Name: Kevin Guillen Student ID: 1747199

Math 117 - SS2 - HW 1 - August 6th

[1] Confirm that the following form a group. Furthermore, determine which are Abelian.

(a) The cyclic group $\langle g \rangle = \{e, g, g^2, g^3, \dots, g^{n-1}\}$ of order n is defined to be the collection of powers of g under the restrictions that $g^n = e$ for $e = g^0$ representing the identity element and $g^i = g^j$ if and only if i = j.

Proof. Identity: For this e serves as the identity element, and we see that for any $g^j \in \langle g \rangle$ that

$$e + g^{j} = g^{0} + g^{j} = g^{0+j} = g^{j} = g^{j+0} = g^{j} + g^{0} = g^{j} + e^{j}$$

Inverses: We see for any $g^j \in \langle g \rangle$ there exists $g^{n-j} \in \langle g \rangle$ such that

$$g^{j} + g^{n-j} = g^{j+n-j} = g^{n} = e$$

Associativity: For any g^i, g^j , and $g^k \in \langle g \rangle$, we have,

$$g^{i} + (g^{j} + g^{k}) = g^{i} + g^{j+k} = g^{i+(j+k)} = g^{(i+j)+k} = g^{i+j} + g^{k} = (g^{i} + g^{j}) + g^{k}$$

Commutativity: For any $g^i, g^j \in \langle g \rangle$ we see

$$g^i + g^j = g^{i+j} = g^{j+i} = g^j + g^i$$

Therefore $\langle g \rangle$ is indeed a group and abelian.

(b) Let $S = \{a, b\}$ be a collection of two distinct symbols. The *free group* on two generators, denoted by Free(S), is defined to be the collection of all finite strings that can be formed from the four symbols a, a^{-1} , b, and b^{-1} such that no a appears directly next to an a^{-1} and no b appears directly next to a b^{-1} . This collection comes attached with the operation of concatenation of strings.

Proof. Identity: Since Free(S) is the collection of all finite strings that can be formed with elements in S. We can take string of length 0 to be our identity e. From here we see for any string $\overline{w} \in \text{Free}(S)$,

$$e + \overline{w} = \overline{w} = \overline{w} + e$$
.

Associativity: Let \overline{w} , \overline{v} , and \overline{z} be arbitrary strings from Free(\mathcal{S}), we can see,

$$\overline{w} + (\overline{v} + \overline{z}) = \overline{w} + \overline{v}\overline{z} = \overline{w}\overline{v}\overline{z} = \overline{w}\overline{v} + \overline{z} = (\overline{w} + \overline{v}) + \overline{z}$$

Inverses: Let \overline{w} be a string from Free(\mathcal{S}). The inverse of \overline{w} will simply be the inverse of each character $(a \to a^{-1})$ in reverse order.

 \overline{w} is composed of characters, we can write it out as

$$\overline{w} = w_0 w_1 \dots w_n.$$

Meaning the inverse of \overline{w} will be of the form

$$w_n^{-1}w_{n-1}^{-1}\dots w_0^{-1}$$
.

Thus,

$$\overline{w} + \overline{w}^{-1} = w_0 w_1 \dots w_n + w_n^{-1} w_{n-1}^{-1} \dots w_0^{-1}$$

$$= w_0 w_1 \dots w_n w_n^{-1} w_{n-1}^{-1} \dots w_0^{-1}$$

$$= w_0 w_1 \dots w_{n-1} w_{n-1}^{-1} \dots w_0^{-1}$$

$$\vdots$$

$$= w_0 w_0^{-1}$$

$$= e$$

We know this inverse exists since $\text{Free}(\mathcal{S})$ is the collection of all finite strings from \mathcal{S}

- [2] Confirm that the following form a field.
 - (a) Let $\mathbb{Z}/p\mathbb{Z}$ for p a prime represent the collection of equivalence classes formed out of the equivalence relation on \mathbb{Z} where $n \sim m$ if $n \equiv m \pmod{p}$. Addition and multiplication are defined by:

$$[n] + [m] = [n + m]$$
 and $[n] \cdot [m] = [n \cdot m]$

You may assume that \mathbb{Z} has all the standard properties such as associativity, commutativity, etc...

(b) Consider the collection $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \in \mathbb{R} \mid a, b \in \mathbb{Q}\}$ that comes attached with the binary operations:

$$(a_1 + b_1\sqrt{2}) + (a_2 + b_2\sqrt{2}) = (a_1 + a_2) + (b_1 + b_2)\sqrt{2}$$
$$(a_1 + b_1\sqrt{2}) \cdot (a_2 + b_2\sqrt{2}) = (a_1a_2 + 2b_1b_2) + (a_1b_2 + a_2b_1)\sqrt{2}$$

You may assume that \mathbb{Q} has all of the standard properties of a field.

- [3] The fact that $\mathbb{Z}/p\mathbb{Z}$ (where p is a prime) is a field shows that not quite all the laws of elementary arithmetic hold in fields; in $\mathbb{Z}/2\mathbb{Z}$, for instance, 1+1=0. Prove that if \mathbb{F} is a field, then either the result of repeatedly adding 1 to itself is always different from 0, or else the first time that it is equal to 0 occurs when the number of summands is a prime. (The *characteristic* of the field \mathbb{F} , denoted by $char(\mathbb{F})$, is defined to be 0 in the first case and the crucial prime in the second.)
- [4] Let $\mathbb{R}^2 = \{(x, y) \mid x, y \in \mathbb{R}\}.$

(a) If addition and multiplication are defined by:

$$(x,y) + (z,w) = (x+z, y+w)$$
 and $(x,y) \cdot (z,w) = (x \cdot z, y \cdot w)$

does \mathbb{R}^2 become a field?

(b) If addition and multiplication are defined by:

$$(x,y)+(z,w)=(x+z,y+w)$$
 and $(x,y)\cdot(z,w)=(x\cdot z-y\cdot w,x\cdot w+y\cdot z)$

is \mathbb{R}^2 a field then?

- [5] Show that for any field \mathbb{F} the set $\mathbb{F}^n = \{(x_1, \ldots, x_n) \mid x_1, \ldots, x_n \in \mathbb{F}\}$ forms a vector space over the field \mathbb{F} where addition of vectors is taken componentwise. If $\mathbb{F} = \mathbb{Z}/p\mathbb{Z}$ for p a prime, how many vectors are there in \mathbb{F}^n ?
- [6] Consider the \mathbb{C} -vector space \mathbb{C}^3 . For each of the following determine whether the subsets form a vector subspace:
 - (a) $U_1 = \{(z_1, z_2, z_3) \in \mathbb{C}^3 \mid z_1 \in \mathbb{R}\}$
 - (b) $U_2 = \{(z_1, z_2, z_3) \in \mathbb{C}^3 \mid z_1 = 0\}$
 - (c) $U_3 = \{(z_1, z_2, z_3) \in \mathbb{C}^3 \mid z_1 = 0 \text{ or } z_2 = 0\}$
 - (d) $U_4 = \{(z_1, z_2, z_3) \in \mathbb{C}^3 \mid z_1 + z_2 = 0\}$
 - (e) $U_5 = \{(z_1, z_2, z_3) \in \mathbb{C}^3 \mid z_1 + z_2 = 1\}$
- [7] (a) Under what conditions on the scalar $\xi \in \mathbb{C}$ are the vectors $(1+\xi, 1-\xi)$ and $(1-\xi, 1+\xi)$ in \mathbb{C}^2 (over the field \mathbb{C}) linearly dependent?
 - (b) Under what conditions on the scalar $\xi \in \mathbb{R}$ are the vectors $(\xi, 1, 0)$, $(1, \xi, 1)$, and $(0, 1, \xi)$ in \mathbb{R}^3 (over the field \mathbb{R}) linearly dependent?
 - (c) What is the answer for (b) for \mathbb{Q}^3 (over the field \mathbb{Q}) in place of \mathbb{R}^3 (over the field \mathbb{R}).
- [8] For any field \mathbb{F} let $\mathbb{F}[x] = \{a_0 + a_1x + \cdots + a_nx^n \mid a_0, a_1, \dots, a_n \in \mathbb{F}\}$ where $x^i = x^j$ if and only if i = j.
 - (a) If the addition of polynomials is given by the standard procedure of combining like powers of x show that $\mathbb{F}[x]$ forms a vector space over \mathbb{F} .
 - (b) A polynomial $p(x) \in \mathbb{F}[x]$ is called *even* if p(-x) = p(x) and *odd* if p(-x) = -p(x) identically in x. Let \mathcal{E} and \mathcal{O} represent the subsets of $\mathbb{F}[x]$ that consist of strictly even and odd polynomials, respectively. Show that \mathcal{E} and \mathcal{O} form vector subspaces of $\mathbb{F}[x]$.
 - (c) Show that $\mathbb{F}[x] = \mathcal{E} \oplus \mathcal{O}$. You may assume that $\operatorname{char}(\mathbb{F}) \neq 2$.

- [9] (a) Show that if both U and W are three-dimensional vector subspaces of a five-dimensional \mathbb{F} -vector space V, then U and W are not disjoint.
 - (b) Show that if U and W are finite-dimensional vector subspaces of a \mathbb{F} -vector space V, then:

$$\dim(U) + \dim(W) = \dim(U + W) - \dim(U \cap W)$$

This is the analogue of the *Inclusion-Exclusion Principle* for sets adapted to vector spaces. In a certain sense the dimension for vector spaces plays the same role cardinality has with respect to sets.

[10] Let V be a finite-dimensional \mathbb{F} -vector space with dual V^* . If $y \in V^*$ is non-zero and $\alpha \in \mathbb{F}$ is arbitrary, does there necessarily exist a vector $x \in V$ such that $[x,y] = \alpha$, or equivalently $y(x) = \alpha$?