$\exists c \forall in \ Q(c, in)$

```
/* Average of x and y without using x+y (avoid overflow)*/
int avg(int x, int y) {
  int t = expr({x/2, y/2, x%2, y%2, 2 }, {PLUS, DIV});
  assert t == (x+y)/2;
  return t;
}
```

```
f_1
f_2
f_3
f_3
f_4
f_5
f_7
```

```
s = n.succ;
p = n.pred;
p.succ = s;
s.pred = p;
}
```

Unit II: Synthesis from Specifications

Sk[c](in)

Logistics

Project Proposals

- Everyone who submitted got full points
- Next step for most projects: make a concrete list of benchmarks

Lecture 8 Specifications and Reduction to Inductive Synthesis

Nadia Polikarpova

Unit I vs Unit II

Search strategy

- EnumerativeStochasticRepresentation-based
- Constraint-based

Deductive

Examples of rich specifications

Reference implementation

Assertions

Pre- and post-condition

Refinement type

Reference Implementation

Easy to compute the result, but hard to compute it efficiently or under structural constraints

```
bit[W] AES_round (bit[W] in, bit[W] rkey)
{
    ... // Transcribe NIST standard
}
bit[W] AES_round _sk (bit[W] in, bit[W] rkey) implements AES_round
{
    ... // Sketch for table lookup
}
```

Assertions

Hard to compute the result, but easy to check its desired properties

```
split_seconds (int totsec) {
  int h := ??;
  int m := ??;
  int s := ??;
  assert totsec == h*3600 + m*60 + s;
  assert 0 <= h && 0 <= m < 60 && 0 <= s < 60;
}</pre>
```

Pre-/post-conditions

Hard to compute the result but easy to express its properties in logic

```
sort (int[] in, int n) returns (int[] out)
requires n \ge 0
ensures \forall i \ j. \ 0 \le i < j < n \Rightarrow out[i] \le out[j]
\forall i. \ 0 \le i < n \Rightarrow \exists j. \ 0 \le j < n \land in[i] = out[j]
{
???
```

Refinement types

Same as pre-/post-conditions but logic goes inside the types

```
binary search tree
                                          red nodes have
data RBT a where
                                          black children
  Empty :: RBT a
  Node :: x: a ->
    black: Bool ->
                                  !black ==> isBlack
    left: { RBT {a
                      | V < X |
                                  (!black ==> isBlack
    right: { RBT \{a \mid x < v\}
                                                         v) &&
                 (blackHeight v == blackHeight left) €
    RBT a
                                                                        same number of
                                                                        black nodes on
insert :: x: a -> t: RBT a -> {RBT a | elems _v == elems t + [x]}
                                                                        every path to leaves
insert = ??
```

Why go beyond examples?

Might need too many

- Example: Myth needs 12 for insert_sorted, 24 for list_n_th
- Examples contain *too little* information
- Successful tools use domain-specific ranking

Output difficult to construct

- Example: AES cypher, RBT
- Examples also contain too much information (concrete outputs)

Need strong guarantees

• Example: AES cypher

Reasoning about non-functional properties

• Example: security protocols

Why is this hard?

```
gcd (int a, int b) returns (int c)
                                                               infinitely many inputs
  requires a > 0 \land b > 0
                                                               cannot validate by testing
  ensures a \% c = 0 \land b \% c = 0
             \forall c : 0 < d < c \Rightarrow a \% d \neq 0 \lor b \% v \neq 0
  int x , y := a, b;
                                                           infinitely many paths!
  while (x != y) {
                                                            hard to generate constraints
     if (x > y) x := ??;
     else y := ??;
}}
```

Why is this hard?

Synthesis from examples

validation was easy!

Synthesis from specifications

SEE IF YOU CAN FIND ANY KLINGON FRUIT!

validation is hard! (and search is still hard)

Map of the unit

Constraint-based synthesis

- How to solve constraints about infinitely many inputs? CEGIS
- How to encode semantics of looping / recursive programs?
 - Bounded reasoning
 - Unbounded / deductive reasoning

Enumerative (and deductive) synthesis

• How to use deductive reasoning to guide the search?

Constraint-based synthesis from specifications

CBS from examples

CBS from specifications

not solver-friendly

loops / recursion

Example

```
\exists C . \forall i o . \varphi(C, i, o) \Rightarrow \psi(i, o)
                                                          \exists c_1 c_2 . \forall x \ y . y = c_1 * x + c_2
harness void main(int x) {
                                          encoding
                                                                           \Rightarrow y - 1 = x + x
  int y := ?? * x + ??;
  assert y - 1 == x + x;
                                                                      simplify
                                                    \exists c_1 c_2 . \forall x . c_1 * x + c_2 - 1 = x + x
```

How do we solve this constraint?

$$\exists c . \forall x . Q(c, x)$$

Idea 1: Bounded Observation Hypothesis

• Assume there exists a small set of inputs $X = \{x_1, x_2, ... x_n\}$ such that

whenever c satisfies

it also satisfies

i∈1..*n*

No quantifiers here, can give to SAT / SMT

 $\forall x. Q(c,x)$

Example

$$\exists c_1 c_2 . \forall x . c_1 * x + c_2 - 1 = x + x$$

This is a linear constraint, two inputs are enough!

$$X = \{0, 1\}$$

$$Q(c_1, c_2, 0) \equiv c_2 - 1 = 0$$

$$Q(c_1, c_2, 1) \equiv c_1 + c_2 - 1 = 2$$

$$\{c_1 \to 2, c_2 \to 1\}$$

How do we find X in a general case?

CEGIS

$$\exists c . \forall x . Q(c, x)$$

Idea 2: Rely on a validation oracle to generate counterexamples

Example

$$\exists c_1 c_2 . \forall x . c_1 * x + c_2 - 1 = x + x$$

Example

$$\exists c_1 c_2 . \forall x . c_1 * x + c_2 - 1 = x + x$$

