A GENERAL THEORY OF ALMOST CONVEX FUNCTIONS.

S. J. DILWORTH, RALPH HOWARD, AND JAMES W. ROBERTS

ABSTRACT. Let $\Delta_m = \{(t_0, \dots, t_m) \in \mathbf{R}^{n+1} : t_i \geq 0, \sum_{i=0}^m t_i = 1\}$ be the standard m-dimensional simplex. Let $\varnothing \neq S \subset \bigcup_{m=1}^\infty \Delta_m$, then a function $h \colon C \to \mathbf{R}$ with domain a convex set in a real vector space is S-almost convex iff for all $(t_0, \dots, t_m) \in S$ and $x_0, \dots, x_m \in C$ the inequality

$$h(t_0x_0 + \dots + t_mx_m) \le 1 + t_0h(x_0) + \dots + t_mh(x_m)$$

holds. A detailed study of the properties of S-almost convex functions is made. It is also shown that if S contains at least one point that is not a vertex, then an extremal S-almost convex function $E_S \colon \Delta_n \to \mathbf{R}$ is constructed with the properties that it vanishes on the vertices of Δ_m and if $h \colon \Delta_n \to \mathbf{R}$ is any bounded S-almost convex function with $h(e_k) \leq 0$ on the vertices of Δ_n , then $h(x) \leq E_S(x)$ for all $x \in \Delta_n$. In the special case $S = \{(1/(m+1), \dots, 1/(m+1))\}$ the barycenter of Δ_m very explicit formulas are given for E_S and $\kappa_S(n) = \sup_{x \in \Delta_n} E_S(x)$. These are of interest as E_S and $\kappa_S(n)$ are extremal in various geometric and analytic inequalities and theorems.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTH CAROLINA COLUMBIA, S.C. 29208, USA

dilworth@math.sc.edu howard@math.sc.edu roberts@math.sc.edu

Date: January 30, 2001.

 $^{2000\} Mathematics\ Subject\ Classification.$ Primary: 26B25 52A27; Secondary: 39B72 41A44 51M16 52A21 52A40.

Key words and phrases. Convex hulls, convex functions, approximately convex functions, normed spaces, Hyers-Ulam Theorem.

The research of the second author was supported in part from ONR Grant N00014-90-J-1343 and ARPA-DEPSCoR Grant DAA04-96-1-0326.