

Audit Report February, 2024



For





## **Table of Content**

| Executive Summary                                                                                                                                                                                                                                   | 02                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Number of Security Issues per Severity                                                                                                                                                                                                              | 03                   |
| Checked Vulnerabilities                                                                                                                                                                                                                             | 04                   |
| Techniques and Methods                                                                                                                                                                                                                              | 05                   |
| Types of Severity                                                                                                                                                                                                                                   | 06                   |
| Types of Issues                                                                                                                                                                                                                                     | 06                   |
| High Severity Issues                                                                                                                                                                                                                                | 07                   |
| 1. Wrong accounting of user balance in scaledBalanceOf function                                                                                                                                                                                     | 07                   |
|                                                                                                                                                                                                                                                     |                      |
| Medium Severity Issues                                                                                                                                                                                                                              | 80                   |
| Medium Severity Issues  1. Updating the timestamp for previous investments will delay the user from withdrawing funds                                                                                                                               | 08<br>08             |
| 1. Updating the timestamp for previous investments will delay the user from                                                                                                                                                                         |                      |
| <ol> <li>Updating the timestamp for previous investments will delay the user from withdrawing funds</li> <li>If the dividend is not called by the owner then the user will not be able to receive</li> </ol>                                        | 08                   |
| <ol> <li>Updating the timestamp for previous investments will delay the user from withdrawing funds</li> <li>If the dividend is not called by the owner then the user will not be able to receive any reward</li> </ol>                             | 08                   |
| <ol> <li>Updating the timestamp for previous investments will delay the user from withdrawing funds</li> <li>If the dividend is not called by the owner then the user will not be able to receive any reward</li> <li>Loss of user funds</li> </ol> | 08<br>08<br>09<br>10 |



## **Executive Summary**

Project Name Alpha

Overview AlphaBTC is a DeFi protocol to facilitate the exchange of BTCpx

tokens for aBTCpx tokens. Users can deposit BTCpx into the contract to receive aBTCpx tokens, which can be withdrawn after a vesting period. The contract periodically distributes dividends to token holders based on the total supply of aBTCpx, the APR, and the time since the last distribution. Controlled by an owner, the contract ensures safety measures such as preventing transfers of aBTCpx tokens and recovering excess tokens. Overall, AlphaBTC offers a mechanism for users to earn rewards by depositing and holding BTCpx tokens in a transparent and trustless manner.

Timeline 12th January 2024 - 5th February 2024

**Updated Code Received** 6th February 2024

Second Review 8th February 2024 - 13th February 2024

Method Manual Review, Functional Testing, Automated Testing, etc. All the

raised flags were manually reviewed and re-tested to identify any

false positives.

Audit Scope The scope of this audit was to analyze the Alpha codebase for

quality, security, and correctness.

Source Code <a href="https://github.com/Proxy-Protocol/AlphaBTC">https://github.com/Proxy-Protocol/AlphaBTC</a>

**Branch** ddaa7d2191d185f35c9ca0f67e82dc069464f805

Fixed In ce8c42a00667d1c0da0a9b267025fe04bee7eefd

## **Number of Security Issues per Severity**



|                           | High | Medium | Low | Informational |
|---------------------------|------|--------|-----|---------------|
| Open Issues               | 0    | 0      | 0   | 0             |
| Acknowledged Issues       | 0    | 3      | 0   | 0             |
| Partially Resolved Issues | 0    | 0      | 0   | 0             |
| Resolved Issues           | 1    | 0      | 0   | 0             |

BTC Proxy Alpha - Audit Report

## **Checked Vulnerabilities**



✓ Timestamp Dependence

Gas Limit and Loops

✓ DoS with Block Gas Limit

Transaction-Ordering Dependence

✓ Use of tx.origin

Exception disorder

Gasless send

✓ Balance equality

✓ Byte array

✓ Transfer forwards all gas

ERC20 API violation

Malicious libraries

Compiler version not fixed

Redundant fallback function

Send instead of transfer

Style guide violation

Unchecked external call

Unchecked math

Unsafe type inference

Implicit visibility level

## **Techniques and Methods**

Throughout the audit of smart contracts, care was taken to ensure:

- The overall quality of code.
- Use of best practices.
- Code documentation and comments match logic and expected behavior.
- Token distribution and calculations are as per the intended behavior mentioned in the whitepaper.
- Implementation of ERC-20 token standards.
- Efficient use of gas.
- Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods, and tools were used to review all the smart contracts.

### **Structural Analysis**

In this step, we have analyzed the design patterns and structure of smart contracts. A thorough check was done to ensure the smart contract is structured in a way that will not result in future problems.

## **Static Analysis**

A static Analysis of Smart Contracts was done to identify contract vulnerabilities. In this step, a series of automated tools are used to test the security of smart contracts.

### **Code Review / Manual Analysis**

Manual Analysis or review of code was done to identify new vulnerabilities or verify the vulnerabilities found during the static analysis. Contracts were completely manually analyzed, their logic was checked and compared with the one described in the whitepaper. Besides, the results of the automated analysis were manually verified.

## **Gas Consumption**

In this step, we have checked the behavior of smart contracts in production. Checks were done to know how much gas gets consumed and the possibilities of optimization of code to reduce gas consumption.

#### **Tools and Platforms used for Audit**

Hardhat, Foundry.



BTC Proxy Alpha - Audit Report

### **Types of Severity**

Every issue in this report has been assigned to a severity level. There are four levels of severity, and each of them has been explained below.

### **High Severity Issues**

A high severity issue or vulnerability means that your smart contract can be exploited. Issues on this level are critical to the smart contract's performance or functionality, and we recommend these issues be fixed before moving to a live environment.

## **Medium Severity Issues**

The issues marked as medium severity usually arise because of errors and deficiencies in the smart contract code. Issues on this level could potentially bring problems, and they should still be fixed.

### **Low Severity Issues**

Low-level severity issues can cause minor impact and are just warnings that can remain unfixed for now. It would be better to fix these issues at some point in the future.

#### **Informational**

These are four severity issues that indicate an improvement request, a general question, a cosmetic or documentation error, or a request for information. There is low-to-no impact.

## **Types of Issues**

## **Open**

Security vulnerabilities identified that must be resolved and are currently unresolved.

#### **Resolved**

These are the issues identified in the initial audit and have been successfully fixed.

## **Acknowledged**

Vulnerabilities which have been acknowledged but are yet to be resolved.

## **Partially Resolved**

Considerable efforts have been invested to reduce the risk/impact of the security issue, but are not completely resolved.

## **High Severity Issues**

## 1. Wrong accounting of user balance in scaledBalanceOf function

#### **Path**

https://github.com/Proxy-Protocol/AlphaBTC/blob/ddaa7d2191d185f35c9ca0f67e82dc069464f805/contracts/AlphaBTC.sol#L271-L282

#### **Function**

scaledBalanceOf()

## **Description**

When a user deposits funds, if multiple dividend periods pass without any activity from that user, subsequent calls to the deposit or withdraw functions will calculate the user's rewards and balance using the <u>user's index + 1</u> in the **scaledBalanceOf** function. However, in the updateUser function, the <u>user's index is updated to the latest index</u>.

## **Proof of Concept (Add POC if Applicable)**

Add this test in the test.js:

https://gist.github.com/Makg2/2404e6a3face82bfa37904ba151b39fd

**Note:** You may need to declare the **\_liquidityIndex** variable public for this test to run.

#### Recommendation

Change the user's balance according to **\_index** value instead of **userInfo.index**.

#### **Status**

Resolved

## **Medium Severity Issues**

1. Updating the timestamp for previous investments will delay the user from withdrawing funds

#### **Path**

https://github.com/Proxy-Protocol/AlphaBTC/blob/ddaa7d2191d185f35c9ca0f67e82dc069464f805/contracts/AlphaBTC.sol#L413

## Function

deposit()

## Description

Each time the user makes a deposit, their timestamp is updated to reflect the latest block time. This means that the user will need to wait for the vesting period from their most recent deposit to withdraw any funds, including the initial deposit.

## **Proof of Concept (Add POC if Applicable)**

Add this test in the test.js:

https://gist.github.com/Makg2/1f991e1bf666a2f06a474d00ce500344

#### Recommendation

Maintain different timestamps for every deposit.

#### **Status**

**Acknowledged** 

2. If the dividend is not called by the owner then the user will not be able to receive any reward

#### **Path**

https://github.com/Proxy-Protocol/AlphaBTC/blob/ddaa7d2191d185f35c9ca0f67e82dc069464f805/contracts/AlphaBTC.sol#L589

#### **Function**

updateUser(), scaledBalanceOf()



## **Description**

If a user deposits at some point and the owner does not change dividend during the user's deposit and withdrawal then the user will not receive any reward, no matter how much time the user has spent.

## **Proof of Concept (Add POC if Applicable)**

Add this test in the test.js:

https://gist.github.com/Makg2/a92ab59e8727944a6fe6f4afb55bd6c7

#### Recommendation

Change implementation to distribute rewards to users acc. to time passed irrespective of dividend change.

#### **Status**

**Acknowledged** 

#### 3. Loss of user funds

#### **Path**

https://github.com/Proxy-Protocol/AlphaBTC/blob/ddaa7d2191d185f35c9ca0f67e82dc069464f805/contracts/AlphaBTC.sol#L613

#### **Function**

safeBTCpxTransfer()

### **Description**

The function transfers funds based on the amount passed or the contract's balance, whichever is lower. However, in the withdraw function, it is utilized to transfer BTCpx tokens without retaining the user's remaining balance if a lower amount is transferred. This could result in the loss of user funds.

#### Recommendation

Store remaining user balance.

#### **Status**

**Acknowledged** 

## **Automated Tests**

No major issues were found. Some false positive errors were reported by the tools. All the other issues have been categorized above according to their level of severity.

## **Closing Summary**

In this report, we have considered the security of the Alpha codebase. We performed our audit according to the procedure described above.

Some issues of High and medium severity were found, Some suggestions and best practices are also provided in order to improve the code quality and security posture.

## Disclaimer

QuillAudits Smart contract security audit provides services to help identify and mitigate potential security risks in BTC Proxy Alpha smart contracts. However, it is important to understand that no security audit can guarantee complete protection against all possible security threats. QuillAudits audit reports are based on the information provided to us at the time of the audit, and we cannot guarantee the accuracy or completeness of this information. Additionally, the security landscape is constantly evolving, and new security threats may emerge after the audit has been completed.

Therefore, it is recommended that multiple audits and bug bounty programs be conducted to ensure the ongoing security of BTC Proxy Alpha smart contracts. One audit is not enough to guarantee complete protection against all possible security threats. It is important to implement proper risk management strategies and stay vigilant in monitoring your smart contracts for potential security risks.

QuillAudits cannot be held liable for any security breaches or losses that may occur subsequent to and despite using our audit services. It is the responsibility of the BTC Proxy Alpha team to implement the recommendations provided in our audit reports and to take appropriate steps to mitigate potential security risks.

## **About QuillAudits**

QuillAudits is a secure smart contracts audit platform designed by QuillHash Technologies. We are a team of dedicated blockchain security experts and smart contract auditors determined to ensure that Smart Contract-based Web3 projects can avail the latest and best security solutions to operate in a trustworthy and risk-free ecosystem.



**850+**Audits Completed



**\$30B**Secured



**\$30B**Lines of Code Audited



## **Follow Our Journey**



















# Audit Report February, 2024

For







- Canada, India, Singapore, UAE, UK
- www.quillaudits.com
- audits@quillhash.com