Experiment VII

AIM:

Design of Full Subtractor and Adder using 8:1 Multiplexer.

Theory:

Multiplexer:

A multiplexer (MUX) is a combinational circuit with many data inputs and based on control inputs, single data outputs are generated.

For n:1 MUX, n number of input lines are required, log_2n number of control/selection lines are required.

For 8:1 MUX, we have 8 input lines and 1 output line with 3 selection lines.

Truth table for 8:1 MUX

INPUTS			Output
S ₂	S ₁	S ₀	Y
0	0	0	A ₀
0	0	1	A ₁
0	1	0	A ₂
0	1	1	A ₃
1	0	0	A ₄
1	0	1	A ₅
1	1	0	A ₆
1	1	1	A ₇

Full Adder:

Full adder is developed to overcome the drawback of Half Adder circuit. It can add two one-bit numbers A and B, and carry c.

The full adder is a three input (A, B, C_{in}) and two output (Sum, Carry) combinational circuit.

Inputs			Outputs	
Α	В	C _{in}	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

From here we get,

For Full Adder,

Sum(A,B, C_{in}) = $\Sigma(1,2,4,7)$

Carry(A,B, C_{in}) = $\Sigma(3,5,6,7)$

Full Subtracter:

The full subtractor is a combinational circuit with three inputs A,B,C and two output D and B_{out} . A is the 'minuend', B is 'subtrahend', C is the 'borrow' produced by the previous stage, D is the difference output and B_{out} is the borrow output.

Inputs			Outputs	
Α	В	Borrowin	Diff	Borrow
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

From here we get,

For Full Subtracter,

Difference(A,B,C) = $\Sigma(1,2,4,7)$

Borrow(A,B,C) = $\Sigma(1,2,3,7)$

Observations:

When A = 0, B = 0 and C = 0:

Full Adder: Sum = 0, Carry = 0

Full Subtracter: Difference = 0, Borrow = 0

When A = 0, B = 0 and C = 1:

Full Adder: Sum = 1, Carry = 0

Full Subtracter: Difference = 1, Borrow = 1

When A = 0, B = 1 and C = 0:

Full Adder: Sum = 1, Carry = 0

Full Subtracter: Difference = 1, Borrow = 1

When A = 0, B = 1 and C = 1:

Full Adder: Sum = 0, Carry = 1

Full Subtracter: Difference = 0, Borrow = 1

When A = 1, B = 0 and C = 0:

Full Adder: Sum = 1, Carry = 0

Full Subtracter: Difference = 1, Borrow = 0

When A = 1, B = 0 and C = 1:

Full Adder: Sum = 0, Carry = 1

Full Subtracter: Difference = 0, Borrow = 0

When A = 1, B = 1 and C = 0:

Full Adder: Sum = 0, Carry = 1

Full Subtracter: Difference = 0, Borrow = 0

When A = 1, B = 1 and C = 1:

Full Adder: Sum = 1, Carry = 1

Full Subtracter: Difference = 1, Borrow = 1