Funciones de Activación y Redes Neuronales

Andrés Martínez Vargas Instituto Tecnológico de Costa Rica martinezandres@estudiantec.cr

Abstract—Este documento presenta una revisión integral de las funciones de activación utilizadas en redes neuronales, así como conceptos clave relacionados con la arquitectura y evolución de las redes neuronales artificiales. Se detallan funciones como ReLU, Sigmoide, Softmax y otras, incluyendo su justificación matemática, así como una introducción al perceptrón, redes multicapa y problemáticas como el problema XOR y la maldición de la dimensionalidad.

I. RESPUESTAS DE QUIZ

A. Fórmulas de la Normalización y la Estandarización

Normalización (Min-Max Scaling):

$$x' = \frac{x - x_{\min}}{x_{\max} - x_{\min}} \tag{1}$$

Estandarización (Z-Score Scaling):

$$x' = \frac{x - \mu}{\sigma} \tag{2}$$

Donde μ es la media de los datos y σ la desviación estándar.

B. La derivada de la función sigmoide

La función sigmoide es:

$$\sigma(x) = \frac{1}{1 + e^{-x}}\tag{3}$$

Su derivada es:

$$\sigma'(x) = \sigma(x)(1 - \sigma(x)) \tag{4}$$

C. Fórmulas para calcular el Accuracy, Recall, Precision y F1-Score

- Accuracy: $\frac{TP + TN}{TP + TN + FP + FN}$
- Recall (Sensibilidad): $\frac{TF}{TP + FN}$
- Precision: $\frac{TP}{TP + FP}$ F1-Score: $2 \cdot \frac{Precision \cdot Recall}{Precision}$

• F1-Score: $2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$

Donde: TP = Verdaderos Positivos, TN = Verdaderos Negativos, FP = Falsos Positivos, FN = Falsos Negativos.

- D. Desarrollo de la log-verosimilitud en 3 pasos
 - 1) Se parte de la función de verosimilitud para clasificación binaria:

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} \hat{y}_{i}^{y_{i}} (1 - \hat{y}_{i})^{1 - y_{i}}$$
 (5)

2) Se aplica el logaritmo para obtener la log-verosimilitud:

$$\log \mathcal{L}(\theta) = \sum_{i=1}^{n} y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)$$
 (6)

 Se cambia el signo negativo para obtener la función de pérdida logarítmica o entropía cruzada:

$$L = -\sum_{i=1}^{n} \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right]$$
 (7)

II. FUNCIONES DE ACTIVACIÓN

Las funciones de activación son fundamentales para introducir no linealidad en una red neuronal, permitiendo la aproximación de funciones complejas.

A. Función Lineal

$$f(x) = x \tag{8}$$

Es diferenciable en todo punto, pero no introduce no linealidad, por lo que no es útil en redes profundas.

Fig. 1. Función de Activación Lineal

B. Función Sigmoide

$$f(x) = \frac{1}{1 + e^{-x}} \tag{9}$$

Limita el valor de salida entre 0 y 1, útil en modelos probabilísticos, pero sufre de *vanishing gradient*.

Fig. 2. Función Sigmoide

C. Tangente Hiperbólica

$$f(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 (10)

Similar a la sigmoide, pero centrada en cero. Puede sufrir también de *vanishing gradient*.

Fig. 3. Tangente Hiperbólica

D. ReLU

$$f(x) = \max(0, x) \tag{11}$$

Simple y eficiente. Tiene el problema del "moribundo ReLU" si los gradientes son cero para valores negativos.

E. Leaky ReLU

$$f(x) = \begin{cases} x, & \text{si } x > 0\\ \alpha x, & \text{si } x \le 0 \end{cases}$$
 (12)

Con α pequeño, típicamente 0.01, permite gradientes para valores negativos.

Fig. 4. Función ReLU

Fig. 5. Función Leaky ReLU

F. Parametric ReLU (PReLU)

$$f(x) = \begin{cases} w, & x < 0 \\ x, & x \ge 0 \end{cases} \tag{13}$$

Similar a Leaky ReLU pero con w como parámetro entrenable.

G. Softmax

$$Softmax(x_i) = \frac{e^{x_i}}{\sum_{i=1}^n e^{x_j}}$$
 (14)

Convierte vectores en distribuciones de probabilidad. Utilizada comúnmente en la capa de salida para clasificación múltiple.

H. ¿Por qué e^x ?

La exponencial e^x es continua, suave y nunca negativa, lo que la hace útil en funciones como la sigmoide y softmax por su capacidad de resaltar diferencias relativas.

I. Cross-Entropy Loss

$$L = -\sum_{i=1}^{n} y_i \log(\hat{y}_i) \tag{15}$$

Función de pérdida común para clasificación. Mide la disimilitud entre las distribuciones verdadera y_i y predicha \hat{y}_i .

Fig. 6. Función Softmax

III. REDES NEURONALES

A. El Perceptrón

Propuesto por Frank Rosenblatt, el perceptrón es un modelo lineal binario:

$$y = f\left(\sum w_i x_i + b\right) \tag{16}$$

Fig. 7. Modelo de Perceptrón

B. Invierno de la IA

Periodo durante el cual se redujo el interés y financiamiento en IA debido a expectativas no cumplidas.

C. Predicción de Compuertas Lógicas

El perceptrón puede predecir compuertas AND, OR, pero no XOR.

D. Problema del XOR

No puede resolverse con modelos lineales. Requiere redes con múltiples capas.

E. Inspiración Biológica

Las redes neuronales se inspiran en la estructura del cerebro, con neuronas conectadas mediante sinapsis.

F. Función de Activación en Redes Neuronales

Introduce no linealidad, permite resolver problemas complejos.

Fig. 8. Problema del XOR

G. Perceptrón Multicapa (MLP)

Extiende el perceptrón añadiendo capas ocultas. Permite modelar relaciones no lineales.

Fig. 9. Arquitectura de un Perceptrón Multicapa (MLP)

H. Salida Independiente y Distribución

Cada salida puede representar una variable diferente. La distribución puede ser categórica (softmax) o continua (regresión).

I. Capa de Salida

La función de activación depende del tipo de tarea (clasificación binaria, múltiple o regresión).

J. Función de Costo

Función matemática que mide el error del modelo. Se minimiza durante el entrenamiento.

K. Maldición de la Dimensionalidad

A medida que aumentan las dimensiones, los datos se dispersan, dificultando el aprendizaje.

L. Comportamiento Jerárquico

Las redes profundas aprenden representaciones desde lo simple (bordes) a lo complejo (formas, conceptos).

Fig. 10. Ejemplo de Maldición de la Dimensionalidad

Fig. 11. Jerarquía de Representaciones en Redes Neuronales