STEM Education in India: Origins, Impact, and Challenges

CBSE Initiative for Classes 9–12, 2025–26

Facilitator: Dr. Sandeep Suman
University Department of Mathematics
T.M. Bhagalpur University, Bhagalpur
Email: ssumantbmu@gmail.com

June 28, 2025

Organised by ANG Sahodaya School Complex

Session Overview

- Explore STEM education in Indias CBSE framework for 2025–26
- Trace global and Indian origins of STEM
- Assess impact on Classes 9–12 through engagement and skills
- Address challenges and propose actionable solutions
- Align with NEP 2020 and global practices (MIT, Stanford, Tsinghua)

Learning Objectives

- Understand STEMs role in CBSE Classes 9–12
- Analyze its impact on student engagement and career readiness
- Identify implementation challenges in the Indian context
- Develop strategies for effective STEM integration
- Explore low-cost tools and PBL for mathematics

Session Schedule

Time	Segment
5 min	Opening Remarks and Objectives
15 min	Origins of STEM: Global and Indian Context
20 min	Impact: Engagement, Skills, and Applications
15 min	Challenges and Mitigation Strategies
5 min	Recommendations, Q&A, Resource Sharing

Origins of STEM Education

- Global: Emerged in 1990s via NSF to boost science and math [7]
- Influencers: MIT (mechatronics), Stanford (PBL), Tsinghua (AI) [5, 1, 8]
- India: Gained traction post-2010, accelerated by NEP 2020 [2]
- CBSE 2025–26: Workshops and STEM-DLDs for Classes 9–12 [2]
- Interactive Prompt: What global STEM practice can inspire India?

Impact on Classes 9–12

- Skill Development: Critical thinking, collaboration via PBL
- Career Readiness: Prepares for \$1T tech sector by 2030 [6]
- Engagement: Math in robotics, coding (e.g., Scratch) [4]
- Inclusivity: Supports diverse learners [3]

Impact on Classes 9–12

- Skill Development: Critical thinking, collaboration via PBL
- Career Readiness: Prepares for \$1T tech sector by 2030 [6]
- Engagement: Math in robotics, coding (e.g., Scratch) [4]
- Inclusivity: Supports diverse learners [3]

Activity: Discuss a STEM project for a CBSE math topic

Mathematics in STEM: CBSE Applications

Table: CBSE Math Topics and STEM Applications

Class	Math Topics	STEM Application
9	Polynomials, Coordinate Geometry	Coding graphs in Scratch [4]
10	Quadratic Equations, Trigonometry	Robot path plotting [5]
11	Straight Lines, Statistics	AI-driven data analysis [8]
12	Calculus, Matrices	Optimization in robotics [5]

PBL Example: Scratch for Polynomials

Figure: Scratch interface for a Class 9–12 PBL project [4].

PBL Example: Robot Path Plotting

Figure: Robot path using coordinate geometry (Class 10) [5].

Challenges of STEM Implementation

Table: Challenges and Mitigation Strategies

Challenge	Mitigation Strategy
Resource Constraints	Use free tools like Scratch [4]
Teacher Training Gaps	Scale CBSE workshops digitally [2]
Exam Pressure	Align PBL with CBSE topics [2]
Equity Issues	NGO partnerships for STEM kits [9]

Recommendations

- Low-Cost Tools: Scratch, GeoGebra for Classes 9–12 [4]
- Teacher Training: Expand digital workshops [2]
- Exam Alignment: PBL with CBSE topics (e.g., probability) [2]
- Equity: NGO STEM kit partnerships [9]
- Collaboration: Share case papers via STEM-DLDs [2]

Wrap-Up and Resources

- Key Takeaways: STEMs transformative potential, challenges, solutions
- Resources:
 - Global case studies (MIT, Stanford, Tsinghua)
 - Tools: GeoGebra, Scratch, Desmos
 - CBSE-aligned lesson plans
- Next Steps: Join STEM-DLDs, attend NTC 2025

References I

Buck Institute for Education.

Project-based learning resources, 2023.

Available at: https://www.pblworks.org.

Central Board of Secondary Education.

Nep 2020 implementation: Stem education guidelines, 2024.

Available at: https://www.cbse.gov.in/cbsenew/curriculum.html.

Harvard Graduate School of Education.

Usable knowledge: Stem education practices, 2025.

Available at:

https://www.gse.harvard.edu/ideas/usable-knowledge/stem.

References II

Massachusetts Institute of Technology.
Education at mit: Stem programs and scratch, 2023.
Available at: https://www.mit.edu/education/.

MIT Mechanical Engineering.

Mechatronics course 2.737: Integrating mathematics and electronics, 2025.

Available at: https://meche.mit.edu/education/courses/2.737.

NASSCOM.

Indias technology sector: Roadmap to \$1 trillion by 2030, 2024.

Available at: https://www.nasscom.in/knowledge-center/publications.

References III

National Science Foundation.

Shaping the future: New expectations for undergraduate education in science, mathematics, engineering, and technology, 1996.

Available at: https://www.nsf.gov/pubs/1996/nsf96139/nsf96139.pdf.

Tsinghua University.

Ai research and education, 2025.

Available at: https://www.tsinghua.edu.cn/en/research/ai.

UNESCO.

Global education monitoring report 2024: Education for all, 2024.

Available at: https://unesdoc.unesco.org/ark:/48223/pf0000380609.

Thank you for your engagement!

Lets empower Classes 9-12 with STEM innovation!