PROBLEMS ON SYMPLECTIC REFLECTION ALGEBRAS

13. QUANTUM CM SYSTEMS AND RATIONAL CHEREDNIK ALGEBRAS

Exercise 13.1. Prove that $wD_aw^{-1} = D_{wa}$ for all $w \in W, a \in \mathfrak{h}$.

Exercise 13.2. Prove an analog of Proposition on the properties of Dunkl operators for complex reflection groups.

Exercise 13.3. Let W be a complex reflection group.

- (1) Show that ad f is a locally nilpotent operator on $H_{\hbar,c}$ for any $f \in \mathbb{C}[\mathfrak{h}]^W$.
- (2) Deduce that the localization $H_{\hbar,c}[\delta^{-1}]$ exists.
- (3) Show that the Dunkl homomorphism $H_{\hbar,c} \to D_{\hbar}(\mathfrak{h}^{Reg}) \# W$ factors through a unique homomorphism $H_{\hbar,c}[\delta^{-1}] \to D_{\hbar}(\mathfrak{h}^{Reg}) \# W$.
- (4) Show that the homomorphism $H_{\hbar,c}[\delta^{-1}] \to D_{\hbar}(\mathfrak{h}^{Reg}) \# W$ is an isomorphism.

Exercise 13.4. Prove that the Dunkl homomorphism Θ is injective modulo \hbar and hence is injective.

Exercise 13.5. Define φ to be the identity on $\mathbb{C}[\mathfrak{h}^{Reg}]\#W$ and $\varphi(a) = a + \sum_{s \in S} c_s \frac{\langle a, \alpha_s \rangle}{\alpha_s}$. Show that φ extends to a $\mathbb{C}[\hbar]$ -linear automorphism of $D_{\hbar}(\mathfrak{h}^{Reg})\#W$.

Problem 13.1. Let $\Gamma = \mathfrak{S}_n$ and $\mathfrak{h} = \mathbb{C}^n$ (and not the reflection representation, this is a minor technicality). The goal of this problem will be to relate the CM space C to the $\operatorname{Spec}(eH_{0,c}e)$. We are going to produce a morphism $\operatorname{Rep}_{\Gamma}(H_{0,c},\mathbb{C}\Gamma)//\operatorname{GL}(\mathbb{C}\Gamma)^{\Gamma} \to C$, to show that this is an isomorphism. Then we prove that the natural morphism $\operatorname{Rep}_{\Gamma}(H_{0,c},\mathbb{C}\Gamma)//\operatorname{GL}(\mathbb{C}\Gamma)^{\Gamma} \to \operatorname{Spec}(eH_{0,c}e)$ is an isomorphism.

Let y_1, \ldots, y_n be the tautological basis in $\mathbb{C}^n = \mathfrak{h}$ and x_1, \ldots, x_n be the dual basis in \mathfrak{h}^* . The elements x_n, y_n still act on $N^{\mathfrak{S}_{n-1}} \cong \mathbb{C}^n$. Show that $[x_n, y_n] \in O = \{A | \operatorname{tr} A = 0, \operatorname{rk}(A + E) = 1\}$ for a suitable choice of c. Deduce that we have a morphism $\operatorname{Rep}_{\Gamma}(H_{0,c}, \mathbb{C}\Gamma) \to \mu^{-1}(O)$. Show that it descends to a morphism $\operatorname{Rep}_{\Gamma}(H_{0,c}, \mathbb{C}\Gamma) // \operatorname{GL}(\mathbb{C}\Gamma)^{\Gamma} \to C$. Show that the latter is finite and birational. Deduce that it is an isomorphism.

Show that a natural morphism $\operatorname{Rep}_{\Gamma}(H_{0,c},\mathbb{C}\Gamma)//\operatorname{GL}(\mathbb{C}\Gamma)^{\Gamma} \to \operatorname{Spec}(eH_{0,c}e)$ (how is it constructed, by the way?) is also finite and birational. Deduce that it is an isomorphism.