

Intro to Time Series Regression

William Chiu

About Me

- MSIA Class of 2013
- Works for a bank
- Team develops models to explain and forecast:
 - Credit Losses
 - Loan Prepayments
 - Mortgage Rates
 - Deposit Attrition
- Primarily uses SQL and R

Time Series Regression

- Time series is data collected in equally-spaced time intervals.
- O Linear regression estimates the linear relationship between a continuous response (y) and one or more predictors (x).
- Ordinary least squares (OLS) is the most common implementation of linear regression, and estimates the coefficients that minimize the error sum of squares:

$$ESS = \sum_{i=1}^{n} \left(y_i - \left(\widehat{\beta_0} + \widehat{\beta_1} X_{1,i} + \dots + \widehat{\beta_p} X_{p,i} \right) \right)^2$$

Using linear regression on time series is called time series regression.

OLS Assumptions for Time Series

Population data generating process (dgp) most suitable for OLS:

$$y_t = \beta_0 + \beta_1 X_{1,t} + \dots + \beta_p X_{p,t} + \varepsilon_t$$
$$\varepsilon_t \sim \mathcal{N}(0, \sigma^2)$$

- Linear parameters
- Independent errors (no serial correlation)
- Normally distributed errors
- Equal variance errors (homoscedasticity)
- Stationary response and predictors (unless there is co-integration)

Violation: Serial Correlation

 Unfortunately, the data generating process (dgp) for time series often violates the independent errors assumption. For example:

$$y_t = \beta_0 + \beta_1 X_{1,t} + \dots + \beta_p X_{p,t} + \varepsilon_t$$
$$\varepsilon_t = \rho \varepsilon_{t-1} + v_t$$
$$v_t \sim \mathcal{N}(0, \sigma^2)$$

- \circ If $\rho = 0$, then there is no serial correlation.
- If $-1 < \rho < 1$, then there is serial correlation.

Simulate predictors with serial correlation

```
set.seed(2013)

x1 <- arima.sim(list(order = c(1,0,0), ar = 0.6), n =
200, sd=2, mean=2)

x2 <- arima.sim(list(order = c(1,0,0), ar = -0.6), n =
200, sd=3, mean=2)

x3 <- arima.sim(list(order = c(1,0,0), ar = 0.6), n =
200, sd=4, mean=2)</pre>
```

Simulate response with serial correlation

```
epsilon <- arima.sim(list(order = c(1,0,0), ar = 0.6), n
= 200, sd=5, mean=0)

y <- 10 + 3.5*x1 - 1.5*x2 + epsilon
## x3 is not part of the dgp

df <- data.frame(y=y, x1=x1, x2=x2, x3=x3, t=1:length(y))</pre>
```

Plot simulated data (Train)

Split between train and test

```
train <- head(df, 150)
test <- tail(df, 50)</pre>
```

OLS ignores serial correlation

- Under serial correlation, OLS parameter estimates are unbiased and consistent
- However, standard errors are incorrect
- And p-values are incorrect
- \circ x3 should *not* be statistically significant

term	estimate	std.error	statistic	p.value
(Intercept)	8.98	1.147	7.84	0.000
x 1	3.61	0.204	17.74	0.000
x2	-1.50	0.121	-12.40	0.000
x3	0.17	0.101	1.68	0.094

Detecting serial correlation

- Durbin-Watson test is a popular test for serial correlation, but suffers from some major drawbacks.
- Breusch-Godfrey Test is a better test.

statistic	p.value	parameter	method
37.4	0.00000000984	1	Breusch-Godfrey test for serial correlation of order up to 1

Null Hypothesis: No serial correlation

Remediating serial correlation

- Replace OLS with GLS
- Keep OLS but estimate robust (HAC) standard errors
- Keep OLS but bootstrap the standard errors

Generalized Least Squares (Cochrane-Orcutt)

- 1. Estimate ρ
- 2. Transform each response and predictor into "partial differences" (e.g., $y_t \hat{\rho}y_{t-1}$)
- 3. Estimate the transformed model using OLS
- 4. Re-calculate the coefficient estimates in terms of the original training data

term	estimate	std.error	statistic	p.value
(Intercept)	9.40	1.431	6.566	0.000
x1	3.60	0.224	16.064	0.000
x2	-1.47	0.078	-18.933	0.000
x 3	0.10	0.116	0.863	0.389

Newey-West HAC Correction

Keep OLS but estimate robust (HAC) standard errors

term	estimate	std.error	statistic	p.value
(Intercept)	8.98	1.067	8.42	0.000
x1	3.61	0.237	15.26	0.000
x2	-1.50	0.087	-17.33	0.000
x 3	0.17	0.123	1.38	0.169

Andrews HAC Correction

Keep OLS but estimate robust (HAC) standard errors

term	estimate	std.error	statistic	p.value
(Intercept)	8.98	1.119	8.03	0.000
x1	3.61	0.247	14.62	0.000
x2	-1.50	0.086	-17.58	0.000
x 3	0.17	0.114	1.49	0.139

Block Bootstrap

- Keep the OLS coefficient estimates but bootstrap the standard errors
- Break the time series into sequential blocks (non-random)
- Randomly sample blocks with replacement
- Unfortunately, results are sensitive to block size

term	estimate	std.error	statistic	p.value
(Intercept)	8.98	1.076	8.35	0.000
x1	3.61	0.221	16.35	0.000
x2	-1.50	0.088	-17.11	0.000
x 3	0.17	0.126	1.36	0.177

Test Set Performance (Ex-post, OLS vs. GLS)

Inference is harder than prediction

- Test set performance appears similar between OLS and GLS
- o However, the p-values for x3 differ substantially by method: lm, gls, newey-west, andrews, bootstrap.
- The p-values from simulated data are sensitive to the random seeds
- In order to measure the quality of the methods:
 - 1. Re-simulate the training data (K=25000) with varying seeds and ρ
 - 2. Measure how often Type 1 errors occur ($\alpha = 0.10$)
 - 3. Measure test set error (i.e., average MSE over K simulations, then take the square root)
- \circ Since $\beta_3 = 0$ in the simulation, any p-values <= α is a Type 1 Error

Type 1 Error Frequency

rho	method	Prob_Type_1_Error	Avg_Train_RMSE	Avg_Test_RMSE
1-Low (0.1)	gls	0.106	4.95	5.1
1-Low (0.1)	lm	0.106	4.95	5.1
1-Low (0.1)	bootstrap	0.111	NA	NA
1-Low (0.1)	andrews	0.116	NA	NA
1-Low (0.1)	nw	0.126	NA	NA

rho	method	Prob_Type_1_Error	Avg_Train_RMSE	Avg_Test_RMSE
2-Moderate (0.7)	gls	0.104	6.81	7.17
2-Moderate (0.7)	andrews	0.134	NA	NA
2-Moderate (0.7)	nw	0.144	NA	NA
2-Moderate (0.7)	bootstrap	0.177	NA	NA
2-Moderate (0.7)	Im	0.326	6.72	7.26

Very High Serial Correlation

- Under very high serial correlation, most of the previous methods struggle to return the correct p-values.
- o If $\hat{\rho}$ is close to -1 or 1, then check for non-stationary residuals (e.g., Phillips-Ouliaris Cointegration Test; Pesaran-Shin-Smith Cointegration Test).
- Non-stationary residuals could be a strong sign of spurious regression

rho	method	Prob_Type_1_Error	Avg_Train_RMSE	Avg_Test_RMSE
3-Very High (0.9)	gls	0.107	10.7	12.0
3-Very High (0.9)	andrews	0.199	NA	NA
3-Very High (0.9)	nw	0.205	NA	NA
3-Very High (0.9)	bootstrap	0.246	NA	NA
3-Very High (0.9)	lm	0.572	10.2	12.6

Serial Correlation and Test Set RMSE

$$RMSE_{test} = \sqrt{\sigma_{\varepsilon}^2} = \sqrt{\frac{\sigma_{v}^2}{1 - \rho^2}}$$

The Pennsylvania State University. (2018). 10.3 - Regression with Autoregressive Errors. Applied Regression Analysis. Retrieved February 27, 2022, from

https://online.stat.psu.edu/stat462/node/189/

Violation: Non-stationary response and predictors

 The data generating process (dgp) for time series is often non-stationary. For example, z_t and w_t are independent random walks:

$$z_t = z_{t-1} + v_t$$

$$v_t \sim \mathcal{N}(0, \sigma_v^2)$$

$$w_t = w_{t-1} + e_t$$

$$e_t \sim \mathcal{N}(c, \sigma_e^2)$$

- When the response and predictors are non-stationary, OLS and GLS could be biased and inconsistent (i.e., spurious) – except in the case of cointegration
- Non-stationary errors adversely affect both prediction and inference (while serially correlated errors affect only inference)

Simulate non-stationary predictors

```
set.seed(2013)
w1 <- arima.sim(list(order = c(0,1,0)), n = 200, sd=2,
mean=2)
w2 <- arima.sim(list(order = c(0,1,0)), n = 200, sd=3,
mean=2)
w3 <- arima.sim(list(order = c(0,1,0)), n = 200, sd=4,
mean=2)</pre>
```

Simulate non-stationary response

 \circ Suppose z_t is a random walk and does **not** depend on any predictors

$$z_t = z_{t-1} + v_t$$
$$v_t \sim \mathcal{N}(0, \sigma^2)$$

 \circ The predictors w_1 , w_2 , w_3 should not affect z_t

```
z \leftarrow arima.sim(list(order = c(0,1,0)), n = 200, sd=5, mean=0)

## w1, w2, w3 are not part of the dgp (and z is a random walk)

df_nonstationary <- data.frame(z=z, w1=w1, w2=w2, w3=w3, t=1:length(z))
```

Plot simulated data (Train)

Split between train and test

```
train_ns <- head(df_nonstationary, 150)
test_ns <- tail(df_nonstationary, 52) # helps with
plotting</pre>
```

OLS ignores non-stationarity

term	estimate	std.error	statistic	p.value
(Intercept)	-0.291	1.338	-0.217	0.828
w1	0.234	0.086	2.718	0.007
w2	0.173	0.065	2.675	0.008
w3	-0.441	0.042	-10.598	0.000

adj.r.squared	r.squared
0.731	0.736

Test Set Error Explodes

Non-stationarity is a very big problem

- \circ Simulate K=25000 data sets where the response and predictors are independent random walks (non-stationary)
- OLS inferences are highly unreliable
- OLS and GLS both perform worse than a naive model (i.e., take the last response from the training set and assume the response never changes in the test set)

method	Prob_Type_1_Error	Avg_Train_RMSE	Avg_Test_RMSE
rw	0.000	NA	25.7
gls	0.131	17.5	31.7
andrews	0.305	NA	NA
nw	0.307	NA	NA
bootstrap	0.350	NA	NA
lm	0.740	13.3	39.5 March 13, 2022

Remediating non-stationarity

- 1. Transform each response and/or predictor into "first differences" (e.g., $y_t y_{t-1}$)
- 2. Estimate the transformed model using OLS or GLS
- 3. Forecast with the last historical value and the cumulative sum of the predicted first differences:

$$\widehat{y_{t+h}} = y_t + \sum_{i=t+1}^{t+h} \widehat{\Delta y_i}$$

Conclusions

- OLS is most suitable for independent errors
- The independent error assumption is often violated with time series regression
- Under serial correlation, standard errors and p-values from OLS are unreliable
- Fortunately, OLS coefficient estimates remain unbiased and consistent
- Remediating serial correlation:
 - o GLS
 - OLS with HAC standard errors
 - OLS with block bootstrapped standard errors
- Under non-stationary errors, beware of spurious regressions