

Marco Listanti

Esercizi 8

"Indirizzamento IP" "Frammentazione IP"

Esercizio 1 (1)

- Si identifichi la classe a cui appartengono i seguenti indirizzi IP
 - **11100101 01011110 01101110 00110011**
 - 101.123.5.45
 - 231,201,5,45
 - **128.23.45.4**
 - **192.168.20.3**
 - 193.242.100.255

Esercizio 1 (2)

La classe di un indirizzo è identificata dalla posizione del primo "0":

■ 11100101 01011110 01101110 00110011 → Classe D

■ 101.123.5.45 \rightarrow 01100101.x.x.x \rightarrow Classe A

■ 231.201.5.45 \rightarrow 11100111.x.x.x. \rightarrow Classe D

128.23.45.4 \rightarrow 10000000.x.x.x \rightarrow Classe B

■ 192.168.20.3 \rightarrow 11000000.x.x.x \rightarrow Classe C

■ 193.242.100.255 \rightarrow 11000001.x.x.x \rightarrow Classe C

Esercizio 2 (1)

Partendo dalla maschera di sottorete di un indirizzo di classe C

255.255.255.0

e operando su questa con Subnetting avente maschera fissa, quante sotto-reti si possono ottenere?

Esercizio 2 (2)

Partendo dalla maschera assegnata si possono ottenere

Masche	ra	Sottoreti	# host
255.255.255.0	0000000	1	256-2= 254 host
255.255.255.128	1000000	2	128-2=126 host
255.255.255.192	11000000	4	64-2=62 host
255.255.255.224	11100000	8	32-2=30 host
255.255.255.240	11110000	16	16-2=14 host
255.255.255.248	11111000	32	8-2=4 host
255.255.255.292	11111100	64	4-2=2 host
255.255.255.254	11111110	128	2-2=0 host

Nell'ultimo caso l'RFC 3021 definisce di maschere di 31 bit per indirizzare 2 interfacce su collegamenti punto-punto

Esercizio 3 (1)

- Data la rete in figura, definire un possibile schema di indirizzamento utilizzando la tecnica del subnetting con maschera fissa a partire da indirizzi di classe C
- Calcolare l'efficienza di uso degli indirizzi nella soluzione trovata

Esercizio 3 (2)

- Le sotto-reti che occorre indirizzare sono 7 (anche i link sono sotto-reti) quindi la Sub_Net_ID sarà lunga 3 bit
- A partire da un indirizzo di classe C, con 3 bit utilizzati per il subnetting, rimangono 5 bit di Host_ID che possono indirizzare al più 2⁵-2=30 host in ogni sotto-rete
- Poiché una rete ha un numero di host superiore a 30, con un singolo indirizzo di classe C non è possibile definire uno schema di indirizzamento
- Si devono utilizzare due indirizzi di classe C

Esercizio 3 (3)

Ad esempio, utilizzando 195.68.1.0/24 e 195.68.2.0/24, un possibile schema di indirizzamento è il seguente

Esercizio 3 (3)

Calcolo efficienza (ρ_f)

Rapporto tra numero di indirizzi utilizzati e numero di indirizzi allocati

$$\rho_f = \frac{156}{416} = 0.375$$

- Quante altre sottoreti da 30 host mi restano in 195.168.2.0?
 - In 195.168.2.0 sono stati indirizzate 5 sottoreti
 - 195.168.2.0/27 → x.x.x.000
 - 195.168.2.32/27 → x.x.x.001
 - 195.168.2.64/27 \rightarrow x.x.x.010
 - 195.168.2.96/27 → x.x.x.011
 - 195.168.2.128/27 → x.x.x.100
 - Rimangono da assegnare gli indirizzi del tipo
 - 195,168,2,160/27 \rightarrow x,x,x,101 \rightarrow 30+2 host
 - 195.168.2.160/27 \rightarrow x.x.x.110 \rightarrow 30+2 host
 - 195.168.2.160/27 \rightarrow x.x.x.111 \rightarrow 30+2 host
 - In totale rimangono 90+6 indirizzi da allocare

Rete	Bit maschera	Indirizzi allocati	Indirizzi utilizzati
pc-net	25	126 + 2	100
ws-net	25	126 + 2	20
x-net-1	27	30 + 2	20
x-net-2	27	30 + 2	10
link-1	27	30 + 2	2
link-2	27	30 + 2	2
link-3	27	30 + 2	2
To	otale	402 + 14	156

Esercizio 4 (1)

- Ad un ISP è stata assegnato lo spazio di indirizzi di classe $C \rightarrow 193.212.100.0/24$
- Si devono definire 6 sottoreti. La più grande è composta da 25 host.
 - Determinare la netmask necessaria per la gestione di tale rete utilizzando subnetting con maschera fissa
 - Per ognuna delle 6 sottoreti, determinare quali sono gli indirizzi utilizzabili per gli host

Esercizio 4 (2)

- Per definire 6 sotto-reti sono necessari 3 bit
 - Occorre controllare che in ciascuna sotto-rete sia possibile indirizzare 25 host
- Dopo il sub-netting, rimangono per ogni rete 5 bit per Host_ID
 - si possono indirizzare fino a 30 host in ogni sotto-rete
- La netmask necessaria alla gestione della rete è quindi 255.255.255.224

	255 255					255				224																						
1	L	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0

Esercizio 4 (3)

Dall'indirizzo 193.212.100.0/27

- Subnet #1 indirizzo:193.212.100.0/27
 - Indirizzi assegnabili agli host: 193.212.100.33/27 → 193.212.100.62/27
- Subnet #2 indirizzo:193.212.100.32/27
 - Indirizzi assegnabili agli host: 193.212.100.33/27 → 193.212.100.62/27

Esercizio 4 (4)

- Subnet #3 indirizzo:193.212.100.64/27
 - Indirizzi assegnabili agli host: 193.212.100.65/27 → 193.212.100.94/27
- Subnet #4 indirizzo:193.212.100.96/27
 - Indirizzi assegnabili agli host: 193.212.100.97/27 → 193.212.100.126/27
- Subnet #5 indirizzo:193.212.100.128/27
 - Indirizzi assegnabili agli host: 193.212.100.129/27 → 193.212.100.158/27
- Subnet #6 indirizzo:193.212.100.160/27
 - Indirizzi assegnabili agli host: 193.212.100.161/27 → 193.212.100.190/27

Esercizio 5 (1)

Considerando la rete dell'esercizio 3, utilizzando il subnetting con maschere di lunghezza variabile, definire uno schema di indirizzamento che utilizzi un solo indirizzo di classe C

195.168.1.0/24

Esercizio 5 (2)

Partendo dalla rete con numero di interfacce maggiore, occorre definire la maschera che consenta l'indirizzamento del minimo numero di host (potenza di 2) che sia maggiore del numero di host della rete

Rete	Indirizzi necessari	Interfacce allocate	Bit maschera	Indirizzo della rete
pc-net	100	128	25	195.168.1.0/25
ws-net	20	32	27	195.168.1.128/27
x-net-1	20	32	27	195.168.1.160/27
x-net-2	10	16	28	195.168.1.192/28
link-1	2	4	30	195.168.1.208/30
link-2	2	4	30	195.168.1.212/30
link-3	2	4	30	195.168.1.216/30
Totali	152	220	2000 00 00 00 00 00 00 00 00 00 00 00 00	000000 8 8 2000000 5 8 200000 5 8 2000 05 5 8 200000 5 8 220000 5 8 20000 5 5 20000 5 5 8 20000 5 5 8 20000 5

Esercizio 5 (3)

195.168.1.0

Efficienza maschera variabile
$$\implies \rho_{v} = \frac{152}{220} = 0.690$$

Efficienza maschera fissa
$$\Rightarrow \rho_f = \frac{156}{416} = 0.375$$

Esercizio 6 (1)

- Abbiamo a disposizione un indirizzo di classe C: 195.168.13.0/24
- Si assegnino indirizzi e maschere di sottorete alle LAN, agli host e al router, utilizzando la tecnica del subnetting
 - le interfacce dei router non sono comprese nel numero di host indicato in ciascuna LAN

Esercizio 6 (2)

- Per due sotto-reti è sufficiente utilizzare 1 bit per la Sub_Net_ID, rimangono 2⁷ 2 = 126 indirizzi assegnabili ad host e router per ogni sottorete
- Indirizzo di partenza: 195.168.13.0/24
- LAN 1 indirizzo:195.168.13.0/25
 - Router R1 (eth0): 195.168.13.1/25
 - Indirizzi assegnabili agli host: 195.168.13.2/25 → 195.168.13.126/25
- LAN 2 indirizzo:195.168.13.128/25
 - Router R1 (eth1): 195.168.13.129/25
 - Indirizzi assegnabili agli host: 195.168.13.130/25 → 195.168.13.254/27

LAN1

1

ONO DIET Dept
ONO Networking Group

Esercizio 7 (1)

- Abbiamo a disposizione un indirizzo di classe C: 195.168.13.0/24
- Assegnare indirizzi e maschere di sottorete alle reti, agli host e ai router
 - Le interfacce dei router non sono comprese nel numero di host indicato in ciascuna LAN

Esercizio 7 (2)

- Per 4 sotto-reti è necessario utilizzare 2 bit per la Sub_Net_ID, rimangono 64 - 2 = 62 indirizzi assegnabili ad host e router
- La LAN1 ha 80 host +1 router, non è possibile quindi definire uno schema di indirizzamento utilizzando il subnetting con maschere di lunghezza fissa, occorre utilizzare maschere di lunghezza variabile
 - Per la LAN1 sono sufficienti 7 bit per Host_ID (80 host+1) (maschera /25)
 - Per la LAN2 sono sufficienti 5 bit per Host_ID (25 host+2) (maschera /27)
 - Per la LAN3 sono sufficienti 4 bit per Host_ID (7 host+1) (maschera /28)
 - Per il LINK sono sufficienti 2 bit per Host_ID (2 router (maschera /30)

Esercizio 7 (3)

- LAN1 indirizzo:195.168.13.0 netmask:255.255.255.128 (/25)
 - Router R1 (eth0): 195.168.13.1/25
 - Indirizzi assegnabili agli host: 195.168.13.2/25 → 195.168.13.126/25
- LAN2 indirizzo:195.168.13.128 netmask:255.255.255.224 (/27)
 - Router R2 (eth1): 195.168.13.129/27
 - Router R3 (eth0): 195.168.13.130/27
 - Indirizzi assegnabili agli host: 195.168.13.131/27 → 195.168.13.158/27
- LAN3 indirizzo:195.168.13.160 netmask:255.255.255.240 (/28)
 - Router R3 (eth1): 195.168.13.161/28
 - Indirizzi assegnabili agli host: 195.168.13.162/28 → 195.168.13.166/28
- Link indirizzo:195.168.13.252 netmask:255.255.255.252 (/30)
 - Router R1 (eth1): 195.168.13.253/30
 - Router R2 (eth0): 195.168.13.254/30
- Indirizzi allocati = 128 + 32 + 16 + 4 = 180

$$\rho_{v} = \frac{118}{180} = 0.655$$

Esercizio 7 (3)

Telecomunicazioni (Canale 2) - Prof. Marco Listanti - A.A. 2017/2018

Esercizio 8 (1)

Un'organizzazione, a cui è stato assegnato lo spazio 140.25.0.0/16, vuole sviluppare, utilizzando la tecnica di subnetting a con maschera variabile (VLSM) con la seguente struttura

- Specificare le 8 sottoreti di 140.25.0.0/16.
- Elencare gli indirizzi che possono essere assegnati nella sottorete #3
- Specificare le 16 sottoreti della sottorete #6
- Specificare gli indirizzi che possono essere assegnati alla sottorete #6-3
- Specificare le 8 sottoreti di #6-14

Esercizio 8 (2)

Telecomunicazioni (Canale 2) - Prof. Marco Listanti - A.A. 2017/2018

DIET Dept

Networking Group

Esercizio 8 (3)

Gli indirizzi assegnabili della sotto-rete #3 sono:

- $= 140.25.96.1/19 \rightarrow 140.25.127.254/19$
- Dalla sotto-rete #6 140.25.192.0/19 è possibile definire 16 sottoreti utilizzando altri 4 bit per la Sub_Net_ID

Esercizio 8 (4)

La sotto-rete 6-3 ha indirizzo 140.25.198.0/23

140	25	198	0			
10001100	00011001	1 1 0 0 0 1 1 ×	x x x x x x x x			

- $140.25.198.1/23 \rightarrow 140.25.199.254/23$
- Dalla sotto-rete #6 (14.140.25.220.0/23) è possibile definire altre 8 sottoreti utilizzando altri 3 bit per la Sub_Net_ID

Esercizi proposti (1)

- Convertire l'indirizzo IP la cui rappresentazione esadecimale è C2 2F 11 58 nella notazione decimale a punti
- Si supponga che invece di utilizzare 16 bit per la sezione rete di un indirizzo di classe B, vengano utilizzati 20 bit. Quante reti di classe B ci sarebbero?
- Una rete di classe B ha come maschera di sottorete 255.255.240.0. Qual è il massimo numero di host per sottorete?

Esercizi proposti (2)

- Quante reti di classe C ci sarebbero se, invece di utilizzare 24 bit per la sezione di rete, ne venissero utilizzati 27 ?
- Una rete di classe B ha come maschera di sottorete 255.255.192.0.
 - Qual è il massimo numero di host per sottorete?
 - Qual è il massimo numero di sottoreti ?

Esercizio 9 (1)

- Sia data la configurazione di rete in figura in cui le sottoreti A,B,C,D,E hanno rispettivamente nA=8, nB=20, nC=62, nD=60, nE=5 host
- Si chiede di:
 - indicare il numero totale di indirizzi necessari per la gestione della rete, compresi quelli necessari alla gestione del link punto-punto (si considerino anche gli indirizzi IP riservati)
 - Assegnare in modo contiguo, a partire dall'indirizzo di rete 195.200.33.0, gli indirizzi alle sottoreti A,B,C,D,E e indicare le maschere utilizzate

Esercizio 9 (2)

Il numero di indirizzi necessari per ciascuna rete è il seguente

```
Rete A: \# ind. = 8 + 1 (router R1) + 2 = 10
```

Rete B:
$$\#$$
 ind. = 20 + 1 (router R1) + 2 = 23

Rete C: # ind. =
$$62 + 2$$
 (router R1 e R2) + 2 = 66

Rete D:
$$\#$$
 ind. = 60 + 2 (router R3 e R4) + 2 = 64

Rete E:
$$\#$$
 ind. = 5 + 1 (router R4) + 2 = 8

■ Il numero totale di indirizzi è #ind_{tot}=175

Esercizio 9 (3)

- Per ottimizzare l'uso degli indirizzi, è bene ordinare le reti secondo il numero di indirizzi necessario, quindi: C, D, B, A, E, link
- Occorre individuare la maschera che permette di allocare il minimo numero di indirizzi maggiore o uguale rispetto a quello necessario
- Si ottiene quindi

Subnet	Maschera	Bit	# Indirizzi	Indirizzo	Indirizzo
Subhei	Muscheru	maschera	allocati	iniziale	finale
С	255.255.255.0	25	128	195.200.33.0	195.200.33.127
D	255.255.255.128	25	128	195.200.33.128	195.200.33.255
В	255.255.255.0	27	32	195.200.34.0	195.200.34.31
Α	255.255.255.32	28	16	195.200.34.32	195.200.34.47
E	255.255.255.48	29	8	195.200.34.48	195.200.34.55
link	255.255.255.56	30	4	195.200.34.56	195.200.34.59

Esercizio 9 (4)

Schema assegnazione degli indirizzi

Subnet	Indirizzo	Arco di indirizzi	2 byte finali indirizzi
С	195.200.33.0/25	195.200.33.0	00100001.00000000
C	199.200.33.0/29	195.200.33.127	00100001.01111111
D	105 200 33 129 /25	195.200.33.128	00100001.10000000
U	195.200.33.128/25	195.200.33.255	00100001.11111111
В	195.200.34.0/27	195.200.34.0	00100010.00000000
D		195.200.34.31	00100010.00011111
A	105 200 34 32/28	195.200.34.32	00100010.00100000
A	195.200.34.32/28	195.200.34.47	00100010.00101111
E	195.200.34.48/29	195.200.34.48	00100010.00110000
	190.200.34.46/29	195.200.34.55	00100010.00110111
link	195.200.34.56/30	195.200.34.56	00100010.00111000
IINK	199,200,34,50/30	195.200.34.59	00100010.00111011

Esercizio 9 (5)

Riepilogo

- Indirizzi allocati: 316
- Indirizzi assegnati (compresi dedicati): 175
- Indirizzo iniziale: 195.200.33.0
- Indirizzo finale: 195.200.34.59
- Efficienza = 0.554

Esercizio 10 (1)

- Si consideri l'assegnazione degli indirizzi effettuata nell'esercizio 9
- Si determinino le tabelle di routing dei router R1 e R2 (vedi schema in figura)
 - Per il next-hop si utilizzi il nome mnemonico del router successivo

	Routing Table Rx				
Dest Address	Dest Mask	Next hop			

Esercizio 10 (2)

Routing TableR1

	Routing Table R1	
Dest Address	Dest Mask	Next hop
195.200.33.0	255.255.255.0	local
195.200.33.128/25	255.255.255.128	R2
195.200.34.0/27	255.255.255.0	local
195.200.34.32/28	255.255.255.32	local
195.200.34.48/29	255.255.255.48	R2
195.200.34.56/30	255.255.255.56	R2
Default		R2

Routing TableR2

Routing Table R2					
Dest Address	Dest Mask	Next hop			
195.200.33.0	255.255.255.0	local			
195.200.33.128/25	255.255.255.128	R3			
195.200.34.0/27	255.255.255.0	R1			
195.200.34.32/28	255.255.255.32	R1			
195.200.34.48/29	255.255.255.48	local			
195.200.34.56/30	255.255.255.56	local			
Default		R3			

Esercizio 11 (1)

- Si consideri una porzione di rete costituita da due sotto-reti (indicate brevemente con S_1 e S_2), da un Router che le interconnette e da due Host (A e B)
- La S_1 impiega frame aventi intestazione di dimensione costante uguale a $H_1=30$ byte e payload di dimensione costante $L_1=80$ byte
- La S_2 impiega frame aventi intestazione di dimensione costante uguale a H_2 =80 byte e payload di dimensione variabile con lunghezza massima di $L_{2,max}$ =400 byte
- Si consideri il trasferimento di pacchetti IP nella direzione Host $A \rightarrow$ Host B (direzione 1) e un pacchetto IP nella direzione Host B \rightarrow Host A (direzione 2) considerando che entrambi i pacchetti hanno un'intestazione $H_{\rm IP}$ =24 byte e un campo Total Length (lunghezza complessiva del pacchetto) rispettivamente di 220 byte nella direzione 1 e 340 byte nella direzione 2
- Si chiede di:
 - con riferimento alla direzione 1, calcolare il numero di frammenti necessari a trasferire il pacchetto IP da estremo ad estremo e l'efficienza di trasferimento dei bit utili del pacchetto IP nell'attraversamento della S₂;
 - con riferimento alla direzione 2, calcolare il numero di frammenti necessari a trasferire il pacchetto IP da estremo ad estremo e l'efficienza di trasferimento dei bit utili del pacchetto IP nell'attraversamento della S_1

Esercizio 11 (2)

Direzione A→B

- Poiché L_{totAB}>L₁, un pacchetto emesso da A deve essere frammentato per il transito nella nella rete S1
- Poiché L_{2max} L_1 , non è necessaria un ulteriore frammentazione nella rete 52

Direzione B→A

- Poiché L_{totBA}<L_{2max}, non necessaria una frammentazione nella rete 52
- Poiché L_{totBA}> L₁, è invece necessaria una frammentazione nella rete S1

Esercizio 11 (3)

Direzione $A \rightarrow B$, transito nella rete S1, mappa frammentazione

	Pacchetto IP	Header IP (24 byte)			ayload 96 byte)
Frame	Header 2-PDU (30 byte)		Payload (80 byte)		
#1	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (56 byt		FR 1 = 80 byte; Offset=0
#2	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (56 byt		FR 2 = 56 byte; Offset=56/8=7
#3	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (56 byt		FR 3 = 56 byte; Offset=112/8=14
#4	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (28 byte)	Padding (26 byte)	FR 4 = 28 byte; Offset=168/8=21

N.B: il campo Offset in un frammento indica il punto dell'area dati del pacchetto originale (espresso in multipli di 8 byte) in cui inizia la porzione di dati trasportata dal frammento

Esercizio 11 (3)

 \blacksquare Direzione $A \rightarrow B$, transito nella rete S2

Pacchetto IP Header IP Payload (56 byte)

Frame

Header 2-PDU	Payload
(80 byte)	(L2max=400 byte)

- Non è necessaria un'ulteriore frammentazione
- La frame trasferita nella rete S2 avrà lunghezza totale L_{frame2}=160 byte

Esercizio 11 (4)

■ Direzione $B\rightarrow A$, transito nella rete S2

- Non è necessaria frammentazione
- La frame trasferita nella rete S2 avrà lunghezza totale L_{frame2}=420 byte

Esercizio 11 (5)

Frammentazione direzione $B\rightarrow A$, transito nella rete S1

Pacchetto IP		Header IP (24 byte)	Payload (316 byte)	
Frame	Header 2-PDU (30 byte)	Payload (L1=80 byte)		
#1	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (56 byte)	FR 1 = 80 byte; Offset=0
#2	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (56 byte)	FR 2 = 56 byte; Offset=56/8=7
#3	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (56 byte)	FR 3 = 56 byte; Offset=112/8=14
#4	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (56 byte)	FR 4 = 56 byte; Offset=168/8=21
#5	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload (56 byte)	FR 5 = 56 byte; Offset=168/8=21
#6	Header 2-PDU (30 byte)	Header IP (24 byte)	Payload Padding (36 byte) (20 byte)	FR 6 = 36 byte; Offset=224/8=28

Esercizio 11 (6)

Efficienza di trasferimento in 52 nella direzione

 $A \rightarrow B$

$$\rho_{S2,AB} = \frac{Byte \ utili \ in \ una \ frame}{Byte \ totali \ in \ una \ frame}$$

$$\rho_{S2,AB}(1) = \frac{80}{160} = 0.5$$

$$\rho_{S2,AB}(2,3) = \frac{56}{160} = 0.35$$

$$\rho_{S2,AB}(1) = \frac{80}{160} = 0.5$$
 $\rho_{S2,AB}(2,3) = \frac{56}{160} = 0.35$
 $\rho_{S2,AB}(4) = \frac{28}{160} = 0.175$

da cui

$$\rho_{S2,AB} = \frac{220}{480} = 0.46$$

Analogalmente, l'efficienza di trasferimento in 51 nella direzione $B \rightarrow A$

$$\rho_{S1,BA}(1) = \frac{80}{110} = 0.73$$

$$\rho_{S1,BA}(1) = \frac{80}{110} = 0.73$$
 $\rho_{S1,BA}(2,3,4,5) = \frac{56}{110} = 0.51$
 $\rho_{S1,BA}(4) = \frac{36}{110} = 0.33$

$$\rho_{S1,BA}(4) = \frac{36}{110} = 0.33$$

$$\rho_{S1,BA} = \frac{340}{660} = 0.51$$

Esercizio proposto

- Un pacchetto IP con L=9000 byte di payload è frammentato per una MTU di lunghezza L_{MTU}=2400 byte.
- Supponendo che l'header IP sia sempre di dimensione H=160 byte:
- a) Calcolare il numero di frammenti
- b) Per ogni frammento indicare il numero di byte per lo header IP e per la parte dati, inoltre indicare esplicitamente il valore del campo Offset

