

AGENDA

- 1. Application Building a Country Intelligence Dashboard
- ➤ Open-Source data from the World Bank
- ➤ GADM Geo-Information
- ➤ Combining Information in R
- 2. Technologies Picking up the Pieces
- ➤ R Shiny
- Docker
- Shinyproxy
- Keycloak

ESG Elektroniksystem- und Logistik-GmbH 05.06.2019

PART 1 – COUNTRY INTELLIGENCE DASHBOARD

INTRODUCTION – COUNTRY INTELLIGENCE DASHBOARD

Report | Afghanistan (AFG)

- ➤ Interactive Dashboard combining
 - World Bank Indicators
 - Geo Information

TECHNOLOGIES: R SHINY

- ➤ R package for building interactive web apps
- > Standalone app on webpage or in a dashboard
- ➤ Can be customized using CSS, htmlwidgets or JavaScript

APPLICATION: WORLD BANK DATA

- > World Bank Data: Sources of funding and knowledge for developing countries
- ➤ Goal: reducing poverty, increasing shared prosperity, and promoting sustainable development
- Data: https://datacatalog.worldbank.org/

DEMONSTRATION

Report | Afghanistan (AFG)

Übersicht	Wirtschaft	Gesundheit	Ethnien und Bevölkerung
Land			
Afghanistan (Al	FG)	•	
♣ Generate re	port		
Indikator:			
GDP (current U	S\$)	•	
Zusammenfassu	ing		
schee af nia need	Weißwiaschd.	Naa de Sonn Gr	rrd heitzdog. Gamsbart so audwiggal, Griasnoggalsubbm no a Maß helfgod unbandig
Mamalad anband Heimatland.	eln. Auf'd Sche	ellnsau measi mim	des muas ma hoid kenna,
unbandig. Singan	Maderin oamo	oi oa, Brotzeit Oac	ehra oans, zwoa, gsuffa hkatzischwoaf om auf'n Gipfe i d schoo lem und lem lossn vui

APPLICATION: GADM

- ➤ High resolution geo-information of administrative areas of all countries
- Includes many levels and subdivisions
- Data stored as polygons
- Freely available for non-commercial use @ https://gadm.org/data.html

```
8 * '``{r}
9 library(rgdal)
10 library(tidyverse)
path = "data/gadm36_levels.gpkg"

12
13
14 * ## Get information on layers

15
16 * '``{r}
17
18

[1] "level0" "level1" "level2" "level3" "level4" "level5" attr(,"driver")
[1] "GPKG" attr(,"nlayers")
[1] 6

19
20 * ## Read the first layer

21
22 * '``{r}
23 data0 <- readOGR(path, layers[1])</pre>
```

APPLICATION: INTERACTIVE MAPS WITH R SHINY

➤ Join geo information from GADM with WDI Data

ENTITY_TEXT_ID_ADM0 ‡	VALUE_FLOAT [‡]	INDICATOR_NAME ‡	YEAR [‡]	geometry
Afghanistan (AFG)	9.843842e+09	GDP (current US\$)	2007	list(list(c(68.5775909433334, 68.5595665, 68.532562256, 68.498
Afghanistan (AFG)	1.019053e+10	GDP (current US\$)	2008	list(list(c(68.5775909433334, 68.5595665, 68.532562256, 68.498
Afghanistan (AFG)	1.248694e+10	GDP (current US\$)	2009	list(list(c(68.5775909433334, 68.5595665, 68.532562256, 68.498
Afghanistan (AFG)	2.061610e+10	GDP (current US\$)	2014	list(list(c(68.5775909433334, 68.5595665, 68.532562256, 68.498
Afghanistan (AFG)	1.946902e+10	GDP (current US\$)	2016	list(list(c(68.5775909433334, 68.5595665, 68.532562256, 68.498
Afghanistan (AFG)	2.081530e+10	GDP (current US\$)	2017	list(list(c(68.5775909433334, 68.5595665, 68.532562256, 68.498
Albania (ALB)	1.924242e+09	GDP (current US\$)	1984	list(list(c(20.0438248940821, 20.0781005250001, 20.105264026
Albania (ALB)	1.965385e+09	GDP (current US\$)	1985	list(list(c(20.0438248940821, 20.0781005250001, 20.105264026
Albania (ALB)	2.156625e+09	GDP (current US\$)	1987	list(list(c(20.0438248940821, 20.0781005250001, 20.105264026
Albania (ALB)	2.335125e+09	GDP (current US\$)	1989	list(list(c(20.0438248940821, 20.0781005250001, 20.105264026
Albania (ALB)	7.094526e+08	GDP (current US\$)	1992	list(list(c(20.0438248940821, 20.0781005250001, 20.105264026
Albania (ALB)	1.985674e+09	GDP (current US\$)	1994	list(list(c(20.0438248940821, 20.0781005250001, 20.105264026
^{ys} Albania (ALB)	2.424499e+09	GDP (current US\$)	1995	list(list(c(20.0438248940821, 20.0781005250001, 20.105264026

APPLICATION: INTERACTIVE MAPS WITH R SHINY

- ➤ Join geo information from GADM with WDI Data
- ➤ Define colours, labels and popup when hovering over text

APPLICATION: INTERACTIVE MAPS WITH R SHINY

- ➤ Define leafletPlot: R plot for JavaScript based library for interactive maps
- ➤ Pass all arguments including polygon values
- More info on https://rstudio.github.io/leaflet/

PART 2 – PICKING UP THE PIECES IN OPEN SOURCE

CREATING A COMPREHENSIVE APPLICATION

Goal: Serve multiple R Shiny applications in an enterprise context

including

- ➤ An authentication system
- Possibility to scale application to a large number of users
- ➤ Ways to make applications portable

Solution:

- ➤ Shinyproxy & R Shiny app in Docker
- > Keycloak for authentication
- ➤ NGINX for traffic routing

TECHNOLOGIES: SHINYPROXY

- ➤ Deploy multiple Shiny Applications in one place
- ➤ Need for enterprise features yet open source
- ➤ All benefits by Docker-based technology
- ➤ Built-in functionalities for LDAP or SSO authentication and authorization
- More info on https://www.shinyproxy.io/

Source: https://www.shinyproxy.io/

TECHNOLOGIES: DOCKER

➤ A platform for distributed applications, similar to a Virtual Machine

➤ A docker container: is a lightweight way of virtualization

Containerized Applications

Source: https://www.docker.com/resources/what-container

TECHNOLOGIES: KEYCLOAK

1

- Open source identity and access management solution
- ➤ More info on https://www.keycloak.org

Source: https://blog.jdriven.com/2018/10/securing-spring-microservices-with-keycloak-part-2/

TECHNOLOGIES: NGINX

- ➤ Web server used as web proxy manages SSL and routes traffic
- ➤ Two upstreams: Keycloak and Shinyproxy

APPLICATION: PICKING UP THE PIECES

DEMONSTRATION

THANKS FOR JOINING!

