

(Группа)

Проверил:

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

## «Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)»  $(M\Gamma T y \text{ им. H. Э. Баумана})$ 

| ФАКУЛЬТЕТ | $\Gamma$              | Фундаментальные нау | ки          |
|-----------|-----------------------|---------------------|-------------|
| КАФЕДРА _ | Прикладная математика |                     |             |
|           |                       |                     |             |
|           | Отчёт по лаб          | ораторной рабо      | оте №5      |
| Mer       | поды решени.          | я нелинейных        | уравнений   |
|           |                       |                     |             |
|           |                       |                     |             |
|           |                       |                     |             |
| Ступент   | ФН2-52Б               |                     | А И Токарев |

(Подпись, дата)

 $\overline{(\Pi}$ одпись, дата)

(Подпись, дата)

(И.О. Фамилия)

Ю. А. Сафронов (И. О. Фамилия)

(И.О. Фамилия)

2

## Оглавление

### 1. Краткое описание алгоритмов

#### 1.1. Локализация корней

Дано нелинейное уравнение f(x) = 0,  $x \in [a, b]$ , требуется найти все отрезки принадлежащие [a, b], на которых уравнение имеет единственный корень, т. е. произвести локализацию корней. Для этого воспользуемся первой теоремой Больцано— Коши из классического анализа:

если непрерывная на отрезке [a,b] функция f(x), такая , что f(a)f(b)<0, то  $\exists c \in [a, b] : f(c) = 0.$ 

Соответственно, чтобы локализовать корни, нужно составить достаточно подробное дробление отрезка [a, b] и проверить на каждом из них условие теоремы. Составим дробление отрезка:  $a_1 = a, a_2 = a + h, ... a_{n-1} = b - h, a_n = b$ , где h - шагдробления, а n — количество точек, включая концы отрезка.

#### 1.2. Метод бисекций

Пусть теперь  $[a_i, a_{i+1}] \subset [a, b]$  — отрезок локализации f(x), т.е.  $f(a_i)f(a_{i+1}) < 0$ . Найдем корень уравнения f(x) = 0 на *i*-ом отрезке локализации с наперед заданной точностью ε.

- 1. Обозначим  $\alpha_0 = a_i$ ,  $\beta_0 = a_{i+1}$ , тогда  $x_0 = \frac{\beta_0 \alpha_0}{2}$ ;
  2. Если  $\left| \frac{\beta_0 \alpha_0}{2} \right| < 2\epsilon$ , то корень найден,  $x^* = x_0$ , иначе идем к пункту 3;
  3. Если  $f(x_0)f(\alpha_0) < 0$ , то  $\alpha_1 = \alpha_0$ ,  $\beta_1 = x_0$ . Если  $f(x_0)f(\beta_0) < 0$ , то  $\alpha_1 = x_0$ ,
- $\beta_1 = \beta_0$ . Тогда  $x_1 = \frac{\beta_1 \alpha_1}{2}$ ;
- 4. Если  $\left| \frac{\beta_0 \alpha_0}{4} \right| < 2\epsilon$ , то корень найден  $x^* = x_1$ , иначе повторяем процедуру из пункта 3 для последующих значений  $x_1, x_2, ... x_k$  до тех пор, пока не выполнится условие  $\left|\frac{\beta_k - \alpha_k}{2^{k-1}}\right| < \epsilon$ . Тогда  $x^* = x_k$ .

Данный метод повторяем для всех отрезков локализации.

#### 1.3. Метод Ньютона

Разложим функцию f(x) в ряд Тейлора в окрестности известного приближения корня  $x_k$ , пренебрегая величинами больше второго порядка малости и принимая истинное значение корня за  $x_{k+1}$ , тогда уравнение примет вид

$$f(x_k) + f'(x_k)(x_{k+1} - x_k) = 0,$$

отсюда получим итерационную формулу метода Ньютона:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2...$$

### 2. Исходные данные

Вариант 20: интервал — 
$$[-1, 0]$$
 
$$f(x) = \sin\left(\frac{x^3\sqrt{13} - 9x - 5 - \sqrt{17}}{10}\right) + \tan\left(\frac{x^2 + x + 2^{\frac{1}{3}}}{3x - 5}\right) + 0.6.$$
 Вариант 23: интервал —  $[-1, 0]$  
$$f(x) = \sin\left(\frac{-2x^2 - x\sqrt{10} + 1}{4}\right) + \left(\frac{x^2 + x(\sqrt{2} + \sqrt{7}) + 1 - \sqrt{5}}{x\sqrt{7} - \sqrt{5}}\right)^{\ln 2} - 0.1.$$

## 3. Результаты расчетов

## 4. Контрольные вопросы

1. Можно ли использовать методы бисекции и Ньютона для нахождения кратных корней уравнения f(x) = 0 (т. е. тех, в которых одна или несколько первых производных функций f(x) равны нулю)? Обоснуйте ответ. Метод бисекции можно использовать для абсолютно любой функции в любых ситуациях, так как он не использует никакую информацию о функции, кроме значения в точках. На отрезке локализации он найдет корень, но не всегда быстро. Метод Ньютона не сойдется при условии, что первая производная в корне равна нулю в силу построения итерационного метода. Покажем это явно:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad f'(x_k) \to 0, \quad k \to \infty, \quad x_{k+1} \to -\infty.$$

Поскольку для кратных корней как минимум первая производная обращается в ноль, то методом Ньютона такие корни не найти.

2. При каких условиях можно применять метод Ньютона для поиска корней уравнения f(x)=0? При каких ограничениях на функцию f(x) метод Ньютона обладает квадратичной скоростью сходимости? В каких случаях можно применять метод Ньютона для решения систем нелинейных уравнений? Если в некоторой окрестности корня  $x^*$  выполнены условия |f'(x)|>m>0, |f''(x)|< M,  $\frac{|f(x)F''(x)|}{(f'(x)))^2}< 1$ , где m, M— константы, то при попадании очеред-

ного приближения  $x_s$  в эту окрестность итерационный процесс по методу Нью-

тона будет сходиться с квадратичной скоростью:  $|x_{k+1}-x^*| < C|x_k-x^*|^2$ , k=s,s+1,s+2,...

- 3. Каким образом можно найти начальное приближение?
- 4. Можно ли использовать метод Ньютона для решения СЛАУ?
- 5. Предложите альтернативный критерий окончания итераций в методе бисекции, в котором учитывалась бы возмоность попадания очередного приближения в очень малую окрестность корня уравнения.
- 6. Предложите различные варианты модификаций метода Ньютона. Укажите их достоинства и недостатки.
- 7. Предложите алгоритм для исключения зацикливания метода Ньютона и выхода за пределы области поиска решения?