Tema 1a: Sèries

- (a_n) monòtona $\implies \exists \lim_{n \to \infty} (a_n) \in \mathbb{R} \cup \{\pm \infty\}$
- (a_n) fitada $\Longrightarrow \exists$ subsucc conv.
- (a_m) no fitada $\Longrightarrow \exists$ subsucc div.
- $-(a_n)$ conv \iff (a_n) succ de Cauchy.
- infinitèssim: (a_n) to $\lim_{\ell} a_n = 0$.
- si (a_n) infinitèssim
- $\implies \log(1+a_n), \sin(a_n), 1-\cos(a_n), e^{a_n}$ $1, tq(a_n), |a_n|^{\alpha}$ on $\alpha > 0$ tmb.
- si (a_n) infinitèssim $\Longrightarrow \log(1+a_n) \sim a_n$, $sin(a_n) \sim a_n$, $1 - cos(a_n) \sim \frac{(a_n)^2}{2}$, $e^{a_n} - 1 \sim a_n$, $ta(a_n) \sim a_n$.
- $lg(lg(n)) \prec lg(n) \prec n^c \prec n \prec n^a \prec n^{lg(n)} \prec$ $b^n < n! < n^n < b^{n^a}$ on b > 1, 0 < c < 1 < a.
- $-\sum a_n \text{ conv } \Longrightarrow \lim_{n\to\infty} a_n = 0.$
- sèries telesòpiques: $\sum a_n$ tq $a_n = b_n - b_{n+1} \forall n \in \mathbb{N} \implies S_n = b_0 - b_{n+1}$
- sèries aritmetico-geomètriques: $\sum a_n$ tq $a_n = (dn+s)r^n \text{ on } d, r, s \in \mathbb{R}, |d|+|s|>0$
- $-\lim_{n\to\infty} |dn+s||r|^n = 0 \iff |r|<1$ $\Longrightarrow \sum (dn+s)r^n = \frac{s}{1-r} + \frac{dr}{(1-r)^2}$

Criteris

- ▶ <u>Dirichlet</u>: $\sum_{n=1}^{\infty} a_n b_n$ conv si:
- $i)s_n = \sum_{k=1}^n b_k$ fitada
- $\operatorname{ii}(a_n) \operatorname{monotona} \operatorname{i} \lim(a_n) = 0$
- ▶ <u>Leibnitz</u>: $\sum_{n=0}^{\infty} (-1)^n a_n$ conv si (a_n) monòtona decreixent i $\lim(a_n) = 0$

Criteris per a sèries positius

- ▶ Comparació: $\exists n_0 \text{ tq } \forall n > n_0, a_n < b_n$ i) si $\sum b_n < \infty \implies \sum a_n < \infty$ ii)si $\sum a_n = \infty \implies \sum b_n = \infty$
- ► Comparació al límit:
- $\forall n \geq n_0, a_n \leq b_n, \exists \lim \frac{a_n}{b} = l \in [0, \infty]$ i) si $l \in (0, \infty) \implies (a_n), (b_n)$ mateix caràcter
- ii) + iii) si l = 0 ó $l = \infty \implies C.Comparaci$
- ▶ Quocient: si $\exists \lim \frac{a_{n+1}}{a_n} = \alpha \in [0, \infty]$
- $\implies si\alpha > 1 \text{ div i si } \alpha < 1 \text{ conv.}$
- ▶ Raabe: si $\exists \lim n(1 \frac{a_{n+1}}{a_n}) = l \in [0, \infty]$ $\implies sil < 1 divisil > 1 conv.$
- ▶ <u>Logarítmic</u>: si $\exists \lim \frac{log(\frac{1}{a_n})}{log(n)} = l \in [0, \infty]$

- $\implies sil < 1divisil > 1conv.$
- **Condensació**: si a_n decreix. i $\lim a_n = 0$ $\Longrightarrow \sum a_n$ i $\sum 2^n a_{2n}$ mateix caràcter.
- $-\frac{1}{2}\sum_{n} 2^{n}a_{2n} \leq \sum_{n} a_{n} \leq \sum_{n} 2^{n}a_{2n}$
- ▶ Arrel: si $\exists \lim (a_n)^{\frac{1}{n}} = \alpha \in [0, \infty]$
- $\implies si\alpha > 1 \text{ div i si } \alpha < 1 \text{ conv.}$
- ▶ Integral: si $f:[m_{\geq 0},\infty)\to\mathbb{R}$ tq f > 0, $\lim f(x) = 0$ i f decreix. Llavors:
 - i)+ii)si $\lim_{n\to\infty} \int_m^n f < \delta = \infty \implies \sum_{n=m}^{\infty} f(n)$
- $-\lim_{n\to\infty}\int_m^n f \le \sum_{n=m}^\infty f(n) \le f(m) + \lim_{n\to\infty}\int_m^n f$ si F primitiva de f. Llavors:
- i)+ii)si $\lim F(n) < \circ = \infty \implies \sum_{n=-\infty}^{\infty} f(n)$ c
- $\lim F(n) F(k) + \sum_{n=m}^{k-1} f(n) \le \sum_{n=m}^{\infty} f(n) \le f(n)$

 $\lim F(n) - F(k) + \sum_{k=1}^{k} f(n)$

• sèrie harmònica: $\sum_{n>1}^{n=m} \frac{1}{n^{\alpha}}, \alpha \in \mathbb{R}; c \text{ sii } \alpha > 1 \text{ i}$ d sii $\alpha < 1$.

Tema 1b: Integrals impròpies

- funció localm. integ: $f \in \mathcal{L}_{loc}(I)$ si $f: I \to \mathbb{R} \in \mathcal{R}(J) \forall J \in I$ interval tancat i fitat.
 - $f\mathscr{C}$ ó monòtona \Longrightarrow $f \in \mathcal{L}_{loc}(I)$.
 - integral impròpia de $f:[a,b)\to\mathbb{R}\in\mathcal{L}_{loc}(I)$
 - $\text{ és } \int_a^b f = \lim_{x \to b^-} \int_a^x f$
 - i)de 1a espècie si $b = \infty$ i f fitada
 - ii) de 2a espècie si $b < \infty$ i f no fitada
 - iii) de 3a espècie si $b = \infty$ i f no fitada
- $-f\mathcal{L}_{loc}(I), \int_{-\infty}^{\infty} f c \implies \exists \lim_{R \to \infty} \int_{-R}^{R} f$
- si $f \in \mathcal{L}_{loc}(I)$, $\int_a^\infty f$ conv i $\exists \lim_{x \to \infty} f(x)$
- $\Longrightarrow \lim_{x \to \infty} f(x) = 0.$
- ▶ C.Cauchy: $\int_{a}^{b} f \operatorname{conv} \iff \forall \varepsilon > 0$, $\exists a \leq c_0 < b \text{ tq } | \int_{c}^{c} f | \leq \varepsilon, \ \forall c, \tilde{c} \in [c_0, b).$
- integral imp. abs. conv: si |f| té integ imp
- f abs conv $\implies fconv$.
- Comparació, Comparació al límit i Dirichlet.

Funcions Gamma i Beta

- Gamma: $\Gamma:(0,\infty)\to\mathbb{R}$ tq
- $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt > 0$
- Γ conv $\forall \alpha > -1$ $\Gamma(x+1) = x\Gamma(x)$
- $-\Gamma(n+1) = n!$ $-\Gamma(n+1) = n!$
- $-\Gamma(n+\frac{1}{2}) = \frac{\sqrt{\pi}(2n)!}{r!^{\frac{2n}{2}n}} \Gamma(\frac{1}{2}) = 2\int_{0}^{\infty} e^{-s^2} = \sqrt{\pi}$
- Beta: $B:(0,\infty)^2\to\mathbb{R}$ to
- $B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$, funció simètrica
- $B(x,y) = 2 \int_0^\infty (\sin(\theta))^{2x-1} (\cos(\theta))^{2y-1} d\theta$
- $-B(x,y) = \int_0^\infty \frac{s^{x-1}}{(1+s)^{x+y}} = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$

Tema 2: Integració a \mathbb{R}^n

Intervals, Rectangles i Particions

- interval: conv connex $\in \mathbb{R}$.
- longitud: l(I) = b a.
- $-l(I) = l(I^{o}) = l(\tilde{I}).$
- rectangle: $R = I_1 \mathbf{x} ... \mathbf{x} I_n$ on I_i interval $\forall i$. És degenerat si $\exists i \in \{1, ..., n\}$ to $l(I_i) = 0$.
- volum: $v(R) = l(I_1) \times ... \times l(I_n)$.
- diàmetre: $\delta(R) = \sqrt{l(I_1)^2} x...x l(I_n)^2$
- $-\max\{l(I_j)\} \le \delta(R) \le \sqrt{n}\max\{l(I_j)\}$ $\Longrightarrow v(R) < \delta(R^n).$
- $-v(Q) = l^n \implies \delta(Q) = l\sqrt{n}.$
- partició: $P = \{x_0, ..., x_n\}$ de [a, b] tq $a = x_0 < ... < x_n = b$. Un subinterval és $I_i = [x_i, x_{i+1}].$ Obs $I_i^{\circ} \cap I_i^{\circ} = \emptyset, \forall i \neq j$ $\Longrightarrow [\mathbf{a}, \mathbf{b}] = \bigcup_{i=1}^{k-1} I_i \implies \mathbf{b} \cdot \mathbf{a} = \sum_{i=1}^{k-1} l(I_i).$
- diàmetre: $\delta(P) = \max\{l(I_i)\}.$
- partició més fina: P' que P si $P \subset P'$.
- $-\overline{\text{si }P\subset P'} \Longrightarrow \delta(P') < \delta(P)$
- $\forall P, P'$ particións de $[a, b], \exists \tilde{P}$ partició de [a,b] to $P,P'\subset \tilde{P}$.
- diàmetre: $\delta(P) = \sqrt{\delta(P_1)^2} \mathbf{x} ... \mathbf{x} \delta(P_n)^2$.
- $\max\{\delta(P_j)\} \le \delta(P) \le \sqrt{n} \max\{\delta(P_j)\}$ \implies v(R) $< \delta(P)^n$.
- $\forall \varepsilon, \exists P \text{ tq } \delta(P) < \varepsilon$.

Integració de funcions fitades

- $R = [a_1, b_1] \mathbf{x} ... \mathbf{x} [a_n, b_n], f : R \to \mathbb{R}$ fitada.
- $\underline{M_{ij}} = \sup_{x \in R_{ij}} \{f(x)\}; \underline{m_{ij}} = \inf_{x \in R_{ij}} \{f(x)\}.$
- suma superior: $S(f, P) = \sum_{R} M_R v(R)$.
- suma inferior: $s(f, P) = \sum_{R} m_R v(R)$.
- si $P \subset P'$,

- s(f, P) < s(f, P') < S(f, P') < S(f, P)
- integral superior: $\bar{\int}_B f = \inf_{\mathcal{D}} S(f, P)$.
- integral inferior: $\int_R f = \sup s(f, P)$.
- $-m_R v(R) \le s(f,P) \le \int_{\mathcal{D}} f \le \overline{\int}_{\mathcal{D}} f \le$ $S(f,P) \leq M_B v(R)$.
- integrable Riemman: si $\int_{\mathcal{D}} f = \overline{\int}_{\mathcal{D}} f$.
- $-\int_{\bar{R}} f = \int_{\partial R} f + \int_{R^{\circ}} f; \quad -\bar{\int}_{\partial R} f = 0.$
- $\forall \tilde{R} \text{ to } R^{\circ} \subset \tilde{R} \subset R \text{: } f \in \mathcal{R}(R) \text{ sii } f \in \mathcal{R}(\tilde{R}).$
- ▶ C.Darboux: f fitada; $f \in \mathcal{R}(R)$ sii $\forall \varepsilon > 0, \exists P \text{ tq } S(f, P) - s(f, P) < \varepsilon. \text{ Llavors}$ $\int_{R} f = \lim_{k \to \infty} S(f, P_k) = \lim_{k \to \infty} s(f, P_k).$
- si v(R) = 0, $\forall f$ fitada és integ i té $\int_{R} f = 0$.
- si f(x) = c ct $\Longrightarrow f \in \mathcal{R}(R)$ i $\int_{\mathcal{R}} f = cv(R)$.
- $-f \in \mathscr{C}(R) \implies f \in \mathcal{R}(R).$
- funció de Dirichlet: $d_{\alpha,\beta}:\mathbb{R}^n\to\mathbb{R}$ tq

$$d_{\alpha,\beta} = \begin{cases} \alpha \text{ si } x \in \mathbb{Q}.\\ \beta \text{ si } x \notin \mathbb{Q}. \end{cases}$$
 (fitada no integ.)

- suma de Riemman associada a $f, P, \{\xi_{i,i}\}_{i=1}^n$: $R(f, P, \{\xi_{i_i}\}_j) = \sum f(\xi_{i_i})v(R).$
- $\lim_{\delta(R)\to 0} R(f,P,\{\xi_{i_j}\}_j) = k \in \mathbb{R}$ si $\forall \varepsilon, \exists P$ amb $\delta(P) < \varepsilon \text{ tq } \forall P \subset P', |R(f, P, \{\xi_i, \}_i) - k| < \varepsilon.$
- ▶ C.Riemman d'integrabilitat: $f \in \mathcal{R}(R)$ sii $\overline{\exists \text{ lim } R(f, P, \{\xi_{i_i}\}_i)}$. Llavors és = $\int_R f$.
- si $f \in \mathscr{C}(R)$
- $\Longrightarrow \int_R f = \lim_{\delta(R) \to 0} R(f, P, \{\xi_{i_j}\}_j).$

Criteri de Lebesgue

- \bullet oscil·l. de f en A:
- $w(f, A) = \sup \{|f(x) f(y)|\}.$ $x,y \in A$
- w(f, A) = 0 sii f ct; $w(f, A) \in \mathbb{R}$ sii f fitada.
- \bullet oscil·l. de f en a: w(f,a) =

 $\lim_{r \to 0} \overline{w(f,A \cap B_{(a,r)})} = \inf_{r > 0} w(f,A \cap B_{(a,r)}).$

- f fitada; $\forall \varepsilon, \{x \in A | w(f, x) < \varepsilon\}$ és ob de A.
- f fitada, A tancat; $\forall \varepsilon, \{x \in A | w(f, x) \ge \varepsilon\}$ és tancat de A.
- f fitada, R tancat; si $\exists \varepsilon \text{ tg } w(f,x) < \varepsilon \forall x \in \mathbb{R}$ $\Longrightarrow \exists P \text{ tq } S(f,P) - s(f,P) < \varepsilon v(R).$
- contingut nul: si $\forall \epsilon \exists$ subrecubriment finit de

A per rectangles tq $\sum v(R_i) \leq \epsilon$.

• mesura nul·la: si $\forall \epsilon \exists$ subrecubriment numm

de A per rectangles t
q $\sum^{\infty} v(R_j) \leq \epsilon.$

▶ C.Lebesgue: $f: R \to \mathbb{R}$ fitada. R tancat: $f \in \mathcal{R}(R) \iff f \in \mathscr{C}(R) \ cs.$

- $A \ cn \implies A \ \text{fitat i} \ mn$:

 $A \operatorname{cpt} i mn \Longrightarrow A \operatorname{cn}$.

- $A cn \implies cn$; $A mn \implies A^{\circ} = \emptyset$.

- A cn. B fitat $\implies AxB. BxAcn.$

- $A mn \implies Ax\mathbb{R}^k . \mathbb{R}^k xA mn$

 $f, g: R \to \mathbb{R}, D = \{x \in \mathbb{R} | f(x) \neq g(x)\}$ cn \Longrightarrow f $\in \mathcal{R}(R)$ sii $q \in \mathcal{R}(R)$. Llavors $\int_{\mathcal{D}} f = \int_{\mathcal{D}} q$.

• funció Lipschitziana: si $\exists L \in (0,1]$ tq $|f(x) - f(y)| \le L|x - y|, \ \forall x, y \in A.$

- f Lip. sii $f' < \infty \implies fLip. \forall \overline{subint} d'A$.

- si A, f Lip. en $A \Longrightarrow fdiferenciable csen A$.

• funció localm. Lip en Ω : si $\forall x \in \Omega, \exists B_x \subset \Omega$ bola ob to f Lip en B_x .

- f loc.Lip. \Longrightarrow $f \in \mathscr{C}(\Omega)$; $\in \mathscr{C}^1(\Omega)$ $\implies floc.Lip.$

- $f \text{ loc.Lip.}(\Omega), K \text{ cpt } \subset \Omega \implies fLip.enK.$

- si $m > n, f : A \subset \mathbb{R}^n \to \mathbb{R}^m$ Lip: i) si $B \subset Amn//cn \implies f(B)mn//cn$. ii) si $n < m \implies f(A) \text{ mn.} IsiA fitat \implies f(A)$

cn. - si m > n, $f: A \subset \mathbb{R}^n \to \mathbb{R}^m \mathscr{C}^1$:

i) si $A \ mn \implies f(A)mn$. ii) si $\bar{B} \subset A$ i B $cn \implies f(B)cn$.

iii)si $n < m \implies f(A) \text{ mn.} Isi \subset A i B \text{ fitat}$ \implies f(B) cn.

Fubini

▶ T.Fubini: $R \subset \mathbb{R}^k$, $\tilde{R} \subset \mathbb{R}^m$, $f \in \mathcal{R}(Rx\tilde{R})$; si $\phi: R \to \mathbb{R}, \psi: \tilde{R} \to \mathbb{R}$ to $\forall x \in R, y \in \tilde{R}$, $\int_{\tilde{R}} f_x \leq \phi(s) \leq \int_{\tilde{R}} f_x \text{ i } \int_{R} f_y \leq \psi(y) \leq \int_{R} f_y$ $\Longrightarrow \phi \in \mathcal{R}(R), \psi \in \mathcal{R}(\tilde{R})$ i $\int_{R} \phi = \int_{R} x \tilde{R} f = \int_{\tilde{R}} \psi.$ - $A = \{x \in R | f_x \notin \mathcal{R}(\tilde{R})\}$ mn en \mathbb{R}^k .

Integració en conj. mJ

 $-\chi_{A\cap B}=\chi_A\chi_B$

 $-\chi_{A\cup B} = \max\{\chi_A, \chi_B\} = \chi_A + \chi_B - \chi_{AB}.$

• conjunt mesurable Jordan: A fitat i ∂A mn.

- $A \ mJ \ \text{sii} \ A \ \text{fitat i} \ \forall R \supset A \ \text{cpt}, \ \exists \int_{R} \chi_{A}.$ - $A \ mJ; v(A) = \int_{R} \chi_{A}, \ \forall R \supset A \ \text{tancat}.$

- $cn \implies mJ$. -siAmJcpt:cnsiimn.

- $A \ mJ \implies A^{\circ}, \bar{A}, \partial A \ mJ$. I si $A^{\circ} \subset B \subset A$ \Longrightarrow B m.I

• extensió de f fitada en A fitat: $f^*(x) = f(x)$ $si x \in A i 0 si x \notin A$.

- $f^* \in \mathcal{R}(R)$ sii $f \in \mathcal{R}(A)$. Llavors són iguals. $-f \in \mathcal{R}(R) \implies \Gamma(f)$ cn.

▶ C.Lebesgue: $f: A \to \mathbb{R}$ fitada. $A \ mJ$: $f \in \mathcal{R}(A) \iff f \in \mathscr{C}(A) \ cs.$

- f fitada i \mathscr{C} en A $mJ \implies f \in \mathcal{R}(A)$.

- $m_f v(A) < \int_A f < M_f v(A)$.

• conjunt elemental: $E = \{x \in A | \phi(x) < \psi(x)\}$ on A mJ i $\phi, \psi \in \mathscr{C}$.

 $-\tilde{E} \setminus \bar{E} = \Gamma(\phi) \cup \Gamma(\psi) \ cn; \implies \text{mJ}sii$ mJ; $\Longrightarrow v() = v() = \int_A \phi - \psi$.

- unió finita de rectangles és conj elem.

Integració impròpia

• exhaustió de $E \subset \mathbb{R}^{n+1}$: $\{E_k\}mJ$ tq

 $E_k \subset E_{k+1} \subset E \text{ i } E = \bigcup_{k=1}^{\infty} E_k.$

- $E \ mJ, \{E_k\} \ \text{exh}, \ f \in \mathcal{R}(E) \Longrightarrow f|_{E_k} \in \mathcal{R}(E_k)$ $i \int_E f = \lim_{k \to \infty} \int_{E_*} f$.

• f té integral impròpia en E: si $\exists \{E_k\}$ exh $mJ \operatorname{tq} f|_{E_k} \in \mathcal{R}(E_k) \operatorname{i} \forall \{\tilde{E}_k\}$

 $\operatorname{exh}, \lim_{k \to \infty} \int_{E_{k}} f = \lim_{k \to \infty} \int_{\tilde{E}} f.$

• f loc fitada en A ob: si $\forall x \in A, \exists R_x \text{ rect no}$ $\deg \operatorname{tq} x \in R_{\pi}$ i f fitada en R_{τ} .

• f loc fitada en A ob: si $\forall x \in A, \exists R_x \text{ rect no}$ deg tq $x \in R_x^{\circ}$ i $f|_{R_x} \in \mathcal{R}(R_x)$.

- loc.Int $\implies loc.Fitada$.

- $f: A_{ob} \to \mathbb{R}$ són equiv:

i) f loc. Integ.

ii) $f|_K \in \mathcal{R}(K), \forall K \text{ cpt mJ } \subset A.$

iii) f loc. Fitada i \mathscr{C} cs en A.

- $f: A_{ob} \to \mathbb{R}, \geq 0$ loc Integ

 \implies ftinteq.Imp.enA.

- $f:A_{ob}\to\mathbb{R}$ loc. Integ
; f té integ. Imp. conv sii |f| té integ.Imp. conv; $\Longrightarrow |\int_A f| \le \int_A |f|$.

Canvi de Variable

• difeomorfisme $\mathscr{C}^1(\Omega)$: $F:\Omega_{ob}\subset\mathbb{R}^n\to\mathbb{R}^n$ tq inj i $\det D_F \neq 0$.

- $F: \Omega \to \mathbb{R}$ difeo \mathscr{C}^1 , $A \ mJ \ \text{tg} \ \bar{A} \subset \Omega$ $\Longrightarrow F(A) \text{ mJif} \in \mathcal{R}(F(A)) \text{ sii}$ $(f \circ F) |\det D_F| \in \mathcal{R}(A).$

▶ T.Canvi Variable: $F: \Omega_{ob} \subset \mathbb{R}^n \to \mathbb{R}^n$ $\overrightarrow{\text{difeo}} \Longrightarrow \forall A \ mJ \ \text{tg} \ \overline{A} \subset \Omega \ \text{i} \ \forall f \in \mathcal{R}(F(A)),$ $\int_{F(A)} f = \int_{A} (f \circ F) |\det D_{F}| \in \mathcal{R}(A).$

Tema 3: Integració en línia i superf.

Corbes

• camí/corba: $\alpha:I\subset\mathbb{R}\to\mathbb{R}^n\mathscr{C}$ to $\alpha(\overline{t}) = (\alpha_1(t), ..., \alpha_n(t)).$

• suport/traca: C_{α} , l'imatge d' α .

 $-\overline{\text{si }\alpha \text{ ini }} \Longrightarrow C_{\alpha} \equiv \text{corba}.$

 $\alpha: I \to \mathbb{R}^2, \alpha(t) = (\alpha_1(t), \alpha_2(t))$ $\Longrightarrow : I \to \mathbb{R}^3. \, \alpha(t) = (\alpha_1(t), \alpha_2(t), 0).$

• corba tancada: si $\alpha(a) = \alpha(b)$.

• corba simple: si tancada i inj en [a, b).

• corbes equiv.: $\alpha: I \to \mathbb{R}^n, \beta: J \to \mathbb{R}^n$ si $\exists \varphi : J \to I \text{ homeo to } \beta = \alpha \circ \varphi.$

- α ini sii \forall corba equiv és ini.

- si α, β equiv $\Longrightarrow C_{\alpha} = C_{\beta}$.

• composició:

 $\alpha : [a, b] \to \mathbb{R}^n, \beta : [b, c] \to \mathbb{R}^n, \alpha(b) = \beta(b);$ $\alpha * \beta : [a, c] \to \mathbb{R}^n \text{ to } \alpha * \beta = \alpha(t) \text{ si } t \in [a, b] \text{ i}$ $\alpha * \beta = \beta(t)$ si $t \in (b, c]$.

 $-\alpha, \beta \in \mathscr{C} \implies \alpha * \beta \in \mathscr{C}: -C_{\alpha * \beta} = C_{\alpha} \cup C_{\beta}.$ - si α, β inj i $C_{\alpha} \cap C_{\beta} = \{\alpha(b)\} \implies \alpha * \beta$ inj.

- $\alpha: I \to \mathbb{R}^n$; si $\alpha_i \in \mathscr{C}^{k(I)} \forall j \implies \alpha \in \mathscr{C}^k$ $\Longrightarrow \alpha' \mathscr{C}^{k-1}(I) \text{ i } \alpha(t)' = (\alpha'_1(t), ..., \alpha'_n(t)) \text{ tg d'}\alpha.$

- el tg d' α pot canviar de sgn segons param.

 $-\alpha: I \to \mathbb{R}^n$; si $\alpha_i \in \mathscr{C}_s^{k(I)} \forall i \implies \alpha \in \mathscr{C}_s^{k(I)}$ $\Longrightarrow \alpha \in \mathscr{C}$ i α' def en $I \setminus n^{\Omega}$ finit de pts.

• α regular si \forall pt és pt regular: si $\alpha'(t) \neq 0$ (iParam).

 $-\alpha_i \in \mathcal{R}[a,b], \forall i \implies \alpha \in \mathcal{R}[a,b]$ $\implies \int_a^b \alpha = (\int_a^b \alpha_1, ..., \int_a^b \alpha_n).$

 $-\alpha \in \mathscr{C}_{s}^{k} \implies \int_{\tilde{s}}^{\tilde{b}} \alpha' = \alpha(\tilde{a}) - \alpha(\tilde{b}), \forall \tilde{a}, \tilde{b} \in [a, b]$

 $-\alpha \in \mathcal{R}[a,b] \implies |\alpha| \in \mathcal{R}[a,b] \text{ i } |\int_a^b \alpha| \le \int_a^b |\alpha|.$

Longitud de corbes

• <u>long.</u> polig.: $l(\alpha, P) = \sum_{j=1}^{m} |\alpha(t_j) - \alpha(t_{j-1})|$.

 $-P \subset P' \implies l(\alpha, P) \leq l(\alpha, P')$

• long. d' α . = $l(\alpha) = \sup\{l(\alpha, P)\}$ (iParam).

• corba rectificable: si $l(\alpha)$ finita.

 $-l(\alpha_i) \le l(\alpha) \le l(\alpha_1) + \dots + l(\alpha_n).$

- $\mathscr{C} \Rightarrow \text{rectif.}$

 $-\mathscr{C}^1$ ó $\mathscr{C}^1 \Longrightarrow \alpha$ Lip $\Longrightarrow \alpha$ rectif. i $l(\alpha) \leq L(b-a)$.

- si $\alpha \in \mathscr{C}^1[a,b] \Longrightarrow l(\alpha) = \int_a^b |\alpha'(t)| dt$.

Integració en línia

• camp escalar en Ω : $f:\Omega\subset\mathbb{R}^n\to\mathbb{R},\mathscr{C}^k$.

• camp vectorial en Ω : $F:\Omega\subset\mathbb{R}^n\to\mathbb{R}^n$. \mathscr{C}^k .

- $\operatorname{si} \alpha \in \mathscr{C}^1_x[a,b], C_{\alpha} \subset \Omega, f: \Omega \to \mathbb{R} \mathscr{C}^k,$ $\int_{a}^{b} fdl = \int_{a}^{b} f(\alpha(t)) |\alpha'(t)| dt$: int. línia de f.

 $- \left| \int_{\alpha} f dl \right| \le \int_{\alpha} |f| dl \le l(\alpha) \max_{x \in C_{\alpha}} \{f(x)\}.$

- si $\alpha \in \mathscr{C}^1_r[a,b], C_\alpha \subset \Omega, F: \Omega \to \mathbb{R} \mathscr{C}^k$, $\int_{\alpha} F dl = \int_{\alpha}^{b} \langle F(\alpha(t)), \alpha'(t) \rangle dt$ int. línia/circulació de F (q el sgn dParam). $-\int_{\Omega} f dl = \int_{\Omega} \langle f, t \rangle dl = \int_{\Omega} f_t dl$

Integració en superfície

• superf. regular σ : si D_{σ} té rang 2.

• àrea de S $a(S) = \int_{\Omega} |\sigma_u x \sigma_v| du dv$.

 $-* = \{\Omega \ mJ, \bar{\Omega} \ \text{cpt}, \sigma \in \mathscr{C}^k(\bar{\Omega}) \text{i inj}\}; \text{ si}$ $f: S \subset \bar{\Omega} \to \mathbb{R}, \mathscr{C}$, la int. de superf de f és $\int_{S} f dS = \int_{\Omega} f(\sigma(u, v)) |\sigma(u) \times \sigma(v)| du dv.$

 $-|\int_S f dS| \le \int_S |f| dS \le a(S) \max_{x \in \overline{S}} \{f(x)\}.$

- *: si $F: S \to \mathbb{R}^3$, $\mathscr{C}, S = \sigma(\Omega)$ orientada, la int. de superf de F (q el sgn dParam) és $\overline{\int_{S} F dS} = \int_{O} \langle F(\sigma(u, v)), \sigma(u) \times \sigma(v) \rangle du dv.$ - $\int_{S} f dS = \int_{S} \langle f, n \rangle dS = \int_{S} f_n$: flux de f//F.

Tema 4: Teoremes integrals

 $u:\Omega\subset\mathbb{R}^n\to\mathbb{R}, f:\Omega\subset\mathbb{R}^n\to\mathbb{R}^N.$

Camps i pot. escalars i vectorials

• gradient: $\nabla u = (\frac{\partial u}{\partial x_1}, ..., \frac{\partial u}{\partial x_n})$. • rotacional: $rot(f) = \nabla x f$.

• divergencia: $div(f) = \frac{\partial f}{\partial x_1} + ... + \frac{\partial f}{\partial x_n}$.

• laplacià: $div(\nabla f)$.

• camp gradient: $f \text{ si } \exists u \in \mathscr{C}^1 \text{pot. escalar:}$

• camp irrotacional: f si rot(f) = 0.

• camp solenoidal: f si div(f) = 0.

• pot. vector: q si $\exists f \in \mathscr{C}^1$ to rot(q) = f.

▶ R.Leibnitz: $\nabla uv = u\nabla v + v\nabla u$ i

 $div(uf) = udiv(f) + \langle \nabla u, f \rangle$.

• camp conservatiu: f si $f \in \mathcal{C}$ i $\forall \alpha \in \mathcal{C}_s^1[a,b]$ to $C_{\alpha} \subset \Omega$, $\int_{C_{\alpha}} f dl = u(\alpha(b)) - u(\alpha(a))$.

- f conservatiu sii $\oint f dl = 0$ sii f gradient.

- f conservatiu i $f \in \mathscr{C}^1 \implies \partial f_i \frac{1}{\partial x_j = \frac{\partial f_j}{\partial x_i}, \forall i, j}$

 $-f \in \mathscr{C}^1(\Omega, \mathbb{R}^2) \implies f = (f_1, f_2, 0),$ $rot(f) = (0, 0, \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}).$

- f gradient $\Longrightarrow firrot(rot(\nabla) = 0)$.
- f rotacional \Longrightarrow fsolenoidal(div(rot) = 0).
- obert estrellat Ω : si $\exists x \text{ tq } (1-t)x_0 + tx \in \Omega$, $\forall x \in \Omega, t \in [0, 1]$.
- ▶ L.Poincaré: Ω ob estrellat $\subset \mathbb{R}^3$, $f \in \mathcal{C}^1$; si f solen. \Longrightarrow frotacionalisifirrot \Longrightarrow fconservatiu.
- f irrot en ob estrellat \Longrightarrow $\mathbf{u}(\mathbf{x}) = \int_0^1 \langle f(t\mathbf{x} + (1-t)x_0, r(\mathbf{x} x_0) \rangle dt$.
- f solen en ob estrellat \Longrightarrow $g(x,y,z) = \int_0^1 (tf(t\mathbf{x}+(1-t)x_0 \times r(\mathbf{x}-x_0))dt.$

Green, Stoke, Gauss

- corba de Jordan: traça corba param simple.
- ▶ <u>T.Corba Jordan</u>: si α corba Jordan ⇒ $\mathbb{R}^2 \setminus C_{\alpha} = \Omega_1 \cup \Omega_2$ on Ω_1 acotat i Ω_2 no.
- ▶ <u>T.Green</u>: $\Omega \subset \mathbb{R}^2$ domini elem, $f : \bar{\Omega} \to \mathbb{R}^2 \mathscr{C}^1$ ⇒ $\int_{\partial \Omega} f dl = \int_{\Omega} \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} dx dy = \int_{\Omega} rot(f) dS$.
- Green sii $\{\oint_{\partial\Omega} f_1 dl = -\int_{\Omega} \frac{\partial f_1}{\partial y} dx dy \text{ i} \}$ $\oint_{\partial\Omega} f_2 dl = \int_{\Omega} \frac{\partial f_2}{\partial x} dS \}.$
- ▶ <u>T.Stokes</u>: $(S \cup \partial S) \subset \Omega \subset \mathbb{R}^3$ domini elem, $f : \overline{\Omega} \to \mathbb{R}^3 \mathscr{C}^1 \implies \phi_{2S} fdl = \int_S rot(f)dS$.
- ▶ <u>T.Gauss</u>: $V \subset \Omega \subset \mathbb{R}^3$ domini elem, $f : \bar{\Omega} \to \mathbb{R}^3 \mathscr{C}^1 \implies \oint_{\partial V} f dS = \int_V div(f) dV$.

- Gauss sii $\{\int_{\partial\Omega} f_i dl = \int_{\Omega} \frac{\partial f_i}{\partial x_i} dV, \forall i.$ - $vol(V) = \frac{1}{3} \int_{\partial V} f dS = \frac{1}{3} \int_{\partial V} (x, 0, 0) dS.$ - $a(S) = \frac{1}{2} \int_{\partial G} (-y, x) dS.$

Tema 5: Formes diferencials

- $\begin{array}{l} \bullet \text{ \underline{forma d'ordre k en } \underline{\Omega}: } w: \underline{\Omega} \to \bigwedge^k(\underline{\Omega}) \ \mathrm{tq} \\ w = \sum\limits_{1 \leq i_1 < \ldots < i_k \leq n} \alpha_{i_1, \ldots, i_k} dx^{i_1} \wedge \ldots \wedge dx^{i_k}. \end{array}$
- producte exterior: $(w_1 \wedge w_2)(x) = w_1(x) \wedge w_2(x)$ (p+q)-forma \mathscr{C}^m bilineal, anticomm i associativa.
- pull-back de F: $F^*(u) = (D_f(u))^*$ tq $F^*(fdx^{i_1} \wedge ... \wedge dx^{i_k}) = F^*(f)F^*(dx^{i_1} \wedge ... \wedge dx^{i_k}).$
- diferencial exterior: de w k-forma \mathscr{C}^p , és $d(w) = \sum_{1 \leq i_1 < \ldots < i_k \leq n} d\alpha_{i_1,\ldots,i_k} \wedge dx^{i_1} \wedge \ldots \wedge dx^{i_k}$ (k+1)-forma \mathscr{C}^{p-1} .
- $-dy^1 \wedge ... \wedge dy^n = (det D_{\psi}) dx^1 \wedge ... \wedge dx^n.$
- $-d(w \wedge \tilde{w}) = d(x) \wedge \tilde{w} + (-1)^k w \wedge d(\tilde{w}).$
- $-d^2 = d \circ d = 0.$
- $-F^* \circ d = d \circ F^* \implies F^*(dw) = d(F^*(w)).$
- forma tancada: si dw = 0.
- forma exacta: si $w = d\tilde{w}$.
- exacta $\implies tancada$.
- ▶ <u>L.Poincaré</u>: $\Omega \subset \mathbb{R}^n$ ob estrellat, w k-forma $\mathscr{C}^1(\Omega) \implies \mathbf{w} = \mathbf{K}(\mathrm{d}\mathbf{w}) + \mathrm{d}(\mathbf{K}(\mathbf{w}))$.

- integral n-forma: $w = f dx^1 \wedge ... \wedge dx^n \implies \int_{\Omega} w = \int_{\Omega} f dx^1 \wedge ... \wedge dx^n = \int_{\Omega} f dx^1 ... dx^n = \int_{\Omega} w = \pm \int_{\tilde{\Omega}} F^*(w).$ $\sigma : \tilde{\Omega} \to \Omega, \mathscr{C}^1 \implies \int_{-\infty} w = \int_{\tilde{\Omega}} \sigma^*(w).$
- ▶ T.Stokes: $\sigma(\tilde{\Omega}) = M \cup \partial M$, w k-forma \mathscr{C}^1 $\Longrightarrow \int_{\partial M} w = \int_M dw$ (cal ∂M sigui corba tancada)

Altres

Taylor

$$\begin{split} e^x &= \sum_{n \geq 0} \frac{x^n}{n!} \cdot \\ \cos x &= \sum_{n \geq 0} (-1)^n \frac{x^{2n}}{(2n)!} \cdot \\ \sin x &= \sum_{n \geq 0} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \cdot \\ \log(1+x) &= \sum_{n \geq 1} (-1)^{n+1} \frac{x^n}{n} \cdot \\ (1+x)^p &= \sum_{n \geq 0} \binom{p}{n} x^n \cdot \\ (1+x)^{-1} &= \sum_{n \geq 0} (-1)^n x^n \cdot \\ \cosh x &= \sum_{n \geq 0} \frac{x^{2n}}{(2n)!} \cdot \\ \sinh x &= \sum_{n \geq 0} \frac{x^{2n+1}}{(2n+1)!} \cdot \\ \arctan x &= \sum_{n \geq 0} (-1)^n \frac{x^{2n+1}}{2n+1} \cdot \end{split}$$

Trigonometria

$$\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b).$$

$$\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b).$$

$$\tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a)\tan(b)}$$

$$\begin{aligned} &\sin(a) + \sin(b) = 2\sin(\frac{a+b}{2})\cos(\frac{a-b}{2}).\\ &\cos(a) + \cos(b) = 2\cos(\frac{a+b}{2})\cos(\frac{a-b}{2}).\\ &2\cos(a)\cos(b) = \cos(a-b) + \cos(a+b)\\ &2\sin(a)\sin(b) = \cos(a-b) - \cos(a+b)\\ &2\sin(a)\cos(b) = \cos(a+b) + \cos(a-b)\\ &2\cos(a)\sin(b) = \cos(a+b) - \cos(a-b)\\ &2\cos(a)\sin(b) = \cos(a+b) - \cos(a-b)\\ &\cos^2(a) = \frac{1+\cos(2a)}{2}\\ &\sin^2(a) = \frac{1-\cos(2a)}{2}\\ &\sin(\pi/2 - x) = \cos(x)\\ &\cos(\pi/2 - x) = \sin(x) \end{aligned}$$

Integrals útils

$$\begin{array}{l} \int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx \ \text{conv} \iff \alpha > 1, \ \text{i val} \ \frac{1}{\alpha - 1}. \\ \int_{0}^{1} \frac{1}{x^{\alpha}} dx \ \text{conv} \iff \alpha < 1, \ \text{i val} \ \frac{1}{1 - \alpha}. \\ \int_{0}^{+\infty} e^{-\alpha t} dt \ \text{conv} \iff \alpha > 0, \ \text{i val} \ \frac{1}{\alpha}. \\ \int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx \ \text{conv} \iff \alpha > 1, \ \text{i val} \ \frac{1}{\alpha - 1}. \end{array}$$

Criteris per límits

•Stolz:
$$(b_n)$$
 est. monòtona, $\{\lim b_n = \pm \infty \text{ o b\'e} \}$ lim $a_n = \lim b_n = 0\}i\lim \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = L \in [-\infty, +\infty] \implies \lim \frac{a_n}{b_n} = L.$
•Arrel-Quocient: (a_n) no nul·la $\geq n_0$.∃ lim $\left|\frac{a_{n+1}}{a_n}\right| = L \implies \lim \sqrt[n]{|a_n|} = L$