Controlli Automatici - T

Progetto Tipologia b - Traccia 2 Controllo di meccanismo non-lineare attuato

Descrizione del problema

Si consideri il sistema in Figura 1 con $\theta(t)$ e velocità angolare $\omega(t)$. Si supponga che la dinamica del sistema, visibile, sia descritta dalla seguente equazione differenziale

$$J(\theta)\dot{\omega} = C_m - \beta\omega - k\theta,\tag{1}$$

dove
$$J(\theta) = J_0 + \sum_{i=0}^{4} J_i cos(i\theta + \psi_i)$$
 (2)

in cui:

- il momento d'inerzia ridotto al movente $J(\theta)$ è una funzione periodica di periodo 2π ;
- si assume che $J(\theta)$ sia già stata ricavata e approssimata a una somma di armoniche;
- \bullet si considera come input di controllo C_M , ossia la coppia generata dal motore elettrico;
- si considerano infine anche l'attrito viscoso (coefficiente β) e l'elasticità del disco (coefficiente k).

Figura 1: Schema illustrativo del sistema meccanismo motorizzato.

Punto 1

Si riporti il sistema (1) nella forma di stato

$$\dot{x} = f(x, u) \tag{3a}$$

$$y = h(x, u). (3b)$$

In particolare, si dettagli la variabile di stato, la variabile d'ingresso, la variabile d'uscita e la forma delle funzioni f e h. A partire dal valore di equilibrio θ_e (fornito in tabella), si trovi l'intera coppia di equilibrio (x_e, u_e) e si linearizzi il sistema non lineare (3) nell'equilibrio, così da ottenere un sistema linearizzato del tipo

$$\delta \dot{x} = A\delta x + B\delta u \tag{4a}$$

$$\delta y = C\delta x + D\delta u,\tag{4b}$$

con opportune matrici $A, B, C \in D$.

Figura 2: Schema di controllo.

Punto 2

Si calcoli la funzione di trasferimento da δu a δy , ovvero la funzione G(s) tale che $\delta Y(s) = G(s)\delta U(s)$.

Punto 3

Si progetti un regolatore (fisicamente realizzabile) considerando le seguenti specifiche:

- 1) Errore a regime $|e_{\infty}| \le e^* = 0.01$ in risposta a un gradino w(t) = 10(t) e d(t) = 10(t)
- 2) Per garantire una certa robustezza del sistema si deve avere un margine di fase $M_f \geq 30^{\circ}$.
- 3) Il sistema può accettare una sovraelongazione percentuale al massimo dell'20%: $S\% \leq 20\%$.
- 4) Il tempo di assestamento alla $\epsilon\%=1\%$ deve essere inferiore al valore fissato: $T_{a,\epsilon}=0.01s$.
- 5) Il disturbo sull'uscita d(t), con una banda limitata nel range di pulsazioni [0, 0.75], deve essere abbattuto di almeno 60 dB.
- 6) Il rumore di misura n(t), con una banda limitata nel range di pulsazioni $[10^5, 10^7]$, deve essere abbattuto di almeno 75 dB.

Punto 4

Testare il sistema di controllo sul sistema linearizzato con w(t) = 1(t), $d(t) = \sum_{k=1}^{4} 10 \cdot \sin(0.15kt)$ e $n(t) = \sum_{k=1}^{4} \sin(10^5kt)$.

Punto 5

Testare il sistema di controllo sul modello non lineare (ed in presenza di d(t) ed n(t)).

Punti opzionali

- Sviluppare (in Matlab) un'interfaccia grafica di animazione in cui si mostri la dinamica del sistema.
- Supponendo un riferimento $\theta(t) \equiv \theta_e$, esplorare il range di condizioni iniziali dello stato del sistema non lineare (nell'intorno del punto di equilibrio) tali per cui l'uscita del sistema in anello chiuso converga a $h(x_e, u_e)$.
- Esplorare il range di ampiezza di riferimenti a gradino tali per cui il controllore rimane efficace sul sistema non lineare.

k	50
β	15
J_0	8
J_1	0.4
J_2	0.4
J_3	0.5
J_4	0.7
ψ_1	-0.1
ψ_2	2
ψ_3	2.5
ψ_4	-1
θ_e	$5/12\pi$

Tabella 1: Parametri del sistema.