Definition

has the same elements as **P**, but is equipped with the reverse ordering (??). For a given $p \in \mathbf{P}$, we will sometimes write p^* do denote its corresponding copy

The opposite of a poset $P = \langle P, \leq_P \rangle$ is the poset denoted $P^{op} = \langle P, \leq_P \rangle$. It

in
$$\mathbf{P}^{\mathrm{op}}$$
, in order to emphasize that p and p^* belong to distinct posets. However, often we will not be so pedantic with our notation. Reversing the order means

that, for all
$$p, q \in \mathbf{P}$$
,
$$n <_{\mathbf{P}} a$$

$$p \leq_{\mathbf{P}} q$$

$$q^* \leq_{\mathbf{P}} \operatorname{op} p^*$$