Architettura degli elaboratori

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1	Introduzione			
	1.1	Hardware	2	
	1.2	Campionamento dei dati	2	
2	Sist	emi di codifica	3	
	2.1	Codifica di informazioni non numeriche	3	
	2.2	Numeri interi assoluti	3	
	2.3	Numeri interi relativi	4	
		2.3.1 Codifica a modulo $+$ segno $\dots \dots \dots \dots \dots$	4	
		2.3.2 Codifica in complemento a 2		
3	Nui	meri razionali a virgola mobile	6	
	3.1	Divisione tra bit con mantissa e base diversa	6	

1 Introduzione

L'informatica è nata per la risoluzione i problemi di calcolo, in particolare quelli di calcolo numerico. Per questo motivo i primi computer erano macchine che eseguivano operazioni aritmetiche. Per risolvere questi problemi si usano degli algoritmi che sono una sequenza di istruzioni semplici che portano poi a risolvere problemi di complessità variabile. Anche gli algoritmi hanno una complessità che deve essere adeguata alla risoluzione del problema.

1.1 Hardware

Un algoritmo deve essere trasformato in un processo di calcolo automatico, quindi deve essere implementato tramite hardware. Ci sono due tipi di hardware:

- Embedded che è un hardware dedicato ad un singolo compito. Ad esempio il microonde.
- General purpose non si sa l'utilizzo finale, quindi ha funzionalità generali ampliate dal software installato. L'hardware general purpose è programmabile attraverso il software. Un esempio è il PC.

In base al tipo di hardware l'algoritmo viene implementato in diversi modi:

- Algoritmo -> Software: Tramite un linguaggio di programmazione
- Algoritmo → Hardware embedded: Tramite linguaggi di basso livello come C, Assembly o il sistema operativo.
- Algoritmo \rightarrow Hardware: Tramite sintesi logica

1.2 Campionamento dei dati

Ogni cosa nel mondo è rappresentabile da funzioni continue nel tempo f(t), ma con risorse finite è impossibile rappresentare infiniti dati, bisogna quindi campionarli.

Figura 1: Funzione casuale continua nel tempo

Per campionare la funzione nella figura 1.2 bisogna scegliere un intervallo di tempo Δt e prendere un valore della funzione ogni Δt . In questo caso le linee verticali rappresentano il **campionamento**, mentre quelle orizzontali reppresentano la **discretizzazione o quantizzazione**. La linea rossa è una spezzata approssimata della funzione continua, infatti per il teorema di Shannon:

Teorema 1.1

Deciso il grado di errore da voler compiere, esistono una precisa frequenza di campionamento e un intervallo di discretizzazione che garantiscono quell'errore.

Il sistema di calcolo è ora diventato digitale, cioè elabora i segnali numerici in ingresso per produrre segnali numerici in uscita.

Figura 2: Dalla realtà fisica al sistema digitale

2 Sistemi di codifica

Ogni sistema digitale lavora in base binaria, quindi entrano N bit ed escono M bit. I bit in uscita devono essere codificati per realizzare delle informazioni. Ci sono 2 tipi di informazioni:

- Informazioni intelleggibili: sono già chiare agli esseri umani, come un testo scritto.
- Informazioni non intelleggibili: hanno bisogno di macchine per essere riprodotte, come le casse per l'audio.

2.1 Codifica di informazioni non numeriche

Ogni informazione deve avere un codice univoco in modo che il sistema digitale non possa sbagliare a decodificarla. Date M informazioni si ricavano $n = log_2(M)$ codici disponibili per rappresentarle.

Esempio 2.1

 $Con\ M = 7\ informazioni:$

- $n = log_2(7) \approx 3 \ bit$
- $2^3 = 8$ codici disponibili

2.2 Numeri interi assoluti

I numeri interi assoluti rappresentano solo i valori da 0 a $2^n - 1$, dove n è il numero di bit disponibile.

La codifica da base decimale a base binaria prende il nome di ${f codifica}$ a ${f modulo}$

Esempio 2.2

Si deve convertire il numero 57₁₀ in base binaria

$$n = log_2(57) = 6 \ bit \ (minimi)$$

$$\sum_{i=1}^{n-1} 2^n - 1 = 63 \ (codici \ massimi)$$

Si eseguono i seguenti passaggi:

- 1. Si sottraggono le potenze di 2 partendo da n-1.
 - Se la potenza 2ⁱ è minore o uguale del numero, allora si moltiplica per 1.
 - Se la potenza 2ⁱ è maggiore del numero, allora si moltiplica per 0
- 2. Le sottrazioni continuano fino a quando si giunge a 0.

$$57_{10} - 1 \times 2^5 = 25_{10} - 1 \times 2^4 = 9_{10} - 1 \times 2^3 = 1_{10} - 0 \times 2^2 = 1_{10} - 0 \times 2^1 = 1_{10} - 1 \times 2^0$$

2.3 Numeri interi relativi

La codifica più ovvia per i numeri interi relativi è la codifica a $\mathbf{modulo} + \mathbf{segno}$. Tuttavia rappresenta varie problematiche, per cui si preferisce usare la codifica in $\mathbf{complemento}$ a $\mathbf{2}$.

2.3.1 Codifica a modulo + segno

Intervallo:
$$-2^{n-1} \le N \le 2^{n-1} - 1$$

Il segno si rappresenta con un bit, 0 per il positivo e 1 per il negativo. Il bit più significativo è il bit del segno, mentre i bit meno significativi rappresentano il modulo.

1 bit:	7 bit: modulo
segno \pm	

Considerando l'esempio 2.2 si hanno le seguenti rappresentazioni:

$$+57_{10} = \mathbf{0}|111001_2$$

 $-57_{10} = \mathbf{1}|111001_2$

Sorge però un problema quando si vuole rappresentare il valore 0_{10} , che in binario risulterebbe:

$$+0_{10} = \mathbf{0}|000000_2$$

 $-0_{10} = \mathbf{1}|000000_2$

Inoltre le somme che passano dal positivo al negativo e viceversa risultano errate.

2.3.2 Codifica in complemento a 2

Intervallo:
$$-2^{n-1} \le N \le 2^{n-1} - 1$$

La codifica in complemento a 2 rimuove tutti i problemi della codifica in modulo + segno. Questa codifica infatti rende le somme molto più semplici. La somma facile infatti è l'obiettivo di questa codifica e parte dell'idea di trovare la codifica di -1, pertanto si cerca di formulare -1+1=0.

Obiettivo	Risultato
$????_{2} + 0001_{2} =$	$ \begin{array}{l} 1111_2 + \\ 0001_2 = \end{array} $
$0000_2 =$	0000_{2}

Se si considera il numero di bit n=4, allora l'intervallo di valori è $-2^3 \le N \le 2^3-1$:

$$\begin{array}{c|cccc} 0_{10} = 0000_2 & -1_{10} = 1111_2 \\ 1_{10} = 0001_2 & -2_{10} = 1110_2 \\ 2_{10} = 0010_2 & -3_{10} = 1101_2 \\ 3_{10} = 0011_2 & -4_{10} = 1100_2 \\ 4_{10} = 0100_2 & -5_{10} = 1011_2 \\ 5_{10} = 0101_2 & -6_{10} = 1010_2 \\ 6_{10} = 0110_2 & -7_{10} = 1001_2 \\ 7_{10} = 0111_2 & -8_{10} = 1000_2 \end{array}$$

I valori nel complemento a 2 ciclano, quindi se si somma 1 a 7 si ottiene -8.

Esempio 2.3

Sottrazione con il complemento a 2: 43 - 17 = 25

$$n=7\ bit$$

1. Per prima cosa si prende il valore assoluto del numero negativo 17₁₀ e si converte in binario.

$$17_{10} = 0010001_2$$

2. Si inverte il numero trovato.

$$!(0010001_2) = 11011110_2 = -18_{10}$$

3. Si somma 1 al numero trovato.

$$\begin{array}{c} 1101110 + \\ \underline{0000001 =} \\ 1101111 \\ 1101111_2 = -17_{10} \end{array}$$

5

4. Si somma il numero trovato al numero positivo.

$$0010001 + 1101111 = 10011010$$

5. Il risultato ottenuto è:

Si osserva che c'è un bit in più rispetto a quelli disponibili (quello in grassetto), vuol dire che risulta in overflow^a, quindi si scarta il bit più significativo e si ottiene:

$$0011010_2 = 26_{10}$$

che è il risultato corretto.

 $^a{\rm Indica}$ il "traboccamento", cioè se viene superato il limite massimo l'overfflow è un errore, non perchè sia sbagliata la somma, ma perchè il risultato non è codificabile con il numero di bit disponibili

3 Numeri razionali a virgola mobile

Gli standard della virgola mobile sono: IEEE 754/85 e IEEE 754/19. Questo standard è stato rivisto molte volte e ora viene usato da tutte le codifiche per i numeri in virgola mobile.

Il numero viene separato in due parti: Mantissa (M) e una base (b) con un esponente (e).

$$N = + -M * b^{+-E}$$

Questo permette di dividere il numero in modo da poter scegliere quanti bit dedicare alla mantissa e quanti all'esponente.

Ci sono 2 problemi però:

- bisogna scegliere la base in cui fare la codifica (base 2)
- divisione bit tra M e E (23 M, 8 E, 1 S)
- rappresentazione univoca (1.0...)
- bisogna trovare un modo per rappresentare gli errori

Un numero in base 10 si può rappresentare in più modi> $120_{10}=12*10^1=120*10^0=1.20*10^2$

Se la mantissa e la base sono in base 2 le operazioni tra numeri sono agevolate.

0110 * 2 = 1100 è uno shift a sinistra in binario.

1010/2 = 0101 è uno shift a destra in binario.

3.1 Divisione tra bit con mantissa e base diversa

Un numero è rappresentabile in 2 modi:

- 32 bit (singola precisione / float)
- 64 bit (doppia precisione / double)

Prendiamo in considerazione 32 bit, ora dobbiamo decidere quanti bit dedicare alla mantissa e alla base

```
2^{+-E}
|E| = 4bit = 2^{+7}
5bit = 2^{+15}
6bit = 2^{+31}
7bit = 2^{+63}
8bit = 2^{+127}
```

L'impatto dei bit sull'esponente è doppiamente esponenziale, quindi cresce tantissimo. Tra tutti i bit a disposizione ne dedichiamo 8 all'esponente, 32-8=24 bit rimanenti, quindi 23 bit vengono assegnati alla mantissa e 1 bit viene assegnato al segno.

Per la rappresentazione univoca la mantissa si codifica in virgola fissa. Cioè si parte da una mantissa con un punto fisso e dividendo o moltiplicando (shift) si può spostare la virgola per arrivare alla forma 1.00000... e questa forma è la rappresentazione univoca. Questa operazioe si chiama normalizzazione e visto che la rappresentazione è sempre la stessa l'1. non viene rappresentato, quindi viene inserito nella mantissa solo tutto ciò che viene dopo l'1. .

Se lavorassimo con un esponente in complemento a due ci sarebbe il seguente problema: 00000000000...0 = 1 * 2^0 = 1

Allora si è deciso di codificare l'esponente in Eccesso 127. Quindi per rappresentare lo zero si usa come esponente il minore numero possibile: $1*2^{127}=0$ Per codificare i numeri si somma 127 al numero desiderato e visto che i numeri possibili ora vanno da -127 a +127 se codifichiamo il risultato in modulo avremo dei numeri da 0 a 256.

```
Esempio 3.1

1 01110111 0110...0

M = -(1 + 1/4 + 1/8) * 2 = -(11/8) * 2^{E}

E = (1 + 2 + 4 + 16 + 32 + 64) - 127 = 119 - 127 = -8

N = -11/8 * 2^{-8}
```

```
Esercizio 3.1 Codifica + (4 + \frac{1}{2} + \frac{1}{16}) * 2^{+34}
```

- $0\ 0000000000...0 = +0$
- $1\,00000000\,0...0 = -0$

Quando l'esponente è tutto 1 e la mantissa tutta 0 allora equivale a infinito + o - in base al primo bit. Se invece la mantissa è diversa da 0 con esponente tutti 1 allora rappresenta un errore NaN.

Somma: