

FOUNDATIONS OF COMPUTER SCIENCE LECTURE 5: Non-Regular Languages

Prof. Daniele Gorla

Not all languages are regular

- By now, a regular language can be characterized as
 - One that can be recognized to a deterministic/non-deterministic Finite Automaton
 - One that is associated to a regular expression
 - One that can be generated by a regular grammar
- The question now is: can any language be characterized by at least one of these 3 ways?
- The answer is NO
- Consider the language $B = \{0^n 1^n | n \ge 0\} = \{\varepsilon, 01, 0011, 000111, \dots\}$ (the same number of 0s and 1s)
- Intuitively, a DFA that recognizes B should remember how many 0s have been seen so far (one state for every natural number)
 - this DFA has an infinite number of states, not possible by definition
 - → But it cannot, since it has a **finite** number of states.

Need for a formal proof

Notice that just the idea of «counting» something a possibily unbounded number of times doesn't necessarily imply not being regular

EXAMPLE:

The language $C = \{w \mid w \text{ has an equal number of 0s and 1s} \}$ is **NOT** regular whereas

The language $D = \{w \mid w \text{ has an equal number of occurrences of } 01 \text{ and } 10 \text{ as substrings} \}$ IS!

Indeed, D is accepted by the followign DFA:

prove that this is equivalent to strings starting and ending with the same character as exercise

if this is true, the regex is 0* U 1* U 0(0 U 1)*0 U 1(0 U 1)*1

SAPIENZA UNIVERSITÀ DI ROMA DIPARTIMENTO DI INFORMATICA

The Pumping Lemma ONLY for infinite languages

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each $i \ge 0$, $xy^iz \in A$, you can have y infinitely many times and this will still be in the regular language (y^i CAN be epsilon, with i=0, however y CANNOT)
- **2.** |y| > 0, and
- 3. $|xy| \leq p$.
- When s is divided into xyz, either x or z may be ε , but not y (without this condition the theorem would be trivially true!) epsilon, the 1st condition is uninformative
- Condition 3 states that the pieces x and y together have length at most p; this is an extra technical condition that we occasionally find useful when proving certain languages to be nonregular.
- Written in a more precise way, the P.L. is:

$$A \text{ regular} \Rightarrow \exists p \in \mathbb{N} : \forall s \in A (|s| \ge p \Rightarrow \exists x, y, z \text{ s.t. } (s = xyz \land |y| > 0 \land |xy| \le p \land \forall i \in \mathbb{N}. xy^iz \in A))$$

Proof of the Pumping Lemma

PROOF Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA recognizing A and p be the number of states of M.

Let $s = s_1 s_2 \cdots s_n$ be a string in A of length n, where $n \ge p$. a string longer than the # of states

Let r_1, \ldots, r_{n+1} be the sequence of states that M enters while processing s, so $r_{i+1} = \delta(r_i, s_i)$ for $1 \le i \le n$.

This sequence has length n+1, which is at least p+1.

Among the first p + 1 elements in the sequence, two must be the same state the string. We call the first of these r_i and the second r_l .

Now let $x = s_1 \cdots s_{j-1}$, $y = s_j \cdots s_{l-1}$, and $z = s_l \cdots s_n$. so $|xy| \le p$.

As $j \neq l$, so |y| > 0;

M must accept xy^iz for $i \geq 0$.

 $M = \begin{pmatrix} y \\ rj \end{pmatrix} (=rl) \\ x \\ - rl \end{pmatrix}$

this is true by definition of the string. length is at least p and I have at least p+1 states traversed, so two states are equal.

pigeons-hole principle and injective functions

Q.E.D.

Usage of the Pumping Lemma

P.L.: A regular
$$\Rightarrow \exists p \in \mathbb{N} \ \forall s \in A \ (|s| \ge p \Rightarrow \exists x,y,z \text{ s.t. } (s = xyz \land x) \in A \ (|s| \ge p)$$

$$|y| > 0 \land |xy| \le p \land \forall i \in \mathbb{N}. xy^i z \in A)$$

Hence, the contrapositive of this statement is

$$\forall p \in \mathbb{N} \exists s \in A (|s| \ge p \land \forall x, y, z (s \ne xyz \lor |y| = 0 \lor |xy| > p \lor \exists i \in \mathbb{N}. xy^iz \notin A)$$

 \Rightarrow A is not regular can't split the string s.t. the properties are met (y is empty or xy are longer than p or xy^iz does not belong to A for some i)

Equivalently:

$$\forall p \in \mathbb{N} \exists s \in A (|s| \ge p \land \forall x, y, z ((s = xyz \land |y| > 0 \land |xy| \le p) \Rightarrow \exists i \in \mathbb{N}. xy^{i}z \notin A)$$

 \Rightarrow A is not regular basically for every decomposition, I can find an index s.t. there exists an i that makes xy^iz not part of A

Practical use (for proving that A is not regular):

- Consider a generic *p*
- Find a string $s \in A$ long at least p and decompose it in all possible xyz, with |y| > 0 and $|xy| \le p$
- For each such decomposition, find an i such that $xy^iz \notin A$
- Then, A is not regular

Example of Usage (1)

Let us prove that $B = \{0^n 1^n \mid n \ge 0\}$ is not regular

Let's fix a generic p and choose s to be the string 0^p1^p . 0^p has len p

Consider all possible decompositions into three pieces, s = xyz, and show that the string xy^iz is not in B for some $i \ge 0$.

- 1. y consists only of 0s: In this case, xyyz has more 0s than 1s and so is not a member of B
- 2. y consists only of 1s: as before.
- 3. y consists of both 0s and 1s: In this case, xyyz may have the same number of 0s and 1s, but they will be out of order with some 1s before 0s. Hence it is not a member of B. the structure is broken. e.g. y=01, xyyz=0....0101....11, violating B.

REMARK: by using Condition 3 of the P.L., the only possible case to consider is 1 xy terminates at most at 0^p and xy need to be at most p, as we need to have space for z in this case z cannot be epsilon, because the whole string length violates condition 3

Example of Usage (2)

Let us prove that $C = \{w \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Fix p and choose s to be the string 0^p1^p .

In considering all possible decompositions, s = xyz, remember that $|xy| \le p$.

Hence, y must be made up only of 0s and so xyyz doesn't belong to C.

REMARK: Here the choice of *s* is not obvious and another choice of *s* could have made the proof not working

EXAMPLE: choose $s = (01)^p$ and consider the decomposition

$$x = \varepsilon \qquad y = 01 \qquad z = (01)^{p-1}$$

Then $xy^iz = (01)^i(01)^{p-1} \in C$ for every value of i.

REMARK: Alternative proof that C is nonregular:

- We know that $B = \{0^n 1^n\}$ is nonregular.
- If C were regular, $C \cap 0^*1^*$ also would be regular 0s is followed by a sequent (since 0^*1^* is regular and regular languages are closed under intersection).

• But $C \cap 0^*1^* = B$: CONTRADICTION!

c tells you that #0 = #10*1* tells you that some 0s are followed by some 1s

their intersection tells you that a sequence of all 0s is followed by a sequence of all 1s

Example of Usage (3)

Show that $E = \{0^i 1^j | i > j\}$ is not regular.

Let *p* be any natural number and $s = 0^{p+1}1^p$.

Then s can be split into xyz, with |y| > 0 and y consisting only of 0s (since $|xy| \le p$)

REMARK: any i > 0 would NOT yield a contradiction: indeed,

$$xy^iz = 0^k1^p \in E$$
, since $k > p+1 > p$

However, $xy^0z = 0^k1^p \notin E$, since $k \le p$

the number of 1s is more than the number of 0s we just need one number to prove a contradiction

One last Example (not trivial)

Prove that the language of all strings of 1s whose length is a perfect square is not regular:

$$D = \{1^{n^2} | n \ge 0\}.$$

remember to always check the 3 conditions

Fix any p and consider $s = 1^{p^2}$. taking a string belonging to D Let s = xyz, with |y| > 0 and $|xy| \le p$. Hence, also $|y| \le p$. Thus,

$$|xyyz| = |xyz| + |y|$$

$$= p^2 + |y| \le p^2 + p < p^2 + 2p + 1 = (p+1)^2$$
 maggioriamo con (p+1)^2 perchè potrebbe esserci un quadrato

Hence, $p^2 < |xyyz| < (p+1)^2$ and so $xyyz \notin D$. there is no perfect square between p^2 and (p+1)^2 !!! maggioriamo con (p+1)² perchè potrebbe esserci un quadrato perfetto in (p+2)²

esempio p=2, p 2 =4, (p+2) 2 =(2+2) 2 =4 2 =16, è un quadrato perfetto