Solving Recurrence Relations

A recurrence relation is an equation that recursively defines a sequence where the next term is a function of the previous terms (Expressing Fn as some combination of Fi with i < n).

How to solve linear recurrence relation Homogeneous Recurrence Relations

- Suppose, a two ordered linear recurrence relation is $F_n = AF_{n-1} + BF_{n-2}$ — where A and B are real numbers.
- The characteristic equation for the above recurrence relation is $x^2 Ax B = 0$
- Three cases may occur while finding the roots –
- Case 1 If this equation factors as $(x-x_1)(x-x_1)=0$ and it produces two distinct real roots \mathcal{X}_1 and \mathcal{X}_2 , then $F_n=ax_1^n+bx_2^n$ is the solution. [Here, a and b are constants]
- Case 2 If this equation factors as $(x-x_1)^2$ and it produces single real root x_1 , then $F_n=ax_1^n+bnx_1^n$ is the solution.
- Case 3 If the equation produces two distinct complex roots, x_1 and x_2 in polar form $x_1 = r \angle \Theta$ and $x_2 = r \angle (-\Theta)$, then following is the solution

$$F_n = r^n (a\cos(n\theta) + b\sin(n\theta))$$

Problem 1

Solve the recurrence relation $F_n = 5F_{n-1} - 6F_{n-2}$ where $F_0 = 1$ and $F_1 = 4$

Solution

• The characteristic equation of the recurrence relation is $-x^2-5x+6=0$

So.
$$(x-3)(x-2) = 0$$

Hence, the roots are –

$$x_1 = 3$$

and
$$x_2 = 2$$

The roots are real and distinct. So, this is in the form of case 1

Hence, the solution is –

$$F_n = ax_1^n + bx_2^n$$

- Here, $F = a3^n + b2^n$ (As x1=3 and x2=2)
- Therefore,

$$1 = F_0 = a3^0 + b2^0 = a + b$$
$$4 = F_1 = a3^1 + b2^1 = 3a + 2b$$

- Solving these two equations, we get a=2 and b=-1
- Hence, the final solution is –

$$F_n = 2.3^n + (-1).2^n = 2.3^n - 2^n$$

Problem 2

Solve the recurrence relation $F_n = 10F_{n-1} - 25F_{n-2}$ where $F_0 = 3$ and $F_1 = 17$

Solution

- The characteristic equation of the recurrence relation is $x^2 10x 25 = 0$
- So $(x-5)^2 = 0$
- Hence, there is single real root $x_1 = 5$
- As there is single real valued root, this is in the form of case 2
- Hence, the solution is $F_n = ax_1^n + bnx_1^n$
- $3 = F_0 = a.5^0 + b.5^0$ & $17 = F_1 = a.5^1 + b.1.5^1$
- Solving these two equations, we get a=3
- and b=2/5
- Hence, the final solution is $F_n = 3.5^n + (2/5).n.2^n$

Problem 3

Solve the recurrence relation $F_n = 2F_{n-1} - 2F_{n-2}$ where $F_0 = 1$ and $F_1 = 3$

- Solution
- The characteristic equation is $x^2 2x 2 = 0$ Hence, the roots are $-x_1 = 1+i$ and $x_2 = 1-i$
- In polar form, $x_1 = r \angle \theta$ And $x_2 = r \angle (-\theta)$ where $r = \sqrt{2}$ and $\theta = \frac{\pi}{4}$
- The roots are imaginary. So, this is in the form of case 3.

• Hence,
$$F_n = (\sqrt{2})^n (a\cos(n.\Pi_4) + b\sin(n.\Pi_4))$$

$$1 = F_0 = (\sqrt{2})^0 (a\cos(0.\Pi_4) + b\sin(0.\Pi_4)) = a$$

$$3 = F_1 = (\sqrt{2})^1 (a\cos(1.\Pi_4) + b\sin(1.\Pi_4)) = \sqrt{2}(a/\sqrt{2} + b\sqrt{2})$$

Solving these two equations we get a=1 and b=2

Hence, the final solution is –

$$F_n = (\sqrt{2})^n (\cos(n. \frac{\Pi}{4}) + 2\sin(n. \frac{\Pi}{4}))$$

Example: Fibonacci sequence

$$f_n = f_{n-1} + f_{n-2}$$

$$f_0 = 0, \quad f_1 = 1$$

Has solution:

$$f_n = \lambda_1 r_1^n + \lambda_2 r_2^n$$

Characteristic roots:

$$r_1 = \frac{1 + \sqrt{5}}{2} \qquad r_2 = \frac{1 - \sqrt{5}}{2}$$

$$\lambda_1 = \frac{f_1 - f_0 r_2}{r_1 - r_2} = \frac{1}{\sqrt{5}}$$

$$\lambda_2 = \frac{f_0 r_1 - f_1}{r_1 - r_2} = -\frac{1}{\sqrt{5}}$$

$$f_{n} = \lambda_{1} r_{1}^{n} + \lambda_{2} r_{2}^{n}$$

$$= \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^{n} - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^{n}$$

Non-homogeneous Recurrence Relations

$$F_n = AF_{n-1} + BF_{n-2} + f(n)$$
 where $f(n)
eq 0$

Its associated homogeneous recurrence relation is $F_n = AF_{n-1} + BF_{n-2}$

The solution (a_n) of a non-homogeneous recurrence relation has two parts.

First part is the solution (a_h) of the associated homogeneous recurrence relation and the second part is the particular solution (a_t) .

$$a_n = a_h + a_t$$

Solution to the first part is done using the procedures discussed in the previous section.

To find the particular solution, we find an appropriate trial solution.

Let $f(n)=cx^n$; let $x^2=Ax+B$ be the characteristic equation of the associated homogeneous recurrence relation and let x_1 and x_2 be its roots.

- lacksquare If $x
 eq x_1$ and $x
 eq x_2$, then $a_t=Ax^n$
- $^{ extsf{ iny III}}$ If $x=x_1$, $x
 eq x_2$, then $a_t=Anx^n$
- $^{\scriptscriptstyle lacksquare }$ If $x=x_1=x_2$, then $a_t=An^2x^n$

$$a_n = 5a_{n-1} - 6a_{n-2} + 7^n$$
.

- This is a linear nonhomogeneous recurrence relation. The solutions of its associated
- homogeneous recurrence relation $a_n = 5a_{n-1} 6a_{n-2}$

Are
$$a_n^{(h)} = \alpha_1 \cdot 3^n + \alpha_2 \cdot 2^n$$
, where $\alpha 1$ and $\alpha 2$ are constants

• Because $F(n)=7^n,$ a reasonable trial solution is $a_n^{(p)}=C\cdot 7^n,$

where C is a constant. Substituting the terms of this sequence into the recurrence relation implies that $C \cdot 7^n = 5C \cdot 7^{n-1} - 6C \cdot 7^{n-2} + 7^n$.

- Factoring out 7^{n-2} this equation becomes 49C = 35C 6C + 49,
- which implies that 20C = 49 C = 49/20.
- Hence, $a_n^{(p)} = (49/20)7^n$ Is a particular solution,
- All solutions are of the form.

$$a_n = \alpha_1 \cdot 3^n + \alpha_2 \cdot 2^n + (49/20)7^n$$

Counting Functions How many functions are there from a set with *m* elements to a set with *n* elements?

- Solution: A function corresponds to a choice of one of the n elements in the codomain for each of the m elements in the domain. Hence, by the product rule there are n, n, n, ... n = n^m functions from a set with m elements to one with n elements.
- For example, there are 5³ = 125 different functions from a set with three elements to a set with five elements.

Counting One-to-One Functions How many one-to-one functions are there from a set with *m* elements to one with *n* elements?

- First note that when m > n there are no one-to-one functions from a set with m elements to a set with n elements.
- Now let $m \le n$. Suppose the elements in the domain are $a1, a2, \ldots, am$. There are n ways to choose the value of the function at a1. Because the function is one-to-one, the value of the function at a2 can be picked in n-1 ways (because the value used for a1 cannot be used again).
- In general, the value of the function at ak can be chosen in n k + 1 ways.
- By the product rule, there are $n(n-1)(n-2)\cdots(n-m+1)$ one-to-one functions from a set with m elements to one with n elements.
- For example, there are $5 \cdot 4 \cdot 3 = 60$ one-to-one functions from a set with three elements to a set with five elements.

Total number of graphs in which no one vertex is isolated

