1

Assembly

Shreyas Kumar shreyas.kumar@icloud.com IIT-H Future Wireless Communication

CONTENTS

I	Question	1
II	Truth Table	1
III	Logical Diagram	2
IV	Components	2
V	K-map Implementation	2
VI	Implementation	3

I QUESTION

 $A = a_1 a_0$ and $B = b_1 b_0$ are two 2-bit unsigned binary numbers. If $F(a_1, a_0, b_1, b_0)$ is a Boolean function such that F = 1 only when A > B, and F = 0 otherwise, then F can be minimized to the form

i.
$$a_1\overline{b}_1 + a_1a_0\overline{b}_0$$

ii.
$$a_1\overline{b}_1 + a_1a_0\overline{b}_0 + a_0\overline{b}_0\overline{b}_1$$

iii.
$$a_1a_0\overline{b}_0 + a_0\overline{b}_0\overline{b}_1$$

iv.
$$a_1 \overline{b}_1 + a_1 a_0 \overline{b}_0 + a_0 \overline{b}_0 b_1$$

II TRUTH TABLE

a_1	a_0	b_1	b_0	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Truth table for Boolean function 'F'

III LOGICAL DIAGRAM

IV COMPONENTS

Component	Values	Quantity
Arduino	UNO	1
Jumper Wires	M-M	10
Breadboard		1
LED		2
Resistor	220 ohms	1

List of items required

V K-MAP IMPLEMENTATION

Using the boolean logic output F can be expressed in terms of the inputs X,Y,Z with the help of the following Kmap.

		b_1b_0			
		00	01	11	10
	00	0	0	0	0
$a_{1}a_{0}$	01	1	0	0	0
<i>u</i> 1110	11	1	1	0	1
	10	1	1	0	0

Karnaugh map simplification results in $a_1\overline{b}_1 + a_1a_0\overline{b}_0 + a_0\overline{b}_0\overline{b}_1$

VI IMPLEMENTATION

Arduino PIN	INPUT	OUTPUT
2	a0	
3	a1	
4	b0	
5	b1	
8		F

Connections

Procedure:

- a. Connect the circuit as per the above table.
- b. Connect the output pin to LED.
- c. Connect inputs to Vcc for logic 1, ground for logic 0.
- d. Execute the circuit using the below code.

https://github.com/shr-eyas/FWC/blob/main/Assembly/assembly.asm

e. Change the values of X, Y, Z in the code and verify the truth table.