Домашна работа 2, № 45342, Група 3

Иво Стратев

31 март 2017 г.

1 Задача 5. а)

$$3^{0} = 1 = 0!$$

 $3^{1} = 3$, $1! = 1 \implies 3^{1} > 1!$
 $3^{2} = 9$, $2! = 2 \implies 3^{2} > 2!$
 $3^{3} = 27$, $3! = 6 \implies 3^{3} > 3!$
 $3^{4} = 81$, $4! = 24 \implies 3^{4} > 4!$
 $3^{5} = 243$, $5! = 120 \implies 3^{5} > 5!$
 $3^{6} = 729$, $6! = 720 \implies 3^{6} > 6!$
 $3^{7} = 2187$, $7! = 5040 \implies 3^{7} < 7!$

$$P(n): 3^n < n!, n \ge 7$$

1.1 База:

$$P(7): 2187 = 3^7 < 7! = 5040$$

1.2 Индукт. предположение:

$$P(k): 3^k < k!$$
, за някое $k \ge 7$

1.3 Индукт. стъпка:

$$P(k+1): 3^{k+1} < (k+1)!$$

 $3^k < k! \mid .3$
 $3^{k+1} = 3^k .3 < 3k! < (k+1)k! = (k+1)! \implies$
 $3^{k+1} < (k+1)!$

1.4 Заключение:

$$\forall n \geq 7P(n)$$

2 Задача 6. а)

$$P(n): 3|2^{2n} - 1, \ \forall n \in \mathbb{N}$$

2.1 База:

$$P(0): 3|2^{2.0}-1$$

$$2^{2.0} - 1$$
=
 $2^{0} - 1$
=
 $1 - 1$
=
 0

$$3|0 \implies 3|2^{2.0} - 1$$

2.2 Индукт. предположение:

$$P(k): \ 3|2^{2k}-1, \ \$$
за някое $k\in\mathbb{N} \implies$

$$\exists d \in \mathbb{N}: \ 2^{2k} - 1 = 3.d$$

2.3 Индукт. стъпка:

$$P(k+1): 3|2^{2(k+1)}-1$$

$$3|3(4.d+1) \implies 3|2^{2(k+1)}-1$$

2.4 Заключение:

$$\forall n \in \mathbb{N}P(n)$$