

تمرین درس کنترل دیجیتال

نيمسال دوم: ۱۴۰۲–۱۴۰۳

استاد درس : دکتر طالبی

انشگاه صنعتی امیرکبیر

۱ بخش مقدماتی (۳۵ نمره)

حل دو سوال از این بخش الزامی است.

سوال اول

: تبدیل Z) به روش بسط کسر های جزئی تبدیل معکوس Z زیر را بدست آورید X(z) = $\frac{2z^3+z}{(z-2)^3(z-1)}$

سوال دوم

(تحقق) تابع تبديل G(z) را درنظر بگيريد.

 $G(z)=rac{z-2}{(z-0.1)(z^2-0.5z+1)}$ (برای بلوکهای سری از تحقق رؤیت پذیر استفاده نمایید) تحقق سری سیستم ذیل را بدست آورید (برای بلوکهای سری از تحقق رؤیت پذیر استفاده نمایید

سوال سوم

(نگهدار ها) نشان دهید مدار شکل زیر بصورت یک نگهدار مرتبه صفر عمل می کند.

شكل ١: شكل سوال سوم

سوال چهارم

(نگهدار ها) دیاگرام بلوکی شکل زیر را در نظر بگیرید نشان دهید هرگاه سیگنالی با مقدار ۱ در نقطه ۰ و مقدار ۰ در سایر نقاط (سیگنال ضربه گسسته) به عنوان ورودی به آن اعمال شود مانند نگهدار مرتبه اول عمل می کند. (خروجی را رسم کنید.)

استاد درس : دکتر طالبی

شکل ۲: شکل سوال چهارم

سوال پنجم

. تبدیل ستاره) تبدیل ستاره تابع تبدیل زیر را با روش دلخواه بدست آورید. $G(s) = \frac{s+2}{s(s+1)}$

۲ بخش متوسط (۳۵ نمره)

حل دو سوال از این بخش الزامی است.

سوال ششم

(تبدیل Z) با توجه به معادله تفاضلی زیر به سوالات پاسخ دهید.

$$y(0) = y(1) = 0, e(0) = 0, e(k) = 1, k = 1, 2, ...$$

 $y(k+2) - \frac{3}{4}y(k+1) + \frac{1}{8}y(k) = e(k)$

الف) y(k) را به صورت عددی برای $k \leq 4$ بدست آورید.

ب) آیا تابع تبدیل این سیستم پایدار است؟ استدلال کنید.

سوال هفتم

(تحقق) تابع تبدیل زیر را در نظر بگیرید.

$$D(z)=rac{2z^2-2.4z+0.72}{z^2-1.4z+0.98}$$
 با توجه به شکل ضرایب مجهول را بدست آورید (مقصود از T تاخیر است)

سوال هشتم

(تحقق) تابع تبدیل زیر را در نظر بگیرید.

$$D(z)=rac{2z^2-2.4z+0.72}{z^2-1.4z+0.98}$$
 با توجه به شکل ضرایب مجهول را بدست آورید (مقصود از T تاخیر است)

تکلیف سری دوم کنترل دیجیتال

شكل ٣: شكل سوال هفتم

شكل ۴: شكل سوال هشتم

استاد درس : دکتر طالبی

سوال نهم

ونگهدار ها) یک سیستم با تابع تبدیل زمان پیوستهی
$$G(\mathbf{s})$$
 را در نظر بگیرید:
$$G(s) = \frac{e^{-s}}{(s+1)(s+2)}$$
 با استفاده از نگهدار مرتبه صفر و $T=0.5$ سیستم را نمونه برداری نمایید.

سوال دهم

(تبدیل ستاره) الف) تبدیل ستاره را برای دو تابع زیر به ازای T=0.1s بدست آورید توضیح دهید که چرا پاسخ آنها یکسان است؟

 $1)cos(4\pi t)$ $2)cos(16\pi t)$

ب) تابع دیگری را معرفی کنید که تبدیل ستاره برابر با آنچه بدست آوردید داشته باشد

۳ بخش تکمیلی (۳۰ نمره)

حل دو سوال از این بخش الزامی است.

سوال يازدهم

(تبدیل z) هر یک از توابع پالسی ذیل متناظر با پاسخهای پلهی A - F هستند. این تناظر را با ذکر دلیل و استدلال کامل مشخص کنید.

سوال دوازدهم

(تبدیل ستاره) برای سیستم نمونهبرداری شده شکل ذیل؛ تنها با استفاده از روش مدل گذر سیگنال C(z) و C(z) را بیابید.

سوال سيزدهم

(تبدیل ستاره) مطلوبست $rac{Y(s)}{R^*(s)}$ و $rac{Y(s)}{R^*(s)}$ (در صورت وجود)

سوال چهاردهم

(تحقق) (میانترم ۱۴۰۱) تابع تبدیل G(z) زیر را در نظر بگیرید. $G(z)=\frac{z+0.2}{(z-0.1)(z^2-0.5z+1)}$ الف) تحقق موازی سسیستم فوق را بدست آورید (برای بلوک های موازی از نحقق کنترل پذیر استفاده کنید.) ب) معادلات حالت سیستم را بدست آورید.

$$G_{\gamma}(z) = \frac{1}{z^{\gamma} + ..\Lambda\Box + ...\gamma} \qquad G_{\varphi}(z) = \frac{1}{z^{\gamma} - ..\Lambda\Box + ...\gamma}$$

$$G_{\varphi}(z) = \frac{1}{z^{\gamma} - ..\Lambda\Box + ...\gamma} \qquad G_{\varphi}(z) = \frac{1}{z^{\gamma} - ..\Lambda\Box + ...\gamma}$$

$$G_{\varphi}(z) = \frac{1}{z^{\gamma} - ..\Lambda\Box + ...\gamma}$$

$$G_{\varphi}(z) = \frac{1}{z^{\gamma} - ...\gamma\Box + ...\gamma}$$

$$G_{\varphi}(z)$$

شكل ۵: شكل سوال يازدهم

شكل ۶: شكل سوال دوازدهم

استاد درس : دکتر طالبی

شكل ٧: شكل سوال سيزدهم

سوال پانزدهم

(تبدیل z) تابع تبدیل ذیل را در نظر بگیرید:

 $G(s)=rac{s+b}{s+a}, a>0, b<0$ این تابع تبدیل را با روش تبدیل z استاندارد با پریود T گسسته سازی نمایید. آیا تابع تبدیل گسسته نیز نامینیمم فاز خواهد بود؟ آیا پریود نمونه برداری وجود دارد که سیستم معادل گسسته مینیمم فاز باشد؟