Microéconomie

Théorie du producteur

Licence 1, DU ECE Institut d'Economie et de Gestion 2021-2022

Série d'exercices

1 La production

Exercice 1.1.

Lors des matchs de basket-ball d'une équipe professionnelle, la vente de la bière est confiée à une équipe de vendeurs occasionnels. Ceux-ci ne se présentent pas à tous les matchs. Ces absences influencent la vente de bière. On a enregistré les chiffres suivants:

	Nombre de vendeurs	Nombre de bières vendues
match 1	10	2 565
match 2	7	2 000
match 3	6	1 700
match 4	9	2 440
match 5	11	2 625
match 6	8	2 250

- 1. Calculer la productivité moyenne des vendeurs.
- 2. Calculer la productivité marginale des vendeurs.
- 3. Représenter graphiquement la productivité moyenne et la productivité marginale.
- 4. Expliquer l'allure de la courbe de productivité marginale.
- 5. Au cours des 6 matchs, aucun vendeur n'a jamais vendu moins de 120 bières. Comment concilier cette information avec la. valeur de la productivité marginale du 11^{ème} vendeur?

Exercice 1.2.

1. Complétez le tableau suivant de données de production:

Travail	Capital	Production	Productivité moyenne	Productivité marginale
3	8	33		n.d.
4	8		9	
5	8			4
6	8		7.5	5

- 2. Représentez, graphiquement la courbe de production totale où la production est fonction de la quantité utilisée de travail.
- 3. Représentez graphiquement les courbes décrivant l'évolution de la productivité moyenne et de la productivité marginale en fonction de la quantité utilisée de travail.
- 4. Si la productivité marginale du travail diminue, est-ce que la productivité moyenne du travail baisse toujours dans cette configuration de production? Pourquoi?

Exercice 1.3.

On suppose qu'une entreprise possède 100 machines qu'elle utilise dans le cadre de son processus de production. La quantité horaire produite lorsque les 100 machines sont employées et que l'on utilise L quantité de travail est donnée par la fonction:

$$Q = -50 + 10L - 0.02L^2$$

- Calculez la productivité moyenne du travail et la productivité marginale du travail pour 100 machines.
- 2. Représentez graphiquement la, courbe de PML sur l'intervalle L=10 à L=70.
- 3. Pour quelle quantité utilisée de facteur travail la courbe de productivité moyenne atteint-elle son maximum? (Utilisez la résolution algébrique et vérifiez sur le graphique) Quelle est la valeur de la productivité marginale en ce point?
- 4. Sans faire de calcul, placez la courbe de productivité marginale du travail par rapport à celle de productivité moyenne du travail sur le graphe.

Exercice 1.4.

Les trois tableaux ci-dessous correspondent à trois technologies disponibles pour produire un même bien. Les quantités d'output Q dépendent des quantités de facteur travail (L) et de facteur capital (K). Ces trois technologies ont en commun qu'avec une unité de facteur Let une unité de facteur K, on peut produire 100 unités de bien.

		L						
		1	2	3	4	5	6	
	1	100	119	132	141	149	156	
	2	119	141	156	168	178	186	
K	3	132	156	173	186	197	206	
K	4	141	168	186	200	211	221	
	5	149	178	197	211	224	234	
	6	156	196	206	221	234	245	

		L						
		1	2	3	4	5	6	
	1	100	141	173	200	224	245	
	2	141	200	245	282	316	346	
K	3	173	245	300	346	387	423	
ıx	4	200	282	346	400	447	490	
	5	224	316	387	447	500	548	
	6	245	346	423	490	548	600	

		L						
		1	2	3	4	5	6	
	1	100	168	228	283	334	383	
	2	168	283	383	476	562	645	
K	3	228	383	519	645	762	874	
K	4	283	476	645	800	946	1084	
	5	334	562	762	946	1118	1282	
	6	383	645	874	1084	1282	1470	

- 1. Tracer sur trois graphiques distincts un certain nombre d'isoquantes correspondant à chaque technologie.
- 2. Vérifier à l'aide d'un ou cieux exemples pour chaque fonction si la, loi des rendements décroissants est vérifiée.

- 3. Les rendements d'échelle de chacune des fonctions de production sont-ils croissants, décroissants ou constants.
- 4. Si l'on fixe la quantité de capital à K = 4, calculer la valeur de la productivité marginale et de la productivité moyenne du facteur travail dans le cas de la, seconde technologie.
- 5. Pour cette même technologie, calculer les valeurs successives du taux marginal de substitution technique pour un niveau de production Q = 245.

Exercice 1.5.

Tracez les isoquantes correspondant aux situations suivantes:

- 1. la production de thermos: le premier facteur de production est celui des carafes, porté sur l'axe des abscisses; le second est celui des couvercles, porté sur l'axe des ordonnées.
- 2. la construction d'immeubles de bureau, avec le travail sur l'axe des abscisses et le capital. sur l'axe des ordonnées.
- 3. la production de frites nécessite soit des cuisinières à gaz (axe des abscisses), soit des cuisinières électriques (axe des ordonnées). On suppose que les deux types de cuisinières sont des substituts parfaits.

Exercice 1.6.

Montrer que la courbe de productivité marginale passe par le maximum de la courbe de productivité moyenne.

Exercice 1.7.

Soit une fonction de type Cobb-Douglas $q = f(K, L) = AK^{\alpha}L^{\beta}$.

- 1. Calculer PmL, PmK, PML, PMK. Quel est le lien entre ces productivités?
- 2. Comment sont les rendements marginaux?
- 3. Calculer le TMST.
- 4. Comment sont les rendements d'échelle?
- 5. Si les rendements marginaux sont croissants (resp. décroissants), alors les rendements d'échelle sont-ils forcément croissants (resp. décroissants)?

Exercice 1.8.

Soit une fonction Leontief $q = \min(K, L)$. Comments sont les rendements d'échelle?

Exercice 1.9.

Soit une fonction CES $q = (aL^{\rho} + bK^{\rho})^{\frac{1}{\rho}}$.

- 1. Comments sont les rendements d'échelle?
- 2. Donner une condition sur ρ telle que les rendements marginaux soient décroissants.