UNIVERSITE CADI AYYAD ECOLE NATIONALE DES SCIENES APPLIQUEES. MARRAKECH

Année Universitaire : 2011/2012 Session du : 08 Aout 2011 Responsable : Aomar IBOURK

Concours d'entrée en 1ére année du cycle préparatoire

Epreuve de mathématiques :

(Durée:1h15min)

- ➤ La documentation, les calculatrices et les téléphones portables sont interdits
- Parmi les réponses proposées elle n'y en a qu'une qui est juste
- **Règles de notation** :
- ➤ Réponse Juste= 1 point ; Réponse fausse= -1 point ; Pas réponse= 0 points
- ➤ Plus qu'une case cochée= -1 point

Exercice nº 1

1.
$$\int_{k}^{2} \operatorname{Ln}\left(\frac{x-1}{x}\right) dx = -2\ln 2 + \ln(k-1)$$
 où $k \in]1; 2[$

$$2. \int_{0}^{\frac{\pi}{3}} \cos^3 x \, dx = \frac{3\sqrt{3}}{11}$$

3.
$$\int_{-2}^{0} \left(\left| x+1 \right| + \frac{4}{x-1} \right) dx = 1 - 4 \ln 3$$

4.
$$\int_{0}^{2} (x-2)e^{2x+1} dx = \frac{5}{4}e^{-\frac{13}{7}}e^{5}$$

Exercice nº 2

Pour tout réel x , on pose $G(x) = \int_{x}^{2x} \frac{dt}{\sqrt{t^4 + t^2 + 1}}$

- 1. G est une fonction paire
- 2. G est croissante sur $\left[0; \frac{1}{\sqrt{2}}\right]$
- 3. G est croissante sur $\left[\frac{1}{\sqrt{2}}; +\infty\right[$
- $4. \lim_{x \to +\infty} G(x) = 1$

Exercice nº 3

Une grandeur y décroît au cours du temps t selon la loi $y(t) = y_0 2^{-t}$, où y_0 désigne la valeur initiale en t = 0.

La valeur moyenne de y entre les instants 0 et T.

- 1. $(1-2^{-T})$
- 2. *T* ln 2
- 3. $\frac{y_0}{\ln 2} (1 2^{-T})$
- 4. $\frac{y_0}{T \ln 2} (1 2^{-T})$

Exercice nº 4

Soit la fonction $f(x) = \ln \left| e^x - e^{2x} \right|$

- 1. La fonction f est strictement décroissante sur $]-\infty;0[$
- 2. La fonction f est strictement croissante sur $\left]0; \frac{1}{2}\right[$
- $\lim_{x \to -\infty} f(x) = 0$
- 4. La droite d'équation y = 3x est asymptote à la courbe C représentative de f quand $x \to +\infty$

Exercice nº 5

En quel(s) points(s) la courbe $y = \sqrt{2x} + \sqrt{\frac{2}{x}}$ admet-elle une tangente parallèle à l'axe des abscisses?

- 1. aucun
- 2. (2; 3)
- 3. $(1; 2\sqrt{2})$
- 4. (8;6)

Exercice nº 6

Soit la fonction $f(x) = \frac{x^2}{x-1} e^{\frac{1}{x}}$

- 1. La droite d'équation y = x + 2 est asymptote oblique à la courbe C représentative de f quand $x \to +\infty$
- 2. La fonction f est strictement décroissante sur $]-\infty;0[$
- f est impaire
- 4. La fonction f est strictement croissante sur $]1;+\infty[$

Exercice nº 7

La contraposée de la proposition suivante: $\forall x \in R$, $\forall y \in R$, $x \succ y \Rightarrow f(x) = f(y)$

$$1.\exists x \in R, \exists y \in R, f(x) = f(y) \text{ ou } x \leq y$$

$$2. \forall x \in R, \forall y \in R, f(x) \neq f(y) \implies x \leq y$$

$$3.\exists x \in R, \exists y \in R, f(x) = f(y) \ et \ x \le y$$

$$4. \forall x \in R, \forall y \in R, x \succ y \Rightarrow f(x) \neq f(y)$$

Exercice nº 8

La négation de la proposition suivante: $\forall a \in R, \forall b \in R, a \le b \Rightarrow f(a) \ge f(b)$

$$1. \forall a \in R, \forall b \in R / (a \le b \Rightarrow f(a) \ge f(b)$$

$$2.\exists a \in R, \exists b \in R / (a \le b \text{ ou } f(a) \prec f(b)$$

$$3.\exists a \in R, \exists b \in R / (a \le b \ et \ f(a) \prec f(b)$$

$$4.\exists a \in R, \exists b \in R / (a \succ b \ et \ f(a) \prec f(b)$$

Exercice nº 9

On considère la suite (U_n) définie par : $\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, & u_{n+1} = \ln(1 + u_n) \end{cases}$

1.
$$\forall n \in \mathbb{N}, u_n \leq 0$$

- 2. la suite (U_n) est strictement croissante
- 3. la suite (U_n) est décroissante
- 4. $\forall n \in \mathbb{N}, u_n \succ 1$

Exercice nº 10

L'ensemble S des solutions réelles du système suivant : $\begin{cases} 2^{\frac{1}{x}} & 2^{\frac{1}{y}} \\ 2^{x} & 2^{y} \end{cases} = 32$ $2^{x} & 2^{y} & = \sqrt[6]{32}$

1.
$$S = \left\{ \left(\frac{1}{3}; \frac{1}{2}\right); \left(\frac{1}{2}; \frac{1}{3}\right) \right\}$$

$$2. S = \left(\frac{1}{5}; \frac{1}{3}\right)$$

3.
$$S = \left\{ \left(\frac{1}{5}; \frac{2}{3}\right); \left(\frac{3}{4}; \frac{1}{2}\right) \right\}$$

4.
$$S = \left\{ \left(\frac{2}{3}; \frac{1}{3}\right); \left(\frac{1}{4}; \frac{3}{5}\right) \right\}$$

Exercice nº 11

En effectuant une division, déterminer les paramètres a et b pour que le polynôme

 $A = x^3 + ax + b$ soit divisible par $B = x^2 - 3x + 2$

- 1. a = 4 et b = 2
- 2. a = 7 et b = 2
- 3. a = 6 et b = -3
- 4. a = -7 et b = 6

Exercice nº 12

Deux tireurs A et B font feu simultanément sur une cible. La probabilité pour A de toucher la cible est estimée à $\frac{4}{5}$; la probabilité pour B est de $\frac{3}{4}$.

La probabilité que la cible soit atteinte est :

- 1. $\frac{7}{20}$
- 2. $\frac{19}{20}$
- 3. $\frac{12}{20}$
- 4. $\frac{1}{20}$

Exercice nº 13

Une urne contient y boules dont 3 sont blanches, les autres étant rouges.

A l'occasion du tirage, sans remise, de deux boules, la probabilité d'obtenir une boule blanche puis une boule rouge est égale à $\frac{1}{4}$. Calculer y:

- 1. y = 8
- 2. y = 12
- 3. y = 4 et y = 9
- 4. y = 12 et y = 8

Exercice nº 14

De combien de manières différentes un professeur peut-il choisir un ou plusieurs élèves parmi 6 ?

- 1. 55
- 2. 6
- 3. 63
- 4. 48

Exercice nº 15

Le prix d'un article a subi trois baisses successives de 20%. De quel pourcentage ce prix a-t-il diminué au total ?

- 1. 60 %
- 2. 48,8%
- 3. 44,6%
- 4. 52,5%

UNIVERSITE CADI AYYAD ECOLE NATIONALE DES SCIENCES APPLIQUEES MARRAKECH

Correction du concours d'entrée en 1ère année du Cycle Préparatoire

Fiche de réponses					
Epreuve de Mathématique (Durée 1h : 15min)					
Nom :	Note :				

Remarques Importantes:

- 1) La documentation, les calculatrices et les téléphones portables sont interdits.
- 2) Parmi les réponses proposées il n'y en a qu'une qui est juste.
- 3) Cochez la case qui correspond à la réponse correcte sur cette fiche.
- 4) Réponse juste = 1 point; Réponse fausse = 1 point; Pas de Réponse = 0 point.

Noter Bien : Plus qu'une case cochée = - 1 point.

	1	2	3	4
Exercice 1			X	
Exercice 2		X		
Exercice 3				X
Exercice 4		X		
Exercice 5			X	
Exercice 6	X			
Exercice 7		X		
Exercice 8			X	
Exercice 9			X	
Exercice 10	X			
Exercice 11				X
Exercice 12		X		
Exercice 13			X	
Exercice 14			X	
Exercice 15		X		

Réservé aux correcteurs

R ⁻				
Total				

ROYAUME DU MAROC UNIVERSITE ABDELMALEK ESSAADIEcole Nationale des Sciences Appliquées Tanger

 $a) \lim_{x\to 0+} (x^2 \ln x) = 1$

المملكة المغربية جسامعية عبد الممالك السعيدي المسارسة الوطنية للعلوم التطبيقية طنجة

Tanger le 08/08/2011

 $(c)\lim_{x\to 0+}(x^2\ln x)=0$

CONCOURS D'ENTREE EN 1^{ère} ANNEE DU CYCLE PREPARATOIRE

Epreuve de Mathématique

(Nombre de pages 2 et une fiche réponse à remettre au surveillant, correctement remplie, à la fin de l'épreuve)

Parmi les réponses proposées, une seule est juste. Pour chaque question répondre sur la fiche réponse par une croix dans la case correspondante.

	(Bareme : une reponse just	te : +1, une reponse fausse :	-1, pas ae reponse : 0	,	
1)	Soient z_1 , z_2 deux nombres con	implexes. On suppose que : $ z_1 = z_2 $	$ z_2 = 1 \text{ et } 2 + z_1 z_2 = 1. \text{ A}$	ors: z ₁ .z ₂ =	
	a) 0	(b) -1	c) +1		
2)	Soit la matrice $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. Al	ors. $\forall n \in IN, A^n =$			
	$\binom{1}{a}\binom{1}{0}\binom{2n}{1}$	b) $\begin{pmatrix} 1 & 2^n \\ 0 & 1 \end{pmatrix}$	c) $\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$		
3)	Soit la matrice $A = \begin{pmatrix} 3 & 1 \\ -2 & 0 \end{pmatrix}$; alors $\forall n \in IN^*, A^n =$	*		
	(a) $\binom{2^{n+1}-1}{2-2^{n+1}}$ $\binom{2^n-1}{2-2^n}$,	b) $(2^n-1 2^n-1)$, $(2-2^{n+1} 2-2^n)$,	c) $\binom{2^{n+1}-1}{1-2^{n+1}}$	$\begin{pmatrix} 1 & 2^n - 1 \\ 1 & 2 - 2^n \end{pmatrix}$	
4)	Soient a et b deux nombres con $\left \frac{a-b}{1-\bar{a}b}\right = 1$,	nplexes tels que $a \neq b$, et $ a =1$. Alo b) $\left \frac{a-b}{1-\bar{a}b}\right = ab $,	c) $\left \frac{a-b}{1-ab} \right = \overline{ab} $		
5)	Si a = b = c =1, alors: ab+bc+ a) abc	ca = b) a+o+c	(3)	$\bar{a} + \bar{b} + \bar{c}$	
6)	1.a somme de la série $\sum_{k=0}^{+\infty} \frac{1}{k!}$ (a) $+\infty$	est:	c) Log e (e:	nombre d'Euler)	
7)	$\lim_{\chi \to \frac{\pi}{4}} \frac{tgx - 1}{2\cos x - \sqrt{2}} =$				
8)	$(a) - \sqrt{2}, a$ $\lim_{x \to \frac{\pi}{2}} \frac{\cot gx}{x - \frac{\pi}{2}} =$	b) $+\sqrt{2}$	c) 1		
	(a) + 1	b) + 1	c) 0		
9)	(a) $\lim_{x\to 3} \frac{x^4-81}{x-3} = 108$.	b) $\lim_{x\to 3} \frac{x^{e}-81}{x-3} = 0$	c) lim _{x→3} ^x	$\frac{4-81}{x-3} = 1$	

b) $\lim_{x\to 0+} (x^2 \ln x) = -x$

$$\lim_{x \to \infty} \frac{x^2}{e^x} = 0$$

b)
$$\lim_{\tau \to \infty} \frac{x^{\tau}}{\varepsilon^{\tau}} = 1$$

c)
$$\lim_{\kappa \to \infty} \frac{x^2}{e^x} = 2$$

$$\lim_{n\to\infty} \left(1+\frac{t}{n}\right)^n = 1$$

$$\left(\widehat{\mathbf{b}} \right) \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

$$\int_{0}^{1} \int_{0}^{1} \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n} = +\infty$$

$$a \tan(a + b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$$

b)
$$tan(a + b) = \frac{tan(a) - tan(b)}{1 + tan(a)tan(b)}$$

b)
$$\tan(a+b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$$
 c) $\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 + \tan(a)\tan(b)}$

14)

(a)
$$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$$

b)
$$tan(a - b) = \frac{tan(a) + tan(b)}{1 - tan(a)tan(b)}$$

b)
$$\tan(a-b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$$
 c). $\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 - \tan(a)\tan(b)}$

15) La dérivée première de $\arctan 3x^2$ est:

$$a) \frac{6x}{1-9x^4}$$

b)
$$\frac{6x}{1+x^4}$$

$$\varepsilon$$
) $\frac{6x}{1-9x^4}$

(a) $\frac{6x}{1+9x^4}$ (b) $\frac{6x}{1+\tau^4}$ (c) $\frac{6x}{1-9x^4}$ (d) Pour calculer la dérivée première de la fonction $y = (x^2 + 2)^2(1-x^3)^4$, on utilise la dérivation la maintenance de la fonction $y = (x^2 + 2)^2(1-x^3)^4$.

logarithmique et on obtient:
a)
$$\mathcal{Q} = 6x (x^2 + 2)^2 (1 - x^3)^3 (1 - 4x - 3x^3)$$

b) $y = 6x (x^2 + 2)^2 (1 - x^3)^3 (1 - 4x - 3x^2)$
c) $y = x (x^2 + 2)^2 (1 - x^3)^3 (1 - 4x - 3x^3)$

b)
$$y' = 6x(x^2 + 2)^2(1 - x^3)^3(1 - 4x - 3x^2)$$

c)
$$y = x(x^2 + 2)^2(1 - x^3)^3(1 - 4x - 3x^3)$$

17) Soit
$$f(x) = \frac{2}{1-x}$$
. Alors $f^{(n)}(x) =$
a) $2(n!) (1-x)^{-n}$

b)
$$2(n!) (1-x)^{-(n+1)}$$

e)
$$(n!) (1-x)^{-(n+1)}$$

18) Trouver y' à partir de l'équation xy + x - 2y - 1 = 0: a) $y' = \frac{1+y}{1-x}$ b) $y' = \frac{1+y}{2-x}$

a)
$$y' = \frac{1+y}{1-x}$$

$$(b)y' = \frac{1+y}{2-x}$$

e)
$$y' = \frac{1+y}{2+x}$$

19) Evaluation de l'intégrale $I = \int \sin^2 x dx$:

(a)
$$1 = \frac{1}{2} x - \frac{1}{4} \sin 2x + C$$
, C constante.

b)
$$I = \frac{1}{2}x - \frac{1}{2}\sin 2x + C$$
, C constante.

c)
$$I = \frac{1}{2}x + \frac{1}{4}\sin 2x + C_1x = constante$$
.

20) Evaluation de l'intégrale $I = \int \frac{dx}{x^2 - 4}$

a)
$$1 = \frac{1}{2} \ln \left| \frac{x-2}{x+2} \right| + C$$
, C constante

b)
$$I = \frac{1}{2} \ln \left| \frac{x+2}{x-2} \right| + C_1 C$$
 constante.

a)
$$1 = \frac{1}{2} \ln \left| \frac{x-2}{x+2} \right| + C, C \text{ constante.}$$

b) $1 = \frac{1}{4} \ln \left| \frac{x+2}{x-2} \right| + C, C \text{ constante.}$
c) $1 = \frac{1}{4} \ln \left| \frac{x-2}{x+2} \right| + C, C \text{ constante.}$

a)
$$\sum_{k=1}^{n} k = \frac{(n+1)(n+2)}{2}$$

$$\widehat{b}) \hat{\Sigma}_{k=1}^n k = \frac{n(n-1)}{2}$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

a)
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{n}$$

(a)
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
 (b) $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{3}$ (c) $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+2)}{6}$

c)
$$\sum_{k=1}^{n} k^2 = \frac{n(n-1)(2n-2)}{6}$$

23)

a)
$$\sum_{k=1}^{n} k^3 = \left(\frac{n(2n-1)}{2}\right)^2$$

b)
$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n-1)}{2}\right)^3$$

b)
$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^3$$
 c) $\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$

24) L'aire I, de la région délimitée par la courbe $y = x^2$. la droite y = -x/2 et la droite x = 3. est

25) Le nombre d'Euler e correspond à:

a)
$$e = 2.71628$$

$$(c)$$
 $e = 2.71828$