

# 5.2TrigonometricSubstitutions

### Intro

• The method of trigonometric substitution is a method of evaluating integrals containing radicals of the form

$$\sqrt{x^2 + a^2}$$
,  $\sqrt{x^2 - a^2}$ ,  $\sqrt{a^2 - x^2}$ , where a is a positive constant (parameter).

• The basic idea for evaluating such integrals is to make a substitution that eliminates the radical. This can be done by using the relations of the sides in the right triangle and trigonometric ratios associated with it.

# Motivation



#### **Example 1.** Find the area of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

**Solution.** Since the ellipse is symmetric about both axis, its area A is four times the area in the first quadrant.

• The equation of the upper half of the ellipse is

$$y = \frac{b}{a}\sqrt{a^2 - x^2}$$

Hence, the area A is given

$$A = 4 \int_0^a \frac{b}{a} \sqrt{a^2 - x^2} dx$$

• Integration by trig.substitution yields the formula  $A=\pi ab$ 

**5.4.2 DEFINITION** If y = f(x) is a smooth curve on the interval [a, b], then the arc length L of this curve over [a, b] is defined as

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx \tag{3}$$



Shorter line segments provide a better approximation to the curve.





**Example 2** Find the arc length of the curve  $y = \frac{x^2}{2}$ from x = 0 to x = 1.



**Solution.** The arc length L of the curve is

$$L = \int_0^1 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx = \int_0^1 \sqrt{1 + x^2} \, dx$$

Integration by trig.substitution yields

$$\frac{1}{2}\left[\sqrt{2} + \ln(\sqrt{2} + 1)\right] \approx 1.148$$

## Trigonometric Substitutions



| Expression         | Substitution                                                                                    | Identity                            |
|--------------------|-------------------------------------------------------------------------------------------------|-------------------------------------|
| $\sqrt{a^2 + x^2}$ | $x = a \tan \theta,  -\frac{\pi}{2} < \theta < \frac{\pi}{2}$                                   | $1 + \tan^2 \theta = \sec^2 \theta$ |
| $\sqrt{a^2-x^2}$   | $x = a\sin\theta,  -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$                                 | $1 - \sin^2 \theta = \cos^2 \theta$ |
| $\sqrt{x^2-a^2}$   | $x = a \sec \theta, \ 0 \le \theta < \frac{\pi}{2} \text{ or } \pi \le \theta < \frac{3\pi}{2}$ | $\sec^2\theta - 1 = \tan^2\theta$   |

| Va2 | × X2        |
|-----|-------------|
| R=  | atamo - sub |

$$\sqrt{\alpha^2 + \chi^2} = \sqrt{\alpha^2 + \alpha^2 + \alpha n^2 \theta}$$

$$=\sqrt{\alpha^2(1+tan^2\theta)}$$

$$\sqrt{x^2 + a^2} \quad \text{Let } x = a \tan \theta, \quad \sqrt{x^2 + a^2} = a \sec \theta, \quad \frac{\partial}{\partial a} x = a \sqrt{x^2 + a^2}$$

$$\sqrt{a^2 - x^2} \quad \text{Let } x = a \sin \theta, \quad \sqrt{a^2 - x^2} = a \cos \theta \qquad \frac{\partial}{\partial a^2 - x^2} = a \sqrt{x^2 - a^2}$$

$$= a \sqrt{x}$$

$$= \alpha \sqrt{1 + \tan^2 \theta}$$

$$= a \sqrt{3829}$$

$$= a sec\theta$$

#### **Process Summary:**

- 1. Match the radical to the substitution;
- 2. Adjust a, find dx, change the variable of integration from x to  $\theta$ , simplify;
- 3. Integrate in terms of  $\theta$ ;
- 4. Return from  $\theta$  to x for the final answer.
- 5. In case of definite integral, evaluate at the upper and lower limits of integration.



https://www.nasa.gov/press-release/nasa-reveals-webb-telescope-s-first-images-of-unseen-universe

https://apod.nasa.gov/apod/ap221121.html