Valószínűségszámítás

5. gyakorlat

Nemkin Viktória viktoria.nemkin@gmail.com

2015. okt. 14.

- 5.1 $X \in E(2)$ segítségével generáljon egy $Y \in G(\frac{1}{3})$ valószínűségi változót! Fau. II.8
- 5.2 Az $X \in U(0,1)$ valószínűségi változó segítségével generáljunk $Y \in G(\frac{1}{4})$ eloszlású valószínűségi változót! Fgy.~II.100
- 5.3 Legyen $X \in U(0,1)$ és $Y = \sqrt{2X}$. Adja meg Y sűrűségfüggvényét! Fgy. II.6
- 5.4 Az X normális eloszlású valószínűségi változó várható értéke -5 és tudjuk, hogy $\mathbf{P}(-5 \le X < 0) = 0,3$. Mennyi $\mathbf{P}(-5 < X < 4)$? Fgy.~II.30
- 5.5 Legyen $X \in U(0,1)$ és Y = arctg(X). Számolja ki Y sűrűségfüggvényét! Fgy.~II.41
- 5.6 Legyen $X \in E(1)$ és $Y = e^{-X}$. Számolja ki Y várható értékét és szórását! Fqy. II.46
- 5.7 Legyenek $X \in N(m,D)$ és $Z = (\frac{X-m}{D})^2$. Számolja ki Z sűrűségfüggvényét! Fgy. II.61
- 5.8 Egy normális eloszlású valószínűségi változó 0,2 valószínűséggel vesz fel 10-nél kisebb értéket és 0,3 valószínűséggel 14-nél nagyobb értéket. Mik az eloszlás paraméterei? ($\Phi(0,51)=0,7, \Phi(0,89)=0,8$). Fgy. II.66
- 5.9 Amerikában a hőmérsékletet Fahrenheit fokokban mérik. Az egyik államban megállapították, hogy az ottani X hőmérséklet eloszlása nyaranta N(86,4). Hogyan változik meg az eloszlás ha áttérünk a Celsius-skálára? (A Fahrenheit és Celsius skála között az átváltási képlet: $Y[C] = \frac{5}{9}(X[F] 32)$. Fgy.~II.67
- 5.10 Egy autó X (km)-t tud defekt nélkül megtenni, ahol $X \in E(\lambda)$, azaz $\mathbf{P}(X < x) = 1 e^{-\lambda x}, x > 0$. Egy 12000 (km) hosszúságú úton mennyi annak a valószínűsége, hogy az autó legfeljebb egy defektet kap? ($\lambda = 10^{-4}$). Fgy. II.95
- 5.11 Legyen $X \in N(\mu, \sigma)$. A paraméterek segítségével adjunk képletet az EX^n momentumra. Fqy. II.97