SPLEX

Statistiques pour la classification et fouille de données en génomique

Perceptrons, méthodes à noyaux

Pierre-Henri WUILLEMIN

DEcision, Système Intelligent et Recherche opérationnelle LIP6 pierre-henri.wuillemin@lip6.fr http://webia.lip6.fr/~phw/splex

Rappel : classification linéaire binaire

▶ Définition (CLB)

•
$$C = \{ \bigcirc, \bigoplus \}$$

• $\exists w \in \mathbb{R}^d, w_0 \in \mathbb{R}, \exists f : \mathbb{R} \to C,$

$$\exists w \in \mathbb{R}^{c}$$

$$\forall x \in \mathbb{I}$$

$$\forall x \in \mathbb{R}^d, \widehat{C}(x) = f\left(\sum_{i=1}^d w_i \cdot x_i + w_0\right)$$

Le problème d'apprentissage : trouver w, w_0 et f.

 $C(x) = f(y(\mathbf{x}))$ avec

$$\mathbf{O}$$
 $\mathbf{v}(\mathbf{x}) = \sum_{i=1}^{d} w_i \cdot x_i + w_0$

Séparabilité

 $\forall j \in \{1, \dots, N\}, C(\mathbf{x}_i) \cdot y(\mathbf{x}_i) > 0$

SPLEX Statistiques pour la classification et fouille de données

LP

Perceptron linéaire

notation: En notant
$$w = \begin{bmatrix} w_0 \\ w_1 \\ \dots \\ w_d \end{bmatrix}$$
 et $x = \begin{bmatrix} 1 \\ x_1 \\ \dots \\ x_d \end{bmatrix}$, $\sum_{i=1}^d w_i \cdot x_i + w_0 = w' \cdot x$

Apprentissage d'un perceptron linéaire

Data : $\{x_i, C(x_i)\}_{i=1,...,N}$

- 1 Initialisation de $w: w_1$;
- t = 1;
- 3 repeat
- Tirer aléatoirement un exemple : x_i ;
- if $C(\mathbf{x}_i)(w_t' \cdot \mathbf{x}_i) \ge 0$ then
- $w_{t+1} \leftarrow w_t$;
- $w_{t+1} \leftarrow w_t + \epsilon C(\mathbf{x}_i) \mathbf{x}_i;$
- t = t + 1;
- 10 until (critère d'arrêt satisfait);

Synthèse : Perceptron linéaire

Avantages

- Algorithme incrémental (adaptation aux nouvelles données)
- Algorithme simple
- Si données séparables alors garantie de convergence et de maximum global

Inconvénients

- Non-unicité de la solution (et non-déterminisme de l'algorithme)
- Convergence lente (quand d augmente)
- Si données non séparables : pas de convergence, pas de terminaison de l'algorithme.

SPLEX Statistiques pour la classification et fouille de donnée

Optimisation de l'hyper-plan séparateur

Lorsque les données sont séparables, il n'y a pas unicité de l'hyper-plan séparateur.

- H_3 ne sépare pas.
- H₁ et H₂ séparent.
- H₂ meilleur car plus grande marge.

Principes

- chercher le CLB de marge maximum (cf. Vapnik, 1965)
- Les points les plus proches (définissant la marge) sont appelés : vecteurs supports ou exemples critiques
- Ce classifieur minimise la valeur de la marge d'erreur probable maximum du CLB (cf. dimension de Vapnik-Chervonenkis).

SPLEX Statistiques pour la classification et fouille de données

Programme d'optimisation de la marge (1)

• Supposons que l'hyperplan ($w' \cdot x + w_0 = 0$) sépare correctement les données Π_a . On sait alors que :

$$\forall x \in D_a, C(x) (w' \cdot x + w_0) > 0$$

- Donc, $\exists B, \forall x \in D_a, C(x) \left(w' \cdot x + w_0\right) \geq B$.

 Il suffit de multiplier w par un scalaire pour augmenter arbitrairement B. Il faut donc plus contraindre w: pour tout vecteur support x, $\left|w' \cdot x + w_0\right| = 1$
- Or la distance de x à l'hyperplan est $\frac{|w' \cdot x + w_0|}{\|w\|}$. Donc la taille de la marge est $\frac{2}{\|w\|}$.

D'où le programme d'optimisation de (w, w_0)

Maximisation de la marge

$$\max_{w} \frac{2}{\|w\|}$$
 ou $\min_{w} \frac{1}{2} \|w\|^2$

$$\forall x \in D_a, C(x) (w' \cdot x + w_0) > 1$$

programmation quadratique (résolvable si d assez petit.)

Si d >> : Fonction de coût et contraintes convexes (Th. de Kuhn-Tucker) \Rightarrow Forme duale!

Optimisation de la marge (2) : Lagrangien

Lagrangien

Soit $\alpha = (\alpha_i)_{i \in \{1, \dots, N\}}$ les multiplicateurs de Lagrange (variables duales), avec $N = |\Pi_a|$

$$L(w, w_0, \alpha) = \frac{1}{2}w' \cdot w - \sum_{i=1}^{N} \alpha_i \left[C(x_i) \left(w' \cdot x_i + w_0 \right) - 1 \right]$$

Optimisation Lagrangienne

Le problème primal et sa formulation duale ont la même solution qui correspond a un point-selle du Lagrangien.

 w^* et w_0^* vérifie donc :

$$\frac{\partial L}{\partial w}(w^*, w_0^*, \alpha^*) = \frac{\partial L}{\partial w_0}(w^*, w_0^*, \alpha^*) = \frac{\partial L}{\partial \alpha}(w^*, w_0^*, \alpha^*) = 0$$

Conditions suffisantes pour l'optimum si le Lagrangien est convexe.

$$\frac{\partial L}{\partial w}(.) = 0 \Rightarrow w^* = \sum_{i=1}^N \alpha_i^* C(x_i) x_i$$

$$\frac{\partial L}{\partial w}(.) = 0 \Rightarrow w^* = \sum_{i=1}^{N} \alpha_i^* C(x_i) x_i \qquad \quad \frac{\partial L}{\partial w_0}(.) = 0 \Rightarrow \sum_{i=1}^{N} \alpha_i^* C(x_i) = 0$$

SPLEX Statistiques pour la classification et fouille de donnée

Optimisation de la marge (3) : programme dual

Maximisation du Lagrangien (simplifié)

$$\max_{\alpha} L(w^*, w_0^*, \alpha) = \sum_{i=1}^{N} \alpha_i^2 - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j C(x_i) C(x_j) (x_i' \cdot x_j)$$

$$\alpha \ge 0$$

$$\sum_{i=1}^{N} \alpha_i C(x_i) = 0$$

- ullet Seuls les vecteurs supports auront des $lpha_i^*>0\,!$ Problème quadratique de petite taille
- Le programme dual ne s'exprime que sur les données (N intervient mais pas d)!
- $w^* = \sum_{i=1}^N \alpha_i^* C(x_i) x_i \Rightarrow w^*$ uniquement en fonction des vecteurs supports!
- w_0^* ? $\forall i \in \{1, \dots, N\}, \alpha_i^* (C(x_i)(w^*' \cdot x_i + w_0^*) 1) = 0$

Équation de l'hyperplan séparateur en fonction de Π_a

$$0 = H(x) = w^{*'} \cdot x + w_0^* = \sum_{x_i \in \Pi_2} \alpha_i^* C(x_i) (x_i' \cdot x) + w_0^*$$

• Classification : $\forall x, \hat{C}(x) = \sigma(H(x))$ (seuls les vecteurs supports sont nécessaires!)

SPLEX Statistiques pour la classification et fouille de données

Perceptrons, méthodes à noyaux

Données *presque* linéairement séparables?

Éléments mal classés :

$$(C(x_j).(w'\cdot x_j+w_0)<0)$$

• Éléments ne respectant pas la marge :

$$|w'\cdot x_j+w_0|<1.$$

 \Rightarrow introduction de *slack variables* $\xi_i > 0$:

Modification du primal

$$\left| \begin{array}{l} \min_{w} \frac{1}{2} \|w\|^2 + M \sum_{i=1}^{N} \xi_i & (M \ge 0) \\ \forall x \in \Pi_a, C(x) \left(w' \cdot x + w_0 \right) \ge 1 - \xi_i \end{array} \right|$$

M = trade-off entre minimisation de la marge et minimisation des erreurs de classification.

Modification du dual

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} C(x_{i}) C(x_{j}) (x'_{i} \cdot x_{j})$$

$$\forall i, 0 \leq \alpha_{i} \leq M$$

$$\sum_{i=1}^{N} \alpha_{i} C(x_{i}) = 0$$

Données pas du tout linéairement séparable?

 $ld\acute{e}$: l'expression obtenue précédemment pour les SVM montre une méthode peu sensible à la dimension d de l'espace.

Redescription Φ

Modifier l'espace de description $\mathcal D$ en un espace de plus haute dimension (éventuellement infinie) doit permettre de rendre plus probable la séparation linéaire.

$$\begin{array}{c|ccc} \Phi: & \mathcal{D} & \longrightarrow & \Phi(\mathcal{D}) \subseteq \mathbb{R}^D \\ & x & \mapsto & \Phi(x) = \begin{bmatrix} \Phi_1(x) & & & \\ & \ddots & & \\ & \Phi_D(x) & & \end{bmatrix} \end{array}$$

 Φ est non linéraire et D est très grand (voir infini).

 $\Phi(\mathcal{D})$ est l'espace de redescription.

PLEX Statistiques pour la classification et fouille de données

10 / 10

LI B

Redescription Φ : un exemple

From : Learning with Kernels – B.Schölkopf and A.J.Smola – p29

- lacktriangle Dans l'espace (x_1,x_2) , les données ne sont pas linéairement séparables.
- Dans l'espace (z_1,z_2,z_3) avec la transformation $\Phi(x_1,x_2)=(x_1^2,x_2^2,\sqrt{2}\cdot x_1\cdot x_2)$, l'ellipse se transforme en hyperplan (parallèle à l'axe z_3), $\Phi(\Pi_a)$ est linéairement séparable.

SPLEX Statistiques pour la classification et fouille de données

Perceptrons, méthodes à noyaux

11 / 19

Optimisation dans l'espace $\Phi(\mathcal{D})$

 $\textbf{Remarque}: On \ peut \ utiliser \ cette \ redescription \ avec \ toute \ forme \ de \ classifieur. \ Par \ exemple:$

- Analyse discriminante linéaire
- Perceptrons
- Machine à vecteurs de support
- Analyse en composantes principales
- etc.

Nous nous intéressons ici au ${\sf SVM}.$

Redescription de SVM

$$\begin{cases} \alpha \leq 0 \\ \sum_{i=1}^{N} \alpha_{i} C(x_{i}) = 0 \end{cases}$$

$$\bullet 0 = H(x) = w^{*'} \cdot x + w_{0}^{*} = \sum_{x_{i} \in \Pi_{s}} \alpha_{i}^{*} C(x_{i}) \left(\Phi(x_{i})' \cdot \Phi(x) \right) + w_{0}^{*}$$

 $(\Phi(.)'\cdot\Phi(.))$ risque d'être très long à calculer!

(si D >> ou si Φ est une fonction compliquée ...)

Fonction noyau et Kernel trick

➡ Définition (Fonction Noyau)

$$K: \left| egin{array}{ccc} \mathcal{D} \times \mathcal{D} & \longrightarrow & \mathbb{R} \\ (x,y) & \mapsto & (\Phi(x)' \cdot \Phi(y)) \end{array} \right| ext{ est le noyau (kernel) de } \Phi$$

SVM avec kernel

$$\bullet 0 = H(x) = w^{*'} \cdot x + w_0^* = \sum_{x_i \in \Pi_a} \alpha_i^* C(x_i) K(x_i, x) + w_0^*$$

Propriétés de K(.,.)

- K est continue
- K est symétrique : K(x, y) = K(y, x)
- K est semi-définie positive : $\forall (x_i)_{\mathcal{I}} \in \mathcal{D}^{\mathcal{I}}, \forall (c_i)_{\mathcal{I}} \in \mathbb{R}^{\mathcal{I}}, \sum\limits_{(i,j) \in \mathcal{I}^2} c_i c_j K(x_i,x_j) \geq 0$

La fonction noyau K est une mesure de similarité.

PLEX Statistiques pour la classification et fouille de donnée

Perceptrons, méthodes à noyaux

Fonction noyau et Kernel trick (2)

K facilite le calcul de l'optimum du problème dual mais on doit toujours passer par Φ pour calculer K.

Théorème (Mercer)

Si $K: \mathcal{D} \times \mathcal{D} \longrightarrow \mathbb{R}$ est symétrique et semi-définie positive alors $\exists \Phi: \mathcal{D} \longrightarrow \mathbb{R}^D$ telle que $K(x, x') = \Phi(x)' \cdot \Phi(x')$.

On peut alors utiliser K comme fonction noyau.

Ce n'est pas un théorème constructif : on ne connait pas Φ .

- On peut donc se passer de Φ si on connaît K vérifiant les bonnes hypothèses.
- SVM avec noyau travaille implicitement dans l'espace de redescription.

Démarche :

- choisir une mesure de similarité sémantiquement dépendante du domaine,
- vérifier qu'elle possède les propriétés nécessaires (symétrie, semi-définie positive).
 - construire et résoudre le problème duale en utilisant cette mesure si OK.

SPLEX Statistiques pour la classification et fouille de données

Classification à l'aide de noyau

Les seuls α_i^* non nuls sont ceux des vecteurs supports (exemples critiques) :

$$\widehat{C}(x) = \sigma \left(\sum_{x_i \in \mathsf{SupportVectors}(\Pi_a, \mathbf{w}^*)} \alpha_i^* C(x_i) K(x_i, x) + w_0^* \right)$$

Générations de fonctions noyaux

Propriétés

Avec $\mathcal{D} \subset \mathbb{R}^d$,

- - $\bullet \quad K = K_1 + K_2 \text{ est un noyau}$

 - $\forall p(x)$ polynôme à coefficients positifs, $K(x,y) = p(K_1(x,y))$ est un noyau
 - $K(x,y) = e^{K_1(x,y)} \text{ est un noyau }$
- $\forall f: \mathcal{D} \longrightarrow \mathbb{R}, K(x,y) = f(x) \cdot f(y)$ est un noyau

$$K(x,y) = K_3(\varphi(x), \varphi(y))$$
 est un noyau

• $\forall B$ matrice $d \times d$ symétrique, semi-définie positive,

$$K(x, y) = x' \cdot B \cdot y$$
 est un noyau

SPLEX Statistiques pour la classification et fouille de données

Perceptrons, méthodes à noyaux

16 / 19

Exemple

Proposition

$$K(x,y) = e^{-\frac{\|x-y\|^2}{\sigma^2}}$$
 est un noyau.

Démonstration :

- $\|x y\|^2 = \|x\|^2 + \|y\|^2 2(x' \cdot y)$
- $\bullet \Rightarrow K(x,y) = e^{\frac{-\|x\|^2}{\sigma^2}} \cdot e^{\frac{-\|y\|^2}{\sigma^2}} \cdot e^{\frac{2(x'\cdot y)}{\sigma^2}}$
- ullet mais alors $K(x,y)=K_{a}(x,y)\cdot K_{b}(x,y)$ avec
 - $K_a(x,y)=e^{\frac{-\|x\|^2}{\sigma^2}}\cdot e^{\frac{-\|y\|^2}{\sigma^2}}$: noyau par la propriété ②!
 - $K_b(x,y) = e^{\frac{2(x-y)}{\sigma^2}}$
 - I_n symétrique, semi-définie positive $\Rightarrow x' \cdot I_n \cdot y$ est un noyau (propriété •)
 - $\Rightarrow \frac{2(x' \cdot y)}{\sigma^2}$ est un noyau (propriété 1.2)
 - $\Rightarrow K_b(x, y)$ est un noyau (propriété 1.5)
- $\Rightarrow K(x,y) = K_a(x,y) \cdot K_b(x,y)$ est un noyau (propriété **1.3**)

SPLEX Statistiques pour la classification et fouille de données

Perceptrons, méthodes à noyaux

17 / 19

Reconstruction de Φ

Par le théorème de Mercer, si K(.,.) vérifie les bonnes propriétés, Φ n'a jamais à être explicitée... Mais pour le fun (et la compréhension) ...

Rappel : Φ est telle que $K(x, y) = (\Phi(x)' \cdot \Phi(y))$

Exemple de reconstruction de Φ

 $K_n(x,y) = (x' \cdot y)^n$ est un noyau.

Trouver Φ_n ?

