Presentation draft

Konstantinos Papadimos

The CMS Experiment overview

The CMS detector at the LHC

Coordinates at the CMS

Given the solenoid geometry of the CMS detector, it is more convenient to use a spherical type of coordinates (r, ϕ, θ) .

$$p_{x} = P_{T} \cos \phi$$

$$p_{y} = P_{T} \sin \phi$$

$$p_{z} = P_{T} \sinh \eta$$

$$|\vec{P}| = P_{T} \cosh \eta$$
(1)

 $\phi \in [0, 2\pi]$ the azimuthal angle, and $\eta \in [-\infty, +\infty]$ is defined as:

$$\eta \equiv -\ln\left[\tan\left(\frac{\theta}{2}\right)\right] \tag{2}$$

Decays & Resonances

Not every particle can be detected by the CMS detector(i.e neutrinos)

Detectable Decay Products
 → Resonance

Non Detectable Decay
 Products → Not a resonance

Calibration and energy scale uncertainties

- Calibration process adjusts energy scale and resolution to match well-known resonances (Z boson, J/psi meson) in data and simulation,
- Imperfect agreement due to subdetector complexities and nonlinear effects

How do analysis techniques respond to energy scale uncertainties?

Our work will focus on the effects that energy scale uncertainties have, on a traditional fit-based analysis and a more modern Boosted Decision Tree-based analysis, using the generic diobject production process as the working example.

Classification techniques

In our case:

- Signal: a resonant decay Y->xx
- Background: a non resonant process

How to separate them?

- Boosted Decision Trees
- Fit based analysis

Supervised Learning

Supervised learning:

- The model is trained using training data
- The trained model is tested using testing data
- If we like the resulting model, we apply it!

but what is this model?

- A function that given the input feautres x, it returns the probability x beeing class A
- The goal of the training is to minimize the difference between the predicted output $y_i \in [0,1]$ and the real output $\hat{y_i} = 0$ class B, or $\hat{y_i} = 1$ class A

BDT 3: Signal from background separation

Where should we place the cut in order to accept most most of the signal while rejecting most of background?

Statistical interpretation of results

Are the signal events we counted, statistically significant?

We use the following metric:

Significance =
$$\frac{Signal}{\sqrt{Background}}$$
 (3)

 The selected regions of interest both in BDT and Fit based analysis, are those that maximize the significance.

Searches for $Y \rightarrow XX$

Search for heavy $Y \rightarrow XX$

 Mass range from 100GeV up to 300GeV

Search for light $Y \rightarrow XX$

 Mass range from 50GeV up to 70GeV

The $Y \rightarrow XX$ channel

The specific characteristics(mass etc.) of each dataset is different but the main idea is the same

- Use a non resonant process for background
- Use a resonant process for signal
- Separate signal from background
- Apply energy scale uncertainties to signal
- Separate again
- Compare the nominal case with the smeared cases

The $Y \rightarrow XX$ channel: Background

Drell-Yan process

The $Y \rightarrow XX$ channel: Signal

Search for light $Y \rightarrow XX$

We will study the following smearing cases:

- 0%(Nominal case)
- 5%
- 7%
- 10%
- 12%

The working mass range is quite small -> smearing has a significant effect real quick

Fit based approach: Fitting

Then we proceed with the fits!

Fit based approach: Fitting

Fit based approach: Fitting

Any further smearing will make the signal indistiguishable!

Fit based approach: Signal from background separation

Working in the nominal case, we find the region that yields the best significance, by scanning the ranges $m = \pm \frac{n}{2}\sigma$, n = 1, 2, 3, 4, 5, 6

Fit based approach: Signal from background separation

The region of interest that yields the best significance is the $\pm 1.5\sigma$. There are two ways to interpret this.

- interpret σ as the the spread of the nominal case -> fixed window
- interpret σ as the the spread of each cases -> adaptive window

BDT approach: Feature space

What features of the dataset are best for the classification task?

BDT approach: Feature space

BDT approach: The model

- Trained with approximately 3K events
- To examine overfitting we compare the ratio of training events to testing for each bdt score

BDT approach: Application

Feed the application set to the BDT -> BDT plots

BDT approach: Application

BDT approach: Application

BDT approach: Signal from background separation

Where should we place the cut?

- Same philosophy as in the fit based search
- We scan the bdt range to find the best region of interest
- Best cut -> BDT score = 0.96.

BDT approach: Signal from background separation

 The performance of the BDT remains invariant under energy scale uncertainties!

Synopsis

- BDT performs better than the fit based
- Remains invariant under smearing
- Performance of the fit drops

Search for heavy $Y \rightarrow XX$

We will study the following smearing cases:

Medium to extreme cases

- 0%(Nominal case)
- 5%
- 10%
- 15%
- 20%

Plus some really extreme cases

- 30%
- 40%
- 50%

Then we proceed and fit the signal

Fit based approach: Signal from background separation

Working in the nominal case, we scan the ranges $m=\pm \frac{n}{2}\sigma$, n=1,2,3,4,5,6

Fit based approach: Signal from background separation

The best significance is in the $\pm 1.5\sigma$ range.

- fixed window
- adaptive window

BDT approach: Feature space

We use the same feature space as with the light mass search

BDT approach: Feature space

BDT approach: The model

- Trained with approximately 3K events
- To examine overfitting we compare the ratio of training events to testing for each bdt score

Feed the application set to the BDT -> BDT plots

BDT approach: Signal from background separation

Where should we place the cut?

- We scan the whole bdt range to find the best region of interest
- Best cut -> BDT score = 0.98.
- This is rather tight, lets see what happens if we place a more relaxed cut at 0.86

BDT approach: Signal from background separation

- The performance of the more relaxed cut is not as good as the best cut
- The bdt model is rather robust

Synopsis

- The perfomance of the BDT and Fit are comparable when smeaing is mild
- Fit perfomance drops dramatically
- BDT is more robust

Results

• Light $Y \rightarrow XX$

Results

Overall, the BDT is more robust as it learns features that do not get affected by energy scale uncertainties

So is the BDT better?

- No: A more carefull event selection can improve the performance of the fit based analysis
- yes: In the presence of energy scale uncertainties, the fit based analysis reaches a "breaking point"

Unused stuff

Welcome to the backup slides!

BDT 1a: Boosted decision trees

In this study the model of choice is Boosted Decision Trees(BDT).

• It classifies data using decision tree models

BDT 2b: Boosted Decision Trees

Usually only one tree is not power full enough -> Use more trees in additive manner(Boosting)

Fit the mass spectrum . . .

... and decompose it to a background component ...

... and a signal component

Then we can count the signal and background events, in a region of interest *I*:

$$O = \int_{I} observation(x) dx \tag{4}$$

$$B = \int_{I} bkg(x)dx \tag{5}$$

$$S = O - B \tag{6}$$

Energy scale uncertainties

To smear the data by x%,

- iterate over every signal event
- multiply each P_T by a number sampled from a Gaussian distribution of $\mu=1$ and $\sigma=x/100$

Search for light $Y \rightarrow XX$

We will study the following smearing cases:

- 0%(Nominal case)
- 5%
- 7%
- 10%
- 12%

The working mass range is quite small -> smearing has a significant effect real quick

Fit based approach: Background Fitting light

- To simplify things a bit, we fit the background sepratelly
- The background shape is kept constant throughout the fits
- Shape: $\alpha + \beta x + \gamma x^2 + \delta x^3$

Fit based approach: Background Fitting

- The background shape is kept constant
- Shape: $\alpha + \beta x^{-1/2} + \gamma x^{-1} + \delta x^{3/2}$

Search for heavy $Y \rightarrow XX$

We will study the following smearing cases:

Medium to extreme cases

- 0%(Nominal case)
- 5%
- 10%
- 15%
- 20%

Plus some really extreme cases

- 30%
- 40%
- 50%