Predict and Prejudice: Classification of compact objects and model comparison using EOS knowledge

Hauke Koehn, **Thibeau Wouters**, Henrik Rose, Peter T. H. Pang, Rahul Somasundaram, Ingo Tews, and Tim Dietrich

t.r.i.wouters@uu.nl

in 💆

Extreme Matter call 17/06/2024

Our paper has several parts:

- Adding new NICER observation of PSR J0437-4715 (TBA)
- Classification of recent lower mass gap objects:
 - PSR J0514-4002E companion
 - GW230529 primary [1] (this presentation)
- Model selection:
 - Comparison of NICER results for PSR J0030+0451
 - Comparison of symmetry energy measurements

Introduction - GW230529

Credit: Shanika Galaudage

Equation of state constraints with NMMA

NMMA compiled sets of EOS constraints [2]:

- Nuclear theory and experiments
- Radio observations pulsars, NICER, bursters, X-ray binaries
- $\bullet \;\; \mathsf{GW170817} \; + \; \mathsf{EM} \;\; \mathsf{counterparts} \; \& \;\; \mathsf{postmerger} \;\; \mathsf{remnant} \;\;$

NMMA

Methods – EOS constraint sets

Table 1: Overview on the constraints contained within the three different constraint sets.

Set	Label	Description	
High confidence	1	Chiral EFT, pQCD, heavy radio pulsars, NICER J0740+6620, NICER J0030+0451, (NICER J0437-4715), GW170817	
More vigorous	2	Set 1, Black Widow J0952-0607, heavy ion-collisions, qLMXBs, GW170817+KN+GRB afterglow, CREX, PREX-II, Burster 4U 1702-429, Burster J1808.8-3658, GW170817 postmerger	
Aggressive	3	Same as set 2, but for the remnant of GW170817 a hypermassive neutron star above the Keple limit is assumed	

Methods – Classification of compact objects

NMMA sets of constraints \mathcal{D} give posterior on M_{TOV} . Compare this against GW230529's properties:

• Probability of primary being a neutron star: P(NS):

$$P(\mathsf{NS}) = \int \mathrm{d} M_{\mathsf{TOV}} \int_0^{M_{\mathsf{TOV}}} \mathrm{d} m_1 \ P(M_{\mathsf{TOV}} | \mathcal{D}) P(m_1).$$

• Spinning neutron stars can have higher masses: $M_{\text{max}}(\text{EOS}, \chi_1)$:

$$P(\mathsf{NS}) = \int \mathrm{d}M_{\mathrm{max}} \int_0^{M_{\mathrm{max}}} \mathrm{d}m_1 \int_0^1 \mathrm{d}\chi_1 \ P(M_{\mathrm{max}}|\mathcal{D},\chi_1) P(m_1,\chi_1) \,.$$

ullet Use universal relation from Breu and Rezzolla for $M_{
m max}$ [3]

Classification results for GW230529 primary

- Set 1 and without spin agree well with LVK results [1].
- Spin + PDB raise P(NS) to $\sim 17\%$.
- Set 3 ("aggressive") drastically reduces P(NS).

		Set 1	Set 2	Set 3
default prior	w/o spin	1.6%	1.3%	0.02%
	$_{ m spin}^{ m w/}$	3.9%	3.9%	0.82%
PDB prior	w/o spin	8.1%	6.9%	0.36%
	w/ spin	17%	17%	1.7%

(PDB: Powerlaw + Dip + Break population model)

Conclusion

• GW230529: primary component in the lower mass gap

NMMA has compiled current EOS constraints into 3 sets

• Accounting for spin raises P(NS) for GW230529 primary to $\sim 17\%$ with PDB. The "aggressive" constraints gives $P(NS) \lesssim 1.7\%$

 Results are still consistent with black hole interpretation of GW230529 primary

References

- [1] "Observation of Gravitational Waves from the Coalescence of a $2.5-4.5~M_{\odot}$ Compact Object and a Neutron Star". In: (Apr. 2024). arXiv: 2404.04248 [astro-ph.HE].
- [2] Hauke Koehn et al. "An overview of existing and new nuclear and astrophysical constraints on the equation of state of neutron-rich dense matter". In: (Feb. 2024). arXiv: 2402.04172 [astro-ph.HE].
- [3] Cosima Breu and Luciano Rezzolla. "Maximum mass, moment of inertia and compactness of relativistic stars". In: *Mon. Not. Roy. Astron. Soc.* 459.1 (2016), pp. 646–656. DOI: 10.1093/mnras/stw575. arXiv: 1601.06083 [gr-qc].

APPENDIX

10

Population informed posterior

Posterior obtained with PDB prior:

11

TOV mass posterior with set 3 ("Aggressive")

12