Logika és számításelmélet zárthelyi B csoport

2017. március

1. Hagyd el a lehető legtöbb zárójelpárt az alábbi formulákból, hogy az eredetikkel ekvivalens formulákat kapj! (3 pont)

a)
$$\neg (((A \lor B) \to (B \to C)) \to ((A \land B) \lor \neg (C \to A)))$$

b)
$$((\neg (B \lor C) \to (A \land B)) \land ((A \lor B) \land (C \land A)))$$

2. Add meg a következő formulák igazságtábláit! (6 pont)

a)
$$(((A \lor B) \land \neg (B \to A)) \to (B \to A))$$

b)
$$((B \lor A) \land (\neg (B \land A) \rightarrow (A \lor B)))$$

Ekvivalens-e a két formula? (1 pont)

- 3. φ -igazságértékelésfa segítségével add meg az alábbi formulát kielégítő interpretációkat! (6 pont) $\neg (B \to (C \land A)) \land ((A \lor \neg B) \to (C \lor A))$
- 4. Add meg az alábbi formulával ekvivalens KDNF-ben és KKNF-ben lévő formulákat, majd egyszerűsítsd azokat! (6 pont) $F=\neg A\to B\vee \neg C$
- 5. Adj rezolúciós cáfolatot az alábbi klózhalmazra! Plusz pont, ha a rezolúció a) lineáris, b) lineáris input, c) egységrezolúció. (6 pont) $\mathcal{F} = \{ \neg A \lor \neg B \lor \neg C, \neg A \lor C, B \lor \neg C, A \lor B, A \}$
- 6. Egy elsőrendű logikai nyelv logikán kívüli részét az alábbi halmaz négyes és szignatúra írja le: $\langle Srt, Pr, Fn, Cnst \rangle$, $Srt = \{\pi_1, \pi_2\}$, $Pr = \{\pi_1, \pi_2\}$, $Pr = \{\pi_1, \pi_2\}$

ν_2	f	g	ν_3	a	b	. A változók halmaza: $V =$				
	$(\pi_1,\pi_2;\pi_2)$	$(\pi_2;\pi_1)$		π_1	π_2					
V_{π_1}	$\int V_{\pi_2}, V_{\pi_1} = \{$	$\{x,y,z\},\ V$	$V_{\pi_2} =$	$\{\bar{x},\bar{y}$	$\{ar{z}\}$	A következő kifejezések közül				

melyek szavai a nyelvnek és melyik csoportba tartoznak (term/formula, egyszerű/atomi/összetett)? (6 pont)

- a) $a \vee x$
- b) $\exists x P(x, \bar{y})$
- c) f(x,g(x))
- d) a
- e) $P(x, Q(\bar{x}))$
- f) $f(g(\bar{x}), f(y, \bar{z}))$
- 7. Legyen az előző feladatbeli nyelv interpretációja (I) és változókiértékelése (κ) a következő: $U = U_{\pi}$, $\cup U_{\pi}$, $U_{\pi} = \{a, b, c\}$, $U_{\pi} = \{a$

						$\sim \pi_1$		π_2 ,	π_1		γu ,	ν, ν_{τ}	U_{π}	. =	10	\prime , \perp , \angle }
P^I	a	b	c					f^I	\overline{a}	b	C			•		, -, - ,
0	h	i	h	Q^I	0	1	2	0	1	2	2	g^{I}	0	1	2	,
1	i	h	h		i	i	h	1	1	0	0		b	\overline{a}	С	a' =
2	h	i	i					2	2	0	1	L				
1 I	4															

Add meg a következő kifejezések értékét: (9

pont)

- a) $f(g(\bar{x}), f(y, \bar{z}))$
- b) $P(x, \bar{y}) \to Q(f(z, \bar{x}))$
- c) $\exists x (P(x,\bar{x}) \land Q(f(x,\bar{y})))$
- 8. Hozd Prenex-alakra a következő formulát: (4 pont) $\neg \exists x \exists y (P(y,z) \to Q(x)) \land \forall x \exists y (P(x,y) \to Q(z))$
- 9. Hozd Skolem-formára a következő formulát: (3 pont) $\exists x \forall y \exists z (P(x,z) \lor Q(y,z))$