1 Mechanik

1.1 Grundlagen Mechanik

1.1.1 Gewichtskraft

$F_G = m \cdot g$ $m = \frac{F_G}{g}$ $q = \frac{F_G}{g}$	$m \ g \ F_G$	Masse Fallbeschleunigung Gewichtskraft	$\begin{array}{c} \text{kg} \\ \text{m/s}^2 \\ N \end{array}$	$9.81 \mathrm{m/s^2}$ $\mathrm{kgm/s^2}$
$g = \frac{r_G}{m}$				

1.1.2 Kräfte

\rightarrow \rightarrow \rightarrow	F_1	Einzelkraft 1	N	kg
$\left \overrightarrow{F}_{res} = \overrightarrow{F}_1 + \overrightarrow{F}_2\right $	g	Fallbeschleunigung	$\rm m/s^2$	9.81m/s^2
	F_G	Gewichtskraft	N	$\rm kgm/s^2$

1.1.3 Gewichtskraft

1.1.4 Gewichtskraft

1.1.5 Gewichtskraft

2 Wärmelehre

2.1 Körper und Temperaturänderung

2.1.1 Längenausdehnung bei Temperaturänderung

Resultierende Gesamtlänge bei Längenausdehnung, proportional:

$$l = l_0 \cdot (1 + \alpha \cdot \Delta t)$$

2.1.2 Dichte in Abhängigkeit der Temperatur

$\rho = \frac{\rho_0}{1 - \frac{1}{2}}$	$ ho$ Druck γ Volumenausdehnungskoeffizient	Pa	N/m^2 = 3α
$1 + \gamma \cdot \Delta t$	t Zeit	\mathbf{s}	

2.1.3 Gay-Lussac

bei konstantem Druck:

V_1 T_1	V Volumen	m^3
$\overline{V_2} = \overline{T_2}$	T Temperatur	K

bei konstantem Volumen:

. T		D 1	D	NT / 2
$\rho_1 T_1$	ho	Druck	Рa	N/m^2
$\frac{1}{\rho_2} = \frac{1}{T_2}$	T	Temperatur	K	

2.2 Ideale Gase

2.2.1 Ideale Gasgleichung

	V	Volumen	m^{s}
$\rho \cdot V = m \cdot R \cdot T$	m	Masse	kg
	R	Spezifische Gaskonstante	J/(kg K)
	T	Temperatur	K
Universelle Gaskonstante			
	R	Spezifische Gaskonstante	J/(kg K)

Druck

	10	Spezinsene Gaskonstante	0/(mg 11)	
$R_m = R \cdot M$	R_m	Universelle Gaskonstante	J/(molK)	8,3144598 J/(mol K)
	M	Molare Masse	g mol	

Pa

${\bf 2.2.2} \quad {\bf Isotherme~Zustast and s\"{a}nderung}$

$W = -m \cdot R \cdot T \cdot \ln \frac{V_2}{V_1}$	$W \\ m$	Arbeit Masse	J kg
$W = -m \cdot R \cdot T \cdot \ln \frac{V_2}{V_1}$	R	-	J/(kg K)
$g = \frac{F_G}{m}$	I	Temperatur	1

2.3 1. Hauptsatz

2.3.1 Wärmelehre

$\Delta H + \Delta E + \Delta E - \Delta O + \Delta W$	1			
$\Delta U + \Delta E_{pot} + \Delta E_{kin} = \Delta Q + \Delta W$	U	Innere Energie	kg	
$m = \frac{F_G}{}$	E_{pot}	Potentielle Energie	m/s^2	$9,81 \text{m/s}^2$
g	E_{kin}	Kinetische Energie	N	$\rm kgm/s^2$
$q = \frac{F_G}{}$	Q	Wärmeenergie/Wärmeleistung	J	,
m				