Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

Отчет по лабораторной работе №2

по дисциплине

Логические основы интеллектуальных систем

И.В. Якимович

Студенты группы	
121703	
Проверил:	В. П. Ивашенко

Выполнили:

Тема: Логическое программирование поиска решения задачи.

Цель: Приобрести навыки логического программирования поиска решения задачи.

Задача: Требуется расставить на шахматнои доске восемь ферзеи так, чтобы ни один ферзь не находился под боем другого ферзя.

Дополнительные теоретические сведения:

Грамматика языка PROLOG.

Описание лабораторной работы:

В рамках лабораторнои работы стандартными средствами языка PROLOG был реализован алгоритм, позволяющии наити расстановки на шахматнои доске восьми ферзеи так, чтобы ни один ферзь не находился под боем другого ферзя. Суть алгоритма заключается в сведении логическои задачи к обходу дерева решении даннои задачи.

Для решения даннои задачи был использован ряд встроенных правил:

- \bullet write(X) предикат, которыи выводит значение терма X на экран.
- ullet select(X, L, M) является истинным, если список M получается в результате удаления первого вхождения терма X из списка L.

Логические связки:

- ; или
- ,-и

Схемы использованных алгоритмов:

Рис.1 - Связанныи фрагмент дерева реализованного алгоритма поиска

Рис.2 - Связанныи фрагмент дерева реализованного алгоритма вывода

Рис.3 - Связанныи фрагмент дерева реализованного алгоритма подсчета количество решении

Листинг программы:

```
%Лабараторная работа №3 по дисциплине ЛОИС
%Выполнена студентом группы 121703 БГУИР Якимович Илья Викторович
%Программа содержит описание предикатов, позволяющих расставить на шахматной доске 8 ферзей
%так, чтобы ни один ферзь не находился под боем другого ферзя
%29.05.2023
getSolution(S) :-
    findall(S, solve(S), Solutions),
   writeSolutions(Solutions),
    countSolutions(Solutions, Count),
   write('Number of solutions: '), write(Count), nl.
writeSolutions([]).
writeSolutions([Solution | Rest]) :-
   write(Solution), nl,
   writeSolutions(Rest).
solve([]).
solve([X/Y | 0th]) :-
    solve(Oth),
    select(Y, [1, 2, 3, 4, 5, 6, 7, 8], _),
    noAttack(X/Y, Oth).
noAttack(_, []).
noAttack(X/Y, [X1/Y1 | Oth]) :-
   Y = \Y1,
   Y1 - Y = X1 - X
   Y1 - Y = X - X1,
    noAttack(X/Y, Oth).
countSolutions([], 0).
countSolutions([_ | Rest], Count) :-
    countSolutions(Rest, RestCount),
    Count is RestCount + 1.
```

Рис.4 - Листинг программы

Примеры выполнения

```
[1/5,2/1,3/8,4/4,5/2,6/7,7/3,8/6]
[1/4,2/1,3/5,4/8,5/2,6/7,7/3,8/6]
[1/5,2/2,3/8,4/1,5/4,6/7,7/3,8/6]
[1/3,2/7,3/2,4/8,5/5,6/1,7/4,8/6]
[1/3,2/1,3/7,4/5,5/8,6/2,7/4,8/6]
[1/8,2/2,3/5,4/3,5/1,6/7,7/4,8/6]
[1/3,2/5,3/2,4/8,5/1,6/7,7/4,8/6]
[1/3,2/5,3/7,4/1,5/4,6/2,7/8,8/6]
[1/5,2/2,3/4,4/6,5/8,6/3,7/1,8/7]
[1/6,2/3,3/5,4/8,5/1,6/4,7/2,8/7]
[1/5,2/8,3/4,4/1,5/3,6/6,7/2,8/7]
[1/4,2/2,3/5,4/8,5/6,6/1,7/3,8/7]
[1/4,2/6,3/1,4/5,5/2,6/8,7/3,8/7]
[1/6,2/3,3/1,4/8,5/5,6/2,7/4,8/7]
[1/5,2/3,3/1,4/6,5/8,6/2,7/4,8/7]
[1/4.2/2.3/8.4/6.5/1.6/3.7/5.8/7]
[1/6,2/3,3/5,4/7,5/1,6/4,7/2,8/8]
[1/6,2/4,3/7,4/1,5/3,6/5,7/2,8/8]
[1/4,2/7,3/5,4/2,5/6,6/1,7/3,8/8]
[1/5,2/7,3/2,4/6,5/3,6/1,7/4,8/8]
Number of solutions: 92
```

Рис.5 - Пример выполнения алгоритма с верным запросом без начального состояния для 8 ферзеи

```
?- getSolution([1/1,2/_,3/_,4/_,5/_,6/_,7/_,8/_]).
[1/1,2/7,3/4,4/6,5/8,6/2,7/5,8/3]
[1/1,2/7,3/5,4/8,5/2,6/4,7/6,8/3]
[1/1,2/5,3/8,4/6,5/3,6/7,7/2,8/4]
[1/1,2/6,3/8,4/3,5/7,6/4,7/2,8/5]
Number of solutions: 4
```

Рис.6 - Пример выполнения алгоритма с верным запросом с начальным состоянием для 1 ферзя

```
?- getSolution([1/1,2/7,3/_,4/_,5/_,6/_,7/_,8/_]).
[1/1,2/7,3/4,4/6,5/8,6/2,7/5,8/3]
[1/1,2/7,3/5,4/8,5/2,6/4,7/6,8/3]
Number of solutions: 2
```

Рис.7 - Пример выполнения алгоритма с верным запросом с начальным состоянием для 2 ферзеи

Вывод: В ходе выполнения лабораторнои работы были приобретены навыки логического программирования поиска решения задачи; была разработана программа, позволяющая наити расстановки на шахматнои доске восьми ферзеи так, чтобы ни один ферзь не находился под боем другого ферзя.

Список используемых источников

- 1. Логические основы интеллектуальных систем. Практикум : учеб.- метод. пособие / В. В. Голенков [и др.]. Минск : БГУИР, 2011. 70 с. : ил. ISBN 978-985-488-487-5.
- 2. SWI Prolog [Электронный ресурс]. Режим доступа: https://www.swi-prolog.org/.