Homework 3

Problem 1. Prove the formula

$$\binom{r}{r} + \binom{r+1}{r} + \binom{r+2}{r} + \dots + \binom{n}{r} = \binom{n+1}{r+1}$$

Problem 2. For natural numbers $m \le n$ calculate (i.e. express by a simple formula not containing a sum) $\sum_{k=m}^{n} {k \choose m} {n \choose k}$.

Solution.
$$\binom{k}{m}\binom{n}{k} = \frac{k!}{m!(k-m)!} \cdot \frac{n!}{k!(n-k)!} = \frac{n!}{m!(n-m)!} \cdot \frac{(n-m)!}{(k-m)!(n-k)!} = \binom{n}{m}\binom{n-m}{n-k}$$

Thus
$$\sum_{k=m}^{n} \binom{k}{m} \binom{n}{k} = \sum_{k=m}^{n} \binom{n}{m} \binom{n-m}{n-k} = \binom{n}{m} \sum_{k=m}^{n} \binom{n-m}{n-k} = \binom{n}{m} 2^{n-m}$$
.

Problem 3. (a) Using **Problem 1.** for r = 2, calculate the sum $\sum_{i=2}^{n} i(i-1)$ and $\sum_{i=1}^{n} i^2$.

(b) Use (a) and **Problem 1.** for r = 3, calculate $\sum_{i=1}^{n} i^3$.

Solution.

1.

$$r=2:$$

$$\binom{2}{2}+\binom{3}{2}+\cdots+\binom{i}{2}+\cdots+\binom{n}{2}=\binom{n+1}{3}$$

Thus $\frac{\sum_{i=2}^{n} i(i-1)}{2!} = \binom{n+1}{3}$:: $\sum_{i=2}^{n} i(i-1) = 2\binom{n+1}{3}$

$$r=1$$
:
$$\binom{1}{1} + \binom{2}{1} + \dots + \binom{i}{1} + \dots + \binom{n}{1} = \binom{n+1}{2}$$

Thus $\therefore \sum_{i=1}^{n} i = \binom{n+1}{2}$.

Finally,
$$\sum_{i=1}^{n} i^2 = \sum_{i=1}^{n} (i(i-1) + i) = \sum_{i=1}^{n} i(i-1) + \sum_{i=1}^{n} i = \frac{n(n+1)(2n+1)}{6}$$

2.

$$r=3:$$

$$\binom{3}{3}+\binom{4}{3}+\cdots+\binom{i}{3}+\cdots+\binom{n}{3}=\binom{n+1}{4}$$

Thus
$$\frac{\sum_{i=3}^{n} i(i-1)(i-2)}{3!} = \binom{n+1}{4}$$
. $\therefore \sum_{i=3}^{n} i^3 - 3i^2 + 2i = 6\binom{n+1}{4}$,

. . .

The final result is $\binom{n+1}{2}^2$.

Problem 4. 1. Determine the coefficient of x^{50} in $(x^7 + x^8 + x^9 + x^{10} + \cdots)^6$

2. Determine the coefficient of x^3 in $(2+x)^{\frac{3}{2}}/(1-x)$

Solution.

1. = $x^{42}(1 + x + x^2 + x^3 + \cdots)^6$ = $x^{42} \prod_{i=1}^{6} (1 + x + x^2 + x^3 + \cdots)_i$

The coefficient of x^{50} is $\binom{8+6-1}{6-1} = \binom{13}{5}$.

2. $= (x+2)^{3/2}(1+x+x^2+\cdots)$ $= \sum_{k=0}^{\infty} {3/2 \choose k} x^k (2)^{3/2-k} (1+x+x^2+\cdots)$

The coefficient of x^3 is $\sum_{k=0}^{3} {3/2 \choose k} (2)^{3/2-k}$. Then use the Newton formula

Problem 5. Find generating functions for the following sequences (express them in a closed form, without infinite series!):

- 1. $0, 0, 0, 0, -6, 6, -6, 6, -6, \cdots$
- 2. $1, 0, 1, 0, 1, 0, \cdots$.
- *3.* 1, 2, 1, 4, 1, 8 · · ·

Solution.

Problem 6. Let a_n be the number of ordered triples (i, j, k) of integer numbers such that $i \ge 0$, $j \ge 1$, $k \ge 1$, and i + 3j + 3k = n. Find the generating function of the sequence $(a_0, a_1, a_2, \ldots$ and calculate a formula for a_n .

Solution.

$$(1+x+x^2+x^3+\cdots)(x^3+x^6+x^9+\cdots)(x^3+x^6+x^9+\cdots)$$

$$=\frac{1}{1-x}\frac{x^3}{1-x^3}\frac{x^3}{1-x^3}$$

$$=\frac{x^6(1+x+x^2)}{(1-x^3)^3}=x^6(1+x+x^2)(1-x^3)^{-3}.$$

Then use the generalized binomial theorem.

Sequence	Generating Function
$(1, 1, 1, 1, \ldots)$	$\frac{1}{1-x}$
$(1, -1, 1, -1, \ldots)$	$\frac{1}{1+x}$
$(-6, 6, -6, 6, \ldots)$	$\frac{-6}{1+x}$
$(0,0,0,0,-6,6,-6,6,\ldots)$	$\frac{-6x^4}{1+x}$
$(1,0,1,0,\ldots)$	$\frac{\frac{1}{1-x} + \frac{1}{1+x}}{2} = \frac{1}{1-x^2}$
$(0, 1, 0, 1, \ldots)$	$\frac{\frac{1}{1-x} - \frac{1}{1+x}}{2} = \frac{x}{1-x^2}$
$(1, 2, 4, 8, \ldots)$	$\frac{1}{1-2x}$
(2,4,8,)	$\frac{\frac{1}{1-2x}-1}{x} = \frac{2}{1-2x}$
$(1,0,2,0,4,0,8,\ldots)$	$\frac{1}{1-2x^2}$
$(1, 1, 2, 1, 4, 1, 8, \ldots)$	$\frac{1}{1-2x^2} + \frac{x}{1-x^2}$
$(1, 2, 1, 4, 1, 8, \ldots)$	$\frac{\frac{1}{1-2x^2} + \frac{x}{1-x^2} - 1}{x} = -\frac{2x^3 + 2x^2 - 2x - 1}{(1-2x^2)(1-x^2)}$