Case Study of *M/M/1* Queues with Batch Arrivals

Aline Aires Teixeira, Luiz Gustavo Barros Guedes and Masoud Khazaee
Prof. Dr. Samuel Baraldi Mafra

Junho / 2024

Centro de Referência em Radiocomunicação

1. Introduction

2. Modeling

- A. Case study: two batch sizes with the same probability of occurrence
- B. Theoretical reference: conventional M/M/1

3. Numerical Analysis

- A. Flowchart
- **B.** Simulation setup
- C. Results

1. Introduction

2. Modeling

- A. Case study: two batch sizes with the same probability of occurrence
- B. Theoretical reference: conventional M/M/1

3. Numerical Analysis

- A. Flowchart
- B. Simulation setup
- C. Results

Inatel Instituto Nacional de Telecomunicações

Introduction

- History: Pioneering work by Erlang (1909) and Molina (1927);
- Relevance: Queue systems in telecommunications, banks, restaurants, hospitals and so on;
- What is the problem we are dealing with? M/M/1 queues with batch arrivals;
- How can it be applied in telecommunications? When data is broadcast in bursts or bundled together in bigger units to improve efficiency;
- What is the purpose of this work? Assess *M/M/1* queues with batch arrivals performances under different levels of utilization and buffer sizes.

1. Introduction

2. Modeling

- A. Case study: two batch sizes with the same probability of occurrence
- B. Theoretical reference: conventional M/M/1

3. Numerical Analysis

- A. Flowchart
- B. Simulation setup
- C. Results

Modeling

- Model Components:
- Batch arrival rate, λ_b;
- Packet arrival rate, λ;
- Service rate, μ;
- Batch size (number of packets by each batch) determined by Bernoulli process;
- Utilization Factor, ρ;
- ➤ Buffer size, *N*;
- Server State;
- Performance metrics:
- Blocking probability, mean time in system and mean packets in system.

1. Introduction

2. Modeling

- A. Case study: two batch sizes with the same probability of occurrence
- B. Theoretical reference: conventional M/M/1

3. Numerical Analysis

- A. Flowchart
- **B.** Simulation setup
- C. Results

Case study: two batch sizes with the same probability of occurrence

• Problem:

Consider an M/M/1 queue with batch arrivals (variable number of packets arrive at the server). The batches have different probabilities of arrival. For example, we can have a network with only two types of batches: a batch of size 1 packet, as in the M/M/1 case, and a batch of size 2 packets. In this case, the arrival probabilities of batches of sizes 1 and 2 can be equal. The arrival rate of the batches is λ_b . The service time has an average of $1/\mu$ (the service is performed for each packet, not for each batch).

- Determination of the batch size: Using a Bernoulli distribution;
- Probabilities (p_1, p_2) : For selecting one or two packet batches, respectively;
- Determination of arrival rate of the batches considering different probabilities of arrival:

$$\lambda_b = \frac{\lambda}{1 \cdot p_1 + 2 \cdot p_2} = \frac{\rho \mu}{1 \cdot p_1 + 2 \cdot p_2}$$

Case study: two batch sizes with the same probability of occurrence

M/M/1 queue with batch arrivals:

1. Introduction

2. Modeling

- A. Case study: two batch sizes with the same probability of occurrence
- B. Theoretical reference: conventional M/M/1

3. Numerical Analysis

- A. Flowchart
- **B.** Simulation setup
- C. Results

Theoretical reference: conventional M/M/1

- Performance metrics
- Mean packets in system:

$$\mathbb{E}[q] = \frac{\rho}{1 - \rho}$$

Mean time in system:

$$\mathbb{E}[T_q] = \frac{E[q]}{\lambda} = \frac{1}{\mu - \lambda}$$

1. Introduction

2. Modeling

- A. Case study: two batch sizes with the same probability of occurrence
- B. Theoretical reference: conventional M/M/1

3. Numerical Analysis

- A. Flowchart
- B. Simulation setup
- C. Results

Numerical Analysis: Flowchart for Arrival Event

Instituto Nacional de Telecomunicações

Numerical Analysis: Flowchart for Departure Event

Instituto Nacional de Telecomunicações

1. Introduction

2. Modeling

- A. Case study: two batch sizes with the same probability of occurrence
- B. Theoretical reference: conventional M/M/1

3. Numerical Analysis

- A. Flowchart
- B. <u>Simulation setup</u>
- C. Results

Numerical Analysis: Simulation Setup

- Parameters:
- Service Rate, μ: 12 packets per second;
- **Utilization Factors, ρ:** 0.2, 0.4, 0.6, 0.8, 1.0;
- Simulation Time: 5000 seconds;
- **Buffer size,** N: infinite for M/M/1 and finite (N = 10).
- Performance metrics:
- Average Time in System, E[q];
- Average Number of Packets in System, $E[T_a]$;
- Blocking Probability, P_b.

1. Introduction

2. Modeling

- A. Case study: two batch sizes with the same probability of occurrence
- B. Theoretical reference: conventional M/M/1

3. Numerical Analysis

- A. Flowchart
- B. Simulation setup
- C. Results

TABLE I PERFORMANCE COMPARISON USING DIFFERENT ρ VALUES IN INFINITE CASE, CONSIDERING PACKET ARRIVALS.

ρ	$\mathbb{E}[T_q]_s$, s	P_b	$\mathbb{E}[q]_s$, packets	$\mathbb{E}[T_q]_t, \mathbb{E}[q]_t$
0.2	0.1054	0.0000	0.2565	0.1042, 0.25
0.4	0.1407	0.0000	0.6809	0.1389, 0.6667
0.6	0.2049	0.0000	1.4643	0.2083, 1.5
0.8	0.3975	0.0000	3.7570	0.4167, 4
1	17.2847	0.0000	206.6625	∞ , ∞

Numerical Analysis: M/M/1 with batch arrivals

TABLE II PERFORMANCE COMPARISON USING DIFFERENT ρ VALUES IN INFINITE CASE, CONSIDERING BATCH ARRIVALS.

ρ	$\mathbb{E}[T_q]_s$, s	P_b	$\mathbb{E}[q]_s$, packets
0.2	0.1033	0.0000	0.2476
0.4	0.1410	0.0000	0.6818
0.6	0.2063	0.0000	1.4818
0.8	0.4272	0.0000	4.1141
1	12.9260	0.0000	155.2688

Numerical Analysis: M/M/1 with batch arrivals

TABLE III PERFORMANCE COMPARISON USING DIFFERENT ρ VALUES IN FINITE CASE (N=5), CONSIDERING BATCH ARRIVALS.

ρ	$\mathbb{E}[T_q]_s$, s	P_b	$\mathbb{E}[q]_s$, packets
0.2	0.1343	0.0035	0.3212
0.4	0.1649	0.0273	0.7685
0.6	0.1926	0.0687	1.2727
0.8	0.2169	0.1281	1.7622
1	0.2441	0.2004	2.2482

Numerical Analysis: M/M/1 with batch arrivals

TABLE IV

Performance comparison using different ρ values in finite case (N=10), considering batch arrivals.

ρ	$\mathbb{E}[T_q]_s$, s	P_b	$\mathbb{E}[q]_s$, packets
0.2	0.1371	0.0000	0.3199
0.4	0.1777	0.0007	0.8546
0.6	0.2533	0.0102	1.8213
0.8	0.3426	0.0415	3.1384
1	0.4531	0.1073	4.7663

1. Introduction

2. Modeling

- A. Case study: two batch sizes with the same probability of occurrence
- B. Theoretical reference: conventional M/M/1

3. Numerical Analysis

- A. Flowchart
- **B.** Simulation setup
- C. Results

- O desempenho alcançado pela fila M/M/1, considerando chegadas em lotes, é o mesmo que o do sistema convencional, que analisa chegadas de pacotes. Tanto o tempo médio quanto o número de elementos no sistema consideram pacotes, não lotes, e essa é a razão. Além disso, as taxas efetivas de chegada de pacotes são as mesmas em ambas as simulações;
- Baixa utilização: ocorre quando a taxa de serviço é consideravelmente maior do que a taxa de chegada. Assim, o sistema pode operar adequadamente sem rejeitar lotes ou pacotes. Se reduzirmos o tamanho do buffer, é provável que essa condição se torne limitada, aumentando a chance de bloqueio mesmo em cenários com baixa utilização;
- À medida que a utilização aumenta, considera-se que a taxa de chegada aumentou para uma taxa de serviço fixa. Assim, um buffer limitado apresentará uma maior chance de rejeitar lotes, aumentando a probabilidade de bloqueio;
- Trabalho futuro: Verificar expressões teóricas para análise de desempenho considerando chegadas em lotes.

Thanks!

luizgustavo.barros@inatel.br masoud.khazaee@dtel.lnatel.br aline.teixeira@dtel.lnatel.br