Avaliação de Desempenho de Sistemas

Variáveis Aleatórias Discretas

Variáveis aleatórias

- Muitos fenômenos aleatórios têm resultados numéricos
- $\Omega \subseteq \mathbf{R}$
 - Tempo de vida de um equipamento
 - Tempo de chegada de um pacote em um switch
 - ...
- $\Omega \subseteq \mathbf{N} = \{0, 1, 2, 3, ...\}$
 - O número de carros que passa por um ponto de controle em uma rodovia em certo intervalo de tempo
 - O número de pacotes que chegou a um roteador de uma rede em certo intervalo de tempo
 - O número de pessoas entrevistadas que vai votar em certo candidato
 - ...

Variáveis aleatórias

- Mesmo quando Ω não é numérico, podemos desejar um novo espaço para Ω que seja numérico
- No lançamento de uma moeda
 - $\Omega = \{ \text{Cara, Coroa } \}$
 - Poderíamos representar $\Omega = \{0, 1\}$, através do mapeamento Cara $\rightarrow 0$ e Coroa $\rightarrow 1$

Variáveis aleatórias

Uma variável aleatória associa cada elemento de Ω a um valor numérico

 Ω_X é o conjunto de todos os valores possíveis da variável aleatória X

Para que servem

- É mais adequado para o tratamento matemático
- Os conjuntos que representam os eventos são ser representados por expressões matemáticas envolvendo as variáveis aleatórias

Variáveis Aleatórias Discretas

• Quando os valores possíveis de *X* for finito ou infinito enumerável, dizemos que *X* é discreta

No lançamento de um dado equilibrado
 d_i = "número de pontos observados na face superior"

•
$$\Omega = \{d_1, d_2, d_3, d_4, d_5, d_6\} \rightarrow \{1, 2, 3, 4, 5, 6\}$$

•
$$\Omega_X = \{1, 2, 3, 4, 5, 6\}$$

- Seja o experimento de lançamento de uma moeda até que saia a primeira cara
- Seja x o número de lançamentos observados até que a primeira cara seja observada
- $\Omega_X = \{1, 2, 3, ...\}.$

Probabilidade de Eventos

- A probabilidade de uma expressão matemática qualquer envolvendo a variável *X* pode ser calculada encontrando-se o evento correspondente
- O evento (que corresponde a um conjunto) é representando por uma expressão matemática

$$\Omega_{X=} \{1, 2, 3, 4, 5, 6\}$$
 $\{x \in \Omega_X \mid 0 < x < 7\}$

$$\{2, 4, 6\}$$
 $\{x \in \Omega_X \mid x \text{ \'e par }\}$ $\{x \in \Omega_X \mid \text{mod}(x, 2) = 0\}$

• Para o lançamento de um dado calcular $P[X \le 2]$ e P[X > 3].

•
$$P[X \le 2] = P[\{1, 2\}] = P[\{\cdot, \cdot\}] = 2/3$$

$$\Omega_X = \{1, 2, 3, 4, 5, 6\}$$

$$\{x \in \Omega_X \mid 1 \le x \le 2\}$$

$$\{x \in \Omega_X \mid 3 < x \le 6\}$$

Função de Probabilidade

- Dada uma variável aleatória X, sua função de distribuição p_X é a função
 - $p_X(x) = P[X = x]$
 - Também chamada de *pdf* (probability distribution function)
 - Também chamada de *pmf* (probability mass function)

• Lançamento do dado

$$\Omega_X = \{1, 2, 3, 4, 5, 6\}$$

$\boldsymbol{\mathcal{X}}$	$p_X(x)$	$P[X > 3] = P[\{4, 5, 6\}] =$
1 2	1/6 1/6	$P[\{4\}] + P[\{5\}] + P[\{6\}] =$
3	1/6	$p_X(4) + p_X(5) + p_X(6) =$
4 5	1/6 1/6	P[X=2] + P[X=4] + P[X=6]
6	1/6	

$$p_X(x)=1/6$$

Função de Probabilidade

Propriedades

$$0 \le p_X(x) \le 1$$

$$\sum_{x} p_X(x) = 1$$

Função de Probabilidade

- Lançamento de dois dados equilibrados
 - *X* = "soma do número de pontos nos dois dados"
 - $\Omega_X = \{2, ..., 12\}$
 - Também chamada de *pmf* (probability mass function)
 - P[X = x] pode ser representada pela seguinte tabela

х	2	3	4	5	6	7	8	9	10	11	12
$p_{\mathbf{X}}(\mathbf{x})$	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

- Lançamento de uma moeda
- X = "número de lançamentos até primeira cara"

$$\Omega_X = \{1, 2, 3, 4, \dots\}$$

\mathcal{X}	$p_X(x)$	
1	$(1/2)^1$	Ca
2	$(1/2)^2$	Co Ca
3	$(1/2)^2$ $(1/2)^3$	Co Co Ca
 X	 (1/2) ^x	Co Co

$$p_X(x) = (1/2)^x$$

- Lançamento de uma moeda
- X = "número de lançamentos até primeira cara"

$$\Omega_X = \{1, 2, 3, 4, \dots\}$$

X	$p_X(x)$
1	$(1/2)^1$
2	$(1/2)^2$
3	$(1/2)^3$
•••	•••
$\boldsymbol{\mathcal{X}}$	$(1/2)^{x}$

$$p_X(x) = (1/2)^x$$

$$P[X \in par] =$$

$$P[{2, 4, 6, 8, ...}] =$$

$$P[\{2\} \cup \{4\} \cup \{6\} \cup \{8\} \cup ...] =$$

$$P[{2}] + P[{4}] + P[{6}] + + \dots$$

$$P[X=2] + P[X=4] + ... =$$

$$p_X(2) + p_X(4) + p_X(6) + \dots =$$

$$P[X = 2] + P[X = 4] + \dots$$

Função de Distribuição Acumulada

- Dada uma variável aleatória X, sua função de distribuição (acumulada) F_X é a função
 - $F_X(x) = P[X \le x]$
 - Também chamada de cdf

• Lançamento de dado

$$\Omega_X = \{1, 2, 3, 4, 5, 6\}$$

$\boldsymbol{\mathcal{X}}$	$p_X(x)$	X	$F_X(x)$
1	1/6	1	1/6
2	1/6	2	1/6+
3	1/6	3	1/6 +
4	1/6	4	4/6
5	1/6	5	5/6
6	1/6	6	6/6

$$p_X(x) = 1/6$$

$$F_X(x) = x/6$$

1/6 = 2/6

1/6 + 1/6 = 3/6

Representação Gráfica

Valor Esperado

• É a média da distribuição de probabilidade

$$E[X] = \sum_{x} xP[X = x] = \sum_{x} x \cdot p_{X}(x)$$

• Lançamento de um dado

$$E[X] = \sum_{x} xP[X = x] = \sum_{x} x \cdot p_X(x)$$

\mathcal{X}	$p_X(x)$
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

$$1*1/6 + 2*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6$$

Variância

• A variância de uma variável aleatória X calcula o desvio quadrado médio de sua distribuição de probabilidade

$$V[X] = \sum_{x} (x - E[X])^{2} P[X = x] = \sum_{x} (x - E[X])^{2} p_{X}(x)$$

 Calcular a variância para a variável aleatória correspondente ao valor observado no experimento de lançamento de um dado equilibrado

$$V[X] = \sum_{x} (x - E[X])^{2} P[X = x] = \sum_{x} (x - E[X])^{2} p_{X}(x)$$

$$E[X] = 3.5$$

$$V[X] = (1-3.5)^{2} \cdot 1/6 + (2-3.5)^{2} \cdot 1/6 + (3-3.5)^{2} \cdot 1/6 + (4-3.5)^{2} \cdot 1/6 + (5-3.5)^{2} \cdot 1/6 + (6-3.5)^{2} \cdot 1/6 = (-2.5)^{2} \cdot 1/6 + (-1.5)^{2} \cdot 1/6 + (-0.5)^{2} \cdot 1/6 + (0.5)^{2} \cdot 1/6 + (1.5)^{2} \cdot 1/6 + (2.5)^{2} \cdot 1/6 = (6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25) / 6 = 2.917$$

Desvio Padrão

• Desvio padrão

$$DP[X] = \sqrt{V[X]}$$

Avaliação de Desempenho de Sistemas

Variáveis Aleatórias Discretas