Direct/Adjoint Methods

Lecture 11

ME EN 575 Andrew Ning aning@byu.edu

Outline

Analytic Sensitivity Equations

Direct/Adjoint

 x_i : design variables

 y_j : state variables

 \mathcal{R}_k : residuals

 f_n : outputs (objectives and constraints)

Our end goal is to get

$$\frac{df_n}{dx_i}$$

for all i and n.

$$f_n = f(x_i, y_j(x_i))$$

$$\frac{df_n}{dx_i} = \frac{\partial f_n}{\partial x_i} + \frac{\partial f_n}{\partial y_j} \frac{dy_j}{dx_i}$$

$$\mathcal{R}(x_i, y_j(x_i)) = 0$$

$$\frac{d\mathcal{R}_k}{dx_i} = \frac{\partial \mathcal{R}_k}{\partial x_i} + \frac{\partial \mathcal{R}_k}{\partial y_j} \frac{dy_j}{dx_i} = 0$$

Two equations:

$$\frac{df_n}{dx_i} = \frac{\partial f_n}{\partial x_i} + \frac{\partial f_n}{\partial y_j} \left[\frac{dy_j}{dx_i} \right]$$

$$\frac{d\mathcal{R}_k}{dx_i} = \frac{\partial \mathcal{R}_k}{\partial x_i} + \frac{\partial \mathcal{R}_k}{\partial y_j} \left[\frac{dy_j}{dx_i} \right] = 0$$

Rearrange second equation:

$$\frac{\partial \mathcal{R}_k}{\partial y_j} \frac{dy_j}{dx_i} = -\frac{\partial \mathcal{R}_k}{\partial x_i}$$

Sub into first:

$$\frac{df_n}{dx_i} = \frac{\partial f_n}{\partial x_i} - \frac{\partial f_n}{\partial y_j} \left[\frac{\partial \mathcal{R}_k}{\partial y_j} \right]^{-1} \frac{\partial \mathcal{R}_k}{\partial x_i}$$

Analytic Sensitivity Equations

$$\frac{df_n}{dx_i} = \frac{\partial f_n}{\partial x_i} - \frac{\partial f_n}{\partial y_j} \left[\frac{\partial \mathcal{R}_k}{\partial y_j} \right]^{-1} \frac{\partial \mathcal{R}_k}{\partial x_i}$$

- Can get total derivatives from partial derivatives that are much more easily obtained.
- We don't actually invert a matrix. We often don't even store the factorization.
- Order of operations is extremely important (more on this next).

Two ways to solve. Partial derivatives are always the same, but order of operations is not.

$$\frac{df_n}{dx_i} = \frac{\partial f_n}{\partial x_i} - \underbrace{\frac{\partial f_n}{\partial y_j}}_{\Psi} \underbrace{\left[\frac{\partial \mathcal{R}_k}{\partial y_j}\right]^{-1}}_{-1} \underbrace{\frac{\partial \mathcal{R}_k}{\partial x_i}}_{\Psi}$$

Direct method:

$$\frac{\partial \mathcal{R}_k}{\partial y_j} \Phi_j = -\frac{\partial \mathcal{R}_k}{\partial x_i}$$

then:

$$\frac{df_n}{dx_i} = \frac{\partial f_n}{\partial x_i} + \frac{\partial f_n}{\partial y_j} \Phi_j$$

One linear solve for each input x_i , but can reuse for all outputs f_n

Adjoint method:

$$\left[\frac{\partial \mathcal{R}_k}{\partial y_j}\right]^T \Psi_k = -\frac{\partial f_n}{\partial y_j}.$$

then

$$\frac{df_n}{dx_i} = \frac{\partial f_n}{\partial x_i} + \Psi_k^T \frac{d\mathcal{R}_k}{dx_i}$$

One linear solve for each output f_n , but can reuse for all inputs x_i

Step	Direct	Adjoint
Matrix Factorization	same	same
Back-solve	N_x times	N_f times
Multiplication	same	same

Important implication: For the adjoint method, computing gradients is practically independent of the number of design variables.

Example: Finite Element Analysis

Force-displacment relationship:

$$F = Ku$$

Residual form:

$$\mathcal{R}(u) = Ku - F = 0$$

Stress:

$$\sigma = Su$$

Can change cross-sectional areas of truss.

 x_i : design variables

 y_j : state variables

 \mathcal{R}_k : residuals

 f_n : outputs (objectives and constraints)

 $A: {\it design \ variables \ (cross-sectional \ areas)}$

 y_j : state variables

 \mathcal{R}_k : residuals

 f_n : outputs (objectives and constraints)

A: design variables (cross-sectional areas)

u: state variables (deflections)

 \mathcal{R}_k : residuals

 f_n : outputs (objectives and constraints)

A: design variables (cross-sectional areas)

u: state variables (deflections)

Ku - F = 0: residuals (stiffness relationship)

 f_n : outputs (objectives and constraints)

 $A: {\sf design\ variables\ (cross-sectional\ areas)}$

u: state variables (deflections)

Ku - F = 0: residuals (stiffness relationship)

 σ : outputs (stress)

Partial derivatives:

$$\frac{\partial f}{\partial x} =$$

$$\frac{\partial f}{\partial y} =$$

$$\frac{\partial \mathcal{R}}{\partial x} =$$

$$\frac{\partial \mathcal{R}}{\partial y} =$$

Partial derivatives:

$$\frac{\partial f}{\partial x} = \frac{\partial \sigma}{\partial A} = 0$$

$$\frac{\partial f}{\partial y}$$

$$\frac{\partial \mathcal{R}}{\partial x}$$

$$\frac{\partial \mathcal{R}}{\partial y}$$

Partial derivatives:

$$\frac{\partial f}{\partial x} = \frac{\partial \sigma}{\partial A} = 0$$

$$\frac{\partial f}{\partial y} = \frac{\partial \sigma}{\partial u} = S$$

$$\frac{\partial \mathcal{R}}{\partial x}$$

$$\frac{\partial \mathcal{R}}{\partial y}$$

Partial derivatives:

$$\frac{\partial f}{\partial x} = \frac{\partial \sigma}{\partial A} = 0$$

$$\frac{\partial f}{\partial y} = \frac{\partial \sigma}{\partial u} = S$$

$$\frac{\partial \mathcal{R}}{\partial x} = \frac{\partial \mathcal{R}}{\partial A} = \left[\frac{\partial K}{\partial A}\right] u$$

$$\frac{\partial \mathcal{R}}{\partial y}$$

Partial derivatives:

$$\frac{\partial f}{\partial x} = \frac{\partial \sigma}{\partial A} = 0$$

$$\frac{\partial f}{\partial y} = \frac{\partial \sigma}{\partial u} = S$$

$$\frac{\partial \mathcal{R}}{\partial x} = \frac{\partial \mathcal{R}}{\partial A} = \left[\frac{\partial K}{\partial A}\right] u$$

$$\frac{\partial \mathcal{R}}{\partial y} = \frac{\partial \mathcal{R}}{\partial u} = K$$

$$\frac{df_n}{dx_i} = \frac{\partial f_n}{\partial x_i} - \frac{\partial f_n}{\partial y_j} \left[\frac{\partial \mathcal{R}_k}{\partial y_j} \right]^{-1} \frac{\partial \mathcal{R}_k}{\partial x_i}$$

$$\frac{d\sigma}{dA} = \frac{\partial\sigma}{\partial A} - \frac{\partial\sigma}{\partial u} \left[\frac{\partial\mathcal{R}_k}{\partial u} \right]^{-1} \frac{\partial\mathcal{R}_k}{\partial A}$$

$$\frac{d\sigma}{dA_i} = -SK^{-1} \left[\frac{\partial K}{\partial A_i} \right] u$$