

Report No.: EED32I00216507 Page 1 of 68

TEST REPORT

Product : Intelligent Vehicle Network Gateway

Trade mark : TN-IVS-8000 Model/Type reference : TN-IVS-8000

Serial Number : N/A

Report Number : EED32I00216507 **FCC ID** : 2AJDT-TNIVS8000

Date of Issue : Sep. 28, 2016

Test Standards : 47 CFR Part 2(2015)

47 CFR Part 27 subpart C(2015)

Test result : PASS

Prepared for:

ZHEJIANG THIRD NET CO., LTD.

6th FL Building A, The Intelligence e Valley, No. 482 Qianmo Road,
Binjiang District, Hangzhou, Zhejiang, china

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Reviewed by: Postering Seal Control of the Control

Tom chen (Test Project)

Approved by:

Compiled by:

Kevin yang (Project Engineer)

Kevin lan (Reviewer)

Sheek Luo (Lab supervisor)

Sep. 28, 2016 Check No.: 2402635644

Report No. : EED32I00216507 **2 Version**

Page 2 of 68

ersion No.	Date	Description
00	Sep. 28, 2016	Original
0		

LTE Band 17					
Test Item	Test Requirement	Test method	Result PASS		
Conducted output power	Part 2.1046(a) /Part 27.50(c)	TIA-603-D-2010&KDB 971168 D01v02r02			
Effective Radiated Power of Transmitter(EIRP)	Part 2.1046(a) / Part 27.50(c)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS		
peak-to-average ratio	Part 27.50(c)	KDB 971168 D01v02r02	PASS		
99% &26dBOccupied Bandwidth	Part 2.1049(g)	Part 27.53(g) &KDB 971168 D01v02r02	PASS		
Band Edge at antenna terminals	Part 2.1051/ Part 27.53(g)	Part 27.53(g) &KDB 971168 D01v02r02	PASS		
Spurious emissions at antenna terminals	Part 2.1051/ Part 27.53(g)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS		
Field strength of spurious radiation	Part 2.1053/ Part 27.53(g)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS		
Frequency stability	Part 2.1055/Part 27.54	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS		

Tx: In this whole report Tx (or tx) means Transmitter.Rx: In this whole report Rx (or rx) means Receiver.RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel. Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature. Humid: In this whole report Humid means humidity. Press: In this whole report Press means Pressure.

N/A: In this whole report not application

Remark:

The tested samples and the sample information are provided by the client.

Content

1 COVER PAGE	1
2 VERSION	
3 TEST SUMMARY	3
4 CONTENT	4
5 TEST REQUIREMENT	
5.1 Test setup	5 5
6 GENERAL INFORMATION	6
6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTION OF EUT	
7 EQUIPMENT LIST	
RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
APPENDIX A: EFFECTIVE RADIATED POWER OF TRANSMITTER (ERP/EIRP). APPENDIX B: 26DB BANDWIDTH AND OCCUPIED BANDWIDTH. APPENDIX C: BAND EDGE	
PHOTOGRAPHS OF TEST SETUP	67
ANNEY A. ADDENDIY A. DUOTOCDADUS OF FUT CONSTDUCTIONAL DETAILS	60

Page 4 of 68

5 Test Requirement

5.1 Test setup

5.1.1 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1.30MHz to 1GHz

Figure 2. above 1GHz

Figure 1. 30MHz to 1GHz

Figure 2. above 1GHz

5.2 Test Environment

Operating Environment:	(6)	(3)	
Temperature:	24°C)	
Humidity:	46% RH		
Atmospheric Pressure:	1010mbar	-07	

5.3 Test Condition

Test channel:

Test Mode	Test Frequency ID	Bandwidth (MHz)	Number [UL]	Frequency of Uplink(MHz)	Number [DL]	Frequency of Downlink(MHz)
(5)	Low	5	23755	706.5	5755	736.5
LTEband17	Range	10	23780	709	5780	739
TX:704-716MHz	Mid Range	5/10	23790	710	5790	740
RX:734–746MHz	High	5	23825	713.5	5825	743.5
	Range	10	23800	711	5800	741

6 General Information

6.1 Client Information

Applicant:	ZHEJIANG THIRD NET CO., LTD.
Address of Applicant:	6th FL Building A, The Intelligence e Valley, No. 482 Qianmo Road, Binjiang District, Hangzhou, Zhejiang, china
Manufacturer:	ZHEJIANG THIRD NET CO., LTD.
Address of Manufacturer:	6th FL Building A, The Intelligence e Valley, No. 482 Qianmo Road, Binjiang District, Hangzhou, Zhejiang, china

6.2 General Description of EUT

Product Name:	Intelligent Vehicle Network Gateway
Model No.(EUT):	TN-IVS-8000
Trade Mark:	TN-IVS-8000
EUT Supports Radios application	GPS: 1575.42MHz Wlan 2.4GHz 802.11b/g/n(HT20&HT40) UMTS: Band II(1900MHz), Band IV(1700MHz), Band V(850MHz) WCDMA LTE: Band 2, Band 4, Band 5, Band 17
Power Supply:	DC 9-36V
Sample Received Date:	Aug. 01, 2016
Sample tested Date:	Aug. 01, 2016 to Sep. 27, 2016

6.3 Product Specification subjective to this standard

Frequency Band:	LTE Band 17: TX:704-716MHz, RX:734–746MHz
Modulation Type:	LTE Mode with QPSK,16QAM Modulation
Sample Type:	Fixed production
Antenna Type:	Temporary antenna
Antenna Gain:	LTE Band 2: 1.5dBi, LTE Band 4: 1.5dBi, LTE Band 5: 1dBi, LTE Band 17: 1dBi
Test Voltage:	DC 12V

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
DC Source	QIEKESI	10209898	FCC DOC	СТІ

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Page 7 of 68

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

Page 8 of 68

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
0	DE a succession and desired	0.31dB (30MHz-1GHz)
2 RF power, conducted	0.57dB (1GHz-18GHz)	
0 5 5 10	Dadieted Causieus emissies test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
-01	Conduction arises	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

Communication RF test system							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Spectrum Analyzer	Agilent	E4440A	MY46185649	12-31-2015	12-29-2016		
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017		
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017		
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017		
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017		
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017		
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(4)	01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017		
DC Power	Keysight	E3642A	MY54426112	04-08-2016	04-07-2017		
DC Power	Keysight	E3642A	MY54426115	04-01-2016	03-31-2017		
PC-2	Lenovo	R4960d		04-01-2016	03-31-2017		
PC-3	Lenovo	R4960d		04-01-2016	03-31-2017		
RF control unit	JS Tonscend	JS0806-1	158060004	04-01-2016	03-31-2017		
DC power Box	JS Tonscend	JS0806-4	158060007	04-01-2016	03-31-2017		
LTE Automatic test software	JS Tonscend	JS1120-1		04-01-2016	03-31-2017		
WCDMA Automatic test software	JS Tonscend	JS1120-3		04-01-2016	03-31-2017		
GSM Automatic test software	JS Tonscend	JS1120-3	(c <u>4</u> 1)	04-01-2016	03-31-2017		

Radiated Spurious Emission & Radiated Emission						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3	<u></u>	06-05-2016	06-05-2019	
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-617	05-23-2016	05-22-2017	
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017	
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018	
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017	
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017	
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017	
Multi device Controller	maturo	NCD/070/10711 112	(C)	01-12-2016	01-11-2017	
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017	
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017	
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017	
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017	
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017	
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017	
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017	
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017	
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017	
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017	
High-pass filter	MICRO-TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017	
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	· -	01-12-2016	01-11-2017	
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017	
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017	
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017	

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title				
1	PART 22 (2015)	PART 22 – PUBLIC MOBILE SERVICES Subpart H – Cellular Radiotelephone Service				
2	PART 24 (2015)	PART 24 – PERSONAL COMMUNICATIONS SERVICES Subpart E – Broadband PCS				
3	PART 27 (2015)	PART 27 – MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Subpart C – Technical Standards				
3	PART 2 (2015)	Frequency allocations and radio treaty matters; general rules and regulations				
4	TIA-603-D-2010	Land Mobile FM or PM -Communications Equipment -Measurement and Performance Standards				
5	KDB971168 D01	KDB971168 D01 Power Meas License Digital Systems v02r02				

Page 11 of 68

Test Results List:

est Nesults List.			100		
Test Requirement	Test method	Test item	Verdict	Note	
Part 2.1046(a)/Part 22.913(a)/ Part 27.50(c)	TIA-603-D&KDB 971168 D01v02r02	Conducted output power	PASS	Appendix A)	
Part 2.1049(g)	Part 27.53(g) &KDB 971168 D01v02r02	99% &26dBOccupied Bandwidth	PASS	Appendix B)	
Part 2.1051/Part 22.917(a)/ Part 27.53(g)	Part 27.53(g) &KDB 971168 D01v02r02	Band Edge at antenna terminals	PASS	Appendix C)	
Part 2.1051/ Part 2.1057/ Part 27.53(g)	TIA-603-D &KDB 971168 D01v02r02	Spurious emissions at antenna terminals	PASS	Appendix D)	
Part 2.1055/ Part 22.355/ Part 27.54	TIA-603-D &KDB 971168 D01v02r02	Frequency stability	PASS	Appendix E)	
Part 2.1053/ Part 2.1057/ Part 27.53(g)	TIA-603-D &KDB 971168 D01v02r02	Field strength of spurious radiation	PASS	Appendix F)	
Part 2.1046(a)/ Part 27.50(g)	TIA-603-D &KDB 971168 D01v02r02	Effective Radiated Power of Transmitter(ERP)	PASS	Appendix G)	

Report No. : EED32l00216507 Page 12 of 68

Appendix A: Effective Radiated Power of Transmitter (ERP/EIRP)

Receiver Setup:			1					
(6,7)	Freq	uency	Detector	RBW	VBW	Remark		
	30MH:	z-1GHz	peak	120kHz	300kHz	Peak		
	Above	e 1GHz	Peak	1MHz	3MHz	Peak		
Measurement	Test procedu							
Procedure:	 The EUT was powered ON and placed on a 1.5m hight table at a 3 meter fully Anechoic Chamber. The antenna of the transmitter was extended to its maximum length. modulation mode and the measuring receiver shall be tuned to the frequenc of the transmitter under test. The EUT was set 3 meters(above 18GHz the distance is 1 meter) away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360 the turntable. After the fundamental emission was maximized, a field strength 							
	4) Steps 1) and horiz5) The trans the anter6) A signal a radiating polarized	ontal polarized initter was the mass appropriate the disturbate cable. With the the receive	erformed with the ation. In removed and oximately at the ance was fed to both the substitution antenna was rai	I replaced wit same location the substitution and the re sed and lowe	h another and n as the cente on antenna by eceive antenr red to obtain	nna in both vertical enna. The center of er of the transmitter means of a non- nas horizontally a maximum reading and until the measure		
field strength level in step 3) is obtained for this set of conditions. 7) The output power into the substitution antenna was then measured. 8) Steps 6) and 7)were repeated with both antennas polarized. 9) Calculate power in dBm by the following formula: ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd) EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi) EIRP=ERP+2.15dB where:								
		=ERP+2.15d		s (dB) + ante	nna gain (dbi			
	where: Pg is the 10) Test the I	generator o		the substitution	on antenna.	est channel		
Limit:	where: Pg is the 10) Test the I 11) Repeat a	generator o EUT in the lo bove proced	B utput power into west channel, th ures until all freq	the substitution	on antenna.	est channel		
Limit:	where: Pg is the 10) Test the I	generator o	B utput power into west channel, th ures until all freq	the substitution	on antenna.	est channel		
Limit:	where: Pg is the 10) Test the I 11) Repeat a	generator of EUT in the lobove procedu	B utput power into west channel, th ures until all freq	the substitution	on antenna.	est channel		

Test Result

Channel Bandwidth: 5 MHz

Page 13 of 68

Page 14 of 68 **Channel Bandwidth: 10 MHz**

		DD 0		I Bandwidth: 10 MHz		
Modulation	lation Channel RB Configuration Av		Average Power [dBm]	E.i.r.p [dBm]	Verdic	
		Size	Offset			,
		P	0	22.89	23.26	PASS
		1	24	22.86	23.24	PASS
		1	49	22.85	23.23	PASS
	LCH	25	0	21.92	22.14	PASS
		25	12	21.99	22.16	PASS
		25	25	21.83	22.10	PASS
		50	0	21.79	22.99	PASS
		1	0	22.68	23.05	PASS
		13	24	22.93	23.04	PASS
		1	49	22.75	23.00	PASS
QPSK	MCH	25	0	21.89	21.99	PASS
		25	12	21.94	21.95	PASS
		25	25	21.91	21.91	PASS
		50	0	21.89	21.90	PASS
	(67)	1	0	22.97	23.03	PASS
		1	24	22.91	23.00	PASS
		1	49	22.57	22.98	PASS
	HCH	25	0	21.95	22.91	PASS
20		25	12	22.03	22.88	PASS
6)		25	25	21.81	22.61	PASS
		50	0	21.82	22.62	PASS
		1	0	21.89	22.28	PASS
		1	24	21.80	22.18	PASS
		1	49	21.78	22.07	PASS
	LCH	25	0	20.95	22.00	PASS
		25	12	20.95	22.97	PASS
		25	25	20.79	22.92	PASS
-07		50	0	20.80	22.87	PASS
		1	0	21.65	22.52	PASS
			24	21.81	22.50	PASS
		1	49	21.78	22.49	PASS
16QAM	MCH	25	0	20.92	22.43	PASS
	/°	25	12	20.90	22.40	PASS
		25	25	20.87	22.38	PASS
		50	0	20.91	21.28	PASS
		1	0	21.99	22.87	PASS
		1	24	21.82	22.86	PASS
		1.8	49	21.48	21.82	PASS
(1,2)	HCH	25	0	20.97	21.75	PASS
	11011	25	12	20.90	21.71	PASS
		25	25	20.86	21.66	PASS
				20.00	21.00	. , (00

Report No. : EED32I00216507 Page 15 of 68

Appendix B: 26dB Bandwidth and Occupied Bandwidth

Test Result

Channel Bandwidth: 5 MHz

Channel Bandwidth: 5 MHz								
Modulation	Channel	RB Conf	iguration Offset	Occupied Bandwidth (MHz)	26dB Bandwidth (MHz)	Verdict		
QPSK	LCH	15	0	4.4751	4.978	PASS		
	MCH HCH	15 15	0	4.4799 4.4786	4.955 4.989	PASS PASS		
	LCH	15	0	4.4804	5.035	PASS		
16QAM	MCH	15	0	4.4787	5.004	PASS		
	HCH	15	0	4.4805	4.976	PASS		

Channel Bandwidth: 10 MHz

Channel Bandwidth: 10 MHz									
Modulation	Channel	RB Conf	iguration Offset	Occupied Bandwidth (MHz)	26dB Bandwidth (MHz)	Verdict			
07011	LCH	50	0	8.9318	9.810	PASS			
QPSK	MCH	50	0	8.9302	9.794	PASS			
	НСН	50	0	8.9256	9.816	PASS			
	LCH	50	0	8.9286	9.747	PASS			
16QAM	мсн	50	0	8.9258	9.729	PASS			
-0-	НСН	50	0	8.9275	9.703	PASS			

Test Graphs

Channel Bandwidth: 5 MHz

Appendix C: Band Edge

Test Graphs

Channel Bandwidth: 5 MHz

Appendix D: Conducted Spurious Emission

Test Graphs

Channel Bandwidth: 5MHz

Hotline: 400-6788-333

Channel Bandwidth: 10MHz

Appendix E: Frequency Stability

Channel Bandwidth: 5 MHz

			Channel Band	dwidth: 5 MHz		
0')		Voltage				(0.)
Modulation	Channel	Voltage [Vdc]	Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Verdict
	-01	VL	TN	0.59	0.000830	PASS
	LCH	VN	TN	-1.72	-0.002430	PASS
	(0,)	VH	TN	-0.33	-0.000466	PASS
		VL	TN	0.31	0.000443	PASS
QPSK	MCH	VN	TN	-0.66	-0.000927	PASS
		VH	TN	0.72	0.001007	PASS
411		VL	TN	-1.99	-0.002787	PASS
	HCH	VN	TN	-1.57	-0.002205	PASS
		VH	TN	-2.53	-0.003549	PASS
		VL	TN	-1.07	-0.001519	PASS
	LCH	VN	TN	0.49	0.000688	PASS
		VH	TN	-0.36	-0.000506	PASS
	(6)	VL	TN	-0.01	-0.000020	PASS
16QAM	MCH	VN	TN	-2.30	-0.003244	PASS
		VH	TN	0.03	0.000040	PASS
		VL	TN	-0.13	-0.000180	PASS
	HCH	VN	TN	0.34	0.000481	PASS
		VH	TN	-2.10	-0.002947	PASS
			Tempe	erature		
Modulation	Channel	Voltage [Vdc]	Temperature (°ℂ)	Deviation (Hz)	Deviation (ppm)	Verdict
	1	VN	-30	0.29	0.000405	PASS
	(3)	VN	-20	-0.04	-0.000061	PASS
		VN	-10	-2.68	-0.003786	PASS
		VN	0	-1.42	-0.002005	PASS
	LCH	VN	10	-1.46	-0.002065	PASS
		VN	20	-2.63	-0.003726	PASS
		VN	30	-2.06	-0.002916	PASS
		VN	40	-3.03	-0.004293	PASS
		VN	50	-3.26	-0.004617	PASS
		VN	-30	-0.36	-0.000504	PASS
	100	VN	-20	-3.96	-0.005581	PASS
QPSK		VN	-10	-2.07	-0.002921	PASS
QI OIX		VN	0	-2.90	-0.004090	PASS
	MCH	VN	10	-2.69	-0.003788	PASS
		VN	20	-1.99	-0.002801	PASS
		VN	30	-2.66	-0.003748	PASS
		VN	40	-3.18	-0.004473	PASS
		VN	50	-0.50	-0.000705	PASS
		VN	-30	-2.32	-0.003248	PASS
		VN	-20	-1.50	-0.002105	PASS
	HCH	VN	-10	0.59	0.000822	PASS
	TICH	VN	0	-3.20	-0.004491	PASS
	(0,)	VN	10	0.29	0.000401	PASS
		VN	20	-2.78	-0.003890	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32l00216507 Page 60 of 68

110 LLD	021002100					i age oo oi c
		VN	30	0.27	0.000381	PASS
		VN	40	0.10	0.000140	PASS
		VN	50	0.46	0.000642	PASS
		VN	-30	-2.73	-0.003867	PASS
		VN	-20	-1.53	-0.002167	PASS
		VN	-10	-0.09	-0.000121	PASS
		VN	0	-0.21	-0.000304	PASS
	LCH	VN	10	-0.27	-0.000385	PASS
(A)	(3)	VN	20	-1.47	-0.002086	PASS
		VN	30	0.04	0.000061	PASS
		VN	40	-0.54	-0.000769	PASS
		VN	50	-3.08	-0.004353	PASS
		VN	-30	0.50	0.000705	PASS
		VN	-20	-1.70	-0.002398	PASS
		VN	-10	-3.35	-0.004715	PASS
		VN	0	0.51	0.000725	PASS
16QAM	мсн	VN	10	0.51	0.000725	PASS
		VN	20	-0.47	-0.000665	PASS
	/°>	VN	30	-2.42	-0.003405	PASS
		VN	40	0.31	0.000443	PASS
		VN	50	-0.43	-0.000604	PASS
		VN	-30	1.06	0.001484	PASS
		VN	-20	-1.86	-0.002606	PASS
		VN	-10	0.60	0.000842	PASS
		VN	0	-2.35	-0.003288	PASS
	нсн	VN	10	-0.14	-0.000200	PASS
		VN	20	0.09	0.000120	PASS
		VN	30	-0.17	-0.000241	PASS
	-0-	VN	40	-0.44	-0.000622	PASS
		VN	50	-0.43	-0.000601	PASS

Channel Bandwidth: 10 MHz

			Channel Band	width: 10 MHz		
		13	Volt			
Modulation	Channel	Voltage [Vdc]	Temperature $(^{\circ}\mathbb{C})$	Deviation (Hz)	Deviation (ppm)	Verdict
		VL	TN	-0.60	-0.000847	PASS
QPSK	LCH	VN	TN	0.47	0.000666	PASS
	100	VH	TN	-2.50	-0.003531	PASS
	(5/2)	VL	TN	-1.04	-0.001471	PASS
	MCH	VN	TN	-1.92	-0.002700	PASS
		VH	TN	-2.85	-0.004009	PASS
		VL	TN	0.09	0.000121	PASS
	нсн	VN	TN	0.09	0.000121	PASS
		VH	TN	-1.76	-0.002475	PASS
		VL	TN	-1.76	-0.002482	PASS
	LCH	VN	TN	-2.30	-0.003248	PASS
160 AM		VH	TN	-2.17	-0.003067	PASS
16QAM	_ · · ·	VL	TN	-0.82	-0.001148	PASS
	MCH	VN	TN	-0.11	-0.000161	PASS
	(0)	VH	TN	-2.55	-0.003586	PASS

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No. : EED32I00216507 Page 61 of 68

No. : EED3	32100216	507			Page 61 of	
		VL	TN	-1.80	-0.002535	PASS
	нсн	VN	TN	-2.62	-0.003682	PASS
		VH	TN	0.29	0.000402	PASS
			Tempe	erature		
Modulation	Channel	Voltage [Vdc]	Temperature $(^{\circ}\mathbb{C})$	Deviation (Hz)	Deviation (ppm)	Verdict
		VN	-30	-1.40	-0.001977	PASS
		VN	-20	-1.52	-0.002139	PASS
	(3)	VN	-10	-1.24	-0.001755	PASS
	(3)	VN	0	-2.89	-0.004076	PASS
	LCH	VN	10	-0.59	-0.000827	PASS
		VN	20	-1.82	-0.002562	PASS
		VN	30	-1.70	-0.002401	PASS
		VN	40	0.20	0.000282	PASS
		VN	50	-1.43	-0.002018	PASS
		VN	-30	-3.29	-0.004634	PASS
		VN	-20	0.27	0.000383	PASS
		VN	-10	-0.39	-0.000544	PASS
	/°>	VN	0	-1.30	-0.001833	PASS
16QAM	MCH	VN	10	-2.47	-0.003486	PASS
	(6)	VN	20	-1.77	-0.002498	PASS
		VN	30	0.70	0.000987	PASS
		VN	40	-0.24	-0.000343	PASS
		VN	50	-0.14	-0.000201	PASS
		VN	-30	-1.40	-0.001972	PASS
		VN	-20	-0.49	-0.000684	PASS
		VN	-10	-2.12	-0.002978	PASS
		VN	0	-1.10	-0.001549	PASS
	нсн	VN	10	0.89	0.001247	PASS
		VN	20	1.53	0.002153	PASS
	(0,)	VN	30	-2.42	-0.003400	PASS
		VN	40	-0.40	-0.000563	PASS
		VN	50	-0.56	-0.000785	PASS
		VN	-30	-3.52	-0.004963	PASS
		VN	-20	-0.37	-0.000525	PASS
		VN	-10	-1.87	-0.002643	PASS
		VN	0	-4.21	-0.005932	PASS
	LCH	VN	10	-1.37	-0.001937	PASS
		VN	20	-4.01	-0.005649	PASS
	(3)	VN	30	-3.48	-0.004903	PASS
	(0,)	VN	40	-2.49	-0.003511	PASS
		VN	50	-2.06	-0.002905	PASS
QPSK		VN	-30	-0.41	-0.000584	PASS
		VN	-20	-1.39	-0.001954	PASS
		VN	-10	-1.03	-0.001451	PASS
		VN	0	-2.06	-0.002901	PASS
	мсн	VN	10	-2.82	-0.003969	PASS
		VN	20	-0.79	-0.001108	PASS
		VN	30	-2.22	-0.003123	PASS
	(°)	VN	40	-0.33	-0.000463	PASS
	(67)	VN	50	-2.39	-0.003365	PASS
	HCH	VN	-30	-0.90	-0.001268	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32l00216507 Page 62 of 68

	VN	-20	-2.13	-0.002998	PASS
	VN	-10	-3.53	-0.004970	PASS
	VN	0	-1.24	-0.001750	PASS
	VN	10	-0.13	-0.000181	PASS
(6)	VN	20	-1.07	-0.001509	PASS
	VN	30	-1.73	-0.002434	PASS
	VN	40	-1.06	-0.001489	PASS
	VN	50	-0.46	-0.000644	PASS

Appendix F: Field strength of spurious radiation

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark					
	0.009MHz-30MHz	Peak	10kHz	30kHz	Peak					
	30MHz-1GHz	Peak 120kHz		300kHz	Peak					
	Above 1GHz	Peak	1MHz	3MHz	Peak					
Measurement	1. Scan up to 10 th harmor			and the same of th	•					
Procedure:	2. The technique used to antenna substitution m actual ERP/EIRP emisTest procedure as below:1) The EUT was powered	ethod. Substitusion levels of the	ition method ne EUT.	d was perfo	rmed to detern	nine the				
	Anechoic Chamber. The length, modulation monormood frequency of the transmal states. 2) The EUT was set 3 men interference-receiving antenna tower.	ne antenna of the de and the meanitter under testers(above 180 antenna, which	ne transmitte asuring rece t. GHz the dista was mount	er was exte eiver shall b ance is 1 m ed on the to	nded to its ma e tuned to the eter) away fro op of a variable	ximum m the e-height				
	 3) The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made. 4) Steps 1) to 3) were performed with the EUT and the receive antenna in both vertical and horizontal polarization. 									
	 5) The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter 6) A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 3) is obtained for this set of conditions. 									
	7) The output power into the substitution antenna was then measured. 8) Steps 6) and 7)were repeated with both antennas polarized. 9) Calculate power in dBm by the following formula: ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd) EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi) EIRP=ERP+2.15dB									
	where: Pg is the generator ou 10) Test the EUT in the low 11) The radiation measurer operation mode,And fo 12) Repeat above procedu	vest channel, the ments are performed the X axis	ne middle chormed in X, positioning	nannel the H Y, Z axis po which it is v	Highest channe ositioning for E vorse case.					
Limit:	Attenuated at least 43+10kg	/ 4 3		1 4 91		1 45				

Test Data: Above 1GHz QPSK

/3		Band 1	7 23755 channel/B	W5(lowest	channel)		:5
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1410.080	151	34	-49.54	-13	-36.54	Pass	Н
2113.586	150	221	-45.33	-13	-32.33	Pass	H
2406.584	152	20	-40.67	-13	-27.67	Pass	н
3616.451	149	78	-49.81	-13	-36.81	Pass	Н
6187.929	150	200	-47.76	-13	-34.76	Pass	Н
9134.575	160	146	-45.75	-13	-32.75	Pass	Н
1115.673	155	20	-57.12	-13	-44.12	Pass	V
1410.080	151	157	-46.68	-13	-33.68	Pass	V
2118.973	150	20	-41.90	-13	-28.90	Pass	V
3588.939	150	360	-49.32	-13	-36.32	Pass	V
6445.156	155	89	-46.32	-13	-33.32	Pass	V
8145.925	150	80	-46.10	-13	-33.10	Pass	V

		Band 1	7 23790 channel/B	W5(middle	channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1420.890	151	88	-44.62	-13	-31.62	Pass	Н
2129.789	150	200	-30.41	-13	-17.41	Pass	Н
2846.851	155	151	-48.83	-13	-35.83	Pass	н
6379.864	150	20	-45.87	-13	-32.87	Pass	Н (С.
9441.913	152	360	-45.66	-13	-32.66	Pass	Н
12055.600	150	45	-44.20	-13	-31.20	Pass	Н
1065.707	150	27	-52.41	-13	-39.41	Pass	V
1420.890	148	10	-44.06	-13	-31.06	Pass	V
2129.789	144	251	-23.39	-13	-10.39	Pass	V
2412.718	150	20	-42.93	-13	-29.93	Pass	V
2846.851	156	20	-39.02	-13	-26.02	Pass	V
6428.771	155	36	-46.14	-13	-33.14	Pass	V

		Band 1	7 23825 channel/B	W5(highest	channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1428.142	150	187	-46.33	-13	-33.33	Pass	Н
2140.659	155	20	-33.50	-13	-20.50	Pass	Н
2412.718	151	36	-39.37	-13	-26.37	Pass	Н
3757.208	150	22	-49.54	-13	-36.54	Pass	Н (б
6494.564	148	100	-46.30	-13	-33.30	Pass	Н
11782.550	149	360	-44.08	-13	-31.08	Pass	Н
1424.511	151	89	-41.19	-13	-28.19	Pass	V
2140.659	150	20	-21.65	-13	-8.65	Pass	V
2854.107	150	187	-40.74	-13	-27.74	Pass	V
6283.164	156	20	-46.78	-13	-33.78	Pass	V
9859.472	150	36	-45.29	-13	-32.29	Pass	V
12303.620	148	22	-42.82	-13	-29.82	Pass	V

		Band 1	7 23755 channel/B	W5(lowest	channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1406.496	155	337	-45.35	-13	-32.35	Pass	Н
2113.586	150	20	-41.56	-13	-28.56	Pass	Н
2412.718	154	145	-42.61	-13	-29.61	Pass	Н
3766.785	150	20	-50.01	-13	-37.01	Pass	H (C)
6412.427	152	151	-45.64	-13	-32.64	Pass	Н
9441.913	148	61	-45.20	-13	-32.20	Pass	Н
1410.080	149	40	-46.73	-13	-33.73	Pass	V
2118.973	150	214	-42.30	-13	-29.30	Pass	V
3728.625	156	22	-49.99	-13	-36.99	Pass	V
6428.771	155	57	-45.29	-13	-32.29	Pass	V
9157.857	150	60	-45.80	-13	-32.80	Pass	V
11603.960	150	10	-44.39	-13	-31.39	Pass	V

Page 66 of 68

		Band 1	7 23790 channel/B	W5(middle	channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1424.511	151	88	-42.99	-13	-29.99	Pass	Н
2135.217	150	47	-22.92	-13	-9.92	Pass	Н
2412.718	152	154	-37.52	-13	-24.52	Pass	Н
2846.851	150	220	-39.44	-13	-26.44	Pass	Н (
6299.178	150	360	-47.19	-13	-34.19	Pass	Н
9298.801	154	15	-44.48	-13	-31.48	Pass	Н
1420.890	155	78	-42.52	-13	-29.52	Pass	V
2135.217	151	22	-22.11	-13	-9.11	Pass	V
2406.584	148	10	-41.01	-13	-28.01	Pass	V
2846.851	149	317	-38.87	-13	-25.87	Pass	V
6544.350	150	70	-45.97	-13	-32.97	Pass	V
10587.850	150	60	-45.30	-13	-32.30	Pass	V

		Band 1	7 23825 channel/B	W5(highes	t channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1424.511	155	87	-47.20	-13	-34.20	Pass	Н
2140.659	147	254	-34.54	-13	-21.54	Pass	Н
3607.257	150	115	-50.93	-13	-37.93	Pass	Н
6527.712	150	67	-46.98	-13	-33.98	Pass	H
7961.425	152	45	-47.05	-13	-34.05	Pass	н
10087.960	156	95	-46.49	-13	-33.49	Pass	Н
1428.142	150	221	-42.77	-13	-29.77	Pass	V
2140.659	154	20	-27.22	-13	-14.22	Pass	V
2854.107	149	360	-46.70	-13	-33.70	Pass	V
4433.263	160	70	-51.01	-13	-38.01	Pass	V
6396.125	155	81	-47.07	-13	-34.07	Pass	V
8973.250	150	245	-46.57	-13	-33.57	Pass	V

Note:

1) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 1GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 67 of 68

PHOTOGRAPHS OF TEST SETUP

Test model No.: TN-IVS-8000

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 68 of 68

Annex A: Appendix A: PHOTOGRAPHS OF EUT Constructional Details

(Please See Appendix A)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com