Лабораторная работа №1

Операционные системы

Чистов Д. М.

02 Марта 2004

Российский университет дружбы народов, Москва, Россия

Вступительная информация

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Задание

- 1. Создание виртуальной машины
- 2. Установка Операционной Системы
- 3. После установки
- 4. Установка программного обеспечения
- 5. Дополнительные задания

Выполнение лабораторной работы

Открываю программу VirtualBox и нажимаю кнопку "Создать".

Рис. 1: Интерфейс VirtualBox

В всплывающем окне задаю имя виртуальной машины, путь, где она будет находиться, а также ISO-образ операционной системы Fedora.

Рис. 2: Конфигурация виртуальной машины

Задаю кол-во выделенной оперативной памяти и ядер процессора хостовой машины для виртуальной машины.

Рис. 3: Конфигурация виртуальной машины 2

Выделяю 80гб места своего жёсткого диска для виртуальной машины.

Рис. 4: Конфигурация виртуальной машины 3

На финальном экране проверяю корректность характеристик машины.

Рис. 5: Конфигурация виртуальной машины 4

Виртуальная машина успешно создана.

Рис. 6: Просмотр виртуальной машины

Запускаю виртуальную машину. Пока она будет запущена через образ ISO, который в будущем нужно будет отключить. Меня приветствует окно начала установки. Начинаем!

Выбираю язык раскладки клавиатуры - русский и английский.

Выбираю часовой пояс, который предоставит корректные для меня дату и время.

Выбираю нужный жётский диск, на который будет установлена ОС.

Рис. 9: Жёсткий диск

После всех конфигураций начинаю установку.

Установка прошла успешно.

Теперь важный шаг. Открываю VirtualBox и ищу образ ISO.

Рис. 12: Образ ISO

Нажимаю на него правой кнопкой мыши и отключаю от виртуальной машины.

Рис. 13: Отключённый образ ISO

После этого перезапускаю виртуальную машину и наблюдаю, что ОС была установлена успешно.

Добро пожаловать в Fedora Linux 39!

Перехожу к настройке OC. Создаю нового пользователя - ввожу своё имя и логин в соответствии с требованиями.

Задаю пароль новому пользователю.

3. После установки

Обновление пакетов

Открываю терминал, захожу в режим супер-пользователя и обновляю все пакеты.

```
lmchistov@fedora:~$ sudo -i
Мы полагаем, что ваш системный администратор изложил вам основы
безопасности. Как правило, всё сводится к трём следующим правилам:
    №1) Уважайте частную жизнь других.
    №2) Думайте, прежде чем что-то вводить.
    №3) С большой властью приходит большая ответственность.
По соображениям безопасности пароль, который вы введёте, не будет виден.
[sudo] пароль для dmchistov:
[root@fedora ~]# dnf -v update
Copr repo for PyCharm owned by phracek 355 kB/s | 161 kB
                                                                    00:00
Fedora 39 - x86_64 68% [========= ] 3.1 MB/s | 64 MB
                                                                    00:09 ETA
```

Рис. 17: Обновление пакетов

Повышение комфорта работы

Устанавливаю программу для удобства работы в консоли - tmux.

Рис. 18: Установка tmux

Автоматическое обновление

Устанавливаю ПО для автоматического обновления.

```
[root@fedora ~]# dnf install dnf-automatic
Последняя проверка окончания срока действия метаданных: 0:05:38 назад, Пт 01 мар
2024 23:43:55.
Зависимости разрешены.
Пакет
                       Архитектура
                                      Версия
                                                            Репозиторий
                                                                            Размер
Установка:
                       noarch
                                     4.19.0-1.fc39
                                                            updates
                                                                             46 k
Обновление:
                       noarch
                                     4.19.0-1.fc39
                                                            updates
                                                                            508 k
```

Рис. 19: Установка ПО

Автоматическое обновление

Устанавливаю таймер.

```
[root@fedora ~]# systemctl enable --now dnf-automatic.timer Created symlink /etc/systemd/system/timers.target.wants/dnf-automatic.timer \rightarrow /u sr/lib/systemd/system/dnf-automatic.timer.
```

Рис. 20: Установка таймера

По заданию требуют отключить SELinux, для начала нужно открыть Midnight Commander.

Перемещаюсь в папку /etc/selinux и нахожу файл config.

Рис. 22: Найденный файл

Открываю его с помощью утилиты mcedit и заменяю параметр SELINUX с "enforcing" на "permissive".

```
# To revert back to SELinux enabled:
#
# grubby --update-kernel ALL --remove-args selinux
#
SELINUX=enforcing
# SELINUXTYPE= can take one of these three values:
```

Рис. 23: Файл config

```
#
SELINUX=permissive
# SELINUXTYPE= can take
```

Рис. 24: Изменённый файл config

После этого перезагружаю виртуальную машину.

Рис. 25: Перезагрузка

Открываю консоль перехожу в роль супер-пользователя с утилитой tmux и начинаю установку Developer Tools.

```
[dmchistov@fedora ~]$ sudo -i
[sudo] пароль для dmchistov:
[root@fedora ~]# dnf -y group install "Development Tools"
```

После этого успешно устанавливаю пакет DKMS.

```
Запуск скриптлета: kernel-modules-core-6.7.6-200.fc39.x86 64
                                                                            5/5
  Запуск скриптлета: kernel-core-6.7.6-200.fc39.x86_64
                                                                            5/5
dkms: running auto installation service for kernel 6.7.6-200.fc39.x86 64 Done.
dracut: Disabling early microcode, because kernel does not support it. CONFIG MI
CROCODE [AMD|INTEL]!=v
dkms: running auto installation service for kernel 6.7.6-200.fc39.x86 64 Done.
  Запуск скриптлета: dkms-3.0.12-1.fc39.noarch
 Проверка
                   : openssl-1:3.1.1-4.fc39.x86 64
                                                                            1/5
 Проверка
                 : dkms-3.0.12-1.fc39.noarch
                  : kernel-core-6.7.6-200.fc39.x86 64
 Проверка
                   : kernel-devel-matched-6.7.6-200.fc39.x86 64
 Проверка
                                                                            4/5
 Проверка
                   : kernel-modules-core-6.7.6-200.fc39.x86 64
                                                                            5/5
Установлен:
  dkms-3.0.12-1.fc39.noarch
  kernel-core-6.7.6-200.fc39.x86 64
  kernel-devel-matched-6.7.6-200.fc39.x86_64
  kernel-modules-core-6.7.6-200.fc39.x86_64
  openssl-1:3.1.1-4.fc39.x86 64
Выполнено!
[root@fedora ~]#
```

Монтирую образ диска дополнений гостевой ОС, а затем подмонтирую его.

```
root@fedora:~# mount /dev/sr0 /media
```

Рис. 28: Монтирую диск

Устанавливаю драйвера и перезагружаю виртульную машину.

```
root@fedora:~# /media/VBoxLinuxAdditions.run
Verifying archive integrity... 100% MD5 che
```

Рис. 29: Установка драйверов

Настройка раскладки клавиатуры

Открываю терминал, перехожу в роль супер-пользователя и редактирую файл /etc/X11/xorg.conf.d/00-keyboard.conf.

```
Written by systemd-localed(8), read by systemd-localed and Xorg. It's
 probably wise not to edit this file manually. Use localectl(1) to
 instruct systemd-localed to update it.
Section "InputClass"
       Identifier "system-keyboard"
       MatchIsKeyboard "on"
       Option "XkbLayout" "us,ru"
       Option "XkbVariant" ",winkeys"
       Option "XkbOptions" "grp:rctrl toggle.compose:ralt.terminate:ctr
EndSection
```

Настройка раскладки клавиатуры

Рис. 31: Отредактированный файл

Настройка раскладки клавиатуры

Перезагружаю виртульную машину.

```
root@fedora:/etc/X11/xorg.conf.d# reboot
```

Рис. 32: Перезагрузка

Внутри виртуальной машины добавляю своего пользователя в группу vboxsf.

```
dmchistov@fedora:~$ sudo gpasswd -a dmchistov vboxsf
[sudo] пароль для dmchistov:
Добавление пользователя dmchistov в группу vboxsf
```

Рис. 33: Пользователь в группе

Внутри своего компьюетра (OC Windows 11), создаю общую папку в удобном месте, открываю консоль выбираю диск, на котором лежит общая папка, вспоминаю путь до общей папки и её название, их вписываю в особую комманду в консоли Windows.

Y:\>vboxmanage sharedfolder add "dmchistov" --name=SharedFolder --hostpath=Y:\Programs\Oracle\VirtualBox\VMs\dmchistov -automount

Рис. 34: Конфигурация внутри основного компьютера

Общая папка успешно установлена. Видно, что файл лежит внутри папки в Windows и такой же файл лежит в папке внутри виртуальной машины.

4. Установка программного обеспечения

Устанавливаю pandoc.

```
root@fedora:~# dnf -y install pandoc
```

Рис. 37: Установка pandoc

4. Установка программного обеспечения

Устанавливаю дополнения для pandoc, a pandoc crossref, скачиваю с github, распаковываю и помещаю в папку usr/local/bin.

```
panduc-3.1.3-23.1639.880_04 panduc-commun-3.1.3-23.1639.10arch
root@fedora:-# pip install pandoc-fignos pandoc-eqnos pandoc-tablenos pandoc-secnos pandocfilters --user
```

Рис. 38: Установка расширений для pandoc

4. Установка программного обеспечения

Устанавливаю TexLive.

```
dmchistov@fedora:/$ sudo -i
[sudo] пароль для dmchistov:
root@fedora:~# dnf -y install texlive-scheme-full
```

Рис. 39: Установка TexLive

С помощью grep получаю информацию о версии ядра.

```
unchistory[edura: $ sudo dmosg | grep -1 "Linux Version"
[sudo] napon, pan dechistory
[ 8.0000000] Linux version 6.7.6-200.fc39.x86_64 (mockbuildglfbae28ea36d40908fb246e7adfe592f) (gcc (GCC) 13.2.1 20231205 (Red Hat 13.2.1-6), GNU ld version 2.40-14.fc39) #1 SMP PREEMPT_DYNAMIC Fri Feb
dmcHistory[edura: $
```

Рис. 40: Версия ядра - 6.7.6-200.fc/x86_64

Также получаю информацию о частоте процессора, его модели, об объёме доступной памяти, о типе обнаруженного гипервизора, типе файловой системы корневого раздела, о последовательности монтирования файловых систем.

```
[ 0.000000] Nom-Clock: Using mars sh5564001 and 45564000 [ 0.0000002] Nom-Clock: using sched offere of 430304000 cycles [ 0.000005] Nom-Clock: using sched offere of 430304000 cycles [ 0.000005] Clocksources Now-Clock: mask: 0xffffffffffffffff max_cycles: 0x1cd42e4dffb, max_idle_ns: 881590591483 ns [ 0.00000000] time to the control of the control of
```

Рис. 41: Частота процессора - 3600Мгц

```
dmchistov@fedora:~$ sudo dmesg | grep -i "CPU0"
[sudo] пароль для dmchistov:
[ 0.176630] smpboot: CPU0: Intel(R) Core(TM) i3-8100 CPU @ 3.60GHz (family: 0x6, model: 0x9e, stepping:
dmchistov@fedora:~$
```

Рис. 42: Модель процессора

```
| 0.009503] PM: Hibernation: Registered Hosave Memory: [mem 0x1110000-0x1111111]
| 0.034391] Memory: 3963432K/4193848K available (20480K kernel code, 3276K rwdata, 14748K rodata, 4588K init, 4892K bss, 230156K reserved, 0K | 0.073231] Freeing SMP alternatives memory: 48K
```

Рис. 43: Объём доступной памяти - 3963432К/4103848К

```
[ 0.000000] DMI: innotek GmbH VirtualBo
[ 0.000000] Hypervisor detected: KVM
[ 0.000000] kvm-clock: Using msrs 4b564
```

Рис. 44: Тип обнаруженного гипервизора

```
dmchistov@fedora:~$ sudo fdisk -l
Disk /dev/sda: 80 GiB, 85899345920 bytes, 167772160 sectors
Disk model: VBOX HARDDISK
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: 5A8A2287-6EFF-416C-B453-AA65C7AB5117
```

Device	Start	End	Sectors	Size	Туре	
/dev/sda1	2048	4095	2048	1M	BIOS	boot
/dev/sda2	4096	2101247	2097152	1G	Linux	filesystem
/dev/sda3	2101248	167770111	165668864	79G	Linux	filesystem

```
Disk /dev/zram0: 3,82 GiB, 4100980736 bytes, 1001216 sectors
Units: sectors of 1 * 4096 = 4096 bytes
Sector size (logical/physical): 4096 bytes / 4096 bytes
I/O size (minimum/optimal): 4096 bytes / 4096 bytes
dmchistov@fedora:~$
```

```
./O SIZE (MITHIMAM/OPERMAE). 4090 byces / 4090 byces
lmchistov@fedora:~$ sudo dmesg | grep -i "mount"
   0.073334] Mount-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
   0.073339] Mountpoint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
   3.017521 BTRFS: device label fedora devid 1 transid 194 /dev/sda3 scanned by mount (476)
   3.018401] BTRFS info (device sda3): first mount of filesystem 33aee867-e8ef-41c2-9a6a-394726ea9baa
   5.129543] systemd[1]: Set up automount proc-sys-fs-binfmt_misc.automount - Arbitrary Executable File Formats File System Automount
   5.146472] systemd[1]: Mounting dev-hugepages.mount - Huge Pages File System...
   5.148751] systemd[1]: Mounting dev-mqueue.mount - POSIX Message Queue File System...
   5.150653] systemd[1]: Mounting sys-kernel-debug.mount - Kernel Debug File System...
   5.154156] systemd[1]: Mounting sys-kernel-tracing.mount - Kernel Trace File System...
   5.196981] systemd[1]: Starting systemd-remount-fs.service - Remount Root and Kernel File Systems...
   5.207647] systemd[1]: Mounted dev-hugepages.mount - Huge Pages File System.
   5.213886] systemd[1]: Mounted dev-maueue.mount - POSIX Message Queue File System.
   5.215209] systemd[1]: Mounted sys-kernel-debug.mount - Kernel Debug File System.
   5.215464] systemd[1]: Mounted sys-kernel-tracing.mount - Kernel Trace File System.
   5.981744] EXT4-fs (sda2): mounted filesystem 86862b8b-87f6-4da5-82f8-bc3aa6a03e0f r/w with ordered data mode. Quota mode: no
   7.096377] 22:29:55.823411 automount vbsvcAutomounterMountIt: Successfully mounted 'SharedFolder' on '/media/sf_SharedFolder'
```

Рис. 46: Последовательность монтирования файловых систем

Выводы

Выводы

Выполняя данную лабораторную работы я приобрёл навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Список литературы

Список литературы