

Logistic regression

Consider a dataset $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ such that $x_i \in \mathbb{R}^m$ and $y_i \in \{0, 1\}$ for all i.

For $w \in \mathbb{R}^m$ and $b \in \mathbb{R}$, define $z_i = w^\mathsf{T} x_i + b$ and $p_i = \mathsf{Sigmoid}(z_i) = \frac{1}{1 + \mathsf{exp}(-z_i)}$.

 p_i is the probability that the true label is 1 for x_i for a model parameterized by $w \in \mathbb{R}^m$ and $b \in \mathbb{R}$.

Cross-entropy loss. For each sample (x_i, y_i) , define

$$\ell_i(w,b) = -\left[y_i \log\left(\frac{1}{1 + \exp\left(-z_i\right)}\right) + (1 - y_i) \log\left(\frac{\exp\left(-z_i\right)}{1 + \exp\left(-z_i\right)}\right)\right]$$

Optimization problem.

$$\begin{array}{ll} \text{Minimize} & \mathcal{L}(w,b) \coloneqq \frac{1}{n} \sum_{i=1}^n \ell_i(w,b) \end{array}$$

The loss function $\mathcal{L}(w, b)$ is differentiable and convex (why?).

Unconstrained minimization

Optimization problem:

$$\underset{w \in \mathbb{R}^d}{\mathsf{Minimize}} \quad f(w)$$

If *f* is differentiable then by Taylor's **first-order approximation**:

$$f(w') = f(w) + \langle \nabla f(w), w' - w \rangle + o(||w' - w||),$$

where $\lim_{r\to 0} \frac{o(r)}{r} = 0$ and o(0) = 0.

Descent methods. Initial guess w_1 , updated iteratively as $w_{t+1} = w_t + u_t$ to generate a *relaxation sequence* $\{f(w_t)\}_{t=1}^{\infty}$, i.e., $f(w_{t+1}) \leq f(w_t)$.

If f(w) is lower bounded for all $w \in \mathbb{R}^d$, the above sequence converges.

Gradient descent

Method of gradient descent. For $\gamma_t \in \mathbb{R}_{++}$, update rule: $w_{t+1} = w_t - \gamma_t \nabla f(w_t)$.

$$f(w_{t+1}) = f(w_t) - \gamma_t \|\nabla f(w_t)\|^2 + o(\gamma_t \|\nabla f(w_t)\|).$$

For small enough γ_t , we have: (why?)

$$f(w_{t+1}) \le f(w_t) - c_t \gamma_t \|\nabla f(w_t)\|^2 \le f(w_t),$$

for some $c_t \in (0,1]$.

$$f(w_{t+1}) = f(w_t) \iff \nabla f(w_t) = 0$$
, and w_t is referred to as a **stationary point**.

If f is a convex function, gradient descent method converges to a minimum point.

Rate of convergence: Lipschitzness

Approximate stationarity. How many iterations until $\|\nabla f(w_t)\| \leq \varepsilon$?

This generally depends on how "nicely" can the *residue* $o(\cdot)$ be bounded.

Lipschitz smoothness. There exists $L \in \mathbb{R}_+$ such that $\|\nabla f(w) - \nabla f(w')\| \le L \|w - w'\|$. In that case,

$$o(\|w'-w\|) \leq \frac{L}{2} \|w'-w\|^2$$
.

Thus, method of gradient descent yields,

$$f(w_{t+1}) \leq f(w_t) - \gamma_t \left(1 - \gamma_t \frac{L}{2}\right) \|\nabla f(w_t)\|^2.$$

Rate of convergence: choosing the right step-size

Method of gradient descent. For $\gamma_t \in \mathbb{R}_{++}$, update rule: $w_{t+1} = w_t - \gamma_t \nabla f(w_t)$.

Under L-Lipschitz smoothness, we obtain that

$$f(w_{t+1}) \le f(w_t) - \gamma_t \left(1 - \gamma_t \frac{L}{2}\right) \|\nabla f(w_t)\|^2.$$

- Constant step-size. For all iterations t, $\gamma_t = \gamma$
- Diminishing step-size. For all iterations t, $\gamma_t = \frac{\gamma_o}{\sqrt{t}}$
- **Armijo rule.** For each iteration t, determine γ_t such that

$$|f(w_t) - \beta \gamma_t ||\nabla f(w_t)||^2 \le f(w_{t+1}) \le f(w_t) - \alpha \gamma_t ||\nabla f(w_t)||^2$$

where $0 < \alpha < \beta < 1$.

Rate of convergence: constant learning rate

$$f(w_{t+1}) \le f(w_t) - \gamma (1 - \gamma \frac{L}{2}) \|\nabla f(w_t)\|^2$$
.

Suppose $\gamma \leq \frac{1}{L}$. Then,

$$f(w_{t+1}) \le f(w_t) - \frac{\gamma}{2} \|\nabla f(w_t)\|^2$$
.

Therefore,

$$\frac{\gamma}{2} \sum_{t=1}^{T} \|\nabla f(w_t)\|^2 \le f(w_1) - f(w_{T+1}) \le f(w_1) - f^*,$$

where $f^* = \min f(w)$. Hence, $\frac{1}{T} \sum_{t=1}^{T} \|\nabla f(w_t)\|^2 \leq \frac{2}{T} (f(w_1) - f^*)$, which implies that

$$\min_{t \in [T]} \|\nabla f(w_t)\| \leq \sqrt{\frac{2}{T}(f(w_1) - f^*)} \in \mathcal{O}\left(\frac{1}{\sqrt{T}}\right).$$

Gradient descent under Lipschitz smoothness & convexity

When f is convex (and L-Lipszhitz smooth), $\langle \nabla f(w) - \nabla f(w'), w - w' \rangle \geq \frac{1}{L} \|\nabla f(w) - \nabla f(w')\|^2$.

Let w^* be a minimizer of f(w). Then,

$$||w_{t+1} - w^*||^2 \le ||w_t - w^*||^2 - 2\gamma \langle \nabla f(w_t), w_t - w^* \rangle + \gamma^2 ||\nabla f(w_t)||^2$$

= $||w_t - w^*||^2 - \gamma \left(\frac{2}{l} - \gamma\right) ||\nabla f(w_t)||^2$.

Suppose $\gamma \leq \frac{1}{L}$. Then, $\|w_t - w^*\|^2 \leq \|w_1 - w^*\|^2$. Recall that, under *L*-Lipschitz smoothness,

$$f(w_{t+1}) \leq f(w_t) - \frac{\gamma}{2} \|\nabla f(w_t)\|^2$$
.

Due to convexity, $f(w_t) - f^* \le \langle \nabla f(w_t), w_t - w^* \rangle \le \|w_t - w^*\| \|\nabla f(w_t)\| \le \|w_1 - w^*\| \|\nabla f(w_t)\|$. Thus, $f(w_{t+1}) \le f(w_t) - \frac{\gamma}{2\|\|w_t - w^*\|^2} \left(f(w_t) - f^*\right)^2.$

From above we obtain that (why?), $f(w_T) - f^* \in \mathcal{O}\left(\frac{1}{T}\right)$.

Gradient descent under Lipschitz smoothness & strong convexity

When f is μ -strongly convex, $2\mu(f(w) - f^*) \leq \|\nabla f(w)\|^2$.

Recall that, under *L*-Lipschitz smoothness, when $\gamma \leq \frac{1}{L}$ we have:

$$f(w_{t+1}) \le f(w_t) - \frac{\gamma}{2} \|\nabla f(w_t)\|^2$$
.

Therefore, under strong convexity,

$$f(w_{t+1}) - f^* \le (1 - \mu \gamma) (f(w_t) - f^*).$$

Hence (why?), $f(w_T) - f^* \in \mathcal{O}\left(\exp\left(-\frac{1}{\kappa}T\right)\right)$, where $\kappa = \frac{L}{\mu}$ is the *condition number* of f(w).

Method of stochastic gradient descent (SGD)

In ML the loss function is the sum of point-wise loss functions: $\mathcal{L}(w) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \ell_i(w)$.

Gradient descent does not scale well with n. A more practical approach:

$$g_t = \frac{1}{b} \sum_{i \in B} \nabla \ell_i(w_t),$$

where B is a random subset of S called a **batch** of size b called the **batch-size**.

Given w_t , we have: $\mathbb{E}\left[g_t\right] = \nabla \mathcal{L}(w_t)$ and we assume: $\mathbb{E}\left[\|\nabla \ell_i(w_t) - \mathcal{L}(w_t)\|^2\right] \leq \sigma^2$.

SGD update rule: $w_{t+1} = w_t - \gamma_t g_t$.

SDG under Lipschitz smoothness & strong convexity

Due to *L*-Lipchitz smoothness, $\mathcal{L}(w_{t+1}) \leq \mathcal{L}(w_t) - \gamma_t \left\langle \nabla \mathcal{L}(w_t), g_t \right\rangle + \gamma_t^2 \frac{L}{2} \|g_t\|^2$.

Given w_1, \ldots, w_t , we obtain that

$$\mathbb{E}\left[\mathcal{L}(w_{t+1})\right] \leq \mathcal{L}(w_t) - \gamma_t \left\langle \nabla \mathcal{L}(w_t), \, \mathbb{E}\left[g_t\right] \right\rangle + \gamma_t^2 \frac{L}{2} \, \mathbb{E}\left[\|g_t\|^2\right]$$

$$\leq \mathcal{L}(w_t) - \gamma_t \left\|\nabla \mathcal{L}(w_t)\right\|^2 + \gamma_t^2 \frac{L}{2} \left(\frac{\sigma^2}{b} + \left\|\nabla \mathcal{L}(w_t)\right\|^2\right).$$

Under μ -strong convexity, $2\mu(\mathcal{L}(w) - \mathcal{L}^*) \leq \|\nabla \mathcal{L}(w)\|^2$. Thus, if $\gamma_t \leq \frac{1}{L}$, then

$$\mathbb{E}\left[\mathcal{L}(\mathbf{w}_{t+1}) - \mathcal{L}^*\right] \le (1 - \mu \gamma_t) \,\mathbb{E}\left[\mathcal{L}(\mathbf{w}_t) - \mathcal{L}^*\right] + \frac{L\sigma^2}{2b} \gamma_t^2.$$

If $\gamma_t = \gamma$, this implies, (why?) $\mathbb{E}\left[\mathcal{L}(w_{T+1}) - \mathcal{L}^*\right] \leq \left(1 - \mu\gamma\right)^T \mathbb{E}\left[\mathcal{L}(w_1) - \mathcal{L}^*\right] + \frac{L\sigma^2}{2\mu b}\gamma$.

Substituting
$$\gamma = \frac{\log T}{T}$$
, we obtain that $\mathbb{E}\left[\mathcal{L}(w_{T+1}) - \mathcal{L}^*\right] \in \widetilde{\mathcal{O}}\left(\kappa \frac{\sigma^2}{b} \cdot \frac{1}{T}\right)$.

Logistic regression with I_2 -regulizer

Consider a dataset $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ such that $x_i \in \mathbb{R}^m$ and $y_i \in \{0, 1\}$ for all i.

For $w \in \mathbb{R}^m$ and $b \in \mathbb{R}$, define $z_i = w^{\mathsf{T}} x_i + b$ and $p_i = \mathsf{Sigmoid}(z_i) = \frac{1}{1 + \mathsf{evn}(-z_i)}$.

Cross-entropy loss. For each sample (x_i, y_i) , define

$$\ell_i(w,b) = -\left[y_i \log\left(\frac{1}{1+\exp\left(-z_i\right)}\right) + (1-y_i)\log\left(\frac{\exp\left(-z_i\right)}{1+\exp\left(-z_i\right)}\right)\right]$$

Regularized ERM:

Minimize
$$\mathcal{L}(w,b) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \ell_i(w,b) + \frac{\mu}{2} (\|w\|^2 + b^2)$$

The loss function $\mathcal{L}(w, b)$ is μ -strongly convex (why?).

References & further readings

The lecture notes are based on Sections 2 - 6 of "Handbook of Convergence Theorems for (Stochastic) Gradient Methods" by Garrigos and Gower.

Additional reading:

- Stochastic momentum: Section 7.
- Stochastic subgradient descent: Section 9.