1 Goals of Course

- The goal of this course is to explore and generalize many of concepts that we learned in our calculus classes.
- Concepts such as
 - Limits
 - Continuity
 - Sequence convergence
 - Differentiability
 - Integration

and their results will all be rigorously proven and generalized.

2 The Structure of the Real Numbers

The set \mathbb{R} is NOT just a boring collection of elements. \mathbb{R} is a set equipped with four defining properties.

- \mathbb{R} is a field.
- \mathbb{R} is an **ordered field**.
- \mathbb{R} is a unique ordered field that **least upper bound property**.
- ullet R contains a metric which is a notion that describes length and distance.
- \mathbb{R} is a normed space and a metric space (these two are not equivalent).

3 The First Defining Property

The set of real numbers is a field.

Definition (Fields). A field is a set F with two operations called addition and multiplication, which satisfy the following field axioms, respectively:

- (A1) For all $x, y \in F$, we have $x + y \in F$.
- (A2) For all $x, y \in F$, we have x + y = y + x.
- (A3) For all $x, y, z \in F$, we have (x + y) + z = x + (y + z).
- (A4) There exists an element $0 \in F$ such that for any $x \in F$, x + 0 = x.
- (A5) If $x \in F$, then there exists an element $-x \in F$ such that x + (-x) = 0.
- (M1) For all $x, y \in F$, we have $xy \in F$.
- (M2) For all $x, y \in F$, we have xy = yx.
- (M3) For all $x, y, z \in F$, we have (xy)z = x(yz).
- (M4) For all $x \in F$, there exists an element $1 \neq 0$ such that $x \cdot 1 = x$.
- (M5) If $x \in F$ and $x \neq 0$, then there exists an element $\frac{1}{x} \in F$ such that $x \cdot \frac{1}{x} = 1$.
- (D1) If $x, y, z \in F$, then x(y + z) = xy + xz.

4 The Second Defining Property

Definition (Ordered Fields). An **ordered field** is a field F equipped with a relation, <, with the following properties

(i) If $x \in F$ and $y \in F$, then one and only one of the statements is true:

$$x < y$$
, $x = y$, $y < x$.

- (ii) (Transitive Property) If $x, y, z \in F$ and x < y and y < z, then x < z.
- (iii) If $x, y, z \in F$ and y < z, then x + y < x + z.
- (iv) If $x, y \in F$, and x > 0 and y > 0, then xy > 0.

Remark. We say that x is positive if x > 0, and negative if x < 0. Furthermore, $x \le y$ is equivalent to x = y or x < y.

The first two defining properties alone of \mathbb{R} do not uniquely specify it. For example, \mathbb{Q} is another field that satisfies the first two properties of \mathbb{R} .

Definition (Upper Bounds). Suppose F is an ordered field, and $A \subseteq F$. If there exists $\beta \in F$ such that for all $x \in A$, $x \leq \beta$ for all $x \in A$. We call β an **upper bound of** A.

Remark. We call the collection of upper bounds of A by UP(A). If $UP(A) \neq \emptyset$, then we say that A is bounded above.

Similarly, we define the lower bounds of a set.

Definition (Lower Bounds). Suppose F is an ordered field, and $A \subseteq F$. If there exists $\alpha \in A$ such that for all $x \in A$, $x \ge \alpha$, then α is called the **lower bound of** A.

Remark. Similarly, we denote the set of lower bounds of A by LO(A). We say that A is bounded below if LO(A) $\neq \emptyset$.

Example 4.1. Suppose we have A = [0, 1). We have

$$UP(A) = [1, \infty)$$

$$LO(A) = (-\infty, 0].$$