01.survRandomForest

July 5, 2021

1 Random Survival Forest

Customer churn/attrition, a.k.a the percentage of customers that stop using paying services, is one of the most important metrics for a business, as it usually costs more to acquire new customers than it does to retain existing ones. Indeed, according to a study by Bain & Company, existing customers tend to buy more from a company over time, thus reducing the operating costs of the business and may refer the products they use to others. For example, in financial services, a 5% increase in customer retention produces more than a 25% increase in profit. By using Survival Analysis, not only companies can predict if customers are likely to stop doing business but also when that event might happen.

1.1 Methods

In this study, we adopt random survival forests which have never been used in understanding factors affecting membership in a sport club using existing data in a Sport Club. The analysis is based on the use of random survival forests in the presence of covariates that do not necessarily satisfy the PH assumption. Random Survival Forests does not make the proportional hazards assumption (Ehrlinger, 2016) and has the flexibility to model survivor curves that are of dissimilar shapes for contrastinggroups of subjects. Random Survival Forest is an extension of Random Forest allowing efficient non-parametric analysis of time to event data (Breiman, 2001). This characteristics allow us to surpass the Cox Regression limitation of the proportional hazard assumption, requiring to exclude variables which not fullfill the model assumption. It was shown by (Breiman, 2001) that ensemble learning can be further improved by injecting randomization into the base learning process - a method called Random Forests.

The random survival forest was developed using the package PySurvival (Fotso & Others, 2019) The most relevant variables predicting the dropout are analysed using the log-rank test. The metric variables are transformed to categorical using the quartiles to provide a statistical comparison of groups. The survival analysis was conducted using the package Lifelines (Davidson-Pilon et al., 2017).

1.2 Results

The initial model has a c-index of 0.92. After removing estadoCivil_outro and ano c-index improved to 0.94. Without idade improved to 0.95. The most relevant variables predicting the dropout are: - mesesUP - valorTotal - anoUltimoPagamento - quotaMensal - escaloesTotalJogos_ate 1 - jogosEpoca - escaloesTotalJogos_56 a 105 - estadoCivil_solteiro - escaloesTotalJogos_21 a 56 - escaloesTotalJogos_mais 105 - sexo_M - estadoCivil_nao definido

TODO: COLOCAR ESTA DESCRIÇÃO PARA TODAS AS VARIÁVEIS: There were identified

significative differences between the gender groups (2=194.63, p < .005), wrenew two or more contracts, the survival probability for 12 months is 85.49%

1.3 Methods bibliography

- Ehrlinger, J. (2016). ggRandomForests: Exploring Random Forest Survival. ArXiv:1612.08974 [Stat]. http://arxiv.org/abs/1612.08974
- Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10/d8zjwq
- Fotso, S., & others. (2019). PySurvival: Open source package for Survival Analysis modeling. https://www.pysurvival.io/

2 Dataset

Considering the sport club policies all the customers with payments less than 24 months where considered active:

```
- dt['abandonou'] = 0 - dt.loc[dt['mesesUP']>=24, 'abandonou']=1
```

The variables extracted from the software correspond to the time interval of becoming a customer until the end of observation (censoring on 31 Maio 2019) or the end of the customer relationship (dropout). The survival time in the dataset is represented by the number of years the customer begin affiliated.

We extracted records of 25316 customers (male n=17246, female n=8070) from a sport club; data corresponded to the time period between October 1, 1944 and May 31, 2019.

```
[4]: from IPython.display import HTML
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import datetime
import seaborn as sns

df = pd.read_excel('../data/dadosSociosTratados.xlsx',index_col=0)
```

2.1 Description

Variáveis:

- ano: ano inscrição sócio
- idade: numérica
- sexo: M ou F
- estadoCivil: solteiro, não definido, casado, outro
- quotaMensal: valor da quota mensal
- ultimPagamento: Quando é que foi realizado o último pagamento
- valorTotal: Valor total pago
- totalJogos: Total de Jogos que o sócio foi
- jogosEpoca: Jogos vistos na última época
- meses UP: Quantos meses desde o último pagamento

- anosSocio: Há quantos anos é sócio
- idaEstágio: Vai ou não ao estádio
- abandonou: 1 não é sócio, 0 é sócio censura

Ei is the event indicator such that Ei=1, if an event happens and Ei=0 in case of censoring
As variáveis categóricas foram transformadas em dummies: - sexo - estadoCivil - escaloesTotalJogos

[5]: df.sexo.value_counts()

[5]: M 17246 F 8070

Name: sexo, dtype: int64

[6]: df.describe()

[6]:		ano	idade	quotaMensal	valorTotal	totalJogos	\
	count	25316.000000	25316.000000	25316.000000	25316.000000	25316.000000	
	mean	2007.048033	27.262996	4.356099	316.037984	26.535946	
	std	10.937818	20.087078	3.550837	493.971528	45.812996	
	min	1944.000000	-70.000000	0.000000	0.000000	0.000000	
	25%	2004.000000	13.000000	1.000000	5.000000	0.000000	
	50%	2010.000000	19.000000	2.500000	53.000000	0.000000	
	75%	2014.000000	41.000000	6.000000	448.250000	36.000000	
	max	2019.000000	118.000000	10.000000	2602.000000	197.000000	

	jogosEpoca	diasUltimoPagamento	mesesUP	abandonou	\
count	25316.000000	25316.000000	25316.000000	25316.000000	
mean	2.171631	586.277033	18.814110	0.221638	
std	4.076356	990.398069	32.498248	0.415357	
min	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	83.994934	2.000000	0.000000	
50%	0.000000	122.113031	4.000000	0.000000	
75%	2.000000	534.982420	17.000000	0.000000	
max	16.000000	4778.034828	156.000000	1.000000	

	anosSocio	idaEstadio	mes
count	25316.000000	25316.000000	25316.000000
mean	11.264339	0.401367	6.875454
std	10.908777	0.490185	3.391117
min	0.000000	0.000000	1.000000
25%	5.000000	0.000000	4.000000
50%	8.000000	0.000000	8.000000
75%	14.000000	1.000000	9.000000
max	74.000000	1.000000	12.000000

[7]: df.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 25316 entries, 1 to 25316 Data columns (total 24 columns):

#	Column	Non-Null Count	Dtype
0	nome	25316 non-null	object
1	dataAdesao	25316 non-null	•
2	ano	25316 non-null	
		25316 non-null	
	dataNascimento	25316 non-null	ŭ
5	idade	25316 non-null	•
6	sexo	25316 non-null	object
	estadoCivil	25316 non-null	5
8	categoria	25316 non-null	· ·
9	· ·	25316 non-null	•
10	profissao	25316 non-null	object
11	codPostal	25316 non-null	=
12	ultimaQuota	25316 non-null	
13	${\tt ultimoPagamento}$	25316 non-null	object
14	valorTotal	25316 non-null	float64
15	totalJogos	25316 non-null	int64
16	jogosEpoca	25316 non-null	int64
17	${\tt diasUltimoPagamento}$	25316 non-null	float64
18	mesesUP	25316 non-null	int64
19	abandonou	25316 non-null	int64
20	anosSocio	25316 non-null	int64
21	idaEstadio	25316 non-null	int64
22	escaloesTotalJogos	25316 non-null	object
23	mes	25316 non-null	int64
dtyp	pes: datetime64[ns](1)	, float64(3), in	t64(9), object(11)

memory usage: 4.8+ MB

[8]: df.head()

[8]:	Sócio			nome	data	Adesao	ano	contribuinte	\	
	1	DURVAL MAN	UEL BELO	MOREIRA	1944	-10-01	1944	105910465		
	2	ANTONIO ALE	BINO BELO	MOREIRA	1944	-10-01	1944	152586199		
	3	MARIO	GONCALV	ES BRAGA	1945	-08-24	1945	999999990		
	4	MANUEL E	BATISTA C	ERQUEIRA	1945	-09-01	1945	124938060		
	5	JOAQUIN	MANUEL	FERREIRA	1945	-09-01	1945	108239110		
		dataNa	ascimento	idade	sexo	esta	doCivil	categoria	quotaMensal	\
	Sócio									
	1	1935-05-11	00:00:00	83	M		casado	homem	10.0	
	2	1930-09-29	00:00:00	88	M	S	olteiro	homem	10.0	
	3	1945-08-24	00:00:00	73	M	nao d	efinido	homem	10.0	
	4	1921-05-27	00:00:00	97	M		casado	reformado	5.0	

5	1921-0	03-08	00:00:00	97	M		outro	hor	nem		10.0
	valo	orTota	l totalJog	gos jo	gosEpoc	a dia	asUltimoPaga	ment	o me	sesUP	\
Sócio											
1		1906.	0	0		0	103.3	08984	1	3	
2		1906.	0	0		0	113.0	56309	9	3	
3		1553.	0	0		0	1100.0	3120	3	36	
4	•••	790.	0	0		0	264.9	4598	7	8	
5	•••	1466.	0	0		0	1089.9	43393	3	35	
	abando	onou	anosSocio	idaE	stadio	esca	aloesTotalJo	gos	mes		
Sócio											
1		0	74		0		ato	e 1	10		
2		0	74		0		ate	e 1	10		
3		1	73		0		ate	e 1	8		
4		0	73		0		ate	e 1	9		
5		1	73		0		ate	e 1	9		
[5 rou	rs x 24	colum	ngl								

[5 rows x 24 columns]

[9]:						nome	data	Adesao	ano	contribu	inte	\
	Sócio				~~							
	25312		ICAEL YTW						2019	28662	25296	
	25313	GONÇALO MAR	IA FERR.	SENDIM	POLIDO	PIRES	2019-	-02-21	2019	27523	30511	
	25314		TOMAS MI	GUEL S	OARES RI	BEIRO	2019-	-02-21	2019	29067	70578	
	25315	MIGUEL M	ARIA REBE	LO COR	SINO DA	${\tt SILVA}$	2019-	-02-21	2019	25942	20697	
	25316		JOAO	MANUE	L JESUS	VIDAL	2019-	-02-21	2019	25711	10887	
		dataNa	scimento	idade	sexo es	stadoC:	ivil (categor	ia qı	uotaMensa	al \	
	Sócio							_				
	25312	2011-04-14	00:00:00	7	M	solte	eiro	sub	14	1.	0	
	25313	2010-05-26	00:00:00	8	M	solte	eiro	atle	ta	1.	0	
	25314	2016-11-24	00:00:00	2	M	solte	eiro	sub	14	1.	0	
	25315	2004-06-30	00:00:00	14	M	solte	eiro	sub	14	1.	0	
	25316	1990-05-23	00:00:00	28	M	solte	eiro	hom	em	10.	.0	
		valorTota	l totalJo	gos jog	gosEpoca	a dias	Ultimo	Pagame	nto r	mesesUP	\	
	Sócio	•••										
	25312	17.	0	0	()		72.296	706	2		
	25313	12.	0	0	()		72.269	791	2		
	25314	17.	0	0	()		72.095	076	2		
	25315	17.	0	0	()		71.969	059	2		
	25316	0.	0	0	()		71.966	639	2		

abandonou anosSocio idaEstadio escaloesTotalJogos mes

```
25313
                     0
                                0
                                            0
                                                            ate 1
                                                                     2
                     0
                                0
                                                                     2
      25314
                                            0
                                                            ate 1
      25315
                     0
                                0
                                            0
                                                                     2
                                                            ate 1
      25316
                     0
                                            0
                                                            ate 1
                                                                     2
      [5 rows x 24 columns]
[10]: df['ultimoPagamento'] = pd.to_datetime(df['ultimoPagamento'],format='%Y-%m-%d_
       [11]: df['anoUltimoPagamento']=df['ultimoPagamento'].apply(lambda x: x.year)
[12]: df.anoUltimoPagamento.unique()
[12]: array([2019., 2016., 2018., 2015., 2017., 2014., 2008.,
                                                                nan, 2009.,
             2007., 2010., 2011., 2012., 2013., 2006.])
     {\tt df.anoUltimoPagamento=df.anoUltimoPagamento.fillna(0)}
[13]:
[13]: df['anoUltimoPagamento']=df.anoUltimoPagamento.astype(int)
[14]: df.

→drop(columns=['nome', 'dataAdesao', 'ultimoPagamento', 'contribuinte', 'dataNascimento', 'mes', '

→ 'codPostal', 'categoria', 'ultimaQuota', 'diasUltimoPagamento'], inplace=True)

[15]: df.info()
     <class 'pandas.core.frame.DataFrame'>
     Int64Index: 25316 entries, 1 to 25316
     Data columns (total 14 columns):
      #
          Column
                              Non-Null Count
                                              Dtype
          _____
                              -----
      0
                              25316 non-null int64
          ano
      1
          idade
                              25316 non-null int64
      2
          sexo
                              25316 non-null object
      3
          estadoCivil
                              25316 non-null object
```

0

ate 1

Sócio 25312

4

5

6

7

8

10

quotaMensal

valorTotal

totalJogos

jogosEpoca

abandonou

anosSocio

idaEstadio

mesesUP

0

0

25316 non-null float64

25316 non-null float64

25316 non-null int64

```
12 escaloesTotalJogos 25316 non-null object 13 anoUltimoPagamento 25316 non-null float64 dtypes: float64(3), int64(8), object(3) memory usage: 2.9+ MB
```

[16]: df.estadoCivil.value_counts()

[16]: solteiro 12065 nao definido 7667 casado 5085 outro 499

Name: estadoCivil, dtype: int64

Variáveis:

- ano: ano inscrição sócio
- idade
- sexo
- estadoCivil: solteiro, não definido, casado, outro
- quotaMensal: valor da quota mensal
- ultimPagamento: Quando é que foi realizado o último pagamento
- valorTotal: Valor total pago
- totalJogos: Total de Jogos que o sócio foi
- jogosEpoca: Jogos vistos na última época
- meses UP: Quantos meses desde o último pagamento
- anosSocio: Há quantos anos é sócio
- idaEstágio: Vai ou não ao estádio
- abandonou: 1 não é sócio, 0 é sócio censura

Ei is the event indicator such that Ei=1, if an event happens and Ei=0 in case of censoring

2.2 Converting from categorical to numerical

There are several categorical features that need to be encoded into one-hot vectors:

```
sexo
estadoCivil
escaloesTotalJogos
```

```
[18]: # Creating the time and event columns
time_column = 'anosSocio'
event_column = 'abandonou'

# Extracting the features
features = np.setdiff1d(df.columns, [time_column, event_column] ).tolist()
```

2.3 Verificar null values e duplicates

```
[19]: # Checking for null values
N_null = sum(df[features].isnull().sum())
print("The raw_dataset contains {} null values".format(N_null)) #0 null values
```

The raw_dataset contains 0 null values

```
[20]: # Removing duplicates if there exist
N_dupli = sum(df.duplicated(keep='first'))
df = df.drop_duplicates(keep='first').reset_index(drop=True)
print("The raw_dataset contains {} duplicates".format(N_dupli))

# Number of samples in the dataset
N = df.shape[0]
```

The raw_dataset contains 4928 duplicates

3 Exploratory Data Analysis

Vamos remover as variáveis com correlações maiores

```
[23]: to_remove = ['totalJogos', 'idaEstadio']
features = np.setdiff1d(features, to_remove).tolist()
```

4 Modeling

So as to perform cross-validation later on and assess the performances of the model, let's split the dataset into training and testing sets.

4.1 Building the model

[25]: RandomSurvivalForestModel

4.1.1 Features importance

```
[28]: csf.variable_importance_table
```

```
[28]:
                               feature
                                         importance pct_importance
      0
                               mesesUP
                                          25.444019
                                                            0.315903
                    anoUltimoPagamento
                                          12.009933
      1
                                                            0.149111
      2
                            valorTotal
                                           8.408662
                                                            0.104399
      3
                            jogosEpoca
                                           6.308750
                                                            0.078327
      4
                           quotaMensal
                                           5.297568
                                                            0.065772
      5
                  estadoCivil_solteiro
                                           4.335004
                                                            0.053822
      6
                                           3.832753
                                                            0.047586
                                 idade
      7
          escaloesTotalJogos_56 a 105
                                           3.559232
                                                            0.044190
      8
             escaloesTotalJogos_ate 1
                                           3.279739
                                                            0.040720
      9
          escaloesTotalJogos_mais 105
                                           2.490875
                                                            0.030926
      10
                                sexo M
                                           2.381270
                                                            0.029565
           escaloesTotalJogos 21 a 56
      11
                                           1.967675
                                                            0.024430
      12
             estadoCivil_nao definido
                                           1.228350
                                                            0.015251
      13
                     estadoCivil_outro
                                          -0.957972
                                                            0.000000
                                         -12.725045
      14
                                   ano
                                                            0.000000
```

A negative number means that the model performs better without estadoCivil_Outro and ano: https://stackoverflow.com/questions/27918320/what-does-negative-incmse-in-randomforest-package-mean

The variable meses UP explains the survival 30%, year last payment 16.8%, total Amount 12%,

number of games 7.7%....

4.1.2 Model performance

We are going to access the model performance using the training and test set. Previously defined. C-index close to 1, the model has an powerfull discriminatory; but if it is close to 0.5, it has no ability to discriminate between low and high risk subjects.

4.1.3 C-index

```
[29]: from pysurvival.utils.metrics import concordance_index
c_index = concordance_index(csf, X_test, T_test, E_test)
print('C-index: {:.2f}'.format(c_index)) #0.83
```

C-index: 0.91

4.1.4 Brier Score

IBS: 0.03

The IBS is equal to 0.03 on the entire model time axis. This indicates that the model will have very good predictive abilities.

4.2 Building model without estadoCivil_outro and ano

[33]: RandomSurvivalForestModel

4.2.1 Features importance

```
[34]: csf.variable_importance_table
[34]:
                               feature
                                         importance pct_importance
      0
                               mesesUP
                                          26.109648
                                                            0.305522
      1
                    anoUltimoPagamento
                                          12.090799
                                                            0.141480
      2
                            valorTotal
                                          10.921663
                                                            0.127800
      3
                            jogosEpoca
                                           7.009034
                                                            0.082016
      4
                           quotaMensal
                                           5.877116
                                                            0.068771
      5
                  estadoCivil_solteiro
                                                            0.056612
                                           4.837993
      6
             escaloesTotalJogos_ate 1
                                           4.230473
                                                            0.049503
      7
          escaloesTotalJogos_56 a 105
                                           3.820484
                                                            0.044705
      8
                                {\tt sexo\_M}
                                           3.293989
                                                            0.038545
      9
          escaloesTotalJogos_mais 105
                                           2.755716
                                                            0.032246
      10
           escaloesTotalJogos_21 a 56
                                           1.918743
                                                            0.022452
      11
             estadoCivil nao definido
                                           1.827835
                                                            0.021388
```

idade

4.2.2 Model performance

We are going to access the model performance using the training and test set. Previously defined. C-index close to 1, the model has an powerfull discriminatory; but if it is close to 0.5, it has no ability to discriminate between low and high risk subjects.

0.765702

0.008960

4.2.3 C-index

12

```
[35]: from pysurvival.utils.metrics import concordance_index c_index = concordance_index(csf, X_test, T_test, E_test) print('C-index: {:.2f}'.format(c_index)) #0.83
```

C-index: 0.94

4.2.4 Brier Score

IBS: 0.04

4.3 Building model without idade

[41]: RandomSurvivalForestModel

4.3.1 Features importance

1	${\tt anoUltimoPagamento}$	13.272150	0.142141
2	valorTotal	11.317420	0.121206
3	${\tt quotaMensal}$	10.881023	0.116532
4	jogosEpoca	6.070691	0.065015
5	escaloesTotalJogos_ate 1	5.221843	0.055924
6	estadoCivil_solteiro	5.091730	0.054531
7	escaloesTotalJogos_56 a 105	4.685484	0.050180
8	escaloesTotalJogos_21 a 56	3.973545	0.042555
9	sexo_M	3.178554	0.034041
10	escaloesTotalJogos_mais 105	2.510664	0.026888
11	estadoCivil nao definido	1.111203	0.011901

4.3.2 Model performance

We are going to access the model performance using the training and test set. Previously defined. C-index close to 1, the model has an powerfull discriminatory; but if it is close to 0.5, it has no ability to discriminate between low and high risk subjects.

4.3.3 C-index

```
[43]: from pysurvival.utils.metrics import concordance_index c_index = concordance_index(csf, X_test, T_test, E_test) print('C-index: {:.2f}'.format(c_index)) #0.83
```

C-index: 0.94

4.3.4 Brier Score

IBS: 0.04

5 Predictions

Lets compare the timeseries of actual and predicted customers who leave for each time t.

```
[45]: from pysurvival.utils.display import compare_to_actual results = compare_to_actual(csf, X_test, T_test, E_test, is_at_risk = False, figure_size=(12, 5), metrics = ['rmse', 'mean', 'median'])
```

Actual vs Predicted RMSE = 108.958 Median Abs Error = 16.730 Mean Abs Error = 46.617

The model only makes an average absolute error of ~ 33 customers.

5.1 Individual predictions

Compute the probability of remaining a customer for all times t

```
[46]: from pysurvival.utils.display import create_risk_groups

risk_groups = create_risk_groups(model=csf, X=X_test,
    use_log = False, num_bins=30, figure_size=(20, 4))
```


6 Curvas de sobrevivência

```
[47]: def curvaSobrevivencia(dados,coluna):
    ax = plt.subplot(111)
    plt.rcParams['figure.figsize'] = [12, 5]
    for item in dados[coluna].unique():
        ix = dados[coluna] == item
        kmf.fit(T.loc[ix], C.loc[ix], label=str(item))
        ax = kmf.plot(ax=ax)
```

6.1 Kaplan-Meier main curve

```
[49]: from lifelines import KaplanMeierFitter
from lifelines.statistics import multivariate_logrank_test
from lifelines.statistics import pairwise_logrank_test

kmf = KaplanMeierFitter()
T = dfCurvas['anosSocio']
C = dfCurvas['abandonou']
kmf.fit(T,C,label="Abandono dos sócios");
```

```
[51]: tabela.columns = ['event_at', 'removed', 'observed', 'censored', 'entrance', □

→'at_risk','timeline',

'median duration remaining to event','timeline', 'Abandono□

→dos sócios']
```

```
[52]: tabela.head(12)
```

```
[52]:
                    removed observed
                                         censored
                                                              at_risk timeline \
          event_at
                                                    entrance
      0
                  0
                        1595
                                      0
                                              1595
                                                       25316
                                                                 25316
                                                                             0.0
                  1
                        1809
                                      0
                                              1809
      1
                                                           0
                                                                 23721
                                                                              1.0
```

2	2	1132	261	871	0	21912	2.0
3	3	1019	318	701	0	20780	3.0
4	4	630	260	370	0	19761	4.0
5	5	827	264	563	0	19131	5.0
6	6	2111	534	1577	0	18304	6.0
7	7	1988	719	1269	0	16193	7.0
8	8	1942	652	1290	0	14205	8.0
9	9	1241	459	782	0	12263	9.0
10	10	1946	397	1549	0	11022	10.0
11	11	978	310	668	0	9076	11.0

	median	${\tt duration}$	remaining	to event	timeline	Abandono dos sócios
0				48.0	0.0	1.000000
1				47.0	1.0	1.000000
2				47.0	2.0	0.988089
3				48.0	3.0	0.972968
4				47.0	4.0	0.960166
5				47.0	5.0	0.946916
6				48.0	6.0	0.919291
7				49.0	7.0	0.878473
8				48.0	8.0	0.838151
9				55.0	9.0	0.806780
10				58.0	10.0	0.777720
11				57.0	11.0	0.751157

6.2 Por género

[54]: print(dfCurvas.sexo.value_counts())
curvaSobrevivencia(dfCurvas,'sexo')

M 17246 F 8070

Name: sexo, dtype: int64

	$test_statistic$	p	$-\log 2(p)$
0	194.625277	3.110248e-44	144.527807

[56]: results=pairwise_logrank_test(event_durations=T,groups=dfCurvas.

sexo,event_observed=C)
results.print_summary()

		$test_statistic$	p	$-\log 2(p)$
F	Μ	194.625277	3.110248e-44	144.527807

6.3 MesesUP

[57]: dfCurvas.mesesUP.describe()

[57]: count 25316.000000 mean 18.814110 std 32.498248

```
min 0.000000
25% 2.000000
50% 4.000000
75% 17.000000
max 156.000000
Name: mesesUP, dtype: float64
```

```
[58]: var='mesesUP'
varEscalao='escMesesUP'
dfCurvas[varEscalao]=''
for index, cliente in dfCurvas.iterrows():
    #se a variável tiver o valor 1 colocar na nova variável a descrição da
    →atividade
    if cliente[var] <= 2:
        dfCurvas.at[index,varEscalao]=var+' less than 2'
    elif (cliente[var] > 2) & (cliente[var] <= 4):
        dfCurvas.at[index,varEscalao]=var+' greather than 2 and less 4'
    elif (cliente[var] > 4) & (cliente[var] <= 17):
        dfCurvas.at[index,varEscalao]=var + ' greather than 4 and less 17'
    elif (cliente[var] > 17):
        dfCurvas.at[index,varEscalao]=var + ' greather than 17'
```

[59]: dfCurvas.escMesesUP.value_counts()

```
[59]: mesesUP less than 2 8814
mesesUP greather than 17 6303
mesesUP greather than 4 and less 17 5246
mesesUP greather than 2 and less 4 4953
Name: escMesesUP, dtype: int64
```

[52]: curvaSobrevivencia(dfCurvas, varEscalao)

[60]: results=multivariate_logrank_test(event_durations=T,groups=dfCurvas[varEscalao],event_observed results.print_summary()

```
test_statistic p -log2(p)

0 19998.897283 0.0 inf
```

[61]: results=pairwise_logrank_test(event_durations=T,groups=dfCurvas[varEscalao],event_observed=C) results.print_summary()

		test_statistic	р	-log2(p)
mesesUP greather than 17	mesesUP greather than 2 and less 4	6442.374708	0.0	\inf
	mesesUP greather than 4 and less 17	4353.192689	0.0	\inf
	mesesUP less than 2	10330.892545	0.0	\inf
meses UP greather than 2 and less 4	mesesUP greather than 4 and less 17	0.000000	1.0	-0.0
	mesesUP less than 2	0.000000	1.0	-0.0
meses UP greather than 4 and less 17	mesesUP less than 2	0.000000	1.0	-0.0

6.4 ValorTotal

[62]: dfCurvas.valorTotal.describe()

```
[62]: count
               25316.000000
      mean
                 316.037984
      std
                 493.971528
                   0.000000
      min
      25%
                   5.000000
      50%
                  53.000000
      75%
                 448.250000
                2602.000000
      max
```

Name: valorTotal, dtype: float64

```
[63]: var='valorTotal'
varEscalao='escValorTotal'
dfCurvas[varEscalao]=''
for index, cliente in dfCurvas.iterrows():
    #se a variável tiver o valor 1 colocar na nova variável a descrição da_
    →atividade
    if cliente[var] <= 5:
        dfCurvas.at[index,varEscalao]=var+' less than 5'
    elif (cliente[var] > 5) & (cliente[var] <= 53):
        dfCurvas.at[index,varEscalao]=var+' greather than 5 and less 53'
    elif (cliente[var] > 53) & (cliente[var] <= 448):
        dfCurvas.at[index,varEscalao]=var + ' greather than 53 and less 448'
    elif (cliente[var] > 448):
        dfCurvas.at[index,varEscalao]=var + ' greather than 448'
```

[64]: dfCurvas[varEscalao].value_counts()

[64]: valorTotal less than 5 7060
valorTotal greather than 448 6329
valorTotal greather than 53 and less 448 6280
valorTotal greather than 5 and less 53 5647
Name: escValorTotal, dtype: int64

[65]: curvaSobrevivencia(dfCurvas, varEscalao)

[66]: results=multivariate_logrank_test(event_durations=T,groups=dfCurvas[varEscalao],event_observed results.print_summary()

	$test_statistic$	p	-log2(p)
0	9517.829603	0.0	inf

[67]: results=pairwise_logrank_test(event_durations=T,groups=dfCurvas[varEscalao],event_observed=C) results.print_summary()

		$test_statistic$	
valorTotal greather than 448	valor Total greather than 5 and less 53	8318.461705	0.000000e-
	valorTotal greather than 53 and less 448	1527.147254	0.000000e
	valorTotal less than 5	3177.425216	0.000000e
valor Total greather than 5 and less 53	valorTotal greather than 53 and less 448	2997.582565	0.000000e
	valorTotal less than 5	2005.351350	0.000000e
valor Total greather than 53 and less 448	valorTotal less than 5	274.052087	1.485246e

6.5 quotaMensal

```
[68]: varEscalao='quotaMensal' dfCurvas[varEscalao].describe()
```

```
[68]: count
               25316.000000
                    4.356099
      mean
      std
                    3.550837
      min
                    0.000000
      25%
                    1.000000
      50%
                    2.500000
      75%
                    6.000000
                   10.000000
      max
```

Name: quotaMensal, dtype: float64

[69]: dfCurvas[varEscalao].value_counts()

```
[69]: 1.0 8016
2.5 7168
10.0 6126
6.0 3123
5.0 869
0.0 14
```

Name: quotaMensal, dtype: int64

[70]: curvaSobrevivencia(dfCurvas, varEscalao)

[71]: results=multivariate_logrank_test(event_durations=T,groups=dfCurvas[varEscalao],event_observed results.print_summary()

	test_statistic	p	-log2(p)
0	3373.682348	0.0	inf

[72]: results=pairwise_logrank_test(event_durations=T,groups=dfCurvas[varEscalao],event_observed=C) results.print_summary()

		test_statistic	p	-log2(p)
0.0	1.0	0.837357	3.601539 e-01	1.473315
	2.5	0.727220	3.937856e-01	1.344518
	5.0	76.734174	1.955894e-18	58.826878
	6.0	19.484981	1.013938e-05	16.589671
	10.0	53.939692	2.067388e-13	42.137256
1.0	2.5	1031.075028	3.160656e-226	749.095525
	5.0	653.856846	3.238374e-144	476.662376
	6.0	846.919933	3.397667e-186	616.114081
	10.0	2167.783976	0.000000e+00	\inf
2.5	5.0	340.212952	5.734471e-76	249.946875
	6.0	178.329728	1.122322e-40	132.710637
	10.0	957.333303	3.378086e-210	695.848694
5.0	6.0	109.345324	1.363389e-25	82.601005
	10.0	16.291769	5.429930e-05	14.168707
6.0	10.0	159.387160	1.540097e-36	118.966390

6.6 jogosEpoca

```
[73]: var='jogosEpoca'
varEscalao='escJogosEpoca'
dfCurvas[var].describe()
```

```
[73]: count
               25316.000000
     mean
                   2.171631
      std
                   4.076356
     min
                   0.000000
     25%
                   0.000000
      50%
                   0.000000
      75%
                   2.000000
                  16.000000
     max
```

Name: jogosEpoca, dtype: float64

```
[74]: dfCurvas[varEscalao]=''
for index, cliente in dfCurvas.iterrows():
    #se a variável tiver o valor 1 colocar na nova variável a descrição da
    →atividade
    if cliente[var] <= 2:
        dfCurvas.at[index,varEscalao]=var+' less than 2'
    elif (cliente[var] > 2):
```

dfCurvas.at[index,varEscalao]=var + ' greather than 2'

[75]: dfCurvas[varEscalao].value_counts()

[75]: jogosEpoca less than 2 19015 jogosEpoca greather than 2 6301 Name: escJogosEpoca, dtype: int64

[76]: curvaSobrevivencia(dfCurvas, varEscalao)

[77]: results=multivariate_logrank_test(event_durations=T,groups=dfCurvas[varEscalao],event_observed results.print_summary()

	$test_statistic$	p	$-\log 2(p)$
0	3270.332736	0.0	inf

[78]: results=pairwise_logrank_test(event_durations=T,groups=dfCurvas[varEscalao],event_observed=C) results.print_summary()

		$test_statistic$	p	$-\log 2(p)$
jogosEpoca greather than 2	jogosEpoca less than 2	3270.332736	0.0	inf

6.7 escalaoTotalJogos

[79]: var='escaloesTotalJogos' dfCurvas[var].describe()

[79]: count 25316 unique 5 top ate 1 freq 15155

Name: escaloesTotalJogos, dtype: object

[80]: dfCurvas[var].value_counts()

[80]: ate 1 15155 1 a 21 2627 mais 105 2527 56 a 105 2519 21 a 56 2488

Name: escaloesTotalJogos, dtype: int64

[81]: curvaSobrevivencia(dfCurvas, var)

[82]: results=multivariate_logrank_test(event_durations=T,groups=dfCurvas[var],event_observed=C) results.print_summary()

	$test_statistic$	p	$-\log 2(p)$
0	3147.499074	0.0	inf

[83]: results=pairwise_logrank_test(event_durations=T,groups=dfCurvas[var],event_observed=C) results.print_summary()

		$test_statistic$	p	$-\log 2(p)$
1 a 21	21 a 56	159.947442	1.161801e-36	119.373049
	$56~\mathrm{a}~105$	816.389467	1.474826e-179	594.064585
	ate 1	11.448851	7.153824e-04	10.448998
	mais 105	1574.871681	0.000000e+00	\inf
$21~\mathrm{a}~56$	$56~\mathrm{a}~105$	279.881955	7.967468e-63	206.287349
	ate 1	361.252035	1.502998e-80	265.166405
	mais 105	851.984446	2.692429e-187	619.771645
$56~\mathrm{a}~105$	ate 1	1204.146733	7.657725e-264	874.052101
	mais 105	217.912019	2.581281e-49	161.406390
ate 1	mais 105	1894.318290	0.000000e+00	\inf

6.8 estadoCivil

[84]: var='estadoCivil'
dfCurvas[var].describe()

Name: estadoCivil, dtype: object

[85]: dfCurvas[var].value_counts()

[85]: solteiro 12065
nao definido 7667
casado 5085
outro 499

Name: estadoCivil, dtype: int64

[86]: curvaSobrevivencia(dfCurvas, var)


```
[87]: results=multivariate_logrank_test(event_durations=T,groups=dfCurvas[var],event_observed=C) results.print_summary
```

[87]: <bound method StatisticalResult.print_summary of <lifelines.StatisticalResult: multivariate_logrank_test>

 $t_0 = -1$

null_distribution = chi squared

degrees_of_freedom = 3

test_name = multivariate_logrank_test

test_statistic p -log2(p) 1350.15 <0.005 969.05>

[88]: results=pairwise_logrank_test(event_durations=T,groups=dfCurvas[var],event_observed=C) results.print_summary()

		test_statistic	p	-log2(p)
casado	nao definido	1387.589094	1.045572e-303	1006.479921
	outro	16.817280	4.115683e-05	14.568509
	solteiro	763.130292	5.603198e-168	555.597669
nao definido	outro	84.704006	3.465475e-20	64.645509
	solteiro	86.339240	1.515709e-20	65.838569
outro	solteiro	35.301134	2.824676e-09	28.399268