ACTION POTENTIAL

OVERVIEW OF A NERVE IMPULSE

- 1. Resting potential neuron is not stimulated at threshold level
- 2. Action potential neuron responds to stimulus, sends "message" along axon
 - a. Depolarization
 - b. Repolarization
- ** Potential = difference in charge (measured in volts)

RESTING POTENTIAL

- Inactive neuron
- Inside cell membrane more K⁺ ions
- Outside cell membrane more Na⁺ ions
- Polarized cell membrane
 - Inside cell membrane negative charge
 - Outside cell membrane positive charge
- Cell membrane relatively impermeable to both

ions

WHY IS MEMBRANE POLARIZED AT REST?

- 1. Na⁺/K⁺ pump maintains ion distribution transports 3 Na⁺ out and 2 K⁺ in
- 2. K⁺ diffuses out faster membrane is more permeable
- 3. Na is attracted to cell because of its concentration gradient
- 4. Membrane is impermeable to large negatively charged ions

RESTING POTENTIAL

ACTION POTENTIAL = NERVE IMPULSE

- Occurs in excitable membranes neurons and muscle fibers
- Critical level must be reached ("threshold") before impulse is sent
 - Positive feedback mechanism
 - All-or-none response
- Lasts a few milliseconds
- 2 steps:
 - Depolarization
 - Repolarization

DEPOLARIZATION

- Stimulus causes adjacent Na⁺ ion channels to open along axon
 - \mathbb{I} Na⁺ ions rush into cell (high \rightarrow low concentration)
- Movement of Na⁺ ions reverses the charge of the membrane (depolarization):
 - Inside cell membrane positive charge
 - Outside cell membrane negative charge
- If threshold is reached, adjacent Na⁺ ion channels to open along axon

DEPOLARIZATION

Region of depolarization

(b)

REPOLARIZATION

- K⁺ ion channels open
- Restores polarization of cell membrane
 - Inside cell membrane negative charge
 - Outside cell membrane positive charge
- lon distribution is different than at resting potential can't send another impulse yet
 - Inside cell low K⁺, high Na⁺
 - Outside cell high K⁺, low Na⁺

REPOLARIZATION

Region of repolarization

(c)

AFTER REPOLARIZATION

- Na⁺/K⁺ pump corrects ion distribution
 - Inside cell high K⁺, low Na⁺
 - Outside cell low K⁺, high Na⁺
- Another impulse can now occur

ROLE OF MYELIN

- Myelin insulates the axon
- Action potential must "jump" from node to node
 - Saltatory conduction
- Action potential is <u>MUCH</u> faster than along an unmyelinated axon

FACTORS AFFECTING NERVE IMPULSE

- Local anesthetics block Na⁺ channels no Na⁺ movement = no AP
- Continuous cold and/or pressure blocks circulation (flow of nutrients and oxygen), so there is no energy for Na^{\dagger}/K^{\dagger} Pump = no AP