Ćwiczenia z ANALIZY NUMERYCZNEJ (L)

Lista nr 15 20 stycznia 2021 r.

- Lista ta zawiera wybrane zadania egzaminacyjne z ostatnich lat.
- Podanymi zadaniami nie należy nadmiernie sugerować się podczas przygotowań do egzaminu.^a

^aNie oznacza to jednak, że prawdopodobieństwo zdarzenia kilka bardzo podobnych zadań pojawi się na egzaminie jest zerowe.

- **L15.1.** W języku programowania PWO++ funkcja $\cos(x)$ oblicza z bardzo dużą dokładnością wartość $\cos(x)$, jednak **tylko wtedy**, gdy $0 \le x \le \frac{\pi}{2}$. Wykorzystując funkcję \cos , zaproponuj algorytm wyznaczający wartości funkcji cosinus z dużą dokładnością dla $x \in [-2\pi, 2\pi]$.
- L15.2. Jakie znaczenie z punktu widzenia analizy numerycznej ma pojęcie uwarunkowania zadania?
- **L15.3.** Sprawdź dla jakich wartości x zadanie obliczania wartości funkcji f jest źle uwarunkowane, jeśli: **a)** $f(x) = \ln(x)$, **b)** $f(x) = (x-1)^{10}$.
- **L15.4.** Podaj definicję zadania źle uwarunkowanego, a następnie zbadaj uwarunkowanie zadania obliczania wartości funkcji $f(x) = \cos x$ dla $x \in \mathbb{R}$.
- **L15.5.** Załóżmy, że liczby x_0, x_1, \ldots, x_n są tego samego znaku. Uzasadnij, że zadanie obliczania ich sumy jest zadaniem dobrze uwarunkowanym. Jakie znaczenie ma ten fakt w kontekście obliczeń numerycznych?
- **L15.6.** Wyprowadź wzór na wskaźnik uwarunkowania zadania obliczania wartości funkcji f w punkcie x. Wartość funkcji $f(x) := e^{5x}$ obliczamy w punkcie $x \approx 0.8$. Jak dużej utraty dwójkowych cyfr znaczących spodziewamy się, jeżeli x odbiega od 0.8 o jedną dwójkową cyfrę znaczącą?
- **L15.7.** Wytłumacz dokładnie kiedy występuje i na czym polega zjawisko utraty cyfr znaczących wyniku. Dla jakich wartości x obliczanie wartości wyrażenia $(\sqrt{x^2+2}+x)^{-1}$ może wiązać się z utratą cyfr znaczących wyniku? Zaproponuj sposób obliczenia wyniku dokładniejszego.
- **L15.8.** Dla $x \approx 0$ obliczanie wartości wyrażenia $x^{-5}(\sin(3x) 3x + 9x^3/2)$ może wiązać się z utratą cyfr znaczących wyniku. Zakładając, że $|x| \leq \frac{1}{10}$, zaproponuj taki sposób obliczenia wartości tego wyrażenia, aby mieć pewność, że błąd bezwzględny nie przekracza 10^{-7} .
- **L15.9.** Do rozwiązania zadania obliczeniowego \mathcal{A} użyto komputera i algorytmu numerycznie poprawnego. Czy można mieć pewność, że otrzymany w ten sposób wynik jest bliski rzeczywistego rozwiązania zadania \mathcal{A} ? Odpowiedź uzasadnij.
- L15.10. Sprawdź czy następujący algorytm jest algorytmem numerycznie poprawnym:

```
S:=x[0];
for i from 1 to 4
    do
        S:=3*S+x[i]
    od;
return(S)
```

L15.11. Niech dany będzie wielomian $w(x) := a_1 x/3! - a_3 x^3/5! + a_5 x^5/7! - a_7 x^7/9!$. Rozważmy następujący algorytm obliczania jego wartości w punkcie $x \in \mathbb{R}$:

```
w:=a[7]
for n from 3 downto 1
    do
    w:=a[2*n-1]-x^2/(2*n+3)/(2*n+2)*w
    od
return(w*x/2/3)
```

Przyjmując, że a_1, a_3, a_5, a_7 oraz x są liczbami maszynowymi, sprawdź czy algorytm ten jest algorytmem numerycznie poprawnym.

- L15.12. Opisz metodę bisekcji i podaj jej własności.
- **L15.13.** Stosując metodę Newtona, zaproponuj sposób przybliżonego obliczania wartości $\sqrt[5]{a}$ (a > 0). Jak dobrać x_0 ? Jak powinien wyglądać warunek stopu?
- **L15.14.** Niech α będzie pierwiastkiem pojedynczym funkcji f ($f(\alpha) = 0$, $f'(\alpha) \neq 0$). Udowodnij, że wówczas rząd zbieżności metody Newtona wynosi p = 2.
- **L15.15.** Zaproponuj efektywny algorytm obliczania z dużą dokładnością wartości $\sqrt{a}~(a>0)$ wykorzystując **jedynie** operacje arytmetyczne $(+,-,\cdot,/)$.
- **L15.16.** Sformułuj i podaj interpretację geometryczną metody siecznych. Jak w wypadku tej metody powinien wygladać warunek stopu?
- **L15.17.** Podaj efektywny algorytm wyznaczania wartości liczby naturalnej a, której cyframi dziesiętnymi (od najbardziej do najmniej znaczącej) są $a_n, a_{n-1}, \ldots, a_0$, gdzie $a_n \neq 0$.
- L15.18. Sformułuj i uzasadnij uogólniony schemat Hornera obliczania wartości wielomianu podanego w postaci Newtona.
- L15.19. Sformułuj i uzasadnij algorytm Clenshawa obliczania wartości wielomianu podanego w postaci Czebyszewa.
- **L15.20.** Niech dany będzie wielomian $w_n \in \Pi_n$ postaci

$$w_n(x) := z_0(x - z_1)(x - z_2) \dots (x - z_n),$$

gdzie liczby rzeczywiste z_0, z_1, \ldots, z_n są dane. Opracuj i uzasadnij **oszczędny** algorytm znajdowania postaci potęgowej wielomianu w_n . Określ złożoność zaproponowanej metody. Gdzie, w kontekście metod omówionych w ramach wykładu, algorytm taki może mieć zastosowania?

L15.21. Podaj postać Newtona wielomianu interpolacyjnego $L_4 \in \Pi_4$ dla danych

L15.22. Podaj postać Newtona wielomianu interpolacyjnego dla następujących danych:

L15.23. Funkcję $f(x) = \cos(x/2)$ interpolujemy wielomianem $L_n \in \Pi_n$ w węzłach będących zerami wielomianu Czebyszewa T_{n+1} . Jak należy dobrać n, aby mieć pewność, że

$$\max_{x \in [-1,1]} |f(x) - L_n(x)| \le 10^{-8} ?$$

L15.24. Niech $L_n \in \Pi_n$ będzie wielomianem interpolującym funkcję $f(x) = \sin \frac{x}{2}$ w węzłach postaci

$$x_{nk} := \frac{1}{2}\cos\left(\frac{2k+1}{2n+2}\pi\right) + \frac{1}{2}$$
 $(k = 0, 1, \dots, n).$

Jak należy dobrać n, aby mieć pewność, że

$$\max_{x \in [0,1]} |f(x) - L_n(x)| \le 10^{-15} ?$$

L15.25. Niech dane będą: liczba naturalna n i parami różne liczby rzeczywiste $a_0, a_1, \ldots, a_{n-1}$. Zaproponuj algorytm znajdowania takich liczb c_0, c_1, \ldots, c_n , że dla każdego $x \in \mathbb{R}$ zachodzi

$$x^{n} = c_{0} + c_{1}(x - a_{0}) + c_{2}(x - a_{0})(x - a_{1}) + \dots + c_{n}(x - a_{0})(x - a_{1}) \cdot \dots \cdot (x - a_{n-1}).$$

Podaj jego złożoność obliczeniową i pamięciową

- L15.26. (a) Podaj definicję naturalnej funkcji sklejanej trzeciego stopnia.
 - (b) Znajdź naturalną funkcję sklejaną trzeciego stopnia dla danych

L15.27. Niech dane będą wektory $\mathbf{x} := [x_0, x_1, \dots, x_n]$ $(x_k < x_{k+1}, \ 0 \le k \le n-1), \ \mathbf{y} := [y_0, y_1, \dots, y_n]$ oraz $\mathbf{z} := [z_0, z_1, \dots, z_m]$. Niech s_n oznacza naturalną funkcję sklejaną trzeciego stopnia $(w \ skr\'ocie : \ NFS3)$ spełniającą warunki $s_n(x_k) = y_k \ (0 \le k \le n)$. Jak pamiętamy, w języku PWO++ procedura NSpline3($\mathbf{x}, \mathbf{y}, \mathbf{z}$) wyznacza wektor $\mathbf{Z} := [s_n(z_0), s_n(z_1), \dots, s_n(z_m)],$ z tym, że **musi być** m < 2n. Załóżmy, że wartości pewnej funkcji ciągłej f znane są **jedynie** w punktach $x_0 < x_1 < \dots < x_{100}$. Wiadomo, że NFS3 odpowiadająca danym $(x_k, f(x_k))$ $(0 \le k \le 100)$ bardzo dobrze przybliża funkcję f. Wywołując procedurę

NSpline3 tylko raz, opracuj algorytm numerycznego wyznaczania przybliżonych wartości wszystkich miejsc zerowych funkcji f znajdujących się w przedziale $[x_0, x_{100}]$. W swoim rozwiązaniu możesz użyć wielokrotnie innej procedury języka PWO++, a mianowicie Solve3(a,b,c,d) znajdującej z dużą dokładnością wszystkie rzeczywiste miejsca zerowe wielomianu $ax^3 + bx^2 + cx + d$ albo informującej, że takich miejsc zerowych nie ma.

L15.28. Wstęp. Niech dane będą wektory liczb rzeczywistych $\mathbf{x} := [x_0, x_1, \dots, x_n]$ $(x_0 < x_1 < \dots < x_n)$, $\mathbf{y} := [y_0, y_1, \dots, y_n]$ i $\mathbf{z} := [z_0, z_1, \dots, z_m]$ $(m, n \in \mathbb{N})$. Niech s_n oznacza naturalną interpolacyjną funkcję sklejaną trzeciego stopnia $(w \ skr\'ocie : \ NIFS3)$ spełniającą warunki $s_n(x_k) = y_k$ $(0 \le k \le n)$. W języku PWO++ procedura NSpline3($\mathbf{x}, \mathbf{y}, \mathbf{z}$) wyznacza wektor $[s_n(z_0), s_n(z_1), \dots, s_n(z_m)]$. Zadanie. Wiadomo, że NIFS3 odpowiadająca danym $(x_k, f(x_k))$ $(0 \le k \le 100)$ bardzo dobrze przybliża funkcję f. Można więc przypuszczać, że

 $S_n := \int_{x_0}^{x_n} s_n(x) \, \mathrm{d}x$

jest bardzo dobrym przybliżeniem wartości całki $I := \int_{x_0}^{x_n} f(x) dx$. Stosując procedurę NSpline3 tylko raz, zaproponuj szkic efektywnego algorytmu wyznaczania wielkości S_n . Zadbaj więc m.in. o to, aby liczba współrzędnych wektora z (czyli wartość m+1) była możliwie jak najmniejsza.

L15.29. Dana jest postać Béziera wielomianu $p \in \Pi_n$, tj.

$$p(t) := \sum_{k=0}^{n} a_k B_k^n(t), \quad \text{gdzie} \quad B_k^n(t) := \binom{n}{k} t^k (1-t)^{n-k}.$$

Uzasadnij, że

$$p(t) = \sum_{k=0}^{n+1} a_k^{(1)} B_k^{n+1}(t) \qquad \text{dla} \qquad a_k^{(1)} := \frac{n-k+1}{n+1} a_k + \frac{k}{n+1} a_{k-1} \quad (0 \le k \le n+1),$$

gdzie przyjęto $a_{-1} = a_{n+1} := 0$. Jakie zastosowanie może mieć ta zależność?

- **L15.30.** Podaj definicję krzywej Béziera P stopnia n o punktach kontrolnych $W_0, W_1, \ldots, W_n \in \mathbb{R}^2$. Uzasadnij, że dla każdego $t \in [0, 1], P(t)$ jest punktem na płaszczyźnie.
- **L15.31.** Niech P będzie krzywą Béziera stopnia n o punktach kontrolnych $W_0, W_1, \ldots, W_n \in \mathbb{R}^2$. Ustalmy $t \in [0, 1]$. Zaproponuj algorytm wyznaczania P(t) w czasie O(n).
- **L15.32.** Niech p będzie wielomianem zmiennej t stopnia co najwyżej n. W języku PWO++ procedura BezierCoeffs(p,t) wyznacza taki wektor $\mathbf{c} := [c_0, c_1, \dots, c_n]$, że

$$p(t) = \sum_{k=0}^{n} c_k B_k^n(t),$$

gdzie $B_0^n, B_1^n, \ldots, B_n^n$ są wielomianami Bernsteina stopnia n. Współczynniki c_k $(0 \le k \le n)$ nazywamy współczynnikami Béziera wielomianu p. Niestety, procedura ta ma **pewne ograniczenie**, mianowicie: **musi być** $n \le 50$.

W jaki sposób, używając procedury BezierCoeffs co najwyżej dwa razy, wyznaczyć współczynniki Béziera wielomianu $w(t) := p(t) \cdot q(t)$, gdzie $p \in \Pi_{50}$, a $q \in \Pi_2$? Jak zmieni się rozwiązanie, jeśli przyjąć, że $q \in \Pi_{50}$?

L15.33. Pomiary (t_k, c_k) $(0 \le k \le N; t_k > 0, c_k > 1)$ pewnej zależnej od czasu wielkości fizycznej C sugerują, że wyraża się ona wzorem

$$C(t) = 2^{(At^2 + 2018)^{-1}}.$$

Stosując aproksymację średniokwadratową, wyznacz prawdopodobną wartość parametru A.

L15.34. Wyznacz funkcję postaci $y(x) = \frac{ax^2 - 3}{x^2 + 1}$ najlepiej dopasowaną w sensie aproksymacji średniokwadratowej do danych

przy założeniu, że $s_2 = 10$, $s_4 = -3$, gdzie $s_m := \sum_{k=0}^n \frac{x_k^m}{(x_k^2 + 1)^2}$ (m = 2, 4).

L15.35. (a) Znajdź wielomiany P_0, P_1, P_2 ortogonalne względem iloczynu skalarnego

$$(f,g) := f(-2)g(-2) + f(-1)g(-1) + f(0)g(0) + f(1)g(1) + f(2)g(2).$$

(b) Wykorzystując wynik otrzymany w punkcie (a), wyznacz wielomian $w_2^* \in \Pi_2$ najlepiej dopasowany w sensie aproksymacji średniokwadratowej do danych

L15.36. Niech P_0, P_1, \dots, P_N będą wielomianami ortogonalnymi względem iloczynu skalarnego postaci

$$(f,g)_N := \sum_{k=0}^{N} f(x_k)g(x_k),$$

gdzie $x_k := -a + \frac{2ak}{N}$ (k = 0, 1, ..., N; a > 0). Udowodnij, że jeśli α jest miejscem zerowym wielomianu P_k $(0 \le k \le N)$, to także $-\alpha$ jest miejscem zerowym tego wielomianu.

- **L15.37.** Podaj definicję ciągu wielomianów ortogonalnych względem dyskretnego iloczynu skalarnego $(\cdot, \cdot)_N$. Jak efektywnie wyznaczać takie wielomiany? Jakie jest ich zastosowanie w aproksymacji średniokwadratowej na zbiorze dyskretnym?
- **L15.38.** Znajdź wielomian $w_2^* \in \Pi_2$ najlepiej dopasowany w sensie aproksymacji średniokwadratowej do następujących danych:

Uwaga. Rozwiązanie nie wymaga wielu obliczeń, ale jeśli tego nie zauważysz, też możesz zdobyć maksimum punktów.

- **L15.39.** Podaj definicję rzędu kwadratury liniowej $Q_n(f) := \sum_{k=0}^n A_k^{(n)} f(x_k^{(n)})$. Udowodnij, że jeśli rząd kwadratury Q_n wynosi przynajmniej n+1, to jest to kwadratura interpolacyjna.
- L15.40. Jaki maksymalnie rząd może mieć kwadratura liniowa? Odpowiedź uzasadnij.
- L15.41. Opisz ideę kwadratur złożonych. Wyprowadź złożony wzór Simpsona.
- **L15.42.** Opisz metodę Romberga obliczania przybliżonej wartości całki $\int_{-2}^{3} f(x) dx$.
- **L15.43.** Opisz kwadratury złożone. Jaką mają one przewagę nad kwadraturami Newtona-Cotesa? Czy są one związane z metodą Romberga? Jeśli tak, to w jaki sposób?
- **L15.44.** Znajdź rozkład LU macierzy $A:=\begin{bmatrix}1&2&-1&2\\-2&-5&3&-4\\4&12&-10&9\\-8&-24&32&-16\end{bmatrix}$. Następnie wykorzystaj otrzymany rozkład do rozwiązania układu równań Ax=b, gdzie $b:=[17,-33,70,-112]^T$.
- **L15.45.** Niech dana będzie macierz $A \in \mathbb{R}^{n \times m}$. Przypomnijmy, że *rzędem* macierzy nazywamy maksymalną liczbę jej liniowo niezależnych kolumn. Opracuj algorytm numerycznego wyznaczania rzędu macierzy A. Podaj jego złożoność czasową i pamięciową.
- **L15.46.** Niech dana będzie macierz nieosobliwa $A \in \mathbb{R}^{n \times n}$. Zaproponuj efektywny algorytm wyznaczania macierzy odwrotnej A^{-1} i podaj jego złożoność.
- **L15.47.** Niech dane będą macierze $A, B \in \mathbb{R}^{n \times n}$. Opracuj oszczędny algorytm wyznaczania takiej macierzy $X \in \mathbb{R}^{n \times n}$, aby zachodziła równość AX = B. Podaj jego złożoność czasową i pamięciową.
- **L15.48.** Opracuj metodę wyznaczania rozkładu LU macierzy $A_n \in \mathbb{R}^{n \times n}$ postaci

$$A_n := \begin{bmatrix} a_1 & & & & c_1 \\ & a_2 & & & c_2 \\ & & a_3 & & c_3 \\ & & \ddots & & \vdots \\ & & & a_{n-1} & c_{n-1} \\ b_1 & b_2 & b_3 & \cdots & b_{n-1} & a_n \end{bmatrix},$$

gdzie zaznaczono jedynie niezerowe elementy. Podaj jej złożoność.

L15.49. Załóżmy, że macierz $A \in \mathbb{R}^{n \times n}$ ma wszystkie minory główne różne od zera. Niech dane będą wektory $b_1, b_2, \ldots, b_m \in \mathbb{R}^n$. Zaproponuj **oszczędny** algorytm wyznaczania wektorów $x_1, x_2, \ldots, x_m \in \mathbb{R}^n$, dla kórych $Ax_k = b_k \ (k = 1, 2, \ldots, m)$. Jak opracowaną metodę zastosować do znalezienia takiej macierzy $X \in \mathbb{R}^{n \times n}$, dla której AX = B, gdzie macierz $B \in \mathbb{R}^{n \times n}$ jest dana?

Uwaga. W rozwiązaniu **nie wolno** wprost wyznaczać macierzy A^{-1} , bo – jak wiadomo – nie jest to bezpieczne z numerycznego punktu widzenia.