

NXP Tech Day – Paris

November 21st, 2019

Fabrice Poulard – Automotive Security Expert Group

SECURE CONNECTIONS FOR A SMARTER WORLD

Autonomy

Electrification

Connectivity

Global Mobility
Enabled by Safe and Secure Systems

Cybersecurity: Cryptography & More

Threats?

Crypto-Agility? Future Proof?

Incident Response?

Key Management?

Root-of-Trust?

System Integration?

Platform Security?

Standards? Compliance?

A Glimpse at Cybersecurity Threats in Automotive

Local Attacks

Remote Attacks

Tampering the odometer

Odometer Fraud Facts

452,000

APPROXIMATE NUMBER OF ODOMETER
FRAUD CASES PER YEAR IN THE UNITED
STATES

https://www.nhtsa.gov/equipment/odometer-fraud

Vehicle theft by relay attack

https://www.youtube.com/watch?v=8pffcngJJq0

Remote hack of an unaltered car (July 2015)

https://www.youtube.com/watch?v=MK0SrxBC1xs

Engine tuning

Workshop around the corner, or in your garage

Ransom for a drive

VDI Conference on IT Security for Vehicles (Berlin / July 2017)

Cyberattack Costs vs. Scalability

Security Measures

Holistic Approach – Solutions

		Prevent access	DETECT attacks	REDUCE impact	Fıx vulnerabilities
Secure Interfaces	•))	M2M Authentication & Firewalling			
Secure Domain Isolation		Firewalling (context-aware message filtering)	Intrusion Detection Systems (IDS)	Separated Functional Domains	Secure Updates
Secure Networks	묢	Secure Messaging		Message Filtering & Rate Limitation	
Secure Processing	⊕	Code / Data Authentication (@ start-up)	Code / Data Authentication (@ run-time)	Resource Control (virtualization)	

Holistic Approach – Solutions and Organization

		Prevent access	DETECT attacks	REDUCE impact	F ıx vulnerabilities
Secure Interfaces	•))	M2M Authentication & Firewalling			
Secure Domain Isolation		Firewalling (context-aware message filtering)	Intrusion Detection Systems (IDS)	Separated Functional Domains	Secure Updates
Secure Networks	묢	Secure Messaging		Message Filtering & Rate Limitation	
Secure Processing	⊕ *	Code / Data Authentication (@ start-up)	Code / Data Authentication (@ run-time)	Resource Control (virtualization)	
Secure Engineering		SDLC incl. Security Reviews & Testing,	Threat Monitoring, Intelligence Sharing,	Incident Management / Response	
		Security-Aware Organization, Policies, Governance			

Anatomy of a Secure Automotive ECU

Application Domain

Complex Subsystems
Multiple Processing Elements
Multiple Interfaces

Hardware Enforced Isolation

Secure Domain

Resistance to Local Attacks Root of Trust Acceleration of Security Primitives

NXP's Automotive Security Solutions

On-chip Secure Subsystems

Generic Set of Services

High Performance

Platform Control

S32's On-Chip Secure Subsystem: HSE

Accelerates

Cryptographic Operations

Conceals

All Secret Keys

Establishes Trust

Secure Boot + Root of Trust

Easily Integrates

In Your Design

Adapts

Through Secure Updates

Integrating NXP's HSE in Standard Security Stacks

Integrating NXP's HSE in Standard Security Stacks

HSE: Three Main Service Classes

Key Management

Key file management

Key import

Key export

Key generation

Key derivation

Key exchange

AES key up to 256 bits RSA key up to 4096 bits

Cryptographic **Operations**

AES

Encryption & decryption

CMAC / HMAC

Generation & verification

Hashing (SHA2 & SHA3)

RSA / ECC signature

Generation & verification

RSA OAEP / ECIES

Encryption & decryption

Random generation

All operations HW accelerated

Secure Boot Secure Use

Strict secure boot

Verify then start

Parallel secure boot

Start then verify

On-demand verification

Secure boot control in app.

Configurable sanctions

E.g. key usage restrictions

Secure boot optimized for speed

NXP's Automotive Security Solutions

Stand-alone Secure Subsystems Generic Set of Services High-resistance Against Local Attacks

NXP's Automotive Secure Element Certified against CC

NXP's Automotive Security Solutions

Security companions

Secure Element (SE)

Function-specific secure ICs

Secure CAN Transceiver (TJA115x)

Secure Ethernet Switch

Network frame analysis (L2/L3/L4)

Secure Car Access ICs

For advanced RKE / PKE solutions

V2X DSRC Baseband (SAF5x00)

Ultra-fast ECDSA verifications

Function-specific Secure IC: Secure CAN Transceiver

Simple CAN transceiver replacement

Pure hardware based solution (no software)

On-the-fly CAN ID whitelisting & blacklisting

Flooding prevention by leaky bucket principle

Immediate intrusion containment

Secure in-field reconfiguration possible

Function-specific Secure ICs: Secure Car Access Solutions

Introducing Ultra-Wideband (UWB) in Automotive

- Protection against car theft
 Security: ultimate countermeasure against relay attacks
- Door lock user recognition
 Convenience: individual movement pattern granting access
- Child seat positioning
 Safety: accurate guided positioning of the child seat
- Trailer recognition
 Convenience: approach-triggered trailer hitch
- Easy trunk opening
 Convenience: approach-triggered trunk opening

NXP's Holistic Approach to Product Security

Secure product engineering process Internal / external security evaluation (VA) Product Security IR Team (PSIRT) Broad portfolio of security solutions Security-aware organization (HW & SW / FW) Threat intelligence feed **PROCESSES SOLUTIONS & TECHNOLOGIES** Information security policies Researchers, industry partners, Site security (ISO 27001) Auto-ISAC, CERTs, ... Computer Security IR Team (CSIRT) Security Operations Center (SOC)

Security Culture and Organization – Matured Over Time

Some of the key milestones

Product Security Incident Response Team (PSIRT)

Manages Product Security Incidents

- Global across products / markets / regions
- Established in 2008 after the MIFARE Classic hack

Committed to Responsible Disclosure

- In alignment with the security community
- With our customers, partners, Auto-ISAC, CERTs

Continuous Improvement

 Evaluate and benchmark against Auto-ISAC's best practice guide for incident response management

Web site: www.nxp.com/psirt C

Contact: psirt@nxp.com

NXP's Security Organization

- Dedicated expert teams security as core competence
- Collaboration across organizations / teams / backgrounds / competences / markets
- Have expertise close to our customers

Training and Awareness – What do we do?

Training and Knowledge Transfer

- Regular basic security training
- Expert training on dedicated topics internally and through external partners

Awareness

- Regular bulletins and campaigns to increase awareness
- Internal and external information sharing, through:
 - Regular internal meetings and online portal
 - Workshops with partners
 - Bi-directional sharing with Auto-ISAC, CERTs, ...

Collaboration, Information Sharing

We collaborate with various third parties

Researchers, industry partners, CERTs, ...

We are an active member of the Auto-ISAC

A key forum and network for automotive cybersecurity

- Enables leveraging industry know-how & best practices, and sharing intelligence on threats & vulnerabilities
- Go-to-contacts for peer support and advise

Core values: collaboration, trust, confidentiality

Published 7 best practice guides

Valuable benchmark for any cybersecurity program

NXP was amongst the first suppliers to join the Auto-ISAC (Aug. 2016)

Standards & Best Practices

NXP participates in the development of various Automotive security standards

ISO/SAE 21434

SAE TEVEES18 (J3061, J3101, ...)

AUTOSAR WP-X-SEC

IEEE 1609 WAVE, ETSI TC ITS

Car Connectivity Consortium (CCC)

Digital Key Specification

Vehicle Safety & Cybersecurity Standards

Product Development – Security Maturity Process

Threat intelligence, BPWG, ...

Lessons learned (e.g. from IR)

Independent and un-biased reviews - "4 eyes" principle

Process implementation can be adjusted per project

Training and awareness

Standards (ISO 21434, SAE J3061, ...)

Your Key Takeaways!

Going further

www.nxp.com/automotivesecurity

blog.nxp.com/category/automotive

www.nxp.com/automotivesecurity

