Information Theoretic Co-clustering

Inderjit S. Dhillon Subramanyam Mallela Dharmendera S. Modha
Department of Computer Sciences
University of Texas, Austin

Presenter: Omur Ozel

Introduction and Motivation

- ► Co-occurrence of two events, contingency tables
- Clustering correlated data sets jointly.
- ► E.g. word-document clustering
- Common issue: Sparsity and high-dimensionality.
- ▶ An information-theoretic approach and algorithm

Information-Theoretic Approach

- Consider two-dimensional data.
- ▶ Row variables and column variables.
- View the contingency table as two-dimensional PMF
- ▶ Objective: minimize information loss after clustering
- Measure of information comes from Information Theory

Remarks on Information Theory

- ▶ I(X; Y): mutual information between X and Y
- ▶ A measure of how X and Y are inter-related.

$$I(X;Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)} \right)$$

• We can also express I(X; Y) as

$$I(X;Y) = D(p(X,Y)||p(X)p(Y))$$

► D(.||.): Kullback-Leibler divergence, relative entropy

$$D(p_1(X)||p_2(X)) = \sum_{x \in \mathcal{X}} p_1(x) \log \left(\frac{p_1(x)}{p_2(x)}\right)$$

▶ D(.||.) is nonnegative and zero iff $p_1(X) \equiv p_2(X)$.

Remarks on Information Theory

- ▶ I(X; Y) is the channel capacity for $X \to Y$.
- ▶ Another way of expressing I(X; Y) is

$$I(X; Y) = H(Y) - H(Y|X)$$
$$= H(X) - H(X|Y)$$

 \blacktriangleright H(X) is the entropy of X:

$$H(X) = -\sum_{x} p(x) \log(p(x))$$

- ▶ Let $X_1, ..., X_n$ be an i.i.d. sequence with joint PMF $\prod_{i=1}^n p(x_i)$
- \blacktriangleright H(X) is the minimum average number of bits necessary to code X_1, \ldots, X_n

Problem Formulation

- ▶ $X \in \{x_1, ..., x_m\}, Y \in \{y_1, ..., y_n\}$
- \triangleright p(X,Y),
 - ▶ joint PMF
 - ▶ two-dimensional contingency table
 - two-way frequency table
- ► Simultaneous clustering of X and Y
- \triangleright k: number of X clusters, ℓ : number of Y clusters

$$C_X : \{x_1, \dots, x_m\} \to \{\hat{x}_1, \dots, \hat{x}_k\}$$

$$C_Y : \{y_1, \dots, y_n\} \to \{\hat{y}_1, \dots, \hat{y}_\ell\}$$

- \triangleright (C_X , C_Y): co-clustering
- **Each** division created in p(X, Y) is called *co-cluster*.

Example Co-clustering

Consider the following contingency matrix:

$$\rho(X,Y) = \begin{pmatrix} .05 & .05 & .05 & 0 & 0 & 0 \\ .05 & .05 & .05 & 0 & 0 & 0 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ .04 & .04 & 0 & .04 & .04 & .04 \\ .04 & .04 & .04 & 0 & .04 & .04 \end{pmatrix}$$

- $\hat{x}_1 = \{x_1, x_2\}, \ \hat{x}_2 = \{x_3, x_4\} \ \text{and} \ \hat{x}_3 = \{x_5, x_6\}$
- $\hat{y}_1 = \{y_1, y_2, y_3\} \text{ and } \hat{y}_2 = \{y_4, y_5, y_6\}.$
- Resulting distributions

$$p(\widehat{X},\widehat{Y}) = \begin{pmatrix} 0.3 & 0\\ 0 & 0.3\\ 0.2 & 0.2 \end{pmatrix}$$

Information Theoretic Co-clustering

- ► X, Y: original random variables
- \widehat{X}, \widehat{Y} : clustered random variables
- ▶ They are related as $\widehat{X} = C_X(X)$ and $\widehat{Y} = C_Y(Y)$
- ▶ Minimize the following objective function:

$$I(X;Y) - I(\widehat{X};\widehat{Y})$$

▶ That is, we minimize information loss due to co-clustering.

Example Co-clustering

► Consider the following contingency matrix:

$$p(X,Y) = \begin{pmatrix} .05 & .05 & .05 & 0 & 0 & 0 \\ .05 & .05 & .05 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ .04 & .04 & 0 & .04 & .04 & .04 \\ .04 & .04 & .04 & 0 & .04 & .04 \end{pmatrix}$$

- $\hat{x}_1 = \{x_1, x_2\}, \hat{x}_2 = \{x_3, x_4\} \text{ and } \hat{x}_3 = \{x_5, x_6\}$
- $\hat{y}_1 = \{y_1, y_2, y_3\} \text{ and } \hat{y}_2 = \{y_4, y_5, y_6\}.$
- $I(X;Y) I(\hat{X};\hat{Y}) = 0.0957$ bits

Information Theoretic Co-clustering

▶ Co-clustering causes a nonnegative information loss:

$$I(X; Y) - I(\hat{X}; \hat{Y}) \geq 0$$

▶ Specifically, for fixed (C_X, C_Y)

$$I(X; Y) - I(\hat{X}; \hat{Y}) = D(p(X, Y)||q(X, Y))$$

▶ Here, q(X, Y) is of the form

$$q(x,y) = p(\hat{x}, \hat{y})p(x|\hat{x})p(y|\hat{y})$$

 \triangleright The structure of q is desirable in approximating p

$$q(\hat{x},\hat{y}) = p(\hat{x},\hat{y}), \quad q(x,\hat{x}) = p(x,\hat{x}), \quad q(y,\hat{y}) = p(y,\hat{y})$$

Use this structure to derive an algorithm.

Example Co-clustering

▶ The resulting matrix is:

$$q(X,Y) = \begin{pmatrix} .054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .042 & 0 & 0 & 0 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ .036 & .036 & .028 & .028 & .036 & .036 \\ .036 & .036 & .028 & .028 & .036 & .036 \end{pmatrix}$$

- $\hat{x}_1 = \{x_1, x_2\}, \ \hat{x}_2 = \{x_3, x_4\} \ \text{and} \ \hat{x}_3 = \{x_5, x_6\}$
- $\hat{y}_1 = \{y_1, y_2, y_3\} \text{ and } \hat{y}_2 = \{y_4, y_5, y_6\}.$

An Interpretation from Data Compression and Transmission

- ▶ Transmit X and Y from a source to a destination.
- First compute $\widehat{X} = C_X(X)$ and $\widehat{Y} = C_Y(Y)$ jointly.
- Separately transmit
 - ightharpoonup X given destination already knows \widehat{X}
 - ightharpoonup Y given destination already knows \widehat{Y}
- First operation requires $H(\widehat{X}, \widehat{Y})$ bits.
- ▶ Second operation requires $H(X|\widehat{X}) + H(\widehat{X}|X)$ bits.
- On the other hand, we have

$$H(\widehat{X}, \widehat{Y}) + H(X|\widehat{X}) + H(\widehat{X}|X)$$

= $D(p(X, Y)||q(X, Y))$

▶ Define four-dimensional joint PMFs

$$p(x, y, \hat{x}, \hat{y}) = p(\hat{x}, \hat{y})p(x, y|\hat{x}, \hat{y})$$

$$q(x, y, \hat{x}, \hat{y}) = p(\hat{x}, \hat{y})p(x|\hat{x})p(y|\hat{y})$$

▶ For every fixed hard co-clustering,

$$D(p(X,Y)||q(X,Y)) = D(p(X,Y,\widehat{X},\widehat{Y})||q(X,Y,\widehat{X},\widehat{Y}))$$

Express the objective function in terms of solely row-clustering or solely column clustering:

$$\begin{split} &D(\rho(X,Y,\widehat{X},\widehat{Y})||q(X,Y,\widehat{X},\widehat{Y}))\\ &=\sum_{\hat{x}}\sum_{x:C_X(x)=\hat{x}}p(x)D(\rho(Y|x)||q(Y|\hat{x}))\\ &=\sum_{\hat{y}}\sum_{y:C_Y(y)=\hat{y}}\rho(y)D(\rho(X|y)||q(X|\hat{y})) \end{split}$$

- ► Input:
 - ▶ joint PMF p(X, Y),
 - k number of desired row clusters,
 - $ightharpoonup \ell$ number of column clusters
- ▶ Output: the final partition functions C_X^f and C_Y^f
- ► An iterative algorithm.

Algorithm Co_Clustering: Initialization

- ightharpoonup Start with initial partition functions $C_X^{(0)}$ and $C_Y^{(0)}$
- ► Compute $q^{(0)}(\widehat{X}, \widehat{Y})$, $q^{(0)}(X|\widehat{X})$, $q^{(0)}(Y|\widehat{Y})$
- ▶ Compute $q^{(0)}(Y|\hat{x})$, $1 \le \hat{x} \le k$ by means of

$$q^{(0)}(y|\hat{x}) = q^{(0)}(y|\hat{y})q^{(0)}(\hat{y}|\hat{x})$$

▶ Compute row clusters $C_x^{(t+1)}(x)$ for all $1 \le x \le m$ as

$$C_X^{(t+1)}(x) = \arg\min_{\hat{x}} D(p(Y|x)||q^{(t)}(Y|\hat{x}))$$

▶ Let $C_Y^{(t+1)} = C_Y^{(t)}$

- ► Compute the distributions $q^{(t+1)}(\widehat{X},\widehat{Y})$, $q^{(t+1)}(X|\widehat{X})$, $q^{(t+1)}(Y|\widehat{Y})$
- ▶ Compute $q^{(t+1)}(X|\hat{y})$, $1 \le \hat{y} \le \ell$ by means of

$$q^{(t+1)}(x|\hat{y}) = q^{(t+1)}(x|\hat{x})q^{(t+1)}(\hat{x}|\hat{y})$$

▶ Compute column clusters $C_Y^{(t+2)}(y)$ for all $1 \le y \le n$ as

$$C_Y^{(t+2)}(y) = \arg\min_{\hat{y}} D(p(X|y)||q^{(t)}(X|\hat{y}))$$

• Let $C_X^{(t+2)} = C_X^{(t+1)}$

- ► Compute the distributions $q^{(t+2)}(\widehat{X},\widehat{Y})$, $q^{(t+2)}(X|\widehat{X})$, $q^{(t+2)}(Y|\widehat{Y})$
- ▶ Compute $q^{(t+2)}(Y|\hat{x})$, $1 \le \hat{x} \le k$ by means of

$$q^{(t+2)}(y|\hat{x}) = q^{(t+2)}(y|\hat{y})q^{(t+2)}(\hat{y}|\hat{x})$$

▶ Compute the change in the objective

$$D(p(X,Y)||q^{(t)}(X,Y)) - D(p(X,Y)||q^{(t+2)}(X,Y))$$

- If it is small enough, say less than $\epsilon = 10^{-4}$, stop
- ▶ Otherwise, go to step 2 with t = t + 2.

Theorem

The mutual information loss is monotonically decreasing in each step of the Co_Clustering algorithm.

$$D(p^{(t)}(X,Y,\widehat{X},\widehat{Y})||q^{(t)}(X,Y,\widehat{X},\widehat{Y})) \geq D(p^{(t+1)}(X,Y,\widehat{X},\widehat{Y})||q^{(t+1)}(X,Y,\widehat{X},\widehat{Y}))$$

Corollary

The Co_Clustering algorithm terminates in a finite number of steps at a cluster assignment that is locally optimal.

		$p^{(t)}$	$\hat{X}, \hat{Y})$					
	\hat{y}_1	\hat{y}_1	\hat{y}_2	\hat{y}_1	\hat{y}_2	\hat{y}_2		
\hat{x}_3	.029	.029	.019	.022	.024	.024	0.10	0.05
\hat{x}_1	.036	.036	.014	.028	.018	.018	0.10	0.20
\hat{x}_2	.018	.018	.028	.014	.036	.036	0.30	0.25
\hat{x}_2	.018	.018	.028	.014	.036	.036		
\hat{x}_3	.039	.039	.025	.030	.032	.032		
\hat{x}_3	.039	.039	.025	.030	.032	.032		

 \downarrow steps 2 & 3 of Figure 1

	\hat{y}_1	\hat{y}_1	\hat{y}_2	\hat{y}_1	\hat{y}_2	\hat{y}_2		
\hat{x}_1	.036	.036	.014	.028	.018	.018	0.20	0.10
\hat{x}_1	.036	.036	.014	.028	.018	.018	0.18	0.32
\hat{x}_2	.019	.019	.026	.015	.034	.034	0.12	0.08
\hat{x}_2	.019	.019	.026	.015	.034	.034		
\hat{x}_3	.043	.043	.022	.033	.028	.028		
\hat{x}_2	.025	.025	.035	.020	.046	.046		

	\hat{y}_1	\hat{y}_1	\hat{y}_1	\hat{y}_2	\hat{y}_2	\hat{y}_2		
\hat{x}_1	.054	.054	.042	0	0	0	0.30	0
\hat{x}_1	.054	.054	.042	0	0	0	0.12	0.38
\hat{x}_2	.013	.013	.010	.031	.041	.041	0.08	0.12
\hat{x}_2	.013	.013	.010	.031	.041	.041		
\hat{x}_3	.028	.028	.022	.033	.043	.043		
\hat{x}_2	.017	.017	.013	.042	.054	.054		

 \downarrow steps 2 & 3 of Figure 1

	\hat{y}_1	\hat{y}_1	\hat{y}_1	\hat{y}_2	\hat{y}_2	\hat{y}_2		
\hat{x}_1	.054	.054	.042	0	0	0	0.30	0
\hat{x}_1	.054	.054	.042	0	0	0	0	0.30
\hat{x}_2	0	0	0	.042	.054	.054	0.20	0.20
\hat{x}_2	0	0	0	.042	.054	.054		
\hat{x}_3	.036	.036	.028	.028	.036	.036		
\hat{x}_3	.036	.036	.028	.028	.036	.036		

C	o-cluster	ing	1D-clustering		
992	4	8	944	9	98
40	$\bf 1452$	7	71	1431	5
1	4	1387	18	20	1297

Figure: Confusion matrix for co-clustering and 1D-clustering. Co-clustering accurately recovers original clusters in the *CLASSIC3* data set.

Figure: Micro-averaged precision values with varied number of word clusters with co-clustering on different NG20 data sets.

Figure: Fraction of mutual-information lost with varied number of word clusters using co-clustering on different NG20 data sets.

Figure: Loss in mutual information decreases monotonically with the number of iterations on a typical co-clustering run on the Multi10 data set.

Numerical Results

Figure: Sparsity structure of the Binary_subject word-document co-occurrence matrix

\hat{x}_{13}	\hat{x}_{14}	\hat{x}_{16}	\hat{x}_{23}	\hat{x}_{24}	\hat{x}_{47}
dod	pitching	graphics	space	israel	army
ride	season	image	nasa	arab	working
rear	players	mac	shuttle	jewish	running
riders	scored	ftp	flight	occupied	museum
harleys	cubs	color	algorithm	rights	drive
camping	fans	cd	orbital	palestinian	visit
carbs	teams	package	satellite	holocaust	post
bikers	yankees	display	budget	syria	cpu
tharp	braves	data	srb	civil	plain
davet	starters	format	prototype	racist	mass

Table 6: Word Clusters obtained using coclustering on the Multi5_subject data set. The clusters \hat{x}_{13} , \hat{x}_{14} , \hat{x}_{16} , \hat{x}_{23} and \hat{x}_{24} represent rec.motorcycles, rec.sport.baseball, comp.graphics, sci.space and talk.politics.mideast newsgroups respectively. For each cluster only top 10 words sorted by mutual information are shown.

Conclusions

- ► An information-theoretic formulation for co-clustering.
- A principled approach and algorithm.
- Converges in finite number of steps.
- Application: word-document co-clustering.
- An extensive numerical study

References

- (1) I. S. Dhillon, S. Mallela and D. S. Modha, Information-Theoretic Co-clustering, ACM SIGKDD Conference, August 2003
- N. Slonim, N. Friedman and N. Tishby, Agglomerative multivariate information bottleneck, NIPS Conference, 2001
- (3) N. Tishby, F.C. Pareira and W. Bialek, The information bottleneck method, ACM SIGIR Conference, 2000
- (4) N. Friedman, O. Mosenzon, N. Slonim and N. Tishby, Multivariate information bottleneck method, UAI Conference, 2001
- (5) R. El-Yaniv and O. Souroujon, Iterative double clustering for unsupervised and semi-supervised learning, EMCL Conference, January 2001
- (6) A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice-Hall, Englewood Cliffs, NJ, 1988.