ТЕМА 4: ФУНКЦИИ

Дефиниция на функция

Нека $R \subseteq A \times B$ е бинарна релация. Тя е:

- Тотална функция или само функция тогава и само тогава, когато:

 $\forall a \in A \; \exists! b \in B \; ((a,b) \in R)$

- Частична функция тогава и само тогава, когато:

 $\forall a \in A, \forall b_1 \forall b_2 \in B \ ((a, b_1) \in R \land (a, b_2) \in R \rightarrow b_1 = b_2)$

Видове функции:

- Инекция $\forall a_1 \forall a_2 \in A \ (a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2))$
- Сюрекция $\forall b \in B \ \exists a \in A \ (f(a) = b)$
- Биекция когато е инекция + сюрекция

Композиция на функции: Нека $f:A\to B, g:B\to C$. Композиция на функциите f и g е функция $g\circ f:A\to C$, дефинирана така: $(g\circ f)(x)=g(f(x))$

Обратна функция: Нека $f: A \to B$ е биекция. Обратна на f е функцията: $f^{-1}: B \to A$ определена по следния начин $f^{-1}(y) = x \ (f(x) = y)$

Задачи за упражнение:

Задача 1: Определете множеството от всички функции, с домейн множество А и кодомейн множество В:

a)
$$A = \{1\}, B = \{2, 3\}$$

Решение:

$$f_1 = \{(1,2)\}, \quad f_2 = \{(1,3)\}$$

b)
$$A = \{1, 2\}, B = \{3\}$$

Решение:

$$f_1 = \{(1,3), (2,3)\}$$

c)
$$A = \{a, b\}, B = \{a, b, c\}$$

Решение:

$$f_1 = \{(a, a), (b, a)\} \quad f_2 = \{(a, b), (b, b)\} \quad f_3 = \{(a, c), (b, c)\}$$

$$f_4 = \{(a, a), (b, b)\} \quad f_5 = \{(a, b), (b, a)\} \quad f_6 = \{(a, a), (b, c)\}$$

$$f_7 = \{(a, c), (b, a)\} \quad f_8 = \{(a, b), (b, c)\} \quad f_9 = \{(a, c), (b, b)\}$$

d)
$$A = \{a, b, c\}, B = \{a, b\}$$

Задача 2: Напишете в явен вид, като изберете подходящо представяне, всички функции f, които ca:

- а) инекции; b) сюрекции; c) биекции; и имат следните домейн и кодомейн:
 - 1. $f: \{1, 2, 3, 4\} \to \{a, b\}$ 2. $f: \{1, 2\} \to \{a, b, c\}$

3adaчa 3: . Нека P е множеството на всички хора, които някога са живели на Земята. За всяка от следните релации да се определи дали е функция и ако да — то каква: тотална, частична, инекция, сюрекция, биекция.

- а) $\forall a \forall b \in P : (a,b) \in R \Leftrightarrow b$ е дядо на a изберете един от следните отговори:
 - А) Тотална функция инекция
 - В) Частична функция
 - С) Не е функция
- b) $\forall a \forall b \in P : (a, b) \in R \Leftrightarrow b$ е майка на a изберете един от следните отговори:
 - А) Частична функция
 - В) Тотална функция
 - С) Не е функция
 - D) Функция инекция, но не сюрекция
 - Е) Функция биекция
- с) $\forall a \forall b \in P: (a,b) \in R \Leftrightarrow b$ е първото дете на a изберете един от следните отговори:
 - А) Функция сюрекция, но не инекция
 - В) Частична функция
 - С) Не е функция
 - D) Биекция
- d) $\forall a \in P, \forall b \in 2^P: (a,b) \in R \Leftrightarrow b$ е множеството от всички деца на a изберете един от следните отговори:
 - А) Частична функция
 - В) Функция инекция, но не сюрекция
 - С) Не е функция
 - D) Тотална функция
 - Е) Функция биекция

 ${\it 3adaua~4:}$ Напишете в явен вид като изберете подходящо представяне, всички функции $f:\{1,2,3\} \to \{a,b,c\}$, които са биекции.

 ${\it 3adaчa}\ {\it 5:}\ {\it Д}$ адени са множествата: $A=\{a,b,c\}, B=\{x,y,z\}, C=\{1,2\}.$ Намерете функции с указаните свойства, като изберете измежду горните множества домейн и кодомейн:

- а) Инекция, но не сюрекция;
- b) Сюрекция, но не инекция;
- с) Биекция;
- d) Нито инекция, нито сюрекция.

 ${\it 3adaчa}$ 6: Проверете биекция ли е функцията $f: \mathbb{N} \to \mathbb{N},$ дефинирана по следния начин:

$$f(x) = \begin{cases} x+1 & \text{ако } x \text{ е четно} \\ x-1 & \text{ако } x \text{ е нечетно} \end{cases}$$

Решение:

1. Ще докажем, че функцията е инекция.

Нека $x_1, x_2 \in \mathbb{N}, x_1 \neq x_2$.

- x_1 и x_2 са с еднаква четност, б.о.о. да считаме, че са четни.

Следователно $f(x_1) = x_1 + 1; f(x_2) = x_2 + 1$

$$x_1 \neq x_2 \Rightarrow x_1 + 1 \neq x_2 + 1 \Rightarrow f(x_1) \neq f(x_2)$$

- x_1 и x_2 са с различна четност \Rightarrow

 $f(x_1)$ и $f(x_2)$ също са с различна четност $\Rightarrow f(x_1) \neq f(x_2)$.

Следователно f(x) е инекция.

2. Ще докажем, че функцията е сюрекция.

Нека $y \in \mathbb{N}$.

-
$$y$$
 е четно, а $x = y + 1 \Rightarrow$

$$f(x) = f(y+1) = y$$

-
$$y$$
 е нечетно, а $x = y - 1 \Rightarrow$

$$f(x) = f(y - 1) = y$$

Следователно, f(x) е сюрекция.

Функцията f(x) е инекция и сюрекция, следователно е биекция.

 ${\it 3adaua}$ 7: Покажете, че всяка от изброените функции от вида $f: \mathbb{N} \to \mathbb{N}$ има указаните свойства:

a)
$$f(x) = 2x$$
 инекция, но не сюрекция

Решение:

Нека $x_1, x_2 \in \mathbb{N}, \ x_1 \neq x_2 \Rightarrow 2x_1 \neq 2x_2 \Rightarrow$

 $f(x_1) \neq f(x_2) \Rightarrow f(x)$ е инекция.

Елементът $3 \in \mathbb{N}$ няма първообраз, защото $\forall x \in \mathbb{N}(f(x) \neq 3)$.

Следователно, функцията f(x) не е сюрекция.

- b) f(x) = x + 1 инекция, но не сюрекция
- c) f(x) = |x/2| сюрекция, но не инекция

Решение:

Функцията не е инекция, защото:

$$2, 3 \in \mathbb{N}, 2 \neq 3 \land f(2) = f(3) = 1.$$

Нека
$$x \in \mathbb{N} \Rightarrow f(2x) = |(2x)/2| = x$$
.

Следователно, функцията f(x) е сюрекция.

Задача 8: За всяка от изброените по-долу функции определете вида й, като изберете един от указаните отговори:

- a) $f: \mathbb{R} \to \mathbb{Z}: f(x) = \lfloor x/2 \rfloor$
- b) $f: \mathbb{N} \to \mathbb{N}: f(x) = x \mod 10$
 - А) Биекция
 - В) Инекция
 - С) Сюрекция
 - D) Нито едно от горните
- c) $f: \mathbb{Z} \to \mathbb{N}: f(x) = |x+1|$
 - А) Биекция
 - В) Сюрекция
 - С) Частична функция
- d) $f: \mathbb{R} \to \mathbb{R}: f(x) = x^2$
 - А) Биекция
 - В) Инекция
 - С) Сюрекция
 - D) Частична функция

e)
$$f: \mathbb{R}^+ \to \mathbb{R}: f(x) = x^2$$

- А) Биекция
- В) Инекция
- С) Сюрекция
- D) Частична функция
- f) $f: A \to 2^A$: където A е произволно множество и $f(x) = \{x\}$

 $3a\partial a$ ча 9: Нека \mathbb{R}^+ и \mathbb{R}^- са съответно множествата на положителните и отрицателните реални числа. Покажете, че всяка от изброените по-долу функции е биекция:

- a) $f:(0,1) \to (a,b); f(x) = (b-a)x + a; \ a,b \in \mathbb{R}, a \neq b$
- b) $f: \mathbb{R}^+ \to (0,1); f(x) = 1/(x+1)$
- c) $f:(0,1/2) \to \mathbb{R}^-; f(x) = 1/(2x-1) + 1$
- $d) f: (0,1) \to \mathbb{R}$

$$f(x) = \begin{cases} 1/(2x-1) + 1 & 0 < x < 1/2 \\ 0 & x = 1/2 \\ 1/(2x-1) - 1 & 1/2 < x < 1 \end{cases}$$

 ${\it 3adaчa}$ 10: Дадена е функцията $f:A\times B\to B; f(a,b)=b,$ където $A=\{1,2,3\}, B=\{x,y\}.$ Докажете, че функцията е сюрекция, но не е инекция.

Задача 11: Функцията $f: J_8 \to J_8$ е дефинирана така: $f(x) = 5x \mod 8$. Докажете, че f е биекция и намерете обратната функция f^{-1} .

Решение:

Представяме функцията f(x) с таблица:

x	0	1	2	3	4	5	6	7
f(x)	0	5	2	7	4	1	6	3

Както се вижда от таблицата на функцията, тя е:

- инекция, защото всеки два различни елемента от домейна имат различни образи;
 - сюрекция, защото всеки елемент на кодомейна има първообраз.

От това следва, че функцията е биекция.

От факта, че f(x) е биекция, следва, че тя има обратна функция, която също е биекция. Следва таблица на обратната функция $f^{-1}(x)$:

x	0	1	2	3	4	5	6	7
$f^{-1}(x)$	0	5	2	7	4	1	6	3

От сравняването на двете таблици е очевидно, че $f(x) = f^{-1}(x)$.

 $\pmb{3adaчa}$ 12: Дадени са функциите $f:\mathbb{Z}\to\mathbb{Z}:f(x)=x+1,\ g:\mathbb{Z}\to\mathbb{Z}:g(x)=x^2.$ Определете функцията $g\circ f.$

Задача 13: Дадени са множествата $A=\{1,2,4,6\}; B=\{3,5,7,9\}; C=\{1,2,4,6\}$ и функциите $f:A\to B=\{(1,3),(2,5),(4,7),(6,9)\}$ и $g:B\to C=\{(5,6),(3,2),(7,1),(9,4)\}.$ Определете композициите $(f\circ g)$ и $(g\circ f)$ и проверете дали съвпадат.

Задача 14: Дадени са функциите $f: \mathbb{N}^+ \to \mathbb{N}^+: f(x) = 3x+1, \ g: \mathbb{N}^+ \to \mathbb{N}^+: g(x) = 2x+1$. Да се определят функциите $f \circ f, f \circ g, g \circ f, g \circ g$.

Решение:

$$f \circ f(x) = f(3x+1) = 3(3x+1) + 1 = 9x + 4$$
$$q \circ f(x) = q(3x+1) = 2(3x+1) + 1 = 6x + 3$$

 ${\it 3adaua}$ 15: Нека $f:A\to B$ и $g:B\to C$ са функции. Да се докаже, че:

- а) ако f и g са инекции, то $g \circ f$ е инекция;
- b) ако f и g са сюрекции, то $g \circ f$ е сюрекция;
- c) ако f и q са биекции, то $q \circ f$ е биекция.

Доказателство:

Нека $h:A\to C; h(x)=g\circ f(x).$ Ще докажем, че h(x) е биекция, т.е. едновременно инекция и сюрекция.

Функцията h(x) е инекция т.с.т.к. $\forall x_1 \forall x_2 \in A(x_1 \neq x_2 \Rightarrow h(x_1) \neq h(x_2))$.

Нека $x_1, x_2 \in A$, $x_1 \neq x_2$. Тъй като f(x) е инекция, то $f(x_1) \neq f(x_2)$. Тъй като g(x) е инекция, то $g(f(x_1)) \neq g(f(x_2))$.

Следователно $h(x_1) \neq h(x_2)$ т.е. h(x) е инекция.

Функцията h(x) е *сюрекция* точно тогава, когато $\forall z \in C(\exists x \in A(h(x)=z))$

Нека $z \in C$. Функцията g(x) е сюрекция $\Rightarrow \exists y \in B(g(y) = z)$.

От това, че f(x) е сюрекция $\Rightarrow \exists x \in A(f(x) = y)$.

Тъй като $h(x) = g(f(x)) = g(y) = z \Rightarrow \exists x \in A(h(x) = z)$. Следователно h(x) е сюрекция. Следователно h(x) е биекция.

 ${\it 3adaчa}$ 16: Ако A и B са множества, то инекция между A и B съществува точно тогава, когато съществува сюрекция между B и A.

 ${\it 3adaчa}$ 17: Нека E е множеството на четните естествени числа и е дадена функцията

$$f: \mathbb{Z} \to E: f(x) = 2x + 6.$$

Докажете, че функцията е обратима и намерете обратната функция.

Задача 18: Докажете, че функцията $f: \mathbb{R}^+ \to (0,1); f(x) = \frac{1}{x+1}$ е биекция и намерете обратната функция f^{-1} .

Доказателство:

1. Heka $x_1, x_2 \in \mathbb{R}^+, \ f(x_1) = f(x_2) \Rightarrow$

$$\frac{1}{x_1+1} = \frac{1}{x_2+1} \Rightarrow x_1 = x_2$$

Следователно функцията е инекция.

2. Нека $y \in (0,1)$. Търсим x такова, че е първообраз на y:

$$y = \frac{1}{x+1} \Rightarrow xy + y = 1 \Rightarrow x = \frac{1-y}{y}$$

Следователно функцията е сюрекция.

Функцията f(x) е инекция и сюрекция, следователно е биекция.

Обратната функция e:
$$f:(0,1)\to\mathbb{R}^+;\ f^{-1}(x)=\frac{1-y}{y}$$

 $\pmb{3adaчa}$ 19: Дадена е функцията $f: \mathbb{R} \to \mathbb{R}: f(x) = \frac{x}{x^2+1}$. Определете вида на функцията и намерете нейната обратна, ако има такава.

Решение:

Нека $x_1, x_2 \in \mathbb{R}$ са такива, че $f(x_1) = f(x_2)$.

T.e.
$$\frac{x_1}{x_1^2 + 1} = \frac{x_2}{x_2^2 + 1} \Rightarrow$$

$$x_1x_2^2 + x_1 - x_1^2x_2 - x_2 = 0 \Rightarrow$$

$$(x_1 - x_2)(1 - x_1x_2) = 0 \Rightarrow$$

$$\exists x_1, x_2 \in \mathbb{R}(x_1 \neq x_2 \land f(x_1) = f(x_2))$$

Например
$$x_1 = 3, x_2 = \frac{1}{3}; f(\frac{1}{3}) = f(3) = \frac{3}{10}.$$

Следователно, функцията не е инекция, т.е. тя няма обратна функция.

Задача 20:. Нека $f: A \to B$ е функция, а $X,Y \subseteq A$ и $S,T \subseteq B$ са множества. Да означим с f(X) образа на множеството X, а с $f^R(S)$ първообраза на множеството S относно функцията f. Да се докаже, че:

a)
$$f(X \cup Y) = f(X) \cup f(Y)$$

Решение:

1. Нека
$$z \in B, z \in f(X \cup Y) \Rightarrow$$

$$\exists a \in X \cup Y (f(a) = z) \Rightarrow$$

$$(a \in X \land f(a) = z) \lor (a \in Y \land f(a) = z) \Rightarrow$$

$$z \in f(X) \lor z \in f(Y) \Rightarrow$$

$$z \in f(X) \cup f(Y)$$

2. Нека
$$z \in B, z \in f(X) \cup f(Y) \Rightarrow$$

$$z \in f(X) \lor z \in f(Y) \Rightarrow$$

$$\exists a \in X (f(a) = z) \lor \exists b \in Y (f(b) = z) \Rightarrow$$

$$\exists c \in X \cup Y (f(c) = z) \Rightarrow$$

$$z \in f(X \cup Y)$$

От 1. и 2. следва $f(X \cup Y) = f(X) \cup f(Y)$

b)
$$f(X \cap Y) \subseteq f(X) \cap f(Y)$$

c)
$$f^R(S \cup T) = f^R S \cup f^R T$$

d)
$$f^R(S \cap T) = f^R S \cap f^R T$$

Решение:

1. Нека
$$a \in A, a \in f^R(S \cap T) \Rightarrow$$

$$\exists z \in S \cap T(f(a) = z) \Rightarrow$$

$$z \in S \land z \in T \land f(a) = z \Rightarrow$$

$$a \in f^R(S) \land a \in f^R(T) \Rightarrow$$

$$a \in f^R(S) \cap f^R(T)$$

2. Нека
$$a\in A, a\in f^R(S)\cap f^R(T)\Rightarrow$$

$$a\in f^R(S)\wedge a\in f^R(T)\Rightarrow$$

$$\exists s\in S(f(a)=s)\wedge \exists t\in T(f(a)=t)\Rightarrow \ \ \textit{той като }f\ \textit{е функция}$$

$$\exists z\in S\cap T(f(a)=z)\Rightarrow \qquad z=s=t$$

$$a\in f^R(S\cap T)$$

От 1. и 2. следва
$$f^R(S\cap T)=f^R(S)\cap f^R(T)$$

e)
$$X \subseteq f^R(f(X))$$

f)
$$f(f^R(S)) \subseteq S$$

Мощност на множество

Равномощни множества: $|A| = |B| \Leftrightarrow \exists$ биекция $f: A \to B$

Крайни множества:

1.
$$A = \emptyset \Rightarrow |A| = 0$$

2.
$$\exists$$
 биекция $f:A \to I_n \Rightarrow |A|=n$

Изброими множества: \exists биекция $f: A \to \mathbb{N} \Rightarrow |A| = \aleph_0$

Задачи за упражнение:

 ${\it 3adaua}$ 1: Намерете мощността на всяко от указаните множества, като намерите биекция между това множество и множеството I_n или J_n за някое n.

a)
$$A = \{x | x \in \mathbb{N}, 1 \le 2x + 5 \le 100\}$$

Упътване: $A = J_{48}$

b)
$$A = \{x | x \in \mathbb{N}, 0 \le x^2 \le 500\}$$

Упътване: $A = J_{23}$

c)
$$A = \{2, 5, 8, 11, 14, 17, \dots, 44, 47\}$$

Упътване: $f: J_{16} \to A; \ f(x) = 3x + 2$

Задача 2: Покажете, че всяко от следващите множества е изброимо, като установите биекция между него и множеството на естествените числа:

- а) Множеството на четните естествени числа;
- b) Множеството на целите числа;
- с) Множеството на нечетните цели числа;
- d) Множеството на четните цели числа;
- е) Множеството на всички думи над азбуката $\{a\}$.

Задача 3: Докажете, че множествата от всяка от изброените двойки са равномощни като намерите биекция между тях:

a) NиZ\N

Упътване: Докажете, че $f: \mathbb{Z} \setminus \mathbb{N} \to \mathbb{N}; \ f(z) = -z - 1$ е биекция

b) NиZ

Упътване: Докажете, че следната функция $f: \mathbb{Z} \to \mathbb{N}$ е биекция:

$$f(z) = \begin{cases} 2z & \text{ako } z \ge 0\\ -2z - 1 & \text{ako } z < 0 \end{cases}$$

c) \mathbb{N} и $S = \{a \in \mathbb{Z} : 5|a\}$

 $\mathit{Упътване}$: Докажете, че следната функция $f:S \to \mathbb{N}$ е биекция:

$$f(s) = \begin{cases} 2\frac{s}{5} & \text{ako } s \ge 0\\ -2\frac{s}{5} - 1 & \text{ako } s < 0 \end{cases}$$

 $\overline{{\it 3adaчa}\ {\it 4:}\ {\it Д}}$ а се докаже, че $|(0,1)|=|\mathbb{R}^+|$.

Упътване: Докажете, че $f:(0,1)\to \mathbb{R}^+, f(x)=\frac{x}{1-x}$ е биекция.

Упътване I:

Да означим:
$$L_k = \{(0, k), (1, k - 1), ..., (k, 0)\};$$

Докажете, че $\mathbb{N} \times \mathbb{N} = \bigcup_{i=0}^{\infty} L_k \Rightarrow |\mathbb{N} \times \mathbb{N}| = |\bigcup_{i=0}^{\infty} L_k| = \aleph_0$

Упътване II:

Докажете, че
$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}; \ f(x,y) = \frac{(x+y)^2 + 3x + y}{2}$$
 е биекция.

 ${\it 3adaua}\,$ 6: Да се докаже, че ако |A|=n, то $|J_2^n|=|2^A|$.

Решение:

Ще дефинираме биекция $f:J_2^n \to 2^A$ по следния начин:

Нека
$$A = \{a_1, a_2, ..., a_n\}$$
 и $\widetilde{\alpha} = (\alpha_1, \alpha_2, ..., \alpha_n) \in J_2^n$. Тогава $f(\widetilde{\alpha}) = \{x | x \in A, \exists \alpha_i (\alpha_i = 1 \land x = a_i)\}$

1. Ще докажем, че функцията е инекция.

Нека
$$\widetilde{\alpha}, \widetilde{\beta} \in J_2^n, \widetilde{\alpha} \neq \widetilde{\beta} \Rightarrow \exists i (\alpha_i \neq \beta_i)$$

Нека б.о.о. да приемем, че
$$\alpha_i = 1, \beta_i = 0 \Rightarrow$$

$$\exists a_i \in A(a_i \in f(\widetilde{\alpha}) \land a_i \notin f(\widetilde{\beta})) \Rightarrow f(\widetilde{\alpha}) \neq f(\widetilde{\beta})$$

Следователно, функцията е инекция.

2. Ще докажем, че функцията е сюрекция.

Нека
$$X\subseteq A$$
 . Определяме $\widetilde{\alpha}=(\alpha_1,\alpha_2,...,\alpha_n)$ по следния начин:

$$\forall i \in I_n(\alpha_i = 1 \Leftrightarrow a_i \in X) \Rightarrow f(\widetilde{\alpha}) = X$$

Следователно, функцията е сюрекция.

От 1. и 2. следва, че функцията е биекция.

Следователно $|J_2^n| = |2^A| = 2^n$.