zu 2.11 Veranschaulichung und Grenzwerte von Folgen

Zunächst die Befehlssyntax:

```
In[1]:= ?DiscretePlot
```

```
DiscretePlot[expr, \{n, n_{max}\}] generates a plot of the values of expr when n runs from 1 to n_{max}. DiscretePlot[expr, \{n, n_{min}, n_{max}\}] generates a plot of the values of expr when n runs from n_{min} to n_{max}. DiscretePlot[expr, \{n, n_{min}, n_{max}, dn\}] uses steps dn. DiscretePlot[expr, \{n, \{n_1, n_2, ...\}\}] uses the successive values n_1, n_2, ... DiscretePlot[expr, expr, expr, ...] plots the values of all the expr.
```

In[2]:= ?Limit

Limit[expr, $x \rightarrow x_0$] finds the limiting value of expr when x approaches x_0 . \gg

Die Folgen aus 2.11 (ii) - (v)

ln[4]:= DiscretePlot[1/n, {n, 1, 30}]

In[5]:= Limit [1/n, n → Infinity]

Out[5]= C

 $\label{eq:loss_loss} $ \ln[6] := \mbox{DiscretePlot}\left[(-1) ^n, \{n, 1, 20\} \right] $$ $ \mbox{Limit}\left[(-1) ^n, n \to \mbox{Infinity} \right] $$$

Out[7]= $e^{2 \text{ i Interval } [\{0,\pi\}]}$

 $Out[10]=\ 1$

$$\begin{split} & \text{ln[11]:= } b[n_] := n/2^n \\ & \text{DiscretePlot[b[n], } \{n, 1, 20\}] \\ & \text{Limit[a[b], } n \rightarrow \text{Infinity]} \end{split}$$

Out[13]= $\frac{b}{1+b}$