REMARKS

Reexamination and reconsideration in light of the foregoing amendment and following remarks is respectfully requested.

Claims 1, 21, 23, 24, 26, 30-32 and 34-49 are pending in this application. Claims 2-20, 22, 25, 27-29 and 33 have been canceled without prejudice or disclaimer. Claims 1, 21, 23, 24, 26 and 30-32 have been amended and new claims 34-49 have been added. No new matter has been added to the application. Support for the amendments to the claims and for the new claims can be found in the specification as follows:

Claim 1: The group insulin receptor (IR), IGF-1 receptor (IGF-1R) and insulin

receptor related receptor (IRR): page 6, lines 14-17.

Step (C) (i): page 7, lines 20-23. Step (C) (ii): page 17, lines 28-34.

Claim 21: The group IR, IGF-1R and IRR: page 6, lines 14-17.

Claim 23: Original claim 23 and page 7, lines 20-23.

Claim 24: Original claim 24, page 17, lines 28-34 and page 13, lines 15-20.

Claim 26: Original claim 26, page 17, lines 28-34 and page 13, lines 15-20.

Claim 34: Page 17, lines 28-34.

Claim 35: Page 28, line 28-33.

Claim 36: Page 6, lines 14-17 and page 28, lines 28-34.

Claim 37: Page 29, lines 1-3.

Claim 38: Page 6, lines 14-17 and page 29 lines 1-3.

Claim 39: Original claim 4.

Claim 40: Original claim 4 and page 7, lines 5-6.

Claim 41: Page 7, lines 2-5.

Claim 42: Page 6, lines 14-17 and page 7, lines 2-5.

Claim 43: Original claim 2.

Claim 44: Original claim 13, page 17, lines 28-34 and page 13, lines 15-20.

Claim 45: Original claim 14, page 17, lines 28-34 and page 13, lines 15-20.

Claim 46: Original claim 15, page 6, lines 14-17.

Claim 47: Original claim 1, page 7, lines 13-15 and page 7, lines 23-24.

Claim 48: Page 7, lines 13-15.

Claim 49: Page 7, lines 23-24.

Applicants note the Examiner's consideration of the art cited in the Information Disclosure Statement filed May 26, 2000 as acknowledged in the Office Action Summary. Applicants further note the Examiner's acknowledgment of Applicant's claim of foreign priority under 35 U.S.C. §119 and receipt of the certified priority document.

Applicants want to thank the Examiner for granting the interview on June 24, 2003. The interview provided a greater understanding of the Examiner's position with respect to the following rejections.

REJECTION UNDER 35 U.S.C. § 101

Claims 1-20 were rejected under 35 U.S.C. § 101 as being directed to non-statutory subject matter because "the only steps set forth in claims 1-20 are manipulation of data." Claims 2-20 have been canceled, thereby rendering the rejection moot as to these claims. Claim 1 has been amended to recite a method that is more than a manipulation of data. The claim as amended requires (i) assessing the stereochemical complementarity between a compound and a molecule, (ii) obtaining a

compound that possesses stereochemical complementarity to the molecule; and (iii) testing the compound. For the foregoing reason, it believed that the amendment to claim 1 overcomes the rejection and it is respectfully requested that the rejection be reconsidered and withdrawn.

REJECTION UNDER 35 U.S.C. § 112, FIRST PARAGRAPH

Claims 1-33 were rejected under 35 U.S.C. § 112, first paragraph, for lack of enablement. The Examiner at the interview indicated that the rejection comports with the guidelines set forth in the Trilateral Project WM4 "Report on comparative study on protein 3-dimensional (3-D) structure relating claims" and that the claims need to be restructured to overcome this rejection.

Claims 2-20, 22, 25, 27-29 and 33 have been canceled, thereby rendering the rejection as to these claims moot. As for the remaining claims, claim 1 has been amended to recite a method of "identifying" a compound as opposed to "designing" or selecting a compound. Claim 1 has been further amended to require that the method is directed to identifying a compound that (i) modulates binding of a natural ligand to the insulin receptor (IR), IGF-1 receptor (IGF-1R) or insulin receptor related receptor (IRR) or (ii) modulates signal transduction via IR, IGF-1R or IRR.

Applicants' position is that the level of skill of those working in the field of *in silico* screening at around the priority date of the present application (i.e., around November 1997) was relatively high. More specifically, the average capabilities of those working in this field included the ability to identify candidate binding pockets within any given 3D structure using standard methodologies.

Computer algorithms that may be used for this purpose, include, for example, PASS (evidence: Brady, G.P., Jr. et al., "Fast prediction and visualization of protein binding pockets with PASS," *J. Comput Aided Mol. Des.*, vol. 14, 383-401 (2001); copy attached as Exhibit A). The

PASS algorithm involves coating the surface of the protein structure model with sets of probe spheres, retaining those with low solvent accessibility and identifying some of these as likely centers of binding pockets. A person skilled in this field would have been fully familiar with the implementation of a range of docking programs (such as those listed in the patent application) to screen for candidate binding ligands. Evidence of the techniques that would be well within the capabilities of those skilled in this field are described in the following publications:

- (1) Li et al., "Structure-based design of parasitic protease inhibitors," *Bioorg Med Chem*, 1996 Sep, 4(9):1421-7. Copy attached as Exhibit B.
- (2) Ring et al., "Structure-based inhibitor design by using protein models for the development of antiparasitic agents," *Proc Natl Acad Sci USA*, 1993 Apr 15, 90(8):3583-7. Copy attached as Exhibit C.
- (3) Li et al., "Anti-malarial drug development using models of enzyme structure," *Chem Biol.*, 1994 Sep, 1(1):31-7. Copy attached as Exhibit D.

As mentioned above, Applicants submit that any competent researcher working in the field of *in silico* screening would be able to identify candidate binding pockets in any given 3D structure. In the present case, however, the patent application actually identifies specific "topographic regions" which represent preferred "binding pockets" within the IGF-1R structure. These binding pockets can be used in screening methods to identify potential ligands. For example, the fragment which includes residues 191-290 forms part of the cys-rich region of the ectodomain of IGF-1R. This region is important in determining ligand binding specificity. The specificity determinant can be further limited to residues 223-274 (see page 28, line 12 to page 29, line 15).

The patent application provides further guidance for selecting regions within the identified binding pockets at page 6, line 26 to page 7, line 12. For example, it is stated that the ligand may interact with (i) a region of the L1 domain-cys-rich interface, thereby causing an alteration in the positions of the domains relative to each other; (ii) a hinge region between the L2 domain and the cys-rich domain causing an alteration in the positions of these domains relative to each other; or (iii) the β-sheet of the L1 domain causing an alteration in the position of the L1 domain relative to the position of the cys-rich domain or L2 domain.

The patent application goes even further by specifying two sites on the lower β -sheet of the L1 and L2 domains as suitable targets for screening. See, for example, the specification at page 6, lines 9-14.

Accordingly, the patent application not only identifies the binding pockets within the IGF-1R structure, but also suggests preferred regions within these binding pockets to use in screening for ligands.

Armed with the atomic coordinates of the IGF-1R provided in the patent application and the information regarding preferred regions within specified binding pockets, it would have been a matter of routine for a person skilled in the area of *in silico* screening to utilize any one of the well known docking programs to screen for potential ligands.

On page 3 of the Office Action, the Examiner states that it is unknown and cannot be predicted from the information presented in the specification what degree of stereochemical complementarity is required. Stereochemical complementarity between a chemical compound and the target protein structure is a cumulative effect of the hydrogen bonds, favorable electrostatic interactions, and favorable van der Waals contacts between the compound molecule and the protein

molecule. Depending on the nature of the compound molecule, one factor may predominate over others in contributing to the overall complementarity. Those skilled in the art can visually examine on a computer graphics monitor a compound molecule docked into the binding site of the receptor and assess the source of the complementarity. All docking programs have scoring functions which are used to dock and then rank the molecules with a score indicating how well a particular chemical compound molecule binds to the receptor.

The top-ranking compounds can then be further assessed visually and computationally. For example, a computer program such as XSCORE (evidence: Wang, R. et al., "Further development and validation of empirical scoring functions for structure-based binding affinity prediction," *J. Compu Aided Mol. Design*, Vol 16, 11-26(2002); copy attached as Exhibit E) has a scoring function which predicts the dissociation constant for a given ligand-protein complex structure (for example, the docked compound-receptor complex). This scoring function was derived by fitting the function to the experimentally determined dissociation constants of a set of 200 ligand-protein complexes. As a general rule, stereochemical complementarity is not discussed in terms of degree. *In silico* screening requires certain parameters to be set to determine whether or not any given molecule will register as a stereochemical "fit" with the binding site of interest. A person of skill in this area would be able to set appropriate parameters through trial and error to select for suitable stereochemical complementarity to a binding site described in the patent application.

On page 3 of the Office Action, the Examiner points out that claim 1 requires that the selected compound bind to any molecule of the insulin receptor family and modulate any activity mediated by the molecule. Claim 1 has been amended to make it clear that the compound is tested

for its ability to either modulate binding of a natural ligand to or to modulate signal transduction via a member of the insulin family selected from IGF-1R, IR and IRR.

For all of the foregoing reasons, the specification provides sufficient guidance that a person having ordinary skill in the art would have been able to practice the invention without undue experimentation. Accordingly, claims 1, 21, 23, 24, 26, 30-32 satisfy the requirement of 35 U.S.C. § 112, first paragraph. It is respectfully requested that the rejection be reconsidered and withdrawn.

REJECTION UNDER 35 U.S.C. § 112, SECOND PARAGRAPH

Claims 1-33 were rejected under 35 U.S.C. § 112, second paragraph, as being indefinite. The Examiner objected to language specifically recited in claims 1, 3-6, 16-20 and 21. Claims 2-20 have been canceled, thereby rendering any rejection under 35 U.S.C. § 112, second paragraph, as to these claims moot.

In claim 1, the Examiner objected to the phrase "assessing the stereochemical complementarity between the compound and receptor site of the molecule" in that she did not know "what delimits a topographical region." The phrase has been deleted from the claim. It is believed that by this amendment, the rejection is overcome.

Also in claim 1, the Examiner objected to the phrases "substantially as shown" and "forms an equivalent." With respect to the term "substantially," Applicants submit that a person skilled in the art would have understood that the coordinates set out in Fig. 1 need not be strictly adhered to in order to generate a three dimensional structure *in silico* for screening for ligands of the IR, IGF-1R or IRR. See Section 2173.05(b) of MPEP, and in particular, the discussion on the term "substantially." This Section refers to a decision in which the phrase "which produces substantially equal E and H plane illumination patterns" was considered definite because one of ordinary skill in

the art would know what is meant by "substantially equal". Andrew Corp v Gabriel Electronics, 847 F.2d 819, 6 USPQ2d 2010 (Fed. Cir. 1988). In the present case, given the nature of the invention and the experience of those skilled in the art of *in silico* screening, the phrase "substantially as shown in Figure 1" in relation to coordinates would have been clearly understood. Applicants also point out that this phrase is present in a method claim which involves numerous steps including obtaining a compound with requisite stereochemical complementarity and testing the compound for its ability to modulate binding of a natural ligand to or signal transduction via the IR, IGF-1R or IRR. Within the context of this screening process, a person skilled in the art would have understood the flexibility in variation from the exact coordinates shown in Fig. 1 which would allow generation of a structure with sufficient identity to the IGF-1R receptor coordinates listed in Fig. 1 to allow screening for ligands.

With respect to the phrase "forms an equivalent" in claim 1, this phrase has now been amended to refer to an amino acid sequence of IR or IRR that forms an equivalent structure to that formed by amino acids 1-462 or IGF-1R. In light of the information provided in the specification, and in particular, the sequence alignment information provided in Fig. 9, a person skilled in the art would have clearly understood what is meant by this phrase.

With regard to claim 21, the Examiner found the phrase "which are structurally similar to a portion" to be indefinite because "it is unknown what degree of similarity is required to meet this limitation." It is Applicants' position that the phrase would have been clearly understood by a person skilled in the art. In the context of the claim, it would have been clear to such a person that the selected chemical structures must be similar to a sufficient portion of the criteria data set to allow binding of the actual compound to a member of the insulin receptor family.

For all of the foregoing reasons, it is respectfully requested that the rejection of claims 1 and 21 under 35 U.S.C. § 112, second paragraph, be reconsidered and withdrawn.

REJECTION UNDER 35 U.S.C. § 103(a)

Claims 1-20 and 29-34 were rejected under 35 U.S.C. § 103(a) as being unpatentable over Hendry et al. (U.S. Patent No. 5,705,335).¹ Claims 2-20, 29 and 33 have been canceled, thereby rendering the rejection as to these claims moot.

The Examiner finds that the claims are obvious in light of Hendry et al. This reference relates to a computer based method for creating a pharmacophore which involves determining the optimal fit of compounds into nucleic acid sequences such that the lowest energy of interaction and best steric fit are obtained. In support of this rejection, the Examiner refers to the Trilateral Project WM4 "Report on comparative studies on protein 3-dimensional (3-D) structure related claims." This report states that if the difference between the prior art and the claimed invention as a whole is limited to descriptive material stored on or employed by a machine, it is necessary to determine whether the descriptive material is functionally descriptive or non-functionally descriptive material.

Applicants submit that the difference between amended claim 1 and the prior art is not merely limited to descriptive material stored on or employed by a machine. In particular, claim 1 as proposed to be amended not only involves the step of assessing stereochemical complementarity between a compound and the 3-dimensional structure of a molecule of the insulin receptor family,

¹ The inclusion of claim 34 in this rejection is in error since as of the date of the Office Action, there were only 33 claims. It is believed that the Examiner intended the rejection to encompass claims 1-20 and 29-33.

but also involves the step (B) of obtaining a compound which possesses stereochemical complementarity to the molecule; and step (C) of testing the compound for its ability to (i) modulate binding of a natural ligand to the IR, IGF-1R or IRR, or (ii) modulate signal transduction via the IR, IGF-1R or IRR.

Steps (B) and (C) of claim 1 are clearly not merely descriptive material stored on or employed by a machine. These steps involve physical testing of compounds for their ability to modulate a specified activity of a member of the insulin receptor family. Hendry et al. do not disclose or suggest a method of screening for a compound which binds to a molecule of the insulin receptor family followed by testing of compounds identified for their ability to modulate either binding of natural ligands or signal transduction via a member of the insulin receptor family.

Claims 30 and 32 have been amended to be dependent on claim 1 while claim 31 has been amended to be further dependent on claim 30. It is respectfully submitted, therefore, that claims 1 and 30-32 as amended are clearly novel and non-obvious over Hendry et al. It is requested that the rejection be reconsidered and withdrawn.

NEW CLAIMS

New claims 34-49 are presented for examination. Claims 34-46 are dependent on base claim 1. For the reasons set forth above for patentability of claim 1, it is believed that new claims 34-46 are allowable. New claim 47, and its dependent claims, claims 48 and 49, are directed to the method steps (A) and (B) as in claim 1, but also require in step (C) "selecting a compound that has a K_b or K_l of less than 10^{-6} M for IR, IGF-1R or IRR." Hendry et al. does not teach or suggest step (C) as required by claim 47. For all of the foregoing reasons, it is believed that claims 34-49 are patentable.

Application No. 09/555,275

Conclusion

It is submitted that the claims 1, 21, 23, 24, 26, 30-32 and 34-49 are patentable over the

teachings of the prior art relied upon by the Examiner as well as comply with the requirements of 35

U.S.C. § 112, first and second paragraphs. Accordingly, favorable reconsideration of the claims is

requested in light of the preceding amendments and remarks. Allowance of the claims is

courteously solicited.

To the extent necessary, a petition for a three-month extension of time under 37 C.F.R. 1.136

is hereby made. Please charge any shortage in fees due in connection with the filing of this paper,

including extension of time fees, to Deposit Account 500417 and please credit any excess fees to

such deposit account.

Respectfully submitted,

McDERMOTT, WILL & EMERY

Cameron K. Weiffenbach

Registration No. 44,488

600 13th Street, N.W.

Washington, DC 20005-3096 (202) 756-8000 CKW:jdj

Facsimile: (202) 756-8087

Date: August 6, 2003

18

APPENDIX

Replacement sheets of the drawings and annotated sheets showing changes in original Figs. 1 and 9 are attached hereto.

Fast Pr diction and Visualization of Protein Binding Pockets with

PASS

G. Patrick Brady, Jr. and Pieter F.W. Stouten¹ DuPont Pharmaceuticals Company

Experimental Station E500
Route 141 & Henry Clay Road
Wilmington, DE 19880-0500
G.Patrick.Brady@dupontpharma.com

Phone: (302)-695-3834 Fax: (302)-695-2209

¹Present address:

Pharmacia & Upjohn Viale Pasteur 10 20014 Nerviano (Mi) Italy

Summary

PASS (Putative Active Sites with Spheres) is a simple computational tool that uses geometry to characterize regions of buried volume in proteins and to identify positions likely to represent binding sites based upon the size, shape, and burial extent of these volumes. PASS'S utility as a predictive tool for binding site identification is tested by predicting known binding sites of proteins in the PDB using both complexed macromolecules and their corresponding apo-protein structures. The results indicate that PASS can serve as a front-end to fast docking. The main utility of PASS lies in the fact that it can analyze a moderate-size protein (~ 30 kD) in under twenty seconds, which makes it suitable for interactive molecular modeling, protein database analysis, and aggressive virtual screening efforts. As a modeling tool, PASS (i) rapidly identifies favorable regions of the protein surface, (ii) simplifies visualization of residues modulating binding in these regions, and (iii) provides a means of directly visualizing buried volume, which is often inferred indirectly from curvature in a surface representation. PASS produces output in the form of standard PDB files, which are suitable for any modeling package, and provides script files to simplify visualization in Cerius2°, InsightII°, MOE°, Quanta°, RasMol°, and SybyI°. PASS is freely available to all.

Keywords: protein active site, binding site, cavity detection, buried volume, molecular modeling, computer-aided drug design

Introduction

The identification and visualization of protein cavities is the starting point for many structure-based drug design (SBDD) applications. Sites of activity in proteins usually lie in cavities, where the binding of a substrate typically serves as a mechanism for triggering some event, such as a chemical modification or conformational change. Consequently, binding sites are often targeted in attempts to interrupt molecular processes via therapeutics. Although binding site locations are often furnished by x-ray data or fold recognition, tools that automatically predict these locations have become quite popular in SBDD, especially as front-ends to molecular docking or when alternate binding sites are sought [1, 2]. The size and shape of protein cavities dictates the three-dimensional geometry of ligands that can strongly bind there; i.e. they must fit like a hand in glove. Thus, a minimal requirement for drug activity is that the molecule sterically fit the region of buried volume inscribing the active site cavity, with some allowance for induced fit. The determination and visualization of these volumes is critical in drug design, particularly since manual intervention is still fruitfully employed in most design scenarios. An ordinary stick representation of a protein, unfortunately, provides little insight regarding the location, shape, or size of its buried volumes. While surface representations [3, 4] are a step in the right direction, they still fall short in that they require the user to infer buried volumes from often-occluded void space. Consequently, methods for direct display of regions of buried volume in proteins have

become prevalent in recent years [5-11]. Moreover, as molecular docking and virtual screening become more predictive and prevalent, the possibility of interfacing such tools with functional genomics via threading or homology modeling becomes increasingly tempting. A versatile tool that can rapidly predict binding sites should, therefore, find a niche as a front-end to such automated screening efforts. This paper describes a program called PASS (Putative Active Sites with Spheres), which may serve both as an interface to virtual screening and as a visualization aid for manual molecular modeling.

Methods

The PASS algorithm is designed to fill the cavities in a protein structure with a set of spheres and to identify a few of these spheres (called "active site points", ASPs) that most likely represent the centers of binding pockets. Crevice filling is performed in layers using three-point Connolly-like [3] sphere geometry. An initial coating of probe spheres is calculated with the protein as substrate, then additional layers of probes are accreted onto the previously found probe spheres. Only probes with low solvent exposure are retained, and the routine finishes when an accretion layer produces no new buried probe spheres. Although physical arguments can be made to substantiate PASS'S success in binding site prediction, the algorithm itself is purely geometrical (see Figure 1).

accreted onto a scaffold consisting of all previously-identified probes (shaded). d. The probes are filtered as described in step b. e. Accrete a sphere and active site points (ASPs) are identified from amongst the final probes. h. The final PASS visualization is produced. By default, the a. PASS uses three-point geometry to coat the protein with an initial layer of spherical probes. b. These probes are filtered to eliminate those new layer of spheres onto the existing probes, as in step c. f. Accretion and filtering (steps e and d) are repeated until a layer is encountered that (i) clash with the protein, (ii) are not sufficiently buried, and (iii) lie within 1Å of a more buried probe. c. A new layer of spheres (white) is in which no newly-found probes survive the filters. This leaves the final set of probe spheres. g. Probe weights (PW) are computed for each final probe spheres are first smoothed, leaving only clusters of four or more.

Calculation of Probe Spheres

PASS begins by reading the Protein Data Bank (PDB) coordinates of a target protein and assigning elemental atomic radii (Table 1). Since a protein with explicitly represented hydrogen atoms contains less interstitial volume than one without hydrogen, PASS assigns a few different parameter values in the two cases. By default, if less that 20% of the atoms in the protein PDB file are hydrogen, then all hydrogen atoms are removed and hydrogen-free parameters are assigned; otherwise, hydrogen is retained and hydrogen-inclusive parameters are assigned (Table 1). The first layer of probe spheres is computed by looping over all unique triplets of protein atoms and, if they are close enough together, calculating the two locations at which a probe sphere (of radius R_{mbe}) may lie tangential to all three protein atoms (Fig. 1; Step a). Appendix A elucidates this three-point geometry, which is nontrivial since the radii are not necessarily equal. To be retained, a putative probe sphere must survive several filters (Fig. 1; Step b). The first condition is that it cannot overlap with any atoms of the accretion substrate. The second filter explicitly prohibits the probe from clashing with any protein atoms, while the third ensures that the probe be somewhat buried within the protein (i.e. in a binding-site-like region). In particular, each probe sphere is ascribed a "burial count" (BC) representing the extent to which it is excluded from solvent (Figure 2). The BC of a probe is computed by counting the number of protein atoms that lie within a radius R_{sc}=8Å of it, and the probes are filtered such that any probe sphere with BC less than a threshold value (BC_{threshold}) is rejected. This threshold value was determined empirically, as were many of the PASS parameters, by visual inspection of

results for a few test systems. Our experience has been that PASS'S predictions are largely insensitive to the precise values of any of its parameters. Finally, probe spheres are "weeded" such that no two probe centers lie any closer together than $R_{weed} = 1\text{Å}$. This keeps the distribution of probe spheres from becoming clumped, which enables reliable prediction of active site points from the final set of probes.

Table 1 - PASS Parameters

Parameter	
R _{probe} hydrogen-free	1.8 Å
BC _{threshold} hydrogen-free	55
R _{probe} with hydrogen	1.5 Å
BC _{threshold} with hydrogen	75
R _{BC}	8.0 Å
R _{weed}	1.0 Å
R _{accretion}	0.7 Å
R _o	2.0 Å
l D.	1.0 Å
R _{see}	8.0 Å
PW	1100
Elemental Radii [40]	
Hydrogen	1.20 Å
Oxygen	1.52 Å ´
Nitrogen	1.55 Å
Carbon	1.70 Å
Sulfur	1.80 Å

Values of PASS parameters, which are defined as follows. R_{probe} - Radius of a probe sphere. BC_{threshold} - Threshold burial count (BC) distinguishing a buried probe from an exposed one. R_{BC} - Radius used to compute burial counts. R_{weed} - Minimal separation between probe spheres. R_{accepton} - Radius of probes as they are accreted onto existing probes. R_o, D_o - Parameters defining the probe weight (PW) envelope function (see Fig. 2). R_{ASP} - Minimal distance between active site points (ASPs). PW_{min} - Minimal PW for an ASP.

Figure 2 - Burial Counts and Probe Weights

The burial count (BC) of a probe sphere is obtained by counting the number of protein atoms that lie within $R_{\rm sc}$ =8Å of it. The probe weight (PW) of a sphere is obtained by summing the BCs of neighboring probe spheres, scaled by the distance-dependent envelope function shown above. $R_{\rm c}$ = 2.0 Å and $D_{\rm c}$ = 1.0 Å.

After the seminal layer of probes is computed, additional layers of spheres are iteratively accreted onto the existing probe spheres. At each iteration, a set of new probe spheres is computed as described above (Fig. 1; Steps c,e), but with a smaller probe radius ($R_{\text{accretion}} = 0.7\text{Å}$) and with the set of all probe spheres retained from previous layers as the accretion substrate. New probes, however, must still maintain a center-to-center distance of at least $R_{\text{probe}} + \sigma_i$ from each protein atom, i (of radius σ_i). The aforementioned filters are imposed when the newly-found spheres are combined with those retained from previous layers (Fig. 1; Step d). PASS continues the accretion phase until a layer is encountered in which none of the newly-found probe spheres survives the filters (Fig. 1; Step f). The result of this procedure is that the cavities, invaginations, and internal voids in the protein are filled with a set of fairly evenly-spaced probe spheres, all of which are buried and none of which sterically clashes with the protein. Furthermore, probes lying along the protein surface are packed in ideal steric contact with three protein atoms.

Active Site Point (ASP) Determination

PASS subsequently identifies a small number of "active site points" (ASP) from amongst the final set of probe spheres (Fig. 1; Step g). These ASPs are meant to represent potential binding sites (i.e. centers of putative active sites) for ligands of arbitrary shape and polar character. Thus, PASS conservatively views a protein binding site as simply an invagination in the protein surface that is large enough to accommodate a ligand and possesses substantial solvent-excluded volume in which

hydrophobic ligand moieties may be buried. ASPs are accordingly selected by identifying the central probes in regions that contain many spheres with high BCs. In particular, each probe is assigned a "probe weight" (PW), which is proportional to the number of probe spheres in the vicinity and the extent to which they are buried. The probe weight of the i^{th} probe is given by $PW(i) = \sum_{j=1}^{Nprobes} BC(j) f(|\mathbf{r}_i - \mathbf{r}_j|)$, where the envelope function, $f(\mathbf{r})$, is shown in Figure 2. This is conceptually similar to the solvation term of Stouten et al. [12], the premise of which is that the solvation energy of an atom varies linearly with its exposure which, in turn, is proportional to the unoccupied volume around it. The final ASPs are determined by cycling through the probes in descending order of PW, keeping only those with PW \geq PW_{min} (=1100) that are separated by a minimum distance R_{ASP} (= 8Å) from the ASPs already identified. Finally, the set of ASPs is rank-ordered according to PW values. These are PASS'S predicted binding sites.

PASS Output

The default PASS output consists of (i) a PDB file containing the final set of probe spheres, (ii) a PDB file of the ASPs, and (iii) a separate PDB file for each ligand that was optionally read in (see below). By default, PASS "smoothes" the probe spheres before writing the final set of "display" probes to a PDB file. In particular, only probes with at least 4 display probes lying within 2.5Å are written to file by default. Smoothing removes all but appreciable groupings of probe spheres, leaving the final

visualization less cluttered. Smoothing can be suppressed via the command-line flag [all). PASS also produces visualization scripts for several popular molecular modeling packages; namely, Cerius2°[13], Insight[1°[14], MOE°[15], Quanta°[16], RasMol°[17], and Sybyl®[18]. These scripts, which are optionally produced via command-line flags (e.g. [-InsightII]), simplify visualization by automatically loading, rendering, and coloring the protein, probe spheres, ASPs, and ligands. PASS also displays detailed runtime information, including parameter settings, an account of sphere calculation and filtering (e.g. Table 2), and final probe sphere and ASP data, including BCs and PWs. PASS can also read the coordinates of bound ligands, either automatically from the protein PDB file (as HETATM entries with different residue names), or as separate files via the command-line flag [-ligand <filename.pdb>]. For each ligand, PASS computes the distance from each ASP to the nearest ligand atom and to the ligand center of mass. Other command-line options enable the user to (i) produce an enhanced set of probe spheres and ASPs ([-more]), (ii) repress production of the probe sphere PDB file ([noprobes]), (iii) treat water molecules as part of the protein ([-water]), rather than ignoring them (which is the default behavior), (iv) specify an explicit output path (f-outdir <directory_path>]), (v) produce a set of PDB files containing subsets of the final probe spheres that were produced in the various layers of sphere calculation ([-layers]), and (vi) compute the volumes of all groupings of probe spheres left after smoothing ([volume)). None of these options slows PASS noticeably except the volume calculation, which proceeds as follows. After probe smoothing, the final set of display probes is agglomeratively clustered [19] by iteratively merging pairs of overlapping groups of probes until an iteration attempts to join two non-overlapping clusters. This determines

both the optimal number of probe groups and the identities of spheres in these groups. Group volumes are subsequently computed by looping over probe spheres and estimating the volume increments statistically. If ligand(s) are present, distances are computed from the center of each group (i.e. the cluster center) to (i) the nearest ligand atom (D_{near}), and (ii) the ligand center of mass (D_{COM}).

Results

Table 2 shows the numbers of probe spheres retained at various stages of a PASS calculation on thermolysin (1hyt) and is meant to provide an impression of the practical operation of the algorithm. In layer #1 of the probe sphere calculation, the protein atoms constitute the accretion substrate, and every set of three protein atoms lying close enough together to be simultaneously touched by a single sphere (of radius R_{probe}) must be identified and used to determine two putative probe sphere positions. The number of atomic triples that must be tried is reduced by first identifying atomic neighborhoods. The "neighborhood" of atom "i" is the set of atoms lying close enough to "i" to be bridged by a single probe sphere. In layer #1, 769,205 triples of protein atoms satisfied the neighborhood criterion, and 1,154,010 "bridging spheres" were located using these triplets. The number of bridging spheres is less than twice the number of atomic triples because not all triples of atoms in the accretion substrate that satisfy the neighborhood criterion can actually be bridged by a sphere of radius R_{probe} . The set of bridging spheres is then filtered according to (i) clash with the accretion

Table 2 - PASS Probe Sphere Algorithm Applied to Thermolysin (1hyt)

	Layer #1	Layer #2	Layer #3	Layer #4	Layer #5	Layer #6	Layer #7
Accretion Substrate	Protein	Probes	Probes	Probes	Probes	Probes	Probes
Triplets of Substrate Spheres Tried	769,205	384	1,320	2,138	1,852	1,067	1,194
Bridging Spheres Found	1,154,010	260	2,120	3,386	2,954	1,690	1,898
after substrate clash filter	2,151	306	430	370	222	104	108
after protein clash filter	2,151	118	115	88	53	16	41
after burial filter	811	86	28	35	12	7	0
after weeding filter (New Probes)	360	99	41	21	7	က	0
Total Probe Spheres	360	420	461	482	489	492	492
Comment	Seminal Protein Coat	Accretion	Accretion	Accretion	Accretion	Accretion	Completion

The numbers of spheres retained at various stages of a PASS calculation on thermolysin (1hyt). Protein atoms form the substrate in the first layer; previously identified probe spheres form the substrate in all subsequent layers. A triplet of substrate spheres is tried if substrate spheres. The number of bridging spheres found is always less than twice the number of triplets tried because of exceptional cases (e.g. one sphere lying inside the other two). The bridging spheres are then subjected to a series of filters. The number of probes surviving the filters are shown. Accretion procedes until a layer produces no new probes, which occurs in the each substrate pair can be bridged by a probe sphere. There are two possible probe sphere positions for each valid triplet of seventh layer in this case. substrate, (ii) clash with the protein, (iii) burial count, and (iv) proximity to other probe spheres, in that order. After the substrate clash filter, 2,151 putative probe spheres remain and, since the protein is the accretion substrate in layer #1, the same number remains after the protein clash filter. All but 811 putative probes are discarded based upon insufficient burial, and 360 remain after these 811 are "weeded" to maintain a mutual separation of at most R_{weet}=1.0 Å. Thus, 360 probe spheres are found in the first layer. The accretion substrate for the second and subsequent "accretion" layers is the set of probe spheres. In layer #2, the substrate of 360 probe spheres requires that 384 substrate triples be tested, from which 560 bridging spheres are identified. After applying the four filters, only 60 new probe spheres remain, bringing the total number of probes to 420 after layer #2. This process is repeated until layer #7, in which no new probe spheres are identified, signalling the completion of probe sphere determination. Note that although the number of probe spheres continually grows as accretion procedes, the number of accretion substrate triples that must be tried in each layer plateaus. This is because PASS is written such that only triples of substrate atoms incorporating a newly-found probe sphere (or the neighbor of a freshly-weeded probe) are tried. As a result, PASS'S performance scales favorably with protein size (approximately MW^{3/2} over the molecular weight range in Table 3).

PASS was first tested for its ability to identify known binding sites. Table 3 shows the results of applying PASS to 30 protein-ligand complexes drawn from the PDB. The structures were chosen based upon diversity, resolution, inclusion in previous theoretical studies, and the existence of corresponding apo-protein x-ray structures in the PDB. In each case, hydrogen-free PASS parameters were assigned

roteins
plexed P
B Com
s for PDB
Sult
ble 3 - PASS Res
ble 3 -

	\neg					_				-		_					_	_							_	_						_
CPU Time	(sec).	2 9	2:	<u>: :</u>	= :	= :	71	=		0	2 0	<u> </u>	۶ ۲	/7	2		٠,٠	٦ ٥		,	n ⊆	3 =	: •		· œ	۶,	ζ.	· v	o ve	n ve	· · ·	
D _{com} (Å) ⁽	30	0.0	0.5	4.2,11.5,9.8	7.7.2	3.0,5.3,0.0	(5.17)	(7:1) - 80	o.o	2363	,0,	7.5); -	2731767	(5.17)	(1.1)	6.9	3255	2.6,5.0		3.1	877612	1866	19.4.19.8	5.7	-		- -	5459	2.1.7.1	. (14)	()
D _{kur} (Å)		3.0	142700	6.0,2.6,4.1	0.0	4.2,6.1,0.0	9:-	0.7	0.7	1208	80	0: -	. 4	151008	(8.1)	0.7	0.	4090	0.5	. 0	<u> </u>	1.9.1.0.0.8	0.4.0.8	1.1.2.6	3.4	5.0	6.0	3.9	0.8.0.5	0.7.0.7	. (03)	0.610
Binding Site	3	, -	23.5	.,-	21516	2,5,19	(4)	-		1.2	ļ	4		1.2.6	6)		_	. '	5	-		1.2.3	1.2	1.2	4	4	_	_	1.2	1.2	(3)	, , ,
ASPs	4	. 4	۰ ۲		. 91) v)	6		2	4	4	15	: 2		9	2	1 4	. 2	5 -	ı m	ю	3	2	5	00	7	3	Э	2	7	~
Probes	468	225	160	664	774	593		575	211	385	492	403	1326	935		723	304	377	236	197	296	487	292	305	486	766	290	366	297	397	309	481
Layers	8	0	· ••	7	9	9		5	- 00	01	9	6	7	01		7	2	, ,	6	7	6	7	9	s	6	7	9	∞	s	7	9	9
Size (kD)	31	78	37	31	32	32	,	32	13	20	32	24	89	4		43	22	61	13	12	30	31	4	23	25	64	22	17	91	20	24	32
Llgand(s)	l-arabinose	DUMP	NAD	NAPAP	MQPA	F6P	AMP	d-galactose	NAG	XK263	BZS	benzoxazinone	ATP	FAD	PHB	C4PI	NAPAP	retinol	cytidylic acid	biotin	guanine	H256	palmitic acid	PTI	PGA	P00	benzamidine	methotrexate	heme	VAC	MMA	FVF
Protein	l-arabinose binding protein	thymidylate synthase	alcohol dehydrogenase*	alpha thrombin + hirudin	epsilon thrombin	fructose-1,6 bisphosphatase		galactose binding protein	lysozyme	HIV I protease	thermolysin	elastase	CDK2 - cyclin A complex	p-hydroxybenzoate hydroxylase		cytochrome p450-cam*	trypsin	retinol binding protein	ribonuclease A	streptavidin	purine nucleoside phosphorylase	endothiapepsin	fatty acid binding protein	beta trypsin	triose phosphate isomerase	methanol dehydrogenase	beta trypsin	dihydro folate reductase	myoglobin	HIV I protease	concanavalin A"	carboxypeptidase A
PDB Code	labe	1 bid	lcdo	ldwd	letr	dQ!		lgca	lhew	lhvr	l hyt	linc	ljst	l pbe		lphf	l ppc	Irb D	lrob	lstp	lul	2er6	2ifb	2ptc	2ypi	3aah	3ptb	4dfr	4mbn	4phv	Scna	7cpa

pytroloquinoline quinone, VAC = n,a-bis-2(r)-hydroxy-1(s)-indanyl-2,6-(r,r)-diphenylmethyl-4-hydroxy-1,7-heptandiamide, MMA = alpha-methyl-d-mannopyranoside, FVF = bz-phe-val==p==(0)-phe. Number of active site points (ASPs). "Rank of ASP(s) lying within 4 Å of the ligand. "Distances from binding site hits to the nearest atom in the ligand. "Distances from binding site hits to the center of mass of the ligand. "CPU Times in seconds on a single Silicon Graphics R 10000 processor running at 194 MHz. "Dimer truncated to a monomer. No water in the PDB file. "Phosphorylated protein." "Heme treated as part of the protein." Tetramer truncated to a monomer. 'Default PASS parameters used, bound waters removed. Molecular weights do not include hydrogen. Parenthetical entries were obtained in "more" mode (see text). Ligand abbreviations: DUMP = 2'-deoxyuridine 5'-monophosphate, NAD = nicotinamide adenine dinucleotide, NAPAP = N==a==-(2-naphthyl-sulfonyl-glycyl)-DL-P-amidinophenylalanylpiperidine, MQPA = (21,41)-4-methyl-1-[Nalpha-(irs)-3-methyl-1,2,3,4-tetrahydro-8-quinolinesulfonyl)-L-arginyl]-2-piperidine carboxylic acid, F6P = fructose 6-phosphate, AMP = hydroxybenzoic acid, C4PI = camphor 4-phenyl imidazole, cytidylic acid = cytidine 2'-monophosphate, PTI = pancreatic trypsin inhibitor, PGA = 2-phosphoglycolic acid, PQQ = adenosine monophosphate, NAG = tri-n-acetylchitotriose, BZS = benzylsuccinic acid, ATP = adenosine-5'-triphosphate, FAD = flavin-adenine dinucleotide, PHB = p-

and bound water molecules were ignored. For each PDB complex, Table 3 shows the number of layers of probes PASS computed prior to convergence, the final number of probe spheres, the number of ASPs identified for each protein structure, and the required CPU time. Coordinates of the known ligand(s) are used to define a binding site "hit." In particular, for each ASP of a particular protein, two quantities are computed: (i) D_{Near} , the distance from the ASP to the nearest ligand atom, and (ii) D_{COM} , the distance from the ASP to the ligand center of mass (COM). Any ASP with $D_{\text{\tiny Near}} \leq 4 \text{Å}$ is considered a binding site "hit." The Binding Site Hits column lists the rank order of the ASP(s) that are considered hits, and the values in the $D_{\mbox{\tiny Near}}$ and $D_{\mbox{\tiny COM}}$ columns correspond to these hits. For instance, the "1hvr" row in Table 3 indicates that both the top ASP and the second-ranked ASP lie near the site in HIV-1 protease known to bind XK263. In particular, the top ASP lies 1.2 Å from the nearest XK263 atom and 2.3 Å from the COM, while the second-ranked ASP lies 0.8 Å from the nearest atom and 6.3 Å from the COM. Note that ligand size impacts the D_{com} values, as evidenced by the trypsin-PTI system, which has the largest ligand (a protein) and, correspondingly, the largest D_{coм} values (~ 19 Å).

Table 3 shows that PASS is able to successfully identify the locations of known binding sites in complexed x-ray structures. PASS located the pocket containing a known ligand in all but three of the 32 trials, often finding multiple binding site hits for a given ligand (11 times). In addition, the top-ranking ASP identified by PASS represents a binding site hit in 19 of the 32 trials, and one of the top three ASPs is a hit in 26 trials. These observations indicate that PASS can usually identify the protein cavity to which a ligand will bind with maximal affinity in a matter of seconds. There is a strong, but not

perfect, correlation between ASP rank (i.e. PW) and the volume of the corresponding group of probe spheres. In fact, volume is approximately as predictive of binding sites (results not shown) as ASP rank for the systems in Table 3. However, the calculation of volumes slows PASS noticeably for systems requiring many probe spheres (e.g. 92, 40, and 24 seconds for 1jst, 3aah, and 1etr, respectively).

From a drug design perspective, the analysis presented in Table 3 is somewhat immaterial, since the existence of complexed coordinates implies that at least one binding site location is already known. Intuition suggests that the presence of a ligand in a complex might induce a more pronounced binding site cavity than would be present in an apo-protein structure, thereby biasing a cavity-detection algorithm like PASS to succeed on complexed systems. Thus, the postdiction of binding sites in PDB complexes does not establish the predictive utility of a tool for drug design, where one is lucky to have an apo x-ray structure or reliable homology model.

A more realistic test of PASS as a tool for prediction is to try to locate known binding sites on the structures of proteins that are not complexed with a ligand. We address this predictability issue by using PASS to compute ASPs for the set of apoprotein structures from the PDB that correspond to complexed PDB structures in Table 3. Apo structures were identified for as many of the systems in Table 3 as possible (20), and default PASS parameters were used in all calculations. A few of these PDB correspondences are not identical residue-by-residue because the molecules either were obtained from different sources (1npc/1hyt; 2apr/2er6), had residue additions or deletions at the termini (1swb/1stp; 1hxf/1dwd), or had incomplete or missing residues due to poor electron density (5dfr/4dfr; 1hxf/1dwd). For comparison, the results

PDB codes are shown. "Known" binding site positions are determined by superposing the native and complexed structures and computing the proximity of the ASPs (from the native PASS calculation) to the known ligand (from the complexed crystal structure). This enables binding site "hits" to be computed as in Table 3, along with the distances D_{Near} and D_{COM} relating the position of the known ligand to the binding site hits. Only backbone atoms {C,O,C_a,N} were superposed and, in all but a few cases (see Table 4 caption), all residues in the chain were used. To quantify how severely the ligand deforms the protein in the binding site, we computed the RMSD between superposed structures using only residues lying in this region. In particular, we identified both the set {C} of residues lying within 4 Å of the ligand in the complex and the set {A} of corresponding residues in the superposed apo structure. The RMSD between {C} and {A} was then computed, using both side chain and backbone atoms for identical amino acids and only the backbone atoms otherwise.

Table 4 shows that PASS can reliably predict binding site locations when only an apo x-ray structure is known. PASS correctly identifies the binding site in 17 of the 21 trials in Table 4. The top-ranked ASP hits the binding site in 12 trials, and one of the top three ASPs is a hit in 16 trials. These observations imply that PASS may be a suitable front-end to virtual high throughput screening and fast docking routines. Furthermore, the similarity of observed hit rates between the apo-protein and complexed systems refutes the hypothesis that the presence of a ligand in the structural data is a crucial determinant of success for a cavity detection algorithm.

Table 4 - PASS Results for PDB Apo-Proteins'

Complex
Prohec ASPs
577 4
656 3
627 8
564 7
-
471 3
219
455 3
349
401 2
216 2
100
637 7
531 . 5
291 4
322 2
508
283 2
348 1
361 4
448

1ypi (13,0), 5dfr (16,0), 3phv (26,0), 2ctv (9,0), 5cpa (18,0), 'Rank of ASP(s) lying within 4 Å of the superposed ligand. 'Distances from binding site hits monomer. Tetramer truncated to a monomer. 3phv dimer explicitly created via symmetry operators. *Zn was considered part of the protein. "PASS performed on dimer. *Residue superpositions- Ihxf: {A44,F199,E217}; Inpc: {T2,G3,T4,F282,K308,V316} of Inpc with {T2,G3,T4,F281,K307,V315} of Ihyt; Iswb: all residues except {K134,P135} of Iswb (chain A) and {A13,E14,A15} of Isp; Zapr: {S39,W42,I130} of Zapr with {S36,W39,L128} of between all residues that lie within 4 A of the ligand in the complexed structure and the corresponding residues in the apo structure (heavy atoms only). (18,0), 2fbp (28,0), 1gcg (15,0), 1hel (11,0), 1npc (14,0), 1esa (14,0), 1brq (16,0), 8rat (8,0), 1swb (16,0), 1ula (8,0), 2apr (18,5), 1ifb (12,0), 3ptn (11,0), Default parameters used; bound waters removed. Parenthetical entries were obtained in "more" mode (see text). "Number of active site points (ASPs) and sidechain atoms, while 2 included only backbone atoms (since corresponding residues were not of the same type). 3tms (12,0), 8adh (27,11), 1hxf Notation: 1abc (10,2) indicates that, for structure 1abc, the binding-site RMSD calculation involved 12 residues, 10 of which included both backbone All residues in the proteins were superposed (heavy backbone atoms only), except where noted by superscript n. Binding site RMSDs are computed to the nearest atom in the superposed ligand. Distances from binding site hits to the center of mass of the superposed ligand. Dimer truncated to a 2er6; 5dfr: {A6,N23,V93}. One additional option available in PASS is the generation of an enhanced set of probes and ASPs by running PASS in "more" mode via the [-more] command-line flag. In "more" mode, the burial count threshold is slightly reduced (by 10), which typically has the effect of enhancing the number of probe spheres by about a factor of two and ASPs by a factor of two or three, at the expense of about 20-30% in cpu time. When the systems in Tables 3 and 4 are analyzed in "more" mode, the binding site is detected in every case, with no ASP hit ranking worse than ninth. Tables 3 and 4 show (in parentheses) the ASP hits obtained in "more" mode for the few binding sites that the default PASS calculation failed to locate. Detailed inspection revealed that several of these default-mode misses contained an accumulation of probe spheres that fell just beneath the threshold defining an ASP. Running PASS in "more" mode is suggested when broad binding sites are anticipated (e.g. protein-protein association).

The work of Mattos and Ringe [1, 20] constitutes the experimental analog of PASS and enables the most direct comparison of PASS to experimental data. In particular, Mattos and Ringe have soaked elastase crystals with a variety of small organic solvents and crystallographically determined the corresponding protein structures, including bound solvent molecules. These bound organic probes are meant to map out potential binding hot spots on the protein and suggest favorable ligand moieties. This raises the question of whether their organic probes tend to cluster in regions identified via PASS ASPs, which are likewise meant to identify possible hot spots. To address this, PASS was run on elastase and the resulting ASPs were graphically superimposed with Ringe et al.'s organic probes, along with a set of bound ligands drawn from the PDB. Figure 3 shows these results. Several clusters of organic

probes are observed, most notably a large grouping in the active site (S1 pocket). Although only one organic probe lies within 8Å of the top- or second-ranked ASPs, PASS places an ASP near four of the five largest clusters of probes. The inset to Figure 3 shows that the third-ranked ASP (pale blue) lies in the active site about 5Å above the catalytic triad (whose surface is colored green).

Figure 3 also addresses the question of whether clusters of these experimentally derived organic probes are more predictive of binding sites than PASS ASPs. Superposition of the ligands from nineteen elastase PDB complexes enables this comparison. All but three ligands bind in the S1 region of the known active site. The other three stick solely to an alternate site about 10Å away (near S3'), while four molecules employ both sites. PASS identifies this alternate binding site via the fourthranked ASP (white); however, since only one organic probe lies in this region, this site cannot be identified solely on the basis of organic probe clusters. Conversely, there is a cluster of organic probes near the S4 binding pocket, but no ASP is placed there (this region is too close to the ASP in the S1 pocket). Thus, clusters of the organic probes of Ringe et al. and the ASPs of PASS appear comparably predictive of the known binding sites in elastase. It should be noted that the physical nature of the probes employed by PASS and by Ringe et al. are drastically different, so one should not expect identical distributions of binding hot-spots in the two cases. Ringe et al. probe the protein surface with small, often quite polar, molecules, precisely the opposite of PASS ASPs. which can be thought of as large and apolar. ASPs are effectively apolar in that they are identified solely on the basis of cavity size, shape and burial, with no regard for e.g. electrostatics and hydrogen bonding. Moreover, the PASS parameters have been

tuned such that only a cavity of a certain critical size can sustain an ASP. Over the set of systems in Table 3, the smallest regions of buried volume containing an ASP are approximately the size of a benzene ring, while ASP regions that bind a ligand are typically three- to ten-fold larger than that. It is gratifying, however, that the central binding site (S1) is unambiguously identified by both methods.

Figure 3 – C mparison to Crystallographically-Determined Organic Probes

PASS was run in "more" mode using a cross-linked structure of elastase provided by Ringe and Mattos. The resulting ASPs are rendered as large spheres and colored according to probe weight, PW (see scale). Crystallographically determined organic probes (acetonitrile, dimethylformamide, acetone, ethanol, isopropanol, hexenediol) are displayed as solid yellow sticks. Although only one organic probe lies within 8Å of the top- or second-ranked ASP, four of the five largest clusters of organic probes lie in a region identified as a potential binding site by PASS. Every E.C.3.4.21.36 elastase complex in the PDB (19 structures, 20 ligands: 1bma, 1btu, 1eai, 1eas, 1eat, 1eau, 1ela, 1elb, 1elc, 1eld, 1ele, 1elf, 1elg, 1esb, 1fle, 1inc, 1jim, 1nes, 9est) was superposed onto the cross-linked elastase structure, and the resulting ligand overlays are shown as orange, blue, and magenta sticks (except for two protein-bound structures, 1eai and 1fle). The inset shows a top view of the protein surface at the active site, with the portion of the surface defined by the catalytic triad colored green. The third-ranked ASP (pale blue) is centrally located in the active site (S1 region), while the fourth-ranked ASP (white) identifies an alternate binding site about 10Å away (S3' region). Only 4 ligands (two of which are proteins) bind to both sites (colored blue). Thirteen of the twenty ligands (colored orange) bind in the S1 pocket but not in the alternate site. The other three ligands (1elf, 1elg, 1nes; colored magenta) bind only to the alternate site. Since only one organic probe lies in this region, probe clusters alone cannot identify this as a potential small molecule binding site. Conversely, a cluster of three organic probes lies in the S4 region, in a pocket that PASS failed to identify because it lies too close (i.e. < R_{ASP}=8 Å) to the S1 ASP.

Discussion

PASS in a Virtual Screening Environment

The hit rates shown in Table 4 indicate that PASS may serve as a front-end to virtual screening when the binding site is unknown or when alternative binding sites are sought. If the screening tool is fast enough that docking against multiple sites is permissible, then separate screening calculations can be run with the search space centered on the top few PASS ASPs. This strategy should enable identification of the optimal binding mode in most cases, as evidenced by the 71% hit rate to the top two ASPs in Table 4. A number of other screening strategies incorporating PASS are also possible. For instance, a more rigorous procedure could be used to select the "true" binding site from amongst the full set of ASP predictions. Using a docking routine with a more detailed scoring function, the affinity of a ligand for the different ASP regions can be directly compared. Thus, screening a small set of diverse probe molecules or fragments against all the ASPs might enable one to identify the stickiest region of the protein by comparing the scores of the top binders to each ASP region. A large database of ligands could then be computationally screened against this region. Since ASPs are determined using only steric size and shape, the electrostatic (ES) and hydrogen-bonding (HB) character of the ASP sites is arbitrary. One might, thus, search these sites for novel pharmacophores and construct focused combinatorial libraries designed to hit them. Conversely, one could use ES and HB characterization of ASP

regions to select sites most likely to possess affinity for a given class of compounds. Perhaps the most alluring aspect of PASS'S speed is that it (i) permits the expeditious analysis of entire structural databases (e.g. PDB, corporate), and (ii) could provide a suitable bridge between 3D structural modeling and ligand docking in a future drug design project designed to make use of genomic data.

PASS as an Interactive Visualization Tool

A PASS calculation on a moderate-sized protein (~ 30 kD) takes less than twenty seconds on a single Silicon Graphics R10000 processor (Table 3). PASS is, therefore, fast enough to be used interactively in a molecular modeling environment, and has particular utility as a visualization tool for drug design. By default, PASS produces PDB files of probes, ASPs, and ligand(s) (when specified), which can be loaded and rendered separately using any molecular modeling package. Alternately, a full display of the PASS output can be produced in a single step (in supported modeling suites) by executing a PASS visualization script, which loads, renders, and colors the protein, probe spheres, ASPs, and ligand(s). ASP coloring denotes probe weight (PW), while the probe spheres can be colored according to either (i) burial count (BC), (ii) group identity (optionally invoked via [-group]), or (iii) the layer of accretion in which each was identified. Color values (0-50) are encoded onto the B-factor column of the output PDB files containing the probes and ASPs. In runs for which the probes are smoothed and grouped, an integer specifying the group membership of each probe sphere is encoded onto the occupancy column of the probe PDB file. Figure 4 shows a

Figure 4 - PASS Visualization of RNAse A

RNAse A (1rob) is shown in green and is rendered as a tube for clarity, while the cytidylic acid ligand is rendered in white sticks and is barely visible. The final probe spheres, which have been smoothed, are represented by small spheres and colored according to burial count. Active site points (ASPs) are rendered as larger spheres and colored by probe weight. The second-ranked ASP lies in the binding site.

standard PASS visualization in InsightII® for RNAse A (1rob), which is rendered as a tube for clarity. The probes are rendered as small spheres and colored according to BC, while the two ASPs are rendered as larger spheres and colored by PW. The ligand, cytidylic acid, is shown in white and is mostly occluded by probes and the second-ranked ASP. Because the ligand binds to a long groove in the RNAse surface rather than a deep pocket, the ASP lying in the true binding site has a lower PW than the one shown at the right, which lies in a rounder cavity.

One advantage of PASS as a visualization tool is that displaying the ASPs relative to the protein enables immediate identification of regions likely to be of interest in drug design. Since the ASPs are centrally located in cavities, one can use the displayed ASPs and a distance-based criterion to quickly identify the residues modulating binding in these regions. For the modeling suites that support subseting (e.g. InsightII), the PASS visualization scripts automatically define 6 Å, 8Å, and 10 Å residue-based subsets around each ASP, which facilitate the coloring and specific display of these regions. Figure 5 shows the 8 Å subset of protein residues around the top-ranked ASP of trypsin (3ptb). The ASP is shown in magenta, while the probe spheres are colored by burial count. The residues involved in benzamidinium binding are captured in this subset; e.g. hydrogen-bond partners are indicated by yellow lines. The probe coloring clearly indicates that the mouth of the binding pocket lies to the right, where the probe spheres have lowest burial counts. Because PASS ASPs are centrally located in cavities, 6-10 Å radial subseting almost always enables selective visualization of all the residues defining a protein cavity.

The residues lining the binding pocket of trypsin (3ptb) are rendered as sticks and colored according to atom type. They were selected by defining an 8 Å residue-based zone centered on the top-ranked PASS active site point, shown in magenta. The bound benzamidinium is shown in white, while the probe spheres near the pocket are rendered as small spheres and colored according to burial count (BC). The BC color scale runs from blue (high BC) to red (low BC), with muted colors denoting intermediate values. Dashed lines represent hydrogen bonds between benzamidinium and trypsin residues (D189 and G219), with distances measured in Angstroms.

By identifying multiple ASPs, PASS also suggests alternate binding sites in proteins for which a primary site(s) of binding has already been established. The pursuit of alternate binding sites is becoming increasingly prevalent in light of the mounting realization that many proteins have more than one biochemical role [21] and are likely to employ separate binding sites in performing distinct biochemical tasks. In addition, many enzymes have allosteric binding sites that effect catalytic activity or substrate binding via the induction of conformational changes upon cofactor binding [22]. PASS can suggest the locations of such sites. Finally, the disruption of protein-protein interactions forms the basis of many drug design efforts, and PASS can be used to identify interfacial pockets that may be suitable targets for drug binding. In particular, interfaces may be identified by using probe spheres to compute a difference map between the bound and unbound forms. This approach can be extended to quickly identify and visualize packing contacts in protein crystals or multimeric forms.

PASS also facilitates the visualization of buried volumes in a protein in that the space occupied by the manifold of probe spheres represents this volume, which can be viewed and manipulated as a solid object by rendering the probes in a space-filling model. Mesh or solid representations of various surfaces (molecular, van der Waals, Connolly) are often used to visualize the shape complementarity of a protein surface for putative ligands or functional groups. Often these surfaces are colored according to some other receptor-based property, such as electrostatics, hydrogen bond propensity, or surface curvature. The idea is that a modeler can use this sort of display to look for likely ligand hot-spots on the protein by visually searching the surface for voluminous invaginations that are colored to indicate favorable complementarity in, say,

electrostatic potential. In reality, ligands only bind to regions possessing enough buried volume to significantly accomodate them. Hence, buried volume is a quantity of central importance in drug design, and the development of methods for informatively displaying such regions should be accorded due attention. Surface representations fail to capture buried volumes directly in that the user is left to infer the buried volume from void space, much of which is obscured from view by the surface. Likewise, colored surface quantities are of most interest near deep invaginations, precisely where the surface is most difficult to see. Unfortunately, user expertise is typically required to overcome such difficulties. PASS takes a more direct approach by filling the buried volumes with a set of unbonded atoms that represent the ASPs and probe spheres. This enables both the size and shape of the buried volumes to be viewed directly, either with or without the protein, using any molecular visualization tool. Rendering the buried volumes as solid allows the user to eyeball the fit of certain ligands and groups to potential hot-spot regions. Figure 6 shows the region of buried volume (orange) lying in the binding cavity of retinol binding protein (1rbp), along with the bound retinol (white), some surrounding residues, and the top- and third-ranked ASPs (in magenta), on the left and right, respectively. Information equivalent to what is color-coded onto protein surface displays can, in principle, be captured by property-based coloring of probe spheres. For instance, the user could perform a finite-difference Poisson-Boltzmann calculation and color the probe spheres according to electrostatic potential, $\phi_{\tt es}.$ Directly displaying $\varphi_{\text{\tiny es}}$ in the region of interest, rather than having to infer it from $\varphi_{\text{\tiny es}}$ at the protein surface, provides a more meaningful view of electrostatics than a surface

were rendered with slight transparency in order to show the bound ligand (retinol) in white. The top- and third-ranked ASPs, shown in magenta, appear on the left and right, respectively. Protein residues lying within 8 Å of the two ASPs are diplayed in ball-and-stick style and colored according to atom type. This view of the buried volume inscribing the binding pocket of retinol binding protein (1rbp) was obtained by rendering PASS probe spheres at 1.8 Å radius and coloring them orange. The probes

representation. Favorable hydrogen-bond donor and acceptor positions can likewise be more meaningfully defined within the manifold of probe spheres than on a protein surface. Interaction-based coloring schemes are not presently automated within PASS, however.

Comparative Study

Many procedures for characterizing and visualizing protein cavities have been presented in the past and, while all differ substantially from PASS, comparative study serves to highlight some of PASS'S strengths and weaknesses. First, almost all prior methods identify cavity regions using some type of regular grid [2, 5, 6, 8-11, 23-26]. A grid simply provides the coordinates of points lying in cavities, which are then used in some fashion to identify boundaries with the protein and, for all but internal voids, with empty space. One disadvantage of using a grid is that its storage consumes memory unnecessarily. Likewise, uncertainties arise relating to the possible dependence of results upon grid spacing or positioning. Orientational dependence was indeed found in the program POCKET [9, 24]. The advantage of implementing a grid is purely algorithmic, as there is no physical reason to use regular geometry when it is well known that protein packing and protein surfaces are extremely irregular [27], if not fractal [28]. The PASS algorithm captures this irregularity by using geometry to project outward from the known atomic coordinates in order to inscribe cavity regions. Although this sort of protein-based approach has been taken by other groups [7, 8, 29, 30], the geometry employed in these studies differ significantly from PASS. Every point in a protein cavity may be thought to represent a sphere that lies exactly tangential to the protein surface. The radius of this sphere is the distance of closest approach, and

the sphere generally touches the protein at one, two, or three points (i.e. atoms). Several authors have used this correspondence (in reverse) to define points lying in cavity regions by specifying a set of probe spheres and using geometry (one-, two-, and/or three-point) to project outward from the protein atoms into the cavity region. For instance, cavity points have been obtained by placing tangential spheres midway between atoms [8, 30] and by rolling a probe sphere over the set of atomic spheres representing the protein [7, 10]. The resulting probe coordinates usually correspond to one or two points of tangency with the protein. However, the sterically optimal packing of a spherical probe against the protein has the probe lying tangent to exactly three atoms, just as a marble that is dropped onto a pile of other marbles will come to rest touching exactly three. Unlike any previous method, PASS uses only three-point geometry to obtain points lying in cavity regions. Consequently, the shape of the rendered manifold of PASS probes represents maximally favorable sterics. One might expect that positioning the probe spheres using only three-point geometry would give rise to a spotty distribution of probes and poorly-shaped buried volume. Practical experience has shown, however, that PASS produces smooth well-shaped buried volume manifolds (e.g. Figure 6), and that using only three-point geometry helps minimize the number of points required to fill protein cavities.

The most ambiguous aspect of cavity characterization lies in deciding where to place the boundary between the pocket and free space; i.e. determining "sea-level" [8]. Several studies appearing in the literature [5, 6, 10] operate by filling fully-enclosed volumes (e.g. "flood fill") and, thus, require an artificial means of closing-off the mouths of cavities in order to define sea-level. With many other methods [8, 9, 23, 24], the definition of sea-level arises as a biproduct of the algorithm itself and has no physical significance. The work of Kuntz et al. [7] is closest in spirit to the present study with

regard to sea-level definition. Their method uses the Connolly surface as a substrate for sphere growth and rejects spheres based upon two criteria: (1) an angular condition, which essentially selects concave regions over flat or convex ones, and (2) a 5Å upper bound on radial sphere growth. Their radial constraint is expected to generate sea-level boundaries similar to those found with PASS. Unlike any other method of cavity detection, however, PASS explicitly defines sea-level according to a quantity of known physical significance, solvent accessibility, as quantified by burial counts (BC).

Computational speed and ease of use are also important criteria for comparison and, in these categories, PASS rates favorably with all published methods. Although reliable speed comparison is difficult since few studies report CPU times [2, 8, 10, 26, 30] and others report times on old processors [5, 7, 11, 29], the fastest CPU times reported in the literature belong to the LIGSITE program of Hendlich et al. [24], which can analyze a moderate-sized protein (at 0.5 Å grid spacing) in about 15 seconds. This is approximately the same speed demonstrated by PASS; however, the LIGSITE CPU time ramps-up very steeply as the grid spacing is reduced (twelve-fold slower at 0.25 Å), and the authors provide only a cursory investigation of the dependence of their results upon grid scale. PASS also excels in useability in that it requires no startup cost to use because the inputs are simple and the outputs are standard. A few programs in the literature appear to have shared this design perspective [8, 23, 24, 29]. The input to PASS is restricted to a PDB file(s) specifying the protein(s) coordinates plus a few optional command-line flags that can be used to control more detailed behavior. PASS produces versatile output in the form of standard PDB files, which allows the user to immediately view the results using whatever modeling tool is already familiar.

Although the roots of the PASS algorithm are geometrical, not statistical mechanical, it is useful in light of PASS'S success in identifying known binding sites to examine a posteriori which physical interactions (if any) are mimicked in PASS. PASS takes the philosophy that the task of binding site prediction is to identify regions of space along the protein where an arbitrary ligand might tightly bind. A physically welldesigned algorithm should incorporate as many contributions to binding affinity as possible without sacrificing applicability over a wide range of ligands. Binding affinity is dictated by the free energy change induced by the binding process, ΔG_{bind} , which is known to have numerous contributions, both enthalpic and entropic. While there is disagreement regarding some factors [31-33], sterics, electrostatics, hydrogen-bonding, and solvation are known to be major players [34-38]. Of course, the fine details of ligand size, shape, flexibility, hydrogen-bonding propensity, and polar character are crucial determinants of $\Delta \textbf{G}_{\text{\tiny bind}}\text{;}$ however, the observation that proteins usually bind ligands strongly at only a few sites suggests that one might be able to use coarse details of ligand character (e.g. size) to identify these few binding sites. Thus, PASS must make its predictions using only binding affinity contributions that depend upon coarse ligand character. Two important contributions to △G_{bind} fit this description: solvation and sterics. Ligand binding is always favored entropically by the desolvation of molecular moieties, regardless of polarity [39]. This is because the hydration of any atomic group causes net ordering in the first few solvation shells of surrounding water. The PASS algorithm mimics this desolvation effect via the rejection of probe spheres based upon burial count. Likewise, the formation of steric (i.e. enthalpic van der Waals) contacts between ligand and protein is generally favorable, regardless of the ligand. Although the steric contribution to ΔG_{bind} depends upon detailed molecular shape, the hardness of the steric interaction precludes any ligand from binding tightly to the protein without adopting a configuration consistent with the size and shape of the buried volume. PASS includes sterics by imposing an implicit size and shape criterion upon which regions of buried volume can be identified as active site points (ASPs). In particular, a region of buried volume that is either too small or too narrow to contain even a small ligand without steric clash will never contain an ASP because too few probe spheres will lie in the region for any one to have a large enough probe weight to be selected as an ASP. The PASS parameters (esp. R_o and PW_{min}) have been empirically tuned to make this distinction reliably.

Similar arguments cannot be made regarding the electrostatic interaction, for instance, which may contribute either attractively or repulsively to ΔG_{bind} , depending upon ligand charge and polarity. Several other programs in the literature, however, implement energetics in an effort to use other factors (e.g. hydrophobicity, electrostatics) to help identify and rank potential binding site cavities [2, 5, 26]. Most notably, Ruppert et al. present the most impressive results in the literature with regard to accuracy in locating binding sites [2]. Their method uses an in-house empirical forcefield to dock three different types of probes (steric, H-bond donor, H-bond acceptor) against the protein binding site. This maps out a set of favorable "probe" positions and permits the identification of "sticky spots" on the protein, which are used as central points to carve-out individual pockets. Although they provide no CPU times, their algorithm requires significant docking and, thus, is probably considerably slower than PASS or LIGSITE. They apply this method to the prediction of binding sites in a

set of 11 PDB complexes and find that their top-ranked pocket contains the ligand in every case. Nine of these eleven cases, however, are included in the PASS test set (Table 3), and strikingly similar results are obtained with PASS. The top-ranked ASP is a binding site hit in eight of the nine overlapping trials, and the second ASP is a hit in the other case. Although factors such as electrostatics and hydrogen-bonding certainly contribute to the affinity of a ligand for a particular cavity, the perspective taken in PASS is that only the most ligand-independent contributions to binding (i.e. size, shape, and burial extent of cavities) should contribute to binding site prediction. Energetic factors that strongly modulate specificity should be addressed case-by-case, either manually by the user or via downstream software (e.g. docking). Thus, the PASS ASP regions are completely inclusive with regard to electrostatic and hydrogen-bonding character, with the intention that each will be reinvestigated individually in light of a particular application or desired complementarity. PASS'S success in predicting binding sites without electrostatics and hydrogen-bonding constitutes a remarkable restatement of the importance of solvation and sterics in binding.

Conclusions

PASS is a simple cavity detection tool that has utility in both virtual screening and interactive molecular modeling environments. PASS was shown to reliably predict the locations of known binding sites using a set of 20 apo-protein x-ray structures from the PDB, thereby establishing its utility as a front-end to fast docking and virtual screening. Furthermore, for the price of a thirty-second investment, PASS provides the user a meaningful view of the buried volumes in a protein, suggests alternate binding

sites, and simplifies detailed visualization of potential binding hot-spots. PASS is freely available in unix executable form (SGI Irix, SunOS, Linux) to all users via the Protein Data Bank web site under "PDB-related Software" (http://www.pdb.bnl.gov/pdb-docs/software.html).

Acknowledgements

The authors thank Carla Mattos and Dagmar Ringe for providing their elastase structure with bound organic probes and Zelda Wasserman for critical review of the manuscript. GPB thanks the DuPont Pharmaceuticals Company for postdoctoral support during this work.

App ndix A - Three-Point Sph r G ometry

The sphere placement algorithm in PASS hinges upon solution of the following geometry problem. Given three "base" spheres (i, j, and k) of known positions (\mathbf{R}_{i} , \mathbf{R}_{j} , $\mathbf{R}_{\mathbf{k}}$) and radii $(\sigma_{\!_{i}},\,\sigma_{\!_{j}},\,$ and $\sigma_{\!_{k}}$), at what two positions $(\mathbf{R}_{\!_{p}})$ can a "probe" sphere of radius $\sigma_{\!_{p}}$ be placed so as to be exactly tangential to all three base spheres? We seek the general solution, in which none of the radii are necessarily equal and the coordinates of the base spheres are unconstrained. Figure A1 illustrates the situation: sphere perimeters are outlined, base sphere centers are labelled "i", "j", "k", the "base plane" (ij-k) is shaded, the probe sphere is shaded and labelled "p", and vectors are denoted with uppercase lettering while points and distances are in lowercase. The global origin coordinates is labelled "O", while a local frame is defined by unit vectors {x', y', z'}. There are, in general, two solutions for $R_{\rm p}$, one on either side of the base plane. However, one must first impose several conditions to ensure the existence of a solution. If any pair {i,j} of base spheres are too far apart, the probe will be unable to bridge the gap, so one must first ensure that $|\mathbf{R}_{\mathbf{j}} - \mathbf{R}_{\mathbf{i}}| \le \sigma_i + \sigma_j + 2\sigma_p$, and likewise for pairs {i,k} and {j,k}. One must also make sure that no base sphere lies entirely within the volume occupied by the other two. With these conditions satisfied, the coordinates R_p of the two valid probe sphere positions may be written

$$\mathbf{R}_{\mathbf{p}} = \mathbf{R}_{\mathbf{b}} \pm h \mathbf{z}', \tag{A.1}$$

where h is the height of the probe above the base plane, and \mathbf{z}' is a unit normal to this plane. To be precise, the local coordinate frame $\{\mathbf{x}', \mathbf{y}', \mathbf{z}'\}$ is right-handed, with \mathbf{x}'

lying along R_i - R_i and z' pointing out of the base plane in the direction of $x' \times (R_k - R_i)$. The right triangle i-b-p gives the height

$$h = \sqrt{\left(\sigma_i + \sigma_p\right)^2 - \left|\mathbf{R}_b - \mathbf{R}_i\right|^2} . \tag{A.2}$$

The vector \mathbf{R}_{b} from O to the point of projection of the probe onto the base plane, b, can be written vectorially as

$$\mathbf{R}_{b} = \mathbf{R}_{1} + \left(\mathbf{T}_{11} - \mathbf{R}_{1}\right) + \mathbf{U}, \tag{A.3}$$

which leaves T_{ij} and U undetermined. In general, point b need not lie on the interior of triangle i-j-k, as drawn, but the equations are the same in either case. U can be eliminated from Eqn. (A.3) by observing that

$$\mathbf{U}\cdot(\mathbf{T}_{\mathbf{i}\mathbf{k}}-\mathbf{R}_{\mathbf{i}})=\mathbf{V}\cdot(\mathbf{T}_{\mathbf{i}\mathbf{k}}-\mathbf{R}_{\mathbf{i}}),\tag{A.4}$$

where $V \equiv T_{ik} - T_{ij}$, and U points in the direction of y'. Solving Eqn. (A.4) for U yields

$$U = \frac{(T_{ik} - T_{ij}) \cdot (T_{ik} - R_{i})}{(T_{ik} - R_{i}) \cdot y'} y'.$$
 (A.5)

The remaining vectors $\{T_{ij}, T_{ik}, T_{jk}\}$, which run from O to points $\{t_{ij}, t_{ik}, t_{jk}\}$, are found by considering the triangles formed by two base spheres and the probe sphere. For instance, the triangle i-j-p comprises two right triangles, i- t_{ij} -p and j- t_{ij} -p. Applying the Pythagorean theorem to each enables determination of the distance from i to t_{ij} via a quadratic equation, which yields the desired vector

$$\mathbf{T}_{ij} = \frac{1}{2} \left(\mathbf{R}_i + \mathbf{R}_j \right) + \frac{\left(\sigma_i + \sigma_p \right)^2 - \left(\sigma_j + \sigma_p \right)^2}{2 \left| \mathbf{R}_j - \mathbf{R}_i \right|^2} \left(\mathbf{R}_j - \mathbf{R}_i \right). \tag{A.6}$$

Swapping indices in Eqn. A.6 gives analogous equations for T_{ik} and T_{jk} . The normal vector, \mathbf{n} , to the plane of tangency $(\alpha-\beta-\gamma)$ may also be of interest:

$$\mathbf{n} = C \cdot \left[\sigma_{k\sigma}^+ \mathbf{r}_i \times \mathbf{r}_i + \sigma_{i\sigma}^+ \mathbf{r}_i \times \mathbf{r}_k + \sigma_{i\sigma}^+ \mathbf{r}_k \times \mathbf{r}_i + \left(\sigma_{k\sigma}^- \mathbf{r}_i + \sigma_{i\sigma}^- \mathbf{r}_i + \sigma_{i\sigma}^- \mathbf{r}_k \right) \times \mathbf{r}_p \right], \tag{A.7}$$

where $\sigma_{ab}^{\pm} \equiv \sigma_b \pm \sigma_a$, $C \equiv \sigma_p \big/ \sigma_{ip}^+ \sigma_{jp}^+ \sigma_{ip}^+$, and **n** is not of unit magnitude.

Figure A1 - Sphere Geometry

Ref rences

- 1 Ringe, D., Cur. Op. Struct. Biol., 5 (1995) 825.
- 2 Ruppert, J., Welch, W. and Jain, A.N., Prot. Sci., 6 (1997) 524.
- 3 Connolly, M. L., J. Appl. Crystallogr., 16 (1983) 548.
- 4 Nicholls, A., Bharadwaj, R. and Honig, B., Biophys. J., 64 (1993) A166.
- 5 Ho, C. M. W. and Marshall, G.R., J. Comput.-Aided Mol. Design, 4 (1990) 337.
- 6 Kleywegt, G. J. and Jones, T.A., Acta Cryst., D50 (1994) 178.
- 7 Kuntz, I. D., Blaney, J.M., Oatley, S.J., Langridge and R., Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.
- 8 Laskowski, R. A., J. Mol. Graphics, 13 (1995) 323.
- 9 Levitt, D. G. and Banaszak, L.J., J. Mol. Graphics, 10 (1992) 229.
- 10 Masuya, M. and Doi, J., J. Mol. Graphics, 13 (1995) 331.
- 11 Voorintholt, R., Kosters, M.T., Vegter, G., Vriend, G. and Hol, W.G.J., J. Mol. Graphics, 7 (1989) 243.
- 12 Stouten, P. F. W., Froemmel, C., Nakamura, H. and Sander, C., Molecular Sim., 10 (1993) 97.
- 13 Cerius2 v3.8, Molecular Simulations Inc., San Diego, 1998.
- 14 InsightII v97.2, Molecular Simulations Inc., San Diego, 1998.
- 15 MOE v1997.09, Chemical Computing Group Inc., Montreal, 1997.
- 16 Quanta v97.1003, Molecular Simulations Inc., San Diego, 1997.
- 17 RasMol v2.6, Roger Sayle, Hertfordshire U.K., 1997.
- 18 Sybyl v6.5, Tripos Inc., St. Louis, 1998.
- 19 Kurita, T., Pattern Recognition, 24 (1991) 205.
- 20 Mattos, C., and Ringe, D., Nature Biotechnology, 14 (1996) 595.
- 21 Ringe, D., Personal Communication, 1998.
- 22 Hurley, J. H., Cur. Op. Struct. Biol., 6 (1998) 770.
- 23 Delany, J. S., J. Mol. Graphics, 10 (1992) 174.
- 24 Hendlich, M., Rippmann, F. and Barnickel, G., J. Mol. Graphics and Modelling, 15 (1997) 359.

- 25 Kisljuk, O. S., Kachalova, G.S. and Lanina, N.P., J. Mol. Graphics, 12 (1994) 305.
- Young, L., Jernigan, R.L. and Covell, D.G., Protein Science, 3 (1994) 717.
- 27 Kurochkina, N. and Privalov, G., Prot. Sci., 7 (1998) 897.
- 28 Lewis, M. and Rees, D.C., Science, 230 (1985) 1163.
- Del Carpio, C. A., Takasashi, Y. and Sasaki, S., J. Mol. Graphics, 11 (1993) 23.
- Williams, M. A., Goodfellow, J.M. and Thornton, J.M., Prot. Sci., 3 (1994) 1224.
- 31 Brady, G. P. and Sharp, K.A., Cur. Op. Struct. Biol., 7 (1997) 215.
- 32 Holtzer, A., Biopolymers, 35 (1995) 595.
- Murphy, K. P., Xie, D., Thompson, K.S., Amzel, L.M. and Freire, E., Protein Struct. Funct. Gen., 18 (1994) 63.
- Ajay, Murcko, M.A. and Stouten, P.F.W., In Charifson, P. S. (ed.) Practical Application of Computer-Aided Drug Design, Marcel Dekker, New York, 1997, pp. 355.
- 35 Brady, G. P. and Sharp, K.A., Biophys. J., 72 (1997) 913.
- 36 Gilson, M. K., Given, J.A., Bush, B.L. and McCammon, J.A., Biophys. J., 72 (1997) 1047.
- 37 Kauzmann, W., Adv. Prot. Chem., 14 (1959), 1.
- 38 Makhatadze, G. I. and Privalov, P.L., Adv. Prot. Chem., 47 (1995) 307.
- 39 Madan, B. and Sharp, K.A., J. Phys. Chem., 100 (1996) 7713.
- 40 Bondi, A., J. Phys. Chem., 68 (1964) 441.

Pergamon Bk~organic & Medicinal Chemistry, Vol. 4, No. 9, pp 1421-1427, 1996

Copyright © 1996 Elsevier Science Ltd

Printed in Great Britain. All rights reserved

PII: S0968-0896(96)00136-8 0968-08%/96 \$15.00+0.00

Structure-Based Design of Parasitic Protease Inhibitors

Rongshi Li/Xiaowu Chen/Baoqing Gong/Paul M. Seizer, b Zhe Li,* Eugene Davidson, ~

Gary Kurzban/Robert E. Miller," Edwin O. Nuzum, f James H. McKerrow, ~'b

*Robert J. Fletterick, "'~ Sarah A. Gillmor/'~ Charles S. Craik, a'~ Irwin D. Kuntz,"

Fred E. Cohen a'd and George L. Kenyon a'*

Departments" of "Pharmaceutical Chemistry and hPathology, Veterans Affairs Medical Center, ~Department of Biochemistry

and Biophysics, and aPharmacology and Medicine, Universi~ of California, San Francisco, CA 94143-0446, U.S.A.

"Department of Biochemistry and Molecular Biolog); Georgetown University, Washington DC 20007, U.S.A.

tDivision of Experimental Therapeutics, Walter Reed Army Institute of Research, Washington, DC 20307-5100, U.S.A.

Abstract-To streamline the preclinical phase of pharmaceutical development, we have explored the utility of structural data on

the molecular target and synergy between computational and medicinal chemistry. We have concentrated on parasitic infectious

diseases with a particular emphasis on the development of specific noncovalent inhibitors of proteases that play a key role in the

parasites' life cycles. Frequently, the structure of the enzyme target of pharmaceutical interest is not available. In this setting we

have modeled the structure of the relevant enzyme by virtue of its sequence similarity with proteins of known structure. For

example, we have constructed a homology-based model of falcipain, the trophozoite cysteine protease, and used the computa-

tional ligand identification algorithm DOCK to identify in compuo enzyme inhibitors including oxalic bis(2-hydroxy-l-naphthyl-

methylene)hydrazide (1) [Ring, C. S.; Sun, E.; McKerow, J. H.; Lee, G.; Rosenthal, P. J., Kuntz, I. D.; Cohen, F. E., *Proc. Natl*

Acad. Sci. U.S.A. 1993, 90, 3583]. Compound 1 inhibits falcipain (IC,~, 6~M) and the organism in vitro as judged by hypoxanthine

uptake (ICs~, 7~tM). Following this lead, to date, we have identified potent bis arylacylhydrazides (ICs. 150 nM) and chalcones

(IC~o 200 nM) that are active against both chloroquine-sensitive and chloroquine-resistant strains of malaria. In a second

example, cruzain, the crystallographically determined structure of a papain-like cysteine protease, resolved to 2.35 A., was avail-

able. Aided by DOCK, we have identified a family of bis-arylacylhydrazides that are potent inhibitors of cruzain (ICso 600 ~tM).

These compounds represent useful leads for pharmaceutical development over strict enzyme inhibition criteria in a structure-

based design program. Copyright © 1996 Elsevier Science Ltd Introduction

More and more successful examples of the design of new ligands based on knowledge of target protein structure have been reported. These include design of noncovalent antiparasitic agents,' 3 rational design of sialidase-based inhibitors of influenza virus replication, 4 design of nonpeptide cyclic ureas as HIV protease inhibitors, ~ structure-based discovery of inhibitors of thymidylate synthase, ~ and structure-based design of inhibitors of purine nucleoside phosphorylase. 7 10 Most structure-based drug design relies on X-ray crystallo-

graphy/NMR spectroscopy" to obtain the appropriate structures to identify new leads and guide lead optimization. Our work on the structure-based drug design of parasitic protease inhibitors has relied upon X-ray crystal structures when available (e.g., cruzain nl 3 for anti-Chagas disease agents), but has relied on a homology-based model structure I ' if neither X-ray nor NMR data are available (e.g., falcipain for antimalarials) to generate leads and guide our lead optimization. Proteases are involved in many important biological processes including protein turnover, blood coagulation, complement activation, l~ hormone processing, ~

*Present address: Ar Qule Pharmaceuticals, Inc., 200 Boston Avenue, Medford. MA [)2155. U.S.A. and cancer cell invasion, l" Thus, they are frequently chosen as targets for drug design and discovery. A

and cancer cell invasion, I" Thus, they are frequently chosen as targets for drug design and discovery. A potential strategy for the treatment of diseases caused by parasites is the design of compounds which selectively inhibit enzymes that are pivotal for survival of the parasite within the host that are part of biochemical pathways that are specific to the parasite. Parasite proteases are attractive target enzymes because of their roles in replication, metabolism, survival and pathology.~7

In the most simple terms, structure-based drug design methods identify favorable and unfavorable interactions between a potential inhibitor and target receptor and maximize the beneficial interactions to increase binding affinity. Although X-ray crystallography continues to be the source of high-resolution information about protein structures, considerable delays often exist between determining the sequence of a protein and solving its structure. Difficulties in protein expression and more commonly in protein crystallization are often responsible for such delays. Currently, no general method exists to predict tertiary structure from amino acid sequences. However, when a protein target is relatively highly homologous to another protein or group of proteins of known structure, a sensible model structure can be proposed. ~s 1421

1422 R. LI et al.

The World Health Organization estimates that 280 million people are infected with malaria ~9 and 1-2 million deaths are reported annually. 2° While various classes of antimalarial agents are available, chloroquine and its derivatives remain the mainstay of therapy against malaria. Unfortunately, the emergence of malarial parasite strains resistant to chloroquine has eroded its efficacyfl I This increases the urgency of the search for novel and cost-effective agents to treat chloroquine-resistant malaria.

Chagas disease is caused by Trypanosoma cruzi, a protozoan parasite that afflicts more than 24 million people in South and Central America. It is the leading cause of heart failure in many Latin American countries. Currently, there is no satisfactory treatment for this parasitic infection. Cruzain, the major cysteine

protease present in T. *cruzi*, is pivotal for the development and survival of the parasite within the host cells. This makes the enzyme a target for potential trypanocidal drugs.

In our previous reports, 1-3 we described a structure-based approach to inhibitor design for antimalarial drug development using models of falcipain, a malaria trophozoite cysteine protease structure. Here, we summarize our progress to date in the structure-based drug design of parasitic protease inhibitors.

Results and Discussion

Lead discovery and optimization

A structure for the malaria cysteine protease, falcipain, was proposed using the X-ray structures of papain and actinidin, two cysteine proteases from plant sources, as a basis for homology modeling? Falcipain has 33% sequence identity with both papain and actinidin. Moreover, ~60% of the conserved sequence centers around the active site regions. The homology-based model of the enzyme provides the template and the DOCK 22 algorithm calculates a set of spheres with approximately atom sized radii to fill the active site cleft. Within DOCK, the quality of a given compound's fit into the binding cleft can be evaluated based on its shape complementarity (contact score) or molecular mechanics interaction energy (AMBER force-field score).

The model structure was then used as a template for a DOCK search of the Fine Chemicals Directory of commercially available small molecules for putative ligands (the Fine Chemicals Directory distributed by Molecular Design Limited Information System, San Leandro, California, is currently known as the Available Chemical Directory). When searching a database of compounds, DOCK examines only the 'best' orientation of the small molecule within the binding cleft (DOCK database screening mode). When a single compound is studied, multiple possible binding modes can also be examined (DOCK single mode). Of course, the initial orientation of the compound is dictated in part by the irregular lattice of sphere centers identified originally. To overcome some of the scoring distortion that this bias could impart, a rigid body minimization algorithm has been developed to move the ligand within the binding cleft and optimize the shape or forcefield scores. 23 Compound 1 [oxalic bis((2-hydroxy-1-naphthylmethylene)hydrazide)] was selected based on its score for shape complementarity. Thirty-one compounds were finally tested and a lead compound 1 was identified as the best inhibitor of the protease. The IC50 value for enzyme inhibition against the substrate benzyloxycarbonyl-Phe-Arg-(7-amino-4-methylcoumarin) was 6 LtM. 3 More importantly, this compound inhibits the growth of parasites in culture. Malaria lacks some of the enzymes required for de novo purine biosynthesis and thus depends on purine salvage

parasite growth as judged by its ability to block hypoxanthine uptake, with an apparent IC50 value of 7 pM.3 Compound 1 fits a model of the active site of the malarial cysteine protease as shown in Figure 1. I-3 The DOCK 22 program placed this lead compound 1 into the enzyme's active site, presumably filling three of the substrate side-chain specificity pockets (subsites \$2, \$1' and to a lesser extent Sa). Beginning with compound 1 as shown in Scheme 1, the following chemical modifications were made in an attempt to identify more active agents: (i) The length of the backbone linking the aromatic rings of 1 was shortened via the construction of asymmetric acylhydrazides, which could have less conformational heterogeneity than the symmetric hydrazides, yet still could fill at least two of the three putative subsites (5 in Table 1). Compounds can be constructed by attaching a third aryl group to the center aromatic moiety to fill all three putative subsites (6 in Table 1). (ii) Heterocyclic acylhydrazides were generated by incorporating nitrogen atoms into aromatic rings both to improve water solubility of the compounds and potentially to enhance electrostatic interactions with His67 in the \$2 site. (iii) To increase the chemical/metabolic stability of the compounds, a four-atom hydrazide linker was replaced with a threeatom ~,13-unsaturated ketone bridge (7 and 8 in Table 1). (iv) Naphthalene, quinoline or isoquinolinc rings were exchanged for substituted phenyl rings on both acylhydrazide and a,13-unsaturated ketone linkers to explore the effective size and electronic character of the putative subsite specificity pocket.

pathways for DNA replication. Compound 1 inhibits

Chemistry, antiparasitic activity and inhibition specificity

Since cost of production is a critically important consideration if the resulting antimalarials and other antiparasitic agents are ever to be developed into therapeutic agents for the world's developing countries, one of our guidelines for the development of antiparasitic agents is that these compounds should be inexpensive to produce. Hence, we developed relatively simple chemistry to prepare both arylacylhydrazide and chalcone derivatives. For both series, the final step is the condensation of an aldehyde with either acylhydrazines via imine formation 2 or substituted methylketones Parasitic protease inhibitors 1423

via a Claisen-Schmidt condensation. 1 Since there are a variety of commercially available aldehydes and methylketones as starting materials, a large number of target compounds can be produced relatively inexpensively. For preparation of the key acylhydrazine intermediates, a published procedure was followed)

After some 400 bis arylacylhydrazide and chalcone derivatives were synthesized, they were screened against three different antiparasitic screening systems. Antimalarial activities were evaluated based on an

assay of parasitemia of red blood cells quantitated by a fluorescence-activated cell sorter (FACS) analysis 24 and the more classical assay of metabolic viability, hypoxanthine uptake, 1 described below.

For the FACS analysis, synchronized trophozoite-stage parasites were cultured in human blood at various inhibitor concentrations. The parasites were allowed to mature, the host cell was lysed and parasite invasion of

*Figure 1. A putative binding orientation of the "lead" compound (1) bound to the active site of the malarial cysteine protease. Key residues and

the binding subsites of the protease are colored as cyan (S; site), yellow (S/catalytic site), and purple (SJS~ site). For the lead compound, carbon

is shown in green, oxygen in red, and nitrogen in blue.

1424 R. L~ et al.

flesh red blood cells was investigated. Using propidium iodide to stain DNA, the FACS can discriminate between infected and uninfected cells and between stages of intracrythrocytic parasite development as only infected red blood cells contain DNA. 24 The hypoxanthine uptake system assessed the intrinsic antimalarial activity in vitro against the erythrocytic asexual life cycle (blood schizontocides). Two Plasmodium falciparum clones, CDC/Indochina III (W2) and CDC/Sierra Leone I (D6), 2~ were used for all antimalarial assays. W2 is resistant to chloroquine, quinine, and pyrimethamine and susceptible to mefloquine. D6 is resistant to mefloquine and susceptible to chloroquine, quinine and pyrimethamine. The resistance indexes are defined as ratios of the IC5, of a compound against W2 to the IC5. of the same compound against D6. This index is used as a factor to evaluate whether or not novel antimalarials are potential agents against chloroquine-resistant parasites. Chloroquine and mefloquine were used as controls in the assays. The third screening system involved the assay of two. cysteine proteases, cruzain and cathepsin B. ~ Enzymatic activity of these two proteases was measured by following the cleavage of fluorogenic substrates. Structure-activity relationships (SAR) for some bis arylacylhydrazide and chalcone derivatives were reported previously, t2 Here, we summarize antiparasitic activity and enzyme inhibition of a group of hydrazide and chalcone derivatives. As shown in Table I, the lead compound 1 showed little specificity in both antimalarial activity and enzyme inhibition. Cathepsin B is a mammalian cysteine protease from bovine spleen with 87% sequence identity to a human cathepsin B and papain is a cysteine protease from papaya. For comparison, inhibition activities of both cathepsin B and papain by hydrazide and chalcone derivatives are included in Table 1. Compound 2 is a more specific inhibitor of cruzain, with an IC~, value of 600 nM, than the rest of the compounds shown in Table 1. Compound 5 is the best in vitro antimalarial found in the acylhydrazide series with an IC~. value of 150 riM. The most noteworthy example is compound 6. The ICs0 value as an antimalarial is 450 nM while the IC~, value as a cathepsin B inhibitor is at least 400-fold higher (Table 1). This suggests that compound 6 is a more

```
specific inhibitor of the malarial cysteine protease and
 will be less likely to be toxic to the host. Compound 7
 is the best in vitro antimalarial compound found in the
 chalcone series to date with an IC~, value of ~ 200 nM.
 The differences in inhibitory specificity shown above
 may stem from the fact that the active site residues of
 these cysteine proteases are quite different, as shown
 ',~ N'~. N N~ N.'~
 Η
 (1)
 l vary size of rings
 vary size of tinker
 H \sim OR
 improve water solubility
 Y< H '~z,;~"- OR~
 RZ ~ vary size of rings
 R3 \sim RIO.OR6
 R~" ]R 5 v H "~z~OR7
 RI--R 5 = H, OH, OCH3, N(CH3) 2
 R6, R7 = H, CH 3
 Scheme I. Lead' optimization by chemical modification.
 change
 original lead
 found by DOCK
 Rl = H, OH, OCH 3
 R 2 = H, OH, OCH 3
 R 3 = H, OH, OCH 3
R4= H, C1
R5 = H, CH3
R6 = H, CH3, CH2Ar
X, YorZ=N orCH
X~. RI ¢~Z ..,~...~ R6
Y-f~' 6 R~
vary size of rings X, Y or Z = N or CH
R2 R
R3~RI/£ RI0~ R8
R4~R7
R 5 O R6
RI--Rlo = H, F, C1, Br, NO2, CF3, OH, OCH3, N(CH3)2
R \sim = H, CH 3
to N-containing heterocycles
I improve metabolic stability
R1 = H, C1, OH, OCH 3
R2 = H, C1, OH, OCH 3
R 3 = H, CH 3
R4 = H, C1
R5 = H, OCH 3
R6 = H, OCH 3, imidazole
Parasitic protease inhibitors 1,125
in Table 2, especially the residues from the SiS3 site
and part of the Sdcatalytic site. The most likely binding
orientations of inhibitors involve extensive interactions
between inhibitor molecules and the three binding
subsites. The highly conserved SI' and catalytic binding
```

subsites provide basic interactions for binding, while the diverse residue types in the SiS3 binding subsite among different proteases result in binding specificity. A thorough discussion of structural implications of binding specificity will be presented in a separate manuscript. '~ Conclusions

Structure-based drug design typically depends upon the

Structure-based drug design typically depends upon the experimental determination of the target structure by either X-ray crystallography or NMR spectroscopy. We have circumvented this step and relied exclusively on the amino acid sequence homology between the Table 1. Antiparasitic activity and enzyme inhibition of some hydrazide and chalcone derivatives

Compds Structure Antimalarial Cruzain b Cathepsin Papain ~'

activity B"

1 ~ . ~ @ 7 '0 (1) 22 (1) 19 (1)

(i.450~,. r..~ 0.:30 ~~0.19@ 8 i 0.. 10 0 (1) 3 (1

0.720 ~. ~ 6(1)

"FACS assay. IC~, in j.iM.

~'% Enzyme inhibition 0.1M inhibitor).

~ND: not determined.

aHypoxanthine uptake assay, IC~,, of W2 (chloroqulne-resistance strain) in laM.

"Hypoxanthine uptake assay, IC~,, of D6 (chh)roquine-sensitive strain) in [aM.

'IC~. In I~M.

malaria enzyme and other cysteine proteases of known structure to support our antimalarial program. A homology based model of the malaria enzyme served as the template for a computer-based ligand docking calculation that identified a useful lead compound for a group of cysteine proteases in our antiparasitic program. Lead optimization was achieved by a combined approach of computational and synthetic analysis. Derivatives of the lead were first optimized for fit using the computer docking program, and then numerous candidate compounds were synthesized and tested experimentally. Despite the lack of a detailed experimental structure of the target enzyme or the enzyme-inhibitor complex, we have been able to identify compounds with increased potency. To date, we have identified a potent bis arylacylhydrazide, 5 (IC50 150 nM), and a chalcone, 7 (IC~0~200 nM), that are active against both chloroquine-sensitive and chloroquine-resistant strains of malaria. Due to the $\sim 30\%$ sequence identity between cruzain and falcipain, a subgroup of compounds generated in the malaria project (selected using DOCK as a guide) were also screened against cruzain. The best cruzain inhibitor so far, hydrazide 2, had an ICs, value of 600 nM. Experimental

Melting points were measured on a Thomas-Hoover 'Unimelt apparatus and are uncorrected. TLC (silica gel 60 GF254, Merck, Darmstadt) was used to monitor reactions and check product homogeneity. NMR spectra at 300 MHz for ~H and 75 MHz for ~3C (tetramethylsilane as internal standard) were recorded on a General Electric QE-300 spectrometer. Chemical ionization mass spectrometry (CIMS) spectra were obtained at the UCSF Mass Spectrometry Facility, A. L. Burlingame, Director. Elemental analyses were performed by the University of California, Berkeley, Microanalytical Laboratory and were within _+0.4% of the theoretical values. All starting materials were purchased from Aldrich Chemical Company, Inc. General procedure for condensation of aldehyde with

To a solution of the aldehyde (1 mmol) in methanol (20 mE) was added the corresponding acylhydrazine (1 mmol). The resulting mixture was heated at reflux at 65 °C for 3 h. In most cases, a precipitate was observed after 10 min. The precipitate was filtered, washed with Table 2. Active site residues of cysteine proteases SI S~/catalytic site 82/,3

hydrazine (Method A for 2 - 6)

Proteases 19 177 175 25 159 67 68 69 133 160 205 207
Papain Gin Trp Ash Cys His Tyr Pro Trp Val Ala Set Phe
Actinidin ---' - - lie Thr Ala - - Met Ser
Falcipain His - - Phe Asn Ser Glu - Cruzain Leu Met Asn Ala Gly Glu Ser
Cathepsin B Glu - - Ser Ala - - Glu Val
"Same residue wpe as papain..
1426 R. LJ et al.

hot methanol (50 mL) and dried under vacuum to give a solid (usually yellow). If needed, additional purification was performed by recrystallization using appropriate solvents.

Preparation of acylhydrazines from the corresponding acid or ester (Method A1)

A mixture of the acid (10 mmol) and concd H2SO 4 (5 mL) in MeOH (25 mL) was heated at reflux for 12-24 h. The mixture was poured onto ice (100 mL). The resulting precipitates were collected, washed with HzO and recrystallized from EtOH:H20 to give the pure methyl ester. The methyl ester was then dissolved in EtOH (80 mL) and treated with hydrazine monohydrate (5.01 g, 100.0 mmol). The resulting mixture was stirred overnight at 20°C and then concentrated to give the corresponding acylhydrazine, which was further purified by recrystallization from EtOH/H20. Compound 1 [oxalic bis(2-hydroxy-l-naphthylmethylene)hydrazide] was reported previously. 2 Chalcone

derivatives 7 [1-(2,5-dichlorophenyl)-3-(4-quinolinyl)-2-propen-l-one] and 8 [1-(3,4-dimethoxyphenyl)-3-(3-(2-chloroquinolinyl))-2-propen- 1-one] were prepared via a Claisen-Schmidt condensation also described previously) 2'-Hydroxy-6'-methoxynaphthylacyl-(2.hydroxy-l.naphthylmethylene)hydrazide (2). A 70% yield; mp >280 °C; ~H NMR (DMSO-d6): 8 12.84 (s, 1 H), 12.20 (br s, 1 H), 11.20 (br s, 1 H), 9.59 (s, 1 H), 8.46 (s, 1 H), 8.36 (d, 1 H, J = 8.4 Hz), 7.96 (d, 1 H, J = 9.0 Hz), 7.91 (d, 1 H, J=8.1 Hz), 7.74 (d, 1 H, J=9.0 Hz), 7.63 (t, 1 H, J=.6 Hz), 7.43 (t, 1 H, J=7.5 Hz), 7.28 (d, 1 H, J=9.0 Hz), 7.22 (dd, 1 H, J=2.0, 9.1 Hz), 3.90 (s, 3 H); ~3C NMR (DMSO-d6): 8 163.08, 158.14, 155.73, 152.16, 147.48, 132.89, 131.71, 131.48, 129.25, 128.93, 127.81, 127.76, 127.72, 127.44, 123.56, 121.31, 121.00, 119.94, 118.21, 110.94, 108.65, 106.45, 55.17; CIMS: *m/z* (MH ÷) 387.3. Anal. (C23H18N204): ealcd: C, 71.49; H, 4.70; N, 7.25. Found: C, 71.09; H, 4.84; N, 7.23%. 2'-Hydroxynaphthylacyl. (2, 8-dihydroxy- 1-naphthylmethylene)hydrazide (3). A 88% yield; mp 274 °C (dec); IH NMR (DMSO-d6): 8 14.03 (s, 1 H), 12.54 (br s, 1 H), 11.31 (br s, 1 H), 10.47 (s, 1 H), 10.37 (s, 1 H), 8.53 (s, 1 H), 7.96 (d, 1 H, J=8.1 Hz), 7.87 (d, 1 H, J=9.0 Hz), 7.80 (d, 1 H, J = 8.4 Hz), 7.54 (t, 1 H, J = 7.5 Hz), 7.39 (m, 3 H), 7.22 (m, 2 H), 7.08 (d, 1 H, J = 7.2 Hz);13C NMR (DMSO-d6): 8 163.80, 159.39, 154.34, 153.30, 153.02, 135.93, 133.51, 130.26, 130.06, 128.66, 128.28, 126.73, 125.91, 123.82, 123.71, 121.72, 120.50, 119.80, 119.43, 112.51, 110.67, 108.87; CIMS: m/z (MH') 373.3. Anal. (C=H16N204"0.2H20): calcd: C, 70.28; H, 4.40; N, 7.45. Found: C, 70.45; H, 4.58; N, 7.40%. 2'-Hydroxynaphthylacyl-(2, 5-dihydroxy- 1 -naphthylmethylene)hydrazide (4). A 74% yield; mp >280 °C; ~H NMR (DMSO-d6): 8 12.81 (s, 1 H), 12.23 (s, 1 H), 11.29 (s, 1 H), 10.22 (s, 1 H), 9.52 (s, 1 H), 8.52 (s, 1 H), 8.20 (d, 1 H, J=9.2 Hz), 7.59 (d, 1 H, J=8.1 Hz), 7.80 (d, 1 H, J=8.2 Hz), 7.71 (d, 1 H, J=8.6 Hz), 7.54 (t, 1 H, J=7.5 Hz), 7.41 (m, 3 H), 7.16 (d, 1 H, J - 9.2 Hz), 6.80 (d, 1 H, J=7.5 Hz); 13C NMR (DMSO-d6) 8 163.04, 158.38, 154.10, 153.89, 148.09, 135.93, 133.39, 130.52, 128.66, 128.52, 128.32, 127.01, 126.78, 125.84, 123.85, 119.84, 118.93, 117.08, 111.40, 110.60, 108.29, 106.46; CIMS: rn/z (MH +) 373.2. Anal. (C22Ht6N204"0.5H20): calcd: C, 69.28; H, 4.49; N, 7.35. Found: C, 69.35; H, 4.54; N, 7.27%. 2',4'-Dihydroxyphenylacyl- (2-hydroxy-l-naphthylmethylene)hydrazide (5). A 81% yield; mp >280°C; ~H NMR (DMSO-d6): 8 12.83 (s, 1 H), 12.18 (br s, 1 H), 12.01 (br s, 1 H), 10.35 (br s, 1 H), 9.54 (s, 1 H), 8.32 (d, 1 H, J = 8.6 Hz), 7.88 (m, 3 H), 7.62 (t, 1 H, J = 7.6)Hz), 7.42 (t, 1 H, J = 7.4 Hz), 7.26 (d, 1 H, J = 8.9 Hz), 6.47 (d, 1 H, J=8.8 Hz), 6.43 (s, 1 H); ~3C NMR

(DMSO-d6): 8 164.58, 162.94, 161.90, 158.02, 146.90, 132.72, 131.67, 129.96, 128.94, 127.80, 127.71, 123.54, 120.87, 178.92, 108.66, 107.78, 106.14, 102.93; CIMS: m/z (MH +) 323.1. Anal. (C18HI4N204): calcd: C, 67.08: H, 4.38; N, 8.69. Found: C, 67.04; H, 4.53; N, 8.91%. 2' - Hydroxy-4'- (4-nitrobenzyloxy) phenyacyl- (2,4-dihydroxy-l-naphthylmethylene)hydrazide (6). A 91% yield; mp >270 °C; 1H NMR (DMSO-d6): 8 12.82 (s, 1 H), 12.46 (br s, 1 H), 11.90 (br s, 1 H), 11.03 (br s, 1 H), 9.39 (s, 1 H), 8.25 (d, 1 H, J=8.1 Hz), 8.17 (d, 1 H, J=8.6 Hz), 8.10 (d, 1 H, J=8.3 Hz), 7.91 (d, 1 H, J=8.8 Hz), 7.71 (d, 1 H, J=8.2 Hz), 7.58 (t, 1 H, J = 7.6 Hz), 7.34 (t, 1 H, J = 7.5 Hz), 6.91 (d, 1 H, J = 8.8Hz), 6.61 (s, 1 H), 6.60 (s, 1 H), 5.33 (s, 2 H); ~3C NMR (DMSO-d6): 8 164.23, 162.47, 162.10, 160.37, 157.62, 147.94, 147.07, 144.41, 132.92, 129.41, 128.27, 128.27, 123.66, 123.66, 122.93, 122.50, 120.67, 120.28, 107.75, 107.10, 102.39, 101.34, 100.46, 68.23; CIMS: m/z (MH +) 474.2. Anal. (C2sH19N307"2/3H20): calcd: C, 61.85; H, 4.12; N, 8.66. Found: C, 61.77; H, 4.33; N. 8.67%.

Biological assays

The previously published FACS assay protocol was followed for in vitro antimalarial testing. 24 Hypoxanthine uptake and enzyme (cruzain, cathepsin B and papain) inhibition procedures were also published previously?

Acknowledgments

This work was supported by grants from the Advanced Research Projects Agency (MDA-972-91-J1013; N00014-90-2032), the National Institute of Allergy and Infectious Disease (P01AI35707) and the World Health Organization (WHO 940104). The authors thank Margaret Brown from the Department of Veterans Affairs Medical Center, San Francisco, for excellent technical assistance.

Parasitic protease inhibitors 1427

References

- 1. Li, R.; Chen, X.; Gong, B.; Dominguez, J. N.; Davidson, E.; Kurzban, G.; Miller, R. E.; Nuzum, E. O.; Rosenthal, P. J.; McKerrow, J. H.; Kenyon, G. L.; Cohen, F. E. J. Med. Chem. 1995, 38, 5031.
- 2. Li, Z.; Chen, X.; Davidson, E.; Zwang, O.; Mendis, C.; Ring, C. S.; Roush, W. R.; Fegley, G.; Li, R.; Rosenthal, P. J.; Lee, G. K.; Kenyon, G. L.; Kuntz, I. D.; Cohen, F. E. Chem. Biol. 1994, 1, 31.
- 3. Ring, C. S.; Sun, E.; McKerrow, J. H.; Lee, G.; Rosenthal, P. J.; Kuntz, I. D.; Cohen, F. E. *Proc. Natl Acad. Sci. U.S.A.* 1993, 90, 3583.
- 4. yon Itzstein, M.; Wu, W.-Y.; Kok, G. B.; Pegg, M. S.; Dyason, J. C.; Jin, B.; Phan, T. V.; Smythe, M. L.; White, H. F.; Oliver, S. W.; Colman, P. M.; Vargheses, J. N.; Ryan, D. M.; Woods, J. M.; Bethell, R. C.; Hotham, V. J.; Cameron, J. M.; Penn, C. R. Nature (London) 1993, 363, 418.
- 5. Lam, P. Y. S.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C.

- N.; Ru, Y.; Bacheler, L. T.; Meek, J. L.; Otto, M. J.; Rayner, M. M.; Wong, Y. N.; Chang, C.-H.; Weber, P. C.; Jackson, D. A.; Sharpe, T. R.; Erickson-Viitanen, S. Science 1994, 263, 380.
- 6. Shoichet, B. K.; Stroud, R. M.; Santi, D. V.; Kuntz, I. D.; Perry, K. M. Science 1993, 259, 1445.
- 7. Montgomery, J. A.; Niwas, S.; Rose J. D.; Secrist, III, J. A.; Babu, Y. S.; Bugg, C. E.; Erion, M. D.; Guida, W. C.; Ealick, S. E. J. Med. Chem. 1993, 36, 55.
- 8. Secrist, III, J. A.; Niwas, S.; Rose, J. D.; Babu, Y. S.; Bugg, C. E.; Erion, M. D.; Guida, W. C.; Ealick, S. E.; Montgomery, J. A. J. *Med. Chem.* 1993, 36, 1847.
- 9. Erion, M. D.; Niwas, S.; Rose J. D.; Ananthan, S.; Allen, M.; Secrist, III, J. A.; Babu, Y. S.; Bugg, C. E.; Guida, W. C.; Ealick, S. E.; Montgomery, J. A. J. Med. Chem. 1993, 36, 3771.
- 10. Guida, W. C.; Elliott, R. D.; Thomas, H. J.; Secrist, III, J. A.; Babu, Y. S.; Bugg, C. E.; Erion, M. D.; Ealick, S. E.; Montgomery, J. A. J. Med. Chem. 1994, 37, 1109.
- 11. Fesik, S. W.J. Biomol. NMR 1993,3, 261.
- 12. McGrath, M. E.; Eakin, A. E.; Engel, J. C.; McKerrow, J. H.; Craik, C. S.; Fletterick, R. J. J. Mot Biol. 1995, 247, 251.
- 13. Chen, X.; Li, R.; Gong, B.; Davidson, E.; Dominguez, J. N.; McKerrow, J. H.; Kenyon, G. L.; Cohen, F. E. manuscript in preparation.
- 14. Stryer, L. Biochemistry; Freeman: New York, 1988.
- 15. Thomas, L.; Leduc, R.; Thorne, B. A.; Smeekens, S. P.; Steiner, D. F.; Thomas, G. *Proc. Natl. Acad. Sci. US*, *4*. 1991, 88, 5297.
- 16. Cohen, R. L.; Xi, X. P.; Crowley, C. W.; Lucas, B. K.; Levinson, A. D.; Shuman, M. A. *Blood* 1991, 72, 479.
- 17. McKerrow, J. H.; Sun, E.; Rosenthal, P. J.; Bouvier, J. Annu. Rev. Microbiol. 1993, 47, 821.
- 18. Ring, C. S.; Cohen, F. E. FASEB J. 1993, 7, 783.
- 19. Gibbons, A. Science 1992, 256, 1135.
- 20. Walsh, J.A. Ann. N. Y. Acad. Sci. 1989, 569, 1.
- 21. World Health Organization Malaria Action Program. Trans. R. Trop. Med. Hyg. 1986, 80, 1.
- 22. Kuntz, I. D. Science 1992, 257, 1078; DOCK V 3.0 was used in all initial phases of this work. The current release is DOCK V 3.5. Contact I.D. Kuntz for distribution information.
- 23. Meng, E. C.; Gschwend, D. A.; Blaney, J. M.; Kuntz, 1. D. Proteins 1993, 17, 266.
- 24. Clark, D. L.; Chrisey, L. A.; Campbell, F. R.; Davidson, E. A. Molec. Biochem. Parasitol. 1994, 63, 129.
- 25. Oduola, A. M.; Weatherly, N. F.; Bowdre, J. H.; Desjardins, R. E. In Vitro. Exp. Parasitol. 1988, 66, 86. (Received in U.S~4. 3 October 1995)

Structure-based inhibitor design by using protein models for the devel pment of antiparasitic agents

CHRISTINE S. RING*, EUGENE SUN†, JAMES H. MCKERROW*†‡, GARSON K. LEE†, PHILIP J. ROSENTHAL†, IRWIN D. KUNTZ*8, AND FRED E. COHEN*†\$¶

Communicated by Seymour J. Klebanoff, December 24, 1992 (received for review October 30, 1992)

The lack of an experimentally determined structure of a target protein frequently limits the application of structure-based drug design methods. In an effort to overcome this ilmitation, we have investigated the use of computer model-built structures for the identification of previously unknown inhibitors of enzymes from two major protease families, serine and cysteine proteases. We have successfully used our model-built structures to identify computationally and to confirm experimentally the activity of nonpeptidic inhibitors directed against important enzymes in the schistosome [2-(4methoxybenzoyl)-1-naphthoic acid, $K_1 = 3 \mu M$] and malaria {oxalic bis[(2-hydroxy-1-naphthylmethylene)hydrazide], IC50 = 6 μ M} parasite life cycles.

Proteases are involved in many important biological processes including protein turnover, blood coagulation, complement activation (1), hormone processing (2), and cancer cell invasion (3). Thus, they are frequently chosen as targets for drug design and discovery. Noteworthy examples include the design of angiotensin-converting enzyme inhibitors for the treatment of hypertension (4) and programs to develop human immunodeficiency virus protease inhibitors to block proliferation of the AIDS virus (5). The critical role proteases play in the life cycle of parasitic organisms also makes them attractive drug-design targets for these infectious diseases

In the most simple terms, structure-based drug design methods identify favorable and unfavorable interactions between a potential inhibitor and target receptor and maximize the beneficial interactions to increase binding affinity. Obtaining an accurate structure for the receptor or ligandreceptor complex is a logical step in this process. X-ray crystallography continues to be the source of high-resolution information about protein structures. However, considerable delays often exist between determining the sequence of a protein and solving its structure. Difficulties in protein expression and more commonly in protein crystallization can delay x-ray structure determination.

Currently, no general method exists for predicting tertiary structure from amino acid sequences. However, when a protein target is homologous to another protein or group of proteins of known structure, a sensible model structure can be proposed. Recent comparisons between model and crystal structures permit an assessment of the overall accuracy expected from homology model-built structures (7-9). For a sequence that is 80% identical to a protein of known structure, the expected rms deviation of the core residues is ~0.6 Å (10). The expected rms deviation increases to 1.8 Å when the sequences are only 20% identical. However, model-built structures could still be useful in finding previously unknown lead compounds despite the uncertainties in the lower part of this range if the errors cluster far away from the enzyme active site.

The proteases targeted for inhibitor design in this study are important in establishing schistosome infection or necessary for the maintenance of malarial infection. Schistosomiasis is a snail-borne disease that is contracted by individuals who come into contact with the parasites in infested waters. Infectious larvae (cercariae) secrete an elastase to invade the skin of the human host and initiate infection. Once in the circulatory system, the schistosomes mature and reproduce. Thousands of eggs become trapped in the portal circulation of the liver, and the host immune response leads to portal hypertension. The protease that is implicated in skin penetration has been purified and characterized, and preliminary studies suggest that cutaneous application of an inhibitor of the cercarial elastase might prevent infection (11).

The increased incidence of drug-resistant strains of malaria (especially Plasmodium falciparum) necessitates the search for new therapies. Malaria infection includes an erythrocytic phase that is responsible for all the clinical manifestations of the disease (12). During this phase, erythrocytic trophozoites degrade hemoglobin as a principal source of amino acids. Rosenthal and coworkers (13, 14) have identified a critical cysteine protease that appears to be involved in the degradation of hemoglobin, the parasites' primary source of amino acids. Blocking this enzyme with cysteine protease inhibitors [L-trans-epoxysuccinylleucylamido-(4-guanidino)butane (E64), benzyloxycarbonyl-Phe-Arg-fluoromethyl ketone] in culture arrests further growth and development (15). Thus, this enzyme is a promising target for new modes of antimalarial chemotherapy.

METHODS

Model Construction. Three-dimensional models of the structures of cercarial elastase and trophozoite cysteine protease were built following the approach of Blundell and coworkers (16, 17). Seven mammalian serine proteases, bovine chymotrypsin (18), porcine pancreatic elastase (19), rat mast cell protease (20), human neutrophil elastase (21), rat tonin (22), porcine kallikrein (23), and bovine trypsin (24), were used to derive a structural alignment for cercarial elastase (25). Papain (26) and actinidin (27) were used for trophozoite cysteine protease. The conformations of side chains were retained when possible, and the statistically most likely rotamer was selected when no conformational information was available (17). Loops were placed by using a combination of the loop dictionary and key residue approaches (28, 29). The resulting models were refined by

Departments of *Pharmaceutical Chemistry, Biochemistry and Biophysics, Pathology, and Medicine, University of California, San Francisco, CA 94143-0446

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: P1 and S1, amino acid residues on the acyl side of the scissile bond are denoted Pl, P2, ... Pn, and those on the leaving group side of the scissile bond are denoted as Pl', P2', ... Pn'; corresponding binding sites on the enzyme are S1, S2, . . . Sn and $S1', S2', \ldots Sn'.$ To whom reprint requests should be addressed.

energy minimization with the AMBER potential function (30). Models were validated with several computational strategies including QPACK to probe side-chain volume (31), the profile method of Luthy et al. (32), a Ramachandran map analysis of backbone geometry, and solvent-accessibility calculations (33).

Screening the Fine Chemicals Directory Using DOCK3.0. The two protease model structures were used as receptors for ligand docking. DOCK3.0 is an automatic method to screen small-molecule data bases for ligands that could bind to a given receptor (34). DOCK3.0 characterizes the grooves and invaginations of the active site with sets of overlapping spheres. The generated sphere centers constitute an irregular grid that can be matched with the atom centers of a potential ligand. The quality of fit of a ligand to the binding site is judged either by shape complementarity or by a simplified molecular mechanics force-field energy (estimated interaction energy).

DOCK 3.0 was used to search the Fine Chemicals Directory (Molecular Design Limited, San Leandro, CA) of 55,313 commercially available small molecules. The structures of the small molecules were obtained computationally by using a heuristic algorithm, CONCORD, developed by R. Pearlman at the University of Texas. CONCORD-generated structures are estimated to be \$\infty\$90\% in agreement with those structures optimized by molecular mechanics calculations (35). The Fine Chemicals Directory was chosen over the Cambridge Structural Database of experimentally determined structures because of the ease with which interesting compounds could be obtained.

In a typical DOCK search, the top-scoring 100-200 molecules are examined with 10-50 of these selected for experimental testing (36). Because model protein structures were used instead of crystallographically determined structures, an arbitrarily large number of small molecules were saved. For each enzyme system, the 2200 molecules with the best shape-complementarity scores and the 2200 with the best force-field scores were saved. The resulting 8800 compounds were visually screened in the context of the active site by using the molecular display software MIDASPLUS (37).

Because of the uncertainties inherent in model-built structures, the scores generated by DOCK3.0 did not influence the visual screening process. Instead, compounds were judged solely on how they might interact with the active site in the putative ligand-receptor complex. In an effort to be selfconsistent, the resulting 8800 compounds were screened three times. No compounds were selected during the first screening in an attempt to get acquainted with the systems. During the second and third passes, compounds that filled the site and had potential hydrogen-bonding and electrostatic interactions were selected for further inspection. Only compounds that were chosen on both the second and third screenings were considered further. From this list, an effort was made to choose compounds that were chemically diverse and that appeared to interact with the receptor in different ways. Fifty-two compounds were ultimately chosen for testing against the cercarial elastase, and 31 compounds were chosen for testing against the trophozoite cysteine protease. This screening process took =1 week of effort. As the enzyme-active sites became more familiar with each successive pass, the time needed to examine the ligand-receptor complex shortened.

Of the 52 compounds selected for the cercarial elastase, 33 compounds were from the force-field list, 10 compounds were from the shape list, and 9 compounds appeared on both lists. Of the 31 compounds selected for the malarial protease, 20 compounds were from the shape list, and 11 compounds were from the force-field list. These compounds were ranked as high as 4th and as low as 1939th (out of 2200) by the scores generated by DOCK3.0.

K1 Determination for the Inhibitors Against Cercarial Elastase, Chymotrypsin, and Elastase. Cercarial elastase was purified as described (38). Initial reaction velocities were determined at room temperature for each enzyme by using tetrapeptide thiobenzyl ester substrates in the presence of 20 μ M 4,4'-dithiopyridine and following the absorbance at 324 nM for 1 min after enzyme addition (39). Enzyme concentrations were determined by active-site titration with chloromethyl ketone inhibitors, and used at 1/100th of the lowest substrate concentration. The reaction buffer was 100 mM glycine-NaOH, pH 9.0/2 mM CaCl₂. The specific substrates used were N-succinylalanylalanylprolylphenylalanyl thiobenzyl ester for cercarial elastase and chymotrypsin, and N-succinylalanylalanylprolylalanyl thiobenzyl ester for pancreatic elastase at concentrations from 25 to 500 μ M. Inhibitors were prepared as 100 mM stock solutions in dimethyl sulfoxide and used at concentrations from 0 to 100 µM. Reaction velocities were determined in triplicate for each point and plotted by using the method of Dixon. Data were also plotted using the Hanes transformation of the Michaelis-Menten equation to ascertain the competitive nature of inhibition. Ki was determined directly from the Dixon plot (40) and confirmed by replots of $K_{\rm m}^{\rm app}/V^{\rm app}$ from the Hanes plot (41).

The Trophozolte Cysteine Protease Inhibitor Studies. Enzyme activity was measured with the fluorogenic substrate benzyloxycarbonyl-Phe-Arg-(7-amino-4-methylcoumarin) as described (15). Trophozoite extracts were incubated with reaction buffer (in 0.1 M sodium acetate/10 mM dithiothreitol, pH 5.5) and an appropriate concentration of inhibitor for 30 min at room temperature. Benzyloxycarbonyl-Phe-Arg-(7-amino-4-methylcoumarin) (50 μ M final concentration) was then added, and fluorescence (380 nM excitation, 460 nM absorbance) was measured continuously over 30 sec. The slope of fluorescence over time for each inhibitor concentration was compared with that of controls in multiple assays,

Fig. 1. (a) (i) Naphthol blue-black. (ii) 2-(4-Methoxybenzoyl)-1-naphthoic acid. (b) Oxalic bis[(2-hydroxy-1-naphthylmethylene)hydrazide].

Table 1. Ki values for compounds that inhibit cercarial elastase

Inhibitor	Cercarial elastase, Ki	Chymo- trypsin, <i>K</i> i	Pancreatic elastase, Ki
Naphthol blue-black	6-μM	6 μM	200 µM
2-(4-Methoxybenzoyl)-1- naphthoic acid	3 μΜ	30 μΜ	146 µM

and the IC₅₀ was determined from plots of percent control activity over inhibitor concentration.

Effect of Oxalic Bis[(2-hydroxy-1-naphthylmethylene)hydrazide] on [3 H]Hypoxanthine Uptake as a Measure of Parasite Metabolism. [3 H]Hypoxanthine uptake was measured based on a modification of the method of Desjardins et al. (42). Microwell cultures of synchronized ring stage P. falciparum parasites were incubated with inhibitor in dimethyl sulfoxide (10% final concentration) for 4 hr. [3 H]Hypoxanthine was added (1 μ Ci per microwell culture; 1 Ci = 37 GBq), and the cultures were maintained for an additional 36 hr. The cells were then harvested and deposited onto glass-fiber filters that were washed and dried with ethanol. [3 H]Hypoxanthine uptake was quantitated by scintillation counting. The uptake at each inhibitor concentration was compared with that of controls, and the IC₅₀ value was determined from plots of percent control uptake over inhibitor concentration.

RESULTS AND DISCUSSION

Nonpeptidic inhibitors were identified for both the cercarial elastase and the malarial cysteine protease. Approximately 10% of the compounds tested, 5 of 52 for the cercarial elastase and 4 of 31 for the malarial protease, displayed activity against the enzymes at concentrations <100 μ M. Among these, three compounds were inhibitors at concentrations <10 μ M (Fig. 1). 2-(4-Methoxybenzoyl)-1-naphthoic acid and naphthol blue-black inhibited the cercarial elastase with K_i values of 3 and 6 μ M, respectively (Table 1 and Fig. 2). These two compounds also displayed specificity for the cercarial elastase, as evidenced by the generally higher K_i values against chymotrypsin and pancreatic elastase (Table 1). Because the S1 specificity pocket of cercarial elastase is more similar to chymotrypsin than to pancreatic elastase, it is not surprising that both 2-(4-methoxybenzoyl)-1-naphthoic acid

Fig. 2. Representative K_i determination using the Dixon plot. In this example, the K_i is determined for naphthol blue-black against cercarial elastase. Each point was determined in triplicate. Each line represents a different substrate concentration (\blacksquare , 500 μ M; \spadesuit , 200 μ M; \bigcirc , 50 μ M). Some error bars are too small to be graphed on this plot. V, velocity.

and naphthol blue-black are also good inhibitors of chymotrypsin. (Note that the amino acid residues on the acyl side of the scissile bond are denoted P1, P2, ... Pn, and those on the leaving group side of the scissile bond are denoted as P1', P2', ... Pn'. The corresponding binding sites on the enzyme are S1, S2, ... Sn and S1', S2', ... Sn'.) Presumably, the application of standard medicinal chemistry strategies to these lead compounds will yield more potent and selective inhibitors of the schistosome enzyme. Topical application of peptide-based inhibitors has already been demonstrated to block parasite migration through the skin (11).

Oxalic bis[(2-hydroxy-1-naphthylmethylene)hydrazide] inhibited the trophozoite cysteine protease with an IC₅₀ of $6 \mu M$ (Fig. 3a). When tested against cultured P. falciparum, this compound also inhibited the incorporation of hypoxanthine, a standard marker of parasite metabolism, at approximately the same concentration (Fig. 3b). Because this compound can inhibit the protease and the parasite, efforts are underway to synthesize analogs of oxalic bis[(2-hydroxy-1-naphthylmethylene)hydrazide] and examine their therapeutic potential.

The visual screening process was reexamined for the most active compounds in an attempt to find the relevant factors responsible for their selection. An interesting dichotomy was observed in the DOCK shape-based and force-field scores. All

Fig. 3. (a) IC₅₀ curve for oxalic bis[(2-hydroxy-1-naphthylmethylene)hydrazide] against malarial cysteine protease. The points are the means of eight assays, and the error bars are the SDs of the samples. (b) Inhibition of parasite uptake of [³H]hypoxanthine by oxalic bis[(2-hydroxy-1-naphthylmethylene)hydrazide].

but one of the five inhibitors of the cercarial elastase were members of the force list with the following rankings: 85th, 2-(4-methoxybenzoyl)-1-naphthoic acid; 122nd, plasmocorinth B; 627th, naphthol blue-black; and 918th, α-phenethylphthalamic acid. The fifth compound, 9-fluorenone-4carboxylic acid, appeared on both lists, ranking 561st on the force-field list and 1783rd on the shape-based list. The two best cercarial elastase inhibitors, 2-(4-methoxybenzoyl)-1-'naphthoic acid and naphthol blue-black, ranked 85th and 627th, respectively, on the force-field list. By contrast, all four of the malarial protease inhibitors were members of the shape-based list, ranking as follows: 7th, 3,3'-diethyloxatricarbocyanine iodide; 13th, oxalic bis[(2-hydroxy-1-naphthylmethylene)hydrazide]; 793rd, cephaloglycin; and 1193rd, 1-(2-methoxyphenyl)-6-(4-trifluoromethylphenyl)-5thiobiurea. The best inhibitor, oxalic bis[(2-hydroxy-1naphthylmethylene)hydrazide], ranked 13th. These results may reflect the environmental differences in the active site. The active site of the malarial protease consists of a large hydrophobic cleft. Because of the absence of charged residues in the vicinity of the putative binding site, the shapebased scores for hydrophobic ligands that fill the site may adequately estimate the enthalpy of interaction between ligand and receptor. By contrast, the active site of the cercarial elastase contains both a hydrophobic S1 pocket and charged amino acids in the vicinity of the active site. Consequently, the force-field scores, which include both van der Waals and electrostatic components, better estimate the

interaction energy of the ligands with the active site of the cercarial elastase.

The DOCK-generated enzyme-inhibitor complex structures for naphthol blue-black and oxalic bis[(2-hydroxy-1naphthylmethylene)hydrazide] are shown in Fig. 4. Naphthol blue-black fits into the groove defined by the S1, S2, and S3 subsites of the cercarial elastase. In the model complex, ligand binding is stabilized by the interaction of a phenyl group with the hydrophobic S1 pocket. The sulfonic acid groups could hydrogen-bond with arginines in a nearby loop or possibly with the solvent. Similarly, oxalic bis[(2-hydroxy-1-naphthylmethylene)hydrazide] interacts with S2 and S1 sites of the malarial protease. The hydrophobic specificity site, S2, is filled by a naphthol group. The other naphthol group participates in a stacking interaction with the indole ring of Trp-177 at the S1' site. In addition, each hydroxyl group on the naphthol rings appears to hydrogen-bond to Ser-160 at S2 and Gln-19 at S1'. These complexes are useful starting points for modeling ligand-receptor interactions, but other possible binding modes should also be considered.

At micromolar concentrations, it is likely that the inhibitors will have multiple modes of binding to the enzyme. Because these different binding modes are approximately isoenergetic, discriminating among the plausible alternatives with current scoring functions is difficult. Assumptions, such as rigid ligands and rigid receptors, are necessary for computational tractability but are also presumably responsible for the loss of resolution in these scores. The x-ray structures of thymidylate synthase complexed with two different inhibitors that were

Fig. 4. (Upper) Stereo image of naphthol blue-black docked into the active site of cercarial elastase. (Lower) Stereo image of oxalic bis[(2-hydroxy-1-naphthylmethylene)hydrazide] docked into the active site of trophozoite cysteine protease. Catalytic residues are colored purple and labeled for orientation. The atoms on the inhibitors are color-coded: carbons are white, oxygens are red, nitrogens are blue, and sulfurs are cyan.

suggested by DOCK illustrate the challenges presented in accurately predicting the ligand-receptor complexes (43). For sulisobenzone, the failure to anticipate the binding of a counterion in the binding site led to an inaccurate prediction of the complex. In the case of phenolphthalein, a conformational change by an arginine between unbound and bound states of the enzyme and the presence of two waters in the bound state led to a slightly different conformation of the ligand than the one anticipated by DOCK (43). These examples highlight the importance of crystallography to the structure-based drugdesign process. Ligand-induced conformational changes and the presence of bound waters and counterions are details that may be necessary for successful lead optimization.

The quality of the model structure is directly related to the percentage sequence identity between the relevant sequences. The trophozoite cysteine protease is ≈33% identical to both papain and actinidin, and the cercarial elastase is 20-25% identical to the seven mammalian serine proteases of known structure. Thus, we anticipate errors of 1-3 Å rms deviation in the model atomic coordinates, although errors in the vicinity of the active site are probably substantially smaller, reflecting selective sequence conservation. Two explanations of the success of our modeling/docking approach are plausible. (i) The modeling errors in the active site are small, and the major determinants of molecular recognition are faithfully recreated. (ii) Alternatively, the modeling process was irrelevant, and a homologous structure could have been substituted for computational ligand-binding studies to identify lead compounds. To address the latter possibility, two homologous serine proteases, chymotrypsin and trypsin, were used as receptors for ligand docking. Chymotrypsin was chosen because it shares with cercarial elastase a similar P1 specificity for hydrophobic residues. Trypsin was chosen because its S1 pocket is sterically similar, despite its different peptide specificity. With the same method, DOCK3.0 was used to search the Fine Chemicals Directory, and the top 2200 shapecomplementarity scoring compounds and the top 2200 forcefield scoring compounds were saved.

The best two inhibitors of the cercarial elastase were not ' included in either list of 4400 compounds predicted to inhibit chymotrypsin or trypsin, although each shape-based-list included one of the less effective inhibitors. Due to unfavorable interactions seen in the model of 9-fluorenone-4carboxylic acid docked to chymotrypsin (negative charge in hydrophobic S1 pocket), this compound would have been rejected during the visual-screening evaluation. Consequently, none of the five inhibitors identified for the cercarial elastase would have been found in a DOCK3.0 search by using the chymotrypsin active site, and only one of the $100 \mu M$ inhibitors, α -phenethylphthalamic acid, would have been found by using the trypsin active site. Although we cannot rule out finding other low-micromolar inhibitors from the lists of compounds generated by the chymotrypsin and trypsin searches, our results indicate that the modeling process was not irrelevant and that this method for inhibitor discovery is sensitive enough to differentiate between similar active sites in homologous structures.

Despite the inherent limitations of computer model-built structures, these structures are helpful in finding nonpeptidic inhibitors active at low-micromolar concentrations. Although these compounds are far from being drugs, they are sensible starting points for the process of drug development. Because these enzymes are members of two major protease families, our work suggests that computer models and structure-based drug-design methods can be applied to identify inhibitors of proteases that are relevant to other pathophys-

We thank Elaine Meng and Cynthia Corwin for helpful suggestions and discussions and K. C. Lim for technical assistance. This work was supported by grants from the Defense Advanced Research Projects Agency (MDA-972-91-J1013 to F.E.C.) and the National Institutes of Health (GM07175 to C.S.R.; AI20452 to J.H.M.; F32AI08311 to E.S.; AI00870 to P.J.R.).

- Stryer, L. (1988) Biochemistry (Freeman, New York).
- Thomas, L., Leduc, R., Thorne, B. A., Smeekens, S. P., Steiner, D. F. & Thomas, G. (1991) Proc. Natl. Acad. Sci. USA 82, 5297-5301.
- Cohen, R. L., Xi, X. P., Crowley, C. W., Lucas, B. K., Levinson, A. D. & Shuman, M. A. (1991) Blood 72, 479-487.
- 4. Navia, M. A. & Murcko, M. A. (1992) Curr. Opin. Struct. Biol. 2,
- 5. DesJarlais, R. L., Seibel, G. L., Kuntz, I. D., Furth, P. S., Alvarez, J. C., Ortiz de Montellano, P. R., DeCamp, D. L., Babe, L. M. & Craik, C. S. (1990) Proc. Natl. Acad. Sci. USA 87, 6644-6648.
- McKerrow, J. H. (1989) Exp. Parasitol. 68, 111-115
- Read, R. J., Brayer, G. D., Jurasek, L. & James, M. N. G. (1984) Biochemistry 23, 6570-6575.
- Zuiderweg, E. R. P., Henkin, J., Mollison, K. W., Carter, G. W. & Greer, J. (1988) Proteins 3, 139-145.
- Weber, I. T. (1990) Proteins 7, 172-184.
- Chothia, C. & Lesk, A. M. (1986) EMBO J. 5, 823-826.
 Cohen, F. E., Gregoret, L. M., Amiri, P., Aldape, K., Railey, J. & McKerrow, J. H. (1991) Biochemistry 30, 11221-11229.
- Bruce-Chwatt, L. J. (1985) Essential Malariology (Wiley, New York).
- Rosenthal, P. J., McKerrow, J. H., Aikawa, M., Nagasawa, H. & Leech, J. H. (1988) J. Clin. Invest. 82, 1560-1566.
- Rosenthal, P. J. & Nelson, R. G. (1992) Mol. Biochem. Parasitol. 51, 143-152.
- Rosenthal, P. J., McKerrow, J. H., Rasnick, D. & Leech, J. H. (1989) Mol. Biochem. Parasitol. 35, 177-183.
- Sutcliffe, M. J., Haneef, I., Carney, D. & Blundell, T. L. (1987) Protein Eng. 1, 377-384.
 Sutcliffe, M. J., Hayes, F. R. F. & Blundell, T. L. (1987) Protein
- Eng. 1, 385-392.
- Tsukada, H. & Blow, D. M. (1985) J. Mol. Biol. 184, 703-711. Meyer, E., Cole, G., Radhakrishnan, R. & Epp, O. (1988) Acta Crystallogr. 44, 26-38.
- Remington, S. J., Woodbury, R. G., Reynolds, R. A., Matthews, B. W. & Neurath, H. (1988) Biochemistry 27, 8097-8105.
- Navia, M. A., McKeever, B. M., Springer, J. P., Lin, T. Y., Williams, H. R., Fluder, E. M., Dorn, C. P. & Hoogsteen, K. (1989) Proc. Natl. Acad. Sci. USA 86, 7-11.
- Fujinaga, M. & James, M. N. G. (1987) J. Mol. Biol. 195, 373-396. Bode, W., Chen, Z., Bartels, K., Kutzbach, C., Schmidt, G. & Bartunik, H. (1983) J. Mol. Biol. 164, 237-282.
- Walter, J., Steigemann, W., Singh, T. P., Bartunik, H., Bode, W.
- & Huber, R. (1982) Acta Crystallogr. 38, 1462-1472. Greer, J. (1990) Proteins 7, 317-334. Kamphuis, I. G., Kalk, K. H., Swarte, M. B. A. & Drenth, J. (1984) J. Mol. Blol. 179, 233-256. Baker, E. N. & Dodson, E. J. (1980) Acta Crystallogr. 36, 559-572. Jones, T. A. & Thirup, S. (1986) EMBO J. 5, 819-822.

- Chothia, C. & Lesk, A. M. (1987) J. Mol. Biol. 196, 901-917.
 Singh, U. C., Weiner, P. K., Caldwell, J. W. & Kollman, P. A.
 (1986) AMBER (Dept. of Pharmaceutical Chemistry, Univ. of California, San Francisco), Version 3.0.
- Gregoret, L. M. & Cohen, F. E. (1990) J. Mol. Biol. 211, 959-974.
- Luthy, R., Bowie, J. U. & Eisenberg, D. (1992) Nature (London) 356, 83-85.
- Chothia, C. (1976) J. Mol. Biol. 105, 1-14. Meng, E. C., Stoichet, B. M. & Kuntz, I. D. (1992) J. Comp. Chem. 13, 505-524.
- Rusinko, A., Sheriden, R. P., Nilakantan, R., Haraki, K. S., Bauman, N. & Venkataraghavan, R. (1989) J. Chem. Inf. Comput. Sci. 29, 251-255
- Kuntz, 1. D. (1992) Science 257, 1078-1082.
- Ferrin, T., Huang, C., Jarvis, L. & Langridge, R. (1988) J. Mol. Graphics 6, 13-37.
- McKerrow, J. H., Pino-Heiss, S., Lindquist, R. & Werb, Z. (1985) J. Biol. Chem. 260, 3703-3707. Grassetti, D. R. & Murray, J. F. (1967) Arch. Biochem. Biophys.
- 119, 41-49.
- Dixon, M. (1953) Biochem. J. 55, 170-171. Hanes, C. S. (1932) Biochem. J. 26, 1406-1421.
- Desjardins, R. E., Canfield, C. J., Haynes, J. D. & Chulay, J. D. 42. (1979) Antimicrob. Agents Chemother. 16, 710-718. Shoichet, B. K., Stroud, R. M., Santi, D. V., Kuntz, I. D. & Perry,
- K. M. (1993) Science, in press.

Further development and validation of empirical scoring functions for structure-based binding affinity prediction

Renxiao Wang^a, Luhua Lai^b & Shaomeng Wang^{a,*}

^aMedical Chemistry and Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-0934, U.S.A.; ^bInstitute of Physical Chemistry, Peking University, Beijing 100871, P.R. China

Received 27 August 2001; Accepted 7 February 2002

Key words: binding affinity prediction, consensus scoring, empirical scoring molecular docking, structure-based drug design

Summary

New empirical scoring functions have been developed to estimate the binding affinity of a given protein-ligand complex with known three-dimensional structure. These scoring functions include terms accounting for van der Waals interaction, hydrogen bonding, deformation penalty, and hydrophobic effect. A special feature is that three different algorithms have been implemented to calculate the hydrophobic effect term, which results in three parallel scoring functions. All three scoring functions are calibrated through multivariate regression analysis of a set of 200 protein-ligand complexes and they reproduce the binding free energies of the entire training set with standard deviations of 2.2 kcal/mol, 2.1 kcal/mol, and 2.0 kcal/mol, respectively. These three scoring functions are further combined into a consensus scoring function, X-CSCORE. When tested on an independent set of 30 protein-ligand complexes, X-CSCORE is able to predict their binding free energies with a standard deviation of 2.2 kcal/mol. The potential application of X-CSCORE to molecular docking is also investigated. Our results show that this consensus scoring function improves the docking accuracy considerably when compared to the conventional force field computation used for molecular docking.

Introduction

Considerable advances in structure-based drug design have made a significant impact on drug discovery processes in the past decade [1–5]. By utilizing the essential structural properties of the target macromolecule, a variety of methods now exist for suggesting potential ligand molecules either by screening large chemical databases [6–10] or by assembling molecular fragments inside the binding site [11–18]. These methods usually suggest a large number of molecules rapidly, far too many for organic synthesis and biological experiments. Therefore, a structure-based drug design approach tends to arrive at the bottleneck where it is necessary to select only the most promising can-

didates for further experimental characterization. The basic assumption underlying structure-based drug design is that a good ligand molecule should bind tightly to its target. Thus, it is extremely valuable to predict the binding affinity of a given ligand to its target and use it as a criterion for selection. This is known as the 'scoring problem' and has attracted great interests in developing methods for binding affinity calculation [19–21].

A large group of methods calculate binding affinities through force fields. In early years, attempts have been made to calculate the direct interactions, e.g. steric and electrostatic interactions, between a ligand and its target molecule and relate the force field energies to binding affinities [22]. This method is still popular nowadays especially among molecular docking studies. However, as many researchers have pointed out, the interaction energy computed in this

^{*}To whom correspondence should be addressed. E-mail: shaomeng@med.umich.edu

way is only an approximation to the enthalpy change in the binding process, therefore the application of this method is usually restricted to the analysis of a congeneric series of ligands. Some researchers have supplemented standard force fields with an additional term to address the solvation effect with either PB/SA or GB/SA method [23]. More ambitious methods, such as free energy perturbation [24] and linear response approximation [25, 26], try to consider solvent molecules explicitly and deal with ensemble averages. In theory these methods are expected to give more accurate predictions. However, in practice they do not always meet this expectation due to the deficiency in the force field as well as in the sampling procedure. In addition, these methods are still computationally expensive even for today's computers, which has limited their popularity in structure-based drug design practice.

Following the pioneering work of Böhm [27], a number of so-called empirical scoring functions have emerged as an alternative [28–32]. These approaches assume that the overall receptor-ligand binding free energy can be decomposed into basic components, which can be written out conceptually as:

$$\Delta G_{\rm bind} = \Delta G_{\rm motion} + \Delta G_{\rm interaction} + \Delta G_{\rm desolvation} + \Delta G_{\rm configuration}$$

Usually those factors which are known to be important for the binding process are included in the above function. Unlike force fields, empirical scoring functions are not derived from 'first principle'. Instead, they are directly calibrated with a set of protein-ligand complexes with experimentally determined structures and binding affinities through multivariate regression analysis. Empirical scoring functions have several appealing features. Firstly, since they are calibrated with diverse protein-ligand complexes, their applications are not limited to a certain congeneric series of ligands or a particular target receptor. Secondly, each term in an empirical scoring function has a clear physical meaning. Studying the regression coefficients before each term sheds lights on the understanding of the receptor-ligand binding process. Thirdly, at a lightning speed, the accuracy level (~2 kcal/mol) that a current empirical scoring function can achieve in binding affinity prediction is acceptable for structure-based drug design approaches. In recent years, empirical scoring functions have become more and more popular among structure-based drug design applications in which very accurate binding affinity predictions are

not necessary, such as virtual database screening and de novo ligand generation.

We have extensive experience in applying several empirical scoring functions, including Bohm's scoring function [27], ChemScore [30] and SCORE [32], to structure-based drug design projects. Despite of all the encouraging results we have obtained with these empirical scoring functions, it is clear that there is still plenty of room for improvement in terms of accuracy as well as robustness. In this paper, we will describe our work on further development and validation of empirical scoring functions. Firstly, we have derived three scoring functions, each of which has only five adjustable parameters. These scoring functions are calibrated with a diverse set of 200 protein-ligand complexes, which is the largest one ever used by an empirical scoring function approach. Secondly, inspired by the consensus scoring strategy [33], we combine these three scoring functions into a consensus scoring function, X-CSCORE, to ensure converged results in binding affinity prediction. This consensus scoring function is tested on an independent set of 30 protein-ligand complexes. Thirdly, we have also explored the potential application of X-CSCORE to molecular docking. When compared to conventional force field computation, this consensus scoring function performs considerably better in identifying the experimentally determined protein-ligand complex structures.

Methods and results

Training set construction

Developing an empirical scoring function requires a set of receptor-ligand complexes for calibration. Both the size and the quality of the training set will affect the final form of the scoring function. In our selection of receptor-ligand complexes, we used the following five criteria to ensure the quality of the training set. (1) Only protein-ligand complexes are considered. Complexes involving other types of receptors, such as nucleic acids, are not included. (2) The ligand molecule should be a 'normal' organic compound and bind to the receptor non-covalently. Therefore, complexes containing covalently bound ligands, complex ligands (such as Heme), or large ligands (MW > 1000) are excluded. (3) There should be no cofactor binding beside the ligand. (4) Crystal structure of the complex with a resolution better than 3.0 Å should be available from the Protein Data Bank (PDB) [34]. Complex structures solved by NMR techniques are currently not included in our selection. (5) The dissociation equilibrium constant $(K_i \text{ or } K_d)$ of the complex has been determined experimentally and can be found in literature. Complexes with only IC₅₀ values are not accepted.

The resulting training set has 200 protein-ligand complexes, which comprises more than 70 different types of proteins. Basically, this training set is an assembly of the training sets used by other empirical scoring functions [27-32] plus our own collections. The experimentally determined binding affinities are cited either from those previous approaches or the references listed in the relevant PDB files. All binding affinities are expressed in the negative logarithms of dissociation constants, i.e. pK_d , for convenience. In this training set, the pK_d values range from 1.48 to 11.42, covering nearly 10 orders of magnitude. Here we neglect the potential inconsistence in the dissociation constants related to experiment conditions, such as PH level, temperature, and salt concentration. A complete list of the training set can be found in the supplementary material section in this paper.

Coordinates of the complex structure in the training set are downloaded from PDB. No minimization is performed to further adjust the structure. For the convenience of processing, each complex structure is processed in SYBYL [35]. First, the ligand is extracted from the complex, assigned proper atom and bond types, and then written out as a separate file in the MOL2 format. The remaining part of the complex, i.e. the protein, is written out into another file in the PDB format. Metal ions located inside the binding site are left with the protein and treated as part of it. All crystallographic water molecules and other cofactors are removed.

Scoring functions

We assume that the overall free energy change in a protein-ligand binding process can be dissected into the following terms:

$$\Delta G_{\text{bind}} = \Delta G_{\text{vdw}} + \Delta G_{\text{H - bond}} + \Delta G_{\text{deformation}} + \Delta G_{\text{hydrophobic}} + \Delta G_{0}. (1)$$

Here, ΔG_{vdw} accounts for the van der Waals interaction between the ligand and the protein; ΔG_{H} - bond accounts for the hydrogen bonding between the ligand and the protein; $\Delta G_{\text{deformation}}$ accounts for the deformation effect; $\Delta G_{\text{hydrophobic}}$ accounts for the hydrophobic effect; ΔG_0 is the regression constant

which implicitly includes the effects due to the translational and rotational entropy loss in the binding process. Detailed algorithms for calculating each term will be described below.

(1) Atom classification. Besides element type and hybridization state, both ligand and protein atoms need to be classified to compute some of the terms in our scoring functions. The atom types defined in our study are: (i) H-bond donor. Oxygen and nitrogen atoms bonded to hydrogen atom(s) and metal ions located inside the binding site of the protein. (ii) H-bond acceptor. Oxygen and sp^2 or sp hybridized nitrogen atoms with lone pair(s). (iii) H-bond donor/acceptor. Oxygen and nitrogen atoms which may act as either H-bond donor or H-bond acceptor, such as the oxygen atom in a hydroxyl group. (iv) Polar atom. Oxygen and nitrogen atoms that are neither H-bond donor nor H-bond acceptor, sulfur and phosphorus atoms, and carbon atoms bonded to hetero-atom(s). (v) Hydrophobic atom. Carbon atoms that do not belong to the 'polar atom' group and halogen atoms.

The following set of atomic radii are used in computation: carbon, 1.9 Å; nitrogen, 1.8 Å; oxygen, 1.7 Å; sulfur, 2.0 Å; phosphorus, 2.1 Å; fluorine, 1.5 Å; chlorine, 1.8 Å; bromine, 2.0 Å; iodine, 2.2 Å; metals, 1.2 Å. This radii set is applied to both ligands and proteins.

(2) Van der Waals interaction. The van der Waals interaction is one of the essential non-covalent interactions. We employ the Lennard-Jones equation to reflect the balance between the short-range repulsion and the long-range attractive dispersion force:

$$VDW = \sum_{i}^{ligand} \sum_{j}^{protein} VDW_{ij}$$

$$= \sum_{i}^{ligand} \sum_{j}^{protein} \left[\left(\frac{d_{ij,0}}{d_{ij}} \right)^{8} - 2 \times \left(\frac{d_{ij,0}}{d_{ij}} \right)^{4} \right] (2)$$

Here VDW denotes for the van der Waals interaction energy, which is calculated by considering all the atom pairs between the ligand and the protein; d_{ij} denotes for the distance between the ligand atom i and the protein atom j; $d_{ij,0} = r_i + r_j$, i.e. the sum of van der Waals radius of atom i and j. Note that we use a 'softer' form in Equation 2 instead of the standard 12–6 equation. Furthermore, in our algorithm, (i) only heavy atoms contribute. Hydrogen atoms are neglected. (ii) All heavy atoms are weighted equally. No weight factor is used to differentiate them. (iii) To avoid the huge repulsion raised by overlapped atom

Figure 1. Illustration of the three geometric parameters used in characterizing a hydrogen bond.

pairs, we set an upper limit of 100 for VDW_{ij} in Equation 2. For any pair of atoms, if VDW_{ij} exceeds this limit, it will be cut flat to 100.

(3) Hydrogen bonding. Hydrogen bonding is perhaps the most important factor for the specific binding of a ligand to its receptor. Such interaction happens when two atoms get close enough and form a donoracceptor pair. The geometry of a hydrogen bond, D-H···A, is typically described by the bond length, i.e. the distance between the hydrogen atom (H) and the acceptor (A), and the bond angle, i.e. ∠DHA. However, hydrogen atoms are normally not revealed in X-ray crystallography analysis. Although hydrogen atoms can be added later, energy minimization is usually required to set them into position. This practice could become problematic especially when the hydrogen atoms can take multiple low-energy positions, such as the one in a hydroxyl group. Furthermore, minimized structures will depend on force field parameters and they may be incompatible with the initial experimentally determined ones. Therefore, we choose not to consider hydrogen atoms explicitly. Here we introduce the concept of 'root': the root of an atom is its non-hydrogen neighboring atom. When an atom bonds with more than one non-hydrogen atom, its root locates at the geometric center of all its nonhydrogen neighboring atoms. Let DR denotes for the donor's root and AR for the acceptor's root. In our algorithm, the geometry of a hydrogen bond is described by: (i) the distance (d) between D and A; (ii) the angle (θ_1) between DR, D and A; and (iii) the angle (θ_2) between D, A and AR (Figure 1).

We assume that a hydrogen bond has an ideal geometry and any deviation from it will weaken the strength of the hydrogen bond. The strength of a hydrogen bond is then computed by considering these three geometric descriptors:

$$HB_{ij} = f(d_{ij}) f(\theta_{1,ij}) f(\theta_{2,ij}).$$
 (3)

The distance function f(d) and the angular functions $f(\theta_1)$ and $f(\theta_2)$ in Equation 3 are written in the

following simple linear fuzzy forms:

$$\begin{array}{lll} f(d) &= 1.0 & d_0 \leq d_0 - 0.7 \ \text{Å} \\ &= (1/0.7) \times (d_0 - d) & d_0 - 0.7 \ \text{Å} < d \leq d_0 \\ &= 0.0 & d > d_0 \\ f(\theta_1) &= 1.0 & \theta_1 \geq 120^\circ \\ &= (1/60) \times (\theta_1 - 60) & 120^\circ > \theta_1 \geq 60^\circ \\ &= 0.0 & \theta_1 < 60^\circ \\ f(\theta_2) &= 1.0 & \theta_2 \geq 120^\circ \\ &= (1/60) \times (\theta_2 - 60) & 120^\circ > \theta_2 \geq 60^\circ \\ &= 0.0 & \theta_2 < 60^\circ \end{array}$$

Here $d_0 = r_i + r_j$, i.e. the van der Waals distance between the donor and the acceptor. These functions are derived from the analysis of all the potential hydrogen bonding pairs presented in the training set. The observed distribution of the donor-acceptor distance (d) is shown in Figure 2a. In this figure, one can see that the peak value appears around 2.8Å, which can be interpreted as the ideal length of a hydrogen bond. As d increases, the population decreases. But after dexceeds $3.4 \sim 3.5$ Å, it passes the bottom and begins to rise again, which can be interpreted as the turning point from a hydrogen bond to a normal van der Waals contact. Therefore, it is reasonable to define that f(d) = 1.0 when d = 2.8 Å while f(d) = 0.0 when $d = 3.5 \,\text{Å}$. Considering the atomic radii of oxygen and nitrogen atoms, 2.8 Å corresponds to $d_0 - 0.7$ Å while 3.5 Å corresponds to d_0 , approximately. By assuming that the distance dependence of the strength of a hydrogen bond is linear within this range, one will obtain the function listed above. The angular functions $f(\theta_1)$ and $f(\theta_2)$ are also derived similarly by interpreting the observed distributions of θ_1 and θ_2 from the training set (Figures 2b and 2c).

The hydrogen bonding interaction between the ligand and the protein is calculated by summing up all the hydrogen bonds:

$$HB = \sum_{i}^{ligand \ protein} HB_{ij}$$
 (4)

All types of hydrogen bonds, i.e. O-O, O-N, and N-N, are equally weighted so that no extra parameter is necessary. Special attention has been paid to the saturation in hydrogen bonding if one donor or acceptor atom contacts with multiple donor or acceptor atoms. For a given donor or acceptor atom, we define that (i) the maximal number of hydrogen bonds that a donor atom can form should not exceed the number of hydrogen atoms on that donor atom; and (ii) the maximal number of hydrogen bonds that an acceptor atom can

Figure 2. Distribution of the three geometric parameters in a hydrogen bond observed in the training set: (a) the donor-acceptor distance (in angstroms); (b) the DR-D-A angle (in degrees); (c) the D-A-AR angle (in degrees).

form should not exceed the number of lone pairs on that acceptor atom. If an atom could be a donor and an acceptor at the same time, such as the oxygen atom in a hydroxyl group, both rules apply.

As implied above, charged and neutral hydrogen bonds are not treated separately in our scoring functions since we find that the improvement of *our scoring functions* in the training set regression is totally negligible by separating them.

In some cases, metal ions are found inside the binding site of the protein. They may form coordinated bonds with atoms with lone pairs in the ligand and thus also contribute to the binding affinity. We include this kind of interaction in the hydrogen bonding term since it is the same as hydrogen bonding in nature, i.e. Lewis acid-base pair. Note that technically we define metal ions as 'donor' so that the metal-ligand coordinated bonds are calculated with exactly the same distance and angular functions of hydrogen bonding.

(4) Deformation effect. Upon binding, both the ligand and the protein will be constrained in conformation as compared to their free states in solvent. This will raise adverse entropic changes, which is a negative effect that must be overcome during the binding process. In other empirical scoring functions, the deformation effect of the ligand is often estimated by counting the number of rotatable bonds (rotors) that become frozen during the binding process, assuming that each rotor is associated with a discrete number of low-energy conformations and thus a certain amount of conformational entropy. If there are more than one rotor in the ligand, their contributions are assumed to be additive. This assumption is reasonable when all the rotors are isolated and free to rotate, so the lowenergy conformations associated with each rotor will multiply to build up the entire conformational space. However, when two or more rotors cross, apparently this assumption is no longer valid because now the rotation of any of them will interfere with the others and this will result in a reduction in the total number of possible low-energy conformations (Figure 3). Therefore, simply counting the number of rotors often overestimates the conformational flexibility of certain kinds of molecules, such as oligo-peptides.

In our algorithm, rotor is defined as acyclic sp^3 - sp^3 or sp^3 - sp^2 single bond between two non-hydrogen atoms. Terminal groups, such as $-CH_3$, $-NH_2$, -OH, and -X (X = F, Cl, Br, I), whose rotation does not produce any new conformation of heavy atoms are not counted as rotors. The potential flexibility of cyclic portions of the ligand is ignored. The deformation

Figure 3. Illustration of 'isolated' (on the left) and 'crossed' rotors (on the right).

effect of the ligand is then expressed as the contribution of all the rotors with proper weight factors. For the convenience of computation, rotors are counted by summing the share of each ligand atom:

$$RT = \sum_{i}^{ligand} RT_{i}, (5)$$

where $RT_i = 0$ if atom i is not involved in any rotor; $RT_i = 0.5$ if atom i is involved in one rotor; and $RT_i = 1.0$ if atom i is involved in two rotors. However, if atom i is involved in more than two rotors, then $RT_i = 0.5$. Note that, according to the conventional rotor-counting algorithm, RT_i should be 1.5 (in three rotors) or 2.0 (in four rotors) in this case. This reduction in the RT_i value reflects our consideration for offsetting the overestimation of conformational flexibility in the conventional algorithm. Although very crude, we found that our algorithm improves the accuracy of our scoring functions.

In our algorithm, the deformation effect of the protein is neglected. We have attempted to count the number of rotors presented in the side chains of the binding site residues and include it as a term in our scoring functions. However, such attempt did not improve the result. It is not surprising since the side chains of the binding site residues are generally immobilized even in the unbound state due to the stacking of neighboring residues. A more reasonable algorithm needs to be developed to account for the flexibility of the protein.

(5) Hydrophobic effect. Binding of the ligand and the protein is accompanied by the desolvation process that undergoes changes in entropy as well as in enthalpy. One of the results is that non-polar groups tend to favor each other, which is also referred to as 'hydrophobic effect'. This effect is very difficult for accurate characterization since it involves complicated ligand-water, protein-water, and water-water interactions before and after binding. Different algorithms have been used in other empirical scoring functions

to calculate this term. We have implemented three representative algorithms in our scoring functions.

(i) Hydrophobic surface algorithm. The hydrophobic effect is assumed to be proportional to the buried hydrophobic surface of the ligand (Equation 6). This algorithm was adopted by Bohm's scoring function [27]. It should be pointed out that technically there are several types of molecular surfaces. Here we choose to use the solvent-accessible surface (SAS).

$$HS = \sum_{i}^{ligand} SAS_{i}.$$
 (6)

The radius of the solvent probe is set to 1.5 Å. The solvent-accessible surface of the ligand is represented by evenly distributed dots in a spacing of 0.5 Å. Numerical integration is used to calculate the surface area. The surface areas of hydrogen atoms are attributed to their root atoms. Any part of the ligand surface is considered buried if it penetrates into the solvent-accessible surface of the protein. Note that only hydrophobic atoms are considered in Equation 6. The total amount of buried surface area is expressed in square Angstrom.

(ii) Hydrophobic contact algorithm. The hydrophobic effect is calculated by summing up the hydrophobic atom pairs formed between the ligand and the protein. This algorithm was adopted by Chem-Score [30]. In our algorithm, it is calculated as:

$$HC = \sum_{i}^{ligand} \sum_{j}^{protein} f(d_{ij}), \tag{7}$$

where

$$f(d) = 1.0 d \le d_0 + 0.5 \text{ Å}$$

= (1/1.5) \times (d_0 + 2.0 - d) d_0 + 0.5 \text{ Å} < d
\le d_0 + 2.0 \text{ Å}
d > d_0 + 2.0 \text{ Å}.

This distance function reflects the intuition that the strength of 'hydrophobic interaction' will reach the maximum when two hydrophobic atoms form van der Waals contact and diminish gradually with the increase in the inter-atomic distance. We find that this distance function needs to be fairly long-ranged in order to work well.

(iii) Hydrophobic matching algorithm. This algorithm was adopted by SCORE [32]. According to this method, different parts of the ligand sense the protein differently because of the heterogeneous nature of the binding site. If a hydrophobic ligand atom is placed at a hydrophobic site of the protein, then it is

expected to be favorable to the binding process. The overall hydrophobic matching between the ligand and the protein is calculated as:

$$HM = \sum_{i}^{ligand} \log P_i \times HM_i.$$
 (8)

Here HM_i is an indicator variable. It is set to 1 if a hydrophobic atom i is placed in a hydrophobic environment; otherwise it is set to 0. Log P_i refers to the hydrophobic scale of atom i, which is the contribution of atom i to the n-octanol/water partition coefficient (Log P) of the molecule. In our algorithm, the hydrophobic scales for all kinds of atoms are cited from XLOGP2 [36]. They are introduced as weight factors here to ensure that more hydrophobic atoms contribute more to the hydrophobic effect. The 'environment' of a given ligand atom is defined to consist of all the atoms on the protein which are within 6 Å from the ligand atom. The hydrophobicity of the environment is determined by summing up the hydrophobic scales of all its member atoms. Our investigation of the training set shows that the average hydrophobicity of an environment surrounding a hydrophobic ligand atom is $-0.50 \log P$ units. Therefore, in our algorithm an environment is defined as hydrophobic if its hydrophobicity is greater than $-0.50 \log P$ units.

Finally, we summarize our scoring functions below. The binding affinity of a given protein-ligand complex, as expressed in pK_d unit, is calculated by summing up all the terms described above. Since three different algorithms for modeling the hydrophobic effect have been implemented, we have three resulting scoring functions:

$$pK_{d,1} = C_{0,1} + C_{VDW,1} \times VDW$$

$$+C_{H - bond,1} \times HB$$

$$+C_{rotor,1} \times RT$$

$$+C_{hydrophobic,1} \times HS, \qquad (9)$$

$$pK_{d,2} = C_{0,2} + C_{VDW,2} \times VDW$$

$$+C_{H - bond,2} \times HB$$

$$+C_{rotor,2} \times RT$$

$$+C_{hydrophobic,2} \times HC, \qquad (10)$$

$$pK_{d.3} = C_{0.3} + C_{VDW,3} \times VDW$$

$$+C_{H - bond,3} \times HB$$

$$+C_{rotor,3} \times RT$$

$$+C_{hydrophobic,3} \times HM.$$
(11)

It should be emphasized that, except for the hydrophobic effect term, all the other terms in these

Figure 4. Correlation between the observed binding affinities of the 200 protein-ligand complexes in the training set and the fitted values given by X-CSCORE (in pK_d units).

three scoring functions are calculated using identical algorithms. The consensus scoring function, which is named as X-CSCORE, is the arithmetical average of Equations 9-11:

$$X - CSCORE = (pK_{d,1} + pK_{d,2} + pK_{d,3})/3$$
 (12)

Regression analyses

Coefficients before each term in Equations 9–11 are derived through standard least-square multivariate regression analyses of the training set. They are listed in Table 1 together with other related information. Correlation coefficients (r^2) and standard deviations (s) obtained from regression are listed in Table 2. The correlation between the observed binding affinities and the fitted values given by X-CSCORE is shown in Figure 4. Leave-one-out cross-validations are performed to judge the quality of the regression models. The resulting q^2 and $s_{\rm press}$ are listed in Table 2. Both the regression and the cross-validation are performed with the QSAR module in SYBYL.

Validation

(1) Test set. An independent test set is usually needed to validate a regression model. When constructing the training set, we deliberately separate all the complexes released by the Protein Data Bank after 1998 from the others. These complexes, 30 in total, are used as a test set in our study. A complete list of the test set can

Table I. Regression models of Equations 9-11

Term	Coefficient ^a	Mean value ^b	Contribution fraction ^c
(Equation 9)			
VDW	$-2.01 \times 10^{-3} \ (\pm 1.81 \times 10^{-3})$	-6.00×10^{2}	16.5%
H-Bond	0.307 (± 0.137)	4.21	19.8 %
Rotor	$-0.159 (\pm 0.079)$	7.28	25.3 %
Hydrophobic surface	$7.10 \times 10^{-3} \ (\pm 2.50 \times 10^{-3})$	$2.74 \times 10^2 \text{Å}^2$	38.4%
Constant	$2.69 (\pm 0.66)$	-	-
(Equation 10)			
VDW	$-0.96 \times 10^{-3} \ (\pm \ 1.91 \times 10^{-3})$	-6.00×10^{2}	8.6%
H-Bond	$0.412 (\pm 0.149)$	4.21	29.4%
Rotor	$-0.100 (\pm 0.074)$	7.28	17.5%
Hydrophobic contact	$3.73 \times 10^{-2} \ (\pm \ 1.12 \times 10^{-2})$	43.1	44.5%
Constant	$2.78 (\pm 0.65)$	-	-
(Equation 11)			
VDW	$-2.14 \times 10^{-3} \ (\pm \ 1.65 \times 10^{-3})$	-6.00×10^{2}	16.4%
H-Bond	$0.311 (\pm 0.131)$	4.21	18.8%
Rotor	$-0.169 (\pm 0.078)$	7.28	25.2%
Hydrophobic matching	$0.602 (\pm 0.159)$	2.51	39.6%
Constant	$3.10 (\pm 0.65)$	_	_

^a All coefficients are presented in pK_d units. They can be converted into binding free energies at 298 K in kcal/mol by multiplying a factor of -1.36. The values in brackets are 95% confidence intervals in regression

Table 2. Statistical results of Equations 9-11 and X-CSCORÉ

	Equation 9	Equation 10	Equation 11	X-CSCORE
R ²	0.504	0.546	0.571	0.591
S^a	1.58	1.53	1.43	1.47
F(4.195)	49.6	58.7	70.4	_
Q^2	0.480	0.522	0.551	_
S_{press}	1.62	1.57	1.47	_
R_{pred}^2	0.318	0.319	0.249	0.356
S_{pred}	1.51	1.61	1.63	1.58

^aAll the standard deviations, including S, $S_{\rm press}$ and $S_{\rm pred}$, are presented in pK_d units. They can be converted into binding free energies at 298 K in kcal/mol by multiplying a factor of -1.36.

be found in the *supplementary material* section in this paper.

All the scoring functions, including Equations 9-12, are used to predict the binding affinities of the 30 protein-ligand complexes in the test set. The rootmean-squared deviation (s_{pred}) is used to measure the quality of prediction:

$$s_{\text{pred}} = \sqrt{\sum (p K_{d,\text{pred}} - p K_{d,\text{obs}})^2 / (N - 1)}.$$
 (13)

The statistical results are shown in Table 2. The correlation between the experimentally observed binding affinities and the predicted values given by X-CSCORE is shown in Figure 5.

(2) Evolutionary regression. We have adopted an iterative regression procedure to further validate the internal consistency of our scoring functions, which was originally proposed in our previous work SCORE [32]. The central idea of this procedure, called evolutionary regression, is to test a given regression model with training sets of different sizes. In our study, this procedure starts from constructing a subset of 50 complexes which are randomly selected from the training set without duplication. This subset is used to perform multivariate regression and leave-one-out cross-validation for the scoring function under inves-

^bMean values of each term are calculated over the entire training set.

^cContribution fractions are calculated by using the QSAR/PLS module in SYBYL.

Figure 5. Correlation between the observed binding affinities of the 30 protein-ligand complexes in the test set and the predicted values given by X-CSCORE (in pK_d units).

tigation. All the regression results, including r^2 , s, q^2 , spress, and the coefficients for each term in the scoring function, are recorded. This regression model is then used to predict the K_d values of the test set. The resulting r_{pred}^2 and s_{pred} are also recorded. Since the subset is constructed randomly, the entire procedure, i.e. construction of the subset, multivariate regression, cross-validation, and calculation of the test set, is repeated for 10 times to reduce the noises in all the statistical results. Only the averaged results are used for analysis. At the next step, the size of the subset is increased by 10, and the regression model is re-evaluated with this new subset. This procedure is repeated until the size of the subset reached the full size of the training set. We have performed evolutionary regression for Equations 9-11. The standard deviations observed during the evolutionary regression procedure of Equations 9-11 are shown in Figure 6a-c, respectively.

(3) Molecular docking. We have also tested the performance of X-CSCORE in molecular docking experiments. We select 10 samples from the training set, including the L-arabinose binding protein/L-arabinose complex (PDB code 1ABE), the alcohol dehydrogenase/CNAD complex (PDB code 1ADB), the adenosine deaminase/DAA complex (PDB code 1ADD), the cytidine deaminase/uridine complex (PDB code 1AF2), the maltodextrin binding protein/maltose complex (PDB code 1ANF), the carboxypeptidase A/L-benzylsuccinate complex (PDB code 1CBX), the antibody DB3/progesterone analogue complex

Figure 6. Standard deviations (in pK_d units) observed in the evolutionary regression procedure. (a) Equation 9; (b) Equation 10; (c) Equation 11.

Figure 7. Relationship between the RMSD values (Å) and the binding energies (kcal/mol) of 100 conformations of L-benzylsuccinate in complex with carboxypeptidase A (PDB code 1CBX). (a) Binding energies calculated by AutoDock. (b) Binding energies calculated by X-CSCORE.

Figure 8. Relationship between the RMSD values (Å) and the binding energies (kcal/mol) of 100 conformations of folate in complex with dihydrofolate reductase (PDB code 1DHF). (a) Binding energies calculated by AutoDock. (b) Binding energies calculated by X-CSCORE.

(PDB code 1DBM), the dihydrofolate reductase/folate complex (PDB code 1DHF), the glutathione S-transferase/glutathione complex (PDB code 1GST), and the HIV-1 protease/VX-478 complex (PDB code 1HPV). The selection of these 10 samples emphasizes the diversity of the ligands and the proteins. For each complex, the AutoDock 3.0 program [8] is employed to perform a molecular docking run. In each case, the experimentally determined complex structure is al-

ways used as the starting point. The ligand is treated flexible while the protein is kept rigid. The searching steps in the conformational sampling for translation, quaternion, and torsion are set to 0.5 Å, 15° and 15°, respectively. Fifty thousand genetic algorithm generations are run with a population of 100 conformations. The final 100 best-scored conformations are saved and their root-mean-squared deviations (RMSD), as calculated by using the observed bound conformation as the reference, are recorded. Then the binding

Figure 9. Relationship between the RMSD values (Å) and the binding energies (kcal/mol) of 100 conformations of 1-deaza-adenosine in complex with adenosine deaminase (PDB code 1ADD). (a) Binding energies calculated by AutoDock. (b) Binding energies calculated by X-CSCORE.

energies of these conformations are re-calculated by X-CSCORE. RMSD values of the best-scored conformations, picked by AutoDock and X-CSCORE, of all 10 complexes are summarized in Table 3. For complex 1CBX, 1DHF, and 1ADD, RMSD values of the final 100 conformations are plotted against the binding energies of these conformations in Figures 7–9, respectively.

Program description

We have developed a program, X-CSCORE, to implement the three scoring functions described by Equations 9-11. Here 'CSCORE' means consensus scoring; while the prefix 'X' indicates that it is part of our in-house drug design toolkit X-TOOL. This program is written in ANSI C++ and has been tested on UNIX and LINUX platforms. The required inputs include the three-dimensional structure of the protein in PDB format and the pre-docked ligand molecule(s) in MOL2 format. The user is allowed to enable or disable any of the three scoring functions in computation and the final predicted binding affinities are based on the arithmetic average of all the enabled scoring functions. If all three scoring functions are enabled, typically this program is able to process around 10 000 ligand molecules for a given protein target in an hour on a SGI O2/R5000/180MHz workstation.

Discussion

Accuracy and robustness

As shown in Table 2, Equations 9-11 are able to reproduce the binding affinities of the entire training set with standard deviations (s) of 1.58, 1.53 and 1.43 pK_d units, respectively. Their standard deviations in leaveone-out cross-validation (s_{press}) are at the same level, which are 1.62, 1.57 and 1.47 pK_d units, respectively. More importantly, these scoring functions perform almost equally well for the independent test set: the standard deviations in the predicted binding affinities (s_{pred}) are 1.51, 1.61 and 1.63 pK_d units, respectively. These values correspond to 2.1-2.2 kcal/mol in binding free energy at room temperature. Considering the diversity of the test set, such accuracy in binding affinity prediction is encouraging. Compared to other existing empirical scoring functions, our scoring functions have achieved better or comparable statistical results. If taking the Fisher significant ratio (F) as an objective criterion for comparing different regression models, the values are 32.1, 44.5 and 57.8 for Bohm's scoring function [27], ChemScore [30], and SCORE [32], respectively. In comparison, the F values of our scoring functions are 49.6, 58.7 and 70.4 for Equations 9–11, respectively.

When building a regression model, over-fitting of the regression equation should be avoided because it may fail to give reasonable predictions for samples

Table 3. Results from the molecular docking studies of 10 protein-ligand complexes

PDB code	Resolution	RMSD (Å)a		pK_d	pK_d		
	(Å)	AutoDock	X-CSCORE	Exp.b	X-CSCORE ^c		
IABE	1.7	0.62	0.73	6.52	5.14 (5.25)		
IADB	2.4	2.74	2.74	8.40	6.71 (8.01)		
1ADD	2.4	2.93	0.83	6.74	5.63 (5.36)		
IAF2	2.3	0.88	0.88	3.10	5.26 (4.90)		
IANF	1.67	0.60	0.54	5.46	6.16 (6.03)		
ICBX	2.0	2.30	0.77	6.35	5.74 (5.74)		
IDBM	2.7	1.31	1.13	9.44	6.84 (6.65)		
IDHF	2.3	6.44	1.24	7.40	6.34 (5.27)		
IGST	2.2	0.74	1.21	4.68	5.92 (5.21)		
IHPV	1.9	1.73	1.16	9.22	6.47 (6.28)		

^aRMSD value of the best scored conformation in reference to the observed bound conformation.

outside the training set. For this reason, only a minimal number of adjustable parameters are included in our scoring functions to achieve maximal N/M ratio in regression analysis. For example, we do not assign additional weighting factors to different types of atoms when calculating the van der Waals interaction. When calculating the hydrogen bonding, we do not differentiate charged and neutral hydrogen bonds. No differentiation in aliphatic and aromatic atoms was made in calculating the hydrophobic effect. Besides the regression constant, there are only four coefficients in each of our scoring functions. As shown in Table 1, they are all significant in regression analysis. Here the van der Waals interaction term in Equation 10 seems to be an exception, which contributes only a relative small fraction. However, it is not surprising since the hydrophobic effect term in Equation 10 is also calculated by counting atom pairs, therefore it overlaps with the van der Waals term partially and 'grabs' some contributions from the van der Waals term.

The N/M ratio issue deserves a little more discussion. It is reasonable to expect that statistically converged results can only be obtained by using a large training set. But how large is large? What is the proper size of the training set for deriving an empirical scoring function like ours? To answer this question, we have adopted the evolutionary regression procedure to look for the answer. The idea of evolutionary regression is to test a given regression model with training sets in different sizes and monitor the quality of the regression model during this procedure. Several trends

can be seen in the evolutionary regression experiments of Equations 9-11 (Figure 6). (i) The standard deviation in the whole set fitting (s) gradually increases when the training set grows larger. This can be understood because the scoring function under regression is kept fixed during the whole procedure. A larger training set represents more complexity and thus is more difficult to reconcile. (ii) The predictive ability of the regression model, as indicated by the standard deviations in leave-one-out cross-validation (spress) and test set computation (s_{pred}) , is gradually improved when the training set grows larger. This indicates that a larger training set indeed helps our scoring functions achieve better predictive ability. (iii) When the training set is relatively small, the regression model is generally unstable. The final regression model depends very sensitively on the contents of the training set, which may lead to chance correlation in regression and poor predictive ability. When the training set grows larger, the regression model becomes more stable and tends to converge to a certain level. As suggested by our evolutionary regression experiments, a training set containing at least 160 samples is required to derive a stable empirical scoring function with four terms, i.e. a minimal N/M ratio of 40. Unfortunately, the N/M ratios of other existing empirical scoring functions are generally much lower than this, e.g. LUDI (N/M = 45/6 = 9) [27], ChemScore (N/M = 82/4 = 20) [30], and SCORE (N/M = 170/10 = 17) [32]. In our case, the N/M ratio is 200/4 = 50. Therefore, we believe our scoring functions are, if not much more accurate, more

^bExperimentally determined binding affinity.

^cCalculated binding affinity for the best scored conformation. The values in brackets are the calculated one for the observed bound conformation.

robust in binding affinity prediction for a wider range of protein-ligand complexes.

Consensus scoring

A unique feature of our study is that three different algorithms have been implemented for modeling the hydrophobic effect. As described in the Methods section, hydrophobic effect is calculated either by the buried solvent-accessible molecular surface (Equation 9), or by the number of hydrophobic contacts between the protein and the ligand (Equation 10), or by the hydrophobic matching of the ligand with the binding site (Equation 11). All three algorithms are conceptually acceptable and actually they represent three typical algorithms adopted by empirical scoring functions for modeling the hydrophobic effect. However, it is not a good idea to include all three terms together in one scoring function since they account for the same effect and thus are highly correlated to each other. Therefore, they have to be accommodated in three scoring functions. As indicated by our regression results (Table 2), all three scoring functions perform reasonably well and are basically comparable to each other. However, since these three algorithms utilize different geometric features of the given protein-ligand complex structure in computation, their results differ. We have found that, for 40.0% of the samples in the training set, the difference between the lowest and the highest calculated binding affinity by these three scoring functions is less than $0.50 pK_d$ units; for 40.5% of the samples, the difference is between 0.50 and 1.00 pK_d units; while for the remaining 19.5% of the samples, the difference is larger than $1.00 pK_d$ units. One can see that such difference is not trivial at all in many cases. Conceivably, if one can predict which scoring function will be the best for a given protein-ligand complex, the accuracy in binding affinity prediction will be improved greatly. Indeed, if the experimental values are correlated to the best fitted values (each of them is chosen from three hits), the standard deviation in the training set fitting will drop by half to about $0.7 pK_d$ units. We have attempted to find out which scoring function may perform better for certain classes of ligands or families of proteins. Unfortunately this attempt ended without much success.

Based on the fact that there is no reason to bias towards any one of the three scoring functions, we simply combine them together (Equation 12). This practice is consistent with the idea of consensus scoring which has been demonstrated to be an effective

way of improving the hit-rates in virtual database screening [33]. As shown in Table 2, the performance of a single scoring function may vary and is not predictable. For example, among the three scoring functions, Equation 9 is the worst one for the training set but the best one for the test set. In contrast, Equation 11 is the best one for the training set but the worst one for the test set. By averaging these scoring functions, i.e. X-CSCORE, the result is not always the closest one to the true value (in fact it is always between the best one and the worst one). However, the advantages are: (i) it provides a clear indication of what level of accuracy these three scoring functions can achieve. Obtaining a converged result in binding affinity prediction is certainly important for structurebased drug design practice; and (ii) large errors in binding affinity prediction can be reduced. Recently we have pointed out that the nature of consensus scoring is multiple sampling [37]. By applying multiple scoring functions in combination, the positive and the negative errors have a chance to cancel each other and that is why consensus scoring generally performs better than any single scoring procedure.

Application to molecular docking

Our scoring function is developed primarily for estimating the binding affinity of a given complex with known structure ('scoring'). We also expect it to be useful for identifying the correct 'pose' of a ligand to its receptor ('docking'). Although some disputes still exist in whether 'docking' or 'scoring' should use the same type of function, we believe that ideally a 'scoring' function should also be able to serve as a 'docking' function. This is very important because in practice 'docking' and 'scoring' are often inseparable, such as in a virtual database screening study.

As described in the *Methods* section, we have investigated the potential application of X-CSCORE in molecular docking with 10 samples. Since we have not implemented this consensus scoring function into any molecular docking program directly, we employ the AutoDock program as a tool to generate possible bound conformations of the given ligand. All the conformations are then re-evaluated by X-CSCORE. RMSD values of the best scored conformations of these 10 protein-ligand complexes are listed in Table 3, where the results of X-CSCORE and the force field calculation in AutoDock are compared side by side. As one can see, if using the force field calculation in AutoDock as the scoring engine, 4 out

of the total 10 samples have RMSD values larger than 2.0 Å; while if using X-CSCORE as the scoring engine, only one sample, i.e. the alcohol dehydrogenase/CNAD complex (PDB code 1ADB), shows a RMSD value larger than 2.0 Å. In this case, we have checked all the 100 conformations generated by AutoDock and we found that the lowest RMSD value is 2.74 Å. This indicates that, with the parameters we were using, AutoDock has not generated any conformation close enough to the observed one. In fact, X-CSCORE predicts a much higher pK_d value of 8.01 for the observed one. The RMSD versus energy relationships observed in our docking tests for the Carboxypeptidase A/L-benzylsuccinate complex (PDB code 1CBX), the Dihydrofolate reductase/folate complex (PDB code 1DHF), and the adenosine deaminase/DAA complex (PDB code 1ADD) are shown in Figures 7–9, respectively. For these three samples, the best RMSD values given by AutoDock are 2.30 Å, 6.44 Å and 2.93 Å; while the corresponding ones given by X-CSCORE are 0.77 Å, 1.24 Å and 0.83 Å. It is very interesting to notice that, in the case of 1DHF, AutoDock has apparently chosen a wrong class of conformations while the correct one is somehow scored about 2 kcal/mol higher. In contrast, X-CSCORE has no problem in identifying the correct conformation.

It is very encouraging that our scoring functions are also applicable to molecular docking. Our scoring functions have all the necessary elements that correspond to the non-covalent interactions in a conventional force field, such as the van der Waals interaction and the electrostatic interaction (replaced by the hydrogen bonding term in our scoring functions). Besides that, our scoring functions also consider the hydrophobic effect and thus provide a better estimation of binding free energies. This is suggested in Figures 7b, 8b and 9b. In these cases, there is always a clear correlation between the RMSD values of the conformations and their binding energies calculated by X-CSCORE. Generally, the smaller is the RMSD value, the lower is the binding energy. The importance of this feature should not be underestimated. Molecular docking is a conformational sampling procedure which is performed on the potential energy surface defined by a certain scoring function. It is important that this potential energy surface does not contain a large number of false minima since such frustration will probably lead to poor convergence or wrong binding modes. The potential energy surface defined by an ideal scoring function should shape like a funnel, on which all the paths finally go down to the right position. As indicated by the RMSD versus energy relationships shown in Figures 7b, 8b and 9b, our consensus scoring function may have such an appealing feature. We expect that if a molecular docking program adopts our consensus scoring function as its scoring engine, its accuracy and efficiency in finding the correct bound structure will be improved considerably.

Considering that in practice our consensus scoring function will be applied in conjunction with molecular docking programs, it is highly desirable that all our scoring functions are able to tolerate at least a small amount of uncertainty in the input structure. For this reason, we have designed our scoring functions in such a way that they are not too sensitive to atomic coordinates. For example, we avoid the explicit use of hydrogen atoms in our algorithms. The reason is that predicting the position of a hydrogen atom precisely could be problematic when the hydrogen atom is bonded to a terminal rotatable group, such as a hydroxyl group. This uncertainty will lead to large deviation if hydrogen atoms have to be included explicitly in the calculation. Secondly, all the terms in our scoring functions are calculated with relatively large tolerances. For example, a 'softer' 8-4 equation is adopted in the van der Waals interaction term; loose criteria for distance and angular dependence are adopted in the hydrogen bonding term; long-distance cutoff is adopted in the hydrophobic effect terms. All these efforts are dedicated to emphasize on the overall fitness of the ligand to the binding site rather than trivial structural details. As shown in Table 3, by applying X-CSCORE, if a conformation is close to the reference conformation, then indeed it will get a score close to the one of the reference conformation.

Strength and weakness

Our scoring functions are developed to provide fast binding affinity estimations for a wide range of proteins and ligands. As demonstrated by the training set and the test set, the average accuracy of our consensus scoring function in calculating absolute binding free energies is approximately 2 kcal/mol. This level of accuracy is acceptable for structure-based lead discovery in which very accurate prediction of binding free energies may not be necessary, such as virtual database screening or *de novo* structure generation. The speed of our consensus scoring function is also perfectly suitable for such approaches.

We have implemented our scoring functions in a user-friendly program and have already applied it to several on-going structure-based drug design projects in our group. In these projects, large chemical data-bases are screened first by a standard docking program, such as DOCK, to pick out the top 10% compounds. These compounds are then re-evaluated by X-CSCORE. The best compounds selected by X-CSCORE, usually less than 0.1% of the original database, are then tested in biological assays. Very promising compounds have been identified since the application of this approach.

However, the accuracy of our consensus scoring function in binding affinity prediction is still not totally satisfactory: an error of 2 kcal/mol in binding free energy equals to approximately 50 folds in dissociation constant. Several drawbacks in our approach may have contributed to this inaccuracy. Firstly, since our scoring functions are derived from regression, they tend to characterize only the "common" interactions that are exhibited by a large population in the training set. Some other types of interactions, such as cation- π interaction and π - π stacking, are not included in our scoring functions simply because they have rare occurrences and thus do not contribute much to the regression model. It is thus expected that a general-type scoring function like ours could fail to give reasonable predictions when these types of interactions are playing an important role in protein-ligand binding. Secondly, there are also some factors which are common but we do not really have reasonable methods to take them into account. One example is the water molecules existing on the protein-ligand interface. Such water molecules are quite common and in some cases are thought to play an important role in the ligand binding. However, it remains unclear how to consider water molecules explicitly with an empirical scoring function. If water molecules need to be considered explicitly, maybe the entire algorithm for modeling the so-called 'hydrophobic effect' needs be replaced as well.

Our scoring functions also tend to give large positive errors for complexes with very low affinities and large negative errors for complexes with very high affinities (Figure 4). This phenomenon contributes to the significant positive intercept ($\sim 3~pK_d$ units) observed in all three scoring functions. Given the fact that most of the samples in the training set (80%) have pK_d values between 3.00 and 9.00, our scoring functions are calibrated better for binding affinities at this range. In fact, if only the samples within this affinity

range are chosen to derive our scoring functions, the standard deviations in regression will drop to 1.2-1.3 pK_d units (~ 1.7 kcal/mol in binding free energy).

Another major problem is the quality of the training set. Ideally, each protein-ligand complex in the training set should have a known high-resolution three-dimensional structure together with a reliably measured binding affinity value accessible to the public. Obtaining protein-ligand complex structures is not a problem since the Protein Data Bank provides an excellent resource for such information. However, collecting the binding affinities for these complexes is a tedious job since they all scatter in various literatures. So far, no appreciable database for such information has been established. The training set used in our study is a compilation of the training sets published in others' work plus our own collections from the literature. Containing 200 samples, it is already the largest set published to date in an empirical scoring function approach. As demonstrated in our evolutionary regression test, the size of this training set is sufficient for calibrating our scoring functions. However, the binding affinity data presented in this training set still need careful examination because a large portion of them are cited directly from others' work without further confirmation. Besides, some of the dissociation constants could have been measured under different experimental conditions, such as PH level, temperature, and salt concentration. The uncertainties in the binding affinity data have certainly placed an intrinsic limit on the accuracy of our scoring functions.

It should be mentioned that all the drawbacks we have discussed above are shared by other empirical scoring functions as well. Despite of all these drawbacks, empirical scoring functions remain a valuable and indispensable means for structure-based drug design. Constructing a better training set will not be a problem in the future because more and more structural and binding affinity data are becoming available. We are also optimistic that better algorithms will appear to account for the binding process. All these efforts will lead to a substantial improvement in the performance of future empirical scoring functions.

Conclusion

We have developed a consensus empirical scoring function, X-CSCORE, for estimating the binding affinity of a given protein-ligand complex with a known three-dimensional structure. The framework

of our study is very similar to Böhm's pioneering work. However, we have presented our works on designing better algorithms for the contributing terms and calibrating the scoring functions against a larger training set. As shown in this paper, our consensus scoring function is able to predict the binding free energies with an average accuracy of approximately 2 kcal/mol. Its potential application to molecular docking is demonstrated with a number of protein-ligand complexes. When compared to the conventional force field calculation, X-CSCORE performs considerably better in identifying the correct bound conformations. Considering the reasonable accuracy, the wide applicability, and the respectable speed, we expect that X-CSCORE will become a valuable tool for structurebased drug design.

Supplementary material

Tables of the training set (200 protein-ligand complexes) and the test set (30 protein-ligand complexes). The program, X-CSCORE, is available by contacting the authors.

Acknowledgements

This work is financially supported by the Cap CURE Foundation (2001 Young Investigator Award to Dr Renxiao Wang) and the Department of Defense (Grant No. DOD DAMP17-93-V-3018 to Dr Shaomeng Wang). The authors are grateful to Dr John B. O. Mitchell at University of Cambridge for providing some of the binding affinity data used in this study. The authors are also grateful to Dr Chao-Yie Yang at University of Michigan Medical School for his many thoughtful suggestions.

References

- l. Kuntz, l.D., Science, 257 (1992) 1078.
- Greer, J., Erickson, J.W., Baldwin, J.J. and Varney, M.D., J. Med. Chem., 37 (1994) 1035.

- Verlinde C.L.M.J. and Hol W.G.J., Structure, 2 (1994) 577.
- 4. Babine, R.E. and Bender, S.L., Chem. Rev., 97 (1997) 1359.
- Gane, P.J. and Dean, P.M., Curr. Opin. Struct. Biol., 10 (2000) 401.
- Walters, W.P., Stahl, M.T. and Murcko, M.A., Drug Discovery Today, 3 (1998) 160.
- 7. Makino, S. and Kuntz, l.D., J. Comp. Chem., 18 (1997) 1812.
- Morris, G.M., Goodsell, D.S., Halliday, R., Huey, R., Hart, W.E., Belew, R.K. and Olson, A.J., J. Comput. Chem., 19 (1998) 1639.
- Jones, G., Wilett, P., Glen, R.C., Leach, A.R. and Taylor, R., J. Mol. Biol., 267 (1997) 727.
- Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.
- 11. Böhm, H.J., Curr. Opin. Biotech., 7 (1996) 433.
- 12. Miranker, A. and Karplus, M., Proteins, 11 (1991) 29.
- 13. Böhm, H.J., J. Comput. Aid. Mol. Des., 6 (1992) 61.
- Gillet, V., Johnson, P. and Mata, P., J. Comput. Aid. Mol. Des., 7 (1993) 127.
- Clark, D.E., Frenkel, D. and Levy, S.A., J. Comput. Aid. Mol. Des., 5 (1995) 13.
- Pearlman, D.A. and Murcko, M.A., J. Med. Chem., 39 (1996) 1651.
- 17. Wang, R., Gao, Y., Lai, L., J. Mol. Model., 6(2000) 498-516.
- Schneider, G., Lee, M.L., Stahl, M. and Schneider, P., J. Comput. Aid. Mol. Des., 14 (2000) 487.
- Kollman, P.A., Curr. Opin. Struct. Biol., 4 (1994) 240.
- 20. Ajay and Murcko, M.A., J. Med. Chem., 38 (1995) 4953.
- Tame, J.R.H., J. Comput. Aid. Mol. Des., 13 (1999) 99.
- 22. Goodford, P.J.A., J. Med. Chem., 28 (1985) 849.
- Massova, I. and Kollman, P., Perspect. Drug Disc. Des., 18 (2000) 113.
- 24. Kollman, P., Chem. Rev., 7 (1993) 2395.
- Aqvist, J., Medina, C. and Samuelsson, J.E., Protein Eng., 7 (1994) 385.
- Carlson, H.A. and Jorgensen, W.L., J. Phys. Chem., 99 (1995) 10667.
- 27. Böhm, H.J., J. Comput. Aid. Mol. Des., 8 (1994) 243.
- 28. Jain, A.N., J. Comput. Aid. Mol. Des., 10 (1996) 427.
- Head, R.D., Smythe, M.L., Oprea, T.I., Waller, C.L., Green, S.M. and Marshall, G.R., J. Am. Chem. Soc., 118 (1996) 3959.
- Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V. and Mee, R.P., J. Comput. Aid. Mol. Des., 11 (1997) 425.
- 31. Böhm, H.J., J. Comput. Aid. Mol. Des., 12 (1998) 309
- 32. Wang, R., Gao, Y. and Lai, L., J. Mol. Model., 4 (1998) 379.
- Charifson, P.S., Corkery, J.J., Murcko, M.A. and Walters, W.P., J. Med. Chem. 42 (1999) 5100.
- Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E., Nucleic Acids Res., 28 (2000) 235. http://www.rcsb.org/pdb/.
- SYBYL v6.2, Tripos Inc. St. Louis, MO, U.S.A. http://www.tripos.com/
- Wang, R., Gao, Y. and Lai, L., Perspect. Drug Disc. Des., 19 (2000) 47.
- Wang, R. and Wang, S., J. Chem. Inf. Comput. Sci., 41 (2001) 1422.

Anti-malarial drug development using models of enzyme structure

Zhe Li¹, Xiaowu Chen¹, Eugene Davidson⁴, Oren Zwang⁴, Chandana Mendis⁴, Christine S Ring¹, William R Roush⁵, Glenn Fegley⁵, Rongshi Li¹, Philip J Rosenthal³, Garson K Lee³, George L Kenyon¹, Irwin D Kuntz^{1,2}, and Fred E Cohen^{1,2,3*}

¹Departments of Pharmaceutical Chemistry, ²Biochemistry and Biophysics and ³Medicine, University of California, San Francisco, CA 94143-0446. USA, ⁴Department of Biochemistry and Molecular Biology, Georgetown University, Washington DC 20007, USA and ⁵Department of Chemistry, Indiana University, Bloomington, IN 47405-8300, USA

Background: The trophozoite stage of the malaria parasite infects red blood cells. During this phase of their lifecycle, the parasites use hemoglobin as their principal source of amino acids, using a cysteine protease to degrade it. We have previously reported a three-dimensional model of this cysteine protease, based on the structures of homologous proteases, and the use of the program DOCK to identify a ligand for the nizlaria protease.

Results: Here we describe the design of improved ligands starting from this lead. Ligand design was based on the predicted configuration of the lead compound docked to the model three-dimensional structure of the protease. The lead compound has an IC₅₀ of 6 µM, and our design/synthesis

strategy has resulted in increasingly potent derivatives that block the ability of the parasites to infect and/or mature in red blood cells. The two best derivatives to date have IC_{50} s of 450 nM and 150 nM.

Conclusions: A new class of anti-malarial chemotherapeutics has resulted from a computational search that was based on a model of the target protease. Despite the lack of a detailed experimental structure of the target enzyme or the enzyme-inhibitor complex, we have been able to identify compounds with increased potency. These compounds approach the activity of chloroquine ($IC_{50} = 20$ nM), but have a distinct mechanism of action. This series of compounds could thus lead to new therapies for chloroquine-resistant malaria.

Chemistry & Biology September 1994, 1:31-37

Key words: docking strategies, homology modeling, novel anti-malarial compounds, structure-activity relationships, trophozoite cysteine protease

Introduction

The World Health Organization estimates that 280 million people are infected with malaria yearly [1]. Although various classes of anti-malarial agents exist, the most valuable are the quinoline-derived compounds, such as chloroquine and mefloquine. Chloroquine has been an especially effective drug in prophylactic and therapeutic settings, and thus the appearance of malaria strains resistant to chloroquine, and more recently, to mefloquine, poses a serious threat to travelers and to people in countries where malaria is endemic. Reports of multi-drug resistant strains of these parasites make the search for novel therapies especially urgent [2].

In this work, a novel target for anti-malarial chemotherapy is pursued. During the erythrocytic stage of their lifecycle, malaria parasites infect circulating red blood cells (RBCs) and use hemoglobin as their principal source of amino acids. Rosenthal and coworkers have identified a cysteine protease from malaria parasites that mediates host hemoglobin degradation [3]. Blocking this enzyme with cysteine protease inhibitors, such as L-trans-epoxysuccinylleucyl amido-(4-guanidino)butane (E-64)

and peptide fluoromethyl ketones, arrests parasite growth in vitro [4] and cures murine malaria (Plasmodium vinckei) infection in viwo [5]. These results support the therapeutic rationale behind using the protease as a target. Inhibiting this protease may, either by itself or in conjunction with established therapies, offer an alternative treatment for malaria. Most cysteine protease inhibitors, however, are sulfhydryl reagents that covalently modify the enzyme active site, and thus may inactivate some host cysteine proteases. Noncovalent angiotensin-converting enzyme inhibitors have been successful in the treatment of hypertension [6], and the clinical success of these compounds has motivated us to develop a new class of compounds that inhibit the malarial cysteine protease through noncovalent interactions.

Results and discussion Initial lead discovery

The discovery of a nonpeptidic lead compound, oxalic bis((2-hydroxy-1-naphthylmethylene)hydrazide) (ZL148A), for the malaria cysteine protease has previously been described [7]. Briefly, a model structure for the malaria

^{*}Corresponding author.

Fig. 1. The active site of the malarial protease and putative binding mode of the original lead compound, ZLI48A. The protease is shown in white and the ligand in gray. Oxygen and nitrogen atoms near the active site are colored in red and dark blue, respectively. The S₂, S₁, and S₁' binding subsites are shown in green, yellow, and cyan, respectively.

cysteine protease was proposed using the X-ray structures of papain and actinidin as a basis for modeling. The model structure was then used to search the Fine Chemicals Directory of commercially available small molecules (the Fine Chemicals Directory distributed by Molecular Design is currently known as the Available Chemical Directory) for putative ligands using the docking program, DOCK 3.0 [8]. Thirty-one compounds were finally tested and ZLI48A was identified as the best inhibitor of the protease. The IC50 value for enzyme inhibition against the substrate benzyloxycarbonyl-Phe-Arg-(7-amino-4-methylcoumarin) was 6 µM [7]. More importantly, this compound inhibits the growth of parasites in culture, as judged by its ability to block hypoxanthine uptake by malaria parasites, with an apparent $1C_{50}$ value of 7 μ M.

Circulating RBCs are a major target for malaria infection, and the magnitude of the infection can be quantified by counting the fraction of infected RBCs on a thick blood smear. This process is sufficiently laborious that it precludes the evaluation of dose-response curves for potential therapeutics in an acceptable time frame. To overcome this problem, we have developed a high-throughput assay that efficiently counts parasitized RBCs. Normally, circulating RBCs are enucleate and hence lack DNA. Parasitized RBCs contain malarial DNA. Thus, RBC staining by the DNA-binding dye propidium iodide can be exploited in an assay that uses a

fluorescence-activated cell sorter (FACS) to count the fraction of infected RBCs in a rapid and automated fashion. In this assay, ZL148A has an IC_{S0} value of 4.5 μ M.

Berger and Schechter [9] first demonstrated that papainlike cysteine proteases contain active sites that can accommodate up to seven amino acids. For notational convenience, the amino acid residues on the acyl side of the scissile bond are denoted $P_1, P_2 \dots P_n$ and those on the leaving group side are labeled $P_1, P_2, \dots P_n$. The corresponding binding sites on the enzyme are $S_1, S_2 \dots S_n$ and $S_1, S_2, \dots S_n$. The seven-residue binding pocket of papain-like cysteine proteases involves the S_4 through S3' subsites. The S2 and S1 subsites are those most responsible for the peptide cleavage specificity of this class of enzymes. The most stable conformer of ZLI48A is symmetric about its midpoint, with a second axis of pseudosymmetry about the backbone. Thus, there are essentially two ways to orient the compound in the active site. In both cases, the compound lies across the active site cleft of the malaria cysteine protease with one naplithyl group fitting into the S2 pocket and with the other stacking with the indole ring of Trp177 in the S pocket. The presumed binding mode is shown in Fig. 1. This orientation was chosen as the working model for the orientation in the complex, because it maximizes the compound's interaction with the enzyme, with each hydroxyl group within hydrogen bonding distance of a suitable residue in the enzyme (Ser160 and Gln19). Alternatively, the compound could be rotated 180 degrees about the horizontal axis of pseudosymmetry. In this orientation, the hydroxyl groups seem to interact with the enzyme less effectively but might interact with solvent water molecules.

Lead optimization

The starting point for lead optimization was the protease-ZLI48A complex generated by the program DOCK 3.0 [10]. Kuntz and colleagues developed the DOCK algorithm to capture the static geometric features of a molecular recognition site. In the malarial protease work, the homology-based model of the enzyme provides the template, and the DOCK algorithm identifies a set of spheres with approximately atom-sized radii to fill the active site cleft. Frequently, many overlapping spheres are used to fill the cleft, and a clustering algorithm is used to reduce the complexity of the sphere representation. Preliminary binding modes for a compound are defined through attempts to match the centers of cleft spheres with the centers of atoms within the compound of interest. Within DOCK 3.0, the quality of a compound's fit to the binding cleft can be evaluated based on its shape complementarity (contact score) or molecular mechanics interaction energy (AMBER force field score). When searching a database of compounds, DOCK 3.0 examines only the best orientation of the small molecule within the binding cleft (DOCK database screening mode). When a single compound is studied, multiple possible binding modes can be examined (DOCK single mode). Of course, the initial orientation of the compound is dictated, in part,

by the irregular lattice of sphere centers identified originally. To overcome some of the scoring distortion that this bias could impart, a rigid body minimization algorithm has been developed to move the ligand modest distances within the binding cleft and optimize the interaction energies. The use of a rigid body nunimization algorithm reflects the trade-off between the need for rapid evaluation and the reality that many ligands are flexible. ZLI48A was selected based on its score for shape complementarity. Rigid body minimization was applied to the ligand positioned in a preliminary orientation in the active site cleft so that other contributory factors (van der Waals and electrostatic interactions) required for efficient binding could be reflected in the enzyme-ligand complex (see Fig. 2).

The energetics of the enzyme-ligand assembly depends heavily upon the detailed conformation of the complex. Unfortunately, errors in the precise geometry of the complex are likely given the computational origins of the model. Potential problems could result from the fact that gross conformational changes can occur between the complexed and uncomplexed enzyme structures. In papain, the active site cleft widens upon binding a peptide-like ligand [11]. In the HIV protease, the flaps around the active site close on the substrate with backbone movements as large as 7 Å [12,13]. Ligands are also able to alter their conformations upon binding to the enzyme. For example, the structures of methotrexate alone and complexed to dihydrofolate reductase are dramatically different [14]. Consequently, choosing the relevant conformations of both enzyme and ligand can be critical for successful inhibitor design. Unfortunately, such structural changes are difficult to anticipate a priori and so our approach to ligand design is guided by, rather than dependent solely upon, the model of the ligand-enzyme structure.

Despite these uncertainties, a reasonable structure of the enzyme and/or enzyme-ligand complex has proven to be very useful. In this project, the malarial cysteine protease was modeled by homology to the known structures of papain and actinidin. The malarial protease has 33 % sequence identity with both enzymes. The anticipated root mean-square errors average approximately 1.5 Å for the core of the molecule [15]. Fortunately, the errors within the active site should be smaller, as it is the most conserved portion of the structure. The ligand conformation was calculated using CONCORD, an algorithm that relies on heuristic rules for translating chemical connectivities into three-dimensional coordinates [16]. This could create errors in the models of the ligand conformation. Because of the uncertainties inherent in the models of both the enzyme and the ligands, sophisticated energy calculations such as free energy perturbation are not warranted. The interpretation of these results would be difficult at best.

The model of the protease-ZLI48A complex has aryl groups filling the S_1 and S_2 pockets, but the S_1 pocket is only partially filled. In addition, although the conjugated

cight-atom backbone of ZL148A is most likely to be found in the all anti-conformation, syn isomers are possible that should not fit into the protease active site. We therefore designed analogs of ZL148A that have a less flexible backbone, fill the S₂ and S₁ or S₂, S₁, and S₁ subsites, and effectively interact with the side chains lining the subsite specificity pockets. Because malaria is endemic principally in developing countries, useful anti-malarial agents must be inexpensive to produce. We thus favored analogs that are easily synthesized from relatively inexpensive starting materials in a small number of steps. The basic strategy for lead optimization is outlined in Fig. 3:

Starting with the rigid-body minimized complex of enzyme-ZLI48A, and using the strategy highlighted above, we explored the S₂, S₁, and S₁' subsites by varying the size of the atomatic rings, the linker lengths, and the substituents of the aromatic rings. A third aromatic ring system was also introduced (tri-aryl compounds) to study the concerted binding of the ligand molecule to the S₂, S₁ and S₁' subsites. Newly synthesized compounds were tested by FACS assay for their potency in inhibiting

Fig. 2. Optimization of the orientation of ZL148A using rigid body minimization. The initial positioning of the ligand in the active site cleft (red) was estimated to have an interaction energy of 27.7 kcal mol⁻¹ using the AMBER force field. After 12 steps of minimization, the ligand (purple) moved 0.74 Å and the energy was lowered to -35.3 kcal mol⁻¹. Although the change in the position of the ligand was small, the difference between the energies of the starting and final conformations is significant. Green, yellow, and cyan colors highlight key residues in the S₂, S₁, and S₁' binding subsites, respectively.

Fig. 3. Strategy for lead optimization. The fit of the compound within the S₂, S₁ and S₁' subsites was explored by varying the size of the aromatic rings and the length of the linker, and further optimized by varying ring substituents. A third aromatic system was also introduced to explore the concerted binding of the ligand to these subsites. Six compounds are shown in this chart to illustrate the strategy.

parasite growth. The assay results of some representative compounds are shown in Fig. 4.

From a study of analogs with varying linker lengths and ring sizes, we found that compounds with half the length of the original linker and a phenyl ring instead of a naphthyl ring (compound ZLIII109A in Fig. 4) seemed to be twice as effective as the original lead, ZLI48A. A series of compounds was also made to test the role of ring substituents on inhibitor potency. It seems that hydroxyl groups at the 2, 2', and 4' positions are required for effective inhibition. The most potent compound (ZLIV44A) has an IC₅₀ value of 150 nM. The best tri-aryl inhibitor tested so far, ZLIV114A, has an IC₅₀ value of 450 nM. Overall, the four compounds listed in Fig. 4 have absolute IC₅₀ values at or below 1 µM. It is clear from Fig. 4 that there is a progressive increase in inhibition potency following the design, synthesis, and testing paradigm.

Modeling of ligand binding

DOCK calculations (in DOCK single mode) of the binding of a series of bis aromatic compounds with one naphthyl ring, a short linker, and one smaller aromatic ring reveal some interesting insights. The results indicate that there are essentially two ways to orient an asymmetric ligand. Both binding modes are similar to that for the symmetrical ZLI48A, shown in Fig. 1. In one binding

mode (Fig. 5a), the larger naphthyl ring interacts with the deeper, well-defined S_2 specificity subsite, whereas the phenyl ring binds to the more accessible, but less well-defined, S_1 ' subsite. Alternatively, the ligand molecule can be rotated 180 degrees around the S_1 subsite (Fig. 5b). In this binding mode, the naphthyl ring now interacts with the S_1 ' subsite, whereas the phenyl ring binds to the S_1 and S_2 subsites. Compounds with three aromatic components seem more likely to adopt the binding mode shown in Fig. 5a. In this orientation, the larger naphthyl ring binds to the well-formed S_2 subsite and the third ring now interacts fully with the more accessible, less well-defined S_1 ' subsite.

A recent report on the structures of inhibitors bound to the serine protease elastase, with K_is as small as 10 nM, shows that chemically similar inhibitors can adopt different binding modes and interact with different subsites [17]. Several inhibitors were found to bind to the enzyme in an orientation opposite to that of natural substrate and other chemically similar inhibitors. The compounds with two-fold degeneracy that we have designed and tested may also bind to the malarial protease with more than one binding mode. Obviously, this could complicate the development of a structure—activity relationship. Further work is under way to explore the availability of alternative binding modes.

In either binding mode, it seems that polar substituents on either aromatic ring can potentially form hydrogen bonds with a number of side chains lining the binding subsites as well as with backbone oxygen and nitrogen atoms from some loop residues. This observation is consistent with our finding that the 2 and 2' hydroxyl groups are required for effective inhibition. Substitutions at other positions, such as 4 and 4', are also associated with increased potency. For example, calculation of the model of the protease-ZLIII109A complex suggests possible hydrogen bonding interactions between residues Gln19, His67, Cys25, Asn133, His159, Ser160, Trp177 and the ligand oxygen and nitrogen atoms. Presumably, this explains part of the correlation between these ligand hydroxyl groups and compound potency. The modeling studies also provide a basis for the design of other tri-aryl compounds, a group of ligands that could lead to even more potent inhibitors via their extensive interactions with the protease subsites.

Conclusions

We report here the results of a structure-based approach for inhibitor design targeted toward a critical malarial protease. Starting with a lead compound identified by computer screening of a three-dimensional small molecule database, we have designed molecules with significantly increased inhibition potency against malaria parasites. This method provides a practical strategy for future work on structure-based drug design even in the absence of a crystallographic structure of the target enzyme. Our approach not only emphasizes the structural rationale for inhibitor design, but also uses simple chemistry and commercially available starting materials for inhibitor synthesis. This approach permits us to screen a relatively large number of potential inhibitors rapidly and inexpensively.

The potency of this new class of compounds in preventing parasite growth in vitro begins to approach that of available traditional quinoline-based drugs. As their target is distinct from that of chloroquine, these compounds should be effective against chloroquine-resistant scrains of the malaria parasite. The FACS assay we used in this report provides a practical and relevant method for evaluating inhibitor potency. The combination of structure-based screening and design coupled with simple chemical synthesis and a relevant biological assay has rapidly led to identification of a series of increasingly potent anti-malarial agents. Although therapeutic candidates will need to be active at low nanomolar concentrations, we anticipate that modifications of existing analogs will result in molecules that are suitable for preclinical efficacy and toxicology studies.

Significance

Malaria parasites, usually Plasmodium falciparum and Plasmodium vivax, infect 280 million people annually [1], and multi-drug resistant P. falciparum has become a significant pathogen in areas where the disease is endemic. We have chosen a cysteine protease that is central to the parasite's life cycle but distinct from the target of chloroquine action as a target for a structure-based drug development program. The choice of this target means that the chemotherapeutics that we develop should be active against chloroquine-resistant organisms.

Structure-based drug design usually depends upon the experimental determination of the target structure by X-ray crystallography or NMR spectroscopy. We have circumvented this step and relied exclusively on the sequence homology between the malaria enzyme and other cysteine proteases of known structure. A homology-based

Fig. 4. Inhibition of the growth of malaria parasites in red blood cells by ZL148A, the initial lead compound, and selected derivatives.

Fig. 5. Two putative binding modes of a representative bis-aryl compound ZLIV44A. In (a) the larger naphthyl ring interacts with S_2 , whereas in (b) it interacts with the S_1 subsite. The protease is shown in white and the ligand in gray. Oxygen and nitrogen atoms near the active site are colored in red and dark blue, respectively. The S_2 , S_1 , and S_1 binding subsites are shown in green, yellow, and cyan, respectively.

model of the malaria enzyme was used as the template for a computer-based ligand docking calculation that identified a useful lead compound. Lead optimization was achieved by a combined approach of computational and synthetic analysis. Derivatives of the lead were first optimized for fit using the computer docking program, then synthesized and experimentally tested.

The entire process of lead optimization was completed in eighteen months and resulted in the identification of compounds that are about ten times more effective than the initial lead and are simple and inexpensive to produce. This study shows that it is possible to start with a protein sequence and end with non-peptidic small molecule inhibitors of a medically relevant target enzyme. Thus, there may be many more systems amenable to structure-based drug development efforts than was previously believed.

Materials and Methods

Computer modeling

The three-dimensional structures of potential inhibitors were constructed interactively using the molecular modeling program SYBYL and the CONCORD conversion algorithm (Tripos

Associates, St Louis, MO). The Cambridge Crystallographic Database was used to determine probable low-energy conformations of certain ligand groups. Partial charges of ligands were calculated using the Gasteiger-Marsili method. DOCK 3.0 was used in single ligand mode to aid inhibitor design. All plausible binding orientations of a single ligand that meet certain userdefined criteria (contact and force field scores) were obtained by DOCK. Rigid body minimization of DOCK-derived ligand-protease complexes were performed to optimize the interaction energy between the protesse and the ligand. This method provides a detailed profile of potential binding orientations of a ligand molecule in the active site of the malarial protease. All computer-assisted modeling and docking studies were carried out using a Silicon Graphics workstation IRIS4D/35 or Indigo2. All color figures were produced using the MidasPlus program from the Computer Graphics Laboratory, University of California, San Francisco (supported by NIH RR-01081) [18,19].

Biological assay

An assay based on FACS analysis was used to evaluate the potency of the compounds reviewed in this paper against parasite growth. Synchronized trophozoite-stage parasites were cultured in human blood at various inhibitor concentrations. The parasites were allowed to mature, lyse the host cell and attempt invasion of fresh red blood cells. Using propidium iodide to stain DNA, the FACS can discriminate between infected and uninfected cells and between stages of intracerythrocytic parasite development, as only infected red blood cells contain DNA [20].

Because all of the clinical manifestations of malaria are caused by the crythrocytic cycle of lysis and reinfection, this assay is especially relevant for evaluating the efficacy of potential antimalarial agents. The full dose inhibition curves for oxalic bis((2-hydroxy-1-naphthylmethylene)hydrazide) and several of the key derivatives are shown in Fig. 4.

Chemical syntheses

2-Hydroxy-1-naphthaldehyde, oxalic dihydrazide, salicylic hydrazide, methyl 2,4-dihydroxybenzoate and 4-nitrobenzyl bromide were all purchased from Aldrich. 2,4-Dihydroxybenzoic hydrazide was obtained from Trans World Chemicals. 2,4-Dihydroxynaphthaldehyde was prepared from 1,3-dihydroxynaphthalenes (Aldrich) according to published procedures [21].

General procedure for condensation of aldehyde with acylhydrazine: to a solution of the aldehyde (1 mmol) in methanol (20 ml) was added the corresponding acylhydrazine (1 mmol) in one portion. The resulting mixture was heated at reflux for 3 h. In most cases, a precipitate was observed after 10 min. The precipitate was filtered, washed with hot methanol (50 ml) and dried in vacuum (2 mm Hg). If needed, additional purification was performed by recrystallization using appropriate solvents.

For the tri-aryl compounds, the acylhydrazine was made as follows: a mixture of benzyl bromide (10.0 inmol), methyl hydroxybenzoate (10.0 mmol) and cesium carbonate (10.0 mmol) in acetone (80 ml) was heated at 56 °C for 18 h. This mixture was filtered, and the filtrate was concentrated to give the corresponding methyl phenylmethyleneoxybenzoate. This crude methyl ester was then dissolved in EtOH (80 ml) and treated with hydrazine monohydrate (5.01 g, 100.0 mmol). The resulting mixture was stirred overnight at 20 °C and then concentrated to give the corresponding acylhydrazide, which was further purified by recrystallization from EtOH/H₂O (7:3, v/v). The structures of these compounds were confirmed by spectroscopic methods.

Acknowledgements: We thank Dr Elaine Meng and Daniel Gschwend for useful comments on DOCK simulations. This work was supported by grants from the Advanced Research Projects Agency (MDA-972-91-J1013; N00014-90-2032), the National Institutes of Health (GM 39900), and the UNDP/World Bank/WHO Special Program for Research and Training in Tropical Diseases (TDR890499). The MidasPlus program from the Computer Graphics Laboratory, University of California, San Francisco was supported by the National Institutes of Health (RR-01081). Molecular Design Ltd Information Systems and Tripos Associates kindly provided software materials.

References

- Gibbons, A. (1992). Researchers fret over neglect of 600 million patients. Science 256, 1135.
- Bruce-Chwatt, L.J. (1985). Essential Malariology. (2nd edn.), Wiley. New York.
- Rosenthal, P.J., McKerrow, J.H., Aikawa, M., Nagasawa, H. & Leech, J.H. (1988). A malarial cysteine proteinase is necessary for hemoglobin degradation by *Plasmodium falciparum. J. Clin. Invest.* 82, 1560–1566.
- Rosenthal, P.I., Wollish, W.S., Palmer, I.T. & Rasnick, D. (1991). Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. J. Clin. Invest. 88, 1467–1472.
 Rosenthal, P.J., Lee, G.K. & Smith, R.E. (1993). Inhibition of a
- Rosenthal, P.I., Lee, G.K. & Smith, R.E. (1993). Inhibition of a Plasmodium vinckei cysteine proteinase cures murine malaria. J. Clin. Invest. 91, 1052–1056.
- Williams, G.H. (1988). Converting-enzyme inhibitors in the treatment of hypertension. New England J. Med. 319, 1517–1525.
- Ring, C.S., et al., & Cohen, F.E. (1993). Structure-based inhibitor design using model bulk structures. Proc. Natl. Acad. Sci. USA 90, 3583–3587.
- Kuntz, I.D. (1992). Structure-based strategies for drug design and discovery. Science 257, 1078–1082.
- Berger, A. & Schechter, I. (1970). Mapping the active site of papain with the acld of peptide substrates and inhibitors. *Philos. Trans. R. Soc. Lond. (Biol.)* 257, 149–264.
- Meng, E.C., Shoichet, B.K. & Kuntz, I.D. (1992). Automated docking with grid-based energy evaluation. J. Comp. Chem. 13, 505-524.
- Drenth, I., Kalk, K.H. & Swen, H.M. (1976). Binding of chloromethyl ketone substrate analogues to crystalline papain. Biochemistry 15, 3731-3738.
- Włodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B.K., Baldwin, E., Weber, I.T., Selk, L.M., Clawson, L., Schneider, J. & Kent, S.B. (1988). Conserved folding in retroviral proteases: crystal structure of synthetic HIV-1 protease. Science 245, 616–621.
- Miller, M., Schneider, J., Sathyanarayana, B.K., Toth, M.V., Marshall, G.R. & Clawson, L. (1989). Structure of complex of synthetic HIV-1 protease with a substrate-based Inhibitor at 2.3 Å resolution. Science 246, 1149-1152.
- Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. & Kraut, J. (1982). Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 Å resolution. I. General features and binding of methotrexate. J. Biol. Chem. 257, 13650-13662.
- Chothia, C. & Lesk, A. (1986). The relation between the divergence of sequence and structure in proteins. EMBO J. 5, 823–826.
- Pearlman, R.S. (1991). 3D-searching: an overview of a new technique for computer-assisted molecular design. Nida Research Monograph 112, 62-77.
- Mattos, C., Rasmussen, B., Ding, X., Petsko, G.A. & Ringe, D. (1994). Analogous Inhibitors of elastase do not always bind analogously. Nature Struct. Biol. 1, 55-58.
- 18. Ferrin, T.E., Huang, C.C., Jarvis, L.E. & Langridge, R. (1988). The Midas display system. J. Mol. Graph. 6, 13–37.
- Huang, C.C., Pettersen, E.F., Klein, T.E., Ferrin, T.E. & Langridge, R. (1991). Conic: A last renderer for space-filling molecules with shadows. J. Mol. Graph. 9, 230–236.
- Clark, D.L., Chrisey, L.A., Campbell, F.R. & Davidson, E.A. (1994).
 Non-sequence specific antimalarial activity of oligodeuxy-nucleotides. Molec. Biochem. Parasitol. 63, 129–134.
- Morgan, G.T. & Vining, D.C. (1921). Dihydroxynaphthaldehydes. J. Chem. Soc. 119, 177–187.

Received: 13 Apr 1994; revisions requested: 29 Apr 1994; revisions received: 17 Jun 1994. Accepted: 22 Jun 1994.

Figure 1

Application No. 09/555,275
Annotated Sheet Showing Changes

					r zga				
ATOH	1	CB	GLU	1	55.907	11.986	66.300	1.00 59.11	AAAA C
ATOH	2	CS	GLU	ī	50.138	11.01?	65.162	1.00 39.11	AAAA C
ATON	3	CD	GLU	i	57.382	11.319	64.321	1.00 85.10	AAAA C
ATOH	4		GLU	1	58.404	10.754	64.795	1.00 86.18	AAAA O
ATOH	5	OE2		1	57.424	12.013	63.270	1.00 78.70	AAAA O
ATOH	6 7	C	GLU	1	53.508	12.557	66.350	1.00 48.46	AAAA C
ATOH ATOH	10	11	GLU GLU	1	52.685	11.863	65.784	1.00 51.27	AAAA O
ATOH	12	ĊA	GLU	i	54.256 54.502	10.338	67.159	1.00 61.64	AAAA II
ATOH	13	11	ILE	2	53.608	11.778 13.860	67.081 66.375	1.00 54.77	aaaa d aaaa ii
ATOH!	15	CA	ILE	2	52.769	14.699	65.604	1.00 40.87	AAAA C
ATOH	16	C8	ILE	÷	52.935	16.122	66.160	1.00 41.97	AAAA C
ATOL	17		ILE	2 2 2	52.036	17.122	65.484	1.00 38.50	AAAA C
ATOH	19	CG1	ILE	2	52.560	16.006	67.663	1.00 46.56	AAAA C
ATOH	19	CDI	ILE	2	53.150	17.176	68.198	1.00 32.29	AAAA C
ATOH	20 21	ů C	ILE	2 2	53.122	14.711	64.139	1.00 46.47	AAAA C
ATOH	22	11	CYS	3	54.258 52.235	15.029 14.409	63.852 63.196	1.00 51.65 1.00 49.61	AAAA O
ATOH	24	CA	CYS	š	52.435	14.677	61.773	1.00 38.93	AAAA C
ATOI1	25	C	CYS	3	51.429	15.708	61.302	1.00 42.06	AAAA C
ATOI-I	26	0	CY3	3	50.290	15.521	61.690	1.00 42.37	AAAA O
ATO()	27	C8	Cis	3	52.159	13.415	60.999	1.00 35.66	AAAA C
ATOM	28	SG	CYS	3	53.019	12.004	61.674	1.00 36.98	AAAA S
ATOH	29	11	GLY	4	51.851	16.709	60.580	1.00 42.39	AAAA II
ATOH	31	CA	GLT	4	50.973	17.718	60.003	1.00 47.71	AAAA C
ATOM ATOH	32 33	0	GLY GLY	. 4	51.703 52.916	18.407	58.869	1.00 48.23 1.00 55.36	AAAA C AAAA O
ATOH.	34	11	PRO	5	51.956	18.345 19.212	50.884 58.048	1.00 49.63	AAAA II
ATOH	35	CD	PRO	Š	51.637	19.947	56.860	1.00 45.28	AAAA C
ATOM	36	CA	PRO	5	19.605	19.341	58.083	1.00 41.57	AAAA C
ATOH	37	CB	PRO	5	49.397	20.703	57.474	1.00 44.30	AAAA C
MOTA	38	CG	PRO	5	50.632	21.036	56.683	1.00 46.43	AAAA C
ATOH	39	C	PRO	5	48.932	18.217	57.354	1.00 36.40	AAAA C
ATOI1	10	0	PRO	5	49.403	17.094	57.396	1.00 43.35	AAAA O
ATON	41	II CA	GLY GLY	6 6	47.787 4 6 .896	18.438	56.795 56.350	1.00 39.15	AAAA C
ATOM	44	c	GLT	6	47.710	17.336 16.365	55.529	1.00 33.68	AAAA C
ATOH	45	Ō	GLY	6	48.510	16.863	54.753	1.00 36.00	AAAA O
ATOH	16	11	ILE	7	47.586	15.111	55.788	1.00 35.70	AAAA H
ATOH	48	CA	I LE	7	18.307	14.053	55.141	1.00 37.65	AAAA C
ATCH1	49	CB	ILE	7	48.556	12.797	55.933	1.00 36.31	AAAA C
ATOH	50		ILE	7	49.043	11.700	54.988	1.00 34.67	AAAA C
ATOH	51		ILE'	7 7	19.561	12.857	57.067	1.00 39.34	AAAA C
ATOH ATOH	52 53	CDI	ILE	ż	49.678 47.338	14.249	57.668 53.977	1.00 40.22	aaaa c aaaa c
ATOH	21	ō	ILE	i	46.150	13.762	54.195	1.00 51.52	AAAA O
ATOI1	5.5	11	ASP	В	17.767	13.631	52.751	1.00 45.60	AAAA II
ATOH	57	CA	ASP	В	46.938	13.283	51.631	1.00 44.05	AAAA C
ATOH	58	CB	ASP	ម	47.703	14.469	50.651	1.00 44.21	AAAA C
ATOI1	59	CG.	ASP	8	45.909	14.379	49.600	1.00 43.48	AAAA C
ATOH	60		ASP	8	45.660	13.262	19.096	1.00 51.77	AAAA O
ATOH ATOH	61 62	C OD2	ASP ASP	8 8	45.253	15.374	19.251	1.20 45.84	AAAA O
HOTA	63	õ	ASP	8	47.428 48.423	12.000	50.992 50.339	1.00 42.16	AAAA C AAAA O
ATOH	54	ù	ILE	Ģ	47.096	10.817	51.321	1.00 42.76	AAAA II
ATCH	66	CA	ILE	ģ	47.441	9.505	50.939	1.00 44.05	AAAA C
ATOH	67	CB	ILE	9	47.212	8.483	52.077	1.00 40.82	AAAA C
ATOU	68		ILE	ģ	47.669	7.085	51.653	1.00 36.35	AAAA C
ATOH	69		ILE	Ģ.	17.888	8.917	53.364	1.00 41.17	AAAA C
ATOH	70 71		ILE	9 9	19.376	8.947	53.286	1.00 43.78	AAAA C
atoh atoh	72	0	ILE	Ģ	12.338 16.230	9.137	49.794 49.832	1.00 51.48 1.00 63.05	aaaa c aaaa o
ATOH	73	11	ARG	10	17.004	8.417	48.812	1.00 \$4.87	AAAA H
AT'OI I	75	CA	ARG	10	46.283	8.089	47.600	1.00 54.17	AAAA C
ATO!!	76	CB	ARG	10	45.703	9.358	47.023	1.00 48.54	AAAA C
ATOH	77	CG	ARG	10	46.361	10.169	45.952	1.00 46.55	AAAA T
ATOI1	78	CD	ARG	10	16.002	11.635	46.264	1.00 52.63	AAAA C
ATON	79	IIE	ARG	10	15.082	12.226	15.284	1.00 59.27	AAAA II
ATOH	81 82	CZ	ARG ARG	10	44.269	13.262	15.498	1.00 56.22	AAAA C
ATOH ATOH	85		ARG	10 10	44.153 43.455	13.891 13.803	46.666 44.602	1.00 55.14	aaaa i: Aaaa ii
ATO:	88	C	ARG	10	47.019	7.373	46.492	1.00 57.23	AAAA C
ATOH1	89	ō	ARG	10	48.240	7.288	46.281	1.00 56.32	AAAA O
ATOH	90	11	ASII	11	46.248	6.654	45.629	1.00 57.23	II AAAA
ATO:	92	CA	ASH	11	46.800	5.917	44.494	1.00 50.73	AAAA C
ATOH	93	CB	ASII	11	47.704	6.798	43.671	1.00 44.65	AAAA C
ATOLI	6 1	CG	ASI	11	46.878	7.732	42.829	1.00 50.72	AAAA C
ATOH	95		ASH	11	45.749	7.451	42.403	1.00 72.59	AAAA O
ATOLL	96		ASII	11	47.499	8.869	42.587	1.00 54.38	AAAA 11
ATOH ATOH	100 66	0	ASH ASH	11 11	47.635	4.736	44.915	1.00 53.07 1.00 51.95	AAAA C AAAA O
ATOH	101	1:	ASP	12	47.303 48.566	3.701 4.822	44.347	1.00 50.96	AAAA II
ATON	103	ÇA	ASP	12	19.204	3.570	46.263	1.90 55.44	AAAA C
				-					

TECH CENTER 1800

RECEIVED

							2/58		
ATOH	104	CS.	ASP	-13	50.659	3.568	45.75A	1.00 66.47	AAAA Z
ATOH	105 106	001	ASP A3P	12	50.879 50.441	4.026 3.185	44.314	1.00 68.25 1.00 58.31	T AAAA C AAAA O
IKTA	127		ASP	12	51.391	5.120	43.98?	1.00 70.50	AAAA O
ATOH ATOH	1 j.e 1 0 8	c C	ASP ASP	12	19.061	3.322	47.758	1.90 59.23	AAAA C
ATOH	110	11	TYR	13	49.687 48.411	3.849 2.197	48.711 48.036	1.00 59.65	0 AAAA 0
ATOH	112	CA	TTR	13	48.328	1.672	49.397	1.00 64.06	AAAA C
ATCH	113	CG CG	TYR	13 13	17.968 17.157	0.196 -0.357	49.409 50.721	1.00 64.56 1.00 69.18	AAAA C
ATCH	115	CDI	TTR	1.3	16.216	-0.024	51.249	1.00 72.71	AAAA C
ATOH:	116 117	CEI	TYR	13 13	15.746	-0.541	52.150	1.00 71.51	2 AAAA
ATOM	118	CES	TIR	i 3	48.233 47.788	-1.247 -1.778	51.457 52.661	1.99 70. 3 6 1.90 71.64	AAAA I AAAA I
ATOH	119	CZ.	TYR	13	46.542	-1.420	53.160	1.00 71.31	AAAA C
ATOH ATOH	120	C OH	TYR TYR	13 13	49.622	-1.977 1.839	54.358 50.198	1.00 63.25 1.00 65.99	0 AAAA 3 AAAA
ATOH	123	ŏ	TYR .		19.621	2.321	51.35-	1.00 65.01	AAAA O
ATOH	124	li O	GLII	14	50.78÷	1.541	19.594	1.00 63.51	AAAA II
ATOH ATOH	126 127	CA	GLII	14	52.078 53.174	1.681 1.319	50.218 49.219	1.00 63.51 1.00 68.37	AAAA C
ATO(1	128	CG	GLII	14	52.963	-0.078	48.686	1.00 84.62	AAAA C
ATOH ATOH	129 130	OEI	GLU	14 14	53.990 53.945	-0.515 -0.161	47.754 46.573	1.00 92.28	AAAA C AAAA O
ATOH	131	HE2		14	54.920	-1.254	48.361	1.00 98.03	AAAA II
ATOH	134	Č	GLII	14	52.434 53.266	3.058 3.292	50.753	1.00 61.62	AAAA C
ATOH	135 136	ر ال	GLII	14 15	51.628	4.038	20.349 21.644	1.00 62.09 1.00 57.00	AAAA C AAAA II
ATOH	138	CA	GLII	15	51.724	5.399	50.831	1.00 51.71	AAAA C
ATOH ATOH	139 140	CB CG	GLII GLII	15 15	50. 9 61 51. 5 66	6.220 6.605	18.618 19.911	1.00 43.75	C AAAA
ATOH	141	CD	GLII	15	51.554	8.105	48.428	1.00 72.96	AAAA C
ATOH	142	OEI		15	51.168	9.005	49.184	1.00 80.58	AAAA O
ATOIL	146	0 0	GLII GLII	15 15	52.016 51.219	8.378 5.530	47.211 52.258	1.00 74.17 1.00 50.15	AAAA II AAAA C
LIOTA	147	0	GLII	15	51.576	6.500	52.940	1.00 48.04	O AAAA
ATOH ATOH	148	:I CA	LEU	16 16	50.440 49.913	4.535 4.449	52.688 54.019	1.00 46.22	AAAA C
ATON	151	СВ	LEU	16	48.950	3.295	54.159	1.00 37.73	AAAA C
ATOH	152	CG	LEU	16	47.502	3.425	53.707	1.00 41.40	AAAA C
ATOH ATOH	153 154	CD1 CD2		16 1 6	46.837 46.687	2.063 4.424	53.790 54.545	1.00 42.43	AAAA C
ATOH	155	С	LEU	16	51.042	4.280	55.039	1.00 51.52	AAAA C
ATOH ATOH	156 157	0	LEU	16 · 17	50.913 52.252	4.601 3.936	56.235 54.560	1.00 52.53 1.00 51.01	O AAAA H AAAA
ATO: I	159	CA	LïS	17	53.422	3.914	55.404	1.00 50.73	AAAA C
ATOH ATOH	160	CB CG	LY3 LY3	17 17	54.609 54.539	3.252 1.733	54.737 54.831	1.00 56.10 1.00 62.40	AAAA C AAAA C
ATOII	161 162	CD	LYS	17	54.768	1.278	53.387	1.00 63.85	AAAA C
ATOH	163	Cε	LTS	17	55.316	-0.141	53.426	1.00 68.40	AAAA C
ATOH	164 169	C C	LYS	17 17	56.537 53.944	-0.225 5.270	52.554 55.052	1.00 73.83	11 AAAA T AAAA
ATOH	169	0	LYS	1.7	54.492	5.262	56.933	1.00 39.39	AAAA C
ATCH ATCH	170 172	II CA	ARG ARG	10 10	53.524 53.827	5.344 7.673	55.201 55.676	1.00 41.15 1.00 43.01	AAAA 1
ATOH	173		ARG	18	53.250	8.702	54.704	1.00 43.97	AAAA C
ATOH	174	CG	ARG	18	53.889	8.764	53.333	1.00 53.60	AAAA C
HOTA	175 176	CD	ARG ARG	19 18	52.964 52.528	9.362 10.703	52.269 52.650	1.00 60.34	AAAA C
ATOH	178	CI	ARG	19	51.628	11.444	52.021	1.00 48.86	AAAA T
ATOH ATOH	179 182	##1 ##2		19 10	51.068 51.377	10.941 12.656	50.943 52.555	1.00 47.96 1.00 43.72	AAAA II
ATOH	185	Ç	ARG	18	53.268	7.924	57.077	1.00 44.93	AAAA C
ATOH	186	Ç	ARG	18	53.402	9.010	57.644	1.00 45.53 1.00 46.36	AAAA O
ATOH	187 189	H GA	LEU	19 19	52.145 51.653	7.069 7.282	57.632 58.794	1.00 50.25	AAAA :: AAAA ::
INTA	190	CB	LEU	19	50.196	6.924	58.674	1.00 50.83	AAAA C
ATOH ATOH	191 192	CDI	LEU	19 19	49.202 47.946	7.371 6.743	57.608 57.852	1.00 46.43	C AAAA
ATOH	193		LEU	19	49.018	8.866	57.495	1.00 45.88	AAAA 🤄
HOTA	194	Ċ	LEU	1.9	52.010	6.428	59.912	1.00 49.87 1.00 51.54	C AAAA
ATON ATON	195 196	11	Leu Glu	19 20	51.970 53.270	6.810 5.708	61.030 59.652	1.00 49.35	AAAA II
ATOH	198	CA	GLU	20	53.819	1.833	60.679	1.00 49.60	AAAA C
ATOH	199	CB CG	GLU	20 20	54.876 55.893	3.960 4. 84 0	59.982 59.272	1.00 57.91 1.00 70.16	AAAA C AAAA C
ATOH	201	CD	GLU	20	57.095	4.077	58.757	1.00 69.35	AAAA C
HOTA	202	OEL	GLU	20	58.123	4.795	58.722	1.00 71.38	AAAA C
HOTA	203	OE2	GLU	20 20	56.993 54.310	2.885 5.417	58.420 61.989	1.00 72.84 1.00 43.55	AAAA C
ATOH	205	0	GLU	20	54.301	4.652	62.937	1.00 40.01	AAAA C
ATOH	206	II CA	ASH	21	54.633	6.659	62.207	1.00 41.06 1.00 47.1?	1: &&&& T &&&&
ATOH ATOH	209	C	asii Asii	21 21	55.054 54.066	8.141	, 63.454 64.108	1.00 49.76	AAAA :
ATOH	210	0	ASII	3:	54.229	8.456	65.303	1.00 48.10	AAAA C

AAAA C

AAAA II

AAAA II

AAAA C AAAA C AAAA O

AAAA S

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

TECH CENTER 1000

AAAA II

AAAA C

AAAA C

AAAA AAAA

AAAA

AAAA

AAAA 0 AAAA 11

AAAA C

1.00 40.02

1.00 39.47

1.00 37.95

1.00 23.86

1.00 41.66

1.00 49.77

28.22

46.50

43.56

49.89

1.00

1.90

1.00

1.00

222 223 225 226 227 229 230 23 23 23 23 24 ATON THR CGC 52,110 68.838 1.00 33.83 AAAA 8.571 ATOH С THR 49.250 1.00 44.55 10.599 57.116 AAAA 231 ATOH O THR 48.085 £7.481 1.00 45.95 AAAA 10.414 ATOI I VAL 11 49.646 11.797 66.689 1.00 33.03 AAAA II 234 235 ATOH CΑ VAL 24 48.732 12.855 1.00 35.29 AAAA 56.442 24 ATOI: CB VAI. 48.925 13.379 67.456 1.00 30.60 AAAA 236 1.00 27.21 ATO CG1 VAL 15.157 67.082 48.056 AAAA ATO! CG2 VAL 24 48.656 13.566 68.886 AAAA ATO: 1 238 C VAL 24 48.895 13.447 65.043 1.00 41.52 AAAA 239 24 ATO! VAL AAAA II 49.987 13.963 64.791 1.00 44.40 240 ATON 11 ILE 25 47.855 64.203 1.00 40.13 13.450 ATOH CA ILE 25 AAAA 47.908 14.094 1.00 32.05 62.882 ATCH 243 CB ILE 25 13.299 1.00 25.85 AAAA 47.113 61.853 **ATOI**1 244 CG2 ILE 25 47.027 14.039 60.542 61.705 1.00 18.73 AAAA 25 ATOH 245 CJI ILE 47.677 1.00 29.80 AAAA 11.896 ATC(1 246 CO1 ILE 60.471 62.941 27.41 47.169 11.155 1.00 AAAA HOTA 247 112 25 47.397 AAAA 1.00 32.92 15.490 249 249 251 252 253 1.00 40.91 ATO! I 0 ILE 25 15.776 46.223 63.213 AAAA ATOH 1; GLU 26 48.264 16.472 63.042 1.00 36.60 AAAA CA CB ATOH. GLU 26 47.832 63.226 1.00 29.24 AAAA 17.847 ATOH 26 48.875 18.703 63.856 1.00 29.92 AAAA CS GLU ATOH 26 48.490 20.144 64.116 1.00 38.06 AAAA 254 ATO: CD GLU AAAA C AAAA O 26 49.561 20.762 65.013 1.00 37.39 1.00 41.56 ATOH 255 OE1 GLU 26 50.654 20.937 64.489 ATOM OE2 GLU 26 49.571 21.175 66.182 1.00 49.16 AAAA O AAAA ATON 257 c GLU 26 47.413 18.376 61.869 1.00 37.79 C 258 259 O GLU ATOM 26 1.00 39.68 AAAA 48.161 19.069 61.181 MOTA 11 27 AAAA 11 GLT 46.117 45.498 18.104 61.582 ATOM 261 CA GLT 27 60.320 1.00 31.17 AAAA 18.503 ATOM 262 GL' 27 44.531 17.400 59.893 1.00 33.72 AAAA **ATOH** 263 0 27 16.715 60.775 GLT 43.988 1.00 33.29 AAAA I IOTA 264 Н TYR 28 44.304 17.209 58.604 1.00 29.24 AAAA HOTA 266 CA TTR 28 43.318 16.189 58.253 1.00 28.93 AAAA ATOH 267 CB TYR 28 42.403 16.794 57.217 1.00 31.53 AAAA ATO! CG 17.256 1.00 31.79 268 TïR 28 43.058 55.962 AAAA HOTA 269 CDI TYR 28 43.704 16.355 55.116 1.00 36.07 AAAA 270 HOTA CEI TYR 28 44.361 16.706 1.00 28.91 53.967 AAAA 271 272 ATO: 002 TTR 28 43.130 18.572 55.606 1.00 30.98 AAAA 1.00 28.77 ATON: CE2 TIR 28 43.769 18.972 54.428 AAAA 273 CC ATO: TTR 28 44.367 19.021 53.652 1.00 31.53 AAAA ATO: 274 OH TYR 28 44.971 18.425 52.464 1.00 44.74 AAAA 276 ATOM C AAAA C AAAA O TTR 28 43.953 14.946 57.597 1.00 29.23 ō 277 45.119 43.250 43.764 ATON. TTR 28 15.147 57.383 1.00 35.58 278 ATO: 11 LEU 29 29 13.900 12.730 AAAA 57.445 1.00 26.63 1.00 29.83 280 CA AAAA C AAAA C AAAA C AAAA ATO! I LEU 56.803 281 ⊆B LEU 29 ATOU 43.830 57.856 11.611 29 1.00 31.90 282 CG LEU ATO!! 44.212 57.242 10.258 29 56.469 58.290 55.616 55.806 CDI ATOL 293 LEU 45.538 1.00 35.03 AAAA 10.396 CD2 29 AAAA C ATOL 284 LEU 1.00 25.05 44.551 9.203 12.342 12.165 12.285 ATCI-I 285 29 LEU 1.00 33.84 AAAA 42.897 ATOL 286 O LEG 29 AAAA O 41.689 1.00 43.29 1.00 35.95 NOTA 287 п 1113 43.369 54.395 AAAA II 53.197 52.027 ATOH 289 CAHIS 30 42.681 11.891 1.00 34.92 AAAA C 1.00 32.85 ATOI I 290 CB HIS 30 12.893 12.801 AAAA C ATOH 291 CG HIS 30 42.372 52.046 1.00 25.08 AAAA C 14.155 ATOH 292 CD2 11IS 30 41.519 52.907 1.00 40.88 AAAA C 14.753 **INTA** 293 11D1 H1S 30 42.71? 51.129 1.00 33.66 II AAAA 15.120 ATOH 295 CEL HIS 30 42.080 51.444 1.00 31.33 AAAA C 16.201 AAAA II AAAA C ATO:I 396 HE2 HIS 30 41.329 16.093 52.539 1.00 37.27 **ATOI** 298 c HIS 30 43.173 10.538 52.714 1.00 37.68 AAAA O 299 ATOI I O HIS 30 44.357 10.388 52.541 1.00 38.70

9.542 8.271

7.204

5.830

7.555

5.575

8.044

7.509

9.489

9.235

52.584

51.900

53.063

52.651

54.335

55.473

50.755

50.827

49.556

48.339

3/58

6.003

7.951

5.855 7.469

8.711

9.614

9. ú89

7.923

9.921

9.801

9.482

9.491

10.843

10.328

63.299 62.706

63.122

61. 8an

63.351

.3.879

65.021

65.069

61.118

66.137

67.204

66.543

66.822

1,00 59,11

1.00 68.38

1.00 58.51

1.90 77.99

1.00 47.44

1.00 42.99

1.00 36.07

1.00 44.82

1.00 39.51

1.00 36.24

1.00 43.51

1.00 41.38

1.00 \$1.21

54.370

57.413

57.499

58.348 53.129

52.107

51.215

50.750

51.182

52.076

51.287

50.33?

50.944

51.410

22

23

WO-99/28347

CB ASH

CU

001 ASII

1102 ASH

CA

ø

CB CYS

SG

CA THR

CH

0:31 THR

!1

A311

cis

Cïs

CTS

CYS

CYS

THR

THR

:12

214

218

219

220

ATOI:

ATOH

HOTA

ATO!

ATOH

ATOH

ATOH

ATO!1

ATOH

ATCII

LIOTA

ATOH

ATOH

ATOH

ATOH

ATOH

ATO:

ATOH

ATOLI

ATOH

ATON

ATO:

ATOH:

ATOU

300 11

302 CA

303 CB ILE

304

305

306

307

309 O ILE

ILE

ILE

ilf.

ILE

LEU

CG2 ILE

CG1 ILE

CDI

c

1: 309

> CΛ LEU

31

31

31

31

31

31

31

31

32 32

TO MADOLANIK

Changes

Application No. 09/555,275

Annotated Sheet Showing

Figure 1A-2

42.308

12.750

42.668

43.161

43.481

43.170

41.801

40.753

41.404

AUG MATERIAL I	0 6 20 3
Application No. 09/555,275 Annotated Sheet Showing Changes	

							200		
ATCH	312	73	LEU	30	41.127	9.515	47.603	1.00 47.49	÷AM\ C
ATOLL	513	75	LEU	32	12.991	10.688	47.562	1.00 45.33	aaaa c
ATOH	314	CD1	LEU	32	41.517	11.812	46.673	1.00 35.77	AAAA C
ATOH	315	202		32	42.371	11.229			AAAA C
			LEU				48, 960	1.00 49.19	
ATOH	315	÷	LEU	30	42,136	7.296	47.353	1.00 51.00	iara c
ATOH	317	0	LEU	32	43.338	7.370	47.185	1.00 41.36	O AREE
ATCH	18 د	11	LEU	33	41.270	5.722	46.497	1.00 50.74	AAAA N
ATOH	320	CV	LEU	33	41.602	6.175	45.127	1.00 49.92	AAAA C
ATOH	321	ÇB	LEU	33	42.091	7.262	14.192	1.00 34.83	aaaa c
-TOH	322	C-S	I.EU	33	41.233	8.537	44.164	1.00 33.92	AAAA C
ATOH	323	COL	1 511	33	41.892	9.587	43.298	1.00 37.49	AAAA C
ATON	324	CD2	LEU	33	39.823	9.313	43.644	1.00 33.01	AAAA C
ATC(1	325	Ċ	LEU	33	42.618	5.073	45.287	1.00 48.35	AAAA C
									AAAA O
ATCH	326	9	LEU	33	43.580	5.077	44.538	1.00 54.14	
ATOH	327	11	ILE	34	42.543	4.212	45.254	1.90 47.6i	II AAAA
ATON	329	CA	ILE	34	43.523	3.184	46.540	1.00 51.70	AAAA C
ATOH	330	C6	ILE	34	44.101	3.346	47.963	1.00 57.98	AAAA C
ATOH	33i	CG2	ILE	34	44.538	2.043	48.500	1.00 48.98	AAAA C
ATON	33.2		I Le.	3∔	45.267	4.371	17.967	1.90 46.70	C MAAA
ATOII	333	CDI	ILE	34	45.5∻1	4.704	19.439	1.00 66.47	ن ببنب
ATOH	334	C	ILE	34	42.829	1.844	46.406	1.00 59.85	AAAA C
								1.00 60.11	AAAA O
ATOI-I	335	0	ILE	31	41.726	1.531	46.856		
ATO:	336	1;	SER	35	43.622	0.833	46.013	1.00 67.79	H AAAA H
ATO:	338	CA	SER	35	43.048	-9.513	45.922	1.00 68.80	AAAA C
ATOH	339	C.B.	SEK	35	42.767	-0.882	44.469	1.00 64.16	AAAA C
ATOH	340	OG	SER	· 35	41.731	-1.846	44.498	1.00 75.76	AAAA O
ATOH	342	c	SER	35	43,929	-1.564	46.537	1.00 70.73	AAAA C
ATOH	343 -	0	SER	35	44.885	-1.954	45.909	1.00 73.65	aaa o
ATOH	344	11	LYS	36	43.697	-2.017	47.740	1.00 74.75	AAAA II
								1.00 76.09	ATAA C
ATOH:	316	CA	LYS	36	44.465	-3.014	48.421		
ATO:	317	СЭ	LTS	36	44.046	-3.131	49.885	1.00 81.00	AAAA C
ATOI I	318	C/3	LYS	36	45.147	-3.654	50.775	1.00 78.87	AAAA C
ATOH!	319	CD	LYS	36	44.693	-4.575	51.887	1.00 81.39	AAAA C
ATOH	350	CE	LYS	36	44.890	-6.025	51.492	1.00 89.38	AAAA C
							52.506	1.00 91.63	H AAAA H
ATOH	351	110	LYS	36	44.371	-6.989			
ATCH!	355	Ċ	LYS	36	44.252	-4.362	47.753	1.00 81.41	AAAA C
ATON:	356	O	LYS	36	43.145	-4.772	47.451	1.00 78.20	C AAAA
									AAAA 11
ATOH	357	11	ALA	37	45.371	-5.080	47.615	1.00 88.27	
ATOH:	359	CA	ALA	37	45.361	-6.396	16.986	1.00 90.10	AAAA C
ATON	360	СЗ	ALA	37	46.700	-6.655	46.327	1.00 95.49	AAAA C
ATO!	361	C	ALA	37	45.011	-7.473	47.995	1.00 92.36	AAAA C
ATOH	362	0	ALA	37	45.668	-7.627	49.012	1.00 92.35	aaaa o
							47.622	1.00 94.31	AAAA II
ATOH	363	11	SER	38	44.031	-8.301			
HOTA	365	CA	SER	38	43.528	-9.352	48.484	1.00 95.70	AAAA C
ATOM	366	CB	SER	38		-10.164	47.858	1.00 97.44	AAAA C
HOTA	367	OG	SER	38	42.061	-11.176	48.814	1.00103.48	AAAA O
ATOH	369	С	SER	38	44.702	-10.263	48.821	1.00 96.87	AAAA C
							49.924	1.00 98.06	AAAA O
ATOH	370	0	SER	38		-10.778			
Y.LOH	371	11	ASF	39	45.584	-10.415	47.852	1.00 97.69	II AAAA.
HOTA	373	CA	AS?	3 9	46.821	-11.148	47.980	1.00 99.19	C AAAA
								1.00102.13	AAAA C
ATOH	374	ĊВ	asf	39	47.579	-11.050	46.652		
ATOH	375	C-3	ASF	39	47.696	-12.307	45.944	0.91101.22	AAAA C
ATOH	376	ODL		3 9		-12.978	45.623	0.01101.43	-AAA O
									C AAAA
ATOH	377	ODZ	ASF	39	18.833	-12.848	15.718	0.01101.41	
ATOH	378	15	43P	39	47.660	-19.564	49.105	1.00 99.40	AAAA C
	379	0	ASP	39		-11.05é	50.224	1.00 99.15	AAAA O
ATOLI									
ATOt1	380	11	TIR	40	48.354	-9.479	48.818	1.00100.96	AAAA II
ATOI:	382	CA	TTR	40	49.120	-8.706	49.802	1.00101.16	AAAA C
		C 9		40	49.511	-7.393	49.130	1.00103.67	AAAA C
ATOH	383		TYR						
ATOH	384	CG	TTR	40	50.15	-6.281	19.887	1.00107.81	AAAA C
ATOH	385	CDI	TYR	40	50.931	-5.325	49.228	1.00109.56	AAAA C
							49.910	1.00109.67	AAAA C
ATO(1	386		TTR	4 ù	51.540	-1.280			
ATON	387	CO2	TTR	40	50.044	-6.115	51.254	1.00109.25	AAAA C
ATOH	388		TYR	40	50.618	-5.100	51.976	1.00109.83	AAAA C
								1.00119.16	C AAAN
ATOH	349	೦೦	TYR	40	51.372	-4.191	51.276		
ATOH	390	CH	TIF	40	51.999	-3.127	51.993	1.00109.84	AAAA O
ATOH	392	7	TTR	40	18.343	-8.529	51.100	1.00 99.10	AAAA C
ATOH	393	O	TYE	40	47.16#	-8.192	51.183	1.00 99.05	AAAA O
ATO:	394	11	LYS	43	49.041	-8.653	52.218	1.00 98.63	AAAA 11
								1.00100.30	AAAA C
ATOH	396	CA	Lis	41	48.443	-9.519	53.546		
ATOH	397	CB	Lis	41	49.385	-9.160	54.599	1.00104.42	C AAA
	399			41		-19.649	54.814	0.01101.06	AAAA C
ATOH		Cü	LUS						AAAA C
A.LOH	399	CD	LIE	41		-11.107	54.919	0.01100.66	
ATOH	400	CE	LYS	41	47.205	-10.880	56.308	0.01 99.86	AAAA C
							57.328	0.01 99.62	AAAA II
ATOH	401	1177	F.1.2	41		-11.728			
ATOH	405	C	1.73	41	48.035	-7.136	53.947	1.00 98.99	AAAA C
		ō			47,615	-6.371	53.057	1.00103.33	AAAA O
ATOH	406		LTS	41					AAAA 11
ATO(1	107	!1	SER	42	48.198	-6.751	55.221	1.00 91.75	
ATOH	409	CA	SER	45	47.825	-5.412	55.604	1.00 85.06	AAAA C
						-5.520	56.147	1.00 95.33	AAAA C
ATOH	110	CB	SER	42	16.385				
HOTA	411	O3	SER	42	46.547	-6.149	57,426	1.00104.63	AAAA O
ATO:	413	C	SER	42	49.528		56.687	1.00 80.78	AAAA 🤈
								1.00 81.03	AAAA O
ATOH	111	O	SER	42	49.326		\$7.538		
ATO(1	415	11	TYR	43	48.495	-3.395	56.675	1.00 73.03	AAAA II
	417	CA	TYR	43	49.064		57.635	1.00 67.25	AAAA C
ATOH	41,			4.3	43.005	400	57.655		

4/58

TECH CENTER

RECEIVED

V .							0,00		
:ATC()	4:0	•	TYR	4.3	19.000	-1.110	56.965	1.99 65.37	AAAA :
/ ATO()	419	.73	TYE	و :-	19.953	-1.021	55.727	1 (0) 63.92	aran c
ATCH	420	::01	TYR	13	50,931	-1.935	55.406	1.00 63.87	AAAA C
ATOH	421	CE I	TIR	13	51.098	-1.781	51.274	1.00 66.09	AAAA C
ATOH	422	000	TVR	43	49.770	0.050	54.970	1.00 63.30	2 AAAA
ATOH	123	223	TVR	13	50.536	9.214	53.728	1.00 67.62	AAAA C
ATOH	124	ĠĒ.	TIR	43	51.509			1.00 56.94	
						-0.712	53.432		-AAA 🤆
ATOH	:25	0!1	TTR	:3	52.262	-0.543	52.305	1.00 65.23	AAAA O
ATCH	427	Ξ	TTR	∔3	18.518	-2.381	59.925	1.00 64.88	AAAA C
ATOH	158	Č.	T:R	4.3	47.088	-2.851	59.030	1.00 62.90	AAAA O
ATOH .	153	1:	ARG	4.4	18.782	-1.567	59.825	1.90 57.88	AAAA II
ATOH	431	CA	ARG	11	48.019	-1.285	61.039	1.00 54.45	AAAA C
ATOH	+32	CЭ	ARG	11	47.842	-3.61i	61.760	1.00 46.51	AAAA C
ATOH	133	C-3	ARG	44	47.915	-2.375	63.244	1.00 54.66	WAAA C
ATCH	134	CD	AR-3	4.4	46.885	-3.327	63.985	1.00 58.54	AAAA C
ATOH	135	iie.	AR:5	44	47.090		65.403	3.00 68.56	AAAA II
ATCH	137	-75	ARG	44	46.464	-2.927			
			ARG			-3.536	66.395	1.00 64.82	AAAA C
ATOM	-39			÷÷	45.644	-4.529	96.13.	1.00 61.53	II AAAA II
ATOH	4-11	1982	ARG	4.4	16.574	-3.139	67.628	1.00 66.03	AAAA 1!
ATO:	111	C	ARG	4.1	48.911	-ú.293	÷1.8÷5	1.00 55.59	AAAA C
ATOH	112	Ú	ARG	11	49.916	-0.552	62.320	1.00 50.43	O AAAA
ATOH	110	11	PHE	15	48.276	0.866	62.139	1.90 51.13	H AAAA
ATOH	118	CA	PHE	45	18.855	1.944	62.863	1.00 45.94	AAAA C
ATOH	149	CB	PHF.	45	48.774	3.249	61.978	1.00 35.89	AAAA C
ATOH	150	CG	PHE	15	49.106	2.937	60.554	1.00 30.29	AAAA C
ATOH	451	CDI	PHE	15	50.373	3.051	59.998	1.00 45.72	AAAA C
ATOH	352	CD2	SHE	45	18.127	2.428	59.728	1.00 35.95	AAAA C
ATOH	453	CEI	PHE	45	50.653	2.715	58.672	1.00 47.76	AAAA C
ATOH	151	CEC	3HS	15	48.359	2.096	58.406	1,00 39.92	AAAA C
ATOU	155	C.	PHE	43	49.612	2.244	57.967	1.00 46.44	AAAA C
ATOH	456	•	FHE	. 12	18.191	2.123	64.203	1.00 41.65	C AAAA
ATOH	157	Çi .	PHE	15	47.709	3.223	64.475	1.00 40.99	AAAA O
ATOH	158	11	PRO	46	18.161	1.338	65.012	1.00 43.20	AAAA II
ATOH	126	CD	PRO	1è	49.300	0.097	65.132	1.00 47.74	AAAA C
ATOIL	150	CA	PRO	16	48.032	1.530	66.560	1.00 43.34	AAAA C
ATOH	461	C9	PRO	16	18.514	0.319	67.380	1.00 44.92	AAAA C
ATOH	462	CG	PRO	46	19.104	-0.161	66.514	1.00 45.48	AAAA C
ATON	463	-	PRO	16					AAAA C
					48.553	2.768	67.233	1.00 41.30	
ATOH	464	0	PRO	16	48.329	2.830	68.413	1.00 44.57	AAAA O
ATOH	165	11	LTS	47	49.450	3.533	66.676	1.00 39.33	AAAA II
ATOH	157	CA	LTS	47	19.991	1.679	67.362	1.00 38.10	YAAA C
ATOH	168	CB	LTS	47	51.378	4.981	66.852	1.00 48.07	AAAA C
HOTA	169	CG	LYS	17	52.032	3.995	65.902	1.00 67.95	AAAA C
ATOH	170	CD	LYS	47	53.563	3.976	65.891	1.00 61.33	AAAA C
ATCN	471	CE	LYS	47	54.115	1.648	67.147	1.00 72.19	AAAA C
ATOH	472	HE	LYS	47	54.024	6.132	66.874	1.00 79.29	AAAA 11
ATOH	176	Ċ	LYS	47	49.014	5.848	67,195	1.00 39.76	AAAA C
ATOH	177	ņ	LYS	47	19.189	6.827	67.952	1.00 35.45	AAAA O
ATON	178	Ĭi.	LEU	18	48.300	5.886	65.053	1.00 36.45	AAAA 11
								1.00 40.40	
ATOH	150	CA	LEU	49	47.370	7.004	65.800		AAAA C
ATO:	491	C3	LEU	18	16.823	6.919	64.389	1.00 28.59	AAAA C
ATOH	465	C:3	LEU	18	45.917	7.967	63.787	1.00 31.04	AAAA C
ATOH	183	CDI	LEU	18	46.637	9.310	63.879	1.00 36.86	AAAA C
ATOH	161	002	LEU	18	45.591	7.738	62.294	1.00 34.49	AAAA C
ATOL	485	C	LEU	18	16.186	7.022	66.807	1.00 42.21	JAAAA C
ATOH	196	0	LEU	18	45.271	6.187	66.863	1.00 36.48	O AAAA
ATOH	187	1:	THR	4.9	46.138	8.041	67.673	1.00 38.95	AAAA II
ATOH	189	CA	THR	49	45.045	8.151	68.574	1.00 37.06	AAAA C
ATOH	490	CB	THR	19	15.518	8.207	70.034	1.00 48.69	AAAA C
ATOH	451		THR	10	46.396	9.340	70.225	1.00 35.90	AAAA O
ATOH	143	023		10			70.529	1.00 31.99	AAAA C
ATOH	161	00a	THR	13	46.230 44.230	6.957	68.321	1.00 39.48	AAAA C
				19		9.425		1.00 34.49	WW o
ATOH	195	0	THR		43.111	9.451	68.837	1.00 37.32	
ATOH	196	!1	YA1.	50	14.735	10.415	67.605		AAAA II
ATOLL	153	CV	∵AL	50	43 995	11.664	67.418	1.00 38.72	AAAA C
ATOH	139	∵8	VAL	SU	44.293	12.708	68.503	1.00 37.24	AAM C
ATOH	500	C31	∀AL.	50	43.630	14.065	68,208	1.00 29.96	AAAA C
ATOH	501	CG2	VAL	50	43.884	12.311	69.913	1.00 32.52	AAAA C
ATOH	502	Ċ	VAL	50	44.271	12.305	66.048	1.00 37.03	AAAA C
ATOH	503	O	VAI.	50	45.195	11.863	65.431	1.00 37.96	AAAA O
ATOH	504	11	ILE	s:	43.319	12.939	65.415	1.00 37.49	II AAAA II
ATOH	506	CA	ILE	51	43.301	13.575	64.133	1.00 32.48	AAAA C
ATOH	507	CB	ILE	51	42.346	12.864	63.152	1.00 34.51	AAAA C
	508			51			61.978	1.00 32.31	AAAA C
ATOLI			ILE		41.995	13.802		1.00 32.31	AAAA C
ATOH	509		ILE	51	43.026	11.611	62.671		
ATOH	510		ILE	51	42.35B	10.559	61.815	1.00 19.69	AAAA C
ATOH	511	9	ILE	1. 1	12.654	14.939	64.431	1.00 34.14	AAAA C
ATOH	512	O	ILE	51	41.546	14.830	64.923	1.00 29.08	AAAA O
ATOH	513	11	THP.	52	43.342	16.058	64.238	1.00 33.93	AAAA II
ATOH	515	CA	THR	52	42.806	17.305	64.719	1.00 33.83	AAAA C
ATOH	516	CB	THR	52	43.961	18.338	61.939	1.00 35.39	C AAAA
ATOH	517	001		s a	44.726	18.567	63.781	1.00 41.28	C AAAA
ATOH	519	CGS		53	44.775	17.926	66.134	1.00 02.01	AAAA C
ATCH	520	Ċ	THR	63	41.741	17.951	63.863	1.00 39.02	AAAA C
	521	ò	THR				64.243	1.00 38.88	AAAA ii
ATCH	93 L	•	1111	5.3	41.200	19.030	~443	2.00 30.00	

5/58

WO 99/28347

Figure 1A-4

AAAA AAAA

AAAA C AAAA II AAAA C C AAAA II AAAA C C AAAA II AAAA C C AAAA II AAAA C C AAAA II

AAAA C

RECEIVED AUG 0 8 2003

							6/58		
ATCHI	522	11	GLG	3.3	41.524	17.477	62.639	1.00 34.93	
ATOH	524	CA	GLU	53	49.434	17.953	61.795	1.00 38.38	
ATOH ATOH	525 526	CB CC	GLU GLU	53 53	41.964 42.961	10.512	60.483 60.834	1.00 29.76 1.00 30.48	
ATOH	527	CD.	GLU	5.3	12.517	20.396	59.697	1.00 40.80	
ATO!!	528	OEI	GLU	53	42.638	19.908	58.556	1.00 57.56	
atoh Atoh	529 530	052 0	GEU GEU	53 53	42.799 39.506	21.559	59.931 61.388	1.00 35.74 1.00 39.19	
ATO	531	Ġ.	31.0	5.3	38.922	15.311	62.386	1.00 38.95	
ATON	5.32	il	TYR	54	39.539	16.353	60.102	1.00 30.60	
ATOL: ATOL:	534 535	CA CB	TYR	54 54	38.666 37.654	15.342 15.902	59.713 58.636	1.00 35.96	
ATGH	536	CG	TYR	Ś4	38.247	15.476	57.303	1.00 21.18	
ATOH	537	CD1	TYR	54	30.497	15.733	56.305	1.00 20.22	
aton Aton	538 539	CD2	TYR TYR	54 54	38.980 38.577	16.243	55.086 57.307	1.00 21.04 1.00 23.97	
ATCH	240	CES	TYR	54	39.049	18.384	56.124	1.00 24.69	
ATCH	541	ÇZ	TYR	54	39.263	17.569	55.032	1.00 26.72	
atoh Atoh	542 544	OII C	TYR TYR	54 54	39.763 39.405	10.047	53.847 59.142	1.00 37.55 1.00 33.87	
ATOH	545	ō	TYR	54	40.513	14.360	59.678	1.00 30.40	
ATOH	546	11	LEU	55	38.683	13.021	59.004	1.00 23.24	
ATOH ATOH	249 248	CB CB	LEU Leu	55 55	39.111 39.011	11.812 10.663	58.454 59.510	1.00 30.08 1.00 14.78	
ATOH	550	ĈĞ.	LEU	55	39.349	9.314	58.818	1.00 26.98	
ATOH	551		LEU	55	10.668	9.477	58.040 59.705	1.00 26.66	
IOTA ATOU	552 553	CD2	LEU	55 55	39.496 38.201	8.093 11.548	57.238	1.00 37.43	
ATCH	554	·0	LEU	5.5	36.995	11.632	57.427	1.00 39.55	
ATOL	555	li .	LEU	56	38.700	11.348	56.035	1.00 41.83	
ATCH ATCH	557 558	CA CB	LEU	56 56	37.955 37.998	11.201	54.79°	1.00 33.29	
ATOH	559	C/S	LEU	56	37.984	12.514	52.416	1.00 30.35	
ATOL	560	CD1		56	37.076	11.460	51.921	1.00 47.95	
ato:	561 562	CD5	LEU LEU	56 56	37.286 38.595	13.807	51.985 51.985	1.00 39.75	
ATOI-I	563	ŏ	LEU	56	39.714	10.205	53.547	1.00 44.38	
ATOH	564	11	LEU	57	37.846	9.008	53.800 53.034	1.00 36.68	
atoh Atoh	566 567	CA CB	LEU	57 57	38.133 37.944	7.932 6.588	53.916	1.00 37.00	
ATOH	568	CG	LEU	57	39.064	6.534	55.026	1.00 36.13	
ATOH	569	CDI	LEU	57	38.513	6.890	56.417 55.039	1.00 33.26	
I fota	570 571	CD2	LEU	57 57	39.6 3 0 37.203	5.162 7.825	51.838	1.00 46.03	
ATOI1	572	ō	LEU.	57	35.985	7.993	51.969	1.00 44.78	
ATOH	573	[]	349	58 58	37.792 36.895	7.898 8.002	50.642 49.467	1.00 47.07	
ATOH ATOH	575 576	CA CB	PHE PHE	58	36.704	5.118 8.005	19.102	1.00 46.67	
HOTA	577	CG	PHE	58	36.447	9.815	47.692	1.00 54.66	
HOTA	578 579	CD2	PHE PHE	58 58	37.413 35.200	9.706 10.301	46.697	1.00 53.86	
ATOI:	580	CEI	FHE	Sy	37.124	10.063	15.306	1.00 50.36	
ATOH:	:91	CEC	PHE	รล	34.985	10.655	46.011	1.00 41.84	
ATOH:	582 583	CE CE	PHE	58 58	35.077 37.351	10.521 7.652	45.037 48.379	1.00 49.71	
ATOIL	281	ō	PHF.	58	38.487	7.073	47.934	1.00 52.16	
HOTA	585	11	ARG	59	36.471	6.118	47.944	1.00 44.26	
ATOH ATOH	587 588	CA CB	ARG ARG	5 9 5 9	36.753 36.911	5.281 5.993	46.815 45.427	1.00 23.79	
ATGI	589	CS	ARG	5.9	35.869	7.929	45.121	1,90 46.53	
ATON	590	CD	ARG	5.9	35.921	7.562	43.706 42.806	1.00 37.64	
ATOH ATOH	591 593	CD	ARG ARG	59 59	35.822 34.950	5.400 5.830	12.036	1.00 41.36	
ATOH	594		ARG	5.3	33.702	6.277	41.931	1.00 47.00	
V.LCI I	5,97		ARG	5 9	35.237	4.729	41.327	1.00 42.58 1.00 42.25	
ATCH ATOH	500 501	0	ARG ARG	59	38.037 38.981	. 513	16.232	1.00 44.11	
HOTA	602	11	VAL	60	38.0C1	3.625	48.023	1.00 40.84	
ATOH	504	CA	VAL	60 60	39.101 39.604	2.743	48.341	1.00 39.14	
HOTA	60 5 606	CB C31	VAL	60	40.407	1.972	50.290	1.00 35.05	
ATOH	607	032	VAL	60	49,425	4.352	49.803	1.00 28.86	
ATCH	608	Ċ	VAL	60	38.539	1.337	48.368 49.072	1.00 43.56 1.00 47.66	
ATOL	609 610	N O	VAL Ala	φο 61	37.535 39.094	0.371	47.659	1.00 41.92	
ATO:	612	CA	ALA	61	38.617	-0.992	47.749	1.00 42.05	
ATOH	613	CB	ALA	51 61	38.302	-1.403 -1.934	18.386 16.361	1.00 52.40	
ATOH ATOH	614 614	0	ALA ALA	61 61	39.613 40.757	-1.602	18.670	1.00 50.59	
ATOH	616	ü	GLT	62	39.200	-3.105	48.849	1.00 45.71	
HOTA	518	CV	GLY	62	40.136	-4.079	49.385 50.872	1.00 45.39	
HOTA	619 620	o o	GLT GLT	62 62	40.262 40.587	-3,902 -4,835	50.67.	1.00 \$2.34	
ATOH	621	:1	LEU	6.3	39.985	-2.734	£1.385	1.00 46.90	
ATCU	623	ÇA	LEU	÷3	40.003	-2.443	22.805	1.00 49.11	

WO 99/28347-

TECH CENTER 1600/2000

RECEIVED

WO 99/28347

						7/58		
ATON	624 C	B LEU	≨3	40.274	-0.953	53,027	1.96 41.41	PAAA I
ATOH		G LEU	63	40.265	-0.423	54.443	1.00 53.41	AAAA C
ATOH		DI LEU	63	41.172	-1.164	55.416	1.00 48.27	AAAA C
ATOH		D2 LEU LEU	63 63	10.637	1.047	54.246	1.00 50.51	AAAA C AAAA C
ATOH	628 C 629 O		63	38.643 3 7. 52 7	-2.881 -2.430	53.323 52.837	1.00 57.73	AAAA o
ATOH	630 H		91	38.658	-3.862	54.190	1.00 53.97	AAAA II
ATOH		A GLU	54	37.462	-4.448	54.749	1.90 56.96	7444 I
ATOH	633 C	B GLU	64	37.589	-5.956	54.734	1.00 65.33	AAAA C
ATON		e ern	64	37.832	-6.484	53.293	1.00 75.14	AAAA C
ATOH	_	C GLU	64	37.104	-7.940	53.128	1.00 78.10	аааа с аааа о
ATON		E1 GLU E1 GLU	64 64	37.424 37.036	-8.699 -8.320	54.132 51.978	1.00 63.93	AAAA O
ATOH HOTA	638 C		51	37.096	-4.007	56.163	1.00 57.12	AAAA T
ATOH	639 C		64	35.986	-4.332	56.600	1.00 59.82	AAAA O
ATON	640 1		55	37.766	-3.042	56.761	1.00 50.64	AAAA ::
ATON		A SER	65	37.539	-2.523	58.060	1.00 47.19	AAAA C
ATOH		B SER	65	37.743	-3.596	59.139	1.00 49.24	AAAA C
ATOH		G SER	65	37.501	-2.971	60.429	1.00 50.90	AAAA C AAAA C
ATOH	947 C	_	65 65	38.516 39.716	-1.405 -1.692	58.432 58.374	1.00 52.75	AAAA C
ATOH ATOH	648 11		66	38.054	-0.289	58.984	1.00 41.03	AAAA 1:
ATOH		A LEU	66	38.956	0.758	59.405	1.00 41.94	AAAA C
ATOH		B LEU	56	38.247	2.085	59.498	1.00 25.25	AAAA C
ATOH		C LEU	66	37.283	2.476	58.402	1.00 34.49	AAAA C
ATOH		D1 LEU	66	36.974	3.951	58.512	1.00 30.81	AAAA C
ATOH		D2 LEU	66	37.767	2.200	56.994 60.734	1.00 34.34	AAAA C AAAA C
ATOH ATOH	655 C		56 56	39.646 40.762	0.462 0.947	60.734	1.00 41.05	AAAA. C
ATO:	657 II		67	39.000	-0.346	61.593	1.00 45.21	AAAA.
ATOH		A GLY	÷7	39.773	-0.672	62.799	1.00 48.14	aaaa c
ATOH	660 C		5 7	40.998	-1.508	62.445	1.00 44.51	AAAA C
ATON	661 C		67	41.855	-1.724	63.287	1.00 45.42	O AAAA
HOTA	662 1		68	41.013	-2.189	61.309	1.00 47.60	AAAA 11 AAAA C
ATCH!		a asp B asp	69 69	42.194 42.012	-2.834 -3.417	60.738 59.361	1.00 30.97	AAAA C
ATOH ATOH		B ASE G ASE	Ķ9	41.205	-1.678	59.311	1.90 45.82	AAAA C
ATOI		D1 ASP	68	40.912	-5.341	60.320	1.00 44.69	O AAAA
ATOH		D2 ASP	68	40.819	-5.065	58.187	1.00 47.23	AAAA O
ATCH1	669 0	ASP	6.9	43.363	-1.837	60.596	1.00 45.89	AAAA C
HOTA	670 C		68	44.436	-2.269	60.903	1.00 44.84	AAAA O
ATON	671 1		69	43.145	-0.609	60.247	1.00 42.49	AAAA II AAAA C
ATOH		A LEU	69 69	44.175	0.352 1.393	58.945 60.048	1.00 45.25	AAAA C
ATCH ATCH		OB LEU OG LEU	69	43.920 43.902	0.882	57.494	1.00 54.25	AAAA C
ATOH		DI LEU	69	43.541	2.037	56.565	1.00 47.26	AAAA C
ATOH		D2 LEU	69	45.211	0.200	57.113	1.00 50.76	AAAA C
ATO:1	678	LEU	69	44.347	1.107	61.350	1.00 49.50	AAAA C
ATOH	679 (69	45.470	1.210	61.851	1.00 54.51	aaaa :i
ATOH		I FHE	70 70	43.296	1.737	61.869 63.046	1.00 44.60	AAAA C
ATOH		CA PHE	70	43.423 42.987	3.973	62.700	1.00 26.08	AAAA C
ATON		G PHE	70	43.465	1.501	61.390	1.00 45.32	AAAA C
ATOH		D1 FHE	70	42.532	4.748	60.384	1.90 47.41	AAAA C
ATOI1	686 (ODO PHE	70	44.815	4.767	61.130	1.00 48.77	AAAA C
1 IOTA		CE1 PHE	70	42.945	5.263	59.159	1.00 56.16	AAAA C
ATOH		CE2 PHE	70	45.229	5.256	59.895	1.00 47.24	AAAA C
ATOII		SHE SHE	70 70	44.293	5.506 1.999	58.896 64.219	1.00 40.09	AAAA C
ATCH ATOH		3 H9 C	70	42.655 41.874	2.734	64.839	1.00 35.74	AAAA O
HOTA		I PRO	71	43.053	0.852	64.768	1.00 39.19	AAAA 11
ATOH		CD FRO	71	44.269	0.058	64.411	1.00 39.94	AAAA C
ATOI	694	CA PRO	71	12.444	0.237	65.899	1.00 35.30	AAAA C
ATO!!		CB PRO	1 '	13.308	-9.983	66.246	1.00 38.03	AAAA C
ATOH		CG PRO	71	44.669	-0.564	65.717	1.00 38.36	AAAA C C AAAA
PLOTE		C PRO	71	42.453 42.005	1.089 0.630	67.126 68.159	1.00 39.32	AAAA Q
ATOH		O PRO H ASH	71 72	43.058	2.220	67.231	1.00 36.55	AAAA II
ATOH		DA ASII	7 -	43.204	3.032	68.401	1.00 32.60	AAAA C
ATOH		CR VSII	72	44.637	2.916	68.943	1.00 36.89	I AAAA
ATCH		OS ASH	7.2	14.735	1.638	69.761	1.00 47.03	AAAA C
ATOIL	704	OD1 ASH	"2	44.644	1.619	70.979	1.00 64.42	AAAA O
ATOH		HD2 ASH	72	44.880	0.475	69.169	1.00 63.17	AAAA C
ATOH		C ASII	72	12.875	4.477 5.201	68.135 69.104	1.00 36.53	AAAA O
ATOH		O ASII II LEU	7 <u>2</u> 73	43.099 42.309	4.809	66.978	1.00 27.62	AAAA 11
ATOH ATOH		CA LEU	73	41.940	6.207	66.730	1.00 34.07	AAAA C
ATOH		CB LEU	73	41.476	6.373	65.292	1.00 28.37	AAAA C
ATOII		CG LEU	73	40.819	7.713	64.882	1.00 29.33	AAAA C
ATOII	715	CD1 LEU	73	41.918	8.721	64.963	1.00 31.86	AAAA C
ATOH		CD2 LEU	7.3	40.202	7.518	63.478	1.00 32.07	2 6466
ATOH		C LEU	:3	40.929	6.569	67.817 68.081	1.00 32.14	AAAA C AAAA O
ATON		O LEU II TIIR	7.9 74	40.073 41.081	5.737 7.585	68.592	1.00 29.47	AAAA II
ATOH ATOH	721	CA THR	74	40.150	7.826	69.683	1.00 34.80	AAAA I
ALON			•	43.130				

Application No. 09/555,275 Annotated Sheet Showing Changes

						8/58		
ATOH	722	CB TH		41.028	7,744	70.952	1.00 45.09	AAAA C
ATOH	723 725	OGI TH		41.729 40.262	6.485 7.831	70.880 72.253	1.00 46.30 1.00 39.45	AAAA O AAAA C
ATON	726	C TH		39.424	9.155	69.602	1.00 35.48	AAAA C
ATOH	727	O TH		38.270	9.322	70.077	1.00 35.32	AAAA O
ATOH ATOH	728 730	II VA CA VA		40.047 39.351	10.199	69.073 68.992	1.00 29.80 1.30 34.91	AAAA II AAAA C
ATOII	731	AV BD		39.856	12.445	59.955	1.90 26.03	AAAA C
ATCH	232	C21 VV		39.173	13.801	69.934	1.00 24.51 1.00 19.87	AAAA C AAAA C
ATCH ATCH	?33 734	CGC VA		39.675 39.613	11.910	71.366 67.494	1.00 37.57	AAAA C
ATOH	. 32	O VA	AL 75	40.724	11.908	67.022	1.00 35.99	AAAA O
ATOH ATOH	736 738	GA IL		38.600 38.695	12.555	66.796 45.592	1.00 35.91 1.00 31.48	AAAA 1: AAAA ⊆
ATCH	739	C9 IL	.E 75	37.931	12.769	64.492	1.00 29.60	AAAA C
ATOH	740 741	CG2 IL		37.856 38.222	13.630	63.209 64.277	1.00 19.54	AAAA C AAAA C
HOTA	742	CD1 II		37.149	10.556	63.179	1.00 28.85	AAAA C
ATOH	743	C II		38.157	14.718	66.000	1.00 33.84	AAAA C AAAA O
ATOH	744	O II		36.987 38.906	14.777	66.274 66.230	1.00 38.84	AAAA 11
ATOH	747	CA AR	kg 77	38.605	16.901	67.021	1.00 30.82	AAAA C
ATOH ATOH	748 749	CB AF		39.961 39.993	17.475 18.836	67.461 68.058	1.00 25.62	AAAA C AAAA C
ATOH	750	CD AF		41.290	18.957	68.908	1.50 49.10	AAAA C
HOTA	751	HE AF		41.411	17.817	69.773 71.064	1.00 39.23	AAAA C
ATOH ATOH	753 754	CO AR		40.977 40.440	18.016 19.104	71.610	1.00 30.34	AAAA :I
HOTA	757	HH2 AF	2:5 77	41.061	17.012	7:.941	1.00 40.38	H AAAA AAAA C
ATOH ATOH	760 761	C AF		37.643 36.944	17.733 18.637	66.664	1.00 31.75	AAAA O
ATOH	762	H GI	.Y 78	37.688	17.661	64.884	1.00 32.87	AAAA II
ATOH!	764 765	CA GI		36.982 37.199	18.409 19.880	63.950 64.063	1.00 16.23 1.00 31.58	AAAA C
ATOH ATOH	766	O GI		36.363	20.775	63.674	1.60 34.03	AAAA O
ATOH	767	11 TF		38.439	20.321	64.304	1.00 31.21	AAAA C
ATOH ATOH	769 770	CA TE		38.757 40.177	21.740	64.337	1.00 39.07	AAAA C
ATOLL	771	CG TF	RP 79	40.626	23.343	65.164	1.00 36.64	AAAA C AAAA C
ATOH ATOH	77 <u>2</u> 773	CD2 TF		41.691 41.826	24.001 25.288	64.433 65.002	1.00 28.52	AAAA C
ATOH	774	CE3 TF		42.473	23.625	63.370	1.00 37.96	AAAA C
ATOH	775	CD1 TE		40.199	24.235 25.413	66.054	1.00 29.59	AAAA C AAAA II
ATO:1 ATO:1	776 778	CT2 TE		40.917 42.770	26.213	64.543	1.00 31.83	AAAA C
ATOH	779	CE3 TI		43.389	24.548	62.876	1.00 46.14	AAAA C
ATOH	780 781	CH2 TI	RP 79 RP 79	43.525 38.606	25.794 22.418	63.470 62.986	1.00 28.75	C FAKA
ATOH	782	O TI	RP 79	38.585	23.624	62.961	1.00 23.61	AAAA O AAAA H
ATOH ATOH	783 785		75 80 75 80	38.659 38.305	21.684	61.895 60.573	1.00 31.84	AAAA C
ATCH	786		rs 80	39.453	12.498	59.689	1.09 41.17	AAAA C
ATOH	787 788		75 80 75 80	39.838 41.025	23.911 24.350	59.470 60.306	1.00 34.68	AAAA C AAAA C
ATOH	7.99		73 80	41.276	25.811	59.898	1.00 50.41	AAAA C
ATOH	790		'S 80	42.530	25.752 20.960	59.092 59.917	1.00 57.26	AAAA .1 AAAA C
HOTA HOTA	791 792		YS 80	37.585 37.950	19.843	6ú.237	1.00 37.62	C AAAA
ATO(1	793	II L	EU 81	36.477	21.267	59.207 5 8.600	1.00 31.77	AAAA C
ATOH	795 796		EU 81 EU 81	35.742 34.290	20.157 20.315	59.092	1.90 31.20	AAAA C
ATOH	797	CG L	EU 91	34.115	20.319	60.632	1.00 36.97 1.00 27.98	AAAA C
ATOH ATOH	798 799	CD1 L		32.832 34.089	21.080 18.955	60.954 61.297	1.00 28.77	AAAA C
ATOH	800		EU 81	35.733	20.023	57.104	1.00 29.86	YAAY C
ATOU	801		EU 91	36.082	20.947 18.813	56.368 56.594	1.00 29.34	AAAA O
ATOH ATOH	802		HE 82	35.430 35.176	16.653	55.182	1.00 28.68	AAAA C
1 IOTA	805	CB [HE 82	35.513	17.236	51.795	1.00 32.78	AAAA C AAAA C
ATOH ATOH	906 907	CD1 P	HE 82	35.349 36.378	16.901 17.130	53.357 5∷.447	1.00 32.86	AAAA C
ATOH	909	CD2 F	HE. 92	34.142	16.361	52.914	1.00 30.93	AAAA C AAAA C
ATOH	800	CEL F		36.21 ⁷ 33.963	16.769 16.061	51.104 51.538	1.00 26.30	AAAA C
ATOI! ATOI!	910 911		HE 90	35.005	16.238	50.672	1.00 37.73	AAAA C
HOTA	615	. Ø . ₽	HE 92	33.670	18.911 18.045	54.993 55.278	1.00 30.06	AAAA C AAAA O
ATCH ATOH	913 914		HE 82	32.830 33.301	20.148	54.770	1.00 31.68	AAAA 11
ATOH	815	CA T	'SR 83	31.911	-20.605	54.633	1.00 40.76	AAAA C AAAA C
ATOH	016 817		YR 83 YR 83		19.977 19.210	55.726 55.487	1.00 44.00	AAAA O
ATOH ATOH	818		TR 83		20.199	53.269	1.00 31.55	AAAA C
ATOH	819		YR 93		20.742 19.982	52.117 51.609	0.01 20.00	AAAA C AAAA C
ATOH ATOH	920 921	CD1 T			21.998	\$1.575	0.50 20.00	AAAA C

TECH CENTER 1600/2900 AUG 0 8 2003

RECEIVED

TECH CENTER AUG 0 8 2003

1					0/50		
ATOH	922 CE1 TYR	43	34.027	20 100	9/58 50.556	0.01 20.00	AAAA C
	900 GET TYR 903 GEO TYR	ė 3	32.679	20.480	50.501	0.01 20.00	AAAA C
ATOH	824 TO TYR	83	33.740	21.737	50.012	0.01 20.00	AAAA C
ATOH	925 OH TVR	83	34.49:	22.222	18.989	0.01 20.00	AAAA O
ATOH	826 : ASH	8-1	31.043	20.461	56.921	1.00 40.91	AAAA II AAAA C
HOTA	927 TA ASH 928 T9 ASH	84 84	30.250 28.763	20.057 20.046	58.056 57.700	1.00 36.54	AAAA C
ATOH	829 75 ASH	8.1	28.274	21.164	56.797	1.00 60.75	AAAA C
ATON	830 OD1 ASH	A 1	26.319	22.343	57.119	1.00 45.55	AAAA O
ATOH	831 HO2 ASH	8.1	27.839	20.876	55.552	1.00 65.98	÷AAA II
ATCH ATCH	932 2 ASU 933 0 ASU	6.1 8.4	30.686 30.137	18.679	59.556 59.580	1.00 36.33 1.00 38.24	haaa c Faaa o
ATO!	934 II TVR	85	31.455	17.900	57.800	1.00 32.78	AAAA II
ATO:	836 CA TYR	85	31.517	16.504	58.222	1.00 35.45	AAAA C
HOTA	337 CB TYR	95	31.473	15.579	57.000	1.00 35.54	AAAA C AAAA C
INTA	938 CG TYR 939 CD1 TYR	85 85	30.076 29. 9 68	15.733 16.291	56.453 55.199	1.00 41.35	AAAA C
HOTA	940 CEL TYR	85	28.611	16.445	54.704	1.00 40.83	AAAA C
ATOL	841 CD2 TYR	85	28.954	15.371	57.200	1.00 47.42	AAAA C
ATC:1	842 CE2 TYR	0.5	27.861	15.533	56.705	1.00 45.91	AAAA C
ATOI1	843 CC TYR	65 85	27,497 26,258	16.072 16.315	51.886 55.445	1.00 46.06 1.00 46.05	AAAA C AAAA O
ATOH ATOH	844 OH TYR 846 C TYR	85	32.977	16.367	58.891	1.00 32.08	AAAA C
ATO:	847 O TTR	85	33.943	16.977	58.495	1.00 37.44	O AAAA
ATO(1	948 H ALA	86	33.027	15.691	59.979	1.00 36.21	AAAA II
ATOH	850 CA ALA	.86	34.257	15.325	60.670 62.157	1.00 34.10	7 AAAA 7 AAAA
ATOH ATOH	851 CB ALA 852 T ALA	`86 86	33.999 34.729	15.370 13.962	60.216	1.00 30.67	AAAA C
ATOLI	853 O ALA	16	35.795	13.481	60.577	1.00 35.10	O AAAS
1 IOTA	854 H LEV	97	33.832	13.173	59.597	1.00 28.56	II AASA
ATOH	856 CA LEU	87	34.189	11.805	59.323	1.00 22.26	AAAA C AAAA C
ATOL: ATOLI	857 CB LEU 858 CG LEU	87 87	33.799 33. 8 01	10.860 2.363	60.471 60.188	1.00 25.77	AAAA C
ATOH	859 CD1 LEU	87	35.140	9.915	59.571	1.00 27.21	AAAA C
ATOH:	860 CD2 LEU	87	33.637	8.432	61.393	1.00 23.52	AAAA C
ATO!	861 C LEU	87	33.530	11.429	58.021	1.00 35.60 1.00 38.97	AAAA C AAAA O
ATO(1 ATO(1	862 O LEU 863 U VAL	ຄ7 98	32.320 34.174	11.421	58.001 56. 8 75	1.00 37.86	AAAA II
ATOH	865 CA VAL	88	33.438	11.032	55.628	1.00 33.32	AAAA C
ATOH	866 CB VAL	88	33.666	12.085	54.553	1.09 22.38	AAAA C
ATOH	867 CG1 VAL	88	32.974	11.675	53.261	1.00 19.24	D AAAA C AAAA
ATOH	868 CG2 VAL 869 C VAL	88 8 8	33.165 33.898	9.684	55.042 55.11;	1.00 13.27	AAAA C
ATOH ATOH	869 C VAL 870 O VAL	88	35.069	9.407	55.117	1.00 33.57	O AAA
ATOI	871 :1 ILE	99	33.978	8.728	54.822	1.00 31.08	AAAA II
ATOH	973 CA ILE	ű ö	33.361	7.433	54.280	1.00 30.45	2
ATOH ATOH	874 CB ILE 875 CG2 ILE	89 89	32.941 32.898	6.384 4.954	55.296 54.821	1.00 37.24	AAAA C
ATCH	876 CG1 ILE	9.9	33.893	6.420	56.500	1.00 24.92	AAAA C
ATOH	877 CD1 ILE	6.0	33.424	5.613	57.675	1.00 23.96	AAAA C
ATOH	878 C ILS	8.9	32.509	7.206	53.027 53.205	1.00 40.64 1.00 38.69	aaaa c aaaa o
ATOH ATOH	979 O ILE 880 II FIIE	àù Rà	31.330 33.082	7.464 6.881	51.845	1.00 41.45	II AAAA
ATOH	882 CA PHE	90	32.346	7.371	50.591	1.00 37.57	AAAA C
ATOH	883 CB PHE	90	32.347	8.776	50.110	1.00 32.17	AAAA C
ATOH	884 CG PHE	ب ب	31.591	9.081	48.865 49.025	1.00 39.77	AAAA C AAAA C
ATCII ATCII	885 CD1 PHE 886 CD2 PHE	80 80	30.387 32.052	9.772 8.721	47.620	1.00 29.28	AAAA C
ATON	887 CE1 PHE	90	29.611	10.111	47.938	1.00 33.30	AAAA C
ATOH	888 CE2 PHE	äù	31.290	9.086	46.534	1.00 43.09	AAAA C
ATOH	889 CC PHE	÷0	30.083	9.764	46.697 49.557	1.00 50.24 1.00 40.72	AAAA C AAAA C
ATOH ATOH	890 C PHE 891 O PHE	30 30	32.856 34.027	6.384	49.337	1.00 46.15	AAA O
ATOH	892 II GLU	91	32.02	5.519	49.001	1.00 39.16	AAAA 11
ATOH	894 CA 5LU	91	32.248	4.601	47.954	1.00 42.45	AAAA C
ATOH	895 CB GLU	5.7	32.479	5.231	16.583	1.00 38.08 1.00 58.86	AAAA C AAAA C
ATOH	896 CG GLU	91	31.13 <i>6</i> 30.955	5.865 5.776	46.250 44.757	1.00 63.55	AAAA C
ATO()	997 CD GLU 898 OE1 GLU	-91 -91	31.473	ō.65i	11.082	1.00 64.10	AAAA O
ATOII	459 OE2 GLU	91	30.658	1.813	44.573	1.00 63.64	O AAAA
ATOH	900 C GLU	91	33.422	3.734	48.313	1.00 42.05	AAAA C
ATOH	901 O GLU	91	34.298	3.411 3.209	47.587 49.482	1.00 44.71	O AAAA U AAAA
ATOI!	902 H HET 904 CA HET	92 92	33.350 34.409	2.40.	50.088	1.00 42.26	AAAA C
HOTA	905 CB HET	92	34.40	2.659	51.584	1.00 38.37	AAAA C
ATOH	906 CG HET	90	35.412	2.156	52.420	1.00 59.29	AAAA C
IOTA	907 SD HET	92	36.802	3.306	52.401	1.00 57.67	raaa s raaa c
ATOH	908 CE HET	92	36.34:)	1.005	51.10# 49.745	1.00 38.36	AAAA C
ATOH ATOH	909 C HET 910 O HET	92 92	34.012 33.335	0.298	50.523	1.00 45.58	AAAA O
ATGI	910 O FIET	93	34.146	0.518	49,600	1.00 47.09	AAAA II
ATOH	913 CA THR	93	34.175	-0.900	48.273	1.00 47.32	AAAA C
ATOH	911 CB THR	93	34.660	-1.281	16.86H	1.00 55.29 1.00 5 7.8:	AAAA C AAAA O
ATOH	915 OG1 THR 917 CG2 THR	93 93	34.013 34.332	-0.488 -2.715		1.00 44.71	FAAA C
ATOH	pro socialis	7.)	34.33-	213			/

Figure 1A-8

0 ÄÄÄÄ

AAAA

AAAA ti

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA ç

AAAA

8888 8888 ı;

0

c

¢

TECH CENTER 1600/2900

-1.609 -3.277 -0.786 53.621 53.851 55.269 AAAA 34.195 1.99 34.05 AAAA 34.323 -0.296 1.00 35.91 35.785 -0.537 55.598 1.00 35.48 AAAA. 33.847 1.177 55.344 .00 25.46 AAAA 54.275 53.772 33.163 -2.996 1.00 43.75 AAAA 32.948 -2.936 1.90 44.04 AAAA 55.213 35.779 55.995 33.451 -3.863 1.00 46.50 AAAA AAAA C AAAA C AAAA E 32.364 -4.648 -6.075 1.00 42.76 1.00 41.41 32.760 54.788 49.78 -5.976 1.00 32.984 55.127 58.09 AAAA C -9.446 1.00 33.772 -9.160 54.027 1.00 73.43 AAAA 34.098 -10.556 54.489 1.00 79.13 AAAA II 31.970 -4.055 57.122 1.00 45.29 AAAA 30.978 -4.502 57.691 1.00 46.23 AAAA 32.695 -3.071 57.645 1.00 45.15 AAAA 32.299 -2.384 50.961 1.00 42.15 аааа. 32.294 -3.292 60.059 1.00 45.39 АААА 33.662 -3.562 60,624 1.00 56.95 AAAA. AAAA AAAA AAAA 1.00 59.88 34.579 -2.825 61.012 1.00 56.01 33.931 -4.782 60.714 0 1.00 41.25 -1.224 33.209 59.201 58.437 47.03 ō -1.074 1.00 AAAA 34.160 AAAA II 32.822 -0.366 60,129 1.00 40.41 33.675 60.340 37.83 AAAA 0.820 1.00 61.006 1.00 38.99 AAAA 32.983 2.006 34.007 61.207 1.00 38.95 AAAA 3.133 2.488 31.835 60.092 1.00 34.84 AAAA AAAA C AAAA C AAAA O 31.629 3.958 59, 948 1.00 39.29 34.854 ŭ.322 61.114 1.00 35.11 35.970 60.841 62.192 1.00 43.05 0.669 34.618 -0.393 -0.972 1.00 34.22 AAAA 35.477 63.121 1.00 AAAA C 36.279 -0.084 64.024 1.00 35.90 AAAA 37.023 -0.572 64.899 1.00 38.21 AAAA O AAAA 36.190 1.221 63.913 1.00 33.35 2.215 64.771 AAAA 36.763 1.00 31.65 3.636 64.294 1.00 29.87 AAAA 36.496 36.943 3.980 62.835 1.00 32.13 AAAA 62.610 62.644 AAAA C AAAA C AAAA C 36.719 5.479 . 22 21.38 1.00 37.68 38.412 3.599 31.94 1.00 36.312 1.976 66.194 66.979 66.779 68.071 1.00 31.95 AAAA 2.863 35.950 AAAA II 1.00 31.87 36.704 1.00 33.33 AAAA 36.329 0.395 AAAA C 1.00 41.03 36.491 -1.104 68.264 37.919 68.369 1.00 46.66 AAAA -1.559 1.00 \$1.00 AAAA 38.571 -1.380 69.587 39.901 -1.743 69.749 1.00 49.44 AAAA 38.615 -2.112 67.322 1.00 45.15 AAAA C -2.505 67.479 1.00 47.09 AAAA 39.927 10.549 -2.321 69.688 1.00 49.43 AAAA -2.662 1.059 AAAA O 41.834 68.997 1.00 55.83 1.00 33.46 AAAA C 36.989 69.214 1.00 43.00 36.630 37.752 70.375 0.813 1.00 38.13 AAAA II 2.091 2.979 2.911 69.068 AAAA C 70.223 70.363 1.00 30.79 38.093 1.00 48.63 39.503 40.112 1.00 AAAA

10/58

19.196

19.361

49.493

50.285

50.001

48.599

47.688

18.108

\$1.763 \$2.501 \$2.182

1.30 51.93

1.00 49.85

1.00 79.63

1.00 45.36

1.00 37.28

1.00

1.90

1.09

1.90

1.90

1.00

1.00

57.91

45.64

59.01

77.49

42.58

-1.874

-2.983

-4.069

-4.315

-4.849

-i.001

-9.153

-3.938

-4.814

34.985

36.115

34.237

34.747

36.241

36.494

36.847

36.308

34.500

34.308

34.324

WO-99/28347

918

010 o

920

922

924

925

326

329 C

930 O

931 11

÷33 CA

234

935

936

437

938 ċ

ووڊ

9.10 11

945

943

944 C:3

9.15 CD LIS

946 CE

917

951 C

952

953

955 CA ASP

956 CS ASE

957

958

959

960° c

961 Ç

962 11

964 CA

965

966

967

968

969 C

970

971

973 CA

974 C

975 0

976 н

978 CA LEU

979

990

991

982

983 c

984

985 11

987 CA TTR

988 CB TIR

586 CG TIR

991)

991

992

993

994 CZ TYR

295

997

998 o

999

1001

1003

1003

1004

1005

1008

1009 0

1010

1012

1013

1014

1015

1016

1017

1019

1919 11

1:

CA

CB

CG ASH

001 ASII

1103 ASI

٣غ

25 001

202

Ü

CA LYS

C8

1/3

0

11

CG

001 ASP

002 ASP

CB 1LE

ÇG2

061 ILE

CDI ILE

ō

:1

CB LEN

CG

CDI

002

CD1

CDC

OH TIR

11

CA **ASII**

CB

100

1102 ASII

11

CA LEU

C8 LEU

CG LEU

CUL LEU

CD2 1.50

Ó

CA

CEL TYR

O

TIGR

THH

ASI:

AS:

ASII

ASI

AS:

نعبا

LEU

LEU

LEU

LEU

LEU

LEU

LIS

LYS

LYS

LT3

LYS

LYS

ASE

AS?

ASP

AS E

ILE

LLE

ILE

ILE

ILE

GL:

GLY

GLï

GL:

LEU

LEU

LEU

LEU

LEU

TER

TYR

TTR

TER

TYR

TIR

ASII

ASH

ASH

ASH

ASH

AJH

LEU

LEG

LED

A.F. (3

?3

91

94

9.1

94

91

94

41

۽ ۽

25

25

95

ា5

÷ş

95

95 95

96

؋؋

36

96

96

96

96

96

ºé

97

97

97

97

97

97

97

97

98

98

Ġβ

98

98

98

Q p

98

٥ò

90

٥ò

100

100

100

100

100

100

100

100

191

101

101

101

191

101

101

101

101

191

101

101

102

100

102

100

102

102

102

:02

103

103

103

103

103

103

103

103

1 ... 1

104

ATOI:

ATO:

ATOI

ATOH

HOTA

ATCH

AT OH

ATOH

ATOH

ATO:

ATCH

ATOH

ATOH

ATO:

ATOH

ATOH

ATOH

ATO:

ATOH

ATCH

ATON

ATOH

ATOL

ATO!

ATOH

ATOI:

ATOH

ATOH

ATO: I

ATOH

ATOH

ATOH

ATO:

ATOI

HOTA

ATO:

ATO:

ATCI

ATOH

ATO:

ATOL

ATON

ATOH

ATOR

ATO:

HOTA

ATOH

ATON

ATOH

ATOH

ATOL

ATO:

ATOH

ATOH

ATO:

ATOI

ATO!

ATOH

ATOI I

ATCH

ATO!

ATOI1

ATO:

ATO:

ATO: I

ATO!

ATO:

ATO(1

ATOI:

ATCH

ATO:

ATOI

ATOH

ATOL

ATOH

ATOH

ATCH!

ATOIL

ATCH

ATOH

ATCH

ATOLI

ATON

ATOH

ATON

Application No. 09/555,275

40.864

37.673

38.047

36.845

36.473

35.948

35.525

36.606

35.199

35.484

34.449

35.010

34.920

1.804

1.064

0.845

1.385

5.364

4.640

6.040

6.140

7.482

9.513 2.169

6.508

5.874

7.841

71.268

72.454

70.767

59.947

10.590

68.882

68.621

67.213

66.612

66.646

65.146

59.691

69.837

79.563

1.605

54.03

43.08

39.84

36.57

30.32

34.24

33.3:

AAAA

AAAA II

AAAA C

AAAA II

AAAA C

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA II

AAAA C

o

1.00 47.22

1.00 33.82

1.00 35.28

1.00 34.77

1.00 23.20 1.00 37.10

1.00 37.31

1.00

1.00

1.90

1.90

1.00

1.00

1.00

Application No. 09/555,275
Annotated Sheet Showing Changes

							11/58		
ATOL	1022			104	35.568 36.356	7.657 6.375	73.019 73.165	1.00 36.17	AAAA T
ATCII ATCII	1023			104 104	35.425	5.193	73.248	1.00 49.37 1.00 \$0.71	AAAA C AAAA C
ATOH	1025	HE A	RG I	104	34.582	5.320	74.413	1.00 52.38	AAAA II
ATOH	1027			104	34.900 36.047	4.847 4.214	75.621 75.800	1.00 72.73	ت مممم ال مممم
ATON	1025	HH1 A		104 104	33.990	5.070	75.507	1.00 78.27	AAAA II
ATCH!	1934			104	34.466	9.273	71.540	1.00 32.58	2 AAAA
ATON	1035			104	33.553	9.743	72.223	1.00 39.89 1.00 33.47	AAAA () AAAA !I
ATO: 1	1036 1038			105 105	34.992 34.549	10.065 11.450	70.637 70.590	1.00 30.97	AAAA C
IKOTA	1044			105	34.907	12.149	69.310	1.00 31.00	aaaa c
ATOH	1045			105	36.086	12.067	59.050	1.00 37.79	AAAA 0 AAAA C
ATOH ATOH	1039 1040			105 105	35.203 34.786	12.199	71.721	1.00 10.28	AAAA C
ATG:	1041	001 A		105	35.125	14.549	71.127	1.00 38.14	AAAA O
ATCH	1940	HD2 A		105	33.828	15.9e5	72.649	1.00 35.96	AAAA II
ATOH	1016 1048			106 106	33.969 34.129	12.669	68.576 67.469	1.00 31.90 1.00 23.39	I-AAA II AAAA C
HOTA	1049			106	33.239	13.185	66.307	1.00 16.54	AAAA C
ATCH	1050	CG2 I		106	33.132	14.408	65.374	1.00 20.39	AAAA ::
ATOH	1051	CG1 I		106 106	33.928 33.055	12.034	65.558	1.00 18.30 1.00 25.48	AAAA C AAAA C
ATOH	1052 1053			106	33.803	14.909	68.009	1.00 27.40	AAAA C
ATOH	1054	0 1	LE :	106	32.628	15.106	68.243	1.00 32.86	AAAA O
ATCI1	1055			107	34.719	15.789 16.983	68.350 69.145	1.00 30.43 1.00 28.27	AAAA II AAAA C
ATOH ATOH	1057 1058			107 107	34.532 35.902	17.607	69.579	1.00 35.78	AAAA C
ATOH	1059	OC1 T		197	36.819	16.503	69.738	1.06 40.26	AAAA C
ATOH	1061			107	35.954	18.411	70.855	1.00 28.13 1.00 27.95	AAAA C AAAA C
ATON ATON	1062 1063			107 107	33.728 33.392	17.950 19.060	69.332 68.831	1.00 32.99	AAAA O
ATON	1064			108	33.669	17.777	67.019	1.00 30.28	AAAA II
ATC:1	1066			108	33.046	18.809	66.180	1.00 31.25	AAAA C AAAA C
ATOM ATOH	1067 1068			108 108	33.965 33.105	20.011	65.951 65.543	1.90 25.13	AAAA C
ATOH	1069			108	33.917	22.444	65.529	1.00 17.12	AAAA C
HOTA	1070			106	33.511	23.376	64.451	1.00 33.40	AAAA II AAAA C
ATOH	1072 1073	CC A		108 108	34.045 35.162	23.608	63.366 62.868	1.00 46.41	AAAA II
ATOH ATOH	1076	UH2 A		108	33.454	24.543	62.494	1.00 39.82	AAAA II
I-IOTA	1079			108	32.701	18.328	64.784	1.00 31.50	AAAA C AAAA O
ATOH	1080			108 109	33. 3 79 31.567	17,381 18.809	64.439 64.284	1.00 32.67 1.00 32.60	AAAA II
ATOH ATOH	1081 1083			109	31.982	18.385	62.983	1.00 28.87	AAAA C
ATOL	1084	0 0	GLY	109	30.470	17.008	63.001	1.00 32.32	AAAA C AAAA O
ATON	1085			109 110	30.471 29.920	16.306 16.560	64.006 61.894	1.00 38.03 1.00 34.11	AAAA II
atchi Atchi	1086 1088			110	29.086	15.371	61.833	1.00 36.77	AAAA C
ATO:	1089	CB A	ALA	119	27.708	15.721	61.223	1.00 15.32	3 AAAA 3 AAAA
ATOH	1090			110 110	29.745 30.921	14.335	60.957 60.687	1.00 32.13	AAAA O
HOTA	1091		LE	111	29.030	13.337	60.557	1.00 26.55	II AAAA
ATO:	1094		LLE	111	29.569	12.273	59.771	1.00 32.90	AAAA C B AAAA
ATON	1095		LLE	111	29.669 30.091	10.967 11.140	60.591 62.036	1.00 38.07 1.00 34.05	AAAA C
ATOH ATOH	1096 1097	CG2 1		111 111	28.345	10.237	60.684	1.00 26.54	AAAA C
ATOI1	1098	CD1		111	28.437	8.872	61.407	1.00 27.11	AAAA C
ATOH	1099		ILE	111	28.738	11.928	58.521 59.532	1.00 33.98 1.00 32.15	7 AAAA 0 AAAA
ATOH HOTA	1100 1101		ile Arg	111	27.533	12.179	57.501	1.00 30.54	H AAAA H
ATO!	1193		ARG	112	26.773	11.107	56.247	1.00 27.48	AANA C
ATCH	1104		ARG	112	29.186	12.085	55.169 53.816	1.00 26.35 1.00 25.83	AAAA C AAAA C
ATOH ATOH	1105 1106		ARG ARG	112	28.548 28.659	11.653	52.992	1.00 32.92	AAAA
ATOH	1107		ARG	112	27.950	12.726	51.770	1.00 50.34	AAAA II
ATOH	1109		ARG	112	27.778	13.503	50.720	1.00 47.61 1.00 44.92	2 AAAA 11 AAAA
ATON	1110	11H1 /		112	28.334 27.012	14.695 12.925	50.696 19.789	1.00 46.00	II KAAA
ATON ATON	1113		ARG	112	29.200	9.738	55.791	1.00 29.74	AAAA C
ATOH	1117	0 .	ARG	112	30.343	9.611	55.406	1.00 36.52 1.00 33.99	AAAA C AAAA I!
ATOH	1118		ILE	113	28.326 28.612	9.751 7.376	55.886 55.555	1.00 36.26	AAAA C
ATOH ATOH	1120		ile ile	113	28.457	0.461	\$6.760	1.00 33.27	YAAA C
HOTA	1122	CG2	1 I.E	113	28.850	5.021	56.449	1.00 15.85	AAAA C AAAA C
ATCII	1123	CG1		113	29.374	7.012 6.250	57.874 59.176	1.00 31.92	AAAA C
ATOH ATOH	1124 1125	CDT	ILE ILE	113 113	29.324	6.959	54.398	1.00 39.26	AAAA C
ATOI	1126		ILE	113	26.637	0.482	54.664	1.00 50.72	AAAA O
ATOH	1127	11	GLU	114	28.175	7.199	53.190	1.00 35.86 1.00 38.76	AAAA II AAAA C
ATOH ATOH	1129		GLU GLU	114 114	27.491	7.103 0.443	51.935 51.216	1.00 35.58	AAAA 🤈
ATOI	1130		GLU	114	26.567	6.402	49.969	1.00 27.97	AAAA C
ATOIL	1132	CD	GLU	114	26.349	9.810		1.00 36.85 1.00 45.57	AAAA C AAAA O
ATOH	1133	OEI	GL()	114	26.763	10.662	50.414	1.00 43.31	- PART O

AUG 0 8 2003 TECH CENTER 1600/2900

RECEIVED

TECH CENTER 1600/2900

ATOH 114 1134 OE2 GUG 25.787 10.196 49.468 1.00 35.53 AAAA O ATOH 1135 c GLU 114 28.039 6.072 50.944 1.99 44.17 هممن C ATCH 1136 GI.U 114 29.120 5.538 51.099 1.00 49.97 AAAA O ATCI-I 1137 11 1.73 115 27.191 5.556 50.096 AAAA ATCI 1139 CA 115 27.219 AAAA LY3 4.440 49.242 1.90 41.16 ATOI 1149 CB 47.719 AAAA LTS 115 4.764 1.90 23.63 ATOH 1141 CG 115 27.019 1.00 19.39 AAA. LTS 6.194 47.411 24.74 ATON 1142 CD LTS 115 26.537 6.355 45.983 1.00 AAAA ATOL 1113 CE LYS 115 26.751 7.804 45.622 1.96 41.86 AAAA AAAA II ATCH 1144 1:2 LVG 115 27.165 8.045 44.195 1.00 60.91 1148 \mathbf{c} 1.90 42.39 AAAA ATC11 LYS 115 28.287 3.421 49.611 AAAA O Ö 1.00 45.68 ATOH 1149 LYS 115 29.102 3.163 48.749 1.00 40.99 AAAA II ATCH 1150 11 ASII 115 28.137 2.677 50.665 50.976 52.381 1.00 37.33 AAAA C CA ASII ATOL 1153 1.570 116 29.022 1153 CB ASI: AAAA ATOH 116 1.00 46.13 29.534 1.869 ATOU CG ASH 52.315 1.00 49.93 AAA 1154 116 30.372 3.153 AAAA ATOI I 1155 001 ASH 116 31.337 51.583 1.00 38.59 3.016 4.174 ATOH 1156 1102 ASII 116 29.927 53.056 1.00 37.35 AAAA :I HOTA. 1159 ASII 116 28.275 50.974 1.00 42.52 AAAA C 0 1.00 48.24 AAAA O **HOTA** 1160 ASII 116 28.067 -0.361 52.033 27.989 -0.188 49.772 1.00 40.94 AAAA II ATO: 1161 11 ALA 117 AAAA C CA ALA 117 27.195 49.542 1.00 43.35 ATO: 1163 -1.376 CB ALA 1.00 47.63 AAAA C ATOI1 1164 117 27.494 -1.884 48.156 27.294 50.529 1.00 46.55 AAAA C ATOH 1165 ALA 117 -2.504 AAAA O ATOL 1166 0 ALA 1:7 26.211 -2.998 50.890 1.00 51.24 AAAA II 17.13 HOTA 1167 11 ASP 118 28.484 -2.823 51.005 1.00 1.00 45.74 ATOH 1169 CA ASE 118 28.559 -3.980 51.920 AAAA ATOI 1179 CB ASF 118 29.659 -4.945 51.477 1.00 55.39 AAAA 1.00 59.40 ATCH 1171 CC ASP 118 29.684 -5.119 49.958 ATOH 1172 ODI ASP 118 28.870 -5.976 42.608 1.00 64.40 AAAA AAAA 1173 OD2 ASP 1.00 66.73 C ATO! I :18 30.449 -4.447 49.207 1.00 37.29 AAAA ATO:I 1174 C ASP 118 28.818 -3.586 53.353 1175 54.026 1.00 42.89 AAAA O 0 ASP **ATCII** 118 29.127 -1.536 AAAA 1176 1.00 36.46 11 LEU ATOH 119 28.670 -2.327 53.685 1178 CA 119 28.986 29.159 -1.885 -0.389 1.00 40.58 AAAA ATO:I LEU 55.047 1179 CB 119 55.145 1.00 34.31 አራአል ATOH LEU AAAA ATOI1 1180 CG LEU 119 29.640 0.331 56.378 1.00 36.58 56.948 1.00 35.77 AAAA ATOM CD1 LEU 119 30.950 -0.101 1181 29.791 1.00 29.68 AAAA ATO! 1182 CD2 LEU 119 1.830 56.104 27.937 -2.376 1.00 43.67 AAAA c ATOH 1183 C LEU 119 56.007 AAAA II 26.748 -2.248 55.743 1.00 45.32 ATOH 1184 0 LEU 119 -2.967 ATO: 1185 11 CYS 120 28.361 57.110 1.00 43.53 AAAA ATO! 1187 CA C.1.2 120 27.378 -3.407 58.089 1.00 38.93 AAAA ATOH 1188 C CYS 120 27.881 -2.921 59.426 1.00 41.91 AAAA ATOH! 1189 0 CYS 120 28.660 -1.960 59.446 1.00 43.66 AAAA 1.00 37.59 ATOH 1190 CB CYG 120 27.285 -1.907 58.100 1.00 58.32 AAAA ATOH 1191 SG CYS 120 26.568 -5.622 56.639 1.00 38.05 AAAA 66.509 ATOH 1192 11 TYR 121 27.328 -2.456 1.00 39.68 4444 27.795 61.927 **ATOH** 1194 CA TTR 121 -3.010 1.00 34.61 ልልልል 1195 29.189 CB 121 62.130 ATOH TYS -3.572 AAAA 1.00 36.52 28,950 -5.032 **ATOH** 1196 CG TYR FAAA. 29.087 61.582 1.00 33.58 1127 COL TYR 121 -6.045 ATOH AAAA 61.980 1.00 41.21 -7.350 ATOH 1198 CEL TYR 121 28.952 CD2 TYR AAAA 1.00 36.31 ATOH 1199 121 121 28.560 28.257 -5.337 63.817 1.00 39.48 AAAA 1200 64.201 ATOL -6.630 1201 1.00 46.07 AAAA ATOH CD TIR 28.432 -7.641 63.270 121 1202 121 63.730 1.00 49.20 AAAA. 0 ATOH OН TYR 28.161 -8.924 AAAA C ATOI-I 1204 C TYR 121 27.674 -1.523 61.789 1.00 38.83 ATO! 1205 o TYR 121 28.445 -0.778 62.369 1.00 43.22 AAAA II 1206 11 61.185 1.00 39.58 ATOH LEU 122 26.587 -1.045 AAAA C 1.00 44.82 122 61.090 ATO! 1208 CA LEU 26.361 0.405 AAAA CB 59.634 1.00 46.48 ATOH 1209 LEU 25.990 0.715 AAAA 59.108 CG 122 2.014 1.00 44.44 ATOH 1210 LEU 26.497 AAAA CDI 122 25.778 57.859 1.00 32.19 ATON 1211 LEU 2.448 AAAA 1.00 47.76 1212 CD2 LEU 122 26.136 3.057 60.170 ATON AAAA 1.00 44.85 ATCI: 1213 LEU 122 25.212 0.910 61.935 1.00 47.66 AAAA O 62.839 ATOH 1214 0 LEU 122 25.269 1.759 AAAA II 1.00 40.12 **ATON** 1215 п SER 123 24.194 0.137 61.843 AAAA. 22.949 21.754 1.00 33.98 ATOH 1217 Cλ SER 123 0.435 62.703 AAAA 62.239 1.00 19.26 123 ATOH 1219 CB SER -0.330 123 123 123 124 124 AAAA 0 1219 1221 03 62,402 1.00 34.35 ATOH SER 21.964 -1.762 23.165 1.00 37.43 AAAA C 64.159 ATOH SER 0.060 22.326 ò 65.025 1.00 35.33 AAAA O 0.289 -0.698 ATC: 1222 1223 SER 64.430 1.00 39.03 AAAA D 11 THR ATOM AAAA 24.554 1.00 37.79 1225 -1.165 65.753 CA THE ATOL AAAA 1226 CB THR 124 25.368 -2.461 65.719 1.00 42.39 ATOH AAAA O 031 124 26.502 -2.020 64.924 1.00 47.70 THE ATOH 2 124 -3.622 1.00 40.93 1229 65.006 ATOH CG2 THR 24.677 1.00 39.29 AAAA : 25.522 66.415 1230 ¢ THR -0.206 ATO! 1.00 41.41 AAAA O 25. 948 124 62.499 **ATOH** 1231 THR -0.642 125 125 125 125 125 1.00 37.80 AAAA II 25.737 65.985 ATOH 1032 H VAL 1.001 AAAA C AAAA C AAAA C 1.00 41.06 1234 CΑ VAL 26.594 1.964 66.661 ATOH 1235 1236 CB VAL. 2.542 65.714 1.99 39.50 27.683 ATO! 66.352 1.00 28.36 CG1 VAL 28.570 3.599 **ATOH** 1.00 33.07 ATOH VAL. 28.693 1.565 65.110

12/58

OIFE

AUG 0 6 2003

THE PRADERIES

Annotated Sheet Showing Changes

Application No. 09/555,275

WO 99/28347

Figure 1A-11

AUG	エロ
0 8	
2003	NE NE

문	
CENTER	
1600/290	
8	

3								13/58		
	ATC1!	1039	_	VAL	125	25.759	3.127	57.172	1.00 41.47	AAAA C
	ATCH	1239	O	WAL	125	24.941	3.750	55.531	1.00 41.22	AAAA U
	ATOH	1240	1:	ASP	126	26.072	3.636	68.367	1.00 44.54	AAAA II
	atc:1	1242	CA CB	ASP ASP	126	25.310	1.734	68.967	1.00 37.44	AAAA C
	ATCH	1244	03	AS?	126 126	24.862 23.879	4.335 5.303	70.342 70.993	1.00 34.73	AAAA C AAAA C
	ATCH	1245		ASP	126	23.599	5.503 6.520	70.685	1.00 27.71	AAAA O
	HOTA	1246	002	ASP	126	23.220	4.865	71.964	1.00 52.32	AAAA O
	ATCII	1247	Ċ	ASS	126	25.146	5.985	68.872	1.00 40.83	AAAA C
	ATOH ATOH	1248) ()	A3P Trp	126 127	26.740	6.400	69.888	1.00 42.78	AAAA O
	HOTA	1251	CA	TRP	127	.6.029 26.777	6.649 7.856	67,704 67,410	1.00 35.42	AAAA C
	INTA	1252	ca	TRP	127	26.568	9.296	65,630	1.00 24.89	AAAA C
	ATOH	1253	CG	TRP	127	27.195	7.372	61.907	1.00 34.36	AAAA C
	ATOU	1254		TRP TRP	127	29.587	7.208	64.518 63.579	1.00 28.60	2.444 C 2.444
	ATOH	:256		TRE	127	28.631 29.778	6.186 7.845	64.873	1.00 35.51	AAAA C
	ATOI:	1257	CDI	TRP	127	26.465	4.450	64.188	1.00 18.67	AAAA C
	ATCH	1258		TRP	127	27.311	5.712	.3.391	1.00 42.87	AAAA II
	ATOH	1260 1261	CC3	TRP TRP	127 127	29.792 30.972	5.783	62.954 64.285	1.00 32.53	AAAA C AAAA C
	ATOH	1260		TRP	127	39.937	6.405	63.336	1.00 37.86	AAAA C
	ATOH	1263	¢	TRP	127	26.558	9.010	68.367	1.00 36.09	AAAA C
	ATCH	1264	O	TRP	127	27.382	9.977	68.497	1.50 40.87	AAAA C
	ATOH ATOH	1265	CA.	ser ser	128	25.493	8.931	69.171	1.00 31.24	AAAA C
	ATOM	1268	ČB	SER	128 128	25.201 2 3. 757	10.041	70.081 70.603	1.00 36.87	AAAA C
	ATCH	1269	OG	SER	129	23.433	8.917	71.424	1.00 28.96	AAAA O
	ATCII	1271	Ċ	SER	128	26.133	9.975	71.292	1.00 32.39	AAAA C
	ATCH	1272	0	SER	128	26.212	10.957	72.134	1.90 30.91	AAAA O
	ATOH ATOH	1273	N CA	LEU	129 129	26.662 27.701	8.792 8.607	71.549	1.00 27.18	AAAA C
	ATOI	1276	CB	LEU	129	27.920	7.132	72.741	1.00 32.53	AAAA
	ATOH	1277	CG	LEU	129	26.795	6.324	73.371	1.00 39.28	AAAA C
	ATOH	1278		LEU	129	27.292	5.024	73.975	1.00 32.54	AAAA C
	ATOH	1279 1280	C CD5	Leu Leu	129 129	26.237 29.954	7.117 9.226	74.560 ?2.113	1.00 32.12	AAAA C AAAA C
	ATOH	1281	ō	LEU	129	29.645	10.001	72.874	1.00 34.50	AAAA O
	ATOH	1282	11	ILE	130	29.316	9.217	70.897	1.00 42.09	H AAAA
	ATOH	1284	CA	ILE	130	30.480	9.743	70.144	1.00 41.35	AAAA C
	ATCH ATCH	1285 1286	CB CG2	ILE	130 130	30.793 31.992	8.886 9.434	68.9 <u>01</u> 68.176	1.90 41.73	AAAA C AAAA C
	ATOH	1297		ILE	130	30.969	7.413	69.347	1.00 26.64	AAAA C
	ATOH	1288		ILE	130	31.053	6.457	68.165	1.00 42.65	AAAA C
	ATCH	1289	Ç	ILE	130	39.305	11.178	69.679	1.00 46.49	AAAA C AAAA O
	ATOH ATOH	1290 1291	O H	I LE Leu	130 131	31.224 29.089	11.985 11.495	69.966 69.193	1.00 38.46 1.00 45.14	AAAA II
	ATCI	1293	C.A	LEU	131	28.895	12.865	68.651	1.00 41.45	AAAA C
	HOTA	1234	CB	LEU	131	28.499	12.616	67.259	1.00 46.81	AAAA C
	ATOH	1295	03	LEU	131	28.823	12.805	65.878	1.00 36.79 1.00 30.15	AAAA C AAAA C
	ATOH ATOH	1296		Leu Leu	131 131	29.128 27.625	11.405 13.581	65.324 65.334	1.00 19.92	AAAA C
	ATCC:	1298	Ċ	Lau	131	27.661	13.525	69.285	1.00 39.22	AAAA C
	ATOH	1299	0	LEU	131	26.599	12.867	69.311	1.00 37.75	AAAA O
	ATOH HOTA	1300 1302	GA.	asp Asp	132	27.742	14.611	59.518 79.003	1.00 33.73 1.00 38.20	AAAA C
	ATOH	1303	CB	ASP	132 132	26.610 27.017	15.542 16.944	70.381	1.00 43.17	AAAA C
	ATOH	1304	CG	A3P	132	27.349	17.137	71.834	1.00 43.29	AAAA C
	ATOH	1305		ASP	132	27.536	16.122	72.521	1.00 47.12	AAAA O
	ATOH ATOH	1306 1307	Ç.	ASP ASP	132 132	27.413 25.520	18.331 15.659	72.208 68.946	1.00 60.58 1.30 43.46	AAAA C
	ATOH	1308	ō	ASP	132	24.481	15.032	68.939	1.90 49.32	O AAAA
	ATOH	1309	LT.	ALA	133	25.754	16.398	67.900	1.00 45.03	AAAA II
	ATON	1311	CA	VIV	133	24.947	16.776	66.773	1.00 38.62	AAAA C
	ATOH ATOH	1312	CB ⊙	ALA ALA	133 133	25.520 24.694	17.987 15.669	66.092 65.775	1.90 33.82 1.00 33.33	AAAA C
	ATOH	1314	Ö	ALA	133	24.777	15.791	64.517	1.00 33.71	AAAA O
	ATOH	1315	11	VAL	134	24.115	14.565	66.219	1.00 27.88	AAAA II
	ATOH	1317	CA	/,VF	134	23.813	13.440	65.377	1.00 29.90	AAAA C
	ATOH:	1318	CB	VAL VAL	134 134	23.202	12.241	66.120 66.855	1.00 40.63 1.00 35.20	AAAA C
	ATOH	1320	993	VAL	134	22.095	12.701	67.068	1.00 30.84	AAAA C
	ATCH	1321	C	VAL	134	22.735	13.732	64.3\$3	1.00 36.98	AAVA C
	ATOH	1322	0	VAL	134	22.616	13.106	63.292	1.00 32.95	AAAA O
	ATOH	1323 1325	li CA	SER SER	135 135	21.920 20.986	14.777	64.626 63.692	1.00 39.65	AAAA II AAAA C
	ATOH	1325	C.S.	SER	i 35	20.093	16.277	64.305	1.00 45.19	AAAA C
	AT'OH	1327	03	SER	135	20.882	17.369	64.684	1.00 39.25	AAAA O
	ATOH	1329	÷	SER	135	21.396	15.516	62.309	1.00 41.15	AAAA C
	ATON	1330	0	SER	135	20.515	15.642	61.359	1.00 43.81	O AAAA 11 AAAA
	ATOH ATOH	1331	II CA	ASH ASH	136 136	20.615 23.290	15.911 16.353	62.165 69.978	1.00 41.11	7 FAAA
	ATON	1334	СБ	ASH	136	24.324	17.372	61.399	1.00 39.66	AAAA C
	VICH	1335	CO	ASH	135	23.724	19.709	61.717	1.00 36.59	AAAA C
	ATOH	1336	001	ASH	136	22.695	19.079	61.149	1.00 50.81	AAAA O

WO 99/28347

Application No. 09/555,275 Annotated Sheet Showing Changes

Figure 1A-12

TECH CENTER 1600/2900

RECEIVED

							14/58		
ATON	1237		A3I;	136	9٦٤. ټټ	19.441	92.585	1.00 47.85	AAAA II
ATOH	1341	o C	ASII ASII	136 136	21.931	15.230 15.484	60.259 59.194	1.00 35.31	AAAA 2 AAAA 0
ÁTOH	1342	;;	ASII	127	24.057	14.035	60.793	1.00 38.70	AAAA 11
ATOH	1344	CA CB	ASH	137	24.721	12.95	60.126	1.00 32.98	AAAA C
ATOH	1316	b	ASH ASH	137 137	24.737 25.631	11.703 11.965	61.033	1.00 24.45 1.00 26.63	AAAA C AAAA C
ATC:-I	1347	001	ASI:	137	26.970	13.121	52.369	1.00 30.22	AAAA O
ATCH ATON	1348	400 C	asi: Asii	137	25.930	10.923	÷3.000	1.00 18.00	AAAA II
ATOH	1352	0	ASII	137 137	23.950 22.716	12.749	50.817 58.855	1.00 35.89	AAAA C AAAA O
ATCH	1353	11	TYR	138	24.592	12.251	57.785	1.00 32.86	AAAA II
ATOH ATOH	:355 1356	CA CE	TYR	138 138	24.093	11.983	56.489	1.00 30.25	AAAA C
ATCH	1357	ĊŪ.	TiR	138	24.692 24.019	12.861	55.421 54.079	1.00 27.10 1.00 37.89	AAAA C AAAA C
ATCH	1358		TYR	138	23.093	13.671	53.648	1.00 39.22	AAAA C
ATOH ATOH	1359 1360	CEI	TYR TYR	138 138	22.510	13.579	52.392 53.195	1.00 37.65	AAAA C AAAA C
ATOH	1361	CEC	TYR	138	23.901	11.615	51.95i	1.00 41.97	AAAA C
ATON	1362	75	TTR	138	22.868	12.562	\$1.554	1.00 39.42	AAAA C
ATON ATON	1363 1365	C OR	TYR TYR	138 138	22.296	12.504 10.579	50.318 56.051	1.00 45.48	0 AAAA 2 AAAA
HOTA	1366	o	TTR	138	25.505	10.317	55.797	1.90 37.76	AAAA O
ATOH ATOH	1367 1369	CV II	ILE	139	23.461	9.660	56.116	1.20 35.40	II AAAA
ATOH	1370	CB	1LS ILE	13? 139	23.637 23.234	8.249 7.450	55.935 57.171	1.00 34.04 1.00 28.66	AAAA C
ATOH	1371		ILE	139	23.640	5.984	57.093	1.00 21.99	AAAA C
ATOH ATOH	1372	C51	ile Ile	139 139	23.711	8.057	58.469	1.60 42.81	AAAA C
ATOH	1374	C.	11.5	139 139	24.455 22.729	7.190 7.798	59.389 54.830	1.00 52.23 1.00 35.73	AAAA C C AAAA C
ATOH	1375	0	ILE	139	21.538	7.890	54.757	1.00 42.61	AAAA O
ATOH	1376 1378	II CA	VAL	140 140	23.286 22.533	6.997 0.481	53.873 52.755	1.00 35.29	AAAA II AAAA C
ATOH	1379	CB	VAL	140	21.967	7.627	51.881	1.00 36.05	AAAA C
ATOM	1380		VAL	140	22.800	8.375	50.881	1.00 25.88	AAAA C
ATON ATON	1381 1382	C02	VAL VAL	140 140	20.807 23.422	7.034 5.670	51.047 51.874	1.00 34.96 1.00 41.96	AAAA C AAAA C
ATOM	1383	ō	VAL	140	24.537	6.172	51.637	1.90 44.03	AAAA O
ATOH ATOH	1384 1386	II CA	GLY GLY	141	22.899	4.562	51.402	1.00 42.66	AAAA II
ATON	1387	c	GLY	141 141	23.381 24.265	3.805 2.696	50.278 50.835	1.00 30.94	AAAA C AAAA C
ATOH	1388	0	GLY	141	25.132	2.003	50.176	1.00 35.87	AAAA O
HOTA HOTA	1389 1391	II CA	ASII ASII	142 142	23.985 24.858	2.418 1.390	52.116 52.746	1.00 38.92	AAAA 1! AAAA C
ATOH	1392	CB	ASH	142	25.257	1.390	54.187	1.90 43.12	AAAA C
ATOH	1393	CG.	ASII	142	26.13:	3.022	54.152	1.20 42.00	AAAA C
ATOH ATOH;	1394 1395		ASH ASH	142	26.984 25.945	3.077 4.022	53.269 55.019	1.00 40.47	AAAA O AAAA II
HOTA	1398	c	ASH	142	24.153	0.066	52.687	1.00 45.84	AAAA C
ATON	1399 1400	() ()	ASH	112	23.113	-0.015	52.055	1.00 49.68	AAAA O
ATOH	1402	¢A.	LYS LYS	1 ‡ 3 1 ‡ 3	24.374 24.973	-0.990 -2.299	53.272 53.195	1.00 45.23	AAAA C
ATOH	1403	CB	LYS	143	25.166	-3.328	53.433	1.00 41.49	AAAA C
ATOH ATOH	1404 1405	CD CD	LYS	143 143	24.750 25.512	-1.686	53.832	1.00 44.96	AAAA C
ATOH	1406	CE	LYS	143	25.943	-5.743 -7.131	\$3.100 53.558	1.00 38.35	AAAA C
ATOH	1497	112	LïS	143	26.080	-8.093	53.040	1.00 53.83	II AAAA
ATOH ATOH	141 <u>1</u> 1412	С 0	LY3 LY3	143 143	22.902 22.960	-2.431 -2.099	54.169 55.360	1.00 52.85	AAAA C AAAA O
ATOH	1413	11	FRO	144	21.906	-3.047	53.731	1.00 52.39	AAAA !I
ATOH ATOH	1414	CD	₽RO PRO	144	21.617	-3.469	52.315	1.00 52.58	AAAA C
HOTA	1416	CB	PRO	144 144	10.559 19.549	-3.118 -3.602	54.489 53.455	1.00 48.30	AAAA C
ATOH	1417	ÇÜ	PRO	144	29.134	-3.299	52.099	1.00 50.41	AAAA C
ATOH ATOH	1418 1419	o C	PRO PRO	144 144	30.621 20.964	-4.050 -5.236	55.659 55.501	1.00 44.65	AAAA C AAAA O
ATOH	1420	11	£RO	145	20.319	-3.533	56.859	1.00 45.12	AAAA II
ATOH ATOH	1421	CD CA	PRO	145	29.123	-2.054	57.094	1.00 38.17	AAAA C
ATOH	1423	CB	ero ero	145 145	20.448 19.704	-4.233 -3.298	58.128 59.099	1.00 37.98	4444 C
ATOH	1404	C/G	₽RO	145	20.940	-1.910	58.602	1.00 33.65	AAAA C
ATOH	1425 1426	o C	PRO PRO	145 145	19.993 20.556	-5.655 -6.592	58.155 58.768	1.00 47.17	AAAA C AAAA O
ATOH	1427	11	LYS	116	19.979	-5.924	57.489	1.00 53.72	AAAA II
ATON	1429	CA	LYS	146	18.268	-7.229	57.295	1.00 86.94	AAAA c
ATOH ATOH	1430 1431	CB CG	LTS LTS	146 146	16.894 16.220	-7.050 -8.232	56.617 55.982	1.00 65.44	AAAA C AAAA C
ATOH	1432	CD	LYS	146	14.797	-8.422	56.451	0.01 62.75	AAAA C
ATOH	1433	CE	LYS	146	14.194	-9.717	55.934	0.01 62.14	AAAA C
ATOH	1434 1438	112 C	LVS	146 146	12.720 19.138	-9.610 -9.138	55.753 56.446	0.01 61.38 1.00 61.40	AAAA 11 AAAA C
ATOH	1139	ö	LYS	146	19.23"	-9.346	56.732	1.00 66.21	AAAA O
ATO:	1440	11	GLU	147	19.779	-7.649	55.399	1.30 62.92	AAAA 1:
ATOH ATOH	1442	CA CB	GLU GLU	147 147	20.927	-8.070	\$1.742 \$3.294	1.00 67.00	AAAA C
	-		*	- • •					

ATCH 1444 OF GLD 147 19.937 -7.575 5.567 1.00 73.15 AAAA C ATCH 1447 OF GLD 147 19.937 -7.575 5.567 1.00 73.15 AAAA C ATCH 1447 OF GLD 147 19.937 -7.575 5.567 1.00 73.15 AAAA C ATCH 1447 OF GLD 147 19.937 1445 51.005 1.00 53.91 AAAA C ATCH 1447 OF GLD 147 19.937 1445 51.005 1.00 53.91 AAAA C ATCH 1448 C GLD 147 12.136 -9.437 55.341 1.00 64.76 AAAA C ATCH 1448 C GLD 147 12.136 -9.437 55.341 1.00 64.76 AAAA C ATCH 1448 C GLD 147 12.136 -9.437 55.341 1.00 64.76 AAAA C ATCH 1448 C GLD 148 12.506 -7.488 56.355 1.00 64.76 AAAA C ATCH 1450 C GLD 148 12.506 -7.488 56.355 1.00 64.76 AAAA C ATCH 1450 C GLD 148 12.506 -7.488 56.355 1.00 64.76 AAAA C ATCH 1450 C GLD 148 12.506 -7.488 56.355 1.00 64.76 AAAA C ATCH 1450 C GLD 148 12.506 -7.488 56.355 1.00 64.76 AAAA C ATCH 1450 C GLD 148 12.505 -6.301 56.001 1.00 57.25 AAAA C ATCH 1450 C GLD 148 12.505 -6.301 56.001 1.00 57.25 AAAA C ATCH 1450 C GLD 148 12.505 -6.301 56.001 1.00 57.25 AAAA C ATCH 1450 C GLD 148 12.505 -6.301 56.001 1.00 57.25 AAAA C ATCH 1450 C GLD 149 12.505 -6.001 56.00 57.25 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.609 1.00 57.25 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.609 1.00 57.25 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.609 1.00 57.25 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.609 1.00 57.25 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.609 1.00 57.00 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.609 1.00 57.00 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.609 1.00 57.00 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.609 1.00 57.00 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.609 1.00 57.00 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.600 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.600 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.600 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.600 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.600 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.600 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.600 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.600 AAAA C ATCH 1450 C GLD 149 12.505 -10.000 61.600 AAAA C ATCH 1450 C						15/50		
ATCH 1145 CD GLO GLO 147	atori	1:11 0		1.17	10 000 1 000	15/58		
ATCH								
ATCH 148		1446 08	El GLU	147	21.339 -7.636			
ATCH 1490								
ATCH								
ATCH	ATOH	1450 1	6.12	118				
ATCH 1454 0 CVS 148 23,473 -9,523 58,414 1.00 65,59 AAAA 0 ATCH 1455 CF CVS 148 23,565 -5,001 56,808 1.00 59,22 AAAA 5 ATCH 1455 CF CVS 148 23,565 -5,001 56,808 1.00 59,22 AAAA 5 ATCH 1457 CVS CF CVS CF CVS CF CVS CF CVS CF CVS CF CVS CVS CF CVS								
ATCH 1455 CB CV3 148 23.852 -6.301 S6.001 1.00 57.25 AAAA C ATCH 1456 CB CV3 148 23.852 -6.301 S6.800 1.00 57.25 AAAA C ATCH 1457 CA GLV 149 22.514 -8.743 58.977 1.00 67.88 AAAA C ATCH 1457 CA GLV 149 22.514 -8.743 58.977 1.00 67.88 AAAA C ATCH 1450 C GLV 149 22.514 -8.743 58.977 1.00 67.88 AAAA C ATCH 1450 C GLV 149 22.514 -8.743 58.977 1.00 67.88 AAAA C ATCH 1450 C GLV 149 22.514 -8.743 58.977 1.00 67.88 AAAA C ATCH 1450 C GLV 149 22.514 -8.602 61.509 1.00 55.18 AAAA C ATCH 1450 C GLV 149 150 S6.1479 48.199 (2.153) 1.00 55.18 AAAA C ATCH 1450 C GLV 149 150 S6.1479 48.199 (2.153) 1.00 55.78 AAAA C ATCH 1450 C GLV 149 150 S6.1479 48.199 (2.153) 1.00 55.78 AAAA C ATCH 1450 C GLV 149 150 S6.1479 48.199 (2.153) 1.00 55.78 AAAA C ATCH 1450 C GLV 149 150 S6.1479 48.199 (2.153) 1.00 55.78 AAAA C ATCH 1450 C ASP 150 S6.1479 48.199 (2.153) 1.00 57.73 AAAA C ATCH 1450 C ASP 150 S6.1479 -8.654 63.855 1.00 57.15 AAAA C ATCH 1450 C ASP 150 S6.1479 -8.654 63.855 1.00 57.15 AAAA C ATCH 1450 C ASP 150 S6.1479 -8.654 63.855 1.00 57.15 AAAA C ATCH 1470 C ASP 150 S6.1479 -8.654 64.523 1.00 57.73 AAAA C ATCH 1470 C ASP 150 S6.1479 -8.654 64.523 1.00 57.73 AAAA C ATCH 1470 C ASP 150 S6.1479 -8.654 64.523 1.00 57.13 AAAA C ATCH 1470 C GL EU 151 S6.149 -8.654 64.523 1.00 57.13 AAAA C ATCH 1470 C GL EU 151 S6.149 -8.654 64.523 1.00 58.55 AAAA C ATCH 1470 C GL EU 151 S6.149 1.00 57.73 C G.551 AAAA C ATCH 1470 C GL EU 151 S6.149 1.00 57.73 C G.551 AAAA C ATCH 1470 C GL EU 151 S6.149 1.00 57.73 C G.551 AAAA C ATCH 1470 C GL EU 151 S6.149 1.00 57.73 C G.551 AAAA C ATCH 1470 C GL EU 151 S6.149 1.00 57.73 C G.551 AAAA C ATCH 1470 C GL EU 151 S6.149 1.00 57.73 C G.551 AAAA C ATCH 1470 C GL EU 151 S6.149 1.00 57.73 C G.551 AAAA C ATCH 1470 C GL EU 151 S6.149 1.00 57.73 C G.551 AAAA C ATCH 1470 C GL EU 151 S6.149 1.00 57.73 C G.551 AAAA C ATCH 1470 C GL EU 151 S6.149 1.00 57.73 C G.551 AAAA C ATCH 1470 C GL EU 151 S6.149 1.00 57.73 C G.551 AAAA C ATCH 1470 C GL EU 151 S6.149 1.00 57.73 C G.551 AAAA C ATCH 1470 C GL EU 151 S6.149 C G.551 AAAA								
ATOM 1457 37 GAU 149 22.514 -8.743 58 -877 1.00 67.88 AAAA MAA MATCH 1457 CA GLU 149 23.443 -9.657 61.120 1.00 52.15 AAAA C ATOM 1460 CA GLU 149 23.443 -9.657 61.120 1.00 52.18 AAAA C ATOM 1461 0 GLU 149 23.443 -9.657 61.120 1.00 52.18 AAAA C ATOM 1462 CA AZP 150 23.717 -8.426 61.596 1.00 51.88 AAAA MATCH 1464 CA AZP 150 23.717 -8.426 61.596 1.00 51.88 AAAA MATCH 1465 CR AZP 150 23.717 -8.426 61.596 1.00 51.88 AAAA MATCH 1465 CR AZP 150 23.717 -8.426 61.596 1.00 51.88 AAAA MATCH 1465 CR AZP 150 23.717 -8.426 61.596 1.00 51.88 AAAA MATCH 1467 CR AZP 150 23.5041 -6.703 61.750 1.00 45.10 AAAA C ATOM 1465 CR AZP 150 23.5041 -6.703 61.750 1.00 45.10 AAAA C ATOM 1465 CR AZP 150 23.5041 -6.703 61.401 1.00 55.05 AAAA C ATOM 1467 CR AZP 150 23.5042 -6.134 61.401 1.00 55.05 AAAA C ATOM 1470 CR AZP 150 23.502 -6.034 61.410 1.00 55.05 AAAA C ATOM 1470 CR AZP 150 23.502 -6.034 61.401 1.00 59.55 AAAA C ATOM 1474 CR AZP 151 151 25.514 -8.654 53.855 1.00 59.35 AAAA C ATOM 1474 CR AZP 151 25.314 -9.908 65.653 1.00 59.35 AAAA C ATOM 1475 CR AZP 151 25.314 -9.908 65.653 1.00 59.35 AAAA C ATOM 1475 CR AZP 151 23.063 -12.101 65.092 1.00 69.15 AAAA C ATOM 1475 CR AZP 151 23.063 -12.101 65.092 1.00 69.15 AAAA C ATOM 1477 CR AZP 151 23.063 -12.101 65.092 1.00 69.15 AAAA C ATOM 1477 CR AZP 151 23.063 -12.101 65.092 1.00 69.15 AAAA C ATOM 1477 CR AZP 151 25.104 -7.104 61.00 65.05 AAAA C ATOM 1479 CR AZP 151 23.063 -12.101 65.092 1.00 69.15 AAAA C ATOM 1479 CR AZP 151 23.006 93.006 68.60 AAAA C ATOM 1479 CR AZP 151 23.006 93.006 68.60 AAAA C ATOM 1480 CR AZP 151 23.006 93.006 68.60 AAAA C ATOM 1480 CR AZP 151 23.006 93.006 68.60 AAAA C ATOM 1480 CR AZP 151 23.006 93.006 68.60 AAAA C ATOM 1480 CR AZP 151 23.006 93.006 69.50 AAAA C ATOM 1480 CR AZP 151 23.006 93.006 69.50 AAAA C ATOM 1480 CR AZP 151 23.006 93.006 69.50 AAAA C ATOM 1480 CR AZP 151 23.006 93.006 69.50 AAAA C ATOM 1480 CR AZP 151 23.006 93.006 69.50 AAAA C ATOM 1480 CR AZP 151 23.006 93.006 69.50 AAAA C ATOM 1480 CR AZP 151 23.006 93.006 69.50 AAAA C ATOM 1480 CR AZP 151 25.0	ATON	1455 CE	CY3					
ATCH 1450 C GUT 149 23.1837 -9.744 50.029 1.00 52.15 AAAA C ATCH 1460 C GUT 149 23.255 -10.603 61.699 1.00 56.15 AAAA C ATCH 1462 II AAPA E 150 23.727 -8.426 61.596 1.00 54.18 AAAA C ATCH 1462 II AAPA E 150 23.727 -8.426 61.596 1.00 54.18 AAAA C ATCH 1462 II AAPA E 150 23.727 -8.426 61.596 1.00 54.18 AAAA II ATCH 1463 CA ASP 150 23.727 -8.426 61.596 1.00 54.18 AAAA II ATCH 1463 CA ASP 150 23.727 -8.426 61.596 1.00 54.18 AAAA II ATCH 1463 CA ASP 150 23.727 -8.426 61.596 1.00 54.18 AAAA II ATCH 1467 COL ASP 150 23.510 -6.703 62.750 1.00 45.10 AAAA C ATCH 1467 COL ASP 150 23.510 -6.273 64.14 1.00 05.723 AAAA C ATCH 1467 COL ASP 150 23.5102 -4.819 61.363 1.00 55.73 AAAA C ATCH 1470 COL ASP 150 23.5102 -4.819 61.363 1.00 55.73 AAAA C ATCH 1470 COL ASP 150 23.5102 -4.819 61.363 1.00 55.73 AAAA C ATCH 1473 CA LEU 151 25.532 -9.369 64.377 1.00 67.48 AAAA C ATCH 1473 CA LEU 151 25.532 -9.369 64.537 1.00 67.43 AAAA C ATCH 1473 CA LEU 151 25.532 -9.369 64.537 1.00 53.55 AAAA C ATCH 1475 COL LEU 151 25.008 -11.409 65.008 1.00 55.55 AAAA C ATCH 1475 COL LEU 151 24.5151 1.0063 1.100 65.008 1.00 55.55 AAAA C ATCH 1475 COL LEU 151 24.5151 1.0063 1.100 65.008 1.00 55.55 AAAA C ATCH 1475 COL LEU 151 24.5151 1.0063 1.100 65.008 1.00 55.55 AAAA C ATCH 1475 COL LEU 151 24.5151 25.009 -11.409 65.008 1.00 55.55 AAAA C ATCH 1478 COL LEU 151 24.5151 25.009 -9.731 66.631 1.00 55.55 AAAA C ATCH 1478 COL LEU 151 24.5151 25.009 -9.731 66.631 1.00 55.55 AAAA C ATCH 1478 COL LEU 151 25.009 -9.731 66.631 1.00 55.55 AAAA C ATCH 1478 COL LEU 151 25.009 -9.731 66.631 1.00 55.55 AAAA C ATCH 1478 COL LEU 151 25.009 -9.731 66.631 1.00 55.55 AAAA C ATCH 1478 COL LEU 151 25.009 -9.731 66.631 1.00 55.55 AAAA C ATCH 1478 COL LEU 151 25.009 -9.731 66.631 1.00 55.55 AAAA C ATCH 1478 COL LEU 151 25.009 -9.731 66.631 1.00 55.55 AAAA C ATCH 1478 COL LEU 151 25.009 -9.731 67.60 AAAA II ATCH 1478 COL LEU 151 25.009 -9.731 66.633 1.00 55.55 AAAA C ATCH 1478 COL LEU 151 25.009 -9.731 66.633 1.00 55.55 AAAA C ATCH 1478 COL LEU 151 25.009 -9.731 66.633 AAAA C ATC								
ATCH 1460 C SLY 149					22.514 -8.743			
ATON 1462 IN ACP 150 23.727 -8.426 (1.596 1.00 54.88 AAAA IN ATON 1465 CA ASF 150 23.727 -8.426 (1.596 1.00 54.88 AAAA IN ATON 1465 CA ASF 150 25.941 -6.703 62.750 1.00 14.10 AAAA CATON 1465 CG ASF 150 25.941 -6.703 62.750 1.00 14.10 AAAA CATON 1466 OD2 ASF 150 25.924 -6.419 61.10 1.00 58.50 AAAA CATON 1467 OD1 ASF 150 25.726 -6.796 60.480 1.00 77.73 AAAA OATON 1469 OD2 ASF 150 23.5102 -4.189 61.363 1.00 59.36 AAAA CATON 1469 C ASF 150 23.5102 -4.189 61.363 1.00 59.36 AAAA CATON 1470 OASF 150 23.5102 -4.189 61.363 1.00 59.36 AAAA CATON 1470 OASF 150 23.512 -9.369 61.524 1.00 54.39 AAAA IN ATON 1471 CATON 1471								
ATOM 1469 CA ASF 150 C21.794 -8.128 62.533 1.00 55.78 AAAA C ATOM 1166 C6 ASF 150 C55.320 -6.034 61.410 1.00 58.50 AAAA C ATOM 1166 C6 ASF 150 C55.320 -6.034 61.410 1.00 58.50 AAAA C ATOM 1166 C7 ODI ASP 150 C55.320 -6.034 61.410 1.00 77.73 AAAA C ATOM 1469 C ASP 150 C51.02 -4.819 61.363 1.00 19.65 3AAA C ATOM 1470 O ASP 150 C51.02 -4.819 61.365 1.00 59.36 AAAA C ATOM 1470 O ASP 150 C31.392 -8.820 64.377 1.00 67.48 AAAA C ATOM 1470 O ASP 150 C31.392 -8.820 64.377 1.00 67.48 AAAA C ATOM 1471 C B LEU 151 C55.314 -9.908 65.853 1.00 52.79 AAAA C ATOM 1474 CB LEU 151 C55.314 -9.908 65.853 1.00 52.79 AAAA C ATOM 1475 CG LEU 151 C55.314 -9.908 65.853 1.00 52.79 AAAA C ATOM 1475 CG LEU 151 C21.051 1.00 55.092 1.00 69.45 AAAA C ATOM 1475 CG LEU 151 C21.051 1.00 55.092 1.00 69.45 AAAA C ATOM 1475 CG LEU 151 C21.051 1.00 55.092 1.00 69.45 AAAA C ATOM 1476 COL LEU 151 C21.051 1.00 55.092 1.00 69.45 AAAA C ATOM 1476 COL LEU 151 C21.051 1.00 55.092 1.00 69.45 AAAA C ATOM 1476 COL LEU 151 C21.051 1.00 59.91 1.00 65.26 AAAA C ATOM 1476 COL LEU 151 C21.051 1.00 59.91 1.00 65.26 AAAA C ATOM 1479 C LEU 151 C21.051 1.00 59.91 1.00 65.26 AAAA C ATOM 1480 C C7S 152 C20.24 9.773 67.849 1.00 65.45 3AAA C ATOM 1480 C C7S 152 C20.24 9.773 67.849 1.00 65.45 3AAA C ATOM 1480 C C7S 152 C20.24 9.773 67.849 1.00 65.59 AAAA C ATOM 1480 C C7S 152 C20.358 -7.114 69.657 1.00 63.58 AAAA C ATOM 1480 C C7S 152 C20.358 -7.114 69.657 1.00 63.58 AAAA C ATOM 1480 C C7S 152 C20.358 -7.114 69.657 1.00 63.58 AAAA C ATOM 1480 C C7S 152 C20.358 -7.114 69.657 1.00 63.58 AAAA C ATOM 1480 C C7S 152 C3.58 -7.114 69.657 1.00 63.58 AAAA C ATOM 1480 C C7S 152 C3.58 -7.114 69.657 1.00 63.58 AAAA C ATOM 1480 C C7S 152 C3.58 -7.114 69.657 1.00 63.58 AAAA C ATOM 1480 C C7S 152 C3.58 -7.114 69.657 1.00 63.58 AAAA C ATOM 1480 C C7S 152 C3.58 -7.114 69.657 1.00 63.58 AAAA C ATOM 1480 C C7S 152 C3.58 -7.114 69.657 1.00 63.58 AAAA C ATOM 1480 C C7S 152 C3.58 -7.114 69.657 1.00 63.58 AAAA C ATOM 1480 C C7S 152 C3.58 -7.114 69.657 1.00 63.58 AAAA C ATOM 1480 C C7S 152 C3.58								
ATOM 1465 CE ASP 150 CS.041 -6.703 SC.750 1.00 49.10 AAAA C ATOM 1467 ODI ASP 150 CS.020 -6.704 61.410 1.00 58.50 AAAA C ATOM 1467 ODI ASP 150 CS.020 -6.706 60.480 1.00 07.73 AAAA O ATOM 1469 ODE ASP 150 CS.020 -6.1819 61.636 1.00 07.73 AAAA O ATOM 1469 C ASP 150 CS.020 -6.1819 61.636 1.00 07.73 AAAA O ATOM 1470 O ASP 150 CS.020 -6.1819 61.636 1.00 07.73 AAAA O ATOM 1470 O ASP 150 CS.020 -6.180 AAAA C ATOM 1470 O ASP 150 CS.020 -6.180 AAAA C ATOM 1471 CE LEU 151 CS.531 -9.369 61.521 1.00 52.35 AAAA C ATOM 1471 CE LEU 151 CS.531 -9.369 61.521 1.00 52.35 AAAA C ATOM 1471 CE LEU 151 CS.030 -11.00 AAAA C ATOM 1471 CE LEU 151 CS.030 -11.00 AAAA C ATOM 1475 CE LEU 151 CS.030 -11.00 AAAA C ATOM 1475 CE LEU 151 CS.030 -11.00 AAAA C ATOM 1475 CE LEU 151 CS.030 -11.00 AAAA C ATOM 1476 CE LEU 151 CS.030 -11.00 AAAA C ATOM 1478 C LEU 151 CS.030 -11.00 AAAA C ATOM 1479 C LEU 151 CS.030 -11.00 AAAA C ATOM 1479 C LEU 151 CS.030 -11.00 AAAA C ATOM 1479 C LEU 151 CS.030 -11.00 AAAA C ATOM 1479 C LEU 151 CS.030 -11.00 AAAA C ATOM 1479 C LEU 151 CS.030 -11.00 AAAA C ATOM 1479 C LEU 151 CS.030 -11.00 AAAA C ATOM 1479 C LEU 151 CS.030 -11.00 AAAA C ATOM 1479 C LEU 151 CS.030 -11.00 AAAA C ATOM 1479 C LEU 151 CS.030 -11.00 AAAA C ATOM 1480 C CS 152 CS.030 -7.14 C.05 AAAA C ATOM 1480 C CS 152 CS.030 -7.14 C.05 AAAA C ATOM 1481 C CS 152 CS.030 -7.14 C.05 AAAA C ATOM 1481 C CS 152 CS.030 -7.14 C.05 AAAA C ATOM 1481 C CS 152 CS.030 -7.14 C.05 AAAA C ATOM 1481 C CS 152 CS.030 -7.14 C.05 AAAA C ATOM 1481 C CS 152 CS.030 -7.14 C.05 AAAA C ATOM 1481 C CS 152 CS.030 -7.14 C.05 AAAA C ATOM 1481 C CS 152 CS.030 -7.14 C.05 AAAA C ATOM 1481 C CS 152 CS.030 -7.14 C.05 AAAA C ATOM 1489 C AAAA C AROM 1481 C CS 152 CS.030 -7.14 C.05 AAAA C ATOM 1489 C AROM 153 CS.030 AAAA C								
ATOM 1467 ODI ASP 150								
ATO: 1469 C ASP 150								
ATO: 1469 C ASP 150								
ATOI 1470 O ASP 150 23.392 - 8.820 64.377 1.00 67.48 AAAA O ATOI 171 II EU 151 25.314 - 9.908 65.853 1.00 52.79 AAAA I ATOI 1473 CA LEU 151 25.314 - 9.908 65.853 1.00 52.79 AAAA I ATOI 1474 CB LEU 151 25.314 - 9.908 65.853 1.00 52.79 AAAA C ATOI 1475 CG LEU 151 24.963 - 12.101 65.992 1.00 69.45 AAAA C ATOI 1477 CC LEU 151 24.963 - 12.101 65.992 1.00 69.45 AAAA C ATOI 1477 CC LEU 151 24.963 - 12.101 65.992 1.00 69.45 AAAA C ATOI 1477 CC LEU 151 24.963 - 12.101 65.992 1.00 65.42 AAAA C ATOI 1477 CC LEU 151 26.409 - 9.454 66.65 1.00 56.43 AAAA C ATOI 1479 C LEU 151 27.598 -9.713 66.634 1.00 55.43 AAAA C ATOI 1480 II CT3 152 26.992 -8.189 68.740 1.00 56.73 AAAA C ATOI 1480 C CT3 152 26.992 -8.189 68.740 1.00 56.73 AAAA C ATOI 1481 C CT3 152 26.992 -8.189 68.740 1.00 56.73 AAAA C ATOI 1485 C CT3 152 26.992 -8.189 68.740 1.00 56.73 AAAA C ATOI 1486 C CT3 152 26.992 -8.189 68.740 1.00 56.73 AAAA C ATOI 1486 C CT3 152 27.650 -9.325 69.751 1.00 62.10 AAAA C ATOI 1486 C CT3 152 25.985 -5.635 68.703 1.00 68.05 AAAA C ATOI 1486 C CT3 152 25.985 -5.635 68.703 1.00 68.05 AAAA C ATOI 1489 C C C C C C C C C								
ATOM 1473 CA LEU 151		1470 0	ASP	150	23.392 -8.820	64.377	1.00 67.48	O AAAA
ATORI 1474 CB LEU 151								
ATON 1475 CG LEU 151 24.063 -12.101 65.092 1.00 69.15 AAAA C ATON 1476 COIL EU 151 24.515 -13.421 44.489 1.00 65.26 AAAA C ATON 1479 C LEU 151 22.937 -12.372 65.951 1.00 65.43 AAAA C ATON 1479 C LEU 151 22.937 -12.372 65.951 1.00 65.43 AAAA C ATON 1479 C LEU 151 27.598 -9.734 66.634 1.00 55.59 AAAA C ATON 1480 II CTS 152 26.924 -8.773 67.849 1.00 88.62 AAAA II ATON 1482 CA CTS 152 26.924 -8.773 67.849 1.00 88.65 AAAA C ATON 1483 C CTS 152 27.650 -9.325 68.740 1.00 56.53 AAAA C ATON 1485 CB CTS 152 27.650 -9.325 68.740 1.00 56.53 AAAA C ATON 1485 CB CTS 152 27.650 -9.325 68.740 1.00 66.55 AAAA C ATON 1486 CB CTS 152 27.650 -9.325 68.750 1.00 62.10 AAAA II ATON 1486 CB CTS 152 27.650 -9.325 68.750 1.00 62.10 AAAA C ATON 1486 CB CTS 152 27.650 -9.325 68.763 1.00 65.58 AAAA C ATON 1486 CB CTS 152 25.985 -5.635 68.703 1.00 68.05 AAAA II ATON 1488 CD PRO 153 28.826 -9.072 70.059 1.00 68.05 AAAA II ATON 1489 CA PRO 153 29.618 -7.838 69.903 1.00 68.66 AAAA C ATON 1499 CA PRO 153 29.618 -7.838 69.903 1.00 68.66 AAAA C ATON 1499 CA PRO 153 30.961 -9.323 71.557 1.00 69.98 AAAA C ATON 1490 CB PRO 153 30.961 -9.323 71.557 1.00 69.98 AAAA C ATON 1492 C PRO 153 28.543 -10.734 71.850 1.00 69.64 AAAA C ATON 1499 CB PRO 153 28.543 -10.734 71.850 1.00 69.64 AAAA C ATON 1499 CB PRO 153 28.543 -10.734 71.850 1.00 69.64 AAAA C ATON 1499 CB PRO 153 28.543 -10.734 71.850 1.00 69.58 AAAA C ATON 1499 CB PRO 153 28.543 -10.734 71.850 1.00 69.58 AAAA C ATON 1499 CB PRO 153 28.543 -10.734 71.850 1.00 69.58 AAAA C ATON 1499 CB								
ATON 1477 CCZ LEU 151 22.937 -12.372 65.951 1.00 65.43 AAAA C ATON 1479 C LEU 151 26.409 -9.454 66.805 1.00 51.93 AAAA C ATON 1479 C LEU 151 27.598 -9.734 66.634 1.00 55.59 AAAA C ATON 1480 II CTS 152 26.924 -8.773 67.849 1.00 88.62 AAAA II ATON 1482 CA CTS 152 26.924 -8.773 67.849 1.00 68.55 AAAA II ATON 1483 C CTS 152 27.650 -9.325 69.493 1.00 63.58 AAAA C ATON 1485 CB CTS 152 27.650 -9.325 69.493 1.00 63.58 AAAA C ATON 1485 CB CTS 152 27.650 -9.325 69.493 1.00 63.58 AAAA C ATON 1485 CB CTS 152 26.358 -7.141 69.657 1.00 41.499 AAAA C ATON 1485 CB CTS 152 26.358 -7.615 68.703 1.00 55.83 AAAA C ATON 1487 II PRO 153 28.826 -9.072 70.505 91.00 68.05 AAAA II ATON 1486 CD RO 153 29.618 -9.072 70.650 91.00 68.05 AAAA C ATON 1489 CD RO 153 29.618 -9.072 70.650 1.00 68.05 AAAA C ATON 1490 CB RO 153 30.601 -8.159 70.660 1.00 70.58 AAAA C ATON 1490 CB RO 153 30.601 -8.159 70.660 1.00 70.58 AAAA C ATON 1492 C PRO 153 30.661 -8.159 70.660 1.00 70.58 AAAA C ATON 1493 O PRO 153 30.601 -8.159 70.660 1.00 70.58 AAAA C ATON 1493 O PRO 153 27.859 -10.075 72.615 1.00 69.58 AAAA C ATON 1499 CB CR CTS 154 27.610 -12.804 72.745 1.00 71.03 08.05 AAAA II ATON 1498 CD RO 153 27.859 -10.075 72.615 1.00 69.58 AAAA C ATON 1499 CB CTS 154 27.610 -12.804 72.745 1.00 71.03 AAAA II ATON 1498 CD RO 153 27.859 -10.075 72.615 1.00 69.58 AAAA C ATON 1499 CB CTS 154 27.610 -12.804 72.745 1.00 89.58 AAAA C ATON 1499 CB CTS 154 27.610 -12.804 72.745 1.00 89.58 AAAA C ATON 1499 C CTS 154 27.610 -12.804 72.745 1.00 89.58 AAAA C ATON 1499 C CTS 154 27.610 -12.804 72.745 1.00 89.58 AAAA C ATON 1499 C CTS 154 27.610 -12.804 72.745 1.00 89.58 AAAA C ATON 150 CTS 154 27.610 -12.804 72.745 1.00 89.58 AAAA C ATON 150 CTS 154 27.610 -12.804 72.745 1.00 89.58 AAAA C ATON 150 CTS 154 27.610 -12.804 72.745 1.00 89.58 AAAA C ATON 150 CTS 154 27.610 -12.804 72.745 1.00 89.58 AAAA C ATON 150 CTS 154 27.610 -12.804 72.745 1.00 89.59 AAAA C ATON 150 CTS 154 27.610 -12.804 72.745 1.00 89.59 AAAA C ATON 150 CTS 154 27.504 72.745 1.00 89.59 AAAA C ATON 150 CTS 154 27.8			LEU	151	24.963 -12.101		1.00 69.45	AAAA c
ATON: 1479 C LEU 151 26.469 -9.454 66.865 1.00 51.93 AAAA C ATON: 1479 C LEU 151 27.599 -9.7314 66.634 1.00 55.59 AAAA C ATON: 1480 II CYS 152 26.992 -8.199 68.701 10.00 55.59 AAAA C ATON: 1480 C CYS 152 26.992 -8.199 68.701 10.00 56.73 AAAA C ATON: 1483 C CYS 152 27.650 -9.325 69.493 1.00 68.65 AAAA C ATON: 1480 C CYS 152 27.650 -9.325 69.493 1.00 62.40 AAAA C ATON: 1485 CB CYS 152 27.650 -9.325 69.493 1.00 62.40 AAAA C ATON: 1486 SG CYG 152 25.985 -5.635 68.703 1.00 55.83 AAAA C ATON: 1486 SG CYG 152 25.985 -5.635 68.703 1.00 55.83 AAAA C ATON: 1486 CB CYS 152 26.358 -7.144 69.657 1.00 41.99 AAAA C ATON: 1480 CD PRO 153 29.618 -7.838 69.903 1.00 66.66 AAAA C ATON: 1490 CB PRO 153 29.618 -7.838 69.903 1.00 66.66 AAAA C ATON: 1490 CB PRO 153 29.418 -7.838 69.903 1.00 66.66 AAAA C ATON: 1490 CB PRO 153 30.601 -9.323 71.557 1.00 69.98 AAAA C ATON: 1490 CB PRO 153 30.601 -9.323 71.557 1.00 69.98 AAAA C ATON: 1490 CB PRO 153 30.601 -9.323 71.657 1.00 70.66 AAAA C ATON: 1492 C PRO 153 30.601 -9.323 71.657 1.00 70.69 AAAA C ATON: 1493 C PRO 153 30.601 -9.323 71.657 1.00 69.58 AAAA C ATON: 1493 C PRO 153 30.601 -8.159 70.690 1.00 70.588 AAAA C ATON: 1493 C PRO 153 30.601 -8.159 70.690 1.00 70.588 AAAA C ATON: 1493 C PRO 153 30.601 -8.159 70.690 1.00 70.588 AAAA C ATON: 1496 CA GLT 154 28.444 12.00 71.1850 1.00 69.58 AAAA C ATON: 1498 C PRO 153 28.543 10.031 71.257 1.00 80.58 AAAA C ATON: 1498 C PRO 153 28.543 10.031 71.257 1.00 80.57 AAAA C ATON: 1497 C GLT 154 28.444 12.00 71.1850 1.00 69.58 AAAA C ATON: 1498 C GLT 154 28.444 12.00 71.1850 1.00 69.58 AAAA C ATON: 1496 C G GLT 154 28.444 12.00 71.00 71.00 71.00 80.57 AAAA C ATON: 1497 C GLT 154 28.444 12.00 71.00 71.00 71.00 80.75 AAAA C ATON: 1496 C G GLT 154 28.444 12.00 71.00 71.00 80.75 AAAA C ATON: 1496 C G GLT 154 28.444 12.00 71.00 71.00 80.75 AAAA C ATON: 1497 C GLT 154 28.444 12.00 71.00 71.00 80.75 AAAA C ATON: 1497 C GLT 154 28.444 12.00 71.00 71.00 80.75 AAAA C ATON: 1590 C G THR 155 20.40 71.00 71.00 71.00 80.75 AAAA C ATON: 1590 C G THR 155 20.40 71.00 7								
ATON: 1479 O LEU 151 27.598 -9.734 66.634 1.00 55.59 AAAA O ATON: 1480 III CTS 152 26.024 -8.773 67.849 1.00 48.65 AAAA II ATON: 1483 C CTS 152 26.992 -8.189 68.740 1.00 56.73 AAAA C ATON: 1483 C CTS 152 27.650 -9.325 69.493 1.00 63.58 AAAA C ATON: 1485 CB CTS 152 27.650 -9.325 69.493 1.00 63.58 AAAA C ATON: 1485 CB CTS 152 26.358 -7.144 69.657 1.00 61.90 41.99 AAAA C ATON: 1486 CB CTS 152 26.358 -7.144 69.657 1.00 61.90 41.99 AAAA C ATON: 1488 CD PRO 153 29.618 -7.838 68.703 1.00 55.83 AAAA C ATON: 1488 CD PRO 153 29.618 -7.838 69.933 1.00 66.66 AAAA C ATON: 1489 CB PRO 153 29.497 -10.091 70.851 1.00 70.68 AAAA C ATON: 1490 CB PRO 153 30.861 -8.159 70.690 1.00 70.58 AAAA C ATON: 1490 CB PRO 153 30.861 -8.159 70.690 1.00 70.58 AAAA C ATON: 1492 C PRO 153 30.861 -8.159 70.690 1.00 70.58 AAAA C ATON: 1492 C PRO 153 30.861 -8.159 70.690 1.00 70.58 AAAA C ATON: 1493 C PRO 153 28.543 -10.734 71.850 1.00 69.58 AAAA C ATON: 1493 C PRO 153 28.543 -10.734 71.850 1.00 69.58 AAAA C ATON: 1494 C PRO 153 28.544 -10.075 72.615 1.00 69.58 AAAA C ATON: 1494 C PRO 153 27.859 -10.075 72.615 1.00 69.58 AAAA C ATON: 1496 CA GUT 154 27.610 -12.804 72.745 1.00 70.75 AAAA C ATON: 1496 CA GUT 154 27.610 -12.804 72.745 1.00 78.07 AAAA C ATON: 1497 C GUT 154 27.610 -12.804 72.745 1.00 81.75 AAAA C ATON: 1498 C TRUE TO THE TOTAL TO THE								
ATOM 1482 CA CYS 152 26.992 -8.189 68.740 1.00 56.73 AAAA C ATOM 1483 C CYS 152 27.650 -9.325 69.493 1.00 63.58 AAAA C ATOM 1485 CB CYS 152 27.074 -10.405 69.575 1.00 62.40 AAAA C ATOM 1486 CB CYS 152 25.985 -5.635 68.703 1.00 55.83 AAAA C ATOM 1487 II PRO 153 28.826 -9.072 70.099 1.00 68.05 AAAA II ATOM 1488 CD RO 153 29.618 -7.838 69.903 1.00 66.65 AAAA C ATOM 1489 CD RO 153 29.618 -7.838 69.903 1.00 66.05 AAAA II ATOM 1489 CD RO 153 29.618 -7.838 69.903 1.00 66.05 AAAA C ATOM 1490 CB RO 153 30.601 -9.323 71.557 1.00 62.05 AAAA C ATOM 1490 CB RO 153 30.861 -8.159 70.690 1.00 70.60 AAAA C ATOM 1492 C RO 153 30.861 -8.159 70.690 1.00 70.58 AAAA C ATOM 1492 C RO 153 30.861 -8.159 70.690 1.00 70.58 AAAA C ATOM 1493 CD RO 153 30.861 -8.159 70.690 1.00 70.58 AAAA C ATOM 1493 CD RO 153 30.861 -8.159 70.690 1.00 70.58 AAAA C ATOM 1493 CD RO 153 28.543 -10.734 71.850 1.00 69.58 AAAA C ATOM 1493 CD RO 153 28.543 -10.734 71.850 1.00 69.58 AAAA C ATOM 1494 N GUY 154 28.444 -12.049 71.843 1.00 71.23 AAAA II ATOM 1498 D GUY 154 28.444 -12.049 71.843 1.00 71.23 AAAA II ATOM 1498 D GUY 154 27.610 -12.804 72.745 1.00 80.26 AAAA C ATOM 1499 II THR 155 25.549 -10.075 72.615 1.00 89.58 AAAA C ATOM 1499 II THR 155 25.549 -12.468 71.314 1.00 84.54 AAAA C ATOM 1499 II THR 155 25.549 -12.468 71.314 1.00 84.54 AAAA C ATOM 1505 CD THR 155 24.314 -12.683 70.828 1.00 89.38 AAAA II ATOM 1505 CD THR 155 24.314 -12.689 70.829 1.00 82.27 AAAA C ATOM 1505 CD THR 155 24.314 -12.689 70.829 1.00 82.27 AAAA C ATOM 1505 CD THR 155 24.314 -12.689 70.829 1.00 89.26 AAAA C ATOM 1505 CD THR 155 24.314 -12.689 70.829 1.00 89.26 AAAA C ATOM 1510 CA HET 156 25.000 -14.094 70.855 0.00 99.05 AAAA C ATOM 1510 CA HET 156 25.000 -14.094 70.855 0.00 99.05 AAAA C ATOM 1510 CA HET 156 25.000 -14.094 70.855 0.00 99.05 AAAA C ATOM 1510 CA HET 156 25.000 -14.094 70.855 0.00 99.05 AAAA C ATOM 1511 CB HET 156 25.000 -14.694 70.855 0.00 99.05 AAAA C ATOM 1511 CB HET 156 25.000 -14.694 70.855 0.00 99.05 AAAA C ATOM 1512 CB HET 156 25.000 -14.694 70.855 0.00 99.05 AAAA								
ATOM 1484 O C'S 152 27.650 -9.325 69.493 1.00 63.58 AAAA C ATOM 1484 O C'S 152 27.074 -10.405 69.575 1.00 62.10 AAAA O ATOM 1486 GB C'S 152 26.358 -7.144 69.657 1.90 41.99 AAAA C ATOM 1487 III PRO 153 28.826 -9.072 70.059 1.00 68.05 AAAA III ATOM 1488 CA PRO 153 29.618 -7.836 69.903 1.00 68.05 AAAA III ATOM 1488 CA PRO 153 29.618 -7.836 69.903 1.00 68.05 AAAA III ATOM 1488 CA PRO 153 29.497 -10.094 70.851 1.00 70.60 AAAA C ATOM 1490 CB PRO 153 39.661 -8.159 70.690 1.00 69.98 AAAA C ATOM 1491 CG PRO 153 30.601 -9.323 71.557 1.00 69.98 AAAA C ATOM 1491 CG PRO 153 30.601 -9.323 71.557 1.00 69.98 AAAA C ATOM 1492 C PRO 153 30.601 -8.159 70.690 1.00 69.64 AAAA C ATOM 1492 C PRO 153 28.543 -10.734 71.850 1.00 69.64 AAAA C ATOM 1494 C G C PRO 153 28.543 -10.734 71.850 1.00 69.64 AAAA C ATOM 1494 C G C PRO 153 28.543 -10.734 71.850 1.00 69.64 AAAA C ATOM 1494 C G C PRO 153 28.444 -12.049 71.843 1.00 71.23 AAAA II ATOM 1496 CA GLY 154 28.444 -12.049 71.843 1.00 71.23 AAAA II ATOM 1496 CA GLY 154 28.444 -12.049 71.843 1.00 71.23 AAAA II ATOM 1498 C GLY 154 26.245 -13.230 72.223 1.00 81.75 AAAA C ATOM 1498 C GLY 154 26.245 -13.230 72.223 1.00 81.75 AAAA C ATOM 1498 C GLY 154 25.786 -14.318 72.547 1.00 80.25 AAAA C ATOM 1590 C GLY 154 26.245 -13.230 72.223 1.00 81.75 AAAA C ATOM 1590 C GLY 154 26.245 -13.230 72.223 1.00 81.75 AAAA C ATOM 1500 C GLY 154 26.245 -13.230 72.223 1.00 81.75 AAAA C ATOM 1500 C GLY 154 26.245 -13.661 -14.386 70.828 1.00 89.38 AAAA C ATOM 1500 C GLY 155 22.686 -14.318 -12.687 70.892 1.00 82.27 AAAA C ATOM 1500 C GLY 155 22.686 -14.318 -12.687 70.892 1.00 82.27 AAAA C ATOM 1500 C GLY 155 22.686 -14.318 -12.687 70.892 1.00 82.27 AAAA C ATOM 1500 C GLY 155 22.686 -14.986 -10.997 70.492 1.00 84.51 AAAA C ATOM 1500 C GLY 155 22.686 -12.995 69.022 1.00 82.27 AAAA C ATOM 1500 C GLY 155 22.686 -12.995 69.022 1.00 82.27 AAAA C ATOM 1500 C GLY 155 22.686 -12.995 69.022 1.00 82.27 AAAA C ATOM 1500 C GLY 155 22.686 -12.995 69.022 1.00 82.27 AAAA C ATOM 1500 C GLY 155 22.686 1.00 10.00 GLY 155 22.086 C GLY 155								
ATOM 1485 OB CVS 152 26.358 -7.14.14 69.657 1.00 62.40 AAAA C ATOM 1485 OB CVS 152 26.358 -7.14.14 69.657 1.00 41.99 AAAA C ATOM 1486 SG CVS 152 26.985 -5.635 68.703 1.00 55.83 AAAA S ATOM 1488 CD PRO 153 29.497 -10.094 70.851 1.00 70.66 AAAA MAA C ATOM 1489 CA PRO 153 29.497 -10.094 70.851 1.00 70.66 AAAA C ATOM 1490 CB PRO 153 30.601 -9.323 71.557 1.00 69.99 AAAA C ATOM 1490 CB PRO 153 30.601 -9.323 71.557 1.00 69.99 AAAA C ATOM 1490 CB PRO 153 30.601 -9.323 71.557 1.00 69.99 AAAA C ATOM 1491 CG PRO 153 30.861 -8.159 70.690 1.00 70.58 AAAA C ATOM 1492 C PRO 153 28.543 -10.734 71.850 1.00 69.64 AAAA C ATOM 1493 O PRO 153 28.543 -10.734 71.850 1.00 69.58 AAAA C ATOM 1493 O PRO 153 28.543 -10.734 71.850 1.00 69.58 AAAA C ATOM 1494 H GLY 154 28.444 -12.004 71.843 1.00 71.23 AAAA MA ATOM 1494 H GLY 154 28.444 -12.004 71.843 1.00 71.23 AAAA MA ATOM 1498 O GLY 154 26.454 -13.230 72.223 1.00 81.75 AAAA C ATOM 1498 O GLY 154 26.545 -13.230 72.223 1.00 81.75 AAAA C ATOM 1498 O GLY 154 26.545 -13.230 72.223 1.00 81.75 AAAA C ATOM 1498 O GLY 154 26.545 -13.230 72.223 1.00 81.75 AAAA C ATOM 1501 CA THR 155 25.549 -12.468 71.314 1.00 89.26 AAAA O ATOM 1501 CA THR 155 24.916 -11.661 69.705 1.00 89.38 AAAA O ATOM 1501 CA THR 155 24.916 -11.661 69.705 1.00 89.38 AAAA O ATOM 1503 001 THR 155 24.916 -11.661 69.705 1.00 89.38 AAAA C ATOM 1506 C THR 155 24.916 -11.661 69.705 1.00 89.38 AAAA C ATOM 1507 O THR 155 24.916 -11.661 69.705 1.00 89.37 AAAA C ATOM 1507 O THR 155 24.916 -11.661 69.705 1.00 89.38 AAAA C ATOM 1507 O THR 155 24.916 -11.661 69.705 1.00 89.38 AAAA C ATOM 1507 O THR 155 24.916 -11.661 69.705 1.00 89.77 AAAA C ATOM 1507 O THR 155 24.916 -11.661 69.705 1.00 89.77 AAAA C ATOM 1507 O THR 155 24.916 -11.661 69.705 1.00 89.77 AAAA C ATOM 1507 O THR 155 24.916 -11.661 69.705 1.00 89.77 AAAA C ATOM 1507 O THR 155 24.916 -11.661 69.705 1.00 89.77 AAAA C ATOM 1507 O THR 155 24.916 -11.661 69.705 1.00 89.77 AAAA C ATOM 1507 O THR 155 24.916 1.00 90.90 7.00 89.70 AAAA C ATOM 1507 O THR 155 24.916 1.00 90.90 7.00 89.70 AAAA								
ATOM 1486 SG CYG 152	PIOTE			152				O ASSA
ATOM 1487 U PRO 153 29.697 -10.059 1.00 68.05 AAAA U ATOM 1489 CO PRO 153 29.697 -10.094 70.851 1.00 70.60 AAAA C ATOM 1489 CO PRO 153 29.497 -10.094 70.851 1.00 70.60 AAAA C ATOM 1491 CG PRO 153 30.601 -8.159 70.690 1.00 70.58 AAAA C ATOM 1491 CG PRO 153 30.601 -8.159 70.690 1.00 70.58 AAAA C ATOM 1492 C PRO 153 30.601 -8.159 70.690 1.00 70.58 AAAA C ATOM 1493 O PRO 153 27.859 -10.075 72.615 1.00 69.64 AAAA C ATOM 1493 O PRO 153 27.859 -10.075 72.615 1.00 69.58 AAAA C ATOM 1494 H GLY 154 28.444 12.049 71.850 1.00 71.23 AAAA U ATOM 1496 CA GLY 154 27.610 -12.804 72.745 1.00 78.07 AAAA C ATOM 1497 C GLY 154 25.766 -14.318 72.547 1.00 80.26 AAAA C ATOM 1498 O GLY 154 25.766 -14.318 72.547 1.00 80.26 AAAA C ATOM 1499 U TIIR 155 25.549 -12.468 71.314 1.00 84.54 AAAA C ATOM 1499 U TIIR 155 25.549 -12.468 71.314 1.00 84.54 AAAA U ATOM 1505 CGZ TIIR 155 24.314 -12.683 70.828 1.00 88.38 AAAA C ATOM 1505 CGZ TIIR 155 24.314 -12.683 70.828 1.00 88.38 AAAA C ATOM 1505 CGZ TIIR 155 24.063 -10.417 70.420 1.00 88.51 AAAA C ATOM 1505 CGZ TIIR 155 24.066 -14.094 70.450 1.00 88.51 AAAA C ATOM 1506 C TIIR 155 23.050 -14.664 70.617 1.00 89.27 AAAA C ATOM 1507 O TIR 155 23.005 -14.664 70.617 1.00 99.28 AAAA C ATOM 1507 O TIR 155 23.005 -14.664 70.617 1.00 99.23 AAAA C ATOM 1510 CA HET 156 23.687 -15.675 69.017 1.00 99.05 AAAA C ATOM 1511 CB HET 156 25.003 -14.655 69.617 1.00 99.05 AAAA C ATOM 1512 CG HET 156 23.684 17.214 65.087 0.01 99.75 AAAA C ATOM 1512 CG HET 156 23.684 17.214 65.087 0.01 99.75 AAAA C ATOM 1512 CG HET 156 23.684 17.214 65.087 0.01 99.75 AAAA C ATOM 1512 CG HET 156 23.686 -11.996 70.900 1.00 99.05 AAAA C ATOM 1512 CG HET 156 23.686 17.214 65.087 0.01 99.75 AAAA C ATOM 1512 CG HET 156 23.686 17.214 65.087 0.01 99.75 AAAA C ATOM 1512 CG HET 156 23.686 17.214 65.087 0.01 99.75 AAAA C ATOM 1512 CG HET 156 23.686 17.214 65.087 0.01 99.75 AAAA C ATOM 1512 CG HET 156 23.686 17.214 65.087 0.01 99.75 AAAA C ATOM 1512 CG AAAA C ATOM 1512 CG BET 156 25.456 15.675 66.542 0.01 99.75 AAAA C ATOM 1512 CG BET 158 CG AAAA C ATO								
ATOM: 1488 CD PRO 153								
ATON: 1490 CB PRO 153 30.601 -9.323 71.557 1.00 69.98 AAAA C ATON: 1491 CG PRO 153 30.861 -8.159 70.690 1.00 70.58 AAAA C ATON: 1492 CC PRO 153 28.543 -10.734 71.650 1.00 69.64 AAAA C ATON: 1493 O PRO 153 27.859 -10.075 72.615 1.00 69.58 AAAA C ATON: 1494 N GUY 154 28.444 -12.049 71.843 1.00 71.23 AAAA I ATON: 1494 N GUY 154 28.444 -12.049 71.843 1.00 71.23 AAAA I ATON: 1497 C GUY 154 26.455 -13.207 72.233 1.00 81.75 AAAA C ATON: 1498 O GUY 154 26.455 -13.230 72.237 1.00 81.75 AAAA C ATON: 1498 I TIIR 155 25.786 -14.318 72.547 1.00 80.26 AAAA C ATON: 1498 II TIIR 155 25.786 -14.318 72.547 1.00 80.26 AAAA I ATON: 1501 CA THR 155 24.314 -12.683 70.828 1.00 89.38 AAAA C ATON: 1502 C9 THR 155 24.016 -11.661 69.705 1.00 89.38 AAAA C ATON: 1503 051 THR 155 24.016 -11.661 69.705 1.00 89.38 AAAA C ATON: 1503 051 THR 155 24.066 -11.995 69.092 1.00 82.27 AAAA C ATON: 1506 C THR 155 22.686 -11.995 69.092 1.00 82.27 AAAA C ATON: 1506 C THR 155 23.005 -14.664 70.617 1.00 93.69 AAAA C ATON: 1506 C THR 155 23.005 -14.664 70.617 1.00 95.92 AAAA C ATON: 1507 0 THR 155 23.005 -14.664 70.617 1.00 95.92 AAAA C ATON: 1508 II MET 156 25.003 -14.665 69.617 1.00 97.23 AAAA C ATON: 1510 CA HET 156 25.003 -14.655 69.617 1.00 97.23 AAAA C ATON: 1510 CA HET 156 25.003 -14.655 69.617 1.00 97.23 AAAA C ATON: 1511 CB HET 156 25.003 -14.655 69.617 1.00 97.23 AAAA C ATON: 1512 CG NET 156 25.007 -16.190 67.896 1.00100.40 AAAA C ATON: 1512 CG NET 156 25.007 -16.190 67.896 1.00100.57 AAAA C ATON: 1512 CG NET 156 25.007 -16.190 67.896 1.00100.57 AAAA C ATON: 1512 CG NET 156 25.007 -16.190 67.896 1.00100.59 AAAA C ATON: 1512 CG NET 156 25.007 -16.190 67.896 1.00100.59 AAAA C ATON: 1512 CG NET 156 23.687 -15.857 66.255 0.01 99.75 AAAA C ATON: 1512 CG NET 156 23.687 -15.857 66.255 0.01 99.75 AAAA C ATON: 1512 CG NET 156 23.687 -15.857 66.255 0.01 99.75 AAAA C ATON: 1512 CG NET 156 23.687 -15.857 66.255 0.01 99.75 AAAA C ATON: 1512 CG NET 156 23.687 -15.857 66.255 0.01 99.75 AAAA C ATON: 1512 CG NET 156 23.687 -15.857 77.868 1.00100.57 AAAA C ATON: 15	ATON.	1488 CD	PRO	153	29.618 -7.838	69.903	1.00 66.66	AAAA C
ATONI 1491 CG PRO 153 30,861 -8,159 70,690 1,00 70.58 AAAA C ATONI 1493 O PRO 153 28,513 -10,773 71,850 1,00 69,64 AAAA C ATONI 1493 O PRO 153 27,859 -10,075 72,615 1,00 69,58 AAAA C ATONI 1494 H GLY 154 28,444 -12,049 71,843 1,00 71,23 AAAA II ATONI 1496 CA GLY 154 28,444 -12,049 71,843 1,00 71,23 AAAA II ATONI 1497 C GLY 154 26,6245 -13,230 72,223 1,00 81,75 AAAA C ATONI 1498 O GLY 154 25,786 -14,318 72,547 1,00 80,26 AAAA C ATONI 1498 O GLY 154 25,786 -14,318 72,547 1,00 80,26 AAAA C ATONI 1499 II TIIR 155 24,314 -12,683 70,828 1,00 83,38 AAAA C ATONI 1501 CA THR 155 24,314 -12,683 70,828 1,00 83,38 AAAA C ATONI 1502 CB THR 155 24,314 -12,683 70,828 1,00 83,38 AAAA C ATONI 1503 OJI THR 155 24,060 -14,094 70,353 1,00 83,69 AAAA C ATONI 1505 CG TIRR 155 24,060 -14,094 70,353 1,00 83,69 AAAA C ATONI 1506 CC THR 155 24,060 -14,094 70,353 1,00 93,69 AAAA C ATONI 1508 H HET 156 23,003 -14,654 70,617 1,00 97,23 AAAA C ATONI 1508 H HET 156 25,003 -14,655 69,617 1,00 97,23 AAAA C ATONI 1510 CA HET 156 24,884 -15,973 69,024 1,00 99,75 AAAA C ATONI 1510 CA HET 156 23,687 -15,855 66,542 0,01 99,75 AAAA C ATONI 1510 CA HET 156 23,687 -15,855 66,542 0,01 99,75 AAAA C ATONI 1510 CA HET 156 23,687 -15,855 66,542 0,01 99,75 AAAA C ATONI 1510 CA HET 156 23,687 -15,857 66,555 0,01 99,75 AAAA C ATONI 1511 CB HET 156 23,687 -15,857 66,555 0,01 99,75 AAAA C ATONI 1512 CG NET 156 23,687 -15,857 66,555 0,01 99,75 AAAA C ATONI 1516 C HET 156 23,687 -15,857 66,555 0,01 99,75 AAAA C ATONI 1517 II AIAA 157 25,974 -17,057 70,967 1,00100,16 AAAA C ATONI 1516 C HET 156 23,687 -15,857 66,555 0,01 99,75 AAAA C ATONI 1516 C HET 156 23,687 -15,857 66,555 0,01 99,75 AAAA C ATONI 1517 II AIAA 157 25,974 -17,057 70,967 1,00100,17 AAAA C ATONI 1520 C AAAA 157 24,856 -17,890 72,959 1,00101,10 AAAA C ATONI 1520 C AAAA 157 24,856 -17,890 72,959 1,00101,10 AAAA C ATONI 1520 C AAAA 157 24,856 -17,890 72,959 1,00101,10 AAAA C ATONI 1520 C AAAA 157 24,856 -17,890 72,959 1,00101,10 AAAA C ATONI 1520 C AAAA 157 24,856 -17,890 72,959 1,00101,10 AAAA C ATON								
ATONI 1493 C PRO 153 28.543 -10.734 71.850 1.00 69.58 AAAA C ATONI 1494 H GLT 154 28.444 -12.049 71.843 1.00 71.23 AAAA I ATONI 1496 CA GLT 154 28.444 -12.049 71.843 1.00 71.23 AAAA I ATONI 1497 C GLT 154 27.610 -12.804 72.745 1.00 78.07 AAAA C ATONI 1498 O GLT 154 25.786 -14.318 72.223 1.00 81.75 AAAA C ATONI 1498 II TIIR 155 25.549 -12.468 71.314 1.00 84.54 AAAA I ATONI 1501 CA THR 155 24.314 -12.683 70.828 1.00 89.38 AAAA I ATONI 1503 CG THR 155 24.314 -12.683 70.828 1.00 89.38 AAAA C ATONI 1503 CG THR 155 24.314 -12.683 70.828 1.00 89.38 AAAA C ATONI 1503 CG THR 155 24.060 -14.094 70.353 1.00 89.38 AAAA C ATONI 1506 C THR 155 22.666 -11.995 69.092 1.00 84.57 AAAA C ATONI 1506 C THR 155 23.005 -14.664 70.617 1.00 99.36 AAAA C ATONI 1508 C THR 155 23.005 -14.664 70.617 1.00 99.05 AAAA C ATONI 1501 CA HET 156 25.003 -14.664 70.617 1.00 99.05 AAAA C ATONI 1501 CA HET 156 25.003 -14.655 69.617 1.00 99.05 AAAA C ATONI 1510 CA HET 156 25.003 -14.655 69.617 1.00 99.05 AAAA C ATONI 1510 CA HET 156 25.003 -14.654 70.617 1.00 99.05 AAAA C ATONI 1511 CB HET 156 25.406 -15.675 66.512 0.01 99.75 AAAA C ATONI 1512 CG NET 156 25.907 -16.190 67.896 1.00100.46 AAAA C ATONI 1513 SD HET 156 23.667 -15.857 66.255 0.01 99.72 AAAA C ATONI 1514 CE HET 156 23.667 -15.857 66.255 0.01 99.75 AAAA C ATONI 1515 C HET 156 23.664 -17.214 65.087 0.01 99.75 AAAA C ATONI 1516 C HET 156 23.664 -17.214 65.087 0.01 99.75 AAAA C ATONI 1516 C HET 156 23.664 -17.214 65.087 0.01 99.75 AAAA C ATONI 1517 N AAAA C ATONI 1516 C HET 156 23.667 -15.857 66.255 0.01 99.75 AAAA C ATONI 1517 N AAAA C ATONI 1518 C HET 156 23.667 -15.857 66.255 0.01 99.75 AAAA C ATONI 1519 CA ALA 157 26.022 -18.102 71.966 1.00100.57 AAAA C ATONI 1516 C HET 156 23.667 -15.857 66.255 0.01 99.75 AAAA C ATONI 1517 N AAAA C ATONI 1518 C HET 156 23.667 -15.875 66.255 0.01 99.75 AAAA C ATONI 1520 C HAAA 157 24.981 -17.146 70.022 1.00100.57 AAAA C ATONI 1520 C HAAA 157 24.981 -18.158 72.766 1.00100.59 AAAA C ATONI 1520 C HAAA 157 24.981 -18.158 72.766 1.00100.59 AAAA C ATONI 1520 C G								
ATON 1496 CA GLY 154 28.444 -12.049 71.843 1.00 71.23 AAAA II ATON 1496 CA GLY 154 27.610 -12.804 72.745 1.00 78.07 AAAA C ATON 1497 C GLY 154 25.786 -14.318 72.547 1.00 80.26 AAAA C ATON 1498 I TIIR 155 25.786 -14.318 72.547 1.00 80.26 AAAA C ATON 1499 I TIIR 155 24.314 -12.683 70.828 1.00 89.38 AAAA II ATON 1501 CA THR 155 24.314 -12.683 70.828 1.00 89.38 AAAA C ATON 1502 CB THR 155 24.314 -12.683 70.828 1.00 89.38 AAAA C ATON 1503 OJI THR 155 24.916 -11.661 69.705 1.00 85.07 AAAA C ATON 1505 CGZ TIIR 155 22.666 -11.995 69.092 1.00 82.27 AAAA C ATON 1506 C THR 155 21.060 -11.697 70.420 1.00 84.51 AAAA C ATON 1506 C THR 155 23.005 -14.664 70.617 1.00 93.69 AAAA C ATON 1508 I HET 156 23.005 -14.664 70.617 1.00 93.69 AAAA C ATON 1510 CA HET 156 25.003 -14.655 69.617 1.00 97.23 AAAA C ATON 1511 CB HET 156 25.907 -16.190 67.896 1.00100.16 AAAA C ATON 1512 CG NET 156 23.667 -15.675 66.542 0.01 99.75 AAAA C ATON 1513 SD HET 156 23.667 -15.675 66.542 0.01 99.75 AAAA C ATON 1514 CE HET 156 23.667 -15.675 66.542 0.01 99.75 AAAA C ATON 1515 C HET 156 23.667 -15.675 66.542 0.01 99.75 AAAA C ATON 1517 H AIA 157 25.974 -17.057 70.967 1.00100.57 AAAA C ATON 1519 CA ALA 157 26.022 -18.102 71.986 1.00100.57 AAAA C ATON 1510 CA HET 156 23.667 -15.675 66.542 0.01 99.75 AAAA C ATON 1510 C HET 156 23.667 -15.675 66.542 0.01 99.75 AAAA C ATON 1510 C HET 156 23.667 -15.675 66.542 0.01 99.75 AAAA C ATON 1510 C HET 156 23.667 -15.675 66.542 0.01 99.75 AAAA C ATON 1510 C HET 156 23.667 -15.675 66.542 0.01 99.73 AAAA C ATON 1510 C HET 156 23.667 -15.675 66.542 0.01 99.73 AAAA C ATON 1510 C HET 156 23.667 -15.857 66.255 0.01 99.72 AAAA C ATON 1510 C HET 156 23.667 -15.857 66.255 0.01 99.72 AAAA C ATON 1510 C HET 156 23.667 -15.857 66.255 0.01 99.73 AAAA C ATON 1510 C HET 156 23.667 -15.675 60.542 0.01 99.73 AAAA C ATON 1510 C HET 156 23.667 -15.857 70.0567 1.00100.57 AAAA C ATON 1510 C HET 156 23.667 -15.857 70.0567 1.00100.59 AAAA C ATON 1520 C B ALA 157 23.993 -18.654 72.921 1.00101.10 AAAA C ATON 1520 C B ALA 157 23.993 -18.654 72.95	HOTA	1492 C	PRO	153		71.850	1.00 69.64	AAAA C
ATONI 1496 CA GLY 154								
ATOM: 1497 C GUZ 154 26.245 -13.230 72.223 1.00 81.75 AAAA C ATOM: 1498 U THR 155 25.786 -14.318 72.547 1.00 80.26 AAAA U ATOM: 1499 U THR 155 25.549 -12.168 71.314 1.00 84.54 AAAA U ATOM: 1501 CA THR 155 24.314 -12.683 70.828 1.00 89.38 AAAA C ATOM: 1502 C9 THR 135 24.916 -11.661 69.705 1.00 85.07 AAAA C ATOM: 1503 O31 THR 155 24.916 -11.661 69.705 1.00 84.51 AAAA C ATOM: 1505 CG2 THR 155 24.963 -10.417 70.420 1.00 84.51 AAAA C ATOM: 1506 C THR 155 24.963 -10.417 70.420 1.00 84.51 AAAA C ATOM: 1506 C THR 155 24.060 -14.094 70.657 1.00 82.27 AAAA C ATOM: 1506 C THR 155 23.005 -14.664 70.617 1.00 93.69 AAAA C ATOM: 1508 H HET 156 23.005 -14.664 70.617 1.00 93.69 AAAA C ATOM: 1508 H HET 156 25.003 -14.655 69.617 1.00 97.23 AAAA C ATOM: 1510 CA HET 156 25.907 -16.190 67.896 1.00100.46 AAAA C ATOM: 1511 CB HET 156 25.907 -16.190 67.896 1.00100.46 AAAA C ATOM: 1512 CG HET 156 25.856 -15.675 66.542 0.01 99.75 AAAA C ATOM: 1513 SD HET 156 23.687 -15.687 66.255 0.01 99.72 AAAA C ATOM: 1513 SD HET 156 23.687 -15.857 66.255 0.01 99.72 AAAA C ATOM: 1514 CE HET 156 23.687 -15.857 66.255 0.01 99.72 AAAA C ATOM: 1515 C HET 156 23.687 -17.807 70.967 1.00100.57 AAAA C ATOM: 1515 C HET 156 23.687 -17.807 70.967 1.00100.57 AAAA C ATOM: 1517 H ALA 157 26.022 -18.102 71.986 1.00100.57 AAAA C ATOM: 1519 CA ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA C ATOM: 1519 CA ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA C ATOM: 1520 CB ALA 157 27.317 -18.158 72.766 1.00103.42 AAAA C ATOM: 1522 C AAAA 157 23.893 -18.654 72.951 1.00101.00 AAAA C ATOM: 1522 C AAAA 157 23.893 -18.654 72.951 1.00101.00 AAAA C ATOM: 1520 CB ALA 157 23.893 -18.654 72.951 1.00101.00 AAAA C ATOM: 1520 CB ALA 157 23.893 -18.654 72.951 1.00101.00 AAAA C ATOM: 1520 CB ALA 157 23.893 -18.654 77.560 1.00103.42 AAAA C ATOM: 1520 CB ALA 157 23.893 -18.654 77.560 1.00103.42 AAAA C ATOM: 1520 CB ALA 157 23.893 -18.654 77.560 1.00103.42 AAAA C ATOM: 1520 CB GLU 158 23.993 -16.629 74.781 1.00 97.43 AAAA C ATOM: 1520 CB GLU 158 23.993 -16.629 74.781 1.00 97.43 AAAA C ATOM: 152								
ATCH 1499 II THR 155								AAAA C
ATCH: 1591 CA THR 155 24.314 -12.683 70.828 1.00 89.38 AAAA 2 ATCH: 1592 CB THR 155 24.016 -11.661 69.705 1.00 85.97 AAAA 2 ATCH: 1593 OJI THR 155 24.016 -11.661 70.417 70.420 1.00 81.51 AAAA 0 ATCH: 1595 CG2 THR 155 24.063 -10.417 70.420 1.00 82.27 AAAA C ATCH: 1596 C THR 155 24.060 -11.995 69.092 1.00 82.27 AAAA C ATCH: 1596 C THR 155 24.060 -14.094 70.617 1.00 93.69 AAAA C ATCH: 1597 O THR 155 23.005 -14.664 70.617 1.00 93.69 AAAA C ATCH: 1590 CB HET 156 25.003 -14.655 69.617 1.00 97.23 AAAA B ATCH: 1510 CA HET 156 24.884 -15.973 69.024 1.00 99.05 AAAA C ATCH: 1511 CB HET 156 25.907 -16.190 67.896 1.00100.46 AAAA C ATCH: 1512 CG HET 156 25.456 -15.675 66.542 0.01 99.75 AAAA C ATCH: 1513 SD HET 156 23.667 -15.857 66.255 0.01 99.72 AAAA C ATCH: 1513 SD HET 156 23.664 -17.214 65.087 0.01 99.75 AAAA C ATCH: 1514 CE HET 156 23.664 -17.214 65.087 0.01 99.75 AAAA C ATCH: 1515 C HET 156 23.664 -17.214 65.087 0.01 99.75 AAAA C ATCH: 1516 D HET 156 24.353 -18.122 69.835 1.00100.57 AAAA C ATCH: 1517 H ALA 157 25.974 -17.057 70.967 1.00100.57 AAAA C ATCH: 1519 CA ALA 157 26.022 -18.102 71.966 1.00101.00 AAAA C ATCH: 1520 CB ALA 157 27.317 -18.158 72.766 1.00101.00 AAAA C ATCH: 1521 C ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATCH: 1522 C ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATCH: 1522 C ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATCH: 1522 C ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATCH: 1522 C ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATCH: 1520 CB GLU 158 23.993 -18.654 72.921 1.00104.59 AAAA C ATCH: 1520 CB GLU 158 23.993 -18.654 72.921 1.00104.59 AAAA C ATCH: 1520 CB GLU 158 23.993 -18.654 72.921 1.00104.59 AAAA C ATCH: 1520 CB GLU 158 23.993 -18.654 72.921 1.00104.59 AAAA C ATCH: 1520 CB GLU 158 23.993 -18.654 72.921 1.00104.59 AAAA C ATCH: 1520 CB GLU 158 23.993 -18.654 72.921 1.00104.59 AAAA C ATCH: 1520 CB GLU 158 23.993 -18.654 72.921 1.00104.59 AAAA C ATCH: 1520 CB GLU 158 23.993 -18.654 72.921 1.00104.59 AAAA C ATCH: 1520 CB GLU 158 23.993 -18.654 72.921 1.00104.59 AAAA C AT								
ATOR: 1502 CB THR 135								
ATORI 1505 CG2 THR 155 22.686 -11.995 69.092 1.00 82.27 AAAA C ATORI 1506 C THR 155 24.060 -11.094 70.353 1.00 93.69 AAAA C ATORI 1507 O THR 155 23.905 -14.664 70.617 1.00 93.69 AAAA C ATORI 1508 H HET 156 25.003 -14.665 69.617 1.00 97.23 AAAA B ATORI 1510 CA HET 156 24.884 -15.973 69.024 1.00 99.05 AAAA C ATORI 1511 CB HET 156 25.907 -16.190 67.896 1.00100.46 AAAA C ATORI 1512 CG NET 156 25.907 -16.190 67.896 1.00100.46 AAAA C ATORI 1512 CG NET 156 23.687 -15.857 66.255 0.01 99.75 AAAA C ATORI 1513 SD HET 156 23.687 -15.857 66.255 0.01 99.72 AAAA C ATORI 1513 SD HET 156 23.687 -17.887 66.255 0.01 99.72 AAAA C ATORI 1515 C HET 156 25.27 -17.104 65.087 0.01 99.59 AAAA C ATORI 1516 O HET 156 25.27 -17.104 69.087 0.01 99.59 AAAA C ATORI 1517 H ALA 157 25.974 -17.057 70.967 1.00100.57 AAAA C ATORI 1517 CA ALA 157 26.022 -18.102 71.986 1.00101.64 AAAA C ATORI 1519 CA ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA C ATORI 1522 O ALA 157 27.317 -18.158 72.766 1.00103.42 AAAA C ATORI 1522 O ALA 157 23.993 -18.654 72.921 1.00104.59 AAAA C ATORI 1522 O ALA 157 23.993 -18.654 72.921 1.00104.59 AAAA C ATORI 1523 H GLU 158 23.993 -18.654 72.921 1.00104.59 AAAA C ATORI 1520 CB GLU 158 23.993 -16.629 74.781 1.00 97.43 AAAA C ATORI 1520 CB GLU 158 23.993 -16.629 74.781 1.00 97.43 AAAA C ATORI 1520 CB GLU 158 23.993 -16.629 74.781 1.00 97.43 AAAA C ATORI 1520 CB GLU 158 23.993 -16.629 74.781 1.00 97.43 AAAA C ATORI 1520 CB GLU 158 23.993 -16.629 74.781 1.00 97.43 AAAA C ATORI 1520 CB GLU 158 23.993 -16.629 74.781 1.00 97.43 AAAA C ATORI 1520 CB GLU 158 23.993 -16.629 74.781 1.00 97.43 AAAA C ATORI 1520 CB GLU 158 23.993 -16.629 74.781 1.00 97.43 AAAA C ATORI 1520 CB GLU 158 23.993 -16.629 74.781 1.00 97.43 AAAA C ATORI 1520 CB GLU 158 21.394 -15.733 74.096 1.00105.93 AAAA C ATORI 1520 CB GLU 158 21.394 -15.793 74.096 1.00105.93 AAAA C ATORI 1520 CB GLU 158 21.394 -15.793 74.096 1.00105.93 AAAA C ATORI 1530 CB GLU 158 21.394 -15.793 74.096 1.00105.93 AAAA C ATORI 1530 CB GLU 158 21.394 -15.793 74.096 1.00105.93 AAAA C ATORI 1533	ATO:	1502 C9	THE	135		69.705		C AAAA
ATOH 1506 C THR 155 24.060 -14.094 70.353 1.00 93.69 AAAA C ATOH 1507 O THR 155 23.005 -14.664 70.617 1.00 95.92 AAAA C ATOH 1508 H HET 156 25.003 -14.665 69.617 1.00 97.23 AAAA H ATOH 1510 CA HET 156 25.003 -14.665 69.617 1.00 99.05 AAAA C ATOH 1511 CB HET 156 25.907 -16.190 67.896 1.00100.46 AAAA C ATOH 1512 CG NET 156 25.907 -16.190 67.896 1.00100.46 AAAA C ATOH 1513 SD HET 156 23.667 -15.675 66.542 0.01 99.75 AAAA C ATOH 1513 SD HET 156 23.667 -15.857 66.255 0.01 99.72 AAAA S ATOH 1514 CE HET 156 23.667 -17.214 65.087 0.01 99.59 AAAA C ATOH 1515 C HET 156 23.664 -17.214 65.087 0.01 99.59 AAAA C ATOH 1516 O HET 156 24.153 -18.122 69.835 1.00100.57 AAAA C ATOH 1517 H ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA H ATOH 1519 CA ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA H ATOH 1520 CB ALA 157 27.317 -18.158 72.766 1.00103.42 AAAA C ATOH 1520 CB ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATOH 1523 H GLU 158 24.984 -16.906 73.841 1.00 98.39 AAAA H ATOH 1523 C ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATOH 1523 C GLU 158 23.993 -16.629 74.781 1.00 98.39 AAAA H ATOH 1525 CA 5LU 158 23.993 -16.629 74.781 1.00 98.39 AAAA H ATOH 1525 CA 5LU 158 23.993 -16.629 74.781 1.00 99.39 AAAA C ATOH 1523 C GLU 158 23.993 -16.629 74.781 1.00 99.39 AAAA H ATOH 1528 CD GLU 158 23.993 -16.629 74.781 1.00 99.39 AAAA C ATOH 1523 C GLU 158 21.347 -16.081 75.302 1.00101.3 AAAA C ATOH 1523 C GLU 158 21.347 -16.081 75.302 1.00101.3 AAAA C ATOH 1520 CB GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOH 1520 CB GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOH 1520 CB GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOH 1520 CB GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOH 1530 CB GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOH 1530 CB GLU 158 21.347 -16.081 75.302 1.00117.79 AAAA C ATOH 1530 CB GLU 158 21.347 -16.081 75.302 1.00117.79 AAAA C ATOH 1530 CB GLU 158 21.347 -16.081 75.302 1.00117.79 AAAA C ATOH 1530 CB GLU 158 21.347 -17.0081 75.300 1.00193.30 AAAA C ATOH 1530 CB GLU 158 24.486 -17.895 75.000 1.0								
ATCH								
ATOM 1510 CA HET 156 24.884 -15.973 69.024 1.00 99.05 AAAA C ATOM 1511 CB HET 156 25.907 -16.190 67.896 1.00100.16 AAAA C ATOM 1512 CG NET 156 25.456 -15.675 66.542 0.01 99.75 AAAA C ATOM 1513 SD HET 156 23.687 -15.857 66.255 0.01 99.72 AAAA C ATOM 1514 CE HET 156 23.687 -15.857 66.255 0.01 99.72 AAAA C ATOM 1515 C HET 156 23.684 -17.214 65.087 0.01 99.59 AAAA C ATOM 1516 0 HET 156 25.027 -17.106 70.032 1.00100.57 AAAA C ATOM 1517 III ALA 157 25.974 -17.057 70.967 1.00100.57 AAAA C ATOM 1519 CA ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA III ATOM 1520 CB ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA C ATOM 1521 C ALA 157 24.856 -17.890 72.756 1.00103.42 AAAA C ATOM 1522 O ALA 157 23.993 -18.654 72.921 1.00104.59 AAAA C ATOM 1522 C ALA 157 23.993 -18.654 72.921 1.00104.59 AAAA C ATOM 1522 C ALA 157 23.993 -18.654 72.921 1.00104.59 AAAA C ATOM 1525 CA 5LII 158 23.993 -16.629 74.781 1.00 98.39 AAAA II ATOM 1526 CB GLU 158 23.935 -16.629 74.781 1.00 98.39 AAAA II ATOM 1526 CB GLU 158 23.935 -16.629 74.781 1.00 98.39 AAAA C ATOM 1528 CD GLU 158 23.128 -17.865 75.208 1.00105.93 AAAA C ATOM 1528 CD GLU 158 23.128 -17.865 75.208 1.00105.93 AAAA C ATOM 1529 OEI GLU 158 21.287 -17.546 75.560 1.00113.87 AAAA C ATOM 1529 OEI GLU 158 21.287 -17.546 75.560 1.00119.34 AAAA C ATOM 1529 OEI GLU 158 21.287 -17.546 75.560 1.00119.34 AAAA C ATOM 1529 OEI GLU 158 21.287 -17.546 75.560 1.00119.34 AAAA C ATOM 1529 OEI GLU 158 21.287 -17.546 75.560 1.00119.34 AAAA C ATOM 1529 OEI GLU 158 21.287 -17.546 75.560 1.00119.34 AAAA C ATOM 1529 OEI GLU 158 21.287 -17.546 75.560 1.00117.79 AAAA C ATOM 1530 OE2 GLU 158 21.347 -16.081 75.300 1.00119.34 AAAA C ATOM 1530 OE2 GLU 158 21.347 -16.081 75.300 1.00119.34 AAAA C ATOM 1530 OE2 GLU 158 21.287 -17.546 75.6025 1.00 95.00 AAAA C ATOM 1530 OE2 GLU 158 21.287 -17.546 75.6025 1.00 95.00 AAAA C ATOM 1530 OE2 GLU 158 21.287 -17.546 75.6025 1.00 97.00 AAAA C ATOM 1530 OE2 GLU 158 23.988 -16.117 77.145 1.00 97.37 AAAA C ATOM 1530 OE2 GLU 158 23.988 -16.117 77.145 1.00 97.37 AAAA C ATOM 1530 OE2 GL	ATON:	1507 0	THR	155 -		70.617	1.00 95.92	AAAA O
ATOM 1511 CB HET 156								
ATOH 1512 CG NET 156 23.486 -15.675 66.542 0.01 99.75 AAAA C ATOH 1513 SD NET 156 23.684 -17.214 65.087 0.01 99.75 AAAA C ATOH 1515 C NET 156 23.684 -17.214 65.087 0.01 99.59 AAAA C ATOH 1515 C NET 156 23.684 -17.214 65.087 0.01 99.59 AAAA C ATOH 1515 C NET 156 24.353 -18.122 69.835 1.00100.57 AAAA C ATOH 1517 N ALA 157 25.974 -17.057 70.967 1.00100.57 AAAA C ATOH 1519 CA ALA 157 26.022 -18.102 71.986 1.00101.64 AAAA C ATOH 1520 CB ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA C ATOH 1520 CB ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATOH 1522 O ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATOH 1522 O ALA 157 23.993 -18.654 72.921 1.00104.59 AAAA C ATOH 1522 O ALA 157 24.856 -17.890 73.841 1.90 98.39 AAAA N ATOH 1525 CA 3LN 158 24.984 -16.906 73.841 1.90 97.43 AAAA C ATOH 1520 CB GLU 158 24.984 -16.906 73.841 1.90 97.43 AAAA C ATOH 1520 CB GLU 158 24.984 -16.906 73.841 1.90 97.43 AAAA C ATOH 1520 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA C ATOH 1520 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA C ATOH 1520 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA C ATOH 1520 CB GLU 158 21.347 -16.081 75.300 1.00105.93 AAAA C ATOH 1520 CB GLU 158 21.347 -16.081 75.300 1.00113.87 AAAA C ATOH 1520 CB GLU 158 21.347 -16.081 75.300 1.00119.34 AAAA C ATOH 1520 OEI GLU 158 21.347 -16.081 75.300 1.00119.34 AAAA C ATOH 1530 OE2 GLU 158 21.347 -16.081 75.300 1.00119.34 AAAA C ATOH 1530 OE2 GLU 158 21.347 -16.081 75.300 1.00119.34 AAAA C ATOH 1530 OE2 GLU 158 21.347 -16.081 75.300 1.00119.34 AAAA C ATOH 1530 OE2 GLU 158 21.347 -16.081 75.300 1.00119.34 AAAA C ATOH 1530 OE2 GLU 158 21.347 -16.081 75.300 1.00119.34 AAAA C ATOH 1530 OE2 GLU 158 21.347 -16.081 75.300 1.00119.34 AAAA C ATOH 1530 OE2 GLU 158 21.347 -16.081 75.300 1.00119.34 AAAA C ATOH 1530 OE2 GLU 158 21.347 -16.081 75.300 1.00119.34 AAAA C ATOH 1530 OE2 GLU 158 21.347 -16.081 75.300 1.00119.34 AAAA C ATOH 1530 OE2 GLU 158 21.347 -17.546 75.560 1.00193.30 AAAA C ATOH 1530 OE2 GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA C ATOH 1530 OE2 GLU 158 23.988								
ATOM 1514 CE MET 156 23.664 -17.214 65.087 0.01 99.59 AAAA C ATOM 1515 C MET 156 25.027 -17.106 70.032 1.00100.57 AAAA C ATOM 1516 O MET 156 24.353 -18.102 69.835 1.00101.64 AAAA C ATOM 1517 II AIA 157 25.974 -17.057 70.967 1.00109.53 AAAA II ATOM 1519 CA ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA C ATOM 1520 CB ALA 157 27.317 -18.158 72.766 1.00103.42 AAAA C ATOM 1521 C ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATOM 1522 O ALA 157 23.993 -18.654 72.921 1.00104.59 AAAA C ATOM 1523 II GLU 158 24.984 -16.906 73.841 1.00 98.39 AAAA II ATOM 1525 CA GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA C ATOM 1526 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA C ATOM 1526 CB GLU 158 23.128 -17.865 75.208 1.00105.93 AAAA C ATOM 1529 OEI GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOM 1529 OEI GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOM 1529 OEI GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOM 1529 OEI GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOM 1529 OEI GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOM 1529 OEI GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOM 1529 OEI GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOM 1530 OE2 GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOM 1530 OE2 GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOM 1530 OE2 GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOM 1530 OE2 GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOM 1530 OE2 GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOM 1530 OE2 GLU 158 21.347 -16.081 75.709 1.00 95.89 AAAA O ATOM 1531 C GLU 158 24.434 -15.733 74.096 1.00126.27 AAAA O ATOM 1530 OE2 GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA O ATOM 1533 II SER 159 25.276 -14.427 79.886 1.00 93.30 AAAA C ATOM 1533 CA SER 159 26.072 -14.427 79.886 1.00 97.37 AAAA C ATOM 1530 CB SER 159 26.072 -14.427 79.886 1.00 97.37 AAAA C ATOM 1530 CB SER 159 26.072 -14.427 79.886 1.00 97.37 AAAA C ATOM 1530 CB SER 159 26.072 -14.427 79.886 1.00 97.37 AAAA C ATOM 1530 CB SER 159 26.072 -14.427 79.886 1.00 97.35 AAAA C ATOM 1530 CB SER 159 2	ATON					66.542	0.01 99.75	AAAA C
ATCH 1515 C MET 156 25.027 -17.106 70.032 1.00100.57 AAAA C ATCH 1516 O MET 156 24.353 -18.122 69.835 1.00101.64 AAAA O ATCH 1517 II ALA 157 25.974 -17.057 70.967 1.00109.53 AAAA II ATCH 1519 CA ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA C ATCH 1520 CB ALA 157 27.317 -18.158 72.766 1.00103.42 AAAA C ATCH 1521 C ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATCH 1522 O ALA 157 23.993 -18.654 72.921 1.00104.59 AAAA C ATCH 1522 O ALA 157 23.993 -18.654 72.921 1.00104.59 AAAA C ATCH 1523 II GLU 158 24.984 -16.906 73.841 1.00 98.39 AAAA II ATCH 1525 CA JLII 158 23.935 -16.629 74.781 1.00 97.43 AAAA C ATCH 1526 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA C ATCH 1526 CB GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA C ATCH 1526 CB GLU 158 21.347 -16.081 75.300 1.00105.93 AAAA C ATCH 1526 CB GLU 158 21.347 -16.081 75.300 1.00105.93 AAAA C ATCH 1529 OE1 GLU 158 21.347 -16.081 75.300 1.00109.34 AAAA C ATCH 1530 OE2 GLU 158 21.347 -16.081 75.300 1.00119.34 AAAA C ATCH 1530 OE2 GLU 158 21.347 -16.081 75.300 1.00119.34 AAAA C ATCH 1530 OE2 GLU 158 21.347 -16.081 75.300 1.00119.34 AAAA C ATCH 1530 OE2 GLU 158 21.347 -15.733 74.096 1.00126.27 AAAA O ATCH 1530 OE2 GLU 158 21.347 -15.915 76.282 1.00117.79 AAAA O ATCH 1530 OE2 GLU 158 21.347 -15.915 76.282 1.00117.79 AAAA O ATCH 1530 OE2 GLU 158 21.347 -15.915 76.282 1.00117.79 AAAA O ATCH 1530 OE2 GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA O ATCH 1530 CB SER 159 25.276 -14.912 75.769 1.00 93.30 AAAA II ATCH 1535 CA SER 159 26.989 -14.805 77.517 1.00 97.37 AAAA C ATCH 1536 CB SER 159 26.989 -14.405 77.517 1.00 97.37 AAAA C ATCH 1536 CB SER 159 26.989 -14.427 79.886 1.00 99.09 AAAA C ATCH 1530 CB SER 159 26.989 -14.427 79.886 1.00 99.09 AAAA C ATCH 1530 CB SER 159 26.989 -14.427 79.886 1.00 99.09 AAAA C ATCH 1530 CB SER 159 26.228 -12.590 75.810 1.00 99.09 AAAA C ATCH 1530 CB SER 159 26.228 -12.590 75.810 1.00 99.09 AAAA C ATCH 1530 CB SER 159 26.228 -12.590 75.810 1.00 99.09 AAAA C ATCH 1530 CB SER 159 26.228 -12.590 75.810 1.00 99.09 AAAA C ATCH 1530 CB SER 159 26.2								
ATOH 1516 O HET 156 21.353 -18.122 69.835 1.00101.64 AAAA O ATOH 1517 II ALA 157 25.974 -17.057 70.967 1.00100.53 AAAA II ATOH 1519 CA ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA C ATOH 1520 CB ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATOH 1522 O ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATOH 1522 O ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATOH 1522 O ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATOH 1522 O ALA 157 23.993 -18.654 72.921 1.00104.59 AAAA C ATOH 1523 II GLU 158 24.984 -16.906 73.841 1.00 97.43 AAAA C ATOH 1525 CA 5UI 158 23.935 -16.629 74.781 1.00 97.43 AAAA C ATOH 1526 CB GLU 150 23.128 -17.865 75.208 1.00105.93 AAAA C ATOH 1527 CG GUI 158 21.587 -17.546 75.560 1.00113.87 AAAA C ATOH 1528 CD GLU 158 21.587 -17.546 75.560 1.00113.87 AAAA C ATOH 1529 0E1 GUU 158 21.587 -17.546 75.500 1.00113.87 AAAA C ATOH 1529 0E1 GUU 158 21.587 -17.546 75.560 1.00113.87 AAAA C ATOH 1530 0E2 GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOH 1530 0E2 GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOH 1530 0E2 GLU 158 21.347 -16.081 75.302 1.00117.79 AAAA O ATOH 1531 C GUU 158 21.347 -15.913 76.282 1.00117.79 AAAA O ATOH 1531 C GUU 158 23.988 -16.117 77.145 1.00 95.89 AAAA O ATOH 1533 II SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA II ATOH 1536 CD SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA II ATOH 1536 CD SER 159 26.989 -14.805 77.517 1.00 97.37 AAAA C ATOH 1536 CD SER 159 26.989 -14.805 77.517 1.00 99.37 AAAA C ATOH 1539 C SER 159 26.989 -14.805 77.517 1.00 99.09 AAAA C ATOH 1530 C SER 159 26.989 -14.805 77.517 1.00 99.09 AAAA C ATOH 1530 C SER 159 26.989 -14.805 77.517 1.00 99.09 AAAA C ATOH 1530 C SER 159 26.989 -14.805 77.517 1.00 99.09 AAAA C ATOH 1530 C SER 159 26.288 -12.793 76.226 1.00 99.09 AAAA C ATOH 1530 C SER 159 26.288 -12.793 76.226 1.00 99.09 AAAA C ATOH 1530 C SER 159 26.288 -12.592 75.810 1.00 99.09 AAAA C ATOH 1530 C SER 159 26.288 -12.793 76.226 1.00 99.09 AAAA C ATOH 1530 C SER 159 26.288 -12.592 75.810 1.00 99.09 AAAA C								
ATOH 1519 CA ALA 157 26.022 -18.102 71.986 1.00101.00 AAAA C ATOH 1520 CB ALA 157 27.317 -18.158 72.766 1.00103.42 AAAA C ATOH 1521 C ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATOH 1522 O ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATOH 1522 O ALA 157 23.993 -18.654 72.921 1.00104.59 AAAA C ATOH 1523 II GLU 158 24.984 -16.906 73.841 1.90 98.39 AAAA II ATOH 1525 CA JUI 158 23.935 -16.629 74.781 1.90 97.43 AAAA C ATOH 1526 CB GLU 158 23.935 -16.629 74.781 1.00105.93 AAAA C ATOH 1526 CB GLU 158 21.687 -17.546 75.560 1.00105.93 AAAA C ATOH 1528 CD GLU 158 21.687 -17.546 75.560 1.00113.87 AAAA C ATOH 1528 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOH 1520 OE1 GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOH 1530 OE2 GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOH 1530 OE2 GLU 158 21.194 -15.733 74.096 1.00126.27 AAAA O ATOH 1530 OE2 GLU 158 24.434 -15.733 74.096 1.00126.27 AAAA O ATOH 1530 OE2 GLU 158 24.434 -15.733 74.096 1.00126.27 AAAA O ATOH 1532 O GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA C ATOH 1532 O GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA C ATOH 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.82 AAAA O ATOH 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.82 AAAA O ATOH 1532 O GLU 158 23.988 -16.117 77.145 1.00 93.30 AAAA II ATOH 1535 CA SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA II ATOH 1535 CA SER 159 26.929 -14.805 77.517 1.00 97.37 AAAA C ATOH 1530 CB SER 159 26.929 -14.427 79.886 1.00 99.09 AAAA C ATOH 1539 C SER 159 26.929 -14.427 79.886 1.00 99.09 AAAA C ATOH 1539 C SER 159 26.929 -14.427 79.886 1.00 99.09 AAAA C ATOH 1530 O GER 159 26.228 -12.793 76.226 1.00 91.47 AAAA C ATOH 1530 O GER 159 26.228 -12.592 75.810 1.00 92.25 AAAA C ATOH 1530 O GER 159 26.228 -12.592 75.810 1.00 97.37 AAAA C ATOH 1530 O GER 159 26.228 -12.592 75.810 1.00 97.37 AAAA C ATOH 1530 O GER 159 26.228 -12.592 75.810 1.00 97.37 AAAA C ATOH 1530 O GER 159 26.228 -12.592 75.810 1.00 97.37 AAAA C ATOH 1530 O GER 159 26.228 -12.592 75.810 1.00 97.35 AAAA C ATOH 1530 O GER 159 26.228 -12.592 75.810	ATOH	1516 0	HET	156	24.353 -18.122	69.835	1.00101.64	
ATCH 1520 CB ALA 157								
ATOH 1521 C ALA 157 24.856 -17.890 72.959 1.00101.10 AAAA C ATOH 1522 O ALA 157 23.993 -18.654 72.921 1.00104.59 AAAA O ATOH 1523 II GLU 158 24.984 -16.906 73.841 1.90 98.39 AAAA II ATOH 1525 CA 5LU 158 23.935 -16.629 74.781 1.00 97.43 AAAA C ATOH 1526 CB GLU 150 23.128 -17.865 75.208 1.00105.93 AAAA C ATOH 1527 CG GLU 158 21.487 -17.546 75.560 1.00113.87 AAAA C ATOH 1528 CD GLU 158 21.447 -16.001 75.302 1.00119.34 AAAA C ATOH 1529 OEI GLU 158 21.347 -16.001 75.302 1.00119.34 AAAA C ATOH 1529 OEI GLU 158 21.347 -16.001 75.302 1.00119.34 AAAA C ATOH 1530 OE2 GLU 158 21.347 -16.001 75.302 1.00119.74 AAAA C ATOH 1530 OE2 GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA O ATOH 1531 C GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA O ATOH 1531 C GLU 158 23.988 -16.117 77.145 1.00 95.00 AAAA C ATOH 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA O ATOH 1535 CA SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA II ATOH 1536 CB SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA II ATOH 1536 CB SER 159 26.989 -14.805 77.517 1.00 97.37 AAAA C ATOH 1539 C SER 159 26.989 -14.805 77.517 1.00 97.37 AAAA C ATOH 1539 C SER 159 26.989 -14.805 77.517 1.00 99.08 AAAA C ATOH 1539 C SER 159 26.989 -14.805 77.517 1.00 99.09 AAAA C ATOH 1539 C SER 159 26.928 -12.793 76.226 1.00 98.09 AAAA C ATOH 1539 C SER 159 26.228 -12.793 76.226 1.00 98.09 AAAA C ATOH 1539 C SER 159 26.228 -12.592 75.810 1.00 99.09 AAAA C ATOH 1539 C SER 159 26.228 -12.592 75.810 1.00 99.09 AAAA C ATOH 1530 O GER 159 26.228 -12.592 75.810 1.00 99.09 AAAA C								
ATOH 1523 II GLU 158 21.984 -16.906 73.841 1.90 98.39 AAAA II ATOH 1525 CA GLU 158 23.935 -16.629 74.781 1.90 97.43 AAAA C ATOH 1526 CB GLU 158 23.128 -17.546 75.560 1.00105.93 AAAA C ATOH 1528 CD GLU 158 21.587 -17.546 75.560 1.00113.87 AAAA C ATOH 1528 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOH 1520 0E1 GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA C ATOH 1530 0E2 GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA C ATOH 1530 0E2 GLU 158 21.184 -15.733 74.096 1.00126.27 AAAA C ATOH 1530 0E2 GLU 158 21.194 -15.317 76.282 1.00117.79 AAAA O ATOH 1530 0E2 GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA C ATOH 1532 0 GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA C ATOH 1532 0 GLU 158 23.988 -16.117 77.145 1.00 95.82 AAAA O ATOH 1535 CA SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA II ATOH 1535 CA SER 159 25.916 -14.119 76.848 1.00 92.28 AAAA C ATOH 1536 CB SER 159 26.909 -14.805 77.517 1.00 97.37 AAAA C ATOH 1539 C SER 159 26.909 -14.427 79.886 1.00 98.09 AAAA C ATOH 1539 C SER 159 26.929 -14.427 79.886 1.00 98.09 AAAA C ATOH 1539 C SER 159 26.228 -12.793 76.226 1.00 91.47 AAAA C ATOH 1539 C SER 159 26.228 -12.793 76.226 1.00 91.47 AAAA C ATOH 1539 C SER 159 26.228 -12.592 75.810 1.00 99.09	ATOH!	1521 C	ALA	157	24.856 -17.890	72.959	1.00101.1¢	AAAA C
ATON 1525 CA GLU 158 23.935 -16.629 74.781 1.00 97.43 AAAA C ATON 1526 CB GLU 150 23.128 -17.865 75.208 1.00105.93 AAAA C ATON 1527 CG GLU 158 21.387 -17.546 75.560 1.00113.87 AAAA C ATON 1528 CD GLU 158 21.347 -17.546 75.560 1.00113.87 AAAA C ATON 1529 OE1 GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATON 1530 OE2 GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATON 1530 OE2 GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA O ATON 1531 C GLU 158 24.434 -15.733 74.096 1.00126.27 AAAA O ATON 1532 O GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA C ATON 1533 N SER 159 25.276 -14.912 75.769 1.00 95.89 AAAA O ATON 1533 N SER 159 25.276 -14.912 75.769 1.00 93.30 AAAA N ATON 1535 CA SER 159 25.810 -14.119 76.848 1.00 92.28 AAAA C ATON 1536 CB SER 159 26.989 -14.805 77.517 1.00 97.37 AAAA C ATON 1537 OG SER 159 26.989 -14.427 78.886 1.00 98.09 AAAA C ATON 1539 C SER 159 26.929 -14.427 78.886 1.00 98.09 AAAA C ATON 1539 C SER 159 26.228 -12.793 76.226 1.00 98.09 AAAA C ATON 1539 C SER 159 26.228 -12.793 76.226 1.00 98.09 AAAA C ATON 1539 C SER 159 26.228 -12.592 75.810 1.00 92.25 AAAA C ATON 1539 C SER 159 26.228 -12.592 75.810 1.00 92.25 AAAA C ATON 1539 C SER 159 26.228 -12.592 75.810 1.00 92.25 AAAA C ATON 1539 C SER 159 26.228 -12.592 75.810 1.00 92.25 AAAA C								
ATOH 1526 CB GLU 158 23.128 -17.865 75.208 1.00105.93 AAAA C ATOH 1527 CG GLU 158 21.487 -17.546 75.560 1.00113.87 AAAA C ATOH 1528 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOH 1529 OEI GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATOH 1530 OE2 GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA O ATOH 1531 C GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA O ATOH 1532 O GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA C ATOH 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA O ATOH 1533 II SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA II ATOH 1535 CA SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA II ATOH 1536 CB SER 159 26.989 -14.805 77.517 1.00 97.37 AAAA C ATOH 1537 OG SER 159 26.989 -14.805 77.517 1.00 97.37 AAAA C ATOH 1539 C SER 159 26.928 -12.893 76.226 1.00 98.09 AAAA C ATOH 1539 C SER 159 26.228 -12.793 76.226 1.00 98.09 AAAA C ATOH 1539 C SER 159 26.228 -12.793 76.226 1.00 98.09 AAAA C ATOH 1539 C SER 159 26.228 -12.793 76.226 1.00 98.09 AAAA C ATOH 1539 C SER 159 26.228 -12.793 76.226 1.00 98.09 AAAA C ATOH 1539 C SER 159 26.228 -12.592 75.810 1.00 92.25 AAAA C ATOH 1539 C SER 159 26.228 -12.592 75.810 1.00 92.35 AAAA C ATOH 1539 C SER 159 26.228 -12.592 75.810 1.00 92.35 AAAA C ATOH 1539 C SER 159 26.228 -12.592 75.810 1.00 92.35 AAAA C								
ATON 1528 CD GLU 158 21.347 -16.081 75.302 1.00119.34 AAAA C ATON 1529 OE1 GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA O ATON 1530 OE2 GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA O ATON 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA C ATON 1532 O GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA C ATON 1533 N SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA N ATON 1535 CA SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA N ATON 1536 CB SER 159 26.909 -14.805 77.517 1.00 97.37 AAAA C ATON 1537 OJ SER 159 26.909 -14.805 77.517 1.00 97.37 AAAA C ATON 1539 C SER 159 26.909 -14.805 77.517 1.00 97.37 AAAA C ATON 1539 C SER 159 26.909 -14.805 77.517 1.00 97.37 AAAA C ATON 1539 C SER 159 26.909 -14.805 77.517 1.00 97.37 AAAA C ATON 1539 C SER 159 26.909 -14.805 77.517 1.00 97.37 AAAA C ATON 1539 C SER 159 26.909 -14.805 77.517 1.00 97.37 AAAA C ATON 1539 C SER 159 26.909 -14.805 77.517 1.00 97.37 AAAA C ATON 1539 C SER 159 26.208 -12.793 76.226 1.00 91.47 AAAA C ATON 1539 C SER 159 27.368 -12.592 75.810 1.00 92.75 AAAA C ATON 1540 O SER 159 27.368 -12.592 75.810 1.00 92.75 AAAA C					23.128 -17.865	75.208	1.00105.93	AAAA C
ATCH 1529 OE1 GLU 158 21.284 -15.733 74.096 1.00126.27 AAAA O ATCH 1530 OE2 GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA O ATCH 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA C ATCH 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA O ATCH 1533 H SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA H ATCH 1535 CA SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA H ATCH 1536 CB SER 159 26.989 -14.805 77.517 1.00 97.37 AAAA C ATCH 1537 OG SER 159 26.989 -14.427 79.886 1.00 93.30 AAAA C ATCH 1539 C SER 159 26.288 -12.793 76.266 1.00 98.09 AAAA C ATCH 1539 C SER 159 26.288 -12.793 76.266 1.00 98.09 AAAA C ATCH 1530 C SER 159 26.288 -12.793 76.266 1.00 98.09 AAAA C ATCH 1530 O SER 159 27.368 -12.592 75.810 1.00 92.75 AAAA C								
ATCH 1530 OF2 GLU 158 21.199 -15.317 76.282 1.00117.79 AAAA O ATCH 1531 C GLU 158 24.434 -15.915 76.025 1.00 95.00 AAAA C ATCH 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA O ATCH 1533 H SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA H ATCH 1535 CA SER 159 25.916 -14.119 76.848 1.00 92.28 AAAA C ATCH 1536 CB SER 159 26.989 -14.805 77.517 1.00 97.37 AAAA C ATCH 1539 C SER 159 26.989 -14.805 77.517 1.00 97.37 AAAA C ATCH 1539 C SER 159 26.989 -14.427 79.886 1.00 98.09 AAAA O ATCH 1539 C SER 159 26.228 -12.793 76.226 1.00 98.09 AAAA C ATCH 1539 C SER 159 26.228 -12.793 76.226 1.00 91.47 AAAA C ATCH 1540 O SER 159 27.368 -12.592 75.810 1.00 92.75 AAAA C								
ATCH 1532 O GLU 158 23.988 -16.117 77.145 1.00 95.89 AAAA O ATCH 1533 II SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA II ATCH 1535 CA SER 159 25.916 -14.119 76.848 1.00 92.28 AAAA C ATCH 1536 CB SER 159 26.916 -14.119 76.848 1.00 97.37 AAAA C ATCH 1537 OJ SER 159 26.916 -14.427 79.886 1.00 98.09 AAAA C ATCH 1539 C SER 159 26.272 -14.427 79.886 1.00 98.09 AAAA C ATCH 1539 C SER 159 26.28 +12.793 76.226 1.00 94.47 AAAA C ATCH 1540 O SER 159 27.368 -12.592 75.810 1.00 92.75 AAAA C	ATOH		2 GLU		21.199 -15.317	76.282	1.00117.79	AAAA O
ATOH 1533 II SER 159 25.276 -14.942 75.769 1.00 93.30 AAAA II ATOH 1535 CA SER 159 25.810 -14.119 76.848 1.00 92.28 AAAA C ATOH 1536 CB SER 159 26.989 -14.805 77.517 1.00 97.37 AAAA C ATOH 1537 OJ SER 159 26.989 -14.427 79.886 1.00 98.09 AAAA C ATOH 1539 C SER 159 26.228 -12.793 76.226 1.00 91.47 AAAA C ATOH 1540 O JER 159 27.368 -12.592 75.810 1.00 92.35 AAAA C					24.434 ~15.915			
ATCH 1535 CA SER 159 25.910 -14.119 76.848 1.00 92.28 AAAA C ATCH 1536 CB SER 159 26.989 -14.805 77.517 1.00 97.37 AAAA C ATCH 1537 OG SER 159 26.972 -14.427 78.886 1.00 98.08 AAAA C ATCH 1539 C SER 159 26.228 -12.793 76.226 1.00 91.47 AAAA C ATCH 1540 O GER 159 27.368 -12.592 75.810 1.00 92.75 AAAA C								
ATOH 1536 CB SER 159 26.989 -14.805 77.517 1.00 97.37 AAAA C ATOH 1537 09 SER 159 26.972 -14.427 78.886 1.00 98.08 AAAA C ATOH 1539 C SER 159 26.228 -12.793 76.226 1.00 91.47 AAAA C ATOH 1540 0 SER 159 27.368 -12.592 75.810 1.00 92.75 AAAA C								AAAA c
ATON 1539 C SER 159 26.228 412.793 76.226 1.00 91.47 AAAA C ATON 1540 O SER 159 27.368 412.592 75.810 1.00 92.75 AAAA C	NOTA	1536 CT	SER	129	26.989 -14.805	77.517		
ATOM: 1540 0 3ER 159 27.368 -12.592/ 75.810 1.00 92.75 AAAA C								
		•						

TECH CENTER 1600/2900

RECEIVED

TECH CENTER 1600/2900

ATOH	1542	20	EKO.	1 (*1)	23.789 -	-12.122	76.395	1.00 86.67	MAAA C
HOTA	1543	CA	PRO	160	25.463 -	10.701	75.361	1.99 84.74	AAAA C
ATON	1544	CB	PRO	160	24.125		75.456	1.00 84.79	AAAA C
ATCH	1545	73	PRO	160	23.370 -		76.515	1.00 84.60	AAAA C
ATON	1546	Ċ.	FRO	160					AAAA C
					26.503 -		76.236	1.00 79.60	
ATOH	1547	0	PRO	160	26.319	-0.631	77.456	1.00 79.70	AAA O
ATON	1548	11	HET	161		-9.522	75.596	1.99 74.45	4444
ATOII	1550	CV	HET	161	28.530	-0.735	76.379	1.00 67.04	AAAA C
ATON	1551	CB	TSM	161	29.924	-9.178	76.038	1.00 69.93	AAAA C
ATOH	1552	C-2	T3H	161	30.116 -		75.706	1.00 71.43	AAAA C
		SD	HET	161	30.716 -			1.90 85.25	AAA S
ATOM!	1553						77.094		
ATOI:	1554	CE	HET	161	29.841 -		78.471	1.00 69.31	AAAA C
NOTA	1555	C	HET	16:	20.350	-7.234	76.199	1.00 61.76	2 AAAA
ATON	1556	O	HET	161	28.788	-5.443	77.934	1.00 58.60	AAA O
ATOH	1557	11	Cis	162	27.681	-6.819	75.095	1.00 54.81	AAAA 11
ATCH	1559	CA	CYS	162	27.493	-5.381	74.938	1.00 49.76	AAAA C
	1560	Ċ.,	Cïs	162	26.306	-1.777	75.670	1.00 51.52	AAAA C
ATCH									
HOTA	1561	0	CYS	162	25.224		75.928	1.00 53.89	AAAA O
atón	1563	CB	Cis	162	27.422	-5.099	73.459	1.00 48.31	AAAA C
ATOII	1563	SG	CïS	1 5 2	28.523	-6.064	72.432	1.00 54.00	AAAA 5
ATON	1564	11	GLU	153	26.409	-3.500	76.931	1.00 46.31	AAAA II
ATOH	1566	CA	GLU	163	25.355	-2.675	7€.538	1.00 47.19	AAAA C
								1.00 19.95	AAAA C
ATCH	1567	CB	GLU	163	26.051	-1.412	77.027		
ATOH	1568	CG	GLU	163	26.476	-1.364	78.465	1.00 62.30	AAAA C
ATCI I	1569	C0	GI.U	163	25.917	-0.135	79.116	1.00 81.67	AAAA C
HOTA	1570	OE 1	GLU	163	26.470	0.473	80.016	1.00 73.22	AAAA O
ATOLI	1571	OE2		163	24.646	0.208	78.721	1.00 80.93	AAAA O
					24.299		75.472	1.00 49.05	AAAA C
ATOH	1572	Ç	GLU	163		-2.340			
ATC#1	1573	0	GLU	163	24.488	-2.423	74.234	1.00 45.90	AAAA O
ATOH	1574	11	LïS	16÷	23.142	-1.815	75.880	1.00 47.43	AAAA I!
HOTA	1576	CA	LTS	164	22.011	-1.499	75.081	1.00 43.90	AAAA C
ATOI-I	1577	CB	Lïs	164	20.714	-2.244	75.450	1.00 44.48	AAAA C
ATOIL	1578	CG	LïS	164	20.560	-3.639	74.870	1.00 48.65	AAAA C
								1.00 49.04	AAAA C
ATOI I	1579	CD	LYS	164	19.400	-1.432	75.622		
ATOH	1580	CE	LYS	164	18.409	-5.012	74.720	1.00 49.21	AAAA C
ATOH	1581	112	LYS	164	17.951	-6.372	75.134	1.00 37.67	II AAAA.
AT OH	1585	C	LYS	164	21.615	-9.040	75.204	1.00 45.01	AAAA C
ATOH	1586	ō	LTS	164	21.466	0.484	76.282	1.00 45.69	AAAA O
								1.00 44.94	AAAA H
ATON	1587	14	THR	165	21.333	0.570	74.034		
ATO!	1589	CA	THR	165	20.775	1.943	74.077	1.00 43.13	· AAAA C
ATOH	1590	CB	THR	165	21.831	2.952	73.553	1.20 47.81	AAAA C
INTA	1591	051	THR	165	22.053	2.689	72.127	1.00 39.13	AAAA O
ATOH	1593		THR	165	23.119		74.362	1.00 40.40	AAAA C
	1594	c	TIIR	165	19.532	1.881	73.189	1.00 40.92	AAAA C
ATOH									AAAA O
HOTA	1595	0	THR	165	19.346	0.897	72.414	1.00 35.91	
ATOH	1596	11	THR	166	18.781	2.985	73.173	1.00 39.18	AAAA II
ATO:	1598	CA	THR	166	17.689	2.991	72.182	1.00 42.97	AAAA C
ATOH	1599	CB	THR	166	16.297	3.096	72.833	1.00 55.99	AAAA C
				166	15.662	4.385	72.819	1.00 41.42	O AAAA
ATOH	1600		THR						AAAA C
ATOH	1602		THR	166	16.157	2.740	74.313	1.00 42.83	
ATCH	1603	Œ	THR	166	17.983	4.05i	71.137	1.00 40.17	AAAA C
ATOH	1604	O	THR	166	18.219	5.206	71.509	1.00 35.72	AAAA C
ATOU	1605	11	ILE	167	12.912	3.725	69.866	1.00 42.21	II AAAA II
HOTA	1607	CA	ILE	167	18.182	4.672	68.777	1.00 41.05	AAAA C
							67.904	1.00 39.50	AAAA C
ATOH	1608	CB	ILE	167	19.437	4.335			AAAA C
ATOH	1609	CG2	ILE	167	19.589	5.346	66.716	1.00 15.26	
ATO:1	1610	CG1	ILE	167	20.722	4.305	68.724	1.00 36.20	AAAA C
ATOI4	1611	COL	ILE	167	21.899	3.665	67.9 6 6	1.00 35.70	AAAA C
ATOI1	1612	c	ILE	167	16.937	4.524	67.882	1.00 40.94	AAAA C
ATCH1	1513	ŏ	ILE	167	16.655	3.135	67.391	1.00 35.51	AAAA O
								1.00 42.29	AAAA II
ATOI1	1614	:1	ASII	168	16.318	5.635	67.537	1.00 45.22	AAAA C
ATOH	1616	CA	ASH	168	15.112	5.633	66.713		
ATO:1	1617	CB	ASII	168	15.526	5.253	65.292	1.00 45.69	AAAA C
ATOH	1618	CG	A511	168	14.497	5.696	64.244	1.00 51.19	AAAA C
ATOH	1619		ASII	168	14.344	5.112	63.150	1.00 41.75	AAAA O
ATOH	1620		ASH	168	13.749	6.763	64.522	1.00 48.89	II AAAA II
						4.739	67.141	1.00 46.55	AAAA C
ATOH	1623	C	ASH	168	13.954				AAAA O
VLOI!	1624	0	ASH	168	13.544	3.879	66.326	1.00 45.95	
ATOH	1625	11	ASH	169	13.644	4.728	68.433	1.00 45.12	AAAA 11
HOTA	1627	C.A	λSH	169	12.717	3.759	69.007	1.00 43.67	AAAA C
ATOH	1628	CB	ASII	169	11.315	4.106	68.540	1.00 36.84	AAAA C
						5.487	69.093	1.00 42.75	AAAA C
HOTA	1629	CG	ASH	169	10.943				AAAA O
ATOH	1630		ASII	169	10.917	5.779	70.280	1.00 36.67	
ATOH:	1631	1102	ASH	169	10.65∺	6.448	68.213	1.00 40.74	II AAAA
HOT'A	1634	С	ASII	169	13.003	2.306	68.719	1.00 44.69	AAAA C
ATON:	1635	ŏ	ASII	169	12.100	1.544	6A.383	1.00 45.72	AAAA O
					14.226	1.907	68.862	1.00 41.64	AAAA II
ATOH	1636	11	GLU	170				1.00 45.88	AAAA C
ATOH:	1638	ÇA	GLU	170	14.655	0.513	68.850		
		-	GLU	170	15.283	0.278	67.524	1.00 55.92	AAAA C
ATOH	1639	CB				-0.953	CC 202	1 00 57 09	2222
ATOH	1640			170	15.028	-1	66.702	1.00 67.08	AAAA C
HOTA	1640	CG	GLU	170	15.028				
HOTA HOTA HOTA	1640 1641	CG	GLU GLU	170	14.517	-0.605	65.294	1.00 74.56	C AAAA
HOTA HOTA HOTA HOTA	1641 1642	CG CD OE1	GLU GLU	170 170	14.517	-0.605 0.466	65.294 65.049	1.00 74.56	AAAA C AAAA O
HOTA HOTA HOTA	1640 1641	CG CD OE1	GLU GLU	170	14.517	-0.605	65.294 65.049 64.389	1.00 74.56 1.00 77.75 1.00 70.71	AAAA C AAAA O AAAA O
HOTA HOTA HOTA HOTA HOTA	1640 1641 1642 1643	CG CD OE1	GLU GLU GLU	170 170	14.517 13.969 14.763	-0.605 0.466	65.294 65.049	1.00 74.56 1.00 77.75 1.00 70.71 1.00 47.10	7444 C 7444 O 7444 O 7444 C
HOTA HOTA HOTA HOTA	1641 1642	CG CD OE1 OE2	GLU GLU	170 170 170	14.517	-0.605 0.466 -1.437	65.294 65.049 64.389	1.00 74.56 1.00 77.75 1.00 70.71	AAAA C AAAA O AAAA O

16/58

23.789 -12.122 76.395 1.00 86.67

1542 CD ERO

Application No. 09/555,275 Annotated Sheet Showing Changes

160

No. 09/555,275	heet Showing Changes
Application No. (unnotated Sheet

							17/58		
ETCH I	1646	9	TYR	171	:5.344	-0.462	70,952	1.00 42.19	SAAA II
	1648	ÇΑ	TYR	171	10.231	-0.689	75.097	1.99 51.91	AAAA C
	1649	C3	TYR	171	15.434	-0.861	73.35?	1.00 49.94	AAAA C
	1650 1451	CD1	TYR	171 171	16.175	-1.168	74.620	1.09 48.90	AAAA C AAAA C
	1652	CEI	TTR	171	16.980 17.634	-0.210 -0.469	75.237	1.00 46. 46 1.00 41.17	AAAA C
	1.553		TTR	171	16.065	-2.129	75.194	00 43.62	AAAA C
ATON I	1654	CEC	TVS	171	16.734	-2.675	76.366	1.00 44.44	AAAA C
	1 5 5 5	CC	TYR	171	17.516	-1.719	76.973	1.00 43.58	AAAA C
	1656 1658	C .	TYR	:71	19.174	-3.917	78.146	1.00 40.16 1.30 51.41	AAAA O AAAA C
	1659	0	TYR	171 171	17.058 15.519	-1.938 -3.924	7;.83 <u>:</u> 7;.089	1.00 52.59	AAAA
	1060	1:	ASII	172	18.331	-1.752	71.493	1.00 53.70	AAAA II
5700 1	1662	CA	ASII	172	19,203	-2.898	"1.193	1.00 52.36	AAAA C
	1463	CB	ASII	172	19.985	-3.278	66.463	1.00 55.43	AAAA C
	1664 1665	CG OD1	ASH	172 172	18.939	-1.766 -5.046	69.498 70.304	1.00 61.75	AAAA C AAAA O
	1666	IID2		172	15.449	-5.048	68.295	1.90 57.97	AAAA II
	469	•	AZII	172	29.665	-2.712	71.56"	1.00 43.81	2 AAAA
	1470	0	ASI:	172	21.163	-1.760	72.213	1.00 39.38	O AAAA
	1671	11	TIR	173	21.373	-3.796	71.393	1.00 43.20	AAAA II
	1673 1674 -	CΝ	TYR	173 173	22.794	-3.929 -5.374	71.699 71.514	1.00 44.76 1.00 41.66	AAAA C AAAA C
	1575	C-3	TïR	173	22.759	-6.274	72.630	1.00 45.18	AAAA C
	1∻76	CD1		173	21.931	-7.316	72.237	1.00 46.48	AAAA C
	1 677	CEI		173	21.438	-9.181	73.193	1.00 51.36	AAAA C
	1678	CD2		173	23.081	-6.132	73.978	1.00 44.86	AAAA C
	1679 1690	CES	TYR	173 :73	22.583 21.757	-7.016 -8.036	74.916 74.535	1.00 46.92 1.00 50.33	AAAA C AAAA C
	1591	011	TYR	173	21.171	-9.006	75.329	1.00 50.64	SAAA O
	1683	Ç	TTR	173	23.673	-3.000	70.762	1.00 46.94	AAAA C
	1684	O	TYR	173	23.389	-2.983	69.567	1.00 49.76	AAAA O
	1685	!!	ARG	174	24.579	-2.318	71.366	1.00 47.79	AAAA (I AAAA C
	1687 1688	CA CB	ARG ARG	174 174	25.517 25.527	-1.496 -0.132	70.577 71.233	1.00 44.32	AAAA C
	1689	CG	ARG	174	24.219	0.623	71.234	1.00 48.14	AAAA C
	1690	CD	A.RG	174	23.372	0.344	70.003	1.00 51.47	aaaa c
	1691	HE	AR-3	174	21.974	0.760	70.039	1.00 48.35	II AAAA
	1693	CT HH1	ARG	174 174	21.144	0.570	69.017 67.864	1.00 48.23	AAAA C AAAA H
	1694 1697	IIH2		174	21.477 19.909	0.022 1.022	69.197	1.00 54.65	II AAAA
	1700	Ç	ARG	174	26.921	-2.094	70.461	1.00 45.98	AAAA C
ATCM :	1701	0	AR/G	174	27.548	-2.557	71.406	1.00 44.97	AAAA O
	1702	11	CYS	175	27.493	-2.183	69.294	1.00 46.21	AAAA II
	1704	CA	CYS	175	28.787	-2.758	68.997 67.6 6 5	1.00 45.60 1.00 46.23	AAAA C AAAA C
	1795 1796	С 0	CYS	175 175	29.407 28.755	-2.395 -2.018	66.665	1.00 44.78	AAAA O
	1707	св	CYS	175	28.576	-4.253	69.167	1.00 35.62	AAAA C
	1708	SG	TYS	175	27.812	-5.181	67.827	1.00 51.92	AAAA S
	1709	11	TES	176	30.764	-2.517	67.583	1.00 48.16	AAAA II
	1711	CA	TRE	176	31.430	-2.091	66.325	1.00 42.48 1.00 36.38	D AAAA T AAAA
	1712 1713	CB CG	TRP TRP	176 176	32.769 32.689	-1.409 -0.069	66. 56 4 67.203	1.00 35.56	AAAA C
	1714	CDS		276	32.588	1.186	36.480	1.00 23.71	AAAA ?
	1715	CE2		176	32.55%	2.217	67.422	1.00 32.40	AAAA C
	1716	CE3		176	32.535	1.520	65.14:	1.00 24.31	AAAA C
	1717	CD1		176	32.730	0.257	60.523 60.678	1.00 28.37	aaaa c aaaa ii
	1718 1720	UE1		176 176	32.636 32.441	1.636 3.565	67.088	1,00 28.51	AAAA C
	1721		TRE	176	32.147	2.822	64.783	1.00 22.23	AAAA C
	1722	CH2	TRP	176	32.406	3.817	65.745	1.00 29.51	AAAA C
	1723	c	TRP	176	31.631	-3.268	65.109	1.00 39.30	AAAA C AAAA O
	1724	0	TRP	176 177	31.703	-4.460 -3.121	64.199 66.005	1.00 39.15 1.00 41.33	AAAA II
	1725 1727	II CA	THR THR	177	31.682 31.964	-5.644	65.161	1.00 49.28	AAAA C
	1728	CB	THR	177	33.480	-6.062	65.163	1.00 43.66	AAAA C
	1729	051	THR	177	34.309	-5.025	04.013	1.00 47.85	AAAA O
	1731	CGC	THR	177	33.676	-7.271	64.283	1.00 58.51	AAAA C
	1732	C	THR	177	31.290	-6.814	65.858 67.001	1.00 48.76 1.00 51.53	aaaa c aaaa o
	1 <i>?</i> 33 1734	()	THR THR	177 178	30.982 31.260	-6.539 -8.000	45.331	1.00 51.96	AAAA II
	1736	CA.	THR	178	30.921	-9.236	65.944	1.00 58.95	AAAA C
	1737	CB	THE	178		-10.500	65.092	1.00 66.55	AMA C
	1738	001		178		-10.066	63.734	1.30 75.70	AAAA O
	1740	cas	THR	178		-11.489 -9.539	65.148 67.213	1.00 74.23 1.00 60.25	AAAA C AAAA C
	1741 1742	ن ن	THR THK	178 178	31.714 31.204	-10.202	68.135	1.00 66.05	AAAA O
	1743	II	ASII	179	32.977	-9.130	67.253	1.00 57.56	AAAA II
	1745	CA	ASII	179	33.793	-9.392	68.442	1.00 53.39	AAAA C
ATOH	1746	CB	ASII	179		-10.024	68.068	1.00 48.46	AAAA C
	1747	CG.	ASI	179		-11.218	67.114	1.00 56.25 1.00 51.30	AAAA C AAAA O
	1748		AUH AEH	179		-12.291 -11.063	67.553 65.963	1.30 48.10	AAAA II
	1752	C	A.S.:	179	34.096	-0.100°	69.285	1.13 50.79	AAAA C
	1753	ŏ	AJI:	173	31.550	-8.377	70.424	1.00 57.97	o ara÷

TECH CENTER 1600/2900 RECEIVED
AUG 0 8 2003

					18/58		
ATOU	1754 II AR-3	190	33.626	-7.022	68.913	1.00 47.06	PAAA ::
ATC4:	1756 CA ARG	190	33.908	-5.820	69.691	1.00 48.25	AAAA T
ATO:	1757 C8 ARG 1758 CG ARG	180 190	34.925 36.324	-4.962 -5.501	69.285	1.00 49.72	AAAA C AAAA C
ATOLL	1759 CD ARG	190	37.288	-4.948	68.279	1.00 70.83	AAAA C
ATOH ATOH	1760 HE ARG 1762 CS ARG	180 180	38.569 39.298	-5.605 -5.995	68.203 69.276	1.00 76.18 1.00 76.59	AAAA :I AAAA C
ATOI	1763 HH1 ARS	180	38.877	-5.608	70.498	1.00 80.82	AAAA ;;
ATOH	1766 HH2 ARG	180	40.474	-6.478	69.190	1.90 79.33	II AAAA
ATO!	1769 C ARG 1770 O ARG	180 180	32.530 31.862	-4.977 -4.476	69.821 68.905	1.00 48.10 1.00 46.99	AAAA C AAAA O
ATC!	1771 H CYS	131	32.230	-4.728	71.063	1.00 44.80	II AAAA
ATO:	1773 CA CYS 1774 C CYS	191 181	31.199 31.646	-3.924 -2.463	71.619	1.00 45.20	AAAA C AAAA C
ATCH	1775 O CYS	191	32.835	-2.227	71.724	1.00 47.09	AAAA O
ATCH	1776 C8 CYS	191	30.940	-4.282	73.110	1.00 43.88	AAAA C
ATOH ATOH	1777 SG CYS 1778 H GLH	191 182	30.363 30.659	-5.944 -1.600	73.316 71.690	1.00 56.08	AAAA S S AAAA
ATON	1780 CA GLH	182	30.949	-0.177	71.690	1.00 43.43	AAAA C
ATOH	1781 CB GLI: 1782 CG GLI:	192 182	29.749 29.809	0.619 2.085	71.196 71.435	1.00 23.99	AAAA C
ATO	1783 CD GLII	182	28.757	2.867	70.733	1.00 29.35	AAAA C
ATC:	1784 OE1 GUI	182	27.898	2.304	70.033	1.00 38.55	AAAA D AAAA D
ATCi-I ATCi-I	1785 NE2 GUI	182 182	29.857 31.218	0.089 4.164	70.912 73.162	1.00 28.14 1.00 46.07	AAAA C
ATCH	1789 O GLil	182	30.458	-0.327	74.041	1.00 47.01	AAAA C
ATOI	1790 H LYS 1792 CA LYS	183 193	32.213 32.479	0. 8 66 1.064	73.524	1.00 46.98 1.00 45.26	II AAAA C AAAA
ATCH ATCH	1793 CB LYS	183	33.966	1.275	75.185	1.00 48.68	AAAA I
ATC:	1794 OG LYS	183	34.865	0.267	74.482	1.00 47.95	AAAA C C AAAA
ATOH ATOH	1795 CD LYS 1796 CE LYS	193 183	36.33? 37.178	0.734	74.523 73.684	1.00 48.06 1.00 46.78	AAAA C
ATOH	1797 HD LYS	183	38.499	-0.654	74.158	1.00 44.00	II AAAA
ATOH	1801 C LYS 1802 O LYS	183 183	31.659 31.679	2.205 3.305	75.477 74.946	1.00 48.13	AAAA C AAAA O
ATCH ATCH	1802 O LYS 1803 II HET	184	31.165	2.014	76.698	1.00 52.59	AAAA II
ATOH	1805 CA HET	194	30.388	3.041	77.413	1.00 53.22	AAAA C AAAA C
ATOH ATOH	1806 CB HET 1807 CG HET	184 184	28.927 27.855	2.613 2.955	77.537 76.536	1.00 54.27 1.00 58.16	AAAA C
HOTA	1908 SD HET	184	26.911	1.601	75.912	1.00 57.56	AAAA S
HOTA	1809 CE HET	184 184	26.738 31.951	1.855 3.200	74.171 78.770	1.00 46.57 1.00 50.55	AAAA C AAAA C
ATOH ATOH	1811 O HET	184	31.770	2.292	79.116	1.00 48.82	AAAA O
ATON	1812 H CYS	185	30.796	4.195	79.565	1.00 53.97 1.00 58.63	AAAA C
ATOH ATOH	1814 CA CYS 1815 C CYS	185 185	31.342	4.365	80.892 81.989	1.00 55.16	AAAA C
HOTA	1816 O CYS	185	29.133	1.649	81.761	1.00 65.87	AAAA O
ATOH ATOH	1817 CB CYS 1818 SG CYS	185 185	J1.965 33.623	5.772 5.771	81.000 80.312	1.00 60.37 1.00 60.09	aaaa c aaaa s
ATOI	1819 II PRO	186	30.688	3.978	83.206	1.00 69.41	II AAAA II
ATCH	1820 CD PRO	196	32.066	3.777	83.702	1.00 71.11 1.00 69.11	AAAA C AAAA C
HOTA	1921 CA FRO 1922 CB PRO	196 196	29.717 30.523	3.933 3.487	85.503 84.304	1.00 68.03	AAAA C
ATOH	1823 GG FRO	186	31.910	3.920	85.199	1.00 71.02	AAAA C
ATOH	1824 C PRO 1925 O PRO	186	29.120	5.320 6.345	84.431 84.507	1.00 69.47	AAAA C AAAA O
ATCH ATOH	1925 O FRO 1826 II SER	186 187	27.801	5.367	84.546	1.00 68.78	I! AAAA
ATOH	1828 CA SER	187	27.050	6.592	84.750	1.00 69.29	AAAA C AAAA C
ATOH ATOH	1829 CB SER 1830 QG SER	187 187	25.594 25.474	6.287 4.935	85.129 85.560	1.00 91.78	AAAA O
ATON	1832 C SER	187	27.630	7.476	85.836	1.00 67.19	AAAA C
ATON ATON	1833 O SER 1834 U THR	197 188	27.606 28.108	8.708 6.853	85.803 86.908	1.00 63.98 1.00 68.20	O AAAA H AAAA
ATON	1836 CA THR	188	28.870	7.507	87.963	1.00 68.39	AAAA C
ATCH	1837 CB THR	188	29.805	6.459	88.618	1.00 73.84 1.00 89.33	AAAA C AAAA O
ATOH	1838 OG1 THR 1840 CG2 THR	188 188	28.943 30.605	5.365 7.048	89.016 82.750	1.00 09.33	AAAA C
HOTA	1841 C THR	168	29.802	8.583	87.429	1.00 67.52	AAAA C
ATOH	1842 O THR	188	29.843 30.643	9.739 8.247	86.446 87.834	1.00 68.30 1.00 63.89	AAAA O AAAA II
IOTA IOTA	1843 H CYS 1845 CA CYS	185 183	31.583	9.116	85.917	1.00 57.29	AAAA C
ATCH	1846 C CVS	184	30.951	10.331	85.195		AAAA C AAAA O
ATOH	1847 O CYS	189 189	32.416 31.648	11.327 8.372	85.017 84.769		AAAA C
ATOH	1849 SG CYS	189	33.347	7.001	85.535	1.00 53.46	AAAA S
ATOII	1850 H GLT	190	29.689	10.322 11.521	84.806 84.323		aaaa ii aaaa c
HOTA	1852 CA GLY 1853 C GLY	190 190	29.444	11.821	81.323 81.886	1.00 59.62	AAAA C
ATOH	1854 O GLY	190	29.609	10.932	82.082	1.00 57.91	AAAA O
ATOH	1855 H LYS 1857 CA LYD	191	29.842 30.359	13.052	82.624 81.364		II AAAA C AAAA
HOTA	1950 C8 LYS	191 191	30.359	15.035	81.214	1.00 72.76	AAAA C
ATCH	1859 CG LYS	191	28.568	15.288	81.202		2 AAAA 2 AAAA
ATOH	1960 CD LVS 1861 CE LVS	191 191	28.207	16.733 16.806			AAAA I
ALVE	00 0.0						

TECH CENTER 1600

AUG 0 8 2003 RECEIVED

		_	7
į	Ē	<u>^</u> T	1
	•	Ċ	j
	Γ	Ţ	1
	<	<	-
	٦ م	Ţ	ļ

AUG	T T
0 8	
2003	\

					-
			19/58		
ATOH	1962 HZ 193	191 26.368 191 31.868	16.182 79.152 13.299 81.270	1.00 97.62	AAAA 1:
ATOI	1967 O LYS	191 32.486	13.299 91.270 13.935 80.415	1.00 70.13	© AAAA
ATOL	1968 II ARG	192 32.488	12.441 82.079	1.00 66.29	AAAA ::
ATOL	1970 CA ARG 1871 CB ARG	190 33.885 190 34.505	12.171 82.044	1.00 59.95	AAAA C
ATOI	1972 CG ARG	192 34.505 192 34.670	12.070 83.432	1.90 66.58 1.90 71.59	AAAA C AAAA C
ATOH	1873 CD ARG	192 34.385	13.330 85.625	1.90 73.91	AAAA C
ATOU	1974 HE ARG	192 35.622	13.280 85.377	1.00 85.74	AAAA II
ATCH ATCH	1976 C2 ARG 1977 HH1 ARG	192 35.968 193 35.026	12.407 87.330 11.486 87.600	1.00 90.67 1.00 88.49	2 AAAA 11 AAAA
ATOH	1880 THE ARG	192 37.162	12.463 87.950	1.00 72.95	AAAA II
HOTA	1883 C ARG	192 34,221	10.851 91.33?	1.00 58.83	AAAA C
ATOH	1885 N ALA	192 33.336 193 35.521	10.007 #1.176 10.795 #0.968	1.00 55.13 1.00 50.19	AAAA 0 3. AAAA
ATOH	1987 CA ALA	193 35.962	9.557 80.355	1.00 46.24	AAAA C
ATOH	1988 CB ALA	193 37.167	9.921 79.541	1.00 45.15	AAAA C
ATCH ATOH	1889 C ALA 1890 O ALA	193 36.221 193 36.220	8.525 81.451 8.908 82.615	1.00 48.97 1.00 44.80	AAAA C AAAA O
ATOIL	1891 II CY3	194 36.544	7.304 91.065	1.00 50.30	AAAA ::
ATOH	1993 CA CYS	194 36.836	6.302 82.043	1.00 57.50	AAAA C
ATOH ATOH	1994 C CYS	194 37.834 194 37.952	5.304 81.448 5.291 80.216	1.00 61.25 1.00 61.52	AAAA C AAAA C
ATCH	1896 CB CYS	194 35.510	5.291 80.216 5.741 82.504	1.00 57.96	AAAA C
ATOH	1997 SG CYS	194 34.785	4.524 81.402	1.00 54.49	S AAAA
ATOH	1998 II THR 1900 CA THR	195 38.422	4.499 82.311	1.00 58.51	AAAA II
ATOH ATOH	1900 CA THR 1901 CB THR	195 39.462 195 40.237	3.584 81.913 3.142 83.168	1.00 57.42 1.00 65.73	AAAA C AAAA C
ATOH	1902 OG1 THR	195 40.288	4.248 84.091	1.00 70.15	AAAA O
ATOH	1904 CG2 THR	195 41.684	2.864 82.745	1.00 77.91	AAAA C
ATCI: ATCI:	1905 C THR 1906 O THR	195 38.857 195 37.633	2.404 81.226 2.315 81.319	1.00 54.59 1.00 58 .75	AAAA C
ATCI-I	1907 I: GLU	196 39.610	1.408 80.882	1.00 55.95	AAAA II
ATOH	1909 CA GLU	196 39.139	0.145 80.364	1.00 60.07	AAAA C
ATOH ATOH	1910 CB GLU 1911 CG GLU	196 40.395 196 40.479	-0.612 79.914 -1.146 78.526	1.00 68.06 1.00 73.96	AAAA C AAAA C
ATOH	1912 CD GLU	196 39.235	-0.983 77.670	1.00 83.08	AAAA Ĉ
ATOH	1913 OE1 GLU	196 38.356	-1.884 77.687	1.00 81.19	AAAA O
ATOH ATOH	1914 OE2 GLU 1915 C GLU	196 39.060 196 38.382	0.041 76.939 -0.579 81.467	1.00 82.10 1.00 63.91	AAAA C AAAA C
ATOH	1916 O GLU	196 37.690	-1.537 81.159	1.00 63.51	AAAA O
ATO!	1917 II ASII	197 38.666	-0.312 82.739	1.00 67.40	II AAAA
ATOH ATOH	1919 CA ASH 1920 CB ASH	197 38.025 197 39.021	-0.947 83.886 -1.394 84.966	1.00 69.21	AAAA C AAAA C
ATOI	1921 CG ASH	197 39.021 197 39.722	-1.394 84.966 -2.692 84.672	0.01 69.09	AAAA C
ATOI	1922 OD1 ASII	197 40.364	-3.273 85.551	0.01 69.04	AAAA O
ATOH ATOH	1923 11D2 ASH 1926 C ASH	197 39.622 197 37.033	-3.183 83.443	0.01 68.97 1.00 69.01	aaaa ii aaaa c
ATOL	1927 O ASII	197 37.033 197 36.845	0.043 84.486 0.281 85.664	1.00 68.24	AAAA O
ATC: I	1928 II ASII	198 36.384	0.725 83.607	1.00 69.91	II AAAA
ATOH ATOH	1930 CA ASN 1931 CB ASN	198 35.356 196 34.120	1.734 84.048	1.00 68.48 1.00 60.12	AAAA C AAAA C
ATCH	1932 CG ASU	196 34.120 198 33.806	0.880 84.373	1.00 69.29	AAAA :
ATCH!	1933 OD1 ASH	198 33.475	0.654 82.054	1.00 73.20	AAAA C
ATOU	1934 IID2 ASH	198 33.980	-1.206 03.268	1.00 65.34 1.00 64.01	AAAA :: AAAA C
ATOH ATOH	1937 C ASU 1938 O ASU	198 35.784 198 34.992	2.563 85.228 2.827 86.117	1.00 64.20	AAAA O
ATOH	1939 11 510	199 36.955	3.164 85.157	1.00 64.75	AAAA II
ATO!	1941 CA GLU	199 37.342	4.054 86.255	1.00 64.61	AAAA C AAAA C
ATOLI ATOLI	1942 CB GLU 1943 CG GLU	199 38.702 199 38.846	3.624 86.744 3.717 88.233	1.00 65.11 1.00 77.15	AAAA C
ATOI	1944 CD GLU	199 39.579	2.532 88.832	1.00 80.24	AAAA C
ATON	1945 OE1 GLU	199 39.385	2.406 90.066	1.00 81.65	AAAA O
ATOH ATOH	1946 OE2 GLU 1947 C GLU	199 40.282 199 37.314	1.821 88.079 5.463 85.690	1.00 77.94 1.00 62.92	AAAA C AAAA T
ATCII	1948 O GLU	199 37.922	5.676 84.632	1.00 63.62	AAAA O
ATOH.	1949 H CTS	200 36.605	6.393 86.313	1.00 56.16	AAAA II
ATOH ATOH	1951 CA CYS	200 36.600 200 37.978	7.721 85.740 8.315 85.521	1.00 55.11 1.00 57.77	AAAA C AAAA C
ATOI	1953 O CTS	200 38.884	R.058 96.300	1.00 63.79	AAAA O
ATOL	1954 CB CYS	200 35.824	8.664 86.648	1.00 \$2.70	AAAA C
ATCH	1955 SG CY3	200 44.196	8.100 87.098	1.00 55.85 1.00 54.50	AAAA S BAAA B
ATOH ATOH	1956 II CYS 1958 CA CYS	201 38.124 201 39.338	9.192 84.549 9.889 84.202	1.90 48.19	AAAA C
ATOH	1959 C CYS	201 39.236	11.287 84.786	1.00 42.34	AAAA C
ATOH	1960 O CYS	201 38.165	11.704 85.166	1.00 54.32	AAAA O
ATOLI ATOLI	1961 CB CYS 1962 SG CYS	201 39.590 201 39.644	10.070 82.695 8.597 91.747	1.00 40.90 1.00 51.42	AAAA C AAAA S
ATOH	1963 H HIS	202 40.254	12.075 84.675	1.00 39.12	AAAA II
ATOI I	1965 CA HIS	202 401.290	13,461 85,128	1.00 41.55	AAAA C
ATOH	1966 C HIS	202 39.284	14.184 84.289	1.00 46.59 1.00 51.64	AAAA C AAAA O
ATOH ATOH	1967 O HIS 1968 CB HIS	39.176 192 41.712	13.851 83.103 13.952 94.81	1.00 45.20	AAAA C
ATOLI	1969 CG HIG	202 41.996	15.330 1.85.267	1.00 38.71	AAAA C
ATOI!	1970 HD1 HIS	200 41.501	16.404 84.550	1.00 51.32	AAAA ::

WO 99728347

Application No. 09/555,275 Annotated Sheet Showing Changes

							20/58		
IKITA	1971	CEI		202	41.897	17.528	85.179	1.90 47.62	AAAA C
ATOH ATOH	1972		HIS HIS	202	42.665 42.56 3	15.813 17.207	86.340	1.00 39.59	AAAA C N AAAA N
ATCI:	1975	11	PRO	203	38.738	15.293	86.258 84.711	1.00 43.48	AAAA II
ATOH	1976	CD	FRO	203	38.758	15.840	86.082	1.00 46.97	AAAA C
ATON ATON	1977	CB CB	PRO PRO	203 203	37.780 37.248	15.987	83.879 84.742	1.00 46.44	AAAA C AAAA C
ATOH	1279	CO	PRO	203	38.131	17.219	95.910	1.00 43.37	AAAA C
ATOH	1580	ς.	PRO	203	38.440	16.519	82.607	1.00 53.27	AAAA C
ATCH	1981 1982	11 O	FRO GLU	203 204	37.698 39.792	17.045 16.535	81.731 82.561	1.00 53.16 1.00 50.34	AAAA O AAAA II
ATCH	1984		GLU	204	10. 439	17.139	91.301	1.00 50.52	AAAA 2
ATOH	1995		GLU	204	41.727	17.891	81.804	1.00 48.58	444A C
ATCII ATCII	1996 1987		GLU GLU	204 204	41.397 40.778	19.251	92.397 81.501	1.00 43.74 1.00 55.26	AAAA C AAAA C
ATOH	1988	OF.1	GLU	204	40.765	20.344	90.213	1.00 64.04	AAAA O
HOTE	1999		GLU	504 504	10.226	21.198	82.141 80.319	1.00 57.66	aaaa c
ATOH ATOH	:991	U.	GLU	204	40.718 41.238	16.084	79.251	1.00 46.56	AAA O
ATCI-I	1992	11	Ci.S	205	10.612	14.830	80.735	1.90 42.05	AAAA II
HOTA	1 6 6 2 1 6 6 4	CA C	CAR	205 205	40.997 39.892	13.764	79.838 78.819	1.00 45.81	AAAA C AAAA C
ATOH	1996	ŏ	CYS	205	38.746	13.920	79.133	1.00 50.34	AAAA O
HOTA	1997		CYS	205	41.288	12.491	89.572	1.00 51.55	AAAA C
ATOH ATOH	1998	SG II	CYS	205 206	40.232	12.246	81.251 77.520	1.00 52.89	aaaa s aaaa i:
ATOH	2001	CA	LEU	206	39.169	13.446	76.533	1.00 41.49	AAAA C
ATOH	2002	CB	LEU	296	39.266	14.505	75.462	1.00 48.66	AAAA C AAAA C
ATOH	2003 2004	CG CD1	LEU	206 206	38.274 36.879	14.365	74.305 74.895	1.00 47.45	AAAA C
ATOH	2005	CDC	LEU	266	38.331	15.599	73.420	1.90 50.71	AAAA C
ATON ATON	2006 2007	Ö	LEU	296 206	39.310 40.400	12.109	75.912 75.813	1.00 38.44	AAAA C AAAA O
ATOH	2008	H	GLY	207	38.264	11.359	75.681	1.00 42.41	AAAA II
ATOH	2010	CΛ	GLT	207	38.403	10.098	74.978	1.00 40.57	AAAA C
ATOH	2011	0	GLT GLT	207 207	38.466 37.668	9.061 8.102	76.058 76.057	1.00 47.15	aaaa c aaaa o
ATOH	2013	Н	SER	208	39.622	9.079	76.760	1.00 50.36	II AAAA II
ATOH	2015	CA	ser Ser	208 208	39.832 39.909	7.898 6.631	77.660 76.787	1.00 48.27	AAAA C AAAA C
ATOH ATOH	2016 2017	CB OG	SER	208	40.600	5.597	77.461	1.00 61.34	AAAA
ATCH	2019	C	SER	208	41.144	8.068	78.377	1.00 49.17	AAAA C
ATOH ATOH	2020	0	SER	208 209	41.781 41.599	9.084 7.123	78.163 79.189	1.00 48.24	O AAAA II AAAA
ATOH	2023	CA	CYS	209	42.824	7.307	79.964	1.00 55.98	· AAAA C
ATOH	2024	C	CA2	209	13.453	6.035 4.963	90.484 80.423	1.00 57.41	AAAA C AAAA O
ATOH ATOH	2025 2026	O CB	CYS	209 209	42.862 42.629	8.258	81.146	1.00 52.51	AAAA C
HOTA	2027	S:3	CYS	209	41.380	7.602	82.261	1.00 58.22	AAAA S
ATOH ATOH	2028	II CA	SER SER	210 210	44.734 45.506	6.145 4.950	90.883 91.318	1.00 59.37	II AAAA II AAAA C
ATOH	2031	CB	SER	210	47.022	5.083	91.105	1.00 55.07	2 AAAA
ATOLI	2032	OG C	SER SER	210 210	47.546 45.331	5.204 4.713	61.819 82.826	1.00 64.49	D AAAA O AAAA
ATOH	2035	0.0	SER	210	45.529	3.614	83.326	1.00 54.42	AAAA O
ATOH	2036	11	ALA	211	45.105	5.806	83.548	1.00 52.79	AAAA II
atoh Atoh	2038 2039	CB CA	ALA ALA	211 211	44.980 46.333	5.684 5.926	85.649 85.004	1.00 56.60	AAAA C AAAA C
ATOIL	2040	C	ALA	211	43.962	6.747	85.395	1.00 56.58	ΑΑΑΛ C
ATOIL	2041	Ü	ALA PRO	211	43.957 43.117	7. 792 6.416	84.711 86.359	1.00 50.78	AAAA O AAAA II
ATOH	2042	CD II	PRO	212	43.042	5.166	87.115	1.00 55.86	AAAA C
ATOH	2044	CA	PRO	212	41.951	7.257	86.575	1.00 55.50	AAAA C
ATOH ATOH	2045 2046	CB CB	ERO ERO	212 212	41.104	6.470 5.483	27.556 88.175	1.00 59.65 1.00 51.56	AAAA C
ATOH	2047	ċ	PRO	212	12.409	8,535	87.177	1.00 53.64	HAAA C
ATOH	2048	0	FRO	212	43.611	8.725 9.492	87.393 87.347	1.00 57.46	O AAAA 11 AAAA
ATOU	2049	II CA	AI.A ALA	213 213	41.537 41.912	10.710	88.057	1.00 59.41	AAAA C
ATOH	2052	CB	ALA	213	41.783	10.255	99.541	1.00 66.40 1.00 61.40	AAAA C C AAAA
ATOH	2053 2054	9	ALA	213 213	43.289 43.724	11.300	87.907 88.652	1.00 60.03	AVA U
ATOH	2055	ii	ASII	214	11.068	10.999	86.899	1.00 64.80	AAAA !!
ATOH	2057	CA	ASH	214	15.366	11.551	86.596 85.251	1.00 63.36 1.00 61. 5 6	AAAA C
ATOH	5061 5063	ç	ASII ASII	214 214	45.300 45.198	12.284	84.117	1.00 58.38	AAAA O
ATCH	2058	CB	ASH	214	46.336	10.379	86.608	1.00 67.32	AAAA C
ATON	2059	CG	ASII ASII	214	47.697 48.254	10.896	86.362 85.302	1.00 75.48 1.00 83.64	D AAAA O AAAA
ATOH ATOH	2060 2061		ASII	214 214	18.513	11.105	87.427	1.00 90.05	AAAA II
ATOH	2965	11	AS P	215	45.666	13.565	85.305	1.00 59.78	11 AAAA C AAAA
ATOH ATOH	12067 2068	CA CB	YEA 4ea	215	45.618 45.430	14.432	81.116 81.113	1.00 40.19	C AAAA
ATOH	2069	03	ASF	215	16.671	16.543	84.985	1.00 56.36	AAAA ©
ATGI	2070	ODI	AGE	215	46.590	17.699	85.473	1.90 56.17	O AAAA

RECEIVED
AUG 0 8 2003
TECH CENTER 1557

AAAA O

AAAA

AAAA

AAAA

AAAA

مممہ

AAAA

AAAA *A*AA\

AAAA

AAAA

AAAA

TECH CENTER 1600/2900

46.207 45.775 89.709 217 217 6.7.7 1.00 50.60 AAAA 80.335 1.00 49.13 AAAA 2.632 218 45.744 10.905 80.226 1.00 43.56 AAAA. 1.00 48.00 79.157 مممہ 44.802 77.869 45.166 1.05 47.06 219 19.331 AAAA 219 77.642 1.00 55.57 A.A.A.A 46.300 9.967 44.536 12.501 78.775 1.00 51.54 AAAA219 80.302 1.00 56.99 218 44.256 AAAA 13.494 219 44.226 10.085 75.978 1.00 43.49 AAAA 219 44.575 9.547 75.654 1.00 **35**.22 1.00 **32**.26 AAAA C 219 43.693 8.427 75.242 AAAA AAAA 219 43.952 7.873 73.886 1.00 36.19 AAAA 1.00 45.51 219 43.811 7.144 76.071 219 219 226 220 220 1.00 32.06 AAAA 44.453 10.750 74.735 10.897 11.759 12.985 12.919 42.27 24.24 27.09 45.303 43.729 73.874 1.00 AAAA 75.187 74.385 1.00 AAAA 1.00 AAAA. 43.630 28.42 AAAA 1.00 73.331 12.536 43.292 1.00 29.21 ΑΑΑ 75.390 14.071 220 42.846 43.285 13.604 76.455 1.09 37.88 AAAA AAAA 75.058 1.00 30.27 15.334 221 75.875 1.00 35.55 AAAA 42.753 16.382 221 17.055 1.00 47.06 AAAA 41.460 75.452 221 41.265 17.598 74.368 1.00 49.57 AAAA 0 43.804 17.478 76.063 1.00 47.45 AAAA C 221 76.538 1.00 47.06 AAAA S 45.494 16.935 AAAA II 40.503 17.133 76.396 1.00 51.47 AAAA 39.231 17.906 76.339 1.00 51.86 222 222 1.00 54.53 AAAA 38.547 18.074 77.712 1.00 45.56 AAAA 37.314 18.687 77 RS.J 1.00 54.45 AAAA 36.538 18.338 79.087 1.90 65.53 AAAA 222 79.269 36.272 16.947 1.00 67.60 AAAA 78.517 35.534 16.080 16.599 1.00 70.26 AAAA 77.533 222 222 222 223 223 223 34.925 1.00 54.11 AAAA 35.342 78.901 AAAA 75.740 1.00 50.66 39.562 38.737 19.286 75.000 1.00 58.34 AAAA 19.845 AAAA 11 40.556 19.981 76.120 1.00 45.65 1.00 46.93 1.00 49.51 1.00 56.83 21.291 40.988 75.321 AAAA 77.011 AAAA 41.057 223 22.344 77.617 $\Lambda A A A$ 39.710 23.360 77.556 1.00 61.08 AAAA C 38.820 223 21.380 II AAAA 78.425 1.00 63.28 39.982 AAAA C 37.881 78.759 1.06 58.01 223 AAAA 37.681 23.019 78.232 1.00 48.56 AAAA. 21.260 20.753 1.00 50.78 223 42.363 75.122 1.05 47.43 AAAA 223 42,506 74.003 1.00 49.20 II AAAA 224 43.359 21.847 75.769 1.00 48.17 AAAA 554 44.712 21.992 75.259 1.00 44.07 AAAA 224 45.144 23.430 75.426 AAAA 224 44.318 24.234 74.417 AAAA 224 24.869 25.633 74.904 1.00 48.94 43.193 $\Lambda A A \Lambda$ 74.089 1.00 48.41 42.401 21.358 73.065 1.00 54.82 **ጸ**ልኢፍ 44.623 25.131 25.745 72.233 1.00 56.09 AAAA C 43.947 72.766 1.00 54.23 AAAA c 42.739 72.017 1.00 61.70 AAAA Ú 26.522 41.915 1.00 48.19 AAAA. 45.725 21.095 75.892 AAAA O 1.00 55.75 45.776 77.111 20.913 AAAA II 75.077 1.00 48.79 46.504 20.514 AAAA C AAAA C AAAA 75.555 1.00 43.00 47.655 19.653 74.548 1.00 40.33 48.020 18.639 49.286 49.299 17.926 74.954 1.00 46.95 AAAA C 16.858 75.817 1.00 43.57 225 76.173 1.00 47.26 50.450 16.221 AAAA C AAAA C 74.421 1.00 52.83 225 50.487 18.407 225 74.781 1,00 53.94 51.656 17.791 225 1.00 16.707 75.644 52.31 51.639 1.00 50.71 1.00 47.13 1.00 53.97 1.00 56.84 AAAA O 75.295 52.906 16.196 AAAA C 75.793 48.970 20.507 AAAA O 21.514. 75.150 42.080 AAAA II 226 19.634 20.253 76.821 Figure 1A-20

21/58

84.941

93.221

82.322

83.511

82.734

83.529

94.335

64.518

82.159

81.444

92.476

81.945

82.943

1.30 80.01 1.39 **53**.78

1.00 53.58

1.00 50.87

1.20 45.76

1.00 53.46

1.00 45.14

1.00 41.38

1.90 48.34

1.00 47.42 1.00 49.65

1.00 52.62

Annotated Sheet Showing Changes Application No. 09/555,275

WO 99/28347

ATOR

STOR

ATOH

ATOH

ATOH ATO:

ATO:

ATOH

HOTE

ATOH

ATO(1

STOH

ATCH

ATOH

ATCH

ATOH

ATOH

ATOR:

IICTA

ATOH

ATOH

ATO:

HOTA

ATOU

ATOH

ATOH

STOLL

ATOH

ATOL

ATORE

ATO:

ATOH

ATOH

ATOH.

ATCI1

ATOU

ATOH

ATOH

ATOH

ATCH

INTA

ATOH

ATOH

ATO:1

ATON

ATON

ATCI1

A.TOH

ATOH

ATOH

ATO!!

ATOH

-TOH

ATCH

ATOH

ATOH

ATOH

ATOH

ATOH

ATOH

ATOU

ATOU

ATOH

ATCH1

HOTA

ATOH

ATO:

I IOTA

ATOII

HOTA

ATOH

STOLL

ATOH

ATOL

ATOIL

ATOH

ATOLI

ATOH

ATOH

ATOL

ATOH

ATOU

ATO:I

ATOLI

* ATOH

::02 :

::

CA

C3 THE

 ∞ 1 THE

C:30 THR

CA ALA

78 .5 ALA

O

10

CA

CB

35

CA

CB VAL

051 VAL

CG2 VAL

0

1:

CY

C.

С

: 1

CA CYS

C₽

SG CTS

CA

CB

0.3 AR/3

CD ARG

1iE

CD

11111ARG

11H2 ARG

c

::

CA HIS

CB

CG HI3

002

CEL HIS

HEC HIS

CΛ TYR

Ç₿ TTR

C5 TTR

CEL TTR

CD2 TTR

CEC TYR

CZ TYR

011 TTR

c

O

11

CA

CB

CG

CDI

CEL

CE2 TYR

C:

QII TYR

¢

Ç

CDI TAR

HOL HIS

н

Ċ

ASI

ÄSP

ASP

THR

THR

THR

THR

ALA

ALA

ALA

CYS

CVS

CYS

773

CIS

C.: 3

VAL

VAL

VAL

VAL

ALA

ALA

ALA

ALA

ALA

CUS

Cis

CYS

CYS

ARG

ARG

ARG

ARG

A.R.G

ARG

ARG

HIS

HIS

HIS

HIS

1173

TTR

TTR

TYR

TTR

TTR

TTR

TYR

TYR

TTR

TTR CDC

TYR

TYR

TTR

TYR

7.1

2072

2073 ¢:

2074

2076

2027

2078

2080

2081

2082

2093 11

2085

2086

2087

2088

2089

2091

2092

2093

2094

2045

2096 11

2098

2099

2100

2101

2102

2103

2104 2106 2107

2108

2109

2112

2114 0

2115

2116

2117

2119

2120

2121

2123

2125

2126

2129

2132

2133 o

2134 2136 2137

2130

2140

2112

2143

2145

2146 0

2147

2149

2150

2151

2152

2153

2154

2155

2156

2157

2164

2165

2166

2167

2158

2169

2170

2173 2174

2175

1:5 515

215

216

215

216 216 216

216

216 217 217

217

47.766

46.819

46.990

47.719

49.883

\$0.201

50.403

50.436

40.681

49.595

47.559

47.259

35.926

14.315

15.148

13.425

13.114

13.176

11.077

14.314

11.712

11.282

11.057

9.760 9.775

					22/58		
ATOH		TYR 008 TYR 006	50.811 50.455	21.001	77.172	1.00 56.83	ХАДА Т АХАА С
ATOH		TYR 226	51.741	23.126	77.941	1.00 59.51	AAAA C
ATON	2180 CDI 1		52.121	23.557	79.177	1.00 69.12	AAAA C
ATOL		TYR 226	53.289	24.275	79.400	1.00 70.77	AAAA C
ATON		TYR 326	52.580	23.409	76.864	1.00 69.38	AAAA C
ATOH ATOH		TYR 226 TYR 226	53.758 54.099	24.118	77.020 78.301	1.00 70.94	AAAA C
ATO:		TVR 226	55.267	25.254	78.435	1.00 70.84	AAAA O
ATOH		TYR 226	51.784	20.356	79.165	1.00 57.55	AAAA C
ATON		TYR 226	51.492	20.133	79.350	1.00 56.90	AAAA O
ATCH		ALA 227 ALA 227	52.978	20.080	77.642	1.00 53.82	AAAA C
ATOH ATOH		ALA II7	54.061 54.508	19.557	79.440 79.428	1.00 55.81	AAAA C
HOTA		ALA 227	53.600	18.309	79.170	1.00 53.56	AAAA C
ATQU		ALA 227	53. 443	10.218	80.413	1.00 49.63	AAAA C
ATOL:		GLY 228	53.676	17.360	78.393	1.00 50.68	2444 C
ATOH ATOH		GLY 228 GLY 228	52.5 8 5 51.312	16.135 16.330	79.028 79.861	1.00 49.02	AAAA C
ATOH		GLY COB	51.028	15.538	80.776	1.00 51.10	AAAA O
ATOH		VAL 229	50.643	17.495	79.791	1.00 47.09	AAAA ::
ATCH		VAL 229	49.489	17.671	80.635	1.00 51.11	AAAA C
ATOH ATCH		VAL 229	49.908 48.627	19.610 18.896	81.774 82.564	1.00 56.52	AAAA C
ATON		VAL 229	51.002	18.035	82.682	1.00 50.16	AAAA C
ATOH		VAL 229	48.255	19.173	79.873	1.90 51.37	AAAA C
ATOH		VAL 229	48.344	19.279	. a . 303	1.00 53.71	AAAA C
ATO!		TYS 230	47.100	17.518	80.036	1.00 42.21	11 AAAA C AAAA
ATON: ATON		CVS 230 CVS 230	45.456	18.117 19.350	79.471 80.229	1.00 40.32	AAAA C
ATCH		CX3 230	44.954	19.248	81.321	1.00 41.62	AAAA O
ATGH		CXS 230	44.746	17.132	79.370	1.00 31.54	AAAA C
ATOH		CX2 230	45.149	15.753	78.266	1.00 43.61	AAAA S
ATOL		VAL 231	45.637	20.534	79.731	1.00 39.83	AAAA II AAAA C
ATOH ATOH		VAL 231 VAL 231	45.445 46.518	21.769	80.462 80.088	1.00 50.99	AAAA C
ATO!1	2219 CG1		46.798	23.878	81.053	1.00 50.41	AAAA C
HOTA	2220 CG2 1		47.838	21.913	80.506	1.00 44.95	AAAA C
ATOH		VAL 231	44.111	22.321	80.057	1.00 52.59	AAAA C AAAA O
ATOH ATOH		VAL 231 PRO 232	43.599 43.482	22.183	78.936 80.913	1.00 55.30 1.00 54.28	AAAA :I
ATOH		PRO 232	43.830	23.385	82.320	1.00 54.25	AAAA C
ATOH		FRO 232	42.153	23.625	80.575	1.00 54.39	AAAA C
ATOM		PRO 232	41.537	23.877	81.928	1.00 53.73	AAAA C
ATCH ATOH		PRO 232 PRO 232	42.683	24.287	82.765 79.795	1.00 55.00 1.00 56.37	AAAA C AAAA C
INTA		FRO 232	42.361 41.498	25.482	79.137	1.00 55.79	AAAA O
ATOH		ALA 233	43.615	25.400	79.901	1.00 54.76	AAAA II
ATGI		ALA 233	43.998	25.569	79.124	1.00 49.93	AAAA C
HOTA		ALA 233 ALA 233	43.440 15.502	27.807	79.746 78.974	1.00 35.43	AAAA C AAAA T
ATCH		ALA 233	46.195	26.662	79.616	1.00 51.41	AAAA O
ATOH		TVF 234	45.984	27.508	79.072	1.00 45.07	AAAA I:
ATOR:		CYG 234	47.430	27.518	77.967	1.00 48.63	AAAA C
ATO:		evs 234	48.001	29.340	79.076 79.250	1.00 50.93	AAAA C AAAA O
ATOH ATOH		CYS 234	47.650 47.816	29.513 28.034	76.511	1.90 43.10	AAAA C
ATCH		CA2 534	47.608	26.789	75.226	1.00 43.04	AAAA S
IPSTA		PRO 235	49.127	27.853	79.599	1.00 49.55	AAAA II
ATCH		PRO 235	49.692	26.557	79,207	1.00 48.75	AAAA C
ATOH ATOH		PRO 235 FRO 235	49.911 50.984	28.569 27.581	80.599 80.975	1.00 51.69	AAAA C
ATOI		PRO 235	50.912	26.417	90.077	1.00 50.06	AAAA C
ATO:		PRO 235	50.487	29.852	90.050	1.00 57.11	AAAA C
ATCH		PRO 235	50.949	29.957	78.970	1.00 59.60	AAAA O
ATOH	2250 11	PRO 236	50.676	30.875	80.887	1.00 59.85	AAAA C
ATOH ATOH	2251 CD 2252 CA	PRO 236		30.822	82.363 80.493	1.00 52.27	AAAA C
ATCH	2253 CB	PRO36	51.695	32.814	81.826	1.00 53.62	AAAA C
HOTA	0054 CG	PRO 236	50.653	32.277	82.751	1.00 56.73	AAAA C
ATOH	2255 C	FRO 236		31.886	79.67:	1.00 44.21	AAAA C AAAA O
ATOH	2256 0	PRO 236		30.892	79.928 78.716	1.00 43.40	AAAA II
ATOH ATCH	2257 II 2259 CA	ASII 237 ASII 237	52.837 53.895	32.757 32.623	77.716	1.00 45.94	AAAA C
ATOH	2260 CH	ASH 237	55.250	32.653	78.456	1.00 58.65	AAAA C
ATOH	2261 00	ASH 237	55.357	33.855	79.371	1.00 58.51	AAAA C
ATOH	2262 001			33.783	80.379	1.00 72.25	aaaa o aaaa ii
ATCH	2263 HD2			34.910	79.051 76.788	1.00 62.99	AAAA C
ATOH 1 POTA	2266 C 2267 O	ASH 237		31.425 30.935	76.325	1.00 54.50	AAAA O
ATOH	2268 11	THR 239		30.657	76.692	1.00 42.91	AAAA II
ATOH	2270 CA	THR 039		29.567	75.790	1.00 40.20	AAAA C
ATOH	2271 (8	THR 239	52,461	29.248	76.460	1.00 42.62	AAAA C
HOTA	2272 001			29.343	77.037 77.424	1.00 50.80	AAAA O AAAA C
ATOH	2274 002	THR 233	53.55.	27.884			

TECH CENTER 1600/2900

PCT/AU98/00998

RECEIVED

TECH CENTER 1600/2000

23/58 2275 2276 2277 ATOH! THE 238 51.279 29.875 75.00B AAAA G 538 538 ., THE ATOH 50.569 30.864 75.500 1.00 42.51 SAAA O п TTR ATOU 51.051 29.488 73.832 1.00 42.60 AAAA II 5586 5576 ATOH CA :39 TYR 49.949 29,959 73.024 1.00 41.97 AAAA AAAA C AAAA C AAAA C CB TYR 239 71.931 72.564 72.815 ATOH 50.457 30.907 1.00 44.86 32.125 32.086 2281 TTE HOTA 239 51.099 1.90 42.05 2282 CDI ATOI TTR 52.467 1.00 39.41 AAAA C ATCH CEI TYR 239 33.152 73.415 53.092 1.00 43.27 ATCH 2284 CD2 TYR 50.376 33.239 72.923 1.00 AAAA ATCH 2285 CEC TYR 339 50.972 73.536 AAAA C 34.310 1.00 46.22 2286 239 ATON C TIR 52.339 73.779 34.243 1.20 AAAA 239 ATOH OH TTR 53.013 35.289 1.00 55.47 AAAA C 74.387 72.315 72.021 72.126 c ATOI 2289 TYR 19.030 28.813 1.00 45.54 AAAA C 239 2290 ATOH O TTR 49.922 27.810 1.00 46.66 AAAA O 2291 240 ATOH 11 ARG 17.895 28.990 1.00 40.62 AAAA II 240 1.00 38.78 ATOH CA ARG 47.177 27.892 71.425 AAAA C 2294 ATOH CB ARG 240 71.452 72.589 72.683 AAAA C 45.675 28.127 28.944 1.00 39.77 CĠ ATO! ARG 249 45.116 1.00 43.37 ATOH 2296 2297 CD ARG 240 43.573 28.957 1.00 39.60 AAAA C ATOH HE ARG 2:0 29.683 71.455 1.00 53.05 AAA II 43.114 2299 ARG 240 AAAA C ATO C: 43.123 31.015 71.530 1.00 48.07 ATOH 2300 HH1 ARG 240 31.562 72.668 43.513 AAAA H ATO: 2303 TIHO ARG 249 42.788 31.778 70.533 1.00 51.03 AAAA 12 27.737 28.730 ATO! 2306 С ARG 240 47.627 69.979 1.00 31.72 AAAA C 240 32.37 27.95 2307 ARG AAAA O ATOL O 47.937 69.302 1.00 241 26.542 26.269 25.940 25.653 2308 PHE 47.779 ATC: **(-)** 69.549 1.00 AAAA C 2310 CA PHE 241 ATC: 48.182 68.183 30.41 1.00 2311 CB PHE 241 19.578 68.151 66.773 ATC: 1.00 34.83 50.235 2312 CG SHE 241 AAAA ATCH 1.00 26.84 241 26.567 \$5.753 AAAA ATOH 2313 COL PHE 1.00 25.31 50.165 2314 000 241 ATO:I PHE 50.785 24.417 66.573 1.00 AAAA 2315 26.232 64.509 AAAA ATO CEI PHE 241 50.676 1.00 ATOI 1 2316 CE2 51.294 24.101 65.320 AAAA PHE 241 1.00 38.45 ATOH 2317 CC PHE 241 51.281 25.010 64.281 1.00 21.17 AAAA ATO! 2318 С PHE 241 47.392 25.089 67.621 1.00 35.77 AAAA ATCI: 2319 0 PHE 241 47.543 24.013 68.186 1.00 36.77 AAAA O ATOH 2320 11 GLU 242 46.738 25.301 66.468 1.00 32.30 AAAA II AAAA C ATO:1 2322 CA GLU 242 45.964 24.269 65.805 1.00 35.43 CB CS ATOH 2323 GLU 242 46.953 23.144 65.472 1.00 37.98 AAAA C 23.415 23.965 2324 GLU AAAA C ATOH 242 47.867 64.314 1.00 38.63 CD 63.075 62.517 62.626 AAAA C 2325 GLU 1.00 ATOH 242 47.207 39.27 2326 OE1 GLU 23.205 1.00 42.79 AAAA O ATON 242 46.380 242 47.354 AAAA O ATO: 2327 OE 2 GLU 1.00 36.36 GLU 44.752 23.771 66.600 AAAA ATC:1 2328 c 242 1.00 34.36 Q 242 22.611 1.00 28.53 AAAA O ATO: 2329 GLU 44.390 66.511 243 24.589 2330 11 67.449 1.00 36.94 AAAA II ATO: GLY 44.135 CA C ATOIL 2332 GLï 243 43.048 24.154 68.303 1.00 34.57 AAAA C 69.319 AAAA C I IOTA 2333 GLY 243 43.428 23.107 1.00 37.76 22.473 22.636 21.536 20.271 AAAA O ATOH 2334 0 GUY 243 42.474 1.00 43.00 44.637 69.611 1.00 39.53 AAAA II 2335 TRP 244 ATOLL Ħ 2337 244 70.566 1.00 40.85 PAAA C ATO CA TRP CB 44.774 69.764 AAAA C 2338 244 1.00 26.76 ATCI TRP 2339 C5 19.985 TRP 244 46.012 69.029 1.00 43.19 AAAA ATO: 244 AAAA C ATOH 2340 CD2 TRP 47.019 19.983 69.498 1.00 39.55 1.00 36.50 244 47.998 68.489 AAAA ATOH 2341 CE2 TRP 19.906 ATCH 2342 CE3 TRP 244 47.186 18.254 70.692 1.00 32.18 AAAA C ATGI 2343 CD1 TRP 244 46.424 20.308 67.779 1.00 43.37 AAAA C 2344 HEI TRP 244 17.595 19.727 67.169 1.00 38.89 AAAA H **ATCII** 18.128 HOTA 2346 CC2 TRP 244 49.150 68.620 1.00 39.01 AAAA C AAAA C ATOH 2347 ೯೭३ TRP 244 48.336 17.478 70.815 1.09 43.98 ATOH 5348 CH2 TRP 244 19.322 17.425 69.784 1.00 42.50 45.998 46.253 AAAA C 1.00 42.98 **ATOH** 2349 C TRP **514** 21.517 71.509 AAAA O 244 20.501 20.495 22.472 2350 **HOTA** 0 TRP 72.146 245 71.435 72.095 1.90 44.16 AAAA H 2351 11 ARG ATCH 46.888 245 2353 ΩA ARG 1.00 46.47 AAAA C 48.169 ATO: 21.602 AAAA C CB ARG 245 71.367 1.00 47.30 ATO: 2354 49.985 AAAA C ATOL 2355 Ciz ARG 245 22.309 70.203 1.00 18.97 21.552 69.819 AAAA C 2356 CD ARC 245 1.00 39.28 ATCI 51.129 ATC: 2357 HE ARG 245 51.586 21.665 68.444 1.00 50.86 II AAAA II 2359 245 67.895 1.00 46.73 AAAA C NOTA CS ARG 52.629 ::1.044 II AAAA II **INTA** 2360 1001 ARG 245 53.344 20.236 68.653 1.00 50.15 53.072 66.638 72.271 71.541 215 HOTA 2363 DH2 ARG 21.126 1.00 41.69 AAAA C 1.00 46.01 I IOTA 2366 Ċ ARG 215 23.863 AAAA O 1.00 47.44 ATOR 2367 o ARG 245 246 48.394 24.793 AAAA II 23.881 73.317 1.00 42.08 ATO: 2368 11 Cus 49.625 AAAA C 246 50.246 51.695 73.629 1.00 43.48 CYS 25.199 ATOL 2370 CA 2371 246 25.217 73.183 1.00 43.38 AAAA C ATOH C CYS 1.00 42.51 AAAA O 2372 ATOU O CYS 246 52.476 24.239 73.320 CB 25.392 1.00 48.91 AAAA C ATOH 2373 216 50.102 75.138 CL2 25.049 48.386 50.101 AAAA S CYS 75.797 1.00 2374 SG 246 43.68 ATOH 247 217 217 2375 VAL 72.564 41.21 AAAA II ATON 11 26.288 1.90 2377 AAAA C CA VAL 53.417 53.569 71.982 1.00 ATCH 36.51 26.468 CB 70.444 AAAA C ٧٨L 26.357 1.00 36.87 ATO: 247 CGI 53.000 AAAA ATOH 2379 VAL 24.988 70.024 1.90 27.602 . 69.729 AAAA 2380 53.129

IP 'È

AUG 0 6 ZOG

Annotated Sheet Showing Changes

Application No. 09/555,275

Ö

₩0-99/38347

Figure 1A-22

24/58

				•	24/58		
ATOH	2381 6 %	CAL 217	53. 469	27.812	د ت: . ۲۰	1.00 34.37	AAAA C
ATC: I	2382 O N	7AL 247	53,230	29.770	72.549	1.00 38.80	AAAA O
ATCH	2383 II A	ASP 248	55.291	27.820	72.711	1.00 45.21	II AAAA
ATCH		ASP 249	55.895	29.115	73.008	1.00 40.19	AAAA C
HOTA	_	ASP 248	57.091	28,946	73.953	1.90 42.63	AAAA C
		ASP 248	58.120	27.097	73.394	1.20 59.81	AAAA C
ATOH			59.067			1.00 53.06	AAAA O
ATOH				27.795	74.187		AAAA C
ATOH		ASP 248	58.167	27.395	72.313	1.00 69.51	AAAA C
ATC:	_	426 518	56.315	29.883	71.839	1.00 36.99	
ATC+1		A32 248	56.292	29.288	70.772	1.00 39.70	AAAA O
ATCH	2392 11 /	ARG 249	50.545	31.163	71.918	1.00 30.72	AAAA II
ATOLL	2394 CA A	ARG 249	56.950	32.057	70.906	1.00 36.17	AAAA C
ATOLL	2395 CB A	AR-5 249	57.223	33.495	71.491	1.00 21.29	AAAA C
LIOTA	2396 CG A	ARG 249	57.594	34.424	70.326	1.00 24.96	AAAA T
ATOH		ARG 249	57.814	35.811	70.843	1.00 21.23	AAAA C
ATCH		AR-3 249	56.658	36.150	71.689	1.00 39.75	AAA II
ATON		ARG 249	55.632	36.923	71.101	1.00 39.35	AAAA C
	2491 001 /		55.642	37.118	69.801	1.00 25.41	AAAA :I
ATC: I		ARG 249	54.641		71.946	1.00 44.04	I! AKKK
ATCI-I				37.118		1.00 40.63	AAAA C
ATOH	-	AR-5 219	58.134	31.685	70.010	1.00 44.79	AAAA O
HOTA		ARG 249	58.086	31.923	68.791		
ATO:		ASP 250	59.149	39.974	70.468	1.00 41.87	II AAAA
ATOH	2411 CA /	ASP 250	60.287	30.739	69.606	1.00 46.90	AAAA C
ATOH	2412 CB /	ASP 250	61.740	30.726	70.154	1.00 53.11	AAAA C
ATOH	2413 CG /	ASP 250	62.421	32.122	70.081	1.00 71.49	AAAA C
ATOH	2414 OD1 /	ASP 250	63.124	32.682	69.176	1.00 58.53	AAAA O
ATOH		ASP 250	62.272	32.928	71.071	1.00 70.30	aaaa o
ATON		ASP 250	59.881	29.536	÷8.771	1.00 41.22	AAAA C
		ASP 250	60.291	29.443	5".616	1.00 39.06	O AAAA
ATO:					69.209	1.00 36.13	AAAA II
ATOH:		PHE 251	59.116	28.609		1.90 34.88	AAAA C
ATOH	_	DHE 251	58.457	27.601	69.489		AAAA C
ATOH		PHE 251	57.468	26.746	69.256	1.00 29.82	
HOTA		FHE ISI	56.701	25.801	68.385	1.00 41.50	MAA C
ATOH	2423 CD1	PHE 251	57.101	24.479	68.263	1.00 30.66	AAAA C
ATOH	2424 CD2	PHE 251	55.559	26.213	F7.686	1.00 37.78	AAAA C
ATOH	2425 CE1	PKE 251	56.414	23.597	67.424	1.00 29.30	AAAA C
ATON:	2426 CE2		54.847	25.372	66.856	1.00 36.09	AAAA C
ATOI-I		PHE 251	55.294	24.070	66.715	1.00 36.21	AAAA C
ATON		PHE 251	57.624	28.290	67.338	1.00 39.26	AAAA C
ATON		PHE 251	57.811	28.010	66.144	1.09 30.27	AAAA O
		CYS 252	56.734	29.225	67.713	1.00 35.13	AAAA II
ATON		CYS 252	55.895	29.870	56.728	1.00 38.8C	AAAA C
ATOM					65.747	1.00 44.73	AAAA C
ATOH		CYS 252	56.827	30.598	64.536	1.00 43.20	AAAA O
ATOH		CYS 252	56.552	30.534		1.00 35.65	AAAA C
ATOH		CYS 252	54.903	30.778	67.379		
ATON	2136 SG	CYS 252	53.562	21.544	66.459	1.00 39.03	AAAA S
ATCH	2437 11	ALA 253	57.872	31.256	66.285	1.00 41.53	AAAA II
ATOH:	2439 CA	ALA 253	58.687	32.071	65.415	1.00 40.39	AAAA C
ATOI-I	2440 CB	ALA 253	59.519	33.088	66.172	1.00 36.07	aaaa c
ATOH	2441 C	ALA 253	59.531	31.167	64.539	1.20 42.88	AAAA C
ATOH		ALA 253	60.147	31.735	63.640	1.00 47.42	O AAAA
ATCH!		ASI! 154	59.657	29.859	64.700	1.00 38.75	II AAAA II
ATOH		ASII 254	60.546	29.073	-33.929	1.00 42.94	AAAA C
ATOH		ASII 254	61.667	28.497	64.847	1.00 48.09	AAAA =
ATOL		ASH 254	62.696	29.635	65.031	1.00 49.54	AAAA C
			63.468	29.840	64.081	1.00 61.38	AAAA O
ATOH				-	66.144	1.00 48.39	II AAAA
ATOH	• • • • • • • •		62.607	30.321		1.00 53.72	AAAA C
ATOH		ASII 254	59.907	27.953	63.135	1.00 51.19	AAAA O
ATON		ASII 254	60.552	26.965	62.804		II AAAA
ATOH.	2454 11	ILE 255	58.612	28.136	62.760	1.00 57.77	
ATOH	2456 CA	ILE 255		27.107	62.134	1.00 53.29	AAAA C
ATOH	2457 CB	ILE 255		27.322	62.304	1.00 50.41	AAAA C
ATO(1	2458 CG2	1LE 255	55.477	25.595	61.246	1.00 51.95	AAAA C
ATO!!	2459 CG1	ILE 255	55.778	26.675	63.553	1.00 40.59	C AAAA
ATOH	2460 CD1	ILE 255	54.479	27.317	64.006	1.00 38.97	2 AAAA
ATOLI	2461 C	1LE 255		26.886	60.651	1.00 52.62	AAAA C
	2462 0	1LE 255		25.709	60.252	1.00 53.96	C) ASSAS.
ATOU					59.918	1.00 49.96	AAAA II
ATOH	2463 11			27.784	58.516	1.00 63.68	AAAA C
ATOH	2165 CA	LEU 256			57.799	1.00 56.80	AVAA C
ATOH	2466 CB	LEU 250		29.012		1.00 59.11	AAAA C
ATOH	2467 CG	LEU CSC		29.196	57.864	1.00 39.11	AAAA C
ATOH		LEU 256			57.645	1.00 55.88	AAAA C
ATOLL		LEU 256			56.928		AAAA C
ATOH	2470 0	LEU 256			50.355	1.00 66.23	
ATOH	2471 0	LEU 256		27.511	57.245		AAAA O
A'TOI I	2172 11	SER 257			59.430	1.00 64.61	AAAA !i
ATOH	2474 CA	SER 257	62.352	27.529	59.534	1.00 69.23	AAAA -C
ATOH	2475 CB	SER 257		27.318	εφ. 953	1.00 62.45	AAAA C
ATOH	2476 OG	SER 257			61.074	1.00 56.18	o aana
ATOL	2478 C	SER 25			53.610	1.00 70.77	AAAA C
ATOH	2179 0	SER 35			59.245		AAAA O
		ALA 25			58.329		AAAA 11
ATON		ALA 250			57.313		AAAA C
ATOH			, 9733 galeno				AAAA :
ATOLI	0483 CB				55.921	1.00 78.21	AAAA C
ATON	3484 C	ALA 25	8 02.663	24.964			

Figure 1 A - 23

TECH CENTER 1600/2900

RECEIVED

WO 99/28347

PCT/AU98/00998

Application No. 09/555,275 Annotated Sheet Showing Changes

							25/58		
ATCH	3182	9	ALA	258	92. 9 60	24.139	55.020	1.00 79.60	AAAA O
ATCH ATCH	5444 5486	TA	GLU GLU	259 259	62.069 61.742	26.104	55.651 54.342	1.00 79.05 1.00 83.84	11 AAAA 1 AAAA
ATCH	2499	70	SEU	259	60.225	26.457	54.135	1.00 86.99	AAAA C
atoh	5160	C+2	GLU	259	59.587	IS.049	54.314	1.00 99.36	AAA :
atch Atch	1491 1491	CD OE1	GLU	259 259	58.364 58.364	25.032	55.057	1.00 07.77	I AAAA I O AAAA
ATOI	2193	OE2	GLU	259	57.599	24.088	55.839 54.837	1.00 94.58	AAAA C
HOTA	2194	Ç	GLU	259	62.117	28.078	54.083	1.90 85.43	AAAA C
ATC!	2195	0	GLU	259	62.059	29.009	54.993	1.00 88.01	0 AAAA 11 AAAA
ATOH ATOH	5138 5138	TA	SER SER	260 260	62.298 62.725	28.338	52.799 52.254	1.00 84.00	***** C
ATOH	2133	C3	SER	250	63.753	29.269	51.173	1.90 87.24	AAAA C
INTA	2500	os	SER	260	63.306	29.419	49.835	1.00 93.65	AAAA O
ato: Atoi:	2502 2503	Ç	SER SER	260 260	61.558 61.496	30.466 30.889	51.799 50.635	1.00 80.84	AAAA C AAAA O
ATOH	1504	!!	SER	261	50.517	30.785	52.685	1.00 78.56	LAAA II
ATOH	2506	CA	3F.R	261	59.423	31.540	52.308	1.00 72.13	AAAA C
ATOL	2507 2508	03 03	SER SER	261 261	58.179 57.430	31.297 30.334	53.179 52.451	1.00 67.30 1.00 74.74	AAAA C AAAA C
ATOH ATOH	2510	÷.	SER	261	59.683	33.032	52.318	1.09 66.90	AAAA C
ATOH	2511	0	SER	261	60.048	33.588	53.334	1.00 63.24	AAAA O
ATCH	2512	11	ASP	262	59.364	33.659	51.204	1.00 65.30	11 AAAA C
ATCH ATCH	2514 2515	CA CA	ASP ASP	262 262	59.358 59.268	35.071 35.285	50.915 49.400	1.00 64.85	AAAA C
ATOH	2516	20	ASP	262	59.389	36.713	48.931	1.00 76.42	AAAA C
ATOH	2517	ODI	ASP	262	59.173	37.708	49.701	1.00 79.81	AAAA O
ATOH AFOLL	2519 2519	OD2	ASP	262 262	59.404 58.121	36.873 35.706	47.671 51.529	1.00 80.46	O AAAA D AAAA
ATOH	2520	Ö	ASP	262	57.851	35.919	51.516	1.00 52.48	AAAA C
VLCII	2521	:!	SER	263	57.259	34.849	52.219	1.00 53.43	744A II
ATOH	2323	CN	SER	263	56.047 55.020	35.352	52.734 52.885	1.00 52.84	D AAAA D AAAA
ATOH HOTA	2524 2525	CB OG	SER SER	263 263	55.010	34.245	51.791	1.00 66.80	AAAA O
ATOU	2527	Ç	SER	263	56.310	35.965	54.117	1.00 49.52	2 AAAA
ATOLI	2528	0	SER	263	57.396	35.737	54.709	1.90 42.33 1.90 38.93	0 AAAA 11 AAAA
ATOH ATOH	2529 2531	I! CA	GLU GLU	264 264	55.320 \$5.362	36.783	54.540 55.921	1.00 36.70	AAAA C
ATOH	2532	CB	GLU	264	54.359	38.337	56.208	1.00 43.71	AAAA C
ATC:	2533	CG	GLU	264	54.575	39.482	55.213	1.00 37.74	AAAA C
ATOH ATOH	2534 2535	CD	GLU	264 264	55.374 55.493	40.632	55. 7 93 57.0 3 4	1.00 34.36	AAAA O
ATOH	2536		GLU	264	55.832	41.576	55.146	1.00 39.60	AAAA O
HOTA	2537	Ċ	GLU	264	55.098	36.056	56.827	1.00 35.84	AAA C
HOTA	2538 2539	0	GLV	265 265	54.368 55.861	35.151 35.938	56.355 57.962	1.00 39.60 1.00 35.64	C AAAA II AAAA
ATOH	5241	ÇA.	GLY	265	55.671	34.690	58.727	1.00 40.30	2 AAAA
ATOH	2542	Ξ	GLT	265	54.622	34.716	59.829	1.00 39.51	AAAA C
ATOH	2543	() ()	CHE	265 266	53.951 54.537	35.699 33.569	60.135 60.516	1.00 37.20 1.00 35.75	0 AAAA 11 AAAA
ATO:	2546	CA	5113	266	53.637	33.434	61.625	1.00 33.70	aaaa c
ATC11	2547	CB	2H3	296	53.924	32.155	32.396	1.00 28.20	AAAA C
ATOLL	2548	73	CHE	266	53.356 53.760	30.958 30.618	61.671 60. 3 77	1.00 37.07 1.00 34.72	7 AAAA 7 AAAA
ATCI:	2549 2549	CDI		266 266	\$2.383	30.195	62.313	1.00 25.65	AAAA C
ATOH	2551		PHE	266	53.225	29.506	59.760	1.00 37.72	AAAA C
ATOH	2552	CE3		266	51.879	29.094	61.672 60.462	1.00 24.63 1.00 23.58	C AAAA C AAAA
ATOH ATOH	2553 2554	C C C	PHE	266 266	52.260 53.571	28.708 34.570	62.608	1.00 35.82	AAAA T
ATOI	2555	ō	PHE	266	54.446	35.372	62.979	1.00 39.23	O AAAA
ATOH	2556	11	VAL	267	52.360	34.763	63.161	1.00 37.10	AAAA C
ATOH	2558	CB CB	VAL VAL	267 267	\$2.118 \$1.315	35.812 36.974	64.113 63.567	1.00 36.00 1.00 39.01	AAAA C
ATOH ATOH	2559 2560		VAL	267	51.526	37.601	62.230	1.00 31.10	raaa t
ATCH	2551	002	VAL	267	10.400	36,400	63,570	1.00 36.88	
ATOH	2562	Ç	∵ΛL	267	51.506	35.260	65.400	1.00 33.55	AAAA 0 AAAA 0
HOTA	2563 2564	Ü	VAL	267 26 8	\$1.200 \$1.539	34.098 36.088	65.515 66.477	1.00 35.98	AAAA II
ATOU	2566	ĊΛ	ILE	268	50.867	35.573	67.691	1.00 39.79	AAAA C
HOTA	2567	CB	TLC	268	51.791	35.232	68.84	1.00 31.17	T AAAA S AAAA
HOTA	2568 2569		ILE	268 268	50.922 52.403	35.253 33.866	70.150	1.00 23.56	PANA C
ATCI	2570		ILE	269	53.421	33.546	69.806	1.00 25.93	AAAA ?
ATOH	2571	C	TLE	268	49.806	36.608	68.000	1.00 42.44	AAAA C AAAA O
HOTA	2572	Ü	1 LE	268	50.116	37.767 36.292	68.327 67.864	1.00 39.99	1 AAAA
ATOH	2573 2575	D CA	HIS	269 269	40.528 47.491	37.329	60.173	1.00 44.28	PAAA C
ATOI	2576	CB	HIS	269	46.885	37.876	66.991	1.00 45.48	AAAA C
ATOH	2577	CG	HIS	269	45.915	39.986	67.079	1.00 54.33	7 AAAA T AAAA
I DOTA	2579 2579		S HIS		44.551 46.356	39.014 40.290	67.396 67.307	1.00 46.61 1.00 51.86	AAAA II
HOTA	2591		HIS		45.282	41.057	67.137	1.00 55.17	MANA T
ATOH	2592	HE:	2 1113	289	44.175	40.324	67.369	1.00 46.97	AAAA II
HOTA	2584	•	lilS	269	46.423	36,740	69.074 69.717	1.00 45.54 1.00 42.94	2 AAAA 3 AAAA
ATC!	2585	o	HIE	269	45.076	35.559	97		

TECH CENTER 1000

RECEIVED

AUG 0 8 2003

TECH CENTER 1600/2900

Application No. 09/555,275	Annotated Sheet Showing Changes

						26/58		
ATOU	.:596	II ASE	279	45,953	37.526	70,959	1.00 40.92	AAAA II
ATOH	2588	CA ASS	270	44.949	37.005	71.991	1.90 48.03	AAAA C
ATGH	25 99 2590	92A BD 92A DD		43.573 42.919	37.01; 38.393	?0.339	1.00 63.63	AAAA C
ATCH	2521	OD1 AS2		11.737	38.379	70,294 69,835	1.00 80.82 1.00 90.92	AAAA C AAAA O
ATOH	2592	ODS ASE	270	43,407	39.494	70.652	1.00 86.49	O AAAA
ATCH ATCH	2593 2594	C A32	270 270	45.226 44.357	35.667	71.594	1.00 44.66	AAAA C
ATOH	2595	ti GLY	271	46.477	34.782	71. 57 6 71.924	1.00 45.54 1.00 41.63	AAAA O H AAAA H
ATOH	25,97	CA GLY	271	46.839	34.117	72.506	1.00 37.20	AAAA C
ATCH!	2598 2599	0 35%	271 271	46.819 46.775	32.998	71.537	1.00 39.15	AAAA C
ATON	2600	11 650		47.015	31.865	72.039 70.251	1.00 46.35	O AAAA II AAAA
ATOH	2602	CA GLU		47.109	32.092	69.371	1.90 43.56	AAAA C
ATOH ATOH	2603 2604	CE GLU	_	45.753 45.774	31.737 30.600	68.876 67.839	1.00 37.58 1.00 45.30	AAAA C AAAA C
ATOH	2605	כם סבני	272	44.413	30.528	57.149	1.90 36.92	AAAA C
HOTA HOTA	2606 2607	OE1 GLU	272 272	43.515 44.223	31.345	67.533	1.00 48.41	AAAA C
ATOH	2608	G GLU	272	48.211	29.696 32.324	66.286 68.335	1.00 44.10	O AAAA C AAAA
ATO: I	2609	O GLU	272	48.445	33.447	67.896	1.00 37.04	AAAA O
HOTA	2610 2612	OA CYS	273 273	20.016 18.913	31.237	68.138 67.188	1.00 38.83 1.00 40.27	AAAA C
ATCH	2613	C CYS	273	49.321	30.810	65.883	1.00 42.16	AAAA C
ATCH!	2614	O CYS	273	48.713	29.712	65.831	1.00 40.86	AAAA C
ATOH ATCH	2615 2616	CB CYS	273 273	51.099 52.337	30.148	67.529 66.260	1.00 40.21 1.00 39.79	AAAA C AAAA S
ATOH	2617	11 14ET	274	49.373	31.749	64.933	1.00 33.70	II AAAS
ATCH	2619	CA HET	274	18.586	31.351	63.720	1.00 36.68	AAAA C
ATOH ATOH	2620 2621	CU HET	274 274	47.136 46.923	31.861	63.847 63.691	1.00 29.11 1.00 36.51	AAAA C AAAA C
ATOH	2622	SI) HET	274	45.477	33.921	64.677	1.00 40.00	AAAA S
ATOH ATOH	2623 2624	CE HET	27.1 27.1	45.650	35.658	64.754	1.00 02.47	AAAA C
ATOH	2625	O HET	274	49.426 50.167	31.900 32.880	62.608 62.672	1.00 39.35 1.00 41.00	AAAA C AAAA O
ATOH	2626	a sua	275	19.378	31.353	61.428	1.00 42.55	II AAAA II
ATCH ATCH	2628 2629	CA GLII	275 275	50.041 49.618	31.834 30.765	60.232 59.242	1.00 37.69 1.00 34.01	AAAA C
ATOH	2630	CG GLII	275	49.329	31.274	57.864	1.00 56.40	AAAA C
ATOH	2631	CD GLH	275	49.275	30.190	56.812	1.00 66.46	AAAA C
HOTA ATON	2632 2633	OE1 GLH	275 275	49.941 48.451	29.151	56.910 55.799	1.00 67.24 1.00 78.29	0 AAAA N AAAA
ATOH	2636	C GLII	275	49.721	33.195	59.720	1.00 35.41	AAAA C
HOTA	2637 2638	O GLN	275 276	50.526 18.566	33.831 33.754	59.056 59.056	1.00 35.95 1.00 41.70	AAAA O AAAA II
ATCH	3610	CA GLU	276	48.222	35.080	59.571	1.00 43.96	AAAA C
ATCH	3641	CB GLU	276	47.387	34.884	58.245	1.00 42.40	AAAA C
ATOH ATOH	2642 2643	CD GLU	276 276	47.154 48.359	36.269 37.199	57.650 57.460	1.00 53.84 1.00 61.37	AAAA C
ATOH	2644	OE1 GLU	276	49.356	36.595	56.943	1.00 67.32	AAAA O
ATOH HOTA	2645 2646	OES GLU	276 276	48.242 47.444	38.411	57.811 60.540	1.00 45.16 1.00 39.74	AAAA C AAAA C
ATOH:	2647	O GLU	276	16.760	35.935 3 5 .449	61.444	1.00 45.06	AAAA O
ATON	2648	II CCS	277	47.495	37.235	60.500	1.00 38.69	II AAAA
ATON	2650 2651	CA CTS	277 277	46.718 45.205	38.089 37.938	61.332 60.994	1.00 46.11 1.00 52.70	AAAA C
ATOH	2652	0 C(3	277	44.760	37.511	59.936	1.00 49.43	AAAA O
ATOH ATOH	2653	CB CYS	277	47.039	39.537	61,111	1.00 45.56	AAAA C
ATOH	2654 2655	SG CTS	27 7 27 8	44.380 48.629	40.083 38.261	61.64 5 61.993	1.00 5 2.86 1.00 5 4.63	E AAAA II AAAA
ATOH	2656	CD PRO	279	44.924	38.778	63.311	1.00 57.20	AAAA C
ATOH ATOH	2657 2658	CB PRO	279 278	42.946 42.445	38.185 38.635	61.899 63.267	1.00 5 5.82 1.00 5 5.61	AAAA C AAAA C
ATOH	2659	CG PRO	278	43.605	38.670	64.153	1.00 55.58	AAAA C
ATOH	2660	C PRO	278	12.187	39.116	60.701	1.00 52.55	AAAA C
HOTA HOTA	2661 2662	O PRO	278 279	43.083 41.370	40.195 38.845	60.631 65.143	1.00 48.76 1.00 49.35	AAAA O II AAAA
ATOH	2654	CA SER	279	40.915	39.720	59.140	1.00 52.03	AAAA C
I FOTA	2665 2666	OB SER	279 279	39.290	39.572	58.975	1.00 47.62 1.00 68.16	AAAA C AAAA O
ATOH	2668	C SER	270	39.320 41.003	38.778 41.209	57.785 59.173	1.00 55.40	AAAA C
ATOH	2669	O SER	279	41.225	41.740	58.059	1.00 55.40	AAAA O
ATOU	2670 2672	II GLY	260	40,775 40,968	41.962	60.247 59.868	1.00 55.32	AAAA II AAAA C
ATOH	2673	C GLY	280	42.248	43.890	60.479	1.00 55.98	AAAA C
ATOH	2674	O GLY	290	42.249	45.097	60.772	1.00 56.00	AAAA O AAAA II
ATOH ATOH	2675 2677	CA PHE	291 281	43.213 44.506	42.983	60.742 61.262	1.00 55.42	AAAA C
ATOH	2678	CB PHE	281	14.938	42.644	62.523	1.00 61.20	AAAA C
HOTA	2679	CO PHE	291	43.959	42.792	63.637	1.00 53.6 6 1.00 60.47	AAAA C
ATOH	2680 2691	CDT BHE	281 281	44.142	43.702	64.639 63.712	1.00 60.00	AAAA C
ATOH	2682	CET CHE	291	43.272	43.901	65.678	1.00 64.71	AAAA C
ATOH ATOH	2684 2683	CES BIR	281 281	41.931	42.162	64.756 65.744	1.00 63.19	AAAA C AAAA C
	2004	1116	1	42.141	43.115	. J 111	1.00 30.00	LAAAL .

AAAA C

RECEIVED

TECH CENTER 1600/200

15.630 45.738 46.600 47.907 281 ATOH 2686 Ċ BHE 42.395 1.00 38.84 AAAA 59.327 C IOTÁ, 2687 1: 1LE 282 43.990 69.557 AAAA II 1.00 49.55 ATOL 2689 I LE 282 43.984 59.749 AAAA 1.00 45.00 **ATOH** 2690 ILE 282 47.945 45.188 50.799 1.00 30.25 AAAA **ATOH** 2691 C-32 ILE 8888 8888 48.041 46.494 59.507 1.00 24.60 0000 ATOH 2602 051 ILE 282 49.092 45.022 57.795 1.00 38.71 ATCI 2693 COL ILE 2 AAAA 2 AAAA 0 AAAA 11 AAAA 282 49.191 46.043 56.669 1.00 33.38 ATCH 2694 ILE 282 49.081 60.373 61.759 60.298 1.00 44.30 43.889 282 ATC/-I 2695 0 ILE 19.379 44.447 1.00 48.49 ATOH 2596 :1 ARG 283 50.126 45.153 1.00 48.68 ***** ATOH 2698 CA AR:3 293 51.396 43.094 61.049 1.00 39.30 C 3699 52.300 52.295 ATOH C9 ARG 283 42,200 50.296 1.00 41.10 c 2700 9 ATOU AR.3 283 40.696 60.515 1.00 29.19 AAAA c ARG ATO: 2701 CD 283 53.078 39.986 59.451 1.00 29.85 AAAA C 2702 HΕ ATO(1 AR-5 283 52.923 1.00 29.39 AAAA II 38.545 59.404 2704 ATOH C: ARG 283 51.362 38.024 58.646 1.00 37.61 AAAA C 2705 ATOH EH1 AR-3 283 51.065 1.00 31.41 AAAA 38.846 57.944 2708 UH2 ATOH ARG 283 51.651 36.722 58.595 1.00 31.97 AAAA ATOH 2711 ARG 283 51.945 44,498 61.190 1.00 42.27 AAAA 2712 ATOH ARG 283 51.931 45.228 60.173 1.00 43.42 AAAA O ASII 52.362 52.733 ATOH 2713 1: 284 44.886 62,422 1.00 39.49 AAAA II ATOH 2715 CA ASII 284 46.311 62.574 1.00 42.07 AAAA ATO: 2721 c ASII 1.00 41.64 284 54.078 46.656 61.929 AAAA ATOH 2722 O ASII 284 61.742 54.431 47.798 1.00 39.01 C AAAA 2716 ATOH СB ASII 284 1.00 37.33 52.734 46.760 64.032 AAAA C ATOH 2717 CG ASH 1.00 50.21 AAAA C 284 53.917 46.028 64.611 ATOH 2718 ODI ASI1 284 1.00 44.30 54.609 45.104 64.192 ATOH 2719 1102 ASil 284 54.303 AAAA 46.432 65.842 12 54.931 45.699 45.815 ATOH 2723 'li GLï 285 61.562 1.00 40.10 AAAA II ATOH 2725 CA 55. 27: 69.593 1.00 26.91 GLT 285 AAAA C **ATOH** 2726 Ç GLï 285 56.9% 59.848 1.00 33.10 AAAA 44.468 ATOH 2727 0 GLY 285 55.584 43.331 60.187 1.00 29.51 AAAA ATOH 2728 11 SER 286 56.915 44.619 58.766 1.00 26.53 AAAA 11 2730 ATOH C.A SER 286 57.109 57.975 43.385 1.00 32.67 AAAA 2731 57.944 ATOH C3 SER 286 56.757 1.00 33.19 AAAA 43.681 ATCH 2732 CG SER 286 58.283 42.480 56.014 1.00 31.95 AAAA 2734 **ATOH** c SER 286 57.750 42.310 58.836 1.00 34.57 AAAA 2735 ō **ATOM** SER 286 58.700 42.495 59.607 1.00 44.29 AAAA 2736 ATOH 11 GLH 287 57.227 41.148 58.940 1.00 34.45 AAAA ATOH 2738 CA GLII 287 57.738 40.005 59.634 1.00 35.25 AAAA ATOH 2739 CB GLII 287 AAAA AAAA 59.139 39.610 59.083 ATOH 2740 ÇĞ GLH 287 59.037 39.234 37.963 1.00 26.61 Ç 57.664 ATOH 2741 CD **GLI1** 287 58.539 58.192 1.00 21.25 AAAA 57.130 37.023 ATOH 2742 OE1 GLH 287 57.845 1.00 AAAA O 28.18 ATOIL 2743 HE2 55.782 GLII 287 58.492 37.838 1.90 27.55 AAAA **ATOH** 2746 c 57.773 GLII 287 40.286 61.111 1.00 30.25 AAAA NOTA 2747 32.78 0 GLII 287 58.163 61.908 1.00 AAAA 39.415 ATOIL 2748 :1 SER 288 57.021 41.217 61.624 1.00 32.49 AAAA ATO! 2750 CA SER 298 41.322 1.00 28.98 AAAA 56.596 63.043 **ATOH** 2751 CB SER 289 56.024 42.675 63.313 1.00 35.79 AAAA 2752 42.612 1.00 36.61 ATO! 0.3 SER 55.639 64.701 AAAA 288 2754 ATQ14 SER 288 55.655 40.285 63.442 1.00 28.96 AAAA 2755 ATOH 0 SER 288 54.993 32.776 62.553 1.00 31.16 AAAA 0 2756 **ATCH** :1 HET 289 55.774 39.720 64.621 1.00 32.51 AAAA 11 ATOH! 2758 CA HET 289 54.975 38.697 65.105 1.00 34.53 AAAA 2750 ATOH CB HET 289 55.507 37.823 66.153 1.00 30.31 AAAA 2760 ATOH CG HET 289 56.571 36.872 65.680 1.00 40.50 AAAA C 2761 ATOH AAAA AAAA SD HET 289 56.977 35.623 66.881 1.00 31.65 S ATOH 2762 289 CE HET 55.745 34.315 66.508 1.00 30.47 C ATOH 2763 65.703 C 289 AAAA HET 53.557 39.286 1.00 35.55 0 AAAA ATOH 0 2764 HET 289 66.014 52.630 38.512 1.00 38.37 ATOI-I 2765 1.00 29.54 AAAA п TTR 240 65.742 11 53.380 40.565 ATOH1 2767 1.00 38.81 AAAA CA 66.297 TYR 290 52.363 41.358 c **ATOI**1 2768 C3 290 42.589 42.194 67.042 AAAA TYR 1.00 36.72 2769 2770 AAAA ATOH C2 290 53.570 1.00 (1.94 TYR 68.351 200 37.79 ATO:1 CDI TTR 54.932 68.350 1.00 AAAA 41.789 41.368 ATQ11 2771 CEL TTR 290 55.548 69.503 1.20 32.60 AAAA. **ATOH** 2772 CDD TTR 290 52.987 69.570 1.00 39.93 AAAA ATG: 2773 290 41.750 1.00 36.16 AAAA CE2 TIR 53.501 70.748 ATOH 2774 CC 290 41.355 70.693 1.00 38.85 AAAA TTR 2775 ATO11 OH 290 71.751 1.00 43.41 AAAA TIR 55.501 40.923 2777 290 290 291 51.361 51.733 65.270 64.227 ATO: c TTR 41.955 1.00 45.54 AAAA C 1.00 47.10 AAAA O ATOIL 2778 0 TïR 42.520 AAAA II 2779 1.00 44.68 ATOIL 11 CYS 50.071 41.698 65.537 ATOU 2781 1.00 47.20 AAAA 291 AAAA C CA CIS 49. 317 42.205 64.685 c **ATOI**1 1.00 46.06 2782 CYS 291 48.295 43.434 65.194 1.00 49.45 AAAA o ATO:1 2783 0 CYS 291 47.992 43.550 66.343 1.00 43.44 AAAA C HOTA 2784 CB CYS 291 47.973 41.103 64.483 ATOH: 2785 SG C.S 291 45.766 39.715 63.683 1.00 45.49 AAAA s AAAA II ATON 2796 11 ILE 292 44.453 64.365 1.00 46.82 43, 136 392 393 Ċ ATO: 2788 CA ILE 1- . 199 45.651 64.755 1.00 50.64 AAAA 2799 AAAA 46.932 ATCH CB ILE 49.267 64.779 1.00 39.19 AAAA **ATOH** 2790 032 ILE 292 19.291 46.885 05.861 1.00 44.39 c AAAA CG1 ATOH 2791 ILE 403.402 1.90 47.095

27/58

60.240

1.00 48.00

43.217

WO 99/28347

2685

291

F315

ATCH

AUG O G 2003

Annotated Sheet Showing Changes

Application No. 09/555,275

153 A

Figure 1A-26

AUG 0 8 2003
TECH CENTER 1600/2900

RECEIVED

							28/58		
IKITA	27 22	CDI	145	292	49.234	48.564	63.10⊬	1.00 30.80	AAAA =
ATCH	27.23	Ċ	LUE	292	46.240	46.003	63. 9 06	1.00 50.01	AAA T
ATOH	2794	C	I LE	292	46.165	45.524	62.674	1.00 46.64	AAA O
ATCH	2795	;1	PRO	293	45.150	46.507	64.395	1.00 51.86	AAAA II
ATON	2796	CD	PRO	293	45.009	16.804	65.832	1.00 51.05	AAAA C
ATOU	27 97	SA	PHO	293	43.958	46.930	63.675	1.00 51.40	PAAA C
ATOH	27.98	C.5	PRO	293	43.170	47.784	64.681	1.00 49.00	AAAA C
ATOH	2799	7.5	PSO	293	43.533	47.112			AAVA C
	2800	÷.	CRO	293			45.951	1.00 53.73	
ATCH					44.253	47.870	62.525	1.00 51.68	AAAA C
ATCH	2801	() 	PRO	293	45.053	49.780	62.737	1.00 51.92	AAAA O
ATCH	2902	11	CLR	394	43.607	47.621	61.408	1.00 50.66	AAA II
ATCII	2804	CA.	CAR	564	43.811	18.454	60.254	1.00 57.90	AAAA C
HOTA	2895	C	CYS	294	43,219	15.818	40.345	1.00 59.59	AAAA C
ATOH	2806	Ci	CV3	294	43.744	50.814	59.785	1.00 60.87	ANNA O
ATOH	2897	CB	C.S	294	43.229	47.686	59.046	1.00 57.59	AAAA C
ATOL	2808	SG	C.; 2	294	44.408	45.460	58.563	1.90 51.12	AAAA S
ATOH	2608	11	ALA	295	42.009	50.031	60.954	1.00 65.87	II AAAA II
ATOH	2011	CA	ALA	295	41.391	51.386	60.804	1.00 71.13	AAAA C
ATOI:	2812	CB	Al-A	295	42.311	52.459	01.393	1.00 63.82	AAAA C
AT'OLI	2813	12	ALA.	295	40.971	51.770	59.379	1.20 69.17	AAAA C
ATCH	2814	O	ALA	295	41.421	52.717	58.762	1.00 64.70	AAAA O
ATCH	2815	11	GLY	296	40.153	50.920	58.775	1.00 71.30	AAAA II
ATOH	2817	CA	GLY	296	39.640	51.049	57.416	1.00 72.66	AAAA C
ATOI	2818	c	GLY	296			56.769	1.00 74.20	AAAA C
	2819		GLY	296	39.895	49.686			
ATOH		Ċ				49.819	57.190	1.00 75.04	AAAA O
IOTA	2820	11	PRO	297	39.561	49.540	55.197	1.00 71.98	AAAA II
ATOH	2821	CD	PRO	297	38.928	50.561	54.637	1.00 72.15	YAAN C
ATOH	2822	ΞA.	PRO	297	39.958	18:344	54.777	1.00 68.23	AAAA C
FICTA	2823	CS	PRO	297	39.428	48.603	53.369	1.00 72.57	AAAA C
ATOH	2824	ĊĠ	PRO	297	38.470	49.697	53.49n	1.00 74.01	AAAA C
ATOH	2825	C	PRO	297	41.480	48.306	54.860	1.00 65.79	AAVA C
ATOH	2826	Ç:	FRO	297	42.147	49.323	54.997	1.00 62.72	O AAAA
HOTA	2827	f1	CYS	298	42.039	47.135	55.973	1.00 63.85	AAAA II
ATOH	2829	CA	CYS	298	13.161	46.953	55.248	1.00 54.47	AAAA C
ATOH	2830	C	CYS	298	44.109	47.303	53.998	1.00 54.56	AAAA C
ATOH	2831	0	CLS	298	43.621	47.030	52.820	1.00 54.83	AAAA O
ATOH	2932	CB	CYS	298	43.665	45.544	55.669	1.00 47.65	AAAA C
ATOH	2833	SJ	Cis	298	43.501	45.115	57.371	1.00 46.12	AAAA S
ATOH	2834	11	PRO	299	45.310	47.876	53.967	1.00 49.83	AAAA II
	2835	CD	PRO	299				1.00 48.14	AAAA C
HOTA					16.087	48.168	55.194		
ATOH	2836	CA	FRO	299	16.055	48.212	52.787	1.00 43.67	AAAA C
ATOH	2837	CB	PRO	299	17.267	18.965	53.281	1.00 44.08	AAAA C
ATOH	2838	CG	PRO	299	47.454	48.361	54.628	1.00 51.38	AAAA C
ATOH	2839	2	PRO	299	46.341	46.969	52.010	1.00 38.86	AAAA C
ATOH	2840	0	PRO	299	46.372	45.874	52.546	1.00 42.85	AAAA O
HOTA	5841	11	LïS	300	46.310	47.073	50.712	1.00 38.30	TI AAAA
ATOI1	2943	CA	1.75	300	19:18:	45.958	49.812	1.00 42.62	AAAA C
HOTA	5844	CB	LïS	. 300	45.176	45.226	49.595	1.00 34.28	AAAA C
ATOI1	2845	ÇĞ	LTS	300	45.346	43.901	48.920	1.00 41.45	AAAA C
HOTA	2846	CD	LYS	300	44.013	43.413	49.378	1.00 48.31	AAAA C
ATOH	2847	CE	LT3	300	44.388	42.027	47.797	1.00 48.57	AAAA C
ATOH	2848	ns	LYS	390	43.562	42.031	16.478	1.00 63.70	AAAA II
ATOH	2852	Ċ	LYS	300	46.964	46.479	48.432	1.00 48.72	AAAA C
ATOL	2853	ن	LTS	320	46.413	17.383	47,776	1.00 46.09	AAAA O
ATO:	2854	11	VAL	301		-	18.054	1.00 48.15	AAAA II
		CA			18.150	15.981		1.00 44.52	AAAA C
ATOH	2856		VAL	301	48.802	46.462	16.871		
ATOH	2857	CB	VAL	301	50.292	46.729	47.074	1.00 51.52	AAAA C
ATOH	2858	CG1		301	51.008	47.200	45.796	1.00 43.07	AAAA C
ATOLI	2859		VAL	301	50.495	47.794	45.141	1.00 49.50	AAAA C
ATOH	2860	Ç	AVT	301	48.520	45.410	15.837	1.00 44.59	AAAA C
ATOH	2861	0	VAL	301	18.913	44.291	16,060	1.00 43.70	O KAAA
ATON	2862	11	CYS	302	47.910	45.816	44.710	1,00 47.98	AAAA II
ATOLI	2864	CA	CYS	302	47.645	44.735	43.739	1.00 55.19	AAAA C
ATOL	2865	C	CYS	302	18.594	44.968	12.583	1.00 57.64	AAAA C
ATON:	2966	ဂ	CYS	392	48.852	46.152	42.313	1.00 60.23	AAAA O
ATOH	2867	C9	CVS	302	46.186	44.630	43.330	1.00 68.30	AAAA C
ATON	2868	ڌاڪ	CYS	302	45,070	44.360	44.751	1.90 70.31	AAAA S
HOTA	2869	11	Gias	303	49.183	43.921	42.075	1.00 58.15	AAAA II
ATOH	2871	CA	GLU	303	50,174	43.932	41.034	1.00 62.85	ANAA C .
ATCH	2872	CB	GUU	303	51.503	14.006	11.595	1.00 67.85	AAAA C
ATOH	2873	CG	SLU	303	51.760	43.487	43.014	0.01 67.46	AAAA C
ATOH	2871	CD	GLU	303	51.999	41.992	13.097	0.01 67.94	AAAA C
ATOH	2875		GFA	303	53.014	41.514	42.561	0.01 67.67	AAAA
	2876		GLU	303	51.147	41.290	43.697	0.01 67.65	AAAA O
ATON								1.00 64.12	AAAA C
ATOH	2877	c	SLU	303	50.096	42.662	10.194		AAAA O
ATOH	2878	0	CLU	303	50.162	41.562	10.708	1.00 65.08	
ATOH	2979	11	GLU	304	49.967	12.791	38.904	1.00 67.37	AAAA II
ATO(1	2881	CA	GLU	304	49.672	41.583	38.094	1.00 74.63	AAAA C
HOTA	2882	CB	GLU	304	48.205	41.596	37.458	1.00 71.71	AAAA C
LIOTA	2983	C:3	GLU	304	47.339	42.663	38.031	1.00 84.54	AAAA C
ATOH	2884	CD	GLU	304	45.930	42.152	38.195	1.00 87.56	AAAA C
ATOH	2885	051	GLU	304	45.438	41.571	37.179	1.00 89.13	O AFA
ATC11	2896		GLO	304	45.249	42.269	39.233	1.00 93.19	2212
ATOI	2887	Ċ	SLU	304	50. 466	41.307	37,130	1.00 76.10	C AVA
ATON	2888	ò	GLU	304	51.911	41.962	37.217	1.00 74.78	MANA O
			1130	2.7	50.701	44.500			

28/58

									•
							29/58		
ATOH:	2980 2991	D CA	GLU GLU	305 305	50.899 51.932	39.656	30.506	1.00 77.31	AAAA II
ATOH	2892	.α	GLU	305	51.467	38.390	35.674 34.970	1.00 79.95	AAAA C AAAA C
ATOH	2063	Ç-3	(51.0)	305	52.307	37.937	3.00 د	1.00 87.28	AAAA C
ATCH	5634	CD.	GLU	305	51.758	35.891	32.886	0.01 83.39	****
ATOH ATOH	2995	OEC	GEU	305 305	50.760 52.310	36.234	33.252	0.01 83.66	AAAA O
ATOL	497		SEC	305	52.276	36,700 40,737	31.780 34.666	0.01 83.73 1.00 75.97	O AAAA T KAAA
ATOLL	2998	5	GLU	305	\$3.381	41.268	34.513	1.00 76.54	AAAA O
INTA	5690	11	UTS	306	51.291	41.191	33.88:	1.00 79.22	AAAA II
ATOH	2001 2002	CB CA	LYS LYS	3.46 306	51.479	42.329	33.004	1.00 75.99	AAAA C
ATC:	2903	C2	UIS	306	50.467 51.208	12.253	31.955 30.527	1.00 79.78 1.00 94.52	AAAA C WAAA C
ATCH	2904	CC	LVS	305	50.313	42.191	29.314	1.00 92.78	AAAA S
HOTA	2205	CE	LYS	305	50.740	13.227	28.261	1.60 97.10	AAAA C
ATOH ATOH	2206	C 110	LYS	306 306	50.938 51.391	44.554	28.929 33.703	1.00 84.97	ii aaaa C aaaa
ATOH	2911	ō	Lis	306	50.703	43.862	34.718	1.00 76.08	AAAA O
ATOH	2912	1:	LYS	307	52.000	14.700	33.180	1.90 71.15	AAAA II
ATO:	2914	CΛ	LT3	307 307	51.934	16.053	33.592	1.00 69.45	4444
ATOH	2915 2916	C9	LYS LYS	397 397	53.022 54.419	16.903 46.837	33.008 33.564	1.00 79.64	AAAA C AAAA C
ATOH	2917	CD	LTS	307	55.257	48.084	33.374	1.00 85.84	AAAA C
HOTA	2918	CE	LIS	307	55.708	48.215	31.924	1.00 97.07	C AAAA
ATOH	2919	IIC	LYS	307	54.649	48.840	31.047	1.00 97.80	II AAAA II
ATOH	2924	0	LYS	307 3 07	50.562 50.919	46.716	33.525 34.431	1.00 64.46	AAAA C AAAA O
ATOH	2925	ij	THR	308	49.979	46.661	32.323	1.00 65.94	AAAA :I
ATO()	2927	-CA	THR	308	48.709	47.319	30.091	1.00 64.56	AAAA C
ATOH	2028	CB	THE	308	18.711	17.977	30.711	1.00 59.91	AAAA C
ATOH ATOH	2429 2931	031 002	THR THR	308 308	49.834 47.392	18.813	30.577 30.561	1.00 61.97	ጸ ቆ <mark>ጸ</mark> ሕ ፡፡ ጸጸጸል ፡፡
ATOH	2932	c	THR	308	47.514	45.379	32.234	1.00 61.92	AAAA C
ATCH	2233	O	THR	308	47.412	45.415	31.477	1.00 62.05	AAAA O
ATCH	2934	11	LTS	309	16.675	16.719	33.211	1.00 55.66	II AAAA.
ATOH	2936 2937	CB CB	LYS	30 è 30 è	45.456 45.456	45.926 45.880	33.445 34.904	1.00 54.67	C KAAA C KAAA
ATON	2938	ĊĞ	LYS	309	43.601	15.541	35.223	1.00 57.50	AAAA C
ATO(1	2939	CD	LYS	30.9	43.390	44.039	35.086	1.00 59.50	AAAA C
ATOH	2940	Œ	LYS	300	42.703	13.448	36.324	1.00 57.31	AAAA C
ATCH ATCH	2941 2945	C 112	LYS	309 309	42.758 44.391	41.954	36.236 32.548	1.00 57.22	aaaa c
ATOH	2946	õ	LYS	309	44.074	17.763	32.680	1.00 47.23	AAAA O
HOTA	2947	Н	THR	310	43.895	45.772	31.610	1.00 47.67	AAAA II
ATOH	3949	CA CB	THR	310	42.862	16.328	30.733	1.00 51.89	AAAA C AAAA C
ATOH ATOH	2950 2951	CB O51	THR THR	310 310	43.161 41.909	46.015 45.710	29.266 28.635	1.00 66.29	AAAA O
ATOH	2953		THR	310	44.032	44.791	29.139	1.00 55.18	AAAA C
1 IOTA	2954	Ç	THR	310	41.468	45.841	31.117	1.00 51.15	AAAA C
HOTA	2955 2956	0	THR	310 311	41.162	14.689	30.991 31.732	1.00 49.27	O AAAA 11 AAAA
ATOH	2958	CA	ILE	311	10.684 39.363	16.706	32.276	1.00 48.67	AAAA C
ATOH	2959	CB	ILE	311	39.120	47.396	33.462	1.00 49.27	AAAA C
ATOH	2960	_	ILE	311	37.655	17.596	33.769	1.00 50.72	AAAA C
ATOH ATOH	2961 2962	COI		311 311	39.896 39.847	48.939	34.699 35.739	1.00 41.34	AAAA C AAAA C
ATOH	2963	C	ILE	311	38.334	46.729	31.186	1.00 45.37	AAAA C
ATOH	5661	Ō	I LE	311	38.132	17.875	30.759	1.09 37.14	aaaa o
ATOH	2965	11	ASP	312	37.971	45.678	30.524	1.00 50.10	AAAA II AAAA C
ATOH	2967 2968	CA CB	ASP	312 312	36.991 37.546	45.842 45.152	29.377 29.128	1.00 59.45	AAAA C
ATOH	2969	CG	ASP	312	37.761	43.671	28.392	1.00 65.64	AAAA C
ATOH	2970	ODl		312	38.525	43.034	27.636	1.00 72.60	O AAAA
ATOH	2971	OD2		312	37.154	43.176	29.593	1.00 66.86	O AAAA C AAAA
ATOH ATOH	2972 2973	C O	ASP ASP	31 <i>2</i> 312	35.589 34.729	45.007	28.867	1.00 61.00	AAAA O
ATOH	2974	ii.	SER	313	35.278	45.290	30.976	1.00 61.17	AAAA II
A:DOL1	2975	CΛ	SER	31.3	34.053	44.683	3: 459	1.00 55.73	AAAA C
ATON	2977 2978	CB	SER	313	34.121	43.201	31.093 32.282	1.00 48.22	AAAA C AAAA O
ATOH	2990	og c	ser ser	313 313	34.373 33.998	42.514	32.911	1.00 57.87	4444 C
ATOH	2081	()	SER	313	34.800	15.506	"ذ5. ذو	1.00 66.17	AAAA O
NTOIL	2982	H	755	31.4	33,001	44.205	۵۶۵۰وو	1.00 64.35	ال جمحة
ATOH	2992 2934	ĊΝ	VAL VAL	314 314	32.849 31.360	44,305	35.016 35.343	1.00 64.39	7 AAAA 2 AAAA
ATOH	2985 2986	CB CG1	VAL	314	31.024	43.693	36.681	1.00 65.60	AAAA C
ATOH	2997		VAL	314	30.927	45.823	35.319	1.00 65.27	AAAA C
1PCTA	2988	Ç	VAL	314	33.492	43.098	35.638	1.00 62.65	2 AAAA
ATOH	5486	0	VAL	314	34.029	43.141	35.704 34.878	1.00 63.92	O AAAA II AAAA
ATOH ATOH	2990	CA.	THR THR	315 315	33.468 34.020	42.011	35.284	1.00 61.82	AAAA C
ATOH	2993	CH.	THR	315	33.618	39.628	34.314	1.00 65.54	AAAA =
ATOH	2994	051	THE	315	32,403	40.004	33.534	1.00 74.05	O AAAA
HOTA	2996	CGS.	THE	315	33.339	38.356 10 9 71	. 35.104 35.323	1.00 64.86 1.00 65.80	AAAA C AAAA C
HOTA	2997	•	THE	515	35.541	40.971		1.00 03.01	

RECEIVED
AUG 0 8 2003

TECH CENTER 1600/2000

Figure 1A-28

>	ユ
5	П
 =>	
_ >>	П
2003	<
\exists	П

							30/30		
ATOU	3006	Q.	THE	315	36.21"	10.339	36,206	1.30 66.41	***
ATON	5000	11	SF.R	3:6	36.971	41.593	34.332	1.00 63.29	H KAAA
AT: TI	3001	CA	SF.R	316	37.500	41.793	34.215	1.00 58.72	AAAA C
ATON	3002	Ĉ₽.	SER	31 6	37.795	42.537	32.900	1.00 52.20	AAAA C
ATOU	3003	c٠	SER	316	37.298	43.859	32.93.	1.00 48.04	AAAA O
		Ċ							
ATOO	3005	•	SER	316	38.077	42.573	35.3#7	1.00 58.91	AAAA C
ATCC	3006	0	3ER	316	39.293	40.500	35.520	1.00 59.86	AAAA O
ATOG	3002	[1	ALA	317	37.310	13.362	36.111	1.00 55.86	11 AAAA:
ATCI!	3009	CA	ALA	317	37.750	44.194	37.191	1.90 57.17	AAAA C
4.TO! I	3:51:0	29	ALA	317	36.933	12.109	37.269	1.00 54.23	S KKAK
ATON	3011	0	ALA	317	37.689	43.487	38.539	1.00 62.05	AAAA C
4700	3012	C.	ALA	317	37.702	44.158	30. 540	1.00 60.30	i aaa
TC()	3013	:1	13211	319	37.361	12.205	38.523	1.00 67.91	AAAA II
ATOH	3015	CA	GLI:	319	37.195	41.380	39.713	1.00 70.72	AAAA C
ATON	3016	CB	GIJ:	319	36.857	39.956	39.293	1.90 74.48	AAAA C
ATON	3017	CG.	GLI!	319	36.624	38.947	10.383	1.00 89.82	XAAA C
ATON	3018	CD	GLII	318	35.265	39.080	41.048	1.00 92.69	AAAA C
ATON	3019	0£1	GLH	318	34.256	39.867	40.391	1.00 98.57	AAAA O
ATOH	3020	11E.2	GLH	318	35.356	39.509	42.308	1.00 92.51	AAAA H
ATCH	3023	C	GLH	318	38.380	41.413	40.653	1.00 72.63	AAAA C
ATOH	3024	O	انان	318	38.294	41.055	41.804	1.00 68.92	AAAA O
ATOH	3025	11	HET	319	39.562	41.062	40.153	1.00 75.18	AAAA II
ATOH	3927	CA	HET	319	40.946	41.175	40.825	1.00 71.85	AAAA C
ATON:	3028	≎В	HET	319	41.950	49.960	39.772	1.00 82.00	AAAA C
ATOH	3029	CO	HET	319	41.740		39.050	1.00 91.16	AAAA C
						39.644			
ATOH:	3030	รถ	HET	319	43.123	38.482	39.185	1.00106.72	AAAA S
ATOH	3031	CE	HET	319	42.486	37.105	38.231	1.00 97.56	AAAA C
ATCH	3032	C	HET	319	41.118	42.509	41.471	1.00 67.68	AAAA C
ATON	3033	Q.	HET	319	41.577	42.541	42.612	1.00 69.73	AAAA O
						4541			
ATOH .	3034	11	LEU	320	40.740	43.639	40.897	1.90 62.95	II AAAA
ATON	3036	€A	LEU	320	40.907			1.00 62.31	A444 C
						14.938	41.531		
ATON:	3037	CB	LEU	320	40.440	16.083	40.623	1.00 54.93	AAAA C
	3038	C-2						1.00 53.48	AAAA C
ATOH:		C.C	LEU	320	41.091	46.163	39.236		
ATCI1	3039	CD1	LEU	320	41.005	47.553	39.692	1.00 51.31	AAAA C
ATON			LEU					1.00 58.43	AAAA C
71011	3940			320	42.557	45.709	35.403		
ATO!!	3:041	c	LEU	350	40.209	45.008	42.001	1.00 60.30	AAAA C
								1.00 58.72	AAAA O
INOTA	3045	0	LEU	320	40.344	45.969	43.661		
ATOH	3043	11	المؤترا	321	39.267	44.106	43.112	1.00 59.62	II KAAA
								1.00 63.50	AAAA C
IICTA	3045	CA	ថមរ	321	38.492	44.128	44.343		
ATOH	3046	CB	GUI	321	37,373	43.089	44.250	1.00 62.52	AAAA C
								1.00 56.83	AAAA C
ATOH	3047	C:3	GLIII	321	36.611	42.854	45.522		
ATOH	3048	CD	GLI:	321	35.337	42.064	45.221	1.90 68.77	AAAA C
	3049	0E1						1.00 70.37	AAAA O
ATOH				321	35.362	10.969	44.715		
ATON	3050	HE2	GLII	321	34.218	42.632	15.761	1.00 63.77	II AAAA
								1.00 60.97	AAAA C
ATOH	3053	С	GUI	321	39.367	44.030	45.594		
ATOH	3054	0	GUI	321	40.262	₹3.196	45.782	1.00 57.29	AAAA O
								1.00 57.62	II AAAA
ATOH	3055	11	GLT	322	39.092	44.928	16.516		
ATOH	3057	CA	GLT	322	39.955	44.928	47.790	1.00 60.63	AAAA C
								1.90 61.78	AAAA C
ATOI	3058	C	GLT	300	41.126	45.773	47.812	1.90 81.78	
ATOH .	3059	C)	GLT	322	41.584	46.198	48.889	1.00 60.16	aaaa o
							46.676	1.00 60.03	AAAA II
TON	3060	; 1	CAS	323	41.719	46.124			
ATOH	3062	CA	CYS	323	42.938	46.845	46.528	1.00 54.20	AAAA C
								1.00 53.48	AAAA C
ATCH	3:763	Œ	CYS	323	42.924	48.307	46,910		
ATON	3064	С	CYG	323	42.105	49.148	46.503	1.00 56.43	O AAAA
								1.00 53.33	AAAA C
ATON	3065	CB	CY3	323	43.458	46.822	45.09€		
ATOH	3066	SG	CTG	323	43.325	45.202	44.249	1.00 66.22	AAAA S
	3067						17.58)	1.00 49.83	II AAAA II
ATOL		[1	THR	324	13.991	18.118			
ATOH	3069	CA	THR	324	44.164	50.161	47.811	1.00 52.29	AAAA C
ATOLL	3070	CB	THR	324	44.623	50.324	49.264	1.00 52.84	AAAA C
ATCH	3071	OGI	THR	324	45.245	10.081	10.634	1.00 59.82	KAAA O
ATOH	3073		THR	324	43.432	50.517	50.193	1.00 60.00	AAAA C
ATOU	3074	C	THR	324	45.151	50.800	16.844	1.00 48.91	AAAA C
ATC:4	3075	0	THR	324	45.277	52.016	46.710	1.00 46.90	AAAA O
ATOH	307 <i>6</i>	11	ILE	325	46.021	49.963	46.254	1.00 46.87	NAAA II
ATOH	3078	CΛ	ILE	325	47.114	50.511	45.445	1.00 45.10	AAAA C
									AAAA C
ATOH	3079	CB.	ILE	325	18.173	50.577	ز16.18	1.00 43.60	
ATOH	3080	CGS	ILE.	325	42.586	50.905	45.163	1.00 47.47	AAAA C
								1.00 34.03	AAAA C
ATOU	3091	CGI	ILE	325	19.351	51.623	47.294		
LICTA	3082	CDI	I LE.	325	49.595	52.010	48.028	1.00 41.94	AAAA C
								1.00 42.88	AAAA C
ATOH	3083	C	3J1	325	17.265	49.642	44.223		
ATOU	3084	i)	1 L E	325	47.406	48.429	14.469	1.00 42.99	O KAAA
						50.239		1.00 41.19	AAAA II
ATOU	3085	11	FILE	326	47,170		43.042		
LIOTA	3087	CA.	CHE	326	17.312	49.334	41.880	1.00 42.98	AAAA C
							40.877	1.00 39.15	AAAA C
ATOH	3088	∵B	PHE	326	46.166	49.437			
ATOH	3089	CG	PHE	326	46.403	48.474	39.739	1.00 38.03	AAAA C
							39.951	1.00 39.68	AAAA C
HOTA	3090		PHE	326	16.186	47.125			
ATOH	3091	CD2	PHE	326	46.917	48.892	38.525	1.00 37.31	AAAA C
									AAAA C
ATOH	3092		SHE	326	16.447	46.139	39.023	1.00 36.52	
ATOH	3093	CE2	PIIE	326	47.136	47.919	37.551	1.00 45.74	AAAA C
								1.00 39.92	AAAA C
ATOH	3061	CI	SHE	326	46.924	46.570	37.787		
ATO(1	3095	С	SHS	326	48.682	49.673	41.280	1.00 48.78	AAAA C
								1.00 51.39	O KAAS
ATOU	3096	0	PilE	326	49.004	50.826	10.966		
ATON	3097	13	L∵ä	327	49.623	48.751	41.379	1.00 50.22	AAAA II
								1.00 51.49	AAAA C
ATOD	3000	CA	Lis	327	50.964	49. 963	40.831		
ATOH	3100	CB	LïS	327	\$2,050	48.091	11.519	1.90 58.64	AAAA C
				-		_			

30/58

Figure 1A-29

							04/50		
				222			31/58		AAAA C
ATOH	3101 3102	45 63	LYS LYS	327 327	53.254 54.528	49.997 48.257	41.991	1.00 59.15 1.00 63.40	AAAA C
ATOH	3193	CE	LYS	327	55.400	48.951	40.592	1.00 68.12	AAAA C
ATOH	3104	C 112	LYS LYS	327 327	56.260 50.895	47.889 48.464	კა. 938 39. 3 91	1.00 71.97	AAAA II AAAA C
HOTA	310 0 3109	ò	LYS	327	50.901	47.245	39.127	1.00 49.55	AAAA O
ATCH	3110		GLY	328	50.760	49.397	38.502	1.00 39.68	AAAA II
ATCH	3112		GL	328	50.647	19.038	37.080	1.00 39.44	C AAAA C AAAA
ATCH ATCH	3113 3114		GLY GLY	328 328	16.828 16.812	50.161 51.307	36.427 36.881	1.00 39.49	AAAA O
HOTA	3115	1:	ASII	329	19.286	19.813	35.289	1.00 41.47	II AAAA
ATCII	3117	CA	AGII	329	48.467	50.750	34.543	1.00 45.70 1.00 42.50	2 AAAA 2 AAAA
HOTA HOTA	3118 3119	CB CB	ASI!	329 329	49.185 50.524	50.942 51.426	33.211 33.357	1.00 42.26	AAAA C
ATON	3120	001		329	50.954	52.331	34.156	1.00 34.77	O AAAA
HOTA	3121		ASI	329	51.425	50.759	33.530	1.00 30.62 1.00 50.37	AAAA C
ATCH	3124 3125	0	HEA	329 329	47.038 46.736	50.207 49.015	34.357 34.119	1.00 50.37	AAAA O
ATOH	3136	11	LEU	330	46.090	51.143	34.413	1.00 47.13	AAAA II
ATOH!	3128	CV	LEU	330	44.691	50.860	34.151	1.00 42.53	AAAA C AAAA C
ATOH	3129 3130	CB CG	LEU	330 330	43.751 43.768	51.530 50.995	35.153 36.598	1.00 38.65	AAAA C
ATOH	3131	CD1		330	42.864	51.924	37.417	1.00 38.12	AAAA C
ATOH	3132	CDC		330	43.283	19.565	36.669	1.00 38.74	AAAA C
ATON	3133	0	LEU	330 330	44.352 44.509	51.377 52.545	32.758 32.460	1.00 39.10	AAAA O
ATOH HOTA	3134 3135	II.	LEU	331	43.933	50.516	31.904	1.00 36.10	AAAA II
ATO!	3137	CA	LEU	331	13.367	50.869	30.625	1.00 43.10	AAAA C
V.LOI.	3138	GB.	LEU	331	43.958 43.301	49.894 49.960	29.585 28.221	1.00 42.29	AAAA C
ATOH	3139	OB CD1	LEU	331 331	43.501	51.319	27.627	1.00 46.64	AAAA C
ATOH	3141	CD2	LEU	331	43.844	48.834	27.367	1.00 48.76	AAAA C
ATON	3142	Ç	LEU	331	41.872	50.568	30.705 30.779	1.00 41.12	C AAAA O AAAA
ATOH ATOH	3143 3144	11 O	LEU	331 3 3 2	41.562 41.029	49.365 51.566	30.862	1.00 41.13	AAAA II
ATOH	3146	CΛ	ILE	332	39.606	51.241	31.044	1.00 36.90	AAAA C
ATOL	3147	CB CG2	ILE	332 332	38.885 37.413	52.085 51.612	32.076 32.195	1.00 34.77	AAAA C AAAA C
ATOH ATOH	3148 3149	CGI		332	39.550	51.895	33.452	1.00 33.64	AAAA C
HOTA	3150	CDI	ILE	332	39.479	53.152	34.337	1.00 48.21	AAAA C
MOTA	3151	C	ILE	332 3 3 2	38.959 38.867	51.367 52.489	29.688 29.200	1.00 34.03	AAAA C AAAA O
HOTA	3152 31 53	O H	ILE ASII	333	38.569	50.273	29.094	1.00 35.25	N AAAA
ATOM	3155	CA	ASII	333	38.014	50.283	27.737	1.00 40.34	AAAA C
ATOH	3156	CB	ASH	333	38.960	19.499	26.797 25.310	1.00 50.50	AAAA C AAAA C
HOTA I IOTA	3157 3158	CG OD1	ASH	333 333	38.668 37.845	49.493 48.711	24.784	1.00 64.54	AAAA O
ATOH	3159		ASII	333	39.290	50.350	24.467	1.00 45.83	AAAA C
ATOLI	3162	C	ASII	333	36.666 36.462	49.591	27.755	1.00 47.63	AAAA O
HOTA HOTA	3164 3163	O II	ASH ILE	331 333	35.644	50.213	28.315	1.00 54.13	AAAA II
ATOIT	3166	CA	ILE	334	34.332	49.537	28.460	1.00 59.07	AAAA C
ATON	3167	CB	ILE	234	33.788 32.362	49.826	29.876 30.047	1.00 61.98 1.00 54.04	AAAA C AAAA C
ATOH ATOH	3168 3169	CG2 CC1	ILE	334 334	34.737	19.355	30.915	1.00 60.43	AAAA C
ATOLI	3170		ILE	334	34.346	49.687	32.317	1.00 68.57	AAAA C AAAA C
ATOH	3171	C	ILE	331	33.271	50.032 51.136	27.476	1.00 59.45	AAAA O
HOTA HOTA	3172 3173	11 O	I LE ARG	334 335	32.726 32.919	49.181	26.550	1.00 59.69	II AAAA II
ATO:I	3175	CA	ARG	335	31.910	49.567	25.573	1.00 73.93	AAAA C AAAA C
ATON	3176	CB	ARG	335	32.262	48.903	24.240 23.918	1.00 74.44	AAAA C
ATOH ATOH	3177 3178	CO	ARG ARG	335 335	33.729 34.102	19.289	22.500	1.00 86.49	AAAA C
ATOH	3179	HE	ARIG	335	34.361	48.040	21.77?	1.00 89.93	AAAA II
ATOH	3181	CS	ARG	335	34.011	47.838	20.496 19.843	1.00 93.67	aaaa c aaaa ii
HOTA	3182 3185	HH1		335 335	33.409 34.256	16.674	19.877	1.00 75.31	II AAAA II
HOTA	3188	Č	ARG	335	30.492	49.233	26.021	1.00 81.52	AAAA C
HOTA	3189	Ó	AKG	335	29.664	50.115	26.239 26.234	1.00 84.11 1.00 87.51	0 AAAA 11 AAAA
ATOH	3190 3192	II CA	ALA	336 3 3 6	30.208 28.878	47.953	26.601	1.00 92.40	AAAA C
ATOH	3193	CB	ALA	336	28.835	45.980	26.633	1.00 94.03	AAAA C
ATOH	3194	C	ALA	336	28.479	48.059	27.953 28.855	1.00 96.61	AAAA C AAAA O
ATOH	3195 3196	0	ALA GLT	336 337	29.316 27.298	48.019 48.685	28.039	1.00 99.74	II AAAA II
ATOH	3198	CA	GLY	337	26.986	49.385	29.272	1.00103.11	AAAA C
VLOII	3199	c	GLY	337	25.568	49.303	29.763	1.00105.51	AAAA C AAAA O
HOTA	3200	0	G L T	337 338	24.801 25.243	50.267 48.146	29.596 30.346	1.00106.64	AAAA II
HOTA HOTA	3201 3203	CA	HEA HEA	338	23.886	48.017	30.908	1.00106.92	AAAA C
ATOL	3204	CB	ASII	338	23.714	46.689	31.624	1.00109.14	А А АА С АА А А С
INTA	3205	CO.	ASH	338	24.103	45.544	30.928 30.625	1.00112.30	AANA O
ATOH ATOH	3206 3207		IIZA :	338 338	25.598 23.604	44.508	30.683	1.00113.72	AAAA II
ATCH	3210	C	ASII	338	23.790	49.160	31.931	1.00105.84	AAAA C

AUG	Ī
0	
8 2(
2003	T

							00.00		-
ATC:1	3211	n	ASH	330	23.544	50 345	32/58	1 24 4 12 27	
ATOH	3212	ii	ASII	339	24.290	50.345 48.762	31.739 33.099	1.00103.97	AAAA U
ATCH	3214	₹A	ASH	339	24.529	49.740	34.159	1.90107.10	AAAA C
ATOH	3215	ca cc	ASII	339	23.252	49.915	34.945	1.00109.15	AAAA C
ATOH ATOH	3216 3217	CG OD I	ASH ASH	339 339	22.777	51.351 51.931	35.003 36.089	0.01167.52 0.01107.49	AAAA C AAAA O
ATCH	3219		ASII	339	22.441	51.932	33.859	0.01107.46	AAAA II
ATOU	3221	Ċ	ASII	339	25.697	49.237	35.007	1.00106.33	AAAA C
ATOH ATOH	3222	e H	ASII ILE	310 ?3ò	25.520	48.390	35.886	1.00108.82	AAAA O
ATON	3225	CA	ILE	310	26.997 29.136	49.527	34.510 35.139	1.00101.36	AAAA II AAAA C
ATOH	3226	CB	ILC	340	29.040	48.354	34.151	1.00 93.63	AAAA C
ATOH	3227		ILE	340	28.194	47.252	33.499	1.00 99.38	AAAA C
ATCH ATOH	3228 3229	CO1	ILZ	340 340	19.726	19.158	33.070	1.00 85.50	AAAA C
ATOH	3230	ć.	ILE	340	28.897 28.7 8 3	49.634 50.357	31.915 35.706	1.00 95.32	AAAA C
ATOH	3231	0	ILE	340	29.472	51.099	31.997	1.90 97.86	AAAA O
ATON	3232	11	ALA	341	28.409	50.739	36.915	1.00 89.89	AAAA II
Aton Aton	3234 3235	CA	ALA A.IA	341 341	28.892 28.068	52.008 53.201	37.450 37.006	1.00 88.45 1.00 64.56	AAAA C
ATCH	3236	C	ALA	341	29.786	51.968	38.970	1.00 85.37	AAAA C
ATOH	3237	0	ALA	341	28.910	52.935	39.690	1.00 86.09	AAAA O
ATOH	3238	11	SER	342	28.204	50.877	39.386	1.00 81.24	AAAA II
ATOH ATOH	3240 3241	CA CB	SER SER	342 342	27.910	50.601 50.667	40.780	1.00 82.05 1.00 85.51	AAAA C
ATOH	3242	OG	SER	342	26.145	51.271	42.361	1.90 86.02	AAAA O
ATOH	3244	Ç	SER	312	28.487	19.196	40.965	1.00 76.62	AVAA C
ATOH ATOH	3245 3246	1:	SER	343 345	29.119	48.966	41.964	1.00 71.76 1.00 76.23	AAAA O AAAA II
ATUH!	3248	CA	GLU	343	28.373	48.409	39.905 39.800	1.00 74.59	AAAA C
ATOH	3249	CB	GLU	343	28.595	46.300	38.616	1.00 78.52	AAAA C
ATOH	3250	CG	GLU	343	27.118	46.105	J8.316	1.00 85.33	AAAA C
ATOH ATOH	3251 3252	CD OE1	GLU	343 343	26.898 27.209	45.121	37.169 37.310	1.00 92.76 1.00 96.41	AAAA C AAAA O
ATOH	3253	OE2		343	26.423	45.517	36.082	1.00 98.55	AAAA
ATOH	3254	C	GLU	343	30.525	47.319	39.804	1.00 77.75	AAAA C
ATOH	3255	0	GLU	343	31.273	46.787	10.637	1.00 75.73	AAAA O
ATOH ATOH	3256 3258	(I) CA	LEU	314	31.022 32.415	48.237 48.596	38.9 6 6 38.839	1.00 75.65 1.00 72.36	AAAA C
ATOH	3259	CB	LEU	314	32.760	49.697	37.808	1.00 64.33	AAAA C
ATOH.	3260	06	LEU	344	32.687	49.397	36.311	1.00 50.12	AAAA C
ATOH ATOH	3261 3262	CD1		344	33.224 33.401	50.577 48.127	35.519 35.905	1.00 57.00	AAAA C AAAA C
ATOH	3263	COL	LEU	344	32.963	49.130	40.174	1.00 51.63	AAAA C
ATOH	3264	Ö	LEU	344	34.979	48.739	40.551	1.00 69.12	AAAA O
ATOH	3265	11	GLU	345	32.166	49.959	40.822	1.00 63.10	AAAA H
ATCH ATOH	3267 3268	CA CB	GLU GLU	345 345	32.555	50.591	42.041 42.478	1.00 65.42 1.00 55.59	AAAA C AAAA C
ATCH	3269	CG	GLU	345	32.267	52.607	13.486	1.00 68.78	AAAA C
ATOH	3270	CD	GLU	345	31.324	53.374	44.376	1.00 81.31	AAAA C
ATOH ATOH	3271 3272	OE 2		342 342	30.614	54.320	13.976	1.00 85.60 1.00 88.79	AAAA O AAAA O
ATOI	3273	C	GLU	345	32.706	53.078 49.652	45.595 43.255	1.00 63.31	AAAA C
ATGI	3274	0	GT.U	345	33.501	49.913	44.134	1.00 60.06	AAAA O
ATOH	3275	11	ASII	346	32.151	48.462	43.202	1.00 62.25	AAAA II
ATOH HOTA	3277 3278	CA CB	ASII ASII	346 346	30.285 31.024	47.403	44.173	1.00 63.92 1.00 61.66	AAAA C
ATOI	3279	CG	ASII	346	31.110	45.292	45.006	1.00 58.73	AAAA C
ATOH	3280		ASH	346	31.188	45.352	46.224	1.00 69.11	AAAA O
HOTA	3261 3284	C 11D2	ASII	34è 31è	31.155	44.092	44.444	1.00 51.10 1.00 63.71	AAAA C
ATOH	3285	ō	ASII	346	33.532 33.636	46.580 45.336	43.905	1.00 65.65	AAAA O
ATOH	3286	11	BHE	347	34.419	47.173	13.066	1.00 63.23	AAAA !!
ATOH	3288	CA	PHE	347	35.540	46.411	42.506	1.00 61.39	AAAA C AAAA C
ATOH ATOH	32 09 32 9 0	CB CG	PHE PHE	347 347	35.123 34.457	45.8 5 4	41.179 41.142	1.00 61.38 1.00 65.57	AAAA C
ATOH	32.91	CDI		347	33.090	11.138	40.983	1.00 75.25	AAAA C
ATOH	3292	CD2		347	35.148	43.351	41.267	1.00 77.15	AAAA C
ATOH:	3293 3294	CEI	PHE	3·17 3·17	32.425 34.512	43.224	40.951 41.249	1.00 75.55 1.00 72.86	AAAA C AAAA C
ATCII	3225	CEC	SHE	347	33.152	42.130 42.051	41.095	1.00 72.74	AAAA C
ATGH	3296	Ġ	FHE	347	36.712	47.375	42,440	1.00 57.70	AAAA C
ATOH	3297	0	FHE	347	37.770	46.820	12.354	1.00 59.92	AAAA O
HOTA	3298 3300	II CA	HET HET	348 348	36.4 8 2 37.500	48.676 49.630	42.319 41.964	1.00 50.56 1.00 42.86	AAAA II AAAA C
IKITA	3301	CB	HET	340	37.402	50.096	40.493	1.00 31.72	NAAA C
ATOH	3302	CG	: IE.L	318	37.426	48.933	39.471	1.00 33.42	AAAA C
ATOH	3393	SD	HET	348	37.566	19.118	37.732	1.00 44.79	AAAA S
ATOH ATOH	3304 3305	CE C	HET HET	318 318	38.108 37.368	50.999 50.831	37.791 42.867	1.00 59.57 1.00 45.88	AAAA C AAAA C
ATOH	3306	ō	HET	340	38.210	51.772	12.901	1.00 43.33	AAAA O
ATC(1	3307	11	GLT	3.1 is	36.296	50.793	43.683	1.00 45.30	AAAA II
ATOH	3309	CA	GLT	319	35.990	51.965	44.504	1.00 49.10	AAAA C
ATQU ATOU	3310 3311	٥ ت	GLY GLY	31a 31a	36.980 37.933	52.189 53.299	45.620 46.156	1.00 \$2.77 1.00 \$3.43	AAAA C
		-			J J J			2.00 00.00	

Figure 1A-31

•							33/58		
ATOU	3212	:1	LEU	350	37.701	51.159	45.025	1.00 56.11	AAAA II
ATOH	3314 3315	ca ca	LEU	350 350	39.735 38.873	51.256 49.949	47.021	1.00 58.04	2 AAAA 2 AAAA
ATCH	3316	09 09	LEU	350	37.971	50.020	17.834 49.031	1.00 50.79	AAA E
ATCH	3317	CDI		350	37.705	48.680	49.700	1.00 52.92	**** C
ATCH ATCH	3318 3319	C CDS	LEU LEU	350 350	38.247 49.144	51.106 51.727	50.038 46.685	1.00 56.11	AAAA C
ATOH	3320	0	LEU	350	40.931	51.960	47.619	1.00 63.52	AAAA O
HOTA	3321 3323	II CA	I LE I LE	351 351	40.446	51.677 51.088	15.372 44.873	1.00 57.89	HARA II BARA C
ATCH	3324	<u>CB</u>	ILE	351	41.914	51.912	13.352	1.00 48.12	- AAA :
ATOH	3325		ILE	351	43.121	12.415	12.757	1.00 40.01	AAAA C AAAA C
ATOLL	3326 3327	CDI	ILE ILE	351 351	41.535	50.418	41.501	1.00 36.87 1.00 35.46	
NOTA	3328	Ċ	ILE	351	42.031	53.533	45.178	1.00 46.80	AAAA C
ATOH	3329 3330	11 O	ILE GLU	351 350	41.367 43.002	5;.358 53.866	41.626 46.016	1.00 42.87 1.00 50.61	C AAA÷ II AAAA
ATOH	3332	CA	5 <u>5</u> .0	350	43.381	55.241	46.248	1.00 51.20	alaa c
ATO! 1	33 3 3	CB CG	GLU	352 352	13.907	55.353 55.769	17.678 18.735	1.00 52.12 1.00 65.55	2 4444 2 4444
ATCH ATCH	3335	CD	GLU	352	42.912 43.034	54.834	49.647	1.00 71.49	AAAA C
ATOH	3336	OE1		352	43,881	55.244	50.765 50.009	1.00 66.09 1.00 76.07	AAAA O AAAA O
ATOH	3337 3338	C OES	GLU	352 352	42.330 44.502	53.799 55.751	45.314	1.00 47.43	AAAA C
ATON	3339	Ü	GLU	352	44.798	56.951	45.182	1.00 40.38	AAAA O
ATOH ATOH	3340 3342	ri CA	VAL VAL	353 353	45.342 46.512	54.838 55.236	44.052 44.078	1.00 43.54	AAAA II AAAA C
ATON	3343	CB	VAL .	353	47.759	55.540	44.911	1.00 45.01	AAAA C
AT CF1	3344	.001 .032		353	47.766 48.988	55.261	16.387	1,00 30.84	2 AAAA 2 AAAA
ATOH	3345 3346	0.32	VAL	353 353	46.923	24 · 533	44.310	1.00 41.41	AAAA C
ATCII	3347	1)	VAL	353	46.843	53.003	43.170	1.00 39.19 1.00 36.31	0 AAAA 11 AAAA
ATOH ATOH	3348 3348	(I CA	VAL VAL	354 354	47.074 47.586	54.855 54.092	41.816	1.00 43.97	AAAA C
ATOH	3351	CB	VAL	354	46.725	54.390	39.407	1.00 40.86	AAAA C
ATOH ATOH	33\$2 33\$3	OG1 CG2		354 351	47.347 45.293	23.81è	36,123 39.679	1.00 36.72 1.00 35.35	AAAA C AAAA C
ATOH	3354	C	VAL	354	19.043	54.510	40.388	1.00 44.55	AAAA C
ATOH ATOH	3355 3356	0	VAL THR	351 351	49.366 49.972	55.718 53.561	40.288 40.431	1.00 43.32	AAAA O AAAA II
ATO!	3358	CA	THR	355	51.392	53.914	10.284	1.00 44.85	AAAA C
ATOH	3359	CB	THR	355	52.374	52.799	40.653	1.00 42.40 1.00 45.30	AAAA C AAAA O
ATOM ATOM	3360 3362		THR THR	355 355	52.273 52.210	51.744 52.194	39.695 42.039	1.00 38.13	AAAA C
ATCH	3363	C	TIIR	355	51.746	54.339	38.851	1.00 43.84	AAAA C
ATOH ATOH	3364 3365	0	THR	355 356	52.463 51.127	55.334 53.704	32.697 37.870	1.00 44.26 1.00 41.16	O AAAA 11 AAAA
ATOH	3367	CA	GLT	356	51.358	54.073	36.470	1.00 37.91	aaaa c
ATOH!	3368		GLT GLT	356 356	50.505 50.364	55.204 56.201	35.955 36.615	1.00 38.07 1.00 34.65	AAAA O AAAA O
ATOH ATOH	3369 3370	11	TYR	357	49.910	55.004	34.900	1.00 38.47	AAAA II
ATON	3372	CA	TTR	357	48.982	55.973	34.205	1.00 38.03 1.00 31.44	AAAA C AAAA C
ATOH ATOH	3373 3374	CB	TYR TYR	357 357	19.557 19.173	55.219	32.805 31.812	1.00 33.04	AAAA C
ATCH!	3375	COL	TYR	357	19.333	54.842	31.077	1.00 32.86	AAAA C
ATOH ATOH	3376 3377		TYR TYR	357 357	48.352 50.639	53.779 54.465	30.175 31.606	1.00 32.83	C AAAA
ATOH	3378	CES	TYR	357	50.706	53.402	30.720	1.00 32.51	AAAA C
HOTA	3379 3380	CE	TYR TYR	357 357	49.552 49.726	53.068 51.997	30.007 29.166	1.00 37.26 1.00 35.85	AAAA C AAAA O
ATOH	3382	Ċ	TYR	357	47.582	55.368	34.150	1.00 38.55	BAAA C
ATOH	3383	0	TYR	357 358	47.458 46.593	54.127 56.216	34.008 33.814	1.00 36.11 1.00 40.98	0
HOTA	3386 3384	CY II	VAL VAL	358	45.197	55.798	33.639	1.00 38.90	2 AAAA C
1 10 T.A.	3387	€.B	\'AL	358	44.211	56.500	34.610	1.00 49.15 1.00 33.12	AAAA C AAAA C
ATCH ATCH	3366 3366		VAL VAL	358 358	12.815 14.748	55.883 56.437	34.484 36.043	1.00 29.20	2 AAAA
ATOH	3390	ü	VAL	358	11.760	56.194	32.234	1.00 35.64	D AAAA O AAAA
HOTA	3391 3392	0	VAL LYS	358 359	14.792	57.359 55.188	31.461 31.461	1.00 34.58 1.00 36.00	II AAAA
ATOL	3391	CA	LVS	359	13.399	55.419	59.117	1.00 41.27	AAAA C
ATOH	3395	CB	173 173	354	44.845 44.340	54.707 54.473	20.174 27.770	1.00 37 .40 1.00 45.19	AAAA C AAAA C
ATOH ATOH	3396 3397	CD C3	UYS UYS	359 359	45.040	55.317	26.750	1.00 43.40	aaaa c
HOTA	3398	CE	LYS	359	45.958	54.402	25.986	1.00 43.50 1.00 47.98	AAAA C AAAA H
ATOH ATOH	3103 3366	C III	LYS	359 359	42.423	53.937 54.979	29.939 29.939	1.00 42.14	iaaa c
ATOH	3404	ó	LYS	359	42.056	53.791	30.006	1.00 40.40	٥ جمجم
ATOH	3105	II CA	ILE	360 360	41.602 40.164	55.974 55.742	29.573	1.00 37.16 1.00 40.02	II KAAA D AAAA
ATOH ATOH	3407 3408	CB	ile Ile	360 360	39.297	56.804	30.048	1.00 38.10	AAAA C
ATOH	3409	ÇG2	ILE	360	37,887	56.277	19.932	1.00 39.42	C AAAA C AAAA
ATOH	3419		ILE ILE	360 360	39.769 39.423	57.111 56.037	31.481 32.491	1.00 28.54 1.00 33.16	****
ATOH	3412	C	i LE	360	39.888	55.837	27.834	1.00 39.49	****

TECH CENTER 1600

RECEIVED AUG 0 8 2003

. ' }								0.4/5.0		
7	ATCH	3413	Ų.	I LE	360	40.01;	16.942	34/58	. 06 33 30	53AA 13
1	ATOLI	3414	16	ARG	361	39.567	34.721	27.221	1.00 37.32 1.00 31.34	c aaan H aaaa
	LIDTA	3416	CA	ARG	361	39.472	54.782	25.744	1.00 41.24	2 AAAA
	ATCYL	3417	CB	ARG	361	10.783	54.213	25.148	1.90 47.92	AAAA C
	aton Aton	3418 3419	೧೨ ೧೩	ARG ARG	361 361	41.943 40.805	54.203 53.357	23.646	1.00 50.39 1.00 51.36	AAAA C
	ATOH	3420	115	ARG	361	41.473	11.974	23.116 23.263	1.00 50.97	aaaa c Haaa H
	ATCH	3422	CS	AR-;	361	42.297	50.962	23.490	1.00 55.78	AAAA C
	ATOH	3423	11H1		361	43.512	51.074	23.616	1.00 51.62	AAAA II
	ATOH ATOH	3426 3429	11112	ARG	361	41.834	19.719	23.631	1.00 54.52	AAAA II
	ATOI	3430	ō	AR-5	361 361	38.382 38.336	53.866 53.661	25.246 25.499	1.00 42.06 1.00 38.93	AAAA C AAAA O
	ATC(1	3431	li .	HIS	362	37.514	54.342	24.373	1.00 46.19	AAAA 11
	ATCII	3433	55	HIS	362	3€.372	53.555	23.085	1.00 49.34	AAAA C
	ATCH	3434 3435	CC CB	HIJ HIJ	362	37.000	12.300	23.266	1.00 40.94	AAAA C
	ATOH ATOH	3436	CDC		362 362	37.849 38.049	52.610 53.765	22.084	1.00 42.78	AAAA C C AAAA
	ATOH	3137	1101		362	38.528	51.676	21.469	1.60 43.59	AAAA II
	ATGO	3439	CEL		362	39.256	52.247	20.465	1.00 46.01	AAAA C
	ATCH	3440	HE.2		362	38.923	53.515	20.408	1.00 49.22	AAAA II
	ATCII ATOII	3113 3115	0	HIS HIS	362 362	35.295 34.685	53.113 52.030	24.913 24.795	1.0D 50.32 1.00 41.31	AAAA C AAAA O
	ATOH	3444	ř!	SER	363	35.222	53.875	26.013	1.00 46.96	AAAA II
	ATOH	3446	CA	SF.R	363	34.402	53.456	27.139	1.00 52.19	AAAA C
	ATOH	3147	CB	SER	363	35.231	53.837	28.400	1.00 53.73	AAAA C
	ATO:	3448 3448	03 C	SER	363 363	35.713 33.005	52.558 54.972	28.816 27.046	1.90 41.72	AAAA O AAAA C
	ATOH	3451	ō	SER	363	32.653	55.040	27.694	1.00 37.49	O AAAA
	ATOH	1450	23	HIS	364	32.243	53.577	26.058	1.00 52.25	AAAA H
	ATON	3454	CA	113	364	30.954	54.173	25.717	1.00 53.66	AAAA C
	ATC()	34 55 34 5 6	Ç.	HIS	364 364	29.879 29.297	53.937 54.899	26.760 27.280	1.00 48.77	AAAA C AAAA C
	TOTA	3457	СB	HIS	364	30.485	33.699	24.348	1.00 49.83	AAAA C
	ATOH	3458	C3	HIS	364	31.493	54.182	23.338	1.00 51.51	AAAA C
	ATOH	3459	1101		364	31.970	55.502	23.156	1.00 44.83	AAAA 1:
	ATOH ATOH	3461 3460	CD2		364 364	32.798 32.194	55.533 53.393	22.214 22.472	1.90 28.57 1.90 38.62	AAAA C AAAA C
	ATOH	3462	HE2		364	32.992	54.274	21.810	1.00 41.44	AAAA II
	ATOH	3464	11	ALA	365	29.949	52.819	27.427	1.00 47.53	AAAA II
	ATOH	3166	CA	ALA	365	29.211	52.488	28.621	1.00 44.41	AAAA C
	ATOH ATOH	3467 3468	G GB	ALA ALA	365 365	29.678 29.318	51.133 53.473	29.15D 29.768	1.00 4D.28 1.00 44.70	AAAA C
	ATOH	3469	ō	ALA	365	28.576	53.206	3D.726	1.00 45.28	AAAA O
	ATOH	3470	11	LEU	366	30.158	54.517	29.762	1.00 40.80	II AAAA II
	ATOII	3472	CA	LEU	366	3D.415	55.243	3D.968	1.00 42.21	AAAA C
	ATOH ATOH	3473 3474	CB CB	LEU	366 3 66	31.885 32.740	55.241 54.037	31.350 31.667	1.00 43.78 1.00 51.52	AAAA C AAAA C
	ATO:	3475		LEU	366	34.192	54.373	32.043	1.00 51.77	AAAA C
	ATOH	3476	002	LEU	366	32.118	53.305	32.834	1.00 51.17	AAAA C
	ATOH	3477	··	LEU	366	29.974	56.687	30.896	1.00 46.36	AAAA C
	ATOH	3478 3479	0 I:	LEU VAL	366 367	30.305 29.521	57.248 57.275	29.849 32.015	1.00 48.40 1.00 43.68	aaaa o aaaa ii
	ATOL	3491	CA	VAL	367	29.072	59.675	31.940	1.00 44.18	AAAA C
	HOTA	3482	C3	VAL	367	27.557	58.727	32.376	1.00 48.80	AAAA C
	ATOH	3483		VAL	367	26.923	60.073	32.571	1.00 41.69 1.20 34.00	AAAA C
	HOTA	3484 3485	CG2	VAL	367 367	26.697 29.923	57.949 59.518	32.845	1.00 34.00	AAAA C
	ATOH	3486	ō	VAL	367	29.965	60.751	32.720	1.00 44.75	AAAA O
	ATOH	3487	11	SER	368	30.591	58.818	33.757	1.00 48.72	AAAA 14
	ATOH	3189	Cλ	SER	368	31.487	59.465	34.742	1.00 52.70 1.00 55.32	AAAA C Aaaa C
	ATOH ATOH	34	O2 CB	SER	368 368	30.658 31.300	59.706 60.298	36.000 37.091	1.00 64.86	AAAA O
	ATCI	3493	c	SER	368	32.590	58.197	35.179	1.00 52.76	AAAA C
	ATOI	3494	O	SER	368	32.352	57.299	34.976	1.00 48.99	AAAA O
	ATOH	3495	11	LEU	369	33.631	59.012	35.831	1.00 53.86 1.00 60.15	AAAA 11 AAAA C
	HOTA	3498 3497	CR CV	LEU	369 369	34.716 36.073	50.129 58.630	36.274 35.784	1.00 60.15	AAAA C
	ATOI	3499		LEU	36.9	36.325	58.736	34.271	1.00 45.00	AAAA C
	HOTA	3500		LEU	369	37.369	59.428	34.154	1.00 53.97	AAAA C
	ATCII	3501		LEU	369	36.207	57.384	33.619	1.00 39.77	AAAA C
	ATOH	3502 3503	0	LEU	369 369	34.645 35.569	58.036 57.700	37.811 38.595	1.00 62.52 1.00 59.33	AAAA C AAAA C
	ATCII	3504	31	SER	370	33.437	58.401	38.285	1.00 36.26	AAAA ::
	ATOH	3506	CA	SER	370	33.989	58.431	39.690	1.00 53.88	AAAA C
	1 ICTA	3507	CB	SER	370	31.673	59.052	39.816	1.00 57.50	AAAA C
	ATOIL	3508	CG C	SER	37 <u>0</u>	30.771	58.061	39.261	1.00 69.12 1.00 47.97	AAAA C
	11OTA	3510 3511	Ġ	SER SER	370 370	33.060 33.228	57,085 56,943	40.412	1.00 41.93	AAAA O
	ATOIL	3512	ŧI	SHE	371	32.967	55.936	39.792	1.00 45.48	II AAAA
	ATOH	3514	CA	PHE	371	33.223	54.643	40,356	1.00 46.29	AAAA C
	ATCH	3515	CB.	EIIE	371	32.952	\$3.596	39.287	1.20 43.53	AAAA C
	ATOLL	3516 3517	COL	EHE	371	33.721	53.629 52.807	38.012 37.764	1.00 56.45 1.00 58.95	C AAAA C AAAA
	ATOH ATOH	3517 3518		PHE	371 371	34.895 33.371	54.515	37.001	1.00 53.92	AAAA C
	ATON	3519		PHE	271	35.498	52.842	36.570	1.00 59.50	AAAA C

Figure 1A-33

AAAA C AAAA C AAAA C

AAAA O

AAAA C AAAA C AAAA C AAAA C AAAA C

AAAA AAAA O AAAA AAAA AAAA AAAA C AAAA C AAAA C AAAA II AAAA AAAA AAAA

AAAA C AAAA C AAAA C AAAA O AAAA II AAAA C

AAAA AAAA

AAAA 0 2 AAAA 0 AAAA

AAAA AAAA AAAA C AAAA C AAAA C AAAA O AAAA II AAAA AAAA AAAA AAAA AAAA II AAAA C AAAA II AAAA II AAAA C AAAA O AAAA II AAAA ÄÄAA AAAA AAAA AAAA AAAA C AAAA II AAAA C AAAA. AAAA. AAAA AAAA AAAA AAAA Ç AAAA AAAA 0000 AAAA AAAA AAAA AAAA AAAA AAAA AAAA II AAAA C AAAA C AAAA O AAAA II AAAA C AAAA C AAAA C AAAA C AAAA C

9						35/58	
ATCH	25.70	CEC FILE	371	34.948	\$4.546	35.91	1.00 56.49
ATOL	3522 3522	CT. PHE	371 371	35.119 34.654	53.716 54.467	35.57? 10.895	1.00 56.39
ATOH	3523. 3524	O PHE	371 372	35.905	\$3.592	41.728	1.00 52.23
ATCH	3526	CA LEU	372	35.633 36.928	55.305 55.395	40.510	1.00 50.17
ATCH ATCH	3527 3528	CB LEU CG LEU	372 372	38.171	55.812	40,276	1.00 44.82
ATON	3529	COI LEN	372	38.853	51.800 55.643	39.114 37.934	1.00 36.78
ATOH ATCH	3 53 0 3531	C DE LEU	372 372	39.260	53.657	39.565	1.00 35.55
ATO:	3532	C LEU O L.EU	372	36.715 37.224	56.392 57.507	42.213 42.364	1.00 42.26
ATOH	3533 3535	II LYS CA LYS	373 373	35.970 35.527	55.862	43.190	1.00 47.06
ATOR	3536	CB LYS	373	34.546	56.509 55.521	45.077	1.00 50.19
ATOL:	3537 3538	CG LYS	373 373	33.645 32.529	56.162 56.955	46.11? 45.441	1.00 59.64
ATO:	3539	CE LYS	373	31.674	57.687	16.469	0.01 60.45
ATOL: ATOL:	3211 3210	C LYS	373 د ?و	31.083 36.646	58.933 56.863	45.366	0.01 60.30 1.00 49.72
ATCI:	3545	O LYS	373	36.636	57.960	45.907	1.00 42.42
ATOH ATOH	3546 3548	II ASII CA ASII	374 374	37.657 38.765	55.986 56.352	45.513 46.410	1.00 54.43
INTA	3549	CB ASII	374	39.080	55.154	47.314	1.00 63.16
ATOH ATOH	3550 3551	CG ASII	374 374	38.009 37.892	54.978 53.972	48.396 49.096	1.00 64.53
HOTA	3552	IID2 ASII	374	37.160	55.965	48.578	1.00 52.88
ATOH ATOH	3555 3556	C ASN	374 374	40.043 41.031	56.892 57.223	45.786 46.479	1.00 63.08
ATOH ATOH	3557 3559	II LEU CA LEU	375 375	40.091 41.305	56.893 57.374	44.438 43.795	1.00 58.34
ATO!!	3560	CB LEU	375	41.099	57.359	42.288	1.00 56.41
ATOH ATOH	3561 3562	CG LEU CD1 LEU	375 375	42.396 43.135	57.422 56.112	41.459 41.689	1.00 54.12
ATOH	3563	CD2 LEU	375	42.030	57.796	40.041	1.00 40.97
ATOH ATOH	3564 3565	C LEU	375 375	41.712 41.151	58.754 59.777	44.245	1.00 52.37
HOTA	3566	II ARG	376	42.801	58.874	44.982	1.00 55.16
ATOH:	3568 3569	CA ARG	376 376	43.320 43.706	60.155	15.131 16.928	1.00 55.45 1.00 58.68
ATOH:	3570 3571	CG ARG	376 376	14.288	58.907 58.817	47.415 48.944	1.00 69.10
ATOH	3572	HE ARG	376	44.286 45.377	57.926	49.410	1.00 84.46
ATOH ATOH	3574 3575	CC ARG	376 376	46.966 46.618	59.645	19.383 19.383	1.00 81.84
ATO:	3578	HH2 ARG	376	47.571	57.548	50.012	1.00 94.15
ATC:1	3581 3582	C ARG O ARG	376 3 76	44.746	60.544 61.728	14.633	1.00 50.16
ATO!!	3583 3505	II LEU CA LEU	377 377	45.375 46.526	59.578 59.942	44.219 43.379	1.00 50.99
1PTA	3586	CB LEU	377	47.595	60.411	14.329	1.00 64.72
ATOH ATOH	3587 3588	CG LEU CD1 LEU	377 377	48.806 50.031	59.577 60.157	44.667 43.954	1.00 70.76
! IOTA	3589	CD2 LEU	377	49.010	59.696	46.179	1.00 68.60
ATOH ATOH	3590 3591	C LEU	377 377	47.213 46.868	59.022 57.788	42.311 42.285	1.00 46.33
ATOH	3592	II ILE	378	47.448	\$9.675	41.199	1.00 45.12
ATOI: ATOI	3594 3595	CA ILE	378 378	48.042 47.342	58.976 59.303	40.042 38.724	1.00 49.10
ATOH	3596	CG2 ILE	378	48.115	58.696	37.574	1.00 34.36 1.00 38.59
ATOH ATOH	3597 3598	CG1 ILE	378 378	44.999 45.871	\$8.862 59.515	38.629 37.765	1.00 37.18
ATOH ATOH	3599 3600	C ILE O ILF.	378 378	49.524 49.801	59.381 60.595	10.003 10.010	1.00 49.87
ATOH	3601	II LEU	379	50.151	58.423	40.067	1.00 49.97
ATOH ATCH	3603 3604	CA LEU	379 379	51.866 52.575	58.712 57.531	47.054	1.00 48.48
ATOH	3605	CG LEU	379	52.234	57.363	42.554	1.00 50.28
ATOH ATOH	3606 3607	CD1 LEU CD2 LEU	379 379	52.926 52.616	56.187 58.625	43.217	1.00 39.89
ATOH	3608	C LEU	379	\$2,809	59.019	39.080	1.00 50.94
ATCH ATCH	3609 3610	O LEU	379 380	53.576 52.175	59.788 58.423	39.139 37.972	1.00 48.67
HOTA HOTA	3612 3613	CA GLY C GLY	380 380	52.931 54.249	58.715 58.155	36.702 36.624	1.00 49.94
ATOLL	3614	O GLT	380	55.026	58.657	35.003	1.00 49.94
ATOH ATOH	3615 3617	n Glu Ca Glu	381 381	51.549 55.849	57.033 56.386	37.272 37.243	1.00 52.51 1.00 52.33
ATOH	3618	CB GLU	381	\$6.055	55.310	38.323	1.00 45.22
ATOH ATOH	3619 3620	CG GLU	381 381	55.402 56.050	\$5.779 \$5.192	39.636 40.873	1.00 52.91
ATOH	3621	OE1 GLU	391	56.160	53.966	40.890	1.00 40.26
HOTA	3622 3623	OE2 GLU	30 L	54.374 54.978	56.014 55.704		1.00 \$5.86
ATOLI	3624	o GEO	391	57.216	55.652	35.34%	1.00 54.61

WO 99/28347-

Application No. 09/555,275 Annotated Sheet Showing Changes

14-34 Figure

484A 1

AAAA C

AAAA C

AAAA O

AAAA O

AAAA II

AAAA C

AAAA

AAAA

AAAA

AAAA

TECH CENTER 100

58.609 1.00 28.50 AAAA 31.155 1.00 31.10 58.909 AAAA 32.542 60.301 32.752 1.00 33.19 AAAA AAAA O 60.840 31.683 1.00 40.34 1.90 36.30 AAAA II 60.943 33.934 56.741 1.00 40.15 AAA. 29.563 29.139 1.00 43.45 AAAA 55.858 57.195 28.860 1.00 42.54 AAAA 11 56.889 1.00 43.24 بمحمد 27.443 57.011 26.949 1.00 43.79 AAAA 27.861 28.221 56.235 1.00 41.21 λλλΑ 1.00 33.99 AAAA 57.095 AAAA C 1.00 33.20 54.968 27.149 1.00 49.51 AAAA 26.672 27.177 1.00 29.66 AAAA 58.872 57.319 25.531 1.00 45.22 AAAA AAAA 58.116 24.570 1.00 49.99 1.00 60.50 57.475 23.174 AAAA 56.095 23.106 1.00 68.76 AAAA 54.951 23.592 1.00 72.03 Faaa 0 AAAA 0 55.213 24.244 1.00 81.98 53.786 23,301 1.00 73.13 1.00 47.41 AAAA 59.515 24.450 AAAA O 59.706 24.194 1.00 54.43 1.00 43.69 AAAA II 60.470 24.902 24.897 1.00 40.34 AAAA 61.870 62.449 26.308 1.00 40.65 AAAA. 1.00 39.75 AAAA 63.615 26.491 0 27.272 1.00 40.75 AAAA II 61.537 28.675 1.00 49.18 AAAA 61.912 AAAA 63.084 28.874 1.00 44.41 AAAA 52.541 28.722 1.00 61.51 AAAA 1.00 57.85 61.313 28.677 28.592 1.00 61.96 AAAA 63.251 29.299 AAAA. 1.00 48.46 62.190 1.00 48.99 62.891 AAAA 30.218 AAAA 29.058 1.00 46.29 61.116 1.00 45.09 AAAA 61.199 29.540 60.957 29.399 1.00 40.70 ANA 62.056 27.373 1.00 42.24 AAAA 61.854 26.064 1.00 44.39 AAAA AAAA 62.885 25.157 1.00 35.51 1.00 44.67 AAAA 63.356 1.00 38.14 AAAA C 64.428 26.830 1.20 41.27 AAAA 25.555 64.148 AAAA 24.604 1.00 50.18 65.181 AAAA 60.288 30.714 1.00 41.68 1.00 32.99 59.092 30.511 AAAA O 60.917 31.753 1.00 45.42 II AAAA II 32.931 1.00 50.13 AAAA C 60.131 AAAA C 60.894 34.261 1.00 45.57 1.00 51.11 AAAA O 60.899 34.504 32.804 AAAA C 59.813 1.00 48.11 1.00 49.25 AAAA O 58.792 33.336 1.00 42.5€ H FARK 69.685 32.196 32.146 1.00 40.76 AAAA C 60.595 AAAA C AAAA C AAAA C AAAA C AAAA C 33.139 1.00 44.80 61.581 1.00 40.53 61.358 33.328 1.00 40.80 60.273 34.089 62.157 32.748 1.00 35.59 1.00 47.00 59.985 34.310 1.00 44.50 AAAA C 61.824 32.965 AAAA C 1.00 34.54 33.739 30.729 60.745 AAAA C 1.00 38.54 60.829 AAAA O 1.00 40.29 30.126 61.918 AAAA II 30.096 1.00 33.49 59.818 AAAA C 59.782 28.663 1.00 38.58 27.972 1.00 38.95 AAAA C 58.871 AAAA 26.503 1.00 44.54 59.006 1.00 47.14 AAAS 26.052 59.815 $\lambda\lambda\lambda\lambda$ 1.00 46.03 59.993 24.722 NVA 58.390 25.584 1.90 46.94

1.00 47.45

1.00 45.84

AAAA 10

AAAA

36/58

35. ; 57

33.766

33.532

32.951

31.807

32.765 30.745

32.973

33.599

31.790

31.016

1.00 \$3.50

1.90 48.15

1.00 35.27

1.00 49.69

1.00 56.45

1.00 61.66

1.00 57.69

1.00 50.84

1.00 49.44

1.00 52.25

1.00 40.15

55.449

55.C18

53.550

53.225 51.719

59.924

51.201

55.732

56.282

56.256

57.153

AUG 0 6 2003	٠.
Application No. 09/555,275 Annotated Sheet Showing Changes	

WO 99/28347

3625 #

3627

3628

3629

3630

3631

3630

3633

3634

3635

36.37

3638

3639

3640

3641

3640

3645

3646

3647

3619

3650

3651

3653

3653

3654

3655

3656

3658

3659

3660

3661

3662

3653

3664

3665

3666

3668

3669

3670

3671

3673

3674

3675

3676

3677

3680

3681 O

3682

3684

3695

3686

3587

368R

3689

3690

3691

3692

3694

3695 0

3696 11

3698

3699

3700

3702 C

3703 0

37:04

3796

3707

3708

3709

3710

3711

3712

3713

3714

3715

3716 11

3718

3719

3720

3721

3722

3723

3724

430.03

SLU

GLU

GLII

GLU

انبلت

SLII

GLI:

GLI:

LEU

LEU

LEU

LEU

GLU

Gill

CLU

GI.U

GLY

CLT

GLT

ASII

ASII

A511

AS:I

TER

OE1 GLII

CA GUU

CB (GL)

CG GLU

CD

OE1 GLU

OEZ GLU

C

0

13

CA GLII

C5

ÇĞ

CD

HE2 GUI

Q

 Π

CA

CB LEU

OG LEU

c

11

CA GLU

CB

CG GLU

CD GLU

c

O

ы

CA GLY

9

11

CA ASII

CB ASII

CG ASIL

001

11D2 ASII

c

CA

CB TYP.

CG TYR

202

CS TYR

OH

c

CA

CB SER

OG SER

11

CA

CB PHE

CG

CDI

CD2

CEI PHE

C CC

0

CA TYR

CB

CG TYR

CEL

CD2 TYR

CES

CC

CE2 PHE

CDI TYR

CEL TYR

CE2 TYR

T:P.

TIR

TIR

SER

SER

SE.R

SER

PHE

FIIF.

PHE

PHE

FILE.

PHE

PHE

PHE

TYR

TTR

TTR

TTR

COL TYR

OE1 GLU

OE2 GLU

COL LEU

CD2 LEU

392

382

382

382

382

382

382

392

382

383

383

383

383

383

383

383

383

383

384

354

384

384

384

384

384

384

385

385

385

385

365

385

385

385

385

386

386

386

386

397

387

387

387

387

387

387

387

388

398

3/18

388

389

198

398

388

388

388

388

388

389

389

389

399

389

389

396

390

390

320

390

390

390

390

390

390

390

391

391

391

301

391

341

291

301

391

54.980

55.091

55.051

54.739

54.676

55.062

54.264

54.006

53.09?

54.347

53.498

53.914

54.489

54.950

55.186

55.043

53.426

54.131

52.375

52.257

50.814

49.818

48.611

49.405

53.204

53.582

53.659

54.410

54.424

55.045

54.195

53.150

54.565

53.828

52,635

54.614

54.181

54.286

53.930

24.441

54.479

55.500

56.925

57.199

58.763

53.995

52.836

52.214

50.846

19.823

49.925

50.343

50.401

49.625

49.593

59.087

50.151

50.563

50.727

50.020

49.591

49.798

51.195

48.097

17.686

17.321

15.867

45.241

43.406

42.769

42.950

41.454

41.063

45.371

45.542

44.819

44.596

45.579

45,760

46.820

47.057

11.927

45.157

46.007

ATOH

ATOU

ATOH

ATCH

ATOH

ATOH

ATOLI

ATCH

ATCH

ATOH

ATO:

ATOH

ATOH

ATOH

ATOH

ATO

ATON

ATCH

ATON

ATOU

ATOH

ATO: I

ATOU

HOTA

ATOH

ATOH

ATOH

ATOL

ATOH

ATON

ATON

ATOH

ATCH

ATOH

ATOLI

ATOH

ATCH

ATON

ATOH

ATOH

ATOH

ATOLI

ATOH

ATCH!

ATOH

ATOH

ATOH!

HOTA

ATOH

ATCH

ATOR

ATOH:

ATO:1

ATC: I

ATOH

ATO:

ATCH

ATON

ATON

ATOH

ATOL

ATOH

ATO: I

ATOH

NOTA

ATOR

ATO:1

ATOH

ATO

ATOH

ATCH

ΑΤΟΙΙ

ATOH

ATO:

ATON

ATOH

ATOL

ATOH

ATOH

ATOU

ATOL

ATOH

ATOH

ATOI S

ATOH

58.560

59.350

04.042

23.830

							37/30		
ATCH	3720	GH	TYR	395	46.374	59,490	22.191	1.00 44.70	AAAA W
ATCI:	3728	Ç	TYR	357	43.194	59.232	24.349	1.00 39.74	AAAA C
ATOH	3729 3:30	0	TYR	391	42.841	59.103	29.730	1.00 38.49	***** 0
ATOH	3732	II CA	VAL VAL	392 392	42.417	60.159	27.779	1.00 37.07	AAAA II
ATOH	373	CB.	VAL	392	10.958	59.874	27.603	1.00 39.52	AAAA C
ATON	3734	031	VAL	392	40.075 38.612	60.464	28.440	1.00 41.12 1.00 37.96	D AAAR D AAAA
ATCH	37.35	532	VAL	392	40.666	61.041	29.841	1.00 33.10	AAAA C
ATOH	3736	Ç	VAL	392	40.531	60.092	26.182	1.00 31.08	AAAA C
HOTA	3737	0	VAL	322	40.508	61.277	25.904	1.00 34.71	O ASSA
MOTA	3738	11	LEU	3+3	10.299	59.113	25.383	1.00 34.62	AAAA II
ATOU	2:40	CA	LEU	393	39.948	39.259	23.977	1.00 38.12	aaaa c
ATON	3741	CB	LEU	323	41.200	59.036	23.096	1.00 42.49	AAAA C
ATON	3743	Ç-5	LEU	393	41.023	28.613	21.585	1.00 26.48	eaaa
ATCE!	37 4 3		LEU	393	√1.128	50.879	20.753	1.00 26.57	جهم
ATON	3744		LEU	393	43.078	57.589	21.244	1.00 29.98	AAAA C
ATON	3715	·:	LEU	393	38.821	58.375	23.492	1.00 39.15	AAAA C
ATOH ATOH	3746 3717	ဂ ()	LEU	3.73	38.760	57.173	23.709	1.00 37.90	AAAA O
ATCH	3749	CA.	ASE	394 394	39.015	54.973	12.565	1.00 43.3F 1.00 44.77	1: AAAA 2: AAAA
ATOH	3750	CB	AS?	394	36.998 37.145	59.215 57.073	21.075	1.00 44.80	AAAA :
ATOIL	3751	cü	ASP	361	36.466	56.477	20.156	1.00 47.14	AAAA C
ATCH	3752	CDI	ASP	394	36.750	55.577	19.333	1.00 52.91	AAAA O
ATOH	3753		ASP	361	35.311	56.918	20.180	1.00 49.27	AAAA O
ATCH	3754	ç	ASP	394	35.936	57.619	23.021	1.00 43.17	AAAA C
ATCH!	3755	o	ASF	394	35.831	56.385	23.212	1.00 43.51	AAAA O
ATOH	375ĕ	11	ASII	395	35.299	58.495	23.746	1.00 39.90	AAAA H
ATOH	3758	CΛ	ASII	395	34.305	58.150	24.776	1.00 46.32	FAAA C
ATOH	3759	∵CB	Vali	395	34.804	59.512	26.212	1.00 42.96	AAAA C
ATON	3760	C:3	ASII	395	35.992	57.619	26.579	1.00 36.92	AAAA C
ATOH	3761	001		395	36.013	55.394	26.796	2.00 21.65	AAAA O
ATOH	3762	1103	AS:I	395	37.075	59.409	26.859	1.00 27.87	AAAA II
ATOH	3765	ć	ASH	395	32.932	58.816	24.541	1.00 40.44	AAAA C
ATON	3766 3767	0	ASII	395	32.749	59.982	24.882	1.00 37.06	AAAA O
ATOH ATOH	3769	II CA	GLI: GLII	396 396	32.073 30.771	58.055 58.582	23.077	1.00 46.74	AAAA C
ATOI	3770	CB.	GLH	396	29.848	57.567	22.744	1.00 52.29	AAAA C
ATOH	3771	Ċ:S	GLII	396	39.173	57.405	21,257	1.00 46.42	AAAA C
ATOH	3772	CD	GLII	396	29.817	55.991	20.840	1.90 55.21	AAAA C
ATCH	3773		GLII	396	28.835	55.421	21.312	1.90 61.17	AAAA O
ATOH	3774	IIE2	GLII	396	30.628	55.411	19.971	1.00 55.79	LI AAAA II
ATOH	3777	C	GLH	396	29.874	59.224	24.458	1.00 48.64	AAAA C
ATO14	3778	O	GLII	396	29.407	69.287	24.113	1.00 51.63	AAAA O
ATOH	3779	11	ASH	397	29.717	58.681	25.633	1.00 48.95	AAAA 1
ATOH	3781	ÇA	ASH	397	28.783	59.196	26.632	1.00 51.72	AAAA C
ATCH	3782	€B	ASII	397	27.969	57.959	27.693	1.00 35.94	AAAA C
ATOH	3783	C5	ASII	397	27.231	57.430	25.860	1.00 49.09	AAAA C AAAA O
ATOH	3794 3785		ASH	397 397	26.591	58.304	25.431	1.00 49.32	AAAA II
ATOLI	3788	ر د	ASII	397	27.258	55.175 59.945	27.000	1.00 52.98	AAAA C
ATOH	3789	ā	ASH	3:7	28.596	60.344	28.627	1.00 53.33	AAAA O
ATOH	37.90	11	LEU	398	30.682	59 990	28.001	1.00 55.73	II AAAA II
ATOLI	37.92	SA	LEU	3.08	31.312	60.550	29.179	1.00 52.10	BAAA C
ATOH	3793	C.B	LEU	368	32.927	60.389	29.149	1.00 48.47	BAAA C
ATOL	3794	CG	CEU	398	33.606	60.283	30.450	1.00 41.81	AAAA C
ATOIL	37.95	CDI	LEU	398	33.417	58.939	31.136	1.00 40.35	aaaa c
HOTA	37 96	CDS	LEU	3 98	35.070	60.508	30.092	1.00 39.03	AAAA C
ATOH	3797	č	LEU	398	30.923	61.995	29.353	1.00 52.35	AAAA C
ATOU	37.98	0	LEU	398	31.422	62.599	28.581	1.00 49.91	AAAA O
ATOU	37 9 9	11	SLI	300 306	30.241 29.688	62.225	30.459	1.00 58.76	II AAAA C
ATOM ATOM	3801 3800	CA CB	GLII	366 356	28.236	63.558 63.331	30.796 31.262	1.00 59.55	AAAA C
ATOH	3893	CG	GLII	369	27.235	63.962	30.316	1.00 73.07	AAAA C
ATOH	3864	CD	GLII	399	25.944	63.146	30.340	1.20 78.39	AAAA C
ATCH	3805		GLII	399	25.097	63.455	31.194	1.00 71.79	AAAA O
ATOH	3806	IJE2		399	25.856	61.158	29.440	1.00 69.88	AAAA 11
HOTA	3809	C.	GLH	399	30.490	64.252	31.989	1.00 54.49	AAAA C
ATOH	3810	0	GIJI	399	30.528	65.477	32.068	1.00 51.96	ATAT O
HOTA	3911	11	GLII	4 00	31.058	63.389	32.734	1.00 50.44	AAAA II
ATOH	3613	CA	GLII	4:00	31.936	63.948	33.756	1.00 53.83	AAAA C
ATON	3814	CG.	OLH	400	31.215	64.314	35.049	1.00 54.97	AAAA C
ATOH	3815	CC	GUI	400	30.717	63.150	35.997	1.00 58.99	AAAA C
ATOH	3816	':D	31	100	30.678	63.430	37.389	1.00 65.82 1.00 68.10	o aaaa
ATOH	3817		GLI:	499	30.906	64.502	37.962	1.00 55.35	AAAA II
LICTA	3818	HE2		100 100	30.341	63.009	38.022 34.050	1.00 52.08	AAAA C
ATOH ATOH	3821 3922	Ċ	GUI GUI	100 100	33.113 33.167	51.783	33.942	1.00 51.90	AAAA O
ATOH	3823	11	LEU.	401	34,073	63.580	34.751	1.00 49.58	AAAA II
ATOH	3925	ÇV.	LEII	401	35.175	62.844	35.334	1.00 49.57	AAAA C
HOTA	3926	ĊB.	LEU	491	36.379	63.803	35.260	1.00 47.94	AAAA C
ATCII	3927	25	LET	491	36.636	64.237	23.772	1.00 46.61	AAAA 🤈
ATOH	3828	CD1	1.89	101	37.658	65.326	33.677	1.00 39.09	AAAA C
ATCH	3829	CDC	LE	101	36.91"	63.062	31.040	1.00 40.32	AAAA C
ATOH	3930	?	LEU	401	34.86 باذ	62.357	36.734	1.00 51.23	AAAA C
ATOH	3931	O	LE"	401	34.258	61.299	36.892	1.00 49.06	O AAAA

37/58

Figure 1A-36

RECEIVED

TECH CENTED 17

										70100794
							38/58			
ATOH	36 37	11	TRP	400	35.297	63.140	37.690	1.00 54.58	AAAA II	
ATCH!	3834	ÇΑ	TRP	492	34.975	63.090	39.097	1.00 59.76	AAAA J	
ATOH ATOH	3835 3936	CB CB	TR? TRP	405 405	36,279 36, 9 71	62.953	39.933	1.90 59.56	AAAA C	
ATOH	38.37		TRP	102	37.981	61.624	39.737 38.784	1.00 58.17 1.00 53.18	AAAA C AAAA C	
ATCH	39 39		TRP	102	38.286	59.897	39.002	1.00 56.61	AAAA C	
ATOH	3839		TRP	405	38.643	61.917	37.764	1.90 43.25	AAAA C	
ATCH	3940		TRP	402	36.712	60.517	40.459	1.00 53.50	AAAA C	
ATOH	3841		TRP TRP	405 405	37.488	59,467	40.032	1.00 57.66	AAAA II	
ATOH	3844		TRP	402	39.212 39.546	59.160 61.199	38.249 37.026	1.00 51.44 1.00 53.69	AAAA C AAAA C	
ATOH.	3842		TRP	402	39.920	59.957	37.263	1.00 50.75	AAAA C	
ATCH	3846	c	TRE	102	34.213	64.389	39.429	1.00 64.09	AAAA C	
ATO:	3847	C 11	TRP A=P	402	34.408	è2.119	38.808	1.00 61.09	AAAA O	
ATCH	3850	CA	ASP	403	33.503 32.947	64.418 64.418	40.551	1.00 68.85 1.00 67.83	AAAA 11 AAAA C	
ATCH	1851	CB.	ASF	403	31.918	65.343	42.151	1.00 72.19	AAAA C	
ATOH	3852	C/3	ASE	4.93	30.853	66.417	42.306	1.00 73.98	AAAA C	
ATOH	3853		ASF	403	31.177	67.625	42,297	1.00 71.67	AAAA O	
ATCC:	3854 3855	002	AGE AGE	103 103	29.693	65.279	42.454	1.00 75.08	AAAA O	
ATOL	3626	ō	ASP	403	34.005 34.245	66.672	41.607	1.00 66.63	AAAA C AAAA O	
ATOH:	3857	(1	TRP	404	34.449	67.588	40.846	1.00 69.29	AAAA II	
HOTA	3859	CA	TRP	101	35.412	68.588	41.291	1.00 77.11	AAAA C	
ATOH	3860	CB	TRP	101	35.859	69.409	40.063	1.00 79.10	AAAA C	
ATOH	3861 3862	CDS	TRP TRP	404 404	36.504	68.509	39.047	1.00 82.59	AAAA C	
ATOH	3863		TRE	404	37.294 37.686	67.346	39.322 38.081	1.00 84.82 1.00 84.56	AAAA C AAAA C	
ATOH	3864		TRP	404	37.703	66.710	49.506	1.00 80.95	AANA C	
ATOH	3855		TRP	4.04	36.460	68.622	37.694	1.20 83.37	AAAA C	
ATOI:	3866		TRE	404	37.165	67.617	37.111	1.30 80.33	II AAAA	
ATCH ATCH	3868 3869		TRP TRP	404	38.477 38.471	65.662	37.982	1.00 85.91 1.00 86.36	AAAA C	
ATOH	3870		TRP	104	38.869	65.573 65.051	40.392	1.00 85.05	AAAA C	
ATOH	3971	Ç	TRP	104	35.734	69.517	42.420	1.00 81.60	AAAA C	
ATCH	3872	0	TRP	404	35.387	70.709	45.504	1.00 84.57	AAAA O	
ATOH ATOH	3873 3875	II CA	ASP	105	34.281	69.063	43.393	1.00 84.45	AAAA II	
ATOH	3876	C3	ASP ASP	105 405	33.771 32.352	69.861 70.365	44.496	1.00 87.48	AAAA C AAAA C	
ATOH	3877	ĊĠ	ASP	105	32.274	71.612	43.409	1.00 92.54	AAAA C	
ATOH	3878		ASP	405	33.306	72.285	43.207	1.90 94.82	AAAA O.	
ATON	3879		ASP	105	31.130	71.854	42.955	1.00 95.26	AAAA O	
HOTA	3880 3881	ο C	ASP ASP	405 405	33.730 34.245	68.906 69.224	45.693 46.743	1.00 87.80	AAAA C AAAA O	
ATOH	3882	11	ALA	106	33.239	67.709	45.460	1.00 84.46	AAAA II	
ATOH	3884	CA	ALA	406	33.176	66.671	46.451	1.90 82.87	AAAA C	
ATCH	3895	CB	ALA	106	31.943	65.895	46.133	1.00 76.32	AAAA C	
ATOH	3886	ć	ALA	106	34.445	65.840	16.459	1.00 85.77	AAAA C	
ATOH ATOH	3987 3888	9	ALA ARG	406 407	34.470 35.43J	64.823 66.073	47.185 45.577	1.00 89.38	AAAA O AAAA II	
ATOU	3860	CA	ARG	107	36.541	65.151	45.400	1.00 79.60	AAAA C	
ATC:1	3991	CB	ARG	467	36.155	64.140	44.297	1.00 77.84	AAAA C	
ATOH	3665	CO	AR/3	107	35.457	62.950	44.921	1.00 81.91	AAAA C	
ATOH ATOH	3893 3894	D GT	ARJ ARG	407 407	35.362	61.688	44.113	1.00 86.97	AAAA C AAAA II	
ATOH	3996	C2	AR-3	407	36.281 37.564	60.660 60.583	44.279	1.30 92.14	AAAA C	
ATOI1	3897		ARG	407	38.169	61.441	43.469	1.00 97.06	AAAA H	
ATOH	3900		ARG	407	38.309	59.616	44,770	1.00 96.33	AAAA II	
ATOH ATOH	3601 3603	c C	ARG ARG	107	37.880 37.880	65.749	45.048	1.00 76.72	AAAA C AAAA O	
ATOH	3905	11	ASH	408 407	37.989 38.958	66.77∔ 65.081	12. 153 14. 110	1.00 75.75	AAAA II	
ATON	3907	CA	ASti	108	40.311	65.556	45.173	1.30 73.79	AAAA C	
ATOH	3908	CB	ASII	108	40.939	66.240	46.388	1.90 74.46	AAAA C	
ATOH	3909	CG	ASII	108	41.986	67.242	15.917	1.00 82.51	AAAA C	
atoh Hota	3910 3911		ASII ASII	108	41.913	68.429	46.240	1.00 90.33	O AAAA 1! AAAA	
ATOH	3914	C	ASII	408 408	43.028 41.257	64.468	45.253	1.00 65.97	AAAA 🕾	
ATOH	3915	Ô	ASII	408	41.251	63.374	45.151	1.00 63.82	AAAA C	
VLO H	3916	1i	LEU	409	42.341	64.793	43.650	1.00 61.41	AAAA II	
ATCH	3918	CA	LEU	109	42.996	63.872	42.947	1.00 60.90	AAAA : 9	_
ATOH ATOH	3919 3919	CB	LEU	100 100	40.153 42.992	63.250 62.553	41.768	1.00 62.98	AAAA C	AUG
ATOH	3921		LEU	109	43.488	61.205	41.197	1.00 51.06	AAAA C CAAAAA C AAAAA C AAAAAA	<u> </u>
HOTA	3922		LEU	409	42.094	62,445	39.486	1.00 55.74	AAAA c 📑	0
ATON	3223	۲.	LEU	193	44.151	64.599	42.485	1.00 61.19	www - int	~
ATOH	3924	0	LEU	109	44.141	65.809	42.370	1.00 60.64	AAAA O J	0 8 7003
ATOH ATOH	3925 3927	II Ca	THR THR	410 410	45.281 46.589	63.903 64.462	42.424	1.00 63.74	AAAA II	Š
ATON	3928	CB	THR	410	17.454	64.676	43.385	1.00 67.08	AAAA c	ت:
ATOH	1929	0:31	THR	410	16.870	65.746	44.157	1.00 74.29	C AAAA	
ATOH	3?31		THE	410	48.909	65.103	43.162	1.00 48.56	AAAA C	
ATOH	3932 3933	O.	THR	410	47.426	63.565	41.218	1.00 56.62 1.00 54.99	AAAA C AAAA O	
ATCII	3934	ŭ.	ILE	410 410	47.362 48.977	62.354	41.317	1.00 53.97	AAAA II	
ATOH	3936	CA	ILE	411	48.897	63.562	39.291	1.00 53.29	AAAA :	

TECH CENTER 1600

RECEIVE

							39/58		
ATON	3937	CB	ILE	411	48.409	63.854	37.864	1.00 49.91	AAAA C
ATOH	3938	C:25	ILE	411	49.216	63.128	Jé. 806	1.00 30.85	AAAA C
ATOH	3939		ILE	411	46.911	63.189	37.729	1.00 10.83	AAAA C
ATOH	3341 3340	CDI	ILE ILE	411	46.322 50.319	63.547	36.339	1.00 38.51	7.444 C
ATCHI	3942	Ĉ.	LLE	411	50.656	64.018 65.179	39.569 39.291	1.00 55.38	AAAA O
ATOH	3943	ĬĬ.	SER	412	51.073	63.182	10.270	1.00 54.26	AAAA II
HOTA	3445	CA	SER	412	52.434	63.502	40.689	1.20 54.46	AAAA C
ATCH	3946	CB	SER	412	53.971	62.210	41.248	1.00 55.78	AAAA C
ATOH	3947	C-3	SER	412	53.756	62.536	42.434	1.00 67.10	٥ ممم
ATOH ATOH	3949 3950	ر د	SER SER	412 412	53.326	63.910 64.876	39.523	1.00 55.50	AAAA C AAAA O
ATOH	3951	11	ALA	413	54.081 53.254	63.124	39.527 38.438	1.00 55.04 1.00 50.12	AAAA II
ATON	3953	CA	A.JA	413	54.064	63.402	37.201	1.00 50.01	ANAN E
ATOH	3.254	CB	ALA	413	55.334	62.520	37.365	1.00 34.95	AAAA C
ATOH	3955	?	Al.A	413	53.301	63.078	35.994	1.00 49.71	AAAA C
ATOH	3956	()	ALA	413	\$2.495	62.168	35.995	1.00 48.81	AAAA O
ATCH ATCH	3957 3959	II CA	GLY	414	53.675 53.057	63.690 63.454	34.895 33.607	1.00 47.92	11 AAAA C
ATCH	3460	Ç	GLY	414	52.017	64.524	33.294	1.00 52.77	AAAA C
ATOH	3961	Č,	GLY	414	51.684	65.370	34.114	1.00 53.23	AAAA O
ATOH	3960	H	LTS	415	51.385	64.406	32.138	1.00 56.31	AAAA II
ATOH1	3 96 4	ÇΆ	Lïs	415	50.289	65.317	31.759	1.00 52.49	AAAA C
ATCH	3965		LYS	415	50.884	66.358	30.833	1.00 50.94	AAAA C
ATC+1 ATC+1	3966 3 967	CD	LYS	415 415	51.198 52.288	65.855	29.429 ° 28.765	1.00 54.39 1.00 53.96	C AAAA C AAAA
ATOH	3968	CE	LYS	415	52.785	66.691 66.151	27.441	1.00 56.01	AAAA C
ATOH	3969	115	LYS	415	52.426	67.032	36.284	1.00 66.36	AAAA 11
ATOH1	3973	C	1.75	415	49.110	64.576	31.155	1.00 50.94	AAAA C
ATCI1	3074	0	LïS	415	49.077	63.337	31.036	1.99 49.77	O KAAK
ATOH	3975	!!	HET	416	48.091	65.353	30.771	1.00 48.34	AAAA II
ATOH	3977 3978	CA CB	HET	416 416	46.890 45.629	64.734	30.186 30.949	1.90 46.77	AAAA C AAAA C
ATOH ATOH	3979	CG	TET	416	45.836	65.186 65.880	32.273	1.00 40.91	AAAA C
ATOH	3980	SD	HET	416	44.511	65.636	33.517	1.00 56.20	E AAAA
ATOH	3981	CE	HET	416	44.002	67.366	33.690	1.00 35.94	AAAA C
ATOH	3982	C	MET	416	46.623	65.064	28.729	1.00 40.40	AAAA C
ATON	3983	0	HET	416	46.963	66.137	28.247	1.00 34.84	AAAA O
ATO() ATO()	3684 3684	I≀ CA	TYR	417 417	45.893 45.355	64.169 64.387	28.104 26.765	1.00 38.49	AAAA C
ATO!	3987	СВ	TYR	417	46.156	63.471	25.831	1.00 32.02	AAAA C
ATOI I	3988	CG	TYR	417	45.583	63.430	24.428	1.00 39.48	AAAA C
ATON!	3989		TYR	417	45.730	64.501	23.511	1.00 39.22	AAAA C
AT OH	3990		TTR	417	45.196	64.129	22.253	1.00 34.56	AAAA C
ATOH	3991		TYR TYR	417	44.884	62.321	24.005	1.00 36.81	AAAA C AAAA C
ATOH ATOH	3993	C\$	TYR	417	44.379 44.5 3 5	62.241 63.292	21.872	1.00 44.20	AAAA C
ATOH	3001	ОH	TYR	417	44.053	63.361	20.552	1.00 58.10	AAAA O
INTA	3996	¢	TTR	417	43.853	64.065	26.698	1.00 44.18	AAAA C
ATC:	3997	ა	TTR	417	43.376	62.974	27.135	1.00 42.19	AAAA O
ATOH	3008	11	PHE	418	13.068	64.971	26.100	1.00 45.84	AAAA II
ATOH	4000 4000	CA PB	EHE	418 418	41.644	64.701 65.657	25.910 26.730	1.00 47.19	AAAA C AAAA C
ATO:	1902	70	PHE	41 B	40.675	65.264	28.177	1.00 43.44	AAAA C
ATCH	1003	COL	PHE	119	41.552	65.685	29.132	1.00 38.43	AAAA C
ATOH	1601	CDC	SHB	418	39.638	64.417	28.544		AAAA C
ATOU	1005		PHE	418	41.402	65.291	30.440	1.00 45.44	AAAA C
ATOH	1006		EHE	418	39.486	64.023	29.845	1.00 46.63	AAAA C AAAA C
ATO()	4007 4008	C C2	PHE	418	40.358 41.251	64.454	30.801 24.440	1.00 44.64	AAAA C
ATOL	1009	ō	PHE	118	41.375	65.762	23.812	1.00 47.60	AAAA O
ATOH	4010	11	ALA	419	10.554	63.713	23.936	1.00 43.96	H AAAA
ATC(-I	4012	CA	ALA	419	40.015	63.793	22.697	1.00 39.21	AAAA C
VLOI-I	4013	CB	ΑLΛ	419	41.090	63.562	21.555	1.00 30.88	AAAA C
ATOH	4014	c	ALA	119	38.837	62.846	22.366	1.00 41.77 1.00 36.08	AAAA C AAAA O
ATOII ATOII	4016 4015	O II	ALA PHE	419 420	38.871 3 7.929	61.628 63.398	22.557 21.618	1.00 40.41	AAAA II
ATOH	4018	ÇA.	PHE	420	36.742	62.621	21.070	1.00 40.03	AAAA C
ATOIL	4019	CB.	EHE	420	37.157	61.430	20.180	1.00 45.54	AAAA C
ATOH	4020	C/S	PHE	420	37.832	61.909	18.912	1.00 54.18	C FASA
ATOH	1021		BHE	429	39.221	61.987	18.751	1.00 49.23	AAAA C
ATOLI	4022		PHF.	130	37.006	62.345	17.871	1.00 47.65 1.00 46.00	2 <i>AAA</i> A
ATOH ATOH	4023 4024		PHE	420 420	39.783 37.573	62.496 62.833	17.567 16.725	1.00 51.10	AAAA
ATOH	1025	CZ	PHE	420	38.964	62.928	16.549	1.90 44.01	AAAA C
ATOLI	4026	٦	PHE	429	35.762	62.146	22.126	1.00 41.65	AAAA C
INTA	4027	0	PHE	420	35.352	60.991	22.215	1.00 38.35	AAAA O
ATOH	4028	fi	ASII	421	35.159	63.024	23.049	1.00 45.35	AAAA N
ATON	1030	CA	ASH	421	34.477	62.960	24.112	1.00 46.86	AAAA C AAAA C
ATO(1	4031 4031	CB C3	ASII ASII	421 421	35.18.1 36.407	63.276 62.401	25.449 25.654	1.00 47.90	C AAAA
ATOH	1033		ASII	421	36.407 36.426	61.147	25.714	1.00 44.83	AAAA O
ATOL	1031		ASH	421	37.541	63.101	25.732	1.00 27.45	AAAA 11
ATON	4037	ċ	ASII	421	33.432	64.069	23.835	1.00 47.83	AAAA c
ATOLI	1038	\boldsymbol{G}	ASH	421	33.617	65.233	24.237	1.90 38.95	araa c

TECH CENTER 1600/2900

RECEIVED

							40/58		
ATOB	4639	:)	CRS	422	32.453	63.777	22.969	1.0- 47.86	AAAA II
ATOH	4040	50	039	422	32.213	62.423	22.372	1.00 44.11	AAAA C
ATCH ATCH	4041	CB	₽RO PRO	422 422	31.463 30.731	64.776	21.446	1.00 47.85	AAAA C
ATOH	1043	೧೦	FRO	422	30.947	62.623	21.606	1.00 43.01	~~~~ °
ATC(1	1012	Ö	PRO PRO	422 422	30.577	65.284	23.735	1.00 51.15	AAAA C
ATOH	1016	ii	LTS	423	30.223 30.320	66.486 64.487	23.744	1.00 48.54	O AKAR II AKAR
ATOH	4648	25	LVS	423	29.431	61.908	25.865	1.00 58.82	AAAA C
ATOH ATOH	1020	63 63	LYS LYS	423	28.556	63.721	26.360	1.00 52.93	AAAA C
ATOH	4051	CD.	LVS	423 423	28.209 26.743	62.810 62.418	25.196	1.00 70.55 1.00 73.79	AAAA C AAAA C
ATON	4052	CE	LTS	423	26.030	63.374	24.021	1.00 77.06	AAAA C
ATOH	1053 1057	1:I	L73 L73	423 423	25.949 30.158	64.748	24.614	1.00 64.99	ANAA II
ATON	4058	ċ	LYS	423	29.582	65.482 65.478	27.071	1.00 55.22	AAAA C AAAA O
ATOH	1059	11	LEU	424	31.425	65.859	26.852	1.00 55.95	AAAA II
ATON ATON	4062	CV CV	LEU LEU	424 424	32.261 33.463	66.162 6 5.250	28.017	1.00 57.07	AAAA C AAAA C
ATON	1063	CS.	LEU	424	34.390	65.748	29.370	1.00 68.27	FAAA
ATOH	1064		LEU	424	33.821	65.362	30.73;	1.00 60.66	AAAA C
ATCH ATOH	4065 4066	C02	LEU	424 424	35.825 32.709	65.276 67.585	29.123	1.00 60.35	C AAAA C AAA
ATO:	4967	ō	LEU	424	33.696	67.861	27.201	1.00 59.98	AAAA O
ATON	1068	11	CAS	425	31.995	68.488	28.492	1.00 58.76	II AAAA
ATON ATON	4070 4071	CV.	CAS	425 425	32.342 33.771	69.916 70.119	28.406	1.00 60.39	AAAA C AAAA C
ATOH	4072	O	CYS	425	34.289	69.665	29.831	1.00 64.45	AAAA O
ATOI1	1977	CE.	CIS	425	31.249	70.644	29.214	1.00 68.23	AAAA C
ATOH	4074	<i>5</i> G	CVS VAL	425 426	29.916 34.529	71.303 70.953	29.086 28.102	1.00 81.03	E AAAA H AAAA
ATOH	1077	CA	VAL	126	35.943	71.149	29.358	1.00 65.49	AAAA C
ATOH ATOH	1078 1079	CB COL	VAL VAL	426	36.644	72.022	27.310	1.00 66.66	AAAA C
ATON	4080		VAL	156 156	36.715 35.962	71.413 73.365	25.925	1.00 62.49 1.00 60.92	AAAA C AAAA C
ATOM	1081	Ç	VAL	426	36.105	71.711	29.757	1.00 65.99	AAAA C
ATOH ATOH	1082 1083	9	VAL SER	426 427	37.180	71.724	30.388	1.00 64.51	O AAAA II AAAA
ATOH	1085	CA	SER	127	35.090 35.091	72.361	30.267 31.599	1.00 66.85	AAAA C
ATON	1086	СВ	SER	427	33.685	73.499	31.864	1.00 61.16	AAAA C
ATOH ATOH	1089 1087	C C/2	SER SER	427 427	34.088 35.515	74.860 71.972	32.098 32.701	1.00 67.05	AAAA O AAAA C
HOTA	4090	ŏ	SER	127	36.332	72.328	33.573	1.00 63.66	AAAA O
ATOH	4091	11	CLU	428	34.965	70.771	32.618	1.00 58.75	· AAAA II
ATOH ATOH	4054 4033	CA C8	GLU GLU	428 428	35.384 34.594	69.753 68.485	33.585	1.00 63.39 1.00 68.67	AAAA C
ATOH	4095	CG	GLU	428	33.115	68.560	33.537	1.00 66.59	AAAA C
ATOH ATOH	1097	CD.	GLU GLU	428 428	32.785 32.729	68.560	35.023 35.722	1.00 72.33	AAAA C AAAA O
ATCH	1058		CLU	128	32.581	67.522 69.688	35.517	1.00 70.97	AAAA O
ATOH	4039	?	SLU	428	36.970	69.485	33.429	1.00 61.63	AAAA C
ATOH ATOH	4100 4101	() !!	GL()	428 429	37.671 37.265	69.696 69.262	34.207 32.165	1.00 62.03	AAAA O AAAA II
ATOH	1103	ÇA	ILE	129	38.631	62.038	31.789	1.00 61.09	AAAA C
ATOH	4104	CB	ILE	429	38.759	68.933	30.263	1.00 59.32	AAAA C
ATOH ATOH	4105 4106		ILE ILE	429 429	40.257 37.968	68,915 67,719	29.895	1.00 45.93	AAAA C AAAA C
ATON	4107		ILE	429	38.038	67.555	28.285	1.00 53.48	AAAA C
ATON	4108	C	ILE	429	39.498	70.166	32.323	1.00 61.90	AAAA C
ATOH	4110 4110	0	ILE Tyr	429 430	40.592 38.987	70.017 71.384	32.867 32.200	1.00 61.28 1.00 65.34	AAAA O AAAA II
ATO!1	4112	CA	TTR	430	39.729	72.543	32.719	1.00 68.10	AAAA C
ATOH ATOH	4114	CB CG	TYR TYR	130 130	39.180 39.538	73.822 74.006	32.099 39.639	1.00 71.02 1.00 75.98	AAAA C AAAA C
ATOH	4115		TYR	430	38.653	73.821	29.599	1.00 77.60	AAAA C
ATOH	1116		TTR	430	38.953	73.977	28.270	1.00 75.72	MA C
ATOH ATOH	:117 1118		TYR Tyr	430 430	40.910 41.155	74.401 74.575	50,260 28,937	1.00 75.95	AAAA C AAAA C
ATOH	4115	CI	T∵R	430	40.221	74.35	27.952	1.00 78.51	AAAA C
ATOH ATOH	4120	OH	TYR	430	40.564	74.542	25.616	1.00 85.40	AAAA O AAAA C
ATOH	4122 4123		TYR TYR	130 150	39.779 40.651	72.634 73.321	34.241 31.758	1.00 58.26	AAAA O
ATOH	4124	†1	ARG	431	38.819	72.017	34.907	1.00 65.53	AAAA 11
ATOH HOTA	4126 4127	CA CB	ARG ARJ	431	38.747 37.348	72.043 71.748	36.356 36.898	1.00 68.15	AAAA C AAAA C
ATOH	4128	CG	ARG	431	37.346	71.815	38.430	1.00 82.99	AAAA C
ATOH	4129	CD	ARG	431	37.270	73.279	39.860	1.00 88.39	AAA C
HOTA	4130 4132	IIE C3	ARG ARG	431 431	37.698 36.835	73.472 73.259	40.258 41.259	1.00 92.48	AAAA 11 AAAA C
ATOH	4133		ARG	431	35.610	72.872	10.872	1.00 87.40	AAAA II
ATOH	4136	HH2	AR.3	431	37.021	73.371	42.567	1.00 95.17	AAAA II
ATOH ATOH	4139 4140	0	ARG ARG	431 131	39.719 40.637	70.986	36.677 37.629	1.00 67.75	6 AAA ር 6AAA
ATOH	4141	::	HET	132	39.511	69.791	26.305	1.20 63.87	AAAA D
ATOI1	4113	SA	HET	432	40.437	68.703	36.652	1.00 64.40	AAAA E

TECH CENTER 1600/2900

RECEIVED

ATCH 4141 00 HET 4311 49.297 67.202 33.213 1.00 54.21 AAAA C ATCH 4145 00 HET 432 44.225 36.246 33.271 1.00 54.21 AAAA C ATCH 4147 00 HET 412 44.225 63.221 31.213 1.00 54.21 AAAA C ATCH 4147 00 HET 412 44.225 63.221 31.213 1.00 64.65 AAAA C ATCH 4149 0 HET 412 41.221 63.225 63.221 1.05 64.65 AAAA C ATCH 4149 0 HET 412 41.221 63.225 63.221 1.05 64.65 AAAA C ATCH 4159 0 HET 412 42.231 69.291 15.55 1.00 64.95 AAAA C ATCH 4159 0 HET 412 42.331 69.291 15.55 1.00 64.95 AAAA C ATCH 4159 0 GU 433 44.233 44.718 70.426 53.010 1.00 65.16 AAAA C ATCH 4159 0 GU 433 44.718 70.146 31.010 1.00 76.21 AAAA C ATCH 4159 0 GU 433 44.718 70.146 31.010 1.00 76.21 AAAA C ATCH 4159 0 GU 433 44.718 70.224 12.591 1.00 86.82 AAAA C ATCH 4159 0 GU 433 44.718 70.224 12.591 1.00 86.82 AAAA C ATCH 4159 0 GU 433 44.718 70.224 12.591 1.00 86.82 AAAA C ATCH 4159 0 GU 433 44.718 70.224 12.591 1.00 86.82 AAAA C ATCH 4159 0 GU 434 43.155 70.295 1.00 1.00 76.21 AAAA C ATCH 4159 0 GU 434 43.155 70.295 1.00 1.00 77.25 AAAA C ATCH 4159 0 GU 434 43.155 70.295 1.00 70.295 3.00							41/50		•
ATOM 4145 CG HET 412	ATCU	11:1	CO LIET	13.	16 227	67 (-3	41/58		
ATOM 4116 SO 18T 432 30,829 41,925 35,112 1,95 52,121 AAAA S ATOM 4117 CE 18T 432 41,821 60,470 34,620 1,52 41,85 54,844 54									
ATOM 4148 C SET 412 41.991 69.179 25.670 1.62 84.65 AAAA C ATOM 4150 10 10 10 10 11 11 12 12 12 12 12 12 12 12 12 12 12	HOTA	4146	SO IET		40.829		35.112		AAAA S
ATCH 115 0 187									
ATCH 150 G GU 433 42,331 69,811 35,556 1,30 65,768 AAAA C ATCH 4155 CO GU 433 43,762 70,456 81,340 1,30 69,16 AAAA C ATCH 4155 CO GU 433 43,762 70,456 31,401 1,30 69,16 AAAA C ATCH 4156 CO GU 433 44,452 70,145 31,401 1,30 66,16 AAAA C ATCH 4157 OE2 GU 433 44,452 70,145 31,401 1,30 66,16 AAAA C ATCH 4157 OE2 GU 433 44,452 70,145 31,401 1,30 66,27 AAAA C ATCH 4157 OE2 GU 433 44,452 70,145 31,401 1,30 66,27 AAAA C ATCH 4159 OE GU 433 44,401 71,219 36,761 1,20 71,229 AAAA C ATCH 4159 OE GU 433 44,401 71,219 36,761 1,20 71,229 AAAA C ATCH 4150 OE GU 333 44,101 71,219 36,761 1,20 71,229 AAAA C ATCH 4150 OE GU 333 44,101 71,219 36,761 1,20 71,229 AAAA C ATCH 4150 OE GU 334 44,101 71,219 37,220 1,30 71,229 AAAA C ATCH 4150 OE GU 434 43,101 71,219 37,220 1,30 72,231 AAAA C ATCH 4150 OE GU 434 43,101 71,219 37,201 1,30 72,231 AAAA C ATCH 4150 OE GU 434 43,101 71,219 73,916 38,451 1,00 72,331 AAAA C ATCH 4150 OE GU 434 43,101 71,429 73,916 73,91									
ATOM 4155 CD GLD 433 43,764 71,566 31,400, 100 86,879 AAA C ATOM 4155 CD GLD 433 44,623 72,149 32,711 100 86,870 AAA C ATOM 4155 CD GLD 433 44,623 72,149 32,711 100 86,870 AAA C ATOM 4150 GLD GLD 433 44,623 72,149 32,711 100 86,870 AAA C ATOM 4150 GLD GLD 433 44,620 72,100 36,701 100 86,870 AAA C ATOM 4150 GLD 433 44,670 72,000 36,701 100 86,870 AAA C ATOM 4150 GLD 433 44,670 72,000 36,701 100 86,870 AAA C ATOM 4160 M GLD 433 44,670 72,000 36,701 100 86,870 AAA C ATOM 4160 M GLD 433 45,015 71,120 36,701 100 81,301 AAA C ATOM 4160 M GLD 434 43,170 71,120 11,00 71,201 100 81,301 AAA C ATOM 4160 M GLD 434 43,170 71,120 11,00 71,201 100 81,301 AAA C ATOM 4160 GLD 434 43,170 71,120 71,120 71,00 81,301 AAA C ATOM 4160 GLD 434 43,170 71,120 71,120 71,00 81,301 AAA C ATOM 4160 GLD 434 43,170 71,120 71,120 71,00 81,301 AAA C ATOM 4160 GLD 434 43,170 71,120 71,120 71,100 81,301 AAA C ATOM 4160 GLD 434 43,170 71,120	ATOH	4150	11 GEU	433					AAAA II
ATOM 4151 05 05 05 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
ATOM 4155 OD GLU 433 44,925 72,149 12,295 1,00 82,02 AAAA C ATOM 4157 OEL GLU 433 44,925 72,109 31,002 1,00 86,26 AAAA C ATOM 4157 OEL GLU 433 44,925 72,050 31,002 1,00 86,26 AAAA C ATOM 4157 OEL GLU 433 44,925 72,050 31,002 1,00 86,26 AAAA C ATOM 4159 C GLU 433 44,925 72,050 31,002 1,00 86,26 AAAA C ATOM 4159 C GLU 433 45,133 71,033 37,291 1,00 71,29 AAAA C ATOM 4159 C GLU 431 43,00 71,									
ATOM 14157 OEZ GLU 433 44.965 72.050 11.042 1.00 88.26 AAAA C ATOM 14159 C GLU 433 45.133 11.083 17.294 11.00 74.29 AAAA C ATOM 14150 IN GLU 434 43.176 77.1275 17.294 11.00 74.29 AAAA C ATOM 14150 IN GLU 434 43.176 77.1275 17.294 11.00 74.29 AAAA C ATOM 14150 C GLU 434 43.176 77.1275 17.295 11.00 73.295 AAAA C ATOM 14150 C GLU 434 43.176 77.1275 17.295 11.00 73.295 AAAA IN ATOM 14150 C GLU 434 43.176 77.1275 17.295 11.00 81.36 AAAA C ATOM 14150 C GLU 434 43.191 73.955 38.032 11.00 81.36 AAAA C ATOM 14150 C GLU 434 41.191 73.955 38.032 11.00 81.31 AAAA C ATOM 14150 C GLU 434 41.191 73.955 38.032 11.00 81.31 AAAA C ATOM 14150 C GLU 434 41.191 73.955 38.032 11.00 89.95 AAAA C ATOM 14150 C GLU 434 41.191 73.955 38.032 11.00 89.95 AAAA C ATOM 14150 C GLU 434 41.726 71.985 40.0251 11.00 78.49 AAAA C ATOM 14150 C GLU 434 41.726 71.985 40.0251 11.00 78.49 AAAA C ATOM 14150 N YAL 435 42.791 71.0053 39.255 11.00 78.49 AAAA C ATOM 14170 N YAL 435 42.791 70.129 41.001 11.00 62.49 AAAA C ATOM 14170 N YAL 435 42.791 70.129 41.001 11.00 62.49 AAAA C ATOM 14170 C VAL 435 41.547 68.214 42.104 11.00 51.00 60.33 AAAA C ATOM 14170 C VAL 435 41.547 68.214 42.104 11.00 51.00 60.33 AAAA C ATOM 14170 C VAL 435 41.547 68.214 42.104 11.00 51.00 60.33 AAAA C ATOM 14170 C VAL 435 41.547 68.214 42.104 11.00 51.00 60.31 AAAA C ATOM 14187 C VAL 435 41.547 68.214 42.104 11.00 51.00 60.31 AAAA C ATOM 14187 C VAL 435 41.547 68.214 42.104 11.00 60.617 AAAA C ATOM 14187 C C VAL 435 41.547 68.214 42.104 11.00 60.617 AAAA C ATOM 14187 C C VAL 435 41.547 68.214 42.104 11.00 60.617 AAAA C ATOM 14187 C C VAL 435 41.547 68.214 42.104 11.00 60.617 AAAA C ATOM 14187 C C VAL 435 41.547 68.214 42.104 11.00 60.617 AAAA C ATOM 14187 C C VAL 435 41.547 68.214 42.104 11.00 60.617 AAAA C ATOM 14187 C C VAL 435 41.547 68.214 42.104 11.00 60.617 AAAA C ATOM 14187 C C VAL 435 41.547 68.214 42.104 11.00 60.617 AAAA C ATOM 14187 C C VAL 435 41.547 68.214 42.104 11.00 60.617 AAAA C ATOM 14187 C C C C C C C C C C C C C C C C C C C	ATOH	4155	CD GE0	433				1.00 82.02	S AAAA
ATOM 14158 C 360 433 44,016 71,212 36,701 1.00 71,229 AAAA C ATOM 14169 W 360 433 43,178 77,170 37,729 1.00 74,229 AAAA C ATOM 14160 W 360 434 43,178 77,170 37,729 1.00 74,229 AAAA W ATOM 14162 CA GLO 431 43,155 72,373 38,495 1.00 72,386 AAAA C ATOM 14163 CB GULW 434 42,158 73,916 38,032 1.00 81,36 AAAA C ATOM 14165 CD GULW 434 42,158 73,916 38,032 1.00 81,36 AAAA C ATOM 14165 CD GULW 434 42,158 73,916 38,032 1.00 81,36 AAAA C ATOM 14166 CD GULW 434 42,158 73,916 38,032 1.00 81,36 AAAA C ATOM 14166 CD GULW 434 42,019 73,956 38,032 1.00 81,36 AAAA C ATOM 14169 C GULW 434 43,675 71,886 39,632 1.00 97,34 AAAA D ATOM 14169 C GULW 434 43,675 71,886 39,632 1.00 97,34 AAAA D ATOM 14169 C GULW 434 43,675 71,886 39,632 1.00 97,34 AAAA D ATOM 14170 C A VAL 435 42,711 70,129 1,000 11.00 78,149 AAAA D ATOM 14170 C A VAL 435 42,711 70,129 1,000 11.00 78,149 AAAA D ATOM 14170 C A VAL 435 42,711 70,129 1,000 11.00 52,149 AAAA D ATOM 14170 CD VAL 435 42,711 70,129 1,000 11.00 52,149 AAAA D ATOM 14170 CD VAL 435 42,711 70,121 41,001 1.00 52,149 AAAA D ATOM 14170 CD VAL 435 42,711 70,121 41,001 1.00 52,149 AAAA D ATOM 14170 CD VAL 435 42,711 70,121 41,001 1.00 52,149 AAAA D ATOM 14170 CD VAL 435 42,711 70,121 41,001 1.00 52,149 AAAA D ATOM 14170 CD VAL 435 42,711 70,121 41,001 1.00 52,149 AAAA D ATOM 14170 CD VAL 435 44,140 69,217 42,140 1.00 1.00 52,149 AAAA D ATOM 14180 C ATOM 1418 436 44,120 68,526 39,918 1.00 60,67 AAAA D ATOM 14180 C ATOM 1418 436 44,120 68,526 39,918 1.00 60,67 AAAA D ATOM 14180 C ATOM 1418 436 44,120 68,526 39,918 1.00 60,67 AAAA D ATOM 14180 C ATOM 1418 436 44,100 65,526 39,911 1.00 50,138 AAAA D ATOM 1419 C ATOM 1418 436 44,120 66,525 39,936 1.00 60,67 AAAA D ATOM 1419 C ATOM 1418 436 44,120 66,552 39,936 1.00 60,67 AAAA D ATOM 1419 C ATOM 1418 436 44,100 65,526 39,931 1.00 50,138 AAAA D ATOM 1419 C ATOM 1418 436 44,100 65,526 39,931 1.00 50,138 AAAA D ATOM 1419 C ATOM 1418 436 44,100 65,526 39,931 1.00 60,67 AAAA D ATOM 1419 C ATOM									
ATON 4159 O GLU 434 43, 1176 71.003 37.291 1.00 74.293 AAAA O ATON 4169 C GLU 434 43, 1376 72.193 38, 445 1.00 72.286 AAAA C ATON 4164 CG GLU 434 41.191 73.955 38, 032 1.00 81.36 AAAA C ATON 4165 CD GLU 434 41.191 73.955 38, 032 1.00 81.31 AAAA C ATON 4165 CD GLU 434 41.191 73.955 38, 032 1.00 81.31 AAAA C ATON 4166 CD GLU 434 40.191 75.001 39.137 1.00 91.32 AAAA C ATON 4166 CD GLU 434 40.191 75.001 39.137 1.00 91.32 AAAA C ATON 4166 CD GLU 434 40.191 75.001 39.137 1.00 91.32 AAAA C ATON 4169 CO GLU 434 40.191 75.001 39.137 1.00 91.32 AAAA C ATON 4169 CO GLU 434 41.728 71.989 40.251 1.00 78.49 AAAA C ATON 4170 N YAL 435 42.670 71.005 39.263 1.00 98.49 AAAA C ATON 4170 N YAL 435 42.7711 70.122 41.001 1.00 62.49 AAAA C ATON 4170 N YAL 435 42.7711 70.122 41.001 1.00 62.49 AAAA C ATON 4170 N YAL 435 42.7711 70.122 41.001 1.00 62.49 AAAA C ATON 4170 N YAL 435 42.7711 70.122 41.001 1.00 62.49 AAAA C ATON 4170 N YAL 435 41.547 68.214 42.781 1.001 1.00 62.49 AAAA C ATON 4170 N YAL 435 41.547 68.214 42.781 1.001 1.00 62.49 AAAA C ATON 4170 N YAL 435 41.547 68.214 42.781 1.001 1.00 62.49 AAAA C ATON 4170 N YAL 435 41.547 68.214 42.781 1.001 1.00 62.49 AAAA C ATON 4170 N YAL 435 41.547 68.214 42.781 1.001 1.00 62.49 AAAA C ATON 4170 N YAL 435 41.547 68.214 42.781 1.001 1.00 62.49 AAAA C ATON 4187 COLUMN 435 41.547 68.214 42.781 1.000 1.00 60.71 AAAA C ATON 4187 COLUMN 435 41.547 68.214 42.781 1.000 1.100 62.49 AAAA C ATON 4187 COLUMN 435 44.607 69.155 1.000 3									
ATOM 14157 CA GLU 431 43.505 72.873 18.495 1.00 83.34 AAAA C ATOM 14161 CG GLU 431 41.191 73.995 18.032 1.09 83.34 AAAA C ATOM 14165 CD GLU 431 41.191 73.995 18.032 1.09 83.34 AAAA C ATOM 1416 CG GLU 431 39.501 74.909 19.505 1.09 99.95 AAAA C ATOM 1416 CG GLU 431 41.191 73.995 18.032 1.09 87.31 AAAA C ATOM 1416 CG GLU 431 43.675 71.886 19.501 1.09 87.31 AAAA C ATOM 1416 CG GLU 431 43.675 71.886 19.632 1.09 99.95 AAAA C ATOM 1416 CG GLU 431 43.675 71.886 19.632 1.09 99.95 AAAA C ATOM 1417 CG GLU 431 43.675 71.886 19.632 1.09 11.46 AAAA C ATOM 1417 CG GLU 431 43.675 71.886 19.632 1.09 11.09 62.34 AAAA C ATOM 1417 CG GLU 431 43.675 71.886 19.632 1.09 11.09 62.34 AAAA C ATOM 1417 CG C VAL 435 41.711 70.105 319.226 1.09 66.34 AAAA C ATOM 1417 CG C VAL 435 41.711 70.129 41.001 1.09 62.74 AAAA C ATOM 1417 CG VAL 435 41.711 70.129 41.001 1.09 62.74 AAAA C ATOM 1417 CG VAL 435 41.191 GG C VAL 435 41.19		4159	o GLU	433	45.133	71.083	37.294	1.00 74.29	AAAA O
ATCH 4163 CB 5UU 434 41.29 73.916 18.840 1.00 81.36 AAAA C ATCH 4165 CG 5UU 434 41.291 73.955 88.002 1.00 83.36 1.00 83.36 AAAA C ATCH 4165 CG 5UU 434 40.081 75.501 88.432 1.00 89.95 1.00 97.31 AAAA C ATCH 4167 OCC 5UU 434 40.080 75.941 37.593 1.00 89.95 1.00 97.31 AAAA C ATCH 4167 OCC 5UU 434 41.292 71.886 15.632 1.00 78.49 AAAA C ATCH 4169 C 5UU 434 41.202 71.886 15.632 1.00 78.49 AAAA C ATCH 4169 C 5UU 434 41.202 71.886 15.632 1.00 78.49 AAAA C ATCH 4170 N 744 415 42.797 71.005 33.202 1.00 68.39 AAAA C ATCH 4170 N 744 415 42.797 71.005 33.202 1.00 68.39 AAAA C ATCH 4170 N 744 415 42.797 71.005 33.202 1.00 68.39 AAAA C ATCH 4170 N 744 415 42.797 71.005 33.202 1.00 68.39 AAAA C ATCH 4170 N 744 415 42.797 71.005 33.202 1.00 68.39 AAAA C ATCH 4170 N 744 415 42.791 70.129 41.001 1.00 62.49 AAAA C ATCH 4170 N 744 415 42.791 70.129 41.001 1.00 62.49 AAAA C ATCH 4170 C 744 415 41.517 68.217 40.703 1.00 60.38 AAAA C ATCH 4170 C 744 415 41.517 68.217 40.703 41.029 1.00 60.38 AAAA C ATCH 4170 C 744 415 41.517 68.217 40.703 41.029 1.00 60.38 AAAA C ATCH 4170 C 744 415 41.517 68.217 40.703 41.029 1.00 60.38 AAAA C ATCH 4170 C 744 415 41.517 68.217 40.703 41.029 1.00 60.37 AAAA C ATCH 4170 C 744 415 41.517 68.217 40.703 41.029 1.00 60.37 AAAA C ATCH 4180 C 744 415 41.517 41.518 41									
ATOM 4154 CG GLU 431 41.191 73.955 88.032 1.00 83.34 AAAA C ATOM 4156 CO GLU 434 39.551 74.929 19.505 1.00 93.51 AAAA O ATOM 4157 002 GLU 434 39.551 74.929 19.505 1.00 93.51 AAAA O ATOM 4157 002 GLU 434 41.675 71.886 35.632 1.00 93.55 AAAA O ATOM 4159 0 GLU 434 41.567 71.886 35.632 1.00 93.55 AAAA O ATOM 4170 N VAL 435 42.570 71.005 39.206 1.00 66.34 AAAA C ATOM 4170 N VAL 435 42.570 71.005 39.206 1.00 66.34 AAAA C ATOM 4170 N VAL 435 42.570 71.005 39.206 1.00 66.34 AAAA C ATOM 4170 N VAL 435 42.570 71.005 39.206 1.00 60.38 AAAA C ATOM 4170 N VAL 435 42.570 71.005 39.206 1.00 60.38 AAAA C ATOM 4170 C VAL 435 41.151 69.217 40.972 1.00 60.38 AAAA C ATOM 4170 C VAL 435 41.151 69.217 40.972 1.00 60.38 AAAA C ATOM 4170 C VAL 435 44.007 69.217 40.972 1.00 60.38 AAAA C ATOM 4170 C VAL 435 44.007 69.217 40.972 1.00 60.38 AAAA C ATOM 4170 C VAL 435 44.007 69.217 40.972 1.00 60.38 AAAA C ATOM 4170 C VAL 435 44.007 69.217 40.972 1.00 60.60 38 AAAA C ATOM 4170 C VAL 435 44.007 69.217 40.972 1.00 60.60 39.30 AAAA C ATOM 4170 C ATOM 4170 C VAL 435 44.007 69.217 40.972 1.00 60.60 39.30 AAAA C ATOM 4170 C ATO									
ATOM 4156 OCT 5UU 431 39.551 74.092 95.505 1.00 97.31 AAAA O ATOM 4167 OCT 5UU 431 40.090 75.911 37.508 1.00 97.51 4 AAAA O ATOM 4167 OCT 5UU 431 413.675 71.886 93.632 1.00 97.51 4 AAAA C ATOM 4170 N VAL 415 42.670 71.095 39.206 1.00 66.34 AAAA C ATOM 4170 N VAL 415 42.670 71.095 39.206 1.00 66.34 AAAA C ATOM 4170 N VAL 435 42.670 71.095 39.206 1.00 66.34 AAAA C ATOM 4170 C AVAL 435 42.670 71.095 39.206 1.00 66.34 AAAA C ATOM 4170 C AVAL 435 42.670 71.095 39.206 1.00 66.34 AAAA C ATOM 4170 C AVAL 435 41.541 69.217 40.972 1.00 60.38 AAAA C ATOM 4170 C VAL 435 41.541 69.217 40.972 1.00 60.38 AAAA C ATOM 4171 C C VAL 435 41.541 69.217 40.972 1.00 60.38 AAAA C ATOM 4171 C V VAL 435 41.547 68.121 41.092 1.00 60.74 AAAA C ATOM 4171 0 C VAL 435 41.607 69.155 40.031 1.00 60.37 AAAA C ATOM 4171 0 U VAL 435 41.607 69.155 40.031 1.00 60.37 AAAA C ATOM 4171 0 U VAL 435 41.607 69.155 40.031 1.00 60.37 AAAA C ATOM 4181 C T THR 436 44.913 67.283 77.503 1.00 60.67 AAAA C ATOM 4182 C T THR 436 44.913 67.283 77.503 1.00 56.36 AAAA C ATOM 4182 C T THR 436 44.913 67.283 77.503 1.00 60.57 AAAA C ATOM 4182 C T THR 436 44.913 67.283 77.503 1.00 47.03 AAAA C ATOM 4182 C T THR 436 44.913 67.283 77.503 1.00 60.55 AAAA C ATOM 4182 C T THR 436 44.913 67.283 77.503 1.00 60.55 AAAA C ATOM 4182 C T THR 436 44.913 67.283 77.503 1.00 60.55 AAAA C ATOM 4182 C T THR 436 44.913 67.283 77.503 1.00 60.55 AAAA C ATOM 4182 C T THR 436 44.913 67.283 77.503 1.00 60.55 AAAA C ATOM 4182 C T THR 436 44.913 67.283 77.503 1.00 60.55 AAAA C ATOM 4182 C T THR 436 44.913 67.283 77.503 1.00 60.55 AAAA C ATOM 4189 C C GUY 437 48.906 69.469 39.833 1.00 60.55 AAAA C ATOM 4189 C C GUY 437 48.906 69.469 39.833 1.00 60.55 AAAA C ATOM 4189 C C GUY 437 48.906 69.469 39.833 1.00 60.55 AAAA C ATOM 4199 C C GUY 437 48.909 70.254 38.937 70.908 70			CG GLU			73.956			AAAA C
ATCH 4157 OEZ GLU 434 JUL JUL 37, 18, 18, 10, 10, 10, 19, 19, 18, 10, 10, 19, 11, 16, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18									
ATOM 4169 C GLU 434									
ATOM 4170 N VAL 435									
ATOI 4172 CA VAL 435 ATOI 173 CB VAL 435 ATOI 173 CB VAL 435 ATOI 1747 CO VAL 435 ATOI 177 CO VAL 435 ATOI 178 CO VAL 435 ATOI									
ATOI									
ATOIL 4176 C VAL 435 10.203 70.073 41.029 1.02 50.79 AAAA C ATOIL 4176 C VAL 435 43.599 59.253 41.029 1.02 60.71 AAAA C ATOIL 4178 II TIKE 436 41.607 69.165 42.031 1.09 61.07 AAAA C ATOIL 4178 II TIKE 436 41.035 67.516 39.988 1.00 60.67 AAAA II ATOIL 4180 CA TIKE 436 45.335 67.516 39.988 1.00 59.92 AAAA C ATOIL 4181 CB TIKE 436 45.335 67.516 39.936 1.00 59.92 AAAA C ATOIL 4182 CB TIKE 436 45.399 66.565 39.936 1.00 59.92 AAAA C ATOIL 4182 CB TIKE 436 44.193 67.283 27.503 1.00 47.03 AAAA C ATOIL 4184 CB2 TIKE 436 44.193 67.283 27.503 1.00 47.03 AAAA C ATOIL 4185 C TIKE 436 44.193 67.283 27.503 1.00 47.03 AAAA C ATOIL 4186 C TIKE 436 44.193 67.283 27.503 1.00 54.38 AAAA C ATOIL 4187 II GIV 437 46.836 69.496 39.835 1.00 69.55 AAAA C ATOIL 4187 C ATOIL 4189 C ATOIL 4187 C ATOIL 4187 C ATOIL 4189 C ATOIL 4187 C ATOIL 4187 C ATOIL 4189 C ATOIL 4189 C ATOIL 4187 C ATOIL 4189 C ATOIL 4									
ATON 4178 0 VAL 435									
ATON 4179 N THE 436									
ATONI 4180 CA THR 436									
ATON 4181 CB THR 436 45.199 66.565 38.736 1.00 50.92 AAAA C ATON 4182 0G1 THR 436 44.913 67.283 37.503 1.00 47.03 AAAA C ATON 4184 0G2 THR 436 44.108 65.526 38.901 1.00 54.38 AAAA C ATON 4186 0 THR 436 47.714 67.490 40.024 1.00 60.61 AAAA C ATON 4187 II GUT 437 48.102 70.164 39.490 1.00 60.65 AAAA H ATON 4189 CA GUT 437 48.102 70.164 39.749 1.00 54.78 AAAA C ATON 4189 CA GUT 437 48.102 70.164 39.749 1.00 54.78 AAAA C ATON 4189 CA GUT 437 48.102 70.164 39.749 1.00 54.78 AAAA C ATON 4191 0 GUT 437 49.990 70.254 38.245 1.00 60.65 AAAA H ATON 4192 II THR 438 48.112 69.387 37.380 1.00 60.65 AAAA II ATON 4194 CA THR 438 48.112 69.387 37.380 1.00 60.65 AAAA II ATON 4195 CB THR 438 48.731 69.169 60.076 1.00 65.07 AAAA C ATON 4196 031 THR 438 48.731 69.169 51.00 62.70 AAAA C ATON 4196 031 THR 438 48.208 66.559 36.076 1.00 65.07 AAAA C ATON 4198 CC THR 438 48.208 66.559 35.731 1.00 62.22 AAAA C ATON 4198 CC THR 438 48.208 66.559 35.731 1.00 62.22 AAAA C ATON 4198 CC THR 438 48.208 66.559 35.731 1.00 62.22 AAAA C ATON 4198 CC THR 438 48.208 66.559 35.731 1.00 62.22 AAAA C ATON 4198 CC THR 438 48.208 66.559 36.019 1.00 68.74 AAAA C ATON 4199 C THR 438 48.009 70.415 55.220 1.00 66.74 AAAA C ATON 4109 C THR 438 48.009 70.415 55.220 1.00 66.74 AAAA C ATON 4109 C THR 438 48.009 37.543 31.070 1.00 68.74 AAAA C ATON 4109 C THR 438 48.809 71.415 35.220 1.00 66.73 AAAA C ATON 4109 C THR 438 48.809 71.415 35.220 1.00 66.73 AAAA C ATON 4109 C THR 438 48.009 37.5543 31.070 1.00 68.75 AAAA C ATON 4109 C THR 438 48.009 37.5543 31.070 1.00 68.75 AAAA C ATON 4101 C THR 438 48.009 37.543 31.070 1.00 68.75 AAAA C ATON 4101 C THR 438 48.009 37.543 31.070 1.00 68.75 AAAA C ATON 4101 C THR 438 48.009 37.543 31.070 1.00 68.75 AAAA C ATON 4101 C THR 438 48.009 37.543 31.070 1.00 68.75 AAAA C ATON 4101 C THR 438 48.009 37.543 31.070 1.00 68.75 AAAA C ATON 4101 C THR 438 48.009 37.543 31.000 1.00 68.75 AAAA C ATON 4101 C THR 438 48.009 37.545 31.400 33.400 33.400 33.400 33.400 33.400 33.400 33.400 33.400 33.400 33.400 33.400 33.400 33.400 33.400									
ATON 4182 0G1 THR 436 44.913 67.283 27.503 1.00 47.03 AAAA 0 ATON 4184 0G2 THR 136 44.913 67.283 27.503 1.00 47.03 AAAA 0 ATON 4185 C TIRR 436 46.701 68.184 39.930 1.00 60.55 AAAA C ATON 4186 O THR 436 47.714 67.490 40.024 1.00 60.65 AAAA C ATON 4187 II GEY 437 46.836 69.496 39.835 1.00 60.65 AAAA II ATON 4189 CA GLY 437 48.800 69.864 39.835 1.00 60.65 AAAA II ATON 4190 C GLY 437 48.800 69.864 38.424 1.00 60.67 AAAA C ATON 4191 O GLY 437 48.800 69.864 38.424 1.00 60.67 AAAA C ATON 4191 O TIRR 438 48.102 70.054 38.245 1.00 62.70 AAAA C ATON 4192 II TIRR 438 48.731 69.169 36.076 1.00 65.09 AAAA C ATON 4195 CB TIRR 438 48.731 69.169 36.076 1.00 65.09 AAAA C ATON 4196 OG1 TIRR 438 48.298 66.659 36.019 1.00 66.74 AAAA C ATON 4199 CC TIRR 438 48.298 66.659 36.019 1.00 66.14 AAAA C ATON 4199 CC TIRR 438 48.890 66.659 36.019 1.00 66.14 AAAA C ATON 4200 O TIRR 438 48.890 70.415 35.220 1.00 66.14 AAAA C ATON 4201 II LYS 439 48.899 71.481 35.922 1.00 68.73 AAAA C ATON 4203 CA LYS 439 47.927 72.757 51.5154 1.00 76.23 AAAA C ATON 4203 CA LYS 439 47.927 72.757 51.5154 1.00 76.23 AAAA C ATON 4203 CA LYS 439 47.927 72.757 51.5154 1.00 76.37 AAAA C ATON 4204 CB LYS 439 47.927 72.757 51.5154 1.00 76.73 AAAA C ATON 4204 CB LYS 439 47.927 72.757 51.5154 1.00 76.73 AAAA C ATON 4204 CB LYS 439 47.927 72.757 51.5154 1.00 76.73 AAAA C ATON 4204 CB LYS 439 47.927 72.757 51.5154 1.00 76.73 AAAA C ATON 4204 CB LYS 439 47.927 72.757 51.5154 1.00 76.73 AAAA C ATON 4204 CB LYS 439 47.927 72.757 73.5154 1.00 76.73 AAAA C ATON 4204 CB LYS 439 47.927 72.757 73.5154 1.00 76.73 AAAA C ATON 4204 CB LYS 439 43.667 73.398 35.265 1.00 76.737 AAAA C ATON 4207 CE LYS 439 47.927 72.757 35.5154 1.00 76.33 AAAA C ATON 4207 CE LYS 439 43.867 73.398 35.265 1.00 76.737 AAAA C ATON 4207 CE LYS 439 43.867 73.398 35.265 1.00 76.737 AAAA C ATON 4207 CE LYS 439 43.667 73.398 35.265 1.00 76.737 AAAA C ATON 4208 II LYS 439 49.996 73.396 33.591 1.00 69.23 AAAA C ATON 4207 CE AAAA C ATON 4208 CE AAAA C ATON									
ATCH 4195 C THR 436 40.701 68.184 39.930 1.00 60.55 AAAA C ATCH 4187 II GLY 437 46.836 69.496 39.835 1.00 60.65 AAAA H ATCH 4189 CA GLY 437 48.102 70.164 39.749 1.00 59.47 AAAA C ATCH 4190 C GLY 437 48.102 70.164 39.749 1.00 59.47 AAAA C ATCH 4191 C GLY 437 48.600 69.864 88.424 1.00 61.78 AAAA C ATCH 4192 II THR 438 48.112 69.387 37.380 1.00 63.79 AAAA II ATCH 4192 II THR 438 48.112 69.387 37.380 1.00 63.79 AAAA C ATCH 4194 CA THR 438 48.731 69.169 36.076 1.00 65.70 AAAA C ATCH 4195 CB THR 438 48.731 69.169 36.076 1.00 65.79 AAAA C ATCH 4195 CB THR 438 48.731 69.169 36.076 1.00 65.79 AAAA C ATCH 4195 CB THR 438 48.282 66.600 68.385 35.731 1.00 60.82 AAAA C ATCH 4198 CGZ THR 438 48.282 66.600 68.385 35.731 1.00 62.22 AAAA C ATCH 4198 CGZ THR 438 48.289 66.659 36.019 1.00 68.74 AAAA C ATCH 4200 C THR 430 49.803 70.543 31.070 1.00 66.74 AAAA C ATCH 4200 C THR 430 49.803 70.543 31.070 1.00 66.174 AAAA C ATCH 4200 C THR 430 49.803 70.543 31.070 1.00 66.174 AAAA C ATCH 4201 II LITS 439 48.089 71.481 35.822 1.00 66.14 AAAA C ATCH 4204 CB LITS 439 47.927 72.575 35.154 1.00 71.08 AAAA C ATCH 4204 CB LITS 439 47.927 72.575 35.154 1.00 71.08 AAAA C ATCH 4205 CB LITS 439 47.927 72.575 36.182 1.00 67.37 AAAA C ATCH 4205 CB LITS 439 45.6677 74.938 35.055 1.00 77.26 AAAA C ATCH 4205 CB LITS 439 45.6677 74.938 35.055 1.00 77.26 AAAA C ATCH 4205 CB LITS 439 45.6677 74.938 35.055 1.00 77.26 AAAA C ATCH 4205 CB LITS 439 45.6677 73.4938 35.055 1.00 77.26 AAAA C ATCH 4205 CB LITS 439 45.6677 73.4938 35.055 1.00 77.26 AAAA C ATCH 4205 CB LITS 439 45.6677 73.4938 35.055 1.00 77.26 AAAA C ATCH 4207 CB LITS 439 45.6677 74.938 35.055 1.00 77.26 AAAA C ATCH 4205 CB LITS 439 45.6677 74.938 35.055 1.00 77.26 AAAA C ATCH 4205 CB LITS 439 45.6677 74.938 35.055 1.00 77.26 AAAA C ATCH 4205 CB LITS 439 45.6677 74.938 35.055 1.00 77.26 AAAA C ATCH 4205 CB LITS 439 45.6677 74.938 35.055 1.00 77.26 AAAA C ATCH 4205 CB LITS 439 45.6677 74.938 35.055 1.00 77.26 AAAA C ATCH 4205 CB LITS 439 45.6677 74.938 35.055 1.00 77.26 AAAA C ATCH 4205 CB AAAA C									
ATON 4186 0 THR 436 47.714 67.490 40.024 1.00 60.61 AAAA 0 ATON 4187 II GUY 437 46.836 69.496 39.835 1.00 60.65 AAAA II ATON 4189 CA GUY 437 48.600 69.864 39.835 1.00 60.65 AAAA C ATON 4191 O GUY 437 49.993 70.254 38.245 1.00 62.70 AAAA C ATON 4192 II THR 438 48.112 69.387 37.380 1.00 63.79 AAAA C ATON 4194 CA THR 438 48.112 69.387 37.380 1.00 63.79 AAAA II ATON 4195 CB THR 438 48.731 69.169 36.076 1.00 65.09 AAAA C ATON 4196 CGI THR 438 48.731 69.169 36.076 1.00 65.09 AAAA C ATON 4196 CGI THR 438 48.208 66.659 36.019 1.00 66.87 AAAA C ATON 4198 CC THR 438 48.208 66.659 36.019 1.00 66.87 AAAA C ATON 4199 C THR 438 48.590 70.415 35.220 1.00 66.14 AAAA C ATON 4209 C THR 438 48.590 70.415 35.220 1.00 66.17 AAAA C ATON 4201 II LVS 439 47.907 70.415 35.220 1.00 66.14 AAAA C ATON 4201 II LVS 439 47.927 72.757 35.154 1.00 71.08 AAAA C ATON 4204 CB LVS 439 47.927 72.757 35.154 1.00 71.08 AAAA C ATON 4204 CB LVS 439 47.927 72.757 35.154 1.00 71.08 AAAA C ATON 4205 CD LV3 439 45.832 75.942 36.014 1.00 81.65 AAAA C ATON 4205 CD LV3 439 45.832 75.942 36.014 1.00 87.39 AAAA C ATON 4202 C LV3 439 45.832 75.942 36.014 1.00 87.39 AAAA C ATON 4202 C LV3 439 45.832 75.942 36.014 1.00 87.39 AAAA C ATON 4202 C LV3 439 45.832 75.942 36.014 1.00 87.39 AAAA C ATON 4202 C LV3 439 49.996 73.986 35.551 1.00 77.26 AAAA C ATON 4212 C LV3 439 49.996 73.986 35.551 1.00 77.26 AAAA C ATON 4212 C LV3 439 49.996 73.396 35.51 1.00 73.01 AAAA C ATON 4212 C LV3 439 49.996 73.396 35.51 1.00 73.01 AAAA C ATON 4212 C LV3 439 49.996 73.396 35.51 1.00 73.01 AAAA C ATON 4214 II GUY 440 49.517 73.453 33.441 1.00 73.33 AAAA II ATON 4214 II GUY 440 51.716 73.204 32.389 1.00 72.70 AAAA C ATON 4212 C AARG 441 52.347 70.955 11.811 1.00 73.33 AAAA II ATON 4213 O LV3 439 49.996 73.986 35.51 1.00 73.01 AAAA C ATON 4214 D AAGA 441 52.346 70.955 11.811 1.00 73.33 AAAA II ATON 4216 II AAAA 441 52.346 70.955 11.81 1.00 73.71 AAAA C ATON 4218 II AAAA 441 52.346 70.955 11.80 72.70 AAAA C ATON 4219 II AAAA 441 52.346 70.955 11.80 72.70 AAAA C ATON 4219 II AAAA 441 52.3									
ATONI 4189 (A GLY 437 48.102 70.164 39.719 1.00 59.47 AAAA C ATONI 4189 (C GLY 437 48.102 70.164 39.719 1.00 59.47 AAAA C ATONI 4190 (C GLY 437 48.800 69.864 38.424 1.00 64.78 AAAA C ATONI 4191 (D GLY 437 49.983 70.254 38.245 1.00 62.70 AAAA C ATONI 4192 II THIR 438 48.112 69.387 37.380 1.00 63.79 AAAA II ATONI 4192 II THIR 438 48.731 69.169 36.076 1.00 65.09 AAAA C ATONI 4195 (B THIR 438 47.967 68.027 35.411 1.00 66.87 AAAA C ATONI 4195 (G GTHIR 438 48.600 68.385 35.731 1.00 62.72 AAAA C ATONI 4196 (GTTHIR 438 48.260 66.595 36.019 1.00 68.74 AAAA C ATONI 4198 (GZ THIR 438 48.290 66.595 36.019 1.00 68.74 AAAA C ATONI 4198 (GZ THIR 438 48.290 66.595 36.019 1.00 68.74 AAAA C ATONI 4200 (C THIR 438 48.290 66.595 36.019 1.00 66.74 AAAA C ATONI 4200 (C THIR 438 48.290 66.595 36.019 1.00 66.74 AAAA C ATONI 4203 (D LYS 439 47.927 72.757 35.154 1.00 71.08 AAAA C ATONI 4203 (D LYS 439 47.927 72.757 35.154 1.00 71.08 AAAA C ATONI 4203 (D LYS 439 47.927 72.757 35.154 1.00 71.08 AAAA C ATONI 4205 (G LYS 439 47.927 72.757 35.154 1.00 71.08 AAAA C ATONI 4205 (G LYS 439 47.927 72.757 35.154 1.00 71.08 AAAA C ATONI 4205 (G LYS 439 47.927 72.757 36.182 1.00 67.37 AAAA C ATONI 4205 (G LYS 439 45.832 75.475 36.182 1.00 87.39 AAAA C ATONI 4207 (C LYS 439 44.285 75.475 36.182 1.00 87.39 AAAA C ATONI 4207 (C LYS 439 44.285 75.475 36.182 1.00 87.39 AAAA C ATONI 4207 (C LYS 439 44.285 75.475 36.182 1.00 87.39 AAAA C ATONI 4207 (C LYS 439 44.285 75.475 36.182 1.00 87.39 AAAA C ATONI 4207 (C LYS 439 44.285 75.475 36.182 1.00 87.39 AAAA C ATONI 4207 (C LYS 439 44.285 75.475 36.182 1.00 87.39 AAAA C ATONI 4207 (C LYS 439 44.285 75.475 36.182 1.00 77.26 AAAA C ATONI 4214 II GLY 440 49.517 73.453 33.441 1.00 73.33 AAAA C ATONI 4214 II GLY 440 49.517 73.453 33.441 1.00 73.33 AAAA C ATONI 4214 II GLY 440 49.517 73.453 33.441 1.00 73.33 AAAA C ATONI 4216 (C AAC) 440 49.517 73.453 33.441 1.00 73.33 AAAA C ATONI 4216 (C AAC) 440 49.517 73.453 33.441 1.00 73.33 AAAA C ATONI 4219 II AAG 441 52.046 (AAC) 441 52.046 (AAC) 441 52.046 (AAC) 441 52.046									
ATCH 4191 0 GLT 437 49.983 70.254 38.421 1.00 64.78 AAAA C ATCH 4191 0 GLT 437 49.983 70.254 38.245 1.00 62.70 AAAA O ATCH 4192 II THR 438 48.112 69.387 37.380 1.00 63.79 AAAA II ATCH 4195 CR THR 438 48.731 69.169 36.076 1.00 65.09 AAAA C ATCH 4195 CR THR 438 48.731 69.169 36.076 1.00 65.09 AAAA C ATCH 4195 CR THR 438 48.731 69.169 36.076 1.00 65.09 AAAA C ATCH 4198 GUZ THR 438 48.660 68.385 35.731 1.00 62.22 AAAA C ATCH 4198 GUZ THR 438 48.598 66.699 36.019 1.00 68.74 AAAA C ATCH 4200 C THR 438 49.093 70.445 35.220 1.00 66.14 AAAA C ATCH 4200 C THR 438 49.093 70.445 35.220 1.00 66.14 AAAA C ATCH 4201 II LTG 439 48.099 71.481 35.220 1.00 66.73 AAAA C ATCH 4201 II LTG 439 48.099 71.481 35.220 1.00 66.73 AAAA C ATCH 4204 CB LTG 439 48.099 71.481 35.220 1.00 67.37 AAAA II ATCH 4204 CB LTG 439 44.385 75.941 39.00 36.076 3.00 67.37 AAAA C ATCH 4204 CB LTG 439 46.677 74.938 35.265 1.00 77.108 AAAA C ATCH 4205 CB LTG 439 44.385 75.942 36.014 1.00 87.33 AAAA C ATCH 4205 CB LTG 439 44.385 75.475 36.191 1.00 69.23 AAAA C ATCH 4207 CE LTG 439 44.385 75.475 36.191 1.00 87.39 AAAA C ATCH 4208 CB LTG 439 44.385 75.475 36.191 1.00 87.39 AAAA C ATCH 4208 CB LTG 439 44.385 75.475 36.191 1.00 87.39 AAAA C ATCH 4208 CB LTG 439 44.385 75.475 36.191 1.00 87.39 AAAA C ATCH 4208 CB LTG 439 49.996 73.986 35.541 1.00 87.30 AAAA C ATCH 4218 G GT 440 50.733 74.167 32.014 1.00 87.30 AAAA C ATCH 4218 G GT 440 50.733 74.167 32.014 1.00 71.29 AAAA C ATCH 4218 G GT 440 50.733 74.167 32.014 1.00 71.29 AAAA C ATCH 4218 G GT 440 50.733 74.167 32.014 1.00 71.29 AAAA C ATCH 4218 G GT AAA G 441 51.40 50.713 74.167 32.014 1.00 71.29 AAAA C ATCH 4218 G GT AAA G 441 51.40 50.713 74.167 32.014 1.00 71.29 AAAA C ATCH 4222 CB AAG 441 52.60 68.31 34.555 1.00 67.41 AAAA C ATCH 4222 CB AAG 441 52.60 68.31 34.555 1.00 67.31 AAAA C ATCH 4223 CB AAG 441 52.60 68.31 34.00 31.00 60.31 AAAA C ATCH 4224 CD AAG 441 52.60 68.31 34.00 30.51 1.00 60.31 AAAA C ATCH 4224 CD AAG 441 52.26 67.32 73.00 32.00 1.00 61.00 AAAA C ATCH 4232 CB GH HI AAG 441 52.26 67.32 73.00 32									
ATCH 4191 0 GLY 437 49.983 70.254 38.245 1.00 62.70 AAAA C ATCH 4192 H THR 438 48.731 69.169 36.076 1.00 65.09 AAAA C ATCH 4195 CB THR 438 48.731 69.169 36.071 1.00 66.07 AAAA C ATCH 4196 CB THR 438 48.731 69.169 36.019 1.00 68.74 AAAA C ATCH 4196 CB THR 438 48.208 66.659 36.019 1.00 68.74 AAAA C ATCH 4199 C THR 438 48.208 66.659 36.019 1.00 68.74 AAAA C ATCH 4199 C THR 438 48.208 66.659 36.019 1.00 68.74 AAAA C ATCH 4200 O THR 438 49.003 70.543 34.070 1.20 68.07 AAAA C ATCH 4201 H LYS 439 48.009 71.481 35.822 1.00 67.37 AAAA C ATCH 4203 CA LYS 439 47.114 73.708 36.034 1.00 67.37 AAAA C ATCH 4204 CB LYS 439 47.114 73.708 36.034 1.00 67.37 AAAA C ATCH 4205 CB LY3 439 45.832 75.942 36.014 1.20 81.65 AAAA C ATCH 4207 CE LYS 439 43.667 74.938 35.265 1.00 77.26 AAAA C ATCH 4207 CE LYS 439 43.667 74.938 35.265 1.00 77.26 AAAA C ATCH 4207 CE LYS 439 43.667 74.938 35.265 1.00 77.26 AAAA C ATCH 4207 CE LYS 439 43.667 74.938 35.265 1.00 77.26 AAAA C ATCH 4207 CE LYS 439 43.667 74.938 35.265 1.00 77.26 AAAA C ATCH 4207 CE LYS 439 43.667 74.938 35.265 1.00 77.26 AAAA C ATCH 4207 CE LYS 439 43.667 74.938 35.265 1.00 77.26 AAAA C ATCH 4207 CE LYS 439 43.667 74.938 35.265 1.00 77.26 AAAA C ATCH 4207 CE LYS 439 43.667 73.396 33.541 1.00 73.30 AAAA C ATCH 4213 O LYS 439 49.249 73.396 35.541 1.00 73.30 AAAA C ATCH 4213 O LYS 439 49.249 73.396 33.541 1.00 73.30 AAAA C ATCH 4218 O G G AAAA C SACA C ATCH 4213 O LYS 439 49.296 73.996 35.541 1.00 73.30 AAAA C ATCH 4214 U GLY 440 50.517 6.00 AAAA C ATCH 4213 O LYS 439 49.296 73.996 35.541 1.00 73.30 AAAA C ATCH 4214 U GLY 440 50.63 ATCH 430 AAAA C ATCH 4217 C GLY 440 50.63 ATCH 4218 O G G AAAA C ATCH 4218 O GLY 440 50.684 73.996 30.541 1.00 73.30 AAAA C ATCH 4218 O GLY 440 50.684 73.996 30.991 1.00 73.30 AAAA C ATCH 4218 O GLY 440 50.684 73.996 30.991 1.00 73.30 AAAA C ATCH 4218 O GLY 440 50.684 73.695 31.891 1.00 74.10 AAAA C ATCH 4220 C AAGA 441 50.466 AAAA C ATCH 4221 C AAAA C AAC 441 50.466 AAAA C ATCH 4221 C AAAA C AAC 441 50.666 AAAA C ATCH 4230 C B UHI AAC 441 50.266 67.556 38.									
ATORI 4194 CA THR 438 48.731 69.169 36.076 1.00 63.79 AAAA C ATORI 4195 CB THR 438 48.731 69.169 36.076 1.00 65.09 AAAA C ATORI 4195 CB THR 438 46.600 68.385 35.731 1.00 62.22 AAAA C ATORI 4198 CG2 THR 438 48.208 66.659 36.019 1.00 68.74 AAAA C ATORI 4198 CG2 THR 438 48.590 70.415 35.220 1.00 68.74 AAAA C ATORI 4200 O THR 438 48.590 70.415 35.220 1.00 66.87 AAAA C ATORI 4200 O THR 438 48.590 70.415 35.220 1.00 66.87 AAAA C ATORI 4201 H LVS 439 48.099 71.481 35.921 1.00 67.37 AAAA H ATORI 4204 CD LVS 439 47.927 72.757 35.154 1.00 71.08 AAAA C ATORI 4204 CD LVS 439 47.927 72.757 35.154 1.00 71.08 AAAA C ATORI 4204 CD LVS 439 47.927 72.757 35.154 1.00 71.08 AAAA C ATORI 4205 CD LVS 439 47.927 72.757 35.154 1.00 71.08 AAAA C ATORI 4205 CD LVS 439 44.385 75.475 36.192 1.00 69.23 AAAA C ATORI 4205 CD LVS 439 44.385 75.475 36.192 1.00 87.39 AAAA C ATORI 4205 CD LVS 439 44.385 75.475 36.192 1.00 87.39 AAAA C ATORI 4205 CD LVS 439 44.385 75.475 36.192 1.00 87.39 AAAA C ATORI 4206 CD LVS 439 49.996 73.396 35.541 1.00 73.08 36.65 AAAA C ATORI 4207 CE LVS 439 49.996 73.396 35.541 1.00 73.08 AAAA C ATORI 4212 C LVS 439 49.996 73.396 35.541 1.00 73.01 AAAA C ATORI 4214 H GUV 440 49.517 73.453 34.41 1.00 74.60 AAAA C ATORI 4214 H GUV 440 49.517 73.453 34.41 1.00 73.33 AAAA H ATORI 4214 H GUV 440 49.517 73.453 34.41 1.00 73.33 AAAA H ATORI 4218 O SUV 440 50.736 74.167 32.044 1.00 71.39 AAAA C ATORI 4218 O SUV 440 50.736 74.167 32.044 1.00 71.39 AAAA C ATORI 4218 O SUV 440 50.736 74.167 32.044 1.00 71.39 AAAA C ATORI 4218 O SUV 440 50.736 74.167 32.044 1.00 71.39 AAAA C ATORI 4218 O SUV 440 50.736 74.167 32.044 1.00 74.12 AAAA C ATORI 4218 O SUV 440 50.736 74.167 32.044 1.00 74.12 AAAA C ATORI 4218 O SUV 440 50.736 74.167 32.044 1.00 74.12 AAAA C ATORI 4218 O SUV 440 50.736 74.167 32.044 1.00 74.12 AAAA C ATORI 4210 C G ARG 441 50.466 74.066 8.311 34.595 1.00 67.04 AAAA C ATORI 4210 C G ARG 441 50.466 74.066 8.311 34.595 1.00 67.04 AAAA C ATORI 4210 C G ARG 441 50.066 8.311 34.595 1.00 67.04 AAAA C ATORI 4210 C G ARG 441 50.066									
ATCH 4195 CB THR 438									
ATON 4198 OG1 THR 438									
ATON 4199 C THR 438 48.208 66.659 36.019 1.00 68.74 AAAA C ATON 4199 C THR 438 48.590 70.415 35.220 1.00 66.14 AAAA C ATON 4199 C THR 438 48.590 70.415 35.220 1.00 66.14 AAAA C ATON 4200 O THR 438 48.689 71.481 35.220 1.00 67.37 AAAA N AAAA C ATON 4201 N LVS 439 48.689 71.481 35.220 1.00 67.37 AAAA N AAAA C ATON 4203 CA LVS 439 47.927 72.757 35.154 1.00 71.08 AAAA C ATON 4204 CB LVS 439 47.114 73.708 36.034 1.00 69.23 AAAA C ATON 4205 CG LV3 439 46.677 74.938 35.265 1.00 77.26 AAAA C ATON 4205 CG LV3 439 46.677 74.938 35.265 1.00 77.26 AAAA C ATON 4205 CG LV3 439 44.6677 74.938 35.265 1.00 77.26 AAAA C ATON 4205 CG LV3 439 44.6677 74.938 35.265 1.00 73.00 AAAA C ATON 4205 CG LV3 439 44.385 75.475 36.182 1.00 87.39 AAAA C ATON 4208 NIZ LVS 439 44.667 76.413 37.100 1.00 87.39 AAAA C ATON 4208 NIZ LVS 439 43.667 76.413 37.100 1.00 87.39 AAAA N ATON 4212 C LV3 439 49.249 73.396 35.541 1.00 73.01 AAAA C ATON 4214 N GLY 440 49.517 73.453 33.441 1.00 73.33 AAAA N ATON 4214 N GLY 440 49.517 73.453 33.441 1.00 73.33 AAAA N ATON 4214 N GLY 440 50.733 74.187 32.014 1.00 71.39 AAAA C ATON 4218 O GLY 440 50.733 74.187 32.014 1.00 71.39 AAAA C ATON 4218 O GLY 440 50.733 74.187 32.014 1.00 72.70 AAAA C ATON 4218 O GLY 440 50.733 77.004 32.389 1.00 71.20 AAAA C ATON 4218 O GLY 440 50.736 73.650 31.832 1.00 72.79 AAAA C ATON 4218 O GLY 440 50.647 73.650 31.832 1.00 72.79 AAAA C ATON 4218 O GLY 440 50.647 73.650 31.832 1.00 72.79 AAAA C ATON 4218 O GLY 440 50.647 73.650 31.832 1.00 72.79 AAAA C ATON 4218 O GLY 440 50.647 73.650 31.832 1.00 72.79 AAAA C ATON 4218 N ARG 441 50.467 69.695 34.003 1.00 60.94 AAAA C ATON 4218 N ARG 441 50.467 69.695 34.003 1.00 60.95 AAAA N ATON 4222 CB ARG 441 50.467 69.695 34.003 1.00 61.90 AAAA C ATON 4223 N ARG 441 50.468 67.596 39.100 1.00 61.90 AAAA N ATON 4224 CD ARG 441 50.268 79.70 646 1.00 79.50 AAAA C ATON 4226 N ARG 441 50.268 67.357 36.831 1.00 68.73 AAAA N ATON 4226 N ARG 441 50.668 67.596 39.100 1.00 61.90 AAAA N AAAA C ATON 4226 N ARG 441 50.00 ARG 441 50.00 ARG 441 50.00 ARG 441 50.00									
ATCH 4200 0 THR 439 48.089 70.543 34.070 1.90 68.05 AAAA C ATCH 4201 II LVS 439 48.089 71.481 35.820 1.00 67.37 AAAA C ATCH 4203 CG LVS 439 47.927 72.757 35.154 1.00 71.08 AAAA C ATCH 4204 CB LVS 439 47.927 72.757 35.154 1.00 77.26 AAAA C ATCH 4205 CG LVS 439 46.677 74.938 35.065 1.00 77.26 AAAA C ATCH 4205 CG LVS 439 46.677 74.938 35.065 1.00 77.26 AAAA C ATCH 4205 CG LVS 439 45.832 75.942 36.014 1.00 81.65 AAAA C ATCH 4207 CE LVS 439 44.835 75.475 36.182 1.00 87.39 AAAA C ATCH 4207 CE LVS 439 44.385 75.475 36.182 1.00 87.39 AAAA C ATCH 4213 0 LVS 439 49.249 73.396 34.752 1.00 73.01 AAAA C ATCH 4213 0 LVS 439 49.249 73.396 34.752 1.00 73.01 AAAA C ATCH 4213 0 LVS 439 49.249 73.396 35.541 1.00 74.60 AAAA C ATCH 4214 II GUT 440 49.517 73.453 33.441 1.00 74.60 AAAA C ATCH 4214 II GUT 440 50.733 74.167 32.014 1.00 71.39 AAAA C ATCH 4216 0 GUT 440 50.733 74.167 32.014 1.00 71.39 AAAA C ATCH 4218 0 GUT 440 51.716 73.204 32.389 1.00 71.20 AAAA C ATCH 4218 0 GUT 440 51.716 73.204 32.389 1.00 72.70 AAAA C ATCH 4218 0 GUT 440 51.716 73.204 31.831 1.00 74.29 AAAA C ATCH 4212 CB ARG 441 51.445 71.908 32.436 1.00 72.70 AAAA C ATCH 4221 CB ARG 441 52.343 70.945 31.831 1.00 74.12 AAAA C ATCH 4222 CB ARG 441 52.343 70.945 31.831 1.00 74.12 AAAA C ATCH 4222 CB ARG 441 52.343 70.945 31.831 1.00 74.12 AAAA C ATCH 4223 CG ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA C ATCH 4223 CG ARG 441 52.060 68.313 34.595 1.00 69.44 AAAA C ATCH 4224 CD AAG 441 52.060 68.313 34.595 1.00 69.57 AAAA C ATCH 4225 IIE ARG 441 52.060 68.313 34.595 1.00 69.57 AAAA C ATCH 4236 CG ARG 441 52.060 69.313 34.595 1.00 69.57 AAAA C ATCH 4236 CG ARG 441 52.060 69.313 34.595 1.00 69.57 AAAA C ATCH 4236 CG ARG 441 52.060 69.313 34.595 1.00 69.57 AAAA C ATCH 4236 CG ARG 441 52.060 69.313 34.595 1.00 69.57 AAAA C ATCH 4236 CG ARG 441 52.060 69.57 36.031 1.00 69.00 AAAA C ATCH 4236 CG ARG 441 52.060 69.57 36.031 1.00 60.00 60.57 AAAA C ATCH 4236 CG ARG 441 52.060 67.596 39.100 1.00 60.00 7.76 AAAA C ATCH 4239 CB GHI 442 47.669 69.576 29.156 1.00 60.57 AAAA C ATCH									
ATCH 4203 GA LUS 439 48.099 71.481 35.820 1.00 67.37 AAAA HATCH 4203 GA LUS 439 47.927 72.757 35.154 1.00 71.08 AAAA CATCH 4204 CB LUS 439 46.677 74.938 36.034 1.00 69.23 AAAA CATCH 4205 CG LU3 439 45.832 75.940 36.014 1.00 81.65 AAAA CATCH 4207 CE LUS 439 44.385 75.475 36.182 1.00 81.65 AAAA CATCH 4207 CE LUS 439 44.385 75.475 36.182 1.00 81.65 AAAA CATCH 4208 HZ LUS 439 43.667 76.431 37.100 1.00 93.85 AAAA CATCH 4212 C LUS 439 49.249 73.396 34.752 1.00 73.01 AAAA CATCH 4213 O LUS 439 49.249 73.396 35.541 1.00 74.60 AAAA CATCH 4213 O LUS 439 49.996 73.986 35.541 1.00 73.01 AAAA CATCH 4216 CA GLU 440 59.733 74.167 32.014 1.00 73.33 AAAA HATCH 4216 CA GLU 440 59.733 74.167 32.014 1.00 71.29 AAAA CATCH 4218 0 GLU 440 51.716 73.204 32.389 1.00 71.20 AAAA CATCH 4218 0 GLU 440 51.716 73.204 32.389 1.00 71.20 AAAA CATCH 4218 0 GLU 440 51.716 73.204 32.389 1.00 71.20 AAAA CATCH 4218 0 GLU 440 52.684 73.650 31.822 1.00 72.70 AAAA CATCH 4219 10 AAG 441 52.343 70.945 31.831 1.00 74.12 AAAA CATCH 4221 CA ARG 441 52.343 70.945 31.831 1.00 74.12 AAAA CATCH 4222 CB ARG 441 52.343 70.945 31.831 1.00 74.12 AAAA CATCH 4223 CG ARG 441 52.346 68.395 34.003 1.00 69.44 AAAA CATCH 4224 CD ARG 441 52.366 67.357 36.831 1.00 72.70 AAAA CATCH 4228 HH ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA CATCH 4228 HH ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA CATCH 4228 HH ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA CATCH 4238 CG ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA CATCH 4238 CG ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA CATCH 4238 CG ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA CATCH 4238 CG ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA CATCH 4238 CG ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA CATCH 4238 CG ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA CATCH 4238 CG ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA CATCH 4238 CG ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA CATCH 4238 CG ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA CATCH 4238 CG ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA CATCH 4238 CG ARG 441 52.366 67.357 36.831 1.00									
ATCH 4203 GA LUS 439 47.927 72.757 35.154 1.00 71.08 AAAA C ATCH 4204 CB LUS 439 47.114 73.708 36.034 1.00 69.23 AAAA C ATCH 4205 CD LUS 439 46.677 74.938 35.065 1.00 77.26 AAAA C ATCH 4207 CE LUS 439 44.677 74.938 35.065 1.00 77.26 AAAA C ATCH 4207 CE LUS 439 44.635 75.942 36.014 1.00 81.65 AAAA C ATCH 4208 CD LUS 439 44.635 75.942 36.014 1.00 81.65 AAAA C ATCH 4208 IZ LUS 439 44.667 76.431 37.100 1.00 93.05 AAAA H ATCH 4212 C LUS 439 49.249 73.396 34.752 1.00 73.01 AAAA C ATCH 4213 0 LUS 439 49.249 73.396 34.752 1.00 73.01 AAAA C ATCH 4213 0 LUS 439 49.996 73.986 35.541 1.00 74.60 AAAA C ATCH 4214 D GUY 440 49.517 73.453 33.441 1.00 71.39 AAAA C ATCH 4217 C GLT 440 50.733 74.167 33.014 1.00 71.39 AAAA C ATCH 4217 C GLT 440 50.733 74.167 33.014 1.00 71.39 AAAA C ATCH 4218 0 GUY 440 51.716 73.204 32.389 1.00 71.20 AAAA C ATCH 4219 II ARS 441 51.445 71.908 32.436 1.00 72.99 AAAA II ATCH 4221 CA ARG 441 52.617 69.740 32.716 1.00 72.99 AAAA II ATCH 4222 CB ARG 441 52.617 69.740 32.716 1.00 74.12 AAAA C ATCH 4222 CB ARG 441 52.617 69.740 32.716 1.00 74.12 AAAA C ATCH 4222 CB ARG 441 52.617 69.740 32.716 1.00 74.12 AAAA C ATCH 4222 CB ARG 441 52.617 69.740 32.716 1.00 69.44 AAAA C ATCH 4224 CD AAG 441 52.617 69.740 32.716 1.00 69.44 AAAA C ATCH 4224 CD AAG 441 52.617 69.740 32.716 1.00 69.44 AAAA C ATCH 4225 CB ARG 441 52.617 69.740 32.716 1.00 69.61 AAAA C ATCH 4238 CB IRH ARG 441 52.060 68.31 34.595 1.00 69.57 AAAA C ATCH 4238 CB IRH ARG 441 52.258 66.117 36.395 1.00 60.57 AAAA C ATCH 4238 CB IRH ARG 441 52.258 66.117 36.395 1.00 60.57 AAAA C ATCH 4238 CB IRH ARG 441 52.268 67.367 38.001 1.00 60.57 AAAA C ATCH 4238 CB IRH ARG 441 52.168 67.596 38.200 1.00 77.70 AAAA C ATCH 4238 CB IRH ARG 441 52.168 67.596 78.200 79.70 74.73 AAAA C ATCH 4238 CB IRH ARG 441 52.168 67.596 79.100 70.998 AAAA C ATCH 4238 CB IRH 442 47.766 69.57 35.00 30.601 1.00 70.998 AAAA C ATCH 4238 CB IRH 442 47.766 69.575 30.601 1.00 70.998 AAAA C ATCH 4247 CB IRH 442 47.669 69.576 29.195 1.00 77.69 AAAA C ATCH 4247 CB IRH 442 47.669 69.576 29.19									
ATCH 4205 CG LY3 439 46.677 74.938 35.265 1.00 77.26 AAAA C ATCH 4207 CE LY3 439 45.832 75.942 36.014 1.00 81.65 AAAA C ATCH 4208 HZ LY3 439 44.385 75.475 36.102 1.00 81.65 AAAA C ATCH 4208 HZ LY3 439 43.667 76.431 37.100 1.00 93.85 AAAA HZ ATCH 4212 C LY3 439 49.249 73.396 34.752 1.00 73.01 AAAA C ATCH 4213 O LY3 439 49.996 73.996 35.541 1.00 74.60 AAAA C ATCH 4214 H GLY 440 49.517 73.453 33.441 1.00 73.33 AAAA HZ ATCH 4214 C G G G G G G G G G G G G G G G G G G									AAAA C
ATOH 4208 CD LV3 439 44.882 75.942 36.014 1.00 81.65 AAAA C ATOH 4207 CE LV3 439 44.385 75.475 36.182 1.00 87.39 AAAAA H ATOH 4212 C LV3 439 49.249 73.396 34.752 1.00 73.01 AAAA C ATOH 4212 O LV3 439 49.249 73.396 34.752 1.00 73.01 AAAA C ATOH 4213 O LV3 439 49.996 73.986 35.541 1.00 73.33 AAAA H ATOH 4214 H GLV 440 50.733 74.167 33.044 1.00 73.33 AAAA H ATOH 4217 C GLV 440 50.733 74.167 33.044 1.00 73.33 AAAA H ATOH 4217 C GLV 440 51.716 73.204 32.389 1.00 71.20 AAAA C ATOH 4218 O GLV 440 51.716 73.204 32.389 1.00 71.20 AAAA C ATOH 4218 O GLV 440 52.684 73.650 31.822 1.00 72.70 AAAA C ATOH 4219 H ARG 441 52.343 70.945 31.831 1.00 72.70 AAAA H ATOH 4221 CA ARS 441 52.343 70.945 31.831 1.00 72.79 AAAA H ATOH 4221 CA ARS 441 52.343 70.945 31.831 1.00 74.12 AAAA C ATOH 4222 CB ARG 441 52.343 70.945 31.831 1.00 74.12 AAAA C ATOH 4223 CG ARG 441 52.667 69.740 32.716 1.00 69.44 AAAA C ATOH 4223 CG ARG 441 52.667 69.740 32.716 1.00 69.34 AAAA C ATOH 4223 HE ARG 441 52.060 68.314 34.595 1.00 67.64 AAAA C ATOH 4225 HE ARG 441 52.060 68.314 34.595 1.00 67.64 AAAA C ATOH 4225 HE ARG 441 52.326 67.357 36.831 1.00 59.21 AAAA C ATOH 4226 HE ARG 441 52.326 67.357 36.831 1.00 59.21 AAAA C ATOH 4236 H H1 ARG 441 52.326 67.357 36.831 1.00 59.21 AAAA C ATOH 4236 H H1 ARG 441 52.268 66.117 36.395 1.00 60.57 AAAA H ATOH 4231 HH2 ARG 441 52.268 67.596 39.120 1.00 61.00 AAAA H ATOH 4236 H GUH 442 50.732 71.14 30.043 1.00 60.87 AAAA H ATOH 4236 H GUH 442 50.732 71.14 30.043 1.00 60.87 AAAA H ATOH 4236 H GUH 442 49.959 70.646 29.915 1.00 74.73 AAAA C ATOH 4238 CB GUH 442 49.959 70.646 29.915 1.00 68.73 AAAA H ATOH 4234 CB GUH 442 49.959 70.646 29.915 1.00 68.73 AAAA H ATOH 4234 CB GUH 442 47.669 69.576 29.195 1.00 71.20 AAAA C ATOH 4242 OEI GUH 442 47.669 69.576 29.195 1.00 71.20 AAAA C ATOH 4240 CG GUH 442 47.669 69.576 29.195 1.00 71.20 AAAA C ATOH 4241 CD GUH 442 47.669 69.576 29.195 1.00 77.69 AAAA C ATOH 4241 CD GUH 442 47.669 69.576 29.195 1.00 77.69 AAAA C ATOH 4240 CG GUH 442 47.669 69.576 29.195 1.00 77.69 AAAA C ATOH 4241 CD									
ATOH 4207 CE LYS 439 44.385 75.475 36.182 1.00 87.39 AAAA C ATOH 4212 C LY3 439 43.667 76.431 37.100 1.00 93.85 AAAA C ATOH 4212 C LY3 439 49.249 73.396 34.752 1.00 74.60 AAAA C ATOH 4213 0 LYS 439 49.249 73.396 35.541 1.00 74.60 AAAA C ATOH 4214 II GUY 440 49.517 73.453 33.441 1.00 74.33 AAAA II ATOH 4216 CA GLY 440 50.733 74.167 32.014 1.00 71.39 AAAA C ATOH 4218 0 GUY 440 51.716 73.204 32.389 1.00 71.20 AAAA C ATOH 4218 0 GUY 440 52.684 73.650 31.822 1.00 72.70 AAAA C ATOH 4218 0 GUY 440 52.684 73.650 31.822 1.00 72.70 AAAA C ATOH 4212 II ARG 441 51.445 71.908 32.436 1.00 72.79 AAAA II ATOH 4222 CB ARG 441 52.343 70.945 31.831 1.00 74.12 AAAA C ATOH 4222 CB ARG 441 52.343 70.945 31.831 1.00 74.12 AAAA C ATOH 4222 CB ARG 441 52.617 69.740 32.716 1.00 69.44 AAAA C ATOH 4223 II AD AAG 441 52.244 68.395 36.030 1.00 G1.00 AAAA C ATOH 4223 II AD AAG 441 52.244 68.395 36.030 1.00 G1.00 AAAA II ATOH 4223 II AD AAG 441 52.326 67.357 36.831 34.595 1.00 69.57 AAAA II ATOH 4231 II AD AAG 441 52.326 67.357 36.831 34.00 69.57 AAAA II ATOH 4231 II AD AAG 441 52.326 67.357 36.831 34.00 69.57 AAAA II ATOH 4231 II AD AAG 441 52.326 67.357 36.831 34.00 69.57 AAAA II ATOH 4231 II AD AAG 441 52.326 67.357 36.831 30.00 69.57 AAAA II ATOH 4231 II AD AAG 441 52.326 67.357 36.831 30.00 69.57 AAAA II ATOH 4231 II AD AAG 441 52.326 67.357 36.831 30.00 69.57 AAAA II ATOH 4231 II AD AAG 441 52.326 67.357 36.831 30.00 69.57 AAAA II ATOH 4231 II AD AAG 441 52.326 67.357 36.831 30.00 69.57 AAAA II ATOH 4231 II AD AAG 441 52.326 67.357 36.831 30.00 69.57 AAAA II ATOH 4231 II AD AAG 441 52.326 67.357 36.831 30.00 69.57 AAAA II ATOH 4231 II AD AAG 441 52.326 67.357 36.831 30.00 69.57 AAAA II ATOH 4231 II AD AAG 441 52.326 67.357 36.831 30.00 69.57 AAAA II ATOH 4231 II AD AAG 441 52.326 67.357 36.351 30.00 69.57 AAAA II ATOH 4231 II AD AAG 441 52.326 67.357 36.351 30.00 69.57 AAAA II ATOH 4231 II AD AAG 441 52.326 AAA AA II ATOH 4231 II AD AAG 441 52.326 AAA AA II ATOH 4231 II AD AAAA II AAA AA AAA AA AA AA AA AA AA AA									
ATOH 4212 C LTS 439 49.249 73.396 34.752 1.00 73.01 AAAA C ATOH 4213 O LTS 439 49.996 73.986 35.541 1.00 74.60 AAAA D ATOH 4214 H GLT 440 49.517 73.453 33.441 1.00 71.39 BAAA C ATOH 4216 CA GLT 440 50.733 74.167 32.014 1.00 71.39 BAAA C ATOH 4218 O GLT 440 52.684 73.650 31.822 1.00 72.70 AAAA D ATOH 4219 H ARG 441 52.684 73.650 31.822 1.00 72.70 AAAA D ATOH 4219 H ARG 441 52.343 70.945 31.831 1.00 72.79 AAAA C ATOH 4222 CB ARG 441 52.343 70.945 31.831 1.00 74.12 AAAA C ATOH 4222 CB ARG 441 52.617 69.740 32.716 1.00 69.44 AAAA C ATOH 4222 CB ARG 441 52.617 69.740 32.716 1.00 69.44 AAAA C ATOH 4224 CD ARG 441 52.060 68.314 34.595 1.00 67.54 AAAA C ATOH 4225 HE ARG 441 52.244 68.395 36.030 1.00 61.00 AAAA H ATOH 4227 CL ARG 441 52.246 67.357 36.831 1.00 59.21 AAAA C ATOH 4223 HH ARG 441 52.326 67.357 36.831 1.00 59.21 AAAA C ATOH 4234 H ARG 441 52.326 67.357 36.831 1.00 59.21 AAAA C ATOH 4234 C ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA C ATOH 4235 H ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA C ATOH 4236 H ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA C ATOH 4236 H GL ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA C ATOH 4236 H GL ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA C ATOH 4236 H GL ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA C ATOH 4236 H GL ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA C ATOH 4236 H GL ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA C ATOH 4236 H GL ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA C ATOH 4236 H GL ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA C ATOH 4236 C ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA C ATOH 4236 C ARG 441 52.366 67.357 36.831 1.00 59.21 AAAA C ATOH 4236 C ARG 441 52.366 69.29 30.507 1.00 70.99 AAAA C ATOH 4236 C ARG 441 52.366 69.29 30.507 1.00 77.550 AAAA H ATOH 4236 C ARG 441 52.366 69.29 30.507 1.00 70.99 AAAA C ATOH 4240 C ARG GL 442 47.669 69.576 29.195 1.00 71.20 AAAA C ATOH 4240 C ARG GL 442 47.669 69.576 29.195 1.00 71.70 AAAA C ATOH 4240 C ARG GL 442 47.669 69.576 29.195 1.00 77.69 AAAA C ATOH 4240 C ARG GL 442 47.669 69.576 29.195 1.00 77.69 AAAA C A									AAAA C
ATCH 4213 O LTS 439 49.996 73.986 35.541 1.09 74.60 AAAA O ATCH 4214 H GLT 440 49.517 73.483 33.441 1.09 73.33 AAAA H ATCH 4216 CA GLT 440 59.733 74.167 32.014 1.09 71.39 AAAA C ATCH 4218 O GLT 440 51.716 73.204 32.389 1.09 71.20 AAAA C ATCH 4218 O GLT 440 52.684 73.650 31.822 1.09 72.70 AAAA C ATCH 4219 H ARG 441 51.445 71.908 32.436 1.09 72.99 AAAA H ATCH 4222 CB ARG 441 52.343 70.945 31.831 1.00 74.12 AAAA C ATCH 4223 CG ARG 441 52.343 70.945 31.831 1.00 74.12 AAAA C ATCH 4223 CG ARG 441 52.647 69.645 34.003 1.00 63.34 AAAA C ATCH 4223 CG ARG 441 52.060 68.314 34.595 1.00 67.64 AAAA C ATCH 4224 CD ARG 441 52.060 68.314 34.595 1.00 67.64 AAAA C ATCH 4227 CC ARG 441 52.060 68.314 34.595 1.00 67.64 AAAA C ATCH 4228 HHA ARG 441 52.326 67.357 36.831 1.00 59.21 AAAA C ATCH 4228 HHA ARG 441 52.258 66.117 36.395 1.00 60.57 AAAA H ATCH 4234 CD ARG 441 52.268 66.117 36.395 1.00 60.57 AAAA H ATCH 4234 C ARG 441 52.768 67.596 38.128 1.00 74.73 AAAA C ATCH 4236 H GUH 442 49.959 70.446 30.511 1.00 73.50 AAAA C ATCH 4236 H GUH 442 49.959 70.646 29.914 1.00 74.73 AAAA C ATCH 4236 H GUH 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATCH 4239 CB GUH 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATCH 4239 CB GUH 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATCH 4239 CB GUH 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATCH 4230 CB GUH 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATCH 4240 CG GUH 442 47.669 69.576 29.195 1.00 71.00 AAAA C ATCH 4240 CG GUH 442 47.669 69.576 29.195 1.00 71.00 AAAA C ATCH 4240 CG GUH 442 47.669 69.576 29.195 1.00 71.00 AAAA C ATCH 4240 CG GUH 442 47.669 69.576 29.195 1.00 71.00 AAAA C ATCH 4247 0E GUH 442 47.669 69.576 29.195 1.00 77.69 AAAA C ATCH 4247 0E GUH 442 47.669 69.576 29.195 1.00 77.69 AAAA C ATCH 4247 0E GUH 442 47.669 69.576 29.195 1.00 77.69 AAAA C ATCH 4247 0E GUH 442 47.669 69.576 29.195 1.00 77.69 AAAA C ATCH 4247 0E GUH 442 47.669 69.576 29.195 1.00 77.69 AAAA C ATCH 4248 H AAAA H ATCH 4247 0E GUH 442 47.669 69.576 29.195 1.00 77.69 AAAA C ATCH 4247 0E GUH 442 47.669 69.576 29.195 1.00 77.69 A									
ATOH 4214 H GLY 440 49.517 73.453 33.421 1.00 73.33 AAAA H ATOH 4216 CA GLY 440 50.733 74.167 32.014 1.00 71.39 AAAA C ATOH 4217 C GLY 440 51.716 73.204 32.389 1.00 71.20 AAAA C ATOH 4218 H ARG 441 51.445 71.908 32.436 1.00 72.70 AAAA C ATOH 4219 H ARG 441 51.445 71.908 32.436 1.00 72.99 AAAA C ATOH 4222 CB ARG 441 52.343 70.945 31.831 1.00 74.12 AAAA C ATOH 4222 CB ARG 441 52.343 70.945 31.831 1.00 74.12 AAAA C ATOH 4223 CG ARG 441 52.060 68.314 34.595 1.00 69.44 AAAA C ATOH 4224 CD ARG 441 52.060 68.314 34.595 1.90 67.64 AAAA C ATOH 4225 HE ARG 441 52.060 68.314 34.595 1.90 67.64 AAAA C ATOH 4225 HE ARG 441 52.266 67.357 36.831 1.00 59.21 AAAA C ATOH 4238 HH1 ARG 441 52.266 67.357 36.831 1.00 59.21 AAAA C ATOH 4238 HH1 ARG 441 52.266 67.596 38.120 1.00 59.21 AAAA C ATOH 4238 HH1 ARG 441 52.168 67.596 38.120 1.00 59.21 AAAA C ATOH 4238 HH1 ARG 441 52.168 67.596 38.120 1.00 72.94 AAAA C ATOH 4236 HH1 ARG 441 52.168 67.596 38.120 1.00 72.94 AAAA C ATOH 4236 H GL 442 49.959 70.646 29.914 1.00 73.50 AAAA C ATOH 4236 H GL 442 49.959 70.646 29.914 1.00 73.50 AAAA C ATOH 4238 CB GLI 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4239 CB GLI 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4230 CB GLI 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4230 CB GLI 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4230 CB GLI 442 47.669 69.576 29.126 1.00 68.73 AAAA C ATOH 4240 CB GLI 442 47.669 69.576 29.126 1.00 68.73 AAAA C ATOH 4240 CB GLI 442 47.669 69.576 29.126 1.00 68.73 AAAA C ATOH 4241 CD GLI 442 47.669 69.576 29.156 1.00 68.73 AAAA C ATOH 4242 OEI GLI 442 47.623 69.029 30.607 1.00 70.98 AAAA C ATOH 4241 CD GLI 442 47.623 69.029 30.607 1.00 70.99 AAAA C ATOH 4241 CD GLI 442 47.623 69.029 30.607 1.00 70.99 AAAA C ATOH 4241 CD GLI 442 47.623 69.029 30.607 1.00 70.99 AAAA C ATOH 4242 OEI GLI 442 47.623 69.029 30.607 1.00 70.99 AAAA C ATOH 4241 CD GLI 442 47.623 69.029 30.607 1.00 70.5557 AAAA H ATOH 4242 OEI GLI 442 47.623 69.029 30.607 1.00 70.5557 AAAA H ATOH 4246 C GLI 442 47.623 69.029 30.607 1.00 70.5557 AAAA H A									
ATOH 4217 C 5LT 440 51.716 73.204 32.389 1.00 71.20 AAAA C ATOH 4218 0 5L7 440 52.684 73.650 31.822 1.00 72.70 AAAA O ATOH 4219 H ARG 441 51.445 71.908 32.436 1.00 72.79 AAAA C ATOH 4222 CB ARG 441 52.343 70.945 31.831 1.00 74.12 AAAA C ATOH 4222 CB ARG 441 52.343 70.945 31.831 1.00 74.12 AAAA C ATOH 4223 CB ARG 441 52.617 69.740 32.716 1.00 69.44 AAAA C ATOH 4223 CB ARG 441 52.617 69.740 32.716 1.00 69.44 AAAA C ATOH 4224 CD ARG 441 52.060 68.314 34.595 1.00 67.64 AAAA C ATOH 4224 CD ARG 441 52.060 68.314 34.595 1.00 67.64 AAAA C ATOH 4225 HE ARG 441 52.060 68.314 34.595 1.00 67.64 AAAA C ATOH 4228 HH1 ARG 441 52.326 67.357 36.831 1.00 59.21 AAAA C ATOH 4228 HH1 ARG 441 52.326 67.357 36.831 1.00 59.21 AAAA C ATOH 4238 HH1 ARG 441 52.326 67.566 39.126 1.00 73.50 AAAA H ATOH 4234 C ARG 441 52.168 67.566 39.126 1.00 73.50 AAAA H ATOH 4234 C ARG 441 51.760 70.446 30.511 1.00 73.50 AAAA C ATOH 4236 H GUH 442 50.732 71.214 30.043 1.20 74.69 AAAA C ATOH 4236 H GUH 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4239 CB GUH 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4230 CA GUH 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4230 CB GUH 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4240 CG GUH 442 47.669 69.576 29.195 1.00 71.20 AAAA C ATOH 4241 CD GUH 442 47.669 69.576 29.195 1.00 70.908 AAAA C ATOH 4241 CD GUH 442 47.669 69.576 29.195 1.00 70.908 AAAA C ATOH 4241 CD GUH 442 47.669 69.576 29.195 1.00 70.908 AAAA C ATOH 4241 CD GUH 442 47.669 69.576 29.195 1.00 70.908 AAAA C ATOH 4241 CD GUH 442 47.669 69.576 29.195 1.00 70.908 AAAA C ATOH 4241 CD GUH 442 47.669 69.576 29.195 1.00 70.908 AAAA C ATOH 4241 CD GUH 442 47.669 69.576 29.195 1.00 77.66 AAAA H ATOH 4246 C GUH 442 47.669 69.576 29.195 1.00 77.69 AAAA C ATOH 4241 CD GUH 442 47.669 69.576 29.195 1.00 77.69 AAAA C ATOH 4241 CD GUH 442 47.669 69.576 29.195 1.00 77.69 AAAA C ATOH 4241 CD GUH 442 47.669 69.576 29.195 1.00 77.69 AAAA C ATOH 4241 CD GUH 442 47.669 69.576 29.195 1.00 77.69 AAAA C ATOH 4246 C GUH 442 47.669 69.576 29.195 1.00 77.69 AAAA C ATOH 4									
ATCH 4218 O SLY 440									
ATOH 4219 H ARS 441 51.445 71.908 32.436 1.00 72.99 AAAA H ATOH 4221 CA ARS 441 52.343 70.945 31.831 1.00 74.12 AAAA C ATOH 4222 CB ARS 441 52.343 70.945 31.831 1.00 74.12 AAAA C ATOH 4222 CB ARS 441 52.6617 69.695 34.003 1.00 69.44 AAAA C ATOH 4223 CG ARS 441 52.060 68.314 34.595 1.00 67.54 AAAA C ATOH 4225 HE ARS 441 52.060 68.314 34.595 1.00 67.64 AAAA C ATOH 4225 HE ARS 441 52.266 67.357 36.831 1.00 59.21 AAAA C ATOH 4227 CC ARS 441 52.256 67.357 36.831 1.00 59.21 AAAA C ATOH 4228 HH1 ARS 441 52.258 66.117 36.395 1.00 60.57 AAAA H ATOH 4231 HH2 ARS 441 52.168 67.596 39.120 1.00 72.94 AAAA C ATOH 4236 H GH AS AS 441 52.168 67.596 39.120 1.00 72.94 AAAA C ATOH 4236 H GH AS AS 441 52.168 67.596 39.120 1.00 72.94 AAAA C ATOH 4235 O ARS 441 51.760 70.446 30.511 1.00 73.50 AAAA C ATOH 4236 H GUH 442 50.732 71.114 30.043 1.00 74.73 AAAA C ATOH 4238 CR GUH 442 49.959 70.646 19.914 1.00 75.13 AAAA C ATOH 4239 CB GUH 442 49.959 70.646 19.914 1.00 75.13 AAAA C ATOH 4230 CA GUH 442 49.959 70.646 19.914 1.00 75.13 AAAA C ATOH 4240 CS GUH 442 47.669 69.576 29.156 1.00 68.73 AAAA C ATOH 4240 CS GUH 442 47.669 69.576 29.156 1.00 68.73 AAAA C ATOH 4240 CS GUH 442 47.669 69.576 29.156 1.00 68.73 AAAA C ATOH 4240 CS GUH 442 47.623 69.029 30.507 1.00 70.98 AAAA C ATOH 4241 CD GUH 442 47.623 69.029 30.507 1.00 70.98 AAAA C ATOH 4242 OEI GUH 442 47.623 69.029 30.507 1.00 70.98 AAAA C ATOH 4241 CD GUH 442 47.623 69.029 30.507 1.00 70.98 AAAA C ATOH 4242 OEI GUH 442 47.477 69.907 31.584 1.00 66.86 AAAA H ATOH 4246 C GUH 442 47.477 69.907 31.584 1.00 71.69 AAAA C ATOH 4248 H AAAA H AAA C ATOH 4248 H AAAA H AAA C ATOH 4248 H AAAA H AAAA H AAAA H ATOH 4248 H AAAA									
ATCH 4222 CB ARG 441 51.647 69.740 32.716 1.90 69.44 AAAA C ATCH 4223 CG ARG 441 52.060 68.314 34.595 1.90 67.54 AAAA C ATCH 4224 CD ARG 441 52.060 68.314 34.595 1.90 67.54 AAAA C ATCH 4227 CC ARG 441 52.060 68.315 34.003 1.00 61.00 AAAA H ATCH 4228 HH1 ARG 441 52.266 67.357 36.831 1.00 59.21 AAAA C ATCH 4238 HH1 ARG 441 52.258 66.117 36.395 1.00 60.57 AAAA H ATCH 4231 HH2 ARG 441 52.168 67.596 38.128 1.00 72.94 AAAA C ATCH 4236 H GUI 442 52.168 67.596 38.128 1.00 73.50 AAAA C ATCH 4236 H GUI 442 50.732 71.114 30.043 1.20 74.62 AAAA H ATCH 4236 H GUI 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATCH 4239 CB GUI 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATCH 4239 CB GUI 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.126 1.00 68.73 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 71.20 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 71.20 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 71.20 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 70.98 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 70.98 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 70.98 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 70.98 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 70.98 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 70.98 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 70.98 AAAA C ATCH 4240 CG GUI 442 47.623 69.029 30.607 1.00 70.98 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 71.50 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 71.50 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 71.50 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 71.50 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 71.50 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 71.50 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 71.50 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 71.50 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 71.50 AAAA C ATCH 4240 CG GUI 442 47.669 69.576 29.195 1.00 AAAA C ATCH 4240 CG								1.00 72.99	AAAA 11
ATOH 4223 CG ARG 441 51.047 69.695 34.003 1.00 63.34 AAAA C ATOH 4224 CD ARG 441 52.060 68.314 34.595 1.00 67.64 AAAA C ATOH 4225 HE ARG 441 52.060 68.314 34.595 1.00 61.00 AAAA H ATOH 4227 HE ARG 441 52.326 67.357 36.831 1.00 59.21 AAAA C ATOH 4228 HH1 ARG 441 52.258 66.117 36.395 1.00 60.57 AAAA H ATOH 4231 HH2 ARG 441 52.258 66.117 36.395 1.00 60.57 AAAA H ATOH 4231 HH2 ARG 441 52.168 67.596 38.128 1.00 73.50 AAAA H ATOH 4236 H GUI 442 51.760 70.446 30.511 1.00 73.50 AAAA C ATOH 4236 H GUI 442 50.732 71.114 30.043 1.20 74.69 AAAA H ATOH 4238 CR GUI 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4239 CR GUI 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4240 CG GUI 442 47.669 69.576 29.195 1.00 68.73 AAAA C ATOH 4240 CG GUI 442 47.669 69.576 29.195 1.00 71.20 AAAA C ATOH 4241 CD GUI 442 47.669 69.576 29.195 1.00 71.20 AAAA C ATOH 4242 OEI GUI 442 47.623 69.028 30.507 1.00 70.98 AAAA C ATOH 4242 OEI GUI 442 47.476 69.907 31.584 1.00 66.86 AAAA H ATOH 4246 C GUI 442 47.476 69.907 31.584 1.00 66.86 AAAA H ATOH 4246 C GUI 442 47.476 69.907 31.584 1.00 66.86 AAAA H ATOH 4248 H ALA 443 50.227 72.569 27.530 1.00 77.69 AAAA C ATOH 4248 H ALA 443 50.227 72.569 27.530 1.00 75.57 AAAA C ATOH 4248 H ALA 443 50.227 72.569 27.530 1.00 75.57 AAAA C ATOH 4248 H ALA 443 50.474 70.554 25.536 1.00 82.91 AAAA C ATOH 4248 H ALA 443 50.474 70.554 25.536 1.00 82.91 AAAA C ATOH 4250 CA ALA 443 50.474 70.554 25.536 1.00 82.91 AAAA C ATOH 4250 CA ALA 443 50.474 70.554 25.536 1.00 82.91 AAAA C									
ATOH 4224 CD ARG 441 52.060 68.314 34.595 1.90 67.64 AAAA C ATOH 4225 HE ARG 441 52.244 68.395 36.030 1.00 61.00 AAAA H ATOH 4226 HH1 ARG 441 52.256 67.357 36.831 1.00 59.21 AAAA C ATOH 4228 HH1 ARG 441 52.258 66.117 36.395 1.00 60.57 AAAA H ATOH 4231 HH2 ARG 441 52.168 67.596 39.120 1.00 72.94 AAAA C ATOH 4231 HH2 ARG 441 51.760 70.446 30.511 1.00 73.50 AAAA C ATOH 4236 H GUH 442 50.732 71.114 30.043 1.00 74.73 AAAA C ATOH 4238 CR GUH 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4239 CB GUH 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4239 CB GUH 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4240 CG GUH 442 47.669 69.576 29.126 1.00 68.73 AAAA C ATOH 4240 CG GUH 442 47.669 69.576 29.156 1.00 68.73 AAAA C ATOH 4240 CG GUH 442 47.669 69.576 29.155 1.00 71.20 AAAA C ATOH 4240 CG GUH 442 47.623 69.029 30.507 1.00 70.98 AAAA C ATOH 4242 OEI GUH 442 47.623 69.029 30.507 1.00 70.98 AAAA C ATOH 4242 OEI GUH 442 47.714 67.822 30.868 1.00 78.66 AAAA H ATOH 4248 H ALG 442 47.477 69.907 31.584 1.00 66.86 AAAA H ATOH 4248 H ALG 442 47.477 69.907 31.584 1.00 66.86 AAAA H ATOH 4248 H ALG 443 50.326 71.359 27.627 1.00 77.69 AAAA C ATOH 4248 H ALG 443 50.326 71.359 27.627 1.00 77.69 AAAA C ATOH 4248 H ALG 443 50.326 71.359 27.627 1.00 77.69 AAAA C ATOH 4248 H ALG 443 50.474 70.554 27.530 1.00 75.57 AAAA C ATOH 4248 H ALG 443 50.474 70.554 27.530 1.00 77.69 AAAA C ATOH 4248 H ALG 443 50.474 70.554 27.530 1.00 77.69 AAAA C ATOH 4248 H ALG 443 50.474 70.554 27.530 1.00 77.69 AAAA C ATOH 4250 CA ALG 443 50.474 70.554 27.530 1.00 77.69 AAAA C ATOH 4250 CA ALG 443 50.474 70.554 27.530 1.00 77.69 AAAA C ATOH 4250 CA ALG 443 50.474 70.554 27.530 1.00 77.69 AAAA C ATOH 4250 CA ALG 443 50.474 70.554 27.530 1.00 75.57								-	
ATOH 4227 CE ARG 441 52.326 67.357 36.831 1.00 59.21 AAAA C ATOH 4248 HH1 ARG 441 52.258 66.117 36.395 1.00 69.57 AAAA H ATOH 4231 HH2 ARG 441 52.168 67.596 38.120 1.00 72.94 AAAA H ATOH 4235 O ARG 441 51.760 70.446 30.511 1.00 73.50 AAAA C ATOH 4236 H GLH 442 50.732 71.214 30.012 1.70 74.73 AAAA C ATOH 4238 CR GLH 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4239 CR GLH 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4240 CG GLH 442 47.669 69.576 29.125 1.00 68.73 AAAA C ATOH 4241 CD GLH 442 47.669 69.576 29.195 1.00 71.20 AAAA C ATOH 4241 CD GLH 442 47.669 69.576 29.195 1.00 71.20 AAAA C ATOH 4242 OE1 GLH 442 47.623 69.029 30.607 1.00 70.98 AAAA C ATOH 4242 OE1 GLH 442 47.714 67.822 30.868 1.00 78.66 AAAA C ATOH 4243 HEZ GLH 442 47.477 69.907 31.584 1.00 66.86 AAAA H ATOH 4243 HEZ GLH 442 47.477 69.907 31.584 1.00 68.73 AAAA C ATOH 4246 C GLH 442 50.326 71.359 27.627 1.00 77.69 AAAA C ATOH 4248 H AAA 443 50.27 72.569 27.530 1.00 75.57 AAAA C ATOH 4248 H AAA 443 50.27 72.569 27.530 1.00 75.57 AAAA C ATOH 4248 H AAA 443 50.474 70.551 26.575 1.00 81.51 AAAA C ATOH 4248 H AAA 443 50.474 70.551 26.575 1.00 81.51 AAAA C ATOH 4250 CA ALA 443 50.474 70.551 26.575 1.00 81.51 AAAA C ATOH 4250 CA ALA 443 50.474 70.551 26.575 1.00 81.51 AAAA H ATOH 4250 CA ALA 443 50.474 70.551 26.575 1.00 81.51 AAAA H		4224						1.50 67.54	AAAA C
ATOH 4238 IIH1 ARG 441 52.258 66.117 36.395 1.00 60.57 AAAA II ATOH 4231 IIH2 ARG 441 52.168 67.596 39.128 1.00 72.24 AAAA II ATOH 4234 C ARG 441 51.760 70.446 30.511 1.00 73.50 AAAA C ATOH 4235 O ARG 441 52.195 69.424 30.612 1.70 74.69 AAAA C ATOH 4236 II GUI 442 50.732 71.114 30.043 1.20 74.69 AAAA II ATOH 4238 CA GUI 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4239 CB GUI 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4240 CG GUI 442 47.669 69.576 29.195 1.00 71.20 AAAA C ATOH 4241 CD GUI 442 47.669 69.576 29.195 1.00 71.20 AAAA C ATOH 4242 OEI GUI 442 47.623 69.028 30.507 1.00 70.98 AAAA C ATOH 4242 OEI GUI 442 47.714 67.822 30.868 1.00 78.66 AAAA C ATOH 4243 IIEZ GUI 442 47.477 69.907 31.584 1.00 66.86 AAAA C ATOH 4246 C GUI 442 47.477 69.907 31.584 1.00 66.86 AAAA II ATOH 4246 C GUI 442 50.227 72.569 27.530 1.00 77.69 AAAA C ATOH 4247 O GUI 442 50.227 72.569 27.530 1.00 75.57 AAAA C ATOH 4248 II AAA 443 50.474 70.551 25.575 1.00 81.51 AAAA C ATOH 4248 II AAA 443 50.464 71.551 25.236 1.00 82.61 AAAA II ATOH 4250 CA ALA 443 50.464 71.142 25.236 1.00 82.61 AAAA II ATOH 4250 CA ALA 443 50.464 71.142 25.236 1.00 82.61 AAAA II									
ATCH 4231 HH2 AR3 441 52.168 67.596 38.220 1.00 72.94 AAAA H ATCH 4234 C ARG 441 51.760 70.446 30.511 1.00 73.50 AAAA C ATCH 4235 O ARG 441 52.105 69.424 30.012 1.70 74.73 AAAA C ATCH 4236 H GUH 442 50.732 71.114 30.043 1.00 75.13 AAAA C ATCH 4239 CB GUH 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATCH 4240 CG GUH 442 48.457 70.875 29.126 1.00 68.73 AAAA C ATCH 4240 CG GUH 442 47.669 69.576 29.125 1.00 71.20 AAAA C ATCH 4240 CG GUH 442 47.623 69.029 30.507 1.00 70.98 AAAA C ATCH 4242 OEI GUH 442 47.623 69.029 30.507 1.00 70.98 AAAA C ATCH 4242 OEI GUH 442 47.714 67.822 30.868 1.00 78.66 AAAA C ATCH 4243 HEZ GUH 442 47.477 69.907 31.584 1.00 66.86 AAAA H ATCH 4246 C GUH 442 50.326 71.359 27.627 1.00 77.69 AAAA C ATCH 4248 H A42 47.477 69.907 31.584 1.00 66.86 AAAA H ATCH 4247 O GUH 442 50.326 71.359 27.627 1.00 77.69 AAAA C ATCH 4248 H AAAA 443 50.474 70.554 27.530 1.00 75.57 AAAA C ATCH 4248 H AAA 443 50.474 70.554 27.530 1.00 75.57 AAAA C ATCH 4250 CA ALA 443 50.474 70.554 26.575 1.00 81.51 AAAA H ATCH 4250 CA ALA 443 50.643 71.142 25.236 1.00 82.91 AAAA C									
ATOH 4234 C ARG 441 51.760 70.446 30.511 1.00 73.50 AAAA C ATOH 4235 O ARG 441 52.105 69.424 30.012 1.70 74.73 AAAA O ATOH 4236 H GLH 442 50.732 71.214 30.012 1.70 74.73 AAAA O ATOH 4238 CR GLH 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4240 CG GLH 442 48.457 70.878 29.126 1.00 68.73 AAAA C ATOH 4241 CD GLH 442 47.669 69.576 29.125 1.00 71.20 AAAA C ATOH 4241 CD GLH 442 47.623 69.028 30.507 1.00 70.98 AAAA C ATOH 4242 061 GLH 442 47.714 67.822 30.868 1.00 78.66 AAAA O ATOH 4243 HEZ GLH 442 47.477 69.907 31.584 1.00 66.86 AAAA H ATOH 4246 C GLH 442 50.326 71.359 27.627 1.00 77.69 AAAA C ATOH 4247 0 GLH 442 50.326 71.359 27.627 1.00 77.69 AAAA C ATOH 4248 H ATOH 4248 C GLH 442 50.326 71.359 27.627 1.00 77.69 AAAA C ATOH 4248 H ATOH 4248 C GLH 442 50.326 71.359 27.627 1.00 77.69 AAAA C ATOH 4248 H ALA 443 50.474 70.554, G5.575 1.00 81.51 AAAA H ATOH 4250 CA ALA 443 50.643 71.142 25.236 1.00 82.91 AAAA C								1.00 72.94	II AAAA II
ATOH 4236 II GLII 442 50.732 71.114 30.043 1.20 74.69 AAAA II ATOH 4238 CA GLII 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4239 CB GLII 442 48.457 70.875 29.125 1.00 68.73 AAAA C ATOH 4240 CG GLII 442 47.669 69.576 29.195 1.00 71.20 AAAA C ATOH 4241 CD GLII 442 47.669 69.576 29.195 1.00 70.98 AAAA C ATOH 4242 0E1 GLII 442 47.714 67.822 30.868 1.00 78.66 AAAA C ATOH 4243 HEZ GLII 442 47.714 67.822 30.868 1.00 78.66 AAAA II ATOH 4246 C GLII 442 47.477 69.907 31.584 1.00 66.86 AAAA II ATOH 4247 O GLII 442 50.227 72.569 27.527 1.00 77.69 AAAA C ATOH 4248 II ALA 443 50.27 72.569 27.530 1.00 75.57 AAAA C ATOH 4248 II ALA 443 50.474 70.554 26.575 1.00 81.51 AAAA II ATOH 4250 CA ALA 443 50.643 71.142 25.236 1.00 82.91 AAAA C									
ATOH 4238 CA GUH 442 49.959 70.646 29.914 1.00 75.13 AAAA C ATOH 4239 CB GUH 442 48.457 70.875 29.126 1.00 68.73 AAAA C ATOH 4240 C5 GUH 442 47.669 69.576 29.125 1.00 71.20 AAAA C ATOH 4241 CD GUH 442 47.623 69.629 30.507 1.00 70.98 AAAA C ATOH 4242 OEL GUH 442 47.623 69.629 30.507 1.00 70.98 AAAA C ATOH 4242 OEL GUH 442 47.714 67.822 30.868 1.00 78.66 AAAA O ATOH 4243 HEZ GUH 442 47.477 69.907 31.584 1.00 66.86 AAAA H ATOH 4246 C GUH 442 50.326 71.359 27.627 1.00 77.69 AAAA C ATOH 4247 O GUH 442 50.326 71.359 27.627 1.00 77.69 AAAA C ATOH 4248 H ALA 443 50.474 70.554 C5.575 1.00 81.51 AAAA H ATOH 4250 CA ALA 443 50.643 71.142 25.236 1.00 82.91 AAAA C									
ATOH 4249 CB GLH 442 48.457 70.875 29.126 1.00 68.73 AAAA C ATOH 4240 CD GLH 442 47.669 69.576 29.195 1.00 71.20 AAAA C ATOH 4241 CD GLH 442 47.623 69.029 30.507 1.00 70.98 AAAA C ATOH 4242 0EL GLH 442 47.714 67.822 30.868 1.00 78.66 AAAA C ATOH 4243 HEZ GLH 442 47.714 67.822 30.868 1.00 78.66 AAAA C ATOH 4243 HEZ GLH 442 47.477 69.907 31.584 1.00 66.86 AAAA H ATOH 4246 C GLH 442 50.326 71.359 27.627 1.00 77.63 AAAA C ATOH 4247 0 56H 442 50.326 71.359 27.627 1.00 75.57 AAAA C ATOH 4248 H AAA 443 50.474 70.554 26.575 1.00 81.51 AAAA H ATOH 4250 CA ALA 443 50.643 71.142 25.236 1.00 82.61 AAAA C							29.914	1.00 75.13	AAAA C
ATOM 4241 CD GLH 442 47.623 69.029 30.507 1.00 70.98 AAAA C ATOH 4242 0EL GLH 442 47.714 67.822 30.868 1.00 78.66 AAAA O ATOH 4243 HEZ GLH 442 47.477 69.907 31.584 1.00 66.86 AAAA H ATOH 4246 C GLH 442 50.326 71.359 27.627 1.00 77.69 AAAA C ATOH 4247 0 GLH 442 50.227 72.569 27.530 1.00 75.57 AAAA C ATOH 4248 H AAA 443 50.474 70.554 26.575 1.00 81.51 AAAA H ATOH 4250 CA ALA 443 50.643 71.142 25.236 1.00 82.61 AAAA C	ATO(1	4239	CB GLII	415	48.457				
ATOH 4242 OEL GUH 442 47.714 67.822 30.868 1.00 78.66 AAAA O ATOH 4243 HEZ GLH 442 47.477 69.907 31.584 1.00 66.86 AAAA H ATOH 4246 C GUH 442 50.326 71.359 27.627 1.00 77.69 AAAA C ATOH 4247 O GLH 442 50.227 72.569 27.530 1.00 75.57 AAAA C ATOH 4248 H ALA 443 50.474 70.554 26.575 1.00 81.51 AAAA H ATOH 4250 CA ALA 443 50.643 71.142 25.236 1.00 82.61 AAAA C									
ATOH 4243 HEZ GLH 442 47.477 69.907 31.584 1.00 66.86 AAAA H ATOH 4246 C GLH 442 50.326 71.359 27.627 1.00 77.69 AAAA C ATOH 4247 0 GLH 442 50.227 72.569 27.530 1.00 75.57 AAAA O ATOH 4248 H ALA 443 50.474 70.554 26.575 1.00 81.51 AAAA H ATOH 4250 CA ALA 443 50.643 71.148 25.236 1.00 82.65 AAAA C									AAAA O
ATOH 4247 0 GEH 442 50.227 72.569 27.530 1.00 75.57 PAAA 0 ATOH 4248 H ALA 443 50.474 70.554 26.575 1.00 81.51 AAAA H ATOH 4250 CA ALA 443 50.643 71.148 25.236 1.00 82.65 PAAA C	ATOI1	4543	HEZ GIJI	445	47.477	69.907	31.584		
ATOH 4248 H ALA 443 50.474 70.554 26.575 1.00 81.51 AAAA H ATOH 4250 CA ALA 443 50.643 71.142 25.236 1.00 82.65 AAAA C									
ATOH 4250 CA ALA 443 50.643 71.148 25.236 1.70 82.65 AAAA C									
						71.142		1,00 82,92	AAAA C
	ATOU	4251	CB ALA	443	51,104	70.118	14,220	1.29 91.69	AAAA C

WO 99/28347

Application No. 09/555,275 Annotated Sheet Showing Changes

							42/58		
ATCH	4050	?	ALA	443	19.259	71.705	24.952	1.00 83.73	AAAA C
ATCH ATCH	4253 7254	:; O	ALA LYS	444	49.398 48.914	71.744	25.830	1.90 83.87 1.00 86.29	AAAA C AAAA II
ATOIL	1256	CA	LYS	444	17.559	72.524	23.713	1.00 85.25	744A C
ATCH	4257	CB	LTS	444	47.426	73.997	23.128	1.00 83.99	AAAA C
ATCH	4258 4259	00 00	LYS LYS	411	45.673 45.883	71.734	24.241	1.00 93.60 1.00 95.14	AAAA C AAAA C
ATOH	1260	CE	LT5	444	16.390	73.786	26.614	1.00 97.04	AAAA C
ATCH:	4261 4261	112	LYS	411	15.369	73.090	27.473	1.00 97.22	AAAA II
ATO:	1066	, ()	LYS	111	46.65? 45.428	71.779	22.508	1.00 84.20	AAAA C AAAA G
ATO:1	4267	11	GUT	145	47.214	70.734	21.916	1.00 78.85	AAAA II
ATOH ATOH	4269 4270	CA C	GLY	445 445	46.368 45.803	59.786 68.844	21.208	1.00 75.06 1.00 72.30	AAAA C AAAA C
ATOH	4271	Ö	GLY	445	44.963	67.993	21.940	1.00 74.90	AAAA C
ATOH ATOH	4272	II CA	ASP ASP	140	16.300	68.981 68.174	23.492	1.00 67.97 1.00 62.81	AAAA II
ATOH	4275	CB.	ASE	116	45.214 46.754	68.552	24.642 25.873	1.00 55.24	AAAA C AAAA C
ATCH	1276	ÇG.	ASP	446	48.213	68.169	25.801	1.00 54.07	AAAA C
ATOH	4277	001	ASP ASP	116 116	49.091 48.693	67.385 68.595	24.946	1.00 45.08 1.00 50.13	aaaa o aaaa o
ATON	1279	7	ASP	446	44.438	68.274	25.016	1.00 58.07	2 AAAA
ATOH	4289	0 !!	AJP	147 146	43.610	67.369	25.127 25.226	1.00 55.59 1.00 54.13	AAAA C
ATOH	4283 4283	CA	ILE ILE	447	44.043	69.527 69.822	25.510	1.00 54.09	C AAAA
ATOH	4284	CB	ILE	113	42.505	70.502	26.877	1.00 48.92	AAAA C
ATC11 ATC11	4286 4285		ILE	147	41.030 43.211	70.663 69.621	27.182	1.00 41.02	AAAA C AAAA C
ATO:	4287		ILE	447	43.468	70.323	29.237	1.00 48.47	AAAA C
HOTA	4298	Ç	ILE	447	12.027	70.591	24.364	1.90 53.06	T ARAA
ATOH	4289	() ()	ILE ASII	147 148	41.718 41.625	71.772	24.423	1.00 56.08 1.00 53.17	AAAA ::
HOTA	1292	CA	ASH	118	41.013	70.642	22.202	1.00 54.61	AAAA C
ATOH ATOH	1293 1294	CS	ASH ASH	118 118	41.283	69.982 68.786	20.863 20.577	1.00 49.17	AAAA C AAAA C
ATOH	1295	001		448	39.287	68.977	20.113	1.00 52.34	AAAA O
ATOH	4296	1102		448	40.990	67.622	20.871	1.00 52.49	AAAA II
ATOH ATOH	4299	د	ASII ASII	418	39.518 38.816	70.824 69.974	22.402	1.00 56.44 1.00 55.83	AAAA C AAAA O
ATOH	4301	11	THR	113	39.071	71.917	21.764	1.00 58.52	AAAA I:
ATOH ATOH	1301 1303	CA CB	THR THR	116 118	37.682 37.497	72.351 73.845	21.901 22.169	1.90 58.62 1.90 55.90	AAAA C AAAA C
ATCI1	1305	OG1	THR	119	37.913	74.485	20.943	1.00 68.89	AAAA O
ATOH	4307	CGS	THR	449	38.354	74.352	23.310	1.09 59.06	ANAA C
ATOH ATOH	130è 1308	o O	THR	113 113	36.920 35.750	72.053 72.381	20.628 20.473	1.00 56.82 1.00 60.87	AAAA C AAAA C
ATOH	1310	11	ARG	150	37.539	71.304	19.757	1.00 55.76	AAAA II
ATOLI	4312 4313	CA CB	AR:3 AR:3	450 450	36.887 37.845	70.935 71.179	18.507 17.377	1.00 54.66	AAAA C AAAA C
ATC/4	13:1	CG	ARG	450	38.385	69.975	16.645	1.00 54.81	AAAA C
ATOH	1315	CD	ARG	150	39.487	70.561	15.696	1.00 44.92	AAAA C
ATOH	1318 1316	CC	ARG ARG	450 450	40.706 41.544	79.719 69.757	16.483	1.00 52.49	AAAA :: AAAA :
ATOH:	4319	HHI	AR:3	450	41.176	68.572	16.466	1.90 41.07	AAAA 1:
ATCH ATCH	4322 4325	IIH2 C	ARG ARG	450 450	42.601 36.267	70.001 69. 5 53	17.510	1.00 45.18 1.00 56.82	AAAA :: AAAA :
ATOH	1326	ō	ARG	450	35.186		17.992	1.00 58.15	AAAA O
ATOH	1327	11	ASII	451	36.800	68.583	19.324	1.00 56.66	AAAA II
ATOH	4326	CA CB	ASH ASH	451 451	36.107 36.725	67.311 66.127	19.434	1.90 50.27	AAAA C AAAA C
ATCII	4331	CC	ASH	451	38.243	66.113	18.764	1.00 60.51	AAAA C
ATOH ATOH	4332 4332	100	ASII ASII	151 151	38.779 38.707	66.279 65.976	19.855 17.506	1.00 53.45 1.00 54.88	AAAA II
ATOI	1336	c	ASII	151	35.819	66.854	20.869	1.00 52.97	AAAA C
ATO:1	4337	0	ASH	451	35.330	65.750	21.096	1.00 49.71 1.00 51.98	AAAA C
ATOH HOTA	1310	II CA	ASH ASH	452 152	36.126 35.769	67.668 67.485	21.951	1.00 55.88	AAAA C
ATOH	4341	CB	ASH	452	36.947	67.873	24.136	1.00 54.62	AAAA C
ATCH	4342 4343	001	ASH	452 452	37.936 37.646	66.736 65.633	24.285	1.00 60.96	AAAA C
ATOH	4344		ASII	152	39.153	67.048	23.855	1.00 56.75	AAAA II
ATOI1	4347	·:	ASII	452	34.503	68.385	23.689	1.90 58.11	AAAA T
ATOH HOTA	131 <i>è</i> 1318	O II	ASH GLT	453 453	34.785 33.444	69.629 67.813	23.657 23.985	1.00 55.07 1.00 55.08	AAAA C AAAA I:
ATOH	1351	CA	GLY	123	32.313	68.658	24.296	1.00 59.47	AAAA C
ATOH	4352 4353	Ç	GLY GLY	453 453	31.500	69.269 69.603	23.174	1.00 64.95 1.00 65.71	AAAA C AAAA O
ATON	1351	11	GLU	154	30.302 31.919	69.109	21.910	1.00 67.44	AAAA II
ATOIL	4356	CA	GLU	154	31.266	69.543	29.690	1.00 63.63	AAAA C
ATOH ATOH	4357 4358	08 06	GLU GLU	121 121	31.739 32.349	68.818 67.430	19,401	1.00 53.71	AAAA C
ATON	1359	CD	GEO	454	32.368	66.620	19.454	1.00 54.61	AAAA 🚓
ATON	4360		GLU	454	31.368	66.637	17.702	0.01 54.10 0.01 54.17	AAAA C AAAA C
INTA ATCH	4351	082	GLU	454 454	33.117	66.003 69.301	10.160 20.767	1.00 65.41	AVAA C
						-			

RECEIVED
AUG 0 8 2003

TECH CENTER 1600/2900

Figure 1A-41

AUG 0 8 2003 TECH CENTER 1600/2900

							1 3/30		
ATC11	1363	6)4	GLU	4.54	29.022	70.089	26.169	1.70 67.85	O AAAA
ATOH	1364	;1	ARG	155	29.298	69.187	21.333	1.00 66.45	AAAA II
ATOH	4366	ÇA	ARG	455	_				
					27.843	67.997	21.371	1.00 69.33	AAAA C
ATCII	4367	CO	ARG	122	27.448	66.733	20.652	1.00 73.38	AAAA C
ATC:	1368	CG	ARG	455	28.467	65.912	19.924	1.00 74.27	AAAA C
ATC!!	1369	CD	ARG	155	27.775	64.740	19.240	1.00 79.54	AAAA C
ATO:	1370	IJΕ	ARG	455	27.301	63.638		1.00 86.3;	AAAA II
							20.052		
HOTA	1372	CS	ARG	155	27.802	62.412	50.169	1.90 88.60	AAAA C
ATC+1	1373	11HI	ARG	455	28.990	61.997	19.538	1.00 84.51	AAAA II
ATOH	1375	11H2	ARG	455	27.225	61.523	21.003	1.00 97.36	AAAA II
ATCH	1379	Ç	ARG	155					
					27.213	67.934	22.756	1.00 67.35	AAAA C
ATCH	1380	C	ARG	455	26.423	67.025	22.961	1.00 66.26	O KAAA
ATCH	1381	11	ALA	456	27.499	68.879	23.623	1.00 66.52	AAAA II
ATOH	1383	CA	ALA	156	26.947	68.906	24.964	1.00 72.01	AAAA C
ATOH	1384	CB	ALA	456	27.832	68.147		1.00 61.84	AAAA C
							25.939		
ATOH	1385	C	ALA	456	26.802	70.379	25.371	1.00 75.25	AAAA C
ATO!	1386	0	ALA	156	27.706	71.219	25.202	1.00 81.30	AAAA O
ATCH	4387	:1	SER	157	25.653	70.720	25.939	0.50 71.91	AAAA II
ATOH	4389	CA	SER	457	25.431	72.095	26.358	0.50 69.64	AAAA C
							_		
NTOIL	1350	C5	SER	457	23.991	72.247	26.936	0.50 73.30	AAAA C
INTA	4391	C)G	SER	457	23.422	73.294	26.060	0.50 73.31	AAAA O
ATOH	1353	C	SER	457	25.418	72.510	27.437	0.50 69.27	AAAA C
ATOH:	1391	o	SER	457	26.458	71.957	29.530	0.50 67.32	AAAA O
ATOH	1395	ſΙ	CYS	458	27.197	73.531	27.117	0.50 70.44	AAAA II
ATCH	1397	CA	CYS	458	28.287	73.960	27.972	0.50 72.57	AAAA C
ATOH	4398	С	CYS	458	27.949	75.205	28.757	0.50 72.54	AAAA C
ATOH	1399	0	272	458	27.065	75.128	29.606	0.50 76.63	AAAA O
ATOH		CB	CIS	458	29.527	74.171	27.089	0.50 75.38	AAAA C
ATOH	4401	SG	CLS	458	30.844	73.032	27.490	0.5C 72.18	AAAA S
ATCH	4402	11	ALA	159	28.607	76.306	28.441	0.50 70.13	AAAA II
ATOH	4404	CA	ALA	459	28.445	77.572	29.116	0.50 70.05	AAAA C
ATO:	1405	CB	ALA	159	27.046	78.149	28.996	0.50 70.57	AAAA C
ATO:	1106	C	ALA	459	28.826	77.461	30.601	0.50 70.13	AAAA C
ATOH	4407	Ċ	ALA	459	29.080	78.556	31.154	0.50 69.96	AAAA O
ATOI1	1407	OT	ALA	459	29.855	76.301	31.054	0.50 68.22	AAAA O
								1.00 88.13	AAAA C
ATOH	1522	Cl	UAG	461	59.581	7.102	61.119		
HOTA	1524	C2	HAG	161	59.961	7.338	59.697	1.00 91.94	AAAA C
ATOH	4526	112	HAG	161	58.738	7.699	58.920	1.00 92.72	AAAA II
ATOH	4528	C7	HAG	461	58.400	9.020	58.999	1.00 96.97	AAAA C
		07	HAG				59.726	1.00 98.62	AAAA O
ATOL	4529			461	58.879	9.774			
ATOM	1530	C8	NAG	461	57.323	9.390	58.043	1.00100.60	AAAA C
ATOH	4534	C3	HAG	461	60.725	6.225	59.085	1.00 94.77	AAAA C
ATCH	4536	03	HAG	461	61.417	6.725	57.930	1.00 98.51	AAAA O
ATOH	4538	C4	HAG		61.873		60.064	1.00 96.01	AAAA C
				461		5.869			
INTA	1240	04	NAG	461	62.661	4.621	59.184	1.00 99.20	AAAA O
HOTA	1542	C5	IIAG	461	61.359	5.529	61.474	1.00 95.13	AAAA C
HOTA	4545	C6	HAG	461	62.465	5.321	62.495	1.00 93.66	AAAA C
HOTA	1518	06	HAG	461	62.745	6.361	63.354	1.00 92.13	AAAA O
ATCH	1211	05	IIA:S	461	60.625	6.648	61.949	1.00 91.92	AAAA O
ATOH	1550	⊆1	HAG	163	33.054	15.249	72.938	1.00 43.58	AAAA C
ATON	4552	C2	UAG	163	31.644	15.282	73.412	1.00 43.62	AAAA C
ATOH	:554	1/2	HAG	463	30.709	14.527	72.541	1.00 42.16	SI AAAA
ATOH	1556	C7	HAG	163	29.912	13.584	73.099	1.00 40.84	AAAA C
ATO!	4557	O7	HAG	162	29.928	13.406	74.222	1.00 49.10	AAAA O
ATOH	1558	C8	HAG	463	28.975	12.694	72.394	1.00 35.47	AAAA C
ATO:	1562	C3	IIA:3	463	31.150	16.675	73.448	1.90 45.40	AAAA C
ATOH	1564	03	IIAG	163	29.979	16.555	74.196	1.00 45.99	AAAA O
ATOH	1566	C4	HAG	463	32.117	17.617	74.171	1.00 50.36	AAAA C
ATCH	1568	04	11A·3	163	31.596	18.919	73.891	1.00 \$3.97	aaaa o
ATOI:	4569	C5	11A-5	463	33.589	17.477	73.725	1.00 48.50	· AAAA C
						17.996	74.742	1.00 48.34	AAAA C
ATOH	1572	C6	HAG	463	34.490				
ATOH	1575	06	IIAG	163	34.906	18.739	75.671	1.00 57.11	AAAA O
HOTA	4571	05	IIA:5	463	33.942	16.120	73.583	1.00 48.58	AAAA O
HOTA	1576	Cl	iuc	164	34.544	19.954	76.083	1.00 81.45	AAAA C
ATOH	1578	C2	FUG	464	35.179	21.173	75.463	1.00 86.35	AVAV C
							74.021	1.00 92.94	AAAA O
ATOH	1579	02	EUC	161	35.153	21.169			
INTA	1582	C3	FUC	161	34.252	22.284	75.915	1.00 86.79	AAAA C
ATOH	1584	03	EUC	464	34.691	23.613	75.599	1.00 87.83	AAAA O
ATOH	4586	C4	EUC	464	33.871	22.274	77.412	1.00 86.67	AAAA C
							78.115	1.00 87.06	AAAA U
ATC:	1598	04	FUC	101	34.508	23.297	_		
V.LOI;	4590	ÇS	Łńc	101	33.921	20.894	78.010	1.00 85.85	AAAA C
HOTA	1593	CG	FUC	464	34.279	20.768	79.512	1.00 83.37	AAAA C
ATCII	1592	95	EUC	161	35.042	20.150	77.425	1.00 82.43	AAAA O
					31.575		74,940	1.00 64.68	AAAA C
ATOH	1597	Cl	IJAG	∤ 55		19.813			
ATOIT	1599	Ç2	HAG	102	31.267	21.207	74.437	1.00 69.57	AAAA C
ATOH	4601	112	HAG	165	32.480	21.642	73.690	1.00 71.25	AAAA II
ATOH	4603	C7	HAG	165	32.401	21.953	72.381	1.00 73.86	AAAA C
							71.881	1.00 74.80	AAAA O
ATOH	4604	07	HAG	465	31.373	21.835			
ATOH	4605	C8	HAG	465	33.679	22.401	11.787	1.00 76.00	AAAA C
ATOH	4609	C3	IIAG	165	31.050	22.214	75.516	1.00 72.71	AAAA C
ATOH	4611	23	HAG	165	30.713	23.517	75.108	1.00 71.03	AAAA O
		C-1	HAG			21.654	76.560	1.00 75.71	2 AAAA
ATCII	4613			165	30.035				
ATOH	1615	01	IIA-3	165	29.993	22,409.	77.793	1.00 76.79	AAAA O
ATCI	4617	75	HAG	165	30.498	20.238	15.977	1.00 75.45	AAAA C
ATOH	1620	126	CAH	165	29.461	19.647	77.230	1.00 75.64	AAAA C

43/58

TECH CENTER 1600/2900

RECEIVED

WO 99/28347

•							44/58		
ATOH	4623	(30)	HAG	455	28.385	19.239	77.112	1.00 76.05	TARA CI
ATOU	4619	05	HAG	455	30.514	19.425	75.907	1.00 71.44	AAAA O
ATO:	1625	Cl	HAG	463	49.927	11.058	87.926	1.00 96.51	2 AAAA
HOTA	4627	22	HAG	167	50.538	11.751	89.100	1.00 99.92	AAAA C
ATOH	1658	112	HAG	467	49.663	12.898	89.459	1.00101.79	II AAAA
ATOH	4631	C?	HAG	467	49.299	13.021	29.759	1.00103.63	AAAA C
ATCH	1632	07	IIA:	167	49.541	12.267	91.586	1.00105.48	AAAA O
ATCH	4633	CA	HAG	467	48.526	14.239	91.102	1.00105.02	AAAA C
ATCH	4637	C3	11/4/3	167	51.967	12.134	98.892	1.00101.03	AAAA C
ATOH	4639	ز ن	HAG	457	\$2.535	12.761	89.949	1.00100.89	O AAAA
ATOU	1911	C4	HAG	467	52.613	10.771	88.500	1.50101.15	AAAA C
ATOU	1612 1613	04 (15	HAG	467 467	54.067	10.834	99.44;	1.00101.35	AAAA O
ATOH	4645	7.6	IIAG	457	52.039 52.746	10.160	87.219	1.00100.16	AAAA C
ATOH	1651	Qé	IIAG	167	52.988	8.852	86.934	1.00 99.75	AAAA C
ATOH	1617	05	HAG	157	50.671	7.70↓ 9.918	87.302 87.503	1.00:01.54	O AAAA O AAAA
ATOH	4653	Cl	11A-3	149	55.375	46.143	66.863	1.00 48.45	AAAA C
ATON	4655	63	HAG	469	56.601	16.993	66.861	1.00 50.42	AAAA
ATOH	4657	112	BAG	169	57.106	47.015		1.00 51.50	II AAAA
ATOH	4659	57	:1A:3	169	57.135	49.143	64.745	1.00 48.89	AAAA C
ATOH	4660	07	13A-3	469	56.849	49.101	65.234	1.00 55.62	AAAA O
ATCH	4661	C8	DAG	169	57.838	48.134	63.394	1.00 43.70	AAAA C
HOTA	4555	C.3	:IA·5	169	57.608	46.491	67.814	1.00 49.62	AAAA C
ATOH	4667	03	IIAG	169	58.640	47.461	68.031	1.00 47.76	AAAA O
ATCH	4669	C1	HA:3	469	56.843	46.263	69.172	1.00 48.47	AAAA C
ATOH	1671	04	HAG	469	57.826	45.80C	70.134	1.00 50.06	AAAA O
HOTA	4572	⊆5	HAG	469	55.847	45.130	68.959	1.00 50.81	AAAA C
ATON	4675	C.G	IIAG	199	55.190	44.720	70.239	1.00 53.92	AAAA C
ATC:	1678	06	HAG	169	54.829	45.551	71.193	1.00 56.25	AAAA O
ATOH	4674	05	HA-5	199	54.914	15.599	68.043	1.00 25.45	AAAA O
ATCH	4673	CI	FU/3	470	53.830	46.395	71.203	1.00 61.17	AAAA C
ATOH	1681	C.1	ENG	470	53.642	47.121	72.534	1.00 59.23	AAAA C
ATOH	4682	02 C3	£ñċ £ñċ	470 470	54.861	16.876	73.241	1.00 55.14	AAAA O
ATOH	1685	03	FUC	470	53.421	18.429	71.757	1.90 58.39	AAAA C
ATOH	1683 1683	21	FUC	470	53.381 52.245	49.515	72.637 70.809	1.00 56.30	AAAA C
ATOI	4691	04	EUC	470	51.061	48.255	70.509	1.00 63.74	AAAA O
ATOH	4693	Ċ5	£ÚĊ	470	52.455	47.086	69.828	1.00 62.20	AAAA C
ATOH	1696	Cé	FUC	470	51.462	46.723	68.784	1.00 59.15	AAAA C
ATOH1	4695	05	FUC	170	52.567	45.889	70.781	1.00 64.68	AAAA O
ATOH	4700	Cl	HAG	471	58.034	16.760	71.149	1.00 37.00	AAAA C
ATOH	4792	C2	HAG	471	58.977	46.225	72.186	1,00 40.30	AAAA C
HOTA	4794	112	HAG	471	58.958	44.787	72.509	1.00 36.82	AAAA H
ATOH	4706	C7	HAG	471	57.856	44.183	72.903	1.00 44.21	AAAA C
ATOH	4707	07	IIAG	471	56.892	44.744	72.885	1.00 51.50	AAAA O
HOTA	4708	C8	HAG	471	58.202	42.814	73.323	1.00 46.02	AAAA C
HOTA	4712	C3	HAG	471	58.901	47.250	73.291	1.00 34.50	AAAA C
ATCH	4714	03	HAG	471	59.698	16.917	74.385	1.00 35.84	AAAA O
ATON	4716	C-i	HAG	471	59.645	48.486	72.694	1.00 38.52	AAAA C
ATOH	4718	04	DAG	471	59.754	49,464	73.694	1.00 37.44	AAAA O
ATOH	4719	CS	11A/3	471	59.056	48.959	71.332	1.00 36.94	AAAA C
ATOH	4722	06 06	HAG	171	60.116	19.692	70.325	1.00 36.14	AAAA C
HOTA	1725	06	CALL	471	61.106	50.390	71.080	1.00 43.49	AAAA O AAAA O
HOTA	4721 4727	05 21	HAG	471 472	58.853	47.785	70.530	1.00 34.98	AAAA C
ATCH	4729	ćž	HAH	472	61.035	19.984	73.953	1.00 56.72	AMAN C
ATOU	1730	62	HAH	472	60.920 59.924	51.497	74.260 75.272	1.00 62.11	AAAA O
ATOH	4733	C3	HAH	472	62.216	51.584 52.031	74.842	1.00 60.70	AAAA C
ATOH	4735	03	IIAH	17.	52.0.8	53.337	75.383	1.00 60.70	AAAA O
ATO!	4736	c_1	11A11	472	62.787	51.161	15.932	1.00 55.46	AAAA C
ATOH	4738	04	HALL	472	64.095	51.595	76.17:	1,00 57.16	AAAA C
ATOH	4740	CS	LIVIT	472	62.797	49.685	75.511	1.00 52.19	AAAA C
ATCH	4743	C6	HAIT	472	63.458	48.905	76.595	1.00 50.32	AAAA C
ATOH	4746	06	HAH	172	62.990	48.969	17.885	1.00 51.02	AAAA O
HOTA	4712	05	HAIT	472	61.443	19.107	75.200	1.00 53.33	O AAAA
ATOH:	4748	Сl	HAD	473	62.594	54.401	74.672	1.00 72.61	AAAA C
ATCC	1750	C.;	HAH	473	62.417	55.679	75.569	1.00 75.28	AAAA C
ATOH	4751	0.3	HAH	473	63.378	56.709	75.319	1.00 74.98	AAAA O
ATCH	1754	C3	HAII	473	60.977	56.163	75.493	1,00 78.65	AAAA C
ATOH	4756	03	I:AII	1/3	60.941	57.117	76.148	1.00 79.16	AAAA O
ATOH	1758	Ci	HALL	173	60.344	56.204	74.114	1.00 78.70	AAAA C
ATOH	1760	04	HAH	473	58.983	56.571	74.178	1.00 78.93	AAAA O
ATOH	1762	05	HAH	173	60.499	54.802	73.474	1.00 76.89	AAAA C
ATON	1765	## ### ###	HAH	473	59.968	54.490	72.091	1.00 74.73	ЛААА С ЛААА О
ATOH	4768	06 05	HAH	173	60.239	55.469	71.138 73.463	1.00 71.33	AAAA O
	1108	90	NLA NLA	473 479	61.916	54.562		1.00 82.05	BBBB C
ATOH	1103 1108	 	ALA	179	42.462	74.494	16.374 17.001	1.00 91.42	8888 C
ATOH	4410	Ô	ALA	479	40.017 40.393	75.108	18.103	1.00 96.11	BSBB O
HOTA	4410	H .	ALA	479	40.696	74.461	14.624	1.00 86.43	9888 II
ATON	4415	ĊΑ	ALA	179	41.033	74.100	16.033	1.00 89.85	8888 C
HOTA	1116	11	ALA	180	38.749	74.752	16.619	1.00 92.10	888B 11
ATOH	1118	ćλ	ALA	130	37.681	75.261	17.467	1.00 91.26	BBBB C
ATOH	1119	CB	ALA	480	37.925	76,731	17.769	1.50 86.84	BBBB C
ATOH	1120	Ċ	۸ن۸	180	36.306	75.030	16.813	1.00 91.39	8888 C
		•		, . •	24.300	2.433			

TECH CENTER 1600/2900

							45/58		
ATOH	4421	6.	A. A	197 140	25.412	74.647	17.619	1.00.03.70	6588 G
ATOL	4454 4455	DA CA	GLII GLII	187	36.135 34.832	75.304 75.164	15.564 14.915	0.01 89.60 1.00 87.10	1888 C
ATOH	4425	C9	SUI	491	34.471	76.492	14.221	0.01 92.14	∺BBB ⊂
ATOH ATOH	1426	CD CD	تلا: تنات	181 181	34.277 34.067	77.627	15.220 14.626	1.00 99.93	6888 C
ATOH	1158	CEL	SUL	181	35.011	79.777	14.020	1.00103.37	6868 O
ATOH ATOH	4429	INES C	GLH GLH	181	32.792	79.328	14.398	1.00108.00	6888 #
ATOI	4433	č	2711	181 181	34.755 33.736	73.947 73.508	14.005 13.456	1.00 85.31 1.00 83.41	6889 C 6888 O
ATOLI	4434	11	LTS	185	35.849	73.188	13.908	1.00 82.85	99BB 11
ATOH	1136	CA	LYS LYS	485 485	35.982 37.377	71.990 71.930	13.089	1.00 73.49 1.00 73.13	6288 C 6888 C
ATOH	4438	22	LYS	182	38.287	73.128	12.494	1.60 76.33	6889 C
ATOU	1139	ςυ 65	275	482	39.413	72.968	11.471	1.00 80.62	8888 C
ATOH ATCH	1111	CE	LYS	482 482	39.985 41.252	74.310 74.135	11.027	0.01 76.66 0.01 76.20	6888 C 8888 II
ATCI1	4445	S	LT3	465	35.779	70.701	13.972	1.00 67.70	BBBB C
ATOH ATOH	1116	G E	ing Leu	183 183	35.879 35.530	70.744 69. 58 5	15.092 13.199	1.00 69.09	8888 C
ATON	1115	ÇA.	LEU	183	35.193	68.356	13.896	1.00 59.03	8888 C
ATO!·I	4450	C3	LEU	183	34.256	67.529	13.039	1.90 55.20	BEBB C
ATOH ATOH	4452	CD1	LEU	163 183	32.779 32.405	57.860 69.154	12.875	1.00 61.94 1.00 44.7B	8888 C
ATON	1153	200	LEU	183	32.433	67.707	11.395	1.00 44.63	8888 C
ATOH	4454	Ċ	LEU	483	36.421	67.509	14.229	1.00 59.73	BBBB C
ATOH ATOH	4455	0 ;1	LEU	181 183	37.345 36.465	66.709 67.543	13.165	1.00 57.22 1.00 56.21	6889 O
ATOH	1128	C.A	ILE	191	38.597	66.820	13.347	1.00 52.58	9888 C
ATOH	4160 4420	₹8 ₹32	ile ile	181 181	38.490 37.769	65.390 65.319	11.970	1.00 50.27 1.00 44.85	2886 C 8888 C
ATON	4461		ILE	161	39.870	54.766	12.756	1.00 39.78	HHER C
ATOLL	4495		LLE	484	39.889	63.291	12.404	1.00 30.43	8888 C
ATOH ATOH	1161 1163	0	I LE I LE	181	39.623 39.158	67.645	12.608	1.00 53.49	9888 C 9888 O
ATOH	1465	##	SER	485	40.911	67.499	12.887	1.00 50.86	6868 H
ATOH ATOH	1198 1163	CB	SER SER	182 182	41.898 41.959	68.335 69.753	12.209	1.00 49.78	8888 C 8888 C
ATOH	1169	OG	SER	185	43.190	70.035	13.376	1.00 63.03	8888 0
ATON	4471	Ē	SER	185	43.294	67.711	12.240	1.00 50.57	BBBB C
ATON ATON	4472	il O	Ser Glu	185 486	43.510 44.246	66.601 68.389	12.740 11.604	1.00 46.55 1.00 52.16	8888 O 8888 H
ATOH	1175	€A	GLU	186	45.624	67.874	11.509	1.00 59.12	BBBB C
ATOH ATOH	4476	CB CG	GLU GLU	186	46.547 46.221	68.683	10.598 10.568	1.00 59.71 1.00 76.75	8888 C
ATON	4478	CD	GLU	186 486	47.370	70.162 71.045	10.983	1.00 80.53	8888 C
ATOH	4479		GLU	486	48.315	70.104	11.472	1.00 91.67	SBBB O
ATCH ATCH	1187 1180	OE2	GLU SIJU	136 186	47.480	72.289	10.897 12.896	1.00 86.00 1.00 55.50	8888 C
ATON	1192	ò	GLU	186	46.768	66.747	13.326	1.00 49.83	BBBB 0
ATOH	1183	ti CA	GLU	137	45.955	68,738	13.732	1.00 59.37 1.00 59.36	3989 II
ATOH ATOH	1186 1182	CB	GLU	197 197	46.129 45.303	68.736 69.887	15.169 15.729	1.00 61.32	9998 C
ATOH	1187	CG	GLU	187	45.645	70.232	17.159	1.00 79.21	BBBB C
ATOH ATOH	1189	CD	GLU	187 187	46.397 45.768	71.545 72.610	17.177 17.320	1.00 96.09 1.00 92.00	9988 C
ATOH	4490		GLU	187	47.637	71.452		1.00 96.51	8888 0
ATOII	4191	Ċ	GLU	487	45.735	67.436	15.841	1.00 58.84	8888 C
ATOH ATOH	1193	0	GLU A3P	467 488	46.121 44.748	67.018 66.661	16.761 15.474	1.00 61.93 1.00 56.50	8888 O
ATCH	1162	∴A	V26	188	11.110	65.347	15.930	1.00 55.61	8888 ©
ATOH ATOH	1132	CB CG	ASP ASP	188 188	42.947 42.047	64.977 66.008	15.699 16.267	1.00 51.22	8888 C 8888 C
ATON	4168		ASP	188	42.114	66.563	17.387	1.90 56.45	8888 0
ATOH	1199		ASF	188	41.151	66.395	15.492	1.00 55.11	8888 O
MOTA HOTA	1500 1501	Ċ	425 V25	148	45.204 44.967	64.211 63.042	15.238 15.634	1.00 58.91	8888 € 8888 €
ATOH	4502	H	LEU	180	45.933	64.513	14.163	1.00 57.39	6888 11
ATOH	1202 1204	∴β ∴γ	LEU LEU	185 185	46.659 46.752	63.426 63.677	13.528	1.00 64.03	9888 C
ATON	1506	CG	LEU	189	45.746	62.788	11.229	1.00 53.71	8888 C
ATOH	4507	201	FEO	199	44.304	63.243	11.514	1.00 51.88	9899 C
ATOH ATOH	4509 4509	c cos	LEU	485 180	46.012 48.017	62.967 63.355	9.766 14.210	1.00 55.20	8888 C
ATOIL	1510	๋	LEU	489	48.850	62.560	13.938	1.00 71.57	BBBB O
ATOH	1511		ASH ACH	1 à Ú	48.306	64.318	15.063	1.00 68.24	9888 II
ATOH	4514	CA CB	ASH ASH	160 160	49,497	64.424	15.855	1.00 75.04 1.00 84.46	8886 C 8888 C
ATOH	4515	CC	ASII	150	51.191	66.105	16.509	1.00 98.83	8888 C
ATOI1	1516		ASH	490	52.092	65.342	16.178	1.00 97.25	8898 O
ATOH ATOH	4517 4520	1103	ASH ASH	1 <i>9</i> 0 196	51.459 49.350	67.129 63.610	17.407	1.00 80.30	11 8888 C 6999
ATOH	45.21	O	AGII	450	49.891	63.484	17.264	1.00 80.97	DBBB C
HOTA	4521 4770	OT S	ASH 394.	400	48.510	64.012		1.90 89.51 1.90108.87	9888 O
ATOH	41.15	-	J./ L.	493	37.234	-7.808	65.465		-555 3

TECH CENTER 1600/2900

Application No. 09/555,275
Annotated Sheet Showing Changes

WO-99/28347

							46/58		
ATO: I	477;	-01	SUL	193	38.452	-7.901	66.315	1.00110.65	0 0000
I IOTA I IOTA	4773	03	SUL	193 193	37.611 36.533	-7.973 -6.855	64.000 65.856	1.90110.21 1.60109.93	0000 C
ATOH	4774	0.1	SUL	493	36.333	-6.97R	65.639	1.00107.58	DODD
ATOH ATOH	4775 4776	ິວາ	SUL	154 164	56.567	19.753	66.302	1.00109.91	DDDD S
ATOH	1777	ÜŽ	SUL	494	56.597 57.954	19.128	67.659 65.795	1.00107.98 1.00112.59	0 0000
ATOH	4778	03	SUL	494	55.749	21.006	66.267	1.00111.35	DDDD O
ATCII	1780 1770	2 U4	SUL	132 131	55.886 34.533	18.792	05.379	1.00109.86 1.00114.67	DDDD O DDDD S
ATOH	781	οι	SUL	162	35.274	11.240	75.722 16.595	1.00111.38	DDDD C
INTA	4792 4783	03	SUL SUL	195	35. 476	19.329	74.974	1.00113.60	CDDD O
ATCH ATCH	4794	04	SUL	1 <i>5</i> 2 165	33,550 33,773	11.850	74,748 75,604	1.00112.77	0 0000
ATCH	1795	5	SUL	166	35.456	24.844	59.093	1.00 50.73	DDDD S
ATOH ATOH	478÷ 4787	02	SUL SUL	138 166	35.613 36.002	24.843	60.607 58. 5 71	1.00 62.59 1.00 48.59	0 0000 C 0000
HOTA	4.68	03	SUL	196	35.880	26.084	58.455	1.00 56.74	DDDD O
ATOH ATOH	4799 4790	2 01	SUL	167 166	33.958	21.953	59.034	1.00 59.34	DDDD O
ATOH	4791	01	SUL	197	47.653 47.849	-0.303 -1.058	70.199 70.996	1.00 68.98 1.00 68.52	0000 S 0000 O
ATOIT	1792	02	SUL	197	48.594	-2.509	69.072	1.00 70.94	DDDD O
ATOH ATOH	4793	03	SUL SUL	197 197	46.187 47.799	-2.393 -3.446	69.810 71.129	1.00 73.47	ODDD O
ATCH1	4795	s	SUL	4.68	56.527	35.758	75.513	1.00 71.48	DDDD S
ATOH	4796	01 02	SUL	1 58 1 68	55.870	35.013	76.621	1.00 72.97	DDDD O
ATON	1798	03	SUL	198	57.759 56.619	34.996 37.237	75.167 75.785	1.00 69.11	DDDD O
ATOH	1,00	0.	SHL	198	55.623	35.809	74.330	1.00 72.74	0 0000
ATON	4800 4801	3 01	SUL	155 155	40.639 40.219	27.365	76.045	1.00 74.04 1.00 76.00	2000 S 0 0000
ATOH	4902	92	SUL	450	42.089	27.608	.9.835	1.00 75.15	DDDD O
ATOH ATOH	1804 1803	O1 O3	SUL	1 0 0 1 0 0	39.823 40.424	28.467	70.098 68.019	1.00 77.27	0 0000
ATOH	1805	s	SUL	500	14.996	27.245 53.228	20.568	1.00 83.89	DDDD S
ATON	1806	01	SUL	500	45.080	54.400	21.461	1.00 84.79	0000 O
ATOH ATOH	4807 4808	02 03	SUL	500 500	46.109 45.032	52.266 53.674	2D.827 19.135	1.00 90.38	0000 O
ATON	1803	04	SUL	500	43.762	52.396	20.723	1.00 91.61	O DOOD
ATOH ATOH	4610 4613	OM OM	TAW TAW	501 502	29.970 42.522	18.998 6.904	77.713 78.232	1.00 34.84	0000 0 0000 0
ATON	4816	OM	MAT	503	37.561	21.003	67.518	1.00 41.63	ODDD O
ATON	4819	OM OM	TAW TAW	504	50.445	5.721	63.485	1.00 57.37	0 DDD 0
ATOH	4822 4825	ON	WAT	505 506	56. 6 68 50.605	24.854 57.695	72.729 22.727	1.00 54.26	0000
ATOH!	4928	O;4	WAT	5:07	55.123	37.781	61.204	1.00 43.71	DDDD O
ATOH ATOH	4831 4834	OM OM	TAW TAW	508 509	17.414 44.263	-9.070 20.885	74.793 63.811	1.00 48.79 1.00 28.64	0 QQQQ 0 QQQQ
ATO!!	1337	OW	WAT	510	45.085	19.708	84.433	1.00 49.09	C QQQQ
ATOH	1813 1810	ON CW	WAT	511 512	33.537 19.279	1.927	71.115 75.254	1.00 60.39 1.00 55.23	0 000 0 0 000 0
ATON	4846	U	WAT	213	11.502	-0.805	69.996	1.00 57.51	00000
ATOH	1949	CM.	WAT	514	24.591	17.207	56.665	1.00 56.36	DDDD O
HOTA	4852 4855	OH. CM	WAT	515 516	58.947 56.992	34.914 34.914	62.552 66.234	1.00 36.47 1.00 30.34	₽DDD ↔ ₽DD D ↔
ATOH	4058	OM	WAT	517	48.300	10.726	56.768	1.00 81.69	DDDD O
ATOH ATOH	4864 4864	WO	TAW T'AW	518 519	25.776 30.644	2.355 68.108	85.630 30.765	1.00 66.34	0 0000 0 0000
ATOH	1867	OW	HAT	520	38.739	54.257	43.611	1.00 43.41	DDDD O
ATCH	1970	OM OM	WAT	521	22.996	4.470	54.071	1.00 48.71	DDDD C
ATOH ATOH	4873 4876	OW	WAT	522 523	32.413 30.938	9.061	15:141 16:364	1.00 54.00 1.00 44.45	0 000 0 C 00 00
HOTA	4879	OM.	TAW	524	41.019	42.560	55.553	1.00 43.40	DDDD O
HOTA	1982 1982	OH	TAW TAW	52 5 526	54.268 37.130	51.393 13.599	37.513 91.397	1.00 55.10	0 0000 0 0000
I KOTA	1888	(42	WAT	527	42.585	10,244	84.472	1.00 35.95	ָס מססט
ATOH ATOH	1851 1851	ON	WAT WAT	529 529	43.661 27.990	61.633 19.862	18.450 53.348	1.00 41.05	O 0000
ATON	1897	OM	HAT	530	59.527	38.520	64.116	1.00 37.96	0 0000
ATCH	4900	OM	YAT.	531	22,451	1.046	57.437	1.00 59.31	O DDDD O
ATOH ATOH	1606 1503	ON	TAW	532 533	30.380 46.835	16.123	70.205 65.854	1.00 40.39 1.00 52.34	0000 O
HOTA	1503	OM	WAT	534	39.446	49.001	≑5.379	1.00 46.05	0 0000
ATOH ATOH	1912	OM OM	TAW TAW	535 536	44.263	51.272 13.776	50.722 73.017	1.00 \$2.61 1.00 40.61	0 00 0 0
ATOH	1618	(M	TAH	537	33.670	58.861	20.848	1.00 51.56	0 0000
ATOH	4921	OM	T'AW	53H	50.469	21.639	73.804	1.00 61.98	0 0000
ATOH ATOH	1924	ON	TA:V TAW	539 540	49.985	44.871	37.324 60.077	1.00 45.45	0 0000
HOTA	1530	OW	TAW	541	35.207	0.714	79.039	1.00 51.34	DDDDC
ATOH ATOH	1933	OM OM	TAW	542	31.231	-1.176	62.362 55.290	1.00 48.33 1.00 60.67	0 0000 O 0000
ATON	1535	ON	AV.L	5 1 5 5 4 4	41.728 48.564	-5.156 37.335	72.612	1.00 71.66	0 0000
ATOH	1515	OM OM	WAT	515	49.501	40.039	67.582	1.00 44.88	0 0000
ል ሞ(¥1	1945	OM	WAT	148	54.851	7. 997	60.018	1.00 47.71	0 0000

WO 99/28347

47/5870,554 1.00 84.42 60.848 1.00 50.77 30.453 -14.058 57.310 32.779 0000 O 218 212 ATCI: ATCII EIID TAW TAW 1948 CNI 1951 CA1

Application No. 09/555,275 Annotated Sheet Showing Changes

TECH CENTER 1600/2900 AUG 0 8 2003

RECEIVED

Annotated Sheet Showing Changes

Application No. 09/555,275

55/58

Figure 9: Sequence Alignment of hIGF-1R, hIR and hIRR ectodomains.

Derived by use of the PileUp program in the software package of the Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA.

Symbol Comparison table: GenRunData:PileUp?ep.Cmp CompCheCk: 1254

GapWeight: 3.0 GapLengthWeight: 0.1

Name: Higflr	Len:	972	CheCk: 1	781	Weight:	1.00
Name: Hir	Len:	972	CheCk: 2	986	Weight:	1.00
Name: Hirr	Len:	972	CheCk: 9	819	Weight:	1.00

				•		
	•		•			
Higflr	EI CGP	GIDIRNDYQQ	LKRLENCTVI	EGYLHILLIS	K AEDYRSY	43
Hir		GMDIRNNLTR				
Hirr		SLDIRSEVAE				
						•
4.						
Higflr		YLLLFRVAGL				
Hir		YLLLFRVYGL				
Hirr	SEPRLIQVID	YLLLFRVYGL	ESLRDLFPNL	AVIRGTRLFL	GYALVIFEMP	95
			+			
Higflr	NLKDIGLYNL	RNITRGAIRI	EKNADL C YLS	TVDWSLILDA	VSNNYIVGNK	143
Hir	HLKELGLYNL	MNITRGSVRI	EKNNELCYLA	TIDWSRILDS	VEDNYIVLNK	149
Hirr	HLRDVALPAL	GAVLRGAVRV	EKNQELCHLS	TIDWGLLQPA	PGANHIVGNK	145
		•				
	• •		*	• •	• •	
Higflr	PPK.ECGDLC	PGTMEEKPM.	CEKTTINNEY	nyrowthro	QKMCPSTCGK	191
Hir	DDNEECGDIC	PGTAKGKTN.	CPATVINGQF	VERCWTHSHC	QKVCPTICKS	198
Hirr	LG.EECADVC	PGVLGAAGEP	CAKTTFSGHT	DYRCWTSSHC	QRVCPCPHG.	193
	* **	* *	• •	•	•	
Higflr		HPECLGSCSA				
Hir		HSECLGNCSQ				
Hirr	MACTARGECC	HTECLGGCSQ	PEDPRACVAC	RHLYFQGA <i>C</i> L	WACPPGTYQY	243
	•	• •				
Higflr	FCWPC/DPDF	CANILSAES.		THOGEOMORO	PSCEEDNOSO	287
Hir		CQDLHHKCKN		-		
Hirr		CAS LHSVPG.				287
alli	COMMCVIAER	CASLESVEG.	RASITG	TUÜGSCTVÕC	130111 <u>0133</u> .	201
	• •	• •				
Higflr	SMYCI PCEGP	CPKVCEEEKK	TKTIDSVTSA	QMLQGCTIFK	GNLLINIRRG	337
Hir		CPKVCHLLEG				
Hirr		CPKECKVG				
· · · -			 .			

H CENTER 1600/290

437

Higfle NNIASELENF MGLIEVVTGY VKIRHSHALV SLSFLKNLRL ILGEEQLEGN

Hirr

Higflr

Hirr

NNLAAELEAN LGLIEEISGY LKIRRSYALV SLSFFRKLRL IRGETLEIGN YNLEPQLQHS LGLVETITGF LKIKHSFALV SLGFFKNLKL IRGDAMVDGN

YSFYVLDNON LOQUWDWDHR NLTIKAGKMY FAFNPKLCVS EIYRMEEVTG

YSFYALDNON LROLWDWSKH NLTITOGKLF FHYNPKLCLS EIHKMEEVSG YTLYVLDNON LOOLGSWVAA GLTIPVGKIY FAFNPRLCLE HIYRLEEVTG

56/58

			. End	01 1 402 11	a y men c	
Higflr	TKGRQSKGDI	NTRNNGERAS	CESDV LHF		II TWHRYRPP	
Hir	TKGRQERNDI	ALKTNGDQAS	CENEL LKF.	SY IRTSFDKI	LL RWEPYWPP	DF 497
Hirr	TRGRQNKAEI	NPRTNGDRAA	COTRT LRF	VS NVTEADRI	LL RWERYEPL	EA 485
•						
Higflr	RDLISETVYY	KEAPFKNVTE	YDGODA CGSN	SWNMVDVDLP	PNKDV	532
Hir	RDLLGFMLFY	KEAPYONVTE	EDGODA CGSN	SWTVVDIDPP	I.R.SNDPKSON	547
Hirr	RDLLSFIVYY	KESPFONATE	HVGPDACGTO	SWNLLDVELP	L SRTO	530
	-				2	330
Higflr	EPGILLHGLK	PWTQYAVYVK	AVTLTMVEND	HIRGAKSEIL	YIRTNASVPS	582
Hir	HPGWLMRGLK	PWTQYAIFVK	TL. VTFSDER	RTYGAKSDII	YVQTDATNPS	596
Hirr	EPGVTLASLK	PWTQYAVFVR	AITLTTEEDS	PHQGAQSPIV	YLRTLPAAPT	580
Higflr	TRI DUC CACH					
Hir	IPLDVLSASN	2220FIAMN	PPSLPNGNLS	AATAKMÖKÖS	QUGYLYRHNY	632
Hirr		555UTTERWK	PPSUPNGNIT	HILVEWERUA	EDSELFELDY	646
	41.0041212	2224FFAKMY	PATOMOGNET	IITATMÕKTV	EDGDLILNDI	630
	•				•	
Higflr	CSKD. KIPIR	KYADGTIDIE	EVTENPKTEV	CGGEKGPCCA	CPKTEAE	678
Hir		TWS.PPFESE				691
Hirr	CHRGLRLPTS	N.NDPREDGE	DGDPEAEME.	SDCCP	COHPPPGOVI.	673
					-4	• • •
			α	><β		
Higflr	KQAEKEEAEY	RKVFENFLHN	SIFVPRPERK	RRDVMQVANT	TMSSRSRNTT	728
Hir	ILKELEESSF	RKTFEDYLHN	VVFVPRPSRK	RRSLGDVGNV	TVAVPTV	738
Hirr	PPLEAQEASF	QKKFENFLHN	AITIPISPWK	VTSINKSPOR	D.SGRHRRAA	722
					*	
Higflr		DPEELETEYP				
Hir		VPTSPEEHRP				
Hirr	GPLRLGGNSS	DFEIQEDKVP	RE	RAVLSGLRHF	TEYRIDIHAC	764
	•					
Higflr		ASNEVFARTM				
Hir		VAAYVSARTM				
Hirr	nhaahtvg <i>c</i> s	AATFVFARTM	PHREADGIPG	KVAWEASSKN	SVLLRWLEPP	814
Higflr	NONCE TELOCO	7101ma	*	DWYCCZ WI VD	THECHMAN	076
-	NPNGLILMIE	IKYGS.QVED	QRECVSRUET	RKIGGARLNK	LNPGNITARI	6/3
Hir	ENGLIVLYE	VSYRRYGDEE	LHLCVSRKHF	ALEKGERLRG	LSPGNISVRI	880
Hirr	OPNGLILKYE	IKYRRLGEEA	TVLCVSRLRY	AKEGGVHLAL	LPPGNYSARV	864
Higflr	QATSLSGNGS	WTDPVFFYVO	AKTGYENETH	L		906
Hir	RATSLAGNGS	WTEPTYFYVT	DYLDVPSNIA	ĸ		917
Hirr		WTDSVAFYIL				895
_						

