Problem statement:

Monthly Number of Objects in Earth Orbit by Object Type -Total Objects -Fragmentation Debris -Mission-related Debris -Rocket Bodies

Inaccurate prediction of the Earth satellite orbits can lead to dangerous collisions

Task: predict real coordinates from simulated values

$$\begin{bmatrix} V_{x} - sim \\ V_{y} - sim \\ V_{z} - sim \\ x_{z} - sim \\ y_{z} - sim \\ y_{z} - sim \end{bmatrix} \rightarrow \begin{bmatrix} V_{x} \\ V_{y} \\ V_{z} \\ x \\ y \\ z \end{bmatrix}$$

Train data (January 2014): $[r_sim]$, $[r_real]$ 600 satellites

Images: isa.int, nasa.gov

Problem statement:

Remove sudden jumps in simulated signal due to nonuniform time grid \downarrow Mapping signal to the nonuniform time grid using interpolation

Address gradual dephasing and slow orbit precession

V

Nonlinear alignment

Challenge: finding uniform approach for all satellite

Nonlinear alignment: matching key time points

Nonlinear alignment: fit coordinate difference at key points

Linear fit $X_{real} - X_{sim} = A \cdot t + B$

Full algorithm:

- I. Remove time jumps (shift signal using spline interpolation)
- II. Perform nonlinear alignment for each generalized coordinate X
 - 1. Identify families of key time points (by offset, 100 points per period)
 - 2. For each family of key points:
 - a) Transform simulation key points to real key points
 - b) Linearly stretch ΔX at key points
 - 3. Combine stretched coordinates and transformed key points into sparse solution
- III. Map the sparse solution onto the initial time grid using 2nd order EOM:

$$a[i] = -\frac{G M_E}{r[i]^2}$$

$$v[i+1] = v[i] + a[i] \cdot dt$$

$$r[i+1] = r[i] + (v[i+1] + v[i])dt$$

Nonlinear alignment: combining the result from all key points

