Stamati Morellas COM S 321 - Problem Set 3 10/17/19

3.3

$5ED4 = 101111011010100_2$

Hexadecimal is an attractive numbering system because each individual hex value can be represented by using 4 binary digits. Most machines also use multiples of 4 to represent bits, so this is also attractive.

3.9

$$A = 151_{10} \rightarrow 10010111_{2} \rightarrow 01101001_{2} \text{ (two's)} \rightarrow -105_{10}$$

$$B = 214_{10} \rightarrow 11010110_{2} \rightarrow 00101010_{2} \text{ (two's)} \rightarrow -42_{10}$$

$$A + B = -105 + (-42) = -105 - 42 = -147$$

3.10

A =
$$151_{10} \rightarrow 10010111_2 \rightarrow 01101001_2 \text{ (two's)} \rightarrow -105_{10}$$

B = $214_{10} \rightarrow 11010110_2 \rightarrow 00101010_2 \text{ (two's)} \rightarrow -42_{10}$
A - B = $-105 - (-42) = -105 + 42 = -63$

3.13

$$62_{16} = 0001\ 0010_2$$

 $12_{16} = 0110\ 0010_2$

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial Values	0001 0010	0000 0000 0110 0010	0000 0000 0000 0000
1	1: 0 ⇒ No Operation	0001 0010	0000 0000 0110 0010	0000 0000 0000 0000
	2: Shift Left Multiplicand	0001 0010	0000 0000 1100 0100	0000 0000 0000 0000
	3: Shift Right Multiplier	0000 1001	0000 0000 1100 0100	0000 0000 0000 0000

2	$1a: 1 \Longrightarrow \operatorname{Prod} = \operatorname{Prod} + \operatorname{Mcand}$	0000 1001	0000 0000 1100 0100	0000 0000 1100 0100
	2: Shift Left Multiplicand	0000 1001	0000 0001 1000 1000	0000 0000 1100 0100
	3: Shift Right Multiplier	0000 0100	0000 0001 1000 1000	0000 0000 1100 0100
3	1: 0 ⇒ No Operation	0000 0100	0000 0001 1000 1000	0000 0000 1100 0100
	2: Shift Left Multiplicand	0000 0100	0000 0011 0001 0000	0000 0000 1100 0100
	3: Shift Right Multiplier	0000 0010	0000 0011 0001 0000	0000 0000 1100 0100
4	1: 0 ⇒ No Operation	0000 0010	0000 0011 0001 0000	0000 0000 1100 0100
	2: Shift Left Multiplicand	0000 0010	0000 0110 0010 0000	0000 0000 1100 0100
	3: Shift Right Multiplier	0000 0001	0000 0110 0010 0000	0000 0000 1100 0100
5	$1a: 1 \Longrightarrow \operatorname{Prod} = \operatorname{Prod} + \operatorname{Mcand}$	0000 0001	0000 0110 0010 0000	0000 0110 1110 0100
	2: Shift Left Multiplicand	0000 0001	0000 1100 0100 0000	0000 0110 1110 0100
	3: Shift Right Multiplier	0000 0000	0000 1100 0100 0000	0000 0110 1110 0100

The result is: 0000 0110 1110 0100 $_2$ = $6E4_{16}$

3.17

$$33_{16} = 0011\ 0011_2$$

 $55_{16} = 0101\ 0101_2$

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial Values	0011 0011	0000 0101 0101	0000 0000 0000
	1: 0 → No Operation	0011 0011	0000 0101 0101	0000 0000 0000
1	2: Shift Left Multiplicand	0011 0011	0000 1010 1010	0000 0000 0000
	3: Shift Right Multiplier	1001 1001	0000 1010 1010	0000 0000 0000
	$1a: 1 \Rightarrow Prod = Prod + Mcand$	1001 1001	0000 1010 1010	0000 1010 1010
2	2: Shift Left Multiplicand	1001 1001	0001 0101 0100	0000 1010 1010

	3: Shift Right Multiplier	1100 1100	0001 0101 0100	0000 1010 1010
3	1: 0 ⇒ No Operation	1100 1100	0001 0101 0100	0000 1010 1010
	2: Shift Left Multiplicand	1100 1100	0010 1010 1000	0000 1010 1010
	3: Shift Right Multiplier	0110 0110	0010 1010 1000	0000 1010 1010
4	1: 0 ⇒ No Operation	0110 0110	0010 1010 1000	0000 1010 1010
	2: Shift Left Multiplicand	0110 0110	0101 0101 0000	0000 1010 1010
	3: Shift Right Multiplier	0011 0011	0101 0101 0000	0000 1010 1010
5	1: 0 ⇒ No Operation	0011 0011	0101 0101 0000	0000 1010 1010
	2: Shift Left Multiplicand	0011 0011	1010 1010 0000	0000 1010 1010
	3: Shift Right Multiplier	0000 0000	1010 1010 0000	0000 1010 1010

The result is: **0000 1010 1010_2 = AA_{16}**

3.23

$$63.25 \times 10^0 = 111111.01 \times 2^0$$

Normalize $\Rightarrow 1.11111101 \times 2^5$
Sign is positive
Exponent $\Rightarrow 127 + 5 = 132$
 $\Rightarrow 0\ 1000\ 0100\ 1111\ 1010\ 0000\ 0000\ 0000\ 0000$

3.27

$$-1.5625 \times 10^{-1}$$

$$\Rightarrow -0.15625$$

$$\Rightarrow -0.15625 - 0.125 = 0.03125$$

$$\Rightarrow -1.5625_{10} = 0.00101_{2} = 1.01 \times 2^{-3}$$
Exponent \Rightarrow 01100
Mantissa \Rightarrow 0100000000

Result ⇒ 1 01100 0100000000

3.29

$$26.125 \rightarrow 11010.001_2 \rightarrow 1.1010001 * 2^4$$

$$0.4150390625 \rightarrow 0.0110101001_2 \rightarrow 1.10101001 * 2^{-2}$$

$$\Rightarrow 0 \ 10011 \ 0001010001$$

$$\Rightarrow 0 \ 01101 \ 0010101001$$

$$\Rightarrow 1.1010001 \times 2^4 \ + \ 1.10101001 \times 2^{-2} \Rightarrow \ 1.1010001 \times 2^4 \ + \ 0.000001101010101 \times 2^4$$

$$10\text{-bit} \Rightarrow 1.1010100010 \times 2^4$$

3.30

$$A = -8.0546875 \times 10^{0} \Rightarrow 1000.000111 \Rightarrow -1.000000111 \times 2^{3}$$

$$B = -1.79931640625 \times 10^{-1} \Rightarrow 0.001011100001 \Rightarrow -1.011100001 \times 2^{-3}$$

$$1.000000111 \times 1.011100010 \Rightarrow \mathbf{1011101100000101110}_{2} \Rightarrow \mathbf{383022}_{10}$$

3.42

Adding -1/4 to itself 4 times: -1/4 + -1/4 + -1/4 + -1/4 = -1 Multiplication: -1/4 *
$$4 = -1$$

They hold the same result

16-bit $\Rightarrow 0 1010100010 10011$

3.43

```
\frac{1}{1} \Rightarrow 0.333333333333... \Rightarrow 0.01010101010101010101010101010101... Mantissa is 17-bits long \Rightarrow 0.010101010101010101

Exponent is 6-bits long \Rightarrow 000001
```

Result \Rightarrow 0 00101010101010101 000001

Extra Credit

Most of the time, I like to get pretty creative in the kitchen and experiment with different kinds of food. Other times, I like to keep it simple. Here's my recipe for my special buttered toast:

Steps:

- 1. Be lazy
- 2. Grab a piece of toast
- 3. Put toast in the toaster
- 4. Toast the toast until golden brown and delicious
- 5. Grab a knife (not too sharp) and your favorite stick of butter from the fridge
- 6. Spread butter on the toast after it is done from the microwave
- 7. Pat yourself on the back and enjoy