日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application:

2000年 4月18日

出願番号

Application Number:

特願2000-122417

出 願 人 Applicant (s):

ソニー株式会社

2001年 3月 9日

特許庁長官 Commissioner, Pat nt Office 及川耕

特2000-122417

【書類名】

特許願

【整理番号】

9900930501

【提出日】

平成12年 4月18日

【あて先】

特許庁長官 殿

【国際特許分類】

H01M 10/40

【発明者】

【住所又は居所】 福島県郡山市日和田町高倉字下杉下1番地の1 株式会

社ソニー・エナジー・テック内

【氏名】

韮沢 貴夫

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

伊東 秀俊

【発明者】

【住所又は居所】 福島県郡山市日和田町高倉字下杉下1番地の1 株式会

社ソニー・エナジー・テック内

【氏名】

小丸 篤雄

【特許出願人】

【識別番号】

000002185

【氏名又は名称】 ソニー株式会社

【代表者】

出井 伸之

【代理人】

【識別番号】

100067736

【弁理士】

【氏名又は名称】 小池 晃

【選任した代理人】

【識別番号】 100086335

【弁理士】

【氏名又は名称】 田村 榮一

【選任した代理人】

【識別番号】 100096677

【弁理士】

【氏名又は名称】 伊賀 誠司

【手数料の表示】

【予納台帳番号】 019530

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9707387

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 非水電解質電池

【特許請求の範囲】

【請求項1】 正極活物質を有する正極と、リチウムをドープ/脱ドープする ことが可能である負極活物質を含有する負極と、非水電解質とを備える非水電解 質電池において、

当該非水電解質に、チオール、チオフェン、チオアニソール、チアゾール、チオ酢酸エステル、芳香族スルホン及びこれらの誘導体のうち少なくとも1つが添加されていることを特徴とする非水電解質電池。

【請求項2】 上記非水電解質に添加されている上記チオール、チオフェン、チオアニソール、チアゾール、チオ酢酸エステル、芳香族スルホン及びこれらの誘導体のうち少なくとも1つの添加量は、0.05重量%以上、10重量%以下の範囲であることを特徴とする請求項1記載の非水電解質電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、正極活物質を有する正極と、リチウムをドープ/脱ドープすること が可能である負極活物質を含有する負極と、非水電解質とを備える非水電解質電 池に関する。

[0002]

【従来の技術】

電子技術の進歩に伴い、各種電子機器の高性能化、小型化、ポータブル化が進行している。これに伴い、電子機器を駆動させる電源となる電池に対しても、軽量且つ高容量であることが求められており、更なるエネルギー密度の向上が求められている。

[0003]

このような電池としては、従来よりニッケル・カドミウム電池や鉛電池等の二次電池が用いられている。しかし、ニッケル・カドミウム電池や鉛電池は放電電圧が低く、所望のエネルギー密度を達成することができなかった。

[0004]

また、リチウム或いはリチウム合金を負極に用いた非水電解質二次電池の研究開発が盛んに行われている。この電池は、放電電圧の高いLiCoO₂に代表されるリチウム含有複合酸化物を正極材料に用いることで、高エネルギー密度を有し、自己放電が少なく、軽量であるという優れた特長を有している。しかし、リチウム或いはリチウム合金を負極に用いた非水電解質二次電池は、充放電サイクルの進行に伴い、リチウムが充電時にデンドライト状に結晶成長して正極に到達するため、内部ショートが生じることがあった。また、実用的な急速充放電をすると、電池内部にデンドライトが生成されるため、この電池の実用化は困難であった。

[0005]

そこで、負極にリチウムを析出させず、酸化物や炭素等の層状化合物中にリチウムイオンを取り込み、リチウムをドープ/脱ドープすることが可能である負極活物質を使用した非水電解質電池、いわゆるリチウムイオン二次電池が注目されている。リチウムイオン電池は、充放電サイクルが進行してもリチウムのデンドライト状の析出はみられず、良好な充放電サイクル特性を示す。

[0006]

リチウムイオン二次電池は、このように優れた特性を有するので様々な電子機器、特に携帯用電子機器の電源として、幅広い分野で使用されるようになっている。

[0007]

【発明が解決しようとする課題】

ところで、携帯用電子機器のうち、例えば携帯電話等は使用頻度が非常に高く 、常に電力を消費している。このため、これら携帯用電子機器の電源となる二次 電池は、充放電を頻繁に繰り返されている。

[0008]

しかしながら、リチウムイオン二次電池は、充放電を繰り返されると、負極と 非水電解質との間に生じる不可逆反応により、電池容量が劣化していた。このた め、リチウムイオン二次電池はサイクル寿命が短いという問題があった。 [0009]

そこで、本発明は従来の実情に鑑みて提案されたものであり、サイクル経過に 伴う容量劣化が大幅に抑制され、サイクル寿命が長い非水電解質電池を提供する ことを目的とする。

[0010]

【課題を解決するための手段】

上述の目的を達成するために、本発明に係る非水電解質電池は、正極活物質を有する正極と、リチウムをドープ/脱ドープすることが可能である負極活物質を含有する負極と、非水電解質とを備える非水電解質電池において、非水電解質に、チオール、チオフェン、チオアニソール、チアゾール、チオ酢酸エステル、芳香族スルホン及びこれらの誘導体のうち少なくとも1つが添加されていることを特徴とする。

[0011]

以上のように構成された本発明に係る非水電解質電池は、非水電解質に添加されている上記有機化合物からなる被膜が負極表面上に生成されるので、負極と非水電解質との間に生じる不可逆反応が防止されている。

[0012]

【発明の実施の形態】

以下、本発明に係る非水電解質電池について、詳細に説明する。

[0013]

本発明を適用した非水電解液二次電池はいわゆるリチウムイオン二次電池であり、基本的な構成要素として、正極、負極、非水電解質を備える。

[0014]

そして、この非水電解質は、チオール、チオフェン、チオアニソール、チアゾール、チオ酢酸エステル、芳香族スルホン及びこれらの誘導体のうち少なくとも 1つを添加する。

[0015]

チオールとしては、例えばメタンチオール、エタンチオール等の脂肪族チオール、チオフェノール、4-フルオロチオフェノール、2-クロロチオフェノール

、4-t-ブチルーチオフェノール、4-t-ブチルー1, 2-ベンゼンチオール等の芳香族チオール等、及びこれらの誘導体が挙げられる。

[0016]

チオフェンとしては、チオフェン以外にも、例えば2-アセチルチオフェン、3-アセチルチオフェン、2,5-ジアセチルチオフェン、2-チオフェンカルボニルクロライド、2-メトキシカルボニルチオフェン、2,5-ビスメトキシカルボニルチオフェン等、及びこれらの誘導体が挙げられる。

[0017]

チオアニソールとしては、チオアニソール以外にも、例えば4-メチルチオベンゾニトリル、4-メチルチオアセトフェノン、2-メチルチオベンズアルデヒド、2-クロロチオアニソール、4-ブロモチオアニソール等、及びこれらの誘導体が挙げられる。

[0018]

チアゾールとしては、チアゾール以外にも、例えば1,2-ベンズイソチアゾール等、及びこれらの誘導体が挙げられる。

[0019]

チオ酢酸エステルとしては、例えばチオ酢酸メチル、チオ酢酸エチル、チオ酢酸フェニル、フルオロメチルチオ酢酸メチル、ジフルオロメチルチオ酢酸メチル、ジフルオロメチルチオ酢酸エチル等、及びこれらの誘導体が挙げられる。

[0020]

芳香族スルホンとしては、例えばメチルフェニルスルホン、4ーメチルスルホニルアセトフェノン、トリブロモメチルフェニルスルホン等、及びこれらの誘導体が挙げられる。

[0021]

そして、非水電解質電池は、充放電反応に際し、非水電解質に添加されている 上記有機化合物からなる被膜が負極表面上に生成されている。この被膜は、負極 と非水電解質との間に生じる不可逆反応を防止するので、非水電解質電池は、充 放電を繰り返されても容量劣化しない。 [0022]

特に、上述したチオール、チオフェン、チオアニソール、チアゾール、チオ酢酸エステル、芳香族スルホン及びこれらの誘導体のうち少なくとも1つの添加量は、0.05重量%以上、10重量%以下の範囲であることが好ましい。

[0023]

上記有機化合物の添加量が 0. 05重量%未満である場合、所望の厚みを有する皮膜が生成されない虞がある。一方、上記有機化合物の添加量が 10重量%を越える場合、負極表面上に生成される被膜の厚みが厚くなりすぎて、充放電反応に際し、負極におけるリチウムイオンのドープ/脱ドープ反応を妨げる虞がある

[0024]

従って、チオール、チオフェン、チオアニソール、チアゾール、チオ酢酸エステル、芳香族スルホン及びこれらの誘導体のうち少なくとも1つの添加量を、0.05重量%以上、10重量%以下の範囲とすることで、非水電解質電池は、負極と非水電解質との間に生じる不可逆反応が確実に防止される。

[0025]

負極は、負極集電体上に負極活物質を含有する負極活物質層が形成されている 。負極集電体としては、例えばニッケル箔等が用いられる。

[0026]

負極活物質としては、リチウムのドープ/脱ドープが可能な炭素材料、結晶質、非結晶質金属酸化物等が用いられ、上記炭素材料としては、易黒鉛化性炭素材料、難黒鉛化性炭素材料、黒鉛材料等が挙げられる。

[0027]

難黒鉛化性炭素材料としては、例えばフルフリルアルコール又はフルフラールのモノポリマやコポリマ、他の樹脂との共重合よりなるフラン樹脂を焼成し、炭素化したものが挙げられる。また、難黒鉛化性炭素材料は、物性パラメータとして、(002)面間隔は0.37nm以上であり、真密度は1.70g/cm³未満であり、空気中での示差熱分析(DTA)において700℃以上に発熱ピークを持たないものが好ましい。上述した物性パラメータを有する難黒鉛化性炭素

材料は、容量の大きい負極活物質となる。

[0028]

この難黒鉛化性炭素材料を作製する場合、その出発原料となる有機材料としては、フェノール樹脂、アクリル樹脂、ハロゲン化ビニル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリアセチレン、ポリ (p-フェニレン)等の共役系樹脂、セルロース及びその誘導体、任意の有機高分子系化合物を使用することができる。

[0029]

また、特定のH/C原子比を有する石油ピッチに酸素を含む官能基を導入して 酸素架橋したものも、上述したフラン樹脂と同様に、温度が400℃以上である 炭素化の過程で溶融することなく、固相状態で最終の難黒鉛化性炭素材料となる

[0030]

ここで、石油ピッチは、コールタール、エチレンボトム油、原油等の高温熱分解で得られるタール類、アスファルトなどより蒸留(例えば、真空蒸留、常圧蒸留、スチーム蒸留である。)、熱重縮合、抽出、化学重縮合等の操作によって得られる。このとき、石油ピッチのH/C原子比が重要であり、難黒鉛化炭素とするには、このH/C原子比を0.6~0.8とする必要がある。

[0031]

石油ピッチに酸素を含む官能基を導入する手法としては、例えば硝酸、混酸、硫酸、次亞塩素酸等の水溶液による湿式法や、酸化性ガス(例えば酸素である。)による乾式法や、硫黄、硝酸アンモニア、過硫酸アンモニア、塩化第二鉄等の固体試薬による反応等があげられる。また、石油ピッチの酸素含有率は、特に限定されないが、特開平3-252053号公報に開示されているように、3%以上であることが好ましく、5%以上であることがより好ましい。この酸素含有率を上述のように制御することにより、最終的に製造される炭素材料は、上述した物性パラメータを有する結晶構造となる。

[0032]

また、特開平3-137010号公報に記載されるリン、酸素、炭素を主成分

とする化合物も難黒鉛化性炭素材料と同様の物性パラメータを示し、負極活物質 として利用可能である。

[0033]

更に、他のあらゆる有機材料について、酸素架橋処理等によって固相炭素化過程を経て、難黒鉛化炭素となるのであれば、出発原料として使用可能である。なお、この酸素架橋を行うための処理方法は限定されない。

[0034]

難黒鉛化性炭素材料を作製する場合には、上述した有機材料を $300\sim700$ \mathbb{C} で炭化した後、昇温速度を毎分 $1\sim100\mathbb{C}$ 、到達温度を $900\sim1300\mathbb{C}$ 、到達温度における保持時間を $0\sim30$ 時間として焼成する。なお、場合によっては炭化操作を省略してもよい。

[0035]

このようにして得られた難黒鉛化性炭素材料は、粉砕、分級されて負極活物質 となる。なお、この粉砕は、炭化、か焼、高温熱処理の前後或いは昇温過程の間 等のうち何れで行ってもよい。

[0036]

黒鉛材料としては、天然黒鉛、有機材料を炭素化した後に高温処理された人造 黒鉛が挙げられる。

[0037]

人造黒鉛は、石炭やピッチ等の有機化合物を出発原料として作製される。ピッチとしては、コールタール、エチレンボトム油、原油等の高温熱分解で得られるタール類、アスファルトなどより蒸留(例えば、真空蒸留、常圧蒸留、スチーム蒸留である。)、熱重縮合、抽出、化学重縮合等の操作によって得られるものや、木材乾留時に生成するピッチ等もある。なお、ピッチとなる出発原料としては、ポリ塩化ビニル樹脂、ポリビニルアセテート、ポリビニルブチラート、3,5

[0038]

また、ナフタレン、フェナントレン、アントラセン、トリフェニレン、ピレン 、ペリレン、ペンタフェン、ペンタセン等の縮合多環炭化水素化合物及びその他 の誘導体(例えばこれらのカルボン酸、カルボン酸無水物、カルボン酸イミド等) 或いは混合物、アセナフチレン、インドール、イソインドール、キノリン、イソキノリン、キノキサリン、フタラジン、カルバゾール、アクリジン、フェナジン、フェナントリジン等の縮合複素環化合物及びその他の誘導体等が挙げられる

[0039]

人造黒鉛を作製する場合には、先ず、上述した有機材料を窒素等の不活性ガス 気流中、300~700℃で炭化した後、不活性ガス気流中、昇温速度を毎分1 ~100℃、到達温度を900~1500℃、到達温度における保持時間を0~ 30時間としてか焼する。(なお、このプロセスまで経たものが、易黒鉛化性炭 素材料である。)次に、2000℃以上、より好ましくは2500℃以上で熱処 理する。なお、場合によっては炭化やか焼操作を省略してもよい。

[0040]

このようにして得られた人造黒鉛は、粉砕、分級されて負極活物質となる。なお、この粉砕は、炭化、か焼、或いは昇温過程の間等のうち何れで行ってもよい。最終的には、粉末状態で黒鉛化のための熱処理が行われる。

[0041]

黒鉛材料の真密度は2.1g/cm³以上であることが好ましく、2.18g/cm³以上であることがより好ましい。このような真密度を得るには、X線回折法で得られる(002)面間隔は0.340nm未満、より好ましくは0.335nm以上、0.337nm以下の範囲であり、(002)面のC軸結晶子厚みは14.0nm以上であることが必要である。

[0042]

また、電池のサイクル経過に伴う容量劣化を改善し、電池のサイクル寿命を長寿命化するためには、黒鉛材料の嵩密度、形状パラメータXの平均値(平均形状パラメータX_{ave})及び比表面積が重要である。

[0043]

すなわち、黒鉛材料は、JISK-1469に記載される方法により測定された嵩密度が $0.4g/cm^3$ 以上であることが好ましく、 $0.5g/cm^3$ 以上で

あることがより好ましく、0.6g/cm³以上であることがより好ましい。嵩密度が0.4g/cm³以上である黒鉛材料を含有する負極は、負極活物質層から負極材料が剥がれ落ちることがなく、電極構造が良好である。従って、この負極を有する非水電解質電池は、電池のサイクル寿命が延長する。

[0044]

また、さらに長いサイクル寿命を得るには、嵩密度が上記範囲であると共に、 次式で示される形状パラメータXの平均値が125以下である黒鉛材料を用いる ことが好ましい。

[0045]

 $X = (W/T) \times (L/T)$

X:形状パラメータ

T:粉末の最も厚さの薄い部分の厚み

L:粉末の長軸方向の長さ

W:粉末の長軸と直交する方向の長さ

形状パラメータとは、扁平な円柱状或いは直方体状である粉末状の黒鉛材料において、この黒鉛材料の最も厚さの薄い部分の厚みをT、長軸方向の長さL、長軸と直交する方向の長さをWとしたとき、LとWそれぞれをTで除した値の積Xである。黒鉛材料は、形状パラメータXが小さいほど底面積に対する高さが高く、扁平度が小さい粉末であると言える。

[0046]

嵩密度が上述の範囲内であって、且つこの平均形状パラメータX_{ave}が125 以下である黒鉛材料を用いて構成された負極は、電極構造が良好であり、より長いサイクル寿命が得られる。なお、平均形状パラメータX_{ave}は、2以上、115以下の範囲であることがより好ましく、2以上、100以下の範囲であることがより好ましい。

[0047]

また、黒鉛材料は、嵩密度及び平均形状パラメータ X_{ave} が上記範囲であり、 且つ窒素吸着ブルナウワー・エメット・テラー法により求められる比表面積が m^2/g 以下であることが好ましく、 $7m^2/g$ 以下であることがより好ましく、 5 m²/g以下であることが最も好ましい。これは黒鉛粒子に付着したサブミクロンの微粒子が嵩密度の低下に影響していると考えられ、微粒子が付着した場合に比表面積が増加することから、同様の粒度であっても比表面積の小さい黒鉛材料を用いた方が微粒子の影響が無く、高い嵩密度が得られる。その結果、このような黒鉛材料を負極に含有する非水電解質電池は、サイクル特性が向上する。

[0048]

また、黒鉛材料は、レーザ回折法により求められる粒度分布において、累積10%粒径は3μm以上であり、累積50%粒径は10μm以上であり、累積90%粒径は70μm以下であることが好ましい。特に、累積90%粒径が60μm以下である場合、非水電解質電池としては初期不良が大きく低減される。

[0049]

粒度分布に幅を持たせることで、黒鉛材料を効率的に電極へ充填することが可能となる。また、黒鉛材料の粒度分布は正規分布に近いことが好ましい。粒径の小さな粒子の分布数が多い場合、過充電等の異常事態に発熱する発熱温度が高くなる虞がある。一方、粒径の大きな粒子の分布数が多い場合、初期充電池に内部ショート等の不良が生じる虞がある。これは、充電に伴い負極を構成する黒鉛層間にリチウムイオンが挿入されると、この黒鉛の結晶子が約10%膨張するので、負極が正極やセパレータを圧迫する可能性があるためである。

[0050]

従って、粒径の大きい粒子から小さい粒子までバランスよく配合された粒度分布を有する黒鉛材料を用いることにより、より高い信頼性を有する電池実現される。

[0051]

また、黒鉛粒子の破壊強度の平均値は6kgf/mm²以上であることが好ましい。一般に、結晶性が高い黒鉛材料はa軸方向に黒鉛六角網面が発達しており、その積み重なりによってc軸の結晶子が成り立っている。しかし、炭素六角面同士の結合はファンデルワールス力という弱い結合であるため、応力に対して変形しやすい。そのため、黒鉛材料を圧縮成形して電極に充填する際に、低温で焼成された炭素質材料よりも潰れやすく、空孔を確保することが難しい。電極中は

、空孔に電解液を保持するので、空孔が多く存在するほど電解液も十分に存在し 、放電時におけるイオン拡散が良好となる。

[0052]

言い換えると、黒鉛粒子の破壊強度の平均値は6kgf/mm²以上であることにより、電極は空孔を十分に確保することができ、電解液を十分に保持することができる。従って、非水電解質電池としては、電極中でのイオン拡散が良好となるので、負荷特性が向上する。

[0053]

また、負極活物質として、炭素材料成型体を熱処理して黒鉛化した黒鉛化成型 体を粉砕、分級して用いることが好ましい。この黒鉛化成型体は、上述した黒鉛 材料と比較すると嵩密度がより高く、破壊強度がより高い。

[0054]

黒鉛化成型体は、フィラーとなるコークスと、成型剤或いは焼結剤としてのバインダーピッチとを混合してバインダーピッチを炭素化した後、ピッチを含浸して炭素化し、さらに黒鉛化されて得られる。また、フィラー自身に成形性、焼結性を付与した原料を用い、同様の黒鉛化成型体を得ることが可能である。

[0055]

また、フィラーとなるコークスとバインダーピッチとからなるため、黒鉛化後に多結晶対となり、且つ原料に硫黄や窒素といった元素を含み熱処理時にガスとなって発生するため、その通り道としてのミクロな空孔を含み、負極材料としてのリチウムドープ/脱ドープ反応が進行しやすい。さらに、工業的に処理効率が高いという利点もある。

[0056]

易黒鉛化性炭素材料は、上述のように人造黒鉛と同様の出発原料から作製される。石炭やピッチは、炭素化の途中、最高400℃程度において液状として存在し、その温度で保持することで芳香族環同士が縮合して多環化し、積層配向した状態となる。その後、500℃以上の温度になると、固体の炭素前駆体、即ちセミコークスを形成する。このような過程は、易黒鉛化炭素の典型的な生成過程であり、液相炭化過程と呼ぶ。

[0057]

非結晶質金属酸化物としては、遷移金属を含む酸化物が好適であり、酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ、酸化硅素等を主体とする結晶化合物或いは非晶質化合物が挙げられる。特に、充放電電位が金属リチウムに近い化合物が好ましい。

[0058]

正極は、正極集電体上に正極活物質を含有する正極活物質層が形成されている 。正極集電体としては、例えばアルミニウム箔等の金属箔が用いられる。

[0059]

正極活物質としては、Li を主体とする金属酸化物、Li を含有する層間化合物等が使用可能であり、具体的には、一般式Li M_x O_y (式中、M はCo 、Ni 、Mn、Fe、Al、V、Ti のうち少なくとも1種類以上を含有する。)で表されるリチウム遷移金属複合酸化物を用いることが好ましい。

[0060]

また、正極は、例えば5回程度充放電を繰り返した後において、負極炭素質材料1g当たり250mAh以上の充放電容量相当分のリチウムを含むことが好ましく、300mAh以上の充放電容量相当分のリチウムを含むことが好ましい。但し、リチウムは必ずしも正極材から供給される必要はなく、電池系内に炭素質材料1g当たり250mAh以上の充放電容量相当分のリチウムが存在すればよい。なお、このリチウムの量は、電池の放電容量を測定することによって判断することとする。

[0061]

非水電解質としては、電解質塩を非水溶媒に溶解して調製される液状のいわゆる電解液であっても良いし、この電解液をゲル化剤によりゲル化したゲル電解質であっても良いし、電解質塩を非水溶媒に溶解した溶液を高分子マトリックス中に保持させたポリマーゲル電解質であってもよい。

[0062]

液状の非水電解質である電解液において、その非水溶媒は、電解質塩の溶解能力の高い高誘電率溶媒を主溶媒とし、電解質イオンの輸送能力の高い低粘度溶媒

を添加した溶液である。

[0063]

高誘電率溶媒としては、プロピレンカーボネート(以下、PCと称する。)、エチレンカーボネート(以下、ECと称する。)、ブチレンカーボネート(以下、BCと称する。)、ピニレンカーボネート(以下、VCと称する。)、スルホラン類、ブチロラクトン類、バレロラクトン類等があげられる。低粘度溶媒としては、ジエチルカーボネート、ジメチルカーボネート(以下、DMCと称する。)、メチルエチルカーボネート、メチルプロピルカーボネート等の対称或いは非対称の鎖状炭酸エステルや、プロピオン酸メチル、プロピオン酸エチル等のカルボン酸エステルや、リン酸トリメチル、リン酸トリエチル等のリン酸エステルが挙げられる。これらの非水溶媒は、1種類を単独で用いても良いし、2種類以上を混合して用いても良い。

[0064]

なお、非水溶媒の主溶媒としてPCと負極活物質として黒鉛類と組み合わせて使用した場合、PCは黒鉛類より分解される虞があり、リチウムイオン二次電池としては電池容量が減少する可能性がある。このため、負極活物質として黒鉛類を用いる場合には、非水溶媒の主溶媒として、黒鉛類により分解されにくいEC又はECの水素原子をハロゲン元素で置換した構造の化合物を用いる。

[0065]

また、黒鉛類により分解されにくいEC又はECの水素原子をハロゲン元素で置換した構造の化合物の一部を第2成分溶媒で置換することにより、非水電解質電池としてはより良好な特性が得られる。

[0066]

この第2成分溶媒としては、PC、BC、VC、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、バレロラクトン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチルー1,3-ジオキソラン、スルホラン、メチルスルホラン等が挙げられる。特に、PC、BC、VC等の炭酸エステル系溶媒を用いることが好ましいく、その添加量は40vo1%以下であることが好ましく、20vo1%以下であることが

より好ましい。

[0067]

電解質塩としては、イオン伝導性を示すリチウム塩であれば特に限定されることはなく、例えば LiClO_4 、 LiAsF_6 、 LiPF_6 、 LiBF_4 、LiB (C_6H_5) $_4$ 、 $\text{CH}_3\text{SO}_3\text{Li}$ 、 $\text{CF}_3\text{SO}_3\text{Li}$ 、LiN (CF_3SO_2) $_2$ 、LiC (CF_3SO_2) $_3$ 、LiCl、LiBr、等が挙げられる。これらの電解質塩は、1種類を単独で用いても良く、2種類以上を混合して用いることも可能である

[0068]

また、ゲル化電解質やポリマーゲル電解質とする場合、ゲル化するゲル化剤や 電解液を保持させる高分子材料としては、ポリフッ化ビニリデン、フッ化ビニリ デンとヘキサフルオロプロピレンとのコポリマ、ポリアミド、芳香族ポリアミド 、ポリオレフィン、ポリエステル、ポリカーボネート、ポリイミド、ポリ(メタ) アクリレート、ポリアクリロニトリル等が挙げられる。

[0069]

以上のように構成される本発明に係る非水電解質二次電池は、例えば図1に示すように、正極集電体1上に正極活物質を含有する正極活物質層が形成されている帯状の正極2と、負極集電体3上に負極活物質を含有する負極活物質層が形成されている帯状の負極4とがセパレータ5を介して積層され、長手方向に巻回されてなる渦巻型の電極体が電池缶6に装填され、非水電解質として液状の非水電解液が電池缶6に注入されている円筒型の非水電解液二次電池として作製される。なお、本発明を適用した非水電解質二次電池の形状は、角形、積層型、カード型等の何れであってもよい。

[0070]

【実施例】

以下、本発明について、具体的な実験結果に基づいて説明する。なお、ここでは実施例及び比較例として、非水電解液二次電池、いわゆるリチウムイオン二次電池を複数作製した。

[0071]

く実験1>

実験1では、液状の非水電解質である電解液に対して種々の有機化合物を添加 し、添加した有機化合物の種類による電池特性の違いについて検討した。

[0072]

実施例1

〔負極の作製方法〕

先ず、負極活物質として黒鉛化成型体粉末を作製した。はじめに、フィラーとなる石炭系コークス100重量部に対し、バインダとなるコールタール系ピッチを30重量部加え、これを約100℃にて混合した後、プレスを用いて圧縮成型して炭素成型体の前駆体を得た。次に、この前駆体を1000℃以下で熱処理して炭素成型体を得た。そして、この炭素成型体に200℃以下で溶融させたバインダーピッチを含浸し、更に1000℃以下で熱処理するという、ピッチ含浸/焼成工程を数回繰り返した。更に、この炭素成型体を不活性雰囲気中、2800℃にて熱処理することで黒鉛化成型体を得た。そして、粉砕分級することで、黒鉛化成型体粉末とした。

[0073]

なお、この黒鉛化成型体粉末について X線回折測定を行った結果、(002)面の面間隔は0.337 n mであり、(002)回折線から計算される C軸結晶子厚みは50.0 n mであった。また、ピクノメータ法による真密度は2.23 g/c m³であり、JISK-1469に記載される測定方法により求めた嵩密度は0.83 g/c m³であった。また、平均形状パラメータ X_{ave} は平均粒径が31.2 μ mであり、ブルナウアーエメットテラー法による比表面積は4.4 m2/gであった。また、レーザ回折法による粒度分布の平均粒径は31.2 μ mであり、累積10%粒径が12.3 μ mであり、累積50%粒径が29.5 μ mであり、累積90%粒径が53.7 μ mであり、黒鉛粒子の破壊強度の平均値は7.1 kg f/mm²であった。なお、嵩密度、平均形状パラメータ X_{ave} は以下のようにして測定した。

[0074]

< 嵩密度測定方法>

嵩密度はJISK-1469に記載される方法で求めた。すなわち、予め質量を測定した容量100g/ c m 3 のメスシリンダに、試料粉末として黒鉛化成型体粉末を徐々に投入する。そして、メスシリンダ及び試料粉末全体の質量を最小目盛0.1gで秤量し、その質量からメスシリンダの質量を差し引くことで、投入した試料粉末の質量(M)を求める。次に、試料粉末が投入されたメスシリンダにコルク栓をし、この状態のメスシリンダを、ゴム板に対して約5cmの高さから50回落下させる。その結果、メスシリンダ中の試料粉末は圧縮されるので、その圧縮された試料粉末の容積(V)を測定する。そして、下記の式により嵩密度(g/ c m 3)を算出する。

[0075]

D = M / V

D:嵩密度(g/cm³)

M:メスシリンダ中の試料粉末の質量(g)

V:50回落下後のメスシリンダ中の試料粉末の容積 (cm³)

[0076]

<平均形状パラメータXave>

平均形状パラメータX_{ave}とは、形状パラメータXの平均値であり、以下のようにして求められるものである。まず、試料粉末として黒鉛材料を走査型電子顕微鏡を用いて観察し、粒子の粉末の長軸方向の長さが、レーザ回折法等の粒度分布測定装置を用いて観察された平均粒径の±30%である粉末10個を選択する。そして、選択した10個の粉末それぞれについて、最も厚さの薄い部分の厚みT、長軸方向の長さL、長軸と直交する方向の長さをWを測定し、下記の式により形状パラメータXを求め、その平均値を算出することで平均形状パラメータXaveを求めた。

[0077]

 $X = (W/T) \times (L/T)$

X:形状パラメータ

T:粉末の最も厚さの薄い部分の厚み

L:粉末の長軸方向の長さ

W:粉末の長軸と直交する方向の長さ

[0078]

次に、負極活物質として黒鉛化成型体粉末90重量部と、結着剤としてポリフッ化ビニリデン10重量部とを混合して負極合剤を調製した後に、Nーメチルピロリドン中に分散させて負極合剤スラリーとした。そして、負極集電体となる厚さが10μmである帯状の銅箔の両面に、負極合剤スラリーを均一に塗布して乾燥させ、一定圧力で圧縮成型した後にスリットすることで、帯状の負極を作製した。

[0079]

[正極の作製方法]

先ず、炭酸リチウム 0.5 モルと炭酸コバルト 1 モルとを混合した混合物を、空気中、900 で 5 時間焼成することにより、正極活物質として $LiCoO_2$ を合成した。なお、得られた物質について X 線回折測定を行い、測定結果が JC PDSファイルに登録された $LiCoO_2$ のデータと一致していることを確認した。次に、 $LiCoO_2$ を粉砕して $LiCoO_2$ 粉末とした。なお、 $LiCoO_2$ 粉末は、レーザ回折法により測定した粒度分布の平均粒径は累積 50 %粒径が 15 μ mとなるように、粉砕された。

[0080]

次に、LiCo〇₂粉末95重量部と炭酸リチウム粉末5重量部とを混合して混合粉末とした。そして、混合粉末91重量部と、導電剤として鱗片状黒鉛6重量部と、結着剤としてポリフッ化ビニリデン3重量部とを混合して正極合剤を調製した後に、Nーメチルピロリドン中に分散させて正極合剤スラリーとした。そして、正極集電体となる厚さが20μmである帯状のアルミニウム箔の両面に、この正極合剤スラリーを均一に塗布して乾燥させ、一定圧力で圧縮成型した後にスリットすることで、帯状の正極を作製した。

[0081]

[非水電解液の調製]

まず、ECとDMCとの等容量混合溶媒に、チオールとして、化1に示すチオフェノールを2重量%添加した。次に、 $LiPF_6$ を1.5mo1/1の割合で溶解させて、電解液を調製した。

[0082]

【化1】

[0083]

上述のようにして作製した帯状の負極と帯状の正極とを、厚さが25μmであり微孔性ポリプロピレンフィルムからなるセパレータを介して、負極、セパレータ、正極、セパレータの順に積層した後に多数回巻き回すことで、外径18mmである渦巻型の電極体を作製した。

[0084]

次に、この電極体を、ニッケルメッキを施した鉄製の電池缶に収納した。そして、電極体上下両面に絶縁板を配設し、ニッケル製の負極リードを負極集電体から導出して電池缶に溶接した。なお、電池缶は負極と導通をもつこととなり、リチウムイオン二次電池の外部負極となる。また、アルミニウム製の正極リードを正極集電体から導出し、電池内圧に応じて電流を遮断する電流遮断用薄板を介して電池蓋に溶接した。なお、電池蓋は正極と導通をもつこととなり、リチウムイオン二次電池の外部正極となる。

[0085]

そして、電池缶の中に上述のようにして調製した非水電解液を注入した後に、 アスファルトを塗布した封口ガスケットを介して電池缶をかしめることにより電 池蓋を固定する。 [0086]

なお、リチウムイオン二次電池においては、負極リードおよび正極リードに接続するセンターピンが設けられているとともに、電池内部の圧力が所定値よりも高くなったときに内部の気体を抜くための安全弁装置及び電池内部の温度上昇を防止するためのPTC素子が設けられている。

[0087]

以上のようにして、直径が18mm、高さが65mmである円筒型の非水電解 液二次電池を作製した。

[0088]

実施例2

[0089]

【化2】

[0090]

実施例3

ECとDMCとの等容量混合溶媒に、芳香族スルホンとして化3に示す4-メチルスルホニルアセトフェノンを2重量%添加し、LiPF₆を1.5mol/1の割合で溶解させて調製した電解液を用いること以外は実施例1と同様にして非水電解液二次電池を作製した。

[0091]

【化3】

[0092]

実施例4

ECとDMCとの等容量混合溶媒に、チオ酢酸エステルとしてジフルオロメチルチオ酢酸エチルを2重量%添加し、 $LiPF_6$ を1.5mol/1の割合で溶解させて調製した電解液を用いること以外は実施例1と同様にして非水電解液二次電池を作製した。

[0093]

実施例5

ECとDMCとの等容量混合溶媒に、チオ酢酸エステルとしてチオ酢酸フェニルを2重量%添加し、 $LiPF_6$ を1. 5mo1/1の割合で溶解させて調製した電解液を用いること以外は実施例1と同様にして非水電解液二次電池を作製した。

[0094]

実施例6

ECとDMCとの等容量混合溶媒に、チオフェンとして化4に示す2ーメトキシカルボニルチオフェンを2重量%添加し、LiPF₆を1.5mol/lの割合で溶解させて調製した電解液を用いること以外は実施例1と同様にして非水電解液二次電池を作製した。

[0095]

【化4】

[0096]

実施例7

ECとDMCとの等容量混合溶媒に、チアゾールとして化5に示す1, 2-ベンズイソチアゾールを2重量%添加し、 $LiPF_6$ を1. 5mo1/1の割合で溶解させて調製した電解液を用いること以外は実施例1と同様にして非水電解液二次電池を作製した。

[0097]

【化5】

[0098]

<u>実施例 8</u>

ECとDMCとの等容量混合溶媒に、チオアニソールとして化6に示す4-メチルチオアセトフェノンを2重量%添加し、 $LiPF_6$ を1.5mol/1の割合で溶解させて調製した電解液を用いること以外は実施例1と同様にして非水電解液二次電池を作製した。

[0099]

【化6】

[0100]

比較例1

ECとDMCとの等容量混合溶媒に、LiPF₆を1.5mol/lの割合で溶解し、それ以外には何も添加せずに調製した電解液を用いること以外は実施例1と同様にして非水電解液二次電池を作製した。

[0101]

比較例2

ECとDMCとの等容量混合溶媒に、ジエチルスルホンを2重量%添加し、Li PF $_6$ を1.5 mo1/1の割合で溶解させて調製した電解液を用いること以外は実施例1 と同様にして非水電解液二次電池を作製した。

[0102]

比較例3

ECとDMCとの等容量混合溶媒に、エチルメチルスルホンを2重量%添加し、 $LiPF_6$ を1.5mol/lの割合で溶解させて調製した電解液を用いること以外は実施例1と同様にして非水電解液二次電池を作製した。

[0103]

比較例4

ECとDMCとの等容量混合溶媒に、エチレングリコールサルファイトを 2 重 2 電 2 電 2 電 2 電 2 電 2 電 2 電 2 電 2 に

[0104]

比較例5

ECとDMCとの等容量混合溶媒に、メチルフェニルサルファイトを2重量% 添加し、 $LiPF_6$ を1.5mol/1の割合で溶解させて調製した電解液を用いること以外は実施例1と同様にして非水電解液二次電池を作製した。

[0105]

比較例6

ECとDMCとの等容量混合溶媒に、1, $3-プロパンスルトンを2重量%添加し、<math>LiPF_6$ を1. 5mo1/1の割合で溶解させて調製した電解液を用いること以外は実施例 1 と同様にして非水電解液二次電池を作製した。

[0106]

比較例7

[0107]

比較例8

ECとDMCとの等容量混合溶媒に、3-メチルスルフォレンを2重量%添加し、LiPF₆を1.5mol/lの割合で溶解させて調製した電解液を用いること以外は実施例1と同様にして非水電解液二次電池を作製した。

[0108]

以上のようにして作製した実施例1~実施例8及び比較例1~比較例8の非水電解液二次電池に対して、先ず、充電電流を1.0Aとして、終止電圧が4.2 Vまで定電流充電をし、4.2 Vに到達した後は定電圧充電を行った。次に、放電電流を1.0Aとし、終止電圧を3.0 Vとして定電流放電を行い、初期容量を測定した。そして、このような充放電条件のもとで充放電サイクルを繰り返し行って200サイクル目の放電容量を測定し、初期容量に対する200サイクル目の容量の比である容量維持率を求めた。

[0109]

電池の初期容量及び容量維持率の測定結果を、非水電解液に添加した有機化合物名とあわせて表1に示す。

[0110]

【表1】

12 -		_															
容量維持率	182	8	06	06	92	6	6	91	06	7.2	74	74	75	47	78	5.2	72
初期容量	[mAh]	1802	1803	1800	1801	1804	1806	1804	1802	1720	1733	1732	1740	1738	1748	1724	1728
添加量	[重量%]	~	7	8	~	7	~	7	0	0	2	7	7	8	7	7	2
有機硫黄化合物	二十二十十	ナランガングー	_ 	ソレラギロメルミ・科・共襲・サー・	・ファインフィの再級十十十二十十二十十二十十二十十二十十二十十二十十二十十二十十二十十二十十二十十	・コード・コード・コード・コード・コード・コード・コード・コード・コード・コード	. L	イマング・サイト・サイン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン		・十二の三十十分	ノンシン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン	ノングングントリー・オート・アングン・リー・オート・アングン・アングン・アート・アングン・アート・アート・アート・アート・アート・アート・アート・アート・アート・アート	メルニ・ファンランタイトメルニ・ファンファン	ママハンハン・コートン・ハートン・ハートン・コート	ハナシントラン	ハンナノイン	2 イナルベルノオレン
	東施例1	東施例2	東施倒3	東格匈4	账格密5	東結倒6	映簡例7	東施例8	打較金1	比較例2	打較 例3	九較包4	北較倒5	比較何6	比較例7	九製金8	

[0111]

表1より明らかなように、液状の非水電解質である電解液に、チオール、チオフェン、チオアニソール、チアゾール、チオ酢酸エステル、芳香族スルホン及びこれらの誘導体のうち少なくとも1つが添加されている実施例1~実施例8の非

水電解液二次電池は、初期容量が何れの電池も1800mAhを越える高容量を 有し、容量維持率が何れの電池も90%前後と向上していることがわかった。

[0112]

これに対して、チオール、チオフェン、チオアニソール、チアゾール、チオ酢酸エステル、芳香族スルホン及びこれらの誘導体を何れも含有しない比較例1は、初期容量が非常に小さく、容量維持率も悪いことがわかった。

[0113]

また、チオール、チオフェン、チオアニソール、チアゾール、チオ酢酸エステル、芳香族スルホン及びこれらの誘導体と同様に硫黄を含有するが、これらの有機化合物とは異なる有機化合物を含有する比較例2~比較例8の非水電解質二次電池は、初期容量が1740mAh以下と小さく、また容量維持率は80%未満と低いことがわかった。

[0114]

従って、非水電界液二次電池は、チオール、チオフェン、チオアニソール、チアゾール、チオ酢酸エステル、芳香族スルホン及びこれらの誘導体のうち少なくとも1つが添加されていることにより、サイクル経過に伴う容量劣化が大幅に抑制され、サイクル寿命が長寿命化する。

[0115]

<実験2>

実験2では、非水電解液に添加されているチオール、チオフェン、チオアニソール、チアゾール、チオ酢酸エステル、芳香族スルホン及びこれらの誘導体のうち少なくとも1つの添加量を変化させて、非水電解液二次電池の初期容量及び容量維持率の違いについて検討した。

[0116]

実施例9

2-メトキシカルボニルチオフェンの添加量を、0.03重量%とすること以外は実施例6と同様にして非水電解液二次電池を作製した。

[0117]

実施例10

2-メトキシカルボニルチオフェンの添加量を、0.05重量%とすること以外は実施例6と同様にして非水電解液二次電池を作製した。

[0118]

実施例11

2-メトキシカルボニルチオフェンの添加量を、10重量%とすること以外は 実施例6と同様にして非水電解液二次電池を作製した。

[0119]

実施例12

2-メトキシカルボニルチオフェンの添加量を、12重量%とすること以外は 実施例6と同様にして非水電解液二次電池を作製した。

[0120]

以上のようにして作製した実施例9~実施例12の非水電解液二次電池に対して、上述した方法と同様にして初期容量及び容量維持率を求めた。この初期容量及び容量維持率の測定結果を、2-メトキシカルボニルチオフェンの添加量とあわせて表2に示す。

[0121]

【表2】

容量維持率	88 75 73
初期容量 「mAh」	1803 1802 1745 1730
添加量[重量%]	0.05 10 0.03 12
有機硫黄化合物	2ーメトキシカルボールチャンコン2ーメトキシカルボールチオンエン2ーメトキシカルボールチオンエン2ーメトキシカルボールチオフェン2ーメトキシカルボールチオフェン
	來商匈9 東施匈10 比較匈9 比較例10

[0122]

ここで、実施例9と実施例10とを比較すると、2-メトキシカルボニルチオフェンの添加量が0.05重量%である実施例9は、添加量が0.05重量未満である実施例10よりも、初期容量がより高く、容量維持率が高いことがわかった。また、実施例11と実施例12とを比較すると、2-メトキシカルボニルチ

オフェンの添加量が10重量%である実施例11は、添加量が10を越える実施例12よりも、初期容量がより高く、容量維持率が高いことがわかった。

[0123]

従って、チオフェンの添加量を0.05重量%以上、10重量%以下の範囲とすることにより、非水電解液二次電池は、サイクル経過に伴う容量劣化が確実に抑制され、サイクル寿命がより延命することがわかった。チオフェンに限らず、チオール、チオアニソール、チアゾール、チオ酢酸エステル、芳香族スルホン及びこれらの誘導体のうち少なくとも1つの添加量を0.05重量%以上、10重量%以下の範囲とすることにより、非水電解液二次電池は、サイクル経過に伴う容量劣化が確実に抑制され、サイクル寿命がより長くなるといえる。

[0124]

【発明の効果】

以上の説明からも明らかなように、本発明に係る非水電解質電池は、非水電解質に、チオール、チオフェン、チオアニソール、チアゾール、チオ酢酸エステル、芳香族スルホン及びこれらの誘導体のうち少なくとも1つが添加されているので、サイクル経過に伴う容量劣化が大幅に抑制され、長いサイクル寿命が得られる。従って、本発明は非水電解質二次電池の実用性の向上に大きく貢献できる。

【図面の簡単な説明】

【図1】

非水電解液二次電池の断面図である。

【符号の説明】

1 正極集電体、2 正極、3 負極集電体、4 負極

【書類名】 図面 【図1】

【書類名】 要約書

【要約】

【課題】 サイクル経過に伴う容量劣化が大幅に抑制され、サイクル寿命が長い

【解決手段】 正極活物質を有する正極2と、リチウムをドープ/脱ドープすることが可能である負極活物質を含有する負極4と、非水電解質とを備える非水電解質電池において、非水電解質に、チオール、チオフェン、チオアニソール、チアゾール、チオ酢酸エステル、芳香族スルホン及びこれらの誘導体のうち少なくとも1つが添加されている。

【選択図】 図1

` 1

出願人履歴情報

識別番号

[000002185]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所

東京都品川区北品川6丁目7番35号

氏 名

ソニー株式会社