

Scalable Intervention Target Estimation in Linear Models

Burak Varici

Ali Tajer

Karthikeyan Shanmugam

Prasanna Sattigeri

IBM Research AI

Rensselaer Polytechnic Institute

 \mathcal{A}_1

Motivation

- Directed Acyclic Graphs (DAG): encode cause-effects
- Structure learning: up to Markov Equivalence Class (MEC)
- Intervention: Forcible changes to target variables

Why estimate intervention targets?

Interventional Structure Learning:

- Known targets → strong assumption
- Unknown targets → not scalable methods

Stand-alone importance:

- Difference estimation → identify hub nodes
- Large-scale cloud systems → fault localization

Courtesy of SJTU-BioX

Key challenges: computational complexity, restrictive assumptions, sample complexity

Model

 $\mathcal{G}_2 \triangleq (B^{(2)}, \epsilon^{(2)})$

Interventional

• Linear Structural Equation Model: $X = [X_1, \dots, X_p]^{\top}$, and $\epsilon \sim (N, \Omega)$

$$X = B^{\top}X + \epsilon$$

- Precision matrix: $\Theta = (I B)\Omega^{-1}(I B)^{\top}$.
- Soft Interventions: Change in noise variations of targets.

$$\mathcal{I} \triangleq \{i : \sigma_i^{(1)} \neq \sigma_i^{(2)}\}$$

• Non-intervened parents: $pa(\mathcal{I}) \triangleq \{pa(i) \setminus \mathcal{I} : i \in \mathcal{I}\}$

Problem Statement

Objective: estimate \mathcal{I} and $pa(\mathcal{I})$ from $\Sigma^{(1)}$ and $\Sigma^{(2)}$

$$\max_{\hat{\mathcal{I}} \subseteq [p]} \mathbb{P}(\mathcal{I} = \hat{\mathcal{I}}) \quad \mathsf{and} \quad \max_{\mathsf{pa}(\hat{\mathcal{I}}) \in [p] \times [p]} \mathbb{P}(\mathsf{pa}(\mathcal{I}) = \mathsf{pa}(\hat{\mathcal{I}}))$$

Algorithmic Framework

- Marginal SEMs: $X_S \to (B_S, \epsilon_S)$
- Precision Difference Estimation (PDE): $\Delta_{\Theta_S} = \Theta_S^{(1)} \Theta_S^{(2)}$.
- Lasso formulation and solution through ADMM (Jiang et al. JMLR 2018).

$$\hat{\Delta}_{\Theta} = \min_{\Delta_{\Theta}} \left\{ \frac{1}{2} \mathsf{Tr}(\Delta_{\Theta}^{\top} \hat{\Sigma}^{(1)} \Delta_{\Theta} \hat{\Sigma}^{(2)}) - \mathsf{Tr}(\Delta_{\Theta} (\hat{\Sigma}^{(1)} - \hat{\Sigma}^{(2)})) + \lambda \|\Delta_{\Theta}\|_{1} \right\}$$

- : ϵ_S is never invariant Intervened i
- : intervened ancestors and their parents $pa^+(an_{\mathcal{I}}(j)) \checkmark$ • Non-intervened *j*
- Goal : efficiently search for an S to make $[\Delta_{\Theta_S}]_{i,j} = 0$.

 $S_{\Delta} \triangleq \{k : [\Delta_{\Theta}]_{k,k} \neq 0\} = \mathcal{I} \cup \mathsf{pa}(\mathcal{I})$ (all nodes of interests) $J_0 \triangleq \{j : j \in S_\Delta, \ j \notin \mathcal{I}, \ \mathsf{an}_\mathcal{I}(j) = \emptyset\}$ (non-intervened source nodes)

 $\# PDE = O(|S_{\Delta}|^2)$

Equivalence classes: $S_{\Delta} \setminus J_0 = \bigcup A_{\ell}$ \mathcal{A}_{ℓ} : same source ancestral set Topological ordering: $A_1 > \cdots > A_L$

 $\# \, \mathsf{PDE} = O(2^{|A_\ell|}) << O(2^{|S_\Delta|})$

 $\forall j \in \mathcal{A}_{\ell} \setminus \mathcal{I}$, guaranteed to find $A \subset \mathcal{A}_{\ell}$ $[\Delta_{\Theta_{\mathcal{M}_{\ell} \cup A}}]_{j,j} = 0$

Estimate $\Delta_{\Theta_{\mathcal{M}_{\ell} \cup A}}$ only for each $A \subseteq \mathcal{A}_{\ell}$.

Consistency Guarantees

Theorem 1 & 2 (Consistency): Given the true covariances $\Sigma^{(1)}$ and $\Sigma^{(2)}$, the algorithm estimates:

- $\mathbb{P}(\hat{\mathcal{I}} = \mathcal{I}) = 1$: scalable since $2^{\max |A_\ell|} << 2^{|S_\Delta|}$
- $\mathbb{P}(\mathsf{pa}(\hat{\mathcal{I}}) = \mathsf{pa}(\mathcal{I})) = 1$ infers all the interventional information
- modularity with observational algorithms Refines MEC to *I*-MEC

Sample Complexity

Theorem 3 (Sample complexity): Given the condition number of the matrix estimation problem is bounded, the algorithm has guarantees

$$\mathbb{P}(\hat{\mathcal{I}} = \mathcal{I}) \geq 1 - \delta$$
 and $\mathbb{P}(\mathsf{pa}(\hat{\mathcal{I}}) = \mathsf{pa}(\mathcal{I})) \geq 1 - \delta$

with number of samples

√ finite-sample guarantees

√ sample efficiency

Experiments

- **Synthetic data**: Generate Erdös-Renyi random DAGs with various graph sizes p.
- Compared to state-of-the-art algorithm: UT-IGSP (Squires et al., UAI 2020)
- **Scalability**: Runtime grows gracefully.

	UT-IGSP			Ours	
р	F1	Time(s)	F1	Time(s)	
40	0.99	0.8	0.95	0.1	
60	0.97	5.2	0.96	0.2	
80	0.97	17.8	0.96	0.3	
100	0.96	61.2	0.96	0.3	

• Real data: Protein signaling network (Sachs et al. 2005).

- <u>DAG estimate</u>: Combine recovered edges.
- ROC curves: Run PDEs with different λ' s.
- Outperforms UT-IGSP variants.

Conclusions

- Intervention target estimation in linear models.
- Leveraged precision differences and proposed a consistent and scalable algorithm. Furthermore, refined the Markov equivalence class.
- Established finite-sample results for Gaussian models.