

# Social and Graph Data Management Network Robustness

Benoît Groz (slides and content are mostly from Silviu Maniu)

November 17th, 2024

M2 Data Science

### **Table of contents**

**Network Robustness** 

Percolation

Robustness in Scale-Free Networks

Attack Robustness

#### **Robustness**

Robustness is a central issue in network science.

What happens to a network if some parts of it are removed?

- · mutations in medicine
- network attack in online social networks
- · diseases, famines, wars, ...

## Robustness



### **Table of contents**

Network Robustness

Percolation

Robustness in Scale-Free Networks

Attack Robustness

**Percolation**: term coming from statistical physics, applied in our case: what is the expected size of the largest cluster and the average cluster size

**Example**: a square lattice, where "pebbles" are placed with probability p at random intersections. If two or more pebbles are connected they form clusters. As p approaches a **critical value**  $p_c$ , a large cluster emerges.

### **Percolation in Lattices**









### **Percolation in Lattices**

#### We track:

- · average cluster size  $\langle {\sf s} \rangle \sim |p-p_{\sf c}|^{-\gamma_p}$  diverges as we approach  $p_{\sf c}$
- · order parameter  $p_{\infty}\sim (p-p_c)^{eta_p}$  probability that a pebble belongs to the largest cluster
- correlation length  $\xi\sim |p-p_c|^{u}$  mean distance between two pebbles belonging to the same cluster

 $\gamma_p$ ,  $\beta_p$ , and  $\nu$  are **critical exponents** – they characterize the behavior near the critical point

Percolation theory says that the exponents are universal: independent of  $p_c$  or the nature of the lattice.

#### **Percolation and Robustness**

**Inverse percolation**: what happens when we remove a fraction f of nodes from the giant component of the lattice

As  $\boldsymbol{f}$  increases, the lattice is more and more likely to break up in tiny components

However, the process is **not gradual!** It is characterized by a **critical threshold**  $f_c$  at which point the lattice is broken.

### **Inverse Percolation in Lattices**



#### **Percolation and Networks**

**Random networks** under random node failures have the same exponents as the infinite-dimensional percolation.

The critical exponents in random networks are  $\gamma_p=$  1,  $\beta_p=$  1 and  $\nu=$  1/2.

### **Table of contents**

Network Robustness

Percolation

Robustness in Scale-Free Networks

Attack Robustness

#### Scale-Free Network and Random Removals

What happens to **scale-free networks** under random removals? Empirical results show that they are surprisingly resilient. Why?



### **Molloy-Reed Criterion**

 $f_c$  in scale free networks is extremely high.

**Molloy-Reed criterion**: a randomly wired network has a giant component if:

$$\kappa = \frac{\langle k^2 \rangle}{\langle k \rangle} > 2;$$
 (1

this works for any degree distribution  $p_k$ .

For a random network:

$$\kappa = \frac{\langle k \rangle (1 + \langle k \rangle)}{\langle k \rangle} = 1 + \langle k \rangle > 2,$$

or

$$\langle k \rangle > 1.$$

### **Applying Molloy-Reed in Random Networks**

We can apply the criterion to a network with arbitrary degree we have that:

$$f_c = 1 - \frac{1}{\kappa - 1};\tag{2}$$

depending **only** on  $\langle k \rangle$  and  $\langle k^2 \rangle$ .

In a random network:

$$f_c = 1 - \frac{1}{\langle k \rangle}.$$

We only need to remove a finite number of nodes, and  $f_c$  is higher as the network is denser

## **Applying Molloy-Reed in Scale-Free Networks**

In **scale-free** networks,  $f_c$  depends on the degree exponent  $\gamma$ :

$$f_{c} = \begin{cases} 1 - \frac{1}{\frac{\gamma - 2}{3 - \gamma} k_{\min}^{\gamma - 2} k_{\max}^{3 - \gamma} - 1} & 2 < \gamma < 3 \\ 1 - \frac{1}{\frac{\gamma - 2}{\gamma - 3} - 1} & \gamma > 3 \end{cases}$$



### **Robustness in Scale-Free Networks**

For  $\gamma <$  3,  $f_c \rightarrow$  1, meaning that we have to remove almost all nodes in order that the network breaks.

**Main takeaway**: scale-free networks are resilient under random removals, we can remove an arbitrary number of nodes.

### **Table of contents**

Network Robustness

Percolation

Robustness in Scale-Free Networks

Attack Robustness

### $f_c$ under Attacks

What happens when we **attack** the network (we choose deliberately the nodes, prioritizing *high degree nodes*?

How does  $f_c$  change?

| Network    | Random(pred.) | Random(real) | Attack |
|------------|---------------|--------------|--------|
| Internet   | 0.84          | 0.92         | 0.16   |
| Power Grid | 0.63          | 0.61         | 0.20   |
| Email      | 0.69          | 0.92         | 0.04   |
| Protein    | 0.66          | 0.88         | 0.06   |

#### **Attacks: Scale-Free Networks**



### **Attacks: Random Networks**



#### **Critical Threshold Under Attack**

Using the fact that, for large  $\gamma$  the scale-free networks resemble random networks, so random failures and targeted attacks are indistinguishable when  $\gamma \to \infty$ :

$$f_{\rm c} \to 1 - \frac{1}{k_{\rm min} - 1}.\tag{3}$$



### **Cascading Failures**

Once an attack is perpetrated, some failures are **cascading**: the neighbours of the attacked node can fail, which triggers cascades on their neighbours etc.

Examples of cascading failures:

- · blackouts on power grids
- denial of service attacks
- · information cascades in social networks, viruses
- financial crises

Common characteristic: all the cascading failure follow **power laws**.

### **Information Cascades**



### Acknowledgments

Figures in slides 4, 7, 10, 13, 16, 20, 21, 22, and 24 taken from the book "Network Science" by A.-L. Barabási. The contents is partly inspired by the flow of Chapter 8 of the same book.

http://barabasi.com/networksciencebook/

#### References i

- Bakshy, E., Hofman, J. M., Mason, W. A., and Watts, D. J. (2011). **Everyone's an influencer: Quantifying influence on twitter.**In Proceedings of the ACM International Conference on Web Search and Data Mining, pages 65–74.
- Bollobás, B. and Riordan, O. (2003). **Robustness and vulnerability of scale-free random graphs.** *Internet Math.*, 1(1):1–35.
- Callaway, D. S., Newman, M., Strogatz, S. H., and Watts, D. J. (2000). **Network robustness and fragility: Percolation on random graphs.**

85(25):5468-5471.

### References ii



Molloy, M. and Reed, B. (1995).

A critical point for random graphs with a given degree sequence.

Random Struct. Algorithms, 6(2-3):161–180.