Exercice 1 : Pour chacune des suites (u_n) définies sur \mathbb{N} calculer u_0 , u_1 , u_2 , u_3 , u_4 et u_{10} .

a.
$$u_n = 4n + 5$$

b.
$$u_n = (-2)^n$$

a.
$$u_n = 4n + 5$$
 b. $u_n = (-2)^n$ c. $u_n = \frac{n-1}{n+2}$

Exercice 2: Pour chacune des suites (u_n) définies sur \mathbb{N} calculer u_1 , u_2 , u_3 , u_4 et u_5 .

a.
$$u_0 = 2$$
 et pour tout $n \ge 0$, $u_{n+1} = 4u_n - 2$.

b.
$$u_0 = 3$$
 et pour tout $n \ge 1$, $u_n = 2u_{n-1} - 3$.

Questions de cours 1:

- 1. Comment pouvez vous définir une suite ?
- 2. Quelles sont les différents modes de génération des suites? Quels sont les avantages et inconvénients de chacun de ces modes ?

Exercice 3: Dans chacun des cas suivants, exprimer u_{n+1} et u_{n-1} en fonction de n pour tout $n \ge 0$:

a.
$$u_n = 4n + 2$$
 b. $u_n = (-1)^n$

b.
$$u_n = (-1)^n$$

Question de cours 2:

Donner la définition de suite croissante et de suite décroissante.

Exercice 4 : Déterminer le sens de variation de la suite (u_n) , définie par :

a.
$$u_0 = 0$$
 et pour tout $n \ge 0$, $u_{n+1} = u_n + 2n + 3$.

b.
$$u_1 = 3$$
 et pour tout $n \ge 1$, $u_{n+1} = u_n - n + 1$.

Exercice 5: La suite (u_n) est définie par $u_0=1$ et pour tout $n \in \mathbb{N}$ $u_{n+1}=\frac{5u_n}{n+1}$.

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Montrer que $\frac{u_{n+1}}{u_n} < 1$ à partir d'un certain rang à préciser.
- 3. En déduire les variations de (u_n) .

Questions de cours 3:

- 1. Qu'est ce qu'une suite arithmétique ? Quelles sont les formules que vous connaissez ?
- 2. Qu'est ce qu'une suite géométrique ? Quelles sont les formules que vous connaissez ?

Exercice 6:La suite (u_n) est une suite arithmétique de premier terme $u_0 = -3$ et de raison 3. Calculer u_1, u_2, u_3, u_4 .

Exercice 7 : Exprimer u_n en fonction de n sachant que la suite (u_n) est arithmétique de raison ra. $u_0 = 2$ et r = -3 b. $u_1 = -1$ et r = 4

Exercice 8:Soit (u_n) la suite définie par $u_1 = -6$ et pour tout $n \ge 1$, $u_{n+1} = u_n + 5$.

- 1. Quelle est la nature de la suite (u_n) ?
- 2. Calculer u_{20} .
- 3. Calculer la somme des 20 premiers termes de cette suite.

Exercice 9 : Soit (u_n) la suite arithmétique de premier terme $u_0=24$ et de raison -2. Calculer la somme des 30 premiers termes de cette suite.

Exercice 10: La suite (u_n) est géométrique de raison q.

Calculer u_1 , u_2 , u_3 , u_4 et u_5 .

a.
$$u_0 = 1$$
 et $q = 2$ b. $u_0 = 1$ et $q = -2$

Exercice 11 : La suite $(v_n)_{n\geq 0}$ est une suite géométrique de raison q .

Exprimer v_n en fonction de n et calculer v_{20} .

a.
$$v_1 = 1$$
 et $q = 3$

a.
$$v_1 = 1$$
 et $q = 3$ b. $v_5 = 2$ et $q = -1$

Exercice 12 : La suite $(u_n)_{n\geq 0}$ est-elle une suite géométrique ?

Si oui, donner la raison.

a.
$$u_n = 3^{n+1}$$

b.
$$u_n = n^2$$

a.
$$u_n = 3^{n+1}$$
 b. $u_n = n^2$ c. $u_n = 2, 5^{n+1}$ d. $u_n = -5^{n-2}$

d.
$$u_n = -5^{n-1}$$

Exercice 13 : En 2010, un article coûte 8,20 \in . Il augmente chaque année de 1%. On note p_n le prix de l'article à l'année 2010+n.

- 1. Donner p_0 . Calculer p_1 et p_2 .
- 2. Exprimer p_{n+1} en fonction de p_n . Qu'en déduit-on sur la suite (p_n) ?
- 3. Exprimer p_n en fonction de n puis calculer le prix de l'article en 2025.

Exercice 14 : Donner le sens de variation des suites :

a.
$$(0,8^n)_{n\geq 0}$$
 b. $(1,2^n)_{n\geq 0}$ c. $(2^n)_{n\geq 0}$ d. $(\frac{1}{3^n})_{n\geq 0}$

b.
$$(1,2^n)_{n\geq 0}$$

c.
$$(2^n)_{n \ge 0}$$

d.
$$\left(\frac{1}{3^n}\right)_n$$

Exercice 15 : Soit (u_n) la suite géométrique de premier terme $u_0 = 128$ et de raison $q = \frac{1}{2}$.

Déterminer la valeur de $\sum_{n=0}^{20} u_n$.

Exercice 16 : Soit (u_n) la suite géométrique de premier terme $u_1 = 10^{-5}$ et de raison q = 10. Calculer la somme des 8 premiers termes de cette suite.