Fundamentals of Electric Circuits

Chapter 2 Basic Laws

 $\hbox{Copyright} @ \hbox{The McGraw-Hill Companies, Inc. Permission required for reproduction or display.} \\$

Basic Laws - Chapter 2

- 2.1 Ohm's Law.
- 2.2 Nodes, Branches, and Loops.
- 2.3 Kirchhoff's Laws.
- 2.4 Series Resistors and Voltage Division.
- 2.5 Parallel Resistors and Current Division.
- 2.6 Wye-Delta Transformations.

2.1 Ohms Law (1)

- Ohm's law states that the voltage across a resistor is directly proportional to the current I flowing through the resistor.
- Mathematical expression for Ohm's Law is as follows:

$$v = iR$$

Two extreme possible values of R:
 ✓ 0 (zero) and ∞ (infinite) are related with two basic circuit concepts: short circuit and open circuit.

Linear and nonlinear resistance

Short and open circuit

A short circuit is a circuit element with resistance approaching zero.

An open circuit is a circuit element with resistance approaching infinity.

5

2.1 Ohms Law (2)

• <u>Conductance</u> is the ability of an element to conduct electric current; it is the reciprocal of resistance R and is measured in mhos or siemens.

$$G = \frac{1}{R} = \frac{i}{v}$$

The power dissipated by a resistor:

$$p = vi = i^2 R = \frac{v^2}{R}$$

Example

$$i_2$$
 = 0.5882 V/2 KD = 0.000241 A = 0.294 MA = 294.1 MA v_6 = 1.61 × 10 $^{-3}$ · 6 × 10 3 = 9.66 V R_4 = 13.53 V/3.38 MA = 4.063 kD v_2 = 3.38 × 10 $^{-3}$ · 2 × 10 3 = 6.76 V v_8 = 10.59 V/8 KD = 1.324 MA

Conductance and resistivites

TABLE 2.1

Resistivities of common materials.

Material	ต์แทนไฟฟ้า Resistivity (Ω·m)	Usage	\	
Silver	$1.64 imes 10^{-8}$ นำไฟฟ้ามาก	Conductor		
Copper	1.72×10^{-8}	Conductor minlula	\	۲ _i
Aluminum	2.8×10^{-8}	Conductor		* *
Gold	2.45×10^{-8}	Conductor)	
Carbon	4×10^{-5}	Semiconductor 7		+ J
Germanium	47×10^{-2}	Semiconductor ก็สตัวนำไฟฟ้า		$v \geq R$
Silicon	6.4×10^{2}	Semiconductor	Material with	_
Paper * ฉพานใฟฟ้า	10 ¹⁰	Insulator	resistivity $ ho$	
Mica	5×10^{11}	Insulator Cross-sectional		
Glass	10 ¹²	Insulator Thin Insulator		0
Teflon	3×10^{12}	Insulator _	(a)	(b)

$$R = \frac{L}{\sigma A}$$
.

* คามยางสั้น พันที่ ใหญ่ : น่าไก่

Heat produced by Current

 When there is current through resistance, the collisions of the electrons produce heat, as a result of the conversion of electrical energy.

Resistor Power Rating

Resistor power rating is not related to ohmic value (resistance) but rather is determined by the physical composition, size and shape of the resistor.

Resistor Power Rating

- Power rating of a resistor is the maximum amount of power that a resistor can dissipate without being damaged by excessive heat buildup.
- Power rating is directly related to surface

Metal-film Resistors

Metal-film resistors have standard power ratings of 1/8 W, 1/4 W, 1/2 W, and 1 W.

Basic Electronics for Computer Engineering

Selecting the Proper Power Rating

- A resistor used in a circuit must have a power rating in excess of what it will have to handle.
- Ideally, a rating that is approximately twice the actual power should be used when possible.

Resistor Failures

- When excessive power is applied to a resistor, the resistor will overheat.
- The resistor will burn open, or its resistance value will be greatly altered.
- Overheated resistors may be charred, or the surface color may change.
- Resistors suspected of being damaged should be removed from the circuit and checked with an ohmmeter.

Energy Conversion and Voltage Drop in Resistance

- As electrons flow through resistors, some of their energy is given up as heat.
- The same number of electrons entering a resistor will exit it, only their energy will be less, so the voltage exiting a resistor is less than the voltage entering the resistor.

2.2 Nodes, Branches and Loops (1)

- A branch represents a single element such as a voltage source or a resistor. อุปกรณ์ ไฟฟ้าที่อยู่ในวงจร : พับว่าก็ตัว
- A node is the point of connection between two or more branches.
- A loop is any closed path in a circuit. ส่งแตก ที่ทำให้วงจรปิด
- Network = interconnection of elements or devices
- Circuit = a network with closed paths
- A network with b branches, n nodes, and l independent loops will satisfy the fundamental theorem of network topology:

$$b = l + n - 1$$

2.2 Nodes, Branches and Loops (2)

How many branches, nodes and loops are there?

2.3 Kirchhoff's Laws (1)

 Kirchhoff's current law (KCL) states that the algebraic sum of currents entering a node (or a closed boundary) is zero.

Mathematically,

$$\sum_{n=1}^{N} i_n = 0$$

2.3 Kirchhoff's Laws (2)

Example 4

 Determine the current I for the circuit shown in the figure below.

$$I + 4-(-3)-2 = 0$$

 $= I = -5A$

This indicates that the actual current for I is flowing in the opposite direction.

2.3 Kirchhoff's Laws (3)

 Kirchhoff's voltage law (KVL) states that the algebraic sum of all voltages around a closed path (or loop) is zero.

Mathematically,

$$\sum_{m=1}^{M} v_n = 0$$

2.3 Kirchhoff's Laws (4)

Example 5 Applying the KVL equation for the circuit

of the figure below.

$$v_a - v_1 - v_b - v_2 - v_3 = 0$$

$$V_1 = IR_1 \quad v_2 = IR_2 \quad v_3 = IR_3$$

$$\Rightarrow \mathbf{v_a} - \mathbf{v_b} = I(R_1 + R_2 + R_3)$$

$$I = \frac{v_a - v_b}{R_1 + R_2 + R_3} \longrightarrow I = \frac{\Delta V}{\Delta R}$$
 21

2.4 Series Resistors and Voltage Division (1)

0นกรม

- Series: Two or more elements are in series if they are cascaded or connected sequentially and consequently carry the same current. 1 while
 - สมบุรณ์
- The equivalent resistance of any number of resistors connected in a series is the sum of the individual resistances.

$$R_{eq} = R_1 + R_2 + \dots + R_N = \sum_{n=1}^{N} R_n$$

• The voltage divider can be expressed as

Interchanging Series Components

$$\frac{1}{2K + 3K + 4K(R)} = 2.0 \text{ mA}$$

Voltage source in series

Ideal voltage sources connected in series add

Voltage source in parallel

- Ideal voltage sources cannot be connected in parallel
- Recall: ideal voltage sources guarantee the voltage between two terminals is at the specified potential (voltage)
- Immovable object meets unstoppable force
- In practice, the stronger source would win
- Could easily cause component failure (smoke)
- Ideal sources do not exist

ได้ \ เดมคติ

ullet Technically allowed if $V_1=V_2$, but is a bad idea

2.4 Series Resistors and Voltage Division (1)

Example 3

2.5 Parallel Resistors and Current Division (1)

- Parallel: Two or more elements are in parallel if they are connected to the same two nodes and consequently have the same voltage across them.
- The equivalent resistance of a circuit with N resistors in parallel is:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

• The total current i is shared by the resistors in inverse proportion to their resistances. The current divider can be expressed as: $i_n = \frac{v}{R} = \frac{iR_{eq}}{R}$

2.5 Parallel Resistors and Current Division (1)

Example 4

2.6 Wye-Delta Transformations

$$R_1 = \frac{R_b R_c}{(R_a + R_b + R_c)}$$

$$R_2 = \frac{R_c R_a}{(R_a + R_b + R_c)}$$

$$R_3 = \frac{R_a R_b}{(R_a + R_b + R_c)}$$

Star -> Delta

$$R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$$

$$R_b = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

$$R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$$

