多変量解析

第4回 有意差検定

萩原•篠田 情報理工学部

検定の原理・手続き

検定の分類

	1群	関連2群	独立2群	独立多群	関連多群
データ	8000		00 00 00 00 00 00 00 00 00 00 00 00 00		
/形式	標本と母集団 との比較	同一個体で2条件 縦断的研究	異なる個体2条件 横断的研究	要因により分類が水 準化された多群を 同時に比較 要因の効果を検定	2つの要因により分類 が水準化された多群 を同時に比較 2つの要因の主効果 複数要因の交互作用
	平均値の検定	一標本 <i>t</i> 検定	二標本 <i>t</i> 検定	一元配置分散分析	二元配置分散分析
間隔	σ 既知の場合 $\overline{x} \rightarrow z$	$\frac{\underline{\Psi}}{d} \longrightarrow t$	$\overline{x}_1 - \overline{x}_2 \longrightarrow t$	ANOVA $\frac{S_A^2}{2} - F$	ANOVA $\frac{S_A^2}{2} = F_A$
比例尺度	$\frac{\sigma + \Sigma}{\overline{x}}$ 大標本 $\frac{\pi}{x} \rightarrow z$	大標本	等分散の検定 。	$\frac{S_A^2}{S_E^2} = F$	$\frac{1}{S_E^2} = I_A$
度	σ 未知,小標本 $\overline{x} \rightarrow t$	$\frac{Z^{1\pi}}{d} \to Z$	$\frac{{s_1}^2}{{s_2}^2} = F$		$\frac{S_B^2}{S_E^2} = F_B$
順序尺度		Wilcoxon符号 付き順位和検定	Mann-Whitney 検定	Kruskal-Wallis 検定	Friedman 検定

(例題)機械が袋に詰める砂糖の重さは 平均1000g,標準偏差5gの正規分布に 従うように調整される.9個の袋の重さを 量ったら平均が1003gであった. 機械は正しく調整されているか?

- → 標本がとられた母集団は 平均1000g, 標準偏差5gの正規分布か?
 - •帰無仮説 H_0 : μ =1000 g, σ =5 g
 - ・両側検定(差の有無が知りたい)
 - •対立仮説 H₁: μ≠1000 g
 - 有意水準 α=5%として検定

帰無仮説を仮定して確率を計算

$$P \ge \alpha/2 = 2.5\% \rightarrow$$
起こりうる, H_0 保持

表: F(z)標準正規分布N(0,1)のc.d.f.

$$F(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt$$

例: $N(\mu, \sigma^2)$ で μ - σ < x < μ + σ となる確率は? \downarrow N(0, 1)で -1 < z < 1となる 確率に等しい

P(-1 < z < 1)=2(F(1)- F(0)) =2*(0.8413-0.5) =0.6826

					·/ 1237 1 —	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(, , , ,)				
	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
t	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
-	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
	8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
_	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
Ī	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
	2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
	2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
_	3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

(例題)ある機械が袋に詰める砂糖の重さは、平均1000g,標準偏差5gの正規分布に従うように調整される. 9個の袋の重さを量ったところ、平均が1003gであった. この機械は正しく調整されているか?

→ 標本がとられた母集団は、平均1000gで標準偏差5gの正規分布か?

帰無仮説 H_0 : μ =1000 g, σ =5 g

両側検定(差の有無が知りたい), 対立仮説 H_1 : $\mu \neq 1000 g$ 有意水準 $\alpha = 5\%$ として検定

 H_0 に従えば9個の袋の平均 \bar{x} の標本分布は正規分布 $N(1000, 5^2/9)$

標準化
$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{\bar{x} - 1000}{5 / \sqrt{9}}$$

F(*z*)の表から棄却域は |*z*|≥1.96

標本は z =(1003-1000)/(5/3)=1.80 < 1.96 十分起こり得る, H₀は保持

(例題)ある機械が袋に詰める砂糖の重さは、平均1000 g,標準偏差5 gの正規分布に従うように調整される.9個の袋の重さを量ったところ、平均が1003 gであった.この機械は正しく調整されているか? 1005 g

 \rightarrow 標本がとられた母集団は、平均1000gで標準偏差5gの正規分布か? 帰無仮説 H_0 : μ =1000 g, σ =5 g 両側検定(差の有無が知りたい)、対立仮説 H_1 : μ ≠1000 g

有意水準 α=5%として検定

 H_0 に従えば9個の袋の平均 \bar{x} の標本分布は正規分布 $N(1000, 5^2/9)$

標準化
$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{\bar{x} - 1000}{5 / \sqrt{9}}$$

F(*z*)の表から棄却域は |*z*|≥1.96

1005 3.00 > 1.96 標本は
$$z = (\frac{1003}{1000} - 1000)/(5/3) = \frac{1.80}{1.80} < 1.96$$
 十分起こり得る, H_0 は保持

極めて稀で起こり得ない、Hoは棄却され、H1採用

(例題)ある機械が袋に詰める砂糖の重さは, 平均1000 g, 標準偏差5 gの正規分布に従うように調整される. 9個の袋の重さを量ったところ, 平均が1003 gであった. この機械は正しく調整されているか?

重めに設定されていないか

→ 標本がとられた母集団は、平均1000gで標準偏差5gの正規分布か?

帰無仮説 H_0 : μ =1000 g, σ =5 g

 H_1 : $\mu > 1000 g$

両側検定(差の有無が知りたい),対立仮説 $H_{i: \mu \neq 1000 g}$ 「1・ μ 有意水準 $\alpha = 5\%$ として検定 片側検定(重めかどうかを知りたい) H_0 に従えば9個の袋の平均 \bar{x} の標本分布は正規分布 $N(1000, 5^2/9)$

標準化
$$z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} = \frac{\bar{x} - 1000}{5/\sqrt{9}}$$

F(z)の表から棄却域は |z|≥1.96 1.64

> 1.64 標本は z =(1003-1000)/(5/3)=1.80 < 1.96 十分起こり得る, H₀は保持

極めて稀で起こり得ない、Hoは棄却され、H1採用

表: F(z)標準正規分布N(0,1)のc.d.f.

$$F(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt^{-\frac{1}{2}}$$

例: $N(\mu, \sigma^2)$ で μ - σ < x < μ + σ となる確率は? \downarrow N(0,1)で -1 < z < 1となる 確率に等しい

P(-1 < z < 1)=2(F(1)- F(0)) =2*(0.8413-0.5) =0.6826

	文:「(t) 水一									
z	2 0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	.0 0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0	.1 0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0	.2 0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0	.3 0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0	.4 0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0	.5 0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0	.6 0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0	.7 0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0	.8 0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0	.9 0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1	.0 0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1	.1 0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1	.2 0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1	.3 0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1	.4 0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1	.5 0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1	.6 0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1	.7 0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1	.8 0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1	.9 0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2	.0 0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2	.1 0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2	.2 0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2	.3 0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2	.4 0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2	.5 0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2	.6 0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2	.7 0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2	.8 0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2	.9 0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3	.0 0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

平均値の検定(σ 未知) 大標本n

(例題)機械が袋に詰める砂糖の重さは 平均1000 g, 標準偏差5 gの正規分布に 従うように調整される. 9個の袋の重さを 量ったら平均が1003 gであった. 機械は正しく調整されているか?

標準偏差5g

- → <u>標本がとられた</u>母集団は 平均1000g, 標準偏差5gの正規分布か?
 - •帰無仮説 H₀: μ=1000 g, σ=5 g-
 - ・両側検定(差の有無が知りたい)
 - •対立仮説 H₁: μ≠1000 g
 - 有意水準 α=5%として検定

帰無仮説を仮定して確率を計算

 $P \ge \alpha/2 = 2.5\%$ \rightarrow 起こりうる, H_0 保持

 $P < \alpha/2 = 2.5\%$ \rightarrow 起こりえない, H_0 棄却

平均値の検定 $(\sigma$ 未知、大標本 $n) \rightarrow n$ 大より $\sigma = s$ としてよい $\rightarrow z$ 検定 (例題)ある機械が袋に詰める砂糖の重さは、

平均1000 gの正規分布に従うように調整される.

36個の袋の重さを量ったところ, 平均が1003 g,

標準偏差 s=5 gであった. この機械は正しく調整されているか?

→ 標本がとられた母集団は平均1000gの正規分布か?

帰無仮説 H_0 : $\mu=1000$ g, σ 未知

両側検定(差の有無が知りたい), 対立仮説 H₁: μ≠1000 g

有意水準 α=5%として検定

 H_0 に従えば36個の袋の平均 $\bar{\chi}$ の標本分布は正規分布 $N(1000,5^2/36)$

標準化
$$z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} = \frac{\bar{x} - 1000}{5/\sqrt{36}}$$

F(z)の表から棄却域は |z|≥1.96

標本は $z = (1003-1000) \cdot 6/5 = 3.6 > 1.96$ 極めて稀で起こり得ない, H_0 棄却, H_1 採用

平均値の検定 $(\sigma$ 未知, 小標本 $n) \rightarrow n$ 小より $\sigma \neq s \rightarrow t$ 検定

(例題)ある機械が袋に詰める砂糖の重さは,

平均1000 gの正規分布に従うように調整される.

9個の袋の重さを量ったところ, 平均が1003 g,

標準偏差 s=5 gであった.この機械は正しく調整されているか?

→ 標本がとられた母集団は平均1000gの正規分布か?

帰無仮説 H_0 : μ =1000 g, σ 未知

両側検定(差の有無が知りたい), 対立仮説 H₁: μ≠1000 g

有意水準 α=5%として検定

 H_0 に従えば9個の袋の平均 \bar{x} の標本分布は自由度df=n-1=8の t 分布 に従う

変換
$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}} = \frac{\bar{x} - 1000}{5/\sqrt{9}}$$

t 分布の表から, df=8, p= $\alpha/2$ =0.025の t 値を探し, 棄却域は |t| ≥ 2.306

標本は t =(1003-1000)/(5/3)=1.80 < 2.306 十分起こり得る, H₀保持

ステューデント(W.S. ゴセット)の t 分布

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$
 自由度 $df = n-1$

自由度 df = n-1 $df \rightarrow \infty$ で、t 分布は z 分布(標準正規分布N(0,1))に近づく

0.0 0.1 0.2 0.3 0.4

	- 77 11 23							
		P = 0.1	0.05	0.025	0.01	0.005	0.001	0.0005
	df = 1	3.078	6.314	12.706	31.821	63.657	318.309	636.619
	2	1.886	2.920	4.303	6.965	9.925	22.327	31.599
t 値(自由度 a	df) $ 3 $	1.638	2.353	3.182	4.541	5.841	10.215	12.924
;	4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
(5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
ı / \	$P \mid 6 \mid$	1.440	1.943	2.447	3.143	3.707	5.208	5.959
; - / / / / / / / / / / / / / / / / / /	7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
	8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
-4 -2 0 . <i>t</i>	4 9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
t <i>t</i>	10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
	11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
	12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
	13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
	14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
	15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
	16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
	17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
	18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
	19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
	20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
	21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
	22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
	23	1.319	1.714	2.069	2.500	2.807	3.485	3.768
	24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
	25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
	26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
	27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
	28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
	29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
	30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
	40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
	50	1.299	1.676	2.009	2.403	2.678	3.261	3.496
	60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
	70	1.294	1.667	1.994	2.381	2.648	3.211	3.435
	80	1.292	1.664	1.990	2.374	2.639	3.195	3.416
	90	1.291	1.662	1.987	2.368	2.632	3.183	3.402
	100	1.290	1.660	1.984	2.364	2.626	3.174	3.390
,								

t 分布表

	P = 0.1	0.05	0.025	0.01	0.005	0.001	0.0005
df = 1	3.078	6.314	12.706	31.821	63.657	318.309	636.619
2	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
		. 7.0	0.400				4045
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725

平均値の検定(σ 未知, 小標本 n) $\rightarrow n$ 小より $\sigma \neq s \rightarrow t$ 検定

(例題)ある機械が袋に詰める砂糖の重さは,

平均1000 gの正規分布に従うように調整される.

9個の袋の重さを量ったところ, 平均が1003 g,

標準偏差 s=5 gであった. この機械は正しく調整されているか? 重めに設定されていないか

→ 標本がとられた母集団は平均1000gの正規分布か?

帰無仮説 H_0 : μ =1000 g, σ 未知 片側検定(重めかどうかを知りたい) 両側検定(差の有無が知りたい), 対立仮説 H_1 : μ >1000 g 有意水準 α =5%として検定

 H_0 に従えば9個の袋の平均 \bar{x} の標本分布は自由度df=n-1=8のt分布に従う

変換
$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}} = \frac{\bar{x} - 1000}{5/\sqrt{9}}$$

 $p=\alpha=0.05$ (片側)

t 分布の表から, df=8, p= $\alpha / 2$ =0.025の t 値を探し, 棄却域は-1t1 ≥ 2.306 - $t \geq 1.860$

標本は t = (1003-1000)/(5/3) = 1.80 < 1.860

十分起こり得る,H₀保持

t 分布表

	P = 0.1	0.05	0.025	0.01	0.005	0.001	0.0005
df = 1	3.078	6.314	12.706	31.821	63.657	318.309	636.619
2	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725

検定の分類

	1群	関連2群	独立2群	関連多群	独立多群
データ	800000				
タ形式	標本と母集団との比較	同一個体で2条件 縦断的研究	異なる個体2条件 横断的研究	2つの要因により分類 が水準化された多群 を同時に比較 2つの要因の主効果 複数要因の交互作用	要因により分類が水 準化された多群を 同時に比較 要因の効果を検定
	平均値の検定	一標本 <i>t</i> 検定	二標本 <i>t</i> 検定	一元配置分散分析	二元配置分散分析
間隔	σ 既知の場合	$\overline{d} \rightarrow t$	$ \bar{x}_1 - \bar{x}_2 \rightarrow t $	ANOVA	ANOVA
比例尺度	<i>□ </i>		等分散の検定	$\frac{S_A^2}{S_E^2} = F$	$\frac{S_A^2}{S_E^2} = F_A$
度	$\overline{x} \rightarrow z$ σ 未知,小標本 $\overline{x} \rightarrow t$		$\frac{s_1^2}{s_2^2} = F$		$\frac{S_B^2}{S_E^2} = F_B$
順序尺度		Wilcoxon符号 付き順位和検定	Mann-Whitney 検定	Kruskal-Wallis 検定	Friedman 検定

関連2群の差の検定(σ 未知, 小標本n)

(例題)疲労を調べるため、ある視作業の前と後で読書速度を計測し、以下を得た. このとき、視作業の前後で読書速度に差があると言えるか?

読書速度[文字数/秒]

い自企及し入り外/1/2									
被験者	視作業前	視作業後	差 <i>d</i> =						
	Xpre	Xpost	Xpre- X post						
А	9.8	8.6	1.2						
В	8.8	7.3	1.5						
C	10.0	9.5	0.5						
D	9.6	9.2	0.4						
Е	10.7	9.9	0.8						
F	11.4	11.6	-0.2						
平均			0.700						
S			0.607						

→ 差dの母集団の平均値が0か検定

変数 $d = x_{\text{pre}} - x_{\text{post}}$

帰無仮説 H_0 : $\mu(d\mathbf{O}$ 母集団の平均)=0

両側検定

対立仮説 H₁: μ≠0

有意水準 $\alpha=5\%$

関連2群の差の検定(σ 未知, 小標本n) $\rightarrow t$ 分布

(例題)疲労を調べるため、ある視作業の前と後で読書速度を計測し、以下を得た. このとき、視作業の前後で読書速度に差があると言えるか?

読書速度[文字数/秒]

被験者	視作業前	視作業後	差 <i>d</i> =						
	Xpre	<i>X</i> post	<i>X</i> pre– <i>X</i> post						
A	9.8	8.6	1.2						
В	8.8	7.3	1.5						
C	10.0	9.5	0.5						
D	9.6	9.2	0.4						
Е	10.7	9.9	0.8						
F	11.4	11.6	-0.2						
平均			0.700						
S			0.607						

変数 $d = x_{\text{pre}} - x_{\text{post}}$

帰無仮説 H_0 : $\mu(d\mathbf{O}$ 母集団の平均)=0

両側検定

対立仮説 H_1 : $\mu \neq 0$

有意水準 $\alpha=5\%$

$$2.825 > 2.571 = t(df=5,\alpha/2=0.025)$$

よって H_0 棄却, H_1 採用

-2.571

2.571

t 分布表

c /3 11/2C							
	P = 0.1	0.05	0.025	0.01	0.005	0.001	0.0005
df = 1	3.078	6.314	12.706	31.821	63.657	318.309	636.619
2	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
	1.072	1.012	L.LLO	2.701	0.100		1.007
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
	200212000	2 2000	1001010101	1202202	27272728		202020
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725

関連2群の差の検定(σ 未知, 小標本n) $\rightarrow t$ 分布

(例題)疲労を調べるため、ある視作業の前と後で読書速度を計測し、以下を得た. このとき、視作業の前後で読書速度に差があると言えるか?

読書速度[文字数/秒]

被験者	視作業前	視作業後	差 <i>d</i> =						
	Xpre	<i>X</i> post	<i>X</i> pre– <i>X</i> post						
A	9.8	8.6	1.2						
В	8.8	7.3	1.5						
C	10.0	9.5	0.5						
D	9.6	9.2	0.4						
Е	10.7	9.9	0.8						
F	11.4	11.6	-0.2						
平均			0.700						
S			0.607						

変数 $d = x_{\text{pre}} - x_{\text{post}}$

帰無仮説 H_0 : $\mu(d\mathbf{O}$ 母集団の平均)=0

両側検定

対立仮説 H_1 : $\mu \neq 0$

有意水準 $\alpha=5\%$

$$2.825 > 2.571 = t(df=5,\alpha/2=0.025)$$

よって H_0 棄却, H_1 採用

-2.571

2.571

関連2群の差の検定 $(\sigma$ 未知, 小標本 $n) \rightarrow t$ 分布

(例題)疲労を調べるため、ある視作業の前と後で読書速度を計測し、以下を得た. このとき、視作業前より後の方が読書速度が遅いと言えるか?

読書速度[文字数/秒]

被験者	視作業前	視作業後	差 <i>d</i> =							
10 CV C	Xpre	Xpost	<i>X</i> pre– <i>X</i> post							
Α	9.8	8.6	1.2							
В	8.8	7.3	1.5							
C	10.0	9.5	0.5							
D	9.6	9.2	0.4							
Е	10.7	9.9	0.8							
F	11.4	11.6	-0.2							
平均			0.700							
S			0.607							

→ <u>差dの母集団の平均値が0か検定</u>

変数 $d = x_{\text{pre}} - x_{\text{post}}$

帰無仮説 H_0 : $\mu(d\mathbf{O}$ 母集団の平均)=0

片側検定

対立仮説 H_1 : $\mu > 0$

有意水準 $\alpha=5\%$

 $2.825 > 2.015 = t(df = 5, \alpha = 0.05)$

よってH₀棄却、H₁採用

-2

2.015

2.825

t 分布表

· // 1/1/20	2							
	P = 0.1	0.05	0.025	0.01	0.005	0.001	0.0005	
df = 1	3.078	6.314	12.706	31.821	63.657	318.309	636.619	
2	1.886	2.920	4.303	6.965	9.925	22.327	31.599	
3	1.638	2.353	3.182	4.541	5.841	10.215	12.924	
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610	
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869	
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959	
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408	
8	1.397	1.860	2.306	2.896	3.355 3.250	4.501 4.297	5.041 4.781	
9	1.383	1.833	2.262	2.821				
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587	
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437	
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318	
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221	
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140	
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073	
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015	
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965	
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922	
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883	
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850	
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819	
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792	
23	1.319	1.714	2.069	2.500	2.807	3.485	3.768	
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745	
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725	
I								

関連2群の差の検定(σ 未知, 小標本n) $\rightarrow t$ 分布

(例題)疲労を調べるため、ある視作業の前と後で読書速度を計測し、以下を得た. このとき、視作業の前後で読書速度に差があると言えるか?

読書速度[文字数/秒]

被験者	視作業前	視作業後	差 <i>d</i> =				
	Xpre	<i>X</i> post	<i>X</i> pre– <i>X</i> post				
A	9.8	8.6	1.2				
В	8.8	7.3	1.5				
C	10.0	9.5	0.5				
D	9.6	9.2	0.4				
Е	10.7	9.9	0.8				
F	11.4	11.6	-0.2				
平均			0.700				
S			0.607				

変数 $d = x_{\text{pre}} - x_{\text{post}}$

帰無仮説 H_0 : $\mu(d\mathbf{O}$ 母集団の平均)=0

両側検定

対立仮説 H_1 : $\mu \neq 0$

有意水準 $\alpha=5\%$

$$2.825 > 2.571 = t(df=5,\alpha/2=0.025)$$

よって H_0 棄却, H_1 採用

-2.571

2.571

関連2群の差の検定(σ 未知, 大標本n) $\rightarrow z$ 分布 N(0,1)

(例題)疲労を調べるため、ある視作業の前と後で読書速度を計測し、以下を得た. このとき、視作業の前後で読書速度に差があると言えるか?

読書速度[文字数/秒]

		A	1 2 224 12 3			
	被験者	視作業前	視作業後	差 <i>d</i> =		
	1)又 河火 1日	Xpre	Xpost	Xpre- X post		
n=3	(A	9.8	8.6	1.2		
	В	8.8	7.3	1.5		
	$6 \left< C \right>$	10.0	9.5	0.5		
	1		•			
			:			
				0.700		
	平均			0.700		
	S			0.607		

→ <u>差dの</u>母集団の平均値が0か検定

変数 $d = x_{pre} - x_{post}$

帰無仮説 H_0 : $\mu(d\mathbf{O}$ 母集団の平均)=0

両側検定

対立仮説 $H_1: \mu \neq 0$

有意水準 $\alpha=5\%$

6.919 > 1.96 = z(F(z)=0.975)

よってH₀棄却、H₁採用

表: F(z)標準正規分布N(0,1)のc.d.f.

$$F(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt^{-\frac{1}{2}}$$

例: $N(\mu, \sigma^2)$ で μ - σ < x < μ + σ となる確率は? \downarrow N(0, 1)で -1 < z < 1となる 確率に等しい

P(-1 < z < 1)=2(F(1)- F(0)) =2*(0.8413-0.5) =0.6826

					·/ 1231 —		• • • • • • • • • • • • • • • • • • • •				
	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
t^{-}	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
ı	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
d	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
ı	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
	8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
ı	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
ı	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
ı	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
ı	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
_	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
	2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
	2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
_	3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990