Security - Ziele

Vertraulichkeit

Security - Ziele

Vertraulichkeit

- Speicherung der Daten
- Übertragung der Daten
- Lesen von Daten nur durch autorisierte Personen

Maßnahmen

Security - Ziele

Vertraulichkeit

- Speicherung der Daten
- Übertragung der Daten
- Lesen von Daten nur durch autorisierte Personen

Maßnahmen

• (symmetrische/asymmetrische) Verschlüsselung von Daten

Security - Ziele

Integrität

Security - Ziele

Integrität

- keine unbemerkte Manipulation von Daten
- Änderungen an Daten müssen immer nachvollziehbar sein

Maßnahmen

Security - Ziele

Integrität

- keine unbemerkte Manipulation von Daten
- Änderungen an Daten müssen immer nachvollziehbar sein

Maßnahmen

• Hashverfahren (u.a. Prüfsummen)

Security - Ziele

Authentizität

Security - Ziele

Authentizität

- Echtheit, Überprüfbarkeit
- Hier: Datenursprung, Sender

Security - Ziele

Authentizität

- Echtheit, Überprüfbarkeit
- Hier: Datenursprung, Sender

Verbindlichkeit (non repudiation)

Security - Ziele

Authentizität

- Echtheit, Überprüfbarkeit
- Hier: Datenursprung, Sender

Verbindlichkeit (non repudiation)

- "Unabstreitbarkeit" einer Nachricht
- Bsp. Abschluss eines (Kauf)-Vertrages

Maßnahmen

Security - Ziele

Authentizität

- Echtheit, Überprüfbarkeit
- Hier: Datenursprung, Sender

Verbindlichkeit (non repudiation)

- "Unabstreitbarkeit" einer Nachricht
- Bsp. Abschluss eines (Kauf)-Vertrages

Maßnahmen

• digitale Signatur (z.B. Updates, Pakete aus Paketquellen)

Krypt. Hashfunktion

HASHEN!= VERSCHLÜSSELN

Krypt. Hashfunktion

HASHEN!= VERSCHLÜSSELN

SHA-3 (Keccak) Sponge-Konstruktion

Skein, BLAKE, Grøstl...

Krypt. Hashfunktion

$$h: \{0,1\}^m \to \{0,1\}^n \ mit \ m \ge n$$

Krypt. Hashfunktion

$$h: \{0,1\}^m \to \{0,1\}^n \text{ mit } m \ge n$$

Eigenschaften

• Einwegfunktion y = f(x) "einfach", $f^{-1}(y) = x$ "schwer"

Krypt. Hashfunktion

$$h: \{0,1\}^m \to \{0,1\}^n \text{ mit } m \ge n$$

- **Einwegfunktion** y = f(x) "einfach", $f^{-1}(y) = x$ "schwer"
- nicht injektiv → Kollisionen möglich aber unerwünscht (Kollisionsresistenz)

Krypt. Hashfunktion

$$h: \{0,1\}^m \to \{0,1\}^n \text{ mit } m \ge n$$

- **Einwegfunktion** y = f(x) "einfach", $f^{-1}(y) = x$ "schwer"
- nicht injektiv → Kollisionen möglich aber unerwünscht (Kollisionsresistenz)
 - Schwache Kollisionsresistenz \rightarrow finde kein x' zu x mit h(x) = h(x')
 - Starke Kollisionsresistenz \rightarrow finde keine x, x' mit h(x) = h(x')

Krypt. Hashfunktion

$$h: \{0,1\}^m \to \{0,1\}^n \text{ mit } m \ge n$$

- Einwegfunktion y = f(x) "einfach", $f^{-1}(y) = x$ "schwer"
- nicht injektiv → Kollisionen möglich aber unerwünscht (Kollisionsresistenz)
- (wünschenswert) surjektiv $\forall y \in Y \ \exists x \in X : f(x) = y$

Krypt. Hashfunktion

$$h: \{0,1\}^m \to \{0,1\}^n \text{ mit } m \ge n$$

- **Einwegfunktion** y = f(x) "einfach", $f^{-1}(y) = x$ "schwer"
- nicht injektiv → Kollisionen möglich aber unerwünscht (Kollisionsresistenz)
- (wünschenswert) surjektiv $\forall y \in Y \ \exists x \in X : f(x) = y$
- Effizienz

Krypt. Hashfunktion

$$h: \{0,1\}^m \to \{0,1\}^n \text{ mit } m \ge n$$

- **Einwegfunktion** y = f(x) "einfach", $f^{-1}(y) = x$ "schwer"
- nicht injektiv → Kollisionen möglich aber unerwünscht (Kollisionsresistenz)
- (wünschenswert) surjektiv $\forall y \in Y \ \exists x \in X : f(x) = y$
- Effizienz
- Lawineneffekt/Chaoseffekt

Krypt. Hashfunktion

Geburtstagsparadox

Krypt. Hashfunktion

Geburtstagsparadox

 $p(n) \rightarrow$ Wahrscheinlichkeit dafür, dass mind. 2 Personen am gleichen Tag Geburtstag haben.

 $\mathbf{q}(n) \rightarrow$ Wahrscheinlichkeit dafür, dass mind. 2 Personen an einem bestimmten gleichen Tag Geburtstag haben.

Wie muss groß muss n sein,

damit p, q > 0.5 ?

Krypt. Hashfunktion

Geburtstagsparadox

 $p(n) \rightarrow$ Wahrscheinlichkeit dafür, dass mind. 2 Personen am gleichen Tag Geburtstag haben.

Anm. (JT): Falsch, hier müsste stehen, dass eine Person an einem gegebenen Tag Geburtstag hat.

 $q(n) \rightarrow$ Wahrscheinlichkeit dafür, dass mind. 2 Personen an einem bestimmten gleichen

Tag Geburtstag haben.

Wie muss groß muss n sein, damit p, q > 0.5?

Krypt. Hashfunktion

Geburtstagsparadox

 $p(n) \rightarrow$ Wahrscheinlichkeit dafür, dass mind. 2 Personen am gleichen Tag Geburtstag haben.

 $q(n) \rightarrow$ Wahrscheinlichkeit dafür, dass mind. 2 Personen an einem bestimmten gleichen Tag Geburtstag haben.

n = 253

Wie muss groß muss n sein, damit p, q > 0.5?

Krypt. Hashfunktion

Verwendung

- (nicht krypto.) Hashmaps/Hashtabellen
- (nicht zwangsläufig krypto.) Prüfsummen
- Signieren von Nachrichten, Nachrichten-Headern
- Integritätsprüfung
- Passwörter hashen
- Pseudozufallsgeneratoren