ĐẠI HỌC QUỐC GIA TP.HÒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ

Master Course

Advanced Embedded System Design

Chapter 0: Course Introduction

Course Information

Instructor

- Truong Quang Vinh, Ph.D.
- Department of Electronics
 http://www.dee.hcmut.edu.vn/vn/bomon/bmdientu
- Email: tqvinh@hcmut.edu.vn
- Homepage: http://www4.hcmut.edu.vn/~tqvinh
- Office: 116B1, IC Design Lab, Monday 9-11am
- Related undergraduate courses:
 - Micro-processor (Vi xử lý)
 - Embedded system design (Thiết kế hệ thống nhúng)
 - Embedded programming (Lập trình nhúng)

Textbooks

- [1] Frank Vahid and Tony Givargis, Embedded System Design: A Unified Hardware/Software Approach, John Wiley & Sons, Inc. 2002
- [2] Joseph Yiu, "The Definitive Guide to the ARM Cortex-M3", Elsevier Newnes, 2007
- [3] Jonathan W Valvano, Embedded Systems: Introduction to Arm® Cortex(TM)-M Microcontrollers (Volume 1), 2012
- [4] Jonathan W Valvano, Embedded Systems: Real-Time Interfacing to Arm® Cortex™-M Microcontroller, 2012

Course Description

- This course provides students with advanced knowledge of embedded system design process.
- Students will have ability to
 - design hardware part of an embedded system using ARM microcontroller with peripherals including GPIO, ADC, UART, SPI, USB, and Ethernet.
 - program software part of an embedded system with and without operating system using C programming language.
 - develop an embedded system project using Proteus, IAR, and KeilC development tools.

Syllabus

Week	Content	Note
1	Chapter 0: Course introduction	Students
	0.1. Course information	select class
	0.2. Syllabus and schedule	project's
	0.3. Course preparation	topics
	Require students to prepare textbooks, tools, and	
	course materials	
2	Chapter 1: Embedded System Design Process	Quiz
	1.1. Embedded system features and issues	
	1.2. Embedded system design process	
	1.3. Embedded system analysis	
	Require self-studying for 3 hours	
3,4	Chapter 2: Microcontroller Series	Assignment 1
	2.1. ARM Cortex-M3	
	2.2. ARM Cortex-M4	
	Require self-studying for 6 hours	

Syllabus

5,6	Chapter 3: C Programming for Embedded Systems	Assignment 2
	3.1. C Program Basics	
	3.2. ARM Cortex-M C Compiler	
	3.3. ARM software library	
	3.4. FreeRTOS	
	Require self-studying for 6 hours	
7	Chapter 4: Development tools	Assignment 3
	4.1. Advanced simulation with Proteus	
	4.2. Programming tools: IAR and Keil	
	Require self-studying for 3 hours	
8,9	Chapter 5: Using Peripherals and Interrupts	Assignment 4
	5.1. Parallel IO ports	
	5.2. Timers	
	5.3. Interrupts	
	5.4. Analog IO	
	5.5 Serial communication	
	Require self-studying for 6 hours	

Syllabus

10	Chapter 6: Designing an embedded system project	
	6.1. Project description	
	6.2. Hardware design	
	6.3. Software design	
	6.4. Design simulation	
	6.5. Design verification	
	Require self-studying for 3 hours	
11-15	Experiment	Students do
	1. ARM Cortex M3 with Stellaris LM3S9B96 kit	experiments at
	2. ARM Cortex M4 with Stellaris EK-LM4F120XL kit	lab
	Require self-studying for 10 hours	
16-19	Class project	Students do
	Each group of students do class project at lab	class projects
20	Present class project	Students
	Each group of students presents and reports the class	report class
	project	projects

Grading

- Midterm exam: 20%
- Final exam: 50%
- Lab: 10%
- Project: 20%
 - 2-3 students for one group
 - Select project's topic at week 3
 - Submit project at week 16

Course Preparation

- Textbooks:
 - download 3 required textbooks
- Software tools:
 - IAR
 - KeilC
- Programming knowledge:
 - C/C++ programming

Project's requirements

- Report in MS Word (follow embedded system design process)
- Simulate the design
- Make prototype by bread board or PCB board.
- Present the design in class

Development Boards

FriendlyARM Mini2440 Board

ARM9 board, 400 MHz, 64MB RAM, 256MB Nand, 3.5" Touch screen LCD

Giá: 2,399,000 VND / Cái

STM32F3 Discovery

KIT EVAL DISCOVERY STM32F3

Giá: 460,000 VND / Cái

LM4F120 LaunchPad Evaluation

Stellaris® LM4F120 LaunchPad Evaluation

会会会会会

Giá: 550,000 VND / Cái

BeagleBoard-xM

ARM Cortex -A8 MHz Board, 512MB RAM, 1 GHz CPU, BeagleBoard

Giá: 4.299,000 VND / Cái

STM32F4-Discovery Cortex-M4 Kit

STM32F4 DISCOVERY (ARM

Cortex M4 + DSP Core)

Giá: 449,000 VND / Cái

STM32F4Discovery EXTBOARD

STM32F4 mother board, RS232, LCD touch, CAN, Network

☆ ☆ ☆ ☆ ☆
Giá: 1.199.000 VND / Cái

Arduino Due R3

SAM3X8E ARM Cortex-M3 CPU, 84Mhz, 96 KBytes SRAM

Giá: 899,000 VND / Cái

Raspberry Pi Model B

(Made in UK) BCM2835 700MHz ARM1176JZFS processor with FPU

and Videocore 4 GPU

会会会会会

Giá: 1,235,000 VND / Cái

Note: Friendly ARM, LM4F120 LaunchPad, BeagleBoard-xM are available at the Lab 116B1

Recommended class project topics

Using STM32F3-Discovery Kit / STM32F4-Discovery Kit / LM4F120 LaunchPad

- 1. Hand motion detection
- 2. Remote Control through Ethernet
- 3. Temperature & humidity measurement
- 4. Solar control system
- 5. Motor control system

Using Friendly ARM kit / Beagle Board / Raspberry Pi

- 1. Image capturing system
- 2. Data acquisition system
- 3. Object detection & recognition
- 4. Remote Control through Ethernet
- 5. MP3 system

Simple project's Topics

- 1. 20-Chasing LEDs (at least 10 modes)
- 2. LED Message Board (8x32)
- 3. 3D-LED cube (3x3x3)
- 4. LED fan display
- 5. Two-LED Dice
- 6. Two-digit 7-Segment LED counter up/down
- 7. Digital clock with LCD display
- 8. Voltmeter with LCD display
- 9. Calculator with keypad and LCD
- 10. Serial communication-based calculator

- 11. Step motor controller
- 12. DC motor controller using PWM
- 13. I2C data communication
- 14. Battery charger (1A)
- 15. Temperature controller
- 16. Alarm controller using IR LED
- 17. Automatic light controller
- 18. Simple music keyboard
- 19. Digital door lock
- 20. SD card project

Course Overview

- 1. What is an embedded system?
- 2. What are differences between embedded system and general computer system?
- 3. What are applications for embedded systems?
- 4. What is the most important part in an embedded system?
- 5. Which kind of embedded system development boards have you practiced on?
- 6. Which kind of micro-processors do you have experience on?