Calculs de déterminants

Dans tout le problème a,b,c désignent des réels et n un entier supérieur à 1.

Partie I

Soit Δ_n le déterminant de la matrice carrée d'ordre n formée de la manière suivante :

les éléments de la diagonale principale sont égaux à a, ceux au dessus de la cette diagonale valent b et enfin ceux en dessous de la diagonale valent c.

$$\text{Ainsi}: \ \Delta_{\scriptscriptstyle 1} = \left| a \right|, \ \Delta_{\scriptscriptstyle 2} = \left| \begin{matrix} a & b \\ c & a \end{matrix} \right| \ \text{et} \ \Delta_{\scriptscriptstyle 3} = \left| \begin{matrix} a & b & b \\ c & a & b \\ c & c & a \end{matrix} \right|.$$

- 1. Calculer Δ_1, Δ_2 et Δ_3 .
- 2.a Calculer Δ_n dans les cas a = c et a = b.
- 2.b Calculer Δ_n dans le cas où b = c.
- 3. On suppose $b \neq c$ et $n \geq 3$.
- 3.a Etablir que $\Delta_n (2a-b-c)\Delta_{n-1} + (a-b)(a-c)\Delta_{n-2} = 0$. On pourra par exemple opérer avec les deux dernières colonnes puis faire la même manipulation sur les lignes.
- 3.b Donner l'expression du terme général de la suite $(\Delta_n)_{n\geq 1}$.

Partie II

Dans cette partie a_1, \dots, a_n désignent n réels. On désire calculer le déterminant D_n de la matrice carrée d'ordre n formée de la manière suivante :

Les coefficients diagonaux sont les a_1, \ldots, a_n , les coefficients au dessus de la diagonale sont égaux à b tandis que ceux en dessous de la diagonale valent c.

$$\text{Ainsi } D_1 = \begin{vmatrix} a_1 \\ b \end{vmatrix}, \ D_2 = \begin{vmatrix} a_1 & b \\ c & a_2 \end{vmatrix} \text{ et } D_3 = \begin{vmatrix} a_1 & b & b \\ c & a_2 & b \\ c & c & a_3 \end{vmatrix}.$$

1. Dans un premier temps, nous supposons $b \neq c$.

On pose $D_n(x)$, le déterminant de la matrice obtenue en ajoutant x à tous les coefficients de la matrice définissant D_n .

$$\text{Ainsi } D_n(x) = \begin{vmatrix} a_1 + x & b + x & \cdots & b + x \\ c + x & a_2 + x & \ddots & \vdots \\ \vdots & \ddots & \ddots & b + x \\ c + x & \cdots & c + x & a_n + x \end{vmatrix}.$$

- 1.a Montrer que $x\mapsto D_n(x)$ est une fonction affine, c'est-à-dire qu'il existe $\alpha,\beta\in\mathbb{R}$ tel que pour tout $x\in\mathbb{R}$, $D_n(x)=\alpha x+\beta$.
- 1.b Calculer α et β en évaluant $D_n(x)$ pour des valeurs judicieuses de x.
- 1.c En déduire l'expression de D_n .
- 2. On désire calculer D_n dans le cas où b = c.
- 2.a On fixe le paramètre c et on fait varier le paramètre b dans $\mathbb R$. Etablir que D_n apparaît alors comme une fonction continue de la variable b variant dans $\mathbb R$.
- 2.b En déduire la valeur de D_n dans le cas où b = c.