# Домашняя работа №3

#### Эмиль Алкин

## 1 Уран

Уран — планета Солнечной системы, седьмая по удалённости от Солнца, третья по диаметру и четвёртая по массе. Была открыта в 1781 году английским астрономом Уильямом Гершелем и названа в честь греческого бога неба Урана.

Средняя удалённость планеты от Солнца составляет 19.1914 а. е. (2.8 млрд км). Период полного обращения Урана вокруг Солнца составляет 84 земных года. Расстояние между Ураном и Землёй меняется от 2.6 до 3.15 миллиардов километров. Большая полуось орбиты равна 19.229 а. е., или около 3 миллиардов километров. Интенсивность солнечного излучения на таком расстоянии составляет 1/400 от значения на орбите Земли

Уран тяжелее Земли в 14.5 раз, что делает его наименее массивной из планет-гигантов Солнечной системы. Плотность Урана, равная  $1.270~\text{г/cm}^3$ , ставит его на второе после Сатурна место среди наименее плотных планет Солнечной системы.

Рис. 1 - Уран и его кольца.

# 2 Спутники Урана

В системе Урана открыто 27 естественных спутников. Названия для них выбраны по именам персонажей произведений Уильяма Шекспира и Александра Поупа. Можно выделить пять основных самых крупных спутников: это Миранда, Ариэль, Умбриэль, Титания и Оберон.

Первые два спутника Урана, открытые в 1787 г., были названы лишь в 1852 — через год после обнаружения двух следующих. Их наименованием занялся Джон Гершель, сын первооткрывателя Урана. Он решил не брать названия для спутников из греческой мифологии, назвав их в честь духов из английской литературы: царя и царицы фей и эльфов Оберона и Титании из пьесы «Сон в летнюю ночь» Уильяма Шекспира и сильфов Ариэля и Умбриэль из «Похищения локона» Александра Поупа (Ариэль — также ещё и эльф из Шекспировской «Бури»).



Рис. 2 - Размеры Урана по сравнению с Землёй.

| Номер | Название спутника | Год      |
|-------|-------------------|----------|
|       |                   | открытия |
| 1     | Корделия          | 1986     |
| 2     | Офелия            | 1986     |
| 3     | Бианка            | 1986     |
| 4     | Крессида          | 1986     |
| 5     | Дездемона         | 1986     |
| 6     | Джульетта         | 1986     |
| 7     | Порция            | 1986     |
| 8     | Розалинда         | 1986     |
| 9     | Купидон           | 2003     |
| 10    | Белинда           | 1986     |
| 11    | Пердита           | 1986     |
| 12    | Пак               | 1985     |
| 13    | Маб               | 2003     |
| 14    | Миранда           | 1948     |
| 15    | Ариэль            | 1851     |
| 16    | Умбриэль          | 1851     |
| 17    | Титания           | 1787     |
| 18    | Оберон            | 1787     |
| 19    | Франциско         | 2001     |
| 20    | Калибан           | 1997     |
| 21    | Стефано           | 1999     |
| 22    | Тринкуло          | 2001     |
| 23    | Сикоракса         | 1997     |
| 24    | Маргарита         | 2003     |
| 25    | Просперо          | 1999     |
| 26    | Сетебос           | 1999     |
| 27    | Фердинанд         | 2001     |

# 3 Интегрирование

Определим функцию f(x):

$$f(x) = \begin{cases} \log_2 x, & x \geqslant 4; \\ \sqrt{x}, & 1 \leqslant x < 4; \\ x^2, & 0 \leqslant x < 1; \\ 0, & -1 \leqslant x < 0; \\ x+1, & x < -1. \end{cases}$$
 (1)

Найдём производную этой функции. На интервалах (-1,0), (0,1), (1,4) производная f(x) будет равна производной, соответствующей функции,

$$f'(x)|_{(-1,0)} = 0' = 0, (2)$$

$$f'(x)|_{(0,1)} = (x^2)' = 2x,$$
 (3)

$$f'(x)|_{(1,4)} = (\sqrt{x})' = \frac{1}{2\sqrt{x}}.$$
 (4)

Аналогично находится производная f(x) на открытых лучах  $(-\infty, -1), (4, +\infty)$ :

$$f'(x)|_{(-\infty, -1)} = (x+1)' = 1, \tag{5}$$

$$f'(x)|_{(4,+\infty)} = (\log_2 x)' = \frac{1}{x \ln 2}.$$
 (6)

Найдя соответствующие левые и правые производные функции f(x) в точках -1, 0, 1, 4, можно заключить, что в этих точках производная не определена.

Теперь исследуем интеграл функции f(x). Пусть мы хотим найти определенный интеграл функции f(x) на отрезке

[a,b], где a<-1, а b>4. Тогда в силу линейности интеграла,

$$\int_{a}^{b} f(x) dx = \int_{a}^{-1} (x+1) dx + \int_{-1}^{0} 0 dx + \int_{0}^{1} x^{2} dx + \int_{1}^{4} \sqrt{x} dx + \int_{4}^{b} \log_{2} x dx =$$

$$= \left( \frac{x^{2}}{2} + x \right) \Big|_{a}^{-1} + 0 \Big|_{-1}^{0} + \left( \frac{x^{3}}{3} \right) \Big|_{0}^{1} + \left( \frac{2\sqrt{x^{3}}}{3} \right) \Big|_{1}^{4} + \left( x \log_{2} \frac{x}{e} \right) \Big|_{4}^{b} =$$

$$= 12.5 - 4 \log_{2} e + b \log_{2} \frac{b}{e} + a - \frac{a^{2}}{2}. \quad (7)$$

### 4 Затмения

Солнечное затмение — астрономическое явление, которое заключается в том, что Луна закрывает полностью или частично Солнце от наблюдателя на Земле.

Лунное затмение — астраномическое явление, возникающее, когда Луна попадает в тень от Земли.

## Разновидности затмений (см. рис. 4):

- Полное
- Частное
- Кольцевое
- Полутеневое



Рис. 3 - Солнечное и лунное затмение



Рис. 4 - Разновидности затмений