

SolucionFREnero2020.pdf

Frankie2

Fundamentos de Redes

3º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Ver mis op

Continúa do

405416 arts esce ues2016juny.pdf

Top de tu gi

7CR

Rocio

pony

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Dpto. Teoría de la Señal, Telemática y Comunicaciones

E.T.S. Ingeniería Informática y de Telecomunicación C/ Periodista Daniel Saucedo Aranda, S/N 18071- Granada

FUNDAMENTOS DE REDES Enero de 2020 - Examen de teoría A

Apellidos y nombre:		Grupo:
---------------------	--	--------

TEST (2 puntos): Cada 3 respuestas incorrectas resta 1 respuesta correcta del test.

- 1. En relación a TCP/IP, qué afirmación es incorrecta:
 - a) El modelo de referencia TCP/IP es independiente de la tecnología de la red subyacente
 - En TCP/IP al igual que en el modelo OSI hay comunicación real y virtual
 - En la capa de transporte los protocolos TCP ó UDP implican interacciones salto a salto. c)
 - En la capa de red el protocolo IP es no orientado a conexión.
- 2. Cuando un cliente (a través de un resolver local) solicita una resolución de nombres a su servidor puede ocurrir que (señale la respuesta verdadera):
 - El servidor no tenga autoridad sobre la zona en la que se encuentra el nombre solicitado, pero lo tiene en la cache y por tanto nos devuelve una respuesta sin autoridad.
 - El servidor no conozca la respuesta y termina la petición, devolviendo como respuesta un b) mensaje de error.
 - Que el servidor no conozca la respuesta y pregunte al servidor autoridad de la zona en la que se c) encuentra el nombre solicitado.
 - El servidor tenga autoridad sobre la zona en la que se encuentra el nombre solicitado y responda d) obteniendo de su cache la respuesta correspondiente al nombre solicitado.
- 3. El protocolo HTTP (señale la respuesta verdadera):
 - Es state-less, no orientado a texto y puede ser persistente
 - Es state-full, orientado a texto y puede ser no persistente
 - c) Es state-less, orientado a texto y puede ser persistente
 - Es state-full, no orientado a texto y puede ser no persistente
- 4. El tiempo de transmisión (señale la respuesta verdadera):
 - a) Se mide en metros por segundo, depende de cada salto, no depende del número de bits a
 - Se mide en metros por segundo, depende de cada salto, depende del número de bits a transmitir b)
 - Se mide en bits por segundo, depende de la distancia, no depende del número de bits a c)
 - Se mide en bits por segundo, depende de cada salto, depende del número de bits a transmitir
- 5. En Internet (señale la respuesta verdadera)
 - a) El puerto origen para un servicio estandarizado es conocido universalmente, las direcciones IP públicas origen y destino si cambian en la ruta, las direcciones físicas no cambian salto a salto
 - El puerto destino para un servicio estandarizado es conocido universalmente, las direcciones IP públicas origen y destino no cambian en la ruta, las direcciones físicas cambian salto a salto
 - El puerto origen para un servicio estandarizado es conocido universalmente, las direcciones IP públicas origen y destino no cambian en la ruta, las direcciones físicas no cambian salto a salto
 - El puerto destino para un servicio estandarizado es conocido universalmente, las direcciones IP públicas origen y destino cambian en la ruta, las direcciones físicas cambian salto a salto

- 6. ¿Cuál es la dirección de broadcast (difusión) en la red 192.168.1.0/25?
 - a) 192.168.1.192
 - b) 192.168.255.255
 - c) 192.168.1.127
 - d) 192.168.1.0
- 7. Dado el siguiente esquema de red con la asignación de direcciones que se muestra, ¿cuáles serían las direcciones de red de cada subred?
 - a) Subred A: 172.16.0.0/16 y B:192.168.100.0/24
 - b) Subred A: 172.16.0.0/24 y B:192.168.100.0/22
 - c) Subred B: 172.16.0.0/16 y A:192.168.100.0/24
 - d) Subred A: 172.16.0.0/24 y B:192.168.100.0/24

- 8. En el control de congestión TCP Tahoe (señale la respuesta verdadera)
 - Un time-out en la transmisión de un segmento implica que la ventana de congestión se reduce a 1 MSS y que el valor de dicho time-out se duplica
 - b) Un time-out en la transmisión de un segmento implica que la ventana de congestión se reduce a la mitad y que el valor de dicho time-out se duplica
 - c) Un time-out en la transmisión de un segmento implica que la ventana de congestión se reduce a la mitad y que el valor de dicho time-out se actualiza con el RTT (Round Trip Time) actual
 - d) Un time-out en la transmisión de un segmento implica que la ventana de congestión se reduce a 1 MSS y que el valor de dicho time-out se actualiza con el RTT (Round Trip Time) actual
- 9. En caso de una fragmentación en IP
 - Los fragmentos se ensamblan en siguiente router, , usando el campo comprobación (check-sum)
 v TTL
 - Los fragmentos se ensamblan en siguiente router, usando el campo offset (desplazamiento) y
 MF
 - c) Los fragmentos se ensamblan en el host destino, usando el campo offset (desplazamiento) y MF
 - d) Los fragmentos se ensamblan en el host destino, usando el campo comprobación (check-sum) y TTL
- 10. En el control de errores en TCP
 - a) Se usan confirmaciones (ACK) negativas y acumulativas, el campo puntero del segmento y se tienen en cuenta en el campo comprobación (check-sum) las IPs origen y destino
 - b) Se usan confirmaciones (ACK) positivas y no acumulativas, el campo puntero del segmento y no se tienen en cuenta en el campo comprobación (check-sum) las IPs origen y destino
 - c) Se usan confirmaciones (ACK) negativas y acumulativas, el campo secuencia del segmento y no se tienen en cuenta en el campo comprobación (check-sum) las IPs origen y destino
 - d) Se usan confirmaciones (ACK) positivas y acumulativas, el campo secuencia del segmento y se tienen en cuenta en el campo comprobación (check-sum) las IPs origen y destino

RESPUESTAS:

1	2	3	4	5	6	7	8	9	10

1. *(1 pto)* Explique el servicio de correo electrónico, incluyendo las entidades y protocolos implicados, así como las debilidades más relevantes en el envío de correo entre dominios distintos.

2. (1 pto) Explique el funcionamiento del cifrado simétrico y del cifrado asimétrico identificando ventajas e inconvenientes. Explique cómo proporcionar autenticación usando ambos tipos de cifrado.

Ver mis op

Continúa do

405416_arts_esce ues2016juny.pdf

Top de tu gi

7CR

Rocio

pony

Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.

- 3. (1 pto) Al inicio de una conexión TCP, en una línea sin congestión con 10 ms de tiempo de propagación y 10 Mbps de velocidad de transmisión, ¿cuánto tiempo se emplea en enviar y recibir confirmación de 20 KB con las siguientes asunciones (añada cualquier asunción adicional que crea conveniente)? Realice el diagrama de tiempos de la transmisión.
 - a) Ventana ofertada de control de flujo de 12 KB continuada.
 - b) Inicio lento configurado para comenzar a 2MSS
 - c) Todos los segmentos se ajustan a un MSS (Maximum segment Size) de 2 KB
 - d) Umbral de congestión de 8 KB

Respuesta ACK retardada en el receptor de acuerdo a la teoría.

4. (2 pto) Dada la topología de la siguiente imagen, asigne las direcciones de red a las diferentes subredes y complete las tablas de encaminamiento para los routers R1 y R3. Hágalo considerando como criterio de optimización el menor número de entradas en las tablas de encaminamiento.

Test

	1				5				(1)	
Tipo A	C	A	C	$\mathbb{D}^{(}$	B	C	D	A	C	D
Tipo B	A	C	C	B	D	C	D	c	A	D
Tipo c	D	B	В	A	C	B	C	B	D	B
Tipo D	B	D	B	D	A	B	C	D	B	C

$$\frac{3}{V_{t}} = \frac{Mss - cob}{V_{t}} = \frac{2KB - 60B}{10 \mu b \rho s} = 17ms$$

$$\frac{V_{t}}{V_{t}} = \frac{60B}{10 \mu b \rho s} = 0.05$$

$$\frac{V_{t}}{V_{t}} = \frac{60B}{10 \mu b \rho s} = 0.05$$

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Continúa de

405416_arts_esce ues2016juny.pdf

Top de tu gi

La LAN con más Pcs serra el conjunto formado por LANGYLAND es deux 300 PCs. Por tanto necestaros trabajar con /23, que nos permite direccionar haste 512-2'= 510 directiones.

192.168.100/23

192.168.60/23

- · El direccionamiento propuesto es el mostrado sobre la topología. Puedan exister varia solutiones
- tablas de R1 y R3 ya reducidas, optimizadas en N: de entradas

192.168.16.0 192.168.0.0	M 123 130 121	5 5 	DD 192.168.16.0 192.168.8.0 192.168.12.0 192.168.00	/23 /23 /23 /21	192.168.16.2(12)
192. 168. 8. 0 192.168.18.0 0. 0.0.0	123	(92.68.16.3(R3) 192.68.16.4 (R4) 200.200.2002 (INT)	192. 168. 18.0 192. 168. 19.0 (92. 168. 10.0 0. 0.0	123 123 123 10	(92. 168. 16.4. (124) 192. 168. 12. 2(118) 192. 168. 8. 1 (127) 192. 168. 16.1 (121)

- es decir 300 PCs. Por tanto necessaros trabajar con 123, que nos permite direccionar hasta 512-2'=510 direcciones.
- existér varia soluciones. Para el resto de redes uscaros 124.
- · tablas de R1 y R3 ya reducidas y optimizadas en N: de entradas

(RI) DO	M	SS (R	<u></u>	90	M	د ع
192.168.10.0 200.100.200.0 192.168.0.0	124 130 122	[92.168.10.2 (R2)	192 192	.168.18.0 .168.5.0	124	
192.168.8.0	122 123 10	(92.68.10.3(R3)	192	168.81.0	123	(42.68.10.2(22) (42.168.10.4.(124) 142.68.5.2(127)
0, 0, 0, 0		200.200=2002.(INI)	(92	168.7.0	124	192.168.6.2 (R8)