Course Code	Course Title		L	Т	Р	С
BECE407E	BECE407E ASIC Design				2	3
Pre-requisite	BECE303L, BECE303P	Syllabus version				
-	`	1.0				

Course Objectives

- 1. Explain the HDL coding guidelines, synthesizable HDL constructs and RTL synthesis Flow with respect to different cost functions.
- 2. Teach how to perform Static Timing Analysis for ASIC design.
- 3. Discuss the guidelines at each abstraction level in physical design
- 4. Provide detailed insight on importance of physical design verification

Course Outcomes

At the end of the course the student will be able to

- 1. Design a digital system by adhering to synthesizable HDL constructs.
- 2. Synthesize the given design by considering various constraints and to optimize the same.
- Understand various timing parameters and perform Static Timing Analysis for ASIC design
- 4. Perform physical design by adhering to guidelines.
- 5. Apprehend the importance of physical design verification.
- 6. Design ASIC based systems using industry standard tools.

Module:1ASIC Design Methodology & Design Flow3 hoursImplementation Strategies for Digital ICs: Custom IC Design- Cell-based DesignMethodology - Array based implementation approaches - Traditional and PhysicalCompiler based ASIC Flow.

Module:2Verilog HDL Coding Style for Synthesis6 hoursHDL Coding style – Guidelines and Recommendation - FSM Coding Guideline and Coding Style for Synthesis. Datapath and Control Logic Design.

Module:3 | RTL Synthesis

3 hours

RTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of Logic Synthesizer - Technology Library Basics – Components of Technology Library –Synthesis Optimization - Technology independent and Technology dependent synthesis - Data path Synthesis – Low Power Synthesis - Formal Verification.

Module:4 | Basic Timing Analysis

4 hours

Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle Paths- Half-Cycle Paths- False Paths

Module:5 Advanced Timing Analysis

5 hours

Clock skew optimization – On-Chip Variations- AOCV-Time Borrowing- Setup and Hold Violation Fixing.

Module:6 | Physical Design

5 hours

Detailed steps in Physical Design Flow- Guidelines for Floor plan, Placement, CTS and routing– ECO flow – Signal Integrity Issues.

Module:7 Physical Design Verification

3 hours

Timing Sign-off, Physical Verification – Signoff DRC and LVS, ERC, IR Drop Analysis, Electro-Migration Analysis and ESD Analysis.

Module:8 | Contemporary Issues

1 hours

			•	Total Lec	ture hours:	30 hours				
Text Book(s)										
1.										
Re	Reference Books									
1.										
2.	Michael John Sebastian Smith, Application-Specific Integrated Circuits, First Edition, 2002.									
3.	J. Bhasker and Rakesh Chadha, Static Timing Analysis for Nanometer Designs, Springer, First Edition, 2010, USA.									
Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test										
Indicative Experiments										
1.										
2.	Logica	6 hours								
3.	Netlist	6 hours								
4.	Physic	6 hours								
5.	5. Physical Verification of digital architecture									
Total Laboratory Hours						30 hours				
Mode of assessment: Continuous assessment and FAT										
Re	Recommended by Board of Studies 28-02-2023									
Approved by Academic Council No. 69 Date					16-03-2023					