전산구조진동해석 (실습3)

부정정보 문제 해석 실습 및 숙제

실습과제 제출 마감일 : 2025. 10. 01. 수업시간 중

숙제 제출 마감일: 2025. 10. 10. PM 6

제출방법 : 본 PPT에 채워서 이메일(kthmax@cju.ac.kr)로 제출

학번: 17415009

이름 : 서보근

실습(중실축)

Fill in the blank. (refer to the 2, 3 and 4 page) Solve the maximum deflection (δ_{max}) at the center of the beam. Unit is mm.

Туре	/ _x (m ⁴)	W (<i>N</i>)	L(m)	<i>E</i> (<i>N</i> /m²)	δ_{max} (mm)		
					Calculation (이론값)	Simulation (해석값)	Error(%) (오차)
Solid type	3.068e-7	600	1	2.10e11	4.8504e-2	4.9722e-2	2.544

실습과제 결과

등가응력=유효응력(Equivalent Stress=von Mises Stress)

Y축 변형량(Y-direction Deformation)

숙제(중공축)

Fill in the blank. (refer to the 2, 3 and 4 page) Solve the maximum deflection (δ_{max}) at the center of the beam. Unit is mm.

	pe / _x (m ⁴) W (<i>N</i>) L(m) <i>E</i> (<i>N</i> /m ²)		δ_{max} (mm)				
Type		W (<i>M</i>)	L(m)	<i>E</i> (<i>N</i> /m ²)	Calculation (이론값)	Simulation (해석값)	Error(%) (오차)
Α	2.6704e-7	600	1	2.1e11	0.05573	0.058698	5.3

숙제 결과

등가응력=유효응력(Equivalent Stress=von Mises Stress)

Y축 변형량(Y-direction Deformation)

참고자료

구분	수학적 표현	공식활용	사각형	중실축	중공축
단면1차 모멘트 <i>Q_x, Q_y</i>	$Q_{x} = \int y dA$ $Q_{y} = \int x dA$	$Q_{X} = \overline{y}A$ $Q_{y} = \overline{X}A$	h	D	$X = \frac{D_1}{D_2}$
단면2차 모멘트 $I_{\rm x},I_{\rm y}$	$I_{x} = \int y^{2} dA$	$I_x = K_y^2 A$ $I_y = K_x^2 A$	$I_x = \frac{bh^3}{12}$ $I_y = \frac{hb^3}{12}$	$I_{x} = I_{y} = \frac{\pi D^{4}}{64}$	$I_x = I_y = \frac{\pi D_2^4}{64} (1 - \chi^4)$
극단면2차 모멘트 <i>I,</i>	$I_p = \int r^2 dA$	$I_{g} = I_{\chi} + I_{\gamma}$	$I_{\rho} = \frac{bh}{12} \left(b^2 + h^2 \right)$	$I_{p} = \frac{\pi D^4}{32}$	$I_{p} = \frac{\pi D_{2}^{4}}{32} (1 - \chi^{4})$
단면계수 <i>Z</i>	$Z_{x} = \frac{I_{x}}{e_{x}}$ $Z_{y} = \frac{I_{y}}{e_{y}}$	$Z = \frac{M}{\sigma_b}$	$Z_x = \frac{bh^2}{6}$ $Z_y = \frac{hb^2}{6}$	$Z_x = Z_y = \frac{\pi D^3}{32}$	$Z_x = Z_y = \frac{\pi D_2^3}{32} (1 - x^4)$
극단면 계수 <i>Z,</i>	$Z_{\rho} = \frac{I_{\rho}}{e}$	$Z_{D} = \frac{T}{\tau}$		$Z_{\rho} = \frac{\pi D^3}{16}$	$Z_{p} = \frac{\pi D_{0}^{3}}{16} (1 - x^{4})$

