

TMS28F512A 512K Flash Memory

Technical Brief

1993 MOS Memory

Book Type
Volume #

Title Two Lines Subtitle Line Two

Title Two Lines Subtitle

Book Type Two Lines

Title Two Lines

TitleSubtitle
Line Two

TitleSubtitle

Book Type

Title

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to current specifications in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices, or systems. Use of TI product in such applications requires the written approval of the appropriate TI officer. Certain applications using semiconductor devices may involve potential risks of personal injury, property damage, or loss of life. In order to minimize these risks, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. Inclusion of TI products in such applications is understood to be fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

TMS28F512A 512K Flash EEPROM Technical Brief

November 1993

1–2 **SMJP001**

Contents

ection P	'age
ntroduction	1-1
Pevice Information	2-1
MS28F512A Data Sheet	3-1
Qualification Results	4-1
lectrical Characterization Data	5-1
Tircuit Data	6-1
Address Decode	6-1
Logic Diagram	6-5
ESD Protection	
lash Memory Programmer Support	7-1

Chapter 1

Introduction

About This Technical Brief

This technical brief was developed to provide you with details about our 512K Flash memory device that aren't available in data sheets or application notes. We hope you find this information package helpful and easy to use.

Description The TMS28F512A is a 524 288-bit Flash memory organized as

 $64K \times 8$

Technology CMOS H-Cell 0.8μm

Fabrication Wafer Fabrication: TI LMOS (Lubbock, Texas)

Assembly and Test: TI SGP (Singapore)

Package 32-pin plastic leaded-chip carrier package (PLCC) using 50-mil

lead spacing

Customer Quality Engineering: Lee Bowman . . . (713) 274-4147

1-2 Introduction

Chapter 2

Device Information

Vendor Name Vendor Part Number Texas Instruments Inc. TMS28F512A FML

☐ CMOS Technology

■ Memory type Electrically Erasable PROM

■ Density 64K×8

■ Number of Metal Layers / Composition

1: Ti / TiW / AlSi (1%) Cu (0.5%)

Number of Poly Layers

2: P1 = Poly Si

P2 = Polycide (WSi / Poly)

■ CMOS Well Twin Well

■ Mask List by Level 16

☐ Package Type

Number of Pins 32

■ **Width** $0.450 \text{ in} \times 0.550 \text{ in}$

■ Package Material Plastic

■ Lead Plate Material SN / PB

■ Wire Bond Material Gold

■ Wire Bond Technology

Thermosonic

■ Die Attach Material Ablebond 71-1

■ Leadframe Material Alloy 42

Assembly Site Singapore

☐ Device Process Information

■ Passivation Oxide over Oxynitride
 ■ Die Size 178 Mils × 159 Mils
 ■ Memory Cell Size 2.8 μm × 3.25 μm

■ Wafer Diameter 125mm

■ Wafer Fabrication Lubbock, Texas, USA

☐ Test Process Data

■ Wafer Test Site Lubbock, Texas, USA

■ Final Test Site Singapore

■ Final Test Production Tester

TI NEM

■ Tester Used for Datalogged Units

GENESIS

2-2 Device Information

- Organization . . . 64K × 8-Bit Flash Memory
- All Inputs/Outputs TTL Compatible
- Maximum Access/Minimum Cycle Time:

ACC = 10%	
'28F512-10	100 ns
'28F512-12	120 ns
'28F512-15	150 ns
'28F512-17	170 ns

- Industry-Standard Programming Algorithm
- PEP4 Version Available With 168-Hour Burn-In, and Choice of Operating Temperature Ranges
- Chip Erase Before Reprogramming
- 10 000, 1 000 and 100 Program/Erase Cycle Versions
- Low Power Dissipation (V_{CC} = 5.50 V)
 - Active Write . . . 55 mW
 - Active Read . . . 165 mW
 - Electrical Erase . . . 82.5 mW
 - Standby . . . 0.55 mW (CMOS-Input Levels)
- Automotive Temperature Range: – 40°C to + 125°C

description

The TMS28F512A is a 524 288-bit, programmable read-only memory that can be electrically bulk-erased and reprogrammed.

The TMS28F512A is available in 10 000, 1 000, and 100 program/erase endurance cycle versions.

The TMS28F512A Flash EEPROM is offered in a dual in-line plastic package (N suffix) designed for insertion in mounting-hole rows on 15,2 mm (600-mil) centers, a 32-lead plastic leaded-chip carrier package using 1,25 mm (50-mil) lead spacing (FM suffix), a 32-lead thin small outline package (DD suffix), and a reverse pinout TSOP package (DU suffix).

The TMS28F512A is offered with three choices of temperature ranges of 0°C to 70°C (NL, FML, DDL, and DUL suffixes), –40°C to 85°C (NE, FME, DDE, and DUE suffixes), and –40°C to 125°C (NQ, FMQ, DDQ, and DUQ suffixes). All package types are offered with 168 hour burn-in (4 suffix).

N PACKAGE† (TOP VIEW)

FM PACKAGE[†] (TOP VIEW)

† The packages shown are for pinout reference only.

PII	N NOMENCLATURE
A0-A15	Address Inputs
<u>E</u>	Chip Enable
G	Output Enable
NC	No Internal Connection
W	Write Enable
DQ0-DQ7	Data In/Data Out
VCC	5-V Power Supply
VPP	12-V Power Supply
VSS	Ground

12

13

14

15

16

DQ0

A0

Α1

Α2

АЗ

21

20

19

18

17

A12

A7

A6

A5

A4

[†] The packages shown are for pinout reference only.

device symbol nomenclature

functional block diagram

ELECTRICALLY ERASABLE PROGRAMMABLE READ-ONLY MEMORY

Table 1. Operation Modes

					FUNC	CTION		
	MODET		E (22)	G (24)	A0 (12)	A9 (26)	W (31)	DQ0-DQ7 (13-15, 17-21)
	Read	V_{PPL}	V _{IL}	V_{IL}	χt	Х	VIH	Data Out
	Output Disable	VPPL	V _{IL}	VIH	Х	Х	VIH	HI-Z
Read	Standby and Write Inhibit	VPPL	VIH	Х	Х	Х	Х	HI-Z
	Algorithm Selection Mode	\/==:	VIL	VIL	V _{IL}	· v _H ‡	\/	MFG Code 97h
	Algoritim Selection Mode	VPPL			VIH	VH+	VIH	Device Code 73h
	Read	VPPH	V _{IL}	V _{IL}	Х	Х	VIH	Data Out
Read/Write	Output Disable	V_{PPH}	V _{IL}	V_{IH}	Х	Х	VIH	HI-Z
Read/Wille	Standby and Write Inhibit	V_{PPH}	V _{IH}	Х	Х	Х	Х	HI-Z
	Write	VPPH	V _{IL}	VIH	Х	Х	V_{IL}	Data In

[†]X can be V_{IL} or V_{IH}

operation

read/output disable

When the outputs of two or more TMS28F512As are connected in parallel on the same bus, the output of any particular device in the circuit can be read with no interference from the competing outputs of other devices.

To read the output of the TMS28F512A, a low-level signal is applied to the \overline{E} and \overline{G} pins. All other devices in the circuit should have their outputs disabled by applying a high-level signal to one of these pins.

standby and write inhibit

Active I_{CC} current can be reduced from 30 mA to 1 mA by applying a high TTL level on \overline{E} or to 100 μ A with a high CMOS level on E. In this mode, all outputs are in the high-impedance state. The TMS28F512A draws active current when it is deselected during programming, erasure, or program/erase verification. It will continue to draw active current until the operation is terminated.

algorithm selection mode

The algorithm selection mode provides access to a binary code identifying the correct programming and erase algorithms. This mode is activated when A9 (pin 26) is forced to V_H . Two identifier bytes are accessed by toggling A0. All other addresses must be held low. A0 low selects the manufacturer-equivalent code 89h, and A0 high selects the device code B8h, as shown in the algorithm selection mode table below:

IDENTIFIER†					PII	NS				
IDENTIFIER	A0	DQ7	DQ6	DQ5	DQ4	DQ3	DQ2	DQ1	DQ0	HEX
Manufacturer Code	V _{IL}	1	0	0	0	1	0	0	1	89
Device Code	V _{IH}	1	0	1	1	1	0	0	0	B8

 $[\]overline{+E} = \overline{G} = V_{IL}, A1-A8 = V_{IL}, A9 = V_{H}, A10-A15 = V_{IL}, V_{PP} = V_{PPL}.$

programming and erasure

In the erased state, all bits are at a logic 1. Before erasing the device, all memory bits must be programmed to a logic 0. Afterwards, the entire chip is erased. At this point, the bits, now logic 1's, may be programmed accordingly. Refer to the Fastwrite and Fasterase algorithms for further detail.

^{‡11.5} V < V_H < 13.0 V

[§] V_{PPI} ≤ V_{CC} + 2 V; V_{PPH} is the programming voltage specified for the device. For more details, refer to the recommended operating conditions.

command register

The command register controls the program and erase functions of the TMS28F512A. The algorithm selection mode may be activated using the command register in addition to the above method. When V_{PP} is high, the contents of the command register, and therefore the function being performed, may be changed. The command register is written to when \overline{E} is low and \overline{W} is pulsed low. The address is latched on the leading edge of the pulse, while the data is latched on the trailing edge. Accidental programming or erasure is minimized because two commands must be executed to invoke either operation.

power supply considerations

Each device should have a 0.1 μ F ceramic capacitor connected between V_{CC} and V_{SS} to suppress circuit noise. Changes in current drain on V_{PP} will require it to have a bypass capacitor as well. Printed circuit traces for both power supplies should be appropriate to handle the current demand.

Table 2. Command Definitions

	REQUIRED	FIR	ST BUS CYCLE	SECOND BUS CYCLE				
COMMAND	BUS CYCLES	I UPERATION I ADDRESS I		OPERATION ADDRESS		DATA		
Read	1	Write	Х	00h	Read	RA	RD	
Algorithm Selection Mode	3	Write	Х	90h	Read	0000 0001	89h B8h	
Set-up Erase/Erase	2	Write	Х	20h	Write	Х	20h	
Erase Verify	2	Write	EAT	A0h	Read	Х	EVD	
Set-up Program/Program	2	Write	Х	40h	Write	PA	PD	
Program Verify	2	Write	Х	C0h	Read	Х	PVD	
Reset	2	Write	Х	FFh	Write	Х	FFh	

NOTE 1: Modes of operation are defined in Table 1.

† Description of Terms

- EA Address of memory location to be read during erase verify.
- RA Address of memory location to be read.
- PA Address of memory location to be programmed. Address is latched on the falling edge of \overline{W} .
- RD Data read from location RA during the read operation.
- EVD Data read from location EA during erase verify.
- PD Data to be programmed at location PA. Data is latched on the rising edge of \overline{W} .
- PVD Data read from location PA during program verify.

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the N package.

TMS28F512A 524 288-BIT FLASH ELECTRICALLY ERASABLE PROGRAMMABLE READ-ONLY MEMORY

NOVEMBER 1993

command definitions

read command

Memory contents can be accessed while V_{PP} is high or low. When V_{PP} is high, writing 00h into the command register invokes the read operation. Also, when the device is powered up, the default contents of the command register are 00h and the read operation is enabled. The read operation remains enabled until a different, valid command is written to the command register.

algorithm selection mode command

The algorithm selection mode is activated by writing 90h into the command register. The manufacturer-equivalent code (89h) is identified by the value read from address location 0000h, and the device-equivalent code (B8h) is identified by the value read from address location 0001h.

set-up erase/erase commands

The erase algorithm initiates with $\overline{E} = V_{IL}$, $\overline{W} = V_{IL}$, $\overline{G} = V_{IH}$, $V_{PP} = 12$ V, and $V_{CC} = 5$ V. To enter the erase mode, write the set-up erase command, 20h, into the command register. After the TMS28F512A is in the erase mode, writing a second erase command, 20h, into the command register invokes the erase operation. The erase operation begins on the rising edge of \overline{W} and ends on the rising edge of the next \overline{W} . The erase operation requires 10 ms to complete before the erase-verify command, A0h, can be loaded.

Maximum erase timing is controlled by the internal stop timer. When the stop timer terminates the erase operation, the device enters an inactive state and remains inactive until a valid erase verify, read, or reset command is received.

erase-verify command

All bytes must be verified following an erase operation. After the erase operation is complete, an erased byte can be verified by writing the erase-verify command, A0h, into the command register. This command causes the device to exit the erase mode on the rising edge of \overline{W} . The address of the byte to be verified is latched on the falling edge of \overline{W} . The erase-verify operation remains enabled until a valid command is written to the command register.

To determine whether or not all the bytes have been erased, the TMS28F512A applies a margin voltage to each byte. If FFh is read from the byte, then all bits in the designated byte have been erased. The erase-verify operation continues until all of the bytes have been verified. If FFh is not read from a byte, then an additional erase operation needs to be executed. Figure 2 shows the combination of commands and bus operations for electrically erasing the TMS28F512A.

set-up program/program commands

The programming algorithm initiates with $\overline{E} = V_{IL}$, $\overline{W} = V_{IL}$, $\overline{G} = V_{IH}$, $V_{PP} = 12$ V, and $V_{CC} = 5$ V. To enter the programming mode, write the set-up program command, 40h, into the command register. The programming operation will be invoked by the next write-enable pulse. Addresses are latched internally on the falling edge of \overline{W} , and data is latched internally on the rising edge of \overline{W} . The programming operation begins on the rising edge of \overline{W} and ends on the rising edge of the next \overline{W} pulse. The program operation requires 10 μ s for completion before the program-verify command, C0h, can be loaded.

Maximum program timing is controlled by the internal stop timer. When the stop timer terminates the program operation, the device enters an inactive state and remains inactive until a valid program verify, read, or reset command is received.

program-verify command

The TMS28F512A can be programmed sequentially or randomly because it is programmed one byte at a time. Each byte must be verified after it is programmed.

The program-verify operation prepares the device to verify the most recently programmed byte. To invoke the program-verify operation, C0h must be written into the command register. The program-verify operation will end on the rising edge of \overline{W} .

While verifying a byte, the TMS28F512A applies an internal margin voltage to the designated byte. If the true data and programmed data match, programming can continue to the next designated byte location; otherwise, the byte must be reprogrammed. Figure 1 shows how commands and bus operations are combined for byte programming.

reset command

To reset the TMS28F512A after set-up erase command or set-up program command operations without changing the contents in memory, write FFh into the command register two consecutive times. After executing the reset command, a valid command must be written into the command register to change to a new state.

Fastwrite algorithm

The TMS28F512A is programmed using the Texas Instruments Fastwrite algorithm shown in Figure 1. This algorithm programs in a nominal time of two seconds.

Fasterase algorithm

The TMS28F512A is erased using the Texas Instruments Fasterase algorithm shown in Figure 2. The memory array needs to be completely programmed (using the Fastwrite algorithm) before erasure begins. Erasure typically occurs in one second.

parallel erasure

To reduce total erase time, several devices may be erased in parallel. Since each Flash EEPROM may erase at a different rate, every device must be verified separately after each erase pulse. After a given device has been successfully erased, the erase command should not be issued to this device again. All devices that complete erasure should be masked until the parallel erasure process is finished. See Figure 3, Parallel Erase Flow Diagram.

Examples of how to mask a device during parallel erase include driving the device's E pin high, writing the read command (00h) to the device when the others receive a setup erase or erase command, or disconnecting it from all electrical signals with relays or other types of switches.

NOTES: 2. Refer to the recommended operating conditions for the value of VPPH.

3. Refer to the recommended operating conditions for the value of VPPL.

Figure 1. Programming Flowchart: Fastwrite Algorithm

Bus Operation	Command	Comments
		Entire Memory Must = 00h Before Erasure
		Use Fastwrite Programming Algorithm
		Initialize Addresses
Standby		Wait for Vpp to Ramp to VppH (see Note 2)
		Initialize Pulse Count
Write	Set Up Erase	Data = 20h
Write	Erase	Data = 20h
Standby		Wait = 10 ms
Write	Erase Verify	Addr = Byte to Verify; Data = A0h; Ends the Erase Operation
Standby		Wait = 6 μs
Read		Read Byte to Verify Erasure; Compare Output to FFh
Write	Read	Data = 00h; Resets Register for Read Operations
Standby		Wait for Vpp to Ramp to VppL (see Note 3)

2 Refer to the recommended operating conditions for the value of VPPH.

3 Refer to the recommended operating conditions for the value of VppL.

Figure 2. Flash-Erase Flowchart: Fasterase Algorithm

ELECTRICALLY ERASABLE PROGRAMMABLE READ-ONLY MEMORY

NOTE: n = number of devices being erased.

Figure 3. Parallel-Erase Flow Diagram

524 288-BIT FLASH ELECTRICALLY ERASABLE PROGRAMMABLE READ-ONLY MEMORY

NOVEMBER 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, V _{CC} (see Note 4)
Supply voltage range, VPP –0.6 V to 14 V
Input voltage range (see Note 5): All inputs except A9
A9 (see Note 5)0.6 V to 13.5 V
Output voltage range (see Note 6)
Operating free-air temperature range during read/erase/program
(NL, FML, DDL, DUL)
Operating free-air temperature range during read/erase/program
(NE, FME, DDE, DUE) – 40°C to 85°C
Operating free-air temperature range during read/erase/program
(NQ, FMQ, DDQ, DUQ)
Storage temperature range –65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 4. All voltage values are with respect to GND.

- 5. The voltage on any input pin may undershoot to -2.0 V for periods less than 20 ns.
- 6. The voltage on any output pin may overshoot to 7.0 V for periods less than 20 ns.

recommended operating conditions

			'28 '28	F512A- F512A- F512A- F512A-	12 15	UNIT	
			MIN	TYP	MAX		
Vcc	Supply voltage	During write/read/flash erase	4.5	5	5.5	V	
V _{PP}	Supply voltage	During read only (VppL))			V _{CC} + 2	V
VPP	Supply voltage	During write/read/flash erase (VppH)		11.4	12	12.6	V
VIH	High-level dc input volt	ane	TTL	2		V _{CC} +0.5	V
I VIH	riigirieverae iripat voit	CMOS				V _{CC} +0.5	V
\/	Low-level dc input volta		TTL	-0.5		0.8	V
V _{IL} Low-level dc input volta		.gc	CMOS	GND - 0.2		GND+0.2	V

electrical characteristics over full ranges of operating conditions

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
\/a	High-level output voltage		I _{OH} = - 2.5 mA	2.4			V
VOH	High-level output voltage		I _{OH} = - 100 μA	VCC - 0).4		V
V/0:	Low-level output voltage		$I_{OL} = 5.8 \text{ mA}$			0.45	V
VOL	Low-level output voltage		I _{OL} = 100 μA			0.1	V
1.	Input current (leakage)	All except A9	$V_{ } = 0 \text{ to } 5.5 \text{ V}$			±1	μΑ
ll .	input current (leakage)	A9	VI = 0 to 13 V			± 200	
lo	Output current (leakage)		$V_O = 0$ to V_{CC}			±10	μΑ
lan.	Vpp supply current (read/standby)		Vpp = VppH, read mode			200	μΑ
IPP1	VPP supply current (read/standby)		VPP = V _{PPL}			±10	μΑ
I _{PP2}	Vpp supply current (during program (see Note 7)	n pulse)	VPP = VPPH		mA		
I _{PP3}	Vpp supply current (during flash er (see Note 7)	rase)	V _{PP} = V _{PPH}		30	mA	
IPP4	VPP supply current (during program (see Note 7)	n/erase verify)	VPP = VPPH			5.0	mA
laaa	Voca supply surrent (standby)	TTL-Input level	$V_{CC} = 5.5 \text{ V}, \overline{E} = V_{IH}$			1	mA
Iccs	V _{CC} supply current (standby)	CMOS-Input level	$V_{CC} = 5.5 \text{ V}, \overline{E} = V_{CC}$			100	μΑ
I _{CC1}	V _{CC} supply current (active read)		$V_{CC} = 5.5 \text{ V}, \overline{E} = V_{IL}, f = 6 \text{ MHz},$ outputs open		30	mA	
I _{CC2}	V _{CC} average supply current (active (see Note 7)	e write)	$V_{CC} = 5.5 \text{ V}, \overline{E} = V_{IL}, \text{ programming}$ in progress		10	mA	
ICC3	V _{CC} average supply current (flash (see Note 7)	erase)	$V_{CC} = 5.5 \text{ V}, \overline{E} = V_{IL}, \text{ erasure in progress}$		15	mA	
I _{CC4}	V _{CC} average supply current (progress (see Note 7)	am/erase verify)	$V_{CC} = 5.5 \text{ V}, \overline{E} = V_{IL}, V_{PP} = V_{PPH},$ program/erase-verify in progress			15	mA

NOTE 7: Not 100% tested; characterization data available.

capacitance over recommended ranges of supply voltage and operating free-air temperature, $f=1~\text{MHz}^{\dagger}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Ci	Input capacitance	$V_I = 0$, $f = 1MHz$			6	pF
СО	Output capacitance	V _O = 0 , f = 1 MHz			12	pF

[†] Capacitance measurements are made on sample basis only.

PARAMETER MEASUREMENT INFORMATION

Figure 4. AC Test Output Load Circuit

AC testing input/output wave forms

AC testing inputs are driven at 2.4 V for logic high and 0.45 V for logic low. Timing measurements are made at 2 V for logic high and 0.8 V for logic low on both inputs and outputs. Each device should have a 0.1 μ F ceramic capacitor connected between V_{CC} and V_{SS} as close as possible to the device pins.

NOVEMBER 1993

switching characteristics over full ranges of recommended operating conditions

	DESCRIPTION	TEST	ALTERNATE	'28F51	2A-10	'28F5	12A-12	'28F5	12A-15	'28F51	12A-17	UNIT
	DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
ta(A)	Access time from address		^t AVQV		100		120		150		170	ns
t _{a(E)}	Access time from chip enable		^t ELQV		100		120		150		170	ns
t _{en(G)}	Access time from output enable		^t GLQV		45		50		55		60	ns
t _{c(R)}	Read cycle time	1	t _{AVAV}	100		120		150		170		ns
t _{d(E)}	Delay time, chip enable low to low-Z output	C _L = 100 pF 1 Series 74	^t ELQX	0		0		0		0		ns
t _d (G)	Delay time, output enable low to low-Z output	TTL Load Input $t_r \le 20 \text{ ns}$ Input $t_f \le 20 \text{ ns}$	^t GLQX	0		0		0		0		ns
^t dis(E)	Chip disable to hi-Z output		^t EHQZ	0	55	0	55	0	55	0	55	ns
^t dis(G)	Hold time, output enable to hi-Z output		^t GHQZ	0	30	0	30	0	35	0	35	ns
t _{h(D)}	Hold time, data valid from address, \overline{E} , or $\overline{G}\dagger$		^t AXQX	0		0		0		0		ns
t _{wr(W)}	Write recovery time before read		^t WHGL	6		6		6		6		μs

[†]Whichever occurs first.

AC characteristics-write/erase/program operations

	u(A) Address setup time (A) Address hold time u(D) Data setup time w(D) Data hold time vr(W) Write recovery time before read r(W) Read recovery time before write u(E) Chip enable setup time before write (E) Chip enable hold time v(W) Write pulse duration (see Note 8)	ALTERNATE	'28F51	2A-10	'28F512A-12		'28F512A-15		'28F512A-17		UNIT	
		SYMBOL	MIN	TYP	MIN	TYP	MIN	TYP	MIN	TYP	ONIT	
t _{c(W)}	Write cycle time	tAVAV	100		120		150		170		ns	
t _{su(A)}	Address setup time	^t AVWL	0		0		0		0		ns	
th(A)	Address hold time	tWLAX	55		60		60		70		ns	
t _{su(D)}	Data setup time	t _{DVWH}	50		50		50		50		ns	
thw(D)	Data hold time	tWHDX	10		10		10		10		ns	
twr(W)	Write recovery time before read	tWHGL	6		6		6		6		μs	
t _{rr(W)}	Read recovery time before write	^t GHWL	0		0		0		0		μs	
t _{su(E)}	Chip enable setup time before write	t _{ELWL}	20		20		20		20		ns	
t _{h(E)}	Chip enable hold time	tWHEH	0		0		0		0		ns	
t _{w(W)}	Write pulse duration (see Note 8)	tWLWH	60		60		60		60		ns	
twh(W)	Write pulse duration high	tWHWL	20		20		20		20		ns	
t _{c(W)B}	Duration of programming operation	tWHWH1	10		10		10		10		μs	
t _{c(E)B}	Duration of erase operation	tWHWH2	9.5	10	9.5	10	9.5	10	9.5	10	ms	
t _{su(P)E}	Vpp setup time to chip enable low	tVPEL	1.0		1.0		1.0		1.0		μs	
t _{su(E)P}	Chip enable, setup time to Vpp ramp	t _{EHVP}	100		100	·	100		100		ns	
t _{s(P)R}	Vpp rise time	tvppr	1		1		1		1		μs	
t _{s(P)F}	V _{PP} fall time	tVPPF	1		1		1		1		μs	

NOTE 8: Rise/fall time \leq 10 ns.

NOVEMBER 1993

alternative **CE**-controlled writes

	DESCRIPTION		'28F51	2A-10	'28F512A-12		'28F512A-15		'28F512A-17		UNIT	
	DESCRIPTION	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	
t _{c(W)}	Write cycle time	^t AVAV	100		120		150		170		ns	
t _{su(A)}	Address setup time	†AVEL	0		0		0		0		ns	
thE(A)	Address hold time	^t ELAX	75		80		80		90		ns	
t _{su(D)}	Data setup time	^t DVEH	50		50		50		50		ns	
thE(D)	Data hold time	tEHDX	10		10		10		10		ns	
t _{wr(E)}	Write recovery time before read	^t EHGL	6		6		6		6		μs	
t _{rr(E)}	Read recovery time before write	^t GHEL	0		0		0		0		μs	
t _{su(W)}	Write enable setup time before chip enable	^t WLEL	0		0		0		0		ns	
th(W)	Write enable hold time	^t EHWH	0		0		0		0		ns	
t _W (E)	Write pulse duration	^t ELEH	70		70		70		80		ns	
t _{wh(E)}	Write pulse duration high	^t EHEL	20		20		20		20		ns	
t _{su(P)E}	Vpp setup time to chip enable low	tVPEL	1.0		1.0		1.0		1.0		μs	
t _{c(W)B}	Duration of programming operation	^t EHEH	10		10		10		10		μs	

Figure 5. Read Cycle Timing

PARAMETER MEASUREMENT INFORMATION

Figure 6. Write Cycle Timing

PARAMETER MEASUREMENT INFORMATION

Figure 7. Write Cycle (Alternative CE-Controlled Writes) Timing

Figure 8. Flash-Erase Cycle Timing

Chapter 4

Qualification Results

4.1 Summary of the TMS28F512A Qualification — 1000 hours

Read Hours	→	96	168	240	336	500	1000	
Test	Sample							Failures
1K W/E + 125°C OPLIFE	200	_	0	_	_	0	0	0
1K W/E + 150°C BAKE	200	-	0	_	_	0	0	0
150 HTRB	150	-	0	_	_	0	0	0
85/85	200	-	0	_	0	_	0	0
Autoclave PCT	200	0	_	0	_	_	_	0

Cycles	s →	200	500	1000	
Test	Sample				Failures
T/C -65/150°C	200	0	0	0	0

Test	Sample	Failures
Latchup	10	0
Salt Atmosphere	22	0
Lead Finish Adhesion	22	0
Lead Integrity	22	0
Moisture Resistance	38	0
Solvent Resistance	44	0

1K W/E +125°C OPLIFE After completing 1K W/E endurance, the parts are operated at 125°C with input signals that exercise the part while outputs are loaded.

85°C and 85% relative humidity with pins alternately biased with V_{CC} and V_{SS} .

4.2 Reliability Test Descriptions

1K W/E +150°C BAKE After completing 1K W/E endurance, the parts undergo an unbiased stor-

age test at150°C; per JEDEC STD 22, method A101.

150°C HTRB High temperature stress testing with appropriate biasing.

T/C -65/150°CDevices are subjected to alternating ambient temperatures of -65°C and +150°C. Cycle time is 30 minutes with no ambient dwell; per Mil STD 883D,

method 1010.

Autoclave PCT The parts are subjected to pressure cooker test at 121°C, 100% R.H. per

JEDEC STD 22, method A102.

Lead Finish Adhesion Per Mil STD 883D, method 2025.

Lead Integrity Per Mil STD 883D, method 2004, condition A, B2, C1.

Solvent Resistance Per Mil STD 883D, method 2015.

Salt Atmosphere Per Mil STD-883D, method 1009, Condition A, 24 hours minimum.

Latchup Per JEDEC STD 17.

Moisture Resistance Per Mil STD 883D, method 1004.

4-2 Qualification Results

Chapter 5

Electrical Characterization Data

Test Facility Stafford
Tester GENESIS-II

Pattern Random pattern (50% of bits programmed)

Device TMS28F512A

Wafer Lot Number	Number of Units
3118627	10
3132228	10
3146486	10
Total	30

,	-4	0°C	25	i°C	12	5°C	
V _{CC}	AVG	STD	AVG	STD	AVG	STD	UNIT
1) V _{CC} Standby C	urrent, TTL	Level (spec	= 1 mA)				
4.35V	82.01	5.253	69.40	4.024	63.28	2.380	μA
4.50V	104.46	6.666	85.92	5.439	75.76	4.173	<u>.</u> μA
5.00V	192.44	9.964	150.84	6.193	126.04	6.391	μΑ
5.50V	294.81	14.923	230.80	8.610	188.28	6.901	μΑ
5.65V	327.86	16.042	256.00	9.952	207.29	8.666	μΑ
2) V _{CC} Standby C	urrent, CMO	S Level (spe	ec = 100 μA)				
4.35V	6.11	1.921	6.45	1.892	7.28	1.348	μА
4.50V	6.89	1.743	7.05	1.567	7.80	0.000	μΑ
5.00V	7.80	0.000	7.20	1.435	7.80	0.000	μΑ
5.50V	7.80	0.000	7.80	0.000	7.80	0.000	μΑ
5.65V	7.80	0.000	7.80	0.000	7.80	0.000	μΑ
3) V _{CC} Active Rea	nd Current T	TI Level f	- 75 MHz (sn	ec = 30 mΔ)	\		
4.35V	10.89	0.198	10.40	0.145	10.33	0.118	mA
4.50V	11.76	0.228	11.15	0.152	11.01	0.134	mA
5.00V	15.10	0.325	13.99	0.132	13.45	0.180	mA
5.50V	19.18	0.445	17.38	0.277	16.29	0.226	mA
5.65V	20.54	0.483	18.50	0.296	17.20	0.245	mA
0.00 v	20.04	0.400	10.00	0.200	17.20	0.240	
4) V _{CC} Active Rea	ad Current. C	MOS Level.	f = 7.5 MHz -	- (spec = 30	mA)		
4.35V	10.92	0.182	10.44	0.144	10.30	0.113	mA
4.50V	11.68	0.197	11.12	0.148	10.92	0.123	mA
5.00V	14.49	0.278	13.58	0.191	13.12	0.154	mA
5.50V	17.88	0.367	16.48	0.235	15.62	0.198	mA
5.65V	18.99	0.388	17.42	0.254	16.40	0.200	mA
5) V _{OL} Measurem							
V _{OL}	183.37	8.299	249.12	2.688	363.63	6.371	mV
6) V _{OH} Measurem	ent, V _{CC} = 4	.35V, I _{OH} =	– 2.5 mA (sp	ec = 2.4)			
Voн	4.25	0.005	4.22	0.000	4.18	0.000	V
7) V _{CC} Program \	erify Curren	t Vpp - 12 6	V TTI Level	(spec - 15	mΔ)		
4.35V	8.18	0.275	6.85	0.215	6.03	0.176	mA
4.50V	8.17	0.273	6.86	0.213	6.07	0.173	mA
5.00V	8.16	0.204	6.85	0.192	6.06	0.173	mA
5.50V				0.164			
	8.16	0.299	6.84		6.05	0.183	mA m A
5.65V	8.16	0.260	6.82	0.224	6.01	0.165	mA

	−40°C		25	i°C	12	5°C	
v _{cc}	AVG	STD	AVG	STD	AVG	STD	UNIT
) V _{CC} Program V	erify Current	, V _{PP} = 12.6	V, CMOS Lev	/el (spec = 1	5 mA)		
4.35V	7.02	0.264	5.96	0.184	5.24	0.129	mA
4.50V	7.01	0.237	5.95	0.182	5.22	0.112	mA
5.00V	7.04	0.254	5.95	0.180	5.25	0.137	mA
5.50V	7.02	0.250	5.95	0.168	5.25	0.108	mA
5.65V	7.01	0.269	5.95	0.181	5.26	0.127	mA
) V _{CC} Erase Verif	y Current, V	_{PP} = 12.6V, T	TL Level (sp	pec = 15 mA))		
4.35V	7.76	0.306	6.70	0.223	6.10	0.184	mA
4.50V	7.76	0.296	6.69	0.238	6.09	0.183	mA
5.00V	7.75	0.294	6.67	0.193	6.07	0.176	mA
5.50V	7.75	0.289	6.69	0.214	6.11	0.164	mA
5.65V	7.76	0.300	6.68	0.230	6.09	0.174	mA
						:	-
0) V _{CC} Erase Ver	ify Current, '	VPP = 12.6V,	CMOS Leve	el (spec = 15	mA)		
4.35V	6.62	0.241	5.78	0.171	5.29	0.147	mA
4.50V	6.61	0.243	5.79	0.199	5.28	0.140	mA
5.00V	6.63	0.259	5.78	0.186	5.28	0.128	mA
5.50V	6.62	0.260	5.77	0.171	5.31	0.148	mA
5.65V	6.61	0.246	5.79	0.164	5.29	0.149	mA
1) V _{PP} Standby 0	Current, V _{PP}	= V _{CC} (spec	= 10 μ A)				
4.35V	0.00	0.000	0.00	0.000	0.00	0.000	μΑ
4.50V	0.00	0.000	0.00	0.000	0.00	0.000	μΑ
5.00V	0.00	0.000	0.00	0.000	0.00	0.000	μΑ
5.50V	0.00	0.000	0.00	0.000	0.00	0.000	μΑ
5.65V	0.00	0.000	0.00	0.000	0.00	0.000	μА
2) V _{PP} Standby (Current, V _{PP}	= 12.6V (sp	ec = 200 μA)				
4.35V	2.50	1.890	2.64	1.506	1.75	0.871	μΑ
4.50V	2.43	2.058	2.30	1.392	2.32	1.366	μΑ
5.00V	5.26	1.189	5.61	1.053	6.00	0.376	μΑ
5.50V	6.13	0.322	6.20	0.000	6.20	0.000	μΑ
5.65V	6.20	0.000	6.20	0.000	6.20	0.000	μΑ
(2) V Astivo D-	ad Current \	1 -40.01	TTL Lavel/-	200	^		
3) V _{PP} Active Re				· · · · · · · · · · · · · · · · · · ·		0.445	
4.35V	15.25	1.341	11.16	0.521	8.09	0.445	μΑ
4.50V	15.53	1.283	11.33	0.455	8.20	0.407	μΑ
5.00V	16.53	1.369	11.98	0.552	8.63	0.612	μΑ
5.50V	17.70	1.313	12.81	0.602	9.27	0.518	μΑ
5.65V	18.15	1.351	13.02	0.596	9.51	0.584	μΑ

	-40	0°C	25	5°C	12	5°C	
V _{CC}	AVG	STD	AVG	STD	AVG	STD	UNIT
4) V _{PP} Active Re	ad Current, \	/ _{PP} = 12.6V,	CMOS Leve	I (spec = 200	μΑ)		
4.35V	15.07	1.317	11.10	0.499	8.17	0.503	mA
4.50V	15.33	1.21	11.22	0.493	8.23	0.406	mA
5.00V	16.50	1.215	11.85	0.454	8.60	0.556	mA
5.50V	17.65	1.334	12.81	0.510	9.21	0.455	mA
5.65V	18.09	1.203	12.99	0.457	9.45	0.592	mA
15) V _{PP} Program	Verify Currer	nt, TTL Leve	(spec = 5 m	nA)			
4.35V	1.86	0.091	1.50	0.056	1.23	0.029	mA
4.50V	1.86	0.091	1.50	0.056	1.23	0.031	mA
5.00V	1.86	0.094	1.50	0.054	1.23	0.031	mA
5.50V	1.86	0.094	1.50	0.055	1.23	0.033	mA
5.65V	1.86	0.094	1.50	0.054	1.23	0.031	mA
16) V _{PP} Program	Verify Currer	nt. CMOS Le	vel (spec = 5	i mA)			
4.35V	1.87	0.093	1.50	0.054	1.24	0.035	mA
4.50V	1.87	0.093	1.50	0.054	1.24	0.034	mA
5.00V	1.86	0.094	1.50	0.054	1.24	0.034	mA
5.50V	1.87	0.093	1.50	0.054	1.23	0.033	mA
5.65V	1.87	0.093	1.50	0.054	1.23	0.033	mA
							-
17) V _{PP} Erase Vei	rify Current,	TTL Level (s	pec = 5 mA)				
4.35V	1.69	0.071	1.40	0.48	1.14	0.038	mA
4.50V	1.69	0.070	1.40	0.48	1.14	0.036	mA
5.00V	1.69	0.070	1.39	0.49	1.14	0.036	mA
5.50V	1.69	0.068	1.39	0.49	1.14	0.038	mA
5.65V	1.69	0.070	1.40	0.48	1.14	0.038	mA
18) V _{PP} Erase Ve							
4.35V	1.69	0.070	1.40	0.048	1.14	0.038	V
4.50V	1.69	0.068	1.40	0.048	1.15	0.039	V
5.00V	1.69	0.068	1.40	0.048	1.14	0.038	V
5.50V	1.69	0.070	1.40	0.048	1.14	0.038	V
5.65V	1.69	0.067	1.40	0.048	1.14	0.038	V
19) V _{CCMAX} , 120	ns Compare	Strobe (spec	c = 5.50V)				
	8.03	0.377	8.00	0.359	8.03	0.360	V
20) V _{CCMIN} , 120 r	s Compare S	Strobe (spec	= 4.50V)				
4.35V	3.60	0.137	3.73	0.143	3.35	0.063	V

	-40	0°C	25	s°C	12	5°C	
v_{cc}	AVG	STD	AVG	STD	AVG	STD	UNIT
21) V _{IL} Input Low	Voltage (spe	c = 0.80V)					
4.35V	1.25	0.006	1.21	0.006	1.14	0.007	V
4.50V	1.31	0.008	1.24	0.007	1.17	0.010	V
5.00V	1.38	0.011	1.31	0.007	1.25	0.010	V
5.50V	1.43	0.015	1.39	0.006	1.32	0.011	V
5.65V	1.44	0.014	1.41	0.008	1.34	0.011	V
22) V _{IH} Input High	Voltage (spe	ec = 2.00V)					
4.35V	1.43	0.009	1.35	0.008	1.28	0.012	V
4.50V	1.46	0.009	1.38	0.009	1.30	0.013	V
5.00V	1.54	0.008	1.47	0.011	1.40	0.009	V
5.50V	1.62	0.010	1.56	0.010	1.50	0.009	V
5.65V	1.65	0.010	1.59	0.010	1.53	0.008	V
	,						
23) t _{AC} Access Ti	me (spec = 1 54.73	20 ns) 2.011	62.00	2 200	77.53	2.446	
4.50V	53.87	1.899	63.00	2.280	75.60	2.440	ns
							ns
5.00V	51.53	1.775	58.69	2.112	72.07	2.132	ns
5.50V	49.60	1.841	56.54	2.005	69.60	2.253	ns
5.65V	49.13	1.788	56.23	1.986	69.13	2.080	ns
24) t _{CE} Access Ti	me (spec = 1	20 ns)					
4.35V	51.97	1.574	59.85	1.994	72.70	2.830	ns
4.50V	50.33	1.709	57.77	2.122	70.47	2.529	ns
5.00V	46.63	1.567	53.77	1.728	65.40	2.207	ns
5.50V	44.20	1.260	50.73	1.710	61.70	2.037	ns
5.65V	43.63	1.521	49.96	1.843	60.87	2.161	ns
25) t _{OE} Access Ti	ma (anaa – E	0 nc)					
4.35V	15.20	0.378	19.58	0.504	24.50	0.630	200
							ns
4.50V 5.00V	14.63	0.493	18.38	0.496	22.50	0.731	ns
5.00V 5.50V	11.13	0.402	14.88	0.326	18.73	0.583	ns
-	9.03	0.182	12.31	0.679	15.33	0.479	ns
5.65V	9.00	0.000	11.27	0.452	15.00	0.000	ns
26) t _{dis(G)} Hold Ti	me, Output E	nable (spec	= 30 ns)				
4.35V	18.83	0.405	28.88	0.326	19.90	0.481	ns
4.50V	18.63	0.485	19.00	0.400	19.80	0.484	ns
5.00V	18.37	0.463	18.85	0.368	19.70	0.466	ns
5.50V	18.43	0.493	18.96	0.344	20.00	0.587	ns
5.65V	18.50	0.497	19.38	0.496	20.17	0.592	ns

V _{CC}	AVG	STD	AVG	STD	AVG	STD	UNIT
27) t _{dis(E)} Chip Dis	sable Time (s	spec = 55 ns)				
4.35V	19.67	0.663	20.81	0.402	22.90	0.607	ns
4.50V	19.30	0.583	20.58	0.578	22.63	0.615	ns
5.00V	18.57	0.674	19.81	0.402	21.90	0.712	ns
5.50V	18.17	0.756	19.58	0.643	21.67	0.547	ns
5.65V	18.20	0.785	19.58	0.578	21.73	0.640	ns
28) t _{h(A)} Address	Hold Time w	ith CE Contr	olled Writes	(spec = 75 r	ıs)		
4.35V	26.43	0.000	34.15	0.675	45.87	0.730	ns
4.50V	25.43	0.000	32.54	0.647	44.03	0.765	ns
5.00V	22.80	0.182	28.77	0.514	38.77	0.679	ns
5.50V	20.67	0.253	26.31	0.549	34.87	0.507	ns
5.65V	20.07	0.475	25.62	0.496	33.87	0.681	ns
29) t _{h(A)} Address 4.35V	Hold time wi 22.83	0.663	29.92	(spec = 55 r 0.392	40.50	0.731	ns
			-			0.731	ne
4.50V	21.97	0.583	28.81	0.402	38.87	0.571	ns
5.00V	19.50	0.674	25.77	0.430	34.17	0.592	ns
5.50V	17.73	0.756	23.38	0.496	30.77	0.568	ns
5.65V	17.17	0.785	22.85	0.368	29.93	0.521	ns
30) t _{su(D)} DATA Se	t-up Time w	ith CE Contr	olled Writes	(spec = 50 r	ns)		
4.35V	5.00	0.000	6.73	0.452	9.00	0.000	ns
4.50V	5.00	0.000	6.00	0.000	8.57	0.504	ns
5.00V	4.03	0.182	5.42	0.504	7.50	0.509	ns
5.50V	3.97	0.253	5.00	0.000	6.93	0.254	ns
5.65V	3.33	0.475	5.00	0.000	6.30	0.466	ns
31) t _{su(D)} DATA Se	t-up Time w	ith WE Cont	rolled Writes	s (spec = 50	ns)		
4.35V	5.00	0.000	6.62	0.496	9.00	0.000	ns
4.50V	5.00	0.000	6.00	0.000	8.33	0.479	ns
5.00V	4.03	0.182	5.46	0.508	7.50	0.509	ns
5.50V	3.87	0.378	5.00	0.000	6.97	0.183	ns
5.65V	3.30	0.463	5.00	0.000	6.37	0.490	ns

Chapter 6

Circuit Data

6.1 TMS28F512A Address Decode

The TMS28F512A is organized as 64K bits \times 8.

Columns

- There are 8 outputs. Each output has 8 sticks. Addresses 10, 14, and 15 decode the sticks.
- Each stick has 16 columns. Addresses 0, 1, 2, and 3 decode the columns.

Rows

- There are 512 rows.
- Addresses 4 through 9, and 11 through 13 decode the rows.

Figure 6-1 on page 6-3 shows the TMS28F512A bitmap.

Table 6-1. Row × Decode (1 of 512 Wordlines)

	Select	A04	A05	A06	A07	A08	A09	A11	A12	A13
— Тор	WL (0)	0	0	0	0	0	0	0	0	0
_	WL (1)	1	0	0	0	0	0	0	0	0
_	WL (2)	0	1	0	0	0	0	0	0	0
_	WL (3)	1	1	0	0	0	0	0	0	0
	WL (4)	0	0	1	0	0	0	0	0	0
_	•							-		
_	•							-		
_	WL (510)	0	1	1	1	1	1	1	1	1
Botto	WL (511)	1	1	1	1	1	1	1	1	1

Bottom

Table 6-2. Y Decode (1 of 16 Bitlines)

A03	A02	A01	A00	Select
0	0	0	0	BL (0)
0	0	0	1	BL (1)
0	0	1	0	BL (2)
0	0	1	1	BL (3)
			•	
			•	
			•	
1	1	1	0	BL (14)
1	1	1	1	BL (15)

Table 6-3. Z Decode (1 of 8 Sticks)

A15	A14	A10	Select
0	0	0	Z (0)
0	0	1	Z (1)
0	1	0	Z (2)
0	1	1	Z (3)
1	1	0	Z (6)
1	1	1	Z (7)

6-2 Circuit Data

Figure 6-4. TMS28F512A Input ESD Protection

Figure 6-5. TMS28F512A Output ESD Protection

Chapter 7

Flash Memory Programmer Support

By June 1993, Texas Instruments notified the following EPROM programmer vendors of the new 1-megabit Flash memory device. All necessary programming information was provided to each vendor.

Supporting TMS28F512A	Vendor	Parallel Erase
Now	Advin Systems	Y
Now	B & C Microsystems, Inc.	Y
Now	BP Microsystems	N
Now	Bytek Corporation	Y
Now	Computer Service Tech.	N
Now	Data I/O	Y
November1993	Elan Digital Systems	Y
Now	International Micro Systems	Y
Now	GTEK	Y
November 1993, wk4	Logical Devices	Y
March 1994	Minato	model 1930 only
Now	Red Square	N
Now	Stag	Y
Now	Sunrise Electronics	Y
Now	System General	Y
December 1993	UEC-Promac	Y
Now	XELTEC	N