

IN THE CLAIMS:

Please amend the claims as follows:

1. (Amended) A compound of the general formula (I)

in which B is a radical of the general formula (II)

(II)
$$\begin{bmatrix} CH_3 \\ (CH_2)_n - N \\ R_3 \end{bmatrix} - (CH_2)_x - \begin{bmatrix} CH_2 - \begin{pmatrix} CH \\ OH \end{pmatrix}_y - CH_2 - O \end{bmatrix}_z - H$$

in which

n is an integer from 2 to 8

m is 0, 1 or 2:

x is an integer from 0 to 8;

y is an integer from 1 to 4;

z is an integer from 0 to 5;

 R_3 is an alkyl radical having 1 to 3 C atoms, which may be substituted by one or more hydroxyl groups;

and in which A is a radical selected from one of the formulae (III) to (IX):

NO

pe restriction m

(III)
$$R_2$$
—O—R₂
 R_1 —O—R₂
 R_2 —O—

(VI)
$$\begin{array}{c} CH_2-O-R \\ CH-O- \\ (CH_2)g-H \end{array}$$

(VIII)

(IX)

in which

g is an integer from 0 to 8;

p, q, r, s, $t \ge 0$;

 $12 \le p + q \le 30$ and

 $8 \le s + t + r \le 26$;

where R_1 and R_2 are each independently hydrogen, a saturated or unsaturated acyl or alkyl radical or a radical selected from one of the formulae (X), (XI), (XII), and (XIII), and

at least one of R_1 and R_2 is a radical selected from one of the formulae (X), (XI), (XII), and (XIII):

(X)
$$(CH_2)_p$$
 $(CH_2)_qH$

(XI) $(CH_2)_s$ $(CH_2)_t$ $(CH_2)_rH$

(XII) CH_2 $(CH_2)_p$ $(CH_2)_qH$

(XIII) CH_2 $(CH_2)_s$ $(CH_2)_t$ $(CH_2)_rH$

BIN

where $q \neq 8$ for p + q = 14, 16, 18 or 20, if neither of the radicals R_1 and R_2 is a radical of the formula (XI) or (XIII), or if A is a radical of the formula (VIII), with the proviso that when A is a radical of the formula (VIII) and p + q is 12, q is not 4.

Please add the following new claim to the application.

--43. A compound according to claim 1, wherein A is a radical of formula (VIII), p is 9, q is 8, z is 0, x is 1, m is 1, n is 4 and R_3 is methyl.—

R3

--44.

A compound of the general formula (I)

in which B is a radical of the general formula (II)

(II)
$$\begin{bmatrix} CH_3 \\ (CH_2)_n - N^+ \\ R_3 \end{bmatrix} - (CH_2)_x - \begin{bmatrix} CH_2 - \begin{pmatrix} CH \\ OH \end{pmatrix}_y - CH_2 - O \end{bmatrix}_z - H$$

in which

n is an integer from 2 to 8

m is 0, 1 or 2:

x is an integer from 0 to 8;

y is an integer from 1 to 4;

z is an integer from 0 to 5;

 R_3 is an alkyl radical having 1 to 3 C atoms, which may be substituted by one or more hydroxyl groups;

and in which A is a radical selected from one of the formulae (III) to (IX):

(III)
$$H_2 - O - R_1$$

 $CH - O - R_2$
 $CH_2 - O -$

in which

g is an integer from 0 to 8;

p, q, r, s,
$$t \ge 0$$
;

$$12 \le p + q \le 30$$
 and

$$8 \le s + t + r \le 26$$
;

where R_1 and R_2 are each independently hydrogen, a saturated or unsaturated acyl or alkyl radical or a radical selected from one of the formulae (X), (XI), (XII), and (XIII), and at least one of R_1 and R_2 is a radical selected from one of the formulae (X), (XI), (XII), and (XIII):

(XI)
$$(CH_2)_p$$
 $(CH_2)_qH$

(XII) $(CH_2)_r$ $(CH_2)_r$

where $q \neq 8$ for p + q = 14, 16, 18 or 20, if neither of the radicals R_1 and R_2 is a radical of the formula (XI) or (XIII), or if A is a radical of the formula (VIII), with the proviso that when A is a radical of the formula (VIII), z is 0, x is 1, m is 1, and R_3 is an alkyl radical having 1 C atom which is not substituted by a hydroxy group, and n is not 2 or 3.—

--45. Amer. 201A compound of the general formula (I)

in which B is a radical of the general formula (II)

(II)
$$\begin{bmatrix} CH_3 \\ (CH_2)_n - N^+ \\ R_3 \end{bmatrix}_m - (CH_2)_X - \begin{bmatrix} CH_2 - \begin{pmatrix} CH \\ OH \end{pmatrix}_y - CH_2 - O \end{bmatrix}_z - H$$

in which

n is an integer from 2 to 8

m is 0, 1 or 2:

x is an integer from 0 to 8;

y is an integer from 1 to 4;

z is an integer from 0 to 5;

R₃ is an alkyl radical having 1 to 3 C atoms, which may be substituted by one or more hydroxyl groups;

and in which A is a radical selected from one of the formulae (III) to (IX):

(III)
$$\begin{array}{c} H_2 - O - R_1 \\ CH - O - R_2 \\ CH_2 - O - \end{array}$$
 (IV) $\begin{array}{c} CH_2 - O - R_1 \\ CH - O - \\ CH_2 - O - R_2 \\ \end{array}$

in which

g is an integer from 0 to 8;

p, q, r, s,
$$t \ge 0$$
;

$$12 \le p + q \le 30$$
 and

$$8 \le s + t + r \le 26$$
;

where R_1 and R_2 are each independently hydrogen, a saturated or unsaturated acyl or alkyl radical or a radical selected from one of the formulae (X), (XI), (XII), and (XIII), and at least one of R_1 and R_2 is a radical selected from one of the formulae (X), (XI), (XII), and (XIII):

(X)
$$(CH_2)_p$$
 $(CH_2)_qH$
(XI) $(CH_2)_s$ $(CH_2)_t$ $(CH_2)_rH$
(XII) $(CH_2)_p$ $(CH_2)_qH$
(XIII) $(CH_2)_s$ $(CH_2)_qH$
(XIII) $(CH_2)_s$ $(CH_2)_t$ $(CH_2)_rH$

B.