- 1) 1. J(E) is a function only of the probability of the event E.

 => J(E) = J(p)
 - 2. Information is a non-negative quantity. $= \int J(E) = J(\rho) \ge 0$
 - 3. Information due to independent events is positive additive. => $J(p_1 p_2) = J(p_1) + J(p_2)$
 - a) $J(p) = k \log(p) = \tilde{k} \log(\frac{1}{p})$ $\tilde{k} > 0$
 - b) $H(X) = \sum_{i}^{\infty} p_{i} J(p_{i}) = k \sum_{i}^{\infty} p_{i} \log(p_{i})$

Shannon - Entropy: $k = -\frac{1}{\log 2}$

=>
$$H(X) = -\frac{5}{2} pi \log_2(pi) = \frac{5}{2} pi \log_2(\frac{1}{pi})$$

2)

message

interval length of interval

0 A B C 1

 $\left[0,\frac{4}{2}\right]$

0 4 1 1

AA

[o, 4]

0 B 1 4

A18

 $\left[\begin{array}{cc} \frac{4}{8}, \frac{3}{46} \end{array}\right]$

AABC

 $\begin{bmatrix} \frac{14}{64}, \frac{3}{16} \end{bmatrix} \qquad \frac{1}{64}$

$$\frac{41}{64}$$
 $\frac{23}{128}$ $\frac{3}{16}$

$$\frac{23}{128} = 0.0010111$$

H = 0,985, length: 7 bits

4) Suppose length of input is 1bit.

Apply algorithm: compressed text has length Obit. &

character	A	B	(D	E
#	15	7	6	6	5

length of text: 39

3)

H = 0,821 bit

The length is independent of the choice of the block encoding, the entropy does depend of on the specific choice.

$$\begin{array}{ccc}
A & \mapsto & 11 \\
B & \mapsto & 10 \\
C & \mapsto & 01
\end{array}$$

Cength encoded: 89 bit entropy H ≈ 0,993 bit

entropy: H= 0,998bit

E -> 111

-> 100