STEP-BY-STEP EXCEL FINANCIAL MODELLING PROCESS

Step 1: Set Up the Workbook Structure

- 1. Open a new workbook.
- 2. Create separate worksheets for:
 - Assumptions / Drivers
 - o Income Statement
 - o Balance Sheet
 - Cash Flow Statement
 - Valuation (DCF, Comps, etc.)
 - Scenario & Sensitivity Analysis
- 3. Name sheets clearly for easy navigation (e.g., Assumptions, P&L, BS, CF, DCF).

Step 2: Create the Assumptions / Drivers Sheet

- 1. List all key inputs, including:
 - o Revenue growth rates, gross margins, operating expenses
 - o Working capital days (Receivables, Payables, Inventory)
 - Capital expenditures (CapEx)
 - Debt / interest assumptions
 - Tax rates and WACC
- 2. Assign **named ranges** to key cells for clarity:
 - o Example: select cell for revenue growth → Name it Revenue Growth
- 3. Format input cells in **blue** to distinguish from formulas.

Step 3: Set Up the Timeline

- 1. Decide on **projection period**: monthly, quarterly, or annual.
- 2. In all statements, create columns for each period (e.g., 2025, 2026, 2027).
- 3. Use date functions if needed:
 - =EDATE(start date, months) for monthly timelines
 - o =YEARFRAC(start date,end date) for fraction of year calculations

Step 4: Build the Income Statement

- 1. Start with **Revenue**:
 - o Revenue = Previous Year Revenue * (1 + Revenue Growth)
- 2. Calculate COGS / Gross Profit:
 - o Gross Profit = Revenue COGS
- 3. Subtract operating expenses to get **EBIT**
- 4. Calculate Interest, Taxes, and Net Income:
 - o Taxes = EBIT * Tax_Rate
 - o Net Income = EBIT Interest Taxes
- 5. Link all values to the **Assumptions sheet** (no hardcoding).

Step 5: Build the Balance Sheet

- 1. Start with **Assets**:
 - o Cash → linked to Cash Flow Statement
 - o Accounts Receivable → Revenue * Receivable Days/365
 - \circ Inventory \rightarrow COGS * Inventory_Days/365
 - o PP&E → Previous PP&E + CapEx Depreciation
- 2. Liabilities & Equity:
 - o Accounts Payable → COGS * Payable Days/365
 - o Debt & Interest → linked to Assumptions / Debt Schedule
 - o Equity → Opening Equity + Net Income Dividends
- 3. Always check **Assets = Liabilities + Equity**

Step 6: Build the Cash Flow Statement

- 1. Start with Net Income from P&L
- 2. Adjust for **non-cash items**:
 - o Depreciation & Amortization
- 3. Adjust for working capital changes:
 - \circ \triangle Receivables, \triangle Inventory, \triangle Payables
- 4. Subtract CapEx and add/subtract financing flows
- 5. Link ending cash to Balance Sheet

Step 7: Implement Financial Formulas

- Use Financial functions:
 - \circ NPV() / XNPV() \rightarrow Discount cash flows for DCF
 - o $IRR() / XIRR() \rightarrow Calculate investment returns$
 - \circ PMT() \rightarrow Debt schedule
- Use Logical & Lookup functions:
 - \circ IF() / IFS() → Scenario triggers and flags
 - \circ VLOOKUP() / INDEX-MATCH() / XLOOKUP() \rightarrow Pull historical data or multiples

Step 8: Build Valuation

- 1. **DCF Valuation**:
 - Forecast Free Cash Flows
 - o Discount using NPV(WACC, FCFs) or XNPV() for actual dates
 - o Calculate Enterprise Value → subtract debt + add cash → Equity Value

2. Comps / Precedent Transactions:

- Create table of multiples
- o Apply peer or deal multiples to target metrics

3. LBO / IRR Analysis:

- o Build debt schedule using PMT() and link to cash flow
- Calculate investor returns with XIRR()

Step 9: Scenario & Sensitivity Analysis

- 1. Use **Data Tables** to test key assumptions (e.g., WACC, growth rate)
- 2. Use Scenario Manager for Base, Bull, Bear cases
- 3. Use Goal Seek to back-solve for required inputs (e.g., Revenue for target IRR)

Step 10: Add Error-Checking & Auditing

- 1. Include checks:
 - \circ Assets = Liabilities + Equity \rightarrow Flag if FALSE
 - \circ Opening Cash + Net Cash = Closing Cash → Flag errors
- 2. Use IFERROR() to manage formula errors
- 3. Use **Trace Precedents / Dependents** to audit formulas

Step 11: Formatting & Documentation

- 1. Use color coding:
 - o Inputs = Blue, Formulas = Black, Links = Green
- 2. Add comments to explain assumptions or calculations
- 3. Freeze top rows / columns for timeline clarity
- 4. Add summary dashboard for key outputs (Revenue, EBITDA, Net Income, EV, IRR)

Step 12: Review & Stress Test

- 1. Check for:
 - o Negative cash balances
 - Circular references
 - Consistency in timelines
- 2. Perform sensitivity analysis to test downside/upside risk
- 3. Confirm all links to Assumptions sheet (no hardcoded numbers)

KEY TOOL CONCEPTS IN FINANCIAL MODELLING

A. Core Financial Modelling Structure

1. Three-Statement Model

This is the heart of financial modelling, integrating:

- Income Statement (P&L): Projects revenue, expenses, and net income.
- Balance Sheet: Shows assets, liabilities, and equity at a point in time.
- Cash Flow Statement: Reconciles profit with actual cash movement.

All three are linked dynamically, meaning changes in assumptions automatically update all statements (e.g., depreciation affects net income, accumulated depreciation, and cash flow).

1. Drivers and Assumptions Sheet

This is a **central hub** where all key model inputs are stored, such as:

- Revenue growth rates, gross margins, and operating expenses.
- Working capital days (receivables, payables, inventory).
- CapEx, financing assumptions, and tax rates.

By keeping assumptions in one place, you make the model transparent, flexible, and easy to update.

2. Scenario and Sensitivity Analysis

Used to **test different outcomes** based on changing key variables:

- Scenario Analysis Models different cases (e.g., Base, Bull, Bear).
- Sensitivity Analysis Tests impact of one variable (e.g., WACC, terminal growth rate) on valuation.

This helps in assessing risk and upside/downside potential.

3. Error-Checking & Audit Controls

Implements controls and flags to ensure accuracy and reliability:

- Balance sheet checks (Assets = Liabilities + Equity).
- Cash flow reconciliation checks (Opening + Net Cash = Closing Cash).
- Error flags using conditional formatting.
- Manage circular references (e.g., interest expense based on average debt).

These controls increase model integrity and credibility.

4. Timeline Setup

Defines the **time axis** for projections — monthly, quarterly, or annual — depending on the purpose. Proper setup allows for:

- Consistent forecasting across all statements.
- Smooth roll-forward of balances and calculations.

A well-designed timeline ensures all projections align perfectly in time.

5. Linkage Discipline

A key modelling best practice: no hardcoding numbers inside formulas.

- Always link formulas to the assumptions sheet.
- This allows for full traceability and easy scenario updates.
- Hardcoding breaks transparency and creates hidden errors.

Maintaining linkage discipline makes your model auditable, flexible, and professional.

B. Valuation Techniques

1. Discounted Cash Flow (DCF)

- A fundamental (intrinsic) valuation method.
- Values a business based on the present value of its future Free Cash Flows (FCF).
- Cash flows are discounted using the Weighted Average Cost of Capital (WACC) to reflect time value and risk.
- Produces an estimate of enterprise value (EV) and equity value after adjusting for debt and cash.

2. Comparable Company Analysis (Comps)

A relative valuation approach comparing the target company to similar publicly traded peers.

- Uses valuation multiples such as:
 - EV/EBITDA
 - EV/EBIT
 - P/E (Price/Earnings)
 - EV/Revenue
- The company's implied value is derived by applying peer multiples to its own financial metrics.

Purpose: To estimate how the market values similar businesses today.

3. Precedent Transactions

- Also a relative valuation method, but based on historical M&A deals.
- Examines what multiples were paid in comparable acquisitions (e.g., EV/EBITDA, EV/Sales).
- Typically produces higher valuation multiples than trading comps due to control premiums paid by acquirers.

Purpose: To estimate what a buyer might realistically pay in an acquisition scenario.

4. Leveraged Buyout (LBO)

- A private equity-style valuation focusing on investor returns.
- Assumes a business is bought primarily using debt (leverage) and later sold after several years.
- Calculates Internal Rate of Return (IRR) and cash-on-cash multiple based on the equity investor's capital structure and exit assumptions.

Purpose: To determine if the acquisition meets the investor's **target return** thresholds.

Together, these techniques provide a comprehensive view of value —

- **DCF** gives *intrinsic* value,
- Comps and Precedents give market-based value,
- LBO assesses financial sponsor perspective.

2. ESSENTIAL EXCEL FUNCTIONS FOR FINANCIAL MODELLING

A. Financial Functions

NPV()

Calculates the **Net Present Value** of future cash flows based on a constant discount rate. Assumes cash flows occur at regular intervals.

Example & Use:

=NPV(WACC, FCFs) → Discounts Free Cash Flows (FCFs) using the company's Weighted Average Cost of Capital (WACC).

XNPV()

Similar to NPV(), but allows **cash flows with specific dates** — making it more accurate for real-world timing differences.

Example & Use:

=XNPV(10%, cash flows, dates) \rightarrow Preferred in professional valuation models.

IRR()

Computes the **Internal Rate of Return** — the discount rate at which the NPV equals zero. Assumes regular time intervals.

Example & Use:

=IRR(cash_flows) → Measures project or investment return.

XIRR()

An enhanced version of IRR() that handles **irregularly spaced cash flows** using actual dates.

Example & Use:

=XIRR(cash flows, dates) → Used in project finance, private equity, and DCF models.

PMT()

Calculates **loan or lease payments** per period based on interest rate, number of periods, and present value.

Example & Use:

=PMT(rate, nper, pv) \rightarrow Used for debt schedules or amortization tables.

PV() / FV()

Determine the Present Value (PV) or Future Value (FV) of a series of payments or returns.

Example & Use:

=PV(rate, nper, pmt) → Finds today's value of future cash flows. =FV(rate, nper, pmt) → Projects future value of investments.

B. Logical and Lookup Functions

IF() / IFS()

Apply **conditional logic** to return different results depending on criteria. IFS() allows multiple conditions without nesting many IFs.

Example & Use

=IF(A1>0, "Profit", "Loss") \rightarrow Returns "Profit" if A1 > 0, otherwise "Loss." Useful for flags, error checks, or scenario triggers.

AND() / OR()

Combine multiple conditions into a single logical test. Often used inside IF() statements.

Example & Use

=AND(A1>0, B1<100) \rightarrow Returns TRUE only if both conditions are met. Helpful for complex assumptions or validation rules.

VLOOKUP() / HLOOKUP()

Look up data from a **vertical or horizontal** table. VLOOKUP() searches down the first column of a table and returns a value from a specified column.

Example & Use

=VLOOKUP(code, table, col_index, FALSE) → Retrieves matching data like product names or financial metrics.

INDEX() + MATCH()

More **flexible and powerful lookup** combination than VLOOKUP(). Works left-to-right or right-to-left and is less prone to break when columns move

Example & Use

=INDEX(values, MATCH(key, lookup_range, 0)) → Finds a value dynamically. Common in dynamic financial models

XLOOKUP() (modern Excel)

The **new all-in-one lookup** function — replaces VLOOKUP, HLOOKUP, and INDEX-MATCH. Allows exact or approximate matches, two-way lookups, and error handling.

Example & Use

=XLOOKUP(lookup_value, lookup_array, return_array) \rightarrow Clean, flexible, and preferred for modern models.

C. Data Analysis & Scenario Tools

Data Tables

Used for **sensitivity analysis** — shows how a result (e.g., valuation, IRR, EPS) changes when one or two key assumptions (like growth rate or WACC) vary. Helps visualize risk and impact on outcomes.

Goal Seek

A **back-solving tool** that finds the input value needed to reach a desired result. Example: determine what revenue growth is required for IRR = 15%.

Scenario Manager

Allows creation and comparison of **multiple sets of assumptions** (e.g., Base, Optimistic, Pessimistic) without manually changing input cells. Useful for management summaries.

Solver Add-in

Solves optimization problems by adjusting multiple variables under constraints. Example: find the optimal capital structure or minimize financing costs while maintaining target ratios.

PivotTables

Used to **summarize**, **analyze**, **and group large datasets** quickly — ideal for historical financial analysis, KPIs, or summarizing transaction data

D. Date & Time Functions

Function	Purpose / Description	Example & Use
TODAY()		=TODAY() → Useful for stamping report dates or calculating days remaining.
NOW()	Returns the current date and time.	=NOW() → Helpful for time-based updates or logging activity timestamps.
DATE(year, month, day)	Creates a date from individual year, month, and day values.	=DATE(2025,10,23) → Outputs 23-Oct-2025 . Common for timeline setup.
EDATE(start_date, months)		=EDATE(A1, 12) → One year after date in A1. Useful for monthly forecasting.
EOMONTH(start_date, months)	_	=EOMONTH(A1, 0) → Monthend date for A1. Ideal for monthly model periods.
YEARFRAC(start_date, end_date)	Calculates the fraction of a year between two dates.	=YEARFRAC(A1, B1) → Used in interest or depreciation calculations.
DATEDIF(start_date, end_date, unit)	Measures the difference between two dates in years ("Y"), months ("M"), or days ("D").	=DATEDIF(A1, B1, "M") \rightarrow
YEAR() / MONTH() / DAY()	Extracts the year, month, or day from a date.	grouping or timeline creation.
WEEKDAY()	Returns the day of the week as a number (1 = Sunday by default).	=WEEKDAY(A1) → For scheduling or business day logic.

E. Error Handling & Auditing

IFERROR()

Prevents errors like #N/A or #DIV/0! by allowing you to display a custom value instead of the error. Example: =IFERROR(A1/B1, "Error").

ISNUMBER() / ISTEXT()

Checks the data type of a cell. ISNUMBER() returns TRUE if the cell contains a number; ISTEXT() returns TRUE if it contains text. Useful for validation before calculations.

TRACE DEPENDENTS / PRECEDENTS

Auditing tools that visually show which cells affect (precedents) or are affected by (dependents) a selected cell. Helps track formulas and detect errors.

F. Dynamic & Array Functions (Modern Excel)

Function	Purpose		
FILTER()	Returns a dynamic array of data that meets specified criteria. Example: =FILTER(A2:A10, B2:B10="Yes").		
SORT()	Sorts a range or array dynamically without manually rearranging data. Example: =SORT(A2:A10,1,TRUE) sorts ascending.		
UNIQUE()	Extracts distinct values from a range or array. Example: =UNIQUE(A2:A10).		
SEQUENCE()	Generates a series of numbers (or dates) dynamically. Example: =SEQUENCE(5,1,1,1) creates 1,2,3,4,5.		
LET() / LAMBDA()	LET() assigns names to calculation parts to simplify formulas. LAMBDA() lets you create reusable custom functions. Example: $=$ LET(x, A1*2, x+5).		

3. Pro Tips for Professional Modelling

- Avoid hardcoding: Place all assumptions in one sheet.
- Use consistent formatting: Inputs (blue), formulas (black), links (green).
- **Balance the model:** Always check Assets = Liabilities + Equity.
- Name ranges: For readability (e.g., =Revenue Growth).
- **Document assumptions:** Add comments or an "Assumptions" section.
- Stress test your model: Check for negative cash or circular references.