Informe de Consultoría en Ciberseguridad para Emizin & Tech

1. Introducción

La empresa **Emizin & Tech** se dedica a la gestión y alojamiento de servicios en la nube para terceros, incluyendo páginas web, bases de datos, correo electrónico y máquinas virtuales. También cuenta con servicios internos (facturación, contabilidad, CRM) y presencia física a nivel nacional, con múltiples sucursales y una sede principal donde se aloja su **Data Center**.

Este informe tiene como objetivo **proponer una arquitectura de red segura y escalable** que permita proteger los activos digitales de Emizin & Tech frente a amenazas cibernéticas, garantizando la disponibilidad, confidencialidad e integridad de sus servicios.

2. Objetivo del informe

El objetivo es diseñar una **topología de red segura** que contemple:

- Comunicación segura entre sucursales.
- Aislamiento entre servicios internos y públicos.
- Separación de la red de invitados.
- Aplicación de protocolos y herramientas modernas de ciberseguridad.

3. Topología propuesta

3.1 A nivel nacional

- La sede principal (con Data Center) actuará como hub central.
- Las sucursales se conectan a la sede principal mediante VPNs site-to-site usando WireGuard.
- Esta arquitectura hub-and-spoke permite centralizar la administración y aplicar controles uniformes desde el núcleo.
- Todo el tráfico intersucursal será cifrado usando claves generadas por WireGuard, garantizando autenticación y confidencialidad.

3.2 A nivel local (sucursal principal)

- Se segmenta la red mediante VLANs para minimizar el riesgo lateral:
 - o VLAN 10: Administración y dirección.
 - VLAN 20: Servicios internos (CRM, contabilidad, facturación).
 - VLAN 30: Red Wi-Fi de invitados, aislada completamente de los recursos internos.
 - VLAN 40: DMZ (Zona desmilitarizada) que alberga la web corporativa, el servidor DNS público y el correo externo.
- El tráfico entre VLANs pasa por un **firewall de nueva generación (NGFW)** que inspecciona tráfico a nivel de aplicación y filtra según políticas definidas.

4. Herramientas y protocolos de seguridad utilizados

- WireGuard: Solución VPN ligera y moderna para la conexión cifrada entre sedes.
- **Firewall NGFW**: Con capacidades de inspección profunda (Deep Packet Inspection), detección de malware, filtrado geográfico y control por aplicación.
- IDS/IPS (como Suricata o Snort): Para detectar intrusiones en tiempo real y actuar ante amenazas.
- WPA3: Estándar de cifrado para Wi-Fi moderno, aplicado a redes internas e invitadas.
- HTTPS con TLS 1.3: Para proteger todos los servicios web, tanto internos como públicos.
- Autenticación Multifactor (MFA): Requisito para accesos administrativos o remotos.
- Gestor de parches: Sistema de actualización automatizada para servicios críticos.
- SIEM (como Graylog o Wazuh): Para centralizar logs y detectar correlaciones anómalas.

5. Justificación técnica

- La segmentación con VLANs mejora el control interno y reduce la propagación de amenazas.
- La **DMZ** protege el núcleo interno al aislar servicios expuestos públicamente.
- WireGuard se elige por su seguridad, facilidad de configuración y bajo consumo de recursos.

- MFA asegura que incluso si las credenciales se ven comprometidas, no se puede acceder sin el segundo factor.
- SIEM e IDS/IPS permiten detección proactiva de amenazas y rápida respuesta.

6. Descripción de los mapas de red

Mapa Nacional (hub-and-spoke):

- La sede principal se conecta con cada sucursal a través de **túneles VPN WireGuard**.
- Cada sucursal tiene acceso a los recursos del Data Center, pero no se conectan directamente entre sí (solo a través del hub).
- Todo el tráfico es cifrado punto a punto.

Mapa Sede Principal:

- Router de entrada conectado al firewall NGFW.
- Switch gestionable L3 que distribuye el tráfico por VLAN:
 - o VLAN 10, 20, 30 y 40.
- Firewall inter-VLAN define reglas específicas entre segmentos.
- Servidores internos (CRM, facturación) están aislados de la red pública.
- DMZ con servicios web públicos expuestos pero controlados.

7. Conclusión

La topología propuesta responde a las necesidades de seguridad de Emizin & Tech con un diseño escalable, segmentado y basado en buenas prácticas. La infraestructura protege tanto los servicios propios como los que la empresa brinda a terceros, estableciendo una base sólida para el cumplimiento normativo y la continuidad de negocio.

8. Recomendaciones adicionales

- Realizar auditorías de seguridad y pruebas de penetración cada 6–12 meses.
- Formar regularmente al personal en buenas prácticas de ciberseguridad.
- Establecer un plan de respuesta ante incidentes (IRP).
- Mantener un inventario actualizado de activos y configuraciones.

9. Anexo técnico - Configuración de la VPN con WireGuard

📷 Figura 1. Confirmación de que WireGuard ya estaba instalado en el servidor Ubuntu.

📷 Figura 2. Generación de claves pública y privada para WireGuard.

Figura 3. Configuración del Firewall de Windows permitiendo la comunicación de la aplicación WireGuard.

Figura 4. Túnel activo en el cliente Windows, mostrando claves, endpoint y tráfico transmitido.

Figura 5. Archivo wg0.conf del servidor Ubuntu con claves y parámetros definidos.

Figura 6. Configuración detallada del túnel WireGuard en el cliente Windows.

Referencias

Cloud Security Alliance. (2019). Security guidance for critical areas of focus in cloud computing (v4.0). Cloud Security Alliance.

https://cloudsecurityalliance.org/research/security-guidance/

Disterer, G. (2013). ISO/IEC 27000, 27001 and 27002 for information security management. *Journal of Information Security*, 4(2), 92–100. https://doi.org/10.4236/jis.2013.42011

Kshetri, N. (2017). Cloud computing in developing economies: Drivers, effects, and policy measures. In *Cloud Computing and Big Data* (pp. 3–21). Springer. https://doi.org/10.1007/978-3-319-59129-4 1