Section 3

Equivalent formulas

Semantically equivalent formulas

Definition

We say two formulas A and B are **semantically equivalent**, and write $A \equiv B$ in this case, iff their interpretations are the same, for any valuation v

I.e., in the Boolean semantics,

 $A \equiv B$, if A and B have the same truth tables

Examples of semantically equivalent formulas

$$P \equiv \neg \neg P$$

Р	$\neg P$	$\neg \neg P$

double negation / involution

 ${\sf Equivalent\ formulas}$

37

Examples of semantically equivalent formulas

$$P \equiv \neg \neg P$$

Р	$\neg P$	$\neg \neg P$

double negation / involution

$$P \equiv P \wedge P$$

Р	$P \wedge P$

idempotence

Examples of semantically equivalent formulas

$$P \equiv \neg \neg P$$

Р	$\neg P$	$\neg \neg P$

double negation / involution

$$P \equiv P \wedge P$$

$$\begin{array}{|c|c|c|}\hline P & P \land P \\ \hline \end{array}$$

idempotence

$$P \equiv P \vee P$$

Р	$P \vee P$	
1	1	
0	0	

idempotence

Equivalent formulas

37

Proving formulas are semantically equivalent

$$P \to Q \equiv \neg P \lor Q$$

P	Q	P o Q	$\neg P$	$\neg P \lor Q$
1	1	1	0	1
1	0	0	0	0
0	1	1	1	1
0	0	1	1	1

This means: \rightarrow can be expressed in terms of \neg and \lor

Fundamental semantic equivalences

$P \wedge P \equiv P$	idempotence
$P \vee P \equiv P$	idempotence
$P \wedge Q \equiv Q \wedge P$	commutative
$P \lor Q \equiv Q \lor P$	commutative
$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	associative
$P \vee (Q \vee R) \equiv (P \vee Q) \vee R$	associative
$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	distributive
$P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$	distributive
$P \wedge (P \vee Q) \equiv P$	absorption
$P \vee (P \wedge Q) \equiv P$	absorption

Equivalent formulas

39

Fundamental semantic equivalences (cont'd)

$$\neg \neg P \equiv P$$

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

$$P \to Q \equiv \neg P \lor Q$$

$$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$$

$$P \to Q \equiv \neg Q \to \neg P$$

double negation/involution

De Morgan's law

De Morgan's law

Augustus De Morgan (1806-1871) https://en.wikipedia.org/

Substitution for propositional variables

Substitution means uniformly replacing propositional variables within a formula by other formulas

Substituting formulas C_1, \ldots, C_n **for** P_1, \ldots, P_n in

$$A(P_1,\ldots,P_n)$$

gives

$$A(C_1,\ldots,C_n)$$

Example

$$A(P,Q) = P \vee \neg (Q \rightarrow P)$$
$$A(P \wedge Q, \neg R) =$$

implies

Equivalent formulas

41

Substitution Theorem

Theorem

If

$$A(P_1,\ldots,P_n) \equiv B(P_1,\ldots,P_n)$$

then

$$A(C_1,\ldots,C_n) \equiv B(C_1,\ldots,C_n)$$

Equivalent formulas

Example

From De Morgan's law:

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

we get

$$\neg(\underline{(P\vee\neg R)}\wedge\underline{(P\to S)})\ \equiv\ \neg\underline{(P\vee\neg R)}\vee\neg\underline{(P\to S)}$$

In fact, we get

$$\neg(A \land B) \equiv \neg A \lor \neg B$$
 for any propositional formulas A, B

Similarly, for the other fundamental semantic equivalences

Equivalent formulas

43

Replacement of a formula

Assume A is a subformula of C

$$C(\ldots A\ldots)$$

Replacing one (!) occurrence of A in C by B results in the formula

$$C(\ldots B\ldots)$$

Replacing the second occurrence of $P \wedge Q$ in

$$(P \wedge Q) \rightarrow (R \leftrightarrow (P \wedge Q))$$

by $Q \wedge P$ results in

$$(P \wedge Q) \rightarrow (R \leftrightarrow (Q \wedge P))$$

Equivalent formulas

44

Equivalent Replacement Theorem

Theorem

Given are propositional formulas A, B, C, and suppose A is a subformula of C. Then

$$A \equiv B$$
 implies $C(...A...) \equiv C(...B...)$

C(...B...) is obtained by replacement from C(...A...)

From

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$

we get by equivalent replacement

$$\underline{\neg(P \land Q)} \lor \neg Q \equiv \underline{(\neg P \lor \neg Q)} \lor \neg Q$$

Equivalent formulas

45

Simplifying propositional formulas

Example

Simplify

$$\neg (P \land Q) \lor \neg Q$$

Solution:

$$\neg(P \land Q) \lor \neg Q$$

$$\equiv (\neg P \lor \neg Q) \lor \neg Q \quad \text{by equiv. replacement using De Morgan} \\ \neg(P \land Q) \equiv \neg P \lor \neg Q$$

$$\equiv \neg P \lor (\neg Q \lor \neg Q) \quad \text{by equiv. repl. using general assoc. of } \lor$$

This shows

 $\equiv \neg P \vee \neg Q$

$$\neg (P \land Q) \lor \neg Q \equiv \neg P \lor \neg Q$$

by equiv. repl. using $A \lor A \equiv A$

Equivalent formulas

The logical constants \top and \bot

It is useful to extend the language with the logical constants

op top/truth op bottom/falsum

Definition

- \blacktriangleright The interpretation of \top is 1, for any interpretation (i.e., relative to any valuation of the propositional variables)
- ▶ The interpretation of \bot is **0**, for any interpretation

Think of \top and \bot as abbreviations of $P \vee \neg P$ and $P \wedge \neg P$, since:

P	$\neg P$	$P \vee \neg P$	$P \wedge \neg P$
1	0	1	0
0	1	1	0

 \top is a tautology

 \perp is a contradiction

Equivalent formulas

47

Fundamental properties of \top and \bot

Theorem

- ▶ If A is a tautology then $A \equiv \top$
- ▶ If A is a contradiction then $A \equiv \bot$

$$A \lor \neg A \equiv \top$$
 excluded middle $A \land \neg A \equiv \bot$ contradiction $A \to A \equiv \top$ $A \leftrightarrow A \equiv \top$ $A \leftrightarrow A \equiv \top$ $A \leftrightarrow A \equiv \top$ $A \lor T \equiv T \equiv T \lor A$ $A \land T \equiv A \equiv T \land A$ $A \lor \bot \equiv A \equiv T \lor A$ $A \leftrightarrow \bot \equiv A \equiv T$ $A \leftrightarrow \bot \equiv A$ $A \leftrightarrow \bot \equiv A$

Equivalent formulas

Example

Simplify

$$((P \land Q) \rightarrow (Q \lor \neg P)) \land (P \lor \neg P)$$

Solution:

Equivalent formulas

49

Summary

- ► Using truth tables we can check whether formulas are tautologies, contradictions, satisfiable, semantically equivalent
- ► Limitations of truth tables: Already for a modest number of variables truth tables are unacceptably large!
- ► Alternative to establishing equivalence: Using the fundamental laws, along with the substitution into propositional variables and equivalent replacement
- ► This is useful for simplifying formulas

Equivalent formulas

50

Semantically equivalent formulas in the other semantics

Definition (as before)

 $A \equiv B$ iff their interpretations are the same, for any valuation v.

In the Boolean semantics

 $A \equiv B$ if A and B have the same truth tables

In the power set semantics

$$A \equiv B$$
 if $S_A = S_B$,
where S_A denotes the assignment to A

In the logic circuit semantics

 $A \equiv B$ if the voltage output of either circuit is the same for all possible input voltages

Note: To test semantic equivalence it suffices to do this in one model We don't have the test equivalence in all three models!

Equivalent formulas

51