Категорная логика

0.1 Введение в теорию категорий

Задача 1. Покажите, что если множества, моноиды, и предпорядки рассматривать как категории, то функторы между ними это то же, что и гомоморфизмы.

Задача 2. Опишите инициальные и терминальные объекты в категориях: Cat, Top (категория всех топологических пространств), Group.

Задача 3. Рассмотрим множество X. Любое множество подмножеств $\Omega \subset \mathcal{P}(X)$ образует категорию (в которой объекты – подмножества и стрелка между двумя объектами X,Y есть в том случае, если $X \subseteq Y$).

Что значит, что в этой категории есть инициальный или терминальный объекты?

Определение 1 (Напоминание). Конкретной категорией называется такая категория, у которой каждый объект – множество, и каждая стрелка – теоретико-множественная функция.

Определение 2. Функтор $U: \mathcal{A} \to \mathcal{B}$ называется унивалентным (строгим), если для любой пары стрелок $f,g:X\rightrightarrows Y$, если U(f)=U(g), то f=g. Другими словами, функтор унивалентен если он инъективен на $\operatorname{Hom}(X,Y)$ для любых объектов X,Y в \mathcal{A} .

Задача 4. Докажите, что у каждой конкретной категории \mathcal{A} есть унивалентный функтор $\mathcal{A} \to Set.$

Задача 5. Покажите, что каждое действие моноида (группы) M на множество можно представить как функтор из M как категории в Set (действие моноида M на X – это гомоморфизм из M в моноид перестановок множества X).

Задача 6. Убедитесь, что следующие отображения дают примеры функторов:

- 1. $\mathcal{P}: Set \to Set$, которое множеству X сопоставляет множество его подмножеств $\mathcal{P}(X)$ и функции $f: X \to Y$ функцию $\mathcal{P}(f)(A) = f(A), \ A \subseteq X$; и $\mathcal{P}: Set \to Set^{op}$, как предыдущее, только функции $f: X \to Y$ оно сопоставляет $\mathcal{P}(f)(B) = f^{-1}(B), \ B \subseteq Y$.
- 2. $Ring \to Ring$, отображение кольцу R кольцо многочленов R[x]; $Ring \to Ring$, отображение кольцу R его кольцо квадратных матриц $M_{n,n}(R)$.
- 3. $F\text{-}Vect \to F\text{-}Vect^{op}$, отображение векторному пространству K его сопряженное K^* (F-Vect -категория векторных пространств над полем F).

Задача 7. Как можно следующие объекты представить в виде функтора?

- 1. Стрелка $f: X \to Y$ в произвольной категории $\mathcal A$
- 2. Цепочка функций в $Sets\ X_0 \overset{f_1}{\to} X_1 \overset{f_2}{\to} X_2 \dots \overset{f_n}{\to} X_n.$
- 3. Бесконечная цепочка вложенных подмножеств \mathbb{R} $X_0 \subset X_1 \subset X_2 \ldots \subset X_n \subset \ldots$;

Задача 8. Рассмотрим категорию $\mathcal C$ и зафиксируем в ней объект X. Построим отображение на объектах $\operatorname{Hom}(X,-):C\to Set$, которое каждому объекту сопоставляет множество $\operatorname{Hom}(X,A)$. Теперь определим отображение на стрелках следующим образом: стрелке $f:A\to B$ сопоставим отображение между $\operatorname{Hom}(X,A)$ и $\operatorname{Hom}(X,B)$, отправляющее $g:X\to A$ в $fg:X\to B$.

Покажите, что эти отображения дают функтор.

0.2 Сопряженные функторы

Конспект.

Задача 1. Рассмотрим множества с предпорядком \mathcal{A} и \mathcal{B} и ковариантное соответствие Галуа (F,G).

Доказать:

- 1. $a \leq GF(a)$
- 2. $GFGF(a) \leq GF(a)$
- 3. $a \le a' \Rightarrow GF(a) \le GF(a')$

Задача 2. Рассмотрим множества X, Y и бинарное отношение $R \subseteq X \times Y$.

Пусть $\mathcal{A} = (\mathcal{P}(x), \subseteq), \mathcal{B} = (\mathcal{P}(y), \text{superseteq}).$

Функторы $F: \mathcal{A} \to \mathcal{B}$ и $G: \mathcal{B} \to \mathcal{A}$ определены так:

- $A \subseteq X$. $F(A) = \{ y \in Y | \forall x \in A$. $(x, y) \in R \}$
- $B \subseteq Y$. $F(B) = \{x \in X | \forall y \in B$. $(x, y) \in R\}$

Доказать (или опровергнуть), что (F,G) – соответствие Галуа.

Задача 3. Понять, как соотносятся сопряжение для множеств с предпорядками и сопряжение для категорий. Сопряжение для категорий можно взять в смысле четверки (F, U, η, ϵ) .

Задача 4. Доказать утверждение.

Сопряжение (F, U, η, ϵ) в категориях \mathcal{A}, \mathcal{B} взаимно однозначно соответствует решению $(F, \eta, *)$ для функтора $U: \mathcal{B} \to \mathcal{A}$.

План доказательства и само утверждение можно найти в книжке на странице 14.

Задача 5. Пусть (F,G) – соответствие Галуа между посетами (частично упорядоченными) $\mathcal A$ и $\mathcal B$. показать, что F сохраняет супремумы, а G сохраняет инфимумы. Доказать, что если $\mathcal A$ имеет, а F сохраняет супремумы, то правое сопряжение $G:\mathcal B\to \mathcal A$ может быть вычислено формулой $G(b)=\sup\{a\in\mathcal A|F(a)\leq b\}$.

Задача 6. Понять, объяснить, и доказать утверждение 3.4 на странице 15.

Задача 7. Пусть \mathcal{A} и \mathcal{B} - пред упорядоченные множества формул пропозиционального исчисления, где порядок — следование. Для фиксированный формулы C показать, что F: $\mathcal{A} \to \mathcal{B}$ и $G: \mathcal{B} \to \mathcal{A}$, определенные как $F(A) = C \wedge A$ и $G(B) = C \Rightarrow B$, являются парой сопряженных функторов. Что есть "единство противоположностей"в таком случае?

Задача 8. Пусть $\mathcal{A} = \mathcal{B} = \mathbf{Sets}$, C – фиксированное множество, $F(A) = C \times A$, $U(B) = B^C$ для всех A и B. Расширить U и F до функторов и показать, что U право-сопряжен к F.

0.3 Пределы

Задача 1. Найдите хотя бы два уравнителя функций id :: Int -> Int u abs :: Int -> Int в категории Hask.

Объясните, почему следующие функции не являются уравнителями:

- $1. id :: Int \rightarrow Int$
- $2. \ \ -> \ -n :: Int -> Int$

Задача 2. Найдите хотя бы один уравнитель функций fst :: (Int, Int) -> Int и snd :: (Int, Int) -> Int в категории Hask.

Задача 3. Найдите хотя бы один уравнитель функций fst' и snd', где:

data IntOrChar = I Int | C Char

в категории Hask.

Задача 4. Найдите хотя бы два коуравнителя функций id :: Int -> Int u abs :: Int -> Int в категории Hask.

Задача 5. Найдите хотя бы один pullback функций length :: [Int] -> Int и length :: [Char] -> Int в категории Hask.

Задача 6. Найдите хотя бы один pullback функций id :: Int -> Int и (const 0) :: () -> Int в категории Hask.

Задача 7. Найдите хотя бы один pullback функций (const ()) :: Int -> () и (const ()) :: Char -> () в категории Hask.

Задача 8. Опишите построение pullback'а из задачи 5 через двоичные произведения и уравнители.

Задача 9. Докажите, что любой предел можно построить через произведения и уравнители.

Задача 10. Найдите предел функтора Identity.

Задача 11. Найдите предел функтора Мауbe.

0.4 Декартово замкнутые категории

Задача 1. Доказать, что Grp не является декартово замкнутой.

Задача 2. Доказать биективность $\hat{\ }$ (преобразующей g в \hat{g})

Задача 3. A и B конечные множества из категории **Sets**. Какова мощность A^B ?

Задача 4. Узнать связь между \Leftarrow и \to в полурешетке Гейтинга

0.5 Декартово замкнутые категории в уравнениях и графах

Задача 1. Показать, что в любой декартовой категории:

- 1. $A \times 1 \cong A$
- $2. \ A \times B \cong B \times A$
- 3. $(A \times B) \times C \cong A \times (B \times C)$

Задача 2. Показать, что в любой декартово замкнутой категории:

- 1. $A^1 \cong A$
- $2. \ 1^A \cong 1$
- 3. $(A \times B)^C \cong A^C \times B^C$
- 4. $A^{B \times C} \cong (A^C)^B$

Задача 3. Записать эквивалентное определение декартово замкнутой категории через

$$U_B = (\cdot)^B, \ F_B = (\cdot) \times B : \mathscr{A} \to \mathscr{A}$$

$$\varepsilon_B(A) = \varepsilon_{A,B}; \quad \varepsilon_B : F_B U_B \to 1_\mathscr{A}$$

$$\eta_B(C) = \eta_{C,B} : C \to (C \times B)^B,$$

где $U_B(f) = f^B \equiv f \Leftarrow 1_B = (f \varepsilon_{A,B})^*$ для всех $f: A \to A'$ (см. предыдущую лекцию).

Задача 4. Доказать, что

$$\lceil f \rceil^{\varsigma} = f, \ \lceil g^{\varsigma} \rceil = g,$$

где
$$\lceil f \rceil \equiv (f\pi'_{1,A})^*, \ f : A \to B$$
 и $g^{\varsigma} \equiv \varepsilon_{B,A} \langle g \bigcirc_A, 1_A \rangle, \ g : 1 \to B^A.$

Задача 5. Показать, что дедуктивная система $\mathcal{L}(x)$ с прошлой лекции — это $\mathcal{D}(\mathcal{L}_x)$, где \mathcal{L}_x — граф, полученный из \mathcal{L} добавлением нового ребра x между старыми вершинами T и A.

0.6 Топосы

Задача 1. Топосы функторов. Покажите, что следующие категории можно представить как топос (указать классификатор подобъектов, доказать замкнутость):

- 1. Set^2
- 2. Set^{\rightarrow}
- 3. Set^{M} категория действий моноида (группы).

Задача 2. Докажите теорему: для любого топоса \mathcal{C} и любого его объекта a категория стрелок над ним $\mathcal{C} \downarrow a$ является топосом.

Задача 3. Докажите, что в топосе $\mathcal{T} f : A \to B$

- 1. мономорфизм тогда и только тогда, когда $\mathcal{T} \vDash \forall_{x \in A} \forall_{x' \in A} (fx = fx') \Rightarrow x = x'$
- 2. эпиморифизм тогда и только тогда, когда $\mathcal{T} \vDash \forall_{u \in B} \exists_{x \in A} fx = y$

Определение 3. Топос называется булевым, если он удовлетворяет формуле $\forall_{t \in \Omega} (t \vee \neg t)$.

Задача 4. Докажите, что топос является булевым тогда и только тогда, когда 1 $\stackrel{T}{\to}$ $\Omega \stackrel{\perp}{\leftarrow}$ 1 это диаграмма копроизведения.