

Painel ► SBL0059 ► 17 setembro - 23 setembro ► Teste de revisão

Iniciado em quarta, 30 Set 2020, 21:05

Estado Finalizada

Concluída em quarta, 30 Set 2020, 21:32

Tempo empregado 26 minutos 53 segundos

Avaliar 10,00 de um máximo de 10,00(100%)

Correto

Atingiu 2,00 de 2,00 Qual a parametrização do plano x+y+z=1 inclinado dentro de um cilindro $\,x^2+y^2=9\,.$

Escolha uma:

- \odot a. $\vec{\mathbf{r}}(r,\theta) = (r\cos\theta)\mathbf{i} + (r\sin\theta)\mathbf{j} + (1+r\cos\theta r\sin\theta)\mathbf{k}$, com $0 < \theta < 2\pi = 0 < r < 3$.
- \odot b. $\vec{\mathbf{r}}(r,\theta) = (r\cos\theta)\mathbf{i} (r\sin\theta)\mathbf{j} (1-r\cos\theta-r\sin\theta)\mathbf{k}$, com $0 < \theta < 2\pi = 0 < r < 3$.
- o c. $\vec{\mathbf{r}}(r,\theta) = (r\cos\theta)\mathbf{i} + (r\sin\theta)\mathbf{j} (1-r\cos\theta-r\sin\theta)\mathbf{k}$, com $0 \le \theta \le 2\pi e$ $0 \le r \le 3$.
- od. $\vec{\mathbf{r}}(r,\theta) = (r\cos\theta)\mathbf{i} (r\sin\theta)\mathbf{j} + (1-r\cos\theta r\sin\theta)\mathbf{k}$, com $0 < \theta < 2\pi = 0 < r < 3$.
- $egin{align*} \bullet & \mathbf{e}.\, \vec{\mathbf{r}}(r, heta) = (r\cos\, heta)\mathbf{i} + (r\sin\, heta)\mathbf{j} + (1-r\cos\, heta-r\sin\, heta)\mathbf{k}$, com $0 < heta < 2\pi\, ext{e}\,0 < r < 3$.

Sua resposta está correta.

Solução:

$$x + y + z = 1 \Rightarrow z = 1 - x - y$$
.

Usando coordenadas cilíndricas $x=r\cos\theta$ e $y=r\sin\theta$, substituindo em z, temos $z=1-r\cos\theta-r\sin\theta$.

Substituindo x, y e z na função de superfície, temos:

 $ec{\mathbf{r}}(r, heta)=(r\cos\, heta)\mathbf{i}+(r\sin\, heta)\mathbf{j}+(1-r\cos\, heta-r\sin\, heta)\mathbf{k}$, com $0\leq heta\leq2\pi$ e $0\leq r\leq3$.

A resposta correta é:

 $ec{\mathbf{r}}(r, heta)=(r\cos\, heta)\mathbf{i}+(r\sin\, heta)\mathbf{j}+(1-r\cos\, heta-r\sin\, heta)\mathbf{k}$, com $0\leq heta\leq2\pi$ e $0\leq r\leq3$.

Correto

Atingiu 2,00 de 2,00 Qual a parametrização da porção do cilindro $y^2+z^2=9$ entre os planos x=0 e x=3.

Escolha uma:

$$ullet$$
 a. $r(u,v)=ec{vi}+3\cos ec{uj}+3\sin ec{uk}$, onde $0\leq u\leq 2\pi$ e $0\leq v\leq 3$

$$m{ec{v}}$$
 $r(u,v)=ec{v} {f i} + 6\cos u {f j} + 3\sin u {f k}$, onde $0 \leq u \leq 2\pi$ e $0 \leq v \leq 3$

$$igcup$$
 b. $r(u,v)=ec{v}ec{\mathbf{i}}+6\cos u ec{\mathbf{j}}+6\sin u ec{\mathbf{k}}$, onde $0\leq u\leq 2\pi$ e $0\leq v\leq 3$

$$oldsymbol{0}$$
 c. $r(u,v)=ec{v}ec{\mathbf{i}}+3\cos uec{\mathbf{j}}-6\sin uec{\mathbf{k}}$, onde $0\leq u\leq 2\pi$ e $0\leq v\leq 3$

$$egin{aligned} ext{d.} & r(u,v) = ec{v} ec{\mathbf{i}} - 6\cos u ec{\mathbf{j}} + 3\sin u ec{\mathbf{k}} ext{, onde } 0 \leq u \leq 2\pi ext{ e } 0 \leq v \leq 3 \end{aligned}$$

$$\mathbf{0}$$
 e. $r(u,v)=ec{v}\mathbf{i}+3\cos u\mathbf{j}+6\sin u\mathbf{k}$, onde $0\leq u\leq 2\pi$ e $0\leq v\leq 3$

Sua resposta está correta.

Solução:

Temos que $r=\sqrt{9}=3$. Assim, temos que $y=3\cos\theta$ e $z=3\sin\theta$, pois $y^2=9\cos^2\theta$ e $z^2=9\sin^2\theta$ e assim,

 $9\cos^2\theta+9\sin^2\theta=9(\cos^2\theta+\sin^2\theta)=9$. Então, tomando $u=\theta$ e v=x temos que a parametrização da superfície é dada por:

$$r(u,v) = ec{v\mathbf{i}} + 3\cos u ec{\mathbf{j}} + 3\sin u ec{\mathbf{k}}$$
 , onde $0 \leq u \leq 2\pi$ e $0 \leq v \leq 3$

A resposta correta é: $r(u,v)=vec{f i}+3\cos uec{f j}+3\sin uec{f k}$, onde $0\leq u\leq 2\pi$ e $0\leq v\leq 3$

Correto

Atingiu 2,00 de 2,00 Qual parametrização do **cilindro parabólico entre planos**, cosiderando a superfície cortada do cilindro parabólico $z=4-y^2$ pelos planos x=0, x=2 e z=0?

Escolha uma:

$$igcup$$
 a. $ec{\mathbf{r}}(x,y) = -x\mathbf{i} + y\mathbf{j} + \left(4 - y^2
ight)\mathbf{k}$ para $-2 \leq y \leq 2$ e $0 \leq x \leq 2$.

$$igcup$$
 b. $ec{\mathbf{r}}(x,y)=x\mathbf{i}-y\mathbf{j}+\left(4-y^2
ight)\mathbf{k}$ para $-2\leq y\leq 2$ e $0\leq x\leq 2$.

$$igcup$$
 c. $ec{\mathbf{r}}(x,y)=x\mathbf{i}+y\mathbf{j}-\left(4-y^2
ight)\mathbf{k}$ para $-2\leq y\leq 2$ e $0\leq x\leq 2$.

$$lacktriangledisplayskip$$
 d. $ec{\mathbf{r}}(x,y)=x\mathbf{i}+y\mathbf{j}+\left(4-y^2
ight)\mathbf{k}$ para $-2\leq y\leq 2$ e $0\leq x\leq 2$.

4

$$igcup = \mathbf{r}(x,y) = x\mathbf{i} - y\mathbf{j} - \left(4 - y^2
ight)\mathbf{k}$$
 para $-2 \leq y \leq 2$ e $0 \leq x \leq 2$.

Sua resposta está correta.

Resposta:

Para iniciarmos, a questão nos dá que a superfície cortada do cilindro parabólico é definida por: $z=4-y^2\,.$

Para prosseguir com a parametrização, podemos deixar o vetor \vec{r} ser uma função de x e y, logo obtemos:

$$\vec{\mathbf{r}}(x,y) = x\mathbf{i} + y\mathbf{j} + (4-y^2)\mathbf{k}.$$

A seguir, com o vetor $\vec{\bf r}$ obtido, e com o valor de z=0 dada na questão, podemos substituir na função $z=4-y^2$, logo:

$$0=4-y^2$$

$$y^2=4$$

$$y=\sqrt{4}$$

$$y=-2 \ \mathrm{e} \ y=2$$

Onde $-2 \leq y \leq 2$ e $0 \leq x \leq 2$.

A resposta correta é: $ec{f r}(x,y)=x{f i}+y{f j}+ig(4-y^2ig){f k}$ para $-2\leq y\leq 2$ e $0\leq x\leq 2.$

.

Correto

Atingiu 2,00 de 2,00 Integre G(x, y, z) = x y z sobre a superfície do sólido retangular cortado do primeiro octante pelos planos x = a, y = b, z = c.

Escolha uma:

$$\bigcirc$$
 a. $\frac{abc(ab+ac+bc)}{6}$

$$\bigcirc$$
 b. $\frac{abc(ab+ac+bc)}{5}$

$$\bigcirc$$
 C. $\frac{abc(ab+ac+bc)}{3}$

$$\bigcirc$$
 d. $\frac{abc(ab+ac+bc)}{4}$

$$\bigcirc$$
 e. $\frac{abc(ab+ac+bc)}{2}$

Sua resposta está correta.

Solução:

Como o sólido esta no primeiro octante então a superfície é uma caixa com face em:

$$x = a_i y = b \in z = c$$

$$x = 0$$
, $y = 0$ e $z = 0$

Para as faces que estão em zero a função G(x, y, z) é igual a zero por isso não precisa calcular, para as outras a integral será:

Para
$$x = a$$
:

$$G(a, y, z) = ayz$$

$$\iint\limits_{S} Gd\sigma = \iint\limits_{S} ayz \, d\sigma = \int_{0}^{c} \int_{0}^{b} ayz \, dydz = \frac{ab^{2}c^{2}}{4}$$

Para
$$y = b$$
:

$$G(a, y, z) = xbz$$

$$\iint\limits_{S} G d\sigma = \iint\limits_{S} xbz \, d\sigma = \int_{0}^{c} \int_{0}^{a} xbz \, dxdz = \frac{a^{2}bc^{2}}{4}$$

Para
$$z = c$$
:

$$G(a, y, z) = xyc$$

$$\iint\limits_{S} Gd\sigma = \iint\limits_{S} xyc \, d\sigma = \int_{0}^{b} \int_{0}^{a} xyc \, dxdy = \frac{a^{2}b^{2}c}{4}$$

Logo:

$$\iint\limits_{S} Gd\sigma = \int_{0}^{c} \int_{0}^{b} ayz \, dydz + \int_{0}^{c} \int_{0}^{a} xbz \, dxdz + \int_{0}^{b} \int_{0}^{a} xyc \, dxdy$$

$$\iint\limits_{S}G(x,y,z)d\sigma=\frac{abc(ab+ac+bc)}{4}.$$

A resposta correta é: $\(\frac{abc(ab + ac + bc)}{4} \)$

.

Correto

Atingiu 2,00 de 2,00 Qual o fluxo \(\iint\limits_S {\bf \vec F} \cdot {\bf \vec n}\ d\sigma \) do campo \({\bf \vec F} = 2xy{\bf i} + 2yz{\bf j} + 2xz{\bf k}\) através da porção do plano \(x + y + z = 2a\) que está acima do quadrado \(0 \leq x \leq a\), \(0 \leq y \leq a\), no plano \(xy\).

Escolha uma:

- a. \({\frac{11a^4}{6}} \)
- b. \({\frac{13a^4}{7}} \)
- c. \({\frac{17a^4}{6}} \)
- d. \({\frac{13a^4}{6}} \)

e. \({\frac{19a^4}{7}} \)

Sua resposta está correta.

Resposta:

Para esse exercicio utilizaremos a equação do fluxo dada por:

Como foi dado a variação de $(x\setminus)$ e $(y\setminus)$ descobriremos uma função de $(f(x,y)\setminus)$ dada pela equação $(x+y+z=2a\setminus)$ onde:

$$$$ x = x $$$$

$$$$ y = y $$$$

$$$$$
\$ z = (2a - x - y) \$\$

Assim $\{f(x,y) = (x)\{ bf i\} + (y)\{ bf j\} + (2a - x - y)\{ bf k\} \}$. Sabendo que:

 $\footnote{Morey of the continuous of the conti$

Substituindo os dados na equação do fluxo obtemos:

 $\$ \iint\limits_S {\bf \vec r} \cdot {\bf \vec n} \ d\sigma = \iint\limits_S {\bf \vec r} \cdot \frac{{\bf \vec r}_x \times {\bf \vec r}_y}{\begin{Vmatrix} {\bf \vec r}_x \times {\bf \vec r}_x \times {\bf \vec r}_x \times {\bf \vec r}_x \times {\bf \vec r}_y \end{Vmatrix}} \dy\ dx \$\$

Substituindo o valor de $\(z\)$ na integral

 $\int_{0}^{a} \int_{0}^{a} [(2xy + 2y(2a - x - y) + 2x(2a - x - y)] \ dy \ dx$

 $\ = \int_{0}^{a}\int_{0}^{a} (4ay - 2y^2 + 4ax - 2x^2 - 2xy) dy dx$

 $\ \int_{0}^{a} \left(\frac{4ay^2}{2} - \frac{2y^3}{3} + 4ax - 2x^2 - \frac{2xy^2}{2}\right) \left(\frac{2y^3}{3} + 4ax - 2x^2 - \frac{2xy^2}{2}\right) \left(\frac{3}{a} \right)$

\$ =\int_{0}^{a} \left{{\frac{4a^3}{3}} + 3a^2x - 2ax^2\ \right}\ dx \$\$

 $=\left(\frac{4a^3x}{3}\right) + \left(\frac{3a^2x^2}{2}\right) - \left(\frac{2ax^3}{3}\right) \cdot \left(\frac{2ax^3}{3}\right) \cdot \left(\frac{3a^2x^2}{2}\right) - \left(\frac{2ax^3}{3}\right) \cdot \left(\frac{3a^2x^2}{2}\right) - \left(\frac{3a^2x^2$

\$ = \left{{\frac{4a^4}{3}} + {\frac{3a^4}{2}} - {\frac{2a^4}{3}}\right) \$\$

\$\$= {\frac{13a^4}{6}} \$\$

A resposta correta é: $\ ({\frac{13a^4}{6}} \)$

.

O universal pelo regional.

Mais informações

UFC - Sobral

EE- Engenharia Elétrica

EC - Engenharia da Computação

PPGEEC- Programa de Pós-graduação em Engenharia Elétrica e Computação

Contato

Rua Coronel Estanislau Frota, s/n – CEP 62.010-560 – Sobral, Ceará

Telefone: (88) 3613-2603

∠ E-mail:

Social

