Pour bien commencer

QCM

Dans chaque cas, une seule des trois réponses proposées est exacte. Laquelle ?

		Α	В	С
1	L'expression $5y + 3x - 2$	est un produit	est une somme algébrique	n'est ni un produit ni une somme algébrique
2	Le double de x est	2 <i>x</i>		
3	Le produit de 6 par la somme de x et de 4 est	6(x + 4)	6 <i>x</i> + 4	$6 \times 4 + x$
4	Pour $x = 2$, la valeur de l'expression $5 - 3x$ est	5 – 6 <i>x</i>	11	-1
5	Pour $x = -3$, la valeur de $9x^2$ est	27	81	-81
6	6x - 10x =	-4 + x	-4 <i>x</i>	$-4x^{2}$
7	y + y + y =	3 + <i>y</i>	<i>y</i> ³	3 <i>y</i>
8	2 + 3x s'écrit aussi	6 <i>x</i>	3x + 2	5 <i>x</i>
9	$a \times a =$	2 <i>a</i>	2 + a	a ²

Exercice 1 1 Indiquer, pour chacune des expressions suivantes, s'il s'agit d'une somme, d'une différence ou d'un produit.

A =
$$3x + 5$$
. B = $5t^2 - 2$. C = $3(y + 5)$. D = $-2z(2z + 3)$. E = $(x + 3)(2x + 5)$.

2 Recopier ces expressions et entourer les termes dans le cas d'une somme ou d'une différence, les facteurs dans le cas d'un produit.

Exercice 2 Simplifier l'écriture de chacun des produits suivants.

$$A = 2 \times 3x. \qquad B = -5 \times 3t.$$

$$C = 3 \times (-5z)$$
.

$$D = (9) \times (2k)$$

$$E = 5c \times 2c$$
.

$$F = 5n \times (-3n).$$

$$C = 3 \times (-5z).$$
 $D = (-9) \times (-2k).$
 $G = (-10z) \times (-8z).$ $H = -4x \times 3x.$

$$H = -4x \times 3x$$

Exercice 3 Développer les produits suivants.

$$A = 2(x + 5)$$

$$B - 3(v - 1)$$

$$A = 2(x+5)$$
. $B = 3(x-4)$. $C = 10(x-5)$. $D = x(3+x)$.

$$D = v(3 \pm v)$$

Exercice 4 Dans les figures ci-dessous, x désigne un nombre positif.

Exprimer en fonction de x le périmètre de chaque figure.

Activités

Activité 1 Factorisation

- Énoncer la règle de la distributivité de la multiplication par rapport à l'addition vue en 5^e.

 On admet que cette règle est vraie pour **tous** les nombres relatifs (positifs et négatifs).
- On se propose de factoriser, si c'est possible, la somme algébrique $A = 30x^2 + 105x$, c'est-àdire de la transformer en un produit.
 - a. Recopier et compléter les égalités suivantes.

$$30x^2 = 30 \times \square \times \square$$
; $105x = 105 \times \square$.

- **b.** En déduire un facteur commun aux deux termes $30x^2$ et 105x.
- Oresser la liste de tous les nombres entiers positifs dont 30 est un multiple.
 - **b.** Dresser la liste de tous les nombres entiers positifs dont 105 est un multiple.
 - **G.** En déduire un autre facteur commun aux deux termes $30x^2$ et 105x.
- \bullet Écrire A sous la forme ak + bk où a et b sont deux nombres relatifs et k est le produit des deux facteurs communs trouvés précédemment.
 - **b.** En déduire une écriture de l'expression A sous la forme d'un produit de deux facteurs. La factorisation de A ainsi obtenue est la « meilleure » possible.

Activité 2 Réduction d'une expression littérale

- On considère l'expression $A = 3x 6x^2 + 4 5x 8 + 10x^2$.
 - **a.** Écrire A sous la forme d'une suite d'additions.
 - **b.** Entourer en bleu les termes en x^2 de cette somme, c'est-à-dire les termes qui sont de la forme ax^2 où a est un nombre relatif.
 - **G.** Entourer en vert les termes en x de cette somme, c'est-à-dire les termes qui sont de la forme ax où a est un nombre relatif.
 - d. Recopier A en regroupant les termes en x^2 d'une part et les termes en x d'autre part.
 - e. En utilisant deux factorisations, écrire A sous la forme $ax^2 + bx + c$ où a, b et c sont trois nombres relatifs. On dit que l'on a réduit l'expression A.
 - Peut-on réduire l'expression F = -3x + 7?

Peut-on réduire l'expression $G = 5x^2 + 3x - 5$?

- On considère l'expression $K = 3x \times (-2x)$.
 - Quels sont les facteurs du produit K?
 - **b.** Calculer le produit des facteurs ne contenant pas x.
 - \square Quelle est l'écriture simplifiée de $x \times x$?
 - d. En déduire l'écriture simplifiée de K.
- 3 La figure ci-contre représente le plan d'un parc, les dimensions étant exprimées en mètre.
 - $f a_s$ Exprimer en fonction de x le périmètre P du parc puis réduire cette expression.
 - **b.** Factoriser l'expression réduite.
 - Calculer le périmètre du parc pour :

$$x = 16.5 \,\mathrm{m}$$
; $x = 20.3 \,\mathrm{m}$; $x = 50.4 \,\mathrm{m}$.

Activités

Activité 3 Développement d'une expression de la forme a(b+c)

- On considère l'expression A = -2(3x+5) + x(2x-3).
 - Développer chacun des produits -2(3x+5) et x(2x-3), en précisant dans chaque cas la propriété utilisée.
 - **b.** Écrire A en utilisant les résultats de la question précédente puis réduire l'expression obtenue. L'expression finale est **la forme développée et réduite** de l'expression A.
- On considère le programme de calcul ci-dessous.
 - Choisir un nombre.
 - Ajouter 3 au nombre choisi.
 - Multiplier la somme obtenue par -2.
 - Ajouter 6 au résultat.
 - Ajouter au résultat le double du nombre choisi au départ.
 - Écrire le résultat obtenu.
 - **a.** Effectuer ce programme en choisissant au départ le nombre 2 puis le nombre 16, et enfin le nombre –3. Que peut-on conjecturer ?
 - **b.** On note z le nombre de départ.

Traduire le programme de calcul par une expression dépendant de z. Développer et réduire l'expression obtenue, puis conclure.

Activité 4 Opposé d'une somme, opposé d'une différence

- \bullet a. Comment note-t-on l'opposé d'un nombre relatif x?
 - **b.** Par quel nombre faut-il multiplier x pour obtenir son opposé?
- Recopier et compléter le tableau ci-dessous.

а	b	a + b	a – b	-(a+b)	-(a-b)	-a - b	-a + b
2	3						
4	– 5				3		
– 5	8						
-3	– 5						

- **b.** Que remarque-t-on?
- G. Que peut-on conjecturer pour l'opposé d'une somme ? Pour l'opposé d'une différence ?
- Soit a et b deux nombres relatifs.

 Recopier et compléter les égalités suivantes : $-(a+b) = (\square) \times (a+b) = (\square) \times a + (\square) \times b = (\square) + (\square) = ---.$

 $-(a-b) = (\square) \times (a-b) = (\square) \times a - (\square) \times b = (\square) - (\square) = ---$

Activité 5 Suppression de parenthèses

1 a. Recopier et compléter le tableau ci-dessous.

а	b	с	a + (b + c)	a + (b - c)	a + b + c	a + b - c
6	3	5				
4	-5	-8				
-5	8	-2				

- **b.** Que remarque-t-on?
- Quelle règle peut-on énoncer ?
- Recopier et compléter le tableau ci-dessous.

a	b	С	a - (b + c)	a - (b - c)	a – b – c	a-b+c
2	3	5				
4	– 5	-8				
– 5	8	-2				

- **b.** Que peut-on conjecturer ?
- \Box Écrire sans parenthèses a (b + c) et a (b c). Justifier.
- Écrire les expressions suivantes sans parenthèses, puis réduire les sommes algébriques obtenues. A = 3x + (5x + 2). B = 2 + (7y 5). C = -7y + (-3y + 5). D = 9z + (-5z 12).

E = 6 - (y + 6). F = -12 - (4 - z). G = 5t - (-2 - 3t). H = -6a - (-2 + 5a).

Activité 6 Développement d'une expression de la forme (a+b)(c+d)

- Dans la figure ci-contre, le rectangle EFGH est constitué de quatre rectangles numérotés I, II, III et IV. a, b, c et d désignent quatre nombres positifs. On note A l'aire du rectangle EFGH.
 - **a.** Exprimer l'aire \mathcal{A} du rectangle EFGH en fonction de a, b, c et d de deux façons différentes.
 - **b.** Quelle égalité vérifiée par les nombres positifs *a, b, c* et *d* en déduit-on ?

- a, b, c, d et k désignent cinq nombres relatifs.
 - a. Développer le produit (a+b)k.
 - **b.** Quelle égalité obtient-on lorsque l'on remplace le facteur k par (c+d)?
 - **G.** En déduire le développement du produit (a + b)(c + d).
- 3 Développer et réduire les expressions littérales suivantes.

 $A = (x+3)(2x+4) = \dots + \dots + \dots = \dots$

B = (2x-3)(x+5) = (2x+(---))(x+5) = ---+---+---+---= ----.