	September 29, 2016
>	10 Cards: 4 Red, 6 Blue
(2)	P(2 Red, Orawing 3) = (4)(6)
	(10) Order doesn't matter)
	$P(x \text{ Red }, \text{Drawing } 3) = (\frac{4}{x})(\frac{6}{3-x})$
	ELE / (3) M & source > Veternous !
APPROPRIES!	$P(x \text{ Red}, Drawing n) = \frac{4}{(x)(n-x)}$
BASIS LESSES	7 (0)
	"Successors" "Failures"
ל	10 cavas: K Red, 10-K Blue 9 = MAN DOWN MAN
	$P(x \text{ Red}, Drawing n) = (\frac{x}{x})(\frac{10-x}{n-x})$
	$\binom{0}{n}$
	$9 = \frac{1}{10000000000000000000000000000000000$
9-1>	M Cards: K Red, N-K Blue
	N Cards: K Red, N-K Blue $P(x \text{ Red, Drawing } n) = \frac{(x)(N-K)}{(n-x)}$
	$\binom{n}{n}$
· fr	$\chi \sim \text{Hypergeometric}(n, K, N) := p(x) = (\frac{\kappa}{\chi})(\frac{N-\kappa}{n-x})$
LEn.	(N)
	Example: N=118 K=37 n=23
	P(x=10) what's the probability of getting 16 successors
	X~ Hyper (23, 37, 118):= p(x=16) = (37) (81) if you take 23 out?
F5/	Howarran total Successors (22) failures (23-16)
[3 y 1	10 } = [SC] ggus / Youpick number +failures of successors
	Parameter Space
	$N=0$? $\Rightarrow N=0$
	$N=1$? $\rightarrow n=1$, $K=0$ or 1.
-K),, K3	Un & = [X] conseque the one ball can 84.8.28 = [X] one
	if you only have either be a successor I ball in a baggyou or a failure can only pick 1
	can only pick 1.
	N=2? => K=0 => 2 " Deg(0) => Not Interesting)
[-K) [K]	if $N=1$? $K=1$ $X \sim Deg(1) \rightarrow Not Interesting! always$

2, K=14 $\chi \sim \text{Hyper}(1,1,2) = (\chi)(\chi) \Rightarrow P(\chi=0) = \frac{1}{2} = \text{Bern}(\frac{1}{2})$ $(\frac{2}{1}) \qquad P(\chi=1) = \frac{1}{2}$ N=2, K=1 n=1 N=2 > X~ Deg(K) -> Not Interesting! Parameter Space => N & IN \ 213 K & 21,2,..., N-13 - rannot = N b/c thenthen (n = 21,2,..., N-13) - cannot - N s/c you'll pickal 2 " Hyper (1, K, N) = Bern (K) What is the support? Supp [2] = {0,13 $= \binom{K}{N} \binom{N-K}{1-\chi} \Rightarrow P(\chi=1) = \frac{K}{N} = P$ $P(x=0) = 1 - \frac{k}{N} = 1 - P$ X . Hyper (2,4,10) le fairures Supp [X] = {0,1,23 => [n<K, n<N-K what is possible? 2 fail o success L Supp [X] = {0,1,...,n} what can happen?

you're picking from I fail, I success

2 boalls. How many
successes can you get? Ofail, 2 success

X ~ Hyper (5, 4, 10) 6 failures Supp[X] = {0,1,2,3,43 → nok, nen-k 5 fail, O success 2 fail, 3 sugess L Supp [X] = 20,1, ... K3 Afail, 1 success I fail, 4 success 2 N Hyper (8,4, W) Granores = In >K, n > N-1 n > K, n > N-K Supp [X] = {2,3,43 Supp[X] = { W(N-K), ..., K bfail, 2 success 5 fail, 3 success 4 Pail, 4 success (0),000 m x = 0 = 4 7= 3 S = 11. 2 " Hyper (5, 7, 10) Mak, n> N-K Supp[X] {2,3,4,5 () = L Supp[X] = \{n-(N-K),...,n

		CV.TJ 9	inter melana protin									
	004	MNKK/MOM YOU	1 n > K ? = (8=	11mg P X								
	n < N-K	20,, n 3	20,, K3									
	N > N-K	2n-(N-K),, n3	{n-(N-K), K	3								
	A 1/3-A3	X I I I I I I I I I I I I I I I I I I I	1/2 /2/	The desired								
Supp $[X] = \frac{2}{n} \max(0, n - (N - K)), \dots, \min(n, K)$												
	S P	(x) = 1	1) 1(5-19) (WI) 1	10								
	-	17	(IT W)									
	n: Samul	e Size - how many you p	n: Samplesize	mil /a/=								
	N: popul	atron size Oh	N: population size	2 00 EN (X)								
	K: # of successes R: proportion of successes											
>	> Equivalent Parameterization											
_	Let b = 1	K= pN S Or	le-to-one									
	X ~ Hupe	$\operatorname{cr}(n,p,N) := pC$	$\chi = \begin{pmatrix} pN \\ \chi \end{pmatrix} \begin{pmatrix} (1-p) \\ n-2 \end{pmatrix}$	N)								
> Consider a bag where 50% are successes (A) $p = 0.5$ $n = 6$ $N = 100$ $p(X=3) = {50 \choose 3} {50 \choose 3} = .3223$												
						(100)						
							Bp = 0.5 $n = 6$ $N = 1000$ Converges					
							5 p(X=3		- 3134 Jayman	Canal (0)		
	las i	(1000)										
	© p=0.5 n=6 N=10,000											
	p(X=3)	157001 / 57	3 = . 3136	Jano ux K								
	(1000)											
-0	If you mark	ease the population siz	e and kep the amou	nt of successors								
	the care it	- will would to -	mumber Hamma	mattar in in								

the same, it will converge to one number. It doesn't matter if you take out and put it back in Eventually, as you keep adding more balls to the population, the probability will be the same

```
4
                        , The limiting random value (r.v.)
                  \lim_{N\to\infty} P(x=3) = ? \Rightarrow x \sim Hyper(n, p, N) and N \to \infty
                          (ON)! ((1-P)N)!
                        x!(pN-x)! (n-x)!((1-p)N-n+x)!
 factored out using
                                    n! (N-n)!
lim af(x)
                                   1im (pN-x)! ((1-p)N)!
N-200 N1
 = a limf(x)
                  = \frac{(n) \lim_{N \to \infty} \frac{(pN)(pN-1) \dots (pN-x+1)}{(N)(N-1) \dots ((1-p)N-n+x+1)}}{(N)(N-1) \dots ((1-p)N-n+x+1)}
                                pN · limpN-1 · · · · limpN-x+1 · lim(1-p)N · lim(1-p)N-1· lim(1-p)N-1×+1
lim f(x)q(x)
= lim f(x) limg(x)
                 = \binom{n}{x}_{p}^{x} (1-p)^{n-x}
                       \chi \sim \text{Binomial}(n,p) := p(\chi) := {n \choose x} p^{\chi} (1-p)^{\chi-\chi}
                   Supp[\chi J = 20, 1, ..., n 3 everything
                      In an indefinitely large bag, what are the possible values?
  = Deg(0)
                  \chi \sim Binom(n, 0) = {n \choose x} 0^{x} (1-0)^{n-x} \Rightarrow p(x=0) = {n \choose 0} 0^{0} n^{-x}

\chi \sim Binom(n, 1) = {n \choose x} 1^{x} 0^{n-x}
  = Deg(n) "
                  x \sim Binom(1,p) = (x)p^{x}(1-p)^{1-x} = p^{x}(1-p)^{1-x} = Bern(p)
                     Supp [X] = 20,13
```