

EE/COE 152: Basic Electronics Lecture 4

Andrew Selasi Agbemenu

EE/COE 152 – A.S Agbemenu

Outline

- Filter Design
- Zener Diodes
- Diode Small-signal Analysis

Diodes Recap: A Diode Puzzle

Which lamps will light up?

EE/COE 152 – A.S Agbemenu

3

A Diode Puzzle

Which lamps will light up?

EE/COE 152 – A.S Agbemenu

Effect of Filter Capacitor Values on Rectifier Circuits

EE/COE 152 – A.S Agbemenu

-

Half-Wave Rectifier with a Filter Capacitor

$$V_{0}(t) = \begin{cases} V_{s}(t), & t_{1} < t < t_{2} \\ V_{p} e^{-\frac{t}{RC}}, & 0 < t < t_{1} \end{cases} \Rightarrow V_{0}(t_{1}) = V_{p} e^{-\frac{t_{1}}{RC}}$$

EE/COE 152 – A.S Agbemenu

Half-Wave Rectifier with a Filter Capacitor

For minimum ripple effect: $t_1 \approx T$, the period

$$V_o(t_1) \approx V_p e^{-\frac{T}{RT}}$$

for
$$RC \gg T \Rightarrow e^{-\frac{T}{RC}} \approx 1 - \frac{T}{RC}$$

Peak-to-peak ripple voltage:

$$V_r = V_p - V_0(t_1) = V_p - v_p \left(1 - \frac{T}{RC}\right) \Rightarrow V_r = V_p \frac{T}{RC}$$

EE/COE 152 – A.S Agbemenu

_

Exercise: Rectifier with a Filter Capacitor

Half-wave rectifier peak-to-peak ripple voltage ratio:

$$V_r(ratio) = \frac{V_r}{V_p} = \frac{T}{RC}$$

Exercise:

Show that the peak-to-peak ripple voltage ratio of a full-wave Rectifier is half that of a half-wave rectifier

Zener Diodes

- Diodes in their normal operation will get destroyed when breakdown in the reverse bias mode
- Zener diode is a type of diode at can operate normally above the breakdown voltage (Zener voltage)
- They are normally used as Voltage regulators
- Zener diode will maintain a constant reverse bias voltage (V_z) when a constant reverse bias current (I_z) passes through

EE/COE 152 – A.S Agbemenu

c

Zener Diode Characteristics

EE/COE 152 – A.S Agbemenu

Zener Diode Model

EE/COE 152 – A.S Agbemenu

11

Zener Diode Regulator

 $\rm R_{\rm s}$ is used to limit the amount of current the flows through the Zener diode to $\rm I_{\rm z}$

This allows a constant voltage drop of $V_{\rm z}$ across the diode and hence the load

EE/COE 152 – A.S Agbemenu

Some Typical Zener Diode Standard Voltages

BZX:	55 Zener	Diode P	ower Ra	ting 500	mW		
2.4V	2.7V	3.0V	3.3V	3.6V	3.9V	4.3V	4.7V
5.1V	5.6V	6.2V	6.8V	7.5V	8.2V	9.1V	10V
11V	12V	13V	15V	16V	18V	20V	22V
24V	27V	30V	33V	36V	39V	43V	47V
BZX	85 Zener	Diode P	ower Ra	ting 1.3V	V		
3.3V	3.6V	3.9V	4.3V	4.7V	5.1V	5.6	6.2V
6.8V	7.5V	8.2V	9.1V	10V	11V	12V	13V
15V	16V	18V	20V	22V	24V	27V	30V
33V	36V	39V	43V	47V	51V	56V	62V

EE/COE 152 – A.S Agbemenu

13

Example: Zener Diode Regulator

(a) Regulator circuit with load

Consider the Zener diode regulator shown in (a) above. Find the load voltage, v_L and the source current i_s if $V_{ss} = 24V$, $R = 1.2k\Omega$ and $R_L = 6k\Omega$

Solution

First find the Thevenin equivalent circuit

Figure 10.11 Analysis of a circuit containing a single nonlinear element can be accomplished by load-line analysis of a simplified circuit.

EE/COE 152 – A.S Agbemenu

15

Solution

(a) Regulator circuit with load

(b) Circuit of (a) redrawn

Load Line Equation

$$V_T + R_t i_D + V_D = 0$$

(c) Circuit with linear portion replaced by Thévenin equivalent

EE/COE 152 – A.S Agbemenu

Solution

Plot load line on

Zener diode charateristic

Curve.

Determine $V_{\scriptscriptstyle D}$ and $i_{\scriptscriptstyle D}$ From the Q-point

F.rom Graph

$$V_I = -V_D = 10V$$
$$i_D = -10mA$$

Now find i_s

Figure 10.13 Zener-diode characteristic for Example 10.4 and Exercise 10.4.

EE/COE 152 – A.S Agbemenu

17

 i_D (mA)

At this point you should be able to design a DC power supply With all the Blocks shown below

Diode Small Signal Model

We looking at the operation of the diode when an small ac signal is superimposed on the Q-point values

EE/COE 152 – A.S Agbemenu

19

Small-signal Approximation

Using KVL

$$v_D(t) = V_D + v_d(t)$$

 $Using\ Shockley\ (Diode)\ Equation$:

$$i_{D}(t) = I_{s}e^{\frac{v_{D}(t)}{nV_{t}}} = I_{s}e^{\frac{V_{D}}{nV_{T}}}e^{\frac{v_{d}(t)}{nV_{T}}} = I_{D}e^{\frac{v_{d}}{nV_{T}}}$$

where V_D , I_D are the Q – point values

under small – signal condition: $\frac{v_d}{nV_T} \ll 1$

$$i_D(t) \approx I_D(1 + \frac{v_d}{nV_T}) = I_D + i_d$$

Small – signal resistance: $r_d = \frac{nV_T}{I_D}$

EE/COE 152 – A.S Agbemenu

Small-Signal Circuit Analysis

- Choose proper dc analysis technique or model to obtain Q-point by elimination all ac sources
- Calculate small signal parameters (r_d)
- Eliminate DC sources, replace diode with its small signal equivalent model (r_d)

EE/COE 152 – A.S Agbemenu

21

Example

$$\mathbf{v_S} = \mathbf{5} + 0.2\sin(\omega \mathbf{t}), \quad \mathbf{n} = \mathbf{2}$$
 Find $\mathbf{v_O}(\mathbf{t})$.

DC Solution:

$$V_O=0.7$$
 V $I_D=rac{5-0.7}{1k}=4.3$ mA $r_d=rac{nV_T}{I_D}=rac{50}{4.3}rac{mV}{mA}=11.6$ Ω

AC Solution:

$$\text{v}_{\text{O}}(t) = \frac{11.6}{10^3 + 11.6} \,\, 0.2 \, \text{sin}(\omega t) = 2.3 \times 10^{-3} \, \text{sin}(\omega t)$$

Total:
$$v_{O}(t) = V_{O} + v_{o}(t) = 0.7 + 2.3 \times 10^{-3} \sin(\omega t)$$

EE/COE 152 – A.S Agbemenu

EE/COE 152 – A.S Agbemenu