

# Melbourne Airbnb Price Prediction

Tiancheng Cai, Kevin Han, Han Wu {caitch, kevinwh, hanwu71}@stanford.edu

## Problem & Task

#### Motivation

• Ensuring fair pricing directly affects booking activities on Airbnb and the experience of hosts and customers.

### Problem: Price Prediction in Original Scale

- Goal: predict price for Melbourne listings on Airbnb.
- Train both traditional ML models and deep learning models using continuous, categorical and text features, with R2 and MSE as evaluation metrics.
- Previous projects [1][2] only work on easier version of the task (transform to binary classification problem or evaluate on logarithmic scale of prices).

#### Results

- Gradient boosting with all features perform the best, while feature selection improves the performance of Random Forest.
- DL model using all features (continuous, categorical and text) achieves comparable accuracy, and DL model using text features alone also shows reasonable performance.

## Dataset

## **DATASET: Public Dataset on Kaggle**

- A CSV file with 84 columns containing detailed information of 22985 Airbnb listings in Melbourne on Dec 8th 2018.
- A CSV file containing all 469737 reviews for the corresponding Airbnb listings in Melbourne on Dec 8th 2018.

## RESPONSE VARIABLE: Price for Each Listing

- Consider listings with price <= \$1000.
- Use original listing price without changing the scale.



Figure 1: Geographical distribution of prices

#### Features

#### **Continuous Features**

• Include latitude, longitude, number of bedrooms, review scores, available days in future 30 days, etc.

#### **Categorical Features**

- Include amenities, types of listing, neighborhood, etc.
- Convert into one-hot encodings.
- Expand descriptive strings such as amenities (offered by a listing) into a number of categorical features.

#### **Text Features**

- Use description and reviews in the original dataset.
- Use GloVe50 Word Embedding for input layer.

#### Feature selection with LASSO

• Select 80 out of 155 features for selected models.

## Models

#### Traditional Machine Learning Models

- Linear Regression
- Ridge Regression ( $\lambda = 100$ )

$$\underset{\beta}{\operatorname{arg\,min}} \sum_{i=1}^{N} (y_i - x_i^T \beta)^2 + \lambda ||\beta||_2^2$$

- Random Forest (max feature=10, unlimited depth, 1000 estimators)
- Support Vector Regression

$$\begin{split} \underset{w,b,\xi_i}{\arg\min} & \quad \frac{1}{2}||w||^2 + C\sum_{i=1}^N \xi_i \\ \text{subject to} & \quad y_i - w^T \phi(x_i) - b \leq \epsilon + \xi_i \quad \forall i = 1, N \\ & \quad w^T \phi(x_i) + b - y_i \leq \epsilon + \xi_i \quad \forall i = 1, N \\ & \quad \xi_i \geq 0 \quad \forall i = 1, N \end{split}$$

## Deep Learning Models

- Using continuous/categorical features only
- Using text features (comment/ description) only
- Using Combined features (Figure 1, lr = 0.001, with Adam Optimizer)

## DL hyper-parameters tuning

• random search, early stopping

Figure 2: Combined model pipeline.
Continuous and categorical features on the left, text features on the right

- Gradient Boosting (max depth=7, max features=6, 200 estimators)
- Model Averaging (Random Forest, Gradient Boosting)

## ML hyper-parameters tuning

• random search with 5-fold cross validation



## Results

| Machine Learning Models      |                            | Test MSE  | Test R2 | Training MSE |
|------------------------------|----------------------------|-----------|---------|--------------|
| No Feature Selection         | Linear Regression          | 6460.7976 | 0.5046  | 7087.0750    |
|                              | Ridge Regression           | 6460.7368 | 0.5046  | 7087.4613    |
|                              | Random Forest              | 4513.5144 | 0.6539  | 761.5576     |
|                              | Gradient Boosting          | 4024.7052 | 0.6914  | 2468.5471    |
|                              | Support Vector Regression  | 5246.2777 | 0.5977  | 4878.6639    |
| Feature Selection with LASSO | Linear Regression          | 6800.5157 | 0.4786  | 7484.7884    |
|                              | Ridge Regression           | 6800.8531 | 0.4786  | 7485.6137    |
|                              | Random Forest              | 4422.7124 | 0.6609  | 789.7775     |
|                              | Gradient Boosting          | 4156.5544 | 0.6813  | 2392.1191    |
|                              | Support Vector Regression  | 5459.5413 | 0.5814  | 5296.0410    |
| Deep Learning Models         |                            | Test MSE  | Test R2 | Training MSE |
| Original Features            | Four-Layer Feedfowrad NN   | 4632.5926 | 0.6448  | 4197.0896    |
| Text Data Only               | Using Description          | 8523.1239 | 0.3465  | 1599.9195    |
|                              | Using Description + Review | 5467.3576 | 0.4717  | 2301.7509    |

#### Data split

- Continuous/Categorical:Train (18179, , 70%)
- Dev (2273, 15%)
- Test (2273, 15%)

## Text (description, comments):

- Train (388175)
- Dev (51444)
- Test (45797)

Discussion



Table 1: Results from traditional ML and DL Models

- Our best model tends to underestimate the price of listings with higher prices.
- If we instead consider listings with price <= \$500 only, we would achieve significant improvements. (e.g. MSE on test set with Deep Learning model using only descriptions and reviews drops to 2894.2764).

Figure 3: Actual prices against best predictions by Gradient Boosting on test set

## Future Work

## Machine learning models

- Explore more ML models, and perform more careful feature feature selection and hyper-parameter tuning.
- Try out two-step modeling. Divide training sets into K groups based on price range and build separate models for each group. Classify group label and then run price regression.

## Deep learning models

- Use more complex NLP models.
- Perform more hyper-parameter tunings.

## Reference

[1] P. R. Kalehbasti, L. Nikolenko, and H. Rezaei. Airbnb price prediction using machine learning and sentiment analysis, 2019.[2] E. Tang and K. Sangani. Neighborhood and price prediction for san francisco airbnb listings. CS 229 Final Project Report, 2015.