Question-1:

Our input bit number is 8.

Now for the first bit addition we only need only one half-adder circuis as there is no carry on the 1st bit addition.

2 bit adition gate colculations: (Half-Adder)

let. ao, bo be our input bit.

Then, Led. S. be the Sum with and C, be the carry bit.

So,

 $\leq_1 = a_0 \oplus b_0$ and $C_1 = a_0 b_0$.

i.e. $S_1 = a_0 b_0' + a_0' b_0$. and $E_1 = a_0 b_0$

So, for a half addler we need 2 Not GATE 3 AND GATE 1 OR GATE.

2 bit addition with carry bit gate calculations:

let, a, b, two input bit and C, be the Carry bit. Then,

$$S_2 = a \oplus b \oplus C_1 = a_1 b_1^2 C_1 + a_1^2 b_1 C_1^2 + a_1^2 b_1^2 C_1 + a_1^2 b_1^2 C_1$$

and $C_2 = a_1 b_1 + a_1 c_1 + b_1^2 c_1$

So, for one full adder we need 11 AHD GATE and SOR GATE.

Now, for 8 bit addition we need one halfadder and 7 full adder.

Now for substantion!

we know that, in 2's compliment B+1=-B.

Therefore,
$$A-B=A+B+1$$

Therfore, Substruction of A and B is nothing the addition with intial carry 1.

To perform substruction for 8 bit number We' need 8 full adder and for calintation B we need 8 NOT GATE.

So, in total.
$$\#AND GATE = 8 \times 11 = 8 \times 1$$

 $\#OR \qquad = 8 \times 5 = 40$
 $\#NOT \qquad = 8 \times 3 + 8 = 32$
 $\#NOT \qquad (Ans)$

• The above gate count is for sequential logic Circuit.

Question -2:

we have 8 bit input.

In CLA there are two function generate

(G) and Propagate (P) function.

For the i-th bit.

gi = Ai Bi Pi = Ai @Bi

and G= AiBi+(Ai+Bi) G-1 = gi+ Pi ci-1.

Now fee 8 bit input we devide the block of site 2. . I work of 2 bits.

So, there will be 4 blocks

Now for one block.

This is for the sumbit calculation

Now

In the first Mock the,

where,

where,
$$g_i = AiBi$$
, $P_i = AiBi$

If we know Ai, Bi then we can easily colculate. Give and from these two we can find Cout

So, for the first block the carry bit circuitis

So, For each block:

For Sum bit calculation we need two full adder,

and one block carry finding circum.

So,
Total # AND GATE =
$$11\times2$$
 P 3 = 25
OTR GATE = 5×2 P 2 = 12
NOT GATE = 3×2 = 6

AND :=
$$15 \times 4 = 100$$

 $502 := 12 \times 4 = 48$
NOT := $6 \times 4 = 24$

Comparison!

In the question one. We use only the sequential adder circuit and its takes o(n) time.

Here. it only need o (vin) times. as we calculate the sumbit and carry bit for each block parallad.

Though the 2nd case We need more gates in counts but it is faster enough.