

Topology-Aware Scheduling for Large-Scale Al Workloads in Diverse Networks Clusters Using Volcano

Xiaodong Ye, Moore Threads

Yu Zhou, Moore Threads

Challenges in Large-Scale GPU Cluster Operations We built MTT KUAE! (10,000+ GPUs Cluster)

- Compute & Communication Efficiency
 - Massive parallelism with over 10,000 GPUs
 - Overlapping computation and communication
 - Optimized strategies: data, pipeline, tensor, and sequence parallelism
- Stability & Fault Tolerance
 - High risk of node/GPU/NIC failures during long-running jobs
 - Robust health checks, checkpointing, and quick recovery strategies
- Data Pipeline & I/O Bottlenecks
 - Avoiding redundant data reads
 - Asynchronous preprocessing and shared memory usage
- Network & Resource Scheduling
 - High-bandwidth network topology design and adaptive routing
 - Balancing large jobs vs. small jobs in a multi-tenant environment

System-Level (Cluster Management) Challenges

- Scheduling & Resource Allocation
 - Gang scheduling for multi-node, multi-GPU jobs
 - Handling diverse workloads (large jobs vs. small jobs)
- Health Monitoring & Fault Isolation
 - Periodic health checks for GPUs, PCIe, network, and storage
 - Automated job requeue and node remediation to prevent cascading failures
- IB/RoCE Network Optimization
 - Designing efficient network topology and communication patterns
 - Adaptive routing and congestion control to maintain low latency
- Scalability & Maintenance
 - Monitoring key metrics (MFU, ETTR, Goodput)
 - Ensuring cluster expansion does not compromise reliability

Category	Reason	Num	GPU Demand		Time to Failure (mins)		GPU Time (mins)		Time to Restart (mins)			Cluster
			Average	Median	Average	Median	Average	Total%	Average	Median	TR/TF%	Cluster
Infrastructure	NVLink Error	54	800	896	868.1	155.3	585683	30.25%	95.6	0.2	11.02%	S, K
	CUDA Error	21	847	1024	923.2	586.0	785099	15.77%	78.3	2.0	8.48%	S, K
	Node Failure	16	712	768	1288.8	535.8	934394	14.30%	102.8	21.5	7.98%	S
	ECC Error	12	680	512	1303.4	1192.3	958404	11.00%	2.8	1.8	0.21%	S, K
	Network Error	12	758	768	549.6	310.1	394821	4.53%	592.1	7.4	107.74%	S, K
	Connection Error	147	29	1	51.9	0.5	24492	3.44%	0.8	0.0	1.51%	S, K
	S3 Storage Error	10	422	256	2317.8	202.2	222151	2.12%	6.2	0.2	0.27%	S
	NCCL Timeout Error	6	596	512	159.7	48.1	86856	0.50%	66.7	43.6	41.78%	K
	NCCL Remote Error	3	1152	1024	50.5	22.6	52419	0.15%	0.0	0.7	0.09%	K
Framework	Dataloader Killed	6	445	508	1580.6	961.4	764170	4.38%	115.1	0.9	7.28%	K
	Attribute Error	67	228	8	67.8	1.2	60914	3.90%	2.4	0.0	3.58%	S, K
	Out of Memory Error	14	572	640	323.8	14.5	245278	3.28%	122.7	1.2	37.89%	S, K
	Runtime Error	65	441	352	66.4	3.9	27667	1.72%	10.9	1.5	16.41%	S, K
	Assertion Error	105	413	256	41.7	3.0	12315	1.24%	185.9	1.6	445.87%	S, K
	Value Error	33	387	256	9.9	3.7	5049	0.16%	27.4	0.6	276.74%	S, K
	Zero Division Error	5	499	256	14.5	15.6	5363	0.03%	2.5	1.1	17.31%	S, K
	Model Loading Error	104	8	8	2.6	2.6	20	0.00%	0.0	0.0	0.00%	K
	Dataset Loading Error	5	1	1	1.6	1.6	1	0.00%	0.0	0.0	0.00%	K
Script	File Not Found Error	568	21	1	14.2	0.4	5210	2.83%	0.4	0.0	2.58%	S, K
	OS Error	266	8	1	9.6	0.8	1098	0.28%	0.3	0.0	3.17%	S, K
	Type Error	620	18	4	0.9	0.3	97	0.06%	0.2	0.0	28.27%	S, K
	Name Error	18	247	24	3.2	0.5	947	0.02%	2.9	2.4	90.92%	S, K
	Permission Error	7	438	512	4.3	0.8	2131	0.01%	2.4	2.2	56.38%	S
	Import Error	111	93	8	1.1	0.4	74	0.01%	0.7	0.0	63.68%	S, K
	Key Error	260	7	0	3.0	1.6	55	0.01%	0.1	0.0	2.10%	S, K
	Syntax Error	10	391	384	0.7	0.6	348	0.00%	1.7	1.7	261.73%	S, K
	Argument Error	3	344	512	0.7	0.7	288	0.00%	2.7	0.7	408.47%	S
	Called Process Error	4	256	256	0.2	0.2	52	0.00%	11.7	10.9	5714.29%	S
	Index Error	23	6	1	1.6	0.9	21	0.00%	0.8	0.0	49.73%	S, K

Table 3: Job failure statistics. It is sorted based on **Total**% (i.e., the percentage of GPU time summation in different categories). **Num:** Number of Occurrence. **TF:** Time to Failure. **TR:** Time to Restart (i.e., Restart Timestamp – Failure Timestamp). **GPU Time:** TF×GPU Demand. **S/K:** Occurrence of errors in Seren/Kalos respectively.

^{*} From meta paper

Business-Level (Training/Inference) Challenges

- Training Efficiency & Model Convergence
 - Coordinating large-scale parallelism without compromising stability
 - Mitigating overhead from fault recovery and checkpointing
- Inference Service Performance
 - Real-time low-latency inference in distributed settings
 - Balancing training and inference resource needs in shared clusters
- Cost Efficiency & Energy Management
 - High operational and energy costs in large-scale clusters
 - Maximizing GPU utilization while managing expenses
- Business Continuity & Disaster Recovery
 - Long-duration training runs with minimal interruptions
 - Robust recovery mechanisms to ensure service availability

Network Monitoring, Fault Detection & Fault Labeling Initiatives

- Comprehensive Network Observability
 - Real-time monitoring and logging for host NICs, switches, and IB/RoCE topologies
 - Automated topology discovery to map network interconnections
- Automated Fault Detection & Labeling
 - Early identification of anomalies and failures in network components
 - Precise fault labeling to streamline root cause analysis and remediation
- mt-network-operator
 - Seamlessly integrates with existing cluster management systems
 - Enables proactive network health tracking and fault management
- Benefits & Future Directions
 - Reduced downtime and improved reliability through early intervention
 - Enhanced network performance and resource utilization

^{*} mt-network-operator

mthreads.com/v1/Switch

Volcano overview

Network Design

- Fat-Tree
 - High Bandwidth and Scalability
 - Optimized for Distributed Training
 - Fault Tolerance and Reliability

HyperNode -- Network Topology API

- Leaf HyperNodes (s0, s1, s2, s3): The child node type is the real nodes in the cluster.
- Non-leaf HyperNodes (s4, s5, s6): The child node type is other HyperNodes.


```
apiVersion: topology.volcano.sh/v1alpha1
kind: HyperNode
metadata:
  name: s0
spec:
  tier: 1 # s0 is at tier1
  members:
  - type: Node
    selector:
      exactMatch:
        name: "node-0"
  - type: Node
    selector:
      exactMatch:
        name: "node-1"
```

Build HyperNode Structure

HyperNodes are structured as follows based on the actual conditions: "A HyperNode represents a network topology performance domain, typically mapped to a switch or tor".

In fat-tree network architecture, the HyperNode represents a connectivity domain rather than the concept of a switch.

Volcano Configuration

- To reduce resource fragmentation:
 - Enable binpack plugin
 - Set an appropriate weight

```
kind: ConfigMap
apiVersion: v1
metadata:
  name: volcano-scheduler-configmap
  namespace: volcano-system
data:
  volcano-scheduler.conf:
    actions: "enqueue, allocate, backfill"
    tiers:
    - plugins:
      - name: priority
      - name: gang
    - plugins:
      - name: predicates
      - name: proportion
      - name: nodeorder
       - name: binpack
         arguments:
           binpack.weight: 10
```

```
apiVersion: batch.volcano.sh/v1alpha1
kind: Job
metadata:
 name: test-job
spec:
 minAvailable: 8
 schedulerName: volcano
 networkTopology: # Set network topology constraints
    mode: hard
    highestTierAllowed: 1
 queue: default
 tasks:
    - replicas: 8
      name: "pod"
      template:
        spec:
          containers:
            - command: ["sleep"]
              args: ["infinity"]
              image: sh-harbor.mthreads.com/cloud/ubuntu:20.04
              imagePullPolicy: IfNotPresent
              name: job
              resources:
                limits:
                  nvidia.com/gpu: 8
                  openshift.io/roce: 8
          restartPolicy: OnFailure
```


Schedule Results

Normal Schedule

Scheduling With Network Topology Aware

Demo

(base) root@yuzhou-System-Product-Name:-/go/src/github.com/yeahdongcn/kcd-beijing-2025/scripts#												

Topology Discovery Mechanism

- InfiniBand Networker
 - IBNetDiscover Exporter
- RoCE(RDMA over Converged Ethernet) Network
 - LLDP Exporter

IBNetDiscover Exporter

KCD
GROWING CLOUD NATIVE TOGETHER
BEIJING

- **IB Network** Topology Generator
- Discovery method:
 - ibnetdiscover: part of the infiniband-diags RPM package
 - <u>slurmibtopology.sh</u>: create a Slurm topology.conf file to get the correct node and switch Infiniband

- Topology Output: topology.conf and HyperNode
- Topology: A Go-based tool for scheduling nodes according to topology.conf

LLDP Exporter

- RoCE Network Topology Generator
- Discovery method:
 - Link Layer Discovery Protocol (LLDP)
 - Switch vendor topology API
- Topology Output: topology.conf and HyperNode

HyperNode Status

Node nic-related conditions:

Conditions: Type Status Reason Message NicUnhealthy_ens2np0 False NicIsHealthy Nic on the node is functioning properly NicUnhealthy_ens3np0 True NicIsHighBER Raw Physical BER is greater than threshold

Switch conditions

Conditions: Last Heartheat Time: 2025-01-14T12:13:517 Last Transition Time: 2025-01-14T12:13:51Z Switch fan is healthy Message: SwitchFanHealthy Reason: Status: False FanUnhealthy Type: Last Heartbeat Time: 2025-01-14T12:13:51Z Last Transition Time: 2025-01-14T12:13:517 Switch power is healthy Message: SwitchPowerHealthy Reason: False Status: PowerUnhealthy Type: Last Heartbeat Time: 2025-01-14T12:13:51Z Last Transition Time: 2025-01-14T12:13:51Z Message: Switch has sufficient CPU available SwitchHasSufficientCPU Reason: Status: False Type: **CPUPressure** 2025-01-14T12:13:51Z Last Heartbeat Time: Last Transition Time: 2025-01-14T12:13:51Z Message: Switch has sufficient memory available

status:

conditions:

- lastTransitionTime: "2025-01-20T07:58:30Z"

message: Nic on the node is functioning properly

reason: NicIsHealthy

status: "False"

type: NicUnhealthy_ens2np0_leaf1_worker-30

- lastTransitionTime: "2025-02-10T10:40:46Z"

message: Raw Physical BER is greater than threshold

reason: NicIsHighBER

status: "True"

type: NicUnhealthy ens2np0 leaf1 worker-31

- lastTransitionTime: "2025-02-10T10:40:46Z"

message: Raw Physical BER is greater than threshold

reason: NicIsHighBER

status: "True"

type: NicUnhealthy_ens3np0_leaf2_worker-31

- lastTransitionTime: "2025-03-03T11:52:02Z"

message: Device network is healthy

reason: SwitchNetworkIsHealthy

status: "False"

type: SwitchNetworkFaults leaf1

- lastTransitionTime: "2025-03-03T11:52:02Z"

message: Device network is healthy

reason: SwitchNetworkIsHealthy

status: "False"

type: SwitchNetworkFaults_leaf2

- lastTransitionTime: "2025-03-03T11:52:02Z"

message: The device is healthy reason: SwitchSystemIsHealthy

status: "False"

type: SystemFaults_leaf1

HyperNode Controller

HyperNode Enhancement

- Current problems when use HyperNode:
 - There is **no existing mechanism to indicate the health status of individual nodes**. This lack of granularity prevents the scheduler from accurately identifying and handling unhealthy nodes.
 - Standard Switch Condition Type Not Yet Defined.
- What we are doing can be referred to in this pull request: volcano-sh/apis#155:
 - Introduce a new field under Status, such as UnhealthyNodes, to explicitly list nodes that are currently unschedulable under the given HyperNode.
 - Define two common switch condition types to standardize switch health reporting:
 - **SystemFailure**: Indicates a system-level issue on the switch or tor, such as CPU or memory overload, power failure, fan malfunction, or other critical system faults.
 - NetworkUnavailable: Indicates a network-related issue on the switch or tor, such as abnormal link status, interface
 failures, or other network disruptions.

Future Work

KCD
GROWING CLOUD NATIVE TOGETHER
BEIJING

- Work with the volcano community to improve network topology scheduling functions.
 - Adapt IIdp-exporter to HyperNode provider, refer https://github.com/volcano-sh/volcano/pull/4014

Related links

- https://volcano.sh/en/docs/network_topology_aware_scheduling/
- https://github.com/volcano-sh/apis/pull/155
- https://github.com/yeahdongcn/kcd-beijing-2025
- https://github.com/Mellanox/network-operator
- https://github.com/volcano-sh/volcano
- https://github.com/volcano-sh/apis
- https://github.com/volcano-sh/apis/pull/155
- https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
- https://github.com/operator-framework/operator-sdk
- https://github.com/volcano-sh/volcano/pull/4014
- https://github.com/yeahdongcn/topology
- https://slurm.schedmd.com/topology.conf.html
- https://github.com/OleHolmNielsen/Slurm_tools/tree/master/slurmibtopology

Thanks.

