		西安	交通	大学	考试	题		成	绩	
课	程_	计算	方法 A					/•/		
系	别 _			,	考证	式 日 其	月 200	03 年 1	1月7	目
专业现	I号 _									
姓	名									
题号			三	四	Ti.	六	七	八	九	 -
得分						•		, •	/ 5	,
一. 填空(10 分) (1) 采用选主元法解线性代数方程组的原因是										
-		5法中,i								
		∆,则面						, , .	,	
		2知函数 件的不高								

解:		
三.	(7 分)数值积分公式 $\int_a^b f(x)dx \approx \sum_{i=0}^n A_i f(x_i)$ 的代数精度最高是多少? 可能更高。	试证不
四.	(10分)求函数 $y = \ln(x)$ 在区间 $[1,2]$ 上的最优一致逼近一次多项式。	

五. (10分)已知线性代数方程组的系数矩阵为

$$A = \begin{pmatrix} 2 & a & 0 \\ b & 2 & b \\ 0 & a & 1 \end{pmatrix}$$

试分别确定 a 和 b 的一个取值范围,使

- (1) Jacobi 迭代法收敛;
- (2) Gauss-Seidel 迭代法收敛。

解:

六. (10分) 求解常微分方程初值问题的后退欧拉公式为

$$y_{i+1} = y_i + hf(x_{i+1}, y_{i+1}), \quad i = 0, 1, 2, ...$$

绝对稳定?

解:

Ī	
	七.(10 分)确定数值微分公式 $f'(h) = a'f(0) + b[f(2h) - f(h)]$ 的系数,并导出截断误差的简单表达式。解:
	八. $(10\ eta)$ 对线性代数方程组 $Ax = b$,设其准确解为 x ,当 A 发生扰动 δA 时, x 会随之发生扰动 δx ,试证明: $\frac{\ \delta x\ }{\ x + \delta x\ } \leq Cond(A) \frac{\ \delta A\ }{\ A\ }$ 证明:

1 1	(10分)用牛顿迭代法求方程组
74.	$\begin{cases} x_1 + 2x_2 - 3 = 0 \\ 2x_1^2 + x_2^2 - 5 = 0 \end{cases}$
	在 $x_1 = -1$, $x_2 = 2$ 附近的解。只需计算出第一步迭代解即可(精确到小数点
解:	后两位)。
	5/5