МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота №4

3 дисципліни

"Дискретна математика"

Виконав:

Студент групи КН-115

Конопльов Павло

Викладач:

Мельникова Н.І.

Тема: Основні операції над графами. Знаходження остова мінімальної ваги за алгоритмом Пріма-Краскала.

Мета роботи: набуття практичних вмінь та навичок з використання алгоритмів Пріма і Краскала.

Варіант № 11

Завдання № 1.

Розв'язати на графах наступні задачі:

1. Виконати наступні операції над графами:

1) знайти доповнення до першого графу,

2) об'єднання графів

3) кільцеву суму G1 та G2 (G1+G2)

4) розщепити вершину у другому графі

5) виділити підграф A, що складається з 3-х вершин в G1 і знайти стягнення A в G1 (G1 $\$ A)

Підграф А:

Стягнення A в G₁:

(G1\ A):

6) добуток графів

2. Знайти таблицю суміжності та діаметр графа.

	V ₁	V ₂	V ₃	V_4	V ₅	V ₆	V ₇	V ₈	V ₉
V_1	-	1	1	1	2	2	1	2	3
V_2	1	-	1	2	3	3	2	2	3
V ₃	1	1	1	1	2	2	2	1	2
V_4	1	2	1	-	1	1	2	1	2
V_5	2	3	2	1	-	1	1	1	2
V_6	2	3	2	1	1	-	1	2	3
V_7	1	2	2	2	1	1	-	1	2
V ₈	2	2	1	1	1	2	1	-	1
V 9	3	3	2	2	2	3	2	1	-

Діаметр графа: 3.

3. Знайти двома методами (Краскала і Прима) мінімальне остове дерево графа.

Завдання №2.

За алгоритмом Прима знайти мінімальне остове дерево графа. Етапи розв'язання задачі виводити на екран. Протестувати розроблену програму на наступному графі:

Матриця суміжності:

Приклад реалізації програми:

```
#include<iostream>
  using namespace std;
⊡void main()
       int n, i, j, a, b, x, y, counter = 1;
       int visited[15] = { 0 }, min, mas[15][15];
       int path[100] = {0};
      cout << "Enter size: ";</pre>
       cout << "Enter matrix: " << endl;</pre>
           for (j = 1; j \le n; j++)
               cin >> mas[i][j];
               if (mas[i][j] == 0)
                   mas[i][j] = 999;
       visited[1] = 1;
þ
      while (counter < n)
           for (i = 1, min = 999; i <= n; i++)
               for (j = 1; j \le n; j++)
                    if (mas[i][j] < min)</pre>
                        if (visited[i] != 0)
                            min = mas[i][j];
                            a = x = i;
                            b = y = j;
           if (visited[x] == 0 || visited[y] == 0)
               path[counter-1] = b;
               counter++;
               visited[b] = 1;
           mas[a][b] = mas[b][a] = 999;
       cout << " " << endl;</pre>
       cout << 1 << " --> ";
for (int i = 0; i < n - 1; i++)
           cout << path[i];</pre>
               cout << " --> ";
```

Результат виконання програми:

```
Enter size: 11

Enter matrix:
0 4 3 2 0 0 0 0 0 0 0
4 0 0 0 2 0 1 0 0 0 0
3 0 0 0 6 7 0 0 0 0 0
2 0 0 0 0 2 4 0 0 0 0
0 2 6 0 0 0 0 7 5 0 0
0 0 7 2 0 0 0 4 0 3 0
0 1 0 4 0 0 0 0 4 5 0
0 0 0 0 7 4 0 0 0 0 7
0 0 0 0 5 0 4 0 0 0 1
0 0 0 0 0 3 5 0 0 0 3
0 0 0 0 0 0 0 7 1 3 0
```

Висновок: під час виконання лабораторної роботи я дізнався що таке граф та які є його види, навчився виконувати основні операції над графами: вилучення ребра, доповнення, об'єднання, кільцева сума, розщепленння вершини, стягування та добуток. Набув вмінь з використання алгоритмів знаходження остова мінімальної ваги Пріма та Краскала.