

Machine Learning and Intelligent Systems

Neural Networks

Maria A. Zuluaga

Jan. 29, 2024

EURECOM - Data Science Department

Table of contents

History & Motivation

Neural Nets: Structure

Learning Process

Backpropagation Algorithm

Running Example: Gradient over a graph of arithmetic operations

A running example on a neural net

Final Algorithm

The MLP

Recap

History & Motivation

A Note on History

- The term neural network has its origins in attempts to find mathematical representations of information processing in biological systems
- From Bishop: it has been used very broadly to cover a wide range of different models, many of which have been the subject of exaggerated claims regarding their biological plausibility.

A Note on History

- The term neural network has its origins in attempts to find mathematical representations of information processing in biological systems
- From Bishop: it has been used very broadly to cover a wide range of different models, many of which have been the subject of exaggerated claims regarding their biological plausibility.
- They are nonlinear efficient models for statistical pattern recognition

Motivation: The XOR

- The work from Minsky and Papert on the limitations of the XOR had a devastating effect in AI, leading to what was called the AI Winter
- It is surprising that their work had such fatal consequences when the solution is quite simple

Motivation: The XOR

- The work from Minsky and Papert on the limitations of the XOR had a devastating effect in AI, leading to what was called the AI Winter
- It is surprising that their work had such fatal consequences when the solution is quite simple

A more powerful solution to it, could be the combination of linear classifiers, where the output of one, is the input to another classifier:

A more powerful solution to it, could be the combination of linear classifiers, where the output of one, is the input to another classifier:

4

A more powerful solution to it, could be the combination of linear classifiers, where the output of one, is the input to another classifier:

Question: Could you solve the XOR problem using 1's and 0's?

- The combination of linear operators results in another linear operation.
- We need to add some non-linearities.

- The combination of linear operators results in another linear operation.
- We need to add some non-linearities.
- Example: The sigmoid function from lecture 3.

- The combination of linear operators results in another linear operation.
- We need to add some non-linearities.
- **Example:** The sigmoid function from lecture 3.
- Using $\sigma(\cdot)$, we can build a two-layer perceptron that solves the XOR:

- The combination of linear operators results in another linear operation.
- We need to add some non-linearities.
- **Example:** The sigmoid function from lecture 3.
- Using $\sigma(\cdot)$, we can build a two-layer perceptron that solves the XOR:

Neural Nets

- Each of the boxes from the previous example can be denoted a neuron
- The neuron runs a linear operation, followed by a non-linear function on the linear operation's output.
- The sigmoid is the traditional non-linear function to use but, there are many others.

Neural Nets

- Each of the boxes from the previous example can be denoted a neuron
- The neuron runs a linear operation, followed by a non-linear function on the linear operation's output.
- The sigmoid is the traditional non-linear function to use but, there are many others.
- Interesting aspects of the sigmoid:
 - It is bounded so, it does not over-saturates other networks
 - Smooth
 - Well-defined gradients and Hessians

Let's formalize things...

Neural Nets: Structure

Definitions

For a 1 hidden layer network

- Input layer: $\mathbf{x}_1, \dots, \mathbf{x}_D$; $\mathbf{x}_0 = 1$
- Hidden units: h_1, \ldots, h_M ; $h_0 = 1$
- Output layer: z_1, \ldots, z_k

Definitions

For a 1 hidden layer network

- Input layer: $\mathbf{x}_1, \dots, \mathbf{x}_D$; $\mathbf{x}_0 = 1$
- Hidden units: h_1, \ldots, h_M ; $h_0 = 1$
- Output layer: z_1, \ldots, z_k

The set of weights:

- Layer 1 weights: $M \times (D+1)$ matrix V, with V_i^T the i^{th} row
- Layer 2 weights: $k \times (M+1)$ matrix W, with W_i^T the i^{th} row

Definitions

For a 1 hidden layer network

- Input layer: $\mathbf{x}_1, \dots, \mathbf{x}_D$; $\mathbf{x}_0 = 1$
- Hidden units: h_1, \ldots, h_M ; $h_0 = 1$
- Output layer: z_1, \ldots, z_k

The set of weights:

- Layer 1 weights: $M \times (D+1)$ matrix V, with V_i^T the i^{th} row
- Layer 2 weights: $k \times (M+1)$ matrix W, with W_i^T the i^{th} row

The activation function:

- The sigmoid: $\sigma(a) = \frac{1}{1 + \exp(-a)}$
- For a vector \mathbf{V} , $\sigma(\mathbf{V}) = [\sigma(v_1), \sigma(v_2), \ldots]^T$, the sigmoid is applied component-wise

Example: 1 hidden layer network

Let's build a 1 hidden layer neural network with two inputs, three hidden units and two outputs

Example: 1 hidden layer network

Let's build a 1 hidden layer neural network with two inputs, three hidden units and two outputs

Example: Connecting the input to the hidden layer

We will use ${f V}$ as previously defined.

Example: Connecting the input to the hidden layer

We will use ${f V}$ as previously defined.

Example: All connections

Let's also identify the elements of \boldsymbol{W}

Example: The bias terms

Example: Complete network

The output of the hidden layer can be expressed as:

$$h = \sigma\left(\mathbf{V}\mathbf{x}\right) \tag{1}$$

The output of the hidden layer can be expressed as:

$$h = \sigma\left(\mathsf{Vx}\right) \tag{1}$$

which will then act as a weighted input of the output layer:

$$z = \sigma(\mathbf{W}h) = \sigma(\mathbf{W}\sigma(\mathbf{V}\mathbf{x})) \tag{2}$$

The output of the hidden layer can be expressed as:

$$h = \sigma\left(\mathsf{Vx}\right) \tag{1}$$

which will then act as a weighted input of the output layer:

$$z = \sigma(\mathbf{W}h) = \sigma(\mathbf{W}\sigma(\mathbf{V}\mathbf{x})) \tag{2}$$

Equivalently, these can be expressed element-wise. For Eq. 1:

$$h_i = \sigma\left(\sum_{j=0}^D V_{ij} \mathbf{x}_j\right), \quad \text{with } \mathbf{x}_0 = 1$$

The output of the hidden layer can be expressed as:

$$h = \sigma\left(\mathsf{Vx}\right) \tag{1}$$

which will then act as a weighted input of the output layer:

$$z = \sigma(\mathbf{W}h) = \sigma(\mathbf{W}\sigma(\mathbf{V}\mathbf{x})) \tag{2}$$

Equivalently, these can be expressed element-wise. For Eq. 1:

$$h_i = \sigma\left(\sum_{j=0}^D V_{ij} \mathbf{x}_j\right), \quad \text{with } \mathbf{x}_0 = 1$$

and Eq. 2

$$z_k = \sigma\left(\sum_{i=0}^M W_{ki}h_i\right), \quad \text{with } h_0 = 1$$

- This examples represents the simplest neural network possible as it contains only one hidden layer.
- It is commonly known as a feed-forward network or the multilayer perceptron
- In practical/real situations, it will be more common to have several hidden layers.
- In such case, it might be more convenient to drop the proposed notation for the weight matrices, V, W and use super-indices:

$$\begin{array}{c} \textbf{V} \rightarrow \textbf{W}^{(1)} \\ \textbf{W} \rightarrow \textbf{W}^{(2)} \\ \dots \\ \dots \rightarrow \textbf{W}^{(L)} \end{array}$$

The unification of notation for the weights allows to have a more compact expression for the network:

$$\hat{\mathbf{y}}_k(\mathbf{x}, \mathbf{W}) = \sigma \left(\sum_{i=0}^M W_{ki}^{(2)} \sigma \left(\sum_{j=0}^D W_{ij}^{(1)} \mathbf{x}_j \right) \right)$$

The unification of notation for the weights allows to have a more compact expression for the network:

$$\hat{\mathbf{y}}_{k}(\mathbf{x}, \mathbf{W}) = \sigma \left(\sum_{i=0}^{M} W_{ki}^{(2)} \sigma \left(\sum_{j=0}^{D} W_{ij}^{(1)} \mathbf{x}_{j} \right) \right)$$

$$\hat{\mathbf{y}}(\mathbf{x}, \mathbf{W}) = f \left(\sum_{i=0}^{M} \mathbf{W}_{i} \phi_{i}(\mathbf{x}) \right)$$

The unification of notation for the weights allows to have a more compact expression for the network:

$$\hat{\mathbf{y}}_{k}(\mathbf{x}, \mathbf{W}) = \sigma \left(\sum_{i=0}^{M} W_{ki}^{(2)} \sigma \left(\sum_{j=0}^{D} W_{ij}^{(1)} \mathbf{x}_{j} \right) \right)$$

$$\hat{\mathbf{y}}(\mathbf{x}, \mathbf{W}) = f \left(\sum_{i=0}^{M} \mathbf{W}_{i} \phi_{i}(\mathbf{x}) \right)$$

where we use f to denote any non-linear function.

Does this expression look familiar?

Features and Neural Nets

• A neuron can be seen as a feature map of the form

$$\phi_i(\mathbf{x}) = \left(\sum_{j=0}^D W_{ij}\mathbf{x}_j\right)$$

• Therefore, each node in the network can be interpreted as a feature variable

Features and Neural Nets

• A neuron can be seen as a feature map of the form

$$\phi_i(\mathbf{x}) = \left(\sum_{j=0}^D W_{ij} \mathbf{x}_j\right)$$

- Therefore, each node in the network can be interpreted as a feature variable
- By optimizing the weights {W} we are doing feature selection

Features and Neural Nets

• A neuron can be seen as a feature map of the form

$$\phi_i(\mathbf{x}) = \left(\sum_{j=0}^D W_{ij} \mathbf{x}_j\right)$$

- Therefore, each node in the network can be interpreted as a feature variable
- By optimizing the weights {W} we are doing feature selection

- Pre-trained networks: Resulting features from optimization useful to many problems
- Need of a lot of data

Learning Process

1. Pick a loss function:

$$L(z,y) = \frac{1}{2}||z - y||^2$$

1. Pick a loss function:

$$L(z,y) = \frac{1}{2}||z-y||^2$$

2. Use batch or stochastic gradient descent to find the set of parameters $\hat{\mathbf{V}}, \hat{\mathbf{W}}$ that minimize the cost function J

$$J = \frac{1}{N} \sum_{i}^{N} L(\hat{\mathbf{y}}_{i}, \mathbf{y}_{i})$$

1. Pick a loss function:

$$L(z, y) = \frac{1}{2} ||z - y||^2$$

2. Use batch or stochastic gradient descent to find the set of parameters $\hat{\mathbf{V}}$, $\hat{\mathbf{W}}$ that minimize the cost function J

$$J = \frac{1}{N} \sum_{i}^{N} L(\hat{\mathbf{y}}_{i}, \mathbf{y}_{i})$$

3. With w denoting a vector containing all weights V, W, apply gradient descent:

$$\mathbf{w} \leftarrow \operatorname{RANDOM}()$$
 repeat
$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla J(\mathbf{w})$$

Obtaining one derivative for each weight takes time linear in the number of neurons in the neural network to compute a derivative for one weight. Multiply that by the number of weights.

$$\mathcal{O}(nodes^2)$$

Obtaining one derivative for each weight takes time linear in the number of neurons in the neural network to compute a derivative for one weight. Multiply that by the number of weights.

$$\mathcal{O}(nodes^2)$$

This is not scalable!

Obtaining one derivative for each weight takes time linear in the number of neurons in the neural network to compute a derivative for one weight. Multiply that by the number of weights.

$$\mathcal{O}(nodes^2)$$

This is not scalable!

We will now focus on the backpropagation algorithm, which allows computation of the gradient in $\mathcal{O}(nodes)$ time.

Backpropagation Algorithm

Gradient over a Graph of Arithmetic Operations

Gradient over a Graph of Arithmetic Operations

Step 1: Chain rule

Step 2: Forward pass chain rule along all nodes

Step 3: Forward pass - identify known expressions

Step 4: Forward pass - replace known expressions

Step 5: Backpropagation

Step 6: Backpropagation to next layer

Process completed

The pattern

Each z gives a partial derivative of the form:

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial s} \frac{\partial s}{\partial z}$$

where z is an input to s

The pattern

Each z gives a partial derivative of the form:

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial s} \frac{\partial s}{\partial z}$$

where z is an input to s

- Green term: Computed in the backward pass
- Orange term: Computed in the forward pass

A more complex example

Step 1: Chain rule

Step 2: Forward pass estimations

Step 3: Last layer

Step 4: Backpropagation

The Backpropagation Algorithm

- The backpropagation algorithm is a dynamic programming algorithm for computing the gradients. Using stochastic gradient descent it allows to do this computation in linear time w.r.t the number of weights.
- It was key to the re-birth of neural networks.

The Backpropagation Algorithm

- The backpropagation algorithm is a dynamic programming algorithm for computing the gradients. Using stochastic gradient descent it allows to do this computation in linear time w.r.t the number of weights.
- It was key to the re-birth of neural networks.
- Let's use it to find the terms for the first neural network we used.

A quick recap on the terms

- Input layer: $\mathbf{x}_1, \dots, \mathbf{x}_D$; $\mathbf{x}_0 = 1$
- Layer 1 weights: $M \times (D+1)$ matrix V, with V_j^T the j^{th} row
- Layer 2 weights: $k \times (M+1)$ matrix W, with W_i^T the i^{th} row
- The sigmoid: $\sigma(a) = \frac{1}{1 + \exp(-a)}$
- Hidden units: $h_j = \sigma(V_j x)$
- Output layer: $z_i = \sigma(\mathbf{W}_i \mathbf{h})$
- Sigmoid derivative: $\sigma'(a) = \sigma(a) (1 \sigma(a))$

The network revisited

This is the same network as the one in slide 12 It has been reformulated using only W and V as inputs If you are not convinced, try expanding the terms

Step 1: The chain rule in the forward pass

$$\sum_{\mathbf{w}_{i}} = \frac{\partial L}{\partial \mathbf{z}_{i}} \cdot \sum_{\mathbf{w}_{i}} \mathbf{z}_{i}$$

Step 1: The chain rule in the forward pass

$$\nabla L = \frac{\partial L}{\partial z_i} \cdot \nabla_{\omega_i} z_i$$

$$abla_{\mathsf{V}_j} h_j = \sigma'(\mathsf{V}_j \mathsf{x}) = h_j (1 - h_j) \mathsf{x}$$

$$abla_{\mathsf{V}_j} h_j = \sigma'(\mathsf{V}_j \mathbf{x}) = h_j (1 - h_j) \mathbf{x}$$

$$abla_{\mathsf{W}_i} z_i = \sigma'(\mathsf{W}_i \mathbf{h}) = z_i (1 - z_i) \mathbf{h}$$

$$\nabla_{V_j} h_j = \sigma'(V_j \mathbf{x}) = h_j (1 - h_j) \mathbf{x}$$

$$\nabla_{W_i} z_i = \sigma'(W_i \mathbf{h}) = z_i (1 - z_i) \mathbf{h}$$

$$\nabla_h z_i = \sigma'(W_i z_i) = z_i (1 - z_i) W_i$$

Step 3: Forward pass continuation

$$\nabla L = \frac{\partial L}{\partial z_i} (\nabla_{u_i} z_i) = \frac{\partial L}{\partial z_i} \cdot \frac{\partial L}{\partial z_i} (1 - \frac{\partial L}{\partial z_i}) h$$

Step 4: Next layer of forward pass

$$\nabla L = \frac{\partial L}{\partial z_i} \cdot \nabla_{u_i} z_i = \frac{\partial L}{\partial z_i} \cdot \frac{\partial L}{\partial z_i} \cdot (1 - \frac{\partial L}{\partial z_i}) h$$

Step 5: Next layer of forward pass

Step 6: Final layer

$$\nabla_{y_{i}} L = \frac{\partial L}{\partial h_{i}} \nabla_{y_{i}} h_{i} = \frac{\partial L}{\partial h_{i}} \cdot h_{j} (1 - h_{j}) \times \nabla_{h} L = \sum_{i=1}^{N} \frac{\partial L}{\partial z_{i}} \cdot \nabla_{h} Z_{i} = \sum_{i=1}^{N} \frac{\partial L}{\partial z_{i}} \cdot Z_{i} (1 - Z_{i}) W_{i}$$

$$\nabla_{h} L = \sum_{i=1}^{N} \frac{\partial L}{\partial z_{i}} \cdot \nabla_{h} Z_{i} = \sum_{i=1}^{N} \frac{\partial L}{\partial z_{i}} \cdot Z_{i} (1 - Z_{i}) W_{i}$$

$$\nabla_{h} L = \sum_{i=1}^{N} \frac{\partial L}{\partial z_{i}} \cdot \nabla_{h} Z_{i} = \sum_{i=1}^{N} \frac{\partial L}{\partial z_{i}} \cdot Z_{i} (1 - Z_{i}) W_{i}$$

$$\nabla_{h} L = \sum_{i=1}^{N} \frac{\partial L}{\partial z_{i}} \cdot \nabla_{h} Z_{i} = \sum_{i=1}^{N} \frac{\partial L}{\partial z_{i}} \cdot Z_{i} (1 - Z_{i}) W_{i}$$

$$\nabla_{h} L = \sum_{i=1}^{N} \frac{\partial L}{\partial z_{i}} \cdot \nabla_{h} Z_{i} = \sum_{i=1}^{N} \frac{\partial L}{\partial z_{i}} \cdot Z_{i} (1 - Z_{i}) W_{i}$$

$$\nabla_{h} L = \sum_{i=1}^{N} \frac{\partial L}{\partial z_{i}} \cdot Z_{i} (1 - Z_{i}) W_{i}$$

$$\nabla_{h} L = \sum_{i=1}^{N} \frac{\partial L}{\partial z_{i}} \cdot Z_{i} (1 - Z_{i}) W_{i}$$

$$\nabla_{h} L = \sum_{i=1}^{N} \frac{\partial L}{\partial z_{i}} \cdot Z_{i} (1 - Z_{i}) W_{i}$$

$$\nabla_{h} L = \sum_{i=1}^{N} \frac{\partial L}{\partial z_{i}} \cdot Z_{i} (1 - Z_{i}) W_{i}$$

$$\nabla_{h} L = \sum_{i=1}^{N} \frac{\partial L}{\partial z_{i}} \cdot Z_{i} (1 - Z_{i}) W_{i}$$

$$\nabla_{h} L = \sum_{i=1}^{N} \frac{\partial L}{\partial z_{i}} \cdot Z_{i} (1 - Z_{i}) W_{i}$$

$$\nabla_{h} L = \sum_{i=1}^{N} \frac{\partial L}{\partial z_{i}} \cdot Z_{i} (1 - Z_{i}) W_{i}$$

Step 7: Backpropagation

1. For an input vector \mathbf{x}_i to the network, do a forward pass over the full network. The required computations can be generalized as:

$$\phi_i = a_i = \sum_j W_{ij} z_j, \qquad z_i = h(a_i)$$

where we denote a_i the activation.

1. For an input vector \mathbf{x}_i to the network, do a forward pass over the full network. The required computations can be generalized as:

$$\phi_i = a_i = \sum_j W_{ij} z_j, \qquad z_i = h(a_i)$$

where we denote a_i the activation.

2. Evaluate the error in the output units. We will formalize it as:

$$\delta_k = \nabla L(\hat{\mathbf{y}}_k, \mathbf{y}_k) \cdot h'(a_k^{(L)})$$

1. For an input vector \mathbf{x}_i to the network, do a forward pass over the full network. The required computations can be generalized as:

$$\phi_i = a_i = \sum_j W_{ij} z_j, \qquad z_i = h(a_i)$$

where we denote a_i the activation.

2. Evaluate the error in the output units. We will formalize it as:

$$\delta_k = \nabla L(\hat{\mathbf{y}}_k, \mathbf{y}_k) \cdot h'(a_k^{(L)})$$

3. Backward pass the δs to the previous hidden units. This can be generalized as:

$$\delta_j^{(l)} = h'\left(a_j^{(l)}\right) \sum_i W_{ij}^{(l+1)} \delta_i^{(l+1)}$$

What we did in the previous steps:

Figure 5.7 Bishop - PRML

$$\phi_i = a_i = \sum_j W_{ij} z_j, \qquad z_i = h(a_i)$$

$$\delta_j^{(I)} = h'\left(a_j^{(I)}\right) \sum_i W_{ij}^{(I+1)} \delta_i^{(I+1)}$$

4. Estimate all the required derivatives $\nabla_{\mathbf{w}} L$

- 4. Estimate all the required derivatives $\nabla_{\mathbf{w}} L$
- 5. Change the weights based on estimated gradients by $-\alpha\nabla_{\mathbf{w}}\mathbf{L}$, where α is the learning rate.

- 4. Estimate all the required derivatives $\nabla_{\mathbf{w}} L$
- 5. Change the weights based on estimated gradients by $-\alpha\nabla_{\mathbf{w}}\mathbf{L}$, where α is the learning rate.

The MLP

The Multi Layer Perceptron

Advantages

- Very general, can be applied in many situations
- Powerful according to theory
- Efficient according to practice

The Multi Layer Perceptron

Advantages

- Very general, can be applied in many situations
- Powerful according to theory
- Efficient according to practice

Drawbacks

- Training is often slow
- Choice of optimal number of layers & neurons difficult
- Little understanding of real model

Recap

Recap

In this lecture...

- We introduced feedforward networks, aka the multilayer perceptron
- We introduced the backpropagation algorithm which is the mechanism to train feedforward networks
- We saw the strengths but also the limitations of MLPs
- Deep Learning course (spring term) if you want to learn about more powerful neural network architectures

Disclaimer: Part of the examples in this lecture have been adapted from J. Shewchuk course

Key Concepts

- Backpropagation
- Multilayered perceptron (MLP)
- Feedforward networks
- Chain rule

Further Reading and Useful Material

Source	Notes
Pattern Recognition and Machine Learning	Ch 5
The Elements of Statistical Learning	Ch 11