Anosov Diffeomorphisms on Tori (Summer 2022, Yi Shi)

Ajorda Jiao

Contents

6	Exercises	7
5	July 28	7
4	July 26	7
3	July 23	6
2	July 21	3
1	July 19	1

§1 July 19

Basic settings

- ullet M a closed Riemannian manifold.
- $f:M\to M$ a diffeomorphism.
- $\operatorname{Diff}^r(M) := \{C^r \text{-diffeomorphisms on } M\}$, equipped with the $C^r \text{-topology}$

$$d_{C^r}(f,g) \coloneqq \sup_{x \in M} \left\{ d(f(x),g(x)), d(\mathrm{D}f(x),\mathrm{D}g(x)), \cdots, d(\mathrm{D}^r f(x),\mathrm{D}^r g(x)) \right\}.$$

Definition 1.1. We say $f \in \mathrm{Diff}^r(M)$ is an **Anosov diffeomorphism**, if there exists a continuous Df-invariant splitting $TM = E^s \oplus E^u$ and constants $C \geqslant 1, 0 < \lambda < 1$ such that

(i)
$$\|Df^n|_{E^s(x)}\| \leqslant C\lambda^n, \forall x \in M, \forall n \geqslant 0.$$

(ii)
$$\left\| \mathbf{D} f^{-n} \right|_{E^u(x)} \| \leqslant C \lambda^n, \forall x \in M, \forall n \geqslant 0.$$

Remark 1.2 — $\mathrm{D}f$ is uniformly contracting on E^s , uniformly expanding on E^u .

Remark 1.3 — E^s , E^u are two continuous plane fields on M.

1 July 19 Ajorda's Notes

Example 1.4

 $A=\left[egin{smallmatrix}2&1\\1&1\end{smallmatrix}
ight]$ acts on $\mathbb{T}^2=\mathbb{R}^2/\mathbb{Z}^2$ linearly. Then A is an Anosov diffeomorphism.

Example 1.5

Similarly, $A \in \mathrm{GL}(d,\mathbb{Z})$ has no eigenvalues with modules 1, then $A: \mathbb{T}^d \to \mathbb{T}^d$ is Anosov.

For every C^r -Anosov diffeomorphisms, E^s, E^u are Hölder continuous. But in general, E^s and E^u are not differentiable.

We also concern about if E^s and E^u are integrable. The answer is given by the famous **Stable Manifold Theorem**. It says that both E^s and E^u are locally uniquely integrable, i.e. for every $x \in M$, there exists an immersed C^r -smooth submanifold $\mathscr{F}^s(x)$ such that

(i) $x \in \mathscr{F}^s(x)$ and $\mathscr{F}^s(x)$ is tangent to E^s everywhere, i.e.

$$T_u \mathscr{F}^s(x) = E^s(y), \quad \forall y \in \mathscr{F}^s(x).$$

(ii) For every local curve γ containing x and tangent to E^s everywhere, then $\gamma \subset \mathscr{F}^s(x)$.

Theorem 1.6 (Stable Manifold Theorem)

There exists two family of continuous foliations \mathscr{F}^s and \mathscr{F}^u with C^r -leaves tangent to E^s and E^u respectively.

Remark 1.7 — If \mathscr{F}^s has dimension 1, then every leaf $\mathscr{F}^s(x)$ is diffeomorphic to \mathbb{R} . (no leaf is \mathbb{S}^1) The intuitive is that if a leaf $\Gamma \cong \mathbb{S}^1$, then $\operatorname{diam}(f^k(\Gamma)) \to 0$. Then the orientations of E^s on $f^k(\Gamma)$ will contradict with the uniformly continuous of E^s .

Fact 1.8. \mathbb{T}^2 is the only 2-dimensional manifold that supports an Anosov diffeomorphism.

Foliations

Let M be an m-dimensional C^{∞} closed Riemannian manifold.

Definition 1.9. A C^r foliation of dimension n is a C^r -atlas \mathscr{F} on M which is maximal satisfying

- (i) For every $(U,\varphi)\in \mathscr{F},\,U\subset M$ is an open subset such that $\varphi(U)=U_1\times U_2\subset \mathbb{R}^n\times\mathbb{R}^{m-n}$ where U_1,U_2 are open disks in \mathbb{R}^n and \mathbb{R}^{m-n} .
- (ii) For every $(U, \varphi), (V, \psi) \in \mathscr{F}$ such that $U \cap V \neq \varnothing$, then $\psi \circ \phi^{-1} : \varphi(U \cap V) \to \psi(U \cap V)$ has the form $\psi \circ \phi^{-1}(x, y) = (h_1(x, y), h_2(y))$.

We say M is **foliated** by \mathscr{F} .

Remark 1.10 — Stable foliation of an Anosov diffeomorphism is a C^0 -foliation with C^r -leaves. That is, for every $(U,\varphi)\in\mathscr{F}$, write

$$\varphi: U \to \mathbb{R}^n \times \mathbb{R}^{m-n}, \quad x \mapsto (\varphi_1(x), \varphi_2(x)),$$

2 July 21 Ajorda's Notes

then φ_1 is C^r -smooth but φ_2 is only C^0 -continuous.

The space of Anosov diffeomorphisms

Claim 1.11. If $f: M \to M$ is Anosov, then there exists a C^1 -neighborhood \mathcal{U} of f in $\mathrm{Diff}^1(M)$ such that $\forall g \in \mathcal{U}$ is Anosov. That is, the space of Anosov diffeomorphisms is open in $\mathrm{Diff}^r(M)$.

Proof. Cone Arguments. Take $\gamma \in (0,1)$, denote

$$\mathscr{C}^{u}_{\gamma}(x) := \left\{ v \in T_{x}M : v = v^{s} + v^{u} \in E^{s}(x) \oplus E^{u}(x), \|v^{s}\| \leqslant \gamma \|v^{u}\| \right\},\,$$

 $\mathscr{C}^u_\gamma=\bigcup_{x\in M}\mathscr{C}^u_\gamma(x).$ Similarly, we can define $\mathscr{C}^s_\gamma(x)$ and $\mathscr{C}^s_\gamma.$ For γ small enough, there exists $\lambda\in(0,1)$ such that

$$\mathrm{D}f(\mathscr{C}^u_{\gamma}) \subset \mathscr{C}^u_{\lambda\gamma}, \quad \mathrm{D}f^{-1}(\mathscr{C}^s_{\gamma}) \subset \mathscr{C}^s_{\lambda\gamma}.$$

Besides, $\mathrm{D}f$ expands vectors in \mathscr{C}^u_γ and $\mathrm{D}f^{-1}$ expands vectors in \mathscr{C}^s_γ . This is a robust property. Then for g which is C^1 -closed to f, we have

$$\mathrm{D}g(\mathscr{C}^u_{\gamma}) \subset \mathscr{C}^u_{\sqrt{\lambda}\gamma}, \quad \mathrm{D}g^{-1}(\mathscr{C}^s_{\gamma}) \subset \mathscr{C}^s_{\sqrt{\lambda}\gamma},$$

 $\mathrm{D}g$ expands vectors in \mathscr{C}^u_γ and $\mathrm{D}g^{-1}$ expands vectors in \mathscr{C}^s_γ . Take

$$E_g^u(x) = \bigcap_{n \geqslant 0} g^{-n}(\mathscr{C}_\gamma^u(g^n x)), \quad E_g^s(x) = \bigcap_{n \geqslant 0} g^n(\mathscr{C}_\gamma^s(g^{-n} x)),$$

which is an Anosov splitting.

A question is whether our examples on tori are special. But up to now, all known Anosov diffeomorphisms are supported on infra-nilmanifolds.

Open problems

- 1. Are there Anosov diffeomorphisms not supported on infra-nilmanifolds?
 - · All expanding maps are supported on infra-nilmanifold.
- 2. Are there Anosov diffeomorphisms on simply connected manifolds?
 - Gogolev, etc. Acta Math, 2015. They constructed a partially hyperbolic diffeomorphism on simply connected 6-manifolds.
 - $\mathbb{S}^3 \times \mathbb{S}^3$ has Anosov diffeomorphisms or not?
- 3. Is every Anosov diffeomorphism transitive?
 - Yes on infra-nilmanifolds, but don't know on other manifolds.

The answer of these problems are unknown on even 4-dimensional manifolds.

§2 July 21

Let $f:M\to M$ be an Anosov diffeomorphism. TM admits a splitting $E^s\oplus E^u$ with parameters (C_0,λ_0) ,

- $\|\mathrm{D}f^n|_{E^s(x)}\| \leqslant C_0\lambda_0^n, \forall x \in M, \forall n \geqslant 0.$
- $\|\mathrm{D}f^{-n}|_{E^u(x)}\| \leqslant C_0\lambda_0^n, \forall x \in M, \forall n \geqslant 0.$

2 July 21 Ajorda's Notes

Theorem 2.1 (Anosov Closing Lemma)

There exists $\delta_0>0, C>0, \lambda\in(\lambda_0,1)$ such that if $d(x,f^kx)<\delta_0$, then there exists $p\in \operatorname{Per}(f)$ such that

- (i) $f^k p = p$.
- (ii) $d(f^i(p), f^i(x)) \leqslant C\lambda^{\min\{i,k-i\}} d(x, f^k x), \forall 0 \leqslant i \leqslant k.$

Remark 2.2 — λ can be chose arbitrarily closed to λ_0 , but $\delta_0 \to 0$ when $\lambda \to \lambda_0^+$.

Notation 2.3. Denote $\Omega(f)$ be the set of non-wandering points of f.

Corollary 2.4

If f is Anosov, then $\Omega(f) = \overline{\operatorname{Per}(f)}$. In particular, if f is transitive, then $\overline{\operatorname{Per}(f)} = M$.

Definition 2.5. Let $f:M\to M$ be a diffeomorphism. For every continuous function $\varphi:M\to\mathbb{R}$, we say φ is a **coboundary** if $\exists \psi:M\to\mathbb{R}$ continuous such that

$$\varphi(x) = \psi \circ f(x) - \psi(x), \quad \forall x \in M.$$

[Can also read T.Tao's blog Cohomology for dynamical systems for reference.]

A Necessary condition for a coboundary: for every k-periodic point $p, \sum_{i=0}^{k-1} \varphi(f^i p) = 0$. Moreover, if μ is an f-invariant ergodic measure, then we take a generic point x, we have

$$\int \varphi d\mu = \lim_{k \to \infty} \frac{1}{k} [\psi(f^k(x)) - \psi(x)] = 0.$$

Theorem 2.6 (Livsic)

Let $f:M\to M$ be a C^1 transitive Anosov diffeomorphism. Let $\varphi:M\to\mathbb{R}$ be a Hölder continuous function such that for every $p\in \operatorname{Per}(f)$ with $f^kp=p$, it satisfies

$$\sum_{i=1}^{k-1} \varphi(f^i p) = 0.$$

Then $\exists \psi: M \to \mathbb{R}$ a Hölder continuous function such that $\varphi = \psi \circ f - \psi$.

Remark 2.7 — If φ is α -Hölder continuous for some $\alpha \in (0,1]$, then ψ is also α -Hölder.

Remark 2.8 — ψ is unique up to a constant.

Proof. Because f is transitive, there exists an $x_0 \in M$ such that $\overline{\operatorname{Orb}^+(x_0)} = M$. Fix $\varphi(x_0) \in \mathbb{R}$, define

$$\psi(f^n x_0) = \psi(x_0) + \sum_{i=0}^{n-1} \varphi(f^i x_0).$$

This is unique candidate for solving the cohomologous function.

2 July 21 Ajorda's Notes

Claim 2.9. ψ is α -Hölder continuous on $\operatorname{Orb}^+(x_0)$, that is, there exists $K_0 > 0$ such that

$$|\psi(f^n x_0) - \psi(f^m x_0)| \leq K_0 \cdot d(f^n x_0, f^m x_0)^{\alpha}.$$

Proof. φ is α -Hölder, $|\varphi(x_1)-\varphi(x_2)|\leqslant K\cdot d(x_1,x_2)^{\alpha}$. By Anosov closing lemma, $\exists \delta_0>0, C>1, \lambda\in(0,1)$ such that if $d(f^nx_0,f^mx_0)<\delta_0, 0< n< m$, then there exists $p\in\operatorname{Per}(f), f^{m-n}(p)=p$ and

$$d(f^{n+i}x_0, f^{n+i}p) \le C \cdot \lambda^{\min\{i, m-n-i\}} d(f^n x_0, f^m x_0).$$

Then we have an estimate

$$|\psi(f^{n}x_{0}) - \psi(f^{m}x_{0})| = \left| \sum_{i=0}^{m-n-1} \varphi(f^{n+i}x_{0}) \right|$$

$$= \left| \sum_{i=0}^{m-n-1} (\varphi(f^{n+i}x_{0}) - \varphi(f^{n+i}p)) + \sum_{i=0}^{m-n-1} \varphi(f^{n+i}p) \right|$$

$$\leq \sum_{i=0}^{m-n-1} K \cdot d(f^{n+i}x_{0}, f^{n+i}p)^{\alpha} \leq 2KC^{\alpha} \cdot d(f^{n}x_{0}, f^{m}x_{0})^{\alpha} \sum_{i=0}^{m-n-1} \lambda^{\alpha i}$$

$$\leq \frac{2KC^{\alpha}}{1 - \lambda^{\alpha}} \cdot d(f^{n}x_{0}, f^{m}x_{0})^{\alpha}.$$

Then we can extend ψ uniquely to a α -continuous function on $M = \overline{\operatorname{Orb}^+(x_0)}$.

Remark 2.10 — If $f:M\to M$ is a C^∞ -Anosov diffeomorphism and φ is C^∞ , then ψ is C^∞ . Moreover, if φ is C^r , then ψ is $C^{r-\varepsilon}$ for every $\varepsilon>0$. [Applying Journé theorem.]

Remark 2.11 — A more general setting: α -Hölder continuous linear cocycle over Anosov diffeomorphism f. [Non-abelian Livsic Theorem.]

Shadowing lemma

Definition 2.12. Let $f: M \to M$ be a diffeomorphism, $\delta > 0$. We say $\{x_n\}_{n \in \mathbb{Z}} \subset M$ is a δ -pseudo-orbit if for every $n \in \mathbb{Z}$, $d(fx_n, x_{n+1}) < \delta$.

Theorem 2.13 (Anosov Shadowing Lemma)

Let $f:M\to M$ be an Anosov diffeomorphism. There exists $\delta_0>0$ and $L_0>0$ such that for every $\delta\leqslant\delta_0$ and every δ -pseudo-orbit $\{x_n\}_{n\in\mathbb{Z}}$, there exists a unique point $z\in M$ such that $d(f^nz,x_n)< L_0\cdot\delta$.

Remark 2.14 — For every pair of δ -pseudo-orbit $\{x_n\}$, $\{y_n\}$, $K = \dim M$, define

$$d^{0}(\{x_{n}\},\{y_{n}\}) = \sum_{n \in \mathbb{Z}} \frac{d(x_{n},y_{n})}{(K+1)^{n}} < \infty.$$

Denote z_x,z_y be the points shadowing $\{x_n\}$, $\{y_n\}$, respectively. Then $d(z_x,z_y) o 0$ as

3 July 23 Ajorda's Notes

 $d^{0}(\{x_{n}\},\{y_{n}\}) \rightarrow 0$. This is the continuity of shadowing.

Remark 2.15 — By the uniqueness of shadowing point, we can deduce the closing lemma by the shadowing lemma.

§3 July 23

Corollary 3.1

Every Anosov diffeomorphism $f:M\to M$ is structurally stable, i.e. there exists a C^1 -neighborhood $\mathcal{U}\subset \mathrm{Diff}^1(M)$ of f such that for every $g\in\mathcal{U}$, there exists a homeomorphism $h:M\to M$ which is C^0 -close to Id such that $h\circ g=f\circ h$.

Proof. Let $TM=E_f^s\oplus E_f^u=E_g^s\oplus E_g^u$ be the Anosov splitting with respect to f,g, respectively, with a same hyperbolic constant (C,λ) . Take the neighborhood sufficiently small such that $\{g^nx\}$ is a $\frac{1}{2}\delta_0$ -pseudo-orbit of f. There exists a unique h(x) such that $\{f^n(hx)\}$ $\frac{1}{2}L_0\delta_0$ -shadows $\{g^nx\}$. Besides, we can consider the sequence $\{g^{n+1}x\}$, which can be shadows by the orbit of h(gx) and f(hx). Hence $h\circ g=f\circ h$. But we still do not know that h is a homeomorphism. We can shadow $\{f^nx\}$ by some g-orbit, it gives the inverse of h.

Global stability of diffeomorphisms on \mathbb{T}^2

Let $A=\begin{bmatrix}2&1\\1&1\end{bmatrix}:\mathbb{T}^2\to\mathbb{T}^2$. Let $f:\mathbb{T}^2\to\mathbb{T}^2$ be a diffeomorphism which is homotopic to A. Then $f_*:\pi_1(\mathbb{T}^2)=\mathbb{Z}^2\to\pi_1(\mathbb{T}^2)$ which is equal to $A\in\mathrm{GL}(2,\mathbb{Z})$.

Proposition 3.2

There exists a continuous surjective map $h: \mathbb{T}^2 \to \mathbb{T}^2$ such that $h \circ f = A \circ h$.

Proof. Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be a lift of f, then $F(x) = Ax + \varphi(x)$ where $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ is continuous and \mathbb{Z}^2 -periodic.

Claim 3.3. There exists a unique $H: \mathbb{R}^2 \to \mathbb{R}$ which is continuous and satisfies:

- (i) $||H \operatorname{Id}||_{C^0} = \sup_{x \in \mathbb{R}^2} ||H(x) x|| < K$.
- (ii) $H(x+n) = H(x) + n, \forall x \in \mathbb{R}^2, n \in \mathbb{Z}^2.$
- (iii) $H \circ F = A \circ H$.

Proof. Denote $K_0=\sup_{x\in\mathbb{R}^2}\|\varphi(x)\|<\infty$, then $\|F(x)-Ax\|\leqslant K_0$. Hence $\left\{F^k(x)\right\}_{k\in\mathbb{Z}}$ is a K_0 -pseudo-orbit of A. Note that A is linear, we can draw rectangles $R_k(x)\ni F^k(x)$ with a large size such that $A(R_k(x))$ is transverse to $R_{k+1}(x)$. This implies a global shadowing. That is, there exists a unique point $H(x)\in\mathbb{R}^2$ such that

$$\sup_{k \in \mathbb{Z}} \left\{ \left\| A^k(H(x)) - F^k(x) \right\| \right\} < \frac{\sqrt{2}}{1 - \lambda} K_0.$$

The uniqueness of H guarantees that H(x+n)=H(x)+n and $H\circ F=A\circ H.$

Then H induces a continuous map $h:\mathbb{T}^2\to\mathbb{T}^2$ which is homotopic to Id . It suffices to show $h(\mathbb{T}^2)=\mathbb{T}^2$. Otherwise, there exists an open disc contained in $\mathbb{T}^2\setminus h(\mathbb{T}^2)$. Then $H(\mathbb{R}^2)$ is not simply connected, a contradiction.

6 Exercises Ajorda's Notes

Another proof of claim 3.3. Denote $H(x) = x + \psi(x)$, where

$$\psi \in C_b^0(\mathbb{R}^2) = \{ \psi : \mathbb{R}^2 \to \mathbb{R}^2 : \text{continuous}, \mathbb{Z}^2 \text{-periodic} \}$$
.

Define $\|\psi\|=\max_{x\in\mathbb{R}}\{\|\psi_s(x)\|,\|\psi_u(x)\|\}$, then $(C_b^0(\mathbb{R}^2),\|\cdot\|)$ forms a Banach space. Consider the equation

$$A \circ H(x) = H \circ F(x).$$

Or, $A\psi(x)=\varphi(x)+\psi\circ F(x)$. We write this equation in the component form with respect to $L^s\oplus L^u$, which is,

$$\begin{cases} \psi_s = (\lambda \psi_s - \varphi_s) \circ F^{-1}, \\ \psi_u = \lambda (\psi_u \circ F + \varphi_u). \end{cases}$$

We consider an operator $T:(C_b^0(\mathbb{R}^2),\|\cdot\|)\to (C_b^0(\mathbb{R}^2),\|\cdot\|)$ given by last equation. Then T is well-defined. Furthermore, T is contracting. Then there exists a unique $\psi\in C_b^0(\mathbb{R}^2)$ such that $T(\psi)=\psi$.

Theorem 3.4 (Franks-Manning)

Every Anosov diffeomorphism $f: \mathbb{T}^d \to \mathbb{T}^d$ has a hyperbolic linear part $f_* \in \mathrm{GL}(d,\mathbb{Z})$ and f is topological conjugate to f_* .

Theorem 3.5 (Franks-Newhouse)

Let $f:M\to M$ be an Anosov diffeomorphism, if $\dim E^s=1$ or $\dim E^u=1$, then $M=\mathbb{T}^d$ and f conjugates to f_* .

- §4 July 26
- **§5** July 28

§6 Exercises

Exercise 6.1. Let $A \in \mathrm{GL}(d,\mathbb{Z})$ such that every eigenvalue of A has absolute value not equal to 1. Prove that $A: \mathbb{T}^d \to \mathbb{T}^d$ is an Anosov diffeomorphism.

Exercise 6.2. $A=\begin{bmatrix}2&1\\1&1\end{bmatrix}:\mathbb{T}^2\to\mathbb{T}^2$ is an Anosov diffeomorphism. We say (x,y) is a rational point if $\exists p_1,p_2,q_1,q_2$ such that $(x,y)=(p_1/q_1,p_2/q_2) \ \mathrm{mod}\ \mathbb{Z}^2$. Prove that $(x,y)\in\mathbb{T}^2$ is a periodic point if and only if (x,y) is a rational point.

7

Exercise 6.3. Prove that $A=\begin{bmatrix}2&1\\1&1\end{bmatrix}:\mathbb{T}^2\to\mathbb{T}^2$ is transitive.

6 Exercises Ajorda's Notes

Exercise 6.4. $A=\begin{bmatrix}2&1\\1&1\end{bmatrix}:\mathbb{T}^2\to\mathbb{T}^2$ preserves the Lebesgue measure on \mathbb{T}^2 , prove that Lebesgue measure is an ergodic measure of A.

Remark 6.5 — Anosov have shown that every $C^{1+\alpha}$ conservative Anosov diffeomorphism is ergodic with respect to Lebesgue measure.