2. $\angle V \cong \angle V$ (Reflex.) 3. $\triangle VWZ \sim \triangle VXY$ (SAS \sim) 4. $\angle 1 \cong \angle 2$ (Corr. $\angle of \sim \triangle$ are \cong .) 5. $\overline{WZ} \parallel \overline{XY}$

(If corr. $\triangle \cong$, lines $\|.$) 15. 1. $\frac{JL}{NL} = \frac{KL}{ML}$ (Given) 2. $\angle MLN \cong \angle KLJ$ (Vert. $\triangle \cong$.) 3. $\triangle MLN \sim \triangle KLJ$

(SAS \sim) 4. $\angle J \cong \angle N$ (Corr. \triangle of $\sim \triangle$ are \cong .) 17. Given: $\triangle ABC \sim \triangle DFF : \overline{AM}$ and \overline{DN} are

17. Given: $\triangle ABC \sim \triangle DEF$; \overline{AM} and \overline{DN} are medians.

Prove: $\frac{AM}{DN} = \frac{AB}{DE}$

Key steps of proof: 1. $BM = \frac{1}{2}BC$; $EN = \frac{1}{2}EF$

(Midpt. Thm.) 2. $\frac{BC}{EF} = \frac{AB}{DE}$ (Corr. sides of $\sim \triangle$ are

in prop.) 3. $\frac{BM}{EN} = \frac{AB}{DE}$ (Subst.) 4. $\triangle ABM \sim \triangle DEN$ (SAS \sim) 5. $\frac{AM}{DN} = \frac{AB}{DE}$ (Corr. sides of $\sim \triangle$ are in prop.)

Mixed Review Exercises, Page 268

1. a. \overline{GC} ; \overline{EF} **b.** 18 **c.** 3 **d.** 90 **2. a.** Midpt., \overline{RV} **b.** 2 **c.** 4

Written Exercises, Pages 272-273

1. a. No b. Yes c. Yes d. No e. Yes f. Yes 3. 7.5 5. 26 7. 18 9. 14.5 11. 4 13. AN = 10 15. RT = 8; AN = 18; NP = 12; TP = 25 17. AR = 8; NP = 6; AP = 12 21. 22.5 23. 78 25. 0.5

Self-Test 2, Page 274

1. SSS ~ 2. AA ~ 3. SAS ~ 4. a. $\triangle EDC$ b. ED; EC; DC c. 10; x; 14 d. 10; y; 18 .5. r 6. p 7. h 8. a 9. 12 10. 14 11. $6\frac{2}{3}$

Extra, Page 276

1. c 3. b 5. d

Chapter Review, Pages 277-278

1. 3:5 3. $\frac{2y}{3x}$ 5. No 7. Yes 9. $\angle J$ 11. a. 12 b. 50 13. a. $\triangle UVH$ b. AA \sim 15. UH; $\frac{RT}{DV}$ 17. $\triangle NCD \sim \triangle NAB$; AA \sim 19. No 21. 2 23. 14.4

Algebra Review, Page 280

1. 6 3. $2\sqrt{6}$ 5. $10\sqrt{3}$ 7. $\frac{\sqrt{15}}{3}$ 9. 1 11. 13 13. 12 15. 162 17. $12\sqrt{3}$ 19. $10\sqrt{2}$ 21. 5 23. 12 25. $\sqrt{65}$ 27. $2\sqrt{2}$ 29. 7

Cumulative Review, Pages 281-283

True-False Exercises 1. F 3. F 5. T 7. F 9. F 11. F Multiple-Choice Exercises 1. d 3. d 5. c Always-Sometimes-Never Exercises 1. S 3. S 5. N 7. A 9. S 11. A 13. A 15. S Completion Exercises 1. 120 3. obtuse 5. 108 7. rect. 9. 36 Algebraic Exercises 1. 6 3. 84 5. 20 7. 7 9. 6 11. 15 13. 16 cm, 20 cm, 28 cm 15. x = 6, y = 3.5 Proof Exercises 1. 1. $\overline{SU} \cong \overline{SV}$; $\angle 1 \cong \angle 2$ (Given) 2. $\overline{QS} \cong \overline{QS}$ (Reflex.) 3. $\triangle QUS \cong \triangle QVS$ (SAS) 4. $\overline{UQ} \cong \overline{VQ}$ (CPCT) 3. Key steps of proof: 1. $\overline{QR} \cong \overline{QT}$; $\angle R \cong \angle T$; $\overline{RU} \cong \overline{TV}$ (CPCT) 2. $\overline{RS} \cong \overline{TS}$ (Seg. Add. Post and Add. Prop. =) 3. $\triangle QRS \cong \triangle QTS$ (SAS) 5. 1. $\overline{EF} \parallel \overline{JK}$; $\overline{JK} \parallel \overline{HI}$ (Given) 2. $\overline{EF} \parallel \overline{HI}$ (Thm. 3-10) 3. $\angle 2 \cong \angle 3$; $\angle F \cong \angle H$ (If lines \parallel , alt. int. $\triangle \cong$.) 4. $\triangle EFG \sim \triangle IHG$ (AA \sim)