Recent developments for MGCAMB $\,$

Alex Zucca^{1,*}

¹Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada (Dated: October 3, 2018)

In the following notes we describe the new MGCAMB patch.

^{*} azucca@sfu.ca

I. INTRODUCTION

II. THE STRUCTURE OF THE MODIFICATION

III. IMPLEMENTATION OF THE MODIFIED EQUATION

A. Background equations

B. Linear Scalar Perturbations

1. μ - γ parametrization

The conformal Newtonian gauge modified equations are

$$k^{2}\Psi = -\mu(a,k)4\pi Ga^{2} \left[\rho\Delta + 3(\rho + P)\sigma\right],\tag{1}$$

$$k^{2}[\Phi - \gamma(a,k)\Psi] = \mu(a,k)12\pi Ga^{2}(\rho + P)\sigma, \tag{2}$$

where the Newtonian gauge potentials Ψ and Φ are related to the synchronous gauge potentials η and h through

$$\Psi = \dot{\alpha} + \mathcal{H}\alpha,\tag{3}$$

$$\Phi = \eta - \mathcal{H}\alpha. \tag{4}$$

Here, $\alpha = (\dot{h} + 6\dot{\eta})/2k^2$, $\mathcal{H} = \dot{a}/a$ and overdots represent derivatives w.r.t. the conformal time τ . CAMB works in synchronous gauge so we have to convert the equations (1) and (2) in the synchronous gauge. To do so we use the equations (3) and (4) in the modified Einstein equations to obtain the variables $\mathcal{Z} \equiv \dot{h}/2k$ and $\sigma^* \equiv k\alpha$. We start by computing α ,

$$\alpha = \left\{ \eta + \frac{\mu a^2}{2k^2} \left[\gamma \rho \Delta + 3(\gamma - 1)(\rho + P)\sigma \right] \right\} \frac{1}{\mathcal{H}},\tag{5}$$

where we set $8\pi G \equiv 1$ and where the gauge invariant quantity $\rho \Delta$ is defined as

$$\rho \Delta = \rho \delta + \frac{3\mathcal{H}}{k} \rho (1+w)\theta. \tag{6}$$

With the quantity α at hand we can easily compute the quantity σ^* according to

$$\sigma^* \equiv k\alpha. \tag{7}$$

The next step is to obtain \dot{h} by subtracting $\dot{\eta}$ from α . We first rewrite equation (5) as

$$\eta = \mathcal{H}\alpha - \frac{\mu a^2}{2k^2} \left\{ \gamma \rho \Delta + 3(\gamma - 1)\rho(1 + w)\sigma \right\}
= \mathcal{H}\alpha - \frac{\mu a^2}{2k^2} \Gamma,$$
(8)

where we defined

$$\Gamma = \gamma \rho \Delta + 3(\gamma - 1)\rho(1 + w)\sigma. \tag{9}$$

Taking the derivative w.r.t τ of the equation for η we obtain

$$\dot{\eta} = \dot{\mathcal{H}}\alpha + \mathcal{H}\dot{\alpha} - \frac{\dot{\mu}}{2k^2}\Gamma + \frac{\mu}{2k^2}\dot{\Gamma}.$$
 (10)

We now need to compute the quantity $\dot{\Gamma}$. We can clearly see that we will need to evaluate the quantity $(\rho\Delta)$. To do so we use the energy-momentum tensor conservation equations (in synchronous gauge),

$$\dot{\delta} = -(1+w)\left(\theta + \frac{\dot{h}}{2}\right) - 3\mathcal{H}\left(\frac{\delta P}{\delta \rho} - w\right)\delta,\tag{11}$$

$$\dot{\theta} = -\mathcal{H}(1 - 3w)\theta - \frac{\dot{w}}{1 + w}\theta + \frac{\delta P/\delta \rho}{1 + w}k^2\delta - k^2\sigma,\tag{12}$$

and combine them to obtain

$$(\rho\Delta)^{\cdot} = -3\mathcal{H}\rho\Delta - (1+w)\rho\theta \left[1 + \frac{3}{k^2}(\mathcal{H}^2 - \dot{\mathcal{H}})\right] - 3\mathcal{H}\rho(1+w)\sigma - (1+w)\rho k\mathcal{Z}. \tag{13}$$

Notice that the equations above hold for uncoupled fluids or for the overall fluid in the Universe. In our case we have uncoupled CDM, massless neutrinos and massive neutrinos, while baryons and photons are interacting. However the photon-baryon fluid is uncoupled and hence satisfies the equations above. Two more comments on the equation (13). First we can rewrite the term $\mathcal{H}^2 - \dot{\mathcal{H}}$, using the Friedmann equations,

$$\mathcal{H}^2 = \frac{\rho_{\text{tot}} a^2}{3},\tag{14}$$

$$\dot{\mathcal{H}} = -\frac{1}{6}\rho_{\text{tot}}a^2(1+3w_{\text{tot}}),\tag{15}$$

as

$$\mathcal{H}^2 - \dot{\mathcal{H}} = \frac{\rho_{\text{tot}} a^2}{2} (1 + w_{\text{tot}}).$$
 (16)

Note the distinction between w and w_{tot} : the first comes from the contribution of the perturbed quantities only, while the second one takes into account the contributions of Dark Energy as well. Second, the quantity Z, that we are trying to evaluate from $\dot{\eta}$, can be eliminated using $kZ = k^2\alpha - 3\dot{\eta}$.

Another thing to notice is that $\dot{\alpha}$ can be eliminated from equation (10) using the Poisson equation

$$\dot{\alpha} = -\mathcal{H}\alpha - \frac{\mu a^2}{2k^2} \left[\rho \Delta + 3\rho(1+w)\sigma\right],\tag{17}$$

Using the information provided above one can obtain the expression for $\dot{\eta}$,

$$\dot{\eta} = \frac{1}{2} \frac{a^2}{\frac{3}{2} \rho a^2 \mu \gamma (1+w) + k^2} \left\{ \rho (1+w) \mu \gamma \theta \left[1 + \frac{3}{2} \frac{\rho_{\text{tot}} a^2}{k^2} (1+w_{\text{tot}}) \right] + \rho \Delta \left[\mathcal{H} \mu (\gamma - 1) - \dot{\mu} \gamma - \mu \dot{\gamma} \right] \right. \\
+ 3\mu (1-\gamma) \rho (1+w) \dot{\sigma} + k^2 \alpha \left[\rho \mu \gamma (1+w) - 2 \left(\frac{\mathcal{H}^2 - \dot{\mathcal{H}}}{a^2} \right) \right] \\
+ 3(1+w) \rho \sigma \left[\mathcal{H} (\gamma - 1) (3w+2) \mu - \dot{\mu} (\gamma - 1) - \dot{\gamma} \mu + \mu (1-\gamma) \frac{\dot{w}}{1+w} \right] \right\}.$$
(18)

CAMB uses different variables, namely the fluxes q and the anisotropic stress defined as

$$(1+w)\theta = kq, \quad (1+w)\sigma = \Pi. \tag{19}$$

The equation for $\dot{\eta}$ can be written in terms of the variables q and Π ,

$$\dot{\eta} = \frac{1}{2} \frac{a^2}{\frac{3}{2} \rho a^2 \mu \gamma (1+w) + k^2} \left\{ \rho \mu \gamma k q \left[1 + \frac{3}{2} \frac{\rho_{\text{tot}} a^2}{k^2} (1+w_{\text{tot}}) \right] + \rho \Delta \left[\mathcal{H} \mu (\gamma - 1) - \dot{\mu} \gamma - \mu \dot{\gamma} \right] \right. \\
\left. + 3\mu (1-\gamma) \rho \dot{\Pi} + k^2 \alpha \left[\rho \mu \gamma (1+w) - 2 \left(\frac{\mathcal{H}^2 - \dot{\mathcal{H}}}{a^2} \right) \right] + 3\rho \Pi \left[\mathcal{H} (\gamma - 1) (3w + 2)\mu - \dot{\mu} (\gamma - 1) - \dot{\gamma} \mu \right] \right\}.$$
(20)

2. μ - Σ parametrization