

Pressure, Temperature, and Recession Measurements in Extreme Environments

Robert S. Okojie, Ph.D

Smart Sensing and Electronic Systems Branch
Communications and Intelligent Systems Division
NASA Glenn Research Center
Cleveland, OH

Ph: (216)433-6522; robert.s.Okojie@nasa.gov

4" SiC wafer with pressure sensors

Swagelok assembled SiC Sensors

Through bore assembled SiC Sensors

NPT assembled SiC Sensors

Recession sensors

Outline

- **Application Drivers**
- Why SiC for High Temperature Sensing?
- **Technical/Technological Challenges**
- **SiC Pressure Sensor Characterization**
- **Field Validation**
- **Recession Sensor Characterization**
- **Conclusion**

Application Drivers

Turbine Engines

- Thermoacoustic instabilities
- Active combustion control
- Exhaust noise emission

Mode Transition Unstart

<u>Venus</u>

- 460 C
- Aggressive chemistry
- Atmospheric pressure (93 Earth atm.)

Recession sensors for Thermal Protection Systems

Pressure pulse/shock quantification

Pulse detonation engine

Instrumentation for Advanced Micro Nuclear Reactors

- The Earth is hot. At depths of 6 to 8Km temperatures exceed 200C
- Geothermal tools require electronics to operate from 140 325C
- The heat is mined by water flow from injectors to the producer via hydraulic enhanced fractures in the rock.

Properties	SiC	Si	Diamond	GaN
Energy gap (eV)	2.3 (3C-SiC) to 3.4 (2H-SiC)	1.12	5.5	3.4
Breakdown voltage (V/cm)	4×10^6	$3 \text{ to } 6 \times 10^5$	10×10^6	3×10^6
Electron mobility (cm ² /Vs)	1000	1500	2200	900
Hole mobility (cm ² /Vs)	40 to 100	100 to 500	1600	150
Young's modulus (GPa)	300 to 500	130 to 180	1000	200 to 300
Melting point (°C)	2830*	1410	1400**	2400
Thermal conductivity (Wcm ⁻¹ K ⁻¹)	5	1.5	20	1.3
Chemical Inertness	Excellent	Poor	Good but burn	Good
MEMS compatibility	Good	Excellent	Poor	Fair
Availability/Cost	Fair to good	<u>Excellent</u>	<u>Poor</u>	<u>Fair</u>

Piezoresistive Sensors in Common Semiconductors

Stable metal contacts and packaging become more challenging

Hoang-Phuong Phan et al., "The Piezoresistive Effect of SiC for MEMS Sensors at High Temperatures: A Review," JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 24, NO. 6, DECEMBER 2015.

Technological Challenges

- Thermomechanical induced stress in package
- Reaction kinetics at contact metallization to device

Failure mechanisms:

- Cracking due to CTE mismatch;
- Die attach delamination;
- Wire bond weakening/detaching due to:
 - inter-metallic diffusion;
 - low temperature eutectic formation;
 - vibration-driven fatigue;
- Unstable electrical contact resistance.

Electrical and Mechanical Failure

Sensor chip inside

Integrated Pressure/Temperature Sensor for 800 °C Operation

Integrated Pressure/Temp Sensors at 800 °C without Cooling

Accurate Pressure/Temp Relationship, Real-time Temperature Compensation and Voltage-Pressure Conversion.

Full-bandwidth Capture of Pressure Transient due to Direct Interaction with Flow-Field at High Temperature.

Unique Characteristic: No wire bond Direct Chip Attach

SiC Pressure Sensor Operation at 800 °C

Temperature Sensors

Pressure Sensor

Thermal Cycling Characteristics

Okojie et al., The International Conference on Solid-State Sensors, Actuators and MicrosystemsTransducers 2019 - EUROSENSORS XXXIII Berlin, GERMANY, 23-27 June 2019

- Rise-time spikes due to oven over temperature excursion
- Temperature sensor requires further burn-in to stabilize

Brief time history of the static SiC and dynamic piezoceramic pressure sensors in response to 100 Hz pressure modulation. Gain=100; Excitation voltage=10 V.

Equivalent $\Delta p = (Dynamic Output/Gain)/[Pressure Sensitivity (T)*Input Voltage]$ Δp (Avg)~1.88 psi

Okojie et al., International Conference on High Temperature Electronics (HiTEC), May 13-15, 2014, Albuquerque, NM USA

Dynamic Characterization-Frequency Domain

Amplitude magnitude response of the static SiC pressure sensor and the water-cooled dynamic piezoceramic pressure sensor at 100 Hz pressure modulation.

Okojie et al., International Conference on High Temperature Electronics (HiTEC), May 13-15, 2014, Albuquerque, NM USA

Field Validation: Combustor Rig Test

PCB dynamic pressure transducers mounted on semi-infinite line

Flush mounted SiC dynamic pressure transducer

Field Validation: Combustor Rig Test-1

Amplitude magnitude (left column) and brief time history (right column) for the piezoelectric pressure transducer and the SiC pressure transducer shows the detection of thermo-acoustic instability at 310 Hz by both devices.

The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, June 5-9, 2005

Field Validation: Combustor Rig Tests 2 and 3

Okojie et al., International Conference on High Temperature Electronics (HiTEC), May 13-15, 2014, Albuquerque, NM USA

Jet Engine Test: Flush-Mounted Versus Infinite Tube Probe

Core exhaust nozzle of NASA DGEN experimental engine showing circumferentially placed pressure ports with open ITP hole terminations, b) flush-mounted SiC pressure sensor between two open ITP holes, and c) benchmark pressure sensors attached to ITPs external to the engine.

Flush-Mounted Versus Infinite Tube Probe (Engine Test Results)

Good agreement between flush-mounted SiC pressure sensors and ITP-mounted commercial pressure sensor.

Test in Simulated Venus Environment

NASA GRC Extreme Environment Rig (GEER)

Temperature: 460 C Pressure: 1356 psia

Chemistry: "Venus atmosphere" 96.5% CO2, 3.5% N2, 180 ppm SO2, 12 ppm CO, 51 ppm OCS, 2 ppm H2S, 0.5 ppm HCl, 2.5 ppb

HF Range: SO2 concentration range 100-200 ppm

SiC Pressure Sensor Venus Life in GEER

- Sensor reliably operational for ~12 earth days
- Sensor survived 60 earth days
- No mechanical damage
- Reaction chemistry on exposed wires caused failure

Minimally Intrusive Integrated Recession and Temperature Sensors

- Batch fabrication provides uniform measurement
- Speeds up production
- Reduces costs and reduces human error during sensor placement.

- Minimally intrusive insertion into the TPS heatshield.
- Large area distribution of sensors leads to improved health monitoring due to high fidelity.
- Eliminates need for plugs and inserted directly into the heatshield fore body at point of TPS manufacture.

Provides real-time monitoring recession due to ablation, attrition, wear, etc.

Recession Sensor Test Results

Voltage output converted to corresponding material loss

Conclusion

- Successfully developed SiC piezoresistive pressure sensors capable of operating up to 600 °C for hundreds of hours, and short duration
- The successful development was the result of years of efforts to overcome the problems of
 - increasing voltage offset drifts with increasing temperature that renders sensors useless.
 - Thermo-mechanically induced failures due to the earlier application of conventional packaging
- Thermally stable ohmic contacts to SiC resulted in solving the drift problem
- Introduction of MEMS DCA packaging solved the thermo-mechanical failures
- Because of this work, it is now possible to apply the SiC pressure sensors for longer duration engine ground tests and potential short duration flight tests in high temperature regimes.
- First generation capacitive recession sensors demonstrated.
- Applications include real time monitoring of ablation, abrasion, attrition, and wear.

