NSC HW 4

109550206 陳品劭

For OSPF

1. Show how you implement the flooding algorithm. (Do not just use direct transmission from all nodes to all other nodes) (10%)

對於每一個 Router 而言,會傳 link state 給相鄰的 Router (link cost < 999) (flood) ,且收到其他 Router 的 link state 時,確認自己是否已經存過了 (收到過) :是,不做事;否,forward 給相鄰的 Router (link cost < 999) (flood) 。

實作上,依照順序持續重複確認每個 Router 自己存著的每一個 link state 是否已經 flood 過,是,不做事;否,forward 給相鄰的 Router (link cost < 999) (flood) 。另外需紀錄 link state 是在哪一輪存著的,避免同一輪 forward 兩次或以上。

2. What factor will affect the convergence time of OSPF? (10%)

Topology 中,相距最遠的兩個 Router 的距離會影響收斂時間。因為只要 Router 收到 Topology 中所有 Router 的 link state ,即可透過 dijkstra 計算最短路徑,並安排路游,而 Router 收到 Topology 中所有 Router 的 link state 的時間取決於最遠那個傳來所需的時間。

另外 dijkstra 的時間複雜度為 O(n^2) · 因此 Router 的數量也有影響。以及一些基本因素:網速、Router 效能、some waiting time of OSPF 等。

For RIP

1. Show how you implement the distance vector exchange mechanism. (10%)

對於每一個 Router 而言,更新自己的 distance vector 時,將更新完的傳給相鄰的 Router (link cost < 999) (flood) ,且收到 其他 Router 的 distance vector 時,將其跟自己與該 Router 的 cost 加上去,再與自己的 distance vector 比對,當有更小 值時,更新自己的 distance vector 。

實作上,依照順序持續重複確認自己的 distance vector 是否有更新:是,傳給相鄰的 Router (link cost < 999) (flood);否,不做事。而收到 distance vector ,依照上述比對,發現要更新時,先更新至一個 temp distance vector ,以避免更新完的 distance vector 被同輪 Forward 出去,並於每一輪開始前,先對所有 Router 更新 distance vector from temp distance vector。

2. What factor will affect the convergence time of RIP? (10%)

Router 的數量以及連線 (Link) 的數量會影響收斂時間。因為當有越多 Router 和 Link ,會產生更多 Router 上 distance vector 的變動,且每一次變動會影響的 Router 數量同樣更多。也就表示網路拓譜的樣貌都會對其有一定影響,以及一些基本因素:網速、Router 效能、 distance vector exchange waiting time等。