

数值计算方法

纪庆革 主讲 中山大学计算机学院

E-mail: 1024180018@qq.com

第2章 插值法(+2节)

- ・内容提要
- ・2.1 引言
- ・2.2 拉格朗日插值
- 2.3 均差与牛顿插值公式
- 2.4 埃尔米特插值
- 2.5 分段低次插值
- · 2.6 三次样条插值(只要求概念等基本知识,不要求细节公式)

2.1 引言

- ・许多实际问题都用函数 y=f(x)来表示某种内在规律的数量关系
- 若已知 f(x) 在某个区间 [a,b] 上
 存在、连续,但只能给出 [a,b]
 上一系列点的函数值表时,
- 或者函数有解析表达式,但计算 过于复杂、使用不方便,

- ·通常也造一个函数值表(如三角函数表、对数表等)
- · 为了研究函数的变化规律,往往需要求出不在表上的函数值
- 因此希望根据给定的函数表做一个既能反映函数 f(x) 的特性,又便于计算的简单函数 P(x),
- •用 P(x) 近似 f(x) , 这就引出了插 值问题

1、提出问题(插值法的定义)

设函数 y = f(x) 在区间 [a,b] 上有定义,且已知在点 $a \le x_0 < x_1 < \cdots < x_n \le b$ 上的值 y_0, y_1, \cdots, y_n ,若存在一简单函数 P(x),使

$$P(x_i) = y_i \qquad (i = 0,1,\dots,n)$$

成立,就称 P(x)为 f(x)的插值函数,点 x_0, x_1, \dots, x_n 称为插值节点,包含插值节点的区间 [a,b] 称为插值区间,求插值函数 P(x)的方法称为插值法。

2、几何意义、外插、内插

3、插值的种类

- ・选取不同的函数族构造 P(x) 得到不同类型的插值
- ·若 P(x)是次数不超过 n 的代数 多项式,就称为多项式插值;
- ·若 P(x) 为分段的多项式,就称为分段插值;
- 若 P(x) 为三角多项式, 就称为 三角插值

- · 下面只讨论多项式插值与分段 插值
- 主要研究内容为如何求出插值 多项式,分段插值函数;讨论 插值多项式 *P(x)* 的存在唯一性、 收敛性及估计误差等

4、多项式插值问题

已知:函数 y = f(x) 在区间[a,b]上有定义及在点 $a \le x_0 < x_1 < \cdots < x_n \le b$

上的函数值 y_0, y_1, \dots, y_n 。

求: n 次多项式 $P(x) = a_0 + a_1 x + \cdots + a_n x^n$, 满足

$$P(x_i) = y_i \qquad (i = 0, 1, \dots, n)$$

 $P(x_i) = y_i$ $(i = 0, 1, \dots, n)$ (P(x)) 即为 f(x) 的插值多项式)

插值多项式的存在唯一性

对于多项式插值问题,插值条件满足等价于确定多项式的系数, 使其满足如下线性方程组

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \cdots & \cdots & \cdots & \cdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \cdots \\ a_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ f(x_2) \\ \cdots \\ f(x_n) \end{bmatrix}$$

$$(n+1) \times (n+1)$$

$$5 \times 2 \times 10^{-10} \text{ MeV}$$

$$(n+1) \times (n+1)$$

$$(n+1) \times ($$

其系数行列式为范德蒙 (Vandemonde) 行列式

$$D = \begin{vmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{vmatrix} = \prod_{0 \le i < j \le n} (x_j - x_i) \ne 0$$

· 定理2-1 (存在唯一性) 满足插值条件的不超过 n 次的插值 多项式是存在且唯一的

2.2 拉格朗日插值

• 一、线性插值与抛物线插值

•1、线性插值

线性插值问题: 已知函数 y = f(x) 在区间 $[x_k, x_{k+1}]$ 上有定义及 在端点函数值 $y_k = f(x_k)$, $y_{k+1} = f(x_{k+1})$, 要求线性插值多项式 $L_1(x)$,使它满足

$$L_1(x_k) = y_k, L_1(x_{k+1}) = y_{k+1}$$
°

L(x)的表达式可由几何意义直接给出:

$$L_{1}(x) = y_{k} + \frac{y_{k+1} - y_{k}}{x_{k+1} - x_{k}} (x - x_{k})$$
 (点斜式)

推验

$$L_{1}(x) = \frac{x_{k+1} - x}{x_{k+1} - x_{k}} y_{k} + \frac{x - x_{k}}{x_{k+1} - x_{k}} y_{k+1}$$
 (两点两项式)
$$= \frac{x - x_{k+1}}{x_{k} - x_{k+1}} y_{k} + \frac{x - x_{k}}{x_{k+1} - x_{k}} y_{k+1}$$

由两点两项式看出, $L_{\mathbf{l}}(x)$ 是由两个线性函数

$$l_k(x) = \frac{x - x_{k+1}}{x_k - x_{k+1}}, \qquad l_{k+1}(x) = \frac{x - x_k}{x_{k+1} - x_k}$$

的线性组合得到,其系数分别为 y_k 及 y_{k+1} ,即 $L_l(x) = l_k(x)y_k + l_{k+1}(x)y_{k+1}$ 其中, $l_k(x)$ 与 $l_{k+1}(x)$ 称为线性插值基函数,它们满足下面条件:

- (i) $l_k(x)$ 与 $l_{k+1}(x)$ 也是线性函数;
- (ii) 在节点 x_k 与 x_{k+1} 处满足:

$$l_k(x_k) = 1$$
 $l_k(x_{k+1}) = 0$, $l_{k+1}(x_k) = 0$ $l_{k+1}(x_{k+1}) = 1$

2、抛物插值(以上20f~22f)

抛物插值问题:已知函数 y = f(x) 在区间 $[x_{k-1}, x_{k+1}]$ 上有定义及 在节点 x_{k-1} 、 x_k 和 x_{k+1} 的函数值 $y_{k-1} = f(x_{k-1})$, $y_k = f(x_k)$, $y_{k+1} = f(x_{k+1})$, 要求抛物插值多项式 $L_2(x)$,使它满足

$$L_2(x_{k-1}) = y_{k-1}, L_2(x_k) = y_k, L_2(x_{k+1}) = y_{k+1}^{\circ}$$

基函数法求解

 $L_2(x)$ 表示为已知节点函数值的组合形式:

$$L_2(x) = l_{k-1}(x)y_{k-1} + l_k(x)y_k + l_{k+1}(x)y_{k+1}$$

其中,组合函数分别为 $l_{k-1}(x)$ 、 $l_k(x)$ 及 $l_{k+1}(x)$ 。

 $l_{k-1}(x)$ 、 $l_k(x)$ 与 $l_{k+1}(x)$ 通常称为抛物插值基函数,它们满足下面条件:

- (i) $l_{k-1}(x)$ 、 $l_k(x)$ 与 $l_{k+1}(x)$ 也是抛物线函数;
- (ii) 在节点 x_{k-1}, x_k 与 x_{k+1} 处满足:

$$l_{k-1}(x_{k-1}) = 1$$
 $l_{k-1}(x_k) = 0$ $l_{k-1}(x_{k+1}) = 0$;
 $l_k(x_{k-1}) = 0$ $l_k(x_k) = 1$ $l_k(x_{k+1}) = 0$;
 $l_{k+1}(x_{k-1}) = 0$ $l_{k+1}(x_k) = 0$ $l_{k+1}(x_{k+1}) = 1$.

求解基函数

先求基函数 $l_{k-1}(x)$

(1) 由 $l_{k-1}(x_k) = 0$ 与 $l_{k-1}(x_{k+1}) = 0$ 知 x_k 与 x_{k+1} 是函数 $l_{k-1}(x)$ 的零点,又由于 $l_{k-1}(x)$ 满足条件 (i),于是设

$$l_{k-1}(x) = A(x-x_k)(x-x_{k+1})$$
 (其中 A 为待定常数)

(2)由 $l_{k-1}(x_{k-1})=1$,得

$$l_{k-1}(x_{k-1}) = A(x_{k-1} - x_k)(x_{k-1} - x_{k+1})$$

于是

$$A = \frac{1}{(x_{k-1} - x_k)(x_{k-1} - x_{k+1})}$$

故有

$$l_{k-1}(x) = \frac{(x-x_k)(x-x_{k+1})}{(x_{k-1}-x_k)(x_{k-1}-x_{k+1})}$$

同理可得

$$l_{k}(x) = \frac{(x - x_{k-1})(x - x_{k+1})}{(x_{k} - x_{k-1})(x_{k} - x_{k+1})}$$
$$l_{k+1}(x) = \frac{(x - x_{k-1})(x - x_{k})}{(x_{k+1} - x_{k-1})(x_{k+1} - x_{k})}$$

抛物插值公式为

$$L_2(x) = \frac{(x - x_k)(x - x_{k+1})}{(x_{k-1} - x_k)(x_{k-1} - x_{k+1})} y_{k-1} + \frac{(x - x_{k-1})(x - x_{k+1})}{(x_k - x_{k-1})(x_k - x_{k+1})} y_k + \frac{(x - x_{k-1})(x - x_k)}{(x_{k+1} - x_{k-1})(x_{k+1} - x_k)} y_{k+1}$$

·二、拉格朗日插值多项式

・上面针对 n=1 和 n=2 的情况,得到了一次和二次插值多项式,这种用基函数表示的方法很容易推广到一般情况

・下面讨论如何构造 n+1 个节点的 n 次插值多项式

1、拉格朗日插值问题: 已知函数 y = f(x) 在区间[x_0, x_n] 上有定义及在 n+1 个节点 $x_0 < x_1 < \cdots < x_n$ 的函数值 $y_j = f(x_j)$ ($j = 0,1, \cdots n$)要求 n 次插值多项式 $L_n(x)$,使它满足 $L_n(x_i) = y_i$, ($j = 0,1, \cdots n$)

基函数法求解

 $L_n(x)$ 表示为已知节点函数值的基函数组合形式:

$$L_n(x) = \sum_{k=0}^n y_k l_k(x)$$

其中,组合系数为 y_k ,而 $l_k(x)$ 被称为n次插值基函数,满足下面条件:

- (i) $l_k(x)$ ($k = 0, 1, \dots, n$) 是不超过 n 的多项式函数;
- (ii) 在节点 x_k ($k = 0, 1, \dots, n$) 处满足

$$l_{j}(x_{k}) = \begin{cases} 1, & k = j \\ 0, & k \neq j \end{cases} (j, k = 0, 1, \dots n)_{\circ}$$

求基函数 $l_k(x)$ $(k = 0,1,\dots,n)$

(1) 由 $l_k(x_j) = 0$ $(j = 0, 1, \dots, k-1, k+1, \dots n)$ 知 x_j $(j = 0, 1, \dots, k-1, k+1, \dots n)$ 是

函数 $l_k(x)$ 的零点,又由于 $l_k(x)$ 满足条件(i),于是设

$$l_k(x) = A(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)$$
 (其中 A 为待定常数)

(2)由 $l_k(x_k)=1$,得

$$l_k(x_k) = A(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n) = 1$$

于是

$$A = \frac{1}{(x_k - x_0)\cdots(x_k - x_{k-1})(x_k - x_{k+1})\cdots(x_k - x_n)}$$

故有

$$l_k(x) = \frac{(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{(x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)}$$

若引入记号 $\omega_{n+1}(x) = (x-x_0)(x-x_1)\cdots(x-x_k)\cdots(x-x_n)$

易得
$$\omega'_{n+1}(x_k) = (x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)$$

则
$$l_k(x) = \frac{\omega_{n+1}(x)}{(x-x_k)\omega'_{n+1}(x_k)}$$

n次拉格朗日插值多项式 $L_n(x)$ 为

$$L_{n}(x) = \sum_{k=0}^{n} y_{k} \frac{\omega_{n+1}(x)}{(x - x_{k})\omega'_{n+1}(x_{k})}$$

(以上20-23f)

2、插值余项与误差估计

若在[a,b]上用 $L_n(x)$ 近似f(x),则其截断误差为 $R=f(x)-L_n(x)$,也称为插值多项式的余项,也记为 $R_n(x)$ 。

定理2-2 设 $f^{(n)}(x)$ 在 [a,b] 上连续, $f^{(n+1)}(x)$ 在 (a,b)内存在,节点 $a \le x_0 < x_1 < \cdots < x_n \le b$, $L_n(x)$ 是满足拉格朗日插值条件的多项式,则 对任何 $x \in [a,b]$,插值余项

$$R_{m}(x) = f(x) - L_{m}(x) = \frac{f^{(m+1)}(\xi)}{(n+1)!} \omega_{m+1}(x)$$

这里 $\xi \in (a,b)$ 且依赖于x。

证明:由条件知节点 $x_k(k=0,1,\dots,n)$ 是 $R_m(x)$ 的零点,即 $R_m(x_k)=0$ 。于是 $R_m(x)=K(x)(x-x_0)(x-x_1)\cdots(x-x_m)=K(x)\omega_{m+1}(x)$ 其中K(x)是与x有关的待定函数。

现把x看成[a,b]上的固定点,作函数

$$\phi(t) = f(t) - L_m(t) - K(x)(t - x_0)(t - x_1) \cdots (t - x_m)$$

根据插值条件和余项定义,知 $\phi(t)$ 在点 x_0, x_1, \dots, x_n 及x处均为零。 故 $\phi(t)$ 在[a,b]上有n+2个零点,根据罗尔定理, $\phi'(t)$ 在[a,b]内至少有n+1个零点。对 $\phi'(t)$ 再应用罗尔定理,可知 $\phi''(t)$ 在[a,b]内至少有n个零点。依次类推, $\phi^{(n+1)}(t)$ 在(a,b)上至少有一个零点,记为 $\xi \in (a,b)$,使 $\phi^{(m+1)}(\xi) = f^{(n+1)}(\xi) - (n+1)!K(x) = 0$ 可推验于是

$$K(x) = \frac{f^{(m+1)}(\xi)}{(n+1)!}$$
, $\xi \in (a,b)$, 且依赖于 x

于是得到插值余项。 证毕。

- ・定理2-2 表明:
- · (1) 插值误差与节点和插值点 x 之间的距离有关, x 距离 节点越近, 插值误差一般情况下越小
- (2) 若被插值函数 f(x) 本身就是不超过 n 次的多项式, 则有 $f(x) \equiv L_n(x)$

(3) 如果我们可以求出 $\max_{a < x < b} \left| f^{(n+1)}(x) \right| = M_{n+1}$,那么多项式L(x) 逼近f(x)的截断误差限是

$$\left|R_n(x)\right| \leq \frac{M_{n+1}}{(n+1)!} \left|\omega_{n+1}(x)\right|$$

当n=1时,线性插值余项为

$$R_1(x) = \frac{1}{2} f''(\xi) \omega_2(x) = \frac{1}{2} f''(\xi)(x - x_0)(x - x_1), \qquad \xi \in [x_0, x_1]$$

当n=2时,抛物插值余项为

$$R_2(x) = \frac{1}{6} f'''(\xi)(x - x_0)(x - x_1)(x - x_2), \qquad \xi \in [x_0, x_2]$$

当
$$f(x) = x^k (k \le n)$$
时,由于 $f^{(n+1)}(x) = 0$,于是有

$$R_n(x) = x^k - \sum_{i=0}^n x_i^k l_i(x) = 0$$

由此得

$$\sum_{i=0}^{n} x_i^k l_i(x) = x^k \qquad k = 0,1,\cdots n$$

特别当k = 0时,有

$$\sum_{i=0}^{n} l_i(x) = 1$$

3、应用举例

例2-1 已知 f(-2) = 2, f(-1) = 1, f(0) = 2, f(0.5) = 3, 试选用适合的插值节点通过二次插值多项式计算 f(-0.5) 的近似值,使之精度尽可能高。 例2-1 已知 f(-2)=2, f(-1)=1, f(0)=2, f(0.5)=3, 试选用适合的插值节点通过二次插值多项式计算 f(-0.5) 的近似值,使之精度尽可能高。

$$l_0 = \frac{(x-0)(x-0.5)}{(-1-0)(-1-0.5)} = \frac{2}{3}x(x-0.5)$$

$$l_1 = \frac{(x+1)(x-0.5)}{(0+1)(0-0.5)} = -2(x+1)(x-0.5)$$

$$l_2 = \frac{(x+1)(x-0)}{(0.5+1)(0.5-0)} = \frac{4}{3}x(x+1)$$

二次插值多项式为

$$L_2(x) = f(x_0)l_0(x) + f(x_1)l_2(x) + f(x_2)l_2(x) = l_0(x) + 2l_1(x) + 3l_2(x)$$

$$f(-0.5) \approx L_2(-0.5) = 1 \times l_0(-0.5) + 2 \times l_1(-0.5) + 3 \times l_2(-0.5) = \frac{4}{3}$$

例2-2 给定函数值表

X	10	11	12	13
lnx	2.302585	2.397895	2.484907	2.564949

用二次插值计算 In(11.25) 的近似值, 并估计误差。

解: 取节点
$$x_0 = 10$$
, $x_1 = 11$, $x_2 = 12$, 作二次插值
$$\ln(11.25) \approx L_2(11.25) = \frac{(11.25 - 11)(11.25 - 12)}{(10 - 11)(10 - 12)} \times 2.302585$$

$$+ \frac{(11.25 - 10)(11.25 - 12)}{(11 - 10)(11 - 12)} \times 2.397895$$

$$+ \frac{(11.25 - 10)(11.25 - 11)}{(12 - 10)(12 - 11)} \times 2.484907 = 2.420426$$

- 在区间[10,12]上 lnx 的三阶导数 $(2/x^3)$ 的上限 $M_3 = 0.002$,
- 可得误差估计式

$$|R_2(11.25)| \le \frac{M_3}{3!} | (11.25 - 10)(11.25 - 11)(11.25 - 12) | < 0.0000781$$

注:实际上, ln(11.25)=2.420368, $|R_2(11.25)|=0.000058$

例2-3(反插值法) 已知单调连续函数 y = f(x) 在如下采样点处的函数值

x_i	1.0	1.4	1.8	2.0
$y_i = f(x_i)$	-2.0	-0.8	0.4	1.2

求方程 f(x) = 0 在 [1,2] 内根的近似值 x^* , 使误差尽可能小。

分析:求解如上问题等价于求解 x 关于 y 的反函数问题

y_i	-2.0	-0.8	0.4	1.2	0
$f^{1}(y_{i})=x_{i}$	1.0	1.4	1.8	2.0	

解: 对 y = f(x) 的反函数 $x = f^{-1}(y)$ 进行三次插值,插值多项式为

$$L_{3}(y) = f^{-1}(y_{0}) \frac{(y - y_{1})(y - y_{2})(y - y_{3})}{(y_{0} - y_{1})(y_{0} - y_{2})(y_{0} - y_{3})}$$

$$+ f^{-1}(y_{1}) \frac{(y - y_{0})(y - y_{2})(y - y_{3})}{(y_{1} - y_{0})(y_{1} - y_{2})(y_{1} - y_{3})}$$

$$+ f^{-1}(y_{2}) \frac{(y - y_{0})(y - y_{1})(y - y_{3})}{(y_{2} - y_{0})(y_{2} - y_{1})(y_{2} - y_{3})}$$

$$+ f^{-1}(y_{3}) \frac{(y - y_{0})(y - y_{1})(y - y_{2})}{(y_{3} - y_{0})(y_{3} - y_{1})(y_{3} - y_{2})}$$

$$= 1.675 + 0.3271y - 0.03125y^{2} - 0.01302y^{3}$$

于是有

$$x^* = f^{-1}(0) \approx L_3(0) = 1.675$$

(以上20~22f)

例2-4 证明

(1)
$$\sum_{j=0}^{n} x_{j}^{k} l_{j}(x) \equiv x^{k} \quad (k = 0, 1, \dots, n)$$

(2) $\sum_{i=0}^{5} (x_i - x)^2 l_i(x) = 0$, 其中 $l_i(x)$ 是关于点 x_0, x_1, \dots, x_5 的插值基函数。

例2-4 证明

(1)
$$\sum_{j=0}^{n} x_{j}^{k} l_{j}(x) \equiv x^{k} \quad (k = 0, 1, \dots, n)$$

(2) $\sum_{i=0}^{5} (x_i - x)^2 l_i(x) = 0$, 其中 $l_i(x)$ 是美于点 x_0, x_1, \dots, x_5 的插值基函数。

证明: (1) 函数 x^k 及 $\sum_{j=0}^n x_j^k l_j(x)$ 均为被插值函数 x^k 的关于互异节点 $\left\{x_j\right\}_{j=0}^n$ 的

不超过n 次的插值多项式,利用插值多项式的唯一性知两者恒等。

(2)
$$\sum_{i=0}^{5} (x_i - x)^2 l_i(x) = \sum_{i=0}^{5} (x_i^2 - 2x_i x + x^2) l_i(x)$$
$$= \sum_{i=0}^{5} x_i^2 l_i(x) - \sum_{i=0}^{5} 2x_i x l_i(x) + \sum_{i=0}^{5} x^2 l_i(x)$$
$$= \sum_{i=0}^{5} x_i^2 l_i(x) - 2x \sum_{i=0}^{5} x_i l_i(x) + x^2 \sum_{i=0}^{5} l_i(x)$$
$$= x^2 - 2x^2 + x^2 = 0$$

不做要求

例2-5 设 $f \in C^2[a,b]$, 试证:

$$\max_{a \le x \le b} \left| f(x) - [f(a) + \frac{f(b) - f(a)}{b - a} (x - a)] \right| \le \frac{1}{8} (b - a)^2 M_2$$

其中 $M_2 = \max_{a \le r \le b} |f'(x)|$ 。记号 $C^2[a,b]$ 表示在区间[a,b]上二阶导数连续

的函数空间.

证明 通过两点(a, f(a)), (b, f(b))的线性插值为

$$l_1(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

于是

$$\max_{a \le x \le b} \left| f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)] \right|$$

$$= \max_{a \le x \le b} \left| f(x) - L_1(x) \right| = \max_{a \le x \le b} \left| \frac{f''(\xi)}{2}(x - a)(x - b) \right|$$

$$\le \frac{M_2}{2} \max_{a \le x \le b} \left| (x - a)(x - b) \right| = \frac{1}{8}(b - a)^2 M_2$$

2.3 均差 (差商) 与牛顿插值公式

- •一、均差及其性质
- 问题的引入: 拉格朗日插值多项式,公式结构紧凑,理论分析方便,但插值节点增减时全部插值及函数均要随之变化,实际计算不方便,希望把公式表示为如下形式:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \dots (x - x_{n-1})$$

其中 a_0, a_1, \dots, a_n 为待定系数。

满足的插值条件为

$$P_n(x_j) = f_j \quad (j = 0,1,\dots,n)$$

当
$$x = x_0$$
时, $P_n(x_0) = a_0 = f_0$

当
$$x = x_1$$
时, $P_n(x_1) = a_0 + a_1(x_1 - x_0) = f_1$,推得
$$a_1 = \frac{f_1 - f_0}{x_1 - x_0}$$

当
$$x = x_2$$
时, $P_n(x_2) = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) = f_2$,推得
$$a_2 = \frac{f_2 - (a_0 + a_1(x_2 - x_0))}{(x_2 - x_0)(x_2 - x_1)} = \frac{f_2 - f_0 - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$= \frac{(f_2 - f_0) - \frac{f_1 - f_0}{x_1 - x_0}(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)} = \frac{\frac{f_2 - f_0}{x_2 - x_0} - \frac{f_1 - f_0}{x_1 - x_0}}{x_2 - x_1}$$

依次递推可得到 a_3,\dots,a_n 。为此引入均差定义。

1、均差定义

定义(均差):

称
$$f[x_0, x_k] = \frac{f(x_k) - f(x_0)}{x_k - x_0}$$
 为函数 $f(x)$ 关于点 x_0, x_k 的一阶均差;

称
$$f[x_0,x_1,x_k] = \frac{f[x_0,x_k] - f[x_0,x_1]}{x_k - x_1}$$
 为函数 $f(x)$ 关于点 x_0,x_1,x_k 的二阶均差。

称
$$f[x_0, x_1, \dots, x_k] = \frac{f[x_0, \dots, x_{k-2}, x_k] - f[x_0, x_1, \dots, x_{k-2}, x_{k-1}]}{x_k - x_{k-1}}$$
 为函数 $f(x)$ 的 k 阶均差。

2、均差的基本性质

(1) k 阶均差可表为函数值 $f(x_0), \dots, f(x_k)$ 的线性组合,即

$$f[x_0,\dots,x_k] = \sum_{j=0}^k \frac{f(x_j)}{(x_j - x_0) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_k)}$$

性质(1) 表明均差与节点的排列次序无关,称为均差的对称性。即

$$f[x_0, \dots, x_k] = f[x_1, x_0, x_2, \dots, x_k] = \dots = f[x_1, x_2, \dots, x_k, x_0]$$

性质(2)
$$f[x_0, \dots, x_k] = \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}$$

性质(3) 若f(x)在[a,b]上存在n 阶导数,且节点 x_0 ,…, $x_n \in [a,b]$,则n 阶均差与导数关系如下:

均差计算表

Xi	$f(x_i)$	一阶	二阶均差	三阶均差	 n 阶均差
		均差			
X ₀	$f(x_0)$				
X ₁	$\int f(x_1)$	$f[x_0,x_1]$			
<i>X</i> ₂	$\int f(x_2)$	$\int f[x_1,x_2] \subset$	$f[x_0,x_1,x_2]$		
<i>X</i> ₃	$f(x_3)$	$f[x_2,x_3] -$	$f[x_1,x_2,x_3]$	$f[x_0, x_1, x_2, x_3]$	
:	•	•	•	•	 •
X_n	$\int f(x_n)$	$f[x_{n-1},x_n]$	$f[x_{n-2},x_{n-1},x_n]$	$f[x_{n-3}, x_{n-2}, x_2, x_3]$	 $f[x_0,x_1,\ldots,x_n]$

例 由函数y=f(x)的函数表写出均差表.

i	0	1	2	3
X _i	-2	-1	1	2
$f(\mathbf{x}_i)$	5	3	17	21

解 均差表如下:

i	Xi	$f(x_i)$	一阶均差	二阶均差	三阶均差
0	-2	5			
1	-1	3	-2		
2	1	17	7	3	
3	2	21	4	-1	-1

二、牛顿插值公式(以上20-23f)

根据均差定义,把x看成[a,b]上一点,可得 $f(x) = f(x_0) + f[x, x_0](x - x_0)$, $f[x, x_0] = f[x_0, x_1] + f[x, x_0, x_1](x - x_1)$, $f[x, x_0, x_1] = f[x_0, x_1, x_2] + f[x, x_0, x_1, x_2](x - x_2)$,

 $f[x, x_0, \dots, x_{n-1}] = f[x_0, x_1, \dots, x_n] + f[x, x_0, \dots, x_n](x - x_n),$ 只要把后一式代入前一式,就得到 $f(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots$ $+ f[x_0, x_1, \dots, x_n](x - x_0) \dots (x - x_{n-1}) + f[x, x_0, \dots, x_n](x - x_0) \dots (x - x_n)$ $= N_n(x) + R_n(x)$ 相当于: n+2个点n+1阶均差(对应n+1阶号)

其中

$$N_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots + f[x_0, x_1, \dots, x_n](x - x_0) \cdots (x - x_{n-1})$$

(称为牛顿插值多项式)

$$R_n(x) = f[x, x_0, \dots, x_n](x - x_0) \dots (x - x_n)$$
 (牛顿插值余项)

相当于: *n*+2个点*n*+1阶均差(对应*n*+1阶导)

误差计算(估算)的两种方式:

- (1) $f[x, x_0, \dots, x_n]$ 用 $f[x_0, \dots, x_{n+1}]$ 近似;
- (2) 令 $f(x) \approx N_n(x)$ 计算 $f[x, x_0, \dots, x_n]$ 值。

例2-6 对 "例如" 中的 f(x), 求节点为 x_0, x_1 的一次插值, x_0, x_1, x_2 的二次插值和 x_0, x_1, x_2, x_3 的三次插值多项式.

解 由均差表知 $f[x_0,x_1]=-2$, $f[x_0,x_1,x_2]=3$, $f[x_0,x_1,x_2,x_3]=-1$, 于是有

$$N_1(x)=5-2(x+2)=1-2x$$

$$N_2(x)=1-2x+3(x+2)(x+1)=3x^2+7x+7$$

$$N_3(x)=3x^2+7x+7-(x+2)(x+1)(x-1)=-x^3+x^2+8x+9$$

i	X _i	$f(x_i)$	一阶均差	二阶均差	三阶均差
0	-2	5			
1	-1	3	-2		
2	1	17	7	3	
3	2	21	4	-1	-1

例 2-7 给出 f(x) 的函数值表,求 4 次牛顿插值多项式,并计算 f(0.596) 的近似值。

X _i	$f(x_i)$	一阶均差	二阶均差	三阶均差	四阶均差	五阶
						均差
0.40	0.41075					
0.55	0.57815	1.11600				
0.65	0.69675	1.18600	0.28000			
0.80	0.88811	1.27573	0.35893	0.19733		
0.90	1.02652	1.38410	0.43348	0.21300	0.03134	
1.05	1.25382	1.51533	0.52493	0.22863	0.03126	-0.00012

$$N_4(x) = 0.41075 + 1.116(x - 0.4) + 0.28(x - 0.4)(x - 0.55)$$

 $+ 0.19733(x - 0.4)(x - 0.55)(x - 0.65)$
 $+ 0.03134(x - 0.4)(x - 0.55)(x - 0.65)(x - 0.8)$

于是

$$f(0.596) \approx N_4(0.596) = 0.63192$$

截断误差

$$|R_4(x)| \approx |f[x_0, \dots, x_5]\omega_5(0.596)| = 3.63 \times 10^{-9}$$

 $|R_4(x)| \approx |f[x_0, \dots, x_4, 0.596]\omega_5(0.596)| = ?$

误差计算(估算)的两种方式:

- (1) $f[x, x_0, \dots, x_n]$ 用 $f[x_0, \dots, x_{n+1}]$ 近似;
- (2)令 $f(x) \approx N_n(x)$ 计算 $f[x, x_0, \dots, x_n]$ 值。

2.4 埃尔米特插值

·不少实际的插值问题不但要求在节点上函数值相等,而且还要求对应的导数值也相等,甚至要求高阶导数也相等,满足这种要求的插值多项式就是埃尔米特(Hermite)插值多项式

• 定理3 设 $f \in C^n[a,b], x_0, x_1, \dots, x_n$ 为[a,b]上的相异节点,则 $f[x_0, x_1, \dots, x_n]$ 是其变量的连续函数

如果[a,b]上的节点互异,根据均差定义,若 $f \in C^1[a,b]$,则有

$$\lim_{x \to x_0} f[x_0, x] = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

由此定义重节点均差 $f[x_0,x_0] = \lim_{x \to x_0} f[x_0,x] = f'(x_0)$

类似地可定义重节点的二阶均差,当 $x_1 \neq x_0$ 时,有

$$f[x_0,x_0,x_1] = \frac{f[x_0,x_1] - f[x_0,x_0]}{x_1 - x_0}$$

性质(3) 若f(x)在[a,b]上存在n阶导数,且节点 $x_0, \dots, x_n \in [a,b]$,则n阶均差与导数关系如下:

$$f[x_0,\dots,x_n] = \frac{f^{(n)}(\xi)}{n!}, \quad \xi \in [a,b]$$

 $\min\{x_0, x_1, \dots, x_n\} \le \xi \le \max\{x_0, x_1, \dots, x_n\};$

当 $x_1, \cdots, x_n \to x_0,$ 我们有: $\xi \to x_0$

$$f[x_0, x_0, x_0] = \lim_{\substack{x_1 \to x_0 \\ x_2 \to x_0}} f[x_0, x_1, x_2] = \frac{1}{2} f'''(x_0)$$

一般地,可定义n阶重节点的均差

$$f[x_0, x_0, \dots, x_0] = \lim_{x_i \to x_0} f[x_0, x_1, \dots, x_n] = \frac{1}{n!} f^{(n)}(x_0)$$

• 若令 $x_i \to x_0 (i = 1, 2, \dots, n)$,则可得泰勒多项式:

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n \quad (4.2)$$

上式满足条件:

$$P_n^{(k)}(x_0) = f^{(k)}(x_0), \ k = 0, 1, \dots, n.$$
 (4.3)

• 称(4.2)式为泰勒插值多项式,是一个埃尔米特插值多项式,

例2-8 试用数据表建立不超过3次的埃尔米特插值多项式。

X	0	1	2
f(x)	1	2	9
f'(x)		3	

解法一(用重节点的均差表建立埃尔米特多项式)

X _i	$f(x_i)$	一阶均差	二阶均差	三阶均 差
0	1			
1	2	1		
1	2	3	2	
2	9	7	4	1

$$H_3(x) = f(0) + f[0,1](x-0) + f[0,1,1](x-0)(x-1)$$

$$+ f[0,1,1,2](x-0)(x-1)(x-1)$$

$$= 1 + 1 \times (x-0) + 2(x-0)(x-1)$$

$$+ 1(x-0)(x-1)(x-1) = x^3 + 1$$

余项表达式:

$$R(x) = f(x) - H_3(x) = \frac{f^{(4)}(\xi)}{4!}(x - 0)(x - 1)^2(x - 2)$$

(以上20-22f)

解法二 (待定系数法)

以已知函数值为插值条件的二次插值多项式为

$$N_2(x) = f(0) + f[0, 1](x - 0) + f[0, 1, 2](x - 0)(x - 1)$$

= 1 + 1 \times (x - 0) + 3 \times (x - 0)(x - 1)
= 3x^2 - 2x + 1

设待求插值函数为

$$H_3(x) = N_2(x) + k(x-0)(x-1)(x-2)$$

$$H_3'(x) = 6x - 2 + [k(x-0)(x-1)(x-2)]'$$

令
$$H'_3(1) = f'(1) = 3$$
, 即 $4-k=3$, 求得 $k=1$ 。

进而有
$$H_3(x) = N_2(x) + (x-0)(x-1)(x-2)$$

= $x^3 + 1$

例6 设 $f(x) \in C^{4}[0, 2]$,且f(0)=1,f(1)=0,f(2)=3,f'(1)=0,试求f(x)的三次插值多项式 $H_{3}(x)$,并给出余项.

解 法1(基函数法): 设

$$H_3(x) = \varphi_0(x) y_0 + \varphi_1(x) y_1 + \varphi_2(x) y_2 + \psi_1(x) y_1'$$

= $\varphi_0(x) + 3\varphi_2(x)$

则
$$\varphi_0(X) = C_0(X-1)^2(X-2) = -1/2(X-1)^2(X-2)$$

$$\varphi_2(X) = c_2 X(X-1)^2 = 1/2X(X-1)^2$$

所以

$$H_3(x) = -1/2(x-1)^2(x-2) + 3/2x(x-1)^2$$

$$= 1/2(x-1)^2[(2-x) + 3x]$$

$$= (x-1)^2(x+1)$$

法2(待定系数法): 设

$$H_3(X) = (X-1)^2 (\underline{aX+b})$$

由 $H_3(0)=1$ 得:b=1,由 $H_3(2)=3$ 得:2a+b=3

解得 a=1, b=1.

所以 $H_3(X) = (X-1)^2(X+1)$

记 $R_3(x) = f(x) - H_3(x)$,则 $R_3(0) = R_3(1) = R_3(2) = R_3'(1) = 0$ 于是, $R_3(x) = C(x) x(x-1)^2 (x-2)$

对于任一 $x \in [0, 2], x \neq 0, 1, 2,$ 构造函数:

$$\varphi(t) = f(t) - H_3(t) - C(x) t(t-1)^2(t-2)$$

由于 $\varphi(0) = \varphi(1) = \varphi(2) = \varphi'(1) = \varphi(x) = 0$,可得

$$R_3(x) = f(x) - H_3(x) = \frac{f^{(4)}(\xi_x)}{4!} x (x-1)^2 (x-2)$$

2.5 分段低次插值

・一般误解认为: $L_n(x)$ 的次数 n 越高,逼近 f(x)的精度越好。但实际上并非如此。这是因为对任意的插值节点,当 n->∞时, $L_n(x)$ 不一定收敛于 f(x)

• 20世纪初龙格(Runge)就给了一个等距节点插值多项式 $L_n(x)$ 不一定收敛于f(x)的例子

对 $f(x) = (1+25x^2)^{-1}$,在区间 [-1,1] 上取等距节取 $x_i = -1 + ih$, $i = 0,1,\dots,10$,h = 0.2,作 f(x) 关于节点 $x_i(i = 0,1,\dots,10)$ 的10次插值插值多 $L_{10}(x)$,

二、分段线性插值

分段线性插值就是通过插值点用折线段连接起来逼近 f(x).

Figure 5.11 Piecewise linear interpolation (a linear spline).

Linear Spline function
 SUN YAT-SEN LY

$$S(x) =$$

$$\begin{cases} y_0 + d_0(x - x_0) & \text{for } x \text{ in } [x_0, x_1], \\ y_1 + d_1(x - x_1) & \text{for } x \text{ in } [x_1, x_2], \\ \vdots & \vdots & \vdots \\ y_k + d_k(x - x_k) & \text{for } x \text{ in } [x_k, x_{k+1}], \\ \vdots & \vdots & \vdots \\ y_{N-1} + d_{N-1}(x - x_{N-1}) & \text{for } x \text{ in } [x_{N-1}, x_N] \end{cases}$$
 $S(x) =$

$$\begin{cases} y_0 + d_0(x - x_0) & \text{for } x \text{ in } [x_0, x_1], \\ \vdots & \vdots & \vdots \\ y_k + d_k(x - x_k) & \text{for } x \text{ in } [x_1, x_2], \\ \vdots & \vdots & \vdots \\ y_{N-1} + d_{N-1}(x - x_{N-1}) & \text{for } x \text{ in } [x_N, x_N] \end{cases}$$

2.6 三次样条插值

- 样条曲线实际上是由分段三次曲线拼接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念
- ·最常用的三次样条函数如下:

•一、三次样条函数

定义 若函数 $S(x) \in C^2[a,b]$,且在每个小区间 $[x_j,x_{j+1}]$ 上是三次多项式,其中 $a = x_0 < x_1 < \dots < x_n = b$ 是给定节点,则称 S(x) 是节点 x_0,x_1,\dots,x_n 上的三次样条函数。若在节点 x_j 上给定函数值 $y_j = f(x_j)(j=0,1,\dots,n)$ 成立 $S(x_j) = y_j$, $j=0,1,\dots,n$

则称 S(x) 为三次样条插值函数。

每个小区间上要确定4个待定系数,共有n个小区间,故应确定4n个参数

Piecewise cubic spline

Definition 5.1. Suppose that $\{(x_k, y_k)\}_{k=0}^N$ are N+1 points, where $a=x_0 < x_1 < \cdots < x_N = b$. The function S(x) is called a *cubic spline* if there exist N cubic polynomials $S_k(x)$ with coefficients $s_{k,0}$, $s_{k,1}$, $s_{k,2}$, and $s_{k,3}$ that satisfy the following properties:

I.
$$S(x) = S_k(x) = s_{k,0} + s_{k,1}(x - x_k) + s_{k,2}(x - x_k)^2 + s_{k,3}(x - x_k)^3$$

for $x \in [x_k, x_{k+1}]$ and $k = 0, 1, ..., N - 1$.

II.
$$S(x_k) = y_k$$
 for $k = 0, 1, ..., N$.

III.
$$S_k(x_{k+1}) = S_{k+1}(x_{k+1})$$
 for $k = 0, 1, ..., N-2$.

IV.
$$S'_k(x_{k+1}) = S'_{k+1}(x_{k+1})$$
 for $k = 0, 1, ..., N - 2$.

V.
$$S_k''(x_{k+1}) = S_{k+1}''(x_{k+1})$$
 for $k = 0, 1, ..., N-2$.

We will define the distance between consecutive x-values to be h.

$$h=x_2-x_1=\cdots=x_n-x_{n-1}$$

And for the sake of simplicity...

$$M_i = S''(x_i)$$

$$1 \le i \le n$$

The substitution of M and h into the derivations lead us to the equations of our coefficients...

$$\begin{aligned} &a_i = (M_{i+1} - M_i)/6h \\ &b_i = M_i/2 \\ &c_i = (y_{i+1} - y_i)/h - (M_{i+1} + 2M_i)h/6 \\ &d_i = y_i \end{aligned}$$

$$s_i(x) = a_i(x-x_i)^3 + b_i(x-x_i)^2 + c_i(x-x_i) + d_i$$

 $1 \le i \le n-1$

We can now determine the M values which define the cubic spline with the equations...

$$M_i + 4M_{i+1} + M_{i+2} = \frac{6(y_i - 2y_{i+1} - y_3)}{h^2}$$

$$1 \le i \le n-2$$

注意: 与数值微分的关系!

Or, more simply, with the matrix equation ...

$$=\frac{6}{h^{2}}\begin{bmatrix} y_{1}-2y_{2}+y_{3} \\ y_{2}-2y_{3}+y_{4} \\ y_{3}-2y_{4}+y_{5} \\ \vdots \\ y_{n-4}-2y_{n-3}+y_{n-2} \\ y_{n-3}-2y_{n-2}+y_{n-1} \\ y_{n-2}-2y_{n-1}+y_{n} \end{bmatrix}$$

Natural Splines...

-the ends of the spline curve extend beyond the boundaries of the data and become linear.

Second derivative is zero at the endpoints.

$$M_1 = M_n = 0$$

resulting in the curve degrading to a line at the endpoints.

Natural Spline:

Cubic Runout Spline:

$$M_n = 2M_{n-1} - M_{n-2}$$

and

$$M_1 = 2 M_2 - M_3$$

Causing the spline to reduce to a single cubic curve extending beyond the endpoints.

Cubic Runout Spline:

Splines and integration:

uh oh...

$$\int_{2}^{3} \frac{\sin x}{x} dx$$

Si(3) -Si(2)

or...

natural: .24545 exact: .24324

parabolic: .24491

cubic: .2435

知 识 结 构 冬 多项式 插值 插值法 分段多项 式插值

存在唯一性 插值公式 Lagrange插值多项式 Newton插值多项式 等距节点插值公式 「存在唯一性 Hermite插值 误差估计 插值公式 分段线性插值(公式、误差估计、收敛性) 分段三次Hermite插值(公式、误差估 计、收敛性) 三次样条插值(公式、存在唯一

性、误差估计、收敛性)

(以上20-22f)

复习与思考题(无需提交)

P47: 1, 2, 3, 4, 7, 9

习题(需提立)

P48: 1, 2

Thanks!

纪庆革 主讲

中山大学计算机学院

E-mail: 1024180018@qq.com