T1: Introduction to Machine Learning

Fundamentos del Aprendizaje Automático

Curso 2025/2026

Structure

- Definition What is Machine Learning?
- 2 Structure Conceptual stages From (conceptual) stages to (practical) scheme
- Taxonomies Introduction Categorizations
- 4 Areas and application

Outline

- Definition What is Machine Learning?
- 2 Structure Conceptual stages From (conceptual) stages to (practical) schem
- 3 Taxonomies Introduction Categorizations
- 4 Areas and application

- Trending term nowadays

- Trending term nowadays
- Nevertheless, the field dates back to the 80s

- Trending term nowadays
- Nevertheless, the field dates back to the 80s
 - Grounded on statistical reasoning

- Trending term nowadays
- Nevertheless, the field dates back to the 80s
 - Grounded on statistical reasoning
- Premise: Infer knowledge from data by computational means

- Trending term nowadays
- Nevertheless, the field dates back to the 80s
 - Grounded on statistical reasoning
- Premise: Infer knowledge from data by computational means
- How does it relate to other terms such as Artificial Intelligence or Pattern Recognition?

- Artificial Intelligence: Mimic human intelligence/intelligent behaviour
 Could be hand-crafted rules by a programmer
- Machine Learning: Al subfield focused on the design of algorithms capable of inferring knowledge from data
- **Pattern Recognition**: ML subfield that mainly focuses on classification tasks with hand-crafted features
- **Deep Learning**: ML subfield that focuses on deep neural models for both feature extraction and knowledge inference

- Artificial Intelligence: Mimic human intelligence/intelligent behaviour
 - Could be hand-crafted rules by a programmer
 - Machine Learning: Al subfield focused on the design of algorithms capable of inferring knowledge from data
- Pattern Recognition: ML subfield that mainly focuses on classification tasks with hand-crafted features
- Deep Learning: ML subfield that focuses on deep neural models for both feature extraction and knowledge inference

- Artificial Intelligence: Mimic human intelligence/intelligent behaviour
 - Could be hand-crafted rules by a programmer
- Machine Learning: Al subfield focused on the design of algorithms capable of inferring knowledge from data
- Pattern Recognition: ML subfield that mainly focuses on classification tasks with hand-crafted features
- Deep Learning: ML subfield that focuses on deep neural models for both feature extraction and knowledge inference

- Artificial Intelligence: Mimic human intelligence/intelligent behaviour
 - Could be hand-crafted rules by a programmer
- Machine Learning: Al subfield focused on the design of algorithms capable of inferring knowledge from data
- Pattern Recognition: ML subfield that mainly focuses on classification tasks with hand-crafted features
 - Deep Learning: ML subfield that focuses on deep neural models for both feature extraction and knowledge inference

- Artificial Intelligence: Mimic human intelligence/intelligent behaviour
 - Could be hand-crafted rules by a programmer
- Machine Learning: Al subfield focused on the design of algorithms capable of inferring knowledge from data
- Pattern Recognition: ML subfield that mainly focuses on classification tasks with hand-crafted features
- Deep Learning: ML subfield that focuses on deep neural models for both feature extraction and knowledge inference

5/23

Field	Goal	Representative tasks	Models
Pattern Recognition	Automaticall detect and categorize patterns	Classification	k-Nearest Neighbor Logistic Regression Gaussian Mixture Models
Machine Learning	Infer knowledge	Classification, regression, clustering, sequence labelling	Same as ML + Decision Trees, Neural models, Support Vector Machine
Deep Learning	Infer knowledge with deep models	Classification, regression, clustering, sequence labelling	Deep neural networks
Artificial Intelligence	Mimic (human) intelligence	All previous + autommated planning + multi-agent systems +	All previous

Outline

- Definition
 What is Machine Learning?
- Structure Conceptual stages From (conceptual) stages to (practical) scheme
- Taxonomies Introduction Categorizations
- 4 Areas and application

- **Source**: Data captured by sensors (photographs, recordings, scanned documents...)
- Dataset: Collection of elements from Source represented as descriptors
- Model: Knowledge extracted from the Dataset using an ML algorithm
- **Prediction**: Estimation on novel data unseen in the previous stages

- Source: Data captured by sensors (photographs, recordings, scanned documents...)
 - Feature extraction: Obtaining adequate descriptors for the task at hand
 - **Dataset**: Collection of elements from *Source* represented as descriptors **Model**: Knowledge extracted from the *Dataset* using an ML algorithm
 - **Prediction**: Estimation on novel data unseen in the previous stages

- Source: Data captured by sensors (photographs, recordings, scanned documents...)
 - Feature extraction: Obtaining adequate descriptors for the task at hand
 - Dataset: Collection of elements from Source represented as descriptors
- **Model**: Knowledge extracted from the *Dataset* using an ML algorithm
- Prediction: Estimation on novel data unseen in the previous stages

- Source: Data captured by sensors (photographs, recordings, scanned documents...)
 - Feature extraction: Obtaining adequate descriptors for the task at hand
- Dataset: Collection of elements from Source represented as descriptors
- Model: Knowledge extracted from the Dataset using an ML algorithm
- Prediction: Estimation on novel data unseen in the previous stages

- Source: Data captured by sensors (photographs, recordings, scanned documents...)
 - Feature extraction: Obtaining adequate descriptors for the task at hand
- Dataset: Collection of elements from Source represented as descriptors
- **Model**: Knowledge extracted from the *Dataset* using an ML algorithm
- Prediction: Estimation on novel data unseen in the previous stages

- Source: Data captured by sensors (photographs, recordings, scanned documents...)
 - Feature extraction: Obtaining adequate descriptors for the task at hand
- Dataset: Collection of elements from Source represented as descriptors
- **Model**: Knowledge extracted from the *Dataset* using an ML algorithm
- Prediction: Estimation on novel data unseen in the previous stages

ML comprises two main processes:

- Train process: The knowledge is extracted from known data
- 2 Test process: The knowledge is exploited for new data

ML comprises two main processes:

- 1 Train process: The knowledge is extracted from known data
- 2 Test process: The knowledge is exploited for new data

ML comprises two main processes:

- 1 Train process: The knowledge is extracted from known data
- 2 Test process: The knowledge is exploited for new data

Train
process

Computational learning

Source

Feature extraction
Prediction

Result

- Encode the elements from Source as a set of descriptors
- The set must be adequate for the task being modeled

- Encode the elements from *Source* as a set of descriptors
- The set must be adequate for the task being modeled

- Encode the elements from Source as a set of descriptors
- The set must be adequate for the task being modeled

Example: How could you differentiate these two elements?

- Encode the elements from Source as a set of descriptors
- The set must be adequate for the task being modeled

Example: How could you differentiate these two elements?

- Encode the elements from Source as a set of descriptors
- The set must be adequate for the task being modeled

Example: How could you differentiate these two elements?

Must be derived by a computer!

Representation strategies:

Representation strategies:

- Statistical (feature-based) representation

- Statistical (feature-based) representation
 - Vector of characteristics (features)

- Statistical (feature-based) representation
 - Vector of characteristics (features)
 - All elements have the same number of features

- Statistical (feature-based) representation
 - Vector of characteristics (features)
 - All elements have the same number of features

Representation strategies:

- Statistical (feature-based) representation
 - Vector of characteristics (features)
 - All elements have the same number of features

- **Structural** representation

- Statistical (feature-based) representation
 - Vector of characteristics (features)
 - All elements have the same number of features

- Structural representation
 - Encoding the structure (shape) of the object

- Statistical (feature-based) representation
 - Vector of characteristics (features)
 - All elements have the same number of features

- Structural representation
 - Encoding the structure (shape) of the object
 - The size of the structure depends on the object

- Statistical (feature-based) representation
 - Vector of characteristics (features)
 - All elements have the same number of features

- Structural representation
 - Encoding the structure (shape) of the object
 - The size of the structure depends on the object
 - Strings, trees, graphs

- Statistical (feature-based) representation
 - Vector of characteristics (features)
 - All elements have the same number of features

- Structural representation
 - Encoding the structure (shape) of the object
 - The size of the structure depends on the object
 - Strings, trees, graphs

Strategy	Representation capabilities	Flexibility
Statistical (feature-based)	Limited	Addressable by (almost) all existing algorithms
Structural	Usually achieve superior performance rates	Limited number of algorithms to process them

How does the model infer knowledge from the (extracted) representations?

How does the model infer knowledge from the (extracted) representations?

Collection of train data

<100,10,red> <120,12,red>

<110,9,red>

<95,11,red>

<90,15,green>

<80,17,green>

<85,16,green>

<87,15,green>

How does the model infer knowledge from the (extracted) representations?

Collection of train data

<100,10,red> <120,12,red>

<110,9,red>

<95,11,red>

<90,15,green> <80,17,green> <85,16,green> <87,15,green>

Ő

Rule-based approach

How does the model infer knowledge from the (extracted) representations?

Collection of train data

<100,10,red> <120,12,red> <110.9.red>

Rule-based approach

Distance-based approach

How does the model infer knowledge from the (extracted) representations?

Collection of train data

<87,15,green>

Rule-based approach

Distance-based approach

Probabilistic approach

$$P(?, \triangle) > P(?, \triangle) \rightarrow 0$$
 $P(?, \triangle) < P(?, \triangle) \rightarrow 0$

What is the model in each case?

What is the model in each case?

- Distance-based approach: Collection of samples stored in a database

What is the model in each case?

- Distance-based approach: Collection of samples stored in a database
- Rule-based approach: Set of rules

What is the model in each case?

- Distance-based approach: Collection of samples stored in a database
- Rule-based approach: Set of rules
- Probabilistic approach: Parameters of a probabilistic distribution