Online Chapter Tests

8. APPLICATION OF INTEGRALS

Time: 3 Hr. MM: 50

General Instructions

1. This test consists of 26 questions, grouped according to their type and consists a total of 50 marks.

- 2. Marks related to each question are mention clearly.
- 3. Time allotted to complete this test is 3 hrs.
- 4. It is advisible that you should attempt this test in a single slot of time and without the help of books and teacher.
- 5. To assess your chapterwise understood, Once you complete this test compare your solutions with our solution given with each test and score yourself.

Multiple Choice Ouestions

[1 Mark each]

1. The area (in sq units) of the region $\{(x,y): y^2 \ge 2x \text{ and } x^2 + y^2 \le 4x, x \ge 0, y \ge 0\}$, is

(a)
$$\pi - 4/3$$

(b)
$$\pi - 8/3$$

(b)
$$\pi - 8/3$$
 (c) $\pi - \frac{4\sqrt{2}}{3}$

(d)
$$\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$$

2. The area (in sq units) of the quadrilateral formed by the tangents at the end points of the latusrectum to the ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$, is

(b)
$$\frac{27}{2}$$

(d)
$$\frac{27}{4}$$

3. Area of the smaller portion of the circle $x^2 + y^2 = 4$ cut off by the line x = 1, is

(a)
$$\left(\frac{4\pi + 3\sqrt{3}}{3}\right)$$
 sq units

(b)
$$\left(\frac{4\pi - 3\sqrt{3}}{3}\right)$$
 sq units

(c)
$$\left(\frac{2\pi - 3\sqrt{3}}{3}\right)$$
 sq units

(d)
$$\left(\frac{4\pi - \sqrt{3}}{3}\right)$$
 sq units

4. Area bounded by the curve $y = x^2 - 1$. On Y-axis, y = 1 and y = 3, when x > 0, is

(a)
$$\frac{14}{3}$$
 sq units

(b)
$$\frac{16}{2}$$
 sq units

(b)
$$\frac{16}{3}$$
 sq units (c) $\frac{17}{3}$ sq units

(d) None of these

5. Let $g(x) = \cos x^2$, $f(x) = \sqrt{x}$ and α, β ($\alpha < \beta$) be the roots of the quadratic equation $18x^2 - 9\pi x + \pi^2 = 0$.

Then the area (in sq units) bounded by the curve y = (gof)(x) and the lines $x = \alpha, x = \beta$ and y = 0, is

(a)
$$\frac{1}{2}(\sqrt{3}+1)$$

(b)
$$\frac{1}{2}(\sqrt{3}-2)$$
 (c) $\frac{1}{2}(\sqrt{2}-1)$ (d) $\frac{1}{2}(\sqrt{3}-1)$

(c)
$$\frac{1}{2}(\sqrt{2}-1)$$

(d)
$$\frac{1}{2}(\sqrt{3}-1)$$

Note: This chapter test is exclusively available at examwitharihant.com. All the rights related to it a belongs to examwitharihant.com.

Fill in the Blanks [1 Mark each]

- **6.** The area of the region bounded by the curve $y = x^2 + x$, *X*-axis and the line x = 2 and x = 5 is equal to
- **7.** If the area bounded by the curve $f(x) = x^{1/3}(x-1)$ and X-axis is A, then the value of A is equal to
- **8.** If *A* is the area bounded by the curve $y = \sqrt{1 x^2}$ and $y = x^3 x$, then the value of $\frac{\pi}{A}$ is equal to
- **9.** The area bounded by the curve $y = x(x-3)^2$ and y = x is equal to (in sq units)
- **10.** The area enclosed by the curve $y = x\sqrt{9-x^2}$ ($x \ge 0$) and the *X*-axis is equal to

True or False [1 Mark each]

- **11.** Area enclosed by the curve $x = 3\cos\theta$, $y = 2\sin\theta$ is 6π sq unit.
- **12.** Area bounded by $y = \log_e x$, x = 0 and y = 0 is 1 sq unit.
- **13.** Area bounded by $x = 4\sqrt{y}$ and y = 4 is $\frac{32}{3}$ sq units.
- **14.** Area bounded by $y = \sin^{-1} x$, $y = \cos^{-1} x$ and the *X*-axis is $(\sqrt{2} + 1)$ sq units.
- **15.** The area between the curves $y^2 = -x$ and y = |x| is the same as the area between $y^2 = -x$ and y = -x.

Match the Columns [2 Marks each]

16. Match the terms of column I with the terms of column II and choose the correct options from the codes given below.

	Column I		Column II		
A.	The area enclosed between the curves $y^2 = x$ and $y = x $ is	I.	$\frac{2}{3}$ sq units		
В.	The area of region bounded by the curve $y^2 = x$ and the line $y = 4$ and Y -axis is	II.	$\frac{1}{6}$ sq units		
Ξ.	The area of region lying between the line $x-y+2=0$, $x=0$ and the curve $x=\sqrt{y}$	III.	$\frac{10}{3}$ sq units		
Э.	The area bounded by the curve $y=x x $, <i>X</i> -axis and the ordinates $x=1, x=-1$	IV.	$\frac{64}{3}$ sq units		

Codes

	A	В	C	D		A	В	\mathbf{C}	D
(a)	II	IV	III	Ι	(b)	IV	III	II	Ι
(c)	III	IV	I	II	(d)	III	IV	II	Ι

17. Match the terms of column I with the terms of column II and choose the correct options from the codes given below.

	Column I		Column II		
A.	The area of region in the first quadrant enclosed by <i>X</i> -axis, the line $y = \sqrt{3}x$ and the circle $x^2 + y^2 = 16$ is equal to	I.	$\frac{1}{6}$ sq units		
В.	Area of the regions $\{(x, y): x^2 + y^2 \le 4, x + y \ge 2\}$ is equal to	II.	$\frac{8\pi}{3}$ sq units		
C.	Area of the region bounded by the parabola $y^2 = x$ and the line $x + y = 2$ is equal to	III.	$\frac{7}{6}$ sq units		
D.	The area of the region bounded by $y = \sqrt{x}$ and $y = x$ is equal to	IV.	$(\pi-2)$ sq units		

Codes

	A	В	\mathbf{C}	D		A	В	\mathbf{C}	D
(a)	II	IV	III	Ι	(b)	IV	III	II	I
(c)	III	IV	I	Π	(d)	III	IV	II	I

Very Short Answer Type Questions

[1 Mark each]

- **18.** Find the area of region bounded by the parabola $y^2 = 8x$ and the line x = 2.
- **19.** Find the area of the region included between $y^2 = 9x$ and y = x.
- **20.** Find the area of region bounded by line 2y = 5x + 7, X-axis and the lines x = 2 and x = 8

Short Answer Type Questions

[4 Marks each]

- **21.** Find the area of region included between the parabola $4y = 3x^2$ and the line 3x 2y + 12 = 0.
- **22.** Find the area bounded by the line y = 4x + 5, y = 5 x and 4y = x + 5.
- **23.** Draw a rough sketch of the given curve y = 1 + |x + 1|, x = -3, x = 3, y = 0 and find the area of region bounded by them, using integration.
- **24.** Find the area bounded by the curve $y = \sin x$ between x = 0 and $x = 2\pi$.

Long Answer Type Questions

[6 Marks each]

- **25.** Find the area of region between the circle $x^2 + y^2 = 4$ and $(x-2)^2 + y^2 = 4$.
- **26.** Find the area bounded by the parabolas $y = 6x x^2$ and $y = x^2 2x$.