Professional Certificate in Artificial Intelligence and Machine Learning UC Berkeley ExecEd 05/2025

Restaurant Success and Revenue Prediction Model Analysis

UC BERKELEY EXECUTIVE EDUCATION

This is to confirm that

Marcus Lui

has successfully completed the

Professional Certificate in Machine Learning and Artificial Intelligence

May 2025

Tsu-Jae King Liu,

Tsu-Jae King Liu, Dean, College of Engineering

Berkeley Engineering

Jennifer A. Chatman, Dean, Haas School of Business

Berkeley Haas

What is the key measurement of success in any industry?

Factors that influence profit

Annual Revenue

Social Media Followers

Operational Efficiency*

Years in Business

Average Meal Price

Monthly Marketing Budget

Google Rating

The goals of this project are:

- To identify the best ML and AI models for restaurant success classification
- To identify the best ML and AI models for annual revenue prediction
- To provide information to help restaurants improve their success

The Data

https://www.kaggle.com/datasets/liyangng/restaurant-success-prediction/data 1000 data points

- 9 Numerical Features
 - Average Meal Price
 - Seating Capacity
 - Years in Business
 - Google Rating
 - Social Media Followers
 - Weekend Reservations
 - Staff Count
 - Marketing Budget
 - Health Inspection Score
 - Annual Revenue

- 4 Categorical Features
 - City
 - Cuisine Type
 - Delivery Service
 - Success Label

The First Look

Approximately 2/3 of the restaurants were successful. Success was evenly distributed across cities and across cuisine type.

A Closer Look...

Social Media Followers and Market Budget had the highest correlation

There is a clear relationship between the features Social Media Followers and Marketing Budget

What model is best for classifying restaurant success?

Models for classifying restaurant success

Python via Anaconda and Jupyter Notebooks

Classification Models

- Dummy
- Logistic Regression
- K-Nearest Neighbors
- Decision Tree
- Random Forest

Classification Models

For restaurant success

Logistic Regression (LogReg)

A statistical model used for binary classification

K-Nearest Neighbors (KNN)

A simple, non-parametric algorithm used for classification Decision Tree (DT)

A flowchart-like supervised learning algorithm used for classification Random Forest (RF)

An ensemble learning method that builds multiple decision trees and combines their outputs to improve accuracy

Classification Model Analysis

4 of 5 models trained with over 80% accuracy

- Random Forest and Decision
 Tree
- GridSearchCV did not produce any notable improvements

A Deeper Look...

Decision Tree and Random Forest models trained the best

- High Recall Score
- High Precision Score
- High R^2 score
- Low Mean Squared Error

First Goal Completed

The goals of this project are:

- To identify the best ML and AI models for restaurant success classification
- To identify the best ML and AI models for annual revenue prediction
- To provide information to help restaurants improve their success

Models for predicting annual revenue

Python via Anaconda and Jupyter Notebooks

Regression Models

- Linear Regression
- Lasso
- Support Vector Regression
- Random Forest

Regression Models

For annual revenue prediction

Linear Regression (LinReg)

A simple supervised learning algorithm used to predict a continuous outcome

Lasso

A Linear Regression technique that includes L1 regularization to enhance model performance

Support Vector Regression (SVR)

Predicts continuous values by finding a function that fits the data within a certain margin of tolerance, ignoring outliers Random Forest (RF)

An ensemble machine learning method that uses multiple decision trees to predict a continuous output

Predictive Model Analysis

All models recorded a low testing accuracy

- RF recorded a high training accuracy
- Applied GridSearchCV
 - Results were indistinguishable

No models were good at predicting revenue

Potential problems could be overfitting or bad data

A Deeper Look...

No models were able to predict annual revenue with high accuracy

- High Mean Absolute Error
- High Mean Squared Error
- Low R^2 score

Second goal completed... sort of

The goals of this project are:

- To identify the best ML and AI models for restauran success classification
- To identify the best ML and AI models for annual revenue prediction
- To provide information to help restaurants improve their success

Recommendations for improving success

- Increase monthly marketing budget to a range between \$5k and \$20k
- Increase social media following across Instagram and TikTok to over 10,000

To make a better prediction model...

Models require higher quality data

- Foot traffic metrics and table turnover rate
- Customer satisfaction
- Repeat customer rate
- Most effective means of marketing

Thank you