

Introduction to Odyssey

Bob Freeman, PhD RC Facilitator XSEDE Campus Champion

> <u>robert_freeman@harvard.edu</u> @DevBioInfoGuy

Overview

- 1. All About Odyssey
- 2. Typical Workflow
 - a. Login & Access
 - b. Filesystems & Storage
 - c. Transferring Files
 - d. Loading Software
 - e. Login/Interactive Nodes
 - f. Choosing Appropriate Resources
 - g. Submitting/Controlling Jobs

- 3. Troubleshooting
- 4. Common Pitfalls
- 5. Getting Help

What is Odyssey?

FAS Research Computing

RC's premier resource is the Odyssey cluster. What is a cluster?

A collection of various types of hardware:

A cluster of tightly interconnected machines with identical hardware

Several high-powered, special purpose machines
 Large amount of shared storage
 Miscellaneous supporting cast of other servers

And some software:

 User and group management: separation of resources

• **SLURM** (Simple Linux/Unix Resource Manager)

• Linux OS (CentOS 6)

It's a **shared** system -- you have company...

Compute Nodes

Key definitions...

The typical hardware unit is called a **node**

- Same stuff that's in a desktop/laptop: CPUs, Memory, Hard drive, Network cards
- But more powerful and more of them compared to a typical desktop
- Nodes are individual hosts with distinct names. E.g...
 - rclogin03: one of the login nodes, located in Boston area
 - holy2a18208: one of the compute nodes, located in Holyoke, MA

The basic computational unit in a cluster is a **CPU core**

- Each core runs one process, a average job
- Most compute nodes have 64 cores arranged on 4 CPUs (16 cores/CPU)
- Thus, most nodes run 64 batch job processes

Key definitions...

A **typical compute node** is configured:

- 64 cores
- 256 GB RAM, or ~4 GB RAM/core
- 2 network cards:

 Infiniband (intraconnect)
 & xGb connections (interconnect)
- Small, local hard disk/SSD for boot and local /scratch

All cores on a node share all other resources of the node: memory, network bandwidth, etc.

Thus, how you use these resources affects the other 63 jobs on that compute node

What is Odyssey?

Compute nodes/disk are located in 3 data centers:

60 Oxford Street

Topology may effect the efficiency of work

Typical Workflow

Login Place Files Load Software Choosing Resources Interactive/Submit Jobs

- 1. Login in to Odyssey
 - a. Land on a login (head) node, appropriate for light work only
- 2. Copy/upload/download some files
- 3. Load appropriate software
- 4. Get interactive session
- 5. Test your program/script interactively to ensure it runs properly
- 6. Test run in batch: create batch file & submit to SLURM
 - a. Continue working in the foreground while waiting for results
- 7. Scale up as necessary (10s, 100s, 1000s)
 - a. With caveats: proper file placement, # cores, etc.

Login & Access

Login Place Files Load Software Choosing Resources Interactive/Submit Jobs

- Use your RC credentials for:
 - Instrument Windows machines
 - VPN
 - File transfer clients
 - Mounting disk shares
 - Terminal sessions to Odyssey
- OpenAuth 2-factor authentication (2FA) required for VPN & Odyssey sessions (file transfer & terminal)
- Account locks automatically if 5 failed login attempts, and auto unlocks after 10 minutes
- Reset your own password on RC portal
- If you are switching labs, please let us know, as we'll need to change your access groups

Account credentials should not be shared!

Using RC services in an explicit acceptance of the University Security Policy http://security.harvard.edu/book/information-security-policy

Login & Access

Login Place Files

Load Software

Choosing Resources

Interactive/Submit Jobs

Recommended SSH clients:

- Terminal on Mac/Linux
- Putty on PC
- X11: Xquartz (Mac) or Xming (PC)

ssh rcusername@login.rc.fas.harvard.edu*

Or, if X11 forwarding is required... ssh -YC username@login.rc.fas.harvard.edu

GUI Login

Login Place Files Load Software Choosing Resources Interactive/Submit Jobs

- Some apps require GUI/X11 interface: MATLAB, RStudio, CLCBio, etc...
- Use NoMachineX instead, as X11 performance can sluggish
- VPN is required (vpn.rc with username@odyssey* + 2FA)
- As rcnx01 and holynx01 login nodes, request an interactive session after login to do any work

^{*} exception is for sensitive information setups

Transferring files to/from Odyssey

Login

Place Files

Load Software

Choosing Resources

Interactive/Submit Jobs

GUI client FileZilla for all platforms

Configure according to http://fasrc.us/configfilezilla to avoid 2FA problems

Command line tools scp or rsync

rsync is best for resuming transfers or transferring only changed file parts

Download data using curl or wget

Both are available on all nodes, though web proxy needed for HRCI setups

Or by mountings disk shares. Please see http://fasrc.us/mountdisks

Examples:

```
# copy file in current directory to Odyssey home folder
scp somefile.txt rcuser@login.rc.fas.harvard.edu:~
```



```
# download FASTA sequence from NCBI
wget "http://www.ncbi.nlm.nih.gov/nuccore/L03535.1?report=fasta&log$=seqview&format=text"
```


Filesystems & Data Storage

Login

Place Files

Load Software

Choosing Resources

Interactive/Submit Jobs

Storage on Odyssey is not what and where you think it is...

- Created by bundling together a group of disks to form a virtual volume
- The virtual volume is sliced up into one or more filesystems to hold files & folders
- These are accessed transparently over the network through mount points (e.g. /n)

Running large #s of jobs out of home or lab directories will negatively affect all other persons sharing those physical disks

Take home message: Ensure that you use the proper filesystem for your work

Common Filesystems

Login Place Files Load Software Choosing Resources Interactive/Submit Jobs

	Туре	Size	Avail?	Mount Desktops?	Backup? ¹	Retention?	I/O profile
/n/home##	NFS	40 GB (hard limit)	all nodes	Υ	Υ	N	low
/n/labfs#	NFS	1 TB free (new labs) contact for costs	all nodes	Y	γ2	N	low
/scratch	local	250 GB/node (~4 GB/core)	all nodes	N	N	γ3	high
/n/regal	Lustre	1.2 PB	all nodes	N^4	N	90-days ⁵	high

¹Backup methods differ. See http://fasrc.us/fagrecovery for more information.

²Lab disks shares are typically backed up unless noted.

³Files usually deleted when job finished. Please clean up your own mess, though.

⁴Can use file transfer methods to stage data.

⁵Retention is typically run at maintenance times. Areas can be exempted for common data (e.g. NCBI Genbank at /n/regal/informatics_public). Contacts us.

Common Filesystems: /scratch

Login

Place Files

Load Software

Choosing Resources

Interactive/Submit Jobs

Using local /scratch:

- 250 GB slice on each compute node, so there's about 4 GB disk space/job
- Is currently underutilized, so more space may be available (check sbatch options)
- Can see speedup of 2x 3x, depending on pattern of file read/writes
- Since is local to each node, must use it *during* your job:

```
start_dir=$PWD
mkdir -p /scratch/$USER/$SLURM_JOBID
cd /scratch/$USER/$SLURM_JOBID

# do your work while writing temp files here
...

# copy files back and return from whence we came cp -r results/ $start_dir/
cd $start_dir

# now cleanup
rm -rf /scratch/$USER/$SLURM_JOBID
```


Common Filesystems: /n/regal

Login

Place Files

Load Software

Choosing Resources

Interactive/Submit Jobs

Using /n/regal:

- Most work should be done here, especially for ~≥ 10 simultaneous jobs
- No space restrictions, but files > 90 days old deleted (usually at maintenance)
- Can stage files prior to job by typical copy/rsync commands or FileZilla
- Remember to copy results back to home or lab shares for permanent storage

A couple more things to remember:

- Shared lab areas can be exempt from retention. Contact us.
- Public data sets can also be staged here no need to keep your own copy
- NCBI, EMBL, UCSC data is stored at /n/regal/informatics_public:
 - FASTA data, BLAST databases, Bowtie2 indexes
- Contact us if you'd like to add more to this location

Load/Installing software

Login

Place Files

Load Software

Choosing Resources

Interactive/Submit Jobs

We have ~3000 applications/libraries in chemistry, biology, statistics, social sciences, and more available for use, but not at all the same time

Software is loaded incrementally using modules, to set up your shell environment

Rolling out a new module system Lmod:

- New system is opt-in for old accounts, but will be default soon (if not already)
- Strongly suggested reading: http://fasrc.us/rclmod

```
source new-modules.sh  # for opt-in folks
module load fastqc/1.0.0-fasrc01  # specific version

module load fastqc  # most recent version

module-query fastqc  # also --full-text option
module spider fastqc  # find details on software
module avail 2>&1 | grep -i fastqc  # find software titles
```

Software search capabilities are also available on the RC Portal!

Load/Installing software

Login

Place Files

Load Software

Choosing Resources

Interactive/Submit Jobs

Old (legacy) modules system still available, but use is highly discouraged...

If not using Lmod, the old (legacy) module system still available, but will be retired soon. These modules are at http://fasrc.us/modulelist, or

```
module avail 2>&1 | grep -i 'fastqc' # find software module load centos6/fastqc-0.10.0
```

Module loads best placed in SLURM batch scripts:

- Keeps your interactive working environment simple
- Is a record of your research workflow (reproducible research!)
- Keep .bashrc module loads sparse, lest you run into software and library conflicts
- Use small source or script files to do complex module loads

Load/Installing software

Login

Place Files

Load Software

Choosing Resources

Interactive/Submit Jobs

Please only request software installs if the program will be used by multiple labs or if standard in your domain.

For all other software, please install software yourself

- Follow software instructions for 'local', non-root, or 'home' directory installation
- Consult our web site for instructions on using appropriate compilers
- Please don't use the sudo command

For Perl / Python modules or R packages

Installation can be in home folder (personal) or lab folder (shared)

Consider using home folder for personal or for code under development; and lab folder for code in shared projects or production code

NB! Do not request software installs for Java apps and Python scripts. These should be installed yourself per developer's instructions

Details at http://fasrc.us/installsw

Login vs Interactive Nodes

Login

Place Files

Load Software

Choosing Resources

Interactive/Submit Jobs

Terminal sessions to login.rc puts you on one of several login nodes

- This gateway to the cluster has limited entry points, so..
- Only non-CPU-intensive work is appropriate: cp, mv, nano, rsync, etc.
- Reminder: rcnx01 and holynx01 are login nodes

Don't compute here, instead

- Submit a batch job (background task) to SLURM, or
- Request an interactive session (foreground task) on a compute node:

```
srun --pty --x11=first --mem 1000 -p interact -t 0-6:00 -n 1 -N 1 /bin/bash
```

srun: foreground

sbatch: background

Resources that you wish to request from SLURM

Script or program
/bin/bash == shell

Choosing Resources: How?

Login Place Files

Load Software

Choosing Resources

Interactive/Submit Jobs

Choosing resources is like attending a party:

- You need to RSVP the number of guests you intend to bring Request the resources you intend to use
- Extra guests: there's not enough food and drink for everyone CPU/disk overage: all jobs including your will run more slowly RAM/time overage: your job will be killed
- Too few: an unhappy host and wasted \$\$ / effort
 CPU/RAM: resources are wasted as they cannot be used by anyone else

All: your job becomes harder to schedule

You also want to be polite:

- Stay the appropriate amount of time...
 Try to approximate your resource use with some padding for safety
- Don't slip in, drink & eat, and leave within minutes
 Try to avoid jobs that start and complete within minutes;
 especially in large numbers

Choosing Resources: Time & Memory

Login

Place Files

Load Software

Choosing Resources

Interactive/Submit Jobs

Time:

- Determined by your test runs during an interactive session
- Or if trying in batch, over-ask first, then reduce time on later runs
- Due to scheduler overhead, jobs should do at least 5 10 min of work

Memory:

- Check software docs for memory requirements
- If none stated, over-ask and do a trial run (via srun or sbatch)
- use sacct command to get post-run job info:

```
# RAM requested/used!!
sacct -j JOBID --format=JobID,Elapsed,ReqMem,MaxRSS
```


"Never use a piece of bioinformatics software for the first time without looking to see what command-line options are available and what default parameters are being used"

```
-- acgt.me · by Keith Bradnam
```


Choosing Resources: Partitions

Choosing Resources Login Place Files Load Software Interactive/Submit Jobs

Name	Length	Size (cores)	Memory/node	Usage
interact	3 days	512 (8 nodes)	256 GB	all interactive work
serial_requeue	7 days*	30K+	varies (512 GB max)	best for single core jobs; or small numbers of cores for short durations; schedules best as hits all parts of the cluster
general	7 days	~14K	256 GB	large # of cores; MPI jobs; jobs sensitive to pre-emption
unrestricted	no limit	512	256 GB	all jobs with no time limit
bigmem	7 days	512	512 GB	jobs requiring >256 GB RAM (restricted access)
(private)	no limit	varies	256 GB typical	lab-specific partitions

Note: SLURM can schedule to quickest of two partitions with -p partion1, partion2

Choosing Resources: Partitions

Login

Place Files

Load Software

Choosing Resources

Interactive/Submit Jobs

interact

- Use for foreground, interactive sessions up to 2 days
- You can request multiple cores or large RAM
- Limit the number of active, interactive session to 5 or less

(private)

- PI-specific partitions, usually named after the lab
- Access is automatic, by group membership

bigmem

- For work where each job requires > 256 GB RAM
- Accessible only by request

general

- For all large core #, long, or MPI jobs, or jobs sensitive to pre-emption
- When busy, typically will take tens of minutes or hours to schedule
- Requesting full nodes may take >1 day for your job to schedule

Choosing Resources: Partitions

Login

Place Files

Load Software

Choosing Resources

Interactive/Submit Jobs

serial requeue

- Recommended partition for single-core jobs; or jobs using up to 8 cores lasting up to approx. 6 - 12 hrs
- Most 'powerful' as hits every core on the cluster, including private compute
- Dispatches within seconds to minutes

But the downside...

Jobs may be pre-empted (killed) if originally scheduled on a private node and the node owner submits work. Your job is automatically rescheduled

To mitigate this...

- Use the sbatch option --open-mode=append for your -e and -o log files
- Use %N (in addition to %i) in log file names to indicate what host your job ran on.
- If you append output, ensure that you zero your data files at the start of the job, to ensure that any files left over from a previous, partial run are removed.
- Structure your command flow so that you skip over any work already done. This allows your re-run job to pick up from where the pre-empted one left off.

Submitting jobs

Login Place Files Load Software Choosing Resources

Interactive/Submit Jobs

Two methods for submitting jobs via sbatch...

For simple, one line commands, submit with sbatch:

Required Recommended Optional

The flags are your resource requests and command to run is enclosed by --wrap=""

After you enter your sbatch command, SLURM will return..

Submitted batch job 29484165

This jobID is your way of tracking the job, controlling it, or obtaining info about it

Submitting jobs

Login Place Files Load Software

Choosing Resources

Interactive/Submit Jobs

The other is to create a SLURM script file using a recommended text editor:

- TextWranger/BBEdit on Mac
- GEdit/NotePad+ on PC
- nano, vi, emacs on Linux

The script files will contain resource requests (and other directives) and your code. And submit to SLURM via same sbatch command:

sbatch fastqc.slurm

#flags on sbatch line override in-script ones

OK, so we're going to get rather technical...

We will briefly highlight template SLURM script files for four types of jobs:

- Single core (serial): sequentially-executing code that typically runs on one core
- Multicore (multithreaded): code that is structured to allow multiple parts to run concurrently (in parallel) across multiple cores on one compute node
- Multicore (openMP): a special type of multithreaded code
- Multinode (MPI): code designed to run in parallel, but across multiple compute nodes and communicate with one another through a Message Passing Interface

Submitting Jobs - Single Core

Login Place Files Load Software Choosing Resources Interactive/Submit Jobs

fastqc.slurm file contents:

```
#!/bin/bash
#SBATCH -p serial requeue
                                 # Partition to submit to (comma separated)
#SBATCH -J frog fastqc
                                 # Job name
#SBATCH -n 1
                                 # Number of cores
#SBATCH -N 1
                                 # Ensure that all cores are on one machine
#SBATCH -t 0-1:00
                                 # Runtime in D-HH:MM (or use minutes)
#SBATCH --mem 100
                                 # Memory in MB
                                 # File to which standard out will be written
#SBATCH -o fastqc %j %N.out
#SBATCH -e fastqc %j %N.err
                                 # File to which standard err will be written
                                # Type of email notification: BEGIN, END, FAIL, ALL
#SBATCH --mail-type=ALL
#SBATCH --mail-user=rmf@123.com # Email to which notifications will be sent
```

```
source new-modules.sh; module load fastqc/1.0.0-fasrc01

cd my_output_directory
fastqc --casava -o fastqc_reports A01_R1.pair.fastq.gz
...
... do more processing here...
```

Submitting Jobs - Multicore

Login Place Files Load Software Choosing Resources Interactive/Submit Jobs

bowtie.slurm file contents:

```
#!/bin/bash
#SBATCH -p serial requeue, general # Partition to submit to (comma separated)
                                 # Job name
#SBATCH -J frog bowtie
#SBATCH -n 8
                                 # Number of cores
#SBATCH -N I
                                 # Ensure that all cores are on one machine
#SBATCH -t 0-6:00
                                 # Runtime in D-HH:MM (or use minutes)
#SBATCH --mem 8000
                                 # Memory pool in MB for all cores
#SBATCH -o bowtie %j.out
                                 # File to which standard out will be written
#SBATCH -e bowtie %j.err
                                 # File to which standard err will be written
#SBATCH --mail-type=AL
                                 # Type of email notification: BEGIN, END, FAIL, ALL
#SBATCH --mail-user=rmf 123.com # Email to which notifications will be sent
```

```
source new-modules.sh; module load bowtie/1.1.1-fasrc01

cd my_output_directory
bowtie -q -p $SLURM_NTASKS - A01_R1.pair.fastq.gz -2 A01_R1.pair.fastq.gz
...
... do more processing here...
```

Controlling Jobs & Getting Job Info

Login Place Files Load Software Choosing Resources

Interactive/Submit Jobs

scancel may become your best friend

```
scancel JOBID # specific job
scancel -u bfreeman -J many_blast_jobs # named jobs
scancel -u bfreeman -p bigmem # ALL in partition
```

squeue gives info on currently running jobs

```
squeue -u bfreeman # jobs for bfreeman
squeue -u bfreeman --states=R | wc -l # # of Running jobs
```

sacct gives current and historical information

```
sacct -u bfreeman
sacct -u bfreeman -p bigmem --starttime=9/1/14  # same+bigmem partition
sacct -j JOBID --format=JobID, JobName, ReqMem, MaxRSS, Elapsed # RAM requested & used!!
```

Check out Common SLURM Commands: http://fasrc.us/easyslurm

SLURM, LSF, SGE, PBS/Torque rosetta stone: http://fasrc.us/move2slurm

Basic Troubleshooting

Before seeking help, take some basic steps to ascertain what is going on with your job:

- Use squeue and sacct with --format= option to query details from SLURM
 - Are you having Fairshare issues (Priority)?
 - Is your job waiting for space (Resources)?
 - Will your job ever run (Dependency)?
 - Is there an error code or message
- Check your log files
 - You did specify both -o and -e, yes?
 - No log files? Does the path to your log files exist before the job start?
 - Message about Pre-emption, Timeout, or Failure?
 - The last error in the log is usually not the problem. The first one is!
- Did you request e-mail messages for your jobs with --mail-type=?
- Is your SLURM script formatted properly?
- Are you loading legacy modules? Possible software/library conflicts?

Check out out Tips@12 presentation http://fasrc.us/fasrcmaterials

Problems, Pitfalls, and Prevention

This is a shared resource, so everyone has skin in the game. And you can help us and yourself...

- Node and cluster problems are not unusual, esp. as large as system as Odyssey: I/O errors, node failures, memory errors, etc. Let us know if you see these.
- Review our Usage & Responsibilities guidelines: http://fasrc.us/hpccustoms
- Review our Common Pitfalls, lest you fall victim: http://fasrc.us/hpcpitfalls

Don't use multiple cores for R and Python scripts

These interpreters/runtime environments are can one use 1 core. Don't waste please.

PEND for >48 hrs

Asking for very large resource requests (cores/memory); very low Fairshare score

Quick run and FAIL...Not including -t parameter

no -t means shortest possible in all partitions == 10 min

Asking for multiple cores but forgetting to specify one node

-n 4 -N 1 is very different from -n 4

Not specifying enough cores

prog1 | prog2 | prog3 > outfile should run with 3 cores

Causing massive disk I/O on home folders/lab disk shares

your work & others on the same filesystem slows to a crawl; simple commands like Is take forever

Getting Help

RC Website & Documentation -- only authoritative source https://rc.fas.harvard.edu/

Submit a ticket on the portal

https://portal.rc.fas.harvard.edu/

Best way to help us to help you? Give us...

Description of problem

Additional info (login/batch? partition? JobIDs?)

Steps to Reproduce (1., 2., 3...)

Actual results

Expected results

OdyBot, for quick-fix problems

http://odybot.org/

RC & Informatics Training

Training opportunities: New & Evolving...

- Office Hours: every Wed 12 3 pm @ RC conference room
- Tips@12: Highlighted topics in the first ½ hour of Office Hours
 - Troubleshooting Jobs, iPython Notebooks, Parameter Sweeps, Unix Tricks
- Intro to Odyssey & RC Services
- Next Steps... / Parallel HPC series (early 2016)
- Guest lectures in courses
- Lab-specific, customized training, including optimizing workflows
- MATLAB workshops (Fall '14, Spring '15)
- Software Carpentry (http://software-carpentry.org/ Fall '14, Summer '15)
- Data Carpentry (http://datacarpentry.org/ Summer '15)

All of the training materials can be found at http://fasrc.us/fasrcmaterials

Take-home Message...

If you can mind these Top 5 items, you'll be an Odyssey rock star!

- 1. Use the appropriate partition for your job
- 2. Don't run large numbers of jobs out of home or lab directories; use /scratch or /n/regal instead
- 3. Lower your RAM usage and use --mem where possible
- 4. Pass along to your code the number of cores you requested from SLURM (usually \$SLURM_NTASKS) if using more then 1 core; and use $-\mathbb{N}$ 1 unless you know what you're doing
- 5. Ensure your jobs run for at least 5 10 minutes and keep job counts in a reasonable range (\leq 1000)

Research Computing

Please talk to your peers, and ... We wish you success in your research!

http://rc.fas.harvard.edu https://portal.rc.fas.harvard.edu @fasrc

Harvard Informatics @harvardifx

