PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 97/21091 (51) International Patent Classification 6: (11) International Publication Number: **A**1 G01N 21/35, G01J 3/42 12 June 1997 (12.06.97) (43) International Publication Date: (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, PCT/AU96/00776 (21) International Application Number: BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE. HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, 2 December 1996 (02.12.96) (22) International Filing Date: LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, (30) Priority Data:

ΑU

(71) Applicant (for all designated States except US): COMMON-WEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION [AU/AU]; Limestone Avenue, Campbell, ACT 2612 (AU).

1 December 1995 (01.12.95)

(72) Inventors; and

PN 6928

- (75) Inventors/Applicants (for US only): BAKER, Suzanne, Kay [AU/AU]; 5 Hamer Avenue, Wembley Downs, W.A. 6019 (AU). HENRY, David, Andrew [AU/AU]; 213A Roberts Street, Joondana, W.A. 6060 (AU). PURSER, Douglas, Barrie [AU/AU]; 5 Hamer Avenue, Wembley Downs, W.A. 6019 (AU). DYNES, Robyn, Ann [AU/AU]: 54 Nanson Street, Wembley, W.A. 6014 (AU). WALLINGTON, Brett, Steven [AU/AU]; 51 Magnolia Gardens, Yangebup, W.A. 6164 (AU).
- (74) Agents: HARWOOD, Errol, John et al.; Wray & Associates, 239 Adelaide Terrace, Perth, W.A. 6000 (AU).

PT. RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: METHOD FOR DETERMINING FEED QUALITY

(57) Abstract

A method for determining a biomechanical property of a feed, the method comprising the steps of: (a) subjecting the feed to infrared radiation to obtain spectral data; and (b) using the spectral data to determine the biomechanical property; whereby, the biomechanical property of the feed is determined on the basis of the bond energies of the chemical constituents of the feed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	.MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL ·	Netherlands
BE	Belgium	HU	Hungary	NO	
BF	Burkina Faso	IE	Ireland	NZ.	Norway New Zealand
BG	Bulgaria	IT	Italy	PL	
ВJ	Benin	JP	Japan	PT.	Poland
BR	Brazil	KE	Kenya	RO	Portugal
BY	Belarus	KG	Kyrgysian	RU.	Romania
CA	Canada	KP	Democratic People's Republic		Russian Federation
CF	Central African Republic	•••	of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
СН	Switzerland	KZ	Kazakhsian	sG	Singapore
CI	Côte d'Ivoire	LI	Liechtenstein	SI	Stovenia
CM	Cameroon	LK	Sri Lanka	SK	Slovakia
CN	China	LR	Liberia	S.N	· Senegal
CS	Czechosłovakia	LT		SZ	Swaziland
CZ	Czech Republic		Lithuania	,TD	Chad
DE.	Germany	LU	Luxembourg	TG	Togo
DK	Denmark	LV .	Latvia	TJ	Tajikistan
-EE	— Estonia ————————	MC	Monaco	ŤŤ	Trinidad and Tobago
ES		MD	- Republic of Moldova	UA	-Ukraine
	Spain	MG	Madagascar	υG	Uganda
FI	Finland	ML	Mali	บร	United States of America
FR	France	MN	Mongolia	υz	Uzbekistan
GA	Gabon ·	MR	Mauritania	VN	Viet Nam

10

15

20

25

Method for Determining Feed Quality

This invention relates to a method for quantifying biomechanical properties of animal feed based on a correlation between the chemical and biomechanical properties of the feed, and to methods for objectively measuring the quality of animal feed, such as fodders including hay, pastures and forages.

Diet is the major determinant of productivity of an animal. In the livestock industry, animals are farmed for meat, wool and other valuable products. The diet of farmed livestock is largely dictated by man and, given the effect of diet on animal production, it is highly desirable to optimise the diet of livestock to gain maximum benefit from the natural resource.

Feed quality is one variable that has a major impact on animal productivity. In this respect, feed quality affects the amount of feed an animal will consume and the feeding value it gains from the feed consumed. In the case of cattle, sheep and other ruminants, feed quality depends on digestibility, chemical attributes (nutrient composition) and biomechanical attributes (namely how easy it is for an animal to chew the feed during ingestion and rumination).

It is generally accepted that there are constraints on the intake of feed by ruminant animals, that the amount of useful energy obtained by a ruminant animal may fall short of the amount that the animal can potentially use, and that this would result in reduced productivity. For example, the principal constraints to voluntary intake of fodders are resistance of fodder fibre to chewing and digestibility (provided that the intake is not otherwise constrained by low palatability, deleterious secondary compounds, or the inadequacy of essential nutrients). Differences between feeds, such as fodders, in their resistance to chewing are reflected in differences in biomechanical properties, including comminution energy, shear energy, compression energy, tensile strength, shear strength and intrinsic shear strength.

20

25

Hay is a common feed, and its quality is significantly affected by factors such as seasonal differences, haymaking practices and pasture composition. It has been shown in one recent survey that in some years as little as 11% of hay produced was good enough to promote liveweight gain in weaner sheep. This possibility of wide variation in measures of hay quality is a matter of increasing concern, and has given rise to a demand for a method of objective quality assessment.

A hay quality system adopted in the United States of America uses a measure known as relative feed value (RFV) to distinguish between hays of different quality. The RFV is calculated from the dry matter digestibility, which is predicted from acid detergent fibre (ADF) content, and from the dry matter intake, which is predicted from neutral detergent fibre (NDF) content.

The RFV based system suffers from a number of disadvantages. For example, the ADF and NDF contents of fodders are determined by chemical methods which take several days to complete, and thus are expensive in terms of resources.

While objective quality assessment and product specification has become an integral part of the production and marketing in domestic and export markets for the Australian grain, wool, meat and dairy industries, performance-based quality standards are not presently in place for feeds such as hays and other fodders. Consequently;

- (a) the feed buyer cannot be sure of getting value for money, and this is likely to become increasingly important in respect of export markets if other exporting countries are able to guarantee standards for their product;
- (b) the feed producer cannot be sure of getting a higher price for a superior product;

- (c) livestock producers are unable to objectively formulate rations or supplementary feeding regimes to achieve animal production targets; and
- (d) the market for animal feed tends to be unstable.
- Whilst the relationship between biomechanical properties of feed and feed quality is now accepted, there is a need for a convenient, inexpensive and relatively accurate assay method for feed to determine its quality. An accurate determination of feed quality allows for optimisation of feeding regimes and improved animal production for obvious economic gains.
- 10 It is an object of this invention to overcome or at least partially alleviate the aforementioned problems and/or reduce the uncertainties and concomitant problems of the prior art systems for measuring the biomechanical properties of feed and hence determining feed quality.

Thus, the present invention provides a method for determining a biomechanical property of a feed, the method comprising the steps of;

- (a) subjecting the feed to infrared radiation to obtain spectral data;and
- (b) using the spectral data to determine the biomechanical property;

whereby the biomechanical property of the feed is determined on the basis of the bond energies of the chemical constituents of the feed.

The spectral data may be used directly to determine the biomechanical property of the feed. Alternatively, the spectral data may be used to determine another property of the feed and the other property is used to determine the biomechanical property on the basis of a correlation between the other property and the biomechanical property.

20

When the biomechanical property is determined via another property, the other property is preferably a chemical property of the feed such as the ADF content or the NDF content or the lignin content.

There is a variety of biomechanical properties of the feed that may be determined. Preferably, the biomechanical properties are selected from the group comprising shear energy, compression energy, comminution energy, tensile strength, shear strength and intrinsic shear strength.

The spectral data may comprise a reflectance spectrum at a combination of wavelengths or over a predetermined range of wavelengths such as 700nm-3000nm, or more preferably 1100nm-2500nm. Preferably, the data obtained for the spectral range of 1850nm-1970nm is disregarded, this being the range over which water reflects strongly.

The spectral data may be recorded at one or more wavelength intervals throughout the spectral range. When the spectral data is a reflectance spectrum over a predetermined range it is preferably measured at 2nm intervals over the range. Of course, if so desired the spectral data may be measured at intervals other than 2nm.

When the spectral data is used to directly determine a biomechanical property, the biomechanical property is preferably determined by comparison of the spectral data with a calibration equation that reflects the relationship between reflectance and the biomechanical property. Preferably, the calibration curve is determined on the basis of laboratory data establishing a correlation between reflectance and the biomechanical property.

Thus, the present invention also provides a method for determining a biomechanical property of a feed, the method comprising the steps of;

(a)	subjecting th	ne feed to	infrared	radiation to	obtain	spectral	data

(b) comparing the spectral data obtained in (a) with a calibration equation to determine the biomechanical property;

whereby the biomechanical property of the feed is determined on the basis of the bond energies of the chemical constituents of the feed.

- The present invention also provides a method for determining feed quality, the method comprising the steps of;
 - (a) subjecting the feed to infrared radiation to obtain spectral data;
 - (b) using the spectral data to determine a biomechanical property of the feed; and
- 10 (c) using the value of the biomechanical property obtained in step (b) to determine feed quality;

whereby the biomechanical property of the feed and thus the feed quality is determined on the basis of the bond energies of the chemical constituents of the feed.

- In one particular form, the method described immediately above may further comprise the determination of an additional property of the feed. The additional property may vary and preferably is selected from the group comprising the digestibility of the feed *in vivo* or *in vitro*, the ADF content or the NDF content, or the lignin content.
- The present invention is based on research establishing a strong correlation between the bond energies as they relate to the physical structure, and the biomechanical properties of feed. Once this correlation is established the bond energies of the chemical constituents, and in turn the biomechanical properties of the feed, can be determined using infrared spectroscopy. The biomechanical

properties quantified in this way are useful for accurately determining feed quality.

In this respect, research resulting in the present invention has shown that the biomechanical attributes of feeds such as cereal and legume hays, straws, and mature, dry subterranean clovers are much more strongly related to animal performance than are digestibility or chemical composition of the feeds.

Thus, comminution energy, the energy required to grind or comminute fodder material, has proved to be a very effective indicator of forage consumption constraint (FCC), which is the difference between the quantity of forage an animal should consume to satisfy its capacity to use energy (a theoretical maximum) and the actual voluntary dry matter intake achieved.

Shear energy, the energy required to shear fodder material, and compression energy, the energy required to compress fodder material, are two biomechanical feed characters of fodders that are closely related to comminution energy and which also are good predictors of FCC.

In this respect, feed quality can be assessed in a number of ways. The forage consumption constraint (FCC) is one convenient measure of feed quality and equates to the difference between the quantity of the fodder that the animal would be attempting to consume to satisfy its capacity to use energy (theoretical maximum intake) and the voluntary forage consumption (VFC).

Thus, the present invention also provides a method for determining feed quality, the method comprising the steps of;

- (a) subjecting the feed to infrared radiation to obtain spectral data;
- (b) using the spectral data to determine a biomechanical property of the feed; and

15

(c) using the value of the biomechanical property obtained in step (b) to determine the forage consumption constraint (FCC) or voluntary feed consumption (VFC) as a measure of feed quality;

whereby the biomechanical property of the feed and thus the feed quality is determined on the basis of the bond energies of the chemical constituents of the feed.

The present invention is based on the finding that variations in biomechanical properties such as shear energy, comminution energy and compression energy are reflected in NIR spectra of fodders. This finding, together with recognition of the value of biomechanical characters for the prediction of FCC (and, in turn, the prediction of voluntary feed consumption (VFC)) makes it possible for quicker, less expensive, more convenient and more reliable prediction of feed quality than hitherto known and predicted.

Accordingly, this invention provides a method of (i) assessing the suitability of a fodder, such as a forage, to meet a required animal performance; or (ii) predicting the VFC of a forage; or (iii) predicting the FCC of a forage, which method comprises subjecting a sample of the forage to NIR radiation and determining the reflectance at selected wavelengths.

It has been found that the biomechanical properties, such as shear and comminution energy values for a given fodder, correlate with the fodder's reflectance of infrared radiation. More specifically, the invention is based on research showing that:

(a) NIR wavelengths at which reflectance (R), namely the second derivative of the logarithm of the inverse of R, correlates significantly with the variation in energy required to shear fodder materials are 1168nm, 1458nm, 1598nm, 1718nm, 1828nm and 2048nm. For the prediction of fodder shear energy (y₁, kJ.m⁻²) the following equation may be used:

השופחחרום אוח סדפוחם בי

25

15

20

$$y_1 = 19.95 + 10239.46 R_{1168} + 3623.49 R_{1458} - 4255.61 R_{1598} - 5319.88 R_{1718} + 5148.38 R_{1828} + 2452.05 R_{2048}$$

(b) NIR wavelengths at which the second derivative of the logarithm of the inverse of reflectance (R) correlates significantly with the variation in energy required to comminute fodder materials are 1138nm, 2018nm, 2128nm and 2408nm.

For the prediction of fodder comminute energy (y₂, kJ.kg DM⁻¹) the following equation is proposed:

$$y_2 = 231.42 + 18224.74 R_{1138} - 4955.12 R_{2018} - 3005.37 R_{2128} + 4290.18 R_{2408}$$

(c) NIR wavelengths at which the second derivative of the logarithm of the inverse of reflectance (R) correlates significantly with the variation in compression energy are 1268nm, 1588nm, 1728nm, 2278nm. For the prediction of compression energy (y₃, kJ.kgDM⁻¹) the following equation may be used:

$$y_3 = -0.71 - 911.04 R_{1268} + 112.57 R_{1588} - 79.48 R_{1728} - 28.02 R_{2278}$$

(d) NIR wavelengths at which the second derivative of the logarithm of the inverse of reflectance (R) correlates significantly with variation in *in vivo* digestibility of dry matter (DMD) (y₄, %) is 1158nm, 1238nm, 1668nm, 1908nm, 1918nm, and 2248nm. For prediction of the DMD (y₄, %) of a fodder the following equation is proposed:

$$y_4 = 46.62 + 8162.72 R_{1158} - 8799.69 R_{1238} + 1249.01 R_{1668} + 519.46 R_{1908} - 367.08 R_{1918} - 161.84 R_{2248}$$

(e) NIR wavelength at which the second derivative of the logarithm of the inverse of reflectance (R) correlates significantly with variation in in vitro

10

15

20

25

-7

digestibility of dry matter (IVDMD) is 1698nm, 1748nm, 1908nm, 1918nm and 2158nm. For prediction of the DMD (in vitro) of a fodder the following equation is proposed:

$$y_5 = 63.43 - 2186.89 R_{1698} - 1491.99 R_{1748} + 981.30 R_{1908} - 556.01 R_{1918} + 2003.05 R_{2158}$$

Accordingly, in a preferred method according to this invention, the infrared wavelengths at which reflectance is measured comprise one or more of the following: 1168nm, 1458nm, 1598nm, 1718nm, 1828nm, 2048nm, 1138nm, 2018nm, 2128nm, 2408nm, 1268nm, 1588nm, 1728nm, 2278nm, 1158nm, 1238nm, 1668nm, 1908nm, 2248nm, 1698nm, 1748nm, 1918nm and 2158nm.

It will be understood that the foregoing are wavelengths at which the strongest correlations have been observed, and the possibility of useful correlations being observed at other wavelengths are highly likely.

Essentially, it can be shown that in the same way that a decrease in comminution energy is reflected by a decrease in forage consumption constraint, there is also a linear relationship between comminution energy or shear energy and the consumption constraint of a fodder. Thus, the use of NIR spectra, in conjunction with the equations detailed at paragraphs (a) to (e) above, permits estimation of the VFC of a fodder, which together with estimates of digestibility (conveniently obtained from NIR spectra) can be expected to provide a valuable basis for performance-based quality standards for fodders.

It is to be appreciated that the intention of this invention is to offer a quick, reliable and relatively inexpensive means of obtaining information from which the fodder producer and user, such as purchaser, might make informed judgements about the market value of a given fodder sample relative to alternatives, and of its suitability for a particular-purpose.

Conceivably, fodder quality predictions obtained by the method of this invention could be a useful component of, or used in conjunction with, for example, Decision Support Software (DSS) packages designed to assist livestock management.

It is further envisaged that by combining NIR measurements made by a remote sensing system, such as Landsat, with data from a Geographical Information System, the invention will provide a means of making reliable predictions of pasture quality. These predictions, together with predictions of feed intake and animal performance, should then provide a useful basis for strategies of supplementary feeding to improve performance in grazing ruminants.

The present invention also provides for a spectrometer configured to determine biomechanical properties and/or quality of feed according to the methods of the present invention. Preferably, the spectrometer includes a data processing means which enables the spectrometer to receive a feed sample and quantify either or both the biomechanical properties of the feed and the quality of the feed. In one particular form the data processing means includes a calibration equation to facilitate the determination of the feed quality or biomechanical property.

The invention will now be described with reference to the following examples. The description of the examples is in no way to limit the generality of the preceding paragraphs.

EXAMPLES

The energy of molecular vibrations correspond to the energy of the infrared spectrum of the electromagnetic spectrum, and these molecular vibrations may be detected and measured in the wavelength range of the infrared spectrum. Functional groups in molecules have vibration frequencies that are characteristic of that functional group and that are within well-defined regions of the infrared spectrum.

For organic compounds the principal analytical features of the near infrared (NIR) spectrum are due to absorbance of radiant energy by bonds between hydrogen, carbon, nitrogen, oxygen or with sulphur, phosphorus and metal halides. When organic compounds are irradiated with infrared radiation at wavelengths between 700 and 3000nm part of the incident radiation is absorbed and the remainder is reflected, refracted or transmitted by the sample. Most quantitative reflectance analyses are made in the wavelength range of 1100 to 2600nm. The amount of energy absorbed or diffusely reflected at any given wavelength in this wavelength range is related to the chemical composition of the organic compound. NIR spectroscopy uses detectors to measure the amount of radiation that is diffusely reflected by the irradiated sample.

20

25

30

NIR spectroscopic analysis is an analytical procedure calibrated to a primary reference method. Calibration in NIR spectroscopy (NIRS) relies on similarities among the spectra, and analytical properties of interest in the reference samples. In this example the analytical properties of interest were the biomechanical characters of forages, and the procedure that was adopted in this example was as follows:

a) prediction of biomechanical characters of a range of grasses using NIR spectroscopy was established by developing a calibration equation(s) from laboratory determined values of a set of reference samples.

- b) validation of the equation(s) either by using laboratory determined values of a separate set of samples, or by a cross-validation procedure using the laboratory determined values of the reference samples.
- using the NIRS-predicted values for biomechanical characters of the forages
 and for digestibility of the forages, forage consumption constraint (FCC) was predicted, and in turn voluntary feed consumption (VFC) was predicted.
 - d) the predicted FCC and VFC were compared with actual data from groups of animals fed each of these forages.
- 10 Example A: Developing a calibration equation to predict biomechanical properties of herbage:

The samples used in this example were a range of varieties of *Panicum spp*. harvested at a range of plant maturities throughout the growing season (Table 1). Each of the samples was dried and chaffed, and then fed to groups of sheep (8 sheep per group) which were penned individually, to determine *in vivo* dry matter digestibility (DMD), VFC and FCC. Samples of the hays were stored for laboratory analyses.

Biomechanical properties of the forages were determined using published 20 methods; the energies required to shear or compress the forages according to Baker, Klein, de Boer and Purser (Genotypes of dry, mature subterranean clover differ in shear energy. Proceedings of the XVII International Grassland Congress 1993. pp 592-593.) and the energy required to comminute the forages according to Weston and Davis (The significance of four forage characters as 25 constraints to voluntary intake. Proceedings of the Third International Symposium on the Nutrition of Herbivores, Penang, 1991). In vitro digestibility of dry matter (IVDMD) was determined by the pepsin-cellulase technique as modified by Klein and Baker (Composition of the fractions of dry, mature subterranean clover digested in vivo and in vitro. Proceedings of the XVII 30 International Grassland Congress 1993. pp593-595.).

WO 97/21091 PCT/AU96/00776

There are several ways to process samples for NIRS analysis. and in this example the samples were ground through a cyclone mill with a 1 mm screen and equilibrated at 25°C for at least 24h before NIRS analysis. The samples were scanned by a monochromating near infrared reflectance spectrophotometer (Perstorp NIRS 6500) and the absorption spectra recorded for the range 1100 to 2500nm at 2nm intervals. The spectral range 1850 to 1970nm, where water absorbs strongly, was disregarded in further analysis of the spectral data.

5

25

30

- 13 -

- 10 For NIRS analysis the samples were divided into two groups: one group to be used as a 'calibration' set to establish a prediction equation, and a second group, the 'validation' set, to be used to validate the prediction equation. There are a number of ways to select the samples for each set. In this example the samples were ranked according to each of the characters that were to be predicted and every other sample was selected for the calibration set (33 samples) and the validation set (32 samples).—Thus, for each character that was evaluated, a different selection was made from the 65 samples to establish the respective calibration and validation sample sets.
- The ranges, mean, median and variation in the laboratory-determined values for each of the characters of interest in the calibration and validation sets are listed in Table 2.

The software for scanning, mathematical processing and statistical analysis were supplied with the spectrophotometer by the manufacturers. The spectral data were transformed by taking the second derivative of the logarithm of the inverse of the reflectance (R) at each wavelength (d" log (1/R)). The similarities amongst the spectra (Figure 1) of the samples in the validation and calibration sets were determined using principal components scores to rank the spectra according to the Mahalanobis distance from the average of the spectra. The Mahalanobis distance values were standardized by dividing them by their average value, and were denoted 'global'-H values (Table 3).

Calibration equations were developed using the calibration samples by regressing the data from the laboratory analyses of each biomechanical property against the corresponding transformed spectral data using the following mathematical methods:

- a) Stepwise linear regression
- b) Step-up linear regression
- c) Principal components regression (PCR)
- 10 d) Partial least squares regression (PLS), and
 - e) Modified partial least squares regression (MPLS).

Stepwise calibrations were developed for each calibration set of samples using the mathematical treatments of the spectral data 2,2,2; 2,5,5; 2,10,5; and 2,10,10; where the first number denotes that the second derivative was used, the second indicates that second derivatives of the spectral data (determined at 2nm intervals) were taken at intervals of 4, 10 or 20nm, and the third indicates that the function was smoothed using the 'boxcar' method over intervals of wavelength of 4, 10, or 20nm (Table 4a). Likewise step-up calibrations were developed for each calibration set with up to 6 terms in each calibration equation using mathematical treatments 2,2,2; 2,5,5; 2,10,5; and 2,10,10 (Table 4b). Calibrations developed for each calibration set using principal components regression, partial least squares regression, or modified partial least squares regression each were developed using mathematical treatments 2,5,5 and 2,10,10 (Table 4c).

In developing the calibration equations in the stepwise and step-up regressions, only wavelengths with partial F-statistic of more than 8 were accepted for the models.

30

15

20

25

For each calibration using each calibration set the following calibration statistics were determined:

-5

- a) Squared multiple correlation coefficient (R²), an indication of the proportion of the variation in the calibration set that is adequately modelled by the calibration equation.
- b) The standard error of calibration (SEC) together with its confidence interval (± CL), which is the standard deviation for the residuals due to difference between the laboratory determined (reference) and the NIR predicted values for samples within the calibration set

Once the calibration equations were developed, each equation was validated by using it to predict the respective biomechanical property values for each sample in the validation sample set. For each calibration equation the following validation statistics were determined:

- a) Simple linear correlation coefficient (r²) between the laboratory determined and NIR predicted values.
- 15 b) The bias (or systematic error) in the regression relationship between the laboratory determined (reference) and NIR predicted values.
 - c) The confidence limits of the bias in the regression relationship between the laboratory determined (reference) and NIR predicted values.
- d) The standard error of prediction, corrected for bias (SEP(C)), which represents the unexplained error of the prediction, the deviation of the differences between laboratory determined and NIR predicted values.
 - e) The coefficient of determination, or slope (β) , and y-intercept (α) of the linear regression relationship between the laboratory determined and NIR predicted values.
- 25 f) The residual standard deviation (RSD) of the linear regression relationship between the laboratory determined and NIR predicted values.

In addition, the calibration equations were validated using a procedures of cross-validation. These are procedures where every sample in the calibration set was used once for prediction, and the standard error of validation corrected for bias (SEV(C), for stepwise and step-up regressions) and cross-validation (SECV, for multivariate regressions)-can be determined.

Calibration equations for each biomechanical character were selected using the following criteria:

- a) Lowest partial F-ratio, highest R², lowest SEC and, for PCR, PLS and MPLS, lowest SEV(C) (or, for multivariate regressions, SECV)
- b) Highest r^2 , lowest bias and | bias | < bias confidence limit, lowest SEP(C), β closest to 1.0, α closest to 0, and lowest RSD. As well, SEP(C) was compared with the standard error of laboratory determined values amongst all 65 samples, listed in Table 5.

10

5

Calibration equations were similarly established to predict *in vivo* digestibility and *in vitro* digestibility. The coefficients for each wavelength in the selected calibration equations from stepwise or step-up regression analyses are listed in Table 6a, and those from multivariate analyses are listed in Table 6b.

15

20

Simple linear correlation coefficient (r²) between the laboratory determined and NIR predicted values for each of the biomechanical characters (energies required to shear, comminute or compress) and digestibility of dry matter determined *in vivo* or *in vitro* of the samples in the validation set are shown in Figures 2a, 2b, and 2c. The NIR predicted values are predicted using calibration equations that best met the criteria listed above.

Example B: Prediction of FCC and VFC using NIR determinations of energy required to shear and *in vivo* digestibility:

25

To demonstrate the prediction of voluntary feed consumption using NIR determined values for a biomechanical character and digestibility of forages, samples of *Panicum spp*. hay were selected which were common to both of the validation sample sets used to establish the NIR prediction equations for energy required to shear and *in vivo* digestibility. The hays represented the range of varieties in the sample set, and are listed in Table 7. The samples were scanned by the same spectrophotometer that was used to establish the

calibration equations, and the absorption spectra were recorded in the range 1100 to 2500nm at 2nm intervals. Values for energy required to shear and *in vivo* digestibility were predicted from calibration equations (Tables 4a, 4b and 4c) using the recorded spectral data.

5

These values then were used to estimate FCC from the relationship between biomechanical character(s) and FCC of the range of forages used by Weston and Davis (1991). Energy required to shear the forages used by Weston and Davis was determined according to Baker *et al.* (1993). The relationship between the energy required to shear these forages (kJ/m²) and FCC (g organic matter (OM) / d / kg metabolic body weight (MBW)) was described by the relationship:

Energy required to shear (x) = -26.13 + 5.53 (FCC (y)) where R = 0.92; RSD = 8.70; N = 13; P < 0.0001.

15

FCC from this relationship and *in vivo* digestibility predicted by NIR were then used to estimate VFC, as the difference between the animal's capacity to use energy (as defined by Weston and Davis, 1991) and FCC. These data are summarised in Table 8.

20

VFC predicted in this way explained most of the variation in actual VFC (R = 0.87; RSD = 5.04; P = 0.023) (Figure 3).

}-

late bloom - regrowth late bloom - regrowth late bloom - regrowth mid bloom - regrowth mid bloom - regrowth mid bloom - regrowth mid bloom - negrowth with bloom - regrowth late bloom - regrowth lete bloom - regrowth mid bloom - regrowth late bloom - regrowth mld bloom - regrowth late bloom - regrowth late bloom - regrowth mid bloom - regrowth mld bloom - regrowth mid bloom - regrowth mid bloom - regrowth mid bloom - regrowth vegetative regrowth tate bloom - regrowth mid bloom - regrowth repotative regrowth Regrowth vegetative regrowth late bloom mid bloom (10 weeks' regrowth) early bloom (1 month's regrowth) tate bloom (13 weeks' regrowth mid bloom (1 month's regrowth) mid bloom (1 month's regrewth) late bloom (14 weeks' regrowth) mid bloom (8 weeks' regrowth) iate bloom (9 weeks' regrowth) ials bloom (4 weeks' regrowth) late bloom (4 weeks' regrowth) late bloom (19 weeks' regrowth) lete bloom (14 weeks' regrowth mid bloom (10 weeks' regrowth) late bloom (4 weeks' regrowth) mid bloom (13 weeks' regrowth) vegetative regrowth (29 days") mid bloom (8 weeks' regrowth) mid bloom (1 month)s regrowth) mid bloom (9 weeks' regrowth) vegetative regrowth (28 days') late bloom (4 weeks' regrowth) mid bloom (8 weeks' regrowth) mid bloom (10 weeks' regrowth) mid bloom (4 weeks' regrowth) vegetative regrowth (31 days.) Stage of maturity lete bloom Process undergone dried and chalfed dried and chaffed thied and chaffed dried and chaffed Partof plant era 룓 星 唇 퉏 <u>a</u> Common name **Vakarikari grass** Makerikari grass Makerikari grese Makerikeri grass Makerikeri grass Makarikari grass Makarikeri grass Makerikari grass Makarikari grass Makerikeri gress Makerikeri grass Makerikeri grass Mekerikeri gress Makarikari grass Makarikari grass Makerikeri grass Mekarikari grass Makerikari grass Makerikari grass Makarikari grass Makarikeri grasa Mekarikari grase Guinea grass **Guines** grass Guines grass 16799 16796 18788 Kabulabula CPI 18786 Kabulabula CPI 18786 Kabulabula CPI 16799 Kabulabula CPI 16796 Variety Kabulabula CPI Kabutabuta CP1 Kabulabula CPI Bernbatai Bambetal Bembetal Barmbatal Bernbats Bermbats Bambatal Coloniao Coloniao Colombio Burnet Burnett Burnet Burnett Burnett Burnett Burnett Burnett **Bpecles** Makarikariansa Makerikariense Wakarikeriense Makarikeriansa Makerikeriense Makarikeriense Mekerikeriense Makarikariense coloratum var coloratum var coloratum var coloratum var coloratum ver coloratum ver coloratum var coloratum var coloralum coloratum coloratum colorelum coloratum colorelum coloratum coloratum coloratum coloratum coloratum coloratum colorelum coloralum coloratum mexham meximum maximum Panlcum Panlcum Penkum Panicum Penlcum Penlcum Panlcum Panlcum Panicum Panlcum Pankoum Penicum Penlcum Panlcum Panlcum Pankum Panlcum Panlcum Penlcum Penicum Panlcum Panlcum Penlcum Panicum Penlcum Genus

Description of herbage used in this example.

Table 1.

-1

early bloom - regrowth early bloom - regrowth mid bloom - regrowth lete bloom - regrowth mid bloom - regrowth late bloom - regrowth mid bloom - regrowth mid bloom - regrowth mld bloom - regrowth mid bloom - regrowth mid bloom - regrowth vegetative regrowth vegetative regrowth vegetative regrowth repetative regrowth vegetative regrowth Regrowth vegetative regrowth regrowth **E** early bloom (10 weeks' regrowth) early bloom (1 month's regrowth) vegetative regrowth (1 monthie) vegetative regrowth (1 monthie) mki bloom (13 weeks' regrowth) mid bloom (10 weeks' regrowth) mid bloom (14 weeks' regrowth) mid bloom (15 weeks' regrowth) mid bloom (13 weeks' regrowth) mid bloom (11 weeks' regrowth) mid bloom (1 month's regrowth) lete bbom (4 weeks' regrowth) rild bloom (4 weeks' regrowth) mid bloom (8 weeks' regrowth) vegelative regrowth (8 weeks') mid bloom (4 weeks' regrowth) vegetative regrowth (32 days') vegetative regrowth (4 weeks.) vegetative regrowth (4 weeks') vegetative regrowth (8 weeks') lete bloom (8 weeks' regrowth) regetative regrowth (28 days") regelative regrowth (33 days') vegetative (8 weeks' regrowth) vegetative regrowth (4 weeks') regelative regrowth (28 days') vegetative regrowth (32 days') Stage of maturity mid bloom (1 month)s) 75 days' regrowth 54 days' regrowth 68 days' regrowth Process undergone dried and chaffed dried and challed dried and chaffed dried and challed dried and chaffed dried and cheffed dried and chaffed dried and chaffed dried and chaffed Parto sertal 100 serle 百里 aera a erfai Bertal serial serial Common name Guines press Guinea grass Guines grass Guinea grass Guines grass Guines grass Guinea grass Guines grass Guines grass Guines grass **Guines** grass Guines grass Guhnes grass **Green Panic** Green Pento Green Panlo Green Panlo Green Penb **Green Pank Green Pank** Green Panio **Green Panlo Green Penic** Green Parish Green Panic Variety Coloniao Coloniso Coloniso Coloniao Coloniao Pete Ten I E Text EET E Pete Petre Text E EET Tem# meximum ver. (richoglume maximum ver. trichoglume meximum ver. Irichoglume maximum var. Inchogiume meximum ver. Irichoglume Inchoglume meximum ver. Irichogiume meximum ver. trichogiume maximum var. trichogiuma meximum ver. Inchogiume maximum var. Irichogiuma meximum ver. Inchoglume meximum ver. Inchoglume meximum ver. Inchoglume 8pecles meximum ver. maximum ver. meximum meximum meximum maximum meximum meximum məximum meximum meximum maximum meximum meximum meximum maximum meximum (cont'd) Penicum Penicum Panlcum Penicum Penicum Penlcum Panicum Penlcum Penlcum Panicum Penlcum Penlcum Penicum Pahlcum Penicum Penicum Penicum Panlcum Penicum Panicum Panicum Panicum Pahlcum Penicum Panlcum Panlcum Panicum Penicum Panlcum Penicum Penicum

Description of herbage used in this example.

Table 1.

Table 2. Summary statistics for each calibration and validation set

	Energy required to shear	Energy required to comminute	Energy required to compress	Digestibility of dry matter in vivo	Digestibility of din
	(kJ/m²)	(kJ/kg DM)	(kJ/kg DM)		matter in vitro
			uired to shear	(%)	(%)
Calibration set	7	Chargy red	direc (O Shear		
mean	15.48	134,9	2.70		
median	15.17	133.8	3.70	55.7	53.3
maximum	20.95	216.5	3.65	56.0	55.1
minimum	10.80	72.5	4.39	64.0	63.0
standard deviation	2.572	72.5 37.50	3.25	43.0	39.8
Validation set	2.572	37.50	0.265	5.73	6.97
mean	15.43	130.9	0.70		
median	15.20	128.3	3.78	55.6	52.7
maximum	20.43	205.2	3.75	56.5	53.3
minimum	10.94	54.5	4.24	64.0	63.0
standard deviation	2.444	37.50	3.34	47.0	40.1
	a a artistanția		0.229	5.36	7.01
alibration set	T	Energy require	d to comminute		·
mean	15.01	120.4			
median	14.76	133.1	3.69	55.7	52.8
maximum	19.97	129.5	3.70	57.0	54.7
minimum	10.80	216.5	4.18	64.0	63.0
standard deviation	2,444	54.5	3.25	43.0	39.8
alidation set	2.333	38.82	0.227	5.64	7.06
mean	15.92	132.9			
median	15.97	130.2	3.79	55.6	53.2
maximum	20.95	205.2	3.79	55.5	54.7
minimum	11.46	60.7	4.39	64.0	62.5
standard deviation	2.490	36.20	3.34	47.0	40.9
		Energy require	0.263	5.47	6.92
alibration set	ĭ	Chargy require	d to compress	1,134,134,13	· · · · · · · · · · · · · · · · · · ·
mean	15.28		3.74	F	
median	15.07	128.4	3.72		53.8
maximum	19.97	204.0	4.39	57.0	54.7
minimum	10.80	54.5	3.25	64.0	63.0
standard deviation	2.477	38.00	0.261	47.0	39.8
alidation set		33.33	0.201	5.15	6.64
mean	15.64	138.0	3.74	55.0	
nedian	15.42	132.5	3.72	55.0 54.5	52.2
naximum	20.95	216.5	4.24		54.5
กากเกษา	11.46	60.7	3.34	64.0	62.0
standard deviation	2.530	36.39	0.240	43.0 5.87	40.1
		Digestibility of de		3.67	7.26
libration set			J 1114401 111 4140		
nean .	15.14	133.9	3.74		
nedian	15.17	128.4	3.72	55.5	53.1
naximum	20.95	216.5	4.24	56.0	55.1,
ninimum	10.80	60.7	3.25	64.0	63.0
tandard deviation	2.528	36.39	0.247	43.0	40.1
lidation set		-U.UJ	0.247	5.73	7.33
nean	15.78	132.1	3.75	EE 7	
				55.7	52.9
	15.20	134.7	7 77	E C -	
nedian	15.20 20.37	134.7 205.2	3.72	56.5	54.4
	15.20 20.37 10.94	134.7 205.2 54.5	3.72 4.39 3.34	56.5 64.0 47.0	54.4 63.0 39.8

Table 2 (cont'd). Summary statistics for each calibration and validation set

	Energy required to shear (kJ/m²)	Energy required to comminute (kJ/kg DM)	Energy required to compress (kJ/kg DM)	Digestibility of dry matter in vivo (%)	Digestibility of dry matter in vitro (%)
a ng pha sagaideir		Digestibility of dr	y matter in vitro	rige en Heisen	· · · · · · · · · · · · · · · · · · ·
Calibration set					
mean	14.70	131.3	3.75	55.6	53.0
median	14.34	129.3	3.71	56.0	54.7
maximum	19.36	216.5	4.39	64.0	63.0
minimum	10.80	54.5	3.25	43.0	40.1
standard	2.235	42.58	0.241	5.78	6.94
deviation	•				
Validation set					
mean	16.19	134.6	3.74	55.6	53.0
median	16.16	133.8·	3.74	56.0	54.7
maximum	20.95	194.8	4.24	64.0	63.0
minimum	10.94	65.7	3.34	47.0	39.8
standard deviation	2.538	31.84	0.260	5.33	7.05

Table 3. Mahalanobis distances

The second secon	Mean	Median	Range
For full sample set:	0.655	0.623	0.203 - 1.983
For calibration sets for: Energy required to shear	0.588	0.549	0.171 - 1.646
Energy required to shear Energy required to comminute	0.718	0.676	0.350 - 1.553
Energy required to compress	0.757	0.760	0.188 - 1.440
Digestibility of dry matter in vivo	0.673	0.634	0.389 - 1.547
Digestibility of dry matter in vitro	0.645	0.574	0.185 - 1.178 - <i>i</i>

Table 4a. Calibration and validation statistics

al din unwak signas, sessia	nereu ree	milead dasak	ear gwimeg.	
	-HEIGY IEC	Stepwis		
	2,2,2	2.5.5	2,10,5	
Lowest partial F-ratio		6.18	8.27	2,10,10
R ²	0.798	0.787	0.795	4.70
SEC	1.155	1.188		0.780
SEC CL	1.493	1.535	1.166 1.507	1.207
SEV(C)	1.230	1.306	1.273	1.560
r ²	0.368	0.625	0.520	1.322
Bias	0.690	0.710	0.700	0.495
Bias CL	1.484	1.527	1.498	0.720
SEP (C)	1.500	1.540	1.520	1.551 1.570
Slope	0.604	0.617	0.598	
Intercept	6.340	5.440	5.640	0.758
R.S.D.	1.627	1.627	1.484	3.710
Bias - Bias CL	-0.794	-0.817	-0.798	1.476
Bias < Bias CL?	Yes	Yes	Yes	-0.831
number of terms	6	5	5	Yes
			nute	6
	3) 4-3/-		Regression	
<u> </u>	2,2,2	2.5,5	2,10,5	2,10,10
Lowest partial F-ratio	5.54	4.45	16.55	
R ²	0.910	0.802	0.818	10.89
SEC	11.626	17.281	16.546	0.831
SEC CL	1.493	1.535	1.507	15.980
.SEV(C)	13.103	18.040		1.560
12	0.363	0.429	0.374	0.213
Bias	6.980	10.370	9.930	9.590
Bias CL	14.941	22.209	21.264	20.537
SEP (C)	15.110	22.460	21.510	20.770
Slope	0.530	0.575	0.607	0.417
Intercept	58.300	48.900	48.600	74.600
A.S.D.	28.900	27.360	28.650	32.120
Bias - Bias CL	-7.961	-11.839	-11.334	-10.947
Bias < Bias CL?	Yes	Yes	Yes	Yes
number of terms	6	3	4	4
Enen	gy require	d to compre	288	
		Stepwise R		
•	2,2,2	2,5,5	2,10,5	2,10,10
Lowest partial F-ratio	5.05	4.44	7.90	16.19
R ²	0.784	0.500	0.525	0.534
SEC	0.121	0.209	0.204	0.202
SEC CL	1.493	1.535	1.507	1.560
SEV(C)	0.135	0.224	0.217	0.215
٠	0.069	0.113	0.008	0.067
Bias	0.070	0.130	0.120	0.067
Bias CL	0.156	0.269	0.262	0.120
SEP (C)	0.160	0.270	0.270	0.260
Slope	0.180	-0.080	0.314	0.200
Intercept	3.060	4.030	2.580	2.960
R.S.D.	0.229	0.229	0.227	
Bias - Bias CL	-0.086	-0.139	-0.142	0.232
Bias < Bias CL?	Yes	Yes	-0.142 Yes	-0.140
number of terms				Yes
ioniber of terms	6	4	4	4

Table 4a (cont'd)

Dlg s	tibility of	dry matter	in:vivo	furtirie y ii
		Stepwis	Regression	
	2,2.2	2,5,5	2,10,5	2,10,10
Lowest partial F-ratio	7.63	20.68	4.28	6.08
R ²	0.934	0.917	0.914	0.921
SEC	1.107	1.236	1.258	1.207
SEC CL	1.493	1.535	1.507	1.560
SEV(C)	1.215	1.368	1.341	1.284
r ²	0.654	0.881	0.878	0.876
Bias	1.070	0.890	0.910	0.900
Bias CL	0.156	0.269	0.262	0.260
SEP (C)	2.320	1.940	1.980	1.960
Slope	0.705	0.878	0.840	0.827
Intercept	16.500	6.690	8.640	9.340
R.S.D.	3.153	1.852	1.873	1.888
Bias - Bias CL	0.914	0.621	0.648	0.640
Bias < Bias CL?	No	No	No	No
number of terms	6	66	6	· 5
Digest	ibility of d	ry matter /	n vitro	
_		Stepwise	Regression	
	2,2,2,1_	2,5,5	2,10.5	2,10,10
Lowest partial F-ratio	7.68	11.84	4.33	6.31
R ²	0.935	0.933	0.915	0.922
SEC	1.808	1.751	2.052	1.974
SEC CL	1.493	1.535	1.507	1.560
SEV(C)	1.984	1.981	2.186	2.100
7	0.699	0.847	0.743	··· 0.736 ·
Bias.	1.080	1.050	1.230	1.180
Bias CL	2.324	2.250	2.637	2.537
SEP (C)	2.340	2.280	2.670	2.570
Slope	0.839	0.962	0.775	0.763
Intercept	8.790	1.650	12.200	12.700
R.S.D.	3.805	3.794	3.805	2.719
Bias - Bias CL	-1.244	-1.200	-1.407	-1.357
Bias < Bias CL?	Yes	Yes	Yes	Yes
number of terms	6	5	6	5

Calibration and validation statistics (Step-up regression) Table 4b.

					Energy	Energy required to ahour	ohoar .						7 - C - Now
		S	Step-up Reg	-up Regression 2,2,2			-		S	BD-uo Regi	Step-up Regression 2 5 5		
	1 term	2 terms	3 terms	4 terms	5 terms	6 terms		1 term	2 terms	3 terms	4 terms	5 lerms	6 torms
Lowest partial F-ratio	29.33	13.83	6.65	5.29	5.89	3.23		25.70	21.99	5.71	1.60	4 92	22
R²	0.470	0.625	0.684	0.725	0.766	0.784		0.436	0.663	0.709	0.715	0.778	0.792
SEC	1.873	1.575	1.445	1.349	1.244	1.196		1.932	1.492	1.387	1.373	1211	1173
SEC CL	2.420	2.035	1.867	1.743	1.608	1.546		2.497	1.928	1.792	1.774	1.565	1516
SEV(C)	1.973	1.672	1.561	1.476	1.390	1.318		2.022	1.571	1.476	1.470	1.357	1319
,	0.371	0.344	0.310	0.205	0.202	0.168		0.375	0.531	0.557	0.557	0.631	0.635
Blas	1.120	0.950	0.870	0.810	0.775	0.720	-	1.160	0.900	0.830	0.820	0.730	0.700
Bias CL	2.407	2.024	1.857	1.734	1.599	1.537		2.483	1.917	1.783	1.765	1.556	1.507
SEP (C)	2.430	2.050	1.880	1.750	1.620	1.550		2.510	1.940	1.800	1.780	1.570	1 520
Slope	000	0.795	0.784	0.598	0.549	0.498		0.643	909.0	0.616	0.633	0.644	0.633
Intercept	-0.120	3.030	3.290	6.090	6.950	7.790		5.390	5.790	5.560	5.270	5.050	5.170
A.S.D.	1.896	1.803	1.773	1.769	1.732	2.058		1.891	1.806	1.698	1.658	2317	1 945
	-1.287	-1.074	-0.987	-0.924	-0.824	-0.817		-1.323	-1.017	-0.953	-0.945	.0 826	7080
Bias < Bias CL?	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yec	γος	200	20.5
					Energy rei	Energy required to comminute	mminute					193	I GS
			Step-up Reg	-up Regression 2,2,2					S	Bo-up Regr	Step-up Regression 2 5 5		
	1 term	2 terms	3 terms	4 terms	5 terms	6 terms		1 term	2 terms	3 terms	4 lerms	5 torme	e lorme
Lowest partial F-ratio	81.33	12.82	9.62	6.10	6.71	2.92		67.30	9.96	2.73	4.91	5.06	4 26
П.	0.715	0.794	0.840	0.864	0.887	0.894		0.974	0.741	0.755	0.782	0810	0 830
SEC	20.719	17.629	15.538	14.330	13.061	12.620		22.149	19.757	19.213	18.105	16 921	15 983
SECCL	2.420	2.035	1.867	1.743	1.608	1.546	_	2.497	1.928	1.792	1.774	1.565	1.516
SEV(C)	21.511	18.353	16.378	15.230	13.967	13.633		22.769	20.547	20.096	19.092	18.262	17.484
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.322	0.424	0.421	0.411	0.371	0.373		0.183	0.199	0.148	0.099	0.114	0.098
Bias	12.430	10.580	9.320	8.600	7.840	7.570		13.290	11.850	11.530	10.860	10.150	9.590
Bias CL	26.627	22.656	19.969	18.416	16.785	16.219		28.465	25.391	24.692	23.268	21.746	20.541
SEP (C)	26.940	22.920	20.200	18.630	16.980	16.410		28.790	25.680	24.980	23.540	22.000	20.780
Slope	0.605	0.623	0.577	0.560	0.524	0.521		0.491	0.518	0.441	0.346	0.365	0.317
Intercept	47.100	43.900	48.900	52.900	58.300	57.800		60.100	58.500	70.800	84.600	82.700	89 600
R.S.D.	29.810	27.480	27.550	27.790	28.720	28.670		32.720	32.400	33.420	34.370	34.070	34 380
Blasi - Bias CL	-14.197	-12.076	-10.649	-9.816	-8.945	-9.649		15.175	-13.541	-13.162	-12.408	-11.596	.10.951
Bias < Blas CL7	Y 8 8	Yes	Y 8 8	Yes	≺es	Yes		Yes	Yes	Yes	Yes	Yes	Yes

Table 4b. (cont'd)

							,	,							_					_			,			_		, .	_				
		6 terms	1.87	0.535	0.202	1.516	0.22	0 006	0.120	0.260	0.260	0.063	3.510	0 230	0 140	2 2	100		6 terms	3.72	0.924	1.586	1.516	1.782	0.869	0.950	0.260	2.060	0.885	6.080	1.940	0.690	S _N
		5 terms	5.36	0.520	0.205	1.565	0.227	0.010	0.120	0.263	0.270	0.085	3.420	0 233	0.143	200	3		5 terms	603	0.919	1.635	1.565	1.828	0.876	0.980	0.263	2.130	0.866	7.210	1.884	0.717	ટ્ટ
	ession 2.5.5	4 lerms	2.21	0.445	0.220	1.774	0.241	0.005	0.130	0.283	0.290	0.068	3.490	0.229	-0.153	Υρα	3	ession 2 5 F	4 lerms	7.34	0.909	1.728	1.774	1.884	0.893	1.040	0.283	2.250	0.880	6.430	1.750	0.757	ટ
	Step-up Regression 2.5.5	3 terms	4.08	0.327	0.243	1.792	0.257	0.038	0.150	0.312	0.320	0.198	3.010	0.230	-0.162	Yas		Step-up Regression 2 5 5	3 terms	8.41	0.897	1.840	1,792	1.972	0.884	1.100	0.312	2.390	0.889	5.850	1.825	0.788	S
	S	2 terms	4.23	0.258	0.255	1.928	0.268	0.064	0.150	0.328	0.330	0.295	2.640	0.233	-0.178	Yes		6,	2 terms	12.35	0.826	2.394	1.928	2.457	0.740	1.440	0.328	3.110	1.050	-3.300	1.825	1.112	2
		1 term	8.07	0.181	0.268	2.497	0.276	0.039	0.160	0.344	0.350	0.267	2.750	0.236	-0.184	Yes			1 term	80.75	0.679	3.248	2.497	3.328	0.755	1.950	0.344	4.220	1.090	-5.290	2.476	1.606	2
Energy required to compress			-														Digestibility of dry metter in vivo		ı <u>.</u>							_							:
equired to		6 terms	0.00	0.530	0.203	1.546	0.226	0.033	0.120	0.261	0.260	0.156	3.160	0.239	-0.141	Y88	h of dry m		6 terms	2.86	906.0	1.755	1.546	1.956	0.768	1.050	0.261	2.280	0.731	14.900	3.108	0.789	₽,
Energy	2	5 terms	3.10	0.440	0.221	1.608	0.238	0.067	0.130	0.284	0.290	0.280	2.690	0.239	-0.154	Yes	Digestibili	2	5 terms	13.18	0.883	1.962	1.608	2.152	0.884	-188	0.284	2.550	0.777	1.900	2.734	0.896	2
	ip Regression 2,2,	4 terms	2.65	0.370	0.235	1.743	0.248	0.104	0.140	0.302	0.310	0.341	2.470	0.239	-0.162	Yes		ip Regression 2,2	4 terms	16.80	0.862	2.127	1.743	2.312	0.787	1.280	0.302	2.770	0.826	9.040	2.652	0.978	2
	Step-up Reg	3 terms	3.22	0.334	0.241	1.867	0.252	0.087	0.140	0.310	0.310	0.345	2.460	0.235	0.170	Yes		Step-up Rec	3 terms	8.71	0.830	2.365	1.867	2.557	0.684	1.420	0.310	3.070	0.792	8	2.584	9	2
		2 terms	6.24	0.285	0.250	2.035	0.259	0.089	0.150	0.321	0.330	0.394	2.270	0.232	-0.171	Yes			2 terms	5.79	0.714	•3.069	2.035	3.250	0.712	1.840	0.321	3.990	0.802	10.300	2.877	1.519	Š
		1 term		0.164	0.270	2.420	0.277	0.067	0.160	0.347	0.350	0.367	2.380	0.235	-0.187	Yes			1 term		0.616	3.555	2.420	3.666	0.785	2.130	0.347	4.620	1.050	-2.180	2.484	1.783	2
			Lowest partial F-ratio	R'	SEC	SEC CL	SEV(C)	,	Blas	Bias CL	SEP (C)	Slope	Intercept	R.S.D.	Biasi - Bias CL	Bias] < Blas CL?				Lowest partial F-ratio	R?	SEC	SEC CI.	SEV(C)	- i	Blas	Bias CL	SEP (C)	Slope	Intercept	R.S.D.	Bias - Blas Cl.	

$\overline{}$
P
•
يد
on
ວ
\mathcal{L}
•
ρ
4
٠.
Je
\Box
ᇹ
Ta
<u> </u>

		S	Step-up Reg	Regression 2,2,2	.		• • • •			Step-up Ren	Step-up Regression 255	9	
	. 1 term	2 terms	3 terms	4 terms	5 terms	6 terms		1 term	2 terms	3 terms	4 terms	5 terms	6 larme
Lowest partial F-ratio	73.30	5.73	8.71	17.00	13.23	2.99		81.21	12.38	8.48	7.23	8.07	3.72
R²	0.692	0.733	0.788	0.863	0.905	0.915		0.715	0.791	0.833	0.863	0.884	0 894
SEC	3.913	3.645	2.251	2.610	2.177	2.058	-	3.768	3.222	2.883	2.616	2.407	2 294
SEC CL	2.420	2.035	1.867	1.743	1.608	1.546		2.497	1.928	1.792	1.774	1.565	1516
SEV(C)	4.020	3.186	3.411	2.781	2.324	2.203		3.855	3.360	3.063	2.809	2.615	2 490
2	0.731	0.694	0.687	0.644	0.685	0.671		0.735	0.856	0.845	0.849	0.801	0.800
Bias	2.350	2.190	1.950	1.570	1.310	1.230		2.260	1.930	1.730	1.570	1.440	1.380
Blas CL	5.029	4.684	2.893	3.354	2.798	2.645		4.842	4.141	3.705	3.362	3.093	2.948
SEP (C)	5.090	4.740	4.230	3.390	2.830	2.680		4.900	4.190	3.750	3.400	3.130	2.980
Slope	0.946	0.868	0.861	0.877	0.860	0.830		1.080	0.994	1.020	0.976	0.975	0.914
Intercept	2.000	5.890	6.550	6.140	7.240	9.150		-4.700	-0.410	.1.970	0.240	0.240	4.040
A.S.D.	3.565	3.601	3.842	3.682	4.143	3.895		3.576	2.637	2.733	2.694	3.097	3.103
Blas - Blas CL	-2.679	-2.494	-0.943	-1.784	-1.488	-1.415	-	-2.582	-2.211	-1.975	-1.792	-1.653	-1.568
Blas < Blas CL7	Yes	Yes	, (83	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
						Energy roquired to other	Ophabr						
·			Step-up Regi	Regression 2,10,5					S	tep-up Regri	Step-up Regression 2,10,10	2	
	1 lerm	2 lerms	3 terms	4 terms	5 terms	6 terms		1 term	2 terms	3 terms	4 terms	5 terms	6 terms
Lowest partial F-ratio	25.11	14.92	5.87	4.42	7.61	1.89		23.54	15.23	4.01	4.30	4.35	4 66
Α,	0.430	909.0	0.661	0.697	0.755	0.763		0.413	0.598	0.641	0.678	0.721	0.755
SEC	1.942	. 1.613	1.496	1.415	1.273	1.252	-	1.970	1.631	1.541	1.460	1.358	1.274
SEC CL	2.510	2.084	1.933	1.829	1.645	1.618		2.546	2.108	1.991	1.887	1.755	1.646
SEV(C)	2.020	1.674	1.611	1.541	1.403	1.392		2.047	1.689	1.612	1.569	1.494	1.411
	0.273	0.398	0.456	0.473	0.476	0.498		0.291	0.333	0.401	0.454	0.517	0.541
Bias	1.170	0.970	0.900	0.850	0.760	0.750		1.180	0.980	0.920	0.880	0.810	0.760
Blas CL	2.496	2.073	1.923	1.818	1.636	1.609		2.532	2.096	1.980	1.876	1,745	1.637
SEP (C)	2.520	2.100	1.950	1.840	1.650	1.630		2.560	2.120	2.000	1.900	1.760	1.660
Slope	0.706	0.723	0.717	0.707	0.610	0.616		0.737	0.581	0.639	0.653	0.715	0.709
Intercept	4.150	3.950	4.320	4.260	5.620	5.440		3.720	5.850	5.040	5.040	4.130	4.160
R.S.D.	2.170	2.193	2.343	2.367	2.524	2.375		2.179	1.607	1.666	1.644	1.889	1.893
Biasi - Blas CL	.1.326	-1.103	.1.023	.0.968	-0.876	-0.859		-1.352	-1.116	-1.060	-0.996	-0.935	.0.B77
Biacl < Blac CI ?	Yes	Αρς	λα,	×9×	, ,	5	_	5	:				

p
nt
CO
ت
Ċ.
7
ble
Tal

					Energy required to comminute	ulred to con	nminute						
- 1		Ste	Step-up Regre	p Regression 2,10,5					Step	o-up Hegres	Step-up Hegression 2,10,10	0	
١.	1 term	2 terms	3 terms	4 terms	5 terms	6 terms	t term		2 terms	3 terms	4 terms	5 terms	6 terms
Lowest partial F-ratio	76.72	5.31	2.76	2.18	1.68	1.01	74.85	95	5.39	2.13	2.96	4.38	1.49
-	0.703	0.739	0.754	0.763	0.772	0.800	0.698		0.735	0.745	0.761	0.787	0.791
₩	21.158	19.825	19.267	18.887	18.518	17.344	21.345		19.977	19.611	18.982	17.929	17.768
 	2.510	2.084	1.933	1.829	1.645	1.618	2.546		2.108	1.991	1.887	1.755	1.646
 	21.803	20.707	20.279	19.690	19.499	18.691	22.033		20.904	20.985	19.911	18.777	18.634
+	0.460	0.468	0.414	0.394	0.330	0.215	0.434		0.450	0.408	0.397	0.357	0.387
+-	12.690	11.890	11.560	11.330	11.110	10.410	12.810		11.990	11.700	11.390	10.760	10.660
+-	27.191	25.478	24.761	24.273	23.799	22.290	27.432		25.674	25.203	24.395	23.042	22.835
+-	27.510	25.770	25.050	24.550	24.070	22.550	27.750		25.970	25.490	24.680	23.310	23.100
+-	0.793	0.737	0.688	0.649	0.598	0.468	0.776		0.729	0.694	0.645	0.622	0.633
†	18.300	24.500	31.800	39.600	48.100	67.100	20.200		25.600	30.800	39.000	43.600	42.200
1	26.610	26.420	27.720	28.170	29.640	32.080	27.230		26.850	27.860	28.100	29.030	28.350
т	-14.501	-13.588	-13.201	-12.943	-12.689	-11.880	.14.	-14.622	-13.684	-13.503	-13.005	-12.282	-12.175
1	Yes	Yes	Yes	Yes	Yes	Yes	Υe	Yes	Yes	Yes	Yes	Yes	Yes
ľ					Energy re	Energy required to compress	ompress						
		S	Step-up Regr	p Regression 2,10,	5				Ste	p-up Regre	Step-up Regression 2,10,10	10	
•	1 term	2 terms	3 terms	4 terms	5 terms	6 terms	1 16	1 term	2 terms	3 terms	4 terms	5 terms	6 terms
Lowest partial F-ratio	8.16	2.24	8.06	4.06	1.97	4.98	.9	6.50	4.94	4.91	1.75	3.54	3.83
П	0.183	0.214	0.364	0.457	0.532	0.592	0.1	0.147	0.243	0.397	0.412	0.461	0.512
Г	0.267	، 0.262	0.236	0.218	0.202	0.189	0.2	0.273	0.257	0.230	0.227	0.217	0.207
	2.510	2.084	1.933	1.829	1.645	1.618	2.5	2.546	2.108	1.991	1.887	1.755	1.646
Г	0.278	0.275	0.252	0.235	0.218	0.210	0.2	0.283	0.273	0.250	0.250	0.247	0.235
Π	0.010	0.028	0.052	0.076	0.086	0.053	0.0	900.0	0.057	0.045	0.052	0.035	0.029
	0.160	0.160	0.140	0.130	0.120	0.110	0.1	0.160	0.150	0.140	0.140	0.130	0.120
Γ	0.343	0.337	0.303	0.280	0.260	0.243	0.0	0.351	0.330	0.296	0.292	0.279	0.266
Γ	0.350	0.340	0.310	0.280	0.260	0.250	0.	0.360	0.330	0.300	0.290	0.280	0.270
Ī	0.127	0.212	0.239	0.252	0.218	0.142	0	0.102	0.294	0.216	0.212	0.149	0.149
Г	3.270	2.960	2.850	2.800	2.930	3.210	3.0	3.360	2.640	2.940	2.950	3.180	3.190
Γ	0.234	0.233	0.235	0.236	1.942	1.495	1.	1.736	1.938	1.980	2.030	2.179	2.183
Ī	.0.183	.0.177	-0.163	-0.150	-0.140	-0.133	Ó	-0.191	-0.180	-0.156	-0.152	-0.149	-0.146
ſ_	Yes	Yes	Yes	Yes	Yes	Yes	>	Yes	Yes	Yes	Yes	Yes	Yes
				-	•								

Table 4b. (cont'd)

- 11 Com (10 C		Ú	Slee un Boar	Section 2 40	Digeotibility	V of dry mat	S Digeotibility of dry matter in vivo	が変えない。				
	1		ger-up Hegr	n Hegression 2,10	6			S	tep-up Regr	Step-up Regression 2,10,10	10	
Liber District		Sulei	S TBT IS	4 Terms	5 terms	6 terms	1 term	2 terms	3 terms	4 terms	5 terms	6 lerms
Cowest partial r-tallo	91.09	9.40	//6	01.7	2.58	4.12	93.60	6.52	16.07	4.36	4.69	70 P
	3 5	0.80	0.905	0.916	0.927	0.935	0.675	0.815	0.898	0.912	0 922	0.007
מבני:	3.139	2.095	1.794	1.660	1.545	1.457	3.271	2.467	1.828	1.698	1 598	1 546
SEC CL	2.510	2.084	1.933	1.829	1.645	1.618	2.546	2.108	1.99	1.887	1 755	1.040
SEVIC)	3.332	2.282		1.830	1.694	1.607	3.357	2.572	2.016	1.905	1 840	1 707
	0.777	0.856	0.888	0.871	0.887	0.881	0.828	0.831	0.809	0.836	0.877	200
	1.880	1.260	-080	98	0.930	0.870	1.960	1.480	- 18	1.020	0.950	0.030
Bras CL	0.343	0.337	0.303	0.280	0.260	0.243	0.351	0.330	0.296	0.292	0.220	0.550
SEP (C)	4.080	2.720	2.330	2.160	2.010	1.890	4.250	3.210	2.380	2210	2 000	0.500
Slope	0.892	0.880	0.924	0.870	0.851	0.837	1.130	0.991	0.812	0 A20	0000	2.010
Intercept	7.380	6.750	3.930	6.850	8.320	8.960	-6.490	0.210	9 960	0.020	0.040	0.800
R.S.D.	2.531	2.034	1.791	1.927	1.799	1.846	2.222	2.201	2344	9.479	0.710	7.270
Bias - Blas CL	1.537	0.923	0.777	0.720	0.670	0.627	1.609	1.150	0.804	0 700	1.870	1.761
Blas < Blas CL1	No	No	ž	8	ş	No	No.	2	100.0	0.728	0.681	0.664
			100 A 100 A		Digastibility	Digestibility of dry methor in with		2	9	<u>و</u>	ş	ž
		Š	Step-up Regression 2,10,5	15slon 2.10	5	-		Č				
1	1 term	2 terms	3 terms	4 larms	Starme	6 lorme		ה י	nab-up Hegri	Step-up Hegression 2,10,10	0	
Lowest partial F-ratio	94.12	6.62	16.01	4 48	4 64	200	L GRU	2 lerms	3 terms	4 terms	5 terms	6 tегтѕ
	0.744	0.784	0.856	0.871	0.886	1000	92.14	9.60	9.70	10.55	2.67	4.41
	3.568	.3.283	2.680	2532	2 384	0.00	0.740	0.797	0.842	0.881	0.888	0.900
SECICL	2.510	2.084	1 933	1 829	1 645	1 610	3.386	3.182	2.802	2.430	2.361	2.235
SEV(C)	3.633	3.371	2.785	2 667	2 563	2.364	2.346	2.108	-391	1.887	1.755	1.646
	0.828	0.816	0.813	0 B02	0,810	0.004	3.035	3.280	2.892	2.618	2.525	2.416
	2.140	1.970	1.610	1.520	1 430	1330	0.823	0.807	0.810	0.844	0.818	0.823
Bias CL	4.585	4 219	3 444	3 254	3.064	020.	2.100	1.910	1.680	1.460	1.420	1.340
SEP (C).	4.640	4 270	3.480	7 200	2.004	2,000	4.621	4.089	3.601	3.123	3.034	2.872
Slone	0 960	1200	9000	0.620	2000	2.030	4.680	4.140	3.640	3.160	3.070	2.910
Intercept	2.120	1 280	4 530	7 230	7 280	2004	0.937	0.927	0.882	0.935	0.881	0.841
H.S.D.	2.978	3 002	3.088	2 952	2681	010.7	3.490	3.660	5.790	3.260	6.140	9.660
Blasi - Bias CL	-2.445	-2 249	-1 834	1 734	1 674	1 570	3.023	2.742	2.959	2.846	0.231	0.239
Blas < Bias CL?	Yes	Yes		Yes	Yes	7	-2.461	-2.179	1.921	.1.663	-1.614	-1.532
				3	3	193	188	Yes	Yes	Yes	Yes	Yes

Table 4c. Calibration and validation statistics (multivariate regressions)

		regres		Essent des		
11 15%,克斯特·				Form to the	MP	
1		CR	PL		2,5,5	2,10,10
	2,5,5	2,10,10	2,5.5	2.10,10		
R²	0.847	0.752	0.639	0.601	0.601	0.582
SEC	1.036	1.290	1.545	1.624	1.550	1.586
SEC CL	1.199	1.493	1.788	1.879	1.793	1.835
SECV	1.750	1.592	1.788	1.933	1.600	1.583
r ²	0.5441	0.4876	0.4938	0.4157	0.3080	0.3563
Bias	0.620	0.770	0.930	0.970	0.930	0.950
Bias CL	1.331	1.658	1.986	2.087	1.992	2.038
SEP (C)	1.350	1.680	2.010	2.110	2.020	2.060
Slope	0.6540	0.6850	0.7390	0.6270	0.5220	0.6000
intercept	5.2900	4.8100	3.7500	5.4500	7.3100	6.0200
R.S.D.	1.671	1.776	1.761	1.892	2.065	1.992
Bias - Bias CL	-0.711	-0.888	-1.056	-1.117	-1.062	-1.088
Bias < Bias CL?	Yes	Yes	Yes	Yes	Yes	Yes
	Ene	rgy require	d to commi	nute	62 3 0000	
· ·	PC	CR	PL	<u>.s</u>	MP	
	2,5.5	2,10,10	2,5,5	2,10,10	2,5.5	2,10,10
R ²	0.584	0.574	0.605	0.595	0.556	0.558
SEC	23.378	23.682	22.788	23.075	24.164	24.101
SEC CL	27.048	27.400	26.366	26.698	27.958	27.885
SECV	26.030	26.121	25.548	25.683	26.409	26.252
ر ا	0.349	0.337	0.332	0.325	0.33	0.328
Bias	14.030	14.210	13.670	13.840	14.500	14.460
Bias CL	30.044	30.435	29.286	29.655	31.055	30.974
SEP (C)	30.390	30.790	29.620	30.000	31:410	31:330
Slope	0.649	0.636	0.644	0.632	0.657	0.638
Intercept	37.3	39.2	38.1	39.7	36.6	39.1
R.S.D.	28.246	28.676	28.714	28.884	28.651	28.900
Bias - Bias CL	16.014	-16.225	-15.616	-15.815	-16.555	-16.514
Bias < Bias CL?	Yes	Yes	Yes	Yes	Yes	Yes
HELD OF WINDS IN THE	En	rgy require	d to compr	ess		
	P	CR		.s		LS
_	2,5,5	2,10,10	2.5.5	2,10,10	2.5.5	2,10,10
R²	0.251	0.160	0.231	0.208	0.038	0.040
SEC	0.225	0.241	0.265	0.269	0.260	0.260
SEC CL	0.260	0.279	0.307	0.311	0.301	0.301
SECV	0.299	0.277	0.301	0.307	0.301	0.299
2	0.0220	0.0120	0.0130	0.0090	0.0060	0.0080
Bias	0.140	0.140	0.160	0.160	0.160	0.160
Bias CL	0.289	0.310	0.341	0.346	0.334	0.334
SEP (C)	0.290	0.310	0.340	0.350	0.340	0.340
Slope	0.2290	0.2270	0.1530	0.1330	0.2290	0.2590
intercept	2.8900	2.9000	3.1700	3.2500	2.8900	2.7700
R.S.D.	0.235	0.236	0.236	0.237	0.237	0.237
Bias - Bias CL	-0.149	-0.170	-0.181	-0.186	-0.174	-0.174
Bias < Bias CL?	Yes	Yes	Yes	Yes	Yes	Yes
DIAS < DIAS CL!	1 163		· · · · · · · · · · · · · · · · · · ·			

Table 4c (cont'd) Calibration and validation statistics (multivariate regressions)

na Brazado mus	(111)	uttivariate	regres	sions)			
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Dig	estibility of			ration of the	a tat type	
İ		PCR		PLS	٨	APLS .	_
R ²	2.5,5	2,10,10	2,5.5	2,10,10	2,5.5	2.10.10	_
1	0.909	0.900	0.958	0.937	0.571	0.892	
SEC	1.638	1.711	1.109	1.356	3.756	1.911	
SEC CL	1.895	1.980	1.283	1.569	4.346	2.211	
SECV	2.159	2.075	1.957	1.776	3.797	2.180	
•	0.9022	0.8865	0.8447	0.8457	0.6963	0.8671	- 1
Bias	0.980	1.030	0.670	0.810	2.250	1.150	Į
Bias CL	2.105	2.199	1.425	1.743	4.827		- 1
SEP (C)	2.130	2.220	1.440	1.760	4.880	2.456	1
Slope	0.848	0.807	0.839	0.822	0.981	2.480	- 1
Intercept	8.77	11,1	8.65	9.41		0.745	1
R.S.D.	1.704:	1.834	2.143	2.139	1.99	14.6	١
Bias - Bias CL	-1.125	-1.169	-0.755	-0.933	2.914 -2.577	1.984	1
Bias < Bias CL?	Yes	Yes	Yes	Yes	Yes	-1.306	1
	Dige	stibility of d		T heldons	765	Yes	-
	P	CR		LS	NAT	PLS	4
	2,5.5	2.10,10	2,5,5	2.10,10	2,5,5		1
R²	0.820	0.790	0.780	0.760		2,10,10	1
SEC	2.880	3.100	3.330	3.470	0.420	0.490	1
SEC CL	3.332	3.587	3.853	4.015	5.380	4.850	l
SECV	3.170	3.560	3.830	3.900	6.225	5.611	l
م	0.B120	0.7730	0.8530		5. 69 0	4.780	ı
Bias	1.730	1.860	2.000	0.8040 2.080	0.6910	0.6690	l
Bias CL	3.701	3.984	4.280	4.459	3.230	2.910	l
SEP (C)	3.740	4.030	4.330	4.510	6.914	6.233	۱
Slope	0.9180	0.9840	0.9530	- 1	6.990	6.310	ĺ
Intercept	3.4700	-0.3600	2.3100	0.6120	1.1200	0.8650	
R.S.D.	3.053	3.363	2.836	4.6300 3.089	-7.5100	6.1800	
Bias - Bias CL	-1.971	-2.124	-2.280	i i	3.911	4.002	
Bias < Bias CL?	Yes	Yes	Yes	-2.379 Yes	-3.684	-3.323	1
			1 63	res	Yes	Yes	ı

Table 5. Standard error of laboratory determination (SEL)

	Energy required to shear (kJ/m²)	Energy required to comminute (k.i/kg DM)	Energy required to compress (kJ/kg DM)	Digestibility of dry matter in vivo (%)	Digestibility of dry matter in vitro (%)
Mean SEL (n=65)	0.796	5.830	0.078	not available	0.314
Median SEL	0.788	5.492	0.085	not available	0.270
Maximum SEL	2.044	13.098	0,211	not available	1,126
Minimum SEL	0.114	0.760	0.019	not available	0.005
SEL CL (using mean SEL)	1.035	7.319	0.101	not available	0.408
SEL CL (using median SEL)	1.024	7.140	0.111	not available	0.351

Table 6a. Components of possible prediction equations from stepwise and step-up regression analyses.

	Coofficient	Wavelongth	Confident	Wavolangth
·			dred to shear	
Regression enchysis Mathematical treatment		kitica Karinga	Stq 2,5,5 (2)-up (terms)
	19.95		28.09	
1	2452.05	20⊴8	1035.77	2048
	-<235.61	1528	700.12	1958
1	3823.49	1458	1	
	-5319.88	1718	l	
	5149.38 10239.46	1 <i>8</i> 28 1169	ì	
,	10235.48	1100		
		Energy requir	ad to compress	
Regrossion enalysis	Stop	#i30	Star	
Mathematical treatment	2,10,10 (4 termo)	2,10,5 (terms)
1	-0.71		2.49	
]	-28.02	2278	-31.05	1728
}	112.57	1586	-108.89	1548
1	-79.48	1728	-405.95	1268
	911.04	1238		
		Energy require	d to comminute	
Regrossion analysis	Stop		Stop	
Mathematical troutment	2,10,5 (4	terms)	2,10,5 (1_torm)
	231.42		-69.08	
	-300£37	2128	-1521:33	2238
	4220.19	2408		
ł ·	<955.12	2018		
	18224.74	1138		
				
Regrossion analysis	Stops	Digostibility of d	ry matter <i>in vivo</i> Stop	
Mathematical treatment	2,5,5 (6		2,10,5 (3	
	46.62		49.16	
	-387.08	1918	-612.43	1698
1	-8729.69	1238	252.82	1418
į	8162.72	1158	-943.77	1618
[1249.01	1688		
!	519.46	1208		
[-161.84	2248		·
		Dipostibility of d	ry matter <i>in vitro</i>	<i>:</i> ·
Regrossion analysis	Steps		Step	-UD
Mathematical treatment	2,5,5 (5	torms)	2,10,10 (4 terms)
!	63.43		54.29	
į l	-558.01	1918	-1171.70	1698
į l	981.30	1908	311.12	1418
j	-2186.89	1698	-2657.69	1818
<u> </u>	2003.05	2158	-2319.81	1228
	-1491,59	1748		

	Table 6b.	Components of p	ossible prediction	equations from n	ponents of possible prediction equations from multivariate regression analyses	sion analyses.		_
Energy required to shear	1 to shear	Energy require	inergy required to compress		Energy required	Energy required to comminute		_
PCR (2,6,6	(9)	PCR	PCR (2,5,6)		PCR (2,6,6)	PLS (2,6,6)	(9'9')	
Coefficient	Wavelength	Coefficient	Wavelength	Coefficient	Wavelength	Coefficient	Wavelength	
-333		3.35		-22.8		-16.44		_
18.1	801	0.17	108	93.07	1108	91.01	1108	_
7.8	1118	0.02	1118	6.5	1118	7.19	1118	_
2.5	1128	000	1128	7.27	1128	5.63	1128	_
78	138	0.0-	1138	-0.79	1138	-0.13	801	_
1 15	1.48	0.0	1148	3.98	1148	5.58	1148	
55.5	288	0.0	1158	-10.39	1158	-8.55	1158	_
0.13	1168	0	1168	9.7	1168	7.72	1168	
 2	1178	900	1178	13.75	1178	13.27	1178	
700	1188	90.0	1188	19.07	1188	17.38	1188	
48.0	198	0	1198	90.9	1188	4.0	1198	
 41.14	1208	-0.03	1208	-8.92	1208	-13.98	1208	
 17.1-	1218	100	1218	-20.63	1218	-23.8	1218	
 -1.73	1228	20.00	1228	6.71.	1228	-15.15	1238	
-0.85	1238	-0.0	1238	7.38	1238	-0.82	1238	
 0.12	1248	0	1248		1248	9.1	1248	
 0.5	1258	0	1258	-2.55	1258	-0.82	1258	
6.0	1268	10:0	1268	79.4	1268	-3.84	1268	
 -1.25	1278	0	1278	-7.8	1278	:	1278	
 -0.25	1288	0.01	1288	5.24	1288	4.93	1288	
 0.2	1298	0.02	1298	5.9	1298	7.12	1298	
	1308	0.03	1308	8.2	1308	10.4	1308	
 99.0	1318	. 0.04	1318	14.28	1318	16.14	1318	
 1.25	1328	90:0	1328	7.7	1328	23.58	1328	
 S	1338	0.07	88	27.63	1338	27.65	1338	
 2.34	1348	0.03	1348	2.2	1348	10.27	1348	
 -2.37	1358	90.0	1358	-28.23	1358	-24.35	1358	
 -10.62	1368	0.15	1368	85. 85.	1368	46.7	1368	
 -9.69	1378	0.0	1378	8	1378	2.2	1378	
 89,1-	1388	0.18	1388	67.77	1388	16.79	1388	
 8.65	1398	0.3	1398	125.67	1398	115.99	1398	
 23.68	408	0.49	1408	188.24	1408	174.79	1408	
 13.87	1418	0.2	1418	67.19	1418	62.69	1418	
 -12.53	1428	-0.37	1428	-(53.54	1428	-139.89	1428	

SUBSTITUTE SHEET (RULE 26)

Energy required to shear PCR (2,6,6) Reficient Wovelength -10.01 1438					
	Energy required to compress		Energy regulred	Energy regulred to commitme	
1438	PCR (2,6,6)	PCR	PCR (2,6,6)		100
148 845	MAN ANDA	Coefficient	Wavelenath	(4,8,8) FL3 (4,8,8)	
2	-0.39	-145.28	1438	427.02	Wavalength
4 450	*	-68.74	1448	20.761-	2
007	0.13	-37.31	926	17:01-	
1468	-0.11 1458	9	9	7 .38	1458
1478	-0.14 1478	200	408	<u>\$</u>	1468
1488	_	28.6	1478	-59.84	1478
1498	-0.01		994.	-28.08	1484
1508	1508	70:1-	1498	-3.2	24
1518		4.01	508	3.33	2 5
1528	- •	78.63	1518	28.01	900
1538	0701	49.64	1528	10 B7	9101
15.4A		34.38	538	3.55	8751
4558		-3.32	1548	20.02	538
000		-21.79	455	34.0	548
1568	-0.01 1568	÷	900	-17.62	1558
1578		50.5	8001	3.35	1568
1588		36.4	15/8	-15.39	1578
1598		350	9801	40.21	1588
803	_	-7.28	900	32.71	1588
1618	0.04	17.4	B 6	-5.83	1608
1628		34.68	0.00	5	1618
829	0.13 1638	49.47	070	33.13	1628
	•	51.35	92 5	48.83	1638
1658	8591		890 S	44.32	848
1668		2 8	822	-2.24	1659
1678	-0.07	66.03	999	-80 .84	1588
1688		8.33	8/91	-36.22	1678
9991		25.55	1688	60.49	1888
1708		7 5	1698	42.6	169a
1718		, e	82.	27.79	502
1728		8 8	1718	46.38	1718
1738	0.15	25.05	1728	69. 44	1728
1748	•	16.21	1738	63.67	17.18
1758	-	\$	1748	91,13	2,48
1768	201	27.41	1758	20.27	975
1778		47.2	1768	48 52	8 5
1788		42.48	1778	3 5	20 1
17.88	90/1	7 P	1788	-33.03	9//1
-		-2.33	1798	3.78	88/1

SUBSTITUTE SHEET (RULE 26)

Components of possible prediction equations from multivariate regression analyses. Table 6b.

	_	Wavelength	1809	1818	1828	1838	848	1858	1868	1878	1888	1898	1908	1918	1928	1938	848	88 8	870	888	1998	2008	2018	2028	2038	20 48	2028	2088	9/07	808	8 8	2108	2118	9717	2148	2158	25.7
o comminute	PLS (2,6,6	Coefficient	18.41	5.17	-26.5	-17.64	15.59	28.11	40.48	108.98	208.1	89.42	-157.11	.220.58	-172.09	-11.21	-73.21	-19.03	84.46 84.84	103.6	596.03	115.14	99.25	33.38	-:- -:-	7.38	109.6	-71.48	-186.9	-143.85	25. FO.	45.701-	57.18.	93.37	. g.	8	55.33
Energy required to comminute		Wavelength	1808	1818	1828	1838	1848	1858	1868	1878	1689	1898	1908	1918	1828	1938	87.5	2 8	1978	1968	1998	2008	2018	2028	2038	5	202	8902	9/02	2088	888	9 5	21.10	24.78	2148	2158	3-
	PCR (2,6,6	Coefficient	20.97	92.9	-30.81	-17.29	17.65	28.08	42.2	115.52	219.15	98.82	-179.9	50.3	-171.83	3	-4.17	35-t	6803	85.84	78.89	97.63	104.79	45.08	23.88	101.85	87.821	B.C.)-	70.002	151.16	77.701	9.65	97.00	36.101	-13.78	37.5	?
ergy required to compress		Wavelength	1808	1818	1828	1638	978	1858	1868	1878	1888	1898	906	1918	1828	1938	2548	90	878	1988	1998	2008	2018	2028	2038	2048	2028	99.50	9/8	9000	9808	977	2110	21.20	2148	2158	3
Energy require	PCR (2,6,6	Coefficient	90.0	0.01	-0.07	50.0	0.03	90:0	90:0	0.23	0.44	0.2	-0.35	-0.47	7	41.0	0.03	Q. 6	3 5	0.29	0.27	0.32	0.25	90.0 0	0.0	0.13	0.21	-0.2 5.5	9 9 1	89 G	8	27.0°	27.7	2.5	0.0	80	3
ed to shear	(9'9'	Wavelength	1808	1818	1828	1838	1848	828	1868	1878	1888	1898	806	1918	1928	1938	2	828	900	1988	1998	2008	2018	2028	2038	20 78	2028	2088	20/8	2088	96.2	8017	2118	0717	87.6	2.53	317
Energy required to shear	PCR (2,6,6	Coefficient	2.78	-3.79	4.32	.2.97	1.97	-2.48	84.6	-10.22	<u>=</u>	31.11	2.3	-25.69	-12.22	15.11	28.83	27.72	0.83 15.33	-9.25	3.33	1.28	20.22	18.34	9.58	5.59		-16.75	-1833	-10.13	-5.78	-8-4 4	-6.28	4. c	20:00 E0:00	8 6	90.7-

nents of possible prediction equations from multivariate regression analyses
e.
Ξ
6
ē
5
5
Ġ
Ž
ĕ
0
ĕ
1
.≊
₹
Ē
Ē
₫
=
Ë
읖
ĕ
ಕ
6
5
품
Ť
2
<u>Q.</u>
훒
뚫
Š
ă
ă
9
2
9
፩
늗
5
Components of possible prediction eq
o
DIG VD.
<u> </u>

Energy requ	Energy required to shear	Energy require	ergy required to compress		Figure Perilipse 6	900-1-00-00	
PCR	PCR (2,6,6)	PCR (2,6,6	_	P.CR	PCR (2,6,6)	DI O 10	0 00
Collection	Wavelengin	Coafficient	Wovelength	Coefficient	Wovelenath	Coefficient	
4.21	2178	0.28	2178	122.68	2178	To contract the	Wavelength
6.3	2168	0.18	2188	27.75	250	109.87	2178
-13,33	2198		2508	3 6	2108	58.98	2188
-2.74	2208	35.0	2180	83.85	2188	53.78	2198
, t		200	8077	129.58	8077	147 10	3 2
2.6	8177	99	2218	171.77	2218	440 66	3
30.38	822	0.42	2228	1828		48.30	2218
22.01	2238	270	22.38	23.00	8777	168.64	872
98.81	2248	-0.67	2748		877	86.39	2238
-15.77	2258	7.8.0	3 2	A.7CI-	2248	-250.89	2248
45.22	2288	. C	222	C. 201.	22.5	-189,12	2258
35.1	27.78	3,00	3 1	-167.23	2288	-101,11	2260
27.07	22.0	₽ £	8/77	-214.87	8722	-180 14	22.50
17:17	8977	0.22	7788	148	2288	22.33	0/77
4.21	2298	9 .0	2298	352.88	2308	122.32	2288
-13.08	2308	0.29	2308	78.89	2300	341.18	2238
0.87	2318	-0.48	2318	-208.27	23.00	63.68	2308
-13.34	2328	-0.47	2328	407 05	9167	-207.81	2318
-23.3	2338	0.0	2138	Se: 101	2328	-150.99	2328
99.0	2348	55.0	23.48	S. 8.	2338	-88 .98	2338
7.98	2358	200	9366	\$.25 \$	2348	40.83	2348
-15.62	2368		2250	20.02	2358	-30.25	2358
-18.39	BYLC	3 6	0007	25.52	2368	41.9	23.88
44	2788	3 5	27.0	3	2378	12.67	RTFC
25.48	2308	3 6	7388	-33.15	2388	-28.65	2200
5.6	2007	0.2	7338	86.53	2398	78 82	0007
A	2408	0.22	2408	130.67	2408	75.00	2398
22.32	2418	0.29	2418	120.05	2448	63.10	2408
-1.47	2428	0.22	2428	72.67	01.50	107.71	2418
17.19	2438	0.03	2438		8757	84.85	2428
15.21	2448	0.11	2448	2033	0057 00057	3.78	2438
-14.12	2458	0.18	2458	3 6	2448	45.74	2448
-24 15	0870		3	8.3	245R	3	
			9970	46.14	2	7	2459

SUBSTITUTE SHEET (RULE 26)

Components of possible prediction equations from multivariate regression analyses. Table 6b.

Tanana A	ביות ביות ביות אווים וויות אווים			Digestiplicy of dry matter in M/Vo	
PLS (2,5,5	(2,5,5)	PCR (2,6,6	(9'9)	P1 S (7 & 8)	12.6.61
Coefficient	Wavelength	Coefficient	Wavelength	Coefficient	Wavelength Wavelength
59.77		40.58		200	
-96.28	801	-161.5	108	7.87.	5
7,55	1118	12.91	118	•	3 5
12.25	1128	22.04	1128	88	1.28
6.85	1138	19.51	82	3 2	965
6.74	1148	8.19	\$	50.	8 =
11.89	1158	5.29	158	8.24	\$ 5 E
4.45	1168	0.82	1168	0.43	3 5
10.08	1178	-11.1	1178	89'5	1178
-29.8	188	-37.4	255	15.1	2
-20.43	86.	-28.13	1198	-10.81	98
-20.05	1208	36.03	1208	-15.98	1208
-15.55	1218	35.84	1218	-13.16	1218
2.41	123	-13.33	1228	2.03	128
6.62	1238	0.89	1238	6.37	1238
10 P	1248	14.13	1248	20.7	1248
1.41	128	17.48	1250	5.90	1258
-1.32	288	-7.4	1268	-0.25	1268
-7.39	1278	-22.67	1276	80 . T	1278
0.79	1288	- .08	1288	0.15	1288
3.48	1298	9.23	1288	3.72	1298
- is	806	13.17	1308	86.4	1308
6.23	1318	15.6	1318	6.03	1318
5. c	1328	25.91	1328	8.03	1328
17.78	88	40.71	1338	5	55 55 50 50 50 50 50 50 50 50 50 50 50 5
24.01	2 2	51.12	9 7	13.51	5 5
70.0	1358	6 .6	 358	92.0	1358
-23.89	1368	-88.33	388	-13.61	1368
-29.88	1378	-68.78	1378	-8.13	1378
-16.97	1388	5.08	1388	7:1-	1388
23.92	1398	32.14	1398	18.08	1398
6 0.7	804	76.51	408	32.00	1408
55.51	1418	3 .	1418	3 .	1418
Ç	1.47A	£7 ¥	-		

Components of possible prediction equations from multivariate regression analyses. Table 6b.

Digestibility of dry matter in viva
-
16.31
-3.82 -18.48
-58.78 1518
-53.68 -53.68
25.00
-9.18 1638
-
-79.36
20.91

Components of possible prediction equations from multivariate regression analyses. Table 6b.

estibility of dry m Pt.8 (2,5,6)		D PCR (2,5,6)	Digestibility of d	Digestibility of dry matter in vivo	70 PLS (2,5,6)
Coefficient	Wevelength	Coefficient	Wavelength	Coefficient	Wavelength
-2.44	1808	71.17	1808	4.5	1808
-2.72	1818	.15.38	1818	-2.3	1818
20.00	1828	-29.4	1828	-3.37	1626
4.37	1838	-16.21	1838	900	1838
-8.79	1848	2.3	1848	-2.23	1848
-7.72	1858	-0.87	839	3.78	1658
-29.83	1868	-21.29	1868	-9.61	1988
-98.16	1878	-82.33	1878	-34.56	1878
-116.18	1888	-102.15	1888	-52.89	1888
117.59	9691	211.27	1898	38.2	1898
185	1908	204.51	906	66.78	1906
33.91	1918	-3.12	1918	28.1	1918
-35.31	1928	18.14	1928	3.79	1928
4.50	1938	35.39	1938	-19.45	1038
-9.26	1948	-8.24	1948	9.4	1948
35.73	858	-11.32	1958	15.85	1958
28.58	1968	-37.15	1969	13.49	1968
10.68	1978	7. 38	1978	2.03	1978
10.98	1988	-61.91	988	0.57	1988
65.12	86	-72.2	1898	31.07	9661
63.13	2008	-60.31	2008	38.57	2008
7.23	2018	37.37	2018	-1.21	2018
0.89	2028	183.21	2028	-9.38	2028
-10.85	2038	156.68	2038	-14.51	2038
-84.48	2048	-2.09	2048	54.72	2048
-122.01	2058	-178.03	2058	-68.29	2068
-35.85	2008	-104.9	2068	-1.69	2068
34.94	2078	-7.7	2078	37.55	2078
28.83	2088	62.28	2088	27.17	2088
18.03	9602	54.26	2038	16.01	2098
5.09	2108	14.14	2108	15.52	2108
-9.58	2118	-40.31	2118	7.68	2118
9.79	2128	2.34	2128	13.25	2128
23.04	2138	28.94	2138	16.49	2138
-10.93	2148	-31.58	2148	-6.42	2148
-16.87	2158	3.05	258	-9.12	2158

estibility of c	Digestibility of dry matter in vitro		Digestibility of d	Digestibility of dry metter is also	
	PLS (2,6,6)	PCR (2.6.6)	.6.6)	OAIA III ISMBILL I	
Coefficient	Wevelength	Coefficient	Wavelength	PLS (PLS (2,6,8)
48.69	2178	-107.52	2178	AND TO SEE	Wavelength
-14.5	2188	75	2 6	877	2178
-0.14	2198	11 13	8017	-12.58	2188
-7.15		7	2188	₹	2188
28.5	837	-2.14	2208	4.87	202
3 5	8177	8	2218	30.69	3 2
77.01-	8777	-0.0 1	2228	78.87	2 2
86.33	2238	100.18	2238	14.80	977
-24.11	2248	53.32	2248	97.53	877 7
55.00	2258	81.52	228	A : 0	2248
10,08	2268	46.93	\$ \$ \$	10.60	2258
52.16	278	916	2,72	80.27	8922
-89.38	2268	75.1	2368	8.3	2278
-109.99	2288	47.83	220	3	7788
·54.11	2308	-23.3	2708	88.27	2288
17.63	2318	-73.02	312	8 8 8 8 8	2308
23.71	2328	.73.74	3778	7.77	2318
62.19	2338	1361	27.18	9.0	2328
-58.16	2348	-21.87	27.6	37.78	2338
-21.28	2358	2.7.	275	97.9	2348
4 .01	2368	-88 75	255 Barr	29.7-	2358
32.53	2378	28.42	2770	F. 9.	2368
35.58	2388	58.01	9767	87.	2378
-21.25	27198	2.2	000	8	2368
-70.01	2408	. 5 2 3	9 5	-27.54	238
-16.88	2418	08:07-	3	-50.39	2408
81 68	2428	70.0 F	2418	-18.09	2418
14.94	2438	58.83	2428	17.75	2428
-11.88	2448	8. 8 8. 8	7430	99.7	2438
5.35	2458	2 E	2450	-11.21	2448
;	- :	3	2	202	

Descriptions of forages used in Table 8.

-								
Sample in	Genus	Species	Variety	Corrmon name	Part of plant	Process undergone	Stage of maturity	Regrowth
- UN 4 50 80	Pankum Pankum Pankum Pankum Pankum	coloratum maximum coloratum maximum coloratum var Makarikarlanse maximum var. Urchoglume	Kabudabula CP1 16796 Coloniso Bambatsi Hamil Burnett	Makarikari grass Gulnes grass Makarikari grass Gulnes grass Makarikari grass Green Panic	ectal serial serial	dried and chaffed dried and chaffed dried and chaffed dried and chaffed dried and chaffed dried and chaffed	mid bloom (9 weeks' regrowth) vegetalive regrowth (4 weeks') mid bloom (1 month's regrowth) early bloom (1 month's regrowth) mid bloom (6 weeks' regrowth) mid bloom (4 weeks' regrowth)	mld bloom - regrowth vegetalive regrowth mld bloom - regrowth early bloom - regrowth mld bloom - regrowth mld bloom - regrowth mld bloom - regrowth
-					_			

Examples of energy required to shear, digestibility of dry matter In vivo, forage consumption constraint (FCC), and voluntary feed consumption (VFC)

Actual VFC (g OM/d)	534	689	848	931	759	793
Actual VFC (g OM/d/MBW)	30.77	39.47	48.79	53.58	43.68	45.68
Predicted VFC [®] (g OM/d/MBW)	32.52	44.95	58.51	54.34	39.74	43.01
Predicted FCC ³ (g OM/d/MBW) ⁴	88.85	68.92	51.49	48.41	71.21	66.55
Digestibility of dry matter <i>In vivo</i> , predicted using NIR ² (%)	51.29	64.73	56.69	59.59	55,18	55.88
Energy required to shear, predicted using NIR ⁴ (kJ/m²)	20.51	18.70	13.75	13.16	17.52	16.63
Sample In Table 7	-	2	က	4	2	9

Predicted using the calibration equation from stepwise regression analysis (Table 6a)

Predicted using the calibration equation from stepwise regression analysis (Table 6a).
Predicted using predicted energy required to shear, and the relationship between energy required to shear and FCC.

Calculated from predicted FCC and predicted digestibility of dry matter in vivo. Abbreviations used: organic matter (OM), metabolic body weight (MBW) = BW^{0.75}

5

THE CLAIMS of the invention are as follows:

- A method for determining a biomechanical property of a feed, the method comprising the steps of:
- (a) subjecting the feed to infrared radiation to obtain spectral data; and
 - (b) using the spectral data to determine the biomechanical property;

whereby, the biomechanical property of the feed is determined on the basis of the bond energies of the chemical constituents of the feed.

- A method according to claim 1 wherein the biomechanical property of the
 feed is determined directly from the spectral data.
 - 3. A method according to claim 1 wherein the spectral data is used to determine another property of the feed and the other property is used to determine the biomechanical property on the basis of a correlation between the other property and the biomechanical property.
- A method according to claim 3 wherein the other property is ADF content,
 NDF content or lignin content.
 - 5. A method according to claim 1 or claim 2 wherein the spectral data is a reflectance spectrum over a predetermined range of wavelengths.
- 6. A method according to claim 5 wherein the predetermined range is approximately 700nm to 3000nm.
 - 7. A method according to claim 5 wherein the predetermined range is approximately 1100nm to 2500nm.

10

- 8. A method according to any one of claims 5 to 7 wherein the data obtained for the spectral range of approximately 1850nm to 1970nm is disregarded.
- 9. A method according to any one of claims 5 to 8 wherein the spectral data is recorded at 2nm intervals over the predetermined range.
- 5 10. A method according to claim 1 or claim 2 wherein the reflectance reading is taken at a combination of wavelengths.
 - A method according to claim 10 wherein the combination of wavelengths is selected from the group comprising: 1168nm, 1458nm, 1598nm, 1718nm, 1828nm, 2048nm, 1138nm, 2018nm, 2128nm, 2408nm, 1268nm, 1588nm, 1728nm, 2278nm, 1158nm, 1238nm, 1668nm, 1908nm, 2248nm, 1698nm,
 - 12. A method according to claim 10 wherein the combination of wavelengths is 1168nm, 1458nm, 1598nm, 1718nm, 1828nm and 2048nm and the biomechanical property is shear energy.
- 13. A method according to claim 10 wherein the combination of wavelengths is 1268nm, 1588nm, 1728nm and 2278nm and the biomechanical property is compression energy.

1748nm, 1918nm and 2158nm.

- 14. A method according to claim 10 wherein the combination of wavelengths is
 1138nm, 2018nm, 2128nm and 2408nm and the biomechanical property is
 20 comminution energy.
 - 15. A method for determining a biomechanical property of a feed, the method comprising the steps of:
 - (a) subjecting the feed to infrared radiation to obtain spectral data;and

(b) comparing the spectral data obtained in (a) with a calibration equation to determine the biomechanical property;

whereby, the biomechanical property of the feed is determined on the basis of the bond energies of the chemical constituents of the feed.

- 5 16. A method according to claim 15 wherein the calibration equation is $y_1 = 19.95 + 10239.46 R_{1168} + 3623.49 R_{1458} 4255.61 R_{1598} 5319.88 R_{1718} + 5148.38 R_{1828} + 2452.05 R_{2048}$ and the biomechanical property is shear energy(y_1).
- 17. A method according to claim 15 wherein the calibration equation is $y_2 =$ 231.42 + 18224.74 R₁₁₃₈ 4955.12 R₂₀₁₈ 3005.37 R₂₁₂₈ + 4290.18 R₂₄₀₈ and the biomechanical property is comminution energy (y_2).
 - 18. A method according to claim 15 wherein the calibration equation is $y_3 = -0.71 911.04 R_{1268} + 112.57 R_{1588} 79.48 R_{1728} 28.02 R_{2278}$ and the biomechanical property is compression energy (y_3) .
- 15 19. A method according to any one of claims 15 to 18 wherein the calibration equation is determined from laboratory data establishing a correlation between reflectance and the biomechanical property.
 - 20. A method according to any one of claims 1 to 19 wherein an additional property of the feed is also determined.
- 20 21. A method according to claim 20 wherein the additional property of the feed is digestibility of dry matter in vivo or in vitro.
 - 22. A method for determining feed quality, the method comprising the steps of:
 - (a) subjecting the feed to infrared radiation to obtain spectral data;

- (b) using the spectral data to determine a biomechanical property of the feed; and
- (c) using the biomechanical property obtained in step (b) to determine feed quality;
- whereby, the biomechanical property of the feed and thus feed quality is determined on the basis of the bond energies of the chemical constituents of the feed.
 - 23. A method according to claim 22 wherein the feed quality is determined as a measure of voluntary feed consumption (VFC).
- 10 24. A method according to claim 22 wherein the feed quality is determined as a measure of forage consumption constraint (FCC).
 - 25. A method substantially as herein described with reference to the description of the examples.
- 26. A spectrometer configured to carry out the method according to any one of
 15 claims 1 to 21 wherein the spectrometer is adapted to receive a sample of feed and determine a biomechanical property of the feed.
 - 27. A spectrometer configured to carry out the method according to any one of claims 22 to 24 wherein the spectrometer is adapted to receive a sample of feed and determine the quality of the feed.
- 20 28. A spectrometer according to claim 26 or 27 further comprising a data processing means for determining the biomechanical property or the quality of the feed.

SUBSTITUTE SHEET (RULE 26)

Figure 2a

Figure 2a (cont'd)

4/11

Figure 2a (cont'd)

Figure 2b

Figure 2b (cont'd)

Figure 2c

SUBSTITUTE SHEET (RULE 26)

Figure 2c (cont'd)

CLASSIFICATION OF SUBJECT MATTER Int Cl6: G01N 21/35, G01J 3/42 According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC: G01N 21/34, 21/35, 33/02, G01J 3/28, 3/42 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched AU:IPC as above Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WPAT, JAPIO: (IR or infrared or infra()red), (bond: or energ:) DIALOG: "Science" Supergroup:[(IR or infrared or infra()rcd) and (bond? or energ?) and spectr? and (feed or fodder or hay) DOCUMENTS CONSIDERED TO BE RELEVANT C. Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category* Animal Feed Science and Technology, Vol. 37 No. 3-4, 1992 Elsevier Science Publishers B.V., Amsterdam, "Influence of growth type and season on the prediction of the metabolisable energy content of herbage by near-infrared reflectance spectroscopy", pages 281-295 by D.I. GIVENS et al. 1-28 See entire document Х Animal Feed Science and Technology, Vol. 51, February 1995, Elsevier Science B.V., "The use of NIRS to predict the chemical composition and the energy value of compound feeds for cattle", pages 243-253 by J.L. de BOEUER et al. 1-28 See entire document Further documents are listed in the continuation of Box C See patent family annex Special categories of cited documents: later document published after the international filing date or "T" priority date and not in conflict with the application but cited to document defining the general state of the art which is "A" understand the principle or theory underlying the invention not considered to be of particular relevance document of particular relevance; the claimed invention cannot "X" carlier document but published on or after the "E" be considered novel or cannot be considered to involve an international filing date inventive step when the document is taken alone document which may throw doubts on priority claim(s) "L" document of particular relevance; the claimed invention cannot or which is cited to establish the publication date of be considered to involve an inventive step when the document is another citation or other special reason (as specified) combined with one or more other such documents, such document referring to an oral disclosure, use, "O" combination being obvious to a person skilled in the art exhibition or other means document member of the same patent family document published prior to the international filing date but later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 26 February 1997 06.03.97 Authorized officer Name and mailing address of the ISNAU AUSTRALIAN INDUSTRIAL PROPERTY ORGANISATION PO BOX 200 **GREG POWELL** WODEN ACT 2606 AUSTRALIA Facsimile No.: (06) 285 3929 Telephone No.: (06) 283 2308 ---

INTERNATIONAL SEARCH REPORT

International Application No.

C (Continuat	PCT/AU 96/00776 DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	TO BE RELEVANT	T
	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	Proceedings 9th European Poultry Conference, Glasgow, UK, 7-12 August 1994: Volume 2. Symposia papers, published by WPSA, UK, "Current status of near infrared (NIR) spectroscopy in Australia for predicting metabolisable energy of poultry feeds", pages 106-109 by P.C. FLINN et al.	
X	See entire document	1-28
x	Agri-Practice, Vol. 12, No. 3, May/June 1991, Veterinary Practice Pub. Co., USA, "Forage Analyses for Dietary Diagnosis and Management", pages 29-32 by B. ANDERSON et al. See entire document	1-28
x	Bulgarian Journal of Agricultural Science, Vol. 1, No. 1, 1995, Agricultural Academy of Bulgaria, "Estimation of Composition, Digestibility and Feeding Value of Forages by Near Infrared Reflectance Spectroscopy. II. Estimation of Energy Value and Protein Value of Forages" pages 35-44 by S.L. ATANASSOVA et al. See entire document	
_		1-28
P,A	WO 96/24843 A (WOLFKING DANMARK A/S) 15 August 1996 See page 9, lines 22-24 See page 11 line18 - page 14 line 6 See page 16 line 28 - page 17 line 22	1-28
	See page 18 line 13 - page 20 line 21 See Examples	
í	Derwent Abstract Accession No. 93-180660/22, Class S03, SU 1739284 A1 (UNIV DNEPR) 7 June 1992 See abstract	
j;	Proceedings of the XVII International Grassland Congress 1993, "Genotypes of dry matured subterranean clover differ in shear energy", pages 592-593 by S.K. BAKER et al. See entire document	
	Proceedings of the XVII International Grassland congress 1993, "Composition of the fractions of dry mature subterranean clover digested in vivo and in vitro" pages 593-595 by L. KLEIN et al.	
A S	See entire document	j
į ¹	Patent Abstracts of Japan, E-78, page 1060, JP 53-15890 A (SHIMAZU SEISAKUSHO K.K.) See abstract	
A S	Patent Abstracts of Japan, JP 06-123700 A (HAMAMATSU PHOTONICS KK) 6 May 1994 See abstract	
. 1 4	Patent Abstracts of Japan, P-393, page 58, JP 60-98335 A (KOGYO GIJUTSUIN (JAPAN)) June 1985 See abstract	
1		

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No. PCT/AU 96/00776

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

atent Docu	ment Cited in Search Report			Patent	Family Member		
wo	9624843	AU	A1 46193/96	AU	A1 46194/96	AU	A1 46195/9
		DK	A 155/95	DK	A 90/96	DK	A 91/96
	<i>:</i>						
	•						
4							
•			•				' :
· •					-	•	· 1
<i>J.</i>		· - · · · · · · · · · · · · · · · · · ·	er total er i i temperatur galega galaga saga saga saga saga saga saga				
					-		
					•		
	•	-				÷	
						•	
						-	
	-			•			
•	•	•		•	•		•
	:						

Form PCT/ISA/210 (extra sheet) (July 1992) coprow

