Math 215, Spring 2018 - Assignment # 9

Name: Hieu Tran

11.1	Exercise 8: Define a relation on \mathbb{Z} as xRy if $ x-y < 1$. Is R reflexive? Symmetric? Transitive? If a property does not hold, say why. What familiar relation is this?
	<i>Proof.</i> Relation R is reflexive, because if $n \in \mathbb{Z}$, then $ n - n = 0 < 1$, so nRn .

Relation R is symmetric, because if $m, n \in \mathbb{Z}$ such that mRn, then $|n-m| = |m-n| \le 1$, and so nRm. Relation R is transitive, because |x-y| < 1 for $x, y \in \mathbb{Z}$ when x = y. Thus, suppose aRb and bRa, then we must have a = b = a. So |a| = 0 < 1, that means aRa.

Relation R is transitive, because |x-y| < 1 for $x, y \in \mathbb{Z}$ when x = y. Thus, suppose aRb and bRc, then we must have a = b = c. So |a-c| = 0 < 1, that means aRc. Therefore, R is transitive.

11.1 Exercise 12: Prove that the relation | (divides) on the set \mathbb{Z} is reflexive and transitive.

Proof. Relation | is reflexive because $x|x \ \forall x \in \mathbb{Z}$.

We will show that | is transitive. Suppose x|y and y|z. That means y=ax and z=by for some integers a,b. Thus we have z=by=b(ax)=(ba)x, that means x|z. Therefore | is reflexive. \Box

11.2 **Exercise 6:** There are five different equivalence relations on the set $A = \{a, b, c\}$. Describe them all. Diagrams will suffice.

Proof.

11.2 **Exercise 8:** Define a relation R on \mathbb{Z} as xRy if and only if $x^2 + y^2$ is even. Prove R is an equivalence relation. Describe its equivalence classes.

Proof. To show that R is an equivalence relation, we must show that R is reflexive, symmetric, and transitive.

If $x \in \mathbb{Z}$, then $x^2 + x^2 = 2x^2$ and since $x^2 \in \mathbb{Z}$, $x^2 + x^2$ is even, we have xRx and so R is reflexive.

Suppose that $x, y \in \mathbb{Z}$ such that xRy. Then we have $x^2 + y^2 = y^2 + x^2$ is even. So yRx, and R is symmetric.

Suppose that $x, y, z \in \mathbb{Z}$ such that xRy and yRz. Then $x^2 + y^2$ is even and $y^2 + z^2$ is even. So, $x^2 + y^2 = 2a$ and $y^2 + z^2 = 2b$ for some integers a and b. Then we have that $x^2 = 2ay^2$ and $z^2 = 2b - y^2$, so $x^2 + z^2 = 2a - y^2 + 2b - y^2 = 2(a + b - y^2)$. Since $a + by \in \mathbb{Z}$, $x^2 + y^2$ is even and so xRz. Therefore, R is transitive.

The distinct equivalence classes of R are:

 $[0] = \{ x \in \mathbb{Z} : x \text{ is even} \}$

 $[1] = \{x \in \mathbb{Z} : x \text{ is odd}\}$

11.3 **Exercise 6:** List all the partitions of the set $A = \{a, b, c\}$.

Proof.
$$\{\{a\}, \{b\}, \{c\}\}, \{\{a\}, \{b, c\}\}, \{\{a, b\}, \{c\}\}, \{\{a, c\}, b\}, \{\{a, b, c\}\}$$

11.4 Exercise 2: Write the addition and multiplication tables for \mathbb{Z}_3 .

Proof. Addition table for \mathbb{Z}_3 :

+	[0]	[1]	[2]
[0]	[0]	[1]	[2]
[1]	[1]	[2]	[0]
[2]	[2]	[0]	[1]

Multiplication table for \mathbb{Z}_3 :

	[0]	[1]	[2]
[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]
[2]	[0]	[2]	[1]

11.4 **Exercise 6:** Suppose $[a], [b] \in \mathbb{Z}_6$ and $[a] \cdot [b] = [0]$. Is it necessarily true that either [a] = [0] or [b] = [0]?.

Proof. No because we have $[2],[3] \in \mathbb{Z}_6$ and $[2] \cdot [3] = [0]$ but both $[2] \neq [0]$ and $[3] \neq [0]$.