

C 1.1 Introduction to quadrotors

Gauthier ROUSSEAU

gauthier.rousseau.cs@gmail.com

Introduction

Quadrotors: a great tool for teaching robotics

Nonlinear dynamics ... but can be linearized near hovering

Underactuated ... not all degrees of freedom are of interest

Different levels of modeling ... depending on goal

Strong and complex disturbances ... weak and simple at low speed

Varying parameters ... can be considered invariant in a restrained flight envelope

•••

Also: They are cool

Quadrotors: a great tool for professionals

Cinematography

Quadrotors: a great tool for professionals

Photogrammetry

Quadrotors: a great tool for professionals

Agriculture

Quadrotors: a great tool for professionals

Inspection

Centrale Supélec Vocabulary

Drone

- Initially: Unmanned radio-controlled fixed wing aircraft used as gunnery target
- Now: vague word designating any flying (or not) unmanned vehicle

UAV

Unmanned Aerial Vehicle

Quadrotor

A rotary wing aircraft with four rotors

Vocabulary

Yaw, pitch and roll

Rotations along the vertical, lateral and longitudinal axes

Vocabulary

Ground angle/horizontal tilt/thrust angle

Angle between the vertical of the drone and the vertical of the ground

Vocabulary

Air speed / air velocity

Speed/Velocity relatively to its surrounding air mass

Angle of Attack (AoA)

Angle between a reference line of a body and its air velocity

Lift and Drag

Resultant of the aerodynamic actions applied on the *center of pressure*, projected onto the air velocity (drag) and its normal (lift)

Actuators

4 Propellers

Usually brushless DC motors

X4 quadrotor

4 propellers

Vertical propellers axes

Alternate clockwise & anti-clockwise

Forces

• Thrust (lift)

Torques

- Drag torque
- Lift leverage
- Reaction
- Gyroscopic

Vertical translation actuation

Collective thrust

Compensation of drag and lift torques

Roll and pitch actuation

Collective thrust unchanged

Asymmetry of lifts (leverage)

Compensation of drag torques

Yaw actuation

Collective thrust unchanged

Compensation of lifts torques

Drag torques unbalanced

Yaw

Underactuated system

6DOF vs 4 actuators

X and Y translation not directly actuated (in first approx.)

Use rotation and translation couplings

Inertial measurement unit (IMU)

Accelerometer

Aceleration / inertial frame (actually free fall deviation)

Gyrometer

Angular velocity / inertial frame

Proprioceptive sensors

Inertial acceleration and angular velocity

Barometer

Local static air pressure

Magnetometer

Local 3D magnetic field

Time of Flight based sensors

Ultrasound (sonar)

Light (ToF IR, LIDAR, RADAR, ...)

Sometimes: surrounding environment

Global Navigation Satellite System (GNSS)

GPS, Galileo, GLONASS etc.

Ground stations

RTK

- Geographic position and velocity
- Precise relative position (RTK)

Cameras and computer vision

Optical flow

Stereo vision

Etc.

- Motion relatively to environment
- **Environment description**

