東大数学理科後期 1990 年度

1 問題1

xy 平面上の 4 点 O(0,0), A(2,0), B(2,2), C(0,2) を頂点とする正方形を Q とする. このとき,次の条件を満たす xy 平面上の点 P の存在する範囲を図示し,その部分の面積を求めよ.

(条件)点 P を通って,Q の面積 4 を 1 と 3 に切り分けるような直線を引くことができない.

2 問題 2

$$A = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$
 とし、 P_0 を xy 平面上の原点とする.

i = 1, ..., 6 に対して,

$$\begin{pmatrix} x_i \\ y_i \end{pmatrix} = A^i \begin{pmatrix} a_i \\ 0 \end{pmatrix}$$

とおいたとき、点 P_i を $\overrightarrow{P_{i-1}P_i}=(x_i,y_i)$ となるように定める。ただし、このとき $P_6=P_0$ となっているものとする。 P_0,P_1,\ldots,P_6 を順に結んで得られる六角形を H とおく。

- (1) $a_1 a_4 = a_5 a_2 = a_3 a_6$ であることを示せ.
- (2) $\sum_{i=1}^6 a_i = 6$, $a_1 a_4 = 1$ とするとき, H の面積の最大値を求めよ.
- (3) $\sum_{i=1}^{6} a_i = 6$ とするとき,H の面積の最大値を求めよ.

3 問題3

長さ 1 の線分をつなげてできる右のような平面上の図形 Q_1,Q_2,Q_3,\ldots を考える. $n=1,2,3,\ldots$ に対し、図形 Q_n の左端の点を A_n 、右端の点を B_n 、上端の点を C_n とする.

 Q_1 は一辺の長さが 1 の正三角形の周である. Q_2 は図のように, Q_1 を 3 つつなげてできる図形である.

 Q_n と同じ図形を 3 つ用意し,それらを $Q_n(1),Q_n(2),Q_n(3)$ とする。i=1,2,3 に対し, $Q_n(i)$ の左端の点を $A_n(i)$,右端の点を $B_n(i)$,上端の点を $C_n(i)$ としたとき, Q_{n+1} は, $B_n(1)=A_n(2)$, $C_n(2)=B_n(3)$, $A_n(3)=C_n(1)$ がそれぞれ同一の点になるようにおいてできる図形である。

 Q_n において、 A_n から線分の上を通り、一度通った点は二度通らずに B_n まで行く行き方を考える。この行き方のうち、途中 C_n を通らない場合の個数を x_n とし、途中 C_n を通る場合の個数を y_n とする。容易にわかるように、 $x_n-y_n=1$ である。

- 1. x_2, y_2 を求めよ.
- 2. x_{n+1} を x_n , y_n を用いて表せ. また, y_{n+1} を x_n , y_n を用いて表せ.
- $3. x_3, y_3$ を求めよ.

