Język SQL. Rozdział 8. Język manipulowania danymi DML – zadania

1. Wstaw do relacji *PRACOWNICY* trzy nowe rekordy:

Nazwa atrybutu	1. rekord	2. rekord	3. rekord
ID_PRAC	250	260	270
NAZWISKO	KOWALSKI	ADAMSKI	NOWAK
ETAT	ASYSTENT	ASYSTENT	ADIUNKT
ID_SZEFA			
ZATRUDNIONY	13 stycznia 2015 r.	10 września 2014 r.	1 maja 1990 r.
PLACA_POD	1500	1500	2050
PLACA_DOD			540
ID ZESP	10	10	20

SQL> insert into PRACOWNICY...

Wykonaj zapytanie, które wyświetli wszystkie informacje o dodanych w p. 1. pracownikach.

SQL> select...

ID_PRAC	NAZWISKO	ETAT	ID_SZEFA	ZATRUDNIONY	PLACA_POD	PLACA_DOD	ID_ZESP
250	KOWALSKI	ASYSTENT		2015-01-13	1500		10
260	ADAMSKI	ASYSTENT		2014-09-10	1500		10
270	NOWAK	ADIUNKT		1990-05-01	2050	540	20

2. Dodanym w p. 1. pracownikom zwiększ płacę podstawową o 10% a dodatkową o 20% (jeśli pracownik nie miał do tej pory płacy dodatkowej, ustaw ją na wartość 100). Użyj tylko jednego polecenia!

```
SQL> update PRACOWNICY...
```

Następnie wykonaj zapytanie, które sprawdzi poprawność modyfikacji.

SQL> select...

ID_PRAC	NAZWISKO	ETAT	ID_SZEFA	ZATRUDNIONY	PLACA_POD	PLACA_DOD	ID_ZESP
250	KOWALSKI	ASYSTENT		2015-01-13	1650	100	10
260	ADAMSKI	ASYSTENT		2014-09-10	1650	100	10
270	NOWAK	ADIUNKT		1990-05-01	2255	648	20

3. Wstaw do relacji *ZESPOLY* rekord opisujący nowy zespół o nazwie BAZY DANYCH, identyfikatorze równym 60 i lokalizacji PIOTROWO 2.

```
SQL> insert into ZESPOLY...
```

Wykonaj zapytanie, które wyświetli wszystkie dane dodanego zespołu.

SQL> select...

4. Przenieś dodanych w punkcie 1. pracowników do zespołu BAZY DANYCH. W poleceniu użyj podzapytania, które wyszuka w relacji *ZESPOLY* identyfikator zespołu BAZY DANYCH (nie podawaj go wprost w poleceniu!)

```
SQL> update PRACOWNICY...
```

Sprawdź, wykonując odpowiednie zapytanie, jacy pracownicy należą teraz do zespołu BAZY DANYCH.

SQL> select...

ID_PRAC	NAZWISKO	ETAT	ID_SZEFA	ZATRUDNIONY	PLACA_POD	PLACA_DOD	ID_ZESP
250	KOWALSKI	ASYSTENT		2015-01-13	1650	100	60
260	ADAMSKI	ASYSTENT		2014-09-10	1650	100	60
270	NOWAK	ADIUNKT		1990-05-01	2255	648	60

5. Ustaw wszystkim pracownikom zespołu BAZY DANYCH pracownika o nazwisku MORZY jako szefa (zapytanie, wyszukujące w relacji *PRACOWNICY* identyfikator pracownika MORZY powinno być częścią polecenia UPDATE).

```
SQL> update PRACOWNICY...
```

Wyświetl teraz nazwiska wszystkich pracowników, których bezpośrednim przełożonym jest pracownik MORZY.

SQL> select...

ID_PRAC	NAZWISKO	ETAT	ID_SZEFA	ZATRUDNIONY	PLACA_POD	PLACA_DOD	ID_ZESP
190	MATYSIAK	ASYSTENT	140	1993-09-01	371		20
200	ZAKRZEWICZ	STAZYSTA	140	1994-07-15	208		30
250	KOWALSKI	ASYSTENT	140	2015-01-13	1650	100	60
260	ADAMSKI	ASYSTENT	140	2014-09-10	1650	100	60
270	NOWAK	ADIUNKT	140	1990-05-01	2255	648	60

6. Spróbuj usunąć z relacji ZESPOLY rekord opisujący zespół o nazwie BAZY DANYCH.

```
SQL> delete from ZESPOLY...
```

Czy polecenie zakończyło się sukcesem? Jeśli nie – dlaczego?

7. Usuń wszystkich pracowników, którzy należą do zespołu BAZY DANYCH. Następnie ponów operację usunięcia zespołu BAZY DANYCH.

```
SQL> delete from PRACOWNICY...
SQL> delete from ZESPOLY...
```

Sprawdź, wykonując odpowiednie zapytania, czy rekordy z relacji *ZESPOLY* i *PRACOWNICY* zostały usunięte.

8. Skonstruuj zapytanie, które dla każdego pracownika wyliczy kwotę podwyżki, jaką dostanie. Podwyżka powinna być równa 10% średniej płacy podstawowej w zespole, do którego należy pracownik.

SQL> select...

NAZWISKO	PLACA_POD	PODWYZKA
BIALY	250	50,2
BLAZEWICZ	1350	135
BRZEZINSKI	960	61,66
HAPKE	480	50,2
JEZIERSKI	439,7	61,66
KONOPKA	480	61,66
KOSZLAJDA	590	61,66
KROLIKOWSKI	645,5	61,66
MAREK	410,2	107,01
MATYSIAK	371	61,66
MORZY	830	61,66
SLOWINSKI	1070	50,2
WEGLARZ	1730	107,01
ZAKRZEWICZ	208	50,2

9. Zrealizuj podwyżkę z poprzedniego punktu.

```
SQL> update...
```

14 wierszy zostało zmodyfikowanych.

SQL> select...

NAZWISKO	PLACA_POD
BIALY	300,2
BLAZEWICZ	1485
BRZEZINSKI	1021,66
HAPKE	530,2
JEZIERSKI	501,36
KONOPKA	541,66
KOSZLAJDA	651,66
KROLIKOWSKI	707,16
MAREK	517,21
MATYSIAK	432,66
MORZY	891,66
SLOWINSKI	1120,2
WEGLARZ	1837,01
ZAKRZEWICZ	258,2

10. Wyświetl dane pracowników, którzy zarabiają najmniej. Weź pod uwagę tylko wartość płacy podstawowej.

```
SQL> select...

ID_PRAC NAZWISKO ETAT ID_SZEFA ZATRUDNIONY PLACA_POD PLACA_DOD ID_ZESP

200 ZAKRZEWICZ STAZYSTA 140 1994-07-15 258,2 30
```

11. Daj kolejną podwyżkę, tym razem tylko najmniej zarabiającym pracownikom. Ustaw im płacę podstawową na wartość równą średniej płacy podstawowej wszystkich pracowników (dokonaj zaokrąglenia wartości płacy do dwóch miejsc po przecinku).

```
SQL> update...

1 wiersz został zmodyfikowany.

SQL> select...

ID_PRAC NAZWISKO ETAT ID_SZEFA ZATRUDNIONY PLACA_POD PLACA_DOD ID_ZESP

200 ZAKRZEWICZ STAZYSTA 140 1994-07-15 771,13 30
```

12. Uaktualnij płace dodatkowe pracowników zespołu 20. Nowe płace dodatkowe mają być równe średniej płacy podstawowej pracowników, których przełożonym jest pracownik MORZY.

SQL> select...

NAZWISKO	PLACA_DOD
BRZEZINSKI JEZIERSKI KONOPKA KOSZLAJDA	80,5
KROLIKOWSKI MATYSIAK MORZY	105

SQL> update...

7 wierszy zostało zmodyfikowanych.

SQL> select...

NAZWISKO	PLACA_DOD
BRZEZINSKI	601,9
JEZIERSKI	601,9
KONOPKA	601,9
KOSZLAJDA	601,9
KROLIKOWSKI	601,9
MATYSIAK	601,9
MORZY	601,9

13. Pracownikom zespołu o nazwie SYSTEMY ROZPROSZONE daj 25% podwyżkę (płaca podstawowa). Tym razem zastosuj modyfikację operacji połączenia.

```
SQL> select...
```

NAZWISKO	PLACA_POD
BRZEZINSKI	1021,66
JEZIERSKI	501,36
KONOPKA	541,66
KOSZLAJDA	651,66
KROLIKOWSKI	707,16
MATYSIAK	432,66
MORZY	891,66

SQL> update...

7 wierszy zostało zmodyfikowanych.

SQL> select ...

NAZWISKO	PLACA_POD
BRZEZINSKI	1277,08
JEZIERSKI	626 , 7
KONOPKA	677 , 08
KOSZLAJDA	814,58
KROLIKOWSKI	883 , 95
MATYSIAK	540 , 83
MORZY	1114,58

14. Usuń bezpośrednich podwładnych pracownika o nazwisku MORZY. Zastosuj usuwanie krotek z wyniku połączenia relacji.

```
PRACOWNIK SZEF

MATYSIAK MORZY
ZAKRZEWICZ MORZY

SQL> delete from...

wierszy zostało usuniętych.

SQL> select...
```

nie wybrano żadnych wierszy

15. Wyświetl aktualną zawartość relacji *PRACOWNICY*.

SQL>...

ID_PRAC	NAZWISKO	ETAT	ID_SZEF	ZATRUDNI	PLACA_POD	PLACA_DOD I	D_ZES
210	BIALY	STAZYSTA	130	93/10/15	300,2	170,6	30
	BLAZEWICZ	PROFESOR		73/05/01	1485	210	40
130	BRZEZINSKI	PROFESOR	100	68/07/01	1277,08	601,9	20
230	HAPKE	ASYSTENT	120	92/09/01	530,2	90	30
170	JEZIERSKI	ASYSTENT	130	92/10/01	626,7	601,9	20
220	KONOPKA	ASYSTENT	110	93/10/01	677 , 08	601,9	20
160	KOSZLAJDA	ADIUNKT	130	85/03/01	814,58	601,9	20
150	KROLIKOWSKI	ADIUNKT	130	77/09/01	883,95	601,9	20
180	MAREK	SEKRETARK	XA 100	85/02/20	517,21		10
140	MORZY	PROFESOR	130	75/09/15	1114,58	601,9	20
120	SLOWINSKI	PROFESOR	100	77/09/01	1120,2		30
100	WEGLARZ	DYREKTOR		68/01/01	1837,01	420,5	10

12 wierszy zostało wybranych.

Sekwencje – zadania

16. Utwórz sekwencję o nazwie *PRAC_SEQ*, rozpoczynającą generację wartości od 300 z krokiem 10. Sekwencja będzie używana do generacji wartości dla atrybutu *ID_PRAC* relacji *PRACOWNICY* w nowo definiowanych rekordach.

```
SQL> create...
```

17. Wykorzystaj utworzoną sekwencję do wstawienia nowego stażysty o nazwisku Trąbczyński i płacy równej 1000 do relacji *Pracownicy*.

18. Zmodyfikuj pracownikowi Trąbczyńskiemu płacę dodatkową na wartość wskazywaną aktualnie (a nie nowo wygenerowaną!) przez sekwencję.

19. Usuń pracownika o nazwisku Trąbczyński.

```
SQL> delete from PRACOWNICY...
```

20. Utwórz nową sekwencję *MALA_SEQ* o niskiej wartości maksymalnej (np. 10). Zaobserwuj, co się dzieje, gdy następuje przekroczenie wartości maksymalnej sekwencji.

```
SQL> create...
SQL> select...
```

21. Spróbuj usunąć sekwencję MALA_SEQ.

```
SQL> drop...
```