REPUBLIQUE DE CÔTE D'IVOIRE

Concours ITA session 2013

Composition : <u>Mathématiques 7</u> (algèbre, analyse)

Durée : 2 Heures

I ALGEBRE

- 1°) Déterminer le rang de la matrice $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$ et en déduire son inverse si elle existe.
- 2°) On donne A la matrice de M₃(R) telle que $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ et on pose $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
 - a) Calculer A^2 , A^3 , A^4 en fonction de A et de I.
 - b) Montrer que par récurrence qu'il existe deux suites d'entiers $(a_n)_{n\in\mathbb{N}^*}$ et $(b_n)_{n\in\mathbb{N}^*}$ telles que : $\forall n\in\mathbb{N}^*$, $A^n=a_n\,A+b_n\,I$.

Déterminer les relations de récurrence liant a_{n+1} , b_{n+1} , a_n , b_n .

réelles à préciser ; en déduire une primitive F(x) de f(x).

- 3°) On donne la matrice $C = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$, $(a,b,c) \in R^3$ et $(a,b,c) \neq (0,0,0)$. Préciser la nature
- de C. Calculer par récurrence l'expression de C^n en fonction de a, b, c et n où $n \in N^*$
- 4°) a) Calculer et préciser la nature de la matrice $D = P^{-1}AP$; en déduire l'expression de D^n en fonction de n où n est un entier naturel non nul.
 - b) Déterminer l'expression de D^n en fonction de A, P, P^{-1} et n, puis en déduire celle de A^n en fonction de D, P, P^{-1} et n.
 - c) Exprimer A^n en fonction de n, pour tout entier naturel non nul.

II ANALYSE

- 1°) Montrer que la fraction rationnelle $f(x) = \frac{x^4 2x^3 + x^2 + 5x 3}{x^3 x^2 x + 1}$ peut s'exprimer sous la forme $f(x) = ax + b + \frac{c}{x+1} + \frac{d_1}{x-1} + \frac{d_2}{(x-1)^2}$ où a, b, c, d₁ et d₂ sont des constantes
- 2°) Déterminer l'expression de $G(x) = \int \frac{Arctan x}{(x+1)^2} dx$ et en déduire la résolution de l'équation différentielle : x(x+1)y' + y = Arctan x.