Gene Mutations Associated with HIV-1 Drug Resistance

Linsui Deng

Institute of Statistics & Big Data Renmin University of China

May 8, 2021

1 / 17

Content

- Introduction
 - HIV Data Set
 - Multiple Hypothesis Testing
- Multilayer Hypothesis Testing
 - Model
 - Algorithm
- Result and Discussion
 - False Discovery Proportion and Discovery Proprtion
 - The Mutative Frequencies versus Quality of Detection
 - Genes Associated with HIV-1 Drug Resistance

2 / 17

1.0.0 BackGround

- Recently, understanding the genotype-phenotype correlation guiding clinic treatment.
- Rhee et al. (2006) related HIV-1 protease and reverse transcriptase mutations to in vitro susptibility to 16 antiretroviral drugs.

1.0.1 Our Target

Detect gene mutations associated with HIV-1 drug resistance.

1.0.2 Challenges

- The sample size is not large enough compared to the complete gene mutations;
- The inference on various genes is simultaneously.

1.1.1 Source of HIV Data Set

- We use HIV Data Set described and analyzed by Rhee et al. (2006);
- The ground truth is provided by Rhee et al. (2005);
- Additional information is available at PI, NRTI, NNRTI and THE WORLD HEALTH ORGANIZATION 2009 LIST OF MUTATIONS.

1.1.2 HIV-1 Drugs

1.1.3 Genotype

- Position: $1 \sim 99$ in PI and $1 \sim 240$ in NRTI and NNRTI;
- Mutative Direction: On each position, there are several possible mutation directions.

- **1.2.1 Two Detection Cases** Since the target of genotype varies, detecting the drug-associated genotypes can be separated to two types:
 - Case I: Detect the mutative positions, e.g. P1, P2, · · · .
 - Case II: Detect the mutative positions and the mutative directions simultaneously, e.g. P1.A, P1.B, · · · .
- 1.2.2 Applying a selection procedure, we will have Table 1.

Table: Outcomes when testing *m* hypothesis

Hypothesis	\mathcal{H}_0	\mathcal{H}_1	
Reject Fail to Reject	V U	S T	R W
Total	m_0	m_1	m

1.2.3 Criteria for Selection

- False discovery proportion $FDP = \frac{V}{R \vee 1}$.
- Discovery rate $DP = \frac{S}{m_1}$.
- Groupwise FDP (When the gene can be separated into groups A_1, A_2, \dots, A_G).

Figure: Multiple Group Information induces Multilayer Hypothesis Testing Problem

Multilayer Hypothesis Testing

Inspired by Dai and Barber (2016), we considered a multi-task problem. Upon fixing a drug class, like PI, the model becomes

$$Y = XB + E$$
.

where

- $\mathbf{Y} \in \mathbb{R}^{n \times r}$, $\mathbf{X} \in \mathbb{R}^{n \times p}$, $\mathbf{B} \in \mathbb{R}^{p \times r}$ and $\mathbf{E} \in \mathbb{R}^{n \times r}$;
- Y_{ij}: the response of isolates i with one drug type j;
- X_{ij}: the indicator of isolates i corresponding to gene mutative direction j ∈ {P1.A, P1.B, ···};
- B_{ij}: the underlying effect of drug resistance associated with gene i with respect to HIV drug type j;
- Since the mechanisms of different drug types within a drug class are similar, we can assume B is row-sparsed.

Multilayer Hypothesis Testing

Denote $y = \text{vec}(\mathbf{Y})$, $\epsilon = \text{vec}(\mathbf{E})$, $\beta = \text{vec}(\mathbf{B})$, $\mathbb{X} = \mathbf{I}_r \otimes \mathbf{X}$, the model becomes

$$y = \mathbb{X}\beta + \epsilon$$
.

We remove the gene mutative direction whose frequencies is less than 3 and the possible duplicates. Then, the group information is available and the false discovery rate is defined groupwise.

- Layer I: The group is separated by the gene mutative position and the induced partition is $\{A_{P1}, A_{P2}, \dots, A_{P99}\}$;
- Layer II: The group is separated by the gene mutative position and gene mutative direction. The induced partition is

$$\{A_{P1.A}, A_{P1.B}, \cdots, A_{P99.d}\}$$
.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ ■ 夕久@

Multilayer Hypothesis Testing Algorithm

2.1 Possible Algorithms:

- BH Procedure (Benjamini and Hochberg (1995));
- P-filter (Barber and Ramdas (2017));
- Knockoff (Barber and Candès (2015));
- Multilayer Knockoff (Katsevich and Sabatti (2019)).

Among these method,

- Multilayer Knockoff and p-filter could simultaneously control false discovery rate in different layers;
- p-value based procedure performs stablier than Knockoff method.

Thus, we prefer p-filter.

Multilayer Hypothesis Testing

p-filter

2.2 Brief Introduction of P-Filter

- 2.2.1 What does p-filter do?
 - Control the groupwise FDR at α_m within each layer.
- 2.2.2 How to reject? (Two Layer)
 - Given two dimension threshold (t_1, t_2) , the rejection set is

$$R(t_1, t_2) = \left\{i : p_{g_1(i)1} > t_1, p_{g_2(i)2} > t_2, i \in A_{g_m(i)}^m\right\}.$$

- 2.2.3 How to control? (For Layer m)
 - Construct p value for group g through Simes Test p_g^{Simes} ;
 - Then expected false rejection is approximatly bounded by $\sum_{g \in \mathcal{H}_n^m} \mathbf{1} \{ p_g^{Simes} \le t_m \} \le G_m \times t_m;$
 - The upper estimator of FDP is $\widehat{FDP}_m = \frac{G_m \times t_m}{R(t_1,t_2) \vee 1}, m=1,2,\cdots$.

We conducted these algorithms with p filter code, multilayer knockoff code and Knockoff Guide.

Figure: The FDP and DP for different drug types of the drug class PI, NRTI and NNRTI. KF is knockoff filter (Case I), MKF is multilayer knockoff filter (Case I and Case II), BH is Bejamini Hochberg procedure (Case I) and PF is p-filter (Case I and Case II)

Figure: The FDP and DP for three drug classes PI, NRTI and NNRTI. GKF is group knockoff filter (Layer I), MKF is multilayer knockoff filter (Layer I and Layer II), BH is Bejamini Hochberg procedure (Case I), BH is groupwise Bejamini Hochberg procedure (Layer I) and PF is p-filter(Layer I and Layer II).

Mutative Frequencies

We also investigated whether low mutative frequencies leads to low accurancy in Case II. The selection procedure used in this section is p-filter.

Figure: The empirical density of the position + mutative direction count for three drug classe.

New Discovered Gene

Additional information is provided in PI, NRTI and NNRTI and THE WORLD HEALTH ORGANIZATION 2009 LIST OF MUTATIONS.

Table: New Discovered HIV-1 Drug Resistence related Gene Mutation

Drug Class	Neg Gene	Neg Gene Position
PI	P10.I P10.L P10.V P20.R P36.I P36.L P37.S P63.H P63.P P64.I P64.V P67.Y P71.T P71.V P82.I P91.S P93.L	36 37 63 64 91 93
NRTI	P103.N P118.V P121.H P135.T P142.V P162.Y P180.V P181.C P181.V P203.D P215.D P227.L P35.I P35.R P40.F P4.S P70.G P83.K	103 118 121 135 142 162 180 181 227 35 40 4 83
NNRTI	P101.H P101.Q P135.T P138.A P139.R P179.D P179.E P184.V P215.Y P219.N P49.R P74.V P98.G	135 139 179 184 215 219 49 74 98

Reference I

- Rina Foygel Barber and Emmanuel J. Candès. Controlling the false discovery rate via knockoffs. *The Annals of Statistics*, 43(5): 2055–2085, 2015. ISSN 0090-5364.
- Rina Foygel Barber and Aaditya Ramdas. The p-filter: multilayer false discovery rate control for grouped hypotheses. 79(4):1247–1268, 2017. ISSN 1369-7412.
- Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: A practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society. Series B (Methodological)*, 57(1):289–300, 1995. ISSN 00359246.
- Ran Dai and Rina Barber. The knockoff filter for fdr control in group-sparse and multitask regression. In Maria Florina Balcan and Kilian Q. Weinberger, editors, *Proceedings of The 33rd International Conference on Machine Learning*, volume 48 of *Proceedings of Machine Learning Research*, pages 1851–1859, 2016.

Reference II

- Eugene Katsevich and Chiara Sabatti. Multilayer knockoff filter: Controlled variable selection at multiple resolutions. *The Annals of Applied Statistics*, 13(1):1–33, 33, 2019.
- S. Y. Rhee, W. J. Fessel, A. R. Zolopa, L. Hurley, T. Liu, J. Taylor, D. P. Nguyen, S. Slome, D. Klein, M. Horberg, J. Flamm, S. Follansbee, J. M. Schapiro, and R. W. Shafer. Hiv-1 protease and reverse-transcriptase mutations: correlations with antiretroviral therapy in subtype b isolates and implications for drug-resistance surveillance. *J Infect Dis*, 192(3):456–65, 2005. ISSN 0022-1899 (Print) 0022-1899.
- S. Y. Rhee, J. Taylor, G. Wadhera, A. Ben-Hur, D. L. Brutlag, and R. W. Shafer. Genotypic predictors of human immunodeficiency virus type 1 drug resistance. *Proc Natl Acad Sci U S A*, 103(46):17355–60, 2006. ISSN 0027-8424 (Print) 0027-8424.

4□ > 4률 > 4률 > 혈 9

17 / 17