

Osciloscópio baseado em FPGA

IISE - Projeto 4

Diogo Miguel Cunha Fernandes, PG47150 José Tomás Lima de Abreu, PG47386

Orientação:

Professor Doutor Jorge Cabral Professor Doutor Rui Machado Professora Sofia Paiva

Projeto Integrador em Eletrónica Industrial e Computadores
Universidade do Minho 2021/2022

Problema e contexto

Especificação

Implementação

Resultados

Índice

Calendário de tarefas

01

Problema e contexto

Problema e contexto

02

Objetivos e resultados esperados

Problema e contexto

- Aumento da complexidade dos sistemas digitais [2]:
 - Maior dificuldade no desenho de hardware;
 - Maior tempo de desenvolvimento.
- Algoritmos de processamento digital de sinal (PDS):
 - Complexos;
 - Difíceis de implementar em *hardware*.

Objetivos e resultados esperados

Explorar técnicas de PDS recorrendo a High Level Synthesis (HLS);

Osciloscópio básico capaz de:

- Amostrar sinais;
- Aplicar filtros digitais ao sinal amostrado;
- Apresentação dos sinais num display através de interface HDMI;

Especificação	01	Diagrama de Blocos
	02	XADC IP
	03	Filters IP
	04	HDMI IP

Figura 1 – Diagrama de blocos geral do sistema.

PS – Processing System: para debug e interface de configuração;

Read XADC IP: leitura dos valores convertidos pelo XADC;

• Filters IP: aplicação do filtro digital escolhido pelo utilizador ao sinal de entrada;

HDMI IP: apresentação do sinal filtrado numa interface HDMI;

XADC IP

XADC IP

- 1. Realiza uma leitura ao *ConfigIP*;
- 2. Verifica se foi configurado;
- 3. Se sim, efetua leituras consecutivas ao XADC.

Figura 2 – Diagrama de estados – XADC IP.

Filters IP

Filters IP

HDMI IP

HDMI IP

Figura 4 – Diagrama de blocos – HDMI IP.

HDMI IP - Main FSM

- 1. Limpa a *frame;*
- 2. Escreve nas coordenadas indicadas pelo valor obtido do filtro (valIndex);
- 3. Espera que a outra *frame* seja lida.

Figura 5 – Diagrama de estados do HDMI IP - Main FSM.

HDMI IP - Write FSM

- Usada nos estados S_CLEAN e S_WRITE da main FSM;
- 1. Determina qual o endereço (addrWR) a escrever com base no valor obtido do filtro:

$$valIndex = \frac{(FFFFh - val).(height - 1)}{FFFFh}$$
 $addrWR = row.width + x$

2. Escrita no addrWR da BRAM.

Figura 6 – Diagrama de estados do HDMI IP - Write FSM.

HDMI IP - Read FSM

- Leitura do addrRd da BRAM;
- Troca de BRAM quando acabar de ler uma frame.

Figura 7 – Diagrama de estados do HDMI IP - Read FSM.

Implementação

01 Block Design

02 XADC IP

03 | Filters IP

04 HDMI IP

Block Design

Figura 8 – Block Design implementado no Vivado.

- Comunica através de AXI-Lite;
- Single Channel Vaux6;
- Taxa de amostragem: 1 MS/s.

Figura 9 – Configuração do XADC no Vivado.

100

1000

4

Filters IP

- IP gerado pelo Vivado HLS;
- 4 DSPs para realizar operações aritméticas.

Figura 10 – Perspetiva de análise no Vivado HLS.

01 XADC IP Resultados 02 Filters IP HDMI IP

XADC IP

- AXI master (AXIM_read_xadc) que faz a leitura do slave XADC;
- AXI slave (my_slave) teste, com 2 registos:
 - endereço 44A00000h: simula o registo de configuração;
 - endereço 44A00004h: simula o registo do XADC;

Figura 11 – *Block Design* do teste ao AXI master de leitura do XADC.

XADC IP

- Master realiza uma leitura ac registo de configuração;
- Com o registo de configuração a 1, são realizadas leituras consecutivas ao XADC;
- A cada leitura, o sinal de EOC é ativo e o valor lido é colocado na saída.

Figura 12 – Resultado do testbench do AXI master de leitura do XADC.

Filters IP

Filters IP -Resultados Esperados

Golden vectors para validação dos filtros.

Figura 13 – Saída do LPF em MATLAB, a vermelho, em função da entrada a azul.

Filters IP -Resultados em Simulação

Aplicação de LPF (filt_select = 0) a um sinal de entrada de 20 Hz.

Figura 14 - Simulação comportamental do bloco de filtros aplicando um LPF a uma onda de entrada de 20 Hz.

Filters IP -Resultados em Simulação

Aplicação de LPF (filt_select = 0) a um sinal de entrada de 100 Hz.

Figura 15 - Simulação comportamental do bloco de filtros aplicando um LPF a uma onda de entrada de 100 Hz.

Filters IP -Resultados Experimentais

- Resultados na STM32;
- Utilização do DAC para visualização externa do sinal filtrado.

Figura 16 - Saída do LPF na STM32, a azul, em função da entrada, a amarelo.

Filters IP -Resultados Experimentais

- Resultados na Zybo;
- Utilização do debugIP para disponibilizar na PS os valores obtidos pelo filtro.

Figura 17 - Bloco de filtros com o LPF selecionado para uma entrada, a azul escuro, de:

a) 20 Hz - Saída a azul claro; b) 100 Hz - Saída a vermelho..

HDMI IP

HDMI IP - Write FSM

- Simula-se uma frame 4x4 e input constante = 65535;
- \circ S_CLEAN: WD = 0;
- S_WRITE: WD = 1, nos endereços: 0,1,2,3;

Figura 18 - Simulação comportamental do bloco HDMI - Escrita da frame.

HDMI IP - Read FSM

Pixel a *0x00ff00* (Verde) nos endereços: 0,1,2,3

Figura 19 - Simulação comportamental do bloco HDMI - Leitura da frame.

HDMI IP - Main FSM

Figura 20 - Simulação comportamental do bloco HDMI.

Figura 21 – Montagem realizada para os testes finais.

Figura 22 – Funcionamento do sistema com o LPF selecionado a uma frequência de entrada de 50 Hz e 20 Hz de entrada.

Sem filtro aplicado

Figura 22 – Visualização do sinal de entrada a diferentes frequências.

Filtro passa-baixo selecionado

Frequência de corte do filtro 50 Hz;

Figura 23 – Visualização da saída do LPF para vários sinais de entrada com frequências diferentes.

Filtro passa-alto selecionado

Frequência de corte do filtro 50 Hz;

Figura 24 – Visualização da saída do HPF para vários sinais de entrada com frequências diferentes.

Filtro passa-banda selecionado

Frequência de corte do filtro 60 Hz e 200 Hz;

Figura 25 – Visualização da saída do BPF para vários sinais de entrada com frequências diferentes.

Conclusões

1 Conclusão

02 Trabalho Futuro

Conclusão

Osciloscópio com funcionalidades básicas:

- Amostragem de sinal analógico;
- Filtros digitais implementados em HLS (técnicas DSP);
- Controlador de vídeo que transmite o sinal filtrado por HDMI.

Competências adquiridas:

- Amostragem de sinal analógico;
- Introdução e especialização ao desenho em HW utilizando HDL e HLS;
- Aumento de experiência em Matlab, C e Verilog;
- Utilização de testbenches.

Trabalho Futuro

- Comparação do desenvolvimento de hardware recorrendo a HLS com o desenvolvimento utilizando Hardware Description Languages (HDL): [4]
 - Qualidade do hardware gerado;
 - Tempo de desenvolvimento;
- Aumento da frequência de amostragem;
- Controlo da escala temporal e escala de tensão;
- Função de trigger;
- Utilização de mais canais de entrada ADC, representando as suas ondas na interface gráfica;
- Utilização de um ecrã tátil.

Calendário de tarefas

Diagrama de Gantt

OBRIGADO!

QUESTÕES?