Discrete Math (Honor) 2021-Fall Homework-7

Instructor: Xiang YIN Due: 2021.12.03 Friday in Class

(Please use A4 paper. Do not use exercise book!)

Problem 1. (8 Points)

For any relations R and S. Prove that $R \circ S \subseteq S$ if and only if $t(R) \circ S \subseteq S$.

Answer:

• \Rightarrow , if $R \circ S \subseteq S$:

For any $< x, z > \in t(R) \circ S$, exists some y s.t. $< x, y > \in t(R) \land < y, z > \in S$ From $< x, y > \in t(R)$, we have two cases:

- $\langle x, y \rangle \in R$
- Exists finite $t_1, t_2, ..., t_k (k \ge 1)$ s.t. $\langle x, t_1 \rangle \in R \land \langle t_1, t_2 \rangle \in R \land ... \land ... \langle t_k, y \rangle \in R$. Then we have $\langle t_k, z \rangle \in R \circ S$, and from $R \circ S \subseteq S$ we immediately get $\langle t_k, z \rangle \in S$. Similarly, $\langle t_{k-1}, z \rangle \in S$, ... $\langle t_1, z \rangle \in S$, $\langle x, z \rangle \in S$
- \Leftarrow , if $t(R) \circ S \subseteq S$: For any $\langle x, z \rangle \in R \circ S$, exists some y s.t. $\langle x, y \rangle \in R \land \langle y, z \rangle \in S$ Then $\langle x, y \rangle \in t(R)$, then $\langle x, z \rangle \in t(R) \circ S$. Therefore, $\langle x, z \rangle \in S$

Problem 2. (5 Points)

Let $A = \{a, b, c, d\}$ and $R = \{\langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle c, d \rangle, \langle d, c \rangle, \langle d, d \rangle\} \subseteq A \times A$ be a relation on A. Determine whether or not R is an equivalence relation; if so, determine the quotient set of A.

Answer:

Yes.

The quotient set of A: $\{\{a,b\},\{c,d\}\}$

Problem 3. (15 Points)

Let $R_1 \subseteq A \times A$ and $R_2 \subseteq A \times A$ be two non-empty equivalence relations on A. Determine whether or not each of the following relations is an equivalence relation. If so, prove it; otherwise, provide an counter example.

- 1. $(A \times A) R_1$
- 2. $(R_1)^2$
- 3. $R_1 R_2$
- 4. $r(R_1 R_2)$
- 5. $t(R_1 \cup R_2)$

Answer:

- 1. No. Suppose $A = \{a\}, R = \{\langle a, a \rangle\}$
- 2. Yes. Prove R_1^2 is symmetric, transitive and reflexive respectively

- 3. No. Suppose any $R_1 = R_2$
- 4. No. Suppose $A = \{a, b, c\}, R_1 = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle b, c \rangle, \langle c, b \rangle\}, R_2 = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle a, b \rangle, \langle b, a \rangle\}$ then $R_1 R_2 = \{\langle a, c \rangle, \langle c, a \rangle, \langle b, c \rangle, \langle c, b \rangle\}$ $r(R_1 R_2) = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle c, a \rangle, \langle c, a \rangle, \langle c, b \rangle\}$ is not transitive $(\langle b, c \rangle, \langle c, a \rangle) \in r(R_1 R_2)$
- 5. Yes.

Problem 4. (8 Points)

Let $A = \{a, b, c, d, e, f\}$ and $R = \{\langle a, b \rangle, \langle a, c \rangle, \langle a, f \rangle, \langle b, c \rangle, \langle c, d \rangle, \langle c, e \rangle, \langle c, f \rangle, \langle d, e \rangle, \langle e, f \rangle\} \subseteq A \times A$.

- 1. Determine if s(r(R)) is a tolerance relation.
- 2. Find all maximal tolerance classes of s(r(R)).

Answer:

- 1. Yes.
- 2. $\{a,b,c\},\{a,c,f\},\{c,d,e\},$ and $\{c,f,e\}$

Problem 5. (8 Points)

Let $\langle S, \leq_1 \rangle$ be $\langle T, \leq_2 \rangle$ be two posets. Prove that $\langle S \times T, \leq \rangle$ is also a poset, where \leq is defined by: $\langle s, t \rangle \leq \langle u, v \rangle$ iff $s \leq_1 u$ and $t \leq_2 v$.

Answer:

- Reflexive: ... (obvious)
- Transitive: ... (easy)
- Anti-symmetric: For any s, t, u, v s.t. $\langle s, t \rangle \leq \langle u, v \rangle$ and $\langle u, v \rangle \leq \langle s, t \rangle$. we have $s \leq_1 u \wedge u \leq_1 s$ and also $t \leq_2 v \wedge v \leq_2 t$, so s = u and t = v, and $\langle u, v \rangle = \langle s, t \rangle$.

Problem 6. (15 Points)

Read the following definitions carefully and then answer the questions.

Let $\langle A, \leq \rangle$ be a poset and $B \subseteq A$ be a subset. We say

- B is a **Chain** if any two elements in B are comparable. The number of elements in B is called the *length* of the chain;
- B is a **Anti-Chain** if any two elements in B are incomparable. The number of elements in B is called the *length* of the chain.

where "x and y are incomparable" means that "neither $x \leq y$ nor $y \leq x$ ".

Now, let $\langle 2^{\{a,b,c\}}, \subseteq \rangle$ be a poset. Then

- 1. Write down two different chains with length 4.
- 2. Write down an anti-chains with length 3.
- 3. The lower set of an anti-chain B is defined as $L_B = \{x : x \in A \land (\exists y \in B)(x \leq y)\}$. What is the lower set of the anti-chain you provided in the above problem.

Answer:

- 1. $\{\}\subseteq \{a\}\subseteq \{a,b\}\subseteq \{a,b,c\}$
- 2. $\{a,b\},\{b,c\},\{a,c\}$
- 3. $\{\}, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}$