Name:	Klasse:
1 valific	IX1035C

Zwischenmolekulare Bindungen

Dipol-Moleküle und Wasserstoffbrücken

In Molekülen wirken neben den	auch
Kräfte	e. Diese Kräfte haben entscheidenden Einfluss auf
die Eigenschaften der Stoffe wie z.B. desse	en oder seiner
in bestimmten I	
Bei Molekülen, in denen Elemente untersch	hiedlicher gebunden sind,
ist die Elektronenpaarbindung	Die Moleküle besitzen also eine Seite
mit einer Teilladung und ei	ne mit einer Bei Molekülen
wie Wasser oder Ammoniak fallen die Sch	werpunkte dieser Ladungen nicht zusammen.
Solche Moleküle besitzen eine negativ pole	arisierte und eine positiv polarisierte Seite: es sind
Dipol-Moleküle müssen also immer eine _	
besitzen. Diese ist für das Auftreten des Di	pol-Charakters zwar notwendig, aber nicht alle
Moleküle mit einer polaren Elektronenpaar	rbindung sind auch Dipole! Ob ein Molekül ein
Dipol ist, hängt ab von seinem	Alle
Molekül	e mit Molekülpolarität wie HCl oder HF sind
Dipole. Bei	Molekülen müssen die Vektoren der
Ladungsschwerpunkte addiert werden. Erg	ibt diese Vektoraddition wie bei CO ₂ ,
ist das Molekül kein Dipol.	
Aufgrund ihrer Molekülpolarität herrschen	zwischen Dipol-Molekülen
Sie bilden au	ich im flüssigen und gasförmigen Zustand lockere
Verbände, die	Aus diesem Grund treten bei Dipol-Molekülen
immer ungewöhnlich hohe	auf.
	e besonders starke Form der Anziehung zwischen
bestimmten Dipol-Molekülen. Sie erfolgt z	wischen dem positiv polarisiertem
des eine	n Moleküls und dem extrem
und deshalb	stark negativ polarisiertem Atom (wie Fluor oder
	sind verantwortlich
	sers wie seine und
seine hohe .	