

Modellierung ordinaler Präferenzen

mit {RprobitB} am Beispiel des pairfam Panels

Lennart Oelschläger Dietmar Bauer

Universität Bielefeld, Fakultät für Wirtschaftswissenschaften, Lehrstuhl für Ökonometrie

10. November 2022

Worum geht's?

1 Ordered Probit Modell

2 Anwendung am pairfam Panel

3 Computerwerkstatt: {RprobitB}

Worum geht's?

1 Ordered Probit Modell

2 Anwendung am pairfam Pane

3 Computerwerkstatt: {RprobitB}

Motivation

Antwortskalen bei Umfragen

- Kardinalskala: Klassische lineare Regression
 - z.B. Modellierung des Einkommens
- Nominalskala: Wahlmodelle
 - z.B. Modellierung der Wahl eines Verhütungsmittels (Vortrag letztes Jahr)
- Ordinalskala: Ordered Probit Modell
 - z.B. Modellierung von Antworten auf einer Likert-Skala

Definition

Gegeben eine Frage mit J geordneten Antwortmöglichkeiten.

Modelliere für Person $n=1,\ldots,N$ bei der Wahlsituation $t=1,\ldots,T(n)$:

$$U_{nt} = X_{nt}'\beta + \epsilon_{nt}$$

- lacksquare $U_{nt} \in \mathbb{R}$ ist der stetige Zustimmungswert von n bei t
- lacksquare $X_{nt} \in \mathbb{R}^P$ ist der Vektor mit P Charakteristiken von n bei t
- $m{\bullet}$ $\beta \in \mathbb{R}^P$ ist der zu schätzende Koeffizientenvektor
- \blacksquare $\epsilon_{nt} \in \mathbb{R}$ ist der Fehlerterm für n bei t mit $\epsilon_{nt} \sim N(\mu,\sigma)$ (Probit Modellklasse)

Kategorisierung der Zustimmung

In diesem Beispiel: J=5 Antwortmöglichkeiten

Kategorisierung der Zustimmung

In diesem Beispiel: J=5 Antwortmöglichkeiten

Zustimmungswert und Antwort

Es bezeichne $y_{nt} \in \{1, \dots, J\}$ die Antwort von n bei t. Dann:

$$y_{nt} = \sum_{j} j \cdot 1\{\gamma_{j-1} < U_{nt} \leq \gamma_{j}\}$$

 $\text{mit } \gamma_0 = -\infty \text{ und } \gamma_J = +\infty.$

Das heißt, Antwortalternative j wird genau dann gewählt, wenn $U_{nt} \in \ (\gamma_{j-1}, \gamma_j].$

Monotonie der Grenzen: Anstelle von γ_j , $j=1,\dots,J-1$, schätze d_j mit

$$\gamma_j = \sum_{i \leq j} \exp(d_i).$$

Normalisierung

Modellgleichung für n bei t:

$$U_{nt} = X'_{nt}\beta + \epsilon_{nt}$$

Die Zustimmungswerte ${\cal U}_{nt}$ sind invariant bezüglich

- $\blacksquare \text{ Skala: } U_{nt} \in \ (\gamma_{j-1}, \ \gamma_j] \Leftrightarrow c \cdot U_{nt} \in \ (c \cdot \gamma_{j-1}, \ c \cdot \gamma_j] \text{ für alle } c \in \mathbb{R}_+$
 - \bullet Lösung: Fixiere zum Beispiel $\sigma=1$ oder $\mu=0$
- $\blacksquare \text{ Level: } U_{nt} \in \ (\gamma_{j-1}, \ \gamma_j] \Leftrightarrow c + U_{nt} \in \ (c + \gamma_{j-1}, \ c + \gamma_j] \text{ für alle } c \in \mathbb{R}$
 - \bullet Lösung: Fixiere zum Beispiel $\gamma_1=0$

Heterogenität und latente Klassen

Anstelle eines konstanten β für jeden Befragten $n=1,\ldots,N$:

$$\beta_n \sim f$$

Die Verteilung f ist eine Modellspezifikation, z.B.

- ein Produkt unabhängiger Marginalverteilungen (z.B. Normalverteilung, Log-Normal Verteilung)
- eine multivariate Verteilung (erlaubt Korrelation zwischen Effekten)
- eine Latente Mischung:

$$\beta_n \sim \sum_{c=1,\dots,C} s_c \cdot \mathsf{MVN}(b_c,\Omega_c)$$

Bayesianische Schätzung

Grundlegende Formel:

$$\underbrace{ \frac{\mathsf{Pr}(\mathsf{Parameter} \mid \mathsf{Daten})}{\mathsf{A-posteriori-Verteillung}} \propto \underbrace{ \frac{\mathsf{Pr}(\mathsf{Parameter})}{\mathsf{A-priori-Verteillung}} \cdot \underbrace{ \frac{\mathsf{Pr}(\mathsf{Daten} \mid \mathsf{Parameter})}{\mathsf{Likelihood}} }$$

Für das Ordered Probit Modell:

$$\Pr(\beta, \sigma, d \mid y) \propto \Pr(\beta, \sigma, d) \cdot \underbrace{\Pr(y \mid \beta, \sigma, d)}_{\text{Likelihood}}$$

Müssen Likelihood nicht berechnen (zeitintensiv), wenn $\left(U_{nt}\right)$ "augmentiert" wird:

$$\Pr(\beta, \sigma, d, U \mid y) \propto \Pr(\beta, \sigma, d) \cdot \Pr(U \mid \beta, \sigma, d) \cdot 1\{y_{nt} = j \Leftrightarrow U_{nt} \in (\gamma_{j-1}, \gamma_{j}]\}$$

Posterior bestimmen

Methode: Gibbs Sampling

- lacktriangle Gesucht: Zufallszahlen von f(X,Y)
- lacksquare Bekannt: f(X|Y) und f(Y|X)
- Algorithmus:
 - ullet Initialisiere X^0 und Y^0
 - Für $r=1,\ldots,R$: $X^j\sim f(X|Y^{j-1})$ und $Y^j\sim f(Y|X^j)$
- Dann: $(X^r,Y^r) \sim f(X,Y)$ für r=Q+1,...,R ("Burn-in" Phase)

A-posteriori-Verteilung der Modellparameter durch Gibbs Sampling approximieren:

- lacksquare $U \sim {
 m Trunkierte\ Normalverteilung}$
- $\sigma \sim \text{Inverse Wishart-Verteilung (bei konjugierter Prior)}$
- $eta \sim \text{Multivariate Normal verteilung (bei konjugierter Prior)}$
- d mittels Metropolis-Hastings (keine direkte Ziehung aus der Marginalverteilung möglich)

Worum geht's?

1 Ordered Probit Model

2 Anwendung am pairfam Panel

3 Computerwerkstatt: {RprobitB}

Das pairfam Panel

Deutsches Beziehungs- und Familienpanel

- Circa 12.000 "Anchors" (Hauptbefragte)
- Auch Befragung von Eltern, Kindern, Partnern
- Durchschnittlich circa 150 Variablen pro Befragung
- In diesem Vortrag:
 - Release 11.0 (11 Erhebungswellen von 2008/09 bis 2018/19)
 - "NA Fälle" ignoriert (MCAR Annahme)

Fragen mit diskreter, ordinaler Antwortskala

Frage 3

Zunächst geht es um allgemeine Ansichten zu Familie und Familienleben. Bitte sagen Sie mir, wie sehr Sie persönlich diesen Ansichten zustimmen.

Variable val1_

Int.: Liste 1 vorlegen!

	val1i1	Eltern und Kinder sollten sich ein Leben lang gegenseitig unterstützen								
	val1i2	Man sollte heiraten, wenn man mit einem Partner auf Dauer zusammenlebt.								
	val1i3	Frauen sollten sich stärker um die Familie kümmern als um ihre Karriere.								
	val1i4	Männer sollten sich genau so an der Hausarbeit beteiligen wie Frauen.								
	val1i5	Ein Kind unter 6 Jahren wird darunter leiden, wenn seine Mutter arbeitet.								
	val1i6	Kinder leiden oft darunter, dass sich ihre Väter zu sehr auf die Arbeit konzentrieren.								
	val1i7	Die Ehe ist eine lebenslange Verbindung und sollte nicht beendet werden.								
	val1i8	Man sollte spätestens dann heiraten, wenn ein Kind da ist.								
Stimme über		naupt nicht zu	1 	2	3 	4 -	5 □	Stimme voll zu		
		Weiß nicht				D -1				
		Kaina Angaha				- 2				

Fragen mit diskreter, ordinaler Antwortskala

Frage 3

Zunächst geht es um allgemeine Ansichten zu Familie und Familienleben. Bitte sagen Sie mir, wie sehr Sie persönlich diesen Ansichten zustimmen.

Keine Angabe

Variable val1_

Int.: Liste 1 vorlegen!

val1i1	Eltern und Kind	Eltern und Kinder sollten sich ein Leben lang gegenseitig unterstützen									
val1i2	Man sollte heira	Man sollte heiraten, wenn man mit einem Partner auf Dauer zusammenlebt.									
val1i3	Frauen sollten s	Frauen sollten sich stärker um die Familie kümmern als um ihre Karriere. Männer sollten sich genau so an der Hausarbeit beteiligen wie Frauen.									
val1i4	Männer sollten										
val1i5	Ein Kind unter 6 Jahren wird darunter leiden, wenn seine Mutter arbeitet.										
val1i6	Kinder leiden of	Kinder leiden oft darunter, dass sich ihre Väter zu sehr auf die Arbeit konzentrieren.									
val1i7 Die Ehe ist eine lebenslange Verbindung und sollte nicht beendet werden.											
val1i8	Man sollte spät	Man sollte spätestens dann heiraten, wenn ein Kind da ist.									
Stimme	1 □	2 □	3 	4 □	5 _	Stimme voll zu					
Weiß nicht□-1											

Modelldaten (standardisiert)

summary(data)

##		count
##	deciders	11135
##	choice occasions	1-6
##	total choices	27207
##	alternatives	5
##	- '1'	4186
##	- '2'	4025
##	- '3'	6466
##	- '4'	5649
##	- '5'	6881

plot(data, by_choice = TRUE)

Modell (einfach)

Average effects

The horizontal lines show \pm 3 standard deviation of the estimate

Grenzwerte für die Zustimmung

Geschätzte Modellparameter γ :

Beispiel:

$$\hat{\beta}_{\rm rel~stat} = 0.77$$

- eine Person würde mit Eintritt in eine Beziehung immer von Antwortkategorie 4 zu 5 wechseln (ceteris paribus)
- aber nicht zwangsläufig von 2 zu 3 (ceteris paribus)

Modell (latente Klassen)


```
formula <- marriage ~ 1 + age + gender + rel_stat + income
re <- c("age", "rel_stat", "income")
C <- 3</pre>
```

Average effects

The horizontal lines show ± 1 standard deviation of the estimate

Analyse der latenten Klassen


```
classes <- classification(mod)</pre>
head(classes, n = 3)
##
                      2 3 est
## 111000 0.3720 0.3892 0.2388
## 174000 0.5504 0.4432 0.0064
## 423000 0.4168 0.5328 0.0504
get_cov(mod, id = "111000")
```

```
## id wave age gender rel_stat income marriage
## 7 111000 2014/15 1.303499 1 0 -0.7610623 1
```


Worum geht's?

1 Ordered Probit Model

2 Anwendung am pairfam Panel

3 Computerwerkstatt: {RprobitB}

Das {RprobitB} R Paket

Bayesianische Schätzung von Probit Wahlmodellen

- CRAN.R-project.org/package=RprobitB
- loelschlaeger.de/RprobitB
- github.com/loelschlaeger/RprobitB

Computerwerkstatt

Paket installieren und laden:

```
install.packages("RprobitB")
packageVersion("RprobitB") # sollte >= 1.1.2 sein
library("RprobitB")
```

File mit R. Code herunterladen und in R. öffnen:

Zusammengefasst:

- Modellierung von ordinalskalierten Antworten
- Klassifizierung von Befragten mittels latenter Klassen
- Modell Selektion wurde nicht behandelt

Ich freue mich über:

- Fragen und Anregungen zum Modell und zum R Paket
- Methodenvergleiche
- Datensätze über ordinale Wahlsituationen

✓ loelschlaeger@uni-bielefeld.de