$$\Rightarrow 3x = 30 \Rightarrow \boxed{x = 10}$$
Put in 1 x + 3y - 13 = 0

Put in 1
$$x+3y-13=0$$

 $10+3y-13=0 \Rightarrow 3y+3=0$

$$3y=3 \Rightarrow y=1$$

So required fourth pt is D(10,1)

So required tourth $p\in S$ A (6,3) are consecutive vertices of a rhombus. Find the fourth vertex and The points A (-1, 2), B (3, -1) and C (6,3) are consecutive vertices of a rhombus. Find the fourth vertex and show that the diagonals of the rhombus are perpendicular to each other.

7. Suppose fourth vertex is D(x, y) then Sol.

Slope of
$$AB = \frac{-1-2}{3+1} = \frac{-3}{4}$$

Slope of
$$BC = \frac{3+1}{6-3} = \frac{4}{3}$$

Slope of
$$CD = \frac{y-3}{x-6}$$

Slope of
$$DA = \frac{2-y}{-1-x}$$

So slope of AB = Slope of CD & Slope of BC = Slope of DA

$$-\frac{3}{4} = \frac{y-3}{x-6}$$

$$\frac{3}{4} = \frac{y-3}{x-6} \quad \& \quad \frac{4}{3} = \frac{2-y}{-1-x}$$

$$4 x-6 \Rightarrow (-3)(x-6) = 4(y-3) & 4(-1-x) = 3(2-y)$$

$$\Rightarrow (-3)(x-6) - 4(y-6)$$
or $-3x+18=4y-12$ $-4-4x=6-3y$

or
$$-3x+18=4y-12$$
 = 4 $-3y+6+4=0$
or $3x+4y-12-18=0$ or $4x-3y+6+4=0$

or
$$3x+4y-12-16=0$$
 or $3x+4y-30=0$ ___1 or $4x-3y+10=0$ ___1

Adding I & II

$$9x + \frac{12y}{9} - 90 = 0$$

$$16x - \frac{12y}{} + 40 = 0$$

$$25x - 50 = 0$$

$$\Rightarrow 25x = 50 \Rightarrow \boxed{x = 2}$$

Put value of x in I

$$3(2) + 4y - 30 = 0$$

$$6 + 4y - 30 = 0$$

$$4y - 24 = 0 \Rightarrow 4y = 0$$

$$4y = 24 \implies y = 6$$

Fourth vertex is D(2,6)

Now Slope of diagonal
$$AC = \frac{3-2}{6-(-1)} = \frac{1}{6+1} = \frac{1}{7}$$

Slope of diagonal
$$BD = \frac{6 - (-1)}{2 - 3} = \frac{6 + 1}{-1} = -7$$

$$x^{2}+y^{2}-2x-2y-39=0 \longrightarrow H$$
From $I \ x+2y=6$

$$x=6-2y$$

$$(6-2y)^2 + y^2 - 2(6-2y) - 2y - 39 = 0$$

$$36 + 4y^2 - 24y + y^2 - 12 + 4y - 2y - 39 = 0$$

$$5y^2 - 22y - 15 = 0$$

$$5v^2 - 25v + 3v - 15 = 0$$

$$5y(y-5) + 3(y-5) = 0$$

$$(y-5)(5y+3)=0$$

$$y-5=0$$
 or $5y+3=0$

$$y = 5 \quad or \quad y = \frac{-3}{5}$$

When
$$y = 5$$
 then $x = 6 - 2(5) = -4$

When
$$y = \frac{-3}{5}$$
 then $x = 6 - 2\left(\frac{-3}{5}\right)$

$$x = 6 + \frac{6}{5} = \frac{36}{5}$$

Points of contacts are
$$p_1(-4,5) \& p_2\left(\frac{36}{5}, \frac{-3}{5}\right)$$

- 7. Find equation of Tangent to circle $x^2 + y^2 = 2$
- (i) Parallel to line x 2y + 1 = 0
- Sol: Given circle is

$$x^2 + y^2 = 2 = (\sqrt{2})^2$$

$$r = a = \sqrt{2}$$

Slope of line
$$=\frac{-a}{b}=\frac{-1}{-2}=\frac{1}{2}$$

$$m = \frac{1}{2}$$
 (Because Parallel)

Equation of tangent is

$$y = mx \pm a\sqrt{1 + m^2}$$

$$y = \frac{1}{2}x \pm \sqrt{2}\sqrt{1 + \left(\frac{1}{2}\right)^2}$$

$$y = \frac{x}{2} \pm \sqrt{2} \sqrt{1 + \frac{1}{4}}$$

Sgd 2008, 09, 2014(L), Guj 2015(L), 2016, Lhr 2017, 8hwl 2018[L

1017(1)

$$\Rightarrow y = \frac{1}{2}x^{\frac{1}{2}}\sqrt{4\left(\frac{1}{4}\right)+1}$$

$$y = \frac{1}{2}x^{\frac{1}{2}}\sqrt{2} \Rightarrow 2y = x \pm 2\sqrt{2}$$

$$\Rightarrow x - 2y \pm 2\sqrt{2} = 0$$

$$i.e., x - 2y + 2\sqrt{2} = 0$$

$$3e^{-2}(x - 2y + 2\sqrt{2}) = 0$$
Find equations of the tangents to the conic $9x^2 - 4y^3 = 36$ parallel to $5x - 2y + 7 = 0$.

$$9x^2 - 4y^3 = 36$$

$$\Rightarrow \frac{9x^2}{4} - \frac{4y^2}{9} = 1 \qquad (1)$$

$$5x - 2y + 7 = 0 \qquad (2)$$
From (1) $a^2 = 4$, $b^2 = 9$
Slope of the line (2) $= \frac{5}{2}$

Now Slope of tangent parallel to (2) $= \frac{5}{2}$

Thus required equations of tangents to (1) and parallel to (2) are $y = \frac{5}{2}x \pm \sqrt{4\left(\frac{2}{4}\right)} - 9$

$$y = \frac{5}{2}x \pm 4 \Rightarrow 2y = 5x \pm 8$$

$$\Rightarrow 5x - 2y \pm 8 = 0$$

$$\Rightarrow 5x - 2y = 8 = 0$$
7. Find equations of the common tangents to the given conics

Federal 2018

Sol. (1) $x^2 = 80y$ (1)
$$x^2 + y^2 = 81$$
 (2)
$$2 = \frac{1}{2}x + \frac{1}{2}x +$$

Sol.

7.

 $c^2 = 81(1+m^2)$

Using (5) in (6) we have $\Rightarrow 400m^2 - 81m^2 - 81 = 0$

(7)

At D,
$$f(0,3) = 2(0) + 3 = 3$$

So f is maximum at corner B = (5,0)

5. Maximize f(x,y) = 2x + 3y (Sargodha 2011, Federal 2015) $2x + y \le 8$, $x + 2y \le 14$, $x \ge 0$ & $y \ge 0$

Let
$$2x+y \le 8 \longrightarrow I$$

and $x+2y \le 14 \longrightarrow II$

Associated equation are

$$l_1$$
; $2x + y = 8 \longrightarrow III$

$$l_2$$
; $x+2y=14 \longrightarrow IV$

III
$$\Rightarrow$$
 put $x = 0$ then $y = 8$; $(0,8)$

put
$$y = 0$$
 then $x = 4$; (4,0)

$$IV \Rightarrow put \ x = 0 \ then \ y = 7 \ ; (0,7)$$

put
$$y = 0$$
 then $x = 14$; (14,0)

Put
$$(0,0)$$
 in eq. $I \& II$
 $I \Rightarrow 0 < 8 (only take < value) \longrightarrow T$

$$II \Rightarrow 0 < 14 (only take < value) \longrightarrow T$$

So the graph is.

$$4x + 2y = 16$$

$$\frac{\pm x \pm 2y = \pm 14}{3x = 2} \Rightarrow x = \frac{2}{3}$$

put
$$x = \frac{2}{3}$$
 in III $\Rightarrow 2\left(\frac{2}{3}\right) + y = 8 \Rightarrow y = \frac{20}{3}$

So,
$$B\left(\frac{2}{3}, \frac{20}{3}\right)$$

Corner points of feasible region are:

$$O(0,0), A(4,0), B\left(\frac{2}{3},\frac{20}{3}\right), C(0,7),$$

At
$$O$$
, $f(0,0) = 2(0) + 3(0) = 0$

At A,
$$f(4,0) = 2(4) + 3(0) = 8$$

At B,
$$f\left(\frac{2}{3}, \frac{20}{3}\right) = 2\left(\frac{2}{3}\right) + 3\left(\frac{20}{2}\right) = 21.33$$

At C,
$$f(0,7) = 2(0) + 3(7) = 21$$

So
$$f$$
 is maximum at corner $B\left(\frac{2}{3}, \frac{20}{3}\right)$

Equation	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.a > b$ $c^2 = a^2 - b^2$	$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1.a > b$ $c^2 = a^2 - b^2$
	$c^2 = a^2 - b^2$	$c^2 = a^2 - t^2$
Foci	$(\pm c,0)$	$(0,\pm c)$
Directrices	$x = \pm \frac{c}{e^2}$	$y = \pm \frac{c}{e^2}$
Major axis	Y = 0	X = 0
Vertices	$(\pm a,0)$	$(0,\pm a)$
Covertices	(0,±b)	(±b,0)
Centre	(0,0)	(0,0)
Eccentricity	$e = \frac{c}{a} < 1$	$e = \frac{c}{a} < 1$
Length of Major axis = 2a, length	n of Minor axis = 2b, Length of latus rec	411

- quation of the ellipse with given data and sketch its graph:
 - Foci (±3,0) and minor axis of length 10 (i)

(Fed 2015, Sgd 2015(L), AJK 2016, Lhr 2017, 18

Solution: (i) Foci (±3,0)

Fsd 2018, Mul 2014, 2017(L) 2018, Dek 2018

Length of Minor Axis = 10

Here
$$c=3$$
 and $2b=10 \Rightarrow b=5$

Now
$$e^2 = a^2 - b^2 \implies a = a^2 - 25 \implies a^2 = 34$$

Thus requied equation of the

Ellipse is
$$\frac{x^2}{34} + \frac{y^2}{25} = 1$$

From (1)

(ii)

$$a^2 = 34 \Rightarrow a = \pm \sqrt{34}$$

$$b^2 = 25 \Rightarrow b = \pm 5$$

.. Vertices of the ellipse on the x-axis are $(\pm\sqrt{34},0)$ and co-vertices are $(0,\pm 5)$ and graph of the ellipse

Length of Major Axis = 6

Here centre of the ellipse

$$= \left(\frac{0+0}{2}, \frac{-1-5}{2}\right) = (0, -3)$$
 and c is the distance from the centre to each focus. So

$$C = \sqrt{(0,0)^2 + (-3+1)^2} = \sqrt{0+4} = 2 \implies c = 2$$

Also given that 2a = 6

$$\Rightarrow a=3$$

Now using
$$c^2 = a^2 - b^2$$

$$\Rightarrow 4 = 9 - b^2 - b^2 - 0$$

