A comparison of Double-DOP and DOP* Reconsidering non-trivial DOP estimators

Benno Kruit Sara Veldhoen

Supervised by:
Andreas van Cranenburg Khalil Sima'an

University of Amsterdam (UvA)

Project AI, January 2014

A comparison of Double-DOP and

Kruit, Veldhoen

Data Oriented Parsing

Bias and Consistency

Double-DOP and DOP*: a

comparison
Introduction to
Double-DOP and
DOP*

Comparison Experiments

Results

Parsing Performance Analyzing grammars

Data Oriented Parsing

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a comparison

Introduction to Double-DOP and DOP* Comparison Experiments

Results

Parsing Performance Analyzing grammars

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented Parsing

Introduction to DOP
Bias and Consistency

Double-DOP and DOP*: a

comparison
Introduction to
Double-DOP and
DOP*

Experiments

Results

Parsing Performance

Data Oriented Parsing Introduction to DOP

Bias and Consistency

Double-DOP and DOP*: a comparison

Introduction to Double-DOP and DOP

Comparison

Experiments

Results

Parsing Performance
Analyzing grammars

A comparison of Double-DOP and

Kruit, Veldhoen

Data Oriented Parsing

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a

comparison

Double-DOP and DOP *

Comparison Experiments

Results

Parsing Performand Analyzing grammar

Parsing

input: sentence

John Loves Mary

output: constituent tree

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented Parsing

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a

Introduction to
Double-DOP and
DOP*

Comparison Experiments

Results

Parsing Performanc Analyzing gramman

Parsing

input: sentence

John Loves Mary

output: constituent tree

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented Parsing

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a

comparison
Introduction to
Double-DOP and
DOP*

Comparison Experiments

Results

Parsing Performance Analyzing grammars

Grammar

A grammar describes:

- how trees can be built
 - CFG's elementary rules
 - ► TSG's larger units: fragments
- ▶ how likely constructions are: *probabilistic* grammars
 - ► PCFG's independence
 - ► PTSG's derivations

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented Parsing

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a

Introduction to
Double-DOP and
DOP*

Comparison Experiments

Results

Parsing Performance Analyzing grammars

Summarv

Grammar: CFG rules

 $S \rightarrow NP \ VP$ $VP \rightarrow V \ NP$ $NP \rightarrow John$ $NP \rightarrow Mary$ $V \rightarrow loves$

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented Parsing

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a

comparison

Introduction to Double-DOP an DOP*

Comparison Experiments

Reculto

Parsing Performance

Grammar: Tree fragments

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

ata Oriented

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a

comparison
Introduction to
Double-DOP and
DOP*

Comparison Experiments

Results

Parsing Performance Analyzing grammars

Grammar: Tree fragments

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

ata Oriented

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a

comparison

Introduction to Double-DOP and DOP*

Comparison Experiments

Results

Parsing Performance
Analyzing grammars

Data Oriented Parsing

Introduction to DOP

Bias and Consistency

Double-DOP and DOP*: a comparison

Introduction to Double-DOP and DOP*

Comparison

Experiments

Results

Parsing Performance
Analyzing grammars

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented Parsing

Bias and Consistency

Double-DOP and DOP*: a

comparison Introduction to Double-DOP and DOP*

Comparison Experiments

Results

esuits

Parsing Performance Analyzing grammars

Consistency

- Assumption
 - Language is an infinite parse tree distribution
 - Treebank is a finite sample
- Estimate the true distribution
- Expected estimation should improve when the treebank grows → expected loss should decline
- ▶ Consistency: Expected loss becomes 0 when the sample size approaches ∞

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented Parsing

Bias and Consistency

Double-DOP and DOP*: a

Introduction to Double-DOP and DOP*

omparison xperiments

oculte

esults

Parsing Performance Analyzing grammars

Bias

- Assumption
 - An estimator should approach any distribution
 - Even finite distributions!
- ▶ If there's a distribution that doesn't match its expected estimate, the estimator is **biased**.
- What about unseen data?
- ▶ Bias is **good**

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented Parsing

Bias and Consistency

Double-DOP and DOP*: a

comparison
Introduction to
Double-DOP and

Comparison Experiments

esults

suits arcing Darfor

Parsing Performance Analyzing grammars

Data Oriented Parsing Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a comparison Introduction to Double-DOP and DOP*

Comparison Experiments

Results

Parsing Performance
Analyzing grammars

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented Parsing

Bias and Consistency

Double-DOP and DOP*: a

Introduction to Double-DOP and DOP*

Comparison Experiments

Results

Parsing Performance

Double-DOP

Extraction: Maximal Overlap

Estimation: relative frequency

▶ Coverage: PCFG rules

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented Parsing

Bias and Consistency

Double-DOP and DOP*: a

Introduction to

Double-DOP and DOP*

Comparison Experiment

Result

Parsing Performance

▶ Held-out estimation - HC and EC

Extraction: Shortest derivations

Estimation: relative frequency in shortest derivations

Coverage: smoothing PCFG rules with probability p_{unkn}

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented

Double-DOP and

Introduction to Double-DOP and

DOP*

Data Oriented Parsing Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a comparison

Introduction to Double-DOP and DOP*

Comparison

Experiments

Results

Parsing Performance
Analyzing grammars

A comparison of Double-DOP and

Kruit, Veldhoen

Data Oriented Parsing

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a

comparison Introduction to Double-DOP and DOP*

Comparison Experiments

Results

Parsing Performan

Comparison

- ► Shortest derivations or Maximal overlap
- ► Split or full estimation
- Consistency

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

ata Oriented

Bias and Consistency

Double-DOP and DOP*: a

comparison

Double-DOP and DOP*

Comparison Experiments

_ ` .

Results

Parsing Performance Analyzing grammars

Summarv

Example

Figure: A toy treebank

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Oata Oriented Parsing

Introduction to DOP
Bias and Consistency

Double-DOP and DOP*: a

comparison
Introduction to
Double-DOP and
DOP*

Comparison Experiments

Results

Parsing Performance Analyzing grammars

Example

Figure: Some extracted fragments

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented Parsing

Bias and Consistency

 $\begin{array}{ll} \mathsf{Double}\text{-}\mathsf{DOP} \ \mathsf{and} \\ \mathsf{DOP}^*\colon \mathsf{a} \end{array}$

Introduction to Double-DOP and DOP*

Comparison Experiments

Results

Parsing Performance Analyzing grammars

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a comparison

esults

rsing Perfo

u., z.... 8 8. c

ummary

Comparison

	Maximal overlap	weight	Shortest deriv. ¹	weight
f1	(t1,t3),(t2,t4)	4/12	=	0
f2	(t1,t2)	2/12	1b, 2a	1/4
f3	(t2,t3)	2/12	2b, 3b	1/4
f4	(t3,t4)	2/12	3a, 4b	1/4
f5	(t1,t4)	2/12	1a, 4a	1/4
f6	(t1,t3),(t1,t4),	4/6	1a, 2b	1/2
	(t2,t3),(t2,t4)	•		
f7	-	0	3b, 4a	1/2
f8	CFG rule	2/6	-	0
f9	(t2,t3),(t2,t4),	4/6	2a, 3a	1/2
	(t3,t4)			
f10	-	0	1b, 4b	1/2
f11	CFG rule	2/6	-	0
f12	CFG rule	2/2	-	0
f13	CFG rule	2/2	-	0
				ı

Table : Weight assignment of MO and SD, full estimation

Data Oriented Parsing Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a comparison

Introduction to Double-DOP and DOP*
Comparison

Experiments

Results

Parsing Performance
Analyzing grammars

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented Parsing

Introduction to DOP
Bias and Consistency

Double-DOP and DOP*: a

comparison
Introduction to
Double-DOP and
DOP*

Comparison Experiments

Results

Parsing Performano Analyzing grammar

Experiments

Estimation and Parsing with the Disco-Dop framework. Three grammars:

- Maximal Overlap Full (Double-DOP)
- Maximal Overlap Split
- Shortest Derivation Split (DOP*)

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented

Double-DOP and

Experiments

Wall Street Journal (WSJ) section of the Penn Treebank Preprocessing:

- Removing functions
- ▶ Binarizing by Markovization (h=1 v=1)

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented

Double-DOP and

Experiments

Algorithm

Estimation

► Full: Maximal Overlap

Split: 10 random folds, interpolating results

- Maximal Overlap
- Shortest Derivation
- Smoothing
- Parsing
 - Input: sentences with sentences with a POS-tag attached to each word
 - Output: Parsing accuracy scores

A comparison of Double-DOP and

Kruit, Veldhoen

Data Oriented Parsing

Bias and Consistency

Double-DOP and DOP*: a

comparison

Double-DOP DOP*

Comparison

Experiments

Results

Parsing Performance

Figure: The grammars and their size

 $p_{unkn} = 1.41 \times 10^{-3}$

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Double-DOP and

Results

Data Oriented Parsing Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a comparison Introduction to Double-DOP and DOP* Comparison Experiments

Results

Parsing Performance

Analyzing grammars

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented Parsing

Bias and Consistency

Double-DOP and DOP*: a

Introduction to
Double-DOP and
DOP*
Comparison

Comparison Experiments

Results

Parsing Performance Analyzing grammars

Scores

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented

Double-DOP and comparison

Parsing Performance

	Maximal Overlap Full	Maximal Overlap Split	Shortest Deri
labeled recall	86.17	85.11	79.20
labeled precision	86.05	85.50	79.32
labeled f-measure	86.11	85.31	79.26
exact match	28.32	25.87	16.52

Table : Results for 1229 sentences of length ≤ 40

Data Oriented Parsing Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a comparison Introduction to Double-DOP and DOP* Comparison Experiments

Results

Parsing Performance

Analyzing grammars

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented Parsing

Introduction to DOP
Bias and Consistency

Double-DOP and DOP*: a

Introduction to
Double-DOP an
DOP*
Comparison

Comparison Experiments

Results

Parsing Performance Analyzing grammars

$\mathsf{Split} \leftrightarrow \mathsf{Full}$

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a

Introduction to Double-DOP and DOP* Comparison

experiments

Parsing Performance Analyzing grammars

Maximal overlap ↔ shortest derivation

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

ata Oriented

Introduction to DOP

Double-DOP and DOP*: a

Introduction to Double-DOP and DOP*

omparison xperiments

Results

Analyzing grammars

Summarv

Width

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented

Introduction to DOP

Double-DOP and DOP*: a

Introduction to Double-DOP and DOP*

Comparison Experiments

Results

Parsing Performance Analyzing grammars

Width

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented

Introduction to DOP

Double-DOP and DOP*: a

Introduction to
Double-DOP and

Comparison Experiments

Results

Parsing Performance Analyzing grammars

Summarv

Summary

- ► Shortest Derivation moves weight to larger fragments
- Split moves weight to smaller fragments
- Performance is not necessarily related to consistency: DOP* has bad parsing performance

- Outlook
 - Further analysis
 - Other estimators

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented

Introduction to DOP
Bias and Consistency

Double-DOP and DOP*: a

Introduction to Double-DOP and DOP*

Comparison Experiments

Results

Parsing Performance

Acknowledgments

- Andreas van Cranenburgh
- ▶ Khalil Sima'an

A comparison of Double-DOP and DOP*

Kruit, Veldhoen

Data Oriented Parsing

Introduction to DOP
Bias and Consistency

Double-DOP and DOP*: a

comparison Introduction to

Double-DOP DOP*

Comparison Experiments

Results

Parsing Performance Analyzing grammars