# Acesso no Lacete Local

- Acesso telefónico analógico
- Transmissão digital no lacete local
- Acesso por modem da banda de voz
- Acesso G.703 E1
- Acesso básico RDIS
- Acesso DSL Digital Subscriber Line

Sistemas de Telecomunicações

Mário Jorge Leitão

Intencionalmente em branco

# Acesso telefónico analógico

#### Lacete local

#### Características

- constituído por um par de fios balanceados
- permite a transmissão bidirecional num único suporte físico
- exige circuitos híbridos para separar os sinais de emissão e receção nos extremos
- pares torcidos: o ruído e interferências induzidos nos fios cancelam-se mutuamente



Lacete local e circuito híbrido

Circuito híbrido genérico com transformador

Sistemas de Telecomunicações

Rede de Transporte

# Acesso telefónico analógico

## Suporte físico

Fios aéreos

utilizados no lacete local em meios rurais, a cair em desuso

- fios nus de cobre suspensos por isoladores cerâmicos em hastes transversais no topo de postes
- grande quantidade de cobre ⇒ baixa atenuação
- grande separação entre os fios, conduzindo à rápida saturação dos postes
- manutenção elevada

## Cabos de pares simétricos

- pares de cobre agrupados num cabo
- suspensos, enterrados ou enfiados em condutas
- capacidade muito diversa: tipicamente entre 6 e 2700 pares num cabo
- diâmetros mais comuns de 0,4 e 0,5 mm  $\Longrightarrow$  atenuação relativamente elevada
- diâmetros de 0,6 a 0,9 mm utilizados em troços mais distantes de ligações longas
- distorção de amplitude elevada na banda de voz possível compensar

# Acesso telefónico analógico

## Princípio de operação

#### Configuração de acesso

- um único par de cobre (2 fios)  $\rightarrow$  interface a/b
- híbrido no assinante assegura o acoplamento à linha do transmissor e do recetor

#### Alimentação

– central local alimenta a linha de assinante a partir de uma bateria central (-48 V)

#### Efeito local

- potencial desadaptação do híbrido produz um eco local (sem atraso)
- este eco local acaba por ser útil: permite escutar a própria voz nos dois ouvidos



Sistemas de Telecomunicações

Acesso no Lacete Local

# Acesso telefónico analógico

## Princípio de operação

#### Híbrido baseado em transformador

- configuração simplificada utilizada desde os primórdios da telefonia
- montagem com um microfone simples e um altifalante, ambos sem amplificadores

#### Híbrido baseado em circuito resistivo

- configuração simplificada com T resistivo
- transmissor e recetor com amplificação eletrónica



Híbrido simplificado baseado em transformador



Híbrido simplificado baseado em circuito resistivo

## Principais limitações da transmissão em pares de cobre

• Limitações intrínsecas do canal

#### Atenuação e distorção de amplitude

– atenuação (A) proporcional ao comprimento da linha (d)

$$A = \gamma . d$$
 γ- atenuação específica (dB/km)

- atenuação agrava-se com pares de menor calibre (diâmetro 0,4 mm)
- atenuação aumenta significativamente com a frequência → distorção de amplitude

$$\gamma \approx k\sqrt{f}$$
 ex: 20 dB/km @ 1 MHz

#### Medidas de proteção

- amplificação nos repetidores e terminações de linha
- igualização do ganho do canal
- codificação de linha ou modulação com espectro compacto, evitando altas frequências

Sistemas de Telecomunicações

Acesso no Lacete Local

# Transmissão digital no lacete local

## Principais limitações da transmissão em pares de cobre

• <u>Limitações intrínsecas do canal</u>

#### Interferência intersimbólica

- resultam do facto de a resposta impulsional do canal ser "longa"
- a decisão sobre um símbolo é afetada por resíduos dos símbolos precedentes
- aumenta com o comprimento da linha
- aumenta com o débito binário

#### Medidas de proteção

- igualização de fase e amplitude procurando satisfazer o critério de Nyquist de interferência intersimbólica nula
  - pré-igualização na emissão
  - pós-igualização na receção
- igualização por atraso temporal dos impulsos, subtraindo ao sinal recebido com interferência intersimbólica uma réplica desta interferência

## Principais limitações da transmissão em pares de cobre

• Limitações intrínsecas do canal

#### Interferências entre canais

- resulta do acoplamento eletromagnético indesejável entre meios de transmissão
- interferência próxima (NEXT, Near-End Crosstalk) entre a emissão e a receção
  - entre um nível alto do interferente e um nível baixo do interferido
- interferência remota (FEXT, Far-End Crosstalk) ao longo da linha
  - entre níveis equivalentes do interferente e interferido
- NEXT e FEXT aumentam significativamente com a frequência
- NEXT é superior ao FEXT para a mesma frequência
- FEXT aumenta com o comprimento da linha



Interferências entre canais

Sistemas de Telecomunicações

Acesso no Lacete Local

# Transmissão digital no lacete local

## Principais limitações da transmissão em pares de cobre

• Limitações intrínsecas do canal

#### **Ecos**

- provocados pela desadaptação em circuitos híbridos



#### Medida de proteção para NEXT e FEXT

• sinais com espectro compacto, evitando altas frequências

#### Medida de proteção para NEXT e ecos

• sinais nos dois sentidos não sobrepostos no tempo ou frequência (ver adiante)

#### Medida de proteção para ecos

• cancelamento de eco (ver adiante)

## Principais limitações da transmissão em pares de cobre

• Limitações intrínsecas do canal

Interferências de radiofrequências ocorre em períodos relativamente longos

- resultantes de serviços de radiocomunicações
- concentradas em bandas específicas
- esporadicamente muito significativas

radioamadores!

#### Medida de proteção

técnicas avançadas de modulação (exemplo: modulação DMT - ver adiante)



Interferências de radiofrequências

Sistemas de Telecomunicações

Acesso no Lacete Local

# Transmissão digital no lacete local

## Principais limitações da transmissão em pares de cobre

• <u>Limitações intrínsecas do canal</u>

Ruído impulsivo ocorre em períodos curtos mais ou menos esporádicos

- sinalização em acessos analógicos (sobretudo transições da corrente de lacete)
- efeitos atmosféricos
- ruído de máquinas elétricas (fábricas, veículos)

# Medida de proteção • técnicas de entrelaçamento de dados e correção de erros (FEC - Forward Error Correction)



- código FEC é transmitido em cada bloco de forma a permitir corrigir erros simples, na receção
- $\bullet$  se forem entrelaçados n blocos, podem ocorrer rajadas de erros afetando n bits consecutivos
- ocorre no máximo um erro por bloco que será corrigido
- desvantagem → aumenta o atraso total (latência)

#### Técnicas de transmissão bidirecional

- TCM Time Compressed Multiplexing <
- TDD Time Division Duplex
- transmissão alternada de cada sentido a mais do dobro do ritmo
  - reservados tempos de espera: períodos de guarda e tempo de propagação
  - elimina o efeitos dos ecos e da interferência NEXT
- requer mais do dobro da banda de cada sentido
  - aumenta a atenuação/distorção e a interferência FEXT entre canais
- eficiência reduz com o aumento da distância / tempo de propagação
  - pouco relevante na linha de assinante, por ser relativamente curta



Sistema baseado em Time Compressed Multiplexing / Ping - pong

Sistemas de Telecomunicações

Acesso no Lacete Local

# Transmissão digital no lacete local

#### Técnicas de transmissão bidirecional

- FDM Frequency Division Multiplexing
- FDD Frequency Division Duplex
  - transmissão dos dois sentidos em bandas de frequência distintas
    - reservadas frequências de guarda
    - necessário filtrar convenientemente os sentidos de transmissão
    - resolve o problema dos ecos e interferência NEXT se o filtro for eficiente
  - requer mais do dobro da banda de cada sentido
    - aumenta a atenuação/distorção e a interferência FEXT entre canais



Sistema baseado em Frequency Division Multiplexing

#### Técnicas de transmissão bidirecional

- Cancelamento de eco
  - transmissão simultânea dos dois sentidos, na mesma banda
    - híbrido desadaptado introduz eco local e remoto
    - recorre-se ao cancelamento de eco com filtro digital adaptativo
    - o filtro sintetiza os sinais interferentes, removendo-os do sinal recebido (compensa os ecos local e remoto)
  - mantém a banda requerida em cada sentido
    - não aumenta a atenuação/distorção e a interferência entre canais



Sistemas de Telecomunicações

Acesso no Lacete Local

# Transmissão digital no lacete local

#### Sistemas de acesso de assinante

| Nome                | Data                | Descrição                             | Débito                                   | Simetria                                                                  | Aplicações na rede de acesso                                                     |
|---------------------|---------------------|---------------------------------------|------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| V.21<br>•••<br>V.92 | 1964<br>•••<br>2000 | Modems da banda<br>de voz             | 300 bit/s  D 56 000 bit/s A 48 000 bit/s | Simétrico  ••• Assimétrico                                                | Comunicação de dados sobre um canal telefónico                                   |
| G.703<br>E1 / T1    | 1964                | 1º nível da hierarquia<br>PDH         | 1 544 kbit/s<br>2 048 kbit/s             | Simétrico                                                                 | Ligações E1/T1 ponto a ponto da rede fixa<br>Acesso a LANs, WANs                 |
| ISDN-BR             | 1984                | Acesso básico RDIS                    | 160 kbit/s                               | Simétrico                                                                 | Serviços RDIS                                                                    |
| HDSL                | 1990                | High-speed Digital<br>Subscriber Line | 2 320 kbit/s                             | Simétrico                                                                 | Ligações E1/T1 ponto a ponto da rede fixa<br>Acesso a LANs, WANs                 |
| ADSL                | 1999                | Asymmetric Digital<br>Subscriber Line | D até 7 Mbit/s<br>A até 800 kbit/s       | Assimétrico                                                               | Acesso a Internet, <i>video-on-demand</i> , acesso a LANs, multimédia interativa |
| SHDSL               | 2001                | Single-pair<br>High-speed DSL         | até 2 320 kbit/s                         | /s Simétrico Ligações E1/T1 ponto a ponto da rede fix Acesso a LANs, WANs |                                                                                  |
| ADSL2+              | 2003                | High-speed Digital<br>Subscriber Line | D até 24 Mbit/s<br>A até 1 Mbit/s        | Assimétrico                                                               |                                                                                  |
| VDSL2               | 2005                | Very high-speed<br>Digital Subs. Line | Vários modos<br>A+D até 200 Mbit/s       |                                                                           | As mesmas que o SHDSL<br>As mesmas que o ADSL + HDTV                             |

NOTA - as datas referem-se à ratificação pela UIT das respetivas recomendações, numa fase estável

# Acesso por modem da banda de voz

## Modems baseados na modulação de portadoras

#### Princípio de operação

- começaram por usar FSK e separação dos sentidos de transmissão por FDM
- evoluíram tecnologicamente nos seguintes aspetos
  - modulações QAM com número crescente de estados

 $V.34 \rightarrow 240 \text{ estados}$ 

- transmissão bidirecional na mesma banda com cancelamento de eco
- técnicas de correção de erro de tipo FEC (Forward Error Correction)
- limitados pelo ruído de quantização da lei A / lei μ
  - estão muito próximo da capacidade teórica do canal de voz com quantização

| Teorema de Shannon $B \approx 3 \text{ kHz}$ | $S/N \approx 36 \text{ dB} = 12$ | $C = B \log_2(1 + S/N) = 39 \mathrm{kbps}$ |
|----------------------------------------------|----------------------------------|--------------------------------------------|
|----------------------------------------------|----------------------------------|--------------------------------------------|

## Exemplos

| Nome     | Data | Débito       | Modo      |
|----------|------|--------------|-----------|
| V.21     | 1964 | 300 bit/s    |           |
| V.22     | 1968 | 1 200 bit/s  |           |
| V.32     | 1984 | 9 600 bit/s  | Simétrico |
| V.32 bis | 1991 | 14 400 bit/s |           |
| V.34     | 1996 | 33 600 bit/s |           |

Sistemas de Telecomunicações

Acesso no Lacete Local

# Acesso por modem da banda de voz

#### Modems baseados em PCM

## Configuração

- ligação utilizador central local → um par
- ligação central local ISP  $\rightarrow$  um canal digital de voz PCM a 64 kbit/s



#### Configuração de acesso por modem baseado em PCM

#### Princípio de operação

- sinal transmitido no lacete local consiste em impulsos multinível
- sentido descendente ISP → utilizador
  - modem ISP: geração de palavras PCM (8 bits@ 8kHz) → máximo 7 bits úteis
  - central local: conversão D/A de palavras PCM em símbolos multinível
  - modem utilizador: receção de símbolos, conversão A/D e extração de dados

#### Modems baseados em PCM

#### Princípio de operação

- sentido ascendente utilizador  $\rightarrow$  ISP
  - modem utilizador: transmissão de símbolos multinível  $\rightarrow$  máximo  $2^6$  níveis
  - central local: conversão A/D dos símbolos multinível em palavras PCM
  - modem ISP: receção de palavras PCM e extração dos dados
  - requer adicionalmente uma fase de treino para ajustar os níveis dos símbolos transmitidos aos níveis do D/A da central local (não controlados pelo sistema)

#### **Exemplos**

| Nome   | Data      | Débito |              | Modo            | Princípio de operação                  |
|--------|-----------|--------|--------------|-----------------|----------------------------------------|
| V/00   | 1000      | D      | 56 000 bit/s | Assimétrico     | Baseado em PCM                         |
| V.90 1 | 1998      | A      | 33 600 bit/s | Assimetrico     | Baseado em portadora (idêntico a V.34) |
| V02    | V.92 2000 | D      | 56 000 bit/s | A agine étuig a | Dagaada am DCM                         |
| V.92   |           | Α      | 48 000 bit/s | Assimétrico     | Baseado em PCM                         |

Sistemas de Telecomunicações

Acesso no Lacete Local

*Acesso G.703 - E1* ←

ITU Rec. G.703 técnica estabelecida nos anos 60, já ultrapassada

## Características gerais

#### Configuração

- transmissão suportada em 4 fios, com codificação de linha HDB3
- alcance limitado (1,8 km @ diâm.=0,5 mm)
- exige repetidores em ligações longas



Configuração típica de um sistema E1 a 2 Mbit/s sobre pares simétricos

salto qualitativo na evolução do acesso de assinante

## Características gerais

#### Configuração

- suportados em 2 fios (um único par)
- débito bruto de 160 kbit/s
- código de linha multinível 2B1Q → 80 kbaud
- alcance razoável
  - 4,5 km @ diâm.= 0,4 mm
  - 6 km @ diâm.= 0,5 mm

objetivo: cobertura elevada sem restrições de pares nem repetidores

#### Princípio de operação

- transmissão bidirecional com híbridos e cancelamento de eco adaptativo
- espectro compacto → interferência NEXT aceitável
- emissão e receção de sinal → operação em banda base idêntica a acesso G.703

| Dados binários        | 00 | 01 | 11 | 10 |
|-----------------------|----|----|----|----|
| Símbolos quaternários | -3 | -1 | 1  | 3  |

Sistemas de Telecomunicações

Acesso no Lacete Local



## Características gerais

 $HDSL \rightarrow High$ -speed Digital Subscriber Line

ITU Rec. G.991.1

- cancelamento de eco adaptativo
- transmissão sobre 2 ou 3 pares (mais recentemente 1 par)

## SHDSL $\rightarrow$ Single-pair High-speed Digital Subscriber Line <

ITU Rec. G.991.2

– evolução de HDSL para sistemas multisserviço e multidébito

## ADSL → Asymmetric Digital Subscriber Line «

ITU Rec. G.992.1/2

- modulações sofisticadas, permitindo débitos elevados, sobretudo o descendente

ADSL2+ €.....

- transmissão sobre 1 par
- desenvolvimentos recentes → ADSL2 ← ADSL2

ITU Rec. G.992.3/4

ITU Rec. G.993.1

ITU Rec. G.992.5

prolongamento dos sistemas ADSL/SHDSL para maiores débitos de linha

número de pares alcance

débito binário

simetria

cada tecnologia estabelece um compromisso entre vários objetivos

Sistemas de Telecomunicações

Acesso no Lacete Local

# HDSL – High-speed Digital Subscriber Line

## Características gerais

#### Objetivo geral da tecnologia HDSL

- serviço equivalente a ligações simétricas G.703 E1/T1
- cobertura sem repetidores nem seleção de pares, para a maioria de assinantes

#### Sistema americano (1 544 kbit/s)

- sistema original em 2 ligações a 784 kbit/s em 2 pares
- evoluiu para um sistema com uma única ligação a 1578 kbit/s num par (HDSL2)

#### Sistema europeu (2 048 kbit/s)

- tecnologia original americana reutilizável na Europa com mais 1 par
- sistemas catuais já permitem 2 pares, ou mesmo 1 par, com alcances aceitáveis

| Débito HDSL     | Número de pares | Débito por par | Alcance (d=0,5 mm) |
|-----------------|-----------------|----------------|--------------------|
| 2.049.1-1-1-4/2 | 2               | 1 168 kbit/s   | 4,3 km             |
| 2 048 kbit/s    | 1               | 2 320 kbit/s   | 3,0 km             |

Sistemas de Telecomunicações

Acesso no Lacete Local

# HDSL – High-speed Digital Subscriber Line

## Princípio de operação

## Transmissão em múltiplos pares

- fluxo total de bits em cada sentido é distribuído por cada um dos pares de cobre
- a comunicação é bidirecional em cada par
- reduz-se assim a banda ocupada em cada par



Sistema básico de transmissão HDSL sobre 2 pares

# HDSL – High-speed Digital Subscriber Line

## Princípio de operação

#### Codificação de linha

− codificação multinível 2B1Q

#### Isolamento dos sentidos de transmissão

– cancelamento de eco adaptativo efetuado em cada par

## tecnologias já utilizadas na RDIS

## Interferências entre pares da mesma ligação

- NEXT significativo nas duas extremidades
- pode igualmente ser compensado por cancelamento de eco adaptativo

#### Interferências entre pares de ligações diferentes

- NEXT significativo nas duas extremidades
- não pode ser compensado por cancelamento de eco
- limita o alcance em sistemas HDSL

Sistemas de Telecomunicações

Acesso no Lacete Local

# HDSL – High-speed Digital Subscriber Line

## Princípio de operação

## Ocupação espetral

- espectro 2B1Q relativamente eficiente bastante mais compacto do que HDB3

- ocupação diminui com o aumento do número de pares



Banda ocupada por HDSL (2 pares) em comparação com sistema G.703 de 2 Mbit/s

# SHDSL – Single-pair High-speed Digital Subscriber Line

## Características gerais

Objetivo geral da tecnologia SHDSL substitui progressivamente os sistemas HDSL

- acesso por um único par de cobre existente no lacete local
- melhoria das técnicas utilizadas em HDSL no sentido de permitir maior alcance
- suporte de modos circuito, ATM e pacote

multi-service

débito configurável de acordo com os requisitos do utilizador

multi-rate

- aumenta o alcance para débitos mais baixos
- permite custos mais baixos para o utilizador
- possibilidade de utilizar dois pares ou repetidores para aumentar o alcance

| Débito (*)   | Alcance (d=0,5 mm) |
|--------------|--------------------|
| 2 320 kbit/s | 3,4 km             |
| 192 kbit/s   | 9,0 km             |

(\*) definida opção sobre 2 pares com o dobro do débito

Sistemas de Telecomunicações

Acesso no Lacete Local

# SHDSL – Single-pair High-speed Digital Subscriber Line

## Características gerais

## Canais suportados

- modo circuito TDM ( $p \times 64$  kbit/s), modo ATM e modo pacote
- várias combinações de modos de transporte e serviços
- possibilidade de partilha de banda entre modos



Combinações de modos de transporte e serviços (exemplos)

Sistemas de Telecomunicações

Acesso no Lacete Local

# SHDSL - Single-pair High-speed Digital Subscriber Line

## Princípio de operação

#### Modulação

- 8-ASK com codificação Trellis (conhecida pelo acrónimo TC PAM-8)
- débito ajustável entre 192 e 2320 kbit/s em saltos de 8 kbit/s
- espectro compacto compatível com outras tecnologias DSL



Espectro de SHDSL (exemplo a 768 kbit/s)

Sistemas de Telecomunicações

Acesso no Lacete Local

# ADSL – Asymmetric Digital Subscriber Line

## Características gerais

## Objetivo geral da tecnologia ADSL

- utiliza a linha telefónica existente: um único par
- acrescenta um modem "sempre ligado" para serviços multimédia
- suporta o transporte de dados em modo circuito ( $p \times 32$  kbit/s) e em modo ATM
- cobertura sem repetidores nem seleção de pares, para a maioria de assinantes

## Canais suportados

- um canal duplex para telefonia ou RDIS
- um canal ascendente de média velocidade
- um canal descendente de alta velocidade

transmissão assimétrica

| Canal ADSL      | Capacidade      | Alcance   |
|-----------------|-----------------|-----------|
| Telefonia       | Analógico       | 2 - 6 km  |
| RDIS            | 160 kbit/s      |           |
| Ascendente (A)  | 16 - 800 kbit/s | (d=0,5mm) |
| Descendente (D) | 1,5 - 9 Mbit/s  |           |

| Siste   | emas correntes              | Débito                           |  |  |
|---------|-----------------------------|----------------------------------|--|--|
| G.992.1 | ADSL Full-rate              | A 0,640 Mbit/s<br>D 6,144 Mbit/s |  |  |
| G.992.2 | ADSL Lite<br>(splitterless) | A 0,512 Mbit/s<br>D 1,536 Mbit/s |  |  |

32

# ADSL – Asymmetric Digital Subscriber Line

## Princípio de operação

#### Tecnologia de modulação → DMT (Discrete Multi-Tone)

- maximiza o débito de transmissão de acordo com as características da linha
- opera de forma adaptativa

#### Isolamento dos sentidos de transmissão

- FDM
- cancelamento de eco

#### Interferências

- FEXT no canal descendente limita o alcance
- problema de NEXT com acessos RDIS e HDSL



#### Controlo de erros

Princípio de operação

- utiliza técnicas de entrelaçamento de dados e correção de erros (FEC)

Sistemas de Telecomunicações

Acesso no Lacete Local

# ADSL – Asymmetric Digital Subscriber Line



80

138

ocorre FEXT numa banda extensa

ocorre NEXT nas baixas frequências

• permite maior capacidade

limita a capacidade

(b) acesso ADSL + RDIS ADSL baseado em cancelamento de eco (CE)

276

Sistemas de Telecomunicações

Acesso no Lacete Local

1 104

(ou 552)

f(kHz)

# ADSL – Asymmetric Digital Subscriber Line

## Princípio de operação

#### Modulação DMT - Discrete Multi-Tone

- a banda entre 0 e 1,1 MHz é dividida em 256 canais (4,3125 kHz de banda cada)
- em cada intervalo de 250 μs, os bits a transmitir são segmentados pelos 256 canais
- em cada canal os bits são transmitidos em sub-portadoras moduladas em QAM
- no recetor as sub-portadoras são recebidas e os bits recuperados e agregados



Sistemas de Telecomunicações

Acesso no Lacete Local

# ADSL – Asymmetric Digital Subscriber Line

## Princípio de operação

## Modulação DMT - Discrete Multi-Tone

- modulação QAM é dinamicamente adaptada à relação S/N em cada canal
- constelação suporta entre 2 e 15 bits (no limite, a portadora é suprimida)
- débito total sofre incrementos / decrementos de 32 kbit/s (granularidade)
- aproxima-se o sistema da capacidade teórica do canal



Capacidade adaptativa da modulação DMT às características do canal

# ADSL – Asymmetric Digital Subscriber Line

## Princípio de operação



Sistemas de Telecomunicações

Acesso no Lacete Local

# ADSL – Asymmetric Digital Subscriber Line



Alternativas simplificadas da instalação ADSL no assinante

# ADSL – Asymmetric Digital Subscriber Line

## Princípio de operação



Diagrama-blocos da instalação ADSL na central

Sistemas de Telecomunicações

Acesso no Lacete Local

## ADSL2 / ADSL2+

## Características gerais da tecnologia ADSL2

#### Débito versus alcance

- aumento do débito em linhas curtas (<1,5 km)
  - mínimo de 800 kbit/s + 8 Mbit/s descendente
  - tipicamente 1 Mbit/s ascendente + 12 Mbit/s descendente
- aumento do débito em linhas longas (ex:  $200 \rightarrow 250 \text{ kbit/s}$  @ 6 km)



Alcance de ADSL2 (débito descendente)

## Evolução da tecnologia ADSL2 em relação a ADSL

#### Maior débito em função do alcance

- maior eficiência de modulação
  - 8-15 bits por portadora com codificação Trellis
  - modo de 1 bit por portadora em situações de S/N baixo (linhas longas)
- overhead programável de 4-32 kbit/s (ADSL → overhead fixo de 32 kbit/s)
- codificação FEC mais eficiente → proteção adaptável conforme o nível de S/N
- inicialização otimizada → maximiza os bits por sub-portadora
- reconfiguração dinâmica melhorada
  - realocação de bits entre sub-portadoras
  - controlo de amplitude das sub-portadoras
  - reconfiguração do débito

- adapta-se a variações da linha
- essencial se for usado o modo de inicialização rápida

Sistemas de Telecomunicações

Acesso no Lacete Local

# ADSL2 / ADSL2+

## Evolução da tecnologia ADSL2 em relação a ADSL

## Melhoria do diagnóstico da linha

- medição de parâmetros nas duas extremidades
- disponibiliza a atenuação, ruído, interferências

## Modo de inicialização rápida

reduz inicialização de mais de 10 segundos para menos de 3 segundos

## Modos de baixa potência

reduz a potência em modos de stand-by/adormecido

## Aumento do débito ascendente (opções)

- utilização da banda de voz para dados (modo totalmente digital)

"naked" DSL

- aumenta em 256 kbit/s o débito ascendente
- − separação das bandas ascendente/descendente passa de 138 para 276 kHz
  - eleva o débito ascendente de 1 para 3,5 Mbit/s
- alternativas relevantes para aplicações empresariais

40

Sistemas de Telecomunicações Acesso no Lacete Local

42

## Evolução da tecnologia ADSL2 em relação a ADSL

#### Capacidade multicanal

- possibilidade de definir até 4 canais com diferentes qualidade de serviço
- aplicações de voz → canais com menor proteção contra erros/ menor latência
- aplicações de dados → canais com maior proteção contra erros/ maior latência

#### Suporte multisserviço

- disponibiliza canais de 64 kbit/s para aplicações de circuitos
- suporta a transferência de células ATM
- permite o transporte direto de serviços baseados em pacotes (ex: Ethernet)

#### Agregação de linhas

- pode operar com dois (ou mais) pares simétricos
- multiplica os débitos disponibilizados

Sistemas de Telecomunicações

Acesso no Lacete Local

## ADSL2 / ADSL2+

## Características gerais da tecnologia ADSL2+

## Aumento da capacidade

- duplica a banda do canal descendente
- aumenta significativamente o débito descendente em linhas curtas





espetral de ADSL2+ Alcance de ADSL2 e A

Sistemas de Telecomunicações

Acesso no Lacete Local

# VDSL – Very high-speed Digital Subscriber Line

## Características gerais

#### Objetivo geral da tecnologia VDSL

- permite débitos muito altos num único par, sobretudo em linhas curtas
- solução adequada para configurações FTTC e FTTB
- modos de operação
  - assimétrico → expande as aplicações de ADSL
  - simétrico → expande as aplicações de SHDSL
- versões ratificadas pela UIT
  - versão inicial  $\rightarrow$  VDSL G.993.1 (2004)

pouco tempo de vida útil

• versão atual  $\rightarrow$  VDSL2 G.993.2 (2005)

#### Exemplos de configurações de VDSL2

| Modo        | Débito ascendente | Débito descendente | Alcance |
|-------------|-------------------|--------------------|---------|
| Assimétrico | 30 Mbit/s         | 55 Mbit/s          | 500 m   |
| Simétrico   | 100 Mbit/s        | 100 Mbit/s         | 300 m   |

Sistemas de Telecomunicações

Acesso no Lacete Local

# VDSL – Very high-speed Digital Subscriber Line

## Características gerais

## Ocupação espetral

- suporta o acesso analógico telefónico (POTS) ou RDIS como em ADSL
- aumento significativo da banda para 12 MHz (VDSL) / 30 MHz (VDSL2)



Ocupação espetral de VDSL em comparação com ADSL

# *VDSL* – *Very high-speed Digital Subscriber Line*

## Características gerais

#### Débito versus alcance



Sistemas de Telecomunicações

Acesso no Lacete Local

# VDSL – Very high-speed Digital Subscriber Line

## Características gerais da tecnologia VDSL2

#### Funcionalidades baseadas em ADSL2+

- modulação DMT
- disponibiliza diversos perfis de qualidade de serviço
- suporta os modos circuito TDM, ATM e pacote
- possibilita a agregação de linhas para aumento da capacidade

#### **Perfis**

- definidos múltiplos perfis em termos de potência transmitida e débitos suportados
- modems devem suportar pelo menos um perfil

## Compatibilidade com ADSL

- modems VDSL2 retro compatíveis com ADSL
- permite equipar o DSLAM

## Utilizadores de serviços baseados em DSL



Diferentes tecnologias DSL e suas aplicações

Sistemas de Telecomunicações

Acesso no Lacete Local

# Aplicações do acesso DSL

## Tecnologias de transporte

Modo circuito ←

utilizado isoladamente apenas com HDSL/SHDSL

- orientado a canais de 64 kbit/s
- adaptado a sistemas legados

Modo ATM ←

opção muito utilizada nos primeiros sistemas

- adequado a ambientes flexíveis multisserviços de banda estreita e banda larga
- capaz de disponibilizar qualidade de serviço
- compatível com variação dinâmica do débito de acesso

Modo pacote <

opção atual da maioria dos operadores

- suporte direto de acessos Ethernet
- em linha com a convergência para redes totalmente IP

## Configurações de acesso de utilizador



Acesso de um utilizador individual (ADSL)



Sistemas de Telecomunicações

Acesso no Lacete Local

# Aplicações do acesso DSL

## Configurações de acesso de utilizador



Sistemas de Telecomunicações

Acesso no Lacete Local

# Aplicações do acesso DSL

## Configurações de acesso de utilizador



Acesso de banda larga (VDSL)

Sistemas de Telecomunicações

Acesso no Lacete Local

# Aplicações do acesso DSL

#### Rede de acesso



Rede de acesso DSL com interligação a outras redes

