Set Convex hull:		ex sets • conv C will be the small	Comments allest convex set that contains C .		
• conv $C = \left\{ \sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in C, 0 \leq 0 \leq 1, 1^{T} 0 = 1 \right\}$ Affine hull: • aff $C = \left\{ \sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in C \text{ for } i = 1, \dots, k, 1^{T} 0 = 1 \right\}$		 conv C will be a finite set as long as C is also finite. A will be the smallest affine set that contains C. 			
• aff $C = \left\{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C \text{ for } i = 1, \dots, k, 1^{T} \mathbf{\theta} = 1 \right\}$		• Different from the convex set, θ_i is not restricted between 0 and 1 • aff C will always be an infinite set. If aff C contains the origin, it is also a subspace.			
Conic hull: • $A = \left\{ \sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in C, \theta_{i} > 0 \text{ for } i = 1, \dots, k \right\}$ Ray: • $\mathcal{R} = \left\{ \mathbf{x}_{0} + \theta \mathbf{v} \mid \theta \geq 0 \right\}$		 A will be the smallest convex conic that contains C. Different from the convex and affine sets, θ_i does not need to sum up 1. The ray is an infinite set that begins in x₀ and extends infinitely in direction of v. In other words, it has a beginning, but it has no end. 			
Hyperplane: • $\mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} = b \}$ • $\mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^{T} (\mathbf{x} - \mathbf{x}_0) = 0 \}$ • $\mathcal{H} = \mathbf{x}_0 + a^{\perp}$		 It is an infinite set Rⁿ⁻¹ ⊂ Rⁿ that divides the space into two halfspaces. a[⊥] = {v a^Tv = 0} is the set of vectors perpendicular to a. It passes through the origin. a[⊥] is offset from the origin by x₀, which is any vector in H. 			
• $\mathcal{H} = \mathbf{x}_0 + a^{\perp}$ Halfspaces: • $\mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \le b \}$ • $\mathcal{H}_+ = \{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \ge b \}$		$ullet$ They are infinite sets of the parts divided by ${\mathcal H}.$			
Euclidean ball: • $B(\mathbf{x}_c, r) = {\mathbf{x} \mid \mathbf{x} - \mathbf{x}_c _2 \le r}$ • $B(\mathbf{x}_c, r) = {\mathbf{x} \mid \mathbf{x} - \mathbf{x}_c _2 \le r}$ • $B(\mathbf{x}_c, r) = {\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^{T} (\mathbf{x} - \mathbf{x}_c) \le r}$ • $B(\mathbf{x}_c, r) = {\mathbf{x}_c + r \mathbf{u} \mid \mathbf{u} \le 1}$		 B(x_c, r) is a finite set as long as r < ∞. x_c is the center of the ball. r is its radius. 			
Ellipsoid: • $\mathcal{E} = \{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1 \}$ • $\mathcal{E} = \{ \mathbf{x}_c + \mathbf{A} \mathbf{u} \mid \mathbf{u} \le 1 \}$, where $\mathbf{A} = \mathbf{P}^{1/2}$.		 \mathcal{E} is a finite set as long as \mathbb{P} is a finite matrix. \mathbb{P} is symmetric and positive definite, that is, \mathbb{P} = \mathbb{P}^\tau > 0. \mathbb{x}_c is the center of the ellipsoid. 			
• $\mathcal{E} = \{\mathbf{x}_c + \mathbf{A}\mathbf{u} \mid \mathbf{u} \le 1\}$, where $\mathbf{A} = \mathbf{P}^{1/2}$. Norm cone:		 The lengths of the semi-axes are given by √λ_i. A is invertible. When it is not, we say that ℰ is a degenerated ellipsoid (degenerated ellipsoids are also convex). 			
Norm cone: • $C = \{[x_1, x_2, \cdots, x_n, t]^{T} \in \mathbb{R}^{n+1} \mid \mathbf{x} \in \mathbb{R}^n, \mathbf{x} _p \le t\} \subseteq \mathbb{R}^{n+1}$		 Although it is named "Norm cone", it is a set, not a scalar. The cone norm increases the dimension of x in 1. For p = 2, it is called the second-order cone, quadratic cone, Lorentz cone or ice-cream cone. 			
 Proper cone: K ⊂ ℝⁿ is a proper cone when it has the following properties K is a convex cone, i.e., αK ≡ K, α > 0. K is closed. K is colid 		 The proper cone K is used to define the generalized inequality (or partial ordering) in some set S. For the generalized inequality, one must define both the proper cone K and the set S. x ≤ y ⇔ y - x ∈ K for x, y ∈ S (generalized inequality) 			
• K is solid. • K is pointed, i.e., $-K \cap K = \{0\}$.		 • x < y ⇔ y - x ∈ int K for x, y ∈ S (strict generalized inequality). • There are two cases where K and S are understood from context and the subscript K is dropped out: • When S = ℝⁿ and K = ℝⁿ₊ (the nonnegative orthant). In this case, x ≤ y means that x_i ≤ y_i. 			
Dual cone: $ \bullet \ K^* = \left\{ \mathbf{y} \mid \mathbf{x}^T \mathbf{y} \geq 0, \ \forall \ \mathbf{x} \in K \right\} $		 When S = Sⁿ and K = Sⁿ₊ or K = Sⁿ₊, where Sⁿ denotes the set of symmetric n × n matrices, Sⁿ₊ is the space of the positive semidefinite matrices, and Sⁿ₊ is the space of the positive definite matrices. Sⁿ₊ is a proper cone in Sⁿ (??). In this case, the generalized inequality Y ≥ X means that Y - X is a positive semidefinite matrix belonging to the positive semidefinite cone Sⁿ₊ in the subspace of symmetric matrices Sⁿ. It is usual to denote X > 0 and X ≥ 0 to mean than X is a positive definite and semidefinite matrix, respectively, where 0 ∈ R^{n×n} is a zero matrix. Another common usage is when S = Rⁿ and K = {c∈ Rⁿ c₁ + c₂t + ··· + c_ntⁿ⁻¹ ≥ 0, for 0 ≤ t ≤ 1}. In this case, x ≤_K y means that x₁ + x₂t + ··· + x_ntⁿ⁻¹ ≤ y₁ + y₂t + ··· + y_ntⁿ⁻¹. The generalized inequality has the following properties: If x ≤_K y and u ≤_K v, then x + u ≤_K y + v (preserve under addition). If x ≤_K y and y ≤_K z, then x ≤_K z (transitivity). If x ≤_K y, then ax ≤_K y for a ≥ 0 (preserve under nonnegative scaling). x ≤_K x (reflexivity). If x ≤_K y and y ≤_K x, then x = y (antisymmetric). If x ≤_K y in for i = 1, 2,, and x_i → x and y_i → y as i → ∞, then x ≤_K y. It is called partial ordering because x ½_K y and y ½_K x for many x, y ∈ S. When it happens, we say that x and y are not comparable (this case does not happen in ordinary inequality, < and >). x ∈ S is the minimum element of S if x ≤_K y for every y ∈ S. The set does not necessarily have a minimum, but the minimum is unique if it does. The same is true for maximum. The mathematical notation for that is S ⊆ x + K, where x + K denotes all points that are comparable to x and greater than or equal to x (for the maximum, we have S ⊆ x - K). 			
				 x ∈ S is the minimal element of S if y ≤_K x only when y = x. The same is true for maximal. We can have many different minimal (maximal) elements. The mathematical notation for that is (x - K) ∩ S = {x}, where x - K denotes all points that are comparable to x and less than or equal to x (for the maximal, we have (x + K) ∩ S = {x}). When K = R₊ and S = R (ordinary inequality), the minimal is equal to the minimum and the maximal is equal to the maximum. 	
				 K* is a cone, and it is convex even when the original cone K is nonconvex. K* has the following properties: K* is closed and convex. 	
				 K₁ ⊆ K₂ implies K₁* ⊆ K₂*. If K has a nonempty interior, then K* is pointed. If the closure of K is pointed then K* has a nonempty interior. K** is the closure of the convex hull of K. Hence, if K is convex and closed, K** = K. 	
				Polyhedra: • $\mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{a}_{j}^{T} \mathbf{x} \leq b_{j}, j = 1, \dots, m, \mathbf{a}_{j}^{T} \mathbf{x} = d_{j}, j = 1, \dots, p \right\}$ • $\mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{A} \mathbf{x} \leq \mathbf{b}, \mathbf{C} \mathbf{x} = \mathbf{d} \right\}, \text{ where } \mathbf{A} = \begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \dots & \mathbf{a}_{m} \end{bmatrix}^{T} \text{ and } \mathbf{C} = \begin{bmatrix} \mathbf{c}_{1} & \mathbf{c}_{2} & \dots & \mathbf{c}_{m} \end{bmatrix}^{T}$	
		Simplex: • $S = \text{conv } \{\mathbf{v}_m\}_{m=0}^k = \{\sum_{i=0}^k \theta_i \mathbf{v}_i \mid 0 \le \mathbf{\theta} \le 1, 1^T \mathbf{\theta} = 1\}$ • $S = \{\mathbf{x} \mid \mathbf{x} = \mathbf{v}_0 + \mathbf{V} \mathbf{\theta}\}, \text{ where } \mathbf{V} = \begin{bmatrix} \mathbf{v}_1 - \mathbf{v}_0 & \dots & \mathbf{v}_n - \mathbf{v}_0 \end{bmatrix} \in \mathbb{R}^{n \times k}$		 cial polyhedron. Simplexes are a subfamily of the polyhedra set. Also called k-dimensional Simplex in Rⁿ. The set {\mathbf{v}_m\mathbf{v}_{m=0}^k\$ is a affinely independent, which means {\mathbf{v}_1 - \mathbf{v}_0, \ldots, \mathbf{v}_k - \mathbf{v}_0} are linearly 	
		• $S = \{\mathbf{x} \mid \mathbf{A}_1 \mathbf{x} \leq \mathbf{A}_1 \mathbf{v}_0, 1^T \mathbf{A}_1 \mathbf{x} \leq 1 + 1^T \mathbf{A}_1 \mathbf{v}_0, \mathbf{A}_2 \mathbf{x} = \mathbf{A}_2 \mathbf{v}_0 \}$ (Polyhedra form), where $\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \end{bmatrix}$ and $\mathbf{A} \mathbf{V} = \begin{bmatrix} \mathbf{I}_{k \times k} \\ 0_{n-k \times n-k} \end{bmatrix}$		independent. $ \bullet \ \mathbf{V} \in \mathbb{R}^{n \times k} \text{ is a full-rank tall matrix, i.e., } \text{rank}(\mathbf{V}) = k. \text{ All its column vectors are independent.} $ The matrix \mathbf{A} is its left pseudoinverse.	
		Function Union: $C = A \cup B$ Intersection: $C = A \cap B$	Not in most of the cases. Yes, if A and B are convex set	x?	Comments
Convex function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$, where $0 \le \theta \le 1$. • dom $f \subseteq \mathbb{R}^n$ shall be a convex set to f be a convex function.	Yes.		 Graphically, the line segment between (x, f(x)) and (y, f(y)) lies always above the graph f. In terms of sets, a function is convex iff a line segment within dom f, which is a convex set, gives an image set that is also convex. 		
			 dom f is convex iff all points for any line segment within dom f belong to it. First-order condition: f is convex iff dom f is convex and f(y) ≥ f(x) + ∇f(x)^T(y - x), ∀ x, y ∈ dom f, x ≠ y, being ∇f(x) the gradient vector. This inequation says that the first-order Taylor approximation is a underestimator for convex functions. The first-order condition requires that f is differentiable. 		
			 If ∇f(x) = 0, then f(y) ≥ f(x), ∀ y ∈ dom f and x is a global minimum. Second-order condition: f is convex iff dom f is convex and H ≥ 0, that is, the Hessian matrix H is a positive semidefinite matrix. It means that the graphic of the curvature has a positive (upward) curvature at x. It is important to note that, if H > 0, ∀ x ∈ dom f, then f is strictly convex. But is f is strictly convex, not necessarily 		
Affine function $f: \mathbb{R}^n \to \mathbb{R}^m$ • $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{x} \in \mathbb{R}^n$	Yes, if the domain $S\subseteq\mathbb{R}^n$ is a convex set, then its image $f(S)=\{f(\mathbf{x}) \mathbf{x}\in S\}\subseteq\mathbb{R}^m \text{ is also convex}.$		 then f is strictly convex. But is f is strictly convex, not necessarily that H > 0, ∀ x ∈ dom f. Therefore, strict convexity can only be partially characterized. The affine function, f(x) = Ax + b, is a broader category that encompasses the linear function, f(x) = Ax. The linear function has its origin fixed at 0 after the transformation, whereas the 		
			 affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. Similarly, the inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also 		
			convex. • The linear matrix inequality (LMI), $\mathbf{A}(\mathbf{x}) = x_1 \mathbf{A}_1 + \dots + x_n \mathbf{A}_n \leq \mathbf{B}$, is a special case of affine function. In other words, $f(S) = \{\mathbf{x} \mid \mathbf{A}(\mathbf{x}) \leq \mathbf{B}\}$ is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.		
Exponential function $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$	Yes.				
Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T\mathbf{P}\mathbf{x} + \mathbf{p}^T\mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$	It depends on the matrix P : • f is convex iff $P \ge 0$. • f is strictly convex iff $P > 0$. • f is concave iff $P \le 0$.				
Power function $f: \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$	• f is strictly concave iff $\mathbf{P} < 0$. It depends on a • f is convex iff $a \ge 1$ or $a \le 0$.				
Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$.	• f is concave iff $0 \le a \le 1$. Yes.				
Logarithm function: $f: \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$	Yes. Ves. if the domain S C dom f is a convey set then its. The reconstitution domain s the linearing of the forestion.				
Perspective function $f : \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}^n$ • $f(\mathbf{x}, t) = \mathbf{x}/t$, where $\mathbf{x} \in \mathbb{R}^n, t \in \mathbb{R}$.	image $f(S) = \{f(\mathbf{x}) \mathbf{x} \in S\} \subseteq \mathbb{R}^n$ is also convex.		 The perspective function decreases the dimension of the function domain since dim(dom f) = n + 1. Its effect is similar to the camera zoom. The inverse image is also convex, that is, if C ⊆ ℝⁿ is convex, then f⁻¹(C) = {(x,t) ∈ ℝⁿ⁺¹ x/t ∈ C, t > 0} is also convex. 		
Projective (or linear-fractional) function, $f: \mathbb{R}^n \to \mathbb{R}^m$ • $f = p \circ g$, i.e., $f(\mathbf{x}) = (p \circ g)(\mathbf{x}) = p(g(\mathbf{x}))$, where • $g: \mathbb{R}^n \to \mathbb{R}^{m+1}$ is an affine function given by $g(\mathbf{x}) = g(\mathbf{x})$	Yes, if the domain $S \subseteq \text{dom } f$ image $f(S) = \{f(\mathbf{x}) \mathbf{x} \in S\} \subseteq \mathbb{R}$	· ·	 f⁻¹(C) = {(x,t) ∈ Rⁿ⁺¹ x/t ∈ C, t > 0} is also convex. The linear and affine functions are special cases of the linear-fractional function. dom f = {x ∈ Rⁿ c^Tx + d > 0} 		
$\begin{bmatrix} \mathbf{A} \\ \mathbf{c}^{T} \end{bmatrix} \mathbf{x} + \begin{bmatrix} \mathbf{b} \\ d \end{bmatrix}, \text{ being } \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m, \mathbf{c} \in \mathbb{R}^n, \text{ and } d \in \mathbb{R}.$ $\triangleright p : \mathbb{R}^{m+1} \to \mathbb{R}^m \text{ is the perspective function.}$			• $\mathcal{P}(\mathbf{x}) \subset \mathbb{R}^{n+1}$ is a ray set that begins at the origin and its last component takes only positive values. For each $\mathbf{x} \in \text{dom } f$, it is associated a ray set in \mathbb{R}^{n+1} in this form. This (projective) correspondence between all points in dom f and their respective sets \mathcal{P} is a biunivocal mapping.		
• $f(\mathbf{x}) = \mathcal{P}^{-1}(\mathbf{Q}\mathcal{P}(\mathbf{x}))$ • $\mathcal{P}(\mathbf{x}) = \{(t\mathbf{x}, t) \mid t \ge 0\} \subset \mathbb{R}^{n+1}$ • $\mathbf{Q} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{c}^{T} & d \end{bmatrix} \in \mathbb{R}^{(m+1)\times(n+1)}$			 The linear transformation Q acts on these rays, forming another set of rays. Finally we take the inverse projective transformation to recover f(x). 		