ゲーム理論と暗号

安永憲司

金沢大学

お知らせ

- 数学セミナー 2014年10月号
 - 特集=ゲーム理論の数理
 - ゲーム理論入門/「ゲーム理論」は数学か?一渡辺隆裕
 - ゲームによって予測不可能性を捉える―― 宮部賢志+竹村彰通
 - 離散凸解析とゲーム理論——田村明久
 - 暗号とゲーム理論──安永憲司
 - 組合せゲーム理論――坂井 公
 - ギャンブルと確率論──藤田岳彦
 - [座談会]ゲーム理論で変わる社会――船木由喜彦+坂井豊貴+横尾 真+岡本吉央
- 経済セミナー 2014年10・11月号
 - 特集=入門 ゲーム理論
 - 『数学セミナー』2014年10月号の特集「ゲーム理論の数理」と同時期にゲーム理論特集を組む。経セミでは、社会現象、人間行動分析への応用の視点から、具体例を挙げつつゲーム理論の取り組みを解説する。

ゲーム理論とは何か

- 複数の意思決定者が相互作用する状況(ゲーム 的状況)を研究する理論
 - 自分の利益が他者の行動に依存する状況
 - 一人での意思決定は(あまり)考えない
 - 意思決定を行うとき、 相手がどう行動するかを考えないといけない

ゲームの例(秋学校の争い)

- A 秋学校と K 秋学校は毎年9月第4週に開催
 - 過去2年は、Aが9/24-27、Kが9/24-26
- 両秋学校とも参加者を増やしたい
- 日程が重ならない場合、 参加者の3割がもう1つの秋学校にも参加
- 第4週以外では、両秋学校とも第2週が候補
- 第2週の場合、調整のためのコストがかかる

今年はどのように開催されるだろうか?

ゲームの例(秋学校の争い)

■利得

- Aの期待参加者数 → 30 (3割は9)
- Kの期待参加者数 → 40 (3割は 12)
- 第2週開催の調整コスト → 10

利得行列

A 秋学校\K 秋学校	第4週	第2週
第4週	(30, 40)	(42, 39)
第2週	(32, 49)	(20, 30)

ゲームの例(秋学校の争い)

A 秋学校\K 秋学校	第4週	第2週
第4週	(30, 40)	(42, 39)
第2週	(32, 49)	(20, 30)

■ 行動分析

- K 秋学校は、A 秋学校 の選択によらず、 「第4週」の方が高利得
- A 秋学校は、K が「第4週」をすれば 「第2週」の方が高利得
 - → (A, K) = (第2週、第4週)が選択される

ゲーム理論の用語

- プレイヤー:意思決定を行う主体
- 行動(戦略):プレイヤーのとりうる選択肢
- 利得(効用):ゲームの結果に対する好みを表す数値 (大きいほうが望ましい)
- 利得関数(効用関数):ゲームの結果を利得(効用) に対応させる関数
- ゲームの解:ゲームにおいて予想される結果

ゲームのバリエーション

- 戦略型ゲームと展開型ゲーム
 - 戦略型:各プレイヤーが同時に(1回だけ) 行動を選択(標準型とも呼ばれる)
 - 展開型:それ以外
- 完備情報ゲームと不完備情報ゲーム
 - 完備情報:ゲームの情報(プレイヤー・利得・ 行動の候補)に不確実性がないもの
- 完全情報ゲームと不完全情報ゲーム
 - 完全情報:自分以前のプレイヤーの行動選択が わかるとき
- その他:繰り返しゲーム・協力ゲーム

戦略型ゲームの定式化

- 戦略型ゲーム Γ = (N, {S_i}_{i∈N}, {u_i}_{i∈N})
 - プレイヤー集合 N = {1, ..., n}
 - 戦略集合 S_i, i ∈ N
 - 利得関数 u_i: S₁ × · · · × S_n → R, i∈ N

- ゲーム理論でよく使われる記法
 - ・戦略の組 $s = (s_1, ..., s_n)$ に対して、 $s_{-i} := (s_1, ..., s_{i-1}, s_{i+1}, ..., s_n)$ $(s_i^*, s_{-i}) := (s_1, ..., s_{i-1}, s_i^*, s_{i+1}, ..., s_n)$

解の見つけ方(その1)

- ■支配戦略を探す
 - あるプレイヤーのある戦略が支配戦略
 - ⇔ 他のプレイヤーがどの戦略をとろうとも、 他のどの戦略よりもよい戦略

- 戦略 s_i がプレイヤー i の支配戦略
 - $\Leftrightarrow \forall s^*_{i} \in S_{i} \setminus \{s_{i}\}, \ \forall s^*_{-i} \in S_{-i}, \ u_{i}(s_{i}, s^*_{-i}) > u_{i}(s^*_{i}, s^*_{-i})$

ゲームの例(気の進まない共同研究)

- 大学教授のAとBは、個人で行う研究とは別に、 (大学に言われて仕方なく) 共同研究をスタート
- 2人とも協力的な場合、個別研究の進捗はやや 遅れるが、共同研究は進む
- 1人だけ協力的な場合、共同研究の進捗はほど ほどだが、協力的でない教授の個別研究は進む
- 2人とも協力的でない場合、個別研究だけが進む

2人はどのように研究を進めるだろうか?

ゲームの例 (気の進まない共同研究)

- 行動 = {協力, 非協力}
- ■利得
 - 個別研究の進捗は、共同研究に協力的だと 30、 非協力的だと 50
 - 共同研究の進捗は、ともに協力的だと30、 片方だけ協力的だと15、ともに非協力的だと5

教授 A \ 教授 B	協力	非協力
協力	(60, 60)	(45, 65)
非協力	(65, 45)	(55, 55)

ゲームの例 (気の進まない共同研究)

A 教授\B 教授	協力	非協力
協力	(60, 60)	(45, 65)
非協力	(65, 45)	(55, 55)

■ 行動分析

- 教授 A にとっては「非協力」が支配戦略
- 教授 B にとっても「非協力」が支配戦略
 - → (非協力, 非協力) が選択される

協力したほうが良いと考え大学側が設計しても、 気の進まない共同研究は進まない

囚人のジレンマ

囚人 1 \ 囚人 2	黙秘	自白
黙秘	(5, 5)	(-4, 6)
自白	(6, -4)	(-3, -3)

- 2人の囚人にとっては、(黙秘, 黙秘)が望ましいが、 (自白, 自白)を選択→ 個人合理的な戦略
- 2人にとって(自白,自白)より(黙秘,黙秘)の方が望ましい。 # 370
 - →集団合理的な戦略
- 集団合理性に関する概念 → パレート最適性
- 無限繰り返しゲームでは、(黙秘, 黙秘)を達成可能

解の見つけ方(その2)

- ■最適反応戦略を考える
 - 最適反応戦略:他のプレイヤーの戦略に対し、 自分の利得を最大化する戦略

戦略 s_i が戦略の組 s_{-i} の最適反応
 ⇔ ∀s*_i ∈ S_i \ {s_i}, u_i(s_i, s_{-i}) ≥ u_i(s*_i, s_{-i})

ゲームの例(卒業研究のテーマ決め)

- M 教授の研究室に、 研究モチベーションの高い4年生 N 君が配属
- M 教授は、N 君に行って欲しい研究テーマがある
- N 君は、やりたい研究テーマがあり、M 教授の テーマをするくらいなら大学を辞めた方がましだ と考えている
- お互いに主張を譲らないことも考えられるが、 各テーマを半分ずつという妥協案も考えられる

N君の今後はどうなるだろうか?

ゲームの例(卒業研究のテーマ決め)

- 行動 = {強硬, 妥協}
- ■行動の結果
 - 一方が妥協すると、強硬した方のテーマ
 - 両者とも妥協すると、両テーマを半分ずつ
 - 両者とも強硬すると、N 君は大学を辞める

M\N	強硬	妥協
強硬	N 君退学	M テーマ
妥協	N テーマ	半々

M\N	強硬	妥協
強硬	(0, 10)	(30, 0)
妥協	(10, 100)	(20, 50)

ゲームの例(卒業研究のテーマ決め)

M\N	強硬	妥協
強硬	N 君退学	Μ テーマ
妥協	N テーマ	半々

M \ N	強硬	妥協
強硬	(0, 10)	(30, 0)
妥協	(10, 100)	(20, 50)

- N 君にとっては「強硬」が支配戦略
- N 君の「強硬」に対し、M 教授の「妥協」が最適反応→ N 君のテーマが採用される

学生という弱い立場であっても、 「強硬」が支配戦略であることを相手に知らせば 自分のやりたい研究ができる

Nash 均衡

■ 戦略の組 s = (s₁, ..., s_n) が Nash 均衡

⇔ すべてのプレイヤーにとって、 最適反応戦略であるとき

 $\Leftrightarrow \forall i, \forall s_i^* \in S_i \setminus \{s_i\}, u_i(s_i, s_{-i}) \ge u_i(s_i^*, s_{-i})$

戦略型ゲームの解は Nash 均衡であるべき (ただし、十分であるとは考えられていない)

戦略の弱支配関係

- 戦略 s_i が戦略 s*_i を弱支配
 - ⇔ 他のプレイヤーの戦略に関わらず、 s_i が s*_i より悪くなることはなく、かつ 他のプレイヤーのある戦略において、 s_i が s*_i より真によい
 - \Leftrightarrow (1) $\forall s_{-i} \in S_{-i}, u_i(s_i, s_{-i}) \ge u_i(s_i^*, s_{-i})$
 - (2) $\exists s_{-i} \in S_{-i}, u_i(s_i, s_{-i}) > u_i(s_i^*, s_{-i})$

合理的なプレイヤーは 弱支配される戦略を選択しないと考えられる

Nash 均衡に関する事実

- Nash 均衡は複数存在することがある
- Nash 均衡は弱支配されることがある
 - → 弱支配されない Nash 均衡が解であるべき

1\2	X	у
a	(2, 10)	(3, 0)
b	(1, 0)	(3, 10)

- (a, x) と (b, y) が Nash 均衡
- しかし、戦略 b は戦略 a に弱支配→ (b, y) は解ではないと考えられる

Nash 均衡に関する事実(続き)

■ 純粋戦略 Nash 均衡は存在するとは限らない

• 純粋戦略: 行動が確定的

混合戦略:行動が確率的

例. マッチングペニー

1\2	表	裏
表	(1, -1)	(-1, 1)
裏	(-1, 1)	(1, -1)

■ 任意の有限戦略型ゲームにおいて、 混合戦略を含めれば Nash 均衡は存在

展開型ゲーム

- すべてのプレイヤーが同時に行動するとは 限らないゲーム
 - ゲームは逐次的に行われる
- ■プレイヤーの戦略は、 履歴を行動に対応させる関数
 - 戦略型では、一度決めるだけ
- 利得関数は、 終着履歴(ゲームの結果)から数値への関数
 - 戦略型でも、ゲームの結果から数値への関数

ゲームの例(おくやみ情報業界への参入)

- 北國新聞は、石川県内シェア7割を誇る地方新聞
 - 特に記事が優れているわけではない(らしい)
 - おくやみ欄が充実しているため、必要に迫られて 購読している(らしい)
- ある実業家は、金沢市内のおくやみ情報を ウェブで安価に提供する事業への参入を検討中
- 参入しなければ、お互い現状維持
- 参入した場合、北國新聞がその事業者と「協調」 すれば利益を分けあえるが、「対立」した場合、 おくやみ情報価格(北國新聞の場合は購読料)の 値下げ競争が行われ、両者とも利益がなくなる

ゲームの例(おくやみ情報業界への参入)

ゲームの解は何か?

展開型ゲームでの解の見つけ方

- 先読みをする
 - 「参入する」場合、北國新聞は「協調」
 - 「参入する」→「協調」であるため、 実業家は「参入する」

ただし、完全情報ゲームでないと求められない

戦略型ゲームとしての展開型ゲーム

■戦略型ゲームとしても表現可能

実業家 \ 北國新聞	協調	対立
参入する	(5, 5)	(1, 1)
参入しない	(2, 10)	(2, 10)

- ゲームの解として、Nash 均衡も同様に使える!
 - → しかし、このゲームには2つの Nash 均衡

展開型ゲームにおける Nash 均衡の問題点

- (参入する,協調) は Nash 均衡
- (参入しない, 対立) も Nash 均衡
- しかし、実業家が「参入する」を選んだとき、 北國新聞が「対立」を選ぶとは考えにくい

→ 信憑性のない脅し

なぜ信憑性のない脅しが生じるのか?

- Nash 均衡は、最適反応戦略の組であり、 自分以外の戦略は変わらないことを前提に議論
 - しかし、展開型ゲームでは、自分の行動が変われば、相手の行動が変わるのが自然
 - そして、Nash 均衡では実現パス以外のパスに おける均衡を考えない
 - → 部分ゲーム完全均衡でこの問題を解決
- 戦略の組が部分ゲーム完全均衡
 - ⇔ その戦略が、すべての「部分ゲーム」において Nash 均衡であるとき

ゲームの例 (割り当てゲーム)

(割当人, 判定人)

- Nash 均衡は、((2,0),yyy), ((2,0), yyn), ((2,0), yny), ((1,1), nyy), ((1,1), nyn), ((0,2), nny), (2,0), nny), ((2,0), nnn)
- 部分ゲーム完全均衡は、((2,0), yyy), ((1,1), nyy)

不完備・不完全ゲームとハルサニ変換

- 完備情報ゲームと不完備情報ゲーム
 - 完備情報:ゲームの情報(プレイヤー・利得・ 行動の候補)に不確実性がないもの
 - 不完備の例:オークション(他者の利得が不明)
- 完全情報ゲームと不完全情報ゲーム
 - 完全情報:自分以前のプレイヤーの行動選択が わかるとき
- ハルサニ変換
 - 「不完備情報ゲーム → 不完全情報ゲーム」への変換
 - ゲームの最初に、(不完全情報の)偶然手番を追加

ベイジアンゲーム(戦略型不完備情報ゲーム)

- 自然 (nature) が状態 ω ∈ Ω を確率的に選択
- 各プレイヤー i は、タイプ $\tau_i(\omega) \in T_i$ を受け取る
 - τ_i:シグナル関数、T_i:タイプ集合
 - 各 i は、{τ_i}_{i∈N} および ω の事前確率を知っている
 - 他のプレイヤーのタイプ {τ_i(ω)}_{i∈N \ {ij} に対する事後確率(信念)をベイズルールにより更新
- 各プレイヤーは、戦略・利得関数・自然状態を考慮 した上で、行動を選択する

ゲーム開始時にプレイヤー毎に与えられる個別情報は、 「タイプ」と呼ばれている

相関均衡

例. 男女の争い (battle of the sexes, Bach or Stravinsky)

1\2	Bach	Stravinsky
Bach	(2, 1)	(0, 0)
Stravinsky	(0, 0)	(1, 2)

- Nash 均衡は、純粋戦略 (B, B), (S, S) と 混合戦略 ((2/3, 1/3), (1/3, 2/3)) であり、 それぞれの期待利得は、(2,1), (1,2), (2/3, 2/3)
- 公開されたコイン投げ(暗号理論ではCRS)を使い、 表なら(B,B), 裏なら(S, S)に従うことにすれば、 期待利得は(3/2, 3/2)
- このようにして達成可能な均衡を相関均衡と呼ぶ
 - 「おすすめ戦略」をタイプとして知らせている

これまでのまとめ

- ゲーム的状況 = 複数の意思決定者が相互作用する状況
- ■戦略型ゲーム
 - すべてのプレイヤーが同時に行動
 - 解の見つけ方
 - 1. 支配戦略を見つける 2. 最適反応戦略を考える
 - Nash 均衡の問題点: 弱支配される可能性
- 展開型ゲーム
 - プレイヤーの行動が逐次的
 - 解の見つけ方 → 先読みをする(完全情報ゲーム)
 - Nash 均衡の問題点: 信憑性のない脅しの可能性→ 部分ゲーム完全均衡
- 不完備情報ゲーム・相関均衡

以降の内容

■暗号理論におけるゲーム理論

• 既存研究・暗号理論へ応用する際の難しさ

● 暗号プロトコルの安全性と Nash 均衡

• 秘密分散とゲーム理論

暗号理論におけるゲーム理論

暗号理論 vs ゲーム理論

■ ともにプレイヤー間の相互作用に関する研究

- ■暗号理論
 - プレイヤーは正直者 or 悪者
 - 正直者をどのように守るか?

- ゲーム理論
 - プレイヤーは合理的
 - 合理的なプレイヤーはどう振る舞うか?

暗号理論とゲーム理論に関する研究

- 暗号理論をゲーム理論に利用
 - 信頼できる仲介者(相関均衡)を暗号技術で実現 [DHR00, ADGH06, LMPS04, ILM05, IML05, ASV08, ADH08, ILM08, AKL+09, ILM11, AKMZ12, CV12]
- ゲーム理論を暗号理論へ適用
 - 合理的なプレイヤーが暗号プロトコルを実行 [HT04, ADGH06, LT06, GK06, KN08a, KN08b, MS09, OPRV09, AL09, Gra10, FKN10, PS11, GKTZ12, Y12]
- ゲーム理論と暗号理論の概念間の関係
 - 暗号理論向けのゲーム理論の概念 [HP10, GLV10, PS11]
 - ゲーム理論の概念によって安全性を特徴付け [ACH11, GK12, HTYY12, HTY13]

ゲーム理論を応用する際の難しさ

- 一方向性置換ゲーム(零和ゲーム)
 - 1. P₁が x ∈_R {0,1}ⁿ を選び f(x) を P₂に送る
 - 2. P₂ が z ∈ {0,1}ⁿ を P₁ に送る
 - 3. P₂ は z = x のときに利得 1, それ以外で 1

- 通常のゲーム理論では、P₂が常に勝つ
- 直観的には、両者ランダムに選択することが Nash 均衡になるべき
 - → 計算量的 Nash 均衡

ゲーム理論を応用する際の難しさ

- 部分ゲーム完全均衡は?
 - P₂ が f(x) を受け取ったという条件下での部分 ゲームを考えると、f(z) = f(x) なる z を選ぶのが 最適な戦略
 - 与えられた1つの戦略(マシン)では、部分ゲーム において異なる複数のマシンすべてには勝てない

暗号プロトコルの安全性と Nash 均衡

億万長者ゲーム

- どちらが金持ちか知りたい
- 自分の資産額は知られたくない

暗号理論的な安全性

どんな攻撃者も相手の資産額を 知ることが出来ない

暗号理論的な安全性

- AとBがプロトコルに従えば、どちらが金持ちであるかを両者知ることができる(正当性)
- A がプロトコルに従う限り、B がどのようにプロトコルから逸脱したとしても、B は A の資産額に関する情報を得られない(A の安全性)
- B がプロトコルに従う限りA がどのようにプロトコルから逸脱したとしても、A は B の資産額に関する情報を得られない(B の安全性)

「ゲーム理論的な」安全性を考えてみる

「暗号プロトコルの実行 = ゲームの実行」と考える

利得

- ・どちらが金持ちか知りたい
- ・自分の資産額は知られたくない
- ・相手の資産額を知りたいなど

プロトコルに従うという戦略がゲームの解 (プロトコルに従うことが合理的)

ゲーム理論的な安全性

- プロトコル $(π_A, π_B)$ を実行したときの A の利得関数 $u_A(π_A, π_B)$ のとる値を以下のように定義
 - どちらが金持ちか知ることが出来た → 1
 - 相手の資産額を知ることが出来た → 2
- B の利得関数 u_B も同様に定義
- 暗号理論的な安全性は以下のように書き直せる
 - ∀ π*_B ∈ S_B, u_B(π_A, π*_B) ≤ u_B(π_A, π_B) (A の安全性)
 - $\forall \pi^*_A \in S_A, u_A(\pi^*_A, \pi_B) \le u_A(\pi_A, \pi_B)$ (B の安全性)

戦略組 (π_A, π_B) が Nash 均衡であることの定義に一致!

より一般的に

- ■暗号理論的な安全性
 - 正直者がプロトコルに従う限り、他のプレイヤーがどのように振る舞っても正直者の安全性は保たれる
- Nash 均衡によるゲーム理論的な安全性
 - プロトコルからどのように逸脱しても、 自分の利得を上げることは出来ない

「自分が高利得 ⇔ 相手の安全性を破る」 ならば、両者は一致

暗号理論的な安全性の限界 (1/2)

- ■暗号理論的な安全性
 - = ゲーム理論的な安全性の特殊な場合
- → 暗号理論的な安全性が捉えてない部分が明らかに

- 1. 「自分が低利得 ⇔ 自分の安全性が破られる」 という利得は考えていない
 - 自分の安全性を保てる範囲内で、相手の安全 性を破るために逸脱するプレイヤーは想定外
 - 暗号理論の安全性は、自分の安全性が最大限 に脅かされる状況を考えている

暗号理論的な安全性の限界 (2/2)

- 2. すべてのプレイヤーがプロトコルから 逸脱する状況は考えてない
 - 暗号理論では、一方は必ず正直者
 - 部分ゲーム完全均衡のような保証はない

- 3. 複数の性質(安全性)を同時には考えていない
 - 複数の性質間のトレードオフを考慮するプレイヤーは想定外
 - ただし、性質を1つずつ考えことは、 より高い安全性を考えることになる

まとめ(暗号プロトコルの安全性と Nash 均衡)

- ゲーム理論的な安全性
 - 「プロトコルの実行 = ゲームの実行」
 - プロトコルに従うという戦略がゲームの解

- Nash 均衡によるゲーム理論的な安全性は、 暗号理論的な安全性と等価
- より強い均衡概念を考えると、 より強い安全性が得られる

秘密分散とゲーム理論

■ 参加者: ディーラー1人とプレイヤーn人

■ 分散フェーズ: ディーラーは、秘密からシェアを作り、 各プレイヤーにを配る

■ 分散フェーズ: ディーラーは、秘密からシェアを作り、 各プレイヤーにを配る

■ (m, n) しきい値型秘密分散 m 個以上のシェアから秘密を復元でき、 m 個未満では秘密についてわからない

■ Shamir の秘密分散 ランダム (m - 1) 次多項式 g s.t. g(0)= s を選び、 g(1), ..., g(n) をシェアとし、多項式補間で復元

[Halpern, Teague 2004]

- ■プレイヤーの利得
 - 1. 秘密を復元したい
 - 2. より少ない人数で復元したい

Shamir の秘密分散プロトコルは 正しく実行されない

Shamir の (m, n) 秘密分散の問題点

■ 復元フェーズで、全員がシェアを出すという戦略がよくない

- 認証つき秘密分散を仮定すると プレイヤーの選択肢は実質的に2つ
 - シェアを「出す」
 - シェアを「出さない」

Shamir の (m, n) 秘密分散の問題点

- m = n のとき
 - 「出す」 → n 人で復元
 - 「出さない」 → 1人で復元
 - Nash 均衡ではない
- m < n のとき
 - シェアを出しても出さなくても n 人で復元
 - 「出さない」が「出す」より悪い状況はなく、 また、ある状況では真に良い

引 弱支配される Nash 均衡

[Gordon, Katz 08] のプロトコル

■ (2, 2) 秘密分散の場合を考える

- ■プレイヤー P_i の利得
 - P_i だけが復元 → U⁺
 - 2人とも復元 → U
 - どちらも復元しない → U⁻
 - $U^+ > U > U^-$

GK08 プロトコルのアイディア

- ディーラーは P₁, P₂ それぞれに、 無限個のシェア (a₁, a₂, ...), (b₁, b₂, ...)を用意
 - 各iについて(独立に)
 - 確率 δ で a_i + b_i = s (本物の秘密)
 - 確率 1 δで a_i + b_i = 」(偽物)
- 各ラウンド i において
 - 両プレイヤーはシェア a_i, b_i を同時に出す
 - a_i + b_i = s なら終了
 - a_i + b_i = 」なら次のラウンドへ
 - もし一人がシェアを出さなかったら終了

GK08 プロトコルの分析

- P₁ が逸脱することを考える
 - Nash 均衡を考えるので P₂ は従うと仮定
- P₁ がシェアを出さないとき、
 P₁ は確率 δ で U⁺ を、確率 1 − δ で U⁻ を得る
 → 期待利得は δ U⁺ + (1 − δ) U⁻
- P₁ がシェアを出すとき、利得は U
- ここで、 $\delta U^+ + (1 \delta) U^- < U$ ならば シェアを出すことは、弱支配ではない
- ただし、同時にシェアを出すことに強く依存

実際のプロトコル

- 無限個のシェアを用意することはできない
- ディーラーは a + b = s となるシェアを用意
- 各ラウンド i において
 - P₁ と P₂ は安全なプロトコル(MPC)を利用して a_i と b_i を a と b から生成
 - ・残りは同様

[Fuchsbauer, Katz, Naccache 2010] プロトコル

- GK08 等のプロトコルはシェアを 同時に出すことを必要
 - → 同時ブロードキャスト通信路を仮定
- GK08 は MPC を毎ラウンド計算
 - 計算効率はよくない

■ FKN10 では上記の問題点を解決し、 かつ強い解概念をもつプロトコルを提案

FKN10 プロトコルのアイディア

- 基本アイディアは同じ:
 - 本物ラウンドと偽物ラウンドが存在
 - 本物である確率が十分小さいので、 プレイヤーは正しくシェアを出し続ける
- 既存プロトコルと異なる点:
 - 既存:本物ラウンドであるかをすぐに認識
 - FKN10:本物ラウンドであるかは後で認識
- 検証可能ランダム関数 (VRF) を利用
 - 擬似ランダム関数であり、正しさを証明で検証可能。また、証明は1つしか存在しない

FKN10 プロトコル

- ディーラーは
 - 本物ラウンド r* を選ぶ(幾何分布に従う)
 - VRF の鍵を 2 種類生成: (pk_i, sk_i), (pk_i', sk_i'), i ∈ {1,2}
 - P₁ に以下のシェアを渡す(P₂ も同様)
 (sk₁, sk₁', pk₂, pk₂', shr₁ = F_{sk2}(r*) + s, sig₁ = F_{sk2}'(r*+1))
- 各ラウンド r において (P₁ の立場)
 - F_{sk1}(r), F_{sk1},(r) とその証明を送る
 - y^(r) と z^(r) を受け取ったとき
 - sig₁ = z^(r) なら s^(r-1) = shr₁ + y^(r-1) を出力して終了
 - 相手が離脱 or 偽証明を送ったら s^(r-1) を出力し終了
 - それ以外の場合、次のラウンドへ

FKN10 プロトコルの分析

- P₂ が従い、P₁ が逸脱することを考える
- 逸脱はラウンド r = r* + 1 または r < r* + 1 で可能</p>
 - r = r* + 1 で逸脱
 → P₂ も s を出力するので利得は U のまま
 - r < r* + 1 で逸脱
 - → r = r* であれば利得は U+ の可能性があるが、 本物ラウンドの確率は十分小さく、 期待利得は U より小さい(ように設定)
- r=r*+1での逸脱はプロトコル終了の印であり、 逸脱でないとみなすと、逸脱は真に利得を下げる
 → 狭義 Nash 均衡(強い解概念)

FKN10 プロトコルの特徴

- 同時ブロードキャスト通信路を必要としない
 - P2P ネットワークで十分
- 計算効率がよい
 - VRF の部分は TDP で実現可能

- 秘密を見て秘密であることが確信できると問題
 - 秘密がパスワードで、正しさの確認ができる場合
 - この問題は非同時ブロードキャスト通信路では 避けられない [Asharov, Lindell 2010]

まとめ (秘密分散とゲーム理論)

- 正直者に合理性を仮定すると プロトコルの実現がとても大変になった例
 - 秘密の復元を独占したいと考えるプレイヤー ばかりだと、公平に復元することが大変
- 暗号理論として達成が困難(?)
 - 多くのプロトコルで同時ブロードキャスト
 - 非同時ブロードキャストだと 秘密自体にエントロピーが必要
 - → 妥当な仮定等をおいて簡単に実現できないか