

Understanding Random Forests

Marc Garcia

PyData Madrid - April 9th, 2016

Introduction

About me: @datapythonista

NTTCommunications

- Python programmer since 2006
- Master in AI from UPC

- Working for Bank of America
- http://datapythonista.github.io

Overview: Understanding Random Forests

- How decision trees work
- Training Random Forests

- Practical example
- Analyzing model parameters

How decision trees work

Using a decision tree

Simple example:

- Event attendance: binary classification
- 2 explanatory variables: age and distance

```
from sklearn.tree import DecisionTreeClassifier

dtree = DecisionTreeClassifier()
dtree.fit(df[['age', 'distance']], df['attended'])
cart plot(dtree)
```


Data visualization

How is the model?

```
def decision tree model (age, distance):
    if distance >= 2283.11:
        if age >= 40.00:
            if distance >= 6868.86:
                if distance >= 8278.82:
                    return True
                else.
                    return False
            else.
                return True
        else:
            return False
    else:
        if age >= 54.50:
            if age >= 57.00:
                return True
            else:
                return False
        else:
            return True
```


Training: Basic algorithm

```
def train_decision_tree(x, y):
    feature, value = get_best_split(x, y)

    x_left, y_left = x[x[feature] < value], y[x[feature] < value]
    if len(y_left.unique()) > 1:
        left_node = train_decision_tree(x_left, y_left)
    else:
        left_node = None

    x_right, y_right = x[x[feature] >= value], y[x[feature] >= value]
    if len(y_right.unique()) > 1:
        right_node = train_decision_tree(x_right, y_right)
    else:
        right_node = None

return Node(feature, value, left_node, right_node)
```


Best split

Candidate split 1 age 18 | 19 21 27 29 34 38 42 49 54 62 64 attended F | F T F T T F T F T T T

Split True False
Left 0 1
Right 7 4

Candidate split 2 age 18 19 21 27 29 34 38 42 49 54 62 64 attended F F T T T T T T

Split	True	False	
Left	0	2	
Right	7	3	

Best split algorithm

```
def get_best_split(x, y):
   best split = None
   best entropy = 1.
    for feature in x.columns.values:
       column = x[feature]
        for value in column.iterrows():
            a = v[column < value] == class a value
            b = v[column < value] == class b value
            left weight = (a + b) / len(v.index)
            left entropy = entropy(a, b)
            a = v[column >= value] == class a value
            b = v[column >= value] == class b value
            right_items = (a + b) / len(y.index)
            right_entropy = entropy(a, b)
            split entropy = left weight * left etropy + right weight * right entropy
            if split_entropy < best_entropy:</pre>
                best split = (feature, value)
                best_entropy = split_entropy
   return best_split
```


Entropy

For a given subset¹:

$$entropy = -Pr_{attending} \cdot \log_2 Pr_{attending} - Pr_{\neg attending} \cdot \log_2 Pr_{\neg attending}$$
 (1)

 $^{^1}$ Note that for pure splits it's assumed that $0 \cdot \log_2 0 = 0$

Entropy algorithm

```
import math
```


Information gain

For a given **split**:

$$information_gain = entropy_{parent} - \left(\frac{items_{left}}{items_{total}} \cdot entropy_{left} + \frac{items_{right}}{items_{total}} \cdot entropy_{right}\right) \quad (2)$$

Understanding Random Forests - Marc Garcia

Practical example

Etsy dataset

- Features:
 - Feedback (number of reviews)
 - Age (days since shop creation)
 - Admirers (likes)
 - Items (number of products)
- Response variable:
 - Sales (number)
- Samples:
 - 58.092
- Source:
 - www.bigml.com

Features distribution

Sales visualization

Feature correlation

	sales	admirers	age	feedback	items
sales	1.000000	0.458261	0.181045	0.955949	0.502423
admirers	0.458261	1.000000	0.340939	0.401995	0.268985
age	0.181045	0.340939	1.000000	0.184238	0.167535
feedback	0.955949	0.401995	0.184238	1.000000	0.458955
items	0.502423	0.268985	0.167535	0.458955	1.000000

Correlation to sales

Decision tree visualization

Decision tree visualization (top)

Decision tree visualization (left)

Decision tree visualization (right)

What is wrong with the tree?

- Only one variable used to predict in some cases
- Lack of **stability**:
 - If feedback = 207 we predict 109 sales
 - If feedback = 208 we predict 977 sales
 - Our model can change dramatically if we add few more samples to the dataset
- Overfitting: We make predictions based on a single sample

Training Random Forests

Ensembles: The board of directors

- Why companies have a BoD?
- What is best?
 - The best point of view
 - A mix of good points of view
- How was our best tree?
 - What about a mix of not so good trees?

Ensemble of trees

- How do we build optimized trees, that are different?
 - We need to randomize them
 - Samples: bagging
 - Features
 - Splits

Bagging: Uniform sampling with replacement

Randomizing features

- Even with bagging, trees will usually make the top splits by the same feature
- max_features parameter:
 - Regression: Use all
 - Classification: Use the squared root

Randomizing splits

- A split per sample is considered in the original decision tree
- We can consider a subset
 - We obtain randomized trees
 - Performance is improved
- sklearn implements ExtraTreeRegressor and ExtraTreeClassifier

What happened with our example problems

- Only **one variable** used to predict in some cases
 - We can avoid it by not using all features
- Lack of **stability**:
 - Our model is smoother
- Overfitting: We make predictions based on a single sample
 - Overfitting is mostly avoided
 - Random forests come with built-in cross validation

Smoothing

Parameter optimization (Etsy)

Parameter optimization (Bank marketing)

Data source: [Moro et al., 2014] S. Moro, P. Cortez and P. Rita.

A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision Support Systems, Elsevier, 62:22-31, June 2014

Understanding Random Forests - Marc Garcia

When should we use Random Forests?

- Using a CART is usually good as part of exploratory analysis
- Do not use CART or RF when the problem is linear
- They are specially good for ordinal (categorical but sorted) variables
- Performance
 - CART is slower than linear models (e.g. logit)
 - RF trains N trees, and takes N times but it works in multiple cores, seriously
 - But RF is usually much faster than ANN or SVM, and results can be similar

Summary

- CART is a simple, but still powerful model
 - Visualizing them we can better understand our data
- Ensembles usually improve the predictive power of models
- Random Forests fix CART problems
 - Better use of features
 - More stability
 - Better generalization (RFs avoid overfitting)
- Random Forests main parameters
- min_s amples_l eaf (inherited from CART) num_e stimators

Thank you

• QUESTIONS?