5. 五銖錢化學成份及古代

應用鉛錫鋅鑞考

王 璡

本篇所欲討論者,有下列數節:

- (1) 五銖錢化學成份的研究,再由此研究與他錢之成份比較, 討論用化學成份鑑別五銖錢年代遠近之法.
- (2) 由五銖錢化學成份及他古錢之成份,表明鉛鑞錫三物,由 古代冶金學觀之,有下述關係:(a)錫非鑞.(b)鉛亦非鑞,惟鑞 可包括鉛.(c)鑞爲鉛與錫之合金.
- (3) 討論鋅在古錢之地位,而得以下結論:(a)宋以前古錢之 鋅,乃無意中加入. (b)宋以後古錢之鋅,乃有意加入,然加入者 非純鋅. 明以後之鋅,乃由純鋅加入. 由此等結論,言明中國用鋅 之進化.

(1) 五銖錢之化學成份

中國古錢之化學成份會在科學六卷十一期,與七卷八期登載. 此項分析結果,皆由南京高等師範學校理科學生實習所得. 其準確之程度,以其平時已知品分析之結果觀之,尚不甚低. 惟古錢無不含銅綠甚厚,剔刮難淨,偶一不慎,即可使結果成份之總數變低。但依此結果以推測古錢內銅、錫、鉛、鋅之比例,仍能得頗爲合理之結論. 至於分析所用方法之自身是否適用,則不可不一檢查. 作者因此,曾爲一度實驗之考究. 但因職務之故,工作每須時時斷 續,頗有礙於準確之程度.然由此仍能得有興趣之討論,故不憚樓 述,以聒讀者.

(a) 分析方法準確程度之研究. 此次所用方法,手續頗為繁瑣,不克細述. 今但用下表,以明進行之步驟.

第一表

銅、鉛、錫、鋅之混合物,加濃硝酸,蒸發至乾,然後再加稀硝酸與水,乃過濾,洗淨。

流 ,氧 33,Sn	溶液 ,加荷	旅酸,蒸去硝酸	酸,加水及酒	精.	
G。後計 院由錫 份.	元藏 ,硫 酸的SO ₄ , 烘乾, 計成 份.	溶液 ,蒸去酒精,加水煮沸,通硫化氫。			
		沉囊,硫化铜CuS用碘定法求酮之成	豫液 ,蒸去硫化氫,煮沸,加阿摩尼亞,如有 鐵,此時分出。		
			沉藏,氫 養化鐵, 燒乾求鐵 量	溶液,	加醋酸及酸性磷酸鈉,
				沉澱,	磷酸錏鋅,燒乾求鋅量。

以半克重之物體,經如許長手續,損失若干,在所不免. 惟細心進行,亦可得準確結果. 今將純粹之銅片、錫塊、鋅粉、鉛粉依普通古錢之比例,配合成混合物. 依上表進行化驗,今將所得之結果,列表如下.

第二表

原質名	加入之重量	求得之重量	加入之百分率	求得之百分率	差 誤
銅 Cu 錫 Sn 鉛 Pb 鋅 Sn	0.5096 克 0.1349 克 0.1340 克 0.0484 克	0.5065 克 0.1399 克 0.1318 克 0.0428 克	61.6% 16.3% 16.2% 5.8% 100.00	61.3% 16.9% 15.9% 5.2% 99.30	-0.3% +0.6% -0.3% -0.6%

觀以上之結果,雖不得謂之滿意,尚相差不遠,則此法似可用以分析古錢,而得較為準確之成數也.

(b) 分析五銖錢之結果. 唐錢及宋錢已曾分析多個,惟五銖

錢則尚未充分研究, 今選五銖錢六個,將其附着之塵垢銅綠,加以 剔刮, 其刮不去者,则任之, 依上列所述方法淮行化驗, 今稱此 六錢為 a,b,c,d,e,f, 其分析後所得之結果列表如下,

第	=	表
粐		7

錢名	直徑吋數	重量克數	大概情形	銅%	錫%	鉛%	鐵%	鉾%	總數
(a)	0.9 时	1.87 克	紫黑	88.6	2.87	0.00	0.84	0.00	92.21 <i>%</i>
(b)	1.0 時	2.98 克	紫淨	87.2	5.43	4.10	0.46	0.177	97.36 %
(c)	0.8 時	1.54 克	紫薄	69.6	7.83	18.95	痕跡	0.00	96.38%
(d)	0.97 时	2.26 克	紫淨	84.9	6.91	4.48	0.31	0.00	96.60 %
(e)	0.9 时	2.56 克	青白色	66.7	14.62	14.90	0.00	1.04	97.26%
(f)	0.9 時	1.60 克	青白砂錢	56.7	23.70	8.87	痕跡	0.602	89.87%

求第三表之數目與求第二表之數目所用化驗方法及化驗情形 完全相同,而第三表成數之總數俱較低者,必因錢難刮淨之故.且 古錢除銅、錫、鋅、鉛必尚含矽、磷、硫、炭、錦、砷諸原質, 今皆未加 以分析,其結果之低,本不足怪. 作者頗信用以上之數目,可以判 斷錢內銅、錫、鉛、鋅之比例,以為互相比較及討論之材料.

(a) 用五銖錢化學成份判斷其年代遠近法。 歷代古錢,以五 鉄錢行用爲最久。 起自漢武帝,終於隋煬帝,皆有鑄造。 所佔時 間,約及千年. 今欲鑑別某五銖錢屬某朝代,殊爲不易. 作者搜集 五銖,得四十餘個. 皆古色蒼黝可愛. 今毀去六個,作爲化驗之 用,其餘加以測量,得下數目.

> 表 第 四

直徑長短表

0.8 吋至 0.9 吋者

0.9 时至 1.0 时者

8 個

28 個

共

36 個

	•
輕重不同表	
1.5~2.0 者	7 個
2.0~2.5 者	10 個
2.5~3.0 者	18 個
3.0~3.5 者	3 個
3.5~4.0 者	3 個
:#:	41 個

簡言之,即其平均直徑為一英寸,平均重量為三克也.欲依此考求年代,必不可能. 若欲自篆法形狀考究,則自愧非金石專家,莫能辨別. 但覺其印版之不同者,至少有下數種. (一)字跡淸楚而厚者. (二)外郭不全,薄而字模糊者. (三)顏色白,有如白銅,外郭精厚,"五"字像 IX 者. (四)"五"字上有一劃者. (五)內方孔上有一劃者. 依此字樣,就古今錢譜考查其年代,亦不易有頭緒. 惟錢譜中有一節云. "隋文帝鑄五銖白錢,"五"字近好處,有一劃. 餘三面無郭. 用鑞和鑄,故錢色白". 譜中對於此錢,繪有一圖. 其"五"字亦如 IX,與余所分析之(e)(f)兩錢相同. 今假定(e)(f)二錢,為隋錢,而觀察其化學成份.則凡五銖錢化學成份與之相近者,必年代較近,化學成份與(e)(f)不相近者,必年代較古. (e)(f)二錢之特點,即為皆含有鋅,然(b)亦含鋅. 又(e)(f)錢鉛與錫相加之比例甚高. 今將以上六錢,依其 Sn% + Pb% 之數,排列先後,低者在先,高者在後,則得下列之次序.

第五表

錢	Sn+Pb% 錫加鉛成份	鑄錢之時代
(a)	2.87 + 0.00 = 2.87	漢
(b)	5.43 + 4.10 = 9.53	漢
(d)	6.91 + 4.48 = 11.39	漢
(c)	7.83 + 18.95 = 26.78	魏晉或南朝
(e)	14.62 + 14.90 = 29.52	<u>隋</u>
(f)	23.70 + 8.87 = 32.57	<u> </u>

由此表推測, 吾人可認(a)(b)(d)為漢五銖,(c)為魏晋五銖, (e)(f) 為隋五銖. 如此推測,頗為近理,蓋因有下列之原因. 第一 原因即為最古之錢,含鉛必最少. 蓋漢代初與之時,合金尚用周秦 六齊之舊例. 鑄錢但用錫而不用鉛,且錫量亦低. 故賈誼諫●孝 文帝,有"法使天下公,得顧租鑄銅錫爲錢,敢雜鉛鐵爲他巧者,其 罪黥"。 可見此時用鉛,為政令所不準,即民間盜鑄,亦必不敢多 加,以至易於察出也. 今第五表第一行之(a)錢即不含鉛. 其(b) (d)二錢,亦含鉛不多,皆足為其最古之證。 第二原因,即爲錢內 多加鉛,大概由王莽始. 漢書食貨志,言王莽鑄"大泉五十",殺以 連錫,此處之連,大部爲鉛●. 魏晋時五銖更多參鉛. 隋文帝則更 鑄白鑞錢,此處鑞即連,其成份亦大部爲鉛。 今(c)(e)(f) 含鉛皆 多,足為其較近之證. 第三原因,即為實驗的證據. 隋唐兩朝年代 相接,故五銖錢化學成份如與唐錢相近者,必為隋錢. 今觀唐開元 錢之化學成份,錫●佔百份之十二餘,鉛亦佔百分之十二餘. 今觀 (e) 五銖錢, 其錫為 14.62%, 鉛為 14.90%, 與開元錢極相近. 又與 錢譜隋書所載,完全吻合,則其必爲隋錢無疑. 是以第五表年代之 鑑定當亦無大差誤也.

由以上五銖錢之研究,及其他古錢之研究,於是知中國古今錢法,大概分三時期. 最近者為明清時期,亦曰用鋅時期. 此時鉛錫之成分已低,因有鋅以代之. 較古者為唐宋時期,亦曰鉛錫均分時期. 此時鉛成份與錫成份大約相等,而趨數約為百分之三十. 此法始於隋,唐則仿隋,而宋則仿唐開元•也. 今將各代制錢之分析結果,畫分三曲線,而得下圖.

[●] 漢書食貨志.

② 考據見第二節.

❸ 科學六卷十一期雜俎.

母 宋史食貨志.