EJERCICIOS CORRIENTE CONTINUA

EJERCICIO 1

Una batería de 12 V suministra 30 A durante 3 seg en el encendido de un motor de automóvil. ¿ Cuánta energía proporcionó la batería?

Rta: 1080 joules.

EJERCICIO 2

Para el circuito de la figura calcular:

a) La R equivalente.

b) El valor y signo de la diferencia de potencial que debe aplicarse entre A y B para que la corriente i = 1 A

Dato: $R = 10 \Omega$

Rta:

a)
$$R_{eq} = 46,25\Omega$$

b)
$$V_{BA} = 185 \text{ V}$$

EJERCICIO 3

Para el circuito de la figura calcular:

- La intensidad de corriente que marca el amperimetro.
- b) Las d.d.p.: V_{AD} , V_{DM} , V_{MB} .

Datos:
$$V_{AB} = -100 \text{ V} = V_B - V_A$$
; $R_1 = R_2 = 20 \Omega$; $R_3 = 4 \Omega$; $R_4 = 9 \Omega$; $R_5 = 18 \Omega$

Rta: a)
$$i = 5 \text{ A}$$

b) -50 V ; -20 V ; -30 V

EJERCICIO 4

Para el circuito de la figura calcular:

- a) Con la <u>llave L abierta</u>, la distribución de corrientes y los potenciales de los puntos A, B y C con respecto a tierra (T).
- b) Con la <u>llave L cerrada</u>, la distribución de corrientes y los potenciales de los puntos A, B y C con respecto a tierra (T).

Datos: E
$$_1$$
 = 100 V , r_1 = 1 Ω
$$R_1 = R_3 = ~50~\Omega~;~R_2 = ~200~\Omega$$

Rta: a)
$$i = 398 \text{ mA}$$
 ; $V_C = -19.9 \text{ V}$; $V_A = V_B = -99.6 \text{ V}$ b) $i_1 = 1,098 \text{ A}$; $i_2 = 0,219 \text{ A}$; $i_2 = 0,879 \text{ A}$ $V_C = V_B = -55 \text{ V}$; $V_A = -98.9 \text{ V}$

EJERCICIO 5

Para el circuito de la figura calcular:

- a) Con la llave L abierta, las corrientes en cada rama y VA, VB VC con respecto a tierra (T)
- b) Con la llave L cerrada, las corrientes y V_A , V_B , V_C con respecto a Tierra.

Datos:
$$E_1 = 100 \text{ V } r_1 = 1 \Omega$$

 $E_2 = 10 \text{ V } ; r_2 = 2 \Omega$
 $R_1 = R_3 = 50 \Omega$
 $R_2 = 200 \Omega$

Rta: a)
$$V_C = -9.9 \text{ V}$$
;
 $V_A = V_B = -89.6 \text{ V}$
b) $V_A = 88.9 \text{ V}$
 $V_C = V_B = -45 \text{ V}$