In the Claims

1-32. (canceled)

33. (currently amended) A method of preventing photooxidation and autooxidation processes in

body-care products selected from body oils, body lotions and body gels,

which method comprises incorporating by dissolution in an oil phase or alcoholic or water phase, into said body-care products one or more phenolic antioxidants of formula (2) (1)

wherein

R₁ is a tert-butyl radical or is C₁-C₂₂alkyl and

R₂ are is the tert-butyl radical;

Q is
$$-C_mH_{2m}$$
—or, $-CH$ -
$$C_mH_{2m+1}$$
, a radical of formula
$$H_3C$$

$$-CH_2$$

T is $-C_nH_{2n}$ -;

V is -O- or -NH-;

a is <u>0,1 or 2;</u>

b and d are each independently of one another 0 or 1;

e is an integer from 1 to 3;

f is an integer from 1 to 3;

m, n and p are each independently of one another an integer from 1 to 3;

if e = 1, then

M is alkali or ammonium;

if e = 2, then

 R_3 is a direct bond[[;]], $-CH_2$ -, S or -CH- $(CH_2)_p$ - CH_3 ;

and

if e = 3, then

 R_3 is the radical of formula $\frac{1}{1}$ is the radical of formu

c is 0;

where the antioxidants are incorporated in a concentration of 50 to 1000 ppm.

34. (canceled)

35. (previously presented) A method according claim **33**, wherein Q is a methylene or ethylene radical.

36-41. (canceled)

42. (currently amended) A method according to claim **33**, which comprises incorporating an antioxidant of formula

(3)
$$R_2$$
 $Q = C = O - T - R_3$

wherein

R₁ and R₂ are the tert-butyl radical;

Q is
$$-G_mH_{2m}$$
-; $-CH$ - | C_mH_{2m+1}

R₃ is a direct bond;

a is 1;

m is 1 to 3;

T is -C₀H₂₀-<u>d is 0</u> and

e is 2

n is an integer from 1 to 3.

- **43.** (currently amended) A method according to claim **42**, wherein the antioxidant is a compound of formula (3) 1, wherein
- Q is ethylene and

R₃ is a direct bond.

44-46. (canceled)

47. (currently amended) A method according to claim **33**, which comprises incorporating the phenolic antioxidants of formula (2) (1) as individual compounds or as a mixture of several individual compounds.

48-64. (canceled)

- **65.** (new) The method according to claim 33 which body care product further comprises tocopherol and/or tocopherol acetate.
- **66.** (new) The method according to claim 33, which body care product further comprises light stabilisers.
- **67.** (new) The method according to claim 66, wherein the light stabilisers are sterically hindered amines.

68. (new) The method according to claim 66, wherein the light stabilisers used are benzotriazoles of formula

wherein

 R_6 is C_1 - C_{12} alkyl; C_1 - C_5 alkoxy; C_1 - C_5 alkoxycarbonyl; C_5 - C_7 cycloalkyl; C_6 - C_{10} aryl; aralkyl; -SO₃M; a radical of formula (...a)

$$R_{8}$$
 SO_{3}

 R_{8} and R_{9} are each independently of the other hydrogen; or $C_{1}\text{-}C_{5}\text{alkyl};$

m is 1 or 2;

n is 0 or 1;

if m = 1,

R₇ is hydrogen; unsubstituted or phenyl-substituted C₁-C₁₂alkyl; C₆-C₁₀aryl;

if n = 2,

 R_2 is a direct bond; -(CH_2)_p-; and

p is 1 to 3.

68. (new) The method according to claim 66, wherein the light stabilisers are 2-hydroxyphenyltriazines of formula

(41)
$$C_{10} = C_{10} = C_{10} = C_{12} = C_{12$$

wherein

L₁ is C₁-C₂₂alkyl, C₂-C₂₂alkenyl or C₅-C₇cycloalkyl;

L2 and L6 are each independently of the other H, OH, halogen, C1-C22alkyl, halomethyl;

L₃, L₅ and L₇ are each independently of one another H, OH, OL₁, halogen, C₁-C₂₂alkyl, halomethyl;

L₄ is H, OH, OL₁, halogen, C₁-C₂₂alkyl, phenyl, halomethyl;

 L_{12} is C_1 - C_{22} alkyl, phenyl C_1 - C_5 alkyl, C_5 - C_7 cycloalkyl, OL_1 or, preferably, a group of formula

$$L_2 \qquad L_4 \qquad \text{; and} \qquad$$

j is 0, 1, 2 or 3.

- **69. (new)** The method according to claim 33, wherein the body-care products are for the skin and its adnexa.
- **70.** (new) The method according to claim 33, wherein the body-care products are selected from skin-care products, bath and shower additives, preparations containing fragrances and odoriferous substances, hair-care products, dentifrices, deodorising and antiperspirant preparations, decorative preparations, light protection formulations and preparations containing active ingredients.
- **71.** (new) The method according to claim 33, wherein the body care product further contains fragrances, olfactory substances and/or an oil selected from group consisting of fatty alcohols, fatty acids and liquid to solid waxes.
- **72.** (new) the method according to claim 1, wherein the phenolic antioxidant of formula 1 is selected from the group consisting of

(13)
$$H_3C$$
 $R = CH_2$
 CH_3
 $R = CH_2$

n = 1-3

(16)

(33)