1. A method of binding a kappa opioid receptor in a subject in need thereof, comprising:

administering to said subject a composition comprising a kappa opioid receptor antagonist and a physiologically acceptable carrier, wherein the kappa opioid receptor antagonist is a compound of formula (I):

$$S_{0}$$
 S_{0}
 S_{0

wherein Q is H or COC_{1-8} alkyl; R_1 is C_{1-8} alkyl, or one of the following structures:

$$\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$$
 $\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$ $\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$ $\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$

 $Y_{1} \text{ is H, ON, Br, Cl, F, CN, CF}_{3}, NO_{2}, N_{3}, OR_{8}, CO_{2}R_{9}, C_{1-6} \text{ alkyl, NR}_{10}R_{11}, NHCOR_{12}, \\ NHCO_{2}R_{12}, CONR_{13}R_{14}, CH_{2}(CH_{2})_{n}Y_{2};$

 $Y_2 \text{ is H, CF}_3, CO_2^3R_9, C_{l-6} \text{alkyl, NR}_{l0}R_{11}, \text{NHCOR}_{l2}, \text{NHCO}_2R_{l2}, \text{CONR}_{13}R_{l4}, \text{CH}_2\text{OH, CH}_2\text{OR}_8, \text{COCH}_2R_9;}$

 Y_3 is H, OH, Br, Cl, F, CN, CF₃, NO₂, N₃, OR₈, CO₂R₉, C_{I-6} alkyl, NR_{I0}R₁₁, NHCOR₁₂, NHCO₂R_{I2}, CONR₁₃R_{I4}, CH₂(CH₂) Y₂;

 R_2 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl or CH_2 aryl substituted by one or more groups Y_1 ;

 R_3 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl or CH_2 aryl substituted by one or more groups Y_1 .

wherein R₂ and R₃ may be bonded together to form a C₂₋₈ alkyl group;

 R_4 is hydrogen, C_{1-8} alkyl, CO_2C_{1-8} alkylary substituted by one or more groups Y_1 , CH_2 aryl substituted by one or more groups Y_1 , or CO_2C_{1-8} alkyl;

Z is N, O or S; where Z is O or S, there is no R_5

 R_5 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, $CH_2CQ_2C_{1-8}$ alkyl, CO_2C_{1-8} alkyl or CH_2 aryl substituted by one or more groups Y_1 ;

n is 0, 1, 2 or 3;

R₆ is a group selected from the group consisting of structures (a)-(bbb):

 $N_{R_7}^{(CH_2)}$ $NR_{10}R_{11}$ (a) (c) (b) ΉŃ $(H_2C)_n$ $\binom{1}{N}\binom{CH_2}{R_7}$ $(H_2C)_n$ N R₇ N´ R₇ (d) (e) **(f)** 'nΗ $(H_2C)_n$ $\binom{1}{CH_2}_n$ $\binom{N}{R_7}$ $\binom{CH_2}{n}$ N´ | R₇ (g) (h) (i) -37-

N R₇ (tt) N R₇ (uu) N R₇ (vv) $NR_{10}R_{11}$ NR₁₀R₁₁ N R₇ (ww) (xx) (yy) $R_{11}R_{10}N$ $\left(H_2C\right)_n$ $(CH_2)_n$ $NR_{10}R_{11}$ $NR_{10}R_{11}$ (zz) (aaa) (bbb)

5

X₁ is hydrogen, C₁₋₈ alkyl, C₃₋₈alkenyl, C₃₋₈alkynyl;

X₂ iş hydrogen, C_{1.8}alkyl, C_{3.8}alkenyl, C_{3.8}alkynyl;

or X_1 and X_2 together form =0, =S, =NH;

 R_7 is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$, $NHCO_{12}$, $NHCO_2R_{13}$, $CONR_{14}R_{15}$, $CH_2(CH_2)_nY_2$, $C(=NH)NR_{16}R_{17}$.

 R_8 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CONR_{13}R_{14}$, $CH_2(CH_2)_nY_{2:}$

 R_9 is H, $C_{1.8}$ alkyl\CH₂ aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$;

 R_{10} is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_{2:1}$

 R_{11} is H, C_{1-8} alkyl, C_{1-8} aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_n Y_2$

R₁₂ is H, C_{1.8} alkyl, CH₂\aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;

R₁₃ is H, C_{1.8} alkyl, CH₂ axyl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;

 R_{14} is H, $C_{1.8}$ alkyl, CH_2 ary substituted by one or more substituents Y_1 , $CH_2(CH_2)_n Y_2$

R₁₅ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂.

R₁₆ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;

and

 R_{17} is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$.

Y₃ is H;

 R_2 and R_3 are each, independently, H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, CH_2 aryl substituted by one or more substituents Y_1 ; and

R₆ is a group having a formula selected from the group consisting of structures (a)-(cc).

and pharmaceutically acceptable salts thereof.

- 3. The method of claim 1, wherein said kappa opioid receptor antagonist is a compound of formula (I) wherein Y_1 , Y_2 , R_4 , R_5 , Z, R_4 , R_5 , Z, R_4 , R_5 , R_5 , R_6 , R_7 , are as indicated above;
- R_1 is $C_{1.8}$ alkyl,

20

 Y_3 is H;

 R_2 and R_3 are each, independently, H or $C_{1.8}$ alkyl, wherein R_2 and R_3 cannot both be H at the same time;

R₆ is a formula selected from the structures (a)-(r); and

 R_7 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$, $NHCOR_{12}$, $NHCO_2R_{13}$, $CONR_{14}R_{15}$, or $CH_2(CH_2)_nY_2$.

4. The method of claim 1, wherein said kappa opioid receptor antagonist is a compound of formula (I) wherein Y_1 , Z, n, X_1 , X_2 and R_8 - R_{15} are as noted above;

 R_1 is C_{1-8} alkyl;

 $Y_2 \text{ is H, CF}_3, CO_2R_9, C_{1.6} \text{ alkyl, NR}_{10}R_{10}, \text{NHCOR}_{12}, \text{NHCO}_2R_{12}, \text{CONR}_{13}R_{14}, \text{CH}_2\text{OH, CH}_2\text{OR}_8, \text{COCH}_2R_9;}$

 Y_3 is H;

 R_2 and R_3 are each, independently, H or methyl, wherein R_2 and R_3 cannot both be H at the same time;

 R_4 is H, C_{1-8} alkyl, CO_2C_{1-8} alkyl, aryl substituted by one or more substituents Y_1 and the stereocenter adjacent to R_4 is in an (S) configuration;

 R_5 is H, C_{1-8} alkyl, $CH_2CO_2C_{1-8}$ alkyl;

 R_6 is a group having a formula selected from the group consisting of structures (a)-(c) and (h)-(o); and

 R_7 is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$, $NHCOR_{12}$, $NHCO_2R_{13}$, $CONR_{14}R_{15}$, or $CH_2(CH_2)_nY_2$.

5. The method of claim 1, wherein said kappa opioid receptor antagonist is a compound of formula (I), wherein Y_1 , Z, n, X_1 , X_2 and R_8 - R_{14} are as indicated above;

10

Ris methyl,

Y₂ is H, CF₃, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂OH, CH₂OR₈, COCH₂R₉;

Y₃ is H

 R_2 and R_3 are each H or methyl, such that when R_2 is H, R_3 is methyl and vice versa; R_4 is C_{1-8} alkyl, CO_2C_{1-8} alkyl, and the stereocenter adjacent to R_4 has a configuration of (S);

R₅ is H;

R₆ is a group having a formula selected from the group consisting of structures (a) and (b); and

 R_7 is H, C_{1-8} alkyl, C_{1-8}

- 6. The method of claim 1, wherein said kappa opioid receptor antagonist is a compound selected from formulae 14-21 of Fig. 1.
 - 7. A kappa opioid receptor antagonist compound represented by the formula (I):

$$R_3$$
 R_1
 R_2
 R_4
 R_6
 X_1
 X_2
 R_5
 X_1
 X_2

wherein Q is H or COC_{1-8} alkyl; R₁ is C_{1-8} alkyl, or one of the following structures:

$$\begin{pmatrix}
-C \\
H_2 \\
n
\end{pmatrix} Y_2
\qquad
\begin{pmatrix}
-C \\
H_2 \\
n
\end{pmatrix} Y_1$$

$$\begin{array}{c|c}
 & C \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

 $Y_{1} \text{ is H, OH, Br, Ch, F, CN, CF}_{3}, NO_{2}, N_{3}, OR_{8}, CO_{2}R_{9}, C_{1.6} \text{ alkyl, NR}_{10}R_{11}, NHCOR_{12}, NHCO_{2}R_{12}, CONR_{13}R_{14}, CH_{2}(CH_{2})_{n}Y_{2};$

 Y_2 is H, CF₃, CO₂R₉, C₁₋₀alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂OH, CH₂OR₈, COCH₂R₉;

 Y_3 is H, OH, Br, Cl, F, CN, $(CF_3, NO_2, N_3, OR_8, CO_2R_9, C_{1.6} \text{ alkyl}, NR_{10}R_{11}, NHCOR_{12}, NHCO_2R_{12}, CONR_{13}R_{14}, CH_2(CH_2)_nY_2,$

 R_2 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_3 alkynyl or CH_2 aryl substituted by one or more groups Y_1 ;

 R_3 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl or CH_2 aryl substituted by one or more groups $Y_{1:}$

wherein R₂ and R₃ may be bonded together to form a C₂₋₈ alkyl group;

 R_4 is hydrogen, C_{1-8} alkyl, CO_2C_{1-8} alkylary substituted by one or more groups Y_1 , CH_2 aryl substituted by one or more groups Y_1 or CO_2C_{1-8} alkyl;

Z is N, O or S; when Z is O or S there is no R₅\

 R_5 is H, $C_{1.8}$ alkyl, $C_{3.8}$ alkenyl, $C_{3.8}$ alkynyl, $CH_2CO_2C_{1.8}$ alkyl, $CO_2C_{1.8}$ alkyl or CH_2 aryl substituted by one or more groups Y_1 ;

n is 0, 1, 2 or 3;

R₆ is a group selected from the group consisting of structures (a)-(bbb):

 $\binom{N}{R_7}$ $\binom{CH_2}{n}_n$ $NR_{10}R_{11}$ (a) (c) (b) H ΉŃ $\big(H_2C\big)_n^{\checkmark}$ $\binom{1}{N}\binom{CH_2}{R_7}$ $(H_2C)_n$ N´ R₇ N R₇ (d) (e) **(f)** 'nН $(H_2C)_n$ $\begin{pmatrix} & & & \\ &$ $\binom{1}{N}\binom{CH_2}{R_7}$ N R₇ (g) (h) -47-

$$(H_{2}C)_{n}$$

$$R_{7}$$

 $(H_2C)_n$ ζĊH₂)_n $NR_{10}R_{11}$ $NR_{10}R_{11}$ $NR_{10}R_{11}$ (s) (u) **(t)** $(H_2C)_n$ $(H_2C)_n$ 'N' | | R₇ (v) N / R₇ (x) (w) Y₁×N. N N (z) **(**y**)** (aa)

N R₇ (tt) N R₇ (uu) N R₇ (vv) NR₁₀R₁₁ NR₁₀R₁₁ N R₇ (ww) (xx) (yy) $R_{11}R_{10}N$ $\left(H_2C\right)_n$ $(CH_2)_n$ $NR_{10}R_{11}$ $\dot{N}R_{10}R_{11}$ (zz) (aaa) (bbb)

5

X₁ is hydrogen, C₁₋₈ alkyl, C₃₋₈alkenyl, C₃₋₈alkynyl;

 X_2 is hydrogen, $C_{1.8}$ alkyl, $C_{3.8}$ alkenyl, $C_{3.8}$ alkynyl;

or X_1 and X_2 together form =0, =S, =NH;

 R_7 is $H^1_2C_{1-8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$,

NHCOR₁₂, NHC Q_2 R₁₃, CONR₁₄R₁₅, CH₂(CH₂)_nY₂, C(=NH)NR₁₆R₁₇;

 R_8 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CONR_{13}R_{14}$, $CH_2(CH_2)_nY_2$.

 R_9 is H, $C_{1.8}$ alky, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_n Y_2$;

 R_{10} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_n Y_2$;

 R_{11} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$.

 R_{12} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_n Y_2$

R₁₃ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;

R₁₄ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;

R₁₅ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;

R₁₆ is H, C_{1.8} alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂;

and

 R_{17} is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_n Y_2$ and pharmaceutically acceptable salts thereof.

8. The kappa opioid receptor antagonist compound of claim 7, wherein R_1 , R_4 , R_5 , Y_1 , Y_2 , Z, R_5 , X_1 , X_2 , and X_2 - X_1 are as indicated above;

 Y_3 is H;

 R_2 and R_3 are each, independently, H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, CH_2 aryl substituted by one or more substituents Y_1 ; and

 R_6 is a group having a formula selected from the group consisting of structures (a)-(cc).

9. The kappa opioid receptor antagonist compound of claim 7, wherein Y_1 , Y_2 , R_4 , R_5 , Z, R_4 , R_5 , are as indicated above;

 R_1 is C_{1-8} alkyl,

$$\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$$
 $\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$ $\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$ $\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$

20

25

5

Κ₃ is H;

 R_2 and R_3 are each, independently, H or C_{1-8} alkyl, wherein R_2 and R_3 cannot both be H at the same time;

R₆ is a formula selected from the structures (a)-(r) shown above; and

 R_7 is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$, $NHCOR_{12}$, $NHCO_2R_{13}$, $CONR_{14}R_{15}$, or $CH_2(CH_2)_nY_2$.

10. The kappa opioid receptor antagonist compound of claim 7, wherein Y_1 , Z, n, X_1 , X_2 and R_8 - R_{15} are as noted above;

R₁ is C₁₋₈ alkyl;

 Y_2 is H, CF₃, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂OH, CH₂OR₈, COCH₂R₉;

 Y_3 is H;

 R_2 and R_3 are each, independently. H or methyl, wherein R_2 and R_3 cannot both be H at the same time;

 R_4 is H, C_{1-8} alkyl, CO_2C_{1-8} alkyl, aryl substituted by one or more substituents Y_1 and the stereocenter adjacent to R_4 is in an (S) configuration;

 $R_5 \text{ is } H,\, C_{1\text{--}8} \text{ alkyl},\, CH_2CO_2C_{1\text{--}8} \text{ alkyl};$

R₆ is a group having a formula selected from the group consisting of structures (a)-(c) and (h)-(o); and

 R_7 is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$, $NHCOR_{12}$, $NHCO_2R_{13}$, $CONR_{14}R_{15}$, or $CH_2(CH_2)_nY_2$.

11. The kappa opioid receptor antagonist compound of claim 7, wherein Y_1 , Z, n, X_1 , X_2 and R_8 - R_{14} are as indicated above;

 R_1 is methyl,

 Y_2 is H, CF₃, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂OH, CH₂OR₈, COCH₂R₉;

Y₃ is H;

R₂ and R₃ are each H or methyl, such that when R₂ is H, R₃ is methyl and vice versa;

 R_4 is C_{1-8} alkyl, CO_2C_{1-8} alkyl, and the stereocenter adjacent to R_4 has a configuration of (S);

R₅ is H

R₆ is a group having a formula selected from the group consisting of structures (a) and (b); and

 R_7 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 or $CH_2(CH_2)_nY_2$.

- 12. The kappa opioid receptor antagonist of claim 7, wherein said compound is a compound selected from formulae 14-21 of Fig. 1.
 - 13. A pharmaceutical composition comprising:

an effective amount of a kappa opioid receptor antagonist and a physiologically acceptable carrier, wherein the kappa opioid receptor antagonist is a compound of formula (I):

$$R_3$$
 R_1
 R_2
 R_4
 R_6
 X_1
 X_2
 R_5
 X_1
 X_2

wherein Q is H or COC_{1-8} alkyl; R₁ is C_{1-8} alkyl, or one of the following structures:

$$\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$$
 $\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$ $\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$ $\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$

 Y_1 is H, OH, Br, Cl, F, CN, CF₃, NO₂, N₃, OR₈, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂(CH₂)_nY₂;

 Y_2 is H, CF_3 , CO_2R_9 , C_{1-6} alkyl, $NR_{10}R_{11}$, $NHCOR_{12}$, $NHCO_2R_{12}$, $CONR_{13}R_{14}$, CH_2OH , CH_2OR_8 , $COCH_2R_9$;

 Y_3 is H, OH, Br, Cl, F, CN, CF₃, NO₂, N₃, OR₈, CO₂R₉, C_{I-6} alkyl, NR_{I0}R₁₁, NHCOR₁₂, NHCO₂R_{I2}, CONR₁₃R_{I4}, CH₂(CH₂)_nY₂;

 R_2 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl or CH_2 aryl substituted by one or more groups Y_1 ;

 R_3 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl or CH_2 aryl substituted by one or more groups Y_1

wherein R₂ and R₃ may be bonded together to form a C₂₋₈ alkyl group;

 R_4 is hydrogen, C_{1-8} alkyl, CO_2C_{1-8} alkylaryl substituted by one or more groups Y_1 , CH_2 aryl substituted by one or more groups Y_4 , or CO_2C_{1-8} alkyl;

Z is N, O or S; when Z is O or S, there is no R₅

 R_5 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, $CH_2CO_2C_{1-8}$ alkyl, CO_2C_{1-8} alkyl or CH_2 aryl substituted by one or more groups Y_1 ;

n is 0, 1, 2 or 3;

 R_6 is a group selected from the group consisting of structures (a)-(bbb):

 $(H_2C)_n$ $\binom{1}{N}\binom{CH_2}{R_7}_n$ $\left(\overset{\cdot}{C}H_{2}\right) _{n}$ N´ R₇ $NR_{10}R_{11}$ (c) (b) H NH $\big(H_2C\big)_n^{\checkmark}$ $\binom{1}{N}\binom{CH_2}{R_7}$ $(H_2C)_n$ N´ R₇ N´ R₇ (d) (e) (f) 'nΗ $(H_2C)_{\widehat{n}}$ $\binom{1}{N}\binom{CH_2}{R_7}n$ $\binom{N}{R_7} \binom{CH_2}{n}_n$ N | R₇ (g) (h) -57-

 $(H_2C)_n$ (CH₂)_n
R₇
(k) $(H_2C)_n$ N´ | R₇ N / R₇ (j) **(**1) $(H_2C)_n$ N | | | R₇ N I R₇ (m) (n) (o) R_7 N R₇ N R₇ N Y_1 (r)(q) (p)

(CH₂)_n $\left(H_2 \underset{i}{C}\right)_{\!\! n}$ (bb) (cc) (dd) \mathbf{Y}_{1} $NR_{10}R_{11}$ $NR_{10}R_{11}$ N^x I R₇ (ee) (ff) (gg) ΝH ΝH $(H_2C)_n$ $\left(H_2C\right)_n$ NR₁₀R₁₁ $NR_{10}R_{11}$ N | R₇ (hh) (ii) (jj)

N' R₇ (tt) N R₇ (uu) N R₇ (vv) $NR_{10}R_{11}$ $NR_{10}R_{11}$ N R₇ (ww) (xx) **(**yy) R₁₁R₁₀N $(H_2C)_n$ $(\dot{C}H_2)_n$ $NR_{10}R_{11}$ $NR_{10}R_{11}$ (zz) (aaa) (bbb)

25

30

and

5

X is hydrogen, C₁₋₈ alkyl, C₃₋₈alkenyl, C₃₋₈alkynyl; X₂ is hydrogen, C₁₋₈alkyl, C₃₋₈alkenyl, C₃₋₈alkynyl;

or X_1 and X_2 together form =0, =S, =NH;

 R_7 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$, $NHCO_3R_{12}$, $NHCO_3R_{13}$, $CONR_{14}R_{15}$, $CH_2(CH_2)_nY_2$, $C(=NH)NR_{16}R_{17}$.

 R_8 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CONR_{13}R_{14}$, $CH_2(CH_2)_nY_2$;

 R_9 is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$; R_{10} is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$; R_{11} is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$; R_{12} is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$; R_{13} is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$; R_{14} is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$; R_{15} is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$; R_{16} is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$; R_{16} is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$;

 R_{17} is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$ or a pharmaceutically acceptable salt thereof.

14. The pharmaceutical composition of claim 13, wherein said kappa opioid receptor antagonist is a compound of formula (I), wherein R_1 , R_4 , R_5 , Y_1 , Y_2 , Z, n, X_1 , X_2 , and R_7 - R_{17} are as indicated above;

 Y_3 is H;

 R_2 and R_3 are each, independently, H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, C_{4-8} alkynyl, C_{3-8} alkynyl, C_{3-8}

 R_6 is a group having a formula selected from the group consisting of structures (a)-(cc).

15. The pharmaceutical composition of claim 13, wherein said kappa opioid receptor antagonist is a compound of formula (I), wherein Y_1 , Y_2 , R_4 , R_5 , Z, R_4 , R_5 , Z, R_5 , R_6 , R_8 - R_{15} are as indicated above;

 R_1 is C_{1-8} alkyl,

15

20

 Y_3 is H;

R₂ and R₃ are each, independently, H or C_{1.8} alkyl, wherein R₃ and R₃ cannot both be H at the same time;

R₆ is a formula selected from the structures (a)-(r) shown above; and

 R_7 is H, $C_{1.8}$ alkyl, $C\dot{H}_2$ aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$, NHCOR₁₂, NHCO₂R₁₃, CONR₁ $^{\uparrow}$ R₁₅, or CH₂(CH₂)_nY₂.

16. The pharmaceutical composition of claim 13, wherein said kappa opioid receptor antagonist is a compound of formula (I), wherein Y_1 , Z, n, X_1 , X_2 and R_8 - R_{15} are as noted above;

 R_1 is C_{1-8} alkyl;

 Y_2 is H, CF₃, CO₂R₉, C₁₋₆ alkyl, $N_{R_{10}}R_{11}$, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂OH, CH₂OR₈, COCH₂R₉;

 Y_3 is H;

R₂ and R₃ are each, independently, H or methyl, wherein R₂ and R₃ cannot both be H at the same time;

R₄ is H, C₁₋₈ alkyl, CO₂C₁₋₈alkyl, aryl substituted by one or more substituents Y₁ and the stereocenter adjacent to R_4 is in an (S) configuration;

 R_5 is H, $C_{1.8}$ alkyl, $CH_2CO_2C_{1.8}$ alkyl;

R₆ is a group having a formula selected from the group consisting of structures (a)-(c) and (h)-(o); and

R₇ is H, C_{1.8}alkyl, CH₂aryl substituted by one or more substituents Y₁, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₃, CONR₁₄R₁₅, or CH₂(CH₂)_nY₂.

5

7. The pharmaceutical composition of claim 13, wherein said kappa opioid receptor antagonist is a compound of formula (I), wherein Y_1 , Z, n, X_1 , X_2 and R_8 - R_{14} are as indicated above;

R₁ is methyl,

 Y_2 is H, CF_3 , CO_2R_9 , C_{1-6} alkyl, $NR_{10}R_{11}$, $NHCOR_{12}$, $NHCO_2R_{12}$, $CONR_{13}R_{14}$, CH_2OH , CH_2OR_8 , $COCH_2R_9$:

Y₃ is H;

R₂ and R₃ are each H or methyl, such that when R₂ is H, R₃ is methyl and vice versa;

 R_4 is C_{1-8} alkyl, CO_2C_{1-8} alkyl, and the stereocenter adjacent to R_4 has a configuration of (S);

R₅ is H;

R₆ is a group having a formula selected from the group consisting of structures (a) and (b); and

 R_7 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 or $CH_2(CH_2)_nY_2$.

- 18. The pharmaceutical composition of claim 13, wherein said kappa opioid receptor antagonist is a compound selected from formulae 14-21 of Fig. 1.
- 19. The pharmaceutical composition of claim 13 wherein said composition is an injectable composition.
- 20. The pharmaceutical composition of claim 13, wherein said composition is an orally administrable composition.
- 21. The pharmaceutical composition of claim 20, wherein said orally administrable composition is in a form selected from the group consisting of tablets, capsules, troches, powders, solutions, dispersions, emulsions and suspensions.

add add