Addition and Subtraction

Philipp Koehn

4 September 2019

addition

• Let's start simple: Adding two 1-Bit numbers

• Let's start simple: Adding two 1-Bit numbers

• Let's start simple: Adding two 1-Bit numbers

• Let's start simple: Adding two 1-Bit numbers

Α	В	A+B
0	0	0
0	1	1
1	0	1

• Let's start simple: Adding two 1-Bit numbers

Α	В	A+B
0	0	00
0	1	01
1	0	01
1	1	10

• Truth table for "position 0" bit

Α	В	A+B
0	0	0
0	1	1
1	0	1
1		0

• Truth table for "position 0" bit

Α	B	A+B
0	0	0
0	1	1
1	0	1
1	1	0

xor

• Truth table for "position 0" bit

Α	B	A+B
0	0	0
0	1	1
1	0	1
1	1	0

xor

• Truth table for carry bit

Α	B	A+B carry
0	0	0
0	1	0
1	0	0
1	1	1

• Truth table for "position 0" bit

Α	B	A+B
0	0	0
0	1	1
1	0	1
1		0

xor

• Truth table for carry bit

Α	B	A+B carry
0	0	0
0	1	0
1	0	0
1	1	1

and

Reminder: Basic Gates

• "Position 0" bit

Α	В	OUT0
0	0	0
0	1	1
1	0	1
1	1	0

• "Position 0" bit

	OUT0	B	Α
	0	0	0
xor	1	1	0
	1	0	1
	0	1	1

• "Position 0" bit

Α	B	OUT0
0	0	0
0	1	1
1	0	1
1	1	0

xor

• Carry bit

Α	В	OUTC
0	0	0
0	1	0
1	0	0
1	1	1

• "Position 0" bit

Α	В	OUT0
0	0	0
0	1	1
1	0	1
1	1	0

xor

• Carry bit

Α	В	OUTC
0	0	0
0	1	0
1	0	0
1	1	1

and

Putting them Together

11

+11

1+1 = 0, carry the 1

11 +11 ---11 ---10

1+1+1 = 1, carry the 1

copy carry bit

Our adder cannot handle carry as input yet

Half 1-Bit Adder

Building a 1-Bit Full Adder

Building a 1-Bit Full Adder

Building a 1-Bit Full Adder

11

+11

```
11
+11
---
1
---
```

0

11 +11 ---1 ---

11 +11 ---11 ---

and so on B2 B1 B0 **A2 A1 A**0 В CI В CI В 1-BIT 1-BIT 1-BIT **FULL FULL FULL ADDER ADDER ADDER** S S CO CO CO S SUM1 SUM2 SUM0

subtraction

First, a Trick "subtrahent"

"minuevd"
$$A - B = C$$
"difference"

• Normally, we subtract like this:

253

Computing the Inverse

• Now we use the inverse of the subtrahend

-176

"9's complement"

Subtraction by Addition

• This allows us to carry our subtraction by addition

Subtraction by Addition

• This allows us to carry our subtraction by addition

• Well, with minor corrections

_ '			7 7	
()~	_ ~ 7	าาไ	nroh	\sim m
OT	гитт	ιаエ	prob]	ГСШ
	- IJ —-		1	

253	11111101
- 176	- 10110000
77	01001101

Original problem	253	11111101
	- 176	- 10110000
	77	01001101
		invert
Inverse of subtrahend	823	01001111 bits

Original problem	253 - 176	11111101 - 10110000
	77	01001101
Inverse of subtrahend	823	01001111
Addition	253 + 823	11111101 + 01001111
	1076	 _101001100

Original problem	253 - 176	11111101 - 10110000
	77	01001101
Inverse of subtrahend	823	01001111
Addition	253 + 823	11111101 + 01001111
	1076	101001100
Corrections	+ 1 -1000	+ 1 -100000000
	77	01001101

Start with N-Bit Adder

Invert Bits of Subtrahend

Add One

Trick: add one as carry in

Invert Overflow --- DONE

unifying addition and subtraction machines

Goal

- Not two machines for addition and subtraction
- ⇒ Combined adder and subtractor
 - Input: A, B, and subtraction flag SUB
 - Output
 - if SUB=0: A+B
 - if SUB=1: A-B

NOT only if SUB

NOT only if SUB

• Truth table

SUB	X	OUT
0	0	0
0	1	1
1	0	1
1	1	0

NOT only if SUB

• Truth table

SUB	X	OUT
0	0	0
0	1	1
1	0	1
1	1	0

• Looks like XOR

Combined Machine

