T.STIDD Formulaire 2022 (Tout est à Savoir Par Cœur) Sciences Physiques SPH

Nom de la Formule	Formule avec les unités	Modification de la Formule	
Rendement	meme unite $ \eta = \frac{E_{utile produite}}{E_{ahsorhée}} = \frac{P_{utile produite}}{P_{ahsorhée}} $	$E_{utile\ produite} = \eta imes E_{absorb\'ee}$	
Générale de l'énergie	$E = P \times t$ $\forall v$	$P = \frac{E}{t} \qquad t = \frac{E}{P}$	
Puissance électrique	$P = U \times I$	$U = \frac{P}{I} \qquad I = \frac{P}{U}$	
Loi d'ohm (Résistance)	$U = R \times I$ Ω	$R = \frac{U}{I} \qquad I = \frac{U}{R}$	
Energie thermique sans changement d'état	$Q = \text{m.C.}(T_2-T_1)$ $kg J.kg^{-1}.^{\circ}C^{-1} ^{\circ}C$	$m = \frac{Q}{C.(T_2 - T_1)} \qquad T_1 = T_2 - \frac{Q}{m.C}$	
Energie thermique avec changement d'état	$Q = m \times L$ $\downarrow \qquad \qquad \downarrow$ $kg \qquad \qquad \downarrow$ $J.kg^{-1}$	$m=rac{Q}{L}$ $L=rac{Q}{m}$	
Relation Célérité Fréquence C _{lumière} = 3,00.10 ⁸ m.s ⁻¹	$c = \lambda \times f$ $m \qquad Hz$	$\lambda = c/f$ $f = c/\lambda$	
Energie liée au rayonnement (les 2 formules)	$E = h. \nu = \frac{h.c}{\lambda}$ $J.s Hz m m.s-1$	$v = E / h$ $\lambda = \frac{h.c}{E}$	
Définition Fréquence f = ν	$f = \frac{1}{T}$	$T=rac{1}{f}$	
ACIDE-BASE	Définition Un <u>acide</u> est une espèce capable de <u>céde</u> r un ou plusieurs protons H ⁺ Une <u>base</u> est une espèce capable de capter un ou plusieurs protons H ⁺		
Couple Acide Base Acide le + fort Base la + forte	Acide le plus fort + équation de réaction $AH_{(aq)} = A^{-}_{(aq)} + H^{+}_{(aq)}$	Base la plus forte + équation de réaction $B_{(aq)}^{-} + H_{(aq)}^{+} = BH_{(aq)}$	
Réaction entre CH₃COOH et HO⁻	Couple mis en jeu CH ₃ COOH _(aq) / CH ₃ COO ⁻ _(aq) H ₂ O _(l) / HO ⁻ _(aq)	Équation de réaction CH₃COOH _(aq) + HO⁻ _(aq) → CH₃COO⁻ _(aq) + H ₂ O _(l)	

Nom de la formule (Unité)	Formule avec les unités	Modification de la formule
masse volumique	$Q = \frac{m}{V}$	$m = \varrho .V$
Quantité de matière n Masse m Masse Molaire	$n = \frac{m}{M}$ mol g.mol ⁻¹ g	Conseil : on peut simplement proportionnalité apportée par la masse molaire M.
рН	pH = - log([H ₃ O ⁺])	[H ₃ O ⁺] = 10 ^{- pH}
Substance Acide, basique	Company of the solution acide solution basique solution neutre	
Vitesse V = C (on parle de la célérité d'une onde c'est-à-dire de sa vitesse de propagation)	$\mathbf{v} = \frac{d}{\Delta t}$ m.s ⁻¹ s m	d = v.Δt $\Delta t = rac{d}{v}$
Accélération	$a = \frac{\Delta v}{\Delta t}$ m.s ⁻² s m.s ⁻¹	$\Delta v = a . \Delta t$
2 ^{ème} Loi de Newton ————— ou RFD ou PFD	$\overrightarrow{F_{Total}} = \sum_{i} \overrightarrow{F_{i}} = m.\overrightarrow{a}$ N kg m.s	$\vec{a} = \frac{\overrightarrow{\Sigma F}}{m}$
Force Poids P	P = M.g N kg N.kg ⁻¹	$M = \frac{P}{g} \qquad g = \frac{P}{M}$
Energie cinétique Ec	$E_c = \frac{1}{2} \cdot m \cdot v^2$ kg m.s ⁻¹	$m = \frac{2.E_c}{v^2} \qquad v = \sqrt{\frac{2.E_c}{m}}$
Energie Potentielle de pesanteur Epp	$E_{pp} = \mathbf{m} \cdot \mathbf{g} \cdot \mathbf{h}$ $kg N.kg^{-1} m$	$h = \frac{E_{pp}}{m.g}$
Energie mécanique Conservation de Em	Phrase magique $E_m = E_c + E_{pp}$ Lors d'une chute libre (= sans frottements), l'énergie cinétique du système est intégralement convertie en énergie potentielle de pesanteur ou inversement	
Théorème de l'énergie cinétique (TEC)	Formule + Phrase magique $\Delta Ec = Ec_B - Ec_A = \sum_i W(\overrightarrow{F_i})$ La variation d'énergie cinétique est égale à la somme des travaux des forces.	

Travail d'une Force	Formule + Phrase magique vocabulaire Le travail d'une force \vec{F} au cours d'un déplacement \overrightarrow{AB} est égale au produit scalaire du vecteur force \vec{F} et du déplacement \overrightarrow{AB} $W_{A\to B}(\vec{F}) = \vec{F} \cdot \overrightarrow{AB} = F \cdot AB \cdot \cos\left(\overrightarrow{F} \cdot \overrightarrow{AB}\right)$		
Travail du Poids	$W_{A oB}(\overrightarrow{P})=P\cdot(z_A-z_B)$		
Nom de la Formule (Unité)	Formule avec les unités	Modification de la Formule	
Conversion Volume m³, L, mL	1 L = 10 ⁻³ m ³ 1 m ³ = 10 ³ L	1 L = 10 ³ mL 1 mL = 10 ⁻³ L	
Oxydant, Réducteur Oxydation, Réduction	Oxydant : espèce capable de capter un ou plusieurs électrons Réducteur : espèce capable de céder un ou plusieurs électrons	Oxydation = perte d'électrons (formation d'oxydant) Réduction = gain d'électrons (formation de réducteur)	
Pile Cathode-Anode	L'anode est l'électrode siège de l'Oxydation La cathode est l'électrode siège de la Réduction	Pile : utilisations d'une réaction d'oxydoréduction pour provoquer une circulation du courant entre les deux électrodes Schéma de Fonctionnement	
Énergie emmagasinée dans la pile	W.h A.h V E = Q . U	$U = \frac{E}{Q}$ $Q = \frac{E}{U}$	
Capacité d'une Pile	$Q = I. \Delta t$	$\Delta t = rac{Q}{I}$	
Puissance active	$P = \langle p(t) \rangle = U_{eff} \cdot I_{eff} \cdot \cos \varphi$ W V A rad	$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	
déphasage	$\varphi = \frac{2.\pi.\Delta t}{T} = 2.\pi.f.\Delta t$	Pulsation $\omega = 2.\pi.f$ Fréquence f Δt le décalage des courbes (exemple entre u(t) et i(t))	
Puissance apparente	S = U _{eff} . I _{eff}	L'unité est le voltampère VA	
Facteur de puissance	k = P / S = cos φ	Le facteur de puissance n'a pas d'unité.	

Formule (Unité)	Formule avec les unités Modification de la Formu		
Réaction de combustion	$C_nH_{2n+2} + \frac{n}{2}O_2 \rightarrow n CO_2 + n H_2O$	Combustion du Kérosène $C_{10}H_{22}$ $C_{10}H_{22} + 15,5 O_2 \rightarrow 10 CO_2 + 11 H_2O$	
Pouvoir calorifique	$Q = m_{combustible}$. PC $m_{combustible} = PC / Q$		
Flux thermique	$E = \phi . \Delta t$	$\phi = \frac{E}{\Delta t}$	
Résistance thermique	$R_{th} = \frac{e}{\lambda.S}$ $K.W^{-1} \qquad W.K^{-1}m^{-1} \qquad m^{2} \qquad m$	e = λ. R _{th} .S	
Flux thermique et résistance thermique	$\phi = \frac{(\theta_{\text{chaud}} - \theta_{\text{froid}})}{R_{Th}}$ $m^2.K.W^1$	$R_{Th} = \frac{(\theta_{\text{chaud}} - \theta_{\text{froid}})}{\phi}$ $\theta_{\text{chaud}} = \phi. R_{th} + \theta_{\text{froid}}$	

Conversion en utilisant les puissances de 10 ou le préfixe adéquat			
50 km.h ⁻¹ en m.s ⁻¹	12 μm en m	688 km en m	
50 / 3,6 =	12.10 ⁻⁶ m	688.10³ m	
312 nm en m	102 m³ en L	3,05 cm en m	
312.10 ⁻⁹ m	102.10³ L	3,05.10 ⁻² m	
4810 m en km	12,48 mm en m	3,05 cm en mm	
4,810 km	12,48.10 ⁻³ m	30,5 mm	
33cL en L	1027 hPa en Pa	1,027 kg.m ⁻³ en g.L ⁻¹	
0,33 L	1027.10² Pa	1,027 g.L ⁻¹	
4,8 Go = 4,8.10 ⁹ O	3,5 bar = 3,5.10 ⁶ Pa	0,1 nm = 0,1 .10 ⁻⁹ m	

Pile Cuivre Zinc

