

Implementing a graph-based clauseselection strategy for Automatic Theorem Proving in Python

from the course of studies Computer Science

at the Cooperative State University Baden-Württemberg Stuttgart

by

Jannis Gehring

02/21/2025

Time frame: 09/30/2024 - 06/12/2025

Student ID, Course: 6732014, TINF22B

Supervisor at DHBW: Prof. Dr. Stephan Schulz

Declaration of Authorship

Gemäß Ziffer 1.1.13 der Anlage 1 zu §§ 3, 4 und 5 der Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden- Württemberg vom 29.09.2017. Ich versichere hiermit, dass ich meine Arbeit mit dem Thema:

Implementing a graph-based clause-selection strategy for Automatic Theorem Proving in Python

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass alle eingereichten Fassungen übereinstimmen.

Table of Contents

1 Introduction	1
2 Theory	2
2.1 First-order logic	
2.2 Current scientific landscape for clause selection	2
2.3 Alternating path theory	2
3 PyRes architecture	3
4 Design	4
4.1 Initial algorithm	4
4.1.1 Ideas	4
4.1.2 Result	4
5 Implementation	5
5.1 Original algorithm in practice	5
5.2 [Main improvement 1]	5
5.3 [Main improvement 2]	
5.4 [Main improvement N]	5
5.5 Main development drawbacks	5
6 Evaluation & validation	
6.1 Implementation validation	6
6.2 Experimental setup	6
6.3 Experimental result	6
6.4 Evaluation of the experimental result	6
7 Future work	7
8 Conclusion	8
References	a

List of Acronyms

API Application Programming Interface

HTTP Hypertext Transfer Protocol

REST Representational State Transfer

Glossary

Exploit An exploit is a method or piece of code that takes advantage of vulnerabil-

ities in software, applications, networks, operating systems, or hardware,

typically for malicious purposes.

Patch A patch is data that is intended to be used to modify an existing software

resource such as a program or a file, often to fix bugs and security vulner-

abilities.

Vulnerability A Vulnerability is a flaw in a computer system that weakens the overall

security of the system.

1 Introduction

- 2 Theory
- 2 Theory
- 2.1 First-order logic
- 2.2 Current scientific landscape for clause selection
- 2.3 Alternating path theory

3 PyRes architecture

3 PyRes architecture

- 4 Design
- 4 Design
- 4.1 Initial algorithm
- 4.1.1 Ideas
- **4.1.2 Result**

5 Implementation

5 Implementation

- 5.1 Original algorithm in practice
- 5.2 [Main improvement 1]
- 5.3 [Main improvement 2]

•••

- 5.4 [Main improvement N]
- 5.5 Main development drawbacks

- 6 Evaluation & validation
- **6.1 Implementation validation**
- 6.2 Experimental setup
- 6.3 Experimental result
- 6.4 Evaluation of the experimental result

7 Future work

7 Future work

8 Conclusion

References

References