ECE 2321 Signals and Systems

Discrete Fourier Transforms

Martin Wafula

Multimedia University of Kenya

These slides are adapted from Prof Alejandro Ribeiro, UPenn

Discrete complex exponentials

Discrete complex exponentials

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT

Discrete Complex exponentials

ightharpoonup Discrete complex exponential of discrete frequency k and duration N

$$e_{kN}(n) = \frac{1}{\sqrt{N}} e^{j2\pi kn/N} = \frac{1}{\sqrt{N}} \exp(j2\pi kn/N)$$

► The complex exponential is explicitly given by

$$e^{j2\pi kn/N} = \cos(2\pi kn/N) + j\sin(2\pi kn/N)$$

Real part is a discrete cosine and imaginary part a discrete sine

Equivalent frequencies

Theorem

If k - l = N the signals $e_{kN}(n)$ and $e_{lN}(n)$ coincide for all n, i.e.,

$$e_{kN}(n) = \frac{e^{j2\pi kn/N}}{\sqrt{N}} = \frac{e^{j2\pi ln/N}}{\sqrt{N}} = e_{lN}(n)$$

- ▶ Although there are infinite possible frequencies complex exponentials with frequencies k and l are equivalent when the difference k l = N (or $k l = \dot{N}$)
- ▶ Only frequencies between 0 and N-1 are meaningful. Or, only frequencies between -N/2+1 and N/2 are meaningful.

Conjugate frequencies

Theorem

Opposite frequencies k and -k yield conjugate signals: $e_{-kN} = e_{kN}^*(n)$

Proof.

Just use the definitions to write the chain of equalities

$$e_{-kN}(n) = \frac{e^{j2\pi(-k)n/N}}{\sqrt{N}} = \frac{e^{-j2\pi kn/N}}{\sqrt{N}} = \left[\frac{e^{j2\pi kn/N}}{\sqrt{N}}\right]^* = e_{kN}^*(n)$$

- Opposite frequencies have the same real part and opposite imaginary part. The cosine is the same, the sine changes sign
- ▶ Only frequencies between 0 and N/2 are meaningful. This is fitting, as we can't have an oscillation with more than N/2 periods

Orthogonality

Theorem

Complex exponentials with nonequivalent frequencies are orthogonal. I.e.

$$\langle e_{kN}, e_{lN} \rangle = 0$$

when k - I < N. E.g., when k = 0, ..., N - 1, or k = -N/2 + 1, ..., N/2.

- Signals of canonical sets are "unrelated." Different rates of change
- Also note that the energy is $\|e_{kN}\|^2 = \langle e_{kN}, e_{kN} \rangle = 1$
- ightharpoonup Exponentials with frequencies k = 0, 1, ..., N 1 are orthonormal

$$\langle e_{kN}, e_{lN} \rangle = \delta(l-k)$$

► They are an orthonormal basis of signal space with *N* samples

Proof of orthogonality

Proof.

▶ Use definitions of inner product and discrete complex exponential to write

$$\langle e_{kN}, e_{lN} \rangle = \sum_{n=0}^{N-1} e_{kN}(n) e_{lN}^*(n) = \sum_{n=0}^{N-1} \frac{e^{j2\pi kn/N}}{\sqrt{N}} \frac{e^{-j2\pi ln/N}}{\sqrt{N}}$$

Regroup terms to write as geometric series

$$\langle e_{kN}, e_{lN} \rangle = \frac{1}{N} \sum_{n=0}^{N-1} e^{j2\pi(k-l)n/N} = \frac{1}{N} \sum_{n=0}^{N-1} \left[e^{j2\pi(k-l)/N} \right]^n$$

• Geometric series with basis a sums to $\sum_{n=0}^{N-1} a^n = (1-a^N)/(1-a)$. Thus,

$$\langle e_{kN}, e_{lN} \rangle = \frac{1}{N} \frac{1 - \left[e^{j2\pi(k-l)/N} \right]^N}{1 - e^{j2\pi(k-l)/N}} = \frac{1}{N} \frac{1 - 1}{1 - e^{j2\pi(k-l)/N}} = 0$$

Completed proof by noting $\left[e^{j2\pi(k-l)/N}\right]^N = e^{j2\pi(k-l)} = \left[e^{j2\pi}\right]^{(k-l)} = 1$

Discrete Fourier transform

Discrete complex exponentials

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT

Definition of discrete Fourier transform (DFT)

- ▶ Signal x of duration N with elements x(n) for n = 0, ..., N 1
- \triangleright X is the discrete Fourier transform (DFT) of x if for all $k \in \mathbb{Z}$

$$X(k) := \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N} = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) \exp(-j2\pi k n/N)$$

- ▶ We write $X = \mathcal{F}(x)$. All values of X depend on all values of x
- \triangleright The argument k of the DFT is referred to as frequency
- ▶ DFT is complex even if signal is real $\Rightarrow X(k) = X_R(k) + jX_I(k)$
 - ⇒ It is customary to focus on magnitude

$$|X(k)| = [X_R^2(k) + X_I^2(k)]^{1/2} = [X(k)X^*(k)]^{1/2}$$

DFT elements as inner products

- ► Discrete complex exponential (freq. k) $\Rightarrow e_{-kN}(n) = \frac{1}{\sqrt{N}} e^{-j2\pi kn/N}$
- ► Can rewrite DFT as $\Rightarrow X(k) = \sum_{n=0}^{N-1} x(n)e_{-kN}(n) = \sum_{n=0}^{N-1} x(n)e_{kN}^*(n)$
- ▶ And from the definition of inner product $\Rightarrow X(k) = \langle x, e_{kN} \rangle$
- ▶ DFT element X(k) ⇒ inner product of x(n) with $e_{kN}(n)$
 - \Rightarrow Projection of x(n) onto complex exponential of frequency k
 - \Rightarrow How much of the signal x is an oscillation of frequency k

DFT of a square pulse (derivation)

▶ The unit energy square pulse is the signal $\sqcap_M(n)$ that takes values $\sqcap_M(n)$

$$\sqcap_{M}(n) = \frac{1}{\sqrt{M}} \quad \text{if } 0 \le n < M$$

$$\sqcap_{M}(n) = 0 \quad \text{if } M \le n$$

▶ Since only the first M-1 elements of $\sqcap_M(n)$ are not null, the DFT is

$$X(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \sqcap_{M}(n) e^{-j2\pi k n/N} = \frac{1}{\sqrt{N}} \sum_{n=0}^{M-1} \frac{1}{\sqrt{M}} e^{-j2\pi k n/N}$$

- X(k) = sum of first M components of exponential of frequency -k
- ► Can reduce to simpler expression but who cares? ⇒ It's just a sum

DFT of a square pulse (illustration)

▶ Square pulse of length M=2 and overall signal duration N=32

$$X(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{1} \frac{1}{\sqrt{2}} e^{-j2\pi k n/N} = \frac{1}{\sqrt{2N}} \left(1 + e^{-j2\pi k/N} \right)$$

► E.g., $X(k) = \frac{2}{\sqrt{2N}}$ at $k = 0, \pm N, ...$ and X(k) = 0 at $k = 0 \pm N/2, \pm 3N/2, ...$

Modulus |X(k)| of the DFT of square pulse, duration N=32, pulse length M=2

ightharpoonup This DFT is periodic with period $N \Rightarrow$ true in general

Periodicity of the DFT

ightharpoonup Consider frequencies k and k+N. The DFT at k+N is

$$X(k + N) := \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi(k+N)n/N}$$

ightharpoonup Complex exponentials of freqs. k and k+N are equivalent. Then

$$X(k+N) := \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N} = X(k)$$

- ▶ DFT values N apart are equivalent ⇒ DFT has period N
- ightharpoonup Suffices to look at N consecutive frequencies \Rightarrow canonical sets
 - \Rightarrow Computation $\Rightarrow k \in [0, N-1]$
 - \Rightarrow Interpretation $\Rightarrow k \in [-N/2, N/2]$ (actually, N+1 freqs.)
 - \Rightarrow Related by chop and shift \Rightarrow $[-N/2,-1] \sim [N/2,N-1]$

Canonical set $k \in [0, N-1]$

▶ DFT of the square pulse highlighting frequencies $k \in [0, N-1]$

ightharpoonup Frequencies larger than N/2 have no clear physical meaning

Canonical set $k \in [-N/2, N/2]$

- ▶ DFT of the square pulse highlighting frequencies $k \in [-N/2, N/2]$
- ightharpoonup Negative freq. -k has the same interpretation as positive freq. k
- ▶ One redundant element $\Rightarrow X(-N/2) = X(N/2)$. Just convenient

▶ Obtain frequencies $k \in [-N/2, -1]$ from frequencies [N/2, N-1]

Pulses of different length

ightharpoonup The DFT X gives information on how fast the signal x changes

DFT modulus of square pulse, duration N=256, pulse length M=2

Frequency index $k = -128, -127, \dots, 128 = [-128, 128]$

DFT modulus of square pulse, duration N = 256, pulse length M = 4

Frequency index $k = -128, -127, \dots, 128 = [-128, 128]$

- For length M = 2 have weight at high frequencies
- ► Length M = 4 concentrates weight at lower frequencies
- Pulse of length M=2 changes more than a pulse of length M=4

More DFTs of pulses of different length

ightharpoonup The lengthier the pulse the less it changes \Rightarrow DFT concentrates at zero freq.

DFT modulus of square pulse, duration N = 256, pulse length M = 4

Frequency index $k = -128, -127, \dots, 128 = [-128, 128]$

DFT modulus of square pulse, duration N=256, pulse length M=16

Frequency index $k = -128, -127, \dots, 128 = [-128, 128]$

DFT modules of square pulse, duration N=256, pulse length M=8

Frequency index $k = -128, -127, \dots, 128 = [-128, 128]$

DFT modulus of square pulse, duration N=256, pulse length M=32

Frequency index $k = -128, -127, \dots, 128 = [-128, 128]$

DFT of a delta function

▶ The delta function is $\delta(0) = 1$ and $\delta(n) = 0$, else. Then, the DFT is

$$X(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \delta(n) e^{-j2\pi k n/N} = \frac{1}{\sqrt{N}} \delta(0) e^{-j2\pi k 0/N} = \frac{1}{\sqrt{N}}$$

- ▶ Only the N values $k \in [0, 15]$ shown. DFT defined for all k but periodic
- ▶ Observe that the energy is conserved $||X||^2 = ||\delta||^2 = 1$

DFT of a shifted delta function

▶ For shifted delta $\delta(n_0 - n_0) = 1$ and $\delta(n - n_0) = 0$ otherwise. Thus

$$X(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \delta(n - n_0) e^{-j2\pi k n/N} = \frac{1}{\sqrt{N}} \delta(n_0 - n_0) e^{-j2\pi k n_0/N}$$

▶ Of course $\delta(n_0 - n_0) = \delta(0) = 1$, implying that

$$X(k) = \frac{1}{\sqrt{N}} e^{-j2\pi k n_0/N} = e_{-n_0N}(k)$$

Complex exponential of frequency $-n_0$ (below, N=16 and $n_0=1$)

DFT of a complex exponential

- ► Complex exponential of freq. $k_0 \Rightarrow x(n) = \frac{1}{\sqrt{N}} e^{j2\pi k_0 n/N} = e_{k_0 N}(n)$
- ▶ Use inner product form of DFT definition $\Rightarrow X(k) = \langle e_{k_0} N, e_{kN} \rangle$
- Orthonormality of complex exponentials $\Rightarrow \langle e_{k_0} N, e_{kN} \rangle = \delta(k k_0)$

▶ DFT of exponential $e_{k_0N}(n)$ is shifted delta $X(k) = \delta(k - k_0)$

DFT of a constant

- ► Constant function $x(n) = 1/\sqrt{N}$ (it has unit energy) and k = 0
 - \Rightarrow Complex exponential with frequency $k_0 = 0 \Rightarrow x(n) = e_{0N}$
- ▶ Use inner product form of DFT definition $\Rightarrow X(k) = \langle e_{0N}, e_{kN} \rangle$
- ► Complex exponential orthonormality $\Rightarrow \langle e_{0N}, e_{kN} \rangle = \delta(k-0) = \delta(k)$

▶ DFT of constant $x(n) = 1/\sqrt{N}$ is delta function $X(k) = \delta(k)$

Observations

- ► DFT of a signal captures its rate of change
- Signals that change faster have more DFT weight at high frequencies
- ► DFT conserves energy (all have unit energy in our examples)
- ▶ Energy of DFT $X = \mathcal{F}(x)$ is the same as energy of the signal x
- ► Indeed, an important property we will show
- Duality of signal transform pairs (signals and DFTs come in pairs)
- ▶ DFT of delta is a constant. DFT of constant is a delta
- DFT of exponential is shifted delta. DFT of shifted delta is exponential
- Indeed, a fact that follows from the form of the inverse DFT

Units of the DFT

Discrete complex exponentials

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT

Units

- ▶ Sampling time T_s , sampling frequency f_s , signal duration $T = NT_s$
- ▶ Discrete frequency $k \Rightarrow k$ oscillations in time $NT_s = \text{Period } NT_s/k$
- ▶ Discrete frequency k equivalent to real frequency $f_k = \frac{k}{NT_s} = k \frac{f_s}{N}$
- ► In particular, k = N/2 equivalent to $\Rightarrow f_{N/2} = \frac{N/2f_s}{N} = \frac{f_s}{2}$
- ▶ Set of frequencies $k \in [-N/2, N/2]$ equivalent to real frequencies ...
 - \Rightarrow That lie between $-f_s/2$ and $f_s/2$
 - \Rightarrow Are spaced by f_s/N (difference between frequencies f_k and f_{k+1})
- ► Interval width given by sampling frequency. Resolution given by N

Units in DFT of a discrete complex exponential

- ▶ Complex exponential of frequency $f_0 = k_0 f_s / N$
 - \Rightarrow Discrete frequency k_0 and DFT $\Rightarrow X(k) = \delta(k k_0)$
- ▶ But frequency k_0 corresponds to frequency $f_0 \Rightarrow X(f) = \delta(f f_0)$

▶ True only when frequency $f_0 = (k_0/N)f_s$ is a multiple of f_s/N

Units in DFT of a square pulse

- ▶ Square pulse of length $T_0 = 4s$ observed during a total of T = 32s.
- ▶ Sampled every $T_s = 125 \text{ms}$ \Rightarrow Sample frequency $f_s = 8 \text{Hz}$
- ▶ Total number of samples $\Rightarrow N = T/T_s = 256$
- Maximum frequency $k = N/2 = 128 \leftrightarrow f_k = f_{N/2} = f_s/2 = 4Hz$
- Fequency resolution $f_s/N = 8Hz/256 = 0.03125Hz$

Discrete index, duration N = 256, pulse length M = 32

Sampling frequency $f_S = 8$ Hz, duration T = 32s, length T = 4s

Units in DFT of a square pulse

- ▶ Interval between freqs. $\Rightarrow f_s/N = 8Hz/256 = 1/32 = 0.03125Hz$
 - \Rightarrow 32 equally spaced frees for each 1Hz interval = 8 every 0.125 Hz.

Sampling frequency $f_S = 8$ Hz, duration T = 32s, length T = 4s

Frequencies $0, \pm 0.03125 Hz, \pm 0.06250 Hz, \dots, \pm 0.750 Hz$

- Zeros of DFT are at frequencies 0.250Hz, 0.500 Hz, 0.750 Hz, ...
 - \Rightarrow Thus, zeros are at frequencies are $1/T_0, 2/T_0, 3/T_0, \dots$
- ▶ Most (a lot) of the DFT energy is between freqs. $-1/T_0$ and $1/T_0$

DFT inverse

Discrete complex exponentials

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT

Definition of DFT inverse

▶ Given a Fourier transform X, the inverse (i)DFT $x = \mathcal{F}^{-1}(X)$ is

$$x(n) := \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X(k) e^{j2\pi k n/N} = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X(k) \exp(j2\pi k n/N)$$

- \triangleright Same as DFT but for sign in the exponent (also, sum over k, not n)
- ► Any summation over N consecutive frequencies works as well. E.g.,

$$x(n) = \frac{1}{\sqrt{N}} \sum_{k=-N/2+1}^{N/2} X(k)e^{j2\pi kn/N}$$

▶ Because for a DFT X we know that it must be X(k + N) = X(k)

iDFT is, indeed, the inverse of the DFT

Theorem

The inverse DFT of the DFT of x is the signal $x \Rightarrow \mathcal{F}^{-1}[\mathcal{F}(x)] = x$

Every signal x can be written as a sum of complex exponentials

$$x(n) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X(k) e^{j2\pi k n/N} = \frac{1}{\sqrt{N}} \sum_{k=-N/2+1}^{N/2} X(k) e^{j2\pi k n/N}$$

► Coefficient multiplying $e^{j2\pi kn/N}$ is X(k) = kth element of DFT of x

$$X(k) := \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N}$$

Proof of DFT inverse formula

Proof.

- Let $X = \mathcal{F}(x)$ be the DFT of x. Let $\tilde{x} = \mathcal{F}^{-1}(X)$ be the iDFT of X. \Rightarrow We want to show that $\tilde{x} \equiv x$
- From the definition of the iDFT of $X \Rightarrow \tilde{x}(\tilde{n}) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X(k) e^{j2\pi k \tilde{n}/N}$
- From the definition of the DFT of $x \Rightarrow X(k) := \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N}$
- ▶ Substituting expression for X(k) into expression for $\tilde{x}(\tilde{n})$ yields

$$\tilde{x}(\tilde{n}) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \left[\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N} \right] e^{j2\pi k \tilde{n}/N}$$

Proof of DFT inverse formula

Proof.

 \triangleright Exchange summation order to sum first over k and then over n

$$\widetilde{x}(\widetilde{n}) = \sum_{n=0}^{N-1} x(n) \left[\sum_{k=0}^{N-1} \frac{1}{\sqrt{N}} e^{j2\pi k \widetilde{n}/N} \frac{1}{\sqrt{N}} e^{-j2\pi k n/N} \right]$$

- Pulled x(n) out because it doesn't depend on k
- Innermost sum is the inner product between $e_{\tilde{n}N}$ and e_{nN} . Orthonormality:

$$\sum_{k=0}^{N-1} \frac{1}{\sqrt{N}} e^{j2\pi k \tilde{n}/N} \frac{1}{\sqrt{N}} e^{-j2\pi k n/N} = \delta(\tilde{n} - n)$$

- ► Reducing to $\Rightarrow \tilde{x}(\tilde{n}) = \sum_{n=0}^{N-1} x(n)\delta(\tilde{n}-n) = x(\tilde{n})$
- Last equation is true because only term $n = \tilde{n}$ is not null in the sum

Inverse DFT as inner product

- ► Discrete complex exponential (freq. n) $\Rightarrow e_{nN}(k) = \frac{1}{\sqrt{N}} e^{j2\pi kn/N}$
- ► Rewrite iDFT as $\Rightarrow x(n) = \sum_{k=0}^{N-1} X(k)e_{nN}(k) = \sum_{k=0}^{N-1} X(k)e_{-nN}^*(k)$
- ▶ And from the definition of inner product $\Rightarrow x(n) = \langle X, e_{-nN} \rangle$
- ▶ iDFT element X(k) ⇒ inner product of X(k) with $e_{-nN}(k)$
- ▶ Different from DFT, this is not the most useful interpretation

Inverse DFT as successive approximations

- Signal as sum of exponentials $\Rightarrow x(n) = \frac{1}{\sqrt{N}} \sum_{k=-N/2+1}^{N/2} X(k) e^{j2\pi kn/N}$
- \blacktriangleright Expand the sum inside out from k=0 to $k=\pm 1$, to $k=\pm 2,\ldots$

Start with slow variations and progress on to add faster variations

Reconstruction of square pulse

- ▶ Consider square pulse of duration N = 256 and length M = 128
- ▶ Reconstruct with frequency k = 0 only (DC component)

Pulse reconstruction with k=0 frequencies (N=256, M=128)

ightharpoonup Bound to be not very good \Rightarrow Just the average signal value

Reconstruction of square pulse

- ▶ Consider square pulse of duration N = 256 and length M = 128
- ▶ Reconstruct with frequencies k = 0, $k = \pm 1$, and $k = \pm 2$

Pulse reconstruction with k=2 frequencies (N=256, M=128)

ightharpoonup Not too bad, sort of looks like a pulse \Rightarrow only 3 frequencies

- ▶ Consider square pulse of duration N = 256 and length M = 128
- Reconstruct with frequencies up to k = 4

Pulse reconstruction with k=4 frequencies (N=256, M=128)

Starts to look like a good approximation

- ▶ Consider square pulse of duration N = 256 and length M = 128
- Reconstruct with frequencies up to k = 8

▶ Good approximation of the N = 256 values with 9 DFT coefficients

- ▶ Consider square pulse of duration N = 256 and length M = 128
- Reconstruct with frequencies up to k = 16

Pulse reconstruction with k=16 frequencies (N=256, M=128)

Compression \Rightarrow Store k + 1 = 17 DFT values instead of N = 128 samples

- ▶ Consider square pulse of duration N = 256 and length M = 128
- Reconstruct with frequencies up to k = 32

Pulse reconstruction with k=32 frequencies (N=256, M=128)

► Can tradeoff less compression for better signal accuracy

Spectrum (re)shaping

(1) Start with a signal x with elements x(n). Compute DFT X as

$$X(k) := \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N}$$

- (2) (Re)shape spectrum \Rightarrow Transform DFT X into DFT Y
- (3) With DFT Y available, recover signal y with inverse DFT

$$y(n) := \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} Y(k) e^{j2\pi k n/N}$$

- ► An application of spectrum reshaping is to clean a noisy signal
- ► Signal with some underlying trend (good) and some noise (bad)

ightharpoonup Which is which? \Rightarrow Not clear \Rightarrow Let's look at the spectrum (DFT)

- An application of spectrum reshaping is to clean a noisy signal
- Now the trend (spikes) is clearly separated from the noise (the floor)

► How do we remove the noise? ⇒ Reshape the spectrum

- An application of spectrum reshaping is to clean a noisy signal
- ▶ Remove freqs. larger than 8 \Rightarrow Y(k) = 0 for k > 8, Y(k) = X(k) else

▶ How do we recover the trend? ⇒ Inverse DFT

- ► An application of spectrum reshaping is to clean a noisy signal
- Inverse DFT of reshaped specturm Y(k) yields cleaned signal y(n)

► The trend now is clearly visible. Noise has been removed

Properties of the DFT

Discrete complex exponentials

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT

Three important properties of DFTs

► DFTs of real signals (no imaginary part) are conjugate symmetric

$$X(-k) = X^*(k)$$

- Signals of unit energy have transforms of unit energy
- ► More generically, the DFT preserves energy (Parseval's theorem)

$$\sum_{n=0}^{N-1} |x(n)|^2 = ||x||^2 = ||X||^2 = \sum_{k=0}^{N-1} |X(k)|^2$$

► The DFT operator is a linear operator

$$\mathcal{F}(ax + by) = a\mathcal{F}(x) + b\mathcal{F}(y)$$

Symmetry

Theorem

The DFT $X = \mathcal{F}(x)$ of a real signal x is conjugate symmetric

$$X(-k) = X^*(k)$$

- ► Can recover all DFT components from those with freqs. $k \in [0, N/2]$
- ▶ What about components with freqs. $k \in [-N/2, -1]$?
 - \Rightarrow Conjugates of those with freqs $k \in [0, N/2]$
- ▶ Other elements are equivalent to one in [-N/2, N/2] (periodicity)

Proof of symmetry property

Proof.

 \triangleright Write the DFT X(-k) using its definition

$$X(-k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi(-k)n/N}$$

- ▶ When the signal is real, its conjugate is itself $\Rightarrow x(n) = x^*(n)$
- ▶ Conjugating a complex exponential ⇒ changing the exponent's sign

► Can then rewrite
$$\Rightarrow X(-k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x^*(n) \left(e^{-j2\pi k n/N} \right)^*$$

Sum and multiplication can change order with conjugation

$$X(-\mathbf{k}) = \left[\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi \mathbf{k} n/N}\right]^* = X^*(\mathbf{k})$$

Energy conservation

Theorem (Parseval)

Let $X = \mathcal{F}(x)$ be the DFT of signal x. The energies of x and X are the same, i.e.,

$$\sum_{n=0}^{N-1} |x(n)|^2 = ||x||^2 = ||X||^2 = \sum_{k=0}^{N-1} |X(k)|^2$$

▶ In energy of DFT, any set of consecutive freqs. would do. E.g.,

$$||X||^2 = \sum_{k=0}^{N-1} |X(k)|^2 = \sum_{k=-N/2+1}^{N/2} |X(k)|^2$$

Proof of Parseval's Theorem

Proof.

- From the definition of the energy of $X \Rightarrow ||X||^2 = \sum_{k=0}^{N-1} X(k)X^*(k)$
- From the definition of the DFT of $x \Rightarrow X(k) := \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N}$
- Substitute expression for X(k) into one for $||X||^2$ (observe conjugation)

$$\|X\|^{2} = \sum_{k=0}^{N-1} \left[\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N} \right] \left[\frac{1}{\sqrt{N}} \sum_{\tilde{n}=0}^{N-1} x^{*}(\tilde{n}) e^{+j2\pi k \tilde{n}/N} \right]$$

Proof of Parseval's Theorem

Proof.

▶ Distribute product and exchange order of summations \Rightarrow sum over k first

$$\|X\|^{2} = \sum_{n=0}^{N-1} \sum_{\tilde{n}=0}^{N-1} x(n) x^{*}(\tilde{n}) \left[\sum_{k=0}^{N-1} \frac{1}{\sqrt{N}} e^{-j2\pi k n/N} \frac{1}{\sqrt{N}} e^{+j2\pi k \tilde{n}/N} \right]$$

- Pulled x(n) and $x^*(\tilde{n})$ out because they don't depend on k
- Innermost sum is the inner product between $e_{\tilde{n}N}$ and e_{nN} . Orthonormality:

$$\sum_{k=0}^{N-1} \frac{1}{\sqrt{N}} e^{-j2\pi k n/N} \frac{1}{\sqrt{N}} e^{+j2\pi k \tilde{n}/N} = \langle e_{\tilde{n}N}, e_{nN} \rangle = \delta(\tilde{n} - n)$$

- ► Thus $\Rightarrow \|X\|^2 = \sum_{n=0}^{N-1} \sum_{\tilde{n}=0}^{N-1} x(n) x^*(\tilde{n}) \delta(\tilde{n}-n) = \sum_{n=0}^{N-1} x(n) x^*(n) = \|x\|^2$
- ▶ True because only terms $n = \tilde{n}$ are not null in the sum

_

Linearity

Theorem

The DFT of a linear combination of signals is the linear combination of the respective DFTs of the individual signals,

$$\mathcal{F}(ax + by) = a\mathcal{F}(x) + b\mathcal{F}(y).$$

- In particular...
 - \Rightarrow Adding signals $(z = x + y) \Rightarrow$ Adding DFTs (Z = X + Y)
 - \Rightarrow Scaling signals(y = ax) \Rightarrow Scaling DFTs (Y = aX)

Proof of Linearity

Proof.

▶ Let $Z := \mathcal{F}(ax + by)$. From the definition of the DFT we have

$$Z(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \left[ax(n) + by(n) \right] e^{-j2\pi kn/N}$$

 \triangleright Expand the product, reorder terms, identify the DFTs of x and y

$$Z(k) = \frac{a}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N} + \frac{b}{\sqrt{N}} \sum_{n=0}^{N-1} y(n) e^{-j2\pi kn/N}$$

First sum is DFT $X = \mathcal{F}(x)$. Second sum is DFT $Y = \mathcal{F}(y)$

$$Z(k) = aX(k) + bY(k)$$

DFT of a discrete cosine

- ▶ DFT of discrete cosine of freq. $k_0 \Rightarrow x(n) = \frac{1}{\sqrt{N}} \cos(2\pi k_0 n/N)$
- ► Can write cosine as a sum of discrete complex exponentials

$$x(n) = \frac{1}{2\sqrt{N}} \left[e^{j2\pi k_0 n/N} + e^{-j2\pi k_0 n/N} \right] = \frac{1}{2} \left[e_{k_0 N}(n) + e_{-k_0 N}(n) \right]$$

- From linearity of DFTs $\Rightarrow X = \mathcal{F}(x) = \frac{1}{2} \Big[\mathcal{F}(e_{k_0 N}) + \mathcal{F}(e_{-k_0 N}) \Big]$
- ▶ DFT of complex exponential e_{kN} is delta function $\delta(k-k_0)$. Then

$$X(k) = \frac{1}{2} \left[\delta(k - k_0) + \delta(k + k_0) \right]$$

ightharpoonup A pair of deltas at positive and negative frequency k_0

DFT of a discrete sine

- ▶ DFT of discrete sine of freq. $k_0 \Rightarrow x(n) = \frac{1}{\sqrt{N}} \sin(2\pi k_0 n/N)$
- Can write sine as a difference of discrete complex exponentials

$$x(n) = \frac{1}{2i\sqrt{N}} \left[e^{j2\pi k_0 n/N} - e^{-j2\pi k_0 n/N} \right] = \frac{-j}{2} \left[e_{k_0 N}(n) - e_{-k_0 N}(n) \right]$$

- ► From linearity of DFTs $\Rightarrow X = \mathcal{F}(x) = \frac{j}{2} \left[\mathcal{F}(e_{-k_0N}) \mathcal{F}(e_{k_0N}) \right]$
- ▶ DFT of complex exponential e_{kN} is delta function $\delta(k-k_0)$. Then

$$X(k) = \frac{j}{2} \left[\delta(k + k_0) - \delta(k - k_0) \right]$$

Pair of opposite complex deltas at positive and negative frequency k_0

DFT of discrete cosine and discrete sine

Cosine has real part only (top). Sine has imaginary part only (bottom)

▶ Cosine is symmetric around k = 0. Sine is antisymmetric around k = 0.

DFT of discrete cosine and discrete sine (more)

Real and imaginary parts are different but the moduli are the same

- Cosine and sine are essentially the same signal (shifted versions)
 - ⇒ The moduli of their DFTs are identical
 - \Rightarrow Phase difference captured by phase of complex number $X(\pm k_0)$