

Derek Chiu

2024-03-07

Contents

P	refac	e	6
1	Intr	roduction	7
2	Met	$ ext{thods}$	8
	2.1	Normalization	8
	2.2	Case Selection	8
	2.3	Classification	8
	2.4	Subsampling	9
3	Dis	tributions	10
	3.1	Histotypes in Classifier Data	10
	3.2	Cohort Counts	10
	3.3	Cohorts in Classifier Data	10
	3.4	Quality Control	10
	3.5	Pairwise Gene Expression	15
4	Res	m sults	19
	4.1	Training Set	19
	4.2	CS1 Set	28
	4.3	CS2 Set	36
	4.4	SMOTE Kappa Summary	44
	4.5	Gene Optimization	45
	4.6	Rank Aggregation	48
	4.7	Top 4 Model Summary	49
	4.8	Test Set Performance	51
\mathbf{R}	efere	ences	52

List of Figures

2.1	Visualization of Subsampling Techniques	Ć
3.1	Random1-Normalized CS1 vs. CS3 Gene Expression	15
3.2	Random1-Normalized CS2 vs. CS3 Gene Expression	16
3.3	HKgenes-Normalized CS1 vs. CS3 Gene Expression	17
3.4	HKgenes-Normalized CS2 vs. CS3 Gene Expression	18
4.1	Training Set Accuracy	19
4.2	Training Set Class-Specific Accuracy	20
4.3	Training Set F1-Score	22
4.4	Training Set Class-Specific F1-Score	23
4.5	Training Set Kappa	24
4.6	Training Set Class-Specific Kappa	25
4.7	Training Set G-mean	26
4.8	Training Set Class-Specific G-mean	27
4.9	CS1 Set Accuracy	28
4.10	CS1 Set Class-Specific Accuracy	29
4.11	CS1 Set F1-Score	30
4.12	CS1 Set Class-Specific F1-Score	31
4.13	CS1 Set Kappa	32
4.14	CS1 Set Class-Specific Kappa	33
4.15	CS1 Set G-mean	34
4.16	CS1 Set Class-Specific G-mean	35
4.17	CS2 Set Accuracy	36
4.18	CS2 Set Class-Specific Accuracy	37
4.19	CS2 Set F1-Score	38
4.20	CS2 Set Class-Specific F1-Score	39
	CS2 Set Kappa	40
	CS2 Set Class-Specific Kappa	41

4.23	CS2 Set G-mean	42
4.24	CS2 Set Class-Specific G-mean	43
4.25	SMOTE Kappa by Algorithm and Dataset	44
4.26	SMOTE Class-Specific Kappa by Algorithm and Dataset	45
4.27	Gene Optimization for Sequential Classifier	46
4.28	Gene Optimization for Two-Step Classifier	47
4.29	Top 4 Model Evaluation Metrics	49
4.30	Top 4 Model Per-Class Evaluation Metrics	50
4.31	Top 4 Model Per-Class F1-Scores	51

List of Tables

3.1	Pre-QC Training Set Histotype Distribution by CodeSet	10
3.2	Training Set (with duplicates) Histotype Distribution by Code Set	11
3.3	Final Training Set Histotype Distribution by CodeSet	11
3.4	Histotype Distribution in Confirmation and Validation Sets	11
3.5	Training Set counts by CodeSet and Processing Stage	11
3.6	Cohort Distribution in Training, Confirmation, and Validation Sets	12
3.7	Number of failed samples by CodeSet and fail condition	12
4.1	Training Set Accuracy by Algorithm and Subsampling Method	20
4.2	Training Set Class-Specific Accuracy by Algorithm and Subsampling Method	21
4.3	Training Set Macro-Averaged F1-Score by Algorithm and Subsampling Method	22
4.4	Training Set Class-Specific F1-Score by Algorithm and Subsampling Method $\dots \dots$	23
4.5	Training Set Kappa by Algorithm and Subsampling Method	24
4.6	Training Set Class-Specific Kappa by Algorithm and Subsampling Method	25
4.7	Training Set G-mean by Algorithm and Subsampling Method	26
4.8	Training Set Class-Specific G-mean by Algorithm and Subsampling Method	27
4.9	CS1 Set Accuracy by Algorithm and Subsampling Method	28
4.10	CS1 Set Class-Specific Accuracy by Algorithm and Subsampling Method	29
4.11	CS1 Set Macro-Averaged F1-Score by Algorithm and Subsampling Method	30
4.12	CS1 Set Class-Specific F1-Score by Algorithm and Subsampling Method	31
4.13	CS1 Set Kappa by Algorithm and Subsampling Method	32
4.14	CS1 Set Class-Specific Kappa by Algorithm and Subsampling Method	33
4.15	CS1 Set G-mean by Algorithm and Subsampling Method	34
4.16	CS1 Set Class-Specific G-mean by Algorithm and Subsampling Method	35
4.17	CS2 Set Accuracy by Algorithm and Subsampling Method	36
4.18	CS2 Set Class-Specific Accuracy by Algorithm and Subsampling Method	37
4.19	CS2 Set Macro-Averaged F1-Score by Algorithm and Subsampling Method	38
4.20	CS2 Set Class-Specific F1-Score by Algorithm and Subsampling Method	39
4 91	CS2 Set Kanna by Algorithm and Subsampling Method	40

4.22	CS2 Set Class-Specific Kappa by Algorithm and Subsampling Method $\ \ldots \ \ldots \ \ldots$	41
4.23	CS2 Set G-mean by Algorithm and Subsampling Method	42
4.24	CS2 Set Class-Specific G-mean by Algorithm and Subsampling Method	43
4.25	SMOTE Kappa by Algorithm and Dataset	44
4.26	Class-specific Evaluation Metrics on Confirmation Set Models	52
4.27	Overall Evaluation Metrics on Confirmation Set Models	52
4.28	Class-specific Evaluation Metrics on Validation Set Model	52
4.29	Overall valuation Metrics on Validation Set Model	53

Preface

This report of statistical findings describes the classification of ovarian cancer histotypes using data from NanoString CodeSets.

Marina Pavanello conducted the initial exploratory data analysis, Cathy Tang implemented class imbalance techniques, Derek Chiu conducted the normalization and statistical analysis, and Lauren Tindale and Aline Talhouk are the project leads.

1. Introduction

Ovarian cancer has five major histotypes: high-grade serous carcinoma (HGSC), low-grade serous carcinoma (LGSC), endometrioid carcinoma (ENOC), mucinous carcinoma (MUC), and clear cell carcinoma (CCOC). A common problem with classifying these histotypes is that there is a class imbalance issue. HGSC dominates the distribution, commonly accounting for 70% of cases in many patient cohorts, while the other four histotypes are spread over the rest of the cases. Subsampling methods like up-sampling, down-sampling, and SMOTE can be used to mitigate this problem.

The supervised learning is performed under a consensus framework: we consider various classification algorithms and use evaluation metrics like accuracy, F1-score, Kappa, and G-mean to inform the decision of which methods to carry forward for prediction in confirmation and validation sets.

2. Methods

2.1 Normalization

The full training set was comprised of data from CodeSet (CS) 1, 2, and 3. All CodeSets were first normalized to housekeeping genes, then a different approach was taken for each of the CodeSets.

CS1 was normalized to CS3 using "Random1" reference samples. These reference samples are common samples between CS1 and CS3, randomly selected such that we obtain one from each of the five histotypes. Then we use the reference method to normalize CS1 to CS3.

Similarly, CS2 was normalized to CS3 using "Random1" reference samples using five common samples between CS2 and CS3 such that there is one from each histotype.

For CS3, we first split the dataset by site: Vancouver, USC, and AOC. We use the CS3-Vancouver subset as a "reference standard", so we normalized CS3-USC and CS3-AOC to CS3-Vancouver using a "Random1" reference method where we reference samples are common between USC and Vancouver, and between AOC and Vancouver. The CS3-Vancouver is also included without further normalization.

2.2 Case Selection

Duplicate cases (two samples with the same ottaID) were removed from the training set before fitting the classification models. CS3 cases were preferred over CS1 and CS2, and CS3-Vancouver were preferred over CS3-AOC and CS3-USC.

The training, confirmation, and validation sets all used a different set of cohorts.

2.3 Classification

We use 5 classification algorithms and 4 subsampling methods across 500 repetitions in the supervised learning framework for the Training Set, CS1 and CS2. The pipeline was run using SLURM batch jobs submitted to a partition on a CentOS 7 server. Implementations of the techniques below were called from the splendid package.

- Classifiers:
 - Random Forest
 - Support Vector Machine
 - XGBoost
 - Regularized Multinomial Regression Model
- Subsampling:

- None
- Down-sampling
- Up-sampling
- SMOTE
- Hybrid (using SMOTE and Down-sampling)

2.4 Subsampling

Here are the specifications of the subsampling methods used to handle class imbalance:

- Down-sampling: All levels except the minority class are sampled down to the same frequency as the minority class
- Up-sampling: All levels except the majority class are sampled up to the same frequency as the majority class
- SMOTE: All levels except the majority class have synthetic data generated until they have the same frequency as the majority class
- Hybrid: All levels except the majority class have synthetic data generated up to 50% of the frequency of the majority class, then the majority class is sampled down to the same frequency as the rest.

The figure below helps visualize how the distribution of classes changes when we apply subsampling techniques to handle class imbalance:

Figure 2.1: Visualization of Subsampling Techniques

3. Distributions

3.1 Histotypes in Classifier Data

3.2 Cohort Counts

3.3 Cohorts in Classifier Data

3.4 Quality Control

3.4.1 Failed Samples

We use an aggregated QCFlag that considers a sample to have failed QC if any of the following conditions are true:

- linFlag: linearity of positive controls with positive control concentrations is less than 0.95, or linearity measures are unknown
- imagingFlag: percent of field of view is less than 75%
- spcFlag: smallest positive control is less than the lower limit of detection (negative control average expression less two times the negative control standard deviation), or negative control average expression equals zero
- normFlag: signal to noise ratio less than 100, or percent of genes detected is less than 50. Note: these thresholds were determined by examining the %GD vs. SNR relationship below.

3.4.2 %GD vs. SNR

\begin{figure}[H]

Table 3.1: Pre-QC Training Set Histotype Distribution by CodeSet

Variable	Levels	CS1	CS2	CS3	Total
Histotype	HGSC	120 (45%)	643 (79%)	515 (92%)	1278 (78%)
	CCOC	48 (18%)	61 (7%)	11 (2%)	120 (7%)
	ENOC	60 (22%)	32 (4%)	11 (2%)	103 (6%)
	MUC	19 (7%)	62 (8%)	12 (2%)	93 (6%)
	LGSC	20 (7%)	21 (3%)	9 (2%)	50 (3%)
Total	N (%)	267 (16%)	819 (50%)	558 (34%)	1644 (100%)

Table 3.2: Training Set (with duplicates) Histotype Distribution by CodeSet

Variable	Levels	CS1	CS2	CS3	Total
Histotype	HGSC	116 (48%)	623 (80%)	475 (94%)	1214 (79%)
	CCOC	44 (18%)	54 (7%)	8 (2%)	106 (7%)
	ENOC	55 (23%)	27 (3%)	8 (2%)	90 (6%)
	MUC	15 (6%)	59 (8%)	9 (2%)	83 (5%)
	LGSC	14 (6%)	19 (2%)	6 (1%)	39 (3%)
Total	N (%)	244 (16%)	782 (51%)	506 (33%)	1532 (100%)

Table 3.3: Final Training Set Histotype Distribution by CodeSet

Variable	Levels	CS1	CS2	CS3	Total
Histotype	HGSC	9 (12%)	553 (79%)	451 (96%)	1013 (81%)
	CCOC	25 (32%)	52 (7%)	4 (1%)	81 (7%)
	ENOC	37 (48%)	25 (4%)	4 (1%)	66 (5%)
	MUC	3 (4%)	55 (8%)	5 (1%)	63 (5%)
	LGSC	3 (4%)	16 (2%)	4 (1%)	23 (2%)
Total	N (%)	77 (6%)	701 (56%)	468 (38%)	1246 (100%)

Table 3.4: Histotype Distribution in Confirmation and Validation Sets

Variable	Levels	Confirmation	Validation
Histotype	HGSC	422 (66%)	674 (74%)
	CCOC	75 (12%)	80 (9%)
	ENOC	106 (16%)	108 (12%)
	MUC	27 (4%)	26 (3%)
	LGSC	13 (2%)	18 (2%)
Total	N (%)	643 (42%)	906 (58%)

Table 3.5: Training Set counts by CodeSet and Processing Stage

Processing Stage	CS1	CS2	CS3	Total
Raw Data	412	1223	5424	7059
Selected Cohorts	294	903	2477	3674
QC	286	888	2285	3459
Normalized to Reference	263	832	2107	3202
CS3: remove test sets, add AOC/USC	263	832	514	1609
Major Histotypes	244	782	506	1532
Removed Duplicates	77	701	468	1246

Table 3.6: Cohort Distribution in Training, Confirmation, and Validation Sets

CodeSet	Cohort	Training	Confirmation	Validation
CS1	MAYO	2	0	0
CS1	MTL	1	0	0
CS1	OOU	53	0	0
CS1	OOUE	1	0	0
CS1	VOA	20	0	0
CS2	ICON7	365	0	0
CS2	JAPAN	8	0	0
CS2	MAYO	42	0	0
CS2	MTL	59	0	0
CS2	OOU	27	0	0
CS2	OOUE	18	0	0
CS2	OVAR3	136	0	0
CS2	VOA	46	0	0
CS3	OOU	18	0	0
CS3	OOUE	11	0	0
CS3	VOA	439	0	0
CS3	TNCO	0	643	0
CS3	DOVE4	0	0	906

Table 3.7: Number of failed samples by CodeSet and fail condition

CodeSet	CodeSet Total	linFlag	imagingFlag	spcFlag	normFlag	QCFlag	n
CS1	8	Passed	Failed	Passed	Passed	Failed	3
CSI	0	Passed	Passed	Passed	Failed	Failed	5
		Failed	Failed	Failed	Failed	Failed	2
		Failed	Passed	Failed	Failed	Failed	3
CS2	32	Failed	Passed	Passed	Passed	Failed	3
		Passed	Failed	Passed	Passed	Failed	3
		Passed	Passed	Passed	Failed	Failed	21
		Failed	Failed	Failed	Failed	Failed	1
		Failed	Failed	Passed	Failed	Failed	3
CS3	274	Failed	Passed	Passed	Failed	Failed	11
		Passed	Failed	Passed	Passed	Failed	7
		Passed	Passed	Passed	Failed	Failed	252

% Genes Detected vs. SNR

 $\label{lem:caption} $$ \operatorname{Signal to Noise Ratio} \end{figure} $$ \Big[H]$

% Genes Detected vs. SNR (Zoomed)

 $\label{lem:caption} $$ \operatorname{Genes Detected vs. Signal to Noise Ratio (Zoomed)} \end{figure} $$$

Figure 3.1: Random1-Normalized CS1 vs. CS3 Gene Expression

Figure 3.2: Random1-Normalized CS2 vs. CS3 Gene Expression

Figure 3.3: HKgenes-Normalized CS1 vs. CS3 Gene Expression

Figure 3.4: HKgenes-Normalized CS2 vs. CS3 Gene Expression

4. Results

We show internal validation summaries for the combined classifier training set, as well as the CS1 and CS2 sets with duplicates included. The F1-scores, kappa, and G-mean are the measures of interest. Algorithms are sorted by descending value based on the overallaccuracy of the training set. The point ranges show the median, 5th and 95th percentiles, coloured by subsampling methods.

4.1 Training Set

4.1.1 Accuracy

Training Set Accuracy by Algorithm and Subsampling Method

Figure 4.1: Training Set Accuracy

Table 4.1: Training Set Accuracy by Algorithm and Subsampling Method

sampling	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	0.936	0.924	0.937	0.934	0.911
up	0.923	0.944	0.9	0.908	0.829
down	0.874	0.873	0.862	0.841	0.821
smote	0.941	0.935	0.915	0.91	0.862

Training Set Class-Specific Accuracy by Algorithm and Subsampling Method

Figure 4.2: Training Set Class-Specific Accuracy

Table 4.2: Training Set Class-Specific Accuracy by Algorithm and Subsampling Method

sampling	histotype	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	CCOC	0.983	0.982	0.983	0.982	0.964
none	ENOC	0.971	0.97	0.974	0.971	0.968
none	HGSC	0.951	0.936	0.952	0.953	0.932
none	LGSC	0.98	0.976	0.977	0.978	0.986
none	MUC	0.986	0.984	0.988	0.986	0.975
up	CCOC	0.981	0.983	0.978	0.971	0.902
up	ENOC	0.969	0.972	0.955	0.954	0.956
up	HGSC	0.932	0.963	0.921	0.934	0.849
up	LGSC	0.978	0.985	0.964	0.976	0.986
up	MUC	0.984	0.984	0.984	0.981	0.976
down	CCOC	0.977	0.977	0.977	0.973	0.929
down	ENOC	0.947	0.946	0.946	0.943	0.929
down	HGSC	0.899	0.898	0.884	0.869	0.856
down	LGSC	0.953	0.955	0.937	0.926	0.965
down	MUC	0.976	0.973	0.982	0.977	0.978
smote	CCOC	0.982	0.981	0.979	0.976	0.95
smote	ENOC	0.972	0.968	0.964	0.959	0.96
smote	HGSC	0.961	0.957	0.936	0.934	0.874
smote	LGSC	0.986	0.984	0.968	0.971	0.982
smote	MUC	0.982	0.982	0.985	0.983	0.97

Table 4.3: Training Set Macro-Averaged F1-Score by Algorithm and Subsampling Method

sampling	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	0.769	0.726	0.766	0.779	0.755
up	0.723	0.827	0.772	0.761	0.688
down	0.732	0.73	0.727	0.699	0.672
smote	0.826	0.82	0.789	0.777	0.614

4.1.2 F1-Score

Training Set Macro-Averaged F1-Score by Algorithm and Subsamplin

Figure 4.3: Training Set F1-Score

Table 4.4: Training Set Class-Specific F1-Score by Algorithm and Subsampling Method

sampling	histotype	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	CCOC	0.871	0.857	0.87	0.861	0.735
none	ENOC	0.73	0.688	0.759	0.747	0.712
none	HGSC	0.97	0.961	0.97	0.971	0.958
none	LGSC	0.417	0.182	0.364	0.476	0.667
none	MUC	0.863	0.851	0.885	0.865	0.711
up	CCOC	0.849	0.872	0.844	0.794	0.491
up	ENOC	0.677	0.769	0.676	0.648	0.646
up	HGSC	0.959	0.977	0.948	0.957	0.905
up	LGSC	0.267	0.667	0.545	0.6	0.645
up	MUC	0.846	0.857	0.857	0.821	0.731
down	CCOC	0.833	0.838	0.833	0.811	0.632
down	ENOC	0.63	0.628	0.644	0.615	0.566
down	HGSC	0.932	0.932	0.921	0.91	0.901
down	LGSC	0.47	0.477	0.421	0.375	0.514
down	MUC	0.8	0.776	0.838	0.794	0.776
smote	CCOC	0.865	0.861	0.853	0.825	0.58
smote	ENOC	0.761	0.738	0.718	0.685	0.571
smote	HGSC	0.975	0.972	0.958	0.957	0.924
smote	LGSC	0.706	0.71	0.567	0.579	0.429
smote	MUC	0.836	0.831	0.862	0.843	0.622

Training Set Class-Specific F1-Score by Algorithm and Subsampling Method

Figure 4.4: Training Set Class-Specific F1-Score

Table 4.5: Training Set Kappa by Algorithm and Subsampling Method

sampling	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	0.806	0.758	0.812	0.809	0.737
up	0.751	0.841	0.754	0.754	0.582
down	0.702	0.701	0.682	0.643	0.605
smote	0.833	0.823	0.782	0.768	0.561

4.1.3 Kappa

Training Set Kappa by Algorithm and Subsampling Method

Figure 4.5: Training Set Kappa

Table 4.6: Training Set Class-Specific Kappa by Algorithm and Subsampling Method

sampling	histotype	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	CCOC	0.862	0.848	0.859	0.852	0.714
none	ENOC	0.714	0.671	0.746	0.733	0.695
none	HGSC	0.84	0.783	0.845	0.852	0.781
none	LGSC	0.406	0.125	0.353	0.466	0.659
none	MUC	0.856	0.844	0.879	0.856	0.7
up	CCOC	0.839	0.862	0.832	0.777	0.438
up	ENOC	0.659	0.754	0.654	0.624	0.624
up	HGSC	0.765	0.887	0.784	0.807	0.599
up	LGSC	0.23	0.66	0.529	0.59	0.634
up	MUC	0.839	0.849	0.848	0.811	0.718
down	CCOC	0.822	0.825	0.82	0.797	0.599
down	ENOC	0.605	0.601	0.616	0.585	0.53
down	HGSC	0.729	0.73	0.701	0.667	0.64
down	LGSC	0.45	0.459	0.396	0.349	0.496
down	MUC	0.786	0.762	0.828	0.782	0.764
smote	CCOC	0.856	0.851	0.842	0.812	0.556
smote	ENOC	0.745	0.722	0.699	0.663	0.548
smote	HGSC	0.881	0.87	0.817	0.811	0.569
smote	LGSC	0.699	0.701	0.551	0.565	0.423
smote	MUC	0.828	0.822	0.855	0.834	0.608

Training Set Class-Specific Kappa by Algorithm and Subsampling Method

Figure 4.6: Training Set Class-Specific Kappa

Table 4.7: Training Set G-mean by Algorithm and Subsampling Method

sampling	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	0.657	0.481	0.663	0.72	0.695
up	0.528	0.799	0.871	0.8	0.706
down	0.849	0.846	0.861	0.842	0.788
smote	0.822	0.837	0.862	0.838	0.501

4.1.4 G-mean

Training Set G-mean by Algorithm and Subsampling Method

Figure 4.7: Training Set G-mean

Table 4.8: Training Set Class-Specific G-mean by Algorithm and Subsampling Method

sampling	histotype	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	CCOC	0.907	0.888	0.904	0.912	0.856
none	ENOC	0.812	0.758	0.844	0.84	0.828
none	HGSC	0.886	0.838	0.895	0.909	0.866
none	LGSC	0.527	0.267	0.5	0.63	0.755
none	MUC	0.915	0.9	0.93	0.919	0.753
up	CCOC	0.876	0.91	0.925	0.892	0.873
up	ENOC	0.737	0.871	0.885	0.835	0.836
up	HGSC	0.824	0.934	0.935	0.923	0.849
up	LGSC	0.365	0.78	0.933	0.86	0.73
up	MUC	0.893	0.931	0.94	0.904	0.768
down	CCOC	0.92	0.916	0.913	0.916	0.909
down	ENOC	0.872	0.861	0.882	0.864	0.866
down	HGSC	0.92	0.919	0.912	0.901	0.891
down	LGSC	0.908	0.91	0.931	0.914	0.867
down	MUC	0.925	0.926	0.934	0.914	0.831
smote	CCOC	0.918	0.918	0.923	0.919	0.741
smote	ENOC	0.87	0.867	0.88	0.861	0.666
smote	HGSC	0.941	0.943	0.939	0.935	0.714
smote	LGSC	0.827	0.875	0.915	0.895	0.522
smote	MUC	0.931	0.932	0.936	0.924	0.681

Training Set Class Specific G-mean by Algorithm and Subsampling Method

Figure 4.8: Training Set Class-Specific G-mean

Table 4.9: CS1 Set Accuracy by Algorithm and Subsampling Method

sampling	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	0.828	0.808	0.841	0.831	0.849
up	0.847	0.835	0.842	0.824	0.841
down	0.802	0.781	0.788	0.766	0.811
smote	0.846	0.839	0.837	0.823	0.841

4.2 CS1 Set

4.2.1 Accuracy

CS1 Set Accuracy by Algorithm and Subsampling Method

Figure 4.9: CS1 Set Accuracy

Table 4.10: CS1 Set Class-Specific Accuracy by Algorithm and Subsampling Method

sampling	histotype	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	CCOC	0.942	0.941	0.938	0.937	0.944
none	ENOC	0.891	0.887	0.898	0.897	0.912
none	HGSC	0.902	0.882	0.912	0.904	0.903
none	LGSC	0.956	0.947	0.968	0.957	0.972
none	MUC	0.969	0.967	0.977	0.97	0.969
up	CCOC	0.945	0.941	0.933	0.922	0.937
up	ENOC	0.901	0.892	0.896	0.884	0.904
up	HGSC	0.918	0.906	0.916	0.911	0.899
up	LGSC	0.968	0.965	0.967	0.961	0.978
up	MUC	0.971	0.969	0.971	0.977	0.969
down	CCOC	0.939	0.933	0.941	0.926	0.936
down	ENOC	0.881	0.87	0.888	0.873	0.888
down	HGSC	0.888	0.871	0.868	0.856	0.882
down	LGSC	0.941	0.935	0.922	0.92	0.958
down	MUC	0.967	0.96	0.967	0.959	0.96
smote	CCOC	0.944	0.939	0.933	0.931	0.941
smote	ENOC	0.896	0.89	0.894	0.887	0.9
smote	HGSC	0.92	0.913	0.911	0.901	0.901
smote	LGSC	0.968	0.968	0.962	0.957	0.976
smote	MUC	0.97	0.969	0.977	0.978	0.969

CS1 Set Class-Specific Accuracy by Algorithm and Subsampling Method

Figure 4.10: CS1 Set Class-Specific Accuracy

Table 4.11: CS1 Set Macro-Averaged F1-Score by Algorithm and Subsampling Method

sampling	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	0.748	0.718	0.794	0.771	0.805
up	0.792	0.772	0.806	0.787	0.793
down	0.76	0.733	0.751	0.723	0.771
smote	0.804	0.797	0.803	0.784	0.797

4.2.2 F1-Score

CS1 Set Macro-Averaged F1-Score by Algorithm and Subsampling Me

Figure 4.11: CS1 Set F1-Score

Table 4.12: CS1 Set Class-Specific F1-Score by Algorithm and Subsampling Method

sampling	histotype	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	CCOC	0.829	0.828	0.824	0.813	0.833
none	ENOC	0.764	0.739	0.769	0.769	0.8
none	HGSC	0.9	0.884	0.909	0.9	0.9
none	LGSC	0.545	0.444	0.714	0.625	0.769
none	MUC	0.727	0.667	0.8	0.769	0.727
up	CCOC	0.839	0.828	0.812	0.784	0.813
up	ENOC	0.78	0.765	0.766	0.743	0.782
up	HGSC	0.915	0.903	0.909	0.902	0.898
up	LGSC	0.667	0.667	0.769	0.727	0.8
up	MUC	0.769	0.75	0.8	0.778	0.71
down	CCOC	0.828	0.812	0.833	0.8	0.824
down	ENOC	0.743	0.711	0.756	0.723	0.764
down	HGSC	0.871	0.85	0.843	0.83	0.865
down	LGSC	0.667	0.632	0.6	0.571	0.714
down	MUC	0.727	0.714	0.732	0.706	0.727
smote	CCOC	0.839	0.833	0.821	0.811	0.833
smote	ENOC	0.779	0.766	0.769	0.757	0.785
smote	HGSC	0.915	0.907	0.901	0.889	0.898
smote	LGSC	0.75	0.75	0.75	0.706	0.769
smote	MUC	0.769	0.766	0.8	0.8	0.727

CS1 Set Class-Specific F1-Score by Algorithm and Subsampling Method

Figure 4.12: CS1 Set Class-Specific F1-Score

Table 4.13: CS1 Set Kappa by Algorithm and Subsampling Method

sampling	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	0.743	0.706	0.765	0.752	0.776
up	0.775	0.755	0.771	0.747	0.763
down	0.723	0.694	0.707	0.675	0.733
smote	0.777	0.766	0.767	0.746	0.768

4.2.3 Kappa

CS1 Set Kappa by Algorithm and Subsampling Method

Figure 4.13: CS1 Set Kappa

Table 4.14: CS1 Set Class-Specific Kappa by Algorithm and Subsampling Method

sampling	histotype	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	CCOC	0.795	0.792	0.784	0.777	0.797
none	ENOC	0.691	0.666	0.704	0.7	0.744
none	HGSC	0.803	0.764	0.824	0.807	0.806
none	LGSC	0.49	0.342	0.692	0.593	0.754
none	MUC	0.709	0.652	0.784	0.753	0.712
up	CCOC	0.804	0.792	0.773	0.734	0.776
up	ENOC	0.713	0.696	0.697	0.664	0.722
up	HGSC	0.836	0.811	0.83	0.82	0.799
up	LGSC	0.652	0.646	0.753	0.711	0.784
up	MUC	0.753	0.73	0.782	0.757	0.678
down	CCOC	0.789	0.774	0.797	0.755	0.784
down	ENOC	0.664	0.624	0.679	0.643	0.691
down	HGSC	0.772	0.738	0.731	0.706	0.76
down	LGSC	0.632	0.594	0.558	0.523	0.691
down	MUC	0.708	0.687	0.712	0.682	0.709
smote	CCOC	0.804	0.794	0.776	0.767	0.796
smote	ENOC	0.709	0.693	0.699	0.683	0.717
smote	HGSC	0.84	0.825	0.819	0.799	0.802
smote	LGSC	0.727	0.739	0.728	0.677	0.754
smote	MUC	0.753	0.745	0.789	0.788	0.711

CS1 Set Class-Specific Kappa by Algorithm and Subsampling Method

Figure 4.14: CS1 Set Class-Specific Kappa

Table 4.15: CS1 Set G-mean by Algorithm and Subsampling Method

sampling	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	0.658	0.571	0.75	0.727	0.757
up	0.734	0.716	0.812	0.787	0.734
down	0.791	0.774	0.795	0.756	0.793
smote	0.786	0.781	0.81	0.793	0.752

4.2.4 G-mean

Figure 4.15: CS1 Set G-mean

Table 4.16: CS1 Set Class-Specific G-mean by Algorithm and Subsampling Method

sampling	histotype	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	CCOC	0.888	0.885	0.889	0.885	0.891
none	ENOC	0.854	0.827	0.848	0.848	0.867
none	HGSC	0.904	0.883	0.913	0.905	0.905
none	LGSC	0.606	0.471	0.775	0.707	0.816
none	MUC	0.775	0.745	0.845	0.84	0.812
up	CCOC	0.893	0.888	0.891	0.87	0.883
up	ENOC	0.864	0.849	0.846	0.833	0.848
up	HGSC	0.92	0.908	0.914	0.909	0.902
up	LGSC	0.707	0.707	0.913	0.889	0.816
up	MUC	0.816	0.812	0.878	0.864	0.756
down	CCOC	0.901	0.895	0.905	0.883	0.886
down	ENOC	0.84	0.81	0.849	0.82	0.853
down	HGSC	0.881	0.863	0.855	0.845	0.876
down	LGSC	0.904	0.902	0.91	0.858	0.895
down	MUC	0.856	0.861	0.859	0.852	0.895
smote	CCOC	0.899	0.896	0.895	0.89	0.894
smote	ENOC	0.872	0.856	0.854	0.846	0.868
smote	HGSC	0.92	0.913	0.907	0.895	0.902
smote	LGSC	0.835	0.84	0.898	0.863	0.816
smote	MUC	0.856	0.848	0.882	0.877	0.788

CS1 Set Class Specific G-mean by Algorithm and Subsampling Method

Figure 4.16: CS1 Set Class-Specific G-mean

Table 4.17: CS2 Set Accuracy by Algorithm and Subsampling Method

sampling	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	0.924	0.91	0.938	0.931	0.926
up	0.926	0.931	0.922	0.921	0.926
down	0.859	0.844	0.815	0.817	0.843
smote	0.928	0.925	0.915	0.902	0.922

4.3 CS2 Set

4.3.1 Accuracy

Figure 4.17: CS2 Set Accuracy

Table 4.18: CS2 Set Class-Specific Accuracy by Algorithm and Subsampling Method

sampling	histotype	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	CCOC	0.984	0.983	0.987	0.983	0.981
none	ENOC	0.974	0.967	0.98	0.977	0.981
none	HGSC	0.931	0.913	0.949	0.946	0.936
none	LGSC	0.977	0.976	0.977	0.975	0.977
none	MUC	0.983	0.981	0.983	0.981	0.977
up	CCOC	0.986	0.986	0.986	0.984	0.98
up	ENOC	0.977	0.98	0.969	0.969	0.98
up	HGSC	0.931	0.941	0.938	0.941	0.933
up	LGSC	0.977	0.977	0.972	0.972	0.98
up	MUC	0.981	0.981	0.98	0.979	0.977
down	CCOC	0.98	0.979	0.977	0.97	0.956
down	ENOC	0.96	0.959	0.954	0.943	0.958
down	HGSC	0.879	0.866	0.842	0.844	0.867
down	LGSC	0.948	0.939	0.921	0.922	0.954
down	MUC	0.956	0.951	0.947	0.963	0.961
smote	CCOC	0.984	0.984	0.986	0.981	0.979
smote	ENOC	0.976	0.976	0.966	0.961	0.98
smote	HGSC	0.943	0.941	0.933	0.923	0.934
smote	LGSC	0.979	0.979	0.97	0.964	0.98
smote	MUC	0.974	0.972	0.978	0.976	0.973

CS2 Set Class-Specific Accuracy by Algorithm and Subsampling Method

Figure 4.18: CS2 Set Class-Specific Accuracy

Table 4.19: CS2 Set Macro-Averaged F1-Score by Algorithm and Subsampling Method

sampling	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	0.714	0.751	0.757	0.745	0.766
up	0.722	0.741	0.784	0.761	0.755
down	0.703	0.68	0.656	0.645	0.675
smote	0.782	0.775	0.771	0.741	0.758

4.3.2 F1-Score

CS2 Set Macro-Averaged F1-Score by Algorithm and Subsampling Me

Figure 4.19: CS2 Set F1-Score

Table 4.20: CS2 Set Class-Specific F1-Score by Algorithm and Subsampling Method

sampling	histotype	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	CCOC	0.889	0.875	0.903	0.884	0.857
none	ENOC	0.471	0.267	0.667	0.632	0.706
none	HGSC	0.958	0.948	0.968	0.966	0.961
none	LGSC	0.222	0.286	0.375	0.4	0.5
none	MUC	0.882	0.865	0.885	0.878	0.835
up	CCOC	0.895	0.895	0.909	0.895	0.848
up	ENOC	0.556	0.632	0.609	0.6	0.696
up	HGSC	0.958	0.963	0.96	0.962	0.959
up	LGSC	0.25	0.286	0.583	0.522	0.5
up	MUC	0.87	0.87	0.864	0.857	0.833
down	CCOC	0.87	0.857	0.844	0.809	0.755
down	ENOC	0.556	0.533	0.5	0.444	0.538
down	HGSC	0.919	0.909	0.89	0.893	0.909
down	LGSC	0.432	0.389	0.343	0.333	0.452
down	MUC	0.745	0.724	0.717	0.768	0.75
smote	CCOC	0.895	0.895	0.9	0.872	0.842
smote	ENOC	0.667	0.667	0.588	0.556	0.667
smote	HGSC	0.963	0.963	0.957	0.95	0.959
smote	LGSC	0.556	0.571	0.558	0.5	0.533
smote	MUC	0.837	0.824	0.857	0.842	0.811

CS2 Set Class-Specific F1-Score by Algorithm and Subsampling Method

Figure 4.20: CS2 Set Class-Specific F1-Score

Table 4.21: CS2 Set Kappa by Algorithm and Subsampling Method

sampling	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	0.761	0.703	0.811	0.799	0.779
up	0.764	0.794	0.798	0.789	0.767
down	0.676	0.646	0.605	0.602	0.641
smote	0.802	0.797	0.781	0.75	0.766

4.3.3 Kappa

CS2 Set Kappa by Algorithm and Subsampling Method

Figure 4.21: CS2 Set Kappa

Table 4.22: CS2 Set Class-Specific Kappa by Algorithm and Subsampling Method

sampling	histotype	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	CCOC	0.88	0.868	0.896	0.874	0.848
none	ENOC	0.459	0.191	0.655	0.62	0.697
none	HGSC	0.767	0.692	0.834	0.828	0.794
none	LGSC	0.148	0	0.357	0.39	0.486
none	MUC	0.873	0.856	0.875	0.869	0.823
up	CCOC	0.888	0.888	0.902	0.885	0.839
up	ENOC	0.544	0.622	0.594	0.586	0.684
up	HGSC	0.764	0.806	0.823	0.823	0.775
up	LGSC	0.214	0.264	0.568	0.506	0.486
up	MUC	0.86	0.859	0.853	0.842	0.823
down	CCOC	0.859	0.847	0.832	0.792	0.732
down	ENOC	0.533	0.512	0.484	0.414	0.516
down	HGSC	0.688	0.659	0.617	0.617	0.656
down	LGSC	0.41	0.364	0.314	0.306	0.429
down	MUC	0.722	0.696	0.687	0.747	0.729
smote	CCOC	0.888	0.887	0.893	0.863	0.832
smote	ENOC	0.655	0.651	0.568	0.54	0.655
smote	HGSC	0.829	0.825	0.81	0.781	0.786
smote	LGSC	0.542	0.561	0.544	0.484	0.523
smote	MUC	0.824	0.808	0.845	0.831	0.797

CS2 Set Class-Specific Kappa by Algorithm and Subsampling Method

Figure 4.22: CS2 Set Class-Specific Kappa

Table 4.23: CS2 Set G-mean by Algorithm and Subsampling Method

sampling	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	0.363	0	0.649	0.657	0.693
up	0.499	0.576	0.841	0.773	0.652
down	0.829	0.811	0.808	0.792	0.802
smote	0.775	0.763	0.835	0.806	0.685

4.3.4 G-mean

Figure 4.23: CS2 Set G-mean

Table 4.24: CS2 Set Class-Specific G-mean by Algorithm and Subsampling Method

sampling	histotype	rf	adaboost	mlr_ridge	mlr_lasso	svm
none	CCOC	0.913	0.889	0.933	0.928	0.891
none	ENOC	0.576	0.333	0.739	0.742	0.78
none	HGSC	0.83	0.773	0.889	0.894	0.866
none	LGSC	0.301	0	0.535	0.574	0.698
none	MUC	0.921	0.898	0.931	0.93	0.879
up	CCOC	0.911	0.931	0.96	0.943	0.866
up	ENOC	0.62	0.707	0.812	0.795	0.755
up	HGSC	0.828	0.871	0.937	0.921	0.84
up	LGSC	0.354	0.408	0.903	0.791	0.629
up	MUC	0.911	0.934	0.941	0.92	0.87
down	CCOC	0.958	0.947	0.928	0.918	0.936
down	ENOC	0.827	0.803	0.807	0.795	0.827
down	HGSC	0.904	0.893	0.881	0.878	0.888
down	LGSC	0.896	0.885	0.887	0.883	0.887
down	MUC	0.916	0.914	0.92	0.901	0.88
smote	CCOC	0.957	0.954	0.957	0.942	0.885
smote	ENOC	0.811	0.79	0.815	0.805	0.739
smote	HGSC	0.922	0.92	0.932	0.921	0.861
smote	LGSC	0.751	0.75	0.891	0.853	0.703
smote	MUC	0.935	0.929	0.934	0.919	0.877

CS2 Set Class Specific G-mean by Algorithm and Subsampling Method

Figure 4.24: CS2 Set Class-Specific G-mean

Table 4.25: SMOTE Kappa by Algorithm and Dataset

dataset	rf	adaboost	mlr_ridge	mlr_lasso	svm
Training	0.833	0.823	0.782	0.768	0.561
CS1	0.777	0.766	0.767	0.746	0.768
CS2	0.802	0.797	0.781	0.75	0.766

4.4 SMOTE

Kappa

Summary

SMOTE Kappa by Algorithm and Dataset

Figure 4.25: SMOTE Kappa by Algorithm and Dataset

SMOTE Class-Specific Kappa by Algorithm and Dataset

Figure 4.26: SMOTE Class-Specific Kappa by Algorithm and Dataset

4.5 Gene Optimization

4.5.1 Overlap with Other Sets

There are 16 genes out of the 72 common classifier set that overlap with the PrOTYPE classifier: COL11A1, CD74, CD2, TIMP3, LUM, CYTIP, COL3A1, THBS2, TCF7L1, HMGA2, FN1, POSTN, COL1A2, COL5A2, PDZK1IP1, FBN1

There are 13 genes out of the 72 classifier set that overlap with the SPOT signature: HIF1A, CXCL10, DUSP4, SOX17, MITF, CDKN3, BRCA2, CEACAM5, ANXA4, SERPINE1, TCF7L1, CRABP2, DNAJC9.

4.5.2 Optimal Gene Set

There are 28 unique genes from the combined PrOTYPE and SPOT lists that we want to use for the final classifier. We then incrementally add genes from the remaining 44 candidates based on variable importance scores to this list and recalculate performance metrics. The number of genes at which the performance starts to plateau may indicate an optimal gene set for us to carry forward for a particular model.

Variable importance is calculated using either a model-based approach if it is available, or a SHAP-based VI score otherwise (e.g. for SVM). For the sequential and two-step classifiers, we calculate overall VI scores by aggregating the base classifier VI scores using rank aggregation.

Figure 4.27: Gene Optimization for Sequential Classifier

In the sequential classifier, we use the per-class median F1-scores pertaining to the histotype that had the best performance from each retraining, and sort them on number of genes added. For instance, in sequence 2,

we look at the CCOC F1-scores because CCOC had the best performance from retraining after HGSC was removed.

We can observe that in sequence 3, the F1-score stabilizes at around 0.93 when we reach 34 genes added, hence the optimal number of genes used will be n=28+34=62. The added genes are: SEMA6A, GPR64, KGFLP2, BCL2, ATP5G3, C1orf173, ZBED1, PBX1, FUT3, KLK7, IGFBP1, STC1, MET, CPNE8, C10orf116, MAP1LC3A, EPAS1, SLC3A1, TPX2, TFF1, CAPN2, WT1, CYP4B1, SERPINA5, HNF1B, EGFL6, LGALS4, TSPAN8, BRCA1, LIN28B, DKK4, ADCYAP1R1, TFF3 and MUC5B.

Figure 4.28: Gene Optimization for Two-Step Classifier

Since the second step of the classifier fits a multinomial model, we use the macro F1-score as the measure to analyze gene entry. In the two-step classifier, we see that in Step 2, the F1-score stabilizes at around 0.88 when we reach 24 added. The optimal number of genes used will be n=28+24=52. The added genes are: PBX1, LGALS4, HNF1B, IGFBP1, TFF3, C10orf116, PAX8, GPR64, FUT3, CYP4B1, DKK4, GAD1, KLK7, EPAS1, CPNE8, BRCA1, ZBED1, IL6, SERPINA5, TPX2, CAPN2, TSPAN8, LIN28B and SLC3A1.

4.6 Rank Aggregation

Show 50 entries		-		Search:	Search:		
model	CCOC ⊕	F1-Score Summary I	by Model and Class HGSC	LGSC ⊕	MUC 🏺		
All		All	All	All	All		
seq	0.9	0.931	0.973	0.938	0.971		
two_step	0.919	0.837	0.974	0.88	0.897		
adaboost-up	0.872	0.769	0.977	0.667	0.857		
rf-smote	0.865	0.761	0.975	0.706	0.836		
mlr_ridge-none	0.87	0.759	0.97	0.364	0.885		
mlr_lasso-none	0.861	0.747	0.971	0.476	0.865		
adaboost-smote	0.861	0.738	0.972	0.71	0.831		
rf-none	0.871	0.73	0.97	0.417	0.863		
mlr_ridge-smote	0.853	0.718	0.958	0.567	0.862		
adaboost-none	0.857	0.688	0.961	0.182	0.851		
rf-up	0.849	0.677	0.959	0.267	0.846		
mlr_lasso-smote	0.825	0.685	0.957	0.579	0.843		
mlr_ridge-up	0.844	0.676	0.948	0.545	0.857		
svm-none	0.735	0.712	0.958	0.667	0.711		
rf-down	0.833	0.63	0.932	0.47	0.8		
mlr_lasso-up	0.794	0.648	0.957	0.6	0.821		
mlr_ridge-down	0.833	0.644	0.921	0.421	0.838		
adaboost-down	0.838	0.628	0.932	0.477	0.776		
mlr_lasso-down	0.811	0.615	0.91	0.375	0.794		
svm-down	0.632	0.566	0.901	0.514	0.776		
svm-up	0.491	0.646	0.905	0.645	0.731		
svm-smote	0.58	0.571	0.924	0.429	0.622		

The 22 methods (algorithm-sampling combinations) are ordered in the table by their aggregated ranks using the Genetic Algorithm. We see that the best performing methods involve the 2-stage and sequential algorithms.

Previous

Next

Showing 1 to 22 of 22 entries

4.7 Top 4 Model Summary

4.7.1 Overall Metrics

Top 4 Model Overall Evaluation Metrics

Figure 4.29: Top 4 Model Evaluation Metrics

4.7.2 Per-Class Metrics

Top 4 Model Per-Class Evaluation Metrics

Figure 4.30: Top 4 Model Per-Class Evaluation Metrics

Figure 4.31: Top 4 Model Per-Class F1-Scores

4.8 Test Set Performance

Now we'd like to see how our best methods perform in the confirmation and validation sets. The class-specific F1-scores will be used.

The top 2 methods are:

- sequential: sequential algorithm with upsampling at every step. The sequence of algorithms used are:
 - HGSC vs. non-HGSC using adaboost
 - CCOC vs. non-CCOC using random forest
 - ENOC vs. non-ENOC using ridge regression
 - MUC vs. LGSC using adaboost
- two_step: two-step algorithm with upsampling at both steps. The sequence of algorithms used are:
 - HGSC vs. non-HGSC using adaboost
 - CCOC vs. ENOC vs. MUC vs. LGSC using random forest

We can test 2 additional methods by using either the full set of genes or the optimal set of genes for both of these methods.

Table 4.26: Class-specific Evaluation Metrics on Confirmation Set Models

method	measure	HGSC	CCOC	ENOC	LGSC	MUC
	accuracy	0.876	0.923	0.814	0.900	0.919
two stop full	f1	0.910	0.886	0.792	0.450	0.679
two_step_full	kappa	0.710	0.828	0.626	0.403	0.632
	gmean	0.828	0.912	0.808	0.795	0.817
	accuracy	0.869	0.928	0.833	0.914	0.910
two_step_optimal	f1	0.906	0.892	0.814	0.486	0.655
two_step_optimal	kappa	0.695	0.837	0.663	0.444	0.603
	gmean	0.819	0.915	0.827	0.801	0.813
	accuracy	0.871	0.950	0.767	0.800	0.800
sequential full	f1	0.906	0.922	0.833	0.692	0.852
sequentiai_run	kappa	0.700	0.886	0.449	0.544	0.544
	gmean	0.825	0.928	0.736	0.768	0.768
	accuracy	0.869	0.946	0.781	0.800	0.800
sequential optimal	f1	0.906	0.914	0.840	0.692	0.852
sequential_optimal	kappa	0.695	0.875	0.496	0.544	0.544
	gmean	0.821	0.921	0.771	0.768	0.768

Table 4.27: Overall Evaluation Metrics on Confirmation Set Models

method	accuracy	kappa	f1	gmean
sequential_full	0.908	0.834	0.746	0.829
sequential_optimal	0.907	0.831	0.744	0.824
two_step_full	0.899	0.815	0.733	0.789
two_step_optimal	0.900	0.817	0.737	0.793

4.8.1 Confirmation

Set

In the confirmation set, **sequential_full** and **sequential_optimal** are very similar. Both sequential algorithms have moderate improvement in LGSC and MUC classification. We will select the **sequential_optimal** model to test in the validation set.

4.8.2 Validation

Set

Per-class F1-scores in the validation set are all above 0.9.

Table 4.28: Class-specific Evaluation Metrics on Validation Set Model

method	measure	HGSC	CCOC	ENOC	LGSC	MUC
sequential_opt	accuracy	0.897	0.974	0.888	0.932	0.932
	f1	0.931	0.962	0.919	0.909	0.945
	kappa	0.734	0.942	0.737	0.855	0.855
	gmean	0.870	0.968	0.881	0.913	0.913

Table 4.29: Overall valuation Metrics on Validation Set Model

method	accuracy	kappa	f1	gmean
sequential_optimal	0.907	0.831	0.744	0.824