Practical Superconducting Qubit Design Parameters, OJB

(Found in Chapter 24 of Prof. Hiu Wong's Quantum Computing Architecture and Hardware for Engineers book, see reference section)

Resonator length design equation (57:18)

https://youtu.be/kPrEJo60p5s?si=0uKJz-pZd5CPxZhg&t=3438

Transmon design equations (102:00)

https://youtu.be/kPrEJo60p5s?si=8QZQten1XjQyUCO5&t=3720

Example single qubit gate design equations (102:27)

https://youtu.be/kPrEJo60p5s?si=j1pS4xu31QPxNC F&t=3747

Translate to Circuit Parameters

Hiu Yung Wong, IEEE QCE 2024, Tutorial 04

93

24.3.2 Design of Feedline and Resonator

24.3.2.1 CPW Design

Firstly, we need to design the feedline and the resonator to have the same characteristic impedance, Z_0 , as the system has. Here we assume $Z_0 = 50 \Omega$. To do this, we can go through analytical calculations or simulations. One can find that $s = 5.8 \,\mu\text{m}$ and $w = 10 \,\mu\text{m}$ will give the required characteristic impedance by using the tools in [5] or [6]. Reference [6] is based on [7].

24.3.2.2 $\lambda/4$ -Resonator Design

We need to design a $\lambda/4$ -resonator with $\omega_r = 2\pi \times 7$ GHz. Since an electromagnetic wave will have a shorter wavelength in matters than in a vacuum, we need to find the effective relative dielectric constant, ϵ_{eff} , so that we can find the wavelength and, thus, the length of the CPW. This can be performed by using simulations. For example, in [8], the effective relative dielectric constant for the EM fields for metals on the top of a silicon substrate is extracted to be 6.1. Therefore, the length of the resonator is found to be

$$L = \frac{\lambda_{\text{matter}}}{4},$$

$$= \frac{\lambda_{\text{vacuum}}}{4\sqrt{\epsilon_{eff}}},$$

$$= \frac{c}{4f\sqrt{\epsilon_{eff}}},$$

$$= \frac{3 \times 10^8}{4 \times 7 \times 10^9 \times \sqrt{6.1}} \,\text{m},$$

$$= 4.338 \,\text{mm},$$
(24.4)

Additional References

- 1. Wong, H.Y. (2025) *Quantum Computing Architecture and Hardware for Engineers:* Step by Step. Cham: Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-78219-0
- Lajara Corral, A. (2020) Superconducting Coplanar Waveguide Resonators for Quantum Computing. Master's thesis, Universitat Autònoma de Barcelona, Microelectronics Institute of Barcelona (IMB-CNM) & High Energy Physics Institute (IFAE). Available at: https://qct.ifae.es/files/Alberto Lajara Coplanar Waveguide Resonators for QC2020.pdf
- 3. Levenson-Falk, E.M. and Shanto, S.A. (2025) *A Review of Design Concerns in Superconducting Quantum Circuits*. arXiv:2411.16967. Available at: https://iopscience.iop.org/article/10.1088/2633-4356/ade10d
- 4. Weibel, V.J. (2021) Microwave Superconducting Metamaterial for Analog Quantum Simulation. Master's thesis, École Polytechnique Fédérale de Lausanne (EPFL). Available at: https://nanoscience.unibas.ch/fileadmin/user-upload/nanoscience/05 Studium /Masterstudium/Masterarbeiten_Archiv/masterthesis_vjw_final.pdf
- 5. Martinis, J.M. (2021) Optimal design of a superconducting transmon qubit with tapered wiring. arXiv:2104.01544. Available at: https://doi.org/10.48550/arXiv.2104.01544
- 6. Brecht, T.L. (2017) *Micromachined quantum circuits*. PhD thesis, Yale University. Available at:

 http://login.ezproxy.lib.umn.edu/login?url=https://www.proquest.com/dissertations-theses/micromachined-quantum-circuits/docview/2024081578/se-2?accountid=14586
- 7. Odeh, M. (2023) *Phonon-protected superconducting qubits*. PhD thesis, University of California, Berkeley. Available at:

 https://bsac.berkeley.edu/publications/phonon-protected-superconducting-qubits
- Niepce, D. (2014) Fabrication and characterisation of thin-film superconducting nanowire superinductors for novel quantum devices. Master's thesis, Chalmers University of Technology. Available at: https://odr.chalmers.se/items/a82488d4-2010-4e7f-a4bc-74ab930231ac