BAYESIAN MODELS

Introduction

Approach

The defining assumption of Bayesian statistics is that the distribution P which explains the data is a random quantity and itself has a distribution Q. The generative model for data X_1, X_2, \ldots is

$$P \sim Q$$
 $X_1, X_2, \ldots \sim_{\mathsf{iid}} P$

Rationale

- ► In any statistical approach (Bayesian or classical), the distribution *P* is unknown.
- ▶ Bayesian statistics argues that any form of uncertainty should be expressed by probability distributions.
- \blacktriangleright We can think of the randomness in Q as a model of the statistician's lack of knowledge regarding P.

An older name for Bayesian statistics is inverse probability.

Introduction

Prior and Posterior

The distribution Q of P is called the **a priori distribution** (or the **prior** for short). Our objective is to determine the conditional probability of P given observed data,

$$\Pi[P|x_1,\ldots,x_n]$$
.

This distribution is called the a posteriori distribution or posterior.

Parametric case

We can impose the modeling assumption that P is an element of a parametric model, e.g. that the density p of P is in a family $\mathcal{P} = \{p(x|\theta)|\theta \in \mathcal{T}\}$. If so, the prior and posterior can be expressed as distributions on \mathcal{T} . We write

$$q(\theta)$$
 and $\Pi(\theta|x_1,\ldots,x_n)$

for the prior and posterior density, respectively.

Remark

The posterior $\Pi[P|x_1, \ldots, x_n]$ is an abstract object, which can be rigorously defined using the tools of probability theory, but is in general (even theoretically) impossible to compute. However: In the parametric case, the posterior can be obtained using the Bayes equation.

COMPUTING PARAMETRIC POSTERIORS

Parametric modeling assumption

Suppose $\mathcal{P} = \{p(x|\theta)|\theta \in \mathcal{T}\}$ is a model and q a prior distribution on \mathcal{T} . Our sampling model then has the form:

$$egin{aligned} heta \sim \ q \ & X_1, X_2, \ldots \sim_{ ext{iid}} \ p(\,.\,| heta) \end{aligned}$$

Note that the data is *conditionally i.i.d.* given $\Theta = \theta$.

Bayes' Theorem

If \mathcal{P} is a parametric Bayesian model and q a distribution on \mathcal{T} , the posterior under data X_1, \ldots, X_n generated as above is

$$\Pi(\theta|x_1,\ldots,x_n) = \frac{\left(\prod_{i=1}^n p(x_i|\theta)\right)q(\theta)}{p(x_1,\ldots,x_n)} = \frac{\left(\prod_{i=1}^n p(x_i|\theta)\right)q(\theta)}{\int_{\mathcal{T}}\left(\prod_{i=1}^n p(x_i|\theta)\right)q(\theta)d\theta}$$

The individual terms have names:

$$posterior = \frac{likelihood \times prior}{evidence}$$

EXAMPLE: UNKNOWN GAUSSIAN MEAN

Model

We assume that the data is generated from a Gaussian with fixed variance σ^2 . The mean μ is unknown. The model likelihood is $p(x|\mu,\sigma)=g(x|\mu,\sigma)$ (where g is the Gaussian density on the line).

Bayesian model

We choose a Gaussian prior on μ ,

$$q(\mu) := g(\mu|\mu_0, \sigma_0) .$$

In the figure, $\mu_0 = 2$ and $\sigma_0 = 5$. Hence, we assume that $\mu_0 = 2$ is the most probable value of μ , and that $\mu \in [-3, 7]$ with a probability ~ 0.68 .

Posterior

Application of Bayes' formula to the Gaussian-Gaussian model shows

$$\Pi(\mu|x_{1:n}) = g(\mu|\mu_n, \sigma_n)$$
 where $\mu_n := \frac{\sigma^2 \mu_0 + \sigma_0^2 \sum_{i=1}^n x_i}{\sigma^2 + n\sigma_0^2}$ and $\sigma_n := \frac{\sigma^2 \sigma_0^2}{\sigma^2 + n\sigma_0^2}$

EXAMPLE: UNKNOWN GAUSSIAN MEAN

Posterior distributions

A SLIGHTLY DIFFERENT PERSPECTIVE

Parameters

Intuitively, we can think of θ as the common pattern underlying the data:

 $P(X|\theta) = \text{Probability}[\text{data}|\text{pattern}]$

Inference idea

data = underlying pattern + independent randomness

Broadly speaking, the goal of statistics is to extract the pattern from the data. Bayesian statistics models the pattern as a random quantity.

MAP ESTIMATION

Definition

Suppse $\Pi(\theta|x_{1:n})$ is the posterior of a Bayesian model. The estimator

$$\hat{\theta}_{\text{MAP}} := \arg \max_{\theta \in \mathcal{T}} \Pi(\theta|x_{1:n})$$

is called the **maximum a posteriori** (or **MAP**) estimator for θ .

Point estimates

The goal of Bayesian inference is to compute the posterior distribution. Contrast this to classical statistics (e.g. maximum likelihood), where we typically estimate a single value for θ (a so-called **point estimate**).

MAP estimation combines aspects of Bayesian methodology (use of a prior) with aspects of classical methodology (since $\hat{\theta}_{MAP}$ is a point estimate).

MAP AND REGULARIZATION

Logarithmic view

Since the logarithm leaves the maximum invariant,

$$\hat{\theta}_{\text{MAP}} = \arg \max_{\theta \in \mathcal{T}} \Pi(\theta|x_{1:n}) = \arg \max_{\theta \in \mathcal{T}} \log \Pi(\theta|x_{1:n})$$

Substituting in the Bayes equation gives

$$\log \Pi(\theta|x_{1:n}) = \sum_{i=1}^n \log p(x_i|\theta) + \log q(\theta) - \log p(x_1,\ldots,x_n).$$

MAP as regularized ML

Since log-evidence does not depend on θ ,

$$\hat{\theta}_{ ext{MAP}} = \arg\max_{ heta \in \mathcal{T}} \left\{ \sum_{i=1}^{n} \log p(x_i| heta) + \log q(heta) \right\}$$

Thus, the MAP estimate can be regarded as a regularized version of a maximum likelihood estimator. The regularization term $\log q(\theta)$ favors values where q (and hence $\log q$) is large.

PARAMETRIC PRIOR FAMILIES

Families of priors

The prior has to be expressed by a specific distribution. In parametric Bayesian models, we typically choose q as an element of a standard parametric family (e.g. the Gaussian in the previous example).

Hyperparameters

If we choose q as an element of a parametric family

$$Q = \{q(\theta|\phi)|\phi \in \mathcal{H}\}$$

on \mathcal{T} , selecting the prior comes down to choosing ϕ . Hence, ϕ becomes a tuning parameter of the model.

Parameter of the prior familiy are called **hyperparameters** of the Bayesian model.

NATURAL CONJUGATE PRIORS

Exponential family likelihood

We now assume the parametric model $\mathcal{P} = \{p(x|\theta)|\theta \in \mathcal{T}\}$ is an exponential family model, i.e.

$$p(x|\theta) = \frac{h(x)}{Z(\theta)} e^{\langle S(x)|\theta\rangle}$$
.

Natural conjugate prior

We define a prior distribution using the density

$$q(\theta|\lambda, y) = \frac{1}{K(\lambda, y)} \exp(\langle \theta|y \rangle - \lambda \cdot \log Z(\theta))$$

- ▶ Hyperparameters: $\lambda \in \mathbb{R}_+$ and $y \in \mathcal{T}$.
- ▶ Note that the choice of \mathcal{P} enters through Z.
- \blacktriangleright K is a normalization function.

Clearly, this is itself an exponential family (on \mathcal{T}), with $h \equiv Z^{-\lambda}$ and $Z \equiv K$.

UGLY COMPUTATION

Substitution into Bayes' equation gives

$$\Pi(\theta|x_1,\ldots,x_n) = \frac{\prod_{i=1}^n p(x_i|\theta)}{p(x_1,\ldots,x_n)} \cdot q(\theta)$$

$$= \frac{\frac{\prod_{i=1}^n h(x_i)}{Z(\theta)^n} \exp\left\langle \sum_i S(x_i)|\theta\right\rangle}{p(x_1,\ldots,x_n)} \cdot \frac{\exp\left(\langle \theta|y\rangle - \lambda \log Z(\theta)\right)}{K(\lambda,y)}$$

If we neglect all terms which do not depend on θ , we have

$$\Pi(\theta|x_1,\ldots,x_n) \propto = \frac{\exp\left\langle\sum_i S(x_i)|\theta\right\rangle}{Z(\theta)^n} \exp\left(\langle\theta|y\rangle - \lambda \log Z(\theta)\right) = \frac{\exp\left(\langle y + \sum_i S(x_i)|\theta\rangle\right)}{Z(\theta)^{\lambda+n}}$$

Up to normalization, this is precisely the form of an element of Q:

$$\ldots = \exp\left(\left\langle y + \sum_{i} S(x_i) | \theta \right\rangle - (\lambda + n) \log Z(\theta)\right) \propto q(\theta | \lambda + n, y + \sum_{i=1}^{n} S(x_i))$$

POSTERIORS OF CONJUGATE PRIORS

Conclusion

If \mathcal{P} is an exponential family model with sufficient statistic S, and if $q(\theta|\lambda, y)$ is a natural conjugate prior for \mathcal{P} , the posterior under observations x_1, \ldots, x_n is

$$\Pi(\theta|x_1,\ldots,x_n)=q(\theta|\lambda+n,y+\sum_{i=1}^n S(x_i))$$

Remark

The form of the posterior above means that we can *compute the posterior by updating the hyperparameters*. This property motivates the next definition.

Definition

Assume that \mathcal{P} is a parametric family and \mathcal{Q} a family of priors. Suppose, for each sample size $n \in \mathbb{N}$, there is a function $T_n : \mathbf{X}^n \times \mathcal{H} \to \mathcal{H}$ such that

$$\Pi(\theta|x_1,\ldots,x_n)=q(\theta|\hat{\phi})$$
 with $\hat{\phi}:=T_n(x_1,\ldots,x_n,\phi)$.

Then \mathcal{P} and \mathcal{Q} are called **conjugate**.

CONJUGATE PRIORS

Closure under sampling

If the posterior is an element of the prior family, i.e. if

$$\Pi(\theta|x_1,\ldots,x_n)=q(\theta|\tilde{\phi})$$

for $some \ \tilde{\phi}$, the model is called **closed under sampling**. Clearly, every conjugate model is closed under sampling.

Remark

Closure under sampling is a weaker property than conjugacy; for example, any Bayesian model with

$$Q = \{ \text{ all probability distributions on } \mathcal{T} \}$$

is trivially closed under sampling, but not conjugate.

Warning: Many Bayesian texts use conjugacy and closure under sampling equivalently.

Which models are conjugate?

It can be shown that, up a few "borderline" cases, the only paramteric models which admit conjugate priors are exponential family models.

NATURAL CONJUGATE POSTERIORS

Generic posterior updates

For an exponential family \mathcal{P} with natural conjugate family \mathcal{Q} , the posterior is computed as the hyperparameter update

$$T_n(x_1,\ldots,x_n,\lambda,y)=(\lambda+n,y+\sum_{i=1}^n S(x_i))$$
.

Effect of hyperparameters

The natural conjugate prior $q(\theta|\lambda, y)$ has expected value $\mathbb{E}[\Theta] = y$. The parameter λ is a concentration, i.e.

large $\lambda \leftrightarrow \text{prior peaks sharply around } y$.

Interpretation of posterior updates

The posterior mean is

$$\mathbb{E}[\Theta] = y + \sum_{i=1}^{n} S(x_i) ,$$

i.e. we linearly interpolate the prior guess and the sufficient statistics of the data in parameter space. The more data we observe, the larger the posterior concentration $\lambda + n$, which reflects increasing certainty regarding Θ given more data.

HIERARCHICAL MODEL

Motivation

Choosing a prior means we have to choose a distribution on Q (or a density q) on the parameter space \mathcal{T} . How?

Recall

A Bayesian model with prior q can be regarded as a decomposition of the data distribution p(x) into a mixture $p(x_{1:n}) = \int_{\mathcal{T}} \prod_i p(x_i|\theta) q(\theta) d\theta$.

Hierarchical modeling idea

Split the prior up further into a mixture

$$q(heta) = \int q(heta|\phi) ilde{q}(\phi) d\phi \; .$$

The generative model for the data is then:

$$\Phi \sim ilde{q}$$
 $\Theta \sim q(\,.\,|\Phi)$ $X_1,\ldots,X_n \sim p(\,.\,|\Theta)$

HIERARCHICAL MODEL

Additional levels in hierarchy

If we are so inclined, we can recursively split further:

$$q(heta) = \int q(heta|\phi_1) ilde{q}_1(\phi_1) d\phi_1 \qquad ilde{q}_1(\phi_1) = \int ilde{q}_1(\phi_1|\phi_2) ilde{q}_2(\phi_2) d\phi_2$$

etc.

Why?

- ▶ If the "intermediate" parameters ϕ (or ϕ_1, ϕ_2 , etc) have a well-defined meaning, this can be a very useful way to derive a meaningful prior q.
- ► In problems with several related parameters, this permits "sharing" of information.

HIERARCHICAL MODELS

Practical aspects

- ▶ Permits use of well-studied, available models as "building blocks".
- \blacktriangleright Note: The parameters θ , ϕ can be regarded as layers of latent variables.
- ► Inference is possible using Markov chain sampling (later).
- ► Warning: Inference becomes more difficult with each additional layer.

Hierarchical models: Interpretation

- ▶ In practice, we start with a prior on θ , which has hyperparameters; we then add a "hyperprior" on the hyperparameters, etc.
- ► It is easy to get confused and regard the various distributions involved as "multiple priors".
- \blacktriangleright Keep in mind: This is a way to construct a single, *overall* prior q, which is given by

$$q(\theta) = \int q(\theta|\phi)\tilde{q}(\phi)d\phi$$

(or multiple integrals for multiple layers).