The PRAM Model for Parallel Computation

References

- 1. Selim Akl, Parallel Computation: Models and Methods, Prentice Hall, 1997, Updated online version available through website.
- 2. Selim Akl, The Design of Efficient Parallel Algorithms, Chapter 2 in "Handbook on Parallel and Distributed Processing" edited by J. Blazewicz, K. Ecker, B. Plateau, and D. Trystram, Springer Verlag, 2000.
- 3. Selim Akl, Design & Analysis of Parallel Algorithms, Prentice Hall, 1989.
- 4. Henri Casanova, Arnaud Legrand, and Yves Robert, Parallel Algorithms, CRC Press, 2009.
- 5. Cormen, Leisterson, and Rivest, Introduction to Algorithms, 1st edition (i.e., older), 1990, McGraw Hill and MIT Press, Chapter 30 on parallel algorithms.
- 6. Phillip Gibbons, Asynchronous PRAM Algorithms, Ch 22 in Synthesis of Parallel Algorithms, edited by John Reif, Morgan Kaufmann Publishers, 1993.
- 7. Joseph JaJa, An Introduction to Parallel Algorithms, Addison Wesley, 1992.
- 8. Michael Quinn, Parallel Computing: Theory and Practice, McGraw Hill, 1994
- 9. Michael Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw Hill, 1987.

Outline

- Computational Models
- Definition and Properties of the PRAM Model
- Parallel Prefix Computation
- The Array Packing Problem
- Cole's Merge Sort for PRAM
- PRAM Convex Hull algorithm using divide & conquer
- Issues regarding implementation of PRAM model

Concept of "Model"

- An abstract description of a real world entity
- Attempts to capture the essential features while suppressing the less important details.
- Important to have a model that is both precise and as simple as possible to support theoretical studies of the entity modeled.
- If experiments or theoretical studies show the model does not capture some important aspects of the physical entity, then the model should be refined.
- Some people will not accept most abstract model of reality, but instead insist on reality.
 - Sometimes reject a model as invalid if it does not capture every tiny detail of the physical entity.

Parallel Models of Computation

- Describes a class of parallel computers
- Allows algorithms to be written for a general model rather than for a specific computer.
- Allows the advantages and disadvantages of various models to be studied and compared.
- Important, since the life-time of specific computers is quite short (e.g., 10 years).

Controversy over Parallel Models

- Some professionals (often engineers) will not accept a parallel model if
 - It does not capture every detail of reality
 - It cannot currently be built
- Engineers often insist that a model must be valid for any number of processors
 - Parallel computers with more processors than the number of atoms in the observable universe are unlikely to be built in the foreseeable future.
 - If they are ever built, the model for them is likely to be vastly different from current models today.
 - Even models that allow a billion or more processors are likely to be very different from those supporting at most a few million processors.

The PRAM Model

- PRAM is an acronym for Parallel Random Access Machine
- The earliest and best-known model for parallel computing.
- A natural extension of the RAM sequential model
- More algorithms designed for PRAM than any other model.

The RAM Sequential Model

- RAM is an acronym for Random Access Machine
- RAM consists of
 - A memory with M locations.
 - Size of M can be as large as needed.
 - A processor operating under the control of a sequential program which can
 - load data from memory
 - store date into memory
 - execute arithmetic & logical computations on data.
 - A memory access unit (MAU) that creates a path from the processor to an arbitrary memory location.

RAM Sequential Algorithm Steps

- A READ phase in which the processor reads datum from a memory location and copies it into a register.
- A COMPUTE phase in which a processor performs a basic operation on data from one or two of its registers.
- A WRITE phase in which the processor copies the contents of an internal register into a memory location.

PRAM Model Discussion

- Let P_1, P_2, \dots, P_n be identical processors
- Each processor is a RAM processor with a private local memory.
- The processors communicate using m shared (or global) memory locations, $U_1, U_2, ..., U_m$.
 - Allowing both local & global memory is typical in model study.
- Each P_i can read or write to each of the m shared memory locations.
- All processors operate synchronously (i.e. using same clock), but can execute a different sequence of instructions.
 - Some authors inaccurately restrict PRAM to simultaneously executing the same sequence of instructions (i.e., SIMD fashion)
- Each processor has a unique index called, the processor ID, which can be referenced by the processor's program.
 - Often an unstated assumption for a parallel model

PRAM Computation Step

- Each PRAM step consists of three phases, executed in the following order:
 - A read phase in which each processor may read a value from shared memory
 - A compute phase in which each processor may perform basic arithmetic/logical operations on their local data.
 - A write phase where each processor may write a value to shared memory.
- Note that this prevents reads and writes from being simultaneous.
- Above requires a PRAM step to be sufficiently long to allow processors to do different arithmetic/logic operations simultaneously.

SIMD Style Execution for PRAM

- Most algorithms for PRAM are of the single instruction stream multiple data (SIMD) type.
 - All PEs execute the same instruction on their own datum
 - Corresponds to each processor executing the same program synchronously.
 - PRAM does not have a concept similar to SIMDs of all active processors accessing the 'same local memory location' at each step.

SIMD Style Execution for PRAM (cont)

- PRAM model was historically viewed by some as a shared memory SIMD.
 - Called a SM SIMD computer in [Akl 89].
 - Called a SIMD-SM by early textbook [Quinn 87].
 - PRAM executions required to be SIMD [Quinn 94]
 - PRAM executions required to be SIMD in [Akl 2000]

The Unrestricted PRAM Model

- The unrestricted definition of PRAM allows the processors to execute different instruction streams as long as the execution is synchronous.
 - Different instructions can be executed within the unit time allocated for a step
 - See JaJa, pg 13
- In the Akl Textbook, processors are allowed to operate in a "totally asychronous fashion".
 - See page 39
 - Assumption may have been intended to agree with above, since no charge for synchronization or communications is included.

Asynchronous PRAM Models

- While there are several asynchronous models, a typical asynchronous model is described in [Gibbons 1993].
- The asychronous PRAM models do not constrain processors to operate in lock step.
 - Processors are allowed to run synchronously and then charged for any needed synchronization.
- A non-unit charge for processor communication.
 - Take longer than local operations
 - Difficult to determine a "fair charge" when messagepassing is not handled in synchronous-type manner.
- Instruction types in Gibbon's model
 - Global Read, Local operations, Global Write, Synchronization
- Asynchronous PRAM models are useful tools in study of actual cost of asynchronous computing
- The word 'PRAM' usually means 'synchronous PRAM'

Some Strengths of PRAM Model

- JaJa has identified several strengths designing parallel algorithms for the PRAM model.
- PRAM model removes algorithmic details concerning synchronization and communication, allowing designers to focus on obtaining maximum parallelism
- A PRAM algorithm includes an explicit understanding of the operations to be performed at each time unit and an explicit allocation of processors to jobs at each time unit.
- PRAM design paradigms have turned out to be robust and have been mapped efficiently onto many other parallel models and even network models.

PRAM Strengths (cont)

- PRAM strengths Casanova et. al. book.
 - With the wide variety of parallel architectures, defining a precise yet general model for parallel computers seems hopeless.
 - Most daunting is modeling of data communications costs within a parallel computer.
 - A reasonable way to accomplish this is to only charge unit cost for each data move.
 - They view this as ignoring computational cost.
 - Allows minimal computational complexity of algorithms for a problem to be determined.
 - Allows a precise classification of problems, based on their computational complexity.

PRAM Memory Access Methods

- Exclusive Read (ER): Two or more processors can not simultaneously read the same memory location.
- Concurrent Read (CR): Any number of processors can read the same memory location simultaneously.
- Exclusive Write (EW): Two or more processors can not write to the same memory location simultaneously.
- Concurrent Write (CW): Any number of processors can write to the same memory location simultaneously.

Variants for Concurrent Write

- Priority CW: The processor with the highest priority writes its value into a memory location.
- Common CW: Processors writing to a common memory location succeed only if they write the same value.
- Arbitrary CW: When more than one value is written to the same location, any one of these values (e.g., one with lowest processor ID) is stored in memory.
- Random CW: One of the processors is randomly selected write its value into memory.

Concurrent Write (cont)

- Combining CW: The values of all the processors trying to write to a memory location are combined into a single value and stored into the memory location.
 - Some possible functions for combining numerical values are SUM, PRODUCT, MAXIMUM, MINIMUM.
 - Some possible functions for combining boolean values are AND, INCLUSIVE-OR, EXCLUSIVE-OR, etc.

ER & EW Generalizations

- Casanova et.al. mention that sometimes ER and EW are generalized to allow a bounded number of read/write accesses.
- With EW, the types of concurrent writes must also be specified, as in CW case.

Additional PRAM comments

- 1. PRAM encourages a focus on minimizing computation and communication steps.
 - Means & cost of implementing the communications on real machines ignored
- 2. PRAM is often considered as unbuildable & impractical due to difficulty of supporting parallel PRAM memory access requirements in constant time.
- 3. However, Selim Akl shows a complex but efficient MAU for all PRAM models (EREW, CRCW, etc) that can be supported in hardware in O(lg n) time for n PEs and O(n) memory locations. (See [2. Ch.2].
- Akl also shows that the sequential RAM model also requires O(lg m) hardware memory access time for m memory locations.
 - Some strongly criticize PRAM communication cost assumptions but accept without question the cost in RAM memory cost assumptions.

Parallel Prefix Computation

- EREW PRAM Model is assumed for this discussion
- A binary operation on a set S is a function
 ⊕:S×S → S.
- Traditionally, the element ⊕(s₁, s₂) is denoted as s₁⊕ s₂.
- The binary operations considered for prefix computations will be assumed to be
 - associative: $(s_1 \oplus s_2) \oplus s_3 = s_1 \oplus (s_2 \oplus s_3)$
- Examples
 - Numbers: addition, multiplication, max, min.
 - Strings: concatenation for strings
 - Logical Operations: and, or, xor
- Note:

 is not required to be commutative.

Prefix Operations

- Let s_0 , s_1 , ..., s_{n-1} be elements in S.
- The computation of p₀, p₁, ..., p_{n-1} defined below is called <u>prefix</u> <u>computation</u>:

 $p_{n-1} = s_0 \oplus s_1 \oplus ... \oplus s_{n-1}$

$$p_0 = s_0$$

$$p_1 = s_0 \oplus s_1$$

$$\vdots$$

Prefix Computation Comments

- Suffix computation is similar, but proceeds from right to left.
- A binary operation is assumed to take constant time, unless stated otherwise.
- The number of steps to compute p_{n-1} has a lower bound of Ω(n) since n-1 operations are required.
- Next visual diagram of algorithm for n=8 from Akl's textbook. (See Fig. 4.1 on pg 153)
 - This algorithm is used in PRAM prefix algorithm
 - The same algorithm is used by Akl for the hypercube (Ch 2) and a sorting combinational circuit (Ch 3).

Figure 4.1: Prefix computation on the PRAM.

EREW PRAM Prefix Algorithm

- Assume PRAM has n processors, P₀, P₁, ..., P_{n-1}, and n is a power of 2.
- Initially, P_i stores x_i in shared memory location s_i for i = 0,1, ..., n-1.
- Algorithm Steps:

```
for j = 0 to (\lg n) -1, do

for i = 2^j to n-1 in parallel do

h = i - 2^j

s_i = s_h \oplus s_i

endfor

endfor
```

Prefix Algorithm Analysis

- Running time is t(n) = O(lg n)
- Cost is $c(n) = p(n) \times t(n) = O(n \lg n)$
- Note not cost optimal, as RAM takes O(n)

Example for Cost Optimal Prefix

- Sequence 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
- Use n / Ig n PEs with Ig(n) items each
- 0,1,2,3
 4,5,6,7
 8,9,10,11
 12,13,14,15
- STEP 1: Each PE performs sequential prefix sum
- 0,1,3,6
 4,9,15,22
 8,17,27,38
 12,25,39,54
- STEP 2: Perform parallel prefix sum on last nr. in PEs
- 0,1,3,6
 4,9,15,28
 8,17,27,66
 12,25,39,120
- Now prefix value is correct for last number in each PE
- <u>STEP 3</u>: Add last number of each sequence to incorrect sums in next sequence (in parallel)
- 0,1,3,6
 10,15,21,28
 36,45,55,66
 78,91,105,120

A Cost-Optimal EREW PRAM Prefix Algorithm

- In order to make the prefix algorithm optimal, we must reduce the cost by a factor of lg n.
- We reduce the nr of processors by a factor of lg n (and check later to confirm the running time doesn't change).
- Let k = \[\lfloor \lfloor \n \rfloor \n \n \rfloor \n \
- The input sequence $X = (x_0, x_1, ..., x_{n-1})$ is partitioned into m subsequences $Y_0, Y_1, ..., Y_{m-1}$ with k items in each subsequence.
 - While Y_{m-1} may have fewer than k items, without loss of generality (WLOG) we may assume that it has k items here.
- Then all sequences have the form,

$$Y_i = (x_{i*k}, x_{i*k+1}, ..., x_{i*k+k-1})$$

PRAM Prefix Computation (X, ⊕,S)

- Step 1: For $0 \le i < m$, each processor P_i computes the prefix computation of the sequence $Y_i = (x_{i*k}, x_{i*k+1}, ..., x_{i*k+k-1})$ using the RAM prefix algorithm (using \oplus) and stores prefix results as sequence s_{i*k} , s_{i*k+1} , ..., $s_{i*k+k-1}$.
- Step 2: All m PEs execute the preceding PRAM prefix algorithm on the sequence $(s_{k-1}, s_{2k-1}, ..., s_{n-1})$
 - Initially P_i holds s_{i*k-1}
 - Afterwards P_i places the prefix sum $s_{k-1} \oplus ... \oplus s_{ik-1}$ in s_{ik-1}
- Step 3: Finally, all P_i for $1 \le i \le m-1$ adjust their partial value sums for all but the final term in their partial sum subsequence by performing the computation

$$s_{ik+j} \leftarrow \ s_{ik+j} \ \oplus \ s_{ik-1}$$
 for $0 \leq j \leq k-2$.

Algorithm Analysis

Analysis:

- Step 1 takes $O(k) = O(\lg n)$ time.
- Step 2 takes $O(\lg m) = O(\lg n/k)$
 - $= O(\lg n \lg k) = O(\lg n \lg \lg n)$
 - $= O(\lg n)$
- Step 3 takes O(k) = O(lg n) time
- The running time for this algorithm is O(lg n).
- The cost is $O((\lg n) \times n/(\lg n)) = O(n)$
- Cost optimal, as the sequential time is O(n)
- The combined pseudocode version of this algorithm is given on pg 155 of the Akl textbook

The Array Packing Problem

- Assume that we have
 - an array of *n* elements, $X = \{x_1, x_2, ..., x_n\}$
 - Some array elements are marked (or distinguished).
- The requirements of this problem are to
 - pack the marked elements in the front part of the array.
 - place the remaining elements in the back of the array.
- While not a requirement, it is also desirable to
 - maintain the original order between the marked elements
 - maintain the original order between the unmarked elements

A Sequential Array Packing Algorithm

- Essentially "burn the candle at both ends".
- Use two pointers q (initially 1) and r (initially n).
- Pointer q advances to the right until it hits an unmarked element.
- Next, r advances to the left until it hits a marked element.
- The elements at position q and r are switched and the process continues.
- This process terminates when $q \ge r$.
- This requires O(n) time, which is optimal. (why?)

Note: This algorithm does not maintain original order between elements

EREW PRAM Array Packing Algorithm

- 1.Set s_i in P_i to 1 if x_i is marked and set $s_i = 0$ otherwise.
- 2. Perform a prefix sum on $S = (s_1, s_2, ..., s_n)$ to obtain destination $d_i = s_i$ for each marked x_i .
- 3. All PEs set $m = s_n$, the total nr of marked elements.
- 4. P_i sets s_i to 0 if x_i is marked and otherwise sets $s_i = 1$.
- 5. Perform a prefix sum on S and set $d_i = s_i + m$ for each unmarked x_i .
- 6. Each P_i copies array element x_i into address d_i in X.

Array Packing Algorithm Analysis

- Assume n/lg(n) processors are used above.
- Optimal prefix sums requires O(lg n) time.
- The <u>EREW broadcast</u> of s_n needed in Step 3 takes
 O(lg n) time using either
 - 1. a binary tree in memory (See Akl text, Example 1.4.)
 - 2. or a prefix sum on sequence b_1, \ldots, b_n with

$$b_1$$
= a_n and b_i = 0 for 1< i \leq n)

- All and other steps require constant time.
- Runs in O(lg n) time, which is cost optimal. (why?)
- Maintains original order in unmarked group as well

Notes:

Algorithm illustrates usefulness of Prefix Sums
 There many applications for Array Packing algorithm.

Problem: Show how a PE can broadcast a value to all other PEs in EREW in O(lg n) time using a binary tree in memory.

List Ranking Algorithm (Using Pointer Jumping)

- Problem: Given a linked list, find the location of each node in the list.
- Next algorithm uses the pointer jumping technique
- Ref: Pg 6-7 Casanova, et.al. & Pg 236-241 Akl text. In Akl's text, you should read prefix sum on pg 236-8 first.
- Assume we have a linked list L of n objects distributed in PRAM's memory
- Assume that each P_i is in charge of a node i
- Goal: Determine the distance d[i] of each object in linked list to the end, where d is defined as follows:

$$d[i] = \begin{cases} 0 & \text{if } next[i] = nil \\ \\ d[next[i]] + 1 & \text{if } next[i] \neq nil \end{cases}$$

FIGURE 1.2: Typical execution of the list ranking algorithm. Gray cells indicate active values, i.e., values that are in the process of being computed.

Backup of Previous Diagram


```
Rank_Computation(L)
                                                                        Initialization }
      for all i in parallel do
          if next[i] = Nil then d[i] \leftarrow 0 else d[i] \leftarrow 1
3
                                                                          { Main loop }
      while there exists a node i such that next[i] \neq Nil do
4
          forall i in parallel do
5
               if next[i] \neq Nil then
6
                  d[i] \leftarrow d[i] + d[next[i]]
                 next[i] \leftarrow next[next[i]]
```

ALGORITHM 1.1: List ranking algorithm.

Potential Problems?

- Consider following steps:
 - 7. d[i] = d[i] + d[next[i+1]]
 - 8. next[i] = next[next[i]]
- Casanova, et.al, pose below problem in Step7
 - P_i reads d[i+1]and uses this value to update d[i]
 - P_{i-1} must read d[i] to update d[i-1]
 - Computation fails if P_i change the value of d[i] before P_{i-1} can read it.
- This problem should not occur, as all PEs in PRAM should execute algorithm synchronously.
 - The same problem is avoided in Step 8 for the same reason

Potential Problems? (cont.)

- Does Step 7 (&Step 8) require CR PRAM?d[i] = d[i] + d[next[i]]
 - Let j = next[i]
 - Casanova et.al. suggests that P_i and P_j may try to read d[j] concurrently, requiring a CR PRAM model
 - Again, if PEs are stepping through the computations synchronously, EREW PRAM is sufficient here
- In Step 4, PRAM must determine whether there is a node i with next[i] ≠ nil. A CWCR solution is:
 - In Step 4a, set done to false
 - In Step 4b, all PE write boolean value of "next[i] = nil" using CW-common write.
- A EREW solution for Step 7 is given next

Rank-Computation using EREW

- Theorem: The Rank-Computation algorithm only requires EREW PRAM
 - Replace Step 4 with
 - For step = 1 to log n do,
- Akl raises the question of what to do if an unknown number of processors Pi, each of which is in charge of node i (see pg 236).
 - In this case, it would be necessary to go back to the CRCW solution suggested earlier.

PRAM Model Separation

- We next consider the following two questions
 - Is CRCW strictly more powerful than CREW
 - Is CREW strictly more powerful that EREW
- We can solve each of above questions by finding a problem that the leftmost PRAM can solve faster than the rightmost PRAM

CRCW Maximum Array Value Algorithm

CRCW Compute_Maximum (A,n)

- Algorithm requires O(n²) PEs, P_{i,j}.
 - 1. forall $i \in \{0, 1, ..., n-1\}$ in parallel do
 - P_{i.0} sets m[i] = True
 - 2. forall i, $j \in \{0, 1, ..., n-1\}^2$, $i \neq j$, in parallel do
 - [if A[i] < A[j] then P_{i,i} sets m[i] = False
 - 3. forall $i \in \{0, 1, ..., n-1\}$ in parallel do
 - If m[i] = True, then P_{i,0} sets max = A[i]
 - 4. Return max
- Note that on n PEs do EW in steps 1 and 3
- The write in Step 2 can be a "common CW"
- Cost is $O(1) \times O(n^2)$ which is $O(n^2)$

CRCW More Powerful Than CREW

- The previous algorithm establishes that CRCW can calculate the maximum of an array in O(1) time
- Using CREW, only two values can be merged into a single value by one PE in a single step.
 - Therefore the number of values that need to be merged can be halved at each step.
 - So the fastest possible time for CREW is $\Omega(\log n)$

CREW More Powerful Than EREW

- Determine if a given element e belongs to a set {e₁, e₂, ..., e_n} of n distinct elements
- CREW can solve this in O(1) using n PEs
 - One PE initializes a variable result to false
 - All PEs compare e to one e_i.
 - If any PE finds a match, it writes "true" to result.
- On EREW, it takes $\Omega(\log n)$ steps to broadcast the value of e to all PEs.
 - The number of PEs with the value of e can be doubled at each step.

Simulating CRCW with EREW

Theorem: An EREW PRAM with p PEs can simulate a **common** CRCW PRAM with p PEs in O(log p) steps using O(p) extra memory.

- See Pg 14 of Casanova, et. al.
- The only additional capabilities of CRCW that EREW PRAM has to simulate are CR and CW.
- Consider a CW first, and initially assume all PE participate.
- EREW PRAM simulates this CW by creating a p×2 array A with length p

Simulating Common CRCW with EREW

- When a CW write is simulated, PRAM EREW PE i writes
 - The memory cell address wishes to write to in A(j,0)
 - The value it wishes into memory in A(j,1).
 - If any PE j does not participate in CW, it will write -1 to A(j,0).
- Next, sort A by its first column. This brings all of the CW to same location together.
- If memory location in A(0,1) is not -1, then PE 0 writes the data value in A(0,1) to memory location value stored in A(0,1).

PRAM Simulations (cont)

- All PEs j for j>0 read memory address in A(j,0) and A(j-1,0)
 - If memory location in A(j,0) is -1, PE j does not write.
 - Also, if the two memory addresses are the same, PE j does not write to memory.
 - Otherwise, PE j writes data value in A(j,1) to memory location in A(j,0).
- Cole's algorithm that EREW can sort n items in log(n) time is needed to complete this proof. It is discussed next in Casanova et.al. for CREW.

Problem:

 This proof is invalid for CRCW versions stronger than common CRCW, such as combining.

FIGURE 1.5: Simulation of concurrent writes with exclusive writes.

Cole's Merge Sort for PRAM

- Cole's Merge Sort runs on EREW PRAM in O(lg n) using O(n) processors, so it is cost optimal.
 - The Cole sort is significantly more efficient than most other PRAM sorts.
- Akl calls this sort "PRAM SORT" in book & chptr (pg 54)
 - A high level presentation of EREW version is given in Ch. 4 of Akl's online text and also in his book chapter
- A complete presentation for CREW PRAM is in JaJa.
 - JaJa states that the algorithm he presents can be modified to run on EREW, but that the details are non-trivial.
- Currently, this sort is the best-known PRAM sort & is usually the one cited when a cost-optimal PRAM sort using O(n) PEs is needed.

References for Cole's EREW Sort

Two references are listed below.

- Richard Cole, Parallel Merge Sort, SIAM Journal on Computing, Vol. 17, 1988, pp. 770-785.
- Richard Cole, Parallel Merge Sort, Book-chapter in "Synthesis of Parallel Algorithms", Edited by John Reif, Morgan Kaufmann, 1993, pg.453-496

Comments on Sorting

- A CREW PRAM algorithm that runs in
 O((lg n) lg lg n) time
 and uses O(n) processors which is much simpler is given
 in JaJa's book (pg 158-160).
 - This algorithm is shown to be work optimal.
- Also, JaJa gives an O(lg n) time randomized sort for CREW PRAM on pages 465-473.
 - With high probability, this algorithm terminates in O(lg n) time and requires O(n lg n) operations
 - i.e., with high-probability, this algorithm is workoptimal.
- Sorting is often called the "queen of the algorithms":
 - A speedup in the best-known sort for a parallel model usually results in a similar speedup other algorithms that use sorting.

Cole's CREW Sort

- Given in 1986 by Cole [43 in Casanova]
- Also, sort given for EREW in same paper, but is even more difficult.
- The general idea of algorithm technique follows:
 - Based on classical merge sort, represented as a binary tree.
 - All merging steps at a given level of the tree must be done in parallel
 - At each level, two sequences each of arbitrary size must be merged in O(1) time.
 - Partial information from previous merges is used to merge in constant time, using a very clever technique.
 - Since there are log n levels, this yields a log n running time.

FIGURE 1.6: Example binary tree for Cole's parallel merge sort.

Cole's EREW Sort (cont)

- Defn: A sequence L is called a good sampler (GS) of sequence J if, for any k≥1, there are at most 2k+1 elements of J between k+1 consecutive elements of {-∞} ∪ L ∪{+∞}
 - Intuitively, elements of L are almost uniformly distributed among elements of J.

FIGURE 1.7: Merging J and K with the help of L.

Key is to use sorting tree of Fig 1.6 in a pipelined fashion. A good sampler sequence is built at each level for next level.

FIGURE 1.8: Sorting an array of size 8 with Cole's parallel merge sort.

Divide & Conquer PRAM Algorithms

(Reference: Akl, Chapter 5)

Three Fundamental Operations

- <u>Divide</u> is the partitioning process
- Conquer is the process of solving the base problem (without further division)
- Combine is the process of combining the solutions to the subproblems

Merge Sort Example

- <u>Divide</u> repeatedly partitions the sequence into halves.
- Conquer sorts the base set of one element
- Combine does most of the work. It repeatedly merges two sorted halves

Quicksort Example

- The <u>divide</u> stage does most of the work.

An Optimal CRCW PRAM Convex Hull Algorithm

- Let $Q = \{q_1, q_2, \dots, q_n\}$ be a set of points in the Euclidean plane (i.e., E^2 -space).
- The convex hull of Q is denoted by CH(Q) and is the smallest convex polygon containing Q.
 - It is specified by listing convex hull corner points (which are from Q) in order (e.g., clockwise order).
- Usual Computational Geometry Assumptions:
 - No three points lie on the same straight line.
 - No two points have the same x or y coordinate.
 - There are at least 4 points, as CH(Q) = Q for $n \le 3$.

PRAM CONVEX HULL(n,Q,CH(Q))

- 1. Sort the points of Q by x-coordinate.
- 2. Partition Q into $k = \sqrt{n}$ subsets Q_1, Q_2, \ldots, Q_k of k points each such that a vertical line can separate Q_i from Q_i
 - Also, if i < j, then Q_i is left of Q_i .
- 3. For i = 1 to k, compute the convex hulls of Q_i in parallel, as follows:
 - if $|Q_i| \le 3$, then CH(Qi) = Q_i
 - else (using $k=\sqrt{n}$ PEs) call PRAM CONVEX HULL(k,
 Qi, CH(Qi))
- 4. Merge the convex hulls in {CH(Q1), CH(Q2), . . . , CH(Q_k)} into a convex hull for Q.

Merging \sqrt{n} Convex Hulls

Figure 5.11: Convex polygons to be merged in the computation of CH(Q).

Details for Last Step of Algorithm

- The last step is somewhat tedious.
- The upper hull is found first. Then, the lower hull is found next using the same method.
 - Only finding the upper hull is described here
 - Upper & lower convex hull points merged into ordered set
- Each $CH(Q_i)$ has \sqrt{n} PEs assigned to it.
- The PEs assigned to $CH(Q_i)$ (in parallel) compute the upper tangent from $CH(Q_i)$ to another $CH(Q_i)$.
 - A total of n-1 tangents are computed for each $CH(Q_i)$
 - Details for computing the upper tangents will be discussed separately

The Upper and Lower Hull

Figure 5.12: The upper and lower hulls of CH(Q).

Last Step of Algorithm (cont)

- Among the tangent lines to $CH(Q_i)$ and polygons to the left of $CH(Q_i)$, let L_i be the one with the smallest slope.
 - Use a MIN CW to a shared memory location
- Among the tangent lines to $CH(Q_i)$ and polygons to the right, let R_i be the one with the largest slope.
 - Use a MAX CW to a shared memory location
- If the angle between L_i and R_i is less than 180 degrees, no point of CH(Q_i) is in CH(Q).
 - See Figure 5.13 on next slide (from Akl's Online text)
- Otherwise, all points in CH(Q) between where L_i touches $CH(Q_i)$ and where R_i touches $CH(Q_i)$ are in CH(Q).
- Array Packing is used to combine all convex hull points of CH(Q) after they are identified.

Figure 5.13: Identifying points on the upper hull of CH(Q): (a) α smaller than 180 degrees; (b) α larger than 180 degrees.

Algorithm for Upper Tangents

- Requires finding a straight line segment tangent to $CH(Q_i)$ and $CH(Q_j)$, as given by line $\frac{1}{SW}$ using a binary search technique
 - See Fig 5.14(a) on next slide
- Let s be the mid-point of the ordered sequence of corner points in $CH(Q_i)$.
- Similarly, let w be the mid-point of the ordered sequence of convex hull points in CH(Q_i).
- Two cases arise:
 - SW is the upper tangent of $CH(Q_i)$ and we are done.
 - Otherwise, on average one-half of the remaining corner points of $CH(Q_i)$ and/or $CH(Q_j)$ can be removed from consideration.
- Preceding process is now repeated with the midpoints of two remaining sequences.

Figure 5.14: Computing the upper tangent: (a)–(h) Eight simple cases.

PRAM Convex Hull Complexity Analysis

- Step 1: The sort takes O(lg n) time.
- Step 2: Partition of Q into subsets takes O(1) time.
 - Here, Q_i consist of points q_k where $k = (i-1)\sqrt{n} + r$ for $1 \le i \le \sqrt{n}$
- Step 3: The recursive calculations of $CH(Q_i)$ for $1 \le i \le \sqrt{n}$ in parallel takes $t(\sqrt{n})$ time (using \sqrt{n} PEs for each Q_i).
- Step 4: The big steps here require O(lgn) and are
 - Finding the upper tangent from $CH(Q_i)$ to $CH(Q_j)$ for each i, j pair takes $O(\lg \sqrt{n}) = O(\lg n)$
 - Array packing used to form the ordered sequence of upper convex hull points for Q.
- Above steps find the upper convex hull. The lower convex hull is found similarly.
 - Upper & lower hulls can be merged in O(1) time to be an (counter)/clockwise ordered set of hull points.

Complexity Analysis (Cont)

• Cost for Step 3: Solving the recurrence relation $t(n) = t(\sqrt{n}) + \beta \lg n$ yields

$$t(n) = O(\lg n)$$

- Running time for PRAM Convex Hull is O(lg n) since this is maximum cost for each step.
- Then the cost for PRAM Convex Hull is $C(n) = O(n \log n)$.

Optimality of PRAM Convex Hull

Theorem: A lower bound for the number of sequential steps required to find the convex hull of a set of planar points is $\Omega(n \lg n)$

- Let $X = \{x_1, x_2, \dots, x_n\}$ be any sequence of real numbers.
- Consider the set of planar points

$$Q = \{ (x_1, x_1^2), (x_2, x_2^2), \dots, (x_n, x_n^2) . \}$$

- All points of Q lie on the curve y = x², so all points of Q are in CH(Q).
- Apply <u>any</u> convex hull algorithm to Q.

Optimality of PRAM Convex Hull (cont)

- The convex hull produced is 'sorted' by the first coordinate, assuming the following rotation.
 - A sequence may require an around-the-end rotation of items to get the least x-coordinate to occur first.
 - Identifying smallest term and rotating A takes only linear (or O(n)) time.
- The process of sorting has a lower bound of n lg n basic steps.
- All of the above steps used to sort this sequence with the exception of finding the convex hull require only linear time.
- Consequently, a worst case lower bound for computing the convex hull is $\Omega(n \lg n)$ steps.