Open Optical Networks - The Spectral Information

Exercise 0

Install GNPy

- Download or clone GNPy https://github.com/Telecominfraproject/ oopt-gnpy
- 2. Open the Terminal of PyCharm
- 3. Navigate to the GNPy folder 'oopt-gnpy'
- 4. Install GNPy running the commant python setup.py install

Exercise 1

Create the spectral information

- 1. Create a json file with the following parameters (in fundamental units, Hz, Baud, W):
 - "f_min" = 191.5 THz,
 - "f_max" = 194.5 THz,
 - "roll_off" = 0.2.
 - "baud_rate" = 32 GBaud,
 - "power" = 1 mW,
 - "spacing" = 50 GHz
- 2. Import the json file. Hint: use the python library 'json'.
- 3. Generate a spectral information.

Hint 1: use the function create_input_spectral_information available in the GNPy library. You can find create_input_spectral_information in gnpy.core.info.

Hint 2: This function requires, as input the following parameters: f_min, f_max, roll_off, baud_rate, power, spacing. You can also use the python function help to see the arguments of a function.

1 Exercise 2

Plot the spectral information

• Use matplotlib to produce a plot containing the signal power of the spectral information previously described as follows:

- it has to be a dotted line. If a reference is needed see https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.plot.html,
- the x axis must be the frequency axis in THz units,
- the y axis must contain the signal power of all the channels of the WDM comb. The power has to be reported in dBm units.
- use axis labels and report the unit of measurement used

2 Exercise 3

Create and plot a spectral information representing a comb of $120~\rm WDM$ channels. Each channel has a -3 dB bandwidth of $32~\rm Gbaud$, a roll-off of $0.2~\rm and$ a power equal to $0~\rm dBm$. This comb is centered around $193~\rm THz$ and the spacing is $45~\rm GHz$.

Hint: Remember that, for root raised cosine signals, the - 3 dB bandwidth coincide with the symbol rate of the signal.