Balance

Balancing Operations

Balancing Methods

COMP2521 25T1 Balancing Binary Search Trees

Kevin Luxa

cs2521@cse.unsw.edu.au

balancing operations balancing methods

Balance

Balancing Operations

Balancing Methods Height of a tree: Maximum path length from the root node to a leaf

- The height of an empty tree is considered to be -1
- The height of the following tree is 3

BSTs Recap

Balance

Balancing Operations

Balancing Methods The structure, height, and hence performance of a binary search tree

The Best Case

BSTs Recap

Balance

Balancing Operations

Balancing Methods

Best case

Items are inserted evenly on the left and right throughout the tree Height of tree will be $O(\log n)$

The Worst Case

BSTs Recap

Balance

Balancing Operations

Balancing Methods

Worst case

Items are inserted in ascending or descending order such that tree consists of a single branch Height of tree will be O(n)

BSTs Recap

Balance

Balancing Operations

Balancing Methods

A binary tree of n nodes is said to be balanced if its height is minimal (or close to minimal) ($O(\log n)$), and degenerate if it its height is maximal (or close to maximal) (O(n)).

Types of Balance

BSTs Recap

Balance

Examples

Balancing Operations

Balancing Methods

SIZE-BALANCED

a size-balanced tree has, for every node,

$$|\text{SIZE}(l) - \text{SIZE}(r)| \le 1$$

HEIGHT-BALANCED

a *height-balanced* tree has, for every node,

$$|\text{HEIGHT}(l) - \text{HEIGHT}(r)| \le 1$$

Balance

Examples

Balancing Operations

Balancing Methods

Size-balanced?

Height-balanced?

Balance

Examples

Balancing Operations

Balancing Methods

Size-balanced? Yes Height-balanced?

For every node, $|\operatorname{SIZE}(l) - \operatorname{SIZE}(r)| \leq 1$

Balance Examples

Balancing Operations

Balancing Methods

Size-balanced? Yes

For every node, $|\text{SIZE}(l) - \text{SIZE}(r)| \leq 1$

Height-balanced? Yes

For every node, $\left|\text{HEIGHT}\left(l\right) - \text{HEIGHT}\left(r\right)\right| \leq 1$

Types of Balance

Example

BSTs Recap

Balance Examples

Balancing Operations

Balancing Methods

Size-balanced?

Height-balanced?

Balance Examples

Balancing

Operations

Balancing Methods

Size-balanced?

At node 4, |SIZE(l) - SIZE(r)|= |3 - 1| = 2 > 1 Height-balanced?

Balance Examples

Balancing Operations

Balancing Methods

Size-balanced?

At node 4,
$$|\operatorname{SIZE}(l) - \operatorname{SIZE}(r)|$$
$$= |3 - 1| = 2 > 1$$

Height-balanced? Yes

For every node, $\left|\text{HEIGHT}\left(l\right) - \text{HEIGHT}\left(r\right)\right| \leq 1$

Types of Balance

Example

BSTs Recap

Balance Examples

Balancing

Operations

Balancing Methods

Size-balanced?

Height-balanced?

Balance Examples

Balancing Operations

Balancing Methods

Size-balanced?

At node 3, |SIZE(l) - SIZE(r)|= |2 - 0| = 2 > 1 Height-balanced?

Balance Examples

Balancing Operations

Balancing Methods

Size-balanced?

At node 3,
$$|\operatorname{SIZE}(l) - \operatorname{SIZE}(r)|$$
$$= |2 - 0| = 2 > 1$$

Height-balanced?

At node 3, $\begin{aligned} &|\text{HEIGHT}\left(l\right) - \text{HEIGHT}\left(r\right)| \\ &= |1 - (-1)| = 2 > 1 \end{aligned}$

Balance

Balancing Operations

Partitio

Balancing Methods

Rotation

- Left rotation
- Right rotation

Partition

• Rearrange tree around a specified node by rotating it up to the root

Balance

Balancing Operations

Rotations

Examples Implementation

Analysis

Balancing Methods

LEFT ROTATION and RIGHT ROTATION: a pair of operations that change the balance of a tree

Balance

Balancing Operations

Rotations

Examples Implementation Analysis

Balancing Methods

Rotations maintain the order of a search tree:

(all values in t_1) $< n_2 <$ (all values in t_2) $< n_1 <$ (all values in t_3)

Balance

Balancing Operations

Rotations

Examples

Implement

Analysis Partition

Balancing Methods

Rotate right at 5

Balance

Balancing Operations

Rotations

Examples

. . .

Analysis Partition

Balancing Methods

Rotate right at 5

Balance

Balancing Operations

Rotations

Examples

taratana.

Analysis Partition

Balancing Methods

Rotate left at 3

Balance

Balancing Operations

Rotations

Examples

Implemen

Analysis Partition

Balancing Methods

Rotate left at 3

BSTs Recap Balance

Balancing Operations

Rotations

Examples

Analysis Partition

Balancing Methods

Rotate right at 23

BSTs Recap Balance

Balancing

Operations
Rotations

Examples

Implemen

Analysis Partition

Balancing Methods

Rotate right at 23

BSTs Recap

Balancing Operations

Rotations Examples

Implementation Analysis

```
struct node *rotateRight(struct node *root) {
    if (root == NULL || root->left == NULL) return root;
    struct node *newRoot = root->left;
    root->left = newRoot->right;
    newRoot->right = root;
    return newRoot;
struct node *rotateLeft(struct node *root) {
    if (root == NULL || root->right == NULL) return root;
    struct node *newRoot = root->right;
    root->right = newRoot->left;
   newRoot->left = root;
    return newRoot;
```

Balancing Operations

Rotations

Implementation

Analysis

Balancing Methods

```
struct node *rotateRight(struct node *root) {
   if (root == NULL || root->left == NULL) return root;
```

}


```
BSTs Recap
```

Balance Balancing

Operations
Rotations

Implementation

Analysis

```
struct node *rotateRight(struct node *root) {
   if (root == NULL || root->left == NULL) return root;
   struct node *newRoot = root->left;
```


BSTs Recap

Balance

Balancing Operations

Rotations

Implementation

Analysis

Analysis Partition

```
struct node *rotateRight(struct node *root) {
   if (root == NULL || root->left == NULL) return root;
   struct node *newRoot = root->left;
   root->left = newRoot->right;
}
```


BSTs Recap

Balance

Balancing Operations

Rotations

Implementation

Analysis

Analysis Partition

```
struct node *rotateRight(struct node *root) {
    if (root == NULL || root->left == NULL) return root;
    struct node *newRoot = root->left;
    root->left = newRoot->right;
    newRoot->right = root;
}
```


BSTs Recap

Balance Balancing

Operations

Rotatio

Implementation

Analysis

```
struct node *rotateRight(struct node *root) {
    if (root == NULL || root->left == NULL) return root;
    struct node *newRoot = root->left;
    root->left = newRoot->right;
    newRoot->right = root;
    return newRoot;
}
```


Rotations Analysis

BSTs Recap

Balance

Balancing Operations

Examples

Analysis

Balancing Methods

Time complexity: O(1)

• Rotation requires only a few localised pointer re-arrangements

Balance

Balancing Operations

Partition

Balancing Methods

partition(tree, i)

Rearrange the tree so that the element with index i becomes the root

Balance

Balancing Operation

Partition

Pseudoco

Balancing Methods

Method:

- Find element with index i
- Perform rotations to lift it to the root
 - If it is the left child of its parent, perform right rotation at its parent
 - If it is the right child of its parent, perform left rotation at its parent
 - Repeat until it is at the root of the tree

Balance

Balancing Operations

Rotations

Example

Pseudoco

Analysis

Balancing Methods

Partition this tree around index 3:

Balance

Balancing Operations

Rotations

Example

Pseudoco Analysis

Balancing Methods

Partition this tree around index 3:

Balancing Operations

Rotations Partition

Example

Analysis

Balancing Methods

After right rotation at 30:

Balance

Balancing Operations

Rotations Partition

Example

Analysis

Balancing Methods

After left rotation at 14:

Balancing Operations

Rotations Partition

Example

Analysis

Balancing Methods

After left rotation at 10:


```
BSTs Recap
```

Balance

Balancing Operations

Rotations Partition

Example

Pseudocode

Balancing Methods

```
partition(t, i):
    Input: tree t, index i
    Output: tree with i-th item moved to root
    leftSize = size(t->left)
    if i < leftSize:
        t->left = partition(t->left, i)
        t = rotateRight(t)
    else if i > leftSize:
        t->right = partition(t->right, i - leftSize - 1)
        t = rotateLeft(t)
    return t
```

Balance

Balancing Operations Rotations

Partition Example

Pseudocode

Analysis

Balancing Methods

Partition this tree around index 4

Balance Balancing

Operations
Rotations

Partition

Pseudocode

Analysis

Balancing Methods Size of left subtree is 6, and 4 < 6...

Balance

Balancing Operations

Rotations

Example

Pseudocode Analysis

Balancing Methods Size of left subtree is 6, and 4 < 6... so partition left subtree around index 4 and then rotate right at 13

Balance

Balancing Operations

Rotations Partition

Pseudocode Analysis

Balancing Methods

Size of left subtree is 2, and 4 > 2...

Balance

Balancing Operations

Rotations Partition

Pseudocode

Analysis

Balancing Methods Size of left subtree is 2, and 4 > 2... so partition right subtree around index (4 - 2 - 1 = 1) and then rotate left at 5

Balance

Balancing Operations

Rotations

Example

Pseudocode Analysis

Balancing Methods

Size of left subtree is 1, and 1 = 1...

BSTs Recap Balance

Balancing

Operations
Rotations

Example

Pseudocode Analysis

Balancing Methods

Size of left subtree is 1, and 1 = 1... so we have found the desired node

Balance Balancing

Operations
Rotations

Example

Pseudocode Analysis

Balancing Methods

Unwinding... Rotate left at 5

BSTs Recap Balance

Balancing Operations

Rotations

Exampl

Pseudocode Analysis

Balancing Methods

Unwinding... Rotate right at 13

Balance

Balancing Operations

Rotations Partition

Example

Pseudocode Analysis

Balancing Methods

Partition Analysis

BSTs Recap

Balance Analysis:

Balancing Operations

Rotations
Partition
Example
Pseudocode
Analysis

Balancing Methods

- size() operation is expensive
- Can cause partition to be $O(n^2)$ in the worst case
 - For example, in the following tree:

Balance

Balancing Operation

Rotations
Partition
Example
Pseudocod
Analysis

Balancing Methods

Analysis (continued):

- To improve efficiency, can change node structure so that each node stores the size of its subtree in the node itself
 - However, this will require extra work in other functions to maintain

```
struct node {
    int item;
    struct node *left;
    struct node *right;
    int size;
};
```

Balance

Balancing Operation

Balancing Methods

Global Rebalancing Local Rebalancing Summary

Two categories:

GLOBAL REBALANCING

visit every node and balance its subtree; ⇒ perfectly balanced tree — at cost.

LOCAL REBALANCING

perform small, efficient, localised operations to try to improve the overall balance of the tree ... at the cost of imperfect balance

Balance

Balancing Operations

Balancing Methods

Global Rebalancing

Local Rebalancing

Idea:

Completely rebalance whole tree so it is size-balanced

Method:

Lift the median node to the root by partitioning on index $\mathrm{SIZE}(t)/2$, then rebalance both subtrees (recursively)

Global Rebalancing

BSTs Recap

Balance

Balancing Operations

Balancing Methods

Global Rebalancing

...then rebalance both subtrees

Global Rebalancing

Pseudocode

BSTs Recap

Balance

Balancing Operations

Balancing Methods

Global Rebalancing Local Rebalancing

```
rebalance(t):
    Input: tree t
    Output: rebalanced t
    if size(t) < 3:
        return t
    t = partition(t, size(t) / 2)
    t->left = rebalance(t->left)
    t->right = rebalance(t->right)
    return t
```

Balance

Balancing Operations

Balancing Methods

Global Rebalancing

Summary Summary

Rebalance the following tree:

Balance

Balancing Operations

Balancing Methods

Global Rebalancing

Local Rebalancing

First, partition the tree on index 7/2 = 3 (node 8)

BSTs Recap Balance

Balancing Operations

Balancing Methods

Global Rebalancing

First, partition the tree on index 7/2 = 3 (node 8)

Balance

Balancing Operations

Balancing Methods

Global Rebalancing

Local Rebalancin Summary

Then, recursively rebalance subtrees

Balance

Balancing Operations

Balancing Methods

Global Rebalancing

Local Rebalancing

Then, recursively rebalance subtrees

Balance

Balancing Operation

Balancing Methods

Global Rebalancing Local Rebalancing Worst-case time complexity: $O(n \log n)$

- Assume nodes store the size of their subtrees
- First step: partition entire tree on index n/2
 - This takes at most n recursive calls, n rotations $\Rightarrow n$ steps
 - Result is two subtrees of size $\approx n/2$
- Then partition both subtrees
 - Partitioning these subtrees takes n/2 steps each $\Rightarrow n$ steps in total
 - Result is four subtrees of size $\approx n/4$
- ...and so on...
- About $\log_2 n$ levels of partitioning in total, each requiring n steps $\Rightarrow O(n \log n)$

Global Rebalancing

Problems

BSTs Recap

Balance

Balancing Operation

Balancing Methods

Global Rebalancing
Local Rebalancing

What if we insert more items?

- Options:
 - Rebalance on every insertion
 - Not feasible
 - Rebalance every k insertions; what k is good?
 - Rebalance when imbalance exceeds threshold.
- It's a tradeoff...
 - We either have more costly insertions
 - Or we have degraded performance for periods of time

```
BSTs Recap
```

Balance

Balancing Operations

Balancing Methods

Global Rebalancing Local Rebalancing

```
bstInsert(t, v):
    Input: tree t, value v
    Output: t with v inserted

t = insertAtLeaf(t, v)

if size(t) mod k = 0:
    t = rebalance(t)

return t
```

Periodic Rebalancing Remarks

BSTs Recap

Balance

Balancing Operations

Balancing Methods

Global Rebalancing

- Good if tree is not modified very often
- Otherwise...
 - Insertion will be slow occasionally due to rebalancing
 - Performance will gradually degrade until next rebalance

Local Rebalancing

BSTs Recap

Balance

Balancing Operations

Balancing Methods

Local Rebalancing

Perform small, efficient, localised operations in an attempt to improve the overall balance of the tree

- 1. root insertion
- 2. randomised insertion

Balance

Balancing

Balancing

Root Insertion

Idea:

Rotations change the structure of a tree

If we perform some rotations every time we insert, that may restructure the tree randomly enough such that it is more balanced

One systematic way to perform these rotations: Insert new values at the root

Balance

Balancing Operations

Balancing Methods

Global Rebalancing Local Rebalancing

Root Insertion

Randomised Insertion

Method:

Insert new value normally (at the leaf) and then rotate the new node up to the root.

Balance

Balancing Operations

Balancing Methods

Global Rebalancing Local Rebalancing

Root Insertion

Randomised Insertion Insert 24 at the root of this tree:

Balance

Balancing Operations

Balancing Methods

Global Rebalancing

Root Insertion

Randomised Insertion

Insert 24 at the root of this tree:

Root Insertion

Example

BSTs Recap

Balance

Balancing Operations

Balancing Methods

Global Rebalancing Local Rebalancing

Root Insertion Randomised

Insertion

Rotate right at 29

Root Insertion

Example

BSTs Recap

Balance

Balancing Operations

Balancing Methods

Global Rebalancing Local Rebalancing

Root Insertion Randomised

Insertion Summary

Rotate right at 30

Root Insertion

Example

BSTs Recap

Balance

Balancing Operations

Balancing Methods

Global Rebalancing Local Rebalancing Root Insertion

Randomised Insertion Summary

Rotate left at 14

Balance

Balancing Operations

Balancing Methods

Global Rebalancing

Root Insertion

Randomised

Insertion

Rotate left at 10


```
BSTs Recap
```

Balancing

Balancing Methods

Global Rebalancing Local Rebalancing

Root Insertion Randomised

Insertion Summary

```
insertAtRoot(t, v):
    Input: tree t, value v
    Output: t with v inserted at the root
    if t is empty:
        return new node containing v
    else if v < t->item:
        t->left = insertAtRoot(t->left, v)
        t = rotateRight(t)
    else if v > t->item:
        t->right = insertAtRoot(t->right, v)
        t = rotateLeft(t)
    return t
```

Balance

Balancing Operation Balancing

Global Rebalancin Local Rebalancing Root Insertion Randomised Insertion

Analysis:

- Same time complexity as normal insertion: O(h)
- Tree is more likely to be balanced, but no guarantee
- Root insertion ensures recently inserted items are close to the root
 - Useful for applications where recently added items are more likely to be searched
- Major problem: ascending-ordered and descending-ordered data is still a worst case for root insertion

Balance

Balancing Operations

Balancing Methods

BSTs don't have control over insertion order. Worst cases — (partially) ordered data — are common.

Idea:

Introduce some randomness into insertion algorithm: Randomly choose whether to insert normally or insert at root

```
BSTs Recap
```

Balancing Operation

Balancing Methods

Local Rebalancing

Randomised

Insertion Summary

```
insertRandom(t, v):
    Input: tree t, value v
    Output: t with v inserted
    if t is empty:
        return new node containing v
    // p/q chance of inserting at root
    if random() mod q < p:</pre>
        return insertAtRoot(t, v)
    else:
        return insertAtLeaf(t, v)
```

Note: random() is a pseudo-random number generator 30% chance of root insertion \Rightarrow choose p = 3, q = 10

Balance

Balancing Operations

Balancing Methods

Global Rebalancing

Randomised

Insertion

Randomised insertion creates similar results to inserting items in random order.

Tree is more likely to be balanced (but no guarantee)

Balance

Balancing Operations

Balancing Methods Global Rebalancing Local Rebalancing Summary

	Advantages	Disadvantages
Global rebalancing	Guarantees a balanced tree	Inefficient ($O(n \log n)$ per rebalance), or periods of degraded performance
Local rebalancing	Efficient (adds only a constant factor overhead to insertion)	Not guaranteed to produce a balanced tree

Balance

Balancing Operations

Balancing Methods

Global Rebalancing Local Rebalancing Summary https://forms.office.com/r/2BW7BasQ77

