Counting Categorical Variables (Solution)

This document includes the question, the solution, and a breakdown of the code provided in the screenshot.

Uploaded Screenshot

Below is the screenshot of the task:

Question

- 1. Count the number of stores of each store 'type' in 'store types'.
- 2. Count the proportion of stores of each store 'type' in 'store types'.
- 3. Count the number of stores of each `department` in `store_depts`, sorting the counts in descending order.
- 4. Count the proportion of stores of each `department` in `store_depts`, sorting the proportions in descending order.

Answer

Count the number of stores of each store type
store_counts = store_types['type'].value_counts()
print(store counts)

Count the proportion of stores of each store type
store_props = store_types['type'].value_counts(normalize=True)
print(store_props)

- # Count the number of stores of each department and sort
 dept_counts_sorted = store_depts['department'].value_counts(sort=True)
 print(dept_counts_sorted)
- # Count the proportion of stores in each department and sort
 dept_props_sorted = store_depts['department'].value_counts(sort=True,
 normalize=True)
 print(dept props sorted)

Code Explanation

- 1. `store_types['type'].value_counts()`: Counts the occurrences of each store type in the `type` column of the `store types` DataFrame.
- 2. `value_counts(normalize=True)`: Calculates the proportion (percentage) of each store type instead of absolute counts.
- 3. `store_depts['department'].value_counts(sort=True)`: Counts occurrences of each department in the `department` column of the `store_depts` DataFrame, sorting by count.
- 4. `value_counts(sort=True, normalize=True)`: Combines sorting with the calculation of proportions for each department.