Abitur 2015 Mathematik Infinitesimalrechnung I

Gegeben ist die Funktion $f: x \mapsto (x^3 - 8) \cdot (2 + \ln x)$ mit maximalem Definitionsbereich D.

Teilaufgabe Teil A 1a (1 BE)

Geben Sie D an.

Teilaufgabe Teil A 1b (2 BE)

Bestimmen Sie die Nullstellen von f.

Gegeben sind die in \mathbb{R} definierten Funktionen f, g und h mit $f(x) = x^2 - x + 1, g(x) = x^3 - x + 1$ und $h(x) = x^4 + x^2 + 1$.

Teilaufgabe Teil A 2a (3 BE)

Das untere Bild zeigt den Graphen einer der drei Funktionen. Geben Sie an, um welche Funktion es sich handelt. Begründen Sie, dass der Graph die anderen beiden Funktionen nicht darstellt.

Teilaufgabe Teil A 2b (2 BE)

Die erste Ableitungsfunktion von h ist h'. Bestimmen Sie den Wert von $\int_{0}^{1} h'(x) dx$.

Teilaufgabe Teil A 3a (1 BE)

Geben Sie einen positiven Wert für den Parameter a an, sodass die in \mathbb{R} definierte Funktion $f: x \mapsto \sin(a x)$ eine Nullstelle in $x = \frac{\pi}{6}$ hat.

Teilaufgabe Teil A 3b (2 BE)

Ermitteln Sie den Wert des Parameters b, sodass die Funktion $g: x \mapsto \sqrt{x^2 - b}$ den maximalen Definitionsbereich $\mathbb{R} \setminus]-2;2[$ besitzt.

Teilaufgabe Teil A 3c (2 BE)

Erläutern Sie, dass die in \mathbb{R} definierte Funktion $h: x \mapsto 4 - e^x$ den Wertebereich] $-\infty$; 4[besitzt.

Teilaufgabe Teil A 4 (2 BE)

Das untere Bild zeigt den Graphen einer in \mathbb{R} definierten differenzierbaren Funktion $g: x \mapsto g(x)$. Mithilfe des Newton-Verfahrens soll ein Näherungswert für die Nullstelle a von g ermittelt werden. Begründen Sie, dass weder die x-Koordinate des Hochpunkts H noch die x-Koordinate des Tiefpunkts T als Startwert des Newton-Verfahrens gewählt werden kann.

Gegeben ist die Funktion f mit $f(x) = x^3 - 6x^2 + 11x - 6$ und $x \in \mathbb{R}$.

Teilaufgabe Teil A 5a (3 BE)

Weisen Sie nach, dass der Wendepunkt des Graphen von f auf der Geraden mit der Gleichung y = x - 2 liegt.

Teilaufgabe Teil A 5b (2 BE)

Der Graph von f wird verschoben. Der Punkt (2|0) des Graphen der Funktion f besitzt nach der Verschiebung die Koordinaten (3|2). Der verschobene Graph gehört zu einer Funktion h. Geben Sie eine Gleichung von h an.

Gegeben ist die Funktion f mit $f(x) = \frac{1}{x+1} - \frac{1}{x+3}$ und Definitionsbereich $D_f = \mathbb{R} \setminus \{-3; -1\}$. Der Graph von f wird mit G_f bezeichnet.

Teilaufgabe Teil B 1a (4 BE)

Zeigen Sie, dass f(x) zu jedem der drei folgenden Term äquivalent ist:

$$\frac{2}{(x+1)(x+3)} \; ; \; \frac{2}{x^2+4x+3} \; ; \; \frac{1}{0, 5 \cdot (x+2)^2 - 0, 5}$$

Teilaufgabe Teil B 1b (3 BE)

Begründen Sie, dass die x-Achse horizontale Asymptote von G_f ist, und geben Sie die Gleichungen der vertikalen Asymptoten von G_f an. Bestimmen Sie die Koordinaten des Schnittpunkts von G_f mit der y-Achse.

Abbildung 1 zeigt den Graphen der in \mathbb{R} definierten Funktion $p: x \mapsto 0, 5 \cdot (x+2)^2 - 0, 5$, die die Nullstellen x = -3 und x = -1 hat. Für $x \in D_f$ gilt $f(x) = \frac{1}{p(x)}$.

Für
$$x \in D_f$$
 gilt $f(x) = \frac{1}{p(x)}$.

Teilaufgabe Teil B 1c (5 BE)

Gemäß der Quotientenregel gilt für die Ableitungen f' und p' die Beziehung $f'(x) = -\frac{p'(x)}{(p(x))^2}$ für $x \in D_f$.

Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von f'(x) und p'(x), dass x = -2 einzige Nullstelle von f' ist und dass G_f in]-3;-2[streng monoton steigend sowie in]-2;-1[streng monoton fallend ist. Geben Sie Lage und Art des Extrempunkts von G_f an.

Teilaufgabe Teil B 1d (4 BE)

Berechnen Sie f(-5) und f(-1,5) und skizzieren Sie G_f unter Berücksichtigung der bisherigen Ergebnisse in Abbildung 1.

Gegeben ist die Funktion $h: x \mapsto \frac{3}{e^{x+1}-1}$ mit Definitionsbereich $D_h =]-1; +\infty[$. Abbildung 2 zeigt den Graphen G_h von h.

Teilaufgabe Teil B 2a (4 BE)

Begründen Sie anhand des Funktionsterms, dass $\lim_{x \to +\infty} h(x) = 0$ gilt. Zeigen Sie rechnerisch für $x \in D_h$, dass für die Ableitung h' von h gilt: h'(x) < 0.

Gegeben ist ferner die in D_h definierte Integralfunktion $H_0: x \mapsto \int_0^x h(t) dt$.

Teilaufgabe Teil B 2b (4 BE)

Begründen Sie ohne weitere Rechnung, dass folgende Aussagen wahr sind:

- α) Der Graph von H_0 ist streng monoton steigend.
- β) Der Graph von H_0 ist rechtsgekrümmt.

Teilaufgabe Teil B 2c (6 BE)

Geben Sie die Nullstelle von H_0 an und bestimmen Sie näherungsweise mithilfe von Abbildung 2 die Funktionswerte $H_0(-0,5)$ sowie $H_0(3)$. Skizzieren Sie in Abbildung 2 den Graphen von H_0 im Bereich $-0, 5 \le x \le 3$.

In einem Labor wird ein Verfahren zur Reinigung von mit Schadstoffen kontaminiertem Wasser getestet. Die Funktion h aus Aufgabe 2 beschreibt für $x \ge 0$ modellhaft die zeitliche Entwicklung des momentanen Schadstoffabbaus in einer bestimmten Wassermenge. Dabei bezeichnet h(x) die momentane Schadstoffabbaurate in Gramm pro Minute und x die seit Beginn des Reinigungsvorgangs vergangene Zeit in Minuten.

Teilaufgabe Teil B 3a (3 BE)

Bestimmen Sie auf der Grundlage des Modells den Zeitpunkt x, zu dem die momentane Schadstoffabbaurate auf 0,01 Gramm pro Minute zurückgegangen ist.

Die in $\mathbb{R} \setminus \{-3; -1\}$ definierte Funktion $k: x \mapsto 3 \cdot \left(\frac{1}{x+1} - \frac{1}{x+3}\right) - 0, 2$ stellt im Bereich $-0, 5 \le x \le 2$ eine gute Näherung für die Funktion h dar.

Teilaufgabe Teil B 3b (2 BE)

Beschreiben Sie, wie der Graph der Funktion k aus dem Graphen der Funktion f aus Aufgabe 1 hervorgeht.

Teilaufgabe Teil B 3c (5 BE)

Berechnen Sie einen Näherungswert für $\int\limits_0^1 h(x) \ \mathrm{dx},$ indem Sie den Zusammenhang $\int\limits_0^1 h(x) \ \mathrm{dx}$

$$\approx \int_{0}^{1} k(x)$$
 dx verwenden. Geben Sie die Bedeutung dieses Werts im Sachzusammenhang an.