MÈTODES NUMÈRICS:

Ex-Reava 2019 (a)

Name and surnames:

(2) Consider the domain shown in the figure below, and with the elements, nodes and local and global numbering plotted there.

We want to solve the problem defined by the equation

$$-\frac{\partial}{\partial x}(a_{11}(x,y)\frac{\partial u}{\partial x}) - \frac{\partial}{\partial y}(a_{22}(x,y)\frac{\partial u}{\partial y}) = 0$$

where the coefficients a_{11} and a_{22} are different depending on the element and are given by:

$$a_{11}(x,y) = a_{22}(x,y) = 2$$
, on Ω^1, Ω^2
 $a_{11}(x,y) = 21y$, and $a_{22}(x,y) = \frac{6}{5}(1+x)$ on Ω^3

with boundary conditions given by:

- At the line that joints nodes 2 and 5, we have: $\frac{\partial u}{\partial x}(1,y)=1$
- u = 3 at the nodes 1,2,3,5.

Hint. You can use that
$$\iint_{\Omega^3} y dx dy = \frac{2}{3}$$
 and $\iint_{\Omega^3} (1+x) dx dy = \frac{5}{6}$ Then, compute:

- (i) The stiffness matrix of the elements $\Omega^1, \, \Omega^2.$
- (ii) The shape functions of element Ω^3 .
- (iii) The stiffness matrix of the element Ω^3
- (iv) The 4th row of the global stiff matrix.
- (v) The value of the coefficient Q_{21}^2 .
- (vi) The value of the coefficients for Q_{22}^3 .
- (vii) The value of U_4 .

Results:	
$[K^1] =$	$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$
$[K^2] =$	$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$
Shape functions =	$\psi_1^3(x,y) = 1 - x, \psi_2^3(x,y) = 1 + x - y, \psi_3^3(x,y) = y - 1$
$[K^3] =$	$\begin{pmatrix} 14 & -14 & 0 \\ -14 & 15 & -1 \\ 0 & -1 & 1 \end{pmatrix}$
4th row:	0, -1, -15, 17, -1
$Q_{21}^2 =$	1
$Q_{22}^3 =$	14
U_4 =	198/51=3.884

 Hint . For the 4th row $K_{43} = -15$

(2 points)

(i) Stiffness matrix of the elements
$$\Omega^{2}, \Omega^{2}$$
:
TZ-MN-FEMZD. pdf, page 48

$$k = \frac{c}{2ab} \begin{pmatrix} b^2 - b^2 & 0 \\ -b^2 & a^2 + b^2 - a^2 \\ 0 & -a^2 & a^2 \end{pmatrix}$$

$$k^{4} = \mathbb{Z} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} = k^{2}$$

$$\psi_{i}^{3}(x,y) = a_{i} + \frac{\beta i}{2A_{3}} \times + \frac{\delta i}{2A_{3}} y \cdot i = 1,2,3$$

* Az = area of triangle
$$\Omega^3$$
: Az = $m(\Omega^3) = \frac{1.1}{2} = \frac{1}{2}$

*
$$\beta_i^* = \gamma_j - \gamma_k$$
, $\delta_i^* = -(x_j - x_k)$, with $i,j,k = 1,2,3$ and eyelic permutations

1 1
$$\beta_2 = \gamma_3 - \gamma_1 = 2 - 1 = 1$$
, $\delta_2 = -(x_3 - x_1) = -(1 - 0) = -1$

1 2
$$\beta_3 = y_1 - y_2 = 1 - 1 = 0$$
, $\delta_3 = -(x_1 - x_2) = -(0 - 1) = 1$.

$$V_1^3(x,y) = q_1 - x : V_1^3(0,1) = q_1 - 0 = 1 \implies V_1^3(x,y) = 1 - x$$

$$\Psi_2^3(x,y) = 2 + x - y$$
: $\Psi_2^3(1,1) = 2 + 0 = 1 \implies \Psi_2^3(x,y) = 1 + x - y$

$$\Psi_3^3(xy) = a_3 + y$$
: $\Psi_3^3(1/2) = a_3 + 2 = 1 \Rightarrow \Psi_3^3(x,y) = y - 1$

$$\begin{cases}
3,11 \\
ij = \iint a_{11}(x,y) \frac{\partial \psi_{i}^{k}}{\partial x}(x,y) \frac{\partial \psi_{i}^{k}}{\partial y}(x,y) dxdy = \frac{z_{1}}{4A_{3}^{z}} \beta_{i}\beta_{j} \iint y dxdy \\
\frac{\partial x}{\partial x} \frac{z_{1}}{1} \cdot \frac{z}{3} \cdot \beta_{i}\beta_{j} = 14 \beta_{i}\beta_{j} \\
A_{3} = \frac{y}{3}
\end{cases}$$

$$(x) \iint_{-2}^{2} y \, dx \, dy = \int_{0}^{1} dx \int_{1}^{4+x} y \, dy = \frac{1}{2} \int_{0}^{1} (1+x)^{2} - 1 \, dx = \frac{1}{2} \int_{0}^{1} (x^{2} + 2x) \, dx = \frac{1}{2} \left(\frac{x^{3}}{3} + x^{2} \right) \Big|_{0}^{1}$$

$$= \frac{1}{2} \left(\frac{1}{3} + 1 \right) = \frac{7}{3}$$

$$|x|^{3,11} = 14 \binom{\beta_{1}}{\beta_{2}} (\beta_{1}, \beta_{2}, \beta_{3}) = 14 \binom{-1}{4} \binom{-1}{4} (-14) = \binom{14 - 14}{4} \binom{0}{0} (-14) = \binom{0}{0} \binom{0$$

$$(V) \quad s \in [0, h_{1}^{1}] = [0, 1] \longmapsto \delta_{1}^{1}(s) = (1, s) \in \Gamma_{1}^{2}$$

$$q_{\eta, 1}^{2}(s) = \begin{pmatrix} q_{\eta}(1, s) & 0 \\ 0 & q_{22}(1, s) \end{pmatrix} \begin{pmatrix} \frac{\partial q}{\partial x}(1, s) \\ \frac{\partial q}{\partial y}(1, s) \end{pmatrix}, \stackrel{\rightarrow}{e_{1}}$$

$$\begin{cases} q_{11}(1,s) = q_{22}(1,s) \equiv Z \\ \frac{\partial u}{\partial x}(1,s) = 1 \end{cases} = \begin{pmatrix} z & 0 \\ 0 & Z \end{pmatrix} \begin{pmatrix} 1 \\ * \end{pmatrix} \cdot \vec{e}_1 = (2,*) \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 2$$

$$Q_{21}^{4} = \int_{\Gamma_{1}^{2}} q_{n,4}^{2}(s) \psi_{21}^{2}(s) ds = \int_{0}^{h_{1}^{2}=1} z \cdot s ds = 1$$

Remark: it's a linear flow, so Q21 = 29mily = 1.2.1 = 1

$$(vi) \quad S \in [o, h_{2}^{3}] = [o, 1] \longrightarrow \chi_{2}^{3}(s) = (1, 1+s)$$

$$q_{n/2}^{3}(s) = \begin{pmatrix} q_{11}(1, 1+s) & 0 \\ 0 & A_{22}(1, 1+s) \end{pmatrix} \begin{pmatrix} \frac{24}{23}(1, 1+s) \\ \frac{24}{23}(1, 1+s) \end{pmatrix} \cdot \vec{e}_{1}$$

$$= \begin{pmatrix} a_{11}(1, 1+s) & \frac{24}{23}(1, 1+s) \\ 0 & \frac{3}{22} & \frac{3}{22} & \frac{3}{22}(1, 1+s) \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 21(1+s) \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 21(1+s) \end{pmatrix} \cdot o \leq s \leq h_{2}^{3} = 1$$

$$Q_{22}^{3} = \int_{\Gamma_{2}^{3}} q_{n/2}^{3}(s) V_{2/2}^{3}(s) ds = 21 \int_{0}^{1} (1+s)(1-s) ds = 21 \int_{0}^{1} (1-s^{2}) ds$$

$$= 21(1-\frac{1}{3}) = 14$$

Remark: actually it's a linear flow, so $Q_{ZZ}^3 = \frac{1}{3} q_{n,2}^3(0) \cdot h_z^3 + \frac{1}{6} q_{n,2}^3(h_z^3) h_z^3 = \frac{21}{3} (1+0) \cdot 1 + \frac{21}{6} (1+1) \cdot 1 = 7+7=14$

$$(Vil)$$

$$(0 -1 -15 17 -1) \cdot \begin{pmatrix} U_1 = 3 \\ U_2 = 3 \\ U_3 = 3 \end{pmatrix} = Q_4 = Q_{21}^2 + Q_{22}^3 = 1 + 14 = 15$$

$$(Vil)$$

$$(0 -1 -15 17 -1) \cdot \begin{pmatrix} U_1 = 3 \\ U_2 = 3 \\ U_4 \\ U_5 = 3 \end{pmatrix}$$

$$\Leftrightarrow$$
 -3-45 +17 V_3 -3 = -51 +17 V_4 = 15 \Leftrightarrow 17 V_4 = 66

Therefore: U4 = 66 = 3.882 0

