MATH5004 LAB 5

FEM for 1D problems

Objectives: To introduce finite element methods for 1D problem.

$$-u''(x) = f(x), \quad a < x < b; \qquad u(a) = u(b) = 0$$

1. Define the basis functions

In an element $[x_1, x_2]$ there are two nonzero basis functions:

One is
$$\phi_1^e(x) = \frac{x - x_1}{x_2 - x_1}$$
 and the other is $\phi_2^e(x) = \frac{x_2 - x}{x_2 - x_1}$.

function y = hat1(x,x1,x2)

%this function evaluates the hat function

$$y = (x-x_1)/(x_2-x_1);$$

return

function y = hat2(x,x1,x2)

%this function evaluates the hat function

$$y = (x2-x)/(x2-x1);$$

return

2. Define f(x)

function y = f(x)

y = 1; % for example

return

3. Compute the integral $\int_{x_1}^{x_2} f(x) \phi_1 dx$

function $y = int_hat1_f(x1,x2)$

% This function evaluate $\inf_{x_1}^{x_2} f(x) \phi(x) dx$,

% where $\rho(x) = (x-x_1)/(x_2-x_1)$, using the Simpson rule

$$xm = (x_1+x_2)*0.5$$
;

 $y = (x_2-x_1)^*(f(x_1)^*hat_1(x_1,x_1,x_2) + 4^*f(x_1)^*hat_1(x_1,x_1,x_2)...$

$$+ f(x2)*hat1(x2,x1,x2))/6;$$

return

4. Compute the integral $\int_{x_1}^{x_2} f(x) \phi_2 dx$

function $y = int_hat2_f(x_1,x_2)$

% This function evaluate $\inf_{x_1}^x f(x) \cdot f(x) \cdot dx$,

% where $\rho(x) = (x_2-x)/(x_2-x_1)$, using the Simpson rule

$$xm = (x_1+x_2)*0.5;$$

 $y = (x_2-x_1)^*(f(x_1)^*hat_2(x_1,x_1,x_2) + 4^*f(x_1)^*hat_2(x_1,x_1,x_2)...$

+ f(x2)*hat2(x2,x1,x2))/6;

return

5. Exact solution of $U_{xx}=1$ with u(x)=0 on the boundary.

function u = soln(x)

% uxx+1=0, x in [0,1] u(x)=0 on the boundary. The ODE can be The ODE can be solved analytically by using %the ansatz u(x) =ax^2+bx+c. a=-1/2, b=1/2, c=0

 $u=a*x.^2+b*x+c$;

end

6. FE solution at an arbitrary point x_p in the solution domain.

```
function y = fem\_soln(x,U,xp)
%Input: x is Nodal points
% U is The computed coefficients of the FEM solution using the hat functions
% xp is the x coordinate whether the solution will be evaluated
%Output: y, is the computed FEM solution
M = length(x);
for i=1:M-1,
    if xp >= x(i) & xp <= x(i+1)
    y = hat2(xp,x(i),x(i+1))*U(i) + hat1(xp,x(i),x(i+1))*U(i+1);
    return
    end
end
```

7. 1D FEM Solution

```
function U = fem1d(x)
% A simple Matlab code of 1D FE method for %
% -u'' = f(x), a \le x \le b, u(a) = u(b) = 0
% Input: x, Nodal points %
% Output: U, FE solution at nodal points
% Function needed: f(x).
% Matlab functions used:
% hat (x,x_1,x_2), hat function in [x_1,x_2] that is 1 at x_2; and 0 at x_1.
% hat 2(x,x_1,x_2), hat function in [x_1,x_2] that is 0 at x_1; and 1 at x_1.
% int hat1 f(x1,x2): Contribution to the load vector from hat1
% int hat2 f(x1,x2): Contribution to the load vector from hat2
M = length(x);
for i=1:M-1,
 h(i) = x(i+1)-x(i);
end
A = \text{sparse}(M,M); F = \text{zeros}(M,1); \% Initialization
A(1,1) = 1; F(1)=0;
A(M,M) = 1; F(M) = 0;
A(2,2) = 1/h(1); F(2) = int hat1 f(x(1),x(2));
for i=2:M-2, % Assembling element by element
A(i,i) = A(i,i) + 1/h(i);
A(i,i+1) = A(i,i+1) - 1/h(i);
A(i+1,i) = A(i+1,i) - 1/h(i);
A(i+1,i+1) = A(i+1,i+1) + 1/h(i);
F(i) = F(i) + int hat_2 f(x(i),x(i+1));
F(i+1) = F(i+1) + int_hat1_f(x(i),x(i+1));
end
A(M-1,M-1) = A(M-1,M-1) + 1/h(M-1);
F(M-1) = F(M-1) + int_hat2_f(x(M-1),x(M));
U = A \setminus F; % Solve the linear system of equations
end
```

8. The main FE routine

```
function main1D()
clear all; close all;
% Generate mesh
x first = 0.0; x last = 1.0; n = 10; % number of grid points
x = linspace (x first, x last, n);
x = x(:);
%
U = fem1d(x);
% Compare errors:
x2 = 0:0.05:1;
k2 = length(x2);
for i=1:k2,
u_exact(i) = soln(x2(i));
u_fem(i) = fem_soln(x,U,x2(i)); % Compute FE solution at x2(i)
end
error = norm(u fem-u exact,inf) % Compute the infinity error
plot(x2,u fem,':', x2,u exact)
                                % Solid: the exact, %dotted: FE solution
hold; plot(x,U,'o') % Mark the solution at nodal points
xlabel('x'); vlabel('u(x) & u {fem}(x)');
title('Solid line: Exact solution, Dotted line: FE solution')
figure(2);
plot(x2,u_fem-u_exact); title('Error plot')
xlabel('x'); ylabel('u-u_{fem}'); title('Error Plot')
```

All functions should be in the same folder as shown below.

To obtain the results of the problem,

You need to be in the folder that contain all functions for this problem and the current program is "main1D.m";

The results are as shown below.

U = femld(x);

Assignment II

Question 1. (LAB-WK5)

Implement above MATLAB codes to solve the steady state heat conduction problem

$$k(x)\frac{\partial^2 u}{\partial x^2} = f(x), \ \ 0 < x < 1$$

$$u(0) = 1, \qquad \frac{\partial}{\partial x}u(1) = 0,$$

where $f(x) = -\cos(\pi x)$, $k = \pi x^2$.

Note: Assignments II (25%): Assignment Questions will be given weekly.

In this week, Questions 1 (LAB-WK5) are a part of Assignment II, please submit a document file with MATLAB code via Blackboard by the due date of Assignment I on Friday 23 October 2020