Exam 1 October 23, 2021

Name:	TITE
vame:	UID:

- The exam consists of FOUR problems.
- Unsupported answers will receive little or no credit.
- Upload your answers to Gradescope as a pdf only. Make sure to allocate your work to the appropriate question.
- Missing or blank pages will result in an automatic zero for the question.
- Time: 75 minutes.

Problem	Score	Points
1		8
2		10
3		8
4		16
Total		42

Best wishes!

Daoud Siniora and Eslam Badr

Problem 1. (8 points) Let a, b, c be given constants, and consider the matrix

$$A = \begin{bmatrix} 1 & a & b \\ 1 & a+1 & b+c \\ 1 & a & b+1 \end{bmatrix}.$$

Determine the condition(s) on a, b, c for which A invertible? For those value(s) of a, b, c, find the inverse of A.

A intertible (iff)
$$|A| \neq 0$$
.

 $|A| = \begin{vmatrix} 1 & a & b & c \\ 1 & a+1 & b+c & c \\ 1 & c & b+1 & c \\ 1 & c & c & c \\ 1$

Scanned with CamScann

Problem 2 (10 points) Find a cubic polynomial in x say,

$$P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

such that P(1) = 1, P'(1) = 5, P(-1) = 3, and P'(-1) = 1. Here P'(x) denotes the 1st derivative of P(x) with respect to x. $P'(x) = a_1 + 2a_2 \times + 3a_3 \times^2$

 $\int_{0}^{2} P(x) = 1 - 3x + x^{2} + 2x^{3}$.

Scanned with CamScanne

Problem 4. (4 points each) True or False (Circle one and state your reason):

i) If A is an $n \times n$ matrix with n odd integer such that $A^t = -A$, then |A| = 0.

Reason: Suppose
$$A^{t} = A$$
, nodd True False $A^{t} = A$, nodd $A^{t} = A$ A

ii) For any square matrices A and B of the same size, the following is true:

$$(A+B)^2 = A^2 + 2AB + B^2.$$

Reason:
$$(A+B)^{2} = (A+B)(A+B)$$

$$= A(A+B) + B(A+B)$$

$$= A^{2} + AB + BA + B^{2}$$

$$\stackrel{iff}{=} A^{2} + AB + B^{2}$$

$$\stackrel{iff}{=} A^{2} + AB + B^{2}$$
True (False)
$$= A^{2} + AB + BA + B^{2}$$

$$\stackrel{iff}{=} AB = BA$$
This is not always true. For example, take
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$
Here $AB \neq BA$.

iii) Every invertible matrix has unique LU-Factorization.

Reason: True Counter example A = [o 1] invertible as IAI = 1 + 0 if A has an LU, then A=LU=[1 0][b c] $\frac{3}{5}, \left[\begin{array}{c} 0 \\ 1 \end{array}\right] = \left[\begin{array}{c} b \\ ab \end{array}\right]$ 30 1=ab = oly 50, A doesn't have on LU.

iv) Two systems of linear equations $A \mathbf{x} = \mathbf{b}$ and $B \mathbf{x} = \mathbf{c}$ have the same solution set if their coefficient matrices A and B are row-equivalent.

Reason:

Reason:

[A:b], [B:
$$\subseteq$$
] should be row-equivalent

[X. $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = B$

Notice that A, B are row-equivalent.

Henever, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \times = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ has solns. $\begin{cases} 1 & 0 \\ 0 & 1 \end{cases} \times = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \times = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \times = \begin{bmatrix} 1 & 0 \\ 0 & 1$

that is, the two systems satisfy the conditions but they're different solns.

MACT 2123

Fall 2021

Draft:

Scanned with CamScanner

Problem 3. A matrix whose entries are all integer numbers is called an *integer* matrix.

For example,
$$\begin{bmatrix} 1 & -4 \\ -2 & 9 \end{bmatrix}$$
 is an integer 2×2 matrix, but $\begin{bmatrix} 1 & -4 \\ -2 & 9/2 \end{bmatrix}$ is not.

i) (2 points) Give an example of an invertible integer matrix A whose inverse is NOT an integer matrix.

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix}$$
 integer.

But, $A' = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$ non-integer.

ii) (6 points) Suppose that A is an integer matrix, which is invertible. Use the fact that "the determinant of an integer matrix is an integer number" to show:

(a) If A-1 is an integer matrix, then
$$|A| = \pm 1$$
.

Suppose that A' integer. Then, $|A'|$, $|A|$ are both integers by the fact. Let $|A| = c$ (integer)

8°, c and d are both integers.

This holds only if $c = \pm 1$. Equivalently, $|A| = \pm 1$.

(b) The converse is also true, that is, if $|A| = \pm 1$, then A^{-1} is an integer matrix.

Suppose that A is an integer matrix with
$$|A| = \pm 1$$
 $|A| = \pm 1 \pm 0 \implies A$ in kAible, $|A| = \frac{1}{|A|}$ adj(A)

 $|A| = \frac{1}{\pm 1}$ adj(A) = $\pm adj(A)$.

A inter The elements of adj(A) are cofactors of A.

Cofactors are determinants of integer matrix, so they are integers by the fact.

85 adj(A) integer matrix $|A| = \pm 1$