

第九讲 几何变换

例1. 过点 P 作 PQ 平行等于 BC 平行等于 AD

则可得平行四边形 APQD,与四边形 PBCQ 均为平行四边形.

 $\therefore \angle PAB = \angle PCB = \angle QPC$.

则可得PDQC四点共圆,

从而 $\angle PBC = \angle PQC = \angle PDC$.

例2. (1)

 $\triangle ABC$ 和 $\triangle A_{l}B_{l}C_{l}$ 平行或重合

 $\triangle ABC$ 和 $\triangle A,B,C,$ 平行或重合

 $\triangle A_1B_1C_1$ 和 $\triangle A_2B_2C_2$ 平行或重合,又它们不全等

因此 $\triangle A_1B_1C_1$ 和 $\triangle A_2B_2C_2$ 位似

(2) 可推广(1) 中的结论:

若三个图形 F_1 、 F_2 、 F_3 中满足: F_1 和 F_2 位似, F_1 和 F_3 位似,则 F_3 和 F_3 位似.(或平移重合)

任取 F_1 中的两点 A_1 、 B_1 . 在 F_2 、 F_3 中的对应点为 A_2 、 B_2 , A_3 、 B_3 .

对于 F_1 中的任一点 P_1 , 在 F_2 、 F_3 中的对应点为 P_2 、 P_3 .

则 $\triangle A_1B_1P_1$ 与 $\triangle A_2B_2P_2$ 位似, $\triangle A_1B_1P_1$ 与 $\triangle A_3B_3P_3$ 位似,

于是有 $\triangle A_1B_2P_2$ 与 $\triangle A_3B_3P_3$ 位似. 位似中心为 A_2A_3 与 B_2B_3 交点.

因此,F, 与F3 位似.

下面考虑直线 PQ 和 $\triangle ABC$ 合起来得到图 Γ ,

直线 PQ 和 $\triangle A_iB_iC_i$ 合起来得到图 Γ_i ,

直线 PQ 和 $\triangle A_2B_2C_2$ 合起来得到图 Γ_2 ,

则 Γ 和 Γ , 关于P位似, Γ 和 Γ , 关于Q位似.

故 Γ ,和 Γ ,关于R位似,故PQ关于R位似得到本身.

于是 R 在直线 PQ 上.

LJ 平行等于 MK, 从而 LMKJ 为平行四边形.

所以 LM // AB, 同理 MN // BC, LN // AC,

所以 $\triangle ABC$ 与 $\triangle LMN$.

延长 AL、BM、CN 交于内心 I,

则 $\triangle ABC$ 与 $\triangle LMN$ 关于 I位似.

有 P 点到 L、M、N 的距离均为两倍的圆 P 的半径.

所以P点为 $\triangle LMN$ 的外心.从而P、O恰为一组对应点.

I、O、P三点共线.

例4. 引理: $\triangle DEF$ 的三条高所在直线交外接圆于 L、M、N,则垂心 H 为 $\triangle LMN$ 的内心,且三边分别与 D、E、F 对外接圆的切线平行. 证明:

 $\angle LNF = \angle LDF = 90^{\circ} - \angle EFD = \angle FEM = \angle FNM$ 从而,FN 平分 $\angle LNM$ 同理可得,EM 平分 $\angle FED$,LD 平分 $\angle MLN$ 从上 H 为 $\triangle LMN$ 的内心.

同时 LF = FM , F 为弧 LM 的中点,所以 $OF \perp LM$ LM 平行于切于点 F 的切线.

由此可知,引理得证.

于是 $\triangle LMN$ 与 $\triangle ABC$ 位似. 注意 H、I 分别为 $\triangle LMN$ 内心、外心,I、O 分别为 $\triangle ABC$ 内心、外心,记位似中心为 P.

则 H、I、P 三点共线,I、O、P 三点共线.

故H、I、O 共线.

例5. 解一:记 P_iQ_i 与圆的异于 P_i 点的交点为M.

注意到两圆关于公切点位似,从而Q与M为对应点.

由 O_2M // O_1Q_1 , $O_1Q_1 \perp AB$ 得 $O_2M \perp AB$ 从而 M 为弧 AB 中点.

回到原题,圆 C_1 和 C_2 与圆O的切点分别为 P_1 、 P_2 .

圆 C_1 和 C_2 与线段AB的切点分别为 Q_1 、 Q_2 .

 $\mathbb{M} \angle Q_1 AM = \angle AP_1 M, \angle Q_1 MA = \angle AMP_1 \triangle AQ_1 M \cong \triangle P_1 AM .$

 $MA^2 = MQ_1 \cdot MP_1$

同理可得 $MB^2 = MQ_2 \cdot MP_2$.

又MA = MB ,所以 $MQ_1 \cdot MP_1 = MQ_2 \cdot MP_2$,

M在圆 C_1 和 C_2 的根轴上.

解二:作反演变换,反演中心为M,反演系数为 MA^2 . A 变为A,B 变为B.

过M的圆变为不过M的直线.则圆O变成直线AB

图中弧 AB 变成线段 AB

设圆 C_1 变成圆 C_1' ,则圆 C_1' 与弧AB、线段AB均相切.

于是,圆 C_1 ′只能为圆 C_1 . (不完全严谨).

同理,圆 C_2 '也只能为圆 C_2 . 因此,P与Q是反演变化的对应点.

于是, P、Q 共线.

例6. 记两圆圆心分别为 O_1 、 O_2 .

以 P 为反演中心作反演变换.

则圆 O_1 变为直线 I_1 ,圆 O_2 变为直线 I_2 .

则 $PQ_1 \perp l_1$, $PQ_2 \perp l_2$

于是 l₁// l₂.

夹在两圆之间的五个圆反演之后变成另外五个圆,

都与 l_1 、 l_2 相切,且依次相切.

因此,这五个圆为等圆,切点A'、B' 、C' D' 共线.

那么, $A \times B \times C \times D$ 在过 P 点的圆上.

