

RTミドルウェア応用実習

宮本 信彦

国立研究開発法人産業技術総合研究所 インダストリアルCPS研究センター ソフトウェアプラットフォーム研究チーム

資料

- 「WEBページ」フォルダのHTMLファイルを開く
 - チュートリアル(RTミドルウェア応用実習、Raspberry Pi Mouse) _ OpenRTM-aist.html
- もしくは以下のリンク
 - https://openrtm.org/openrtm/ja/node/6586

このページではLibreOffice Calc用RTCによるRTCの動作確認手順について説明します。 Calcのセルの値を入力、OutPortの出力した値をセルに表示することで対象RTCの挙動を確認できます。

Ubuntuを使用している場合

- ノートPC(Windows 10)を貸出
- RT System Editor、ネームサーバーを起動する
 - デスクトップのショートカットをダブルクリック

- RT System Editorの起動

- ネームサーバー起動

RTCのテスト

- 開発したRTCの動作確認手順
 - 実機、シミュレータを利用する場合
 - 任意の値を入力するのは難しい
 - 本当に指定の値で停止、走行が切り替わっているか?
 - 意図通りの値が出力されているか?
 - 本当に指定の速度で走行しているか?
 - シミュレータが無い場合は直接実機で動作を確認するため、試行錯誤の手間が増加

表計算ソフトによるデータ入出力

デモ動画

デモ動画

手順

- 第2部で作成したRobotControllerComp.exeを起動する。
 - 貸し出したノートPCの場合は、デスクトップの以下のファイルを実行
 - RobotControler\u00e4build\u00e4src\u00e4RobotControlerComp.exe
- ポータブル版LibreOffice対応RTCの起動
 - USBメモリ内のバッチファイルから起動
- LibreOffice Calc上の操作でポートを接続
 - Calc上のGUIを使用して対象のデータポートを接続
- RT System Editor上の操作でRTCをアクティブ化
 - コンフィギュレーションパラメータを変更したときの挙動を確認
 - インポートへの入力値を変更したときの挙動を確認

ポータブル版LibreOffice対応RTC

- 配布のUSBメモリに以下のソフトウェアを同梱
 - ポータブル版LibreOffice
 - OpenRTM-aist-Python
 - OpenOffice用RTコンポーネント

RTC起動

• LibreOffice操作RTCを起動する

起動に失敗する場合

操作ダイアログ表示

LibreOffice Calcの画面から操作ダイアログ起動ボタンを 押す

ポート一覧表示

・ 操作ダイアログの画面からツリー表示ボタンを押して ネームサーバーに登録したRTCのポートー覧を表示

ポート接続

workspace - - Eclipse SDK

RobotController0のoutを選択

「列を移動させる」のチェックを外す

「**作成**」ボタンを押す (操作ダイアログは右上の罰を押して消す)

14

動作確認(アウトポート)

RobotControllerのアウトポートからデータを出力して みる

動作確認(アウトポート)

LibreOffice Calc上で出力データの確認ができる

動作確認(インポート)

• インポートに指定のデータを入力するとどのような動作となるか

ポート接続

RobotController0のinを選択

「列を移動させる」のチェックを外す

動作確認(インポート)

おわりに

- これで実習は一通り終了です。
- 時間が余った場合は、以下のような課題に挑戦してみてください。 (手順は3部資料で説明)
 - EV3のタッチセンサのオンオフでRaspberry Piマウスを操作
 - ジョイスティックコンポーネントで2台同時に操作
 - EV3を喋らせる
- 実習を終了する際について
 - タッチセンサなどの実習中に取り付けた部品は、取り外して実習前の状態で返却してください
 - Raspberry Piマウス、EV3の電源をオフにして返却してください

真ん中のボタンを1秒以上押す

左上のボタンを(数回)押す

Power Offを選択