

bonds formed

✓ AP CHEMISTRY CRAM CHART 2021 // <u>@thinkfiveable</u> // <u>http://fiveable.me</u>

Atomic Structure and Properties Unit 1 ↓	Molecular & Ionic Compound Structure and Properties Unit 2 ψ	Intermolecular Forces & Properties Unit 3 ↓	Chemical Reactions Unit 4 ↓	Kinetics Unit 5 ↓
Conversions - Avogrado's number, molar mass, and mole ratios Empirical+Molecular Formula - These are the simplest whole # ratio of atoms for a compound and the chemical formula for a compound, respectively. Mass Spectroscopy - Mass to charge ratio of compounds. Electron Configurations - Electrons fill the lowest energy level orbital first, no two e- can have the same spin, and e-occupy separate subshells before sharing one. Photoelectron Spectroscopy - Measures the amount of energy electrons release. Periodic trends - recognizing them and explaining them Mixtures - Homogeneous (pure) and heterogeneous	 lonic Bonds - between metal and nonmetals, e- are transferred. Covalent Bonds - between nonmetals, e- are shared. Lattice Energy - energy of ionic bonds. Metallic Bonds - The sharing of free e- between metal atoms. Alloys - Compounds of different metals Lewis Structures and VSEPR - Bonding diagrams and geometric, 3-D shapes of compounds. Hybridization - atomic orbitals fuse to form new orbitals Formal Charge - Charge of an element in a molecule. Resonance - Molecules bonding structure is a combination of other possible structures. Coulomb's Law - shorter distances + higher charges = strongest attractions 	Strongest to Weakest IMFs: Ion-Dipole - ionic compounds + liquid H-Bonds - fluorine, oxygen, nitrogen Dipole-Dipole - between two polar molecules (polar=asymmetrical) LDFs - exist in every sample. Bulk Scale Properties - Melting Point, Boiling Point, Viscosity, etc. Types of Solids Kinetic Molecular Theory - gas particles: (1) are far apart (2) are in constant motion (3) collide elastically (4) do not attract or repel each other (5) average k.e. = temperature Ideal Gas Law - PV = nRT Solutions - "like dissolves like" Beer's Law - A = abc represents the change in light's energy as it passes through a material. Photons, wavelength, frequency, and energy - Photons carry energy in waves; E = hv and c = λv.	 Limiting Reactant - compound that runs out during the reaction, stopping it. Writing Net Ionic Equations - Net ionic equations remove spectator ions to show the species that actually interact in a reaction. Combustion Reactions - Hydrocarbon + O₂ → H₂O + CO₂ Redox Reactions - Transfer of electrons. Acid-Base Reactions - Transfer of protons. Precipitation Reactions - Formation of insoluble solids. Stoichiometry - Mole conversions to predict amounts of products or reactants. Titrations - Finding an equivalence point for acid-base reactions. 	Rates of Reaction - The rate at which reactants turn into products. Rate Laws - Relates to the concentration of reactants and the reaction order. Integrated Rate Laws - Time affects concentration of a reactant. Collision Theory - Particles must collide in the right orientation with enough energy to carry out a reaction. The faster this happens, the faster the reaction rate is. Reaction Mechanisms - Elementary reactions that describe steps in a reaction. Rate Determining Step - The slowest step of the reaction. Limits reaction.
Thermodynamics Unit 6 ↓	Equilibrium Unit 7 ↓	Acids and Bases Unit 8 ψ	Applications of Thermodynamics Unit 9 ψ	Additional Information
 Specific Heat - energy required to raise the temperature of 1g of a substance by 1°C. Enthalpy of Reaction - ΔH, the amount of heat absorbed or released by a reaction. Calorimetry - Experimental way to measure the enthalpy of reaction (q=mCΔT) Hess's Law - The total enthalpy of reaction is a sum of the enthalpies for each step. Enthalpy of Formation - The change in enthalpy of forming 1 mole of a compound. Bond Enthalpy = Σ energy of bonds broken - Σ energy of 	Equilibrium Condition - Forward rate = reverse rate and concentrations are constant. Equilibrium Expression and Constant - Ratio of products to reactants at equilibrium. ICE Tables - Calculate equilibrium concentrations or pressures. Reaction Quotient - Ratio of products to reactants at any point in the reaction. Solubility Product - Ratios/products of soluble compounds. Na, K, NH4+, and nitrate salts are soluble in water. Le Chatelier's Principle - Reactions counteract changes	 Acids - produce H+; H+ donors Bases - produce OH-; H+ acceptors Common Formulas - pH = -log[H₃O+], pOH = -log[OH-], pH + pOH = 14, [H+][OH-] = Kw. Acid and Base Dissociation Constant: If less than 1, reaction favors the reactants. If greater, favors products. Strong Acids + Bases - completely dissociate into ions in water Percent Dissociation - change in concentration / initial x 100 Buffers - occur between weak substances and their conjugates, they resist drastic changes in pH Henderson-Hasselbalch Equation Titration Curves - pH v volume of titrant added 	 Entropy (ΔS) - disorder The amount of entropy will always increase over time. Gibbs Free Energy (ΔG) - Available energy that can be converted into work Spontaneous = -ΔG = Thermodynamically favorable ΔG = ΔH - TΔS = -RTlnK Voltaic Cells - spontaneous reactions, cell potential must be positive Standard Cell Potential (E°) - potential energy difference between electrodes in volts Salt Bridge - balances charge Electrolytic Cells - requires an outside energy source(I = q/t). 	Content Good to Memorize: VSEPR chart Polyatomic ions Equations not on the reference table Strong acids and bases Unit conversions Solubility rules Kinetics - integrated rate laws Kinetics - units of K based on order of reaction Relationship between ΔG, ΔH, and spontaneity AP Format MCQ Section - 90 minutes, 60 questions, 50% of the exam FRQ Section - 105 minutes, 7

the system in order to maintain

equilibrium.

• Equivalence Point - pH=pKa, [HA]=[A-]

• $\Delta G = -n \mathcal{F} E^{\circ}$

• 1 volt = 1 J / 1 coulomb

questions, 50% of the exam,

calculator allowed.