Introduction to Database Systems CSE 414

Lecture 10: Relational Algebra

CSE 414 - Spring 2018

Recap: Datalog

- · Facts and Rules
- · Selection, projection, join
- Recursive rules
- · Grouping, aggregates
- Negation
- · Safe vs unsafe rules
- Stratification

CSE 414 - Spring 2018

Class Overview

- · Unit 1: Intro
- Unit 2: Relational Data Models and Query Languages
 Data models, SQL, Datalog, Relational Algebra
- Unit 3: Non-relational data
- Unit 4: RDMBS internals and guery optimization
- Unit 5: Parallel query processing
- · Unit 6: DBMS usability, conceptual design
- Unit 7: Transactions

CSE 414 - Spring 2018

Relational Algebra

- Set-based algebra that manipulates relations
 - We will extend it to multisets / bags
- In SQL & Datalog we say what we want
- In RA we can express how to get it
- Every DBMS implementations converts a SQL query to RA in order to execute it
- An RA expression is called a *query plan*

CSE 414 - Spring 2018

Why study *yet* another relational query language?

- RA is how SQL is implemented in DBMS
 - We will see more of this in a few weeks
- RA opens up opportunities for *query* optimization

CSE 414 - Spring 2018

Basics

- · Relations and attributes
- · Functions that are applied to relations
 - Return relations
 - Can be composed together
 - Often displayed using a tree rather than linearly
 - Use Greek symbols: σ , π , δ , etc

CSE 414 - Spring 2018

ing 2018

What about Intersection?

· Derived operator using minus

$$R1 \cap R2 = R1 - (R1 - R2)$$

• Derived using join (as we will see later)

CSE 414 - Spring 2018

Selection

· Returns all tuples which satisfy a condition

$$\sigma_{\rm c}(R)$$

- Examples
 - $-\sigma_{\text{Salary} > 40000}$ (Employee)
 - $-\sigma_{\text{name = "Smith"}}$ (Employee)
- The condition c can be =, <, <=, >, >=, <> combined with AND, OR, NOT

CSE 414 - Spring 2018

10

SSN	Name	Salary
1234545	John	20000
5423341	Smith	60000
4352342	Fred	50000
	1234545 5423341	1234545 John 5423341 Smith

SSN	Name	Salary
5423341	Smith	60000
4352342	Fred	50000

CSE 414 - Spring 2018

Projection

· Eliminates columns

 $\pi_{A1,...,An}(R)$

- Example: project social-security number and names:
 - π_{SSN, Name} (Employee) → Answer(SSN, Name)

Different semantics over sets or bags! Why?

Cartesian Product

• Each tuple in R1 with each tuple in R2

R1 × R2

· Rare in practice; mainly used to express joins

CSE 414 - Spring 2018

Renaming

· Changes the schema, not the instance

 $\rho_{B1,...,Bn}$ (R)

- Example:
 - Given Employee(Name, SSN)
 - $-\rho_{N, S}(Employee) \rightarrow Answer(N, S)$

CSE 414 - Spring 2018

Natural Join

R1 ⋈ R2

- Meaning: R1 \bowtie R2 = $\Pi_A(\sigma_\theta(R1 \times R2))$
- · Where:
 - Selection σ_θ checks equality of all common attributes (i.e., attributes with same names)
 - Projection Π_A eliminates duplicate common attributes

CSE 414 - Spring 2018

Spring 2018

Natural Join

- Given schemas R(A, B(C)D), S(A(C)E), what is the schema of R ⋈ S?
- Given R(A, B, C), S(D, E), what is R ⋈ S?
- Given R(A, B), S(A, B), what is $R \bowtie S$?

CSE 414 - Spring 2018

21

AnonPatient (age, zip, disease) Voters (name, age, zip)

Theta Join

· A join that involves a predicate

$$|R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 X R2)|$$

- Here θ can be any condition
- · No projection in this case!
- For our voters/patients example:

P M P.zip = V.zip and P.age >= V.age -1 and P.age <= V.age +1 V

22

Equijoin

- A theta join where $\boldsymbol{\theta}$ is an equality predicate

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

- By far the most used variant of join in practice
- · What is the relationship with natural join?

CSE 414 - Spring 2018

23

Equijoin Example

AnonPatient P

| age | zip | disease |
| 54 | 98125 | heart |
| 20 | 98120 | flu

١	Voters V							
	name	age	zip					
	p1	54	98125					
	p2	20	98120					

 $P \bowtie_{P.age=V.age} V$

P.age	P.zip	P.disease	V.name	V.age	V.zip
54	98125	heart	p1	54	98125
20	98120	flu	p2	20	98120

CSE 414 - Spring 2018

24

Join Summary

- Theta-join: $R \bowtie_{\theta} S = \sigma_{\theta} (R \times S)$
 - Join of R and S with a join condition θ
 - Cross-product followed by selection θ
 - No projection
- Equijoin: $R \bowtie_{\theta} S = \sigma_{\theta} (R \times S)$
 - Join condition $\boldsymbol{\theta}$ consists only of equalities
 - No projection
- Natural join: $R \bowtie S = \pi_A (\sigma_\theta (R \times S))$
 - Equality on all fields with same name in R and in S
 - Projection $\boldsymbol{\pi}_{A}$ drops all redundant attributes

CSE 414 - Spring 2018

So Which Join Is It?

When we write R M S we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context

CSE 414 - Spring 2018

26

More Joins

- Outer join
 - Include tuples with no matches in the output
 - Use NULL values for missing attributes
 - Does not eliminate duplicate columns
- Variants
 - Left outer join
 - Right outer join
 - Full outer join

CSE 414 - Spring 2018

Outer Join Example AnonPatient P AnnonJob J disease zip age job 98125 heart lawyer 54 98125 20 98120 flu 20 98120 cashier 33 98120 lung P.diseas J.job J.age J.zip 98125 54 54 heart lawyer P =× J 20

98125 98120 cashier 20 98120 33 98120 lung null null null

CSE 414 - Spring 2018