Some ADS Claims

created by wth

RB tree and B tree

1. Ared-black tree with N internal nodes has height at most 2log(N+1)

Inverted File Index

- 1. Precision $\frac{T_p}{T_p + F_p}$ 2. Recall $\frac{T_p}{T_p + F_n}$

Leftist Heap and Skew Heap

- 1. Npl(NULL) = -1.
- 2. A leftist tree with r nodes on the right path must have at least 2^r-1 nodes.
- 3. It is an open problem to determine precisely the expected right path length of both leftist and skew heaps.
- 4. The only nodes whose heavy/light status can change are nodes that are initially on the right path.

Binomial Heap

1. Apriority queue of any sizecan be uniquely represented by a collection of binomial trees.

2.	find min	merge	insert	delete min
	O(1)	O(log N)	O(1)(amortize)	O(log N)

3. A binomial queue of N elements can be built by N successive insertions in O(N) time.

Backtracking

1. Tic-tac-toe: α - β pruning: whenboth techniques are combined. Inpractice, it limits the searching to only $O(\sqrt{N})$ nodes, where N is the size of the full game tree.

Divide and Conquer

1. Master Theorem for a specific situation: $T(N) = aT(N/b) + O(N^k log^p N)$

$$T(N) = egin{cases} O(N^{log_ba}), & ifa > b^k \ O(N^klog^{p+1}N), & ifa = b^k \ O(N^klog^pN), & ifa < b^k \end{cases}$$

Greedy

- 1. Greedy algorithm works only if the local optimum is equal to the global optimum.
- 2. Greedy algorithm works only if the local optimum is equal to the global optimum.
- 3. Consider any nonempty subproble S_k , and let a_m be an activity in S_k with the earliest finish time. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k .

NP

- 1. Decidability Could there exist, at least in principle, any definite method or process by which all mathematical questions could be decided?
- 2. Not all decidable problems are in NP. For example, consider the problem of determining whether a graph does not have a Hamiltonian cycle.
- 3. complexity class co-NP = the set of languages L such that $\overline{L} \in NP$. e.g. Hamiltonian cycle is not co-NP.

Approximation

- 1. $(1+\epsilon)-approximation$, if the algorithm is in polynomial time related to ϵ .
- 2. fullypolynomial-time approximation scheme (FPTAS): ϵ is not in the exponent of n.
- 3. Bin packing problem ratio

[next fit	first fit	best fit	first fit decreasing
2M-1	1.7M	1.7M	11M/9+6/9

- 4. Knapsack Problem: maximum profit or profit density: The approximation ratio is 2.
- 5. center selection problem: 2-approximation.
- 6. Unless P = NP, there is no r-approximation for center-selection problem for any r < 2.

Local Search

- 1. The state-flipping algorithm terminates at a stable configuration after at most $W=\sum |w_e|$ iterations.
- 2. Any local maximum in the state-flipping algorithm to maximize F(sum of good edge's absolute value) is a stable configuration.
- 3. It is still an open question whether this is a polynomial time algorithm.
- 4. Let (A, B) be a local optimal partition and let (A*, B*) be a global optimal partition. Then $w(A,B) \geq \frac{1}{2}w(A*,B*)$.
- 5. Only choose a node which, when flipped, increases the cut value by at least $\frac{2\epsilon}{|V|}w(A,B)$, then the algorithm return a cut that $(2+\epsilon)w(A,B) \geq w(A*,B*)$ terminates in $O(n/\epsilon \log W)$

Randomized Algorithm

1. online hiring Ftheprobability wehire the best qualified candidate for a given k:

$$\frac{k}{N}ln(\frac{k}{N}) \le Pr[S] \le \frac{k}{N}ln(\frac{k-1}{n-1})$$

- 2. Central splitter := the pivot that divides the set so that each side contains at least n/4
- 3. Modified Quicksort := always select a central splitter before recursions
- 4. The expected number of iterations needed until we find a central splitter is at most 2.
- 5. Type j : the subproblem S is of type j if $N(\frac{3}{4})^{j+1} \leq |S| \leq N(\frac{3}{4})^j$
- 6. There are at most $(\frac{4}{3})^{j+1}$ subproblems of type j.

Parallel

1. maxmum finding

partition	N^2	\sqrt{N}	log log N
T(N)	1	log~log~N	log~log~N
W(N)	N^2	N~log~log~N	N

2. (Monte Carlo) complexity is $O(1/n^c)$ for some positive co Theorem: The algorithm finds the maximum among n elements. With very high probability it runs in O(1) time and O(n) work. The probability of not finishing within this time and worknstant c.