Université Ibn Khaldoun, Tiaret Faculté de Sciences de la Nature et de la Vie 2^{ème} Année Licence « Sciences Biologiques » et « Sciences Agronomiques » Examen de Génétique (Durée : 01h30)

A	1	V	27	/- \	VO.	us	5]	a	S	sé		le
c	0	n	t	rô	le	c	01	nt	ir	ıu	l	?

Nom:	Prénom :	Signature :	Note:

Question 01 (08 pts): Les phrases suivantes sont fausses. Soulignez l'erreur et corrigez la faute.

- 1. Le monohybridisme est un croisement entre deux individus de lignées pures qui diffèrent par <u>plusieurs</u> caractères.
- Les gènes sont dits <u>liés</u> lorsqu'ils sont situés sur des chromosomes homologues différents. <u>Indépendants</u>
- Le Crossing over est un changement de segments de chromatides sœurs des chromosomes non homologues.
 Non sœurs / homologues
- Pour savoir si les gènes sont liés au sexe (localisés sur le chromosome X), on réalise les croisements <u>Backcross</u>.
 Réciproques
- La distance entre les gènes correspond au pourcentage des Crossing over qui correspond aux phénotypes parentaux.
 Recombinés
- Pour déterminer l'ordre de trois gènes, le gène qui se trouve au centre (au milieu) est celui qui change de place lors d'un simple Crossing over.

Double

- La <u>Codominance</u> est lorsque ni l'un ni l'autre des caractères parentaux qui apparaissent en F₁, mais un nouveau caractère intermédiaire entre les deux.
 - L'absence de dominance
- Le test cross qui est un croisement entre les hétérozygotes de la F₁ et <u>les parents</u> permet de déterminer le génotype du phénotype <u>récessif</u>, de savoir si les gènes sont liés ou indépendants et de savoir si le linkage et complet ou incomplet. L'homozygote récessif / dominant.

Question 2 (05 pts): Complétez les schémas suivants par les termes correspondants :

A. Chez *Neurospora crassa*, le croisement des souches a⁺ x a⁻ donne les asques schématisés dans le tableau ci-dessous. Mentionnez si les asques sont *pré-réduits* ou *Post-réduits*.

a+ a- a-	a a a a a a a a a a a a a a a a a a a	a ⁺ a ⁺ a ⁺	a ⁺ a ⁻ a ⁻	a- a- a+ a+	a a a
a a a a a a a a a a a a a a a a a a a	a ⁺	a+	a ⁻ a ⁺ a ⁻ a ⁻	a ⁺ a ⁺ a ⁻ a ⁻	a ⁻ a ⁺ a ⁺ a ⁺
Asque Post- réduits.	Asque Post- réduits.	Asque Pré- réduits.	Asque Post- réduits.	Asque Post- réduits.	Asque Pré- réduits.

B. Chez Chlamydomonas sp., le croisement des souches a b donne les tétrades schématisées dans le tableau cidessous. Mentionnez si les tétrades sont : Ditypes parentaux (DP), Ditypes non parentaux (DNP) ou Tétratypes (T).

(a+b+ (a+b+ (a+b+ (a+b-)	a b - a b - a b - a b - a b - a b +	(a'b' (a'b' (a'b' (a'b')	a b a b a b a b a b a b a b a b a b a b
Tétratype (T)	Ditype parental (DP)	Ditype non parental (DNP)	Tétratype (T)

Qu	estion 3 (07 pts): Choisissez la ou les bonne(s) réponse(s).
1.	La réplication de l'ADN commence au niveau de : □ Les séquences -35 et -10 chez les Procaryotes ; □ Un point d'initiation chez les Procaryotes ; □ La Cap chez les Eucaryotes ; □ Plusieurs points d'initiation chez les Eucaryotes ; □ La séquence de Shine DALGARNO chez les Procaryotes ; □ Les TATA box, GC box et CCAAT box chez les Eucaryotes.
2.	La transcription de l'ARN _m commence au niveau de : □ Les séquences -35 et -10 chez les Procaryotes ; □ Un point d'initiation chez les Procaryotes ; □ La Cap chez les Eucaryotes ; □ Plusieurs points d'initiation chez les Eucaryotes ; □ La séquence de Shine DALGARNO chez les Procaryotes ; □ Les TATA box, GC box et CCAAT box chez les Eucaryotes.
3.	La traduction commence au niveau de : □ Les séquences -35 et -10 chez les Procaryotes ; □ Un point d'initiation chez les Procaryotes ; □ La Cap chez les Eucaryotes ; □ Plusieurs points d'initiation chez les Eucaryotes ; □ La séquence de Shine DALGARNO chez les Procaryotes ; □ Les TATA box, GC box et CCAAT box chez les Eucaryotes.
4.	La transcription de l'ARN _m se termine par : ☐ Le codon Stop ; ☐ Le signal de Polyadénylation chez les Eucaryotes ; ☐ La Palindrome chez les Procaryotes ; ☐ Les fragments d'OKAZAKI chez les Procaryotes ; ☐ Le Capping chez les Eucaryotes.
5.	La traduction se termine par : □ Le codon Stop ; □ Le signal de Polyadénylation chez les Eucaryotes ; □ La Palindrome chez les Procaryotes ; □ Les fragments d'OKAZAKI chez les Procaryotes ; □ Le Capping chez les Eucaryotes ; □ L'épissage et l'excision chez les Eucaryotes.
6.	Les mutations génétiques peuvent être : Haploïdes ; Génomiques ; Chromosomiques ; Diploïdes ; Géniques ; Cytoplasmique.
7.	Les mutations génétiques qui touchent le nombre de chromosomes s'appellent : Diploïdie ; Aneuploïdie ; Euploïdie ; Trisomie ; Monosomie.