Time Series Analysis - Final Project

Predicting Traffic Patterns

Tuesday Team 1: Vamshi Gadepally, Jose Gerala, Nitin Gupta, Jack Murray, Irem Pamuksuz

Spring 2023

Agenda

- Business Case and Objective
- Data Overview
- Transformations, Feature Engineering, and Assumptions
- Data Exploration
- Model Selection
- Forecast Evaluation
- Conclusion and Next Steps

Business Case and Objective

Problem: It is a concern for the Minneapolis especially during holiday seasons that the traffic accidents on highways have been increasing drastically. Some argue that this may be a result of increased traffic volume despite the fact that average daily traffic has been decreased by 5% within the city (Lee, 2019). The location is roughly between Minneapolis and St Paul.

Objective: To develop a forecasting model that accurately predicts future traffic volume, enabling better traffic management and planning

Data Overview

Variables Description:

- holiday: Categorical US National holidays plus regional holiday, Minnesota State Fair
- temp: Numeric Average temp in kelvin
- rain_1h: Numeric Amount in mm of rain that occurred in the hour
- snow 1h: Numeric Amount in mm of snow that occurred in the hour
- clouds_all: Numeric Percentage of cloud cover
- weather_main: Categorical Short textual description of the current weather
- weather_description: Categorical Longer textual description of the current weather
- date_time: DateTime Hour of the data collected in local CST time
- traffic_volume: Numeric Hourly I-94 ATR 301 reported westbound traffic volume

Observation Count & Time Period:

- Total Observations: 48,204
- Duration: Oct 2012 Sept 2018
- Cadence: Hourly

Data Source:

UCI Machine Learning Repository - "Metro Interstate Traffic Volume Data Set" (https://archive.ics.uci.edu/ml/datasets/Metro+Interstate+Traffic+Volume)

Citation

Traffic data from MN Department of Transportation Weather data from OpenWeatherMap

Transformations / Feature Engineering

- Replacing the missing temp values (zero degree Kelvin entries) with the previous recorded temp value
- Convert temperature from Kelvin to Fahrenheit
- Create a variable for day of the week
- Create binary variable for holiday
- Create binary variable for rain
- Dropped variable for snow as the data is sparse. Observations of snow limited to Dec 2015 and Jan 2016 only

Assumptions

- Data considered: Split the dataset into a train set consisting of data from May 1 to August 31, 2018, and a test set consisting of data from September 1 to September 30, 2018.
- **Forecast timeframe:** All predictions were made based on a weekly time frame to capture the dynamic nature of traffic and provide more reliable forecasts that align with the actual traffic patterns observed in the real world.
- Augmented Dickey-Fuller Test resulted in p-values < 0.01 and KPSS Test for Level Stationarity resulted in p-values of 0.1, for all variables, indicating stationary for all variables.
- **BoxCox transformation:** Suggested an appropriate lambda value for the data meaning a Box Cox was required, suggesting the original data did have certain changes (increase or decrease) in variation with the level of the time series.
- Despite stationarity 1st order differencing showed to have a reduction in the seasonality for this time series data.

Decomposition shows strong seasonality

Data suggests **seasonality** occurring every 24 hours

No trend is apparent in the data

The data appears to be **non-stationary** and will require additional transformations

Sinusoidal ACF plot further indicates seasonality in our time series data

No null values observed

ts.describe()							
	temp	rain_1h	snow_1h	clouds_all	traffic_volume		
count	48178.000000	48178.000000	48178.000000	48178.000000	48178.000000		
mean	281.205439	0.334439	0.000223	49.342791	3260.149840		
std	13.341764	44.801217	0.008170	39.016968	1987.020666		
min	0.000000	0.000000	0.000000	0.000000	0.000000		
25%	272.160000	0.000000	0.000000	1.000000	1193.250000		
50%	282.450000	0.000000	0.000000	64.000000	3380.000000		
75%	291.810000	0.000000	0.000000	90.000000	4933.000000		
max	310.070000	9831.300000	0.510000	100.000000	7280.000000		

Summary of numeric columns

Most recorded days had clear skies with no precipitation

Traffic volume is higher in the summer months

Traffic seems to be higher on weekdays and during commute hours of morning and early evening

Average traffic volume decreases when it's snowing

Traffic volume is most correlated with temperature

Model Evaluation & Selection

Following are the family of time series models evaluated:

- 1. Naive and Seasonal Naive
- 2. ARIMA family
- 3. ARIMAX
- 4. LSTM

Model Selection Criteria

R squared, AIC, BIC, AICc for same family of models

RMSE for inter-family model comparison

Model 1 - Seasonal Naive

1 Week Seasonal Naive forecast

1 Week Forecast Daily seasonality

series
Actual
SNaive forecast

"MAE: 2747.76785714286"
"RMSE: 3212.96942373518"

Model 1 - Seasonal Naive

1 Week Seasonal Naive forecast freq=168

1 Week Forecast Weekly seasonality

"RMSE: 2512.85841319441"

Model 2 - Seasonal Arima

1 Week Forecast - ARIMA(1,0,1)(3,1,0)

p-value = 2.2e-16 < 0.05

ME RMSE MAE MPE MAPE MASE ACF1
Training set 29.0101 656.0169 467.4803 -11.6703 26.1889 0.9682 0.0847
Test set -32.7696 1879.4608 1437.5892 -106.9043 135.8468 2.9775 NA

Model 2 - Seasonal Arima

24 hours Forecast - ARIMA(2,0,3)(3,1,0)

p-value = 2.2e-16 < 0.05

ME RMSE MAE MPE MAPE MASE ACF1
Training set 21.0092 612.9287 446.3463 -8.7821 23.3328 0.9245 -0.023
Test set -233.1865 587.2364 452.2778 -13.1336 21.8350 0.9368 NA

Model 3 - ARIMAX

1 Week Forecast Weekly seasonality

September Weekly Traffic Volume with ARIMAX

20000-

"MAE: 2126.83432032946"
"RMSE: 2509.54068129303"

Model 3 - ARIMAX

Weekly seasonality

Lag

20

200

Model 4 - LSTM

1 Week Forecast

Weekly seasonality

Model - Bi-Directional LSTM

Activation - Relu # of layers - 6

HyperParameters

Shuffle_buffer_size - for Randomness Learning Rate Epochs EarlyStopping ReduceLROnPlateau Optimizer - Adam

MAE: 436.73

RMSE: 572.48

Model Comparisons

	<u>MAE</u>	<u>RMSE</u>	
Seasonal Naive	2115	2512	
Seasonal Arima	1438	1879	
ARIMAX	2126	2509	
LSTM - Univariable	437	572	
LSTM - Multivariable	687	945	
ETS	5344	5697	

Conclusion & Next Steps

Conclusion:

Overall, the model does a decent job in predicting the traffic for the horizon selection but the results can be improved further by experimenting more options or massaging the data into different windows.

Next Steps:

- 1. Forecast for Multiple horizon windows
- 2. Forecast on more data (beyond what we have chosen)
- 3. More variables or use derived/interaction variables
- 4. Experiment over various timing cadance for forecast hourly/daily/weekly/monthly
- 5. Evaluate and fine tune deep learning models LSTM, GRU, Bi-LSTM, Prophet

Thank You!

Appendix

Workload Distribution

	<u>Data Search</u>	EDA / Feature Engineering	Model Development	<u>Presentation</u>
Irem Pamuksuz				
Vamshi Gadepally				
Jose Gerala				
Nitin Gupta				
Jack Murray		\Longrightarrow		

Model 1 - Seasonal Naive

1 Month Seasonal Naive forecast

1 Month Forecast

Daily seasonality

- Actual
- SNaive forecast

28

"MAE: 2722.17916666667"
"RMSE: 3213.77343524019"

Model 1 - Seasonal Naive

1 Month Forecast Weekly seasonality

"MAE: 2257.88472222222" "RMSE: 2777.78969561332"

Model 2 - Seasonal Arima

1 Month Forecast - ARIMA(2,0,3)(0,1,2)

Test set

30

NA

Model 3 - ARIMAX

September Weekly Traffic Volume with ARIMAX

1 Month Forecast Weekly seasonality

"MAE: 2284.22969966412"
"RMSE: 2796.16112478222"

Actual

ARIMAX forecast

Model 4 - LSTM Multivariate

1 Month Forecast

Weekly seasonality

