ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА

2 септември 2008 г. – <u>Вариант 2</u>

УВАЖАЕМИ ЗРЕЛОСТНИЦИ,

Тестът съдържа 28 задачи по математика от два вида:

- 20 задачи със структуриран отговор с четири възможни отговора, от които само един е верен;
- 8 задачи със свободен отговор.

Първите 20 задачи (от 1. до 20. включително) в теста са от затворен тип с четири възможни отговора, обозначени с главни букви от A до Γ, от които само един е верен. Отговорите на тези задачи отбелязвайте със син цвят на химикалката в **листа за отговори**, а не върху тестовата книжка. За да отбележите верния отговор, зачертайте със знака кръгчето с буквата на съответния отговор. Например:

Ако след това прецените, че първоначалният отговор не е верен и искате да го поправите, запълнете кръгчето с грешния отговор и зачертайте буквата на друг отговор, който приемате за верен. Например:

За всяка задача трябва да е отбелязан не повече от един действителен отговор. Като действителен отговор на съответната задача се приема само този, чиято буква е зачертана със знака .

Отговорите на **задачите със свободен отговор (от 21. до 28. вкл.)** запишете в предоставения **свитък за свободните отговори**, като за задачи **от 26. до 28. вкл.** запишете пълнете решения с необходимите обосновки.

ПОЖЕЛАВАМЕ ВИ УСПЕШНА РАБОТА!

Отговорите на задачите от 1. до 20. вкл. отбелязвайте в листа за отговори!

- 1. Най-голямото от числата е:
- A) $5\sqrt{2}$
- Б) 5√3
- B) $4\sqrt{5}$ Γ) $\sqrt{60}$

- **2.** Равенството $\sqrt{(-2)^2 x^2 b} = -2x\sqrt{b}$ е вярно при:
- A) $x \ge 0, b \ge 0$ B) $x \le 0, b \le 0$ B) $x \le 0, b \le 0$ Γ) $x \ge 0, b \le 0$

- **3.** Изразът $\frac{2x+2}{x^2+2x-3} \frac{1}{x+3}$, при $x \ne 1$, $x \ne -3$, е тъждествено равен на:
- A) $\frac{1}{x+3}$ B) $\frac{1}{x+1}$ Γ) $\frac{1}{x-1}$

- 4. Най-малкото от числата е:
- A) $\log_3 \frac{1}{27}$
- β) $log_5 5$ β) $log_{\sqrt{2}} 1$
- Γ) $2^{\log_2 5}$

- **5.** Решенията на уравнението $(9-x^2)\sqrt{x-1} = 0$ са:
- A) 1 и -3
- Б) 1 и 3 В) -3, -1 и 3 Г) -3 и 3
- 6. Параболата от чертежа е графиката на функцията:

$$\mathbf{b}) \quad \mathbf{y} = x^2 + 4x + 3$$

B)
$$y = x^2 - 4x + 3$$

 Γ) $v = -x^2 + 4x - 3$

- 7. Решенията на неравенството $2x^2 x 1 < 0$ са:

- A) $(-\infty; 1)$ B) $\left(-\frac{1}{2}; +\infty\right)$ B) $\left(-\frac{1}{2}; 1\right)$ $\Gamma\left(-\infty; -\frac{1}{2}\right) \cup \left(1; +\infty\right)$

8. Ако $AC \parallel BD$, $OA = 6 \ cm$, $OB = 5 \ cm$ и $OC = 3 \ cm$,

то дължината на отсечката OD е:

- A) 8 cm
- Б) $3\frac{3}{5}$ *cm*
- B) 10 cm
- Γ) 2,5 cm

9 . Частното на геометрична прогресия a_1, a_2, a_3, \ldots , за която $a_2 = -6$ и $a_5 = 162$ е:

- A) $-\frac{1}{3}$
- Б) 3
- B) -9

 Γ) -3

10. Изчислете $\sin 2\alpha$, ако $\sin \alpha = 0.6$ и $90^{\circ} < \alpha < 180^{\circ}$.

- A) $\frac{6}{5}$
- E) $-\frac{5}{6}$ B) $-\frac{24}{25}$
- Γ) $\frac{24}{25}$

11. Медианата на статистическия ред 5, 2, 9, 8, 12, 1, 4, 7, 4, 6 e:

- A) 5
- Б) 5,5
- B) 6

 Γ) 6,5

12. Стойността на израза $\log_5 5 + \log_3 27 + \lg 0,001$ е:

- A) 3
- Б) 2

B) 1

Γ) 6

13. В равнобедрен триъгълник ABC (AC = BC) основата $AB = 30 \ cm$, а височината $CD = 20 \ cm$. Дължината на височината AE ($E \in BC$) е равна на:

- A) $16\frac{2}{3}$ cm
- Б) 18 *cm*
- B) 16 *cm*
- Γ) 24 *cm*

14. В кой от интервалите функцията $f(x) = -x^2 + 4x + 2$ е растяща?

- A) (3;5)

- $\mathsf{B}(-3;2) \qquad \mathsf{B}(5;7) \qquad \mathsf{\Gamma}(7;+\infty)$

15. Окръжност с център O и радиус r е вписана в равностранен триъгълник АВС. Да се намери дължината на страната на триъгълника, ако $r = 3\sqrt{3} \ cm$.

- A) 18 cm
- Б) $8\sqrt{3} \ cm$
- B) 9*cm*
- Γ) $6\sqrt{3}$ cm

16. В окръжност хордите AB и CD се пресичат в точка Mтака, че $AM = 4 \, cm$, $MC = 3 \, cm$ и лицето на $\triangle AMD$ е $2 \, cm^2$. Лицето на $\triangle MCB$ е равно на:

- A) $\frac{8}{9} cm^2$ B) $\frac{2}{3} cm^2$ B) $\frac{3}{2} cm^2$ Γ) $\frac{9}{8} cm^2$

17. Даден е равнобедрен триъгълник АВС с AC = BC = 6 cm $\angle ACB = 120^{\circ}$. бедра Дължината на ъглополовящата $AL(L \in BC)$ е равна на:

- A) $3\sqrt{6}$ cm
- Б) $2\sqrt{3}$ cm
- B) $\sqrt{6}$ cm Γ) $2\sqrt{6}$ cm

18. Кодът на охранителна система се състои от 4 различни нечетни цифри. Какъв е максималният брой опити, които трябва да се направят, за да се открие кодът на системата?

- A) 220
- Б) 180

B)120

Γ) 240

19. Две от страните на триъгълник са с дължини $4\sqrt{3}$ *cm* и 4 *cm*, а ъгълът между тях е 30°. Видът на триъгълника е:

- А) равнобедрен тъпоъгълен
- Б) равнобедрен остроъгълен
- В) не може да се определи
- Г) правоъгълен

20. В окръжност с център O и радиус $R = 3\sqrt{3}$ cm е вписан остроъгълен равнобедрен триъгълник АВС с бедра $AC = BC = 6\sqrt{2} \ cm$. Височината *CD* на триъгълника е равна на:

A)
$$4\sqrt{2} \ cm$$
 B) $4\sqrt{3} \ cm$ B) $6\sqrt{3} \ cm$ Γ) $5\sqrt{2} \ cm$

Б)
$$4\sqrt{3}$$
 cm

B)
$$6\sqrt{3}$$
 cm

$$\Gamma$$
) $5\sqrt{2}$ cm

Отговорите на задачите от 21. До 25. вкл. запишете в свитъка за свободните отговори!

- **21.** Да се реши уравнението $(x^2 2x)^2 2(x^2 2x) 3 = 0$
- **22.** Да се представи израза $\sin \alpha + 2\sin 2\alpha + \sin 3\alpha$ във вид на произведение
- 23. В шампионската лига по футбол участват 32 отбора, разпределени в 8 групи по 4 отбора. Отборите във всяка група играят по два мача помежду си. Намерете броя на мачовете който се изиграват.
- **24.** Равнобедрен трапец с бедро 5 *cm* и диагонал 7 *cm* е описан около окръжност. Да се намерят основите на трапеца.
- **25.** Даден е триъгълник ABC, в който, AC = 4 cm BC = 8 cm и $\angle ACB = 120^{\circ}$. Да се намери дължината на ъглополовящата $CL \ (L \in AB)$.

Пълните решения с необходимите обосновки на задачите от 26. до 28. вкл. запишете в свитъка за свободните отговори!

26. Сборът на три числа, образуващи аритметична прогресия, е 12. Ако към третото число се прибави 2, ще се получи геометрична прогресия. Да се намерят тези три числа.

Вариант 2

- **27.** Точката M е средата на страната CD на успоредника ABCD . Намерете лицето на успоредника, ако $\angle BAD = 60^{\circ}$, MA = 6 cm и MB = 4 cm .
- **28.** Правилен петоъгълник ABCDE е вписан в окръжност с център O. Построен е един триъгълник с върхове измежду шестте точки A,B,C,D,E и O. Да се намери вероятността построения триъгълник да е тъпоъгълен.

Вариант 2 5

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0$$
 $x_{1,2}=rac{-b\pm\sqrt{b^2-4ac}}{2a}$ $ax^2+bx+c=a(x-x_1)(x-x_2)$ Формули на Виет $x_1+x_2=-rac{b}{a}$ $x_1x_2=rac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \ne 0$ е парабола с връх точката $(-\frac{b}{2a}; -\frac{D}{4a})$

Корен. Степен и логаритъм

$$\sqrt[2k]{a^{2k}} = |a| \qquad \qquad 2^{k+1}\sqrt{a^{2k+1}} = a \; ; \qquad \text{при } k \in \mathbb{N}$$

$$\sqrt[n]{a^m} = a^{\frac{m}{n}} \qquad \qquad \sqrt[nk]{a^{mk}} = \sqrt[n]{a^m} \qquad \sqrt[nk]{a} = \sqrt[nk]{a} \; ; \; \text{при} \quad a > 0 \; , \; n \ge 2 \; , \; k \ge 2 \; \text{ и } n, \; m, \; k \in \mathbb{N}$$

$$\log_a b = x \Leftrightarrow a^x = b \quad \log_a a^x = x \qquad a^{\log_a b} = b \; ; \quad \text{при} \quad b > 0, \; a > 0, \; a \ne 1$$

Комбинаторика

Брой на пермутациите на n елемента: $P_n = 1.2.3...(n-1)n = n!$ Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$ Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{1.2.3...(k-1)k}$

Вероятност $P(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}} 0 \le P(A) \le 1$

Прогресии

Аритметична прогресия:
$$a_n = a_1 + (n-1)d$$
 $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$ Геометрична прогресия: $a_n = a_1.q^{n-1}$ $S_n = \frac{a_nq - a_1}{q-1} = a_1 \cdot \frac{q^n - 1}{q-1}$ Формула за сложна лихва: $K_n = K.q^n = K.\left(1 + \frac{p}{100}\right)^n$

Зависимости в триъгълник

Правоъгълен триъгълник:
$$c^2 = a^2 + b^2$$
 $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$

$$h_c^{\ 2}=a_1b_1 \qquad r=\frac{a+b-c}{2} \qquad \sin\alpha=\frac{a}{c} \qquad \cos\alpha=\frac{b}{c} \qquad \operatorname{tg}\alpha=\frac{a}{b} \qquad \operatorname{cotg}\alpha=\frac{b}{a}$$
 Произволен триъгълник:
$$a^2=b^2+c^2-2bc\cos\alpha \qquad \qquad b^2=a^2+c^2-2ac\cos\beta$$

Произволен триъгълник:
$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$
 $b^2 = a^2 + c^2 - 2ac \cos \beta$

$$c^{2} = a^{2} + b^{2} - 2ab\cos\gamma \qquad \frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$$

Формула за медиана:
$$m_a^2 = \frac{1}{4} \left(2b^2 + 2c^2 - a^2 \right)$$
 $m_b^2 = \frac{1}{4} \left(2a^2 + 2c^2 - b^2 \right)$

$$m_c^2 = \frac{1}{4} (2a^2 + 2b^2 - c^2)$$

Формула за ъглополовяща:
$$\frac{a}{b} = \frac{n}{m}$$

$$l_c^2 = ab - nm$$

Формули за лице

Триъгълник:
$$S = \frac{1}{2}ch_c \qquad S = \frac{1}{2}ab\sin\gamma \qquad S = \sqrt{p(p-a)(p-b)(p-c)}$$

$$S = pr \qquad S = \frac{abc}{4R}$$

Успоредник:
$$S = ah_a$$
 $S = ab \sin \alpha$

Четириъгълник:
$$S = \frac{1}{2} d_1 d_2 \sin \varphi$$

Описан многоъгълник: S = pr

Тригонометрични функции

$lpha^{\scriptscriptstyle 0}$	0_0	30^{0}	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{tg} \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	
$\cot \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	$-\alpha$	$90^{\circ} - \alpha$	$90^{\circ} + \alpha$	$180^{\circ} - \alpha$
sin	$-\sin \alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$
tg	$-tg\alpha$	$\cot \alpha$	$-\cot \alpha$	$-tg\alpha$
cotg	$-\cot \alpha$	$\operatorname{tg} \alpha$	$-tg\alpha$	$-\cot \alpha$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \sin \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \sin \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \sin \beta}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{\cot(\beta \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{\cot(\beta + \beta)} = \frac{\cot(\alpha \pm \beta)}{\cot(\beta + \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\beta + \beta)} = \frac{\cot(\alpha \pm \beta)}{\cot(\beta \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{\cot(\beta \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{\cot(\beta \pm \beta)}$$

$$\tan(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\beta + \beta)} = \frac{\cot(\alpha \pm \beta)}{\cot(\beta \pm \beta)} = \frac{\cot(\beta \pm \beta)}{\cot(\beta \pm \beta)} = \frac{\cot(\beta \pm \beta)}{\cot(\beta \pm$$