

Fakultät für Mathematik und Wirtschaftswissenschaften

Institut für Numerische Mathematik

Cache-optimierte QR-Zerlegung

Bachelorarbeit an der Universität Ulm

Vorgelegt von:

Florian Krötz florian.kroetz@uni-ulm.de

Gutachter:

Dr. Michael Lehn Dr. Andreas Borchert

Betreuer:

Dr. Michael Lehn

2018

© 2018 Florian Krötz Satz: PDF-LATEX 2 $_{arepsilon}$

Inhaltsverzeichnis

1	Einl	eitung	1	
	1.1	Intel MKL	1	
		1.1.1 QR Anwendung oder so was	1	
2	QR factorisation			
	2.1	QR-Zerlegung	2	
		Definition	2	
	2.2	Householder-Transformation	2	
		2.2.1 Householder Vector	3	
		2.2.2 Apply vector	3	
	2.3	LAPACK QR	3	
	2.4	NUM1 Urban QR	4	
	2.5	Unterschiede der Algorithmen	5	
	2.6	QR Blocked	5	
		2.6.1 Calc Factor T larft	6	
		2.6.2 Apply H larfb	7	
		2.6.3 Iterativer Algorithmus	7	
		2.6.4 Rekursiver Algorithmus	8	
3	Imp	lementierung und Benchmarks	ç	
	3.1	MKL Wraper	ć	
	3.2	Benchmarks	S	
A	Que	lltexte	10	
Literaturverzeichnie				

1 Einleitung

Für was brauch ich die QR?
Warum muss die schnell sein?
Was soll die Arbeit?

1.1 Intel MKL

Kapitel über die wichtigkeit der Intel MKL.

1.1.1 QR Anwendung oder so was

-LGS -Ausgleichsprobleme -QR-Verfahren

2 QR factorisation

2.1 QR-Zerlegung

Definition

Eine Matrix $A \in \mathbb{R}^{m \times n}$, $m \geq n$ besitzt eine eindeutige QR-Zerlegung.

$$A = QR (2.1)$$

mit einer orthogonalen Matrix $Q \in \mathbb{R}^{m \times n}$ und einer oberen Dreiecksmatrix $R \in \mathbb{R}^{n \times n}$

Eine QR Zerlegung kann mit einer Householder-Transformation bestimmt werden.

2.2 Householder-Transformation

Sei $v \in \mathbb{R}^n$ und $\tau \in \mathbb{R}$ dann wir die $n \times n$ Matrix

$$H = I - \tau v v^T \tag{2.2}$$

als Householder-Transformation und der Vektor \boldsymbol{v} als Householder-Vektor bezeichnet.

Abbildung 2.1: Spiegelung an der zu v orthogonalen Ebene

2.2.1 Householder Vector

2.2.2 Apply vector

$$H = I - \frac{vv'}{\tau} \tag{2.3}$$

$$HA_{2} = A_{2} - \frac{vv'}{\tau}A_{2}$$
 (2.4)
= $A_{2} - \frac{v}{\tau} * (v' * A_{2})$ (2.5)

$$=A_2 - \frac{v}{\tau} * (v' * A_2)$$
 (2.5)

2.3 LAPACK QR

Der von LAPACK benutzte Algorithmus [2]

$$H = I - \tau \omega \omega^T \tag{2.6}$$

$$\tau = \frac{\alpha - \beta}{\beta} \tag{2.7}$$

$$\alpha = A(i, i) \tag{2.8}$$

$$\beta = \operatorname{sign}(\alpha) \left| \sqrt{\alpha^2 + \|x\|^2} \right| \tag{2.9}$$

$$x = A(i+1:m,i) (2.10)$$

$$\omega = A(i+1:m,i) * \frac{1}{\alpha - \beta}$$
 (2.11)

Algorithmus

```
householderVektor(Vektor v, alpha, tau)
    beta = sign(sqrt(alpha ^2 + norm(x)^2), alpha)
2
    tau = (alpha - beta) / beta
    scal(1/(alpha - beta), v)
```

```
tau=zeros(min(m,n))
 for i = 0 : min(m,n)
    householderVektor(A(i+1:m,i), A(i,i), tau(i))
3
    if (i < n && tau != 0)
      AII = A(i,i)
5
      A(i,i) = 1
6
      A = A - tau *w(w'*A) // MV und rank1
      A(i,i) = AII
```

2.4 NUM1 Urban QR

Algorithmus aus Numerik 1

Mathe

$$H = I - 2\frac{\omega\omega^{T}}{\omega^{T}\omega}$$

$$\omega_{1} = \frac{x - \alpha e_{1}}{x_{1} - \alpha}$$
(2.12)
(2.13)

$$\omega_1 = \frac{x - \alpha e_1}{x_1 - \alpha} \tag{2.13}$$

$$\alpha^2 = ||x||^2 \tag{2.14}$$

Algorithmus

```
householderVektor(Vektor x, omega, beta)
    n = length(x)
2
    if n > 1
      sigma = x(2:end) *x(2:end);
      if sigma==0
        beta = 0;
      else
7
        mu = sqrt(x(1)^2 + sigma);
8
        if x(1) <= 0
```

```
tmp = x(1) - mu;
10
         else
11
            tmp = -sigma / (x(1) + mu);
         end
13
         beta = 2*tmp^2/(sigma + tmp^2);
         x(2:end) = x(2:end)/tmp;
15
       end
16
       v = [1; x(2:end)];
17
     else
       beta = 0;
19
       v = 1;
20
     end
```

```
for i = i:n
housevector(A(i:m, i), w, beta)
A(i:m,i:n) = (I(m-i+1) - beta * w * w')*A(i m,i:n)
if i < m
A(i + 1 : m, i) = w(2:m-i+1)</pre>
```

2.5 Unterschiede der Algorithmen

LAPCK hat das Tau Vor und Nachteile oder so was

2.6 QR Blocked

Geblockte Alorighmus

$$H = I - VTV' \tag{2.15}$$

$$H' = I - VT'V' \tag{2.16}$$

$$H'A_2 = A_2 - VT'V'A_2 (2.17)$$

Abbildung 2.2: Partitionierung vom A

Betrachte A geblockt

$$A = \left(\frac{A_{0,0} \mid A_{0,\text{bs}}}{A_{\text{bs},0} \mid A_{\text{bs},\text{bs}}}\right) \tag{2.18}$$

Berechne QR Zerlegung für Blöcke $A_{0,0}$ und $A_{\mathrm{bs},0}$

$$\left(\frac{A_{0,0}}{A_{\mathsf{bs},0}}\right) \leftarrow \left(\frac{Q_{0,0} \backslash R_{0,0}}{Q_{\mathsf{bs},0}}\right) \tag{2.19}$$

Berechne H(0)...H(bs) aus $Q_{0,0}$ und $Q_{bs,0}$ mit $H=I-V*T*V^T$. Wende H^T auf $A_{0,\mathrm{bs}}$ und $A_{0,\mathrm{bs}}$ an.

$$\left(\frac{A_{0,\text{bs}}}{A_{0,\text{bs}}}\right) \leftarrow H^T \left(\frac{A_{0,\text{bs}}}{A_{0,\text{bs}}}\right) \tag{2.20}$$

Fahre mit $A_{0,bs}$ fort.

2.6.1 Calc Factor T larft

[1]

$$H_2H_1x = (I - \tau_2 v_2 v_2^T)(I - \tau_1 v_1 v_1^T)x$$

$$= (I - \tau_1 v_1 v_1^T - \tau_2 v_2 v_2^T - \tau_2 v_2 v_2^T \tau_1 v_1 v_2^T)x$$

$$= x - \tau_1 v_1 v_1^T x - \tau_2 v_2 v_2^T x - \tau_1 \tau_2 v_2 (v_2^T v_1) v_2^T x$$

$$= x - \tau_1 v_1 v_1^T x - \tau_2 v_2 v_2^T x - \tau_1 \tau_2 (v_2^T v_1) v_2 v_2^T x$$

$$H_{1,2}x = (I - VTV^{T})x = x - VTV^{T}x$$

$$= x - (v_{1}, v_{2}) \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} v_{1}^{T} \\ v_{2}^{T} \end{pmatrix} x$$

$$= x - (v_{1}, v_{2}) \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} v_{1}^{T}x \\ v_{2}^{T}x \end{pmatrix}$$

$$= x - (v_{1}, v_{2}) \begin{pmatrix} av_{1}^{T}x + bv_{2}^{T}x \\ cv_{2}^{T}x \end{pmatrix}$$

$$= x - v_{1}(av_{1}^{T}x + bv_{2}^{T}x) - v_{2}(cv_{2}^{T}x)$$

$$= x - av_{1}v_{1}^{T}x - bv_{1}v_{2}^{T}x - cv_{2}v_{2}^{T}x$$

2.6.2 Apply H larfb

Die Funktion larfb berechnet.

$$H^T A = A - V T^T V^T A (2.21)$$

2.6.3 Iterativer Algorithmus

for i = 0 : n do
 QR = A;
 if i + ib > n then
 Calc T: H=I-VTV'
 Apply H: A=H'A

Abbildung 2.3: Partitionierung vom A

end if end for

2.6.4 Rekursiver Algorithmus

3 Implementierung und Benchmarks

Irgend was über die HPC Bibliothek

- 3.1 MKL Wraper
- 3.2 Benchmarks

A Quelltexte

In diesem Anhang sind einige wichtige Quelltexte aufgeführt.

```
#include < stdio.h >
int main(int argc, char ** argv) {
   printf("Hallo HPC \n");
   return 0;
}
```

Literaturverzeichnis

- [1] JOFFRAIN, Thierry; LOW, Tze M.; QUINTANA-ORTÍ, Enrique S.; GEIJN, Robert van d.; ZEE, Field G. V.: Accumulating Householder Transformations, Revisited. In: ACM Trans. Math. Softw. 32 (2006), Juni, Nr. 2, 169–179. http://dx.doi.org/10.1145/1141885.1141886. DOI 10.1145/1141885.1141886. ISSN 0098–3500
- [2] TENNESSEE, Univ. of California B. o.; LTD.., NAG: LAPACK unblocked QR. http://www.netlib.org/lapack/explore-3.1.1-html/dgeqr2.f. html, 2006. [Online; zugegriffen 31-01-2018]

Name: Florian Krötz	Matrikelnummer: 884948	
Erklärung		
Ich erkläre, dass ich die Arbeit selbständig verfasst und gegebenen Quellen und Hilfsmittel verwendet habe.	keine anderen als die an-	
Ulm, den		
	Florian Krötz	