Analyse lexicale

Cyril Rabat cyril.rabat@univ-reims.fr

Licence 3 Informatique - Info0602 - Langages et compilation

2020-2021

Cours n°2

Qu'est-ce qu'un analyseur lexical? Langages, expressions régulières, automates finis

Table des matières

- L'analyse lexicale
 - Un analyseur lexical
 - Les langages
 - Les expressions régulières
 - Les automates finis
 - De l'expression régulière à un AFN
 - Transformation d'un AFN en AFD
 - Partitionnement
 - De l'automate à l'expression régulière
 - Construction d'un analyseur lexical
 - Automates à pile

- Lecture des caractères en entrée
- Production d'unités lexicales
 - → Analysées par l'analyseur syntaxique
- Interactions entre les deux analyseurs (lexical et syntaxique) :

Tâches secondaires de l'analyseur lexical

- Éliminer :
 - Les commentaires
 - Les caractères "inutiles" (espaces, tabulations, lignes vides...)
- Faciliter la gestion des erreurs :
 - Conservation/calcul du numéro de ligne
 - Associer les messages d'erreur à une ligne
- Le principal intérêt de l'analyseur lexical est de simplifier l'analyseur syntaxique

Modèle et unité lexicale

Définition : modèle

Règle qui décrit un ensemble de chaînes

Exemples

- [0-9]*
- a* b

Définition : unité lexicale

Éléments produit par l'ensemble des chaînes du modèle

Exemples

mots-clés, opérateurs, identificateurs, constantes, chaînes littérales...

Lexème et attribut

Définition : lexème

Suite de caractères du programme source qui correspond au modèle

Exemples

• Modèle : $[0 - 9]^*$

Unité lexicale : 100, 001, 123

Définition : attribut

Données liées aux unités lexicales

Exemple

L'entrée dans la table des symboles pour un identificateur

Alphabet et mots

Définition : alphabet

Un alphabet est un ensemble fini de symboles appelés caractères. Il est noté A.

- Exemples de symboles : lettres et caractères
- Exemples d'alphabets : {0,1} (l'alphabet binaire), l'ASCII

Définition : mot (ou chaîne)

Un mot sur un alphabet est une séquence finie de symboles de cet alphabet. La **longueur du mot** w (notée |w|) est le nombre de symboles dans ce mot. Le **mot vide**, noté ϵ , est un mot de longueur 0.

• Exemples de mots sur l'alphabet $\{a, b, c\}$: a, baba

Partie de mots

- Préfixe de w : mot obtenu en supprimant un nombre quelconque de symboles en fin de w (voire aucun)
- Suffixe de w : mot obtenu en supprimant un nombre quelconque de symboles en début de w (voire aucun)
- Sous-mot de w : mot obtenu en supprimant un préfixe et un suffixe de w
- Préfixe propre de w : tout mot non vide x, préfixe de w tel que $x \neq w$
- Idem pour suffixe propre et sous-chaîne propre de w
- Sous-suite de w : tout mot obtenu en supprimant un nombre quelconque de symboles de w, éventuellement aucun, pas nécessairement consécutifs

Opérations sur les mots

- Concaténation de mots : si x et y sont des mots, la concaténation xy est la chaîne formée en joignant x et y
 - \hookrightarrow Exemple : pour $\mathcal{A} = \{a, b\}$, si x = aa et y = bb, alors xy = aabb
- Exponentiation : $s^0 = \epsilon$; $s^i = s^{i-1}s$
 - \hookrightarrow Exemple : pour $\mathcal{A} = \{a, b\}$, si x = ba alors $x^3 = bababa$

Langage

Définition : langage

Un langage est un ensemble de mots définis sur un même alphabet.

- Soit $\mathcal{A} = \{1, 2, 3\}$, l'ensemble $\{1, 11, 12, 21\}$ est un langage sur \mathcal{A}
- Le langage vide est noté ∅
- Le langage $\{\epsilon\}$ ne contient que le mot vide

$$\emptyset \neq \{\epsilon\}$$

Opérations sur les langages (1/2)

Soit deux langages L_1 et L_2 définis respectivement sur les alphabets A_1 et A_2 .

Définition : union de deux langages

L'union de L_1 et L_2 définie sur $A_1 \cup A_2$ est le langage contenant tous les mots de L_1 et L_2 :

$$L_1 \cup L_2 = \{ w \mid w \in L_1 \lor w \in L_2 \}$$

Définition: intersection de deux langages

L'intersection de L_1 et L_2 définie sur $A_1 \cap A_2$ est le langage contenant tous les mots qui sont à la fois dans L_1 et L_2 :

$$L_1 \cap L_2 = \{ w \mid w \in L_1 \land w \in L_2 \}$$

Opérations sur les langages (2/2)

Définition : complément d'un langage

Le complément de L_1 est le langage défini sur \mathcal{A}_1 contenant tous les mots qui ne sont pas dans L_1 :

$$\mathcal{C}(L_1) = \{ w \mid w \in \mathcal{A}_1 \land w \notin L_1 \}$$

Définition : différence de deux langages

La différence de L_1 et L_2 est le langage défini sur A_1 contenant tous les mots de L_1 qui ne sont pas dans L_2 :

$$L_1 - L_2 = \{ w \mid w \in L_1 \land w \notin L_2 \}$$

Produit et puissances

Définition : produit de deux langages

Le produit ou **concaténation** de L_1 et L_2 est le langage défini sur $A_1 \cup A_2$ contenant tous les mots formés d'un mot de L_1 suivi d'un mot de L_2 :

$$L_1.L_2 = \{w_1w_2 \mid w_1 \in L_1 \land w_2 \in L_2\}$$

Définition: puissances d'un langage

Les puissances successives de L_1 définies sur A_1 sont définies récursivement:

- $L_1^0 = \{\epsilon\}$
- $L_1^n = L_1.L_1^{n-1}$ pour $n \ge 1$

Fermeture itérative

Définition : fermeture de Kleene de deux langages

La fermeture de Kleene de L₁, appelée également la **fermeture itérative**, définie sur A_1 , est l'ensemble des mots formés par une concaténation finie des mots de L₁ :

$$L_1^* = \{ w \mid \exists k \geq 0 \land w_1 \dots w_k \in L_1 \text{ tels que } w = w_1 w_2 \dots w_k \}$$

• On définit également L_1^+ : $L_1^+ = \{ w \mid \exists k > 0 \land w_1 \dots w_k \in L \text{ tels que } w = w_1 w_2 \dots w_k \}$

Langage fini et infini

Définition : langage fini

Un langage fini peut être décrit par l'énumération des mots qui le compose. Ce qui n'est pas le cas pour un langage infini.

- Certains langages infinis peuvent être décrits à l'aide d'opérations sur des langages simples
- Certains langages infinis peuvent être décrits à l'aide de règles (grammaires)
- Les langages qui ne peuvent être décrits ni par des opérations, ni par des grammaires sont des langages indécidables.

Expressions régulières

Définition : expression régulière

Les expressions régulières pour un alphabet ${\mathcal A}$ sont les expressions formées par les règles suivantes :

- ullet \emptyset , ϵ et les symboles de ${\mathcal A}$ sont des expressions régulières
- Si α et β sont des expressions régulières sur \mathcal{A} , $(\alpha|\beta)$, $(\alpha.\beta)$ et $(\alpha)^*$ sont des expressions régulières
- On note indifféremment $\alpha.\beta$ et $\alpha\beta$
- On définit une priorité décroissante sur les opérateurs : *, . et |

Langage décrit par une expression régulière

Définition : langage décrit par une expression régulière

Le langage L(E) où E est une expression régulière définie sur A, est défini comme suit :

- $L(E) = \emptyset$ si $E = \emptyset$
- $L(E) = \{\epsilon\}$ si $E = \epsilon$
- $L(E) = \{a\}$ si E = a pour tout $a \in A$
- $L(E) = L(E_1) \cup L(E_2)$ si $E = E_1 | E_2$
- $L(E) = L(E_1).L(E_2)$ si $E = E_1.E_2$
- $L(E) = L(E)^*$ si $E = E_1^*$