Plan for remaining classes...

- 10. Quantization and sampling (11/5, 8.30-10.10)
- 11. Data theorems and their effect on control (12/5, 8.00-9.40)
- 12. Quantized feedback control (25/5, 8.30-10.10)
- 13. Hierarchical control/Reviews (26/5, 8.00-9.40)
- 14-15. Paper presentation (~2/6)
- 16. Final exam (~8/6)

EE185524

Data Theorems in Control

Yurid E. Nugraha
TSP DTE FTEIC ITS

Modeling the channel

- ➤ Information-theoretic approach:
- \triangleright Channels are bit pipes which can transmit R_k bits/time
- ➤ By deriving data-rate theorems, the rate needed for constructing a stabilizing controller/quantizer pair is quantified

- ➤ Network-theoretic approach:
- > Packets are transmitted over the channel. These packets contain enough information such that they can represent real numbers.
- ➤ By deriving **critical packet loss** probability, the system cannot be stabilized by any control scheme over this critical value

Modeling the channel

> Two main approaches:

Data in control

(from previous slides..)

Remote state estimation:

$$x[k+1] = ax[k] + w[k]$$

w[k] Gaussian w/ zero mean and variance σ_w^2 :

$$\mathbb{E}\{x_{k+1}^2\} = a^2 \mathbb{E}\{x_k^2\} + \sigma_w^2$$

Unstable if |a| > 1

Data rate theorem

(from previous slides..)

- The noise and bandwidth limitations of the channels are captured by modeling channels capable of transmitting only *R* bits in each time slot
- ➤ By transmitting enough bits at each time step, we can ensure the uncertainty decreases

Data rate theorem

```
Second moment stability is possible iff |a^2|2^{-2R}<1\leftrightarrow R>\log_2|a| (Rate greater than topological entropy \log_2|a| (or \log_2\lambda_i for vector cases))
```

EE185524

Data Theorems in Control

Stabilization over noiseless channels

Data in control

- \triangleright Sensor encodes the output and sends a symbol s_k to the controller over a noiseless digital channel
- \triangleright If R is too small, s_k carries limited information about the output: the controller will not have adequate information for stabilizing the system.

Data-rate theorem for channels with a fixed rate

Theorem:

Consider networked control system where the output sensor is connected to the controller via a noiseless digital channel. Then, a necessary and sufficient condition for the asymptotic stabilization of the system is that

$$R > \sum_{|\lambda_i| > 1} \log_2 |\lambda_i| \coloneqq R_{inf} = H_T(A)$$

Topological entropy

Stochastic time-varying channels

- \triangleright The variations of rate $\{R_k\}$ are independently, identically distributed (i.i.d) random in time
- \triangleright There is causal knowledge of the rate process $\{R_i\}_{i=0}^k$ at encoder and decoder

Stochastic time-varying channels

EE185524

Data Theorems in Control

Memoryless erasure channel

Memoryless erasure channel

- A special case of stochastic rate channel: memoryless erasure channel: (erasure channel: channel in which some data are erased)
 - Packet reception is represented by a random variable γ_k ($\gamma_k = 1$ indicating that the packet is successfully delivered)
 - \triangleright Packet loss process $\{\gamma_k\}_{k\geq 0}$ is assumed to be i.i.d. process w/probability distribution:

$$\mathbb{P}(\gamma_k = 1) = 1 - p$$
$$\mathbb{P}(\gamma_k = 0) = p$$

Memoryless erasure channel

> Second moment stability of a scalar system

$$x_{k+1} = ax_k + u_k + w_k$$

can be ensured iff

$$|a|^{2}\mathbb{E}\{2^{-2R}\} < 1$$

$$|a|^{2}(2^{-2R}(1-p)+p) < 1$$
If $R \to \infty, p < p_{c} = \frac{1}{a^{2}}$

Despite the infinite channel capacity, the system may be unstable when the erasure probability is high

Memoryless erasure channel (vector case)

Theorem:

> The system

$$x_{k+1} = Ax_k + Bu_k$$

asymptotically stabilizable in the mean square sense via quantization transmissions iff

➤ Packet loss rate is small enough:

$$p < \frac{1}{M(A)^2}$$

 \triangleright Data rate R satisfies

$$R > H_T(A) + \frac{1}{2}\log_2\left[\frac{(1-p)}{1-(pM)(A)^2}\right]$$

EE185524

Data Theorems in Control

Erasure channel with memory

Erasure channel with memory

If the noise in the channel is correlated over time, a timehomogeneous Markov chain can be used:

 $\succ \gamma_k = 1$ if packets successfully received, $\gamma_k = 0$ if packets lost

Erasure channel with memory

> Transition probability matrix:

$$(\mathbb{P}\{\gamma_{k+1} = j | \gamma_k = i\})_{i,j \in \{0,R\}} = \begin{bmatrix} 1 - q & q \\ p & 1 - p \end{bmatrix}$$

Scalar noise-free case

Theorem:

Consider $x_{k+1} = ax_k + bu_k$ where |a| > 1 and x_0 is random variable w/ a known bounded support. The system is **asymptotically mean square** stabilizable (asymptotic mean square stability: $\lim_{k\to\infty} \mathbb{E}\{||x_k^2||\} = 0$) iff

> The recovery rate of the channel is large enough:

$$q > q_c = 1 - \frac{1}{a^2}$$

➤ Data rate R satisfies

$$R > \frac{1}{2}\log_2 \mathbb{E}(|a|^{2T}) = \log_2 |a| + \frac{1}{2}\log_2 [1 + \frac{p(|a|^2 - 1)}{1 - (1 - q)|a|^2}]$$
T: sojourn time

Stochastic scalar case

Theorem:

Consider $x_{k+1} = ax_k + bu_k + w_k$ where |a| > 1. The system is **mean square stabilizable** iff

> The recovery rate of the channel is large enough:

$$q > q_c = 1 - \frac{1}{a^2}$$

➤ Data rate R satisfies

$$R > \frac{1}{2} \log_2 \mathbb{E}(|a|^{2T})$$

Vector case

> System model:

where
$$J=TAT^{-1}$$
, $J=\begin{bmatrix}J_1&\cdots&0\\\vdots&\ddots&\vdots\\0&\cdots&J_d\end{bmatrix}$, $J_i=\begin{bmatrix}\lambda_i&1&\cdots&0\\\vdots&\ddots&\vdots\\0&\cdots&J_d\end{bmatrix}$, $J_i=\begin{bmatrix}\lambda_i&1&\cdots&0\\\vdots&\ddots&\vdots\\0&\cdots&J_d\end{bmatrix}$

Quantifies the joint effect of packet losses and finite communication data rate on the mean square stabilization of linear scalar systems.

Vector case

Theorem (necessity):

A necessary condition for asymptotic mean square stabilization of the networked system is that for any $s_i \in \{d_{i1}, ..., d_{in}\}$ and $s = \sum_{i=1}^{d} s_i$, the following hold:

> The probability for the channel recovering from packet loss is

$$q > 1 - \frac{1}{\left(\prod_{i=1}^{d} |\lambda|^{2s_i}\right)^{1/s}}$$

 \triangleright Data rate R satisfies

$$R > \frac{s}{2} \log_2 \mathbb{E} \left\{ \left(\prod_{i=1}^d |\lambda|^{2s_i} \right)^{\frac{T}{s}} \right\}$$

Vector case

Theorem (sufficient):

A sufficient condition for asymptotic mean square stabilization of the networked system is that the following hold:

> The probability for the channel recovering from packet loss is

$$q > 1 - \frac{1}{\max_{i \in \{1,\dots,d\}} |\lambda_i|}$$

 \triangleright Data rate R satisfies

$$R > \frac{S_i}{2a_i(R)} \log_2 \mathbb{E}(|\lambda_i|^{2T}), \ \forall i \in \{1, \dots, d\}$$

Remark

Theorem (sufficient, cont'd):

 $ightharpoonup a(R) = [a_1(R) \quad ... \quad a_d(R)]$ being rate allocation vector and satisfy

$$0 \leq_d a_i(R) \leq 1, \forall i$$

$$\sum_{i=1}^{d} a_i(R) \leq 1$$

$$\frac{Ra_i(R)}{S_i} \in \mathbb{N}$$

 \triangleright If $|\lambda_1| = \cdots = |\lambda_d|$, then the sufficient condition is also necessary

Example

- Suppose MJLS w/ p = 1/2, q = 2/3, R = 1
- Consider an unstable system w/ distinct eigenvalues $\lambda_1 \in \mathbb{R}$, $\lambda_2 \in \mathbb{C}$ and $s_1 = 1$, $s_2 = 2$.
- ➤ It is shown that necessary condition is almost sufficient

- \triangleright Consider a dynamical system that is, in a certain moment, described by a model G_1 .
- \triangleright Suppose that this system is subject to abrupt changes that cause it to be described, after a certain amount of time, by G_2 .
- When a system is subject to a series of possible changes that make it switch among a countable set of models, for example, $\{G_1, G_2, ..., G_N\}$, we can say system *jumps* from one mode to another.

- Stability of MJLS are used to characterize the stability of linear dynamical systems where the estimated state is sent to the controller whose state is described by a Markov chain
- It is considered that state observer is connected to the actuator through a noiseless digital communication link that at each time k allows R_k bits transmission
- The rate process is given by $\{R_k\}_{k\geq 0}$ is modeled as a Markov chain on the finite set, $R=\{r_1,\ldots,r_n\}$

 \succ Arbitrary positive recurrent time-invariant Markov chain of n states

$$p_{ij} = \mathbb{P}\{R_{k+1} = r_j | R_k = r_i\}$$

- For dynamical system $z_{k+1}=\frac{|\lambda|}{2^{2R_k}}z_k+c$ is mean square stable iff $\rho(H)<1$
- > H being the matrix defined by transition probability matrix

➤ Stabilization in mean square sense over Markov time-varying channels is possible iff the corresponding MJLS is mean square stable, that is:

$$|\lambda|^2 \rho(H) < 1$$

Summary

Stabilization in mean square sense over Markov time-varying channels is possible iff the corresponding MJLS is mean square stable:

$$|a|^2 \rho(H) < 1$$

> Erasure channel w/ memory:

$$R > \frac{1}{2}\log_2 \mathbb{E}(|a|^{2T})$$

> Memoryless erasure channel:

$$R > \log_2|a| + \frac{1}{2}\log_2\frac{1-p}{1-p|a|^2}$$

Take home message

- > Rate of the link should be larger than topological entropy
- Possible to find the data rate theorems for scalar systems for both noiseless and noisy channels without/with memory
- > Still limited to scalar systems