

# Lineare Algebra für Informatik - Woche 8

Cosmin Aprodu

Technische Universität München

Online, 03 Juni 2021







## Lineare Fortsetzung

Erinnerung: Sei K ein Körper, V ein K-Vektorraum mit Abbildungen  $\oplus$ ,  $\odot$  und W ein K-Vektorraum mit Abbildungen  $\oplus$ ,  $\odot$ . Eine  $\phi: V \to W$  heißt **linear**, falls:

- Für alle  $v, v' \in V$ ,  $\varphi(v \oplus v') = \varphi(v) \oplus \varphi(v')$ .
- Für alle  $v \in V$  und  $a \in K$ ,  $\varphi(a \odot v) = a \odot \varphi(v)$  (insbesondere  $\varphi(0) = 0$ ).

Prinzip der linearen Fortsetzung: Es sei  $B = \{v_1, \dots, v_n\}$  eine Basis von V.

- Eine lineare Abbildung  $\varphi: V \to W$  ist durch die Bilder der Basisvektoren  $v_i$  eindeutig bestimmt. Anders ausgedrückt: Ist  $\psi: V \to W$  eine weitere lineare Abbildung mit  $\varphi(v_i) = \psi(v_i), \forall i \in \{1, ..., n\}$ , dann gilt:  $\varphi = \psi$ .
- Seien  $w_1, \ldots, w_n \in W$  beliebig. Dann gibt es eine lineare Abbildung  $\varphi : V \to W$  mit  $\varphi(v_i) = w_i, \forall i \in \{1, \ldots, n\}$ .



## Darstellungsmatrizen

Intuitiv: Warum Darstellungsmatrizen? Eine **Darstellungsmatrix** stellt eine Beziehung zwischen dem konkreten Konzept der Matrizen und dem abstrakten Konzept der linearen Abbildungen dar.

Sei V, W zwei K-Vektorräume und  $B = \{v_1, \dots, v_n\}$  bzw.  $C = \{w_1, \dots, w_n\}$  Basen von V bzw. W. Ferner, sei  $\varphi : V \to W$  eine lineare Abbildung. Für  $j \in \{1, \dots, n\}$  und  $a_{i,j} \in K$  können wir schreiben:  $\varphi(v_j) = \sum_{i=1}^m a_{i,j} w_i$ . Nun bilden wir die Matrix:

$$A = (a_{i,j}) = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{pmatrix} \in K^{m \times n}$$

Diese Matrix heißt die **Darstellungsmatrix** von  $\varphi$  (bzgl. der Basen B und C). Notation:  $A = D_{C,B}(\varphi)$  (auch  $M_C^B(\varphi)$ ).  $\to$  Die *Spalten* von A sind die *Koordinatenvektoren* der  $\varphi(v_i)$ .



# Darstellungsmatrizen (2)

#### Bemerkungen:

- Falls V = W, so verwendet man dieselbe Basis B = C und schreibt:  $D_B(\varphi) \in K^{n \times n}$  (auch  $M_B(\varphi)$ ).
- $\varphi$  ist durch seine Darstellungsmatrix *eindeutig bestimmt* (wegen des *Prinzips der linearen Fortsetzung*).

Falls  $V = K^n$  und  $W = K^m$  mit Basen B und C,  $\varphi : V \to W$  eine lineare Abbildung und  $A := D_{C,B}(\varphi) = M_C^B(\varphi)$ . Dann gilt:

$$\varphi = \varphi_A$$



#### Inverse einer Matrix

Eine *quadratische* Matrix  $A \in K^{n \times n}$  heißt **invertierbar**, falls es  $B \in K^{n \times n}$  gibt mit  $A \cdot B = I_n$ . B heißt dann die **Inverse** von A und wird als  $B = A^{-1}$  geschrieben. B ist dann *eindeutig bestimmt* und es gilt auch  $B \cdot A = I_n$  (also  $A \cdot A^{-1} = A^{-1} \cdot A = I_n$ ).  $\rightarrow$  Für  $A \in K^{n \times n}$  gilt also die Äquivalenz:

A invertierbar ⇔ A regulär

Spezialfall:

Sei 
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K^{2 \times 2}$$
. Wenn  $ad - bc \neq 0$  ist, besitzt  $A$  eine Inverse und diese ist:  $A^{-1} = \frac{1}{ad - bc} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ .

 $\rightarrow$  Der Wert det(A) := ad - bc heißt die **Determinante** und die folgende Äquivalenz gilt auch:

A invertierbar 
$$\Leftrightarrow \det(A) \neq 0$$
 (1)

Bemerkung: Aussage (1) gilt für alle  $n \in \mathbb{N}$ , aber diese Fälle werden wir in einem zukünftigen Kapitel betrachten.