

In Vehicle Coupon Acceptance Analysis

Group 16
Nirvi Shah Vy Nguyen Zichen Fan

Table of contents

the business opportunity is and project objective

Background

business background on why this is important

3 Core Team & Stakeholders

who you are within your organization & who you will be supporting with the outputs of your work

Scope & Objectives

outline what this project will deliver vs. not deliver

Project Development Timeline

communicate key project milestones

5 Development Strategy

provide rationale on why your chosen analysis/supervised learning is the best way to address this business opportunity

Development Details

provide details on data source, data fields used (data dictionary), modeling analysis performed with key steps highlighted, methods & techniques used, etc.

Results

communicate findings and interpretation of results

Value & Next Steps

identify value created and next steps

Socialization & Distribution

how will you share this with your stakeholders

1. Executive Summary

Business Opportunity:

- Strategic analysis of coupon acceptance
- Optimize promotional strategies
- Personalize campaigns

Project Objective:

- Enhance customer targeting
- Understanding customer behavior and preferences related to coupon usage

2. Background

The Future Ad

3. Core Team & Stakeholders

R&D team

- Research on coupon acceptance
- Analyze & Understanding customer behavior and preferences related to coupon usage
- Provide the most efficient marketing strategy to our clients

4. Scope & Objectives

The objective of the prediction task is to anticipate whether a customer will approve or decline a coupon for a particular venue, considering demographic and contextual characteristics.

Will this person accept the 20% off Restaurant coupon?

- age : 22

- weather: sunny

- etc

5. Project Development Timeline

6. Development Strategy

Machine learning techniques can be employed to develop an enhanced coupon recommendation system.

7. Development Details

Dataset information:

- in-vehicle coupon recommendation. (2020). UCI Machine Learning Repository. https://doi.org/10.24432/C5GS4P
- 12684 instances, 24 features
- Data composition: personal information, consumption habits, environment, coupon restrictions
- Data cleaning: binary feature with 1 value, feature no value, highly correlated
- Missing Values: filled with -1 as a new category

7. Development Details

Insights exploration

- Feature Selection for models
- Eliminating one of the highly correlated columns, 'direction_opp,' simplified the dataset without sacrificing information
- Improved Decision-Making

The Future Ad

Insights exploration

- Across all time throughout the day, coupon for coffeehouse is the most popular coupon type, especially at time 6pm, but the acceptance dropped at time 10pm
- Coupon for bar has lowest acceptance at 2pm
- Coupon for restaurant has highest acceptance at time 2pm and 6pm
- Coupon for bar is more popular around 6pm or after, indicating interviewees could be working class.
- People accept all types of coupon at 7am,
 6pm in average.
- Afternoon time around 2pm, it's not a good time for bar, carry out, and restaurant(\$20-50)
- At night time around 10 pm, all types of coupon has similar acceptance except for coffee house

Insights exploration

Unveiling coupon acceptance dynamics through visualizations, these graphs offer a nuanced perspective. The first, a bar chart, showcases the percentage acceptance of coupons categorized by types, illuminating preferred choices. Meanwhile, the second graph delves into age-based patterns, providing crucial insights for targeted marketing strategies.

The Future Ad

Model Implementation

• Data Preparation:

- o Data partition: 70% train, 30% test
- o Data preparation: Ordinal, frequency, one-hot

Models:

Logistic Regression, Categorical Naive Bayes, KNN, SVM, Decision Tree,
 Random Forest, ANN

Process:

- SKlearn models on three data structure
- Insights analysis on predictions matrix:
 - odds of features: subcategory with the highest chance to accept coupon
 - true positive rate(recall): correctly predicting positive class
- Cross validation for best model: SVM, Random Forest, KNN
- Model summary and selection

Г

8. Results - Odds

	odds	
occupation_Construction & Extraction	2.387616	Π
coupon_Carry out & Take away	2.216430	Т
occupation_Healthcare Practitioners & Technical	2.149012	
education_Some High School	2.056463	
coupon_Restaurant(<20)	1.981822	
RestaurantLessThan201	1.946451	
direction_same	1.763865	
destination_No Urgent Place	1.618358	
expiration_24.0h	1.569936	
CoffeeHouse_4~8	1.530253	
CoffeeHouse_1~3	1.509735	
occupation_Healthcare Support	1.449617	
weather_Sunny	1.401641	
occupation_Architecture & Engineering	1.380484	
CarryAway1	1.349410	
CarryAway_never	1.301967	
passanger_Partner	1.301792	
Bar_1~3	1.289228	
time_18	1.283508	
occupation_Protective Service	1.258615	
income_50000-62499	1.250686	
occupation_Farming Fishing & Forestry	1.247989	
passanger_Friend(s)	1.226461	
toCoupon_GEQ25min	1.207421	
maritalStatus_Single	1.197659	
Restaurant20To50_4~8	1.189964	
Restaurant20To50_1~3	1.187270	
occupation_Life Physical Social Science	1.177818	
Bar_4~8	1.172880	

• Occupation:

- _construction & Extraction: 2.4
- Healthcare Practitioners & Technical: 2.1
- Coupon
 - Carry out & Take away: 2.2
- Education
 - Some high school: 2
- Direction
 - Same direction: 1.7
- Destination
 - No urgent place: 1.6
- CoffeeHouse
 - 0 4~8: 1.5
- Expiration
 - o 24 hours: 1.6

8. Results - Prediction

- Prediction Error: incorrectly predicting rejection when one wants coupons(FN)
- Average accuracy: 0.75
- Correctly identify both negative and positive classes
- Limitation: size of instances is not large enough for ANN

8. Results - Summary

	Datasets	Model Name	AUC	Recall	Precision	F1
0	dataset_ordinal	LogisticRegression	0.649792	0.756404	0.634871	0.690329
1	dataset_ordinal	KNeighborsClassifier	0.690852	0.72939	0.679688	0.703662
2	dataset_ordinal	DecisionTreeClassifier	0.668397	0.698649	0.716332	0.70738
3	dataset_ordinal	RandomForestClassifier	0.811613	0.819283	0.756885	0.786849
4	dataset_freq	LogisticRegression	0.634034	0.797857	0.630939	0.704648
5	dataset_freq	KNeighborsClassifier	0.70728	0.755007	0.687739	0.719805
6	dataset_freq	DecisionTreeClassifier	0.682027	0.706102	0.729548	0.717633
7	dataset_freq	RandomForestClassifier	0.818018	0.80857	0.766108	0.786766
8	dataset_OneHot	LogisticRegression	0.7404	0.770377	0.706838	0.737241
9	dataset_OneHot	KNeighborsClassifier	0.710204	0.739637	0.694359	0.716283
10	dataset_OneHot	DecisionTreeClassifier	0.684142	0.712156	0.73088	0.721397
11	dataset_OneHot	RandomForestClassifier	0.826616	0.825803	0.769197	0.796496

	Accuracy	AUC	Recall	F1
svm_Ordinal_enco	0.676183	0.726871	0.767117	0.728922
svm_Freq_enco	0.702881	0.702881	0.763391	0.744662
svm_OneHot_enco	0.750198	0.750198	0.830461	0.790512
knn_Ordinal_enco	0.652921	0.686315	0.775966	0.717330
knn_Freq_enco	0.659265	0.691363	0.792734	0.725336
knn_OneHot_enco	0.706318	0.766186	0.838845	0.764269
rf_Ordinal_enco	0.746497	0.814423	0.824872	0.786936
rf_Freq_enco	0.748612	0.821618	0.815557	0.786436
rf_OneHot_enco	0.758128	0.829371	0.851421	0.799825

- **Best performance:** Random Forest
- Accurate prediction: Random Forest, SVM, ANN
- Best Data Structure: One-hot encoded

9. Values & next steps

Values

- Personalized Marketing
 - Targeting right customers
- Increase customer engagement

 i.e. Coffeehouse coupon subscription
 Restaurant coupon with conditions...
- **Driving Sales and Revenue**Encouraging consumptions
- Customer Retention and Loyalty Personalized experience
- Marketing budget management
 Right customers, less marketing costs
- Data-driven insights
 Valuable insights like customer preferences

Next Steps

- Data Collection
 - Diversity, randomness, feature selection
- Model improvement
 Refine algorithm, incorporate more data
- Feature Engineering
 Apply feature engineering for better fitting
- Domain knowledge
 Research knowledge on marketing strategy
 and consumer behavior
- Scalability
 - Assess the scalability of marketing plans
- Continuous Updating
 Regularly check model performance

10. Socialization & Distribution

Thank You

Do you have any questions?

