

Predictive Maintenance

Daniel Weissenberger

Eduardo Stein-Mössner

Jonas Sigmund

DHBW | Gruppe 8 | 25.03.2025

Gliederung & Methode

Ohne Bereitstellung und Wartung, da lediglich wissenschaftliche Abhandlung.

1. Business Understanding

1. Predictive Maintenance

- Vernetzte Maschinen
- kontinuierliche Datenerhebung über Sensoren
- KI und ML zu Optimierung des Wartungsprozesses

Relevanz

Ziel

- Fehler sollen frühzeitig erkannt werden und vor dem Ausfall behoben werden
- Genauen Fehler ermitteln um bestmöglich vorbereitet zu sein

- Verwendung von ML und datengetriebenen Analyseverfahren
- CHRISP ML(Q) ohne Monitoring und Maintenance

Vorgehen

1. Fragestellung

Wie genau lassen sich die Fehlerursachen einer Maschine durch Sensordaten mithilfe von Klassifikationsmodellen identifizieren (gemessen anhand von F1-Score mit Precision und Recall)?

- S: Mehrere Machine-Learning-Modelle sollen entwickelt werden, das verschiedene Fehlerursachen basierend auf Sensordaten klassifizieren.
- M: Die Modellperformance wird anhand von F1-Score, Precision und Recall gemessen.
- A: Durch Explorative Datenanalyse und ausführliches Modeling machbar.
- **R:** Durchführbar innerhalb des geplanten Zeitrahmens auf der Grundlage eines geeigneten Datensatzes und der bisher erworbenen Kompetenzen.
- **T**: Umsetzung innerhalb von 6 Wochen mit Evaluierung in Woche 7.

2. Data Understanding

2. Datensatz

- Synthetischer Datensatz (Random Walk Process)
- Sensordaten einer Fräsmaschine
- Predictive Maintenance
- Bildet Fehler und Fehlerursache ab
- 10.000 Zeilen x 14 Spalten

Input	Output
 Product-Id Type Air temperature Process temperature Torque Tool wear 	 tool wear failure heat dissipation failure power failure overstrain failure random failures

Nur **3,39**% der Maschinen sind überhaupt defekt

1. Class-Imbalance

Fehler-Typen nach Maschinen-Typ

Overall → Heat Dissipation

Type: H → Tool Wear

Type: M → Power

Type: L → Overstrain

2. Class-Imbalance

2. Erkenntnisse

Fehlerursache

Bestimmte Fehler treten verstärkt bei spezifischen Sensordatenwerten auf

Korrelationen

Negative Korrelation zwischen Drehmoment und Drehzahl (-0.88)

Positive Korrelation zwischen Lufttemperatur und Prozesstemperatur (0.88)

Klassenverteilung

Unausgeglichene Klassenverteilung → Sampling-Strategien notwendig

3. Data Preperation

3. Kategorische Merkmale

One-Hot-Encoding

Dummy-Variablen für den Maschinen-Typ einführen (3 für Übersicht und Interpretierbarkeit)

Label erstellen

Kategorisches Label aus den Dummy-Variablen der Fehlertypen ableiten. (5 + 1)

3. Datenaufteilung

Oversampling

- Nur Trainingsdaten
 werden oversampled
- SMOTETomek von imbalanced-learn (imblearn)
- SMOTE: Synthetic Minority Over-sampling Technique
- Tomek-Links: reduziert Datenpunkte der Mehrheitsklasse
- 46.000 statt 8.000 Datenpunkte mit ausgeglichenen Klassen

Traning-Test-Split

80:20 → möglichst viele Daten fürs Training verwenden.

3. Standardisierung

Notwendig um die Diskriminierung von Merkmalen mit großem Skalenbereich zu vermeiden.

Standard-Skalierung, um die relative Verteilung beizubehalten, die Interpretierbarkeit zu verbessern und dennoch nicht so anfällig gegenüber Ausreißern zu sein.

Gleiche Parameter für Trainings- und Testdaten

$$z = \frac{x - \mu}{\sigma}$$

$$\mu = \text{Mean}$$

$$\sigma = \text{Standard Deviation}$$

Zuletzt werden diese Trainings- und Testdaten in zwei seperaten CSV-Dateien gespeichert. (fixed Random State)

4. Modelling

4. Zielsetzung

Mehrklassige Klassifikation über die Zielvariable "label" mit 5 + 1 Klassen. (→ Supervized Learning)

Überwachung der Maschinen

Sekundär Inference

Verbesserung durch Analyse

 $2 \times Precision \times Recall$ Vergleichsmetrik: F1-Score F1 =Precision + Recall

Da sowohl **Precision** als auch **Recall** berücksichtigt werden.

Denn unerkannte Ausfälle (FN) verursachen hohe Reparaturkosten. Und Fehlalarme (FP) bringen die Produktion ins Stocken.

Modell	Prediction	Inference
Logistic Regression	Gut	Sehr gut
Random Forest	Sehr gut	Mittel
Support Vector Machine	Gut	Mittel
K-Nearest Neighbors	Mittel	Schlecht
Decision Tree	Gut	Sehr gut
KNN (optimales K)	Gut	Mittel
Geprunter Decision Tree	Gut	Sehr gut

4. Hyperparametertuning

Random Forest

- n_estimators
- depth
- min_samples_split
- min_samples_leaf

K-Nearest-Neighbors

k Nachbarn

Descicion Tree

ccp_alpha

Für den RF und KNN Algorithmus wurde auf eine Grid Search und 5-fach Kreuzvalidierung zurückgegriffen.

4. Analyse

Feature-Import des RandomForest

4. Analyse

Z;I

5. Evaluation

5. Modellperformance

Modell	Accuracy	Precision	Recall	F1-Score	Modell	Accuracy	Precision	Recall	F1-Score
Logistic Regression	0.9171	0.9158	0.9171	0.9161	Logistic Regression	0.7915	0.9734	0.7915	0.8664
Random Forest	1.0000	1.0000	1.0000	1.0000	Random Forest	0.9625	0.9733	0.9625	0.9676
Decision Tree	1.0000	1.0000	1.0000	1.0000	Decision Tree	0.9505	0.9749	0.9505	0.9621
Support Vector Machine	0.9737	0.9748	0.9737	0.9733	Support Vector Machine	0.8535	0.9717	0.8535	0.9052
K-Nearest Neighbors	0.9893	0.9894	0.9893	0.9891	K-Nearest Neighbors	0.9105	0.9638	0.9105	0.9346
Random Forest (Hyperparameter-Tuning)	1.0000	1.0000	1.0000	1.0000	Random Forest (Hyperparameter-Tuning)	0.9635	0.9734	0.9635	0.9681
KNN mit optimalem K	1.0000	1.0000	1.0000	1.0000	KNN mit optimalem K	0.9385	0.9601	0.9385	0.9490
Decision Tree mit Pruning	0.9985	0.9985	0.9985	0.9985	Decision Tree mit Pruning	0.9495	0.9752	0.9495	0.9618

Tab. 5: Performance der Modelle auf den Trainingsdaten

Tab. 6: Performance der Modelle auf den Testdaten

5. Modellperformance

- Evaluierung anhand von Accuracy, Precision, Recall und F1-Score
- Modelle mit starker Abweichung zwischen Trainings- und Test-Metriken neigen zu Overfitting
- Random Forest mit Hyperparameter-Tuning zeigte die beste Performance
- Random Forest mit Hyperparameter-Tuning generalisiert gut

5. Modellflexibilität

Modell	Parameter
Logistic Regression	{'C': 1.0}
Random Forest	{'n_estimators': 100, 'max_depth': None}
Decision Tree	{'max_depth': None}
Support Vector Machine	{'C': 1.0}
K-Nearest Neighbors	{'n_neighbors': 5}
Random Forest (Hyperparameter-Tuning)	{'n_estimators': 200, 'max_depth': 20}
KNN mit optimalem K	{'n_neighbors': 10}
Decision Tree mit Pruning	{'ccp_alpha': 3.2e-05}

Tab. 7: Modellparameter zur Bewertung der Flexibilität

- Modelle mit mehr Parametern sind flexibler, können aber Overfitting verursachen
- Entscheidungsbaum-basierte Modelle lassen sich gut regulieren (Pruning)
- Random Forest mit Hyperparameter-Tuning hat eine hohe Flexibilität durch viele Bäume (n_estimators, max_depth)

5. Einfluss des Oversamplings

- Vergleich der Boxplots von Original- und Oversampelten Daten
- Keine signifikante Veränderung in der Verteilung der Merkmale
- Oversampling hat keinen negativen Einfluss auf die Modellleistung

Air temperature [K] mit Maschinen-Fehler Indikatoren und Verteilung nach Fehler-Typ

Air temperature [K] skaliert und Oversampelt mit Maschinen-Fehler Indikatoren und Verteilung nach Fehler-Typ

28

Torque [Nm] mit Maschinen-Fehler Indikatoren und Verteilung nach Fehler-Typ

Torque [Nm] skaliert und Oversampelt mit Maschinen-Fehler Indikatoren und Verteilung nach Fehler-Typ

29

6. Fazit

6. Modellwahl

• Random Forest mit Hyperparameter-Tuning wurde als bestes Modell gewählt

• Trotz F1-Score von 1.0 auf Trainingsdaten zeigt es keine Overfitting-Tendenzen

• Gute Generalisierung auf Testdaten mit F1-Score von 0.9681

6. Ausblick

Der Datensatz ist synthetisch generiert reale Produktionsdaten könnten abweichen

Integration in ein produktives Überwachungssystem auf Echtzeit Basis

Kombination verschiedener Modellen für individuelle Fehler

Vielen Dank für Ihre Aufmerksamkeit

Gibt es noch Fragen?

Employers
when you tell
them your app
uses linear
regression

Employers
when you tell
them your app
uses "machine
learning and
A.I."

Predictive Maintenance

Daniel Weissenberger

Eduardo Stein-Mössner

Jonas Sigmund

DHBW | Gruppe 8 | 25.03.2025