STATISTICAL METHODS IN MACHINE LEARNING

SUPPORT VECTOR MACHINE

April, 8, 2019

SUPPORT VECTOR MACHINES

- ▶ Here we approach the two-class classification problem in a direct way:
- ▶ We try and find a plane that separates the classes in feature space.
- ▶ If we cannot, we get creative in two ways:
 - ▶ We soften what we mean by "separates", and
 - ▶ We enrich and enlarge the feature space so that separation is possible.

WHAT IS A HYPERPLANE?

- ▶ A hyperplane in p dimensions is a flat affine subspace of dimension p-1
- ▶ In general the equation for a hyperplane has the form

$$\beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p = 0$$

- ▶ If p = 2, a hyper plane is a line.
- The vector $\beta = (\beta_1, \dots, \beta_p)$ is called the normal vector of the plane—it points in a direction orthogonal to the surface of a hyperplane.

Hyperplane in 2 Dimensions

SEPARATING HYPERPLANES

- ▶ If $f(X) = \beta_0 + \beta_1 X_1 + ... + \beta_p X_P$, then f(X) > 0 for points on one side of the hyperplane, and f(X) < 0 for points on the other side.
- ▶ We code the colored points as $Y_i = +1$ for blue, say, and $Y_i = -1$ for red,
- ▶ if $Y_i f(X_i) > 0$ for all i, then f(X) = 0 defines a separating hyperplane.

MAXIMAL MARGIN CLASSIFIER

- ▶ Among all separating hyperplanes, find the one that makes the biggest gap or margin between the two classes.
- ► Constrained optimization problem

$$\max_{\beta_0,...,\beta_p} M$$
 subject to $\|\beta\|_2^2 = \sum_{j=1}^p \beta_j^2 = 1$ and
$$y_i(\beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}) \ge M, \quad i = 1,..,n$$

This can be rephrased as a convex quadratic program, and solved efficiently. The function svm() in package e1071 solves this problem efficiently

Non-separable Data

▶ The data on the left are not separable by a linear boundary. This is often the case unless n < p.

Noisy Data

▶ Sometimes the data are separable, but noisy. This can lead to a poor solution for the maximal-margin classifier.

▶ The support vector classifier maximizes a soft margin.

SUPPORT VECTOR CLASSIFIER

▶ The Support Vector classifier is defined as

$$\max_{\beta_0,\dots,\beta_p,\xi_1,\dots,\xi_n} M$$

subject to $\|\beta\|_2^2 = \sum_{j=1}^p \beta_j^2 = 1$ and

$$y_i(\beta_0 + x_i^T \beta) \ge M(1 - \xi_i), \quad i = 1, .., n$$

and $\xi_i \geq 0$, $\sum_{i=1}^n \xi_i \leq C$

- ▶ The value ξ_i in the constraint $y_i(\beta_0 + x_i^T \beta) \ge M(1 \xi_i)$ is the proportional amount by which the prediction is on the wrong side of its margin.
- ▶ by bounding the $\sum_{i=1}^{n} \xi_i$, we bound the total proportional amount by which predictions fall on the wrong side of their margin.
- ▶ Misclassification occurs when $\xi_i > 1$

SUPPORT VECTOR CLASSIFIER (CONT.)

- ▶ The problem is quadratic with linear inequality constraints, hence it is a convex optimization problem.
- We describe a quadratic programming solution using Lagrange multipliers

$$\min_{\beta_0, ..., \beta_p} \frac{1}{2} \|\beta\|_2^2 + \lambda \sum_{i=1}^n \xi_i$$

subjet to $\xi_i \geq 0$ and $y_i(\beta_0 + x_i^T \beta) \geq 1 - \xi_i$

λ is a regularization parameter

▶ There is a one-one correspondence between C and λ

LINEAR BOUNDARY CAN FAIL

ightharpoonup Sometime a linear boundary simply won't work, no matter what value of C.

• we can make the procedure more flexible by enlarging the feature space using basis expansions such as polynomials or splines

FEATURE EXPANSION

- ▶ Enlarge the space of features by including transformations
- ▶ Fit a support-vector classifier in the enlarged space
- ▶ This results in non-linear decision boundaries in the original space.
- **Example:**
 - ► Cubic Polynomials of two variables
 - $f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2 + \beta_6 x_1^3 + \beta_7 x_2^3 + \beta_8 x_1 x_2^2 + \beta_9 x_1^2 x_2$

Nonlinearities and Kernels

- ▶ Polynomials (especially high-dimensional ones) get wild rather fast.
- ► There is a more elegant and controlled way to introduce nonlinearities in support-vector classifiers through the use of kernels.
- ▶ Before we discuss these, let's talk about inner products
- ▶ Inner product between vectors $\langle x, y \rangle = \sum_{j=1}^{p} x_j y_j$
- ▶ The linear support vector classifier can be represented as

$$f(x) = \beta_0 + \sum_{i=1}^{n} \alpha_i \langle x, x_i \rangle$$

▶ To estimate the parameters $\alpha_1, \ldots, \alpha_n$ and β_0 , all we need are the n inner products $\langle x, x_i \rangle$ between all pairs of training observations.

KERNELS AND SUPPORT VECTOR MACHINES

- ▶ If we can compute inner-products between observations, we can fit a SV classifier.
- ▶ Suppose we have transformed features $h(x) = (h_1(x_i), \dots, h_M(x_i))$, resulting a nonlinear function $f(x) = \hat{\beta}_0 + h(x)^T \hat{\beta}$
- We know that $\hat{\beta}$ is in the form of

$$\hat{\beta} = \sum_{i=1}^{n} \hat{\alpha}_i h(x_i)$$

so that

$$f(x) = \beta_0 + \sum_{i=1}^{n} \hat{\alpha}_i \langle h(x), h(x_i) \rangle$$

 \triangleright As in the linear SVM, it turns out that most of the α_i can be zero:

$$f(x) = \beta_0 + \sum_{i \in A} \hat{\alpha}_i \langle h(x), h(x_i) \rangle$$

where S is the active set of indices i such that $\hat{\alpha}_i > 0$

KERNELS

- For high-degree polynomial, h(x) could be very "long"
- ▶ Fortunately, if we choose the transformation $h(\cdot)$ wisely,

$$\langle h(x), h(x_i) \rangle = (1 + \langle x, x_i \rangle)^d$$

- $ightharpoonup K(x,x') = \langle h(x),h(x')\rangle$ is called a kernel
- ▶ In fact, we need not specify the transformation h(x) at all, but require only knowledge of the kernel function
- ► Three popular choices are
 - d-degree polynomial: $K(x, x') = (1 + \langle x, x' \rangle)^d$
 - radial kernel: $K(x, x') = \exp(-\gamma \langle x, x' \rangle)$
 - neural network: $K(x, x') = \tanh(\alpha \langle x, x' \rangle + \beta)$

EXAMPLE: RADIAL KERNEL

Example: Heart Data

ROC curve is obtained by changing the threshold 0 to threshold t in $\hat{f}(x) > t$, and recording false positive and true positive rates as t varies. Here we see ROC curves on test data.

SVMs: MORE THAN 2 CLASSES?

- ▶ The SVM as defined works for K = 2 classes. What do we do if we have K > 2 classes?
 - OVA One versus All. Fit K different 2-class SVM classifiers $\hat{f}_k(x)$, k = 1, ..., K; each class versus the rest. Classify x_0 to the class for which $\hat{f}_k(x^*)$ is largest
 - OVO One versus One. Fit all $\binom{K}{2}$ pairwise classifiers $\hat{f}_{kl}(x)$. Classify x_0 to the class that wins the most pairwise competitions.
- ightharpoonup If K is not too large, use OVO.

Support Vector Versus Logistic Regression?

▶ For the linear SVM, one can rewrite the optimization problem as

$$\min_{\beta} \left\{ \sum_{i=1}^{n} l(y_i, f(x_i)) + \lambda \|\beta\|^2 \right\}$$

where $l(y, f(x)) = \max[0, 1 - yf(x)]$

► The loss is known as the hinge loss.

Very similar to negative log-likelihood in logistic regression

WHICH TO USE: SVM OR LOGISTIC REGRESSION

- When classes are (nearly) separable, SVM does better than LR. So does LDA.
- ▶ When not, LR (with ridge penalty) and SVM very similar.
- ▶ If you wish to estimate probabilities, LR is the choice.
- ▶ For nonlinear boundaries, kernel SVMs are popular. Can use kernels with LR and LDA as well, but computations are more expensive.