MAU22C00 - TUTORIAL 4

- 1) (From the 2016-2017 Annual Exam) Let $f: [-2,2] \to [-15,1]$ be the function defined by $f(x) = x^2 + 3x 10$ for all $x \in [-2,2]$. Determine whether or not this function is injective and whether or not it is surjective. Justify your answers.
- 2) Use mathematical induction to prove the geometric series formula, which states that for any $a, r \in \mathbb{R}$ with $r \neq 1$ and any $n \in \mathbb{N}^*$,

$$a + ar + ar^{2} + \dots + ar^{n-1} = a \frac{(1 - r^{n})}{(1 - r)}.$$

3) Where is the fallacy in the following argument by induction?

Statement: If p is an even number and $p \ge 2$, then p is a power of 2.

"Proof:" We give a proof using strong induction on the even number p. Denote by P(n) the statement "if n is an even number and $n \geq 2$, then $n = 2^j$, where $j \in \mathbb{N}$."

Base case: Show P(2). $2 = 2^1$, so 2 is indeed a power of 2.

Inductive step: Assume p > 2 and that P(n) is true for every n such that $2 \le n < p$ (the strong induction hypothesis). We have to show that P(p) also holds. We consider two cases:

Case 1: p is odd, then there is nothing to show.

Case 2: p is even. Since $p \ge 4$ and p is an even number, we can write p = 2n with $2 \le n < p$. By the inductive hypothesis, P(n) holds, so we conclude that $n = 2^j$ for some $j \in \mathbb{N}$. Since $p = 2n = 2 \times 2^j = 2^{j+1}$, we conclude that P(p) also holds.