Supporting Information

UV Photochemistry of Benzene and Cyclohexadienyl Radical in Solid Parahydrogen

Shin Yi Toh, Pavle Djuricanin, Takamasa Momose^{1,*} and Jun Miyazaki^{1,2,3,*}

¹ Department of Chemistry, The University of British Columbia,

2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.

² Department of Liberal Arts and Basic Sciences, College of Industrial Technology, Nihon University, 2-11-1 Shinei, Narashino, Chiba, 275-8576, Japan.

³ Present address: Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan

^{*}To whom correspondence should be addressed.

Figure S1. Full spectrum of benzene (25ppm) embedded in solid parahydrogen at 4.2K immediately after deposition.

Figure S2. 193 nm ArF excimer laser irradiation of Benzene in solid parahydrogen at 4.2K: IR region of 1600 – 1010 cm⁻¹ (left panel) and 1020 – 600 cm⁻¹ (right panel). (a) Benzene in solid parahydrogen just after deposition, (b) after 5 minutes irradiation, (c) after 15 minutes irradiation, (d) after 30 minutes irradiation.

Figure S3. 253.7 nm Hg vapour lamp irradiation on Benzene in solid parahydrogen at 4.2K: IR region of 900 - 600 cm⁻¹. (a) Benzene in solid parahydrogen just after deposition, (b) after 7.5 hours irradiation, (c) after 15 hours irradiation.

Table S1. Experimental and calculated vibrational wavenumbers of benzene in solid parahydrogen compared with those in Ar and N_2 matrices.

Observed	Relative	Observed /	Observed /	Calculated	Calculated	Sym. in	Mode	Assignment
/parahydrogen	intensity	Ar matrix a)	N ₂ matrix ^{b)}	$[cm^{-1}]^{c)}$	relative	$D_{6\mathrm{h}}$		
[cm ⁻¹]		[cm ⁻¹]	[cm ⁻¹]		intensity d)			
				410.691				F (%GG)
C= C 1	1 000	606		622.183		-6	ν_{18}	$E_{2g} \delta(CC)$
676.1	1.000	676	678.6				ν_4	$A_{2u} \pi(CH)$
		0.47		718.975				F -(CC)
		847		862.855			v_{11}	$E_{1g} \pi(CC)$
		967 993		987.207	U	E_{2u}	v_{19}	$E_{2u} \pi(CH)$
		993		1010.631	0		v_7	$B_{2g} \pi(CH)$
				1010.031				
		1010	1009.1				.,	$P_{v}(CC)$
		1010	1009.1		U	$\mathbf{D}_{1\mathrm{u}}$	v_6	$B_{1u} \nu(CC)$
1038.1	0.52	1041			0.051	E_{1u}	11	E \$(CH)
1036.1	0.32	1149		1174.449			v_{14}	$E_{1u} \delta(CH)$
1177.5	0.001						v_{10}	$B_{2u} \delta(CH)$ $E_{2g} \delta(CH)$
1245.4					· · ·	L _{2g}	$ \begin{array}{c} v_{17} \\ v_{11} + v_{20} \end{array} $	$E_{1g} \pi(CC) + E_{2u} \pi(CC)$
1245.4			1240.2				v ₁₁ · v ₂₀	$E_{lg} \mathcal{N}(CC) + E_{2u} \mathcal{N}(CC)$
1240.0	0.0000		1391.6					
			1391.0	1335.640	0	B_{2u}		
				1380.919		A_{2g}		
1390.1	0.002	1390	1392.6		O	1 1 2g	$v_7 + v_{20}$	$B_{2g} \pi(CH) + E_{2u} \pi(CC)$
1482.9							v_{13}	$B_{2u} \nu(CC)$
1402.7	0.27	1403	1402.7	1509.963	0.057	E_{1u}	V13	D_{2u} $V(CC)$
1523.1	0.013	1521	1527.6		0.037	Liu	$v_4 + v_{11}$	$A_{2u} \pi(CH) + E_{1g} \pi(CC)$
1524.3			1327.0				v 4 · v 11	$n_{2u} n(Cn) + E_{1g} n(CC)$
1324.3	0.007		1589.1	1633.085	0	E_{2g}	ν_{16}	$E_{2g} \nu(CC)$
			1607.4		· ·		$v_2 + v_{18}$	$A_{1g} v(CC) + E_{2g} \delta(CC)$
1620.6	0.003	1620					$v_6 + v_{18}$	$B_{1u} \nu(CC) + E_{2g} \delta(CC)$
1669.1							$v_8 + v_{19}$	$B_{2g} \pi(CC) + E_{2u} \pi(CH)$
	****		1713.8				v_8+v_6	$B_{2g} \pi(CC) + E_{1u} \nu(CC)$
1755.7	0.003	1759					$v_{10}+v_{18}$	$B_{2u} \delta(CH) + E_{2g} \delta(CC)$
1813.5							$v_{11} + v_{19}$	$E_{1g} \pi(CC) + E_{2u} \pi(CH)$
1814.2							11 17	15 () 24 ()
1958.2			1961				$v_7 + v_{19}$	$B_{2g} \pi(CH) + E_{2u} \pi(CH)$
1958.8	0.022							-, , , -, , ,
2214.2	0.003		2217				$v_{14} + v_{17}$	$E_{1u} \delta(CH) + E_{2g} \delta(CH)$
2600.6	0.002	2600	2598.6				$v_6 + v_{16}$	$B_{1u} \nu(CC) + E_{2g} \nu(CC)$
								$A_{1g} \nu(CC) + E_{2g} \delta(CC)$
2619.2			2617				$v_2 + v_{18} + v_6$	$+ B_{1u} \nu(CC)$
2657.3								
2819.2			2820.5					A C(GII) + B (GC)
2826.7	0.002	2827					$v_3 + v_{13}$	$A_{2g} \delta(CH) + B_{2u} \nu(CC)$
2000.2	0.004	2000	2855.1					D(CC) + E(CC)
2890.3	0.004	2890	2889.4				$v_9 + v_{16}$	$B_{2u} v(CC) + E_{2g} v(CC)$
2000 2	0.000	2012	2000 4					$A_{1g} v(CC) + E_{2g} \delta(CC)$
2909.2			2908.4				$v_2 + v_{18} + v_9$	$+ B_{2u} \nu(CC)$
3036.2	0.007			2155 447		D		
				3155.447				
				3165.079	0	E_{2g}		

3037.0 3038.1 3042.8	0.004 0.006 0.063							
3044.8	0.003	3047	3044	3180.665	0.30	E_{1u}	v_{12}	$E_{1u} \nu(CH)$
3045.7	0.091				****	-1u	. 12	-iu *(===)
3076.0	0.021							
3077.2	0.063	3079	3077				$v_{13}+v_2+v_{18}$	$E_{1u} \nu(CC) + A_{1g} \nu(CC) + E_{2g} \delta(CC)$
3077.7	0.032							- Emolect
3082.8	0.003							
3096.9	0.039							
3098.3	0.117							
3098.9	0.068	3100	3099				$v_{13} + v_{16}$	$E_{1u} \nu(CC) + E_{2g} \nu(CC)$
3100.1	0.006							
3101.1	0.010							
				3190.846	0	A_{1g}		

^{a)} Andrews, L.; Johnson, G.L.; Davis, S.R. Infrared spectrum of the benzene-hydrogen fluoride complex in solid argon. *J. Phys. Chem.* **1985**, 89, 1706-1709.

^{b)} Fredin, L.; Nelander, B. On the structure of benzene halogen complexes. A matrix isolation study. *Mol. Phys.* **1974**, 27, 885-898.

c) Vibrational wavenumbers of benzene were calculated with the B3LYP/6-311+G (d, p) method.

 $^{^{}d)}$ Relative intensities were normalized to the most intense benzene band at 687.291 cm $^{-1}$, which was calculated to be 125.03 km/mol with B3LYP/6-311+G(d, p).

Table S2. Experimental and calculated vibrational wavenumbers of benzvalene in solid parahydrogen compared with those in Ar and N_2 matrices.

Observed	Relative	Observed /	Observed /	Calculated	Calculated	Sym in	Mode	Assignment ^(d)
/parahydrogen		Ar matrix ^{a)}	N ₂ matrix ^{a)}	[cm ⁻¹] b)	relative	C_{2v}	WIOUC	Assignment
[cm ⁻¹]	intensity	[cm ⁻¹]	[cm ⁻¹]	[cm]	intensity c)	C_{2V}		
[]		505 s	508 s	509.270		B_1	ν ₂₂	C-C-C=C torsion
		534 vvw	534 vvw	543.408		-	v_{16}	C-C-C=C torsion
		632 w	635 w	632.624		_	v_{21}	C-H wag
		653 m	651 m	690.007		-	v_{11}	C-H wag
741.1	1		744 vvs	756.242		•	v_{20}	C-H wag ^(e)
742.8			747 vvs	750.212	1.000	D ₁	* 20	C II was
742.0	0.54	756 mw	757 mw					
760.4	0.03		763 mw	762.116	0.031	\mathbf{A}_1	ν_{10}	C-H wag
700.1	0.05	702 IIIW	705 IIIW	764.870			v_{15}	C-C stretch
		801 vw	802 vw	701.070	O	112	V 15	C-C stretch
811.6	0.24		812 s	824.743	0.124	B_2	v_{30}	C-C=C bend
011.0	0.24	841 vvw	012 3	024.743	0.124	\mathbf{D}_2	V30	C-C C benu
849.1	0.11		850 ms	861.344	0.035	B_2	v_{29}	C-H wag
047.1	0.11	047 1113	050 1113	896.153	0.003	-	V ₂₉ V ₉	C-C stretch
				899.998		•	v_{14}	C-H wag
				920.360				C-H wag
		875 vw		920.300	U	A_2	v_{13}	C-II wag
		8/3 VW						
		882 w	881 w					
		902 w	907 w					
		902 w 970 w	907 w 972 w					
		970 w 979 vw	972 w 982 w					
		9/9 VW	962 W	982.612	0.003	D		CHuna
				982.012		\mathbf{B}_2	v_{28}	C-H wag C-H wag
				987.009			ν_8	_
		1014 vvw	1017 vvw	990.839	0.001	B_1	v_{19}	C-H wag
		1014 vvw 1022 vvw	101 / VVW				$2v_{22}$	
		1022 VVW						
		1072	1065				2	
1000 5	0.20	1063 vw	1065 vw	1110 (5)	0.001	ъ	$2v_{16}$	
1089.5			1000	1112.676		\mathbf{B}_1	ν_{18}	C-C stretch
1090.4			1090 vs	1113.769		\mathbf{A}_1	v_7	C-H wag
1092.7	0.05	1094 vs	1005	1116.450	0	A_2	ν_{12}	C-H wag
44.50.0	0.06	11.50	1097 w	440.				~ **
1163.8			1163 ms	1192.789		-	v_6	C-H wag
1182.7			1183 m	1201.496		_	ν_{27}	C-C stretch
1239.6	0.02		1240 m	1267.418	0.021	B_2	ν_{26}	C-C stretch
		1260 vvw						
		1276 vvw	1279 vw					
			1293 vvw					
		1304 vw	1305 w					
1313.3	0.20		1314 s	1334.807	0.059	B_2	ν_{25}	C-C stretch
		1342 vw	1343 vw					
		1358 vw	1360 w					
		1380 w	1385 w					
			1395 vw					
		1413 vvw	1415 vvw					
		1505 w	1513 w					

		1523 vw						
				1404.256	0.001	\mathbf{A}_1	ν_5	C-C stretch
1554.8	0.13	1554 m	1553 m	1609.252	0.081	\mathbf{A}_1	ν_4	C=C stretch
			1618 w					
				3181.755	0.006	\mathbf{A}_1	ν_3	C-H stretch
3066.2	0.01	3067 m		3183.864	0.240	B_2	ν_{24}	C-H stretch
3071.6	0.04		3072 s					
		3077 m		3207.370	0.119	\mathbf{A}_1	ν_2	C-H stretch
		3082 m		3187.904	0.140	B_1	ν_{17}	C-H stretch
				3214.081	0.059	B_2	v_{23}	C-H stretch
		3095 w	3092 s	3238.359	0.065	\mathbf{A}_1	ν_1	C-H stretch
		3128 w	3128 w				$2\nu_4$	

^{a)} Griffith, D.W.T.; Kent, J.E.; O'Dwyer, M.F. The vibrational spectra of Dewar benzene and benzvalene. *Aust. J. Chem.* **1975**, 28, 1397-1416.

^{b)} Vibrational wavenumbers of benzvalene were calculated with the B3LYP/6-311+G (d, p) method.

 $^{^{}c)}$ Relative intensities were normalized to the most intense benzvalene band at 756.242 cm $^{-1}$, which was calculated to be 102.941 km/mol with B3LYP/6-311+G(d, p).

^{d)} Jensen, J. O. Vibrational frequencies and structural determination of benzvalene. *J. Mol. Struct. THEOCHEM.* **2003**, 634, 41-52

 $^{^{\}text{e)}}\text{The }\nu_{20}$ was assigned using our DFT calculation result

Table S3. Experimental and calculated vibrational wavenumbers of Dewar benzene in solid parahydrogen compared with those in Ar matrix.

Observed /parahydrogen [cm ⁻¹]	Relative intensity	Observed / Ar matrix ^{a)} [cm ⁻¹]	Calculated [cm ⁻¹] b)	Calculated relative intensity c)	Sym. in C_{2v}	Mode	Assignment ^(d)
<u>[ciii]</u>		390 m	339.411		A_2	ν ₁₆	C-C-C torsion
		394 w	388.944		A_1	ν ₉	C-C-C bend
		488 m	487.477		B_2	v_{30}	C-C-C torsion
		491 m					
702.2	0.47	705 vs	718.606	0.593	\mathbf{B}_1	ν_{22}	C-H wag
		709 vs					-
		741 vw					
		743 vw					
		780 w					
			790.878	0	A_2	ν_{15}	C-C-C bend
792.3	1	793 vvs	811.375	1.0	\mathbf{A}_1	ν_8	C-H wag
		795 vvs					
		811 vw					
822.9	0.22		830.375	0.146	B_2	ν_{29}	C-C stretch
		826 s					
		842 vw					
		878 vw					
			863.297		\mathbf{A}_1	v_7	C-C stretch
		0.00	933.438		A_2	v_{14}	C-H wag
923.3			937.552		\mathbf{B}_2	v_{28}	C-C-C bend
928.8	0.41	928 ms	940.964		\mathbf{A}_1	v_6	C-C stretch
025.4	0.00	026	953.247		A_2	v_{13}	C-C stretch
935.4	0.09		967.688	0.031	B_2	v_{27}	C-H wag
		938 ms					
		983 vw					
		987 vw 1012 mw					
		1012 mw					
		1013 mw					
		1079 mw					
		1073 mw					
		1089 w					
		1133 ms					
		1100 1110	992.672	0.004	\mathbf{B}_1	ν_{21}	C-C stretch
			1032.512		A_1	v_{5}	C-H wag
			1094.159		\mathbf{B}_{1}	v_{20}	C-H wag
1134.8	0.11	1135 ms	1158.621		$ m B_2$	v_{26}	C-H wag
1146.8			1173.478		A_1	ν_4	C-H wag
		1149 ms					-
		1181 w					
			1198.833	0	A_2	ν_{12}	C-H wag
			1199.995	0.021	\mathbf{B}_1	ν_{19}	C-H wag
		1259 vw					
			1280.125		A_2	ν_{11}	C-H wag
1268.1	0.16		1292.309	0.463	B_2	ν_{25}	C-H wag
		1270 s					
1282.1	0.07						
		1284 m					
		1312 w					

1535.5	0.10	1317 w 1515 vw 1536 ms 1539 ms 1615 w 1716 vw 2963 m 2968 w 2973 m 2983 m	1590.753	0.177	B ₁	v_{18}	C=C stretch
			1617.585	0.002	\mathbf{A}_1	v_3	C=C stretch
2984.7	0.05	2986 vs	3090.070	0.197	B_2	v_{24}	C-H stretch
		2992 w					
		3000 w					
		3005 w					
		3038 vs					
3048.8	0.10	3046 s	3096.486	0.375	A_1	ν_2	C-H stretch
		3053 w					
3058.8	0.07						
		3061 w					
		3064 m					
3069.6	0.15	3069 m					
		3074 w					
		3077 m					
		3088 w					
		3090 w					
			3169.273	0	A_2	ν_{10}	C-H stretch
3107.8	0.06	3107 m					
3108.9	0.05						
3110.9	0.15	3112 m	3170.904	0.314	B_2	v_{23}	C-H stretch
3111.5	0.12		3200.019	0.463	\mathbf{B}_1	ν_{17}	C-H stretch
		3118 w					
		3127 w					
3133.6	0.06	3134 w	3202.731	0.106	A_1	ν_1	C-H stretch

a) Griffith, D.W.T.; Kent, J.E.; O'Dwyer, M.F. The vibrational spectra of Dewar benzene and benzvalene. *Aust. J. Chem.* **1975**, 28, 1397-1416.

^{b)} Vibrational wavenumbers of Dewar benzene were calculated with the B3LYP/6-311+G (d, p) method.

^{c)} Relative intensities were normalized to the most intense Dewar benzene band at 811.375 cm⁻¹, which was calculated to be 84.547 km/mol with B3LYP/6-311+G(d, p).

^{d)} Jensen, J. O. Vibrational frequencies and structural determination of benzvalene. *J. Mol. Struct. THEOCHEM.* **2003**, 634, 41-52

Table S4. Experimental and calculated vibrational wavenumbers of fulvene in solid parahydrogen compared with those in Ar matrix.

Observed parahydrogen cm ⁻¹]	Relative intensity	Observed / Ar matrix ^{a)} [cm ⁻¹]	Calculated [cm ⁻¹] b)	Calculated relative intensity c)	Sym. in C _{2v}	Mode	Assignment
		350 m	209.868	0.090	\mathbf{B}_1	v_{20}	ring torsion
			345.140	0.008	B_2	v_{30}	methylene in-phase bend
		494 m	491.367	0	A_2	v_{15}	ring torsion
616.4	0.58	613 vs	633.989	0.898	\mathbf{B}_1	v_{19}	C-H out-of-plane
		666 w					-
			678.718	0.001	\mathbf{A}_1	ν_{11}	ring in-plane deform
			690.893	0	A_2	ν_{14}	C-H out-of-plane + CH2 torsion
			777.279	0	A_2	ν_{13}	C-H out-of-plane + CH2 torsion
771.0	1.0	769 s	788.812	1.00	\mathbf{B}_{1}^{-}	v_{18}	C-H out-of-plane
		795 w	807.262	0.015	\mathbf{B}_2	v_{29}	ring deform + C-C stretch
895.3	0.16	894 m	908.709	0.166	A_1	v_{10}	C-C-C stretch
907.5	0.06	907 m	932.929	0.024	\mathbf{B}_{1}	v_{17}	C-H out-of-plane
			943.648	0	A_2	v_{12}	C-H out-of-plane
			961.584	0.071	$\overline{\mathrm{B}_{2}}$	v_{28}	CH2 wag
927.9	0.74	926 s	965.571	0.722	_	v_{16}	CH2 out-of-plane
949.9	0.07	952 m	998.903	0.043	-	v_9	C-C stretch
		986 m			•		
			1101.775	0.034	\mathbf{A}_1	ν_8	C-H in-plane bent
1078.5	0.09	1077 m	1104.137			v_{27}	C-H in-plane bent
		1082 w			-	27	1
		1130 w					
			1252.448	0.011	B_2	v_{26}	C-H in-plane + CH2 in-plane
			1332.474			v_{25}	C-H in-plane + C-C stretch
1342.6	0.46	1342 s	1367.0888		A_1	v_7	C-H in-plane
		1372 vw			•	,	1
		1391 w					
		1449 m					
			1451.554	0.001	\mathbf{A}_1	v_6	CH2 wag
1485.5	0.12	1486 s	1525.247		-	v_5	ring C=C sym stretch
1486.1	0.25				•	J	2
		1632 vw					
			1609.160	0.005	B_2	V_{24}	ring C=C anti-sym stretch
			1695.179			v_4	methlene C=C stretch
3007.6	0.03	3008 s	3135.820		•	v_3	methylene C-H stretch
		3051 w	3197.384		\mathbf{B}_{2}	v_{23}	ring C-H stretch
		3075 mw			_	v_2	ring C-H stretch
	0.05		3221.422		-	v_{22}	CH2 C-H stretch
3088 0		2 300 111			_		
3088.0 3088.9			3224.270	0.202	B_2	v_{21}	ring C-H stretch

^{a)} Griffith, D.W.T.; Kent, J.E.; O'Dwyer, M.F. The vibrational spectra of Dewar benzene and benzvalene. *Aust. J. Chem.* **1975**, 28, 1397-1416.

^{b)} Vibrational wavenumbers of fulvene were calculated with the B3LYP/6-311+G (d, p) method.

 $^{^{}c)}$ Relative intensities were normalized to the most intense fulvene band at 788.812 cm $^{-1}$, which was calculated to be 50.061 km/mol with B3LYP/6-311+G(d, p).

Table S5. Experimental and calculated vibrational wavenumbers of 3-cis-1,3,5-Hexatriene in solid parahydrogen compared with those in Ar matrices.

Observed/	Relative	Calculated	Relative	Observed/		Observed/	
parahydrogen	Intensity	$[cm^{-1}]^{a)}$	Intensity b)	Ar matrix [cr	n ⁻¹] ^{c)}	Ar matrix [cm ⁻	¹] ^{d)}
[cm ⁻¹]							
		102.57	0.00				
		156.11	0.00				
		163.01	0.00				
		332.23	0.00				
		351.63	0.11				
		394.93	0.00	350	W		
		601.31	0.30	605	S	588	S
		688.84	0.00				
		729.97	0.00				
		843.64	0.02	820	W	817	m
		892.93	0.00				
		931.96	0.00				
907.9	1	935.79	1.00	910	VS	906	VS
		964.97	0.04	950	\mathbf{W}	950	m
		983.28	0.00				
990.6	0.22	1023.75	0.33	990	S	987	VS
		1036.43	0.00				
		1101.35	0.01	1015	m		
		1212.41	0.03	1190	\mathbf{W}	1186	m
		1285.47	0.00	1235	W	1277	W
		1308.77	0.00	1325	W	1316	m
		1343.21	0.04	1365	\mathbf{W}	1357	m
		1388.88	0.00	1460	m	1452	S
		1434.11	0.01	1605	sh		
		1487.21	0.08	1610	m	1610	m
		1616.47	0.00	1630	W	1620	m
		1672.22	0.22				
		1682.06	0.00				
				1825	W	1812	S
				3010	W	2983	W
		3126.70	0.00				
		3132.37	0.02	3030	W	3002	W
		3133.36	0.09	3035	W	3025	m
		3146.25	0.00				
		3148.47	0.08				
		3160.76	0.22	3060	m	3047	m
		3221.25	0.00	3103	W	3074	VW
		3221.74	0.24	3110	m	3101	m

a) Vibrational wavenumbers of 3-cis-1,3,5-hexatriene were calculated with B3LYP/6-311+G(d,p) method.

b) Relative intensities were normalized to the most intense band of 935.7901 cm⁻¹ of 3-cis-1,3,5-hexatriene which was calculated to be 107.68 km/mol with B3LYP/6-311+G(d,p)

c) Datta, P.; Goldfarb, T.D.; Boikess, R.S. Photolysis of Matrix Isolated 1,3-Cyclohexadiene, cis-l,3,5-Hexatriene, and trans-l,3,5-Hexatriene, *J. Am. Chem. Soc.* **1971**, 93, 5189-5193

d) Furukawa, H.; Takeuchi, H.; Harada, I.; Tasumi, M. Matrix-isolation Infrared and Ultraviolet Spectroscopic Studies of Less Stable Conformers of 1,3,5-Hexatroene. *J Mol Struct*, **1983**, 100 341-350

Table S6 Experimental and calculated vibrational wavenumbers of 3-trans-1,3,5-Hexatriene in solid parahydrogen compared with those in Ar matrices.

Observed/parahy	Relative	Calculate	Relative	Observe		Observe	ed/
drogen [cm ⁻¹]	Intensity	d [cm- ^{1] a)}	Intensity b)	Ar matr	ix [cm ⁻¹]	Ar matr	rix [cm ⁻¹]
		99.14	0.01				
		148.60	0.03				
		223.99	0.00				
		252.03	0.02				
		352.94	0.00	550	m	540	W
		444.78	0.00	600	W	510	**
		544.57	0.08	660	W		
		613.10	0.00	000	**	682	W
		706.51	0.20	687	S	002	••
		901.10	0.00	007	5		
900.9	1.00	926.30	1.00	900	VS	899	VS
,,,,	1.00	932.65	0.00	,,,,	15	905	S
		946.12	0.00			938	W
		964.55	0.22	940	m	946	m
		978.67	0.04	950	sh	7.10	***
		<i>y</i>	0.0.	965	W	963	VW
		1019.36	0.00	990	W	, 02	
1012.02	0.38	1050.34	0.91	1015	VS	1012	VS
		1156.26	0.08			1016	sh
		1217.49	0.00	1135	sh	1137	VW
		1284.03	0.03	1143	m	,	
		1311.58	0.00	1260	W	1253	VW
		1324.08	0.05	1285	m	1281	VW
		1330.69	0.00	1305	m	1298	VW
		1433.75	0.00			1430	W
		1465.99	0.05	1440	m	1.20	••
		1629.35	0.00	1460	W		
		1678.97	0.46	1612	m		
		1684.99	0.00			1628	m
				1640	m		
				1815	m	1804	m
				2990	W	2980	w,br
				3010	W	3014	m,br
				3025	m		,
		3120.81	0.00				
		3121.01	0.00				
		3129.42	0.00				
		3133.87	0.32	3050	m	3043	m
		3135.24	0.00			3067	VW
		3136.66	0.43			3094	m
		3221.53	0.00			3101	sh
		3221.55	0.30	3110	m		

a) Vibrational wavenumbers of 3-cis-1,3,5-hexatriene were calculated with B3LYP/6-311+G(d,p) method.

b) Relative intensities were normalized to the most intense band of 926.3047 cm⁻¹ of 3-trans-1,3,5-hexatriene which was calculated to be 81.031 km/mol with B3LYP/6-311+G(d,p)

c) Datta, P.; Goldfarb, T.D.; Boikess, R.S. Photolysis of Matrix Isolated 1,3-Cyclohexadiene, cis-l,3,5-Hexatriene, and trans-l,3,5-Hexatriene, *J. Am. Chem. Soc.* **1971**, 93, 5189-5193

d) Furukawa, H.; Takeuchi, H.; Harada, I.; Tasumi, M. Matrix-isolation Infrared and Ultraviolet Spectroscopic Studies of Less Stable Conformers of 1,3,5-Hexatroene. *J Mol Struct*, **1983**, 100 341-350

Table S7. Calculated anharmonic vibrational wavenumbers (cm⁻¹) and relative intensities (listed in parentheses) of (E)- and (Z)-1,4,5-hexatrien-3ylium (HT) using B3LYP/6-311++G(2d,2p).

Mode ^{a)}	E-HT		Z-HT	
$v_1(A')$	3099.5	(10.5)	3095.0	(14.1)
$v_2(A')$	3047.1	(11.9)	3037.7	(24.5)
$v_3(A')$	3006.3	(5)	3036.7	(3.2)
$v_4(A')$	3018.3	(14.4)	3053.3	(8.1)
$v_5(A')$	2989.4	(2.3)	3001.4	(4.4)
$v_6(A')$	2971.1	(22.3)	2960.7	(21.9)
$v_7(A')$	1890.1	$(100)^{b)}$	1882.2	(91.4)
$v_8(A')$	1530.9	(5.3)	1567.0	(3.8)
$v_9(A')$	1449.9	(3.8)	1444.9	(5.5)
$v_{10}(A')$	1410.5	(1.1)	1414.6	(8)
$v_{11}\left(A'\right)$	1364.1	(3.2)	1350.9	(0)
$v_{12}\left(A'\right)$	1258.7	(1.4)	1336.7	(1.8)
$v_{13}\left(A'\right)$	1232.0	(5.5)	1270.9	(7.3)
$v_{14}\left(A'\right)$	1205.3	(2.1)	1163.6	(12.4)
$v_{15}\left(A'\right)$	1140.4	(0.1)	1111.6	(0.6)
$v_{16}\left(A'\right)$	1041.6	(3.3)	989.6	(4.5)
$v_{17}\left(A'\right)$	943.8	(2.7)	887.3	(0.6)
$v_{18}\left(A'\right)$	865.5	(68.1)	860.0	(84.5)
$v_{19}\left(A'\right)$	560.0	(24.6)	709.0	(31)
$v_{20}\left(A'\right)$	453.9	(1.2)	430.9	(3.1)
$v_{21}\left(A'\right)$	298.0	(2.9)	293.9	(4.8)
$v_{22}\left(A'\right)$	124.8	(0.2)	115.4	(0.1)
$v_{23}\left(A^{\prime\prime}\right)$	3020.8	(2.6)	3008.6	(3.5)
$v_{24}\left(A^{\prime\prime}\right)$	975.3	(52.5)	974.6	(33.6)
$v_{25}\left(A^{\prime\prime}\right)$	958.4	(0.2)	959.0	(0.5)
$v_{26}(A'')$	880.4	(25.6)	889.6	(10.8)
$v_{27}\left(A^{"}\right)$	835.8	(52.4)	841.0	$(100)^{b)}$
$v_{28}\left(A^{"}\right)$	805.5	(6.7)	765.0	(10.3)
$v_{29}\left(A^{"}\right)$	575.0	(10.8)	586.6	(20.1)
$v_{30}\left(A^{\prime\prime}\right)$	534.7	(0.1)	526.4	(0.1)
$v_{31}(A'')$	307.7	(5.1)	288.1	(14.5)
$v_{32}\left(A^{\prime\prime}\right)$	208.4	(0)	209.8	(0)
$\nu_{33} (A'')$	119.6	(2.2)	113.8	(1.9)

a) The optimized structures of (E)- and (Z)-1,4,5-hexatrien-3ylium belong to the point group of Cs symmetry.

^{b)} Relative intensities listed in parentheses were normalized to the most intense *E*-HT band at 1890.1 cm⁻¹ and *Z*-HT band at 841.0 cm⁻¹, which were calculated to be 74.532 km/mol (*E*-HT) and 58.281 km/mol (*Z*-HT), respectively.

Table S8. Calculated anharmonic vibrational wavenumbers (cm⁻¹) and relative intensities (listed in parentheses) of α -hydrogenated fulvene (α -HF) and β -hydrogenated fulvene (β -HF) using B3LYP/6-311++G(2d,2p).

Mode ^{a)}	a-HF		<i>b</i> -HF	
$v_1(A')$	3100.3	(12.9)	3109.6	(10.7)
$v_2(A')$	3098.1	(10.8)	3063.4	(8.4)
$v_3(A')$	3082.3	(16.1)	3090.5	(17.6)
$v_4(A')$	3067.0	(8.2)	3082.4	(5.1)
$v_5(A')$	3071.7	(10.4)	3069.0	(11.2)
$v_6(A')$	2903.0	(14.1)	2871.4	(39.3)
$v_7(A')$	1554.5	(11.4)	1569.5	(0.9)
$v_8(A')$	1472.9	(0.4)	1456.4	(9.4)
$v_9(A')$	1391.5	(21.2)	1411.8	(1.4)
$v_{10}\left(A'\right)$	1384.3	(0.1)	1385.6	(13)
$v_{11}\left(A'\right)$	1366.4	(5.3)	1344.1	(15.4)
$v_{12}\left(A'\right)$	1285.9	(2.3)	1294.7	(2.6)
$v_{13}(A')$	1246.2	(1.4)	1238.4	(3.7)
$v_{14}\left(A'\right)$	1227.9	(4)	1226.5	(1.9)
$v_{15}\left(A'\right)$	1088.1	(7.9)	1090.7	(0.9)
$v_{16}\left(A'\right)$	1027.4	(3.1)	1001.0	(4.3)
$v_{17}\left(A'\right)$	970.0	(6.7)	941.1	(7.6)
$v_{18}\left(A'\right)$	931.9	(15)	934.5	(10.1)
$v_{19}\left(A'\right)$	849.1	(1.2)	905.2	(6)
$v_{20}(A')$	807.4	(5.4)	781.2	(2.9)
$v_{21}\left(A'\right)$	632.7	(2.3)	648.6	(1.2)
$v_{22}\left(A'\right)$	348.8	(0.1)	348.1	(1.1)
$v_{23}(A'')$	2909.9	(6.9)	2866.2	(13.6)
$v_{24}\left(A^{"}\right)$	1112.6	(0.9)	1093.1	(1.4)
$v_{25}\left(A^{"}\right)$	929.6	(5.2)	944.3	(0.3)
$v_{26}\left(A^{"}\right)$	896.0	(1.4)	891.0	(27.7)
$v_{27}\left(A^{"}\right)$	806.0	$(100)^{b)}$	754.0	$(100)^{b)}$
$v_{28}\left(A''\right)$	770.4	(0.6)	740.9	(4.3)
$v_{29}\left(A^{"}\right)$	661.0	(68.5)	649.2	(0.1)
$v_{30}\left(A^{"}\right)$	597.3	(4.5)	577.6	(66)
$v_{31}(A'')$	516.4	(11.1)	524.1	(2.7)
$v_{32}(A'')$	387.0	(23.6)	355.9	(0.5)
$v_{33} (A'')$	180.3	(0)	217.6	(8.1)

^a The optimized structures of a-hydrogenated fulvene (a-HF) and b-hydrogenated fulvene (b-HF) belong to the point group of Cs symmetry.

^b Relative intensities listed in parentheses were normalized to the most intense α-HF band at 806.0 cm⁻¹ and β-HF band at 754.0 cm⁻¹, which were calculated to be 61.8121 km/mol (α -HF) and 62.2103 km/mol (β -HF), respectively.

Table S9. Experimental and calculated vibrational wavenumbers of 1,3-Hexatriene-5-yne in solid parahydrogen compared with those in vapor phase.

		atriene-5-yne			e	Vapor/ [cm ⁻¹] d)		
Observed/	Relative	Calculated	Relative	Observed /	Relative	Calculated	Relative	<u> </u>
para-H ₂ [cm ⁻¹]	Intensity	[cm ⁻¹] a)	intensity b)	para-H ₂ [cm ⁻¹]	Intensity	[cm ⁻¹] a)	Intensity c)	
		127.027	0.001			134.323	0.011	
		138.000	0.007			139.709	0.018	
		269.215	0.013			206.788	0.006	
		306.923	0.106			308.942	0.037	
		428.996	0.017			449.333	0.009	
		472.150	0.205			460.634	0.002	
630.43	0.87	641.661	0.611			556.095	0.070	
		685.770	0.517	624.58	0.76	636.946	0.515	
		690.200	0.112			666.104	0.108	
		716.337	0.043			687.437	0.497	781
		807.072	0.123			881.396	0.085	845
								908
		894.267	0.009	914.34	0.71	939.362	0.308	913
923.25	0.38	943.478	0.591			959.590	0.009	942
		986.047	0.000			974.332	0.229	
		986.973	0.105			1035.047	0.066	
		1040.549	0.189	1014	0.23	1040.104	0.475	1000
		1166.593	0.002			1193.431	0.019	
		1265.089	0.006			1286.439	0.003	1210
		1317.851	0.027			1313.521	0.008	1246
		1394.677	0.006			1331.289	0.044	1286
		1466.924	0.078			1451.883	0.024	1434
		1620.545	0.075			1637.510	0.069	1575
		1679.462	0.010			1681.529	0.035	1610
								1736
								1822
		2187.038	0.082			2189.323	0.092	2090
		3132.698	0.062			3130.247	0.014	
		3141.970	0.004			3131.307	0.121	
		3154.378	0.010			3138.090	0.029	
		3162.162	0.165			3153.566	0.135	3065
		3222.744	0.112			3224.790	0.096	3122
3326.9	1	3476.186	1.000	3324.70	0.56			
3327.3	0.61		7 1 1'	3325.30	1	3475.888	1.000	3346

a) Vibrational wavenumbers of 1,3,5-hexadiene-5-yne (cis and trans) were calculated with B3LYP/6-311+G(d,p) method.

b) Relative intensities were normalized to the most intense band of $3476.186~cm^{-1}$ of 1,3-hexadiene-5-yne (cis) which was calculated to be 90.0555~km/mol with B3LYP/6-311+G(d,p)

c) Relative intensities were normalized to the most intense band of 3475.888 cm^{-1} of 1,3-hexadiene-5-yne (trans) which was calculated to be 101.757 km/mol with B3LYP/6-311+G(d,p)

d) Georgieff, K.K.; Cave, W.T.; Blaikie, K.G. Acetylene Polymers: Preparation, Physical Properties, Infrared and Ultraviolet. Spectra, *J. Am. Chem. Soc.*, **1954**, 76, 5494-5499

Table S10. Experimental and calculated vibrational wavenumbers of *o*-benzyne in solid parahydrogen compared with those in other matrices.

Observed/	Relative	Calculated	Relative	Sym.	Observed/	Observed/	Observed/	Observed	Relative
parahydrog	Intensity	$[cm^{-1}]^{a)}$	Intensity b)	in C_{2v}	Ar matrix	N ₂ matrix d)	N ₂ matrix ^{e)}	/Ar	Intensity
en					^{c)} [cm ⁻¹]	[cm ⁻¹]	[cm ⁻¹]	matrix f)	
[cm ⁻¹]								[cm ⁻¹]	
		393.848	0.058	b ₁	469	472	470	388	(0.05)
		421.867	1.000	b_2				472	(1.00)
		624.304	0.003	\mathbf{a}_1				589	(0.00)
735	1	749.402	0.791	b_1	736	743	739	737	(0.59)
								838	(0.00)
844	0.6	845.072	0.283	b_2	849	847	848	849	(0.31)
		925.066	0.000	b_1					
		997.386	0.071	a_1				982	(0.06)
					1038	1039	1038	1039	(0.13)
1057	0.26	1073.133	0.217	a_1	1053	1056	1055	1055	(0.09)
1007	0.20	1107.516	0.017	b_2	1033	1050	1033	1094	(0.02)
		1161.698	0.000	a_1				10).	(0.02)
		1270.218	0.001	b_2				1271	(0.02)
		1304.825	0.013	a_1				1307	(0.00)
							1355		,
		1422.118	0.020	b_2			1395	1394	(0.07)
				-				1415	(0.00)
		1464.201	0.128	b_2	1451	1448	1448	1451	(0.11)
		1480.034	0.009	a_1					
					1607	1598	1596		
		2008.468	0.002	a_1				1846	(0.02)
						2084	2082		
		3160.205	0.009	b_2				3049	(0.01)
		3175.532	0.034	\mathbf{a}_1				3071	(0.01)
		3198.587	0.216	b_2		3088		3086	(0.11)
		3201.938	0.059	a_1				3094	(0.07)

^{a)} Vibrational wavenumbers of *o*-benzyne were calculated with B3LYP/6-311+G(d,p) method.

b) Relative intensities were normalized to the most intense band of 421.867 cm⁻¹ of *o*-benzyne, which was calculated to be 113.61 km/mol with B3LYP/6-311+G(d,p)

c) Chapman, O.L.; Mattes, K.; McIntosh, C.L.; Pancansky, J.; Calder, G.V.; Orr, G. Photochemical Transformations. LII. Benzyne. *J. Am. Chem. Soc.* **1973**, 95, 6134-6135

^{d)} Dunkin I.R.; MacDonald, J.G. Matrix photolysis of unsaturated cyclic anhydrides and the infrared spectrum of tetradeuteriobenzyne. *J. Chem. Soc.*, *Chem. Comm.* **1979**, 772-773

e) Nam, H.H.; Leroi, G.E. On the vibrational spectrum of matrix isolated o-benzyne. J. Mol. Struct. 1987, 157, 301-304

^{f)} Radziszewski, J. G.; Hess, B. A.; Zahradnik, R. Infrared Spectrum of *o*-Benzyne: Experiment and Theory. *J Am Chem Soc* **1992**, *114*, 52–57. Values in parentheses are reported intensities.