0.1 R5 数学 A

 $\boxed{1}$ $(1)f_n(0)=\frac{(-1)^n}{2n}$ である. $S_n(x)=\sum\limits_{k=1}^n f_k(x)$ とする. $S_{2n}(0)=\sum\limits_{k=1}^{2n} f_k(0)=\sum\limits_{k=1}^n f_{2k-1}(0)+f_{2k}(0)=\sum\limits_{k=1}^n \frac{-1}{2(2k-1)}+\frac{1}{2(2k)}=\sum\limits_{k=1}^n \frac{-2}{4k(4k-2)}$ である. よって $S_{2n}(0)$ は単調減少である. $S_{2n+1}(0)=\frac{-1}{2}+\sum\limits_{k=1}^n f_{2k}(0)+f_{2k+1}(0)=\frac{-1}{2}+\sum\limits_{k=1}^n \frac{1}{2(2k)}-\frac{1}{2(2k+1)}=\frac{-1}{2}+\sum\limits_{k=1}^n \frac{2}{4k(4k+2)}$ である. よって $S_{2n+1}(0)$ は単調増加である. $S_{2n+1}(0)=S_{2n}(0)+\frac{-1}{2(2n+1)}$ より $S_{2n+1}(0)< S_{2n}(0)$ である. よって共に有界数列であるから、収束する. また $\lim S_{2n+1}(0)=\lim (S_{2n}(0)+\frac{-1}{2(2n+1)})=\lim S_{2n}(0)$ より極限値は一致する. よって $S_n(0)$ は収束する. $(2)|f_n(x)|=\left|\frac{(-1)^n}{2n+\sin x}\right|=\frac{1}{2n+\sin x}\geq \frac{1}{2n+1}$ である. よって $\sum\limits_{n=1}^\infty |f_n(x)|\geq \sum\limits_{n=1}^\infty \frac{1}{2n+1}\geq \int_1^\infty \frac{1}{2x+1}dx$ より発散

(3) まずは各点収束することを示す。(1) と同様に $S_{2n}(x)=\sum\limits_{k=1}^{n}\frac{-1}{2(2k-1)+\sin x}+\frac{1}{2(2k)+\sin x}=\sum\limits_{k=1}^{n}\frac{-2}{(4k+\sin x)(4k-2+\sin x)}$ である。よって $S_{2n}(x)$ は単調減少である。 $S_{2n+1}(x)=\frac{-1}{2+\sin x}+\sum\limits_{k=1}^{n}\frac{1}{2(2k)+\sin x}-\sum\limits_{k=1}^{n}\frac{1}{2(2k+1)+\sin x}=\sum\limits_{k=1}^{n}\frac{2}{(4k+\sin x)(4k+2+\sin x)}$ である。よって $S_{2n+1}(x)$ は単調増加である。 $S_{2n+1}(x)=S_{2n}(x)+\frac{-1}{2(2n+1)+\sin x}$ より $S_{2n+1}(x)< S_{2n}(x)$ である。よって共に有界数列であるから、収束する。また $\lim S_{2n+1}(x)=\lim (S_{2n}(x)+\frac{-1}{2(2n+1)+\sin x})=\lim S_{2n}(x)$ より極限値は一致する。よって $S_{n}(x)$ は収束する。 $S_{n}(x)$ が S(x) に各点収束するとする。

$$|S(x) - S_{2n}(x)| = \left| \sum_{k=2n+1}^{\infty} f_{2k-1}(x) + f_{2k}(x) \right| = \left| \sum_{k=2n+1}^{\infty} \frac{-2}{(4k + \sin x)(4k - 2 + \sin x)} \right| \le \sum_{k=2n+1}^{\infty} \frac{2}{(4k - 3)(4k - 1)} \to 0 \quad (n + 1)$$

$$|S(x) - S_{2n+1}(x)| = \left| \sum_{k=2n+2}^{\infty} f_{2k}(x) + f_{2k+1}(x) \right| = \left| \sum_{k=2n+2}^{\infty} \frac{2}{(4k + \sin x)(4k + 2 + \sin x)} \right| \le \sum_{k=2n+2}^{\infty} \frac{2}{(4k - 1)(4k + 1)} \to 0 \quad (n + 1)$$

共にxについて一様収束する. よって $S_n(x)$ はS(x)に一様収束する.

2 $(1)\{w, f(w), f^2(w), \dots, f^m(w)\}$ が一次独立であり $\{w, f(w), f^2(w), \dots, f^{m+1}(w)\}$ が一次従属となるような最小の m をとる. m=n-1 なら V の次元が n であることより条件をみたすから,このような m は存在する.

一次従属であるから、 $f^{m+1}(w)=a_0w+a_1f(w)+\cdots+a_mf^m(w)$ となる $a_0,a_1,\ldots,a_m\in\mathbb{C}$ が存在する.このとき $f^{m+2}(w)=a_0f(w)+a_1f^2(w)+\cdots+a_mf^{m+1}(w)=a_0w+(a_1+a_0)f(w)+\cdots+(a_m+a_{m-1})f^m(w)$ と表せる. f^{m+3},f^{m+4},\ldots も同様に表せる.

よって $f^n(w)$ は $w, f(w), f^2(w), \dots, f^{m-1}(w)$ の線形結合で表せるから $f^n(w) \in W$.

(2)(1) で定めた m について、W は $\{w, f(w), \dots, f^m(w)\}$ で生成されるから、m 次元ベクトル空間. よって k=m である.

 $(3)\dim W = n$ より W = V である. よって $\{w, f(w), \dots, f^{n-1}(w)\}$ は V の基底である. この基底に関す

る,
$$f$$
 の表現行列は $f^n(w)=\alpha w$ より
$$\begin{pmatrix} 0 & 0 & \dots & 0 & \alpha \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$
 である.よって固有方程式は

$$\det \begin{vmatrix} -t & 0 & \dots & 0 & \alpha \\ 1 & -t & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -t \end{vmatrix} = \begin{vmatrix} -t & 0 & \dots & 0 & \alpha \\ 1 & -t & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{vmatrix} + \begin{vmatrix} -t & 0 & \dots & 0 & 0 \\ 1 & -t & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -t \end{vmatrix} = (-1)^{n+1}\alpha + (-t)^n$$

である.

3 $(1)(x_1,y_1) \sim (x_2,y_2)$ とする. ある正の実数 r が存在して, $rx_1=x_2,r^{-1}y_1=y_2$ である. よって $x_1=r^{-1}x_2,y_1=ry_2$ で r^{-1} は正の実数であるから, $(x_2,y_2)\sim (x_1,y_1)$ である.

 $(x_1,y_1)\sim (x_2,y_2), (x_2,y_2)\sim (x_3,y_3)$ とする.ある正の実数 r_1,r_2 が存在して, $r_1x_1=x_2,r_1^{-1}y_1=y_2,r_2x_2=x_3,r_2^{-1}y_2=y_3$ である.よって $r_2r_1x_1=x_3,(r_2r_1)^{-1}y_1=y_3$ であるから, $(x_1,y_1)\sim (x_3,y_3)$ である.

よって~は同値関係である.

 $(2)a \neq 0, b \neq 0$ のとき $A_{a,b} = \{(x,y) \in \mathbb{R}^2 \mid xy = ab, ax > 0\}$ である. 実際, $(x,y) \sim (a,b)$ なら $rx = a, r^{-1}y = b$ より xy = ab であり,r > 0 より a と x は同符号である。また $xy = ab \neq 0$ より $x \neq 0, y \neq 0$ であるから ax > 0 である.逆に (x,y) が xy = ab, ax > 0 を満たすとする。x/a = r > 0 とすれば, $ar = x, r^{-1}b = y$ であり $(x,y) \sim (a,b)$ である.

 $a<0,b \neq 0$ のとき $A_{a,b}=\left\{(x,y)\in\mathbb{R}^2\;\middle|\;x<0,y=0\right\}$ である.これは明らか.よって $B=\bigcup_{(a,b)\in I}A_{a,b}=\left\{(x,y)\in\mathbb{R}\;\middle|\;-1\leq xy\leq 1,x<0\right\}$ である.したがって $\overline{B}=\left\{(x,y)\in\mathbb{R}\;\middle|\;-1\leq xy\leq 1,x\leq 0\right\}$ より $\overline{B}\setminus B=\left\{(x,y)\in\mathbb{R}\;\middle|\;x=0\right\}$ である.

 $(3)\mathbb{R}^2\setminus\{(0,0)\}$ から X への標準射影を p とする。 $A_{-1,0}$ と $A_{0,1}$ について考える。 $A_{-1,0}\in U\subset X$ なる開集合 U について $(-1,0)\in A_{-1,0}\subset p^{-1}(U)$ よりある $\varepsilon>0$ が存在して (-1,0) を中心とする半径 ε の開球 $B((-1,0),\varepsilon)\subset p^{-1}(U)$ である。同様に $A_{0,1}\in V\subset X$ なる開集合 V について $(0,1)\in A_{0,1}\subset p^{-1}(V)$ よりある $\delta>0$ が存在して $B((0,1),\delta)\subset p^{-1}(V)$ である。 $\gamma=\min\{\varepsilon,\delta\}$ とする。 $(-1,\gamma)\in p^{-1}(U),(-1,-\gamma)\in p^{-1}(V)$ である。 $p(-1,\gamma)\sim p(-1,-\gamma)$ であるから $A_{-1,\gamma}\in U,A_{-1,-\gamma}\in V$ である。よって $U\cap V\neq\emptyset$ である。

任意の開集合U,Vについて成り立つから、Xはハウスドルフでない.

 $\boxed{4}\ (1)1 < |z| < 2$ なら $\frac{|z|}{2} < 1$, $\frac{1}{|z|} < 1$ である. よって共に有界数列であるから $\frac{1}{(z-1)(z-2)} = \frac{1}{z-2} - \frac{1}{z-1} = \frac{-1}{2} \frac{1}{1-z} - \frac{1}{z} \frac{1}{1-z} = -\frac{1}{2}(1+\frac{z}{2}+\frac{z^2}{4}+\dots) - \frac{1}{z}(1+\frac{1}{z}+\frac{1}{z^2}+\dots)$ である.

 $(2)\sin z$ の零点は $z=n\pi$ である. $(\sin z)'|_{n\pi}=(-1)^n$ であるから, $z=n\pi$ は $\sin z$ の一位の零点である. すなわち $\sin z=(z-n\pi)g(z), g(n\pi)\neq 0$ となる正則関数 g(z) が存在する. また $|f(n\pi)|\leq |\sin n\pi|=0$ より $f(n\pi)=0$ である. $h(z)=\frac{f(z)}{\sin z}$ とする. $\lim_{z\to n\pi}(z-n\pi)h(z)=\lim_{z\to n\pi}\frac{f(z)}{g(z)}=0$ である. すなわち $z=n\pi$ は h(z) の除去可能な特異点である. $|h(z)|\leq 1$ となるから,リュービルの定理より h は定数関数で $h(z)\equiv\alpha\in\mathbb{C}$ とできる. したがって $f(z)=\alpha\sin z$ である.

(3) 実数値関数 u,v を用いて g(x+iy)=u(x,y)+iv(x,y) と表せる. g は正則関数であるから,u,v は C^∞ 級関数である. またコーシー・リーマンの方程式 $u_x=v_y,u_y=-v_x$ を満たす.

実数値関数 s,t を用いて $g(\overline{x+iy})=s(x,y)+it(x,y)$ と表せる. $\overline{g(\overline{z})}=u(x,-y)-iv(x,-y)$ であるから, s(x,y)=u(x,-y),t(x,y)=-v(x,-y) である. したがって s,t は C^∞ 級関数である. $s_x=u_x=v_y=t_y,s_y=-u_y=v_x=-t_x$ であるから, s,t はコーシー・リーマンの方程式を満たす. よって $\overline{g(\overline{z})}$ は正則関数である.