KMeans clustering:

kmeans algorithm will do the three steps below until convergence.

- 1. Determine the centroid co-ordinate
- 2. Determine the distance of each object to the
- 3. Group the object based on minimum distance.

Problem on kmeans clustering:-

1) consider a set of five 2-dimensional points whereas apposition will do the trace (0,0) =1910

$$P_3 = (S, I)$$

$$P_4 = (0, I)$$

2- Determine His distance of each (2.0,0) = 1-8 Apply the K-means algorithm to cluster these points into two clusters. The initial cluster centers are P, and Ps.

A) STEP-1: - Initializing clustes centers. Given that the cluster centers are P, and Ps STEP-2:- Compute distances and Adjust cluster centers.

Itexation -1:-

Adjusting clustex (entexs; --

Centex - CI-new =
$$(0+5)$$
, $0+0$) = $(2:5,0)$

Centex - $(2-new)$ = $(0+5+0)$, $0:5+1+1$) = $(\frac{5}{3},\frac{2:5}{3})$

Itesation.	(0,0) Pi (0,0)	P ₂	P3 (5,1)	P4 (0,1)	Ps- (0,0.5)
(1:5,0)	16.52	16.22	17.25	\ 7·2 5	V6.5
(2-Ven)	F4.EV	111.8	111.18	128	12.88

Adjusting cluster Centers: -

Centes -
$$C_1$$
 - $new = (5+5, 0+1) = (5, 0.5)$

Centes_
$$(2-new = (\frac{0+0+0}{3}, \frac{0+1+0.5}{3}) = (0, 0.5)$$

Itexation -3:-

	P, (0,0)	(2,0) 	(5,1)	P4 (0,1)	Ps- (0,0.5)
4-new (5,05)	125.25	10.25	10.25	125.25	J 25
(0,0.5)	1	125.25		10.52	10

- Compasing the grouping of last iteration severals that the objects does not move group anymore. Thus, the computation of the k-means clustering has reached its stability and no more iteration is needed.
- . We get the final grouping as the results $C_1 = \frac{2}{2}P_2, P_3\frac{2}{3}$; $C_2 = \frac{2}{2}P_1, P_4, P_5\frac{2}{3}$