

<u>Help</u>

konainniaz 🗸

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u>

(

Problem 1

Submit

1/1 point (graded)

Clustering	refers	to	which	of	the	following?
------------	--------	----	-------	----	-----	------------

Grouping similar data points together				
Assigning data points to some mean value				
Excluding outliers from the data set				
O Finding commonalities between groups of data points				
✓				
Submit				
Problem 2				
1/1 point (graded) When does the \emph{k} -means algorithm terminate?				
$igcirc$ After $m{n}$ iterations, where $m{n}$ is defined by the user				
After the average distance from each point to its mean is minimized				
After no additional updates are made in grouping data points				
After each point has been assigned to a mean value				
Submit				
Dura la la ma 2				
Problem 3				
1/1 point (graded) What does the value $m{k}$ represent in the $m{k}$ -means algorithm?				
The number of iterations that the algorithm will run				
The number of clusters we want our solution to have				
The number of data points that will be clustered				
The number of data points that can be assigned to each cluster				
✓				

1/1 point (graded) Suppose we use clustering to come up with a representation for images. If there are ${\pmb k}$ clusters, each image is represented by first extracting a large collection of image patches from it, and then using these to map the image to a ${\pmb k}$ -dimensional vector. What is the i'th coordinate of this vector?
The number of image patches that were associated with the i'th cluster
The fraction of image patches that were associated with the i'th cluster
The i'th coordinate of the i'th cluster center
\bigcirc A cumulative sum, over all \emph{k} -means iterations, of the number of image patches associated with the i'th cluster
✓
Submit
Problem 5
1/1 point (graded) True or false: in the streaming model of computation, the dataset used for clustering is required to be small enough to fit in main memory.
O True
• False
✓
Submit
Problem 6
1/1 point (graded) The EM algorithm stands for expectation maximization algorithm and it will find what kind of solution?
Local maximum
O Global maximum
✓
Submit
Problem 7
1/1 point (graded) Which of the following values are updated with each iteration of the EM algorithm?

Problem 4

Inditibel of clusters, &
$lacksquare$ cluster mixing weights, i.e. π_j
$lacksquare$ cluster means, i.e. μ_j
$lacksquare$ cluster covariance matrices, i.e. Σ_j
Submit
Problem 8
1/1 point (graded) True or false: Using the single linkage algorithm, the tree is built in a top down manner by first grouping all of the data points together, then dividing the data points into two or more clusters, and then further subdividing those clusters.
O True
False
Submit
Problem 9
1/1 point (graded) How does the complete linkage algorithm differ from the single linkage algorithm?
Omplete linkage algorithm can only group up to two clusters together while single linkage algorithm can group multiple clusters
O Complete linkage generates fewer clusters than single linkage
Complete linkage merges clusters based on maximum distance (between those clusters) while single linkage merges clusters based on minimum distance
Omplete linkage builds the tree in a bottom up manner, while single linkage builds the tree in a top down manner
✓
Submit

© All Rights Reserved

edX

<u>About</u>

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

© 2022 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>