III. kolo kategorie Z9

Z9-III-1

Na naši zamyšovanou chalupu jsme přivezli myšilovce kocoura Vildu. V pondělí chytil $\frac{1}{2}$ všech myší, v úterý $\frac{1}{3}$ zbylých, ve středu $\frac{1}{4}$ těch, co zbyly po úterním lovu, a ve čtvrtek už jen $\frac{1}{5}$ zbytku. V pátek se zbylé myši raději odstěhovaly. Kolik bylo myší na chalupě původně, jestliže se v pátek odstěhovalo o dvě myši více, než jich Vilda chytil v úterý? Nezapomeňte ověřit, zda byl každý den uloven celočíselný počet myší. (M. Volfová, M. Dillingerová)

Možné řešení. V pondělí kocour ulovil $\frac{1}{2}$ všech myší. V úterý ulovil $\frac{1}{3}$ ze zbylé $\frac{1}{2}$, tj. $\frac{1}{6}$ všech myší; zbyla $\frac{1}{2} - \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$ všech. Ve středu ulovil $\frac{1}{4}$ z $\frac{1}{3}$, tj. $\frac{1}{12}$ všech myší; zbyla $\frac{1}{3} - \frac{1}{12} = \frac{3}{12} = \frac{1}{4}$ všech. Ve čtvrtek ulovil $\frac{1}{5}$ z $\frac{1}{4}$, tj. $\frac{1}{20}$ všech myší; zbyla $\frac{1}{4} - \frac{1}{20} = \frac{4}{20} = \frac{1}{5}$ všech (a ty se v pátek odstěhovaly).

Podle zadání je $\frac{1}{5}$ všech myší o dvě více, než bylo uloveno v úterý, tj. než $\frac{1}{6}$ všech. Dvě myši tedy tvoří rozdíl $\frac{1}{5}$ a $\frac{1}{6}$ všech myší. Protože $\frac{1}{5} - \frac{1}{6} = \frac{1}{30}$, představují dvě myši $\frac{1}{30}$ všech, takže původně bylo na chalupě $2 \cdot 30 = 60$ myší.

Kontrola: V pondělí bylo uloveno 30 myší, zbylo 30; v úterý uloveno 10, zbylo 20; ve středu uloveno 5, zbylo 15; ve čtvrtek uloveny 3, zbylo 12, což je skutečně o 2 více než úterní úlovek.

Jiné řešení. Pokud označíme původní počet všech myší jako x, lze pomocí této neznámé vyjádřit všechny úvahy uvedené výše. Závěrečná úvaha pak může být řešena rovnicí takto:

$$\frac{1}{5}x = \frac{1}{6}x + 2,$$

$$6x = 5x + 60,$$

$$x = 60.$$

Hodnocení. Po 1 bodu za zlomky vyjadřující úlovky v úterý, středu a čtvrtek; 1 bod za zlomek vyjadřující počet odstěhovaných myší; 1 bod za konečný výsledek; 1 bod za ověření, že všechny úlovky jsou celá čísla.

Z9–III–2

Jirka, Vít a Ota na soutěži získali všechny tři medaile. Nechtěli se chlubit, proto takto žertovali:

Jiří: "Ota získal zlatou!"

Vít: "Ale ne, Ota získal stříbrnou!"

Ota: "Nedostal jsem ani zlatou ani stříbrnou!"

Tělocvikář prozradil, že nositel zlaté medaile mluvil pravdu a nositel bronzové lhal. Kdo získal jakou medaili? (M. Volfová)

Možné řešení. Úlohu lze řešit úvahou, kdo mohl dostat zlatou medaili:

Kdyby ji dostal Ota, pak by jeho výrok nebyl pravdivý a to odporuje sdělení tělocvikáře.

Kdyby dostal zlatou Jiří, pak by jeho výrok taky nebyl pravdivý, což opět odporuje sdělení tělocvikáře.

Zlatou tedy dostal Vít. Ten jako nositel zlaté medaile mluví pravdu a z jeho sdělení plyne, že Ota získal stříbrnou. Pro Jiřího zbyla bronzová medaile a jeho výrok je skutečně lež.

Závěr: Vít získal zlatou, Ota stříbrnou a Jiří bronzovou medaili.

Hodnocení. 1 bod za správný závěr; 5 bodů za přesné zdůvodnění.

Z9-III-3

Ve čtvercové síti, jejíž čtverce mají stranu délky a, jsou narýsovány dvě kružnice (viz obrázek). Obě mají střed v bodě S a každá prochází čtyřmi mřížovými body. Šedě vybarvený obrazec je vymezen částmi těchto kružnic a jednou síťovou přímkou. Vyjádřete obsah šedého obrazce pomocí délky a.

 $(L. \check{S}im\mathring{u}nek)$

Možné řešení. Mřížové body, jimiž prochází menší kružnice, označíme A, B, C a D. Na větší kružnici vyznačíme body K, L, M, N, O a P tak jako na obrázku. Šestiúhelník KLMNOP je pravidelný, což plyne z toho, že všechny jeho vrcholy leží na jedné kružnici, strany KL a NO mají délku evidentně shodnou s poloměrem této kružnice a ostatní čtyři strany mají stejnou délku.

Pro výpočet obsahu šedého obrazce budeme potřebovat obsah S_1 většího kruhu a obsah S_2 jeho úseče vymezené tětivou LN, dále pak obsah S_3 menšího kruhu a obsah S_4 jeho úseče vymezené tětivou BC.

Větší kruh má poloměr 2a, jeho obsah je

$$S_1 = \pi (2a)^2 = 4\pi a^2.$$

Obsah S_2 kruhové úseče je roven rozdílu obsahů kruhové výseče LSN a trojúhelníku LSN. Úhel LSN zjevně vymezuje třetinu šestiúhelníku KLMNOP, obsah kruhové výseče LSN je tudíž roven třetině obsahu S_1 většího kruhu, tj. $\frac{4}{3}\pi a^2$. Nyní vyjádříme obsah trojúhelníku LSN. Střed úsečky LN označíme Z. Podle Pythagorovy věty určíme délku strany ZN trojúhelníku SZN:

$$|ZN| = \sqrt{(2a)^2 - a^2} = a\sqrt{3}.$$

Odtud $|LN|=2a\sqrt{3}$ a obsah trojúhelníku LSN je $\frac{1}{2}\cdot 2a\sqrt{3}\cdot a=a^2\sqrt{3}$. Konečně můžeme vyjádřit obsah S_2 kruhové úseče:

$$S_2 = \frac{4}{3}\pi a^2 - a^2\sqrt{3} = \left(\frac{4}{3}\pi - \sqrt{3}\right)a^2.$$

Poloměr menšího kruhu odpovídá úhlopříčce čtverce o straně a, tj. $a\sqrt{2}$. Obsah tohoto kruhu je

$$S_3 = \pi (a\sqrt{2})^2 = 2\pi a^2.$$

Pokud od obsahu S_3 odečteme obsah čtverce ABCD a rozdíl vydělíme čtyřmi, dostaneme obsah S_4 kruhové úseče:

$$S_4 = \frac{1}{4} (2\pi a^2 - 4a^2) = (\frac{\pi}{2} - 1) a^2.$$

Kýžený obsah je roven

$$(S_1 - S_2) - (S_3 - S_4) = 4\pi a^2 - \left(\frac{4}{3}\pi - \sqrt{3}\right)a^2 - 2\pi a^2 + \left(\frac{\pi}{2} - 1\right)a^2,$$

což po úpravě odpovídá výrazu

$$\left(\frac{7}{6}\pi + \sqrt{3} - 1\right)a^2.$$

Hodnocení. Po 1 bodu za obsahy S_1 , S_3 , S_4 ; 2 body za obsah S_2 ; 1 bod za správný závěr; poslední úprava není povinná.

Z9-III-4

Adam s Evou hráli šachy.

Adam vyhrál a utěšoval Evu: "To víš, já hraji šachy dlouho, dvakrát déle než ty!" Eva se zlobila: "Ale minule jsi říkal, že je hraješ třikrát déle!"

Adam se divil: "To že jsem říkal? A kdy to bylo?"

"Předloni!"

"No tak to ano, mluvil jsem pravdu — a dnes také."

Jak dlouho hraje Adam šachy?

(M. Volfová)

Možné řešení. Předokládejme, že Eva hraje šachy x let. Potom časové údaje vystupující v zadání úlohy můžeme stručně vyjádřit následující tabulkou:

	předloni	dnes
Eva	x-2	x
Adam	2x-2	2x

Předloni hrál Adam šachy třikrát delší dobu než Eva, což vyjádříme rovnicí:

$$2x - 2 = 3(x - 2),$$

$$2x - 2 = 3x - 6,$$

$$4 = x.$$

Odtud 2x = 8, což znamená, že Adam hraje šachy 8 let.

Hodnocení. 2 body za údaje odpovídající naší tabulce; 2 body za sestavení a řešení rovnice; 2 body za správný závěr.