Proof. If $\sum_{k=0}^{\infty} u_k$ is absolutely convergent, then we prove that the sequence (S_m) is a Cauchy sequence; that is, for every $\epsilon > 0$, there is some p > 0 such that for all $n \ge m \ge p$,

$$||S_n - S_m|| \le \epsilon.$$

Observe that

$$||S_n - S_m|| = ||u_{m+1} + \dots + u_n|| \le ||u_{m+1}|| + \dots + ||u_n||,$$

and since the sequence $\sum_{k=0}^{\infty} ||u_k||$ converges, it satisfies Cauchy's criterion. Thus, the sequence (S_m) also satisfies Cauchy's criterion, and since E is a complete vector space, the sequence (S_m) converges.

Remark: It can be shown that if (E, || ||) is a normed vector space such that every absolutely convergent series is also convergent, then E must be complete (see Schwartz [150]).

An important corollary of absolute convergence is that if the terms in series $\sum_{k=0}^{\infty} u_k$ are rearranged, then the resulting series is still absolutely convergent and has the *same sum*. More precisely, let σ be any permutation (bijection) of the natural numbers. The series $\sum_{k=0}^{\infty} u_{\sigma(k)}$ is called a *rearrangement* of the original series. The following result can be shown (see Schwartz [150]).

Proposition 9.19. Assume (E, || ||) is a normed vector space. If a series $\sum_{k=0}^{\infty} u_k$ is convergent as well as absolutely convergent, then for every permutation σ of \mathbb{N} , the series $\sum_{k=0}^{\infty} u_{\sigma(k)}$ is convergent and absolutely convergent, and its sum is equal to the sum of the original series:

$$\sum_{k=0}^{\infty} u_{\sigma(k)} = \sum_{k=0}^{\infty} u_k.$$

In particular, if (E, || ||) is a complete normed vector space, then Proposition 9.19 holds. We now apply Proposition 9.18 to the matrix exponential.

9.8 The Matrix Exponential

Proposition 9.20. For any $n \times n$ real or complex matrix A, the series

$$\sum_{k=0}^{\infty} \frac{A^k}{k!}$$

converges absolutely for any operator norm on $M_n(\mathbb{C})$ (or $M_n(\mathbb{R})$).