1.2 Задачи оптимального управления

Задачи оптимального управления относятся к теории экстремальных задач, то есть задач определения максимальных и минимальных значений. Задачи эти, как и собственно сама теория оптимального управления, возникла в начале XX-го века в связи с практическими задачами, появившимися из-за развития новой техники в различных областях. Данные экстремальные задачи не укладывались в рамки классического вариационного счисления.

В данной главе мы рассмотрим их, используя различные примеры. В целом решение подобных задач можно разбить на два этапа:

- 1. Постановка задачи
- 2. Решение с использованием условий оптимальности

Данные пункты содержат в себе сразу несколько подпунктов, так что сейчас мы перейдем от общего к частному.

1.2.1. Постановка задачи оптимального управления

Изначально у нас есть некоторое, условие, однако его недостаточно для решения задачи. Для начала проведем *математическую постановку задачи*.

Она в себя будет включать следующие факторы: математическую модель объекта управления, цель управления, ограничения на траекторию воздействия, управляющее воздействие и его длительность и т.д. Рассмотрим данные факторы подробнее.

1.2.1.1 Модели объекта

Построение модели зависит от типа рассматриваемой нами задачи и того что мы желаем в итоге получить. Могут быть использованы различные дифференциальные уравнения: обыкновенные дифференциальные уравнения, уравнения с последействием, стохастические уравнения, уравнения в частных производных и т.д. Для примера мы будем использовать самое обыкновенное дифференциальное уравнение: $\dot{x}(t) = f(t,x(t),u), \dot{x}(t) = \frac{dx}{dt}$, $t_0 \le t \le T$ (1), где $u \in R^m$ — управление, $x \in R^n$ — фазовый вектор системы, $f \in R^n$ — заданная функция, а R^n — евклидово пространство размерность n. Придавая нашему управлению различные значения мы получаем различные состояния объекта, из которых мы и выбираем оптимальное.

1.2.1.2 Критерий качества

Управление системой (1) осуществляется для достижения некоторых целей, которые формально записываются в терминах минимизации по и функционалов J, определяемых управлением и и траекторией x, где

$$J = \int_{t_0}^T F(t, x(t), u) dt + \varphi(T, x(T)) \to min$$
 (2)

F и ϕ — заданные скалярные функции. Задача (2) в общем виде называется задачей Больца. При F=0 её называют задачей Майера, а при $\phi=0$ — Лагранджа.

1.2.1.3 Ограничения на траекторию и ограничения на управление

Иногда траектория не может принадлежать какой-либо части пространства \mathbb{R}^n . В таких случаях указывают, что $x(t) \in G(t)$, при том, что G(t) — заданная область в \mathbb{R}^n . В зависимости от типа ограничений выделяют различные классы задач управления, такие как задачи с фиксированными концами, свободным левым либо правым концом. Так же существуют задачи с подвижными концами. Иногда же ограничения имеют интегральный характер и выглядят следующим образом:

$$\int_{t_0}^T F(t, x(t), u) dt \le 0$$

Если в задачах (1),(2) начальное и конечное положение задано, моменты начала и конца движения свободны, функция $\varphi = 0$, а F = 1, то получаем задачу о переводе системы (1) из начального положения в конечное за минимально возможное время. Далее мы рассмотри ограничения на управление, а после перейдем к примеру.

Ограничения могут быть двух типов

- Информационные
- Ограниченность ресурсов управления

Информационные ограничения на управление зависят от того, какая именно информация о системе (1) доступна при выработке управляющего воздействия. Если вектор x(t) недоступен измерению, то оптимальное управление ищется в классе функций u(t), зависящих только от t. В этом случае оптимальное управление именуется программным. Если же вектор x(t) известен точно, то оптимальное управление называется синтезом оптимального управления и ищется в классе функционалов $u(t, x_{t_0}^t)$. Здесь $x_{t_0}^t$ – вся траектория движения на отрезке $t_0 \le s \le t$.

Ограничения, обусловленные ограниченностью ресурсов управления имеют вид $u(t) \in U(t)$, где U(t) заданное множество из R^m .

Рассмотрим классический пример с задачей оптимального по быстродействию управления механическим объектом, которая известна как «задача о тележке». Тележку массы m требуется с помощью горизонтальной силы u, не превышающей по модулю величины L, переместить за минимальное время по горизонтальной прямой(без трения) из начального положения A, в котором она имела скорость $\nu_{\rm h}$, в конечное положение B, где скорость $\nu_{\rm k}$.

Согласно закону Ньютона движение тележки вдоль оси Ох описывается уравнением $m\ddot{x} = u$ (3), где $\ddot{x} = \ddot{x}(t) = d^2x(t)/dt^2$ – ускорение в момент времени t; u = u(t) – величина силы, приложенной в момент t к объекту управления.

Из физической постановки задачи следуют условия на положение x(t) и скорость $\dot{x}(t) = dx(t)/dt$ в начальный (t=0) и конечный (t = t^2) моменты времени: $x(0) = \alpha, \dot{x}(0) = \nu_{\rm H}; x(t^*) = \beta, \dot{x}(t^*) = \nu_{\rm K}$. Так же мы считаем, что прилагаемые силы и ограничены $|u(t)| \le L$; $t \in [0, t^*]$.

Таким образом, математическая модель рассматриваемой задачи состоит в поиске таких момента t^{*0} и кусочно-непрерывной функции $u^0(t)$, $t \in [0, t^{*0}]$, ограниченной выше указанными условиями, для которых на соответствующем решении $\mathbf{x}^0(t)$, $t \in [0, t^{*0}]$ уравнения (3) выполняются заданные условия и минимальна продолжительность переходного процесса.