Chicago_crimes - Jupyter Notebook

```
In [1]: import pandas as pd
import numpy as np
import datetime as dt
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
plt.rcParams.update({'figure.max_open_warning': 0})
```

In [2]: CrimeDate=pd.read_csv(r"C:\Users\berid\OneDrive\Desktop\mydata\Chicago_crime\CrimeDate (1).csv")
 CrimeDesc=pd.read_csv(r"C:\Users\berid\OneDrive\Desktop\mydata\Chicago_crime\CrimeDesc.csv")
 CrimeLoc=pd.read_csv(r"C:\Users\berid\OneDrive\Desktop\mydata\Chicago_crime\CrimeLocation.csv")

Find most frequent types of crime

In [3]: grouped=CrimeDate.groupby("primary_type")["crime_count"].sum().reset_index().sort_values("crime_count",ascending=False)
grouped

Out[3]:

20/07/2022, 18:30

	primary_type	crime_count
32	THEFT	1571376
2	BATTERY	1381924
5	CRIMINAL DAMAGE	851364
18	NARCOTICS	731549
1	ASSAULT	486798
24	OTHER OFFENSE	466305
3	BURGLARY	389577
17	MOTOR VEHICLE THEFT	325032
8	DECEPTIVE PRACTICE	280256
29	ROBBERY	268829
7	CRIMINAL TRESPASS	209169
33	WEAPONS VIOLATION	98483
25	PROSTITUTION	68935
27	PUBLIC PEACE VIOLATION	50386
22	OFFENSE INVOLVING CHILDREN	38115
30	SEX OFFENSE	20136
13	INTERFERENCE WITH PUBLIC OFFICER	17622
6	CRIMINAL SEXUAL ASSAULT	15755
16	LIQUOR LAW VIOLATION	14559
10	GAMBLING	14509
11	HOMICIDE	8815
0	ARSON	3934
15	KIDNAPPING	1653
14	INTIMIDATION	1098
4	CONCEALED CARRY LICENSE VIOLATION	905
31	STALKING	899
21	OBSCENITY	610
26	PUBLIC INDECENCY	188
23	OTHER NARCOTIC VIOLATION	98
19	NON-CRIMINAL	21
12	HUMAN TRAFFICKING	7
28	RITUALISM	3
20	NON-CRIMINAL (SUBJECT SPECIFIED)	3
9	DOMESTIC VIOLENCE	1

Visualize crime location

```
In [4]: random=pd.DataFrame()
for year in CrimeLoc.year.unique():
    random=pd.concat([random,CrimeLoc[CrimeLoc.primary_type.isin(grouped["primary_type"].head(5))].sample(n=1000)])
```

20/07/2022, 18:30 Chicago_crimes - Jupyter Notebook

Locations for 5 most frequent crime types in Chicago

Visualize how frequency of 5 most popular crime types has been changing over time in Chicago

How frequency of 5 most popular crime types has been changing over time in Chicago

20/07/2022, 18:30 Chicago_crimes - Jupyter Notebook

```
In [16]: crime_types=CrimeDate.groupby("primary_type").filter(lambda x:x["crime_count"].sum()>1000).primary_type.unique()
         fig,axes=plt.subplots(8,3,figsize=(15,25))
         for ax,crime_type in zip(axes.ravel(),crime_types):
             grouped=CrimeDate[CrimeDate.primary_type==crime_type].groupby(["year","month","month_name","primary_type"]).agg({"crime_count":"mean","arrest_count":"mean","false_count":"mean"}
             grouped["date"]=grouped.year.astype(str)+" "+grouped.month_name
             grouped.plot(ax=ax,kind="line",x="date",y=["crime_count","arrest_count","false_count"],xlabel="",fontsize=8)
             ax.set_title(crime_type,size=10)
             #ax.set xticks(grouped.date,rotation=90)
         plt.subplots adjust(hspace=0.6,top=0.95)
         plt.suptitle("Change of Crimes frequency over time in Chicago", size=20, fontweight="bold")
         plt.show()
```

Change of Crimes frequency over time in Chicago

Find most common crime types for each district for each year

```
In [9]: crimes={}
         for dist in sorted(CrimeLoc.district.unique()):
            for year in sorted(CrimeLoc.year.unique()):
                 grouped=CrimeLoc((CrimeLoc.year==year)&(CrimeLoc.district==dist)].groupby("primary_type")["crime_count"].sum().reset_index().sort_values("crime_count",ascending=False).head()
                 crimes[year,dist]=grouped["primary_type"].to_string(index=False)
         crimes
        (2022, 0.0). BATTERY',
(2001, 7.0): 'BATTERY',
          (2002, 7.0): 'BATTERY',
          (2003, 7.0): 'BATTERY',
          (2004, 7.0): 'BATTERY',
          (2005, 7.0): 'BATTERY',
          (2006, 7.0): 'BATTERY',
          (2007, 7.0): 'BATTERY',
          (2008, 7.0): 'BATTERY',
          (2009, 7.0): 'BATTERY',
          (2010, 7.0): 'BATTERY',
          (2011, 7.0): 'BATTERY',
          (2012, 7.0): 'BATTERY',
          (2013, 7.0): 'BATTERY',
          (2014, 7.0): 'BATTERY',
          (2015, 7.0): 'BATTERY',
          (2016, 7.0): 'BATTERY',
          (2017, 7.0): 'BATTERY',
          (2018, 7.0): 'BATTERY',
          (2019, 7.0): 'BATTERY',
```

Find top criminal districts for each year

```
In [24]: years=sorted(CrimeLoc.year.unique())
fig,axes=plt.subplots(11,2,figsize=(15,45))
for ax,year in zip(axes.ravel(),years):
    grouped=CrimeLoc[crimeLoc.year=syear].groupby("district")["crime_count"].sum().reset_index().sort_values("crime_count",ascending=False)
    grouped["cummulative_percent"]=(grouped.crime_count/grouped.crime_count.sum()*100).cumsum()
    grouped["district"]=grouped['district'].astype(str)
    grouped.plot(kind="bar",ax=ax,x="district",y="crime_count",xlabel="",fontsize=8,ylabel="crime_count",color="b",label="crime_count")
    ax.set_title("Most criminal districts in "+str(year),size=12)
    ax2=ax.twinx()
    grouped.plot(kind="line",ax=ax2,x="district",y="cummulative_percent",ylabel="cummulative_percent",color="r",ls=":",label="cummulative_percent")
    ax.grid(axis="y",ls="--")
    plt.suptitle("Most criminal districts of Chicago by year",size=20,fontweight="bold")
    plt.suptitle("Most criminal districts of Chicago by year",size=20,fontweight="bold")
    plt.subplots_adjust(hspace=0.6,wspace=0.3,top=0.95)
    plt.show()
```


In [17]: # district 8 was the most criminal district in Chicago since 2002 till 2012
after district 8, district 11 became the most criminal district in Chicago between 2013 and 2020
the last two years distict 6 is leading among the most criminal districts of Chicago
district 20 and 31 seem to be the safest in Chicago