REDES NEURONALES 2020

Práctico 2

Nota: Dado que somos muchos y yo estoy solo para preparar y dictar las clases y corregir los prácticos, les solicito **encarecidamente** que:

- Entreguen el práctico **solo** en formato pdf. Por favor no manden las notebook a menos que yo se los pida.
- El práctico no puede tener más de cuatro (4) páginas. Sino lo devolveré.
- Envíen los prácticos a mi cuenta de la universidad (francisco.tamarit@unc.edu.ar) y no a mi cuenta privada.

Problema 1: Considerá el modelo Integrate-and-Fire para la evolución temporal del potencial de membrana $V_m(t)$ al tiempo t entre el interior y el exterior de una neurona genérica:

$$\tau_m \frac{\partial V_m(t)}{\partial t} = E_L - V_m(t) + R_m I_e(t),$$

donde E_L es el potencial en reposo, $I_e(t)$ es una corriente eléctrica externa (cuyo valor positivo corresponde a una corriente entrante) que se inyecta (input), R_m es la resistencia y τ_m es el tiempo característico de la membrana $\tau_m = r_m c_m$ (donde r_m y c_m son respectivamente la resistencia y la capacitancia de la membrana por unidad de área). Esta ecuación se puede reescribir como:

$$\frac{dV_m(t)}{dt} = \frac{1}{\tau_m} \left(E_t - V_m(t) + R_m I_e(t) \right).$$

a) Resolvé analíticamente esta ecuación sin incorporar el umbral de disparo para el caso de una corriente externa constante $I_e(t) = I_e$ y $V_m(t=0) = V_0$. Grafica la solución para $0 \, ms \leq t \leq 200 \, ms$ con los siguientes valores de los parámetros:

$$V_m(t=0) = E_L = -65 \, mV, \qquad R = 10 \, M\Omega, \qquad V_{th} = -50 \, mV, \qquad \tau_m = 10 \, ms.$$

Discutí e interpretá.

b) Usá el método de Runge Kutta de cuarto orden para resolver el problema de valor inicial del modelo Integrate-and-Fire:

$$\frac{dV_m(t)}{dt} = \frac{1}{\tau_m} (E_L - V_m(t) + R_m I_e(t)) \qquad \text{con} \quad V(t = 0) = E_L, \quad 0 \, ms \le t \le 200 \, ms, \quad y \quad h = 0.05 \, s,$$

donde h es el paso de integración y los paráetros toman los valores usados en el punto a). Tené presente que ahora **debés agregar** en la simulación el umbral de disparo propio del modelo Integrate-and-Fire. O sea, si $V_m(t)$ ultrapasa el valor umbral V_{th} , debés restituir el valor de $V_m(t)$ a E_L . La corriente externa $I_e(t)$ debe ser constante y tomar el valor $I_e = 2 nA$. Graficá la aproximación numérica de $V_m(t)$ superpuesta con la solución analítica del punto a) (que no tenía disparos) de $V_m(t)$ 0 $ms \le t \le 200 ms$.

- c) Ahora variá los valores de I_e entre 0 y 6 y calculá para cada valor la frecuencia de disparo. Graficá la frecuencia de disparo ω vs. I_e (recordá la relación entre frecuencia y período). Intentá resolver esta ecuación $\omega(I_2)$ analíticamente (no es obligatorio esto).
- d) Repetí el punto b) pero ahora con una corriente aleatoria con distribución uniforme entre 0~nA y 5~nA para cada actualización.

1