LAB 4 - Sistema Linear Iterativo CCI-22

Alunos: Andrei Albani Vinícius José de Menezes Pereira

Tarefa 1

Tabela 1. Informações referentes aos diferentes métodos para os sistemas de 1 a 7.

Sistema	MATLAB A\b	Critério das linhas	Critério de Sassenfeld	Gauss-Jacobi	Gauss-Seidel
1	[1 -1 0]T	Não	Não. beta = 11	Diverge x(100)=1.0e+46*[2.2167 2.0483 0.5109]	Diverge x(100)=1.0e+80*[-1.1649 3.3007 -2.4755]
2	[1 -1 0]T	Sim	Sim. beta = 0.8	Converge x(20)=[1 -1 0]T	Converge x(7)=[1 -1 0]T
3	[1.1667 3.1667 -0.6667] T	Não	Não. beta = 7	Converge x(46)=[1.1667 3.1667 -0.6667] T	Converge x(11)=[1.1667 3.1667 -0.6667] T
4	[1 0 -1]T	Não	Não. beta = 18	Converge x(4)=[1 0 -1]T	Diverge x(100)=1.0e+32 *[1.8951 -1.9015 0.0127]
5	[1 1 1]T	Não	Não. beta = 1	Diverge x(100)=[0 0 0]T	Converge x(2)=[1 1 1]T
6	[2.1711 1.9342 1.0789]T	Sim	Sim. beta = 0.45	Converge x(10)=[[2.1711 1.9342 1.0789]T	Converge x(6)=[[2.1711 1.9342 1.0789]T
7	[1 1 -1]T	Não	Sim. beta = 0.55	Converge $x(23) = [1 \ 1 \ -1]T$	Converge x(6) =[1 1 -1]T

- a) No sistema 4 o critério das linhas não é satisfeito, mas Gauss-Jacobi converge.
- b) No sistema 5 o critério de Sassenfeld não é satisfeito, mas Gauss-Seidel converge.
- c) No sistemas 2, 3, 5, 6 e 7 é possível notar que o Gauss-Jacobi demora bem mais para convergir.
- d) Nos sistema que o critério das linhas é satisfeito, 2 e 6, o critério de Sassenfeld também o é, como queríamos demonstrar. Mas no sistema 7, onde o critério de Sassenfeld é satisfeito, o critério das linhas não o é.
 - e) Bastou permutar o sistema 1 até dar o sistema 2 que uma matriz passou de não convergir a convergir.

Tarefa 2

A)

Tabela 2. Comparação entre os métodos no sistema (A)

Método	Resíduo	Tempo médio (ms)	Qtde iterações
Gauss com Pivoteamento	-	5.3	-
Solução com Decomposição	-	37.8	-
Gauss-Jacobi	1.2 e-15	1.2	49
Gauss-Seidel	6.6 e-16	3.3	17

Como se pode observar na tabela 2, os métodos iterativos são mais rápidos que os métodos diretos, o que era esperado, dado que se obteve uma matriz aleatória bem condicionada (cond (A, inf) = 2.174) para o sistema.

É interessante notar que o método de Gauss-Jacobi realizou quase o triplo de iterações que o método de Gauss-Seidel, porém possui tempo médio de execução menor. Isso ocorre porque o método de Gauss-Seidel realiza mais operações a cada iteração, devido ao fato de calcular o valor de x(i) com base nos x(j), j < i, já calculados na iteração, o que aumenta o custo de cada iteração em comparação com o método de Gauss-Jacobi.

B)

Tabela 3. Comparação entre os métodos no sistema (B)

Método	Resíduo	Tempo médio (ms)	Qtde iterações
Gauss com Pivoteamento	-	1.0	-
Solução com Decomposição	-	1.7	-
Gauss-Jacobi	NaN	3.0	1000
Gauss-Seidel	0.0009	8.9	1000

Nesse caso, gerou-se uma matriz A muito mal condicionada (cond(A, inf) = 3.4 e10) e nota-se um desempenho, em termos de tempo de execução, pior para os métodos iterativos. Isso ocorre porque os métodos não convergem para o resultado, rodando o número máximo de iterações permitidas. A conclusão é que nesses casos, para se obter a solução do sistema linear é preciso utilizar os métodos diretos.

Tabela 4. Comparação entre os métodos no sistema (C)

Método	Resíduo	Tempo médio (ms)	Qtde iterações
Gauss com Pivoteamento	-	7561	-
Solução com Decomposição	-	27052	-
Gauss-Jacobi	1.7 e-15	47	11
Gauss-Seidel	1.7 e-16	152	10

Toma-se novamente uma matriz bem condicionada (cond(A, inf) = 1.43), grande(n = 1000) e esparsa. Nesse caso, os métodos iterativos funcionam muito melhor pois aproveitam a matriz original para fazer os cálculos e não acumulam erros de arredondamento. Como a matriz tem muitos zeros, o tempo de processamento se torna naturalmente menor do que em comparação com os métodos diretos, que para n grande, apresentam grandes tempos médios de execução, motivo pelo qual são considerados ruins. O método de Gauss com Pivoteamento, que foi mais de três vezes mais rápido que a decomposição LUP, foi cerca de 50 vezes mais lento que o método de Gauss-Seidel e 160 vezes mais lento que o método de Gauss-Jacobi.

Avaliação da dupla

Aluno	Atividades	Percentual
Andrei Albani	Tarefa 2	100%
Vinícius Pereira	Tarefa 1	100%