Foundations

고려대학교 (Korea Univ.)

사이버국방학과 · 정보보호대학원 (CIST) 보안성분석평가연구실 (Security Analysis and Evaluation Lab.)

김 승 주 (Seungjoo Kim)

www.kimlab.net

보안성분석평가연구실

김승주 교수 (skim71@korea.ac.kr)

로봇융합관306호

주요 경력:

- 1990.3~1999.2) 성균관대학교 공학 학사 석사 박사
- 1998.12~2004.2) KISA 암호기술팀장및 CC평가1팀장
- 2004.3~2011.2) 성균관대학교 정보통신공학부 부교수 2011.3~현재) 고려대학교 사이버국방학과 정보보호대학원 정교수

Founder of (사)HARU & SECUINSIDE

- 前) 육군사관학교 초빙교수
- 前) 선관위 DDoS 특별검사팀 자문위원
- 前) SBS 드라마'유령'및 영화'베를린'자문 / KBS '명정만리' 강연
- 現) 한국정보보호학회 이사
- 現) 대검찰청 디지털수사 자문위원
- 現) 개인정보분쟁조정위원회 위원
- '96: Convertible group signatures (AsiaCrypt)
- '97: Proxy signatures, revisited (ICICS): 670회이상인용
- '06: 국가정보원 암호학술논문공모전 우수상
- '07: 국가정보원장 국가사이버안전업무 유공자 표창
- '12.'16: 고려대학교 석탑강의상
- '13: Smart TV Security (Black Hat USA): 스마트TV 해킹(도청·도촬) 및 해적방송 송출 시연

Security Analysis and Evaluation Lab

www.KimLab.net / www.SecEng.net

연구분야

- Security Eng. for High-Assurance Trustworthy Systems
- High-Assurance Cryptography
- Security Testing (including End-to-End Provable Security, Formal Verification) and Security Evaluation (e.g. CMVP, CC, C&A, SSE-CMM)
- Usable Security

주요 R&D 성과

LG전자와 공동으로 국내 최초 스마트TV 보안 인증 획득 (2015년)

삼성전자와공동으로

국내 최초 프린터복합기보안 인증 획득 (2008년)

Definitions

Risk

Risk = Expected Asset Loss * Vulnerabilities * Threats

 ALE (Average Loss Expectancy) = probability of loss * total loss potential

Assets

- Software
- Hardware
- Data and Information
- Reputation
- Identification easy, valuation difficult
- Data, Information, Reputation difficult to measure

Assets

Discipline	Computer Security	Information Security	Information Assurance
Characteris-			
tics			
Dates (approx.)	Since the early 1960s	Since the 1980s	Since 1998
Subject of pro-	Computers	Information and informa-	Business as a whole
tection		tion systems	
Goals	Reliability	Confidentiality, Integrity,	Confidentiality, In-
		Availability	tegrity, Availability,
			Non-repudiation, Ac-
			countability, Possession,
			Utility, Authenticity, Au-
			ditability, Transparency,
			Cost-effectiveness, Effi-
			ciency
Type of informa-	Electronic	Primarily electronic	All types
tion			
Approach	Strictly technical	Domination of the technical	All-encompassing multi-
		approach, initial attempts	disciplinary systematic
		to consider soft aspects (e.g.	approach
		human factor, administra-	
		tion)	

Vulnerabilities

- Vulnerabilities = An error or a weakness in the design, implementation, or operation of a system.
 - Badly configured accounts
 - Programs with known flaws
 - Weak access control
 - Weak firewall configuration
 - Can be rated according to impact

Threats & Threat Agents

 Threats = Actions by adversaries who try to exploit vulnerabilities to damage assets

Threat Agent = An adversary that is motivated to exploit a system vulnerability and is capable of doing so

Security Countermeasures

- Security countermeasure is about protecting assets. This involves:
 - Prevention
 - Detection
 - Reaction (recover/restore assets)

Confidentiality

 Prevent unauthorized disclosure of information.

Confidentiality can be achieved through:

Integrity

 Prevent unauthorized modification of information.

Integrity can be achieved through:

Availability

- For Computer Systems this means that :
 - Services are accessible and useable (without undue Delay) whenever needed by an authorized entity.
 - For this we need fault-tolerance.
 - Faults may be accidental or malicious (Byzantine).
 - Denial of Service attacks are an example of malicious attacks.

Accountability

 Audit information must be selectively kept and protected so that actions affecting security can be traced to the responsible party.

- For this,
 - Audit information must be kept and protected,
 - Access control is needed.

Non-repudiation

- Provide unforgeable evidence that a specific action occurred.

Dependability

 Dependability = Reliability (Accidental Failures) + Security (Intentional Failures)

Survivability

 Deals with the recovery of the system after massive failure.

Relationships

Relationships

References

Even at this general level there is disagreement on the precise definitions of some of the required security aspects.

References :

- TCSEC or Orange book US Dept of Defense, Trusted Computer System Evaluation Criteria.
- ITSEC European Trusted Computer System Product Criteria.
- CTCPEC Canadian Trusted Computer System Product Criteria

Fundamental Design Parameters

1_{st} Design Decision

■ Focus of Control: Should protection focus on data, operations or users?

1_{st} Design Decision

The Dimensions of Computer Security

2_{nd} Design Decision

■ The Man-Machine Scale: In which layer should security be placed?

2_{nd} Design Decision

The Dimensions of Computer Security

3_{rd} Design Decision

- Complexity v.s. Assurance: Should security focus on simplicity or security?
 - To achieve a high degree of assurance, the security system has to be examined in close detail and as exhaustively as possible. Hence there is an obvious trade-off between complexity and assurance. The () an assurance level you aim for, the () your system ought to be.

4_{th} Design Decision

Centralized v.s. Decentralized: Should security control tasks be given to a central entity of left to individual components?

5_{th} Design Decision

How to prevent the attacker from accessing the layer below the protection boundary?

5_{th} Design Decision

- The Layer Below
 - An attacker with access to the () is in a position to subvert protection mechanisms further up.
 - When you reach the stage where you cannot apply computer security mechanisms or do not want to do so, you can still put in place physical or organizational security mechanisms.

Foundations

고려대학교 (Korea Univ.)

사이버국방학과 · 정보보호대학원 (CIST) 보안성분석평가연구실 (Security Analysis and Evaluation Lab.)

김 승 주 (Seungjoo Kim)

(FB) www.fb.com/skim71 (Twitter) @skim71