1 HAMILTON 图

图论

1 Hamilton 图

定理 1.1. 设图 G 的顶点数为 n(n > 3), 如果图 G 中任意两个不相邻的顶点 u, v 满足

$$d(u) + d(v) \ge n$$

那么G是H图.

引理 1.1. 对于单图 G, 如果 G 中有两个不相邻的顶点 u,v 满足

$$d(u) + d(v) \ge n$$

那么G是H图 $\Longleftrightarrow G+uv$ 是H图

定义 1.1 (闭图). 在 n 阶简单图中, 若对满足 $d(u) + d(v) \ge n$ 的任意一对顶点 u, v 都有 u adj v, 则 G 是闭图.

引理 1.2. 如果 G_1, G_2 是闭图, 那么 $G_1 \cap G_2$ 也是闭图.

定义 1.2 (图的闭包). 称 \hat{G} 是 G 的闭包, 如果它是包含 G 的极小闭图.

这个概念的意思是, 比 \hat{G} 含有更少顶点或边的图都不是闭图. 闭图 G 的闭包就是其本身, 而非闭图 G' 可以通过增加边的方式来构造出 \hat{G}'

引理 1.3. 图 G 的闭包唯一.

定理 1.2 (闭包定理). $G \to H \boxtimes \iff \hat{G} \to H \boxtimes$.

众所周知,G 添加一些边 E 就可以变成 \hat{G} . ∀ $e \in E$ 使用引理 1.1 就可以得到这个定理.

推论 1.1. 设 $G \in n > 3$ 的单图, 若 \hat{G} 是完全图, 则 $G \in H$ 图.

定理 1.3 (Chavatal 度序列判定法). 设简单图 G 的度序列为 (d_1, d_2, \dots, d_n) (升序排列) 且 n > 3. 若 $\forall k < \frac{n}{2}$ 都有 $d_m > m$ 或者 $d_n - m \ge n - m$, 则 G 是 H 图.

1.1 旅行商问题

1.1.1 解决问题

在赋权图中寻找最小 H 圈的问题. 解法如下:

- 1) 随机取一个初始 H 圏 $C = v_1 v_2 \cdots v_n$.
- 2) 如果存在 i, j 使得 $w(v_i v_{i+1}) + w(v_j v_{j+1}) \ge w(v_i v_j) + w(v_{i+1} v_{j+1})$, 那么用 $v_i v_j, v_{i+1} v_{j+1}$ 取代 $v_i v_{i+1}, v_j v_{j+1}$.

2 匹配问题 2

1.1.2 找到问题下界

可以通过以下方法找到最小 H 圈的下界:

- 1) 在图 G 中删掉任意顶点 v 得到图 G_1 ;
- 2) 在 G₁ 中找出一颗最小生成树 T;
- 3) 在 v 的关联边中

2 匹配问题

2.1 匹配与贝尔热问题

定义 2.1 (匹配). 如果 M 是图 G 的边子集 (无环), 且 M 中任意两条边没有共同顶点, 则称 M 为 G 的一个匹配.

如果 G 中顶点 v 是匹配 M 的某条边的端点,则称其为 M 饱和点,否则称为 M 非饱和点.

定义 2.2 (最大匹配). 称 M 为 G 的最大匹配, 如果 M 是 G 的包含边数最多的匹配.

定义 2.3 (完美匹配). 称 M 为 G 的完美匹配, 如果 M 是 G 的匹配且 M 中的边邻接了 G 的所有项点.

定义 2.4 (交错路). 设 M 为 G 的匹配,G 中由属于 M 以及不属于 M 的边交错形成的路称为 M 交错路. 特别地, 如果 M 交错路的起终点都是 M 非饱和点, 这条路还称作 M 可扩路.

定理 2.1 (Berge). G 的匹配 M 是最大匹配, 当且仅当 G 不包含 M 可扩路.

2.2 偶图的匹配与覆盖

定理 2.2 (Hall 定理). 设 G 是 X,Y 二部图,则存在饱和 X 每个顶点的匹配的充要条件是: $\forall S \subseteq X$ 都有 $\#N(S) \ge \#S$. 其中 N(S) 是 S 邻接点的集合.

如果找到一个 S 元素个数多雨 N(S), 那么 X 不可能全部饱和. 如果 G 是 k 正则图, 那么 G 存在完美匹配.

定义 2.5 (点覆盖). K 为 G 的一个顶点子集, 如果 G 的每条边都至少有一个端点在 K 中, 则 K 是 G 的覆盖. 点最少的点覆盖称为最小点覆盖, 其包含的点数称为 G 的覆盖数, 记为 $\alpha(G)$

定理 2.3. 设 $M \in G$ 的匹配, $K \in G$ 的覆盖, 如果 #M = #K, 则 M 是最大匹配, K 是最小覆盖.

证明 由匹配和覆盖的定义:

$$\#M \le \#M^* \le \#K^* \le \#K$$

定理 2.4 (König). 在二部图中, 最大匹配的边数等于最小覆盖的顶点数.

一个等价展示:二部图的邻接矩阵 (布尔) 能够覆盖所有 "1" 的线的最少数目等于任意两个 "1" 全都不在同一条线上的 "1" 的最大数目.

2 匹配问题 3

2.3 托特定理

定理 2.5. 图 G 存在完美匹配当且仅当, $\forall S \subset V(G)$ 有

$$o(G-S) \le \#S$$

其中, o(G) 代表 G 的分支数目.

定义 2.6 (交错树). 设 $G = (X, Y), M \in G$ 的匹配, $u \in M$ 非饱和点. 称树 $H \in G$ 的扎根于顶点 u 的 M 交错树, 如果:

- $u \in V(H)$
- $\forall v \in V(H) : (u, v)$ 路是 M 交错路.

2.4 匈牙利算法

用于求出二部图的完美匹配. 设M是初始匹配.

- (a) $S := \emptyset, T := \emptyset$
- (b) 如果 X S 已经 M 饱和则停止; 否则设 $u \in X S$ 的一个非饱和点.

2.5 赋权匈牙利算法

定义 2.7 (相等子图). 设 l 是赋权完全二部图 G = (X, Y) 的可行顶点标号, 令:

$$E_l = \{xy \in E(G) \mid l(x) + l(y) = w(xy)\}\$$

称 $G_l = G[E_l]$ 为 G 的对应 l 的相等子图.

定理 2.6. 设 l 是赋权完全二部图 G = (X, Y) 的可行顶点标号, 若相等子图 G_l 有完美匹配 M^* , 则 M^* 是 G 的最优匹配.

Kuhn 提出了一种顶点标号修改策略, 找到了最优匹配好算法:

- (a) 给定初始顶点标号 l, 在 G_l 中任选一个匹配 M.
- (b) 如果 M 是饱和的, 则 M 是最优匹配. 否则令 u 为 M 的一个非饱和点, 设 $S := \{u\}, T := \emptyset$
- (c) 如果 $N_{G_l}(S) \supset T$ 转到 (e), 否则设

$$\alpha_l = \min_{x \in S, y \notin T} \{ l(x) + l(y) - w(xy) \}$$

并更新标号:

$$\hat{l} = \begin{cases} l(v) - \alpha_l, & v \in S \\ l(v) + \alpha_l, & v \in T \\ l(v), & \sharp \, \dot{\Xi} \end{cases}$$

3 着色问题 4

3 着色问题

3.1 边着色问题

排课表问题: 设有 m 位老师, n 个班级, 其中教师 x_i 要给班级 y_j 上 $p_{i,j}$ 节课. 求如何在最少节次排完所有课.

对此建模,令 $X = \{x_1, x_2, \cdots, x_m\}, Y = \{y_1, y_2, \cdots, y_n\}.$ x_i 与 y_j 间连 $p_{i,j}$ 条边,得到二部图 G = (X, Y).

问题转为: 如何将 E(G) 划分为互斥的 p 个匹配, 且使 p 最小.

定义 3.1. 设图 G, 对 G 的边着色, 若相邻边着不同颜色, 则称对 G 进行正常边着色. 如果能用 k 种颜色对图 G 进行正常着色, 则称 G 是 k 边可着色的.

定义 3.2. 设图 G, 对 G 进行正常边着色所需要的颜色数量称为**边色数**. 记为 $\chi'(G)$.

定理 3.1. 对于完全二部图: $\chi'(K_{m,n}) = \Delta$

定义 3.3. 设 π 是 G 的一种正常边着色, 若点 u 关联的边的着色没有用到颜色 i, 则称 点 u 缺 i 色.

定理 3.2 (König). 对于二部图 $G: \chi'(G) = \Delta(G)$.

引理 3.1. 设 G 是简单图, x, y_1 是 G 中不相邻的两个顶点, π 是一个正常 k 着色. 若对 π : x, y_1 以及 x 的相邻点都至少缺一种颜色, 则 $G + xy_1$ 也是 k 边可着色的.

定理 3.3 (Vizing). 如果 G 是简单图, 那么:

$$\chi'(G) = \Delta(G) \quad \vec{\boxtimes} \quad \chi'(G) = \Delta(G) + 1$$

定义 3.4. 设简单图 $G(\Delta(G) > 0)$. 若 G 中只有一个最大度点或者两个相邻的最大度点,则

$$\chi'(G) = \Delta(G)$$

定义 3.5. 设简单图 G. 若 G 的点数 n = 2k + 1 且边数 $m > k\Delta(G)$, 则

$$\chi'(G) = \Delta(G) + 1$$

定义 3.6. 对于奇数阶 Δ 正则简单图 G. 若 $\Delta > 0$ 则

$$\chi'(G) = \Delta(G) + 1$$

定义 3.7 (Vizing). 设无环图 G 中边的最大重数是 μ , 则

$$\chi'(G) \le \Delta(G) + \mu$$

3.2 点着色问题

例 3.1 (课程安排问题). 某大学开设了 i 种课程供 j 个学生选择. 求如何排课使得节次最少且不能让任何一位学生的选课发生冲突?

4 平面图 5

定义 3.8 (正常点着色). 设图 G, 对 G 的边着色, 若相邻边着不同颜色, 则称对 G 进行正常点着色. 如果能用 k 种颜色对图 G 进行正常点着色, 则称 G 是 k 点可着色的.

定义 3.9 (点色数). 设图 G, 对 G 进行正常点着色所需要的颜色数量称为点色数. 记为 $\chi(G)$.

定理 3.4. 对任意图 G:

$$\chi(G) \le \Delta(G) + 1$$

定理 3.5 (Brooks). 若 G 是连通的单图, 并且它既不是奇圈, 也不是完全图, 则:

$$\chi(G) \leq \Delta(G)$$

定义 3.10 (次大度). 设 G 是至少有一条边的简单图, 定义:

$$\Delta_2(G) = \max_{u \in V(G)} \max_{\substack{v \in N(u) \\ d(v) \le d(u)}} d(v)$$

其中 N 为 u 的邻域. 称 $\Delta_2(G)$ 为次大度.

如果令

$$V_2(G) = \{ v | v \in V(G), \exists u \in N(v) : d(u) \le d(v) \}$$

则有

$$\Delta_2(G) = \max\{d(v)|v \in V_2(G)\}\$$

定理 3.6. 设 G 是非空简单图,则有:

$$\chi(G) \leq \Delta_2(G) + 1$$

引理 3.2. 设 G 是非空简单图, 如果 G 中最大度顶点互不相邻, 则有:

$$\chi(G) \leq \Delta(G)$$

定理 3.7 (Heawood, 五色定理). 每个平面图都是 5-点可着色的.

4 平面图

4.1 平面图的概念与性质

通过以下例子可以导入平面图问题:

例 4.1 (电路板设计问题). 电路板中的电路元件的连接导线互不交叉, 可以转化为"要求图中的边不能相互交叉".

定义 4.1 (平面图). 如果能将图 G 画在平面上,且所有边相互都不相交,则称 G 为可平面图. 这样的一种画法称为 G 的一种平面嵌入, G 的平面嵌入表示的图称为平面图.

定义 4.2 (平面图的面)**.** 一个平面图 G 将平面分成若干个连通片,这些连通片称为**区域**或面. G 的面组成的集合用 $\Phi(G)$ 表示.

其中面积有限的面称为内部面, 其余称为 外部面.

在 G 中, 顶点和边都与某个给定面关联的子图, 称为该面的**边界**. 某面 f 的边界中含有的边数 (割边 计算 2 次) 称为面 f 的次数, 记为 $\deg f$

4 平面图 6

定理 4.1 (仿握手定理). 设 G = (n, m) 是平面图, 则:

$$\sum_{f \in \Phi(G)} \deg f = 2m$$

定理 4.2 (平面图的 Euler 公式). 设 G = (n, m) 是连通平面图, ϕ 是 G 的面数, 则有:

$$n-m+\phi=2$$

推论 4.1. 设 G 是具有 k 个连通分支的平面图,则有:

$$n - m + \phi = k + 1$$

推论 4.2. 设 G 是具有 n 个点 m 个边 ϕ 个面的连通平面图, 如果 $\forall f \in \Phi(G): 3 \leq l \leq \deg f$, 则有:

$$m \le \frac{l}{l-2}(n-2)$$

反过来, 如果 G = (n, m) 是连通图, 且

$$m > \frac{l}{l-2}(n-2)$$

则 G 是不可平面图.

定理 **4.3** (两种不可平面图). $K_{3,3}$ 和 K_5 都是不可平面图.

推论 4.3. 设连通平面图 G = (n, m), 若 G 的每个圈都是由长度是 l 的圈围成, 则:

$$m(l-2) = l(n-2)$$

推论 4.4. 设简单平面图 G, 则:

$$\delta(G) \le 5$$

也就是说简单平面图不能以 K_5 为子图.

定理 4.4. 一个连通平面图是 2-连通的, 当且仅当它每个面的边界都是圈.

4.2 图的嵌入性问题简介

定理 4.5. 如果图 G 是可平面的, 那么它也可以球面嵌入.

定理 **4.6.** K_5 和 $K_{3,3}$ 都是可环面嵌入的.

定理 4.7. 所有的图都可以嵌入 \mathbb{R}^3 .

4.3 凸多面体与平面图

定义 4.3 (凸多面体), 如果一个多面体上任取两点, 之间的连线都在该多面体内, 则称为凸多面体.

4 平面图 7

4.4 可平面性充要条件

定义 4.4 (2 度顶点收缩/扩充). 将一个 2 度顶点消除且其关联的边合成一条, 称为 2 度顶点收缩; 其逆过程称为 2 度顶点扩张.

定义 4.5 (同胚). 两个图 G_1, G_2 是同胚的, 如果 $G_1 \cong G_2$, 或者通过有限次通过 2 度顶点收缩/扩充 能够变为同构的图.

定理 4.8 (Kuratowski). 图 G 是可平面的, 当且仅当它不含与 K_5 或 $K_{3,3}$ 同胚的子图.

定义 4.6 (基础简单图). 给定图 G, 去掉 G 中的环, 用单边代替重边, 得到的图称为 G 的基础简单图.

定理 4.9. 图 G 可平面, 当且仅当它的基础简单图是可平面的, 也当且仅当 G 的每个块可平面.

定义 4.7. 设 uv 是简单图 G 的一条边. 去掉该边, 重合其端点, 删去由此产生的环和重边. 这一过程 称为图 G 的初等收缩. 如果图 G 可以初等收缩为图 H, 则称 G 可收缩到 H.

定理 **4.10** (Wagner). 图 G 是可平面的, 当且仅当其不可收缩为 K_5 或 $K_{3,3}$.

定理 4.11. 至少有 9 个顶点的简单平面图的补图是不可平面的.

注: 这个定理的条件是紧的.