

Основные понятия алгебры логики

Алгебра двоичной логики – раздел математики, изучающий логические операции над двоичными переменными.

Джордж Буль (1815-1864)

Логическая (булева) переменная – такая переменная, значения которой могут быть лишь "1" или "0".

В естественном языке «булева переменная» = «высказывание».

Высказывание – утверждение, про которое можно однозначно сказать, истинно оно или ложно.

Обозначения: "истина" и "ложь", "true" и "false" или "1" и "0".

Логическая (булева) функция f(x, y, z, ...) – функция, использующая входные логические переменные x, y, z, выполняющая логические операции над ними и генерирующая значения 0 или 1.

Основные логические операции:

 \overline{X} – отрицание или инверсия (¬X)

 $X \wedge Y$ - логическое умножение или конъюнкция

 $X \lor Y$ - логическое сложение или дизъюнкция

Таблица истинности функции – таблица всех значений этой логической функции.

Существует только четыре разных логических функций одной переменной F(X). Любая другая самая сложная функция будет иметь одну из четырёх таблиц истинности (ТИ):

X	$F_0(X)=0$	$F_1(X)=X$	$F_2(X) = \overline{X}$	$F_3(X)=1$
0	0	0	1	1
1	0	1	0	1

$$F(X) = \overline{X} \wedge X \vee X$$

Логическая функция двух переменных F(X, Y). Сколько существует разных $F_i(X, Y)$?

X	Υ	$F_1(X,Y) = X \vee Y$	$F_2(X,Y) = X \wedge Y$	$F_3(X,Y)=$
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	1	1	

Таблицы истинности общего вида

L строк (от 000...0 до 111...1 сверху вниз)

Значен	іия К элем	иентов бул	евых опе	Значение булевых функций вида $F(A_1, A_2,, A_{\kappa-1}, A_{\kappa})$				
A_1	A ₂		A _{K-1}	A _K	FK,0	FK,1		FK,N
0	0		0	0	0	1		1
0	0		0	1	0	0		1
0	0		1	0	0	0	•••	1
			•••		•••			
1	1		1	1	0	0		1

$$L=2^{K}, N=2^{L} \Rightarrow N=2^{(2^{K})}$$

Пример 1. Число булевых функций одной переменной равно 4.

Пример 2. Число булевых функций двух переменной равно 16.

N колонок (от 000...0 до 111...1 слева направо)

Обобщённая таблица истинности

1	4	4	0				
X	1	1	0	0	Обозначение	Название оператора	
Υ	1	0	1	0	Ооозпачение		
F	0	0	0	0	F2,0 = FALSE	Противоречие, логический нуль	
F	0	0	0	1	F2,1 = X ↓ Y = X NOR Y = NOR (X, Y) = = X HΕ-ИΛИ Y = HΕ-ИΛИ (X, Y)	Стрелка Пирса, функция Вебба	
F	0	0	1	0	F2,2 = X ←/ Y	Отрицание обратной импликации	
F	0	0	1	1	F2,3 = ¬X	Отрицание	
F	0	1	0	0	$F2,4 = X \rightarrow / Y$	Материальная обратная импликация	
F	0	1	0	1	F2,5 = ¬Y	Отрицание	
F	0	1	1	0	F2,6 = X ⊕ Y = X XOR Y = XOR (X, Y) = X >< Y = = X <> Y = X NE Y	Сложение по модулю 2, исключающее «ИЛИ», сумма Жегалкина, не равно	
F	0	1	1	1	F2,7 = X Y = X NAND Y = NAND (X, Y) = = X HE-И Y = HE-И (X, Y)	Штрих Шеффера, пунктир Чулкова	

Обобщённая таблица истинности (2)

0111010	-101	Tarana (1010) (010) (1010)					
X	1	1	0	0	Обозначение	Название оператора	
Υ	1	0	1	0	Ооозначение		
F	1	0	0	0	F2,8 = $X \land Y = X * Y = XY = X \text{ AND } Y = min (X, Y)$	Конъюнкция	
F	1	0	0	1	$F2.9 = X \equiv Y = X \sim Y = X \leftrightarrow Y = EQV(X, Y)$	Эквивалентность, эквиваленция, равнозначность	
F	1	0	1	0	F2,10 = Y	Проекция, повторение	
F	1	0	1	1	$F2,11 = X \rightarrow Y = X \supset Y = X \le Y = X LE Y$	Импликация, следование	
F	1	1	0	0	F2,12 = X	Проекция, повторение	
F	1	1	0	1	F2,13 = X ← Y	Обратная импликация	
F	1	1	1	0	F2,14 = X \vee Y = X OR Y = OR (X, Y) = X ИЛИ Y = = max (X, Y)	Дизъюнкция	
F	1	1	1	1	F2,15 = TRUE	Тавтология, логическая единица	

Обозначение булевых функций на электрич. схеме

Логический элемент – простейшее устройство ЭВМ, выполняющее одну определённую логическую операцию над входными сигналами согласно правилам алгебры логики.

Современные стандарты для условных графических обозначений (УГО) логических элементов:

- ANSI (англ. American National Standards Institute американский национальный институт стандартов)
- MIL/IEC (*анг*л. MILitary военный, International Electrotechnical Commission международная электротехническая комиссия)
- DIN (*нем*. Deutsches Institut für Normung e.V. немецкий институт по стандартизации)
- ГОСТ 2.743-91 Единая система конструкторской документации. Обозначения условные графические в схемах. Элементы цифровой техники

Transcription of the control of the

Логический базис (ЛБ) – набор булевых функций, позволяющих реализовать любую другую булеву функцию. Три наиболее востребованных логических базиса: {**И, ИЛИ, HE**}, {**И-HE**}, {**ИЛИ-HE**}.

Пример. Реализация функций И, ИЛИ, НЕ в базисе И-НЕ (картинки взяты с сайта $http://phys.bspu.by/static/lib/teh/electron/cif-obu.htm) "HE": <math>\sim \times = \sim (\times * 1) = \sim (\times * \times)$

Цена схемы по Квайну – суммарное число входов во всех логических элементах.

Минимизация функции – сокращение цены функции с помощью преобразования её к более простому эквивалентному выражению.

$$\begin{aligned} F(X, Y, Z) &= \neg X \lor Y \lor XY \neg Z \lor Z \\ \neg X &= T_1, \ \neg Z = T_2 & S_Q = 2 \\ F(X, Y, Z) &= T_1 \lor Y \lor XYT_2 \lor Z \\ XYT_2 &= T_3 & S_Q = 2 + 3 \\ F(X, Y, Z) &= T_1 \lor Y \lor T_3 \lor Z \\ S_Q &= 2 + 3 + 4 = 9 \end{aligned}$$

Уиллард Квайн (1908-2000)

Основные тождества булевой алгебры

1) Законы коммуникативности (переместительности):

$$x \lor y = y \lor x, x \land y = y \land x$$

2) Законы ассоциативности (сочетания):

$$(x \land y) \land z = x \land (y \land z), (x \lor y) \lor z = x \lor (y \lor z)$$

3) Законы дистрибутивности (распределения):

$$x \land (y \lor z) = (x \land y) \lor (x \land z), x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

4) Законы тавтологии (идемпотентности):

$$x \lor x = x, x \land x = x$$

5) Закон двойственности (де Моргана):

$$\overline{x \wedge y} = \overline{x} \vee \overline{y}, \overline{x \vee y} = \overline{x} \wedge \overline{y}$$

Total for the first of the firs

Основные тождества булевой алгебры (2)

6) Законы поглощения:

$$x \land (x \lor y) = x, x \lor (x \land y) = x$$

7) Закон двойного отрицания (инвалютивности): x = x

8) Закон противоречия (существования 0): $x \wedge x = 0$

9) Закон «третьего не дано» (исключённого третьего, существования 1): $x \lor x = 1$

10) Закон универсального множества (нейтральности):

$$x \wedge (y \vee \overline{y}) = x, x \vee (y \vee \overline{y}) = 1$$

11) Закон пустого множества:

$$x \lor 0 = x, x \land 0 = 0$$

Troorofoodfoffoffoffood a control of the control of

Формы записи математических выражений

«Арность операции» = «количество операндов» = «вместимость»

- √А (унарная)
- А*В (бинарная)
- A?В:С (тернарная)

Виды нотаций:

- 1489: инфиксная: А+В
- 1920: префиксная (ака польская): +AB
- 1957: постфиксная (ака обратная польская): АВ+

Префиксная (польская) нотация

Пример. Инфиксная нотация: (A + B + C) – $E^{D * F * G}$

1.
$$-(A + B + C)(E^{D * F * G}).$$

2.
$$- (+ (+AB) C) (E^{D * F * G}).$$

3.
$$- (+ (+AB) C) (^ E (D * F * G)).$$

Префиксная нотация: -++ABC^E**DFG

Популярная Lisp-разновидность префиксной нотации: (-(+ABC)(^E(*DFG)))

Особенности:

- 1. Не требуется скобок, если арность фиксирована.
- 2. Запись выражения получается короче, чем инфиксная.
- 3. Не требуется знать приоритет операций.
- 4. Легко декодировать выражение с помощью стека.
- 5. Малоприменима на практике (кроме Lisp).

Постфиксная (обратная польская) нотация

Пример. Инфиксная нотация: $(A + B + C) - E^{D * F * G}$

- 1. $(A + B + C) (E^{D * F * G}) -$.
- 2. $((AB+) C +) (E^{D * F * G}) -$.
- 3. $((AB+) C +) (E(D * F * G)^{-}) -.$
- 4. $((AB+) C +) (E((DF *) G *)^{-}) -.$

Постфиксная нотация: AB+C+EDF*G*^-

Особенности:

- 1. Не требуется скобок, если арность фиксирована.
- 2. Запись выражения получается короче, чем инфиксная.
- 3. Не требуется знать приоритет операций.
- 4. Легко декодировать выражение с помощью стека.
- 5. Успешно применяется в компиляторах, в небольшом количестве языков программирования (Forth) и некоторых ЭВМ (калькуляторы «Электроника» и НР).
- 6. Используется для хранения байт-кода в программном комплексе 1С:Предприятие.

Алгоритм вычисления выражения, записанного в постфиксной нотации

- 1. Обработка входного символа:
- Если на вход подан операнд, он помещается на вершину стека.
- Если на вход подан знак операции, то соответствующая операция выполняется над требуемым количеством значений, извлечённых из стека, взятых в порядке добавления. Результат выполненной операции кладётся на вершину стека.
- 2. Если входной набор символов обработан не полностью, перейти к шагу 1.
- 3. После полной обработки входного набора символов результат вычисления выражения лежит на вершине стека.

Декодирование постфиксной нотации

Пример. a + b + a*c = ab+ac*+

