时序逻辑基础

时序逻辑电路与组合逻辑电路不同。在时序逻辑电路中,状态可以被记忆,电路整体受一个时钟信号 clk 的控制,此外往往还有一个异步的重置信号 rst。

锁存器和触发器是时序逻辑电路中的两类基本元件,在它们的基础上,寄存器和计数器等元件得以产生。

锁存器

锁存器没有时钟信号。它被用来「锁」住一个值,受一个或多个控制信号的控制。

RS 锁存器

RS 锁存器有两个输入端——R 对应 Reset, 用来置 0; S 对应 Set, 用来置 1。

对于使用或非门实现的 RS 锁存器(高有效),假设 Q_{n+1} 是其输出的「次态」,也就是下一轮输出电平的状态; Q_n 是现态,即现在输出的状态,那么 Q_n 和 Q_{n+1} 与 R 和 S 之间的关系如下表:

置0端 R	置1端 S	次态 Q _{n+1}
0	0	Q n
0	1	1
1	0	0
1	1	1

对于与非门实现的 RS 锁存器 (低有效) ,只需要翻转上表左边两栏中的 0 和 1 就可以了。RS 锁存器 在 R 和 S 都无效的时候不会改变输出,在 R 和 S 单独有效的时候置 0 或者置 1,不允许两者都有效。它的状态方程是:

$$Q_{n+1} = S + R'Q_n$$

门控 D 锁存器

门控 D 锁存器有两个输入端——「门」端 G 和输入端 D。门控 D 锁存器的功能表如下:

使能端 G	输入端 D	现态 Q _n	次态 Q _{n+1}	
0	Х	0	0	
0	Х	1	1	
1	0	0	6	
1	0	1	0	
1	1	0	1	
1	1	1	1	

如其名所言,门控 D 锁存器在「门」打开(也就是 G 有效)时,输出端将直接拷贝输入端 D; 否则,会保持原先的值。因此,它的状态方程是:

$$Q_{n+1} = GD + G'Q_n$$

触发器

触发器与锁存器最大的不同是,触发器有一个时钟信号接入,并在这个时钟信号的控制之下动作。一般 触发器的触发方式是边沿触发的,这意味着它只关心时钟信号的变化而不是时钟信号的高低。

D 触发器

D 触发器只有一个输入端,是应用最广的一种触发器。它的输出次态与现态无关;换言之,它的输出仅与输入信号有关。在触发的那一瞬间,它的输出端会直接拷贝输入端,并且保持这个值直到下一次被触发。

对于上升沿触发的 D 触发器, 它的状态表如下:

时钟端 CK	输入端 D	现态 Q n	次态 Q _{n+1}
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

它的状态方程是 $Q_{n+1}=D$ 。式子中并没有 Q_n 。

如果把 D 触发器的反相输出端与输入端 D 相连,就可以得到一个二分频电路:输出端会产生一个频率是时钟频率一半的方波时钟。

一个小提示:在时序电路中,如果在时钟边沿到来的那一瞬间输入信号也有改变,我们一般认为这个时候采样到的是原值(改变前的值),尽管实际电路中这种情况可能导致不确定的结果。

RS 触发器

RS 触发器有两个输入端 R (Reset) 和 S (Set),就像 RS 锁存器一样,不同的是它的状态只有在时钟边沿时才会更新。上升沿触发的 RS 触发器的状态表如下:

时钟端 CK	输入端 R	输入端 S	现态 Q n	次态 Q _{n+1}
<u>†</u>	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	
1	1	1	1	_

同样地,它不允许 R 和 S 同时为高电平。它的状态方程是 $Q_{n+1}=S+R'Q_n$ 。

JK 触发器

JK 触发器 里面住着可爱的 JK 得名于它的发明者 Jack Kil,有两个输入端 J 和 K。它可以理解为 RS 触发器的升级版,取消了 RS 触发器中 R 和 S 不能同时为高的限制。对于这种情况,它会翻转现态作为次态。下降沿触发的 JK 触发器的状态表如下:

时钟端 CK	输入端 J	输入端 K	现态 Q _n	次态 Q _{n+1}
↓	0	0	0	0
↓	0	0	1	1
+	0	1	0	0
+	0	1	1	0
+	1	0	0	1
+	1	0	1	1
+	1	1	0	1
+	1	1	1	0

它的状态方程是 $Q_{n+1}=JQ_n'+K'Q_n$ 。可以发现它比 RS 触发器多与了一项 Q_n' 。事实上,如果忽略 RS 不能为 1 这个条件,那么 R 和 K 端对应,S 和 J 端对应。

T 触发器

T 触发器只有一个输入 T。与 D 触发器完全相反,它的输出完全由现态决定,T 则是控制是否翻转现态。下降沿触发的 T 触发器的状态表如下:

F	付钟端 CK	输入端 T	现态 Q _n	次态 Q _{n+1}
	+	0	0	0
	+	0	1	1
	+	1	0	1
	—	1	1	0

事实上 T 触发器相当于把 JK 触发器的 J 和 K 接在了一起。因此它的状态方程是 $Q_{n+1}=T\oplus Q_n$ 。

如果把 T 触发器的 T 端恒置为 1, 就得到了 T' 触发器。T' 触发器将在触发的瞬间无条件翻转现态作为次态。

对于上文中的所有触发器,都可以额外增加两个输入端: 异步清零端和异步置 1 端。异步清零端有效时,触发器无条件输出 0; 异步置 1 端有效时,触发器无条件输出 1。

触发器类型的转换

触发器类型的转换,即用某一种触发器 A 和一些外围逻辑门电路,实现触发器 B 的功能。下面介绍方法。

假设我们需要使用 JK 触发器实现 D 触发器的功能。先写出两个触发器的状态方程:

$$\left\{egin{aligned} JK:Q_{n+1} &= JQ_n' + K'Q_n \ D:Q_{n+1} &= D \end{aligned}
ight.$$

我们的目标是得到 J 和 K 端关于 D 的函数 (这样才能把 D 转换之后接上去)。因此,我们令上两式右侧相等,得到

$$JQ_n' + K'Q_n = D$$

改写成

$$JQ_n' + K'Q_n = DQ_n + DQ_n'$$

于是

$$\begin{cases} J = D \\ K = D' \end{cases}$$

另一种更好的方式是用卡诺图来转换。本质上,假设 A_1,A_2,\cdots,A_m 是触发器 A 的输入端, B_1,B_2,\cdots,B_n 是触发器 B 的输入端,我们的目标是用 A 来实现 B。那么我们需要找的就是 B_i 和 A_i 与 Q_n 之间的关系。例如,如果要用 RS 触发器实现 JK 触发器,先找出次态现态转换的四种情况以及它们对应的 RS 和 JK 触发器的输入:

$Q_n \longrightarrow Q_{n+1}$	RS	J K
0 0	× 0	0 ×
0 1	0 1	1 ×
1 - 0	1 0	× 1
$_1 \longrightarrow _1$	0 ×	× 0

然后画出 R 和 S 关于现态以及 J 和 K 的卡诺图

Q_n JK	00	01	11	10
0	0	0	\ - /	(-)
1	×	0	0	×

S的

Q_n	00	01	11	10
0	×	×	0	0
1	0	1	1	0

根据卡诺图写出式子就行了。

寄存器

寄存器顾名思义,是用来「寄存」数据的。上文提到的各类触发器中,D 触发器的输出仅与输入有关,故十分用来寄存单个比特。把许多 D 触发器级联起来,就形成了寄存器:

如果把这些 D 触发器的接法改成首尾相接(后一个触发器的 D 端接在前一个触发器的 Q 端),那么就形成了移位寄存器。下图展示的是一种串入并出的右移寄存器:

把整个设计反向,就得到左移寄存器(数据从右边进,不断向左移动)。此外,还有移动方向可变得双向移位寄存器。

计数器

计数器是一种能够在有限个输出状态之间循环转换的元件。将前文提到的右移寄存器最右边的输出反着接到输入端,就可以得到一个循环往复的计数器。计数器的模指的是计数器能循环的状态的个数。由 n

个触发器构成的 n 位二进制计数器一共有 2^n 个状态,但一般模小于 2^n ,也就是说其中只有一些状态能参与循环。

对计数器电路的分析包含下面 5 个部分:

- 输入方程: 指的是计数器中所有触发器的输入端的接法。
- 输出方程: 指的是计数器的所有**输出端和触发器**之间的接法。对于 Moore 型计数器,它的输出就是计数器的输出,因此不需要考虑这个问题。
- 状态转移方程:指的是计数器中各个**触发器的状态转移方程**(即次态输出和现态输出、输入之间的关系)。
- 状态转换表: 指的是计数器的**现态**和**次态**之间的转换,以及对应的触发条件。
- 状态图: 指的是计数器各状态之间的循环关系。

例如下面的计数器电路

输入方程:

$$\left\{egin{aligned} D_3 &= Y_3 Y_1' + Y_2 Y_1 \ D_2 &= Y_2 Y_1' + Y_3' Y_2' Y_1 \ D_1 &= Y_1' \end{aligned}
ight.$$

状态转移方程:

$$\begin{cases} Y_3^{n+1} = D_3 \\ Y_2^{n+1} = D_2 \\ Y_1^{n+1} = D_1 \end{cases}$$

由上面的两组方程可以画出下面的状态转换表:

	现态			次态		
Y ₃ n	$\mathbf{Y_2}^{\mathbf{n}}$	Y_1^n	Y ₃ n+1	Y ₂ n+1	Y ₁ n+1	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	
1	0	1	0	0	0	
1	1	0	1	1	1	
1	1	1	1	0	0	

由这个表容易得到状态转换的关系。(模 6 加法计数器)

环形计数器

将右移寄存器的最右端输出接到输入,得到一个环形计数器。

n 个触发器制成的环形计数器一共有 n 个可循环的状态,不能自启动,需要预置。

扭环形计数器

将右移寄存器的最右端反相输出接到输入,得到一个扭环形计数器。

n 个触发器制成的扭环形计数器一共有 2n 个可循环的状态,不能自启动,需要预置。

所谓「扭」环正是因为它是用最右端输出的反相信号返回去接到输入。