Дифференциальная геометрия

Содержание

Разделы курса.	3
Лекция 1.	3
Лекция 2.	6

Разделы курса.

Алгебраическая топология

- Фундаментальная группа.
- Накрытия.
- Приложения.

Дифференциальная геометрия

- Гладкие кривые и поверхности.
- Гладкие многообразия.
- Римановы многообразия.

Литература

- Виро и др Элементарная топология.
- Munkres Topology

Лекция 1.

Определение 1. *Ретракция* — непрерывное отображение $f: X \to A$, где $A \subset X$, такое, что $f|_A = id_A$.

Если существует ретракция $f: X \to A$, то A называется ретрактом пространства X.

Пример(ы).

- Всякое одноточечное подмножество является ретрактом.
- Никакое двухточечное подмножество прямой не является её ретрактом.

Теорема 1. Подмножество A топологического пространства X является его ретрактом \iff всякое непрерывное отображение $g:A\to Y$ в произвольное пространство Y можно продолжить до непрерывного отображения $X\to Y$.

Доказательство.

" \Rightarrow " пусть $\rho: X \to A$ ретракция, тогда $g \circ \rho$ искомое продолжение.

(композиция непрерывных отображений непрерывна; действует так: $X \to A \to Y$; на множестве $A: g \circ \rho|_A = g \circ id_A = g$).

" \Leftarrow " рассмотрим ρ - непрерывное продолжение $g=id_A$ (Y=A), тогда ρ - ретракция. ($\rho:X\to A$ непрерывно, $\rho|_A=id_A$)

 $A \subset X, in : A \to X$ - включение $(\forall a \in A : in(a) = a)$.

Лемма 1. Если $\rho: X \to A$ - ретракция, $in: A \to X$ - включение $u \ x_0 \in A$, то

- $\rho_*: \pi_1(X,x_0) \to \pi_1(A,x_0)$ сюръекция;
- $in_*: \pi_1(A,x_0) \to \pi_1(X,x_0)$ инъекция;

Доказательство.

$$\rho \circ in = id \Rightarrow (\rho \circ in)_* = \rho_* \circ in_* = id_*$$

Теорема 2. (Теорема Борсука (в размерности 2))

 $He\ cyществует\ pempaкции\ us\ D^2\ нa\ S^1.$

Доказательство. От противного. Пусть $\rho: D^2 \to S^1$ – ретракция, $x_0 \in S^1$. $\pi_1(D^2, x_0) = \mathbb{Z}, \pi_1(S^1, x_0) = 0$, тогда по лемме $in: \mathbb{Z} \to 0$ - инъекция. Противоречие.

Определение 2. Точка $a \in X$ называется неподвижной точкой отображения $f: X \to X$, если f(a) = a.

Примечание. Говорят, что пространство обладает свойством неподвижной точки, если всякое непрерывное отображение $f: X \to X$ имеет неподвижную точку.

Пример(ы). Отрезок [a;b] обладает свойством неподвижной точки.

Теорема 3. (Теорема Брауэра о неподвижной точке) Любое непрерывное отображение $f: D^2 \to D^2$ имеет неподвижную точку.

Доказательство. От противного, пусть $f(x) \neq x$ для всех $x \in D^2$.

Построим $g:D^2\to S^1$ так: g(x) - точка пересечения луча, начинающегося в f(x) и проходящего через x, с окружностью. Это g противоречит теореме Борсука.

$$|(x - f(x))t + x| = 1$$

Определение 3. X и Y гомотопически эквивалентны $(X \sim Y)$, если существуют непрерывные отображения $f: X \to Y$ и $g: Y \to X$ такие, что $g \circ f \sim id_X$ и $f \circ g \sim id_Y$. Такие f и g называются гомотопически обратными отображениями. Каждое из f и g называется гомотопической эквивалентностью.

Примечание. Отображения бывают гомотопными, а пространства - гомотопически эквивалентными.

Пример(ы). \mathbb{R}^n гомотопически эквивалентно $\{0\}$.

Определение 4. Ретракция $f: X \to A$ называется *деформационной ретракцией*, если её композиция с включением $in: A \to X$ гомотопна тождественному отображению, т.е.

$$in \circ f \sim id_X$$

Если существует деформационная ретракция X на A, то A называется деформационным ретрактом пространства X

Теорема 4. Деформационная ретракция является гомотопической эквивалентностью.

Доказательство. Деформационная ретракция и включение – гомотопически обратные отображения. \Box

Пример(ы).

- $\mathbb{R}^n \setminus \{0\} \sim S^{n-1}$. $(f : \mathbb{R}^n \setminus \{0\} \to S^{n-1}, f(x) = \frac{x}{|x|})$.
- Лента Мёбиуса (или кольцо) $\sim S^1$.
- Плоскость без n точек \sim букет n окружностей.
- ullet Тор с дыркой \sim букет двух окружностей.

Примечание. В примерах правое пространство - деформационный ретракт левого.

Теорема 5. Гомотопическая эквивалентность — отношение эквивалентности между топологическими пространствами.

Доказательство.

Рефлексивность $X \sim X$: $f = g = id_X$.

Симметричность $X \sim Y \Rightarrow Y \sim X$: $(f \circ g \bowtie g \circ f) \rightarrow (g \circ f \bowtie f \circ g)$.

Транзитивность: $f_1: X \to Y, g_1: Y \to X$ гомотопически обратны, $f_2: Y \to Z$,

 $g_2:Z\to Y$ гомотопически обратны $\Rightarrow f_2\circ f_1$ и $g_1\circ g_2$ гомотопически обратны, т.к.:

$$f_2 \circ (f_1 \circ g_1) \circ g_2 \sim f_2 \circ id_Y \circ g_2 \sim f_2 \circ g_2 \sim id_Z$$

$$g_1 \circ (g_2 \circ f_2) \circ f_1 \sim g_1 \circ id_Y \circ f_1 \sim g_1 \circ f_1 \sim id_X$$

Определение 5. Класс пространств, гомотопически эквивалентных данному X, называется его *гомотопическим типом*. Свойства (характеристики) топологических пространств, одинаковые у гомотопически эквивалентных, - *гомотопические свойства* (гомотопические инварианты).

Упражнение. Число компонент линейной связности - гомотопический инвариант.

Лекция 2.

Изоморфиность фундаментальных групп

Теорема 6. Гомотопическая эквивалентность индуцирует изоморфизм фундаментальных групп.

Лемма 2. Пусть $f,g:X\to Y$ - гомотопные отображения, $H:X\times I\to Y$ - гомотопия между ними. $f(x_0)=y_0, g(x_0)=y_1, \gamma(t)=H(x_0,t)$ - путь от y_0 к y_1 . Тогда $g_*=T_\gamma\circ f_*$

Определение 6. Топологическое пространтсов X стягиваемо, если оно гомотопически эквивалентно точке.

Пример(ы). Переформулировки стягиваемости:

- тождественное отображение гомотопно постоянному
- некоторая точка деформационный ретракт

Лемма 3. Пусть $h:S^1\to X$ - непрерывное отображение. Следующие утверждения эквивалентны:

- 1. h гомотопно постоянному отображению.
- 2. h продолжается до непрерывного от. $D^2 \to X$.
- 3. h_* тривиальный гомоморфизм фундаментальных групп.

Предметный указатель

```
Гомотопическая эквивалентность, 4
Гомотопически обратные отображения, 4
Гомотопические свойства (инварианты), 5
Гомотопический тип, 5
Неподвижная точка отображения, 4
Ретракция, 3
деформационная, 4
Теорема
Борсука (в размерности 2), 4
Брауэра о неподвижной точке, 4
```