

CE 474 - LOGIC OF COMPUTER SCIENCE

Lecture Note 3

Motivation

Natural deduction mirrors everyday reasoning: "if I know A and $A \to B$, then I may conclude B." Mastering its rules unlocks rigorous proofs, logical clarity, and forms the backbone of automated theorem proving.

Learning Objectives

- Explain the structure and notation of a natural deduction proof.
- Apply introduction and elimination rules for \rightarrow , \land , \lor , \neg .
- Construct simple proofs from given premises to a conclusion.
- Recognize and employ common proof patterns (e.g. proof by contradiction).

1. Proof Structure & Notation

- Each line in a proof has:
 - 1. A formula.
 - 2. A rule name (e.g. " \rightarrow E").
 - 3. Line references used.
- **Subproofs:** Indented blocks for temporary assumptions, discharged by rules like →I or ¬I.

2. Introduction Rules (I)

Connective	Rule	Description
\wedge	$\wedge I$	From A and B, infer $A \wedge B$.
V	$\vee I_1, \vee I_2$	From A , infer $A \vee B$; or from B , infer $A \vee B$.
\rightarrow	\rightarrow I	Assume A, derive B, then infer $A \to B$.
	$\neg I$	Assume A, derive a contradiction (\bot) , then infer $\neg A$.

3. Elimination Rules (E)

Connective	Rule	Description
\wedge	$\wedge E_1, \wedge E_2$	From $A \wedge B$, infer A or infer B.
\vee	$\vee \mathrm{E}$	From $A \vee B$, and subproofs deriving C
		from A and from B , infer C .
\rightarrow	\rightarrow E	From A and $A \to B$, infer B.
\neg	$\neg E$	From A and $\neg A$, infer \bot .
\perp	$\perp \mathrm{E}$	From contradiction infer any formula
		(explosion).

4. Worked Example: Modus Ponens & \rightarrow I

Goal: From

1.
$$P \rightarrow (Q \rightarrow R)$$
, 2. P , 3. Q

derive R.

Proof. 1. $P \to (Q \to R)$ Premise

- 2. P Premise
- 3. Q Premise
- 4. $Q \rightarrow R \rightarrow E$, 1,2
- 5. $R \rightarrow E, 4,3$

5. Proof by Cases $(\vee E)$

If you have $A \vee B$, and you can derive C from A and also derive C from B, then you may infer C.

Skeleton:

Proof. 1. $A \vee B$ Premise

1.1. A Assumption

1.2. ... derive C

1.1. B Assumption

1.2. ... derive C

2. $C \lor E, 1,2-3,4-5$

6. Proof by Contradiction ($\neg I \& \bot E$)

- \neg **I:** Assume A, derive \bot , then infer \neg A.
- \bot **E**: From \bot , infer any formula (explosion).

Example: Prove $\neg (P \land \neg P)$.

Proof. 1. $P \land \neg P$ Assumption

- 2. $P \wedge E_1$, 1
- 3. $\neg P \land E_2, 1$
- $4. \perp \neg E, 2,3$
- 5. $\neg (P \land \neg P) \quad \neg I, 1-4$

7. Common Pitfalls & Tips

- Always discharge your assumptions (check each \rightarrow I or \neg I).
- Label rules precisely (e.g. " $\wedge E_1$ " not just " $\wedge E$ ").
- Don't skip justifications—each inference must cite its premises.

8. In-Class Practice

- 1. From $P \wedge (Q \vee R)$ derive $(P \wedge Q) \vee (P \wedge R)$.
- 2. Prove $(P \to Q) \to (\neg Q \to \neg P)$ using $\neg I$ and $\to I$.
- 3. Challenge: From $\neg P \rightarrow \neg Q$ and Q, derive P.

9. Summary & Next Steps

- Reviewed natural deduction proof format and core rules.
- Practiced introduction/elimination for \rightarrow , \land , \lor , \neg .
- Learned proof by cases and proof by contradiction.
- **Up Next:** Formal proof system properties (soundness, completeness) and extension to predicate logic.