Robust Adversarial Reinforcement Learning

Презентация Зойкина Александра

Проблема с RL в реальном мире

Симуляция, в которой мы обучаем, недостаточно отражает реальные условия

Решения

- Обучение в реальном мире мало данных для тренировки переобучение
- Обучение в симуляции физика отличается, параметров намного меньше

Как промоделировать неизвестные при обучении параметры?

Введем действие дестабилизирующих сил на агента. Агент не знает характеристики этих сил.

Второй агент

- Обучим второго RL-агента(врага) для применения дестабилизирующих сил во время обучения
- Врага награждаем если первый агент(протагонист) ошибается
- В расширенном варианте враг знает о мире больше протагониста и может менять физику среды, например, менять массу протагониста

RL-задача

- $(S, A_1, A_2, P, r, \gamma, s_0)$
- S состояния, A действия агентов,
- ullet $\mathcal{P}: \mathcal{S} imes \mathcal{A}_1 imes \mathcal{A}_2 imes \mathcal{S} o \mathbb{R}$ вероятность переходов
- ullet $r: \mathcal{S} imes \mathcal{A}_1 imes \mathcal{A}_2 o \mathbb{R}$ награда для обоих агентов
- ullet γ дисконт-фактор
- S_0 начальное состояние

функция награды протагонисту

$$R^{1} = E_{s_{0} \sim \rho, a^{1} \sim \mu(s), a^{2} \sim \nu(s)} \left[\sum_{s=0}^{n-1} r^{1}(s, a^{1}, a^{2}) \right].$$

где μ, v - политики 1 и 2 агентов соответственно, а а¹ и а² - предпринятые действия

Функция награды врага

$$R^2 \equiv R^2(\mu, \nu) = -R^1(\mu, \nu).$$

Игра с нулевой суммой

• Равновесие при

$$R^{1*} = \min_{\nu} \max_{\mu} R^{1}(\mu, \nu) = \max_{\mu} \min_{\nu} R^{1}(\mu, \nu)$$

Итоговый алгоритм

- Стандартный процесс оптимизации политики
- В каждой итерации оптимизируем сначала политику протагониста, затем врага

Зеленая линия - средняя награда бейзлайна. Синяя - средняя награда RARL. Площадь - разброс.

RARL везде лучше, но на Hopper еще и раброс меньше

Среднее и дисперсия для лучших политик на задачах

	InvertedPendulum	HalfCheetah	Swimmer	Hopper	Walker2d	Ant
Baseline	1000 ± 0.0	5093 ± 44	358 ± 2.4	3614 ± 2.16	5418 ± 87	5299 ± 91
RARL	1000 ± 0.0	5444 ± 97	354 ± 1.5	3590 ± 7.4	5854 ± 159	5482 ± 28

Исследуем теперь не лучшую, а среднюю политику из 50 обученных.

Враг обучался с фиксированной политикой протагониста.

На графике - награда в зависимости от перцентиля успешности политики

Действия алгоритмов в зависимости от изменения внешних условий - массы агента

Список источников

Оригинальная статья

http://proceedings.mlr.press/v70/pinto17a/pinto17a.pdf