4.3 Valeur absolue, distance

Définition 11. Soit x un nombre réel. La valeur absolue de x, notée |x|, est un nombre donné par :

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Exemple. Calculer les valeurs absolues suivantes :

- a) |7| =
- b) |-8| =
- c) |3,7| =
- d) |-6,575757...| =
- e) $|\pi| = ...$
- f) $|-\sqrt{5}| =$

Remarque. La valeur absolue d'un nombre est ce même nombre, éventuellement débarassé du signe moins.

Définition 12. Soient a et b deux nombres réels. La **distance** entre a et b est donnée par la grandeur |a - b|.

Remarque. Cette notion de distance est équivalente à la longueur du segment entre les points correspondant à a et b sur la droite des réels.

Proposition 12. Soit x un nombre réel, et n un entier naturel. Alors il existe $d \in \mathbb{D}$ tel que

$$|x - d| \le 10^{-n}$$

Remarque. Le nombre d est appelé approximation de x jusqu'à la n^e décimale.

Exemple. Donner l'approximation correspondante aux nombres suivants, jusqu'à la n^e décimale :

- a) x = 7,333... et n = 2: d = 7,33
- b) $x = \pi \ et \ n = 5 : d = \dots$
- c) $x = \frac{12}{7}$ et n = 3: $d = \dots$

Proposition 13. Soit c un nombre réel et r un nombre réel **positif**. Alors, l'ensemble des nombres x vérifiant $|x-c| \le r$ est donné par l'intervalle

$$[c-r;c+r]$$

Remarque. En français, l'inégalité $|x-c| \le r$ signifie que « la distance entre x et c est inférieure à r ». Cela se traduit de la façon suivante sur la droite des réels.

Exemple. Donner l'ensemble S des solutions de toutes les inéquations suivantes d'inconnue x:

- a) $|x-6| \le 3$; $S = \dots$
- b) $\left| x + \frac{3}{4} \right| \le 1; S = \dots$