Lukas Schäfer

🖫 Lukas Schäfer 🛅 lukas-schaefer 🖸 LukasSchaefer

FDUCATION

PhD Data Science & Artificial Intelligence

12/2019 -- Present

University of Edinburgh

EDINBURGH, UNITED KINGDOM

- > Principal supervisor: Dr. Stefano V. Albrecht (Autonomous Agents Research Group)
- > Project: Collaborative Exploration in Multi-Agent Reinforcement Learning using Intrinsic Curiosity
- > Research: Reinforcement Learning, Multi-Agent Systems, Generalisation, Exploration, Intrinsic Rewards

M.Sc. Informatics

09/2018 -- 08/2019

EDINBURGH, UNITED KINGDOM

UNIVERSITY OF EDINBURGH

- > Degree classification: **Distinction** (77.28%)
- > MSc thesis: Curiosity in Multi-Agent Reinforcement Learning (74%)
- > Received DAAD (German Academic Exchange Service) graduate scholarship and Stevenson Exchange Scholarship
- > Modules include: Reinforcement Learning, Algorithmic Game Theory and its Applications, Machine Learning and Pattern Recognition, Probabilistic Modelling and Reasoning, Decision Making in Robots and Autonomous Agents

B.Sc. Computer Science, minor subject Japanese

10/2015 -- 09/2018

SAARLAND UNIVERSITY

SAARBRÜCKEN, GERMANY

- > Degree classification: grade of 1.2 (German scale) equivalent to UK 1st class honours
- > BSc thesis: Domain-Dependent Policy Learning using Neural Networks in Classical Planning (1.0)

Abitur 1.0 - Secondary School

Warndtgymnasium Geislautern, Völklingen

08/2008 -- 06/2015

GEISLAUTERN, GERMANY

DISSERTATIONS

M.Sc. Dissertation, University of Edinburgh

05/2019 -- 08/2019

AUTONOMOUS AGENTS RESEARCH GROUP

- Applied curiosity as intrinsically computed exploration bonuses for multi-agent reinforcement learning (MARL)
- > Implemented count- and prediction-based curiosities for value-based and policy-gradient MARL methods using PyTorch
- > Evaluated the influence of curiosity on cooperative and competitive MARL under partial observability and sparse rewards in a multi-agent particle environment
- > Applied curiosity led to improved stability and convergence of policy-gradient MARL trained with sparse reward signals

B.Sc. Dissertation, Saarland University

04/2018 -- 07/2018

FOUNDATIONS OF ARTIFICIAL INTELLIGENCE (FAI) GROUP

- > Transferred domain-dependent policy learning Action-Schema Networks to classical automated planning
- > Keras implementation, adjusted training for classical planning and extended the FastDownward planning framework
- > Extensive evaluation and analysis was conducted on IPC domains of varying complexity identifying limitations in generalisation and scalability

III SKILLS

Programming

Competent Python • C++ • SML

Familiar C • Java • Rust • HTML • CSS • Matlab • Bash

Technologies and Tools

PyTorch · TensorFlow · Keras · NumPy · UNIX · Git

Languages

Native in German · Fluent in English · Intermediate in French · Beginner in Chinese · Beginner in Japanese

- [1] F. Christianos, Lukas Schäfer, and S. V. Albrecht. Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning. In 34th Conference on Neural Information Processing Systems, 2020.
- [2] G. Papoudakis, F. Christianos, Lukas Schäfer, and S. V. Albrecht. Comparative Evaluation of Multi-Agent Deep Reinforcement Learning Algorithms, 2020.

Q REVIEWING

> Reviewer for NeurIPS 2020 workshop "The pre-registration experiment: an alternative publication model for machine learning research"

■ TFACHING EXPERIENCE

Teaching Assistant, University of Edinburgh

10/2019 -- 05/2020

REINFORCEMENT LEARNING, SCHOOL OF INFORMATICS

- > Delivering lectures and designing RL coursework coveringwide range of topics from single- to multi-agent and deep RL
- > Marking project and exam for reinforcement learning course
- Advising students on various challenges regarding lecture material and content

Voluntary Lecturer and Coach, Saarland University

09/2017 -- 10/2017

MATHEMATICS PREPARATION COURSE

- > Assisted the organization of the mathematics preparation course for upcoming computer science students
- lacktriangle Explained formal languages and predicate logic to ~ 250 participants in daily lectures of the first week
- Supervised two groups to provide feedback and further assistance in daily coaching-sessions
- > The course received BESTE-award for special student commitment 2017 of Saarland University

Teaching Assistant, Saarland University

10/2016 -- 03/2017

PROGRAMMING 1, DEPENDABLE SYSTEMS AND SOFTWARE GROUP

- > Taught first-year students concepts of functional programming, basic complexity theory and inductive correctness proofs in weekly tutorials and office hours
- > Collectively created learning materials and discussed student progress as part of the whole teaching team

PROJECT EXPERIENCE

Navigation Software Engineer, University of Edinburgh

09/2018 -- 08/2019

HYPED -- University of Edinburgh Hyperloop Team

- > Developing navigation system of "The Flying Podsman" Hyperloop prototype using sensor filtering, processing and control techniques to estimate location, orientation and speed of the pod
- Finalist for the SpaceX 2019 Hyperloop competition in California in Summer 2019

Reinforcement Learning for Soccer Playing, University of Edinburgh

02/2019 -- 03/2019

PROJECT FOR REINFORCEMENT LEARNING LECTURE

- Implemented several foundational RL methods including value iteration, Q-learning, first-visit Monte Carlo and SARSA for simple control tasks and the half-field-offense (HFO) 2D environment
- Implemented asynchronous 1-step Q-learning with deep Q-networks (DQNs)
- Implemented multi-agent RL methods independent Q-learning, joint action learning and WoLF-PHC controlling two cooperating agents in the HFO environment

Autonomous Robot Localisation, University of Edinburgh

09/2018 -- 12/2018

GROUP PROJECT FOR ROBOTICS: SCIENCE AND SYSTEMS LECTURE

- > Constructed a four-wheel differential steering mobile robot as group of three for autonomous localisation in a known environment using LEGO aside of technical components including a Raspberry Pi computer
- > Implemented particle-filter localisation and obstacle avoidance based on IR and sonar sensors
- Robot successfully managed to navigate through the constructed arena, detect and communicate points of interest using light sensors and return back to its deployment location