

Flight Mission

Every Flying Vehicle is designed to perform a mission:

February 5, 2023

© Hadi Nobahari, Guidance and Navigation: Introduction, Definitions and ...

Guidance, Navigation and Control

To perform a mission leg, the following questions should be answered:

- Where is the Flying Vehicle (FV) now? What are the attitudes? X=?, Y=?, Z=?, Ψ =?, θ =?, Φ =? Navigation
- Where is the FV going to go?
- What should the FV do to go from the current situation to the target situation or to track the desired trajectory?
- How much roll angle, lateral acceleration, heading, altitude, ... is required at the moment?
 Guidance
- What inputs must be applied to airframe to perform the guidance requirements?
- · Who must apply these inputs?

Control

February 5, 2023 © Hadi Nobahari, Guidance and Navigation: Introduction, Definitions and ...

Basic Navigation, Guidance and Control systems

- Navigation Systems
 - Inertial Navigation
 - Radio Navigation
 - Visual Navigation
 - Celestial Navigation
 - Magnetic Navigation
 - Sonic Navigation

- Guidance Systems
 - Command Guidance
 - Homing Guidance
 - Inertial Guidance
- Control Systems
 - Aerodynamic Control
 - Thrust Vector Control (TVC)
 - Reaction Jet Control
 - Partial Thrust Control

February 5, 2023

Course Syllabus

Part I: Guidance

- Introduction, Definitions and Concepts
- Classification of Guidance and Navigation Systems
- Three-point Tactical Guidance Laws
- Two-point Tactical Guidance Laws
- Ballistic Guidance Laws
- UAV Guidance

February 5, 2023

Course Syllabus

Part II: Navigation

- Principles of Inertial Navigation
- Inertial Sensors
- Tests and Calibration of Inertial Navigation Systems
- Initial Alignment of INS

February 5, 2023

© Hadi Nobahari, Guidance and Navigation: Introduction, Definitions and ...

0

Guidance System vs Guidance Algorithm/Law

- Guidance System: all hardware and software, used together to generate the guidance commands
 - Guidance Algorithm
 - Guidance Sensor(s)
 - · External (Offboard)
 - Onboard
 - Guidance Computer(s)
 - · External (Offboard)
 - Onboard
 - Transponder(s) and receiver(s)
- Guidance Algorithm/Law: the software logic, used to provide the guidance commands (a part of guidance system)

February 5, 2023

© Hadi Nobahari, Guidance and Navigation: Introduction, Definitions and ...

External versus Onboard Guidance Sensor

February 5, 2023

© Hadi Nobahari, Guidance and Navigation: Introduction, Definitions and ...

Open-loop vs Closed-loop Guidance

- Open-loop guidance: predetermined guidance commands are issued as a function of time, e.g.
 - Pitch Program
- Closed-loop Guidance: commands are generated based on a compensated comparison between the desired and the instantaneous position or velocity, e.g.
 - Trajectory Tracking
 - Approach

February 5, 2023

The Goals of each Guidance Phase

- Boost
 - To increase the velocity and make the FV controllable
 - To put the FV within the tracker field of view
 - To guide the vehicle away from the launcher
- Midcourse
 - To bring the interceptor to a neighborhood of the target
 - To save the FV energy
 - To save the FV from the enemy
- Terminal
 - To perform the task with the maximum accuracy

February 5, 2023

© Hadi Nobahari, Guidance and Navigation: Introduction, Definitions and ...

Guidance Phases (More Examples)

- Boost
 - Launch
 - ightharpoonsTake-off
- Midcourse
 - Climb, Cruise, Loiter, Descend
 - Terrain Following
 - Trajectory Shaping
 - Orbit Transfer
- Terminal
 - Intercept

Landing

- Rendezvous and Docking

February 5, 2023

© Hadi Nobahari, Guidance and Navigation: Introduction, Definitions and ...

Guidance Trajectories

Each guidance law works based on a geometrical rule or a guidance trajectory.

The most important guidance trajectories are:

- Direct/Collision Course
- Ballistic
- LOS
- Optimal
- Cruise
- Terrain Following

February 5, 2023

Guidance Trajectories

- Optimal
 - Midcourse Guidance
 - To maximize range or minimize fuel consumption
 - To maximize terminal velocity => maneuverability
 - Terminal Guidance
 - To maximize accuracy
- Cruise
 - Airplanes
 - To minimize fuel consumption
 - Sea skimming missiles
 - To be invisible

February 5, 2023 © Hadi Nobahari, Guidance and Navigation: Introduction, Definitions and ...

Seeker

• An onboard tracker to detect and track a target.

Methods of Target Tracking

Seekers and Trackers detect and track the target using energy emitted by the target

- Active Tracking
 - Target reflects the energy beamed at it by seeker or tracker
- Semi-active Tracking
 - Target is illuminated by an external source
- Passive Tracking
 - Target is itself the source of energy

Detector

Cross-El-Gimbal

Elevation

February 5, 2023

© Hadi Nobahari, Guidance and Navigation: Introduction, Definitions and ...

28

February 5, 2023

