Devoir à la maison n° 2

À rendre le 16 septembre

Pour deux nombres complexes z et z' écrits sous forme algébrique z=x+iy et z'=x'+iy', on définit le produit scalaire $\langle z,z'\rangle=xx'+yy'$.

- 1) Pour $z \in \mathbb{C}$, que vaut $\langle z, z \rangle$?
- 2) Pour $(z, z') \in \mathbb{C}^2$, exprimer $\langle z, z' \rangle$ en fonction de $z\overline{z'}$.
- 3) En déduire l'inégalité de Cauchy-Schwarz :

$$|\langle z, z' \rangle| \leqslant |z||z'|$$
.

Soient a et b deux complexes de même module non nul r, d'arguments α et β respectivement. On note A et B les points d'affixe a et b respectivement.

- 4) Interpréter géométriquement les conditions $ab = r^2$ puis $ab = -r^2$.
- 5) On suppose désormais que $ab \neq r^2$ et $ab \neq -r^2$.
 - a) Montrer, sans les calculer, que les complexes $z_1 = \frac{a+b}{r^2+ab}$ et $z_2 = \frac{a-b}{r^2-ab}$ sont réels.
 - **b)** Exprimer $z = rz_1$ en fonction des cosinus de $\frac{\alpha + \beta}{2}$ et $\frac{\alpha \beta}{2}$. Qu'en est-il de $\zeta = rz_2$?
 - c) Prouver l'inégalité $z_1^2 + z_2^2 \geqslant \frac{1}{r^2}$.
 - d) Quels sont les cas d'égalité?

- FIN -