

REDES DE DATOS

LAN INALÁMBRICAS

Ingeniero ALEJANDRO ECHAZÚ alejandroechazu@frba.utn.edu.ar

GENERALIDADES

APLICACIONES DE LAN INALÁMBRICAS

1. Ampliación de redes

Empleo de Puntos de Acceso (AP) inalámbricos.

De celda única o multicelda.

2. Inteconexión de edificios

Empleo de radioenlaces punto a punto, que une routers o bridges.

3. Acceso nómade

Permite el acceso a una computadora móvil o portátil.

4. Trabajo en red "ad hoc"

Sin servidor central. Peer to peer.

LAN INALÁMBRICA DE CELDA ÚNICA AMPLIACIÓN DE RED

LAN INALÁMBRICA MULTICELDA AMPLIACIÓN DE RED

INTERCONEXIÓN DE EDIFICIOS

ACCESO NÓMADE DE LAN INALÁMBRICA

(a) Infrastructure Wireless LAN

ACCESO AD HOC "PEER TO PEER"DE LAN INALÁMBRICA

(b) Ad hoc LAN

REOUISITOS LAN INALÁMBRICAS

- Rendimiento
- · Número de Nodos
- Conexión a la LAN troncal
- Área de Servicio
- · Consumo de batería
- Robustez en la transmisión y seguridad
- Funcionamiento de redes adyacentes
- Funcionamiento sin licencia
- Traspaso (Handoff) / Intinerancia (Roaming)
- · Configuración dinámica

<u>TECNOLOGÍAS DE LAN INALÁMBRICAS</u>

• De Infrarroios (IR)

- ·Haz dirigido
- Omnidireccional
- •Difusión (uso de reflector)

Radio por espectro expandido

Dos técnicas: Salto de Frecuencia y Secuencia Directa. Banda 900 MHz, 2,4 GHz y 5,8 GHz

Topología con concentrador o peer to peer

No necesita licencia del ENACOM.

Radio (microondas) de banda estrecha

Se conoce también como radioenlaces.

- •Con licencia del ENACOM (coordinación, sin interferencias, configuración en celdas). Banda 18 GHz.
- •Sin licencia del ENACOM (configuración entre pares, baja potencia). Banda 5,8 GHz.

ESPECTRO ENSANCHADO SPREAD SPECTRUM

HEDY LAMARR (1914/2000) ACTRIZ E INVENTORA DE LA TÉCNICA PATENTE DE SISTEMA DE COMUNICACIONES SECRETO

9 DE NOVIEMBRE DÍA DEL INVENTOR INTERNACIONAL

https://www.dailymotion.com/video/x3arvt

TÉCNICAS DE ESPECTRO ENSANCHADO (SS)

Uso de una secuencia de expansión (pseudoaleatoria o seudoruido) en el tx y rx.

Más inmunidad a distintos ruidos (robustez).

Seguridad en las comunicaciones (baja detectabilidad y capacidad de encripción).

Permite varios usuarios en el mismo ancho de banda, con pocas interferencias.

Estas ventajas compensan la pérdida de eficiencia espectral (Vtx/AB).

Con esta técnica no se requiere licencia para usar el canal radioeléctrico. En Argentina el organismo regulador es el ENACOM (ex-CNC).

Tecnología de multiplexión (CDM) y acceso múltiple (CDMA).

Uso en las tecnologías Wi Fi y Bluetooth.

PROCESO DE ESPECTRO EXPANDIDO

TRANSMISOR

RECEPTOR

SECUENCIA PSEUDOALEATORIA P(T) GENERACIÓN MEDIANTE UN MISMO CÓDIGO EN TX Y RX TIENE PROPIEDADES DE LAS SEÑALES ALEATORIAS PERO NO LO SON

SECUENCIA DIRECTA

SALTO DE FRECUENCIA

Tecnología de radio MIMO

- Múltiples entradas / Múltiples salidas
- Comparación SIMO, MISO y SISO

Tecnologías inalámbricas para transmisión de datos

	Ejemplo	Banda	Vel máx	Técnica
	Norma		Alcance	Met Mod
WPAN	BLUE TOOTH	2,4 GHz	1 Mbps a	FH
	100111		24 Mbps	GFSK
	IEEE 802.15		10 m	
WLAN	WIFI	2,4 GHz	11 Mbps	DS
	Ethernet sin cables	5,8 GHZ	54 Mbps	FH
	IEEE 802.11		50 m	
WMAN o	WI MAX	2,3 a 3,5 GHz	54 Mbps	
WWAN	IEEE 802.16		60 km	
WRAN	IEEE 802.22	Especies	22 Mbps	OFDMA
WKAN	11.11.11.11.11.11.11.11.11.11.11.11.11.	Espacios libres entre 54	23 Mbps 33 km	Sin
		a 862 MHz	pudiendo	licencia.
	(TV)	llegar a 100		
			km	

GRÁFICO RESUMEN TECNOLOGÍAS INALÁMBRICAS

WPAN

 Protocolo de comunicaciones de bajo costo y poco alcance, que depende de la clase/potencia.

Clase	Potencia máxima permitida (mW)	Potencia máxima permitida (dBm_)	Alcance (aproximado)
Clase 1	100 mW	20 dBm	~100 metros
Clase 2	2.5 mW	4 dBm	~5-10 metros
Clase 3	1 mW	0 dBm	~1 metro
Clase 4	0.5 mW	0 dBm	~0.5 metro

- Distintas velocidades de transmisión según la versión.
- Norma IEEE 802.15

Versión	Velocidad de transmisión en Mbps
Versión 1.2	1 Mbit/s
Versión 2.0 + EDR	3 Mbit/s
Versión 3.0 + HS	24 <u>Mbit/s</u>
Versión 4.0	32 <u>Mbit/s</u>
Versión 5	50 Mbit/s ³

• Puede usar 23 o 79 canales para los saltos de frecuencia (FH) según el país.

Area	Banda de frecuencias (GHz)	Canales Bluetooth
USA	2.400-2.483,5	79
Europa	2.400-2.483,5	79
España	2.445-2.475	23
Francia	2.446,5-2.483,5	23
Japón	2.471-2.497	23

- Cantidad de dispositivos limitados (8)
- Automatización de la conexión. Código PIN inicialmente para identificación.
- Ataque por BLUEJACKING (mensaje introduce virus). Si no se usa desactivar la función.

NORMAS DE Wireless LAN

IEEE 802.11 (Wi Fi) https://www.wi-fi.org		
Norma IEEE	Características	Frec Op y Vtx máx
802.11 legacy	DS-SS FH-SS IR	Vtx 1/2 Mbps Fr 2,4 GHz
802.11a	OFDM	Vtx 54 Mbps Fr 5 GHz
802.11b	DS-SS	Vtx 11 Mbps Fr 2,4 GHz
802.11g	OFDM Compatible con b	Vtx 54 Mbps Fr 2,4 GHz
802.11n Wi Fi 4	OFDM Compatible con a y b. Tecno SU MIMO Alcance 70 m (2,4 GHz). Modulación 64 QAM	Vtx 300 / 600 Mbps Fr 2,4 y 5,8 GHz
802.11ac Wi Fi 5	Alcance 30 m. Modulación 256 QAM. Tecnología MU MIMO	Vtx 7 Gbps Fr 5,8 GHz

OFDM Modulación 1024 QAM. Tecno MU

MIMO

802.11ax

Wi Fi 6

Vtx 10 Gbps

Fr 2,4 y 5,8 GHz

NOVEDADES DE WI FI 6

Generation of network connection	Sample user interface visual
Wi-Fi 6	:
Wi-Fi 5	:
Wi-Fi 4	39

https://www.xataka.com/especiales/que-wifi-6-que-va-a-mejorar-tu-red-wifi-casa-cuando-te-conectes-a-publica

- Atiende los requerimientos de IoT (INTERNET de las cosas)
- Mayor capacidad y velocidad de transferencia de datos.
- Mayor eficiencia con alta densidad de usuarios.
- Uso de OFDMA para mejor el empleo con más dispositivos.
- · Mayor duración de las baterías.
- Encripción con protocolo WPA 3.
- Emplea BBS Color que evita interferencias de señales vecinas.

https://www.xataka.com/basics/wifi-6e-6ghz-que-que-ventajas-supone

Modelo de Capas IEEE 802.11

IR (IR en inglés): Infrarrojo

EE-SF (FH-SS en inglés): Salto de Frecuencia

EE-SD (DS-SS en inglés): Secuencia Directa

FUNCIONAMIENTO DE CANALES INALÁMBRICOS

Mínima interferencia co-canal y otras interferencias (dispositivos bluetooth, microondas, parlantes, etc).

Ajuste a los canales óptimos de las bandas de frecuencias Wi Fi

Función autocanal.

Función de escaneo y cambio de canal.

Se comparten las frecuencias de las bandas 2,4 y 5,8 GHz. No requieren licencia.

La de 2,4 GHz es más usada. Tiene 14 canales para Wi Fi.

La de 5,8 GHz se congestiona menos.

WLAN (capa física)

- Ondas radioeléctricas. Área de cobertura. Velocidades de transmisión. Atenuaciones. Obstáculos.
- Instalación adecuada de los AP. Recomendaciones.

ANÁLISIS DE COBERTURA DE LA RED INALÁMBRICA WI FI

1.USANDO APLICACIÓN INFORMÁTICA

Aplicación NETSPOT.

https://www.netspotapp.com/es/features.html

Software para análisis de las áreas de cobertura de redes inalámbricas que permiten un rendimiento óptimo y seguridad.

2. MEDICIONES DE YELOCIDADES CON DISPOSITIVOS MOVILES

Con aplicación para distintos sistemas operativos que hace mediciones y puede evaluarse con cierta aproximación.

http://www.speed-test.es/

https://www.speedtest.net/es

https://wifi-analyzer.uptodown.com/android

CAPA FÍSICA

1º paso con NETSPOT.

https://www.netspotapp.com/es/features.html

2º paso con NETSPOT. Se establece el Mapa de Calor Wi Fi.

Empleo de Wi Fi ANALYZER

SERVICIOS IEEE 802.11

Se distinguen:

- Conjunto servicios (básicos y extendidos)
- ·Sistema de distribución

Algunos Servicios

- · Asociación / reasociación
- Autenticación y fin de la A.
- Privacidad
- Integración
- Distribución de mensajes

SUBCAPA MAC 802.11

ENTREGA FIABLE DE DATOS

Prevee un protocolo de intercambio de tramas.

- Mecanismo de 2 tramas: empleo de ACK y time out.
 Repetición de trama si es necesario.
- Mecanismo de 4 tramas: con esquema previo RTS/CTS que evita colisiones y luego las 2 tramas.

CONTROL DE ACCESO

Dos posibilidades: protocolo de acceso distribuido o de acceso centralizado.

- Función de Coordinación Distribuida (DCF)
 Algoritmo de prevención de contienda para acceso a la totalidad del tráfico. Protocolo CSMA/CA (prevención de colisiones)
- Función de Coordinación Puntual (control centralizado opcional) (PCF)

Algoritmo centralizado para acceso libre de contienda. Asegura acceso a usuarios.

SEGURIDAD

- Autenticación
- Privacidad

IEEE 802.11i

Aplica WPA2 (acceso protegido por encripción)

MECANISMO DE 2 TRAMAS (DCF)

MECANISMO DE 4 TRAMAS (DCF)

PROBLEMAS EN LA COMUNICACIÓN POR RADIO

Figura 4-26. (a) El problema de la terminal oculta. (b) El problema de la terminal expuesta.

Solución al problema de la estación oculta

Arquitectura IEEE 802.11

SEGURIDAD EN WI FI

- WPS (WiFi Protected Setup) son mecanismos para facilitar la conexión de dispositivos a una red inalámbrica. El más usado es el intercambio de PIN.
- WEP (Wired Equivalent Privacy) ofrece seguridad similar a la red cableada mediante una encriptación.
- WPA (Wi-Fi Protected Access) agrega seguridad mediante el uso de claves dinámicas proporcionadas a cada usuario.
- WPA2 usa algoritmo de encriptación AES (Advanced Encryption Standard).
- WPA2 PSK (Pre-Shared Key) es para uso doméstico o de oficinas pequeñas donde se comparte la clave.
- Otros recursos de seguridad:
 - nombre de la red (SSID)
 - filtrado de direcciones MAC

Formato de trama MAC 802.11

- FC = Frame control
- D/I = Duration/Connection ID SC = Sequence control

FC (control de trama): indica el tipo de trama (control, gestión o datos)

D/I (duración/conexión): indica tiempo de reserva del canal para una tx satisfactoria o identificación de una conexión.

ADDRESS (direcciones): depende del contexto. Fuente, destino, estación tx y estación rx.

SC (control de secuencia): fragmentación, reensamblado y nº de tramas enviadas.

Tipos de Tramas

- •Control (sondeo de ahorro de energía, RTS, CTS, ACK, fin período libre contienda CF, CF-ACK)
- •Datos (Datos, +ACK-CF,+CF-POLL, etc)
- •Gestión (entre estaciones y puntos de acceso, gestión de asociaciones)

TECNOLOGÍAS INCORPORADAS EN WI FI 5

BEAMFORMING

Es una tecnología que permite a un AP enfocar la señal hacia los destinos de interés.

MU MIMO

EQUIPOS WLAN

Puede agrupar las capacidades de:

- Gateway
- Router
- Cable módem o módem X-DSL
- Access Point
- Switch
- Firewall
- Doble banda

ALGUNAS SOLUCIONES - PROBLEMAS

D LINK – WIRELESS N NANO 300 – USB ADAPTER

http://us.dlink.com/products/connect/wire less-n-nano-usb-adapter/

TP LINK - TL WN8200ND - HIGH POWER WIRELESS - 300 MBPS - USB ADAPTER

http://www.tplink.com/en/products/details/cat-11_TL-WN8200ND.html#specifications

CONFIGUREMOS AP WI FI TP LINK 300 M TL WA 801N

IP 192.168.0.254 Usuario: admin

Contraseña: admin

AP VDSLARNET IP 192.168.1.1 Ver etiqueta del módem

Backhaul es la porción de la red que comprende los enlaces intermedios entre el núcleo y el borde.

Wi Max

https://youtu.be/UevGUFrgSaM

Transmisión de datos sin contienda a diferencia de Wi Fi.

Problema de interoperabilidad. Intervención del Wi Max FORUM.

Eficiencia espectral de 3,7 bps / 1 Hz

PROTOCOLOS DE Wireless MAN

Protocolo IEEE	Características	Frec Op y Vtx
802.16	Con visión directa	Fr 10/66GHz
Wi Max	Fijo	Vtx 32 – 134
	Radio celda 2 a 5 km	Mbps
802.16 a	Sin visión directa	Fr <11 GHz
	Fijo	Vtx 75 Mbps
	Radio celda 5 a 10 km	
802.16 e	Terminales en	Fr < 6 GHz
	movimiento	Vtx 15 Mbps
	Sin visión directa	
	Móvil	
	Radio celda 2 a 5 km	
802.16 m	Podría llegar a 50 km	
Wi Max 2	Móvil	Vtx 300 Mbps

Es una tecnología para comunicaciones punto a multipunto en banda ancha. Combinación tecno.