

Estatística

para Soluções em TI

Média Geométrica e suas Aplicações

A média geométrica é definida, para números positivos, como a raiz n-ésima do produto de *n* elementos de um conjunto de dados.

Assim como a média aritmética, a média geométrica também é uma medida de tendência central.

É usada com mais frequência em dados que apresentam valores que aumentam de forma sucessiva.

Fórmula

$$M_G = \sqrt[n]{x_1 \cdot x_2 \cdot x_3 \cdot \dots \cdot x_n}$$

Onde,

M_G: média geométrica

n: número de elementos do conjunto de dados

x₁, x₂, x₃, ..., x_n: valores dos dados

Exemplo: Qual o valor da média geométrica entre os números 3, 8 e 9?

Como temos 3 valores, iremos calcular a raiz cúbica do produto.

$$M_G = \sqrt[3]{3.8.9} = \sqrt[3]{216} = 6$$

Aplicações

Como o próprio nome indica, a média geométrica sugere interpretações geométricas.

Podemos calcular o lado de um quadrado que possui a mesma área de um retângulo, usando a definição de média geométrica.

Exemplo:

Sabendo que os lados de um retângulo têm 3 e 7 cm, descubra qual a medida dos lados de um quadrado com a mesma área.

Uma outra aplicação muito frequente é quando queremos determinar a média de valores que alteraram de forma contínua, muito usada em situações que envolvem finanças.

Exemplo:

Um investimento rende no primeiro ano 5%, no segundo ano 7% e no terceiro ano 6%. Qual o rendimento médio desse investimento?

Para resolver esse problema devemos encontrar os fatores de crescimento.

- 1.° ano: rendimento de 5% \rightarrow fator de crescimento de 1,05 (100% + 5% = 105%)
- 2.° ano: rendimento de 7% \rightarrow fator de crescimento de 1,07 (100% + 7% = 107%)
- 3.° ano: rendimento de 6% \rightarrow fator de crescimento de 1,06 (100% + 6% = 106%)

$$M_G = \sqrt[3]{1,05.1,06.1,07} = \sqrt[3]{1,19091} = 1,05996$$

Para encontrar o rendimento médio devemos fazer:

$$1,05996 - 1 = 0,05996$$

Assim, o rendimento médio dessa aplicação, no período considerado, foi de aproximadamente 6%.

Média Geométrica para dados não-agrupados

M.G.=
$$n \sqrt{X_1 \cdot X_2 \cdot X_3 \cdot \dots \cdot X_n}$$

Média Geométrica para dados agrupados em distribuições de frequências

$$\text{M.G.=} \sqrt[N]{x_1^{f_1} \cdot x_2^{f_2} \cdot \cdots \cdot x_K^{f_K}}$$

I. Média Geométrica para dados não-agrupados (não tabelados)

$$M.G.= {}^{n}\sqrt{X_{1} \cdot X_{2} \cdot X_{3} \cdot \cdots \cdot X_{n}}$$

EXEMPLO

Calcular o valor da média aritmética e o valor da média gozométrica, nos casos:

M.A. =
$$\frac{x_1 + x_2 + \dots + x_n}{n} = \frac{2.0 + 9.5}{2} \Rightarrow \frac{M.A. = 5.75}{2}$$

$$M.G. = \sqrt[n]{x_1 \cdot x_2 \cdot \dots \cdot x_n}$$

$$M.A. = 6.0 + 7.0 \Rightarrow M.A. = 6.5$$

$$M.G. = \sqrt{6.0 \times 7.0} = \sqrt{42} = 42 \Rightarrow M.G. \cong 6.48$$

$$M.A. = 6.5 + 6.5 \Rightarrow M.A. = 6.5$$

$$M.G. = \sqrt{6.5 \times 6.5} = \sqrt{42.25} \Rightarrow M.G. = 6.5$$

• M.A. =
$$\frac{X_1 + X_2 + ... + X_N}{N} = \frac{4 + 6 + 7 + 8 + 9}{5} \Rightarrow M.A. = 6,80$$

.
$$M.G. = \sqrt{x_1.x_2.....x_n} = \sqrt{4x6x7x8x9} =$$

EXEMPLO :

Calcule a média aritmética e a média geométrica para cada um dos grupos indicados a seguir:

RESOLUÇÃO

$$M.A. = 5+4+6+7 \Rightarrow M.A. = 5.5$$

$$M.A. = 2+9+3+8 \Rightarrow M.A. = 5,5$$

www.fiap.com.br

II. Média Geométrica para dados agrupados em uma Distribuição de Frequências sem classes de dados

$$M.G = \sqrt[N]{X_1^{f_1} \cdot X_2^{f_2} \cdot \dots \cdot X_K^{f_K}}$$

Calcule o valor da média geométrica:

Número de Equipamentos Eletrônicos por aluno	Número de alunos
1	29
2	15
3	8
4	5
5	2
6	1
TOTAL	60

$$M.G. = \sqrt[N]{X_1^{f_1} \cdot X_2^{f_2} \cdot \dots \cdot X_K^{f_K}}$$

M.G. = 1,68 equipamentos eletrónicos por aluno

Número médio-geométrico de equipamentos eletrônicos por aluno

Calcular a média arimética e a média geométrica para cada uma das distribuições de frequências indicadas a seguir:

Número de unidades vendidas por dia	Número de dias no mês de Dezembro	Número de unidades vendidas por dia	Número de dias no mês de Janeiro
10	2	10	5
11	3	11	1
12	4	12	3
13	5	13	8
14	7	14	5
15	4	15	0
16	3	16	6
17	2	17	2
TOTAL	30	TOTAL	30

$$M.A. = \underbrace{\Sigma(x_i.f_i)}_{\Sigma F_i} = \underbrace{10x2 + 11x3 + ... + 17x2}_{30} \Rightarrow \underbrace{M.A. \cong 13,53}_{unidades por dia}$$

$$M.G. = \begin{cases} x_1, x_2, \dots, x_n \end{cases} =$$

$$M.A. = 10x5 + 11x1 + ... + 17x2 \Rightarrow$$

$$M.G. = \sqrt{10^5 \times 11^2 \times ... \times 17^2} = 13,19$$
 unidades

Número de unidades vendidas por dia	Número de dias no mês de <mark>Janeiro</mark>
10	5
11	1
12	3
13	8
14	5
15	0
16	6
17	2
TOTAL	30

EXERCÍCIOS

- 1) Calcule a média geométrica dos dados abaixo:
 - 1, 3, 6, 72
 - **a)** 6
 - **b)** 5
 - **c)** 3
 - **d)** 7
 - **e)** 4

2) Calcule a média geométrica dos dados abaixo:

1, 9, 1, 3, 27, 9, 3, 3, 1, 1

- **a)** 9
- b) 1
- **c)** 3
- d) 6
- **e**) 8

3) Calcule a média geométrica dos dados abaixo:

25, 1, 5, 125, 1, 1

- **a)** 6
- **b)** 5
- c) 4
- **d)** 3
- **e)** 25

- 4) Calcule a média geométrica dos dados abaixo:
 - 2, 4, 6, 8
 - **a)** 4,42
 - **b)** 4,78
 - **c)** 5,00
 - **d)** 6,00
 - **e)** 5,52

- 5) Calcule a média geométrica dos dados abaixo:
 - 2, 4, 6, 8, 10
 - a) 5,21
 - **b)** 1,15
 - **c)** 2,51
 - **d)** 5,91
 - **e)** 6

6) Calcule a média geométrica:

X _i	Freqüência
8	12
9	10
10	7
11	5
12	3

- **a)** 9,29
- **b)** 9,00
- **c)** 8,50
- **d)** 8,00
- **e)** 7,50

7) Dado o conjunto $X = \{3, 4, 6, 9, 12\}$

Calcule a média aritmética e a média geométrica, respectivamente:

- **a)** 6,0 e 6,0
- **b)** 7,0 e 6,8
- **c)** 6,8 e 5,8
- **d)** 5,8 e 6,0
- **e)** 6,8 e 6,0

8) Determine a média geométrica em cada caso:

a.

NOTAS	f,
0 ⊢ 2	5
2 ⊢ 4	8
4 ⊢ 6	14
6 ⊢ 8	10
8 ⊢ 10	7
	$\Sigma = 4$

b.

\mathbf{f}_{i}	ESTATURAS (cm)
5	150 ⊢ 158
12	158 ⊢ 166
18	166 ⊢ 174
27	174 ⊢ 182
8	182 ⊢ 190
$\Sigma = 70$	

8) Determine a média geométrica em cada caso:

C.

SALÁRIOS (R\$)	f,
500 ⊢ 700	18
700 ⊢ 900	31
900 ⊢ 1.100	15
1.100 ⊢ 1.300	3
$1.300 \vdash 1.500$	1
$1.500 \vdash 1.700$	1
1.700 ⊢ 1.900	1
	$\Sigma = 70$

d.

PESOS (kg)	f
145 ⊢ 151	10
151 ⊢ 157	9
157 ⊢ 163	8
163 ⊢ 169	6
169 ⊢ 175	3
175 ⊢ 181	3
181 ⊢ 187	1
	$\Sigma = 40$

Respostas

- 1) Alternativa a
- 2) Alternativa c
- 3) Alternativa b
- 4) Alternativa a
- 5) Alternativa a
- 6) Alternativa a
- 7) Alternativa e
- 8) a) 4,50 b) 172,17
- c) 816,73
- d) 159,14

Bibliografia

Estatística Fácil

Autor: Antonio Arnot Crespo

Editora Saraiva

■ MORETTIN, L. G. Estatística básica. São Paulo: Editora Makron Books

Bibliografia complementar

- COSTA NETO, P. L. Estatística. 2ª ed. São Paulo: Editora Edgard Blucher
- CRESPO, A. A. Estatística fácil. 18ª ed. São Paulo: Editora Saraiva