NPS ARCHIVE 1966 MONTE LEON, V.

AUTOMATIC ERROR ANALYSIS IN FINITE DIGITAL COMPUTATIONS, USING RANGE ARITHMETIC

VICTOR JOSEPH MONTE LEON

LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIF. 93940

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93943-5101

AUTOMATIC ERROR ANALYSIS IN FINITE DIGITAL COMPUTATIONS, USING RANGE ARITHMETIC

by

Victor Joseph Monte Leon Lieutenant, United States Navy B. S., Polytechnic Institute of Brooklyn, 1960

Submitted in partial fulfillment for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

UNITED STATES NAVAL POSTGRADUATE SCHOOL

May 1966

166 Ionte Leon, V.

Trasis N. 1225

ABSTRACT

The nature of generated machine error in finite digital calculations is discussed. The arithmetic of range numbers is developed, and examples are given demonstrating the use of range arithmetic as a tool for automatic error analysis. A computer program is developed, utilizing the TYPE OTHER feature of FORTRAN-63 in conjunction with the CDC-1604 digital computer, which enables the user to perform automatic error analysis during computation, and a number of programs are presented using this feature.

TABLE OF CONTENTS

Section		Page
1.	Introduction	9
2.	The Arithmetic of Range Numbers	11
3.	Range Arithmetic and Automatic Error Analysis	16
4.	QRANGE7 - Program Description and Usage	22
5.	Matrix Inversion Using Range Arithmetic	25
6.	Conclusions	31
7.	Bibliography	33
Appendi	x I. QRANGE7 Program Listing	34
Appendi	K II. Subroutines for Use with QRANGE7	71

LIST OF TABLES

Table		Page
1.	Table of Sign Discriminations	14
2.	X - MATRIX	29
3.	X - INVERSE	30

LIST OF ILLUSTRATIONS

Fig	ure		Page
	1.	Flow Chart for UNPACK7	56
	2.	Flow Chart for RNGAD7	59
	3.	Flow Chart for RNGMU7	61
	4.	Flow Chart for RNGDI7	63
	5.	Flow Chart for QUIRKL7	65
	6.	Flow Chart for QUIRKU7	67
	7.	Flow Chart for REPACK7	69

1. Introduction.

The utilization of high-speed digital computers to perform lengthy and complex mathematical computations is widespread. Unfortunately, the user often assumes that the computer output will necessarily be accurate if his input data is accurate and his program logic is sound. This need not be the case, and such an assumption may well lead the user to incorrect or highly inaccurate results. The difficulty arises because of the very nature of digital computation.

A digital computer has a finite memory, and cannot carry within it infinite precision numbers, or perform infinitely accurate calculations. Each number stored in a digital computer must, of necessity, contain a finite number of digits. As a result, during each step of computation, the computer automatically truncates or rounds off numbers to conform with its memory storage requirements. Each arithmetic operation introduces an error in precision due to such truncation, which may accumulate with other such errors to produce sizeable inaccuracies in results. It is also possible that the errors may cancel and give a fairly accurate result; but, in either case, the user will have no knowledge of whether or not any error had accumulated in computation.

It would be desirable to eliminate precision errors entirely, but hardware limitations make it impossible to do so. It is, however, possible to estimate and control the errors arising in finite digital computations, by appropriate choice of an algorithm. One method is

called range arithmetic, or interval arithmetic [1, 2]. This method enables the generated error to be analysed automatically within the computer, during computation.

The technique of range arithmetic replaces any real number of infinite precision by two numbers of finite precision, one of which is a lowerbound of the real number, and the other is a corresponding upperbound of the real number. We can then be certain that the real number lies in the range of the two finite precision numbers.

In this thesis, we will discuss the arithmetic of range numbers, the application of range arithmetic to digital computation, and present a computer program designed for use on the CDC-1604 computer in conjunction with FORTRAN-63, which will provide a means of automatic error analysis in digital computation.

2. The Arithmetic of Range Numbers.

In this section, we will discuss the properties of range numbers, and the arithmetic operations pertaining to them.

Let x be any real number. Associated with this real number is a range number X, which has the following properties:

- (1) X is a closed bounded interval;
- (2) X contains x.

Then define the range number X, associated with the real number x, to be the closed bounded interval

$$X = [xL, xU],$$

where xL and xU are defined by the transformations L and U as follows:

$$x \xrightarrow{L} xL$$

We may then write

$$x \xrightarrow{L, U} X = [xL, xU]$$

The transformations L and U are determined by the precision allowed in computation. If, for example, we would like to find the range number associated with e = 2.71828...., and we are allowed only two significant figures, then

$$X = [2, 7, 2, 8]$$
.

On the other hand, if allowed five significant figures, then

$$X = [2.7182, 2.7183].$$

For integers (known with exact precision), the range number will have the same upper and lower bound, equal to the integer itself. Then, if x = 3, X = [3, 3].

We can see, then, that the range number X will represent the smallest closed interval containing x, for a given set of transformations L and U.

The arithmetic operations associated with range numbers can be defined in the following manner. Let (op) represent an arithmetic operation, and consider two range numbers

$$X = [xL, xU]$$
,

and

$$Y = [yL, yU]$$
.

Then,

$$Z = X (op) Y = [zL, zU],$$

where

zL = min[xL(op)yL, xL(op)yU, xU(op)yL, xU(op)yU]zU = max[xL(op)yL, xL(op)yU, xU(op)yL, xU(op)yU].

It can be seen that the real number z = x (op) y will be in the interval Z, and that Z represents the smallest interval that contains z.

Now let

- (+) denote range addition
- (-) denote range subtraction
- (*) denote range multiplication
- (/) denote range division

From the definition above, it can be seen that

(1)
$$Z = X(+) Y = [xL + yL, xU + yU]$$

$$(2) -X = [-xU, -xL]$$

(3)
$$Z = X(-) Y = X(+)(-Y) = [xL-yU, xU-yL]$$

(4)
$$X = Y$$
 if and only if $xL = yL$, and $xU = yU$

The values of zL and zU can also be obtained using a table of sign discriminations.

Using the table on page 14, we need only calculate one product for each end point, except in sign discrimination 5.

Note, that in the case in which Y brackets zero, i.e., Y = [-1, 3], range division is undefined. This is equivalent to forbidden division by zero in real arithmetic.

Values of zL and zU	zL = xL*yL, $zU = xU*yU$	zL = xU*yL, $zU = xU*yU$	zL = xU*yL, $zU = xL*yU$	zL = xL*yU, $zU = xU*yU$	zL = min [xU*yL, xL*yU], zU = max [xL*yL, xU*yU]	zL = xU*yL, $zU = xL*yL$	zL = xL*yU, $zU = xU*yL$	zL = xL*yU, $zU = xL*yL$	zL = xU*yU, $zU = xL*yL$	
уU	+	+	-	+	+	ı	+	+	ı	
уL	+	ı	ı	+	ı	ı	+	l	1	
х	+	+	+	+	+	+	ı	1	l	
×L	+	+	+	1	1	1	ı	ı	ı	
	-	2	8	4	ıC	9	7	œ	6	

TABLE OF SIGN DISCRIMINATIONS

We now will give some illustrative examples of computations using range arithmetic.

[a, b] (+) [c, c] = [a+c, b+c]
[a, b] (*) [c, c] = [ca, cb] for
$$c \ge 0$$

[a, b] (*) [c, c] = [cb, ca] for $c \le 0$
[a, b] (-) [a, b] = [a-b, b-a]
[a, b] (/) [a, b] = [a/b, b/a] for a > 0
[1, 2] (*) [-4, -3] = [-8, -3]

3. Range Arithmetic and Automatic Error Analysis.

In finite digital computation, errors are generated in the process of round-off, truncation, and normalization. One has no method of determining the seriousness of such errors unless some sort of error analysis is performed. A method is necessary that can evaluate the error generated at each step in the computation, and also keep track of the accumulated error. The techniques of range arithmetic are suited to this purpose. If, in addition to doing real arithmetic, we parallel the computation with range arithmetic, the range numbers calculated will keep track of the error, and the final result will be the smallest closed interval containing the "true", infinite precision result.

Error analysis via range arithmetic not only furnishes information as to the size of machine-generated errors, but it also can be utilized to evaluate the accuracy of alternative computational schemes. Indeed, the error generated in one type of computation may be quite different from that obtained using another method of computation. A few examples will illustrate this point.

Example 1.

Consider the problem of finding the roots of the equation

$$x^2 + 100,000x + 100 = 0$$
.

We will concern ourselves with finding the larger root of this equation, and we will assume that the computer can carry six significant

figures. We will first calculate the result using ordinary arithmetic and the quadratic formula, and then use range arithmetic in conjunction with the quadratic formula. The notation will be that which is equivalent to normalized floating-point operations on a computer. For example, the number 100,000 will be denoted by .100000E6, where E6 denotes the power of ten multiplying .100000.

The equation

$$ax + bx + c = 0$$

has, as its larger root,

$$x = (-b + \sqrt{b^2 - 4ac})/2a$$
.

We then calculate our solution:

$$\mathbf{x} = \frac{-.100000E6 + \sqrt{.100000E11} - .400000E3}{.2E1}$$

$$= \frac{-.100000E6 + \sqrt{.100000E11} - .000000E11}{.2E1}$$

$$= \frac{-.100000E6 + .100000E6}{.2E1}$$

$$= .000000E00$$

or

$$x = 0$$

Now, in order to do the same problem in range arithmetic, we assume some uncertainty in the coefficients of our original equation. We then replace the original coefficients by range numbers reflecting the uncertainty. For example, we will replace 100,000 by [99999.9, 100,001].

The equation to be solved now is

[.999999E0, .100001E1]
$$x^2$$
 + [.999999E5, .100001E6] x + [.999999E2, .100001E3] = 0.

Now,

$$b^{2} = [.999999E5, .100001E6]^{2}$$

$$= [.999999E10, .100003E11]$$

$$ac = [.999999E0, .100001E1] \times [.9999999E2, .100001E3]$$

$$= [.999998E2, .100003E3]$$

$$4ac = [.399999E3, .400012E3]$$

$$b^{2} - 4ac = [.999998E10, .100003E11] - [.399999E3, .400012E3]$$

$$= [.999997E10, .100003E11]$$

$$\sqrt{b^{2} - 4ac} = [.999998E5, .100002E6]$$

$$-b + \sqrt{b^{2} - 4ac} = [.999998E5, .100002E6] - [.9999999E5, .100001E6]$$

$$= [-.120000E4, .210000E4]$$

and

$$\mathbf{x} = \frac{[-.120000E4, .210000E4]}{[.399999E3, .400012E3]}$$
$$= [-.299994E1, .525002E1]$$

By using range arithmetic, we have kept accurate error bounds and have found that our root is in the interval [-2.9, 5.3], or [-.299994E1, .525002E1]. Our result tells us that the true value could be anywhere within the calculated interval. However, the interval

is wide, and could contain the value zero, which was our answer using real arithmetic. We would like to tighten the interval, so that we may be more confident of the computer results. The next example will illustrate how, with a little knowledge of sources of error generated in finite calculations, we can obtain more satisfactory results.

Example 2.

Consider the formula for the larger root of a quadratic equation,

$$x = (-b + \sqrt{b^2 - 4ac}) / 2a$$

and divide numerator and denominator by b so that

$$x = (-1 + \sqrt{1 - s}) b / 2a$$

where

$$s = 4ac/b^2$$
.

Expanding the radical in a power series, we obtain

$$\sqrt{1-s} = 1 - s/2 - s^2/8 - s^3/16 - \dots$$

The equation for x becomes

$$x = -(s/2 + s^2/8 + s^3/16 +)b/2a$$
.

Now, for the equation

$$x^2 + 100,000x + 100 = 0$$

we get

$$s = \frac{(.400000E1) (.100000E1) (.100000E3)}{(.100000E6)^2}$$

= .400000E-7

$$s/2 = .200000E-7$$

$$s^2/8 = .200000E-15$$

$$b^2/2a = (.100000E6) / (.200000E1) (.100000E1)$$

$$= .500000E5$$

Then

$$x = -(.500000E5) (.200000E-7 + .200000E-15)$$
$$= -(.500000E5) (.200000E-7)$$
$$= - .100000E-2$$

or,

$$x = -.001$$

We now solve the same problem using range arithmetic, with the modified quadratic formula.

Our equation is

[.999999E0, .100001E1]
$$x^2$$
 + [.999999E5, .100001E6] x^2 + [.999999E2, .100001E3] = 0.

In example 2, we found that

$$b^2 = [.999998E10, .100003E11]$$

$$4ac = [.399999E3, .400012E3]$$

therefore,

$$s = \frac{[.399999E3, .400012E3]}{[.999998E10, .100003E11]}$$

$$= [.399987E-7, .400013E-7]$$

$$s/2 = [.399987E-7, .400013E-7]/[.200000E1, .200000E1]$$

$$= [.199994E-7, .200007E-7]$$

$$s^2 = [.159987E-14, .160009E-14]$$
 $s^2/8 = [.199983E-15, .200012E-15]$
 $s/2 + s^2/8 = [.199994E-7, .200008E-7]$
 $b/a = [.999999E5, .100001E6]/[.999999E0, .100001E1]$
 $= [.999989E5, .100002E6]$
 $b/2a = [.499994E5, .500005E5]$
and
$$x = -[.499994E5, .500005E5][.199994E-7, .200008E-7]$$
 $= [-.100005E-2, -.999958E-3]$
or,
$$x = [-.00100005, -.000999958]$$

Thus, we can see that the method in example 2 generates far less error than the straight application of the quadratic formula. Indeed, the previous examples illustrate the use of range arithmetic in evaluating a given computational technique.

4. QRANGE7 - Program Description and Usage.

The TYPE OTHER capability in the FORTRAN-63 compiler for the CDC-1604 computer allows the relatively simple implementation of range arithmetic for the user. Using the QRANGE7 package, the programmer need only declare all floating-point variables to be TYPE RANGE7(3), and follow the usual rules of FORTRAN programming. The QRANGE7 package supplies the necessary subroutines for range arithmetic computations.

Range arithmetic calculations are made carrying a triple of numbers (xF, xL, xU), rather than a double as stated previously. The first number in the triple is the ordinary floating-point result, as calculated using standard floating-point arithmetic. The remaining numbers in the triple are the lower and upper range numbers, respectively. Note that $xL \le xF \le xU$. In any range calculation, the "real" part of the triple is computed last and remains in the accumulator, so that transfers and comparisons (such as the IF statement) will follow the same logical branches as in ordinary floating-point arithmetic.

Standard floating-point arithmetic cannot be used on either lower or upper range numbers since, in floating-point calculations, round-off and normalization are done automatically, and would reduce the accuracy of the range interval. In QRANGE7, the arithmetic performed on range numbers is un-normalized, and separate subroutines are provided which truncate the lower range numbers and round up by one bit in the

least significant position, or truncate, the upper range numbers as required. The un-normalized arithmetic is performed by unpacking the operands, putting them in un-normalized form, doing the appropriate arithmetic, re-normalizing and repacking the result.

Input/output may be accomplished in one of two ways. The programmer may use EQUIVALENCE statements to transfer input / output of range numbers as real numbers, where each range number is equivalent to three real numbers, or he may use the Input / Output for Multi-Word TYPE OTHER package [3] and transfer the range numbers directly in and out of the computer memory. The following examples will illustrate the use of these methods, and the use of QRANGE7.

A.

TYPE RANGE7(3) A7, B7, X7

DIMENSION A7(3), AR(9), B7(3), BR(9), X7(3, 3), XR(27)

EQUIVALENCE (A7, AR), (B7, BR), (X7, XR)

READ 10, AR, BR

10 FORMAT(8F10.0)

DO 20 I=1,3

DO 20 J=1, 3

- 20 X7(J, I) = A7(I)*B7(J)DO 30 I=1, 25, 3
- 30 PRINT 40, XR(I), XR(I+1), XR(I+2), XR(I), XR(I+1), XR(I+2)
- 40 FORMAT(//15X, 3(E20. 10, 10X)/15X, 3(020, 10X)) END

In this example, we have assumed that the programmer reads in the three parts of the range numbers using real floating-point numbers that are simultaneously stored as the three parts of the range numbers by use of the EQUIVALENCE statement. The next example will illustrate the same program, but using the INPUT / OUTPUT for MULTI-WORD TYPE OTHER package [3].

B.

TYPE RANGE7(3) A7, B7, X7

DIMENSION A7(3), B7(3), X7(3,3)

CALL READ7

READ 10, A7, B7

10 FORMAT(8F10.0)

DO 20 I=1,3

DO 20 J=1, 3

X7(J, I) = A7(I)*B7(J)

CALL PRINT7

- 20 PRINT 30, X7(J, I)
- 30 FORMAT(//15X, 3(E20.10, 10X) / 15X, 3(020, 10X))
 END

5. Matrix Inversion Using Range Arithmetic.

In order to test QRANGE7, and evaluate the errors generated in a particular program, a number of matrix inversions were run. In one case, the matrix to be inverted was generated randomly, using the RANF(-1) library function of FORTRAN-63. About 15 programs were run in this manner. In the second case, the input matrix was specified, and the individual elements of the matrix were assumed to be inaccurate. Thus, they were inputed as range numbers. Both cases used the MATINV2 subroutine provided by the U.S. Naval Postgraduate School computer facility, in conjunction with QRANGE7. Two range subroutines had to be used: ABS7, which takes the absolute value of a range number; and Q0Q06700, which complements the range accumulator [5]. (A listing of these subroutines appears in Appendix II.) The coding for both cases was as follows:

Case 1. Randomly Generated Matrices

PROGRAM RANMAT

TYPE RANGE7(3) XMAT, XINV

DIMENSION XMAT(5, 5), XINV(5, 5), XJUNK(2000)

READ 2000, N

DO 90 I=1, N

90 XJUNK(I) = RANF(-1)

DO 10 I=1,5

DO 10 J=1,5

B(I, J) = RANF(-1)*1000

10 XMAT(I, J) = B(I, J)

CALL PRINT7

DO 20 J=1, 5

DO 20 I=1, 5

20 PRINT 2001, XMAT(I, J), XMAT(I, J)

CALL MATINV2(XMAT, XINV, 5, 5)

CALL PRINT7

DO 30 J=1,5

DO 30 I=1,5

30 PRINT 2001, XINV(I, J), XINV(I, J)

2000 FORMAT(F10.0)

2001 FORMAT(//15X,3(E20.10,10X)/15X,3(020,10X))
END

Case 2. Input Matrix Containing Range Elements

PROGRAM MMATRIX

TYPE RANGE7(3) A, B

DIMENSION A(3,3), B(3,3)

CALL READ7

DO 10 J=1, 3

DO 10 I=1, 3

10 READ 2000, A(I, J)

CALL PRINT7

DO 20 J=1, 3

DO 20 I=1, 3

20 PRINT 2001, A(I, J), A(I, J)

CALL MATINV2(A, B, 3, 3)

CALL PRINT7

DO 30 J=1, 3

DO 30 I=1, 3

30 PRINT 2001, B(I, J), B(I, J)

2000 FORMAT(3F10.0)

2001 FORMAT(//15X,3(E20.10,10X)/15X,3(020,10X))
END

The results obtained using random matrices were highly accurate.

For 5 x 5 matrices, seven decimal places of accuracy were obtained,
and the range of error was small. It might be noted that the conversion
of the real random matrix to a matrix of range numbers introduced no
errors, and hence the resulting range intervals on the inverse elements
were solely a consequence of digital computation. On the other hand,
the error generated in the second case was quite large, and decimal
accuracy varied from zero to one. In fact, large errors were generated
for input coefficients with ranges of approximately 1.0E-2. It was found,
in both cases, that the error generated increased with increasing
matrix dimension. This is to be expected, since the number of

calculations done in inverting the matrix is increased. For example, a 12×12 random matrix was inverted, and it was found that only four to five significant figures could be expected, vice the seven decimal accuracy in the 5×5 case.

One my circumvent the inaccuracies obtained when the input elements are range numbers, by the following device [4]. Suppose we wish to invert X, whose elements are range numbers. Take X_0 to be the matrix of mid-points of the elements of X, so that $X = X_0 + E$. The elements of E are range numbers of the form [-e, e]. Obtain X_0^{-1} using range arithmetic, and let

$$E' = [I - X_0^{-1}E + (X_0^{-1}E)^2 - \dots] X_0^{-1} (-EX_0^{-1}).$$

If the elements of E are small compared to X_0^{-1} , then the series will converge, and one can write

$$X^{-1} = X_0 + E'$$
.

The results of a typical run for an inversion of a randomly generated 5×5 matrix are shown on the following page.

Element	Real Part	Lower	Upper
(1, 1)	4.6396189281E01	Same as Real	Same as Real
(1, 2)	8.6916184500E02		
(1, 3)	3.6039163981E02		
(1, 4)	5.8772778565E02		
(1, 5)	9.4693749440E02		
(2, 1)	5. 5609401546E02	gen alle des en	
(2, 2)	8.9089112203E02		
(2, 3)	4.0143081011E02		
(2, 4)	4.2098029158E02		
(2, 5)	6.1093177836E02		
(3, 1)	9.9636585643E02		
(3, 2)	1.6340010236E02		
(3, 3)	4.6658037215E02		
(3, 4)	5.0479887773E02		
(3, 5)	2.0507283101E02		
(4, 1)	2.7500284988E02		
(4, 2)	4.8510492363E02		
(4, 3)	2.4488146363E02		
(4, 4)	4.1884968178E02		
(4, 5)	1.9965179004E02		
(5, 1)	8.7792113349E02		
(5, 2)	2.3254672355E02		
(5, 3)	3.5002222285E00		
(5, 4)	3. 2092384145E02		
(5, 5)	6.4308479314E02	V	V

X - MATRIX

TABLE 2

We will present the real part, and the least significant digits of the lower and upper range numbers of X - INVERSE. The exponents will not be repeated.

Real Part	Lower	Upper
-9.1422040 7281	E-04 854	607
7.419425 71121	E-04 6975	7249
9.3418389 4351	E-05 070	864
-5. 779019 51901	E-05 5709	4688
6.2948717 4981	E-04 477	517
-1.122627 041E	E-03 052	032
1.6441862 954E	C-03 944	965
-1.3201931 162E	C-03 165	159
1.4714936 870E	C-03 865	875
5. 5237176 832E	C-05 . 720	995
1.0620289 855E	2-03 838	873
1.1383145 460E	2-03 437	478
2.3018511 807E	3-03 800	812
-3.6993050 965E	973	956
-2.2307817 966E	966	962
6.4802494 170E	-04 040	338
-3.0018154 973E	-03 990	955
-5.102677 3200E	-05 3669	2679
4.0549999 820E	-03 811	825
6.5487719 463E	-04 433	477
1.3248530 755E	-03 742	766
-1.1561055 861E	-04 968	706
3.6280024 837E	-04 794	865
-2.4566800 524E	-03 531	520
3.6100559 502E	-04 481	523
	-9.1422040 7281 7.419425 7112E 9.3418389 435E -5.779019 5190E 6.2948717 498E -1.122627 041E 1.6441862 954E -1.3201931 162E 1.4714936 870E 5.5237176 832E 1.0620289 855E 1.1383145 460E 2.3018511 807E -3.6993050 965E -2.2307817 966E 6.4802494 170E -3.0018154 973E -5.102677 3200E 4.0549999 820E 6.5487719 463E 1.3248530 755E -1.1561055 861E 3.6280024 837E -2.4566800 524E	-9.1422040 728E-04 854 7.419425 7112E-04 6975 9.3418389 435E-05 070 -5.779019 5190E-05 5709 6.2948717 498E-04 477 -1.122627 041E-03 052 1.6441862 954E-03 944 -1.3201931 162E-03 165 1.4714936 870E-03 865 5.5237176 832E-05 720 1.0620289 855E-03 838 1.1383145 460E-03 437 2.3018511 807E-03 963 -3.6993050 965E-03 973 -2.2307817 966E-03 966 6.4802494 170E-04 040 -3.0018154 973E-03 990 -5.102677 3200E-05 3669 4.0549999 820E-03 811 6.5487719 463E-04 433 1.3248530 755E-03 742 -1.1561055 861E-04 968 3.6280024 837E-04 794 -2.4566800 524E-03 531

X - INVERSE

6. Conclusions.

Range arithmetic is a powerful tool, not only for error estimation in computations of a scientific or engineering nature, but for the evaluation and comparison of alternative numerical algorithms as well. The QRANGE7 package provides the user with a simple means for such analysis. The drawback in the use of QRANGE7, at this point, is that computing time is increased. There are many points where the program could be increased in efficiency, notably in the QlQ04770 and QlQ05770 subroutines for range multiplication and range division. The author feels, however, that even with the increase in computing time, the payoff in the use of range arithmetic is so great that it more than outweighs the disadvantage.

A few function subprograms have been provided for use in conjunction with QRANGE7. They are used exactly as one would use the library subroutines in FORTRAN, except a "7" replaces the "F" at the end of the function name. One must remember to declare these functions

TYPE RANGE7(3) before execution. Much work remains to be done in this area, and it is hoped that, eventually, a complete library of functions will be available for use with QRANGE7.

It might be noted, at this point, that there are errors generated in the conversion of decimal-to-binary and binary-to-decimal numbers during input/output, and these have not been taken into account. The author feels that these errors are negligible compared to the machine generated error occurring during computation.

The results obtained using QRANGE7 indicated that the technique of range arithmetic can, indeed, be used to provide error information at each stage of computation. Unfortunately, the author did not have the time to try it out on some of the more common numerical algorithms, such as the Runge - Kutta method for solving differential equations, or the Newton - Raphson method for determining roots of nth order polynomials. It is hoped that this will be done in the future.

In conclusion, it is felt that range arithmetic is of such value that it warrants inclusion in future modifications of FORTRAN or other algebraic compilers as a standard TYPE.

BIBLIOGRAPHY

- 1. Moore, R. Lockheed Missiles Document, LMSD-48421, 1959.
- 2. Shudde, R. A Computational Pitfall and Automatic Error Analysis,
 Atomics International Applied Mathematics Technical Document
 (AMTD-133), May, 1962.
- 3. Shudde, R. Input / Output for Multi-Word TYPE OTHER, Program Description 15/J5-NPGS-OTHERI/O (FTN-63), U.S. Naval Postgraduate School, April, 1966.
- 4. Collins, G. Interval Arithmetic for Automatic Error Analysis,
 Data Systems Division International Business Machine Corporation,
 Report M & A-5, 1960.
- 5. FORTRAN-63 / Reference Manual, Control Data Corporation, June, 1964.

APPENDIX I

QRANGE7 PROGRAM LISTING [5]

Entry Points:

Q1Q00770, Q1Q01770, Q1Q02770, Q1Q03770,

Q1Q04770, Q1Q05770, Q1Q10770, Q1Q00710,

Q1Q01710, Q1Q02710, Q1Q03710, Q1Q04710,

Q1Q05710, Q1Q10710, Q1Q10170, Q1Q00700,

Q1Q01700, Q1Q02700, Q1Q03700, Q1Q04700,

Q1Q05700, Q1Q10700, Q1Q10070, UNPACK7,

RNGAD7, RNGMU7, RNGDI7, QUIRKL7, QUIRKU7,

REPACK7, ERROR777

ORANGE7 4 ACC(3),B	4 4 M	m m		-	,	٦, ٦	1	1	~ ,	~	7	~ .	- ·		-			٣	m	8	1	1	m	m (7
1DENT BLOCK COMMON	SSS	SS	S	S C	S	n v	S	S	S	S	S	S	n u	2 0	S	SU	S	S	S	S	S	S	S	S	S
RNG78777	⋖ ⊘⊢	₹ Ø	E MP	TEMP2	M M	E W	H H H	CA	OB CB	EΑ	EB	_ :	Σ 2	FM1	Σ	—) U					Ø		AUX.	

		000	0001	0000	0003	4000	9000	9000	0007	0008	0000	0010	0011	0012	Q013	Q014	Q015	0016	0017	9100	200000	0001	9000	0003	4000	9000	9000	0007	0008	000	10	001	200120
		THIS PROGRAM LOADS RANGE	JMULATOR. THE LOWER	5 TO ACC+1,THE U	+2, AND THE REAL	GOES TO ACC.								LOWER	2 TO	LOAD UPPER RANGE NUMBER	2 TO	REAL	REAL TO ACC		S RANGE ACCUMULAT	THE C	E NUMBER.	, WHEN LOWER AND	COMPLEMENTED, THEIR O	IS REVERSED.							LOAD LOWER COMPLEMENT
										ĸ																							
<i>m m</i>	() ()	01000110	*	*	+24	7	*+1	**	A1	+1	A2	+1	A3	*	ACC+1	*	ACC+2	*	ACC	100017	17	*	*	+24	[1	*+1	**	81	+1	82	+1	83	*
855 855		Z . Ш		LDA	ALS	INA	SAU	ENA 7	SAU	INA	SAU	INA	SAU	LDA	STA	LDA	STA	LDA	STA	SLJ	ENTRY		LDA	ALS	INA	SAU	ENA 7	SAU	INA	SAU	INA	SAU	LAC
SAUX	AF		01000770					+						A2		A3		A1				01001770					+						82

200130	200140	200150	200160	200170	200180	300000	300010	300020	300030	300040	300050	300060	300070	300080	300090	300100	300110	300120	300130	300140	300150	300160	300170	300180	300190	300200	300210	300220	300230	300240	300250	300260	300270	300280
STORE IN ACC+2 (NEW UPPER)	JPPER COMPLEMENT	A NI	REAL COMP	A Z I		_	A7(+)B7. A7 I	RANGE ACCUMULATOR.										A	SINB	7 LOWE	UNPACKS BOTH LOWER RANGE	NUMBERS ADDS THEM	TRUNCATES UNPACKED RESULT, AND	RESULT	TORE	+5 (1 00	9	S A7 UP		D RENO	ESULT	IN ACC	LOADS A7 REAL
ACC+2	*	ACC+1	*	ACC	01001770	01002770	*	*	+24	1		** ~	ū	+1	C2	+1	<u>G</u> 3	ACC+1	&	*	UNPACK7	RNGAD7	QUIRKL7	REPACK7	ACC+1	ACC+2	മ	*	UNPACK7	RNGAD7	QUIRKU7	REPACK7	ACC+2	ACC
STA	LAC	STA	LAC	STA	SLJ	ENTRY	0 SLJ	LDA	ALS	INA	SAU	ENA	SAL	INA	SAU	INA	SAU	LDA	STA	LDA	RTJ	RTJ	RTJ	RTJ	STA	LDA	STA	LDA	RTJ	RTJ	RTJ	RTJ	STA	LDA
	B3		81				0100277					+								C2		+	+	+	+			C3		+	+	+	+	U

029	300300	000	400010	400030	400040	400050	400060	400070	400090	400100	400110	400120	400130	400140	400150	400160	400170	400180	400190	400 200	400210	400220	400230	400240	400250	400260	400270	28	29	30	400310
FLOATING ADDS B7 REAL	RESULT IN	RANGE (I.E. A7(-)B7. A7 IN RANGE									LOAD A7 UPPER	IN 09	COMPLEMENT OF B7 LOWER	UNPACK, ADD, ROUND, RENORMALIZE	RESULT			$\stackrel{\circ}{\vdash}$	7 LO		7 UPPER	M RANGE A				Z	17 REAL	10	10	
* *	ACC 01002770	01003770	* *	+24		**	** ~	+ 01	02	+1	D3	ACC+2	œ	**	UNPACK7	RNGAD7 .	QUIRKU7	REPACK7	ACC+2	ACC+1	മ	*	UNPACK7	RNGAD7	QUIRKL7	REPACK7	ACC+1	ACC	*	ACC	01/20010
FAD	STA	ENTRY	770 SLJ	ALS	INA	SAU		SAL	SAU	INA	SAU	LDA	STA	LAC	RTJ	RŢĴ	RTJ	RTJ	STA	LDA	STA	LAC	RTJ	RTJ	RTJ	RTJ	STA	LDA	FSB	STA	SLJ
			01003770				+							D2	+	+	+	+	+			03	+	+	+	+	+	01			

500000 50000000 50000000 50000000 50000000 50000000 50000000 500000000	609 003
ROUTINE FOR RANGE (*) RANGE. I.E. A7*B7. A7 IN RANGE ACC. CALCULATES ALL POSSIBLE PRODUCTS USING REAL ARITHMETIC A7 LOWER(*)B7 LOWER. STORE IN A+1 A7 LOWER(*)B7 UPPER STORE IN A+2 A7 UPPER(*)B7 UPPER STORE IN A+3 THIS PORTION OF ROUTINE SEARCHES FOR THE MAXIMUM OF THE FOUR PRODUCTS	
0	
A + 2 A + 2 A + 3 A + 4	
ENTRY SENT SENT SENT SENT SENT SENT SENT SENT	AJP 2 LDA
621 E31 E32	

500350	500360	500370	500380	500390	500400	500410	500420	500430	500440	500450	500460	500470	500480	500490	500500	500510	500520	500530	50054	500550	50056	500570	50058	500590	20060	500610	50062	500630	50064	500650	50066	500670	50068	200690
																		MAX IN A				MAX IN A+1				MAX IN A+2				MAX IN A+3				RECALCULATE MAX PRODUCT USING
A+3	2 RMAX3	RMAX4	4	٩	2 ETST2	A+2	۹	2 · RMAX3	RMAX4	⋖	A+3	2 RMAX1	RMAX4	A+1	A+3	2 RMAX2	RMAX4	ACC+1	മ	EM1	Σ	ACC+2	മ	EM1.	Σ	ACC+1	മ	EM2	Σ	ACC+2		EM2	Σ	UNPACK7
FSB	AJP	SLJ	LDA	FSB	AJP	LDA	FSB	AJP	SLJ	LDA	FSB	AJP	SLJ	LDA	FSB	AJP	SL.J	LDA	STA	LDA	SLJ	LDA	STA	LDA	SLJ	LDA	STA	LDA	SLJ	LDA	STA	LDA	SLJ	RTJ
			ETST1							ETST2				ETST3				RMAX1				RMAX2				RMAX3				RMAX4				Σ

500700	500720	500740	590750	500760	590770	500780	500790	500800	500810	500820	500830	500840	590850	500860	500870	500880	590890	500900	500910	500920	500930	500940	500950	590960	500970	500980	500990	501000	59101	501020	501030	501040
: ARITHMETIC		IN MTEMPU	MIN PRODUCT																									• V ZI				IN A+1
RANGE		STORE	FIND											,														NIW				MIN
RNGMU7	REPACK 7	MTEMPU	⋖	A+1		A+1	A+2	3 EMST3	A+2	A+3		RMINA	4	A+2	3 EMST2	A+2		3 RMIN3	RMIN4	⋖		3 RMINI	RMIN4	A+1	A+3	3 RMIN2	RMIN4	ACC+1	മ	EM1	Σ	ACC+2
) 	אבר אבר	TA	DA	SB	JP 3	DA.	.SB		DA.	SB	JP 3	ירט	. DA	SB		DA.			נרו	DA.			נונ	.DA	.53		נונ	.DA	STA	DA.	בו	-DA
+ -	z 02	+		u.	•		L.	A	_	ш.	4	0)	EMST1 L		7	_		٩		EMST2 L	a .	4	0)	EMST3 L	4	7	0)	RMIN1 L	O)	_		RMIN2 L

501000 501000 501000 501000 501000 501000 5011100 5011100 5011100 5011100 6000000 6000000 6000000 6000000 60000000 60000000 60000000 60000000 60000000 60000000 60000000 600000000	Q0 1
MIN IN A+3 MIN IN A+3 RECALCULATE MIN PRODUCT USING RANGE ARITHMETIC STORE IN ACC+1 LOAD MTEMPU STORE IN ACC+2 CALCULATE REAL PRODUCT STORE IN ACC ROUTINE FOR RANGE(/)RANGE, I.E. A7/B7. A7 IN RANGE ACC	
B	F22
STA STA SLDA SLDA SLDA STA STA STA STA STA STA STA ST	SAL
RM IN 3 RE + + + + + + + + + + + + + + + + + + +	

600140 600150 600150 600170 600170 600220 600220 600220 600220 600230 600320 600330 600330 600340 600330 600340 600340 600340 600340 600440 600440	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
TESTS TO SEE IF DIVISOR BRACKETS ZERO, IF SO ERROR777 IS CALLED AND DIAGNOSTIC IS PRINTED. IF NOT, ROUTINE IS EXECUTED A7 LOWER(/)B7 LOWER IN A+1 A7 UPPER(/)B7 UPPER IN A+2 A7 UPPER(/)B7 UPPER IN A+3 SEARCH FOR MAXIMUM QUOTIENT	
+1 FTESTHI FSTORE F32 *** STORE F32 *** STORE F32 *** POKAY PORAY PA1 DIO05770 *** ACC+1 ACC+2 ACC+2 ACC+2 ACC+2 ACC+1 ACC+2 ACC+1 ACC+2 ACC+1 ACC+2 ACC+1 ACC+2 ACC+3 ACC+2 ACC+2 ACC+2 ACC+2 ACC+2 ACC+2 ACC+2 ACC+2 ACC+2 ACC+2 ACC+2 ACC+2 ACC+2 ACC+2 ACC+2 ACC+3 ACC+2 ACC+2 ACC+2 ACC+2 ACC+3 ACC+2 ACC+3 ACC+2 ACC+3 ACC+2 ACC+3 A	-
SSAU TO SAU TO S	5
FTESTLO FTESTHI FERROR F21 F21 F31 F32	

600490	600510	600520	600530	600540	600550	600560	600570	600580	600590	009009	600610	600620	600630	0009009	600650	099059	600670	600680	69009	002 009	600710	600720	6,00,00	600740	600750	600760	60077	600780	600790	600800	60081	600820	600840
																		MAX IN A				MAX IN A+1				MAX IN A+2				MAX IN A+3			RECOMPUTE MAX QUOTIENT USING
A+2 A+3	2 F	L.		A+	2	+ \(\tau \)	A	2	u.	A	4	2 म	u.	A	A	2		u.		⋖		u.		4		ш.	ш	٩		u.	a	∢ :	
LDA	AJP	SLJ	LDA	FSB	AJP	LDA	FSB	AJP	SLJ	LDA	FSB	AJP	SLJ	LDA	FSB	AJP	SLJ	LDA	STA	LDA	SLJ	LDA	STA	LDA	SLJ	LDA	STA	LDA	SLJ	LDA	STA	LDA	RTJ
			FTST1							FTST2				FTST3				FMAX1				FMAX2				FWAX3				FMAX4			MAXR

600850	600890	600900 600910	6	600930	076009	600950	096009	026009	600980	066009	601000	601010	601020	601030	601040	601050	601060	601070	601080	601090	601100	601110	601120	601130	601140	601150	60116	601170	0118	601190
IZED RANGE ARITHMETIC	-	Z Z E												۲																
UN-NORMALIZED	STORE QUO	SEARCH FOR																								MIN IN A				MIN IN A+
RNGDI7 QUIRKU7 REDACK7	DIEMPU	A A+1	MFTST1	A+1	A+2	MFTST3	A+2	A+3	FMIN3	PAIN4	4	A+2	MFTST2	A+2	A+3	FMIN3	FMIN4	A	A+3	FMINI	FMIN4	A+1	A+3	FMIN2	FMIN4	FM1	മ	ACC+1	MINR	FM.
			М			m			m				m			m				m				m						
R R R	STA	FSB	AJP	LDA	FSB	AJP	LDA	FSB	AJP	SLJ	LDA	FSB	AJP	LDA	FSB	AJP	SLJ	LDA	FSB	AJP	SLJ	LDA	FSB	AJP	SLJ	LDA	STA	LDA	SLJ	LDA
+ + +	+										MFTST1							MFTST2				MFTST3				FMINI				FMIN2

0120	0123 0123 0124	000	00000	0136	0137 0137 0138	Q139 Q140 E000	0002 0003 0004 0006	160070 160080 160090 160100 160120
	MIN IN A+2	MIN IN A+3	RECOMPUTE MIN QUOTIENT USING UN-NORMALIZED RANGE ARITHMETIC	QUOTIENT LOWER IN ACCE	SIONE WOULTEN! OPPER IN ACC+2 CALCULATE REAL QUOTIENT	STORE IN ACC		
B ACC+2	Σ LL ω «	MINR BMS BMS	ACC+2 UNPACK7 RNGD17 QUIRKL7	$\mathbf{Z} + \mathbf{I}$	+	ACC Q1Q05770 ERROR777	7 * * T C C C C C C C C C C C C C C C C C	+1 H2 H3 H2+1 +2+1
STA	SLU LDA STA		R R R L L L L L L L L L L L L L L L L L	2 K Q 1			•	INA INA INA LDA SAL ALS
	NIMI	FMIN4	Σ + + ±	+ +	FPACKUP	<	FORMAT ERROR7	9

```
1E0230
                                                                                 1E0260
1E0270
                                                                                                1E0280
1E029
1E0300
                                                                                                                     1E0310
1E0320
                                                                                                                                    1E0330
1E0340
1E0350
1E036
E0150
              LE0170
                      1E0180
                             E0190
                                            LE0210
                                                                          LE0250
                                                                                                                                                                          1E0380
                                                                                                                                                                                 70000
                                                                                                                                                                                                        700030
                                                                                                                                                                                                                700040
                                                                                                                                                                                                                       700050
                                                                                                                                                                                                                               700060
                                                                                                                                                                                                                                      700070
                                     .E0200
                                                                                                                                                                                         700010
                                                                                                                                                                                                                                              700080
                                                                                                                                                                                                                                                     06000
                                                                                                                                                                                                 70007
                                                    E022
                                                                                                                                                                                 ROUTINE TO STORE RANGE ACC.
                                                                                                                                     5(20HOERROR IN RANGE7(3) , A8, 28H ROUTINE.
                                                                                                                                             5 EXECUTION DELETED.//12H ARGUMENT =
                                                                                                                                                    5 .10//22H CALLED FROM LOCATION 05)
                                                                                                                                                                                 01010770
                                                                                                                       Q80ENGOT
                      ... ADD...
                                             Q8QINGOT
                                                                                                               ... ADD...
                                                           GBGGOTTY
                                                                                                                              FORMAT.
                                     ..2000
                                                                                                                                                                   ERROR*
                              +51
                                                                                                                                                                                                                               /
                                                                                                                                                           ORGR
CALL
SLJ
ENTRY
                                                                                                                             ORGR
                                                                                                                       CALL
                                                            CALL
                             ENA
ENO
CALL
                                                                                                                                     BCD
                                                                                                                                             BCD
                                                                                                                                                    800
                                                                                                                                                                                         SLJ
                                                                                                                                                                                                                SAL
SAL
SAL
SAL
      ALSINA
                      SAL
                                                                                                                                                                                                 LDA
                                                                                                                                                                                                        ALS
                                                                                                                                                                                         01010770
                                                                                                                                      ..2000
                                                                                                                       99
```

$\overline{}$	700110	700120	$\overline{}$	-	100100	700120	700180			80002	800030	800040	800050	800060	800070	80008	800090	800100	800110	80012	80013	800140	800150	800160	8001.70	800180	800190	800200	800210	800220	900000	900010 900020
		STORE RANGE LOWER (ACC+1)		STORE RANGE UPPER (ACC+2)	- 4 L	STORE REAL PART (ACC)		ROLLTINE TO LOAD REAL INTO	ATOM TOP									LOAD REAL	111				UN-NORMALIZE ADD ZERO,USING				STORE IN ACC+2	LOAD REAL	STORE IN ACC.			ROUTINE TO LOAD REAL COMPLEMENT INTO RANGE ACCUMULATOR
+1	63	ACC+1	* *	ACC+2	(k (, A	**	0100010) H -)) j + k	¢ *	+24	1	*+1	** _	AA1	AA2	AA3	* *	ACC+1	0	a	* *	UNPACK7	RNGAD 7	QUIRKU7	REPACK7	ACC+2	*	ACC	01000710	01001710	* * *
INA	SAL	LDA	STA	LDA	X - 0 -	LUA	₹ - 0 - 0	υ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ	֝֞֞֞֞֓֞֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		ALS	INA	SAU	ENA	SAU	SAU	SAU	LDA	STA	ENA	STA	LDA	RTJ	RTJ	RTJ	RTJ	STA	LDA	STA		ENTRY	0 SLJ LDA
		62		63		61			01700010	1100010				+				AA2				AA3		+	+	+	+	AA1		,		01001710

900035 900035 900040 900050 900060	900080 900080 900100 900110	1000030 1000030	1000050 1000060 1000070	1000080	1000110 1000120 1000130 1000140	1100010 1100020 1100030 1100040	1100060 1100070 1100080 1100090
LOAD REAL COMPLEMENT	STORF TEMPORARILY IN C CALL ROUTINE TO LOAD C INTO RANGE ACCUMULATOR	ROUTINE FOR RANGE(+)REAL RANGE NUMBER IS IN RANGE ACCUMULATOR		STORE RANGE ACCUMULATOR IN AS	UT IN RA ALL ROUT DD• RES CCUMULAT	ROUTINE FOR RANGE(-)REAL RANGE NUMBER IS IN RANGE ACCUMULATOR	STORE RANGE NUMBER IN A.
1 1 t * + * + 1 5 * * * * 1 +	C Q1Q00710 C Q1Q01710 Q1Q02710		+ x +	01010770 AS			*** *+2 Q1Q10770 A•
-	> 2		7		≻		7
ALS INA SAU ENA SAU	S T S S S S S S S S S S S S S S S S S S	O SLJ LDA ALS INA	SAU ENA SAL	RTJ 0	RA CONTRACTOR	O SLU LDA ALS INA SAU	SAR
+		01002710	+	+ 4		31203710	+ +

1100100 1100110 1100110 1100110 1200120 1200000 1200000 1200000 1200000 1200000 1200000 120010 120010 120010 120010 13000 13000	30012 30013 30014 30015
LOAD REAL COMPLEMENT INTO RANGE ACCUMULATOR ADD THE TWO RANGE NUMBERS RESULT IS IN RANGE ACCUMULATOR ROUTINE FOR RANGE (*) REAL LOAD REAL INTO RANGE ACCUMULATOR MULTIPLY RANGE NUMBERS REAULT IN RANGE ACCUMULATOR ROUTINE FOR RANGE (/) REAL LOAD REAL INTO RANGE ACCUMULATOR ACCUMULATOR	STORE RANGE ACCUMULATOR INTO SA LOAD RANGE ACCUMULATOR FROM Q.
Q1Q01710 ** Q1Q02770 A• Q1Q02770 A1Q002710 Q1Q004710 A5• Q1Q00470 A5• Q1Q04770 A5• Q1Q04770 A5• Q1Q04770 A5• Q1Q04770 A5• Q1Q04770 A5• Q1Q00710 ** **	
+ RTJ 0 RTJ 0 SLJ SLJ ENTRY 01004710 SLJ 1NA SALJ ENTRY 01005710 SLJ ENTRY 01005710 SLJ ENTRY ALS INA SAU + ENA SAU + ENA SAU + ENA SAU + RTJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RTJ O RTJ

1300160 1300170 1300180 1400000 1400002 14000050 14000050	1400080 1400080 1500000 1500010 1500020 1580020 1580040	1580060 1580060 1580060 15800000 1580110 1580120 1580120 1500160 1500180 1500190
RANGE DIVIDE BY RANGE NUMBER IN SA RESULT IN RANGE ACCUMULATOR STORE RANGE INTO REAL	LOAD ACC(REAL PART OF RANGE NO.) STORE ACC STORE REAL INTO RANGE STORE REAL INTO ACC STORE REAL INTO ACC STORE REAL INTO ACC+1 PUT ZERO IN A-REGISTER STORE IN B	LOAD ACC UN-NORMALIZED ADD ZERO TO ACC CONSIDERING IT TO BE ADDITION OF UPPER RANGE NUMBERS STORE IN ACC+2
01005770 SA 01005710 01010710 ** +24 -1 *+1	ACC ** Q1Q10710 Q1Q10170 ** ACC ACC	ACC UNPACK7 RNGAD7 QUIRKU7 REPACK7 ACC+2 Q1Q10170 +24 -1 *+1 Q1Q10170 Q1Q10170 Q1Q10170
	LDA STA SLJ FNTRY 1010170 SLJ STA STA STA STA	ENT SEND SEND SEND SEND SEND SEND SEND SEND

	1600010	6000	60004	1600050	1600060	1600070	1600080	1600090	1600100	1600110	1700000	1700010	1 / 40020	1700030	1700040	1700050	1700060	1700070	1700080	1700090	1700100	1700110	1800000	1800010	180002	1800030	1800040	1800050	1800060	1800070	1800080	1800090	1800100	1800110	1800120	1800130
	LOAD INTEGER INTO RANGE				LOAD INTEGER	10	IV	CALL ROUTINE TO LOAD A(REAL)	INTO RANGE			LOAD INTEGER COMPLEMENT INTO	KANGE			,	田田	TO RE	I I A	LOAD REAL TO RANGE				ROUTINE FOR RANGE (+) INTEGER							STORE RANGE ACCUMULATOR	~	LOAD INTEGER TO RANGE	HE RANGE NUMBER		
	* * >	+24	-	*+1		FLOATF	ΔI	01000710		01000700	001	* *	*	+24	ï	*+1	* *	_	ΙΑ	01000710		\circ	005	*	*	+24	1	*+1		*+2	01010770	AUX	01000700	*	01002770	AUX
•	Q1Q00700 SLJ	A L S	INA	SAU	+ LDA 7	CALL	+ STA	+ RTJ	0	SLJ	ENTRY	Q1Q01700 SLJ	LDA	ALS	INA	SAU	+ LAC 7	CALL	+ STA	+ RTJ	0	SLJ	ENTRY	Q1Q02700 SLJ	LDA	ALS	AZI	SAU	+ ENA 7	SAL	+ RTJ	0	+ RTJ	0	RTJ	0

1800140 1900000 1900000 1900000 1900000 1900000 1900000 1900100 1900100 1900100 2000000 2000000 2000000 2000000 2000000	2100000 2100000 2100010 210002 2100030
STORE RANGE ACCUMULATOR IN AUX. LOAD INTEGER COMPLEMENT TO RANGE ADD RANGE NUMBERS ROUTINE FOR RANGE(*)INTEGER IN SAUX LOAD INTEGER TO RANGE MULTIPLY RANGE NUMBERS	ROUTINE FOR RANGE(/)INTEGER
Q1Q02700 Q1Q02700 Q1Q03700 AUX************************************	01004700 01005700 ** +24
SLJ ENTRY G1G03700 SLJ + ALS INA SAU + RTJ + ENA ALS INA SAU + ENA SAU + ENA SAU + RTJ + RTJ 0 0 1004700 SLJ 1NA SAU + RTJ 0 0 1 0 0 0 0	SLJ ENTRY 01005700 SLJ LDA ALS

1000 1000 1000 1000	1001	1001 1001 1001 2000	2000 2000 2000 2000	2000 2000 2000 2000 2000 2000	2300000 2300010 2300020 2300040 2300040 2300050 2300050
NGE ACCU		E RANGE BY RANGE N	STORE RANGE INTO INTEGER .	LOAD ACC (REAL PART) CONVERT TO INTEGER STORE INTEGER	STORE INTEGER INTO RANGE CONVERT INTEGER TO REAL STORE IN AF
-1 *+1 *+2 @1@10770 @AUX	Q1Q00700 ** Q1Q10770 SAUX• Q1Q00770	MAUX Q1Q05770 SAUX• Q1Q05700 Q1Q10700	* - 1 7 * * - 1 * *	* + U H * H	Q1Q10070 ** FLOATF AF *-1 +24 -1
+ ENA SAL SAL SAL SAL SAL	+ 0 RTJ RTJ		QIQ10700 SLJ LDA ALS INA SAU	+ ENA 7 SAU LDA CALL STA SLJ	ENTRY Q1Q10070 SLJ CALL STA LDA ALS INA SAU

2300080 2300090 2300100 2300110 2300120

LOAD AF STORE REAL INTO RANGE

ENA SAL LDA RTJ 0 SLJ

Q1Q10170 ** 01010070

10000000000000000000000000000000000000
UNPACKS TWO FLOATING POINT NUMBERS, A AND B UNPACK A COEF OF A IN CA EXPONENT OF A IN EA UNPACK B COEF OF B IN CB
UNPACK7 ** 1
ENTRY SSIU SSIU SSIU SSIU SSIU SSIU SSIU SSI
UNPACK7 T3 T4 T10 T12 T13

		EXPONENT OF B IN EB			EXPONENT OF B IN EB	PUT UNPACKED NUMBERS IN	NON-COMPLEMENTARY FORM									equir .									
S	= 18 = 00000	EB	T19	=01777	EB	0	TEMPO	0	TEMPO	T20	=02	T22		T21	CB	CB	T22	CB		CA	CA	*	**	UNPACK7	
LDQ	9.18 8.18	STA	SLJ	SUB	STA	ENA 1	STA	ENA 2	ADD	AJP 0.	SUB	AJP 0	ENA 1		LOC	STQ	SLJ	LOC	STQ	LQC	STQ	ENI 1	ENI 2	SLJ	,
				118		119		_										120		121		T22		T23	

1UN0350 1UN0360 1UN0370

1UN034

1UN0390

1UN0380

1UN0410 1UN0420 1UN043

1UN0440

1UN0520 1UN0530 1UN0530 1UN0540 1UN0570

1UN0450 1UN0460 1UN0470

1UN048

1UN0610 1UN0620 1UN0630

1UN0631

1UN0632

FLOW CHART FOR RNGAD 7

1AD0000 1AD0010 1AD0020 1AD0030	1AD0040 1AD0050 1AD0060 1AD0070 1AD0080	1AD010 1AD0110 1AD0120 1AD0130 1AD0140 1AD0150	1AD0170 1AD018 1AD0190 1AD0200 1AD0210
ADDS TWO UNPACKED NUMBERS SEARCH FOR LARGER EXPONENT	EB LARGER STORE EB IN EL STORE EXPONENT DIFFERENCE IN A12 UPPER STORE CB IN S	GO TO A12 EA LARGER STORE EA IN EL EXP DIFFERENCE IN A12 UPPER	LOAD CB SHIFT A-RIGHT THE DIFFERENCE IN EXP, AND ADD COEFFICIENTS
RNGAD7 ** EA EB	, EL A A I 2	S CA A12 EL A12	CA S CB * * * S RNGAD 7
ENTRY SLJ LDA THS	STA STA SAU LDA	SLA SLJ STA SVB	LDA LDA LRS ADD SLJ
RNGAD7	d 0	8 2	A12

FLOW CHART FOR RNSMU 7

1M0000 1M0010 1M0020	1M0030 1M0040	1M0060	1M0080 1M0090	1M0100 1M0110	1M0120
UN-NORMALIZED MULTIPLY	SUM OF EXPONENTS IN EL	SHIFT CA LEFT 11	SHIFT CB LEFT 11	MULTIPLY COEF FRACTIONALLY SHIFT A-RIGHT 11	
	EB S				
ENTRY SLJ LDA	ADD STA	ALS STA	LDA ALS	MUF	SLJ
RNGMU7					

in the my ..

FLOW CHART FOR RNGDI 7

100000 100010 100020 100030	100040 100050 100060 100070	100080 10009 10010 100110 100120
UN-NORMALIZED DIVISION	DIFFERENCE OF EXP +1 IN EL	SHIFT CA AND CB EACH RIGHT BY 11 DIVIDE FRACTIONAL CA BY CB
RNGD17 ** EA EB +1	EL CB CB	CA 0 1 CB 11 RNGD17
ENTRY SLJ LDA SUB INA	STA LDA ALS STA	LDA LLS DVF SLJ
RNGD17		

FLOW CHART FOR QUIRKL 7

1010000	100010	100001	1010002	1QL0020	100000	1010040	1010050	1910060	10/0070	1QL0080	1910090	1010100	1010105	1010110	10/012	1010130	1910140	1910150	1910160	1910170
	ROUTINE TO TRUNCATE AND	NORMALIZE LOWER RANGE NUMBER		IF A-REGISTER IS NEGATIVE,	COMPLEMENT ACCUMULATOR.						SHIFT AQ-REGISTER LEFT UNTIL	MOST SIGNIFICANT BIT IS TO	RIGHT OF SIGN BIT. THEN SHIFT	AQ RIGHT BY 11. AND STORE.			ADJUST EL DUE TO SHIFT, THAT	IS, NORMALIZE EXPONENT		
QUIRKL7	*	QL3	R7	0L1	0	TEMP4	TEMP4	OL2	-	47	47	11	TEMP2	-47	0	11	EL	EL .	*	QUIRKL7
		4	'n	7	ഹ				rv	4	4			4	4				4	
ENTRY	SLJ	SIU	SIU	AJP	ENI	STA	LAC	SLJ	ENI	ENI	SCO	LRS	STA	INI	ENA	INA	ADD	STA	ENI	SLJ
	QUIRKL7									012									913	

FLOW CHART FOR QUIRKU 7

100000	100001	1000020	1900030	1000040	1000050	1000060	1000070	1000080	1000090	1000100	1000110	1000120	10001	1900140	1000150	1000160	1000170
	ROUTINE TO ROUND AND NORMALIZE	UPPER RANGE NUMBER.	CALL ROUTINE FOR NORMALIZING	LOWER RANGE NUMBERS, AND LOAD	A-REG. WITH COEF. IF Q-REG IS	ZERO, GO TO QUI. IF NOT, ADD 1	TO COEF.	IF OVERFLOW INTO 37TH BIT,	SHIFT AQ RIGHT BY ONE, AND STORE,	THEN INCREASE EL BY ONE.	OTHERWISE, STORE A-REQ IN TEMP2.						
QU IRKU7	**	QU IRKL7	TEMP2	0 001	=01	=0100000000000000	BIT	BIT	0 001	-	TEMP2 .	EL		EL	902	TEMP2	QUIRKU7
ENTRY	SLJ	RTJ	LDA	QUP	ADD	LDQ	STL	LDQ	QJP	LRS	STA	LDA	ADD	STA	SLJ	STA	SLJ
	QUIRKU7		+													QU1 .	

FLOW CHART FOR REPACK 7

1RE0000	1RE0010	1RE0020	1RE0030	1RE0040	1RE0050	1RE0060	1RE0070	1RE0080	1RE0090	1RE0100	1RE0110	1RE0120	1RE0130	1RE0140	1RE0150	1RE0160	1RE0170	1RE0180
	EPACKS RESULT OF RANGE		OAD EL AND JUMP TO RI IF POS.		EXPONENT AND JUMP TO R2	POS	ERO IN Q-REGISTER, AND SHIFT	Q-LEFT 36 TO PUT EXP IN PROPER	LACE.	ADD COEFFICIENT AND STORE	UT NUMBER IN NON-COMPLEMENTARY	ORM						

REPACK7 SLJ **
LDA EL
AJP 2 R1
ADD =01777
SLJ R2
LLS ADD +0
LLS 36
ADD TEMP2
STA TEMP2
STA TEMP2
STA TEMP2
SLJ R4
LAC TEMP2
SLJ R4
LAC TEMP2
SLJ R4
LDA TEMP2
SLJ R4
LDA SLJ R7
ENI 5 **
END

APPENDIX II

SUBROUTINES FOR USE WITH QRANGE7 [5]

- 1. ABS7
- 2. SQRT7
- 3. INT7
- 4. Q0Q06700
- 5. Q2Q07770

																										1					2
ABS70000 ABS70010 ABS70060	BS 700	85700	BS 700	85700	65701 85701	BS701	BS701	BS701	BS 701	BS701	BS 701	BS701	BS702	BS702	BS702	85702 85702	BS 702	BS702	BS702	BS702	2015a	80778	BS703	BS703	BS 703	BS703	BS703	BS703	85 / 03	BS 7400	BS704
ROUTINE FOR ABSOLUTE VALUE OF A WHERE A IS A RANGE NUMBER										(2) • LT • ZER	A(2) • GT • ZERO				100 × 100 × 100 ×	T ABOL (AIS) IN ACC+	(3) • GT• ZER	3)			A(2) 1L1) 2ERU •L1• A(3)										
ABS7 ABS7 4.		ABS/ +24	*+2	+1	-	+24		K X I →	k +-	NEG	ACC+1	+2	1 1	EXIT	~ 1	+2	Pos	-077777777777777770=	ACC+1	 -	メトト + 4 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7		ACC+1	EXIT	ACC+2	*-2	0;	* .	*+1 -0	ACC	, , *
F > X 0									→			~					5 -										-				
I DENT ENTRY BLOCK	SLJ	ALS	SAU	AN O	LDA	ALS	SAU	SIL	LDA	AJP	STA	LDA	STA	SLJ	SCA	7 C	AUP	SCM	STA	SLJ	n -	FN	STA	SLJ	STA	SLJ	LDA	л <u>с</u>	A C	S T A	SLJ
RNG75777	ABS7			+	+		+		ŀ	•				ı	л Б						202	+		+	+	1	EXIT		+	+	

۵		. 0 0	~	HX +1	
RT7 RT7 C(3),	2 1 1 1	RIERR 00077 01077 CC	TACC+1 EXIT SQRTERR TACC GO	EXPONCH 1 17778 17778 ADJUSTE 1 B	ERAS ERAS ERAS ERAS1
SORT SORT * * * * * * * * * * * * * * * * * * *	* + * W + * O + +	0 0 * 0 F	EX SQ TA GO	EX 11 14 17	ER A E
77			H Z N		
IDENT ENTRY BLOCK COMMON BSS SLJ LDA ALS	SAU SAL LDA ALS SAL	SAL CALL O CALL	SIU AJP AJP	INA INA INA ENA ENA	STQ LDA FAD STA
RNG7S777 TACC SQRT7					
R A A S OF	+	+		+ ,	,

SQRT0180 SQRT0190

SQRT0200

SQRT0210 SQRT0220 SQRT0225 SQRT0230

SQRT0160 SQRT0170

SQRT0150

SQRT0130

SQRT0140

SQRT0010 SQRT0020

SQRTODOO

SQRT0040 SQRT0050

SQRT0060

SQRT0070 SQRT0090 SQRT0090

SQRT0100

SQRT0110 SQRT0120

SQRT0030

SQRT0260 SQRT0270

SQRT0280 SQRT0290 SQRT0310

SQRT0320 SQRT0330

SQRT0300

SQRT0235 SQRT0240

SQRT0250

SQRT0580 SQRT0590 SQRT0440 SQRT0450 SQRT0340 SQRT0360 SQRT0350 SQR T0370 SQRT0390 SQRT0520 SQR T0550 SQRT0620 SQRT0630 SQR T0640 SQRT0650 SQRT0660 SQRT0670 SQRT0380 SQR T0400 SQRT0410 SQRT0420 SQRT0430 SQR T0460 SQRT0470 SQRT0480 SQRT0490 SQRT0500 SQRT0510 SQRT0530 SQRT0540 SQRT0560 SQRT0570 SQRT0600 SQR T0610 SQRT0680 SQRT0690 ADJUSTEX+1 **ADJUSTEX** EXPONCHK **2UIRKU7** UNPACK7 RNGAD7 ERAS ERAS+1 **ERAS1 ERAS1** ERAS **ERAS1** ERAS **ERAS**1 ERAS1 **ERAS**1 ERAS ERAS DIV2 LDA STA STA CAL CALL CALL LRS STQ INA LRS SAU FAD LRS AN ENA STA LDA FDV FAD SUB LDA FDV LRS RTJ STA LDA ENI

74

LOOP

SQRT0770 SQRT0840 SQRT0850 SQRT0870 SQRT0880 SQRT1030 SQRT1040 SQRT0940 SQRT0950 SQRT0720 SQR T0710 SQRT0820 SQR TO 730 SQRT0740 SQR T0 750 SQRT0760 SQRT0790 SQRT0880 SQRT0810 SQRT0830 SQRT0860 SQRT0890 SQRT0900 SQRT0910 SQRT0980 SQR T0990 SQRT1000 SQRT1005 SQRT1010 SQR T1020 SQRT0920 SQRT0930 SQR T0960 SQR T0970

01002770 01010770 01005770 01002770 01010770 01000170 01005770 01002770 01005770 21002770 0100010 0100010 ERAS+2 ERAS1 **ERAS1 ERAS1 ERAS1** ERAS ERAS ACC+2 ERAS **ERAS1** CALL STA STA LDA SUB STA CALL CALL SUB LDA

ACC+1 36 ADJUSTEX TACC+1 LOOP Q1Q00770) (* * - * *	* * * * * * * * * * * * * * * * * * *	NORM 1777B 36 ADJUSTEX		SQRT7 ** 1 SQRT7	53 3 1000000000000	2002613436725763 2 2613436725760 2 2613436725764 5773356313766036 5773356313766033	
LDA 1 LRS RTJ STA 1 IJP 1	ENI 1	SLJ INA INA	AJP Z INA LLS		0 0 0 0 0 0	BSS OCT	000	END
GOE	EXIT	ADJUSTEX	+	NORM	; ; ; ; ;	ERAS ERAS1 DIV2	Z V	

SQRT1170 SQRT1180 SQRT1190 SQRT1210 SQRT1220 SQRT1220

SQRT1140 SQRT1150 SQRT1160 SORT1240 SORT1250 SORT1260

SORT1270 SORT1280 SORT1290 SORT1300

SQRT1310 SQRT1320 SQRT1330

SQRT1340

SQRT1350 SQRT1360 SQRT1370 SQRT1380

SQRT1050 SQRT1060 SQRT1070 SQRT1090 SQRT11100 SQRT11110 SQRT11120

70010 70020 70030	004	000 007	008	000	010	011	012	013	014	015	016	017	018	019	020	021	022	023	024	025	026
	ZZ	ZZ	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z

TRUNCATE RANGE7 NUMBER AND RETURN AS A RANGE7 NUMBER

-	INT7	7	ACC(3),8	*		*-1			EXIT			INTR	\cup		INTF	U				U		*	**	
DEN	Z	707	MWO		IU	IΩ	IU	Z	IL	10	DA	ALL	\vdash	Iz	CALL	\vdash	Z.	DA	⋖	\vdash	0	Z		Z
		RNG75777		INT7									+			+		•		+		EXIT		

			COMPLEMENT RANGE ACCUMULATOR											
QQQ6700 4	ACC(3),B	4	000000	**	ACC+2	0+3	ACC+1	ACC+2	0+3	ACC+1	ACC	ACC	0000000	
IDENT RNG7S777 BLOCK	COMMON	S S S S S S S S S S S S S S S S S S S	ENTRY	Q1Q06700 SLJ	LDA	STA	LAC	STA	L'AC	STA	LAC	STA	SLJ	END

Q3000030 Q3000040 Q3000050 Q3000070 Q3000080

02770000 02770010 02770030 02770040 02770060 02770060 02770080 02770100 02770110 02770120	277015 277015 277015 277016 277019 277020 277020	277023 277024 277025 277025 277027 277028 277029	277032 277033 277033 277034 277035
ROUTINE FOR X**I, WHERE X IS RANGE AND I IS INTEGER	ADDRESS OF I	PUT I IN Q-REGISTER ERROR EXIT IF I IS NEGATIVE AND ZERO IS IN RANGE OF X.	NOTE. 0**0 IS EQUAL TO ONE
02007770 02007770 4 ACC(3)*R 1. 1. 1. 3	+ + 24 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		1 A O O E . X
IDENT ENTRY BLOCK COMMON DEC DEC BSS BSS BSS SLJ SIU I	LUDA ALS INA INA INA SAU SAU SAU A	SAL CALL O DO D J P P P L L D A J P P P P P P P P P P P P P P P P P P	
SNG7S777 ONE XTO2N I SAVE	START	3 O + Z	ERREXT +

```
02770370
         02770380
                                                                    02770440
                                                                                                                              Q2770500
                                                                                                                                                 Q2770520
                                                                                                                                                                                                                                                                                                            02770680
                   02770390
                             02770400
                                       02770410
                                                02770420
                                                          02770430
                                                                             02770450
                                                                                       02770460
                                                                                                 02770470
                                                                                                          02770480
                                                                                                                    02770490
                                                                                                                                        02770510
                                                                                                                                                                                                                                                                                                  02770670
                                                                                                                                                                                                                                                                                                                      02770690
                                                                                                                                                            02770530
                                                                                                                                                                    02770540
                                                                                                                                                                              02770550
                                                                                                                                                                                        02770560
                                                                                                                                                                                                  02770570
                                                                                                                                                                                                          02770580
                                                                                                                                                                                                                     02770590
                                                                                                                                                                                                                                                                               02770650
                                                                                                                                                                                                                                                                                                                               Q2770700
                                                                                                                                                                                                                               02770600
                                                                                                                                                                                                                                       02770610
                                                                                                                                                                                                                                                  92770620
                                                                                                                                                                                                                                                            02770630
                                                                                                                                                                                                                                                                      02770640
                                                                                                                                                                                                                                                                                         02770660
```

XT02N Q1Q04770 _00PB1 _00PC1 LOOPB KT02N XT02N XT02N CALL CALL CALL QUP LDA LRS CALL STA STO -DA LOOPC1 LOOPB1 LOOPC LOOPB PROC

OUT SSK ISAVE SLJ RELOAD
+ CALL Q1000770
0 ONE CALL Q1005770
0 X
EXIT ENI 1 **
SLJ Q2007770
SLJ Q1000770
0 X
SLJ G201770
SLJ EXIT END .

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		20
2.	Library U.S. Naval Postgraduate School Monterey, California 93940		2
3.	Professor Rex H. Shudde 167 Arriba Way, Route #1 Carmel, California 93921		1
4.	Lieutenant Victor Joseph Monte Leon 1052 Third Street Monterey, California 93940		1

Security Classification		
(Security classification of title, body of abet	UMENT CONTROL DATA - R& rect and indexing annotation must be a	
1. ORIGINATING ACTIVITY (Corporate author)		24. REPORT SECURITY C LASSIFICATION
U.S. Naval Postgraduate	School	UNCLASSIFIED
Monterey, California		2 b. GROUP
AUTOMATIC	ERROR ANALYSIS IN 1	FINITE DIGITAL
COMPUTA	TIONS, USING RANGE	ARITHMETIC
4. DESCRIPTIVE NOTES (Type of report and inclu	eive detee)	
Master's Thesis		
5. AUTHOR(S) (Lest name, first name, initial)		
Monte Leon, Victor J., L	ieutenant, United State	es Navy
. REPORT DATE	74. TOTAL NO. OF F	PAGES 75. NO. OF REFS
May, 1966	81	5
a. CONTRACT OR GRANT'NO.	Se. ORIGINATOR'S R	EPORT NUMBER(S)
& PROJECT NO.		
c .	9b. OTHER REPORT	NO(5) (Any other numbers that may be assigned
d.		
10. AVAILABILITY/LIMITATION NOTICES		

13. ABSTRACT

11. SUPPLEMENTARY NOTES

The nature of generated machine error in finite digital calculations is discussed. The arithmetic of range numbers is developed, and examples are given demonstrating the use of range arithmetic as a tool for automatic error analysis. A computer program is developed, utilizing the TYPE OTHER feature of FORTRAN-63 in conjunction with the CDC-1604 digital computer, which enables the user to perform automatic error analysis during computation, and a number of programs are presented using this feature.

12. SPONSORING MILITARY ACTIVITY

Security	Cle	assi	fica	tion

14.	KEY WORDS	LINK A		LINK B		LINK C	
		ROLE	WT	ROLE	WT	ROLE	WT
	Automatic Error Analysis			1 - 7			
	Range Arithmetic					× 1	- 1
	Interval Arithmetic						
	Digital Computation						
	Finite Precision Accuracy						(1)
						7	

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall accurity classification of the report. Indicate whether "Restricted Dats" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when epplicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter lest name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
- 7e. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the eponsor), also enter this number(s).
- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statementa auch as:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the reaearch and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief end factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shell end with an indication of the military security classification of the information in the paragraph, represented ss (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rales, and weights is optional.

thesM6825
Automatic error analysis in finite digit

3 2768 001 01229 7
DUDLEY KNOX LIBRARY