

Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

100%

Policy Gradient Methods

TOTAL POINTS 18

1.	Which of the	following is true	about policy-based	l methods? (Select a	ll that apply)
----	--------------	-------------------	--------------------	----------------------	----------------

1 / 1 point

Policy-based methods can be applied to continuous action space domains.

Correct. By parameterizing a policy to represent a probability distribution such as Gaussian, it can be applied to continuous action space domains.

Policy-based methods are useful in problems where the policy is easier to approximate than action-value functions.

Correct

Correct. For example in the Mountain Car problem a good policy is easy to represent whereas the value function is complex.

Policy-based methods allow smooth improvement in the policy without drastic changes.

✓ Correct

Correct. As the policy parameters change the action probabilities change smoothly, but with value-based methods a small change in action-value function can drastically change the action probabilities.

Policy-based methods can learn an optimal policy that is stochastic.

Correct. It can learn a stochastic optimal policy, such as the soft-max in action preferences.

2. Which of the following statements about parameterized policies are true? (Select all that apply)

1 / 1 point

The probability of selecting any action must be greater than or equal to zero.

✓ Correct

Correct! This is one of the conditions for a valid probability distribution.

For each state, the sum of all the action probabilities must equal to one.

	✓ Correct	
	Correct! This condition is necessary for the function to be a valid probability distribution.	
	☐ The function used for representing the policy must be a softmax function.	
	☐ The policy must be approximated using linear function approximation.	
3.	Assume you're given the following preferences $h_1=44$, $h_2=42$, and $h_3=38$, corresponding to three different actions (a_1,a_2,a_3), respectively. Under a softmax policy, what is the probability of choosing a_2 , rounded to three decimal numbers?	1/1 point
	0.879	
	0.119	
	O.002	
	O.42	
	✓ Correct Correct!	
4.	Which of the following is true about softmax policy? (Select all that apply)	1/1 point
	Similar to epsilon-greedy policy, softmax policy cannot approach a deterministic policy.	
	It is used to represent a policy in discrete action spaces.	
	✓ Correct Correct!	
	It cannot represent an optimal policy that is stochastic, because it reaches a deterministic policy as one action preference dominates others.	
	✓ It can be parameterized by any function approximator as long as it can output scalar values for each available action, to form a softmax policy.	
	 Correct Correct. It can use any function approximation from deep artificial neural networks to simple linear features. 	
5.	What are the differences between using softmax policy over action-values and using softmax policy over action-preferences? (Select all that apply)	1/1 point
	When using softmax policy over action-preferences, assuming a tabular representation, the policy will converge to the optimal policy regardless of whether the optimal policy is stochastic or deterministic.	
	 Correct Correct. Action-preferences does not approach specific values like action-values do. They can be driven to produce a stochastic policy or deterministic policy. 	

	policy may never approach a deterministic policy.	
	 Correct Correct. The policy will always select proportional to exponentiated action-values. 	
	When using softmax policy over action-values, assuming a tabular representation, the policy will converge to the optimal policy regardless of whether the optimal policy is stochastic or deterministic.	
6.	What is the following objective, and in which task formulation?	1 / 1 point
	$r(\pi) = \Sigma_s \mu(s) \Sigma_a \pi(a s, heta) \Sigma_{s,r} p(s,r s,a) r$	
	Oiscounted return objective, continuing task	
	Average reward objective, continuing task	
	Average reward objective, episodic task	
	Oundiscounted return objective, episodic task	
	✓ Correct Correct.	
7.	Which of the following is true about policy gradient methods? (Select all that apply) The policy gradient theorem provides a form for the policy gradient that does not contain the gradient of the state distribution \mu, which is hard to estimate.	1/1 point
	✓ Correct Correct.	
	If we have access to the true value function v_π , we can perform unbiased stochastic gradient updates using the result from the Policy Gradient Theorem.	
	\checkmark Correct Correct. We derived this stochastic update by multiplying and dividing by $\pi(A S).$	
	Policy gradient methods use generalized policy iteration to learn policies directly.	
	Policy gradient methods do gradient ascent on the policy objective.	
	 Correct Correct. Policy gradient methods maximize the policy objective, and hence perform gradient ascent. 	
8.	The following equation is the outcome of the policy gradient theorem. Which of the following is true about the policy gradient theorem? (Select all that apply)	1 / 1 point

 $abla r(\pi) = \Sigma_s \mu(s) \Sigma_a
abla \pi(a|s, heta) q_\pi(s,a)$

This expression can be converted into the following expectation over π : $\mathbb{E}_{\pi} [\nabla ln\pi(A S,\theta)q_{\pi}(S,A)]$ \checkmark Correct Correct. In fact, this expression is normally used to perform stochastic gradient updates.	
This expression can be converted into: $\mathbb{E}_{\pi}[\Sigma_a \nabla \pi(a S,\theta) q_{\pi}(S,a)]$ In discrete action space, by approximating q_pi we could also use this gradient to update the policy.	
Correct Correct. The expression contains sum over actions, which can be computed for discrete actions. In the textbook, this is also called the all-actions method.	
$ \ \!$	
✓ Correct Correct.	
$lacksquare$ We do not need to compute the gradient of the state distribution μ .	
✓ Correct Correct.	
Which of the following statements is true? (Select all that apply)	1/1 point
Subtracting a baseline in the policy gradient update tends to reduce the variance of the update, which results in faster learning.	
✓ Correct Correct.	
The Actor-Critic algorithm consists of two parts: a parameterized policy — the actor — and a value function — the critic.	
✓ Correct Correct.	
${\color{red} \!$	
 Correct Correct. This is equivalent to using one-step state value and subtracting a current state value baseline. 	
☐ TD methods do not have a role when estimating the policy directly.	

9.

10. To train the critic, we must use the average reward version of semi-gradient TD(0).

1 / 1 point

- True
- False

Correct

Correct. We can use any state-value learning algorithm.

11. Question 11 ~ 13: Consider the following state features and parameters θ for three different actions (red, green, and blue):

1 / 1 point

$$\mathbf{X}(s) = \begin{bmatrix} 0.1 \\ 0.3 \\ 0.6 \end{bmatrix} \qquad \theta = \begin{bmatrix} 10 \\ 120 \\ 120 \\ -10 \\ 200 \\ -25 \end{bmatrix} a_{1}$$

Compute the action preferences for each of the three different actions using linear function approximation and stacked features for the action preferences.

What is the action preference of a_0 (red)?

- () 35
- 33
- O 37
- 39

Correct

Correct.

	32423540				
	✓ Correct Correct.				
13.	What is the action prefe	rence of a_2 (blue)?			1 / 1 point
	353937				
	Correct Correct.				
	Which of the following s (Choose all that apply)	tatements are true about the	Actor-Critic algorithm with softm	nax policies?	1/1 point
	The learning rate pa	rameter of the actor and the o	critic can be different.		
		ice, it is preferable to have a s tely critique the policy.	lower learning rate for the actor	so that the	
			nmeters. rent state, it is like having a diffe	rent	
	✓ Correct Correct!				
	☐ The preferences mu	st be approximated using line	ar function approximation.		
15.	We usually want the crit True False	tic to update at a faster rate th	an the actor.		1/1 point
	✓ Correct Correct.				

	\bigcirc μ : a linear function of parameters, σ : a linear function of parameters	
	\bigcirc μ : the exponential of a linear function of parameters, σ : a linear function of parameters.	
	$lacktriangledown$ μ : a linear function of parameters, σ : the exponential of a linear function of parameters.	
	✓ Correct Correct!	
17	. A Gaussian policy becomes deterministic in the limit $\sigma o 0$. lacktriangle True	1/1 point
	○ False	
	\checkmark Correct Correct: As σ approaches 0, the values of the Gaussian policy approach the mean of the policy in a given state.	
18	Which of the following is an advantage of Gaussian policy parameterization over discretizing the action space? (Select all that apply)	1/1 point
	Continuous actions also allow learning to generalize over actions.	
	✓ Correct Correct!	
	There might not be a straightforward way to choose a discrete set of actions.	
	Correct Correct! Selecting a discrete set of actions that results in good performance is problem dependent. Maybe we need hundreds of actions. Maybe it is state dependent!	
	Gaussian policies are differentiable, whereas policies over discretized actions are not.	
	Even if the true action set is discrete, but very large, it might be better to treat them as a continuous range.	
	✓ Correct Correct!	