MAT-206: Inferencia Estadística Certamen 3. Enero 11, 2021

Entrega: Enero 12, 2021 (12:00 hrs.)

Nombre:

Profesor: Felipe Osorio

1. (35 pts) Suponga que $X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z_1, \ldots, Z_n$ son independientes con $X_i \sim \mathsf{Poi}(\theta_1), Y_i \sim \mathsf{Poi}(\theta_2)$ y $Z_i \sim \mathsf{Poi}(\theta_3)$ para $i = 1, \ldots, n$. Es decir, considere que $(X_1, Y_1, Z_1), \ldots, (X_n, Y_n, Z_n)$ es una muestra aleatoria desde la densidad

$$f(x, y, z; \boldsymbol{\theta}) = \frac{\theta_1^x \theta_2^y \theta_3^z}{x! y! z!} e^{-\theta_1 - \theta_2 - \theta_3}.$$

Obtenga los estadísticos de Wald, score y de razón de verosimilitudes para probar:

$$H_0: \theta_1 + \theta_2 = \theta_3$$
 versus $H_0: \theta_1 + \theta_2 \neq \theta_3$.

2. (35 pts) Sea $(X_{11}, X_{12}), \ldots, (X_{n1}, X_{n2})$ una muestra IID desde una distribución normal bivariada con vector de medias y matriz de covarianza desconocidos. Considere la hipótesis $H_0: \rho = 0$ versus $H_1: \rho \neq 0$, donde ρ es el coeficiente de correlación. Muestre que el test para rechazar H_0 cuando |R| > c es un test de razón de verosimilitudes, donde

$$R = \frac{\sum_{i=1}^{n} (X_{i1} - \overline{X}_1)(X_{i2} - \overline{X}_2)}{\sum_{i=1}^{n} (X_{i1} - \overline{X}_1)^2 + \sum_{i=1}^{n} (X_{i2} - \overline{X}_2)^2}.$$

Determine la distribución de R.

- **3.** (30 pts) Sea X_1, \ldots, X_n una muestra IID desde $N(\mu, \sigma^2)$.
 - a) Suponga que $\sigma^2 = \gamma \mu^2$ con $\gamma > 0$ y $\mu \in \mathbb{R}$ desconocidos. Determine un test de razón de verosimilitudes para probar $H_0: \gamma = 1$ versus $H_1: \gamma \neq 1$.
 - b) En el problema en (a) obtenga los estadísticos de Wald y score.