实验题目3 四阶龙格-库塔(Runge-Kutta)方法

本实验完成了Runge-Kutta方法的编写,充分学习了微分方程求解、(隐)函数求导库等的用法,巩固了相关理论知识。

实验简介

本实验为Runge-Kutta方法实验,需要完成使用Runge-Kutta方法求解常微分方程初值问题数值解的任务,求解本次各个实验题目的问题。

本次实验过程中,主要为对Runge-Kutta方法代码完成编写,并充分体会Runge-Kutta方法的简洁性和相比于Euler方法的在准确性上的优点,同时从绘制的数值解图像注意到n的取值对于结果的重要影响。

实验的目的即为使用Runge-Kutta方法求解常微分方程初值问题的数值解。

该实验报告主要分为7个部分,大纲罗列如下:

• 实验简介: 即本部分的所有内容

• 数学原理: 即常微分方程初值问题的数学定义,和对Runge-Kutta方法的基本数学原理进行阐述

• 代码实现: 使用 Julia 语言, 根据数学原理, 编写实验代码

• 测试代码: 对程序的运行、输出进行测试的部分

o Test 1 - Simple:使用教材上的例题对程序的正确性进行简单的测试,确保所写代码能完成实验任务。

- **实验题目**: 实验指导书中所要求的完成的实验题目,作有便于对照使用Runge-Kutta方法的 lib solver 和 my solver 与真实结果 true result 的曲线图,各题目均同时使用 lib solver 和 my solver 进行求解,熟悉了 Julia 库 Differentcial Equations 求解 ODE 问题的使用流程。
 - **执行代码**:本部分是实验代码进行运行时封装的部分,将函数的调用细节隐藏在 show_result()函数内部,便于直接从外部使用特定参数对函数进行调用。
 - **问题1**:探究数值解法与解析解的关系,通过对于解为线性函数和非线性函数的常微分方程的数值求解,体会求出的数值解用于反推解析解的困难程度。
 - 问题2&问题3:探究n的大小对于求解精度的影响,首先是问题2变化的n对于求解精度的影响几乎可以不计,很容易求得精度较高的解,而在求解问题3时过小的n却根本无法对方程进行求解。这一定程度上说明了,求解的精度和n的选取很大程度上依赖于方程本身的性质。
- 思考题: 本部分为实验指导书中所要求的完成的思考题解答
- 参考资料:本部分为完成实验过程中查阅的参考资料

数学原理

给定常微分方程初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y), a \le x \le b\\ y(a) = \alpha, h = \frac{b-a}{N} \end{cases}$$

记 $x_n = a + n \cdot h, n = 0, 1, \ldots, N$,利用四阶Runge-Kutta方法,有

$$egin{align} K_1 &= h \cdot f\left(x_n, y_n
ight) \ K_2 &= h \cdot f\left(x_n + rac{h}{2}, y_n + rac{K_1}{2}
ight) \ K_3 &= h \cdot f\left(x_n + rac{h}{2}, y_n + rac{K_2}{2}
ight) \ K_4 &= h \cdot f\left(x_n + h, y_n + K_3
ight) \ y_{n+1} &= y_n + rac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4), n = 0, 1, \ldots, N-1 \end{array}$$

可以逐次求出微分方程初值问题的数值解 $y_n, n = 1, 2, ..., N$ 。

代码实现

首先导入需要的包。

Differential Equations.jl 是用于求解微分方程的标准库,本例中用于获取 lib solver 所需的数值解;

ImplicitEquations.jl 是用于支持隐函数的标准库,本例中仅在 Test 1 - Simple 部分用于支持绘制隐函数图像。

```
using DifferentialEquations
using Plots
using LaTeXStrings
using Statistics
using ImplicitEquations
using PrettyTables
```

根据数学原理和代码流程,可以很容易写出如下代码:

```
1
    function rungekutta(f::Function, xspan, y0, num)
 2
        a, b = xspan
 3
        x0 = a
        h = (b - a) / num
 4
        xs, ys = zeros(num), zeros(num)
 5
 6
        for n = 1:num
 7
            K1 = h * f(x0, y0)
            K2 = h * f(x0 + h / 2, y0 + K1 / 2)
 8
 9
            K3 = h * f(x0 + h / 2, y0 + K2 / 2)
            K4 = h * f(x0 + h, y0 + K3)
10
11
            x1 = x0 + h
            y1 = y0 + 1 / 6 * (K1 + 2K2 + 2K3 + K4)
12
13
            xs[n], ys[n] = x0, y0 = x1, y1
14
        end
15
        xs, ys
16 end
```

测试代码

这是一段从教材上选取的测试代码。

待求微分方程为 $\frac{\mathrm{d}y}{\mathrm{d}x}=y-\frac{2x}{y}$,解析解为抛物线 $y^2=2x+1$,编写的 rungekutta() 函数进行数值求解时只求解了 y>0的情形。

除此以外,调用 Differential Equations.jl 库中经 ODEProblem() 返回类型重载了的 solve() 方法获得了更精确的数值解。

因本部分仅做测试用,运行过程未经过封装,略显零乱,但考虑到与本实验问题求解并无直接关联,故未作更多修改。

Test 1 - Simple

```
11
    println("My Runge-Kutta Solver:")
    num = convert(Integer, 1.0 / 0.2)
12
    xs, ys = rungekutta(f, xspan, y0, 5)
13
    yt = .\sqrt{(2 .* xs .+1)}
14
15
    data = [xs yt ys]
    header = (["x","True y", "Pred y"])
16
17
    pretty_table(
18
        data;
19
        alignment=[:c, :c, :c],
20
        header=header,
        header_crayon=crayon"bold",
21
22
        formatters=ft_printf("%14.8f"))
    p = plot!(xs, ys, seriestype=:scatter, markersize=5, msw=0, color=:green, label="my
23
    solver")
24
    f(x, y) = y^2 - 2x - 1
25
    p = plot!(f == 0.0, color=:green, linewidth=0.1, label="true result") # \Equal[Tab]
26
    p = plot!(legend=:outertopright, xlim=(-0.51, 1.53), ylim=(-1.9, 1.9))
27
28 \quad x = x \lim_{n \to \infty} (p)[2]
29
    y = mean(ylims(p))
30
    ymax = ylims(p)[2]
31 annotate!(x, y, L"y^2=2x+1", :black)
    display(p)
```


	x	True y	Pred y	
		-	-	
	0.20000000	1.18321596	1.18322929	
	0.40000000	1.34164079	1.34166693	
	0.60000000	1.48323970	1.48328146	
	0.80000000	1.61245155	1.61251404	
İ	1.00000000	1.73205081	1.73214188	

实验题目

执行代码

本部分代码用于将需要呈现的结果封装在一个 show_result() 函数中,作图时调用重载的三个作图函数 show_plot(),分别绘制出 lib solver , my solver 和 true result 的图像,用于观察结果。在运行的循环中,打印出每次执行时的数据,以表格方式呈现。

在本部分之后,是各个问题的逐一求解过程,因题目本身不带更多条件,为标准的常微分方程初值问题求解,故仅按部就班完成了代码的编写和求解,以及结果展示。

为便于区分题目,所绘制的图像中给出了题目的微分方程和标准解的解析式,可供参考。考虑到图片整洁性的原因,略去对于x范围和初值的呈现,前者可直接从x轴范围看出,后者可从标准解的y坐标大致读出。

```
function show_plot(p, f::Function, tspan, u0::Float64, reltol, abstol, dense::Bool)
1
 2
        prob = ODEProblem(f, u0, tspan)
 3
        alg = RK4()
 4
        sol = solve(prob, alg, reltol=1e-8, abstol=1e-8)
 5
            p = plot!(sol, seriestype=:scatter, markersize=1, msw=0, color=:red, label="lib
 6
    solver")
 7
 8
            p = plot!(sol.t, sol.u, seriestype=:scatter, markersize=2, msw=0, color=:red,
    label="lib solver")
9
        end
10
        p, sol
11
12
    function show_plot(p, f::Function, xspan, y0::Float64, iternum::Integer)
13
        xs, ys = rungekutta(f, xspan, y0, iternum)
        p = plot!(xs, ys, seriestype=:scatter, markersize=4, msw=0, color=:green, label="my
14
    solver")
15
        p, xs, ys
16
    end
    function show_plot(p, f::Function, xs, show::Bool, text)
17
18
        x = x lims(p)[2]
19
        y = mean(ylims(p))
20
        annotate!(x, y, text, :black)
21
            p = plot!(f, color=:blue, label="true result")
22
23
        else
            p = plot!(f, color=:blue, label="true result")
24
25
        end
26
        p, xs, f.(xs)
27
    end
    function show_result(f1::Function, f2::Function, f3::Function, xspan, y0, iternums,
28
    show::Bool, dense::Bool, title, text)
29
        println("\n\n" * title)
30
        for iternum in iternums
            print("\nIternum: $iternum\n")
31
            p = plot(legend=:outertopright, title=L"~~~~~~" * title)
32
            p, sol = show_plot(p, f1, xspan, y0, 1e-8, 1e-8, dense)
33
            p, xs, ys = show_plot(p, f2, xspan, y0, iternum)
34
35
            p, xt, yt = show_plot(p, f3, xs, show, text)
36
            data = [xt yt ys]
            header = (["x", "True y", "Pred y"])
37
38
            pretty_table(
39
                data;
40
                alignment=[:c, :c, :c],
41
                header=header,
42
                header_crayon=crayon"bold",
```

```
# tf = tf_markdown,
formatters=ft_printf("%14.8f"))
display(p)
end
end
end
```

问题 1

1.1

Problem 1.1 $\frac{\mathrm{d}y}{\mathrm{d}x} = x + y$

```
1
    iternums = [5, 10, 20]
2
                          # lib RK4() solver
3
   f1(y, p, x) = x + y
4
   xspan = (0.0, 1.0)
   y0 = -1.0
   f2(x, y) = x + y
                          # my rungekutta() solver
   f3(x) = -x - 1
                         # true result
   title = L"Problem\ 1.1: \frac{d}{y}{\mathbf{d}} x} = x + y"
8
9
    text = L"y = -x - 1"
10
    show_result(f1, f2, f3, xspan, y0, iternums, true, true, title, text) # show, dense
```


	x	True y	Pred y
	0.20000000	-1.20000000	-1.20000000
	0.40000000	-1.40000000	-1.40000000
	0.60000000	-1.60000000	-1.60000000
	0.80000000	-1.80000000	-1.80000000
	1.00000000	-2.00000000	-2.00000000
		1	
Ite	ernum: 10		
	x	True y	Pred y
i	0.10000000	-1.10000000	-1.10000000
1	0.20000000	-1.20000000	-1.20000000
	0.30000000	-1.30000000	-1.30000000
	0.40000000	-1.40000000	-1.40000000
	0.50000000	-1.50000000	-1.50000000
	0.60000000	-1.60000000	-1.60000000
	0.70000000	-1.70000000	-1.70000000

```
23
          0.80000000
                            -1.80000000 |
                                              -1.80000000
24
          0.9000000
                            -1.90000000
                                              -1.90000000
25
          1.00000000
                            -2.00000000
                                              -2.00000000
26
27
28
    Iternum: 20
29
30
            Х
                            True y
                                               Pred y
31
32
          0.05000000
                            -1.05000000
                                              -1.05000000
33
          0.10000000
                            -1.10000000
                                              -1.10000000
34
          0.15000000
                            -1.15000000
                                              -1.15000000
35
          0.2000000
                            -1.20000000
                                              -1.20000000
                           -1.25000000
36
          0.25000000
                                              -1.25000000
37
          0.3000000
                           -1.30000000
                                              -1.30000000
38
          0.35000000
                           -1.35000000 |
                                              -1.35000000
39
          0.4000000
                           -1.40000000
                                              -1.40000000
40
          0.45000000
                            -1.45000000
                                              -1.45000000
41
          0.50000000
                           -1.50000000
                                              -1.50000000
          0.55000000
                           -1.55000000
                                              -1.55000000
42
43
          0.60000000
                           -1.60000000 |
                                              -1.60000000
          0.65000000
                           -1.65000000
                                              -1.65000000
44
45
          0.7000000
                           -1.70000000
                                              -1.70000000
46
          0.75000000
                           -1.75000000
                                              -1.75000000
47
          0.80000000
                            -1.80000000
                                              -1.80000000
48
          0.85000000
                           -1.85000000 |
                                              -1.85000000
                            -1.90000000
                                              -1.90000000
49
          0.9000000
50
          0.95000000
                            -1.95000000
                                              -1.95000000
51
          1.00000000
                            -2.00000000
                                              -2.00000000
52
```

1.2 $Problem 1.2 \ \frac{\mathrm{d}y}{\mathrm{d}x} = -y^2$

```
iternums = [5, 10, 20]
1
2
    f1(y, p, x) = -y^2
3
    xspan = (0.0, 1.0)
4
    y0 = 1.0
5
    f2(x, y) = -y^2
6
    f3(x) = 1 / (x + 1)
    title = L"Problem\ 1.2: \frac{d}{y}{\mathbf{x}} = -y^2"
8
9
    text = L"y = \frac{1}{x + 1}"
    show_result(f1, f2, f3, xspan, y0, iternums, true, false, title, text) # show, dense
10
```


	ernum: 5		
 	х	True y	Pred y
	0.20000000	0.83333333	0.83333904
	0.40000000	0.71428571	0.71429213
l I	0.60000000	0.62500000	0.62500589
l I	0.80000000	0.5555556	0.55556069
1	1.00000000	0.50000000	0.50000441
Εt	ernum: 10		
	x	True y	Pred y
	0.10000000	0.90909091	0.90909119
i	0.20000000	0.83333333	0.83333373
	0.30000000	0.76923077	0.76923121
	0.40000000	0.71428571	0.71428615
	0.50000000	0.66666667	0.66666709
	0.60000000	0.62500000	0.62500040
	0.70000000	0.58823529	0.58823567
	•	•	0.55555590
	0.80000000	0.5555556	
	0.90000000	0.52631579	0.52631611
	1.00000000	0.50000000	0.50000030
t(ernum: 20		
 	x	True y	Pred y
! 	0.05000000	0.95238095	0.95238096
ĺ	0.10000000	0.90909091	0.90909093
İ	0.15000000	0.86956522	0.86956524
	0.20000000	0.83333333	0.83333336
i	0.25000000	0.80000000	0.80000003
İ	0.30000000		
	•	0.76923077	0.76923080
	0.33000000	·	
	0.35000000 0.40000000	0.74074074	0.74074077
	0.40000000	0.74074074 0.71428571	0.74074077 0.71428574
 	0.40000000 0.45000000	0.74074074 0.71428571 0.68965517	0.74074077 0.71428574 0.68965520
	0.40000000 0.45000000 0.50000000	0.74074074 0.71428571 0.68965517 0.666666667	0.74074077 0.71428574 0.68965520 0.66666669
	0.40000000 0.45000000 0.50000000 0.550000000	0.74074074 0.71428571 0.68965517 0.66666667 0.64516129	0.74074077 0.71428574 0.68965520 0.66666669 0.64516132
	0.40000000 0.45000000 0.50000000 0.55000000 0.600000000	0.74074074 0.71428571 0.68965517 0.66666667 0.64516129 0.625000000	0.74074077 0.71428574 0.68965520 0.66666669 0.64516132 0.62500003
B	0.40000000 0.45000000 0.50000000 0.55000000 0.60000000	0.74074074 0.71428571 0.68965517 0.66666667 0.64516129 0.62500000 0.60606061	0.74074077 0.71428574 0.68965520 0.66666669 0.64516132 0.62500003 0.60606063
	0.40000000 0.45000000 0.50000000 0.55000000 0.60000000 0.65000000	0.74074074 0.71428571 0.68965517 0.66666667 0.64516129 0.62500000 0.60606061 0.58823529	0.74074077 0.71428574 0.68965520 0.66666669 0.64516132 0.62500003 0.60606063 0.58823532
	0.40000000 0.45000000 0.50000000 0.55000000 0.60000000 0.65000000 0.70000000	0.74074074 0.71428571 0.68965517 0.66666667 0.64516129 0.62500000 0.60606061 0.58823529 0.57142857	0.74074077 0.71428574 0.68965520 0.66666669 0.64516132 0.62500003 0.60606063 0.58823532 0.57142859
	0.40000000 0.45000000 0.50000000 0.55000000 0.60000000 0.65000000 0.75000000 0.80000000	0.74074074 0.71428571 0.68965517 0.66666667 0.64516129 0.62500000 0.60606061 0.58823529 0.57142857 0.55555556	0.74074077 0.71428574 0.68965520 0.66666669 0.64516132 0.62500003 0.60606063 0.58823532 0.57142859 0.55555558
	0.40000000 0.45000000 0.50000000 0.55000000 0.65000000 0.70000000 0.75000000 0.80000000	0.74074074 0.71428571 0.68965517 0.66666667 0.64516129 0.62500000 0.60606061 0.58823529 0.57142857 0.55555556 0.54054054	0.74074077 0.71428574 0.68965520 0.66666669 0.64516132 0.62500003 0.60606063 0.58823532 0.57142859 0.5555558
	0.40000000 0.45000000 0.50000000 0.55000000 0.65000000 0.70000000 0.75000000 0.80000000 0.85000000	0.74074074 0.71428571 0.68965517 0.66666667 0.64516129 0.62500000 0.60606061 0.58823529 0.57142857 0.55555556 0.54054054 0.52631579	0.74074077 0.71428574 0.68965520 0.66666669 0.64516132 0.62500003 0.60606063 0.58823532 0.57142859 0.5555558 0.54054056 0.52631581
	0.40000000 0.45000000 0.50000000 0.55000000 0.60000000 0.65000000 0.75000000 0.85000000 0.85000000 0.95000000	0.74074074 0.71428571 0.68965517 0.66666667 0.64516129 0.62500000 0.60606061 0.58823529 0.57142857 0.55555556 0.54054054 0.52631579 0.51282051	0.74074077 0.71428574 0.68965520 0.66666669 0.64516132 0.62500003 0.60606063 0.58823532 0.57142859 0.5555558 0.54054056 0.52631581 0.51282053
	0.40000000 0.45000000 0.50000000 0.55000000 0.65000000 0.70000000 0.75000000 0.80000000 0.85000000	0.74074074 0.71428571 0.68965517 0.66666667 0.64516129 0.62500000 0.60606061 0.58823529 0.57142857 0.55555556 0.54054054 0.52631579	0.74074077 0.71428574 0.68965520 0.66666669 0.64516132 0.62500003 0.60606063 0.58823532 0.57142859 0.5555558 0.54054056 0.52631581

问题 2

2.1

```
Problem 2.1 \frac{dy}{dx} = \frac{2y}{x} + x^2 e^x
```

```
iternums = [5, 10, 20]
1
2
   f1(y, p, x) = 2 * y / x + x^2 * exp(x)
3
4
   xspan = (1.0, 3.0)
5 | y0 = 0.0
6 f_2(x, y) = 2 * y / x + x^2 * exp(x)
   f3(x) = x^2 * (exp(x) - exp(1))
8
   title = L"Problem\ 2.1:\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{2y}{x}+x^2 e^x"
9
   text = L"y=x^2(e^x - e)"
10
   show_result(f1, f2, f3, xspan, y0, iternums, true, false, title, text) # show, dense
```


	x	True y	Pred y
	1.40000000	2.62035955	2.61394279
	1.80000000	10.79362466	10.77631317
	2.20000000	30.52458129	30.49165420
	2.60000000	72.63928396	72.58559861
	3.00000000	156.30529585	156.22519828
	х	True y	Pred y
	·		Pred y
	x 1.20000000 1.40000000	0.86664254	
	1.20000000		0.86637911
	1.20000000	0.86664254 2.62035955	0.86637911
	1.20000000 1.40000000 1.60000000	0.86664254 2.62035955 5.72096153	0.86637911 2.61974052 5.71989528
	1.20000000 1.40000000 1.60000000 1.80000000	0.86664254 2.62035955 5.72096153 10.79362466	0.86637911 2.61974052 5.71989528 10.79201760
	1.20000000 1.40000000 1.60000000 1.80000000 2.000000000	0.86664254 2.62035955 5.72096153 10.79362466 18.68309708	0.86637911 2.61974052 5.71989528 10.79201760 18.68085236
	1.20000000 1.40000000 1.60000000 1.80000000 2.00000000 2.200000000	0.86664254 2.62035955 5.72096153 10.79362466 18.68309708 30.52458129	0.86637911 2.61974052 5.71989528 10.79201760 18.68085236 30.52159814
	1.20000000 1.40000000 1.60000000 1.80000000 2.00000000 2.20000000 2.40000000	0.86664254 2.62035955 5.72096153 10.79362466 18.68309708 30.52458129 47.83619262	0.86637911 2.61974052 5.71989528 10.79201760 18.68085236 30.52159814 47.83236583
	1.20000000 1.40000000 1.60000000 1.80000000 2.00000000 2.20000000 2.40000000	0.86664254 2.62035955 5.72096153 10.79362466 18.68309708 30.52458129 47.83619262 72.63928396	0.86637911 2.61974052 5.71989528 10.79201760 18.68085236 30.52159814 47.83236583 72.63450354

```
Iternum: 20
28
29
30
             Х
                            True y
                                               Pred y
31
32
          1.10000000
                             0.34591988 |
                                               0.34591029
          1,20000000
                             0.86664254 |
33
                                               0.86662169
34
          1.30000000
                             1.60721508 |
                                               1.60718135
35
          1.40000000
                             2.62035955
                                               2.62031131
36
          1.50000000
                             3.96766629
                                               3.96760190
37
          1.60000000
                             5.72096153 |
                                               5.72087932
38
          1.70000000
                            7.96387348 |
                                               7.96377179
39
          1.80000000
                            10.79362466 |
                                              10.79350178
40
          1.90000000
                            14.32308154
                                              14.32293573
          2.00000000
                            18.68309708 |
41
                                              18.68292657
42
          2.10000000
                            24.02518645 |
                                              24.02498942
43
          2.20000000
                            30.52458129 |
                                              30.52435589
44
          2.30000000
                            38.38371431 |
                                              38.38345866
45
          2.40000000
                            47.83619262 |
                                              47.83590478
46
          2.50000000
                            59.15132583 |
                                              59.15100383
47
          2.60000000 |
                            72.63928396 |
                                              72.63892578
48
          2.70000000 |
                            88.65696974 |
                                              88.65657333
          2.80000000
49
                          107.61470115 |
                                            107.61426439
50
          2.90000000
                          129.98381238 |
                                            129.98333312
51
          3.00000000
                          156.30529585 |
                                             156.30477188
52
```

2.2 Problem 2.2 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x}(y^2 + y)$

```
iternums = [5, 10, 20]
1
2
3
  f1(y, p, x) = (y^2 + y) / x
   xspan = (1.0, 3.0)
4
   y0 = -2.0
  f_2(x, y) = (y^2 + y) / x
   f3(x) = 2x / (1 - 2x)
7
   title = L"Problem\ 2.2:\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{1}{x}(y^2+y)"
8
   text = L"y=\frac{2x}{1-2x}"
9
   show_result(f1, f2, f3, xspan, y0, iternums, true, false, title, text) # show, dense
```


Χ		True y	Pred y
1.4000000	0	-1.5555556	-1.55398900
1.8000000	0	-1.38461538	-1.38361729
2.2000000	0	-1.29411765	-1.29340153
2.6000000	0	-1.23809524	-1.23754016
3.0000000	0	-1.20000000	-1.19954796
3.000000		-1.20000000	-1.1993479

TO			
14	, x	True y	Pred y
15			<u> </u>
16	1.20000000	-1.71428571	-1.71424518
17	1.40000000	-1.5555556	-1.55552288
18	1.60000000	-1.45454545	-1.45451975
19	1.80000000	-1.38461538	-1.38459451
20	2.00000000	-1.33333333	-1.33331586
21	2.20000000	-1.29411765	-1.29410266
22	2.40000000	-1.26315789	-1.26314480
23	2.60000000	-1.23809524	-1.23808362
24	2.80000000	-1.21739130	-1.21738087
25	3.00000000	-1.20000000	-1.19999054
26	L	L	

28 Iternum: 20

	I CCI II GIIII I Z		
29	Г	Т	
30	x	True y	Pred y
31	 		
32	1.10000000	-1.83333333	-1.83333283
33	1.20000000	-1.71428571	-1.71428517
34	1.30000000	-1.62500000	-1.62499950
35	1.40000000	-1.5555556	-1.55555511
36	1.50000000	-1.50000000	-1.49999961
37	1.60000000	-1.45454545	-1.45454510
38	1.70000000	-1.41666667	-1.41666635
39	1.80000000	-1.38461538	-1.38461510
40	1.90000000	-1.35714286	-1.35714260
41	2.00000000	-1.33333333	-1.33333309
42	2.10000000	-1.31250000	-1.31249978
43	2.20000000	-1.29411765	-1.29411744
44	2.30000000	-1.27777778	-1.27777759
45	2.40000000	-1.26315789	-1.26315771
46	2.50000000	-1.25000000	-1.24999983
47	2.60000000	-1.23809524	-1.23809508
48	2.70000000	-1.22727273	-1.22727258
49	2.80000000	-1.21739130	-1.21739116
50	2.90000000	-1.20833333	-1.20833320
51	3.00000000	-1.20000000	-1.19999987
52	L		

问题 3

3.1

```
Problem 3.1 \frac{\mathrm{d}y}{\mathrm{d}x} = -20(y-x^2) + 2x
```

```
1
   iternums = [5, 7, 10, 20] # 为观察方便,添加了n=7的作图,表格数据仍为所求[5, 10, 20]
2
   f1(y, p, x) = -20(y - x^2) + 2x
3
   xspan = (0.0, 1.0)
4
5
   y0 = 1 / 3
   f_2(x, y) = -20(y - x^2) + 2x
   f3(x) = x^2 + 1 / 3 * exp(-20x)
   title = L"Problem\ 3.1: \frac{d}{y}{\mathbf x}=-20(y-x^2)+2x"
   text = L"y=x^2+frac\{1\}\{3\}e^{-20x}"
9
10
   show_result(f1, f2, f3, xspan, y0, iternums, true, false, title, text) # show, dense
```


			Т	
3		х	True y	Pred y
4				
5		0.20000000	0.04610521	1.76000000
6		0.40000000	0.16011182	8.81333333
7		0.60000000	0.36000205	43.68000000
8		0.80000000	0.64000004	217.29333333
9		1.00000000	1.00000000	1084.32000000
.0	L		1	

	rnum: 10		
3 -			
.	x	True y	Pred y
		0.055444.76	
	0.10000000	0.05511176	0.12277778
!	0.20000000	0.04610521	0.07925926
	0.30000000	0.09082625	0.10475309
9	0.40000000	0.16011182	0.16658436
	0.50000000	0.25001513	0.25386145
1	0.60000000	0.36000205	0.36295382
2	0.70000000	0.49000028	0.49265127
3	0.80000000	0.64000004	0.64255042
4	0.90000000	0.81000001	0.81251681
5	1.00000000	1.00000000	1.00250560
5		L	
7			
3 Ite	rnum: 20		
	x	True y	Pred y
.	0.05000000	0.12512648	0.12755208
- I 3 	0.10000000	0.05511176	0.05694661
4 1	0.15000000	0.03909569	0.04015706
† 5	0.20000000	0.04610521	0.04667348
, I	0.25000000	0.06474598	0.06505464
s I		0.00474336	
5 	·	0 00082625	() () () () ()
7	0.30000000	0.09082625	0.09101007
7 3	0.30000000 0.35000000	0.12280396	0.12293086
7 I 8 I 9 I	0.30000000 0.35000000 0.40000000	0.12280396 0.16011182	0.12293086 0.16021366
7 I 8 I 9 I	0.30000000 0.35000000 0.40000000 0.45000000	0.12280396 0.16011182 0.20254114	0.12293086 0.16021366 0.20263220
7 1 3 1 9 1 0 1	0.30000000 0.35000000 0.40000000 0.45000000	0.12280396 0.16011182 0.20254114 0.25001513	0.12293086 0.16021366 0.20263220 0.25010166
7 1 3 1 9 1 0 1 1 1	0.30000000 0.35000000 0.40000000 0.45000000 0.50000000	0.12280396 0.16011182 0.20254114 0.25001513 0.30250557	0.12293086 0.16021366 0.20263220 0.25010166 0.30259021
7 1 8 1 9 1 0 1 1 1 2 1 3 1	0.30000000 0.35000000 0.40000000 0.45000000 0.550000000 0.60000000	0.12280396 0.16011182 0.20254114 0.25001513 0.30250557 0.36000205	0.12293086 0.16021366 0.20263220 0.25010166 0.30259021 0.36008591
7 1 8 1 9 1 0 1 1 1 2 3 4 1	0.30000000 0.35000000 0.40000000 0.45000000 0.55000000 0.60000000 0.65000000	0.12280396 0.16011182 0.20254114 0.25001513 0.30250557 0.36000205 0.42250075	0.12293086 0.16021366 0.20263220 0.25010166 0.30259021 0.36008591 0.42258430
7 1 3 1 1 1 1 1 1 1 1	0.30000000 0.35000000 0.40000000 0.45000000 0.55000000 0.60000000 0.65000000 0.70000000	0.12280396 0.16011182 0.20254114 0.25001513 0.30250557 0.36000205 0.42250075 0.49000028	0.12293086 0.16021366 0.20263220 0.25010166 0.30259021 0.36008591 0.42258430 0.49008370
7 1 3 1 1 1 1 1 1 1 1	0.30000000 0.35000000 0.40000000 0.45000000 0.55000000 0.60000000 0.65000000 0.75000000 0.75000000	0.12280396 0.16011182 0.20254114 0.25001513 0.30250557 0.36000205 0.42250075 0.49000028 0.56250010	0.12293086 0.16021366 0.20263220 0.25010166 0.30259021 0.36008591 0.42258430 0.49008370 0.56258347
7 1 3 1 1 1 1 1 1 1 1	0.30000000 0.35000000 0.40000000 0.45000000 0.55000000 0.65000000 0.75000000 0.75000000 0.75000000	0.12280396 0.16011182 0.20254114 0.25001513 0.30250557 0.36000205 0.42250075 0.49000028 0.56250010 0.64000004	0.12293086 0.16021366 0.20263220 0.25010166 0.30259021 0.36008591 0.42258430 0.49008370 0.56258347 0.64008338
7 1 3 1 9 1 1 1 1 1 1 1 1	0.30000000 0.35000000 0.40000000 0.45000000 0.50000000 0.55000000 0.65000000 0.75000000 0.75000000 0.85000000 0.85000000	0.12280396 0.16011182 0.20254114 0.25001513 0.30250557 0.36000205 0.42250075 0.49000028 0.56250010 0.64000004 0.72250001	0.12293086 0.16021366 0.20263220 0.25010166 0.30259021 0.36008591 0.42258430 0.49008370 0.56258347 0.64008338 0.72258335
7 1 3 1 1 1 1 1 1 1 1	0.30000000 0.35000000 0.40000000 0.45000000 0.55000000 0.65000000 0.75000000 0.75000000 0.75000000 0.85000000 0.85000000	0.12280396 0.16011182 0.20254114 0.25001513 0.30250557 0.36000205 0.42250075 0.49000028 0.56250010 0.64000004 0.72250001 0.81000001	0.12293086 0.16021366 0.20263220 0.25010166 0.30259021 0.36008591 0.42258430 0.49008370 0.56258347 0.64008338 0.72258335 0.81008334
7 1 3 1 9 1 1 1 1 1 1 1 1	0.30000000 0.35000000 0.40000000 0.45000000 0.50000000 0.55000000 0.65000000 0.75000000 0.75000000 0.85000000 0.85000000	0.12280396 0.16011182 0.20254114 0.25001513 0.30250557 0.36000205 0.42250075 0.49000028 0.56250010 0.64000004 0.72250001	0.12293086 0.16021366 0.20263220 0.25010166 0.30259021 0.36008591 0.42258430 0.49008370 0.56258347 0.64008338 0.72258335

3.2 $Problem 3.2 \frac{dy}{dx} = -20y + 20\sin{(x)} + \cos{(x)}$

and the second s		
X	True y	Pred y
l 0 3000000	0 21609407	F 10722011
0.2000000		5.19733811
0.4000000	0.38975380	25.37617070
0.60000000	0.56464862	125.48681526
0.8000000	0.71735620	625.31209552
1.00000000	0.84147099	3123.79515095
L		L
Iternum: 10		
Γ		
x	True y	Pred y
0.10000000	0.23516870	0.43313900
0.2000000	0.21698497	0.30966047
0.2000000	0121030137	0.30300017

13	Iternum: 10		
14			
15	x	True y	Pred y
16	 		
17	0.10000000	0.23516870	0.43313900
18	0.20000000	0.21698497	0.30966047
19	0.30000000	0.29799896	0.33232467
20	0.40000000	0.38975380	0.40141397
21	0.50000000	0.47947094	0.48307434
22	0.60000000	0.56464862	0.56543528
23	0.70000000	0.64421852	0.64398900
24	0.80000000	0.71735620	0.71672235
25	0.90000000	0.78332692	0.78249915
26	1.00000000	0.84147099	0.84052572
27	L	I	

```
28
29
30
    Iternum: 20
31
32
                            True y
                                              Pred y
            Х
33
34
          0.05000000
                            0.41785861 |
                                              0.42497852
35
          0.10000000
                            0.23516870 |
                                              0.24045622
36
          0.15000000
                            0.19922520 |
                                              0.20216844
37
          0.20000000
                            0.21698497 |
                                              0.21843866
38
          0.25000000
                            0.25414191 |
                                              0.25481165
39
          0.3000000
                            0.29799896 |
                                              0.29829102
40
          0.35000000
                            0.34380969
                                              0.34392855
          0.4000000
                            0.38975380 |
                                              0.38979534
41
42
          0.45000000 |
                            0.43508894 |
                                              0.43509617
43
          0.50000000 |
                            0.47947094 |
                                              0.47946262
44
          0.55000000 |
                            0.52270393 |
                                              0.52268809
45
          0.60000000
                            0.56464862
                                              0.56462864
46
          0.65000000 |
                            0.60518867 |
                                              0.60516599
47
          0.70000000 |
                            0.64421852 |
                                              0.64419376
48
          0.75000000 |
                            0.68163907 |
                                              0.68161253
49
          0.80000000 |
                            0.71735620 |
                                              0.71732804
50
          0.85000000
                            0.75128045
                                              0.75125076
51
          0.9000000
                            0.78332692 |
                                              0.78329581
52
          0.95000000
                            0.81341551 |
                                              0.81338305
53
          1.00000000 |
                            0.84147099 |
                                              0.84143727
54
```

3.3 $Problem \ 3.3 \ \frac{\mathrm{d}y}{\mathrm{d}x} = -20(y - e^x \sin{(x)}) + e^x (\sin{(x)} + \cos{(x)})$

```
1
   iternums = [5, 7, 10, 20] # 为观察方便,添加了n=7的作图,表格数据仍为所求[5, 10, 20]
2
   f1(y, p, x) = -20(y - exp(x)sin(x)) + exp(x) * (sin(x) + cos(x))
3
   xspan = (0.0, 1.0)
5
   y0 = 0.0
  f_2(x, y) = -20(y - exp(x)sin(x)) + exp(x) * (sin(x) + cos(x))
6
   f3(x) = exp(x) * sin(x)
   title = L"Problem\ 3.3: \frac{d}{y}{\mathcal x}=-20(y-e^x \sin(x))+e^x (\sin(x) + e^x)
   \cos(x)"
   text = L"y=e^x \sin(x)"
9
   show_result(f1, f2, f3, xspan, y0, iternums, true, false, title, text) # show, dense
```


<pre>Iternum:</pre>	5

X	True y	Pred y
0.20000000	0.24265527	0.29864621
0.40000000	0.58094390	0.92721987
0.60000000	1.02884567	2.83547734
0.80000000	1.59650534	10.71088533
1.00000000	2.28735529	47.94144638
		I

Iternum: 10

 	X	True y	Pred y
 	0.10000000	0.11033299	0.11205511
	0.20000000	0.24265527	0.24511651
	0.30000000	0.39891055	0.40177810
	0.40000000	0.58094390	0.58409696
	0.50000000	0.79043908	0.79382205
	0.60000000	1.02884567	1.03241831
	0.70000000	1.29729511	1.30101499
	0.80000000	1.59650534	1.60032101
	0.90000000	1.92667330	1.93052103
	1.00000000	2.28735529	2.29115692
-			1

Iternum: 20

29			
30		True y	Pred y
31	 	<u> </u>	
32	0.05000000	0.05254166	0.05259504
33	0.10000000	0.11033299	0.11040899
34	0.15000000	0.17362234	0.17370939
35	0.20000000	0.24265527	0.24274900
36	0.25000000	0.31767297	0.31777169
37	0.30000000	0.39891055	0.39901355
38	0.35000000	0.48659515	0.48670207
39	0.40000000	0.58094390	0.58105449
40	0.45000000	0.68216175	0.68227577
41	0.50000000	0.79043908	0.79055629
42	0.55000000	0.90594922	0.90606933
43	0.60000000	1.02884567	1.02896834
44	0.65000000	1.15925927	1.15938414
45	0.70000000	1.29729511	1.29742175
46	0.75000000	1.44302927	1.44315720

47	0.80000000	1.59650534	1.59663402
48	0.85000000	1.75773083	1.75785967
49	0.90000000	1.92667330	1.92680163
50	0.95000000	2.10325633	2.10338342
51	1.00000000	2.28735529	2.28748035
52			

思考题

1. 对实验 1,数值解和解析解相同吗?为什么?试加以说明。

对于问题1.1,数值解和解析解是相同的,因为本题的解是线性函数,能够通过所得数值解的两个点确定直线的方程,即等价于得到了解析解。

本例中,待求解微分方程为 $\frac{\mathrm{d}y}{\mathrm{d}x}=x+y$,解为y=-x-1,而 rungekutta() 函数求解的任意两点(如 (0.2,-1.2),(1.0,-2.0)) 所决定的直线方程即为y=-x-1。

而对于问题1.2,虽然数值解和解析解之间差异已经极小(绝对误差在1e-7~1e-5数量级,仅仅对比相同x所在的y取值,如下表所示),但对于非线性函数 $y=\frac{1}{1+x}$,在未知函数解析式类型的情况下,是几乎不可能仅仅通过数值解所求得的点来推断准确的函数解析式的,此时不能认为所求得的数值解就是解析解。

Test x	True y	5-Iter Pred y	10-Iter Pred y	20-Iter Pred y
0.20000000	0.83333333	0.83333904	0.83333373	0.83333336
0.40000000	0.71428571	0.71429213	0.71428615	0.71428574
0.60000000	0.62500000	0.62500589	0.62500040	0.62500003
0.80000000	0.5555556	0.55556069	0.5555590	0.5555558
1.00000000	0.50000000	0.50000441	0.50000030	0.50000002

2. 对实验 2, N 越大越精确吗? 试加以说明。

虽然确实N越大越精确,但从本例实验的结果来看,因为当n=5的时候已经获得足够精确的数值解了,再增大n的值只是增加了计算量,却不能再明显提高结果的精度,此时我们不能一味的增大N,而要根据所需要达到的精度要求及时终止计算。

本例中, $y=x^2(e^x-e)$,在迭代次数从5增加到20的时候,数值上的精度只增加了2位,继续增大n对于所求数值解精度改变很小,很难继续使用Runge-Kutta方法继续进行求解,并且这样的计算资源成本是不可忽略的。

1	Test x	True y	5-Iter Pred y	10-Iter Pred y	20-Iter Pred y
	1.40000000	2.62035955	2.61394279	2.61974052	2.62031131
i	1.80000000	10.79362466	10.77631317	10.79201760	10.79350178
	2.20000000	30.52458129	30.49165420	30.52159814	30.52435589
	2.60000000	72.63928396	72.58559861	72.63450354	72.63892578
	3.00000000	156.30529585	156.22519828	156.29825744	156.30477188

3. 对实验 3, N 较小会出现什么现象? 试加以说明

当n较小的时候所得数值解和正确结果相差较大,结果失真,说明在一定条件下确实需要更大的n来更好的获得数值解。而具体这个n的大小如何选取则取决于待求解微分方程性质,这里应该涉及到更深入的课程或者研究。

对本例而言,从下表以及所绘制的图像都很容易能看到,当n较小的时候会导致求得数值解偏差极大,甚至于几乎就完全是错误的(大约与正确结果相差1e3的量级),所以选择充分大的n,并设置结果收敛的措施,才能确保最终可以得到精度合适的数值解的同时不会造成太大的计算资源浪费。

下表为了便于对齐,略去了多余的x数据,方程的解析解为 $y = e^{-20x} + \sin(x)$,数值解如下所示:

	x	True y	5-Iter Pred y	10-Iter Pred y	20-Iter Pred y
-					
	0.20000000	0.04610521	1.76000000	0.07925926	0.04667348
	0.40000000	0.16011182	8.81333333	0.16658436	0.16021366
	0.60000000	0.36000205	43.68000000	0.36295382	0.36008591
	0.80000000	0.64000004	217.29333333	0.64255042	0.64008338
	1.00000000	1.00000000	1084.32000000	1.00250560	1.00008333

以下为方程 $\frac{dy}{dx} = -20(y - e^x \sin(x)) + e^x (\sin(x) + \cos(x))$ 的部分数值解表格,为便于集中观察而总结如下,解析解为 $y = e^x \sin(x)$,

i	x	True y	5-Iter Pred y	10-Iter Pred y	20-Iter Pred y
-					
	0.20000000	0.24265527	0.29864621	0.24511651	0.24274900
	0.40000000	0.58094390	0.92721987	0.58409696	0.58105449
	0.60000000	1.02884567	2.83547734	1.03241831	1.02896834
	0.80000000	1.59650534	10.71088533	1.60032101	1.59663402
	1.00000000	2.28735529	47.94144638	2.29115692	2.28748035
			<u> </u>	<u> </u>	<u> </u>

参考资料

- 1. julia ordinary differential equations tutorial https://diffeq.sciml.ai/stable/tutorials/ode example/
- 2. intro to solving differential equations in julia https://www.youtube.com/watch?v=KPEqYtEd-zY
- 3. julia ode solver type: Runge-Kutta https://diffeq.sciml.ai/stable/solvers/ode solve/#Explicit-Runge-Kutta-Metho ds
- 4. julia ode problem type https://diffeq.sciml.ai/stable/types/ode-types/#ode-prob
- 5. julia ode speed up perf <a href="https://diffeq.sciml.ai/stable/features/performance-overloads/#performance-ove
- 6. julia ode common solver option https://diffeq.sciml.ai/stable/basics/common solver opts/#solver options
- 7. 《计算方法实验指导》实验题目 3 四阶龙格—库塔(Runge—Kutta)方法