____ INSTITUTE OF TECHNOLOGICAL STUDIES OF BIZERTE

AY: 2024-2025 M1-S1: Dept. of Electrical Engineering

EXAM | Al-ECUE122 Teacher: A. Mhamdi Jan. 2025 Time Limit: $1\frac{1}{2}$ h

This document contains 8 pages numbered from 1/8 to 8/8. As soon as it is handed over to you, make sure it is complete. The 2 tasks are independent and can be treated in the order that suits you.

The following rules apply:

- **1** A handwritten double-sided A4 sheet is permitted.
- 2 Any electronic material, except basic calculator, is prohibited.
- **18** Mysterious or unsupported answers will not receive full credit.
- **9 Round results** to the nearest thousandth (i.e., third digit after the decimal point).
- **6** Task №2: Each correct answer will grant a mark with no negative scoring.

Task N⁰1

You are given a neural network with the following structure:

Network Architecture

Input layer: 2 neurons $(x_1 \text{ and } x_2)$,

Hidden layer: 3 neurons $(a_1^{[1]}, a_2^{[1]}, a_3^{[1]})$,

Output layer: 1 neuron (y).

Hidden layer: Sigmoid activation,

Output layer: Linear activation.

Training Data

Inputs:
$$x_1 = 0.5$$
, $x_2 = 0.1$

Target output:
$$y = 0.4$$

$$\mathcal{W}^{[1]} = \left[egin{array}{ccc} 0.2 & 0.1 \\ -0.3 & 0.5 \\ 0.4 & -0.4 \end{array}
ight] \;\; ext{and} \;\;\; \mathcal{W}^{[2]} = \left[\begin{array}{cccc} 0.3 & -0.2 & 0.1 \end{array}
ight]$$

$$\mathbf{b}^{[1]} = \left[egin{array}{ll} 0.1 \\ 0.1 \\ 0.1 \end{array}
ight] \qquad ext{and} \qquad \qquad \mathbf{b}^{[2]} = 0.05$$

(a) (1 point) Compute the pre-activation (z) and activation (a) for each hidden neuron, and the output \hat{v} .

$$\begin{split} \mathbf{z}_{1}^{[1]} &= \ \mathbf{w}_{11}^{[1]} \mathbf{x}_{1} + \mathbf{w}_{12}^{[1]} \mathbf{x}_{2} + \mathbf{b}_{1}^{[1]} & \ \ \, \therefore \quad \mathbf{a}_{1}^{[1]} &= \ \sigma(\mathbf{z}_{1}^{[1]}) \\ \\ \mathbf{z}_{2}^{[1]} &= \ \mathbf{w}_{21}^{[1]} \mathbf{x}_{1} + \mathbf{w}_{22}^{[1]} \mathbf{x}_{2} + \mathbf{b}_{2}^{[1]} & \ \ \, \therefore \quad \mathbf{a}_{2}^{[1]} &= \ \sigma(\mathbf{z}_{2}^{[1]}) \\ \\ \mathbf{z}_{3}^{[1]} &= \ \mathbf{w}_{31}^{[1]} \mathbf{x}_{1} + \mathbf{w}_{32}^{[1]} \mathbf{x}_{2} + \mathbf{b}_{3}^{[1]} & \ \ \, \therefore \quad \mathbf{a}_{3}^{[1]} &= \ \sigma(\mathbf{z}_{3}^{[1]}) \\ \\ \mathbf{z}^{[2]} &= \ \mathbf{w}_{1}^{[2]} \mathbf{a}_{1}^{[1]} + \mathbf{w}_{2}^{[2]} \mathbf{a}_{2}^{[1]} + \mathbf{w}_{3}^{[2]} \mathbf{a}_{3}^{[1]} + \mathbf{b}^{[2]} & \ \ \, \therefore \quad \mathbf{a}^{[2]} &= \ \mathbf{z}^{[2]} \end{split}$$

Substitute values:

$$\begin{aligned} \mathbf{z}_{1}^{[1]} &= (0.2)(0.5) + (0.1)(0.1) + 0.1 &= 0.21 & \therefore & \mathbf{a}_{1}^{[1]} &= \sigma(0.21) \approx 0.552 \\ \\ \mathbf{z}_{2}^{[1]} &= (-0.3)(0.5) + (0.5)(0.1) + 0.1 \approx 0 & \therefore & \mathbf{a}_{2}^{[1]} \approx \sigma(0) &= 0.5 \\ \\ \mathbf{z}_{3}^{[1]} &= (0.4)(0.5) + (-0.4)(0.1) + 0.1 &= 0.26 & \therefore & \mathbf{a}_{3}^{[1]} &= \sigma(0.26) \approx 0.565 \end{aligned}$$

The output is given by:

$$\begin{split} \hat{\mathbf{y}} &= \mathbf{w}_1^{[2]} \mathbf{a}_1^{[1]} + \mathbf{w}_2^{[2]} \mathbf{a}_2^{[1]} + \mathbf{w}_3^{[2]} \mathbf{a}_3^{[1]} + \mathbf{b}^{[2]} \\ \hat{\mathbf{y}} &= (0.3)(0.552) + (-0.2)(0.5) + (0.1)(0.565) + 0.05 \\ \hat{\mathbf{y}} &\approx 0.172 \end{split}$$

(b) (1 point) Compute the loss using the Mean Squared Error (MSE):

$$\mathcal{L} = \frac{1}{2}(\hat{\mathbf{y}} - \mathbf{y})^2$$

The loss is given by the Mean Squared Error (MSE):

$$\mathcal{L} = \frac{1}{2}(\hat{\mathbf{y}} - \mathbf{y})^2$$

Substitute values:

$$\mathcal{L} = \frac{1}{2}(0.172 - 0.4)^2 = \frac{1}{2}(-0.228)^2 \approx 0.026$$

(c) (3 points) Perform backpropagation to compute gradients of the loss $\mathcal L$ with respect to the weights and biases.

Gradients w.r.t. weights and bias at the output layer:

$$\frac{\partial \mathcal{L}}{\partial w_i^{[2]}}$$
, $\frac{\partial \mathcal{L}}{\partial b^{[2]}}$ $\forall i = 1, 2, 3$

$$\frac{\partial \mathcal{L}}{\partial w_1^{[2]}} = \frac{\partial \textbf{L}}{\partial \hat{\textbf{y}}} \cdot \frac{\partial \hat{\textbf{y}}}{\partial w_1^{[2]}} = -0.228 \cdot a_1^{[1]}$$

$$\frac{\partial \mathcal{L}}{\partial w_1^{[2]}} = -0.228 \cdot 0.552 \approx -0.126$$

Similarly:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}_2^{[2]}} = -0.228 \cdot 0.5 \approx -0.114$$

$$\frac{\partial \mathcal{L}}{\partial w_3^{[2]}} = -0.228 \cdot 0.565 \approx -0.129$$

$$\frac{\partial \mathcal{L}}{\partial b^{[2]}} = \frac{\partial \mathcal{L}}{\partial \hat{y}} = -0.228$$

Gradients w.r.t. weights and bias at the hidden layer:
$$\frac{\partial \mathcal{L}}{\partial w_{ij}^{[1]}} \quad \text{and} \quad \frac{\partial \mathcal{L}}{\partial b_i^{[1]}} \quad \forall i = 1, 2, 3, \ j = 1, 2$$

$$\frac{\partial L}{\partial a_1^{[1]}} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial a_1^{[1]}} = -0.228 \cdot w_1^{[2]}$$

$$\frac{\partial \mathbf{L}}{\partial \mathbf{a}_{1}^{[1]}} = \frac{\partial \mathbf{L}}{\partial \hat{\mathbf{y}}} \cdot \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{a}_{1}^{[1]}} = -0.228 \cdot \mathbf{w}_{1}^{[2]}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{a}_1^{[1]}} = -0.228 \cdot 0.3 = -0.0684$$

Similarly:

$$\frac{\partial \mathcal{L}}{\partial a_2^{[1]}} = -0.228 \cdot (-0.2) = 0.0456$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{a}_{2}^{[1]}} = -0.228 \cdot 0.1 = -0.0228$$

For $w_{11}^{[1]}$:

$$\frac{\partial \mathcal{L}}{\partial w_{11}^{[1]}} = \frac{\partial \mathcal{L}}{\partial a_1^{[1]}} \cdot \frac{\partial a_1^{[1]}}{\partial z_1^{[1]}} \cdot \frac{\partial z_1^{[1]}}{\partial w_{11}^{[1]}}$$

The derivative of the sigmoid function is:

$$\begin{split} \sigma'(\mathbf{z}) &= \sigma(\mathbf{z})(1-\sigma(\mathbf{z})) \\ \frac{\partial a_1^{[1]}}{\partial \mathbf{z}_1^{[1]}} &= a_1^{[1]}(1-a_1^{[1]}) = 0.552 \cdot (1-0.552) \approx 0.247 \\ \\ \frac{\partial \mathcal{L}}{\partial \mathbf{w}_{11}^{[1]}} &= -0.0684 \cdot 0.247 \cdot \mathbf{x}_1 = -0.0684 \cdot 0.247 \cdot 0.5 \approx -0.00845 \end{split}$$

Compute similarly for other weights in $\boldsymbol{\mathcal{W}}^{[1]}$ and biases $\boldsymbol{b}^{[1]}.$

(d) (2 points) Update the weights and biases using gradient descent with $\eta=0.1$

$$\mathcal{W} \leftarrow \mathcal{W} - \eta \cdot \nabla_{\mathcal{W}} \mathcal{L} \quad \text{and} \quad b \leftarrow b - \eta \cdot \nabla_{b} \mathcal{L}$$

For $w_1^{[2]}$:

$$w_1^{[2]} = 0.3 - 0.1 \cdot (-0.126) = 0.3126$$

Similarly, update all weights and biases.

	AY: 2024-2025 M1-S1: Dept. of Electrical Engineering	Full Name: ID:		
	EXAM AI-ECUE122 Jan. 2025 Teacher: A. Mhamdi	Class: Room: Time Limit:	$1\frac{1}{2}$ h	
~ -				
	Answ	ER SHEET		
			0 1/	
Tas	<u>sk №2</u>		35mn (13 points)	
	(a) $(\frac{1}{2}$ point) In fuzzy logic, what is the t	erm for the proce	ess of converting crisp values into	
	fuzzy sets?	cilli for the proce	soo or converting errop values into	
	√ Fuzzification			
	(b) $(\frac{1}{2}$ point) What is the primary purpose	e of the members	ship function in fuzzy logic?	
	 To perform defuzzification 			
	To combine multiple rules			
	$\sqrt{}$ To indicate the degree of belo	onging to a fuzzy	set	
	To generate random values			
	(c) $(\frac{1}{2}$ point) Which method is commonly	used for defuzzi	fication in fuzzy logic systems?	
	 Max-Min composition 			
	Union operation			
	Center of Gravity			
	Fuzzy intersection			
	(d) $(\frac{1}{2}$ point) Which of these is a character	eristic of fuzzy log	gic systems?	
	\bigcirc They only work with binary v	alues		
	 They require exact mathemat 	ical models		
	 They always produce crisp or 	utputs without de	fuzzification	
	$\sqrt{}$ They can handle imprecise or	r vague informati	on	
	(e) $(\frac{1}{2}$ point) What is the main difference	between Mamda	NI and SUGENO fuzzy models?	
	$\sqrt{\ }$ The way they define the cons	sequent part		
	\bigcirc The number of rules they car	n handle		
	 The number of inputs they ca 	an process		
	 The fuzzification process 			

DO NOT WRITE ANYTHING HERE

(f) $(\frac{1}{2}$ point) In the TAKAGI-SUGENO model, the consequent part is:

A fuzzy set

	○ A fuzzy set	
	A mathematical function of the input variables	
	A constant value only	
	○ A linguistic variable	
(g)	(g) $(^1\!/_{\!2}$ point) The Mamdanı fuzzy inference system requires:	
	$\sqrt{}$ Both fuzzification and defuzzification	
	No defuzzification	
	Only fuzzification	
	Neither fuzzification nor defuzzification	
(h) $(\frac{1}{2}$ point) The Mamdani method is most suitable for:		
	Linear control systems only	
	Mathematical analysis	
	√ Expert knowledge-based systems	
	High-speed computations	
(i)	(i) $(\frac{1}{2}$ point) In TAKAGI-SUGENO systems, the final output is obtained by:	
	Center of gravity defuzzification	
	Max-min composition	
	Mean of maxima method	
	$\sqrt{}$ Weighted average of rule outputs	
(j)	$(rac{1}{2}$ point) The Mampanı model's output is:	
	A fuzzy set requiring defuzzification	
	Always a linear function	
	A monotonic function	
	A crisp number without defuzzification	
(k)	$(\frac{1}{2}$ point) Which of the following is NOT a common activation function in neural networks?	
	○ ReLU ○ Sigmoid ✓ Cubic Root ○ Tanh	
(I)	$(1\!/_{\!2}$ point) In a neural network, what does backpropagation primarily do?	
	Forward pass calculation	

Input normalization $\sqrt{}$ Calculates gradients for weight updates Data preprocessing (m) $\binom{1}{2}$ point) Which loss function would you use for regression problems? ○ Cross-Entropy ○ Hinge Loss √ Mean Squared Error ○ Binary Cross-Entropy (n) $(\frac{1}{2}$ point) During backpropagation, gradients are computed: O In forward direction Only for the output layer Only for hidden layers $\sqrt{\ }$ In backward direction from output to input (o) (½ point) Which optimizer uses momentum and adaptive learning rates? \bigcirc SGD \bigcirc RMSprop \bigcirc Adagrad \checkmark Adam (p) $(\frac{1}{2}$ point) What is the purpose of the learning rate in gradient descent? O To normalize input data O To initialize network weights $\sqrt{}$ To control the size of weight updates O To determine batch size (q) $(\frac{1}{2}$ point) What's the advantage of using mini-batch gradient descent? O It uses less memory $\sqrt{}$ It balances computation speed and gradient accuracy O It always converges to global minimum O It eliminates the need for epochs (r) $(\frac{1}{2}$ point) What's the purpose of the Softmax activation function? $\sqrt{}$ To convert outputs to probabilities O To introduce non-linearity To prevent overfitting O To normalize inputs (s) $(\frac{1}{2}$ point) How do you create an array of zeros in Julia? $\sqrt{\text{zeros}(3,3)}$ \bigcirc new_zeros(3,3) \bigcirc array(0,3,3) \bigcirc create_zeros(3,3)

DO NOT WRITE ANYTHING HERE

DO NOT WRITE ANYTHING HERE

(t) $\binom{1}{2}$ point) In Julia, what is the correct way to define a custom layer CustomLayer? ○ class CustomLayer ○ def CustomLayer √ struct CustomLayer (u) $(\frac{1}{2}$ point) In Julia, what is the correct way to perform matrix multiplication? \bigcirc A x B $\sqrt{A * B}$ \bigcirc A .* B \bigcirc multiply(A,B) (v) $(\frac{1}{2}$ point) In Julia, what is the correct way to define a function? ovoid function_name(x) ○ def function_name(x) $\sqrt{\text{function function}_{\text{name}}(x)}$ ∫ func function_name(x) (w) $(\frac{1}{2}$ point) How do you declare a neural network using Flux. jl? ○ NeuralNetwork([Dense(10, 5)]) $\sqrt{\text{Chain}(\text{Dense}(10, 5))}$ ○ Network([Dense(10, 5)]) ○ Sequential(Dense(10, 5)) (x) $(\frac{1}{2}$ point) In Julia's Flux.jl, how do you define a custom loss function? \bigcirc new_loss(x, y) = ... ○ function loss = ... \bigcirc define_loss(x, y) = ... $\sqrt{\log(x, y)} = \sup((\text{model}(x) .- y).^2)$ (y) $(\frac{1}{2}$ point) In Julia's Flux.jl, how do you compute gradients? backward(loss) compute_gradients(model) $\sqrt{\text{gradient}(() \rightarrow \text{loss}(x, y), \text{params}(\text{model}))}$ ○ backprop(model, loss) (z) $(\frac{1}{2}$ point) How do you update model parameters in Flux. jl? model.update() √ Flux.update!(opt, params(model), gs) O optimize(model, opt) ○ model.step()