### Università Degli Studi di Ferrara

Corso di Laurea in Informatica - A.A. 2022 - 2023

# Basi di Dati e Laboratorio

Lez. 05b - da Modello Concettuale a Logico

## Sommario

- Algoritmo di mappatura ER-Relazionale
  - 1. Entità
  - 2. Entità deboli
  - 3. Associazioni binarie 1:1
  - 4. Associazioni binarie 1:N
  - 5. Associazioni binarie N:M
  - 6. Attributi multivalore
  - 7. Associazioni N-arie
- Da modello EER a relazioni
  - a. Possibilità per mappatura di specializzazioni o generalizzazioni
  - b. Tipi unione



#### 1. Entità

- Per ciascuna entità E del diagramma ER, creare una relazione R che includa tutti gli attributi semplici di E.
- Scegliere uno degli *attributi chiave* di *E* come **chiave primaria** di **R**. Se la chiave di E scelta è composta, l'insieme degli attributi semplici che la formano saranno chiave primaria di R.
- Esempio: Si creano le relazioni DIPENDENTE, DIPARTIMENTO e PROGETTO nello schema relazionale, in corrispondenza delle entità del diagramma ER. SSN, DNUMBER e PNUMBER sono le chiavi primaria delle tre relazioni.

#### 2. Entità deboli

- Per ciascuna entità debole W nel diagramma ER, avente come entità proprietaria l'entità E, creare una relazione R e includere tutti gli attributi semplici di W come attributi di R.
- Inoltre, includere come chiave esterna di R gli attributi chiave primaria della relazione corrispondente all'entità proprietaria E.
- La chiave primaria di R è la combinazione della chiave primaria dell'entità proprietaria E e della chiave parziale dell'entità debole W.
- Esempio: Creare la relazione A\_CARICO, includere la chiave primaria SSN della relazione DIPENDENTE come chiave esterna (rinominandola ESSN). La chiave primaria di A\_CARICO è la combinazione {ESSN, NOME} in quanto NOME è chiave parziale dell'entità debole A\_CARICO.

#### 3. Associazioni binarie 1:1

- Per ciascuna associazione **A** binaria 1:1 nel diagramma ER, identificare le relazioni **S** e **T** che corrispondono alle entità che partecipano ad A.
  - 1. **Chiave esterna**: Scegliere una delle relazioni **S** ad esempio e si includa in **S** come **chiave esterna** la **chiave primaria** di **T**. Inserire tutti gli attributi semplici dell'associazione A in S. È meglio scegliere un'entità con *partecipazione totale* in A nel ruolo di S.
  - 2. **Unica relazione**: Riunire le due entità e l'associazione in una singola relazione. Ciò è adeguato quando *entrambe le partecipazioni sono totali*.
  - 3. **Relazione** associazione: Creare una terza relazione R con lo scopo di definire un riferimento incrociato tra le chiavi primarie delle due relazioni S e T.
- Esempio: L'associazione 1:1 DIRIGE è trasformata scegliendo l'entità DIPARTIMENTO nel ruolo di S.

#### 4. Associazioni binarie 1:N

- Per ciascuna associazione A binaria 1:N, identificare la relazione S che rappresenta l'entità partecipante del lato N.
- Includere come chiave esterna in S la chiave primaria della relazione T che rappresenta l'entità partecipante del lato 1.
- Includere tutti gli attributi semplici dell'associazione A come attributi della relazione S.
- Esempio: L'associazione 1:N LAVORA\_PER, CONTROLLA, e SUPERVISIONA in figura. Per LAVORA\_PER si include la chiave primaria DNUMBER della relazione DIPARTIMENTO come chiave esterna nella relazione DIPENDENTE, chiamandola DNO.

#### 5. Associazione binarie N:M

- Per ciascuna associazione A binaria N:M creare una nuova relazione S che rappresenti A.
- Includere come chiavi esterne in S le chiavi primarie delle relazioni che rappresentano le entità partecipanti (entrambe!). La loro combinazione forma (non sempre!) la chiave primaria di S.
- Includere anche tutti gli attributi semplici dell'associazione A come attributi di S.
- Esempio: L'associazione N:M LAVORA\_SU diventa la relazione LAVORA\_SU. Le chiavi primarie di PROGETTI e di DIPENDENTE sono incluse come chiavi esterne e rinominate PNO e ESSN. L'attributo ORE viene aggiunto. La chiave primaria della relazione LAVORA\_SU è la combinazione di {ESSN, PNO}.

#### 6. Attributi multivalore

- Per ciascun attributo multivalore A, creare una nuova relazione R. Questa relazione R avrà un attributo corrispondente ad A e, in qualità di chiave esterna, l'attributo K corrispondente alla chiave primaria della relazione che rappresenta l'entità che aveva A come attributo multivalore.
- La chiave primaria di R è la combinazione degli attributi A e K. Se l'attributo multivalore è composto, occorre includere tutte le componenti semplici nella relazione R.

#### 7. Associazioni N-arie

- Per ciascuna associazione A n-aria, con n>2, creare una nuova relazione S per rappresentare A.
- Includere come chiavi esterne di **S** le chiavi primarie delle relazioni che rappresentano le *n* entità partecipanti.
- Includere anche tutti gli attributi semplici di A come attributi di S.
- Example: L'associazione SUPPY nello schema ER seguente può essere trasformata nella relazione SUPPLY mostrata nello schema relazionale, la cui chiave primaria è la combinazione delle tre chiavi esterne {SNAME, PARTNO, PROJNAME}



#### **SUPPLIER**

|     | SNAME | • • • |
|-----|-------|-------|
| - 1 |       | l     |

#### **PROJECT**

| PROJNAME | • • • |
|----------|-------|
|----------|-------|

#### PART

| PARTNO | • • • |
|--------|-------|
|        |       |

#### SUPPLY

| SNAME | PROJNAME | PARTNO | QUANTITY |
|-------|----------|--------|----------|
|       |          |        |          |

# Riassunto

### Corrispondenza tra modello ER e modello Relazionale

| Modello ER                  | Modello Relazionale                              |
|-----------------------------|--------------------------------------------------|
| Entità                      | Relazione "Entità"                               |
| Associazione 1:1 o 1:N      | Chiave esterna (oppure Relazione "Associazione") |
| Associazione N:M            | Relazione "Associazione" e due chiavi esterne    |
| Associazione <i>n</i> -aria | Relazione "Associazione" e n chiavi esterne      |
| Attributo semplice          | Attributo                                        |
| Attributo composto          | Insieme di attributi (componenti semplici)       |
| Attributo multivalore       | Relazione e chiave esterna                       |
| Insieme di valori           | Dominio                                          |
| Attributo chiave            | Chiave primaria                                  |

#### 8. Specializzazioni e Generalizzazioni

- Convertire ciascuna specializzazione di *m* sottoclassi {S1, S2, ..., Sm} e superclasse generalizzata **C** avente attributi {k, A1, ..., An} (k attributo chiave di C) in uno schema relazionale seguendo una delle seguenti quattro possibili opzioni:
- Opzione A: Relazioni multiple superclasse e sottoclasse
- Creare una relazione **L** per C con attributi  $Attr(L) = \{k, A1, ..., An\}$  e PK(L) = k. Creare una relazione **Li** per ciascuna sottoclasse Si, 1 < i < m, con attributi  $Attr(Li) = \{k\}$  U  $\{attr. di Si\}$  e PK(Li) = k. Questa opzione è adatta per tutte le specializzazioni (tot, parz, disg., sovr.).
- Opzione B: Relazioni multiple solo relazioni sottoclasse
- Creare una relazione Li per ogni sottoclasse *Si*, 1 < i < m, con attributi  $Attr(Li) = \{attr. \ di \ Si\} \ U \ \{k, A1, ..., An\} \ e \ PK(Li) = k$ . Questa opzione è adatta per una specializzazione le cui sottoclassi sono totali.

### 8. Opzione A



#### (a) EMPLOYEE

| SSN FName MIn | LName | BirthDate | Address | JobType |
|---------------|-------|-----------|---------|---------|
|---------------|-------|-----------|---------|---------|

**SECRETARY** 

SSN TypingSpeed

**TECHNICIAN** 

SSN TGrade

**ENGINEER** 

SSN EngType

### 8. Opzione B



### (b) CAR

| VehicleId | LicensePlateNo | Price | MaxSpeed | NoOfPassengers |
|-----------|----------------|-------|----------|----------------|
|-----------|----------------|-------|----------|----------------|

### TRUCK

| VehicleId | LicensePlateNo | Price | NoOfAxles |  |
|-----------|----------------|-------|-----------|--|
|-----------|----------------|-------|-----------|--|

#### 8. Specializzazioni e Generalizzazioni

- Opzione C: Relazione singola con un attributo tipo
- Creare una singola relazione L con gli attributi Attr(L) = {k, A1, ..., An} U {attr. di S1} U ... U {attr. di Sm} U {t} e PK(L) = k. L'attributo t è chiamato tipo (o discriminante) e indica a quale sottoclasse appartiene ciascuna tupla.
- Opzione D: Relazione singola con molti attributi tipo
- Creare una singola relazione L con gli attributi Attr(L) = {k, A1, ..., An} U {attr. di S1} U ... U {attr. di Sm} U {t1, t2, ..., tm} e PK(L) = k. Ciascun ti, 1 < i < m, è un attributo di tipo booleano che indica se una tupla appartiene alla sottoclasse Si.</li>

### 8. Opzione C



#### (c) EMPLOYEE

| SSN | FName | MInit | LName | BirthDate | Address | JobType | TypingSpeed | TGrade |  |  |
|-----|-------|-------|-------|-----------|---------|---------|-------------|--------|--|--|
|-----|-------|-------|-------|-----------|---------|---------|-------------|--------|--|--|

### 8. Opzione D



(d) PART

|  | PartNo | Description | MFlag | DrawingNo | ManufactureDate | BatchNo | PFlag | SupplierName | ListPrice |
|--|--------|-------------|-------|-----------|-----------------|---------|-------|--------------|-----------|
|--|--------|-------------|-------|-----------|-----------------|---------|-------|--------------|-----------|

# Domande?