

Designing Hardware Accelerators for Deep Neural Networks

Manish Pandey

Synopsys, Inc., Mountain View, CA

Roadmap

- Background and Introduction
- Co-Design for DNN Model Compression
- Quantization and Number Representations
- Parallel Architectures and Memory Subsystem
- Case Studies

Revolution in Artificial Intelligence

Intelligence Infused from the Edge to the Cloud

This Tutorial

- DNN Primer and specialization for DNNs
 - The underlying technical basis driving DNN processors
- Specialization
 - Co-Design for DNN Model Compression
 - Eliminate unneeded accuracy
 - IEEE replaced by lower precision FP
 - 16/8 bit integers, low precision and binary representations
 - Parallelism and memory systems
 - Exploiting parallelism of models
 - Overcoming memory systems bottleneck
- Putting it together
 - CPUs, GPUs, ASICs, FPGAs

Advances in AI/ML

Breakthrough Performance across Domains

NLP Performance Breakthrough

Al driven by advances in hardware

Deep Learning Advances Gated by Hardware

7 ExaFLOPS 60 Million Parameters

2015 - Microsoft ResNet Superhuman Image Recognition

20 ExaFLOPS 300 Million Parameters

2016 - Baidu Deep Speech 2 Superhuman Voice Recognition

100 ExaFLOPS 8.7 Billion Parameters

2017 - Google Neural Machine Translation Near Human Language Translation

Deep Learning Advances Gated by Hardware

- Results improve with
 - Larger Models
 - Larger Datasets

NLP Transformers

https://talktotransformer.com/

117M Parameters

345M Parameters

762M Parameters

1,542M Parameters

How Much Compute?

Inferencing**

- 25 Million Weights
- 300 Gops for HD Image
- 9.4 Tops for 30fps
- 12 Cameras, 3 nets = 338 Tops

Training

30Tops x 10⁸ (train set) x 10² (epochs) = 10²
 Ops

**ResNet-50

[Bill Dally, SysML 2018]

Challenge: End of Line for CMOS Scaling

Device scaling down slowing

Power Density stopped scaling in 2005

Dennard Scaling to Dark Silicon

Transistor property	Dennard	Post-Dennard
Δ Quantity	S^2	S^2
Δ Frequency	S	S
Δ Capacitance	1/ <i>S</i>	1/S
$V_{\rm DD}^2$	1/ <i>S</i> ²	1
$\Rightarrow \Delta \text{ Power} = \Delta \text{ QFCV}^2$	1	S^2
$\Rightarrow \Delta$ Utilization = 1/Power	1	1/ <i>S</i> 2

Can we specialize designs for DNNs?

Energy Cost for Operations

*45nm

Energy Cost for DNN Ops

1	A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}) (B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}) (C _{0,0}	C _{0,1}	C _{0,2}	C _{0,3}
	A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}		B _{1,0}	B _{1,1}	B _{1,2}	B _{1,3}	احا	C _{1,0}	C _{1,1}	C _{1,2}	C _{1,3}
	A _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}		B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}	▮▝▀▐	C _{2,0}	C _{2,1}	C _{2,2}	C _{2,3}
	A _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}		B _{3,0}	B _{3,1}	B _{3,2}	B _{3,3}) (C _{3,0}	C _{3,1}	C _{3,2}	C _{3,3}

$$Y = AB + C$$

Instruction	Data	Туре	Energy	Energy/Op
1 Op/Instr (*,+)	Memory	fp32	89 nJ	693 pJ
128 Ops/Instr (AX+B)	Memory	fp32	72 nJ	562 pJ
128 Ops/Instr (AX+B)	Cache	fp32	0.87 nJ	6.82 pJ
128 Ops/Instr (AX+B)	Cache	fp16	0.47 nJ	3.68 pJ

Build a processor tuned to application - specialize for DNNs

- More effective parallelism for AI Operations (not ILP)
 - SIMD vs. MIMD
 - VLIW vs. Speculative, out-of-order
- Eliminate unneeded accuracy
 - IEEE replaced by lower precision FP
 - 32-64 bit bit integers to 8-16 bit integers
- Model Compression
- Efficient memory systems

DNN Primer

Artificial Neurons Tries to Imitate Real Neurons

[https://en.wikipedia.org/wiki/Neuron]

Neural Networks Attempts to Imitate Real World Neural Networks

- The ventral (recognition) pathway in the visual cortex has multiple stages
- Retina LGN V1 V2 V4 PIT AIT

Non-Cartesian

Faces

Lots of intermediate representations

Subjective

contour

[Gallant & Van Essen]

Deep Learning Neural Network

3x227x227

Deep Learning Operations

Data Layers

Image Data
Database
HDF5 Input
HDF5 Output
Input
Window Data
Memory Data
Dummy Data

Vision Layers

UpSampling

Convolution
SeparableConvolution
OcvaveConvolution
Pooling
MaxPooling
AvgPooling
RandomPooling
GlobalAveragePooling
Crop
Deconvolution Layer

Recurrent Layers

Recurrent RNN LSTM GRU

Common Layers

Dense Dropout Embed

Normalization Layers

Batch Normalization

Activation Layers

ReLU/Rectified-Linear and Leaky-ReLU ELU Sigmoid

Absolute Value

Hard sigmoid

Utility Layers

Flatten Reshape Batch Reindex Split Concat Slicing

Eltwise

Filter/Mask

Parameter

Reduction

Silence

ArgMax

Softmax

Tanh

Deep Neural Network

- A deep neural network (DNN) consists of many layers of neurons (perceptrons)
- Each connection indicates a weight w
- Feeding neurons into each other and non-linearities allows a DNN to learn complex decision boundaries

Neural Networks for Images

- So far, we've see networks built from fully-connected layers
- These networks don't work well for images. Why?

 But a fully-connected neuron probably won't work when the input is shifted

The Convolutional Filter

Input Image

- Each neuron learns a **weight filter** and **convolves** the filter over the image
- Each neuron outputs a 2D **feature map** (basically an image of features)

The Convolutional Filter

Input Image

- Each point in the feature map encodes both a decision and its spatial location
- Detects the pattern anywhere in the image!

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

RNNs – Because We Need to Remember the History...

Limitations of CNN based networks

- We only look at the present to make a decision
- Examples have fixed length

Examples where history is important

- Video processing
- Audio
- Text analysis

Recurrent Neural Networks

- RNNs remembers the past by feeding back memory to next iteration
- Implementation is really an unrolling of the network

Recurrent Neural Networks have loops.

An unrolled recurrent neural network.

A Closer Look at RNNs

LSTM (Long Short Term Memory)

Co-Design for DNN Model Compression

Why Model Optimization?

100M+ parameters

- \Rightarrow 100M 32-bit accesses
- \Rightarrow 64 mJ just to load the weights!

Model Optimization

DNN Model Enable efficient **Optimization** inference for mobile or edge applications Structured Dynamic Sparse Quantization Weights Connection Pruning

Spectrum of DNN Compression Techniques

Goal: Enabling efficient inference in resource-limited devices in mobile or edge settings

Co-design of algorithms & hardware yields highest efficiency

Pruning – How many values?

90% values can be thrown away

Dense layers dominate the model size in classical DNNs

Drawbacks of Sparse Pruning

- Requires sparse matrix representation (e.g. CSR, CSC) to track locations of non-zero values
 - Extra storage overhead
 - Memory indirection
 - Irregular parallelism

Regular Convolution (Conv) Revisited

$$y^{(j)} = \sum_{i=1}^{M} x^{(i)} * W^{(ij)}$$

- Assume M input features $x^{(i)}$ and N output features $y^{(j)}$
 - M input channels, N output channels
- $W = \{W^{(ij)}\}$ is the weight tensor of $M \times N$ filters

Example: a regular conv with M = 4, N = 4

Group Convolution (Group Conv)

$$y^{(g,j)} = \sum_{i=1}^{M/G} x^{(g,i)} * W^{(g,ij)}$$

- Assume the number of groups is G, each group has M/G input features $x^{(g,i)}$ and N/G output features $y^{(g,j)}$
- $W = \{W^{(g,ij)}\}$ is the weight tensor of $(M \times N)/G$ filters

Example: a group conv with M = 4, N = 4, G = 2

Group conv reduces compute cost and weight size by a factor of G; it preserves regularity/structure in both compute and memory access

MobileNets [1]: Depthwise Separable Convolution

Regular Convolution (Learns spatial & channel interactions)

Depthwise Separable Convolution

- Depthwise conv is an extreme case of group conv
 - Number of groups = input channels (one filter per channel)
- Pointwise conv enforces information mixing across channels

[1] Howard et al., MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017.

ShuffleNet [1]: Group Conv + Channel Shuffling

ShuffleNet compares favorably against MobileNets in accuracy and compute cost (FLOPs)

[1] Zhang et al., Shufflenet: An extremely efficient convolutional neural network for mobile devices. CVPR'2018.

DNN Compression with Structured Weight Matrices

• Circulant matrix: each row is the previous row shifted right

- Circulant matrices are diagonalized by Fourier transform
 - They are sparse in the Fourier domain

Compressing DNNs using Saliency?

Human visual recognition focuses on salient regions

Basic Idea: dynamically reduce compute effort at unimportant regions of an image

Channel Gating [1]: High-Level Idea

For each layer:

- Estimate "importance" from partial layer computation
- Gate remaining computation at "unimportant" pixels

Channel Gating vs. Static Pruning

- Channel gating outperforms static pruning on both CIFAR-10 and CIFAR-100 datasets
 - Here the naïve static approach removes the same fraction of channels for all layers (except the first and last one)

Quantization

Quantization – How many distinct values?

16 Values => 4 bits representation

Instead of 16 fp32 numbers, store16 4-bit indices

Quantization is Key to Efficient Inference

ResNet50 on GPU

FPGA Performance

Reduced Precision \rightarrow narrower arithmetic operators

- → less area and energy per op
- → fewer bits of storage per data

[1] https://developer.nvidia.com/tensorrt

[2] E. Chung, J. Fowers et al. Serving DNNs in Real Time at Datacenter Scale with Project Brainwave. IEEE Micro, April 2018.

Training Quantized Networks

- STE Straight-Through Estimator
 - During forward pass, it is common to use quantized network
 - During backward pass, approximate the quantizer as a linear function
 - Usually present good results when compared with other approaches

```
def quantizer(x):
    return x + K.stop_gradient(do_something_with_x(x) - x)
```

https://arxiv.org/abs/1609.07061

Number Representations

Several Flavors of Data Types Available

- +1, -1 or 1,0 (xor, binary)
- +1, 0, -1 (ternary)
- Fixed point (ac_fixed)
- Power-of-2 (exponents)
- Shared exponent per layer or matrix
- Floating point numbers (bfloat16, fp8, fp16, fp32, fp64)
- POSITs

Stochastic Binary

$$x^{b} = \operatorname{sign}(x - z) = \begin{cases} +1 & \text{with probability } p = \sigma(x), \\ -1 & \text{with probability } 1 - p, \end{cases}$$

- Acts as a strong regularizer, making network more immune to noise
- When used in weights, remember that training responds to expected value of the gradient (= $2\sigma(x) 1$, but we will need to clip weights between -1 and +1)
- Hard to implement in hardware as an activation layer

Ternary (+a, -b, 0)

- Q: What can we do with single bit or ternary (+a, -b, 0) representations
- A: Surprisingly, a lot. Just retrain/increase the number of activation layers

Model	Full resolution	Ternary Network	Improvement
ResNet-20	8.23	8.87	-0.64
ResNet-32	7.67	7.63	0.04
ResNet-44	7.18	7.02	0.16
ResNet-56	6.80	6.44	0.36

Removing Bias During Quantization

Stochastic Rounding: 2.2 rounded to 2 with probability 0.8 rounded to 3 with probability 0.2

POSIT Numbers

- Uses more mantissa bits towards 0, less bits in later representations
- Reduce number of bits required to store numbers, reducing memory traffic
- Still represented internally as a FP number (part of the exponent is variable
- Posit<8,1> encodes sigmoid in storage

Energy, Area, Delay Trade-offs

 From energy point of view, reducing traffic to memory or to wireless is important

From area point of view, reducing operations and muxes is important

From delay/throughput point of view, non-sharing operations is important

Parallel Architectures

Temporal and Spatial Parallelization

Temporal Architecture (SIMD/SIMT)

Spatial Architecture (Dataflow Processing)

Convolutional Layer

- An output pixel is connected to its neighboring region on each input feature map
- All pixels on an output feature map use the same filter weights

- Four main sources of parallelism
 - 1. Across input feature maps

- Four main sources of parallelism
 - 1. Across input feature maps
 - 2. Across output feature maps

- Four main sources of parallelism
 - 1. Across input feature maps
 - 2. Across output feature maps
 - 3. Across different output pixels (i.e. filter positions)

- Four main sources of parallelism
 - 1. Across input feature maps
 - 2. Across output feature maps
 - 3. Across different output pixels (i.e. filter positions)
 - 4. Across filter pixels

Parallelism in the Code

Convolution Implementation

Feature map: H x W x C

Conv weights: D filters, each K x K x C

Feature map: H x W x C

Reshape K x K x C receptive field to column with K²C elements

Conv weights: D filters, each K x K x C

Feature map: H x W x C

Conv weights: D filters, each K x K x C

Repeat for all columns to get (K²C) x N matrix (N receptive field locations – i.e., total N values per output channel)

Feature map: H x W x C

Conv weights: D filters, each K x K x C

Elements appearing in multiple receptive fields are duplicated; this uses a lot of memory

Repeat for all columns to get (K²C) x N matrix (N receptive field locations)

Feature map: H x W x C Conv weights: D filters, each K x K x C

Reshape each filter to K^2C row, making D x (K^2C) matrix

Feature map: H x W x C

(K²C) x N matrix

Feature map: H x W x C

Note that columns overlap

If we group the elements by H or W, we get K blocks per column, a "sliding" pattern is evident

(K²C) x N matrix

When we call matrix multiply, we specify a "stride" between columns.

Normally this is the actual column height

Note that columns overlap

If we group the elements by H or W, we get K blocks per column, a "sliding" pattern is evident

(K²C) x N matrix

But if we instead call MM with a "column" separation which is the height of one of the K blocks, we can perform the same operation with less memory

(K²C) x N matrix

But if we instead call MM with a "column" separation which is the height of one of the K blocks, we can perform the same operation with less memory (reduce column count by K)

You can also perform the convolution "in place" – without an additional memory buffer, using K matrix multiplies

C x N matrix

Best!

Convolutions to Matrix Multiplication

- Convolutions lowered onto matrix multiplication.
- Fixed sized submatrices of inputs D_m and F_m are moved on-chip
- Lazily materialize D_m
- Compute on tiles of D_m and F_m while fetching the next tiles off-chip memory into on-chip caches and other memories.
- Compute pipelining hides data transfer latency.

2-D Grid of Processing Elements

Systolic Arrays

- Balance compute and I/O
- Local Communication
- Concurrency
- M1*M2 nxn mult in 2n cycles

Memory Subsystems

Memory Locality

Interconnect

Weights

Compute

Memory and inter-chip communication advances

32b DRAM Read 640 pJ

64pJ/B 16GB 900GB/s @ 60W

Memory power density
Is ~25% of logic power density

In-Memory Compute

In-memory compute with low-bits/value, low cost ops

Putting it all together

CPU Based Acceleration

- All ML and DL algorithms start and end in machine subsystem
- Multi-core/multi-thread systems are common nowadays
- Processor have high speed bandwidth to memory subsystem
- Hard to beat Numpy math library
- But you end up using all machine resources for a single user

Intel® CPU Outperforms NVIDIA* GPU on ResNet-50 Deep Learning Inference

By Haihao Shen, Feng Tian, Xu Deng, Cong Xu, Andres Rodriguez, Indu K., Wei Li, published on May 13, 2019

GPUs Based Acceleration

Tensor Core

Data Types in Tensor Core

TPUv1

TPUv2

- 8GB + 8GB HBM
- 600 GB/s Mem BW
- 32b float
- MXU fp32 accumulation
- Reduced precision mult.

FPGA Based Acceleration

- RTL/HLS/OpenCL-based flow gaining acceptance and high-speed development
- Uses DSP-based blocks commonly used in FPGAs
- Being fully programmable means users can recompile new binaries to address new architecture challenges
- If using very low precision quantization, they can efficiently use resources and have very good performance

FPGA Based Acceleration

- Can adapt to multiple requirements, whether logic or computational
- Shell provides common infrastructure (including communication) to applications
- User has to worry only about application implementation

Mixed Signal Design

- +1/-1 XNOR network
- Use binary to thermometer to normalize the first layer
- Store and retrieve intermediate values in SRAM
- Perform multiplication using XNOR and analog addition

Mixed Signal Design

Summing Up

Al Application-System Co-design

John Hennessy [Turing Award, 2017]:

"A new approach to computer architecture is needed. We need Renaissance computer architecture. Instead of people who understand a sliver of the vertical stack, we need [..] people who understand applications, compilers, architecture [..]"

A Gap in Capabilities

VS

- 1-10 Exaflops
- 4PB memory
- 20 Watts

Compute-Energy Gap of 10⁶

Thank You!

