

The X-ray Properties of Optically Selected Galaxy Groups

C. Wood¹, B. Maughan¹, J. Crossett², D. Eckert³, M. Pierre⁴, and A. S. G. Robotham⁵

 1 University of Bristol, 2 Universidad de Valparaiso, 3 University of Geneva, 4 Université Paris-Saclay, 5 ICRAR cai.wood@bristol.ac.uk

Introduction

- What are Galaxy Groups?
- Self-similarity
- GAMA & XXL surveys
- Measure X-ray Luminosity of Optically Selected Galaxy Groups
- X-Ray Luminosity Function
- Luminosity Mass Relation

Credit: X-ray: NASA/CXC/Univ. of Chicago, I. Zhuravleva et al, Optical: SDSS

Self-Similarity

From: Lovisari et al. (2015)

bristol.ac.uk

Selection bias

From: Andreon et al. (2016)

bristol.ac.uk

- XXL X-ray survey
- GAMA spectroscopic survey
- ∠ 235 GAMA groups (with 5+ members) in overlapping region

GAMA: Driver et. al (2011), XXL: Pierre et al. (2016)

FoF Algorithm: Robotham et al. (2011)

bristol.ac.uk

X-ray Undetected Groups

- Use luminosity posterior

Luminosity - Redshift Space

REFLEX II: Böhringer et al. (2014), WARPS: Koens et al. (2013), bristol.ac.uk XXL: Pacaud et al. (2016), eFEDS: Liu et al. (2021)

X-ray Luminosity Function

REFLEX II: Böhringer et al. (2014), WARPS: Koens et al. (2013) bristol.ac.uk

Luminosity - Mass Relation

Luminosity - Mass Relation

Summary

- Measured X-ray luminosities of optically selected galaxy group sample
- Observed X-ray luminosity function and inferred luminosity-mass relation shape
- Inclusion of non-detections allowed exploration of low luminosity regime
- Results suggest feedback and X-ray selection bias present
- Project can be expanded using eROSITA and Euclid surveys

Excluding Non-Central Point Sources

For point sources located between 30" and 110" away from the group location, the point source region was masked and remaining flux in the aperture modelled and subtracted.

Modelling Central Point Sources

In cases where the point source was closer, the point source and group emission were modelled using the PSF and a beta model, and the proportion of emission expected from the group found.

Testing $N \ge 5$ cut-off

Comparing Luminosities

XXL: Pacaud et al. (2016) Crossett et al. (2022)

Luminosity - Mass Relation

Recovering Low Count Rates

Euclid & eROSITA

- \not DR1 / eRASS:1 overlap \sim 1,250 deg²
 - estimate 5,000 clusters
- $\norm{\sc k}$ DR3 / eRASS:4 overlap \sim 7,500 deg²
 - estimate 60.000 clusters

Forecast from Sartoris+ (2016) bristol.ac.uk