

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 May 2002 (10.05.2002)

PCT

(10) International Publication Number
WO 02/36562 A2

(51) International Patent Classification⁷: C07D 209/08, A61K 31/395, A61P 43/00, C07D 495/04, 403/12, 409/12, 401/12, 231/56, 413/12

(21) International Application Number: PCT/US01/45389

(22) International Filing Date: 31 October 2001 (31.10.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/245,118 2 November 2000 (02.11.2000) US

(71) Applicant: AMERICAN HOME PRODUCTS CORPORATION [US/US]; Five Giralda Farms, Madison, NJ 07940 (US).

(72) Inventors: KELLY, Michael, Gerard; 790 Sandoval Place, Thousand Oaks, CA 91360 (US). COLE, Derek, Cecil; 14 Renfrew Road, New City, NY 10956 (US).

(74) Agent: LENCES, Barbara, L.; American Home Products Corporation, Patent Law Department, Five Giralda Farms, Madison, NJ 07940 (US).

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/36562 A2

(54) Title: 1-ARYL- OR 1-ALKYLSULFONYL-HETEROCYCLYL BENZAZOLES AS 5-HYDROXYTRYPTAMINE-6 LIGANDS

(57) Abstract: The present invention provides a compound of formula I and the use thereof in the therapeutic treatment of disorders related to or affected by the 5-HT₆ receptor.

1-ARYL- OR 1-ALKYLSULFONYL-HETEROCYCLBENZAZOLES AS
5-HYDROXYTRYPTAMINE-6 LIGANDS

5 This invention relates to 1-Aryl- or 1-alkylsulfonyl-heterocyclbenzazoles useful as 5-hydroxytryptamine-6 ligands, to processes for preparing them, to pharmaceutical compositions containing them and to methods of treatment using them.

10

BACKGROUND OF THE INVENTION

Compounds capable of forming 5-HT₆ receptor ligands are potentially useful in the treatment of a number of central nervous system disorders such as anxiety, depression, epilepsy obsessive compulsive disorders, migraine, cognitive disorders, sleep disorders, feeding disorders, panic attacks, disorders resulting from withdrawal from drug abuse, schizophrenia, or certain 15 gastrointestinal disorders such as irritable bowel syndrome. Significant efforts are being made to understand the recently identified 5HT-6 receptor and its possible role in neuropsychiatric and neurodegenerative functions. To that end, new compounds which demonstrate 20 a binding affinity for the 5HT-6 receptor are earnestly sought, particularly as potential potent therapeutic agents.

Therefore, it is an object of this invention to provide compounds which are useful as therapeutic agents 30 in the treatment of a variety of conditions related to or affected by the 5-HT₆ receptor.

It is another object of this invention to provide methods and compositions useful for the treatment of psychoses (e.g., schizophrenia, anxiety, or depression),

motor disorders (e.g., Parkinson's disease), anxiety, depression, obsessive compulsive disorder, attention deficit disorder, or any condition which is known to be related to or affected by the 5-HT₆ receptor.

5 These and other objects and features of this invention will become more apparent by the detailed description set forth hereinbelow.

SUMMARY OF THE INVENTION

10 The present invention provides a compound of formula I

15

wherein

A is C, CR₁₀ or N;

X is CR₁₁ or N;

Y is CR₇ or N with the proviso that when X is N, then
20 Y must be CR₇;

R₁ is H, C₁-C₆alkylcarbonyl, C₁-C₆alkoxycarbonyl or an
C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl or C₅-
C₇cycloheteroalkyl group each optionally
substituted;

R₂, R₃, R₄, R₅ and R₆ are each independently H, halogen, OH or an optionally substituted C₁-C₆alkyl group;

R₇ and R₁₁ are each independently H, halogen or an C₁-C₆alkyl, aryl, heteroaryl or C₁-C₆alkoxy group each optionally substituted;

R₈ is an C₁-C₆alkyl, aryl or heteroaryl group each optionally substituted;

R₉ is H, halogen or a C₁-C₆alkyl, C₁-C₆alkoxy, C₂-C₆alkenyl, aryl or heteroaryl group each optionally substituted;

R₁₀ is H, OH or an optionally substituted alkoxy group;

m is an integer of 1, 2 or 3;

n is 0 or an integer of 1, 2 or 3; and

— represents a single bond or a double bond; or

a pharmaceutically acceptable salt thereof.

The present invention also provides methods and compositions useful in the treatment of central nervous system disorders.

DETAILED DESCRIPTION OF THE INVENTION

The 5-hydroxytryptamine-6 (5-HT6) receptor is one of the most recent receptors to be identified by molecular cloning. Its ability to bind a wide range of therapeutic compounds used in psychiatry, coupled with its intriguing distribution in the brain has stimulated significant interest in new compounds which are capable of interacting with or affecting said receptor. At present, there are no known fully selective agonists. Significant efforts are being made to understand the possible role of

the 5-HT₆ receptor in psychiatry, cognitive dysfunction, motor function and control, memory, mood and the like. To that end, compounds which demonstrate a binding affinity for the 5-HT₆ receptor are earnestly sought both 5 as an aid in the study of the 5-HT₆ receptor and as potential therapeutic agents in the treatment of central nervous system disorders.

Surprisingly, it has now been found that 1-alkyl- or 1-arylsulfonyl-heterocyclbenzazoles of formula I 10 demonstrate 5-HT₆ affinity along with significant subtype selectivity. Advantageously, said formula I benzazoles are effective therapeutic agents for the treatment of central nervous system disorders associated with or affected by the 5-HT₆ receptor. Accordingly, the 15 present invention provides 1-alkyl- or 1-arylsulfonyl-heterocyclbenzazole compounds of formula I

20

wherein

A is C, CR₁₀ or N;

X is CR₁₁ or N;

Y is CR₇ or N with the proviso that when X is N, then
Y must be CR₇;

R₁ is H, C₁-C₆alkylcarbonyl, C₁-C₆alkoxycarbonyl or a
C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl or
5 cycloheteroalkyl group each optionally
substituted;

R₂, R₃, R₄, R₅ and R₆ are each independently H,
halogen, OH or an optionally substituted C₁-
C₆alkyl group;

10 R₇ and R₁₁ are each independently H, halogen or an C₁-
C₆alkyl, aryl, heteroaryl or alkoxy group each
optionally substituted;

R₈ is an C₁-C₆alkyl, aryl or heteroaryl group each
optionally substituted;

15 R₉ is H, halogen or an C₁-C₆alkyl, C₁-C₆alkoxy, C₂-
C₆alkenyl, aryl or heteroaryl group each
optionally substituted;

R₁₀ is H, OH or an optionally substituted alkoxy
group;

20 m is an integer of 1, 2 or 3;

n is 0 or an integer of 1, 2 or 3; and

---- represents a single bond or a double bond; or
a pharmaceutically acceptable salt thereof.

As used in the specification and claims, the term
25 halogen designates Br, Cl, I or F; the term aryl
designates phenyl or naphthyl. The term cycloheteroalkyl
designates a five to seven membered cycloalkyl ring
system containing 1 or 2 heteroatoms, which may be the
same or different, selected from N, NR, O or S and
30 optionally containing one double bond, where R represents
hydrogen or an optional substituent such as illustrated
herein. Exemplary of the cycloheteroalkyl ring systems

included in the term as designated herein are the following rings wherein Y is NR, O or S.

5

Similarly, as used in the specification and claims, the term heteroaryl designates a 5-10 membered aromatic ring system containing 1, 2 or 3 heteroatoms, which may be the same or different, selected from nitrogen, oxygen and sulphur. Such heteroaryl ring systems include pyrrolyl, azolyl, oxazolyl, thiazolyl, imidazolyl, furyl, thienyl, quinolinyl, isoquinolinyl, indolinyl, benzothienyl, benzofuranyl, benzisoxazolyl and the like; the term haloalkyl designates a C_nH_{2n+1} group having from one to $2n+1$ halogen atoms which may be the same or different; and the term haloalkoxy designates an OC_nH_{2n+1} group having from one to $2n+1$ halogen atoms which may be the same or different.

In the specification and claims, when terms such as C_1-C_6 alkyl, C_2-C_6 alkenyl, C_2-C_6 alkynyl, C_3-C_7 cycloalkyl, cycloheteroalkyl, aryl or heteroaryl are designated as being optionally substituted, the substituent groups which are optionally present may be one or more of those customarily employed in the development of pharmaceutical compounds or the modification of such compounds to influence their structure/activity, persistence, absorption, stability or other beneficial property.

Specific examples of such substituents include halogen atoms, nitro, cyano, thiocyanato, cyanato, hydroxyl, alkyl, haloalkyl, alkoxy, haloalkoxy, amino, alkylamino, dialkylamino, formyl, alkoxycarbonyl, 5 carboxyl, alkanoyl, alkylthio, alkylsulphanyl, alkylsulphonyl, carbamoyl, alkylamido, phenyl, phenoxy, benzyl, benzyloxy, heteroaryl, cycloheteroalkyl or cycloalkyl groups, preferably halogen atoms or lower alkyl groups. Typically, 0-3 substituents may be 10 present. When any of the foregoing substituents represents or contains an alkyl substituent group, this may be linear or branched and may contain up to 12, preferably up to 6, more preferably up to 4 carbon atoms.

15 The variables A, X, Y, R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₁₁, R₈, R₉, R₁₀ may each be values that are optionally substituted by substituents as described herein.

Examples of the variables in formula (I) are each 20 or any combination of the following:

A is C, N, or CR₁₀ wherein R₁₀ is as defined or illustrated herein (e.g. A is CH, C(OH), C(O-C₁-C₆alkyl) wherein the alkyl group may be substituted by 25 one or more of the following the same or different: halogen, nitro, cyano, thiocyanato, cyanato, hydroxyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, haloC₁-C₆-alkoxy, haloC₁-C₆-alkyl, amino, C₁-C₆-alkylamino, di-C₁-C₆-alkylamino, formyl, C₂-C₇-alkoxycarbonyl, carboxyl, C₂-C₇-alkanoyl, 30 C₁-C₆-alkylthio, C₁-C₆-alkylsulphanyl, C₁-C₆-alkyl-sulphonyl, carbamoyl, C₁-C₆-alkylamido, phenyl, phenoxy, benzyl, benzyloxy, heteroaryl, cycloheteroalkyl or C₅-C₇cycloalkyl groups).

X is N, CR₁₁ wherein R₁₁ is as defined or illustrated herein (e.g. CR₁₁ is CH, C-aryl, C-halogen, C-(C₁-C₆alkyl), C(O-C₁-C₆alkyl) wherein the alkyl or aryl group may each be substituted by one or more of the following the same or different: halogen, nitro, cyano, thiocyanato, cyanato, hydroxyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, haloC₁-C₆-alkoxy, haloC₁-C₆-alkyl, amino, C₁-C₆-alkylamino, di-C₁-C₆-alkylamino, formyl, C₂-C₇-10 alkoxy carbonyl, carboxyl, C₂-C₇-alkanoyl, C₁-C₆-alkylthio, C₁-C₆-alkylsulphanyl, C₁-C₆-alkylsulphonyl, carbamoyl, C₁-C₆-alkylamido, phenyl, phenoxy, benzyl, benzyloxy, heteroaryl, cycloheteroalkyl or C₅-C₇cycloalkyl groups).

15

Y is N or CR₇ wherein R₇ is as defined or illustrated herein (e.g. CR₇ is CH, C-aryl, C-halogen, C-(C₁-C₆alkyl), C(O-C₁-C₆alkyl) wherein the alkyl or aryl groups may each be substituted by one or more of the following the same or different: halogen, nitro, cyano, thiocyanato, cyanato, hydroxyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, haloC₁-C₆-alkoxy, haloC₁-C₆-alkyl, amino, C₁-C₆-alkylamino, di-C₁-C₆-alkylamino, formyl, C₂-C₇-alkoxy carbonyl, carboxyl, C₂-C₇-alkanoyl, C₁-C₆-alkylthio, C₁-C₆-alkylsulphanyl, C₁-C₆-alkylsulphonyl, carbamoyl, C₁-C₆-alkylamido, phenyl, phenoxy, benzyl, benzyloxy, heteroaryl, cycloheteroalkyl or C₅-C₇cycloalkyl groups).

30

R₁ is H, C₁-C₆alkylcarbonyl, C₁-C₆alkyloxycarbonyl or an C₁-C₆alkyl, C₁-C₆alkenyl, C₁-C₆alkynyl or 5-7 membered cycloheteroalkyl group each optionally substituted by one or more of the following the same or different: halogen, nitro, cyano, thiocyanato, cyanato, hydroxyl, C₁-C₆-alkyl,

C₁-C₆-alkoxy, haloC₁-C₆-alkoxy, haloC₁-C₆-alkyl, amino, C₁-C₆-alkylamino, di-(C₁-C₆-alkyl)amino, formyl, C₂-C₇alkoxycarbonyl, carboxyl, C₂-C₇-alkanoyl, C₁-C₆-alkylthio, C₁-C₆-alkylsulphanyl, C₁-C₆alkylsulphonyl,
5 carbamoyl, C₁-C₆-alkylamido, phenyl, phenoxy, benzyl, benzyloxy, heteroaryl, cycloheteroalkyl or C₅-C₇cycloalkyl groups); said phenyl, phenoxy, benzyl and benzyloxy groups being optionally substituted by one or more of the following the same or different: halogen, nitro, cyano,
10 thiocyanato, cyanato, hydroxyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, haloC₁-C₆-alkoxy, haloC₁-C₆-alkyl, amino, C₁-C₆-alkylamino, di-(C₁-C₆-alkyl)amino, formyl, C₂-C₇alkoxycarbonyl, carboxyl, C₂-C₇-alkanoyl, C₁-C₆-alkylthio, C₁-C₆-alkylsulphanyl, C₁-C₆alkylsulphonyl, carbamoyl, C₁-C₆-alkylamido.
15

R₂, R₃, R₄, R₅ and R₆ are each selected from H, halogen OH or C₁-C₆alkyl wherein the alkyl group may be substituted by one or more of the following the same or
20 different: halogen, nitro, cyano, thiocyanato, cyanato, hydroxyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, haloC₁-C₆-alkoxy, haloC₁-C₆-alkyl, amino, C₁-C₆-alkylamino, di-C₁-C₆-alkylamino, formyl, C₂-C₇-alkoxycarbonyl, carboxyl, C₂-C₇-alkanoyl, C₁-C₆-alkylthio, C₁-C₆-alkylsulphanyl, C₁-C₆-alkylsulphonyl, carbamoyl, C₁-C₆-alkylamido, phenyl, phenoxy, benzyl, benzyloxy, heteroaryl, cyclohetero-alkyl or C₅-C₇cycloalkyl groups).

30 R, and R₁₁ are each independently H, halogen, aryl, heteroaryl, C₁-C₆alkyl or O-C₁-C₆alkyl wherein the alkyl, aryl or heteroaryl groups may each be substituted by one or more of the following the same or different: halogen, nitro, cyano, thiocyanato, cyanato,

hydroxyl, C_1-C_6 -alkyl, C_1-C_6 -alkoxy, $haloC_1-C_6$ -alkoxy, $haloC_1-C_6$ -alkyl, amino, C_1-C_6 -alkylamino, di- C_1-C_6 -alkylamino, formyl, C_2-C_7 -alkoxycarbonyl, carboxyl, C_2-C_7 -alkanoyl, C_1-C_6 -alkylthio, C_1-C_6 -alkylsulphinyl, C_1-C_6 -alkylsulphonyl, carbamoyl, C_1-C_6 -alkylamido, phenyl, phenoxy, benzyl, benzyloxy, heteroaryl, cycloheteroalkyl or C_5-C_7 cycloalkyl groups).

R_8 is a C_1-C_6 alkyl, aryl or heteroaryl wherein the alkyl, aryl or heteroaryl groups may each be substituted by one or more of the following the same or different: halogen, nitro, cyano, thiocyanato, cyanato, hydroxyl, C_1-C_6 -alkyl, C_1-C_6 -alkoxy, $haloC_1-C_6$ -alkoxy, $haloC_1-C_6$ -alkyl, amino, C_1-C_6 -alkylamino, di- C_1-C_6 -alkylamino, formyl, C_2-C_7 -alkoxycarbonyl, carboxyl, C_2-C_7 -alkanoyl, C_1-C_6 -alkylthio, C_1-C_6 -alkylsulphinyl, C_1-C_6 -alkylsulphonyl, carbamoyl, C_1-C_6 -alkylamido, phenyl, phenoxy, benzyl, benzyloxy, heteroaryl, cycloheteroalkyl or C_5-C_7 cycloalkyl groups); said phenyl, phenoxy, benzyl and benzyloxy groups being optionally substituted by one or more of the following the same or different: halogen, nitro, cyano, thiocyanato, cyanato, hydroxyl, C_1-C_6 -alkyl, C_1-C_6 -alkoxy, $haloC_1-C_6$ -alkoxy, $haloC_1-C_6$ -alkyl, amino, C_1-C_6 -alkylamino, di-(C_1-C_6 -alkyl)amino, formyl, C_2-C_7 alkoxycarbonyl, carboxyl, C_2-C_7 -alkanoyl, C_1-C_6 -alkylthio, C_1-C_6 -alkylsulphinyl, C_1-C_6 alkylsulphonyl, carbamoyl, C_1-C_6 -alkylamido.

R_9 is H, halogen, aryl, heteroaryl, C_2-C_6 alkenyl, C_1-C_6 alkyl or $O-C_1-C_6$ alkyl wherein the alkenyl, alkyl, aryl or heteroaryl groups may each be substituted by one or more of the following the same or different: halogen, nitro, cyano, thiocyanato, cyanato, hydroxyl, C_1-C_6 -alkyl, C_1-C_6 -alkoxy, $haloC_1-C_6$ -alkoxy, $haloC_1-C_6$ -

alkyl, amino, C_1-C_6 -alkylamino, di- C_1-C_6 -alkylamino, formyl, C_2-C_7 -alkoxycarbonyl, carboxyl, C_2-C_7 -alkanoyl, C_1-C_6 -alkylthio, C_1-C_6 -alkylsulphanyl, C_1-C_6 -alkylsulphonyl, carbamoyl, C_1-C_6 -alkylamido, phenyl, 5 phenoxy, benzyl, benzyloxy, heteroaryl, cycloheteroalkyl or C_5-C_7 cycloalkyl groups).

R₁₀ is H, OH or O- C_1-C_6 alkyl wherein the alkyl group may be substituted by one or more of the 10 following the same or different: halogen, nitro, cyano, thiocyanato; cyanato, hydroxyl, C_1-C_6 -alkyl, C_1-C_6 -alkoxy, halo C_1-C_6 -alkoxy, halo C_1-C_6 -alkyl, amino, C_1-C_6 -alkylamino, di- C_1-C_6 -alkylamino, formyl, C_2-C_7 -alkoxycarbonyl, carboxyl, C_2-C_7 -alkanoyl, C_1-C_6 -alkylthio, C_1-C_6 -alkylsulphanyl, C_1-C_6 -alkylsulphonyl, carbamoyl, C_1-C_6 -alkylamido, phenyl, phenoxy, benzyl, benzyloxy, heteroaryl, cycloheteroalkyl or C_5-C_7 cycloalkyl groups).

20 More particularly, independent examples of the variables in formula (I) are each of the following:

A may represent N, CH, C(OH), C(O- C_1-C_6 alkyl) wherein the alkyl group may be substituted by one or 25 more of the following the same or different: halogen, hydroxyl, C_1-C_6 -alkoxy, amino, C_1-C_6 -alkylamino, di- C_1-C_6 -alkylamino and phenyl.

X may represent N or CH, C-aryl, C-halogen, C-(C_1-C_6 alkyl) or C(O- C_1-C_6 alkyl).

Y may represent N or CH, C-aryl, C-halogen, C-(C_1-C_6 alkyl), C(O- C_1-C_6 alkyl).

R₁ may represent H, (C₁-C₆alkyl)carbonyl, C₅-C₇-cycloheteroalkyl having 1 or 2 nitrogen ring atoms, or an C₁-C₆ alkyl, phenylC₁-C₆ alkyl, pyridylC₁-C₆alkyl, thienylC₁-C₆alkyl group each optionally substituted by one or more of the following the same or different: halogen, nitro, cyano, thiocyanato, cyanato, hydroxyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, haloC₁-C₆-alkoxy, haloC₁-C₆-alkyl, amino, C₁-C₆-alkylamino, di-(C₁-C₆-alkyl)amino, formyl, C₂-C₇alkoxycarbonyl, carboxyl, C₂-C₇-alkanoyl, C₁-C₆-alkylthio, C₁-C₆-alkylsulphanyl, C₁-C₆alkylsulphonyl, carbamoyl, C₁-C₆-alkylamido, phenyl, phenoxy, benzyl, benzyloxy, cycloheteroalkyl or C₅-C₇cycloalkyl groups.

R₂, R₃, R₄, R₅ and R₆ may each independently represent H, halogen, OH or -C₁-C₆alkyl.

R₈ may represent a C₁-C₆alkyl, aryl of 6-10 carbon atoms or mono- or bi-cyclic heteroaryl 6-10 carbon atoms or heteroaryl of 5-10 ring members having 1-3 heteroatoms selected from O, N and S wherein the aryl or heteroaryl groups may each be substituted by one or more of the following the same or different: halogen, nitro, cyano, thiocyanato, cyanato, hydroxyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, haloC₁-C₆-alkoxy, haloC₁-C₆-alkyl, amino, C₁-C₆-alkylamino, di-C₁-C₆-alkylamino, formyl, C₂-C₇-alkoxycarbonyl, carboxyl, C₂-C₇-alkanoyl, C₁-C₆-alkylthio, C₁-C₆-alkylsulphanyl, C₁-C₆-alkylsulphonyl, carbamoyl, C₁-C₆-alkylamido, phenyl, phenoxy, benzyl, benzyloxy, cycloheteroalkyl or C₅-C₇cycloalkyl groups);

R₉ may represent H, halogen, C₁-C₆alkyl

R₁₀ may represent H, OH or O-C₁-C₆alkyl.

Further examples of R₁ are hydrogen, C₁-C₆alkyl (e.g. propyl); (C₁-C₆alkyl)-CO- (e.g. acetyl); benzyl; phenethyl; phenpropyl; pyridylmethyl (e.g. 3- or 4-pyridylmethyl); thienylmethyl; benzoyl(C₁-C₄)alkyl, 5 phenoxy(C₁-C₄)alkyl and 4,5-dihydro-1H-imidazolyl; which groups may be substituted by one or more substituents the same or different such as substituents selected from halogen (e.g. 2-chloro-5-thienylmethyl, 10 2-(p-fluorophenoxy)ethyl, p-fluorobenzoylpropyl); nitro (e.g. 3-nitrobenzyl); or (C₁-C₆)alkoxy (e.g. 3-methoxybenzyl).

Further examples of R₈ are phenyl, naphthyl and 15 heteroaryl groups as hereinbefore defined such as thienyl (e.g. thien-2-yl), benzothienyl (e.g. benzothien-2-yl), imidazo[2,1-b]thiazolyl, benzothiazolyl, benzofurazanyl, benzothiadiazolyl, isoxazolyl, imidazolyl and pyrazolyl (e.g. pyrazol-4-yl); which 20 groups may each be substituted by one or more substituents (e.g. 1-3) the same or different such as substituents selected from halogen, C₁-C₄ alkoxy, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy C₁-C₄alkylamino, fi(C₁-C₄alkyl)amino and amino.

25 Examples of m are 2 and 3. R₅ and R₆ may be for example hydrogen. R₂, R₃ and R₅ may also represent hydrogen. An example of n is zero. A may be for example -N-, -CH- or -C(OH)-.

30 Pharmaceutically acceptable salts may be any acid addition salt formed by a compound of formula I and a pharmaceutically acceptable acid such as phosphoric,

sulfuric, hydrochloric, hydrobromic, citric, maleic, succinic, fumaric, acetic, lactic, nitric, sulfonic, p-toluene sulfonic, methane sulfonic acid or the like.

Preferred compounds of the invention are those
5 compounds of formula I wherein A is N and m is 2. Also preferred are those compounds of formula I wherein R₈ is an optionally substituted phenyl group and R₁ is H or a C₁-C₆alkyl or C₅-C₇cycloheteroalkyl group each optionally substituted. Further preferred compounds of the
10 invention are those compounds of formula I wherein R₂, R₃, R₄, R₅ and R₆ are H and n is 0.

More preferred compounds of the invention are those compounds of formula I wherein A is N; m is 2 and R₁ is H or a C₁-C₄alkyl or C₅-C₇cycloheteroalkyl group each
15 optionally substituted. Another group of more preferred compounds of the invention are those compounds of formula I wherein A is N; m is 2; R₁ is H or a C₁-C₄alkyl or C₅-C₇cycloheteroalkyl group each optionally substituted; and R₈ is an optionally substituted phenyl group.
20

Among the preferred compounds of the invention are:
1-(phenylsulfonyl)-4-piperazin-1-yl-1H-indole;
1-[(2-bromophenyl)sulfonyl]-4-piperazin-1-yl-1H-indole;
1-[(6-chloroimidazo[2,1-b][1,3]thiazol-5-yl)sulfonyl]-4-
25 piperazin-1-yl-1H-indole;
1-[(3,4-dimethoxyphenyl)sulfonyl]-4-piperazin-1-yl-1H-
indole;
1-[(5-chloro-3-methyl-1-benzothien-2-yl)sulfonyl]-4-
piperazin-1-yl-1H-indole;
30 1-[(4-bromophenyl)sulfonyl]-4-piperazin-1-yl-1H-indole;
1-[(5-bromothien-2-yl)sulfonyl]-4-piperazin-1-yl-1H-
indole;

1-[(4,5-dichlorothien-2-yl)sulfonyl]-4-piperazin-1-yl-1H-indole;
methyl 4-[(4-piperazin-1-yl-1H-indol-1-yl)sulfonyl]phenyl ether;

5 4-piperazin-1-yl-1-{[4-(trifluoromethoxy)phenyl]-sulfonyl}-1H-indole;
4-(4-benzylpiperazin-1-yl)-1-(phenylsulfonyl)-1H-indole;
4-(4-benzylpiperazin-1-yl)-1-[(2-bromophenyl)sulfonyl]-1H-indole;

10 4-(4-benzylpiperazin-1-yl)-1-[(6-chloroimidazo[2,1-b][1,3]thiazol-5-yl)sulfonyl]-1H-indole;
4-(4-benzylpiperazin-1-yl)-1-[(3,4-dimethoxyphenyl)sulfonyl]-1H-indole;
4-[4-(3-methoxybenzyl)piperazin-1-yl]-1-(phenylsulfonyl)-1H-indole;

15 1-(phenylsulfonyl)-4-[4-(pyridin-4-ylmethyl)piperazin-1-yl]-1H-indole;
1-(phenylsulfonyl)-4-[4-(pyridin-3-ylmethyl)piperazin-1-yl]-1H-indole;

20 1-[(2-bromophenyl)sulfonyl]-4-[4-(3-methoxybenzyl)piperazin-1-yl]-1H-indole;
1-[(2-bromophenyl)sulfonyl]-4-[4-(pyridin-4-ylmethyl)piperazin-1-yl]-1H-indole;
1-[(2-bromophenyl)sulfonyl]-4-[4-(pyridin-3-ylmethyl)piperazin-1-yl]-1H-indole;

25 1-(phenylsulfonyl)-5-piperazin-1-yl-1H-indazole;
1-(phenylsulfonyl)-6-piperazin-1-yl-1H-indazole;
1-[(2-bromophenyl)sulfonyl]-6-piperazin-1-yl-1H-indazole;
1-[(4-bromophenyl)sulfonyl]-5-piperazin-1-yl-1H-indazole;

30 1-[(4-bromophenyl)sulfonyl]-6-piperazin-1-yl-1H-indazole;
1-[(5-bromothien-2-yl)sulfonyl]-5-piperazin-1-yl-1H-indazole;

1-[(5-bromothien-2-yl)sulfonyl]-6-piperazin-1-yl-1H-indazole;
 1-[(4-fluorophenyl)sulfonyl]-5-piperazin-1-yl-1H-indazole;
 5 1-[(4-fluorophenyl)sulfonyl]-6-piperazin-1-yl-1H-indazole;
 methyl 4-[(5-piperazin-1-yl-1H-indazol-1-yl)sulfonyl]phenyl ether;
 1-phenylsulfonyl-4-(4-propylpiperazin-1-yl)-1H-indazole;
 10 1-phenylsulfonyl-4-piperazin-1-yl-1H-indazole;
 1-phenylsulfonyl-4-(4-phenethylpiperazin-1-yl)-1H-indazole;
 1-phenylsulfonyl-4-[4-(3-phenylpropyl)piperazin-1-yl]-1H-indazole; and
 15 the pharmaceutically acceptable salts thereof.

This invention also provides processes for preparing compounds of formula I which processes
 20 comprises one of the following:

i) reacting a compound of formula:

wherein the dotted line, n, m, R₂, R₃, R₄, R₅, R₆, R₉, X, Y and A are as defined above and G is a protecting
 25 group, with a sulphonylating agent containing the group:

R_8SO_2-

wherein R_8 is as defined above, and if required removing the protecting group G to give a compound of

5 Formula I wherein R_1 is hydrogen;
or
ii) reacting a compound of formula

wherein the dotted line, n, m, R_1 , R_2 , R_3 , R_4 , R_5 , R_6 ,
10 R_9 , X, Y and A are as defined above, with a sulphonylating agent containing the group

R_8SO_2-

wherein R_8 is as defined above, to give a compound of
15 formula (I);

or

iii) reacting a compound of formula I wherein R_1 is
20 hydrogen with a compound of formula:

$R_1 - L$

wherein R_1 is as defined above (excepting hydrogen) and L is a suitable leaving group, e.g. halogen or SMe to give a corresponding compound of formula I;

or

iv) alkylating a compound of formula (I) wherein A is CR₁₀ in which R₁₀ is OH with an alkylating agent
5 containing the group R_a where R_a is optionally substituted alkyl to give a compound of formula (I) wherein R₁₀ is optionally substituted alkoxy;

or

10

v) converting a compound of formula (I) having a reactive substituent group to a different compound of formula I.

15

With regard to processes (i) and (ii) the sulphonylation may be conveniently carried out in base, e.g sodium hydride, using a sulphonylating agent such as a sulphonyl chloride of formula

20

wherein R₈ is as defined above, followed by removal of the protecting group in the case of process (i).

25

Process (iii) may be conveniently carried out by using an alkylating or acylating agent with an appropriate leaving group L such as a compound of formula:

30

where R₁ is optionally substituted alkyl or alkanoyl, and hal is a halogen such as chlorine.

With regard to process (iv) the alkylation may conveniently be carried out in the presence of base, e.g. NaH, if desired in the presence of a solvent using an alkylating agent such as an alkyl halide.

5

Methods for converting reactive substituent groups in compounds of formula I to other substituent groups are well known to those skilled in the art. For example benzyl groups may be removed and replaced by 10 hydrogen. Acetyl amino groups may be converted to amino groups by hydrolysis.

In any of the reactions described herein reactive substituent groups or sites in the molecule may be 15 protected prior to reaction by use of appropriate protecting groups inert to the reaction conditions and removing said protecting groups after the reaction .

20

In detail compounds of the invention may be prepared using conventional synthetic methods and, if required, standard separation and isolation techniques. For example, 4-(piperazin-1-yl)indole compounds of formula II may be readily prepared by the catalytic hydrogenation of 25 the 4-nitroindole precursor of formula III to the corresponding 4-aminoindole of formula IV and reacting said formula IV indole with a bis-alkylating agent such as bis(2-chloroethyl)amine to give the desired formula II intermediate. The reaction is illustrated in flow 30 diagram I.

FLOW DIAGRAM I

5 The formula II intermediate may then be converted to a compound of formula I wherein A is N, m is 2; R₁ is H; R₂, R₃, and R₄ are H; --- represents a single bond; and the heterocyclyl group is in the 4-position, by reacting the formula II intermediate with a protecting group, G,
10 for example di-t-butyl dicarbonate, to selectively protect the piperazine basic N atom to give the compound of formula V and sequentially reacting said formula V compound with a base such as NaH and a sulfonyl chloride, R₈SO₂Cl to give the protected 4-(piperazin-1-yl)-1-
15 (substituted-sulfonyl)indole and deprotecting said indole to give the desired compound of formula Ia. Reaction of said formula Ia compound with a reagent R₁-Hal, wherein R₁ is defined hereinabove for formula I and Hal is Cl, Br or I in the presence of a base gives compounds of formula Ib
20 wherein R₁ is other than H. The reaction sequence is shown in flow diagram II.

FLOW DIAGRAM II

5

Corresponding compounds of the invention wherein A is CR_{10} may be obtained, for example, by lithiating a protected 4-bromoindole of formula VI wherein G is benzyl, and displacing the lithium group with a cyclic 10 ketone such as an N-protected-4-piperidone to give the hydroxy intermediate of formula VII, which may then be dehydrated and sulfonylated in the manner described hereinabove to give the protected compound of formula VIII. Catalytic hydrogenation and simultaneous deprotection of said formula VIII compound gives the desired compounds of formula I wherein --- represents a single bond (formula Id). The reaction sequence is shown in flow diagram III.

FLOW DIAGRAM III

5 These and other literature procedures may be utilized to prepare the formula I compounds of the invention. Employing a 5-, 6- or 7-haloindole, -haloindazole or -halobenzimidazole substrate as starting material and using essentially the same procedures

10 illustrated in flow diagrams I, II and III hereinabove enables the construction of the corresponding compounds of formula I wherein the heterocyclyl group is in the 5-, 6-, or 7-position and X or Y is N.

Advantageously, the inventive compound of formula I may be utilized in the treatment of central nervous system disorders relating to or affected by the 5-HT₆ receptor such as motor, mood, psychiatric, cognitive, neurodegenerative or the like disorders. Accordingly, the present invention provides a method for the treatment of a disorder of the central nervous system (CNS) related to or affected by the 5-HT₆ receptor in a patient in need thereof which comprises administering to said patient a therapeutically effective amount of a compound of formula I as described hereinabove. The compounds may be administered orally or parenterally or in any common manner known to be an effective administration of a therapeutic agent to a patient in need thereof.

The therapeutically effective amount administered in the treatment of a specific CNS disorder may vary according to the specific condition(s) being treated, the size, age and response pattern of the patient, the severity of the disorder, the judgment of the attending physician and the like. In general, effective amounts for daily oral administration may be about 0.01 to 1,000 mg/kg, preferably about 0.5 to 500 mg/kg and effective amounts for parenteral administration may be about 0.1 to 100 mg/kg, preferably about 0.5 to 50 mg/kg.

In actual practice, the compounds of the invention are administered in a solid or liquid form, either neat or in combination with one or more conventional pharmaceutical carriers or excipients. Accordingly, the present invention provides a pharmaceutical composition which comprises a pharmaceutically acceptable carrier and an effective amount of a compound of formula I as described hereinabove.

Solid carriers suitable for use in the composition of the invention include one or more substances which may also act as flavoring agents, lubricants, solubilizers, suspending agents, fillers, glidants, compression aids, binders, tablet-disintegrating agents or encapsulating materials. In powders, the carrier may be a finely divided solid which is in admixture with a finely divided compound of formula I. In tablets, the formula I compound is mixed with a carrier having the necessary compression properties in suitable proportions and compacted in the shape and size desired. Said powders and tablets may contain up to 99% by weight of the formula I compound. Solid carriers suitable for use in the composition of the invention include calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidine, low melting waxes and ion exchange resins.

Any pharmaceutically acceptable liquid carrier suitable for preparing solutions, suspensions, emulsions, syrups and elixirs may be employed in the composition of the invention. Compounds of formula I may be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, or a pharmaceutically acceptable oil or fat, or a mixture thereof. Said liquid composition may contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, coloring agents, viscosity regulators, stabilizers, osm regulators, or the like. Examples of liquid carriers suitable for oral and parenteral administration include

water (particularly containing additives as above, e.g., cellulose derivatives, preferably sodium carboxymethyl cellulose solution), alcohols (including monohydric alcohols and polyhydric alcohols, e.g., glycols) or their derivatives, or oils (e.g., fractionated coconut oil and arachis oil). For parenteral administration the carrier may also be an oily ester such as ethyl oleate or isopropyl myristate.

Compositions of the invention which are sterile solutions or suspensions are suitable for intramuscular, intraperitoneal or subcutaneous injection. Sterile solutions may also be administered intravenously. Inventive compositions suitable for oral administration may be in either liquid or solid composition form.

For a more clear understanding, and in order to illustrate the invention more clearly, specific examples thereof are set forth hereinbelow. The following examples are merely illustrative and are not to be understood as limiting the scope and underlying principles of the invention in any way.

Unless otherwise stated, all parts are parts by weight. The terms HPLC and NMR designate high performance liquid chromatography and nuclear magnetic resonance, respectively.

EXAMPLE 1

Preparation of 1-(Phenylsulfonyl)-4-piperazin-1-yl-1H-indole Hydrochloride

A mixture of 1H-indol-4-ylpiperazine (4.0 g, 20 mmol), di-t-butyl dicarbonate (4.8 g, 22 mmol) and NaOH (0.8 g, 20 mmol) in 40% dioxane is stirred at room temperature for 10 hours and treated with water. The reaction mixture is extracted with ethyl acetate. The extracts are combined, dried over Na_2SO_4 and concentrated in vacuo to give t-butyl 4-(1H-indol-4-yl)piperazine-1-carboxylate as a colorless solid, mp 137°C, identified by mass spectral and elemental analyses.

A portion of the t-butyl 4-(1H-indol-1-yl)-piperazine-1-carboxylate (1.05 g, 3.5 mmol) is added to a suspension of NaH (3.8 mmol) in tetrahydrofuran at 0°C under N_2 . The resultant mixture is stirred for 0.5 hr, treated with benzenesulfonyl chloride (0.616 g, 3.5 mmol), stirred for 16 hr and treated with water. The aqueous reaction mixture is extracted with ethyl acetate. The extracts are combined, dried over Na_2SO_4 and

concentrated in vacuo to give a residue. The residue is chromatographed (SiO_2 , CH_2Cl_2) to give t-butyl 4-(1-phenylsulfonyl-1H-indol-4-yl)piperazine-1-carboxylate as a light yellow solid, 1.25 g (81% yield), mp 64-65°C,
5 identified by mass spectral and elemental analyses.

A portion of the t-butyl 4-(1-benzenesulfonyl-1H-indol-4-yl)piperazine-1-carboxylate (0.85 g) is stirred in a mixture of 4N HCl and dioxane at room temperature for 2 hrs and filtered. The filtercake is dried to give
10 the title product as a white solid, 0.64 g (99% yield) mp 60°C identified by mass spectral and NMR analyses.

EXAMPLES 2-13

15

Preparation of 1-Arylsulfonyl-4-Piperazin-1-yl)-1H-Indole Hydrochloride

G = protecting group

20

Using essentially the same procedure described in Example 1 and substituting the appropriate arylsulfonyl chloride, the following compounds listed in Table I are obtained and identified by HPLC and mass spectral
25 analyses.

TABLE I

Ex. No.	R_8	LCMS ¹	
		Min.	$\text{M}+\text{H}$
2	o -bromophenyl	2.58	422
3	6-chloroimidazo[2,1-b]thiazol-5-yl	2.48	422
4	3,4-dimethoxyphenyl	2.52	402
5	4-aminophenyl	2.26	357
6	benzo-2,1,3-thiazol-4-yl		
7	benzofurazan-4-yl		
8	3-bromo-5-chlorothien-2-yl		
9	5-chloro-3-methylbenzo(b)thien-2-yl		
10	Dansyl		
11	2,5-dichlorothien-3-yl		
12	3,5-dimethylisoxasol-4-yl		
13	1-methylimidazol-4-yl		

¹ LCMS conditions: Hewlett Packard 1100 MSD; YMC ODS-AM
 5 2.0 mm x 50 mm 5 u column at 23°C; 3uL injection;
 Solvent A: 0.02% TFA/water; Solvent B: 0.02%
 TFA/acetonitrile; Gradient: Time 0:95% A; 0.3 min: 95%
 A; 4.7 min: 10% A, 4.9 min: 95% A; Post time 1 min.
 Flow rate 1.5 mL/min; Detection: 254 nm DAD; API-ES
 10 Scanning Mode Positive 150-700; Fragmentor 70 mV.

EXAMPLE 14

Preparation of 4-[4-(4,5-Dihydro-1H-imidazol-2-yl)-
5-piperazin-1-yl]-1-(phenylsulfonyl)-1H-indole

10 A solution of 1-(phenylsulfonyl)-4-piperazin-1-yl-
 1H-indole (71 mg, 0.18 mmol) in dioxane is treated with
 2-methylthio-2-imidazoline hydroiodide (52.7 mg, 0.22
 mmol) and N,N-diisopropylethylamine (62 µl, 0.36 mmol),
 heated at 50°C for 16 hr., cooled and concentrated *in*
 15 vacuo to give a residue. The residue is purified by HPLC
 to give the title product, 15 mg, identified by HPLC and
 mass spectral analyses (2.57 min; 410 M+H) using the LCMS
 conditions described in Table I.

EXAMPLES 15-18Preparation of 4-Heterocycl-1-(arylsulfonyl)indole5 compounds

Using essentially the same procedure described in
 10 Example 14 and substituting the appropriate 1-(arylsulfonyl)indole substrate, the following compounds shown in Table II are obtained and identified by HPLC and mass spectral analyses.

TABLE II

Ex.	R ₈	LCMS ¹
No.		Min. M+H
15	2-bromophenyl	2.79 490
16	6-chloroimidazo[2,1-b]thiazol-5-yl	2.68 490
17	3,4-dimethoxyphenyl	2.64 470
18	4-aminophenyl	2.46 425

¹ LCMS conditions: same as for Table I

EXAMPLE 19

Preparation of 4-(4-Benzylpiperazin-1-yl)-1-(phenylsulfonyl)-1H-indole

A solution of 1-(phenylsulfonyl)-4-piperazin-1-yl-
 10 1H-indole (71 mg, 0.18 mmol) in tetrahydrofuran is
 treated sequentially with benzyl bromide (21 µl) and
 triethyl-amine (75 µl), shaken at room temperature for 16
 hr and concentrated *in vacuo* to give a residue. The
 residue is purified by RP-HPLC to give the title product,
 15 37 mg, identified by HPLC and mass spectral analyses (2.81
 min; 432 M+H) using the LCMS conditions described in
 Table I.

EXAMPLES 20-53Preparation of 4-Heteroaryl-1-arylsulfonylindole5 compounds

Using essentially the same procedure described in
 10 Example 19 and employing the appropriate 4-(piperazin-1-yl)-1-(arylsulfonyl)indole substrate and a suitable aryl, alkyl or acyl halide, the following compounds shown in Table III are obtained and identified by HPLC and mass spectral analyses.

TABLE III

Ex. No.	R ₁	R ₈	LCMS ¹	
			Min.	M+H
20	2-chloro-5-thienylmethyl	phenyl	3.07	472
21	3-nitrobenzyl	phenyl	2.95	477
22	acetyl	phenyl	3.18	384
23	benzyl	2-bromophenyl	2.99	512
24	2-chloro-5-thienylmethyl	2-bromophenyl	3.08	550
25	3-nitrobenzyl	2-bromophenyl	3.08	550
26	acetyl	2-bromophenyl	2.97	557
27	benzyl	6-choroimidazol[2,1-b]thiazol-5-yl	2.91	512
28	2-chloro-5-thienylmethyl	6-choroimidazol[2,1-b]thiazol-5-yl	3.00	553
29	3-nitrobenzyl	6-choroimidazol[2,1-b]thiazol-5-yl	2.87	557
30	acetyl	6-choroimidazol[2,1-b]thiazol-5-yl	3.23	464
31	benzyl	3,4-dimethoxyphenyl	2.76	492
32	2-chloro-5-thienylmethyl	3,4-dimethoxyphenyl	2.90	532

TABLE III (cont'd)

Ex. No.	R ₁	R ₈	LCMS ¹	
			Min.	M+H
33	3-nitrobenzyl	3,4-dimethoxyphenyl	2.82	537
34	acetyl	3,4-dimethoxyphenyl	3.10	442
35	benzyl	4-aminophenyl	2.64	447
36	methyl	4-aminophenyl	2.28	371
37	2-chloro-5-thienylmethyl	4-aminophenyl	2.82	487
38	3-nitrobenzyl	4-aminophenyl	2.72	492
39	3-methoxybenzyl	phenyl	2.88	462
40	4-pyridylmethyl	phenyl	2.40	433
41	3-pyridylmethyl	phenyl	2.42	433
42	3-methoxybenzyl	2-bromophenyl	2.99	542
43	4-pyridylmethyl	2-bromophenyl	2.51	513
44	3-pyridylmethyl	2-bromophenyl	2.52	513
45	3-methoxybenzyl	6-chloroimidazo[2,1-b]thiazol-5-yl	2.93	542
46	4-pyridylmethyl	6-chloroimidazo[2,1-b]thiazol-5-yl	2.48	513
47	3-pyridylmethyl	6-chloroimidazo[2,1-b]thiazol-5-yl	2.48	513
48	3-methoxybenzyl	3,4-dimethoxyphenyl	2.82	522
49	4-pyridylmethyl	3,4-dimethoxyphenyl	2.47	493

TABLE III (cont'd)

Ex. No.	R ₁	R ₈	LCMS ¹	
			Min.	M+H
50	3-pyridylmethyl	3,4-dimethoxyphenyl	2.45	493
51	3-methoxybenzyl	4-aminophenyl	2.75	477
52	4-pyridylmethyl	4-aminophenyl	2.24	448
53	3-pyridylmethyl	4-aminophenyl	2.26	448

¹ LCMS conditions are the same as that for Table I

EXAMPLE 54

Preparation of 4-(Homopiperazin-1-yl)-1-(phenylsulfonyl)-
 5 benzimidazole hydrochloride

A suspension of 4-bromobenzimidazole (42 mmol),
 10 homopiperazine (256 mmol) and NaOt-Bu (59 mmol) in dry o-
 xylene, under N₂, is treated with a catalytic amount of
 $\text{Pd}(\text{OCOCH}_3)_2 \cdot \text{P}(t\text{-Bu})_3$ ($\text{P}/\text{Pd} = 4$), heated at 120°C for 3
 hr, cooled to room temperature and diluted with water.
 The aqueous mixture is extracted with ethyl acetate. The
 15 extracts are combined, dried over MgSO₄ and concentrated

in vacuo to give a residue. The residue is purified by flash chromatography to give 4-(homopiperazin-1-yl)benzimidazole.

A mixture of 4-(homopiperazin-1-yl)benzimidazole (4.3 g, 20 mmol), di-t-butyl dicarbonate (4.8 g, 22 mmol) and NaOH (0.8 g, 20 mmol) in 40% aqueous dioxane is stirred at room temperature for 10 hrs and diluted with water. The aqueous mixture is extracted with ethyl acetate. The extracts are combined, dried over Na₂SO₄ and concentrated in vacuo to give t-butyl 4-(benzimidazol-4-yl)homopiperazine-1-carboxylate.

A suspension of NaH (3.8 mmol) in tetrahydrofuran at 0°C, under N₂, is treated with t-butyl 4-(benzimidazol-4-yl)-homopiperazine-1-carboxylate (1.1g, 3.5 mmol), stirred for 0.5 hr, treated with benzenesulfonyl chloride (0.616 g, 3.5 mmol), stirred for 16 hours at room temperature and diluted with water. The aqueous mixture is extracted with ethyl acetate. The extracts are combined, dried over Na₂SO₄ and concentrated in vacuo to give a residue. The residue is purified by flash chromatography to give t-butyl 4-(1-phenylsulfonyl)-benzimidazol-4-yl)homopiperazin-1-carboxylate.

A mixture of the thus-obtained carboxylate in 4N HCl and dioxane is stirred at room temperature for 2 hrs and filtered. The filtercake is washed with ethyl acetate and dried in vacuo to afford the title product.

EXAMPLE 56Preparation of 4-(4-Benzylpiperazin-1-yl)-1H-indazole

5

A stirred solution of 4-benzyl-1-(3-fluoro-2-carboxyphenyl)-piperazine (5.96 g, 20.0 mmol) in dimethylsulfoxide (10 mL) and hydrazine (10 mL) is heated at 95°C under nitrogen for 4 days. The cooled reaction is diluted with ether and washed with a mixture of water and saturated aqueous sodium bicarbonate. The organic layer is further washed sequentially with water and brine dried over MgSO_4 and concentrated in vacuo to give a residue.

10 The residue is chromatographed using ethyl acetate as the eluant. The resulting oil is reconcentrated from ether to give a white foam which is stirred under hexanes/ether overnight. The resulting white powder is isolated by suction filtration and washed with hexane to give the title compound 3.11 g, (53% yield), identified by HNMR.

15

20

EXAMPLE 57

Preparation of 4-(4-Benzylpiperazin-1-yl)-1-(phenylsulfonyl)-1H-indazole hydrochloride

5

A solution of 4-(4-benzylpiperazin-1-yl)-1H-indazole (2.34 g, 8.00 mmol) in dry dimethyl formamide is treated
 10 with 0.48 g unwashed 60% NaH in mineral oil (12.0 mmol of NaH). After stirring under nitrogen for 15 min, the reaction is treated with benzenesulfonylchloride (1.53 mL, 12.0 mmol), stirred for 24 hr at ambient temperature, treated with saturated aqueous NaHCO₃ and water and
 15 extracted with ether. The organic layer is washed sequentially with water and brine, dried over MgSO₄ and concentrated *in vacuo* to give a residue. The residue is purified by flash chromatography on silica gel using 1:1 ethyl acetate:hexanes as eluant to afford the free amine
 20 of the title compound as an oil (3.14 g, 91%). A portion of this oil (432 mg, 1.0 mmol) is dissolved in ether and treated with 1.0M HCl in ether (1.1 mL, 1.1 mmol). The resulting solid is filtered, washed with ether, and dried under vacuum to provide the title compound as a light tan
 25 solid, mp 208-209°C, identified by HNMR and mass spectral analyses.

EXAMPLE 58

Preparation of 1-(Phenylsulfonyl)-4-(1-piperazinyl)-1H-
5 indazole hydrochloride

A solution of 1-phenylsulfonyl-4-(4-benzylpiperazin-1-yl)-1H-indazole (433 mg, 1.0 mmol) in 1,2-dichloroethane is treated with 1-chloroethyl chloroformate (0.27 mL, 2.5 mmol) heated at reflux temperature for 2 hr, and concentrated *in vacuo*. The resultant residue is heated at reflux temperature in methanol for 1.5 hr, cooled, concentrated *in vacuo* and reconcentrated from ether. The resulting tan solid is triturated with ether and crystallized from hot ethanol to give the title compound as a tan solid 237 mg (63% yield), mp 203-205 °C, identified by HNMR and mass spectral analyses.

EXAMPLE 59

Preparation of 4-[4-(2-phenylethyl)piperazin-1-yl]-1-(phenylsulfonyl)-1H-indazole hydrochloride

5

A mixture of 1-phenylsulfonyl-4-piperazin-1-yl-1H-indazole (190 mg, 0.50 mmol) and K₂CO₃ (138 mg, 1.0 mmol)

10 in dry acetonitrile is treated with phenethylbromide (0.55 mL, 2.0 mmol), heated at reflux temperature under nitrogen for 8.5 h, treated with water and extracted with methylene chloride. The combined extracts are dried over MgSO₄ and chromatographed on an SCX column (Varian SCX

15 Mega Bond Elut, 5 g) eluting with ethyl acetate to remove non-basic organic material and then with 1:99 triethylamine:ethyl acetate to afford, after concentration, the free amine of the title compound as a slightly yellow oil (198 mg, 89%). The oil is dissolved

20 in ether with a small amount of ethanol to aid solubility and treated with 1.0M HCl in ether. The solution is concentrated *in vacuo* and the resulting tan solid is treated with ether and suction filtered to afford the title compound as a light tan solid 209 mg, (87% yield),

mp 230-232 °C (dec), identified by NMR and mass spectral analyses.

EXAMPLES 60-72

5

Preparation of 4-Heteroaryl-1-arylsulfonylindazole compounds

10 Using essentially the same procedures described in Examples 56-59 and employing the appropriate indazole substrate and suitable aryl, alkyl or acyl halide or arylsulfonyl chloride, the following compounds shown in Table IV are obtained and identified by NMR and mass
 15 spectral analyses.

TABLE IV

Ex. No.	R ₁	R ₈	mp °C	M+H
60	2 (p-fluorophenoxy)ethyl-	phenyl	184-186	481
61	p-fluorophenyl-CO-(CH ₂) ₃ -	phenyl	--	507
62	phenyl-CO-CH ₂ -	phenyl	202-205	461
63	3-phenylpropyl-	phenyl	188-190	461
64	n-propyl-	phenyl	258-260	385
65	benzyl	phenyl-CH=CH-	233-235	459
66	benzyl	p-fluorophenyl	240-241	451
67	benzyl	p-chlorophenyl	238-239	467
68	benzyl	naphthyl	147-149	483
69	benzyl	p-methoxyphenyl	206-209	463
70	benzyl	p-(trifluoro-methoxy)phenyl	229-231	517
71	benzyl	2-(4,5-dichloro-thienyl)-	235-237	507
72	benzyl	p-tolyl	215-217	447

EXAMPLE 73Preparation of 1-(4-Aminophenylsulfonyl)-5-piperazin-1-yl-1H-indole hydrochloride

5

A solution of 5-aminoindole (6.23 g, 47 mmol),
 bis(2-chloroethyl)amine hydrochloride (16.8 g, 96 mmol)
 10 and triethylamine (19 mL, 141 mmol) in butanol is heated
 at 100°C for 8 hours, cooled to room temperature and
 concentrated *in vacuo* to give 9.46 g of 5-piperazin-1-yl-
 1H-indole.

A solution of said indole in acetone and water is
 15 treated with di-*tert*-butyl dicarbonate (11.3 g, 47 mmol)
 and potassium carbonate (13 g, 96 mmol). The mixture is
 stirred at room temperature overnight, the acetone
 evaporated and the remaining aqueous phase extracted with
 ethyl acetate. The extracts are dried over MgSO₄ and
 20 concentrated *in vacuo* to give a residue. The residue is
 purified by flash chromatography to give 4-(1H-indol-5-
 yl)-piperazine-1-carboxylic acid *tert*-butyl ester.

A solution of said ester (60 mg, 0.2 mmol) in
 tetrahydrofuran is treated with sodium hydride (30 mg,

0.5 mmol) followed by N-acetylsulfanilyl chloride (25 uL, 0.2 mmol), shaken at room temperature for 16 hours and concentrated *in vacuo* to give 4-[1-(4-acetylaminophenylsulfonyl)-1H-indol-5-yl]-piperazine-1-carboxylic acid *tert*-butyl ester.

The thus-obtained ester is dissolved in methanol, treated with concentrated hydrochloric acid (100 uL), shaken at 60°C for 2 hours and concentrated *in vacuo* to give a residue. The residue is purified by HPLC to give the title product, 15 mg, identified by HPLC and mass spectral analyses (r.t. 2.37 min., M+H 357).

EXAMPLES 74-102

15 Preparation of Piperazinyl-1-arylsulfonylbenzimidazole and indole compounds

G= protecting group

20 Using essentially the same procedures described in Example 73 and employing the appropriate aminoindole or aminobenzimidazole substrate and suitable arylsulfonylchloride reagents, the following compounds shown in Table V are obtained and identified by HPLC and mass spectral analyses.

TABLE V

Piperazinyl					LCMS ¹		
Ex.	Ring	No.	Position	X	R ₈	Min.	M+H
74		5		N phenyl		1.98	343
75		6		N phenyl		1.96	343
76		5		CH benzo-2,1,3-thiadiazol-4-yl		2.56	400
77		6		N benzo-2,1,3-thiadiazol-4-yl		2.01	401
78		6		N 2-bromophenyl		2.21	423
79		5		N p-bromophenyl		2.39	423
80		6		N p-bromophenyl		2.34	423
81		5		N 5-bromothien-2-yl		2.33	429
82		6		N 5-bromothien-2-yl		2.25	429
83		5		CH p-(n-butoxy)phenyl		3.23	414
84		5		N p-(n-butoxy)phenyl		2.79	415
85		6		N p-(n-butoxy)phenyl		2.73	415
86		5		CH 5-chloro-1,3-dimethyl-pyrazol-4-yl		2.49	395
87		5		N 5-chloro-1,3-dimethyl-pyrazol-4-yl		1.88	396

TABLE V (cont'd)

Ex. No.	Piperazinyl			R_8	LCMS ¹	
	Ring Position	X			Min.	$\text{M}+\text{H}$
88	5	N	5-chloro-3-methylbenzo-[b]thien-2-yl		2.88	448
89	6	N	5-chloro-3-methylbenzo-[b]thien-2-yl		3.10	448
90	5	N	2,3-dichlorothien-5-yl		2.59	418
91	6	N	2,3,-dichlorothien-5-yl		2.77	418
92	5	N	p-fluorophenyl		2.08	361
93	6	N	p-fluorophenyl		2.40	361
94	5	N	p-methoxyphenyl		2.11	373
95	5	CH	2-naphthyl		2.92	392
96	6	N	2-naphthyl		2.43	393
97	5	CH	p-(trifluoromethoxy)phenyl		2.97	426
98	5	N	p-(trifluoromethoxy)phenyl		2.57	427
99	6	N	p-(trifluoromethoxy)phenyl		2.54	427
100	5	CH	p-iodophenyl		2.92	468
101	5	N	p-iodophenyl		2.48	469
102	6	N	p-iodophenyl		2.67	469

EXAMPLE 103Comparative Evaluation of 5-HT₆ Binding Affinity of Test Compounds

5

The affinity of test compounds for the serotonin 5-HT₆ receptor is evaluated in the following manner.

Cultured Hela cells expressing human cloned 5-HT₆ receptors are harvested and centrifuged at low speed

- 10 The harvested cells are suspended in half volume of fresh physiological phosphate buffered saline solution and recentrifuged at the same speed. This operation is repeated. The collected cells are then homogenized in ten volumes of 50 mM Tris.HCl (pH 7.4) and 0.5 mM EDTA. The homogenate is centrifuged at 40,000 x g for 30.0 min and the precipitate is collected. The obtained pellet is resuspended in 10 volumes of Tris.HCl buffer and recentrifuged at the same speed. The final pellet is
- 15 suspended in a small volume of Tris.HCl buffer and the tissue protein content is determined in aliquots of 10-25 μ l volumes. Bovine Serum Albumin is used as the standard in the protein determination according to the method described in Lowry et al., J. Biol. Chem., 193:265
- 20 (1951). The volume of the suspended cell membranes is adjusted to give a tissue protein concentration of 1.0 mg/ml of suspension. The prepared membrane suspension (10 times concentrated) is aliquoted in 1.0 ml volumes and stored at -70° C until used in subsequent binding experiments.
- 25
- 30

Binding experiments are performed in a 96 well microtiter plate format, in a total volume of 200 μ l. To

each well is added the following mixture: 80.0 μ l of incubation buffer made in 50 mM Tris.HCl buffer (pH 7.4) containing 10.0 mM MgCl₂ and 0.5 mM EDTA and 20 μ l of [³H]-LSD (S.A., 86.0 Ci/mmol, available from Amersham Life Science), 3.0 nM. The dissociation constant, K_D of the [³H]LSD at the human serotonin 5-HT₆ receptor is 2.9 nM, as determined by saturation binding with increasing concentrations of [³H]LSD. The reaction is initiated by the final addition of 100.0 μ l of tissue suspension.

10 Nonspecific binding is measured in the presence of 10.0 μ M methiothepin. The test compounds are added in 20.0 μ l volume.

The reaction is allowed to proceed in the dark for 120 min at room temperature, at which time, the bound ligand-receptor complex is filtered off on a 96 well unifilter with a Packard Filtermate® 196 Harvester. The bound complex caught on the filter disk is allowed to air dry and the radioactivity is measured in a Packard TopCount® equipped with six photomultiplier detectors, 20 after the addition of 40.0 μ l Microscint®-20 scintillant to each shallow well. The unifilter plate is heat-sealed and counted in a PackardTopCount® with a tritium efficiency of 31.0%.

Specific binding to the 5-HT₆ receptor is defined as 25 the total radioactivity bound less the amount bound in the presence of 10.0 μ M unlabeled methiothepin. Binding in the presence of varying concentrations of test compound is expressed as a percentage of specific binding in the absence of test compound. The results are plotted 30 as log % bound versus log concentration of test compound. Nonlinear regression analysis of data points with a computer assisted program Prism® yielded both the IC₅₀ and

the K_i values of test compounds with 95% confidence limits. A linear regression line of data points is plotted, from which the IC_{50} value is determined and the K_i value is determined based upon the following equation:

$$5 \quad K_i = IC_{50} / (1 + L/K_D)$$

where L is the concentration of the radioactive ligand used and K_D is the dissociation constant of the ligand for the receptor, both expressed in nM.

Using this assay, the following K_i values are
 10 determined and compared to those values obtained by representative compounds known to demonstrate binding to the 5-HT6 receptor. The data are shown in Table VI, below.

TABLE VI

Test Compound (Ex. No.)	5-HT6 binding K_i (nM)
1	1.0
2	2.0
3	1.0
4	15.0
5	1.0
14	24.0
18	6.0
27	56.0

TABLE VI (cont'd)

Test Compound (Ex. No.)	5-HT6 binding K_i (nM)
30	220.0
33	45.0

35	15.0
36	3.0
37	59.0
38	5.0
40	4.0
41	7.0
42	4.0
43	7.0
44	1.0
46	5.0
47	6.0
48	14.0
49	10.0
50	17.0
51	7.0
52	25.0
53	4.0
57	14
58	0.3
59	1.0
60	306
61	3.0
62	12
63	6.0

TABLE VI (cont'd)

Test Compound (Ex. No.)	5-HT6 binding Ki (nM)
64	2.0
65	172
66	84
67	87

68	14
69	116
70	251
71	81
72	56
73	34
79	19
81	44
83	38
86	44
89	24
90	30
91	6
96	37
101	18

<u>Comparative Examples</u>	<u>5-HT6 binding Ki</u>
Clozapine	6.0
Loxapine	41.4
Bromocriptine	23.0
Methiothepin	8.3
Mianserin	44.2
Olanzepine	19.5

As can be seen from the results set forth above, the compounds of the present invention have a high degree of affinity for the serotonin 5-HT6 receptor sub-type.

5 Although two of the comparison compounds (clozapine and methiothepin) have similar 5-HT6 receptor affinity, they do not have the selectivity of the compounds of the present invention. The examples disclosed above demonstrate up to 50-fold selectivity for the 5-HT6

receptor when compared to their affinity at the 5-HT7 receptor.

WHAT IS CLAIMED IS:

1. A compound of formula I

wherein

A is C, CR₁₀ or N;

X is CR₁₁ or N;

Y is CR₇ or N with the proviso that when X is N, then
Y must be CR₇;

R₁ is H, C₁-C₆alkylcarbonyl, C₁-C₆alkoxycarbonyl or an
C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl or
cycloheteroalkyl group each optionally
substituted;

R₂, R₃, R₄, R₅ and R₆ are each independently H,
halogen, OH or an optionally substituted C₁-
C₆alkyl group;

R₇ and R₁₁ are each independently H, halogen or an C₁-
C₆alkyl, aryl, heteroaryl or C₁-C₆alkoxy group
each optionally substituted;

R₈ is an C₁-C₆alkyl, aryl or heteroaryl group each
optionally substituted;

R₉ is H, halogen or an C₁-C₆alkyl, C₁-C₆alkoxy, C₂-C₆alkenyl, aryl or heteroaryl group each optionally substituted;

R₁₀ is H, OH or an optionally substituted C₁-C₆alkoxy group;

m is an integer of 1, 2 or 3;

n is 0 or an integer of 1, 2 or 3; and

— represents a single bond or a double bond; or a pharmaceutically acceptable salt thereof.

2. The compound according to claim 1 wherein A is N and m is 2.

3. The compound according to claim 1 or claim 2 wherein R₈ is an optionally substituted phenyl group.

4. The compound according to any one of claims 1 to 3 wherein R₂, R₃, R₄, R₅ and R₆ are H.

5. The compound according to any one of claims 1 to 4 wherein R₁ is H or a C₁-C₆alkyl or cycloheteroalkyl group each optionally substituted.

6. The compound according to claim 1 selected from the group consisting of:

1-(phenylsulfonyl)-4-piperazin-1-yl-1H-indole;

1-[(2-bromophenyl)sulfonyl]-4-piperazin-1-yl-1H-indole;

1-[(6-chloroimidazo[2,1-b][1,3]thiazol-5-yl)sulfonyl]-4-piperazin-1-yl-1H-indole;

1-[(3,4-dimethoxyphenyl)sulfonyl]-4-piperazin-1-yl-1H-indole;

1-[(5-chloro-3-methyl-1-benzothien-2-yl)sulfonyl]-4-piperazin-1-yl-1H-indole;

1-[(4-bromophenyl)sulfonyl]-4-piperazin-1-yl-1H-indole;

1-[(5-bromothien-2-yl)sulfonyl]-4-piperazin-1-yl-1H-indole;

1-[(4,5-dichlorothien-2-yl)sulfonyl]-4-piperazin-1-yl-1H-indole;

methyl 4-[(4-piperazin-1-yl-1H-indol-1-yl)sulfonyl]phenyl ether;

4-piperazin-1-yl-1-{[4-(trifluoromethoxy)phenyl}sulfonyl}-1H-indole;

4-(4-benzylpiperazin-1-yl)-1-(phenylsulfonyl)-1H-indole;

4-(4-benzylpiperazin-1-yl)-1-[(2-bromophenyl)sulfonyl]-1H-indole;

4-(4-benzylpiperazin-1-yl)-1-[(6-chloroimidazo[2,1-b][1,3]thiazol-5-yl)sulfonyl]-1H-indole;

4-(4-benzylpiperazin-1-yl)-1-[(3,4-dimethoxyphenyl)sulfonyl]-1H-indole;

4-[4-(3-methoxybenzyl)piperazin-1-yl]-1-(phenylsulfonyl)-1H-indole;

1-(phenylsulfonyl)-4-[4-(pyridin-4-ylmethyl)piperazin-1-yl]-1H-indole;

1-(phenylsulfonyl)-4-[4-(pyridin-3-ylmethyl)piperazin-1-yl]-1H-indole;

1-[(2-bromophenyl)sulfonyl]-4-[4-(3-methoxybenzyl)piperazin-1-yl]-1H-indole;

1-[(2-bromophenyl)sulfonyl]-4-[4-(pyridin-4-ylmethyl)piperazin-1-yl]-1H-indole;

1-[(2-bromophenyl)sulfonyl]-4-[4-(pyridin-3-ylmethyl)piperazin-1-yl]-1H-indole;

1-(phenylsulfonyl)-5-piperazin-1-yl-1H-indazole;

1-(phenylsulfonyl)-6-piperazin-1-yl-1H-indazole;

1-[(2-bromophenyl)sulfonyl]-6-piperazin-1-yl-1H-indazole;
1-[(4-bromophenyl)sulfonyl]-5-piperazin-1-yl-1H-indazole;
1-[(4-bromophenyl)sulfonyl]-6-piperazin-1-yl-1H-indazole;
1-[(5-bromothien-2-yl)sulfonyl]-5-piperazin-1-yl-1H-
indazole;
1-[(5-bromothien-2-yl)sulfonyl]-6-piperazin-1-yl-1H-
indazole;
1-[(4-fluorophenyl)sulfonyl]-5-piperazin-1-yl-1H-
indazole;
1-[(4-fluorophenyl)sulfonyl]-6-piperazin-1-yl-1H-
indazole;
methyl 4-[(5-piperazin-1-yl-1H-indazol-1-
yl)sulfonyl]phenyl ether;
1-phenylsulfonyl-4-(4-propylpiperazin-1-yl)-1H-indazole;
1-phenylsulfonyl-4-piperazin-1-yl-1H-indazole;
1-phenylsulfonyl-4-(4-phenethylpiperazin-1-yl)-1H-
indazole;
1-phenylsulfonyl-4-[4-(3-phenylpropyl)-piperazin-1-yl]-
1H-indazole; and
the pharmaceutically acceptable salts thereof.

7. A method for the treatment of a disorder of the central nervous system related to or affected by the 5-HT₆ receptor in a patient in need thereof which comprises administering to said patient a therapeutically effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof as claimed in any one of claims 1 to 6.

8. The method according to claim 7 wherein said disorder is a motor disorder, anxiety disorder or cognitive disorder.

9. The method according to claim 7 wherein said disorder is schizophrenia or depression.

10. The method according to claim 8 wherein said cognitive disorder is a neurodegenerative disorder.

11. The method according to claim 10 wherein said neurodegenerative disorder is Alzheimer's disease or Parkinson's disease.

12. A pharmaceutical composition which comprises a pharmaceutically acceptable carrier and a compound of formula I or a pharmaceutically acceptable salt thereof as claimed in any one of claims 1 to 6.

13. A method for the preparation of a compound of formula I.

wherein

A is C, CR₁₀ or N;

X is CR₁₁ or N;

Y is CR₇ or N with the proviso that when X is N, then Y must be CR₇;

R₁ is (C₁-C₆alkyl)carbonyl, (C₁-C₆alkoxy)carbonyl or an C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl or cycloheteroalkyl group each optionally substituted;

R₂, R₃, R₄, R₅ and R₆ are each independently H, halogen, OH or an optionally substituted C₁-C₆alkyl group;

R₇ and R₁₁ are each independently H, halogen or an C₁-C₆alkyl, aryl, heteroaryl or alkoxy group each optionally substituted;

R₈ is an C₁-C₆alkyl, aryl or heteroaryl group each optionally substituted;

R₉ is H, halogen or an C₁-C₆alkyl, C₁-C₆alkoxy, C₂-C₆alkenyl, aryl or heteroaryl group each optionally substituted;

R₁₀ is H, OH or an optionally substituted C₁-C₆alkoxy group;

m is an integer of 1, 2 or 3;

n is 0 or an integer of 1, 2 or 3; and

— represents a single bond or a double bond
said method which comprises one of the following:

i) reacting a compound of formula:

wherein the dotted line, n, m, R₂, R₃, R₄, R₅, R₆, R₉, X, Y and A are as defined above and G is a protecting group, with a suphonylating agent containing the group:

wherein R₈ is as defined above, and if required removing the protecting group G to give a compound of Formula I wherein R₁ is hydrogen;

or

ii) reacting a compound of formula

wherein the dotted line, n, m, R₁, R₂, R₃, R₄, R₅, R₆, R₉, X, Y and A are as defined above, with a sulphonylating agent containing the group

wherein R₈ is as defined above, to give a compound of formula (I);

or

iii) reacting a compound of formula I wherein R₁ is hydrogen with a compound of formula:

wherein R₁ is as defined above (excepting hydrogen) and L is a suitable leaving group, e.g. halogen or SMe to give a corresponding compound of formula I;

or

iv) alkylating a compound of formula (I) wherein A is CR₁₀ in which R₁₀ is OH with an alkylating agent containing the group R_a where R_a is optionally substituted alkyl to give a compound of formula (I) wherein R₁₀ is optionally substituted alkoxy;

or

v) converting a compound of formula (I) having a reactive substituent group to a different compound of formula I.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 May 2002 (10.05.2002)

PCT

(10) International Publication Number
WO 02/036562 A3

(51) International Patent Classification⁷: C07D 209/08, A61K 31/395, A61P 43/00, C07D 495/04, 403/12, 409/12, 401/12, 231/56, 413/12

(21) International Application Number: PCT/US01/45389

(22) International Filing Date: 31 October 2001 (31.10.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/245,118 2 November 2000 (02.11.2000) US

(71) Applicant: WYETH [US/US]; Five Giralda Farms, Madison, NJ 07940 (US).

(72) Inventors: KELLY, Michael, Gerard; 790 Sandoval Place, Thousand Oaks, CA 91360 (US). COLE, Derek, Cecil; 14 Renfrew Road, New City, NY 10956 (US).

(74) Agent: LENCES, Barbara, L.; Wyeth, Patent Law Department, Five Giralda Farms, Madison, NJ 07940 (US).

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

(88) Date of publication of the international search report:
23 January 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: 1-ARYL- OR 1-ALKYLSULFONYL-HETEROCYCLYL BENZAZOLES AS 5-HYDROXYTRYPTAMINE-6 LIGANDS

(57) Abstract: The present invention provides a compound of formula (I) and the use thereof in the therapeutic treatment of disorders related to or affected by the 5-HT₆ receptor.

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/US 01/45389

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C07D209/08 A61K31/395 A61P43/00 C07D495/04 C07D403/12
 C07D409/12 C07D401/12 C07D231/56 C07D413/12
 //((C07D495/04, 333:00, 235:00))

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 96 03400 A (PFIZER INC.) 8 February 1996 (1996-02-08) page 43, line 20 - line 31 page 47, line 25 -page 48, line 20 ---	1
A	EP 0 930 302 A (F. HOFFMANN-LA ROCHE AG) 21 July 1999 (1999-07-21) page 3, line 44 - line 50; claim 1 ---	1,12
A	WO 99 65906 A (ALLELIX BIOPHARMACEUTICALS INC.) 23 December 1999 (1999-12-23) claims 1,33 ---	1,12
P,X	WO 02 08178 A (BIOVITRUM AB) 31 January 2002 (2002-01-31) * page 9-10: compound 3 and 4 * ---	1,12 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the International search report
18 July 2002	26/07/2002
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Van Bijlen, H

INTERNATIONAL SEARCH REPORT

International Application No
111, US 01/45389

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	WO 02 32863 A (BIOVITRUM AB) 25 April 2002 (2002-04-25) * complete document * -----	1,12

INTERNATIONAL SEARCH REPORT

national application No.
PCT/US 01/45389

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claims 7-11 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l Application No

PCT/JS 01/45389

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9603400	A	08-02-1996	CA EP FI WO JP JP US	2194984 A1 0773942 A1 970310 A 9603400 A1 3155008 B2 9508137 T 6255306 B1	08-02-1996 21-05-1997 24-01-1997 08-02-1996 09-04-2001 19-08-1997 03-07-2001
EP 930302	A	21-07-1999	EP AU BR CN CZ HR HU JP JP NO NZ PL SG TR US ZA	0930302 A2 1211099 A 9900065 A 1231287 A 9900120 A3 990011 A1 9900120 A2 3249092 B2 2000053635 A 990187 A 333706 A 330841 A1 71898 A1 9900090 A2 5990105 A 9900254 A	21-07-1999 05-08-1999 09-05-2000 13-10-1999 11-08-1999 31-10-1999 29-11-1999 21-01-2002 22-02-2000 19-07-1999 25-08-2000 19-07-1999 18-04-2000 23-08-1999 23-11-1999 16-07-1999
WO 9965906	A	23-12-1999	US AU WO EP	6251893 B1 4253199 A 9965906 A1 1105393 A1	26-06-2001 05-01-2000 23-12-1999 13-06-2001
WO 0208178	A	31-01-2002	AU WO US	8273401 A 0208178 A1 2002068732 A1	05-02-2002 31-01-2002 06-06-2002
WO 0232863	A	25-04-2002	WO	0232863 A1	25-04-2002