Testing Models

prediction (eg, via regression) versus classification:

REGRESSION AND CLASSIFICATION

WHICH MODEL IS BETTER?

Evaluation metrics

The basis for the evaluation metrics is the socalled confusion matrix (video)

Confusion Matrix

© MEDICAL MODEL

example (quiz):

accuracy metric (video):

Video with examples for recall versus precision preferences

Precision (video)

PRECISION

FOLDER

EMAIL		Sent to Spam Folder	Sent to Inbox
	Spam	100	170
	Not Spam	30 🚫	700

OUT OF ALL THE E-MAILS SENT TO THE SPAM FOLDER, HOW MANY WERE ACTUALLY SPAM?

PRECISION =
$$\frac{100}{100 + 30}$$
 = 76.9%

Recall (video)

RECALL

FOLDER

₫	1	Sent to Spam Folder	Sent to Inbox
Sį	am	100	170
Not	: Spam	30 🚫	700

OUT OF ALL THE SPAM E-MAILS, HOW MANY WERE CORRECTLY SENT TO THE SPAM FOLDER?

Recall =
$$\frac{100}{100 + 170}$$
 = 37%

F1 score (video)

HARMONIC MEAN

F-beta score (video)

• QUIZ: F_{β} SCORE

F, SCORE = 2
$$\frac{\text{Precision * Recall}}{\text{Precision + Recall}}$$

CORE = $(1+\beta^2)$ $\frac{\text{Precision * Recall}}{\text{Precision * Recall}}$

PRECISION Fos SCO

F_{o.s} SCORE F₁ SCORE

F, SCORE

RECALL