Einführung in die Informatik und Rechnerarchitektur

Software Engineering

Geschichte der Computer

Meilensteine der Computerarchitektur

Generationen verschiedener Technologien:

• Mechanische Computer (1642 -1945)

Vakuumröhren (1945 -1955)

• Transistoren (1955 -1965)

• Integrierte Schaltungen (1965 -1980)

VLSI-Integration

(1980 -

Geschichte der Computer

Die Evolution des modernen digitalen Computers brachte Hunderte von Varianten hervor. Nur wenige hatten eine nachhaltige Wirkung auf moderne Konzepte. Einige davon sind in der folgenden Tabelle angeführt:

Jahr	Bezeichnung	Entwickler	Anmerkung
1834	Analytical Engine	Babbage	Erster Versuch zum Bau eines digitalen Computers
1936	Z1	Zuse	Erste funktionierende Relais-Rechenmaschine
1943	COLOSSUS	Britische Regierung	Erster elektronischer Computer
1944	Mark I	Aiken	Erster amerikanischer Allzweck-Computer
1946	ENIAC	Eckert & Mauchley	Beginn der modernen Computer-Geschichte
1949	EDSAC	Wilkes	Erster Computer mit gespeichertem Programm
1951	Whirlwind I	M.I.T.	Erster Echtzeit-Computer
1952	ISA	Von Neumann	Die meisten heutigen Maschinen weisen dieses Design auf
1960	PDP-1	DEC	Erster Minicomputer
1961	1401	IBM	Rechner für Kleinfirmen
1962	7094	IBM	Für wissenschaftliche Rechenwelt
1964	360	IBM	Erste als Familie ausgelegte Produktlinie
1964	6600	CDC	Erster wissenschaftlicher Supercomputer
1970	PDP-11	DEC	Vorherrschender Minicomputer der 70er Jahre
1974	8080	Intel	Erster 8-Bit-Computer auf einem Chip
1974	CRAY-1	Cray	Erster Vektor-Supercomputer
1978	VAX	DEC	Erster 23-Bit Superminicomputer
1981	IBM-PC	IBM	Beginn der Personalcomputer-Ära
1985	MIPS	MIPS	Erste kommerzielle RISC-Maschine
1987	SPARC	Sun	Erste auf SPARC basierte RISC-Workstation
1990	RS6000	IBM	Erste Superskalare Maschine
2000	Pentium 4	Intel	42 Millionen Transistoren, Taktfrequenz von 1,7 GHz

Geschichte der Computer

Die ersten Computer

Erster Computer	ENIAC	1946
Erster Microcomputer	Appel II	1977
Erster PC	IBM	1981

Weltweiter PC Verkauf

Millionen PC	Jahr
1.6	1981
210	2008

30% USA 25% West Europa 12% Japan 33% Rest der Welt

Die Prognose von Gordon E. Moor (Moor's law)

Im Jahre 1965 hat Gordon E. Moor, Mitbegründer von Intel, vorhergesagt, dass sich ab 1959 alle 18 Monate die Anzahl an Transistoren je Chip (Integrationsdichte) verdoppelt. Diese Prognose war im Wesentlichen zutreffend, und Fachleute behaupten, sie werde noch bis 2015 gelten. Diese rasante Entwicklung erklärt die ständig neu auf den Markt kommenden Computer mit höherer Leistung, größeren Speicherbereich und schnelleren Zugriffszeiten.

Digitalrechner

Digitalrechner

Das Ebenenmodell – von Neumann Konzept

Computer - auch Rechner genannt - sind universell verwendbare Geräte zur automatischen Verarbeitung von Daten. Der Begriff leitet sich aus dem Lateinischen "computare" ab, was übersetzt "berechnen" bedeutet.

Computer können jedoch nicht nur zum Rechnen eingesetzt werden, sondern eignen sich auch zur Erledigung bzw. Unterstützung anderer Aufgaben und Tätigkeiten wie zur Textverarbeitung, Bilderkennung, Maschinensteuerung und vielem mehr.

Computersysteme setzen sich zusammen aus physikalischen Geräten (Hardware) sowie Programmen, die auf der Hardware ausgeführt werden (Software).

Ein digitaler **Computer** ist eine Maschine, welche **Instruktionen** ausführen kann. Eine Folge von Instruktionen, die eine bestimmte Aufgabe ausführen kann nennt man **Programm**.

Eine begrenzte Zahl von Instruktionen wird in Form elektronischer Schaltungen (**Hardware**) fest installiert. In diese Instruktionen müssen alle Programme konvertiert werden, ehe sie ausgeführt werden. Insgesamt bilden alle primitiven Instruktionen eine Sprache, in der sich Personen mit dem Computer unterhalten können - genannt **Maschinensprache** (machine language).

Wegen der Einfachheit der Maschinensprache, ist diese für die Bearbeitung komplexerer Aufgaben ungeeignet, was im Laufe der Zeit zur Strukturierung von Computern in verschiedene aufeinander aufbauende Abstraktionsebenen führte (**structured computer organization**).

Digitalrechner

Strukturierte Organisation

Der Aufbau der Ebenen dient vorwiegend der Erweiterung der Instruktionsmenge mit dem Ziel, die Kommunikation zwischen Benutzer und Computer zu verbessern und die Leistungsfähigkeit zu erhöhen. Der Übergang von einer zur darunterliegenden Ebene kann durch zwei Methoden erfolgen.

- •Bei der ersten Methode, genannt **Übersetzung** (Translation), wird jede Programmanweisung durch eine Folge von Instruktionen der darunterliegenden Ebene ersetzt, sodass das resultierende Programm nur mehr aus Instruktionen der unteren Ebene, z.B. Maschinensprache, besteht.
- •Die zweite Methode führt bei jeder Programmanweisung ein Programm der darunterliegenden Ebene aus, welches die Anweisung als eine Folge von Instruktionen der unteren Ebene ausführt und überwacht. Diese Methode heißt **Interpretation** und das ausführende Programm wird **Interpreter** genannt.

EBENE 5	Problemorientierte Sprache	
	Übersetzung (Compiler)	
EBENE 4	Assemblersprache	
40.	Übersetzung (Assembler)	
EBENE 3	Betriebssystemmaschine	
	Teilinterpretation (Betriebssystem)	
EBENE 2	ISA	
	Interpretation oder direkte Ausführung	
EBENE 1	Mikroarchitektur	
	Hardware	
EBENE 0	Digitale Logik	

Informatik - Computer Science

Technische Informatik

Hardwarekomponenten Schaltnetze, Schaltwerke, Prozessoren Mikroprogrammierung Rechnerarchitektur Schnittstellentechnik und Rechnernetze

Theoretische Informatik

Informationstheorie Codierung und Datendarstellung Automatentheorie Formale Sprachen

Praktische Informatik

Algorithmen
Programmiersprachen und Compiler
Betriebssysteme
Softwaretechnik
Human-Machine-Interface (HMI)

Angewandte Informatik

Informationssysteme
Computergraphik
Künstliche Intelligenz
Signalverarbeitung
Simulation und Modellbildung
Büroautomation
Spezifische Anwendungen

Einführung in die Informatik und Rechnerarchitektur

Inhalt

Grundlagen der Informatik – Inhalt 1

Einführung

Zahlen & Textdarstellung Codierung

Boolesche Algebra

Gatter & Schaltnetze

Kombinatorische Schaltungen und ALU

Sequentielle Schaltungen Endliche Automaten

Grundlagen der Informatik – Inhalt 2

Speicherzelle & RAM

Register & Zähler

Busse & Datenpfade

CPU & ROM

Adressrechner

Grundlagen der Informatik – Inhalt 3

Grundlagen der Informatik

Literatur

- 1. H.P. Gumm M.Sommer, *Einführung in die Informatik*, Addison Wesley 2000/2008
- 2. A.S.Tanenbaum/J.Goodman, Computerarchitektur, Pearson Studium 2001
- 3. P. Rechenberg, Was ist Informatik?, Carl Hanser Verlag 1994
- 4. J. Blieberger, B.Burgstaller, G.H.Schildt, *Informatik Grundlagen*, Springer Verlag 2002
- 5. R. Backer, Programmiersprache Assembler, Eine strukturierte Einführung,
- 6. C. Mätin, Einführung in die Rechnerarchitektur, Hanser Verlag 2003,
- 7. H. Malz, Rechnerarchitektur, Vieweg-uni-script 2001