1 Characterisation of Metric Continuity

Definition 1. (Open set in a metric space) A set $U \subseteq X$ in a metric space (X,d) is open if U contains some ε -ball $B_{\varepsilon}(x)$ centered at every $x \in U$. In other words $\forall x \in U, \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq U$.

Definition 2. (ε -Ball) Let (X,d) be a metric space. An ε -Ball centered at $x \in X$ is the set

$$B_{\varepsilon}(x) = \{ y \in X : d(x, y) < \varepsilon \}$$

Proposition 3. Let X, Y be metric spaces and $f: X \to Y$, a map. The following statements are equivalent.

- a) For all $x \in X$, there exists $\delta > 0$ such that $f(B_{\delta}(x)) \subseteq B_{\varepsilon}(f(x))$ for arbitrary $\varepsilon > 0$.
- b) For all $y \in Y$, the preimage $f^{-1}(B_{\varepsilon}(y)) \subseteq X$ is open for arbitrary $\varepsilon > 0$.
- c) The preimage $f^{-1}(U) \subseteq X$ is open for arbitrary open $U \subseteq Y$.
- d) If the sequence $(x_n \in X)_{n \in \mathbb{N}}$ converges to $x \in X$, then $(f(x_n) \in X)_{n \in \mathbb{N}}$ converges to $f(x) \in Y$.

Note that we use the metric definition of open here.

Proof. $b \Rightarrow a$

Let $x \in X$ and $B_{\varepsilon}(f(x))$ be some ε -ball centered at f(x). By our assumption, the preimage $f^{-1}(B_{\varepsilon}(f(x)))$ is open. In particular, this implies that there exists a δ -ball centered at x, such that $B_{\delta}(x) \subseteq f^{-1}(B_{\varepsilon}(f(x)))$, which implies $f(B_{\delta}(x)) \subseteq B_{\varepsilon}(f(x))$.

$a \Rightarrow c$

Let $U \subseteq Y$ be some open set in Y and let $x \in f^{-1}(U)$. Then, by a, there exists a $\delta > 0$, such that $f(B_{\delta}(x)) \subseteq B_{\varepsilon}(f(x))$ for arbitrary $\varepsilon > 0$. For sufficiently small ε , $B_{\varepsilon}(f(x)) \subseteq U$, since U is open and $f(x) \in U$. Therefore, $f(B_{\delta}(x)) \subseteq B_{\varepsilon}(f(x)) \subseteq U$, which means $B_{\delta}(x) \subseteq f^{-1}(U)$.

$c \Rightarrow b$

If $f^{-1}(U)$ is open for an arbitrary set $U \subseteq Y$, it is also open for the case $U = B_{\varepsilon}(y)$.

$a \Rightarrow d$

Let $(x_n \in X)_{n \in \mathbb{N}}$ be a sequence which converges to $x \in X$. Then, $\{x_n \in X : n > N\}$ is contained in any δ -ball $B_{\delta}(x)$ for some sufficiently large N. By a, this means we may find a $\delta > 0$, such that $\{f(x_n) \in Y : n > N\} \subseteq f(B_{\delta}(x)) \subseteq B_{\varepsilon}(f(x))$ for any $\varepsilon > 0$. In other words, for any $\varepsilon > 0$, $d(f(x_n), f(x)) < \varepsilon$ for all n > N, which implies $(f(x_n) \in X)_{n \in \mathbb{N}}$ converges to $f(x) \in Y$.

$$\neg a \Rightarrow \neg d$$

Let us assume that for some $x \in X$ and some ε -ball $B_{\varepsilon}(f(x))$, there exists no $\delta > 0$ such that $f(B_{\delta}(x)) \subseteq B_{\varepsilon}(f(x))$. Since $f(B_{\delta}(x)) \nsubseteq B_{\varepsilon}(f(x))$ for all $\delta > 0$, for all upper bounds d > d(x, z), there exists at least some $z_d \in X$, such that $d(f(x), f(z_d)) \geqslant \varepsilon$. Now we define the sequence $(z_{d(n)} \in X)_{n \in \mathbb{N}}$, where the upper bound d(n) is a monotonically decreasing function of n. This sequence converges to x, but $(f(z_{d(n)}) \in Y)_{n \in \mathbb{N}}$ does not converge to f(x) since $d(f(x), f(z_{d(n)})) \geqslant \varepsilon$ for some ε and for all d.

2 Neighbourhoods

Lemma 4. Let X be a topological space and let U_i be open sets with $1 \le i \le N$ for some N. The intersection of all U_i is open.

Proof. Let V_n be the intersection of all U_i with $i \leq n$. $V_1 = U_1$ is open. If V_k is open, the intersection of V_k and U_{k+1} is open. Therefore, V_{k+1} is open. By induction, V_N is open and so the intersection of all U_i is open.

Proposition 5. Let $V_1, ..., V_n$ be a finite collection of neighbourhoods of $x \in X$. Their intersection is also a neighborhood of $x \in X$.

Proof. Each neighbourhood V_i contains an open set U_i , which contains x. The intersection U of all U_i is open and must be contained in the intersection V of all V_i . U and V must also contain x. Thus, V is also a neighbourhood.

Proposition 6. Let X be a topological space. If U is a neighbourhood of $x \in X$ then U is the neighbourhood of all $y \in V$ for some neighbourhood V of x.

Proof. U contains an open set V, which contains x. V is a neighbourhood for all elements in V, since V contains an open set V, which contains all elements in V.

Proposition 7. A subset $U \subseteq X$ is open if and only if it is a neighbourhood of all its points

Proof. If U is open it contains an open set U which also contains every element of U. Therefore U is a neighbourhood of all its points.

For the reverse, let U_i be some neighbourhood of all its elements. The intersection $U_i \cap U_j$ is a neighbourhood since U_i and U_j are both neighborhoods of some point in the intersection (using our previous result). A union V of U_i is a neighbourhood of all its points, since we can find an open set contained in V that contains every point. Let $x \in V$. x must also be an element of some U_i . Therefore an open set exists in $U_i \subseteq V$ which contains x and so V is a neighbourhood of all its points. If we define a neighborhood, such that \emptyset is a neighborhood of all its points and we realise that since X is open, it is a neighbourhood of all its points, we can see that U_i is in fact open. \square

3 Maps Between Topological Spaces

3.1 Bijective Maps

In this subsection, let X and Y be topological spaces and $f: X \to Y$ a bijective map.

Proposition 8. The preimage of a set U under f is equal to the inverse of f applied to U.

Proof. Let the preimage of U be the set $A = \{x \in X : f(x) \in U\}$ and the inverse applied to U be the set $B = \{f^{-1}(y) : y \in U\}$. If $x \in A$ is an element of the preimage, $f(x) \in U$ is an element of U. Since f is one-to-one, $x = f^{-1}(y)$ for $y = f(x) \in U$ and so x is also an element of B. If x is now taken to be an element of B, we know that $x = f^{-1}(y)$ for some $y \in U$. Because f is injective, there is only one such pair (x, y) with $x = f^{-1}(y)$ and because f is surjective, the unique x must be in the domain if y is in the codomain. Therefore $x \in X$ and $f(x) \in U$, meaning x is also an element of A if it is an element of B.

Proposition 9. f is a homeomorphism if and only if $f: X \to Y$ is open

Proof. Notice that f(U) is the preimage of U under the map f^{-1} , since

$$f(U) = \{f(x): x \in U\} = \{(f^{-1})^{-1}(x): x \in U\} = \{y \in Y: f^{-1}(y) \in U\}$$

where the last equality used proposition 8 to equate the inverse applied to a set with the preimage of U under the map f^{-1} . Therefore, if f is open all preimages of open sets under f^{-1} are open, meaning f^{-1} is continuous, which implies f is a homeomorphism. Conversely, if f is a homeomorphism, preimages of open sets under f^{-1} are open, which is equivalent to saying f maps open sets to open sets and so f is open.

Lemma 10. $f(X \setminus U) = Y \setminus f(U)$ for any subset $U \subseteq X$.

Proof. Any point $y \in f(X \setminus U)$ must be in Y and cannot be in f(U). If y were an element of f(U), too, there would be some point in U and some point in $X \setminus U$ which both map to y. However, this contradicts f being an injective function. Therefore y is an element of $Y \setminus f(U)$.

On the other hand, any point $y \in Y \setminus f(U)$ must be

Proposition 11. *f is open if and only if f is closed*

Proof. Let f be open (or closed for the converse) and $U \subseteq X$ be an open (closed) set. Then $f(U) \subseteq Y$ is open (closed) and the compliment $Y \setminus f(U)$ is closed (open). as shown in lemma 10, $f(X \setminus U) = Y \setminus f(U)$, so f also maps the closed (open) set $X \setminus U$ to the closed (open) set $Y \setminus f(U)$. Because every closed (open) set is the compliment of some open (closed) set, the map f is closed (open).

3.2 Generic Maps

In this subsection, let X and Y be topological spaces and $f: X \to Y$ a map between them.

Proposition 12. Arbitrary f are continuous if and only if the topology on X is discrete or the topology on Y is coarse.

Proof. If the topology on X is discrete any subset of the domain is open, in particular every preimage is open. Therefore, f is continuous.

If the topology on Y is coarse, we need only look at preimages of \varnothing and Y, since those are the only open sets. The preimage of \varnothing is \varnothing , which is open; the preimage of Y is X, which is open, since all elements in X map into Y.

For the converse, suppose all maps $f: X \to Y$ are continuous, but the topology on X is not discrete and the topology on Y is not coarse. Then, there exists a subset $U \subseteq X$ which is not open and an open subset $V \subset Y$ different from \emptyset and Y. If we pick f, such that f(U) = V, the preimage of the open set V would be the set U, which is not open. Therefore, we have a contradiction since and f ought to be continuous.

Proposition 13. Let S be a subbasis of the topology on Y. The, the map $f: X \to Y$ is continuous if and only if the preimage $f^{-1}(U)$ is open in X for any $U \in S$.

Proof. If the map f is continuous, preimages of any open sets in Y are open. In particular, since elements of the subbasis are themselves open, the preimages $f^{-1}(U)$ for $U \in \mathcal{S}$ must be open.

For the converse, let preimages of sets in the subbasis be open. Since any set $U \subseteq Y$ may be expressed as a union of finite intersections of sets in S, we have

$$f^{-1}(U) = \{x \in X : f(x) \in U\}$$

$$= \{x \in X : f(x) \in \bigcup \{\bigcap V_i : V_i \in S\}\}$$

$$= \bigcup \{x \in X : f(x) \in \bigcap V_i\}$$

$$= \bigcup \{\bigcap \{x \in X : f(x) \in V_i\}\}$$

$$= \bigcup \{\bigcap f^{-1}(V_i)\}$$

By our assumption, preimages of the subbasis elements V_i are open and because a union of finite intersections of open sets must be open, $f^{-1}(U)$ is open, which implies f is continuous.