Lezione 19

Saverio Salzo*

27 ottobre 2022

1 Funzioni continue

Teorema 1.1. Siano $A \subset \mathbb{R}$ e $x_0 \in A$. Siano $f: A \to \mathbb{R}$, $g: A \to \mathbb{R}$ funzioni continue in x_0 . Allora valgono le seguenti proposizioni.

- (i) $f + g \ e \ continua \ in \ x_0$
- (ii) $fg \ e \ continua \ in \ x_0$
- (iii) Se $g(x) \neq 0$ per ogni $x \in A$, allora f/g è continua in x_0 .
- (iv) |f| è continua in x_0
- (v) Se $x_0 \in B \subset A$, allora $f_{|B|}$ è continua in x_0 .

Dimostrazione. Se x_0 è punto isolato di A, la tesi segue dal fatto che ogni funzione è continua in un punto isolato del suo insieme di definizione. Supponiamo che x_0 è punto di accumulazione per A. In tal caso si ha

$$\lim_{x \to x_0} f(x) = f(x_0) \quad \text{e} \quad \lim_{x \to x_0} g(x) = g(x_0)$$

e la tesi segue dal teorema sulle operazioni algebriche sui limiti, dal fatto che $\lim_{x\to x_0} f(x) = f(x_0) \Rightarrow \lim_{x\to x_0} |f(x)| = |f(x_0)|$, e dal teorema sui limiti delle restrizioni.

Lemma 1.2. Siano $a, b \in \mathbb{R}$. Allora

$$\max\{a,b\} = \frac{a+b+|a-b|}{2} \quad e \quad \min\{a,b\} = \frac{a+b-|a-b|}{2}.$$

Dimostrazione. Supponiamo che $a \leq b$. Allora

$$\frac{a+b+|a-b|}{2} = \frac{a+b+b-a}{2} = b = \max\{a,b\}$$

^{*}DIAG, Sapienza Università di Roma (saverio.salzo@uniroma1.it).

Figura 1: In rosso, le funzioni $\max\{f,g\}$ (a sinistra) e $\min\{f,g\}$ (a destra).

$$\frac{a+b-|a-b|}{2} = \frac{a+b-(b-a)}{2} = a = \min\{a,b\}.$$

Se $a \geq b$, allora

$$\frac{a+b+|a-b|}{2} = \frac{a+b+a-b}{2} = a = \max\{a,b\}$$

$$\frac{a+b-|a-b|}{2} = \frac{a+b-(a-b)}{2} = b = \min\{a,b\}.$$

Definizione 1.3. Siano $f: A \to \mathbb{R}$ e $g: A \to \mathbb{R}$. Allora le funzioni $\max\{f,g\}: A \to \mathbb{R}$ e $\min\{f,g\}: A \to \mathbb{R}$ sono tali che

$$\forall\,x\in A\colon \quad \max\{f,g\}(x)=\max\{f(x),g(x)\} \quad \text{e} \quad \min\{f,g\}(x)=\min\{f(x),g(x)\}.$$

Spesso le funzioni $\max\{f,g\}$ e $\min\{f,g\}$ si denotano rispettivamente con $f\vee g$ e $f\wedge g$.

Proposizione 1.4. Siano $f: A \to \mathbb{R}$, $g: A \to \mathbb{R}$ funzioni continue in $x_0 \in A$. Allora $\max\{f,g\}$, $\min\{f,g\}$ sono funzioni continue in x_0 .

Dimostrazione. Dal Lemma 1.2 e dalle definizioni di $\max\{f,g\}$ e $\min\{f,g\}$ si ha evidentemente che

$$f \vee g := \max\{f, g\} = \frac{f + g + |f - g|}{2}$$

$$f \wedge g := \min\{f, g\} = \frac{f + g - |f - g|}{2}.$$
(1)

Quindi la tesi segue dal Teorema 1.1

Definizione 1.5. Sia $A \subset \mathbb{R}$ non vuoto. L'insieme delle funzioni reali definite in A e continue in A si denota con $\mathscr{C}(A)$, cioè si pone

$$\mathscr{C}(A) = \{ f \in \mathbb{R}^A \mid f \text{ è continua in } A \}.$$

Osservazione 1.6. Dai risultati precedenti segue che

- 1) $f \in \mathcal{C}(A), g \in \mathcal{C}(A) \Rightarrow f + g \in \mathcal{C}(A)$.
- 2) $f \in \mathscr{C}(A), \lambda \in \mathbb{R} \implies \lambda f \in \mathscr{C}(A).$
- 3) $f \in \mathcal{C}(A), g \in \mathcal{C}(A) \Rightarrow fg \in \mathcal{C}(A).$
- 4) $f \in \mathscr{C}(A)$, $\Rightarrow |f| \in \mathscr{C}(A)$.
- 5) $f \in \mathcal{C}(A), g \in \mathcal{C}(A) \Rightarrow f \vee g, f \wedge g \in \mathcal{C}(A).$

Le proprietà 1) e 2) dicono che $\mathscr{C}(A)$ è uno spazio vettoriale reale. Le proprietà 1), 2) e 3) dicono che $\mathscr{C}(A)$ è un algebra reale e tutte insieme dicono che $\mathscr{C}(A)$ è un algebra reticolata.

Una classe importante di funzioni continue sono le funzioni *Lipschitziane*. La definizione è data di seguito.

Definizione 1.7. Una funzione $f: A \to \mathbb{R}$ si dice Lipschitziana se esiste L > 0 tale che

$$\forall x, y \in A \colon |f(x) - f(y)| \le L|x - y|.$$

La costante L si chiama costante di Lipschitz di <math>f.

Proposizione 1.8. Una funzione Lipschitziana è continua.

Dimostrazione. Sia $x_0 \in \mathbb{R}$. Per ogni $\varepsilon > 0$, se definiamo $\delta = L/\varepsilon$, si ha

$$\forall x \in A \colon |x - x_0| < \delta \implies |f(x) - f(x_0)| \le L|x - x_0| < L\delta = \varepsilon.$$

Esempio 1.9.

(i) Le funzioni sen e cos sono Lipschitziane con costante di Lipschitz uguale a 1, cioè

$$\forall x, y \in \mathbb{R}$$
: $|\sin x - \sin y| \le |x - y|$ e $|\cos x - \cos y| \le |x - y|$.

Per provare questo risultato si usano le formule di prostaferesi

$$sen x - sen y = 2 cos \left(\frac{x+y}{2}\right) sen \left(\frac{x-y}{2}\right)$$

$$\cos x - \cos y = -2 \operatorname{sen}\left(\frac{x+y}{2}\right) \operatorname{sen}\left(\frac{x-y}{2}\right)$$

Poi si usa che

$$\forall x \in \mathbb{R} : |\sin x| \le |x|.$$

Allora, se $x, y \in A$, risulta

$$|\operatorname{sen} x - \operatorname{sen} y| = 2 \left| \cos \left(\frac{x+y}{2} \right) \right| \left| \operatorname{sen} \left(\frac{x-y}{2} \right) \right|$$

$$\leq 2 \left| \operatorname{sen} \left(\frac{x - y}{2} \right) \right|$$

$$\leq 2 \left| \frac{x - y}{2} \right|$$

$$= |x - y|.$$

Allo stesso modo si prova la Lipschitzianità della funzione coseno.

- (ii) Dato che $||x| |y|| \le |x y|$, la funzione valore assoluto $|\cdot|$ è Lipschitziana (di costante di Lipschitz uguale a 1) e quindi è continua.
- (iii) La funzione tg: $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + \pi \mathbb{Z} \right\} \to \mathbb{R}$, tg $x = \frac{\sin x}{\cos x}$ è continua nel suo insieme di definizione in quanto rapporto di funzioni continue.

Teorema 1.10 (sulla continuità delle funzioni composte). Siano A e B due sottoinsiemi non vuoti di \mathbb{R} , $f: A \to B$ e $g: B \to \mathbb{R}$. Sia $x_0 \in A$. Allora

 $f \ \dot{e} \ continua \ in \ x_0 \ e \ g \ \dot{e} \ continua \ in \ f(x_0) \ \Rightarrow \ g \circ f \ \dot{e} \ continua \ in \ x_0.$

Perciò, se f è continua e g è continua, allora $g \circ f$ è continua.

Dimostrazione. Sia W un intorno di $g(f(x_0))$. Dato che g è continua in $f(x_0)$, allora esiste V intorno di $f(x_0)$ tale che

$$g(V \cap B) \subset W$$
.

Adesso, dato che f è continua in x_0 , in corrispondenza di V intorno di $f(x_0)$ esiste U intorno di x_0 tale che

$$f(U \cap A) \subset V$$
.

Allora risulta

$$(g \circ f)(U \cap A) = g(f(U \cap A)) \subset g(V \cap B) \subset W.$$

Quindi $g \circ f$ è continua in x_0 . La seconda parte del teorema segue dalla prima ricordando che la continuità in un insieme significa continuità in tutti i punti dell'insieme.

Osservazione 1.11 (sui limiti delle funzioni composte). Nel teorema sui limiti delle funzioni composte nel caso che g sia continua in $y_0 \in B$, non è necessario richiedere che $f(x) \neq y_0$ in un intorno di x_0 . Più precisamente si ha che se

• $\lim_{x \to x_0} f(x) = y_0 \in B$ e g è continua in y_0 ,

allora $\lim_{x \to x_0} g(f(x)) = g(y_0).$

2 Continuità delle funzioni monotone

Sia $f: A \to \mathbb{R}$ monotona crescente e $x_0 \in A$. Se x_0 è punto isolato di A sappiamo che f è continua in x_0 . Altrimenti, se x_0 è punto di accumulazione per A, si possono presentare tre situazioni (si veda Figura 2).

(i) x_0 è punto di accumulazione a sinistra (e non a destra) per A. In tal caso risulta

$$f(x_0 -) \le f(x_0) \tag{2}$$

e f è continua in $x_0 \Leftrightarrow f(x_0-) = f(x_0)$.

(ii) x_0 è punto di accumulazione a destra (e non a sinistra) per A. In tal caso risulta

$$f(x_0) \le f(x_0+) \tag{3}$$

e f è continua in $x_0 \Leftrightarrow f(x_0+) = f(x_0)$.

(iii) x_0 è punto di accumulazione sia a sinistra che a destra per A. In tal caso risulta

$$f(x_0 -) \le f(x_0) \le f(x_0 +) \tag{4}$$

e f è continua in $x_0 \Leftrightarrow f(x_0-) = f(x_0)$ e $f(x_0+) = f(x_0)$.

Le relazioni (2), (3) e (4) vengono dal teorema sui limiti unilaterali di funzioni monotone in quanto

$$f(x_0-) = \sup_{\substack{x \in A \\ x < x_0}} f(x)$$
 e $f(x_0+) = \inf_{\substack{x \in A \\ x > x_0}} f(x)$.

Quindi si vede che f è continua in A se e solo se per ogni $x_0 \in A$ risulta che $f(x_0-) = f(x_0)$ se x_0 è punto di accumulazione a sinistra per A e $f(x_0+) = f(x_0)$ se x_0 è punto di accumulazione a destra per A. Poi si giunge ad una analoga conclusione se f è decrescente, con la sola differenza che le disuguaglianze di sopra sono invertite.

Teorema 2.1. Sia $f: A \to \mathbb{R}$ monotona. Se f(A) è un intervallo, allora f è continua. Si veda Figura 3.

Dimostrazione. Ricordiamo che se f(A) è un intervallo di $\mathbb R$ allora è verificata la proprietà

$$\forall y_1, y_2 \in f(A): y_1 < y_2 \Rightarrow [y_1, y_2] \subset f(A).$$

Supponiamo, per fissare le idee, che f sia crescente. In virtù di quanto discusso in precedenza si tratta di provare che se x_0 è punto di accumulazione a sinistra per A allora $f(x_0-)=f(x_0)$ e se x_0 è punto di accumulazione a destra per A allora $f(x_0+)=f(x_0)$. Proviamo la prima e supponiamo quindi che x_0 sia punto di accumulazione a sinistra per A. Allora si ha che $f(x_0-) \leq f(x_0)$ e inoltre (dalla definizione di $f(x_0-)$ e dalla crescenza di f)

$$\forall x \in A: \begin{cases} x < x_0 \Rightarrow f(x) \le f(x_0 - 1) \\ x \ge x_0 \Rightarrow f(x) \ge f(x_0). \end{cases}$$

Figura 2: Illustrazione delle tre situazioni presentate all'inizio della Sezione 2.

Figura 3: Illustrazione della dimostrazione del Teorema 2.1 sulla continuità delle funzioni monotone.

Perciò

$$f(A) \subset]-\infty, f(x_0-)] \cup [f(x_0), +\infty[$$
.

Inoltre è chiaro che $f(A) \cap]-\infty, f(x_0-)] \neq \emptyset$ e $f(A) \cap [f(x_0), +\infty[\neq \emptyset.$ Allora, se fosse $f(x_0-) < f(x_0), f(A)$ non potrebbe essere un intervallo, perché presi due punti

$$y_1 \in f(A) \cap]-\infty, f(x_0-)]$$
 e $y_2 \in f(A) \cap [f(x_0), +\infty[$

risulterebbe $[y_1, y_2] \not\subset f(A)$. Perciò deve essere $f(x_0-) = f(x_0)$ (e quindi f è continua a sinistra in x_0). Supponiamo ora che x_0 sia un punto di accumulazione a destra per A. In questo caso, si ha $f(x_0) \leq f(x_0+)$ e

$$\forall x \in A: \begin{cases} x \le x_0 \Rightarrow f(x) \le f(x_0) \\ x > x_0 \Rightarrow f(x) \ge f(x_0+). \end{cases}$$

Perciò

$$f(A) \subset]-\infty, f(x_0)] \cup [f(x_0+), +\infty[$$
.

Come prima, se fosse $f(x_0) < f(x_0+)$, f(A) non potrebbe essere un intervallo. Si conclude allora che necessariamente deve essere $f(x_0) = f(x_0+)$, (cioè f è continua a destra in x_0). \square

Esempio 2.2.

- (i) Sia a > 0 e $\exp_a : \mathbb{R} \to \mathbb{R}_+^*$ la funzione esponenziale di base a. Sappiamo che \exp_a è strettamente monotona e bigettiva. Dato che l'immagine di \exp_a è un intervallo di \mathbb{R} , allora \exp_a è continua. Con lo stesso ragionamento si prova che $\log_a : \mathbb{R}_+^* \to \mathbb{R}$ è continua.
- (ii) Sia $\alpha \neq 0$. Allora, se $\alpha > 0$, la funzione potenza $p_{\alpha} \colon \mathbb{R}_{+} \to \mathbb{R}_{+}$ è strettamente crescente e bigettiva e se $\alpha < 0$ la funzione potenza $p_{\alpha} \colon \mathbb{R}_{+}^{*} \to \mathbb{R}_{+}^{*}$ è strettamente crescente e bigettiva. In ogni caso l'immagine di p_{α} è un intervallo di \mathbb{R} e il Teorema 2.1 garantisce che p_{α} è continua nel suo insieme di definizione.
- (iii) senh: $\mathbb{R} \to \mathbb{R}$ e tgh: $\mathbb{R} \to \mathbb{R}$ sono strettamente crescenti e hanno immagine un intervallo di \mathbb{R} . Perciò, per il Teorema 2.1, esse sono continue. Per quanto riguarda il coseno iperbolico, risulta che $\cosh_{\mathbb{R}_+} \to \mathbb{R}_+ \to \mathbb{R}$ e $\cosh_{\mathbb{R}_-} \to \mathbb{R}_+ \to \mathbb{R}$ sono strettamente monotone e hanno per immagine l'intervallo $[1, +\infty[$. Perciò esse sono continue e quindi anche $\cosh: \mathbb{R} \to \mathbb{R}$ è continua.

3 Limiti notevoli

In questa sezione dimostriamo alcuni limiti notevoli che servono di base per il calcolo di limiti più complicati.

Limite 1

$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = e. \tag{5}$$

Dimostrazione. Notiamo prima di tutto che l'insieme di definizione della funzione è $\mathbb{R}\setminus\{0,1\}$, quindi ha senso considerare i limiti per $x\to\pm\infty$. Poi, ricordiamo che, per definizione,

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e,$$

da cui segue anche che

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^{n+1} = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right) = e$$

e

$$\lim_{n\to +\infty} \left(1+\frac{1}{n+1}\right)^n = \lim_{n\to +\infty} \left(1+\frac{1}{n+1}\right)^{n+1} \lim_{n\to +\infty} \left(1+\frac{1}{n+1}\right)^{-1} = e.$$

Consideriamo adesso la funzione parte intera

$$|\cdot|: \mathbb{R} \to \mathbb{R}: x \mapsto |x|.$$

Chiaramente essa è crescente e l'immagine è \mathbb{Z} e quindi per il teorema sui limiti unilaterali delle funzioni monotone, risulta

$$\lim_{x \to +\infty} \lfloor x \rfloor = \sup \mathbb{Z} = +\infty.$$

Allora per il teorema sui limiti delle funzioni composte, si ha

$$\lim_{x\to +\infty} \left(1+\frac{1}{\lfloor x\rfloor}\right)^{\lfloor x\rfloor+1} = e \quad \text{e} \quad \lim_{x\to +\infty} \left(1+\frac{1}{\lfloor x\rfloor+1}\right)^{\lfloor x\rfloor} = e$$

D'altra parte, dalla relazione

$$\forall x \in \mathbb{R}: |x| \le x < |x| + 1,$$

segue che, per ogni $x \in \mathbb{R}$ con $x \ge 1$,

$$1 + \frac{1}{1 + |x|} < 1 + \frac{1}{x} \le 1 + \frac{1}{|x|}$$

e quindi, usando la stretta monotonia della funzione potenza e della funzione esponenziale, si ha

$$\left(1 + \frac{1}{1 + \lfloor x \rfloor}\right)^{\lfloor x \rfloor} < \left(1 + \frac{1}{x}\right)^{\lfloor x \rfloor} \le \left(1 + \frac{1}{x}\right)^x \le \left(1 + \frac{1}{\lfloor x \rfloor}\right)^x < \left(1 + \frac{1}{\lfloor x \rfloor}\right)^{\lfloor x \rfloor + 1}.$$

Perciò per il teorema dei carabinieri, risulta

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e.$$

Adesso, allo scopo di stabilire il caso $x \to -\infty$, si noti che per ogni $x \in]-\infty, -1[$ si ha

$$\left(1 + \frac{1}{x}\right)^x = \left(1 - \frac{1}{|x|}\right)^{-|x|} = \left(\frac{|x|}{|x| - 1}\right)^{|x|} = \left(1 + \frac{1}{|x| - 1}\right)^{|x|} = \left(1 + \frac{1}{|x| - 1}\right)^{|x| - 1} \left(1 + \frac{1}{|x| - 1}\right).$$

Da quest'ultima relazione e dal Teorema ??, sui limiti delle funzioni composte, si ha

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = \lim_{y \to +\infty} \left(1 + \frac{1}{y}\right)^y \left(1 + \frac{1}{y}\right) = e,$$

dove si è posto y = |x| - 1 (e risulta che $y \to +\infty$, per $x \to -\infty$).

Limite 2

Per ogni $\alpha \in \mathbb{R}$ risulta

$$\lim_{x \to \pm \infty} \left(1 + \frac{\alpha}{x} \right)^x = e^{\alpha} \quad e \quad \left[\lim_{x \to 0} (1 + \alpha x)^{1/x} = e^{\alpha} \right]$$
 (6)

Dimostrazione. Se $\alpha=0$ i due limiti sono evidenti. Supponiamo $\alpha>0$. Allora per il Teorema ??, sui limiti delle funzioni composte, risulta

$$\lim_{x\to\pm\infty}\left(1+\frac{\alpha}{x}\right)^x=\lim_{x\to\pm\infty}\left[\left(1+\frac{\alpha}{x}\right)^{\frac{x}{\alpha}}\right]^\alpha=\lim_{y\to\pm\infty}\left[\left(1+\frac{1}{y}\right)^y\right]^\alpha=\lim_{t\to e}t^\alpha=e^\alpha.$$

Se poi $\alpha < 0$, allora quando $x \to +\infty$ risulta che $y = x/\alpha \to -\infty$ e se $x \to -\infty$, allora $y = x/\alpha \to +\infty$; perciò

$$\lim_{x \to \pm \infty} \left(1 + \frac{\alpha}{x} \right)^x = \lim_{x \to \pm \infty} \left[\left(1 + \frac{\alpha}{x} \right)^{\frac{x}{\alpha}} \right]^{\alpha} = \lim_{y \to \mp \infty} \left[\left(1 + \frac{1}{y} \right)^y \right]^{\alpha} = \lim_{t \to e} t^{\alpha} = e^{\alpha}.$$

Per stabilire il secondo dei limiti in (6), si applica nuovamente il Teorema sui limiti delle funzioni composte al calcolo dei limiti destro e sinistro in 0, con y = 1/x,

$$\lim_{x \to 0^+} (1 + \alpha x)^{1/x} = \lim_{y \to +\infty} \left(1 + \frac{\alpha}{y} \right)^y = e^{\alpha}$$

$$\lim_{x \to 0^-} (1 + \alpha x)^{1/x} = \lim_{y \to -\infty} \left(1 + \frac{\alpha}{y} \right)^y = e^{\alpha}.$$

Limite 3

Sia $a \in \mathbb{R}$ con $a \neq 1$. Allora

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \log_a e.$$
(7)

Dimostrazione. Dalle proprietà del logaritmo di base a, si ha

$$\forall x \in \mathbb{R}_+^* : \frac{\log_a(1+x)}{x} = \log_a(1+x)^{\frac{1}{x}}$$

e quindi, dalla seconda delle (6), dal teorema sui limiti delle funzioni composte e dalla continuità della funzione logaritmica di base a, si ha

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \lim_{x \to 0} \log_a(1+x)^{\frac{1}{x}} = \lim_{y \to e} \log_a y = \log_a e.$$

Limite 4

Sia a > 0. Allora

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \log a.$$
(8)

Dimostrazione. Se a=1 la (8) è evidente. Supponiamo che $a\neq 1$. Allora si nota che

$$y = a^x - 1 \Leftrightarrow 1 + y = a^x \Leftrightarrow \log_a(1 + y) = x.$$

Quindi si vede che¹

$$\frac{a^x - 1}{x} = \frac{y}{\log_a(1+y)} \Big|_{y=a^x - 1}$$

e che per $x\to 0$, si ha $y\to 0$. Allora per la (7) e per il Teorema sui limiti delle funzioni composte, si ha

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \lim_{y \to 0} \frac{y}{\log_a(y + 1)} = \frac{1}{\log_a e} = \log a.$$

Limite 5

Sia $\alpha \in \mathbb{R}$. Allora

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha \tag{9}$$

Dimostrazione. Evidentemente

$$\frac{(1+x)^{\alpha}-1}{x} = \left(\frac{(1+x)^{\alpha}-1}{\log(1+x)^{\alpha}}\right) \left(\frac{\alpha \log(1+x)}{x}\right)$$

e

$$y = (1+x)^{\alpha} - 1 \iff 1+y = (1+x)^{\alpha} \iff \log(1+y) = \log(1+x)^{\alpha}.$$

Perciò

$$\frac{(1+x)^{\alpha}-1}{x} = \left(\frac{y}{\log(1+y)}\bigg|_{y=(1+x)^{\alpha}-1}\right) \left(\frac{\alpha\log(1+x)}{x}\right),$$

con $y \to 0$ per $x \to 0$. La tesi segue allora dal Teorema sui limiti delle funzioni composte e dal limite (7).

Limite 6

Si ha

$$\left[\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}\right] \quad e \quad \left[\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1.\right]$$
(10)

Dimostrazione. Moltiplicando e dividendo per $1 + \cos x$ (con $x \in]-\pi/2,\pi/2[)$ si ha

$$\frac{1 - \cos x}{x^2} = \frac{1 - \cos^2 x}{x^2} \frac{1}{1 + \cos x} = \left(\frac{\sin x}{x}\right)^2 \frac{1}{1 + \cos x}$$

e quindi,

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \frac{1}{1 + \cos x} = 1^2 \cdot \frac{1}{2} = \frac{1}{2}.$$

Il secondo limite in (9) segue immediatamente dalla relazione

$$\lim_{x\to 0}\frac{\operatorname{tg} x}{x}=\lim_{x\to 0}\frac{\operatorname{sen} x}{x}\frac{1}{\cos x}=\lim_{x\to 0}\frac{\operatorname{sen} x}{x}\lim_{x\to 0}\frac{1}{\cos x}=1$$

¹Ricordiamo che un modo alternativo per indicare la composizione g(f(x)) è $g(y)|_{y=f(x)}$

4 Metodo di Erone per il calcolo della radice quadrata

Sia b > 0. Il metodo di Erone per il calcolo della radice quadrata di b definisce una successione $(a_n)_{n \in \mathbb{N}}$ ricorsivamente, nel modo seguente.

$$a_0 \in \mathbb{R}_+^*$$
 (arbitrario)
Per $n = 0, 1, \dots$

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{b}{a_n} \right).$$
(11)

La successione è definita ricorsivamente usando la funzione

$$f \colon \mathbb{R}_+^* \to \mathbb{R}_+^*, \quad f(x) = \frac{1}{2} \left(x + \frac{b}{x} \right),$$

cioè

$$a_{n+1} = f(a_n). (12)$$

Studiamo quindi questa funzione. Per prima cosa osserviamo che

$$\forall x \in \mathbb{R}_+^* \colon \ x > \sqrt{b} \Leftrightarrow \frac{\sqrt{b}}{x} < 1 \Leftrightarrow \frac{b}{x} < \sqrt{b}.$$

Questo stabilisce che se x è un'approssimazione per eccesso di \sqrt{b} , allora b/x è un'approssimazione per difetto di \sqrt{x} e quindi è ragionevole aspettarsi che il punto medio di x e b/x sia una stima migliore di \sqrt{b} di quanto non lo siano x e b/x. Questo fornisce una giustificazione intuitiva del metodo. Adesso al fine di studiare la convergenza valutiamo $f(x) - \sqrt{b}$. Si ha

$$f(x) - \sqrt{b} = \frac{1}{2} \left(x + \frac{b}{x} \right) - \sqrt{b}$$

$$= \frac{x^2 + b - 2\sqrt{b}x}{2x}$$

$$= \frac{(x - \sqrt{b})^2}{2x} \ge 0.$$
(13)

Si vede perciò che qualunque sia l'approssimazione iniziale x > 0 (per eccesso o per difetto), l'approssimazione al passo successivo f(x) sarà un'approssimazione per eccesso di \sqrt{b} . Le proprietà della successione $(a_n)_{n\in\mathbb{N}}$ sono riassunte nella proposizione seguente.

Proposizione 4.1. Sia $(a_n)_{n\in\mathbb{N}}$ definita come in (11). Allora valgono le seguenti affermazioni.

(i)
$$\forall n \in \mathbb{N}^* : a_n \ge \sqrt{b}$$
.

(ii)
$$\forall n \in \mathbb{N}^*$$
: $a_{n+1} - \sqrt{b} \le \frac{1}{2}(a_n - \sqrt{b})$.

(iii)
$$\forall n \in \mathbb{N}^*$$
: $0 \le a_n - \sqrt{b} \le \frac{1}{2^n} \frac{(a_0 - \sqrt{b})^2}{a_0}$.

(iv)
$$\lim_{n \to +\infty} a_n = \sqrt{b}$$
.

(v) Se
$$a_0 = b$$
, allora $\forall n \in \mathbb{N}^*$: $0 \le a_n - \sqrt{b} \le \frac{1}{2^n} (\sqrt{b} - 1)^2 \le \frac{1}{2^n} (b + 1)$.

Dimostrazione. (i): Consegue direttamente da (13).

(ii): Da (13) segue che

$$x \ge \sqrt{b} \quad \Rightarrow \quad 0 \le f(x) - \sqrt{b} \le \frac{x - \sqrt{b}}{2x} (x - \sqrt{b}) \le \frac{1}{2} (x - \sqrt{b}), \tag{14}$$

perché chiaramente

$$x \ge \sqrt{b} \implies \frac{x - \sqrt{b}}{x} \le 1.$$

Quindi, ricordando la (12), da (i) e (14) si ottiene che $\forall n \in \mathbb{N}^*$: $a_{n+1} - \sqrt{b} \leq \frac{1}{2}(a_n - \sqrt{b})$. (iii): Iterando la (ii), si ha

$$\forall n \in \mathbb{N}^* : 0 \le a_n - \sqrt{b} \le \frac{1}{2} (a_{n-1} - \sqrt{b})$$

$$\le \left(\frac{1}{2}\right)^2 (a_{n-2} - \sqrt{b})$$

$$\le \cdots \cdots \cdots$$

$$\le \left(\frac{1}{2}\right)^{n-1} (a_1 - \sqrt{b})$$

$$= \left(\frac{1}{2}\right)^{n-1} (f(a_0) - \sqrt{b})^2$$

$$= \left(\frac{1}{2}\right)^{n-1} \frac{(a_0 - \sqrt{b})^2}{2a_0}$$

$$= \frac{1}{2^n} \frac{(a_0 - \sqrt{b})^2}{a_0}.$$

(iv): Dato che $\lim_{n\to+\infty} 1/2^n = 0$ e vale la (iii), per il teorema dei carabinieri, $\lim_{n\to+\infty} a_n = \sqrt{b}$.

(v): Si ottiene direttamente dalla (iv), scegliendo $a_0 = b$.

Osservazione 4.2. Data una precisione $\varepsilon > 0$ si può ottenere il numero di iterazioni sufficiente a garantire una precisione minore di ε . Infatti basta osservare che

$$\frac{1}{2^n}(b+1) \le \varepsilon \iff n \ge \log_2\left(\frac{b+1}{\varepsilon}\right),$$

e quindi se si prendere $n = \lfloor \log_2((b+1)/\varepsilon) \rfloor + 1$, si ha $0 \le a_n - \sqrt{b} \le \varepsilon$. Si noti che

$$\frac{1}{2^{10}} \approx 10^{-3}$$
, $\frac{1}{2^{20}} \approx 10^{-6}$ e $\frac{1}{2^{30}} \approx 10^{-9}$.

Perciò con sole 30 iterazioni, l'algoritmo di Erone identifica correttamente le prime 9 cifre decimali della radice quadrata di b.