# Predicting Flight Delays for Traffic Management & Customer Sentiment Optimization

<u>Team\_1-1</u>: Henry Dinh; Daniel Rhinehart; Yong Lim; Deva Empranthiri; Varun Val

DATA261 - Final Project (Phase2)

Date: Nov 18th, 2024



# Agenda

#### Overview

- Approach
- Team Members
- Phase Leads & Work Breakdown

#### Exploratory Data Analysis

- Data Sets Utilized
- EDA Key Takeaways
- Issues Identified

#### • Feature Engineering

- Custom Data Join
- Feature Engineering
- o Features Selected for Use
- Feature Transformations

#### Modeling

- o ML Approach
  - ML Pipeline
- o Metrics Utilized
- Hyper-Tuning Param Results
- Cross-Validation Training

#### Results and Recommendations

- Results
- Next Steps future models
- Conclusion



# **Overview**

**Daniel Rhinehart** 

# **Approach**

# We are a startup commissioned by the FAA to develop and implement a machine learning solution which predicts the following:

- When a flight's departure time will be delayed (relative to its planned departure time)
- When this delay will be greater than or equal to 10 minutes

## The FAA intends to use these predictions to:

- Adjust their inbound/outbound airport traffic loads accordingly
- Inform airlines so they can better enact mitigation measures to maintain positive customer sentiment (e.g. alternate plane use, pre-emptive adjustment of connecting flights)

We will use logistic regression on various datasets for this Phase of the project



# Team







Dan Rhinehart



Yong Lim



Deva Empranthiri



Varun Val



## Phase Leads and Work Breakdown

### **Phase Leadership**

| Phase   | Description                                                                                          | Leader        |
|---------|------------------------------------------------------------------------------------------------------|---------------|
| Phase 1 | Project Plan, describe datasets, joins, tasks, and metrics                                           | Daniel, Henry |
| Phase 2 | EDA, baseline pipeline, Scalability, Efficiency, Distributed/parallel Training, and Scoring Pipeline | Yong          |
| Phase 3 | Select the optimal algorithm, fine-tune and submit a final report                                    | Varun, Deva   |

#### **Work Breakdown**

| Phase   | Task                                                                                        | LOE | Team Member                |
|---------|---------------------------------------------------------------------------------------------|-----|----------------------------|
| Phase 1 | Set up Blob Storage for Team                                                                | М   | dan                        |
| Phase 1 | Define Project Approach, Timeline and L dan, henry, ye Report                               |     | dan, henry, yong,<br>varun |
| Phase 1 | Initial EDA                                                                                 | L   | henry, dan                 |
| Phase 1 | Author Final Report (in Notebook)                                                           | М   | dan                        |
| Phase 2 | Data Pipeline: Ingestion, Feature<br>Engineering, Feature Selection and<br>Train/Test Split | L   | yong                       |
| Phase 2 | Baseline Model Implementation: Scalability,<br>Efficiency, Distributed Training             | М   | yong                       |
| Phase 2 | Scoring Pipeline Implementation: Metric<br>Assessment, Performance Visuals                  | М   | yong                       |
| Phase 2 | Final DB Notebook (code)                                                                    | М   | yong                       |
| Phase 2 | Mid-Point Presentation Creation                                                             | s   | dan                        |

| Phase   | Task                                                                                  | LOE | Team Member |
|---------|---------------------------------------------------------------------------------------|-----|-------------|
| Phase 3 | Creation and EDA of a good graph based feature (eg: topic based page-rank by airline) | М   | deva        |
| Phase 3 | Review and Selection of Flnal Algorithm                                               | s   | varun       |
| Phase 3 | Refinement and Fine-Tuning of Neural<br>Network experiments                           | М   | varun       |
| Phase 3 | Refinement and Fine-Tuning of Decision<br>Tree experiments                            | М   | deva        |
| Phase 3 | Final DB Notebook Report Write-Up                                                     | М   | varun, deva |
| Phase 3 | Final Presentation Creation                                                           | М   | varun       |



# **EDA**

Henry Dinh

## **Data Sets Utilized**

- US DOT Flights Data
  - Description: Passenger flights on-time performance data taken from the TranStats data collection available from the U.S. Department of Transportation
- NOA Weather Data
  - Description: Weather data corresponding to the origin and destination airports at the time of departure and arrival from the National Oceanic and Atmospheric Administration
- US DOT Airport Data
  - **Description**: Airport metadata from the US Department of Transportation.
- Airport Codes Data
  - Description: Airport codes consisting of either IATA three-letter codes (passenger reservation, ticketing, baggage-handling systems) or ICAO four-letter codes used by ATC systems and airports which do not have an IATA code



# Average Flight Delays by Airline





# EDA - Average Departure Delays by Time of Day





# EDA - Impact of Weather Conditions on Flight Delays





## **EDA** - Issues Identified

## **Data Quality**

- Missing Values
  - The datasets exhibited a significant proportion of missing values in weather-related features and some delay categories.
  - Weather data:
    - There are 124 columns in total but only the following columns have less than 20% missing values
    - [YEAR, REPORT\_TYPE, SOURCE, DATE, STATION, NAME, ELEVATION, LONGITUDE, LATITUDE, HourlyDryBulbTemperature, REM, HourlyWindSpeed, HourlyWindDirection, HourlyDewPointTemperature, HourlyRelativeHumidity]
  - Airlines data:
    - There are 102 columns in total but we decide to choose the following columns
    - ['CARRIER\_DELAY', 'WEATHER\_DELAY', 'NAS\_DELAY', 'SECURITY\_DELAY', 'LATE\_AIRCRAFT\_DELAY', 'ARR\_DELAY', 'ARR\_DEL15', 'ARR\_DELAY\_NEW', 'DEP\_DELAY', 'DEP\_DEL15', 'DEP\_DELAY\_NEW', 'DISTANCE', 'TAXI\_OUT', 'TAXI\_IN', 'AIR\_TIME', 'CRS\_ELAPSED\_TIME', 'ACTUAL\_ELAPSED\_TIME']



# **Feature Engineering**

Yong Lim

## **Custom Data Join**

### We opted to do a custom data join as follows:

- Data Sets Joined: Airline (time series), Airport, weather station, and weather (time series)
- Joining Logic
  - Join Airline Data and Airport Data (Origin airport & Prior airport)
  - Join Airline-Airport Data with Station Data (Origin airport & Prior airport)
  - Join Joint Data with Weather Data (Origin airport & Prior airport)

| Dataset              | 3 month   |                      | 1 Year    |                      |
|----------------------|-----------|----------------------|-----------|----------------------|
| Dataset              | data size | load/join time (sec) | data size | load/join time (sec) |
| Original airline dat | 2806942   | 12                   | 14844074  | 23                   |
| Cleaned airline dat  | 1356814   | 1                    | 7268232   | 1                    |
| Join airport data    | 1356814   | 0.23                 | 7268232   | 0.26                 |
| Join station data    | 1350012   | 0.19                 | 7238779   | 0,24                 |
| Join weather data    | 1349914   | 2.48                 | 7238107   | 2.23                 |

## Doing this custom join yielding the following benefits:

- Combining dataset provides a more comprehensive view, which enriches the analysis and insights derived from the dataset.
- Custom join can highlight discrepancies and errors, improving overall data quality and reliability



# **Feature Engineering**

#### **Feature Creations**

- DEP\_DEL10: 10 minutes departure delay for our target value
- PREV\_ORIGIN: Flight prior airport code
- PREV\_\*\*: Flight's prior airport weather conditions
- DEP\_\*\*: Flight's origin airport weather conditions

| DEP_DELAY  |  |
|------------|--|
| 2722232.00 |  |
| 10.36      |  |
| 37.86      |  |
| -61.00     |  |
| -5.00      |  |
| -1.00      |  |
| 9.00       |  |
| 1988.00    |  |
|            |  |





## Features Selected for Use

#### Numeric Features

- PREV\_ARR\_DELAY: Flight's arrival delay in origin airport in minutes.
- CARRIER\_DELAY: Delay caused by the carrier.
- WEATHER\_DELAY: Delay caused by weather conditions.
- o SECURITY\_DELAY: Delay due to security reasons.
- o NAS\_DELAY: Delay due to National Airspace System issues.
- DEP\_W\_HourlyWindSpeed: Departure airport hourly wind speed.
- o DEP\_W\_HourlyDewPointTemperature: Departure airport hourly dew point temperature.
- DEP\_W\_HourlyRelativeHumidity: Departure airport hourly relative humidity.
- PREV\_W\_HourlyWindSpeed: Flight's prior airport hourly wind speed.
- PREV\_W\_HourlyDewPointTemperature: Flight's prior airport hourly dew point temperature.
- PREV\_W\_HourlyRelativeHumidity: Flight's prior airport hourly relative humidity.

#### Categorical Features

- QUARTER, MONTH, DAY\_OF\_MONTH, DAY\_OF\_WEEK: Time related features
- o OP\_CARRIER: The operating carrier.
- o ORIGIN: The origin airport.
- PREV\_ORIGIN: The flight's prior airport.



## **Feature Transformations**

## Missing Values:

Fill null values in median values since the distribution was right skewed.

### Encoding Categorical Variables:

 Utilize StringIndexer to assign indices to the categorical values and transform these values into binary vectors using OneHotEncoder

## Scaling and Normalization:

 Standardize features to have a mean of 0 and a standard deviation of 1 using StandardScaler.



# Modeling

Varun Val

# ML Approach

- For this phase we worked on constructing our baseline model which is a simple Logistic Regression Model
  - Since a logistic regression model cannot handle missing or categorical values:
    - Numerical features: Imputed as previously mentioned
    - Categorical features: One-hot encoded as part of ML pipeline
- Downsampling was conducted on the training dataset to help deal with the class imbalance:
  - Before downsampling: 5400497 rows
  - After downsampling: 1382784 rows
- Cross-validation was carried out using block cross-validation to prevent leakage



# ML Pipeline

• Our Machine Learning Pipeline is noted below:





## **Metrics Utilized**

- We used the following metrics to measure success:
  - Accuracy: Helps in understanding the overall effectiveness of the model.
    - Accuracy = (TP + TN) / (TP + TN + FP + FN)
  - Precision: Useful for understanding the accuracy of the delay predictions.
    - Precision = TP / (TP + FP)
  - Recall (Sensitivity): Important for capturing the actual delays correctly. High recall means fewer missed delays.
    - Recall = TP / (TP + FN)
  - **F1 Score:** Provides a balance between precision and recall, especially valuable when you need a single metric to gauge model's performance.
    - F1 Score = 2 \* (Precision \* Recall) / (Precision + Recall)



# Hyperparameter Tuning

- Hyperparameter tuning was carried out using Hyperopt:
  - elasticNetParam: uniform distribution 0.0 to 1.0
  - regParam: uniform distribution 0.0 to 1.0
  - maxIter: uniform integer distribution from 10 to 20
- To increase performance, cross-validation was not conducted within hyperopt
  - Existing training data was 80/20 split for a separate training/validation set
- F1 score was being maximized during the tuning
- Results after 30 trials:

| elasticNetParam | 0.3866   |
|-----------------|----------|
| regParam        | 0.0184   |
| maxiter         | 13       |
| Avg time/trial  | 274.85 s |



# **Cross-Validation Training**

- 5 fold cross-validation was carried out on the dataset with the following results for each fold:
  - Note: The below metrics are the weighted versions

|         | F1 score | Accuracy | Precision | Recall   |
|---------|----------|----------|-----------|----------|
| Block 1 | 0.710698 | 0.704104 | 0.729506  | 0.704104 |
| Block 2 | 0.716105 | 0.731306 | 0.743264  | 0.717575 |
| Block 3 | 0.727474 | 0.727295 | 0.734748  | 0.725914 |
| Block 4 | 0.718161 | 0.715858 | 0.718084  | 0.716884 |
| Block 5 | 0.720371 | 0.730429 | 0.729057  | 0.740336 |

Training time over 2 worker nodes: 10.92 min



# **Results and Recommendations**

Deva Empranthiri

## Results

Our best model achieved **73.2% accuracy** on our test dataset using the logistic regression algorithm. This means that of the 1,837,610 test examples, it correctly predicted a late flight 132,494 out of 196,172 times.

## Test set metrics:

|           | Value | Percentage |
|-----------|-------|------------|
| Accuracy  | 0.732 | 73.25%     |
| Precision | 0.236 | 23.64%     |
| Recall    | 0.675 | 67.54%     |
| F1 Score  | 0.350 | 35.02%     |



# Results

Confusion matrix for test set





## **Next Steps**

- Run alternate Model Variants:
  - Fully Connected Neural Network
    - Can learn more complicated patterns
    - Can be used to find non-linear relationships between weather data and delays.
  - Random Forest
    - Useful to find general patterns for airline delays
    - Minimizes overfitting by averaging predictions across trees
  - XGBoost Decision Trees
    - Able to deliver accurate predictions while using regularization to prevent overfitting
    - Can handle imbalanced datasets well

 Run the best-performing model on the 5-year dataset to generate the final model.



## Conclusion

Our current model based on logistic regression is performing as follows:

Accuracy: 0.732 (73.25%)
Precision: 0.236 (23.64%)
Recall: 0.675 (67.54%)
F1 Score: 0.350 (35.02%)

This translates into predicting 67.5 out of 100 late flights correctly...

- Though our current model is effective in predicting most late flights, we will spend the next few weeks:
  - Training Different Models: We will try different model architectures
  - **Hyperparameter Tuning:** We will tune hyperparameters to get the best accuracy on our dataset
  - Identify our best model: Create a final model with our best hyperparameters, and train it on our dataset.



# Appendix

# Appendix

Colab Link of Analysis

