

Universidade de Brasília

Departamento de Ciência da Computação

Aula 8 Representação Numérica de Inteiros

"42

The Answer to the Ultimate Question of Life, the Universe, and Everything" Douglas Adams

Base decimal (base 10):

Símbolos: 0,1,2,3,4,5,6,7,8,9

 \Box Ex.: $124 = 1 \times 10^2 + 2 \times 10^1 + 4 \times 10^0 = 124_{10}$

Base binária (base 2) :

Símbolos: 0,1

 \Box Ex.: $124 = 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 11111100_2$

Base octal (base 8):

Símbolos: 0,1,2,3,4,5,6,7

 \square Ex.: $124 = 1 \times 8^2 + 7 \times 8^1 + 4 \times 8^0 = 174_8$

Base hexadecimal (base 16):

Símbolos: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

 \square Ex.: $124 = 7 \times 16^{1} + 12 \times 16^{0} = 7C_{16}$

Generalizando

 Um número X_B de N dígitos na base B pode ser convertido em X_D na base D pela sua definição.

$$X_B = (d_{N-1}d_{N-2}d_{N-3} \dots d_2d_1d_0)$$

$$X_D = \left(\sum_{i=0}^{N-1} d_i \times B^i\right)_D$$

Esta definição e pode ser usada para realizar a conversão de um número em base qualquer para qualquer base, bastando que as operações aritméticas sejam feitas na base de destino.

00	0000	0
01	0001	1
02	0010	2
03	0011	3
04	0100	4
05	0101	5
06	0110	6
07	0111	7
80	1000	8
09	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Ex.:
$$1010 \ 1100 \ 0101_2 = AC5_{16}$$

$$10\ 1111_2 = 2F_{16}$$

Obs.: $0xFF = FF_{16}$

Decimal: Bom para Humanos (pq?)

Binário: Bom para Computadores (pq?)

Hexa: Bom para quem?

Representação Numérica Computacional

- Bits são apenas Bits!! Sem nenhum significado inerente
 - □ Ex.: o que é: 10100101????

Pode representar um número, caractere, instrução, cor, sinal de voz, música, temperatura, posição, taxa juros, \$,

O que podemos representar com N bits?

Apenas 2^N coisas!

Logo: Bom para coisas limitadas (contáveis)

Ex.: 26 Letras: 5 bits é suficiente

Caracteres ASCII: 7 bits (A,a,!) : ASCII estendido (8 bits)

Caracteres UNICODE 13.0 (2020): 143.859 caracteres UTF-8 UTF-16 UTF-32 (*Unicode Transformation Format*)

Limitações:

- Se os bits representarem números:
 Convenções definem a relação entre bits e números.
- Complicadores:

Números são infinitos!

Diferentes tipos: Naturais(\mathbb{N}), Inteiros(\mathbb{Z}), Reais(\mathbb{R}), Complexos(\mathbb{C})

Como representar os símbolos '-' e ',' ? Ex.: -2,5

Sinal e magnitude Complemento de um Complemento de dois

Sinal e Magnitude:

- © Fácil de entender. Fácil de negar. Simetria na representação.
- Circuitos aritméticos complexos.
- ⊗ Existe +0 e -0.

Complemento de 1:

- © Fácil de negar. Simetria na representação
- Circuitos aritméticos complexos.
- ⊗ Existe +0 e -0.

Complemento de 2:

- © Circuitos aritméticos mais simples. 1 único Zero.
- ⊗ Representação assimétrica (+3,-4) (maior faixa dinâmica! ♥)
- ⊗ Negação um pouco mais complexa.

Representação Numérica: Inteiros (Z)

- Como representar números negativos sem usar o símbolo '-'?
- Complemento de X_B da base B com N dígitos

$$X_B + (-X)_B = (B^N)_B$$

Ex.:
$$X_{10}=4$$
 (-X)₁₀=?

obs.: 10000 = 9999+1

□ Complemento de 10 com 4 dígitos

$$0004+(-X)=(10^4)_{10}$$
 $-X=10000-4$ $(-X)_{10}=9996$

☐ Complemento de 2 com 4 bits:

$$0100+(-X)=(2^4)_2$$
 -X = 10000-0100 $(-X)_2 = 1100$

☐ Complemento de 3 com 4 dígitos $0011+(-X)=(3^4)_3$ -X=10000-0011

$$(-X)_3 = 2212$$

☐ Complemento de 8 com 4 dígitos

$$0004+(-X)=(8^4)_8$$
 -X=10000-4

□ Complemento de 16 com 4 dígitos
$$0004+(-X)=(16^4)_{16}$$
 -X=10000-4

$$(-X)_8 = 7774$$

 $(-X)_{16} = FFFC$

- Binário sem sinal (N) em N bits: $X = \sum_{i=0}^{N-1} b_i 2^i$
- Binário complemento de 2 em N bits
 - □ Interpretação: $X = -b_{N-1}2^{N-1} + \sum_{i=0}^{N-1} b_i 2^i$
 - Negação: truque = inverter e somar 1 Ex.: 5 = 0101 $-5 = 1010 + 1 = 1011 = -2^3 + 2^1 + 2^0$ $X + \overline{X} = 111 \dots 111 = -1$ $-X = \overline{X} + 1$

N-2

■ Extensão de Sinal : repetir o MSB

ISA RV32I

Números de 32 bits com sinal:

```
0000 0000 0000 0000 0000 0000 0000 0000_{hin} = 0_{dec}
0000 0000 0000 0000 0000 0000 0001<sub>bin</sub> = 1_{dec}
0111 1111 1111 1111 1111 1111 1111 1101_{bin} = 2.147.483.645_{dec}
1000 0000 0000 0000 0000 0000 0000 0000_{bin} = -2.147.483.648_{dec}
1000 0000 0000 0000 0000 0000 0000 0001_{bin} = -2.147.483.647_{dec}
1000 0000 0000 0000 0000 0000 0000 0010_{bin} = -2.147.483.646_{dec}
```


Operações em complemento de dois

Extensão de Sinal:

Converter números de n bits em números com mais de n bits:

Copiar o bit mais significativo para os outros bits

$$0010 \rightarrow 0000 \ 0010 = 2$$
 (infinitos zeros)
 $1010 \rightarrow 1111 \ 1010 = -6$ (infinitos uns)

Ex.: O campo imediato de 12 bits do RV32I é convertido em 32 bits para efetuar as operações aritméticas

addi t0, t0,
$$-32$$
 lw t0, $32(t0)$

Ex.: Carregar um byte (8 bits) da memória para um registrador (32 bits)

Ex.: Carregar uma half word (16 bits) da memória para um registrador (32 bits)

Operações em complemento de dois

Comparação de números:

Suponha que:

Quais os valores de t0 e t1 dadas as instruções abaixo?

```
slt t0, s0, s1 #comparação com sinal sltu t1, s0, s1 #comparação sem sinal
```

Logo: t0=1 e t1=0


```
if ( i<0 || i >= dim )
goto indice_fora_limite;
```

```
# associando s0=i e s1=dim
blt s0,zero,indice_fora_limite
bge s0,s1,indice_fora_limite
```

bgeu s0,s1,indice_fora_do_limite

Obs.: Tipos em C (processador de 64 bits)

```
8 bits: unsigned char: 0 ... 255 e char: -128 ...127
16 bits: unsigned short: 0 ... 65535 e short: -32768 ... 32767
32 bits: unsigned int: 0 ... 2<sup>32</sup>-1 e int : -2<sup>31</sup> ... 2<sup>31</sup>-1
64 bits: unsigned long long int: 0 ... 2<sup>64</sup>-1 e long long int: -2<sup>63</sup> ... 2<sup>63</sup>-1
```

```
Windows: unsigned long int: 0...2^{32}-1 e long int: -2^{31}...2^{31}-1 Linux: unsigned long int: 0...2^{64}-1 e long int: -2^{63}...2^{63}-1
```


Exatamente como base decimal (emprestar/vai 1s) descartando o transbordo

- Facilidade de operações do complemento de dois subtração pode ser feita usando adição de números negativos
- Overflow: resultado muito grande para a word finita do computador Somar dois números de n bits pode produzir um número de n+1 bits.

Note que o termo **overflow** não significa que um carry simplesmente "transbordou" (n de bits do resultado > n bits das parcelas)

Mas sim que o resultado não é representável na faixa dinâmica de n bits!!!

- Nenhum overflow quando: somar operandos com sinais diferentes
 subtrair operandos com sinais iguais
- O overflow ocorre quando uma inconsistência matemática é gerada:

Dado dois números positivos A>0 e B>0

- √ somar dois positivos produz um negativo: A + B < 0
 </p>
- √ somar dois negativos produz um positivo: (-A) + (-B) > 0
- ✓ subtrair um negativo de um positivo e obtenha um negativo: A (-B) < 0
 </p>
- ✓ subtrair um positivo de um negativo e obtenha um positivo: (-A) B > 0
- ✓ Forma prática: Carry In do último dígito diferente do Carry Out

Na ISA RISC-V: Overflow não é detectado na aritmética inteira!
 Motivação: Simplificação do hardware

Porém: C vs FORTRAN

C: Não detecta overflow.

FORTRAN: Detecta overflow.

Logo, se for necessário detectar overflow, testes devem ser implementados no software.

Ex.: Para adição de números sem sinal

```
addu t0, t1, t2
bltu t0, t1, overflow
```

- No x86 e no ARM, overflow aciona uma flag indicativa.
- No MIPS, overflow causa uma exceção.