$Minimalizacja\ funkcji\ typu\ f(x,y)$

Celem tego ćwiczenia jest zapoznanie się z typową metodyką pracy z algorytmem genetycznym. Zadanie będzie polegać na znalezieniu minimum funkcji typu f(x,y) na zadanym przedziale (x_0,x_1) i (y_0,y_1) .

Dla zadanej funkcji trzeba będzie napisać program z wykorzystaniem biblioteki GALib. W ramach poszukiwania najlepszego algorytmu trzeba będzie przetestować różne metody selekcji, reprodukcji, krzyżowania i mutacji. Dla wybranych kombinacji metod trzeba będzie wielokrotnie uruchomić algorytm z różnymi parametrami. Do oceny uzyskanych wyników można wykorzystać zbieżności *on-line* i *off-line* jak również średnie i najlepsze wyniki po zadanej liczbie pokoleń. Dla łatwiejszej oceny dużej liczby uzyskanych wyników warto posłużyć się wykresami typu "pudełko z wąsami". Przydatne mogą być również dwuwymiarowe wykresy funkcji z naniesionymi położeniami osobników (rozwiązań) na różnych etapach ewolucji.

Przykładowy tok pracy może wyglądać następująco (to tylko propozycja, własne pomysły mile widziane):

- 1. Ustalamy kilka kombinacji metod selekcji, reprodukcji, krzyżowania i mutacji.
- 2. Dla każdego zestawu wybieramy kilka wartości parametrów.
- 3. W wyniku kroków 1 i 2 uzyskujemy kilkadziesiąt możliwości.
- 4. Dla każdej z nich program uruchamiamy 10 razy.
- 5. Dla każdego uruchomienia wyznaczamy zbieżność *on-line, off-line,* najlepsze i średnie wyniki dla populacji. Wszystko w funkcji numeru pokolenia.
- 6. Dla każdego z parametrów oceny wyznaczamy wartości potrzebne do skonstruowania "pudełka z wąsami".
- 7. Zastanawiamy się jak połączyć ze sobą wykresy w grupy, tak by dało się wyciągnąć jakieś wnioski.
- 8. Próbujemy rozstrzygnąć jakie kombinacje metod i ich parametrów dają najlepsze wyniki (oczywiście nie wiemy gdzie jest prawdziwe minimum). Do oceny mamy tylko zebrane statystyki.
- 9. Opierając się na zebranych wynikach, próbujemy znaleźć minimum funkcji.
- 10. Kiedy już zdecydujemy się na konkretną kombinację uruchamiamy program dziesięć razy, za każdym razem notując dziesięć najlepszych rozwiązań. Na podstawie rozkładu tych stu punktów wyciągamy wnioski, dotyczące charakteru znalezionego minimum.

Sprawozdanie powinno zawierać co najmniej:

- 1. Krótki opis programu (nieco rozszerzony jeśli program odbiega od SGA)
- 2. Omówienie przeprowadzonych badań nad algorytmem (co i jak testowano)
- 3. Syntetyczne przedstawienie uzyskanych wyników (dotyczących algorytmu, nie funkcji), czyli na co i dlaczego się ostatecznie zdecydowano
- 4. Opis badania nieznanej funkcji
- 5. Wnioski końcowe dotyczące minimum funkcji oraz jej charakteru
- 6. Całość powinna być ilustrowana wykresami i rysunkami poglądowymi, których dobór i przejrzystość też będą oceniane.