Optimierung 02 27.10.2014

Carolin Konietzny, 6523939, Gruppe 3 Tronje Krabbe, 6435002, Gruppe 7 Julian Tobergte, 6414935, Gruppe 5

3. November 2014

1. a) Starttableau:

$$x_{3} = \frac{1}{2} - x_{1} + 3x_{2}$$

$$x_{4} = 3 - x_{1} + x_{2}$$

$$x_{5} = 1 + 2x_{1} - \frac{1}{3}x_{2}$$

$$z = x_{1} + 4x_{2}$$

1. Iteration:

Eingangsvariable: x_2

Ausgangsvariable: x_5 , was leicht ersichtlich ist, da nur in der x_5 -Gleichung der x_2 -

Faktor negativ ist.

Es folgt:

$$x_2 = 3 + 6x_1 - 3x_5$$

$$x_3 = \frac{1}{2} - x_1 + 3(3 + 6x_1 - 3x_5)$$

$$= \frac{19}{2} + 17x_1 - 9x_5$$

$$x_4 = 3 - x_1(3 + 6x_1 - 3x_5)$$

$$= 6 + 5x_1 - 3x_5$$

$$z = x_1 + 4(3 + 6x_1 - 3x_5)$$

$$= 12 + 25x_1 - 12x_5$$

Ergebnis der 1. Iteration:

$$x_{2} = 3 + 6x_{1} - 3x_{5}$$

$$x_{3} = \frac{19}{2} + 17x_{1} - 9x_{5}$$

$$x_{4} = 6 + 5x_{1} - 3x_{5}$$

$$z = 12 + 25x_{1} - 12x_{5}$$

Die nächste Eingangsvariable wäre x_1 , doch x_1 ist in keiner Schlupfvariablengleichung beschränkt. Also ist das Ergebnis "unbeschränkt".

Sei $x_1 = t$, $x_2 = 3+6t$, $x_5 = 0$. So ist die entsprechende Halbgerade, in Parameterform:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 6 \end{pmatrix}$$

b) Folgender Graph ergibt sich:

Die gepunktete Halbgerade ist diejenige, die wir in Unteraufgabe a) ermittelt haben. Würde man das graphische Verfahren auf das LP-Problem aus Aufgabe a) anwenden, würde man die Lösungsgerade (hier gestrichelt) nicht einzeichnen können, da der Lösungsbereich unendlich groß ist.

c) Zunächst machen wir uns klar, dass aus Unteraufgabe a) hervorgeht, dass: z=12+25t. Zulässige Lösung für z=50:

$$50 = 12 + 25t$$
$$38 = 25t$$
$$\frac{38}{25} = t$$
$$\Rightarrow x_1 = \frac{38}{25}$$
$$\Rightarrow x_2 = \frac{303}{25}$$

Zulässige Lösung für z = 200:

$$200 = 12 + 25t$$

$$t = \frac{188}{25}$$

$$\Rightarrow x_1 = \frac{188}{25}$$

$$\Rightarrow x_2 = \frac{1203}{25}$$

Zulässige Lösung für z = 1000:

$$1000 = 12 + 25t$$

$$t = \frac{988}{25}$$

$$\Rightarrow x_1 = \frac{988}{25}$$

$$\Rightarrow x_2 = \frac{6003}{25}$$

2. a) Wir erstellen unser Hilfsproblem:

maximiere
$$-x_0$$
 unter den Nebenbedingungen
$$-x_1 + x_2 - x_0 \le 9$$

$$8x_1 - 2x_2 - x_0 \le 3$$

$$-x_1 - x_2 - x_0 \le -2$$

$$x_0, x_1, x_2 \ge 0$$

Wir erhalten das folgende Tableau:

$$x_{3} = 9 + x_{1} - x_{2} + x_{0}$$

$$x_{4} = 3 - 8x_{1} + 2x_{2} + x_{0}$$

$$x_{5} = -2 + x_{1} + x_{2} + x_{0}$$

$$w = -x_{0}$$

Das korrigierte Tableau, mit Eingangsvariable x_0 und Ausgangsvariable x_5 ist:

$$x_{0} = 2 - x_{1} - x_{2} + x_{5}$$

$$x_{3} = 11 - 2x_{2} + x_{5}$$

$$x_{4} = 5 - 9x_{1} + x_{2} + x_{5}$$

$$w = -2 + x_{1} + x_{2} - x_{5}$$

Die nächste Eingangsvariable ist x_1 , und die Ausgangsvariable ist x_4 . Es folgt:

$$x_{1} = \frac{5}{9} + \frac{1}{9}x_{2} + \frac{1}{9}x_{5} - \frac{1}{9}x_{4}$$

$$x_{0} = \frac{13}{9} - \frac{10}{9}x_{2} + \frac{8}{9}x_{5} + \frac{1}{9}x_{4}$$

$$x_{3} = 11 - 2x_{2} + x_{5}$$

$$w = -\frac{13}{9} + \frac{10}{9}x_{2} - \frac{8}{9}x_{5} - \frac{1}{9}x_{4}$$

Die nächste Eingangsvariable ist x_2 , die Ausgangsvariable x_0 . Das entstehende Tableau ist:

$$x_{2} = \frac{13}{9} + \frac{8}{10}x_{5} + \frac{1}{10}x_{4} - \frac{9}{10}x_{0}$$

$$x_{1} = \frac{7}{10} + \frac{1}{5}x_{5} - \frac{1}{10}x_{4} + x_{0}$$

$$x_{3} = \frac{42}{5} - \frac{3}{5}x_{5} - \frac{1}{10}x_{4} + \frac{9}{5}x_{0}$$

$$w = -x_{0}$$

Wir erhalten die optimale Lösung $x_0=0, x_1=\frac{7}{10}, x_2=\frac{13}{10}, x_3=\frac{42}{5}, x_4=0, w=0.$ Dem entsprechend ist $x_1=\frac{7}{10}, x_2=\frac{13}{10}$ eine zulässige Lösung für das ursprüngliche Problem. Wir erhalten außerdem das folgende Starttableau für das ursprüngliche Problem:

$$x_{2} = \frac{13}{9} + \frac{8}{10}x_{5} + \frac{1}{10}x_{4}$$

$$x_{1} = \frac{7}{10} + \frac{1}{5}x_{5} - \frac{1}{10}x_{4}$$

$$x_{3} = \frac{42}{5} - \frac{3}{5}x_{5} - \frac{1}{10}x_{4}$$

$$z = \frac{89}{5} + \frac{49}{5}x_{5} + \frac{3}{5}x_{4}$$

b)