Lecture3: Diode (1)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Two-terminal element

- Terminal quantities
 - Two terminal voltages
 - Two terminal currents

- Number of independent quantities
 - Note that $I_1 + I_2 = 0$.
 - Note that a common change in V_1 and V_2 does not make a difference.
 - Therefore, I_1 and $V_1 V_2$ can be regarded as independent variables.
- Each two-terminal elements has its own relation between I_1 and $V_1 V_2$.

Current vs. voltage

Sources

- Voltage source: $V_1 V_2 = V_{source}$
- Current source: $I_1 = -I_2 = I_{source}$
- R, L, C
 - Resistor: $I_1 = \frac{V_1 V_2}{R}$
 - Capacitor: $I_1 = C \frac{d(V_1 V_2)}{dt}$
 - Inductor: $V_1 V_2 = L \frac{dI_1}{dt}$
 - They are linear. (When you scale the voltage, the current is scaled with the same factor.)

Nonlinearity?

- Consider a toggle light switch.
- Assume a circuit element.

- For a negative voltage, it's electrically open.
- For a positive voltage, it's resistive.
- Is there such a circuit element? Yes!

Diode

- In 1919, the term diode was coined from the Greek roots di (from δi), meaning 'two', and ode (from ὁδός), meaning 'path'. (Taken from Wikipedia)
 - Its symbol

– Current → : Allowed

Current ← : Not allowed

Forward/reverse

Forward bias

The voltage at the anode is higher than the cathode voltage.

Reverse bias

The voltage at the anode is lower than the cathode voltage.

Fabrication

- PN junction
 - Results of the process simulation are shown.
 - Red: Silicon region with Arsenic ions
 - Blue: Silicon region with Boron ions

Vertical doping profile

Active dopant

Equilibrium (1)

- When the applied voltage is zero, no current occurs.
 - Many electrons in the "red" region. (Doped with Arsenic ions. "ntype")
 - Many holes in the "blue" region. (Doped with Boron ions. "p-type")
 - Due to the diffusion mechanism, they tend to spread over.
 - Then, we will have the net current! (It's not possible.)

Equilibrium (2)

- An electric field is built. (Built-in field)
 - It pushes the electrons back to the n-type region.
 - It pushes the holes back to the p-type region.
 - Direction of the electric field?
 - At equilibrium, drift (due to the electric field) and diffusion (due to the density difference) are exactly matched.

