```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df=pd.read_csv('/content/melon.csv')
df
```

	Weight	Price	⊞
0	1	50	11.
1	2	100	+/
2	3	140	
3	4	180	
4	5	220	
5	6	250	
6	7	300	
7	8	340	
8	9	380	
9	10	390	

Next steps: Generate code with df View recommended plots

df.head()

	Weight	Price	
0	1	50	ılı
1	2	100	
2	3	140	
3	4	180	
4	5	220	

Next steps: Generate code with df View recommended plots

df.tail()

	Weight	Price	=
5	6	250	ılı
6	7	300	
7	8	340	
8	9	380	
9	10	390	

df.isnull().sum()

Weight 0 Price 0 dtype: int64

```
2/22/24, 3:04 PM
```

```
df.dtypes
```

Weight int64 Price int64 dtype: object

x=df.iloc[:,:-1]

x=uT.IIOC[٠,	: -	Τ.
x			

	Weight	
0	1	ıl.
1	2	+/
2	3	
3	4	
4	5	
5	6	
6	7	
7	8	
8	9	
9	10	

```
y=df.iloc[:,-1]
          50
     0
          100
     1
         140
     2
     3
         180
     4
         220
     5
         250
     6
         300
         340
     8
         380
```

plt.scatter(x,y,color='g')

Name: Price, dtype: int64

390

9

<matplotlib.collections.PathCollection at 0x7c585ba2ed10>

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=42)
x_train

W	leight	
0	1	ılı
7	8	+/
2	3	
9	10	
4	5	
3	4	
6	7	

[<matplotlib.lines.Line2D at 0x7c58516f5780>]

df1=pd.DataFrame({'Actual_value':y_test,'Predicted_value':y_pred,'Differece':y_test-y_pred})
df1

	Actual_value	Predicted_value	Differece	
8	380	368.539604	11.460396	ıl.
1	100	99.801980	0.198020	+/
5	250	253.366337	-3.366337	

Next steps: Generate code with df1 View recommended plots

print("Slope is",model.coef_)
print("Constant is",model.intercept_)

Slope is [38.39108911] Constant is 23.01980198019794

from sklearn.metrics import mean_absolute_error,mean_absolute_percentage_error,mean_squared_error,r2_score
print("MAE is", mean_absolute_error(y_test,y_pred))
print("MAPE is", mean_sduared_error(y_test,y_pred))
print("MSE is", mean_squared_error(y_test,y_pred))
print("r2_score", r2_score(y_test,y_pred))
data=mean_squared_error(y_test,y_pred)
print("RMSE is",np.sqrt(data))

MAE is 5.008250825082503 MAPE is 0.015201493833594003 MSE is 47.570703852562964 r2_score 0.9963655659195835 RMSE is 6.8971518652675