MLC-Agent: Cognitive Model based on Memory-Learning Collaboration in LLM Empowered Agent Simulation Environment

Ming Zhang*

Faculty of Environment, Science and
Economy
University of Exeter
Exeter, UK

mz9408@outlook.com **Qun Ma**

College of Intelligence and Computing
Tianjin University
Tianjin, China
mq12335@tju.edu.cn

Yiling Xuan*

College of Intelligence and Computing
Tianjin University
Tianjin, China
yiling_xuan@163.com

Yuwei Guo

College of Intelligence and Computing
Tianjin University
Tianjin, China
2024244171@t ju.edu.cn

Index Terms—Computational Experiment, Agent based modeling, Learning Mechanism, Memory Mechanism

I. INTRODUCTION

In order to analyze and study the increasingly prominent characteristics of complex networks in complex social systems with the rapid development of the Internet, the Internet of Things, big data, and social media [1], [2], it is important to note that complex social systems involve human and social factors, and their design, analysis, organization, control, and integration are facing unprecedented challenges. Studies by Dirk Helbing, Marko Jusup, and others have shown that models built based on complex science methods can be widely applied in the field of social dynamics to help prevent problems such as urban disasters, crime, infectious diseases, war, and terrorism [3], [4].

Traditional experimental methods are usually based on physical entities, but this approach cannot be directly applied to the study of actual social systems. The main reasons include the following: 1) Complex social systems cannot be studied through reductionist methods, as decomposed systems are likely to lose their original functions and characteristics. Therefore, the system must be studied as a whole [5]. 2) Due to the large scale of complex social systems, conducting repeated experiments on real systems is economically infeasible. 3) Many complex systems involving social governance are legally constrained and usually cannot be tested or constructed, such as national security, military preparedness, and emergency response. 4) Complex social systems are highly related to humans, and in many cases require human participation. Testing these systems may lead to irreversible risks and losses, which do not meet ethical requirements [6].

Against this background, research on complex social systems has gradually shifted toward "computational experi-

Abstract-Many real-world systems, such as transportation systems, ecological systems, and Internet systems, are complex systems. As an important tool for studying complex systems, computational experiments can map them into artificial society models that are computable and reproducible within computers, thereby providing digital and computational methods for quantitative analysis. In current research, the construction of individual agent models often ignores the long-term accumulative effect of memory mechanisms in the development process of agents, which to some extent causes the constructed models to deviate from the real characteristics of real-world systems. To address this challenge, this paper proposes an individual agent model based on a memory-learning collaboration mechanism, which implements hierarchical modeling of the memory mechanism and a multi-indicator evaluation mechanism. Through hierarchical modeling of the individual memory repository, the group memory repository, and the memory buffer pool, memory can be effectively managed, and knowledge sharing and dissemination between individuals and groups can be promoted. At the same time, the multi-indicator evaluation mechanism enables dynamic evaluation of memory information, allowing dynamic updates of information in the memory set and promoting collaborative decision-making between memory and learning. Experimental results show that, compared with existing memory modeling methods, the agents constructed by the proposed model demonstrate better decision-making quality and adaptability within the system. This verifies the effectiveness of the individual agent model based on the memory-learning collaboration mechanism proposed in this paper in improving the quality of individual-level modeling in artificial society modeling and achieving anthropomorphic characteristics.

This work has been supported in part by National Key Research and Development Program of China (No.2021YFF0900800), National Natural Science Foundation of China (No. 62472306, No. 62441221, No. 62206116), Tianjin University's 2024 Special Project on Disciplinary Development (No. XKJS-2024-5-9), Tianjin University Talent Innovation Reward Program for Literature & Science Graduate Student (C1-2022-010), and Shanxi Province Social Science Foundation (No.2020F002).

* Ming Zhang and Yiling Xuan are co-first authors and contributed equally to this work.

ments," which enable quantitative analysis of complex systems through algorithmic and counterfactual methods [7]. Figure 1 shows the workflow of computational experiments. First, by constructing autonomous individual models and their interaction rules, a conceptual model of the complex social system is abstracted from a microscopic perspective. Then, by integrating complex system theory with computer simulation technology, a "digital twin" of the real system is cultivated in the information world [8]. Next, by adjusting system rules, parameters, and external intervention strategies, multiple computational experiments can be repeatedly conducted. Finally, based on the experimental results, causal relationships between intermediate variables and system emergence can be identified, providing a new approach for explaining, interpreting, guiding, and reshaping macro phenomena in the real world. At present, computational experiments have been applied in multiple fields, especially in scenarios with high risk, high cost, or where experiments cannot be directly conducted in reality, such as intelligent transportation systems [9], [10], war simulation systems [11], socio-economic systems [12], ecological systems [13], physiological/pathological systems [14], [15], and political-ecological systems [16].

Fig. 1. Schematic Diagram of the Computational Experiment Method.

The technical framework of computational experiments mainly includes the following five steps: artificial society modeling [17]-[19], experimental system construction [20], experimental design [21], experimental analysis [22], and model validation [23]. Among them, artificial society modeling serves as the foundation for conducting computational experiments. Only by clearly defining the structures, elements, and attributes required in the artificial society, and mapping the complex system into a computer-operable experimental system, can the simulation and observation of complex system phenomena be conducted. The agent-based modeling (ABM) approach [24] is an important tool for artificial society modeling. By effectively integrating the behavioral characteristics of social entities, structural modeling at the microscopic level can be achieved. In the development of complex social system research, artificial society modeling methods have been continuously improved and evolved, from single-agent systems to the integration and application of multi-agent systems [25], and many achievements have been made. However, when using ABM to construct artificial societies, the reliability of the model is crucial. A high-quality model can not only more accurately reproduce the characteristics of the real world but also generate unexpected emergent phenomena. Therefore, in order to further improve the quality and credibility of the model, optimization and enhancement can be carried out at the individual level.

Individuals in artificial social systems differ from the homogeneous numerical computing units in traditional statistical models [26]; instead, they are endowed with many heterogeneous attribute features and behavioral patterns. Due to this heterogeneity, modeling requires not only assigning unique individual characteristics, social attributes, and behavioral rules to each agent but also ensuring that each individual can make decisions based on the system's optimal strategy and its own experience. However, in current artificial society models, most individuals still behave as passively responsive entities driven by rules. In fact, individuals are neither completely unconscious nor lacking in initiative; on the contrary, they play a key role in the evolution of the system. In recent years, some studies have improved the modeling quality of individual agents by introducing learning algorithms at the individual level, thereby promoting the development and application of multiagent systems. Although learning algorithms have played an important role in enhancing agent modeling quality, the most critical issue lies in the neglect of memory's important role in agent model construction. Memory enables individuals to fully utilize a broader range of historical information in the decision-making process, enhances their perception of longterm trends and environmental changes, equips agents with more comprehensive decision-making capabilities, improves their responsiveness to complex systems, and thereby enhances the adaptability and robustness of agents.

II. BACKGROUND AND MOTIVATION

A. Development process of artificial society modeling

In the early stage of artificial society modeling development, the core modeling method was agent-based modeling and simulation, which is also the main research approach of complex adaptive systems theory [27]. Among them, the construction of individual agent models has always been the focus of research and serves as the foundation of model building. In the early studies, Michael Wooldridge and others [28] systematically elaborated the basic theoretical framework of agents and proposed the BDI (Belief-Desire-Intention) model, which defines the three elements of belief, desire, and intention for agents. This became a classical paradigm in early individual agent modeling research and promoted the evolution of rule-based agents toward learning agents. Subsequently, Bandura and others [29] proposed the concept of observational learning. Their research suggested that agent learning relies not only on direct experience (such as the stimulus-response pattern emphasized by behaviorist psychology) but also on observing the behavior of others, known as observational learning (or imitation learning). They further proposed four key processes of observational learning: attention, retention, reproduction, and motivation.

With the rapid advancement of technology, especially the continuous breakthroughs in the fields of artificial intelligence and machine learning, individual agent models have gradually integrated more advanced algorithms to simulate more complex and realistic social phenomena. These modeling approaches have not only played an important role in theoretical research but have also been widely applied in several key areas such as public policy making, urban planning, economic forecasting, and environmental management. By simulating potential social dynamics and their possible outcomes, these models provide decision-makers with deeper insights and more scientific support, laying the foundation for solving complex problems in the real world. Ho et al. [30] introduced Generative Adversarial Networks (GAN) into imitation learning. using a discriminator to perform behavioral cloning without an explicit reward function, thereby addressing the state distribution shift problem in traditional behavioral cloning. Littman et al. [31] were the first to provide a rigorous mathematical framework for multi-agent reinforcement learning, which has become a general paradigm for subsequent research.

With the development of Large Language Models (LLMs), an increasing number of studies have begun to adopt LLMs as core controllers to construct individual agent models, aiming to achieve key aspects of human intelligence such as contextual learning, continual learning, and complex reasoning [32], [33]. Artificial societies built on LLMs exhibit characteristics highly similar to real-world social systems at multiple levels, including organizational collaboration, rational competition, information dissemination, and group emergence [34]. For example, in the field of multi-agent collaboration, CAMEL [35] realizes task decomposition and efficient cooperation through role-playing; AutoGen [36] enables dialogue and task coordination among multiple agents via custom-defined agents; AgentVerse [37] provides functions for dynamically adjusting agent architectures and allows the composition of multiple agents into cooperative groups; Park et al. [38] developed a generative agent that reproduces social behaviors similar to those in "The Sims" by simulating memory functions, thereby endowing agents with stronger interaction and adaptability. Although LLM-based agents demonstrate significant advantages in terms of intelligence, their application in artificial society modeling still faces certain limitations. A typical issue is the "hallucination" phenomenon, where LLM-agents may generate knowledge content beyond their role settings or task contexts. In terms of interaction mechanisms, LLM-agents primarily rely on natural language, which presents some inadequacies when simulating complex social dynamics such as cultural transmission and group behavior. In contrast, traditional agent-based modeling often simulates social dynamics through the transmission of state vectors and explicit rule settings, which can more effectively capture the interaction relationships among micro-level individuals. In addition, LLM-agents usually require substantial computational resources during execution, and when performing large-scale simulations, their efficiency is often lower than that of models built using learning algorithms, which are more efficient and

controllable in operation.

In the research of individual agent modeling techniques, there are also related studies that incorporate memory as an important module in the model to optimize its adaptability in dynamic environments. Graves et al. [39] proposed a new computational model that combines neural networks with external memory, enabling neural networks to read from and write to external storage, thereby enhancing their memory and computational capabilities. Long Short-Term Memory (LSTM) networks in reinforcement learning also selectively memorize sequential information through gating mechanisms to address the long-term dependency problem of Recurrent Neural Networks (RNNs). Park et al. [38] constructed a memory stream module in the virtual town of "Smallville" to record all experiences of agents in natural language and retrieve them based on three indicators: relevance, importance, and novelty. Piao et al. [40] endowed agents with memory storage and retrieval capabilities by fine-tuning pretrained LLMs, allowing individuals to adjust their behavioral strategies based on historical experiences, such as evaluating social influence in information dissemination decisions.

B. Motivation

At present, in the research on individual agent model construction techniques, the importance of memory mechanisms is often overlooked. Although some studies have considered the role of memory in agent modeling, the modeling approaches adopted are generally simplified, mostly focusing on constructing either individual memory or collective memory, with relatively little attention paid to the relationship between the two. In particular, there is a lack of systematic research on how to extract useful experiences from individual memory to form collective experience. In LLM-based agent models, the absence of long-term memory mechanisms is especially prominent. Due to the lack of structured long-term memory modules, such models face significant challenges in knowledge maintenance and management, especially during the knowledge updating process, where the problem of "catastrophic forgetting" often arises [41], [42], that is, the introduction of new knowledge may unintentionally erase or overwrite previously accumulated key knowledge.

This study focuses on how to effectively model memory mechanisms to achieve collaborative decision-making between memory and learning, thereby improving the modeling quality of individual agents. When constructing an individual agent model, it is necessary not only to design the agent's basic static features (such as individual attributes and social attributes) but also to further define advanced behavioral rules, such as perception capability, learning mechanism, memory mechanism, decision-making mechanism, and behavioral patterns. These advanced behavioral rules are the core mechanisms through which agents continuously evolve and acquire adaptability within the system. However, current models ignore the important role of memory in the evolution of individuals, and the collaborative construction of individual agent models through memory and learning mechanisms provides a framework that

better aligns with the decision-making characteristics of individuals in the real world. Existing research on memory modeling mainly focuses on the memory of a single agent, with limited attention to collective memory in multi-agent systems, neglecting the important role of collective memory in information sharing and knowledge accumulation. In addition, most existing memory modeling adopts static methods and lacks dynamic updating mechanisms, which may lead to excessively redundant memory information and affect the efficiency and quality of information retrieval. Therefore, constructing efficient individual agent models still faces many challenges, mainly including: 1) how to construct agent memory sets that can be dynamically updated to adapt to environmental changes and improve decision-making flexibility; 2) how to establish a connection mechanism between individual memory and collective memory to achieve knowledge and experience sharing and dissemination; 3) how to effectively coordinate memory and learning mechanisms to optimize the decision-making ability of agents and improve overall system performance.

III. THE FRAMEWORK OF IMPROVED INDIVIDUAL AGENT MODEL

In artificial society modeling, the agent model at the individual level serves as the foundation for constructing the overall model, as it directly affects the reliability of the model and its ability to reproduce social phenomena. Effective agent modeling helps simulate and understand behavior at the microscopic level and reveals the decision-making processes and interaction rules of agents. The behavior of agents is influenced by multiple factors such as their attributes, historical background, and social environment. Therefore, simple assumptions (e.g., all agents are rational and follow the same rules) often fail to accurately reflect the complexity and dynamic changes of real societies, while the heterogeneity of agents and differences in their decision-making rules often lead to different global emergent phenomena. Hence, in artificial society modeling, the construction of individual agent models is crucial, as it can significantly influence agent behavior patterns and their adaptability to the environment.

A. Overall structure of the model

Artificial society modeling adopts a bottom-up modeling approach, in which the characteristics and behaviors of agents serve as the foundation. The behaviors and interactions of agents drive the evolution of the entire system. Based on the traditional approach of constructing individual agent models through learning mechanisms, this paper innovatively integrates memory mechanisms with learning mechanisms to further optimize the modeling technique of individual agents, enabling them to continuously optimize decision-making by combining contextual knowledge in dynamically changing complex environments, thereby exhibiting anthropomorphic characteristics.

In the modeling process, how to select and abstract individuals from the social system into agents in a complex system involves two key issues that need to be carefully considered: 1) the abstraction granularity of microscopic individuals: the abstracted agents need to strike a balance between the level of abstraction and granularity, retaining the essential characteristics of individuals while removing details irrelevant to modeling. Different abstraction methods may lead to different categories of agents; 2) the heterogeneity of microscopic individuals: multiple types of agents may exist in the system, and agents can be either homogeneous or heterogeneous. Therefore, during modeling, it is necessary to generalize homogeneous agents and differentiate heterogeneous agents.

The abstracted agent itself is also a complex system, with its own behavioral rules and objectives, and it can continuously learn and adjust its behavioral rules based on changes in internal states and external environments. The agent gradually approaches and achieves its predefined goals through continuous adjustment of behavioral rules and decision-making. The overall structure of the individual agent model based on memory-learning collaboration proposed in this paper is shown in Fig. 2. In this structure, the continuous flow of information organically connects each component to form a unified whole. The specific expression of the agent model is given in (1).

$$Agent = \langle R, S_t, E_t, Y_t, A_t, M_t, N \rangle \tag{1}$$

where R represents the static characteristics of the agent, which do not change over time, such as movement speed, gender, etc.; S_t represents the dynamic characteristics of the agent, which vary over time, such as the role or age of the agent; E_t is the set of external events perceived by the agent, which may come from the environment or other agents and, once received as observed information, may influence the agent's behaviors and decisions; Y_t is the decision-making mechanism adopted by the agent in response to external perceptions, stimuli, or during interactions with other agents; A_t is the set of agent behaviors, including behaviors taken under external stimuli as well as spontaneously generated behaviors; M_t is the set of memories accumulated by the agent, including both long-term and short-term memory; N represents the constraints imposed on the agent, including environmental constraints and goal constraints.

In complex systems, once individuals are abstracted and the structure of the agent is defined, the next step is to consider how to enable the agent to adapt to continuously changing environments through evolution and development. As experience accumulates, agents continuously adjust their behaviors. According to the level of agent awareness (rationality), learning strategies can be divided into unconscious learning, imitation learning, and belief-based learning. In the individual agent model based on memory–learning collaboration proposed in this paper, the agent can continuously improve its adaptability by combining its own experience with the experiences of other agents. Based on the previously defined state, perception, memory, behavior, and decision, the expression of the agent behavior pattern is given in (2).

$$R \times S_t \times Y_t \times M_t \to A_t \times S_t$$
 (2)

In this behavior pattern, the agent generates the next action plan under the guidance of behavioral rules by integrating its own state with perceived information and referring to its accumulated memory set, thereby updating its state. In this behavior set, each action A_t can be represented by a triplet, as defined in (3).

$$A_t = \langle S_{start}^t, O_p, S_{end}^t \rangle \tag{3}$$

where $S_s tart^t$ denotes the initial state, $S_e nd^t$ denotes the final state, and O_p denotes the state transition function.

B. Modeling memory mechanisms

The source of memory data is a key component in constructing the memory storage model and directly affects the quality of data in the memory repository. The sources of memory data can be summarized as the agent itself, other agents, and external knowledge bases. Agents continuously accumulate experience through interactions with the environment or other agents, and this experience can be used to optimize their behavioral strategies, thereby improving adaptability and decision-making capability. Meanwhile, when an informationsharing mechanism exists among agents, an agent can learn from the successful experiences of others, thus enhancing the overall system's coordination efficiency and learning ability. In addition, the rich domain knowledge and mature experience contained in external knowledge bases can also serve as important sources of memory data, providing additional informational support for the agent. These data sources interact with each other and collectively constitute the core content of the memory repository, providing critical support for the agent's learning, reasoning, and decision-making.

When constructing the memory storage model, this section divides the memory storage structure into three sets to better organize and manage the information in the memory model, thereby improving memory storage and retrieval efficiency. The three types of memory storage sets are as follows:

- (1) Individual Memory Set: The individual memory set stores memory information unique to a single agent, including the experiences and knowledge it has accumulated through interactions with the environment and other agents. These memories typically involve recent events experienced by the agent, environmental states, decision-making processes, and the outcomes of those decisions.
- (2) Collective Memory Set: The collective memory set stores information shared by all agents in the system, i.e., the collective knowledge base. Compared to individual memory, collective memory focuses more on collaboration and knowledge integration among agents, containing experiences, rules, and patterns contributed by different agents. This sharing mechanism promotes knowledge dissemination and reuse, thereby enhancing the overall intelligence level of the agent population.
- (3) Memory Buffer Pool: The memory buffer pool is a dynamic storage area mainly used to temporarily store key information experienced by agents over short periods and, under appropriate conditions, select memory items to integrate

into the collective memory set. Since agent systems generate a large amount of short-term memory during operation, and such information may not always have long-term value, the memory buffer pool plays a role in information filtering and management.

The agent's local observation information and its executed actions constitute important components of a memory item, and this information collectively reflects the agent's perception and decision-making process under a specific environmental state. After a new memory item is generated, it is first stored in the individual memory structure and the memory buffer pool, so that it can be filtered and integrated during the subsequent process of group experience dissemination and strategy optimization. Equations (4) and (5) present the mathematical description of the storage process.

$$M_t^i = m_t^i \cup M_{t-1}^i \tag{4}$$

$$M_t^{buffer} = m_t^i \cup M_{t-1}^{buffer} \tag{5}$$

The definition of the new memory item m_t^i is given in (6).

$$m_t^i = \{type, o_{t-1}^i, a_t^i, o_t^i\}$$
 (6)

The information in the memory item includes the memory type, the local observation o_{t-1}^i perceived by the individual at the previous time step, the action a_t^i executed at the current time step, and the local observation o_t^i perceived at the current time step.

When the buffer $M_t^b uffer$ is full, i.e., the memory information of all individuals at the current time step has been completely collected, it is necessary to construct the collective memory based on all the memory information in the buffer. In this process, extracting memory from the memory buffer pool is a key step in the dissemination of group experience. To ensure that high-value information can be effectively transmitted and integrated into the collective memory set, it is necessary to filter and evaluate the memories stored in the buffer pool, avoiding indiscriminate storage of all information and retaining key information as much as possible. The memory evaluation method comprehensively considers two aspects: value error and rarity of the memory. Equation (7) defines the evaluation function.

$$m_{selected} = \left\{ m_i \in M_t^{buffer} \mid |\delta_t| > \theta_{value} \lor R(m_i) > \theta_{rare} \right\}$$
(7)

where:

• δ_t is the value error of the memory item, used to measure the degree of impact that the decision contained in the memory item has on the overall strategy. A larger $|\delta_t|$ indicates a greater influence of the memory item on the strategy, regardless of whether it represents positive experience (promoting strategy optimization) or negative experience (alerting potential errors). The specific calculation formula of δ_t is given in (8):

$$\delta_t = \gamma V(S_{t+1}) - V(S_t) \tag{8}$$

Fig. 2. Overall Structural Diagram of the Individual Agent Model Based on Memory-Learning Collaboration.

Fig. 3. Structural Diagram of the Memory Storage Module.

where V is the state value function used to measure the value of the current state, and γ is the discount factor used to determine the importance of future value in the current decision.

 R(m_i) is the rarity evaluation metric of the memory item, used to measure whether similar experiences exist in the current system. A higher rarity indicates that the memory item is more unique within the collective memory set and may contain new decision-making patterns or previously unseen environmental feedback, thus providing high reference value for strategy optimization. During the process of experience extraction and storage, ensuring that a certain proportion of high-rarity memories are retained helps improve the diversity and adaptability of strategies and prevents the model from falling into local optima. The specific calculation formula is given in (9):

$$R(m_i) = \min_{m_j \in M_t^{share}} ||m_i - m_j||$$
 (9)

• θ_{value} and θ_{rare} are the value error threshold and the rarity threshold, respectively.

To avoid problems such as increased storage pressure, decreased query efficiency, and reduced learning speed caused by the continuous accumulation of memory items, it is necessary to prune the memory set to ensure the rational use of storage space and improve the learning efficiency of the model. The pruning strategy filters and removes low-value or redundant memory items so that the collective memory can remain efficient and representative. The mathematical description of the pruning process is given in (10):

$$M_{t+1} = f_{update}(M_t, k) \tag{10}$$

where k is the memory length threshold, and the update process can be based on one or more of δ_t , $R(m_i)$, the number of times the memory is used, the success rate of use, and the decay factor. Specific pruning strategies can be adjusted according to task requirements to balance storage efficiency and learning performance.

C. Adaptive learning mechanism

In the individual agent model based on memory-learning collaboration constructed in this paper, the learning mechanism enables agents to adjust their behaviors and strategies based on external stimuli or internal feedback, while the memory mechanism allows agents to optimize decision-making by storing and recalling past experiences. However, in different learning paradigms, the adaptability between memory and learning, as well as their collaborative modes, vary. The following section analyzes the compatibility of current major learning mechanisms with memory mechanisms and how they work together:

(1) Evolutionary Learning

Evolutionary learning is a learning method based on natural selection, usually involving processes such as mutation, selection, crossover, and inheritance among agents in a population. Its goal is to gradually optimize the adaptability of agents through multiple generations of evolution or to find the strategy best suited to the current environment. The core of evolutionary learning lies in the intergenerational transmission of genetic information, and the evolutionary process focuses on improving agent adaptability through natural selection. In evolutionary learning, agent decisions are usually based on the current environment and genetic information (i.e., "gene" features), rather than on historical experience or memory. Therefore, the main driving force of the evolutionary learning mechanism is genetic mutation and selection rather than the accumulation of past experience. In view of this, the contribution of memory mechanisms to evolutionary learning is limited, and the combination of the two is not considered in the subsequent modeling in this paper.

(2) Imitation Learning

Imitation learning is a mechanism based on social learning, in which agents learn how to make decisions by observing and imitating the behaviors of others. In imitation learning, memory plays an important role, as agents need to store observed behavior patterns and their outcomes for imitation at appropriate times. Agents can adjust their imitation strategies based on previous observation experiences. Through memory, agents can gradually optimize behavior selection, making imitation learning an adaptive process. In social environments, imitation learning not only relies on the behavioral decisions of other agents but can also be enhanced through memory sharing among agents. For example, the successful experiences of certain agents may spread within the group, and other agents improve their adaptability by imitating these successful behaviors. This sharing and dissemination of memory accelerates the group learning process and enhances the overall adaptability of the group.

(3) Reinforcement Learning

Reinforcement learning is a learning method based on rewards and punishments, in which agents continuously adjust their behavioral strategies through interaction with the environment to maximize long-term returns. The core of reinforcement learning lies in the updating of the value function, that is, agents update their evaluation of behaviors based on reward signals. In this process, the memory mechanism plays a key role, as agents need to remember previous states, actions, and their outcomes to use this historical information in subsequent decisions. The memory mechanism allows reinforcement learning to not only rely on current reward signals but also optimize future behavior choices by combining past experiences. For example, in certain long-term decision-making tasks, agents need to remember past behaviors and understand their impact on future outcomes.

(4) Large Language Models

Agents constructed using large language models rely on learning statistical patterns and semantic structures in language from large-scale corpora, thereby gaining the ability to understand, generate, reason with, and execute tasks using natural language. During task execution, agents analyze and process language input to achieve task decomposition, planning, and continuous action. Although such agents exhibit strong flexibility and generalization capabilities, especially in handling complex language-dominant tasks, their underlying models rely on context windows of limited length for shortterm information processing, and they inherently lack stable and persistent long-term memory mechanisms. Therefore, introducing memory mechanisms into LLM-based agent systems not only helps maintain consistency between task context and behavior but also provides key support for achieving stronger adaptability and human-like intelligence.

D. Collaborative decision-making module

The introduction of a memory mechanism enables agents to store, retrieve, and utilize historical experiences, thereby improving the rationality and stability of decision-making. However, relying solely on memory may cause agents to become overly dependent on past experiences, limiting their ability to adapt to new environments; whereas relying only on learning may lead to slower convergence and insufficient utilization of accumulated knowledge. This section focuses on the collaborative decision-making mechanism between memory and learning, specifically addressing how to extract valuable information from the memory pool and how to dynamically adjust strategies by integrating learning mechanisms, enabling agents to both draw on historical experience and flexibly adapt to new environments, thus achieving better decision-making capabilities in complex environments. Within this framework, the learning mechanism is responsible for generating optimal decisions under the current state, while the collective memory model extracts historical experience from the group to assist individual decision-making. Based on this idea, this section proposes a memory-learning collaborative decision-making

model, and the specific process of the model is shown in Fig. 4.

When generating the final decision a_t^i , the agent integrates the collective memory $M_t^s hare$ and its own decision-making mechanism to fully utilize both historical experience and individual learning capability. The collective memory $M_t^s hare$, serving as a source of global information, aggregates the experiences of multiple agents at different time steps and provides global reference. The specific mathematical description of the decision-making process is given in (11):

$$a_t^i = \begin{cases} a_{memory}, & ifC_{memory} > \theta_{memory} \\ a_{learning}, & otherwise \end{cases}$$
 (11)

where C_memory is the credibility of memory experience, which is an important indicator to assess whether the stored memory is applicable to the current decision. Since the effectiveness of historical experience changes over time and is influenced by environmental similarity and the payoff of past decisions, it is necessary to filter and weight different memory items when using collective memory for decision-making, to ensure that the experiences referenced by the agent are the most valuable. The calculation of C_memory is mainly based on three core elements, and its specific formula is given in (12):

$$C_{memory} = \omega_1 S_{env} + \omega_2 S_{success} + \omega_3 \lambda^{t-t_0}$$
 (12)

where:

- S_env (environmental similarity): measures the degree of matching between the current state and historical memory, with a value range of [0,1]. The calculation of environmental similarity can adopt methods such as cosine similarity or Euclidean distance to ensure that the agent refers only to historical experiences highly relevant to the current environment.
- S_success (positive reward ratio): represents the proportion of positive outcomes resulting from the same decision in the past, with a range of [0,1]. This indicator reflects whether the memory item has contributed to effective decisions in the past; the higher the success rate, the more valuable the experience is for the current decision.
- λ^{t-t_0} represents the decay degree of memory, where λ is the decay factor, and $t-t_0$ denotes the time span between the current moment and when the memory was recorded. This term is used to reduce the influence of outdated experiences and ensure that the agent gives priority to more recent and timely knowledge.
- ω_1 , ω_2 , and ω_3 are weight parameters representing the weights of environmental similarity, positive reward ratio, and memory decay term, respectively. They must satisfy the constraint: $\omega_1 + \omega_2 + \omega_3 = 1$. These weights can be adjusted according to specific tasks to balance the influence of different factors in the decision-making process. For example, in rapidly changing environments, the weight ω_3 can be increased so that the agent prefers more recent experiences; in stable environments, the

weights ω_1 and ω_2 can be increased to make full use of successful historical experiences.

After an individual makes a decision, the related information is stored in the memory buffer pool, which is used not only to optimize future decision-making processes but also to provide data support for the construction of collective memory. This mechanism enables agents to continuously optimize their behavior through the ongoing accumulation of experience, thereby forming a dynamic closed loop of learning and decision-making. Based on this, the system establishes a cyclic feedback mechanism between individual behavior and decision-making, as well as between individual behavior and learning strategies. Individual behavior is the result of the collaboration between memory and learning, and the generation of behavior not only updates the information in the memory set but also further optimizes individual decisionmaking. Through these two feedback mechanisms, individuals can enhance short-term decision-making capabilities using learning strategies and continuously optimize long-term decision frameworks with the help of memory mechanisms.

IV. CASE STUDY: URBAN INSTANT DELIVERY SYSTEM

To verify the effectiveness of the individual agent modeling framework based on memory-learning collaboration proposed in this paper, an experimental system was established in a specific experimental scenario. This paper selects the ondemand delivery system in modern service systems as the experimental scenario, due to its high dynamism and uncertainty. Delivery tasks are usually accompanied by multiple constraints, requiring agents to possess real-time decisionmaking capabilities and environmental adaptability. In addition, this system naturally exhibits characteristics such as distributed decision-making, complex interactions, and multi-task processing, which can fully simulate the behavioral patterns of individual agents in complex social environments. This complexity helps to deeply analyze the performance of agents in handling multiple tasks and constraints under the support of memory and learning mechanisms, thereby evaluating the advantages and disadvantages of different agent modeling strategies. Meanwhile, the on-demand delivery system, as a typical real-world application scenario, is representative, and its modeling approach and experimental results can be extended and applied to other multi-agent systems with similar characteristics, such as urban traffic scheduling, emergency response, and logistics management.

A. Construction of an Artificial Society

Through in-depth analysis of the on-demand delivery system, this paper abstracts the active entities in the system into three types of agents: Order Agent, Platform Agent, and Delivery Agent. The Order Agent is the core resource of the system and is managed and scheduled by the Platform Agent. As the central link between Order Agents and Delivery Agents, the Platform Agent is responsible for task allocation and information transmission. The Delivery Agent is responsible for actual delivery tasks, with its main activities including

Fig. 4. Diagram of the Agent Decision-Making Process Based on Memory-Learning Collaboration.

path planning, task execution, self-evolution, and interactive feedback.

(1) Order Agent In this system, the order is the core resource and serves as a critical hub for coordinating operations across all components. Each order is not only a manifestation of user demand but also contains all key information required for delivery, such as delivery address, order value, and order status. The generation of an order marks the starting point of the delivery process and directly influences the scheduling and operational state of the Delivery Agent. It also determines the workflows and task distribution among various types of agents in the system, including Platform Agents and Delivery Agents. The attribute definition of the Order Agent is as follows:

$$\begin{aligned} \text{Agent}_{\text{user}} &= \langle \text{ID}, \ (x_{\text{start}}, y_{\text{start}}), \ (x_{\text{end}}, y_{\text{end}}), \ \text{Status}, \\ & \text{Value}, \ T_{\text{start}}, \ T_{\text{alive}}, \ G_n() \rangle \end{aligned}$$

- *ID*: the identifier of the order, which uniquely distinguishes each order.
- (x_{start}, y_{start}) : the starting location of the order, with the coordinates constrained within the valid range of the system map.
- (x_{end}, y_{end}): the destination location of the order, with the coordinates constrained within the valid range of the system map.
- Status: the status of the order, indicating its current state in the system, which can be categorized as alive, dead, or captured.

- Value: the value of the order, which is related to the distance between the starting and destination points as well as the order generation time.
- T_{start}: the time the order is generated, represented in 24-hour format.
- T_{alive}: the lifespan of the order; orders do not remain in the system indefinitely and will become dead once the lifespan is exceeded.
- Gn(): the order generation function, which controls the number of orders generated over time; all orders are generated by this function.

In the constructed artificial society, a 24-hour system is adopted to align the simulation time with real-world characteristics, with a distinction made between daytime and nighttime. The value of an order is mainly influenced by two factors: the distance between the order's starting and ending points, and the time at which the order is generated. The specific calculation formula for order value is given in (13):

$$Value = distance((x_{start}, y_{start}), (x_{end}, y_{end})) \times \xi_{time}$$
(13)

where distance() represents the actual distance obtained from the path planning results, and ξ_{time} is the time weight coefficient. When the order is generated between 08:00 and 22:00, the weight is set to 1; for other times, which are considered nighttime working hours, the weight is set to 1.5 in order to incentivize agents to work at night and to prevent a large number of nighttime orders from expiring.

To better simulate the distribution of order generation in the

Fig. 5. Data Generation Methods for Computational Experiments.

real world, there are various methods for generating datasets in computational experiments, which can be mainly divided into two categories: resampling methods and Monte Carlo methods. The specific generation method is shown in Fig. 5. This section adopts the Monte Carlo simulation method to simulate the order generation process. Web crawler technology is used to collect relevant order review information from the ZBJ.com, and the review time is taken as the service completion time. The obtained data is cleaned and categorized, and the order generation pattern is fitted according to the chronological order. A fifth-order Gaussian function is used as the order generation function, and the specific function is given in (14):

$$Gn(x) = \sum_{i=1}^{5} a_i e^{\left(-\left(\frac{x-b_i}{c_i}\right)^2\right)}$$
 (14)

The values of a_i , b_i , and c_i are shown in Table 1.

TABLE I ORDER GENERATION FUNCTION PARAMETERS

	1	2	3	4	5
a_i	314.2	188.3	95.56	22.9	48.67
b_i	172.5	281.5	315.5	228.9	267.1
c_{i}	4.645	1.559	10.69	167.7	13.1

(2) Platform Agent As the coordinator and manager, the Platform Agent mainly undertakes key responsibilities such as resource scheduling, task allocation, and task information management. In the artificial society model constructed in this section, the core function of the Platform Agent is to effectively allocate and schedule order resources in the system. Suppose there is an order set $O = \{o_1, o_2, \ldots, o_m\}$ and a set of idle Delivery Agents $D = \{d_1, d_2, \ldots, d_n\}$, the objective of task allocation is to minimize the total system cost, which is expressed by the Equation (15).

$$cost = \sum_{i=1}^{m} \sum_{i=1}^{n} c_{ij}$$
 (15)

where $c_i j$ is the cost of assigning order o_i to Delivery Agent d_j , and the cost is measured by the distance from the current

location of the agent to the starting point of the order. By minimizing cost, the efficiency of order delivery can be effectively improved, response time can be shortened, and the consumption of order resources due to timeout in the system can be reduced.

In addition to task allocation, another important function of the Platform Agent is order information management. When an order is generated, the Platform Agent needs to promptly add the new order to the order set so that it can be allocated in subsequent iterations; when an order is assigned to a specific Delivery Agent, its status must be tracked, and the order should be removed from the unassigned set; after the delivery is completed, the order should be removed from the set, and the agent that performed the task should receive an appropriate reward; if the order is not completed within the time limit and expires, the Platform Agent must remove the expired order from the order set in a timely manner to prevent it from being received by any Delivery Agent, thus ensuring the system operates accurately and efficiently.

(3) Delivery Agent The Delivery Agent is the entity in the system that possesses intelligent behavior. By definition, the attributes of a Delivery Agent can be represented as Equation (16).

$$Agent_{Deliver} = \langle R, S_t, E_t, M_t, Y_t, A_t, N \rangle$$
 (16)

- R refers to the static attributes of the Delivery Agent, also known as characteristic attributes, which describe the features that do not change over time. The main static attributes are shown in Table 2.
- S_t refers to the dynamic attributes of the Delivery Agent, which change continuously with the agent's adaptive behavior. By adjusting these attributes, the agent can improve its adaptability. The main dynamic attributes of the Delivery Agent are shown in Table 3.
- E_t refers to the perceptual attributes of the Delivery Agent, and the agent's perception ability affects its decision-making process. The agent's perception is mainly reflected in two aspects: perceiving information

TABLE II STATIC ATTRIBUTES OF DELIVERY AGENTS

Static Attribute	Description
ID	Unique identifier assigned to each delivery agent in the system
speed	Maximum distance an agent can move per step; fixed value is 10
scope	Vision range; fixed maximum distance is $10 \times speed$
cost	Survival cost; fixed cost per step is 10, positively related to speed
type	Learning type; supports rule-based, imitation, and reinforcement learning

TABLE III
DYNAMIC ATTRIBUTES OF DELIVERY AGENTS

Dynamic Attribute	Description
location	Initial position where an agent starts receiving orders; randomly assigned on the map at initialization
time _{working}	Working hours; defines time period during which the agent accepts orders; initialized as a continuous random 8-hour period
region _{working}	Preferred working region; indicates areas where the agent prefers to receive orders during work- ing time
status	Status of the agent: 0 for inactive, 1 for idle, 2 for delivering
earning	Accumulated revenue, increases as the agent operates over time

about other agents in the system and perceiving environmental information. The main perceptual attributes are shown in Table 4.

TABLE IV
PERCEPTUAL ATTRIBUTES OF DELIVERY AGENTS

Perceptual Attribute	Description
Perception of Other Agents	The agent can perceive other encountered agents and exchange information with them
Perception of Environment	The agent can perceive environmental changes, including weather, traffic, and time
Perception of Orders	The agent can perceive orders within its visual range and decide whether to accept them

• M_t refers to the individual memory model of the Delivery Agent, in which the real events experienced by the agent are stored. The individual memory model not only provides contextual information for the agent but also serves as an important component in the construction of collective memory. In the on-demand delivery system modeled in this section, memory types include both long-term memory and short-term memory. Long-term memory represents the long-term goals of the Delivery Agent and serves as the agent's long-term pursuit during system evolution. In system design, different agents can be assigned different long-term memory objectives; for example, some agents may pursue maximum profit, while others may pursue maximum comfort, thereby ensuring heterogeneity among agents. To explore the impact of the combination of memory and learning mechanisms on individual evolution, all agents in this system are uniformly assigned the long-term memory objective of maximizing profit. Short-term memory refers to the collection of events experienced by the agent, which gradually decays over time and is eventually eliminated through the pruning module. The main memory attributes are shown in Table 5.

TABLE V INDIVIDUAL MEMORY ATTRIBUTES OF DELIVERY AGENTS

Memory Attribute	Description
memory _{type}	Type of memory, including long-term and short-term memory
event _{type}	Type of events, mainly including delivery events, weather events, and traffic events
$memory_{long}$	Long-term memory, uniformly set for max- imizing reward
memory _{short}	Short-term memory, records individual ex- periences. Data structure includes: [time, current location, current state, current per- ception, action, reward, and post-transition
λ	perception] Memory decay coefficient, set to 0.9. When memory decays below 0.1, it is discarded. Effective duration is 22 days

At each time step, the memory items of the individual are stored in the memory buffer pool. The information entries stored in the buffer pool are consistent with the individual's memory entries. At the end of each time step, the memory information in the buffer pool is extracted to become part of the collective memory set. The parameters and related function settings involved in the extraction process are shown in Table 6. Among them, L_best denotes the optimal path length, L_rest denotes the remaining path length, L_past denotes the traversed path length, and $N_{orders}(scope)$ represents the number of orders within the perception range. The memory pruning process scores all memory items, and the top k memory items are retained based on the scoring results. The specific scoring function is given in (17).

$$score(m_i) = |\delta_t| + S_{success} + \lambda^{t-t_0}$$
 (17)

TABLE VI PARAMETERS FOR COLLECTIVE MEMORY CONSTRUCTION

Parameter/Function	Value or Definition
V	$V = \frac{L_{ ext{best}}}{L_{ ext{rest}} + L_{ ext{past}}} imes (ext{status}_t - ext{status}_{t-1}) +$
	$\frac{N_{\text{orders}}(\text{scope})}{\text{scope}^2}$
γ	0.8
$\stackrel{\cdot}{R}$	$R(m_i) = \min_{m_j \in M_t^{ ext{share}}} \ m_i - m_j\ $
	$m_j \in M_t^{\text{snate}}$
$ heta_{ m value}$	0.9
$ heta_{ m rare}$	0.6
k	4000

Y_t refers to the decision-making mechanism of the Delivery Agent, which is formed by the combined effect of the learning-based decision and the memory-based decision.

In this system, the modeling of the individual learning mechanism includes three approaches: rule-based, imitation learning, and reinforcement learning. Under the rule-based mechanism, the Delivery Agent does not possess learning ability, and its dynamic attributes remain unchanged during the system evolution process. Its main task is to complete the orders assigned by the Platform Agent and perform random walks in the environment. Imitation learning adopts the Behavior Cloning algorithm, while reinforcement learning adopts the Q-Learning algorithm.

The credibility of memory determines the manner in which behaviors are adopted. The parameter θ_{memory} is initialized to 0.7. When the credibility of a memory exceeds this threshold, the associated behavior can be selected. The function for memory credibility is defined as (18):

$$C_{memory} = 0.6S_{env} + 0.2S_{success} + 0.2\lambda^{t-t_0}$$
 (18)

- A_t refers to the behavioral attributes of the Delivery Agent, which determine the various actions the agent can perform during the system evolution process. In this system, the Delivery Agent is mainly assigned the following behavioral attributes: 1) Order acceptance: accepting delivery orders and completing the pickup and delivery process according to the specified route; 2) Voluntary rest: the Delivery Agent can autonomously choose when to start accepting and delivering orders, but the total working time must not exceed one-third of an evolution day; 3) Movement direction: when the agent is delivering an order or roaming the system without an order, it will determine its direction of movement based on its memory and decision-making mechanism to ensure timely delivery or to reach areas where orders are likely to appear; 4) Order acceptance location: the Delivery Agent can freely choose its starting location for accepting orders after resting, in order to receive new orders as quickly as possible.
- N represents the constraints imposed on the Delivery Agent, which may originate from the environment or from other agents. Currently, the system imposes the following constraints on Delivery Agents: 1) Reachable area: the movement range of the Delivery Agent is limited by the boundaries of the environment and the agent is allowed to travel only on designated roads; 2) Working time: the maximum working duration of the agent must not exceed one-third of a natural day during system evolution; 3) Order reception visibility constraint: the Delivery Agent can only accept orders within its perception range, and orders beyond this range are considered invalid; 4) Imitation visibility constraint: the target of imitation must be located at the same position as the Delivery Agent to enable information exchange, otherwise imitation cannot occur; 5) Dynamic attribute change constraint: the dynamic attributes of the Delivery Agent cannot be changed frequently and may be adjusted at most twice within a

natural day of evolution. These constraints ensure that the behavior of the Delivery Agent aligns with the overall requirements of the system; 6) Congestion constraint: when a certain road segment in the system becomes congested, that segment will temporarily be impassable, and the agent may choose to take a detour or wait for a certain period before proceeding.

B. Experiment Evaluation of Social System

This section aims to validate the effectiveness of the individual agent model based on memory-learning collaboration proposed in this paper and to answer the following two research questions (RQ) through experiments:

RQ1: In the study of individual agent modeling techniques, how do commonly used agents constructed based on learning algorithms and large language models differ in their performance within the system?

RQ2: Compared with existing memory models, how does the proposed memory model perform in enhancing the anthropomorphic characteristics of agents and enabling high-quality decision-making within the system?

1) Initialization of computational experiment: The size of the experimental environment is 786 in length and 890 in width, and the map is divided into four subregions, each with a length of 186 and a width of 212. The underlying modeling of the map adopts a two-dimensional grid representation, and all positions on the map can be represented using two-dimensional coordinates. The basic parameter settings of the experiment are shown in Table 7.

TABLE VII
EXPERIMENTAL CONFIGURATION

System Parameter	Experimental Setting
Environment Size	786×890
Environment Structure	Grid structure; all positions in the environ-
	ment are available and represented by 2D
	coordinates
Number of Agents	400
Time Unit	4 minutes per step
Number of Generations	21600 (equivalent to 60 days in the real system)

To address RQ1, this section selects several representative learning models currently used in the research of individual agent modeling techniques for comparison. The detailed content is as follows:

- Rule-based: The behavior of rule-based agents is controlled by a set of predefined rules, typically using an If-Then logical structure for decision-making. Since their behavior and decision processes are explicit and predictable, they can serve as a baseline model for comparison with other learning models.
- Imitation Learning [43], [44]: Imitation learning agents learn by mimicking the behavior of experts rather than relying on reward signals or environmental feedback. This paper adopts the commonly used Dagger (Dataset Aggregation) algorithm in the field of imitation learning,

- which effectively addresses the distributional shift problem present in traditional imitation learning.
- Reinforcement Learning [45]: Reinforcement learning agents learn how to act through interaction with the environment to maximize long-term cumulative rewards. This section uses the Q-Learning algorithm based on value iteration.
- Large Language Model [37]: Large language model agents serve as core controllers of the agent model by understanding natural language input and generating appropriate natural language output. This section adopts the AgentVerse framework from existing research, with the underlying model being qwen-max-0919 provided by Alibaba Cloud.

To address RQ2, this section selects several representative memory models currently used in the research of individual agent modeling techniques for comparison. The detailed content is as follows:

- Individual Episodic Memory Model [34]: In such models, each agent maintains its own memory information. During the decision-making process, the agent retrieves memory based on relevance, importance, and recency, and selects partially related observations as guidance to adjust its response to the current situation.
- Collective Experience Replay Pool Model [46]: In this
 type of model, the memory information of all agents
 is stored in a replay pool. During the decision-making
 process, the agent retrieves relevant information from the
 experience replay pool as guidance to adjust its behavioral
 strategy.
- 2) Case 1: The impact of different learning mechanisms on the adaptability of agents: The experiment compares four commonly used learning mechanisms in individual agent modeling: rule-based, imitation learning, reinforcement learning, and large language models. By deploying these agents in the constructed on-demand delivery system and allowing them to evolve continuously within the system, the aim is to explore the impact of different learning mechanisms on agent adaptability. Next, this section will analyze the experimental results in detail from both the individual and system levels. Figure 6 shows the specific performance of delivery agents under different learning mechanisms and their impact on system performance.

From the macro-level analysis shown in Fig. 6(a-b), it can be observed that Delivery Agents constructed using learning algorithms exhibit a performance trend of Reinforcement Learning ξ Imitation Learning ξ Rule-based in terms of average individual profit and average number of orders completed per day. Agents based on large language models demonstrate performance similar to Imitation Learning in terms of average daily completed orders, and exhibit a trend of initially lower but eventually surpassing average individual profit compared to Imitation Learning. This phenomenon can be further explained at the micro level through Fig. 6(c), which shows the differences in effective working time of

Fig. 6. Performance and System Impact of Delivery Agents under Different Learning Mechanisms.

agents under different learning mechanisms, reflecting their varying degrees of environmental adaptability. Rule-based agents lack learning capability and execute tasks strictly according to predefined routes, making them unable to adapt to environmental changes. In contrast, Imitation Learning and Reinforcement Learning agents can continuously interact with the environment, optimize decision-making through learning, and enhance adaptability. Imitation Learning uses the DAgger algorithm to improve adaptability by mimicking the decisions of superior agents. Reinforcement Learning continuously optimizes behavior by training the Q-table collaboratively based on the principle of reward maximization, thus adapting to the environment more effectively. Large language model agents make decisions through natural language prompts and improve their decision-making ability and adaptability through multiround language interactions. From a system-level perspective, Fig. 6(d) shows that agents with learning capabilities can optimize decisions through adaptive behavior, resulting in a higher overall order completion rate compared to rule-based agents that lack learning ability.

The experimental results indicate that the learning mechanism plays a critical role in enhancing agent adaptability across various indicators, including agent profit, average number of orders completed per day, average effective working time per day, and system-level order completion rate. However, compared to reinforcement learning agents, imitation learning agents and large language model agents exhibit certain limitations in adaptability. Imitation learning agents rely on the behavioral patterns of expert agents and lack an active exploration mechanism, making it difficult for them to quickly adapt in dynamic environments. Large language model agents lack the capability for long-term dependency and multi-step reasoning when handling continuous decision-making and complex environmental interaction tasks. Additionally, because their decisions are generated through dialogue-based interaction, the

experimental process is prolonged, with most of the time spent waiting for response results, which limits their application in large-scale simulation scenarios. Based on the above experimental analysis, this paper can only conclude the performance differences among agents with different learning mechanisms under the current task-driven experimental scenario, but cannot directly determine whether agents constructed using large language models are superior or inferior to those based on traditional learning algorithms. The differences in task types determine their respective strengths: large language model agents perform well in natural language understanding, general reasoning, zero-shot tasks, and transferability, whereas agents built using traditional learning algorithms are more advantageous in high-frequency interaction, strategy optimization, and feedback-driven tasks.

3) Case 2: The impact of different memory models on agent adaptability: Experiment 2 aims to validate the effectiveness of the proposed memory-learning-based individual agent modeling framework. The specific method involves applying different memory modeling approaches to the Delivery Agents in the system and analyzing their impact on agent adaptability. By assigning different memory models to the agents with various learning mechanisms from Experiment 1, the agents are enabled to integrate both learning and memory mechanisms during the decision-making process. The specific impact of different memory models on agent adaptability is analyzed by comparing the statistical indicators of agents' average daily profit.

Fig. 7. Comparison of Daily Average Rewards of Imitation Learning Agents under Different Memory Models.

Figure 7 shows the average daily profit of Delivery Agents based on imitation learning under the assistance of different memory models. From the boxplot, it can be seen that memory-assisted decision-making effectively improves the agents' average daily profit, among which the proposed MMDM model performs the best. In addition, the line chart reveals that in the model without memory, the agents' average daily profit exhibits significant fluctuations as the system evolves and only recovers after a long period of time. This phenomenon is mainly due to the tendency of agents in imitation learning to mimic the behaviors of high-reward agents during decision-making, which leads to a certain degree of behavioral clustering in the system. Moderate clustering can promote agents to move toward resource-dense areas, thereby improving their profit; however, excessive clustering

may cause rapid depletion of resources in local areas, resulting in a phenomenon of "involution" among agents.

Fig. 8. Comparison of Daily Average Rewards of Reinforcement Learning Agents under Different Memory Models.

Figure 8 shows the average daily profit of Delivery Agents based on reinforcement learning under the assistance of different memory models, including a comparative analysis of line charts and boxplots. As observed from the boxplot, agent profits are improved under memory-assisted decision-making, with the proposed MMDM model demonstrating the best performance. The line chart indicates that in reinforcement learning without memory models, agent profits also exhibit significant fluctuations, but compared to imitation learning, the profit level recovers more quickly. This phenomenon is mainly attributed to the use of the Q-Learning algorithm in the system modeling process, where all agents share the same Q-table during training, leading to convergence in their decision-making mechanisms. However, over time, agents are able to adjust their strategies through continuous trial and error, gradually restoring their profit levels to the original state. In the episodic memory model, although memory data is limited to individual agents, there is no significant "involution" phenomenon among agents, and profits recover quickly after fluctuations. The line chart shows that in both the experience replay pool model and the proposed MMDM model, agent profits do not exhibit significant fluctuations, with only minor variations. Nevertheless, in terms of overall profit levels, the MMDM model performs better.

Fig. 9. Comparison of Daily Average Rewards of Large Language Model Agents under Different Memory Models.

Figure 9 shows the average daily profit of Delivery Agents based on large language models under the assistance of different memory models, including a comparative analysis of line charts and boxplots. From the boxplot, it can be observed

that the introduction of memory mechanisms improves the average daily profit of agents constructed using large language models, with the proposed MMDM model demonstrating the best performance. The line chart shows that in the agent model based on large language models without memory mechanisms, the agent's average daily profit fluctuates significantly during the evolution process and increases in the later stages, but no "involution" phenomenon similar to that observed in imitation learning and reinforcement learning models occurs. This phenomenon is mainly attributed to the fact that agents based on large language models without memory mechanisms rely on the model's built-in short-term context information for decision-making, resulting in greater volatility in the agents' performance under dynamic environments. At the same time, the short-term context allows agents to optimize decisions and improve adaptability to a certain extent during the evolution process. Furthermore, since each agent's context information is independent, excessive competition leading to "involution" does not occur.

After the introduction of the memory mechanism, the fluctuations in agent profit are significantly reduced. In the individual episodic memory model, agents are able to carry more comprehensive contextual information during interactions, resulting in better performance with less variability. In the collective memory buffer pool model, agents can utilize collective memory as contextual information during interactions, thus outperforming the individual episodic memory model. In the proposed MMDM model, high-quality memory information is ensured through the filtering of collective memory, allowing agents to carry only the most valuable context, thereby achieving better adaptability.

Fig. 10. Comparison of Agents' Daily Completed Orders and Effective Working Time under Different Decision Models.

Based on the analysis of agent profit, the internal perspective of the agent is further examined to explore the specific impact of different decision-making models on agent adaptability. Figure 10 presents a comparative analysis of the average number of orders completed per day and effective working time of agents under different decision-making models. As shown in the figure, the introduction of memory mechanisms improves both the agents' average daily order completion and effective working time. Among them, compared to the individual memory model (episodic memory model), the collective memory models (experience replay pool and MMDM model) have a more significant effect on enhancing agent adaptability. Overall, the integration of memory models effectively

strengthens agent adaptability within the system, enabling agents to maintain efficient working states for longer durations and complete more tasks during the system's evolution process.

Through the above analysis, the effectiveness of the proposed individual agent model based on memory-learning collaboration can be verified. Regardless of imitation learning, reinforcement learning, or large language models, the introduction of memory models can significantly enhance agents' adaptability within the system. Compared with reinforcement learning, memory models have a more significant effect on promoting the adaptability of imitation learning agents and large language model agents. This is because the effectiveness of imitation learning depends on the quality of the imitation data source, while historical experiences in the memory set not only broaden the coverage of the imitation data source but also enhance the agent's ability of autonomous exploration. Under the mechanism of large language models, the introduction of the memory mechanism helps mitigate volatility caused by insufficient short-term information, reduces trial-and-error cost and time, and assists agents in making more stable and efficient decisions under similar circumstances. In contrast, reinforcement learning enhances agent adaptability by continuously collecting reward information through trial and error, while the introduction of memory models can reduce invalid exploration of agents in the system and provide valuable experiential references for the free exploration process, thereby accelerating the convergence process.

In addition, different types of memory models exhibit varying effects in enhancing agents' adaptability. The scenario memory model, as an individual memory model, primarily stores an agent's own experiences and can assist the agent in making more effective decisions when encountering similar situations. However, in multi-agent systems, group memory models generally perform better, as they can aggregate experiences from multiple agents, forming a more comprehensive knowledge base that facilitates collaboration and information sharing among agents, thereby improving the adaptability and efficiency of the overall system. The experience replay buffer is a commonly used group memory model in the current learning domain. Based on the classical experience replay buffer model, this paper further optimizes it and proposes the MMDM model. Experimental results validate that this model enables agents to select and utilize historical experiences more efficiently, thus demonstrating superior performance in complex environments.

Based on the overall modeling of the aforementioned artificial society, the general behaviors of agents in the system are abstracted into a perception module, decision-making module, behavior module, memory module, and learning module, which are subsequently applied to scenario construction. Through modular design, the system improves code reusability while reducing development costs and maintenance complexity, thereby enabling more efficient construction and optimization of artificial society models and avoiding redundant work of building systems from scratch each time. In addition, the

system integrates a visual modeling tool that allows intuitive presentation of agent behavior patterns during system evolution, making it possible to clearly observe both micro-level agent decisions and macro-level emergent phenomena. This not only enhances the transparency of system operations but also facilitates deeper exploration of interaction mechanisms and evolutionary patterns in multi-agent systems. The system is widely applicable and can be extended beyond instant delivery systems to multi-agent application scenarios such as autonomous driving, robotic collaboration, and intelligent traffic scheduling.

V. CONCLUSION

In recent years, the rapid development of computational experiments has provided a new perspective for analyzing complex social systems, with artificial society modeling being the first step in conducting such experiments. Through artificial society modeling, complex social systems in the real world can be transformed into computational models, thereby enabling better simulation and observation of the complex evolutionary phenomena of the system. Among them, agent modeling technology serves as the foundation for building effective simulation systems and directly determines the model's capacity to represent and predict complex behaviors in real society. Highquality agent models not only reflect individual behavioral patterns more realistically but also reveal macro-level social phenomena emerging from multi-agent interactions. Individual agent modeling technology focuses on modeling the cognitive mechanisms and behavioral rules of single agents and serves as the micro-level driving force of system evolution. At present, the construction of individual agent models usually relies on learning algorithms or large language models to drive the agents' evolution in the system. However, these methods often overlook the critical role of memory mechanisms in individual agent models and fail to fully consider the hierarchical relationship between individual memory and group memory. Moreover, in many complex social systems, agents are tightly connected and exhibit strong interactions, often forming networked social relationship structures. Group agent modeling focuses more on the interaction relationships, coordination mechanisms, and network structures among multiple agents and serves as a bridge between individual behavior and emergent group phenomena. Group agent models enable the system's evolution to demonstrate the dynamic process from individual to group, which is key to the formation of macrolevel social phenomena. However, existing studies mostly ignore the role of network structure in modeling or focus only on static network modeling, without fully considering the feedback relationship between agents and the network—i.e., agents are not only influenced by the network structure but also capable of influencing changes in network topology. To address these issues, this paper progressively optimizes existing agent models from the individual level to the group

The model clarifies the specific position of memory within the overall structure of the individual agent model and the direction of information flow among different modules during the evolution process. To effectively manage and utilize memory information, the model divides memory into three levels: individual memory set, memory buffer pool, and group memory set. In addition, the model introduces memory evaluation metrics and selectively integrates memory information into the group memory set based on these metrics, thereby improving the quality of group memory. To achieve dynamic updating of memory information, the model also designs a dynamic pruning mechanism. The model realizes the synergy between learning and memory through the coordinated decision-making module, jointly forming the agent's decision-making mechanism. This design not only overcomes the limitations of traditional models in terms of continuity and interpretability but also provides a more cognitively plausible underlying logic for simulating complex social phenomena. Specifically, agents in the system evolve from "behavioral imitation" to "mind reconstruction." To verify the effectiveness of the model, a computational experimental system is constructed in this paper, and the experimental results further demonstrate the validity of the model.

Based on existing research achievements, this paper further explores the research problem of improving agent modeling techniques at both the individual and societal levels in artificial society modeling. However, there are still some shortcomings in the current study that need to be addressed. Therefore, future research will focus on the following three aspects:

- (1) Enhancing the quality of memory modeling to achieve agent self-reflection and adjustment: The construction of the memory module relies not only on computer science but also on research results from psychology, neuroscience, and other fields. By gaining a deeper understanding of the composition of human and animal memory, it is possible to construct more realistic memory modules. Historical experience is not only a core information source in the evolutionary process of agents but should also be used to reflect on behavior for self-optimization, thereby improving the quality of individual agent modeling and the credibility of artificial society modeling.
- (2) Integrating large language models with social networks to jointly construct group agent models: At present, agents built on large language models often play the role of "respondents," making it difficult for them to deeply understand the social structure in the system evolution process and lacking the ability to actively establish social connections. Future research will focus on how to combine social network structures with large language models to help agents better understand and integrate into social networks, thereby simulating more complex social phenomena.
- (3) Coexistence of competition and cooperation: Through model expansion, competition and cooperation in the network are not isolated but intertwined to jointly form a complex interaction mechanism. By introducing the dual dimensions of competition and cooperation, agents can make more flexible and rational decisions in complex social scenarios, thereby effectively improving their adaptability and the overall system stability. In addition, such mechanisms provide new perspec-

tives and research directions for exploring social behaviors, group dynamics, and collaboration issues in multi-agent systems.

REFERENCES

- D. M. Lazer, A. Pentland, D. J. Watts, S. Aral, S. Athey, N. Contractor, D. Freelon, S. Gonzalez-Bailon, G. King, H. Margetts *et al.*, "Computational social science: Obstacles and opportunities," *Science*, vol. 369, no. 6507, pp. 1060–1062, 2020.
- [2] X. Xue, G. Li, D. Zhou, Y. Zhang, L. Zhang, Y. Zhao, Z. Feng, L. Cui, Z. Zhou, X. Sun *et al.*, "Research roadmap of service ecosystems: A crowd intelligence perspective," *International Journal of Crowd Science*, vol. 6, no. 4, pp. 195–222, 2022.
- [3] M. Jusup, P. Holme, K. Kanazawa, M. Takayasu, I. Romić, Z. Wang, S. Geček, T. Lipić, B. Podobnik, L. Wang et al., "Social physics," *Physics Reports*, vol. 948, pp. 1–148, 2022.
- [4] D. Helbing, D. Brockmann, T. Chadefaux, K. Donnay, U. Blanke, O. Woolley-Meza, M. Moussaid, A. Johansson, J. Krause, S. Schutte et al., "Saving human lives: What complexity science and information systems can contribute," *Journal of statistical physics*, vol. 158, no. 3, pp. 735–781, 2015.
- [5] X. Xue, X.-N. Yu, D.-Y. Zhou, X. Wang, Z.-B. Zhou, and F.-Y. Wang, "Computational experiments: Past, present and future," arXiv preprint arXiv:2202.13690, 2022.
- [6] X. Xue, Y. Shen, X. Yu, D.-Y. Zhou, X. Wang, G. Wang, and F.-Y. Wang, "Computational experiments: A new analysis method for cyber-physical-social systems," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 54, no. 2, pp. 813–826, 2023.
- [7] J. Pearl and D. Mackenzie, *The book of why: the new science of cause and effect.* Basic books, 2018.
- [8] Y. Lou, L.-Y. Duan, Y. Luo, Z. Chen, T. Liu, S. Wang, and W. Gao, "Towards digital retina in smart cities: A model generation, utilization and communication paradigm," in 2019 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2019, pp. 19–24.
- [9] L. Li, X. Wang, K. Wang, Y. Lin, J. Xin, L. Chen, L. Xu, B. Tian, Y. Ai, J. Wang *et al.*, "Parallel testing of vehicle intelligence via virtual-real interaction," *Science robotics*, vol. 4, no. 28, p. eaaw4106, 2019.
- [10] L. Li, W.-L. Huang, Y. Liu, N.-N. Zheng, and F.-Y. Wang, "Intelligence testing for autonomous vehicles: A new approach," *IEEE Transactions* on *Intelligent Vehicles*, vol. 1, no. 2, pp. 158–166, 2016.
- [11] M. Benhassine, J. Quinn, D. Stewart, A. A. Arsov, D. Ianc, M. Ivan, and F. Van Utterbeeck, "Advancing military medical planning in large scale combat operations: insights from computer simulation and experimentation in nato's vigorous warrior exercise 2024," *Military Medicine*, vol. 189, no. Supplement_3, pp. 456–464, 2024.
- [12] V. J. Schweizer, A. D. Jamieson-Lane, H. Cai, S. Lehner, and M. Smer-lak, "Pathways for socio-economic system transitions expressed as a markov chain," *PLoS One*, vol. 18, no. 7, p. e0288928, 2023.
- [13] L. Zhang, S. Chen, X. Xue, H. Wu, and Z. Feng, "Investigating the impact of structural holes on the value creation in mobile application service ecosystems: Evidence from computational experiments," *Journal* of Software: Evolution and Process, vol. 36, no. 6, p. e2614, 2024.
- [14] Z. Yang, T. Wei, Y. Liang, X. Yuan, R. Gao, Y. Xia, J. Zhou, Y. Zhang, and Z. Yu, "A foundation model for generalizable cancer diagnosis and survival prediction from histopathological images," *Nature Communications*, vol. 16, no. 1, p. 2366, 2025.
- [15] F. Alvarez, D. Kipping, and W. Nogueira, "A computational model to simulate spectral modulation and speech perception experiments of cochlear implant users," *Frontiers in Neuroinformatics*, vol. 17, p. 934472, 2023.
- [16] N. Lettieri, "Computational social science, the evolution of policy design and rule making in smart societies," *Future internet*, vol. 8, no. 2, p. 19, 2016
- [17] X. Xue, S. Wang, L. Zhang, Z. Feng, and Y. Guo, "Social learning evolution (sle): Computational experiment-based modeling framework of social manufacturing," *IEEE Transactions on Industrial Informatics*, vol. 15, no. 6, pp. 3343–3355, 2018.
- [18] D. Zhou, X. Xue, and Z. Zhou, "Sle2: The improved social learning evolution model of cloud manufacturing service ecosystem," *IEEE Transactions on Industrial Informatics*, vol. 18, no. 12, pp. 9017–9026, 2022.

- [19] D. Zhou, X. Xue, X. Lu, Y. Guo, P. Ji, H. Lv, W. He, Y. Xu, Q. Li, and L. Cui, "A hierarchical model for complex adaptive system: From adaptive agent to ai society," ACM Transactions on Autonomous and Adaptive Systems, 2024.
- [20] X. Xue, X. Yu, D. Zhou, X. Wang, C. Bi, S. Wang, and F.-Y. Wang, "Computational experiments for complex social systems: Integrated design of experiment system," *IEEE/CAA Journal of Automatica Sinica*, vol. 11, no. 5, pp. 1175–1189, 2024.
- [21] X. Xue, D. Zhou, X. Yu, G. Wang, J. Li, X. Xie, L. Cui, and F.-Y. Wang, "Computational experiments for complex social systems: Experiment design and generative explanation," *IEEE/CAA Journal of Automatica Sinica*, vol. 11, no. 4, pp. 1022–1038, 2024.
- [22] X. Xue, Y. Guo, S. Chen, and S. Wang, "Analysis and controlling of manufacturing service ecosystem: A research framework based on the parallel system theory," *IEEE Transactions on Services Computing*, vol. 14, no. 6, pp. 1598–1611, 2019.
- [23] M. Lu, S. Chen, X. Xue, X. Wang, Y. Zhang, Y. Zhang, and F.-Y. Wang, "Computational experiments for complex social systems—part ii: The evaluation of computational models," *IEEE Transactions on Computational Social Systems*, vol. 9, no. 4, pp. 1224–1236, 2021.
- [24] Y. Ge, L. Liu, X. Qiu, H. Song, Y. Wang, and K. Huang, "A framework of multilayer social networks for communication behavior with agentbased modeling," *Simulation*, vol. 89, no. 7, pp. 810–828, 2013.
- [25] O. Deepa and A. Senthilkumar, "Swarm intelligence from natural to artificial systems: Ant colony optimization," *Networks (Graph-Hoc)*, vol. 8, no. 1, pp. 9–17, 2016.
- [26] P. Ye, S. Wang, and F.-Y. Wang, "A general cognitive architecture for agent-based modeling in artificial societies," *IEEE Transactions on Computational Social Systems*, vol. 5, no. 1, pp. 176–185, 2017.
- [27] H. Wu and Z. H. Peng, "Agent-based modeling and simulation on planning analysis," *Applied Mechanics and Materials*, vol. 631, pp. 1312–1319, 2014.
- [28] M. Wooldridge and N. R. Jennings, "Intelligent agents: Theory and practice," *The knowledge engineering review*, vol. 10, no. 2, pp. 115– 152, 1995.
- [29] A. Bandura and R. H. Walters, Social learning theory. Prentice hall Englewood Cliffs, NJ, 1977, vol. 1.
- [30] J. Ho and S. Ermon, "Generative adversarial imitation learning," Advances in neural information processing systems, vol. 29, 2016.
- [31] M. L. Littman, "Markov games as a framework for multi-agent reinforcement learning," in *Machine learning proceedings* 1994. Elsevier, 1994, pp. 157–163.
- [32] X. Zhu, Y. Chen, H. Tian, C. Tao, W. Su, C. Yang, G. Huang, B. Li, L. Lu, X. Wang et al., "Ghost in the minecraft: Generally capable agents for open-world environments via large language models with text-based knowledge and memory," arXiv preprint arXiv:2305.17144, 2023.
- [33] M. Sclar, S. Kumar, P. West, A. Suhr, Y. Choi, and Y. Tsvetkov, "Minding language models' (lack of) theory of mind: A plug-and-play multi-character belief tracker," arXiv preprint arXiv:2306.00924, 2023.
- [34] M. Chen, Z. Tao, W. Tang, T. Qin, R. Yang, and C. Zhu, "Enhancing emergency decision-making with knowledge graphs and large language models," *International Journal of Disaster Risk Reduction*, vol. 113, p. 104804, 2024.
- [35] G. Li, H. Hammoud, H. Itani, D. Khizbullin, and B. Ghanem, "Camel: Communicative agents for" mind" exploration of large language model society," *Advances in Neural Information Processing Systems*, vol. 36, pp. 51 991–52 008, 2023.
- [36] Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang, X. Zhang, S. Zhang, J. Liu et al., "Autogen: Enabling next-gen llm applications via multi-agent conversations," in First Conference on Language Modeling, 2024.
- [37] W. Chen, Y. Su, J. Zuo, C. Yang, C. Yuan, C. Qian, C.-M. Chan, Y. Qin, Y. Lu, R. Xie et al., "Agentverse: Facilitating multi-agent collaboration and exploring emergent behaviors in agents," arXiv preprint arXiv:2308.10848, vol. 2, no. 4, p. 6, 2023.
- [38] J. S. Park, J. O'Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein, "Generative agents: Interactive simulacra of human behavior," in *Proceedings of the 36th annual acm symposium on user interface software and technology*, 2023, pp. 1–22.
- [39] A. Graves, G. Wayne, and I. Danihelka, "Neural turing machines," arXiv preprint arXiv:1410.5401, 2014.
- [40] J. Piao, Y. Yan, J. Zhang, N. Li, J. Yan, X. Lan, Z. Lu, Z. Zheng, J. Y. Wang, D. Zhou et al., "Agentsociety: Large-scale simulation of Ilm-

- driven generative agents advances understanding of human behaviors and society," arXiv preprint arXiv:2502.08691, 2025.
- [41] L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang, D.-A. Huang, Y. Zhu, and A. Anandkumar, "Minedojo: Building openended embodied agents with internet-scale knowledge," *Advances in Neural Information Processing Systems*, vol. 35, pp. 18343–18362, 2022.
- [42] L. Wang, X. Zhang, H. Su, and J. Zhu, "A comprehensive survey of continual learning: Theory, method and application," *IEEE transactions* on pattern analysis and machine intelligence, vol. 46, no. 8, pp. 5362– 5383, 2024.
- [43] D. A. Pomerleau, "Alvinn: An autonomous land vehicle in a neural network," Advances in neural information processing systems, vol. 1, 1988.
- [44] S. Ross, G. Gordon, and D. Bagnell, "A reduction of imitation learning and structured prediction to no-regret online learning," in *Proceedings* of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2011, pp. 627–635.
- [45] C. J. C. H. Watkins et al., "Learning from delayed rewards," 1989.
- [46] Y. Mei, H. Zhou, T. Lan, G. Venkataramani, and P. Wei, "Mac-po: Multi-agent experience replay via collective priority optimization," arXiv preprint arXiv:2302.10418, 2023.