HW10

April 18, 2024

- 1 Chem 30324, Spring 2024, Homework 10
- 2 Due April 26, 2024
- 2.1 Thermodynamics from scratch.
- 2.1.1 Let's calculate the thermodynamic properties of an ideal gas of CO molecules at 1 bar pressure. CO has a rotational constant $B=1.931 {\rm cm}^{-1}$ and vibrational frequency $\nu=2156.6 {\rm cm}^{-1}$. Suppose you have a 20 dm³ cubic bottle containing 1 mole of CO gas that you can consider to behave ideally.
- 2.1.2 1. The characteristic temperature Θ of a particular degree of freedom is the characteristic quantum of energy for the degree of freedom divided by k_B . Calculate the characteristic translational, rotational, and vibrational temperatures of CO.
- 2.1.3 2. Plot the translational, rotational and vibrational partition functions of a CO molecule in the bottle from T=200 to 2000 K (assume the CO remains a gas over the whole range). Hint: Use your answer to Problem 1 to simplify calculating the rotational partition function.
- 2.1.4 3. Plot the total translational, rotational, and vibrational energies of CO in the bottle from T = 200 to 2000 K (assume the CO remains a gas over the whole range). Which (if any) of the three types of motions dominate the total energy?
- 2.1.5 4. Plot the total translational, rotational, and vibrational constant volume molar heat capacities of CO in the bottle from T=200 to 2000 K. Which (if any) of the three types of motions dominate the heat capacity?
- 2.1.6 5. Plot the total translational, rotational, and vibrational Helmholtz energies of CO in the bottle from T = 200 to 2000 K. Which (if any) of the three types of motions dominate the Helmholtz energy?
- 2.1.7 6. Use your formulas to calculate ΔP , ΔU , ΔA , and ΔS associated with isothermally expanding the gas from 20 dm³ to 40 dm³.
- 2.2 Reactions from scratch
- 2.2.1 In 1996, Schneider and co-workers used quantum chemistry to compute the reaction pathway for unimolecular decomposition of trifluoromethanol, a reaction of relevance to the atmospheric degradation of hydrofluorocarbon refrigerants (*J. Phys. Chem.* 1996, 100, 6097- 6103, doi:10.1021/jp952703m):

$$CF_3OH \rightarrow COF_2 + HF$$

2.2.2 Following are some of the reported results, computed at 298 K:

	$\mathrm{CF_3OH}$	$\mathrm{C}(\mathrm{O})\mathrm{F}_2$	$_{ m HF}$	
$E^{ m elec}$	-412.90047	-312.57028	-	(Hartree)
			100.31885	
ZPE	0.02889	0.01422	0.00925	(Hartree)

	$\mathrm{CF_{3}OH}$	$\mathrm{C}(\mathrm{O})\mathrm{F}_2$	$_{ m HF}$	
$\overline{U^{ m trans}}$	3.7	3.7	3.7	(kJ
$U^{ m rot}$	3.7	3.7	2.5	$ \text{mol}^{-1} $ $ (kJ) $
$U^{ m vib}$	4.3	1.2	0	$ \text{mol}^{-1} $ $ (kJ) $
$q^{ m trans}/V$	7.72×10^{32}	1.59×10^{32}	8.65×10^{31}	$ \begin{array}{c} \mathrm{mol}^{-1}) \\ \mathrm{(m}^{-3}) \end{array} $
$q^{ m rot} \ q^{ m vib}$	61830 2.33	679 1.16	9.59 1	

- 2.2.3 8. Using the data provided, determine $\Delta U^{\circ}(298 \text{ K})$), in kJ mol⁻¹, assuming ideal behavior and 1 M standard state. Recall that U(T) is the sum of the contributions of all degrees of freedom.
- 2.2.4 9. Using the data provided, determine ΔA° (298 K) in kJ mol⁻¹, assuming ideal behavior and 1 M standard state. Recall that $A^{\circ} = E^{\mathsf{elec}} + \mathsf{ZPE} RT \ln(q^{\circ}) RT$, where $q^{\circ} = ((q^{\mathsf{trans}}/V)q^{\mathsf{rot}}q^{\mathsf{vib}})/c^{\circ}$ and $c^{\circ} = 6.022 \times 10^{26}$ m⁻³ for a 1 M standard state.
- 2.2.5 10. Determine $\Delta G^{\circ}(298 \text{ K})$. Recall that G = A + PV = A + RT for an ideal ga.
- 2.2.6 11. Determine $\Delta S^{\circ}(298 \text{ K})$, in J mol⁻¹ K⁻¹, assuming a 1 M standard state. Recall that S=(U-A)/T.
- 2.2.7 12. Using the data provided, determine K_c (298 K), assuming a 1 M standard state. You may either determine from partition functions of from the relationship between K_c and ΔG° .
- 2.2.8 13. 1 mole of CF_3OH is generated in a 20 L vessel at 298 K and left long enough to come to equilibrium with respect to its decomposition reaction. What is the composition of the gas (concentrations of all the components) at equilibrium (in mol/L)?
- 2.2.9 14. How, directionally, would your answer to Question 13 change if the vessel was at a higher temperature? Use the van'T Hoff relationship to determine the equilibrium constant and equilibrium concentrations at 273 and 323 K. How good was your guess?
- 2.2.10 15. How, directionally, would your answer to Question 13 change if the vessel had a volume of 5 L? Redo the calculation at this volume to verify your guess.
- 2.2.11 16. (Extra credit) Consult a thermodynamics source (e.g. https://webbook.nist.gov/chemistry/) to determine $\Delta H^{\circ}(298 \text{ K})$, $\Delta S^{\circ}(298 \text{ K})$, and $\Delta G^{\circ}(298 \text{ K})$ for the homologous reaction $\text{CH}_3\text{OH}\ (g) \rightarrow \text{H}_2$ (g) + $\text{H}_2\text{CO}\ (g)$. Does the substitution of F by H make the reaction more or less favorable?