

Dear wizards

Welcome to NLP Track

What text data is?

Text Preprocessing steps

We start by:

- Removing punctuations: '!"#\$%&'()*+,-./:;?@[\]^_`{|}~'
- Removing URLs
- Removing numbers
- Lower casing: Text → text

Punctuation marks can be considered as noise in some contexts

Tokenization:

the text is splited into smaller meaningful units and tokens

Issues in tokenization:

Finland's capital -> Finland ? Finlands ? Finland's

San Francisco → San Francesco or San | Francesco

For exemple japanese and german the sentence have a lot of prefix and suffix as お元気ですか (How are you?)

Max match principle:

it identifies the longest known word in the vocabulary and splits that word off the front

The catinthe hat \rightarrow The cat in the hat

Thetabledownthere \rightarrow Theta bled own there

Part of speach (POS):

assigning a grammatical category or part-of-speech label such as noun, verb, adjective, pronoun, etc

The back door \rightarrow adj

On my back \rightarrow noun

Promissed to back the bill \rightarrow verb

It serves several purposes as a preprocessing step:

POS tagging helps in understanding the grammatical structure of a sentence. It provides information about the roles of words in forming phrases and sentences

Feature Extraction: machine translation, ner, text classification

Lemmatization and Stemming

stemming & lemmatization:

Text Normalization techniques, where we return each word to the root word from wich it is derived

am, are, is \rightarrow be

the boy's cars are different colors \rightarrow

the boy car be different color

Stemming is the process of removing the last few characters of a given word, to obtain a shorter form, even if that form doesn't have any meaning.

automate, automatic, automation \rightarrow automat

stem

Lemmatization is a text normalization technique in natural language processing (NLP) that involves reducing words to their base or root form based on the word meaning and the POS consideration

Word: "meeting" (verb)

Lemmatized form: "meet"

Word: "meeting" (noun)

Lemmatized form: "meeting"

Stemming and lemmatization in Iformation Retrieval.

Grouping words with common stem together.

For exemple, a search on reads, also finds read, reading, and readable

Stop Words

the process of eliminating words that are so widely used that they carry very little useful information

Stop Words

Sample text with Stop	Without Stop Words
Words	
GeeksforGeeks – A Computer	GeeksforGeeks , Computer Science,
Science Portal for Geeks	Portal ,Geeks
Can listening be exhausting?	Listening, Exhausting
I like reading, so I read	Like, Reading, read

removing the stop words depends on the task it self

word embedding is the step where we give a numerical represation to every single word or token, so that we could know its meaning and relationships between each other

Eman - Ewoman

Eking → ?

visualazing word's embedding in 3D plot using dim reduction

Eking - Eman + Ewoman = Equeen

word ebedding is done by training a model or by using a pretrained word embedding models like Flair, fastText, SpaCy

The bag-of-words model is a way of feature extraction and representing text data when modeling text with machine learning algorithms

It involves two things:

A vocabulary of known words.

A measure of the presence of known words.

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, designing the vocabuary:

["it", "was", "the", "best", "of", "times", "worst", "age", "wisdom", "foolishness"]

creating docs vectors:

it was the worst of times	1	1	1	0	1	1	1	0	0	0
"it was the age of wisdom"	1	1	1	0	1	0	0	1	1	0
it was the age of foolishness	1	1	1	0	1	0	0	1	0	1

some use cases of the Bow:

Bow is widely used for text classification tasks, such as spam detection, sentiment analysis, and topic categorization.

Bow allows measuring the similarity between documents using metrics like cosine similarity

Thank you for your attention!

