B

Deep Learning - MAI

Convolutional neural networks

THEORY

Spatial Connectivity

- Some data has spatial correlations that can be exploited
 - 1D, 2D, 3D, ...
- Near-by data points are more relevant than far-away.
- Sparsify connectivity to reduce complexity and ease the learning

Weight Sharing

Sparse connectivity is nice, but we want to apply filters everywhere.

Each filter will get convolved all over the image: 2D activations matrix

In static we have sets of neurons sharing weights

In this context, what is a neuron?

Convolution in Action

Kernel size 3x3 (neuron input = 9)

1 0 1 0 1 0 1

Detect 'X'

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Filter convolution process

Convolved Feature

Activations (pre-func.)

Image Transformations

 Convolving filters transform the image

 Let the model learn the kernels it needs

Convolution Details

Kernel size: Size of the receptive field of convolutional neurons

Stride: Steps size of convolution

Padding: Allows focus on border

$$OutputSize = \frac{InputSize - KernelSize + 2 * Padding}{Stride} + 1$$

Dilated/Atrous Convolutions

Sparsify the kernel

- Increases perceptive field without added complexity
- Loses details, gains context
- Another hyperparam :(
- Used for
 - Down/Upsampling (segmentation)
 - High Resolution inputs

Output Volumes

- Typically, conv filters are full depth (N*N*input_depth)
- Each conv filter (often 3D) convolved generates a 2D plane of data
- Depth provides all the views on a part of the input
- Output volume: New representation of input with different dimensions

Output Volumes

Padding policies

- Size
 - Valid (no padding): Internal only. May skip data. Reduces dims.
 - Same: Keep dimensionality with stride 1
- Filling
 - Zeros
 - Reflect
 - Circular
 - •••

PANs

Too much bias

-2	1	1
-2	1	1
-2	1	1

			C
-3	2	-1	C
-3	2	-1	C
-3	2	-1	0
			_

0	0	0	0	0	0	0
0						0
0	Α					0
0						0
0				В		0
0						0
0	0	0	0	0	0	0

Depth-wise Separable Convolutions

- Depth-wise convolutions (spatial)
 - Filters: N*N*1
- Point-wise convolution (depth)
 - Filters: 1*1*input_depth

- Params: N*N+N
 - Decrease in complexity & cost

Depth-wise Separable Convolutions

Depth-wise Separable Convolutions

To Pool Or Not To Pool

- Operation: Max or Avg
- Dimensionality reduction (along x and y only)
- Rarely applied full depth
- Parameter free layer
- Hyperparams: Size & Stride
- Loss in spatial precision / Robust to invariance

Other means to reduce complexity

Depth-wise separable convs, bigger conv. strides

224

Spatial Pyramid Pooling (SPP)

- Multi-scale Pool (by powers of 2)
- Often used between conv and fc

More alternatives: Atrous spatial PP, Global average pooling, Pyramid pooling module, Adaptive PP

Practical Tips XI

Convolutional

- Small/big filters (3x3, 5x5, 7x7)
 - Cheap/Expensive
 - Local/General
 - Bigger/Smaller outputs (stride)
- Kernel Size = input size: fc
- Kernel size = 1x1: Alter depth)

Pooling

2x2, stride 1 is the least invasive

- Kernel size (conv & pool)
- Stride (conv & pool)
- Padding (conv & pool)
- Num. filters
- Dilatation rate

P

CNNs

Emerging regularizers

Dario Garcia Gasulla dario.garcia@bsc.es

Data Augmentation for CNNs

Apply what is safe for each case

- Problem specific
- Limited impact
- Computation
- Train/Val/Test

[50]

Advanced image regularization/augmentation

Increase train variance forcing attention on full input (adds noise)

- MixUp (merge two samples), AdaMixup (manifold intrusion)
- CutOut (remove a patch)
- CutMix (merge samples w/ patch)
- Auto/DeepAugment (learn <op.,mag.> from the data. Danger!)

Beware. More data is always better than more augmentation.

[40,41,42,43,44,50]

Spatial Dropout

Standard Dropout is suboptimal for spatially related data

Consecutive inputs can be strongly redundant

Spatial Dropout

Drop entire feature maps, aka channels

Cutout

 Drop connected components along width, height and/or depth

Noisy Student (not only for CNNs)

A semi-supervised training paradigm

- 1. Train model A (teacher) with the labeled data
- 2. Use A to generate pseudo-labels for an unlabeled data set
- 3. Train model B (student) with both labeled and pseudo-labeled data

- Iterate, re-labeling the unlabeled data each time
- Highly regularized (noise!) student to guarantee improvement
- Each student has more capacity than the previous

P

CNNs

Architectures

Dario Garcia Gasulla dario.garcia@bsc.es

ILSVRC'12 (aka "Imagenet")

- Classification: 1K classes
- Train: 1.2M, Val: 50K

ImageNet today

- Noisy
 - Multiclass
 - Wrong (6%)
- Overkilled
 - 90% pruning -> 3% perf. loss
- Overused
 - -10% performance on new test set

CNNs Big Bang (1st gen.)

AlexNet (2012)

- Breakthrough in ILSVRC
- 5 convs+pools, ReLU, 2 dense, and dropout
- 62M parameters

On the shoulders of giants

Optimizing cp*f (1st gen.)

VGG 11/13/16/19 (2014)

- Prototype of (conv-pool)*+dense* architecture
- 133-144M parameters
- 3x3 convs only

The Inception Family (2nd gen.)

1×1

convolutions

GoogLeNet (2014)

- The Inception block
- Let the model decide the kernel size
- Better scale adaptation
- ♦ Bottleneck 1x1 conv to make it feasible
- No FC: Global Average Pooling (GAP)

The Skipped Connection (2nd gen.)

ResNet (2015)

- Residual blocks / Skip connections
- Deeper should never be worse
 - Learning the identity is hard
 - Learning to cancel out is easy
- Shallow ensemble of nets
- Train up to 1K layers (do not!)
- ILSVRC'12 human level

Image

7x7 conv, 64, /2 3x3, pool. /2

> 3x3 conv, 64 3x3 conv, 64

> 3x3 conv, 64 3x3 conv, 64

3x3 conv. 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512 3x3 conv, 512

avg pool

fc 1000

Inverted Residuals & Linear Bottlenecks

- Upsample depth
- Depth-wise conv
- Point-wise conv

(a) Residual block

(b) Inverted residual block

- Linear act at end
- Non-linear mid **
- Residual link **
- * **Efficient**

Sponsored by:

The manifold hypothesis

EfficientNet (3rd gen.)

Should I go deeper, wider or bigger?

- Find a balance between them (all related)
 - Width (neurons per layer)
 - Depth (layers)
 - Resolution (input)
- Choose a size
 - B0 to B7

ConvNext, transforming CNNs (3rd gen.)

ViT learnt from CNN (Swin Transformer). Retribution

- AdamW (L2 regularization after step computation. Safe.)
- Regularize: Data augmentation (MixUp, Cutmix, ...), Label smoothing, ...
- Compute distribution (pool separated blocks): (3,4,6,3) -> (3,3,9,3)
- Patchify: First layer 4x4 stride 4 conv
- Depth-wise conv (spatial or channel mix). Inverted bottleneck.
- Larger kernels: 7x7
- GeLU. Sparsely activation functions & normalization layers (LN by BN).

ConvNext, transforming CNNs (3rd gen.)

- 1. Patchify
- 2. Depth-wise conv
- 3. Inverted bottleneck
- 4. Larger kernels: 7x7
- 5. GeLU
- 6. Less activation functions
- LN instead of BN
- 8. Less normalization layers

Practical Tips XII

CNN design policies

- Few filters at the beginning
- Hierarchy
- Max. complexity 2/3ds in

Things to monitor

- Volume sizes
- Num. parameters

B

Visualizing CNNs

Biases everywhere

The Basics

- NN are representation learning techniques
- CNNs build hierarchically complex features
 - From Gabor filters to dog faces
 - Induced by convolution
 - Tend to focus on the "non obvious for humans"
 - Backgrounds, textures
- The closer to the loss, more classifier (task) and less representation (data)

Ways of Looking at CNNs

- Feature Attribution: Where is the network looking?
 - Grounded. Instance based.
 - Explainability in practice.
- * Feature Visualization: What is the network seeing?
 - Uncontextualized. Maximization based.
 - Diagnosys & Insight
- Exemplification: How does the network react?
 - Max. activations
 - Samples from a distribution

Attribution

- Finding the importance of pixels
- Layerwise Relevance Propagation (LRP)
 - Backpropagate an output. Find the relevance of each neuron
 - Weighted by CNN parameters

LRP clean label

score relevance: -2.47

Feature Visualization

- Optimizing the input to maximize the output
 - A neuron
 - A channel

A layer (DeepDream)

High level

Exemplification

Finding images within a dataset maximizing outputs

- Subjective
- Partial
- Stochastic

Bias in DL

"All models are wrong, some are useful" - George Box

_

"All DL models are biased, some are usefully biased"

Bias in DL

- Bias is what makes ML work. Is a form of generalization.
 - Identification: What bias?
 - Bonus track: Human bias (Pareidolia)
 - Appreciation: Desirable bias?
 - Mitigation: Altering dataset or model?

30

Bias Detection through XAI Attribution

Focus & Mosaics: An eye-tracking game

Why is this mosaic of class "cat"?

- Identification: Many examples needed
- Appreciation: Expert decision
- Mitigation:
 - Shared bias:
 - Add target samples without bias
 - Add non-target samples with bias
 - Missing bias: Add target samples with bias

Target class: **Classroom** Outer class: Kindergarden

0.59

Playing with CNNs

Encoder-Decoder CNNs

- Pixel-wise classification task (image reconstruction loss)
- Bottlenecking makes it cheaper

A standard

U-Net

Automatic Image Colorization

Another pixel-wise classification application

Transposed Convolution Deconvolution

- Reverse effect of regular convolution (upsample)
- Learnt interpolation
- Applications
 - Segmentation
 - GANs
 - Super-Resolution
 - Conv. Autoencoders

Input Kernel Output

0 1 0 1 0 0 + 0 1 0 0 + 0 2 + 0 3 = 0 4 6 4 12 9

Faster Segmentation

- Pixel-wise classification Object detection (bounding box)
 - Can be done with a "regular" CNN
- R-CNN: Propose crops (SVM). Extract features (CNN). Classify crops (SVM)
- ❖ Fast R-CNN: Extract features. Propose crops. Classify/Bounding Box (CNN)
- Faster R-CNN: Propose crops through a specific sub-net (RPN)
- YOLO v? (no regions, faster, less accurate)
 - Divide into grid. Predict class and bounding box for each cell.

Better Segmentation

- Mask R-CNN
 - Faster R-CNN for object detection
 - FCN for instance segmentation (pixel classification)
- Xception
 - Depth-wise separable Convs (inverted order & w/o non-linearity)
 - Skip connections
 - Atrous SPP

Style Transfer

- What do the correlation of activations intra-layer tell us?
 - What if we force it on another image?
- Gram matrix represents the style
 - Channel-wise (cXc)
 - Several mid layers
- Activations represents the content
 - One mid layer

- Optimize the **input** to minimize 2 losses
- Use a pre-trained net frozen
- Improved and extended

- [1] http://vordenker.de/ggphilosophy/mcculloch_a-logical-calculus.pdf
- [2]http://www-public.tem-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/Rosenblatt58.pdf
- [3] http://www.dtic.mil/dtic/tr/fulltext/u2/236965.pdf
- [4] https://en.wikipedia.org/wiki/Perceptrons_(book)
- [5] http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning/
- [6] https://en.wikipedia.org/wiki/Perceptrons_(book)
- [7] Werbos et al. "Beyond regression:" new tools for prediction and analysis in the behavioral sciences." Ph. D. dissertation, Harvard University (1974).
- [8] Rummelhart et al. "Learning Internal Representations by Error Propagation". MIT Press (1986).

- [9]https://towardsdatascience.com/effect-of-gradient-descent-optimizers-on-neural-net-training-d44678d27060
- [10] https://arxiv.org/abs/1711.05101
- [11] https://bbabenko.github.io/weight-decay/
- [12] https://towardsdatascience.com/weight-decay-l2-regularization-90a9e17713cd
- [13] Veit, Andreas, Michael J. Wilber, and Serge Belongie. "Residual networks behave like ensembles of relatively shallow networks." Advances in neural information processing systems. 2016.
- [14] https://thegradient.pub/semantic-segmentation/
- [15] https://arxiv.org/pdf/1603.08511
- [16]
- https://pdfs.semanticscholar.org/5c6a/0a8d993edf86846ac7c6be335fba244a59f8.pdf

- [17] https://arxiv.org/pdf/1606.00915.pdf
- [18] https://arxiv.org/pdf/1610.02357.pdf
- [19]
- https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_St
- <u>yle_Transfer_CVPR_2016_paper.pdf</u>
- [20] https://arxiv.org/abs/1603.08155
- [21] https://arxiv.org/abs/1603.03417
- [22] https://ai.googleblog.com/2016/10/supercharging-style-transfer.html
- [23] https://arxiv.org/pdf/1903.07291.pdf
- [24] http://nvidia-research-mingyuliu.com/gaugan
- [25] Geirhos, Robert, et al. "ImageNet-trained CNNs are biased towards texture;
- increasing shape bias improves accuracy and robustness." arXiv preprint arXiv:1811.12231

(2018).

HIGH PERFORMANCE

- [26] Beery, Sara, Grant Van Horn, and Pietro Perona. "Recognition in terra incognita."
- Proceedings of the European Conference on Computer Vision (ECCV). 2018.
- [27] https://distill.pub/2017/feature-visualization/
- [28] https://distill.pub/2018/building-blocks/
- [29] Montavon, Grégoire, et al. "Layer-wise relevance propagation: an overview."
- Explainable AI: interpreting, explaining and visualizing deep learning. Springer, Cham, 2019, 193-209.

[30]

https://medium.com/machine-intelligence-report/how-do-neural-networks-work-57dlab5337ce

[31] Hebb, D.O. (1949), The organization of behavior, New York: Wiley

- [32] Dauphin, Yann N., et al. "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization." Advances in neural information processing systems. 2014.
- [33] Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).
- [34] Viazovetskyi, Yuri, Vladimir Ivashkin, and Evgeny Kashin. 'StyleGAN2 Distillation for Feed-Forward Image Manipulation'. 7 March 2020. http://arxiv.org/abs/2003.03581.
- [35] https://medium.com/@jonathan_hui/gan-stylegan-stylegan2-479bdf256299
- [36] https://www.justinpinkney.com/making-toonify/
- [37] http://chengao.vision/FGVC/files/FGVC.pdf
- [38] Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks."
- Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

[39] Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).

- [40] https://arxiv.org/abs/1710.09412v2
- [41] https://arxiv.org/abs/1708.04552
- [42] https://arxiv.org/pdf/1905.04899.pdf
- [43] https://arxiv.org/abs/1809.02499
- [44]

https://openaccess.thecvf.com/content_CVPR_2019/papers/Cubuk_AutoAugment_Lear ning_Augmentation_Strategies_From_Data_CVPR_2019_paper.pdf

[45]

https://towardsdatascience.com/12-main-dropout-methods-mathematical-and-visual-explanation-58cdc2112293

- [46] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, Efficient object localization using convolutional networks
- [47] T. DeVries and G. W. Taylor, Improved regularization of convolutional neural networks with cutout
- [48] Arias-Duart, Anna, Ferran Parés, and Dario Garcia-Gasulla. "Focus! Rating XAI
- Methods and Finding Biases with Mosaics" arXiv preprint arXiv:2109.15035 (2021).
- [49] Recht, Benjamin, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. "Do imagenet classifiers generalize to imagenet?." In International Conference on Machine Learning, pp. 5389-5400. PMLR, 2019.
- [50] https://blog.insightdatascience.com/automl-for-data-augmentation-e87cf692c366
- [51] Chollet, François. "Xception: Deep learning with depthwise separable convolutions."
- Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

[52] Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of IEEE/CVF international conference on computer vision. 2021. [53] Liu, Zhuang, et al. "A convnet for the 2020s." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

[54] https://towardsdatascience.com/why-adamw-matters-736223f31b5d

[55] Garcia-Gasulla, Dario, et al. "A visual embedding for the unsupervised extraction of abstract semantics." Cognitive Systems Research 42 (2017): 73-81.

[56] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. CoRR, abs/1902.09574, 2019. URL http://arxiv.org/abs/1902.09574

[57] Northcutt, Curtis G., Anish Athalye, and Jonas Mueller. "Pervasive label errors in test sets destabilize machine learning benchmarks." arXiv preprint arXiv:2103.14749 (2021).

Dario Garcia-Gasulla (BSC) dario.garcia@bsc.es

