HW 8: pages 193, #1, 2, 3, 5, 9, 10, 17

For 2(c), see Theorem 1 and Example 9 from Lecture 15

Make sure when you do these problems, justify the answer by either writing down the theorem name or providing a counter example.

Exercise 1

Mark each statement True or False. Justify each answer.

a. A sequence (s_n) converges to s iff every subsequence of (s_n) converges to s.

True. By Theorem 4.4.4.

b. Every bounded sequence is convergent.

False.

Counter example: $(s_n) = (-1)^n$

c. Let (s_n) be a bounded sequence. If (s_n) oscillates, then the set S of subsequential limits of (s_n) contains at least two points.

True. If S oscillates, then $\lim\inf S < \lim\sup S$. This implies that these are two different points.

d. Let (s_n) be a bounded sequence and let $m = \lim \sup s_n$.

Then,
$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } N \geq \text{n implies } s_n > m - \epsilon$$

True.

Proof.

Let: $\epsilon > 0$

Since s_n is bounded, let S be the set containing the range of s_n .

By definition, \exists some s_{n_k} st $\lim s_{n_k} = m$ where $k \in \mathbb{N}$

Since $\lim s_{n_k} = m$,

 $\exists N \in \mathbb{N} \text{ st } N \geq n_k \text{ implies } |s_{n_k} - m| < \epsilon$

$$|s_{n_k} - \mathbf{m}| < \epsilon$$

$$-\epsilon < s_{n_k} - m < \epsilon$$

$$m - \epsilon < s_{n_k} < m + \epsilon$$
 (1)

So, by (1),

 \exists some $N \in \mathbb{N}$ st $n \geq N$ implies $s_n > m - \epsilon$

e. If (s_n) is unbounded above, then (s_n) contains a subsequence that has ∞ as a limit.

True. By Theorem 4.4.8.

Exercise 2

Mark each statement True or False. Justify each answer.

a. Every sequence has a convergent subsequence.

False. Let
$$s_n = n$$

b. The set of subsequential limits of a bounded sequence is always nonempty.

True. By Theorem 4.4.8

c. (s_n) converges to s iff $\lim \inf s_n = \lim \sup s_n = s$

True. By Definition 4.4.9 and exercise 9.

d. Let (s_n) be a bounded sequence and let $m = \limsup s_n$. Then, $\forall \epsilon > 0$, there are infinitely many terms in the sequence greater than $m - \epsilon$.

True. By Theorem 4.4.7, \mathbf{s}_n has a convergent subsequence.

Let t_n be a subsequence of s_n st $\lim_{n\to\infty} t_n = m$

By definition,

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |t_n - m| < \epsilon$

so,

$$-\epsilon < t_n - m < \epsilon$$

$$m - \epsilon < t_n$$

Pick ϵ_2 to be $\frac{\epsilon}{2}$

Then,

$$\exists N(\epsilon_2) \text{ st m} - \epsilon < t_{N(\epsilon_2)}$$

Inductively, we can let $\epsilon_3 = \frac{\epsilon_2}{2}$, and so on.

Hence, since there are infinitely many terms in t_n greater than $m-\epsilon$, the same is true for s_n .

e. If (s_n) is unbounded above, then $\lim \inf s_n = \lim \sup s_n = \infty$

True.

Suppose: s_n has a subsequence t_n such that $\lim_{n\to\infty} t_n = t$ where $t \neq \infty$ (but could be negative infinity)

So,

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st } n \geq N \text{ implies } |t_n - t| < \epsilon$$

Notice also, that since s_n is unbounded above,

$$\forall \ \mathbf{m} \in \mathbb{R} \ , \, \exists \ \mathbf{N}_m \in \mathbb{N} \ \mathrm{st} \ s_{N_m} > \mathbf{m}$$

That means that \exists some N for t_n st $t_N > m$

If we let m = t, then

$$\exists$$
 some N₁ for t_n st t_{N₁} > t = m

If we let m = t + 1, then

$$\exists$$
 some N₂ for t_n st t_{N₂} > m = t + 1

Inductively, t_n has an infinite amount of values above t, and is increasing: a contradiction.

Thus, t_n is unbounded above.

Exercise 3

For each sequence, find the set S of subsequential limits, the limit inferior, and the limit inferior.

- a. $s_n = 1 + (-1)^n$
- b. $t_n = (0, \frac{1}{2}, \frac{2}{3}, \frac{1}{4}, \frac{4}{5}, \frac{1}{6}, \frac{6}{7})$
- c. $u_n = n^2(-1 + (-1)^n)$
- d. $v_n = n \sin \frac{n\pi}{2}$

Exercise 5

Use exercise 4.3.14 to find the limit of each sequence:

- a. $s_n = (1 + \frac{1}{2n})^{2n}$
- b. $s_n = (1 + \frac{1}{n})^{2n}$
- c. $s_n = (1 + \frac{1}{n})^{n-1}$
- d. $s_n = (\frac{n}{n+1})^n$
- e. $s_n = (1 + \frac{1}{2n})^n$
- f. $s_n = (\frac{n+2}{n+1})^{n+3}$

Exercise 9

Let (s_n) be a bounded sequence.

Assume: $\lim \inf s_n = \lim \sup s_n = s$

Prove that (s_n) is convergent and that $\lim s_n = s$

Exercise 10

Assume: x > 1

Prove that $\lim_{n \to \infty} x^{\frac{1}{n}} = 1$

Exercise 17

Prove that if $\limsup s_n = \infty$ and k > 0, then $\limsup (ks_n) = \infty$