



# STIC Search Report

## Biotech-Chem Library

STIC Database Tracking Number: 171887

**TO:** Rei-Tsang Shiao  
**Location:** 5a10 / 5c18  
**Wednesday, December 07, 2005**  
**Art Unit:** 1626  
**Phone:** 571-272-0707  
**Serial Number:** 10 / 627519

**From:** Jan Delaval  
**Location:** Biotech-Chem Library  
**Remsen 1a51**  
**Phone:** 571-272-2504  
  
**[jan.delaval@uspto.gov](mailto:jan.delaval@uspto.gov)**

### Search Notes

FOR OFFICIAL USE ONLY  
RECEIVED

PLEASE PRINT CLEARLY

Scientific and Technical Information Center

SEARCH REQUEST FORM

NOV 17 2005  
TECH/CHEM. DIVISION  
(STIC)

Requester's Full Name:

Art Unit:

Location (Bldg/Room#):

Robert (Robert) Shiao

Phone Number:

REM (Mailbox #):

Examiner #: 79521

Date: 11/17/05  
Serial Number: 10/629,519

Results Format Preferred (circle): PAPER DISK

\*\*\*\*\*  
To ensure an efficient and quality search, please attach a copy of the cover sheet, claims, and abstract or fill out the following:

Title of Invention: Compositions containing a ruthenium complex  
Inventors (please provide full names): Keppler & I.

Earliest Priority Date:

Search Topic:  
Please provide a detailed statement of the search topic, and describe as specifically as possible the subject matter to be searched. Include the elected species or structures, keywords, synonyms, acronyms, and registry numbers, and combine with the concept or utility of the invention. Define any terms that may have a special meaning. Give examples or relevant citations, authors, etc., if known.

\*For Sequence Searches Only\* Please include all pertinent information (parent, child, divisional, or issued patent numbers) along with the appropriate serial number.

I seek compositions comprising cpd I, and cpd II,  
(see claim 33 & also see example 2)



cpd II

\* M is metal  
X is halogen  
HCO<sub>3</sub>, R CO

(R is alkyl  
alkylene)

\* B is heterocycle  
ie. imidazole, py  
triazole, indaz

\* P, q, r = 0,

0.5

B(HX)<sub>s</sub> cpd II

\* B is same as cpd I

X is same as cpd I

S is integer

II. Areas of invention and method of use of the compositions

STAFF USE ONLY

Jan

Type of Search

Searcher: \_\_\_\_\_ NA Sequence (#)

Searcher Phone #: \_\_\_\_\_ AA Sequence (#)

Searcher Location: \_\_\_\_\_ Structure (#)

Date Searcher Picked Up: \_\_\_\_\_ Bibliographic

Date Completed: \_\_\_\_\_ Litigation

Searcher Prep & Review Time: \_\_\_\_\_ Fulltext

Online Time: \_\_\_\_\_ Other

Vendors and cost where applicable

STN  Dialog

Questel/Orbit  Lexis/Nexis

Westlaw  WWW/Internet

In-house sequence systems

Commercial  Oligomer  Score/Length

Interference  SPDI  Encode/Transl

Other (specify)



# STIC SEARCH RESULTS FEEDBACK FORM

## Biotech-Chem Library

Questions about the scope or the results of the search? Contact **the searcher or contact:**

Mary Hale, Information Branch Supervisor  
Remsen Bldg. 01 D86  
571-272-2507

## Voluntary Results Feedback Form

- I am an examiner in Workgroup:  Example: 1610
- Relevant prior art found, search results used as follows:
- 102 rejection
  - 103 rejection
  - Cited as being of interest.
  - Helped examiner better understand the invention.
  - Helped examiner better understand the state of the art in their technology.

*Types of relevant prior art found:*

- Foreign Patent(s)
- Non-Patent Literature  
(journal articles, conference proceedings, new product announcements etc.)

➤ Relevant prior art not found:

- Results verified the lack of relevant prior art (helped determine patentability).
- Results were not useful in determining patentability or understanding the invention.

**Comments:**

Drop off or send completed forms to STIC-BioTech-Chem Library Remsen Bldg.

L3 ANSWER 17 OF 34 CAPLUS COPYRIGHT 2005 ACS on STN  
 ACCESSION NUMBER: 1999:550474 CAPLUS  
 DOCUMENT NUMBER: 131:280631  
 TITLE: Synthesis of tumor-inhibiting complex salts containing the anion trans-tetrachlorobis(indazole)ruthenate(III) and crystal structure of the tetraphenylphosphonium salt  
 AUTHOR(S): Peti, Wolfgang; Pieper, Thomas; Sommer, Martina;  
 Keppler, Bernhard K.; Giester, Gerald  
 CORPORATE SOURCE: Institute General Inorganic Chemistry, Univ. Vienna,  
 Vienna, A-1090, Austria  
 SOURCE: European Journal of Inorganic Chemistry (1999), (9),  
 1551-1555  
 CODEN: EJICFO; ISSN: 1434-1948  
 PUBLISHER: Wiley-VCH Verlag GmbH  
 DOCUMENT TYPE: Journal  
 LANGUAGE: English  
 AB Indazolium trans-tetrachlorobis(indazole)ruthenate(1-) exhibits excellent results against different tumor models in vitro and in vivo. To improve the water solubility necessary for the introduction of this tumor-inhibiting compound into clin. trials, the authors synthesized the corresponding Na salt in a 2-step ion exchange via the tetramethylammonium salt. The Na salt shows a 3,5-fold higher solubility in water relative to the indazolium salt. The authors also synthesized the n-butylammonium, n-octylammonium, and tetraphenylphosphonium salts, all of which showed improved solubility in organic solvents. The x-ray crystal structure of the latter could be solved, proving the trans configuration of the complex anion (triclinic, P.hivin.1,  $a = 11.000(2)$ ,  $b = 13.503(2)$ ,  $c = 14.471(2)$  Å,  $\alpha = 65.42(1)$ ,  $\beta = 82.80(1)$ ,  $\gamma = 67.93(1)$  °,  $V = 1810.2$  Å<sup>3</sup>,  $Z = 2$ ,  $\rho_C = 1.50$  g/cm<sup>3</sup>,  $\mu(\text{MoK}\alpha) = 8.1$ , 5573 observed reflections with  $F_o > 4\sigma(F_o)$ , 562 refined parameters,  $R_1 = 0.033$ ,  $wR_2 = 0.088$ ). In spite of the paramagnetic Ru(III) center an assignment of the coordinated indazole protons could be made with the help of a COSY experiment  
 IT 124875-20-3  
 RL: RCT (Reactant); RACT (Reactant or reagent)  
 (reactant for preparation of tetraphenylphosphonium trans-tetrachlorobis(indazole)ruthenate(III))  
 RN 124875-20-3 CAPLUS  
 CN Ruthenate(1-), tetrachlorobis(1H-indazole- $\kappa$ N2)-, (OC-6-11)-, hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0

CMF C14 H12 Cl4 N4 Ru . H

CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3

CMF C7 H6 N2



```
=> fil reg
FILE 'REGISTRY' ENTERED AT 15:40:44 ON 07 DEC 2005
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2005 American Chemical Society (ACS)
```

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 6 DEC 2005 HIGHEST RN 869462-96-4  
DICTIONARY FILE UPDATES: 6 DEC 2005 HIGHEST RN 869462-96-4

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH JULY 14, 2005

Please note that search-term pricing does apply when conducting SmartSELECT searches.

```
*****
*
* The CA roles and document type information have been removed from *
* the IDE default display format and the ED field has been added,   *
* effective March 20, 2005. A new display format, IDERL, is now      *
* available and contains the CA role and document type information. *
*****
*****
```

Structure search iteration limits have been increased. See HELP SLIMITS for details.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/ONLINE/UG/regprops.html>

=> d ide can 135

L35 ANSWER 1 OF 1 REGISTRY COPYRIGHT 2005 ACS on STN  
RN 124875-20-3 REGISTRY  
ED Entered STN: 19 Jan 1990  
CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)  
OTHER CA INDEX NAMES:  
CN 1H-Indazole, mono[(OC-6-11)-tetrachlorobis(1H-indazole-  
κN2)ruthenate(1-)] (9CI)  
CN 1H-Indazole, mono[(OC-6-11)-tetrachlorobis(1H-indazole-N2)ruthenate(1-)]  
(9CI)  
CN Ruthenate(1-), tetrachlorobis(1H-indazole-N2)-, (OC-6-11)-, hydrogen,  
compd. with 1H-indazole (1:1)  
OTHER NAMES:  
CN KP 1019  
DR 123391-22-0  
MF C14 H12 Cl4 N4 Ru . C7 H6 N2 . H  
SR CA  
LC STN Files: ADISNEWS, BIOSIS, CA, CAPLUS, CASREACT, IMSRESEARCH, PHAR,  
TOXCENTER, USPATFULL

CM 1

CRN 124875-19-0 (189556-38-5)  
 CMF C14 H12 Cl4 N4 Ru . H  
 CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
 CMF C7 H6 N2



\*\*PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT\*\*

34 REFERENCES IN FILE CA (1907 TO DATE)  
 1 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA  
 34 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 143:259727

REFERENCE 2: 143:241328

REFERENCE 3: 143:52892

REFERENCE 4: 142:441275

REFERENCE 5: 142:385348

REFERENCE 6: 142:385260

REFERENCE 7: 142:254042

REFERENCE 8: 141:385463

REFERENCE 9: 141:81839

REFERENCE 10: 140:296757

=> => d sta que 131  
 L4 4 SEA FILE=REGISTRY ABB=ON PLU=ON (124875-20-3/BI OR 197723-00-  
 5/BI OR 63725-55-3/BI OR 7440-18-8/BI)  
 L5 1 SEA FILE=REGISTRY ABB=ON PLU=ON L4 AND CCS/CI  
 L6 1 SEA FILE=REGISTRY ABB=ON PLU=ON 189556-38-5  
 L7 9 SEA FILE=REGISTRY ABB=ON PLU=ON 189556-38-5/CRN  
 L23 61 SEA FILE=REGISTRY ABB=ON PLU=ON (16.515.9/RID OR 16.213.11/RI  
 D OR 16.213.5/RID OR 16.515.1/RID OR 16.213.3/RID OR 16.213.4/R  
 ID OR 16.213.8/RID OR 16.515.11/RID OR 16.515.2/RID OR  
 16.515.22/RID OR 16.515.7/RID) AND RU/ELS  
 L25 816 SEA FILE=REGISTRY ABB=ON PLU=ON (333.161.31 OR 16.165.12 OR

16.195.24)/RID AND RU/ELS  
L26 877 SEA FILE=REGISTRY ABB=ON PLU=ON (L23 OR L25)  
L27 STR

Ru^ Hy  
1 2

## NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM  
DEFAULT ECLEVEL IS LIMITED  
ECOUNT IS M1 N AT 2

## GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED  
NUMBER OF NODES IS 2

## STEREO ATTRIBUTES: NONE

L29 245 SEA FILE=REGISTRY SUB=L26 SSS FUL L27  
L30 2 SEA FILE=REGISTRY ABB=ON PLU=ON L4 AND RU/ELS NOT RU/MF  
L31 245 SEA FILE=REGISTRY ABB=ON PLU=ON (L5 OR L6 OR L7 OR L30 OR  
L29)

=> d his

(FILE 'HOME' ENTERED AT 14:51:11 ON 07 DEC 2005)  
SET COST OFF

'FILE 'HCAPLUS' ENTERED AT 14:51:18 ON 07 DEC 2005  
L1 1 S US20050032801/PN OR (US2003-627519 OR WO2002-EP863 OR DE2001-  
E KEPPLER B/AU  
L2 219 S E3-E10  
E KEPLER B/AU  
E FAUSTUS/PA,CS  
L3 14 S E3-E16  
SEL RN L1

FILE 'REGISTRY' ENTERED AT 14:52:52 ON 07 DEC 2005

L4 4 S E1-E4  
L5 1 S L4 AND CCS/CI  
L6 1 S 189556-38-5  
L7 9 S 189556-38-5/CRN  
L8 1 S L4 NOT RU/ELS  
L9 1 S PYRAZOLE/CN  
E INDAZOLE/CN  
L10 1 S E3  
E IMIDAZOLE/CN  
L11 1 S E3  
E TRAZOLE/CN  
E TRIAZOLE/CN  
L12 1 S E3  
L13 1407 S (N3C2 OR N2CNC)/ES AND 1/NR AND 3/ELC.SUB  
L14 71 S L13 AND 3/N AND 2/C  
L15 51 S L14 AND 1/NC  
L16 44 S L15 AND (C AND N AND H)/ELS  
L17 41 S L16 NOT (PMS OR IDS)/CI  
L18 31 S L17 NOT ((D OR T)/ELS OR 11C# OR 13C# OR 14C# OR C11# OR C13#  
L19 26 S L18 NOT RPS/CI  
L20 22 S L19 NOT ION  
L21 21 S L20 NOT 15N2

L22        16 S L21 NOT IUM  
             SEL RID  
 L23        61 S E1-E11 AND RU/ELS  
 L24        3025 S (333.161 OR 16.165 OR 16.195)/RID AND RU/ELS  
 L25        816 S (333.161.31 OR 16.165.12 OR 16.195.24)/RID AND RU/ELS  
 L26        877 S L23,L25  
 L27        STR  
 L28        12 S L27 SAM SUB=L26  
 L29        245 S L27 FUL SUB=L26  
             SAV TEMP L29 SHIAO627/A  
 L30        2 S L4 AND RU/ELS NOT RU/MF  
 L31        245 S L5-L7,L30,L29

FILE 'HCAPLUS' ENTERED AT 15:08:16 ON 07 DEC 2005  
 L32        191 S L31  
 L33        54 S L32 AND L1-L3  
 L34        13 S KP1019 OR KP 1019

FILE 'REGISTRY' ENTERED AT 15:09:26 ON 07 DEC 2005  
 L35        1 S 124875-20-3

FILE 'HCAPLUS' ENTERED AT 15:09:35 ON 07 DEC 2005  
 L36        34 S L35  
 L37        36 S L34,L36  
 L38        25 S L37 AND (PY<=2001 OR PRY<=2001 OR AY<=2001)  
 L39        133 S L32 AND (PY<=2001 OR PRY<=2001 OR AY<=2001)  
 L40        131 S L32 AND (PD<=20010126 OR PRD<=20010126 OR AD<=20010126)  
 L41        25 S L37 AND (PD<=20010126 OR PRD<=20010126 OR AD<=20010126)  
 L42        68 S L31(L)PREP+NT/RL  
 L43        86 S L31(L)(THU OR BAC OR DMA OR PAC OR PKT)/RL  
 L44        117 S L32 AND (PHARMACEUT? OR PHARMACOL? OR PATHOL?)/SC,SX,CW,CT  
             E NEOPLASM INHIBITOR/CT  
 L45        77032 S E4-E6  
             E E4+ALL  
             E E2+ALL  
 L46        182155 S E3 OR E41+OLD,NT OR E42+OLD,NT OR E43+OLD,NT OR E45+OLD,NT  
 L47        65 S L39 AND L45,L46  
 L48        28 S L37 AND L45,L46  
 L49        18 S L41 AND L48  
 L50        74 S L42-L44 AND L47-L49  
 L51        33 S L1-L3 AND L37  
 L52        40 S L33,L51 AND L40,L41  
 L53        84 S L50,L52  
             SEL HIT RN

FILE 'REGISTRY' ENTERED AT 15:17:34 ON 07 DEC 2005  
 L54        59 S E1-E59  
 L55        11 S L54 AND S/ELS  
 L56        48 S L54 NOT L55  
 L57        6 S L56 AND (C28H24CL2N8RU OR C3H4CL4N3ORU)  
 L58        42 S L56 NOT L57  
 L59        3 S L58 AND (C21H18CL3N6RU OR C16H15CL3N5RU)  
 L60        39 S L58 NOT L59

FILE 'HCAPLUS' ENTERED AT 15:31:46 ON 07 DEC 2005  
 L61        78 S L60  
 L62        61 S L61 AND (PD<=20010126 OR PRD<=20010126 OR AD<=20010126)  
 L63        45 S L62 AND L45,L46  
 L64        32 S L60 (L)(THU OR BAC OR DMA OR PAC OR PKT)/RL AND L62  
 L65        53 S L62 AND (PHARMACEUT? OR PHARMACOL? OR PATHOL?)/SC,SX,CW,CT

L66 40 S L1-L3 AND L62  
L67 61 S L41, L62-L66  
L68 54 S L67 NOT P/DT  
L69 7 S L67 NOT L68  
L70 5 S L69 NOT (IMMUNOSUPP? OR HYPERPROLIFERAT?)  
L71 36 S L68 AND L1-L3  
L72 2 S L71 NOT ?TUMOR?  
L73 34 S L71 NOT L72  
L74 18 S L68 NOT L69-L73  
L75 3 S L74 NOT ?TUMOR?  
L76 15 S L74 NOT L75  
L77 54 S L70, L73, L76

FILE 'MEDLINE' ENTERED AT 15:36:54 ON 07 DEC 2005

L78 8 S L34 OR L35  
L79 2 S L78 AND PY<=2001  
L80 2 S L79 AND KEPPLER ?/AU

FILE 'CANCERLIT' ENTERED AT 15:38:08 ON 07 DEC 2005

L81 3 S L78  
L82 1 S L81 NOT MEDLINE/OS  
L83 1 S L82 AND KEPPLER ?/AU

FILE 'EMBASE' ENTERED AT 15:38:39 ON 07 DEC 2005

L84 12 S L78  
L85 16 S "INDAZOLIUM TETRACHLOROBIS(INDAZOLE)RUTHENATE"/CT  
L86 11 S L84, L85 AND PY<=2001  
L87 4 S L86 AND KEPPLER ?/AU  
L88 11 S L86, L87  
L89 11 S L88 AND (?NEOPLAS? OR ?TUMOR? OR ?CANCER?)

FILE 'REGISTRY' ENTERED AT 15:40:44 ON 07 DEC 2005

=> dup rem 180 183 189  
FILE 'MEDLINE' ENTERED AT 15:41:27 ON 07 DEC 2005

FILE 'CANCERLIT' ENTERED AT 15:41:27 ON 07 DEC 2005

FILE 'EMBASE' ENTERED AT 15:41:27 ON 07 DEC 2005  
Copyright (c) 2005 Elsevier B.V. All rights reserved.  
PROCESSING COMPLETED FOR L80  
PROCESSING COMPLETED FOR L83  
PROCESSING COMPLETED FOR L89

L90 12 DUP REM L80 L83 L89 (2 DUPLICATES REMOVED)  
ANSWERS '1-2' FROM FILE MEDLINE  
ANSWER '3' FROM FILE CANCERLIT  
ANSWERS '4-12' FROM FILE EMBASE

=> d all tot

L90 ANSWER 1 OF 12 MEDLINE on STN DUPLICATE 1  
AN 1998230618 MEDLINE  
DN PubMed ID: 9570691  
TI Comparative nephrotoxicity of some antitumour-active platinum and ruthenium complexes in rats.  
AU Kersten L; Braunlich H; **Keppler B K**; Gliesing C; Wendelin M;  
Westphal J  
CS Institute of Pharmacology and Toxicology, Friedrich Schiller University,  
Jena, Germany.. hzub@mti-n.uni-jena.de  
SO Journal of applied toxicology : JAT, (1998 Mar-Apr) 18 (2)

93-101.

Journal code: 8109495. ISSN: 0260-437X.

CY ENGLAND: United Kingdom

DT Journal; Article; (JOURNAL ARTICLE)

LA English

FS Priority Journals

EM 199806

ED Entered STN: 19980611

Last Updated on STN: 19980611

Entered Medline: 19980604

AB The nephrotoxicity of three platinum (CPL, KP734, KP735) and three ruthenium coordination complexes (KP418, KP692, **KP1019**) was tested in rats in comparison to cisplatin (CP). Renal functional changes (excretion of water, protein, p-aminohippurate (PAH) and osmolytes) were not observed after the administration of 10% of the LD450 of the compounds given twice a week for up to 5 weeks. After a relatively high single dose of the substances (50% of the LD50), signs of nephrotoxicity on the day of maximal renal damage decreased in the following order: CP, KP418, CPL, KP734, KP735, KP692 and **KP1019**. In comparison to CP, proteinuria was significantly lower after the administration of any of the compounds, especially KP692 and **KP1019**. Neither renal lipid peroxidation (TBARS) nor glutathion status (GSH, GSSG) was affected. In summary, KP735 in the group of platinum complexes and **KP1019** in the ruthenium group had the lowest nephrotoxicity. Other investigators have shown that all complexes induced anti-neoplastic activity under analogous experimental conditions.

CT Check Tags: Comparative Study; Female

Animals

\*Antineoplastic Agents: TO, toxicity

Cisplatin: TO, toxicity

\*Kidney: DE, drug effects

Lipid Peroxidation: DE, drug effects

\*Platinum Compounds: TO, toxicity

Proteinuria: CI, chemically induced

Rats

Rats, Wistar

\*Ruthenium Compounds: TO, toxicity

RN 15663-27-1 (Cisplatin)

CN 0 (Antineoplastic Agents); 0 (Platinum Compounds); 0 (Ruthenium Compounds)

L90 ANSWER 2 OF 12 MEDLINE on STN DUPLICATE 2

AN 1998279246 MEDLINE

DN PubMed ID: 9616290

TI Preclinical activity of trans-indazolium[tetrachlorobisindazoleruthenate(I II)] (NSC 666158; IndCR; **KP 1019**) against tumour colony-forming units and haematopoietic progenitor cells.

AU Depenbrock H; Schmelcher S; Peter R; **Keppler B K**; Weirich G; Block T; Rastetter J; Hanuske A R

CS Technische Universitat Munchen, Klinikum rechts der Isar, Abteilung Hamatologie und Onkologie, Germany.

SO European journal of cancer (Oxford, England : 1990), (1997 Dec) 33 (14) 2404-10.

Journal code: 9005373. ISSN: 0959-8049.

CY ENGLAND: United Kingdom

DT Journal; Article; (JOURNAL ARTICLE)

LA English

FS Priority Journals

EM 199806

ED Entered STN: 19980625

Last Updated on STN: 19980625

Entered Medline: 19980616

AB Trans-indazolium[tetrachlorobisindazoleruthenate(III)] (**KP 1019**) is a new heavy metal complex with promising activity against tumour cell lines and in animal models. We studied the antineoplastic effects of **KP 1019** (final concentrations: 1, 10, 100 micrograms/ml) on in vitro proliferation of clonogenic cells from freshly explanted human tumours in a capillary soft agar cloning system, and compared the activity of **KP 1019** with conventional antineoplastic agents. 53 of 75 specimens (71%) showed adequate growth in controls. **KP 1019** inhibited tumour colony formation in a concentration-dependent manner in both short- (1 h) and long-term (21 d) exposure experiments. **KP 1019** at 100 micrograms/ml with 1 h exposure was as active as bleomycin, cisplatin, doxorubicin, etoposide, 5-fluorouracil, methotrexate, mitomycin-C and vinblastine, with only paclitaxel more active than **KP 1019** ( $P = 0.002$ ). The antitumour activity of **KP 1019** was more pronounced after long-term exposure, indicating the potential schedule dependency of **KP 1019**. Activity was observed against non-small cell lung, breast and renal cancer. We conclude that if appropriate plasma levels can be achieved in patients, **KP 1019** may have significant clinical activity against a variety of different tumour types.

CT Cell Division: DE, drug effects  
 Dose-Response Relationship, Drug  
 Hematopoietic Stem Cells: CY, cytology  
 \*Hematopoietic Stem Cells: DE, drug effects  
 Humans  
 \*Indazoles: PD, pharmacology  
 \*Organometallic Compounds: PD, pharmacology  
 Tumor Cells, Cultured  
 Tumor Stem Cell Assay  
 \*Tumor Stem Cells: DE, drug effects  
 Tumor Stem Cells: PA, pathology

CN 0 (Indazoles); 0 (Organometallic Compounds); 0 (indazolium-tetrachlorobisindazoleruthenate(III))

L90 ANSWER 3 OF 12 CANCERLIT on STN  
 AN 96603387 CANCERLIT  
 DN 96603387  
 TI Effects of trans-indazolium [tetrachlorobis-indazole ruthenate (III); **KP 1019**] on clonogenic growth of freshly explanted human tumors (Meeting abstract).  
 AU Depenbrock H; Schmelcher S; Peter R; **Keppler B K**; Fellbaum C;  
 Block T; Rastetter J; Hanuske A R  
 CS Technische Universitat Munchen, D-81664 Munchen, Germany.  
 SO Proc Annu Meet Am Soc Clin Oncol, (1995) 14 A1621.  
 ISSN: 0732-183X.  
 DT (MEETING ABSTRACTS)  
 LA English  
 FS Institute for Cell and Developmental Biology  
 EM 199604  
 ED Entered STN: 19970509  
 Last Updated on STN: 19970509  
 AB We have studied the antineoplastic effects of **KP 1019** (final concentrations: 1, 10, 100 ug/ml) on in vitro proliferation of clonogenic cells from freshly explanted human tumors in a capillary soft agar cloning system. Using short-term (1 hr) and long-term (21 days) exposures, we have compared the activity of **KP 1019** with conventional antineoplastic agents. 51 of 75 specimens (68%) showed adequate growth in controls (10 breast, 8 kidney, 5 lung, 4 testis, 24 other tumor types). Using the short-term exposure schedule, **KP**

**1019** inhibited tumor colony formation in a concentration-dependent manner with 1/51 specimens (2%) inhibited at 1 ug/ml, 3/51 (6%) at 10 ug/ml and 21/51 specimens (41%) inhibited at 100 ug/ml. At 100 ug/ml, **KP 1019** was as active as bleomycin, cisplatin, doxorubicin, etoposide, 5-fluorouracil, interferon-alpha 2, methotrexate, mitomycin-C, and vinblastine. Paclitaxel was significantly more active than **KP 1019** ( $p=0.002$ ). Using the long-term exposure schedule, **KP 1019** inhibited tumor colony formation in a concentration dependent manner with 6/51 specimens (12%) inhibited at 1 ug/ml, 14/51 (28%) at 10 ug/ml and 41/51 specimens (80%) inhibited at 100 ug/ml. We conclude that **KP 1019** has activity against freshly explanted clonogenic tumor cells. Higher activity in long-term exposure indicates schedule-dependency of **KP 1019**. Further clinical development of this agent seems warranted.

(C) American Society of Clinical Oncology 1997.  
 RN 33069-62-4 (Paclitaxel); 7440-18-8 (Ruthenium)  
 CN 0 (Antineoplastic Agents)

L90 ANSWER 4 OF 12 EMBASE COPYRIGHT (c) 2005 Elsevier B.V. All rights reserved on STN  
 AN 2000180366 EMBASE  
 TI [New substances in oncology. Report of the joint annual meeting of the German and Austrian Societies for Hematology and Oncology in Jena]. NEUE SUBSTANZEN IN DER ONKOLOGIE. BERICHT VON DER GEMEINSAMEN JAHRESTAGUNG DER DOGHO, JENA.  
 AU Barth J.  
 CS J. Barth, Apotheker fur Klinische Pharmazie, Apoth. Univ. Klin. Gesamthochschule, Hufelandstr. 55, 45122 Essen, Germany  
 SO Krankenhauspharmazie, (2000) Vol. 21, No. 5, pp. 218-229.  
 Refs: 21  
 ISSN: 0173-7597 CODEN: KRANDZ  
 CY Germany  
 DT Journal; Conference Article  
 FS 016 Cancer  
 037 Drug Literature Index  
 LA German  
 ED Entered STN: 20000615  
 Last Updated on STN: 20000615  
 CT Medical Descriptors:  
     \*cancer: DT, drug therapy  
     cancer chemotherapy  
     antineoplastic activity  
     melanoma: DT, drug therapy  
     lung carcinoma: DT, drug therapy  
     glioblastoma: DT, drug therapy  
     human  
     conference paper  
 Drug Descriptors:  
     \*new drug  
     \*antineoplastic agent: DT, drug therapy  
     fluoropyrimidine derivative: DT, drug therapy  
     fluoropyrimidine derivative: PO, oral drug administration  
     tegafur: DT, drug therapy  
     tegafur: PO, oral drug administration  
     capecitabine: DT, drug therapy  
     capecitabine: PO, oral drug administration  
     ruthenium complex: DT, drug therapy  
     indazolium tetrachlorobis(indazole)ruthenate: DT, drug therapy  
     platinum derivative: DT, drug therapy  
     kp 735: DT, drug therapy

gallium  
 kp 46: DT, drug therapy  
 gallium derivative: DT, drug therapy  
 dolastatin: DT, drug therapy  
 dolastatin derivative: DT, drug therapy  
 cematinostat: DT, drug therapy  
 purine nucleoside: DT, drug therapy  
 pentostatin: DT, drug therapy  
 antisense oligonucleotide: DT, drug therapy  
 irinotecan: DT, drug therapy  
 topotecan: DT, drug therapy  
 antimetabolite: DT, drug therapy  
 tomudex: DT, drug therapy  
 rituximab: DT, drug therapy  
 edrecolomab: DT, drug therapy  
     **tumor vaccine: DT, drug therapy**

unclassified drug

RN (tegafur) 17902-23-7; (capecitabine) 154361-50-9; (gallium) 7440-55-3;  
     (pentostatin) 53910-25-1; (irinotecan) 100286-90-6; (topotecan)

CN 119413-54-6, 123948-87-8; (tomudex) 112887-68-0; (rituximab) 174722-31-7  
     Ftorafur; Xeloda; Kp 735; Kp 46; **Kp 1019**; Tomudex; Panorex;  
     Mabthera; Hycamtin

L90 ANSWER 5 OF 12 EMBASE COPYRIGHT (c) 2005 Elsevier B.V. All rights reserved on STN

AN 97022396 EMBASE

DN 1997022396

TI Synthesis, characterization and solution chemistry of trans-indazoliumtetrachlorobis(indazole)ruthenate(III), a new **anticancer** ruthenium complex. IR, UV, NMR, HPLC investigations and **antitumor** activity..

AU Lippner K.-G.; Vogel E.; **Keppler B.K.**

CS K.-G. Lippner, Institute of Inorganic Chemistry, University of Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany

SO Metal-Based Drugs, (1996) Vol. 3, No. 5, pp. 243-260.

Refs: 22

ISSN: 0793-0291 CODEN: MBADEI

CY Israel

DT Journal; Article

FS 016 Cancer

030 Pharmacology

037 Drug Literature Index

LA English

SL English

ED Entered STN: 970214

Last Updated on STN: 970214

AB Besides intensive studies into the synthesis of the complex trans-HInd[RuCl<sub>4</sub>(ind)<sub>2</sub>] (Ind = indazole) 1, which differs remarkably from the usual method for the complexes of the HL[RuCl<sub>4</sub>L<sub>2</sub>]-type, competitive products and hydrolysis of this species are described. Stability and pseudo-first-order rate constant under physiological conditions of complex 4 in comparison with the analogous imidazole complex trans-HIm[RuCl<sub>4</sub>(im)<sub>2</sub>] (Im = imidazole) ICR were examined by means of HPLC, UV and conductivity measurements ( $k_{(cbs)}$ ) (1) =  $1.55 \times 10^{-4}$  s<sup>-1</sup>; ( $k_{(cbs)}$ ) (ICR) =  $9.10 \times 10^{-4}$  s<sup>-1</sup>). An attempt was made to elucidate the bonding conditions in 1 by studying the reactions of Ru(III) and the two N-methyl isomers of indazole. It can be expected that bonding in the unsubstituted ligand should occur via the N<sub>2</sub> nitrogen. The molecular structures of the complex trans-H(1-MeInd)[RuCl<sub>4</sub>(1-MeInd)<sub>2</sub>] x 1H<sub>2</sub>O (1-MeInd = 1-methylindazole) 6 and its hydrolysis product in aqueous solution [RuCl<sub>3</sub>(H<sub>2</sub>O)(1-MeInd)<sub>2</sub>] 7

were determined crystallographically. After anisotropic refinement of F values by least squares, R is 0.053 for 6 and 0.059 for 7. Both complexes crystallize with four molecules in a unit cell, of monoclinic symmetry. The space group is P2.1/n for 6 with cell dimensions a = 10.511Å, b = 13.87Å, c = 19.93Å and β = 98.17° and C2/c for 7 with a = 19.90Å, b = 10.94Å, c = 8.490Å and β = 96.74°.

The fact that the aqua species 7 could be isolated after dissolving 6 in a water/acetone solution confirmed the theory of many Ru(III) complexes being initially transformed, under physiological conditions, into aqua complexes in a first and often rate-determining hydrolysis step. Compounds 1 and ICR are potent **antitumor** agents which exhibit activity against a variety of **tumor** cells and experimental **tumor** models in animals, including autochthonous colorectal **tumors**. Clinical studies with 1 are in preparation.

CT Medical Descriptors:

- \*antineoplastic activity
- animal experiment
- animal tissue
- article
- chemical reaction kinetics
- chemical structure
- colorectal tumor
- controlled study
- crystal structure
- drug hydrolysis
- drug stability
- high performance liquid chromatography
- infrared spectroscopy
- nonhuman
- nuclear magnetic resonance spectroscopy
- rat
- reaction analysis
- tumor volume
- ultraviolet spectroscopy
- X ray crystallography

Drug Descriptors:

- \*antineoplastic agent: AN, drug analysis
- \*antineoplastic agent: CM, drug comparison
- \*antineoplastic agent: DV, drug development
- \*ruthenium complex: AN, drug analysis
- \*ruthenium complex: CM, drug comparison
- \*ruthenium complex: DV, drug development
- cisplatin: CM, drug comparison
- cisplatin: PD, pharmacology
- fluorouracil: CM, drug comparison
- fluorouracil: PD, pharmacology
- indazolium tetrachlorobis(indazole)ruthenate: CM, drug comparison
- indazolium tetrachlorobis(indazole)ruthenate: DV, drug development
- unclassified drug

RN (cisplatin) 15663-27-1, 26035-31-4, 96081-74-2; (fluorouracil) 51-21-8

L90 ANSWER 6 OF 12 EMBASE COPYRIGHT (c) 2005 Elsevier B.V. All rights reserved on STN

AN 95348179 EMBASE

DN 1995348179

TI Hlnd(Rulnd2Cl4), KP-692, KP-1019 (anhydrous).

SO Drugs of the Future, (1995) Vol. 20, No. 10, pp. 1060.

ISSN: 0377-8282 CODEN: DRFUD4

CY Spain

DT Journal; (Short Survey)

FS 016 Cancer  
 030 Pharmacology  
 037 Drug Literature Index  
 LA English  
 ED Entered STN: 951228  
 Last Updated on STN: 951228  
 CT Medical Descriptors:  
     \*antineoplastic activity  
 human  
 human cell  
 short survey  
     tumor cell  
 Drug Descriptors:  
     \*antineoplastic agent: PD, pharmacology  
 \*metal complex: PD, pharmacology  
 \*ruthenium complex: PD, pharmacology  
     indazolium tetrachlorobis(indazole)ruthenate: PD, pharmacology  
 unclassified drug  
 CN Kp 692; Kp 1019

L90 ANSWER 7 OF 12 EMBASE COPYRIGHT (c) 2005 Elsevier B.V. All rights reserved on STN  
 AN 94361620 EMBASE  
 DN 1994361620  
 TI HInd(RuInd2C14). KP-692. IndH(RuInd2C14). KP-1019 (anhydrous).  
 SO Drugs of the Future, (1994) Vol. 19, No. 10, pp. 952-953.  
 ISSN: 0377-8282 CODEN: DRFUD4  
 CY Spain  
 DT Journal; (Short Survey)  
 FS 016 Cancer  
 030 Pharmacology  
 037 Drug Literature Index  
 LA English  
 ED Entered STN: 950105  
 Last Updated on STN: 950105  
 CT Medical Descriptors:  
     \*colon cancer: DT, drug therapy  
 \*leukemia p 388  
 \*sarcoma 180  
 animal model  
 drug protein binding  
 nonhuman  
 rat  
 short survey  
 Drug Descriptors:  
     \*antineoplastic agent: PD, pharmacology  
     \*antineoplastic agent: DT, drug therapy  
 \*ruthenium complex: PD, pharmacology  
 \*ruthenium complex: DT, drug therapy  
     indazolium tetrachlorobis(indazole)ruthenate: PD, pharmacology  
     indazolium tetrachlorobis(indazole)ruthenate: DT, drug therapy  
 unclassified drug  
 CN Kp 692; Kp 1019

L90 ANSWER 8 OF 12 EMBASE COPYRIGHT (c) 2005 Elsevier B.V. All rights reserved on STN  
 AN 93009429 EMBASE  
 DN 1993009429  
 TI Hind(Rulnd2C14). KP-692. IndH(Rulnd2C14).

SO Drugs of the Future, (1992) Vol. 17, No. 10, pp. 957.  
 ISSN: 0377-8282 CODEN: DRFUD4  
 CY Spain  
 DT Journal; (Short Survey)  
 FS 016 Cancer  
 030 Pharmacology  
 037 Drug Literature Index  
 LA English  
 ED Entered STN: 930207  
 Last Updated on STN: 930207  
 CT Medical Descriptors:  
     \*dna damage  
     \*ovary cancer  
     human  
     human cell  
     short survey  
     Drug Descriptors:  
         \*antineoplastic agent: PD, pharmacology  
         \*antineoplastic agent: CM, drug comparison  
     \*metal complex: PD, pharmacology  
     \*metal complex: CM, drug comparison  
     \*ruthenium complex: PD, pharmacology  
     \*ruthenium complex: CM, drug comparison  
     budotitane: PD, pharmacology  
     budotitane: CM, drug comparison  
     cisplatin: PD, pharmacology  
     cisplatin: CM, drug comparison  
         indazolium tetrachlorobis(indazole)ruthenate: PD, pharmacology  
         indazolium tetrachlorobis(indazole)ruthenate: CM, drug comparison  
     unclassified drug  
 RN (budotitane) 85969-07-9; (cisplatin) 15663-27-1, 26035-31-4, 96081-74-2  
 CN Kp 692

L90 ANSWER 9 OF 12 EMBASE COPYRIGHT (c) 2005 Elsevier B.V. All rights reserved on STN  
 AN 91240646 EMBASE  
 DN 1991240646  
 TI New platinum, titanium, and ruthenium complexes with different patterns of DNA damage in rat ovarian **tumor** cells.  
 AU Fruhauf S.; Zeller W.J.  
 CS Inst. Toxicology/Chemotherapy, German Cancer Research Center, 6900 Heidelberg, Germany  
 SO Cancer Research, (1991) Vol. 51, No. 11, pp. 2943-2948.  
 ISSN: 0008-5472 CODEN: CNREA8  
 CY United States  
 DT Journal; Article  
 FS 016 Cancer  
 030 Pharmacology  
 037 Drug Literature Index  
 LA English  
 SL English  
 ED Entered STN: 911216  
 Last Updated on STN: 911216  
 AB DNA protein cross-links (DPC), DNA interstrand cross-links (ISCL), and DNA single strand breaks following treatment of experimental ovarian **tumor** cells (O-342) with five new metal complexes (three platinum, one titanium, one ruthenium compounds) were investigated at 6, 24, and 48 h after drug exposure and compared with their in vitro growth inhibitory potential. *cis*-Diamminedichloroplatinum(II) (cisplatin, DDP) served as reference drug. The following new compounds were tested:

18-crown-6-tetracarboxybis-diammineplatinum(II) (CTDP), cis-aminotris-methylenephosphonato-diammineplatinum(II) (AMDP), cis-diamminecyclohexano-aminotrismethylenephosphonato-platinum(II) (DAMP), diethoxybis-(1-phenylbutane-1,3-dionato)-titanium(IV) (budotitane), and trans-indazolium-tetrachlorobisindazole-ruthenate(III) (IndCR). At equimolar concentrations DNA cross-linking activity of the platinum agents decreased in the order cisplatin, CTDP, AMDP, DAMP; this was paralleled by growth inhibition in a cell proliferation assay. CTDP-induced interstrand cross-linking occurred more slowly compared to cisplatin (DDP) (6 h: CTDP,  $73 \pm 15$  versus DDP,  $365 \pm 72$  rad equivalents), but reached a peak similar to cisplatin 24 h after exposure (CTDP,  $317 \pm 68$  versus DDP,  $392 \pm 116$  rad equivalents). At this time point in contrast to DDP no DNA protein cross-links were observed for CTDP (total cross-links: CTDP  $310 \pm 71$ , DDP  $1987 \pm 436$  rad equivalents). Thus, at 24 h, CTDP was found to be distinctly less reactive to proteins than DDP, and it is suggested that CTDP might be similar in its toxicity pattern to the structurally related compound carboplatin which was also reported to be less reactive to protein than DDP. By 48 h, CTDP- and DDP-induced interstrand cross-links were  $65 \pm 21$  and  $180 \pm 33$  rad equivalents, respectively. Although at a lower level, by 24 h, AMDP showed a ratio of ISCL to total cross-links ( $179 \pm 39$  versus  $213 \pm 31$  rad equivalents), which was comparable to CTDP. The second biphosphonate complex DAMP was the least active platinum compound in terms of DNA damage, effecting only  $16 \pm 7$  rad equivalents ISCL and  $63 \pm 23$  rad equivalents total cross-links; similar to DDP, DAMP displayed a higher DPC fraction at 24 h. The titanium complex diethoxybis-(1-phenylbutane-1,3-dionato)-tita-nium(IV) showed dose-dependent inhibition of cell proliferation, while no significant DNA damage could be detected with the alkaline elution technique. These results, together with observations from other authors, indicating that space-filling planar aromatic ring systems are important for its **antitumor** activity, suggest as possible mechanism of action of diethoxybis-(1-phenylbutane-1,3-dionato)-titanium(IV) intercalation into the DNA. Following administration of the ruthenium compound IndCR only few ISCL and DPC were observed with a maximum at 6 h (ISCL,  $15 \pm 5$ ; total cross-links,  $49 \pm 14$  rad equivalents); thereafter both lesions were declining. Further studies on the mechanisms of action of this class of **antitumor** agents should take into account that in hypoxic **tumor** tissue the Ru(III)-ion of IndCR might be reduced to Ru(II) which is known to be more reactive to DNA.

CT

## Medical Descriptors:

- \*cancer cell
- \*dna damage
- \*ovary tumor: TH, therapy
- \*ovary tumor: DT, drug therapy

animal experiment

animal tissue

article

female

mouse

nonhuman

priority journal

## Drug Descriptors:

- \*metal complex: AN, drug analysis
- \*metal complex: PD, pharmacology
- \*metal complex: TO, drug toxicity
- \*metal complex: CM, drug comparison
- \*metal complex: DV, drug development
- \*platinum complex: AN, drug analysis
- \*platinum complex: DV, drug development

\*platinum complex: CM, drug comparison  
\*platinum complex: TO, drug toxicity  
\*platinum complex: PD, pharmacology  
\*ruthenium complex: CM, drug comparison  
\*ruthenium complex: DV, drug development  
\*ruthenium complex: AN, drug analysis  
\*ruthenium complex: PD, pharmacology  
\*ruthenium complex: TO, drug toxicity  
18 crown 6 tetracarboxybis(diammineplatinum): DV, drug development  
18 crown 6 tetracarboxybis(diammineplatinum): PD, pharmacology  
18 crown 6 tetracarboxybis(diammineplatinum): CM, drug comparison  
18 crown 6 tetracarboxybis(diammineplatinum): TO, drug toxicity  
18 crown 6 tetracarboxybis(diammineplatinum): AN, drug analysis  
budotitane: CM, drug comparison  
budotitane: DV, drug development  
budotitane: AN, drug analysis  
budotitane: PD, pharmacology  
budotitane: TO, drug toxicity  
cis aminotris(methylene)phosphonatodiammineplatinum: CM, drug comparison  
cis aminotris(methylene)phosphonatodiammineplatinum: TO, drug toxicity  
cis aminotris(methylene)phosphonatodiammineplatinum: PD, pharmacology  
cis aminotris(methylene)phosphonatodiammineplatinum: AN, drug analysis  
cis aminotris(methylene)phosphonatodiammineplatinum: DV, drug development  
cis diamminecyclohexanoaminotris(methylene)phosphatoplatinum: PD, pharmacology  
cis diamminecyclohexanoaminotris(methylene)phosphatoplatinum: TO, drug toxicity  
cis diamminecyclohexanoaminotris(methylene)phosphatoplatinum: AN, drug analysis  
cis diamminecyclohexanoaminotris(methylene)phosphatoplatinum: CM, drug comparison  
cis diamminecyclohexanoaminotris(methylene)phosphatoplatinum: DV, drug development  
cisplatin: CM, drug comparison  
    indazolium tetrachlorobis(indazole)ruthenate: TO, drug toxicity  
    indazolium tetrachlorobis(indazole)ruthenate: PD, pharmacology  
    indazolium tetrachlorobis(indazole)ruthenate: AN, drug analysis  
    indazolium tetrachlorobis(indazole)ruthenate: DV, drug development  
    indazolium tetrachlorobis(indazole)ruthenate: CM, drug comparison  
titanium complex: TO, drug toxicity  
titanium complex: PD, pharmacology  
titanium complex: AN, drug analysis  
titanium complex: DV, drug development  
titanium complex: CM, drug comparison  
unclassified drug

RN (budotitane) 85969-07-9; (cisplatin) 15663-27-1, 26035-31-4, 96081-74-2  
CO Behringwerke (Germany)

L90 ANSWER 10 OF 12 EMBASE COPYRIGHT (c) 2005 Elsevier B.V. All rights reserved on STN  
AN 92006337 EMBASE  
DN 1992006337  
TI Hlnd(Rulnd2C14), IndH(Rulnd2C14), KP1692.  
SO Drugs of the Future, (1991) Vol. 16, No. 10, pp. 959.  
ISSN: 0377-8282 CODEN: DRFUD4  
CY Spain  
DT Journal; (Short Survey)  
FS 016 Cancer  
030 Pharmacology  
037 Drug Literature Index

LA English  
 ED Entered STN: 920320  
 Last Updated on STN: 920320  
 CT Medical Descriptors:  
     \*antineoplastic activity  
     \*colon cancer  
     cell culture  
     human  
     human cell  
     short survey  
     tumor cell  
 Drug Descriptors:  
     \*antineoplastic agent: PD, pharmacology  
     \*antineoplastic agent: CM, drug comparison  
     \*metal complex: PD, pharmacology  
     \*metal complex: CM, drug comparison  
     \*ruthenium complex: PD, pharmacology  
     \*ruthenium complex: CM, drug comparison  
 dinaline: CM, drug comparison  
     indazolium tetrachlorobis(indazole)ruthenate: PD, pharmacology  
     indazolium tetrachlorobis(indazole)ruthenate: CM, drug comparison  
 unclassified drug  
 RN (dinaline) 58338-59-3

L90 ANSWER 11 OF 12 EMBASE COPYRIGHT (c) 2005 Elsevier B.V. All rights reserved on STN  
 AN 91111671 EMBASE  
 DN 1991111671  
 TI In vitro evaluation of platinum, titanium and ruthenium metal complexes in cisplatin-sensitive and -resistant rat ovarian tumors.  
 AU Fruhauf S.; Zeller W.J.  
 CS Institute of Toxicology, and Chemotherapy, German Cancer Research Cent., Im Neuenheimer Feld 280, W-6900 Heidelberg, Germany  
 SO Cancer Chemotherapy and Pharmacology, (1991) Vol. 27, No. 4, pp. 301-307.  
 ISSN: 0344-5704 CODEN: CCPHDZ  
 CY Germany  
 DT Journal; Article  
 FS 005 General Pathology and Pathological Anatomy  
 016 Cancer  
 030 Pharmacology  
 037 Drug Literature Index  
 LA English  
 SL English  
 ED Entered STN: 911216  
 Last Updated on STN: 911216  
 AB The antitumor activity of eight new metal complexes (three platinum, one titanium, four ruthenium derivatives) was investigated in a cisplatin (DDP)-sensitive (O-342) and a DDP-resistant (O-342/DDP) ovarian tumor line using the bilayer soft-agar assay. A continuous exposure set up at logarithmically spaced concentrations was used to test the drugs; to uncover possible pharmacokinetic features, a short-term exposure was additionally included for selected compounds. DDP served as the reference drug. The following compounds were investigated:  
 18-crown-6-tetracarboxybis-diammineplatinum(II) (CTDP),  
 cis-aminotriis(methylene)phosphonato-diammineplatinum(II) (ADP),  
 cis-diamminecyclohexano-aminotriis(methylene)phosphonato-platinum(II) (DAP),  
 diethoxybis(1-phenylbutane-1,3-dionato)titanium(IV) (DBT, budotitane),  
 trans-imidazolium-bisimidazolletetrachlororuthenate(III) (ICR),  
 trans-indazolium-tetrachlorobisindazoleruthenate(III) (IndCR), cis-triazolium-tetrachlorobistriazoleruthenate(III) (TCR) and

*trans*-pyrazolium-tetrachlorobispyrazoleruthenate(III) (PCR). Of the new metal complexes, CTDP was the most active compound in O-342, resulting in a percentage of control plating efficiency ( $\pm$  SE) of 1  $\pm$  1, 12  $\pm$  8 and 40  $\pm$  21 following continuous exposure to 10, 1 and 0.1  $\mu$ M, respectively, and was thus comparable to DDP at equimolar concentrations. In the resistant line, 10  $\mu$ M CTDP reduced colony growth to 18%  $\pm$  8%, whereas an equimolar concentration of DDP effected a reduction to 26%  $\pm$  9%. During short-term exposure, CTDP was inferior to DDP, which may be ascribed to the stability of the bis-dicarboxylate platinum ring system. The titanium compound DBT, in contrast, showed promising effects at its highest concentration (100  $\mu$ M) during short-term exposure in both lines; at this concentration the activity in O-342/DDP was higher than that in O-342 (7%  $\pm$  7% vs 34%  $\pm$  17% of control plating efficiency at 100  $\mu$ M). All ruthenium complexes showed higher activity in the resistant line O-342/DDP than in the sensitive counterpart. ICR was the most active compound. Following continuous exposure of O-342/DDP cells to 10  $\mu$ M ICR, colony growth was reduced to 18%  $\pm$  4% that of controls. Further studies should concentrate on CTDP and ICR for the following reasons: the activity of CTDP was equal to that of DDP at equimolar concentrations during continuous exposure; considering that the *in vivo* toxicity of DDP was 3-fold that of CTDP, an increase in the therapeutic index of CTDP would be expected. ICR showed the best effect of all ruthenium complexes; it was superior to DDP in the resistant line.

CT

## Medical Descriptors:

\*antineoplastic activity

\*ovary tumor

animal cell

animal experiment

article

cancer cell culture

clonogenic assay

controlled study

drug resistance

female

histology

intraperitoneal drug administration

nonhuman

priority journal

rat

## Drug Descriptors:

\*antineoplastic agent: PD, pharmacology

\*budotitane: PD, pharmacology

\*budotitane: DV, drug development

\*cisplatin: PD, pharmacology

\*platinum complex: PD, pharmacology

\*ruthenium complex: PD, pharmacology

18 crown 6 tetracarboxybis(diammineplatinum): PD, pharmacology

18 crown 6 tetracarboxybis(diammineplatinum): DV, drug development

ethylnitrosourea: TO, drug toxicity

imidazolium tetrachlorobis(imidazole)ruthenate: DV, drug development

imidazolium tetrachlorobis(imidazole)ruthenate: PD, pharmacology

indazolium tetrachlorobis(indazole)ruthenate: DV, drug development

indazolium tetrachlorobis(indazole)ruthenate: PD, pharmacology

nitrilotrimethylenephosphonato diammineplatinum (ii): PD, pharmacology

nitrilotrimethylenephosphonato diammineplatinum (ii): DV, drug development

platinum 1,2 diaminocyclohexane nitrilotrimethylenephosphonate: PD,

pharmacology

platinum 1,2 diaminocyclohexane nitrilotrimethylenephosphonate: DV, drug development

pyrazolium tetrachlorobis(pyrazole) ruthenate: PD, pharmacology

pyrazolium tetrachlorobis(pyrazole) ruthenate: DV, drug development  
 triazolium bis(triazole)tetrachlororuthenate: PD, pharmacology  
 triazolium bis(triazole)tetrachlororuthenate: DV, drug development  
 unclassified drug  
 RN (budotitane) 85969-07-9; (cisplatin) 15663-27-1, 26035-31-4, 96081-74-2;  
 (ethylnitrosourea) 759-73-9  
 CO Behringwerke (Germany)  
 L90 ANSWER 12 OF 12 EMBASE COPYRIGHT (c) 2005 Elsevier B.V. All rights reserved on STN  
 AN 91010053 EMBASE  
 DN 1991010053  
 TI Hlnd(Rulnd2C14).  
 AU Berger M.R.; Galeano A.; Seelig M.; **Keppler B.K.**  
 CS Institute of Toxicology and Chemotherapy, German Cancer Research Center,  
 Im Neuenheimer Feld 280, D-6900 Heidelberg, Germany  
 SO Drugs of the Future, (1990) Vol. 15, No. 10, pp. 992-994.  
 ISSN: 0377-8282 CODEN: DRFUD4  
 CY Spain  
 DT Journal; (Short Survey)  
 FS 016 Cancer  
 030 Pharmacology  
 037 Drug Literature Index  
 LA English  
 ED Entered STN: 911216  
 Last Updated on STN: 911216  
 CT Medical Descriptors:  
     \*colorectal cancer  
     \*drug screening  
     \*drug synthesis  
         \*tumor cell  
     animal cell  
     animal model  
     intraperitoneal drug administration  
     intravenous drug administration  
     nonhuman  
     peritonitis  
     rat  
     short survey  
         solid tumor  
 Drug Descriptors:  
     \*antineoplastic metal complex: TO, drug toxicity  
     \*antineoplastic metal complex: DO, drug dose  
     \*antineoplastic metal complex: CM, drug comparison  
     \*antineoplastic metal complex: AD, drug administration  
     \*antineoplastic metal complex: AN, drug analysis  
     \*antineoplastic metal complex: DV, drug development  
     indazolium tetrachlorobis(indazole)ruthenate: TO, drug toxicity  
     indazolium tetrachlorobis(indazole)ruthenate: DO, drug dose  
     indazolium tetrachlorobis(indazole)ruthenate: CM, drug comparison  
     indazolium tetrachlorobis(indazole)ruthenate: AD, drug administration  
     indazolium tetrachlorobis(indazole)ruthenate: AN, drug analysis  
         indazolium tetrachlorobis(indazole)ruthenate: DV, drug development  
 unclassified drug  
 CN Kp 692

=> fil hcaplus  
FILE 'HCAPLUS' ENTERED AT 15:41:37 ON 07 DEC 2005

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.  
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.  
 COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 7 Dec 2005 VOL 143 ISS 24  
 FILE LAST UPDATED: 6 Dec 2005 (20051206/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> => d 177 bib abs hitstr retable tot

L77 ANSWER 1 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN  
 AN 2002:575093 HCAPLUS  
 DN 137:119658  
 TI Compositions containing a ruthenium(III) complex and a heterocycle and their screening for cytotoxicity  
 IN Keppler, Bernhard  
 PA Faustus Forschungs Cie., Germany  
 SO PCT Int. Appl., 41 pp.  
 CODEN: PIXXD2  
 DT Patent  
 LA German  
 FAN.CNT 1  
  

|      | PATENT NO.                                                                                                                                                                                                                                                                                                                                                                                                                  | KIND | DATE         | APPLICATION NO.  | DATE         |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|------------------|--------------|
| PI   | WO 2002059135                                                                                                                                                                                                                                                                                                                                                                                                               | A1   | 20020801     | WO 2002-EP863    | 20020128 <-- |
|      | W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,<br>CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,<br>GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,<br>LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,<br>PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ,<br>UA, UG, US, UZ, VN, YU, ZA, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU,<br>TJ, TM |      |              |                  |              |
|      | RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, CH,<br>CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR,<br>BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG                                                                                                                                                                                                                    |      |              |                  |              |
|      | DE 10103565                                                                                                                                                                                                                                                                                                                                                                                                                 | A1   | 20020814     | DE 2001-10103565 | 20010126 <-- |
|      | CA 2436260                                                                                                                                                                                                                                                                                                                                                                                                                  | AA   | 20020801     | CA 2002-2436260  | 20020128 <-- |
|      | EP 1353932                                                                                                                                                                                                                                                                                                                                                                                                                  | A1   | 20031022     | EP 2002-734844   | 20020128 <-- |
|      | R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,<br>IE, SI, LT, LV, FI, RO, MK, CY, AL, TR                                                                                                                                                                                                                                                                                                                |      |              |                  |              |
|      | JP 2004528292                                                                                                                                                                                                                                                                                                                                                                                                               | T2   | 20040916     | JP 2002-559437   | 20020128 <-- |
|      | US 2005032801                                                                                                                                                                                                                                                                                                                                                                                                               | A1   | 20050210     | US 2003-627519   | 20030725 <-- |
| PRAI | DE 2001-10103565                                                                                                                                                                                                                                                                                                                                                                                                            | A    | 20010126 <-- |                  |              |
|      | WO 2002-EP863                                                                                                                                                                                                                                                                                                                                                                                                               | W    | 20020128 <-- |                  |              |
| OS   | MARPAT 137:119658                                                                                                                                                                                                                                                                                                                                                                                                           |      |              |                  |              |

AB The invention relates to compns. containing a ruthenium (III) complex and a heterocycle, a method for the production thereof, a pharmaceutical containing said

compns. and a kit. The invention also relates to a composition (A) which can be obtained by reacting a compound of general formula M<sub>3-n-p-2pr</sub>[RuX<sub>6-n-p-2rBn(H<sub>2</sub>O)p(OH)q(O)r</sub>]<sub>2r+1</sub>, with a compound of general formula B'(HX')<sub>s</sub>. The invention further relates to a composition (B) which can be obtained by mixing a compound of general formula (B'H)<sub>3-n-p-2pr</sub>[RuX<sub>6-n-p-2rBn(H<sub>2</sub>O)p(OH)q(O)r</sub>]<sub>2r+1</sub> with a compound of general formula MX'. Thus sodium trans-[RuCl<sub>4</sub>(und)<sub>2</sub>] (KP1339) was reacted with indazolium hydrochloride; the formed products were trans[tetrachlorobis(1H-indazole)ruthenate] (KP1019) and sodium chloride. Cytotoxicity screenings showed, that KP1019 is less effective than KP1339; the 1:1 mixture of KP1339 and indazolium is as effective as KP1339 sep. Increasing the ratio of indazolium in the KP1339 - indazolium composition increased the cytotoxicity.

IT 197723-00-5, KP 1339

RL: PAC (Pharmacological activity); RCT (Reactant); THU (Therapeutic use); BIOL (Biological study); RACT (Reactant or reagent); USES (Uses)

(compns. containing a ruthenium(III) complex and a heterocycle)

RN 197723-00-5 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, sodium, (OC-6-11)-(9CI) (CA INDEX NAME)

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

IT 124875-20-3P, KP 1019

RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(compns. containing a ruthenium(III) complex and a heterocycle)

RN 124875-20-3 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, (OC-6-11)-, hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0

CMF C14 H12 Cl4 N4 Ru . H

CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3

CMF C7 H6 N2



#### RETABLE

| Referenced Author<br>(RAU) | Year   VOL   PG | Referenced Work<br>(R PY)   (R VL)   (R PG) | Referenced<br>(RWK) | Referenced File<br>  File |
|----------------------------|-----------------|---------------------------------------------|---------------------|---------------------------|
|                            |                 |                                             |                     |                           |

|               |          |      |                              |
|---------------|----------|------|------------------------------|
| Depenbrock, H | 1997  33 | 2404 | EUROPEAN JOURNAL OF  HCAPLUS |
| Galeano, A    | 1992  42 | 821  | ARZNEIM-FORSCH  HCAPLUS      |
| Garzon, F     | 1987  19 | 347  | CANCER CHEMOTHER PHA HCAPLUS |
| Gopal, Y      | 2001  26 | 271  | JOURNAL OF BIOSCIENC HCAPLUS |
| Keller, H     | 1989     |      | US 4843069 A  HCAPLUS        |
| Keppler, B    | 1997     |      | WO 9736595 A  HCAPLUS        |
| Keppler, B    | 1989  10 | 41   | PROG CLIN BIOCHEM ME HCAPLUS |
| Kratz, F      | 1994  1  | 169  | MET-BASED DRUGS  HCAPLUS     |
| Kratz, F      | 1996  3  | 15   | MET-BASED DRUGS  HCAPLUS     |
| Kreuser, E    | 1992  19 | 73   | SEMIN ONCOL                  |
| Pacor, S      | 1990     | 482  | MET IONS BIOL MED, P HCAPLUS |

L77 ANSWER 2 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 2001:761387 HCAPLUS

DN 136:95695

TI Preparation, physicochemical characterization and pharmacological study of novel ruthenium(III) complexes with imidazole and benzimidazole derivatives

AU Nikolova, Antonia; Ivanov, Darvin; Buyukliev, Rossen; Konstantinov, Spiro; Karaivanova, Margarita

CS Department of Chemistry, Faculty of Pharmacy, Medical University, Sofia, Bulg.

SO Arzneimittel-Forschung (2001), 51(9), 758-762

CODEN: ARZNAD; ISSN: 0004-4172

PB Editio Cantor Verlag

DT Journal

LA English

AB Complex compds. of ruthenium(III) with 1,2-dimethylimidazole, 2-phenylimidazole and 2-aminobenzimidazole were prepared and were characterized by physicochem. methods. Coordination sites were determined. The complexes were tested for cytotoxic activity using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dye-reduction assay and the values LD<sub>50</sub> were evaluated.

IT 389119-10-2P

RL: ADV (Adverse effect, including toxicity); PAC (Pharmacological activity); PRP (Properties); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(physicochem. characterization and pharmacol. of ruthenium(III) complexes with imidazole and benzimidazole derivs.)

RN 389119-10-2 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(2-phenyl-1H-imidazole-κN3)-, (OC-6-11)-, hydrogen, compd. with 2-phenyl-1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 389119-09-9

CMF C18 H16 Cl4 N4 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 670-96-2  
CMF C9 H8 N2



#### RETABLE

| Referenced Author<br>(RAU) | Year<br>(R PY) | VOL<br>(R VL) | PG<br>(R PG) | Referenced Work<br>(R WK) | Referenced File |
|----------------------------|----------------|---------------|--------------|---------------------------|-----------------|
| Ayres, H                   | 1950           | 22            | 1277         | Anal Chem                 |                 |
| Clarke, M                  | 1980           |               | 157          | ACS Symposium Series      |                 |
| Clarke, M                  | 1980           | 11            | 231          | Metal Ions in Biolog      | HCAPLUS         |
| Cordes, M                  | 1968           | 24A           | 1421         | Spectrochim Acta          |                 |
| Cordes, M                  | 1968           | 24A           | 237          | Spectrochim Acta          |                 |
| Dwyer, F                   | 1965           | 19            | 195          | Br J Cancer               | HCAPLUS         |
| Garzon, F                  | 1987           | 19            | 347          | Cancer Chemother Pha      | HCAPLUS         |
| Geary, W                   | 1971           | 7             | 113          | Coord Chem Rev            |                 |
| Keppler, B                 | 1987           | 37            | 770          | Arzneim-Forsch/Drug       |                 |
| Keppler, B                 | 1986           | 111           | 166          | Cancer Res Clin Onco      | HCAPLUS         |
| Keppler, B                 | 1987           | 26            | 4366         | Inorg Chem                | HCAPLUS         |
| Keppler, B                 | 1987           | 26            | 844          | Inorg Chem                | HCAPLUS         |
| Lippincott, E              | 1958           | 10            | 307          | Spectrochim Acta          | HCAPLUS         |
| Mestroni, G                | 1987           | 137           | 63           | Inorg Chim Acta           | HCAPLUS         |
| Mosmann, T                 | 1983           | 65            | 55           | J Immunol Methods         | MEDLINE         |
| Nikolova, A                | 1998           | 45            | 12           | Pharmacia                 |                 |
| Otting, W                  | 1956           | 89            | 2887         | Chem Ber                  | HCAPLUS         |
| Sava, G                    | 1987           | 137           | 69           | Inorg Chim Acta           | HCAPLUS         |
| Van den Heuvel, M          | 1987           | 6             | 279          | Hum Toxicol               | MEDLINE         |
| Yasbin, R                  | 1980           | 31            | 355          | Chem Biol Interact        | HCAPLUS         |

L77 ANSWER 3 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN  
AN 2001:547785 HCAPLUS  
DN 136:256819  
TI Topoisomerase II poisoning by indazole and imidazole complexes of ruthenium  
AU Gopal, Y. N. Vashisht; Kondapi, Anand K.  
CS Department of Biochemistry, University of Hyderabad, Hyderabad, 500 044, India  
SO Journal of Biosciences (Bangalore, India) (2001), 26(2), 271-276  
CODEN: JOBSDN; ISSN: 0250-5991  
PB Indian Academy of Sciences  
DT Journal  
LA English  
AB Trans-imidazolium (bis imidazole) tetrachloro ruthenate (RuIm) and trans-indazolium (bis indazole) tetrachloro ruthenate (RuInd) are ruthenium coordination complexes, which were first synthesized and exploited for their anticancer activity. These mols. constitute two of the few most effective anticancer ruthenium compds. The clin. use of these compds. however was hindered due to toxic side effects on the human body. Our present study on topoisomerase II poisoning by these compds. shows that they effectively poison the activity of topoisomerase II by forming a ternary cleavage complex of DNA, drug and topoisomerase II. The thymidine incorporation assays show that the inhibition of cancer cell proliferation correlates with topoisomerase II poisoning. The present study on topoisomerase II poisoning by these two compds. opens a new avenue for renewing further research on these compds. This is because they could be effective lead candidates for the development of more potent and less toxic ruthenium containing topoisomerase II poisons. Specificity of action on this mol. target may reduce the toxic effects of these ruthenium-containing mols. and thus improve their therapeutic index.  
IT 103875-27-0 142388-45-2  
RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(topoisomerase II poisoning by indazole and imidazole complexes of ruthenium)  
RN 103875-27-0 HCAPLUS  
CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)  
CM 1  
CRN 103875-26-9  
CMF C6 H8 Cl4 N4 Ru . H  
CCI CCS



●  $\text{H}^+$

CM 2

CRN 288-32-4  
CMF C3 H4 N2



RN 142388-45-2 HCPLUS  
CN Ruthenate(1-), tetrachlorobis(2H-indazole- $\kappa$ N1)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 142388-44-1  
CMF C14 H12 Cl4 N4 Ru . H  
CCI CCS



●  $\text{H}^+$

CM 2

CRN 271-44-3  
CMF C7 H6 N2



RETABLE

| Referenced Author<br>(RAU) | Year<br>(R PY) | VOL<br>(R VL) | PG<br>(R PG) | Referenced Work<br>(R WK) | Referenced File |
|----------------------------|----------------|---------------|--------------|---------------------------|-----------------|
| Adachi, Y                  | 1991           | 64            | 137          | Cell                      | HCAPLUS         |
| Berger, J                  | 1996           | 379           | 1225         | Nature (London)           | HCAPLUS         |
| Bradford                   | 1976           | 72            | 1248         | Anal Biochem              | HCAPLUS         |
| Downes, C                  | 1994           | 372           | 1467         | Nature (London)           | HCAPLUS         |
| Froelich-Ammon, S          | 1995           | 270           | 21429        | J Biol Chem               | HCAPLUS         |
| Fruhauf, S                 | 1991           | 51            | 2943         | Cancer Res                | MEDLINE         |
| Galande, S                 | 1996           | 1308          | 158          | Biochem Biophys Acta      | HCAPLUS         |
| Jayaraju, D                | 1999           | 369           | 168          | Arch Biochem Biophys      | HCAPLUS         |
| Keppler, B                 | 1990           | 17            | 1261         | Cancer Treat Rev          | HCAPLUS         |
| Keppler, B                 | 1989           | 10            | 141          | Prog Clin Biochem Me      | HCAPLUS         |
| Ni Dhubhghaill, O          | 1994           | 1             | 13305        | J Chem Soc Dalton Tr      | HCAPLUS         |
| Osheroff, N                | 1983           | 258           | 19536        | J Biol Chem               | HCAPLUS         |
| Pruss, G                   | 1986           | 183           | 18952        | Proc Natl Acad Sci U      | HCAPLUS         |
| Vashisht Gopal, Y          | 2000           | 376           | 1229         | Arch Biochem Biophys      | HCAPLUS         |
| Vashisht Gopal, Y          | 1999           | 38            | 14382        | Biochemistry              |                 |
| Wang, J                    | 1985           | 154           | 1665         | Annu Rev Biochem          | MEDLINE         |
| Wang, J                    | 1996           | 65            | 1635         | Annu Rev Biochem          | HCAPLUS         |
| Wang, J                    | 1991           | 266           | 16659        | J Biol Chem               | HCAPLUS         |
| Wang, Z                    | 1994           | 16            | 1460         | BioTechniques             | HCAPLUS         |

Watt, P |1994 |303 |681 |Biochem J  
 Zecheidrich, E |1989 |28 |6229 |Biochemistry |HCAPLUS |

L77 ANSWER 4 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN  
 AN 2001:467186 HCAPLUS  
 DN 135:313268  
 TI Investigations into the interaction between tumor-inhibiting ruthenium(III) complexes and nucleotides by capillary electrophoresis  
 AU Kung, A.; Pieper, T.; **Keppler, B. K.**  
 CS Institute of Inorganic Chemistry, University of Vienna, Vienna, A-1090, Austria  
 SO Journal of Chromatography, B: Biomedical Sciences and Applications (2001), 759(1), 81-89  
 CODEN: JCBBEP; ISSN: 0378-4347  
 PB Elsevier Science B.V.  
 DT Journal  
 LA English  
 AB Ruthenium(III) complexes of the general formula HL[RuCl<sub>4</sub>L<sub>2</sub>], with two trans-standing heterocyclic ligands L bound to ruthenium via nitrogen, show remarkable activity in different tumor models. To obtain a deeper insight into the mode of action of this class of anticancer compds., we investigated the interaction of HIm trans-[RuCl<sub>4</sub>(i.m.)<sub>2</sub>] (i.m., imidazole) and HInd trans-[RuCl<sub>4</sub>(ind)<sub>2</sub>] (ind, indazole) with all four nucleoside monophosphates in buffered solution by means of capillary electrophoresis. A preference for GMP- and AMP-coordination was found. A decrease of the pH resulted in a significantly increased amount of bound nucleotide. This feature seems to be interesting with regard to the lower pH values in solid tumors.  
 IT 103875-27-0 124875-20-3 189556-38-5  
 RL: PEP (Physical, engineering or chemical process); PROC (Process) (use of capillary electrophoresis in studying interaction between tumor-inhibiting ruthenium(III) complexes and nucleotides)  
 RN 103875-27-0 HCAPLUS  
 CN Ruthenate(1-), tetrachlorobis(1H-imidazole-κN3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)  
 CM 1  
 CRN 103875-26-9  
 CMF C6 H8 Cl4 N4 Ru . H  
 CCI CCS



●  $\text{H}^+$

CM 2

CRN 288-32-4  
CMF C3 H4 N2



RN 124875-20-3 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole- $\kappa$ N2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0  
CMF C14 H12 Cl4 N4 Ru . H  
CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
CMF C7 H6 N2



RN 189556-38-5 HCAPLUS  
 CN Ruthenate(1-), tetrachlorobis(1H-indazole- $\kappa$ N2)-, (OC-6-11)- (9CI)  
 (CA INDEX NAME)

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

RETABLE

| Referenced Author<br>(RAU) | Year<br>(R PY) | VOL<br>(R VL) | PG<br>(R PG) | Referenced Work<br>(R WK) | Referenced File |
|----------------------------|----------------|---------------|--------------|---------------------------|-----------------|
| Alessic, E                 | 1993           | 203           | 205          | Inorg Chim Acta           |                 |
| Alessio, E                 | 1989           | 111           | 7068         | J Am Chem Soc             | H CAPLUS        |
| Cauci, S                   | 1987           | 137           | 19           | Inorg Chim Acta           | H CAPLUS        |
| Cauci, S                   | 1991           | 43            | 739          | J Inorg Biochem           | H CAPLUS        |
| Chatlas, J                 | 1995           | 233           | 59           | Inorg Chim Acta           | H CAPLUS        |
| Chottard, J                | 1980           | 102           | 5565         | J Am Chem Soc             | H CAPLUS        |
| Eastman, A                 | 1987           | 34            | 155          | Pharmacol Ther            | H CAPLUS        |
| Esposito, G                | 1992           | 31            | 7094         | Biochemistry              | H CAPLUS        |
| Fichtinger-Schepman, A     | 1985           | 24            | 707          | Biochemistry              | H CAPLUS        |
| Fichtinger-Schepman, A     | 1982           | 10            | 5345         | Nucl Acids Res            | H CAPLUS        |
| Hartmann, M                | 1998           | 267           | 137          | Inorg Chim Acta           | H CAPLUS        |
| Jamieson, E                | 1999           | 99            | 2467         | Chem Rev                  | H CAPLUS        |
| Keppler, B                 | 1987           | 26            | 4366         | Inorg Chem                | H CAPLUS        |
| Keppler, B                 | 1993           |               | 187          | Metal Complexes in C      | H CAPLUS        |
| Kung, A                    | 2001           | 6             | 292          | J Biol Inorg Chem         | H CAPLUS        |
| Lipponer, K                | 1996           | 3             | 243          | Metal-Based Drugs         | H CAPLUS        |
| Mestroni, G                | 1993           | 1             | 41           | Metal-Based Drugs         |                 |
| Mestroni, G                | 1989           | 10            | 72           | Prog Clin Biochem Me      |                 |
| Nidhubhghaill, O           | 1994           |               | 3305         | J Chem Soc Dalton Tr      | H CAPLUS        |
| Raudaschl-Sieber, G        | 1985           | 107           | 3591         | J Am Chem Soc             | H CAPLUS        |
| Scovell, W                 | 1977           | 99            | 120          | J Am Chem Soc             | H CAPLUS        |
| Seelig, M                  | 1990           |               | 476          | Metal Ions in Biolog      | H CAPLUS        |
| Siegel, H                  | 1994           | 116           | 2958         | J Am Chem Soc             |                 |
| Tullius, T                 | 1982           | 103           | 4620         | J Am Chem Soc             |                 |
| Tullius, T                 | 1982           | 103           | 4620         | J Am Chem Soc             |                 |
| Vilaplana, R               | 1995           | 2             | 211          | Metal-Based Drugs         | H CAPLUS        |
| Zenker, A                  | 1999           | 852           | 337          | J Chrom A                 | H CAPLUS        |

L77 ANSWER 5 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 2001:396171 HCAPLUS

DN 135:204910

TI Biophysical analysis of natural, double-helical DNA modified by anticancer heterocyclic complexes of ruthenium(III) in cell-free media

AU Malina, Jaroslav; Novakova, Olga; **Keppler, Bernhard K.**; Alessio, Enzo; Brabec, Viktor

CS Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 61265, Czech Rep.

SO JBIC, Journal of Biological Inorganic Chemistry (2001), 6(4), 435-445

CODEN: JJBCFA; ISSN: 0949-8257

PB Springer-Verlag

DT Journal

LA English

AB Modifications of natural DNA by three anticancer heterocyclic ruthenium(III) compds. were studied by methods of mol. biophysics. These methods included DNA binding studies using atomic absorption spectrophotometry, inhibition of restriction endonucleases, mapping of DNA adducts by transcription assay, interstrand crosslinking employing gel electrophoresis under denaturing conditions, DNA unwinding studied by gel electrophoresis, CD anal. of the B $\rightarrow$ Z transition in DNA, and DNA melting curves measured by absorption spectrophotometry. The results

indicate that the complexes HIm[trans-C14Im2RuIII], HInd[trans-C14Ind2RuIII], and Na[trans-C14Im(Me2SO)RuIII] (Im and Ind stand for imidazole and indazole, resp.) coordinate irreversibly to DNA. Their DNA binding mode is, however, different from that of cisplatin. Interestingly, Na[trans-C14Im(Me2SO)RuIII] binds to DNA considerably faster than the other two ruthenium compds. and cisplatin. In addition, when Na[trans-C14Im(Me2SO)RuIII] binds to DNA it exhibits an enhanced base sequence specificity in comparison with the other two ruthenium complexes. Na[trans-C14Im(Me2SO)RuIII] also forms bifunctional intrastrand adducts on double-helical DNA which are capable of terminating RNA synthesis in vitro, while the capability of the other two ruthenium compds. to form such adducts is markedly lower. This observation has been interpreted to mean that the bifunctional adducts of HInd[trans-C14Ind2RuIII] and Na[trans-C14Im2RuIII] formed on rigid double-helical DNA are sterically more crowded by their octahedral geometry than those of Na[trans-C14Im(Me2SO)RuIII]. In addition, the adducts of all three ruthenium compds. affect the conformation of DNA, Na[trans-C14Im(Me2SO)RuIII] being most effective. It has been suggested that the altered DNA binding mode of ruthenium compds. in comparison with cisplatin might be an important factor responsible for the altered cytostatic activity of this class of ruthenium compds. in tumor cells.

IT 103875-27-0 124875-20-3

RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)  
 (anal. of natural, double-helical DNA modified by anticancer heterocyclic complexes of ruthenium(III) in cell-free media)

RN 103875-27-0 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4  
CMF C3 H4 N2RN 124875-20-3 HCPLUS  
CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0  
CMF C14 H12 Cl4 N4 Ru . H  
CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
CMF C7 H6 N2

## RETABLE

| Referenced Author<br>(RAU) | Year<br>(RPY) | VOL<br>(RVL) | PG<br>(RPG) | Referenced Work<br>(RWK) | Referenced<br>File |
|----------------------------|---------------|--------------|-------------|--------------------------|--------------------|
| Alessio, E                 | 1993          | 203          | 205         | Inorg Chim Acta          | HCPLUS             |
| Barca, A                   | 1999          | 423          | 171         | Mutation Res             | HCPLUS             |
| Bellon, S                  | 1991          | 30           | 8026        | Biochemistry             | HCPLUS             |
| Brabec, V                  | 1976          | 14           | 176         | Biophys Chem             |                    |
| Brabec, V                  | 1970          | 16           | 290         | Biophysik                | HCPLUS             |
| Brabec, V                  | 1993          | 90           | 5345        | Proc Natl Acad Sci U     | HCPLUS             |
| Clarke, M                  | 1999          | 99           | 2511        | Chem Rev                 | HCPLUS             |
| Clarke, M                  | 1993          |              | 129         | Metal complexes in c     | HCPLUS             |
| Cleare, M                  | 1974          | 12           | 349         | Coord Chem Rev           | HCPLUS             |
| Cleare, M                  | 1977          | 17           | 1           | J Clin Hematol Oncol     | HCPLUS             |
| Cocchietto, M              | 2000          | 20           | 197         | Anticancer Res           | HCPLUS             |
| Eastman, A                 | 1987          | 34           | 155         | Pharmacol Ther           | HCPLUS             |
| Farrell, N                 | 1990          | 29           | 9522        | Biochemistry             | HCPLUS             |
| Farrell, N                 | 1996          | 32           | 603         | Metal ions in biolog     | HCPLUS             |
| Farrell, N                 | 2000          |              | 321         | Platinum based drugs     | HCPLUS             |
| Fichtinger-Schepman, A     | 1985          | 24           | 707         | Biochemistry             | HCPLUS             |
| Frasca, D                  | 1996          | 13           | 197         | J Met-Based Drugs        | HCPLUS             |
| Gallori, E                 | 2000          | 1376         | 156         | Arch Biochem Biophys     | HCPLUS             |

|                   |          |       |                      |         |
|-------------------|----------|-------|----------------------|---------|
| Jamieson, E       | 1999 99  | 2467  | Chem Rev             | HCAPLUS |
| Johnson, N        | 1989 10  | 1     | Prog Clin Biochem Me | HCAPLUS |
| Kasparkova, J     | 1999 38  | 10997 | Biochemistry         | HCAPLUS |
| Keck, M           | 1992 114 | 3386  | J Am Chem Soc        | HCAPLUS |
| Keppler, B        | 1993     |       | Metal complexes in c |         |
| Keppler, B        | 1993     | 187   | Metal complexes in c | HCAPLUS |
| Lemaire, M        | 1991 88  | 1982  | Proc Natl Acad Sci U | HCAPLUS |
| McGregor, T       | 1999 77  | 43    | J Inorg Biochem      | HCAPLUS |
| Ni Dhubghhaill, O | 1994     | 3305  | J Chem Soc Dalton Tr |         |
| O'Dwyer, P        | 1999     | 31    | Cisplatin. Chemistry | HCAPLUS |
| Perez-Martin, J   | 1993 268 | 24774 | J Biol Chem          | HCAPLUS |
| Peticolas, W      | 1985     | 497   | Structure and motion | HCAPLUS |
| Prenzler, P       | 1997 68  | 279   | J Inorg Biochem      | HCAPLUS |
| Rahmouni, A       | 1985 3   | 363   | J Biomol Struct Dyn  | HCAPLUS |
| Rosenberg, B      | 1999     | 3     | Cisplatin. Chemistry |         |
| Sava, G           | 1999 10  | 129   | Anti-Cancer Drugs    | HCAPLUS |
| Sava, G           | 1994 8   | 150   | Drug Invest          | HCAPLUS |
| Sava, G           | 2000 17  | 353   | Int J Oncol          | HCAPLUS |
| Sava, G           | 1999 1   | 143   | Topics in biological | HCAPLUS |
| Seelig, M         | 1992 118 | 195   | J Cancer Res Clin On | HCAPLUS |
| Ushay, H          | 1982 10  | 3573  | Nucleic Acids Res    | HCAPLUS |
| Vrana, O          | 1996 24  | 3918  | Nucleic Acids Res    | HCAPLUS |
| Wong, E           | 1999 99  | 2451  | Chem Rev             | HCAPLUS |
| Zaludova, R       | 1997 12  | 295   | Anti-Cancer Drug Des | HCAPLUS |
| Zaludova, R       | 1996 60  | 135   | Biophys Chem         | HCAPLUS |
| Zaludova, R       | 1997 246 | 508   | Eur J Biochem        | HCAPLUS |
| Zamble, D         | 1996 35  | 10004 | Biochemistry         | HCAPLUS |
| Zamble, D         | 1999     | 73    | Cisplatin. Chemistry | HCAPLUS |

L77 ANSWER 6 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 2001:354732 HCAPLUS

DN 135:220621

TI Binding of antitumor ruthenium(III) complexes to plasma proteins

AU Messori, L.; Vilchez, F. Gonzales; Vilaplana, R.; Piccioli, F.; Alessio, E.; Keppler, B.

CS Department of Chemistry, University of Florence, Florence, I-50121, Italy

SO Metal-Based Drugs (2000), 7(6), 335-342

CODEN: MBADEI; ISSN: 0793-0291

PB Freund Publishing House Ltd.

DT Journal

LA English

AB Presently, there is large interest in analyzing the interactions in vitro with plasma proteins of some novel antitumor ruthenium(III) complexes that are in preclin. or clin. phase. The joint application of separation and spectroscopic techniques provides valuable information on the nature and the properties of the resulting ruthenium/protein adducts. Recent work carried out in our laboratory points out that, under physiol. conditions, some selected ruthenium(III) complexes bind plasma proteins tightly with a marked preference for surface imidazole groups. Representative examples of interactions of antitumor ruthenium(III) complexes with plasma proteins such as albumin and transferrin are given. Notably the antitumor ruthenium(III) complexes considered here bind proteins much tighter than DNA; it is proposed that protein binding of ruthenium(III) complexes will have a large impact on the biodistribution, the pharmacokinetics and the mechanism of action of these exptl. drugs.

IT 103875-27-0

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)

(binding of antitumor ruthenium(III) complexes to plasma proteins)

RN 103875-27-0 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-,  
hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4

CMF C3 H4 N2



#### RETABLE

| Referenced Author<br>(RAU) | Year<br>(R PY) | VOL<br>(R VL) | PG<br>(R PG) | Referenced Work<br>(RWK) | Referenced File |
|----------------------------|----------------|---------------|--------------|--------------------------|-----------------|
| Alessio, E                 | 1993           | 203           | 205          | Inorg Chim Acta          | HCAPLUS         |
| Anon                       | 1999           |               |              | Cisplatin                |                 |
| Anon                       | 1993           |               |              | Metal Complexes in C     |                 |
| Anon                       |                |               |              | Unpublished results      |                 |
| Clarke, M                  | 1999           | 99            | 2511         | Chem Rev                 | HCAPLUS         |
| Guo, Z                     | 1998           | 273           | 1            | Inorg Chim Acta          |                 |
| Jamieson, E                | 1999           | 99            | 2467         | Chem Rev                 | HCAPLUS         |
| Keppler, B                 | 1993           |               | 187          | Metal Complexes in C     | HCAPLUS         |
| Kratz, F                   | 1994           | 269           | 2581         | J Biol Chem              | HCAPLUS         |
| Kratz, F                   | 1994           | 1             | 169          | Metal Based Drugs        | HCAPLUS         |
| Kratz, F                   | 1996           | 3             | 15           | Metal Based Drugs        | HCAPLUS         |
| Kratz, F                   | 1993           |               | 391          | Metal Complexes in C     | HCAPLUS         |

|                   |                                                 |
|-------------------|-------------------------------------------------|
| Messori, L        | 2000   267   1206   Eur J Biochem   HCAPLUS     |
| Messori, L        | Recent Research Devel                           |
| Sava, G           | 1999   1   143   Topics Biological In   HCAPLUS |
| Szpunar, J        | 1999   387   135   Anal Chim Acta   HCAPLUS     |
| Trynda-Lemiesz, L | 1999   73   123   J Inorg Biochem   HCAPLUS     |
| Trynda-Lemiesz, L | 2000   78   341   J Inorg Biochem   HCAPLUS     |
| Velders, A        | 1998   273   259   Inorg Chim Acta              |
| Vilaplana, R      | 1994   224   15   Inorg Chim Acta   HCAPLUS     |
| Vilaplana, R      | 1995   2   211   Metal Based Drugs   HCAPLUS    |
| Vilchez, F        | 1998   71   45   J Inorg Biochem   HCAPLUS      |

L77 ANSWER 7 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 2001:303276 HCAPLUS

DN 135:127708

TI Hydrolysis of the tumor-inhibiting ruthenium(III) complexes trans-[RuCl<sub>4</sub>(Im)<sub>2</sub>]<sup>-</sup> and trans-[RuCl<sub>4</sub>(ind)<sub>2</sub>]<sup>-</sup> investigated by means of HPCE and HPLC-MS

AU Kung, Angelika; Pieper, Thomas; Wissiack, Rene; Rosenberg, Erwin; Keppler, Bernhard K.

CS Institute of Inorganic Chemistry, University of Vienna, Vienna, 1090, Austria

SO JBIC, Journal of Biological Inorganic Chemistry (2001), 6(3), 292-299

CODEN: JJBCFA; ISSN: 0949-8257

PB Springer-Verlag

DT Journal

LA English

AB High performance capillary electrophoresis (HPCE) as well as HPLC-mass spectrometry (HPLC-MS) were applied to the separation, identification and quantification of the tumor-inhibiting Ru compds. trans-[RuCl<sub>4</sub>(HIm)<sub>2</sub>]<sup>-</sup> (Im = imidazole) and HInd trans-[RuCl<sub>4</sub>(ind)<sub>2</sub>]<sup>-</sup> (ind = indazole) and their hydrolysis products. The half-lives for the hydrolytic decomposition of the Ru(III) compds. were determined by monitoring the relative decrease of the original complex anion under different conditions by capillary electrophoresis. The decomposition follows pseudo-first-order kinetics. The rate consts. in H<sub>2</sub>O at 25° are 1.102 ± 0.091 + 10<sup>-5</sup> s<sup>-1</sup> for trans-[RuCl<sub>4</sub>(Im)<sub>2</sub>]<sup>-</sup> and 0.395 ± 0.014 + 10<sup>-5</sup> s<sup>-1</sup> for trans-[RuCl<sub>4</sub>(ind)<sub>2</sub>]<sup>-</sup>. About 8% of trans-[RuCl<sub>4</sub>(Im)<sub>2</sub>]<sup>-</sup> but only .apprx.2% of trans-[RuCl<sub>4</sub>(ind)<sub>2</sub>]<sup>-</sup> were hydrolyzed after 1 h at room temperature. Whereas the hydrolysis rate of the imidazole complex is independent of the pH value, the indazole complex hydrolyzes much faster at higher pH. The half-life of trans-[RuCl<sub>4</sub>(ind)<sub>2</sub>]<sup>-</sup> in phosphate buffer at pH 6.0 and 37° is 5.4 h, whereas it is <0.5 h at pH 7.4. In contrast to the imidazole complex, where no dependence on the buffer system was observed, hydrolysis of the indazole complex is even faster if a buffer containing H carbonate was used. The formation of [RuCl<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>(Im)<sub>2</sub>]<sup>+</sup> could be demonstrated by HPLC-MS measurements. In the case of the indazole complex, a release of the indazole ligands gave [RuCl<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>-</sup>.

IT 189556-38-5

RL: PRP (Properties); RCT (Reactant); RACT (Reactant or reagent) (hydrolytic decomposition kinetics in relation to pH)

RN 189556-38-5 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, (OC-6-11)- (9CI) (CA INDEX NAME)

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

RETABLE

| Referenced Author<br>(RAU) | Year   VOL   PG | Referenced Work<br>(R PY)   (R VL)   (R PG) | Referenced<br>(RWK) | Referenced File |
|----------------------------|-----------------|---------------------------------------------|---------------------|-----------------|
|                            |                 |                                             |                     |                 |

|                    |      |     |      |                      |         |
|--------------------|------|-----|------|----------------------|---------|
| Alessio, E         | 1993 | 203 | 1205 | Inorg Chim Acta      | HCAPLUS |
| Anderson, C        | 1995 | 73  | 471  | Can J Chem           | HCAPLUS |
| Catalan, J         | 1987 | 110 | 4105 | J Am Chem Soc        |         |
| Chatlas, J         | 1995 | 233 | 59   | Inorg Chim Acta      | HCAPLUS |
| Hohmann, H         | 1992 | 31  | 1090 | Inorg Chem           | HCAPLUS |
| Hohmann, H         | 1990 | 174 | 87   | Inorg Chim Acta      | HCAPLUS |
| Holler, E          | 1991 | 41  | 1065 | Arzneim-Forsch/Drug  | HCAPLUS |
| Howe-Grant, M      | 1980 | 11  | 63   | Metal Ions Biol Syst | HCAPLUS |
| Keppler, B         | 1987 | 26  | 844  | Inorg Chem           | HCAPLUS |
| Keppler, B         | 1993 |     | 187  | Metal complexes in c | HCAPLUS |
| Kratz, F           | 1994 | 269 | 2581 | J Biol Chem          | HCAPLUS |
| Krogh-Jespersen, K | 1987 | 109 | 7025 | J Am Chem Soc        | HCAPLUS |
| Lipponer, K        | 1996 | 3   | 243  | Metal-Based Drugs    | HCAPLUS |
| Ni, D              | 1994 |     | 3305 | J Chem Soc Dalton Tr |         |
| Pacor, S           | 1991 | 78  | 223  | Chem Biol Interact   | HCAPLUS |
| Pinto, H           | 1996 |     |      | Platinum and other m |         |
| Sava, G            | 1992 | 10  | 273  | Clin Exp Metastasis  | HCAPLUS |
| Seelig, M          | 1990 |     | 476  | Metal ions in biolog | HCAPLUS |
| Suvachittanont, S  | 1994 | 33  | 895  | Inorg Chem           | HCAPLUS |
| Velders, A         | 1998 | 273 | 259  | Inorg Chim Acta      | HCAPLUS |
| Yagil, G           | 1967 | 23  | 2855 | Tetrahedron          | HCAPLUS |

L77 ANSWER 8 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 2001:99667 HCAPLUS

DN 134:289470

TI [RuCl<sub>3</sub>ind<sub>3</sub>] and [RuCl<sub>2</sub>ind<sub>4</sub>]: two new ruthenium complexes derived from the tumor-inhibiting Ru<sup>III</sup> compound HInd (OC-6-11)-[RuCl<sub>4</sub>ind<sub>2</sub>] (ind = indazole)AU Pieper, Thomas; Sommer, Martina; Galanski, Markus; **Keppler, Bernhard K.**; Giester, Gerald

CS Institute of Inorganic Chemistry, University of Vienna, Vienna, A-1090, Austria

SO Zeitschrift fuer Anorganische und Allgemeine Chemie (2001), 627(2), 261-265

CODEN: ZAACAB; ISSN: 0044-2313

PB Wiley-VCH Verlag GmbH

DT Journal

LA English

OS CASREACT 134:289470

AB Indazolium (OC-6-11)-tetrachlorobis(indazole)ruthenate(III), HInd (OC-6-11)-[RuCl<sub>4</sub>ind<sub>2</sub>], exhibits excellent results in different tumor models *in vitro* and *in vivo*. Substitution reactions of this Ru(III) complex are of special interest for a deeper understanding of its interactions with biol. occurring targets and its mode of action. The indazolium complex salt can be transformed to the neutral, meridionally configurated trisindazole complex (OC-6-21)-[RuCl<sub>3</sub>ind<sub>3</sub>] in solvents like THF. The x-ray crystal structure of this complex could be solved (monoclinic space group P2(1)/n, a 12.441(3), b 10.415(3), c 21.635(4) Å, β 105.02(1)°). In spite of the paramagnetic Ru<sup>III</sup> atom most of the coordinated indazole protons could be assigned with the help of two-dimensional NMR expts. Addnl., a reduced reaction product of Hind (OC-6-11)-[RuCl<sub>4</sub>ind<sub>2</sub>] in the physiol. solubilizer 2-pyrrolidone could be isolated and the x-ray crystal structure of this Ru<sup>II</sup> complex, (OC-6-12)-[RuCl<sub>2</sub>ind<sub>4</sub>], crystallized with two 2-pyrrolidones, could be solved (monoclinic space group P2(1)/n, a 12.139(2), b 10.426(2), c 14.426(3) Å, β 100.06(3)°).

IT 124875-20-3

RL: RCT (Reactant); RACT (Reactant or reagent)  
(substitution with indazole and reduction)

RN 124875-20-3 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole- $\kappa$ N2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0  
CMF C14 H12 Cl4 N4 Ru . H  
CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
CMF C7 H6 N2



RETABLE

| Referenced Author<br>(RAU) | Year  | VOL   | PG    | Referenced Work<br>(RWK) | Referenced File |
|----------------------------|-------|-------|-------|--------------------------|-----------------|
|                            | (RPY) | (RVL) | (RPG) |                          |                 |
| Alessio, E                 | 1997  |       | 457   | Cytotoxic, Mutagenic     | HCAPLUS         |
| Alessio, E                 | 1993  | 203   | 205   | Inorg Chim Acta          | HCAPLUS         |
| Anderson, C                | 1995  | 73    | 471   | Can J Chem               | HCAPLUS         |
| Chatlas, J                 | 1995  | 233   | 59    | Inorg Chim Acta          | HCAPLUS         |
| Clarke, M                  | 1980  | 12    | 79    | J Inorg Biochem          | HCAPLUS         |
| Clarke, M                  | 1993  |       | 129   | Metal Complexes in C     | HCAPLUS         |
| Depenbrock, H              | 1997  | 33    | 2404  | Europ J Cancer           | HCAPLUS         |
| Frasca, D                  | 1996  | 3     | 197   | Metal-Based Drugs        | HCAPLUS         |
| Galeano, A                 | 1992  | 42(I) | 821   | Arzneimittelforschun     |                 |
| Keppler, B                 | 1993  |       | 187   | Metal Complexes in C     | HCAPLUS         |
| Kratz, F                   | 1996  | 269   | 2581  | J Biol Chem              |                 |
| Lipponer, K                | 1996  | 3     | 243   | Metal-Based Drugs        | HCAPLUS         |
| Mestroni, G                | 1993  | 1     | 41    | Metal Based Drugs        |                 |
| Ni Dhubhaill, O            | 1994  |       | 3305  | J Chem Soc, Dalton T     |                 |
| Peti, W                    | 1999  |       | 1551  | Eur J Inorg Chem         | HCAPLUS         |
| Pieper, T                  | 1997  | 123   | S35   | J Cancer Res Clin On     |                 |
| Pieper, T                  | 2000  |       |       | Metal-Based Drugs in     |                 |
| Sava, S                    | 1998  | 16    | 371   | Clin Exp Metastasis      |                 |
| Seelig, M                  | 1990  |       | 476   | Metal Ions in Biolog     | HCAPLUS         |
| Sheldrick, G               | 1997  |       |       | SHELXL-97, A Program     |                 |
| Sheldrick, G               | 1997  |       |       | SHELXS-97, A Program     |                 |
| Smith, C                   | 1996  | 1     | 424   | J Bioinorg Chem          | HCAPLUS         |
| van Vliet, P               | 1995  | 231   | 57    | Inorg Chim Acta          | HCAPLUS         |
| Vilaplana, R               | 1995  | 2     | 211   | Metal Based Drugs        | HCAPLUS         |
| Wong, W                    | 1994  | C50   | 1406  | Acta Crystallogr         | HCAPLUS         |

L77 ANSWER 9 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 2001:20610 HCAPLUS

DN 134:216441

TI Solvolysis of the tumor-inhibiting Ru(III)-complex trans-tetrachlorobis(indazole)ruthenate(III)

AU Pieper, Thomas; Peti, Wolfgang; Keppler, Bernhard K.

CS Institute of Inorganic Chemistry, University of Vienna, Vienna, A-1090, Austria  
 SO Metal-Based Drugs (2000), 7(4), 225-232  
 CODEN: MBADEI; ISSN: 0793-0291  
 PB Freund Publishing House Ltd.  
 DT Journal  
 LA English  
 AB Trans-[RuCl<sub>4</sub>(ind)<sub>2</sub>](Hind), with two trans indazole (ind) ligands bound to Ru via N, shows remarkable activity in different tumor models in vitro and in vivo. The solvolysis of trans-[RuCl<sub>4</sub>(ind)<sub>2</sub>]- was studied by spectroscopic techniques (UV/visible, NMR) in different solvents. The authors studied the indazolium as well as the Na salt, the latter showing improved solubility in H<sub>2</sub>O. In aqueous MeCN and EtOH the solvolysis results in one main solvento complex. The hydrolysis of the complex is more complicated and depends on the pH of the solution as well as on the buffer system.  
 IT 328238-75-1  
 RL: FMU (Formation, unclassified); FORM (Formation, nonpreparative) (formation from solvolysis of tetrachlorobis(indazole)ruthenate in acetonitrile/water)  
 RN 328238-75-1 HCAPLUS  
 CN Ruthenium, aquatrichlorobis(1H-indazole-κN2)-, (OC-6-21)- (9CI) (CA INDEX NAME)

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

IT 142388-45-2  
 RL: RCT (Reactant); RACT (Reactant or reagent)  
 (solvolysis in water and acetonitrile)  
 RN 142388-45-2 HCAPLUS  
 CN Ruthenate(1-), tetrachlorobis(2H-indazole-κN1)-, (OC-6-11)-, hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 142388-44-1  
 CMF C14 H12 Cl14 N4 Ru . H  
 CCI CCS



● H<sup>+</sup>

CM 2

CRN 271-44-3  
CMF C7 H6 N2

## RETABLE

| Referenced Author<br>(RAU) | Year<br>(R PY) | VOL<br>(R VL) | PG<br>(R PG) | Referenced Work<br>(RWK) | Referenced File |
|----------------------------|----------------|---------------|--------------|--------------------------|-----------------|
| Alessio, E                 | 1993           | 203           | 205          | Inorg Chim Acta          | HCAPLUS         |
| Anderson, C                | 1995           | 73            | 471          | Can J Chem               | HCAPLUS         |
| Bertini, I                 | 1986           |               |              | NMR of paramagnetic      |                 |
| Chatlas, J                 | 1995           | 233           | 59           | Inorg Chim Acta          | HCAPLUS         |
| Clarke, M                  | 1993           |               | 129          | Metal Complexes in C     | HCAPLUS         |
| Depenbrock, H              | 1997           | 33            | 2404         | Europ J Cancer           | HCAPLUS         |
| Galeano, A                 | 1992           | 42            | 821          | Arzneimittelforschun     |                 |
| Hohmann, H                 | 1992           | 31            | 1090         | Inorg Chem               | HCAPLUS         |
| Hohmann, H                 | 1990           | 174           | 87           | Inorg Chim Acta          | HCAPLUS         |
| Holler, E                  | 1991           | 41            | 1065         | Arzneim-Forsch I Dru     | HCAPLUS         |
| Howe-Grant, M              | 1980           | 11            | 63           | Metal Ions Biol Syst     | HCAPLUS         |
| Keppler, B                 | 1993           |               | 187          | Metal Complexes in C     | HCAPLUS         |
| Kratz, F                   | 1994           | 269           | 2581         | J Biol Chem              | HCAPLUS         |
| Lipponer, K                | 1996           | 3             | 243          | Metal-Based Drugs        | HCAPLUS         |
| Mestroni, G                | 1993           | 1             | 41           | Metal Based Drugs        |                 |
| Ni Dhubhghaill, O          | 1994           |               | 3305         | J Chem Soc Dalton Tr     | HCAPLUS         |
| Peti, W                    | 1999           |               | 1551         | Eur J Inorg Chem         | HCAPLUS         |
| Satterlee, J               | 1990           | 2             | 119          | Concepts Magn Reson      | HCAPLUS         |
| Satterlee, J               | 1990           | 2             | 169          | Concepts Magn Reson      | HCAPLUS         |
| Seelig, M                  | 1990           |               | 476          | Metal Ions in Biolog     | HCAPLUS         |
| Suvachittanont, S          | 1994           | 33            | 895          | Inorg Chem               | HCAPLUS         |
| Velders, A                 | 1998           | 273           | 259          | Inorganica Chimica A     | HCAPLUS         |
| Vilaplana, R               | 1995           | 2             | 211          | Metal Based Drugs        | HCAPLUS         |

L77 ANSWER 10 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 2001:20606 HCAPLUS

DN 134:260990

TI Biological properties of IRIM, the iridium(III) analog of (imidazolium (bisimidazole) tetrachlororuthenate) (ICR)

AU Marcon, G.; Casini, A.; Mura, P.; Messori, L.; Bergamo, A.; Orioli, P.  
CS Unit of Florence, CIRCMSB, Florence, I-50121, Italy

SO Metal-Based Drugs (2000), 7(4), 195-200

CODEN: MBADEI; ISSN: 0793-0291

PB Freund Publishing House Ltd.

DT Journal

LA English

AB Some biol. aspects of the new complex imidazolium bisimidazole tetrachloroiodate(III) - IRIM - the iridium(III) analog of ICR, were considered. More in detail the conformational effects produced by IRIM on DNA and the cytotoxic properties of IRIM on some selected human cell lines were measured. Dialysis expts. and DNA thermal denaturation studies are

suggestive of poor binding of IRIM to DNA; formation of interstrand crosslinks is not observed. In any case CD measurements suggest that addition of

increasing amts. of IRIM to calf thymus DNA results into significant spectral changes, that are diagnostic of a direct interaction with DNA. A number of expts. carried out on the A2780 human ovarian carcinoma, B16 murine melanoma, MCF7 and TS mammary adenocarcinoma tumor cell lines strongly point out that IRIM does not exhibit significant growth inhibition effects within the concentration range 10<sup>-4</sup>-10<sup>-6</sup> M. It is suggested that the lower biol.

effects of IRIM compared to ICR are a consequence of the larger kinetic inertness of the iridium(III) center with respect to ruthenium(III).

IT 103875-27-0

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)  
(biol. properties of IRIM, the iridium(III) analog of (imidazolium (bisimidazole) tetrachlororuthenate) (ICR))

RN 103875-27-0 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole-κN3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4

CMF C3 H4 N2



## RETABLE

| Referenced Author<br>(RAU) | Year<br>(R PY) | VOL<br>(R VL) | PG<br>(R PG) | Referenced Work<br>(RWK) | Referenced File |
|----------------------------|----------------|---------------|--------------|--------------------------|-----------------|
| Anon                       | 1999           | 99            | 2201         | Medicinal Inorganic      |                 |
| Gallori, E                 | 2000           | 376           | 156          | Arch Biochem Biophys     | HCAPLUS         |
| Keppler, B                 | 1993           |               |              | Metal Complexes in C     |                 |
| Mestroni, G                | 1998           | 273           | 62           | Inorg Chim Acta          |                 |
| Mosmann, T                 | 1983           | 65            | 55           | J Immunol Methods        | MEDLINE         |
| Mura, P                    | 2000           |               |              | Inorg Chim Acta, sub     |                 |
| Sava, G                    | 1999           | 1             | 143          | Topics BioInorg Chem     | HCAPLUS         |
| Skehan, P                  | 1990           | 82            | 1107         | J Natl Cancer Inst       | HCAPLUS         |
| Wilson, W                  | 1997           |               | 90           | Methods in Molecular     |                 |

L77 ANSWER 11 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 2000:846102 HCAPLUS

DN 134:141477

TI Lack of in vitro cytotoxicity, associated to increased G2-M cell fraction and inhibition of matrigel invasion, may predict in vivo-selective antimetastasis activity of ruthenium complexes

AU Zorzet, Sonia; Bergamo, Alberta; Cocchietto, Moreno; Sorc, Alenka; Gava, Barbara; Alessio, Enzo; Iengo, Elisabetta; Sava, Gianni

CS Department of Biomedical Sciences, Cellerio Foundation-Onlus, Trieste, Italy

SO Journal of Pharmacology and Experimental Therapeutics (2000), 295(3), 927-933

CODEN: JPETAB; ISSN: 0022-3565

PB American Society for Pharmacology and Experimental Therapeutics

DT Journal

LA English

AB The ruthenium complexes trans-dichlorotetrakisdimethylsulfoxide ruthenium(II) (trans-Ru), imidazolium trans-imidazoletrachlororuthenate (ICR), sodium trans-tetramethylsulfoxideisoquinolinetetrachlororuthenate (TEQU), and imidazolium trans-imidazoledimethylsulfoxidetetrachlororuthenate (NAMI-A) are tested in vitro by short exposure of MCF-7, LoVo, KB, and TS/A tumor cells to 10<sup>-4</sup> M concentration, and in vivo on Lewis lung carcinoma

by

a daily i.p. treatment for 6 consecutive days using equitoxic and maximum tolerated doses. NAMI-A (1) inhibited tumor cell invasion of matrigel, (2) induced a transient accumulation of cells in the G2-M phase, (3) did not modify in vitro cell growth, and (4) markedly reduced lung metastasis formation. TEQU showed significant cytotoxicity in vitro and was not antimetastatic in vivo. ICR and trans-Ru did not modify cell cycle distribution of in vitro tumor cells nor did they inhibit matrigel invasion; ICR was also devoid of antimetastasis effects in vivo. Ruthenium uptake by tumor cells did account for in vitro cytotoxicity but not for other in vitro actions or for in vivo antimetastasis activity. The contemporary absence of cytotoxicity, associated to inhibition of matrigel crossing and to transient block in the premitotic G2-M phase, appears to be prerequisites for a ruthenium compound to show in vivo-selective antimetastasis effect. The validation of this model for other classes of compds. will allow an understanding of the combined weight of the above-mentioned phenomena for tumor metastasis growth and control.

IT 103875-27-0

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(lack of in vitro cytotoxicity, associated to increased G2-M cell fraction and inhibition of matrigel invasion may predict in vivo-selective antimetastasis activity of ruthenium complexes)

RN 103875-27-0 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS

● H<sup>+</sup>

CM 2

CRN 288-32-4

CMF C3 H4 N2



## RETABLE

| Referenced Author<br>(RAU) | Year<br>(R PY) | VOL<br>(R VL) | PG<br>(R PG)         | Referenced Work<br>(R WK) | Referenced File |
|----------------------------|----------------|---------------|----------------------|---------------------------|-----------------|
| Albini, A                  | 1998   4       | 230           | Pathol Oncol Res     | MEDLINE                   |                 |
| Alessio, E                 | 1993   203     | 205           | Inorg Chim Acta      | HCAPLUS                   |                 |
| Alessio, E                 | 1988           | 617           | Platinum and Other M |                           |                 |
| Bergamo, A                 | 1999   289     | 559           | J Pharmacol Exp Ther | HCAPLUS                   |                 |

|                |               |                      |         |
|----------------|---------------|----------------------|---------|
| Capozzi, I     | 1998 113 51   | Chem-Biol Interact   | HCAPLUS |
| Clarke, M      | 1989   231    | Metal Ions in Biolog |         |
| Clarke, M      | 1988   582    | Platinum and Other M |         |
| Coluccia, M    | 1993 29A 1873 | Eur J Cancer         | HCAPLUS |
| Coluccia, M    | 1995 2 195    | Metal-Based Drugs    | HCAPLUS |
| Craciunescu, D | 1987 1 229    | In Vivo              | HCAPLUS |
| Crissman, H    | 1973 59 766   | J Cell Biol          | HCAPLUS |
| Drewinko, B    | 1978 61 75    | J Natl Cancer Inst   | MEDLINE |
| Eagle, H       | 1959 130 432  | Science (Wash DC)    | HCAPLUS |
| Galeano, A     | 1992 42 821   | Arzneim-Forsch       | HCAPLUS |
| Geran, R       | 1972 3 13     | Cancer Chemother Rep |         |
| Keppler, B     | 1987 26 4366  | Inorg Chem           | HCAPLUS |
| Keppler, B     | 1986 111 166  | J Cancer Res Clin On | HCAPLUS |
| Kotoh, T       | 1999 125 536  | Surgery              | MEDLINE |
| Mestroni, G    | 1998          | WO 98/00431          | HCAPLUS |
| Mestroni, G    | 1989   71     | Progress in Clinical | HCAPLUS |
| Mosmann, T     | 1983 65 55    | J Immunol Methods    | MEDLINE |
| Nagabuchi, E   | 1997 32 287   | J Pediatr Surg       | MEDLINE |
| Nanni, P       | 1983 1 373    | Clin Exp Metastasis  | MEDLINE |
| Sava, G        | 1999 10 129   | Anticancer Drugs     | HCAPLUS |
| Sava, G        | 1999 19 969   | Anticancer Res       | HCAPLUS |
| Sava, G        | 1995 95 109   | Chem-Biol Interact   | HCAPLUS |
| Sava, G        | 1998 16 371   | Clin Exp Metastasis  | HCAPLUS |
| Sava, G        | 1997 3 207    | Curr Topics Pharmac  | HCAPLUS |
| Sava, G        | 1996 68 60    | Int J Cancer         | HCAPLUS |
| Sava, G        | 1989 21 617   | Pharmacol Res        | HCAPLUS |
| Sledge, G      | 1995 87 1546  | J Natl Cancer Inst   | HCAPLUS |
| Soule, H       | 1973 51 1409  | J Natl Cancer Inst   | MEDLINE |
| Tamura, H      | 1992 41 T13   | Bunseki Kagaku       | HCAPLUS |
| Yoneda, T      | 1997 99 2509  | J Clin Invest        | HCAPLUS |

L77 ANSWER 12 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 2000:779312 HCAPLUS

DN 134:110205

TI Effects of NAMI-A and some related ruthenium complexes on cell viability after short exposure of tumor cells

AU Bergamo, A.; Zorzet, S.; Gava, B.; Sorc, A.; Alessio, E.; Iengo, E.; Sava, G.

CS Callerio Foundation Onlus, Trieste, 34127, Italy

SO Anti-Cancer Drugs (2000), 11(8), 665-672

CODEN: ANTDEV; ISSN: 0959-4973

PB Lippincott Williams & Wilkins

DT Journal

LA English

AB A series of three ruthenium complexes, i.e. trans-dichlorotetrakisdimethylsulfoxide ruthenium(II) (trans-Ru), imidazolium trans-imidazoletetra-chlororuthenate (ICR) and sodium trans-tetramethylsulfoxideisoquinoline-tetrachlororuthenate (TEQU), were studied in vitro in comparison to NAMI-A, a potent ruthenium-based antimetastasis agent. In vitro challenge of TS/A adenocarcinoma or KB oral carcinoma tumor cells with 10<sup>-4</sup> M concentration

for 1 h evidenced the lack of cytotoxicity of NAMI-A, ICR and trans-Ru, the accumulation of cells in the G2/M pre-mitotic cell phase by NAMI-A and the attachment of tumor cells to the plastic substrate was significantly greater for NAMI-A than for ICR. These data stress that in vitro cytotoxicity is not necessary for in vivo activity of ruthenium antitumor complexes: NAMI-A, ICR and trans-Ru, are in fact known to be active against murine tumors in the mouse system. Rather, TEQU, the compound free of in vivo activity, was the only one to reduce cell growth of in vitro cultured cells. In conclusion, the data on the effects of NAMI-A on in

vitro cultured cells show that the increase of cell adhesion properties and the transient cell cycle arrest in the G2/M phase are much more relevant than the effects on cell properties relevant to cell growth (i.e. on CD44, CD54 or CD71 antigens) for determining in vivo antimetastasis activity.

IT 103875-27-0

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (effects of NAMI-A and related ruthenium complexes on cell viability after short exposure of tumor cells in relation to antimetastatic activity)

RN 103875-27-0 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4

CMF C3 H4 N2



#### RETABLE

| Referenced Author<br>(RAU) | Year   VOL   PG | Referenced Work<br>(R PY)   (R VL)   (R PG) | Referenced File<br>(R WK) |
|----------------------------|-----------------|---------------------------------------------|---------------------------|
|----------------------------|-----------------|---------------------------------------------|---------------------------|

| Alessio, E     | 1993  203  205  Inorg Chim Acta  HCAPLUS      |  |  |  |  |  |
|----------------|-----------------------------------------------|--|--|--|--|--|
| Bergamo, A     | 1999  289  559  J Pharmacol Exp Ther  HCAPLUS |  |  |  |  |  |
| Capozzi, I     | 1998  113  51  Chem-Biol Interact  HCAPLUS    |  |  |  |  |  |
| Clarke, M      | 1993    129  Metal complexes in c  HCAPLUS    |  |  |  |  |  |
| Craciunescu, D | 1987  1  229  In Vivo  HCAPLUS                |  |  |  |  |  |
| Crissman, H    | 1973  59  766  J Cell Biol  HCAPLUS           |  |  |  |  |  |
| Eagle, H       | 1959  130  432  Science  HCAPLUS              |  |  |  |  |  |
| Galeano, A     | 1992  42  821  Arzneim-Forsch  HCAPLUS        |  |  |  |  |  |
| Keppler, B     | 1990  17  261  Cancer Treat Rev  HCAPLUS      |  |  |  |  |  |
| Keppler, B     | 1986  111  166  J Cancer Res Clin On  HCAPLUS |  |  |  |  |  |
| Mestroni, G    | 1989    71  Progress in clinical  HCAPLUS     |  |  |  |  |  |
| Mosmann, T     | 1983  65  55  J Immunol Methods  MEDLINE      |  |  |  |  |  |
| Nanni, P       | 1983  1  373  Clin Exp Metastasis  MEDLINE    |  |  |  |  |  |
| Pacor, S       | 1999  5  110  Pathol Oncol Res  HCAPLUS       |  |  |  |  |  |
| Podda, E       | 1998      Thesis University of                |  |  |  |  |  |
| Satoh, K       | 1999  80  1115  Br J Cancer  HCAPLUS          |  |  |  |  |  |
| Sava, G        | 1995  95  109  Chem-Biol Interact  HCAPLUS    |  |  |  |  |  |
| Sava, G        | 1998  16  371  Clin Exp Metastasis  HCAPLUS   |  |  |  |  |  |
| Sava, G        | 1998  16  371  Clin Exp Metastasis  HCAPLUS   |  |  |  |  |  |
| Sava, G        | 1994  8  150  Drug Invest  HCAPLUS            |  |  |  |  |  |
| Sava, G        | 1996  68  60  Int J Cancer  HCAPLUS           |  |  |  |  |  |
| Sava, G        | 1999    143  Topics in biological  HCAPLUS    |  |  |  |  |  |
| Skehan, P      | 1990  82  1107  J Natl Cancer Inst  HCAPLUS   |  |  |  |  |  |

L77 ANSWER 13 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 2000:242568 HCAPLUS

DN 133:83719

TI New anticancer agents developed by the new drug development group (AWO)

AU **Keppler, B. K.; Eisenbrand, G.; Jakupec, M. A.**

CS Institute of Inorganic Chemistry, Vienna University, Vienna, Austria

SO Contributions to Oncology (1999), 54(Relevance of Tumor Models  
for Anticancer Drug Development), 361-367

CODEN: COONEV; ISSN: 0250-3220

PB S. Karger AG

DT Journal; General Review

LA English

AB A review with 8 refs. is given on anticancer drug development by the group  
(AWO). 4 Compds. for anticancer treatment are presented which are  
qualified as candidates for clin. trials. The chemical names, chemical  
structures, mechanisms of action, and antitumor activity are described of  
KP 735, KP 1019, E 91, and SUM 4.

IT 124875-20-3, KP 1019

RL: **BAC (Biological activity or effector, except adverse); BSU**  
**(Biological study, unclassified); PRP (Properties); THU (Therapeutic**  
**use); BIOL (Biological study); USES (Uses)**  
**(development of anticancer agents)**

RN 124875-20-3 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole- $\kappa$ N2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0

CMF C14 H12 Cl4 N4 Ru . H

CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
CMF C7 H6 N2



## RETABLE

| Referenced Author<br>(RAU) | Year<br>(R PY) | VOL<br>(R VL) | PG<br>(R PG) | Referenced Work<br>(R WK) | Referenced File |
|----------------------------|----------------|---------------|--------------|---------------------------|-----------------|
| Bauer, R                   | 1995           | 31A           | 1S28         | Eur J Cancer              |                 |
| Berger, M                  | 1989           | 9             | 1761         | Anticancer Res            | HCAPLUS         |
| Brix, H                    | 1990           | 116           | 1538         | J Cancer Res Clin On      | MEDLINE         |
| Depenbrock, H              | 1997           | 33            | 12404        | Eur J Cancer              | HCAPLUS         |
| Fruhauf, S                 | 1991           | 51            | 12943        | Cancer Res                | MEDLINE         |
| Hanauske, A                | 1997           |               | 1869         | Cancer Medicine. Fou      |                 |
| Keppler, B                 | 1993           |               | 1187         | Metal Complexes in C      | HCAPLUS         |
| Klenner, T                 | 1990           | 116           | 1341         | J Cancer Res Clin On      | MEDLINE         |
| Rank, P                    | 1996           | 73            | 1315         | Ann Hematol               |                 |

L77 ANSWER 14 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 2000:155068 HCAPLUS

DN 132:302929

TI A spectroscopic study of the reaction of NAMI, a novel ruthenium(III) anti-neoplastic complex, with bovine serum albumin

AU Messori, Luigi; Orioli, Pierluigi; Vullo, Daniela; Alessio, Enzo; Iengo, Elisabetta

CS Department of Chemistry, University of Florence, 50121, Italy

SO European Journal of Biochemistry (2000), 267(4), 1206-1213

CODEN: EJBCAI; ISSN: 0014-2956

PB Blackwell Science Ltd.

DT Journal

LA English

AB The reaction of Na[transRuCl<sub>4</sub>Me<sub>2</sub>SO(Im)] (NAMI; where Im is imidazole), a novel antineoplastic ruthenium(III) complex, with BSA, was studied in detail by various physico-chemical techniques. It is shown that NAMI, following chloride hydrolysis, binds bovine serum albumin tightly; spectrophotometric and atomic absorption data point out that up to five ruthenium ions are bound per albumin mol. when BSA is incubated for 24 h with an eightfold excess of NAMI. CD and electronic absorption results show that the various ruthenium centers bound to albumin exhibit well distinct spectroscopic features. The first ruthenium equivalent produces a characteristic pos. CD band at 415 nm whereas the following NAMI equivalent produce less specific and less marked spectral effects. At high NAMI/BSA molar ratios a broad neg. CD band develops at 590 nm. Evidence is provided that the bound ruthenium centers remain in the oxidation state +3. By analogy with the case of transferrins it is proposed that the BSA-bound ruthenium ions are ligated to surface histidines of the protein; results from chemical modification expts. with diethylpyrocarbonate seem to favor this view. Spectral patterns similar to those shown by NAMI are observed when BSA is reacted with two strictly related ruthenium(III) complexes Na[transRuCl<sub>4</sub>(Me<sub>2</sub>SO)<sub>2</sub>] and H(Im)[transRuCl<sub>4</sub>(Im)<sub>2</sub>] (ICR), implying a similar mechanism of interaction in all cases. It is suggested that the described NAMI-BSA adducts may form in vivo and may be relevant for the

biol. properties of this complex; alternatively NAMI-BSA adducts may be tested as specific carriers of the ruthenium complex to cancer cells. Implications of these findings for the mechanism of action of NAMI and of related ruthenium(III) complexes are discussed.

IT 103875-27-0

RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); PRP (Properties); RCT (Reactant); BIOL (Biological study); PROC (Process); RACT (Reactant or reagent)  
 (a spectroscopic study of the reaction of NAMI, a novel ruthenium(III) antineoplastic complex, with bovine serum albumin)

RN 103875-27-0 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS

● H<sup>+</sup>

CM 2

CRN 288-32-4

CMF C3 H4 N2



## RETABLE

| Referenced Author<br>(RAU) | Year   VOL   PG | Referenced Work<br>(R PY)   (R VL)   (R PG) | Referenced<br>(RWK) | Referenced File |
|----------------------------|-----------------|---------------------------------------------|---------------------|-----------------|
|                            |                 |                                             |                     |                 |

|                |                 |                              |                              |
|----------------|-----------------|------------------------------|------------------------------|
| Alessio, E     | 1997            | 457                          | Cytotoxic, Mutagenic HCAPLUS |
| Alessio, E     | 1993  203  205  | Inorg Chim Acta              | HCAPLUS                      |
| Christendat, D | 1996  35  4468  | Biochemistry                 | HCAPLUS                      |
| Clarke, M      | 1987  33  728   | Metal Ions in Biolog         |                              |
| Keppler, B     | 1987  26  4366  | Inorg Chem                   | HCAPLUS                      |
| Keppler, B     | 1993            | Metal Complexes in C         |                              |
| Kratz, F       | 1994  269  2581 | J Biol Chem                  | HCAPLUS                      |
| Kratz, F       | 1994  1  169    | Metal Based Drugs            | HCAPLUS                      |
| Kratz, F       | 1996  3  15     | Metal Based Drugs            | HCAPLUS                      |
| Kratz, F       | 1992  2  69     | Metal Ions in Biolog         |                              |
| Lundblad, R    | 1995            | Techniques in Protei         |                              |
| Messori, L     | 1996  3  1      | Metal Based Drugs            | HCAPLUS                      |
| Mestroni, G    | 1994  1  41     | Chem Behav Pharmaceu HCAPLUS |                              |
| Rodger, A      | 1997            | Circular Dichroism a         |                              |
| Sava, G        | 1992  3  25     | Anti-Cancer Drugs            | HCAPLUS                      |
| Sava, G        | 1995  95  109   | Chem Biol Interact           | HCAPLUS                      |
| Sava, G        | 1992  10  273   | Exp Metastasis               | HCAPLUS                      |
| Sava, G        | 1996  68  60    | Int J Cancer                 | HCAPLUS                      |
| Sava, G        | 1999  1  143    | Topics Bioinorg Chem HCAPLUS |                              |
| Smith, C       | 1996  1  424    | J Biol Inorg Chem            | HCAPLUS                      |
| Sundberg, R    | 1973  3  39     | Bioinorg Chem                | HCAPLUS                      |
| Winkler, J     | 1992  92  369   | Chem Rev                     | HCAPLUS                      |

L77 ANSWER 15 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 1999:550474 HCAPLUS

DN 131:280631

TI Synthesis of tumor-inhibiting complex salts containing the anion trans-tetrachlorobis(indazole)ruthenate(III) and crystal structure of the tetraphenylphosphonium salt

AU Peti, Wolfgang; Pieper, Thomas; Sommer, Martina; Keppler, Bernhard K.; Giester, Gerald

CS Institute General Inorganic Chemistry, Univ. Vienna, Vienna, A-1090, Austria

SO European Journal of Inorganic Chemistry (1999), (9), 1551-1555  
CODEN: EJICFO; ISSN: 1434-1948

PB Wiley-VCH Verlag GmbH

DT Journal

LA English

AB Indazolium trans-tetrachlorobis(indazole)ruthenate(1-) exhibits excellent results against different tumor models in vitro and in vivo. To improve the water solubility necessary for the introduction of this tumor-inhibiting compound into clin. trials, the authors synthesized the corresponding Na salt in a 2-step ion exchange via the tetramethylammonium salt. The Na salt shows a 3,5-fold higher solubility in water relative to the indazolium salt. The authors also synthesized the n-butylammonium, n-octylammonium, and tetraphenylphosphonium salts, all of which showed improved solubility in organic solvents. The x-ray crystal structure of the latter could be solved, proving the trans configuration of the complex anion (triclinic, P.hivin.1,  $a = 11.000(2)$ ,  $b = 13.503(2)$ ,  $c = 14.471(2)$  Å,  $\alpha = 65.42(1)$ ,  $\beta = 82.80(1)$ ,  $\gamma = 67.93(1)$ °,  $V = 1810.2$  Å<sup>3</sup>,  $Z = 2$ ,  $pc = 1.50$  g/cm<sup>3</sup>,  $\mu(MoK\alpha) = 8.1$ , 5573 observed reflections with  $Fo > 4\sigma(Fo)$ , 562 refined parameters,  $R1 = 0.033$ ,  $wR2 = 0.088$ ). In spite of the paramagnetic Ru(III) center an assignment of the coordinated indazole protons could be made with the help of a COSY experiment

IT 245488-11-3P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)  
(preparation and cation exchange)

RN 245488-11-3 HCAPLUS

CN Methanaminium, N,N,N-trimethyl-, (OC-6-11)-tetrachlorobis(1H-indazole- $\kappa$ N2)ruthenate(1-) (9CI) (CA INDEX NAME)

CM 1

CRN 189556-38-5  
CMF C14 H12 Cl4 N4 Ru  
CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 51-92-3  
CMF C4 H12 N



IT 197722-94-4P

RL: PRP (Properties); RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)  
(preparation and crystal and mol. structure of)

RN 197722-94-4 HCPLUS

CN Phosphonium, tetraphenyl-, (OC-6-11)-tetrachlorobis(1H-indazole- $\kappa$ N2)ruthenate(1-) (9CI) (CA INDEX NAME)

CM 1

CRN 189556-38-5  
CMF C14 H12 Cl4 N4 Ru  
CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 18198-39-5  
CMF C24 H20 P



IT 197723-00-5P 245488-07-7P 245488-14-6P

245488-17-9P

RL: SPN (Synthetic preparation); PREP (Preparation)  
(preparation of)

RN 197723-00-5 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole- $\kappa$ N2)-, sodium, (OC-6-11)- (9CI) (CA INDEX NAME)

✓ \*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*  
 RN 245488-07-7 HCPLUS  
 CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, sodium, trihydrate,  
 (OC-6-11)- (9CI) (CA INDEX NAME)

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*  
 RN 245488-14-6 HCPLUS  
 CN 1-Butanaminium, N,N,N-tributyl-, (OC-6-11)-tetrachlorobis(1H-indazole-  
 κN2)ruthenate(1-) (9CI) (CA INDEX NAME)

CM 1

CRN 189556-38-5  
 CMF C14 H12 Cl4 N4 Ru  
 CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 10549-76-5  
 CMF C16 H36 N



RN 245488-17-9 HCPLUS  
 CN 1-Octanaminium, N,N,N-trioctyl-, (OC-6-11)-tetrachlorobis(1H-indazole-  
 κN2)ruthenate(1-) (9CI) (CA INDEX NAME)

CM 1

CRN 189556-38-5  
 CMF C14 H12 Cl4 N4 Ru  
 CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 19524-73-3  
 CMF C32 H68 N



IT 124875-20-3

RL: RCT (Reactant); RACT (Reactant or reagent)  
 (reactant for preparation of tetraphenylphosphonium trans-

RN 124875-20-3 HCAPLUS  
 CN Ruthenate(1-), tetrachlorobis(1H-indazole- $\kappa$ N2)-, (OC-6-11)-,  
 hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0  
 CMF C14 H12 Cl4 N4 Ru . H  
 CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
 CMF C7 H6 N2



## RETABLE

| Referenced Author<br>(RAU) | Year | VOL    | PG     | Referenced Work<br>(RWK) | Referenced File |
|----------------------------|------|--------|--------|--------------------------|-----------------|
|                            |      | (R PY) | (R VL) | (R PG)                   |                 |
| Alessio, E                 | 1997 |        | 457    | Cytotoxic, Mutagenic     | H CAPLUS        |
| Alessio, E                 | 1993 | 203    | 205    | Inorg Chim Acta          | H CAPLUS        |
| Clarke, M                  | 1993 |        | 129    | Metal Complexes in C     | H CAPLUS        |
| Depenbrock, H              | 1997 | 33     | 2404   | Europ J Cancer           | H CAPLUS        |
| Galeano, A                 | 1992 | 42(I)  | 821    | Arzneimittelforschun     |                 |
| Keppler, B                 | 1993 |        | 187    | Metal Complexes in C     | H CAPLUS        |
| Lippuner, K                | 1996 | 3      | 243    | Metal-Based Drugs        | H CAPLUS        |
| Mestroni, G                | 1993 | 1      | 41     | Metal Based Drugs        |                 |
| Sava, S                    | 1998 | 16     | 371    | Clin Exp Metastasis      |                 |
| Seelig, M                  | 1990 |        | 476    | Metal Ions in Biolog     | H CAPLUS        |
| Sheldrick, G               | 1997 |        |        | SHELXL-97, A Program     |                 |
| Sheldrick, G               | 1997 |        |        | SHELXS-97, A Program     |                 |
| van Vliet, P               | 1995 | 231    | 57     | Inorg Chim Acta          | H CAPLUS        |
| Vilaplana, R               | 1995 | 2      | 211    | Metal Based Drugs        | H CAPLUS        |

L77 ANSWER 16 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 1999:490003 HCAPLUS

DN 132:58797

TI Molecular mechanics aided design of antineoplastic agents from ruthenium coordinate complexes

AU Mazumder, U. K.; Gupta, M.; Mukherjee, A.; Mukhopadhyay, D. K.; Dey, P.

CS Departments of Pharmaceutical Technology, Jadavpur University, Calcutta, 700 032, India

SO Indian Journal of Experimental Biology (1999), 37(7), 667-670

CODEN: IJEBA6; ISSN: 0019-5189

PB National Institute of Science Communication, CSIR

DT Journal

LA English

AB Through energy minimization using mol. mechanics force field four ruthenium coordinate complexes have been synthesized. Compound I to IV

Showed antineoplastic activity with varying degree on EAC bearing mice. Mode of action may be through inhibition of antioxidant property of tumor cell as evident from lipid peroxidase activity. Among the complexes Bis pyridine tetrachlororuthenium exhibits highest order of activity with respect to increase mean survival time, inhibition of tumor volume, total blood count, Hb and lipid peroxidase activity.

IT 103875-27-0P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)  
 (mol. mechanics aided design of antineoplastic agents from ruthenium coordinate complexes)

RN 103875-27-0 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS

● H<sup>+</sup>

CM 2

CRN 288-32-4

CMF C3 H4 N2



## RETABLE

| Referenced Author<br>(RAU) | Year<br>(R PY) | VOL<br>(R VL) | PG<br>(R PG) | Referenced Work<br>(RWK) | Referenced File |
|----------------------------|----------------|---------------|--------------|--------------------------|-----------------|
|----------------------------|----------------|---------------|--------------|--------------------------|-----------------|

| Barbea, A        | 1959 | 10  | 167 | Radiation Res         |  |         |
|------------------|------|-----|-----|-----------------------|--|---------|
| Chattopadhyay, S | 1989 | 163 | 245 | Inorg Chim Acta       |  | HCAPLUS |
| Fruhauf, S       | 1991 | 301 | 27  | Cancer Chemother Pha  |  |         |
| Galeano, A       | 1992 | 821 | 42  | Arzneimittelforschun  |  |         |
| Keppler, B       | 1986 | 166 | 111 | Cancer Res Clic Onco  |  |         |
| Kreuser, E       | 1992 | 73  | 19  | Thiel E Semin Oncol   |  |         |
| Lash, E          | 1966 | 115 | 332 | Arch, Biochem Biophys |  | HCAPLUS |
| Schauenstein, E  | 1962 | 64  | 465 | Z Krebsforsch         |  | HCAPLUS |
| Seelig, M        | 1992 | 118 | 195 | Can Res Clin Oncolog  |  | HCAPLUS |
| Shuster, C       | 1955 | 90  | 423 | Proc Soc Exptl Biol   |  | HCAPLUS |
| Vilaplana, R     | 1984 | 575 | 31  | Rev Esp Oncol         |  |         |
| Wick, M          | 1978 | 171 | 163 | J Invest Dermatol     |  |         |
| Wilbur, K        | 1957 | 13  | 503 | Exptl Cells Res       |  | HCAPLUS |

L77 ANSWER 17 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 1999:235969 HCAPLUS

DN 131:67581

TI Investigation of metallodrug-protein interactions by size-exclusion chromatography coupled with inductively coupled plasma mass spectrometry (ICP-MS)

AU Szpunar, Joanna; Makarov, Alexei; Pieper, Thomas; Keppler, Bernhard K.; Lobinski, Ryszard

CS Helioparc, EP132, CNRS, Pau, 64000, Fr.

SO Analytica Chimica Acta (1999), 387(2), 135-144  
CODEN: ACACAM; ISSN: 0003-2670

PB Elsevier Science B.V.

DT Journal

LA English

AB The coupling of size-exclusion HPLC with ICP-MS was developed for the studies of the kinetics of metallodrug binding to human serum proteins. Two platinum- and three ruthenium-based drugs were investigated. Various SEC columns (of different lengths and with different packings) were compared for the separation of the protein-bound and unbound fractions of a metallodrug prior to online detection of the metal (Ru or Pt). The approach developed offers considerable advantages over the methods based on ultrafiltration followed by the off-line metal determination in terms of speed,

simplicity, precision and selectivity regarding the mol. weight of the complexes involved.

IT 103875-27-0 124875-20-3 197723-00-5

RL: ANT (Analyte); BPR (Biological process); BSU (Biological study, unclassified); ANST (Analytical study); BIOL (Biological study); PROC (Process)

(metallodrug-protein interaction investigation with size-exclusion chromatog. coupled with inductively coupled plasma mass spectrometry)

RN 103875-27-0 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole-κN3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



●  $\text{H}^+$

CM 2

CRN 288-32-4  
CMF C3 H4 N2



RN 124875-20-3 HCAPLUS  
CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0  
CMF C14 H12 Cl4 N4 Ru . H  
CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
CMF C7 H6 N2



RN 197723-00-5 HCAPLUS  
 CN Ruthenate(1-), tetrachlorobis(1H-indazole- $\kappa$ N2)-, sodium, (OC-6-11)-  
 (9CI) (CA INDEX NAME)

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

RETABLE

| Referenced Author<br>(RAU) | Year<br>(R PY) | VOL<br>(R VL) | PG<br>(R PG) | Referenced Work<br>(RWK) | Referenced File |
|----------------------------|----------------|---------------|--------------|--------------------------|-----------------|
| Baldew, G                  | 1989           | 491           | 163          | J Chromatogr             | H CAPLUS        |
| Bancroft, D                | 1990           | 112           | 6860         | J Am Chem Soc            | H CAPLUS        |
| Bernareggi, A              | 1995           | 669           | 247          | J Chromatogr B           | H CAPLUS        |
| Cairns, W                  | 1994           | 31            | 295          | Anal Proc                | H CAPLUS        |
| de Waal, W                 | 1987           | 407           | 253          | J Chromatogr             | H CAPLUS        |
| Einhauer, T                | 1996           | 11            | 747          | J Anal At Spectrom       |                 |
| Elder, R                   | 1990           | 13            | 1191         | J Liq Chromatogr         | H CAPLUS        |
| Elder, R                   | 1993           | 20            | 268          | J Rheumatol              | H CAPLUS        |
| Heim, M                    | 1993           |               | 11           | Metal Complexes in C     |                 |
| Keppler, B                 | 1987           | 26            | 4366         | Inorg Chem               | H CAPLUS        |
| Keppler, B                 | 1993           |               | 11           | Metal Complexes in C     |                 |
| Klenner, T                 | 1993           |               | 85           | Metal Complexes in C     | H CAPLUS        |
| Kratz, F                   | 1994           | 289           | 2581         | J Biol Chem              |                 |
| Kratz, F                   | 1993           |               | 391          | Metal Complexes in C     | H CAPLUS        |
| Kratz, F                   | 1992           | 2             | 69           | Metal Ions in Biolog     |                 |
| Lipponer, K                | 1996           | 3             | 244          | Metal-Based Drugs        |                 |
| Lobinski, R                | 1997           | 51            | 260A         | Appl Spectrosc           | H CAPLUS        |
| Lobinski, R                | 1998           | 46            | 271          | Talanta                  | H CAPLUS        |
| Matz, S                    | 1989           | 4             | 767          | J Anal At Spectrom       | H CAPLUS        |
| Mistry, P                  | 1989           | 24            | 73           | Cancer Chemother Pha     | H CAPLUS        |
| Patton, T                  | 1982           | 10            | 77           | Int J Pharm              | H CAPLUS        |
| Reece, D                   | 1987           | 42            | 320          | Clin Pharmacol Ther      |                 |
| Reece, P                   | 1984           | 306           | 417          | J Chromatogr             | H CAPLUS        |
| Takahashi, K               | 1985           | 76            | 68           | Jpn J Cancer Res         | H CAPLUS        |
| Tyczkowska, K              | 1990           | 527           | 447          | J Chromatogr             | H CAPLUS        |
| Vermorken, J               | 1982           | 18            | 1069         | Eur J Cancer Clin On     | MEDLINE         |
| Wang, J                    | 1998           | 120           | 5793         | J Am Chem Soc            | H CAPLUS        |
| Zhao, Z                    | 1993           | 615           | 83           | J Chromatogr             | H CAPLUS        |
| Zhao, Z                    | 1993           | 126           | 83           | J Chromatogr Biomed      |                 |
| Zhao, Z                    | 1992           | 10            | 279          | J Pharm Biomed Anal      | H CAPLUS        |
| Zoorob, G                  | 1998           | 128           | 145          | Mikrochim Acta           | H CAPLUS        |
| Zunino, F                  | 1989           | 70            | 89           | Chem Biol Interact       | H CAPLUS        |

L77 ANSWER 18 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 1999:35116 HCAPLUS

DN 130:100672

TI Solvents for therapeutically active metal complexes

IN Keppler, Bernhard K.

PA Germany

SO Ger. Offen., 4 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 1

| PATENT NO.            | KIND | DATE     | APPLICATION NO.  | DATE         |
|-----------------------|------|----------|------------------|--------------|
| PI DE 19727978        | A1   | 19990107 | DE 1997-19727978 | 19970701 <-- |
| PRAI DE 1997-19727978 |      | 19970701 | <--              |              |

OS MARPAT 130:100672

AB 2-Pyrrolidone,  $\gamma$ -butyrolactone, and their derivs. are solvents for therapeutically useful metal complexes, especially poorly soluble Ru and Pt

complexes, and are useful in preparation of pharmaceutical compns. containing these

complexes, especially trans-indazolium tetrachlorobis(indazole)ruthenate(III) (no data).

IT 124875-20-3

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(solvents for therapeutically active metal complexes)

RN 124875-20-3 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole- $\kappa$ N2)-, (OC-6-11)-, hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0

CMF C14 H12 Cl4 N4 Ru . H

CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3

CMF C7 H6 N2



L77 ANSWER 19 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 1998:271270 HCAPLUS

DN 129:49288

TI Comparative nephrotoxicity of some antitumor-active platinum and ruthenium complexes in rats

AU Kersten, Lothar; Braunlich, Helmut; Keppler, Bernhard K.; Gliesing, Christiane; Wendelin, Matthias; Westphal, Jens

CS Inst. Pharmacology and Toxicology, Friedrich Schiller Univ., Jena, Germany

SO Journal of Applied Toxicology (1998), 18(2), 93-101

CODEN: JJATDK; ISSN: 0260-437X

PB John Wiley & Sons Ltd.

DT Journal

LA English

AB The nephrotoxicity of three platinum (CPL, KP734, KP735) and three ruthenium coordination complexes (KP418, KP692, KP1019) was tested in rats in comparison to cisplatin (CP). Renal functional changes (excretion of water, protein, p-aminohippurate (PAH) and osmolytes) were not observed after the administration of 10% of the LD50 of the compds. given twice a week for up to 5 wk. After a relatively high single dose of the substances (50% of the LD50), signs of nephrotoxicity on the day of maximal renal damage decreased in the following order: CP, KP418, CPL, KP734, KP735, KP692 and KP1019. In comparison to CP, proteinuria was significantly lower after the administration of any of the compds., especially KP692 and KP1019. Neither renal lipid peroxidn. (TBARS) nor glutathion status (GSH, GSSG) was affected. In summary, KP735

in the group of platinum complexes and KP1019 in the ruthenium group had the lowest nephrotoxicity. Other investigators have shown that all complexes induced anti-neoplastic activity under analogous exptl. conditions.

IT 103875-27-0 124875-20-3

RL: ADV (Adverse effect, including toxicity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (nephrotoxicity of antitumor-active platinum and ruthenium complexes in rats)

RN 103875-27-0 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole-κN3)-, (OC-6-11)-,  
 hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4

CMF C3 H4 N2



RN 124875-20-3 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, (OC-6-11)-,  
 hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0  
 CMF C14 H12 Cl4 N4 Ru . H  
 CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
 CMF C7 H6 N2



RETABLE

| Referenced Author<br>(RAU) | Year<br>(RPY) | VOL<br>(RVL) | PG<br>(RPG) | Referenced Work<br>(RWK) | Referenced File |
|----------------------------|---------------|--------------|-------------|--------------------------|-----------------|
| Appenroth, D               | 1988          | 47           | 791         | Biomed Biochim Acta      | HCAPLUS         |
| Berger, M                  | 1989          | 9            | 761         | Anticancer Res           | HCAPLUS         |
| Bogin, E                   | 1994          | 32           | 843         | Eur J Clin Chem Clin     | HCAPLUS         |
| Bradford, M                | 1976          | 72           | 248         | Anal Biochem             | HCAPLUS         |
| Bratton, A                 | 1939          | 128          | 537         | J Biol Chem              | HCAPLUS         |
| Braunlich, H               | 1983          | 38           | 483         | Pharmazie                | MEDLINE         |
| Ceriotti, G                | 1989          | 8            | 295         | Clin Chim Acta           |                 |
| Cross, R                   | 1950          | 161          | 181         | Am J Physiol             | HCAPLUS         |
| Daugaard, G                | 1989          | 25           | 1           | Cancer Chemother Pha     | HCAPLUS         |
| Drees, M                   | 1995          | 31A          | 356         | Eur J Cancer             | HCAPLUS         |
| Ellman, G                  | 1979          | 93           | 98          | Anal Biochem             | HCAPLUS         |
| Filastre, J                | 1989          | 46           | 163         | Toxicol Lett             |                 |
| Fisher, R                  | 1994          | 13           | 517         | Hum Exp Toxicol          | HCAPLUS         |
| Fruhauf, S                 | 1991          | 51           | 2943        | Cancer Res               | MEDLINE         |
| Gemba, M                   | 1991          |              | 315         | Nephrotoxicity, Mech     | HCAPLUS         |
| Gliesing, C                | 1990          |              |             | Dissertation Medizin     |                 |
| Hirsch, G                  | 1976          | 15           | 89          | Environ Health Persp     | HCAPLUS         |
| Hissin, P                  | 1976          | 74           | 214         | Anal Biochem             | HCAPLUS         |
| Jones, M                   | 1991          | 29           | 29          | Cancer Chemother Pha     | HCAPLUS         |
| Kameyama, Y                | 1990          | 52           | 15          | Toxicol Lett             | HCAPLUS         |
| Keppler, B                 | 1990          | 19           | 243         | Adv Drug Res             | HCAPLUS         |
| Kersten, L                 | 1968          | 10           | 195         | Z Versuchstierk          | HCAPLUS         |
| Klenner, T                 | 1988          | 114          | 162         | J Cancer Res Clin On     |                 |
| Kluwe, W                   | 1981          | 57           | 414         | Toxicol Appl Pharmac     | HCAPLUS         |
| Kratz, F                   | 1992          | 2            | 69          | Metal Ions in Biolog     |                 |
| Kreuser, E                 | 1992          | 19           | 73          | Sem Oncol                |                 |
| Leibbrandt, M              | 1995          | 132          | 245         | Toxicol Appl Pharmac     | HCAPLUS         |
| McGuinness, S              | 1994          | 8            | 1203        | Toxicol in Vitro         | HCAPLUS         |
| Meyer, K                   | 1994          | 20           | 201         | Miner Electrolyte Me     | HCAPLUS         |
| Nosaka, K                  | 1992          | 41           | 73          | Kidney Int               | HCAPLUS         |
| Pendyala, L                | 1995          | 36           | 271         | Cancer Chemother Pha     | HCAPLUS         |
| Presnov, M                 | 1988          | 58           | 43          | Arch Geschwulstforsc     | HCAPLUS         |
| Preuss, H                  | 1987          | 41           | 1695        | Life Sci                 | HCAPLUS         |
| Sava, G                    | 1991          | 11           | 1103        | Anticancer Res           | HCAPLUS         |
| Sava, G                    | 1995          | 95           | 109         | Chem-Biol Interact       | HCAPLUS         |
| Sava, G                    | 1990          |              | 471         | Metal Ions in Biolog     | HCAPLUS         |
| Sugihara, K                | 1987          | 44           | 71          | Jpn J Pharmacol          | HCAPLUS         |

|              |      |     |      |                     |         |
|--------------|------|-----|------|---------------------|---------|
| Uozumi, J    | 1995 | 195 | 231  | Res Exp Med         | HCAPLUS |
| Vermeulen, N | 1992 | 44  | 1193 | Biochem Pharmacol   | HCAPLUS |
| Weiss, R     | 1993 | 46  | 360  | Drugs               | HCAPLUS |
| Wolfgang, G  | 1994 | 22  | 73   | Fundam Appl Toxicol | HCAPLUS |
| Yagi, K      | 1987 | 45  | 337  | Chem Phys Lipids    | HCAPLUS |

L77 ANSWER 20 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 1998:231294 HCAPLUS

DN 128:278755

TI Studies into the mode of action of trans-HInd[RuCl<sub>4</sub>(ind)<sub>2</sub>] and trans-HIm[RuCl<sub>4</sub>(im)<sub>2</sub>]

AU **Keppler, Bernhard K.**; Pieper, Thomas

CS Inst. fur Anorganische Chemie, Univ. Wien, Vienna, A-1090, Austria

SO Bioinorganic Chemistry (1997), 123-128. Editor(s): Trautwein, Alfred X. Publisher: Wiley-VCH Verlag GmbH, Weinheim, Germany.

CODEN: 65TRAJ

DT Conference

LA English

AB The tumor-inhibiting ruthenium(III) complexes trans-HIm[RuCl<sub>4</sub>(i.m.)<sub>2</sub>] and trans-HInd[RuCl<sub>4</sub>(ind)<sub>2</sub>] show promising antitumor activity in different tumor models, especially colon carcinomas. To obtain an insight into the mode of action of these complexes, the aquation chemical as well as the reactions with serum proteins and polynucleotides have been investigated. In comparison, the two complexes show remarkable differences in their stability in physiol. buffer and in their binding rates to apotransferrin. They bind to polynucleotide, showing selectivity in their binding towards poly(dG)·poly(dC) and poly(dA)·poly(dT).

IT 103875-27-0 124875-20-3

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(studies into the mode of action of antitumor ruthenium complexes)

RN 103875-27-0 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole-κN3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



●  $\text{H}^+$

CM 2

CRN 288-32-4  
CMF C3 H4 N2



RN 124875-20-3 HCPLUS  
CN Ruthenate(1-), tetrachlorobis(1H-indazole- $\kappa$ N2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0  
CMF C14 H12 Cl4 N4 Ru . H  
CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
CMF C7 H6 N2



## RETABLE

| Referenced Author<br>(RAU) | Year<br>(R PY) | VOL<br>(R VL) | PG<br>(R PG) | Referenced Work<br>(RWK) | Referenced<br>File |
|----------------------------|----------------|---------------|--------------|--------------------------|--------------------|
| Baker, E                   | 1992           | 47            | 147          | J Inorg Biochem          | HCAPLUS            |
| Chatlas, J                 | 1995           | 233           | 59           | Inorg Chim Acta          | HCAPLUS            |
| Clarke, M                  | 1989           | 10            | 25           | Progr Clin Biochem M     | HCAPLUS            |
| Hartmann, M                | 1996           | 15            | 1741         | Chem Commun              |                    |
| Holler, E                  | 1991           | 41            | 1065         | Arzneim-Forsch/Drug      |                    |
| Howe-Grant, M              | 1980           | 11            | 63           | Metal Ions Biol Syst     | HCAPLUS            |
| Keppler, B                 | 1987           | 26            | 4366         | Inorg Chem               | HCAPLUS            |
| Keppler, B                 | 1993           |               | 187          | Metal Complexes in C     | HCAPLUS            |
| Keppler, B                 | 1990           | 14            | 389          | New J Chem               | HCAPLUS            |
| Kratz, F                   | 1994           | 269           | 2581         | J Biol Chem              | HCAPLUS            |
| Kratz, F                   | 1992           | 2             | 69           | Metal Ions in Biolog     |                    |
| Ni Dhubhghaill, O          | 1994           |               | 3305         | J Chem Soc Dalton Tr     | HCAPLUS            |
| Reedijk, J                 | 1996           |               | 801          | J Chem Soc, Chem Com     | HCAPLUS            |
| Smith, C                   | 1996           | 1             | 424          | JBIC                     | HCAPLUS            |

L77 ANSWER 21 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 1998:70562 HCAPLUS

DN 128:200651

TI Preclinical activity of trans-indazolium [tetrachlorobisindazoleruthenate (III)] (NSC 666158; IndCR; KP 1019) against tumor colony-forming units and hematopoietic progenitor cells

AU Depenbrock, H.; Schmelcher, S.; Peter, R.; Keppler, B. K.; Weirich, G.; Block, T.; Rastetter, J.; Hanuske, A. -R.

CS Klinikum rechts der Isar, Technische Universitat Munchen, Abteilung Hamatologie und Onkologie, Munchen, D-81675, Germany

SO European Journal of Cancer (1997), 33(14), 2404-2410  
CODEN: EJCAEL; ISSN: 0959-8049

PB Elsevier Science Ltd.

DT Journal

LA English

AB Trans-indazolium [tetrachlorobisindazoleruthenate(III)] (KP 1019) is a new heavy metal complex with promising activity against tumor cell lines and in animal models. We studied the antineoplastic effects of KP 1019 (final concns.: 1, 10, 100 µg/mL) on in vitro proliferation of clonogenic cells from freshly explanted human tumors in a capillary soft agar cloning system, and compared the activity of KP 1019 with conventional antineoplastic agents. 53 Of 75 specimens (71%) showed adequate growth in controls. KP 1019 inhibited tumor colony formation in a concentration-dependent manner in both short- (1 h) and long-term (21 d) exposure expts. KP 1019 at 100 µg/mL with 1 h exposure was as active as bleomycin, cisplatin, doxorubicin, etoposide, 5-fluorouracil, methotrexate, mitomycin-C and vinblastine, with only paclitaxel more active than KP 1019 (P=0.002). The antitumor activity of KP 1019 was more pronounced after long-term exposure, indicating the potential schedule dependency of KP 1019. Activity was observed against non-small cell lung, breast and renal cancer. We conclude that if appropriate plasma levels can be achieved in patients, KP 1019 may have significant clin. activity against a variety of different tumor types.

IT 103875-27-0

RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(trans-indazolium antitumor effect in comparison to conventional

antineoplastic agents and hematotoxicity)  
 RN 103875-27-0 HCAPLUS  
 CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-,  
 hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9  
 CMF C6 H8 Cl4 N4 Ru . H  
 CCI CCS

● H<sup>+</sup>

CM 2

CRN 288-32-4  
 CMF C3 H4 N2



## RETABLE

| Referenced Author<br>(RAU) | Year<br>(R PY) | VOL<br>(R VL) | PG<br>(R PG) | Referenced Work<br>(RWK) | Referenced File<br>(HCPLUS) |
|----------------------------|----------------|---------------|--------------|--------------------------|-----------------------------|
| Alberts, D                 | 1980           | 1             | 351          | Cloning of Human Tum     | HCPLUS                      |
| Berger, M                  | 1989           | 9             | 1761         | Anticancer Res           | HCPLUS                      |
| Clarke, M                  | 1989           | 10            | 125          | Prog Clin Biochem Me     | HCPLUS                      |
| Fruhauf, S                 | 1991           | 27            | 301          | Cancer Chemother Pha     | MEDLINE                     |
| Fruhauf, S                 | 1991           | 51            | 2943         | Cancer Res               | MEDLINE                     |
| Galeano, A                 | 1992           | 42            | 1821         | Arzneimittelforschun     | HCPLUS                      |
| Hanauske, A                | 1985           | 9             | 1            | Curr Probl Cancer        | MEDLINE                     |
| Hanauske, U                | 1987           | 5             | 170          | Int J Cell Cloning       | HCPLUS                      |
| Keppler, B                 | 1990           | 19            | 1243         | Advances Drug Res        | HCPLUS                      |
| Keppler, B                 | 1990           | 17            | 1261         | Cancer Treat Rev         | HCPLUS                      |

|             |           |      |                              |
|-------------|-----------|------|------------------------------|
| Keppler, B  | 1993      | 187  | Metal Complexes in C HCAPLUS |
| Klausner, R | 1983  258 | 4715 | J Biol Chem  HCAPLUS         |
| Kreuser, E  | 1992  19  | 73   | Semin Oncol  HCAPLUS         |
| Maurer, H   | 1981  68  | 381  | Naturwiss  MEDLINE           |
| Seelig, M   | 1992  118 | 195  | J Cancer Res Clin On HCAPLUS |
| Von Hoff, D | 1986  46  | 4012 | Cancer Res  MEDLINE          |

L77 ANSWER 22 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 1997:753660 HCAPLUS

DN 128:69919

TI Imidazole release from the antitumor-active ruthenium complex imidazolium trans-tetrachlorobis(imidazole)ruthenate(III) by biologically occurring nucleophiles

AU Hartmann, Markus; Lippuner, Karl-Georg; Keppler, Bernhard K.

CS Institut fur Anorganische Chemie, Universitat Wien, Wahringer Strasse 42, Vienna, A-1090, Austria

SO Inorganica Chimica Acta (1998), 267(1), 137-141  
CODEN: ICHAA3; ISSN: 0020-1693

PB Elsevier Science S.A.

DT Journal

LA English

AB The antitumor-active complex HIm[trans-Ru<sup>III</sup>Cl<sub>4</sub>(Im)<sub>2</sub>], imidazolium trans-tetrachlorobis(imidazole)ruthenate(III), completely changes its ligand configuration within 1 h in H<sub>2</sub>O in the presence of L-histidine and L-glutathione. The observed release of the trans-standing imidazole ligands at 37° that occurs in addition to chloride substitution reactions has to be taken into consideration for further studies into the mode of action of this new antitumor drug.

IT 103875-27-0

RL: RCT (Reactant); RACT (Reactant or reagent)  
(substitution of imidazole with histidine)

RN 103875-27-0 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole-κN3)-, (OC-6-11)-,  
hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4  
CMF C3 H4 N2



#### RETABLE

| Referenced Author<br>(RAU) | Year<br>(R PY) | VOL<br>(R VL) | PG<br>(R PG) | Referenced Work<br>(RWK) | Referenced File |
|----------------------------|----------------|---------------|--------------|--------------------------|-----------------|
| Anderson, C                | 1995           | 173           | 471          | Can J Chem               | HCAPLUS         |
| Anderson, C                | 1995           | 34            | 6065         | Inorg Chem               | HCAPLUS         |
| Anderson, C                | 1995           | 233           | 33           | Inorg Chim Acta          | HCAPLUS         |
| Berners-Price, S           | 1990           | 38            | 305          | J Inorg Biochem          | HCAPLUS         |
| Bertini, I                 | 1986           |               | 1            | NMR of Paramagnetic      |                 |
| Bloemink, M                | 1996           | 32            | 641          | Metal Ions in Biolog     | HCAPLUS         |
| Brown, G                   | 1978           | 100           | 2767         | J Am Chem Soc            | HCAPLUS         |
| Chatlas, J                 | 1995           | 233           | 59           | Inorg Chim Acta          | HCAPLUS         |
| Clarke, M                  | 1989           | 10            | 25           | Prog Clin Biochem Me     | HCAPLUS         |
| Comess, K                  | 1993           | 1             | 134          | Molecular Aspects of     |                 |
| Frankfurt, O               | 1991           | 51            | 1190         | Cancer Res               | HCAPLUS         |
| Freeman, H                 | 1967           | 22            | 257          | Adv Protein Chem         | MEDLINE         |
| Hartmann, M                | 1996           |               | 1741         | J Chem Soc, Chem Com     | HCAPLUS         |
| Isied, S                   | 1976           | 15            | 3070         | Inorg Chem               | HCAPLUS         |
| Kane, S                    | 1996           | 35            | 2180         | Biochemistry             | HCAPLUS         |
| Keppler, B                 | 1989           | 10            | 41           | Prog Clin Biochem Me     | HCAPLUS         |
| Kratz, F                   | 1994           | 269           | 2581         | J Biol Chem              | HCAPLUS         |
| Kratz, F                   | 1992           | 2             | 69           | Metal Ions in Biolog     |                 |
| Kratz, F                   | 1994           | 1             | 169          | Metal-based Drugs        | HCAPLUS         |
| Lippert, B                 | 1981           | 56            | L23          | Inorg Chim Acta          | HCAPLUS         |
| Ni Dhubhghaill, O          | 1994           |               | 3305         | J Chem Soc, Dalton T     | HCAPLUS         |

|             |      |    |       |                      |         |
|-------------|------|----|-------|----------------------|---------|
| Payet, D    | 1995 | 12 | 137   | Metal-based Drugs    | HCAPLUS |
| Reedijk, J  | 1996 | 1  | 1801  | J Chem Soc, Chem Com | HCAPLUS |
| Rupp, W     | 1987 | 26 | 14366 | Inorg Chem           |         |
| Smith, C    | 1996 | 1  | 1424  | J Biol Inorg Chem    | HCAPLUS |
| Sundberg, R | 1972 | 94 | 16558 | J Am Chem Soc        | HCAPLUS |
| Sundberg, R | 1974 | 96 | 1381  | J Am Chem Soc        | HCAPLUS |
| Tobe, M     | 1987 | 1  | 1300  | Comprehensive Coordi |         |
| Tsutsui, M  | 1971 | 1  | 1115  | J Coord Chem         | HCAPLUS |
| Whelan, R   | 1989 | 1  | 1359  | Cancer Commun        | HCAPLUS |
| Wilkins, R  | 1991 | 1  | 1199  | Kinetics and Mechani |         |

L77 ANSWER 23 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 1997:675538 HCAPLUS

DN 127:325682

TI Preparation of ruthenium(III) complexes with tumor inhibiting properties

IN Keppler, Bernhard K.

PA Keppler, Bernhard K., Germany

SO Ger. Offen., 8 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 1

|      | PATENT NO.                                                             | KIND       | DATE     | APPLICATION NO.  | DATE         |
|------|------------------------------------------------------------------------|------------|----------|------------------|--------------|
| PI   | DE 19612291                                                            | A1         | 19971002 | DE 1996-19612291 | 19960328 <-- |
|      | WO 9736595                                                             | A2         | 19971009 | WO 1997-EP1643   | 19970401 <-- |
|      | WO 9736595                                                             | A3         | 19971106 |                  |              |
|      | W: JP, US                                                              |            |          |                  |              |
|      | RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE |            |          |                  |              |
|      | EP 835112                                                              | A2         | 19980415 | EP 1997-918095   | 19970401 <-- |
|      | EP 835112                                                              | B1         | 20030910 |                  |              |
|      | R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, PT, IE, FI  |            |          |                  |              |
|      | AT 249221                                                              | E          | 20030915 | AT 1997-918095   | 19970401 <-- |
|      | PT 835112                                                              | T          | 20040130 | PT 1997-918095   | 19970401 <-- |
|      | ES 2205205                                                             | T3         | 20040501 | ES 1997-918095   | 19970401 <-- |
| PRAI | DE 1996-19612291                                                       | A          | 19960328 | <--              |              |
|      | WO 1997-EP1643                                                         | W          | 19970401 | <--              |              |
| OS   | MARPAT                                                                 | 127:325682 |          |                  |              |
| GI   |                                                                        |            |          |                  |              |



I

AB The preparation of title complexes,  $\{G\}-(n+p+2r(p-1)-3)\{[RuX_6-n-p-q-2rBn(H_2O)_p(OH)_q(O)_r]^{2r+1}\}^{n+p+2r(p-1)-3}$  [n + p + 2r(p - 1) - 3q ≠ 0; G = counterion; B = multiple nitrogen containing heterocycle; X = halo, pseudohalo, HCO<sub>3</sub><sup>-</sup>, RCO<sub>2</sub><sup>-</sup>, R = alkyl, alkenyl, (un)substituted C1-6 aryl; n = 1-3; p, q = 0.5, 0, 1; r = 0, 0.5], useful as cancer treating agents (no data), is described. Thus, reaction of trans-imidazolium tetrachlorobis(imidazole)ruthenate(III) with Ph<sub>4</sub>PI in methanol gave title complex I in 90% yield.

IT 124875-20-3 197723-03-8

RL: RCT (Reactant); RACT (Reactant or reagent)  
(preparation of ruthenium complexes with tumor inhibiting properties)

RN 124875-20-3 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0

CMF C14 H12 Cl4 N4 Ru . H

CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3

CMF C7 H6 N2



RN 197723-03-8 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-pyrazole-κN2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124951-56-0

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4  
CMF C3 H4 N2



IT 197722-91-1P 197722-94-4P 197722-97-7P

197723-00-5P

RL: SPN (Synthetic preparation); PREP (Preparation)  
(preparation of ruthenium complexes with tumor inhibiting properties)

RN 197722-91-1 HCPLUS

CN Phosphonium, tetraphenyl-, (OC-6-11)-tetrachlorobis(1H-pyrazole-  
κN2)ruthenate(1-) (9CI) (CA INDEX NAME)

CM 1

CRN 197722-90-0  
CMF C6 H8 Cl4 N4 Ru  
CCI CCS



CM 2

CRN 18198-39-5  
CMF C24 H20 PRN 197722-94-4 HCAPLUS  
CN Phosphonium, tetraphenyl-, (OC-6-11)-tetrachlorobis(1H-indazole-kN2)ruthenate(1-) (9CI) (CA INDEX NAME)

CM 1

CRN 189556-38-5  
CMF C14 H12 Cl4 N4 Ru  
CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 18198-39-5  
CMF C24 H20 PRN 197722-97-7 HCAPLUS  
CN Ruthenate(1-), tetrachlorobis(1H-pyrazole-kN2)-, sodium, (OC-6-11)- (9CI) (CA INDEX NAME)



● Na<sup>+</sup>

RN 197723-00-5 HCPLUS  
 CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, sodium, (OC-6-11)-  
 (9CI) (CA INDEX NAME)

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

L77 ANSWER 24 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN  
 AN 1997:323731 HCPLUS  
 DN 127:30626  
 TI Structural and functional flexibility of lactoferrin  
 AU Baker, Edward N.; Anderson, Bryan F.; Baker, Heather M.; Faber, H. Rick;  
 Smith, Clyde A.; Sutherland-Smith, Andrew J.  
 CS Department of Chemistry and Biochemistry, Massey University, Palmerston  
 North, N. Z.  
 SO Experimental Biology and Medicine (Totowa, New Jersey) (1997),  
 28(Lactoferrin), 177-191  
 CODEN: EBIMFW  
 PB Humana  
 DT Journal  
 LA English  
 AB Lactoferrin is a protein that binds iron with great affinity, yet is also able to release it. It also binds a variety of other metal ions and anions. To investigate its mechanisms of binding and release, and the reasons for its versatility in binding, we have undertaken x-ray crystallographic studies on various forms of lactoferrin. The structure of a new crystal form of apolactoferrin, at 3.5-Å resolution, has shown that in each lobe the binding cleft is in an open state, but that the size of the conformational change, compared with diferric lactoferrin, varies: a domain rotation of 54° in the N-lobe and 18° in the C-lobe. Comparison with the previously determined apolactoferrin structure, in which the C-lobe is closed, leads to a dynamic model for iron binding. The crystal structure of oxalate-substituted diferric lactoferrin shows that larger anions can be accommodated without affecting domain closure, although the two binding sites adjust differently. Solution studies also indicate that larger cations, such as Ce4+, may also be able to bind within the same closed structure. In this case, Ce3+ is oxidized to Ce4+ when it binds to lactoferrin, with a visible spectrum similar to those of Fe3+, Mn3+, and Co3+. Crystallographic binding studies using ruthenium

complexes with antitumor activity show that these bind with high affinity in the binding cleft of apolactoferrin and more weakly in nonspecific external sites. This suggests possible uses of lactoferrin in drug delivery.

IT 103875-27-0 124875-20-3 186179-42-0

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)  
(structural and functional flexibility of lactoferrin)

RN 103875-27-0 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-,  
hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4

CMF C3 H4 N2



RN 124875-20-3 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole- $\kappa$ N2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0

CMF C14 H12 Cl4 N4 Ru . H  
 CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
 CMF C7 H6 N2



RN 186179-42-0 HCPLUS

CN Ruthenate(2-), pentachloro(1H-indazole-κN2)-, (OC-6-21)-,  
 dihydrogen, compd. with 1H-indazole (1:2) (9CI) (CA INDEX NAME)

CM 1

CRN 186179-41-9  
 CMF C7 H6 Cl5 N2 Ru . 2 H  
 CCI CCS



●2 H<sup>+</sup>

CM 2

CRN 271-44-3  
 CMF C7 H6 N2



## RETABLE

| Referenced Author<br>(RAU) | Year<br>(R PY) | VOL<br>(R VL) | PG<br>(R PG) | Referenced Work<br>(RWK) | Referenced<br>File |
|----------------------------|----------------|---------------|--------------|--------------------------|--------------------|
| Ainscough, E               | 1979           | 33            | 149          | Inorg Chim Acta          | HCAPLUS            |
| Anderson, B                | 1989           | 209           | 711          | J Mol Biol               | HCAPLUS            |
| Anderson, B                | 1990           | 344           | 784          | Nature (Lond)            | HCAPLUS            |
| Baker, E                   | 1994           | 41            | 389          | Adv Inorg Chem           | HCAPLUS            |
| Brock, J                   | 1985           |               | 183          | Metalloproteins, part    | HCAPLUS            |
| Grossmann, J               | 1992           | 225           | 811          | J Mol Biol               | HCAPLUS            |
| Harris, D                  | 1989           |               | 241          | Iron Carriers and Iri    |                    |
| Kratz, F                   | 1994           | 269           | 2581         | J Biol Chem              | HCAPLUS            |
| Mazurier, J                | 1980           | 629           | 399          | Biochim Biophys Acta     | HCAPLUS            |
| Norris, G                  | 1989           | 209           | 329          | J Mol Biol               | HCAPLUS            |
| Oh, B                      | 1993           | 268           | 11348        | J Biol Chem              | HCAPLUS            |
| Pecoraro, V                | 1981           | 20            | 7033         | Biochemistry             | HCAPLUS            |
| Quirocho, F                | 1990           | 326           | 341          | Phil Trans Roy Soc S     | HCAPLUS            |
| Sakabe, N                  | 1991           | A303          | 448          | Nucl Instrum Meth Ph     | HCAPLUS            |
| Smith, C                   | 1994           | 116           | 17889        | J Am Chem Soc            | HCAPLUS            |

L77 ANSWER 25 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 1997:255715 HCAPLUS

DN 126:325098

TI Binding of ruthenium(III) anti-tumor drugs to human lactoferrin probed by high resolution X-ray crystallographic structure analyses

AU Smith, Clyde A.; Sutherland-Smith, Andrew J.; Keppler, Bernhard K.; Kratz, Felix; Baker, Edward N.

CS Department of Biochemistry, Massey University, Palmerston North, N. Z.

SO JBIC, Journal of Biological Inorganic Chemistry (1996), 1(5), 424-431

CODEN: JJBCFA; ISSN: 0949-8257

PB Springer

DT Journal

LA English

AB The binding to human lactoferrin of three Ru(III) complexes with anti-tumor activity has been investigated by x-ray crystallog. to gain insights into how such complexes might be carried during transferrin-mediated delivery to cells. The complexes,  $\text{HIm}[\text{RuIm}_2\text{Cl}_4]$ ,  $\text{HInd}[\text{RuInd}_2\text{Cl}_4]$  and  $(\text{HInd})_2[\text{RuIndCl}_5]$ , where Im = imidazole and Ind = indazole, were diffused into crystals of apo-lactoferrin (apoLf). X-ray diffraction data were collected to 2.6 Å, 2.2 Å and 2.4 Å resp. The binding sites for the Ru complexes were determined from difference Fourier, in comparison with native apoLf; the two indazole-apoLf complexes were also refined crystallog. to final R factors of 0.202 (for 8.0 to 2.3 Å data) and 0.192 (for 8.0 to 2.4 Å data), resp. Two types of binding site were identified, a high-affinity site at His 253 in the open N-lobe iron-binding cleft of apoLf (and by analogy a similar one at His 597 in the C-lobe), and lower-affinity sites at surface-exposed His residues, primarily His 590 and His 654. The exogenous heterocyclic ligands remain bound to Ru, at least at the His 253 site, and modeling suggests that the nature and number of these ligands may determine whether the closed structure that is required for receptor binding could be formed or not. The results also highlight the importance of His residues for binding such complexes and the value of heavy atom binding studies from crystallog. analyses for identifying non-specific binding sites on proteins.

IT 189556-38-5 189556-39-6

RL: BPR (Biological process); BSU (Biological study, unclassified); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)

(binding of ruthenium(III) anti-tumor drugs to human lactoferrin probed by high resolution x-ray crystallog. structure analyses)

RN 189556-38-5 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, (OC-6-11)- (9CI)  
(CA INDEX NAME)

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

RN 189556-39-6 HCPLUS

CN Ruthenate(2-), pentachloro(1H-indazole-κN2)-, (OC-6-21)- (9CI) (CA INDEX NAME)



L77 ANSWER 26 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN

AN 1997:20150 HCPLUS

DN 126:112830

TI Effects of hypoxia and transferrin on toxicity and DNA binding of ruthenium antitumor agents in HeLa cells

AU Frasca, D.; Ciampa, J.; Emerson, J.; Umans, R. S.; Clarke, M. J.

CS Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02167, USA

SO Metal-Based Drugs (1996), 3(4), 197-209

CODEN: MBADEI; ISSN: 0793-0291

PB Freund

DT Journal

LA English

AB Nuclear DNA binding and inhibition of growth of HeLa cells in culture were determined after 24 h incubation with the ruthenium anticancer agents cis-[Cl<sub>2</sub>(NH<sub>3</sub>)<sub>4</sub>Ru]Cl (CCR) and (ImH)trans-[(Im)Cl<sub>4</sub>Ru] (ICR) as a function of [Ru], Po<sub>2</sub>, and added transferrin. Consistent with the "activation-by-reduction" hypothesis, cytotoxicity and DNA binding for both complexes increased under reduced oxygen conditions. Consistent with the "transferrin-transport" hypothesis, inhibition of cell growth also increased with added transferrin for both complexes. Despite their differences in charge, reduction potentials and substitution rates, both complexes behaved remarkably similarly indicating a common mechanism of action for both. Under atmospheric conditions (Po<sub>2</sub> = 159 torr), CCR inhibited HeLa cell growth with IC<sub>50</sub> = 3.5 μM, while that for ICR was 2.0 μM. The binding of both complexes to DNA (RuDNA/PDNA) correlated with toxicity and was approx. linear in the concentration of the ruthenium complex in the culture medium, [Ru]. For both complexes, IC<sub>50</sub> values decrease and DNA binding increases with decreasing log(Po<sub>2</sub>). In general, DNA binding at all oxygen pressures for both complexes is in the range of one Ru per 1000-2000 DNA base pairs at [Ru] = IC<sub>50</sub>.

IT 103875-27-0

RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)

(effects of hypoxia and transferrin on toxicity and DNA binding of ruthenium antitumor agents in HeLa cells)

RN 103875-27-0 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-,  
hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4

CMF C3 H4 N2



#### RETABLE

| Referenced Author<br>(RAU) | Year<br>(R PY) | VOL<br>(R VL) | PG<br>(R PG) | Referenced Work<br>(RWK) | Referenced File |
|----------------------------|----------------|---------------|--------------|--------------------------|-----------------|
| Alessio, E                 | 1993           | 203           | 205          | Inorg Chim Acta          | H CAPLUS        |
| Berger, M                  | 1989           | 9             | 761          | Anticancer Res           | H CAPLUS        |
| Broomhead, A               | 1968           | 7             | 2519         | Inorg Chem               |                 |
| Clarke, M                  | 1996           |               | 35           | Inorg Chem, in press     |                 |
| Clarke, M                  | 1974           | 96            | 5413         | J Am Chem Soc            | H CAPLUS        |
| Clarke, M                  | 1978           | 100           | 5068         | J Am Chem Soc            | H CAPLUS        |
| Clarke, M                  | 1980           | 11            | 231          | Met Ions Biol Syst       | H CAPLUS        |
| Clarke, M                  | 1996           | 32            | 727          | Met Ions in Biol Sys     | H CAPLUS        |
| Dhubghaill, O              | 1994           |               | 3305         | J Chem Soc Dalt Tran     |                 |

|               |      |       |      |                                          |         |
|---------------|------|-------|------|------------------------------------------|---------|
| Durig, J      | 1976 | 13    | 287  | Chem-Biol Interact                       | HCAPLUS |
| Johnson, A    | 1993 | 210   | 151  | Inorg Chim Acta                          | HCAPLUS |
| Kelman, A     | 1977 | 7     | 274  | J Clin Hematol Oncol                     | HCAPLUS |
| Keppler, B    | 1987 | 26    | 4366 | Inorg Chem                               | HCAPLUS |
| Keppler, B    | 1987 | 26    | 844  | Inorg Chem                               | HCAPLUS |
| Keppler, B    | 1989 | 14    | 41   | Ruthenium and Other                      |         |
| Kratz, F      | 1994 | 269   | 2581 | J Biol Chem                              | HCAPLUS |
| Kratz, F      | 1994 | 1     | 169  | Metal-Based Drugs                        | HCAPLUS |
| Lippard, S    | 1994 |       |      | Principles of Bioinorganic Chemistry     |         |
| Marx, K       | 1989 | 90    | 37   | Mol Cell Biochem                         | HCAPLUS |
| Marx, K       | 1989 | 86    | 155  | Molec Cell Biochem                       | HCAPLUS |
| Messori, L    | 1996 | 3     | 1    | Metal-Based Drugs                        | HCAPLUS |
| Miklavcic, D  | 1990 | 9     | 133  | J Bioelectrochemistry and Bioengineering |         |
| Okunieff, P   | 1994 | 345   | 485  | Adv Exp Med Biol                         | MEDLINE |
| Seelig, M     | 1992 | 118   | 195  | J Cancer Res Clin Oncol                  | HCAPLUS |
| Shepherd, R   | 1992 | 31    | 1457 | Inorg Chem                               | HCAPLUS |
| Som, P        | 1983 | 8     | 491  | Eur J Nucl Med                           | HCAPLUS |
| Srivastava, S | 1979 | 265-2 |      | Radiopharmaceuticals                     |         |
| Srivastava, S | 1989 | 10    | 111  | Ruthenium and other                      | HCAPLUS |
| Vaupel, P     | 1991 | 51    | 3316 | Canc Res                                 | MEDLINE |
| Yasbin, R     | 1980 | 30    | 355  | Chemico-Biol Interact                    |         |

L77 ANSWER 27 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 1997:7889 HCAPLUS

DN 126:126064

TI Synthesis, characterization and solution chemistry of indazolium trans-tetrachlorobis(indazole)ruthenate(III), a new anticancer ruthenium complex. IR, UV, NMR, HPLC, investigations and antitumor activity. Crystal structures of 1-methylindazolium trans-tetrachlorobis-(1-methylindazole)ruthenate(III) and its hydrolysis product trans-monoaquatrichlorobis(1-methylindazole)ruthenate(III)

AU Lippner, Karl-Georg; Vogel, Ellen; Keppler, Bernhard K.

CS Inst. Inorganic Chem., Univ. Heidelberg, Heidelberg, D-69120, Germany

SO Metal-Based Drugs (1996), 3(5), 243-260

CODEN: MBADEI; ISSN: 0793-0291

PB Freund

DT Journal

LA English

AB Besides intensive studies into the synthesis of trans-HInd[RuCl<sub>4</sub>(Ind)<sub>2</sub>] (Ind = indazole) 1, which differs remarkably from the usual method for the complexes of the HL[RuCl<sub>4</sub>L<sub>2</sub>] - type, competitive products and hydrolysis of this species are described. Stability and pseudo-first-order rate constant under physiol. conditions in comparison with the analogous trans-HIm[RuCl<sub>4</sub>(Im)<sub>2</sub>] (Im = imidazole) (I) were examined by HPLC, UV and conductivity measurements (k<sub>obs.</sub>(1) = 1.55 + 10<sup>-4</sup> s<sup>-1</sup>; k<sub>obs.</sub>(I) = 9.10 + 10<sup>-4</sup> s<sup>-1</sup>). An attempt was made to elucidate the bonding conditions in 1 by studying the reactions of Ru(III) and the two N-Me isomers of indazole. It can be expected that bonding in the unsubstituted ligand should occur via the N<sub>2</sub> N. The mol. structures of H(1-MeInd)[trans-RuCl<sub>4</sub>(1-MeInd)<sub>2</sub>].H<sub>2</sub>O (1-MeInd = 1-methylindazole) 6 and its hydrolysis product in aqueous solution [RuCl<sub>3</sub>(H<sub>2</sub>O)(1-MeInd)<sub>2</sub>] (7) were determined

crystallog. After anisotropic refinement of F values by least squares, R is 0.053 for 6 and 0.059 for 7. Both complexes crystallize with Z = 4 and monoclinic symmetry. The space group is P2<sub>1</sub>/n for 6 with a 10.511 b 13.87, c 19.93 Å and β 98.17° and C2/c for 7 with a 19.90, b 10.94, c 8.490 Å and β 96.74°. The fact that the aqua species 7 could be isolated after dissolving 6 in a H<sub>2</sub>O/acetone solution confirmed the theory of many Ru(III) complexes being initially transformed, under physiol. conditions, into aqua complexes in a 1st and

often rate-determining hydrolysis step. I and II are potent antitumor agents which exhibit activity against a variety of tumor cells and exptl. tumor models in animals, including autochthonous colorectal tumors. Clin. studies with I are in preparation

IT 186179-46-4P 186179-47-5P

RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation) (preparation and crystal structure of)

RN 186179-46-4 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1-methyl-1H-indazole- $\kappa$ N2)-, (OC-6-11)-, hydrogen, compd. with 1-methyl-1H-indazole (1:1), monohydrate (9CI) (CA INDEX NAME)

CM 1

CRN 186179-45-3

CMF C16 H16 Cl4 N4 Ru . H

CCI CCS

PAGE 1-A



PAGE 2-A

● H<sup>+</sup>

CM 2

CRN 13436-48-1  
CMF C8 H8 N2RN 186179-47-5 HCAPLUS  
CN Ruthenium, aquatrichlorobis(1-methyl-1H-indazole-κN2)-, (OC-6-21)-  
(9CI) (CA INDEX NAME)

PAGE 1-A



PAGE 2-A



IT 124875-20-3P

RL: PRP (Properties); RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)  
(preparation and kinetics of hydrolysis)

RN 124875-20-3 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0

CMF C14 H12 Cl4 N4 Ru . H

CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
CMF C7 H6 N2



IT 186179-40-8P 186179-42-0P

RL: SPN (Synthetic preparation); PREP (Preparation)  
(preparation of)

RN 186179-40-8 HCPLUS

CN Ruthenate(4-), octachlorobis(1H-indazole- $\kappa$ N2)- $\mu$ -oxodi-,  
tetrahydrogen, compd. with 1H-indazole (1:4) (9CI) (CA INDEX NAME)

CM 1

CRN 186179-39-5  
CMF C14 H12 Cl8 N4 O Ru2 . 4 H  
CCI CCS



● 4 H<sup>+</sup>

CM 2

CRN 271-44-3  
CMF C7 H6 N2



RN 186179-42-0 HCPLUS

CN Ruthenate(2-), pentachloro(1H-indazole- $\kappa$ N2)-, (OC-6-21)-,  
dihydrogen, compd. with 1H-indazole (1:2) (9CI) (CA INDEX NAME)

CM 1

CRN 186179-41-9

CMF C7 H6 Cl15 N2 Ru . 2 H

CCI CCS

●2 H<sup>+</sup>

CM 2

CRN 271-44-3

CMF C7 H6 N2



## RETABLE

| Referenced Author<br>(RAU) | Year<br>(R PY) | VOL<br>(R VL) | PG<br>(R PG)         | Referenced Work<br>(R WK) | Referenced File |
|----------------------------|----------------|---------------|----------------------|---------------------------|-----------------|
| Alessio, E                 | 1993   203     | 205           | Inorg Chim Acta      | HCPLUS                    |                 |
| Anon                       | 1984           |               | DIF4, version 6.1    |                           |                 |
| Anon                       | 1974   IV      |               | International Tables |                           |                 |
| Bakke, J                   | 1975   B29     | 1089          | Acta Chemica Scandin | HCPLUS                    |                 |
| Chatlas, J                 | 1995   233     | 59            | Inorg Chim Acta      | HCPLUS                    |                 |
| Clarke, M                  | 1993           | 129           | Metal Complexes in C | HCPLUS                    |                 |
| Garzon, F                  | 1987   19      | 347           | Cancer Chemother Pha | HCPLUS                    |                 |

|                   |                |                              |
|-------------------|----------------|------------------------------|
| Henn, M           | 1989           | Dissertation, Anorg-         |
| Holler, E         | 1991  41  10   | Arzneim-Forsch/Drug          |
| Keppler, B        | 1987  37  770  | Arzneim-Forsch/Drug  HCAPLUS |
| Keppler, B        | 1987  26  4366 | Inorg Chem  HCAPLUS          |
| Keppler, B        | 1987  26  844  | Inorg Chem  HCAPLUS          |
| Keppler, B        | 1986  111  166 | J Cancer Res Clin On HCAPLUS |
| Keppler, B        | 1993    187    | Metal Complexes in C HCAPLUS |
| Keppler, B        | 1989  10  41   | Progr Clin Biochem M HCAPLUS |
| Kratz, F          | 1994  1  169   | Metal-Based Drugs  HCAPLUS   |
| Kratz, F          | 1996  3  15    | Metal-Based Drugs  HCAPLUS   |
| Mestroni, G       | 1993    157    | Metal Complexes in C HCAPLUS |
| Mestroni, G       | 1994  1  43    | Metal-Based Drugs            |
| Ni Dhubhghaill, O | 1994    3305   | J Chem Soc Dalton Tr HCAPLUS |
| Sheldrick, G      | 1988           | SHELXTL-PLUS, Univer         |
| Vilaplana, R      | 1995  2  211   | Metal-Based Drugs  HCAPLUS   |

L77 ANSWER 28 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 1996:486670 HCAPLUS

DN 125:185068

TI Two antitumor ruthenium(III) complexes showing selectivity in their binding towards poly(dG)·poly(dC) and poly(dA)·poly(dT)

AU Hartmann, Markus; Einhaeuser, Thorsten J.; Keppler, Bernhard K.

CS Anorganisch-Chemisches Institut, Universitaet Heidelberg, Heidelberg, D-69120, Germany

SO Chemical Communications (Cambridge) (1996), (15), 1741-1742

CODEN: CHCOFS; ISSN: 1359-7345

PB Royal Society of Chemistry

DT Journal

LA English

AB The antitumor-active complexes trans-[Ru<sup>III</sup>Cl<sub>4</sub>(Im)<sub>2</sub>] (Im = imidazole) and trans-[Ru<sup>III</sup>Cl<sub>4</sub>(ind)<sub>2</sub>] (ind = indazole) bind at a higher binding rate to poly(dG)·poly(dC), compared to poly(dA)·poly(dT); the covalent binding to the nucleobases requires a preceding aquation of the compds., similar to cisplatin.

IT 103875-27-0 124875-20-3

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)  
(antitumor ruthenium(III) complexes showing selectivity in their binding towards poly(dG)·poly(dC) and poly(dA)·poly(dT))

RN 103875-27-0 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole-κN3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



●  $\text{H}^+$

CM 2

CRN 288-32-4  
CMF C3 H4 N2



RN 124875-20-3 HCAPLUS  
CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0  
CMF C14 H12 Cl4 N4 Ru . H  
CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
CMF C7 H6 N2



L77 ANSWER 29 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN  
AN 1996:409048 HCAPLUS  
DN 125:131840  
TI Comparison of the antiproliferative activity of two antitumor ruthenium(III) complexes with their apotransferrin and transferrin-bound forms in a human colon cancer cell line  
AU Kratz, F.; Kepler, B. K.; Hartmann, M.; Messon, L.; Berger, M. R.  
CS Tumour Biol. Cent., Clinical Res., Freiburg, D-79106, Germany  
SO Metal-Based Drugs (1996), 3(1), 15-23  
CODEN: MBADEI; ISSN: 0793-0291  
PB Freund  
DT Journal  
LA English  
AB Two ruthenium(III) complexes, namely trans-indazolium[tetrachlorobis(indazole)-ruthenate(III)], HInd[RuInd2Cl4], and trans-imidazolium[tetrachlorobis(imidazole)-ruthenate(III)], HIM[RuIm2Cl4], exhibit high anticancer activity in an autochthonous colorectal carcinoma model in rats. Recently, it has been shown that both complexes bind specifically to human serum apotransferrin and the resulting adducts have been studied through spectroscopic and chromatog. techniques with the ultimate goal of preparing adducts with good selectivity for cancer cells due to the fact that tumor cells express high amts. of transferrin receptors on their cell surface. To investigate whether the cellular uptake of the complexes was mediated by apotransferrin or transferrin, we compared the antiproliferative efficacy of HInd[RuInd2Cl4] and HIM[RuIm2Cl4] with its apotransferrin- and transferrin-bound form in the human colon cancer cell line SW707 using the microculture tetrazolium test (MTT). Our results show that especially the transferrin-bound forms exhibit high antiproliferative activity, which exceeds that of the free complex, indicating that this protein can act as a carrier of the ruthenium complexes into the tumor cell.  
IT 103875-27-0 142388-45-2  
RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)  
RN 103875-27-0 HCAPLUS  
CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)  
CM 1  
CRN 103875-26-9  
CMF C6 H8 Cl4 N4 Ru . H  
CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4  
CMF C3 H4 N2



RN 142388-45-2 HCAPLUS  
CN Ruthenate(1-), tetrachlorobis(2H-indazole-κN1)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 142388-44-1  
CMF C14 H12 Cl4 N4 Ru . H  
CCI CCS



● H<sup>+</sup>

CM 2

CRN 271-44-3  
CMF C7 H6 N2



L77 ANSWER 30 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN  
 AN 1995:903102 HCPLUS  
 DN 123:357587  
 TI Reactions of the Tetrachlorobis(imidazole)ruthenium(III) and Pentachloro(imidazole)ruthenium(III) Anions with Imidazole and N6,N6-Dimethyladenine  
 AU Anderson, Craig; Beauchamp, Andre L.  
 CS Departement de Chimie, Universite de Montreal, Montreal, QC, H3C 3J7, Can.  
 SO Inorganic Chemistry (1995), 34(24), 6065-73  
 CODEN: INOCAJ; ISSN: 0020-1669  
 PB American Chemical Society  
 DT Journal  
 LA English  
 AB The reactions of (ImH)<sub>2</sub>[RuCl<sub>5</sub>Im] (Im = imidazole) in H<sub>2</sub>O were monitored by <sup>1</sup>H NMR spectroscopy. Fast initial aquation of [RuCl<sub>5</sub>Im]<sup>2-</sup> to [RuCl<sub>4</sub>(H<sub>2</sub>O)Im]<sup>-</sup> is followed by successive substitutions along two pathways: slow displacement of extra Cl<sup>-</sup> ligands by H<sub>2</sub>O to form higher aquation products and attack of an Im ligand to give [RuCl<sub>4</sub>Im<sub>2</sub>]<sup>-</sup>, which then aquates. In the presence of 2 equiv of added Im, (ImH)[RuCl<sub>4</sub>Im<sub>2</sub>] gives mixts. of complexes containing three to four Im per Ru, whereas 20 equiv lead to species with five to six Im per Ru. Imidazole-rich species coexist in solution with the starting [RuCl<sub>4</sub>Im<sub>2</sub>]<sup>-</sup> ion. X-ray diffraction

work on  $[\text{Ru}(\text{OH})_2\text{Im}_4][\text{RuCl}_4\text{Im}_2]$  (monoclinic,  $P21/c$ ,  $a$  13.126,  $b$  10.8833,  $c$  10.6110 Å,  $\beta$  108.28°,  $R = 0.045$ ) shows octahedral trans- $[\text{Ru}(\text{OH})_2\text{Im}_4]^+$  and trans- $[\text{RuCl}_4\text{Im}_2]^-$  connected by H bonding. Many complexes and aquation products successively appear when Im is reacted with  $(\text{ImH})_2[\text{RuCl}_5\text{Im}]$ , and species with five to six Im ligands per Ru are again obtained with 20 equiv of added Im. An end product is isolated as yellow crystals and shown by x-ray diffraction (hexagonal,  $P63/m$ ,  $a$  8.9756,  $c$  20.880 Å,  $R = 0.023$ ) to be the  $[\text{RuIm}_6]\text{CO}_3 \cdot 5\text{H}_2\text{O}$  compound, containing the reduced Ru(II) octahedral  $[\text{RuIm}_6]^{2+}$ . In the presence of N6,N6-dimethyladenine (DMAD),  $[\text{RuCl}_4\text{Im}_2]^-$  in  $\text{H}_2\text{O}$  slowly forms the  $[\text{RuCl}_3\text{Im}_2(\text{DMAD})]$  complex, in which the adenine ligand is monodentate.

IT 103875-27-0

RL: RCT (Reactant); RACT (Reactant or reagent)  
(aquation and coordinative substitution of ruthenium chloro imidazole antitumor agents by imidazole or dimethyladenine)

RN 103875-27-0 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole-κN3)-, (OC-6-11)-,  
hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS

● H<sup>+</sup>

CM 2

CRN 288-32-4

CMF C3 H4 N2



IT 105085-56-1P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(aquation and coordinative substitution of ruthenium chloro imidazole antitumor agents by imidazole or dimethyladenine)

RN 105085-56-1 HCAPLUS

CN Ruthenate(2-), pentachloro(1H-imidazole-N3)-, (OC-6-21)-, dihydrogen, compd. with 1H-imidazole (1:2) (9CI) (CA INDEX NAME)

CM 1

CRN 105085-55-0

CMF C3 H4 Cl5 N2 Ru . 2 H

CCI CCS

● 2 H<sup>+</sup>

CM 2

CRN 288-32-4

CMF C3 H4 N2



RL: FMU (Formation, unclassified); PRP (Properties); FORM (Formation, nonpreparative)

(formation and NMR of

L77 ANSWER 31 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 1995:655606 HCAPLUS

DN 123:153736

TI Spontaneous aquation reactions of a promising tumor inhibitor trans-imidazolium-tetrachlorobis(imidazole)ruthenium(III), trans-HIm[RuCl<sub>4</sub>(Im)<sub>2</sub>]

AU Chatlas, J.; van Eldik, R.; Keppler, B. K.

CS Institut fuer Anorganische Chemie, Universitaet Erlangen-Nuernberg,  
Egerlandstrasse 1, Erlangen, 91058, Germany

SO Inorganica Chimica Acta (1995), 233(1-2), 59-63

CODEN: ICHAA3; ISSN: 0020-1693

PB Elsevier Sequoia

DT Journal

LA English

AB The spontaneous aquation reaction of trans-RuCl<sub>4</sub>(Im)<sub>2</sub><sup>-</sup>, Im = imidazole, was studied as a function of pH, chloride concentration, imidazole buffer and temperature, using spectrophotometric and chromatog. techniques. The selected pH and chloride concentration control the degree of aquation observed In all cases

evidence for the formation of RuCl<sub>3</sub>(Im)2H<sub>2</sub>O was found, which can undergo deprotonation and/or subsequent aquation depending on the pH and free chloride concentration in solution No evidence for aquation of the imidazole ligand

was found. The formation of RuCl<sub>3</sub>(Im)2H<sub>2</sub>O is characterized by a rate constant of 1.5+10<sup>-5</sup> s<sup>-1</sup> at 25 °C, ΔH# = 117±7 kJ mol<sup>-1</sup> and ΔS# = +55±23 J K<sup>-1</sup> mol<sup>-1</sup>. The results are discussed in reference to the tumor inhibiting properties of the complex.

IT 103875-27-0

RL: PEP (Physical, engineering or chemical process); PRP (Properties); RCT (Reactant); THU (Therapeutic use); BIOL (Biological study); PROC (Process); RACT (Reactant or reagent); USES (Uses)

(spontaneous aquation reactions of promising tumor inhibitor trans-imidazolium-tetrachlorobis(imidazole)ruthenium(III), trans-HIm[RuCl<sub>4</sub>(Im)<sub>2</sub>])

RN 103875-27-0 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole-κN3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C<sub>6</sub> H<sub>8</sub> Cl<sub>4</sub> N<sub>4</sub> Ru . H

CCI CCS

● H<sup>+</sup>

CM 2

CRN 288-32-4

CMF C<sub>3</sub> H<sub>4</sub> N<sub>2</sub>



L77 ANSWER 32 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN  
 AN 1995:119151 HCAPLUS  
 DN 122:436  
 TI Protein-binding properties of two antitumor Ru(III) complexes to human apotransferrin and apolactoferrin  
 AU Kratz, F.; Keppler, B. K.; Messori, L.; Smith, C.; Baker, E. N.  
 CS Dep. Inorg. Chem., Univ. Heidelberg, Heidelberg, W-6900, Germany  
 SO Metal-Based Drugs (1994), 1(2-3), 169-73  
 CODEN: MBADEI; ISSN: 0793-0291  
 DT Journal  
 LA English  
 AB The interaction of two ruthenium(III) complexes exhibiting high anticancer activity, trans-indazolium (bis-indazole) tetrachlororuthenate(III) (HInd[RuInd<sub>2</sub>C<sub>14</sub>]) and trans-imidazolium (bis-imidazole) tetrachlororuthenate(III) (HIm[RuIm<sub>2</sub>C<sub>14</sub>]) with human serum apotransferrin has been investigated through spectroscopic and chromatog. techniques with the ultimate goal of preparing adducts with good selectivity for cancer cells due to the fact that tumor cells express high amts. of transferrin receptors on their cell surface. Whereas the binding of HIm[RuIm<sub>2</sub>C<sub>14</sub>] to human serum apotransferrin takes several hours, HInd[RuInd<sub>2</sub>C<sub>14</sub>], the less toxic complex, gives rise to a well defined 2:1 complex within a few minutes. HInd[RuInd<sub>2</sub>C<sub>14</sub>] will react with apotransferrin only in the presence of bicarbonate, this anion dictating the kinetic and mechanistic characteristics of protein-binding. CD studies had previously indicated that binding of both Ru(III) complexes occurs around the unoccupied iron(III) binding sites; this result is now confirmed by preliminary x-ray data of HInd[RuInd<sub>2</sub>C<sub>14</sub>] and HIm[RuIm<sub>2</sub>C<sub>14</sub>] bound to apolactoferrin, a related iron protein. The crystallog. data reveals that binding of both complexes takes place at histidine residues, and that the ligand (indazole) remains bound in the case of HInd[RuInd<sub>2</sub>C<sub>14</sub>].  
 IT 103875-27-0 142388-45-2  
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)  
 (antitumor Ru(III) complexes binding to human apotransferrin and apolactoferrin)  
 RN 103875-27-0 HCAPLUS  
 CN Ruthenate(1-), tetrachlorobis(1H-imidazole-κN3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)  
 CM 1  
 CRN 103875-26-9  
 CMF C6 H8 Cl4 N4 Ru . H  
 CCI CCS



●  $\text{H}^+$

CM 2

CRN 288-32-4  
CMF C3 H4 N2



RN 142388-45-2 HCAPLUS  
CN Ruthenate(1-), tetrachlorobis(2H-indazole- $\kappa\text{N}1$ )-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 142388-44-1  
CMF C14 H12 Cl4 N4 Ru . H  
CCI CCS



● H<sup>+</sup>

CM 2

CRN 271-44-3  
CMF C7 H6 N2



L77 ANSWER 33 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN  
 AN 1994:124397 HCPLUS  
 DN 120:124397  
 TI The binding properties of two antitumor ruthenium(III) complexes to apotransferrin  
 AU Kratz, Felix; Hartmann, Markus; **Keppler, Bernhard**; Messori, Luigi  
 CS Dep. Chem., Univ. Florence, Florence, 50121, Italy  
 SO Journal of Biological Chemistry (1994), 269(4), 2581-8  
 CODEN: JBCHA3; ISSN: 0021-9258  
 DT Journal  
 LA English  
 AB The interaction of two ruthenium(III) complexes exhibiting high anticancer activity, namely trans-indazolium(bisindazole)tetrachlororuthenate(III) (I) and trans-imidazolium(bisimidazole)tetrachlororuthenate(III) (II), with human serum apotransferrin has been investigated through spectroscopic and chromatog. techniques with the ultimate goal of preparing adducts with good selectivity for cancer cells. Whereas the binding of II to human serum apotransferrin takes several hours, I, the less toxic complex, gives rise to a well defined 2:1 complex within a few minutes. The authors have ascertained that I binding occurs around the iron binding sites; binding does not occur in the absence of bicarbonate, and this

anion dictates the kinetic and mechanistic characteristics of protein binding of I. The two ruthenium(III) complexes do not behave as iron(III) complexes, e.g. Fe(EDTA) or Fe(nitrilotriacetate), which lose their resp. ligands when binding apotransferrin, but the N-heterocycles remain attached to the metal in the protein-bound species. Reversion of binding is obtained by acidification in the presence of chelators such as citrate or ATP. In comparison with cisplatin and its deactivation by serum proteins, the authors' results indicate that other metal complexes such as I could use transferrin as a drug delivery system. Furthermore, the rapid protein binding of I seems to be related to a lower toxicity while still exhibiting high antitumor activity.

IT 103875-27-0 124875-20-3

RL: PROC (Process)

(binding of, to apotransferrin)

RN 103875-27-0 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-,  
hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4

CMF C3 H4 N2



RN 124875-20-3 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole- $\kappa$ N2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0  
CMF C14 H12 Cl4 N4 Ru . H  
CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
CMF C7 H6 N2



L77 ANSWER 34 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN  
AN 1994:94941 HCAPLUS

DN 120:94941

TI Kinetic, spectroscopic and LPLC studies of the interactions of antitumor ruthenium(III) complexes with serum proteins

AU Kratz, F.; Mulinacci, N.; Messori, L.; Bertini, I.; Keppler, B. K.

CS Anorg. Chem. Inst., Univ. Heidelberg, Heidelberg, 6900/1, Germany

SO Met. Ions Biol. Med., Proc. Int. Symp., 2nd (1992), 69-74.

Editor(s): Anastassopoulou, Jane. Publisher: Libbey, Montrouge, Fr.

CODEN: 590JAL

DT Conference

LA English

AB Trans-Indazolium-bisindazole-tetrachlororuthenate(III) (ru-ind) reacts with serum and new Ru(III) species are formed which react rapidly with serum proteins. A major amount of Ru-ind is bound to albumin and a small amount is bound to transferrin. The binding is rapid and depends on pH and HCO3-. The binding and antitumor properties of trans-Imidazolium-bisimidazole-tetrachlororuthenate (III) (ICR) are also examined and compared with those of ru-ind. The higher antitumor activity of ru-ind, compared to ICR may be related to its rate of reaction with serum proteins.

IT 103875-27-0 142388-45-2

RL: RCT (Reactant); RACT (Reactant or reagent)  
(reaction of, with proteins of blood serum)

RN 103875-27-0 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-,  
hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9  
CMF C6 H8 Cl4 N4 Ru . H  
CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4  
CMF C3 H4 N2



RN 142388-45-2 HCPLUS  
CN Ruthenate(1-), tetrachlorobis(2H-indazole-κN1)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 142388-44-1  
CMF C14 H12 Cl4 N4 Ru . H  
CCI CCS



● H<sup>+</sup>

CM 2

CRN 271-44-3  
CMF C7 H6 N2



L77 ANSWER 35 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN  
 AN 1993:456146 HCPLUS  
 DN 119:56146  
 TI Formulation of water- or lipid-soluble transition metal compounds for use  
 in antitumor therapy and for stimulation of the hematopoietic system  
 IN Reszka, Regina; Fichtner, Iduna  
 PA Max-Delbrueck-Centrum fuer Molekulare Medizin Berlin-Buch, Germany  
 SO Ger. Offen., 5 pp.  
 CODEN: GWXXBX  
 DT Patent  
 LA German  
 FAN.CNT 1

| PATENT NO.    | KIND | DATE     | APPLICATION NO.                                                                                                                 | DATE         |
|---------------|------|----------|---------------------------------------------------------------------------------------------------------------------------------|--------------|
| PI DE 4134158 | A1   | 19930415 | DE 1991-4134158                                                                                                                 | 19911011 <-- |
| DE 4134158    | C2   | 19970213 |                                                                                                                                 |              |
| WO 9306824    | A1   | 19930415 | WO 1992-DE868                                                                                                                   | 19921009 <-- |
|               |      |          | W: AU, BG, BR, CA, CS, FI, HU, JP, KR, NO, PL, RO, RU, UA, US<br>RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE |              |
| AU 9227551    | A1   | 19930503 | AU 1992-27551                                                                                                                   | 19921009 <-- |
| EP 611303     | A1   | 19940824 | EP 1992-921289                                                                                                                  | 19921009 <-- |
| EP 611303     | B1   | 19980527 |                                                                                                                                 |              |

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, SE  
 JP 08508237 T2 19960903 JP 1993-506551 19921009 <--  
 JP 3627240 B2 20050309  
 AT 166576 E 19980615 AT 1992-921289 19921009 <--  
 ES 2118831 T3 19981001 ES 1992-921289 19921009 <--  
 US 5620703 A 19970415 US 1994-221017 19940331 <--  
 PRAI DE 1991-4134158 A 19911011 <--  
 WO 1992-DE868 A 19921009 <-- .

OS MARPAT 119:56146

AB The title transition metal compds. are formulated as liposomes with an amphiphile (lipid, surfactant, or emulsifying agent), a steroid, a charged lipid, and a carrier liquid. Thus, a film of egg phosphatidylcholine 2328 and cholesterol 1132 mg was dispersed in a mixture of 450 mL THF and 60 mL sterile Ca-free phosphate-buffered saline (pH 7.2-7.4) containing 900 mg carboplatin, the THF was removed under vacuum, and the resulting liposomes were separated from nonencapsulated carboplatin by centrifugation, resuspended in buffer, and extruded through successively smaller-pored filter membranes (2.0, 1.0, 0.8, 0.4, and 0.2  $\mu\text{m}$ ) to provide a suspension for i.v. administration.

IT 124875-20-3

RL: BIOL (Biological study)  
 (liposomes containing, as neoplasm inhibitor)

RN 124875-20-3 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole- $\kappa$ N2)-, (OC-6-11)-,  
 hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0

CMF C14 H12 Cl4 N4 Ru . H

CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3

CMF C7 H6 N2



L77 ANSWER 36 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 1993:225067 HCAPLUS

DN 118:225067

TI Antineoplastic activity of three ruthenium derivatives against chemically induced colorectal carcinoma in rats

AU Seelig, Matthias H.; Berger, Martin R.; Keppler, Bernhard K.

CS Inst. Toxicol. Chemotherapy, German Cancer Res. Cent., Heidelberg, W-6900, Germany

SO Journal of Cancer Research and Clinical Oncology (1992), 118(3), 195-200

CODEN: JCROD7; ISSN: 0171-5216

DT Journal

LA English

AB The antineoplastic activity of the ruthenium complexes trans-imidazolium[tetrachlorobisimidazoleruthenate(III)], HIm(RuIm2Cl4), trans-indazolium[tetrachlorobis(1H-indazole)ruthenate(III, N2)], HInd [RuInd2Cl4(N2)], and trans-indazolium[tetrachlorobis(2H-indazole)ruthenate(III, N1)], HInd[RuInd2Cl4-(N1)] was assessed in acetoxyethylmethylnitrosamine-induced autochthonous colorectal carcinomas of Sprague-Dawley rats. The model is not sensitive to clin. established antineoplastic agents, including cisplatin. An exception is the combination therapy with 5-fluorouracil/leucovorin, which shows moderate activity against the tumor model. In contrast to this general trend, the new substances were all active against this tumor. HIm(RuIm2Cl4) was very effective at all dosages applied (7.5 mg/kg, 5.3 mg/kg, and 3.8 mg/kg), as indicated by percentage treated/control (T/C values of 23%, 34.5% and 44%. Toxicity was considerable as shown by a body weight change of -30%, -19%, and -9%. Nevertheless, the medium dose seems to be the optimum in terms of mortality (0% vs 15% in the control group), whereas at the highest dose, mortality increased as a result of substance toxicity, and at the lowest dose mortality increased through tumor growth combined with substance toxicity. HInd[RuInd2Cl4(N2)] showed high efficacy at the highest dosage of 13 mg/kg, reaching a T/C value of 27% combined with 0% mortality vs. 15% in the control group. In equimolar dosages (10 mg/kg, 7.1 mg/kg and 5.1 mg/kg), the compound is not as active as HIm-(RuIm2Cl4), as indicated by T/C values of 50.2%, 45.7%, and 38.6%. HInd[RuInd2Cl4(N1)] was slightly but not significantly better than Hind[RuInd2Cl4(N2)] at a dosage of 7.1 mg/kg and is advantageous over combination therapy with 5-fluorouracil and leucovorin (20/20 mg/kg) in terms of efficacy (T/C = 37.6% vs. 44.7%) and mortality (6% vs. 33.3%).

IT 103875-27-0 124875-20-3 142388-45-2

RL: BIOL (Biological study)  
(colorectal carcinoma inhibition by)

RN 103875-27-0 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-,  
hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



●  $\text{H}^+$

CM 2

CRN 288-32-4  
CMF C3 H4 N2



RN 124875-20-3 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole- $\kappa$ N2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0  
CMF C14 H12 Cl4 N4 Ru . H  
CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
CMF C7 H6 N2



RN 142388-45-2 HCAPLUS  
 CN Ruthenate(1-), tetrachlorobis(2H-indazole-κN1)-, (OC-6-11)-,  
 hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 142388-44-1  
 CMF C14 H12 Cl4 N4 Ru . H  
 CCI CCS

● H<sup>+</sup>

CM 2

CRN 271-44-3  
 CMF C7 H6 N2



L77 ANSWER 37 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN  
 AN 1992:462485 HCAPLUS  
 DN 117:62485  
 TI Antitumor activity of some ruthenium derivatives in human colon cancer cell lines in vitro  
 AU Galeano, A.; Berger, M. R.; Keppler, B. K.  
 CS Inst. Toxicol. Chemother., Ger. Cancer Res. Cent., Heidelberg, Germany  
 SO Arzneimittel-Forschung (1992), 42(6), 821-4  
 CODEN: ARZNAD; ISSN: 0004-4172  
 DT Journal  
 LA English  
 AB Six ruthenium derivs. were evaluated in vitro in two human colon cancer

cell lines (SW707 and SW948) utilizing the microculture tetrazolium test (MTT) and cell counting with a Coulter Counter. The ruthenium compound sodium (tetrachloroimidazoledimethylsulfoxideruthenate)-bisdimethylsulfoxide ( $\text{Na}(\text{RuDMSOImCl}_4)$ ) showed the best efficacy in inhibiting cell proliferation of both colon cancer cell lines followed by the other DMSO ruthenium compound sodium (tetrachloroindazolo(dimethylsulfoxideruthenate))-bisdimethylsulfoxide ( $\text{Na}(\text{RuDMSOIndCl}_4)$ ), as demonstrated by IC<sub>50</sub> values (80 and 90  $\mu\text{g/mL}$  in SW707 and SW948 cell lines for  $\text{Na}(\text{RuDMSOImCl}_4)$ ; 155 and 165  $\mu\text{g/mL}$  in SW707 and SW948 cell lines for  $\text{Na}(\text{RuDMSOIndCl}_4)$ , resp.). Of the ruthenium derivs. without DMSO, transindazolium-[tetrachlorobis(1H-indazole)ruthenate (III,N<sub>2</sub>)] ( $\text{HInd}[\text{RuInd}_2\text{Cl}_4(\text{N}_2)]$ ), was as active as its DMSO-containing congener whereas trans-imidazolium[tetrachlorobisimidazoleruthenate] (III) ( $\text{HIm}(\text{RuIm}_2\text{Cl}_4)$ ) was less active, as shown by the IC<sub>50</sub> values: ( $\text{HIm}(\text{RuIm}_2\text{Cl}_4)$ ) = 250 and 260  $\mu\text{g/mL}$  in cell lines SW707 and SW948;  $\text{HInd}[\text{RuInd}_2\text{Cl}_4(\text{N}_2)]$  = 110 and > 200  $\mu\text{g/mL}$  in cell lines SW707 and SW948, resp.). The other ruthenium derivs. containing pyrazole and triazole as ligands (trans-pyrazolium (tetrachlorobispyrazoleruthenate) (III),  $\text{PzH}(\text{RuPz}_2\text{Cl}_4)$  and triazolium(tetrachlorobistriazoleruthenate) (III),  $\text{TrH}(\text{RuTr}_2\text{Cl}_4)$ ) were active only at high concns. that cannot be regarded as realistic *in vivo*, as shown by the resp. IC<sub>50</sub> values: ( $\text{PzH}(\text{RuPz}_2\text{Cl}_4)$ ) = 1056 and 750  $\mu\text{g/mL}$  in cell lines SW707 and SW948;  $\text{TrH}(\text{RuTr}_2\text{Cl}_4)$  = 350 and 300 mg/mL in cell lines SW707 and SW948). The promising activity of ruthenium compds. with DMSO, indazole and imidazole as ligands should be evaluated *in vivo* for elucidating their possible role in the treatment of colorectal cancer.

IT 103875-27-0 124875-20-3 124951-57-1  
135212-15-6

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(antitumor activity of, in human colon cancer cell lines)

RN 103875-27-0 HCAPLUS  
CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-,  
hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9  
CMF C6 H8 Cl4 N4 Ru . H  
CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4  
CMF C3 H4 N2



RN 124875-20-3 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0  
CMF C14 H12 Cl4 N4 Ru . H  
CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
CMF C7 H6 N2



RN 124951-57-1 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-pyrazole-κN2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-pyrazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124951-56-0

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS

●  $\text{H}^+$ 

CM 2

CRN 288-13-1

CMF C3 H4 N2



RN 135212-15-6 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-1,2,4-triazole-κN2)-, (OC-6-22)-,  
hydrogen, compd. with 1H-1,2,4-triazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 135212-14-5

CMF C4 H6 Cl4 N6 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-88-0  
CMF C2 H3 N3



L77 ANSWER 38 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN  
 AN 1992:439922 HCPLUS  
 DN 117:39922  
 TI Synergistic antitumor interactions between newly synthesized ruthenium complexes and cytokines in human colon carcinoma cell lines  
 AU Kreuser, Ernst D.; Keppler, Bernhard K.; Berdel, Wolfgang E.; Piest, Almuth; Thiel, Eckhard  
 CS Klin. Steglitz, Free Univ. Berlin, Berlin, 1000/45, Germany  
 SO Seminars in Oncology (1992), 19(2, Suppl. 3), 73-81  
 CODEN: SOLGAV; ISSN: 0093-7754  
 DT Journal  
 LA English  
 AB The purpose of these studies was to assess the antiproliferative properties of newly synthesized, heterocyclic ruthenium complexes alone and in combination with cytokines (tumor necrosis factor- $\alpha$ , interferon  $\alpha$ ,  $\beta$ ,  $\gamma$ ) against various human colon carcinoma cell lines. To determine whether any of these ruthenium compds. possesses antitumor activity and reveals synergistic interaction with cytokines six new ruthenium complexes were studied. All six compds. exerted concentration-dependent antitumor effects in all colon cancer cell lines tested.  
 The most effective compds. were transindazolium[tetrachloro[2H-

indazole)ruthenate (III, N1) and trans-indazolium[tetrachlorobis(1H-indazole)ruthenate (III, N2)]. Interferon  $\alpha$ ,  $\beta$ ,  $\gamma$ , as well as, tumor necrosis factor- $\alpha$  exerted only minimal antiproliferative effects in colon carcinoma cell lines. The data were further analyzed to determine whether preincubation with cytokines altered sensitivity of the cells to synergistically potentiating growth-inhibitory effects. Although simultaneous incubation of ruthenium complexes and interferon did not result in synergistic or additive interactions, 24-h preincubation with interferon  $\alpha$ ,  $\beta$ ,  $\gamma$  significantly enhanced antitumor activity. The authors conclude from these data that two of six newly synthesized ruthenium complexes possess antiproliferative activity against a panel of human colon carcinoma cell lines. Moreover, biol. modulation with interferon using 24-h preincubation resulted in synergistic interactions.

IT 103875-27-0 124875-20-3 135212-15-6

142388-45-2

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(neoplasm-inhibiting activity of, cytokines synergism with, in human cells)

RN 103875-27-0 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4

CMF C3 H4 N2



RN 124875-20-3 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0

CMF C14 H12 Cl4 N4 Ru . H

CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3

CMF C7 H6 N2



RN 135212-15-6 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-1,2,4-triazole-κN2)-, (OC-6-22)-,  
hydrogen, compd. with 1H-1,2,4-triazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 135212-14-5

CMF C4 H6 Cl4 N6 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-88-0  
CMF C2 H3 N3



RN 142388-45-2 HCPLUS  
CN Ruthenate(1-), tetrachlorobis(2H-indazole-κN1)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 142388-44-1  
CMF C14 H12 Cl4 N4 Ru . H  
CCI CCS



● H<sup>+</sup>

CM 2

CRN 271-44-3  
CMF C7 H6 N2



L77 ANSWER 39 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN  
 AN 1992:187595 HCPLUS  
 DN 116:187595  
 TI Studies on the antitumor activity of platinum and ruthenium complexes  
 AU Sakai, Kazuo; Yamane, Yasuhiro  
 CS Fac. Pharm. Sci., Chiba Univ., Chiba, 260, Japan  
 SO Biomedical Research on Trace Elements (1990), 1(1), 59-64  
 CODEN: BRTEE5; ISSN: 0916-717X  
 DT Journal  
 LA Japanese  
 AB Platinum complexes such as cis-diaminedichloroplatinum (II) (CDDP) and 1,2-diaminocyclohexanedichloroplatinum(II) (DACH·DP) are known to be potent antitumor agents. In the present study, cis-diammine(ascorbato)platinum(II) (CDAP) and 1,2-diaminocyclohexane(ascorbato)platinum(II) (DACH·AP) in which the chlorides of CDDP and DACH·DP are replaced with the ascorbates, were examined. The ascorbatoplatinum complexes were found to be more water-soluble than the chloride complexes. The inhibitory effect of platinum complexes treatment on the incorporation of thymidine into the DNA of the liver and lung of rats treated with diethylnitrosamine (DEN) was examined in relation to the antitumor activity. Not only CDDP and DACH·DP but also CDAP and DACH·AP exerted strong inhibitory effects on the DNA

synthesis in the liver and lung. The antitumor activity of imidazolium-bisimidazolelectrachlororuthenium(III) (ICR) against P388 leukemia cells in vivo has been reported to be as potent as that of CDDP. ICR and imidazolium-bisimidazole(diascorbato)ruthenium(III) (IAR) were therefore compared with CDDP and CDAP. The inhibitory effects of the ruthenium complexes treatment on the incorporation of thymidine into DNA of liver and lung of rats treated with DEN were examined. The inhibitory effect of ICR and IAR was found to be weaker than that of CDDP and CDAP. The antitumor activities of ICR and IAR against L1210 leukemia cells in vivo were also much weaker than those of CDDP and CDAP. IAR was more water-soluble than ICR, but the toxicity was not decreased. IAR had less antitumor activity.

IT

103875-27-0

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (neoplasm-inhibiting activity of, DNA formation inhibition in relation to)

RN

103875-27-0 HCPLUS

CN

Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-,  
 hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS

● H<sup>+</sup>

CM 2

CRN 288-32-4

CMF C3 H4 N2



L77 ANSWER 40 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN  
 AN 1991:670152 HCAPLUS  
 DN 115:270152  
 TI Inhibition of Escherichia coli DNA polymerase I catalyzed DNA polymerization by trans-imidazolium-bisimidazoletrachlororuthenate(III)  
 AU Holler, E.; Schaller, W.; **Keppler, B.**  
 CS Inst. Biophys. Phys. Biochem., Univ. Regensburg, Regensburg, W-8400, Germany  
 SO Arzneimittel-Forschung (1991), 41(10), 1065-8  
 CODEN: ARZNAD; ISSN: 0004-4172  
 DT Journal  
 LA English  
 AB The tumor-inhibiting metal complex trans-imidazolium-bisimidazoletrachlororuthenate(III) (ICR) reacts with DNA and inhibits template-primer properties for DNA synthesis catalyzed by E. coli DNA polymerase I. The reaction with DNA depends on the aging (half-life 6.8 h) of the aqueous solution containing ICR. The kinetics of the reaction with DNA are reminiscent of those for cisplatin.  
 IT 103875-27-0  
 RL: BIOL (Biological study)  
 (DNA polymerase of Escherichia coli inhibition by, antitumor effects in relation to)  
 RN 103875-27-0 HCAPLUS  
 CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)  
 CM 1  
 CRN 103875-26-9  
 CMF C6 H8 Cl4 N4 Ru . H  
 CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4  
CMF C3 H4 N2



L77 ANSWER 41 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN  
 AN 1991:505583 HCPLUS  
 DN 115:105583  
 TI New platinum, titanium, and ruthenium complexes with different patterns of DNA damage in rat ovarian tumor cells  
 AU Fruehauf, S.; Zeller, W. J.  
 CS Inst. Toxicol. Chemother., Ger. Cancer Res. Cent., Heidelberg, 6900, Germany  
 SO Cancer Research (1991), 51(11), 2943-8  
 CODEN: CNREA8; ISSN: 0008-5472  
 DT Journal  
 LA English  
 AB DNA protein cross-links (DPC), DNA interstrand cross-links (ISCL), and DNA single strand breaks following treatment of exptl. ovarian tumor cells (O-342) with five new metal complexes (three platinum, one titanium, one ruthenium compds.) were investigated at 6, 24, and 48 h after drug exposure and compared with their in vitro growth inhibitory potential. Cisplatin (DDP) served as reference drug. The following new compds. were tested: 18-crown-6-tetracarboxybis-diammineplatinum(II) (CTDP), cis-aminotris(methyleneephosphonato)-diammineplatinum(II) (AMDP), cis-diamminecyclohexano-aminotris(methyleneephosphonato)-platinum(II) (DAMP), diethoxybis-(1-phenylbutane-1,3-dionato)-titanium(IV) (budotitane), and trans-indazolium-tetrachlorobisindazole-ruthenate(III) (IndCR). At equimolar concns. DNA crosslinking activity of the platinum agents

decreased in the order cisplatin, CTDP, AMDP, DAMP: this was paralleled by growth inhibition in a cell proliferation assay. CTDP-induced interstrand crosslinking occurred more slowly compared to cisplatin (DDP) (6 h: CTDP, 73 vs. DDP, 365 rad equivalent), but reached a peak similar to cisplatin 24 h after exposure (CTDP, 317 vs. DDP, 392 rad equivalent). At this time point in contrast to DDP no DNA protein cross-links were observed for CTDP (total cross-links: CTDP 310, DDP 1987 rad equivalent). Thus, at 24 h, CTDP was found to be distinctly less reactive to proteins than DDP, and it is suggested that CTDP might be similar in its toxicity pattern to the structurally related compound carboplatin which was also reported to be less reactive to protein than DDP. By 48 h, CTDP- and DDP-induced interstrand cross-links were 65 and 180 rad equivalent, resp. Although at a lower level, by 24 h, AMDP showed a ratio of ISCL to total cross-links (179 vs. 213 rad equivalent), which was comparable to CTDP. The second biphosphonate complex DAMP was the least active platinum compound in terms of DNA damage, effecting only 16 rad equivalent ISCL and 63 rad equivalent total cross-links; similar to DDP, DAMP displayed a higher DPC fraction at 24 h. The titanium complex diethoxybis(1-phenylbutane-1,3-dionato)titanium(IV) showed dose-dependent inhibition of cell proliferation, while no significant DNA damage could be detected with the alkaline elution technique. These results, together with observations from other authors, indicating that space-filling planar aromatic ring systems are important for its antitumor activity, suggest as possible mechanism of action of diethoxybis-(1-phenylbutane-1,3-dionato)-titanium(IV) intercalation into the DNA. Following administration of the ruthenium compound IndCR only few ISCL and DPC were observed with a maximum at 6 h (ISCL, 15; total cross-links, 49 rad equivalent); thereafter both lesions were declining. Further studies on the mechanism of action of this class of antitumor agents should take into account that in hypoxic tumor tissue the Ru(III)-ion of IndCR might be reduced to Ru(II) which is known to be more reactive to DNA.

IT 124875-20-3

RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)  
(DNA damage from, in ovarian tumors, structure in relation to)

RN 124875-20-3 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole- $\kappa$ N2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0

CMF C14 H12 Cl4 N4 Ru . H

CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3

CMF C7 H6 N2



L77 ANSWER 42 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN

AN 1991:464190 HCPLUS  
DN 115:64190  
TI Antineoplastic effects of mer-trichlorobisdimethylsulfoxideaminorutheniumII against murine tumors: comparison with cisplatin and with ImH[RuIm2Cl4]  
AU Pacor, Sabrina; Sava, Gianni; Ceschia, Valentina; Bregant, Francesca; Mestroni, Giovanni; Alessio, Enzo  
CS Sch. Pharm., Univ. Trieste, Trieste, 34127, Italy  
SO Chemico-Biological Interactions (1991), 78(2), 223-34  
CODEN: CBINA8; ISSN: 0009-2797  
DT Journal  
LA English  
AB An asym. rutheniumIII complex containing dimethylsulfoxide ligands, namely mer-trichlorobisdimethylsulfoxideaminorutheniumIII (BBR2382), has been tested in mice bearing solid metastasizing tumors. The effects of i.p. treatment with BBR2382 on primary tumor growth and on the survival time of hosts carrying s.c. or i.m. tumors have been compared to those of cisplatin and of a rutheniumIII complex with imidazole ligands, ImH[RuIm2Cl4], described as a potent antitumor agent in a number of exptl. models of murine neoplasms. In mice bearing Lewis lung carcinoma, BBR2382 results as effective as cisplatin on s.c. primary tumor growth and more potent than cisplatin on the prolongation of host survival time. The combined treatment of mice bearing Lewis lung carcinoma with cisplatin and BBR2382 causes a reduction of s.c. tumors higher than that caused by each single agent; the effects on host survival time are similar to those caused by BBR2382 alone but significantly superior to those caused by cisplatin alone. In CBA mice bearing MCA mammary carcinoma, the effects of BBR2382 are slightly lower than those of cisplatin on i.m. tumors but are equivalent on host survival time. The comparison of the antineoplastic action of BBR2382 with that of ImH[RuIm2Cl4] is always in favor of the former, independently of the parameter chosen and of the tumor system used. Qual., the antitumor action of BBR2382 seems different from that of cisplatin and of ImH[RuIm2Cl4]; it is supposed that this agent, like other rutheniumIII dimethylsulfoxide complexes, could have a particular efficacy for tumors localized in the lungs.  
IT 103875-27-0  
RL: BIOL (Biological study)  
(neoplasm inhibition by trichlorobisdimethylsulfoxideaminoruthenium vs.)  
RN 103875-27-0 HCPLUS  
CN Ruthenate(1-), tetrachlorobis(1H-imidazole-κN3)-, (OC-6-11)-,  
hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)  
CM 1  
CRN 103875-26-9  
CMF C6 H8 Cl4 N4 Ru . H  
CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4  
CMF C3 H4 N2



L77 ANSWER 43 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN  
 AN 1991:464143 HCPLUS  
 DN 115:64143  
 TI In vitro evaluation of platinum, titanium and ruthenium metal complexes in cisplatin-sensitive and -resistant rat ovarian tumors  
 AU Fruehauf, S.; Zeller, W. J.  
 CS Inst. Toxicol. Chemother., Ger. Cancer Res. Cent., Heidelberg, W-6900,  
 Germany  
 SO Cancer Chemotherapy and Pharmacology (1991), 27(4), 301-7  
 CODEN: CCPHDZ; ISSN: 0344-5704  
 DT Journal  
 LA English  
 AB The antitumor activity of eight new metal complexes (three platinum, one titanium, four ruthenium derivs.) was investigated in a cisplatin (DDP) - sensitive (O-342) and a DDP-resistant (O-342/DDP) ovarian tumor line using the bilayer soft-agar assay. A continuous exposure set up at logarithmically spaced concns. was used to test the drugs; to uncover possible pharmacokinetics features, a short-term exposure was addnl. included for selected compds. DDP served as the reference drug. The following compds. were investigated: 18-crown-6-tetracarboxybisdiammineplatinum(II) (CTDP), cis-aminotrismethylenephosphonatodiammineplatinum(II) (ADP), cis-diamminecyclohexanoaminotrismethylenephosphonatoplatinum(II) (DAP), diethoxybis(1-phenylbutane-1,3-dionato)titanium(IV) (DBT, budotitane), trans-imidazolumbisimidazoletetrachlororuthenate(III) (ICR),

trans-indazoliumtetrachlorobisindazoleruthenate(III) (IndCR), cis-triazoliumtetrachlorobistriazoleruthenate(III) (TCR) and trans-pyrazoliumtetrachlorobispyrazoleruthenate(III) (PCR). Of the new metal complexes, CTDP was the most active compound in O-342, resulting in a percentage of control plating efficiency of 1, 12, and 40 following continuous exposure to 10, 1, and 0.1  $\mu$ M, resp., and was thus comparable to DDP at equimolar concns. In the resistant line, 10  $\mu$ M CTDP reduced colony growth to 18%, whereas an equimolar concentration of DDP effected a reduction to 26%. During short-term exposure, CTDP was inferior to DDP, which may be ascribed to the stability of the bis-dicarboxylate platinum ring system. The titanium compound DBT, in contrast, showed promising effects at its highest concentration (100  $\mu$ M) during short-term exposure in both lines; at this concentration the activity in O-342/DDP was higher than that in O-342 (7% vs. 34% of control plating efficiency at 100  $\mu$ M). All ruthenium complexes showed higher activity in the resistant line O-342/DDP than in the sensitive counterpart. ICR was the most active compound. Following continuous exposure of O-342/DDP cells to 10  $\mu$ M ICR, colony growth was reduced to 18% that of controls. Further studies should concentrate on CTDP and ICR for the following reasons: the activity of CTDP was equal to that of DDP at equimolar concns. during continuous exposure; considering that the in vivo toxicity of DDP was 3-fold that of CTDP, an increase in the therapeutic index of CTDP would be expected. ICR showed the best effect of all ruthenium complexes; it was superior to DDP in the resistant line.

IT 103875-27-0 124951-57-1 135212-15-6

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

, (neoplasm inhibition by, in cisplatin-resistant vs. -sensitive ovarian tumor lines)

RN 103875-27-0 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4  
CMF C3 H4 N2



RN 124951-57-1 HCAPLUS  
CN Ruthenate(1-), tetrachlorobis(1H-pyrazole-κN2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-pyrazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124951-56-0  
CMF C6 H8 Cl4 N4 Ru . H  
CCI CCS



●  $\text{H}^+$

CM 2

CRN 288-13-1  
CMF C3 H4 N2



RN 135212-15-6 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-1,2,4-triazole-kN2)-, (OC-6-22)-,  
hydrogen, compd. with 1H-1,2,4-triazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 135212-14-5  
CMF C4 H6 Cl4 N6 Ru . H  
CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-88-0  
CMF C2 H3 N3



L77 ANSWER 44 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN  
 AN 1991:441400 HCPLUS  
 DN 115:41400  
 TI Antitumor action of mer-trichlorobis(dimethyl sulfoxide)aminoruthenium(III) (BBR2382) in mice bearing Lewis lung carcinoma  
 AU Pacor, S.; Sava, G.; Bregant, F.; Ceschia, V.; Alessio, E.; Mestroni, G.  
 CS Sch. Pharm., Univ. Trieste, Trieste, I-34127, Italy  
 SO Met. Ions Biol. Med., Proc. Int. Symp., 1st (1990), 482-4.  
 Editor(s): Collery, Philippe. Publisher: Libbey, Paris, Fr.  
 CODEN: 56ZJAL  
 DT Conference  
 LA English  
 AB The differential effects of i.p. treatment of BD2F1 female mice carrying s.c. implants of Lewis lung carcinoma with mer-trichlorobis(DMSO)aminoruthenium(III), BBR2382, on primary tumor growth and on host survival time, were compared to those of equitoxic doses of cis-dichlorodiammineplatinum (cisplatin) and of imidazoliumbis(imidazole)tetrachlororuthenate [ImH(RuIm<sub>2</sub>C14)]. BBR2382 significantly reduces primary tumor growth by a factor comparable to that of cisplatin but significantly larger than that of ImH(RuIm<sub>2</sub>C14). Similar results are obtained in terms of increase of survival time which is

prolonged by 33%; this parameter is significantly better for mice treated with BBR2382 than for those treated with cisplatin. These data suggest the existence of antimetastatic effects and stress the potential therapeutic usefulness of ruthenium(III)dimethyl sulfoxides in cancer treatment.

IT 103875-27-0

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)  
(antitumor activity of trichlorobis(DMSO)aminoruthenium in relation to)

RN 103875-27-0 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-,  
hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4

CMF C3 H4 N2



L77 ANSWER 45 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN

AN 1991:421720 HCPLUS

DN 115:21720

TI Chemoresistance in rat ovarian tumors

AU Zeller, W. J.; Fruhauf, S.; Chen, G.; Keppler, B. K.; Frei, E.;

Kaufmann, M.  
 CS Inst. Toxicol. Chemotherapy, German Cancer Res. Cent., Heidelberg, Germany  
 SO European Journal of Cancer (1991), 27(1), 62-7  
 CODEN: EJCAEL; ISSN: 0959-8049  
 DT Journal  
 LA English  
 AB In a cisplatin resistant subline (O-342/DPP) of an i.p. growing transplantable rat ovarian tumor (O-342), intracellular glutathione (GSH) was approx. doubled. GSH reductase activity was higher, although no difference was found for GSH-S-transferase. Twenty-four h after exposure to cisplatin, formation of DNA interstrand cross-links was at a maximum in both lines and significantly higher in O-342. Combination treatment of O-342/DDP with buthionine sulfoximine plus cisplatin resulted in a marginal increase in survival compared with cisplatin treatment; treatment of this line with 3-aminobenzamide plus cisplatin was also superior to cisplatin alone. In the sensitive line, both combinations were likewise superior to cisplatin alone. In vitro, at equimolar concentration, a new platinum complex (CTDP) was at least as active as cisplatin in both lines, which suggests a superior therapeutic index because its LD<sub>50</sub> in mice is threefold higher than that of cisplatin. A ruthenium complex (ICR) had a higher activity in the resistant line. A titanium complex (budotitane) was not active.  
 IT 103875-27-0  
 RL: BIOL (Biological study)  
 (neoplasm inhibition by cisplatin and, resistance in)  
 RN 103875-27-0 HCPLUS  
 CN Ruthenate(1-), tetrachlorobis(1H-imidazole-κN3)-, (OC-6-11)-,  
 hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9  
 CMF C6 H8 Cl4 N4 Ru . H  
 CCI CCS

● H<sup>+</sup>

CM 2

CRN 288-32-4  
 CMF C3 H4 N2



L77 ANSWER 46 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN  
 AN 1991:240056 HCPLUS  
 DN 114:240056  
 TI Efficacy of two ruthenium complexes against chemically induced autochthonous colorectal carcinoma in rats  
 AU Seelig, M. H.; Berger, M. R.; Keppler, B. K.; Schmaehl, D.  
 CS Inst. Toxicol. Chemother., Ger. Cancer Res. Cent., Heidelberg, 6900, Germany  
 SO Met. Ions Biol. Med., Proc. Int. Symp., 1st (1990), 476-8.  
 Editor(s): Collery, Philippe. Publisher: Libbey, Paris, Fr.  
 CODEN: 56ZJAL  
 DT Conference  
 LA English  
 AB trans-Indazoliumbisindazoletetrachlororuthenate (III) and trans-imidazoliumbisimidazoletetrachlororuthenate (III) showed tumor growth inhibition in chemical induced colorectal carcinoma in rats.  
 IT 103875-27-0 124875-20-3  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (antitumor activity of, against chemical induced autochthonous colorectal carcinoma)  
 RN 103875-27-0 HCPLUS  
 CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9  
 CMF C6 H8 Cl4 N4 Ru . H  
 CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4  
CMF C3 H4 N2



RN 124875-20-3 HCAPLUS  
CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0  
CMF C14 H12 Cl4 N4 Ru . H  
CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
CMF C7 H6 N2



L77 ANSWER 47 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN  
 AN 1990:69481 HCAPLUS  
 DN 112:69481  
 TI New ruthenium complexes for the treatment of cancer  
 AU Keppler, B. K.; Henn, M.; Juhl, U. M.; Berger, M. R.; Niebl, R.;  
 Wagner, F. E.  
 CS Anorg. Chem. Inst., Univ. Heidelberg, Heidelberg, 6900, Fed. Rep. Ger.  
 SO Progress in Clinical Biochemistry and Medicine (1989),  
 10(Ruthenium Other Non-Platinum Met. Complexes Cancer Chemother.), 41-69  
 CODEN: PCBMEM; ISSN: 0177-8757  
 DT Journal  
 LA English  
 AB The aim of developing new tumor-inhibiting ruthenium complexes, in particular compds. which act against tumors that are chemoresistant, led to the synthesis of different classes of ruthenium complexes. Ruthenium complexes were selected for further evaluation on the basis of the increase in survival time in the P388 tumor model and water solubility. The water-soluble ruthenium complexes coordinated with heterocyclic ligands in the trans-position, HB(RuB2Cl4), and the corresponding pentachloro derivs., (HB)2(RuBCl5), were identified as being the most active complexes. Chemical properties were investigated by means of x-ray analyses, Moessbauer spectra, NMR spectra, and other methods. Galenic formulation was established based on solubility in water or physiol. saline. Stability of the complexes was sufficient for infusion therapy. The antitumor activity of such compds. was confirmed not only in the P388 tumor model but also in the Walker 256 carcinosarcoma, the Stockholm ascitic tumor, the s.c. growing B 16 melanoma, the i.m. sarcoma 180 and the acetoxymethylmethylnitrosamine-induced colorectal tumors of the rat. The compds. ImH(RuIm2Cl4) and IndH(RuInd2Cl4) [Im = imidazole; Ind = indazole] were highly active against these tumor models and were selected for toxicol. study.  
 IT 103875-27-0P 105085-46-9P 105085-50-5P  
 105085-56-1P 110649-85-9P 111137-60-1P  
 111137-62-3P 124875-10-1P 124875-14-5P  
 124875-16-7P 124875-18-9P 124875-20-3P  
 124951-57-1P  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)  
 (preparation of, as neoplasm inhibitor)  
 RN 103875-27-0 HCAPLUS  
 CN Ruthenate(1-), tetrachlorobis(1H-imidazole-κN3)-, (OC-6-11)-,  
 hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)  
 CM 1  
 CRN 103875-26-9  
 CMF C6 H8 Cl4 N4 Ru . H  
 CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4  
CMF C3 H4 N2



RN 105085-46-9 HCPLUS  
CN Ruthenate(2-), pentachloro(2-methyl-1H-imidazole-κN3)-, (OC-6-21)-,  
dihydrogen, compd. with 2-methyl-1H-imidazole (1:2) (9CI) (CA INDEX NAME)

CM 1

CRN 105085-45-8  
CMF C4 H6 Cl5 N2 Ru . 2 H  
CCI CCS



●2 H<sup>+</sup>

CM 2

CRN 693-98-1  
CMF C4 H6 N2



RN 105085-50-5 HCPLUS

CN Ruthenate(2-), pentachloro(4-methyl-1H-imidazole-N3)-, (OC-6-21)-,  
dihydrogen, compd. with 4-methyl-1H-imidazole (1:2) (9CI) (CA INDEX NAME)

CM 1

CRN 105085-49-2  
CMF C4 H6 Cl5 N2 Ru . 2 H  
CCI CCS



●2 H<sup>+</sup>

CM 2

CRN 822-36-6  
CMF C4 H6 N2RN 105085-56-1 HCPLUS  
CN Ruthenate(2-), pentachloro(1H-imidazole-N3)-, (OC-6-21)-, dihydrogen,  
compd. with 1H-imidazole (1:2) (9CI) (CA INDEX NAME)

CM 1

CRN 105085-55-0  
CMF C3 H4 Cl15 N2 Ru . 2 H  
CCI CCS●2 H<sup>+</sup>

CM 2

CRN 288-32-4  
CMF C3 H4 N2RN 110649-85-9 HCPLUS  
CN Ruthenate(1-), tetrachlorobis(1H-1,2,4-triazole-κN2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-1,2,4-triazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 110649-84-8  
CMF C4 H6 Cl14 N6 Ru . H

CCI CCS

● H<sup>+</sup>

CM 2

CRN 288-88-0  
CMF C2 H3 N3

RN 111137-60-1 HCAPLUS  
 CN Ruthenate(1-), tetrachlorobis(2-methyl-1H-imidazole-κN3)-,  
 (OC-6-11)-, hydrogen, compd. with 2-methyl-1H-imidazole (1:1) (9CI) (CA  
 INDEX NAME)

CM 1

CRN 111137-59-8  
CMF C8 H12 Cl4 N4 Ru . H  
CCI CCS



●  $\text{H}^+$

CM 2

CRN 693-98-1  
CMF C4 H6 N2



RN 111137-62-3 HCAPLUS  
CN Ruthenate(1-), tetrachlorobis(4-methyl-1H-imidazole- $\kappa$ N3)-,  
(OC-6-11)-, hydrogen, compd. with 4-methyl-1H-imidazole (1:1) (9CI) (CA  
INDEX NAME)

CM 1

CRN 111137-61-2  
CMF C8 H12 Cl4 N4 Ru . H  
CCI CCS



● H<sup>+</sup>

CM 2

CRN 822-36-6  
CMF C4 H6 N2



RN 124875-10-1 HCPLUS  
CN Ruthenate(1-), tetrachlorobis[4-(1,1-dimethylpropyl)-1H-imidazole-N3]-,  
(OC-6-11)-, hydrogen, compd. with 4-(1,1-dimethylpropyl)-1H-imidazole (1:1)  
(9CI) (CA INDEX NAME)

CM 1

CRN 124875-09-8  
CMF C14 H24 Cl4 N4 Ru . H  
CCI CCS



●  $\text{H}^+$

CM 2

CRN 21149-98-4  
CMF C7 H12 N2



RN 124875-14-5 HCPLUS  
CN Ruthenate(1-), tetrachlorobis(3,5-dimethyl-1H-pyrazole-N2)-, (OC-6-11)-,  
hydrogen, compd. with 3,5-dimethyl-1H-pyrazole (1:1) (9CI) (CA INDEX  
NAME)

CM 1

CRN 124875-13-4  
CMF C10 H16 Cl4 N4 Ru . H  
CCI CCS



● H<sup>+</sup>

CM 2

CRN 67-51-6  
CMF C5 H8 N2



RN 124875-16-7 HCPLUS  
CN Ruthenate(2-), pentachloro(3,5-dimethyl-1H-pyrazole-N2)-, (OC-6-21)-,  
dihydrogen, compd. with 3,5-dimethyl-1H-pyrazole (1:1) (9CI) (CA INDEX  
NAME)

CM 1

CRN 124875-15-6  
CMF C5 H8 Cl5 N2 Ru . 2 H  
CCI CCS



●2 H<sup>+</sup>

CM 2

CRN 67-51-6  
CMF C5 H8 N2



RN 124875-18-9 HCPLUS  
CN Ruthenate(1-), tetrachlorobis(3,5-diethyl-1H-pyrazole-N2)-, (OC-6-11)-,  
hydrogen, compd. with 3,5-diethyl-1H-pyrazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-17-8  
CMF C14 H24 Cl4 N4 Ru . H  
CCI CCS



● H<sup>+</sup>

CM 2

CRN 2817-73-4  
CMF C7 H12 N2



RN 124875-20-3 HCAPLUS

CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0  
CMF C14 H12 Cl4 N4 Ru . H  
CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
CMF C7 H6 N2



RN 124951-57-1 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-pyrazole- $\kappa$ N2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-pyrazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124951-56-0

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS

● H<sup>+</sup>

CM 2

CRN 288-13-1

CMF C3 H4 N2



L77 ANSWER 48 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN

AN 1989:586904 HCPLUS

DN 111:186904

TI Efficacy of new ruthenium complexes against chemically induced  
autochthonous colorectal carcinoma in rats

AU Berger, Martin R.; Garzon, Felix T.; Keppler, Bernhard K.;

Schmaehl, Dietrich  
 CS Inst. Toxicol. Chemother., Ger. Cancer Res. Cent., Heidelberg, 6900, Fed.  
 Rep. Ger.  
 SO Anticancer Research (1989), 9(3), 761-5  
 CODEN: ANTRD4; ISSN: 0250-7005  
 DT Journal  
 LA English  
 AB SD rats bearing acetoxymethylmethylnitrosamine-induced colorectal carcinomas were treated by i.v. administration of trans-imidazoliumbisimidazoletetrachlororuthenate(III) [ImH(RuIm<sub>2</sub>C<sub>14</sub>)], bisbenzimidazoliumbenzimidazolepentachlororuthenate(III) [(BzImH)<sub>2</sub>(RuBzImC<sub>15</sub>)] and trans-indazoliumbisindazoletetrachlororuthenate(III) [IndH(ruInd<sub>2</sub>C<sub>14</sub>)]. The dose levels used were 0.022 mmol/kg administered twice weekly over ten weeks for all compds. and, addnl., 0.015 mmol/kg for ImH(RuIm<sub>2</sub>C<sub>14</sub>). All compds. caused a tumor growth inhibition exceeding 90%; differences were found with regard to toxicity: ImH(RuIm<sub>2</sub>C<sub>14</sub>) and (BzImH)<sub>2</sub>(RuBzImC<sub>15</sub>) caused dose-related decreases in body weight and increases in mortality as shown by 21% and 29% body weight loss compared to controls as well as 10% and 45% mortality for the two dosages of the first compound, and 9% body weight loss compared to controls as well as 7% mortality for the latter compound. In contrast, equimolar administration of IndH(ruInd<sub>2</sub>C<sub>14</sub>) was not related to any symptoms of toxicity as evidenced by 2% body weight gain compared to controls as well as 0% mortality. Since this latter drug obviously showed remarkable activity in a highly resistant type of tumor at negligible toxicity, it certainly deserves special attention.  
 IT 103875-27-0 124875-20-3  
 RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)  
 (antitumor activity and toxicity of, structure in relation to)  
 RN 103875-27-0 HCPLUS  
 CN Ruthenate(1-), tetrachlorobis(1H-imidazole-κN3)-, (OC-6-11)-,  
 hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS

● H<sup>+</sup>

CM 2

CRN 288-32-4  
CMF C3 H4 N2RN 124875-20-3 HCPLUS  
CN Ruthenate(1-), tetrachlorobis(1H-indazole-κN2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-indazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 124875-19-0  
CMF C14 H12 Cl4 N4 Ru . H  
CCI CCS

\*\*\* STRUCTURE DIAGRAM IS NOT AVAILABLE \*\*\*

CM 2

CRN 271-44-3  
CMF C7 H6 N2

L77 ANSWER 49 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN  
 AN 1988:68411 HCPLUS  
 DN 108:68411  
 TI Comparative antitumor activity of ruthenium derivatives with  
 5'-deoxy-5-fluorouridine in chemically induced colorectal tumors in SD  
 rats  
 AU Garzon, F. T.; Berger, M. R.; Keppler, B. K.; Schmaehl, D.  
 CS German Cancer Res. Cent., Inst. Toxicol. Chemotherapy, Heidelberg, D-6900,  
 Fed. Rep. Ger.  
 SO Cancer Chemotherapy and Pharmacology (1987), 19(4), 347-9  
 CODEN: CCPHDZ; ISSN: 0344-5704  
 DT Journal  
 LA English  
 GI



AB The activity of a novel Ru compound (I) was compared with that of 5'-deoxy-5-fluorouridine (5'dFUR) in autochthonous acetoxyethyl(methylnitrosamine) (AMMN)-induced colorectal cancer in rats. I had considerable antitumor efficacy compared with 5'dFUR against the growth of AMMN-induced colorectal adenocarcinoma in SD rats. The mortality rates with I were dose-related, but its efficacy did not vary in all doses administered.

IT 103875-27-0

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
(antitumor activity of, in colon)

RN 103875-27-0 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole- $\kappa$ N3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4  
 CMF C3 H4 N2



L77 ANSWER 50 OF 54 HCAPLUS COPYRIGHT 2005 ACS on STN  
 AN 1987:648979 HCAPLUS  
 DN 107:248979  
 TI Synthesis, molecular structure, and tumor-inhibiting properties of imidazolium trans-bis(imidazole)tetrachlororuthenate(III) and its methyl-substituted derivatives  
 AU Keppler, B. K.; Rupp, W.; Juhl, U. M.; Endres, H.; Niebl, R.; Balzer, W.  
 CS Anorg.-Chem. Inst., Univ. Heidelberg, Heidelberg, 6900, Fed. Rep. Ger.  
 SO Inorganic Chemistry (1987), 26(26), 4366-70  
 CODEN: INOCAJ; ISSN: 0020-1669  
 DT Journal  
 LA English  
 AB The preparation, mol. structure, and antitumor activity of  $\text{ImH}[\text{RuIm}_2\text{Cl}_4]$  (I; Im = imidazole) and  $4\text{-MeImH}[\text{Ru}(4\text{-MeIm})_2\text{Cl}_4]$  (II; 4-MeIm = 4-methylimidazole) are described. I is monoclinic,  $C2/c$ ,  $a$  13.266(3),  $b$  8.047(1),  $c$  16.514(4) Å,  $\beta$  112.53(2)°,  $Z$  = 4,  $d$ .(calculated) = 1.83 g cm<sup>-3</sup>,  $R_w$  = 0.029 for 1710 reflections and 106 parameters. II is monoclinic,  $P21/a$ ,  $a$  12.947(3),  $b$  10.484(3),  $c$  14.170(4) Å,  $\beta$  108.22(2)°,  $Z$  = 4,  $d$ .(calculated) = 1.78 g cm<sup>-3</sup>,  $R_w$  = 0.039 for 2563 reflections and 211 parameters. The antitumor activity was studied in the P 388 leukemia model. The lifespan of the animals treated with  $\text{ImH}[\text{RuIm}_2\text{Cl}_4]$  was increased up to T/C values of 194%. The activity was in the same range as or was slightly better than in the case of cisplatin, which was tested as a pos. control. 5-Fluorouracil was less active compared to these metal complexes.  $4\text{-MeImH}[\text{Ru}(4\text{-MeIm})_2\text{Cl}_4]$  exhibited activity similar to that of  $\text{ImH}[\text{RuIm}_2\text{Cl}_4]$ . The mechanism of action and the possible applications of these Ru complexes are discussed.  
 IT 103875-27-0P 111137-62-3P  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)  
 (preparation and crystal structure and antitumor activity of)  
 RN 103875-27-0 HCAPLUS  
 CN Ruthenate(1-), tetrachlorobis(1H-imidazole-κN3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)  
 CM 1  
 CRN 103875-26-9  
 CMF C6 H8 Cl4 N4 Ru . H  
 CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4  
CMF C3 H4 N2



RN 111137-62-3 HCAPLUS  
CN Ruthenate(1-), tetrachlorobis(4-methyl-1H-imidazole-κN3)-,  
(OC-6-11)-, hydrogen, compd. with 4-methyl-1H-imidazole (1:1) (9CI) (CA  
INDEX NAME)

CM 1

CRN 111137-61-2  
CMF C8 H12 Cl4 N4 Ru . H  
CCI CCS



● H<sup>+</sup>

CM 2

CRN 822-36-6  
CMF C4 H6 N2



IT **111137-60-1P**

RL: SPN (Synthetic preparation); PREP (Preparation)  
(preparation of)

RN 111137-60-1 HCPLUS

CN Ruthenate(1-), tetrachlorobis(2-methyl-1H-imidazole-κN3)-,  
(OC-6-11)-, hydrogen, compd. with 2-methyl-1H-imidazole (1:1) (9CI) (CA  
INDEX NAME)

CM 1

CRN 111137-59-8  
CMF C8 H12 Cl4 N4 Ru . H  
CCI CCS



● H<sup>+</sup>

CM 2

CRN 693-98-1  
CMF C4 H6 N2



L77 ANSWER 51 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN  
 AN 1987:568354 HCPLUS  
 DN 107:168354  
 TI Synthesis and antitumor activity of triazolium-bis(triazole)tetrachlororuthenate(III) and bistriazolium-triazolepentachlororuthenate(III). Two representatives of a new class of inorganic antitumor agents  
 AU Keppler, B. K.; Balzer, W.; Seifried, V.  
 CS Anorg.-Chem. Inst., Univ. Heidelberg, Heidelberg, Fed. Rep. Ger.  
 SO Arzneimittel-Forschung (1987), 37(7), 770-1  
 CODEN: ARZNAD; ISSN: 0004-4172  
 DT Journal  
 LA English  
 AB The synthesis of the two water-soluble heterocycle coordinated ruthenium complexes triazolium-bis(triazole) tetrachlororuthenate(III), TrH(RuTr<sub>2</sub>Cl<sub>4</sub>), and bistriazolium-triazolepentachlororuthenate(III), (TrH)<sub>2</sub>(RuTrCl<sub>5</sub>), is described. For these 2 complexes, antitumor activity against the P388 leukemia model was observed with increase in lifespan of 137% to 150%, resp., compared with 144% and 175%, resp., for 5-FU and cisplatin.  
 IT 110649-85-9P 110670-30-9P  
 RL: SPN (Synthetic preparation); PREP (Preparation)  
 (preparation and neoplasm-inhibitory activity of)  
 RN 110649-85-9 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-1,2,4-triazole- $\kappa$ N2)-, (OC-6-11)-,  
hydrogen, compd. with 1H-1,2,4-triazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 110649-84-8

CMF C4 H6 Cl4 N6 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-88-0

CMF C2 H3 N3



RN 110670-30-9 HCPLUS

CN Ruthenate(2-), pentachloro(1H-1,2,4-triazole-N2)-, (OC-6-21)-, dihydrogen,  
compd. with 1H-1,2,4-triazole (1:2) (9CI) (CA INDEX NAME)

CM 1

CRN 110670-29-6

CMF C2 H3 Cl5 N3 Ru . 2 H

CCI CCS



●2 H<sup>+</sup>

CM 2

CRN 288-88-0  
CMF C2 H3 N3



L77 ANSWER 52 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN  
 AN 1987:112595 HCPLUS  
 DN 106:112595  
 TI Synthesis, antitumor activity, and x-ray structure of bis(imidazolium) (imidazole)pentachlororuthenate(III), (ImH)<sub>2</sub>(RuImCl<sub>5</sub>)  
 AU Keppler, B. K.; Wehe, D.; Endres, H.; Rupp, W.  
 CS Anorg. Chem. Inst., Univ. Heidelberg, Heidelberg, 6900, Fed. Rep. Ger.  
 SO Inorganic Chemistry (1987), 26(6), 844-6  
 CODEN: INOCAJ; ISSN: 0020-1669  
 DT Journal  
 LA English  
 AB The x-ray structure, an improved preparation, and the antitumor activity of (ImH)<sub>2</sub>(RuImCl<sub>5</sub>) (I; Im = imidazole) are described. Crystals of I are orthorhombic, space group Bm21b, with a 8.464(2), b 14.406(3), c 14.936(4) Å, Z = 4, d.(calculated) = 1.77 g cm<sup>-3</sup>, and final *Rw* = 0.038, for 764 reflections and 75 variables. The antitumor activity was studied in the P 388 leukemia model. The lifespan of the animals treated with I was increased up to T/C values of 150-162%. This effect was in the same range as that observed with the pos. controls 5-fluorouracil and cisplatin. These clin. used drugs increased the lifespan in the same experiment up to T/C values of 144% and 175%, resp.  
 IT 105085-56-1P  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)  
 (improved preparation, crystal structure and antitumor activity of)  
 RN 105085-56-1 HCPLUS  
 CN Ruthenate(2-), pentachloro(1H-imidazole-N3)-, (OC-6-21)-, dihydrogen, compd. with 1H-imidazole (1:2) (9CI) (CA INDEX NAME)

CM 1

CRN 105085-55-0  
 CMF C3 H4 Cl15 N2 Ru . 2 H  
 CCI CCS

●2 H<sup>+</sup>

CM 2

CRN 288-32-4  
 CMF C3 H4 N2



L77 ANSWER 53 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN  
 AN 1987:61212 HCPLUS  
 DN 106:61212  
 TI Ruthenium compounds having a tumor inhibiting activity  
 IN Keller, Heimo J.; Keppler, Bernhard  
 PA Byk-Gulden Lomberg Chemische Fabrik G.m.b.H., Fed. Rep. Ger.  
 SO PCT Int. Appl., 36 pp.

CODEN: PIXXD2

DT Patent

LA German

FAN.CNT 1

|    | PATENT NO.                                    | KIND | DATE     | APPLICATION NO. | DATE         |
|----|-----------------------------------------------|------|----------|-----------------|--------------|
| PI | WO 8600905                                    | A1   | 19860213 | WO 1985-EP369   | 19850724 <-- |
|    | W: AU, DK, FI, JP, NO, US                     |      |          |                 |              |
|    | RW: AT, BE, CH, DE, FR, GB, IT, LU, NL, SE    |      |          |                 |              |
|    | AU 8548043                                    | A1   | 19860225 | AU 1985-48043   | 19850724 <-- |
|    | AU 570826                                     | B2   | 19880324 |                 |              |
|    | EP 191096                                     | A1   | 19860820 | EP 1985-904433  | 19850724 <-- |
|    | EP 191096                                     | B1   | 19890913 |                 |              |
|    | R: AT, BE, CH, DE, FR, GB, IT, LI, LU, NL, SE |      |          |                 |              |
|    | JP 61502761                                   | T2   | 19861127 | JP 1985-503999  | 19850724 <-- |
|    | JP 06094471                                   | B4   | 19941124 |                 |              |

AT 46343 E 19890915 AT 1985-904433 19850724 <--  
 US 4843069 A 19890627 US 1986-849455 19860425 <--  
 PRAI CH 1984-3594 A 19840724 <--  
 CH 1985-2907 A 19850704 <--  
 EP 1985-904433 A 19850724 <--  
 WO 1985-EP369 A 19850724 <--  
 AB Complexes of Ru halides with N-containing heterocyclic compds. are prepared as tumor inhibitors. For example, 1,2,4-triazoliumtetrachlorobis(1,2,4-triazole)ruthenate (I) administered to mice at 45.1 mg/kg i.p. on days 1,5,9 after i.p. inoculation with 106 P388 leukemia cells, increased the life span of the mice by 61%. I was prepared by adding 1,2,4-triazole to a HCl solution of RuCl<sub>2</sub>.  
 IT 103875-27-0P 105085-40-3P 105085-46-9P  
 105085-48-1P 105085-50-5P 105085-52-7P  
 105085-54-9P 105085-56-1P  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)  
 (preparation of, as neoplasm inhibitor)  
 RN 103875-27-0 HCPLUS  
 CN Ruthenate(1-), tetrachlorobis(1H-imidazole-κN3)-, (OC-6-11)-, hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1  
 CRN 103875-26-9  
 CMF C6 H8 Cl4 N4 Ru . H  
 CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4  
CMF C3 H4 N2



RN 105085-40-3 HCPLUS

CN Ruthenate(1-), tetrachlorobis(4-methyl-1H-imidazole-N3)-, hydrogen, compd. with 4-methyl-1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 105085-39-0

CMF C8 H12 Cl4 N4 Ru . H

CCI CCS

● H<sup>+</sup>

CM 2

CRN 822-36-6

CMF C4 H6 N2



RN 105085-46-9 HCPLUS

CN Ruthenate(2-), pentachloro(2-methyl-1H-imidazole-κN3)-, (OC-6-21)-, dihydrogen, compd. with 2-methyl-1H-imidazole (1:2) (9CI) (CA INDEX NAME)

CM 1

CRN 105085-45-8

CMF C4 H6 Cl5 N2 Ru . 2 H

CCI CCS

●2 H<sup>+</sup>

CM 2

CRN 693-98-1  
CMF C4 H6 N2RN 105085-48-1 HCPLUS  
CN Ruthenate(1-), tetrachlorobis(2-methyl-1H-imidazole-κN3)-, hydrogen,  
compd. with 2-methyl-1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 105085-47-0  
CMF C8 H12 Cl4 N4 Ru . H  
CCI CCS



●  $\text{H}^+$

CM 2

CRN 693-98-1  
CMF C4 H6 N2



RN 105085-50-5 HCPLUS  
CN Ruthenate(2-), pentachloro(4-methyl-1H-imidazole-N3)-, (OC-6-21)-,  
dihydrogen, compd. with 4-methyl-1H-imidazole (1:2) (9CI) (CA INDEX NAME)

CM 1

CRN 105085-49-2  
CMF C4 H6 Cl5 N2 Ru . 2 H  
CCI CCS



●2 H<sup>+</sup>

CM 2

CRN 822-36-6  
CMF C4 H6 N2



RN 105085-52-7 HCAPLUS  
CN Ruthenate(2-), tetrachlorohydroxy(4-methyl-1H-pyrazole-N2)-, dihydrogen,  
compd. with 4-methyl-1H-pyrazole (1:2) (9CI) (CA INDEX NAME)

CM 1

CRN 105085-51-6  
CMF C4 H7 Cl4 N2 O Ru . 2 H  
CCI CCS



●2 H<sup>+</sup>

CM 2

CRN 7554-65-6  
CMF C4 H6 N2



RN 105085-54-9 HCAPLUS

CN Ruthenate(2-), tetrachlorohydroxy(1H-pyrazole-N2)-, dihydrogen, compd.  
with 1H-pyrazole (1:2) (9CI) (CA INDEX NAME)

CM 1

CRN 105085-53-8  
CMF C3 H5 Cl4 N2 O Ru . 2 H  
CCI CCS



●2 H<sup>+</sup>

CM 2

CRN 288-13-1  
CMF C3 H4 N2RN 105085-56-1 HCPLUS  
CN Ruthenate(2-), pentachloro(1H-imidazole-N3)-, (OC-6-21)-, dihydrogen,  
compd. with 1H-imidazole (1:2) (9CI) (CA INDEX NAME)

CM 1

CRN 105085-55-0  
CMF C3 H4 Cl5 N2 Ru . 2 H  
CCI CCS

● 2 H+

CM 2

CRN 288-32-4  
CMF C3 H4 N2L77 ANSWER 54 OF 54 HCPLUS COPYRIGHT 2005 ACS on STN  
AN 1986:490867 HCPLUS  
DN 105:90867  
TI Antitumor activity of imidazolium-bisimidazole-tetrachlororuthenate(III).  
A representative of a new class of inorganic antitumor agents  
AU Keppler, B. K.; Rupp, W.

CS Anorg.-Chem. Inst., Univ. Heidelberg, Heidelberg, D-6900, Fed. Rep. Ger.  
 SO Journal of Cancer Research and Clinical Oncology (1986), 111(2),  
 166-8  
 CODEN: JCROD7; ISSN: 0171-5216  
 DT Journal  
 LA English  
 GI



AB The antitumor activity of imidazoliumbisimidazoletetrachlororuthenate(III) (I) [103875-27-0] against the P388 leukemia and against the B16 melanoma was investigated. The test compound showed high activity against these tumor models. The tumor inhibiting effect was better than or equal to the effects of cyclophosphamide, cisplatin, or 5-fluorouracil. The effective substance is a new, water soluble, anionic, nitrogen-heterocyclic coordinated, Ru species, exhibiting antitumor activity.

IT 103875-27-0  
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)  
 (as neoplasm inhibitor)

RN 103875-27-0 HCPLUS

CN Ruthenate(1-), tetrachlorobis(1H-imidazole-κN3)-, (OC-6-11)-,  
 hydrogen, compd. with 1H-imidazole (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 103875-26-9

CMF C6 H8 Cl4 N4 Ru . H

CCI CCS



● H<sup>+</sup>

CM 2

CRN 288-32-4  
CMF C3 H4 N2



=> d his

(FILE 'HOME' ENTERED AT 14:51:11 ON 07 DEC 2005)  
SET COST OFF

L1 FILE 'HCAPLUS' ENTERED AT 14:51:18 ON 07 DEC 2005  
1 S US20050032801/PN OR (US2003-627519 OR WO2002-EP863 OR DE2001-  
E KEPPLER B/AU  
L2 219 S E3-E10  
E KEPLER B/AU  
E FAUSTUS/PA,CS  
L3 14 S E3-E16  
SEL RN L1

L4 FILE 'REGISTRY' ENTERED AT 14:52:52 ON 07 DEC 2005  
4 S E1-E4  
L5 1 S L4 AND CCS/CI  
L6 1 S 189556-38-5  
L7 9 S 189556-38-5/CRN  
L8 1 S L4 NOT RU/ELS  
L9 1 S PYRAZOLE/CN  
E INDAZOLE/CN  
L10 1 S E3

E IMIDAZOLE/CN  
 L11 1 S E3  
 E TRAZOLE/CN  
 E TRIAZOLE/CN  
 L12 1 S E3  
 L13 1407 S (N3C2 OR N2CNC)/ES AND 1/NR AND 3/ELC.SUB  
 L14 71 S L13 AND 3/N AND 2/C  
 L15 51 S L14 AND 1/NC  
 L16 44 S L15 AND (C AND N AND H)/ELS  
 L17 41 S L16 NOT (PMS OR IDS)/CI  
 L18 31 S L17 NOT ((D OR T)/ELS OR 11C# OR 13C# OR 14C# OR C11# OR C13#  
 L19 26 S L18 NOT RPS/CI  
 L20 22 S L19 NOT ION  
 L21 21 S L20 NOT 15N2  
 L22 16 S L21 NOT IUM  
 SEL RID  
 L23 61 S E1-E11 AND RU/ELS  
 L24 3025 S (333.161 OR 16.165 OR 16.195)/RID AND RU/ELS  
 L25 816 S (333.161.31 OR 16.165.12 OR 16.195.24)/RID AND RU/ELS  
 L26 877 S L23,L25  
 STR  
 L28 12 S L27 SAM SUB=L26  
 L29 245 S L27 FUL SUB=L26  
 SAV TEMP L29 SHIAO627/A  
 L30 2 S L4 AND RU/ELS NOT RU/MF  
 L31 245 S L5-L7,L30,L29

FILE 'HCAPLUS' ENTERED AT 15:08:16 ON 07 DEC 2005  
 L32 191 S L31  
 L33 54 S L32 AND L1-L3  
 L34 13 S KP1019 OR KP 1019

FILE 'REGISTRY' ENTERED AT 15:09:26 ON 07 DEC 2005  
 L35 1 S 124875-20-3

FILE 'HCAPLUS' ENTERED AT 15:09:35 ON 07 DEC 2005  
 L36 34 S L35  
 L37 36 S L34,L36  
 L38 25 S L37 AND (PY<=2001 OR PRY<=2001 OR AY<=2001)  
 L39 133 S L32 AND (PY<=2001 OR PRY<=2001 OR AY<=2001)  
 L40 131 S L32 AND (PD<=20010126 OR PRD<=20010126 OR AD<=20010126)  
 L41 25 S L37 AND (PD<=20010126 OR PRD<=20010126 OR AD<=20010126)  
 L42 68 S L31(L)PREP+NT/RL  
 L43 86 S L31(L)(THU OR BAC OR DMA OR PAC OR PKT)/RL  
 L44 117 S L32 AND (PHARMACEUT? OR PHARMACOL? OR PATHOL?)/SC, SX, CW, CT  
 E NEOPLASM INHIBITOR/CT  
 L45 77032 S E4-E6  
 E E4+ALL  
 E E2+ALL  
 L46 182155 S E3 OR E41+OLD,NT OR E42+OLD,NT OR E43+OLD,NT OR E45+OLD,NT  
 L47 65 S L39 AND L45,L46  
 L48 28 S L37 AND L45,L46  
 L49 18 S L41 AND L48  
 L50 74 S L42-L44 AND L47-L49  
 L51 33 S L1-L3 AND L37  
 L52 40 S L33,L51 AND L40,L41  
 L53 84 S L50,L52  
 SEL HIT RN

FILE 'REGISTRY' ENTERED AT 15:17:34 ON 07 DEC 2005

L54 59 S E1-E59  
L55 11 S L54 AND S/ELS  
L56 48 S L54 NOT L55  
L57 6 S L56 AND (C28H24CL2N8RU OR C3H4CL4N3ORU)  
L58 42 S L56 NOT L57  
L59 3 S L58 AND (C21H18CL3N6RU OR C16H15CL3N5RU)  
L60 39 S L58 NOT L59

FILE 'HCAPLUS' ENTERED AT 15:31:46 ON 07 DEC 2005  
L61 78 S L60  
L62 61 S L61 AND (PD<=20010126 OR PRD<=20010126 OR AD<=20010126)  
L63 45 S L62 AND L45,L46  
L64 32 S L60 (L) (THU OR BAC OR DMA OR PAC OR PKT)/RL AND L62  
L65 53 S L62 AND (PHARMACEUT? OR PHARMACOL? OR PATHOL?)/SC,SX,CW,CT  
L66 40 S L1-L3 AND L62  
L67 61 S L41,L62-L66  
L68 54 S L67 NOT P/DT  
L69 7 S L67 NOT L68  
L70 5 S L69 NOT (IMMUNOSUPP? OR HYPERPROLIFERAT?)  
L71 36 S L68 AND L1-L3  
L72 2 S L71 NOT ?TUMOR?  
L73 34 S L71 NOT L72  
L74 18 S L68 NOT L69-L73  
L75 3 S L74 NOT ?TUMOR?  
L76 15 S L74 NOT L75  
L77 54 S L70,L73,L76

FILE 'MEDLINE' ENTERED AT 15:36:54 ON 07 DEC 2005  
L78 8 S L34 OR L35  
L79 2 S L78 AND PY<=2001  
L80 2 S L79 AND KEPPLER ?/AU

FILE 'CANCERLIT' ENTERED AT 15:38:08 ON 07 DEC 2005  
L81 3 S L78  
L82 1 S L81 NOT MEDLINE/OS  
L83 1 S L82 AND KEPPLER ?/AU

FILE 'EMBASE' ENTERED AT 15:38:39 ON 07 DEC 2005  
L84 12 S L78  
L85 16 S "INDAZOLIUM TETRACHLOROBIS(INDAZOLE)RUTHENATE"/CT  
L86 11 S L84,L85 AND PY<=2001  
L87 4 S L86 AND KEPPLER ?/AU  
L88 11 S L86,L87  
L89 11 S L88 AND (?NEOPLAS? OR ?TUMOR? OR ?CANCER?)

FILE 'REGISTRY' ENTERED AT 15:40:44 ON 07 DEC 2005

FILE 'MEDLINE, CANCERLIT, EMBASE' ENTERED AT 15:41:27 ON 07 DEC 2005  
L90 12 DUP REM L80 L83 L89 (2 DUPLICATES REMOVED)

FILE 'HCAPLUS' ENTERED AT 15:41:37 ON 07 DEC 2005

=>