# Отчет о выполнении лабораторной работы Получение и измерение вакуума

Лепарский Роман

18 апреля 2021 г.

#### 1 Аннотация

**Цель работы:** 1) измерение объемов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума.

## 2 Теоретические сведения

Производительность насоса определяется скоростью откачки W ( $\pi/c$ ): W — это объем газа, удаляемого из сосуда при данном давлении за единицу времени. Скорость откачки форвакуумного насоса равна емкости воздухозаборной камеры, умноженной на число оборотов в секунду. Рассмотрим обычную схему откачки. Разделим вакуумную систему на две части: «откачиваемый объем» (в состав которого включим используемые для работы части установки) и «насос», к которому, кроме самого насоса, отнесем трубопроводы и краны, через которые производится откачка нашего объема. Обозначим через  $Q_d$  количество газа, десорбирующегося с поверхности откачиваемого объема в единицу времени, через  $Q_i$  — количество газа, проникающего в единицу времени в этот объем извне — через течи. Будем считать, что насос обладает скоростью откачки W и в то же время сам является источником газа; пусть  $Q_n$  — поток газа, поступающего из насоса назад в откачиваемую систему. Будем измерять количество газа  $Q_d$ ,  $Q_i$  и  $Q_n$  в единицах PV (легко видеть, что это произведение с точностью до множителя  $RT/\mu$  равно массе газа). Основное уравнение, описывающее процесс откачки, имеет вид

$$-VdP = (PW - Q_d - Q_n - Q_i)dt$$

Левая часть этого уравнения равна убыли газа в откачиваемом объеме V, а правая определяет количество газа, уносимого насосом, и количество прибывающего вследствие перечисленных выше причин за время dt. При достижении предельного вакуума (давление  $P_{pr}$ )

$$\frac{dP}{dt} = 0$$

$$W = \frac{\sum Q_i}{P_{nr}}$$

Обычно  $Q_i$  постоянно, а  $Q_n$  и  $Q_d$  слабо зависят от времени, поэтому в наших условиях все эти члены можно считать постоянными. Считая также постоянной скорость откачки W, уравнение (1) можно проинтегрировать и, используя (2), получить

$$P = P_o exp(-\frac{W}{V}t) + P_{pr}$$

**Течение газа через трубу.** Характер течения газа существенно зависит от соотношения между размерами системы и длиной свободного пробега молекул. При атмосферном давлении и даже при понижении давления до форвакуумного длина свободного пробега меньше диаметра трубок и течение откачиваемого газа определяется его вязкостью, т. е. взаимодействием его молекул. При переходе к высокому вакууму картина меняется. Столкновения молекул между собой начинают играть меньшую роль, чем соударения со стенками. Течение

газа в трубе напоминает в этих условиях диффузию газа из области больших концентраций в области, где концентрация ниже, причем роль длины свободного пробега играет ширина трубы. Для количества газа, протекающего через трубу в условиях высокого вакуума или, как говорят, в кнудсеновском режиме, справедлива формула

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}}\frac{P_2 - P_1}{L}$$

Применим эту формулу к случаю, когда труба соединяет установку с насосом. Пренебрежем давлением P1 у конца, обращенного к насосу. Будем измерять количество газа, покидающего установку при давлении P==P2. Пропускная способность трубы

$$C_{tr} = \left(\frac{dV}{dt}\right)_{tr} = \frac{4}{3} \frac{r^3}{L} \sqrt{\frac{2\pi RT}{\mu}}$$

Мы видим, что пропускная способность зависит от радиуса трубы в третьей степени и обратно пропорциональна ее длине. В вакуумных установках следует поэтому применять широкие короткие трубы.

$$\frac{1}{W} = \frac{1}{W_n} + \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

При расчете вакуумных систем нужно принимать во внимание также пропускную способность отверстий, например, в кранах. Для них имеется формула

$$\eta = \frac{1}{4}Sn < v >$$

где  $\eta$  — число молекул, вылетающих из отверстия в вакуум в единицу времени, S — площадь отверстия, n — концентрация молекул перед отверстием, <v> — средняя скорость молекул газа. С другой стороны,  $\eta = dN/dt$ , N = PV/kT, n = P/kT, и аналогично формуле для количества газа, покидающего установку при давлении P , получается пропускная способность отверстия

$$C_{otv} = \left(\frac{dV}{dt}\right)_{otv} = S \frac{\langle v \rangle}{4}$$

Для диффузионного насоса можно считать, что каждая молекула воздуха, попавшая в кольцевой зазор между соплом и стенками насоса, увлекается струей пара и не возвращается обратно в откачиваемый объем. Скорость откачки такого насоса можно считать равной пропускной способности отверстия с площадью, равной площади кольцевого зазора, т. е. насос качает как кольцевой зазор, с одной стороны которого расположен откачиваемый объем, а с другой — пустота.

## 3 Экспериментальная установка



Рис. 1: Схема установки

установка включает в себя краны  $K_1, \ldots, K_6$ , форвакуумный баллон, высоковакуумный диффузионный насос, высоковакуумный баллон, разного вида манометры, форвакуумный насос.

Принцип действия форвакуумного ротационного насоса представлен на следующей схеме:



Рис. 2:

После включения этого насоса нужно дождаться, пока он откачает собственный объем, а только потом подключать его к установке.

Диффузионный насос работает по следующему принципу:



Рис. 3: Диффузионный насос

Молекулы газа, попадая в поток масляных паров, увлекаются им и не могут попасть обратно. Этот эффект оказывает сильное откачивающее воздействие на газ в сосуде. Диффузионный насос работает более эффективно, когда длина свободного пробега молекул примерно равна зазору между трубкой и соплом (5).

В установке используются несколько видов манометров. U-образный не представляет никакого интереса, поэтому перейдем сразу к описанию термопарного манометра:



Рис. 4: Термопарный манометр

Через нить накаливания пропускается ток, регулируемый потенциометром R, а с помощью термопары измеряется нагрев нити, который зависит в том числе от давления газа. Характеристику данной термопары можно увидеть на графике:



Рис. 5: Характеристика термопары

Рассмотрим принцип работы ионизационного манометра:



Рис. 6: Ионизационный манометр

Электроны, выпускаемые катодом, прежде чем осесть на аноде успевают ионизировать воздух в колбе. Затем, ионы воздуха оседают на коллекторе. Измеряя ток, образованный ионизированным воздухом, можно определить его давление.

## 4 Приборы и материалы

В работе используются:

- Вакуумная установка;
- Масляный манометр;
- Термопарный манометр;
- Ионизационный манометр.

## 5 Обработка результатов

Запишем результаты измерений для нахождения объемов установки

Рассчитав по закону Бойля-Мариотта  $(P_1/P_2 = V_2/V_1)$  объемы форвакуумной и высоковакуумной части, получим:

$$V_{\Phi^{\mathrm{B}}} = 2,23 \pm 0,02$$
л $V_{\scriptscriptstyle{\mathrm{BB}}} = 1,31 \pm 0,01$ л



Рис. 7:  $k = -0.201 \pm 0.007 \text{ 1/c}$ 

Включим установку. Откачаем ее форвакуумным насосом, а затем диффузионным насосом добьемся высокого вакуума. С помощью ионизационного манометра измерим предельное значение давления.

$$P_{pr} = 7.7 \cdot 10^{-5} \text{ Topp}$$

Запишем зависимость улучшения вакуума от времени:

| t, c              | 0    | 2    | 4    | 6    | 8     | 10    | 12    | 14    |
|-------------------|------|------|------|------|-------|-------|-------|-------|
| P, $10^{-4}$ Torr | 5,6  | 4,3  | 2,9  | 2,2  | 1,7   | 1,3   | 1,2   | 1,1   |
| $\ln(P - P_{pr})$ | 1,57 | 1,26 | 0,75 | 0,35 | -0,07 | -0,63 | -0,84 | -1,10 |

Построим по этим значениям график и найдем коэффициент наклона:

Найдем скорость откачки:

$$ln(\frac{P-P_{pr}}{P_0-P_{pr}}) = -\frac{W}{V}t \Rightarrow W = -kV = 0.263 \pm 0.009$$
 л/с

Запишем зависимость P(t) при ухудшении вакуума:

| 1 '                      |     | l   |     |     |     | l   |     |     |     |     |     | 60  |
|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| P, 10 <sup>-4</sup> Topp | 2,9 | 3,3 | 3,7 | 4,1 | 4,5 | 4,8 | 5,2 | 5,6 | 6,0 | 6,4 | 6,8 | 7,2 |



Рис. 8: 
$$k = (0.0775 \pm 0.0004) \cdot 10^{-4} \text{ Topp/c}$$

Теперь воспользуемся следующими формулами:

$$P - P_{pr} = \frac{Q_d + Q_i}{V}t$$
$$W = \frac{\sum Q}{P_{pr}}$$

Отсюда

$$Q_n = WP_{pr} - (Q_d + Q_i) = (10,098 \pm 0,007) \cdot 10^{-6} \text{ Topp*}_{\pi/c}$$

Создадим в установке течь и запишем установившееся давление и давление форвакуумной части.

$$P_{\text{yct}} = 2.7 \cdot 10^{-4} \text{ Topp}$$
  
 $P_{\Phi \text{B}} = 2 \cdot 10^{-4} \text{ Topp}$ 

Воспользуемся следующими формулами:

$$\begin{split} P_{pr}W &= \sum Q \\ P_{\text{yct}} &= \sum Q + \frac{d(PV)}{dt} \\ \frac{d(PV)}{dt} &= \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}}\frac{P_{\text{фB}} - P_{\text{yct}}}{L} \end{split}$$

Отсюда найдем W

$$W = 0.252 \pm 0.02$$
л/с

### 6 Вывод

С помощью данной установки нам удалось получить вакуум с максимальным разряжением  $7.7 \cdot 10^-5$  Торр. Также мы нашли скорость откачки по ухудшению и улучшению вакуума ( $W = 0.263 \pm 0.009 \text{ n/c}$ ), а так же в стационарном режиме ( $W = 0.259 \pm 0.02 \text{ n/c}$ ). Как мы можем видеть, значения совпадают с учетом погрешности, однако метод с улучшением вакуума дает более точный результат, что может быть следствием большего количества измерений.