Iniciado em quarta-feira, 19 abr. 2023, 08:30

Estado Finalizada

Concluída em quarta-feira, 19 abr. 2023, 13:08

Tempo 4 horas 38 minutos

empregado

Avaliar 9,00 de um máximo de 10,00(90%)

Questão 1

Correto

Atingiu 1,00 de 1,00

 $\mathbf{r}(t) = 8\mathbf{i} + (t^8 + 1)\mathbf{j} + (t^8 - 1)\mathbf{k}$ é a posição de uma partícula em movimento no espaço no instante t. Calcule o cosseno do ângulo entre os vetores velocidade e aceleração no instante t = 1.

A resposta correta é: 1,00

Questão **2**

Correto

Atingiu 1,00 de 1,00

Se o vetor velocidade de uma partícula é $\mathbf{v}(t) = 3\cos(t)\mathbf{i} - 3\sqrt{3}\sin(2t)\mathbf{j} + 9\left(2\sin^2(t) - 1\right)\mathbf{k}$, então qual a distância entre as posições nos instantes t = 0 e $t = \frac{\pi}{2}$.

Resposta: 6

A resposta correta é: 6,00

Questão 3

Correto

Atingiu 1,00 de 1,00

Uma partícula saiu da posição (0,5,0) e se deslocou sobre a trajetória $\mathbf{r}(t) = (5\sin(t)\mathbf{i} + 5\cos(t)\mathbf{j} + 12t\mathbf{k})m$. Em qual instante ela terá percorrido uma distância de 130m?

Resposta: 10

A resposta correta é: 10,00

Correto

Atingiu 1,00 de 1,00

Calcule a curvatura de $\mathbf{r}(t) = e^t \cos t \mathbf{i} + e^t \sin t \mathbf{j} + 2 \mathbf{k}$ em $t = \ln \frac{1}{2\sqrt{2}}$.

Resposta: 2

A resposta correta é: 2

Questão 5

Correto

Atingiu 1,00 de 1,00

Dado ${f r}(t)=e^t\cos t{f i}+e^t\sin t{f j}+\sqrt{2}e^t{f k}$, a aceleração na forma ${f a}=a_T{f t}+a_N{f n}$ quando t=0 é:

Escolha uma opção:

- \odot a. $2\mathbf{t} 2\sqrt{2}\mathbf{n}$
- \odot b. $2\mathbf{t} + \sqrt{2}\mathbf{n} \checkmark$
- \odot c. $2\sqrt{2}\mathbf{t}$
- \odot d. $2\sqrt{2}n$
- \odot e. $2\mathbf{n} + 2\sqrt{2}\mathbf{t}$

Sua resposta está correta.

A resposta correta é: $2\mathbf{t} + \sqrt{2}\mathbf{n}$

Questão 6

Correto

Atingiu 1,00 de 1,00

Se w=xy+yx+xz de modo que x=9u+6v, y=9u-6v e z=54uv, então expresse $\frac{dw}{dv}$ utilizando a regra da cadeia. Em seguida, calcule $\frac{dw}{dv}$ no ponto $\left(\frac{1}{9},1\right)$.

Resposta:

-66

✓

Parabéns. Resposta correta.

A resposta correta é: -66,00

Correto

Atingiu 1,00 de 1,00

Encontre a derivada da função $f(x,y)=2x^2+y^2$ em $P_0=(7,-7)$ na direção de $u=3{f i}-4{f j}$.

Resposta: 28

A resposta correta é: 28,00

Questão **8**

Correto

Atingiu 1,00 de 1,00

Encontre a equação do plano tangente a superfície $x^2+y^2-z^2=18$ no ponto $P_0=(3,5,-4)$.

Escolha uma opção:

- \circ a. 3y 5x + 4z = 18
- b. 3x + 5y + 4z = 18
- 0 c. 3x + 5y 4z = 18
- 0 d. 3x 5y + 4z = 18
- \circ e. -3x 5y + 4z = 18

Sua resposta está correta.

A resposta correta é: 3x + 5y + 4z = 18

Incorreto

Atingiu 0,00 de 1,00

Encontre todos os máximos locais, mínimos locais ou pontos de sela da função $f(x,y)=rac{1}{x^2+y^2-1}$.

Escolha uma opção:

$$\bigcirc$$
 a. $f(0,0)=-rac{16}{7}$, ponto de mínimo; $f\left(-rac{2}{3},rac{2}{3}
ight)=rac{170}{27}$, máximo local

$$\bigcirc$$
 b. $f(0,0)=-1$, ponto de sela

$$\odot$$
 c. $f(0,0)=-1$, máximo local

od.
$$f(0,0)=-rac{16}{7}$$
, ponto de sela; $f\left(-rac{2}{3},rac{2}{3}
ight)=rac{170}{27}$, máximo mínimo

e.
$$f(0,0)=-1$$
, mínimo local $imes$

Sua resposta está incorreta.

Solução: Primeiro calculamos a derivada da função em relação a x, depois em relação a y.

$$f_x(x,y)=-rac{2x}{(x^2+y^2-1)}$$
 e $f_y(x,y)=-rac{2y}{(x^2+y^2-1)}$

Agora igualamos as derivadas a zero e resolvemos o sistema para encontrar o valor de x e y.

$$-\frac{2x}{(x^2+y^2-1)}=0$$

$$-rac{2y}{(x^2+y^2-1)}=0$$
, assim descobrimos que $x=0$ e $y=0$.

A partir dai calculamos a segunda derivada em relação a x e depois em relação a y, e calculamos a derivada da função em relação a xy.

$$f_{xx}(0,0) = -2 \ f_{yy}(0,0) = -2 \ f_{xy}(0,0) = 0$$

Após descobrir esses valores, substituímos na equação $H = f_{xx} * f_{yy} - f_{xy}^2$, assim descobrimos que H = 4 > 0,e observando que $f_{xx} < 0$, sabemos que é um ponto de máximo.

A resposta correta é: f(0,0) = -1, máximo local

Correto

Atingiu 1,00 de 1,00

A temperatura em um ponto (x,y) em uma placa de metal é $T(x,y)=4x^2-4xy+y^2$. Uma formiga sobre a placa anda ao redor de uma circunferência de raio 5 centrado na origem. Quais são as temperaturas mais alta e mais baixa encontradas pela formiga?

- \odot a. Mais baixo = 5° , mais alto = 120°
- \odot b. Mais baixo = 0° , mais alto = 125°
- \odot c. Mais baixo = 3° , mais alto = 122°
- \bigcirc d. Mais baixo = 2° , mais alto = 124°
- \odot e. Mais baixo = 1° , mais alto = 126°

Sua resposta está correta.

Solução: Temos as equações $T(x,y)=4x^2-4xy+y^2$ e $g=x^2+y^2-25$, fazemos o gradiente das duas

$$\nabla T = (8x - 4y)\mathbf{i} + (-4x + 2y)\mathbf{j} \in \nabla g = 2x\mathbf{i} + 2y\mathbf{j}$$

$$\nabla T = \lambda \nabla g$$

 $(8x-4y)\mathbf{i}+(-4x+2y)\mathbf{j}=\lambda(2x\mathbf{i}+2y\mathbf{j})$, manipulando as equações descobrimos que $\lambda\neq 1$ e que $y=\frac{-2x}{\lambda-1}$.

Assim substituindo na equação $8x-4=2\lambda x$, temos o valor de x=0 ou $\lambda=0$ ou $\lambda=5$

Caso $x=0,\,y=0,$ mas isso não satisfaz a equação $x^2+y^2=25$ ou seja x
eq 0

Se
$$\lambda=0,\,y=2x,$$
 o que nos da $x=\pm\sqrt{5}$ e $y=2\sqrt{5}$

Se
$$\lambda=5,$$
 $y=-\frac{x}{2}$, o que nos da $x=\pm2\sqrt{5}$, sendo $x=2\sqrt{5}$, $y=-\sqrt{5}$, ou $x=-2\sqrt{5}$, $y=\sqrt{5}$

 $\text{Com } T(\sqrt{5},2\sqrt{5}) = 0^{\circ} = T(-\sqrt{5},-2\sqrt{5}) \text{ \'e o m\'inimo valor e } T(2\sqrt{5},-\sqrt{5}) = 125^{\circ} = T(-2\sqrt{5},\sqrt{5}) \text{ \'e o m\'aximo valor.}$

Resposta: Mais baixo = 0° , mais alto = 125°

A resposta correta é:

Mais baixo = 0° , mais alto = 125°