

Universidad Nacional Autónoma de México

FACULTAD DE INGENIERÍA

DISEÑO DIGITAL MODERNO

Proyecto 1

Circuito de NANDs y NORs

Alumno(s): Francisco Pablo Rodrigo Profesor:
Ing. Mandujano Wild ROBERTO F.

Grupo: 6

23 de marzo de 2019

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Introduction 1.1. Compuerta NAND	3 3
2.	Materiales	4
3.	Planteamiento	4
4.	Diagrama lógico	5
5.	Patigrama	6
6.	Implementación	7
7.	Manual de usuario	7

1. Introduction

Las Compuertas Lógicas son circuitos electrónicos conformados internamente por transistores que se encuentran con arreglos especiales con los que otorgan señales de voltaje como resultado o una salida de forma booleana, están obtenidos por operaciones lógicas binarias (suma, multiplicación). También niegan, afirman, incluyen o excluyen según sus propiedades lógicas. Estas compuertas se pueden aplicar en otras áreas de la ciencia como mecánica, hidráulica o neumática.

1.1. Compuerta NAND

También denominada como AND negada, esta compuerta trabaja al contrario de una AND ya que al no tener entradas en 1 o solamente alguna de ellas, esta concede un 1 en su salida, pero si esta tiene todas sus entradas en 1 la salida se presenta con un 0.

Entra	das	Salidas		
Α	В	С	S	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

1.2. Compuerta NOR

Así como vimos anteriormente, la compuerta OR también tiene su versión inversa. Esta compuerta cuando tiene sus entradas en estado 0 su salida estará en 1, pero si alguna de sus entradas pasa a un estado 1 sin importar en qué posición, su salida será un estado 0.

E	ntra	Salidas		
Α	В	C ⁻¹	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

2. Materiales

- 1. 2 LEDs
- 2. Alambre de seis colores distintos
- 3. 2 compuertas NAND
- 4. 1 compuerta NOR
- 5. 2 dip-switch (4 posiciones)

5

3. Planteamiento

3.1. Circuito de solo NANDs

3.2. Circuito de solo NORs

3.2.1. Diagrama lógico

4. Patigrama

5. Implementación

Después de algunas cuantas horas de arduo esfuerzo y de algunos cuantos errores obtuvimos el siguiente circuito.

