南京大学数学课程试卷 (商学院 21 级)

2022/2023 学年第一 学期 考试形式 闭卷 课程名称 概率论与数理统计 (A卷)

考试时间_2022.12.23 系别 _____ 学号 ____ 姓名____

题号	— 36	二10	三 10	四 10	五 10	六14	七10	合计
得分								

 $\Phi(1.0) = 0.8413$, $\Phi(1.28) = 0.90$, $\Phi(1.5) = 0.9332$, $\Phi(1.645) = 0.95$, $\Phi(1.96) = 0.975$, $\Phi(2) = 0.977$, $\Phi(2.33) = 0.99$, $t_{0.025}(25) = 2.0595$, $t_{0.05}(25) = 1.7081$,

$$t_{0.025}(24) = 2.0639$$
, $t_{0.05}(24) = 1.7109$, $\chi^2_{0.05}(25) = 37.652$, $\chi^2_{0.025}(25) = 40.646$,

$$\chi_{0.05}^2$$
 (24) = 36.415, $\chi_{0.025}^2$ (24) = 39.364

- 一、计算题(共36分,每题6分)
- 1. 设某城市成年男子的身高 $X \sim N(170,6^2)$ (单位厘米),问应如何设计地铁车厢门的高度,使成年男子与车门顶碰头的概率小于 0.01?
- 2. 已知 $P(\overline{A}) = 0.3$, P(B) = 0.4, $P(A\overline{B}) = 0.5$, 求 $P(B \mid A \cup \overline{B})$.

3. 设 X_1,X_2,X_3 为来自正态总体 $N(0,\sigma^2)$ 的简单随机样本,则统计量 $\frac{X_1-X_2}{\sqrt{2}\mid X_3\mid}$ 服从什么分布?

4. 设X服从均值为 λ 的指数分布,求 $Y = \min\{X, 2\}$ 的分布函数。

5. 设 X_1, X_2, \cdots, X_n 为从正态总体 $N(\mu, 1)$ 中抽取的简单随机样本,在显著性水平 α 下检验 $H_0: \mu = 0, H_1: \mu \neq 0,$ 取拒绝域为 $\left\{ \sqrt{n} \cdot |\overline{X}| > M \right\}$,试求当 $\mu = 1$ 时,所犯的第 II 类错误的概率。

6. 设随机变量
$$X$$
 服从区间 $(-1,2)$ 上的均匀分布,随机变量 $Y = \begin{cases} 1 & X>0 \\ 0 & X=0$,求 Y 的方差。 $-1 & X<0 \end{cases}$

- 二、 $(10 \, f)$ 设某地区三大电信运营商 f A、B、C 的用户比例为 4:3:2,一份对运营商的抽样调查数据显示: A、B、C 的好评率分别为 f 80%、f 60%、f 70%。现从这些数据资料中任取一位用户的评价
- (1) 求该评价为好评的概率;
- (2) 若该评价是好评, 求该用户是运营商 A 用户的概率。

- 三、(10 分) 设随机变量 $X \sim U(0,1)$,
- (1) 对 X 进行 5 次独立观测,直到第 5 次才第 2 次观测到 $X > \frac{1}{3}$ 的概率是多少?
- (2) 试求 $Y = \ln X \mid$ 的概率密度函数。

四、 (10 分) 设随机变量 $X \sim B(1,0.4)$, 随机变量 Y 的分布律为

且 $P(X^2=Y^2)=1$ 。

Y	-1	0	1	
P	0.2	0.6	0.2	

- (1) 求二维随机变量(X,Y) 的联合分布律;
- (2) 求随机变量 X 和 Y 的相关系数 ρ_{XY} 。

五、 $(10 \, f)$ 一家公寓有 $(10 \, f)$ — $(10 \, f)$ — (10

X	0	1	2	
$p_{\scriptscriptstyle k}$	0.1	0.6	0.3	

求至少需要多少车位,才能使每辆汽车都具有一个车位的概率不小于0.95?

六、(14 分) 设总体 X 的分布律为

X	-1	0	1
P	$1-\theta$	1	$1+\theta$
	4	${2}$	4

其中 θ $(0 < \theta < 1)$ 为未知参数,若已知取得了样本值 $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = -1,$

- (1) 求参数 θ 的矩估计量 $\hat{\theta}_{M}$ 和矩估计值; (2) $\hat{\theta}_{M}^{2}$ 是否是 θ^{2} 的无偏估计? 说明理由;
- (3) 求参数 θ 的极大似然估计值.

七、(10 分) 某工厂生产的固体燃料推进器的燃烧率(单位: cm/s)服从正态分布 $N(40,2^2)$ 。现在用新方法生产了一批推进器,从中随机地抽取 25 支,测得燃烧率的样本均值为 $\overline{x}=41.25$,(1) 问这批推进器的燃烧率是否有显著提高(取 $\alpha=0.05$)?

(2)问 n 取多少才能使由样本 X_1, X_2, \cdots, X_n 构成的参数 μ 的 95%置信区间的长度小于 1?