MUNI

Deduction in Matching Logic

Master's Thesis

Adam Fiedler

fiedler@mail.muni.cz

Faculty of Informatics, Masaryk University

Spring 2022

Matching logic Intuition

Figure: Matching the pattern $\varphi \equiv (\underline{1} \vee \underline{2} \vee \underline{3}) \wedge \neg x$ with x := 2.

Matching logic Motivation

Matching logic (ML) is designed for reasoning about operational semantics.

- 1. Operational semantics can be defined as a ML theory Γ .
- 2. Then we can prove various program properties, e.g.,

$$\Gamma \vdash \langle \varphi_{state}, x := 1 \rangle \rightarrow \langle \varphi_{state}, y := 1 \rangle.$$

(PT)	arphi if $arphi$ is a propositional tautology over patterns
(MP)	$ \varphi_1 \varphi_1 \rightarrow \varphi_2 $
	arphi2
(∀)	$(\forall x. \varphi_1 \to \varphi_2) \to (\varphi_1 \to \forall x. \varphi_2) \text{ if } x \notin FV(\varphi_1)$
(Sub)	$(\forall x. \varphi) \to \varphi[y/x]$
(Gen)	$\underline{\hspace{1cm}} \varphi$
(Gen)	$\forall x. \varphi$
(Propagation $_{\perp}$)	$C_\sigma[ot] o ot$
(Propagation $_{\lor}$)	$C_\sigma[arphi_1eearphi_2] o (C_\sigma[arphi_1]eeC_\sigma[arphi_2])$
(Propagation _∃)	$C_{\sigma}[\exists x.\varphi] \to \exists x.C_{\sigma}[\varphi] \text{if } x \notin FV(C_{\sigma}[\exists x.\varphi])$
(Framing)	$\varphi_1 o \varphi_2$
(Frailing)	$C_{\sigma}[\varphi_1] \to C_{\sigma}[\varphi_2]$
	where C_{σ} is a single symbol context.
(Ex)	$\exists x. x$
(Singleton)	$\neg (C_1[x \land \varphi] \land C_2[x \land \neg \varphi])$
	where C_1 , C_2 are nested symbol contexts.
	Figure: System ${\cal H}$

Properties of System ${\cal H}$ Soundness

Theorem (Chen and Roşu, 2019b)

System \mathcal{H} is sound, i.e., $\Gamma \vdash \varphi$ implies $\Gamma \models \varphi$.

Is System \mathcal{H} complete?

Properties of System ${\cal H}$ Completeness

Let $\lceil \cdot \rceil$ be some unary symbol. We introduce the axiom

(Definedness)

 $\forall x. [x]$

Theorem (Chen and Roşu, 2019b)

Let Γ be a theory containing (Definedness). If $\Gamma \models \varphi$, then $\Gamma \vdash \varphi$.

Problem

Is System \mathcal{H} complete w.r.t. *all* theories?

- 1. Not all theories contain (Definedness).
- 2. We want to know why (Definedness) is so important.
- 3. ML has deep connections with other logics.

Figure: Logics successfully embedded into ML (Chen and Roşu, 2019a).

We identified a new characterization of completeness for System \mathcal{H} :

Theorem

Let $\lceil \cdot \rceil$ be some *fresh* symbol not contained in Γ and φ . The following two statements are equivalent.

- 1. $\Gamma \models \varphi$ implies $\Gamma \vdash \varphi$.
- 2. $\Gamma \cup \{ \forall x. [x] \} \vdash \varphi \text{ implies } \Gamma \vdash \varphi.$

Our characterization led to new results:

Theorem

System $\mathcal H$ is complete iff System $\mathcal H$ is complete w.r.t. *finite theories*.

Theorem

System \mathcal{H} is complete w.r.t. the fragment of ML without symbols.

Theorem (Compactness)

Let Γ be any theory. Then Γ is satisfiable iff every finite subset of Γ is satisfiable.

We showed new connections with FOL:

Theorem (Full FOL embedding)

Let Φ be a FOL theory. Then there exists a ML theory Γ such that $\Phi \models_{\mathsf{FOL}} \varphi$ iff $\Phi \cup \Gamma \models_{\mathsf{ML}} \varphi$ for every FOL formula φ .

Theorem (Henkin's characterization in ML)

Under certain technical assumptions, the following two are equivalent.

- 1. System \mathcal{H} is complete.
- 2. Every consistent theory has a model.

We devised a new¹ canonical model construction with the following property:

Theorem (Canonical model)

Let Γ be any theory containing (Definedness). If $\Gamma \not\vdash \varphi$, then we can construct a model \mathfrak{M} such that $\mathfrak{M} \models \Gamma$ and $\mathfrak{M} \not\models \varphi$.

¹Inspired by (Blackburn and Tzakova, 1998), (Chen and Roşu, 2019b).

Future work

Are there any other techniques for *conservative extensions*? Recall that for a fresh $\lceil \cdot \rceil$, it suffices to prove

$$\Gamma \cup \{ \forall x. [x] \} \vdash \varphi \text{ implies } \Gamma \vdash \varphi.$$

- Does the connection with FOL still carry some answers?
- Are we able to extend our canonical models to all theories?

Conclusion

We have

- 1. identified a new characterization of completeness,
- 2. proved that completeness can be reduced to *finite theories*,
- 3. proved the compactness theorem,
- 4. showed some new classes of theories for which ${\cal H}$ is complete,
- 5. discovered new connections with FOL,
- 6. devised a new technique for constructing canonical models.

Question 1 Is there a practical motivation?

- In practice: we can simply add (Definedness) to our theories.
- In theory: why is (Definedness) so important? Does it play a role in (semi-)decidability?

Question 2

Is $\langle \cdot, \cdot \rangle$ a function symbol?

$$\varphi_{\mathsf{SUM}} \equiv \exists x \exists y \exists z. \langle x, \langle y, z \rangle \rangle \land x + y = z.$$

Claim: " $\langle \cdot, \cdot \rangle$ is neither a predicate symbol nor a function symbol."

Meaning:

- \bullet $\langle \cdot, \cdot \rangle$ cannot be a FOL symbol; it is both *top-level* and *nested*.
- For example,

$$\forall x. P(P(x)), \forall x. f(f(x))$$

are not FOL formulas.

Question 3 Equality in FOL vs. in ML

Claim:

- There is no "authentic" theory of term equality $t_1 = t_2$ in FOL.
- **E** Equality $\varphi_1 = \varphi_2$ can be defined as a ML theory.

Questions: Is this different from FOL? Is this interesting?

Answer: It is just stating a difference (e.g., finite models).

Question 4

Motivation behind equality extensions?

Definition (Equality extension)

Let Γ be a theory over some signature Σ . We call $\Gamma_{=} \equiv \Gamma \cup \{ \lceil x \rceil \}$ an equality extension of Γ if $\lceil \cdot \rceil \notin \Sigma$. We assume some fixed $\lceil \cdot \rceil$ is determined for each Σ .

Motivations:

- 1. Theories with equality vs. equality extensions.
- 2. (Definedness) vs. a definedness axiom.
- 3. Clear characterization of completeness.

Question 5

How did I decide what proofs to include?

- 1. No proof: a trivial result I have not found in the literature.
- 2. No proof + citation: a known result.
- 3. Proof: a new result I have not found in the literature.
- 4. Proof + citation: an old result with proof included for motivation.

Bibliography

- Blackburn, Patrick and Miroslava Tzakova (July 1998). "Hybrid completeness". In: *Logic Journal of the IGPL* 6.4, pp. 625–650. issn: 1367-0751. doi: 10.1093/jiqpal/6.4.625. url: https://academic.oup.com/jigpal/articlepdf/6/4/625/1878635/060625.pdf. Chen, Xiaohong and Grigore Roşu (July 31, 2019a). "Applicative
- matching logic". In: url: https: //www.ideals.illinois.edu/handle/2142/104616 (visited on 05/09/2022).
- (June 2019b). "Matching mu-Logic". In: Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS'19). ACM/IEEE, pp. 1–13. doi:
 - https://doi.org/10.1109/LICS.2019.8785675.

MASARYK UNIVERSITY