Intro to MDPs and Reinforcement Learning

Instructor: Daniel Brown

University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. http://ai.berkeley.edu.]

Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s), R(s,a), or R(s')
 - A start state
 - Maybe a terminal state
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We'll have a new tool soon

Other examples of MDPs

Checkers Boardgame

Medication treatment

Other examples of MDPs

Self-driving car

Language Generation (LLMs)

Types of Markov Models

	System state is fully observable	System state is partially observable
System is autonomous	Markov chain	Hidden Markov model (HMM)
System is controlled	Markov decision process (MDP)	Partially observable Markov decision process (POMDP)

Policies

 In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal

• For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$

- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Defining MDPs

Markov decision processes:

- Set of states S
- Start state s₀
- Set of actions A
- Transitions P(s'|s,a) (or T(s,a,s'))
- Rewards R(s,a,s') (and discount γ)

Important MDP quantities:

- Policy = Choice of action for each state
- Utility = expected sum of (discounted) rewards = "expected return"

Optimal Quantities

The value (utility) of a state s:

V*(s) = expected utility starting in s and acting optimally

The value (utility) of a q-state (s,a):

Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:

 $\pi^*(s)$ = optimal action from state s

Bellman Equations

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:

$$V^*(s) = \max_a Q^*(s, a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Value Iteration Refresher

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \, V_k(s') \right]$$
 Bellman Update Equation

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Double Bandits

Double-Bandit MDP

Offline Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!

No discount
100 time steps
Both states have
the same value

Let's Play!

\$2 \$2 \$0 \$2 \$2

\$2 \$2 \$0 \$0 \$0

Online Planning

Rules changed! Red's win chance is different.

Let's Play!

\$0 \$0 \$0 \$2 \$0

\$2 \$0 \$0 \$0 \$0

What Just Happened?

- That wasn't planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn't solve it with just computation
 - You needed to actually act to figure it out

- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

Initial

A Learning Trial

After Learning [1K Trials]

Initial

Training

Finished

https://vision-locomotion.github.io/

ChatGPT (S)

Reinforcement Learning

Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Why Reinforcement Learning?

- Takes inspiration from nature
- Often easier to encode a task as a sparse reward (e.g. recognize if goal is achieved) but hard to hand-code how to act so reward is maximized (e.g. Go)
- General purpose Al framework

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Online Learning

Model-Based Learning

Simple View of Model-Based RL

Model-Based Idea:

- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model

- Count outcomes s' for each s, a
- Normalize to give an estimate of $\widehat{T}(s, a, s')$
- Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

Step 2: Solve the learned MDP

For example, use value iteration, as before

Sometimes Model of World is Known

Deep RL Makes a Big Splash!

nature

Explore content >

About the journal ∨

Publish with us ➤

Subscribe

nature > letters > article

Published: 25 February 2015

Human-level control through deep reinforcement learning

<u>Volodymyr Mnih</u>, <u>Koray Kavukcuoglu</u> , <u>David Silver</u>, <u>Andrei A. Rusu</u>, <u>Joel Veness</u>, <u>Marc G. Bellemare</u>, <u>Alex Graves</u>, <u>Martin Riedmiller</u>, <u>Andreas K. Fidjeland</u>, <u>Georg Ostrovski</u>, <u>Stig Petersen</u>, <u>Charles Beattie</u>, <u>Amir Sadik</u>, <u>Ioannis Antonoglou</u>, <u>Helen King</u>, <u>Dharshan Kumaran</u>, <u>Daan Wierstra</u>, <u>Shane Legg</u> & <u>Demis Hassabis</u>

Login

Search Q

TechCrunch+

Startups

Venture

Security

Al

Crypto

Apps

Events

Startup Battlefield

More

Startups

Google Acquires Artificial Intelligence Startup DeepMind For More Than \$500M

Catherine Shu @catherineshu / 6:20 PM MST • January 26, 2014

X

f

in

÷

 $oxed{ ext{$oxed{\sigma}}}$

8

Regi

The Arcade Learning Environment

DQN only works for discrete action spaces

Next Time: How to deal with continuous action spaces

When might RL be a good tool for your problem?

When might RL be a good tool for your problem?

- Is your problem a sequential decision making problem?
- Are there "actions" that effect the next "state"?
- Do you know the rules of these effects?
- Can you write down a clear objective/score/reward/cost?
- Do you have a simulator?
- Lots of examples of sequences of decisions and their long-term consequences?
- Is it unclear what to do in each state? Exploration required?
- Are you looking for unique/creative/super-human solutions?

When might RL not be a good tool?

When might RL not be a good tool?

- Single step or static problem
- No clear reward signal.
- Reward signal is unavailable or very hard to write down.
- Well-known model of the environment.
- Deterministic environment
- Low-tolerance for exploration and trial and error
- No need for adaptive or novel solutions. The goal is to perform the task in a very predictable way.