Programme de khôlle de maths no 9

Semaine du 27 Novembre

Cours

Chapitre 6 : Suites numériques

- Vocabulaire sur les suites : majorée, minorée, bornée, croissante, décroissante
- Suites arithmétiques, suites géométriques, suites arithmético-géométriques, suites récurrentes linéaires d'ordre 2 (cas où l'équation caractéristique admet des solutions réelles uniquement)
- Limites infinie, limite finie.
- Unicité de la limite
- $\lim_{n \to +\infty} u_n = \ell \iff \lim_{n \to +\infty} |u_n \ell| = 0$
- (u_n) converge ssi (u_{2n}) et (u_{2n+1}) convergent vers la même limite
- (u_n) bornée et $\lim_{n \to +\infty} v_n = \pm \infty \Rightarrow \frac{u_n}{v_n} = 0.$
- Limites de référence
- Calcul de limites : opérations, composition par une fonction continue, passage à la limite dans une inégalité ou dans une égalité.
- Théorèmes de convergence : limite monotone, théorèmes de comparaison, suites adjacentes.
- Comparaison asymptotique : relation de négligeabilité, notation de Landau. Croissances comparée de n!, a^n , n^b et $\ln(n)^c$ pour a, b, c > 0.
- Equivalence de suites, notation $u_n \sim v_n$, propriétés des équivalences.
- Si P est un polynôme, P(n) est équivalent à son terme de plus haut degré et P(1/n) est équivalent à son terme de plus petit degré non nul.
- $\bullet \quad \text{\'Equivalents usuels}: \text{si} \lim_{n \to +\infty} u_n = 0, \text{ alors } \sin(u_n) \sim u_n, \\ \ln(1+u_n) \sim u_n, \\ \mathrm{e}^{u_n} 1 \sim u_n, \\ \frac{1}{1-u_n} \sim u_n, \\ (1+u_n)^\alpha 1 \sim \alpha u_n. \\ \ln(1+u_n) \sim u_n, \\ \frac{1}{1-u_n} \sim u_n, \\ \frac{1}{1-u_$

Questions de cours

- Démontrer la formule du binôme de Newton : $\forall (x,y) \in \mathbb{R}^2, \forall n \in \mathbb{N}, (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$.
- Démontrer l'unicité de la limite
- Démontrer qu'une suite convergente est bornée
- Démontrer que deux suites adjacentes convergent vers une même limite.

Exercice 1:

Étudier la suite (u_n) définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = \frac{4u_n^2 + 3}{3u_n^2 + 4}$ selon la valeur de u_0 .

Exercice 2:

On considère les suites (x_n) et (y_n) définies par $0 < x_0 < y_0$ et $\begin{cases} x_{n+1} & = \frac{x_n^2}{x_n + y_n} \\ y_{n+1} & = \frac{y_n^2}{x_n + y_n} \end{cases}$

- 1. Montrer que $(y_n x_n)$ est constante.
- 2. En déduire que (x_n) est croissante
- 3. Montrer que (x_n) et (y_n) sont convergentes et déterminer leurs limites respectives.

Correction: $y_n - x_n = y_0 - x_0 > 0$ donc $y_n < x_n$ et donc $x_{n+1} \le \frac{x_n^2}{2x_n} \le \frac{x_n}{2}$

Par récurrence immédiate $x_n \leq \frac{x_0}{2^n}$ donc $x_n \to 0$ et donc $y_n \to y_0 - x_0$

Exercice 3:

Soit (u_n) définie par $u_0 = 2$ et $\forall n \in \mathbb{N}, u_{n+1} = -2u_n + n^2 - 2$. Déterminer a, b, c tels que (v_n) définie par $v_n = u_n + an^2 + bn + c$ soit géométrique, en déduire la valeur de u_n en fonction de n

Exercice 4:

Limite de
$$u_n = \sqrt{n^2 - 1} - n$$

Limite de
$$u_n = \frac{(n+2)!}{(n^2+1) \times n!}$$

Limite de
$$u_n = 2^n - 3^n + 4^n$$
, de $v_n = \frac{\ln(1 + e^x)}{\sqrt{x}}$

Limite de
$$u_n = \left(\frac{1}{n}\right)^{1/n}$$
, $v_n = \left(\frac{1}{n}\right)^{1/\ln(n)}$ et $w_n = \left(\frac{1}{\sqrt{n}}\right)^{1/\sqrt{\ln(n)}}$

Exercice 5:

Soit f une application injective de \mathbb{N} vers \mathbb{N} . Montrer que $\lim_{n \to +\infty} f(n) = +\infty$.

Exercice 6:
$$u_0 > 0$$
 et $u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$. Montrer que $\lim_{n \to +\infty} u_n = \sqrt{a}$

Correction : Montrer que $u_{n+1}^2 - a = \frac{(u_n^2 - a)^2}{4u_n}$, en déduire que $\forall n, u_n \ge \sqrt{a}$ puis que (u_n) est décroissante pour $n \ge 1$

Exercice 7:

Étudier la suite définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = e^{u_n} - 1$

Exercice 8:

$$u_0 > 0$$
 et $u_{n+1} = \frac{1}{2+u_n}$ (mq si u_n converge vers ℓ alors $\ell = -1 + \sqrt{2}$, puis que $|u_{n+1} - \ell| = |\frac{1}{2+u_n} - \frac{1}{2+\ell}| = \frac{|u_n - \ell|}{(2+u_n)(2+\ell)} \le \frac{1}{4}|u_n - \ell|$ puis que $\lim_{n \to +\infty} u_n = \ell$.

Exercice 9:

Étude de la suite (u_n) définie par $u_0 = 3$ et $u_{n+1} = \frac{u_n^2 + 2}{3}$

Correction : Montrer d'abord que $\forall n \in \mathbb{N}, u_n \geq 3$, ensuite que (u_n) est croissante, en déduire sa limite.

Exercice 10:

On définit la suite (u_n) par $u_n = \sum_{k=0}^n k!$ Montrer que $\lim_{n \to +\infty} \frac{u_n}{n!} = 1$.

Correction:
$$\frac{u_n}{n!} = \sum_{k=0}^n \frac{k!}{n!} = 1 + \sum_{k=0}^{n-1} \frac{k!}{n!} = 1 + \frac{1}{n} + \sum_{k=0}^{n-2} \frac{k!}{n!}$$

Or, pour
$$k = n - 1$$
 on a $\frac{k!}{n!} = \frac{1}{n}$

pour
$$k = n - 2$$
 on a $\frac{k!}{n!} = \frac{1}{n(n-1)}$

pour
$$k = n - 3$$
 on a $\frac{k!}{n!} = \frac{1}{n(n-1)(n-2)}$

De façon générale, pour
$$k \in [0; n-2]$$
 on a $\frac{k!}{n!} \le \frac{1}{n(n-1)}$ donc $\sum_{k=0}^{n-2} \frac{k!}{n!} \le \sum_{k=0}^{n-2} \frac{1}{n(n-1)} \le (n-1) \times \frac{1}{n(n-1)} \le \frac{1}{n}$.

Finalement, $\frac{u_n}{n!} \le 1 + \frac{2}{n}$ et on conclut par encadrement.

Exercice 11:

Étudier la suite définie par $u_n = \sum_{k=1}^{2n+1} \frac{n}{n^2 + k}$.

(encadrer et montrer que $\lim_{n\to+\infty} u_n = 2$).

Exercice 12:

Etudier la suite définie par $u_0 = 4$ et $u_{n+1} = \sqrt{u_n + \sqrt{2u_n}}$

(mq par réc que (u_n) décroit, puis que la limite vérifie $\ell^4 - 2\ell^3 + \ell^2 - 2\ell = 0$, donc $\ell = 2$ ou $\ell = 0$, mq (u_n) est minorée par 2).

Exercice 13:

Soient (u_n) et (v_n) deux suites réelles que $\lim_{n\to+\infty}(u_n+v_n)=0$ et $\lim_{n\to+\infty}(\mathrm{e}^{u_n}+\mathrm{e}^{v_n})=2$. Montrer que (u_n) et (v_n) convergent et déterminer leurs limites.

Exercice 14:

Soit (u_n) telle que $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=\ell\in\mathbb{R}_+^*$. Montrer que $\lim_{n\to+\infty}\sqrt[n]{u_n}=\ell$. En déduire $\lim_{n\to+\infty}\sqrt[n]{\frac{n!}{n^n}}$ et $w_n=\frac{1}{n^2}\sqrt[n]{\frac{(3n)!}{n!}}$.

Exercice 15: