A2: CNN

Andrew Vasquez (avasquez56@csuchico.edu)

CSCI 611 - Applied Machine Learning Summer 2025

Bo Shen

2025-Jun-15

Part 1

As instructed the original image was sampled with the Sobel operator to detector both vertical and horizontal edges. Implemented the code defines the following kernels:

Against the 2x2 blurred image, resulting in these images:

An additional image, arc.jpg was tested against the 2x2 and 4x4 blur resulting in the following results:

```
# Read in the Arc image
arc = mpimg.imread('arc.jpg')
...
```

2x2

```
# Blur image with previously defined 2x2 kernel
ablur22 = cv2.filter2D(agray, -1, S2x2/4.0)
fig.add_subplot(5,1,3)
plt.imshow(ablur22, cmap='gray')
plt.title('Arc (Blur 2x2)')
```



```
# Blur with a 4x4 kernel
S4x4 = np.ones((4, 4), np.float32)

ablur44 = cv2.filter2D(agray, -1, S4x4/16.0)
fig.add_subplot(4,1,2)
plt.imshow(ablur44, cmap='gray')
plt.title('Arc (Blur 4x4)')
```


Arc (sobel vertical (blur 4x4))

Part 2

After several iterations of results, final results with 66% resulted with the following CNN, a dual convolution mapping the 3-segment image to 32 regions, pooling, then mapping the resultant segments to 16, both against a 5x5 kernel. Two RELU first map the resultant to 320 datasets, then to 128 datapoints. Then final activation function then performs a Sigmoid transformation against a final 10 with a dropout of 0.25, resulting in:

Net definition

```
Net(
   (conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1))
   (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1,
ceil_mode=False)
   (conv2): Conv2d(32, 16, kernel_size=(5, 5), stride=(1, 1))
   (fc1): Linear(in_features=400, out_features=320, bias=True)
   (fc2): Linear(in_features=320, out_features=128, bias=True)
   (fc3): Linear(in_features=128, out_features=10, bias=True)
   (dropout): Dropout(p=0.25, inplace=False)
)
```

Loss Optimizer

```
optimizer = optim.Adam(model.parameters(),lr=0.001)
```

Training

```
Epoch: 1
            Training Loss: 1.513372
                                      Validation Loss: 1.314815
Validation loss decreased (inf --> 1.314815). Saving model ...
            Training Loss: 1.214979
                                      Validation Loss: 1.126815
Epoch: 2
Validation loss decreased (1.314815 --> 1.126815). Saving model ...
Epoch: 3
            Training Loss: 1.062462
                                      Validation Loss: 1.091137
Validation loss decreased (1.126815 --> 1.091137). Saving model ...
Epoch: 4
            Training Loss: 0.953082
                                      Validation Loss: 1.040521
Validation loss decreased (1.091137 --> 1.040521). Saving model ...
Epoch: 5
            Training Loss: 0.875411 Validation Loss: 1.024898
Validation loss decreased (1.040521 --> 1.024898). Saving model ...
                                      Validation Loss: 0.978446
Epoch: 6
            Training Loss: 0.798122
Validation loss decreased (1.024898 --> 0.978446). Saving model ...
                                      Validation Loss: 0.985200
Epoch: 7
            Training Loss: 0.737508
Epoch: 8
            Training Loss: 0.680161
                                      Validation Loss: 1.032954
Epoch: 9
            Training Loss: 0.625557
                                      Validation Loss: 1.053352
Epoch: 10
            Training Loss: 0.569876
                                      Validation Loss: 1.071555
```

Accuracy

```
Test Loss: 1.011217

Test Accuracy of airplane: 64% (646/1000)

Test Accuracy of automobile: 79% (795/1000)

Test Accuracy of bird: 56% (569/1000)

Test Accuracy of cat: 48% (484/1000)
```

```
Test Accuracy of deer: 45% (459/1000)
Test Accuracy of dog: 49% (497/1000)
Test Accuracy of frog: 80% (801/1000)
Test Accuracy of horse: 69% (693/1000)
Test Accuracy of ship: 84% (848/1000)
Test Accuracy of truck: 73% (738/1000)
Test Accuracy (Overall): 65% (6530/10000)
```

ADAM optimizer enabled results beyond 60%+, but beyond 10 epoch iterations, additional computations did not assist in identification.

Summary

Overall, this was an effort in guessing and experimentation. Pragmatic analysis was minimal, at this point, based on known forms and instruction.