

Europäisches Patentamt European Patent Office

Office ur péen des brevets

(11) EP 0 978 512 A1

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 09.02.2000 Bulletin 2000/06
- (21) Application number: 98401944.8
- (22) Date of filing: 29.07.1998

- (51) Int. Cl.⁷: CO7D 295/088, CO7C 211/08, CO7D 211/04, CO7D 295/185, CO7D 211/62, CO7D 211/70, CO7D 207/20, A61K 31/13, A61K 31/40, A61K 31/445, A61K 31/495
- (84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
- MC NL P1 SE
 Designated Extension States:
 AL LT LV MK RO SI
- (71) Applicant: SOCIETE CIVILE BIOPROJET F-75003 Paris (FR)
- (72) Inventors:
 Schwartz, Jean-Charles 75014 Paris (FR)
 Arrang, Jean-Michel 91419 Dourdan (FR)
 Garbarg, Monique 75017 Paris (FR)
 Lecomte, Jeanne-Marie

75003 Paris (FR)

75013 Parts (FR)
Schunack, Walter G.
14129 Berlin (DE)
Stark, Holger
12157 Berlin (DE)
Ganellin, Charon Robin
Welwyn, Hert AL6 OTD (GB)
Leurquin, Fablen
London E2 6DZ (GB)

Ligneau, Xavier

· Slaurd, Eiz

12107 Berlin (DE)

- (74) Representative: Le Guen, Gérard et al CABINET LAVOIX 2, place d'Estienne d'Orves 75441 Paris Cédex 09 (FR)
- (54) Non-imidazole aryloxy (or aryithio) alkylamines as histamine H3-receptor antagonists and their therapeutic applications
- (57) Compounds of formula (I):

$$(R^3)_{rp}$$
 $X-C_rH_{2r}-N_{p2}$ (1)

and their use for preparing medicaments acting as antagonists at the H3-receptors of histamine.

Descripti n

[0001] The present invention relates to novel aryloxy (or arylthio) alkylamines, to their preparation and to their therapeutic applications.

[0002] Antagonists of histamine H₃ receptor are known especially to increase synthesis and release of cerebral histamine. Through this mechanism, they induce an extended watefulness, an improvement in cognitive processes, a reduction in food intake and a normalization of vestibular reflexes (Schwartz et al., Physiol. Rev., 1991, 71; 1-51).

[0003] Whence these agents are potentially useful in several central nervous system disorders such as Alzheimer disease, mood and attention alterations, cognitive deficits in psychiatric pathologies, obesity, vertigo and motion sickness.

[1004] All the H₃ receptor antagonist compounds known so far resemble histamine in possessing an imidazole ring (Ganellin et al., Ars Pharmaceutica, 1995, 36/3, 455-468; Stark et al., Drug of the Future, 1995, 21(5), 507-520), [1005] Nevertheless, such imidazole derivatives may show drawbacks such as poor blood-brain barrier penetration and/or some hepatic and ocular toxicities. These drawbacks, which can prevent their therapeutic development, appear

15 to be linked to the presence of an imidazole ring substituted by a hydrophobic chain. [0006] Attempts to develop H₂ receptor antagonists without an imidazole ring have up to now been unsuccessful, the compounds being of low obtency.

[0007] In this respect, non-imidazole compounds such as betahistine (J-M. Arrang et al., Eur. J. Pharmacol. 1985, 111: 72-84), phencyclidine (J-M. Arrang et al., Eur. J. Pharmacol. 1988, 157: 31-35), dimaprit (J-C Schwartz et al., 20 Agents Actions 1990, 30: 13-23), clozapine (M. Kathmann et al., Psychopharmacology 1994, 116: 464-468), and sesquit pones (M. Takigawa et al., JP 06 345 642 (20 Dec 1994)) were suggested to display H₂-receptor antagonism but

all these compounds have only very low potency.

[0008] The present invention provides new compounds, the structure of which do not contain an imidazole molety, which are useful as histamine H₃-receptor antagonists while avoiding the above-mentioned drawbacks of the known

H₃-antagonists.

[0009] The compounds of the invention have the following general formula (I):

$$(R^3)_{n3}$$
 $X - C_n H_{2n} - N_{n2}^{R^1}$ (I)

in which:

C_nH_{2n} is a linear or branched hydrocarbon chain with n ranging from 2 to 8;

X is an oxygen or sulfur atom;

R¹ and R² may be identical or different and represent each independently

a lower alkyl or cycloalkyl, or taken together with the nitrogen atom to which they are attached,

a saturated nitrogen-containing ring

with m ranging from 4 to 7, or

an unsaturated nitrogen-containing ring

with p, q and r being 1 to 3 independently, such nitrogen-containing ring i) or ii) being unsubstituted or substituted by one or more lower alkyl or cycloalkyl, or carboalkoxy groups, or

a morpholiño group, or

15

50

55

a N-substituted piperazino group:

with R being a lower alkyl, an alkanoyl or an optionally substituted phenyl group;

- n₃ is an integer from 0 to 5;
- R³ represents each independently
 - a halogen atom
 - a lower alkyl or cycloalkyl, a trifluoromethyl, aryl, alkoxy, aryloxy, nitro, formyl, alkanoyl, aroyl, arylalkanoyl, amino, carboxamido, cyano, alkyloximino, aryloximino, ar-hydroxyalkyl, alkenyl, alkynyl, sulphamido, sulfamoyl, carboxamide, carboalkoxy, arylalkyl or oxime group.
- or taken together with the carbon atoms of the phenyl ring to which it is fused, a 5- or 6-membered saturated or unsaturated ring or a benzene ring.

[0010] The invention also relates to the addition salts which the compounds form with pharmaceutically acceptable acids. The pharmaceutically acceptable salts comprise the nontoxic salt of inorganic or organic acids. Examples of these salts include the hydrochloride, the hydrochronide or the hydrocen maleate or hydrogen oxalate.

[0011] The present invertion also encompasses the hydrates of the compounds, the hydrated salts of these compounds and the polymorphic crystalline structures. When the compounds can exist in one or a number of isometric forms according to the number of asymmetric centres in the molecule, the invention relates both to all the optical isomers and to their recemic modifications and the corresponding disastereoisemers. The separation of the disastereoisemers and/or of the optical isomers can be carried out according to methods known per se.

[0012] According to the invention, lower alkyl or cycloalkyl is intended to mean a linear or branched alkyl group containing from 1 to 6 carbon atoms, or a saturated carbocycle containing 3 to 6 carbon atoms.

[0013] Typically examples of lower alkyl are methyl, ethyl, propyl, isopropyl and butyl groups.

[0014] A preferred group of compounds according to the invention comprises those with R¹ and R² representing independently a lower alkyl group, especially an ethyl group.

[0015] Preferred compounds are also those of formula (I) in which R¹ and R² taken together with the nitrogen atom to which they are attached, form a saturated nitrogen-containing ring:

especially with m being 4, 5 or 6, optionally substituted with an alkyl group, preferably a methyl group. [0016] Another preferred group of compounds comprises compounds (i) in which R¹ and R² taken together with the nitrocen atom to which they are attached, form an unsaturated nitrogen-containing ring.

especially with p, q, and r being 1 or 2. In this group, more preferred compounds are those with p being 2 and q and r each being 1.

[0017] Typical example of -NR¹R² representing a N-substituted piperazino group is N-acetylpiperazino.

[0018] A preferred group of compounds according to the invention is the group composed of compounds of formula (I) in which X is an oxygen atom.

[0019] Another preferred group of compounds comprises compounds (I) in which -C_nH_{2n}- is a linear chain -(CH₂)_nwith n being as previously defined.

[0020] Preferred compounds are also those with n varying from 3 to 5, and with n being more preferably 3. [0021] A sub-class of compounds according to the invention comprises the compounds of formula (I) with na being

z r that is those having an unsubstituted phenyl moiety. [0022] Another group of compounds according to the invention is composed of compounds containing one or more

substituents R3 which may be identical or different. In this group, the compounds having a mono- or di-substituted (na = 1 or 2) phenyl moiety are preferred and those mono-substituted with one group R3 as defined above in para-position are particularly preferred.

[0023] Among these compounds, (n₃ being 1) R³ is preferably a halogen atom or a cyano, nitro, alkanoyl, alkyloximino or α-hydroxyalkyl group.

[0024] Still more preferred compounds are those with R3 being CN, NO2, COCH3, COC2H5, H3C-C=N-OH, H3C-CH-OH.

R3 being a halogen atom may be advantageously selected from fluorine, chlorine and bromine. [0025]

100261 R3 being an aryl group, may be especially a phenyl group.

In the other substituents R3, the aryl moiety is advantageously a phenyl moiety.

[0028] R3 being an aryloxy group may be especially a phenoxy group.

100291 According to the invention, alkanovi is intended to mean a group containing an alkyl molety as defined above. [0030] Typical examples of R3 being an alkanoyl, aroyl or arylalkanoyl group are acetyl, butyryl and propionyl groups,

benzoyl group or phenylacetyl group. [0031] Typical examples of R3 forming together with the carbon atoms of the phenyl ring to which it is fused, a saturated ring leads to 5,6,7,8-tetrahydronaphthyl or forming a benzene ring leads to a naphthyl moiety.

[0032] According to the invention, alkenyl or alkynyl group may contain advantageously from 1 to 8 carbon atoms, in particular from 1 to 6 carbon atoms and preferably 1 to 4 carbon atoms.

[0033] In carboalkoxy, carboxyamido or carboxamide groups, the hydrocarbon chain is saturated, linear or branched and contains an alkyl moiety as defined above.

[0034] In alkoxy, alkyloximino, arylalkyl or α-hydroxyalkyl group, the alkyl moiety is as previously defined also.

[0035] Particularly preferred compounds are:

1-(5-phenoxypentyl)-piperidine

50

1-(5-phenoxypentyl)-pyrrolidine

N-methyl-N-(5-phenoxypentyl)-ethylamine

1-(5-phenoxypentyl)-morpholine

N-(5-phenoxypentyl)-hexamethyleneimine N-ethyl-N-(5-phenoxypentyl)-propylamine

1-(5-phenoxypentyl)-2-methyl-piperidine

1-(5-phenoxypentyl)-4-propyl-piperidine

1-(5-phenoxypentyl)-4-methyl-piperidine

1-(5-phenoxypentyl)-3-methyl-piperidine

1-acetyl-4-(5-phenoxypentyl)-piperazine

1-(5-phenoxypentyl)-3,5-trans-dimethyl-piperidine

1-(5-phenoxypentyl)-3,5-cis-dimethyl-piperidine

```
1-(5-phenoxypentyl)-2,6-cis-dimethyl-piperidine
4-carboethoxy-1-(5-phenoxypentyl)-piperidine
3-carboethoxy-1-(5-phenoxypentyl)-piperidine
1-(5-phenoxypentyl)-1,2,3,6-tetrahydropyridine
1-[5-(4-nitrophenoxy)-pentyl]-pyrrolidine
1-[5-(4-chlorophenoxy)-pentyl]-pyrrolidine
1-[5-(4-methoxyphenoxy)-pentyl]-pyrrolidine
1-[5-(4-methylphenoxy)-pentyl]-pyrrolidine
1-[5-(4-cyanophenoxy)-pentyl]-pyrrolidine
1-[5-(2-naphthyloxy)-pentyl]-pyrrolidine
1-[5-(1-naphthyloxy)-pentyl]-pyrrolidine
1-[5-(3-chlorophenoxy)-pentyl]-pyrrolidine
1-[5-(4-phenylphenoxy)-pentyl]-pyrrolidine
1-{5-[2-(5,6,7,8-tetrahydronaphthyl)-oxy]-pentyl]-pyrrolidine
1-[5-(3-phenylphenoxy)-pentyl]-pyrrolidine
1-(5-phenoxypentyl)-2,5-dihydropyrrole
1-{5-[1-(5,6,7,8-tetrahydronaphthyl)-oxy]-pentyl]-pyrrolidine
1-(4-phenoxybutyl)-pyrrolidine
1-(6-phenoxyhexyl)-pyrrolidine
1-(5-phenylthiopentyl)-pyrrolidine
1-(4-phenylthiobutyl)-pyrrolidine
1-(3-phenoxypropyl)-pyrrolidine *
1-[5-(3-nitrophenoxy)-pentyl]-pyrrolidine
1-[5-(4-fluorophenoxy)-pentyl]-pyrrolidine
1-[5-(4-nitrophenoxy)-pentyl]-3-methyl-piperidine
1-[5-(4-acetylphenoxy)-pentyl]-pyrrolidine
1-[5-(4-aminophenoxy)-pentyl]-pyrrolidine
1-[5-(3-cyanophenoxy)-pentyl]-pyrrolidine
N-[3-(4-nitrophenoxy)-propyl]-diethylamine
N-[3-(4-cyanophenoxy)-propyl]-diethylamine
1-[5-(4-benzoylphenoxy)-pentyl]-pyrrolidine
1-{5-[4-(phenylacetyl)-phenoxy]-pentyl]-pyrrolidine
N-[3-(4-acetylphenoxy)-propyl]-diethylamine
1-[5-(4-acetamidophenoxy)-pentyl]-pyrrolidine
1-[5-(4-phenoxyphenoxy)-pentyl]-pyrrolidine
1-[5-(4-N-benzamidophenoxy)-pentyl]-pyrrolidine
1-{5-[4-(1-hydroxyethyl)-phenoxy]-pentyl}-pyrrolidine
1-[5-(4-cyanophenoxy)-pentyl]-diethylamine
1-[5-(4-cyanophenoxy)-pentyl]-piperidine
N-[5-(4-cyanophenoxy)-pentyl]-dimethylamine
N-[2-(4-cyanophenoxy)-ethyl]-diethylamine
N-[3-(4-cyanophenoxy)-propyl]-dimethylamine
N-[4-(4-cyanophenoxy)-butyl]-diethylamine
N-[5-(4-cyanophenoxy)-pentyl]-dipropylamine
1-[3-(4-cyanophenoxy)-propyl]-pyrrolidine
1-[3-(4-cyanophenoxy)-propyl]-piperidine
N-[3-(4-cyanophenoxy)-propyl]-hexamethyleneimine
N-[6-(4-cyanophenoxy)-hexyl]-diethylamine
N-[3-(4-cyanophenoxy)-propyl]-dipropylamine
N-3-[4-(1-hydroxyethyl)-phenoxy]-propyl-diethylamine
4-(3-diethylaminopropoxy)-acetophenone-oxime
1-[3-(4-acetylphenoxy)-propyl]-piperidine
1-[3-(4-acetylphenoxy)-propyl]-3-methyl-piperidine
1-[3-(4-acetylphenoxy)-propyl]-3,5-trans-dimethyl-piperidine
1-[3-(4-acetylphenoxy)-propyl]-4-methyl-piperidine
1-[3-(4-propionylphenoxy)-propyl]-piperidine
1-[3-(4-acetylphenoxy)-propyl]-3,5-cis-dimethyl-piperidine
```

1-[3-(4-formylphenoxy)-propyl]-piperidine

- 1-[3-(4-isobutyrylphenoxy/-propyl]-piperidine
- N-[3-(4-propionylphenoxy)-propyl]-diethylamine
- 1-[3-(4-butyrylphenoxy)-propyl]-piperidine
- 1-[3-(4-acetylphenoxy)-propyl]-1,2,3,6-tetrahydropyridine

[0036] More preferred compounds are:

- 1-[5-(4-nitrophenoxy)-pentyl]-pyrrolidine
- N-[3-(4-cyanophenoxy)-propyl]-diethylamine
- N-[3-(4-acetylphenoxy)-propyl]-diethylamine
- 1-{5-[4-(1-hydroxyethyl)-phenoxy]-pentyl)-pyrrolidine
- N-[4-(4-cyanophenoxy)-butyl]-diethylamine
- 1-[3-(4-cyanophenoxy)-propyl]-piperidine
- N-[3-(4-cyanophenoxy)-propyl]-hexamethyleneimine
- N-3-[4-(1-hydroxyethyl)-phenoxy]-propyl-diethylamine
 - 4-(3-diethylaminopropoxy)-acetophenone-oxime
 - 1-[3-(4-acetylphenoxy)-propyl]-3-methyl-piperidine
 - 1-[3-(4-acetylphenoxy)-propyl]-4-methyl-piperidine
 - 1-[3-(4-propionylphenoxy)-propyl]-piperidine

[0037] Compounds of formula (I) in which:

- NR¹R² is a pyrrolidinyl group, C_nH_{2n} is a linear chain -(CH₂)_n, and n₃ is zero, X being an oxygen atom with n ranging from 3 to 5, or X being a sulfur atom with n being 4 or 5;
 - NR¹R² is a piperidinyl group, C_nH_{2n} is a linear chain -(CH₂)_n, and X is an oxygen atom, n₃ being zero with n being 2, 5 or 8 or n₃ being 1 with R³ being 4-CN and n being 5;
 - NR¹R² is a diethylamine group, X is an oxygen atom, C_nH_{2n} is a linear chain -(CH₂)_n, and n₃ is 1, R³ being 4-NO₂ or 4-COCH₃ with n being 3 or R³ being 4-CN with n being 2 to 4;
 - -NR¹R² is a dimethylamine group, X is an oxygen atom, C_nH_{2n} is a linear chain -(CH₂)_n- and n³ is 1, R³ being 4-CN with n being 3.

are known in the art.

10

15

55

[0038] A subject of the invention is thus the use of these compounds as antagonists at the histamine H₃-receptors, in periorular to prepare medicaments acting as H₃-antagonists intended for the treatments detailed below.

[0039] The compounds according to the invention may be prepared according to one of the following schemes 1-5:

SCHEME I (methods A, B, C, D, H and K):

$$(R^{\frac{1}{2} \int \bigcup_{i}} \underbrace{XH} \underbrace{XH} \underbrace{XH^{2nBf}} \underbrace{(R^{2}) \int \bigcup_{n_{1}^{2}}} \underbrace{XC_{n}H_{2n}Bf} \underbrace{XC_{n}H_{2n}NR^{1}R^{2}} \underbrace{(R^{2}) \int \bigcup_{n_{1}^{2}}} \underbrace{XC_{n}H_{2n}NR^{1}R^{2}} \underbrace{(R^{2}) \int \bigcup_{n_{1}^{2}}} \underbrace{XC_{n}H_{2n}NR^{1}R^{2}} \underbrace{(R^{2}) \int \bigcup_{n_{1}^{2}}} \underbrace{(R^{2})$$

SCHEME 2 (methods P and L):

$$(R^{\frac{3}{2}} \underbrace{\parallel}_{OH} + HOC_{*}H_{2a}NR^{1}R^{2} \xrightarrow{R^{2}OOC\cdot N=N\cdot COOR^{*}} (R^{\frac{4}{2}} \underbrace{\parallel}_{OC_{*}H_{2a}NR^{1}R^{2}}$$

SCHEME 3 (method E):

SCHEME 4 (method G):

SCHEME 5 (method J):

[0040] In these schemes, R1, R2, R3, X and n are as defined in general formula (I).

[0041] Me and Et are intended to mean methyl and ethyl.

[0042] Detailed synthesis procedures are given in the examples.

[0043] The compounds of formula (i) according to the invention have antagonistic properties at the histamine H₃-receptors. They cause an increase in synthesis and release of cerebral histamine.

[0044] This property makes the compounds of the invention useful derivatives in human or veterinary medicine.

[0045] Their therapeutical applications are those known for H₃-antagonist compounds and especially relate to the central nervous system disorders such as Alzheimer disease, mood and attention alterations, cognitive delicits in psychiatric pathologies, obesity, vertigo and motion sickness.

[0045] Therefore, the compounds of formula (I) according to the invention are advantageously used as active ingredient of medicaments which act as an antagonist of H₂-receptors of histamine, in particular of medicaments which psychotropic effects, promoting wakefulness, attention, memory and improving mood, in treatment of pathologies such as

Alzheimer disease and other cognitive disorders in aged persons, depressive or simply asthenic states.

[0047] Their nootropic effects can be useful to stimulate attention and memorization capacity in healthy humans.

[0048] In addition, these agents can be useful in treatment of obesity, vertigo and motion sickness.

[0049] It can also be useful to associate the compounds of the invention with other psychiatric agents such as neu-

15 [0050] Application in certain form of epilepsy is also foreseen.

[0051] Their therapeutic applications involve also peripheral organs mainly a stimulant of secretions or gastro-intestinal motricity.

[0052] The compounds of the invention are particularly useful for the treatment of CNS disorders of aged persons.

[0053] The present invention also relates to medicaments having the above-mentioned effects comprising as active ingredient, a therapeutically effective amount of a compound of formula (I).

[0054] The present invention also relates to pharmaceutical compositions containing as active ingredient, a therapeutically effective amount of a compound (i) together with a pharmaceutically acceptable vehicle or excipient.

[0055] The medicaments or pharmaceutical compositions according to the invention can be administered via oral, parenteral or topical routes, the active ingredient being combined with a therapeutically suitable excipient or vehicle.

[0056] According to the invention, oral administration is advantageously used.

[0057] Another subject of the present invention is the use of the compounds of formula (I) for the preparation of H₂antagonist medicaments according to the above-mentioned forms.

[0058] The invention further relates to the use of the compounds of formula (I) for preparing medicaments having the pre-cited effects.

portions circuis.
portions of the discount of the invention is a method for the treatment of precited ailments comprising administering a therapeutically effective dose of a compound (I), optionally in combination with a therapeutically acceptable vehicle or excited in.

[0060] For each of the above-indications, the amount of the active ingredient will depend upon the condition of the

[0061] However, a suitable effective dose will be in general in the range of from 10 to 500 mg per day and of from 1 to 10 mg/day for particularly active compounds.

[0062] These doses are given on the basis of the compound and should be adapted for the salts, hydrates or hydrated salts thereof.

[0063] The invention is now illustrated by the following examples.

EXAMPLES

[0064] The structure of the synthesized compounds and their method of preparation as well as their melting point, recrystalisation solvant and elemental analysis are summarized in the following Table I:

TABLE I:

N _a	FORMULA STRUCTURE NAME	mp (recryst. solv)	analysis (calc.)	method
1	C ₁₆ H ₂₅ NO; C ₂ H ₂ O ₄	143-145°C (absolute ethanol)	C: 64 06 (64.07) H: 8.09 (8.16) N: 4 14 (4.15)	۸
	I-(5-phenoxypentyl)-piperidine hydrogen oxalate		. 0	
2	C ₁₅ H ₂₃ NO; C ₂ H ₂ O ₄	153-155°C (absolute ethanol)	C: 63.06 (63.14) H: 7.78 (7.79) N: 4.42 (4.33)	^
	1-(5-phenoxypentyl)-pyrrolidine hydrogen oxalate			
3	C ₁₄ H ₂₃ NO; C ₂ H ₂ O ₄ CH ₃ CH ₃ CH ₂ CH ₃ (COOB) ₂ CH ₂ CH ₃	122-124°C (absolute ethanol)	C: 61.74 (61.72) H: 8.24 (8.09) N: 4.52 (4.50)	^
-	N-methyl-N-(5-phenoxypentyl)-ethylamine hydrogen oxalate		ł	
4	C ₁₅ H ₂₃ NO ₂ ; C ₂ H ₂ O ₄	166-168°C (absolute ethanol)	C: 60.10 (60.16) H: 7.45 (7.31) N: 4.08 (4.13)	^ =
	1-(5-phenoxy-pentyl)-morpholine hydrogen oxalate		-	
5	C ₁₇ H ₂₇ NO; C ₂ H ₂ O ₄	132-134°C (absolute ethanol)	C: 64.70 (64 93) H: 8 34 (8.32) N: 3 85 (3 99)	^
	N-(5-phenoxypentyl)-bexamethyleneimine hydrogen oxalate		-	

×

6	C ₁₆ H ₂₇ NO: C ₂ H ₂ O ₄	90-91°C	C: 63.60 (63.69)	В
		(isopropyl	H: 8.81 (8.61)	
	CH2)CH3	alcohol)	N: 3.97 (4.13)	
	CH2CH2CH3			
	N-ethyl-N-(5-phenoxypentyl)-propylamine		1	
	hydrogen oxalate			
7	C17H27NO, 1.1 C2H2O4	80-83°C	C: 64.15 (63.98)	В
′	CITH27NO; I.I C2H2O4			В
	CH	(isopropyl	H: 8.42 (8.17)	
		alcohol)	N: 3.97 (3.89)	
	0-(CH ₂) ₅ N 1.1 (COOH) ₂			
			1	
	1-(5-phenoxypentyl)-2-methyl-piperidine			
	hydrogen oxalate			
8	C ₁₉ H ₃₁ NO; C ₂ H ₂ O ₄	165-166°C	C: 66.27 (66.46)	В
		(absolute	H: 8.94 (8.76)	
	-0-(CH ₃) ₆ N -nC ₃ H ₇ (COOR) ₂	ethanol)	N: 3.72 (3.69)	
	1-(5-phenoxypentyl)-4-propyl-piperidine		- 20	
	bydrogen oxalate		0.	
9	C ₁₇ H ₂₇ NO; C ₂ H ₂ O ₄	151-152℃	C: 64.87 (64.93)	В
		(absolute	H: 8.41 (8.32)	
		ethanol)	N: 4.01 (3.99)	
	-0-(CH ₂) ₅ N - CH ₃ (COOH) ₂			
	1-(5-phenoxypentyl)-4-methyl-piperidine		1 1	
	hydrogen oxalate		1	
10	C ₁₇ H ₂₇ NO; C ₂ H ₂ O ₄	140-141°C	C: 65.35 (64.93)	В
		(isopropyl	H: 8.49 (8.32)	
	,CH₃	alcohol)	N: 4.00 (3.99)	
	(COOH)2	,		
	1-(5-phenoxypentyl)-3-methyl-piperidine			
	hydrogen oxalate		1	

11	C ₁₇ H ₂ S ₂ O ₂ ; C ₂ H ₂ O ₄ O (CH ₂) ₅ N NCOCH ₁ (COOH) I -acetyl -4-(5-pnenoxypentyl)-piperazine hydrogen oxalate	186-188°C (absolute ethanol)	C: 59.78 (59.99) H: 7.47 (7.42) N: 7.35 (7.36)	В
12	C18H29NO: 1.05 C2H2O4	154-155°C (absolute ethanol)	C: 65.16 (65.25) H: 8.61 (8.47) N: 3.66 (3.79)	В
-	I-(5-phenoxypentyl)-3,5-trans-dimethyl- piperidine hydrogen oxalate			1
13	C ₁₈ H ₂₉ NO ₁ C ₂ H ₂ O ₄	154-155°C (isopropyl alcohol)	C: 65.62 (65.73) H: 8.64 (8.55) N: 3.63 (3.83)	В
	O-(CH ₂) ₅ N (COOH) ₂ CH ₃ 1-(5-phenoxypentyl)-3.5-cis-dimethyl- piperidine bydrogen oxalate		4.4	
14	C ₁₈ H ₂₀ NO; HCl	135-136°C (acctone)	C: 69.18 (69.32) H: 9.79 (9.70) N: 4.28 (4.49)	В
-	CH3 1-(5-phenoxypentyl)-2,6-cis-dimethyl- piperidine hydrochloride			× *
15	C ₁₉ H ₂₉ NO ₃ ; C ₂ H ₂ O ₄ C ₁₉ H ₂₉ N C ₁₀ C ₂ H ₅ (COOU), 4-carboelhoxy-1-(5-phenoxypentyl)- piperidine hydrogen oxalate	149-150°C (absolute ethanni)	C: 61.16 (61.60) H: 7.76 (7.63) N: 3.40 (3.42)	В

16	C19H29NO3; C2H2O4	117-118°C (isopropyl alcohol)	C: 61.54 (61.60) H: 7.87 (7.63)	В
	,cooc ,H ₆	(Isopropy: alcohol)	N: 3.29 (3.42)	
	O-(CH ₂) FN (COOM) 3		11. 3.25 (3.42)	
	3-carboethoxy-1-(5-phenoxypentyl)-piperidine		-	- 1
	hydrogen oxalate			
17	C ₁₆ H ₂₃ NO; C ₂ H ₂ O ₄	177-179°C	C: 64.19 (64.46)	В
	- 11	(methanol)	H: 7.49 (7.51)	- 1
			N: 4.25 (4.18)	- 1
	0-(СН ₂) в N (союн) з			ł
	1-(5-phenoxypentyl)-1,2,3,6-tetrahydropyridine		* -	- 1
	hydrogen oxalate			
18	C ₁₅ H ₂₂ N ₂ O ₃ ; C ₂ H ₂ O ₄ ; 0.2 H ₂ O	145-147°C	C; 54.89 (54.89)	· c
1	(COOH)	(absolute ethanol)	H: 6.68 (6.61)	Į
	0.N-()-0-(CH.)N \		N: 7.41 (7.53)	l
İ	₩ ₩ 62 H ₂ O		1	
	1-[5-(4-nitrophenoxy)-pentyl]-pyrrolidine hydrogen			
	oxalate C15H22CINO; C2H2O4		C; 57.00 (57.06)	c
19	C15H22CINO, C2H2O4	139-141°C (absolute ethanol)	H: 6.63 (6.76)	٠
		(aosoinic chano)	N: 3.79 (3.91)	l
1	CI-(CH ₂) ₄ -N (COOH) ₂		Cl; 10,24 (9.91)	
1	1-[5-(4-chlorophenoxy)-pentyl]-pyrrolidine hydrogen	1		
1	oxalate			
20	C16H25NO2; C2H2O4	115-116℃	C: 61.22 (61.17)	С
-		(absolute ethanol)	Н: 7.72 (7.70)	
	H, CO-(CH ₂) ₁ -N (COOH) ₂		N: 4 03 (3.96)	
	1-[5-(4-methoxyphenoxy)-pentyl]-pyrrolidine			
2	hydrogen oxalate			
21	C ₁₆ H ₂₅ NO; C ₂ H ₂ O ₄	138-140°C	C: 64.05 (64.07)	C
1	V.*	(absolute ethanol)	H: 8.00 (8.07)	
-	H ₂ C-(CH ₂) ₆ N (COOH) ₂		N: 4.10 (4.15)	
	1-[5-(4-methylphenoxy)-pentyl]-pyrrolidine hydroger			
	oxalate			<u> </u>

20

T	C16H22N2O; 1.1 C2H2O4		0.00000	
22	C16/122/42O, 1.1 C2/12O4	129-130°C	C: 61.24 (61.16)	С
Ý	NC -0-(CH ₂) ₆ N 1.1 (COOH) ₂	(absolute ethanol)	II: 6.81 (6.82) N: 7.95 (7.84)	
	1-[5-(4-cyanophenoxy)-pentyl]-pyrrolidine hydrogen		+	
23	C19H25NO; C2H2O4	166-167°C	C: 67.42 (67.54)	ç
-	**	(methanol)	H: 7.26 (7.29)	7
	O-(CH ₂) ₆ -N (COOH) ₂	(iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	N: 3.66 (3.75)	
	1-{5-(2-naphthyloxy)-pentyl}-pyrrolidine hydrogen			
	oxalate			
24	C ₁₉ H ₂₅ NO; 1.25 C ₂ H ₂ O ₄	160-163°C	C: 65.12 (65.22)	С
	O-(CH ₂) ₆ +N 1.25 (COOH) ₂	(methanol)	H: 7.17 (7.00) N: 3.52 (3.54)	
	1-[5-(1-naphthyloxy)-pentyl]-pyrrolidine hydrogen oxalate	*		
25	C15H22CINO; C2H2O4	131-132℃	C: 56.94 (57.06)	С
		(absolute ethanol)	H: 6.67 (6.76)	
	٩		N: 3.74 (3.91)	
	O-(CH ₂) ₁ -N (COOH) ₂		C1: 9.64 (9.91)	
	1-[5-(3-chlorophenoxy)-pentyl]-pytrolidine hydrogen oxalate			
26	C21H27NO; C2H2O4	189-190°C	C; 69.16 (69.15)	С
	*	(methanol)	H. 7.39 (7.32)	1
	0-(CH ₂), N (COOH);		N: 3.39 (3.51)	
	1-[5-(4-phenylphenoxy)-pentyl]-pyrrolidine hydrogen	l		
	oxalate	1		}

27	C ₁₉ H ₂₉ NO; C ₂ H ₂ O ₄	131-132°C (absolute ethanol)	C: 66.73 (66.82) H: 8.37 (8.28) N: 3.68 (3.71)	С
	1-{5-[2-(5,6,7,8-tetrahydronaphthyl)-oxy]-pentyl}- pyrrolidine hydrogen oxalate		,	
28	C ₂₁ H ₂₇ NO; 1.1 C ₂ H ₂ O ₄	155-157°C (absolute ethanol)	C: 68.40 (68.22) H: 7.04 (7.21) N: 3.45 (3.43)	С
	1-[5-(3-phenylphenoxy)-pentyl]-pyrrolidine hydrogen oxalate	PR		
29	C15H21NO; C2H2O4 COOH)a (COOH)a (1-(5-phenoxypentyl)-2, 5-dihydropytrole hydrogen oxalate	140-141°C (absolute ethanol)	C: 63.45 (63.54) H: 7.26 (7.21) N: 4.26 (4.36)	В
30	C19H29NO; C2H2O4 O-(CH2)4-N (COOH)2 1-{5-[1-{5,6,7,8-tetrahydronaphthyl}-oxy]-pentyl}- pyrrolidine hydrogen oxalate	148-149°C (absolute ethanol)	C: 66.99 (66.82) H: 8.47 (8.28) N: 3.72 (3.71)	C
31	C14H21NO; C2H2O4 C14H21NO; C2H2O4 (COOH)2 1-(4-phenoxyburyl)-pytrolidine hydrogen oxalate	143-144°C (absolute ethanol)	C: 62.25 (62.12) H: 7.46 (7.49) N: 4.49 (4.53)	С

32	C ₁₆ H ₂₅ NO; 1.1 C ₂ H ₂ O ₄	146-147°C (absolute ethanol)	C: 63.06 (63.10) H: 8.03 (7.91) N: 4.32 (4.04)	С
-	I.I. (COOH) ₂ I-(6-phenoxyhexyl)-pytrolidine hydrogen			
33	0xalate C15H23NS; 1.1 C2H2O4	150-152°C	C: 59.52 (59.29)	
,,,	S-(CH ₂) ₅ N 1.1 (COOH) ₂	(absolute ethanol)	H: 7.44 (7.29) N: 4.06 (4.02)	·
*	1-(5-phenylthiopenryl)-pyrrolidine hydrogen oxalate			
34	C ₁₄ H ₂₁ NS; C ₂ H ₂ O ₄	114-116°C (absolute ethanol)	C: 59.24 (59.05). H: 7.16 (7.12) N: 4.16 (4.30)	· C
	l-(4-phenylthiobutyl)-pyrrolidine hydrogen oxalate		S: 9.79 (9.85)	
35	C ₁₃ H ₁₉ NO; C ₂ H ₂ O ₄ O-(CM ₂₎₃ N (COOH) ₂ 1-(3-phenoxypropyl)-pyrrolidine bydrogen	169-170°C (absolute ethanol)	C: 60.98 (61.00) H: 7.14 (7.17) N: 4.64 (4.74)	С
36	0xalaie C ₁₅ H ₂₂ N ₂ O ₃ ; C ₂ H ₂ O ₄ O ₂ N	130-131°C (absolute ethanol)	C: 55.30 (55.43) H: 6.55 (6.57) N: 7.49 (7.60)	С
	I-[5-(3-nitrophenoxy)-pentyl]-pytrolidine hydrogen oxalate	*	*	
37	C ₁₅ H ₂₂ FNO; C ₂ H ₂ O ₄ F- O·(CH ₂) ₅ N (COOH) ₂	(absolute ethanol)	C: 59.52 (59.81) H: 7.12 (7.09) N: 4.05 (4.10)	С
	l-{5-(4-fluorophenoxy)-pentyl]-pyπolidine hydrogen oxalate			

38	C ₁₇ H ₂₆ N ₂ O ₃ ; C ₂ H ₂ O ₄	148-149°C	C: 57.32 (57.55)	C
	СН	(absolute ethanol)	H: 7.19 (7.12)	
		*	N: 6.89 (7.07)	
	O_2N (COOH) ₂		-	
	1-[5-(4-nitrophenoxy)-pentyl]-3-methyl-piperidine		. 1	
	hydrogen oxalate			
39	C17H25NO2; C2H2O4	130-134°C	C: 62.43 (62.45)	D
	1.0	(absolute ethanol)	H: 7.41 (7.45)	
	$CH_2 - C$ $O - (CH_2)_{q} - N$ (COOH) ₂	*	N: 3.75 (3.83)	
	1-{5-(4-acetylphenoxy)-pentyl}-pyrrolidine hydrogen			
	oxalate			
40	C ₁₅ H ₂₄ N ₂ O ₅ 2.1 C ₂ H ₂ O ₄	120-122°C	C: 52.49 (52.72)	E ₁
		(absolute ethanol)	H: 6.74 (6.50)	
	H ₂ N-(COOH) ₂		N: 6.32 (6.40)	
	1-[5-(4-aminophenoxy)-pentyl]-pyrrolidine			-
	di-(hydrogen oxalate)			ł
41	C16H22N2O, C2H2O4	119-120°C	C: 61.95 (62.05)	С
•		(absolute ethanol)	H; 6,88 (6,94)	į
	NÇ		N: 8.00 (8.04))
	O-(CH ₂) ₄ -N (COOH) ₂	*		
	1-[5-(3-cyanophenoxy)-pentyl]-pyrrolidine hydrogen			l
	oxalate			<u> </u>
42	C ₁₃ H ₂₀ N ₂ O ₃ ; C ₂ H ₂ O ₄	160-161°C	C: 52.46 (52.63)	F
		(absolute ethanol/	H: 6.49 (6.48)	1
	CH, CH, (COOH)	methanol	N: 8.10 (8.12)	1
	O ₂ N-(CH ₂) ₃ -N (COOH) ₂	1:1)	1	
				1
	N-[3-(4-nitrophenoxy)-propyl]-diethylamine	1		1
	hydrogen oxalate	,	1	1

43	C ₁₄ H ₂₀ N ₂ O, C ₂ H ₂ O ₄	148-150°C (absolute ethanol)	C: 59.40 (59.62) H: 6.82 (6.88)	F
	NC-CH ₂) ₃ -N (COOH) ₂	. *	N: 8.60 (8.69)	
	N-(3-(4-cyanophenoxy)-propyl]-diethylamine hydrogen oxalate			
44	C22H27NO2: C2H2O4	141-142°C (absolute ethanol)	C: 67.17 (67.43) H: 6.80 (6.84)	D
	CCOOH)		N: 3.18 (3.28)	
	1-[5-(4-benzoylphenoxy)-pentyl]-pyrrolidine hydrogen oxalate			17
45	C23H29NO2; C2H2O4	177-178°C	C; 67.77 (68.01)	, D
	CH ₂ CCH ₂) ₆ -N	(absolute ethanol)	H: 7.09 (7.08) N: 3.26 (3.17)	
	(COOH) ₂	,		
	1-{5-[4-(phenylacetyl)-phenoxy]-pentyl}-pyrrolidine hydrogen oxalate		- 67	
46	C ₁₅ H ₂₃ NO ₂ ; 1.1 C ₂ H ₂ O ₄	108-110°C	C: 59.30 (59.30)	F
		(absolute ethanol)	H: 7.47 (7.29)	
	H ₂ C ² CH ₂) ₂ N 1.1 (COOH) ₂		N; 4.18 (4.02)	
	N-[3-(4-acetylphenoxy)-propyl]-diethylamine hydrogen oxalate	,	. *	
47	C ₁₇ H ₂₆ N ₂ O ₂ ; C ₂ H ₂ O ₄	142-144°C	C: 59 67 (59.99)	С
	* * *	(absolute ethanol)	H: 7.55 (7.42)	
	HO C C N COOH)	- 0	N: 7.25 (7.36)	0
	1-[5-(4-acetamidophenoxy)-pentyl]-pyrrolidine		3	
	hydrogen oxalate	i		1

48	C ₂₁ H ₂₇ NO ₂ ; C ₂ H ₂ O ₄	135-136°C (absolute ethanol)	C: 66.49 (66.49) H: 7.05 (7.04)	D
	O-(CH ₂) ₆ N (COOH) ₂	-	N: 3.24 (3.37)	
- 1	1-[5-(4-phenoxyphenoxy)-pentyl]-pyrrolidine		l	
	hydrogen oxalate			
49	C22H28N2O2; 1.1 C2H2O4	176-178°C	C: 64.56 (64.38)	E2
		(absolute ethanol)	H: 6.89 (6.74)	
	C-N-C-N-CH ₃) r N	·	'N: 6.26 (6.20)	
	1.1 (COOH) ₈		9	
	1-[5-(4-N-benzamidophenoxy)-pentyl]-pyrrolidine	i		
	hydrogen oxalate			
50	C17H27NO2; C2H2O4	102-104℃	C: 61.89 (62.11)	G
		(absolute ethanol)	H: 7.94 (7.96)	
	H ₀ C. HO CH-CH ₂) _E N (COOH) ₂		N: 3.77 (3.81)	0
	1-{5-[4-(1-hydroxyethyl)-phenoxy]-pentyl}-	i i		
	pyrrolidine hydrogen oxalate			L_
51	C ₁₆ H ₂₄ N ₂ O; C ₂ H ₂ O ₄	120-122°C	C: 61.56 (61.70)	н
		(absolute ethanol)	H: 7.54 (7.48)	
	NC CH ₂ CH ₃ (COOH) ₂		N: 7.87 (7.99)	8
	N-(5-(4-cyanophenoxy)-pentyl]-diethylamine		ĺ	1
	hydrogen oxalate			<u> </u>
52	C17H24N2O; C2H2O4	115-116°C	C: 62.62 (62.97)	н
l	1	(absolute ethanol)	H: 7.20 (7.23)	1
	NC-(CH ₂) ₆ N (COOH) ₂		N: 7.76 (7.73)	
	1-[5-(4-cyanophenoxy)-pentyl]-piperidine hydrogen	1	1	
i	ovalate	ı	1	•

Copied from 10656504 on 15-04-2004

	100			
53 C ₁₄ H ₂₀ N ₂ O, C		148-149°C (absolute ethanol)	C: 59.68 (59.62) H: 6.76 (6.88)	н
NC-(CH ₂) ₆ -N	СН _в (СООН) ₂	-	N: 8.57 (8.69)	
N-[5-(4-cyanophenoxy)-per hydrogen ox				
54 C ₁₃ H ₁₈ N ₂ O; C	2H2O4	124-125°C (absolute ethanol)	C: 58,15 (58,43) H: 6,30 (6,54)	н.
NC 0-(CH ₂) ₂ -N	СН ₂ СН ₃ (СООН) ₂	(austriale ethanol)	N: 8.95 (9.09)	
N-[2-(4-cyanophenoxy)-ethyl]-	инь Сиь	- 1		
55 C ₁₂ H ₁₆ N ₂ O, C	2H2O4	166-167°C	C: 57.01 (57.14)	н
NC-(CH ₂) ₅ -1	СН, (СООН)2	(absolute ethanol/ methanol 1:1)	H: 6.02 (6.16) N: 9.46 (9.32)	
N-[3-(4-cyanophenoxy)-pro	pyl)-dimethylamine	- 1		
56 C ₁₅ H ₂₂ N ₂ O; C	2H2O4	143-145°C (absolute ethanol)	C: 60.80 (60.70) H: 7.11 (7.19)	н
NC (CH ₂) (N	СН ₂ СН ₂ (СООН) ₂ СН- СНь	(40001410411101)	N: 8.22 (8.33)	
N-[4-(4-cyanophenoxy)-butyi]- oxalate				
57 C ₁₈ H ₂₈ N ₂ O; C	2H2O4	134-136°C (absolute ethanol)	C: 63.38 (63.47) H: 8,11 (7.99)	Н
NC-(CH ₂) ₆ -1	С, н, (СООН), С, н,		N: 7,29 (7.40)	
N-[5-(4-cyanophenoxy)-per		1		1

Copied from 10656904 on 15-04-2004

55

20

58	C ₁₄ H ₁₈ N ₂ O; 1.1 C ₂ H ₂ O ₄ C-CH ₂) ₈ N 1.1 (COOH ₂	163-165°C (absolute ethanol)	C: 58.95 (59.08) H: 6.23 (6.18) N: 8.43 (8.51)	Н
	1-[3-(4-cyanophenoxy)-propyl]-pyrrolidine hydrogen oxalate			
59	C ₁₅ H ₂₀ N ₂ O; 1.05 C ₂ H ₂ O ₄ NC O-(CH ₂) ₃ N 1.05 (COO/H) ₂ 1-(3-(4-cyanophenoxy)-propyl)-piperidine hydrogen	151-153°C (absolute ethanol)	C: 60.62 (60.61) H: 6.66 (6.57) N: 8.25 (8.27)	Н
_	oxalate			
60	C ₁₆ H ₂₂ N ₂ O; 1.05 C ₂ H ₂ O ₄ NC O-(CH ₂) ₂ N 1.05 (COOH) ₂	124-125°C (absolute ethanol)	C: 61.62 (61.60) H: 6.94 (6.88) N: 7.87 (7.94)	н
	N-[3-(4-cyanophenoxy)-propyl]-hexamethyleneimine hydrogen oxalate		*	-
61	C ₁₇ H ₂₆ N ₂ O; C ₂ H ₂ O ₄ CH ₆ CH ₆ (COOH) ₂ CH ₆ CF ₆	110-112°C (absolute ethanol)	C: 62.90 (62.62) H: 7.76 (7.74) N: 7.61 (7.69)	н
	N-[6-(4-cyanophenoxy)-hexyl]-diethylamine hydrogen oxalate			
62	NC-(CH ₂) ₂ , N _C H ₂ (COOH) ₃	127-128°C (absolute ethanol)	C: 61.57 (61.70) H: 7.57 (7.48) N: 7.91 (7.99)	н
	N-[3-(4-cyanophenoxy)-propyl]-dipropylamine hydrogen oxalate			1
63	C ₁₅ H ₂₅ NO ₂ : C ₂ H ₂ O ₄ : 0.5 H ₂ O B ₂ C HO C ₁₅ H ₂ SNO ₂ : C ₂ H ₂ O ₄ : 0.5 H ₂ O C ₂ H ₆ 0.5 H ₂ O	33-36°C (isopropyl alcohol)	C: 58.15 (58.27) H: 8.15 (8.05) N: 4.21 (4.00)	G
	N-3-[4-(1-hydroxyethyl)-phenoxyl-propyl- diethylamine hydrogen oxalate hemihydrate	1	1	

64	C ₁₅ H ₂₄ N ₂ O ₂ ; C ₂ H ₂ O ₄ H ₀ G. C(CH ₂) ₃ N, C ₂ H ₆ (COOH) ₂ HO-N	99-100°C (absolute ethanol)	C: 57.26 (57.61) H: 7.47 (7.39) N: 7.72 (7.90)	J
1	4'-(3-diethylaminopropoxy)-acetophenone-oxime hydrogen oxalate			
65	C ₁₆ H ₂₃ NO ₂ : C ₂ H ₂ O ₄ H ₃ C-C O-(CH ₂) ₃ -N (COOH) ₃	159-160°C (absolute ethanol)	C: 61.18 (61.52) H: 7.11 (7.17) N: 3.96 (3.99)	ĸ
	1-[3-(4-acetylphenoxy)-propyl]-piperidine hydrogen oxalate		-	
66	C ₁₇ H ₂ 5NO ₂ , C ₂ H ₂ O ₄ CH ₃	143-144°C (absolute ethanol)	C: 62.11 (62.45) H: 7.41 (7.45) N: 3.79 (3.83)	K
	H ₀ C (COOH) ₂ O (CH ₀) ₃ ·N (COOH) ₂ 1-[3-(4-acetylphenoxy)-propyl]-3-methyl-piperidine hydrogen oxalate	*	*	
67	C ₁₈ H ₂ 7NO ₂ : C ₂ H ₂ O ₄ CH ₃ CH ₃ CCH ₃ (COOH) ₃ CH ₄	171-172°C (absolute ethanol)	C: 63.06 (63.31) H: 7.44 (7.70) N: 3.64 (3.69)	к
	1-[3-(4-acetylphenoxy)-propyl]-3,5-trans-dimethyl- piperidine hydrogen oxalate			
68	C ₁ 7H ₂ 5NO ₂ : C ₂ H ₂ O ₄ R ₃ C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-	160-161°C (absolute ethanol)	C: 62.47 (62.45) H: 7.46 (7.45) N: 3.77 (3.83)	K
	l -[3-(4-acetylphenoxy)-propyl]-4-methyl-piperidine bydrogen oxalate			

Copied from 10656504 on 15-04-2004

Journal

69	C ₁₇ H ₂₅ NO ₂ ; C ₂ H ₂ O ₄	148-149°C (absolute ethanol)	C: 62.54 (62.45) H: 7.51 (7.45)	L
	$C_3 R_0 - C$ $O - (CR_2)_3 N$ (COOH) ₂		N: 3.79 (3.83)	
	1-[3-(4-propionylphenoxy)-propyl]-piperidine			
	hydrogen oxalate			
70	C18H27NO2; C2H2O4	174-175°C	C: 63.22 (63.31)	K
	20	(absolute ethanol)	H: 7.60 (7.70)	
	CH,	1.00	N: 3.64 (3.69)	
	H, C-C (CH ₂) ₃ -N (COOH) ₂			
	СН			
×	1-[3-(4-acetylphenoxy)-propyl]-3,5-cis-dimethyl-			
	piperidine hydrogen oxalate			
71	C15H21NO2; C2H2O4	152-153℃	C: 60.23 (60.52)	L
		(absolute ethanol)	H: 6.81 (6.87)	
	H-COOH)2		N: 4.15 (4.15)	
	1-[3-(4-formylphenoxy)-propyl]-piperidine hydrogen	1 1		
	oxalate]		
72	C18H27NO2; C2H2O4	121-122℃	C: 63.02 (63.31)	L
		(absolute ethanol)	H: 1,73 (1.70)	1
	H ₃ C ₂ CH-C-C-CH ₂) ₃ -N	*	N: 3.66 (3.69)	
	(СООН) ²			1
	1-{3-(4-isobutyrylphenoxy)-propyl}-piperidine	į.		1
	hydrogen oxalate			₩
73	C ₁₆ H ₂₅ NO ₂ ; 1.5 C ₂ H ₂ O ₄	118-120°C	C: 57.27 (57.28)	L
		(absolute ethanol)	H: 7.00 (7.08)	1
	C ₂ H ₄ - C O - (CH ₂) ₃ -N C ₂ H ₄ C ₂ H ₄ 1.5 (COOH)		N: 3.47 (3.52)	
	N-[3-(4-propionylphenoxy)-propyl]-diethylamine	X	1	1
1	hydrogen oxalate		1	1

74	$C_1BH_2\gamma NO_2; C_2H_2O_4$ $C_3H_7 - C_4$ $C_5H_7 - C_7$ $C_7H_7 $	138-139°C (absolute ethanol)	C: 63.09 (63.31) H: 7.78 (7.70) N: 3.75 (3.69)	L
	1-[3-(4-butyrylphenoxy)-propyl]-piperidine hydrogen oxalate		,	
75	C ₁₆ H ₂₁ NO ₂ ; i.1 C ₂ H ₂ O ₄	143-144°C (absolute ethanol)	C: 61.21 (61.00) H: 6.25 (6.52)	ĸ
	H ₂ C-C-C-C-H ₂) ₂ -N	-	N: 4.00 (3.91)	
	1.1 (COOH) ₂	6		
	1-[3-(4-acctylphenoxy)-propy1]-1,2,3,6- letrahydropyridine hydrogen oxalaie		A 10	

25 [0065] Compounds 1 to 75 are prepared according to the following procedures:

METHOD A:

(0066) A solution of 1-bromo-5-phenoxypentane (1.4 to 3.5 mmol) in ten equivalents of the suitable secondary ame was heated to reflux temperature with stirring for 48 hours (compds. 1.3 and 4), 24 hours (compd. 2.1) and 4), 24 hours (compd. 3). After cooling, the excess base was removed under reduced pressure and the residue diluted with aqueous sodium hydroxide. The product was extracted with diethyl either, the organic extracts washed with water, died over magnessive subpates, litered and concentrated under reduced pressure. The remaining oil was converted to oxaliale sait by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents oxalic acid in absolute ethanol. The pricipitate formed was washed with diethyl ether and recrystallised from absolute ethanol and the produced of the prod

METHOD B:

[0067] A solution of 1-bromo-5-phenoxypentane (0.9 to 1.7 mmol) and an excess of the suitable secondary amile (2.3 to 10 equivalents) in 10 ml absolute ethanol was heated to reflux remperature with stirring for 48 hours (compd. 6) or 24 hours (compd. 7, 8, 9, 10, 11, 128.13, 14, 15, 16, 17 and 29). After cooling, the solvent was removed under reduced pressure and the residue diluted with aqueous socialum hydroxide. The product was extracted wither dethyl ether, the organic extracts washed with water, dried over magnesium sulphate, filtered and concentrated under reduced pressure. The cis and trans isomers 12 and 13 were separated by column chromatography on silica gell eluting with a solvent mixture of petroleum spirit (pp. 60-80°C), diethyl ether and triethylamine in the ratio 66.33·1, and the eluent was removed under reduced pressure to leave an oil. The oil was converted to oxialate salt (compds. 6, 7, 8, 9, 11, 12, 13, 15, 16, 17 and 29) by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents of oxiala caid in absolute and enally in a converted to the distinct of the solid was washed with dethyl ether and recrystalised from isopropyl alcohol (compds. 6, 7, 10, 13 and 16), absolute ethanol (compds. 17). The oil was converted to hydrochloride salt (compd. 14) by adding 2N HCI. The precipitate was formed in a mixture of chloroform and diethyl ether (11) and recrystalised from actions.

55 METHOD C:

[0068] A solution of the suitable α-bromo-ω-aryloxy alkane (0.4 to 1.4 mmol) or ω-bromoalkyl phenyl sulphide (1 mmol, compds. 33 and 34) and an exc ss of pyrrolidine (10 to 15 equivalents) or 3-methylpiperidine (10 equivalents,

compd. 38) in 10 ml absolute ethanol was heated to reflux temporature with stirring for 24 hours or 16 hours (compd. 47). After cooling, the solvent was removed under reduced pressure and the residue diluted with aqueous sodium hydroxide. The product was extracted with diethyl ether, the organic extracts washed with water, dried over magnesium sulphate, tiltered and concentrated under reduced pressure. The remaining oil was converted to exalate sait by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents exalic acid in absolute ethanol. If no precipitate appeared, diethyl ether was added to form a precipitate. The solid was washed with diethyl ether and recrystalised from absolute ethanol.

METHOD D:

[0069] A solution of the suitable 4:(5-bromopentoxy)phenyl ketone (0.7 to 1 mmol, compds. 39, 44 and 45) or 1bromo, 5:(4-phenoxy)phensy)phentane (0.6 mmol, compd. 48) and an excess of pyrodisine (10 to 15 equivalents) in 10 ml absolute ethanol was heated to reflux temperature with stirring for 16 hours (compds. 39, 44 and 48) or 24 hours (compd. 45). After cooling, the solvent was removed under reduced pressure and the residue diluted with aqueous sodium hydroxide. The product was extracted with chloroform (compds. 39, 45 and 48) or dichloromethane (compd. 44), the organic extracts dried over magnesium sulphate, filtered and concentrated under reduced pressure. The remaining of was converted to oxalate sati by dissolving in a small amount of absolute ethanol and adding solution of two equivalents oxalic acid in absolute ethanol. The precipitate was washed with diethyl ether and recrystallised from absolute ethanol (recrystallised twice from absolute ethanol in the case of compd. 39).

METHOD E:

[0070]

20

- 1. The oxalate 18 was prepared according to method C. A solution of compound 18 (0.57 mmol) in 10 ml methanol and 10 ml absolute ethanol was placed with 100 mg of palladium (5%) on carbon catalyst in a two-neck round-bottom flask fitted with a balloon filled with hydrogen. The mixture was stirred vigorously at room temperature and the flask was purged of air and filled with hydrogen. After 3 hours, the catalyst was filtered off on ceitle and the solvent removed under reduced pressure. The residual solid was converted to oxalate salt by discolving in methanol and adding a solution of oxalic acid (2 equivalents) in absolute ethanol. Diethyl ether was added to form a precipitate. The product was recrystallized from absolute ethanol.
- 2. To a solution of compound 40 (0.35 mmol) in pyridine vigorously stirred at 0°C was added dropwise a slight excess of benzoyl chloride (0.4 mmol). The stirring was allowed to continue 20 minutes after the end of the addition after which the mixture was placed in the refrigerator overnight (16 hours). The solvent was removed under reduced pressure and the residue diluted with aqueous sodium hydroxide. The product was extracted with chlororm, the organic extracts fried over magnesium sulphate, littlered and concentrated under reduced pressure. The remaining oil was converted to oxalate salt by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents oxalic acid in absolute ethanol. The precipitate was dissolved in methanol, filtered, and concentrated under reduced pressure the solid was recrystallized from absolute ethanol

METHOD F:

[0071] In a three-neck flask kept under nitrogen was placed a solution of the suitable phenol (1.6 mmol), 3-(diethyl-amino)propago (1.5 mmol), and triphenyl phosphine (1.9 mmol) in 10 ml freshly distilled tetrshydrofurus was stirred and cooled to 0°C with an ice and salt bath. A solution of diisopropyl azodicarboxylate (2 mmol) in 10 ml tetrahydrofurus was added very slowly (typically over 40 minutes) and the mixture was allowed to warm to room temperature after which it was stirred overnight at room temperature (16 hours). The solvent was then removed under reduced pressure, the residue dissolved in ethyl acetate (20 ml) and the product extracted with 2N HCI (2x10 ml), and over agueous solution was neutralised with sodium hydroxide and the product extracted with cithoromethane. After drying over magnesium sulphate and filtration, the solvent was removed under reduced pressure. The residue was converted to oxalate salt by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents oxaled in absolute ethanols. If no precipitate appeared, diethyl ether was added to form a precipitate. The solid was washed with diethyl ether and recrystallised from absolute ethanol (compd. 42).

METHOD G:

[0072] A solution of the free base of compound 39 (0.6 mmol) or compound 46 (0.8 mmol) in 20 ml dry diethyl ether

was added dropwise to a stirred suspension of lithium aluminium hydride (0.6 or 0.8 mmol) in 20 ml dry diethyl ether kept under nitrogen. The mixture was strated at room temperature under nitrogen for two hours, loe-cold water was carefully added and the organic layer decanted. The aqueous phase was extracted with diethyl ether. The combined organic solutions were dried over magnesium sulphate, filtered and concentrated under reduced pressure to leave a yellow of The oil was converted to oxalate salt by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents oxalic add in absolute ethanol. The precipitate was washed with clethyl ether and recrystallised from absolute ethanol (compt 50) or from isopropyl alcohol, giving a very hygroscopic solid (compd. 63).

METHOD H:

10

[0073] A solution of the suitable a bromo-co-(4-cyanophenoxy) alkane (0.5 to 0.7 mmol) and an excess of the suitable accordary amine (8 to 12 equivalents) in 10 ml absolute ethanol was heated to reflux temperature with stiming for 24 hours (compds. 54, 55, 57 and 60), 20 hours (compd. 52), 16 hours (compds. 56, 58, 59 and 61) or 8 hours (compd. 51) or was stirred at room temperature for 48 hours (compd. 53) or 24 hours (compd. 60). After cooling, the solvent was removed under reduced pressure and the residue diluted with aqueous sodium hydroxide. The product was extracted with diethyl ether, the organic extracts washed with water, dried over magnesium sulphate, filtered and concentrated under reduced pressure. Dorpound 62 was purified by column chromatography on silica gel eluting with ethyl acetate, and concentrated under reduced pressure. For all the compounds of method H, the remaining oil was converted to oxalate sait by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents oxalic acid in absolute embanol. In or precipitate appeared, diethyl ether was added to form a precipitate. The solid was wished with diethyl ether and recrystallised from absolute ethanol (two recrystallisations were required for compds. 58 and 59) or from a 1:1 mixture of methoal and absolute ethanol of compd. 55).

METHOD J:

[0074] A solution of compound 46 (1 mmol) in 10 ml methanol was stirred at room temperature and a solution of hydroxylamine hydrochloride (2 equivalents) in 2 ml water was added. The mixture was stirred at 50-70°C in a water bath 10 20 minutes. Methanol was removed under reduced pressure. The residue diluted with aqueous sodium hydroxide. The product was extracted with diethyl ether, the organic extracts washed with water, dried over magnesium suphate, filtered and concentrated under reduced pressure. Compound 64 was purified by column chromography on slica get eluting with ethyl acetate, and concentrated under reduced pressure. The remaining oil was converted to oxalate satily dissolving in a small amount of absolute ethanol and adding a solution of two equivalents collic acid in absolute ethanol. Diethyl ether was added to form a precipitate. The solid was washed with diethyl ether and recrystal-lised from absolute ethanol.

METHOD K:

[0075] A solution of 4'-(3-bromopropoxy)acetophenone (0.8 to 1.9 mmol) and an excess of the suitable piperidine to 10 equivalents) in 10 mil absolute ethanol was heated to reflux temperature with stirring for 16 hours. After cooling, the solvent was removed under reduced pressure and the residue diffused with aqueous sodium hydroxide. The product was extracted with deithyl ether, the organic extracts washed with water, dried over magnesium sulphate, lifted and concentrated under reduced pressure. The cis and trans isomers 67 and 70 were separated by column chimeratography on silica gel eluting with a solvent mixture of diethyl ether, periodeum spirits (pp 60-80°C) and triethylamine in the ratio 6:33:1, and the elutent was removed under reduced pressure to leave an oil. Compound 75 was purified by column chromatography on silica gel eluting with chloroform and methanol (1:1), and concentrated under reduced pressure. The remaining oil was converted to oxalate ast by dissolving in a small amount of absolute ethanol and and grading a solution of two equivalents of oxalic acid in absolute ethanol. It no precipitate appeared, diethyl ether was added to form a precipitate. Solid was weathed with diethyl ether and recrystallised from absolute ethanol.

METHOD L:

[0076] In a three-neck flask kept under nitrogen was placed a solution of the suitable 4"hydroxyphenyl ketone (0.9 to 3 mmol), 3-(1-piperidinyl)propanol (0.9 to 3 mmol), and triphenyl phosphine (1 to 3.5 mmol) in 10 ml freshly distilled tetrahydroturan. The mixture was stirred and cooled to 0°C with an ice and salt bath. A solution of diethyl accolicarboxylate 50 (10.3.6 mmol) in 10 ml tetrahydrofuran was added very slowly (typically over 40 minutes) and the mixture was allowed to warm to room temperature after which it was stirred overnight at room temperature (16 hours). The solution was never the residue dissolved in ethyl acetate (20 ml) and the product extracted with 2N HCI (2x10 ml). The aqueous solution was nevertised with soldium hydroxide and the product extracted with dishlorometh-

ane. After drying over magnesium sulphate and filtration, the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel eluting with diethyl ether containing 1 % triethylamine, and concentrated under reduced pressure. The residue was converted to oxalate salt by dissolving in a small amount of absolute ethanol and adding a solution of two equivalents oxalic add in absolute ethanol. If no precipitate appeared, diethyl ether was added to form a precipitate. The solid was washed with diethyl ether and recrystallised from absolute ethanol.

Pharmacological study

- [0077] Interaction of compounds with the H₂ receptor are evidenced in vitro by the measurement of the release of neosynthesized tritiated histamine from rat cerebral cortex synaptosomes preincubated with tritiated histamine (Garbarg et al., J. Pramacol. Exp. Ther., 1992, 263: 304-310). The H₃ potency of compounds is measured by the progressive reversal of the tritiated histamine release inhibition by the selective H₃ agonist (R)α-methylhistamine (Arrang et al., Nature, 1987, 327: 117-123).
- 5 [0078] The effects of antagonists were estimated in vivo by the measurement of the tele-metrylhistamine level variations in the brain of mice (Garbarg et al., J. Neurochem., 1989, 53: 1724-1730). At various time after p.o. administration of the compound, the effect of the H₂ antagonist is evidenced by the increase in the telemetrylhistamine level induced. This increase is compared to the maximal effect induced by the reference H₃-antagonist thioperamide given at the dose of 10 mg/kg, p.o. This allows the calculation of the ED₅₀ value for each compound which correspond to the odor responsible for an half maximal effect.

[0079] The results are reported in the following table II:

Ex No.	X	n	R ¹ R ²	R ³ (n ₃ = 1)	Ki(nM)	ED ₅₀ (mg/kg/p.o.)
18	0	5	-(CH ₂) ₄ -	p-NO ₂	39±11	1.1
43	0	3	Et, Et	p-CN	95±28	0.50
46	0	3	Et, Et	p-CH ₃ CO		0.44
50	0	5	-(CH ₂) ₄ -	p-CH ₃ CH(OH)		1.0
56	0	4	Et, Et	p-CN		1.1
59	0	3	-(CH ₂) ₅ -	p-CN		0.20
60	0	3	-(CH ₂) ₆ -	p-CN		0.64
63	0	3	Et, Et	p-CH ₃ CH(OH)		0.34
64	0	3	Et, Et	p-CH ₃ C=N(OH)		0.8
66	0	3	-(3-Me)-(CH ₂) ₅ -	p-CH ₃ CO		0.3
68	0	3	-(4-Me)-(CH ₂) ₅ -	p-CH ₃ CO		0.3
69	0	3	-(CH ₂) ₅ -	p-C₂H₅CO		0.4

5 Claims

1. Compound of general formula (I) in which:

$$X - C_n H_{2n} - N_{R^2}$$
 (f)

- C_nF_{12n} is a linear or branched hydrocarbon chain with n ranging from 2 to 8;
- X is an oxygen or sulfur atom;

10

— R¹ and R² may be identical or different and represent each independently

ii)

- · a lower alkyl or cycloalkyl, or taken together with the nitrogen atom to which they are attached,
- a saturated nitrogen-containing ring

with m ranging from 4 to 7, or
an unsaturated nitrogen-containing ring

with p, q and r being 1 to 3 independently, such nitrogen-containing ring i) or ii) being unsubstituted or substituted by one or more lower alkyl or cycloalkyl, or carboalkoxy groups, or

- a morpholino group, or
- a N-substituted piperazino group:

with R being a lower alkyl, an alkanovl or an optionally substituted phenyl group;

- n₃ is an integer from 0 to 5;
 - R³ represents each independently
 - · a halogen atom,
 - a lower alkyl or cycloalkyl, a trilluoromethyl, aryl, alkoxy, aryloxy, nitro, formyl, alkanoyl, aroyl, arylalkanoyl, amino, carboxamido, cyano, alkyloximino, aryloximino, c-hydroxyalkyl, alkenyl, alkynyl, sulphamido, sulfamoyl, carboxamide, carboalkoxy, arylalkyl or oxime group.
 - or taken together with the carbon atoms of the phenyl ring to which it is fused, a 5- or 6-membered saturated or unsaturated ring or a benzene ring,

as well as their pharmaceutically acceptable salts, their hydrates, their hydrated salts, the polymorphic crystalline structures of these compounds and their optical isomers, racemates, diastereoisomers and enantiomers, except compounds in which

- NR¹R² is a pyrrolidinyl group. C_nH_{2n} is a linear chain -(CH₂)_n- and n₂ is zero, X being an oxygen atom with n ranging from 3 to 5. or X being a suffur atom with n being 4 or 5.
 - NR¹R² is a piperidinyl group, C_nH_{2n} is a linear chain -(CH₂)_n- and and X is an oxygen atom, n₃ being zero with n being 2, 5 or 8 or n₃ being 1 with R³ being 4-CN and n being 5;
 - -NR¹R² is a diethylamine group, X is an oxygen atom, C_nH_{2n} is a linear chain -(CH₂)_n- and n₃ is 1, R³ being 4-

- NO₂ or 4-COCH₃ with n being 3 or R³ being 4-CN with n being 2 to 4;
- NR¹R² is a dimethylamine group, X is an oxygen atom, C_nH_{2n} is a linear chain -(CH₂)_n- and n³ is 1, R³ being 4-CN with n being 3.
- Compound according to claim 1, in which R¹ and R² are independently a lower alkyl group.
 - 3. Compound according to claim 2, in which R1 and R2 are each an ethyl group.
 - 4. Compound according to claim 1, in which -NR1R2 is a saturated nitrogen-containing ring: m being as

defined in claim 1.

15

25

30

- 20 5. Compound according to claim 4, characterized in that m is 4, 5 or 6.
- Compound according to claim 1, characterized in that -NR¹R² is an unsaturated nitrogen-containing ring:

p, q and r being as defined in claim 1, preferably p, q and r are 1 or 2, more preferably p is 2 and q and r are 1.

- Compound according to anyone of claims 4 to 6, characterized in that the nitrogen-containing ring i) or ii) is unsubstituted.
 - Compound according to anyone of claim 4 to 6, characterized in that the nitrogen-containing ring i) or ii) is substituted, preferably mono-substituted with an alkyl group.
 - Compound according to claim 8, characterized in that the nitrogen-containing ring is mono-substituted with a methyl group.
 - 10. Compound according to claim 1, characterized in that -NR1R2 is a morpholino group.
 - Compound according to claim 1, characterized in that -NR¹R² is a N-substituted piperazino group, preferably Nacetylpiperazino.
 - .12. Compound according to anyone of claims 1 to 11, characterized in that n₃ is zero.
 - 13. Compound according to anyone of claims 1 to 11, characterized in that n₃ is 1 with R³ being as defined in claim 1 and preferably in para-position.
- 14. Compound according to anyone of claims 1 to 11 and 13, characterized in that R³ is a lower alkyl, preferably a C₁ C₄ alkyl.
 - Compound according to anyone of claims 1 to 11 and 13, characterized in that R³ is a halogen atom, a cyano, nitro, alkanovi, alkyloximine or hydroxyalkyl, preferably CN, NO₂, COCH₃, COC₂H₅, H₃C-C=N-OH or H₃C-CHOH.

- Compound according to anyone of claims 1 to 11, characterized in that R³ taken together with the carbon atoms of the phenyl group to which it is fused, form a 5- or 6- membered saturated or unsaturated ring, in particular a 5,67,8tetrahydronaphthyl group.
- 5 17. Compound according to anyone of claims 1 to 11, characterized in that R³ taken together with the phenyl group to which it is fused, form a naphthyl group.
 - 18. Compound according to anyone of claims 1 to 17, characterized in that -C_nH_{2n}- is a linear hydrocarbon chain (CH₂)_n-, n being as defined in claim 1.
 - 19. Compound according to anyone of claims 1 to 18. characterized in that X is an oxygen atom.
 - 20. Compound according to anyone of claims 1 to 18, characterized in that X is a sulfur atom.
- 15 21. Compound according to anyone of claims 1 to 20, characterized in that n is varying from 3 to 5 and is preferably 3.
 - 22. Compound according to anyone of claims 1 to 21, characterized in that it is one of the following compounds:

```
N-methyl-N-(5-phenoxypentyl)-ethylamine
             1-(5-phenoxypentyl)-morpholine
             N-(5-phenoxypentyl)-hexamethyleneimine
             N-ethyl-N-(5-phenoxypentyl)-propylamine
             1-(5-phenoxypentyl)-2-methyl-piperidine
             1-(5-phenoxypentyl)-4-propyl-piperidine
25
             1-(5-phenoxypentyl)-4-methyl-piperidine
             1-(5-phenoxypentyl)-3-methyl-piperidine
             1-acetyl-4-(5-phenoxypentyl)-piperazine
             1-(5-phenoxypentyl)-3,5-trans-dimethyl-piperidine
             1-(5-phenoxypentyl)-3,5-cis-dimethyl-piperidine
             1-(5-phenoxypentyl)-2,6-cis-dimethyl-piperidine
             4-carboethoxy-1-(5-phenoxypentyl)-piperidine
             3-carboethoxy-1-(5-phenoxypentyl)-piperidine
             1-(5-phenoxypentyl)-1,2,3,6-tetrahydropyridine
             1-[5-(4-nitrophenoxy)-pentyl]-pyrrolidine
             1-[5-(4-chlorophenoxy)-pentyl]-pyrrolidine
             1-[5-(4-methoxyphenoxy)-pentyl]-pyrrolidine
             1-[5-(4-methylphenoxy)-pentyl]-pyrrolidine
             1-[5-(4-cyanophenoxy)-pentyl]-pyrrolidine
             1-[5-(2-naphthyloxy)-pentyl]-pyrrolidine
             1-[5-(1-naphthyloxy)-pentyl]-pyrrolidine
             1-[5-(3-chlorophenoxy)-pentyl]-pyrrolidine
             1-[5-(4-phenylphenoxy)-pentyl]-pyrrolidine
             1-{5-[2-(5,6,7,8-tetrahydronaphthyl)-oxy]-pentyl}-pyrrolidine
             1-[5-(3-phenylphenoxy)-pentyl]-pyrrolidine
             1-(5-phenoxypentyl)-2,5-dihydropyrrole
45
             1-{5-[1-(5,6,7,8-tetrahydronaphthyl)-oxy]-pentyl)-pyrrolidine
             1-(6-phenoxyhexyl)-pyrrolidine
             1-[5-(3-nitrophenoxy)-pentyl]-pyrrolidine
             1-[5-(4-fluorophenoxy)-pentyl]-pyrrolidine
             1-[5-(4-nitrophenoxy)-pentyl]-3-methyl-piperidine
             1-[5-(4-acetylphenoxy)-pentyl]-pyrrolidine
             1-{5-(4-aminophenoxy)-pentyl}-pyrrolidine
             1-[5-(3-cyanophenoxy)-pentyl]-pyrrolidine
             1-[5-(4-benzoylphenoxy)-pentyl]-pyrrolidine
             1-{5-[4-(phenylacetyl)-phenoxy]-pentyl]-pyrrolidine
55
```

1-[5-(4-acetamidophenoxy)-pentyl]-pyrrolidine 1-[5-(4-phenoxyphenoxy)-pentyl]-pyrrolidine 1-[5-(4-N-benzamidophenoxy)-pentyl]-pyrrolidine

- 1-{5-(4-(1-hydroxyethyl)-phenoxy]-pentyl]-pyrrolidine
- 1-[5-(4-cyanophenoxy)-pentyl]-diethylamine
- N-[5-(4-cyanophenoxy)-pentyl]-dimethylamine
- N-[5-(4-cyanophenoxy)-pentyl]-dipropylamine
- 1-[3-(4-cyanophenoxy)-propyl]-pyrrolidine
 - 1-[3-(4-cyanophenoxy)-propyl]-piperidine
 - N-[3-(4-cyanophenoxy)-propyl]-hexamethyleneimine
 - N-[6-(4-cyanophenoxy)-hexyl]-diethylamine
 - N-[3-(4-cyanophenoxy)-propyl]-dipropylamine
 - N-3-[4-(1-hydroxyethyl)-phenoxyl-propyl-diethylamine 4-(3-diethylaminopropoxy)-acetophenone-oxime
 - 1-[3-(4-acetylphenoxy)-propyl]-piperidine

 - 1-[3-(4-acetylphenoxy)-propyl]-3-methyl-piperidine
 - 1-[3-(4-acetylphenoxy)-propyl]-3,5-trans-dimethyl-piperidine
- 1-[3-(4-acetylphenoxy)-propyl]-4-methyl-piperidine
 - 1-[3-(4-propionylphenoxy)-propyl]-piperidine
 - 1-[3-(4-acetylphenoxy)-propyl]-3,5-cis-dimethyl-piperidine
 - 1-[3-(4-formylphenoxy)-propyl]-piperidine
 - 1-[3-(4-isobutyrylphenoxy)-propyl]-piperidine
 - N-[3-(4-propionylphenoxy)-propyl]-diethylamine
 - 1-[3-(4-butyrylphenoxy)-propyl]-piperidine
 - 1-[3-(4-acetylphenoxy)-propyl]-1,2,3,6-tetrahydropyridine
 - 23. Compound according to anyone of claims 1 to 22, characterized in that it is one of the following compounds:
 - 1-[5-(4-nitrophenoxy)-pentyl]-pyrrolidine
 - 1-{5-[4-(1-hydroxyethyl)-phenoxy]-pentyl}-pyrrolidine
 - 1-[3-(4-cyanophenoxy)-propyl]-piperidine
 - N-[3-(4-cyanophenoxy)-propyl]-hexamethyleneimine
 - N-3-[4-(1-hydroxyethyl)-phenoxy]-propyl-diethylamine 4-(3-diethylaminopropoxy)-acetophenone-oxime
 - 1-[3-(4-acetylphenoxy)-propyl]-3-methyl-piperidine

 - 1-[3-(4-acetylphenoxy)-propyl]-4-methyl-piperidine
- 1-[3-(4-propionylphenoxy)-propyll-piperidine
- 24. Pharmaceutical composition characterized in that it comprises as active ingredient, a therapeutically effective amount of a compound according to anyone of claim 1 to 23 in combination with a pharmaceutically acceptable vehicle or excipient.
- 25. Medicament acting as an antagonist of the histamine H3-receptors, characterized in that it comprises as active ingredient, an effective amount of a compound according to anyone of claims 1 to 23.
 - 26. Use of a compound of general formula (I) in which:

- C_nH_{2n} is a linear or branched hydrocarbon chain with n ranging from 2 to 8;
- X is an oxygen or sulfur atom;
 - R¹ and R² may be identical or different and represent each independently

- a lower alkyl or cycloalkyl, or taken together with the nitrogen atom to which they are attached,
- a saturated nitrogen-containing ring

with m ranging from 4 to 7, or an unsaturated nitrogen-containing ring

with p, q and r being 1 to 3 independently, such nitrogen-containing ring i) or ii) being unsubstituted or substituted by one or more lower alkyl or cycloalkyl, or carboalkoxy groups, or

- a morpholino group, or
- a N-substituted piperazino group:

with R being a lower alkyl, an alkanoyl or an optionally substituted phenyl group;

n₃ is an integer from 0 to 5;

30

55

- R³ represents each independently
 - a halogen atom.
 - a lower alkyl or cycloalkyl, a trifluoromethyl, aryl, alkoxy, aryloxy, nitro, formyl, alkanoyl, aroyl, arylalkanoyl, amino, carboxamido, cyano, alkyloximino, aryloximino, ac-hydroxyalkyl, alkenyl, alkynyl, sulphamido, sulfamoyl, carboxamide, carboalkoxy, arylalkyl or oxime group.
 - or taken together with the carbon atoms of the phenyl ring to which it is fused, a 5- or 6-membered saturated or unsaturated ring or a benzene ring.

as well as their pharmaceutically acceptable salts, their hydrates, their hydrated salts, the polymorphic crystalline structures of these compounds and their optical isomers, racemates, disastereoisomers and enantiomers, for the preparation of a medicament acting as an antagonist of the histamine Hy-receptors.

- 27. Use according to claim 26, characterized in that compound (I) is as defined in any one of claims 2 to 21,
- 50 28. Use according to claim 26 characterized in that compound (I) is one of the following compounds:
 - 1-(5-phenoxypentyl)-piperidine
 - 1-(5-phenoxypentyl)-pyrrolidine
 - N-methyl-N-(5-phenoxypentyl)-ethylamine
 - 1-(5-phenoxypentyl)-morpholine
 - N-(5-phenoxypentyl)-hexamethyleneimine
 - N-ethyl-N-(5-phenoxypentyl)-propylamine
 - 1-(5-phenoxypentyl)-2-methyl-piperidine

```
1-(5-phenoxypentyl)-4-propyl-piperidine
             1-(5-phenoxypentyl)-4-methyl-piperidine
             1-(5-phenoxypentyl)-3-methyl-piperidine
             1-acetyl-4-(5-phenoxypentyl)-piperazine
             1-(5-phenoxypentyl)-3,5-trans-dimethyl-piperidine
             1-(5-phenoxypentyl)-3,5-cis-dimethyl-piperidine
             1-(5-phenoxypentyl)-2,6-cis-dimethyl-piperidine
             4-carboethoxy-1-(5-phenoxypentyl)-piperidine
             3-carboethoxy-1-(5-phenoxypentyl)-piperidine
             1-(5-phenoxypentyl)-1,2,3,6-tetrahydropyridine
             1-[5-(4-nitrophenoxy)-pentyl]-pyrrolidine
             1-[5-(4-chlorophenoxy)-pentyl]-pyrrolidine
             1-[5-(4-methoxyphenaxy)-pentyl]-pyrrolidine
             1-[5-(4-methylphenoxy)-pentyl]-pyrrolidine
15
             1-[5-(4-cyanophenoxy)-pentyl]-pyrrolidine
             1-[5-(2-naphthyloxy)-pentyl]-pyrrolidine
             1-[5-(1-naphthyloxy)-pentyl]-pyrrolidine
             1-[5-(3-chlorophenoxy)-pentyl]-pyrrolidine
             1-[5-(4-phenylphenoxy)-pentyl]-pyrrolidine
             1-[5-[2-(5,6,7,8-tetrahydronaphthyl)-oxy]-pentyl)-pyrrolidine
20
             1-[5-(3-phenylphenoxy)-pentyl]-pyrrolidine
             1-(5-phenoxypentyl)-2,5-dihydropyrrole
             1-{5-[1-(5,6,7,8-tetrahydronaphthyl)-oxy]-pentyl}-pyrrolidine
             1-(4-phenoxybutyl)-pyrrolidine
             1-(6-phenoxyhexyl)-pyrrolidine
             1-(5-phenylthiopentyl)-pyrrolidine
              1-(4-phenylthiobutyl)-pyrrolidine
              1-(3-phenoxypropyl)-pyrrolidine
              1-[5-(3-nitrophenoxy)-pentyl]-pyrrolidine
30
              1-[5-(4-fluorophenoxy)-pentyl]-pyrrolidine
              1-[5-(4-nitrophenoxy)-pentyl]-3-methyl-piperidine
              1-[5-(4-acetylphenoxy)-pentyl]-pyrrolidine
              1-[5-(4-aminophenoxy)-pentyl]-pyrrolidine
              1-[5-(3-cyanophenoxy)-pentyl]-pyrrolidine
              N-[3-(4-nitrophenoxy)-propyl]-diethylamine
              N-[3-(4-cyanophenoxy)-propyf]-diethylamine
              1-[5-(4-benzoylphenoxy)-pentyl]-pyrrolidine
              1-{5-{4-(phenylacetyl)-phenoxy}-pentyl}-pyrrolidine
              N-[3-(4-acetylphenoxy)-propyl]-diethylamine
              1-[5-(4-acetamidophenoxy)-pentyl]-pyrrolidine
              1-[5-(4-phenoxyphenoxy)-pentyl]-pyrrolidine
              1-[5-(4-N-benzamidophenoxy)-pentyl]-pyrrolidine
              1-{5-[4-(1-hydroxyethyl)-phenoxy]-pentyl}-pyrrolidine
              1-[5-(4-cyanophenoxy)-pentyl]-diethylamine
              1-[5-(4-cyanophenoxy)-pentyl]-piperidine
              N-[5-(4-cyanophenoxy)-pentyl]-dimethylamine
              N-[2-(4-cyanophenoxy)-ethyl]-diethylamine
              N-[3-(4-cyanophenoxy)-propyl]-dimethylamine
              N-[4-(4-cyanophenoxy)-butyl]-diethylamine
              N-[5-(4-cyanophenoxy)-pentyl]-dipropylamine
              1-[3-(4-cyanophenoxy)-propyl]-pyrrolidine
              1-[3-(4-cyanophenoxy)-propyl]-piperidine
              N-[3-(4-cyanophenoxy)-propyl]-hexamethyleneimine
              N-[6-(4-cyanophenoxy)-hexyl]-diethylamine
              N-[3-(4-cyanophenoxy)-propyl]-dipropylamine
              N-3-[4-(1-hydroxyethyl)-phenoxy]-propyl-diethylamine
              4-(3-diethylaminopropoxy)-acetophenone-oxime
```

1-[3-(4-acetylphenoxy)-propyl]-piperidine

- 1-(3-(4-acetylphenoxy)-propyll-3-methyl-piperidine
- 1-[3-(4-acetylphenoxy)-propyl]-3,5-trans-dimethyl-piperidine
- 1-[3-(4-acetylphenoxy)-propyl]-4-methyl-piperidine
- 1-[3-(4-propionylphenoxy)-propyl]-piperidine 1-[3-(4-acetylphenoxy)-propyl]-3,5-cis-dimethyl-piperidine

 - 1-[3-(4-formylphenoxy)-propyl]-piperidine
 - 1-[3-(4-isobutyrylphenoxy)-propyl]-piperidine
 - N-[3-(4-propionylphenoxy)-propyl]-diethylamine
 - 1-[3-(4-butyrylphenoxy)-propyl]-piperidine

10

- 1-[3-(4-acetylphenoxy)-propyl]-1,2,3,6-tetrahydropyridine
- 29. Use according to claim 26, characterized in that compound (I) is one of the following compounds:
 - 1-[5-(4-nitrophenoxy)-pentyl]-pyrrolidine
 - N-[3-(4-cyanophenoxy)-propyl]-diethylamine
 - N-[3-(4-acetylphenoxy)-propyl]-diethylamine
 - 1-{5-{4-(1-hydroxyethyl)-phenoxy}-pentyl}-pyrrolidine
 - N-[4-(4-cyanophenoxy)-butyl]-diethylamine
 - 1-f3-(4-cyanophenoxy)-propyll-piperidine
 - N-[3-(4-cyanophenoxy)-propyl]-hexamethyleneimine
 - N-3-[4-(1-hydroxyethyl)-phenoxy]-propyl-diethylamine
 - 4-(3-diethylaminopropoxy)-acetophenone-oxime
 - 1-[3-(4-acetylphenoxy)-propyl]-3-methyl-piperidine
 - 1-[3-(4-acetylphenoxy)-propyl]-4-methyl-piperidine
 - 1-[3-(4-propionylphenoxy)-propyl]-piperidine
- 30. Medicament according to anyone of claims 25 to 29, for the treatment of central nervous system disorders, in particular Alzheimer disease, mood and attention alterations, cognitive deficits in psychiatric pathologies, obesity, vertigo and motion sickness
- 31. Medicament according to anyone of claims 25 to 29, having psychotropic effects, promoting wakefulness, attention, memory and improving mood, intended to be used in particular in the treatment of Alzheimer disease and other cognitive disorders in aged persons, depressive or asthenic states.
- 35 32. Medicament according to anyone of claims 25 to 29, having nootropic effects, intended to be used in particular in treatment to stimulate attention and memorization capacity.
 - 33. Medicament according to anyone of claims 25 to 29, for the treatment of obesity, vertigo and motion sickness.
- 34. Medicament according to anyone of claims 25 to 29, for the treatment of CNS disorders, in particular of aged persons.

Wy on

PARTIAL EUROPEAN SEARCH REPORT

which under Rule 45 of the European Patent Convention EP 98 48 1944 shall be considered, for the purposes of subsequent proceedings, as the European search report

	DOCUMENTS CONSIDER		T	THE THE PART OF THE
ategory	Citation of document with indic of relevant passage		Relevant to claim	CLASSIFICATION OF THE APPLICATION (INLCI.6)
K	GB 1 512 880 A (MITSU 1 June 1978 * examples; table I *		1-24	C07D295/088 C07C211/08 C07D211/04 C07D295/185
X	DE 12 69 134 B (VEB D RODLEBEN) 18 December * examples 1-5 *	EUTSCHES HYDRIERWERK 1962	1-24	C07D211/62 C07D211/70 C07D207/20 A61K31/13
x	US 3 947 434 A (SPENC 30 March 1976 * examples LXXIXA.B '		1-24	A61K31/40 A61K31/445 A61K31/495
х	US 4 751 302 A (IBUK 14 June 1988 * tables 5-2,5-3 *	TADAYUKI ET AL)	1-24	
X	GB 924 961 A (THE WE LIMITED) 1 May 1963 * table II *	LLCOME FOUNDATION	1-24	
X	US 3 312 696 A (TURB * claim 1; examples	ANTI L.) 4 April 1967 1-20 *	1-24	TECHNICAL FIELDS SEARCHED (INLCLS)
		-/		C07C A61K
INCO	MPLETE SEARCH			
Claims Claims Claims Reason	und Division considers that the present any ply will the EPC be such an attain that a ided out, or one only be carried out purisely, seasoned completely seasoned completely not seasoned completely not seasoned to the sea		GE PROPERTY.	
	Plant of search	Date of completion of the search	-	Examiner
	MUNICH	7 December 1998	в Ј	Juntunen, A
Y	CATEGORY OF CITED DOCUMENTS particularly relevant if combined with anoth course of the same category sochrological background non-written disolosure	T theory or prin E earlier patent after the filing P document oil L document oil	ople underlying to document, but p date and in the applical and for other reason	nublehed on, or

European Patent Office

PARTIAL EUROPEAN SEARCH REPORT

Application Number
D 09 40 1044

	CUMENTS CONSIDERED TO BE RELEVANT		CLASSIFICATION OF THE APPLICATION (IntCLS)
Category	Citation of document with indication, where appropriate, of relevant passages to claim		
Х	DE 26 24 261 A (BOTTU FA) 16 December 1976 * page 4; example 10 *	1-24	
X	US 2 870 151 A (WRIGHT H.B. AND MOORE M.B.) 20 January 1959 * examples I-XII *	1-24	1
X	DE 965 813 C (ABBOTT LABORATORIES) 19 June 1957 * examples 1-5,7 *	1-24	
x	LITTMANN E. R. AND MARVEL C. S.: "Cyclic Quaternary Ammonium Salts from Halogenated Aliphatic Tertiary Amines" J. AMER. CHEM. SOC., vol. 52, 1930, pages 287-294, XP002084866 "page 289 - page 290 "	1-24	TECHNICAL FIELDS SEARCHED (Ins.Cl.6)
x	KIKUMOTO R. ET AL.: "Synthesis and Antidepressant Activity of Substituted (gamma-Aminoalkoxy)benzeme Derivatives" J.MED.CHEM. vol. 24, no. 2, 1981, pages 145-148, XPO00565653 table 1 "	1-26	
x	SHADBOLT R. S. ET AL.: "Some Aryloxyalkylamines, N-Arylethylenediamines and Related Compounds as Anorectic Agents"		
	J.NED.CHEM., vol. 14, no. 9, 1971, pages 836-842, XP002084867 * table 1 *		
	- /		
	* **		
	(8)		
			-
1			

the room of my man and on

European Patent Office

PARTIAL EUROPEAN SEARCH REPORT

Application Number

			APPLICATION (Int.Cl.6)
alegory	Citation of document with indication, where appropriate, of relevant passages	to claim	
x	WALSH D. A. ET AL.: "Synthesis and Antiallergy Activity of 4-(Diarylhydroxymethyl)-1-[3-(aryloxy)propyl]piperidines and Structurally Related Compounds" J. MED. CHEM., vol. 32, no. 1, 1989, pages 105-118, XP002084668 ** tables 1-III **	1-24	
x	SONDA T ET AL: "STUDIES ON ANTIDIABETIC AGENTS. SYNTHESIS OF 5-4 (1-HETHYLLCYCLOHEXYLMETHOXY)-BENZYL)THIAZ OLIDINE-2,4-DIONE (ADD-3878) AND ITS DERIVATIVES CHEMICAL AND PHARMACEUTICAL BULLETIN, vol. 30, no. 10, 1982, pages 3580-3600, xp002046259 * table VIII *	1-24	TECHNICAL FIELDS SEARCHED (Int.CL6)
x	CHABRIER P. ET AL.: "Nouveaux carbamates doués d'activité anesthésique locale" BULL.SOC.CHIM.FR.,1955, pages 1353-1357, XP002084869 * table IV *	1-24	
×	MARQUET J. ET AL.: "Topologically Controlled Coulombic Interactions, a New Tool in the Developing of Novel Reactivity. Photochemical and Electrochemical Cleavage of Phenyl Alkyl Ethers" J.ORG.CHEM., vol. 60, no. 12, 1995, pages 3814-3825, XP002084870 * table 1 *	1-24	
			8
	* *		7

Apple 14 at 15 at

European Patent

PARTIAL EUROPEAN SEARCH REPORT

Application Number

	CUMENTS CONSIDERED TO BE RELEVANT CLASSIFICATION OF APPLICATION (Int.			
Category	Citation of document with indication, where appropriate, preservent to claim			
(CASANOVAS A:-M. ET AL.: "Etude des relations structure-activté d'une série d'anesthésiques locaux"	1-24	**	
	EUR.J.MED.CHEMCHIM.THER., vol. 17, no. 4, 1982, pages 333-337, XP002084871 * page 334 *		σ.	
	KIKUMOTO R ET AL: "SYNTHESES AND PLATELET	1-24		
	AGGREGATION INHIBITORY AND ANTITHROMBOTIC PROPERTIES OF 2- (OMEGA-AMINOALKOXY)PHENYLETHYLBENZENES JOURNAL OF MEDICINAL CHEMISTRY,			
	vol. 33, no. 6, June 1990, pages 1818-1823, XP000673455 * tables I-III *		TECHNICAL FIELDS SEARCHED (Int.Cl.6)	
x	CHENEY L.C. ET AL.: "Alkylaminoalkyl Ethers of the Benzylphenols" J.AMER.CHEM.SOC.,	1-26		
	vol. 71, 1949, pages 60-64, XP002086293 * page 60; table I *		,	
A	STARK H. ET AL.: "Developments of Histamine H3-receptor Antagonists" DRUGS OF THE FUTURE,	1-34		
	vol. 21, no. 5, 1996, pages 507-520, XP002084872 * page 507 *		=)=	
			-	
	0			
		*	1	

Towns

INCOMPLETE SEARCH SHEET C

Application Number EP 98 49 1944

Claim(s) searched incompletely:

Reason for the limitation of the search:

The search on the final compounds of a restricted subset of formula I (R1 and R2- a lower alkyl, a saturated N-containing ring, a morpholino group, a N-substituted piperazino group as defined in claim 1) and their histamine H3-receptor antagonistic activity revealed already a vast amount of novelty destroying compounds with respect to claim 1 of the present application. Therefore the search had to be limited to the compounds of claims 2 and 5 encompassed by the above defined subset, and to the activity thereof.

Despite the above limitation to the two groups of compounds the search revealed too many relevant documents and/or compounds so that the search report shall not be considered complete.

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

This annex tats the patent family members retaining to the patent documents cited in the above-mentioned European sear. The members are as contained in the European Patent Office EDP Be on The European Patent Office is in no way Sable for these particulars which are merely given for the purpose of information.

07-12-1998

	stent documen in search rep		Publication date		eatent family member(s)	Publication date
GB	1512880	A	01-06-1978	JP	1233459 C	26-09-1984
				JP	52000248 A	05-01-1977
					59008265 B	23-02-1984
				US	4024282 A	17-05-1977
				CH	623301 A	29-05-1981
				DE	2627227 A	30-12-1976
					276276 A.B.	20-12-1976
				DK		
				FR	2315913 A	28-01-1977
				NL.	7606668 A,B,	21-12-1976
				SE.	430156 B	24-10-1983
				SE	7607 01 3 A	20-12-1976
				US	4071559 A	31-01-1978
				JP	1258356 C	29-03-1985
				JР	52033635 A	14-03-1977
				ĴΡ	59035386 B	28-08-1984
				ÜS.	4061776 A	06-12-1977
				JP	1283612 C	27-09-1985
				JP	52033658 A	14-03-1977
				JP -	60006349 B	18-02-1985
				US	4091114 A	23-05-1978
				JP	1323708 C	27-06-1986
				JP	52057133 A	11-05-1977
				JP	60048507 B	28-10-1985
				US	4060612 A	29-11-1977
				BE	848612 A	23-05-1977
				JP	1356666 C	13-01-1987
				JP	52065254 A	30-05-1977
				JP	61020536 B	22-05-1986
				ÜS	4060641 A	29-11-1977
				JP	1256359 C	12-03-1985
				ĴΡ	52085156 A	15-07-1977
				JP	59031492 B	02-08-1984
				US	4100299 A	11-07-1978
				U3	4100299 A	11-0/-15/0
DE	1269134	В		NONE		
us.	3947434	A	30-03-1976	US	3919238 A	11-11-197
	234,434	•••	30 00 20.0	AU	475718 B	02-09-197
				AU	6523674 A	04-09-197
				BE	816003 A	06-12-197
				DE		09-01-197
				DK	301974 A,B,	03-02-197
				FR	2232313 A	03-01-197
				GB	1398508 A	25-06-197
				ΙL	44141 A	31-08-197
				1 L	AATAT W	01-03-197

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 98 40 1944

This arrives leafs the platent family members relating to the patent documents cited The members are as contained in the European Patent Office EDP Me on The European Patent Office is in no way liable for these particulars which are me

07-12-1998

Patent document ofted in search report		Publication date	Patent family member(s)	Publication date .
US 3947434	A		NL 7404135 A	10-12-1974
03 3347 451	•••		SE 391925 B	07-03-1977
			SE 7405652 A	09-12-1974
			ZA 7400683 A	24-09-1975
US 47513 0 2		14-06-1988	JP 58159471 A	21-09-1983
03 4/31302	_	14 00 1300	JP 58159472 A	21-09-1983
			JP 58159473 A	21-09-1983
			JP 58159474 A	21-09-1983
			JP 58159475 A	21-09-1983
			JP 58159476 A	21-09-1983
			JP 58159477 A	21-09-1983
			EP 0090972 A	12-10-1983
			US 4533731 A	06-08-198
GB 924961			BE 588558 A	
UB 324301	_		CH 361005 A	
			CH 395126 A	
			CH 436259 A	
			DE 1238485 B	
			FR 558 M	
			FR 84256 E	05-05-196
			FR 1421206 A	09-03-196
			GB 824853 A	0, 00 1
			GB 921978 A	
			LU 38374 A	
			NL 129619 C	
			NL 249341 A	
US 3312696		04-04-1967	NONE	
DF 2624261		16-12-1976	FR 2313042 A	31-12-197
DE 2024201	^	10-12-13/0	FR 2349332 A	25-11-197
			BE 842453 A	01-10-19
			CH 597192 A	31-03-19
			GB 1513092 A	07-06-19
US 2870151	Α		NONE	
DE 005013	с с		NONE	·
DE 965813				

For more details about this annex , see Official Journal of the European Patent Office, No. 12/82