The Orthogonal Projection Matrix onto $\mathcal{C}(\mathbf{X})$ and the Normal Equations

Theorem 2.1:

 P_X , the orthogonal projection matrix onto $\mathcal{C}(X)$, is equal to $X(X'X)^-X'$. The matrix $X(X'X)^-X'$ satisfies

(a)
$$[X(X'X)^{-}X'][X(X'X)^{-}X'] = [X(X'X)^{-}X']$$

(b)
$$X(X'X)^-X'y \in C(X) \ \forall \ y \in \mathbb{R}^n$$

(c)
$$X(X'X)^-X'x = x \ \forall \ x \in \mathcal{C}(X)$$

(d)
$$X(X'X)^{-}X' = [X(X'X)^{-}X']'$$

(e) $X(X'X)^{-}X'$ is the same \forall GI of X'X.

It is useful to establish a few results before proving Theorem 2.1.

Show that if A is a symmetric matrix and G is a GI of A, then G' is also GI of A.

Proof:

$$AGA = A \Rightarrow (AGA)' = A'$$

 $\Rightarrow A'G'A' = A'$
 $\Rightarrow AG'A = A \quad (\because A = A')$
 $\therefore G'$ is a GI of A .

 \Box .

Result 2.4:

$$X'XA = X'XB \iff XA = XB.$$

One direction is obvious (\Leftarrow) .

Can you prove the other (\Longrightarrow) ?

Proof (\Longrightarrow) :

$$(XA - XB)'(XA - XB) = (A'X' - B'X')(XA - XB)$$

$$= A'X'XA - A'X'XB - B'X'XA + B'X'XB$$

$$= A'X'XA - A'X'XA - B'X'XA + B'X'XA$$

$$= 0.$$

∴ by Lemma A1,

$$XA - XB = 0 \Rightarrow XA = XB$$
.

Result 2.5:

Suppose $(X'X)^-$ is any GI of X'X. Then $(X'X)^-X'$ is a GI of X, i.e.,

$$X(X'X)^{-}X'X = X.$$

Proof of Result 2.5

Since $(X'X)^-$ is a GI of X'X,

$$X'X(X'X)^{-}X'X = X'X.$$

By Result 2.4, the result follows.

(Take
$$A = (X'X)^-X'X$$
 and $B = I$. Then $XA = X(X'X)^-X'X = X = XB$.)

Corollary to Result 2.5:

For $(X'X)^-$ any GI of X'X,

$$X'X(X'X)^{-}X'=X'.$$

Proof of Corollary:

Suppose $(X'X)^-$ is any GI of X'X.

 $\therefore X'X$ is symmetric, $[(X'X)^-]'$ is also a GI of X'X.

Thus Result 2.5 implies that

$$X[(X'X)^{-}]'X'X = X$$

$$\Rightarrow [X[(X'X)^{-}]'X'X]' = [X]'$$

$$\Rightarrow X'X(X'X)^{-}X' = X'.$$

Now we can prove Theorem 2.1:

First show $X(X'X)^-X'$ is idempotent.

 $X(X'X)^{-}X'X(X'X)^{-}X' = X(X'X)^{-}X'$ by Result 2.5.

Now show that

$$X(X'X)^{-}X'y \in C(X) \ \forall \ y \in \mathbb{R}^{n}$$
.

$$X(X'X)^-X'y=Xz$$
, where $z=(X'X)^-X'y$.

Thus, $X(X'X)^-X'y \in C(X)$.

Now show that

$$X(X'X)^-X'z = z \ \forall \ z \in C(X).$$

If
$$z \in C(X)$$
, $\exists c \ni z = Xc$. :.

$$X(X'X)^{-}X'z = X(X'X)^{-}X'Xc$$

= Xc (By Result 2.5)
= z .

Thus, we have $X(X'X)^-X'z = z \ \forall \ z \in \mathcal{C}(X)$.

Now we know $X(X'X)^-X'$ is a projection matrix onto C(X).

To be the unique projection matrix onto $\mathcal{C}(X)$, $X(X'X)^{-}X'$ must be symmetric.

To show symmetry of $X(X'X)^{-}X'$, it will help to first show that

$$X(X'X)_1^-X' = X(X'X)_2^-X'$$

for any two GIs of X'X denoted $(X'X)_1^-$ and $(X'X)_2^-$.

By the Corollary to Result 2.5

$$X' = X'X(X'X)_2^-X'.$$

Therefore,

$$X(X'X)_1^- X' = X(X'X)_1^- X' X(X'X)_2^- X'$$

= $X(X'X)_2^- X'$ by Result 2.5.

 $\therefore X(X'X)^-X'$ is the same regardless of which GI for X'X is used.

Now show that $X(X'X)^{-}X'$ is symmetric.

$$[X(X'X)^{-}X']' = X[(X'X)^{-}]'X'$$

= $X(X'X)^{-}X'$

 \therefore symmetry of X'X implies that $[(X'X)^-]'$ is a GI of X'X, and $X(X'X)^-X'$ is the same regardless of choice of GI.

We have shown that $X(X'X)^-X'$ is the orthogonal projection matrix onto $\mathcal{C}(X)$.

We know that it is the only symmetric projection matrix onto $\mathcal{C}(X)$ by Result A.16.

Example:

Find the orthogonal projection matrix onto $\mathcal{C}(\underbrace{\mathbf{1}}_{n\times 1})$.

Also, simplify P_{XY} in this case.

$$X'X = 1'1 = n$$
. Thus $(X'X)^- = \frac{1}{n}$.

$$X(X'X)^{-}X' = \mathbf{1} \left[\frac{1}{n} \right] \mathbf{1}'$$
$$= \frac{1}{n} \mathbf{1} \mathbf{1}'.$$

Thus, when X = 1, P_X is an $n \times n$ matrix whose entries are each $\frac{1}{n}$.

We saw previously the special case $\begin{vmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{vmatrix}$.

$$P_{X}y = \frac{1}{n}\mathbf{1}\mathbf{1}'y$$

$$= \frac{1}{n}\mathbf{1}\sum_{i=1}^{n} y_{i} = \mathbf{1}\frac{1}{n}\sum_{i=1}^{n} y_{i}$$

$$= \mathbf{1}\bar{y} = \begin{bmatrix} \bar{y} \\ \bar{y} \\ \vdots \\ \bar{y} \end{bmatrix}.$$

By Corollary A.4 to Result A.16, we know that

$$I - P_X = I - X(X'X)^{-}X'$$

is the orthogonal projection matrix onto $\mathcal{C}(X)^{\perp} = \mathcal{N}(X')$.

This is Result 2.6.

Fitted Values and Residuals

By Result A.4, any $y \in \mathbb{R}^n$ may be written as

$$y = s + t$$

where $s \in \mathcal{C}(X)$ and $t \in \mathcal{C}(X)^{\perp} = \mathcal{N}(X')$.

Furthermore, the vectors $s \in C(X)$ and $t \in C(X)^{\perp}$ are unique.

Fitted Values and Residuals

Because

$$egin{aligned} y &= P_X y + (I - P_X) y \ P_X y &\in \mathcal{C}(X) ext{ and } (I - P_X) y \in \mathcal{C}(X)^\perp, \end{aligned}$$

we get $s = P_X y$ and $t = (I - P_X)y$.

Moreover,

$$\hat{y}\equiv P_Xy=$$
 the vector of fitted values $\hat{arepsilon}\equiv (I-P_X)y=y-\hat{y}=$ the vector of residuals.

Let P_W and P_X denote the orthogonal projection matrices onto $\mathcal{C}(W)$ and $\mathcal{C}(X)$, respectively.

Suppose $C(W) \subseteq C(X)$. Show that

$$P_W P_X = P_X P_W = P_W.$$

Proof:

$$C(W) \subseteq C(X) \Rightarrow \exists B \ni XB = W.$$

$$\therefore P_X P_W = X(X'X)^- X' W(W'W)^- W'$$

$$= X(X'X)^- X' X B(W'W)^- W'$$

$$= X B(W'W)^- W'$$

$$= W(W'W)^- W'$$

$$= P_W.$$

Now

$$P_X P_W = P_W \Rightarrow (P_X P_W)' = P_W'$$

 $\Rightarrow P_W' P_X' = P_W'$
 $\Rightarrow P_W P_X = P_W.$

Theorem 2.2:

If $C(W) \subseteq C(X)$, then $P_X - P_W$ is the orthogonal projection matrix onto $C((I - P_W)X)$.

Proof of Theorem 2.2:

$$(\mathbf{P}_X - \mathbf{P}_W)' = \mathbf{P}_X' - \mathbf{P}_W' = \mathbf{P}_X - \mathbf{P}_W.$$

 $\therefore P_X - P_W$ is symmetric.

$$(P_X - P_W)(P_X - P_W) = P_X P_X - P_W P_X - P_X P_W + P_W P_W$$

= $P_X - P_W - P_W + P_W$
= $P_X - P_W$.

 $\therefore P_X - P_W$ is idempotent.

Is
$$(P_X - P_W)y \in \mathcal{C}((I - P_W)X) \ \forall \ y$$
?

$$(P_X - P_W)y = (P_X - P_W P_X)y$$

$$= (I - P_W)P_X y$$

$$= (I - P_W)X(X'X)^{-}X'y$$

$$\in \mathcal{C}((I - P_W)X).$$

Is
$$(P_X-P_W)z=z$$
 $z\in \mathcal{C}((I-P_W)X)$? $(P_X-P_W)(I-P_W)X=P_X(I-P_W)$

$$(P_X - P_W)(I - P_W)X = P_X(I - P_W)X - P_W(I - P_W)X$$

$$= (P_X - P_X P_W)X - (P_W - P_W P_W)X$$

$$= (P_X - P_W)X - (P_W - P_W)X$$

$$= (P_X - P_W P_X)X$$

$$= (I - P_W)P_XX$$

$$= (I - P_W)X.$$

Now
$$z \in C((I - P_W)X)$$
.

$$\Rightarrow$$
 $z = (I - P_W)Xc$ for some c . Therefore,

$$(P_X - P_W)z = (P_X - P_W)(I - P_W)Xc$$

= $(I - P_W)Xc$
= z .

We have previously seen that

$$Q(\mathbf{b}) = (\mathbf{y} - \mathbf{X}\mathbf{b})'(\mathbf{y} - \mathbf{X}\mathbf{b})$$
$$= \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^2 \ge \|\mathbf{y} - \mathbf{P}_{\mathbf{X}}\mathbf{y}\|^2$$

 $\forall b \in \mathbb{R}^p$ with equality iff $Xb = P_Xy$.

Now we know that $P_X = X(X'X)^-X'$.

Thus, $\hat{\beta}$ minimizes Q(b) iff $X\hat{\beta} = X(X'X)^{-}X'y$.

By Result 2.4, this equation is equivalent to

$$X'X\hat{\boldsymbol{\beta}} = X'X(X'X)^{-}X'y.$$

Because $X'X(X'X)^-X'=X', X'X\hat{\boldsymbol{\beta}}=X'X(X'X)^-X'y$ is equivalent to

$$X'X\hat{\boldsymbol{\beta}}=X'y.$$

This system of linear equations is known as the $\underline{\text{Normal Equations}}$ (NE).

We have established Result 2.3:

 $\hat{\beta}$ is a solution to the NE (X'Xb = X'y) iff $\hat{\beta}$ minimizes Q(b).

Corollary 2.1:

The NE are consistent.

Proof of Corollary 2.1:

NE are
$$X'Xb = X'y$$
.

If we take
$$\hat{\beta} = (X'X)^-X'y$$
, then

$$X'X\hat{\beta} = X'X(X'X)^{-}X'y$$
$$= X'y.$$

By Result A.13, $\hat{\beta}$ is a solution to X'Xb = X'y iff

$$\hat{\boldsymbol{\beta}} = (X'X)^{-}X'y + [I - (X'X)^{-}X'X]z$$

for some $z \in \mathbb{R}^p$.

Corollary 2.3:

 $X\hat{\beta}$ is invariant to the choice of a solution $\hat{\beta}$ to the NE, i.e., if $\hat{\beta}_1$ and $\hat{\beta}_2$ are any two solutions to the NE, then $X\hat{\beta}_1 = X\hat{\beta}_2$.

Proof of Corollary 2.3:

$$X'X\hat{eta}_1=X'X\hat{eta}_2(=X'y)$$
 $\Rightarrow X\hat{eta}_1=X\hat{eta}_2$ by Result 2.4.

Г

Lemma 2.1: $\mathcal{N}(X'X) = \mathcal{N}(X)$.

Result 2.2: C(X'X) = C(X').

Corollary 2.2: rank(X'X) = rank(X).

Proof of Lemma 2.1:

$$Xc = \mathbf{0} \Rightarrow X'Xc = \mathbf{0}$$

 $\therefore \mathcal{N}(X) \subseteq \mathcal{N}(X'X).$

$$X'Xc = \mathbf{0} \Rightarrow c'X'Xc = 0$$

 $\Rightarrow Xc = \mathbf{0}$
 $\therefore \mathcal{N}(X'X) \subseteq \mathcal{N}(X).$

Thus,
$$\mathcal{N}(X'X) = \mathcal{N}(X)$$
.

Proof of Result 2.2:

$$X'Xc = X'(Xc) \Rightarrow \mathcal{C}(X'X) \subseteq \mathcal{C}(X').$$

$$X'c = X'P_Xc = X'X(X'X)^{-}X'c$$

$$= X'X[(X'X)^{-}X'c]$$

$$\Rightarrow \mathcal{C}(X') \subseteq \mathcal{C}(X'X).$$

Thus,
$$C(X'X) = C(X')$$
.

Proof of Corollary 2.2:

$$C(X'X) = C(X')$$

$$\Rightarrow dim(C(X'X)) = dim(C(X'))$$

$$\Rightarrow rank(X'X) = rank(X')$$

$$\Rightarrow rank(X'X) = rank(X).$$

(Can facilitate finding $(X'X)^-$ needed for $\hat{\beta}$ and P_X .)