AI & DNN

Timeline of artificial intelligence

https://en.wikipedia.org/wiki/Timeline of artificial intelligence

Neuron

Neural Representation

Perceptron

a neural network unit (an artificial neuron) that does certain computations to detect features or business intelligence in the input data.

A simple neural network

Propagation & Backpropagation

Forwardpass

Backwardpass

Computational neural networks

A multilayer perceptron neural network for thyroid disease diagnosis

1980S-ERA NEURAL NETWORK

DEEP LEARNING NEURAL NETWORK

Edge detection

m	-1	0	1
-1	-1	-2	-1
0	0	0	0
1	1	2	1
b!	Ke	rnel	

-13	-20	-17
-18	-24	-18
13	20	17

1	2	1	
0	0	0 2	3
-1	-2 4	-1 5	6
	7	8	9

1	2	1
0 1	0 2	0 3
-1 4	-2 5	-1 6
7	8	9

	1	2	1
1	0 2	0 3	0
4	<mark>-1</mark> 5	-2 6	-1
7	8	9	

1	2	1 2	3
0	0 4	0 5	6
-1	- 2 7	-1 8	9

1 1	2 2	1 3
0 4	0 5	6
⁻¹ 7	-2 8	⁻¹ 9

Convolution

Edge detection

First Order Differentials: In One-Dimension we have

We can then detect the edge by a simple threshold of

$$\left| \frac{\mathrm{d}f(x)}{\mathrm{d}x} \right| > T \quad \Rightarrow \mathsf{Edge}$$

Edge Filter

CNN...

CNN

Max Pooling, Filter & Stride

CNN

CNN

max pooling

automatic detection of pulmonary nodules from CT lung screening (lung cancer)

C: convolution, MP: MaxPooling, D: dropout, FC: fully connected.

Human tracking and localization

Vision & NLP...

CNN

RNN

LSTM

GAN

Transfer

BERT

GPT n

Embedding

https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture

RNN

LSTM

The unfolded architecture of Bidirectional LSTM (BiLSTM) with three consecutive steps.

LSTM GRU tanh

GAN

Transfer Learning

Classical NLP

Lexicon Example:

@AVOID_TalkTalk
we've had no
service for 4 days. Is
this the worst
company in the UK?

Domain Keywords: [TalkTalk] + [no service] Tokenization: avoid talktalk we have had no service for 4 days is this the worst company in the UK Opinion Score (-3): avoid

worst

no

Classification:

Type: No Service
Opinion Score: -3
GPS: 51.54, -0.11
Location: St Mary
Magdalene Academy,
N7 8PG, London

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architectures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating questions/answers).

