White_classificationtree_ordinal.R

nebojsahrnjez

2021-12-03

```
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v stringr 1.4.0
## v tidyr 1.1.4 v forcats 0.5.1
## v readr
           2.1.0
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(gridExtra)
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
library(corrplot)
```

corrplot 0.92 loaded

```
library(leaps)
library(glmnet)
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
##
       expand, pack, unpack
## Loaded glmnet 4.1-3
library(coefplot)
library(ggfortify)
## Registered S3 methods overwritten by 'ggfortify':
##
     method
                    from
##
    autoplot.acf
                    useful
##
   fortify.acf
                  useful
## fortify.kmeans useful
    fortify.ts
##
                    useful
library(readr)
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:purrr':
##
##
       some
## The following object is masked from 'package:dplyr':
##
##
       recode
library(moments)
library(ggpubr)
library(ggrepel)
library(qqplotr)
##
## Attaching package: 'qqplotr'
## The following objects are masked from 'package:ggplot2':
##
##
       stat_qq_line, StatQqLine
```

```
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
##
       select
library(ordinal)
##
## Attaching package: 'ordinal'
## The following object is masked from 'package:dplyr':
##
       slice
library(caret)
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
       lift
library(rpart)
library(rpart.plot)
library(rpartScore)
library(DMwR2)
## Registered S3 method overwritten by 'quantmod':
    method
                       from
##
     as.zoo.data.frame zoo
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
```

```
## The following object is masked from 'package:gridExtra':
##
##
       combine
## The following object is masked from 'package:ggplot2':
##
##
       margin
## The following object is masked from 'package:dplyr':
##
       combine
white <- read_csv("winequality-white.csv")</pre>
## Rows: 4898 Columns: 12
## -- Column specification ------
## Delimiter: ","
## dbl (12): fixed acidity, volatile acidity, citric acid, residual sugar, chlo...
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
sum(is.na(white))
## [1] 0
white <- na.omit(white)</pre>
dfw <- as.data.frame(white)</pre>
dfw$quality <- as.factor(dfw$quality)</pre>
names(dfw) <- make.names(names(dfw))</pre>
SEED <- 5864
set.seed(SEED)
test <- sample(1:nrow(dfw), size = nrow(dfw)/5)</pre>
train <- (-test)
dfw.train <- dfw[train,]</pre>
dfw.test <- dfw[test,]</pre>
#ordinaltree <- rpartScore(quality~., data = dfw.train)</pre>
#ordinaltree.predict <- predict(ordinaltree, newdata= dfw.test)</pre>
\#mean(ordinaltree.predict == dfw.test \$ quality)
#Did not work so commented out
rpart.dfw <- rpart(quality~.,data=dfw,method ="class", cp=0.00000000000001)</pre>
plotcp(rpart.dfw)
```

size of tree

printcp(rpart.dfw)

```
##
## Classification tree:
## rpart(formula = quality ~ ., data = dfw, method = "class", cp = 1e-13)
##
## Variables actually used in tree construction:
   [1] alcohol
                             chlorides
                                                  citric.acid
   [4] density
                             fixed.acidity
                                                  free.sulfur.dioxide
##
##
   [7] pH
                             residual.sugar
                                                  sulphates
   [10] total.sulfur.dioxide volatile.acidity
##
## Root node error: 2700/4898 = 0.55125
##
## n= 4898
##
              CP nsplit rel error xerror
##
## 1 5.3889e-02
                      0
                          1.00000 1.00000 0.012892
     2.7407e-02
                          0.89222 0.89593 0.012959
## 2
## 3
     2.0741e-02
                          0.86481 0.89074 0.012958
## 4
     1.1852e-02
                          0.84407 0.86148 0.012944
## 5
     4.4444e-03
                          0.83222 0.84815 0.012933
                      5
     3.7037e-03
## 6
                          0.82778 0.85481 0.012939
## 7
     3.3333e-03
                      7
                          0.82407 0.85000 0.012935
## 8 3.2407e-03
                          0.81741 0.85185 0.012936
```

```
21
## 10 2.222e-03
                         0.77704 0.84037 0.012925
                    24 0.77037 0.82259 0.012904
## 11 1.8519e-03
## 12 1.6667e-03
                    39 0.73481 0.82630 0.012909
## 13 1.6296e-03
                     53
                         0.71037 0.82741 0.012910
## 14 1.5344e-03
                    58
                         0.70222 0.82370 0.012906
## 15 1.4815e-03
                    75
                         0.67296 0.82074 0.012902
## 16 1.3889e-03
                    88
                         0.64963 0.81444 0.012893
## 17 1.3333e-03
                    93
                         0.64259 0.81370 0.012892
## 18 1.2963e-03
                    98
                         0.63593 0.81407 0.012892
## 19 1.2346e-03
                   104
                         0.62815 0.81407 0.012892
## 20 1.2037e-03
                   126
                         0.58963 0.81222 0.012889
## 21 1.1111e-03
                         0.58037 0.81111 0.012888
                   133
## 22 9.8765e-04
                   155
                         0.55593 0.81778 0.012897
## 23 9.2593e-04
                   163
                         0.54778 0.81222 0.012889
## 24 8.6420e-04
                    171
                          0.54037 0.81333 0.012891
## 25 8.3333e-04
                   179
                         0.53259 0.81333 0.012891
                         0.52630 0.81370 0.012892
## 26 8.0247e-04
                   185
## 27 7.4074e-04
                   193
                         0.51889 0.81370 0.012892
## 28 6.4815e-04
                         0.48111 0.81407 0.012892
                   237
## 29 6.1728e-04
                   241
                         0.47852 0.81630 0.012895
## 30 5.5556e-04
                   245
                         0.47593 0.81148 0.012888
## 31 4.9383e-04
                         0.47259 0.81296 0.012890
                   251
## 32 3.7037e-04
                   254
                         0.47111 0.81407 0.012892
## 33 1.8519e-04
                   282
                         0.46074 0.82111 0.012902
## 34 1.2346e-04
                    289
                          0.45926 0.81889 0.012899
## 35 1.0000e-13
                    292
                         0.45889 0.81778 0.012897
#indicates a value around 100 has the lowest xerror and xstd, when we look
#its a value of tree of size 126, we can get this with a cp of 1.3333e-03
rpart.dfw.min <- prune(rpart.dfw, cp=1.3333e-03)</pre>
```

0.80000 0.84963 0.012934

9 2.9630e-03

Warning: labs do not fit even at cex 0.15, there may be some overplotting

rpart.plot(rpart.dfw.min, extra = 2)


```
printcp(rpart.dfw.min2)
##
## Classification tree:
## rpart(formula = quality ~ ., data = dfw, method = "class", cp = 1e-13)
##
## Variables actually used in tree construction:
  [1] alcohol
                            chlorides
                                                citric.acid
##
##
   [4] density
                            fixed.acidity
                                                free.sulfur.dioxide
   [7] pH
                            residual.sugar
##
                                                sulphates
## [10] total.sulfur.dioxide volatile.acidity
##
## Root node error: 2700/4898 = 0.55125
##
## n= 4898
##
            CP nsplit rel error xerror
##
                   0 1.00000 1.00000 0.012892
## 1 0.0538889
## 2 0.0274074
                    2 0.89222 0.89593 0.012959
                    3 0.86481 0.89074 0.012958
    0.0207407
## 4 0.0118519
                  4 0.84407 0.86148 0.012944
                  5 0.83222 0.84815 0.012933
## 5 0.0044444
## 6 0.0037037
                  6 0.82778 0.85481 0.012939
                    7 0.82407 0.85000 0.012935
## 7 0.0033333
```

rpart.dfw.min2 <- rt.prune(rpart.dfw, se=0)</pre>

```
## 8 0.0032407
                         0.81741 0.85185 0.012936
                     9
## 9 0.0029630
                    14
                         0.80000 0.84963 0.012934
                         0.77704 0.84037 0.012925
## 10 0.002222
                    21
## 11 0.0018519
                         0.77037 0.82259 0.012904
                    24
## 12 0.0016667
                    39
                         0.73481 0.82630 0.012909
## 13 0.0016296
                    53
                         0.71037 0.82741 0.012910
## 14 0.0015344
                    58
                         0.70222 0.82370 0.012906
## 15 0.0014815
                    75
                         0.67296 0.82074 0.012902
## 16 0.0013889
                    88
                         0.64963 0.81444 0.012893
## 17 0.0013333
                    93
                         0.64259 0.81370 0.012892
## 18 0.0012963
                    98
                         0.63593 0.81407 0.012892
                         0.62815 0.81407 0.012892
## 19 0.0012346
                   104
## 20 0.0012037
                         0.58963 0.81222 0.012889
                   126
## 21 0.0011111
                   133
                         0.58037 0.81111 0.012888
```

plotcp(rpart.dfw.min2)

size of tree


```
#Best value shown at tree size of 53 and a cp of 0.0015

rpart.dfw.1se <- rt.prune(rpart.dfw, se=1)
printcp(rpart.dfw.1se)</pre>
```

```
##
## Classification tree:
## rpart(formula = quality ~ ., data = dfw, method = "class", cp = 1e-13)
```

```
##
## Variables actually used in tree construction:
    [1] alcohol
                              chlorides
                                                   citric.acid
    [4] density
                              fixed.acidity
                                                   free.sulfur.dioxide
##
##
    [7] pH
                              sulphates
                                                   total.sulfur.dioxide
##
  [10] volatile.acidity
## Root node error: 2700/4898 = 0.55125
##
## n= 4898
##
##
             CP nsplit rel error xerror
                     0
                         1.00000 1.00000 0.012892
## 1
     0.0538889
  2
##
     0.0274074
                     2
                         0.89222 0.89593 0.012959
## 3
     0.0207407
                     3
                         0.86481 0.89074 0.012958
## 4
     0.0118519
                     4
                         0.84407 0.86148 0.012944
## 5
     0.0044444
                     5
                         0.83222 0.84815 0.012933
                         0.82778 0.85481 0.012939
## 6
     0.0037037
                         0.82407 0.85000 0.012935
## 7
     0.0033333
                     7
     0.0032407
                         0.81741 0.85185 0.012936
## 8
## 9 0.0029630
                    14
                         0.80000 0.84963 0.012934
## 10 0.0022222
                    21
                         0.77704 0.84037 0.012925
## 11 0.0018519
                    24
                         0.77037 0.82259 0.012904
```

plotcp(rpart.dfw.1se)


```
rpart.plot(rpart.dfw.1se, extra = 2)
```



```
test <- sample(1:nrow(dfw), size = nrow(dfw)/5)
train <- (-test)

dfw.train <- dfw[train,]
dfw.test <- dfw[test,]

rpart.dfw.train <- rpart(quality~., dfw.train, method = "class", cp = .0015)
rpart.dfw.pred <- predict(rpart.dfw.train, dfw.test, type = "class")

table(rpart.dfw.pred, dfw.test$quality)</pre>
```

```
##
## rpart.dfw.pred
                             5
                                 6
##
                             0
                                 0
                    0
                             0
                                 2
##
                                     0
                        1
                5
                    2 12 182 78
##
                                   10
                                         1
                6
                   2
                        7 131 298
                                   84
##
                                        17
##
                7
                    0
                               53
                                   70
                                        14
                                             0
##
                8
                    0
                        0
                             0
                                 5
                                     3
                                         3
                                             0
##
                        0
                                 0
```

plotcp(rpart.dfw.train)

mean(rpart.dfw.pred==dfw.test\$quality)

[1] 0.5658836

rpart.plot(rpart.dfw.train, extra =2)

Warning: labs do not fit even at cex 0.15, there may be some overplotting


```
#Training-test shows a classification rate of 53%
M <- 11
bag.dfw <- randomForest(quality~., data =dfw.train,mtry=11, importance = TRUE)</pre>
bag.dfw
##
## Call:
## randomForest(formula = quality ~ ., data = dfw.train, mtry = 11, importance = TRUE)
                 Type of random forest: classification
                       Number of trees: 500
## No. of variables tried at each split: 11
##
##
          OOB estimate of error rate: 31.33%
## Confusion matrix:
                       8 9 class.error
## 3 0
      0
           7
                9
                    0 0 0
                             1.0000000
## 4 0 38 69
               35
                       0 0
                             0.7342657
## 5 0 10 791 328 11
                       0 0
                             0.3061404
## 6 0 3 230 1408 117
                       4 0
                             0.2009081
## 7 0 1 13 302 392 5 0
                             0.4502104
## 8 0 0
               39 37 62 0
                             0.5571429
## 9 0 0
                   2 0 0
                             1.0000000
          0
                3
```

Bagged trees, mtry = 11, ntrees = 500


```
bag.dfw.pred <- predict(bag.dfw, newdata = dfw.test)
mean(bag.dfw.pred==dfw.test$quality)</pre>
```

[1] 0.6874362

importance(bag.dfw)

```
##
                                3
                                                   5
                                                                      7
## fixed.acidity
                       -0.4481590 13.37463 45.07895 39.53022
                                                               39.13927 33.25092
## volatile.acidity
                       -2.9248068 38.50298
                                            82.08382 74.38900
                                                               83.02177 58.33533
## citric.acid
                        1.7312543 28.27217
                                            40.72504 42.65822
                                                               44.35320 29.64371
## residual.sugar
                       -2.3934688 12.92130
                                            44.37712 45.33576
                                                               40.06357 32.69743
## chlorides
                        1.6867048 20.48584 43.87126 32.58944
                                                               54.92489 29.11170
## free.sulfur.dioxide
                        0.5309707 37.41225
                                            49.33654 54.99415
                                                               48.98204 39.39221
## total.sulfur.dioxide -0.3703086 17.23541 44.16990 37.62473
                                                               59.00534 33.66269
## density
                       -0.7279924 12.28133 41.68059 44.73538
                                                               42.41701 32.07052
## pH
                       -0.8414521 14.64292 54.64017 42.77114 55.13248 32.85846
## sulphates
                       -2.2203159 16.29358 41.89140 44.10015 43.28365 38.38661
## alcohol
                       -4.3925636 27.20660 132.69672 61.00222 137.05327 90.54359
##
                                9 MeanDecreaseAccuracy MeanDecreaseGini
## fixed.acidity
                        0.0000000
                                              65.85026
                                                               196.5504
```

```
## volatile.acidity
                         1.9042342
                                               130.15544
                                                                  283.1526
                                                68.05778
## citric.acid
                         1.4812160
                                                                  215.8729
                         0.4473031
## residual.sugar
                                                70.49796
                                                                  211.1166
                                                74.39008
                                                                  215.2397
## chlorides
                         1.6713157
## free.sulfur.dioxide
                        -1.5109947
                                                91.57363
                                                                  265.0164
## total.sulfur.dioxide -1.3440623
                                                81.87391
                                                                  239.0935
## density
                         1.8966081
                                                77.32856
                                                                  213.5605
                                                82.93654
## pH
                        -0.1561776
                                                                  232.4078
                                                69.65340
## sulphates
                         0.1084665
                                                                  213.9229
## alcohol
                         0.7750618
                                               190.61404
                                                                  369.7868
```

varImpPlot(bag.dfw)

bag.dfw


```
#Training-test shows a classification of ~65% for bagged random forest

rf.dfw <- randomForest(quality~., data=dfw.train,mtry=5, importance = TRUE)
rf.dfw.pred <- predict(rf.dfw, newdata = dfw.test)

mean(rf.dfw.pred==dfw.test$quality)</pre>
```

```
## [1] 0.6874362
```

rf.dfw

##

```
## Call:
  randomForest(formula = quality ~ ., data = dfw.train, mtry = 5,
                                                                       importance = TRUE)
                 Type of random forest: classification
##
##
                       Number of trees: 500
## No. of variables tried at each split: 5
##
##
          OOB estimate of error rate: 30.95%
## Confusion matrix:
    3 4 5
                6
                    7 8 9 class.error
## 3 0 0
           6
               10
                    0 0 0
                             1.0000000
## 4 0 37 61
               44
                    1 0 0
                             0.7412587
## 5 0 9 788 332 10 1 0
                             0.3087719
## 6 0 3 215 1434 108
                       2 0
                             0.1861521
## 7 0 0 12 313 384
                       4 0
                             0.4614306
## 8 0 0
           3
               42 32 63 0
                             0.5500000
## 9 0 0
           0
                3
                    2 0 0
                             1.0000000
importance(rf.dfw)
                                  3
                                                    5
                                                             6
                                                                      7
## fixed.acidity
                        0.934691171 16.79631 41.93579 40.82768 37.77254 32.42080
## volatile.acidity
                      0.022982615 36.65051 75.95380 67.18756 71.51238 56.49942
                        1.325451397 27.79544 45.00530 45.79115 42.63261 35.07976
## citric.acid
## residual.sugar
                       -0.338191277 16.85781 47.44687 50.07990 40.00351 32.43419
## chlorides
                        3.253556390 22.31596 42.03682 34.02901 48.45844 31.85674
## free.sulfur.dioxide 3.463226071 35.10500 49.33115 54.71735 47.77514 39.17291
## total.sulfur.dioxide 2.286121431 19.97875 38.35331 37.02814 47.17408 33.41861
## density
                       -0.997868485 17.07368 36.62279 45.92075 45.31221 37.18234
                       -0.005083823 15.70966 50.51408 43.29270 52.75925 34.40339
## pH
## sulphates
                       -0.923087982 17.05810 44.03648 47.77855 43.40788 41.93533
                       -1.938071492 26.26440 101.51608 51.60135 77.12848 68.49893
## alcohol
                                9 MeanDecreaseAccuracy MeanDecreaseGini
##
```

66.11081

106.19627

65.51583

72.77112

56.45945

83.16098

59.02295

61.83270

77.69129

74.16739

115.56474

194.3583

271.7197

217.3960

224.9990

221.1430

256.3581

239.9798

267.0266

229.0779

213.9687

319.0162

varImpPlot(rf.dfw)

fixed.acidity

residual.sugar

citric.acid

chlorides

density

sulphates

alcohol

pH

volatile.acidity

free.sulfur.dioxide -1.9946879

total.sulfur.dioxide 0.5424857

-0.4041270

1.4170505

1.4128599

2.2779871

1.1948196

1.8445339

0.6549344

0.2773714

0.3991070

rf.dfw

alcohol
volatile.acidity
free.sulfur.dioxide
pH
sulphates
residual.sugar
fixed.acidity
citric.acid
density
total.sulfur.dioxide
chlorides

alcohol
volatile.acidity
density
free.sulfur.dioxide
total.sulfur.dioxide
pH
residual.sugar
chlorides
citric.acid
sulphates
fixed.acidity


```
## [1] 0.6578141
```

```
rf.dfw2
```

```
## 3 0 1 7
               8 0 0 0
                            1.0000000
## 4 0 37 63
              40
                  3 0 0
                            0.7412587
## 5 1 17 782 318 20 2 0
                            0.3140351
## 6 0 5 251 1322 176 6 2
                            0.2497162
## 7 0 0 23 295 383 12 0
                            0.4628331
## 8 0 1 2
             42 32 63 0
                            0.5500000
## 9 0 0 1
                2 1 1 0 1.0000000
#Four best from MDI, gives a classification rate of ~64.65%
dfw.train3 <- dplyr::select(dfw.train, quality, alcohol, volatile.acidity,
                          pH, free.sulfur.dioxide)
dfw.test3 <- dplyr::select(dfw.test, quality, alcohol, volatile.acidity,</pre>
                         pH, free.sulfur.dioxide)
rf.dfw3 <- randomForest(quality~., data=dfw.train3, mtry=2, importance=TRUE)
rf.dfw.pred3 <- predict(rf.dfw3, newdata = dfw.test3)</pre>
mean(rf.dfw.pred3==dfw.test3$quality)
## [1] 0.6670072
rf.dfw3
##
## Call:
## randomForest(formula = quality ~ ., data = dfw.train3, mtry = 2,
                                                                      importance = TRUE)
                 Type of random forest: classification
                       Number of trees: 500
##
## No. of variables tried at each split: 2
##
          OOB estimate of error rate: 33.86%
## Confusion matrix:
   3 4 5
               6
                   7 8 9 class.error
             11 0 0 0
## 3 0 0
          5
                            1.0000000
## 4 0 42 56
              43
                   2 0 0
                            0.7062937
## 5 0 12 768 333 26 1 0
                            0.3263158
## 6 1 8 258 1329 154 12 0
                            0.2457435
## 7 0 1 18 291 392 11 0
                            0.4502104
## 8 0 1
           2 35 41 61 0
                            0.5642857
## 9 0 0
          0
             4 1 0 0 1.0000000
```

3 4 5 6 7 8 9 class.error