# **Singular Vectors**

#### 

Suppose  $\vec{v}_i$  are the n orthogonal eigenvectors of  $A^TA$ , ordered so that their corresponding eigenvalues satisfy  $\lambda_1 \geq \lambda_2 \cdots \geq \lambda_n$ . Suppose also that A has r non-zero singular values,  $r \leq n$ . Then the set of vectors,

$$\{ec{v}_{r+1},ec{v}_{r+2},\ldots,ec{v}_n\}$$

is an orthogonal basis for NulA, and the set

$$\{\vec{v_1},\vec{v_2},\ldots,\vec{v_r}\}$$

is an orthogonal basis for Row A, and Rank A = r.

#### 

For a set of vectors to form an orthogonal basis for a subspace they must be in that space, span the space, be independent, and mutually orthogonal.

- ullet Each  $ec{v}_i$  is an eigenvector, so none of them are the zero vector.
- $\vec{v}_i$  are orthogonal and span  $\mathbb{R}^n$  (they are eigenvectors of a symmetric matrix,  $A^TA$ ).
- Recall that the lengths of  $A\vec{v}_i$  are the singular values of A:

$$||A\vec{v_i}|| = \sigma_i.$$

- Then if  $||A\vec{v_i}|| = 0$  for i > r, then  $\vec{v_i} \in \text{Nul}A$  for i > r.
- Then if  $||A\vec{v_i}|| \neq 0$  for  $i \leq r$ , then  $\vec{v_i}$  cannot be in NulA for  $i \leq r$ , they must be in  $(\text{Nul}A)^{\perp} = \text{Row}A$ , because  $\{\vec{v_i}\}$  is an orthonormal set.

Thus, our basis for NulA is the set

$$\{\vec{v}_{r+1}, \vec{v}_{r+2}, \ldots, \vec{v}_n\}$$

and our basis for RowA is the set

$$\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_r\}$$

We must also describe why rankA = r.

- There are r vectors in our basis for RowA.
- Recall that  $\dim(\mathsf{Row} A) = \dim(\mathsf{Col} A) = \mathsf{rank} A$ .

Using the same assumptions as above, it can be shown that,

$$\{A\vec{v_1},A\vec{v_2},\ldots,A\vec{v_r}\}$$

or

$$\{\vec{u_1},\vec{u_2},\ldots,\vec{u_r}\}$$

is an orthogonal basis for  $\mathrm{Col} A$ .

### ♦ Proof >

- Each  $A\vec{v_i}$  is a vector in ColA.
- $A\vec{v}_i$  and  $A\vec{v}_j$  are orthogonal:

$$(A ec{v}_i) \cdot (A ec{v}_j) = ec{v}_i^T A^T A ec{v}_j = \lambda_j ec{v}_i \cdot ec{v}_j = 0$$

• For  $i \leq r = \text{rank}A$ ,  $A\vec{v_i}$  are orthogonal and non-zero. So they must also independent and form an orthogonal basis for ColA.

Note that for i > r,  $A\vec{v_i} = \vec{0}$  because  $\vec{v_i} \in \text{Nul} A$  for i > r.



## Definition

The vectors  $\{\vec{u}_i\}$  for  $i \leq m$  are the **left singular vectors** of A. The vectors  $\{\vec{v}_i\}$  for  $i \leq n$  are the **right singular vectors** of A.

- Left Singular Vectors are the basis for  $\mathrm{Col} A$
- Right Singular Vectors are the eigenvectors of  $A^TA$