

d. 2. januar 2021

Notatet er opdateret d. 22. januar 2021 med en præcisering af formuleringer vedrørende udviklingen i forholdet mellem Cluster B.1.1.7 og øvrige virusvarianter.

Scenarier for udviklingen i den engelske virusvariant af SARS-COV-2 (cluster B.1.1.7)

Ekspertgruppen for matematisk modellering, der ledes fra SSI, bringer i dette notat en række estimater for den forventede udbredelse af cluster B.1.1.7 i den kommende periode, dels ved logistisk regression af udviklingen i forekomsten af varianten, og dels ud fra simuleringer af spredningen af varianten i en agentbaseret model.

Sammenfatning

- Den observerede udvikling i forekomsten af cluster B.1.1.7 i Danmark, svarer til en ugentlig vækstrate for forholdet mellem cluster B.1.1.7 og de øvrige virusvarianter på 72% (95% CI: [37, 115] %).
- Med udgangspunkt i den aktuelle situation hvor 2,3% af virusvarianterne i den rutinemæssige helgenomsekventering tilhører cluster B.1.1.7, estimeres det, at varianten vil udgøre halvdelen af de cirkulerende virusstammer i Danmark om 40-50 dage såfremt ovennævnte stigning fortsætter.
- Det nuværende niveau af restriktioner forventes ikke at være tilstrækkeligt til at få kontakttallet for cluster B.1.1.7 under 1. Derfor vil denne vokse eksponentielt upåagtet at det samlede kontakttal (for alle virusvarianter) kan være under 1 indtil cluster B.1.1.7 overtager om omkring en måned.
- Forekomsten af cluster B.1.1.7 er højest i Region Nordjylland, og udviklingen i forekomsten er ca. fire uger foran Region Hovedstaden.
- Det er på baggrund af engelske data estimeret at kontakttallet er ca. 1,5 gange højere for den nye virusvariant i forhold til andre virusvarianter.
- Den reduktion i smittetal og indlæggelser, der kan opnås i den kommende måned vil give et lavere udgangspunkt for den forøgede smitte og stigende kontakttal, som vi må forvente.

Disse beregninger er behæftet med usikkerheder af forskellige grunde. I perioden op til jul var der stor efterspørgsel på tryghedstest, og i samme periode er der udført et stigende antal antigen test. Derimod så vi i juledagene, at kun ganske få har ladet sig teste. Disse ændringer i testdynamikker gør det svært at følge udviklingen i covid-19, idet de vanlige indikatorer såsom incidenser, positivprocenter og kontakttallet påvirkes af den ændrede fordeling af covid-19-positive blandt de testede. Et lignende mønster forventes i dagene op til og efter nytår. Desuden har vi endnu ikke set effekten af de sidst indførte tiltag, herunder lukning af detailhandlen og liberale erhverv. Samlet set giver dette usikkerhed omkring det aktuelle kontakttal. Analysen er baseret på 76 isolater med cluster B.1.1.7 fordelt på de fem regioner. Den lille stikprøve giver relativt store statistiske usikkerheder. Der vil derfor være behov for at løbende at opdatere estimaterne og lave nye analyser.

Logistisk regression for spredningen af cluster B.1.1.7

Som det fremgår af nedenstående tabel, er der stor forskel på, hvornår man har fundet cluster B.1.1.7 i de enkelte regioner.

Tabel 1. Forekomst af cluster B.1.1.7 i de fem regioner baseret på helgenomsekventering af stikprøver af SARS-CoV-2 positive isolater.

Uge	Hovedstaden		Midtjylland		Nordjylland		Sjælland		Syddanmark	
	B.1.1.7	Total	B.1.1.7	Total	B.1.1.7	Total	B.1.1.7	Total	B.1.1.7	Total
45	0	656	0	283	0	238	0	181	0	200
46	4	420	0	327	0	305	0	132	0	168
47	0	588	0	297	0	240	0	143	0	241
48	3	679	0	291	0	169	0	165	0	195
49	0	825	0	332	3	64	0	246	0	208
50	2	892	0	360	7	92	0	214	1	431
51	3	753	0	524	9	254	3	310	4	354
52	8	774	5	221	12	169	10	193	1	225

Ud fra udbredelsen af cluster B.1.1.7 i Danmark samt andelen af nye isolater i overvågningen som er relateret til clusteret, anvendes logistisk regression til at estimere den forventede udbredelse af cluster B.1.1.7. Da fokus er på spredningen af virusvarianten, og ikke på introduktioner af denne, er det kun regioner, hvor der er detekteret isolater tilhørende cluster B.1.1.7 i mindst fire uger – dvs. Region Hovedstaden og Region Nordjylland, der er medtaget i denne første analyse.

Der er lavet logistisk regression med uge og region som forklarende variable. Der er også testet en interaktion, men den er ikke signifikant.

Tabel 2. Estimater for logistisk regression af andelen af cluster B.1.1.7. Referencen repræsenterer Region Hovedstaden.

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-32.812	5.679	-5.778	0.000
Uge	0.540	0.112	4.844	0.000
Region Nordjylland	2.221	0.311	7.133	0.000

Det ses, at log(odds) for at detektere cluster B.1.1.7 er 2.2 højere i Region Nordjylland end i Region Hovedstaden. Det svarer til odds på 9.2. Det mest interessante er den tidslige udvikling, hvoraf det ses at log(odds) øges med 0.54 for hver uge. Dette svarer til at cluster B.1.1.7 har en ugentlig vækstrate i odds (forholdet mellem antal cluster B.1.1.7 og øvrige virusvarianter) på 72% (95% CI: [37, 115] %), hvilket med den nuværende lave andel af cluster B.1.1.7 svarer til den samme stigning i andelen af cluster B.1.1.7 blandt alle positive prøver. Usikkerheden på estimatet er endnu ganske stort og estimatet er følsomt over for hvilke uger der medtages. Uanset usikkerheder, svarer det fundne estimat til de der er rapporteret fra England for denne virusvariant og det tyder på, at cluster B.1.1.7 har samme forøgede transmissionsrate i Danmark som i England.

Det ses, at log(odds) for at detektere cluster B.1.1.7 er 2.2 højere i Region Nordjylland end i Region Hovedstaden. Det svarer til odds på 9,2, dvs. at sandsynligheden for at detektere cluster B.1.1.7 her er 9,2 gange højere. Det svarer også til at Region Nordjylland er fire uger foran Region Hovedstaden i andelen af cluster B.1.1.7

Det forventes, at usikkerhederne vil blive reduceret væsentligt når der er data for 1-2 uger mere. Men givet at B.1.1.7 er så meget mere smitsom end hidtidige varianter vil det kræve længerevarende restriktioner at sænke smittetallet.

De seneste estimater af kontakttallet er lige under 1,0. Dette er dog påvirket af den ændrede testaktivitet og adfærd hen over jul og nytår, og vi har endnu ikke et overblik over konsekvenserne af sammenkomster i forbindelse med jul og nytår. Endvidere har vi endnu ikke set effekten af nedlukningen af de liberale erhverv og detailhandlen omkring jul. Derfor er det forventningen, at en fastholdelse af de nuværende restriktioner vil give et fald i kontakttallet, hvis man kigger på de virusvarianter som vi har set <u>før</u> introduktionen af cluster B.1.1.7. I England har man estimeret, at deres reference kontakttal var 0,8 for andre virusvarianter og 1,2 for cluster B.1.1.7. Det observerede kontakttal er et vægtet gennemsnit af virusvarianterne i populationen.

Figur 1 viser en fremskrivning af log(odds) for B.1.1.7 mod andre virusvarianter baseret på ovenstående logistiske regression. Estimatet er, at cluster B.1.1.7 allerede i uge 4 vil udgøre halvdelen af alle positive test i Region Nordjylland. Dette er dog behæftet med stor usikkerhed på baggrund af de nuværende data.

Figur 1. Log(odds) for at detektere cluster B.1.1.7 i hhv. Region Hovedstaden og Region Nordjylland

Ved sammenligning med England er vi nu, hvor de var i starten af november, hvor South East havde log(odds) på -2 svarende til Nordjylland og både London og East of England havde log(odds) omkring -4 svarende til Hovedstaden¹

Figur 2 viser den samme fremskrivning som i figur 1. Blot er der transformeret tilbage til andelen af positive test, som tilhører cluster B.1.1.7.

¹ 2020_12_23_Transmissibility_and_severity_of_VOC_202012_01_in_England.pdf (cmmid.github.io)

Figur 2. Udviklingen i forekomsten af cluster B.1.1.7 i de kommende uger. Fremskrivningen viser, at halvdelen at isolaterne i Region Nordjylland vil være cluster B.1.1.7 omkring uge 4.

Det skal bemærkes, at udviklingen i Hovedstaden er ca. 4 uger efter udviklingen i Nordjylland. Det er endnu for tidligt at udtale sig om niveauet i de andre tre regioner, men særlig Region Sjælland synes at have oplevet en hurtig stigning, om end det er baseret på meget lidt data. De næste par uger vil forbedre estimatet af niveauet i alle regioner.

Hen over julen har der været et nyt toppunkt i antal indlagte og der er endnu kun set små fald. Det er først i uge 1, at vi kan forvente at se eventuelle indlæggelser som følge af smitte i julen. Alt andet lige må dette forventes at give en yderligere kortvarig pukkel i antal nye indlæggelser.

På nuværende tidspunkt er prognosen, at vi har omkring en måned før det samlede kontakttal for alle virusvarianter hurtigt vil stige på grund af øget udbredelse af cluster B.1.1.7. Hvis restriktionerne skærpes i den kommende tid, vil det give en reduktion i smittetal og indlæggelser og dermed et lavere udgangspunkt for den forøgede smitte og stigende kontakttal, som vi må forvente.

Et første estimat af kontakttallet for cluster B.1.1.7 for perioden uge 47 til 52 og baseret på observationer fra Region Hovedstaden og Region Nordjylland er 1.5 (95% CI [1,2; 1,7]) - dette er estimeret vha. Poisson regression med offset lig med 0.7*log(antal sekventerede). Det gennemsnitlige kontakttal (baseret på SSIs publicerede kontakttal 2020-12-29) for perioden er 1,1. Da kontakttallet for cluster B.1.1.7 er så meget højere må det selv med de nuværende restriktioner forventes, at det vedbliver med at være over 1 og dermed forventes cluster B.1.1.7 at vokse eksponentielt, hvis det nuværende niveau af restriktioner fastholdes.

Simularing af spredningen af cluster B.1.1.7 i en agentbaseret model

Agentbaserede modeller

Spredningen af cluster B.1.1.7 er simuleret i en agentbaseret model, som er udviklet af Niels Bohr Instituttet, Københavns Universitet (NBI). En agentbaseret model simulerer et antal agenter (individer i en population) og deres interaktioner med andre agenter, svarende til de interaktioner som en befolkning normal vis har. Hver agent repræsenterer således en person, som er knyttet til en lokation i Danmark, svarende til deres bopæl. Agenterne indgår i flere forskellige netværk, f.eks. husstand, job og skole hvor de har kontakt til andre personer. Derudover har de kontakt til tilfældige personer i samfundet i den tid, hvor personen ikke er hjemme, på job eller i skole. Hvis en agent bliver smittet med SARS-CoV-2, er forløbet for den enkelte agent beskrevet således, at agenten først er eksponeret (E) og derefter infektiøs (I), hvorefter agenten ikke længere er smitsom og betragtes som rask (R). De gennemsnitlige tider i hvert sygdomsstadie kan findes i bilag 1. Hver kontakt, som en agent eksponeres for, tildeles en sandsynlighed for at blive smittet af en anden agent, såfremt denne er smitsom. For en detaljeret beskrivelse af den agentbaserede model, herunder de inkluderede parametre, henvises til bilag 1.

Forbehold

Mens en agentbaseret model kan medtage mere detaljerede dynamikker i en epidemi, så kræver en præcis simulation input fra data, som ofte ikke er tilgængelige eller forefindes, fx hvem en person mødes med i løbet af en dag. Derfor kan en sådan model have unøjagtigheder eller bygge på antagelser, som ikke er retvisende. Det er ikke muligt at kvantificere den nøjagtige størrelse eller effekt af disse potentielle fejlkilder. Da datagrundlaget for disse simuleringer er sparsomt, fordi vi endnu har få datapunkter for cluster B.1.1.7, vil resultatet være behæftet med væsentlig usikkerhed.

Resultater

I det følgende er udviklingen simuleret i en model, hvor udgangspunktet er 1/10 af Danmarks befolkning, og hvor cluster B.1.1.7 fra starten udgør omkring 5% af de cirkulerende virusvarianter. Epidemien simuleres ud fra et kontakttal på omkring 1,0, samt en antagelse om, at cluster B.1.1.7 smitter 50% mere, som rapporteret fra England²

Figur 3 viser, hvordan en epidemi vil udvikle sig i tid, forudsat at det simulerede scenarie ikke ændres. Der opdeles i hhv. de nuværende virusvarianter (DK, fulde linjer) og det engelske cluster B.1.1.7 (UK, stiplede linjer). Simulationen er gentaget flere gange (forskellige farver) for at se, hvor store variationer der forekommer. Som det kan ses, så udfases DK-versionen af smitten, mens UK-versionen B.1.1.7 giver ophav til en eksponentiel vækst, idet kontakttallet for denne er væsentligt over 1.

Af figuren fremgår det, at cluster B.1.1.7 ca. 35-40 dage fra simulationens start ("1. jan.") udgør omkring 50% af de cirkulerende virusvarianter. Da simulationen er startet med en større andel UK-varianter (5%) end det aktuelle landsgennemsnit (2.3%), så bliver estimatet 40-50 dage til at halvdelen af de sekventerede varianter tilhører cluster B.1.1.7. I de viste simulationer er de første smittet med cluster B.1.1.7 varianten placeret i Hovedstadsområdet. I andre scenarier, hvor cluster B.1.1.7 varianten i starten udvikler sig i et tyndere befolket område tager udviklingen lidt længere tid, op til 60 dage.

-

²2020_12_23_Transmissibility_and_severity_of_VOC_202012_01_in_England.pdf (cmmid.github.io)

Figur 3. Den forventede udvikling i cluster B.1.1.7 sammenholdt med udviklingen i øvrige virusvarianter, simuleret i en agentbaseret model. Ud fra simulationerne estimeres det, at B.1.1.7 varianten vil være dominerende efter 40-50 dage.

Bilag 1. Beskrivelse af den agentbaserede model

Den nedenstående modelbeskrivelse er et uddrag fra ekspertrapporten "effekten af kontaktopsporing" der er publiceret d. 16. december 2020

Bidrag og udvikling: Christian Michelsen, Emil Martiny, Tariq Halasa, Mogens H. Jensen, Troels C. Petersen og Mathias L. Heltberg

Den agentbaserede model baseres på agenter, dvs. individer hvis karakteristika er tildelt ud fra statistiske fordelinger i befolkningen. Dette er f.eks. en aldersfordeling og en fordeling over pendlerafstande. Modellen starter med at fordele Danmarks bopæle ud i landet baseret på det danske hussalg over de sidste 15 år. Herefter placeres agenter i hver husstand baseret på deres alder og geografiske placering.

Figur 5: A) Skematisk oversigt over hvordan interaktionsnetværket i modellen ser ud. B) Eksempel på simulation af smittespredning i Danmark i modellen, gennem et simuleret tilfælde af flokimmunitet i København.

Et afgørende element i modellen er opbygningen af alle personers interaktionsnetværk. Dette genereres ved, at hver agent har et netværk, de interagerer med. Dette opdeles i tre dele: 1) kontakter i hjemmet, 2) kontakter på arbejdet, 3) kontakter i kategorien andre kontakter. Der er ikke nogen geografisk afhængighed af antallet af kontakter på arbejdet, men i den kategori der kaldes "andre", vil der generelt være flere kontakter for dem der bor i tæt befolkede områder i forhold til dem der bor på landet. Måden hvorpå netværket dannes er vist i Figur 5A.

Ud fra data fra HOPE-projektet har vi estimeret, hvor mange personer hver agent vil interagere med, og i denne model vil alle agenter have mellem 3 og 15 daglige kontakter.

Når modellen simuleres vil alle inficerede agenter gennemgå et forløb, hvor de er i en latent periode, hvor de ikke smitter, hvorefter de vil rykke over i en infektiøs periode, hvor de kan smitte agenter i deres netværk. Denne model simuleres ud fra det der kaldes Gillespie algoritmen, således at netværket opdateres instantant for alle smittebegivenheder. En samling af de væsentligste parametre er vist herunder (Tabel 2).

Tabel 2: Parametre i den agentbaserede model

Parameter	Værdi interval	Reference
	for	
	middelværdien	
Antal kontakter per dag	3-15	HOPE projektet
Latent tid (dage)	3-5	Litteratur se referenceliste i bilag 5
Infektiøs tid (dage)	4-8	Litteratur se referenceliste i bilag 5
Andel af kontakter i "andre" (%)	30-80	HOPE projektet
Typisk afstand mellem kontakter (km)	5-20	Trafik data
Andel afstandsuafhængige kontakter (%)	3-5	Trafik data
Tid fra symptom til test (Dage)	0-2	Fordeling fra
		spørgeskemaundersøgelse i foråret
		2020 (ikke offentliggjort)
Sandsynlighed for at få symptomer og blive	20-60 %	Prævalensundersøgelsen
testet (%)		
Sandsynlighed for at kontakte husstand (%)	100%	Antagelse
Sandsynlighed for at kontakte kollegaer (%)	40-80	Antagelse
Sandsynlighed for at kontakte andre (%)	0-75	Antagelse