TD6. Intervalles de confiance.

Exercice 1. Montrer que si Y est une v.a. telle que sa densité f_Y est une fonction paire et q_α les quantiles de Y alors $q_{1-\alpha} = -q_\alpha$.

Exercice 2. Calculer la fonction q_{α} dans les cas suivantes

- 1. $Y \sim B(2, 1/2)$;
- 2. $Y \sim \mathcal{U}([0,1])$;
- 3. $Y \sim \mathcal{E}(\lambda), \lambda > 0$;
- 4. $Y \sim \mathcal{G}eom(p), p \in]0,1[;$

Exercice 3. Soit $X \sim \mathcal{N}(\mu, 1)$, $\mu \in \mathbb{R}$ un modèle paramétrique. Soient ζ_{α} les quantiles de la v.a. Gaussienne standard (centrée et réduite). On pose $A_n = \overline{X}_n - \zeta_{\gamma}/\sqrt{n}$ et $B_n = \overline{X}_n - \zeta_{\beta}/\sqrt{n}$. Déterminer β et γ dans [0, 1] tels que $[A_n, B_n]$ soit un intervalle de confiance de niveau $1 - \alpha$ pour μ .

Exercice 4. Soit $X \sim \text{Ber}(\theta)$. L'EMV pour θ est $T_n = \overline{X_n}$.

1. Montrer que

$$\frac{\sqrt{n}(T_n - \theta)}{\sqrt{T_n(1 - T_n)}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

(utiliser le TCL, la LGN, le théorème de continuité et le lemme de Slutsky).

2. Donner un intervalle de confiance asymptotique et bilatéral symétrique de niveau $1 - \alpha$ pour θ .

Exercice 5. Soit $X \sim \mathcal{E}(\lambda)$, $\lambda > 0$. Determiner un intervalle de confiance de la forme $\{\lambda > a\}$ de niveau $1 - \alpha$ pour λ .

Exercice 6. On observe un échantillon de taille n issu de la loi $X \sim \mathcal{N}(\theta, \theta^2)$ avec $\theta > 0$. Quelle est la loi de $\sqrt{n}(\bar{X}_n - \theta)/\theta$? Déterminer un intervalle de confiance pour θ de niveau $1 - \alpha$.

Exercice 7. Soit $X_1, ..., X_n$ un échantillon de loi $B(2, \theta)$ avec $\theta \in]0, 1[$. Déterminer un intervalle de confiance asymptotique et symétrique de niveau 95% pour θ .

Exercice 8. Soit $X_1,...,X_n$ un échantillon de loi $\mathcal{U}([a-b,a+b])$ avec b>0 et $a\in\mathbb{R}$

- a) Déterminer un estimateur (A_n, B_n) du couple (a, b) par méthode des moments.
- b) L'estimateur A_n de a est il asymptotiquement normale? Pourquoi?
- c) On suppose que b=2. Déterminer un intervalle de confiance asymptotique à niveau 95% pour a.