Kraków 2016-12-06

Karty

Na stole leży n kart ułożonych w pewnej kolejności. Na każdej karcie zapisane są dwie liczby całkowite, jedna na wierzchu, druga na spodzie karty. Iluzjonista Bajtazar zamierza przedstawić (i to wielokrotnie!) swój popisowy Wielki Trik z Wyszukiwaniem Binarnym. Aby jednak mógł go zaprezentować, ciąg liczb widocznych na stole musi być niemalejący. W tym celu Bajtazar być może będzie musiał obrócić niektóre karty tak, aby widoczna była liczba po ich drugiej stronie.

Trik Bajtazara wymaga udziału osoby z publiczności. Niektórzy zgłaszający się na ochotnika widzowie są jednak podstawieni przez konkurentów Bajtazara. Każdy z nich, wchodząc na scenę, błyskawicznym ruchem zamieni ze sobą miejscami dwie spośród leżących na stole kart. Po każdej z takich zamian Bajtazar może znowu odwrócić niektóre karty na drugą stronę, ale nawet mimo tego może nie być w stanie wykonać triku. Będzie wtedy zmuszony wrócić do tradycyjnych metod zabawiania widzów, z udziałem królików i kapeluszy.

Napisz program, który określi, po każdej zamianie kart miejscami, czy Bajtazar może wykonać swoją sztuczkę.

Wejście

Pierwsza linia wejścia zawiera liczbę całkowitą z ($1 \le z \le 2*10^9$) – liczbę zestawów danych, których opisy występują kolejno po sobie. Opis jednego zestawu jest następujący:

W pierwszym wierszu zestawu zapisana jest liczba całkowita n ($2 \le n \le 200\,000$) oznaczająca liczbę kart. W kolejnych n wierszach opisane są karty, po jednej w wierszu, w takiej kolejności, w jakiej leżą na stole. W i-tym z kolejnych n wierszy znajdują się dwie liczby całkowite x_i i y_i ($0 \le x_i \le y_i \le 10^7$) oddzielone pojedynczym odstępem. Są to liczby zapisane na i-tej karcie. Początkowy ciąg kart nie musi pozwalać na wykonanie triku.

W kolejnym wierszu jest zapisana liczba całkowita m ($1 \le m \le 1\,000\,000$) oznaczająca liczbę zamian. W następnych m wierszach opisane są zamiany – j-ty z nich zawiera dwie liczby całkowite a_j i b_j ($1 \le a_j, b_j \le n$) – numery kart, które zamieni miejscami j-ty z zaproszonych widzów.

Wyjście

Dla każdego zestawu wypisz m wierszy, każdy zawierający pojedyncze słowo \mathbf{TAK} lub \mathbf{NIE} . W j-tym wierszu powinno znaleźć się słowo \mathbf{TAK} , jeśli Bajtazar może, po j-tej zamianie kart, ułożyć ciąg niemalejący obracając niektóre karty. W przeciwnym wypadku w tym wierszu powinno być słowo \mathbf{NIE} .

Karty 1/2

Kraków 2016-12-06

Przykład

Dla danych wejściowych:	Poprawną odpowiedzią jest:
1	NIE
4	TAK
2 5	
3 4	
6 3	
2 7	
2	
3 4	
1 3	

Karty 2/2