Assignment 2 Programming Questions

Answer 2:

Test Accuracy: 0.8921999931335449


```
[[857.
        1. 18. 29.
                       2.
                            1. 85.
                                      0.
                                           7.
                                                0.]
  1. 969.
             0. 24.
                       3.
                            0.
                               1.
                                      0.
                                           2.
                                                0.]
[ 17.
        1. 838. 13. 61.
                            0. 66.
[ 13.
            10. 916. 18.
                                36.
                                                0.1
            52. 34. 834.
                                70.
   2.
                            1.
            0.
                  0.
                       0. 975.
                                1.
                                    19.
   0.
                                           1.
                 29. 101.
[139.
        2.
            69.
                           0.642.
                                      0.
                                         18.
                                                0.1
             0.
                  0.
                       0.
                           18.
                                 0.970.
                                          0.
                                               12.]
   0.
                                     3. 972.
   2.
        2.
             4.
                  8.
                       2.
                           1.
                                 6.
                                               0.1
                  0.
                       0.
                                 1.
                                    44.
                                           0. 949.]]
```

Answer 1:

Custom MLPClassifier

Architecture: [784, 256, 128, 64, 10]

batch size: 64

weight_init: normal

n_layers: 5
epochs: 100

learning rate: 1e-4

Train Set in splitted into train/val set,

Train Set size(after split): 50,000 Val Set size(after split): 10,000 Test Set size(after split): 10,000

Part 1: Model Saved

Part 2:

Loss Plots

Part 3: For each case, the output activation function should be softmax, since it is a multiclass classification problem and output is expected to be probability. Therefore, softmax is the only acceptable choice for the output layer.

Part 4:

Total number of layers: 5

Total number of hidden layers: 3

Part 5:

Model	Test Accuracy(After 100 Epochs)	
Custom Model (ReLU)	0.982700	
Custom Model (Tanh)	0.954700	
Custom Model(linear)	0.917100	
Custom Model(Sigmoid)	0.335800	
Sklearn Model(ReLU)	0.965600	
Sklearn Model (Tanh)	0.971600	
Sklearn Model(Identity)	0.915400	
Sklearn Model (Logistic)	0.970200	

Logistic model of Sklearn does not suffer from a low accuracy score whereas the custom model(sigmoid) does.

One reason behind this could be vanishing gradients for custom models, and the Sklearn model is able to compensate for that as it uses adam optimizer (momentum term).

Answer 3:

	precision	recall	f1-score	support	
0 1	0.77 0.84	0.83 0.78	0.80 0.81	94 106	
accuracy macro avg	0.81	0.81	0.81 0.80	200 200	
weighted avg	0.81	0.81	0.81	200	

Answer 4:

Accuracy & Confusion Matrix

Class Wise Accuracy

Class Wise Confusion Matrices & Loss Plot

