Física Contemporánea

Guía 4 - 2024

Física Nuclear – Procesos Nucleares

Problema 1. Calcule la actividad de 1g de ²²⁶Ra.

Problema 2. La abundancia actual de los isótopos 235 U y 238 U es 0.72% y 99.27%, respectivamente. Estime la edad de la Tierra, haciendo la suposición de que en el génesis la población relativa de ambos isótopos era la misma.

Problema 3. Considere que un nucleido inestable X_1 decae en el nucleido X_2 con una constante de decaimiento λ_1 . A su vez, el nucleido X_2 , también inestable, decae en el nucleido X_3 con una constante de decaimiento λ_2 . El nucleido X_3 es estable. Sabiendo que inicialmente había N_0 nucleidos del tipo X_1 , encuentre la cantidad de cada uno de ellos en función del tiempo.

Problema 4. Considere que un nucleido X puede decaer de dos formas diferentes, dando lugar a dos nucleidos diferentes X_a y X_b , ambos estables, con constantes de decaimiento λ_a y λ_b , respectivamente. Si inicialmente había N_0 núcleos del tipo X, encuentre el número de nucleidos de cada tipo en función del tiempo.

Problema 5. Un método de producir un nucleido radiactivo consiste en colocar una muestra de una determinada sustancia en el interior de un reactor nuclear. Los nucleidos radiactivos se producen como consecuencia de la captura de un neutrón por los núcleos de la sustancia.

En un reactor nuclear se coloca 59 Co. El nuevo nucleido se produce a razón de g núcleos por segundo. Calcule el número de núcleos radiactivos producido en función del tiempo.

Problema 6. La razón másica entre el radioisótopo $^{14}\mathrm{C}$ y el estable $^{12}\mathrm{C}$ en la materia orgánica es $1,5\times10^{-12}$. Encuentre el número de desintegraciones por segundo en 1 g de materia viva.

En una muestra de 64 g de carbón se observan 2 desintegraciones/s. Determine la edad de la muestra de carbón.

Problema 7. Discutir la estabilidad del ²³²U respecto a la emisión de las siguientes partículas: n, ¹H, ²H, ³H y ⁴He.

Problema 8. Encuentre la energía liberada en el decaimiento α del ²⁴⁷Bk. Calcule la energía cinética y la velocidad de la partícula α y del núcleo residual.

Problema 9. Analice la vida media del ²³²Th respecto al decaimiento α .

Problema 10. Los isóbaros 27 Mg, 27 Al y 27 Si están relacionados a través de procesos de decaimiento β . A partir de los valores de sus masas atómicas determine cuál de ellos es el isóbaro estable. Determine los modos de decaimiento energéticamente posibles para los otros dos isóbaros.

Problema 11. Determine la energía máxima del espectro β^- en el decaimiento del ³H.

Problema 12. Cuando el ¹⁴O se desintegra por emisión β^+ , el núcleo residual ¹⁴N queda, en el 99 % de los casos, en un estado excitado, del cual pasa a su estado fundamental emitiendo radiación γ de 2,30 MeV. La energía máxima medida del espectro β^+ en esta desintegración es de 1,84 MeV. Determine la masa del ¹⁴O.