"The function of education is to teach one to think intensively and to think critically. Intelligence plus character – that is the goal of true education." – Martin Luther King, Jr.

LECTURE 2

FUNCTIONS

ANDREW MISSELDINE

1.2. Sets and Equivalence Relations

Definition 1.2.12. Given sets A and B, we can define a new set $A \times B$, called the <u>Cartesian product</u> of A and B, as a set of ordered pairs. That is,

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}.$$

We define the Cartesian product of n sets to be

$$\prod_{i=1}^{n} A_{i} = A_{1} \times \ldots \times A_{n} = \{(a_{1}, \ldots, a_{n}) \mid a_{i} \in A_{i} \text{ for } i = 1, \ldots, n\}.$$

If $A = A_1 = A_2 = \ldots = A_n$, we often write A^n for $A \times \ldots \times A$ (where A would be written n times). For example, the set \mathbb{R}^3 consists of all of 3-tuples of real numbers.

Example 1.2.13. If
$$A = \{x, y\}$$
, $B = \{1, 2, 3\}$, and $C = \emptyset$, then $A \times B$ is the set $A \times B = \{(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)\}$ and $A \times C = \emptyset$.

Definition 1.2.14. A **relation** R between the sets A and B is a subset of their Cartesian product, that is, $R \subseteq A \times B$. For elements $a \in A$ and $b \in B$, we say that a is **related to** b with respect to R, denoted a R b, if and only if $(a, b) \in R$.

We say that a relation $f \subseteq A \times B$ is a **function** or **mapping** from set A to set B, denoted $f: A \to B$ or $A \xrightarrow{f} B$, if each element $a \in A$ occurs in exactly one ordered pair of the form (a,b) in f, that is, each $a \in A$ is related to exactly one $b \in B$. This unique element b is called the **image** of a with respect to f, and this unique relationship is expressed as f(a) = b or $f: a \mapsto b$. The set A is called the **domain** of f, the set B is called the **codomain** of f, the set

$$f(A) = \{ f(a) \mid a \in A \}$$

is called the **image** (or **range**) of f, and, any subset $X \subseteq B$, the set

$$f^{-1}(X) = \{ a \in A \mid f(a) \in X \}$$

is called the **pre-image** of X with respect to f.

Let B^A denote the set of all functions of the form $f: A \to B$. This notation is used because if |A| = a and |B| = b, then $|B^A| = b^a$, where |S| denotes the cardinality of the set S.

Example 1.2.15. In calculus, functions between real numbers are often defined using formulas such as $f(x) = x^3$ or $g(x) = e^x$. Such function expressions are to be understood as meaning the mapping $f: x \mapsto f(x)$ is given by substitution, for example $f(2) = (2)^3 = 8$ and $g(0) = e^0 = 1$.

In this context, the domain and codomain is usually not stated, but the convention is to set them as the maximal subsets of \mathbb{R} such that $f(x) \in \mathbb{R}$ for each $x \in \text{dom } f$. For example, if $f_1(x) = \frac{1}{x}$ and $f_2(x) = \sqrt{x}$,

1

then $f_1(0)$ and $f_2(-1)$ do not evaluate to be real numbers. Therefore, the convention is to restrict the sets so that

$$f_1:(\infty,0)\cup(0,\infty)\to(\infty,0)\cup(0,\infty)$$
 and $f_2:[0,\infty)\to[0,\infty)$.

On the other hand, the functions above have the form

$$f: \mathbb{R} \to \mathbb{R}$$
 and $g: \mathbb{R} \to (0, \infty)$.

Example 1.2.16. Consider the relation $f: \mathbb{Q} \to \mathbb{Z}$ given by f(p/q) = p. We know that $\frac{1}{2} = \frac{2}{4}$, but is $f\left(\frac{1}{2}\right) = 1$ or 2? This relation cannot be a mapping because it is not well-defined. A relation is **well-defined** if each element in the domain is assigned to a unique element in the range. This is particularly a problem when "mappings" are defined on sets of equivalence classes according to representatives from the classes. If not carefully defined, such "mappings" might not be functions.

Definition 1.2.17. Given two functions $f: B \to C$ and $g: A \to B^{\ddagger}$ the <u>composition</u> of f and g, denoted $f \circ g: A \to C$, is defined by

$$(f \circ g)(x) = f(g(x)).$$

Example 1.2.18. If
$$f(x) = x^3$$
 and $g(x) = e^x$, then $(f \circ g)(x) = (e^x)^3 = e^{3x}$.

Definition 1.2.19. Let $f: A \to B$ be a function. Let $a_1, a_2 \in A$. We say that f is **injective** or **one-to-one** if $f(a_1) = f(a_2)$ implies that $a_1 = a_2$, or in other words, for each $b \in f(A)$ there is a unique $a \in A$ such that f(a) = b.

We say that f is **surjective** or **onto** if the image of f equals the codomain of f (f(A) = B), or in other words, for all $b \in B$ there exists an $a \in A$ such that f(a) = b.

If f is both injective and surjective, then we say that f is **bijective**.

Example 1.2.20. If $f: \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$, and $h: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3$, $g(x) = e^x$, and $h(x) = x^2$, then f is bijective, g is injective but not surjective, and h is neither injective nor surjective. On the other hand, the mapping $g_1: \mathbb{R} \to (0, \infty)$ and $h_1: \mathbb{R} \to [0, \infty)$ given by $g_1(x) = e^x$ and $h_2(x) = x^2$ are both surjective maps but only g_1 is injective. If we consider $h_2(x): [0, \infty) \to [0, \infty)$ given by $h_2(x) = x^2$, then h_2 is bijective. For these reasons, the convention for defining functions in calculus is very imprecise for higher mathematics.

Theorem 1.2.21. Let $f: A \to B$, $g: B \to C$, and $h: C \to D$. Then

- (a) The composition of mappings is associative, that is, $(h \circ g) \circ f = h \circ (g \circ f)$;
- (b) If f and q are both surjective, then $g \circ f$ is surjective;
- (c) If f and q are both injective, then $q \circ f$ is injective;
- (d) If f and g are both bijective, then $g \circ f$ is bijective.

Proof. Let $a \in A$. Then

$$[(h \circ g) \circ f](a) = (h \circ g)(f(a)) = h(g(f(a))) = h((g \circ f)(a)) = [h \circ (g \circ f)](a),$$

[†]Equivalence relations will be reviewed in the next lecture.

[‡]It is not necessary that the codomain of g and domain of f be equal. Instead function composition can be defined when the domain of f is a subset of the codomain of g.

which proves (a).

Let $c \in C$. Since g is surjective, there exists some $b \in B$ such that g(b) = c. Likewise, since f is surjective, there exists some $a \in A$ such that f(a) = b. Thus,

$$(g \circ f)(a) = g(f(a)) = g(b) = c,$$

which proves (b).

Part (c) is left as an exercise to the student. Part (d) follows immediately from (b) and (c).

Homework:

 ${\rm Judson}\ 1.4:\ 2,\ 17,\ 18,\ 20,\ 22$