Vector Algebra

CHAPTER 10 - VECTOR ALGEBRA

Excercise 10.3

Solution:

1. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$, find the value of \overrightarrow{a} . \overrightarrow{b} + \overrightarrow{b} . \overrightarrow{c} + \overrightarrow{c} . \overrightarrow{a} .

1 Solution

The given vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are unit vectors. Since the given vectors \mathbf{a} , \mathbf{b} , \mathbf{c} are unit vector hence $\mathbf{a} = \mathbf{b} = \mathbf{c}$ which is equal to 1.

$$\|\mathbf{a}\| = \sqrt{1^2} = 1\tag{1}$$

$$\|\mathbf{b}\| = \sqrt{1^2} = 1 \tag{2}$$

$$\|\mathbf{c}\| = \sqrt{1^2} = 1\tag{3}$$

The Given equation is

$$\mathbf{a} + \mathbf{b} + \mathbf{c} = 0 \tag{4}$$

$$(\mathbf{a} + \mathbf{b} + \mathbf{c})^2 = 0^2 \tag{5}$$

Squaring on both sides,

$$\mathbf{a}^{\mathsf{T}}\mathbf{a} + \mathbf{b}^{\mathsf{T}}\mathbf{b} + \mathbf{c}^{\mathsf{T}}\mathbf{c} + 2(\mathbf{a}^{\mathsf{T}}\mathbf{b} + \mathbf{b}^{\mathsf{T}}\mathbf{c} + \mathbf{c}^{\mathsf{T}}\mathbf{a}) \implies 0$$
 (6)

$$1^{2} + 1^{2} + 1^{2} + 2(\mathbf{a}^{\mathsf{T}}\mathbf{b} + \mathbf{b}^{\mathsf{T}}\mathbf{c} + \mathbf{c}^{\mathsf{T}}\mathbf{a}) \implies 0$$
 (7)

$$3 + 2(\mathbf{a}^{\top}\mathbf{b} + \mathbf{b}^{\top}\mathbf{c} + \mathbf{c}^{\top}\mathbf{a}) \implies 0$$
 (8)

$$\mathbf{ab} + \mathbf{bc} + \mathbf{ca} \implies \frac{-3}{2}$$
 (9)