

Neural Style Transfer

Style cost function

Meaning of the "style" of an image

Say you are using layer *l*'s activation to measure "style." Define style as correlation between activations across channels.

How correlated are the activations across different channels?

Intuition about style of an image

Style image Say not have Inw pixels Strokes of nu The pixels Strokes of nu The pixels n_{H} n_H Say you take the Red & yellow channels & take each of their $N_{H} \times N_{W}$ cells \rightarrow Now you consider position wise activations of these n_W n_W 'cells & try to find correlation b/w them - Say you find 2 neurons at 2 corres ponding positions - one from the Red block, one from the yellow block

Generated Image

 $n_{\mathcal{C}}$

- Say Red channel gives

you newron ABCD, yellow

gives DEFG

*ABCD -> Identifying vertical

lines

* DEFG -> Identifying orange

color

Q How correlated are ABCD

& DEFG?

correlated -> whenever there is

vertical texture; it has an orange-ish

color (in part of an Ing)

Andrew Ng

[Gatys et al., 2015. A neural algorithm of artistic style]

Style matrix

Let $a_{i,j,k}^{[l]} = \text{activation at } (i,j,k)$. $G^{[l]} \text{ is } n_c^{[l]} \times n_c^{[l]}$

How often do these texture components (vertical lines / color patterns/ Rounded edges) occur eg In an Ing of a water-melon - it is likely that vertical lines neurons & green color

= neurons correlate well together

- It is also likely that black dot neurons & neurons identifying the color "Fed"

occur together Correlation =) degree of correlation of charnels can be used to measure style - We want to minimize the dis-similarity b/w the original Img & generated Image in terms of their styles, ie, we want the Style correlations b/w the chamels of the original Img match that of the generated Img

() has the correlation Score harnel k' for the Image b/w Images channel k' and Images channel k' and Images channel k' $k, k' \in [1, n_c^{(l)}]$ (PTo)

[Gatys et al., 2015. A neural algorithm of artistic style]

Style cost function

Style cost function

$$J_{style}^{[l]}(S,G) = \frac{1}{\left(2n_{H}^{[l]}n_{W}^{[l]}n_{C}^{[l]}\right)^{2}} \sum_{k} \sum_{k'} \left(G_{kk'}^{[l](S)} - G_{kk'}^{[l](G)}\right)$$

where the same transport of the same transport o

Ny [1](s) [1](s) [1](4) [1](4) stal Style gives relative Importance to diff layers Firal total T(9) = & . Trontent + B. Tstyle

[Gatys et al., 2015. A neural algorithm of artistic style]

Andrew Ng