DEG2

Exercice 1 Mettre sous forme canonique $3x^2 - 5x + 2$

Exercice 2 Mettre sous forme canonique $4 + 2x + x^2$

Exercice 3 Mettre sous forme canonique $4x^2 - 3x - 10$

Exercice 4 Écrire 2 équations différentes du second degré admettant comme racines 4 et -7

Exercice 5 Soit a un paramètre réel

Quels sont la somme et le produit des racines de l'équation $1 + ax + x + ax^2 = 0$?

Exercice 6 Factoriser dans \mathbb{R} et dans \mathbb{C} l'expression $3x^2 - 2x - 8$

Exercice 7 Factoriser dans \mathbb{R} et dans \mathbb{C} l'expression $x^2 - 4x + 4$

Exercice 8 Factoriser dans \mathbb{R} et dans \mathbb{C} l'expression $x^2 - 5x + 3$

Exercice 9 Factoriser dans \mathbb{R} et dans \mathbb{C} l'expression $x^2 + x + 1$

Exercice 10 Représenter graphiquement les fonctions suivantes dans un même repère orthonormé :

 $f: x \mapsto 2x^2$

 $q: x \mapsto -2x^2$

 $h: x \mapsto (x+1)^2$

Exercice 11 Dans un plan rapporté à un repère orthonormé :

Tracer les courbes représentatives des fonctions $x \mapsto x^2$ et $x \mapsto |x|$.

 \square Comparer les grandeurs de x^2 et de |x| en fonction de x

 ${}^{\blacksquare \blacksquare}$ Même question si l'on effectue le changement d'échelle sur l'axe des abscisses ?

Exercice 13 Dans un plan rapporté à un repère orthonormé, tracer la représentation graphique de la fonction $x \mapsto x^2 \lfloor x \rfloor$

Exercice 14 Dans un plan rapporté à un repère orthonormé, tracer la représentation graphique de la fonction $f: x \mapsto x \lfloor x^2 \rfloor$

Exercice 15 Représenter graphiquement les fonctions suivantes

 $f: x \mapsto x^2 + 1$

 $g: x \mapsto x^2 - 2$

 $h: x \mapsto (x-2)^2$

$$i: x \mapsto (x+1)^2$$

$$j: x \mapsto (x-2)^2 + 2$$

$$k: x \mapsto (x-1)^2 - 1$$

$$\ell: x \mapsto x^2 + 2x - 1$$

$$m: x \mapsto x^2 - 4x + 3$$

Exercice 16 Représenter graphiquement les fonctions suivantes

$$f: x \mapsto |x^2 - 4|$$

$$g: x \mapsto |x^2 - 2x|$$

Exercice 17 \square Dans le plan on considère un repère orthonormé (O, i, j).

Soit
$$a \in \mathbb{R}^*$$
, $D: y = -a$ et $F(0, a)$

Soit M(x,y) un point quelconque du plan

1. Exprimer en fonction de x et de y la distance de M à D et la distance de M à F

2. Déterminer l'ensemble E des points M tels que d(M,D)=MF

3. Soit $b \in \mathbb{R}^*$, démontrer que tout point de la courbe $P : y = bx^2$ est équidistant d'un point fixe et d'une droite fixe.

Exercice 18 Soient

$$m \in \mathbb{R}$$

$$f_m: x \mapsto x^2 + mx + 3$$

$${\bf r} \subset C_m$$
le graphe de f_m

$$D: y = 3x - 4$$

Pour quelles valeurs du paramètre m la courbe C_m admet-elle la droite D comme tangente?

Exercice 19 1. Déterminer $a \in \mathbb{R}$ pour que le graphe P de la fonction $f: x \mapsto ax^2$ passe par le point A(-2, -8).

2. Écrire une équation de la droite D_t de coefficient directeur $t \in \mathbb{R}$ et passant par A.

3. D_t recoupe P en un point M. Exprimer les coordonnées de M en fonction de t.

4. Déterminer t pout que M coïncide avec A.

5. En déduire que P admet une tangente en A. Déterminer une équation de cette tangente.

6. Soit I le milieu du segment [AM]. Exprimer les coordonnées de I en fonction de t

7. Déterminer l'ensemble décrit par I lorsque t décrit $\mathbb{R}.$

Exercice 20 Soient

$$f: x \mapsto \frac{3}{5}x^2.$$

 \square P le graphe de f

 \blacksquare A le point de P d'abscisse -1

$$m \in \mathbb{R}$$
.

 $\ ^{\blacksquare \blacksquare} D$ la droite de pente m passant par A

- 1. Déterminer une équation de D.
- 2. Démontrer que D coupe généralement P en un point M distinct de A et calculer les coordonnées de M.
- 3. Déterminer une équation de la tangente à P en A.
- 4. Dans le cas où le repère est orthonormé, déterminer m pour que le triangle OAM soit rectangle, O étant l'origine du repère.

Exercice 21 Soit P la parabole $P: y = x^2$

 $\ ^{\blacksquare \blacksquare }$ P partage le plan en deux régions :

$$ightharpoonup$$
 l'une R_1 telle que $y \geqslant x^2$

$$ightharpoonup$$
 l'autre R_2 telle que $y < x^2$

- 1. Soient A et B deux points quelconques de R_1
 - Montrer que le segment [AB] est inclus dans R_1
- 2. Cette propriété est-elle valable avec \mathbb{R}_2 ?

Exercice 22 Soient

$$a, b, c \in \mathbb{R}$$

$$f: x \mapsto ax^2 + bx + c$$

$$\ ^{\blacksquare \blacksquare }$$
 G le graphe de f

$$A(1,2), B(0,1) \text{ et } C(-2,-13)$$

- 1. Déterminer $a,b,c\in\mathbb{R}$ pour que les points A,B,C appartiennent à G.
- 2. Construire cette courbe dans un repère orthonormé.

Exercice 23 Soient

$$a,b,c\in\mathbb{R}$$

$$f: x \mapsto ax^2 + bx + c$$

$$\ \ \, \ \, G$$
le graphe de f

$$A(1,\frac{2}{3})$$
 et $S(4,-1)$

- 1. Déterminer $a, b, c \in \mathbb{R}$ pour que $A \in G$ et pour que S soit le sommet de G
- 2. Construire cette courbe dans un repère orthonormé

Exercice 24 Soit $a \in \mathbb{R}_+^*$

- Soit ABC un triangle rectangle en A tel que AB = 4a, AC = 3a
- un point M décrit le segment [BC]
- \square On pose BM = x
- 1. Calculer $f(x) = MB^2 + MC^2 MA^2$
- 2. Construire la courbe représentative de f dans un repère orthonormé

Exercice 25 On note $\inf(a,b)$ le plus petit des réels a et b.

- Donner la représentation graphique de $f: x \mapsto \inf(x^2, -2x^2 + 3)$
- **Exercice 26** Résoudre dans \mathbb{R} l'équation $x^2 3x = 0$
- **Exercice 27** Résoudre dans \mathbb{Z} l'équation $3x^2 + 7x = 0$
- **Exercice 28** Résoudre dans \mathbb{C} l'équation $x^2 16 = 0$
- **Exercice 29** Résoudre dans \mathbb{R} ou \mathbb{C} l'équation $2x^2 + 7 = 0$
- **Exercice 30** Résoudre dans \mathbb{R} ou \mathbb{C} l'équation $-4x^2 + 11x = 0$
- **Exercice 31** Résoudre dans \mathbb{R} ou \mathbb{C} l'équation $4x^2 + 9 = 0$
- **Exercice 32** Résoudre dans \mathbb{R} ou \mathbb{C} l'équation $(x+5)^2-9=0$
- **Exercice 33** Résoudre dans \mathbb{R} ou \mathbb{C} l'équation $(2x-3)^2-7=0$
- **Exercice 34** Résoudre dans \mathbb{R} ou \mathbb{C} l'équation $(2x-7)^2-(5x-1)^2=0$
- **Exercice 35** Résoudre dans \mathbb{R} ou \mathbb{C} l'équation $(4x^2 25) + (10 4x)(7x + 3) = 0$
- **Exercice 36** Résoudre dans \mathbb{R} ou \mathbb{C} l'équation $6x^2 + x 1 = 0$
- **Exercice 37** Résoudre dans \mathbb{R} ou \mathbb{C} l'équation $2x^2 + 7x 22 = 0$
- **Exercice 38** Résoudre dans \mathbb{R} ou \mathbb{C} l'équation $-3x^2 + 4x + 55 = 0$
- **Exercice 39** Résoudre dans \mathbb{R} ou \mathbb{C} l'équation $3x^2 + 7x 22 = 0$
- **Exercice 40** Résoudre dans \mathbb{R} ou \mathbb{C} l'équation $-3x^2 + 14x 5 = 0$
- **Exercice 41** Résoudre dans \mathbb{R} ou \mathbb{C} l'équation $2x^2 + x\sqrt{3} 1 = 0$
- **Exercice 42** Résoudre dans \mathbb{R} l'équation $x^2 |x| 20 = 0$
- **Exercice 43** Résoudre dans \mathbb{R} ou \mathbb{C} l'équation $\frac{3}{5}x^2 + \frac{1}{6}x \frac{1}{15} = 0$

Exercice 44 Résoudre dans $\mathbb R$ ou $\mathbb C$ l'équation $\frac{1}{4}x^2 - \frac{x}{5} + \frac{1}{25} = 0$

Exercice 45 Résoudre dans \mathbb{R} ou \mathbb{C} l'équation $(x-3)(2x+1)=(x-5)(x-7)+(x-2)^2+4-x$

Exercice 46 Résoudre dans \mathbb{R} l'équation $\frac{1}{x} + \frac{1}{x-2} = \frac{4}{3}$

Exercice 47 Résoudre dans \mathbb{R} l'équation $\frac{x-3}{x+1} - \frac{3x+1}{x-3} = \frac{5}{3}$

Exercice 48 Résoudre dans \mathbb{R} l'équation $\frac{x-3}{2x+1} + \frac{2x+1}{x-3} = \frac{25}{12}$

Exercice 49 Résoudre dans \mathbb{R} l'équation $\frac{3}{x-3} + \frac{4}{2x+1} = \frac{31}{4x-7}$

Exercice 50 Résoudre dans \mathbb{R} l'équation $\frac{1}{x-4} + \frac{8}{x-1} = \frac{15}{x+9}$

Exercice 51 Résoudre dans \mathbb{R} l'équation

$$\frac{5x+1}{x-3} = \frac{3x+4}{x+1}$$

Exercice 52 Résoudre dans \mathbb{R} l'équation

$$\frac{1}{x+1} + \frac{2}{x+2} + \frac{3}{x+3} = \frac{6}{x+4}$$

Exercice 53 Résoudre algébriquement et graphiquement

$$\begin{cases} y = x^2 \\ y = 2x + 3 \end{cases}$$

Exercice 54 Résoudre algébriquement et graphiquement

$$\begin{cases} y = 2x^2 \\ y = -x + 4 \end{cases}$$

Exercice 55 Résoudre graphiquement et algébriquement

$$\begin{cases} y = -\frac{1}{2}x^2 \\ y = x - 4 \end{cases}$$

Exercice 56 Résoudre algébriquement et graphiquement

$$\begin{cases} y = -x^2 + 4 \\ y = 2x \end{cases}$$

Exercice 57 Résoudre algébriquement et graphiquement

$$\begin{cases} y = \frac{1}{x} \\ y = x+2 \end{cases}$$

Exercice 58 Résoudre algébriquement et graphiquement

$$\begin{cases} y = x^2 \\ y = -2x - 1 \end{cases}$$

Exercice 59 Résoudre algébriquement et graphiquement

$$\begin{cases} y = 2x - 1 \\ y = 2x^2 - 3x + 2 \end{cases}$$

Exercice 60 Résoudre algébriquement et graphiquement

$$\begin{cases} y = 4x^2 - 5x + 4 \\ y = -2x^2 + 2x + 1 \end{cases}$$

Exercice 61 Interprétez graphiquement le système d'inéquations

$$\begin{cases} y > x^2 \\ y < -2x + 3 \end{cases}$$

Exercice 62 Interprétez graphiquement le système d'inéquations

$$\begin{cases} y - 2x^2 > 0 \\ y - x - 1 > 0 \end{cases}$$

Exercice 63 Interprétez graphiquement le système d'inéquations

$$\begin{cases} x^2 + y & < 0 \\ x - y - 3 & < 0 \\ x - y - 1 & > 0 \end{cases}$$

Exercice 64 Interprétez graphiquement le système d'inéquations

$$\begin{cases} x^2 + y < 0 \\ x + y + 2 > 0 \\ -x + y + 2 > 0 \end{cases}$$

Exercice 65 Interprétez graphiquement le système d'inéquations

$$\begin{cases} y > x^2 - 3x \\ x - 2y \geqslant -2 \end{cases}$$

Exercice 66 Interprétez graphiquement le système d'inéquations

$$\begin{cases} x^2 - 2x - 2y + 1 < 0 \\ y^2 - 2y + x - 5 < 0 \end{cases}$$

Exercice 67 La somme d'un nombre réel positif et de sa racine carrée est égale à $\frac{195}{4}$.

Déterminer ce nombre

Exercice 68 La somme d'un nombre réel et de son inverse est égale à $\frac{58}{21}$. Déterminer ce nombre.

Exercice 69 \square Un automobiliste doit parcourir une distance de 450 km à une certaine vitesse moyenne.

- Si cette vitesse est diminuée de 10 km/h, la durée du trajet est augmentée de 1 h 30 min.
- Calculer la vitesse moyenne et le temps du trajet

Exercice 70

☐ Une somme de 3920€ est partagée également entre plusieurs personnes.

- S'il y avait deux personnes de plus, chaque part serait réduite de 224 €.
- Déterminer le nombre de personnes.

Exercice 71 \square Soient $a, b \in \mathbb{R}_+^*$

- Les côtés d'un triangle ont pour mesures respectives a, 2a, b.
- Déterminer $x \in \mathbb{R}$ pour que le triangle de côtés a + x, 2a + x, b + x soit rectangle.

Exercice 72 Soit $a \in \mathbb{R}_+^*$

- ABC triangle rectangle d'hypoténuse BC = a
- Déterminer AB et AC si $AB + AC = \frac{5a}{4}$

Exercice 73 Calculer les côtés de l'angle droit d'un triangle rectangle ABC d'hypoténuse BC=a si l'aire du triangle est $\frac{3a^2}{4}$

Exercice 74 Soient

- $a \in \mathbb{R}_+^*$
- \square Un segment [AB] de longueur a
- use Un point M quelconque du segment [AB]
- On construit d'un même coté de la droite (AB) les triangles rectangles isocèles AMP et BMQ d'hypoténuses respectives [AM] et [BM]
- x = AM
- 1. Calculer x pour que $PQ = \frac{3a}{5}$
- 2. Calculer x pour que l'aire du quadrilatère ABQP soit $\frac{7a^2}{36}$

Exercice 75 Un point M d'un demi-cercle de diamètre AB = 2R se projette orthogonalement en H sur la droite (AB)

Déterminer le point M dans les cas suivants :

- 1. $2AM 3AH = \frac{4}{5}R$
- $2. AH^2 + 2HM^2 = 2R^2$
- 3. $AM + HB = \frac{19}{8}R$

Exercice 76 Dans un plan muni d'un repère orthonormé (O, i, j), soient :

- ${}^{\blacksquare \blacksquare} C$ la courbe représentative de la fonction $x \mapsto x^2$
- $\subset C'$ la courbe représentative de $x \mapsto 2x^2 + 1$
- S' le sommet de C'
- ${\color{red} \blacksquare} \hspace{-0.5em} D$ une droite de pente variable m passant par S'

- $\bowtie M'$ et M'' les points d'intersection de D et de C
- 1. Démontrer que pour toutes valeurs de m, (OM') et (OM'') sont orthogonales
- 2. Démontrer que I, milieu de [M'M''] est sur C'
- 3. Calculer en fonction de m la longueur du segment [M'M'']

Exercice 77 1. Soient $f: x \mapsto x^2 + 2x$ et $g: x \mapsto -2x^2 - 3x + 2$. Construire dans un même repère orthonormé les courbes représentatives de f et g, notées P_1 et P_2 .

- 2. Calculer les coordonnées des points communs aux deux courbes
- 3. On désigne par A le point commun d'abscisse négative. Soit D la droite de coefficient directeur m passant par A. Déterminer les coordonnées des points M_1 et M_2 où D recoupe P_1 et P_2 .
- 4. Exprimer en fonction de m les coordonnées de I milieu de $[M_1M_2]$
- 5. Déterminer m pour que A soit le milieu de $[M_1M_2]$
- 6. Préciser l'ensemble des points I quand m décrit $\mathbb R$

Exercice 78 Soient

$$a \in \mathbb{R}_+^*$$

$$P: x^2 = 2ay$$

$$M(x_0,y_0)$$

- 1. À quelle condition sur x_0 et y_0 existe-t-il deux tangentes à P passant par M?
- 2. Lorsque cette condition est réalisée, à quelle condition ces deux tangentes sont elles orthogonales?