ISSN 0182-4624 ISSN 0024-0850

ВЕСТНИК' О САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА 1

серия 1

МАТЕМАТИКА МЕХАНИКА АСТРОНОМИЯ

выпуск 3

ЗАДАЧА ПОИСКА НА ГРАФАХ С ОГРАНИЧЕНИЕМ СКОРОСТИ

1. В настоящей работе рассматривается следующая задача поиска. Пусть граф Γ определяется множеством вершин $V\Gamma$, множеством ребер $E\Gamma$ и отношением инцидентности, которое каждому ребру сопоставляет одну или две вершины, называемые его концами.

Будем говорить, что Γ — топологический граф, если вершины Γ суть точки в \mathbb{R}^3 , а ребра — непересекающиеся конечнозвенные ломаные с концами в соответствующих вершинах, замкнутые в \mathbb{R}^3 . На протяжении всей

статьи будут рассматриваться только связные графы.

В начале 80-х годов Н. Н. Петровым в работе [1] была поставлена следующая задача поиска. Пусть Γ — связный топологический граф. На Γ находится n преследователей P_1, \ldots, P_n и убегающий E: Предполагается, что последователи и убегающий обладают в \mathbb{R}^3 (граф вложен в \mathbb{R}^3) простыми движениями:

$$(P_i)$$
: $\dot{x} = u_i$, $||u_i|| \leq u$, $i \in \overline{1, n}$,
 (E) : $\dot{y} = u_0$, $||u_0|| \leq v$,

 $x_i \in \mathbb{R}^3$, при $i \in \overline{1,n}, \ y \in \mathbb{R}^3$, причем Γ является для игроков фазовым ограничением. Допустимыми управлениями игроков являются кусочнопостоянные функции, заданные на произвольных промежутках [0,T].

Убегающий E считается пойманным преследователем P_i в момент t, если $x_i(t)=y(t)$. Совокупность траекторий преследователей, заданных на промежутке [0,T], называется программой преследователей, заданной на промежутке [0,T]. Программа n преследователей $\Pi(x_1,\ldots,x_n)$, заданная на [0,T], называется выигрывающей, если для любой траектории убегающего y, заданной на [0,T], существуют $t\in [0,T]$ и $i\in \overline{1,n}$, такие, что $x_i(t)=y(t)$. Говорится, что траектория убегающего y(t), $t\in [0,T]$, обеспечивает уклонение от поимки для программы преследователей $\Pi(x_1,\ldots,x_n)$, действующей на [0,T], если $x_i(t)\neq y(t)$, $t\in [0,T]$, $i\in \overline{1,n}$.

В работе [1] был поставлен вопрос о нахождении наименьшего натурального числа n, такого, что у n преследователей существует выигрывающая программа, заданная на некотором промежутке [0,T]. Ясно, что эта величина зависит только от графа Γ и отношения $\mu=uv^{-1}$. Эту величину будем обозначать $S_{\mu}(\Gamma)$. Далее, не умаляя общности, мы будем считать константу v равной единице, тогда $\mu=u$. В данной работе рассматривается случай, когда число преследователей равно двум.

Пусть Γ — топологический граф. Определим $\gamma(\Gamma)=\inf\{\mu\colon S_\mu(\Gamma)\leqslant 2\}$. Сославшись на [2,4], можно сказать, что когда характеристика графа Γ , называемая поисковым числом $S(\Gamma)$, не больше двух, то $\gamma(\Gamma)=0$. Как было показано в [3], если $S(\Gamma)>2$, в графе Γ существуют по крайней

мере две вершины степени ≥ 3.

Пусть $V_1\Gamma$ — множество всех вершин степени $\geqslant 3$ графа Γ . В дальнейшем мы будем полагать, что $|V_1\Gamma|\geqslant 2$. Как показано в [1], на любом топологическом графе двое преследователей осуществляет поимку при достаточно большом μ , поэтому $\gamma(\Gamma)$ всегда существует.

[©] Ф. В. Фомин, 1994.

Пусть $W(\Gamma_0)$ — класс всех топологических графов, изоморфных графу Γ_0 . В данной работе доказывается, что величина $\mu^*(\Gamma_0) = \sup_{\Gamma \in W(\Gamma_0)} \gamma(\Gamma)$ конечна для произвольного графа Γ_0 .

Пусть Γ — топологический граф. Введем в Γ метрику. Пусть $A, B \in \Gamma$. Через $\rho(A,B)$ обозначается длина кратчайшего пути (по евклидовой норме) в \mathbb{R}^3 с концами A и B, целиком лежащего на Γ . Если A и B лежат на одном ребре a, то через $\rho_a(A,B)$ обозначается длина кратчайшего пути, целиком лежащего на этом ребре, с концами A и B. Через $\|a\|$ будем обозначать длину ребра a, а через $\Delta(\Gamma)$ максимальную степень вершин графа Γ .

2. Пусть $A \in V\Gamma$, b > 0, $\hat{a}_1, \ldots, \hat{a}_k$ — все инцидентные к A ребра, $k \leqslant \Delta(\Gamma)$. Если среди ребер \hat{a}_i , $i \in \overline{1,k}$, есть петли, то, поместив на каждой петле \hat{a} вершину степени два на расстоянии $\|\hat{a}\|/2$ от A, мы получим новый набор ребер, инцидентных A, в котором нет петель. Обозначим этот набор $a_1, \ldots, a_m, \ m \leqslant \Delta(\Gamma)$. Отметим на ребрах a_i такие точки B_i , что $\rho_{a_i}(B_i, A) = \min(\|a_i\|, b)$. Будем говорить, что с момента t_1 по t_2 игроки P_1 и P_2 производят b-заметание вершины A, если один из игроков с t_1 по t_2 стоит в A, а второй со скоростью, равной по норме μ , совершает переходы из A в B_i и из B_i в A по a_i для всех $i \in \overline{1,m}$.

Если $p=\Delta(\Gamma)$, то за время $\leqslant 2pb\mu^{-1}$ преследователи могут совершить b-заметание любой вершины графа Γ .

Заметим, что число $\mu^*(\Gamma_0)$ никак не зависит от числа вершин степени два в графе Γ_0 . Поэтому далее будем полагать, что у рассматриваемых нами графов нет вершин степени два.

Пемма 1. Пусть а — максимальная длина ребра графа Γ , $n=|V_1\Gamma|$. Тогда для любых A, $B\in V_1\Gamma$ существует траектория одного из преследователей x(t), $t\in [0,2na\mu^{-1}]$, x(0)=A, $x(2na\mu^{-1})=B$, и для любой вершины $C\in V_1\Gamma$ существует такой момент $t'\in [0,2na\mu^{-1}]$, что x(t')=C.

I о казательство. Достаточно показать, что если граф Γ — дерево, $n=|V\Gamma|$, то для любых вершин A и B дерева Γ существует траектория x(t), $t\in [0,2na\mu^{-1}]$, где a — максимальная длина ребра дерева Γ , причем x(0)=A, $x(2na\mu^{-1})=B$ и для любой вершины $C\in V\Gamma$ существует $t'\in [0,2na\mu^{-1}]$, что x(t')=C. Действительно, доказав это, мы можем рассматривать для произвольного графа Γ лишь движение игрока по остовному дереву графа Γ . Если число вершин дерева равно двум, то утверждение верно. Пусть для любого дерева Γ' с максимальной длиной ребра a', $|V\Gamma'|=n$ и любых A, $B\in V\Gamma'$ существует траектория x'(t), $t\in [0,2na'\mu^{-1}]$ с указанными свойствами. Покажем, что для произвольного дерева Γ , $|V\Gamma|=n+1$ и произвольных A, $B\in V\Gamma$ также существует траектория x(t), $t\in [0,2na'\mu^{-1}]$, удовлетворяющая нужным условиям.

Пусть $A, B \in V\Gamma$. Возможны два случая:

- а) в Γ есть висячая вершина, отличная от A и B,
- b) в Γ нет висячих вершин, отличных от A и B.
- а) Рассмотрим висячую вершину C, отличную от A и B. Пусть C' смежная к C вершина, [C,C') ребро с концами C и C' без точки C'. На дереве $\Gamma' = \Gamma \setminus [C,C')$ существует траектория x'(t), $t \in [0,2na\mu^{-1}]$, x'(0) = A, $x'(2na\mu^{-1}) = B$, проходящая через все вершины дерева Γ' .

Пусть $t' \in [0, 2na\mu^{-1}]$ — момент времени, для которого x'(t') = C'.

Рассмотрим траекторию на Г:

$$x(t) = egin{cases} x'(t), & t \in [0,t']; \ \\ \mathbf{u}$$
грок с t' по $t' + 2a\mu^{-1}$ переходит из C в C' и обратно со скоростью $eta; \ \\ x'(t - 2a\mu^{-1}), & t \in [t' + 2a\mu^{-1}, \quad 2(n+1)a\mu^{-1}], \end{cases}$

где $\beta = \mu^{-1}a\rho(C,C')$.

б) Рассмотрим вершину A', смежную к A. На дереве $\Gamma' = \Gamma \setminus [A,A')$ существует траектория

$$x'(t)$$
, $t \in [0, 2na\mu^{-1}]$, $x'(0) = A$, $x'(2na\mu^{-1}) = B$,

проходящая через все вершины дерева Γ' . Рассмотрим на Γ траекторию $x(t),\ t\in [0,2(n+1)a\mu^{-1}],\$ где в начальный момент времени игрок находится в вершине A, после чего со скоростью $(1/2)\mu\rho(A,A')a^{-1}$ переходит в вершину A', а далее движется по траектории

$$x(t-2a\mu^{-1}), \quad t \in [2a\mu^{-1}, 2(n+1)a\mu^{-1}].$$

Очевидно, что в обоих случаях траектории удовлетворяют нужным условиям.

Пусть a — максимальная длина ребра графа Γ , $n=|V_1\Gamma|$, b>0, $\tau=(2na+2npb)\mu^{-1}$. Из леммы 1 следует, что для любых вершин A, $B\in V_1\Gamma$ существуют траектории $x_1(t)$, $x_2(t)$, $t\in [0,\tau]$, игроков P_1 и P_2 , причем $x_1(0)=x_2(0)=A$, $x_1(\tau)=x_2(\tau)=B$, и за этот промежуток времени игроки P_1 и P_2 успевают совершить b-заметание всех вершин $V_1\Gamma$. Будем называть такие действия преследователей b-обходом $V_1\Gamma$.

Введем в рассмотрение отображение f, сопоставляющее топологическому графу Γ , $|E\Gamma|=m$, последовательность $f(\Gamma)=\{a_i\}_{i=1}^k$, $k\leqslant m$, $a_1< a_2< \cdots < a_k$, причем $a\in \{a_i\}_{i=1}^k$ тогда и только тогда, когда в Γ существует ребро длины a. Через $|f(\Gamma)|$ будем обозначать число элементов в $f(\Gamma)$.

Пусть $p = \Delta(\Gamma)$, $n = |V_1\Gamma|$.

Лемма 2. На графе Γ , $|f(\Gamma)|=1$, при $\mu=2n(p+1)$ для любой вершины $A\in V_1\Gamma$ существует выигрывающая программа

In the second section
$$\Pi^A_\Gamma(x_1(t),x_2(t)),\quad t\in [0,a],$$

где a - dлина ребра графа Γ , причем $x_1(0) = x_2(0) = x_1(a) = x_2(a) = A$.

A о казательство. Пусть в начальный момент времени преследователи находятся в вершине A, после чего совершают a-обход $V_1\Gamma$, заканчивающийся в вершине A. Такой обход, как показано выше, преследователи могут осуществлять за время $\leqslant [2na+2npa]\mu^{-1}=a$. За это время убегающий не может пройти расстояние, большее a. Следовательно, на протяжении [0,a] убегающий находится на расстоянии $\leqslant a$ от какой-то вершины $C \in V_1\Gamma$. Но это означает, что убегающий не может уклониться от встречи с преследователями, совершающими a-заметание вершины C.

Теорема-1. На произвольном графе Γ при $\mu=3(2n)^m(p+1)$ существует выигрывающая программа, где $n=|V_1\Gamma|,\ p=\Delta(\Gamma),\ m=|f(\Gamma)|.$

Доказательство. Пусть для каких-то натуральных m, n, p верно, что на произвольном графе $\Gamma', |V_1\Gamma'| \leqslant n, \Delta(\Gamma') \leqslant p, |f(\Gamma')| \leqslant m$ для любой вершины $A' \in V_1\Gamma'$ при $\mu' = 3(2n)^m(p+1)$ существует выигрывающая

программа $\Pi_{\Gamma'}^{A'}(x_1(t),x_2(t)),\ t\in [0,\tilde{a}],\$ где \tilde{a} — максимальная длина ребра графа Γ' , причем $x_1(0)=x_2(0)=x_1(\tilde{a})=x_2(\tilde{a})=A'$. Докажем, что на произвольном графе Γ , $|V_1\Gamma|\leqslant n,\ \Delta(\Gamma)\leqslant p,\ |f(\Gamma)|\leqslant m+1$ для любой вершины $A\in V_1\Gamma$ при $\mu=3(2n)^{m+1}(p+1)$ существует выигрывающая программа $\Pi_{\Gamma}^{A}(x_1(t),x_2(t)),\ t\in [0,a],\$ где a — максимальная длина ребра графа Γ , причем $x_1(0)=x_2(0)=x_1(a)=x_2(a)=A$. Заметим, что доказав сформулированное выше утверждение и воспользовавшись леммой 2, мы сразу получим доказательство теоремы.

Рассмотрим граф Γ , $|V_1\Gamma| \leqslant n$, $\Delta(\Gamma) \leqslant p$, $|f(\Gamma)| \leqslant m+1$. Пусть a' — максимальная из длин ребер графа Γ , меньшая a. Покажем, что если $a/a' = \alpha$, то при $\tilde{\mu} = \mu' \alpha$ на Γ существует выигрывающая программа на

[0, a'].

Пусть $b_1, b_2 b_k$, k < pn, — ломаные длины a, являющиеся ребрами графа Γ , а A_i , B_i — вершины Γ , инцидентные ломаной b_i , $i \in \overline{1,k}$.

Из постановки задачи поиска следует, что факт существования вышгрывающей программы не зависит от расположения вершин графа Γ в \mathbb{R}^3 . Поэтому мы можем считать, что для каждого $i\in\overline{1,k}$ точки $A_i,\,B_i$ можно соединить ломаной b_i' длины a'. Назовем $\widetilde{\Gamma}$ полученный топологический граф. Рассмотрим граф Γ' , получаемый из $\widetilde{\Gamma}$ удалением ребер длиной a, т. е.

$$\Gamma' = \left(\widetilde{\Gamma} \cup_{i=1}^k b_i\right) \cup \left(\cup_{i=1}^k A_i\right) \cup \left(\cup_{i=1}^k B_i\right).$$

Очевидно, что $|f(\Gamma')|=m$. Поэтому при μ' на Γ' существует выигрыва-

ющая программа $\Pi_{\Gamma'}(x_1(t), x_2(t)), t \in [0, a'].$

Введем в рассмотрение отображение $\vartheta: \Gamma \longrightarrow \Gamma'$, задаваемое следующим образом: если $C \in \Gamma \cap \Gamma'$, то $\vartheta(C) = C$. Если C лежит на ломаной b_i , то $\vartheta(C) = C'$ лежит на b_i' , причем $\rho_{b_i}(A_i,C) = \alpha \rho_{b_i}(A_i,C')$. Нетрудно убедиться, что траектории $\vartheta^{-1} \circ x_1(t)$ и $\vartheta^{-1} \circ x_2(t)$, $t \in [0,a']$, при $\tilde{\mu} = \alpha \mu'$ являются допустимыми, а программа Π_{Γ} ($\vartheta^{-1} \circ x_1(t), \vartheta^{-1} \circ x_2(t)$), $t \in [0,a']$ является выигрывающей на Γ .

Из доказанного следует, что если $\alpha \leqslant 4 \leqslant 2n$, то теорема верна.

Пусть $\alpha > 4$. Разобьем множество $V_1\Gamma$ на классы эквивалентности L_1, \ldots, L_s , $s \leqslant n$, следующим образом: вершины A и B принадлежат одному классу тогда и только тогда, когда существует путь из A в B, не содержащий ребер, длина которых равна a.

Будем говорить, что расстояние от точки A до множества L_i не превосходит ε , $\rho(L_i,A)\leqslant \varepsilon$, если найдется вершина $B\in L_i$, $\rho(A,B)\leqslant \varepsilon$.

Множество точек графа Γ , находящихся от множества L_i на расстоянии, не превосходящем a', обозначим через \mathbf{L}_i , $i \in \overline{1,s}$. Очевидно, что все \mathbf{L}_i , $i \in \overline{1,s}$, являются связными топологическими графами, $|V_1\mathbf{L}_i| \leqslant n$, $\Delta(\mathbf{L}_i) \leqslant p$ а так как $\alpha > 2$, то $|f(\mathbf{L}_i)| \leqslant m$.

В каждом множестве L_i выделим точку A_i , $i \in \overline{1,s}$. По предположению при μ' на L_i существует выигрывающая программа на промежутке [0,a'], начинающаяся и заканчивающаяся в A_i . Тогда при $\mu=2n\mu'$ на L_i также существует выигрывающая программа, длительность ее не превосходит a'/2n и в начальные и конечные моменты времени преследователи находятся в A_i . Будем обозначать такие программы

$$\Pi_{\mathbf{L}_i}(x_1(t), x_2(t)), \qquad t \in [t_0, t_0 + a'/2n],$$
 $x_1(0) = x_2(0) = x_1(t_0 + a'/2n) = x_2(t_0 + a'/2n) = A_i.$

Опишем алгоритм действий преследователей. Первый шаг алгоритма

состоит из четырех подшагов. В начальный момент времени $t_0=0$ преследователи находятся в вершине A_s .

- а) С момента t_0 по t_1 преследователи совершают а-обход $V_1\Gamma$, заканчивающийся в вершине A_1 .
- б) Пусть $\omega = 4n(p+1)\mu^{-1}$, а $l \in N$ такое, что $\omega^{l-1}a \geqslant a'$, но $\omega^{l}a < a'$. С t_1 по t_2 преследователи совершают последовательно $\omega^i a$ -обходы $V_1 \mathbf{L}_1$, $i \in \overline{1, l-1}$, причем эти обходы начинаются и заканчиваются в вершине
- в) С t_2 по t_3 преследователи совершают ω^l -обход, заканчивающийся в вершине A_1 , и вещомина почетовную Тан р'ц = 4 нап от
- Γ) С t_3 по $t_4 = t_3 + a'/2n$ преследователи движутся по траекториям $\Pi_{L_1}^{A_1}(x_1(t), x_2(t)), t \in [t_3, t_3 + a'/2n].$

Первый шаг завершен.

В начале k-го шага преследователи находятся в вершине A_{k-1} , после чего выполняют подшаг а), заканчивающийся в вершине A_k , и подшаги б), в), г), начинающиеся и заканчивающиеся в вершине A_k . Число шагов s алгоритма не превосходит $n, s \leqslant n$. Преследователи начинают и заканчивают алгоритм в одной вершине А,.

Покажем, что преследователи могут осуществить действия, описываемые алгоритмом, за промежуток времени ≤ а.

Совершить a-обход $V_1\Gamma$ преследователи могут за время \leqslant (2na+

 $(2nap)\mu^{-1}=a\omega/2$, откуда $t_1-t_0\leqslant \omega a/2$.

На $\omega^i a$ -обход $V_1 \mathbf{L}_j$, $j \in \overline{1,s}$, требуется время $\leqslant (2na' + 2n\omega^i ap)\mu^{-1} \leqslant$ $(2naω^i + 2nω^iap)μ^{-1} = ω · ω^ia/2, i ∈ \overline{1, l-1}, ποστομ t_2 - t_1 ≤ \sum_{i=1}^{l-1} ω^{i+1} · a/2.$ На ω^l а-обход $V_1 \mathbf{L}_j$ времени требуется не более

$$\mu^{-1}(2n \cdot a' + 2n \cdot p \cdot \omega^l \cdot a) \leqslant 2n(p+1)\mu^{-1}a' = \omega \cdot a/2.$$

Получаем за в в примента

$$t_3-t_2\leqslant \omega a'/2$$
 . An isomorphism restricts

Из условия $a' \leqslant \omega^{l-1}a$ следует неравенство

$$t_3-t_2\leqslant 2n(p+1)\mu^{-1}\omega^la=\omega^{l-1}a/2$$

Тем самым
$$t_3 - t_0 \leqslant \sum_{i=1}^{l-1} \omega^{i+1} \cdot a/2 + \omega^l a/2 + \omega a/2 < 2 \sum_{i=1}^{\infty} \omega^i a/2 = \omega (1-\omega)^{-1} a = 4na$$

$$=4n(p+1)(\mu-4n(p+1))^{-1}a=\frac{4na}{3(2n)^{m+1}-4n}< a/2n \quad \text{при } m\geqslant 1, \ n\geqslant 2.$$

Поэтому

$$t_4 - t_0 < a/2n + a/2n = a/n$$

Число шагов алгоритма $s \leqslant n$, время действия одного шага < a/n, значит время действия алгоритма $<(a/n)s\leqslant(a/n)n=a.$

Докажем, что указанная программа является выигрывающей. Предположим противное: существует траектория убегающего $y(t), t \in [0, a],$ обеспечивающая уклонение от встречи с преследователями.

Убедимся в существовании такого номера $i\in\overline{1,s},$ что к моменту tконцу а-обхода $V_1\Gamma$ будет выполнено неравенство $\rho(L_i,y(t))\leqslant a\omega/2$. Лействительно, если с t_0 по t_1 убегающий был в одной из вершин $V_1\Gamma$, то за время $t_1-t_0\leqslant a\omega/2$ он не успеет отойти от этой вершины на расстояние, большее $a\omega/2$. Если же убегающий за время $[0,t_1]$ не был ни в одной из вершин $V_1\Gamma$, то на протяжении $[0,t_1]$ он находился на некотором ребре. Но при a-обходе $V_1\Gamma$ преследователи проходят целиком все ребра графа Γ и убегающий не может в таком случае уклониться от поимки.

Итак, доказано, что к моменту t_1 убегающий находится на расстоянии $\leqslant a\omega/2$ от одного из множеств L_i . Покажем, что тогда для всех $t\in [t_1,a]$ и $j\neq i$ выполняется неравенство $\rho(L_j,y(t))>a\omega/2$. Через интервалы времени $\leqslant a/n$ преследователи совершают a-обходы $V_1\Gamma$. Как уже доказано, к концу каждого a-обхода убегающий должен находиться на расстоянии $\leqslant a\omega/2$ от одного из множеств L_i . Попасть из вершины одного класса в вершину другого можно, лишь пройдя по ребру длиной a и чтобы приблизиться к множеству L_j , $j\neq i$, на расстояние $\leqslant a\omega/2$, убегающий должен пройти расстояние, не меньшее

$$a - a\omega/2 = a\left(1 - \frac{2(2n(p+1))}{3(2n)^{m+1}(p+1)}\right) =$$

$$= a\left(1 - \frac{2}{3}\frac{1}{(2n)^m}\right) > a/n \qquad (\text{tak kak } n \geqslant 2, \ m \geqslant 1),$$

но он не успевает пройти такое расстояние за время $\leqslant a/n$.

Поэтому на интервале $[t_1,a]$ убегающий не может приблизиться на расстояние $\leqslant a\omega/2$ к разным классам эквивалентности и, следовательно, к концу каждого a-обхода графа $V_1\Gamma$ убегающий находится на расстоянии $\leqslant a\omega/2$ от вершин одного и того же класса. Назовем этот класс эквивалентности L_q . Пусть \tilde{t}_1 — начало ωa -обхода $V_1\mathbf{L}_q$ преследователями. В момент \tilde{t}_1 преследователи также заканчивают очередной a-обход $V_1\Gamma$ и $\rho(y(\tilde{t}_1),L_q)\leqslant a\omega/2$. Покажем, что если к моменту \tilde{t}_i , $i\in\overline{1,l-1}$, началу $\omega^i a$ -обхода $V_1\mathbf{L}_q$ убегающий находился на расстоянии $\leqslant a\omega^i/2$ от L_q , то к концу этого обхода, к моменту $\tilde{t}_{i+1}=\tilde{t}_i+a\omega^{i+1}/2$ он может находиться лишь на расстоянии, не превышающем $a\omega^{i+1}/2$ от \mathbf{L}_q .

Убегающий к моменту \tilde{t}_i находится на расстоянии $a\omega^i/2$ от L_q и за время $\tilde{t}_{i+1}-\tilde{t}_i$ не может удалиться от \mathbf{L}_q на расстояние, большее $(\omega^i/2+\omega^{i+1}/2)a<(\omega^i/2+\omega^i/2)a=\omega^i a$ и для всех $t\in [\tilde{t}_i,\tilde{t}_{i+1}]$ выполнено неравенство $\rho(y(t),L_q)\leqslant a\omega^i$. Но с \tilde{t}_i по \tilde{t}_{i+1} преследователи совершают $\omega^i a$ -обход $V_1\mathbf{L}_q$ и убегающий с \tilde{t}_i по \tilde{t}_{i+1} обязан побывать в одной из вершин $V_1\mathbf{L}_q$ (если убегающий находится на одном ребре на расстоянии, не превосходящем $\omega^i a$ от одной из вершин $V_1\mathbf{L}_q$, то он не сможет уклониться от встречи с преследователями, производящими $\omega^i a$ -заметание этой вершины). Но если существует $t\in [\tilde{t}_i,\tilde{t}_{i+1}]$ такой, что $y(t)\in V_1\mathbf{L}_q$, то за время $\tilde{t}_{i+1}-t\leqslant t_{i+1}-\tilde{t}_i$ убегающий не сможет отойти от L_q на расстояние, большее $2n(p+1)\mu^{-1}\omega^i a$. Тем самым

$$\rho(y(\tilde{t}_l),L_q)\leqslant a\omega^{l+1}/2\leqslant a'/3(2n)^m< a'/2n \quad (\text{tak kak } m\geqslant 1).$$

C момента $ilde{t}_l$ по $ilde{t}_l + a'/2n$ преследователи проходят по траекториям

$$\Pi_{\mathbf{L}_{\mathbf{q}}}(x(t_1), x(t_2)), \quad t \in [\tilde{t}_l, \tilde{t}_l + a'/2n].$$

За время a'/2n убегающий не может пройти расстояние, большее a'/2n, и так как a'/2n+a'/2n=a'/n, то $y(t)\in \mathbf{L}_q$, $t\in [\tilde{t}_l,\tilde{t}_l+a'/2n]$. Но это означает, что убегающий не может уклониться от встречи с преследователями. Достигнутое противоречие показывает, что указанная программа является выигрывающей на [0,a], кроме того,

$$x_1(0) = x_2(0) = x_1(a) = x_2(a) \in V_1\Gamma$$

т.е. программа удовлетворяет условиям утверждения, и теорема доказана.

Г и убегазоний не может в таком случае уклониться от поимки

3. Из теоремы 1 сразу следует

Теорема 2. Для любого графа Γ_0 величина $\mu^*(\Gamma_0) = \sup_{\Gamma \in W(\Gamma_0)} \gamma(\Gamma)$ конечна.

Доказательство. Число $m=|f(\Gamma)|$ не превосходит $|E\Gamma_0|$, $\Gamma\in W(\Gamma_0)$. Поэтому $\mu^*(\Gamma_0)\leqslant 3(2n)^{|E\Gamma_0|}(p+1)$, где $p=\Delta(\Gamma_0),\ n=|V_1\Gamma_0|$.

одного класса в вершину другого можно, жишь пройдя по ребру дляной

а и чтобы приблизиться к множеству 19, 3 # 1, на расстояни уявимии

F. V. Fomin. Search problem in graphs under a restriction on the velocity.

Existence of successful searching strategy by two pursuers is proved in a search problem.

ЛИТЕРАТУРА

- Петров Н. Н. Некоторые экстремальные задачи поиска на графах// Диф. уравнения. 1982. Т. 18, N 5. С. 821 829.
- Петров Н. Н. Задачи преследования при отсутствии информации об убегающем// Диф. уравнения. 1982. Т. 18, N 8. С.1345 – 1352.
- 3. Петров Н. Н., Старостина С. А. Минимальные графы с поисковым числом, меньшим четырех.// Вестн. Ленингр. ун-та. Сер. 1. 1989. Вып. 3. (N 15). С. 105 106.
- 4. Parsons T.D. Persuit-evasion in a graph//Lecture Notes in Math. 1978. Vol. 642. P. 426-447.

Статья поступила в редакцию 28 сентября 1993 г.

момент \tilde{t}_1 преследователи также заканчивают очередной а-обход $V_1\Gamma$ и $\rho(y(\tilde{t}_1),L_g) \leq \alpha \omega/2$. Покажем, что если и моменту \tilde{t}_{ℓ_1} і $\in [1,l-1]$, началу $\omega^i \alpha$ -обхода V_1L_g убегающий нахолнися на расстоянии $\leq \alpha \omega^i/2$ от L_g , то и концу этого обхода, и моменту $\tilde{t}_{\ell+1} = \tilde{t}_{\ell} + \alpha \omega^{i+1}/2$ он может находиться лишь на расстоянии, не превышающем $\alpha \omega^{i+1}/2$ от L_{g_ℓ}

Убегвющий к моменту \hat{t}_i некодител на расстояния $a\omega^i/3$ от \hat{t}_g и ав время $\hat{t}_{i+1} - \hat{t}_i$ не может удалиться от \hat{t}_g на расстояние, большее $(\omega^i/2 + \omega^{i+1}/2)a < (\omega^i/2 + \omega^i/2)a = \omega^i a$ и для всех $i \in [\hat{t}_i, \hat{t}_{i+1}]$ выполнено веравейство $\phi(y(t), \hat{t}_g) \le a\omega^i$. Но e \hat{t}_i по \hat{t}_{i+1} преследователи совершнот $\omega^i e$ -обхол $V_i L_g$ и убегающий с \hat{t}_i по \hat{t}_{i+1} обязви нобывать в одной из верини $V_i L_g$ (если убегающий изхолится из одном рабре на расстоянии, не презосходащем ω^i а от одной из верциин $V_i L_g$, то он не сможет уклониться от астречи с праследовательна, производящими ω^i в-заметание этой вершины). Но если существует $i \in [\hat{t}_i, \hat{t}_{i+1}]$ такой, что $y(i) \in N_i L_g$, то за время $\hat{t}_{i+1} = i \le \hat{t}_{i+1} = i$, убегающий не сможет отойти от L_g из расстояние, больное \hat{t}_i и \hat{t}_i \hat{t}_i из расстояние, больное \hat{t}_i \hat{t}_i

 $\rho(y(\tilde{t}_{\ell}), L_{\ell}) \leqslant \alpha \omega^{l+1}/2 \leqslant a^{l}/3(2n)^{m} < a^{l}/2n \pmod{\max} 1$.

С момента l_1 по $l_1+a'/2$ и преследователи проходят по траекториям

$$\Pi_{L_n}(z(t_1), z(t_2)), \quad t \in [t_1, t_1 + a'/2n].$$

За время a'/2n убогающий не может пройти расстояние, большее a'/2n, и так неи a'/2n+a'/2n=a'/n, то $y(t)\in \mathbb{L}_q$, $t\in [t_l,t_l+a'/2n]$. Но это означает, что убегающий не может укрониться от встречи с преследователями. Постинутое противоречие показывает, что указанная программа является выигрывающей на $\{0,a\}$, креме того,

$$x_1(0) = x_2(0) = x_1(a) = x_2(a) \in V(\Gamma)$$