Universidade Nova de Lisboa Faculdade de Ciências e Tecnologia - Departamento de Química

Processos de Separação

2º Teste – 18 de Maio de 2022

I (10v)

1. Extrai-se ácido acético de uma solução aquosa com 60% p/p em ácido usando para o efeito clorofórmio puro, de forma a obter um refinado final com uma concentração de ácido de 5% p/p. Para tal, usam-se dois andares de equilíbrio, com adição de solvente fresco em cada andar, para processar 1000 Kg/hr de solução aquosa. No primeiro andar de equilíbrio usa-se uma proporção entre solvente fresco e alimentação aquosa de 1:1. Calcule:

6v. a) as composições e caudais mássicos das correntes de saída em cada andar.

1.5v. b) a quantidade mínima de solvente que poderia usar no primeiro andar. Justifique a resposta.

1.5v. c) a percentagem total de extracção de ácido acético da solução aquosa original.

1v. 2. Em que situações pensa que a extracção com solventes líquidos possa ser mais vantajosa que a destilação como processo de separação?

II (5v)

2. Pretende-se arrefecer água de 45°C a 25°C numa torre utilizando ar em contracorrente. O caudal de água é de 1500 kg/m²h e o caudal de ar que entra a 25°C e com uma temperatura de termómetro húmido 21°C é de $1250 \text{ kg/ m}^2\text{h}$.

1.5v. a) Determine a humidade absoluta e relativa do ar à entrada da coluna e as entalpias do ar à entrada e à saída da coluna.

2v. b) Calcule $\frac{1}{E_c^* - E_G}$ para a base e o topo da coluna. Comente.

1.5v. c) Se a coluna tiver 3m de altura, qual o número de unidades de transferência necessárias neste processo?

 $K_{\rm H}.a = 0.5 \text{ kg/(m}^3 \text{ s)}$ $cp_{água} = 4.18 \text{ J/g}^{\circ}\text{C}$

$$Z = \frac{V'}{(K_H a)S} \int_{E_{G_1}}^{E_{G_2}} \frac{dE_G}{(E_G^* - E_G)} \qquad \frac{E_{G_2} - E_{G_1}}{T_{L_2} - T_{L_1}} = \left[\frac{\overline{L} c_{p_L}}{V'} \right]$$

$$\frac{E_{G_2} - E_{G_1}}{T_{L_2} - T_{L_1}} = \left[\frac{\bar{L} c_{p_L}}{V'}\right]$$

III(5v)

1.5v. a) Caracterize o processo de secagem considerando o seu modo de operação, o método de fornecimento de calor necessário e a natureza do material sólido.

2v. b) A indústria PAPELIS SA. usa um secador de tabuleiros com dois conjuntos de tabuleiros. Na operação do secador, ar saturado a 22°C é previamente aquecido a 75°C, e em seguida feito passar pelo primeiro conjunto de tabuleiros. À saída desse 1º estágio, o ar sai com 60% de saturação, sendo depois de novo aquecido a 75°C antes de entrar no segundo conjunto de tabuleiros. À saída deste 2º estágio, o ar tem de novo 60% de saturação. Admitindo que o processo de secagem decorre de forma adiabática calcule a temperatura final do sólido em cada conjunto de tabuleiros.

1.5v. c) Calcule a quantidade total de água retirada ao sólido por kg de ar seco.

TABLE 4.8.1 Thermodynamic Properties of Water Vapor-Air Mixtures at 1 atm

Specific Volume, m3/kg

Dry Air

0.8018

0.8046

0.8075

0.8103

0.8131

Saturated

Air

0.8054

0.8086

0.8117

0.8148

0.8180

Liquid

Water

42.13

46.32

50.52

54.71

58.90

Temp.,

°C

10

11

12

13

14

Saturation

Mass Fraction

0.007608

0.008136

0.008696

0.009289

0.009918

Enthalpya,b kJ/kg

Dry Air

10.059

11.065

12.071

13.077

14.083

Saturated

Air

29.145

31.481

33.898

36.401

38.995

	0.005510	0.0151	0.0100	20.70	11.005	50.555
15	0.01058	0.8160	0.8212	63.08	15.089	41.684
16	0.01129	0.8188	0.8244	67.27	16.095	44.473
17	0 01204	0.8217	0.8276	71.45	17.101	47.367
18	0 01283	0.8245	0.8309	75.64	18.107	50.372
19	0.01366	0.8273	0.8341	79.82	19.113	53.493
20	0.01455	0.8302	0.8374	83.99	20.120	56.736
21	0.01548	0.8330	0.8408	88.17	21.128	60.107
22	0.01647	0.8359	0.8441	92.35	22.134	63.612
23	0.01751	0.8387	0.8475	96.53	23.140	67.259
24	0.01861	0.8415	0.8510	100.71	24.147	71.054
25	0.01978	0.8444	0.8544	104.89	25.153	75.004
26	0.02100	0.8472	0.8579	109.07	26.159	79.116
27	0.02229	0.8500	0.8615	113.25	27.166	83.400
28	0.02366	0.8529	0.8650	117.43	28.172	87.862
29	0.02509	0.8557	0.8686	121.61	29.178	92.511
30	0.02660	0.8586	0.8723	125.79	30.185	97.357
31	0.02820	0.8614	0.8760	129.97	31.191	102.408
32	0.02987	0.8642	0.8798	134.15	32.198	107.674
33	0.03164	0.8671	0.8836	138.32	33.204	113.166
34	0.03350	0.8699	0.8874	142.50	34.211	118.893
35	0.03545	0.8728	0.8914	146.68	35.218	124.868
36	0.03751	0.8756	0.8953	150.86	36.224	131.100
37	0.03967	0.8784	0.8994	155.04	37.231	137.604
38	0.04194	0.8813	0.9035	159.22	38.238	144.389
39	0.04432	0.8841	0.9077	163.40	39.245	151.471
40	0.04683	0.8870	0.9119	167.58	40.252	158.862
41	0.04946	0.8898	0.9162	171.76	41.259	166.577
42	0.05222	0.8926	0.9206	175.94	42.266	174.630
43	0.05512	0.8955	0.9251	180.12	43.273	183.037
44	0.05817	0.8983	0.9297	184.29	44.280	191.815
45	0.06137	0.9012	0.9343	188.47	45.287	200.980
46	0.06472	0.9040	0.9391	192.65	46.294	210.550
47	0.06842	0.9068	0.9439	196.83	47.301	220.543
48	0.07193	0.9097	0.9489	201.01	48.308	230.980
49	0.07580	0.9125	0.9539	205.19	49.316	241.881

