复变函数期中复习

核 31 钱昊远 整理 2024 年 11 月 2 日

1 复数

1.1 复数的表示与运算

复数的表示

$$z = x + yi = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

其中 $r=|z|=\sqrt{x^2+y^2}$ 为复数 z 的模, $\theta=\operatorname{Arg} z$ 为复数 z 的辐角,用 $\operatorname{arg} z$ 表示 z 的主辐角($-\pi<\operatorname{arg} z\leq\pi$), $\operatorname{Arg} z=\operatorname{arg} z+2k\pi(k\in\mathbb{Z})$ 。

棣莫弗 (De Moivre) 公式

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

n 次方根

若 $w^n = z$,则

$$w = |z|^{\frac{1}{n}} \left\{ \cos \left[\frac{1}{n} \left(\arg z + 2k\pi \right) \right] + i \sin \left[\frac{1}{n} \left(\arg z + 2k\pi \right) \right] \right\}$$

其中 k = 0, 1, ..., n - 1。

1.2 平面点集与平面曲线

邻域

平面点集的类型

区域与闭区域

简单闭曲线

1.3 无穷大与复球面

无穷大

可以定义一个特殊的复数——无穷大:

$$\infty = \frac{1}{0}$$

扩充复平面

可设想复平面上有一理想点与 ∞ 相对应,此点称为无穷远点,复平面加上无穷远点称为扩充复平面。即 $\overline{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$ 。

复球面

2 复变函数

2.1 基本知识

定义、单值函数、多值函数 像与原像(参见课本第六章) 极限、连续性

2.2 解析函数

导数与微分

设函数 w = f(z) 在点 z_0 的某邻域内有定义, $z_0 + \Delta z$ 是邻域内任一点,若

$$\lim_{\Delta z \to 0} \frac{f\left(z_0 + \Delta z\right) - f\left(z_0\right)}{\Delta z}$$

存在有限的极限值 A,则称 f(z) 在 z_0 处可导,记作

$$f'(z_0) = \frac{dw}{dz}\Big|_{z=z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = A$$

也称

$$df\left(z_{0}\right) = f'\left(z_{0}\right)dz$$

为 f(z) 在 z_0 处的微分, 故也称 f(z) 在 z_0 点可微。

解析

若 f(z) 在 z_0 及 z_0 的邻域内处处可导,则称 f(z) 在 z_0 处解析;若 f(z) 在区域 D 内每一点都解析,则称 f(z) 在 D 内解析,或者说 f(z) 是 D 内的解析函数。若 f(z) 在 z_0 处不解析,则称 z_0 为 f(z) 的奇点。

$$f(z)$$
 在 z_0 处解析 $\Longrightarrow f(z)$ 在 z_0 处可导 $f(z)$ 在区域 D 内解析 $\Longleftrightarrow f(z)$ 在区域 D 内处处可导

解析函数求导的四则运算法则与链式法则略,反函数的求导法则如下: 设函数 w=f(z) 在区域 D 内解析且 $f'(z) \neq 0$,又反函数 $z=f^{-1}(w)=\varphi(w)$ 存在且连续,则

$$\varphi'(w) = \frac{1}{f'(z)} \Big|_{z=\varphi(w)} = \frac{1}{f'(\varphi(w))}$$

C-R 方程

函数 f(z) = u(x,y) + iv(x,y) 在 z = x + iy 处可导的充要条件是: u(x,y)、v(x,y) 在点 (x,y) 处可微,而且满足柯西——黎曼方程:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

在此条件下:

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x} = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial v}$$

也可记忆为:

$$f'(z) = \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}$$

调和函数

若二元实函数 $\varphi(x,y)$ 在区域 D 内有二阶连续偏导数,且满足二维 Laplace 方程

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0$$

则称 $\varphi(x,y)$ 为区域 D 内的调和函数, 或说函数 $\varphi(x,y)$ 在区域 D 内调和。

设函数 f(z) = u(x,y) + iv(x,y) 在区域 D 内解析,则 f(z) 的实部 u(x,y) 和虚部 v(x,y) 都是区域 D 内的调和函数。

设函数 $\varphi(x,y)$ 及 $\psi(x,y)$ 均为区域 D 内的调和函数,且满足 C-R 方程

$$\frac{\partial \varphi}{\partial x} = \frac{\partial \psi}{\partial y} \qquad \frac{\partial \varphi}{\partial y} = -\frac{\partial \psi}{\partial x}$$

则称 $\psi \neq \varphi$ 的共轭调和函数。 $(-\varphi \neq \psi)$ 的共轭调和函数)

复变函数 f(z) = u(x,y) + iv(x,y) 在区域 D 内解析的充要条件是在区域 D 内,f(z) 的虚部 v(x,y) 是实部 u(x,y) 的共轭调和函数。

2.3 初等函数

指数函数

$$w = e^z = e^{x+iy} = e^x (\cos y + i \sin y)$$

指数函数 $f(z) = e^z$ 有如下性质:

指数函数是单值函数。

指数的运算法则(与实数的相同):

$$e^{z_1}e^{z_2} = e^{z_1+z_2}$$

 e^z 在全平面解析,且

$$(e^z)' = e^z$$

由 $e^z = e^{x+iy} = e^x e^{iy}$ 可知

$$|e^z| = e^x$$
, Arg $e^z = y + 2k\pi(k \in \mathbb{Z})$

故 $\forall z \in \mathbb{C}$,都有 $e^z \neq 0$ 。又可得 e^z 是以 $2k\pi i (k \in \mathbb{Z}, k \neq 0)$ 为周期的函数。 e^z 当 z 趋于 ∞ 时没有极限。

对数函数

满足方程 $e^w = z (z \neq 0)$ 的函数 w = f(z) 称为对数函数,

$$w = \operatorname{Ln} z = \ln|z| + i\operatorname{Arg} z \quad (z \neq 0)$$

对数函数 f(z) = Ln z 有如下性质:

因为 $\operatorname{Arg} z$ 是多值函数,故对数函数是多值函数,且每两个值相差 $2k\pi$ 的整数倍。如果规定 $\operatorname{Arg} z$ 取主值 $\operatorname{arg} z$,就得到 $\operatorname{Ln} z$ 的一个单值"分支",记作

$$\ln z = \ln|z| + i\arg z$$

并把它称为 Ln z 的主值。而其余各个值可由

$$\operatorname{Ln} z = \ln z + 2k\pi i \quad (k \in \mathbb{Z}, k \neq 0)$$

表达,对于每一个固定的 k,上式为一单值函数,称为 $\operatorname{Ln} z$ 的一个分支。 对数的运算法则:(注意是 Ln 而不是 ln)

$$\operatorname{Ln}(z_1 z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2$$

$$\operatorname{Ln}\frac{z_1}{z_2} = \operatorname{Ln} \, z_1 - \operatorname{Ln} \, z_2$$

注意: $\operatorname{Ln} z^n = n \operatorname{Ln} z \ (n \in \mathbb{N}_+, n > 1)$ 不再成立。这本质上是因为 $\sum_{i=1}^n \operatorname{Ln} z = n \operatorname{Ln} z$ 不成立,前者的两个相邻分支相差 $2\pi i$,后者的两个相邻分支相差 $2n\pi i$ 。

 $\ln z$ 在除去原点及负实轴的复平面上解析,且

$$(\ln z)' = \frac{1}{z}$$

 $\operatorname{Ln} z$ 的各分支在除去原点及负实轴的复平面上也解析,且有相同的导数值。(若更改 $\operatorname{arg} z$ 的 定义,可以改变 $\operatorname{Ln} z$ 的解析范围。)

幂函数

函数 $w = z^{\alpha}$ 规定为

$$z^{\alpha} = e^{\alpha \operatorname{Ln} z} \quad (\alpha \in \mathbb{C}, z \neq 0)$$

当 α 为正实数且 z=0 时,规定 $z^{\alpha}=0$

幂函数在不同的 α 值的情况下取值有所差异,详见课本。 $w = z^{\alpha}$ (的相应分支) 在除原点和负实轴的复平面内是解析的,

$$(z^{\alpha})' = \alpha z^{\alpha - 1}$$

三角函数

$$\cos z = \frac{1}{2} \left(e^{iz} + e^{-iz} \right)$$
$$\sin z = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$$

注: 当 z 为实数时,该定义与实数范围内的三角函数定义等价。其余的三角函数可由 $\cos z$ 与 $\sin z$ 导出,此处不再列出。

余弦函数 $\cos z$ 和正弦函数 $\sin z$ 的性质如下:

正余弦函数的许多性质(单值性、周期性、奇偶性、运算法则)与实数范围内的相同。特别的, $|\sin z| \le 1$ 与 $|\cos z| \le 1$ 在复数范围内不再成立,且 $\sin z$ 与 $\cos z$ 都是无界的。

正余弦函数在复平面上解析,

$$(\cos z)' = -(\sin z) \qquad (\sin z)' = (\cos z)$$

反三角函数

双曲函数与反双曲函数

3 级数

3.1 复数项级数与复变函数项级数

复数项级数

设 $\{z_n\}$ $(n=1,2,\cdots)$ 为一复数序列,表达式

$$\sum_{n=1}^{\infty} z_n = z_1 + z_2 + \dots + z_n + \dots$$

称为复数项无穷级数。若它的部分和序列

$$S_n = \sum_{k=1}^n z_k = z_1 + z_2 + \dots + z_n$$

有极限 $\lim_{n\to\infty} S_n = S$ (S 为有限复数),则称级数是收敛的,S 称为级数的和;若不然,则称级数是发散的。

复数项级数的部分和序列

$$S_n = \sum_{k=1}^n z_k = \sum_{k=1}^n x_k + i \sum_{k=1}^n y_k$$

易知级数 $\sum_{n=1}^{\infty} z_n$ 收敛当且仅当 $\sum_{n=1}^{\infty} x_n$ 与 $\sum_{n=1}^{\infty} y_n$ 都收敛。

级数 $\sum_{n=1}^{\infty} z_n$ 收敛的必要条件为

$$\lim_{n \to \infty} z_n = \lim_{n \to \infty} (x_n + iy_n) = 0$$

如果级数 $\sum_{n=1}^{\infty} |z_n|$ 收敛,则级数 $\sum_{n=1}^{\infty} z_n$ 收敛,此时称级数 $\sum_{n=1}^{\infty} z_n$ 绝对收敛。如果 $\sum_{n=1}^{\infty} z_n$ 收敛而 $\sum_{n=1}^{\infty} |z_n|$ 不收敛,称 $\sum_{n=1}^{\infty} z_n$ 条件收敛。

复变函数项级数

设 $\{f_n(z)\}$ 为区域 D 内的函数,则称

$$\sum_{n=1}^{\infty} f_n(z) = f_1(z) + f_2(z) + \dots + f_n(z) + \dots$$

为区域 D 内的复变函数项级数。该级数的前 n 项和

$$S_n(z) = \sum_{k=1}^n f_k(z) = f_1(z) + f_2(z) + \dots + f_n(z)$$

称为级数的部分和。

设 z_0 为区域 D 内的一点,若 $\lim_{n\to\infty} S_n(z_0) = S(z_0)$ 存在,则称级数 $\sum_{n=1}^{\infty} f_n(z)$ 在 z_0 处是收敛的,此时 $S(z_0)$ 就是它的和,即 $\sum_{n=1}^{\infty} f_n(z_0) = S(z_0)$ 。若级数在 D 内处处收敛,则级数的和就是 D 内的一个函数 S(z),即

$$\sum_{n=1}^{\infty} f_n(z) = S(z)$$

3.2 幂级数

幂级数定义

形如

$$\sum_{n=0}^{\infty} C_n (z - z_0)^n = C_0 + C_1 (z - z_0) + C_2 (z - z_0)^2 + \dots + C_n (z - z_0)^n + \dots$$

的复变函数项级数称为幂级数。其中 C_n $(n=0,1,2,\cdots)$ 与 z_0 均为复常数。

阿贝尔定理

若幂级数在点 z_1 ($z_1 \neq z_0$) 处收敛,则级数在圆域 $|z - z_0| < |z_1 - z_0|$ 内绝对收敛。若幂级数在点 z_2 ($z_2 \neq z_0$) 处发散,则满足 $|z - z_0| > |z_2 - z_0|$ 的点 z 使级数发散。

收敛半径

若存在一个有限正数 R,使得 $\sum_{n=0}^{\infty} C_n (z-z_0)^n$ 在圆周 $|z-z_0|=R$ 内绝对收敛,在圆周 $|z-z_0|=R$ 的外部发散,则 R 称为此幂级数的收敛半径。特别的,若对任意的 $z\neq z_0$,级数 $\sum_{n=0}^{\infty} C_n (z-z_0)^n$ 均发散,则 R=0; 若对任意的 z,级数 $\sum_{n=0}^{\infty} C_n (z-z_0)^n$ 均收敛,则 $R=\infty$ 。

比值法: 若

$$\lim_{n \to \infty} \left| \frac{C_{n+1}}{C_n} \right| = \lambda$$

则幂级数的收敛半径 $R = \frac{1}{\lambda}$;

根值法: 若

$$\lim_{n \to \infty} \sqrt[n]{|C_n|} = \lambda$$

则幂级数的收敛半径 $R = \frac{1}{\lambda}$ 。

运算法则

同实变量幂级数一样,复变量幂级数也能进行加、减、乘、代换等运算,且在收敛圆内部,幂级数的和是一个解析函数,可以逐项求导及逐项积分任意次。

3.3 泰勒级数

泰勒定理

设函数 f(z) 在区域 D 内解析, z_0 为 D 内的一点,R 为 z_0 到 D 的边界上各点的最短 距离,则当 $|z-z_0| < R$ 时,f(z) 可展为幂级数

$$f(z) = \sum_{n=0}^{\infty} C_n (z - z_0)^n$$

其中 $C_n = \frac{1}{n!} f^{(n)}(z_0), \quad n = 0, 1, 2, \cdots$

函数在一点解析的充要条件是它在这点的邻域内可以展开为幂级数。

常见的泰勒级数

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \dots + z^n + \dots$$

上述级数收敛域为 |z| < 1,下列级数收敛域为 $|z| < +\infty$

$$e^{z} = \sum_{n=0}^{\infty} \frac{1}{n!} z^{n} = 1 + \frac{z}{1!} + \frac{z^{2}}{2!} + \dots + \frac{z^{n}}{n!} + \dots$$

$$\sin z = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n+1}}{(2n+1)!} = z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} + \dots + (-1)^{n} \frac{z^{2n+1}}{(2n+1)!} + \dots$$

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} + \dots + (-1)^n \frac{z^{2n}}{(2n)!} + \dots$$

$$(1+z)^{\alpha} = 1 + \sum_{n=1}^{\infty} \frac{\prod_{k=0}^{n-1} (\alpha - k)}{n!} z^n = 1 + \alpha z + \frac{\alpha (\alpha - 1)}{2!} z^2 + \dots + \frac{\alpha (\alpha - 1) \cdots (\alpha - n + 1)}{n!} z^n + \dots$$

3.4 洛朗级数

洛朗定理

设函数 f(z) 在圆环域 $R_1 < |z-z_0| < R_2$ 内处处解析,则 f(z) 一定能在此圆环域中展开为

$$f(z) = \sum_{n=-\infty}^{\infty} C_n (z - z_0)^n$$

其中

$$C_n = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \quad (n \in \mathbb{Z})$$

而 C 为此圆环域内绕 z_0 的任一简单闭曲线。注意: 不能将 C_n 写成 $\frac{f^{(n)}(z_0)}{n!}$,因为 f(z) 在 $|z-z_0| \leq R_1$ 内不一定处处解析。

洛朗级数中的正整次幂部分称为解析部分,其在 $|z-z_0| < R_2$ 内收敛; 负整次幂部分称为主要部分,其在 $|z-z_0| > R_1$ 内收敛。

洛朗级数的展开方法

洛朗级数的展开,一般采用在已知泰勒级数的收敛域内使用泰勒展开的方式展开。常见的方式为: 在 $|z-z_0| < R_2$ 内展开

$$(z-z_0)^k \frac{1}{1-\left(\frac{z-z_0}{r}\right)^l} = \sum_{n=0}^{\infty} \frac{1}{r^{ln}} (z-z_0)^{ln+k}$$

其中 $r \geq R_2, k \in \mathbb{Z}, l \in \mathbb{N}_+$; 或在 $|z - z_0| > R_1$ 内展开

$$(z - z_0)^k \frac{1}{1 - \left(\frac{r}{z - z_0}\right)^l} = \sum_{n=0}^{\infty} r^{ln} \frac{1}{(z - z_0)^{ln - k}}$$

其中 $0 < r \le R_1, k \in \mathbb{Z}, l \in \mathbb{N}_+$ 。

4 留数

4.1 孤立奇点与零点

有限孤立奇点的定义

若 f(z) 在 z_0 处不解析,但在 z_0 的某一个去心邻域 $0<|z-z_0|<\delta$ 内处处解析,则称 z_0 为 f(z) 的孤立奇点。

在孤立奇点 $z=z_0$ 的去心邻域内,函数 f(z) 可展开为洛朗级数

$$f(z) = \sum_{n=-\infty}^{\infty} C_n (z - z_0)^n$$

函数在 z₀ 处的奇异性质完全体现在洛朗级数的负整次幂部分,即主要部分。

有限孤立奇点的分类

若对一切 n < 0 有 $C_n = 0$,则称 z_0 是函数 f(z) 的可去奇点。此时若令 $f(z_0) = C_0$,可以得到在整个圆盘 $|z - z_0| < \delta$ 内解析的函数 f(z)。

若只有有限个(至少一个)整数 n < 0,使得 $C_n \neq 0$,则称 z_0 是函数 f(z) 的极点。设对于正整数 m, $C_{-m} \neq 0$,而当 n < -m 时, $C_n = 0$,则称 z_0 是函数 f(z) 的 m 阶极点,1 阶极点又叫做简单极点。

若有无限个整数 n < 0, 使得 $C_n \neq 0$, 则称 z_0 是函数 f(z) 的本性奇点。

当函数 f(z) 在 $0 < |z-z_0| < \delta(0 < \delta \le +\infty)$ 内解析时:

$$\lim_{z\to z_0} f(z) = C_0 \neq \infty \iff z_0 \text{ 是 } f(z) \text{ 的可去奇点}$$

$$\lim_{z\to z_0} f(z) = \infty \iff z_0 \text{ 是 } f(z) \text{ 的极点}$$

$$\lim_{z\to z_0} (z-z_0)^m f(z) = C_{-m} \neq 0 \ (m\in\mathbb{N}_+) \iff z_0 \text{ 是 } f(z) \text{ 的 } m \text{ 阶极点}$$

$$\lim_{z\to z_0} f(z) \text{ 不存在} \iff z_0 \text{ 是 } f(z) \text{ 的本性奇点}$$

有限极点与零点的关系

若 $f(z) = (z - z_0)^m \varphi(z)$ $(m \in \mathbb{N}_+)$, $\varphi(z)$ 在 z_0 处解析,且 $\varphi(z_0) \neq 0$,则称 z_0 为 f(z) 的 m 阶零点。一个不恒为零的解析函数的零点是孤立的。

若 $f(z_0)$ 在 z_0 解析, 那么 z_0 为 f(z) 的 m 阶零点的充要条件为

$$f^{(n)}(z_0) = 0$$
 $(n = 0, 1, \dots, m - 1), \quad f^{(m)}(z_0) \neq 0$

函数的零点与极点的关系为(可去奇点当做解析点看待):

$$z_0 \not = f(z)$$
 的 m 阶极点 $\Longleftrightarrow z_0 \not = \frac{1}{f(z)}$ 的 m 阶零点

无穷远点

设函数 f(z) 在无穷远点的邻域 $R<|z|<+\infty$ 内解析,则无穷远点 ∞ 称为 f(z) 的孤立奇点。

在 $R < |z| < +\infty$ 内,f(z) 有洛朗级数展开式

$$f(z) = \sum_{n = -\infty}^{\infty} C_n z^n = \sum_{n = -\infty}^{\infty} \frac{C_{-n}}{z^n} \quad (R < |z| < +\infty)$$

其中 $\sum_{n=-\infty}^{0} C_n z^n$ 为解析部分, $\sum_{n=1}^{\infty} C_n z^n$ 为主要部分。

若对一切 n>0 有 $C_n=0$, 则称 ∞ 是函数 f(z) 的可去奇点。

若只有有限个(至少一个)整数 n>0,使得 $C_n\neq 0$,则称 ∞ 是函数 f(z) 的极点。设对于正整数 m, $C_m\neq 0$,而当 n>m 时, $C_n=0$,则称 ∞ 是函数 f(z) 的 m 阶极点。

若有无限个整数 n > 0, 使得 $C_n \neq 0$, 则称 ∞ 是函数 f(z) 的本性奇点。

当函数 f(z) 在 $R < |z| < -\infty (R \ge 0)$ 内解析时:

$$\lim_{z\to\infty} f(z) = C_0 \neq \infty \iff \infty \text{ 是 } f(z) \text{ 的可去奇点}$$

$$\lim_{z\to\infty} f(z) = \infty \iff \infty \text{ 是 } f(z) \text{ 的极点}$$

$$\lim_{z\to\infty} \frac{f(z)}{z^m} = C_m \neq 0 \ (m \in \mathbb{N}_+) \iff \infty \text{ 是 } f(z) \text{ 的 } m \text{ 阶极点}$$

$$\lim_{z\to\infty} f(z) \text{ 不存在} \iff \infty \text{ 是 } f(z) \text{ 的本性奇点}$$

4.2 留数的定义与计算

有限孤立奇点处留数的定义

设 z_0 是解析函数 f(z) 的有限孤立奇点,把 f(z) 在 z_0 处的洛朗展开式中的负一次幂的 系数 C_{-1} 称为 f(z) 在 z_0 处的留数,记作

$$\operatorname{Res}\left[f\left(z\right),z_{0}\right]=C_{-1}$$

易知若 z_0 为 f(z) 的有限可去奇点,则 Res $[f(z), z_0] = 0$ 。

函数在有限极点的留数

若 z_0 为 f(z) 的 $m(m \in \mathbb{N}_+)$ 阶极点,则

Res
$$[f(z), z_0] = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} [(z-z_0)^m f(z)]$$

其中当 m=1 时, 即 z_0 为简单极点时,

Res
$$[f(z), z_0] = \lim_{z \to z_0} [(z - z_0) f(z)]$$

设 $f(z) = \frac{P(z)}{Q(z)}$, 其中 P(z) 与 Q(z) 均在 z_0 处解析,若 $P(z_0) \neq 0$, z_0 为 Q(z) 的一阶 零点,则 z_0 为 f(z) 的一阶极点,且

Res
$$[f(z), z_0] = \frac{P(z_0)}{Q'(z_0)}$$

函数在无穷远点的留数

设 ∞ 为 f(z) 的一个孤立奇点,把 f(z) 在 $R < |z| < +\infty$ 内的洛朗展开式中的负一次 幂的系数的相反数 $-C_{-1}$ 称为 f(z) 在 ∞ 处的留数,记作

$$\operatorname{Res}\left[f\left(z\right) ,\infty\right] =-C_{-1}$$

注意: 即使 ∞ 为 f(z) 的可去奇点, $\operatorname{Res}[f(z),\infty]$ 也未必是 0。 无穷远点的留数可以转化为坐标原点的留数:

$$\operatorname{Res}\left[f\left(z\right),\infty\right] = -\operatorname{Res}\left[f\left(\frac{1}{z}\right)\cdot\frac{1}{z^{2}},0\right]$$

若 f(z) 在扩充复平面上只有有限个孤立奇点(包含无穷远点),记为 $z_1, z_2, \dots, z_n, \infty$,则 f(z) 在各点处的留数总和为零。

5 复积分

5.1 复积分的定义与性质

复积分的定义(见课本)

复积分的基本计算方法

设 f(z) = u(x,y) + iv(x,y) (u、v 均为实变函数)在光滑曲线 C 上连续,则复积分 $\int_C f(z) dz$ 存在,且

$$\int_{C} f(z) dz = \int_{C} (udx - vdy) + i \int_{C} (vdx + udy)$$

这样就把复积分转化为了两个二元实变函数的线积分。

设曲线 C 的参数方程为

$$z(t) = x(t) + i(t) \quad (a \le t \le b)$$

则复积分可以转化为普通的定积分

$$\int_{C} f(z) dz = \int_{a}^{b} f(z(t)) z'(t) dt$$

一个重要的复积分:

$$\oint_C \frac{dz}{(z-z_0)^n} = \begin{cases} 2\pi i, & n=1\\ 0, & n \neq 1 \end{cases}$$

其中 $n \in \mathbb{Z}$, C 为以 z_0 为中心,r 为半径的圆周。(注:实际上 C 只要是环绕 z_0 的简单闭曲线即可)

复积分的基本性质

复积分有以下基本性质:

- 1. $\int_C kf(z) dz = k \int_C f(z) dz$, 其中 k 为复常数;
- 2. $\int_{C} f(z) dz = \int_{C^{-}} f(z) dz$;
- 3. $\int_{C} [f(z) \pm g(z)] dz = \int_{C} f(z) dz \pm \int_{C} g(z) dz;$
- 4. $\int_{C} f(z) dz = \int_{C_{1}} f(z) dz + \int_{C_{2}} f(z) dz$, 其中 $C = C_{1} + C_{2}$;
- 5. $\left| \int_C f(z) dz \right| \leq \int_C |f(z)| |dz|$

柯西积分定理

设函数 f(z) 在单连通区域 D 内解析,则 f(z) 在 D 内沿任意一条简单闭曲线 C 的积分

$$\int_{C} f(z) \, dz = 0$$

如果 C 是区域 D 的边界, f(z) 在 D 内解析,在闭区域 \overline{D} 上连续,那么柯西积分定理依然成立。

闭路变形原理

设 C_1 与 C_2 是两条简单闭曲线, C_2 在 C_1 的内部,f(z) 在 C_1 与 C_2 所围的多连通区域 D 内解析,而在 $\overline{D}=D+C_1+C_2^-$ 上连续,则

$$\oint_{C_1} f(z) dz = \oint_{C_2} f(z) dz$$

上式说明,在区域内的一个解析函数沿闭曲线的积分,不因闭曲线在区域内作连续变形而改变它的值。这一事实称为闭路变形原理。

复合闭路定理:设 C 为多连通区域 D 内的一条简单闭曲线, C_1,C_2,\cdots,C_n 是在 C 内部的简单闭曲线,它们互不包含也互不相交,并且以 C,C_1,C_2,\cdots,C_n 为边界的区域全含于 D,如果 f(z) 在 D 内解析,则

$$\oint_{C} f(z) dz = \sum_{k=1}^{n} \oint_{C_{k}} f(z) dz$$

记 Γ 为由 C 及 $C_k^ (k=1,2,\cdots,n)$ 所组成的复合回路,则

$$\oint_{\Gamma} f(z) \, dz = 0$$

5.2 使用原函数积分

积分与路径无关

设函数 f(z) 在单连通区域 D 内解析, z_0 与 z_1 为 D 内任意两点, C_1 与 C_2 为连接 z_0 与 z_1 的积分路线,且 C_1 与 C_2 都含于 D,则

$$\int_{C_1} f(z) dz = \int_{C_2} f(z) dz$$

此时任取 D 内从 z_0 到 z_1 的简单曲线 C,则积分 $\int_C f(z) dz$ 只与 C 的起点 z_0 和终点 z_1 有关,而与 C 的路径无关,这种积分可以写成

$$\int_{z_0}^{z_1} f(z) \, dz$$

并把 z_0 和 z_1 分别称为积分的下限和上限。

原函数

设在单连通区域 D 内,函数 F(z) 恒满足条件 F'(z) = f(z),则称 F(z) 是 f(z) 的原函数。若 F(z) 是 f(z) 的原函数,则对于任意复常数 C,F(z) + C 也是 f(z) 的原函数。

设 f(z) 在单连通区域 D 内解析, 且 F(z) 为 f(z) 的一个原函数,则

$$\int_{z_0}^{z_1} f(z) dz = F(z_1) - F(z_0)$$

其中 z_0 与 z_1 均为区域 D 内的点。

5.3 柯西积分公式及其推论

柯西积分公式

设 f(z) 在简单闭曲线 C 所围成的区域 D 内解析,在 $\overline{D} = D \cup C$ 上连续, z_0 是 D 内任 意一点,则

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$

把 z_0 当作变数看待,则可以写成

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{\zeta - z} d\zeta$$

在多连通域内的柯西积分公式

设 f(z) 在由简单闭曲线 C_1, C_2 所围成的多连通区域 D 内解析,在 $\overline{D} = C_1 + C_2 + D$ 上连续, C_2 在 C_1 的内部, C_2 是 C_3 内任意一点,则

$$f(z_0) = \frac{1}{2\pi i} \oint_{C_1} \frac{f(z)}{z - z_0} dz - \frac{1}{2\pi i} \oint_{C_2} \frac{f(z)}{z - z_0} dz$$

平均值公式

设 f(z) 在 $|z-z_0| < R$ 内解析,在 $|z-z_0| \le R$ 内连续,则

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\theta}) d\theta$$

最大模原理与最小模原理

设函数 f(z) 在区域 D 内解析,又 f(z) 不是常数,则 |f(z)| 在 D 内没有最大值。

设函数 f(z) 在区域 D 内解析,且恒不为零,又 f(z) 不是常数,则 |f(z)| 在 D 内没有最小值。

5.4 解析函数的高阶导数

n 阶导数公式

设函数 f(z) 在简单闭曲线 C 所围成的区域 D 内解析,而在 $\overline{D} = D \cup C$ 上连续,则 f(z) 的各阶导数均在 D 内解析,对 D 内任意一点 z,有

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta \quad (n \in \mathbb{N}_+)$$

柯西不等式

设函数 f(z) 在 $|z-z_0| < R$ 内解析,又 $|f(z)| \le M$ 在 $|z-z_0| < R$ 内恒成立,则

$$\left|f^{(n)}\left(z\right)\right| \le \frac{n!M}{R^n} \quad (n \in \mathbb{N}_+)$$

刘维尔定理

设函数 f(z) 在全平面上为解析且有界,则 f(z) 为一常数。

5.5 利用留数计算复积分

留数的定义与闭合环路积分的关系

若函数 f(z) 在 z_0 的某一去心邻域内解析,则

$$\operatorname{Res}\left[f\left(z\right),z_{0}\right]=\frac{1}{2\pi i}\oint_{C}f\left(z\right)dz$$

其中 C 为 z_0 的上述去心邻域内环绕 z_0 的简单闭曲线。

类似的,设 ∞ 为 f(z) 的一个孤立奇点,即 f(z) 在圆环域 $R < |z| < +\infty$ 内解析,则

$$\operatorname{Res}\left[f\left(z\right),\infty\right] = \frac{1}{2\pi i} \oint_{C^{-}} f\left(z\right) dz \quad (C:|z| = \rho > R)$$

留数定理

设函数 f(z) 在区域 D 内除有限个孤立奇点 z_1, z_2, \cdots, z_n 外处处解析,C 是 D 内包围各奇点的一条正向简单闭曲线,则

$$\oint_C f(z) dz = 2\pi i \sum_{k=1}^n \text{Res} [f(z), z_k]$$

5.6 利用留数计算实积分

情形 1: 形如 $\int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta$ 的积分

$$\diamondsuit z = e^{i\theta}, \ dz = ie^{i\theta}d\theta$$
 則

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{z^2 - 1}{2iz}, \quad \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{z^2 + 1}{2z}$$

此时

$$R(\cos\theta, \sin\theta) d\theta = R\left(\frac{z^2 - 1}{2iz}, \frac{z^2 + 1}{2z}\right) \frac{dz}{iz}$$

当 θ 经历变程 $[0,2\pi]$ 时,对应的 z 正好沿单位圆 |z|=1 的正向绕行一周。记

$$f(z) = R\left(\frac{z^2 - 1}{2iz}, \frac{z^2 + 1}{2z}\right) \frac{1}{iz}$$

f(z) 在积分闭路 |z|=1 上无奇点,在 |z|<1 内有 n 个奇点 z_1, z_2, \dots, z_n ,则

$$\int_{0}^{2\pi} R(\cos\theta, \sin\theta) d\theta = \oint_{|z|=1} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res} [f(z), z_{k}]$$

情形 2: 形如 $\int_{-\infty}^{+\infty} R(x) dx$ 的积分

令

$$R(z) = \frac{P(z)}{Q(z)} = \frac{a_0 z^n + a_1 z^{n-1} + \dots + a_n}{b_0 z^m + b_1 z^{m-1} + \dots + b_m} \quad (a_0 b_0 \neq 0, m - n \geq 2)$$

其中 Q(z) 在实轴上无零点,记 R(z) 在上半平面 Im z > 0 内的极点为 z_1, z_2, \cdots, z_n ,则

$$\int_{-\infty}^{+\infty} R(x) dx = 2\pi i \sum_{k=1}^{n} \operatorname{Res} \left[R(z), z_{k} \right]$$

如果 R(z) 为偶函数,则

$$\int_{0}^{+\infty} R(x) dx = \frac{1}{2} \int_{-\infty}^{+\infty} R(x) dx = \pi i \sum_{k=1}^{n} \operatorname{Res} \left[R(z), z_{k} \right]$$

附: 如果 Q(z) 只比 P(z) 高一次,在柯西主值意义下,可以将 P(z) 中最高次项分离出来,并形成一个奇函数(或实变函数意义下的中心对称),其从 $-\infty$ 到 $+\infty$ 的积分值为零。 情形 3: 形如 $\int_{-\infty}^{+\infty} R(x) \, e^{iax} dx \, (a>0)$ 的积分

当 R(x) 是真分式且在实轴上无奇点时,记 $f(z)=R(z)\,e^{iaz}$,其在在上半平面 ${\rm Im}\ z>0$ 内的极点为 z_1,z_2,\cdots,z_n 则

$$\int_{-\infty}^{+\infty} R(x) e^{iax} dx = 2\pi i \sum_{k=1}^{n} \text{Res} [f(z), z_k]$$

同时可以得到

$$\int_{-\infty}^{+\infty} R(x) \cos(ax) dx = \operatorname{Re}\left(2\pi i \sum_{k=1}^{n} \operatorname{Res}\left[f(z), z_{k}\right]\right)$$

$$\int_{-\infty}^{+\infty} R(x) \sin(ax) dx = \operatorname{Im} \left(2\pi i \sum_{k=1}^{n} \operatorname{Res} \left[f(z), z_{k} \right] \right)$$

附: 情形 2、3 在实轴上有有限个简单极点的情况

若 R(z) 在实轴上只有有限个简单极点,可以将这些简单极点的留数值的一半计入求和。 此方法可以通过以下引理证明:

取充分小的 r, 设 f(z) 沿圆弧 $C_r: z-z_0=re^{i\theta} (\theta_1 \leq \theta \leq \theta_2)$ 上连续,且

$$\lim_{r \to 0} (z - z_0) f(z) = \lambda$$

于 C_r 上一致成立,则有

$$\lim_{r \to 0} \int_{C_r} f(z) dz = i (\theta_2 - \theta_1) \lambda$$