SCC-240/540/640 Bases de Dados

Prof. Robson L. F. Cordeiro

Mapeamento entre Esquemas Abstrações

Material original editado: Profa. Elaine Parros Machado de Sousa

Mapeamento

- Na primeira aula sobre mapeamento...
 - procedimento básico em 7 passos
 - alternativas de mapeamento:
 - CR binários I:I
 - CR binários I:N

- Abstrações
 - Agregação
 - Generalização/Especialização

Mapeamento de Abstrações de Dados

- O MER-X suporta duas abstrações de dados:
 - Agregação
 - Generalização/Especialização
- Extensão do Mapeamento MER-MREL para suporte às abstrações

AGREGAÇÃO

- Caso 1 Como mapear Agregação se:
 - agregação é identificada por atributo próprio + chave(s) de
 CE(s) que participa(m) do CR gerador,
 - e uma mesma instância do CR gerador resulta em mais de uma entidade agregada?

Exemplo

 um mesmo post pode gerar vários comentários

- Caso 2 Como mapear Agregação também identificada por um de seus atributos?
 - as chaves dos CEs que participam do CR gerador não são a única alternativa para identificar a agregação

- Caso 2 cada instância do CR gera apenas uma entidade agregada...
 - no exemplo: um professor poder orientar um mesmo aluno somente em um Projeto

- Caso 3 mistura dos casos 1 e 2. Como mapear a Agregação se há duas formas de identificá-la e cada instância do CR gera mais de uma entidade agregada?
 - 1. chaves dos CEs que participam do CR gerador + atributo da agregação
- 2. atributo próprio da agregação Consulta M Paciente • Médico **NroRegistroConsulta** Atende CRM também identifica **Data** Nome univocamente Nome Sala cada consulta 10

 Caso 4 Como mapear atributo no CR gerador da Agregação?

GENERALIZAÇÃO/ ESPECIALIZAÇÃO

Alterando os 7 Passos ...

- Mapear todos os <u>CEs Fortes</u> que não fazem parte de ocorrências de generalização
- Mapear todos os <u>CEs Fracas</u> que não fazem parte de ocorrências de generalização
- 3. Mapear todos os <u>CR</u> de <u>cardinalidade 1:1</u> do DER
- 4. Mapear todos os <u>CR</u> de <u>cardinalidade 1:N</u> do DER
- 5. Mapear todos os <u>CR</u> de <u>cardinalidade M:N</u> do DER
- 6. Mapear todos os <u>CR</u> de <u>Grau >2</u> do DER
- 7. Mapear todos os <u>Atributos Multivalorados</u> de CEs e CRs do DER

Passo 2a)

Mapeamento da Generalização

Passo 2A

- Analisar uma a uma todas as ocorrências da abstração de generalização e escolher a melhor opção de mapeamento
- Cada ocorrência da abstração é mapeada de maneira independente (mesmo dentro de uma mesma hierarquia)

Mapeamento da Generalização

- Três alternativas principais:
 - Mapear o CEG e os CEEs em relações diferentes
 - Mapear o CEG e todos os CEEs em uma única relação
 - 3. Mapear cada CEE (e apenas) em sua própria relação, junto com seus respectivos atributos genéricos

Mapeamento da Generalização

- Cada alternativa pode ser mapeada de mais de uma maneira
 - Procedimento Padrão de Mapeamento

Alternativa 1

Mapear o CEG e os CEEs em relações diferentes

Alternativa 1 **Procedimento Padrão 1**

Alternativa 1 **Procedimento Padrão 1** (cont.)

$$CEG = \{ \underline{Ch}, AtC, AG \}$$

$$CEE_1 = \{ \underline{Ch}, AE_1 \}$$
...
$$CEE_i = \{ \underline{Ch}, AE_i \}$$

- a ocorrência da generalização deve ser mutuamente exclusiva (disjunção). Por que?
- Garante Especialização Total?
- Desvantagens?

Alternativa 1 **Procedimento Padrão 2**

Alternativa 1 **Procedimento Padrão 2** (cont.)

```
CEG = \{ \underline{Ch}, AG \}
CEE_1 = \{ \underline{Ch}, AE_1 \}
...
CEE_i = \{ \underline{Ch}, AE_i \}
```

- Semelhante ao procedimento 1: usado quando a Generalização é definida com sobreposição
- Garante Especialização Total?
- Desvantagens?

Alternativa 1 **Procedimento Padrão 3**

 Extensão do procedimento 2 permite consultar qual é o subtipo de uma entidade

Alternativa 1

- Alternativa1 é interessante quando:
 - existem poucos CE Específicos (todos conhecidos), cada um com diversos atributos específicos
 - consultas tipicamente se concentram em um ou poucos CEEs de cada vez

- Aplicável a Especialização Total ou Parcial
 - mas não garante Especialização Total...

Alternativa 2

Mapear o CEG e todos os CEEs em uma única relação

Alternativa 2 **Procedimento Padrão 4**

CEG = { \underline{Ch} , AtC, AG, $\underline{AE_{1,...}}$ $\underline{AE_{i}}$ }

Alternativa 2 **Procedimento Padrão 4** (cont.)

CEG = { \underline{Ch} , AtC, AG, $\underline{Ae_{1,...}}$ $\underline{Ae_{k}}$ }

- generalização deve ser mutuamente exclusiva
 - o valor de AtC pode ser não nulo
 - em cada tupla apenas os atributos correspondentes ao subtipo da entidade podem possuir valor
 - e os atributos correspondentes aos demais subtipos devem ser sempre mantidos nulos
- Garante Especialização Total?
- Desvantagem?

Alternativa 2 **Procedimento Padrão 5**

CEG = {
$$\underline{Ch}$$
, $\underline{A+C}$, \underline{AG} , $\underline{AE}_{1,...}$ \underline{AE}_{i} }

- Generalização definida com sobreposição
- Se uma entidade pertence a um CEE, então na tupla pelo menos 1 atributo correspondente ao CEE deve possuir valor não nulo
- Garante Especialização Total?
- Desvantagem?

Alternativa 2 **Procedimento Padrão 6**

 $CEG = \{ Ch, AG, AE_1, ..., AE_i, BCEE_1, ..., BCEE_i \}$

Indica a quais CEEs uma entidade pertence usando valores booleanos

Desvantagem?

Alternativa 2

- Alternativa 2 é interessante quando:
 - existem poucos atributos específicos nos CEEs
 - houver a possibilidade de existirem especializações (sem atributos específicos) não previstas no projeto
- Aplicável a Especialização Total ou Parcial
 - mas não garante Especialização Total...

Alternativa 3

Mapear cada CEE (e apenas)
em sua própria relação,
junto com seus respectivos
atributos genéricos

Alternativa 3 **Procedimento Padrão 7**

- Garante exclusão mútua?
- Desvantagens?

Alternativa 3 **Procedimento Padrão 8**

Alternativa 3 **Procedimento Padrão 9**

 $CEE_1 = \{ \underline{Ch}, AG, AE_1 \}$

 $CEE_i = \{ \underline{Ch}, AG, AE_i \}$

CEC={ <u>Ch</u>, <u>AtC</u>}

Alternativa 3

- Alternativa 3 é interessante quando:
 - é frequente o acesso a cada entidade em sua totalidade, incluindo seus dados genéricos e específicos
 - qual a vantagem desta alternativa se comparada à alternativa 1?
 - aplicável apenas para Especialização Total
 - Por que?

Os 9 Procedimentos Padrão

```
1 CEG = \{\underline{Ch}, AtC, AG\} CEE_i = \{\underline{Ch}, AE_i\}

2 CEG = \{\underline{Ch}, AG\} CEE_i = \{\underline{Ch}, AE_i\}

3 CEG = \{\underline{Ch}, AG\} CEE_i = \{\underline{Ch}, AE_i\} CEC = \{\underline{Ch}, AtC\}
```

```
4 CEG = {Ch, AG, AtC, AE<sub>1</sub>, AE<sub>2</sub>, .... AE<sub>i</sub>}
5 CEG = {Ch, AG, AE<sub>1</sub>, AE<sub>2</sub>, .... AE<sub>i</sub>}
6 CEG = {Ch, AG, AE<sub>1</sub>, AE<sub>2</sub>, .... AE<sub>i</sub>, BCEE<sub>1</sub>, BCEE<sub>2</sub>, ...BCEE<sub>i</sub>}}
```

```
7 CEE_i = \{\underline{Ch}, AG, AE_i\}

8 CEE_i = \{\underline{Ch}, AG, AE_i\} CEC = \{\underline{Ch}, AtC\}

9 CEE_i = \{\underline{Ch}, AG, AE_i\} CEC = \{\underline{Ch}, \underline{AtC}\}
```

Casos Especiais

- Critério de Especialização Definido pelo Usuário – pode ser atendido por procedimentos padrão que não utilizam o critério
 - o usuário indica em qual especialização a nova entidade deve ser incluída, sem que exista um valor de atributo associado

Casos Especiais

 Atributos específicos que podem identificar univocamente o CEE podem ser colocadas como chaves secundárias

