样本空间与组合分析

1 1 样本空间与事件

- 2 样本空间
- 3 不可分解的事件(样本点)之集合
- 5 事件
- 6 样本空间之子集
- 8 离散样本空间
- 9 有限或可数的样本空间

11 2 离散样本空间中的概率

离散样本空间中的概率

考虑离散样本空间 $\mathfrak{E}=\{E_1,E_2,\dots\}$,对每一点 E_i 赋予一数 $\Pr\{E_i\}$,称此数为 E_i 之概率并使之满足

$$\forall i, \Pr\{E_i\} \ge 0$$

$$\sum_{i} \Pr\{E_i\} = 1$$
(1)

13 事件 A 的概率为其中包含的样本点概率之和

- 15 事件 A_1, A_2 ,有 $\Pr\{A_1 + A_2\} = \Pr\{A_1\} + \Pr\{A_2\} \Pr\{A_1A_2\}$
- 17 Boole 不等式
- 18 对事件 A_1, A_2, A_3, \ldots ,有 $\Pr\{\sum_i A_i\} \leq \sum_i \Pr\{A_i\}$

19

14

16

20 3 排列数与组合数

- 21 有序样本
- 22 有限样本空间 $\{a_1,a_2,a_3,\ldots,a_n\}$ 中的 r 个元素的有序排列为一大小为 r 的有序样本
- 24 排列数

23

26

29

32

- 25 含 n 个样本点的总体中大小为 r 的有序样本数为 $A_r^n = n(n-1)\dots(n-r+1) = \frac{n!}{(n-r)!}$
- 27 无序样本
- 28 有限样本空间 $\{a_1,a_2,a_3,\ldots,a_n\}$ 中的 r 个元素为一大小为 r 的无序样本
- 30 组合数
- 31 含 n 个样本点的总体中大小为 r 的无序样本数为 $C_r^n = \frac{n!}{r!(n-r)!}$

33 4 超几何分布

n 个元素的总体中, n_1 个元素有某性质。现任取 r 个元素,其中有某性质的元素个数 k 服从超几何分布,有

$$\Pr k = \frac{C_k^{n_1} C_{r-k}^{n-n_1}}{C_r^n} \tag{2}$$

34 5 二项式定理

$$(a+b)^n = \sum_{r=0}^n C_r^n a^r b^{n-r}$$
 (3)

35 6 Stering 公式

$$n! \sim \sqrt{2\pi} n^{n + \frac{1}{2}} e^{-n}, n \to \infty \tag{4}$$