Classification of Singularities

By Laurent's Theorem, if f(z) is analytic in a punctured disk around α , it has a convergent Laurent expansion

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - \alpha)^n$$

Three possibilities:

Removable singularity None of the a_n with n < 0 are nonzero A pole Only finitely many a_n with n < 0 are nonzero Essential singularity Infinitely many a_n with n < 0 are nonzero

Punchline first:

Only for essential singularities will you need to compute the Laurent series to find the pole!

Removable singularities: no negative powers

f has a removable singularity at α means it has no negative powers of $z-\alpha$ in its Laurent series.

But then it's Laurent series is really a Taylor series, and it makes sense to plug in α . Thus f extends to an analytic function around α .

Examples:

- 1. $\frac{z^2-1}{z-1}$
- 2. $\frac{\sin(z)}{z}$

Since the Laurent series has no negative powers, the residue of a removable singularity is always zero.

Poles: only finitely many negative terms

Definition

We say that f(z) has a pole of order k at α if its Laurent series $f(z) = \sum_{n \in \mathbb{Z}} a_n (z - \alpha)^n$ has $a_{-k} \neq 0$, but $a_n = 0$ for n < -k.

In other words

$$f(z) = \sum_{n > -k} a_n (z - \alpha)^n$$

A pole of order one is also called a *simple pole*.

Examples: poles of order 2

- 1. $\frac{e^z}{z^2}$
- 2. $tan^{2}(z)$

Poles of the gamma function

extends (n-1)! to an analytic function, and has simple poles at the non-positive integers

Essential singularity: infinitely many negative powers

Definition

If the Laurent series of f(z) around α has infinitely many $a_k \neq 0$ with k < 0, then we say α is an essential singularity of f

Examples

- $ightharpoonup e^{1/z}$
- ▶ cosh(1/z)

Theorem (Great Picard's Theorem – just for culture)

If f(z) has an essential singularity at α , then on any punctured disk around α , f(z) takes on all possible complex values, with at most one exception, infinitely often.

So $\lim_{z\to\alpha} f(z)$ is infinity for a pole, but horribly doesn't exist for an essential singularity.

Easy (and examinable!) theorems about poles

Theorem

f has a pole of order k at α if and only if

$$f(z) = \frac{g(z)}{(z - \alpha)^k}$$

where g(z) analytic and nonzero in some disk around α .

Theorem

If f has a zero of order k at α , then 1/f has a pole of order k at α .

Corollary

If f has a zero of order m at α , and g has a zero of order n at α , then

- $\frac{f}{\sigma}$ has a pole of order n-m if n>m
- $ightharpoonup rac{f}{g}$ has a removable singularity if $m \geq n$

Easy way to find residues at poles

Theorem

Suppose that f has a pole of order k at α . Then

$$\operatorname{Res}\{f;\alpha\} = \frac{1}{(k-1)!} \lim_{z \to \alpha} \frac{d^{k-1}}{dz^{k-1}} (z - \alpha)^k f(z)$$

Proof.

Just compute the right hand side.

Corollary

If f=g/h, where g and h are analytic at α , $g(\alpha)\neq 0, h(\alpha)=0, h(\alpha)\neq 0$, then f has a simple pole at α and

$$\operatorname{Res}\{f;\alpha\} = \frac{g(\alpha)}{h'(\alpha)}$$