Finite automata and formal languages (DIT323, TMV029)

Nils Anders Danielsson

2024-01-29

Today

- ▶ NFAs with ε -transitions.
- ► Exponential blowup.

- Like NFAs, but with ε -transitions: The automaton can "spontaneously" make a transition from one state to another.
- ► Can be used to convert regular expressions to finite automata.

Strings over $\{0,1\}$ that start and end with a one, or that contain two consecutive ones:

An ε -NFA can be given by a 5-tuple $(Q, \Sigma, \delta, q_0, F)$:

- ▶ A finite set of states (Q).
- An alphabet (Σ with $\varepsilon \notin \Sigma$).
- ▶ A transition function $(\delta \in Q \times (\Sigma \cup \{ \varepsilon \}) \to \wp(Q)).$
- ▶ A start state $(q_0 \in Q)$.
- ▶ A set of accepting states $(F \subseteq Q)$.

If the alphabet is $\{1\}$, then the diagram

corresponds to the 5-tuple

$$One = \left(\left\{ \right. s_0, s_1, s_2 \left. \right\}, \left\{ \right. 1 \left. \right\}, \delta, s_0, \left\{ \right. s_2 \left. \right\} \right),$$

where δ is defined in the following way:

Transition diagrams

As for NFAs, but arrows can be labelled with ε .

Transition tables

As for NFAs, but with one column for ε .

The ε -closure of a state q consists of those states that one can reach from q by following zero or more ε -transitions.

Given an ε -NFA $A=(Q,\Sigma,\delta,q_0,F)$ one can, for each state $q\in Q$, define the ε -closure of q (a subset of Q) inductively in the following way:

$$\frac{q' \in \varepsilon\text{-}closure(q)}{q'' \in \varepsilon\text{-}closure(q)}$$

$$\frac{q' \in \varepsilon\text{-}closure(q)}{q'' \in \varepsilon\text{-}closure(q)}$$

Consider the following ε -NFA again:

The set ε - $closure(s_0)$ contains two states:

$$\overline{s_0 \in \varepsilon\text{-}closure(s_0)}$$

$$\overline{s_0 \in \varepsilon\text{-}closure(s_0)} \quad \overline{s_1 \in \delta(s_0, \varepsilon)}$$

$$s_1 \in \varepsilon\text{-}closure(s_0)$$

Some notation

The ε -closure of a set $S \subseteq Q$:

$$\varepsilon\text{-}closure(S) = \bigcup_{s \in S} \varepsilon\text{-}closure(s)$$

Transition functions applied to a set $S \subseteq Q$:

$$\delta(S, a) = \bigcup_{s \in S} \delta(s, a)$$
$$\hat{\delta}(S, w) = \bigcup_{s \in S} \hat{\delta}(s, w)$$

The ε -closure of q can be computed (perhaps not very efficiently) in the following way:

- ▶ Initialise C to $\{q\}$.
- ▶ Repeat until $\delta(C, \varepsilon) \subseteq C$:
 - ▶ Set C to $C \cup \delta(C, \varepsilon)$.
- ▶ Return C.

Let us compute $\varepsilon\text{-}closure(s_0)$ for the following $\varepsilon\text{-NFA}$:

Let us compute $\varepsilon\text{-}closure(s_0)$ for the following $\varepsilon\text{-NFA}$:

▶ Initialise C to $\{s_0\}$.

Let us compute $\varepsilon\text{-}closure(s_0)$ for the following $\varepsilon\text{-NFA}$:

▶ We have $\delta(C, \varepsilon) \nsubseteq C$:

$$\begin{split} \delta(C,\varepsilon) &= \delta(\left\{\,s_0\,\right\},\varepsilon) = \delta(s_0,\varepsilon) = \\ \left\{\,s_1\,\right\} &= C. \end{split}$$

 $\blacktriangleright \ \, \mathsf{Set} \,\, C \,\, \mathsf{to} \,\, C \cup \delta(C,\varepsilon) = \{\, s_0,s_1\,\}.$

Let us compute $\varepsilon\text{-}closure(s_0)$ for the following $\varepsilon\text{-NFA}$:

▶ We have $\delta(C, \varepsilon) \subseteq C$:

$$\begin{array}{ll} \delta(C,\varepsilon) &= \delta(\left\{\,s_0,s_1\,\right\},\varepsilon) = \\ \delta(s_0,\varepsilon) \cup \delta(s_1,\varepsilon) = \left\{\,s_1\,\right\} \cup \emptyset &= \\ \left\{\,s_1\,\right\} &\subseteq \left\{\,s_0,s_1\,\right\} &= C. \end{array}$$

▶ Return *C*.

Which of the following propositions hold for the following $\varepsilon\text{-NFA}$ over $\{\ 0,1\ \}$?

1.
$$q_0 \in \varepsilon$$
-closure (q_0) .

4. $q_6 \in \varepsilon$ -closure (q_0) .

2. $q_5 \in \varepsilon$ -closure (q_0) .

5. $q_3 \in \varepsilon$ -closure (q_1) .

3. ε -closure $(q_4) \subseteq$ 6. ε -closure $(q_4) \subseteq$ ε -closure (q_5) .

Respond at https://pingo.coactum.de/729558.

Semantics

The language of an ε -NFA

The language L(A) of an $\varepsilon\text{-NFA}$ $A=(Q,\Sigma,\delta,q_0,F)$ is defined in the following way:

► A transition function for strings is defined by recursion:

$$\begin{split} \hat{\delta} &\in Q \times \Sigma^* \to \wp(Q) \\ \hat{\delta}(q,\varepsilon) &= \varepsilon\text{-}closure(q) \\ \hat{\delta}(q,aw) &= \hat{\delta}(\delta(\varepsilon\text{-}closure(q),a),w) \end{split}$$

The language is

$$\left\{\; w \in \Sigma^* \; \middle|\; \hat{\delta}(q_0,w) \cap F \neq \emptyset \; \right\}.$$

The language of an ε -NFA

abba.
 aaabaaa.
 abbaca.
 aaaabaa.

3. aaabaa. 6. abbaaaabaa.

Respond at https://pingo.coactum.de/729558.

Which of the following propositions are valid?

1.
$$\varepsilon$$
-closure(ε -closure(q)) = ε -closure(q).

2.
$$\hat{\delta}(q, w) = \hat{\delta}(\varepsilon \text{-}closure(q), w).$$

3.
$$\hat{\delta}(\delta(\varepsilon\text{-}closure(q), a), w) =$$

 $\hat{\delta}(\varepsilon\text{-}closure(\delta(q,a)), w).$

Respond at https://pingo.coactum.de/729558.

Which of the following propositions are valid?

3.
$$\hat{\delta}(\delta(\varepsilon\text{-}closure(q), a), w) = \hat{\delta}(\varepsilon\text{-}closure(\delta(q, a)), w).$$

No. Counterexample:

Denote the transition function by δ .

$$\begin{split} \hat{\delta}(\delta(\varepsilon\text{-}closure(q),a),\varepsilon) &= \{\ q_2\ \} \neq \\ \emptyset &= \hat{\delta}(\varepsilon\text{-}closure(\delta(q,a)),\varepsilon) \end{split}$$

Constructions

Subset construction

Given an $\varepsilon\text{-NFA }N=(Q,\Sigma,\delta,q_0,F)$ we can define a DFA D with the same alphabet in such a way that L(N)=L(D):

$$\begin{split} D &= (\wp(Q), \Sigma, \delta', \varepsilon\text{-}closure(q_0), F') \\ \delta'(S, a) &= \varepsilon\text{-}closure(\delta(S, a)) \\ F' &= \{ \ S \subseteq Q \mid S \cap F \neq \emptyset \ \} \end{split}$$

Every accessible state S is ε -closed (i.e. $S = \varepsilon$ -closure(S)).

If the subset construction is used to build a DFA corresponding to the following ε -NFA over $\{a,b\}$, and inaccessible states are removed, how many states are there in the resulting DFA?

Respond at https://pingo.coactum.de/729558.

	a	b
$\rightarrow * \{ 0, 3 \}$	$\{0, 1, 2, 3\}$	Ø
* { 0, 1, 2, 3 }	$\{0, 1, 2, 3\}$	$\{2\}$
\emptyset	Ø	Ø
$\{2\}$	{ 3 }	\emptyset
* { 3 }	$\{\stackrel{.}{0},\stackrel{.}{3}\}$	Ø

	a	b
$\rightarrow *A$	B	C
*B	B	D
C	C	C
D	E	C
*E	A	C

Regular languages

- ▶ Recall that a language $M \subseteq \Sigma^*$ is regular if there is some DFA (or NFA) A with alphabet Σ such that L(A) = M.
- ▶ For alphabets Σ with $\varepsilon \notin \Sigma$ a language $M \subseteq \Sigma^*$ is also regular if and only if there is some ε -NFA A with alphabet Σ such that L(A) = M.

Recall:

▶ One can use ε -NFAs to convert regular expressions to finite automata.

Given two ε -NFAs A_1 and A_2 with the same alphabet we can construct an ε -NFA $A_1 \oplus A_2$ that satisfies the following property:

$$L(A_1 \oplus A_2) = L(A_1) \cup L(A_2).$$

Construction:

- ▶ The transitions go to the start states.
- ▶ States are renamed if the state sets overlap.

Can one do something similar for NFAs by "merging" the start states?

Given two NFAs $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ satisfying $Q_1 \cap Q_2 = \emptyset$ and $q_0 \notin Q_1 \cup Q_2$, is the language of the NFA $(f(Q_1 \cup Q_2), \Sigma, \delta, q_0, f(F_1 \cup F_2)),$ where

 $f(S) = (S \setminus \{q_{01}, q_{02}\}) \cup \{q_0 \mid q_{01} \in S \lor q_{02} \in S\},$

3. No, not always, but sometimes.

$$\delta(s,a) = \begin{cases} f(\delta_1(q_{01},a) \cup \delta_2(q_{02},a)), & \text{if } s = q_0, \\ f(\delta_1(s,a)), & \text{if } s \in Q_1, \\ f(\delta_2(s,a)), & \text{if } s \in Q_2 \end{cases}$$
 equal to $L(A_1) \cup L(A_2)$?

1. Yes, always.

2. No, never.

Respond at https://pingo.coactum.de/729558.

Can one do something similar for NFAs by "merging" the start states?

- lacktriangle Sometimes. For instance if F_1 and F_2 are empty.
- ▶ Not always. The following NFAs over $\{0,1\}$ accept \emptyset and $\{1\}$:

The combination accepts $\{0^n1 \mid n \in \mathbb{N}\}$:

Consider the following family of languages:

$$A \in \mathbb{N} \to \wp(\{0,1\}^*)$$

 $A(n) = \{u1v \mid u, v \in \{0,1\}^*, |v| = n\}$

The family:

$$A(n) = \{ u1v \mid u, v \in \{0, 1\}^*, |v| = n \}$$

For every $n \in \mathbb{N}$ the NFAs for A(n) with the least number of states have at most n+2 states:

Furthermore one can prove:

▶ For every $n \in \mathbb{N}$ the DFAs for A(n) with the least number of states have at least 2^{n+1} states.

A key part of the proof in the course text book uses the pigeonhole principle:

▶ A DFA over $\{0,1\}$ with less than 2^k states has to end up in the same state for at least two distinct k-bit strings.

Thus it might be inefficient to check if a string belongs to a language represented by an NFA (or ε -NFA) by using the following method:

- ► Translate the NFA to a corresponding DFA.
- Use the DFA to check if the string belongs to the language.

- ▶ This method is used in practice by some tools.
- ▶ It seems to work fine in many practical cases.
- Exercise (optional): Make such a tool "blow up" by giving it a short piece of carefully crafted input.

Today

- \triangleright ε -NFAs.
- \triangleright ε -closure.
- Semantics.
- Constructions.
- ► Exponential blowup.

Next lecture

- ► Regular expressions.
- ► Translation from finite automata to regular expressions.