Exploration

a) Explore the relationship between Spending and each of the two continuous variables by creating two scatters plots (SPENDING vs. FREQ and SPENDING vs. LAST_UPDATE). Does there seem to be a linear relationship there? => Capture Screen!

มีความเป็น linear relationship

ไม่มีความเป็น linear relationship

หา correlation matrix มายืนยันผลลัพธ์ว่าสิ่งที่ทำนายเป็นจริงใหม

Attribu	Freq	last_up	Spendi
Freq	1	-0.348	0.691
last_up	-0.348	1	-0.257
Spending	0.691	-0.257	1

สังเกตได้ว่า Freq กับ Spending มี positive relationship กันจริง

- b) Fit a predictive model for SPENDING using only the following predictors: Freq, Last_update, Web_order, Gender, US, Adress_is_res [Use all these features]
- 1) Partition the 1000 records into training (Partition=t) & test sets (Partition=v)

จาก dataset ทั้งหมดทำการแบ่ง dataset เป็นสองส่วน ส่วนที่หนึ่งคือ 60% เป็นข้อมูลของการ train และ 40% เป็นข้อมูลของการ test

2) Run a multiple regression model for SPENDING with the 6 predictors. => Give the regression equation 1

Attribute	Coefficient
US	-4.342
Freq	96.863
last_update_days_ago	-0.008
Web order	17.206
Address_is_res	-93.120
(Intercept)	0.732

จะได้สมการของ regression1 คือ

Spending = -4.342*US + 96.863*Freq -0.008*last_update + 17.206*Web order - 93.120*Address is res + 0.732

LinearRegression

```
- 4.342 * US
+ 96.863 * Freq
- 0.008 * last_update_days_ago
+ 17.206 * Web order
- 93.120 * Address_is_res
+ 0.732
```

3) Based on the above regression equation and P-value of each predictor, identify the characteristics of high spending buyers.? Please justify your answer

Attribute	Coefficient	Std. Error	Std. Coefficient	Tolerance	t-Stat	p-Value
US	-4.342	10.508	-0.009	1.000	-0.413	0.680
Freq	96.863	3.158	0.689	0.926	30.676	0
last_update_days_ago	-0.008	0.004	-0.046	0.919	-2.070	0.039
Web order	17.206	8.187	0.044	0.990	2.102	0.036
Address_is_res	-93.120	10.058	-0.200	0.957	-9.258	0
(Intercept)	0.732	14.415	?	?	0.051	0.960

คนที่มีการซื้อสูงจะมีลักษณะก็คือ จะมีการซื้อที่ถี่ รวมทั้ง last_update กับ web order จะสำคัญเพราะซื้อบ่อยทำให้สองค่านี้ส่งผล และที่สำคัญคนที่ ซื้อเยอะๆส่วนใหญ่จะไม่ได้ซื้อเข้าบ้านตัวเอง 4) If we need to reduce the number of predictors, which predictor(s) would be dropped from the model?

จะดรอป attribute ของ US กับ gender เพราะมีว่าค่า p value ที่สูง

Fitting second model

- c) Fit a second predictive model for SPENDING using your best predictors:
- 1) Apply multiple linear regression to create a spending prediction model. Then, give the regression equation 2.

Attribute	Coefficient	Std. Error	Std. Coefficient	Tolerance	t-Stat	p-Value
Freq	96.818	3.155	0.689	0.927	30.691	0
last_update_days_ago	-0.008	0.004	-0.047	0.919	-2.103	0.036
Web order	17.236	8.184	0.044	0.990	2.106	0.035
Address_is_res	-93.278	10.048	-0.200	0.957	-9.284	0
(Intercept)	-2.512	12.085	?	?	-0.208	0.835

ได้สมการดังนี้

LinearRegression

```
96.818 * Freq
- 0.008 * last_update_days_ago
+ 17.236 * Web order
- 93.278 * Address_is_res
```

2) Displays the prediction results of the purchase amount in the first record of the test data set, along with indicating the error obtained.

Row No.	Spending	prediction(Freq	last_updat	Web order	Gender=m	Address_is
1	0	-8.905	0	2900	1	1	0

Error ที่เกิดขึ้น -8.905

3) Give the performance of the model (error) on the test data set.

root_mean_squared_error

root_mean_squared_error: 115.841 +/- 0.000