4 Relatório

4.1 Introdução

Pretende-se neste prática confirmar os comportamentos teorizados a cerca de diodos. Para tal finalidade, mediu-se tensões e resistências diretas e reversas e comparou-se com os resultados esperados de um dido ideal. Espera-se que V_t , a tensão de limiar, do diodo de Si seja 0.7V e o diodo de Si seja de 0.3V.

Um segundo experimento foi realizado para confirmar a curva característica de um diodo. Tal experimento foi realizado medindo as diferentes tensões no terminal do diodo, conforme variou-se a tensõo de alimentação, V_{cc} , de -12V a +12V. A figura 1 ilustra o comportamento teórico esperado de um diodo, aprensentado a relação entre a corrente e a tensão em seus terminais. Também foram feitas simulações no software LTspice para que se possa comparar os resultados obtidos com as curva características dos diodos utilizados em específico.

Figura 1: Curva de funcionamento ideal de um diodo (Si)

4.2 Análises

Os componentes alvo de nosso estudo foram:

• Diodo 1N4148 (Silício)

- Diodo 1N60 (Germânio)
- Diodo Zener 3V3 (Silício)

Como primeiro passo, realizou-se testes com um multímetro digital a fim de estimar os seguintes parâmetros de cada componente; Tensão Direta, Tensão Reversa, Resistência Direta e Resistência Reversa. Tal experimento gerou a Tabela 1.

Tabela 1: Teste do diodo								
	Tensão Direta (V)	Tensão Reversa (V)	Resistência Direta (Ω)	Resistência Reversa (Ω)				
1N4148	0.593	O.L	26M	O.L				
1N60	0.276	O.L	198K	O.L				
Zener 3V3	0.708	1.713	26.5M	21.7M				

Analisadas as características básicas de cada componente, o circuito relativo a Figura 2 foi montado na protoboard para os diodos Zener 3V3 e 1N4148. Mediu-se as correntes que passavam nos terminais diodos e a tensão nos terminais do componente, para um tensão de polarização começando em -12V e terminando em 12V, com variações de 1V. Estas medidas geraram os gráficos da curva característica de cada diodo de forma empírica, representados nas Figura 3 e Figura 4 que posteriormente serão comparados com as curvas simuladas.

Figura 2: Circuito de análise do diodo utilizado para o experimento 2

Figura 3: Curva característica para o diodo 1N4148 obtida de forma empírica

4.3 Discussões

Observando o comportamento dos nosso gráficos empíricos gerados a partir dos dados no laboratório, Figuras 3–4, notamos algumas diferenças relativas ao comportamento dos diferentes tipos dos diodos. O diodo Zenner, como esperado, além de operar na região direta, também opera em polarização reversa, assim conduzindo corrente nesta faixa. Observa-se também que a tensão de ruptura pôde ser estimada através de nossos dados como algo perto de -10V.

Destes gráficos também observou-se como os diodos se comportam na região ativa, e a partir de quais valores o diodo conduz significamente corrente elétrica, ambos os gráficos nos mostram que este valor foi algo próximo do esperado pela teoria, 0.7V para diodos compostos de silício e 0.3V para diodos compostos de germânio. Ao comparar o gráfico simulado e experimental do diodo 1N4148, Figura 3 e 5, notamos uma inclinação menos íngrime e uma curva mais suave em na simulação, mas ambos os gráficos apontam as mesmas características essencias como a não há condução na região reversa e que até um valor crítico o diodo se comportou praticamente como um circuito aberto.

A partir das Figura 3 e 5 podemos modelar nosso diodo como um cir-

Figura 4: Curva característica para o diodo Zenner 3v3 obtida de forma empírica

cuito linear composto de uma fonte de tensão e um resistor, como mostra as Figuras 6 e Figura 7 . O valor escolhido para a resistência foi o inverso da inclinação da reta de cada gráfico dada a partir do eixo x até o ponto 10mA, nos gerando outras curvas característica equivalente. Tais curvas estão retratadas nas figuras . Nota-se que na linearização as diferenças entre os resultados simulados e empíricos diminuíram significativamente, confirmando a validade do experimento prático.

Ao acessar o datasheet do fabricante, podemos verificar se as tensões encontradas para 10mA estão dentro do esperado. A Figura 10 nos mostra as características a partir do datasheet do Diodo 1N4148, que foram retirados do site da fabricante (Datsheet Reference: NXP Semiconductors, 14N4148, 2004 August 10). Nele vemos que V_f deveria estar menor que 1V, o que acontece para nossos experimentos, já que nossos valores ficaram em torno de 0.7V.

Figura 5: Curva característica para o diodo 1N4148 obtida através dos dados do simulador LTspice

Figura 6: Circuito linear equivalente ao diodo de acordo com os dados experimentais

Figura 7: Circuito linear equivalente ao diodo de acordo com os dados experimentais

Figura 8: Curva característica do circuito linear equivalente ao diodo através dos dados de simulação $\,$

Figura 9: Curva característica do circuito linear equivalente ao diodo através dos dados dos dados empíricos

ELECTRICAL CHARACTERISTICS

 T_j = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _F	forward voltage	see Fig.3			
	1N4148	I _F = 10 mA	-	1	V
	1N4448	I _F = 5 mA	0.62	0.72	V
		I _F = 100 mA	_	1	V
I_R	reverse current	V _R = 20 V; see Fig.5		25	nA
		V _R = 20 V; T _j = 150 °C; see Fig.5	-	50	μΑ
I_R	reverse current; 1N4448	$V_R = 20 \text{ V}; T_j = 100 ^{\circ}\text{C}; \text{ see Fig.5}$	_	3	μΑ
C_d	diode capacitance	f = 1 MHz; V _R = 0 V; see Fig.6	_	4	pF
t _{rr}	reverse recovery time	when switched from I _F = 10 mA to I _R = 60 mA; R _L = 100 Ω ; measured at I _R = 1 mA; see Fig.7	_	4	ns
V _{fr}	forward recovery voltage	when switched from I_F = 50 mA; t_r = 20 ns; see Fig.8	_	2.5	V

Figura 10: Parte do datasheet do Diodo 1N4148

4.4 Conclusão

Nestes experimentos foi possível vislumbrar o funcionamento de diversos tipos de diodo de forma geral, assim como métodos de análise e simplificações que nos possibilita concluir se um diodo está se comportando de maneira esperado pelo seu fabricante. Também certificou-se que o potencial de offset de diodos de germânio é inferior aos de Silício, assim como esperávamos pela teoria. Aprendeu-se que diodos 1N60 e 1N4148 não operam quando reversamente polarizados, característica que se mostrou ser exclusiva do diodo Zener. Obteu-se também conhecimento de como simular circuitos no software LTspice e como modelar um diodo em uma fonte de tensão e uma pequena resistência. Clarificou-se assim, algumas dúvidas e incertezas que o entendimento da teoria sozinha não havia satisfeito.