Summer School on SLAM August 2002, Stockholm

Data Association in SLAM

Juan D. Tardós University of Zaragoza, Spain

tardos@posta.unizar.es

http://www.cps.unizar.es/~jdtardos/

University of Zaragoza - J.D. Tardós, J. Neira

Zaragoza, Aragón

| Moskva | M

UZ – Robotics, Vision and Real Time Group

10 Faculty members

~10 PhD and Master students

University of Zaragoza - J.D. Tardós, J. Neira

Otilio

UZ: SLAM

University of Zaragoza - J.D. Tardós, J. Neira

UZ: Computer Vision and 3D Model Building

University of Zaragoza - J.D. Tardós, J. Neira

5

UZ: Robot Navigation

University of Zaragoza - J.D. Tardós, J. Neira

Data Association in SLAM

- 1. Introduction
- 2. Feature extraction: Laser, Sonar,...
- 3. Data association in continuous SLAM
 - · Nearest Neighbor .vs. Joint Compatibility
 - SLAM with Laser and Sonar
 - Map joining
 - The loop closing problem
- 4. Robot relocation and map matching
 - Geometric Constraints
 - A linear time algorithm
 - Application to multi-robot mapping
- 5. Conclusion

University of Zaragoza - J.D. Tardós, J. Neira

7

The SLAM problem

Data Association

- · Given an environment map
- And a set of sensor observations
- · Associate observations with map elements

University of Zaragoza - J.D. Tardós, J. Neira

Importance of Data Association

• Measurement y is used to improve estimation of x:

$$\hat{\mathbf{x}}_{k} = \hat{\mathbf{x}}_{k-1} + \mathbf{K}_{k} \left(-\mathbf{h}_{k-1} \right)$$
EKF update:
$$\mathbf{P}_{k} = \mathbf{P}_{k-1} - \mathbf{K}_{k} \mathbf{H}_{k-1} \mathbf{P}_{k-1}$$

$$\mathbf{K}_{k} = \mathbf{P}_{k-1} \mathbf{H}_{k-1}^{T} \left(\mathbf{H}_{ij} \mathbf{P} \ \mathbf{H}_{ij}^{T} + \mathbf{G}_{ij} \mathbf{S} \ \mathbf{G}_{ij}^{T} \right)^{-1}$$

• If the association of E_i with feature F_j is.....

Consistency Divergence!

Difficulties: clutter

• Influence of the *type*, *density*, *precision* and *robustness* of features considered:

Laser scanner:

- Small amount of features (n)
- Small amount of measurements (m)
- Low spuriousness

Low clutter

University of Zaragoza - J.D. Tardós, J. Neira

11

Difficulties: clutter

Vertical Edge Monocular vision:

- Many features (n large)
- Many measurements (m large)
- · no depth information
- higher spuriousness

High clutter

Difficulties: imprecision

Both the sensor and the vehicle introduce imprecision

Vertical Edge Trinocular vision: variable depth precision good angular precision Robot imprecision: introduces CORRELATED error

University of Zaragoza - J.D. Tardós, J. Neira

13

Search in configuration space

University of Zaragoza - J.D. Tardós, J. Neira

Approaches to Data Association

- Search in configuration space: find robot location with maximal data to map overlapping
 - Can be done with raw data
 - Or with features
 - » Speed of convergence?
- Search in correspondence space: find a consistent correspondence hypothesis and compute robot location
 - 1. Extract features from data
 - » If sparse data, move and build a local map
 - 2. Feature-based map (points, lines, trees, ...)
 - 3. Search for data feature to map feature correspondences
 - » Exponential number of solutions?

University of Zaragoza - J.D. Tardós, J. Neira

15

2. Feature extraction: Laser

- Obtain line segments from a laser scan:
 - Segmentation
 - Line estimation

Split and merge:

- 1. Recursive Split:
 - Obtain the line passing by the two extreme points
 - 2. Obtain the point more distant to the line
 - If distance > error_max, split and repeat with the left and right sub-scan
- 2. Merge:
 - If two consecutive segments are close enough, obtain the common line and the more distant point
 - If distance <= error_max, merge both segments
- 3. Prune short segments
- 4. Estimate line equation

Split and Merge

University of Zaragoza - J.D. Tardós, J. Neira

- Split and merge: uses only extreme points
- Other options:
 - TLS: Total Least squares (not much better)
 - RANSAC: RANdom SAmpling Consensus

RANSAC (Fischler y Bolles, 1981)

 Heuristics such as remove more discrepant points may

LINE

3

SUCCESSIVE LE	EAST SQUARES AP	PROXIMATIONS	
ITERATION	DATA SET	FITTING LINE	
1	1, 2, 3, 4, 5, 6, 7	1.48 + .16x	
2	1, 2, 3, 4, 5, 7	1.25 + .13x	
3	1, 2, 3, 4, 7	0.96 + .14x	
4	2, 3, 4, 7	1.51 + .06x	

FINAL LEAST SQUARES LINE

4 5 6 7 8

COMPUTATION OF RESIDUALS				
POINT	ITERATION 1 RESIDUALS	ITERATION 2 RESIDUALS	ITERATION 3 RESIDUALS	ITERATION 4 RESIDUALS
1	-1.48	-1.25	96*	_
2	-0.64	-0.38	10	57
3	-0.20	0.49	.76	.37
4	0.05	0.36	.63	.31
5	1.05	1.36*	_	_
6	1.89*	_	_	_
7	-1.06	-0.57	33	11

University of Zaragoza - J.D. Tardós, J. Neira

19

RANSAC

- Given a model that requires n data points to compute a solution and a set of data points P, with #(P) > n :
 - Randomly select a subset S1 of n data points and compute the model M1
 - Determine the consensus set S1* of points is P compatible with M1 (within some error tolerance)
 - If #(S1*) > t, use S1* to compute (maybe using least squares) a new model M1*
 - If #(S1*) < t, randomly select another subset S2 and repeat
 - If, after some predetermined number of trials there is no consensus set with t points, return with failure

RANSAC

University of Zaragoza - J.D. Tardós, J. Neira

21

Feature extraction: Sonar

Very sparse and noisy data

Sonar data, several steps

- You need to move the robot
- You need to delay decisions

University of Zaragoza - J.D. Tardós, J. Neira

23

Sonar data, several steps

You need a good sensor model

Sonar Model for Lines


```
Hough Voting for i in 1..n_positions for j in 1..n_sensors Compute \mathbf{x}^{Bi}_{Sj} for \theta^{Sj}_k in -\beta/2..\beta/2 step \delta Compute \theta^{Bj}_k \rho^{Bj}_k Vote(\theta^{Bj}_k, \rho^{Bj}_k) end end end
```


University of Zaragoza - J.D. Tardós, J. Neira

25

Hough Transform for Lines

Sonar Model for Points

University of Zaragoza - J.D. Tardós, J. Neira

27

Hough Transform for Points

University of Zaragoza - J.D. Tardós, J. Neira

Looking for Local Maxima

Winner-takes-all strategy

University of Zaragoza - J.D. Tardós, J. Neira

29

Perceptual Grouping with Hough

4. Data Association

n map features:

$$\mathcal{F} = \{F_1 \dots F_n\}$$

m sensor measurements:

$$\mathcal{E} = \{E_1 \dots E_m\} \qquad E_1 \longrightarrow$$

• **Goal:** obtain a hypothesis that associates each observation E_i with a feature F_{ji}

$$\mathcal{H}_m = [j_1 \dots j_i \dots j_m]$$

$$E_i \qquad F_{j_i}$$

Non matched observations:

$$j_i = 0$$

Interpretation tree (Grimson et al. 87):

 $(n+1)^m$ possible hypotheses

University of Zaragoza - J.D. Tardós, J. Neira

31

Use constraints to prune the tree

Map:

Observations:

- Constraints:
 - Feature location (needs an estimation of robot location)
 - Geometric relations: angles, distances,... (location independent)

Individual Compatibility

· Measurement equation for observation Ei and feature Fj

$$\mathbf{z}_{i} = \mathbf{h}_{ij}(\mathbf{x}_{\mathcal{F}}^{B}) + \mathbf{w}_{i} \qquad E[\mathbf{w}_{i}\mathbf{w}_{i}^{T}] = \mathbf{R}_{i}$$

$$\mathbf{z}_{i} \simeq \mathbf{h}_{ij}(\hat{\mathbf{x}}_{\mathcal{F}}^{B}) + \mathbf{H}_{ij}(\mathbf{x}_{\mathcal{F}}^{B} - \hat{\mathbf{x}}_{\mathcal{F}}^{B}) \qquad \mathbf{H}_{ij} = \frac{\partial \mathbf{h}_{ij}}{\partial \mathbf{x}_{\mathcal{F}}^{B}}\Big|_{(\hat{\mathbf{x}}_{\mathcal{F}}^{B})}$$

· Ei and Fj are compatible if:

$$D_{ij}^{2} = (\mathbf{z}_{i} - \mathbf{h}_{ij}(\hat{\mathbf{x}}_{\mathcal{F}}^{B}))^{T} C_{ij}^{-1} (\mathbf{z}_{i} - \mathbf{h}_{ij}(\hat{\mathbf{x}}_{\mathcal{F}}^{B})) < \chi_{d,\alpha}^{2}$$

$$C_{ij} = \mathbf{H}_{ij} \mathbf{P}_{\mathcal{F}}^{B} \mathbf{H}_{ij}^{T} + \mathbf{R}_{i}$$

$$d = length(\mathbf{z}_{i})$$

- Nearest Neighbour (NN) rule:
 - associate Ei with the feature Fj having smaller Mahalanobis distance Dij

University of Zaragoza - J.D. Tardós, J. Neira

33

Nearest Neighbor

```
for \mathbf{i} = 1 to \mathbf{m} -- feature \mathbf{E}_i
   D2min = Mahalanobis2(E_i, F_1)
   nearest = 1
    for j = 2 to n
       Dij2 = Mahalanobis2(E_i, F_i)
        if Dij2 < D2min then
           nearest = j
           D2min = Dij2
        fi
    rof
    if D2min <= Chi2(d, alpha) then
       H(i) = nearest
    else
       \mathbf{H}(\mathbf{i}) = \mathbf{0}
    fi
rof
```

Greedy algorithm: O(mn)

Example: MonoRob

Nearest Neighbor: $\mathcal{H} = [0, 1, 2]$

True Association: $\mathcal{H} = [1, 0, 2]$

University of Zaragoza - J.D. Tardós, J. Neira

35

Joint Compatitibily

Given a hypothesis

$$\mathcal{H} = [j_1, j_2, \cdots, j_s]$$

Joint measurement equation

$$\mathbf{z}_{\mathcal{H}} = \mathbf{h}_{\mathcal{H}}(\mathbf{x}_{\mathcal{F}}^{B}) + \mathbf{w}_{\mathcal{H}}$$
 $\mathbf{h}_{\mathcal{H}} = \begin{bmatrix} \mathbf{h}_{1j_{1}} \\ \mathbf{h}_{2j_{2}} \\ \vdots \\ \mathbf{h}_{sj_{s}} \end{bmatrix}$

• The joint hypothesis is compatible if:

$$D_{\mathcal{H}}^{2} = (\mathbf{z}_{\mathcal{H}} - \mathbf{h}_{\mathcal{H}}(\hat{\mathbf{x}}_{\mathcal{F}}^{B}))^{T} C_{\mathcal{H}}^{-1} (\mathbf{z}_{\mathcal{H}} - \mathbf{h}_{\mathcal{H}}(\hat{\mathbf{x}}_{\mathcal{F}}^{B})) < \chi_{d,\alpha}^{2}$$

$$C_{\mathcal{H}} = \mathbf{H}_{\mathcal{H}} \mathbf{P}_{\mathcal{F}}^{B} \mathbf{H}_{\mathcal{H}}^{T} + \mathbf{R}_{\mathcal{H}}$$

$$d = length(z)$$

Individual .vs. Joint Compatibility

· Joint Compatibility assures consistency:

University of Zaragoza - J.D. Tardós, J. Neira

37

Joint Compatibility Branch and Bound

Find the largest hypothesis with jointly consistent pairings

```
	exttt{JCBB}(	exttt{H, i}): -- find pairings for feature 	exttt{E}_i
if i > m -- leaf node?
   if pairings(H) > pairings(Best) -- did better?
      Best = H
   fi
else
   for j = 1 to n
       if individual\_compatibility(E_i, F_i) and then
           joint\_compatibility(H, E_i, F_i)
           JCBB([H j], i + 1) -- pairing (E_i, F_i) accepted
       fi
   rof
   if pairings(H) + m - i >= pairings(Best) -- can do better?
      JCBB([H 0], i + 1) -- star node: E, not paired
   fi
fi
```


SLAM with laser segments

University of Zaragoza - J.D. Tardós, J. Neira

39

SLAM with laser segments

University of Zaragoza - J.D. Tardós, J. Neira

SLAM with Sonar

Perceptual Grouping with Hough: Lines and Points

Map Joining: local maps

Environment information related to a set of elements:

$$\mathcal{F} = \{B, F_0, F_1, \dots, F_n\}$$
 $F_0 = \text{Robot}$

represented by a map: $\mathcal{M}_{\mathcal{F}}^{B} = (\hat{\mathbf{x}}_{\mathcal{F}}^{B}, \mathbf{P}_{\mathcal{F}}^{B})$

$$\hat{\mathbf{x}}_{\mathcal{F}}^{B} = \begin{bmatrix} \hat{\mathbf{x}}_{F_0}^{B} \\ \vdots \\ \hat{\mathbf{x}}_{F_n}^{B} \end{bmatrix}$$

$$\mathbf{P}_{\mathcal{F}}^{B} = \begin{bmatrix} \mathbf{P}_{F_0F_0}^{B} & \cdots & \mathbf{P}_{F_0F_n}^{B} \\ \vdots & \ddots & \vdots \\ \mathbf{P}_{F_nF_0}^{B} & \cdots & \mathbf{P}_{F_nF_n}^{B} \end{bmatrix}$$

University of Zaragoza - J.D. Tardós, J. Neira

43

Local map building

 Periodically, the robot starts a new map, relative conditional mean: to its current location:

$$\hat{\mathbf{x}}_{R_0}^B = \mathbf{0}$$

$$\mathbf{P}_{R_0}^B = \mathbf{0}$$

Given measurements:

$$D^{1\dots k_1} = \left\{ \mathbf{u}_1 \, \mathbf{z}_1 \dots \mathbf{u}_{k_1} \, \mathbf{z}_{k_1} \right\}$$
$$\mathbf{u}_k = \hat{\mathbf{x}}_{R_k}^{R_{k-1}}$$

EKF approximates the

$$\widehat{\mathbf{x}}_{\mathcal{F}_1}^{B_1} \simeq E\left[\mathbf{x}_{\mathcal{F}_1}^{B_1} \mid D^{1...k_1}, \mathcal{H}^{1...k_1}\right]$$

Local map building

• Second map: $D^{k_1+1...k_2} = \{\mathbf{u}_{k_1+1} \, \mathbf{z}_{k_1+1} \dots \mathbf{u}_{k_2} \, \mathbf{z}_{k_2} \}$

$$\widehat{\mathbf{x}}_{\mathcal{F}_2}^{B_2} \simeq E\left[\mathbf{x}_{\mathcal{F}_2}^{B_2} \mid D^{k_1+1\dots k_2}, \ \mathcal{H}^{k_1+1\dots k_2}\right]$$

· No information is shared:

$$D^{1...k_1} \cap D^{k_1+1...k_2} = \emptyset$$

Maps are uncorrelated

· Common reference:

$$B_2 = R_1$$

University of Zaragoza - J.D. Tardós, J. Neira

45

Map Joining

- · Given:
 - 1. Two statistically independent stochastic maps
 - 2. A common reference

Map Joining

 Conveys the information of the two maps into a single fully consistent stochastic map:

University of Zaragoza - J.D. Tardós, J. Neira

47

Change the base of map B to B_j

• New state vector:
$$\hat{\mathbf{x}}_{\mathcal{B}}^{B_j} = \begin{bmatrix} \hat{\mathbf{x}}_{B_0}^{B_j} \\ \vdots \\ \hat{\mathbf{x}}_{B_j}^{B_j} \\ \vdots \\ \hat{\mathbf{x}}_{B_j}^{B_j} \end{bmatrix} = \begin{bmatrix} \ominus \hat{\mathbf{x}}_{B_j}^B \oplus \hat{\mathbf{x}}_{B_0}^B \\ \vdots \\ \ominus \hat{\mathbf{x}}_{B_j}^B \oplus \hat{\mathbf{x}}_{B_m}^B \end{bmatrix}$$

New covariance matrix: $\mathbf{P}_{\mathcal{B}}^{B_j} = \mathbf{J}_{B}^{B_j} \mathbf{P}_{\mathcal{B}}^{B} \mathbf{J}_{B}^{B_j}^T$

$$\mathbf{J}_{B}^{B_{j}} = \frac{\partial \widehat{\mathbf{x}}_{\mathcal{B}}^{B_{j}}}{\partial \widehat{\mathbf{x}}_{\mathcal{B}}^{B}} = \begin{bmatrix} \mathbf{J}_{00} & \cdots & \mathbf{J}_{0j} & \cdots & \mathbf{0} \\ \vdots & \cdots & \vdots & & \vdots \\ \mathbf{0} & \cdots & \mathbf{J}_{jj} & \cdots & \mathbf{0} \\ \vdots & & \vdots & \cdots & \vdots \\ \mathbf{0} & \cdots & \mathbf{J}_{mj} & \cdots & \mathbf{J}_{mm} \end{bmatrix}$$

$$\begin{aligned} \mathbf{J}_{jj} &= \mathbf{J}_{\ominus} \left\{ \hat{\mathbf{x}}_{B_{j}}^{B} \right\} \\ \mathbf{J}_{ij} &= \mathbf{J}_{1\oplus} \left\{ \ominus \hat{\mathbf{x}}_{B_{j}}^{B}, \, \hat{\mathbf{x}}_{B_{i}}^{B} \right\} \mathbf{J}_{\ominus} \left\{ \hat{\mathbf{x}}_{B_{j}}^{B} \right\} \quad i = 0..m, \, i \neq j \\ \mathbf{J}_{ii} &= \mathbf{J}_{2\oplus} \left\{ \ominus \hat{\mathbf{x}}_{B_{j}}^{B}, \, \hat{\mathbf{x}}_{B_{i}}^{B} \right\} \quad i = 0..m, \, i \neq j \end{aligned}$$

New covariance matrix:

$$\mathbf{P}_{\mathcal{A}+\mathcal{B}}^{A} = \mathbf{J}_{\mathcal{A}}^{\mathcal{A}+\mathcal{B}} \mathbf{P}_{\mathcal{A}}^{A} \mathbf{J}_{\mathcal{A}}^{\mathcal{A}+\mathcal{B}T} + \mathbf{J}_{\mathcal{B}}^{\mathcal{A}+\mathcal{B}} \mathbf{P}_{\mathcal{B}}^{B_{j}} \mathbf{J}_{\mathcal{B}}^{\mathcal{A}+\mathcal{B}T}$$
$$= \begin{bmatrix} \mathbf{P}_{\mathcal{A}}^{A} & \mathbf{P}_{\mathcal{A}}^{A} \mathbf{J}_{1}^{T} \\ \mathbf{J}_{1} \mathbf{P}_{\mathcal{A}}^{A} & \mathbf{J}_{1} \mathbf{P}_{\mathcal{A}}^{A} \mathbf{J}_{1}^{T} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{J}_{2} \mathbf{P}_{\mathcal{B}}^{B_{j}} \mathbf{J}_{2}^{T} \end{bmatrix}$$

$$\mathbf{J}_{\mathcal{A}}^{\mathcal{A}+\mathcal{B}} \ = \ \frac{\partial \hat{\mathbf{x}}_{\mathcal{A}+\mathcal{B}}^{A}}{\partial \hat{\mathbf{x}}_{\mathcal{A}}^{A}} = \begin{bmatrix} \mathbf{I} \\ \mathbf{J}_{1} \end{bmatrix} \qquad \mathbf{J}_{1} \ = \ \begin{bmatrix} \mathbf{0} & \cdots & \mathbf{J}_{1\oplus} \left\{ \hat{\mathbf{x}}_{A_{i}}^{A}, \hat{\mathbf{x}}_{B_{0}}^{B_{j}} \right\} & \cdots & \mathbf{0} \\ \vdots & & \vdots & & \vdots \\ \mathbf{0} & \cdots & \mathbf{J}_{1\oplus} \left\{ \hat{\mathbf{x}}_{A_{i}}^{A}, \hat{\mathbf{x}}_{B_{0}}^{B_{j}} \right\} & \cdots & \mathbf{0} \end{bmatrix}$$

$$\mathbf{J}_{\mathcal{B}}^{\mathcal{A}+\mathcal{B}} \ = \ \frac{\partial \hat{\mathbf{x}}_{\mathcal{A}+\mathcal{B}}^{A}}{\partial \hat{\mathbf{x}}_{\mathcal{B}}^{B_{j}}} = \begin{bmatrix} \mathbf{0} \\ \mathbf{J}_{2} \end{bmatrix} \qquad \mathbf{J}_{2} \ = \ \begin{bmatrix} \mathbf{J}_{2\oplus} \left\{ \hat{\mathbf{x}}_{A_{i}}^{A}, \hat{\mathbf{x}}_{B_{0}}^{B_{j}} \right\} & \cdots & \mathbf{0} \\ \vdots & & \ddots & \vdots \\ \mathbf{0} & \cdots & \mathbf{J}_{2\oplus} \left\{ \hat{\mathbf{x}}_{A_{i}}^{A}, \hat{\mathbf{x}}_{B_{m}}^{B_{j}} \right\} \end{bmatrix}$$

University of Zaragoza - J.D. Tardós, J. Neira

49

Local map sequencing

Loop closing: Joint Compatibility!

University of Zaragoza - J.D. Tardós, J. Neira

- Very robust map building with sonar
- Local maps: 60x faster than standard SLAM

4. Robot Relocation

Previously built map (A)

Local map (B)

Where is the robot?

University of Zaragoza - J.D. Tardós, J. Neira

53

No robot estimation: use geometric constraints

- Location independent constraints
 - Unary: depend on a single matching (size, color,...)
 - » Tree diameter
 - » Wall length: the observed length should be less than the length in the map (if map is complete)
 - Binary: depend on two matchings (angles, distances)
 - » Distances between points
 - » Angles between lines
 - » "Distances" between segments
 - N-ary: more complex, little pruning

Binary Constraints for Points

 Distance between two map points and the two matching observed points should coincide:

$$||d_{obs} - d_{map}|| \le \epsilon$$

– If using a probabilistic model, 95% error bound:

$$\epsilon = 2\sqrt{\sigma_{obs}^2 - \sigma_{map}^2}$$

- Or use an empiric value

University of Zaragoza - J.D. Tardós, J. Neira

55

Binary Constraints for Segments

Angle constraint:

$$\|\alpha_{obs} - \alpha_{map}\| \le \epsilon$$

- Distance constraint (verifies overlapping)
 - Let [d, D] be the interval of possible distances between any two points of two segments:

$$[d_{obs} - \epsilon, D_{obs} + \epsilon] \cap [d_{map} - \epsilon, D_{map} + \epsilon] \neq \emptyset$$

$$\downarrow d_{13} \qquad \downarrow d_{23} \qquad \downarrow d_{24} \qquad \downarrow d_{24} \qquad \downarrow d_{3} \qquad \downarrow d_{4} \qquad \downarrow d_{2}$$

 $D = \max(d_{13}, d_{23}, d_{14}, d_{24}) \qquad d = \min(d_{13}, d_{23}, d_{14}, d_{24})$

 d_1, d_2, d_3, d_4

Binary Constraints for Segments

- Component constraint:
 - Let [c, C] be the interval of possible longitudinal or lateral component any point of one segment relative to the center of the other segment:

$$[c_{obs} - \epsilon, C_{obs} + \epsilon] \cap [c_{map} - \epsilon, C_{map} + \epsilon] \neq \emptyset$$

University of Zaragoza - J.D. Tardós, J. Neira

57

Location independent constraints are not a sufficient condition

You need to verify global consistency

Geometric Constraints Branch and Bound

```
GCBB(H, i): -- find pairings for feature E,
if i > m -- leaf node?
   if pairings(H) > pairings(Best) and then -- did better?
       is consistent(H) then -- globaly consistent?
       Best = H
   fi
else
   for \mathbf{j} = \mathbf{1} to \mathbf{n}
        if unary(E_i, F_i) and then
            binary(\textbf{H, E_i, F_j}) -- test new with all pairings in H
            GCBB([\mathbf{H} \mathbf{j}], \mathbf{i} \mathbf{i} \mathbf{1}) -- pairing (E_i, F_j) accepted
        fi
   rof
   if pairings(H) + m - i > pairings(Best) -- can do better?
       GCBB([H 0], i + 1) -- star node: E_i not paired
fi
```


University of Zaragoza - J.D. Tardós, J. Neira

59

Exploiting locality Output Description: O

- Limit search in the global map to subsets of covisible features
- Locality makes GCBB linear with the global map size

Information Matrix .vs. Covisibility

• Sydney park dataset (Nebot et al.)

University of Zaragoza - J.D. Tardós, J. Neira

61

Robot relocation example

100% success rate for n=30 local maps

Multirobot map building

Match, join and fuse to one full stochastic map

University of Zaragoza - J.D. Tardós, J. Neira

63

Multirobot map building

- Randomly select a feature in one map
- Try to associate its covisible features in the

University of Zaragoza - J.D. Tardós, J. Neira

Multirobot map building

University of Zaragoza - J.D. Tardós, J. Neira

5. Open Issues in SLAM

- Data association
- Big environments
 - Big loop closing
 - Computational efficiency (constant time?)
 - New estimation techniques

Outdoor & complex environments

- Feature extraction and modeling
- Data association
- SLAM with vision
- 3D SLAM

University of Zaragoza - J.D. Tardós, J. Neira

67

Recommended Readings

- Grimson, W. E. L.: "Object Recognition by Computer: The Role of Geometric Constraints", The MIT Press, Cambridge, Mass., 1990
- José A. Castellanos and Juan D. Tardós, Mobile Robot Localization and Map Building: A Multisensor Fusion Approach, Kluwer Ac. Pub., Boston, 1999
- J. Neira and J.D. Tardós: "Data Association in Stochastic Mapping Using the Joint Compatibility Test", IEEE Trans. Robotics and Automation, vol. 17, no. 6, pp. 890-897, Dec 2001.
- P.M. Newman, J.J. Leonard, J. Neira and J.D. Tardós: "Explore and Return: Experimental Validation of Real Time Concurrent Mapping and Localization". IEEE Int. Conf. Robotics and Automation, May, 2002.
- J.D. Tardós, J. Neira, P.M. Newman and J.J. Leonard: "Robust Mapping and Localization in Indoor Environments using Sonar Data", Int. J. Robotics Research, 2002 (to appear)

