

A Set of Five Independent Postulates for Boolean Algebras, with Application to Logical Constants

Author(s): Henry Maurice Sheffer

Source: Transactions of the American Mathematical Society, Oct., 1913, Vol. 14, No. 4

(Oct., 1913), pp. 481-488

Published by: American Mathematical Society

Stable URL: https://www.jstor.org/stable/1988701

#### REFERENCES

Linked references are available on JSTOR for this article: https://www.jstor.org/stable/1988701?seq=1&cid=pdf-reference#references\_tab\_contents
You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms



American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Mathematical Society

# A SET OF FIVE INDEPENDENT POSTULATES FOR BOOLEAN ALGEBRAS, WITH APPLICATION TO LOGICAL CONSTANTS\*

BY

#### HENRY MAURICE SHEFFER

#### Introduction.

Postulate-sets for determining the class of Boolean algebras† have been given by Schröder,‡ Whitehead,§ and Huntington.|| Schröder's set of ten postulates assumes—in addition to an undefined class K, common to all these postulate-sets—an undefined dyadic relation,  $\neq$ , and Boole's¶ undefined binary K-rules\*\* of combination, + and  $\times$ ; Whitehead's two sets, the first of thirteen, and the second of fifteen, postulates, and Huntington's first set, of ten postulates, assume the same undefined K-rules of combination, + and  $\times$ , which Huntington writes respectively  $\oplus$  and  $\odot$ ; Huntington's second set, of nine postulates, assumes Schröder's undefined relation  $\neq$ ,

<sup>\*</sup> Presented to the Society, December 31, 1912.

<sup>†</sup> We employ the term Boolean algebras in its plural form for the following reasons: (1) none of the equivalent postulate-sets here referred to is in terms of its undefined entities one-valued ("categorical")—that is, each determines not a single algebra but a class of algebras; one should not speak, therefore, of "der identische Kalkul" (Schröder), "the Algebra of Symbolic Logic" (Whitehead), or "the algebra of logic" (Huntington); (2) Peano's Formulario Mathematica and Whitehead and Russell's Principia Mathematica, each of which includes, as a part, the algebra under consideration, have a far stronger title to the name "algebra of logic"; (3) "The Algebra of Symbolic Logic, viewed as a distinct algebra, is due to Boole" (Whitehead, loc. cit., p. 115). "This algebra in all its essential particulars was invented and perfected by Boole" (ib., p. 35, footnote).

<sup>‡</sup> Ernst Schröder: Vorlesungen über die Algebra der Logik (Exakte Logik), Erster Band, 1890. The postulates, under various names, are scattered throughout the volume; collected into one list by E. Müller: Abriss der Algebra der Logik, Erster Teil (1909), pp. 20, 21.

<sup>§</sup> A. N. Whitehead: A Treatise on Universal Algebra, Vol. I, 1898, pp. 35-37.

<sup>||</sup> E. V. Huntington: Sets of Independent Postulates for the Algebra of Logic. These Transactions, vol. 5 (1904), pp. 288-309.

<sup>¶</sup> G. BOOLE: An Investigation of the Laws of Thought. London, 1854.

<sup>\*\*</sup> An n-ary rule of combination  $\phi$ , is an agreement according to which any n (distinct or non-distinct) logical entities,  $a_1, a_2, a_3, \cdots$ , in a definite order, determine a unique logical entity  $\phi$  ( $a_1, a_2, a_3, \cdots$ ); in other words, a rule of combination is a one-valued logical function. If the entity  $\phi$  ( $a_1, a_2, a_3, \cdots$ ) is defined for all those and only those cases where all the n entities  $a_1, a_2, a_3, \cdots$  are elements of some class K, then  $\phi$  is a K-rule of combination; for a binary K-rule of combination,  $\phi$  (a, b) is also conveniently written  $a \circ b$ . If, for a K-rule of combination  $\phi$ , the entity  $\phi$  ( $a_1, a_2, a_3, \cdots$ ) is always a K-element, then  $\phi$  is K-closed.

which he writes  $\otimes$ ; and his third set, of nine postulates, the undefined K-rule of combination  $\oplus$ . Each of these sets contains three existence-postulates, namely, those demanding the existence of (1) the special Boolean\* element z; (2) the special Boolean\* element u; and (3) for any K-element a, its corresponding Boolean element  $\bar{a}$ . The independence of all the postulates of each set is proved only for Huntington's sets; and Huntington was the first to show that any two of the concepts  $\oplus$ ,  $\odot$ , and  $\otimes$  are definable in terms of the third.

In this paper we offer, in § 1, a set of five independent postulates for Boolean algebras. This set, which like Huntington's third set assumes but one undefined K-rule of combination, differs from the previous sets (1) in the small number of postulates, and (2) in the fact that the set contains no existence-postulate for z, u, or  $\bar{a}$ .

In § 2 we apply our results to the problem of reducing the number of primitive logical constants.†

§ 1. Postulate-Set for Boolean Algebras.

We assume:

- I. A class K,
- II. A binary K-rule of combination |,
- III. The following properties of K and  $\mid$ :
  - 1. There are at least two distinct K-elements.
  - 2. Whenever a and b are K-elements,  $a \mid b$  is a K-element.

Def. 
$$a' = a \mid a$$
.

3. Whenever a and the indicated combinations of a are K-elements,

$$(a')' = a.$$

4. Whenever a, b, and the indicated combinations of a and b are K-elements,

$$a \mid (b \mid b') = a'.$$

5. Whenever a, b, c, and the indicated combinations of a, b, and c are K-elements,

$$(a | (b | c))' = (b' | a) | (c' | a).$$

For convenience,  $a \mid b$  may be read a per b.

Classification of Postulates 1-5.

Postulate 1 is an existence-postulate. Postulate 2, which demands that the K-rule of combination | shall be K-closed,‡ is a K-closing postulate.

<sup>\*</sup> For z, Boole and Schröder write 0; for u, 1. Cf. p. 486, footnote †.

<sup>†</sup> WHITEHEAD and RUSSELL: Principia Mathematica, vol. I, 1910, pp. 94-101.

<sup>‡</sup> See p. 481, footnote \*\*.

Postulate 3, which demands that a and (a')' shall always be names for the same K-element—that the names a and (a')' shall always be equivalent—is an equivalence postulate; so are 4 and 5.

Thus our set consists of an existence-postulate, a K-closing postulate, and three equivalence postulates. Moreover, if we do not wish to exclude systems which have but a single element, then 1 may be replaced by the weaker postulate

1'. There is at least one K-element.

#### Consistence of Postulates 1-5.

With the following interpretation of K and |, postulates 1-5 are satisfied: K has only two distinct elements, m and n; m|m=n, m|n=n|m=n|n=m.

### Independence of Postulates 1-5.

With each of the interpretations of K and  $\mid$  given in (1)–(5) below, all the postulates, except the one correspondingly numbered, are satisfied; that postulate is, therefore, independent of the remaining four.

- (1) K has only one element m;  $m \mid m = m$ .
- (2) K has any number, greater than one, of distinct elements; for any K-element m,  $m \mid m = m$ ; for any two distinct K-elements, m and n,  $m \mid n$  is not a K-element.
- (3) K has only two distinct elements, m and n;  $m \mid m = m \mid n = n \mid m = n \mid n = m$ .
- (4) K is the class of all rationals; for any K-elements, m and n,  $m \mid n = -\frac{1}{2}(m+n)$ . Postulate 4 holds only when m=0.
- (5) K has only three distinct elements, l, m, and n; | is defined by the following table (for example: m | l = n).

|                | l              | m              | n              |
|----------------|----------------|----------------|----------------|
| $\overline{l}$ | l              | $\overline{m}$ | n              |
| $\overline{m}$ | $\overline{n}$ | n              | l              |
| $\overline{n}$ | $\overline{m}$ | $\overline{l}$ | $\overline{m}$ |

#### Deductions from Postulates 1-5.

The proofs are given after theorem V.

- A. Whenever a and b are K-elements,  $a \mid b = b \mid a$ .
- B. Whenever a and b are K-elements,  $a \mid a' = b \mid b'$ .
- Ia. Whenever a and b are K-elements,  $(a \mid b)'$  is a K-element.

Trans. Am. Math. Soc. 32

- Ib. Whenever a and b are K-elements,  $a' \mid b'$  is a K-element.
- IIa. There is a K-element z such that for any K-element a,  $(a \mid z)' = a$ .
- IIb. There is a K-element u such that for any K-element a,  $a' \mid u' = a$ .
- IIIa. Whenever  $a, b, (a \mid b)'$ , and  $(b \mid a)'$  are K-elements,  $(a \mid b)' = (b \mid a)'$ .
- IIIb. Whenever a, b,  $a' \mid b'$ , and  $b' \mid a'$  are K-elements,  $a' \mid b' = b' \mid a'$ .
- IVa. Whenever a, b, c, (a | b)', (a | c)', b' | c', [a | (b' | c')]', and [(a|b)']'|[(a|c)']' are K-elements, [a|(b'|c')]' = [(a|b)']'|[(a|c)']'.
- IVb. Whenever a, b, c,  $a' \mid b'$ ,  $a' \mid c'$ ,  $(b \mid c)'$ ,  $a' \mid [(b \mid c)']'$ , and [(a'|b')|(a'|c')]' are K-elements,  $a' \mid [(b|c)']' = [(a'|b')|(a'|c')]'$ .
- V\*. If z and u of IIa and IIb are unique K-elements, then for any K-element a there is a K-element  $\bar{a}$  such that  $(a \mid \bar{a})' = u$  and  $a' \mid (\bar{a})' = z$ .

## Proofs of the Preceding Theorems.

In the following proofs the use of postulate 2 is not always explicitly mentioned.

Proof of A.

$$a \mid b = [(a \mid b)']'$$
 [by 3]  
 $= [(a \mid \{b'\}')']'$  [by 3  
 $= [(\{b'\}' \mid a)']'$  [by 5, b replaced by b' and c by b']  
 $= [(b \mid a)']'$  [by 3]  
 $= b \mid a$  [by 3].

Proof of B.

$$a \mid a' = [(a \mid a')']'$$
 [by 3]  
 $= [(a \mid a') \mid (b \mid b')]'$  [by 4, a replaced by  $a \mid a'$ ]  
 $= [(b \mid b') \mid (a \mid a')]'$  [by A]  
 $= [(b \mid b')']'$  [by 4, a replaced by  $b \mid b'$  and  $b$  by  $a$ ]  
 $= b \mid b'$  [by 3].

Proof of Ia. Use 2 twice.

Proof of Ib. Use 2 thrice.

```
C. (a \mid b) \mid (a \mid b') = a.

D. [a' \mid (a \mid b)]' = a \mid (a' \mid b').

E. [(a \mid b') \mid (a' \mid b)]' = (a \mid b) \mid (a' \mid b').

F. a \mid [a \mid (b \mid c)] = b \mid [b \mid (c \mid a)] = c \mid [c \mid (a \mid b)]

= a \mid (b \mid c)' = b \mid (c \mid a)' = c \mid (a \mid b)'.

G. (a' \mid a) \mid [(b' \mid a) \mid (c' \mid a)] = a (b \mid c).
```

<sup>\*</sup> Other theorems, the proofs of which we omit, are:

Proof of IIa.

There is a 
$$K$$
-element—say,  $x$  [by 1].  
There is a  $K$ -element,  $x \mid x'$ , which we call  $z$  [by 2, used twice].  

$$(a \mid z)' = (a')'$$
 [by 4,  $b$  replaced by  $x$ ]
$$= a .$$
 [by 3].

Proof of IIb.

There is a K-element, z', which we call u [by IIa and 2].

$$a' \mid u' = a' \mid (z')'$$
  
=  $a' \mid z$  [by 3]  
=  $(a')'$  [by 4, a replaced by a' and b by x]  
= a [by 3].

Proof of IIIa.

$$a \mid b = b \mid a$$
 [by A].  
Hence  $(a \mid b)' = (b \mid a)'$ .

Proof of IIIb.

$$a' \mid b' = b' \mid a'$$
[by A, a replaced by a' and b by b'].

Proof of IVa. 
$$[a \mid (b' \mid c')]' = [(b')' \mid a] \mid [(c')' \mid a]$$

[by 5, b replaced by b' and c by c']

= 
$$(b | a) | (c | a)$$
 [by 3, used twice]  
=  $(a | b) | (a | c)$  [by A, used twice]  
=  $[(a | b)']' | [(a | c)']'$  [by 3, used twice].

Proof of IVb.

$$a' \mid [(b \mid c)']' = a' \mid (b \mid c)$$
 [by 3]  
 $= [\{a' \mid (b \mid c)\}']'$  [by 3]  
 $= [(b' \mid a') \mid (c' \mid a')]'$  [by 5, a replaced by  $a'$ ]  
 $= [(a' \mid b') \mid (a' \mid c')]'$  [by A, used twice].

Proof of V.

Take  $\bar{a} = a'$ . Then

$$(a \mid a')' = (x \mid x')'$$
 [by  $B$ ,  $b$  replaced by  $x$ ]
$$= z'$$
 [by II $a$ ]
$$= u$$
 [by II $b$ ].
$$a' \mid (a')' = a' \mid a$$
 [by  $3$ ]
$$= a \mid a'$$
 [by  $A$ ]
$$= z$$
 [by  $B$ ,  $b$  replaced by  $x$ ].

### Postulates 1-5 and Boolean Algebras.

The following is Huntington's first postulate-set\* for Boolean algebras:

"[For this postulate-set] we take as the fundamental concepts a class K with two [binary K-] rules of combination  $\oplus$  and  $\odot$ ; and as the fundamental propositions the following ten postulates:

- Ia.  $a \oplus b$  is in the class whenever a and b are in the class.
- Ib.  $a \odot b$  is in the class whenever a and b are in the class.
- IIa. There is an element z such that  $a \oplus z = a$  for every element a.
- IIb. There is an element u such that  $a \odot u = a$  for every element a.
- IIIa.  $a \oplus b = b \oplus a$  whenever a, b,  $a \oplus b$ , and  $b \oplus a$  are in the class.
- IIIb.  $a \odot b = b \odot a$  whenever  $a, b, a \odot b$ , and  $b \odot a$  are in the class.
- IVa.  $a \oplus (b \odot c) = (a \oplus b) \odot (a \oplus c)$  whenever  $a, b, c, a \oplus b, a \oplus c, b \odot c, a \oplus (b \odot c)$ , and  $(a \oplus b) \odot (a \oplus c)$  are in the class.
- IVb.  $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$  whenever  $a, b, c, a \odot b, a \odot c, b \oplus c, a \odot (b \oplus c)$ , and  $(a \odot b) \oplus (a \odot c)$  are in the class.
  - V. If the elements z and u in postulates IIa and IIb exist and are unique, then for every element a there is an element  $\bar{a}$  such that  $a \oplus \bar{a} = u$  and  $a \odot \bar{a} = z$ .
  - VI. There are at least two elements, x and y, in the class such that  $x \neq y$ ."

That set 1–5 is a postulate-set for Boolean algebras we shall prove by showing that this set and Huntington's first postulate-set are equivalent.

*Proof.*—If for any elements, a and b, of our class K we write

$$\bar{a}$$
 for  $a'$ ,  $a \oplus b$  for  $(a \mid b)'$ , and  $a \odot b$  for  $a' \mid b'$ ,

theorems Ia-V and postulate 1 are precisely Huntington's first postulate-set; hence set 1-5 implies Huntington's set.

If for any elements, a and b, of Huntington's class we write

$$a\mid b\quad {
m for}\quad ar{a}\,\odot\,ar{b}$$
 ,

Huntington's set implies set 1-5.§

## § 2. Application to Primitive Logical Constants.

Since not only in special deductive systems but even in the foundations of logic not all propositions can be proved and not all non-propositional entities

<sup>\*</sup> Huntington, loc. cit., pp. 292-3.

<sup>†</sup> For z and u respectively Huntington uses the symbols  $\wedge$  and  $\vee$ , which he takes from Peano's Formulaire de Mathématiques. These are, however, symbols for logical constants, just as 0 and 1 are symbols for numerical constants. We have replaced, therefore, Boole's and Schröder's 0 and 1, and Huntington's  $\wedge$  and  $\vee$ , by z and u.

 $<sup>\</sup>ddagger$  That is, such that x and y are distinct.

<sup>§</sup> By the "principle of duality" the results of § 1 hold also when a|b is interpreted throughout as  $\overline{a} \oplus \overline{b}$ .

On these two primitive ideas, in view of the following interpretation of K and |, our set 1–5 has an important bearing. For, if K is the class of all propositions of a given logical type,  $\P$  then whenever p and q are two propositions of this type, p | q may be interpreted as the proposition neither p nor q; in other words, | has the properties of the logical constant neither-nor. This logical constant we may symbolize by  $\wedge$ , and for obvious reasons we may name rejection.\*\*

THEOREM 1. If in any list of primitive ideas for logic both negation and disjunction are primitive, they may be replaced by the single primitive idea rejection.

*Proof.*—In terms of negation and disjunction, rejection is defined by the Def.—For any two elementary propositions, p and q,

$$p \wedge q = \infty (p \vee q)$$
.

In terms of rejection, negation is defined †† by the

*Def.*—For any elementary proposition p,  $\sim p = p \wedge p$ .

In terms of rejection, disjunction is defined by the

Def.—For any two elementary propositions, p and q,

$$p \vee q = (p \wedge q) \wedge (p \wedge q)$$
.

By the following theorem, a similar reduction is possible for primitive propositions.

<sup>\*</sup> WHITEHEAD and RUSSELL, loc. cit., pp. 94-101.

<sup>†</sup> *Ib.*, p. 95.

<sup>‡&</sup>quot;... there must always be some element of doubt, since it is hard to be sure that one never uses some principle unconsciously" (ib., p. 94).

 $<sup>\</sup>$  Whitehead and Russell, loc. cit., partial list, pp. 95–101; the other primitives are scattered throughout the rest of the book.

<sup>||</sup> Ib., p. 97.

<sup>¶</sup> Ib., pp. 39–68.

<sup>\*\*</sup> By analogy with subject and object, we may call  $p \land q$  the reject of p and q.

<sup>††</sup> Negation may thus be considered as a special case of rejection.

Two primitive propositions of the Principia\* are:

- \* 1.7. If p is an elementary proposition,  $\sim p$  is an elementary proposition.
- \* 1.71. If p and q are elementary propositions,  $p \lor q$  is an elementary proposition.

Theorem 2. If in any list of primitive propositions for logic both \*1.7 and \*1.71 are primitive, they may be replaced by the single primitive proposition.

\* 1.7'. If p and q are elementary propositions,  $p \land q$  is an elementary proposition.

*Proof.*—If in \*1.7 we replace p by  $p \lor q$ , \*1.7 and \*1.71 imply \*1.7'. If in \*1.7' we replace q by p, \*1.7' implies \*1.7.

If in \*1.7' we replace p by  $p \wedge q$  and q by  $p \wedge q$ , \*1.7', used twice, implies  $*1.71.\dagger$ 

Thus we have made it possible to reduce, by one each, the number of primitive ideas and of primitive propositions used in the *Principia* for the foundation of logic.

CORNELL UNIVERSITY, February, 1913.

<sup>\*</sup> WHITEHEAD and RUSSELL, loc. cit., p. 101.

<sup>†</sup> By the "principle of duality" the results of §2 hold also when  $p \wedge q$  is interpreted throughout as the logical constant either not-p or not-q.