Криптографические методы защиты информации

Современные симметричные шифры. ГОСТ 28147-89

Современные симметричные шифры

Классификация современных симметричных шифров

Блочные (**блоковые**) шифры:

Московский институт электроники

и математики им. А.Н. Тихонова

- обрабатывается блоками текст одинакового размера;
- криптографическое преобразование является итерационным;
- основные характеристики:
 - длина ключа;
 - длина блока данных;
 - число раундов основного преобразования;
- предусмотрены специальные режимы для устранения межблочных зависимостей.

- Поточные (потоковые) шифры.
 - аналогичны шифрам гаммирования для двоичного алфавита;
 - строиться на основе блочных MOLAL шифров с помощью специальных режимов работы.

Российские стандарты симметричного шифрования

- **ГОСТ 28147-89**. Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования (устаревший стандарт).
 - шифр с длиной блока 64 бита и ключом
 256 бит;
 - 4 режима работы шифра.

- **ГОСТ Р 34.12-2015**. Информационная технология. Криптографическая защита информации. Блочные шифры:
 - шифр «Магма» с длиной блока 64 бита и ключом 256 бит;
 - шифр «Кузнечик» с длиной блока 128 бит и ключом 256 бит.
- гост Р 34.13-2015. Информационная технология. Криптографическая защита информации. Режимы работы блочных шифров:
 - 6 режимов работы базовых блочных шифров.

Межгосударственные стандарты симметричного шифрования

- ГОСТ 34.12-2018. Информационная технология. Криптографическая защита информации. Блочные шифры.
- ГОСТ 34.13-2018. Информационная технология. Криптографическая защита информации. Режимы работы блочных шифров.

Зарубежные стандарты симметричного шифрования

- Data Encryption Standard (DES), стандарт
 FIPS PUB 46 (устаревший стандарт):
 - шифр с длиной блока 64 бита и длиной ключа 64(56) бита.
- Advanced Encryption Standard (AES),
 стандарт FIPS PUB 197:
 - шифр с длиной блока 128 бит и варьируемой длиной ключа в 128, 192 или 256 бит.

- DES Modes of Operation, стандарт FIPS PUB 81 (с дополнениями):
 - 6 режимов работы базовых блочных шифров.

ГОСТ 28147-89

Общие сведения

- ΓOCT 28147-89. Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования:
 - утратил силу 31 декабря 2015 г.;
 - включен в действующий ГОСТ Р 34.12-2015 под названием «Магма».

Характеристики шифра:

Современные симметричные шифры.

ΓΟCT 28147-89

64 бита; – длина блока:

256 бит; длина ключа:

32; число раундов:

сеть Фейстеля. основа:

Режимы работы

- режим простой замены;
- режим гаммирования;
- режим гаммирования с обратной связью;
- режим выработки имитовставки.

Основные обозначения

•	КЗУ	ключевое запоминающее	устройство;
	NOY	ключевое запоминающее	устроиство

- 32-разрядные накопители в составе КЗУ; • $X_0, ..., X_7$
- сумматор, осуществляющий сложение по модулю 2^{32} ;
- сумматор, осуществляющий поразрядное сложение по модулю 2; CM_2

Современные симметричные шифры.

FOCT 28147-89

- \bullet N_1, N_2 32-разрядные накопители;
- блок циклического сдвига на 11 позиций влево; R
- блок замен 8×16 , содержащий 4-разрядные значения.

Схема шифрования

Порядок выбора ключей при зашифровании:

Раунды 1 – 8: $X_0X_1 ... X_7$

 $X_0X_1 ... X_7$ Раунды 9 – 16:

– Раунды 17 – 24: $X_0 X_1 \dots X_7$

- Раунды 25 – 32: $X_7X_6...X_0$

Порядок выбора ключей при расшифровании:

 $X_0 X_1 ... X_7$ Раунды 1 – 8:

 $X_7X_6...X_0$ Раунды 9 – 16:

Раунды 17 – 24: $X_7X_6...X_0$

- Раунды 25 – 32: $X_7X_6...X_0$

Современные симметричные шифры.

FOCT 28147-89

Обратимость схемы шифрования

- Нелинейная функция:
 - $\Psi(T,X) = R(K(T \boxplus X))$
- Зашифрование:

Блок открытого текста	A	В
Раунд 1	В	$\Psi(B,X_0) \oplus A$
Раунд 2	$\Psi(B,X_0) \oplus A$	$\Psi(\Psi(B,X_0) \oplus A,X_1) \oplus B$
Раунд 3	$\Psi(\Psi(B,X_0) \oplus A,X_1) \oplus B$	$\Psi(\Psi(\Psi(B,X_0) \oplus A,X_1) \oplus B,X_2) \oplus \Psi(B,X_0) \oplus A$
Блок шифртекста	$\Psi(\Psi(\Psi(B,X_0) \oplus A,X_1) \oplus B,X_2) \oplus \Psi(B,X_0) \oplus A$	$\Psi(\Psi(B,X_0) \oplus A,X_1) \oplus B$

Обратимость схемы шифрования

- Нелинейная функция:
 - $\Psi(T,X) = R(K(T \boxplus X))$
- Расшифрование:

Блок шифртекста	$\Psi(\Psi(\Psi(B,X_0) \oplus A,X_1) \oplus B,X_2) \oplus \Psi(B,X_0) \oplus A$	$\Psi(\Psi(B,X_0) \oplus A,X_1) \oplus B$
Раунд 1	$\Psi(\Psi(B,X_0) \oplus A,X_1) \oplus B$	$\begin{array}{c} \Psi(\Psi(\Psi(B,X_0)\oplus A,X_1)\oplus B,X_2)\oplus\\ \oplus \Psi(\Psi(\Psi(B,X_0)\oplus A,X_1)\oplus B,X_2)\oplus\\ \oplus \Psi(B,X_0)\oplus A \end{array}$
Раунд 2	$\Psi(B,X_0) \oplus A$	$\Psi(\Psi(B,X_0) \oplus A,X_1) \oplus \Psi(\Psi(B,X_0) \oplus A,X_1) \oplus \mathbf{B}$
Раунд 3	В	$\Psi(B,X_0)\oplus\Psi(B,X_0)\oplus A$
Блок шифртекста	A	В

Кафедра информационной безопасности киберфизических систем

Криптографические методы защиты информации

Спасибо за внимание!

Евсютин Олег Олегович

Заведующий кафедрой информационной безопасности киберфизических систем Канд. техн. наук, доцент

+7 923 403 09 21 oevsyutin@hse.ru