Announcements for Monday, 04NOV2024

- Office Hours are cancelled today
- Week 9 Homework Assignments available on eLearning
 - Graded and Timed Quiz 9 "Chemical reaction" due Tuesday, 05NOV2024, at
 6:00 PM (EST)
- Mid-Semester Survey due tonight at 11:59 PM (EST)

ANY GENERAL QUESTIONS? Feel free to see me after class!

Try This On Your Own

What volume of 0.250 M NaCl(aq) should be added to completely react 421 mL of $0.236 \text{ M Pb(NO}_3)_2(\text{aq})$ to form $\text{PbCl}_2(\text{s})$ and $\text{NaNO}_3(\text{aq})$?

2 NaCl(aq) + Pb(NO₃)₂(aq)
$$\rightarrow$$
 PbCl₂(s) + 2 NaNO₃(aq)

Solution Stoichiometry – Examples

What mass of $Ca_3(PO_4)_2$ will be produced when 25.0 mL of 0.111 M $K_3PO_4(aq)$ reacts completely with 35.0 mL of 0.243 M $Ca(NO_3)_2(aq)$ according to the unbalanced reaction $K_3PO_4(aq) + Ca(NO_3)_2(aq) \rightarrow Ca_3(PO_4)_2(s) + KNO_3(aq)$?

$0.430 \text{ g Ca}_3(PO_4)_2$

1.5 L of 0.25 M Na₂CO₃(aq) reacts with 0.55 L of 0.84 M HCl(aq) according to the reaction Na₂CO₃(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + H₂O(ℓ) + CO₂(g). Assuming 100% yield, calculate the number of CO₂ molecules generated in this reaction.

1.4×10²³ CO₂ molecules

(challenging) Consider the reaction NH₃(aq) + HCl(aq) → NH₄Cl(aq)

500. mL of 1.5 M NH_3 (aq) is mixed with 250. mL of 1.0 M HCl(aq) and reacts with 100% yield. What is the concentration of NH_3 once the reaction finishes?

$$500 \text{ mL NH}_{3} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{1.5 \text{ mol NH}_{3}}{1 \text{ L}} = \frac{0.75 \text{ molNH}_{3}}{1 \text{ mol NH}_{4}\text{Cl}} \times \frac{1 \text{ mol NH}_{4}\text{Cl}}{1 \text{ mol NH}_{3}} = 0.75 \text{ mol NH}_{4}\text{Cl}$$

$$250 \text{ mL HCl} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{1.0 \text{ mol HCl}}{1 \text{ L}} = \frac{0.25 \text{ mol HCl}}{1 \text{ L}} \times \frac{1 \text{ mol NH}_4 \text{Cl}}{1 \text{ mol HCl}} = 0.25 \text{ mol NH}_4 \text{Cl} \dots \text{HCl is limiting}, \text{NH}_3 \text{ in excess}$$

Amount NH₃ reacted:
$$0.25 \text{ mol HCl} \times \frac{1.0 \text{ mol HCl}}{1 \text{ L}} \times \frac{1 \text{ mol NH}_3}{1 \text{ mol HCl}} = 0.25 \text{ mol NH}_3 \text{ reacted}; 0.75 \text{ mol NH}_3 \text{ to start}$$

Excess NH₃ = 0.75 mol - 0.25 mol = 0.50 mol [NH₃] =
$$\frac{\text{moles NH}_3}{\text{total volume}} = \frac{0.50 \text{ mol}}{(0.500 \text{ L} + 0.250 \text{ L})} = \frac{0.50 \text{ mol}}{0.750 \text{ L}} = 0.67 \text{ M NH}_3$$

Try This On Your Own

500.0 mL of 2.00 M MgCl₂(aq) is mixed with 200.0 mL of 0.500 M Pb(NO₃)₂(aq) and allowed to react to completion.

 Which species will be present in the reaction vessel once the reaction completes?

H₂O, PbCl₂(s), NO₃⁻(aq) (from Mg(NO₃)₂), Mg²⁺(aq) (from Mg(NO₃)₂ AND excess MgCl₂), and Cl⁻(aq) (from excess MgCl₂)

$$MgCl_2(aq) + Pb(NO_3)_2(aq) \rightarrow Mg(NO_3)_2(aq) + PbCl_2(s)$$

$$\frac{\text{excess}}{500 \text{ mL MgCl}_2} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{2.00 \text{ mol MgCl}_2}{1 \text{ L}} = \frac{1.00 \text{ mol MgCl}_2}{1 \text{ mol MgCl}_2} \times \frac{1 \text{ mol PbCl}_2}{1 \text{ mol MgCl}_2} = 1.00 \text{ mol PbCl}_2$$

$$200 \text{ mL Pb(NO}_3)_2 \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{0.500 \text{ mol Pb(NO}_3)_2}{1 \text{ L}} = \frac{0.100 \text{ mol Pb(NO}_3)_2}{1 \text{ mol Pb(NO}_3)_2} \times \frac{1 \text{ mol PbCl}_2}{1 \text{ mol Pb(NO}_3)_2} = 0.100 \text{ mol PbCl}_2$$

The Process of Dissolution in Water

water molecules surround and envelope the solute particles

Electrolytes

electrolyte = a compound that when dissolved in water, allows the water to conduct electricity

mobile charges are necessary to conduct a current

strong electrolytes

- completely dissociate into ions
 - $HCl(g) + H_2O(\ell) \rightarrow H^+(aq) + Cl^-(aq)$
- soluble ionic compounds (see solubility rules)
- strong acids

weak electrolytes

- partially dissociate into ions
 - $HF(g) + H_2O(\ell) \Rightarrow H^+(aq) + F^-(aq)$
- weak acids, weak bases

<u>nonelectrolytes</u>

- dissolve and remain as intact molecules
 - $C_{12}H_{22}O_{11}(s) + H_2O(\ell) \rightarrow C_{12}H_{22}O_{11}(aq)$
- soluble molecular compounds that are not acids or bases

© 2018 Pearson Education, Inc.

Weak electrolyte

© 2018 Pearson Education, Inc.

Nonelectrolyte

Solubility Rules – Ionic Compounds in Water

- a set of empirical rules that allow us to determine an ionic compound's watersolubility
 - based on numerous experimental observations
- soluble or insoluble?
 Hg₂(NO₃)₂ (soluble)
 Ag₂CO₃ (insoluble)
 LiOH (soluble)
- although you don't have to memorize, you should be familiar with some commonly soluble ions (Na⁺, NH₄⁺, NO₃⁻, C₂H₃O₂⁻/CH₃COO⁻)

TABLE 8.1 Solubility Rules for Ionic Compounds in Water

Compounds Containing the Following Ions Are Generally Soluble	Exceptions
Li ⁺ , Na ⁺ , K ⁺ , and NH ₄ ⁺	None
$\mathrm{NO_3}^-$ and $\mathrm{C_2H_3O_2}^-$	None
Cl ⁻ , Br ⁻ , and l ⁻	When these ions pair with $\mathrm{Ag^+}$, $\mathrm{Hg_2^{2^+}}$, or $\mathrm{Pb^{2^+}}$, the resulting compounds are insoluble
SO ₄ ²⁻	When SO ₄ ²⁻ pairs with Sr ²⁺ , Ba ²⁺ , Pb ²⁺ , Ag ⁺ , or Ca ²⁺ , the resulting compound is insoluble.
	100
Compounds Containing the Following Ions Are Generally Insoluble	Exceptions
	Exceptions When these ions pair with Li ⁺ , Na ⁺ , K ⁺ , or NH ₄ ⁺ , the resulting compounds are soluble.
Ions Are Generally Insoluble	When these ions pair with Li ⁺ , Na ⁺ , K ⁺ , or
Ions Are Generally Insoluble	When these ions pair with Li ⁺ , Na ⁺ , K ⁺ , or NH ₄ ⁺ , the resulting compounds are soluble. When S ²⁻ pairs with Ca ²⁺ , Sr ²⁺ , or Ba ²⁺ , the

Precipitation Reactions

- precipitation reaction = an insoluble ionic compound forms upon the mixing of two aqueous solutions of ionic compounds
- predicting products for a precipitation reaction
 - swap ions so that the cation from one compound partners with the anion from the other compound
 - predict precipitates using solubility rules

2 KI(aq) + Pb(NO₃)₂(aq) \rightarrow 2 KNO₃(aq) + PbI₂(s) net-ionic equation: Pb²⁺(aq) + 2 I⁻(aq) \rightarrow PbI₂(s)

© 2018 Pearson Education, Inc.

Ways of Representing Aqueous Reactions

Aqueous solutions of sodium sulfide and magnesium chloride are mixed to form aqueous sodium chloride and a precipitate of magnesium sulfide

$$Na^+ S^{2-} \rightarrow Na_2S$$
 $Mg^{2+} Cl^- \rightarrow MgCl_2$ $NaCl$ MgS

1. molecular equation (a misnomer)

• balanced reaction with all of the compounds shown associated (i.e., not separated into ions)

$$Na_2S(aq) + MgCl_2(aq) \rightarrow 2 NaCl(aq) + MgS(s)$$

Ways of Representing Aqueous Reactions (continued)

Aqueous solutions of sodium sulfide and magnesium chloride are mixed to form aqueous sodium chloride and a precipitate of magnesium sulfide

2. complete ionic equation

 species that are strong electrolytes in (aq) solution should be shown as dissociated; weak electrolytes, nonelectrolytes, and undissolved solids should not be dissociated

$$Na_2S(aq) + MgCl_2(aq) \rightarrow 2 NaCl(aq) + MgS(s)$$

dissociate? dissociate? dissociate? dissociate? YES! YES! YES! NO!!

$$2Na^{+}(aq) + S^{2-}(aq) + Mg^{2+}(aq) + 2Cl^{-}(aq) \rightarrow 2Na^{+}(aq) + 2Cl^{-}(aq) + MgS(s)$$

Ways of Representing Aqueous Reactions (continued)

Aqueous solutions of sodium sulfide and magnesium chloride are mixed to form aqueous sodium chloride and a precipitate of magnesium sulfide

3. net ionic equation

- only species that change during the reaction are shown
- spectator ions = ions present on both sides of the equation that don't actually participate in the reaction

net ionic equation

Writing Net Ionic Equations

step 1: write balanced overall molecular equation

- be sure to write the correct chemical formulas
- correctly determine the states of the compounds based on the wording of the question
 - species dissolved in water are (aq)
 - precipitates that form are (s)
 - use solubility rules to determine solubility and precipitates

step 2: write complete ionic equation

- go species by species and dissociate strong electrolytes present in (aq) solution
 - soluble ionic compounds in water and strong acids in water get separated
 - weak acids and nonelectrolytes DON'T get separated

step 3: write net ionic equation

- cancel spectator ions
- make sure balanced coefficients are expressed in lowest whole number

Try This

 Write a balanced net ionic equations for the reaction that takes place when aqueous mercury(I) nitrate reacts with an aqueous solution of magnesium bromide.

molecular: $Hg_2(NO_3)_2(aq) + MgBr_2(aq) \rightarrow Mg(NO_3)_2(aq) + Hg_2Br_2(s)$

CIE: $Hg_2^{2+}(aq) + 2 NO_3^{-}(aq) + Mg^{2+}(aq) + 2 Br^{-}(aq) \rightarrow Mg^{2+}(aq) + 2 NO_3^{-}(aq) + Hg_2Br_2(s)$

NIE: $Hg_2^{2+}(aq) + 2 Br^{-}(aq) \rightarrow Hg_2Br_2(s)$

Try These On Your Own

• Write a balanced net ionic equation for the reaction that takes place when an aqueous solution of iron(II) nitrate is mixed with an aqueous solution of potassium phosphate.

 Write a balanced net ionic equation for the reaction that takes place when solid sodium chloride is added to an aqueous solution of silver acetate.

• Write balanced molecular, complete ionic, and net ionic equations for the reaction that takes place when aqueous copper(II) acetate reacts with an aqueous solution of calcium hydroxide.