Exercice n°3

Schéma à t = 0

1. Equations horaires

• La voiture a un mouvement rectiligne uniformément accéléré :

 $\ddot{\mathbf{x}}_{AV} = \mathbf{a} \Rightarrow \dot{\mathbf{x}}_{AV} = \mathbf{at} + \mathbf{v}_0$ (avec les conditions initiales)

D'où
$$x_{AV} = \frac{1}{2}at^2 + v_0t$$

• Le camion a un mouvement rectiligne uniforme

$$\dot{X}_{AV} = v_0$$

D'où $X_{AV} = v_0t + L + D$ avec les conditions initiales, voir schéma

2. Durée du dépassement

On veut que la voiture soit à LF = 20m en devant le camion

D'où
$$x_{AV} - X_{AV} = L_F + d$$

Soit
$$\frac{1}{2}$$
at² + v₀t - v₀t - L - D = L_F +d

Soit
$$t_1 = \sqrt{\frac{2(L_F + L + D + d)}{a}} = 6.8s$$

Distance parcourue par le camion

On a
$$D_C = X_{AV}(t_1) - X_{AV}(0) = v_0t_1 = 141m$$

Exercice n°5

<u>Référentiel</u> : lié à la route <u>Système</u> : la voiture

1. La vitesse V₀ non permise

Si la bretelle est prise avec la vitesse v₀ constante on a un mouvement circulaire uniforme.

D'où une accélération : $\vec{a} = -\frac{v^2}{R} \vec{e_r}$

On a donc la norme de l'accélération $a = \frac{v_0^2}{R} = 26,1 \text{ m.s}^{-2} > \text{accélération limite}$

La bretelle ne peut donc pas être prise ainsi.

2. Mouvement freiné

Le mouvement dans la bretelle de sortie est circulaire, l'accélération en coordonnées polaires s'écrit :

$$\vec{a} = -\frac{v^2}{R} \vec{e_r} + \frac{dv}{dt} \vec{e_\theta}$$

On a donc la norme de l'accélération $a = \sqrt{\left(\frac{v_0}{R}\right)^2 + \left(\frac{dv}{dt}\right)^2}$

Ainsi le freinage en début de virage va augmenter l'accélération ce qui ne permet pas de prendre la bretelle!

3. Vitesse limite

Avec les résultats du premièrement on a $v_{\text{max}} = (R.a_{\text{lim}})^{1/2} = 22,3 \text{ m.s}^{-1} = 80,5 \text{ km.h}^{-1}$

Au vu de ces résultats il vaut mieux freiner avant d'amorcer la bretelle.