

ROBOT PROCEDURE

Done by:-

Mr. SRINATH

FANUC ROBOT RANGE

- SR series (SCARA Robots)
- M-1iA/M2iA/M3iA series (Delta Robots)
- LR-Mate series
- M-10iA/M-10iD series
- M-20iA/M-20iB/M-20iD series
- M-710iC series
- R-1000iA series
- R-2000iC/R-2000iD series
- M-900iA/M-900iB series
- M-2000iA series
- Collaborative series (CR and CRX)
- Arc Mate series
- Palletizing series
- Paint series

FANUC Robot

Accessories

- Vision System
 - 2DV
 - 3DV
 - 3DL
- Force sensors
- Positioner
- Turn Table
- Encoders
- LVC sensor

Features

B

- Line tracking/ Visual tracking
- Bin picking
- Palletizing
- Collision detection
- Soft float
- DCS
- Robo-guide
- Space function
- Extended axis/ Additional axis

Safety Instructions

General Instructions

- Do not go inside the robot work cell with out pressing emergency stop button.
- Install safety fence over robot work volume and provide interlock.
- If it is not necessary for the robot to operate, turn off the power or press emergency.
- Emergency stop button must be with in Operators reach.
- Use transportation equipment for robot lifting and placing at robot parking position.
- Place the robot on pedestal after grouting and ensure the tightness of grouting bolts.
- Before turning ON the robot check the I/P power.
- Do not touch the servo amplifier untill D7 LED goes off.
- Do not plug/unplug cables or fuses in power on condition.

Robot Teaching Instructions

- Change the mode to T1 and remove the key from Operator panel then perform teaching Operation.
- When programming is completed, check the program in T1 mode (with step, continuous) then T2.
- If it is ok run the program by Auto mode.
- The TP Operator should pay careful attention so that no other workers enter the robot work area.

Pre-conditions

Robot should be in home position, if not jog the robot to home position till you get the home signal at operator pendent.

Make ensure component should not be present in the machine before starting the cycle.

Machine should be in auto mode.

Robot should be in auto mode in controller and operator panel.

Fence door and latches on both side should be closed.

If only one pallet to be processed, please make ensure latch door of respective pallet side should be closed.

Machine door should be closed before start of cycle.

Check for pneumatic air supply and maintain air pressure between (4.5 bar to 5.5 bar)

Power supply for Robot controller should be maintained 3Ø 220V +10% - 15% 2kVA and for operator panel power should be 1Ø 215- 240 V 1kVA.

Do's and Don't

- Do not walk on Teach Pendent cable.
- Do not open the cabinet door unnecessarily.
- Replace the fuses by same rating.
- Replace the PCBs with same specification.
- Do not use force air on PCBs.
- Do not remove the pulse coder battery in Power off condition.
- Do not remove the pulse coder cable unnecessarily.
- Do not remove the eye mark on each joints.
- Do not step-on at any part of Robot

Transportation Procedure

- Bring the robot to a position mentioned in the manual
- Power off and remove the cables
- Ensure the capacity of crane, slings, eye bolts.
- Transport the Robot

Robot Elements

Mechanical unit

Robot Elements

- Controller
 - Compact plus
 - Open air
 - Mate plus
 - A-Cabinet
 - B-Cabinet
- · Interfacing accessories
 - Teach Pendent
 - Camera
 - Encoder (Line tracking/Visual Tracking)
 - LVC
 - Force sensor
 - PMC
 - Protocol available: Ethernet, IO link, Profinet, Device net, CC-link, Ether CAT
 - Aux. axis

- Configuration
 - Robot
 - Robot Controller
 - Teach pendant
 - Safety Fence
 - Interlocked gate
 - · Interlocking device
 - End Effector
 - Other peripheral equipment
 - Workpieces

- Select T1 mode in Mode switch
- For safety of the operator during teaching, Robot can be jogged only if Deadman and Shift key is pressed (For teaching)
- Select COORD button for Switching Coordinate (World, User and Tool)
- Jogging in world Coordinate (Cartesian) works in Right hand rule
- Jogging in joint will move the robot according to positive & negative markings located directly on the mechanical unit

TP key explanation:

Program creation

- Press SELECT button
- Press F2 [CREATE] icon
- · Enter Program name
- · Select F1 [POINT] icon

JP[] 100% FINE

Joint Position value Speed in % Motion modify

J – Joint – Non-linear (End point is defined but path is robot preferred)

L P[] 100mm/s FINE

<u>Linear Position value Speed in unit Motion modify</u>

L- Linear (End point as well as path is defined)

UNIT mm/sec cm/min Inch/min deg/sec sec msec

Program creation

FINE

L P[] 100% FINE

Linear Position value Speed in % Motion modify

FINE – Robot moves to the position taught and proceeds to next position

B

CNT

L P[] 100mm/s CNT5

Linear Position value Speed in mm/sec Motion modify

- CNT Robot will not reach the point which has CNT but take a deviated path with respect to taught point
- Deviation can be from 0 to 100 mention after CNT
- @ Indicates robot is currently in that position

Position

To monitor the current Joint and World coordinate values of the Robot

1. Select Position button in the Teach pendant

Robot Co-ordinates

1. Joint coordinate system

- Robot position is shown using joint angles
- Possible to move joints independently

2. Cartesian coordinate System

- These coordinates give tool position & orientation
- Possible to move robot linearly or change orientation
 - World
 - User
 - Jog
 - Tool

Program Touch-up

- · Open an existing program.
- · Place the cursor and jog the robot to modify the position.
- · Press Shift + F5.
- · Program line has been touch-up

Singularity

Singularity happen when two of the robot's wrist axes (joints 4 and 6) line up with each other.

This can cause these joints to try and spin 180 degrees instantaneously.

Payload

To enter Mass, Centre of gravity and Inertia values.

- Select Menu
- Select 0 Next
- Select 6 Setup
- Select F1 Type
- Select 6 Motion
- Select Payload number
- Select F3 Detail
- · Enter the values
- · Call the payload in the program

Axis Configurations – World Coordinate

Right hand rule

X,Y,Z

X- Rotation » W

Y- Rotation » P

Z- Rotation » R

Fig. 3.9.2 (a) World and user coordinate systems

User frame can be set in three methods

- Direct list method Directly enter the values in X, Y, Z, W, P and R values
- · Three point Method
- Four point Method

Three point Method

- Press [MENU] key. The screen menu will be displayed.
- 2 Select "6 SETUP".
- 3 Press the F_k, [TYPE]. The screen change menu will be displayed.
- 4 Select "Frames".
- 5 Press F3, [OTHER] and then select User Frame. The user frame list screen is displayed.

User frame list screen

SETUP	Fram	es				
	User Frame		/1	1/9		
		X	Y	Z	Con	ment
	1 0	.0	0.0	0.0	1	1
	2 0	.0	0.0	0.0	[1
	3 0	.0	0.0	0.0	1]
	4 0	.0	0.0	0.0	1	1
	5 0	.0	0.0	0.0	1]
	6 0	.0	0.0	0.0	E	1
	7 0	.0	0.0	0.0	1	1
	8 0	.0	0.0	0.0	1]
	9 0	.0	0.0	0.0	1	1
-	Activ		\$MNUTO	OLNUM[G:1]		SETIND

Three point Method

- 7 Move the cursor to the line of the user frame number you want to set.
- 8 Press F2, "DETAIL". The user frame setup screen of the selected frame number is displayed.
- 9 Press F2, "METHQD" and then select "Three Point".

User frame setup screen (Three Point Method)

SETUP	Franes								
NI THE COLUMN	User Frame			Three	Point		1/4		
	Frame	Number:		1					
	X:	0.0	Y:	0.0	Z:	0.0			
	W:	0.0	P:	0.0	R:	0.0			
		nt Origination			UNINIT				
	Y Di	rection	Poin	t:	UNINIT				
,	Active	UFRAME	\$MNU	FRAMENU	M[G:1]	= 0			

Three point Method

- 11 To add a comment:
 - a Move the cursor to the comment line and press [ENTER] key.
 - b Select the method of naming the comment.
 - c Press the appropriate function keys to add the comment.
 - d When you are finished, press [ENTER] key.
- 12 Record each approach point:
 - a Move the cursor to each Approach point.
 - b Jog the robot to the position you want to record.
 - c Press and hold [SHIFT] key and press F5, "RECORD" to record the current position as the approach point. As for the taught reference point, "RECORDED" is displayed.

SETUP	Franes								
	User I	rame		Three Point			3/4		
	Frame	Number:	1						
	X:	0.0	Y:	0.0	2:	0.0			
	W:	0.0	P:	0.0	R:	0.0			
	Comment:REFERENCE FRAME Orient Origin Point: RECORDED X Direction Point: RECORDED								
		0.0000000000000000000000000000000000000	-	75.7					
	Y Direction Point: UNINIT								
	Active	= 0							
1, 1	rype i	[METHOD	1	FRAME	MOUTE TO	RECOR	1		

d When all the reference points are taught, "USED" is displayed. The user frame has been set.

User frame can be set in six methods

- Direct list method Directly enter the values in X, Y, Z, W, P and R values
- · Three point Method
- Four point Method (Similar to Four point method)
- Six point Method (XY)
- Six point Method (XY)
- Two point Method + Z (For 4 axis robot Touch a target point with Tool in two different angles and directly enter Z value

Three point Method

- Press [MENU] key. The screen menu will be displayed.
- 2 Select "6 SETUP".
- 3 Press the F1, [TYPE]. The screen change menu will be displayed.
- 4 Select "Frames".
- 5 Press F3, [OTHER] and then select "Tool Frame". Tool frame list screen will be displayed.

SETUP Fr.	ame	S					
To	ol	Frame	1 17	/ Direct	Entry		1/10
		X	Y			Comment	
1	0.	0	0.0	0.0	1		1
2	0.	0	0.0	0.0	1		1
3	0.	0	0.0	0.0	1		1
4	0.	0	0.0	0.0	1		1
5	0.	0	0.0	0.0	1		1
6	0.	0	0.0	0.0	1		
7	0.	0	0.0	0.0	1		
8	0.	0	0.0	0.0	1		1
9	0.	0	0.0	0.0	1		1
10	0.	0	0.0	0.0	1		
Act	ive	TOOL	\$MNU	TOOLNUM[(5:1] = 1	1	
(TYP	1 3	DETA	IL	[OIHER]	CLEAR	SETIN	D T

Three point Method

NOTE

Move the tool in three different directions to bring the tool tip to an identical point. Then, record the three reference points.

d When all the reference points are taught, "USED" is displayed. The tool frame has been set.

- 13 To move the robot to a recorded position, press and hold [SHIFT] key and press F4, "MOVE_TO".
- 14 To see each recorded position data, move the curvor to each reference position item and press the [ENTER] key. The position detail screen of each position data is displayed. To setum to the previous screen, press [PREV] key.
- 15 To display the tool frame list screen, press [PREV] key. You can see the settings (x, y, z, and

Six point Method (XZ) / Six point Method (XY)

Select Six point method (XZ).

Follow the same procedures as performed for Three point method.

Additionally teach the Orient origin, a point in X-direction and a point in Z-direction of the frame.

Tool frame setup screen (Six Point (XZ) Method)

SETUP	Trames							
	Tool !	rame		Six I	Six Point(XS)			
	Frame	Number:		2				
	X:	0.0	Y:	0.0	S:	0.0		
	W:	0.0	P:	0.0	R:	0.0		
	Comm	ent: ****						
	Appr	oach poi	nt 1:		UNINIT			
	Appr	oach poi	nt 2:		UNINIT			
	Appr	oach poi	nt 3:	UNINIT				
	Orie	nt Origi	n Poi	UNINIT	NINIT			
	X Di	rection	Point	:	UNINIT			
	E Di	rection	Point	::	UNINIT			
,	Active	TOOL \$1	NUTOO	LNUMN [G:1] =	1		
	TYPE 1	[METHOD	1 50	AME				

User Alarm

- Select [MENU] key. The screen menu will be displayed.
- 2 Select "6 SETUP".
- 3 Press F1. [TYPE] The screen change menu will be displayed.
- 4 Select User Alarm. The user alarm setup screen will be displayed.

Setting/User Ala	minimization in the	arm setu			
			5.07		1/10
Alarm No.		Use	r Mess	age	
[1]: [1
[2]: [1
[3]: [1
[4]: [1
[5]: [1
[6]: []
[7]: [1
[8]: [1
[9]: [1
[10]: [1

5 Move the cursor to the line of the user alarm number you want to set and press [ENTER] key. Enter the message with the function keys.

6 When you are finished to input the message of the user alarm, press [ENTER] key. The user alarm message has been set.

We can user alarm command to call the UALM[], whenever required.

Classification of I/O

1. General Purpose I/O

Digital I/O

Group I/O

Analog I/O

2. Specialized I/O
Robot I/O
Peripheral (UOP) I/O
Operator's Panel (SOP) I/O

Instruction List

- Motion
- Register
- · 1/0
- Branch/Loop
- Wait
- Skip condition
- Payload
- Offset condition
- Frame
- Program Control
- Other
- Palletizing
- Vision

Instruction 1/4 1 Registers 2 I/O 3 IF/SELECT 4 WAIT 5 JMP/LBL 6 CALL 7 Palletizing 8 --next page--

Instruction 2/4 1 Miscellaneous 2 Skip 3 Payload 4 Offset/Frames 5 Multiple control 6 Program control 7 MACRO 8 --next page--

Instruction 3/4 1 FOR/ENDFOR 2 Tool_Offset 3 LOCK PREG 4 Collision Detect 5 MONITOR/MON. END 6 Stick Detect 7 String 8 --next page--

Instruction List

Backup - File

Procedure:

- Select [UTIL]
- Select Set device
- Select UD1:
- Select [UTIL]
- Select Make DIR
- Enter Directory Name
- Select [BACKUP]
- Select the data required to be backed up (i.e.) All of the above
- Delete UD1: Directory Name before backup??? message will be displayed, Select Yes
- Delete UD1: Directory Name and backup all files? message will be displayed, Select Yes
- Backup will be initiated
- Please wait until the backup is complete

Restore - File

Procedure:

- · Press F1 and F5 and power on the controller
- Select [UTIL]
- · Select Set device
- Select UD1:
- Select [UTIL]
- Select Directory Name
- Select [Restore]
- Select the data required to be restored (i.e.) All of the above
- · File restoration will be initiated
- · Please wait until the restoration is complete

Robot power connection

Robot I/O Link connection

When the R-30*i*B Mate controller is used as an I/O link and I/O link *i* slave When a CNC is the I/O link and I/O link *i* master)

Robot I/O Link connection

Robot I/O Link communication in CNC

Push buttons and led

I/P Conveyor

O/P Conveyor

Machine

Mushashi m/c robot sequence operation

Mushashi m/c robot sequence program

PNS002	MAIN3
OVERRIDE=20%;	CALL NGPART2000 ;
IF DO[260:ROBO HOME]=OFF,JMP LBL[100];	CALL ROB_HOME ;
CALL MAIN3 ;	LBL[1000];
LBL[100];	IF DI[291:OK PICK COMP I/P CNVY LH]=ON,JMP LBL[10];
UALM[5];	IF DI[292:OK PICK COMP I/P CNVY RH]=ON,JMP LBL[20];
/POS	LBL[10];
/END	TIMER[1]=RESET;
NGPART2000	TIMER[1]=START;
WAIT DI[298]=ON ;	CALL PIC_CON200 ;
J P[1] 100% CNT25 ;	TIMER[1]=STOP;
LP[6] 100mm/sec FINE ;	TIMER[2]=RESET;
J P[2] 100% FINE ;	TIMER[2]=START;
L P[7] 100mm/sec FINE ;	CALL MC_PRG200 ;
L P[14] 100mm/sec FINE ;	LBL[20];
CALL G2_UNGRP ;	TIMER[1]=STOP;
L P[8] 100mm/sec FINE ;	TIMER[3]=RESET;
LP[4] 100mm/sec FINE ;	TIMER[3]=START;
LP[9] 100mm/sec FINE ;	CALL PIC_CON300 ;
LP[10] 100mm/sec FINE ;	TIMER[3]=STOP;
LP[11] 100mm/sec FINE ;	TIMER[4]=RESET;
CALL G1_UNGRP ;	TIMER[4]=START;
DO[281]=PULSE,1.0sec;	CALL MC_PRG300 ;
LP[3] 100mm/sec FINE ;	TIMER[3]=STOP;
L P[5] 100mm/sec FINE ;	JMP LBL[1000] ;
L P[12] 500mm/sec FINE ;	/POS
/POS	/END

```
PIC CON300
                 ROBO HOME
                                             WAIT DI[289:I/P CONVEYOR RUNNING]=OFF;
J PR[21] 20% FINE ;
                                             JP[1] 100% FINE ;
/POS
                                             WAIT DI[292:OK PICK COMP I/P CNVY RH]=ON ;
/END
                                             DO[269:ROBO I/P CONVEYOR SIDE]=PULSE,0.5sec;
                PIC CON200
                                             LP[4] 2000mm/sec FINE:
WAIT DI[289:I/P CONVEYOR RUNNING]=OFF;
                                             LP[2] 2000mm/sec FINE;
J P[3] 100% FINE ;
                                             CALL G2 GRIP ;
WAIT DI[291:OK PICK COMP I/P CNVY LH]=ON ;
                                             LP[5] 4000mm/sec FINE;
DO[269:ROBO I/P CONVEYOR SIDE]=ON;
                                             LP[3] 4000mm/sec FINE:
LP[4] 2000mm/sec FINE;
                                             DO[266:I/P CONVEYOR ON]=PULSE,1.0sec;
LP[6] 2000mm/sec FINE;
                                             LP[8] 2000mm/sec CNT25 ;
CALL G1 GRIP ;
                                             L P[9] 2000mm/sec CNT25 ;
LP[8] 2000mm/sec FINE;
                                             LP[6] 2000mm/sec FINE;
                                             LP[7] 1000mm/sec FINE;
LP[3] 4000mm/sec FINE;
                                             DO[271:JOB CLEANING SOL ON]=ON;
LP[5] 2000mm/sec CNT25 ;
                                             WAIT 2.00(sec);
LP[7] 2000mm/sec CNT25 ;
                                             DO[271:JOB CLEANING SOL ON]=OFF;
LP[1] 1500mm/sec FINE ;
                                             LP[10] 1000mm/sec FINE ;
J P[15] 70% FINE ;
                                             CALL ROB HOME ;
LP[9] 100mm/sec FINE ;
                                             /POS
DO[271:JOB CLEANING SOL ON]=ON;
WAIT 2.00(sec);
DO[271:JOB CLEANING SOL ON]=OFF;
LP[18] 500mm/sec FINE ;
CALL ROB HOME ;
/POS
/END
```

```
MC PRG200
                                                 TIMER[2]=STOP;
DO[282]=OFF:
                                                 TIMER[1]=START;
J P[10] 70% CNT20 ;
                                                 LP[6] 2000mm/sec FINE;
DO[261:PART PLACED INSIDE M/C]=OFF;
                                                 //L P[7] 1000mm/sec FINE ;
WAIT DI[261:READY FOR UNLOAD/LOAD]=ON ;
                                                 //DO[271:JOB CLEANING SOL ON]=ON;
DO[268:ROBO OUTSIDE MACHINE]=OFF;
                                                 //WAIT 3.00(sec);
TIMER[2]=RESET;
                                                 //DO[271:JOB CLEANING SOL ON]=OFF;
TIMER[2]=START;
                                                 //L P[8] 500mm/sec FINE ;
LP[13] 3500mm/sec FINE ;
                                                 IF DI[271:NG COMPONENT]=ON,JMP LBL[1000];
LP[28] 2000mm/sec FINE ;
                                                 IF DI[271:NG COMPONENT]=OFF,JMP LBL[2000];
LP[14] 1000mm/sec FINE;
                                                 END;
CALL G2 GRIP ;
                                                 LBL[2000]:
LP[16] 2000mm/sec FINE ;
                                                 LP[9] 2000mm/sec FINE ;
LP[17] 2000mm/sec FINE ;
                                                 LP[18] 1000mm/sec FINE ;
LP[11] 3000mm/sec FINE ;
                                                 WAIT DI[290:O/P CONVEYOR RUNNING]=OFF;
//L P[12] 100mm/sec FINE ;
                                                 WAIT DI[295:O/P CONVEYOR FULL]=OFF;
LP[2] 2000mm/sec FINE;
                                                 L P[15] 1000mm/sec CNT25 ;
LP[29] 3000mm/sec FINE ;
                                                 L P[25] 1500mm/sec FINE ;
LP[1] 2000mm/sec FINE;
                                                 CALL G2 UNGRP ;
LP[20] 100mm/sec FINE;
                                                 L P[15] 1500mm/sec FINE ;
CALL G1 UNGRP ;
                                                 JP[27] 100% FINE ;
LP[19] 250mm/sec FINE;
                                                 DO[282]=ON;
LP[4] 1000mm/sec FINE;
                                                 END;
LP[21] 1200mm/sec FINE ;
                                                 LBL[1000];
L P[22] 1200mm/sec FINE ;
                                                 CALL NGPART2000 ;
LP[3] 2500mm/sec FINE;
                                                 CALL ROB HOME ;
LP[5] 3000mm/sec FINE;
                                                 /POS
DO[268:ROBO OUTSIDE MACHINE]=ON;
DO[261:PART PLACED INSIDE M/C]=PULSE,1.0sec;
                                                 /END
```

```
TIMER[4]=STOP;
              CALL MC PRG300 2
                                              TIMER[3]=START;
DO[282]=OFF;
                                              LP[8] 1500mm/sec FINE;
J P[10] 70% CNT20 :
                                              J P[15] 50% FINE ;
DO[261:PART PLACED INSIDE M/C]=OFF;
                                              //L P[9] 100mm/sec FINE ;
WAIT DI[261:READY FOR UNLOAD/LOAD]=ON ;
                                              //DO[271:JOB CLEANING SOL ON]=ON;
DO[268:ROBO OUTSIDE MACHINE]=OFF;
                                              //WAIT 2.00(sec);
LP[1] 1000mm/sec FINE ;
                                              //DO[271:JOB CLEANING SOL ON]=OFF;
LP[2] 1000mm/secFINE;
                                              //L P[18] 500mm/sec FINE ;
L P[22] 1000mm/sec FINE ;
                                              IF DI[271:NG COMPONENT]=ON,JMP LBL[1000];
LP[5] 1000mm/sec FINE;
                                              IF DI[271:NG COMPONENT]=OFF,JMP LBL[2000];
CALL G1 GRIP ;
                                              END;
LP[6] 500mm/sec FINE;
                                              LBL[2000];
                                              L P[19] 1500mm/sec CNT20 ;
LP[11] 400mm/sec FINE;
                                              L P[20] 1500mm/sec FINE ;
LP[12] 800mm/sec FINE;
                                              WAIT DI[290:O/P CONVEYOR RUNNING]=OFF ;
LP[13] 1000mm/sec FINE ;
                                              WAIT DI[295:O/P CONVEYOR FULL]=OFF ;
LP[16] 800mm/sec FINE;
                                              L P[25] 2000mm/sec FINE ;
LP[14] 1000mm/sec FINE;
                                              CALL G1 UNGRP ;
LP[28] 100mm/secFINE;
                                              LP[26] 4000mm/sec FINE;
CALL G2 UNGRP ;
                                              DO[267:O/P CONVEYOR ON]=PULSE,1.0sec;
//L P[21] 1000mm/sec FINE ;
                                              JP[27] 100% FINE ;
LP[17] 1000mm/sec FINE ;
                                              DO[282]=ON;
L P[23] 1000mm/sec FINE ;
                                              END;
LP[24] 1000mm/sec FINE;
                                              LBL[1000];
LP[4] 2000mm/sec FINE;
                                              CALL NGPART2000 ;
LP[3] 1000mm/sec FINE;
                                              DO[267:O/P CONVEYOR ON]=PULSE,1.0sec;
LP[7] 2500mm/sec FINE;
                                              CALL ROB HOME ;
DO[268:ROBO OUTSIDE MACHINE]=ON;
                                              /POS
DO[261:PART PLACED INSIDE M/C]=PULSE,1.0sec;
                                              /END
```

Machine part program

O0002(GRIND PROG SHAFT INTERMEDIATE)	M62	
G98	M03S#504	O0100 (ROBO RUN PROG)
	N92G01Z0.0F8000	00100 (11000 11011 11100)
M74	N155G01X20.00F8000M08	v1 0
M19	N160G01X18.500F6000	M19
M73	N170G01X17.750F4000	
	N170G01X17.500F500	MOO
N40IF[#522NE2]THEN#3000=8(WRONG JOB CODE)	N180G01X17.320F50	M92
M126 (NG CMD TO ROBO)	M95	
G04X0.1	N182G31P4X17.02F15.0M91	G98
N1000	N185G31P1X16.900F2.90	G30
	N192G31P1X16.800F1.45 N208G31P2X16.757F0.50	
M73	N210G31P3X16.745F0.04	G30X500F8000
N2M98P9126(CONSTANT SURFACE SPEED PROG)	G04X0.2	00000010000
M98P2002(GRINDING ALARM CODE)	#560=#5061	00.400 01
N45IF[#518NE#519]GOTO50	#561=#560+#529	G04X0.01
M98P8502(CALL DRESS PROG)	M98P9999	
	N75G01U0.20F200M92	G30Z500.0F10000M72
N50G10P0X0Z0	N80G01U10.0F8000M09	G304300.0f10000M72
N55G54T0	N225G10P0X0Z0	
N60G01X500.0F8000	N230G54T0	G04X0.2
G98	M05	00 1110 12
	N235G01X500.0F10000M19 N240#519=#519+1	1/100
N65#640=#640+#516	M76	M128
N70#641=#641+#517	/M98P100	
N75#516=0	/GOTO1000	M99
N80#517=0	M72	1177
N90G10P0X#640W#641	M75	
	M02	M02
G56T1	M30	

