rappel 4.1 : Dissolution
	Liste des propriétés Propriété 4.1 : Condition d'existence d'un précipité
	Liste des applications Application 4.1 : Calcul de solubilité
	Liste des remarques Remarque 4.1 : Solides usuels
	Liste des exemples Exemple 4.1 : Solubilités usuelles
	Liste des points importants Important 4.1 : Méthode pour calculer une solubilité
	Liste des erreurs communes Attention 4.1 : Produit de solubilité

I | Équilibre d'un solide en solution

I/A Dissolution et précipitation

П

Rappel 4.1: Dissolution

Une espèce solide $X_{(s)}$ est capable d'être dissoute, c'est-à-dire passer en solution 1 :

$$A_p B_{q(s)} = p A_{(aq)}^+ + q B_{(aq)}^-$$

Remarque 4.1 : Solides usuels

- ♦ Le plus souvent, le solide se décompose en ions, et ce sont ces derniers qui seront solvatés.
- ♦ Chimiquement, la dissolution consiste en la séparation des molécules de X par le solvant, grâce aux interactions moléculaires :

Définition 4.1 : Solubilité

Un solide ne pourra souvent pas se dissoudre totalement dans l'eau, et il y aura à un moment une **saturation**. On appelle alors **solubilité** la **concentration maximale d'espèce dissoute**:

 $s = \frac{n_{\rm dis,max}}{V}$

Unité

 $\text{mol}\cdot\text{L}^{-1}$

Remarque 4.2 : Solubilités tabulées

Souvent, les données tabulées utilisent le g·mol $^{-1}$. Pour passer de l'une à l'autre, il faut simplement convertir grâce à :

$$m_{\rm dissout} = M n_{\rm dissout}$$

Exemple 4.1 : Solubilités usuelles

Tableau 4.1 – Solubilités de quelques solides dans l'eau

Solide	Solubilité $(g \cdot mol^{-1})$		
NaCl (sel)	357		
Saccharose	2000		
$O_{2(g)}$	1120		

 $^{1.\,}$ Dans notre cas, le solvant sera toujours l'eau.

Définition 4.2 : Précipité et précipitation

Un précipité est un **dépôt solide** en **équilibre** avec la phase aqueuse, qui apparaît lorsqu'une solution est **saturée** en composés ionique ou moléculaire.

On appelle **précipitation** la réaction de formation du solide à partir de ses composés ioniques :

$$pA_{(aq)}^+ + qB_{(aq)}^- = A_pB_{q(s)}$$

Manipulation 4.1: Précipitation d'hydroxyde de cuivre

https://www.youtube.com/watch?v=G-o2zF1Kbxo

Lorsque l'on ajoute de la soude (Na⁺,HO⁻) à une solution de sulfate de cuivre (Cu²⁺,SO₄²⁻), un précipité solide d'hydroxyde de cuivre Cu(OH)₂ apparaît. On peut le filtrer et l'isoler.

On retrouve cette situation pour beaucoup d'autres solutions, avec de nombreux précipités : $AgCl, Zn(OH)_2$, etc.

Il y a deux façons d'obtenir un précipité :

- 1) En introduisant un excès de solide dans l'eau : si on dissout du sel dans l'eau, passé une certain quantité le sel ne se dissout plus : il reste du solide au fond de la solution ;
- 2) En mélangeant deux solutions contenant les espèces constituantes du précipité : c'est le cas de l'expérience présentée.

Définition 4.3 : Produit de solubilité

Le produit de solubilité est la constante d'équilibre de la **réaction de dissolution**, noté K_s . Par exemple :

 $AgCl_{(s)} = Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$ K_s

Avec

$$K_s = \frac{[\mathrm{Ag}^+]_{\mathrm{eq}} \times [\mathrm{Cl}^-]_{\mathrm{eq}}}{c^{\circ 2}}$$

On définira également $pK_s = -\log K_s$.

Attention 4.1 : Produit de solubilité

Le produit de solubilité est associé à la réaction de dissolution!

Important 4.1 : Méthode pour calculer une solubilité

- 1 Écrire la réaction de dissolution et dresser le tableau d'avancement en supposant la saturation;
- 2 Exprimer s en fonction de ξ_{eq} puis les **concentrations en fonction de** s;
- $\boxed{3}$ Exprimer K_s en fonction de s et résoudre.

Application 4.1 : Calcul de solubilité

Calculer la solubilité en mol·L⁻¹ puis en g·L⁻¹pour les espèces suivantes :

- 1) NaCl_(s) de $K_s = 36$ avec $M_{\text{NaCl}} = 58,44 \,\text{g} \cdot \text{mol}^{-1}$;
- 2) $PbI_{2(s)}$ de $pK_s = 7.5$ avec $M_{PbI_2} = 461.01 \text{ g} \cdot \text{mol}^{-1}$.

1) [1]	Équation		NaCl _(s) =	$= Na^{+}_{(aq)} -$	$+$ $\operatorname{Cl}^{-}_{(aq)}$
	Initial	$\xi = 0$	n	0	0
	Final	$\xi_f = \xi_{\rm eq}$	$n-\xi_{\mathrm{eq}}$	$\xi_{ m eq}$	$\xi_{ m eq}$

2 Par définition,
$$n_{\text{dis,max}} = \xi_{\text{eq}} = sV \quad \Rightarrow \quad \begin{cases} [\text{Na}^+]_{\text{eq}} = s \\ [\text{Cl}^-]_{\text{eq}} = s \end{cases}$$

$$[3] \text{ Or,} K_s = \frac{[\text{Na}^+]_{\text{eq}} \times [\text{Cl}^-]_{\text{eq}}}{c^{\circ 2}} = \left(\frac{s}{c^{\circ}}\right)^2$$

$$\Rightarrow \boxed{s = c^{\circ} \sqrt{K_s}} \Rightarrow \underline{s = 6 \text{ mol} \cdot \text{L}^{-1} = 350 \text{ g} \cdot \text{L}^{-1}}$$

2 Par définition,
$$n_{\text{dis,max}} = \xi_{\text{eq}} = sV \Rightarrow \begin{cases} [\text{Pb}^{2+}]_{\text{eq}} = s \\ [\text{I}^{-}]_{\text{eq}} = 2s \end{cases}$$

[3] Or,
$$K_{s} = \frac{[\text{Pb}^{2+}]_{\text{eq}} \times [\text{I}^{-}]_{\text{eq}}^{2}}{c^{\circ 3}} = 4 \left(\frac{s}{c^{\circ}}\right)^{3}$$
$$\Rightarrow s = c^{\circ} \left(\frac{10^{-\text{p}K_{s}}}{4}\right)^{1/3} \Rightarrow \underline{s = 2,0 \times 10^{-3} \,\text{mol} \cdot \text{L}^{-1} = 0,92 \,\text{g} \cdot \text{mol}^{-1}}$$

I/C Condition d'existence d'un précipité

Rappel 4.2 : Sens d'évolution d'un système

Application 4.2: Précipitation ou non?

On ajoute $n=10^{-5}$ mol d'ions Cl⁻ dans $V_0=10$ mL de nitrate d'argent (Ag⁺,NO₃⁻) à $c_0=10^{-3}$ mol·L⁻¹. On donne p $K_s(\text{AgCl})=9.8$.

Obtient-on un précipité de chlorure d'argent AgCl?

La réaction de formation de AgCl est

$$Ag^{+}_{(aq)} + Cl^{-}_{(aq)} = AgCl_{(s)} \qquad K^{\circ} = \frac{1}{K_s}$$

Sens direct
$$\Rightarrow Q_{r,i} < \frac{1}{K_s} \Leftrightarrow \frac{c^{\circ 2}}{[Ag^+]_i[Cl^-]_i} < \frac{1}{K_s} \Leftrightarrow \left[\frac{[Ag^+]_i[Cl^-]_i}{c^{\circ 2}} > K_s \right]$$

A.N. : $[Ag^+]_i = 10^{-3} \text{ mol} \cdot L^{-1}$ et $[Cl^-]_i = n/V_0 = 10^{-3} \text{ mol} \cdot L^{-1}$ $\Rightarrow [Ag^+]_i[Cl^-]_i = 10^{-6} > K_s$

Il y a donc bien formation du précipité.

Propriété 4.1 : Condition d'existence d'un précipité

 $A_p B_{q(s)} = p A_{(aq)}^+ + q B_{(aq)}^-$ ♦ Dissolution : K_{s}

 \triangleright Solide = équilibre = saturation

⇔ suffisamment de solide initial

$$Q_{r,f}^{\mathrm{dis}} = Q_{r,\mathrm{eq}} = K_s$$

▶ Pas de solide = pas d'équilibre

⇔ solide totalement dissout

$$Q_{r,f}^{\mathrm{dis}} < K_s$$

$$\diamond$$
 Précipitation : $pA_{(aq)}^+ + qB_{(aq)}^- = A_pB_{q(s)}$ $K^{\circ} = K_s^{-1}$

⊳ Solide = équilibre

⇔ suffisamment d'ions

$$\frac{[{\bf A}^+]_i{}^p[{\bf B}^-]_i{}^q}{(c^\circ)^{p+q}} > K_s \quad \text{ et } \quad Q_{r,f}^{\rm pre} = Q_{r,\rm eq}^{\rm pre} = K^\circ \qquad \qquad Q_{r,i}^{\rm pre} > K^\circ \Leftrightarrow \frac{[{\bf A}^+]_i{}^p[{\bf B}^-]_i{}^q}{(c^\circ)^{p+q}} < K_s$$

▶ Pas de solide = pas d'équilibre

 \Leftrightarrow pas assez d'ions

$$Q_{r,i}^{\mathrm{pre}} > K^{\circ} \Leftrightarrow \frac{[\mathrm{A}^{+}]_{i}{}^{p}[\mathrm{B}^{-}]_{i}{}^{q}}{(c^{\circ})^{p+q}} < K_{s}$$

Exemple 4.2 : Rupture d'équilibre de dissolution

En reprenant l'application 4.1, s'il n'y a pas de solide ça veut dire qu'il a été entièrement consommé; alors,

$$\xi_f = \xi_{\text{max}} = n < \xi_{\text{eq}} \Leftrightarrow Q_{r,f} = \frac{[\text{Ag}^+]_f \times [\text{Cl}^-]_f}{c^{\circ 2}} < \frac{[\text{Ag}^+]_{\text{eq}} \times [\text{Cl}^-]_{\text{eq}}}{c^{\circ 2}} = K_s \Leftrightarrow \boxed{Q_{r,f} < K_s} \quad \blacksquare$$

Important 4.2: Diagramme d'existence d'un solide

Pour un solide, soit il existe soit il n'existe pas : on ne parle pas de prédominance mais d'existence. La construction d'un tel diagramme reflète ce qui a été déterminé plus tôt :

Un précipité existe si la solution est chargée en ions

On trace donc les domaines d'un solide A_pB_q en fonction de la concentration d'un de ses ions via pA ou pB.

FIGURE 4.1 – Diagramme d'existence générique

Méthode: On détermine le pA_{lim} d'apparition du solide en se plaçant à la **limite de la** précipitation : on suppose que la première molécule de solide vient d'apparaitre, donc l'équilibre $Q_{\rm eq} = K_s$ est vérifié, mais les concentrations des ions ne sont pas modifiées par la précipitation.

Application 4.3: Diagramme d'existence AgCl

Tracer le diagramem d'existence de $AgCl_{(s)}$ en fonction de pCl, pour une solution de Ag^+ à $c_0 = 0.10 \,\mathrm{mol \cdot L^{-1}}$.

On reprend le résultat de l'application 4.2 avec $[Ag^+]_i = c_0$:

$$\frac{[\mathrm{Ag^+}]_i[\mathrm{Cl^-}]_i}{c^{\circ 2}} > K_s \Leftrightarrow \frac{[\mathrm{Cl^-}]_i}{c^{\circ}} > \frac{K_s}{c_0} c^{\circ} \Leftrightarrow \boxed{\mathrm{pCl} < \mathrm{p}K_s + \log(c_0)} \Rightarrow \mathrm{A.N.} : \underline{\mathrm{pCl}_{\lim}} = 8.8$$

Figure 4.2 – Diagramme d'existence de AgCl

II | Facteurs influençant la solubilité

II/A Température

Propriété 4.2 : Influence de la température

La solubilité dépend de la température car le produit de solubilité dépend de la température $(K_s(T))$. La plupart du temps, la solubilité augmente 2 avec T

Exemple 4.3: Utilistion pratique

On peut se servir de cette propriété à des fins de purification. Supposons que l'on dispose d'un mélange d'un composé A avec une impureté B dont on veut se débarasser. Si on trouve un solvant dans lequel <u>les impuretés sont plus solubles</u> que le composé principal, on peut réaliser une recristallisation :

- 1) On dissout le mélange dans la plus petite quantité de **solvant chaud** pour bien dissoudre le mélange, apportant ainsi une solution **saturée**;
- 2) La solution est ensuite laissée à refroidir;
- 3) Comme la solution refroidit, la solubilité des composés diminue, et le composé désiré cristallise tandis que les impuretés restent en solution.

II/B Effet d'ions communs

Propriété 4.3 : Effet d'ions communs

Lors d'une dissolution, si la solution contient déjà l'un des ions du solide alors la saturation appraît plus tôt : la solubilité diminue.

^{2.} Contre-exemple : le calcaire.

Application 4.4: Effet d'ions communs sur AgCl_(s)

Calculer la solubilité de $AgCl_{(s)}$ s'il y a déjà $c = 0.1 \text{ mol} \cdot L^{-1}$ de Cl^- en solution et comparer la solubilité obtenue au résultat attendu sans. On donne $pK_s(AgCl) = 9.75$.

1	Équation		AgCl _(s) =	$= Ag^{+}_{(aq)}$	+ Cl ⁻ (aq)
	Initial	$\xi = 0$	n	0	cV
	Final	$\xi_f = \xi_{\rm eq}$	$n - \xi_{\rm eq}$	$\xi_{ m eq}$	$cV + \xi_{\rm eq}$

2 Par définition,
$$n_{\text{dis,max}} = \xi_{\text{eq}} = sV \quad \Rightarrow \quad \begin{cases} [Ag^+]_{\text{eq}} = s \\ [Cl^-]_{\text{eq}} = \frac{cV + \xi_{\text{eq}}}{V} = c + s \end{cases}$$

$$(3) \text{ Or,} K_s = \frac{[\text{Ag}^+]_{\text{eq}} \times [\text{Cl}^-]_{\text{eq}}}{c^{\circ 2}} = \frac{s(c+s)}{(c^{\circ})^2}$$
 On suppose $s \ll 0.1 \,\text{mol}\cdot\text{L}^{-1} \Rightarrow s \times c \approx K_s \Leftrightarrow \boxed{s \approx \frac{K_s}{c}}$
$$\Rightarrow \underline{s = 1.8 \times 10^{-9} \,\text{mol}\cdot\text{L}^{-1}}$$

II/C Influence du pH

Propriété 4.4 : Influence du pH

Lorsque les espèces en jeu appartiennt en plus à un couple acide-base, le pH a rôle sur la solubilité :

- Un solide basique aura une plus grande solubilité en milieu acide;
- ♦ Un solide acide aura une plus frand solubilité en milieu basique.

Exemple 4.4 : Dissolution d'oxyde d'aluminium en fonction du pH

 $Al(OH)_{3(s)}$ appartient au coule acide-base

$$Al(OH)_{3(s)}/Al(OH)_4^{-}_{(aq)}$$

Étudions sa dissolution dans l'eau:

Équation	$Al(OH)_{3(s)} + H_2O_{(l)} \rightarrow Al(OH)_4^{-}(\stackrel{\leftarrow}{aq}) H^{+}_{(aq)}$			
$\xi = 0$	n	excès	0	$[\mathrm{H}^+]_0 V$
$\xi_{\rm eq} = sV$	n-sV	excès	sV	$[\mathrm{H}^+]V$

D'où $K_s = \frac{s\left(s + [\mathbf{H}^+]_0\right)}{c^{\circ 2}} = \frac{s[\mathbf{H}^+]}{c^{\circ 2}}$ $\Rightarrow pK_s = p\mathbf{H} + ps \Leftrightarrow \boxed{ps = pK_s - p\mathbf{H}}$

FIGURE 4.3 – Graph ps-pH