Problemas de Repaso para Primer Parcial

Calorimetría

Ejercicio 1)

En el interior de un calorímetro ideal de paredes rígidas y adiabáticas hay una masa de agua $m_1 = 100$ g a $t_{01} = 25$ °C y una masa de hielo de agua $m_2 = 200$ g a $t_{02} = 0$ °C, todo a presión atmosférica normal.

- a) ¿Qué cantidad de vapor de agua a 100 °C hay que inyectar para que todo el conjunto quede a 100 °C en estado líquido? Datos: cagua = 4.180 J/kg.K, chielo = 2.090 J/kg.K, l_{vaporización} = 2,26 MJ/kg, l_{fusión} = 334 kJ/kg.
- **b**) Explique el concepto de equivalente en agua de un calorímetro.

Solución

Ejercicio 1)

a) Para llevar las masas de agua y hielo a 100°C se necesitan:

$$Q = \begin{bmatrix} 4180 \cdot 0, 1 \cdot (100 - 25) + 334000 \cdot 0, 2 + 4180 \cdot 0, 2 \cdot 100 \end{bmatrix} J = 181750 J$$
 vapor a 100°C a condensar será:
$$m_V = \frac{Q}{l_V} = \frac{181750 \, J}{2,26 \cdot 10^6 \, \frac{J}{kg}} = 0,080 \, kg = 80 \, g$$
 La masa de

b) Masa de agua ficticia que absorbe o cede la misma cantidad de calor que todos los componentes del calorímetro (recipiente, termómetro, agitador, etc) para la misma variación de temperatura que experimenta el conjunto de todos esos elementos.

Ejercicio 2: a) Una pared de 0,8 m² de superficie, 15 cm de espesor y conductividad térmica $\lambda = 0,3$ W/m·K, separa una mezcla de hielo y agua, a 0 °C y presión normal, de una fuente térmica a cierta temperatura T. Considere que la mezcla de hielo y agua sólo intercambia calor con la fuente térmica y lo hace a través de la pared. Al alcanzar el régimen estacionario, se funden 150 g de hielo cada 25 minutos. El calor latente de fusión del hielo es $L_f = 334$ kJ/kg. Calcule la temperatura T.

b) Justifique si es posible la existencia de una máquina frigorífica que trabaje entre una fuente caliente a 80 °C y otra fría a 0 °C, y que sea tal que al entregarle un trabajo de 650 J extraiga 2600 J de calor de la fuente fría.

Solución Ejercicio 2: a) $|Q| = \text{m.L}_f = 0.15 \times 334 \text{ kJ} = 50.1 \text{ kJ.}$ Considerando que el calor se transfiere a través de la pared en régimen estacionario, se cumple que $\frac{Q}{t} = \lambda S \frac{T - T_0}{e} \Rightarrow T = \frac{Q}{t} \frac{e}{\lambda S} + T_0 = \frac{50100}{25 \times 60} \frac{0.15}{0.3 \times 0.8} \text{°C} + 0 \text{°C} \approx 20.9 \text{°C}$

b) Para la máquina en cuestión, la eficiencia sería $e = \frac{2600}{650} = 4$. Para una máquina reversible con las mismas fuentes es $e_R = \frac{T_f}{T_C - T_f} = \frac{273}{80} \approx 3,41 \Rightarrow \underline{\text{no es posible}}$ que exista porque tendría una eficiencia mayor que la ideal.

Transmisión del Calor:

Ejercicio 1) Dos paredes planas, paralelas y muy extensas (modelo infinito), se encuentran respectivamente a temperaturas $T_1 = 600 \text{ K}$ y $T_2 = 200 \text{ K}$. El espacio entre las paredes contiene aire y el área de las mismas es A. El coeficiente de convección entre las paredes y el aire es $h = 8 \text{ W.m}^{-2} \cdot \text{K}^{-1}$. Suponga que las paredes son cuerpos negros ideales. Considere que, en el rango de temperaturas indicado, las moléculas de aire no emiten ni absorben cantidades significativas de radiación térmica y que tampoco es significativa la conductividad térmica. (La

constante de Stefan-Boltzmann se puede aproximar a 5,67.10⁻⁸ W/m² K⁴). Considere al sistema en régimen estacionario y calcule:

- a) la temperatura del aire contenido entre las paredes;
- b) el calor total transmitido entre las paredes por unidad de tiempo y superficie.

Solución Ejercicio 1)

a) Las moléculas de aire no emiten ni absorben radiación, por lo que el balance térmico es puramente convectivo:

$$hA(T_1 - T_{aire}) = hA(T_{aire} - T_2) \implies T_{aire} = \frac{T_1 + T_2}{2} = \frac{600 + 200}{2} K = 400 K$$

b)
$$\frac{1}{A} \left(\frac{\delta Q}{\delta \tau} \right)_{conv} = h \left(T_{aire} - T_2 \right) = h \frac{T_1 - T_2}{2} = 8 \frac{600 - 200}{2} \frac{W}{m^2} = 1600 \frac{W}{m^2}$$

$$\frac{1}{A} \left(\frac{\delta Q}{\delta \tau} \right)_{rad} = \sigma \left(T_1^4 - T_2^4 \right) = 5,67 \times 10^{-8} \left(600^4 - 200^4 \right) \frac{W}{m^2} = 7257,6 \frac{W}{m^2}$$

$$\frac{1}{A} \left(\frac{\delta Q}{\delta \tau} \right) = \frac{1}{A} \left(\frac{\delta Q}{\delta \tau} \right)_{conv} + \frac{1}{A} \left(\frac{\delta Q}{\delta \tau} \right)_{rad} = \left(1600 + 7257,6 \right) \frac{W}{m^2} = 8857,6 \frac{W}{m^2}$$

Ejercicio 2: Las tres barras de la figura tienen igual longitud ℓ e igual sección S. La relación entre sus conductividades térmicas es $\kappa_1 = 2\kappa_2 = 4\kappa_3$. Las fuentes térmicas tienen temperaturas $T_F y T_C > T_F$ respectivamente,

b) la temperatura Tu₁ de la unión, en términos de T_C y T_{U2}, suponiendo régimen estacionario de transmisión del calor.

Solución Ejercicio 2)

2) a) Por tratarse de una serie:
$$R_T = R_{T1} + R_{T2} + R_{T3} = \frac{\ell}{\kappa_1 S} + \frac{\ell}{\kappa_2 S} + \frac{\ell}{\kappa_3 S} = \frac{\ell}{S} \left(\frac{1}{4\kappa_3} + \frac{1}{2\kappa_3} + \frac{1}{\kappa_3} \right) = \frac{7}{4} \frac{\ell}{S\kappa_3}$$

b) En régimen estacionario:

$$\Phi_{Q} = -\kappa_{1}S\frac{T_{U1} - T_{C}}{\ell}$$

$$\Phi_{Q} = -\kappa_{2}S\frac{T_{U2} - T_{U1}}{\ell}$$

$$\Rightarrow 2\kappa_{2}S\frac{T_{U1} - T_{C}}{\chi} = \kappa_{2}S\frac{T_{U2} - T_{U1}}{\chi} \Rightarrow 2T_{U1} + T_{U1} = T_{U2} + 2T_{C} \Rightarrow T_{U1} = \frac{T_{U2} + 2T_{C}}{3}$$

Termodinámica – Primer y Segundo Principio y Máquinas Térmicas:

Ejercicio 1) Un mol de un gas ideal evoluciona desde un estado A hasta un estado B, reversible e isotérmicamente. Se enfría mediante una transformación BC reversible e isocórica, y completa el ciclo mediante una compresión adiabática reversible CA. Se sabe que $P_A = 2.10^5$ Pa, $P_B = 5.10^4$ Pa; $V_A = 0.02$ m³. ($c_P = 5R/2$; R = 8.314 J/molK) a) Indique si el ciclo ABCA es motor o frigorífico y calcule el rendimiento motor o la eficiencia frigorífica según corresponda.

b) Si el tramo de enfriamiento isocórico BC fuera irreversible, calcule la variación de la energía interna del ciclo irreversible ABCA.

Solución Ejercicio 1)

$$T_{A} = T_{B} = \frac{P_{A}V_{A}}{nR} = \frac{2 \times 10^{5} \times 0.02}{1 \times 8.314} \text{ K} = 481.12 \text{ K} ; \quad V_{C} = V_{B} = \frac{P_{A}V_{A}}{P_{B}} = \frac{2 \times 10^{5} \times 0.02}{5 \times 10^{4}} \text{ m}^{3} = 0.08 \text{ m}^{3}$$

$$c_{V} = c_{P} - R = \frac{5}{2}R - R = \frac{3}{2}R ; \quad \chi = \frac{c_{P}}{c_{V}} = \frac{5}{3} ; \quad P_{A}V_{A}^{\chi} = P_{C}V_{C}^{\chi} \Rightarrow P_{C} = P_{A}\left(\frac{V_{A}}{V_{C}}\right)^{\chi} = 2 \times 10^{5}\left(\frac{0.02}{0.08}\right)^{\frac{5}{3}} \text{ Pa} = 19842.51 \text{ Pa}$$

$$T_{C} = \frac{P_{C}V_{C}}{nR} = \frac{19842.51 \times 0.08}{1 \times 8.314} \text{ K} = 190.93 \text{ K} ; \quad Q_{AB} = W_{AB} = P_{A}V_{A} \ln\left(\frac{V_{B}}{V_{A}}\right) = 2 \times 10^{5} \times 0.02 \times \ln\left(\frac{0.08}{0.02}\right) \text{J} = 5545.18 \text{J}$$

$$Q_{BC} = nc_{V}\left(T_{C} - T_{B}\right) = 1 \times \frac{3}{2} \times 8.314\left(190.93 - 481.12\right) \text{J} = -3618.96 \text{J} ; \quad Q_{CA} = 0$$

$$W_{cic} = Q_{cic} = Q_{AB} + Q_{BC} + Q_{CA} = 5.545.18 \text{ J} - 3.618.96 \text{ J} = 1.926.22 \text{ J}$$

$$W_{cic} > 0 \Rightarrow \boxed{\text{ciclo motor}}; \quad \eta_{cic} = \frac{W_{cic}}{\sum Q(+)} = \frac{W_{cic}}{Q_{AB}} = \frac{1926.28}{5545.18} = \boxed{0.35}$$

b) La energía interna es una función de estado por lo que en un ciclo, sea o no reversible, su variación es nula.

Ejercicio 2: Un mol de un gas ideal diatómico describe un ciclo motor de Carnot en el que la temperatura más elevada es 227 °C, el trabajo en la expansión adiabática es 4157 J y el calor absorbido durante la expansión isotérmica es 100 J. Determine (cv = 5R/2; R = 8,314 J/(mol K):

- a) La temperatura más baja del ciclo;
- b) El calor entregado al medio ambiente durante la compresión isotérmica.

Solución Ejercicio 2)

a)
$$U_{AC} = U_{AB} + U_{BC} = 0 - W_{BC} = -4157J = nc_V(T_C - T_A) \Rightarrow T_C = 500K - 200K = 300K \equiv 27^{\circ}C$$

b)
$$\eta = 1 - {^T_C}/{_{T_A}} = 0.4 \Rightarrow W_{CICLO} = 0.4 \times 100J = 40J \Rightarrow |\mathbf{Q_F}| = \mathbf{60J}$$

Ejercicio 3: Un sistema, compuesto por n moles de un gas ideal, evoluciona en forma isobárica cuasiestática desde el estado A hasta el B. El trabajo termodinámico del sistema en dicha evolución es $W_{AB} = 600$ J. Calcule la cantidad de calor Q_{AB} que el sistema intercambia con el medio, considerando que su calor específico molar a presión constante es $c_p = 5R/2$.

Solución Ejercicio 3)

$$W_{AB} = Q_{AB} - U_{AB} = c_P n (T_B - T_A) - c_V n (T_B - T_A) = n R (T_B - T_A) \Rightarrow (T_B - T_A) = \frac{W_{AB}}{n R}$$

$$Q_{AB} = c_P h \frac{W_{AB}}{h_R} = \frac{5}{2} R \frac{600 J}{R} = 1500 J$$

Ejercicio 4: El gráfico muestra la evolución ABCA de 3 moles de un gas ideal diatómico (c_P = 7R/2; R = 8,314 J/mol·K). La transformación AB es adiabática, en tanto que la transformación CA es isoterma. El volumen del estado B es el doble del volumen del estado A.

- a) Calcule el calor intercambiado por el gas en la transformación BC (en función de T_A);
- **b**) Suponga que en las condiciones anteriores se lleva el gas del estado B al estado D, a presión constante, duplicando su volumen, y luego al estado C, como se muestra en líneas rectas de guiones. Calcule el trabajo BDC suponiendo que la temperatura del estado A fuera $T_A = 600 \text{ K}$.

Solución Ejercicio 4)

a)
$$T_B = T_A \left(\frac{V_A}{V_B}\right)^{2/5} = 0.758 T_A \Rightarrow U_{BC} = nc_V (T_C - T_B) = nc_V T_A [1 - 0.758] \approx 15.12 T_A = Q_{BC}$$

b)
$$W_{BDCB} = W_{BDC} = -\frac{1}{2}(P_C - P_B)(V_D - V_B) = -\frac{1}{2}nRV_B\left(\frac{T_C}{V_C} - \frac{T_B}{V_B}\right) = -\frac{1}{2}nRT_A(1 - 0.758) \approx -1815 J$$

Ejercicio 5)

Tres moles de gas ideal, $c_v = 5R/2$, se comprimen en forma adiabática desde un estado A, con una temperatura $T_A = 250 \text{ K}$, hasta el estado B, con temperatura $T_B = 300 \text{ K}$. Calcule:

- a) El trabajo hecho por el gas en la evolución AB.
- b) La presión que tendría el estado B, si la presión del estado A fuese P_A = 100 kPa y la evolución fuese adiabática y cuasiestática.

$$(R = 8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1})$$

Solución Ejercicio 5)

a)
$$W_{AB} = -\Delta U_{AB} = -c_V n (T_B - T_A) = -5 \times 8,314 \times 0,5 \times 3 \times (300 - 250) J$$
 $W_{AB} \approx -3,12 \text{ kJ}$

b)
$$\gamma = \frac{c_V + R}{c_V} = \frac{7}{2}$$
; $T_A \times P_A^{\frac{1}{\gamma} - 1} = T_B \times P_B^{\frac{1}{\gamma} - 1} \implies P_B = P_A \left(\frac{T_A}{T_B}\right)^{\frac{\gamma}{1 - \gamma}} = 100 \text{kPa} \left(\frac{250}{300}\right)^{-\frac{7}{2}}$ $P_B \approx 189 \text{kPa}$

Ejercicio 6:

Cuando 2 moles de un gas ideal (cv = 3R/2) evolucionan desde el estado A hasta el B de la figura, su energía interna disminuye en 3,24 kJ y su temperatura se reduce a 2/3 del valor inicial. Las presiones de los estados A y B son 130 kPa y 216 kPa, respectivamente.

Calcule la cantidad de calor QAB que el sistema intercambia con el medio exterior. [R = 8,31 J/ (mol·K)]

Solución Eiercicio 6)

$$U_{AB} = c_V n(\frac{2}{3}T_A - T_A) \Rightarrow T_A = -\frac{3U_{AB}}{nc_V} = -\frac{3 \times (-3, 24 \times 10^3)}{2 \times \frac{3}{2} \times 8,31} \text{K} \Rightarrow T_A \approx 390 \text{K} ; T_B = 260 \text{K}$$

$$V_{A} = \frac{nRT_{A}}{P_{A}} = \frac{2 \times 8,31 \times 390}{130 \times 10^{3}} \, \mathrm{m}^{3} \implies V_{A} \approx 49,9 \times 10^{-3} \, \mathrm{m}^{3} \; \; ; \; V_{B} = \frac{nRT_{B}}{P_{B}} = \frac{2 \times 8,31 \times 260}{216 \times 10^{3}} \, \mathrm{m}^{3} \; \implies V_{B} \approx 20 \times 10^{-3} \, \mathrm{m}^{3}$$

$$W_{AB} = \frac{P_A + P_B}{2} (V_B - V_A) = \frac{130 + 216}{2} (V_B - V_A) = \frac{130 + 126}{2} \times 10^3 (20 - 49, 9) \times 10^3 \,\text{J} \approx -5,17 \,\text{kJ}$$

$$Q_{AB} = W_{AB} + U_{AB} = (-5,17-3,24) \text{ kJ}$$
 $Q_{AB} = -8,41 \text{ kJ}$

Ejercicio 7: Una máquina térmica opera con tres moles de gas ideal (R = 8,314 J/mol·K), que realizan el ciclo ABCA de la figura en el plano PT. La prolongación del segmento que representa a la evolución BC pasa por el origen de coordenadas.

P[kPa]

- a) Calcule el calor intercambiado por el gas en todo el ciclo, indicando si es recibido o cedido por el mismo.
- b) Respecto del ciclo de la figura, indique cuál es la sentencia correcta

$W_{BC} > 0$	U_{AB} < 0	$Q_{AC} = Q_{ABC}$
$U_{ABC} > U_{AC}$	$W_{CICLO} = W_{CA} + Q_{AB}$	$\eta_{MAQUINA} = 1 - T_B / T_C$

Solución Ejercicio 7)

a)
$$V_A = \frac{nRT_A}{P_A} = \frac{3 \times 8,314 \times 450}{150 \times 10^3} \text{m}^3 \approx 74,8 \times 10^{-3} \text{m}^3$$

$$T_C = \frac{T_B P_C}{P_B} = \frac{450 \times 150}{120} \text{K} \approx 563 \text{K} \quad ; \quad V_C = \frac{nRT_C}{P_C} = \frac{3 \times 8,314 \times 563}{150 \times 10^3} \text{m}^3 \approx 93,6 \text{m}^3$$

$$Q_{Ciclo} = Q_{AB} + Q_{BC} + Q_{CA} = V_{AR} + W_{AB} + V_{BC} + V_{CA} + W_{CA}$$

$$Q_{Ciclo} = nRT_A \ln \left(\frac{P_A}{P_B}\right) + P_A \left(V_A - V_C\right) = 3 \times 8,314 \times 450 \times \ln \left(\frac{150}{120}\right) \text{J} + 150 \times 10^3 \left(74,8 - 93,6\right) \times 10^{-3} \text{J}$$

$$Q_{Ciclo} = (2505 - 2820) \text{J}$$

$$Q_{Ciclo} \approx -315 \text{J}$$
b)
$$\frac{W_{BC} > 0}{U_{ABC} > U_{AC}} \qquad \frac{U_{AB} < 0}{W_{CICLO} = W_{CA} + Q_{AB}} \qquad \frac{Q_{AC} = Q_{ABC}}{\eta_{MAQUINA} = 1 - T_B / T_C}$$

Ejercicio 8: El gráfico muestra tres posibles transformaciones que puede realizar un gas ideal diatómico ($c_P = 7R/2$; $c_V = 5R/2$). La transformación AB es una isoterma, en tanto que AC es una adiabática. Se sabe que la temperatura en el estado C es $T_C = 4/5$ T_A .

- a) halle la presión del estado C en términos sólo de la presión en A;
- b) marque la aseveración correcta:

$Q_A = Q_C$ y $U_{ACB} = 0$	$Q_{AC} < Q_{AB}$ y $U_{ACB} = 0$	
$W_{ABC} = W_{AB}$ y $Q_{ABC} = 0$	$W_{AB} > W_{AC}$ y $Q_{AB} = 0$	
$Q_{AC} > 0$ y $U_{AC} > 0$	$Q_{ABC} = Q_{ACB} \text{ y } Q_{AB} > 0$	

Solución Ejercicio 8)

a)
$$T_C = \frac{4}{5}T_A$$
; $T.P^{\frac{1}{\gamma}-1} = \text{constante}$; $\gamma = \frac{7}{5} \Rightarrow \frac{1}{\gamma} - 1 = -\frac{2}{7}$; $T_A.P_A^{-\frac{2}{7}} = T_C.P_C^{-\frac{2}{7}} \Rightarrow P_C = \left(\frac{Y_A.P_A^{-\frac{2}{7}}}{\frac{4}{5}Y_A}\right)^{\frac{7}{2}} \Rightarrow P_C = \left(\frac{4}{5}\right)^{\frac{7}{2}}P_A$

b)

	$Q_A = Q_C$ y $U_{ACB} = 0$	X	Qac < Qab y Uacb = 0
	$W_{ABC} = W_{AB} \ y \ Q_{ABC} = 0$		$W_{AB} > W_{AC} y Q_{AB} = 0$
	$Q_{AC} > 0$ y $U_{AC} > 0$		$Q_{ABC} = Q_{ACB} \ y \ Q_{AB} > 0$

Ejercicio 9: El rendimiento térmico de un motor térmico real, que trabaja entre una fuente a 300 K y otra a 450 K, es igual a los 3/4 del máximo rendimiento correspondiente a esas temperaturas. Halle el trabajo que efectúa el motor real por cada 60 kJ de calor que cede a la fuente fría.

Solución Ejercicio 9)

$$\begin{split} \eta &= \frac{3}{4}(1 - \frac{300}{400}) = 0,25 \quad ; \quad \eta = \frac{W}{Q_{FC}} = \frac{W}{W + |Q_{FF}|} \implies \eta W + \eta |Q_{FF}| = W \\ W &= \frac{\eta |Q_{FF}|}{1 - \eta} = \frac{0,25 \times 60}{1 - 0,25} \text{kJ} \quad W = 20 \text{kJ} \end{split}$$

Ejercicio 10)

Una máquina térmica frigorífica trabaja entre dos fuentes de temperaturas $T_1 = 1600 \text{ K y } T_2 = 800 \text{ K}$. Si la cantidad de calor intercambiada con la fuente fría es $|Q_2| = 800 \text{ J y } |W| = 200 \text{ J es el trabajo que se le entrega en cada ciclo:}$ a) calcule la eficiencia de la máquina; b) Justifique si esta máquina es reversible, irreversible o imposible.

Solución Ejercicio 10)

a)

La eficiencia de la máquina frigorífica es:

$$\varepsilon = \frac{|Q2|}{|W|} = \frac{800 J}{200 J} = 4$$

b) La eficiencia de la máquina térmica frigorífica que opera entre las mismas fuentes es:

$$\varepsilon_{R} = \frac{|Q2_{R}|}{|W_{R}|} = \frac{|Q2_{R}|}{|Q1_{R}| - |Q2_{R}|} = \frac{1}{\frac{|Q1_{R}|}{|Q2_{R}|} - 1} = \frac{1}{\frac{T1}{T2} - 1} = \frac{T2}{T1 - T2}$$

$$\varepsilon_{R} = \frac{800 \text{ J}}{1600 \text{ J} - 800 \text{ J}} = 1$$
Como $\square > \square_{R}$

la máquina es **IMPOSIBLE**.

Electrostática, Dieléctricos y Capacidad Eléctrica:

Ejercicio 1) El potencial eléctrico V en una región del espacio está dado por V = a x 2 + a y 2 - 2 a z 2 [V; m] donde "a" es una constante. Si el trabajo realizado por la fuerza eléctrica sobre una carga puntual de 2 μ C cuando se desplaza desde el punto (0; 0; 0,1 m) hasta el origen es de - 5 10^{-5} J, calcule la constante "a".

Solución Ejercicio 1)

$$W_{o\rightarrow f}^{\bar{F}el}=q(V_o-V_f) ~~V_o=-0,02\,a ~~V_f=0 \label{eq:Volume}$$

$$-5.10^{-5} = 2.10^{-6} (-0.02 \, a - 0) \implies a = 1250 \frac{V}{m^2}$$

Ejercicio 2: El anillo de radio R de la figura, ubicado en el plano XY y con centro en el origen de coordenadas, está cargado con densidad lineal de carga $\lambda = \lambda_0 \cos \phi$ (con $\lambda_0 > 0$ y el ángulo ϕ medido positivamente en sentido antihorario a partir del semieje positivo de las X).

- a) Calcule el potencial de la configuración, respecto del infinito, en todo punto del eje Z;
- **b**) indique cuál de los siguientes gráficos corresponde a la configuración; la flecha representa la dirección y el sentido del vector campo electrostático \mathbf{E} en el origen, la ausencia de flecha indica $|\mathbf{E}| = 0$, V_A y V_B son los potenciales de los puntos A y B de coordenadas (2R; 0; 0) y (3R; 0; 0), respectivamente.

Solución Ejercicio 2)

 a) El potencial es nulo porque el CE en todo punto del eje Z es perpendicular al eje, de modo tal que el trabajo para transportar una carga a lo largo del eje Z es nulo. Eventualmente, hacer las cuentas lleva muy poco tiempo,

$$\vec{r}=(0;0;z); \ \vec{r}'=(R\cos\phi';R\sin\phi';0) \ dq'=\lambda_0\cos\phi' \ R \ d\varphi' \ \Rightarrow \ V=k_0\lambda_0 R \int_0^{2\pi} \frac{\cos\varphi'}{\sqrt{R^2+z^2}} \ d\varphi'=0$$
 b) Opción D

Ejercicio 3: Los dos alambres infinitos de la figura están cargados con densidades uniformes de carga λ_1 y λ_2 , respectivamente. El campo eléctrico de la configuración se anula en los puntos ubicados a distancia D/3 del alambre con densidad λ_1 . Halle la relación entre las densidades de carga λ_1 y λ_2 .

$$\begin{array}{c|c}
 & \lambda_1 & D/3 \\
 & \hat{i} & D & \lambda_2 \\
 & \lambda_2 & \lambda_2
\end{array}$$

Solución Ejercicio 3):
$$\vec{E}_1 = -\vec{E}_2$$
 ; $\vec{K} \frac{2\lambda_1}{2\lambda_2} \left(-\hat{j} \right) = -\vec{K} \frac{2\lambda_2}{2\lambda_2} \hat{j} \Rightarrow \lambda_2 = 2\lambda_1$

Ejercicio 4: Dos esferas conductoras concéntricas de radios r_A y $r_B > r_A$, están cargadas con carga opuestas $Q_A > 0$ y $Q_B < 0$, respectivamente ($Q_A = |Q_B|$). Se transporta una carga q < 0 desde la esfera interior (A) a la exterior (B). Si Wel, ab representa el trabajo de la fuerza eléctrica para llevar la carga desde A hasta B, E representa el módulo del campo eléctrico, y C la capacidad entre los conductores, $k_0 = 1/4\pi\epsilon_0$, entonces (dos opciones son verdaderas)

$V_A < V_B$ y $C = k_0^{-1} (r_A - r_B / r_A r_B)$	$E(r>r_A) = 0 \text{ y } W_{el,AB} = k_0 q Q_A(r_B^{-1} - r_A^{-1})$
$V_{1} > V_{2} + V_{3} = V_{3$	$V_1 > V_2 V_2 = k^{-1}(r \cdot r \cdot / r - r)$

Solución Ejercicio 4)

	$V_A < V_B$ y $C = k_0^{-1} (r_A - r_B / r_A r_B)$		$E(r>r_A) = 0$ y $W_{el,AB} = k_0 q Q_A (r_B^{-1} - r_A^{-1})$
	$V_A > V_B$ y $C = k_0^{-1} Q_A (r_A r_B / r_A - r_B)$	X	$V_A > V_B$ y $C = k_0^{-1} (r_A r_B / r_B - r_A)$
X	$E(r>r_B) = 0 \text{ y } W_{el,AB} = k_0 q Q_A(r_B^{-1} - r_A^{-1})$		$E = 0$ en todo el espacio pero $W_{el,AB} > 0$
	$E = 0$ en todo el espacio pero $W_{el,AB} < 0$		$E(r_A < r < r_B) = 0 \text{ y } W_{el,AB} = -k_0 q Q_A (r_B^{-1} - r_B)$
			r_{Λ}^{-1})

Ejercicio 5: Un capacitor plano, completamente cargado, tiene capacidad C_0 y el medio entre sus placas es el vacío. Se reduce a la mitad el área de las placas y se rellena la tercera parte del espacio entre ellas con un material dieléctrico de permitividad relativa $\epsilon_R = 10$ como muestra la figura. Halle la expresión de:

- a) la nueva capacidad C en función de C₀;
- b) el módulo del vector polarización eléctrica en cada región del capacitor en la configuración final, si se le aplica una diferencia de potencial V entre las placas y d es la distancia entre las mismas.

Solución Ejercicio 5)

a) Considerando como un arreglo en paralelo:

$$C = \varepsilon_0 \frac{\frac{2}{3} \frac{A}{2}}{d} + \varepsilon_0 \varepsilon_R \frac{\frac{1}{3} \frac{A}{2}}{d} = \varepsilon_0 \frac{A}{d} \left(\frac{2 + \varepsilon_R}{6} \right) = \varepsilon_0 \frac{A}{d} \left(\frac{2 + 10}{6} \right) \Longrightarrow C = 2C_0$$

b) En el vacío $|\mathbf{P_0}| = 0$; en el material dieléctrico $|\mathbf{P}| = \epsilon_0 \kappa E = \epsilon_0 (\epsilon_R - 1) V/d$

Ejercicio 6: La fuente de la figura entrega 12 V y los capacitores son todos iguales con capacidad $C = 2 \mu F$ y se hallan inicialmente descargados.

- a) Calcule la energía almacenada en el sistema con la llave K1 cerrada y K2 abierta.
- b) Una vez cargado C2, se abre la llave K1 y luego se cierra K2. Calcule la carga final en cada capacitor.

Solución Ejercicio 6: La fuente de la figura entrega 12 V...

a)
$$C_{eq} = \frac{C}{2} = 1 \mu F \rightarrow U = 72 \mu J$$

b)
$$C_2 = 2\mu F$$
, $C_{34} = 1\mu F$ y $Q' = Q_0 = 12\mu C$ $\rightarrow \frac{Q'_2}{C_2} = \frac{Q'_{34}}{C_{34}}$ y $Q'_2 + Q'_{34} = 12\mu C$ \rightarrow $Q'_3 = Q'_4 = 4\mu C$ $Q'_2 = 8\mu C$

Ejercicio 7: La figura muestra una región del espacio en la que hay dos materiales dieléctricos lineales, isótropos y homogéneos, de permitividades eléctricas relativas $\varepsilon_{R1} = 3$ y $\varepsilon_{R2} = 5$, separadas por una superficie plana. El campo electrostático dentro de cada material es uniforme y en el punto A es $\vec{E}_1 = (120;160) \text{V/m}$. Calcule el vector desplazamiento eléctrico \vec{D}_2 en el punto B. ($\varepsilon_0 = 8,85 \times 10^{-12} \, \text{C}^2 \cdot \text{N}^{-1} \cdot \text{m}^{-2}$)

Solución Ejercicio 7)

$$E_{2y} = E_{1y} = 160 \text{ V/m}; D_{2y} = \varepsilon_{R2} \varepsilon_0 E_{2y} = 5 \times 8,85 \times 10^{-12} \times 160 \text{ C/m}^2$$

$$D_{2y} \approx 7.08 \text{ nC/m}^2$$

$$D_{2x} = D_{1x} = \varepsilon_{R1} \ \varepsilon_0 \ E_{1x} = 3 \times 8,85 \times 10^{-12} \times 160 \ C/m^2$$

$$D_{2x} \approx 3,19 \text{ nC/m}^2$$

$$\vec{D}_2 = (3,19;7,08)[\text{nC/m}^2]$$

Ejercicio 8: Los capacitores $C_1 = 0.5 \mu F$ y $C_2 = 8 \mu F$ de la figura están conectados a una fuente de 100 V y entre las placas de C_1 hay vacío. Se desea que el conjunto tenga una capacidad igual a la mitad de C_2 . Calcule:

- a) El valor de la permitividad relativa (ε_r) del dieléctrico con el que se debe rellenar totalmente el espacio entre las placas de C_1 para lograr el objetivo.
- b) Si el espacio entre las placas de C_1 se llenase completamente de un dieléctrico de permitividad relativa $\varepsilon_r = 12$ y se mantuviera conectado con C_2 a la misma fuente ¿cuál sería el valor absoluto de las cargas de polarización en la superficie del dieléctrico en contacto con una de las placas de C_1 ?

Solución Ejercicio 8) a) Para que la serie de C1 con dieléctrico tenga la mitad de la capacidad de C2, debe ser

$$\varepsilon_r C_1 = C_2 \implies \varepsilon_r = \frac{C_2}{C_1} = \frac{8}{0.5} \quad \boxed{\varepsilon_r = 16}$$

b)
$$C_{Eq} = \left(\frac{1}{12C_1} + \frac{1}{C_2}\right)^{-1} = \frac{24}{7} \mu F \approx 3,43 \mu F$$
 ; $Q_L = C_{Eq} \times 100 \text{V} \approx 343 \mu \text{C}$

Si se considera una superficie gaussiana que encierre la superficie de una de las placas de C₁ (por ejemplo la cargada positivamente) y la superficie del dieléctrico en contacto con ella (que contiene la carga de polarización negativa), el flujo eléctrico a través de dicha superficie es

$$\Phi_{\scriptscriptstyle E} = \frac{Q_{\scriptscriptstyle Total}}{\varepsilon_0} = \frac{Q_{\scriptscriptstyle Libre}}{\varepsilon_{\scriptscriptstyle F}\varepsilon_0} \implies \frac{Q_{\scriptscriptstyle L} - Q_{\scriptscriptstyle P}}{\raisebox{-0.15ex}{\triangleright}_0} = \frac{Q_{\scriptscriptstyle L}}{\varepsilon_{\scriptscriptstyle F}} \stackrel{\Rightarrow}{\raisebox{-0.15ex}{\triangleright}_0} \implies \varepsilon_{\scriptscriptstyle F}Q_{\scriptscriptstyle L} - \varepsilon_{\scriptscriptstyle F}Q_{\scriptscriptstyle P} = Q_{\scriptscriptstyle L} \implies Q_{\scriptscriptstyle P} = Q_{\scriptscriptstyle L} \stackrel{\varepsilon_{\scriptscriptstyle F}}{\varepsilon_{\scriptscriptstyle F}} = 343 \mu \hbox{C} \frac{11}{12} \implies \boxed{Q_{\scriptscriptstyle P} \approx 314 \mu \hbox{C}}$$

Ejercicio 9: Un capacitor $C_1 = 10 \square F$ se conecta a una pila de $10 \ V$ y otro capacitor $C_2 = 20 \square F$ a otra pila de $20 \ V$. Luego se los desconecta de las pilas y se los dispone como muestra la figura. Calcule:

- a) la carga de C₁ y C₂ antes y después de cerrar la llave;
- b) la energía de la configuración antes y después de cerrar la llave.

Solución Ejercicio 9)

a) Las cargas iniciales son:

$$|Q1o| = C_1 \square V_1 = 100 \square C$$

$$|Q2o| = C_2 \; \Box \, V_2 = 400 \; \Box \, C$$

Luego de cerrar la llave suponemos el estado final de la figura con polaridades indicadas. La ecuación de malla es:

$$-\frac{|Q1f|}{C1} + \frac{|Q2f|}{C2} = 0 \text{ (sentido horario)} - \frac{|Q1f|}{10} + \frac{|Q2f|}{20} = 0$$
 (1)

Planteamos el principio de conservación de la carga en la isla inferior:

$$|Q1f|+|Q2f|=-|Q1o|+|Q2o|$$
 $|Q1f|+|Q2f|=300$ (2) Resolviendo las ecuaciones (1) y (2) $|Q1f|=100$ $|Q1f|+|Q2f|=200$ $|Q1f|+|Q2f|=300$ (2) Resolviendo las ecuaciones (1) y (2) $|Q1f|=100$ $|Q1f|=100$

2 b) La energía en la situación inicial es: Uo = $C_1 (\Box V_1)^2/2 + C_2 (\Box V_2)^2/2 = 4500 \Box J$

La energía en la situación inicial es: Uf = $(Q1f)^2/(2 C_1) + (Q2f)^2/(2 C_2) = 1500 \square J$

Electrodinámica:

Ejercicio 1)

El circuito de la figura está en régimen estacionario y para todos los resistores es $R = 1 \Omega$. La corriente en uno de los resistores de resistencia 2R tiene el sentido indicado y su intensidad es I = 1 A. Determine el potencial del punto A respecto de tierra.

Solución Ejercicio 1)

La ddp en el resistor 2R por el que circula I es de 2 V.

La resistencia equivalente de los cuatro resistores de la derecha es 2R y están sometidos a la misma ddp de 2 V, la intensidad de la corriente que llega a eseconjunto de resistores es de 1 A quese distribuye por mitades en las ramas de la derecha. El potencial del punto A respecto de tierra es

$$V_{A} = R \ 0.5 \ A = +0.5 V$$

$$1 \ A \longrightarrow 0.5 \ A$$

$$R R$$

$$0.5 \ A A \longrightarrow 0.5 \ A$$

$$R R$$

$$R R$$

$$R R$$

$$R R$$

 $R_1 = 3 \Omega$

 $R_2 = 4 \Omega$

 ε_2 = 18 V

 $\epsilon_3 = 16 \text{ V}$

Ejercicio 2: Dos baterías tienen la misma fem pero diferentes resistencias internas R_1 y R_2 y se encuentran conectadas en serie a un resistor externo R. Halle la expresión de R, en función de R_1 y R_2 , para que la diferencia de potencial V_1 entre los terminales de la primera batería sea nula.

Solución Ejercicio 2)

$$\varepsilon_1 = \varepsilon_2 = \varepsilon \; ; \; i = \frac{2\varepsilon}{R + R_1 + R_2} \; ; \; V_1 = \varepsilon - R_1 i = 0 \implies \aleph = R_1 \frac{2 \aleph}{R + R_1 + R_2} \implies R + R_1 + R_2 = 2R_1 \implies R = R_1 - R_2$$

Ejercicio 3: El circuito de la figura se encuentra en régimen estacionario. Las fuentes, el voltímetro y el amperímetro son ideales. El amperímetro marca 2 A y el voltímetro 12 V. La polaridad de cada instrumento está señalada en la figura. Calcule:

- a) La fuerza electromotriz ε_1 .
- b) El valor de la resistencia R₃.

Solución Ejercicio 3:

a)
$$\varepsilon_1 + R_1 i_1 = 12 \text{V} \implies \varepsilon_1 = 12 \text{V} - R_1 i_1 = 12 \text{V} - 3\Omega \times 2 \text{A}$$
 $\varepsilon_1 = 6 \text{V}$

a)
$$-R_1i_1 + \varepsilon_1 = 12V \implies \varepsilon_1 = (12 - 3 \times 2) V \qquad \varepsilon_1 = 6V$$

b)
$$-R_2 i_2 + \varepsilon_2 = 12 \text{V} \implies i_2 = \frac{\varepsilon_2 - 12 \text{V}}{R_2} = \frac{18 - 12}{4} \text{A} \quad i_2 = 1,5 \text{A}$$

 $i_3 = i_1 - i_2 = 0,5 \text{A}$
 $\varepsilon_3 - R_3 i_3 = 12 \text{V} \implies R_3 = \frac{\varepsilon_3 - 12 \text{V}}{i_2} = \frac{16 - 12}{0.5} \Omega \boxed{R_3 = 8\Omega}$

Ejercicio 4:

En el circuito de la figura, el interruptor S ha permanecido cerrado hasta lograr que el capacitor se encuentre completamente cargado.

- a) Calcule la carga en cada placa del capacitor, indicando cuál de ellas se halla a mayor potencial (A o B).
- b) Si ahora (en t = 0) se abre la llave, ¿cuánto tiempo debe transcurrir para que la carga del capacitor disminuya al 20 % del valor inicial?

Solución Ejercicio 4:

a)
$$I = \frac{10 \text{ V}}{(100 + 300)\Omega} = 0,025 \text{ A}$$
; $V_A - 100\Omega \times i + 10 \text{ V} = V_B$
 $V_B - V_A = 10 \text{ V} - 100\Omega \times 0,025 \text{ A} = 7,5 \text{ V}$
 $Q = 200 \times \mu \text{F} \times 7,5 \text{ V} \implies Q = 1500 \mu \text{C}$
 $V_B > V_A$

b)
$$R.i(t) = \frac{q(t)}{C}$$

$$R\left(-\frac{dq(t)}{dt}\right) = \frac{q(t)}{C} \implies \frac{dq(t)}{q(t)} = -\frac{1}{RC}dt$$

$$\int_{Q_0}^{0.2Q_0} \frac{dq(t)}{q(t)} = -\frac{1}{RC} \int_0^t dt \implies \ln\left[\frac{0.2 Q_0}{Q_0}\right] = -\frac{t}{RC} \implies t = -RC \ln 0.2$$

$$t = -1300\Omega \times 200 \times 10^{-6} \text{F} \times (-1,609) \quad t \approx 418 \text{ms}$$

- **Ejercicio 5:** Para el circuito de la figura, en estado estacionario, calcule: **a)** la intensidad de la corriente en cada rama (tenga en cuenta la corriente de 0,5 A que ingresa desde tierra al nodo A),
- **b**) el potencial del punto A respecto de tierra.

Solución Ejercicio 5)

a) Si por el nodo A entran 0,5 A de B a tierra se establecen 0,5 A.

$$I1 = \frac{e1}{R1} = \frac{12 \text{ V}}{120 \Omega} = 0.1 \text{A}$$
 $I2 = \frac{e2}{R2} = \frac{12 \text{ V}}{40 \Omega} = 0.3 \text{ A}$ $I3 = 0.5 - 11 - 12 = 0.1 \text{ A}$

b) VA-VT=e1+e2=36V