3ª Lista de Exercícios - Cálculo II

1. Calcule cada limite abaixo, se existir

careare cada mine aband, se existin			
a)	$\lim_{x \to 0} \frac{x}{tgx}$	Resp. 1	
b)	$\lim_{x \to +\infty} x \operatorname{sen} \frac{1}{x}$	Resp. 2	
c)	$\lim_{x \to \frac{\pi}{2}} \frac{\ln(sen x)}{(\pi - 2x)^2}$	Resp. – 1/8	
d)	$\lim_{x \to 0} \frac{2^x - 3^x}{x}$	Resp. In 2/3	
e)	$\lim_{x \to 0} \frac{x - sen x}{tg^3 x}$	Resp, 1/6	
f)	$\lim \frac{1-e^{\frac{1}{x}}}{3}$	Resp. 1/3	

g)
$$\lim_{x \to 0} \frac{-\frac{3}{x}}{x^2}$$
 Resp. -1

h)
$$\lim_{x \to -\infty} \frac{2^x}{e^x}$$
 Resp. $+\infty$

2. Verifique se a integral imprópria converge ou diverge ; no caso de convergência, ache seu valor.

seu valor.			
	$\int_{1}^{\infty} \frac{1}{x^{4/3}} dx$	Resp.: 3	
b)	$\int_{-\infty}^{+\infty} x e^{-x^2} dx$	Resp.: 0	
c)	$\int_0^\infty \cos(x) dx$	Resp.: diverge	
d)	$\int_{-\infty}^{-1} \frac{1}{x^3} dx$	Resp.: -1/2	
e)	$\int_{-\infty}^{0} \frac{1}{x^2 - 3x + 2} dx$	Resp.: In2	
f)	$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx$	Resp.: π	
g)	$\int_2^\infty \frac{1}{x-1} dx$	Resp.: diverge(∞)	
h)	$\int_2^\infty \frac{1}{(x-1)^2} dx$	Resp.: 1	
i)	$\int_{-\infty}^{+\infty} \frac{1}{x^2 + 6x + 12} dx$	Resp.: $\pi/\sqrt{3}$	
	c^1		

j)
$$\int_0^1 x ln(x) dx$$
 Resp.: -1|4
k) $\int_0^2 \frac{1}{(x-1)^2} dx$ Resp.: diverge(∞)

I)
$$\int_{1}^{\infty} \frac{1}{x\sqrt{x^{2}-1}} dx$$
 Resp.: $\pi/2$ m)
$$\int_{0}^{1} \frac{1}{\sqrt{1-x}} dx$$
 Resp.: 2

n)
$$\int_{\pi/4}^{\pi/2} sec(x)dx$$
 Resp.: diverge(∞)

- 3. E possível indicar um número para representar a medida da área da região a direita da reta x=1, abaixo do gráfico de y = $1/\chi$ e acima do eixo x? Resp.: não
- 4. E possível atribuir um número finito medida do volume do sólido formado pela rotação em torno do eixo x, da região do exercício anterior ? Resp.: Sim, π
- 5. Verifique se e possível atribuir um número finito para representar a área pela curva $y=\frac{1}{e^x+e^{-x}}$ e pelo eixo x. Caso seja possível determine-o. Resp.: Sim, $\pi/2$