EE 538 Spring 2020 Analog Circuits for Sensor Systems University of Washington Electrical & Computer Engineering

Instructor: Jason Silver Homework #4 (40 points) Due Saturday, May 2, Submit on Canvas

Please show your work.

Problem 1: DC analysis of inverting and non-inverting amplifiers

Figure 1a. Inverting amplifier

Figure 1b. Non-inverting amplifier

For the two amplifiers shown above, the opamp has open-loop DC gain A_{θ} , input resistance R_{in} , and output resistance R_{out} . For the Ltspice parts, use the UniversalOpamp2 (SpiceModel level.1), with R_1 = 1k Ω and R_2 = 10k Ω . The default open-loop output resistance for the opamp model is 0.1Ω . You can use the 'DC Transfer' analysis.

- a) (5 points) For the inverting and non-inverting amplifiers shown in Fig 1a and 1b, determine expressions for each of the following assuming $A_0 \rightarrow \infty$ (infinite open-loop gain). Provide comments on how each closed-loop parameter compares to its open-loop counterpart.
 - 1. Closed-loop gain (V_{out}/V_{in}) .
 - 2. Closed-loop output resistance.
 - 3. Closed-loop input resistance.
- b) (5 points) Repeat Part a assuming A_{θ} is finite. Try to develop some intuition regarding how each parameter depends on A_{θ} and the feedback factor β . Check your answer by setting $A_{\theta} \to \infty$ and comparing to your answer in Part a.
- c) (2.5 points) Assuming the opamp has a voltage offset v_{OS} , what is the resulting output offset for each structure? Assume $A_0 \rightarrow \infty$ Check your answer in Ltspice.
- d) (2.5 points) Assuming the opamp has input bias current I_B , what is the resulting output offset for each structure? Assume $A_0 \to \infty$

Problem 2: Opamp circuit transient response

Figure 2a. Current-input integrator

Figure 2b. Input current pulse

For the following, assume ideal opamp behavior.

- a) (2.5 points) Determine an expression for the transfer function v_{out}/i_{in} .
- b) (5 points) Determine an expression for the transient response of the circuit. What is the value of v_{out} (in terms of R, C, i_{max} , and t_{on}) at time $t = t_{on}$?

Bonus (2 points): Design the circuit (i.e. determine R and C) to function as an integrator, such that $v_{out}(t_{on}) = i_{max}/C$ with less than 0.1% error. Use $i_{max} = 10\mu$ A and ensure v_{out} doesn't exceed a bipolar supply voltage of ± 2.5 V. Verify your design in Ltspice.

Problem 3. Difference amplifier

Figure 3. Difference amplifier

For the following, the opamp has a DC gain (A_{θ}) of 100 dB and a unity-gain bandwidth (f_T) of 10MHz but is otherwise ideal ($R_{in} = \infty$ and $R_{out} = 0$). $R_1 = R_2 = R_3 = R_4 = 10$ k Ω .

- a) (2.5 points) Sketch the Bode magnitude and use the graph to approximate the 3dB bandwidth. Sketch the Bode phase plot.
- b) (5 points) Calculate the DC gain and 3dB bandwidth of the closed-loop transfer function $v_{out}/(v_{ip} v_{im})$. Sketch the Bode magnitude and phase of the closed-loop transfer function.
- c) (5 points) What is the resistance "looking into" each input (v_{im} and v_{ip})?
- d) (5 points) Check your answers to Parts b and c in Ltspice using the Analog Devices opamp model for the AD8691.