A grammar of graphics framework for generalized parallel coordinate plots

Author 1^{1*} Author 2^2 Author 3^3

¹ University 1; ² University 2; ³ University 3

August 16, 2021

Abstract

Parallel coordinate plots (PCP) are a useful tool in exploratory data analysis of high-dimensional numerical data. The use of PCPs is limited when working with categorical variables or a mix of categorical and continuous variables. In this paper, we propose generalized parallel coordinate plots (GPCP) to extend the ability of PCPs from just numeric variables to dealing seamlessly with a mix of categorical and numeric variables in a single plot. In this process we find that existing solutions for categorical values only, such as hammock plots or parsets become edge cases in the new framework. By focusing on individual observations rather than a marginal frequency we gain additional flexibility. The resulting approach is implemented in the R package ggpcp.

1 Introduction

Few approaches in data visualization exist that are truly high-dimensional. Most visualizations are projections of data into two or three dimensions enhanced by additional mappings to plot aesthetics, such as point size and color, or facetting. Parallel coordinate plots are one of the exceptions: in parallel coordinate plots we can actually visualize an arbitrary many number of variables to get a visual summary of a high-dimensional data set. In a parallel coordinate plot each variable takes the role of a vertical (or parallel) axis; giving the visualization its name. Multivariate observations are then plotted by connecting their respective values on each axis across all axes using polylines (cf. Figure 1). For just two variables this switch from orthogonal axes to parallel axes is equivalent to a switch from the familiar Euclidean geometry to the Projective Space. In the projective space, points take the role of lines, while lines are replaced by points, i.e. points falling on a line in the Euclidean space correspond to lines crossing in a single point in the Projective Space. This duality provides a good basis for interpreting geometric features observed in a parallel coordinate plot [Inselberg, 1985].

The origins of parallel coordinate plots date back to the 19th century and are, depending on the source, either attributed to d'Ocagne [1885] or Gannett [1880]. Modern era parallel coordinate plots go back to Inselberg [1985] and Wegman [1990]. Parallel coordinate plots are used in an exploratory setting as a way to get a high-level overview of the marginal distributions involved, to identify outliers in the data and to find potential clusters of points. In the absence of those, Parallel Coordinate Plots are often critized for the amount of clutter they produce, resembling a game of mikado rather than organized data. This clutter is sometimes combatted by the use of α -blending [Miller and Wegman, 1991], density estimation [Heinrich and Weiskopf, 2009], or edge-bundling parallel coordinate plots [McDonnell and Mueller, 2008]. For a detailed overview of these and other techniques see Heinrich and Weiskopf [2013].

However, parallel coordinate plots have some shortcomings. XXXX after bashing clutter in pcps, 'some shortcomings' feels like rubbing it in :) The biggest challenge comes when working with categorical

^{*}Corresponding author: xxx

Figure 1: Sketch of a parallel coordinate plot of two observations in four dimensions. Each dimension is shown as a vertical axis, observations are connected by polylines from one axis to the next.

variables. In current solutions, levels of categorical variables are transformed to numbers and variables are then used as if they were numeric. This introduces a lot of ties into the data, and the resulting parallel coordinate plot becomes uninformative, as it only shows lines from each level of one variable to all levels of the next variable. Some versions of parallel coordinate plots have been specifically developed to deal with categorical data, e.g. parallel set plots [Kosara et al., 2006], Hammock plots [Schonlau, 2003], and common angle plots [Hofmann and Vendettuoli, 2013]. These solutions all have in common that they work with tabularized data and show bands of observations from one categorical variable to the next. Hammock plots and common angle plots provide solutions to mitigate the sine-illusion's effects [Day and Stecher, 1991, VanderPlas and Hofmann, 2015] on parallel sets plots. An attempt to combine categorical and numeric variables in a parallel coordinate plot is introduced in the categorical parallel coordinate plots of Pilhöfer and Unwin [2013]. These plots provide an extension to parallel sets that allows numeric variables to be included in the plot. Similar to parallel sets, this approach is also based on marginal frequencies for the categorical variables. Categorical parallel coordinate plots are the closest of these variations to our solution, but they are not implemented in the ggplot2 framework and can therefore not be further extended.

Various packages in R [R Core Team, 2019] exist that contain an implementation of one of the parallel coordinate plots. The function "parcoord" in the MASS package [Venables and Ripley, 2002] makes use of the base plot system of R to draw parallel coordinate plots. The function "cpcp" in package iplots implements the parallel coordinate plot [Pilhöfer and Unwin, 2013]. Developments based on the grammar of graphics [Wilkinson, 2005] and the ggplot2 [Wickham, 2016] framework are, e.g. the function 'ggparcoord' in GGally [Schloerke et al., 2018] or ggparallel [Hofmann and Vendettuoli, 2016] which provide an implementation of Hammock and common-angle plots.

Those packages based on ggplot2 make use of ggplot2, but are actually wrapper of existing functions for highly specialized plots with tens of parameters, which do not allow the full flexibility of ggplot2 and do not make use of ggplot2's layer framework.

The remainder of the paper is organized as follows: section 2 describes the data processing for parallel coordinate plots.

2 Data management

The idea behind this re-implementation of parallel coordinate plots is to expose parallel coordinate plots at a functional level. Rather than using a single function with parameters controlling every aspect, we separate the data management from the visual rendering.

One of the biggest strengths of the Grammar of Graphics is its mapping between data variables and

visual aesthetics. In standard plots any mapping is a function between one aesthetic and one data variable. In a parallel coordinate plot, this one-to-one mapping between data and plot aesthetics is seemingly turned into a one-to-many mapping between arbitrarily many data variables to the x axis. However, by transforming the wide form of the data set into a long form [Wickham, 2007, Wickham et al., 2021, Wickham, 2021], we get to a form of the dataset in which we achieve a one-to-one mapping to a now discrete x axis consisting of the (names of the) original data variables.

2.1 Variable selection and data wrangling

pcp_select(data, ...) allows a selection of variables to be included in the parallel coordinate plot. Variables can be specified by

- position, e.g. 1:4, 7, 5, 4,
- name, e.g. class, age, sex, aede1:aede3 or
- using pattern selectors, e.g. starts_with("aede"), see ?tidyselect::select_helpers

or any combination thereof. Variables can be selected multiple times and will then be included in the data and the resulting plot multiple times. The order in which variables are selected determines the order in which the corresponding axis is drawn in the parallel coordinate plots. pcp_select transforms the selected variables to long form and embellishes the data set with a number of additional variables. All of the newly created and added variables start with the prefix pcp_:

- pcp_x: discrete variable consisting of the names of the selected variables in the order that they were selected this is the order in which the variables will be included in the plot.
- pcp_y: numeric variable containing the values of all of the selected variables. In case a selected variable is not numeric, it is converted to a factor variable and the (numeric) factor levels are saved in pcp_y.
- pcp_level: character variable containing the factor levels of selected data variables. In case of numeric variables, the data values are stored (in textual form).
- pcp_class: character variable containing the class information of a selected variable.
- pcp_id: integer variable identifying each observation in the original dataset. This variable will be used as grouping variable to identify which values should be connected by a line segment in the parallel coordinate plot.

2.2 Scaling

pcp_scale(data, method) scales the values on each axis and determines the relative relationship of the axes to each other.

method is a character string specifying the method to be used when transforming the values of each variable into a common y axis. By default, the method uniminmax is chosen, which univariately scales each variable into a range of [0,1] with a minimum at 0 and the maximum at 1. globalminmax maps the values across all axes into a an interval of [0,1]. Except for the scale on the 'y' axis, this results a similar picture to raw, in which all values are left unscaled. ?pcp_scale gives more details.

2.3 Breaking ties on categorical axes

pcp_arrange(data, method, space) provides a rescaling of values on categorical axes to break ties. method is a parameter specifying which variables to use to break ties. The two implemented methods are "from-left" and "from-right", meaning that ties are broken using a hierarchical ordering using variables' values from the left or the right, respectively. The parameter scale specifies the amount of the 'y' axis to use for space between levels of categorical variables. By default, 5% of the axis is used for spacing.

Figure 2: Sketch of different ways of transforming categorical variables

3 The Generalized Parallel Coordinate Plot

Figure 3 shows a first generalized parallel coordinate plot of the Palmer penguins data [@penguins]. The data consists of body measurements, such as weight, flipper length, bill length, and depth, of three species of penguins. What can be seen is that Adelie penguins generally have smaller bill lengths than the other two species, while Gentoo penguins can be distinguished from the other two species by their relatively larger flipper lengths. The lines in Figure 3 are colored by sex of penguins. What can be seen is that within each species, the males tend to be larger in size and heavier than the females. For several of the penguins, sex could not be determined because either the sexing primer did not amplify or no blood sample was obtained [@penguins2]. These penguins are represented by black lines. Based on these penguins' body measurements within the context of the other penguins, we can make some suggestions regarding their sex. Figure 4 shows body measurements of penguins in generalized parallel coordinate plots facetted by species. Chinstrap penguins are excluded because all of their individuals in the data have a gender assigned. The general pattern of measurements of the Gentoo penguins suggests that all four individuals with missing sex information are female (for further evidence, we find from the original data that their nest partners are all sexed as male). For Adelie penguins the situation is not quite as clear-cut, but based on body weight and bill length measurements the three lightest penguins might be female, while the heaviest one could be male. The fifth penguin walks the line between typical male and typical female measurements.

4 Results

5 Discussion

References

R. H. Day and E. J. Stecher. Sine of an illusion. *Perception*, 20:49–55, 1991.

M. d'Ocagne. Coordonnées parallèles et axiales : Méthode de transformation géométrique et procédé

Figure 3: *Generalized Parallel Coordinate Plot of the Palmer penguins data.*

Figure 4: Closer investigation of non-sexed Adelie and Gentoo penguins. The group_by call before pcp_scale is responsible for scaling by species.

- nouveau de calcul graphique déduits de la considération des coordonnées parallèles. *Gauthier-Villars*, page 112, 1885. URL https://archive.org/details/coordonnesparal00ocaggoog/page/n10.
- H. Gannett. General summary showing the rank of states by ratios 1880, plate 71. In *Scribner's statistical atlas of the United States, showing by graphic methods their present condition and their political, social and industrial development*. Charles Scribner's Sons, New York, 1880.
- J. Heinrich and D. Weiskopf. Continuous Parallel Coordinates. *IEEE Transactions on Visualization and Computer Graphics*, 15(6):1531–1538, 2009. doi: 10.1109/TVCG.2009.131. URL http://ieeexplore.ieee.org/document/5290770/.
- J. Heinrich and D. Weiskopf. State of the Art of Parallel Coordinates. In M. Sbert and L. Szirmay-Kalos, editors, *Eurographics* 2013 *State of the Art Reports*. The Eurographics Association, 2013. doi: 10.2312/conf/EG2013/stars/095-116.
- H. Hofmann and M. Vendettuoli. Common Angle Plots as Perception-True Visualizations of Categorical Associations. *IEEE Transactions on Visualization and Computer Graphics*, 19(12):2297–2305, Dec. 2013. doi: 10.1109/TVCG.2013.140. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6634157.
- H. Hofmann and M. Vendettuoli. *ggparallel: Variations of Parallel Coordinate Plots for Categorical Data*, 2016. URL https://cran.r-project.org/package=ggparallel. R package version 0.2.0.
- A. Inselberg. The plane with parallel coordinates. *The Visual Computer*, 1(2):69–91, Aug. 1985. doi: 10.1007/BF01898350. URL http://link.springer.com/10.1007/BF01898350.
- R. Kosara, F. Bendix, and H. Hauser. Parallel Sets: interactive exploration and visual analysis of categorical data. *IEEE Transactions on Visualization and Computer Graphics*, 12(4):558–568, 2006. doi: 10.1109/TVCG. 2006.76. URL http://ieeexplore.ieee.org/document/1634321/.
- K. T. McDonnell and K. Mueller. Illustrative Parallel Coordinates. Computer Graphics Forum, 27(3): 1031–1038, May 2008. doi: 10.1111/j.1467-8659.2008.01239.x. URL http://doi.wiley.com/10.1111/j.1467-8659.2008.01239.x.
- J. J. Miller and E. J. Wegman. Computing and graphics in statistics. chapter Construction of Line Densities for Parallel Coordinate Plots, pages 107–123. Springer-Verlag New York, Inc., New York, NY, USA, 1991. ISBN 0-387-97633-7. URL http://dl.acm.org/citation.cfm?id=140806.140816.
- A. Pilhöfer and A. Unwin. New Approaches in Visualization of Categorical Data: R Package extracat. *Journal of Statistical Software*, 53(7), 2013. doi: 10.18637/jss.v053.i07. URL http://www.jstatsoft.org/v53/i07/.
- R Core Team. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria, 2019. URL https://www.R-project.org/.
- B. Schloerke, J. Crowley, D. Cook, F. Briatte, M. Marbach, E. Thoen, A. Elberg, and J. Larmarange. *GGally: Extension to 'ggplot2'*, 2018. URL https://CRAN.R-project.org/package=GGally. R package version 1.4.0.
- M. Schonlau. Visualizing Categorical Data Arising in the Health Sciences Using Hammock Plots. In *Proceedings of the Section on Statistical Graphics, American Statistical Association*, 2003.
- S. VanderPlas and H. Hofmann. Signs of the sine illusion—why we need to care. *Journal of Computational and Graphical Statistics*, 24(4):1170–1190, 2015. doi: 10.1080/10618600.2014.951547. URL https://doi.org/10.1080/10618600.2014.951547.
- W. N. Venables and B. D. Ripley. *Modern Applied Statistics with S.* Springer, 4 edition, 2002. ISBN 0-387-95457-0. URL http://www.stats.ox.ac.uk/pub/MASS4/.

- E. J. Wegman. Hyperdimensional data analysis using parallel coordinates. *Journal of the American Statistical Assolution*, 85:664–675, 1990.
- H. Wickham. Reshaping data with the reshape package. *Journal of Statistical Software*, 21(12), 2007. URL http://www.jstatsoft.org/v21/i12/paper.
- H. Wickham. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York, 2 edition, 2016. ISBN 978-3-319-24277-4. URL https://ggplot2.tidyverse.org.
- H. Wickham. tidyr: Tidy Messy Data, 2021. URL https://CRAN.R-project.org/package=tidyr. R package version 1.1.3.
- H. Wickham, R. François, L. Henry, and K. Müller. *dplyr: A Grammar of Data Manipulation*, 2021. URL https://CRAN.R-project.org/package=dplyr. R package version 1.0.7.
- L. Wilkinson. The Grammar of Graphics. NY: Springer, New York, 2 edition, 2005.