Topology Presentation Notes

Nilay Tripathi

December 4, 2023

1 Metric Space Preliminaries

- Sequences and Cauchy sequences
 - A sequence converges to a point $x_0 \in X$ if

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N} : n \ge N_{\varepsilon} \implies d(x_n, x) < \varepsilon$$

- A sequence is Cauchy if

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N} : m, n \geq N_{\varepsilon} \implies d(x_n, x_m) < \varepsilon$$

- Every convergent sequence is Cauchy. PROOF: use triangle inequality with $\varepsilon/2$ argument.
- \bullet Complete metric space: every Cauchy sequence in X converges to a limit in X.
 - The metric space ℚ is not complete. PROOF: consider the sequence of rational approximations to any irrational number.
 - Discrete spaces are complete. PROOF: every Cauchy sequence is eventually constant.

1.1 Function Space

We define the **function space**, C[a,b], to be all continuous functions from [a,b] to \mathbb{R} . That is

$$C[a,b] = \{ f : [a,b] \to \mathbb{R} \mid f \text{ is continuous} \}$$

We define a metric on the function space as follows: for $f, g \in C[a, b]$

$$d(f,g) = \max_{t \in [a,b]} |f(t) - g(t)|$$

• The metric is well defined (i.e. is finite). PROOF: f - g is continuous and [a, b] is compact. EVT implies existence of a maximum (and minimum)

2 Vector Space Preliminaries

- ullet A vector space V over a field $\mathbb F$ has two operations: vector addition and scalar multiplication where
 - Vector addition is an abelian group
 - Scalar multiplicatin satisfies: 1v = v, a(bv) = (ab)v, and two distributive laws: scalar multiplication distributes over vector addition and field addition.
- Linearly independent sets: a (finite) set V is linearly independent if for scalars c_i and vectors v_i

$$c_1v_1 + c_2v_2 + \dots + c_nv_n = 0 \implies c_1 = c_2 = \dots = c_n = 0$$

Infinite sets are linearly independent if all of its finite subsets are L.I.

• If V is a V.S. over \mathbb{F} and $S \subseteq V$ is finite, then span S is defined as

span
$$S = \{c_1v_1 + \dots + c_nv_n : c_i \in \mathbb{F}, v_i \in S\}$$

The span of an infinite set is the union of the span of all its finite subsets.

- If $E \subseteq X$ is a subspace, then a set S is a spanning set if span S = E.
- A basis is a linearly independent generating set.
 - It is the smallest generating set and the largest L.I. set (in a f.d. V.S.)
 - Every vector has a unique representation in a basis
 - The dimension of a V.S. is the size of its basis (either finite or infinite)
 - Every V.S. has a basis. For f.d. spaces, all bases have the same size

2.1 Function Spaces

We turn the function space C[a, b] into a vector space over \mathbb{R} . For $f, g \in C[a, b]$ and $\alpha \in \mathbb{R}$, define

$$(f+g)(t) = f(t) + g(t)$$
$$(\alpha f)(t) = \alpha f(t)$$

The additive identity is the zero function. It is also an infinite dimensional V.S.

2.2 Linear Maps

Linear maps preserve linear combos. So $T: X \to Y$ is linear if

$$T(c_1v_1 + c_2v_2 + \dots + c_nv_n) = c_1Tv_1 + c_2Tv_2 + \dots + c_nTv_n$$

Notably, linear maps send the identity of X to the identity of Y (i.e. T0 = 0)

• The differentiation operator on C[a, b], Df = f', is linear. PROOF: derivative rules from calculus.

3 Normed Spaces

- A norm on a V.S. V generalizes the length of a vector. It satisfies these axioms
 - 1. $||x|| \ge 0$ with $||x|| = 0 \iff x = 0$
 - 2. $\|\alpha x\| = |\alpha| \|x\|$ (norm only depends on direction)
 - 3. $||x+y|| \le ||x|| + ||y||$ (satisfies triangle inequality)

We use the word "norm" to mean both the value ||x|| and the function $x \mapsto ||x||$.

- Normed space \implies metric space
 - Define the metric as d(x,y) = ||x-y||

3.1 Examples

• The L^p -norms on \mathbb{R}^n are defined by

$$||x||_p = \left[\sum_{i=1}^n |x_i|^p\right]^{1/p}$$

- The L^p -norm induces the L^p -metric on \mathbb{R}^n .
- If p=2, this is the usual notion of length/metric on \mathbb{R}^2 .