

Cinemática

Vetores

F1583 - (Unioeste)

Assinale a alternativa que apresenta CORRETAMENTE apenas grandezas cuja natureza física é vetorial.

- a) Trabalho; deslocamento; frequência sonora; energia térmica.
- **b)** Força eletromotriz; carga elétrica; intensidade luminosa; potência.
- c) Temperatura; trabalho; campo elétrico; forca gravitacional.
- **d)** Força elástica; momento linear; velocidade angular; deslocamento.
- e) Calor específico; tempo; momento angular; força eletromotriz.

F1396 - (Fer)

As grandezas escalares são aquelas que ficam completamente definidas com um valor e a respectiva unidade, não necessitando de uma orientação. Marque a alternativa que apresenta apenas grandezas escalares.

- a) tempo, deslocamento e força
- b) força, velocidade e aceleração
- c) tempo, temperatura e volume
- d) temperatura, velocidade e volume
- e) tempo, temperatura e deslocamento

F0660 - (Ufal)

A localização de um lago, em relação a uma caverna préhistórica, exigia que se caminhasse 200 m numa certa direção e, a seguir, 480 m numa direção perpendicular à primeira. A distância em linha reta, da caverna ao lago era, em metros,

- a) 680
- **b)** 600
- c) 540
- d) 520
- e) 500

F1397 - (Fer)

Verifique quais são as grandezas escalares e vetoriais nas afirmações abaixo.

- 1) O deslocamento de um avião foi de 100 km, na direção Norte do Brasil.
- 2) A área da residência a ser construída é de 120,00 m².
- 3) A força necessária para colocar uma caixa de 10 kg em uma prateleira é de 100 N.
- 4) A velocidade marcada no velocímetro de um automóvel é de 80 km/h.
- 5) Um jogo de futebol tem um tempo de duração de 90 minutos.

Assinale a alternativa que apresenta a sequência correta.

- a) vetorial, vetorial, escalar, vetorial, escalar.
- **b)** vetorial, escalar, escalar, vetorial, escalar.
- c) escalar, escalar, vetorial, vetorial, escalar.
- d) vetorial, escalar, vetorial, vetorial, escalar.
- e) escalar, escalar, vetorial, escalar, escalar.

F0653 - (Eear)

A adição de dois vetores de mesma direção e mesmo sentido resulta num vetor cujo módulo vale 8. Quando estes vetores são colocados perpendicularmente, entre si, o módulo do vetor resultante vale 4V2. Portanto, os valores dos módulos destes vetores são

- **a)** 1 e 7.
- **b)** 2 e 6.
- c) 3 e 5.
- **d)** 4 e 4.

F0003 - (Ufc)

A figura abaixo mostra o mapa de uma cidade em que as ruas retilíneas se cruzam perpendicularmente e cada quarteirão mede 100 m. Você caminha pelas ruas a partir de sua casa, na esquina A, até a casa de sua avó, na esquina B. Dali segue até sua escola, situada na esquina

C. A menor distância que você caminha e a distância em linha reta entre sua casa e a escola são, respectivamente:

- a) 1800 m e 1400 m
- **b)** 1600 m e 1200 m
- c) 1400 m e 1000 m.
- d) 1200 m e 800 m.
- e) 1000 m e 600 m.

F0656 - (Mackenzie)

Um avião, após deslocar-se 120 km para nordeste (NE), desloca-se 160 km para sudeste (SE). Sendo um quarto de hora, o tempo total dessa viagem, o módulo da velocidade vetorial média do avião, nesse tempo, foi de

- a) 320 km/h
- **b)** 480 km/h
- c) 540 km/h
- d) 640 km/h
- e) 800 km/h

F0658 - (Uece)

Um corpo move-se no plano XY, sendo as coordenadas de sua posição dadas pelas funções x(t)=3t e $y(t)=t^3-12t$, em centímetros, com t em segundos. O módulo do deslocamento entre os instantes t=0 e t=4 segundos, em centímetros, é

- a) 4.
- **b)** 20.
- c) 38.
- **d)** 48.

F1595 - (Uerj)

A velocidade vetorial média de um carro de Fórmula 1, em uma volta completa do circuito, corresponde a:

- **a)** 0
- **b)** 24
- c) 191
- d) 240

F0001 - (Fer)

Ferretto puxa uma caixa com uma força de 30 N. Perpendicularmente a essa força, Coelho exerce sobre a caixa uma força igual a 40 N. Determine a intensidade da força resultante sobre o bloco.

- **a)** 50 N
- b) $10\sqrt{2}$ N
- c) 70 N
- d) 10 N
- e) 20 N

F0654 - (Eear)

Sobre uma mesa sem atrito, um objeto sofre a ação de duas forças F_1 = 9N e F_2 = 15N, que estão dispostas de modo a formar entre si um ângulo de 120°. A intensidade da força resultante, em newtons, será de

- a) 3√24
- **b)** 3v19
- c) v306
- **d)** $\sqrt{24}$

F1584 - (Uece)

Considere uma pedra em queda livre e uma criança em um carrossel que gira com velocidade angular constante.

Sobre o movimento da pedra e da criança, é correto afirmar que

- a) a aceleração da pedra varia e a criança gira com aceleração nula.
- **b)** a pedra cai com aceleração nula e a criança gira com aceleração constante.
- c) ambas sofrem acelerações de módulos constantes.
- d) a aceleração em ambas é zero.

F1613 - (Unifesp)

Na figura, são dados os vetores \vec{a} , $\vec{\omega}$ e \vec{v} .

Sendo u a unidade de medida do módulo desses vetores, pode-se afirmar que o vetor $\overrightarrow{g} = \overrightarrow{a} - \overrightarrow{\omega} + \overrightarrow{v}$ tem módulo

- a) 2u, e sua orientação é vertical, para cima.
- b) 2u, e sua orientação é vertical, para baixo.
- c) 4u, e sua orientação é horizontal, para a direita.
- d) $\sqrt{2}u$, e sua orientação forma 45° com a horizontal, no sentido horário.
- e) $\sqrt{2}u$, e sua orientação forma 45° com a horizontal, no sentido anti-horário.

F1398 - (Fer)

Uma pessoa caminha 3 metros para oeste e depois 6 metros para o sul. Em seguida, caminha 11 metros para leste. Em relação ao ponto de partida, podemos afirmar que João está:

- a) a 10 m para sudeste;
- **b)** a 10 m para sudoeste;
- c) a 14 m para sudeste;
- d) a 14 m para sudoeste;
- e) a 20 m para sudoeste.

F0005 - (Fer)

Ferretto sai para gravar um vídeo para os alunos da plataforma então caminha 3 m para Oeste e depois 6 m

para o Sul. Em seguida, ele caminha 11 m para Leste. Em relação ao ponto de partida, podemos afirmar que Ferretto está aproximadamente:

- a) a 10 m para Sudeste
- b) a 10 m para Sudoeste
- c) a 14 m para Sudeste
- d) a 14 m para Sudoeste
- e) a 20 m para Sudoeste

F0657 - (Uece)

Um barco pode viajar a uma velocidade de 11 km/h em um lago em que a água está parada. Em um rio, o barco pode manter a mesma velocidade com relação à água. Se esse barco viaja no Rio São Francisco, cuja velocidade da água, em relação à margem, assume-se 0,83 m/s, qual é sua velocidade aproximada em relação a uma árvore plantada na beira do rio quando seu movimento é no sentido da correnteza e contra a correnteza, respectivamente?

- a) 14 km/h e 8 km/h.
- **b)** 10,2 m/s e 11,8 m/s.
- c) 8 km/h e 14 km/h.
- **d)** 11,8 m/s e 10,2 m/s.

F1589 - (Ufscar)

Nos esquemas estão representadas a velocidade \overrightarrow{v} e a aceleração \overrightarrow{a} do ponto material P. Assinale a alternativa em que o módulo da velocidade desse ponto material permanece constante.

F0022 - (Unicamp)

O transporte fluvial de cargas é pouco explorado no Brasil, considerando-se nosso vasto conjunto de rios navegáveis. Uma embarcação navega a uma velocidade de 26 nós, medida em relação à água do rio (use 1 nó = 0,5 m/s). A correnteza do rio, por sua vez, tem velocidade aproximadamente constante de 5,0 m/s em relação às margens. Qual é o tempo aproximado de viagem entre duas cidades separadas por uma extensão de 40 km de rio, se o barco navega rio acima, ou seja, contra a correnteza?

- a) 2 horas e 13 minutos.
- b) 1 hora e 23 minutos.
- c) 51 minutos.
- d) 37 minutos.

F0655 - (Mackenzie)

Uma partícula move-se do ponto P_1 ao P_4 em três deslocamentos vetoriais sucessivos $\stackrel{\rightarrow}{a}, \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{e} \stackrel{\rightarrow}{d}$. Então o vetor de deslocamento \overrightarrow{d} é:

a)
$$\stackrel{\rightarrow}{c}$$
 - $(\stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b})$

b)
$$\stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b} + \stackrel{\rightarrow}{c}$$

c)
$$(\stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{c}) - \stackrel{\rightarrow}{b}$$

d)
$$\stackrel{\rightarrow}{a}$$
 - $\stackrel{\rightarrow}{b}$ + $\stackrel{\rightarrow}{c}$

e)
$$\stackrel{\rightarrow}{c}$$
 $\stackrel{\rightarrow}{c}$ $\stackrel{\rightarrow}{a}$ $\stackrel{\rightarrow}{b}$

F0652 - (Eear)

Dois vetores V_1 e V_2 formam entre si um ângulo θ e possuem módulos iguais a 5 unidades e 12 unidades, respectivamente. Se a resultante entre eles tem módulo igual a 13 unidades, podemos afirmar corretamente que o ângulo θ entre os vetores V_1 e V_2 vale:

- a) 0°
- **b)** 45°
- **c)** 90°
- d) 180°

F1618 - (Pucrj)

Os ponteiros de hora e minuto de um relógio suíço têm, respectivamente, 1 cm e 2 cm. Supondo que cada ponteiro do relógio é um vetor que sai do centro do relógio e aponta na direção dos números na extremidade do relógio, determine o vetor resultante da soma dos dois vetores correspondentes aos ponteiros de hora e minuto quando o relógio marca 6 horas.

- a) O vetor tem módulo 1 cm e aponta na direção do número 12 do relógio.
- **b)** O vetor tem módulo 2 cm e aponta na direção do número 12 do relógio.
- c) O vetor tem módulo 1 cm e aponta na direção do número 6 do relógio.
- d) O vetor tem módulo 2 cm e aponta na direção do número 6 do relógio.
- e) O vetor tem módulo 1,5 cm e aponta na direção do número 6 do relógio.

F1399 - (Fer)

Na figura a seguir estão desenhados dois vetores (\overrightarrow{x} e \overrightarrow{y}). Esses vetores representam deslocamentos sucessivos de um corpo. Qual é o módulo do vetor igual a \overrightarrow{x} + \overrightarrow{y} ?

- a) 4 cm.
- **b)** 5 cm.
- c) 8 cm.
- **d)** 13 cm.
- e) 25 cm.

F1593 - (Puccamp)

No lançamento de um bumerangue, este afasta-se até a distância de 32 m e, após 8,0 s, volta onde está o dono que o atira. A velocidade vetorial média nesse intervalo de tempo tem módulo:

- a) 16 m/s
- **b)** 8,0 m/s
- c) 4,0 m/s
- **d)** 2,0 m/s
- e) zero

F1592 - (Uesc)

Considere um móvel que percorre a metade de uma pista circular de raio igual a 10,0m em 10,0s. Adotando-se $\sqrt{2}$ como sendo 1,4 e π igual a 3, é correto afirmar:

- a) O espaço percorrido pelo móvel é igual a 60,0m.
- **b)** O deslocamento vetorial do móvel tem módulo igual a 10,0m.
- c) A velocidade vetorial média do móvel tem módulo igual a 2,0m/s.
- **d)** O módulo da velocidade escalar média do móvel é igual a 1,5m/s.
- **e)** A velocidade vetorial média e a velocidade escalar média do móvel têm a mesma intensidade.

F1585 - (Ifsul)

Uma partícula de certa massa movimenta-se sobre um plano horizontal, realizando meia volta em uma circunferência de raio 5,00 m. Considerando π = 3,14, a distância percorrida e o módulo do vetor deslocamento são, respectivamente, iguais a:

- a) 15,70 m e 10,00 m
- **b)** 31,40 m e 10,00 m
- c) 15,70 m e 15,70 m
- d) 10,00 m e 15,70 m

F1612 - (Uniube)

Qual é o módulo da resultante da soma dos vetores representados abaixo?

- a) 2,0 U.
- **b)** 3,5 U.
- c) 4,0 U.
- **d)** 7,0 U.
- e) 8,0 U.

F1617 - (Uece)

Um relógio de sol simplificado consiste em uma haste vertical exposta ao sol. Considere que ela seja fixada ao solo em algum local na linha do equador e que seja um período do ano em que ao meio-dia o sol fique posicionado exatamente sobre a haste. O tamanho da sombra da haste pode ser relacionado à hora do dia. É correto afirmar que o comprimento da sombra às 9h (C_{9h}) e às 15h (C_{15h}) é tal que a razão C_{15h}/C_{9h} é igual a

- a) 5/3.
- **b)** 3/5.
- **c)** 1/2.
- **d)** 1.

F1596 - (Ufrn)

A figura 1 representa uma sucessão de fotografias de uma atleta durante a realização de um salto ornamental numa piscina. As linhas tracejadas nas figuras 1 e 2 representam a trajetória do centro de gravidade dessa atleta para este mesmo salto. Nos pontos I, II, III e IV da figura 2, estão representados os vetores velocidade, \overrightarrow{v} , e aceleração, \overrightarrow{a} , do centro de gravidade da atleta.

Os pontos em que os vetores velocidade, \vec{a} , e aceleração, \vec{v} , estão representados corretamente são

- a) II e III.
- b) le III.
- c) II e IV.
- **d)** I e IV.

F1590 - (Fmp)

Um jogador de futebol chuta uma bola sem provocar nela qualquer efeito de rotação. A resistência do ar é praticamente desprezível, e a trajetória da bola é uma parábola. Traça-se um sistema de eixos coordenados, com um eixo x horizontal e paralelo ao chão do campo de futebol, e um eixo y vertical com sentido positivo para cima

Na Figura a seguir, o vetor $\overrightarrow{v_0}$ indica a velocidade com que a bola é lançada (velocidade inicial logo após o chute).

Abaixo estão indicados quatro vetores $\overrightarrow{w_1}$, $\overrightarrow{w_2}$, $\overrightarrow{w_3}$ e $\overrightarrow{w_4}$, sendo $\overrightarrow{w_4}$ o vetor nulo.

Os vetores que descrevem adequada e respectivamente a velocidade e a aceleração da bola no ponto mais alto de sua trajetória são

a)
$$\stackrel{\rightarrow}{w_1}$$
 $\stackrel{\rightarrow}{e}$ $\stackrel{\rightarrow}{w_2}$

b)
$$\overset{\rightarrow}{w_4}$$
 \vec{e} $\overset{\rightarrow}{w_4}$

c)
$$\overrightarrow{w_1}$$
 \overrightarrow{e} $\overrightarrow{w_3}$

b)
$$\overrightarrow{w_4}$$
 e $\overrightarrow{w_4}$
c) $\overrightarrow{w_1}$ e $\overrightarrow{w_3}$
d) $\overrightarrow{w_1}$ e $\overrightarrow{w_2}$

e)
$$_{w_4}^{\rightarrow}$$
 $_{e}$ $_{w_3}^{\rightarrow}$

F1591 - (Ufrgs)

A figura a seguir apresenta, em dois instantes, as velocidades v_1 e v_2 de um automóvel que, em um plano horizontal, se desloca numa pista circular.

Com base nos dados da figura, e sabendo-se que os módulos dessas velocidades são tais que $v_1 > v_2$ é correto afirmar que

- a) a componente centrípeta da aceleração é diferente de
- b) a componente tangencial da aceleração apresenta a mesma direção e o mesmo sentido da velocidade.
- c) o movimento do automóvel é circular uniforme.
- d) o movimento do automóvel é uniformemente acelerado.
- **e)** os vetores velocidade aceleração são perpendiculares entre si.

F1615 - (Ifsul)

Considere um relógio com mostrador circular de 10 cm de raio e cujo ponteiro dos minutos tem comprimento igual ao raio do mostrador. Considere esse ponteiro como um vetor de origem no centro do relógio e direção variável.

O módulo da soma vetorial dos três vetores determinados pela posição desse ponteiro quando o relógio marca exatamente 12 horas, 12 horas e trinta minutos e, por fim, 12 horas e 40 minutos é, em cm, igual а

- a) 30
- **b)** $101 + \sqrt{3}$
- c) 20
- **d)** 10

F0659 - (Ifce)

Dados os vetores "a", "b", "c", "d" e "e" a seguir representados, obtenha o módulo do vetor soma: R = a + b+c+d+e

- a) zero
- **b)** $\sqrt{20}$
- c) 1
- d) 2
- **e)** √52

F0651 - (Insper)

Existem cidades no mundo cujo traçado visto de cima assemelha-se a um tabuleiro de xadrez. Considere um ciclista trafegando por uma dessas cidades, percorrendo, inicialmente, 2,0 km no sentido leste, seguindo por mais 3,0 km no sentido norte. A seguir, ele passa a se movimentar no sentido leste, percorrendo, novamente, 1,0 km e finalizando com mais 3,0 km no sentido norte. Todo esse percurso é realizado em 18 minutos. A relação percentual entre o módulo da velocidade vetorial média desenvolvida pelo ciclista e a respectiva velocidade escalar média deve ter sido mais próxima de

- a) 72%
- **b)** 74%
- c) 77%
- d) 76%
- e) 70%

F1587 - (Ifce)

Uma partícula desloca-se sobre a trajetória formada pelas setas que possuem o mesmo comprimento L. A razão entre a velocidade escalar média e a velocidade vetorial média é:

- **b)** 2/3
- **c)** 1
- **d)** 3/2
- **e)** 2

F1586 - (Puccamp)

Num bairro, onde todos os quarteirões são quadrados e as ruas paralelas distam 100 m uma da outra, um transeunte faz o percurso de P a Q pela trajetória representada no esquema a seguir.

O deslocamento vetorial desse transeunte tem módulo, em metros, igual a

- a) 300
- **b)** 350
- **c)** 400
- **d)** 500
- **e)** 700

F1614 - (Ufc)

M e N são vetores de módulos iguais (|M| = |N| = M). O vetor M é fixo e o vetor N pode girar em torno do ponto O (veja figura) no plano formado por M e N. Sendo R = M + N, indique, entre os gráficos a seguir, aquele que pode representar a variação de |R| como função do ângulo θ entre M e N.

F2021 - (Enem PPL)

Um foguete viaja pelo espaço sideral com os propulsores desligados. A velocidade inicial $\stackrel{\rightarrow}{v}$ tem módulo constante e direção perpendicular à ação dos propulsores, conforme indicado na figura. O piloto aciona os propulsores para alterar a direção do movimento quando o foguete passa pelo ponto A e os desliga quando o módulo de sua velocidade final é superior a $\sqrt{2}$ v, o que ocorre antes de passar pelo ponto B. Considere as interações desprezíveis.

A representação gráfica da trajetória seguida pelo foguete, antes e depois de passar pelo ponto B, é:

F1597 - (Unesp)

Nas provas dos 200 m rasos, no atletismo, os atletas partem de marcas localizadas em posições diferentes na parte curva da pista e não podem sair de suas raias até a linha de chegada. Dessa forma, podemos afirmar que, durante a prova, para todos os atletas, o

- a) espaço percorrido é o mesmo, mas o deslocamento e a velocidade vetorial média são diferentes.
- **b)** espaço percorrido e o deslocamento são os mesmos, mas a velocidade vetorial média é diferente.
- c) deslocamento é o mesmo, mas o espaço percorrido e a velocidade vetorial média são diferentes.
- d) deslocamento e a velocidade vetorial média são iguais, mas o espaço percorrido é diferente.
- e) espaço percorrido, o deslocamento e a velocidade vetorial média são iguais.

F1594 - (Unesp)

Um caminhoneiro efetuou duas entregas de mercadorias e, para isso, seguiu o itinerário indicado pelos vetores deslocamentos d_1 e d_2 ilustrados na figura.

Para a primeira entrega, ele deslocou-se 10 km e para a segunda entrega, percorreu uma distância de 6 km. Ao final da segunda entrega, a distância a que o caminhoneiro se encontra do ponto de partida é

- **a)** 4 km.
- **b)** 8 km.
- c) 2V19 km.
- d) 8v3 km.
- e) 16 km.

F1611 - (Unb)

É dado o diagrama vetorial da figura. Qual a expressão correta?

- a) $\stackrel{\rightarrow}{B} + \stackrel{\rightarrow}{C} = -\stackrel{\rightarrow}{A}$
- b) $\stackrel{\rightarrow}{A} + \stackrel{\rightarrow}{B} = \stackrel{\rightarrow}{C}$
- c) \vec{C} \vec{B} = \vec{A}
- d) $\stackrel{\rightarrow}{B} \stackrel{\rightarrow}{A} = \stackrel{\rightarrow}{C}$

F1588 - (Upe)

Um robô no formato de pequeno veículo autônomo foi montado durante as aulas de robótica, em uma escola. O objetivo do robô é conseguir completar a trajetória de um hexágono regular ABCDEF, saindo do vértice A e atingindo o vértice F, passando por todos os vértices sem usar a marcha ré. Para que a equipe de estudantes seja aprovada, eles devem responder duas perguntas do seu professor de física, e o robô deve utilizar as direções de movimento mostradas na figura a seguir:

Suponha que você é um participante dessa equipe. As perguntas do professor foram as seguintes:

- I. É possível fazer a trajetória completa sempre seguindo as direções indicadas?
- II. Qual segmento identifica o deslocamento resultante desse robô?

Responda às perguntas e assinale a alternativa **CORRETA**.

a) I - Não; II - AF

b) I - Não; II - CB

c) I - Não; II - Nulo

d) I - Sim; II - FC

e) I - Sim; II - AF

F1616 - (Upe)

Duas grandezas vetoriais ortogonais, \overrightarrow{a} e \overrightarrow{b} de mesmas dimensões possuem seus módulos dados pelas relações a = Av e b = Bv, onde A e B têm dimensões de massa, e v, dimensões de velocidade.

Então, o módulo do vetor resultante $\overrightarrow{a} + \overrightarrow{b}$ e suas dimensões em unidades do sistema internacional são:

a)
$$(A^2v^2 - B^2v^2)^{1/2}$$
 em kg/s²

b)
$$(A^2v^2 + B^2v^2 - 2ABv^2 \cos 120^\circ)^{1/2}$$
 em Ns/kg

c)
$$(A^2v^2 + B^2v^2)^{1/2}$$
 em Ns

d)
$$(A^2v^2 - B^2v^2 + 2ABv^2 \cos 270^\circ)^{1/2}$$
 em kg m/s²

e)
$$(A^2v^2 - B^2v^2)^{1/2}$$
 em kg m/s

F0004 - (Ufc)

Analisando a disposição dos vetores BA, EA, CB, CD e DE, conforme figura abaixo, assinale a alternativa que contém a relação vetorial correta.

b)
$$BA + EA + CB = DE + CD$$

c)
$$EA - DE + CB = BA + CD$$

F0002 - (Mackenzie)

Com seis vetores de módulos iguais a 8 u, construiu-se o hexágono regular ao lado. O módulo do vetor resultante desses 6 vetores é:

- a) zero
- **b)** 16 u
- c) 24 u
- d) 32 u
- e) 40 u

F0017 - (Uemg)

O tempo é um rio que corre. O tempo não é um relógio. Ele é muito mais do que isso. O tempo passa, quer se tenha um relógio ou não.

Uma pessoa quer atravessar um rio num local onde a distância entre as margens é de 50 m. Para isso, ela orienta o seu barco perpendicularmente às margens.

Considere que a velocidade do barco em relação às águas seja de 2,0 m/s e que a correnteza tenha uma velocidade de 4,0 m/s.

Sobre a travessia desse barco, assinale a afirmação CORRETA:

- a) Se a correnteza n\u00e3o existisse, o barco levaria 25 s para atravessar o rio. Com a correnteza, o barco levaria mais do que 25 s na travessia.
- **b)** Como a velocidade do barco é perpendicular às margens, a correnteza não afeta o tempo de travessia.
- **c)** O tempo de travessia, em nenhuma situação, seria afetado pela correnteza.
- **d)** Com a correnteza, o tempo de travessia do barco seria menor que 25 s, pois a correnteza aumenta vetorialmente a velocidade do barco.

F2100 - (Enem)

Para os circuitos de maratonas aquáticas realizadas em mares calmos e próximos à praia, é montado um sistema de boias que determinam o trajeto a ser seguido pelos nadadores. Uma das dificuldades desse tipo de circuito é compensar os efeitos da corrente marinha. O diagrama contém o circuito em que deve ser realizada uma volta no sentido anti-horário. As quatro boias estão numeradas de 1 a 4. Existe uma corrente marinha de

velocidade cujo módulo é 30 metros por minuto, paralela à praia em toda a área do circuito. Nas arestas mais longas, o nadador precisará nadar na direção

apontada pelos vetores dos pontos 1 até 2 e de 3 até 4. Considere que a velocidade do nadador é de 50 metros por minuto, em relação à água, durante todo o circuito.

Nessa situação, em quantos minutos o nadador completará a prova?

- a) 42.
- **b)** 65.
- **c)** 72.
- **d)** 105.
- **e)** 120.