CS 207: Discrete Structures

Graph theory

Bipartite graphs and subgraphs, cliques and independent sets

Lecture 25 Sept 21 2015

Topic 3: Graph theory

Topics covered in the last two lectures:

- ▶ What is a Graph?
- ▶ Paths, cycles, walks and trails; connected graphs.
- Eulerian graphs and a characterization in terms of degrees of vertices.
- Bipartite graphs and a characterization in terms of odd length cycles.

Reference: Section 1.1, 1.2 of Chapter 1 from Douglas West.

Topics that will be covered this lecture and next

- ▶ Finish proof of characterization of bipartite graphs using odd cycles.
- ► Subgraphs and degree sum formula.
- ▶ Cliques and independent sets.
- ▶ Finding a large bipartite subgraph of a given graph

Topics that will be covered this lecture and next

- ▶ Finish proof of characterization of bipartite graphs using odd cycles.
- ► Subgraphs and degree sum formula.
- Cliques and independent sets.
- ► Finding a large bipartite subgraph of a given graph
- ▶ Graph representation as a matrix.
- ► Comparing graphs: isomorphism (eg Peterson's)

Bipartite graphs

Definition

A graph is called bipartite, if the vertices of the graph can be partitioned into $V = X \cup Y$, $X \cap Y = \emptyset$ s.t., $\forall e = (u, v) \in E$,

- either $u \in X$ and $v \in Y$
- ightharpoonup or $v \in X$ and $u \in Y$

Example: m jobs and n people, k courses and ℓ students.

- ▶ How can we check if a graph is bipartite?
- ► Can we characterize bipartite graphs?

- ightharpoonup Recall: A path or a cycle has length n if the number of edges in it is n.
- ▶ A path (or cycle) is call odd (or even) if its length is odd (or even, respectively).

Lemma

Every closed odd walk contains an odd cycle.

Proof: By induction on the length of the given closed odd walk. Exercise!

Lemma

Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.

Proof:

Lemma

Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.

Proof:

ightharpoonup (\Longrightarrow) direction is easy.

Lemma

Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.

Proof:

- \blacktriangleright (\Longrightarrow) direction is easy.
- ▶ Let G be bipartite with $(V = X \cup Y)$. Then, every walk in G alternates between X, Y.

Lemma

Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.

Proof:

- \blacktriangleright (\Longrightarrow) direction is easy.
- Let G be bipartite with $(V = X \cup Y)$. Then, every walk in G alternates between X, Y.
- \implies if we start from X, each return to X can only happen after an even number of steps.
- \implies G has no odd cycles.

Lemma

Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.

Proof:

▶ (\iff) Suppose G has no odd cycle, then let us construct the bipartition. Wlog assume G is connected.

Lemma

Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.

Proof:

- \blacktriangleright (\Leftarrow) Suppose G has no odd cycle, then let us construct the bipartition. Wlog assume G is connected.
- ▶ Let $u \in V$. Break V into

 $X = \{v \in V \mid \text{length of shortest path } P_{uv} \text{ from } u \text{ to } v \text{ is even}\},$ $Y = \{v \in V \mid \text{length of shortest path } P_{uv} \text{ from } u \text{ to } v \text{ is odd}\},$

Lemma

Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.

Proof:

- \blacktriangleright (\Leftarrow) Suppose G has no odd cycle, then let us construct the bipartition. Wlog assume G is connected.
- Let $u \in V$. Break V into $X = \{v \in V \mid \text{length of shortest path } P_{uv} \text{ from } u \text{ to } v \text{ is even}\},$ $Y = \{v \in V \mid \text{length of shortest path } P_{uv} \text{ from } u \text{ to } v \text{ is odd}\},$
- ▶ If there is an edge vv' between two vertices of X or two vertices of Y, this creates a closed odd walk: $uP_{uv}vv'P_{v'u}u$.

Lemma

Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.

Proof:

- \blacktriangleright (\Leftarrow) Suppose G has no odd cycle, then let us construct the bipartition. Wlog assume G is connected.
- ▶ Let $u \in V$. Break V into $X = \{v \in V \mid \text{length of shortest path } P_{uv} \text{ from } u \text{ to } v \text{ is even}\},$ $Y = \{v \in V \mid \text{length of shortest path } P_{uv} \text{ from } u \text{ to } v \text{ is odd}\},$
- ▶ If there is an edge vv' between two vertices of X or two vertices of Y, this creates a closed odd walk: $uP_{uv}vv'P_{v'u}u$.
- ▶ By Lemma, it must contain an odd cycle: contradiction.
- ▶ This along with $X \cap Y = \emptyset$ and $X \cup Y = V$, implies X, Y is a bipartition.

Some basic stuff that we have already seen

Degree-Sum Formula (also called Handshake Lemma!)

For any graph G with vertex set V and edge set E:

$$\sum_{v \in V} d(v) = 2|E|$$

Some basic stuff that we have already seen

Degree-Sum Formula (also called Handshake Lemma!)

For any graph G with vertex set V and edge set E:

$$\sum_{v \in V} d(v) = 2|E|$$

Subgraphs of a graph G

A subgraph H of a graph G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ (and the assignment of endpoints to edges in H is same as in G).

▶ Why are subgraphs important/interesting?

- Consider a large social network graph where friends are linked by an edge.
- ▶ What is the largest clique of friends?
- ▶ If we want to spread a youtube video, how many people should we send it to so that we are guaranteed everyone will see it (assuming friends forward to each other)?

Cliques and independent sets

- ▶ A clique in a graph is a set of pairwise adjacent vertices.
- ► An independent set in a graph is a set of pairwise non-adjacent vertices.

Cliques and independent sets

- ▶ A clique in a graph is a set of pairwise adjacent vertices.
- ► An independent set in a graph is a set of pairwise non-adjacent vertices.

Size of a clique/independent set is the number of vertices in it.

Cliques and independent sets

- ▶ A clique in a graph is a set of pairwise adjacent vertices.
- ► An independent set in a graph is a set of pairwise non-adjacent vertices.

Size of a clique/independent set is the number of vertices in it.

ightharpoonup Thus, a clique in a graph G is a complete subgraph of G.

Cliques and independent sets

- ▶ A clique in a graph is a set of pairwise adjacent vertices.
- ► An independent set in a graph is a set of pairwise non-adjacent vertices.

Size of a clique/independent set is the number of vertices in it.

- \triangleright Thus, a clique in a graph G is a complete subgraph of G.
- ▶ An independent set in G is a complete subgraph of \overline{G} , where \overline{G} is the complement of G obtained by making all adjacent vertices non-adjacent and vice versa.

Cliques and independent sets

- ▶ A clique in a graph is a set of pairwise adjacent vertices.
- ► An independent set in a graph is a set of pairwise non-adjacent vertices.

Size of a clique/independent set is the number of vertices in it.

Questions:

▶ What is the size of the largest clique/independent set in each of the above graphs? In any complete graph?

Cliques and independent sets

- ▶ A clique in a graph is a set of pairwise adjacent vertices.
- ► An independent set in a graph is a set of pairwise non-adjacent vertices.

Size of a clique/independent set is the number of vertices in it.

Questions:

- ▶ What is the size of the largest clique/independent set in each of the above graphs? In any complete graph?
- ▶ Given graph G, integer k, does G have a clique of size k?

.

Cliques and independent sets

- ▶ A clique in a graph is a set of pairwise adjacent vertices.
- ► An independent set in a graph is a set of pairwise non-adjacent vertices.

Size of a clique/independent set is the number of vertices in it.

Questions:

▶ In a graph with 6 vertices, can you always find a clique or an independent set of size 3?

Cliques and independent sets

- ▶ A clique in a graph is a set of pairwise adjacent vertices.
- ► An independent set in a graph is a set of pairwise non-adjacent vertices.

Size of a clique/independent set is the number of vertices in it.

Questions:

- ▶ In a graph with 6 vertices, can you always find a clique or an independent set of size 3?
- Yes, because R(3,3) = 6!

Cliques and independent sets

- ▶ A clique in a graph is a set of pairwise adjacent vertices.
- ► An independent set in a graph is a set of pairwise non-adjacent vertices.

Size of a clique/independent set is the number of vertices in it.

Ramsey's theorem - restated

In any graph with $R(k, \ell)$ vertices, there exists either a clique of size k or an independent set of size ℓ .

Bipartite subgraphs of graphs

- \blacktriangleright Does a graph G always have a bipartite subgraph?
- ► How large is it?

Bipartite subgraphs of graphs

- \triangleright Does a graph G always have a bipartite subgraph?
- ► How large is it?

Theorem

Every loopless graph G has a bipartite subgraph with at least |E|/2 edges.