1 Кручения в некоторых тензорных произведениях модулей

В задачах алгебраической геометрии, связанных с разрешением особенностей когерентных алгебраических пучков, бывает необходимо исследовать поведение когерентного алгебраического пучка при преобразованиях базисного многообразия или схемы. Преобразование базисного многообразия подбирается так, чтобы трансформировать не локально свободный когерентный пучок в локально свободный пучок на новом многообразии или схеме.

Локальным аналогом этой задачи является исследование свойств тензорного произведения модуля M над коммутативным кольцом A на A-алгебру \widetilde{A} .

В [Ссылка на статью] автором изложена одна из возможных конструкций разрешения особенностей когерентного пучка, локально сводящаяся к преобразованию $M \mapsto \widetilde{A} \otimes_A M$. Алгебра \widetilde{A} получается при этом следующим образом: $\widetilde{A} = \bigoplus_{s \geq 0} (I[t] + (t))^s/(t^{s+1})$, где $I \subset A$ – ненулевой собственный идеал, t – элемент, трансцендентный над кольцом A;

Рассмотрим коммутативное ассоциативное нетерово целостное кольцо A с единицей.

Определение 1.1 Пусть $I \subset A$ идеал. Алгеброй раздутия идеала I назовем выражение $\widehat{A} := \bigoplus_{s>0} I^s$.

Определение $\overline{\bf 1.2}$ Пусть M – произвольный A-модуль. Подмодулем кручения tors (M) называется множество

$$tors(M) = \{x \in M | \exists a \in A \setminus \{0\}, ax = 0\}.$$

Определение 1.3 Будем говорить, что A-модуль M является модулем без кручения, если tors (M) = 0.

Пусть M-A-модуль без кручения. Поскольку тензорное произведение не является точным слева, при тензорном умножении M на алгебру раздутия \widehat{A} в модуле $\widehat{A}\otimes_A M$ может возникнуть кручение.

Решается следующая частная задача: описать подмодуль кручения tors $\left(\widehat{A}\otimes_A I\right)$ A-модуля $\widehat{A}\otimes_A I$.

Пусть, для простоты, идеал I=(x,y) порожден элементами $x,y\in A.$ Выясним как устроены его степени.

Теорема 1.1 Пусть $s \ge 1$, тогда $I^s = (x^s, x^{s-1}y, \dots, xy^{s-1}, y^s)$.

Доказательство. Методом математической индукции. Пусть s=1. Тогда $I^1=(x,y)$ – верно. Пусть утверждение верно значений $s\leq r$. При s=r+1 имеем:

$$I^{r+1} = I^r I = \left\{ \left(\sum_{n=0}^r a_n x^n y^{n-r} \right) (b_1 x + b_0 y) | a_n, b_m \in A \right\}.$$

Теперь, раскрывая скобки, получим

$$I^{r+1} = \left\{ b_0 a_0 y^{r+1} + (b_1 a_0 + b_0 a_1) x y^r + \dots + (b_1 a_{r-1} + b_0 a_r) x^r y + b_1 a_r x^{r+1} | a_n, b_m \in A \right\}$$

Таким образом,

$$I^{r+1} = (x^{r+1}, x^r y, \dots, x y^r, y^{r+1}),$$

Что завершает доказательство теоремы.

Так как тензорное произведение дистрибутивно относительно прямой суммы [сослаться на соответствующую главу], то справедлива цепочка равенств:

$$\widehat{A} \otimes_A I = \left(\bigoplus_{s \geq 0} I^s\right) \otimes_A I = \bigoplus_{s \geq 0} \left(I^s \otimes_A I\right).$$

Предложение 1.1 Пусть $\{M_j|j\in J\}$ – семейство A-модулей. Кольцо A – целостное. Тогда

$$\operatorname{tors}\left(\bigoplus_{j\in J} M_j\right) = \bigoplus_{j\in J} \operatorname{tors}\left(M_j\right).$$

Доказательство. Покажем, что tors $\left(\bigoplus_{j\in J} M_j\right) \subset \bigoplus_{j\in J} \operatorname{tors}(M_j)$. Пусть $t\in \operatorname{tors}\left(\bigoplus_{j\in J} M_j\right)$. По определению, существует такое $a\in A\setminus\{0\}$, что at=0. Заметим, что $t=(t_0,t_1,\ldots,t_j,\ldots)$, где только конечное число t_j отлично от нуля. Так как в прямой сумме умножение производится покоординатно, то

$$at = (at_0, at_1, \dots, at_j, \dots) = 0,$$

из чего следует, что

$$at_1 = at_0 = \dots = at_j = \dots = 0$$

и $t_0 \in \text{tors}(M_0), t_1 \in \text{tors}(M_1), \ldots, t_j \in \text{tors}(M_j), \ldots$ Таким образом, $t \in \bigoplus_{j \in J} \text{tors}(M_j)$. Теперь покажем обратное включение. Пусть $t \in \bigoplus_{j \in J} \text{tors}(M_j)$. Пусть $t_{i_1}, t_{i_2}, \ldots, t_{i_k}$ – все элементы t, отличные от нуля. Как отмечалось ранее, их будет конечное число. По определению, найдутся $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ все отличные от нуля и такие, что $a_{i_1}t_{i_1} = a_{i_2}t_{i_2} = \cdots = a_{i_k}t_{i_k} = 0$. Обозначим $a := a_{i_1}a_{i_2} \ldots a_{i_k}$. Так как кольцо целостное, то ни при каких a_{i_l} их произведение не будет равно нулю. Тогда

$$at_{i_l} = (a_{i_1} \dots a_{i_{l-1}} a_{i_{l+1}} \dots a_{i_k}) a_{i_l} t_{i_l} = 0,$$

что справедливо для всех $l=\overline{1,k}$. Тем самым мы показали, что at=0. Значит $t\in \mathrm{tors}\left(\bigoplus_{j\in J} M_j\right)$.

Теперь, воспользовавшись предложением 1.1, можно записать седующее:

$$\operatorname{tors}\left(\bigoplus_{s>0} \left(I^s \otimes_A I\right)\right) = \bigoplus_{s>0} \operatorname{tors}\left(I^s \otimes_A I\right).$$

Таким образом, исходная задача свелась к вычислению подмодуля кручения tors $(I^s \otimes_A I)$ A-модуля $I^s \otimes_A I$.

Теорема 1.2 Пусть образующие иделала I = (x, y) алгебраически независимы. Тогда $tors(I^s \otimes_A I)$ описывается следующим образом:

tors
$$(I^s \otimes_A I) = \langle x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y | n = \overline{1, s-1} \rangle_A$$

Доказательство. Так как идеалы I^s и I являются конечнопорожденными A-модулями, то, воспользовавшись свойством тензорного произведения [Ссылка на это свойство], имеем

$$I^s \otimes_A I = \langle x^n y^{s-n} \otimes x, x^n y^{s-n} \otimes y | n = \overline{0, s} \rangle_A$$
.

Пусть $\mu:I^s\otimes_AI\to I^{s+1}$ – гомоморфизм, который действует на образующих следующим образом: $x^ny^{s-n}\otimes x\mapsto x^{n+1}y^{s-n},\ x^ny^{s-n}\otimes y\mapsto x^ny^{s-n+1}.$ Докажем, что

 $\ker \mu = \operatorname{tors}(I^s \otimes_A I)$. Очевидно, что этот гомоморфизм сюръективен. Тогда, согласно теореме о гомоморфизме, $I^{s+1} \simeq (I^s \otimes_A I) / \ker \mu$. Так как кольцо A целостное, то I^{s+1} не имеет подмодуля кручения, следовательно, $\operatorname{tors}(I^s \otimes_A I) \subset \ker \mu$.

Чтобы показать обратное включение, вычислим $\ker \mu$. Пусть $z \in I^s \otimes_A I, z$ имеет вид

$$z = a_0(x^s \otimes x) + a_1(x^{s-1}y \otimes x) + \dots + a_s(y^s \otimes x) + + b_1(x^s \otimes y) + \dots + b_s(xy^{s-1} \otimes y) + b_{s+1}(y^s \otimes y),$$
 где $a_i, b_i \in A$.

 $\mu(z)$ будет иметь следующий вид:

$$\mu(z) = a_0 x^{s+1} + (a_1 + b_1) x^s y + \dots + (a_s + b_s) x y^s + b_{s+1} y^{s+1}.$$

Приравняв $\mu(z) = 0$ и воспользовавшись тем фактом, что x, y алгебраически независимы, мы получим условие на коэффициенты:

$$\begin{cases} a_0 &= 0 \\ a_1 + b_1 &= 0 \\ \dots \\ a_s + b_s &= 0 \\ b_{s+1} &= 0. \end{cases}$$

Отсюда, $a_0 = b_{s+1} = 0$, $a_i = -b_i$, $i = \overline{1,s}$ и

$$\ker \mu = \left\langle x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y \middle| n = \overline{1, s-1} \right\rangle_A.$$

Покажем, что любая образующая $\ker \mu - x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y$ является элементом кручения. Рассмотрим выражение $xy(x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y)$ и преобразуем его:

$$xy(x^ny^{s-n}\otimes x - x^{n+1}y^{s-n-1}\otimes y) =$$

$$x(x^ny^{s-n})\otimes xy - y(x^{n+1}y^{s-n-1})\otimes xy =$$

$$x^{n+1}y^{s-n}\otimes xy - x^{n+1}y^{s-n}\otimes xy = 0.$$

Действительно, каждая образующая $\ker \mu$ является элементом кручения. Тем самым мы показали включнение $\ker \mu \subset \mathrm{tors}\,(I^s \otimes_A I)$.

Таким образом, мы доказали, что tors $(I^s \otimes_A I) = \ker \mu$ и имеет место равенство

tors
$$(I^s \otimes_A I) = \langle x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y | n = \overline{1, s-1} \rangle_A$$
.

3