SC201 Lecture 8

ee
•

How	to	choose	split?
11011	w	CHOUSE	spiit.

	True	False	False	True
1	Positive	Positive	Negative	Negative

4.	愈	的 Impurity	,	愈	的	split
----	---	------------	---	---	---	-------

Random Forest	Covert for	habit of	to their Dtrain

```
from sklearn import ensemble

forest.fit(x_train, y)

print('Acc:', forset_score(x_train, y))
```

Bootstrapping

=	

- Get a sense of ______ if we redid the experiments

Bagging

+

Bagging Classifier

Fit classifiers each on random subsets of the original dataset and them aggregate their individual predictions.

from sklearn import ensemble	

Ensemble Learning

Use to obtain better prediction.

Super VectorMachines

How to choose the threshold splitting up x and o?

When data is 1D \rightarrow SVC is a _______ 2D \rightarrow SVC is a _______

 $3D \rightarrow SVC \text{ is a } \underline{\hspace{1cm}}$

4D → SVC is a _____

____(SVM)

Start with data in _______

Move data into a _______

• Find a _____ to ____

print('Acc:', svc.score(x_train, y))

How to transform data?

k-means Clusteing

• Cluster data into k groups

• _____(_____)

- Used in _____
- _____, x is data

Cost Function:

例1

0 2 10 12

- ① 2-means
- ② $\mu_0 = 2$, $\mu_1 = 12$

< algorithm >

- ① choose k (number of groups)
- ② randomly pick k centroids
- ③ _____= [-1]*len(data) 每筆資料給哪一個centroic

for i in range(len(data)):
 assignments[i] = argmin(|data[i] - centroid[k]|)

6 iteration

5 re-assign centroids to the ______

⑤ re-assign centroids to the _____ of its group

例2

- ① 2-means
- ② $\mu_0 = 0$, $\mu_1 = 2$