```
In [1358]:
           import numpy as np
           import pandas as pd
           import matplotlib
           import matplotlib.pyplot as plt
           from sklearn.linear model import LogisticRegressionCV
           import sklearn.metrics as metrics
           from sklearn.metrics import r2 score
           from sklearn.preprocessing import PolynomialFeatures
           from sklearn.discriminant analysis import LinearDiscriminantAnalysis
           from sklearn.discriminant analysis import QuadraticDiscriminantAnalysis
           from sklearn.tree import DecisionTreeClassifier
           from sklearn.model selection import cross val score
           from sklearn.model selection import cross val score
           from sklearn.metrics import accuracy score
           import sklearn.discriminant analysis as da
           import sklearn.neighbors as knn
           from sklearn.model selection import KFold
           from sklearn.linear model import LogisticRegression
           from sklearn.linear model import LinearRegression
           from sklearn.metrics import confusion matrix
           from sklearn.metrics import roc curve, auc
           from sklearn.linear model import Ridge
           from sklearn.linear model import Lasso
           from sklearn.linear model import RidgeCV
           from sklearn.linear model import LassoCV
           from statsmodels.api import OLS
           from statsmodels.api import add constant
           import statsmodels.api as sm
           import datetime
           #import pydotplus
           #import io
           from sklearn.tree import export graphviz
           from IPython.display import Image
           from IPython.display import display
           %matplotlib inline
           from matplotlib import pyplot
           default dims = (13, 10)
           import seaborn.apionly as sns #sets up styles and gives us more plotting
           sns.set style("whitegrid")
           sns.set context("poster")
           sns.reset orig()
```

(13657, 6)

Out[1359]:

	Mkt-RF	SMB	HML	RMW	СМА	RF
Date						
19630701	-0.67	0.00	-0.32	0.01	0.15	0.012
19630702	0.79	-0.27	0.27	-0.08	-0.19	0.012
19630703	0.63	-0.17	-0.09	0.19	-0.33	0.012
19630705	0.40	0.08	-0.28	0.07	-0.33	0.012
19630708	-0.63	0.04	-0.17	-0.31	0.13	0.012

```
In [1360]: five_factor_df.index = pd.to_datetime(five_factor_df.index,format='%Y%m%
d')
```

```
In [1361]: three_factor_df = pd.read_csv('F-F_Research_Data_Factors_daily.CSV', ind
    ex_col = 'Date')
    nan_rows = three_factor_df.isnull().T.any().T
    three_factor_df = three_factor_df[~nan_rows]
    print(np.shape(three_factor_df))
    three_factor_df.head()
```

(24077, 4)

Out[1361]:

	Mkt-RF	SMB	HML	RF
Date				
19260701	0.10	-0.24	-0.28	0.009
19260702	0.45	-0.32	-0.08	0.009
19260706	0.17	0.27	-0.35	0.009
19260707	0.09	-0.59	0.03	0.009
19260708	0.21	-0.36	0.15	0.009

```
In [1363]: three_factors = [x for x in three_factor_df.columns if x != 'Date' and x
!= 'RF']
five_factors = [x for x in five_factor_df.columns if x != 'Date' and x !
= 'RF']
```

```
In [1388]: for factor in five_factors:
    fig, ax = pyplot.subplots()
    plt.hist(five_factor_df[factor])
    print('{} Mean: {}, {} Stdev: {}'.format(factor, np.mean(five_factor_df[factor]), factor, np.std(five_factor_df[factor])))
    ax.set_xlabel(factor);
    ax.set_ylabel('Returns since 2013');
```

Mkt-RF Mean: 0.05606913183279745, Mkt-RF Stdev: 0.7872587049583424 SMB Mean: 0.0031189710610932428, SMB Stdev: 0.48855148651674307 HML Mean: 0.00043408360128617546, HML Stdev: 0.4668905536240676 RMW Mean: -7.234726688102836e-05, RMW Stdev: 0.30505427998461854 CMA Mean: -0.006197749196141472, CMA Stdev: 0.2938278737903466

-1.0

-1.5

-0.5

0.0

1.0

0.5

HML

1.5

2.0

2.5


```
In [1365]: stocks_held = ['USAK', 'RHDGF', 'DXLG', 'NUSMF', 'LEE', 'AXLE']
# stocks_held = ['USAK', 'RHDGF', 'DXLG', 'NUSMF', 'LEE']
```

```
In [1366]: quantities = [180, 110, 1000, 8000, 425, 2000]
# quantities = [180, 110, 1000, 8000, 425]
```

```
In [1368]: dfs = []
    for stock in stocks_held:
        if stock != 'AXLE':
            stock_df = pd.read_csv('{}.csv'.format(stock), index_col = None)
            stock_df['Stock'] = stock
            dfs.append(stock_df)

# Adds in last dataframe at the end to keep them in order
        df = pd.concat(dfs)
        df.head()
```

Out[1368]:

	Date	Open	High	Low	Close	Adj Close	Volume	Stock
0	1992-03-19	7.5	7.5	7	7.125	7.125	1256400	USAK
1	1992-03-20	7.375	7.625	7.125	7.25	7.25	262800	USAK
2	1992-03-23	7.25	7.625	7.25	7.25	7.25	43800	USAK
3	1992-03-24	7.5	7.625	7.25	7.5	7.5	73600	USAK
4	1992-03-25	7.625	7.625	7.25	7.625	7.625	28000	USAK

```
In [1369]: df['Date'] = pd.to_datetime(df['Date'])
```

```
In [1370]: | df = df.convert_objects(convert_numeric=True)
```

/anaconda/lib/python3.6/site-packages/ipykernel_launcher.py:1: FutureWa rning: convert_objects is deprecated. Use the data-type specific converters pd.to_datetime, pd.to_timedelta and pd.to_numeric.
"""Entry point for launching an IPython kernel.

Out[1371]:

	Date	Open	High	Low	Close	Adj Close	Volume	Stock
0	1992-03-19	1350.0	7.500	7.000	1282.5	7.125	1256400.0	USAK
1	1992-03-20	1327.5	7.625	7.125	1305.0	7.250	262800.0	USAK
2	1992-03-23	1305.0	7.625	7.250	1305.0	7.250	43800.0	USAK
3	1992-03-24	1350.0	7.625	7.250	1350.0	7.500	73600.0	USAK
4	1992-03-25	1372.5	7.625	7.250	1372.5	7.625	28000.0	USAK

```
In [1372]: AXLE_df = pd.read_csv('AXLE.csv', index_col = None)
```

```
In [1373]: AXLE df['Stock'] = 'AXLE'
           AXLE df['Date'] = pd.to datetime(AXLE df['Date'])
           AXLE df = AXLE df.convert objects(convert numeric=True)
          /anaconda/lib/python3.6/site-packages/ipykernel launcher.py:3: FutureWa
          rning: convert objects is deprecated. Use the data-type specific conve
          rters pd.to datetime, pd.to timedelta and pd.to numeric.
            This is separate from the ipykernel package so we can avoid doing imp
          orts until
In [1374]: AXLE_df['Last Price'] = ptf_dict['AXLE'] * AXLE_df['Last Price']
           return_list = [np.log(AXLE_df['Last Price'][i]) - np.log(AXLE_df['Last P
           rice' [[i + 1]) for i in range(len(AXLE df) - 1)]
           AXLE_df = AXLE_df.drop(AXLE_df.index[-1])
           AXLE_df['Returns'] = return_list
In [1375]: | df['Returns'] = np.log(df['Close']) - np.log(df['Open'])
In [1376]: df = pd.concat([df, AXLE_df])
In [1377]: start date = datetime.datetime(2012, 10, 19)
In [1378]: df = df[df['Date'] >= start_date]
In [1379]: three factor df = three factor df[three factor df.index >= datetime.date
           time(2012, 10, 19)]
In [1380]: | five_factor_df = five_factor_df[five_factor_df.index >= datetime.datetim
           e(2012, 10, 19)]
In [1381]: grouped by stock = df.groupby('Stock')
In [1382]: grouped by date = df.groupby('Date')
```

```
In [1383]: portfolio_values = grouped_by_date.sum()
    portfolio_values.head()
```

Out[1383]:

	Adj Close	Close	High	Last Price	Low	Open	Returns	SMAVG (15)	Volume
Date									
2012- 10-19	26.674713	14931.25	32.10	NaN	30.18	15167.15	-0.050744	NaN	1373082.0
2012- 10-22	26.554713	14442.40	30.71	NaN	30.16	14835.85	-0.052136	NaN	316500.0
2012- 10-23	26.574713	14286.30	30.49	NaN	30.12	14322.25	0.035713	NaN	192200.0
2012- 10-24	27.710764	13846.70	31.97	NaN	31.59	14510.35	-0.061278	NaN	270100.0
2012- 10-25	27.610764	13912.65	31.79	NaN	31.59	13862.30	-0.008985	NaN	181500.0

```
In [1384]: fig, ax = plt.subplots(figsize=default_dims)
    portfolio_values['Open'].plot();
    ax.set_xlabel('Time');
    ax.set_ylabel('Portfolio');
    ax.set_title('Value of Current Portfolio Since 2013');
```



```
In [1386]: for factor in five_factors:
    fig, ax = pyplot.subplots()
    plt.hist(five_factor_df[factor], bins = 50)
    print('{} Mean: {}, {} Stdev: {}'.format(factor, np.mean(five_factor_df[factor]), factor, np.std(five_factor_df[factor])))
    ax.set_xlabel(factor);
    ax.set_ylabel('Returns since 2013');
```

Mkt-RF Mean: 0.05606913183279745, Mkt-RF Stdev: 0.7872587049583424 SMB Mean: 0.0031189710610932428, SMB Stdev: 0.48855148651674307 HML Mean: 0.00043408360128617546, HML Stdev: 0.4668905536240676 RMW Mean: -7.234726688102836e-05, RMW Stdev: 0.30505427998461854 CMA Mean: -0.006197749196141472, CMA Stdev: 0.2938278737903466

In-sample evaluation

-1.0

-0.5

0.0

0.5

1.0

```
In [1316]: three_factor_OLS = sm.OLS(y, x_three.values)
    three_factor_results = three_factor_OLS.fit()
    three_factor_results.summary(xname = ['const'] + three_factors)
```

Out[1316]:

OLS Regression Results

Dep. Variable:	Returns	R-squared:	0.055
Model:	OLS	Adj. R-squared:	0.053
Method:	Least Squares	F-statistic:	24.10
Date:	Thu, 16 Nov 2017	Prob (F-statistic):	3.70e-15
Time:	15:49:31	Log-Likelihood:	1011.8
No. Observations:	1244	AIC:	-2016.
Df Residuals:	1240	BIC:	-1995.
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-0.0015	0.003	-0.498	0.619	-0.008	0.004
Mkt-RF	0.0235	0.004	5.910	0.000	0.016	0.031
SMB	0.0295	0.006	4.581	0.000	0.017	0.042
HML	0.0021	0.007	0.323	0.747	-0.011	0.015

Omnibus:	630.208	Durbin-Watson:	2.022
Prob(Omnibus):	0.000	Jarque-Bera (JB):	21747.027
Skew:	1.702	Prob(JB):	0.00
Kurtosis:	23.198	Cond. No.	2.33

```
In [1317]: five_factor_OLS = sm.OLS(y, x_five.values)
    five_factor_results = five_factor_OLS.fit()
    five_factor_results.summary(xname = ['const'] + five_factors)
```

Out[1317]: OLS Regression Results

Dep. Variable:	Returns	R-squared:	0.065
Model:	OLS	Adj. R-squared:	0.061
Method:	Least Squares	F-statistic:	17.13
Date:	Thu, 16 Nov 2017	Prob (F-statistic):	2.07e-16
Time:	15:49:31	Log-Likelihood:	1018.2
No. Observations:	1244	AIC:	-2024.
Df Residuals:	1238	BIC:	-1994.
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-0.0015	0.003	-0.485	0.628	-0.007	0.004
Mkt-RF	0.0275	0.004	6.537	0.000	0.019	0.036
SMB	0.0326	0.007	4.853	0.000	0.019	0.046
HML	-0.0173	0.008	-2.047	0.041	-0.034	-0.001
RMW	0.0107	0.011	0.971	0.332	-0.011	0.032
СМА	0.0423	0.014	3.095	0.002	0.015	0.069

Omnibus:	644.306	Durbin-Watson:	2.021
Prob(Omnibus):	0.000	Jarque-Bera (JB):	22861.537
Skew:	1.751	Prob(JB):	0.00
Kurtosis:	23.707	Cond. No.	4.99

```
In [1318]: capm_df = pd.read_csv('SPY.csv',index_col = 'Date')
In [1319]: capm_df.index = pd.to_datetime(capm_df.index)
In [1320]: df_train_capm = portfolio_values
    df_train_capm['Market'] = np.log(capm_df['Close']) - np.log(capm_df['Ope n'])
In [1321]: x_capm = sm.add_constant(df_train_capm['Market'])
    y_capm = df_train_capm['Returns']
```

Out[1322]: OLS Regression Results

Dep. Variable:	Returns	R-squared:	0.053
Model:	OLS	Adj. R-squared:	0.053
Method:	Least Squares	F-statistic:	71.92
Date:	Thu, 16 Nov 2017	Prob (F-statistic):	6.12e-17
Time:	15:49:31	Log-Likelihood:	1049.2
No. Observations:	1277	AIC:	-2094.
Df Residuals:	1275	BIC:	-2084.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-0.0006	0.003	-0.206	0.837	-0.006	0.005
Market	4.1713	0.492	8.481	0.000	3.206	5.136

Omnibus:	601.310	Durbin-Watson:	2.030
Prob(Omnibus):	0.000	Jarque-Bera (JB):	19008.483
Skew:	1.553	Prob(JB):	0.00
Kurtosis:	21.644	Cond. No.	165.

Out-of-sample evaluation

```
In [1327]: five_factor_OLS = sm.OLS(y_train, x_train_five.values)
    results_sm = five_factor_OLS.fit()
    print('Five factor test r2 of {}'.format(r2_score(y_test, results_sm.pre dict(x_test_five.values))))

Five factor test r2 of 0.03861363794348216

In [1328]: x_train_capm, x_test_capm, y_train_capm, y_test_capm = split(x_capm, y_c apm)

In [1329]: capm_OLS = sm.OLS(y_train_capm, x_train_capm.values)
    results_sm = capm_OLS.fit()
    print('CAPM test r2 of {}'.format(r2_score(y_test_capm, results_sm.predict(x_test_capm.values))))

CAPM test r2 of 0.00987989942112033
```

EDA for Value Factor

```
In [1334]: value_OLS = sm.OLS(y_value, x_value)
    value_results = value_OLS.fit()
    value_results.summary()
```

Out[1334]: OLS Regression Results

Dep. Variable:	Returns	R-squared:	0.000
Model:	OLS	Adj. R-squared:	-0.006
Method:	Least Squares	F-statistic:	0.0001196
Date:	Thu, 16 Nov 2017	Prob (F-statistic):	0.991
Time:	15:49:34	Log-Likelihood:	38.759
No. Observations:	173	AIC:	-73.52
Df Residuals:	171	BIC:	-67.21
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	0.0113	0.015	0.762	0.447	-0.018	0.040
Value	0.0174	1.590	0.011	0.991	-3.121	3.156

Omnibus:	95.794	Durbin-Watson:	2.198
Prob(Omnibus):	0.000	Jarque-Bera (JB):	862.706
Skew:	1.833	Prob(JB):	4.63e-188
Kurtosis:	13.307	Cond. No.	108.

```
In [1335]: x_train_value, x_test_value, y_train_value, y_test_value =
    split(x_value, y_value)
    value_OLS = sm.OLS(y_train_value.values, x_train_value.values)
    results_sm = value_OLS.fit()
    print('Value factor test r2 of {}'.format(r2_score(y_test_value, results
    _sm.predict(x_test_value.values))))
```

Value factor test r2 of -0.02156766348128336

```
In [1337]: x_train_value, x_test_value, y_train_value, y_test_value =
    split(x_value, y_value)
    value_OLS = sm.OLS(y_train_value.values, x_train_value.values)
    results_sm = value_OLS.fit()
    print('Value factor test r2 of {}'.format(r2_score(y_test_value, results
    _sm.predict(x_test_value.values))))
```

Value factor test r2 of 0.04018357532819217

In [1338]: grouped_by_stock.sum()

Out[1338]:

	Adj Close	Close	High	Last Price	Low	Open
Stock						
AXLE	NaN	NaN	NaN	116982.6	NaN	NaN
DXLG	5971.330000	5.971330e+06	6094.660000	NaN	5844.010000	5.975170e+0
LEE	3396.350000	1.443449e+06	3484.690000	NaN	3307.860000	1.444231e+0
NUSMF	361.000000	2.888000e+06	373.870000	NaN	347.280000	2.885840e+0
RHDGF	16510.290043	2.054872e+06	18756.985110	NaN	18595.037589	2.053733e+(
USAK	17906.519996	3.223174e+06	18358.069998	NaN	17472.149995	3.221932e+(

USAK

========				=====			====
======							
Dep. Variab	ole:	Retur	ns	R-squ	uared:		
0.093			×		5		
Model: 0.088		O	DLS	Aaj.	R-squared:		
Method:		Least Squar	-06	F_c+:	atistic:		
18.88		Lease bquar	CD	1-500	acibere.		
Date:	Th	nu, 16 Nov 20	17	Prob	(F-statistic)	:	
6.63e-18		•			,		
Time:		15:49:	36	Log-l	Likelihood:		
1888.7							
No. Observa	ations:	9	26	AIC:			
- 3765.							
Df Residual	Ls:	9	20	BIC:			
-3736.			5				
Df Model:			5				
Covariance	Type:	nonrobu	ıst.				
00141141100	1/200	nonicoda					
========				=====			
======							
	coef	std err		t	P> t	[0.025	
0.975]							
aonat	0 110 05	0 001	0	070	0.938	0 002	
const 0.002	6.11e-05	0.001	U	.076	0.936	-0.002	
Mkt-RF	0.0090	0.001	6	.222	0.000	0.006	
0.012	0.0050	0.001	Ū	• 2 2 2	0.000	0.000	
SMB	0.0135	0.002	5	.932	0.000	0.009	
0.018							
HML	-0.0010	0.003	-0	.338	0.735	-0.007	
0.005							
RMW	0.0059	0.004	1	.555	0.120	-0.002	
0.013							
CMA	0.0073	0.005	1	.566	0.118	-0.002	
0.017							
Omnibus:		119.5	16	Durb	in-Watson:		
1.861		113.0		Dulb.	ii waasaii		
Prob(Omnibu	ıs):	0.0	000	Jarqı	ue-Bera (JB):		1
036.383	,			-	` ,		
Skew:		0.2	220	Prob	(JB):		8.
96e-226							
Kurtosis:		8.1	64	Cond	. No.		
4.98							
========				=====		=======	====
======							

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

RHDGF

			:=======		
Dep. Variable:	:	Return	ns R-squa	ared:	
Model: 0.003		OI	S Adj. F	R-squared:	
Method: 1.369		Least Square	es F-stat	cistic:	
Date: 0.234	Th	u, 16 Nov 201	7 Prob (F-statistic	:):
Time: 1977.6		15:49:3	36 Log-Li	kelihood:	
No. Observation -3943.	ons:	70	05 AIC:		
Df Residuals: -3916.		69	99 BIC:		
Df Model:			5		
Covariance Typ	oe:	nonrobus	st		
	coef	std err	t	P> t	[0.025
0.975]					
const 0.001	0.0002	0.001	0.418	0.676	-0.001
Mkt-RF	0.0011	0.001	1.383	0.167	-0.000

RMW 0.0037 0.002 1.779 0.076 -0.000 0.008 CMA -0.0033 0.002 -1.345 0.179 -0.008 0.002 ======= Omnibus: 490.792 Durbin-Watson: 1.849 Prob(Omnibus): 0.000 Jarque-Bera (JB): 29 014.619 Skew: 2.442 Prob(JB): 0.00 Kurtosis: 34.046 Cond. No. 4.88	0.005						
CMA -0.0033 0.002 -1.345 0.179 -0.008 0.002 ======== Omnibus: 490.792 Durbin-Watson: 1.849 Prob(Omnibus): 0.000 Jarque-Bera (JB): 29 014.619 Skew: 2.442 Prob(JB): 0.00 Kurtosis: 34.046 Cond. No.	RMW	0.0037	0.002	1.779	0.076	-0.000	
0.002 ======== Omnibus: 490.792 Durbin-Watson: 1.849 Prob(Omnibus): 0.000 Jarque-Bera (JB): 29 014.619 Skew: 2.442 Prob(JB): 0.00 Kurtosis: 34.046 Cond. No.	0.008						
======================================	CMA	-0.0033	0.002	-1.345	0.179	-0.008	
Omnibus: 490.792 Durbin-Watson: 1.849 Prob(Omnibus): 0.000 Jarque-Bera (JB): 29 014.619 Skew: 2.442 Prob(JB): 0.00 Kurtosis: 34.046 Cond. No.	0.002						
Omnibus: 490.792 Durbin-Watson: 1.849 Prob(Omnibus): 0.000 Jarque-Bera (JB): 29 014.619 Skew: 2.442 Prob(JB): 0.00 Kurtosis: 34.046 Cond. No.	========	========	=======	========	========	=======	====
1.849 Prob(Omnibus): 0.000 Jarque-Bera (JB): 29 014.619 Skew: 2.442 Prob(JB): 0.00 Kurtosis: 34.046 Cond. No.	======						
Prob(Omnibus): 0.000 Jarque-Bera (JB): 29 014.619 2.442 Prob(JB): 0.00 Kurtosis: 34.046 Cond. No.	Omnibus:		490.7	92 Durbin	-Watson:		
014.619 Skew: 2.442 Prob(JB): 0.00 Kurtosis: 34.046 Cond. No.	1.849						
<pre>Skew:</pre>	Prob(Omnibu	ıs):	0.0	00 Jarque	-Bera (JB):		29
0.00 Kurtosis: 34.046 Cond. No.	014.619						
Kurtosis: 34.046 Cond. No.	Skew:		2.4	42 Prob(J	B):		
	0.00						
4.88	Kurtosis:		34.0	46 Cond.	No.		
	4.88						
	========	========	=======	========	========	=======	====

0.699

1.307

0.485

0.192

-0.002

-0.001

0.001

0.002

Warnings:

======

Mkt-RF 0.003

0.003

SMB

HML

 $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

DXLG

0.0009

0.0020

______ ====== Dep. Variable: R-squared: Returns 0.125 Model: OLS Adj. R-squared: 0.121 Method: Least Squares F-statistic: 26.36 Date: Thu, 16 Nov 2017 Prob (F-statistic): 6.10e-25 Time: 15:49:36 Log-Likelihood: 2072.8 No. Observations: 926 AIC: -4134. Df Residuals: 920 BIC: -4105. Df Model: 5 Covariance Type: nonrobust ______ ====== coef std err t P>|t| [0.025 0.9751 -0.0017 $0.001 \quad -1.947 \quad 0.052 \quad -0.003$ const 1.36e-05 0.001 0.000 Mkt-RF 0.0058 4.889 0.003 0.008 SMB 0.0170 0.002 9.147 0.000 0.013 0.021 0.124 -0.0037 0.002 -1.540-0.008 HML0.001 RMW 0.0077 0.003 2.467 0.014 0.002 0.014 CMA 0.0099 0.004 2.592 0.010 0.002 0.017 ====== Omnibus: 144.401 Durbin-Watson: 2.084 Prob(Omnibus): 0.000 Jarque-Bera (JB): 1 464.046 Skew: -0.342 Prob(JB): 0.00 Kurtosis: 9.122 Cond. No. 4.98 ______ Warnings: [1] Standard Errors assume that the covariance matrix of the errors is

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

NUSMF

.-----

======		
Dep. Variable: 0.013	Returns	R-squared:
Model:	OLS	Adj. R-squared:
0.008		
Method:	Least Squares	F-statistic:
2.458		
Date:	Thu, 16 Nov 2017	Prob (F-statistic):
0.0318		
Time:	15:49:36	Log-Likelihood:
1165.1		
No. Observations:	926	AIC:
-2318.		
Df Residuals:	920	BIC:
-2289.		
Df Model:	5	

Covariance Type: nonrobust

=======		========		========		====
======						
	coef	std err	t	P> t	[0.025	
0.975]						
const	0.0016	0.002	0.712	0.477	-0.003	
0.006						
Mkt-RF	0.0082	0.003	2.576	0.010	0.002	
0.014						
SMB	-0.0101	0.005	-2.043	0.041	-0.020	
-0.000	0 0105	0.006	1 600			
HML	-0.0107	0.006	-1.682	0.093	-0.023	
0.002 RMW	0.0063	0.008	0.755	0.451	-0.010	
0.023	0.0003	0.008	0.755	0.451	-0.010	
CMA	0.0121	0.010	1.179	0.239	-0.008	
0.032	***************************************			00203		
=======	========	========		========		====
======						
Omnibus:		959.1	178 Durbin	-Watson:		
2.036						
Prob(Omnib	us):	0.0	000 Jarque	-Bera (JB):		187
513.439						
Skew:		4.3	362 Prob(J	B):		
0.00		50	1.65			
Kurtosis:		72.1	l65 Cond.	NO.		
4.98						
=======		========		=======	====	_===

======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

LEE

======

Dep. Variable: Returns R-squared: 0.029 Model: OLS Adj. R-squared: 0.024 F-statistic: Method: Least Squares 5.577 Date: Thu, 16 Nov 2017 Prob (F-statistic): 4.52e-05 Time: 15:49:37 Log-Likelihood: 1833.4 No. Observations: 926 AIC: -3655. Df Residuals: 920 BIC: -3626. Df Model: 5

Covariance Type: nonrobust

=========					
======					
	coef	std err	t	P> t	[0.025
0.975]					
const	-0.0012	0.001	-1.070	0.285	-0.003
0.001					
Mkt-RF	0.0057	0.002	3.690	0.000	0.003
0.009					
SMB	0.0067	0.002	2.796	0.005	0.002
0.011					
HML	0.0011	0.003	0.370	0.711	-0.005
0.007					
RMW	0.0037	0.004	0.905	0.366	-0.004
0.012					
CMA	0.0007	0.005	0.131	0.896	-0.009
0.010					
Omnibus:		77 2	99 Durbin	-Watson:	
1.982		11.2	.99 DULDIII	-wacson.	
Prob(Omnibus	3):	0.0	.00 Jarque	-Bera (JB):	
366.193	<i>.</i>	0.0	oo barqae	Bela (SB).	
Skew:		0.1	.91 Prob(J	B):	
3.04e-80		3.1	(,	
Kurtosis:		6.0	57 Cond.	No.	
4.98					
=========		========	========	========	=========

======

Warnings:

 $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

AXLE

======

Dep. Variable: Returns R-squared:

0.047 OLS Adj. R-squared: Model: 0.008 Method: Least Squares F-statistic: 1.198 Date: Thu, 16 Nov 2017 Prob (F-statistic): 0.314 Time: 15:49:37 Log-Likelihood: 77.030 No. Observations: 127 AIC: -142.1 Df Residuals: 121 BIC: -125.0 Df Model: 5

Covariance Type: nonrobust

========				========	
======					
	coef	std err	t	P> t	[0.025
0.975]					
const	-0.0023	0.012	-0.185	0.854	-0.027
0.022	0.0102	0.010	1 007	0 270	0.016
Mkt-RF 0.054	0.0192	0.018	1.087	0.279	-0.016
SMB	0.0327	0.030	1.090	0.278	-0.027
0.092	0.0327	0.030	1.090	0.276	-0.027
HML	-0.0613	0.042	-1.471	0.144	-0.144
0.021					
RMW	-0.0371	0.055	-0.672	0.503	-0.146
0.072					
CMA	0.1315	0.070	1.888	0.061	-0.006
0.269					
=======		=======	========	=======	========
Omnibus:		8.8	859 Durbin	-Watson:	
2.121					
Prob(Omnibus):		0.012 Jarque		-Bera (JB):	
14.866					
Skew:		0.3	0.267 Prob(JB):		
0.000591					
Kurtosis:		4.5	588 Cond.	No.	
6.76					
========		=======		========	

======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In []: