Please check the examination details bel	ow before entering	your candidate information
Candidate surname	Ot	ther names
Centre Number Candidate No	ımber	
Pearson Edexcel Inter	national	Advanced Level
Time 1 hour 20 minutes	Paper reference	WCH16/01
Chemistry		• •
International Advanced Le UNIT 6: Practical Skills in		
ONTI O. Practical Skills III	Chemistry	/ "
You must have: Scientific calculator, ruler		Total Marks

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL the questions. Write your answers in the spaces provided.

1 A flowchart of a series of reactions of chromium and some of its compounds is shown.

(a) Give the formula of a complex ion of chromium present in solution A .	(1)
(b) Give the formula of precipitate B .	(1)
(c) Identify reagent C , by name or formula.	(1)
(d) Suggest the identity, by name or formula, of precipitate D .	(1)
(e) State the colour of solution E .	(1)
(f) State the colour of solution F .	(1)
(Total for Question 1 = 6	5 marks)

	This question is about the identification of three organic compounds, X , Y and Z .	
	A molecule of each compound has only one type of functional group. Each compound contains six carbon atoms and two oxygen atoms.	
	In the mass spectrum of X , the molecular ion peak is at $m/z = 114$.	
	(a) State the molecular formula of X .	(1)
	(b) Three chemical tests are carried out on X .	
	Test 1 When Brady's reagent (2,4-dinitrophenylhydrazine solution) is added to X , an orange precipitate is observed.	
	Test 2 When X is heated with an acidified solution of potassium dichromate(VI), no change is observed.	
	Test 3 When X is added to an alkaline solution of iodine, the formation of a pale yellow precipitate is observed.	
	Explain what can be deduced about the functional group present in \mathbf{X} , by considering the results of each of these tests.	
		(3)
••••		

(c) The **high** resolution proton NMR spectrum of **X** contains only two singlets with relative peak areas of 3:2.

Draw the structure of **X**, identifying the two proton environments.

(2)

 (d) The molecular formula of Y is C₆H₁₂O₂. (i) When aqueous sodium carbonate is added Identify, by name or formula, the function 	
(ii) The ¹³ C NMR spectrum of Y contains fou Give two possible structures for Y .	ır peaks.
Structure 1	Structure 2
(iii) Explain how the low resolution proton which of your structures in (d)(ii) is correctly Chemical shifts are not required.	

(e) The molecular formula of \boldsymbol{Z} is $C_6H_{12}O_2.$

The infrared spectrum of \boldsymbol{Z} is shown.

Group	Wavenumber range / cm ⁻¹
C—H stretching vibrations	
Alkane	2962–2853
Alkene	3095–3010
Aldehyde	2900–2820 and 2775–2700
O—H stretching vibrations	
Alcohols	3750–3200
Carboxylic acids	3300–2500
C=O stretching vibrations	
Aldehydes	1740–1720
Ketones	1720–1700
Carboxylic acids	1725–1700
Esters	1750–1735

(i)	Z has	a fru	uitv	smell.
-----	--------------	-------	------	--------

Deduce the identity of the functional group present in **Z**, using all the information given.

Include any relevant wavenumber ranges in your answer.

(2)

(ii) The high resolution proton NMR spectrum of **Z** contains four peaks (J, K, L and M). Peak J has the highest chemical shift, showing that this proton environment is close to an electronegative atom.

The splitting pattern of the peaks is shown.

Peak	J	K	L	М
Splitting pattern	septet	quartet	doublet	triplet

Draw the displayed structure of **Z**, labelling the proton environment responsible for each of the peaks J, K, L and M.

(3)

(Total for Question 2 = 16 marks)

3 A student investigated the kinetics of the reaction between bromide ions, Br⁻, and bromate(V) ions, BrO₃, in aqueous acid.

$$5Br^{-}(aq) + BrO_{3}^{-}(aq) + 6H^{+}(aq) \rightarrow 3Br_{2}(aq) + 3H_{2}O(l)$$

To determine the rate equation for the reaction, the student varied the concentration of bromide ions, bromate(V) ions and acid in turn.

The effect of the concentration of bromide ions was investigated first.

Procedure

- Step **1** Add 10.0 cm³ of 0.0050 mol dm⁻³ potassium bromate(V), 15.0 cm³ of acidified methyl orange indicator solution and 5.0 cm³ of 0.00010 mol dm⁻³ aqueous phenol to a beaker labelled **P**.
- Step 2 Prepare the contents of beaker **Q** for Run 1 as specified in the table.
- Step 3 Pour the contents of beaker **Q** into beaker **P** and start a timer.

 Pour the contents of beaker **P** back into beaker **Q** and place beaker **Q** on a white tile.
- Step **4** Stop the timer as soon as the mixture turns colourless. Record the time, along with the temperature of the solution.
- Step **5** Repeat Steps **1** to **4** for the remaining runs.

	Contents of beaker Q	
Run	Volume of 0.01 mol dm ⁻³ KBr / cm ³	Volume of H ₂ O / cm ³
1	10.0	0
2	8.0	2.0
3	6.0	4.0
4	5.0	5.0
5	4.0	6.0
6	3.0	7.0

(a) Give one reason why the contents of beaker P are poured back into beak in Step 3 .	er Q (1)
 (b) Methyl orange indicator is bleached colourless by bromine. Under the experimental conditions, the reciprocal of the time taken for the methyl orange to be bleached (1/t) is proportional to the initial rate. (i) Explain why phenol is added to the reaction mixture. 	ne (2)
(ii) Give the colour of the reaction mixture before it turns colourless.	(1)
(iii) Give the reason why the temperature is measured in Step 4 .	(1)

(c) The student's results are shown.

Volume of KBr / cm ³	10.0	8.0	6.0	5.0	4.0	3.0
Time, <i>t</i> / s	23	24	32	39	48	64
$(1/t) / s^{-1}$	0.043	0.042	0.031	0.026		
Temperature / °C	18	22	22	22	22	22

(i) Complete the table by calculating the remaining values of 1/t.

(1)

(ii) Plot a graph of 1/t against the volume of KBr. Include a line of best fit.

(3)

(iii) State why the volume of KBr is proportional to the concentration of bromide ions in the reaction mixture.

(1)

(iv) State the order of reaction with respect to bromide ions, using your graph.

(1)

(d) After investigating the effect on the rate of the concentration of bromate(V) ions and the concentration of hydrogen ions, the student obtained the graphs shown.

Deduce the rate equation for the reaction, using these data and your answer to (c)(iv).

(1)

(Total for Question 3 = 12 marks)

4 This question is about the preparation of phenylamine by the reduction of nitrobenzene.

$$NO_2$$
 + 6[H] \rightarrow NH_2 + 2H₂O nitrobenzene phenylamine

Outline procedure

- Step **1** Add 2.1 cm³ of nitrobenzene, 5 g of granulated tin and 10 cm³ of concentrated hydrochloric acid to a round-bottomed flask.
- Step 2 Add a few anti-bumping granules to the flask and heat the contents under reflux for 15 minutes. Leave to cool.
- Step 3 Dissolve 7.5 g of sodium hydroxide in 10 cm³ of distilled water and add to the flask. An initial precipitate forms before redissolving.
- Step 4 Add 15 cm³ of distilled water to the flask and steam distil the contents, collecting the cloudy distillate in a conical flask.
- Step **5** Add 3 g of powdered sodium chloride to the distillate and swirl to dissolve, before transferring the contents to a separating funnel.

 Add 8 cm³ of ether to the funnel and shake, occasionally relieving the pressure. Allow the layers to separate.
- Step **6** Discard the aqueous layer before transferring the ether layer to a clean flask containing a few pellets of potassium hydroxide.
- Step **7** Decant the contents of the flask from Step **6** into a pear-shaped flask and distil off all the ether.
- Step 8 Distil the remaining contents of the pear-shaped flask, collecting the fraction boiling between 180 °C and 185 °C.

Some data relating to the organic chemicals involved in the preparation are shown.

Chemical	Hazard	$M_{\rm r}$	Density / g cm ⁻³	Boiling temperature / °C
Nitrobenzene	Toxic by inhalation and skin absorption	123.0	1.20	211
Phenylamine	Toxic by inhalation and skin absorption	93.0	1.03	184
Ether	Highly flammable	74.0	0.71	35

(b) (i) State the role of tin in the preparation. (ii) Suggest, by name or formula, the identity of the initial precipitate formed in Step 3. (1) (c) State why the distillate in Step 4 is cloudy.	
(ii) Suggest, by name or formula, the identity of the initial precipitate formed in Step 3. (1) (c) State why the distillate in Step 4 is cloudy.	
(c) State why the distillate in Step 4 is cloudy. (1	
(d) Suggest why sodium chloride is added to the distillate in Step 5 .	
(1	

(e) (i) Draw a labelled diagram of the separating funnel at the end of Step 5.

(2)

(ii) State how you would relieve the pressure in the separating funnel in Step 5.

(1)

(f) Suggest **one** reason for adding pellets of potassium hydroxide in Step **6**.

(1)

(g) State how the mixture would be heated to distil off the ether in Step 7 . Justify your answer.	(2)
	(2)
(h) Calculate the mass of phenylamine formed in this preparation.	
The limiting reagent is nitrobenzene and the overall yield by mass is 43 %.	
Refer to all the information at the start of the question.	
	(4)

(Total for Question 4 = 16 marks)

TOTAL FOR PAPER = 50 MARKS

