Caselle riservate

Ex. 1	
Ex. 2	
Ex. 3	
Ex. 4	
Ex. 5	
Ex. 6	
TD- 4	

Sistemi Operativi

Compito d'esame 17 Febbraio 2016

Matricola	Cognome			Nome
	Docente:	O Quer	O Ster	pone

L'unico materiale consultabile durante la prova scritta consiste nei tre formulari predisposti dal docente. Riportare i passaggi principali. L'ordine sarà oggetto di valutazione. Durata della prova: 100 minuti.

1. Si supponga che un disco rigido sia costituito da 20 blocchi, che i blocchi liberi siano indicati con 0 e quelli occupati con 1, e che la situazione iniziale del disco sia la seguente:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
0	0	0	1	1	1	0	0	1	1	1	1	0	0	0	1	1	1	1	0

Indicare le principali caratteristiche delle metodologie di allocazione di file contigua, concatenata, indicizzata e FAT. Utilizzando tali tipi di allocazione descrivere come possono essere allocati nel disco precedentemente descritto i seguenti file: File1 di dimensione uguale a 5 blocchi, File2 di dimensione uguale a 3 blocchi.

2. Scrivere un programma che riceva una valore intero n sulla riga di comando e crei n processi figlio. Tutti i figli di posizione pari (figli 0, 2, 4, etc.) devono stampare il proprio identificativo di processo e entrare in uno stato di pausa. Tutti i figli di posizione dispari (figlio 1, 3, 5, etc.) devono stampare in proprio identificativo di processo e terminare. Il padre, una volta creati tutti i figli, attende n intervalli di un secondo. Al termine di ciascum intervallo di posizione pari termina il figlio pari (in posizione corrispondente) utilizzando un segnale opportuno. Al termine di ciascum intervallo di posizione dispari aspetta la terminazione del figlio dispari (in posizione corrispondente).

3. Si illustri il problema dei *Readers e Writers*. Se ne riporti la soluzione mediante primitive semaforiche nel caso di precedenza ai Readers illustrando il significato di ciascun semaforo. Che cosa si intende per "precedenza ai Readers"?

Partendo dal problema precedente, si realizzi uno schema di sincronizzazione per una situazione in cui sono presenti due insiemi di Readers, denominati R_1 e R_2 , e un insieme di Writers, denominati W. Ogni membro di R_1 (R_2) può accedere alla sezione critica insieme a altri membri di R_1 (R_2), però membri di R_1 e R_2 , oppure R_1 e W, oppure R_2 e W devono accedere alla sezione critica in mutua esclusione.

4. Scrivere un script BASH in grado di ricevere sulla riga di comando due stringhe. La prima stringa identifica il nome di un file di ingresso, la seconda quello di uscita dello script.

Il file di ingresso include il calendario di un mese con il formato rappresentato nella metà di sinistra della figura successiva (si noti che il formato è simile, ma semplificato, a quello ottenuto con il comando di shell cal). Tutti i campi sono costituiti da due caratteri e sono separati da un singolo spazio.

Il file di uscita deve contenere lo stesso calendario ma con formato rappresentato nella metà di destra della figura successiva (si noti che il formato è simile, ma semplificato, a quello ottenuto con il comando di shell ncal). Lunghezza dei campi e spaziatura sono identici a quelli del file di ingresso.

				. 1			0						
								Feb	bra	aio	201	16	
Feb	bra	aio	201	16				Lu	01	80	15	22	29
Lu	Ма	Me	Gi	Ve	Sa	Do		Ма	02	09	16	23	XX
01	02	03	04	05	06	07		Ме	03	10	17	24	XX
80	09	10	11	12	13	14		Gi	04	11	18	25	XX
15	16	17	18	19	20	21		Ve	05	12	19	26	XX
22	23	24	25	26	27	28		Sa	06	13	20	27	XX
29	XX	XX	XX	XX	XX	XX		Do	07	14	21	28	XX

5. Si scriva uno script AWK in grado di gestire gli acquisti di un piccolo magazzino, secondo le specifiche illustrate dall'esempio successivo.

prodotti	forn	itore2	forn	itore3	uscita.txt						
coca-cola	pr01	pr02	1.25	pr02	0.95	pr06	1.10	coca-cola	pr01	fornitore3	1.00
fanta	pr02	pr03	1.15	pr01	1.05	pr03	0.99	fanta	pr02	fornitore2	0.95
sprite	pr03	pr06	0.90			pr01	1.00	sprite	pr03	fornitore3	0.99
breezer	pr04	pr05	1.45			pr02	1.10	breezer	pr04	_	_
gatorade	pr05							gatorade	pr05	fornitore1	1.45
orangina	pr06							orangina	pr06	fornitore1	0.90

Un primo file, di tipo "prodotti", indica i prodotti di cui il magazzino ha bisogno, indicando per ogni prodotto il nome e l'identificatore del prodotto.

Un insieme di file, di tipo "fornitori", specifica il costo dei vari prodotti presso diversi possibili fornitori, indicando per i prodotti forniti l'identificatore e il relativo prezzo.

Scrivere uno script AWK in grado di memorizzare su un file di output l'elenco dei prodotti (nome e identificatore), e per ciascuno di essi il fornitore più economico e il prezzo del prodotto. Nel caso un prodotto non sia fornito da nessun fornitore il nome del fornitore e il prezzo devono essere sostituiti dal carattere "-". Nel caso di prezzi identici la scelta del fornitore sia arbitraria.

Il nome di tutti i file gestiti dall'applicazione sono passati sulla riga di comando allo script stesso: il primo parametro identifica il file "prodotto", l'ultimo il file di uscita, tutti i parametri intermedi (di numero ignoto) identificano i file "fornitori".

6. Si illustri l'algoritmo del banchiere riportandone la descrizione e lo pseudo-codice ottimizzato al caso illustrato di seguito (5 processi e 5 risorse).

Analizzando l'esempio successivo, con processi (P_1, \ldots, P_5) e risorse (R_1, \ldots, R_5) , si indichi se una richiesta di P_1 per (0, 1, 1, 2, 0) potrebbe essere soddisfatta. Indicare inoltre se lo stato indicato è sicuro oppure non sicuro. Nel primo caso, si illustri l'ordine in cui i processi possono essere completati.

P.	Fine		А	ssegna	ate		Massimo					Necessità					Disponibilità				
		R_1	R_2	R_3	R_4	R_5	R_1	R_2	R_3	R_4	R_5	R_1	R_2	R_3	R_4	R_5	R_1	R_2	R_3	R_4	R_5
P_1	F	2	2	0	0	1	4	5	2	1	2						0	1	2	4	1
P_2	F	2	2	1	2	1	5	3	2	5	2										
P_3	F	2	1	3	0	1	2	2	3	4	1										
P_4	F	1	0	0	1	1	1	2	1	2	4										
P_5	F	0	0	1	3	2	1	1	6	3	2										