

ECE 270: Embedded Logic Design

LUT as Memory: 64X1 Dual Port

64 X 1 Single Port Distributed RAM (RAM64X1S)

64 X 1 Dual Port Distributed RAM (RAM64X1D)

LUT as Memory: 64X1 Quad Port

64 X 1 Quad Port Distributed RAM (RAM64M)

LUT as Memory: 64X3 Simple Dual Port

64 X 3 Simple Dual Port Distributed RAM (RAM64)

LUT as Memory: 128X1 Single Port

• Implementation of distributed RAM configurations with depth greater than 64 requires the usage of wide-function multiplexers (F7AMUX, F7BMUX, and F8MUX)

- One SLICEM can have TWO single port 128 x 1-bit memories as long as they share the same clock, write enable, and shared read and write port address inputs
- This configuration equates to a 128 x 2-bit single-port distributed RAM.

WA7: Enable for 7-input LUT WA8: Enable for 8-input LUT

128 X 1 Single Port Distributed RAM (RAM128X1S)

LUT as Memory: 128X1 Dual Port

- 128X1 Quad Port?
- 128X2 Dual Port?

128 X 1 Dual Port Distributed RAM (RAM128X1D)

LUT as Memory: 256X1 Single Port

256 X 1 Single Port Distributed RAM (RAM256X1S)

LUT as Memory: 32X2 Quad Port

32 X 2 Quad Port Distributed RAM (RAM32M)

LUT as Memory: 32X8 Simple Dual Port

LUT as Memory: 32X6 Simple Dual Port

32 X 6 Simple Dual Port Distributed RAM (RAM32M)

LUT as Memory

RAM	Description	Primitive	Number of LUTs
32 x 1S	Single port	RAM32X1S	1
32 x 1D	Dual port	RAM32X1D	2
32 x 2Q	Quad port	RAM32M	4
32 x 6SDP	Simple dual port	RAM32M	4
64 x 1S	Single port	RAM64X1S	1
64 x 1D	Dual port	RAM64X1D	2
64 x 1Q	Quad port	RAM64M	4
64 x 3SDP	Simple dual port	RAM64M	4
128 x 1S	Single port	RAM128X1S	2
128 x 1D	Dual port	RAM128X1D	4
256 x 1S	Single port	RAM256X1S	4

Single Port	Dual Port	Simple Dual Port	Quad Port
32x2 32x4 32x6 32x8 64x1	32x2D 32x4D 64x1D 64x2D 128x1D	32x6 SDP 64x3 SDP	32x2 Q 64x1 Q
64x2 64x3 64x4 128x1 128x2 256x1	12011		

Each Port Has Independent Address Inputs

LUT as SRL

Sequential Circuits

• 4-bit serial shift register:

```
module ShiftReq(
input wire clk,
input wire clr,
input wire data in,
output reg [3:0] Q
         4-bit Shift Register
always @ (posedge clk or posedge clr)
begin
    if(clr == 1)
        0 \le 0;
    else
    begin
        Q[3] <= data in;
       Q[2:0] \leftarrow Q[\overline{3}:1];
    end
end
endmodule
```


Shift Register Using FFs

- Operation D NOP must add 17 pipeline stages of 64 bits each
 - 1,088 flip-flops (hence 136 slices)

LUT as Shift Registers (only in SLICEM)

SLICEM

LUT as Shift Registers (only in SLICEM)

- Shift register functions include:
 - Write operation (Synchronous with a clock input and an optional clock enable)
 - Fixed read access to Q31
 - Dynamic read access:
 - Performed through 5-bit address bus (LSB is unused)
 - Any of the 32 bits can be read out asynchronously by controlling the address
 - Useful for smaller shift registers
 - Flip-flop can be used for synchronous read with one additional latency
 - Set/reset is not supported

LUT as Shift Registers (only in SLICEM)

 A SLICEM LUT can be configured as a 32bit shift register without using the flipflops available in a slice.

LUT as Shift Registers: 64 Bit

- MC31 output and a dedicated connection between LUTs allows connecting the last bit of one shift register to the first bit of the next, without using the LUT O6 output.
- Longer shift registers can be built with dynamic access to any bit in the chain.
- The shift register chaining and the F7AMUX F7BMUX, and F8MUX multiplexers allow up to a 128-bit shift register with addressable access to be implemented in one SLICEM

64-Bit Shift Register Configuration

Shift Register **96 Bit**

96-Bit Shift Register Configuration

Shift Register 256 Bit

Shift Register 128 Bit

Shift Register LUT Example

- Operation D NOP must add 17 pipeline stages of 64 bits each
 - 1,088 flip-flops (hence 136 slices) or
 - 64 SRLs (hence 16 slices)

Shift Register LUT Example

Types of CLB Slices

Slices	LUTs	Flip-Flops	Arithmetic and Carry Chains	Distributed RAM ⁽¹⁾	Shift Registers ⁽¹⁾
2	8	16	2		

Types of CLB Slices

Slices	LUTs	Flip-Flops	Arithmetic and Carry Chains	Distributed RAM ⁽¹⁾	Shift Registers ⁽¹⁾
2	8	16	2		

Types of CLB Slices

Slices	LUTs	Flip-Flops	Arithmetic and Carry Chains	Distributed RAM ⁽¹⁾	Shift Registers ⁽¹⁾
2	8	16	2	256 bits	128 bits

