ALL SAINTS'

Year 12 Mathematics Specialist 2017

Test Number 2: Functions and Graph Sketching Resource Free

Name:	Solutions	Teacher: DDA

Marks: 20

Time Allowed: 22 minutes

<u>Instructions:</u> You **ARE NOT** permitted any notes or calculator. Show your working where appropriate remembering you must show working for questions worth more than 2 marks.

Question 1 [3 marks]

If $f(x)=1+\sqrt{x-2}$ determine the formula for $f^{-1}(x)$ the inverse of f(x), and state its domain and range.

Question 2 [3 marks]

State the domain and range of gof(x) if $f(x)=5\sqrt{x}$ and $g(x)=x^2+x$.

$$g \circ f = g(5\sqrt{x}) = (5\sqrt{x})^{2} + 5\sqrt{x}$$

$$= 25 \times + 5\sqrt{x} \times$$

$$Domain = \left\{ x : x \in \mathbb{R}; x \geq 0 \right\}$$

$$Range = \left\{ y : y \in \mathbb{R}; y \geq 0 \right\}$$

Question 3 [2, 2, 2, 1 = 7 marks]

- a) On the graph below accurately draw: y=|x-2| and y=|x+4|
- b) Using these, or otherwise, draw y=|x-2|-|x+4|
- c) Express this as a piecewise function f(x).

$$f(x) = \begin{cases} 6x \leftarrow 4 \\ -2x - 2 - 4 \le x \le 2 \\ -6x > 2 \end{cases}$$

d) Use your graph to find the values of x which satisfy: $|x-2|-|x+4| \ge 3$

$$x \le -2.5$$

Question 4 [2 marks]

Sketch the graph y=-|x|+2

1 invested

Question 5 [2, 1 = 3 marks]

Sketch the graph of $f(x) = \frac{1}{|x-1|}$. Write the domain of f(x).

Must show

- (1,1) \$ (-1,1)
- · Asymptole

Domain = {x: n∈R; x≠1}

Question 6 [2 marks]

Sketch the graph of y = f(|x|) given that $f(x) = \ln(x-1)$ as shown on the graph below.

Year 12 Mathematics Specialist 2017

Test Number 2: Functions and Graph Sketching

Resource Rich

Name:	Solutions		7	eacher: DDA	
Marks:	20				
Time Allowed:	23 minutes				
		_	= = = = = = = = = = = = = = = = = = =	lculators. Show your working ons worth more than 2 marks.	
Question 7				[1 mark	(]
Circle all of the cl	noices A-E which are tru	ue of the	following stateme	ent.	
A function can be	e identified as one-to-on	e if, for a	III values in the do	omain,	
	$\frac{dy}{dx} > 0$	С	$\frac{d^2y}{dx^2} > 0$	ned both	
$\mathbf{D} \frac{d^{2}y}{dx^{2}} < 0$	$\frac{dy}{\mathbf{E}} < 0$				
Question 8				[1, 2 = 3 mar	k

Is the function $f(x)=(x-1)^3+x^2$ one-to-one?

Justify your answer.

$$f'(x) = 3(x-1)^2 + 2x = 3(x^2-2x+1) + 2x$$

 $= 3x^2-6x+3+2x$
 $f'(x) = 3x^2-4x+3$
 $\Delta = 6^2-4ac$
 $= 16-4(9)$
 $= 16-56$
 $= -20$
 $\therefore \text{ no real soluts.}$
 $a > 0 \therefore 0$
 $\therefore \beta'(x) > 0 \text{ always.} \therefore f(x) \text{ is one-to-one.}$

Given
$$f(x) = \frac{x^2 - 2x + 3}{x - 1}$$

- a) Find the following:
 - i) Intercepts: (0,-3)

no x-interepts.

ii) Vertical asymptotes:

when
$$x-1=0$$

i.e. $x=1$

iii) Behaviour of f(x) as $x \to \pm \infty$ (including any oblique asymptotes):

$$\begin{array}{c} x - 1 \\ \hline \begin{array}{c} x^2 - 2x + 3 \\ \hline \begin{array}{c} x^2 - x \end{array} \end{array} \\ -x + 3 \\ \hline \begin{array}{c} -x + 3 \\ \hline \end{array} \\ \end{array} \qquad \text{or} \qquad \begin{array}{c} \text{propFrac}(\frac{x^2 - 2x + 3}{x - 1}) \\ \hline \end{array}$$

$$\frac{x^{2}-2x+3}{2x-1} = x-1 + \frac{2}{x-1}$$

$$\therefore As x \rightarrow \pm \infty, f(x) \rightarrow x-1$$

$$Oblique asymble at y=x-1$$

iv) Stationary points (accurate to 1 d.p.):

diff
$$(\frac{x^{*2}-2x+3}{x-1})$$

$$\frac{x^{2}-2\cdot x-1}{(x-1)^{2}}$$

solve $(\{x=-\sqrt{2}+1, x=\sqrt{2}+1\}\}$

$$\frac{x^{2}-2x+3}{x-1} | x=-\sqrt{2}+1$$

$$\frac{-\sqrt{2}\cdot ((\sqrt{2}-1)^{2}+2\cdot (\sqrt{2}-1)+3)}{2}$$

simplify $((x-2)\cdot (\sqrt{2}+1)^{2}-2\cdot (\sqrt{2}+1)+3)$

$$\frac{x^{2}-2x+3}{x-1} | x=\sqrt{2}+1$$

$$\frac{\sqrt{2}\cdot ((\sqrt{2}+1)^{2}-2\cdot (\sqrt{2}+1)+3)}{2}$$

simplify $((x-2)\cdot ((\sqrt{2}+1)^{2}-2\cdot (\sqrt{2}+1)+3))$

simplify $((x-2)\cdot ((\sqrt{2}+1)^{2}-2\cdot (\sqrt{2}+1)+3))$

 $2 \cdot \sqrt{2}$

When
$$f(x) = 0$$

 $f(x) = \frac{x^2 - 2x - 1}{(x - 1)^2} = 0$
 $\Rightarrow x = 1 \pm \sqrt{2}$
Pts: $(1 + \sqrt{2}, 2\sqrt{2}) = (24, 28)$
Approx $(1 - \sqrt{2}, -2\sqrt{2}) = (-0.4, -28)$

b) Hence, sketch the graph of $f(x) = \frac{x^2 - 2x + 3}{x - 1}$.

Required:

- y-int
- 2 asymptotes
- TPs
- Sketched in with arrows

Question 10 [3 marks]

If the number line drawn below represents the solution to the equation $|x+k|-2 \cdot p$, where \cdot represents an inequality symbol find the values of p and k and also determine which symbol \cdot represents. $|x+k| \cdot p+2$

Question 11 [3 marks]

Given that a|x|+b=|2x-3| is true for $0 \le x \le 1.5$ only, what are the values of a and b? You may wish to use the grid below.

