

Information Technology

FIT1008/2085 Introduction – Unit Basics

Prepared by:
Maria Garcia de la Banda
Revised by A. Aleti, D. Albrecht, G. Farr, J. Garcia and P. Abramson

Learning Objectives

To learn about the unit basics:

- The teaching team
- What it is(are) the unit(s) all about
- What will you get from this unit
- Main differences between FIT1008 and FIT2085
- Weekly topics
- Recommended reading

- It is about the fundamentals of Computer Science and Software Engineering
- It all starts with a problem that needs to be solved

- Consider the famous Köningsberg seven bridges problem:
 - Find a walk through the city that crosses each bridge once, and only once

- To do this we often abstract it
- & develop a high-level algorithm

$$V = [A, B, C, D]$$

We then encode the algorithm in a programming language

```
def swap(the_list, i, j):
    the_list[i], the_list[j] = the_list[j], the_list[i]
def selection sort(the list):
    n = len(the_list)
    for k in range(n):
        min_position = find_minimum(the_list, k)
        swap(the_list, k, min_position)
def find_minimum(the_list, starting_index):
    min_position = starting_index
    n = len(the list)
    for i in range(starting_index, n):
        if the list[i] < the list[min position]:</pre>
            min_position = i
    return min_position
```

Which is compiled/interpreted into assembly language

```
.data
                                 # change value to desired number for A, which is a0
   A:
                   .word 10
                                 # change value to desired number for B, which is al
   В:
                 .word 4
                                 # size must be changed to accommodate A and B
                  .word 0:50
   array:
                  .text
   main:
           lw $s0, A
                        # $s0 = A
           addi $50, $50, -1 # to accommodate for loop condition
                              # $s1 = B lowercase b turns blue... WHY
           lw $sl, B
10
           addi $s1, $s1, -1 # see line 9
11
           la $s2, array
                                 # "look at" address of array
12
           li $s3, O
                                # set i = 0
13
14
           li $s4, 0
                                 # set j = 0
15
16
   For1:
                                 # for(i = 0; i < A; i++)
17
           blt $s0, $s3, Exit
18
           addi $s3,$s3,1
                                 # i++
           li $s4, 0
                                 # resets j to 0 after each iteration of the for loop
19
           j For2
20
                                 # executes the nested for loop
```

■ Then it is assembled and linked into machine language, and executed in a

CPU

 We will focus on basic knowledge that helps with the first three steps

What you will get from this unit?

What you'll get from this unit

Implement and modify many different data types

Some of the Data Types you will see

Binary Search Trees

- 0. stop
- 1. pots
- 2. tops

Lists

What you'll get from this unit

- Implement and modify many different data types
- Evaluate/compare different data type implementations
- Design, implement and test algorithms on data types

Programming Language to implement

xkcd.com

We will use Python (3.6+) not JavaScript

Why?

Important for type-hints. 3.8 recommended

- General purpose (not web focused)
- Simple syntax, so better to learn basics
- Has depth (mutli-paradigm)
- Great libraries
- Also very popular

I LEARNED IT LAST NIGHT! EVERYTHING IS SO SIMPLE! HELLO WORLD IS JUST Print "Hello, world!"

Important!

This course is about learning/practicing the CS/SE fundamentals

This is NOT a Python course

- Python is only used as a tool to illustrate the concepts
- Sometimes we will have to bend it a bit...
- DISCLAIMER: I am not a Python programmer expert!
 - Not necessary for this unit

What you'll get from this unit

- Implement and modify many different data types
- Evaluate/compare different data type implementations
- Design, implement, document and test algorithms on data types
- How simple high-level programs are compiled into MIPS assembler
 - Look "under the hood" of high-level programming languages
 - How your code runs

MIPS Architecture & assembly language


```
.text
fact:
               $v0, $0, 1
        ori
               $s0, $0, 1
        addi
        slt
               $t1, $s0, $t0
loop:
        bne
               $t1, $s0, end
        mult
               $v0, $t0
        mflo
               $v0
        addi
               $t0, $t0, -1
               loop
        jr
               $ra
end:
```

What you'll get from this unit

- Implement and modify many different data types
- Evaluate/compare different data type implementations
- Design, implement, document and test algorithms on data types
- How simple high-level programs are compiled into MIPS assembler
 - Look "under the hood" of high-level programming languages
 - How your code really works

Main aim: learn and/or practice the fundamentals

Main differences FIT1008/FIT2085

Main differences among FIT1008/2085

- FIT1008 belongs to the Computer Science degree
- FIT2085 belongs to the Software Engineering degree:
 - It used to be taught with FIT1008 (in 1st year, 2nd semester)
 - But since 2017, first year Engineering is full with other units
 - Thus, it is now taught in the 2nd year of Software Eng.
 - Main differences:
 - Students have a different background (JavaScript)
 - More emphasis on Software Engineering best practices

Overview Weekly Topics

Preliminary Timetable for Topics

1 Temmaly Timetable for Topics		Coordinated with FIT1045		
Week	Topics	and FIT2004 for less repetition and more reuse		
1	MIPS Architecture and MIPS simple programs.			
2	Decisions in MIPS, Arrays in MIPS and Iteration in MIPS.	O a a malina a t		
3	MIPS Memory and MIPS Functions.		Coordinated with ENG1003 for more	
4	Complexity, Sorting, Exceptions and Assertions.	background	l material	
5	Abstract Data Types; Classes and Objects and Variables a	and Scoping.		
6	Stacks and Queues based on Arrays.			
7	(Sorted and Unsorted) Array-based Lists and on Iterators.			
8	Linked Stacks, Queues and Lists.			
9	Hashing and Collision Resolution (linear Probing).			
10	Recursion, Iteration vs Recursion and Recursive Sorts.			
11	Binary Trees and Binary Search Trees.			
12	Heaps and Priority Queues.			

Recommended Reading

Recommended Reading

- Slides are not enough: read the recommended texts!
 - Available at https://monash.rl.talis.com/
- For MIPS:
 - R.L. Britton MIPS Assembly Language Programming
- For data structure and algorithms:
 - B. Miller and D. Ranum Problem solving with algorithms and data structures using Python https://interactivepython.org/runestone/static/pythonds/index.html
 - M.T. Goodrich, R. Tamassia, M.H. Goldwasser Data Structures and Algorithms in Python

For Python:

- http://docs.python.org/3/tutorial/
- http://openbookproject.net/thinkcs/python/english3e/ chapters 1-7

Summary

Summary

We have seen:

- The teaching team
- What it is(are) the unit(s) all about
- What will you get from this unit
- Main differences between FIT1008 and FIT2085
- Weekly topics
- Recommended reading

