

CAPÍTULO III - PROGRAMAÇÃO LINEAR (PL)

Prof. Gilson Fernandes da Silva

Departamento de Ciências Florestais e da Madeira (DCFM) Programa de Pós-graduação em Ciências Florestais (PGCF) Universidade Federal Espírito Santo (UFES)

1. OBJETIVOS DO CAPÍTULO II

- Realizar treinamento em modelagem de problemas de Programação Linear (PL).
- Apresentar os métodos de solução, gráfico e analítico, de modelos de PL.
- Apresentar conceitos básicos sobre análise de sensibilidade e análise pós-otimização.
- Realizar treinamento em alguns pacotes computacionais empregados para a solução de PPL's.

2. INTRODUÇÃO

- Dentre as técnicas de pesquisa operacional, a Programação Linear (PL) é o instrumento mais comumente empregado na resolução prática de problemas decisórios e de certa complexidade.
- Isto se explica, por um lado, pela versatilidade do instrumento, e por outro, pelo nível relativamente pouco sofisticado dos seus fundamentos matemáticos.

"A PL é uma técnica de otimização utilizada para alocação de recursos escassos entre atividades competitivas de maneira ótima".

A PL como técnica de otimização procura obter soluções ótimas para modelos matemáticos, lembrando que modelos nada mais são do que simplificações da realidade.

No nosso caso interessa especialmente as realidades florestais.

3. O CONCEITO DE LINEARIDADE

MODELOS LINEARES: São aqueles em que as variáveis se relacionam de forma aditiva.

Função Linear

$$Q(x) = c_1 x_1 + c_2 x_2 + c_3 x_3 + \dots + c_n x_n$$

em que

 x_1, x_2, \dots, x_n são variáveis e c_1, c_2, \dots, c_n são os coeficientes das variáveis.

Exemplos:

$$Q(x) = 5x_1 + 12x_2 - 8x_3$$

$$Q(x) = 42Pinus + 28Eucalipto$$

Contra-exemplos (funções não-lineares):

$$Q(x) = 4x_1^2 + 7x_2^2$$

$$Q(x) = 10Pinus^2 + 8Eucalipto^3$$

$$Q(x) = 6x_1x_2$$

Modelos Lineares: Em geral, são mais tratáveis, porém menos reais.

Modelos Não-lineares: Menos tratáveis, porém mais realísticos.

Exemplo de uma situação de linearidade: Um metro cúbico de madeira custa R\$ 42,00, sendo *x* a quantidade de madeira a ser vendida. Esta realidade pode ser expressa matematicamente pela seguinte equação:

R(x) = 42x, sendo R(x) igual ao valor arrecadado com a venda de madeira. A Figura 1 ilustra graficamente esta situação.

Figura 1 – Ilustração gráfica de uma situação de linearidade.

Exemplo de uma situação de não-linearidade: O preço pago pela madeira depende da quantidade x a ser vendida. Assim, considerando-se que para uma determinada quantidade de madeira x vendida é dado um desconto no preço, tem-se:

Renda
$$\Rightarrow$$
 $R(x) = x P(x)$

em que

$$P(x) = 42 - 0.01x$$
 (função de desconto)
 $R(x) = x(42 - 0.01x)$
 $R(x) = 42x - 0.01x^2$

4. O MODELO DE PROGRAMAÇÃO LINEAR

Forma Padrão:

MAXIMIZAR
$$Q(X) = c_1 x_1 + c_2 x_2 + ... + c_n x_n$$

S.a. (sujeito a)

Função objetivo

$$a_{11}X_1 + a_{12}X_2 + ... + a_{1n}X_n \le b_1$$

 $a_{21}X_1 + a_{22}X_2 + ... + a_{2n}X_n \le b_2$
 $a_{m1}X_1 + a_{m2}X_2 + ... + a_{mn}X_n \le b_m$
Restrições
funcionais ou estruturais

$$x_i \ge 0$$
 \longrightarrow Restrições de não-negatividade

Além da forma padrão, outras formas de apresentação podem ser consideradas (Hillier e Lieberman, 2010):

1 – Minimizar ao invés de maximizar a F.O.

2 – Algumas restrições funcionais do tipo:

$$a_{11}X_1 + a_{12}X_2 + ... + a_{1n}X_n \ge b_i$$

3 – Algumas restrições funcionais do tipo:

$$a_{11}X_1 + a_{12}X_2 + ... + a_{1n}X_n = b_i$$

4 – Eliminar algumas restrições não-negativas.

Recurso	Atividade				Quantidade de Recursos
IXCOUISC	1	2	• • •	n	Disponíveis
1	a ₁₁	a ₁₂	• • •	a_{2n}	b_1
2	a ₂₁	a ₂₂	• • •	a_{2n}	b_2
:	• • •	• • •	• • •	• • •	:
m	a_{m1}	a_{m2}	• • •	a_{mn}	b_m
Contribuição a Z por unidade de atividade	C ₁	C ₂	• • •	C _n	

Fonte: Hillier e Lieberman, 2010

De acordo com Bregalda (2000), a forma padrão do modelo de PL pode ser sintetizada pelas seguintes expressões:

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} = b_{i} & em \ que \ b_{i} \geq 0 \\ x_{j} \geq 0 & (j = 1, 2, ..., n) \end{cases}$$

$$\begin{cases} \sum_{j=1}^{n} c_{j} x_{j} = Q(x) \rightarrow Max! \end{cases}$$

Ou pela forma matricial:

$$\begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

$$c'x = Q(x) \rightarrow Min!$$

Em que:

 $A = matriz \ m \ x \ n$, construida por todos os elementos $a_{ij}, \ i = 1, 2, ..., m \ e \ j = 1, 2, ..., n$

 $b = \text{vetor } m \times 1$, constituído por todos os elementos b_i , i = 1, 2, ..., m

c= vetor $n\ge 1$, constituído por todos os elementos $c_j, j=1,\,2,\,\ldots\,,n$

 $x = \text{vetor } n \neq 1$, constituído por todos os elementos $x_i, i = 1, 2, ..., n$

5. HIPÓTESES DO MODELO DE PL

De acordo com Hillier e Lieberman (2010), o modelo de PL deve atender às seguintes hipóteses:

PROPORCIONALIDADE:

A contribuição de cada atividade ao valor da função objetivo Q(x) é proporcional ao nível da atividade x_i (ver o ter $c_i x_i$ da F.O.).

A contribuição de cada atividade ao lado esquerdo de cada restrição funcional é proporcional ao nível da atividade x_j , conforme representado pelo termo a_{ii} nas restrições.

<u>ADITIVIDADE</u>: Toda função em um modelo de Programação Linear é a soma das contribuições individuais das respectivas atividades.

<u>DIVISIBILIDADE</u>: As variáveis de decisão em um modelo de PL podem assumir quaisquer valores, inclusive valores não-inteiros (variáveis contínuas).

<u>CERTEZA</u>: O valor atribuído a cada parâmetro (os coeficientes c_j , a_{ij} e b_i) de um modelo de PL é assumido como uma constante conhecida.

6. MODELANDO PROBLEMAS DE PL

A Programação Linear apresenta alguns modelos clássicos que são amplamente divulgados na literatura e têm os mais variados propósitos nas mais diversas áreas. A seguir, apresentaremos alguns destes modelos.

6.1 – O modelo de alocação de recursos

Uma empresa dispõe dos seguintes recursos: MO_1 , MO_2 , MQ_A , MQ_B , LEITE, e estes recursos devem ser alocados na produção de: Leite C, Manteiga e Requeijão.

As variáveis MO_1 e MO_2 , significam, respectivamente, mão-de-obra 1 e 2; as variáveis MQ_A e MQ_B , máquinas A e B e a variável *LEITE* representa a quantidade de leite bruto para processamento.

A tabela abaixo mostra o requerimento de recursos por unidade de produtos:

Recursos	Produtos				
	Leite C	Manteiga	Requeijão		
MO ₁	2,0	1	3		
MO ₂	0,0	4	3		
MQ _A	0,5	2	1		
MQ _B	0,0	2	3		
LEITE	0,8	8	4		

Sendo que a disponibilidade de recursos é dada por:

Recurso	MO ₁	MO_2	MQ_A	MQ_B	LEITE
Disponib.	400	500	300	350	1000

O lucro esperado por cada unidade produzida é:

Leite C = \$0,15; **Manteiga** = \$2,00 e **Requeijão** = 0,80.

O objetivo é fazer a alocação dos recursos disponíveis de modo a maximizar o lucro esperado.

Proposta de modelagem do problema:

<u>Passo 1</u>: Definir as variáveis de decisão do problema. É importante lembrar: "*Trata-se de variáveis quantitativas contínuas, isto é, quantidade de alguma coisa*".

<u>Passo</u> 2: Construir a função objetivo. Maximizar ou minimizar? Dica: É uma função linear, e, portanto, é preciso identificar os coeficientes da função e relacionálos com as variáveis definidas no passo 1.

Passo 3: Construir as restrições do modelo. Dica: Para cada recurso limitante, estará associado uma restrição. Outras restrições dependerão das caratecísticas do problema e do que deseja o tomador de decisão.

<u>Passo 4</u>: Construir as restrições de não-negatividade. As demais restrições podem variar de modelo para modelo, mas as de não-negatividade são obrigatórias em todos os modelos.

Solução:

Passo 1: Definir as variáveis de decisão.

LEITEC = Quantidade a ser produzida de leite C.

MANT = Quantidade a ser produzida de manteiga.

REQ = Quantidade a ser produzida de requeijão.

Passo 2: Construir a função objetivo.

Max Lucro = 0.15*LEITEC + 2.00*MANT + 0.80*REQ

Passo 3: Construir as restrições do modelo.

$$2,0*LEITEC + MANT + 3*REQ \le 400 \ (Rest.\ MO1)$$

 $4*MANT + 3*REQ \le 500 \ (Rest.\ MO2)$
 $0,5*LEITEC + 2*MANT + REQ \le 300 \ (Rest.\ MQA)$
 $2*MANT + 3*REQ \le 350 \ (Rest.\ MQB)$
 $0,8*LEITEC + 8*MANT + 4*REQ \le 1000 \ (Rest.\ Leite)$

Passo 4: Construir as restrições de não-negatividade.

LEITEC, MANT E REQ ≥ 0

O MODELO DE PL COMPLETO

Max Lucro = 0.15*LEITEC + 2.00*MANT + 0.80*REQ

Sujeito a: (s.a.)

```
2,0*LEITEC + MANT + 3*REQ \le 400

4*MANT + 3*REQ \le 500

0,5*LEITEC + 2*MANT + REQ \le 300

2*MANT + 3*REQ \le 350

0,8*LEITEC + 8*MANT + 4*REQ \le 1000
```

LEITEC, MANT E $REQ \ge 0$

O MODELO GENERALIZADO

Sejam as variáveis de decisão x_1, x_2, \dots, x_n representando a quantidade a ser produzida de cada produto $j, j = 1, 2, \dots, n$.

Sejam ainda: c_1 , c_2 , ..., c_n o lucro esperado por unidade de cada produto e a_{ij} a quantidade do recurso i necessária para se produzir uma unidade do produto j.

Sejam m recursos disponíveis nas quantidades b_1 , b_2 ,..., b_m que deverão ser alocados na produção de n produtos.

O MODELO GENERALIZADO

$$Max Q(x) = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Sujeito a: (s.a.)

 $x_i \ge 0$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$
 $\vdots \qquad \cdots \qquad \vdots$
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$

6.2 – O modelo da dieta

Deseja-se formular um kg de ração a partir de 4 ingredientes. A composição química e o preço dos ingredientes são apresentados na tabela a seguir:

Ingrediente	ING_1	ING_2	ING_3	ING_4
Proteína	0,01	0,08	0,05	0,03
Cálcio	0,01	0,04	0,06	0,05
Fósforo	0,04	0,06	0,08	0,02
Gordura	0,08	0,05	0,02	0,06
Preço (R\$/Kg)	0,40	0,75	1,25	0,60

Cada kg de ração deve atender:

Nutriente	Min.	Max.
Proteína	0,05	0,40
Cálcio	0,04	0,20
Fósforo	0,05	0,20
Gordura	0,00	0,25

A partir dos dados apresentados, formular um modelo para produzir um quilo de ração ao menor custo possível.

Solução:

Passo 1: Definir as variáveis de decisão.

 ING_1 = Quantidade, em kg, do ingrediente 1 na ração.

 ING_2 = Quantidade, em kg, do ingrediente 2 na ração.

 ING_3 = Quantidade, em kg, do ingrediente 3 na ração.

 ING_4 = Quantidade, em kg, do ingrediente 4 na ração.

Passo 2: Construir a função objetivo.

$$Min\ Custo = 0.40\ ING_1 + 0.75\ ING_2 + 1.25\ ING_3 + 0.60\ ING_4$$

Passo 3: Construir as restrições do modelo.

$$ING_1 + ING_2 + ING_3 + ING_4 = 1$$
 (Total de ração produzida)

Passo 4: Construir as restrições de não-negatividade.

 ING_1 , ING_2 , ING_3 e $ING_4 \ge 0$

O MODELO DE PL COMPLETO

 $Min\ Custo = 0.40\ ING_1 + 0.75\ ING_2 + 1.25\ ING_3 + 0.60\ ING_4$

Sujeito a: (s.a.)

 $ING_1 + ING_2 + ING_3 + ING_4 = 1$ (Total de ração produzida)

 ING_1 , ING_2 , ING_3 e $ING_4 \ge 0$

O MODELO GENERALIZADO

Considere:

 x_j a variável de decisão representando a quantidade do ingrediente j presente na mistura, para j = 1, 2, 3, ..., nSejam j ingredientes, para j = 1, 2, 3, ..., n;

Seja c_i o custo unitário do ingrediente j;

 b_i como a exigência nutricional referente ao nutriente i, para i = 1, 2, 3, ..., m;

 a_{ij} como a quantidade do nutriente i presente em uma unidade do ingrediente j.

O MODELO GENERALIZADO

$$Min \ c(x) = c_1 x_1 + c_2 x_2 + ... + c_n x_n$$

Sujeito a: (s.a.)

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 (Limite superior do nutriente 1) $a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \ge b_1$ (Limite inferior do nutriente 1) \cdots \cdots \vdots

 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$ (Limite superior do nutriente 1) $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \ge b_m$ (Limite inferior do nutriente 1)

$$x_1 + x_2 + x_3 + ... + x_n = k$$
 (k = total produzido)

$$x_1 \ge 0, \ x_2 \ge 0, \dots, x_n \ge 0$$

6.3 – O modelo de transporte

Um produto está disponível nas localidades O_1 , O_2 , O_3 , O_4 e O_5 . Tal produto é demandado por clientes localizados em D_1 , D_2 e D_3 . O custo unitário de transporte para este produto é:

	O_1	O_2	O_3	O_4	O_5
D_1	0,12	0,15	0,18	0,16	0,80
D_2	0,10	0,18	0,20	0,14	0,22
D_3	0,10	0,16	0,10	0,12	0,17

✓ As quantidades demandadas nas localidades D_1 , D_2 , e D_3 são, respectivamente, 2000, 2400 e 1900.

As quantidades disponíveis nas localidades O_1 , O_2 , O_3 , O_4 e O_5 são, respectivamente, 1800, 1200, 1400, 1000 e 900. Formule um modelo de PL que minimize o custo total de transporte do produto, respeitando a demanda de cada cliente e a disponibilidade em cada local.

Solução:

Passo 1: Definir as variáveis de decisão.

Seja O_iD_j a variável de decisão representando a quantidade enviada da localidade i para o cliente j.

Passo 2: Construir a função objetivo.

Min Custo = $0.12 O_1D_1 + 0.10 O_1D_2 + 0.10 O_1D_3 + ... + 0.22 O_5D_2 + 0.17 O_5D_3$

Passo 3: Construir as restrições do modelo.

$$O_1D_1 + O_2D_1 + O_3D_1 + O_4D_1 + O_5D_1 = 2000$$
 (Cliente 1)
 $O_1D_2 + O_2D_2 + O_3D_2 + O_4D_2 + O_5D_2 = 2400$ (Cliente 2)
 $O_1D_3 + O_2D_3 + O_3D_3 + O_4D_3 + O_5D_3 = 1900$ (Cliente 3)
 $O_1D_1 + O_1D_2 + O_1D_3 = 1800$ (localidade 1)
 $O_2D_1 + O_2D_2 + O_2D_3 = 1200$ (localidade 2)
 $O_3D_1 + O_3D_2 + O_3D_3 = 1400$ (localidade 3)
 $O_4D_1 + O_4D_2 + O_4D_3 = 1000$ (localidade 4)
 $O_5D_1 + O_5D_2 + O_5D_3 = 900$ (localidade 5)

Passo 4: Construir as restrições de não-negatividade.

$$O_iD_j \geq 0$$

O MODELO DE PL COMPLETO

Min Custo = $0.12 O_1D_1 + 0.10 O_1D_2 + 0.10 O_1D_3 + ... + 0.22 O_5D_2 + 0.17 O_5D_3$

Sujeito a: (s.a.)

 $O_iD_i \geq 0$

$$\begin{array}{l} O_1D_1 + O_2D_1 + O_3D_1 + O_4D_1 + O_5D_1 = 2000 \text{ (Cliente 1)} \\ O_1D_2 + O_2D_2 + O_3D_2 + O_4D_2 + O_5D_2 = 2400 \text{ (Cliente 2)} \\ O_1D_3 + O_2D_3 + O_3D_3 + O_4D_3 + O_5D_3 = 1900 \text{ (Cliente 3)} \\ \\ O_1D_1 + O_1D_2 + O_1D_3 = 1800 \text{ (localidade 1)} \\ O_2D_1 + O_2D_2 + O_2D_3 = 1200 \text{ (localidade 2)} \\ O_3D_1 + O_3D_2 + O_3D_3 = 1400 \text{ (localidade 3)} \\ O_4D_1 + O_4D_2 + O_4D_3 = 1000 \text{ (localidade 4)} \\ O_5D_1 + O_5D_2 + O_5D_3 = 900 \text{ (localidade 5)} \\ \end{array}$$

O MODELO GENERALIZADO

Sejam:

- *m* origens *i* (disponibilidade do produto);
- n destinos j (demandas do produto);
- a_i como a quantidade disponível do produto na localidade de origem i;
- b_j como a quantidade demandada do produto no destino j;
- c_{ij} como custo unitário de transporte do produto da origem i para o destino j;
- x_{ii} como a quantidade do produto enviada de i para j.

O MODELO GENERALIZADO

Min
$$c(x) = c_{11}x_{11} + c_{12}x_{12} + ... + c_{mn}x_{mn}$$

s.a.

$$X_{11} + X_{21} + \dots + X_{m1} = b_1$$
 (Cliente 1)
 $X_{12} + X_{22} + \dots + X_{m2} = b_2$ (Cliente 2)
 $\vdots \quad \cdots \quad \cdots \quad \vdots$
 $X_{1n} + X_{2n} + \dots + X_{mn} = b_n$ (Cliente n)
 $\vdots \quad \cdots \quad \cdots \quad \vdots$
 $X_{11} + X_{12} + \dots + X_{1n} = a_1$ (Origem 1)
 $X_{21} + X_{22} + \dots + X_{2n} = a_2$ (Origem 2)
 $\vdots \quad \cdots \quad \cdots \quad \vdots$
 $X_{m1} + X_{m2} + \dots + X_{mn} = a_m$ (Origem m)
 $X_{ij} \ge 0, \quad \forall \quad i, j$

Este modelo vale para:

$$\sum_{i=1}^{m} a_i = \sum_{i=1}^{n} b_i$$

Equilibrio entre oferta e demanda.

O que fazer se
$$\sum_{i=1}^{m} a_i > \sum_{j=1}^{n} b_j$$

<u>Alternativa 1</u>: Nas restrições de oferta faz-se a substituição do sinal de = pelo sinal de \leq .

Alternativa 2: Criar um cliente fantasma n + 1 para receber o excedente, sendo:

$$b_{n+1} = \sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j$$
 e com $C_{i, n+1} = m.q.o.d., \forall i$

6.4 – O modelo de corte e empacotamento

Em uma determinada serraria, deseja-se traçar duas árvores, cujos troncos têm 13 metros cada, em três tamanhos de tora diferentes, a saber: 4, 5 e 6 metros. Admitindo-se que a serraria tem que produzir pelo menos duas toras de 4 e 5 metros e 1 tora de 6 metros, e que as toras de 4, 5 e 6 metros valem no mercado, 80, 90 e 100 reais, respectivamente, encontrar o melhor esquema de corte para as duas árvores de modo a maximizar o lucro da serraria.

Solução:

<u>Passo 1</u>: Definir as variáveis de decisão. No caso deste problema é necessário idealizar as alternativas possíveis de corte. Veja o seguinte <u>esquema</u>:

Em função das alternativas possíveis e do número de árvores, tem-se a seguinte variável de decisão:

Seja X_{ij} uma variável binária $\{0, 1\}$, em que:

- 0 = Não adotar a alternativa de corte *i* para a árvore *j*.
- 1 = Adotar a alternativa de corte *i* para a árvore *j*.

Passo 2: Construir a função objetivo.

Max Renda =
$$240 X_{11} + 250 X_{21} + 180 X_{31} + 180 X_{41} + 190 X_{51} + 200 X_{61} + 240 X_{12} + 250 X_{22} + 180 X_{32} + 180 X_{42} + 190 X_{52} + 200 X_{62}$$

Passo 3: Construir as restrições do modelo.

3
$$X_{11}$$
 + 3 X_{12} + 2 X_{21} + 2 X_{22} + X_{31} + X_{32} > 2 (Demanda pela tora de 4 m) X_{21} + X_{22} + 2 X_{41} + 2 X_{42} + X_{51} + X_{52} > 2 (Demanda pela tora de 5 m) X_{31} + X_{32} + X_{51} + X_{52} + 2 X_{61} + 2 X_{62} > 1 (Demanda pela tora de 6 m) 12 X_{11} + 13 X_{21} + 10 X_{31} + 10 X_{41} + 11 X_{51} + 12 X_{61} < 13 (Limite da árvore 1) 12 X_{12} + 13 X_{22} + 10 X_{32} + 10 X_{42} + 11 X_{52} + 12 X_{62} < 13 (Limite da árvore 2)

Passo 4: Construir as restrições de não-negatividade.

$$O_iD_i \in \{0, 1\}$$

O MODELO DE PL COMPLETO

Max Renda =
$$240 X_{11} + 250 X_{21} + 180 X_{31} + 180 X_{41} + 190 X_{51} + 200 X_{61} + 240 X_{12} + 250 X_{22} + 180 X_{32} + 180 X_{42} + 190 X_{52} + 200 X_{62}$$

Sujeito a: (s.a.)

```
 \begin{array}{l} 3 \ X_{11} + 3 \ X_{12} + 2 \ X_{21} + 2 \ X_{22} + \quad X_{31} + \quad X_{32} > 2 \ \ (Demanda pela tora de 4 \ m) \\ X_{21} + \quad X_{22} + 2 \ X_{41} + 2 \ X_{42} + \quad X_{51} + \quad X_{52} > 2 \ \ (Demanda pela tora de 5 \ m) \\ X_{31} + \quad X_{32} + \quad X_{51} + \quad X_{52} + 2 \ X_{61} + 2 \ X_{62} > 1 \ \ (Demanda pela tora de 6 \ m) \\ 12 \ X_{11} + 13 \ X_{21} + 10 \ X_{31} + 10 \ X_{41} + 11 \ X_{51} + 12 \ X_{61} < 13 \ \ (Limite da árvore 1) \\ 12 \ X_{12} + 13 \ X_{22} + 10 \ X_{32} + 10 \ X_{42} + 11 \ X_{52} + 12 \ X_{62} < 13 \ \ (Limite da árvore 2) \\ \end{array}
```

$$O_iD_i \in \{0, 1\}$$

O MODELO GENERALIZADO

Sejam:

- *m* = número de alternativas *i* (alternativas de corte);
- *n* = número de objetos *j* (objetos a serem cortados);
- *I* = número de tamanhos *k* de corte;
- a_{ij} = número ou o comprimento total quando se utiliza a alternativa de corte i para o objeto j.
- d_k = demanda para cada k-ésimo tamanho.
- b_n = tamanho total disponível para corte para o objeto j.
- c_{ij} = renda ou resíduo quando se utiliza a alternativa i para se cortar o objeto j;
- x_{ij} = adotar (x_{ij} = 1) ou não (x_{ij} = 0) a alternativa i para se cortar o objeto j.

O MODELO GENERALIZADO

Min ou Max
$$Q(x) = c_{11}x_{11} + c_{12}x_{12} + ... + c_{mn}x_{mn}$$

s.a.

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^* x_{ij}^* \ge d_1$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^* x_{ij}^* \ge d_2$$
 Restrições de demanda

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^* x_{ij}^* \ge d_l$$

$$\sum_{i=1}^{m} a_{i1}^{**} x_{i1} \le b_1$$

$$\sum_{i=1}^{m} a_{i2}^{**} x_{i2} \le b_2$$

$$\sum_{i=1}^{m} a_{in}^{**} x_{in} \le b_n$$

$$x_{ij} \in \{0, 1\}$$

Restrições de tamanho máximo de cada objeto

Em que:

 x_{ij}^* = todas as variáveis x_{ij} associadas ao k-ésimo tamanho de corte.

 a_{ij}^* = números de objetos com o tamanho k associados às variáveis x_{ij}^* .

 a_{ij}^{**} = comprimento total quando se utiliza a alternativa de corte *i* para o objeto *j*.

Outro maneira de formular o modelo de corte e empacotamento proposto

A principal diferença deste paradigma para o anterior é que, neste caso, a variável de decisão é definida como:

 x_{ij} = número de toras de tamanho i a serem cortadas na árvore j.

Em função disto, o modelo teria a seguinte formulação:

Max Renda =
$$80 X_{11} + 80 X_{12} + 90 X_{21} + 90 X_{22} + 100 X_{11} + 100 X_{12}$$

Sujeito a: (s.a.)

$$X_{11} + X_{12} \ge 2$$
 (Demanda pela tora de 4 m)

$$X_{21} + X_{22} \ge 2$$
 (Demanda pela tora de 5 m)

$$X_{31} + X_{32} \ge 1$$
 (Demanda pela tora de 6 m)

$$4 X_{11} + 5 X_{21} + 6 X_{31} \le 13$$
 (Limite da árvore 1)

$$4 X_{12} + 5 X_{22} + 6 X_{32} \le 13$$
 (Limite da árvore 2)

X_{ii}≥0 e inteiro.

6.5 – Outros modelos

6.5.1 – O modelo do jovem atarefado

João tem duas namoradas, Maria e Luiza. Cada saída de 3 horas com Maria custa R\$ 24,00 e com Luiza custa R\$ 16,00. Seu orçamento permite dispor R\$ 96,00/mês para diversão. João dispõe de no máximo 18 horas e 40.000 calorias para diversão durante o mês. Cada saída com Maria consome 5000 calorias e com Luiza o dobro. Ele gosta das duas com a mesma intensidade. O objetivo de João é maximizar o número de saídas.

Solução:

Passo 1: Definir as variáveis de decisão.

NM = número de saídas de 3 horas com Maria

NL = número de saídas de 3 horas com Luiza

Passo 2: Construir a função objetivo.

Max = NM + NL

Passo 3: Construir as restrições do modelo.

$$24 \ NM + 16 \ NL \le 96$$
 (restrição de orçamento)
 $NM + NL \le 06$ (restr. do núm. de saídas)
 $500 \ NM + 1000 \ NL \le 40000$ (restr. do núm. de calorias)

Passo 4: Construir as restrições de não-negatividade.

 $NM \ge 0$ e inteiro $NL \ge 0$ e inteiro

FIM DO CAPITULO III a

Alternativas de corte	Sobra
1 – 4, 4 e 4 metros	1 metro
2 – 4, 4 e 5 metros	0 metro
3 – 4 e 6 metros	3 metros
4 – 5 e 5 metros	3 metros
5 – 5 e 6 metros	2 metros
6 – 6 e 6 metros	1 metro

COMPRIMENTO	ALTERNATIVAS DE CORTE						VALOR DA
DE TORA	1	2	3	4	5	6	TORA
1	3	2	1	0	0	0	80
2	0	1	0	2	1	0	90
3	0	0	1	0	1	2	100
Resto	1	0	3	3	2	1	