Biocaml The OCaml Bioinformatics Library

Ashish Agarwal, Sebastien Mondet, Philippe Veber, Christophe Troestler, Francois Berenger

> OCaml Users and Developers Meeting Copenhagen, Denmark Sep 14, 2012

DNA - The Code of Life

DNA Unravelled

DNA Sub-structrues

Biocaml: Main Features

- File Formats
- Data structures
- Public data repositories
- ... Algorithms

File Formats

- Currently supported file formats
 - -bar, bed, bpmap, cel, fasta, fastq, gff, sam, bam, sbml, sgr, ucsc tracks, wig, tsv/csv with column names

FASTA

>I

ctaageetaage

WIG

```
track type=wiggle_0 description="L2-1 normalized signal" name="L2-1 norm"
Ι
        454
                479
                        17.3333333333
        494
                519
Ι
                        -40.0
        521
                546
                        35.6666666667
Ι
        545
                570
                        41.3333333333
        575
                600
                        745.666666667
Ι
        690
                715
                        2299.33333333
        807
                832
                        1431.66666667
        833
                858
                        21.3333333333
Ι
        859
                884
                        52.3333333333
        881
Ι
                906
                        22.6666666667
        909
                934
                        41.3333333333
        931
                956
                        -7.333333333333
Ι
        960
                985
                        -339.0
                1006
Ι
        981
                        32.3333333333
        1009
                1034
                        -5.66666666667
Ι
        1035
                1060
                        -2.66666666667
Ι
        1066
                1091
                        -79.0
Ι
        1094
                1119
                        13.3333333333
                        2.66666666667
        1118
                1143
Ι
        1172
                1197
                        20.6666666667
Ι
        1221
                1246
Ι
                        54.6666666667
```

GFF

I Coding_transcript	Transc	ript	11495	16793		+	. \
Transcript "Y74C9A.2.3";WormPep "WP:CE24660";Note "nlp-40";Prediction_status "Co							"Confirme\
d";Gene "WBGene00022276";CDS "Y74C9A.2"							
I Coding_transcript	Transc	ript	11499	16790		+	. \
Transcript "Y74C9A.2.4";WormPep "WP:CE24660";Note "nlp-40";Prediction_status "Confirme\							
d";Gene "WBGene00022276";CDS "Y74C9A.2"							
I Coding_transcript	Transc	ript	11499	16828		+	. \
Transcript "Y74C9A.2.1";WormPep "WP:CE24660";Note "nlp-40";Prediction_status "Confirme\							
d";Gene "WBGene00022276";CDS "Y74C9A.2"							
I Coding_transcript	Transc	ript	11505	16790		+	. \
Transcript "Y74C9A.2.5";WormPep "WP:CE24660";Note "nlp-40";Prediction_status "Confirme\							
d";Gene "WBGene00022276";CDS	"Y74C9A.2	"					
I Coding_transcript	exon	11495	11561		+		Transer\
ipt "Y74C9A.2.3"							
I Coding_transcript	exon	11499	11557		+		Transer\
ipt "Y74C9A.2.4"							
I Coding_transcript	exon	11499	11561		+		Transcr\
ipt "Y74C9A.2.1"							

File Formats: General Features

- Streaming for big data
- Partial parsing for speed
- Non-blocking
- Error handling
 - -explicit in return types
 - -exceptionful
- Comprehensive documentation
- g(un)zip-able

Fasta: Types

```
type 'a item = {header : string;sequence : 'a }
```

```
    type 'a raw_item = [
    | `comment of string
    | `header of string
    | `partial_sequence of `a ]
```

Speed ups up to 35%.

Polymorphic Variants for Errors

```
option
   '| `malformed_partial_sequence of Pos.t * string ]
type raw_item_to_item = [
   | `unnamed_char_seq of char_seq | `unnamed_int_seq of int_seq ]
type † = [
    | string_to_raw_item
| raw_item_to_item ]
```

Precise yet easy-to-provide error information.

Error Handling

Strongly typed interface:

```
in_channel_to_char_seq_item_stream :
  in_channel ->
  (char_seq, Error.t) Result.t Stream.t
```

Exceptionful interface for scripting:
 in_channel_to_char_seq_item_stream:
 in_channel ->
 char_seq Stream.t

Non-blocking IO

- Lwt or Async? And standard IO
- Our solution:
- Buffered Transforms: ('a, 'b) t
- val feed : ('a, 'b) t -> 'a unit
- val next : ('a, 'b) t ->

 [`end_of_stream | `not_ready |
 `output of 'b]

Affect of Buffer Size

Legos

- let (|-) = Transform.compose
- let parser =
 Zip.unzip ~format:`gzip
 |- Fasta.string_to_char_seq_raw_item
 |- Fasta.char_seq_raw_item_to_item

Data Structures

- Data structures
 - -integer interval trees
 - -sparse integer sets
 - -maps from integer intervals to 'a
 - -efficient polymorphic histograms

Overlap Query

Read Counting

 Given aligned reads, compute read count at each genomic position

ROC Curve Statistics

- false positives = bp's in new experiment minus those in annotation
- true positives = bp's in new experiment and in annotation

•

Annotations are hierarchical

Two Partial Orders on Integer Intervals

Positional

- intervals are to the *left* or *right* of each other
- Example 1
- Example 2

V

Containment

- intervals contain or are contained by each other
- Example

Sparse Integer Sets (DIET Sets)

- Desired set of integers:
 {3, 4, 5, 6, 7, 8, 9, 10, 22, 23, 24, 25, 26}
- Internal representation [(3,10), (22, 26)]
- Example: intersect
 - -set1 = [(3,10), (22, 26)]
 - -set2 = [(8,12), (30, 42)]
 - -Result: [(8,10)]

Read Counting

- · If input reads are positionally sorted:
 - low memory solution possible
 - print count for position i when lower bound of current interval > i

• Else:

- need an interval tree with nodes carrying counts
- -insert requires merging/splitting nodes

Public Data Repositories

- Essential to all Biologists
- Submission to public repositories a requirement of publication
- Entrez, GEO, SRA, ...
 and hundreds more

GPU Tesla M2070 nodes

BarraCUDA: Multiple GPUs vs Multiple CPUs

Conclusions

- All aspects of CS applicable to Bio
- USA: health care costs = 18% of GDP
- Biocaml
 - -just starting
 - -your contributions are welcome
 - -open source

http://biocaml.org