Exam 1 review: Correctness and complexity

William Hendrix

Exam 1

Potential topics:

- Proof of correctness
- Proof of incorrectness
- <u>Big-Oh proof</u>
 - Based on definition
 - Based on properties
 - Log properties
- <u>Algorithm design</u>
 - Exhaustive search
 - Greedy algorithms
- Worst-case analysis
 - Iterative algorithms
 - Recursive algorithms
 - Modelling runtime as a recurrence
 - Solving recurrences

at least one

at least one

at least one

Summary: proving correctness

- Prove that it produces the correct output for every input
 - Trace input to find algorithm's output
 - Prove output is correct
 - I.e., meets output criteria
- Proof technique depends strongly on algorithm
 - Try algorithm on small examples to see if it works
 - Try to figure out the pattern of what it's doing
 - Can use direct proof for simple algorithms
 - Start with arbitrary input, prove output is correct
 - May need to prove a claim about what each iteration of a loop does
 - Recursive algorithms: induction
 - Prove that it works for the base case, then prove inductive step
 - Optimization algorithms: contradiction
 - Suppose that there were some "better" solution, and show that it's impossible the algorithm missed it

Correctness exercise

• **Algorithm:** Bubble Sort

```
Input:
data: an array of integers to sort
      the number of values in data
n:
Output: permutation of data such that data[1] \leq \ldots \leq data[n]
Pseudocode:
 repeat
     for i = 1 to n-1
      if data[i] > data[i+1]
        Swap data[i] and data[i+1]
      end
   end
 until for loop makes no swaps
 return data
```

Hint: what happens to the largest value in data in the first iteration of the outer loop?

Incomplete solution

Bubble Sort is correct.

Proof. Note that Bubble Sort will only terminate when the **if** condition in line 3 is false for all i. Thus, $data[1] \leq data[2] \leq \ldots \leq data[n]$ when Bubble Sort terminates. Thus, Bubble Sort must be correct, as long as this loop eventually terminates.

Important observation

Lemma 1. After iteration k of the outer loop in Bubble Sort (line 1), the last k values will be the largest k values in the array, in sorted order.

Proof. We prove the claim by induction.

(Base case) Consider the first iteration of the loop, and suppose that the largest value in the array is x = data[j]. The body of the **for** loop in lines 2–6 will not move data[j] until i = j - 1. During this iteration, $\text{data}[j] = x \ge \text{data}[j-1]$, so x will not be swapped into data[j-1]. In iteration j, $\text{data}[j] = x \ge \text{data}[j+1]$. If x > data[j+1], x will be swapped into position data[j+1]. Otherwise, x = data[j+1], so data[j+1] = x in either case. On iteration j+1, $\text{data}[j+1] = x \ge \text{data}[j+2]$, so data[j+2] will become x, and so forth, until data[n] = x.

(Inductive step) Suppose the first k iterations of Bubble Sort have moved the k largest values in the array to the last k positions, and let x = data[j] be the $(k+1)^{\text{st}}$ largest value. Similarly to the base case, x will not be moved before iteration j, but afterwards, $\text{data}[i] \geq \text{data}[i+1]$ until i = n-k, so data[i+1] will become x. In this way, data[n-k] will become x, so the last k+1 values in the array will be the largest k+1 values. \square

Correctness solution

• Bubble Sort is correct.

Proof. Note that Bubble Sort will only terminate when the **if** condition in line 3 is false for all i. Thus, $data[1] \leq data[2] \leq \ldots \leq data[n]$ when Bubble Sort terminates. Thus, Bubble Sort must be correct, as long as this loop eventually terminates.

By the lemma, Bubble Sort moves the k largest values in the array to the end after k iterations of the outer loop. So, after (at most) n iterations of this loop, all n values will in sorted order. At this point, the inner **for** loop won't swap anything, and the outer loop will terminate. Since Bubble Sort always terminates with the correct output, Bubble Sort is correct.

Summary: proving incorrectness

- Proof by counterexample
 - Find one instance with an incorrect solution
 - Typically easier than induction
 - Counterexample may be tricky to find
- Counterexample strategies
 - Start small
 - Think about how the algorithm deals with extremes
 - · Large and small
 - Near and far
 - Large range vs. all identical values
 - Look at the algorithm for a hint about its weaknesses
 - Step through with one example
 - Check if a modification to the input could break the algorithm

Incorrectness exercise

- **Problem:** swap
 - Input: pointers to two integers, a and b
 - Output: none, but the values of a and b should be swapped

```
void swap(int* a, int* b)
{
    *a = *a - *b;
    *b = *a + *b;
    *a = *a - *b;
}
```

- Example:

*a	* b
100	73
27	73
27	100
73	100

Incorrectness sample solution

• Prove that swap (below) is incorrect:

```
void swap(int* a, int* b)
{

    *a = *a - *b;
    *b = *a + *b;
    *a = *b - *a;
}

void swap(int* a, int* b)

If a ≠ b:
    b = (a - b) + b = a
    a = a - (a - b) = b
}
```

Proof. The swap algorithm is provably correct if $a \neq b$. However, if a = b, both will equal 0 after line 1, and continue to (both) equal 0 thereafter, whereas a correct algorithm would not modify the value of *a or *b.

Summary: complexity and Big-Oh

- RAM model of computation
- Useful approximation of real-world behavior:
 - Basic instructions take same amount of time
 - Memory access is instantaneous
- Key aspect of complexity: asymptotic growth
 - How fast does the function grow?
 - Constant, logarithmic, linear, etc.?
- Big-Oh: classify functions according to growth rate

```
f(n) = O(g(n)) if and only if there exist positive constants c and n_0 such that f(n) \leq cg(n) for all n \geq n_0.
```

 $f(n) = \Omega(g(n))$ if and only if there exist positive constants c and n_0 such that $f(n) \geq cg(n)$ for all $n \geq n_0$.

 $f(n) = \Theta(g(n))$ if and only if there exist positive constants c_1, c_2 , and n_0 such that $c_1g(n) \leq f(n) \leq c_2g(n)$ for all $n \geq n_0$.

• Analogy: O, Ω , and Θ "act like" \leq , \geq , and =

Big-Oh properties

• Interrelationships: O and Ω are "opposite", Θ is "composite"

$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

 $f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)) \Leftrightarrow f(n) = \Theta(f(n))$

Reflexive

$$f(n) = O(f(n))$$
, for any function f

• Θ only: **Symmetric**

$$f(n) = \Theta(g(n)) \to g(n) = \Theta(f(n))$$

Transitive

$$f(n) = O(g(n))$$
 and $g(n) = O(h(n)) \rightarrow f(n) = O(h(n))$

Ignore constant coefficients

$$\forall x > 0, x f(n) = O(f(n))$$

Ignore small terms

$$f(n) = O(g(n)) \to \Theta(f(n) + g(n)) = \Theta(g(n))$$

Envelopment (+ and *)

$$O(f(n)) + O(g(n)) = O(f(n) + g(n))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

Big-Oh exercise 1

Prove the multiplicative envelopment property of Big-Omega:

$$j(n)k(n) = \Omega(f(n)g(n)),$$

where $j(n) = \Omega(f(n) \text{ and } k(n) = \Omega(g(n))$

Big-Oh sample solution 1

Prove the multiplicative envelopment property of Big-Omega:

$$j(n)k(n) = \Omega(f(n)g(n)),$$

where $j(n) = \Omega(f(n))$ and $k(n) = \Omega(g(n))$

Proof. By the definition of Big-Omega, there exist some positive constants c_1 , n_1 , c_2 , and n_2 such that $j(n) \ge c_1 f(n)$ for all $n \ge n_1$ and $k(n) \ge c_2 g(n)$ for all $n \ge n_2$.

Let $n_3 = \max\{n_1, n_2\}$. Since $n_3 \ge n_1$ and $n_3 \ge n_2$, $j(n) \ge c_1 f(n)$ and $k(n) \ge c_2 g(n)$ for all $n \ge n_3$. Multiplying both sides of these inequalities, we see that $j(n)k(n) \ge c_1 f(n)(c_2 g(n)) = (c_1 c_2) f(n) g(n)$ for all $n \ge n_3$.

Thus, there exist constants $c_3 = c_1c_2$ and $n_3 = \max\{n_1, n_2\}$ such that $j(n)k(n) \geq c_3f(n)g(n)$ for all $n \geq n_3$, so $j(n)k(n) = \Omega(f(n)g(n))$, by the definition of Big-Omega.

Big-Oh exercise 2

Prove that if $g(n) \neq O(1)$ and f(n) is positive everywhere, $f(n)g(n) \neq O(f(n))$.

Big-Oh exercise 2

Prove that if $g(n) \neq O(1)$ and f(n) is positive everywhere, $f(n)g(n) \neq O(f(n))$.

Proof. By the negation of the definition of Big-Oh, for any positive constants c and n_0 , there must exist some $n \ge n_0$ such that g(n) > c.

Let f(n) be a positive function, and consider f(n)g(n). If c and n_0 are constants, there is some $n \geq n_0$ such that g(n) > c. Since f(n) > 0, we can multiply both sides by f(n) and see that f(n)g(n) > cf(n), so $f(n)g(n) \neq O(f(n))$.

Summary: algorithm design

- Try to understand the problem
 - Solve small examples
- Apply algorithm design strategies
- **Strategy:** exhaustive search
 - Test all possibilities for the solution
 - Report the correct/best solution
 - Always works, often unacceptably slow
- **Strategy:** greedy algorithms
 - Applies to optimization (maximize, minimize, etc.)
 - Select the "best" possible element to add to the solution
 - Repeat until there are no more possible elements to add
 - Generally efficient, may not find optimum (incorrect)

Algorithm design exercise

- **Problem:** Graph coloring
 - Input: a graph network *G* and a coloring number *n*
 - Output: an assignment of colors (1..n) to the nodes of G such that no nodes connected by an edge are the same color, or "no such coloring" if none exists
 - **Example:** n = 3,

G:

• Possible solution:

- 1. Design a greedy algorithm that finds a graph coloring.
 - **Hint:** N(v) is the set of *neighbors* of v; i.e., the vertices joined to v by an edge

Algorithm design sample solution

```
Input: G = (V, E): a graph with vertices V and edges E
Input: n: the proposed coloring number of G
Output: A valid coloring of G that uses no more than n colors, or "No
         such coloring"
Algorithm: GreedyColoring
while some vertex of G is not yet colored do
   Let v be an uncolored vertex of G;
   for c = 1 to n do
      if no vertex of N(v) has color c then
          Assign color c to v;
          break;
      end
   end
   if v was not colored then
      return "No such coloring";
   end
end
return G;
```

Summary: algorithm analysis

- Identify loops and function calls
 - Everything else is O(1)
- For loops:
 - Estimate number of iterations
 - Incrementing by c: divide range by c to get iterations
 - Multiplying by c: take log_c of the end/start ratio
 - Estimate loop body running time
 - Might depend on iteration #
 - If iterations don't depend on i: # iterations * time per iteration
 - Otherwise: add up all iteration times (summation)
- For functions:
 - Analyze other functions separately
 - Recursive functions: set up a recurrence and solve
- Overall complexity: largest loop or function call complexity

Analysis exercise

Find the worst-case complexity for Bubble Sort:

```
Input:
data: an array of integers to sort
      the number of values in data
n:
Output: permutation of data such that data[1] \leq \ldots \leq data[n]
Pseudocode:
 repeat
     for i = 1 to n-1
      if data[i] > data[i+1]
        Swap data[i] and data[i+1]
      end
    end
 until for loop makes no swaps
 return data
```

Hint: After iteration k of the outer loop in Bubble Sort (line 1), the last k values will be the largest k values in the array, in sorted order.

Analysis exercise sample solution

• Bubble Sort is $O(n^2)$.

Proof. The inner loop (lines 2–6) iterates n times, and all operations inside the loop are O(1), for a total of O(n) time total.

Since the last k elements of the array are the k largest values, in order, after iteration k of the outer loop, the entire array must be sorted after at most n iterations. Since each iteration of the outer loop takes O(n) time, this is a total of $O(n^2)$. However, the array could be sorted in as few as one iteration of the loop, so this estimate could potentially be an overestimate.

We show that $O(n^2)$ is a tight upper bound by proving that Bubble Sort is $\Omega(n^2)$. Consider an array where the minimum value is the last value. Note that the min value is not moved until i is one less than its location in the inner **for** loop, and after it swaps the min with the previous value in the array, i is larger than its position, so it isn't swapped again. As such, the min element will only move left one position each iteration of the outer loop, so it will require a total of $n-1=\Omega(n)$ iterations until this element is in its correct position. Since each iteration takes $\Omega(n)$ time, Bubble Sort will take $\Omega(n^2)$ time total on this type of input, so its worst-case complexity is $\Theta(n^2)$.

Summary: solving recurrences

Linear nonhomogeneous recurrences with constant coefficients

$$T(n) = c_1 T(n-1) + c_2 T(n-2) + \ldots + c_k T(n-k) + f(n)$$

1. Write down the characteristic polynomial

$$c(x) = x^{k} - c_1 x^{k-1} - c_2 x^{k-2} - \dots - c_{k-1} x - c_k$$

- Degree = k (# of previous terms)
- First coefficient = 1
- Other coefficients are negation of coeff. from eqn, in decreasing order
- Don't forget o coefficients!
- 2. Find the roots of the characteristic polynomial
- 3. Write the general form of solution

$$T(n) = O(n^{m_1-1})r_1^n + \ldots + O(n^{m-1-1})r_k^n + O(n^m f(n))$$

- $r_1, ..., r_k$ are roots of char. poly.
- Add multiple of *n* for each additional root (multiple roots)
- Add $O(n^m f(n))$ to the end, where m is multiplicity of 1
- 4. Simplify

Recurrence exercise

- Identify the worst-case complexity of the PolyEval algorithm (below):
- **Algorithm:** PolyEval

```
Input:
d:    the degree of the polynomial to evaluate
coeff: the coefficients of the polynomial (largest to smallest)
x:    the point at which to evaluate the polynomial
Output: the value of f(x)
1    if d = 1
2        return coeff[1]
3    else
4        Let temp = PolyEval(d-1, coeff[1..d-1], x)
5        return x * temp + coeff[d]
6    end
```

Recurrence exercise sample solution

$$T(d) = \begin{cases} O(1), & \text{if } d = 0 \\ T(d-1) + O(1), & \text{if } d > 0 \text{ and we use pointers} \\ T(d-1) + O(n), & \text{if } d > 0 \text{ and we copy coeff} [1..d-1] \end{cases}$$

If d = 0, we will only execute the **if** condition and the **return** statement in line 2, for a total of O(1) time.

If d > 1, we will execute the **if** condition (O(1) time), calculate d - 1 (O(1)), calculate coeff[1..d-1] (depends), call PolyEval on coeff[1..d-1] (T(d-1)), then multiply by x, add coeff[d], and return (all O(1)). If we assume that we make a copy of coeff[1..d-1], this will take O(d) time, but if we just use pointers, this will just take O(1) time.

In the case we make a copy, T(d) = T(d-1) + O(d), as the cost to make the copy will dominate all of the constant-time instructions. However, if we just use pointers, all of the instructions other than the recursive call will be constant time, for a total of T(d) = T(d-1) + O(1).

Recurrence exercise sample solution

If we make a copy of the array, $T(n) = O(n^2)$. If we just use pointers, T(n) = O(n).

In the case we make a copy, T(d) = T(d-1) + O(d). The characteristic equation will be c(x) = x-1, which has a zero at r = 1. So, the general form of the solution will be $T(n) = O(1^n) + O(n^m f(n)) = O(1) + O(n^m f(n))$. Since 1 is a single root of the characteristic equation, m = 1, so $n^m f(n) = n^1 O(n) = O(n^2)$. Thus, $T(n) = O(1) + O(n^2) = O(n^2)$.

In the case we use pointers, T(d) = T(d-1) + O(1). The characteristic equation (and its zero) will be the same, so the general form of the solution will be $T(n) = O(1^n) + O(n^m f(n)) = O(1) + O(n^m f(n))$. Since 1 is a single root of the characteristic equation, m = 1, so $n^m f(n) = n^1 O(1) = O(n)$. Thus, T(n) = O(1) + O(n) = O(n).

Coming up

- Exam 1 will be Tuesday
 - Single-sided sheet of notes if you bring Feedback
 Form 1
 - Practice exam and sample solution posted
- Data structures after Exam 1