

Euclidian Norm, Inequalities and Angle

Linear Algebra

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>

Maryam Ramezani <u>maryam.ramezani@sharif.edu</u>

Overview

Introduction Inequalities **Euclidean Norm Euclidean Distance** Angle

Introduction

The reason to use norms

- Machine learning uses vectors, matrices, and tensors as the basic units of representation
- ☐ Two reasons to use norms:
 - 1. To estimate how big a vector/matrix/tensor is
 - How big is the difference between two tensors is
 - 2. To estimate how close one tensor is to another
 - How close is one image to another

Euclidean Norm

Definition

For $v \in V$, we define the norm of v, denoted ||v||, by:

$$||v|| = \sqrt{\langle v, v \rangle}$$

Example

Norm of $P_n(x)$ in the term of inner product $\langle p_n(x), q_n(x) \rangle = \int_0^1 p_n(x) q_n(x) dx$:

$$\left| |P_n(x)| \right| = \sqrt{\int_0^1 P_n^2(x) dx}$$

Euclidean Norm

Definition

■ Euclidean Norm (2-norm, l₂ norm, length)

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}$$

- A vector whose length is 1 is called a unit vector
- Normalizing: divide a non-zero vector by its length which is a unit vector in the same direction of original vector
- It is a nonnegative scalar
- In \mathbb{R}^2 follows from the Pythagorean Theorem.
- What about \mathbb{R}^3 ?
- What is the shape of $||x||_2 = 1$?

Inequalities

Root Mean Square Value (RMS)

Definition

Mean-square (MS) value of n-vector x is:

$$\frac{x_1^2 + x_2^2 + \dots + x_n^2}{n} = \frac{||x||^2}{n}$$

Root-mean-square value (RMS)

$$rms(x) = \sqrt{\frac{x_1^2 + x_2^2 + \dots + x_n^2}{n}} = \frac{||x||}{\sqrt{n}}$$

The RMS value of a vector x is useful when comparing norms of vectors with different dimensions. rms(x) gives "typical" value of $|x_i|$

Example

rms(1) = 1 (independent of n) if all the entries of a vector are the same, (a) then the RMS value of the vector is |a|

Chebyshev Inequality

Theorem

Suppose that k of the numbers $|x_1|, |x_2|, \dots, |x_n|$ are $\geq a$ then k of the numbers $x_1^2, x_2^2, \dots, x_n^2$ are $\geq a^2$

So
$$||x||^2 = x_1^2 + x_2^2 + \dots + x_n^2 \ge ka^2$$
 so we have $k \le \frac{||x||^2}{a^2}$

Number of x_i with $|x_i| \ge a$ is no more than $\frac{||x||^2}{a^2}$

Question

- What happens when $\frac{||x||^2}{a^2} \ge n$?
- No entry of a vector can be larger in magnitude than the norm of the vector. (why?)

Chebyshev Inequality

Important

Chebyshev inequality is easier to interpret in terms of the RMS value of a vector.

$$\frac{k}{n} \le \left(\frac{rms(x)}{a}\right)^2$$

Example

How many entries of x can have value more than 5rms(x)?

Important

The Chebyshev inequality partially justifies the idea that the RMS value of a vector gives an idea of the size of a typical entry: It states that not too many of the entries of a vector can be much bigger (in absolute value) than its RMS value

Standard Deviation

Theorem

- \square For n-vector x, $avg(x) = 1^T(\frac{x}{n})$
- \square De-meaned vector is $\tilde{x} = x avg(x)1$ (so, $avg(\tilde{x}) = 0$)
- ☐ Standard deviation of x is:

$$std(x) = rms(\check{x}) = \frac{\left|\left|x - \left(\frac{1^{T}x}{n}\right)1\right|\right|}{\sqrt{n}}$$

- \square Std(x) gives "typical" amount x_i vary from avg(x)
- \Box Std(x) = 0 only if $x = \alpha 1$ for some α
- ☐A basic formula

$$rms(x)^2 = avg(x)^2 + std(x)^2$$

Chebyshev Inequality for std

Theorem

x is an n - vector with mean avg(x), standard deviation std(x)

Rough idea: most entries of x are not too far from the mean By Chebyshev inequality, fraction of entries of x with $|x_i - avg(x)| \ge \alpha \, std(x)$ is no more than

$$\frac{1}{\alpha^2} (for \, \alpha > 1)$$

‡ The fraction of entries of x within θ standard deviations of avg(x) is at least $(1-\frac{1}{\theta^2})$ for $\theta>1$

Vector Standardization

Definition

$$z = \frac{1}{std(x)} (x - avg(x)1).$$

- \square It has mean $(\mu) = 0$ and $std(\sigma) = 1$
- \Box Its entries are sometimes called the z-scores associated with the original entries of x.
- ☐ The standardized values for a vector give a simple way to interpret the original values in the vectors.

Cauchy-Schwartz Inequality

Theorem

For two n-vectors a and b, $|a^Tb| \le ||a|| ||b||$ Written out:

$$|a_1b_1 + \dots + a_nb_n| \le (a_1^2 + \dots + a_n^2)^{\frac{1}{2}} (b_1^2 + \dots + b_n^2)^{\frac{1}{2}}$$
$$(\sum_{i=1}^n x_i y_i) \le (\sum_{i=1}^n x_i^2) (\sum_{i=1}^n y_i^2)$$

Proof:

Cauchy-Schwartz Inequality

Theorem

For two n-vectors a and b, $|a^Tb| \le ||a|| ||b||$ Written out:

$$|a_1b_1 + \dots + a_nb_n| \le (a_1^2 + \dots + a_n^2)^{\frac{1}{2}} (b_1^2 + \dots + b_n^2)^{\frac{1}{2}}$$
$$(\sum_{i=1}^n x_i y_i) \le (\sum_{i=1}^n x_i^2) (\sum_{i=1}^n y_i^2)$$

It is clearly true if either a or b is 0.

So, assume $\alpha = ||a||$ and $\beta = ||b||$ are non-zero

We have

$$0 \le ||\beta a - \alpha b||^{2}$$

$$= ||\beta a||^{2} - 2 (\beta a)^{T} (\alpha b) + ||\alpha b||^{2}$$

$$= \beta^{2} ||a||^{2} - 2 \beta \alpha (a^{T} b) + \alpha^{2} ||b||^{2}$$

$$= 2 ||a||^{2} ||b||^{2} - 2 ||a|| ||b|| (a^{T} b)$$

Divide by 2||a||||b|| to get $a^Tb \le ||a||||b||$

Apply to -a, b to get other half of Cauchy-Schwartz inequality.

Cauchy-Schwarz inequality holds with equality when one of the vectors is a multiple of the other If and only if a and b are linear dependent

Complexity

- \Box Norm: 2n flops
 - \Box O(n)
- \square RMS: 2n flops
 - \Box O(n)
- \Box **Distance:** 3n flops
 - \Box O(n)

- ☐ Angle: 6n flops
 - \Box O(n)
- \Box Standardizing: 5n flops
 - $\square O(n)$
- \Box Correlation Coefficient: 10n
 - flops
 - \square O(n)
- ☐ Standard Deviation: 4n flops
 - $\Box O(n)$
 - \square Can reduce to 3n flops.

$$std(x)^2 = rms^2 - avg(x)^2$$

Triangle Inequality

Theorem

Consider a triangle in two or three dimensions:

$$||x+y|| \le ||x|| + ||y||$$

Proof:

Triangle Inequality

Theorem

Consider a triangle in two or three dimensions:

$$||x+y|| \le ||x|| + ||y||$$

Verification of triangle inequality:

$$||x + y||^{2} = ||x||^{2} + ||y||^{2} + 2 x^{T} y$$

$$\leq ||x||^{2} + ||y||^{2} + 2 ||x|| ||y||$$

$$= (||x|| + ||y||)^{2}$$

Cauchy-Schwartz Inequality

$$\Rightarrow \big| |x + y| \big| \le \big| |x| \big| + ||y||$$

Euclidean Norm

Vector Norm Properties

Important Properties:

1. Absolute Homogenity / Linearity:

$$||\alpha x|| = |\alpha| \, ||x||$$

2. Subadditivity / Triangle Inequality:

$$||x+y|| \le ||x|| + ||y||$$

3. Positive definiteness / Point separating:

$$if ||x|| = 0 then x = 0$$

(from 1 & 3): For every x, $||x|| = 0 iff x = 0$

4. Non-negativity:

$$||x|| \ge 0$$

Proof:

Norm of sum

Theorem

If x and y are vectors:

$$||x + y|| = \sqrt{||x||^2 + 2 x^T y + ||y||^2}$$

Proof:

$$||x + y||^{2} = (x + y)^{T}(x + y)$$

$$= x^{T}x + x^{T}y + y^{T}x + y^{T}y$$

$$= ||x||^{2} + 2x^{T}y + ||y||^{2}$$

Inner product and norm

Theorem

Take any inner product $\langle \cdot, \cdot \rangle$ and define $f(x) = \sqrt{\langle x, x \rangle}$. Then f is a norm.

Proof

Note

Every inner product gives rise to a norm, but not every norm comes from an inner product. (Think about norm 2 and norm max)

Norm of block vectors

Important

Suppose a,b,c are vectors:

$$\left\| \begin{bmatrix} a \\ b \\ c \end{bmatrix} \right\|^{2} = a^{T}a + b^{T}b + c^{T}c = \left| |a| \right|^{2} + \left| |b| \right|^{2} + \left| |c| \right|^{2}$$

So, we have

$$\left| \begin{bmatrix} a \\ b \\ c \end{bmatrix} \right| = \sqrt{\left| |a| \right|^2 + \left| |b| \right|^2 + \left| |c| \right|^2} = \left| \begin{bmatrix} ||a|| \\ ||b|| \\ ||c|| \end{bmatrix} \right|$$

(Parse RHS very carefully!)

The norm of a stacked vector is the norm of the vector formed from the norms of sub-vectors.

Euclidean Distance

Euclidean Distance

Distance between two n-vectors shows the vectors are "close" or "nearby" or "far".

Distance:

$$dist(a,b) = ||a-b||$$

RMS deviation between the two vectors:

$$rms(a-b) = \frac{||a-b||}{\sqrt{n}}$$

Comparing Norm and Distance

Norm

(Normed Linear Space)

$$1. \quad ||x-y|| \ge 0$$

$$2. \quad ||x-y|| = 0 \Rightarrow x = y$$

1.
$$||x - y|| \ge 0$$

2. $||x - y|| = 0 \Rightarrow x = y$
3. $||\lambda(x - y)|| = |\lambda| ||x - y||$

Distance Function

(Metric Space)

1.
$$dist(x, y) \ge 0$$

2.
$$dist(x, y) = 0 \Rightarrow x = y$$

1.
$$dist(x,y) \ge 0$$

2. $dist(x,y) = 0 \Rightarrow x = y$
3. $dist(x,y) = dist(y,x)$

ML Application

Feature Distance and Nearest Neighbors:

if x, y are feature vectors for two entities, ||x - y|| is the feature distance

if $z_1, z_2, ..., z_m$ is a list of vectors, z_i is the nearest neighbor of x if:

$$\left|\left|x-z_{j}\right|\right| \leq \left|\left|x-z_{i}\right|\right|, \qquad i=1,2,\ldots,m$$

Number of flops and order?

Angle

Angle

Definition

Angle between two non-zero vectors a, b is defined as:

$$\angle(a,b) = \arccos\left(\frac{a^T b}{||a|| ||b||}\right)$$

 $\angle(a,b)$ is the number in $[0,\pi]$ that satisfies:

$$a^T b = ||a|| ||b|| \cos(\angle(a,b))$$

Coincides with ordinary angle between vectors in 2D and 3D

Application

Spherical distance:

if a, b are on sphere with radius R, distance along the sphere is $R \angle (a, b)$

References

- □ Chapter 1: Advanced Linear and Matrix Algebra, Nathaniel Johnston
- □ Chapter 6: Linear Algebra David Cherney
- Linear Algebra and Optimization for Machine Learning
- □ Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares