DOCKET NO.: ISIS-1158

Application No.: 08/319.411

Office Action Dated: October 1, 2003

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (previously presented) A peptide nucleic acid conjugate comprising:

a backbone formed of amino alkyl amino acid monomeric units linked through amide bonds:

said backbone having an amino end, a carboxyl end, a plurality of said amino alkyl amino acid monomeric units, and a conjugate bound directly or through a linking moiety to at least one of said amino end or said carboxyl end;

each of said amino alkyl amino acid monomeric units having a tethered nucleobase; and

said conjugate being a terpene, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, or a porphyrin.

2-4 (canceled)

5. (previously presented) A peptide nucleic acid conjugate comprising:

a backbone formed of amino alkyl amino acid monomeric units linked through amide bonds;

said backbone having an amino end, a carboxyl end, a plurality of said amino alkyl amino acid monomeric units,

each of said amino alkyl amino acid monomeric units having a tethered nucleobase; and a conjugate bound to one of said nucleobases or its said tether either directly or through a linking moiety, wherein said conjugate is a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal

DOCKET NO.: ISIS-1158

Application No.: 08/319.411

Office Action Dated: October 1, 2003

chelator, a porphyrin, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers.

PATENT

- 6-7 (canceled)
- 8. (previously presented) A peptide nucleic acid conjugate of claim 53 wherein said conjugate includes a linking moiety.
- 9. (previously presented) A peptide nucleic acid conjugate of claim 53 wherein at least one group R¹² is a conjugate.
- 10. (previously presented) A peptide nucleic acid conjugate of claim 53 wherein at least one of L and L_m is $R^{12}(R^{13})_1$ is a conjugate.
- 11. (canceled)
- 12. (previously presented) A peptide nucleic acid conjugate of claim 54 wherein at least one of said A-A_m groups include at least one of R¹, R², and R³.
- 13. (previously presented) A peptide nucleic acid conjugate of claim 54 wherein at least one of B-B_m groups or said G-G_m groups include at least one group R³.
- 14. (canceled)
- 15. (previously presented) A peptide nucleic acid conjugate of claim 53 wherein at least one of said groups Q or I include at least one of groups R⁸, R⁹, R¹⁰, and R¹¹.
- 16-19 (canceled)
- 20. (previously presented) A peptide nucleic acid conjugate of claim 53 wherein m is from 1 to about 20.

Office Action Dated: October 1, 2003

21-22 (canceled)

23. (previously presented) A peptide nucleic acid conjugate of claim 62 wherein R¹² is a conjugate.

- 24. (previously presented) A peptide nucleic acid conjugate of claim 62 wherein a is 1.
- 25-29 (canceled)
- 30. (previously presented) A peptide nucleic acid conjugate oligomer comprising a plurality of covalently linked PNA monomers wherein at least one of said PNA monomers has the formula:

or the formula

$$CH_2$$
)_I
 CH_2)_I

or the formula

Office Action Dated: October 1, 2003

wherein:

L is R¹²(R¹³)_a; wherein:

 R^{12} is hydrogen, hydroxy, (C_1 - C_4)alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate and at least one of R^{12} is a naturally occurring nucleobase, a non-naturally occurring nucleobase, or a nucleobase-binding group;

 R^{13} , if present, is a conjugate; provided at least one R^{12} and R^{13} is a conjugate; and a is 0 or 1; K is $(CR^6R^7)_7$;

J is (CR⁶R⁷)_y; wherein:

 R^6 and R^7 are independently hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2 - C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1 - C_6) alkoxy, (C_1 - C_6) alkylthio, a conjugate, NR^3R^4 and SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino;

 R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio- substituted (C_1-C_6) alkyl;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

l is an integer from 1 to 5; and

Office Action Dated: October 1, 2003

PATENT

at least one of L and R³ comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers;

wherein said conjugate optionally includes a linking moiety.

- 31. (original) A peptide nucleic acid conjugate of claim 30 wherein said conjugate includes a linking moiety.
- 32. (previously presented) A peptide nucleic acid conjugate of claim 30 wherein a is 1.
- 33-46 (canceled)
- 47. (previously presented) A peptide nucleic acid conjugate oligomer comprising a plurality of covalently linked PNA monomers wherein at least one of said PNA monomers has the formula:

$$H_2N$$
 K
 N
 J
 OH

or the formula

Office Action Dated: October 1, 2003

$$CH_2$$
)₁
 CH_2)₂
 CH_2)₁
 CH_2)₂
 CH_2)₂
 CH_2)₃
 CH_2 0

or the formula

wherein:

L is $R^{12}(R^{13})_a$; wherein:

 R^{12} is hydrogen, hydroxy, (C₁-C₄)alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate and at least one of R^{12} is a naturally occurring nucleobase, a non-naturally occurring nucleobase, or a nucleobase-binding group;

R¹³, if present, is a conjugate; and a is 0 or 1;

K is $(CR^6R^7)_z$;

J is $(CR^6R^7)_y$; wherein:

 R^6 and R^7 are independently hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2 - C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1 - C_6) alkoxy, (C_1 - C_6) alkylthio, a conjugate, NR^3R^4 and SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino;

DOCKET NO.: ISIS-1158 **Application No.:** 08/319.411

Office Action Dated: October 1, 2003

 R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthiosubstituted (C_1-C_6) alkyl;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

l is an integer from 1 to 5; and

at least one of L and R³ comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers;

wherein said conjugate optionally includes a linking moiety; and wherein at least one of R^3 , R^4 , R^5 , R^6 , and R^7 is a conjugate.

48. (previously presented) A peptide nucleic acid conjugate oligomer comprising a plurality of covalently linked PNA monomers wherein at least one of said PNA monomers has the formula:

or the formula

DOCKET NO.: ISIS-1158 **Application No.:** 08/319.411

Office Action Dated: October 1, 2003

or the formula

wherein:

L is $R^{12}(R^{13})_a$; wherein:

 R^{12} is hydrogen, hydroxy, (C_1 - C_4)alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate and at least one of R^{12} is a naturally occurring nucleobase, a non-naturally occurring nucleobase, or a nucleobase-binding group;

R¹³, if present, is a conjugate; and a is 0 or 1;

K is $(CR^6R^7)_z$;

J is (CR⁶R⁷)_y; wherein:

 R^6 and R^7 are independently hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2 - C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1 - C_6) alkoxy, (C_1 - C_6) alkylthio, a conjugate, NR^3R^4 and SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino;

 $R^{5} \ is \ hydrogen, \ a \ conjugate, \ (C_{1}\text{-}C_{6}) alkyl, \ hydroxy-, \ alkoxy-, \ or \ alkylthiosubstituted \ (C_{1}\text{-}C_{6}) alkyl;$

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

I is an integer from 1 to 5; and

Office Action Dated: October 1, 2003

PATENT Application No.: 08/319.411

at least one of L and R³ comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers;

wherein said conjugate optionally includes a linking moiety; and wherein at least one of said group K or said group J includes a conjugate.

(previously presented) A peptide nucleic acid conjugate oligomer comprising a 49. plurality of covalently linked PNA monomers wherein at least one of said PNA monomers has the formula:

$$H_2N$$
 K
 N
 J
 OH

or the formula

or the formula

Office Action Dated: October 1, 2003

wherein:

L is $R^{12}(R^{13})_a$; wherein:

R¹² is hydrogen, hydroxy, (C₁-C₄)alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate and at least one of R¹² is a naturally occurring nucleobase, a non-naturally occurring nucleobase, or a nucleobase-binding group;

R¹³, if present, is a conjugate; and a is 0 or 1;

K is $(CR^6R^7)_z$;

J is $(CR^6R^7)_y$; wherein:

 R^6 and R^7 are independently hydrogen, a side chain of a naturally occurring alpha amino acid, (C₂-C₆) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C₁-C₆) alkoxy, (C₁-C₆) alkylthio, a conjugate, NR^3R^4 and SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino;

 R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthiosubstituted (C_1-C_6) alkyl;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

l is an integer from 1 to 5; and

at least one of L and R³ comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a

DOCKET NO.: ISIS-1158 **Application No.:** 08/319.411

Office Action Dated: October 1, 2003

cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers;

wherein said conjugate optionally includes a linking moiety; and wherein said group R^3 is a conjugate.

- 50 (canceled)
- 51. (previously presented) A peptide nucleic acid conjugate of claim 53 wherein one of Q or I comprises a conjugate, wherein said conjugate is polylysine.
- 52. (previously presented) A peptide nucleic acid conjugate of claim 53 wherein one of A, A_m , L or L_m comprises a conjugate, wherein said conjugate is polylysine.
- 53. (previously presented) A peptide nucleic acid conjugate of the formula:

$$Q = \begin{bmatrix} L_{m} & L_{m}$$

wherein:

m is an integer from 1 to about 50;

L and L_m independently are $R^{12}(R^{13})_a$ wherein:

DOCKET NO.: ISIS-1158 **Application No.:** 08/319.411

Office Action Dated: October 1, 2003

R¹² is hydrogen, hydroxy, (C₁-C₄)alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate;

provided that at least one of R¹² is a naturally occurring nucleobase, a non-naturally occurring nucleobase, or a nucleobase-binding group;

 R^{13} , if present, is a conjugate; provided at least one R^{12} and R^{13} is a conjugate; and

a is 0 or 1;

C and C_m independently are (CR⁶R⁷)_v; wherein:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2 - C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1 - C_6) alkoxy, (C_1 - C_6) alkylthio, a conjugate, NR^3R^4 , SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

wherein R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthiosubstituted (C_1-C_6) alkyl; and

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino;

D and D_m independently are $(CR^6R^7)_z$;

each of y and z is zero or an integer from 1 to 10, wherein the sum y + z is greater than 2 but not more than 10;

 G_m is independently -NR³CO-, -NR³CS-, -NR³SO-, or -NR³SO₂- in either orientation;

each pair of A-A_m and B-B_m are selected such that:

- (a) A or A_m is a group of formula (IIa), (IIb) or (IIc) and B or B_m is N or R^3N+ ; or
- (b) A or A_m is a group of formula (IId) and B or B_m is CH;

DOCKET NO.: ISIS-1158

Application No.: 08/319.411

Office Action Dated: October 1, 2003

$$\begin{bmatrix}
R^{1} \\
C \\
R^{2}
\end{bmatrix} p
\begin{bmatrix}
R^{1} \\
C \\
R^{2}
\end{bmatrix} q$$

$$\begin{bmatrix}
R^{1} \\
C \\
R^{2}
\end{bmatrix} r
\begin{bmatrix}
R^{1} \\
C \\
R^{2}
\end{bmatrix} s$$
IIIa
IIIb

PATENT

where:

X is O, S, Se, NR^3 , CH_2 or $C(CH_3)_2$;

Y is a single bond, O, S or NR⁴;

each of p and q is zero or an integer from 1 to 5;

each of r and s is zero or an integer from 1 to 5;

 R^1 and R^2 independently are hydrogen, (C_1-C_4) alkyl, hydroxy-substituted (C_1-C_4) alkyl, alkoxy-substituted (C_1-C_4) alkyl, alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio, amino, halogen or a conjugate;

I is $-NR^8R^9$ or $-NR^{10}C(O)R^{11}$; wherein:

R⁸, R⁹, R¹⁰ and R¹¹ independently are hydrogen, alkyl, an amino protecting group, a reporter ligand, an intercalator, a chelator, a peptide, a protein, a carbohydrate, a lipid, a steroid, a nucleoside, a nucleotide, a nucleotide diphosphate, a nucleotide triphosphate, an oligonucleotide, an oligonucleoside, a soluble polymer, a non-soluble polymer or a conjugate;

Q is $-CO_2H$, $-CO_2R^8$, $-CO_2R^9$, $-CONR^8R^9$, $-SO_3H$, $-SO_2NR^{10}R^{11}$ or an activated derivative of $-CO_2H$ or $-SO_3H$; and

wherein:

Office Action Dated: October 1, 2003

at least one of Q and I comprises a conjugate selected from a terpene, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, a porphyrin, or an alkylator; or

at least one of A, A_m, L, and L_m comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers;

wherein said conjugate optionally includes a linking moiety.

54. (previously presented) A peptide nucleic acid conjugate of the formula:

wherein:

m is an integer from 1 to about 50;

L and L_m independently are $R^{12}(R^{13})_a$ wherein:

R¹² is hydrogen, hydroxy, (C₁-C₄)alkanoyl, a naturally occurring nucleobase, a nonnaturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobasebinding group, a heterocyclic moiety, a reporter ligand, or a conjugate;

provided that at least one of R¹² is a naturally occurring nucleobase, a non-naturally occurring nucleobase, or a nucleobase-binding group;

R¹³, if present, is a conjugate; and

a is 0 or 1;

C and C_m independently are $(CR^6R^7)_y$; wherein:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2 - C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1 - C_6) alkoxy, (C_1 - C_6)

Office Action Dated: October 1, 2003

alkylthio, a conjugate, NR³R⁴, SR⁵ or R⁶ and R⁷ taken together complete an alicyclic or heterocyclic system;

wherein R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthiosubstituted (C_1-C_6) alkyl; and

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino;

D and D_m independently are $(CR^6R^7)_z$;

each of y and z is zero or an integer from 1 to 10, wherein the sum y + z is greater than 2 but not more than 10;

G_m is independently -NR³CO-, -NR³CS-, -NR³SO-, or -NR³SO₂- in either orientation;

each pair of A-A_m and B-B_m are selected such that:

- (a) A or A_m is a group of formula (IIa), (IIb) or (IIc) and B or B_m is N or R^3N^+ ; or
- (b) A or A_m is a group of formula (IId) and B or B_m is CH;

wherein:

X is O, S, Se, NR^3 , CH_2 or $C(CH_3)_2$;

Y is a single bond, O, S or NR⁴;

each of p and q is zero or an integer from 1 to 5;

DOCKET NO.: ISIS-1158 **Application No.:** 08/319.411

Office Action Dated: October 1, 2003

each of r and s is zero or an integer from 1 to 5;

 R^1 and R^2 independently are hydrogen, (C_1-C_4) alkyl, hydroxy-substituted (C_1-C_4) alkyl, alkoxy-substituted (C_1-C_4) alkyl, alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio, amino, halogen or a conjugate;

I is $-NR^8R^9$ or $-NR^{10}C(O)R^{11}$; wherein:

R⁸, R⁹, R¹⁰ and R¹¹ independently are hydrogen, alkyl, an amino protecting group, a reporter ligand, an intercalator, a chelator, a peptide, a protein, a carbohydrate, a lipid, a steroid, a nucleoside, a nucleotide, a nucleotide diphosphate, a nucleotide triphosphate, an oligonucleoside, a soluble polymer, a non-soluble polymer or a conjugate;

Q is -CO₂H, -CO₂R⁸, -CO₂R⁹, -CONR⁸R⁹, -SO₃H, -SO₂NR¹⁰R¹¹ or an activated derivative of -CO₂H or -SO₃H; and

wherein:

at least one of Q and I comprises a conjugate selected from a terpene, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, a porphyrin, or an alkylator; or

at least one of A, A_m, L, and L_m comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers;

wherein said conjugate optionally includes a linking moiety; and wherein at least one of \mathbb{R}^1 , \mathbb{R}^2 or \mathbb{R}^3 is a conjugate.

Office Action Dated: October 1, 2003

55. (previously presented) A peptide nucleic acid conjugate of the formula:

wherein:

m is an integer from 1 to about 50;

L and L_m independently are $R^{12}(R^{13})_a$ wherein:

 R^{12} is hydrogen, hydroxy, (C_1-C_4) alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate;

provided that at least one of R¹² is a naturally occurring nucleobase, a non-naturally occurring nucleobase, or a nucleobase-binding group;

R¹³, if present, is a conjugate; and

a is 0 or 1;

C and C_m independently are $(CR^6R^7)_y$; wherein:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2 - C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1 - C_6) alkoxy, (C_1 - C_6) alkylthio, a conjugate, NR^3R^4 , SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

wherein R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthiosubstituted (C_1-C_6) alkyl; and

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino;

D and D_m independently are $(CR^6R^7)_z$;

Office Action Dated: October 1, 2003

each of y and z is zero or an integer from 1 to 10, wherein the sum y + z is greater than 2 but not more than 10;

 G_m is independently -NR³CO-, -NR³CS-, -NR³SO-, or -NR³SO₂- in either orientation;

each pair of A-A_m and B-B_m are selected such that:

- (a) A or A_m is a group of formula (IIa), (IIb) or (IIc) and B or B_m is N or R^3N^+ ; or
- (b) A or A_m is a group of formula (IId) and B or B_m is CH;

wherein:

X is O, S, Se, NR^3 , CH_2 or $C(CH_3)_2$;

Y is a single bond, O, S or NR⁴;

each of p and q is zero or an integer from 1 to 5;

each of r and s is zero or an integer from 1 to 5;

 R^1 and R^2 independently are hydrogen, (C_1-C_4) alkyl, hydroxy-substituted (C_1-C_4) alkyl, alkoxy-substituted (C_1-C_4) alkyl, alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkylthio, amino, halogen or a conjugate;

I is -NR⁸R⁹ or -NR¹⁰C(O)R¹¹; wherein:

R⁸, R⁹, R¹⁰ and R¹¹ independently are hydrogen, alkyl, an amino protecting group, a reporter ligand, an intercalator, a chelator, a peptide, a protein, a carbohydrate, a lipid, a steroid, a nucleoside, a nucleotide, a nucleotide diphosphate, a nucleotide triphosphate, an oligonucleotide, an oligonucleoside, a soluble polymer, a non-soluble polymer or a conjugate;

Office Action Dated: October 1, 2003

Q is $-CO_2H$, $-CO_2R^8$, $-CO_2R^9$, $-CONR^8R^9$, $-SO_3H$, $-SO_2NR^{10}R^{11}$ or an activated derivative of $-CO_2H$ or $-SO_3H$; and

wherein:

at least one of Q and I comprises a conjugate selected from a terpene, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, a porphyrin, or an alkylator; or

at least one of A, A_m, L, and L_m comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers;

wherein said conjugate optionally includes a linking moiety; and wherein at least one of R⁸, R⁹, R¹⁰ and R¹¹ is a conjugate.

56. (previously presented) A peptide nucleic acid conjugate of the formula:

wherein:

m is an integer from 1 to about 50;

L and L_m independently are $R^{12}(R^{13})_a$ wherein:

 R^{12} is hydrogen, hydroxy, (C_1 - C_4)alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate;

Office Action Dated: October 1, 2003

PATENT

provided that at least one of R¹² is a naturally occurring nucleobase, a nonnaturally occurring nucleobase, or a nucleobase-binding group;

R¹³, if present, is a conjugate; and a is 0 or 1;

C and C_m independently are $(CR^6R^7)_y$; wherein:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C₂-C₆) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C₁-C₆) alkoxy, (C₁-C₆) alkylthio, a conjugate, NR^3R^4 , SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

wherein R^5 is-hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio- substituted (C_1-C_6) alkyl; and

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino;

D and D_m independently are $(CR^6R^7)_z$;

each of y and z is zero or an integer from 1 to 10, wherein the sum y + z is greater than 2 but not more than 10;

 G_m is independently -NR³CO-, -NR³CS-, -NR³SO-, or -NR³SO₂- in either orientation;

each pair of A-A_m and B-B_m are selected such that:

- (a) A or A_m is a group of formula (IIa), (IIb) or (IIc) and B or B_m is N or R³N⁺; or
- (b) A or A_m is a group of formula (IId) and B or B_m is CH;

Office Action Dated: October 1, 2003

wherein:

X is O, S, Se, NR^3 , CH_2 or $C(CH_3)_2$;

Y is a single bond, O, S or NR⁴;

each of p and q is zero or an integer from 1 to 5;

each-of r and s is zero or an integer from 1 to 5;

 R^1 and R^2 independently are hydrogen, (C_1-C_4) alkyl, hydroxy-substituted (C_1-C_4) alkyl, alkoxy-substituted (C_1-C_4) alkyl, alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio, amino, halogen or a conjugate;

I is $-NR^8R^9$ or $-NR^{10}C(O)R^{11}$; wherein:

R⁸, R⁹, R¹⁰ and R¹¹ independently are hydrogen, alkyl, an amino protecting group, a reporter ligand, an intercalator, a chelator, a peptide, a protein, a carbohydrate, a lipid, a steroid, a nucleoside, a nucleotide, a nucleotide diphosphate, a nucleotide triphosphate, an oligonucleotide, an oligonucleoside, a soluble polymer, a non-soluble polymer or a conjugate; Q is -CO₂H, -CO₂R⁸, -CO₂R⁹, -CONR⁸R⁹, -SO₃H, -SO₂NR¹⁰R¹¹ or an activated derivative of -CO₂H or -SO₃H; and

wherein:

at least one of Q and I comprises a conjugate selected from a terpene, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, a porphyrin, or an alkylator; or

at least one of A, A_m, L, and L_m comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers;

wherein said conjugate optionally includes a linking moiety; and wherein at least one of R³ R⁴, R⁵, R⁶ and R⁷ is a conjugate.

Office Action Dated: October 1, 2003

57. (previously presented) A peptide nucleic acid conjugate comprising a plurality of monomers of formula:

wherein:

L is $R^{12}(R^{13})_a$; wherein:

 R^{12} is hydrogen, hydroxy, (C₁-C₄)alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate and at least one of R^{12} is a naturally occurring nucleobase, a non-naturally occurring nucleobase, or a nucleobase-binding group;

PATENT

R¹³, if present, is a conjugate; and a is 0 or 1;

A and B are selected such that:

- (a) A is a group of formula (IIa), (IIb) or (IIc) and B is N or R³N⁺; or
- (b) A is a group of formula (IId) and B is CH;

$$\begin{array}{c|c}
 & & & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
 & & & & & & & \\
\hline
 & & & & & & \\
 & & & & & & \\
\hline
 & & & & & & \\
 & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & &$$

Office Action Dated: October 1, 2003

where:

X is O, S, Se, NR^3 , CH_2 or $C(CH_3)_2$;

Y is a single bond, O, S or NR⁴;

p and q independently are zero or an integer from 1 to 5;

r and s independently are zero or an integer from 1 to 5;

 R^1 and R^2 independently are hydrogen, (C_1-C_4) alkyl, hydroxy-substituted (C_1-C_4) alkyl, alkoxy-substituted (C_1-C_4) alkyl, alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkylthio, amino, halogen or a conjugate;

C is $(CR^6R^7)_y$;

D is (CR⁶R⁷)_z; wherein:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C₂-C₆) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C₁-C₆) alkoxy, (C₁-C₆) alkylthio, a conjugate, NR^3R^4 and SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino; and

 R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthiosubstituted (C_1-C_6) alkyl;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

E independently is COOH, CSOH, SOOH, SO₂OH or an activated or protected derivative thereof;

F independently is NHR³ or NPgR³, where Pg is an amino protecting group; or F comprises a conjugate selected from a terpene, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, a porphyrin, or an alkylator; or

Office Action Dated: October 1, 2003

at least one of A and L comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers; and

wherein said conjugate optionally includes a linking moiety; and wherein at least one group R^3 is a conjugate.

58. (previously presented) A peptide nucleic acid conjugate comprising a plurality of monomers of formula:

wherein:

L is $R^{12}(R^{13})_a$; wherein:

R¹² is hydrogen, hydroxy, (C₁-C₄)alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate and at least one of R¹² is a naturally occurring nucleobase, a non-naturally occurring nucleobase, or a nucleobase-binding group;

R¹³, if present, is a conjugate; and a is 0 or 1;

Office Action Dated: October 1, 2003

A and B are selected such that:

- (a) A is a group of formula (IIa), (IIb) or (IIc) and B is N or R³N⁺; or
- (b) A is a group of formula (IId) and B is CH;

where:

X is O, S, Se, NR³, CH₂ or C(CH₃)₂;

Y is a single bond, O, S or NR⁴;

 \boldsymbol{p} and \boldsymbol{q} independently are zero or an integer from 1 to 5;

r and s independently are zero or an integer from 1 to 5;

 R^1 and R^2 independently are hydrogen, (C_1-C_4) alkyl, hydroxy-substituted (C_1-C_4) alkyl, alkoxy-substituted (C_1-C_4) alkyl, alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkylthio, amino, halogen or a conjugate;

C is $(CR^6R^7)_y$;

D is (CR⁶R⁷)₂; wherein:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2 - C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1 - C_6) alkoxy, (C_1 - C_6) alkylthio, a conjugate, NR^3R^4 and SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

DOCKET NO.: ISIS-1158 **Application No.:** 08/319.411

Office Action Dated: October 1, 2003

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino; and

 R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio- substituted (C_1-C_6) alkyl;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

E independently is COOH, CSOH, SOOH, SO₂OH or an activated or protected derivative thereof;

F independently is NHR³ or NPgR³, where Pg is an amino protecting group; or F comprises a conjugate selected from a terpene, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, a porphyrin, or an alkylator; or

at least one of A and L comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers; and

wherein said conjugate optionally includes a linking moiety; and wherein at least one of said groups A or said groups B include a conjugate.

59. (previously presented) A peptide nucleic acid conjugate comprising a plurality of monomers of formula:

wherein:

Office Action Dated: October 1, 2003

L is $R^{12}(R^{13})_a$; wherein:

 R^{12} is hydrogen, hydroxy, (C₁-C₄)alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate and at least one of R^{12} is a naturally occurring nucleobase, a non-naturally occurring nucleobase, or a nucleobase-binding group;

R¹³, if present, is a conjugate; and a is 0 or 1;

A and B are selected such that:

- (a) A is a group of formula (IIa), (IIb) or (IIc) and B is N or R³N⁺; or
- (b) A is a group of formula (IId) and B is CH;

$$\begin{array}{c}
\begin{bmatrix}
R^{1} \\
C
\end{bmatrix} \\
\downarrow \\
R^{2}
\end{bmatrix} p$$

$$\begin{array}{c}
R^{1} \\
\downarrow \\
R^{2}
\end{bmatrix} q$$

$$\begin{array}{c}
R^{1} \\
\downarrow \\
R^{2}
\end{bmatrix} r$$

$$\begin{array}{c}
R^{3} \\
\downarrow \\
R^{2}
\end{matrix} r$$

where:

X is O, S, Se, NR^3 , CH_2 or $C(CH_3)_2$;

Y is a single bond, O, S or NR⁴;

p and q independently are zero or an integer from 1 to 5;

r and s independently are zero or an integer from 1 to 5;

Office Action Dated: October 1, 2003

 R^1 and R^2 independently are hydrogen, (C_1-C_4) alkyl, hydroxy-substituted (C_1-C_4) alkyl, alkoxy-substituted (C_1-C_4) alkyl, alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkylthio, amino, halogen or a conjugate;

C is $(CR^6R^7)_y$;

D is (CR⁶R⁷)_z; wherein:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2 - C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1 - C_6) alkoxy, (C_1 - C_6) alkylthio, a conjugate, NR^3R^4 and SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, $(C_1\text{-}C_4)$ alkyl, hydroxy- or alkoxy- or alkylthio-substituted $(C_1\text{-}C_4)$ alkyl, hydroxy, alkoxy, alkylthio or amino; and

 R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio- substituted (C_1-C_6) alkyl;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

E independently is COOH, CSOH, SOOH, SO₂OH or an activated or protected derivative thereof;

F independently is NHR³ or NPgR³, where Pg is an amino protecting group; or F comprises a conjugate selected from a terpene, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, a porphyrin, or an alkylator; or

at least one of A and L comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers; and

wherein said conjugate optionally includes a linking moiety; and wherein at least one of group R^1 or group R^2 is a conjugate.

60. (previously presented) A peptide nucleic acid conjugate comprising a plurality of monomers of formula:

Office Action Dated: October 1, 2003

PATENT

wherein:

L is R¹²(R¹³)_a; wherein:

 R^{12} is hydrogen, hydroxy, (C₁-C₄)alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate and at least one of R^{12} is a naturally occurring nucleobase, a non-naturally occurring nucleobase, or a nucleobase-binding group;

R¹³, if present, is a conjugate; and a is 0 or 1;

A and B are selected such that:

- (a) A is a group of formula (IIa), (IIb) or (IIc) and B is N or R³N⁺; or
- (b) A is a group of formula (IId) and B is CH;

Office Action Dated: October 1, 2003

where:

X is O, S, Se, NR^3 , CH_2 or $C(CH_3)_2$;

Y is a single bond, O, S or NR⁴;

p and q independently are zero or an integer from 1 to 5;

r and s independently are zero or an integer from 1 to 5;

 R^1 and R^2 independently are hydrogen, (C_1-C_4) alkyl, hydroxy-substituted (C_1-C_4) alkyl, alkoxy-substituted (C_1-C_4) alkyl, alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkylthio, amino, halogen or a conjugate;

- C is $(CR^6R^7)_v$;

D is (CR⁶R⁷)_z; wherein:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C_2-C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, a conjugate, NR^3R^4 and SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino; and

 R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthio- substituted (C_1-C_6) alkyl;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

E independently is COOH, CSOH, SOOH, SO₂OH or an activated or protected derivative thereof;

F independently is NHR³ or NPgR³, where Pg is an amino protecting group; or

F comprises a conjugate selected from a terpene, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, or a porphyrin; or

Office Action Dated: October 1, 2003

PATENT

at least one of A and L comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers; and

wherein said conjugate optionally includes a linking moiety; and wherein at least one of R^3 , R^4 , R^5 , R^6 , and R^7 is a conjugate.

61. (previously presented) A peptide nucleic acid conjugate comprising a plurality of monomers of formula:

wherein:

L is $R^{12}(R^{13})_a$; wherein:

R¹² is hydrogen, hydroxy, (C₁-C₄)alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate and at least one of R¹² is a naturally occurring nucleobase, a non-naturally occurring nucleobase, or a nucleobase-binding group;

R¹³, if present, is a conjugate; and a is 0 or 1;

A and B are selected such that:

- (a) A is a group of formula (IIa), (IIb) or (IIc) and B is N or R³N⁺; or
- (b) A is a group of formula (IId) and B is CH;

DOCKET NO.: ISIS-1158 **Application No.:** 08/319.411

Office Action Dated: October 1, 2003

$$\begin{bmatrix}
R^{1} \\
C
\end{bmatrix}_{q} = \begin{bmatrix}
R$$

where:

X is O, S, Se, NR^3 , CH_2 or $C(CH_3)_2$;

Y is a single bond, O, S or NR⁴;

p and q independently are zero or an integer from 1 to 5;

r and s independently are zero or an integer from 1 to 5;

 R^1 and R^2 independently are hydrogen, (C_1-C_4) alkyl, hydroxy-substituted (C_1-C_4) alkyl, alkoxy-substituted (C_1-C_4) alkyl, alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkylthio, amino, halogen or a conjugate;

C is $(CR^6R^7)_y$;

D is (CR⁶R⁷)_z; wherein:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C₂-C₆) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C₁-C₆) alkoxy, (C₁-C₆) alkylthio, a conjugate, NR^3R^4 and SR^5 or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino; and

 R^5 is hydrogen, a conjugate, (C_1-C_6) alkyl, hydroxy-, alkoxy-, or alkylthiosubstituted (C_1-C_6) alkyl;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

E independently is COOH, CSOH, SOOH, SO₂OH or an activated or protected derivative thereof;

F independently is NHR³ or NPgR³, where Pg is an amino protecting group; or F comprises a conjugate selected from a terpene, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, a porphyrin, or an alkylator; or at least one of A and L comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, an alkylator, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers; and wherein said conjugate optionally includes a linking moiety; and

wherein at least one of said groups C or said groups D include a conjugate.

62. (previously presented) A peptide nucleic acid conjugate comprising a plurality of monomers of formula:

wherein:

L is R¹²(R¹³)_a; wherein:

R¹² is hydrogen, hydroxy, (C₁-C₄)alkanoyl, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a nucleobase-binding group, a heterocyclic moiety, a reporter ligand, or a conjugate and at least one of R¹² is a naturally occurring nucleobase, a non-naturally occurring nucleobase, or a nucleobase-binding group;

Office Action Dated: October 1, 2003

R¹³, if present, is a conjugate; and a is 0 or 1;

A and B are selected such that:

- (a) A is a group of formula (IIa), (IIb) or (IIc) and B is N or R³N⁺; or
- (b) A is a group of formula (IId) and B is CH;

$$\begin{bmatrix}
R^{1} \\
C \\
R^{2}
\end{bmatrix} p \begin{bmatrix}
R^{1} \\
C \\
R^{2}
\end{bmatrix} q$$

$$IIa$$

$$IIb$$

$$\begin{bmatrix}
R^{1} \\
C \\
R^{2}
\end{bmatrix} r \begin{bmatrix}
R^{1} \\
R^{2}
\end{bmatrix} s$$

$$IIa$$

$$IIb$$

$$\begin{bmatrix}
R^{1} \\
C \\
R^{2}
\end{bmatrix} r \begin{bmatrix}
R^{1} \\
R^{2}
\end{bmatrix} s$$

$$\begin{bmatrix}
R^{1} \\
C \\
R^{2}
\end{bmatrix} r \begin{bmatrix}
R^{1} \\
R^{2}
\end{bmatrix} s$$

$$IIc$$

$$IId$$

where:

X is O, S, Se, NR^3 , CH_2 or $C(CH_3)_2$;

Y is a single bond, O, S or NR⁴;

 \boldsymbol{p} and \boldsymbol{q} independently are zero or an integer from 1 to 5;

r and s independently are zero or an integer from 1 to 5;

 R^1 and R^2 independently are hydrogen, (C_1-C_4) alkyl, hydroxy-substituted (C_1-C_4) alkyl, alkoxy-substituted (C_1-C_4) alkyl, alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio, amino, halogen or a conjugate;

C is $(CR^6R^7)_y$;

D is (CR⁶R⁷)_z; wherein:

 R^6 and R^7 independently are hydrogen, a side chain of a naturally occurring alpha amino acid, (C₂-C₆) alkyl, aryl, aralkyl, heteroaryl, hydroxy, (C₁-C₆) alkoxy, (C₁-C₆)

DOCKET NO.: ISIS-1158 **Application N .:** 08/319.411

Office Action Dated: October 1, 2003

alkylthio, a conjugate, NR³R⁴ and SR⁵ or R⁶ and R⁷ taken together complete an alicyclic or heterocyclic system;

 R^3 and R^4 independently are hydrogen, a conjugate, (C_1-C_4) alkyl, hydroxy- or alkoxy- or alkylthio-substituted (C_1-C_4) alkyl, hydroxy, alkoxy, alkylthio or amino; and

 R^5 is hydrogen, a conjugate, $(C_1\text{-}C_6)$ alkyl, hydroxy-, alkoxy-, or alkylthiosubstituted $(C_1\text{-}C_6)$ alkyl;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

E independently is COOH, CSOH, SOOH, SO₂OH or an activated or protected derivative thereof;

F independently is NHR³ or NPgR³, where Pg is an amino protecting group; or

F comprises a conjugate selected from a terpene, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, or a porphyrin; or

at least one of A and L comprises a conjugate selected from a reporter enzyme, a reporter molecule, a steroid, a carbohydrate, a terpene, a peptide, a protein, a phospholipid, a cell receptor binding molecule, a water soluble vitamin, a lipid soluble vitamin, an RNA/DNA cleaving complex, a metal chelator, a porphyrin, or a polymeric compound selected from polymeric amines, polymeric glycols and polyethers; and

wherein said conjugate optionally includes a linking moiety.