cs224d Notations

mxn

Contents

1 Basic Notations

1.0.1 numpy revision
1 Basic Notations
• Vector: $\mathbf{v} \in \mathbb{R}^n$ or $\mathbf{v} \in \mathbb{R}^{n \times 1}$ — n rows and 1 column.
- numpy: $v.shape == (n,) or (n,1)$
• Matrix: $\mathbf{M} \in \mathbb{R}^{n \times m}$ — n rows and m columns.
<pre>- numpy: M.shape == (n, m)</pre>
1.0.1 numpy revision
• creating a range as column vector (n rows, 1 column): v = np.c_[:n]
• creating a range as row vector (1 row, m columns): v = np.r_[:n]
1.1 Common Network Variable and Dimension Notations
• n: Dimension of embeddings space
• V : Vocabulary with $ V $ words
• w_i : Word i from vocabulary V
ullet x : Input vectors (usually one-hot vectors)
$ullet$ $m{y}$: Output vectors (usually one-hot vectors, or vectors of probabilities (after softmax))
• 1 layer network:
– Input dimension: D_x ($\boldsymbol{x} \in [N, D_x]$)
– Hidden units: H ($\mathbf{W}_1 \in [D_x, H], \ \boldsymbol{b}_1 \in [H]$)
– Ouput dimension: D_y ($\mathbf{W}_2 \in [H, D_y], b_2 \in [D_y]$)
• Continuous Bag of Words (CBOW):
$-\mathbf{V} \in \mathbb{R}^{n \times V }$: Input word matrix
$-\mathbf{U} \in \mathbb{R}^{ V \times n}$: Output word matrix
$-v_i \in \mathbb{R}^{n \times 1}$: i-th column vector of V , the input vector representing word w_i
$-\boldsymbol{u}_i \in \mathbb{R}^{1 \times n}$: i-th row vector of U , the output vector representing word w_i