Advanced Statistical Inference Classification - Performance Evaluation

Maurizio Filippone Maurizio.Filippone@eurecom.fr

Department of Data Science EURECOM

0/1 loss

- ightharpoonup 0/1 loss: proportion of times classifier is wrong.
- ► Consider a set of predictions t_1, \ldots, t_N and a set of true labels t_1^*, \ldots, t_N^* .
- ► Mean loss is defined as:

$$\frac{1}{N}\sum_{n=1}^{N}\delta(t_n\neq t_n^*)$$

- $(\delta(a) \text{ is } 1 \text{ if } a \text{ is true and } 0 \text{ otherwise})$
- Advantages:
 - ► Can do binary or multiclass classification.
 - ▶ Simple to compute.
 - Single value.

Introduction

M. Filippone

Assessing classifier performance 0/1 loss ROC analysis Confusion matrices

Introduction

M. Filippone

0/1 loss

Performance evaluation

- ▶ How do we choose a classifier?
 - Which algorithm?
 - ► Which parameters?
- ▶ Need performance indicators.
- ► We'll cover:
 - ▶ 0/1 loss.
 - ▶ ROC analysis (sensitivity and specificity)
 - Confusion matrices

0/1 loss

Disadvantage: Doesn't take into account class imbalance:

- ▶ We're building a classifier to detect a rare disease.
- ▶ Assume only 1% of population is diseased.
- ▶ Diseased: t = 1
- Healthy: t = 0
- lacktriangle What if we always predict healthy? (t=0)
- ► Accuracy 99%
- ▶ But classifier is rubbish!

Introduction

Introduction

M. Filippone

Assessing classifier performance

0/1 loss

M. Filippone

Assessing classifie

0/1 loss

onfusion matrices

Summary

Sensitivity and specificity

- ▶ We'll stick with our disease example.
- ▶ Need to define 4 quantities. The numbers of:
- ▶ True positives (TP) the number of objects with $t_n^* = 1$ that are classified as $t_n = 1$ (diseased people diagnosed as diseased).
- ▶ True negatives (TN) the number of objects with $t_n^* = 0$ that are classified as $t_n = 0$ (healthy people diagnosed as healthy).
- ▶ False positives (FP) the number of objects with $t_n^* = 0$ that are classified as $t_n = 1$ (healthy people diagnosed as diseased).
- ▶ False negatives (FN) the number of objects with $t_n^* = 1$ that are classified as $t_n = 0$ (diseased people diagnosed as healthy).

Introduction

M. Filippone

Assessing classified performance 0/1 loss ROC analysis Confusion matrices

Sensitivity

$$S_e = rac{TP}{TP + FN}$$

- ► The proportion of diseased people that we classify as diseased.
- ► The higher the better.
- ▶ In our example, $S_e = 0$.

Specificity

$$S_p = \frac{TN}{TN + FP}$$

- ► The proportion of healthy people that we classify as healthy.
- ► The higher the better.
- ▶ In our example, $S_p = 1$.

Introduction M. Filippone

performance 0/1 loss ROC analysis Confusion matrices

Optimising sensitivity and specificity

- ▶ We would like both to be as high as possible.
- ▶ Often increasing one will decrease the other.
- ▶ Balance will depend on application:
- e.g. diagnosis:
 - ▶ We can probably tolerate a decrease in specificity (healthy people diagnosed as diseased)....
 - ...if it gives us an increase in sensitivity (getting diseased people right).

Introduction

M. Filippone

Assessing classifier performance 0/1 loss ROC analysis Confusion matrices

Introduction

M. Filippone

Assessing classifier performance 0/1 loss ROC analysis Confusion matrices

ummary

ROC analysis

- Many classification algorithms involve setting a threshold.
- e.g. SVM:

$$t_{\mathsf{new}} = \mathsf{sign}\left(\sum_{n=1}^{N} t_n \alpha_n k(\mathbf{x}_n, \mathbf{x}_{\mathsf{new}}) + b\right)$$

- ▶ Implies a threshold of zero (sign function)
- ▶ However, we could use any threshold we like....
- ▶ The Receiver Operating Characteristic (ROC) curve shows how S_e and $1 S_p$ vary as the threshold changes.

ROC curve

- ▶ SVM for nonlinear data (in SVM lecture) with $\beta = 50$.
- ► Each point is a threshold value.
 - ▶ Bottom left everything classified as 0 (-1 in SVM)
 - ► Top right everything classified as 1.
- ▶ Goal: get the curve to the top left corner perfect classification ($S_e = 1, S_p = 1$).

ROC curve

- **>** SVM for nonlinear data (in SVM lecture) with $\beta = 0.01$.
- ▶ Better than $\beta = 50$
 - Closer to top left corner.

Introduction

Introduction

M. Filippone

ROC analysis

M. Filippone

performance 0/1 loss ROC analysis Confusion matrices

ROC curve

- ▶ SVM for nonlinear data (in SVM lecture) with $\beta = 1$.
- ► Better still.

Introduction

M. Filippone

Assessing classifier performance 0/1 loss ROC analysis

Summary

Introduction

M. Filippone

Assessing classifier performance 0/1 loss ROC analysis Confusion matrices

AUC

- ► We can quantify performance by computing the <u>Area</u> Under the ROC Curve (AUC)
- ▶ The higher this value, the better.

▶ $\beta = 50$: AUC=0.8348 ▶ $\beta = 0.01$: AUC= 0.9551 ▶ $\beta = 1$: AUC=0.9936

▶ AUC is generally a safer measure than 0/1 loss.

Confusion matrices – example

- ▶ 20 newsgroups data.
- ► Thousands of documents from 20 classes (newsgroups)
- ▶ Use a Naive Bayes classifier (\approx 50000 dimensions (words)!)
 - ▶ Details in book Chapter.
- ightharpoonup pprox 7000 independent test documents.
- ▶ Summarise results in 20 × 20 confusion matrix:

Introduction M. Filippone Assessing classification of the control of the contro

Introduction

M. Filippone

Confusion matrices

ROC analysis

Confusion matrices

The quantities we used to compute S_e and S_p can be neatly summarised in a table:

		True class			
		1	0		
Predicted class	1	TP	FP		
	0	FN	TN		

- ► This is known as a confusion matrix
- ▶ It is particularly useful for multi-class classification.
- ▶ Tells us where the mistakes are being made.
- ▶ Note that normalising columns gives us S_e and S_p

True class													
			10	11	12	13	14	15	16	17	18	19	20
	1		4	2	0	2	10	4	7	1	12	7	47
	2		0	0	4	18	7	8	2	0	1	1	3
SS	3		0	0	1	0	1	0	1	0	0	0	0
- 10	4		1	0	1	28	3	0	0	0	0	0	0
Predicted class							. :						
7	16		3	2	2	5	17	4	376	3	7	2	68
_	17		1	0	9	0	3	1	3	325	3	95	19
	18		2	1	0	2	6	2	1	2	325	4	5
	19		8	4	8	0	10	21	1	16	19	185	7
	20		0	0	1	0	1	1	2	4	0	1	92

- ► Algorithm is getting 'confused' between classes 20 and 16, and 19 and 17.
 - ▶ 17: talk.politics.guns
 - ▶ 19: talk.politics.misc
 - ▶ 16: talk.religion.misc
 - ▶ 20: soc.religion.christian
- ► Maybe these should be just one class?
- ▶ Maybe we need more data in these classes?
- ► Confusion matrix helps us direct our efforts to improving the classifier.

M. Filippone

Introduction

Assessing classifi performance 0/1 loss

ROC analysis Confusion matrices

ummary

Introduction

M. Filippone

Assessing classifi performance

0/1 loss ROC analysis

Confusion matrices

Summary

- ▶ Introduced two different performance measures:
 - ▶ 0/1 loss
 - ▶ ROC/AUC
- ► Introduced confusion matrices a way of assessing the performance of a multi-class classifier.

Introduction

M. Filippone

Assessing classifier performance 0/1 loss ROC analysis

Summary