B. Tech. Degree IV Semester Supplementary Examination April 2022

CS 15-1404 AUTOMATA LANGUAGES AND COMPUTATIONS

(2015 Scheme)

Time: 3 Hours

Maximum Marks: 60

PART A

(Answer ALL questions)

 $(10 \times 2 = 20)$

- I. (a) Draw the transition diagram of a finite automata that accepts string over the alphabets {0,1} which ends with 00.
 - (b) Explain what do you mean by epsilon closure of a state.
 - (c) What is the application of Arden's theorem in finite automata?
 - (d) Write the regular expression for the language over {0,1} in which every 0 is immediately followed by 11.
 - (e) Construct the finite automata equivalent to the regular expression $10 + (0 + 11) 0^{1}$.
 - (f) Write a CFG, which generate palindrome for binary numbers.
 - (g) Explain ambiguous grammar with an example.
 - (h) What are the different methods of string acceptance in a Push Down Automata?
 - (i) What do you mean by decidable and undecidable problems?
 - (j) Explain Linear Bounded Automata.

PART B

 $(4 \times 10 = 40)$

II. Convert the following NFA to NFA without epsilon transition.

(10)

III. Convert the NFA to DFA.

(10)

(P.T.O.)

IV. Construct a regular expression corresponding to the following state diagram. (10)

OR

V. (a) State Pumping Lemma.

- (4)
- (b) Using Pumping Lemma prove that: $L = \{0^n / n \text{ is perfect cube}\}\$ is not regular. (6)
- VI. Convert the grammar into GNF.

(10)

 $S \rightarrow AB$

A→ BS/a

 $B \rightarrow SA/b$

OR

VII. Design a push down automata for $L = \{a^n b^m / n > m \ge 0\}$. (10)

VIII. Design a Turing Machine that recognizes the language of all strings of even (10) length over alphabets $\{a, b\}$.

OR

IX. Explain different techniques for Turing machine construction. (10)
