Variables aléatoires discrètes (Probabilités)

A. El Ouni, A. Khaldi, C. Samir, A. Wohrer

2A - BUT Info Année 2024-2025

Avant de commencer

- Pour toutes questions sur le cours :

 - anis.fradi@uca.fr
 - abderrahmane.khaldi@ext.uca.fr chafik.samir@uca.fr

adrien.wohrer@uca.fr

 Les transparents du cours et d'autres documents sont disponibles sur l'ENT.

Plan du cours aujourd'hui

- Applications
- 2 Variable aléatoire
- 3 Fonction de répartition
- **4** Espérance et variance
- 5 Lois de probabilité d'une V. A. discrète

- Applications
- 2 Variable aléatoire
- **3** Fonction de répartition
- 4 Espérance et variance
- 6 Lois de probabilité d'une V. A. discrète

Loterie

Quel gain peut-on raisonnablement espérer?

Intuitif?

- Applications
- **2** Variable aléatoire
- **3** Fonction de répartition
- 4 Espérance et variance
- Lois de probabilité d'une V. A. discrète

Espace probabilisé

Soit l'univers $\Omega = \{\omega_1, \omega_2, ...\}$ où chaque ω_i est une issue. Soit P une mesure de probabilité sur l'ensemble Ω . Ensemble ils définissent un **espace probabilisé**, noté (Ω, P) .

Définition

- O est fini si le nombre des issues est fini.
 - Ex : un seul lancer à Pile ou Face. $\Rightarrow \Omega = \{P, F\}$.
- O est dénombrable s'il est assimilable aux nombres entiers.
 - Ex : le nombre de lancers à PF reguis pour obtenir Pile.
- O est continu s'il est assimilable aux nombres réels.
 - Ex : l'angle d'une aiguille tombée sur les rainures du parquet.

Les cas fini et dénombrable ont un point commun : leurs différentes issues peuvent être comptées (1^e possibilité, 2^e possibilité, etc). Dans ce cas, on parle de **probabilités discrètes**.

Dans le cas continu, ce ne sera plus le cas (semaine prochaine).

Exemple

Soit l'expérience aléatoire : lancer deux dés parfaits.

- $\Omega = \{(1, 1), (1, 2), (2, 1), \dots, (6, 6)\}.$
- On s'intéresse à la **variable aléatoire** *S* suivante :

$$S(\omega_1, \omega_2) = \omega_1 + \omega_2 = k$$

- Les valeurs prises par S sont : 2 ≤ S ≤ 12
- Exemples :

$$P(S=0) = 0$$
; $P(S=2) = \frac{1}{36}$; $P(S=10) = \frac{3}{36}$.

• Dessiner le graphe (S, P_S) pour S = 0...14.

Variable aléatoire discrète

Soit (Ω, P) un espace probabilisé discret (fini ou dénombrable).

Définition

• Une variable aléatoire (notée v.a.) X est une fonction définie sur Ω , et à valeurs réelles.

$$X: \Omega \rightarrow \mathbb{R}$$
 $\omega \mapsto x$

- Les valeurs prises par X sont dénombrables : $\{x_1, x_2, \dots\}$.
- On dit alors que X est une v.a. discrète.

Loi de probabilité discrète

Soit X une v.a. discrète.

Définition

- On introduit les évènements : $(X = x_i) = \{\omega \in \Omega | X(\omega) = x_i\}.$
- La **loi de probabilité** de *X* est la donnée des nombres

$$p_i = P(X = x_i).$$

• On a: $0 \le p_i \le 1$ et $\sum_i p_i = 1$.

Exemple

Pour la somme 5 de deux dés parfaits :

Si	1	2	3	4	5	6	
$P(S=s_i)$	<u>0</u> 36	1 36	2 36	3 36	4 36	<u>5</u> 36	

- Applications
- 2 Variable aléatoire
- **3** Fonction de répartition
- 4 Espérance et variance
- Lois de probabilité d'une V. A. discrète

Fonction de répartition

Soit X une v.a. discrète.

Définition

• La fonction de répartition de X est définie sur $\mathbb R$ par :

$$F(x) = P(X \le x).$$

- C'est une fonction croissante en escalier.
- Pour $a \le b$ on a $F(a) \le F(b)$.
- $\lim_{a \to -\infty} F(a) = 0$ et $\lim_{a \to +\infty} F(a) = 1$.

Exemple d'une fonction de répartition

- Applications
- 2 Variable aléatoire
- **3** Fonction de répartition
- **4** Espérance et variance
- Lois de probabilité d'une V. A. discrète

Soit X une v.a. discrète.

Définition

• L'espérance de X, notée E[X], est le nombre défini par

$$E[X] = \sum_{i} x_i p_i$$

Quand E[X] = 0 on dit que la variable X est centrée.

Propriétés

- E[aX + b] = aE[X] + b, pour tous $a, b \in \mathbb{R}$. [linéarité]
- Si $X \ge Y$ alors $E[X] \ge E[Y]$.
- $E[f(X)] = \sum_i f(x_i)p_i$, pour toute fonction f sur \mathbb{R} .

Soit X une v.a. discrète.

Définition

- La variance de X, notée V[X] est le nombre défini par $V[X] = E[(X - E[X])^2]$
- Sa racine carrée est appelée **écart type** : $\sigma_X = \sqrt{V[X]}$.

Propriétés

- $V[X] = E[X^2] (E[X])^2 = \sum_i x_i^2 p_i (E[X])^2$
- $V[X] \geq 0$
- $V[aX + b] = a^2V[X]$

- Applications
- 2 Variable aléatoire
- **3** Fonction de répartition
- **4** Espérance et variance
- 5 Lois de probabilité d'une V. A. discrète Loi uniforme Loi de Bernoulli

Loi uniforme

On tire un objet au hasard parmi n.

Exemples

- Dé parfait : *X* ~ *U*(6).
- Carte au hasard : X ~ U(52).

Fonction de masse et fonction de répartition :

On tire un objet au hasard parmi n.

Définition

Soit un entier n. On dit que X suit une **loi uniforme** sur $\{1, n\}$, et on note $X \sim U(n)$, lorsque :

$$\forall k = 1 \dots n, \quad P(X = k) = \frac{1}{n}.$$

Loi de Bernoulli

Un essai binaire, avec succès (1) ou échec (0).

Exemples

- Un tirage à pile ou face : $X \sim B(\frac{1}{2})$. Une vache au hasard est-elle atteinte de l'ESB? $X \sim B(10^{-4})$.

Loi de Bernoulli

Un essai binaire, avec succès (1) ou échec (0).

Définition

Soit un nombre $0 \le p \le 1$. On dit que X suit une **loi de Bernoulli** avec probabilité de succès p, et on note $X \sim B(p)$, lorsque :

$$P(X = 1) = p$$
 (succès)
 $P(X = 0) = 1-p$ (échec)

Propriétés

- E[X] = p
- V[X] = p(1-p)

