1. Resposta no Domínio do Tempo

- Pólos, Zeros e Resposta do Sistema: Definições
 - Resposta do sistema: soma da **resposta forçada** + **resposta natural**
 - 1. Resposta forçada é também chamada de resposta estacionária (ou solução particular);
 - 2. Resposta natural é também chamada de solução homogênea.
 - Pólos de uma Função de Transferência:

Os valores da variável, s, da transformada de Laplace que fazem com a FT se torne infinita.

• Zeros de uma Função de Tranferência:

Os valores da variável, s, da transformada de Laplace que fazem com a FT se torne igual a zero.

1. Resposta no Domínio do Tempo

- Pólos, Zeros e Resposta do Sistema de Primeira Ordem
 - Exemplo

1. Resposta no Domínio do Tempo

Pólos, Zeros e Resposta do Sistema de Primeira Ordem

1. Resposta no Domínio do Tempo

Sistemas de Primeira Ordem

Considere os sistema cuja FT é dada por:

$$G(s) = \frac{a}{s+a}$$

Se a entrada for um degrau unitário, ou seja: R(s)=1/s,

$$C(S) = R(s)G(s) = \frac{a}{s(s+a)}$$

Aplicando a transformada inversa de Laplace, obtém-se que:

$$c(t) = c_f(t) + c_n(t) = 1 - e^{-at}$$
 em que $c_f(t) = 1$ e $c_n(t) = -e^{-at}$

1. Resposta no Domínio do Tempo

Sistemas de Primeira Ordem

Três especificações de desempenho da resposta transitória:

- 1. Denomina-se 1/a de constante de tempo da resposta.
- 2. O tempo de subida (Tr) é o tempo necessário para o sistema vá de 0.1 a 0.9 do valor final.
- 3. Tempo de Estabilização (Ts) é o tempo necessário para que o sistema alcance 2% do valor final.

1. Resposta no Domínio do Tempo

- Sistemas de Segunda Ordem: Ordem Geral
 - Formulação geral

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

onde:

- $\triangleright \omega_n$ é freqüência de oscilação do sistema sem amortecimento.
- $\triangleright \zeta$ é o coeficiente de amortecimento do sistema.

1. Resposta no Domínio do Tempo

- ☞ Sistemas de Segunda Ordem: Ordem Geral
 - Formulação geral

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

1. Resposta no Domínio do Tempo

- Sistemas de Segunda Ordem: Ordem Geral
 - Formulação geral

Prof. Kurios Iuri

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

* Classificação quanto ao coeficiente de amortecimento ζ:

Norman S. Nise

1. Resposta no Domínio do Tempo

☞ Sistemas de Segunda Ordem: Ordem Geral

Pólos Resposta ao degrau plano s iω c(t)Х $0 < \zeta < 1$ $-\zeta\omega_n$ Subamortecido Pólos Resposta ao degrau jω c(t)plano s $\zeta = 1$ Criticamente amortecido

1. Resposta no Domínio do Tempo

F Sistemas de Segunda Ordem: Ordem Geral

Prof. Kurios Iuri Norman S. Nise

1. Resposta no Domínio do Tempo

☞ Sistemas de Segunda Ordem: Ordem Geral

SUPERAMORTECIDO

11

Prof. Kurios Iuri

1. Resposta no Domínio do Tempo

☞ Sistemas de Segunda Ordem: Ordem Geral

SUPERAMORTECIDO

Prof. Kurios Iuri

1. Resposta no Domínio do Tempo

☞ Sistemas de Segunda Ordem: Ordem Geral

SUPERAMORTECIDO

1. Resposta no Domínio do Tempo

☞ Sistemas de Segunda Ordem: Ordem Geral

SUPERAMORTECIDO

1. Resposta no Domínio do Tempo

☞ Sistemas de Segunda Ordem: Ordem Geral

CRITICAMENTE

1. Resposta no Domínio do Tempo

☞ Sistemas de Segunda Ordem: Ordem Geral

SUBAMORTECIDO

1. Resposta no Domínio do Tempo

☞ Sistemas de Segunda Ordem: Ordem Geral

SUBAMORTECIDO

17

Prof. Kurios Iuri

1. Resposta no Domínio do Tempo

☞ Sistemas de Segunda Ordem: Ordem Geral

SUBAMORTECIDO

1. Resposta no Domínio do Tempo

☞ Sistemas de Segunda Ordem: Ordem Geral

SUBAMORTECIDO

Prof. Kurios Iuri

1. Resposta no Domínio do Tempo

☞ Sistemas de Segunda Ordem: Ordem Geral

SUBAMORTECIDO

1. Resposta no Domínio do Tempo

☞ Sistemas de Segunda Ordem: Ordem Geral

SUBAMORTECIDO

1. Resposta no Domínio do Tempo

☞ Sistemas de Segunda Ordem: Ordem Geral

SUBAMORTECIDO

1. Resposta no Domínio do Tempo

☞ Sistemas de Segunda Ordem: Ordem Geral

SUBAMORTECIDO

1. Resposta no Domínio do Tempo

☞ Sistemas de Segunda Ordem: Ordem Geral

SEM AMORTECIMENTO

1. Resposta no Domínio do Tempo

Sistemas de Segunda Ordem: Ordem Geral

Especificações do sistema de segunda ordem:

- 1. Instante de pico (Tp): tempo necessário para alcançar o primeiro valor de pico;
- 2. Sobre-sinal (%UP): percentual de ultrapassagem do valor de regime;
- 3. Tempo de estabilização (Ts): +/- 2% do valor estacionário; e
- 4. Tempo de subida (Tr): tempo necessário para que a saída vá de 0.1 a 0.9 do valor de regime permanente.

1. Resposta no Domínio do Tempo

- Sistemas de Segunda Ordem: Ordem Geral
 - ➤ Cálculo de Tp

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

➤ Cálculo de %UP

O sobre-sinal percentual pode ser dado por:

$$%UP = \frac{c_{\text{max}} - c_{\text{final}}}{c_{\text{final}}} \times 100$$

Ou ainda,

$$\%UP = e^{-(\xi\pi/\sqrt{1-\xi^2})} \times 100$$

1. Resposta no Domínio do Tempo

- ☞ Sistemas de Segunda Ordem: Ordem Geral
 - ➤ Cálculo de ζ:

Utilizando-se a equação de %UP pode-se determinar ζ como:

$$\xi = \frac{-\ln(\%UP/100)}{\sqrt{\pi^2 + \ln^2(\%UP/100)}}$$

Valores utilizados nos exercícios/avaliações:

$$\zeta = 0.5 \Rightarrow \%UP = 16.31\% \Rightarrow \theta = 60^{\circ}$$

 $\zeta = 0.7 \Rightarrow \%UP = 5\% \Rightarrow \theta = 45^{\circ}$

➤ Cálculo de Ts (pólos complexos):

$$T_s = \frac{4}{\xi \omega_n}$$

7. Erros de Estado Estacionário

- **Definição**
 - O erro de estado estacionário é a diferença entre a entrada e a saída para uma entrada teste quando:

$$t \rightarrow \infty$$

Entradas de Teste

Degrau unitário Posição constante

Rampa unitária Velocidade constante

Parábola

Aceleração constante

7. Erros de Estado Estacionário

- Frro Estacionário em Termos de G(s)
 - Admita o sistema de controle com realimentação unitária dado por

• Escrevendo E(s) em termos de R(s) e C(s)

$$E(s) = R(s) - C(s)$$
 mas como $C(s) = E(s)G(s)$

Então: $E(s) = \frac{R(s)}{1 + G(s)}$

• O valor final de E(s) é dado por:

$$e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

7. Erros de Estado Estacionário

- Frro Estacionário em Termos de G(s)
 - Entrada em DEGRAU

$$e(\infty) = e_{\deg rau}(\infty) = \lim_{s \to 0} \frac{s(1/s)}{1 + G(s)} = \frac{1}{1 + \lim_{s \to 0} G(s)}$$

• Condição de Erro Nulo

$$\lim_{s\to 0} G(s) = \infty$$

Prof. Kurios Iuri Norman S. Nise

7. Erros de Estado Estacionário

- Frro Estacionário em Termos de G(s)
 - Entrada em RAMPA

$$e(\infty) = e_{rampa}(\infty) = \lim_{s \to 0} \frac{s(1/s^2)}{1 + G(s)} = \frac{1}{\lim_{s \to 0} sG(s)}$$

• Condição de Erro Nulo

$$\lim_{s\to 0} sG(s) = \infty$$

7. Erros de Estado Estacionário

- Frro Estacionário em Termos de G(s)
 - Entrada em PARÁBOLA

$$e(\infty) = e_{rampa}(\infty) = \lim_{s \to 0} \frac{s(1/s^3)}{1 + G(s)} = \frac{1}{\lim_{s \to 0} s^2 G(s)}$$

• Condição de Erro Nulo

$$\lim_{s\to 0} s^2 G(s) = \infty$$

Prof. Kurios Iuri Norman S. Nise

7. Erros de Estado Estacionário

- Frro Estacionário em Termos de G(s)
- Exemplo: Determinar os erros de estado estacionário para as entradas 5u(t), $5tu(t) e^{2}.5t^{2}u(t) de$:

Solução:

$$e_{\deg rau}(\infty) = \frac{5}{1 + \lim_{s \to 0} G(s)} = \frac{5}{1 + 20} = \frac{5}{21}$$

$$e_{rampa}(\infty) = \frac{5}{\lim_{s \to 0} sG(s)} = \frac{5}{0} = \infty$$

$$e_{parábola}(\infty) = \frac{5}{\lim_{s \to 0} s^2 G(s)} = \frac{5}{0} = \infty$$
 $R(s) = \frac{5}{s^2}$ $R(s) = \frac{5}{s^3}$

A transformada de Laplace de 5tu(t) e 2.5t²u(t) são respectivamente:

$$R(s) = \frac{5}{s^2}$$
 e $R(s) = \frac{5}{s^3}$

7. Erros de Estado Estacionário

- © Constante de Erro Estático
- Constante de Posição Kp

$$K_p = \lim_{s \to 0} G(s)$$

Constante de Velocidade Kv

$$K_{v} = \lim_{s \to 0} sG(s)$$

• Constante de Aceleração Ka

$$K_a = \lim_{s \to 0} s^2 G(s)$$

➤ Os termos em limite no denominador dos especificadores de erro estáticos, são denominados de constante de erro.

Norman S. Nise

7. Erros de Estado Estacionário

Tipo de Sistema

Entrada	Expressão do erro estacionário	Tipo 0		Tipo 1		Tipo 2	
		Constante de erro estacionário	Erro	Constante de erro estacionário		Constante de erro estacionário	
Degrau, u(t)	$\frac{1}{1+K_p}$	$K_p =$ Constante	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Rampa, tu(t)	$\frac{1}{K_{\nu}}$	$K_v = 0$	∞	$K_v =$ Constante	$\frac{1}{K_v}$	$K_v = \infty$	0
Parábola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	∞	$K_a = 0$	∞	$K_a =$ Constante	$\frac{1}{K_a}$