第一次作业命题逻辑 & 谓词逻辑

1 选择填空

1.1 下列公式中哪些是重言式?

A)
$$(\neg P \land Q) \rightarrow (Q \rightarrow \neg R)$$

B)
$$P \rightarrow (Q \rightarrow Q)$$

C)
$$(P \wedge Q) \rightarrow P$$

D)
$$P \rightarrow (P \lor Q)$$

1.2 判断下列公式的类型:

(1)
$$q \vee \neg((\neg p \vee q) \wedge p)$$

(2)
$$(p \lor \neg p) \to ((q \land \neg q) \land r)$$

(3)
$$(p \rightarrow q) \land \neg p$$

1.3 设全集域 D 是整数集合,确定下列命题的真值:

(1)
$$\forall x \exists y (xy = y)$$
 ()

(2)
$$\exists x \forall y (x + y = y)$$
 ()

(3)
$$\exists x \forall y (x + y = x)$$
 ()

$$(4) \ \forall x \exists y (y = 2x) \quad ()$$

1.4 给定解释 I 如下:

(1) 个体域 D_I 为整数集合;

(2)
$$a_0 = 0, a_1 = 1$$
;

(3)
$$f(x,y) = x - y, g(x,y) = x + y;$$

(4)
$$F(x,y)$$
 为 $x < y$ 。

和赋值
$$\sigma$$
: $\sigma(x) = 5$, $\sigma(y) = -2$.

给定下面各公式:

- (1) $F(f(x, a_1), g(x, a_1));$
- (2) $\forall x \forall y F(f(x,y), g(x,y));$
- (3) $\forall x \exists y F(f(x,y), g(x,y));$

(4)
$$\forall y (F(y, a_0) \rightarrow \forall x (\neg F(f(x, y), g(x, y))));$$

(5)
$$\forall y \forall x (F(x,y) \rightarrow F(f(x,y),x));$$

(6)
$$F(f(x,y),g(x,y))$$
;

(7)
$$\forall x (F(x, a_0) \to F(f(x, y), g(x, y)))$$
.

2 简答

2.1 设 pq 的真值为 0; rs 的真值为 1, 求下列各命题公式的真值。

- (1) $p \lor (q \land r)$
- (2) $(p \land (q \lor r)) \rightarrow ((p \lor q) \land (r \land s))$
- (3) $\neg (p \lor (q \to (r \land \neg p))) \to (r \lor \neg s)$

2.2 求下列命题公式的主析取范式、主合取范式、成真赋值、成假赋值。

(1)
$$(p \lor (q \land r)) \longrightarrow (p \land q \land r)$$

- (2) $(\neg p \rightarrow q) \rightarrow (\neg q \lor p)$
- (3) $\neg (p \rightarrow q) \land q \land r$

2.3 在一阶逻辑中将下面命题符号化,并且要求只使用全称量词。

- (1) 没有人长着绿色头发
- (2) 有的北京人没去过香山

2.4

(1) 试给出解释 I_1 , 使得

$$\forall x(F(x) \to G(x)) \quad \exists \quad \forall x(F(x) \land G(x))$$

在 I_1 , 下具有不同的真值。

(2) 试给出解释 I_2 , 使得

$$\exists x (F(x) \land G(x)) \quad \exists x (F(x) \rightarrow G(x))$$

在 I_2 , 下具有不同的真值。

2.5 给出下列各式的前束范式

- (1) $\forall x F(x) \lor \exists y G(x,y)$
- (2) $\exists x (F(x) \land \forall y G(x, y, z)) \rightarrow \exists z H(x, y, z)$
- (3) $\neg \forall x (F(x) \to G(x))$
- (4) $\exists x F(x,y) \land \forall x (G(x) \to H(x,y))$

- 2.6 请用等值演算解决 1.2 的问题,如果式子为可满足式,请给出成真赋值
- 2.7 用主析取范式判断下列公式的类型,并对可满足式求成真赋值:
 - (1) $p \rightarrow ((p \land q) \lor (p \land \neg q))$
 - (2) $(p \lor q) \to (q \to p)$
 - (3) $\neg (p \rightarrow r) \land r \land q$
- 2.8 用真值表求下列公式的主合取范式:
 - (1) $(p \wedge q) \vee r$
 - (2) $(p \rightarrow q) \land (q \rightarrow r)$
- 3 证明
- 3.1 构造下面推理的证明。
 - (1) 前提: $p \to (q \to s), q, p \lor \neg r$.
 - 结论: $r \rightarrow s$.
 - (2) 前提: $p \rightarrow q$.

结论: $p \rightarrow (p \land q)$.

(3) 前提: $q \to p, q \leftrightarrow s, s \leftrightarrow t, t \land r$.

结论: $p \wedge q \wedge s \wedge r$.

- 3.2 用等值演算法证明下列等值式:
 - (1) $(p \lor q) \land \neg (p \land q) \Leftrightarrow \neg (p \leftrightarrow q)$, 要求从左边开始演算
 - (2) $q \to (p \to r) \Leftrightarrow (p \land q) \to r$, 要求从右边开始演算

- 3.3 某公司要从 A、B、C、D、E 选派一些人去参观世博会,必须满足如下条件:
 - (1) 若 A 去则 B 肯定不能去;
 - (2) 若 A 与 C 只能去一个;
 - (3) C 与 D 两人同去或同不去;
 - (4) 若 B 去则 C 肯定去;
 - (5) 若 E 去则 B, C, D 肯定有一人陪同。

证明:是否存在满足以上条件的人选?若存在则请给出全部方案。