

Linneuniversitetet Kalmar Växjö

Assignment

Performance Engineering

Författare: Helena Tevar Examinator: Diego Perez

Termin: 19VT

Ämne: Software Engineering

Design

Kurskod: 2DV603

Linneuniversitetet Kalmar Växjö

Index

Index	
Introduction	3
Calculations	3
Web Server	3
User App Server	3
User App Log	4
Admin App Server	2
Admin App Log	4
Database	4
Security Check	5
Model	5
Arrival Rate and Service Time	5
Routing	6
Resources	7
System Response Time	7
UML	8
Deployment Diagram	8
Activity Diagram	8

Kalmar Växjö

Introduction

This report shows the results of the mathematical representation fo the behaviour from the system proposed, a model created with JMT and the results got by it.

Calculations

Server	S	X	U
1 - Web Server	0.2508	0.83	0.209
2 - User App S	0.1992	3	0.2988
3 - User App L	0.0996	3	0.2988
4 - Admin App S	0.3	0.16	0.05
5 - Admin App L	0.1	0.16	0.016
6 - DB	0.05	2.5	0.125
7 - Security Check	0.3	0.83	0.25

Web Server

$$C_1 = 6000 \quad B_1 = 1504.8$$

$$S_1 = \frac{1504.8}{6000} = 0.2508$$

$$X_1 = \frac{6000}{7200} = 0.8\widehat{3}$$

$$U_1 = \frac{1504.8}{7200} = 0.209$$

User App Server

$$C_2 = 21600$$
 $U_2 = 0.2988$ $c = 2$

$$X_2 = \frac{21600}{7200} = 3$$

$$S_2 = \frac{0.2988}{3} \cdot 2 = 0.1992$$

User App Log

$$C_3 = 21600$$
 $U_3 = 0.2988$
 $S_3 = \frac{0.2988}{3} = 0.0996$
 $X_3 = \frac{21600}{7200} = 3$

Admin App Server

$$C_4 = 1200 \quad B_4 = 360$$

$$X_4 = \frac{1200}{7200} = 0.1\widehat{6}$$

$$S_4 = \frac{0.05}{0.166} = 0.3$$

$$U_4 = \frac{360}{7200} = 0.05$$

$$C_5 = 1200 \quad B_5 = 120$$

$$S_5 = \frac{120}{1200} = 0.1$$

Admin App Log

$$S_5 = \frac{120}{1200} = 0.1$$

$$B_5 = \frac{120}{7200} = 0.01\hat{6}$$

$$X_5 = 0.1\hat{6}$$

Database

$$\begin{split} B_6 &= 900 \quad N_6 = 0.14325 \quad R_6 = 0.0573 \\ X_6 &= \frac{0.14325}{0.0573} = 2.5 \\ U_6 &= \frac{900}{7200} = 0.125 \\ S_6 &= \frac{0.125}{2.5} = 0.05 \end{split}$$

In this case, I made an extra calculation to know the exact number of request that accesses the database.

$$C_6 = \frac{900}{0.05} = 18000$$

Because the total of completed requests by the database is exactly three times the system requests, I will assume that the request iterates three times before leaving the database.

Kalmar Växjö

Security Check

In order to check that the results of JMT were correct, I calculated the throughput and service time of the security check.

$$S_7 = 0.3$$
 $C_7 = 6000$

$$X_7 = \frac{6000}{7200} = 0.83$$

$$U_7 = 0.83 \cdot 0.3 = 0.25$$

Model

Service Time

Web Server

User App Server

Security Check

User App Log

Linneuniversitetet Kalmar Växjö

Admin App Server

Database

Admin App Log

Class Arrival Rate

Kalmar Växjö

Arrival Rate

In this particular place, where all the jobs are completed, the arrival rate is the same that the throughput. All the received requests are the same that all the completed requests. Different tests has been performed and the results are always close enough to the mathematical proof to be accurate.

Kalmar Växjö

Routing

Web Server router

Users router

Admin router

DB router

Kalmar Växjö

Resources

All the servers have only one resource except User App Server.

System Response Time

Kalmar Växjö

UML

Deployment Diagram

Activity Diagram

