Федеральное государственное автономное образовательное учреждение высшего образования "Национальный Исследовательский Университет ИТМО"
Мегафакультет Компьютерных Технологий и Управления
Факультет Программной Инженерии и Компьютерной Техники

Вариант №15 Лабораторная работа №4 по дисциплине Вычислительная математика

Выполнил Студент группы Р32101 **Лапин Алексей Александрович** Преподаватель: **Рыбаков Степан Дмитриевич**

г. Санкт-Петербург 2023г.

Содержание

1	Цель работы:	3
2	Порядок выполнения работы: 2.1 Методика проведения исследования: 2.2 Программная реализация задачи: 2.3 Вычислительная реализация задачи:	
3	Рабочие формулы используемых методов.	4
4	Вычислительная реализация задачи: 4.1 Линейная аппроксимация 4.2 Квадратичная аппроксимация 4.3 Наилучшее приближение 4.4 Графики функций	4 4 5 6 6
5	Листинг программы, по крайней мере, коды используемых методов.	6
6	Результаты выполнения программы при различных исходных данных.	11
7	Выводы	28

1 Цель работы:

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

2 Порядок выполнения работы:

2.1 Методика проведения исследования:

- 1. Вычислить меру отклонения: $S = \sum_{i=1}^n \left[\varphi(x_i) y_i \right]^2$ для всех исследуемых функций;
- 2. Уточнить значения коэффициентов эмпирических функций, минимизируя функцию S;
- 3. Сформировать массивы предполагаемых эмпирических зависимостей $\phi(x_i)$;
- 4. Определить среднеквадратичное отклонение для каждой аппроксимирующей функции. Выбрать наименьшее значение и, следовательно, наилучшее приближение;
- 5. Построить графики полученных эмпирических функций.

2.2 Программная реализация задачи:

- 1. Предусмотреть ввод исходных данных из файла/консоли (таблица y = f(x)должна содержать от 8 до 12 точек);
- 2. Реализовать метод наименьших квадратов, исследуя все указанные функции;
- 3. Предусмотреть вывод результатов в файл/консоль: коэффициенты аппроксимирующих функций, среднеквадратичное отклонение, массивы значений $x_i, y_i, \varphi(x_i), \varepsilon_i$;
- 4. Для линейной зависимости вычислить коэффициент корреляции Пирсона;
- 5. Программа должна отображать наилучшую аппроксимирующую функцию;
- 6. Организовать вывод графиков функций, графики д полностью отображать весь исследуемый интервал (с запасом);
- 7. Программа должна быть протестирована при различных наборах данных, в том числе и некорректных;

2.3 Вычислительная реализация задачи:

- 1. Сформировать таблицу табулирования заданной функции на указанном интервале (см. табл. 1)
- 2. Построить линейное и квадратичное приближения по 11 точкам заданного интервала;
- 3. Найти среднеквадратические отклонения для каждой аппроксимирующей функции. Ответы дать с тремя знаками после запятой;
- 4. Выбрать наилучшее приближение;

- 5. Построить графики заданной функции, а также полученные линейное и квадратичное приближения;
- 6. Привести в отчете подробные вычисления.

3 Рабочие формулы используемых методов.

Линейная функция:

$$\varphi(x, a, b) = ax + b$$

Квадратичная функция:

$$\varphi(x, a_0, a_1, a_2) = a_0 + a_1 x + a_2 x^2$$

Степенная функция:

$$\varphi(x) = ax^b$$

Экспоненциальная функция:

$$\varphi(x) = ae^{bx}$$

Логарифмическая функция:

$$\varphi(x) = aln(x) + b$$

Коэффициент корреляции Пирсона:

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - y)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

Среднеквадратичное отклонение:

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (\varphi(x_i) - y_i)^2}{n}}$$

4 Вычислительная реализация задачи:

$$y = \frac{4x}{x^4 + 15}$$

4.1 Линейная аппроксимация

X		-2	-1.8	-1.6	-1.4	-1.2	-1	-0.8	-0.6	-0.4	-0.2	0
7	′ I	-0.258	-0.282	-0.297	-0.297	-0.281	-0.250	-0.208	-0.159	-0.106	-0.053	0.000

$$SX = -11$$

 $SXX = 15.4$
 $SY = -2.192$
 $SXY = 2.818$
 $\Delta = 48.4$
 $\Delta_1 = 6.883$

$$\Delta_2 = -2.761$$

$$a = \frac{\Delta_1}{\Delta} = \frac{6.883}{48.4} \approx 0.142$$

$$b = \frac{\Delta_2}{\Delta} = \frac{-2.761}{48.4} \approx -0.057$$

$$P(x) = 0.142x - 0.057$$

X	-2	-1.8	-1.6	-1.4	-1.2	-1	-0.8	-0.6	-0.4	-0.2	0
Y	-0.258	-0.282	-0.297	-0.297	-0.281	-0.250	-0.208	-0.159	-0.106	-0.053	0.000
ax+b	-0.341	-0.313	-0.285	-0.256	-0.228	-0.199	-0.171	-0.142	-0.114	-0.085	-0.057
ε	-0.083	-0.031	0.012	0.041	0.053	0.051	0.037	0.016	-0.007	-0.032	-0.057
S	0.007	0.001	0.000	0.002	0.003	0.003	0.001	0.000	0.000	0.001	0.003
δ	0.044										

4.2 Квадратичная аппроксимация

X	-2	-1.8	-1.6	-1.4	-1.2	-1	-0.8	-0.6	-0.4	-0.2	0
Y	-0.258	-0.282	-0.297	-0.297	-0.281	-0.250	-0.208	-0.159	-0.106	-0.053	0.000

n 11.000 SX -11.000 S2X 15.400 S3X -24.200 S4X 40.533 SY -2.192 SXY 2.818 S2XY -4.154

$$\begin{cases} a_0n + a_1 \sum_{i=1}^n x_i + a_2 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i \\ a_0 \sum_{i=1}^n x_i + a_1 \sum_{i=1}^n x_i^2 + a_2 \sum_{i=1}^n x_i^3 = \sum_{i=1}^n x_i y_i = \begin{cases} a_0(11) + a_1(-11) + a_2(15.4) = (-2.192) \\ a_0(-11) + a_1(15.4) + a_2(-24.2) = (2.818) \\ a_0(15.4) + a_1(-24.2) + a_2(40.533) = (-4.154) \end{cases}$$

$$\begin{cases} a_0 \sum_{i=1}^n x_i^2 + a_1 \sum_{i=1}^n x_i^3 + a_2 \sum_{i=1}^n x_i^4 = \sum_{i=1}^n x_i^2 y_i \end{cases}$$

$$a_0 = 0.016$$

 $a_1 = 0.384$
 $a_2 = 0.121$

$$P(x) = 0.016 + 0.384x + 0.121x^2$$

X	-2	-1.8	-1.6	-1.4	-1.2	-1	-0.8	-0.6	-0.4	-0.2	0
Y	-0.258	-0.282	-0.297	-0.297	-0.281	-0.250	-0.208	-0.159	-0.106	-0.053	0.000
$a_0 + a_1 x + a_2 x^2$	-0.269	-0.284	-0.289	-0.285	-0.271	-0.248	-0.214	-0.171	-0.119	-0.056	0.016
ε	-0.011	-0.002	0.008	0.012	0.010	0.002	-0.007	-0.013	-0.012	-0.003	0.016
S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
δ	0.010			•							

4.3 Наилучшее приближение

Квадратичная аппроксимация: $\delta=0.01$

4.4 Графики функций

5 Листинг программы, по крайней мере, коды используемых методов.

```
#include "Linear.h"
void approx::Linear::fit() {
    auto n = static_cast < double > (_points.size());
    double SX = 0, SY = 0, SXX = 0, SXY = 0;
    for(auto point : _points) {
        SX+=point.first;
        SXX+=point.first*point.first;
        SY+=point.second;
        SXY+=point.first*point.second;
    }
    std::vector<std::vector<double>> A = {{SX, SXX}, {n, SX}};
    std::vector<double> b = {SXY, SY};
    _params = std::move(GaussianElimination::solve(A, b));
    set_s();
    set_standard_deviation();
    set_pearson_correlation_coefficient();
}
void approx::Linear::set_pearson_correlation_coefficient() {
    double X = 0, Y = 0;
    for(auto point : _points) {
       X+=point.first;
       Y+=point.second;
    double Sx = X / _points.size();
    double Sy = Y / _points.size();
    double Sxy = 0, Sxx = 0, Syy = 0;
    for(auto point : _points) {
        Sxy += (point.first - Sx)*(point.second - Sy);
        Sxx += (point.first - Sx)*(point.first - Sx);
        Syy += (point.second - Sy)*(point.second - Sy);
    _extras["Pearson Correlation Coefficient"] = Sxy / sqrt(Sxx*Syy);
}
#include "Quadratic.h"
void approx::Quadratic::fit() {
    auto n = static_cast < double > (_points.size());
    double SX = 0, S2X = 0, S3X=0, S4X = 0, SY = 0, SXY = 0, S2XY = 0;
    for(auto point : _points) {
        SX+=point.first;
        S2X+=point.first*point.first;
        S3X+=point.first*point.first*point.first;
        S4X+=point.first*point.first*point.first*point.first;
        SY+=point.second;
        SXY+=point.first*point.second;
```

```
S2XY+=point.first*point.first*point.second;
    }
    std::vector<std::vector<double>> A = {{n, SX, S2X},
                                 {SX, S2X, S3X}, {S2X, S3X, S4X}};
    std::vector < double > b = {SY, SXY, S2XY};
    _params = std::move(GaussianElimination::solve(A, b));
    set_s();
    set_standard_deviation();
}
#include "Cubic.h"
void approx::Cubic::fit() {
    auto n = static_cast < double > (_points.size());
    std::vector<std::vector<double>> A(4);
    for(int i = 0; i < A.size(); i++) {</pre>
        A[i].push_back(pair_sum(_points, i));
        A[i].push_back(pair_sum(_points, i+1));
        A[i].push_back(pair_sum(_points, i+2));
        A[i].push_back(pair_sum(_points, i+3));
    }
    std::vector < double > b(4);
    for(int i = 0; i < b.size(); i++) {</pre>
        b[i] = two_pair_sum(_points, i, 1);
    _params = std::move(GaussianElimination::solve(A, b));
    set_s();
    set_standard_deviation();
}
#include "Exponential.h"
#include "Linear.h"
void approx::Exponential::fit() {
    auto new_points = _points;
    for(auto & point : new_points) {
        point.second = log(point.second);
    Linear linear(new_points);
    linear.fit();
    auto params = linear.getParams();
    _params.push_back(exp(params[0]));
    _params.push_back(params[1]);
    set_s();
    set_standard_deviation();
}
#include "Logarithmic.h"
```

```
#include "Linear.h"
void approx::Logarithmic::fit() {
    auto new_points = _points;
    for(auto & point : new_points) {
        point.first = log(point.first);
    }
    Linear linear(new_points);
    linear.fit();
    auto params = linear.getParams();
    _params.push_back(params[0]);
    _params.push_back(params[1]);
    set_s();
    set_standard_deviation();
}
#include "Power.h"
#include "Linear.h"
void approx::Power::fit() {
    auto new_points = _points;
    for(auto & point : new_points) {
        point.first = log(point.first);
        point.second = log(point.second);
    }
    Linear linear(new_points);
    linear.fit();
    auto params = linear.getParams();
    _params.push_back(exp(params[0]));
    _params.push_back(params[1]);
    set_s();
    set_standard_deviation();
}
#include "AbstractApproximation.h"
approx::AbstractApproximation::AbstractApproximation(const
std::function < double (double, std::vector < double >) > &f,
const std::vector<std::pair<double,double>> &points) : _f(f),
                             _points(points) {}
void approx::AbstractApproximation::set_s() {
    double S = 0;
    if(_params.empty()){
        return;
    }
    for(auto point : _points) {
        double test = _f(point.first, _params);
```

```
S+=pow(_f(point.first, _params) - point.second, 2);
    }
    _extras["Minimization criterion"] = S;
}
void approx::AbstractApproximation::set_standard_deviation() {
    if(_extras.find("Minimization criterion") == _extras.end()){
        set_s();
    }
    _extras["Standard Deviation"] =
    sqrt(_extras["Minimization criterion"] / (_points.size()));
}
std::pair<std::vector<std::vector<std::string>>,
std::vector<std::string>>
 approx::AbstractApproximation::get_info() {
    std::vector<std::vector<std::string>> res(_points.size());
    for(int i = 0; i < _points.size(); ++i) {</pre>
        res[i].push_back(std::to_string(static_cast<int>(i + 1)));
        res[i].push_back(std::to_string(_points[i].first));
        res[i].push_back(std::to_string(_points[i].second));
        res[i].push_back(std::to_string(_f(_points[i].first, _params)));
        res[i].push_back(std::to_string(_f(_points[i].first, _params) -
        _points[i].second));
    }
    return std::make_pair<std::vector<std::vector<std::string>> &,
    std::vector<std::string>>(res, {"N p.p.", "xi", "yi", "fi", "ei"});
}
double approx::AbstractApproximation::
get_extra_info(std::string key) {
    return _extras[key];
}
std::pair<std::vector<std::vector<std::string>>,
std::vector<std::string>>
    approx::AbstractApproximation::get_extras_info() {
    std::vector<std::vector<std::string>> res(_extras.size());
    int i = 0;
    for(auto extra : _extras) {
        res[i].push_back(extra.first);
        res[i].push_back(std::to_string(extra.second));
        ++i:
    }
    for(int i = 0; i < _params.size(); ++i) {</pre>
        res.push_back({"a" + std::to_string(i),
        std::to_string(_params[i])});
    }
```

```
return std::make_pair<std::vector<std::vector<std::string>> &,
    std::vector<std::string>>(res, {"Key", "Value"});
}
const std::function < double (double, std::vector < double >) > &
approx::AbstractApproximation::getF() const {
    return _f;
}
const std::vector<double>
&approx::AbstractApproximation::getParams() const {
    return _params;
double approx::AbstractApproximation::pair_sum(const
std::vector<std::pair<double, double>> array, int powNum, bool choice)
const {
    double sum = 0;
    for(auto& el : array) {
        if(choice) {
            sum += pow(el.first, powNum);
        } else {
            sum += pow(el.second, powNum);
        }
    }
    return sum;
}
double approx::AbstractApproximation::two_pair_sum(const
std::vector<std::pair<double, double>> array, int powNum1,
                                 int powNum2) const {
    double sum = 0;
    for(auto& el : array) {
        sum += pow(el.first, powNum1) * pow(el.second, powNum2);
    return sum;
}
```

6 Результаты выполнения программы при различных исходных данных.

```
Do you want to load points from a file? (y/n): y Enter _filename: test1 Do you want to output to a file? (y/n): n
```

	POWER			++					
N p.p.	xi	yi	fi	ei					
1	1.100000	2.730000	2.753465	0.023465					
2	2.300000	5.120000	5.108953	-0.011047					
3	3.700000	7.740000	7.609647	-0.130353					
4	4.500000	8.910000	8.966163	0.056163					
5	5.400000	10.590000	10.446321	-0.143679					
6	6.800000	12.750000	12.672535						
7 7	7.500000	13.430000		·					
+ Key	+++++								
Standard	Standard Deviation 0.148514								
Minimiza	Minimization criterion 0.154396								
a0		2.542090)						
a1			0.838036						
	LOGARITHMIC-	·	т						
	xi	+ уі	 fi	ei					
1	1.100000	2.730000	1.737381	-0.992619					
2	2.300000	5.120000	5.904843	0.784843					
3	3.700000	7.740000	8.591004	0.851004					
4	4.500000	8.910000 	9.696968	0.786968					
5	5.400000	10.590000 	10.727092	0.137092					
6	6.800000	12.750000 -	12.029559	-0.720441					
		13.430000 							
•			+	·+					

Key		Value	l	
Standar	d Deviation	0.774576	5	
Minimiz	ation criterio	on 4.199778	3	
a0		1.19887	5	
a1		5.65003	7	
	-EXPONENTIAL			
N p.p.	xi	yi	+ fi	ei
1	1.100000	2.730000	3.534788 	0.804788
2	2.300000	5.120000	4.683819 	-0.436181
3	3.700000	7.740000	6.504437	-1.235563
4	4.500000	8.910000	7.846950	-1.063050
5	5.400000	10.590000	9.691220	-0.898780
6	6.800000	12.750000	13.458233	0.708233
7	7.500000	13.430000	15.859622 	2.429622
+		+	+	тт
Key +		Value +	 +	
Standar		1.236764	4	
Minimiz	ation criterio	•		
a0		2.73094	•	
a1		0.234550		
	-CUBIC	·+ ·		
+		yi	+ fi	++ ei
+	1.100000			++
2	2.300000		+	++ -0.055347
+	3.700000	7.740000		++ -0.070750

_	_	L	_						
4	4.500000	8.910000 	9.079564 -	0.169564					
5	5.400000	10.590000	10.569680	-0.020320					
6	6.800000	12.750000	12.624264	-0.125736					
7	7.500000		13.504675	0.074675					
+ Key		+ Value	+ 	,					
Standard	Deviation	0.09211	0.092117						
Minimiza	tion criteri		+ 99						
+		0.63977 0.63977	+ 72						
a1		1.91187	+ 77						
a2		0.01910	+ 07						
a3		-0.0060	042						
+	QUADRATIC	+ 	+						
	xi	 уі -	fi 	ei					
1	1.100000	2.730000 	2.720172	-0.009828					
2	2.300000	5.120000	5.116916	-0.003084					
3			7.698891 -+	-0.041109					
4	•	8.910000	·	0.160725					
	5.400000	10.590000	10.523993	-0.066007					
	6.800000	12.750000		-0.154875					
	7.500000	13.430000	13.544178	0.114178					
•			+	,					
Standard	Deviation	0.09928	+ 39						
т	+ Minimization criterion 0.069008								

+	+	·	
a0 +	0.37426 +	0	
a1 +	2.19738	·	
a2	-0.0588		
T 		т	
N p.p.	xi	fi	ei
+ 1	1.100000 2.730000	3.070710	0.340710
2	2.300000 5.120000		-0.026831
3	3.700000 7.740000		
4	4.500000 8.910000	8.801011	-0.108989 -
5	5.400000 10.590000		
6	6.800000 12.750000	•	++ -0.072609
	7.500000 13.430000 -+		
	-+	++	+
Key 		Value	
Pearson	Correlation Coefficient	0.997419	
Standard	l Deviation	0.259950	
		0.473020	
a0		1.216788	
a1		1.685383	
	BEST APPROXIMATION		

Best approximation: Cubic Standard Deviation: 0.0921169

5	-1.200000	-0.281000 +		nan +			
6	-1.000000	-0.250000		nan			
+ 7	-0.800000			•			
+ 8	-0.600000		+ nan				
+ 9	-0.400000						
	-0.200000	-0.053000	nan	nan			
	0.000000		nan	nan			
+ Key +		++ Value ++					
•		nan					
Minimiza	ation criterio	n nan					
a0		nan					
 a1	a1 nan						
	-LOGARITHMIC						
	xi		+ fi +				
	-2.000000	-0.258000	nan	nan			
2 2	-1.800000						
3 	-1.600000	-0.297000 		nan			
+ 4	-1.400000	•	•	nan			
+ 5 ₋	-1.200000	-0.281000 					
+ 6 ₊	-1.000000		nan	nan			
+ 7 ₊	-0.800000	•	nan	nan			
+ 8	-0.600000			nan			
+ 9	-0.400000	•	+ nan	nan			
+ 10	-0.200000	-0.053000	 nan	nan			

+ 11	+			++ nan					
+ + Key		++ Value	r·	++					
+	Deviation	++ nan							
+ Minimiza	tion criterion	++							
+ a0		++ nan							
+ a1		++ nan							
+	EXPONENTIAL								
+	+ xi	+ yi	fi	++ ei					
1	-2.000000	-0.258000	nan	++ nan					
2	-1.800000	-0.282000 	nan	 nan 					
3	-1.600000		nan	nan 					
4	-1.400000	-0.297000	nan	nan 					
5 +	-1.200000 		nan	nan ++					
6 	-1.000000 +	-0.250000 	nan	nan 					
7 	-0.800000 +	-0.208000 	nan	nan ++					
	-0.600000 +								
9 +	-0.400000 +	-0.106000 +		nan ++					
	-0.200000 +								
	0.000000 +								
Key		Value							
Standard	+ Standard Deviation nan								
	Minimization criterion nan								
+ a0		++ nan							

+ a1		++ nan	-	
+	CUBIC	++ ,	-	
N p.p.	xi	+ yi	fi	ei
1	-2.000000	-0.258000 	-0.254427	0.003573
2	-1.800000	-0.282000 _	-0.286678	-0.004678
3	-1.600000	-0.297000	-0.299760	-0.002760
4	-1.400000	-0.297000	-0.296040	0.000960
5	-1.200000	-0.281000	-0.277886	0.003114
6	-1.000000	-0.250000	-0.247667	0.002333
+ 7 +	-0.800000	-0.208000	-0.207751	0.000249
8	-0.600000	-0.159000	-0.160506	-0.001506
9	-0.400000	-0.106000	-0.108301	-0.002301
10	-0.200000	-0.053000	-0.053503	-0.000503
11	0.000000	0.000000	0.001517	0.001517
+ Key		+ Value	+ 	.,,
	Deviation	·	•	
	tion criterion	·	•	
a0		0.001517	7	
a1		0.271717	·	
a2		-0.02680	7	
a3		-0.04934	10	
	QUADRATIC			
∣ N p.p.	xi	yi	fi	
+	+	+	+	++

```
1
    | -2.000000 | -0.258000 | -0.268636 | -0.010636
 _____+__+___+___+___+
    +----+
    | -1.600000 | -0.297000 | -0.289339 | 0.007661
 -----+----+-----+
    | -1.400000 | -0.297000 | -0.285145 | 0.011855
 | -1.200000 | -0.281000 | -0.271255 | 0.009745
    | -1.000000 | -0.250000 | -0.247667 | 0.002333
+----+---+----+----+
    | -0.800000 | -0.208000 | -0.214382 | -0.006382
 _____+
    +----+---+----+----+
    | -0.400000 | -0.106000 | -0.118721 | -0.012721
+----+---+----+-----+
    | -0.200000 | -0.053000 | -0.056345 | -0.003345
_____+
    -----+----+----+
 -----+
| Kev
            | Value
+----+
| Standard Deviation
            0.009681
+----+
| Minimization criterion | 0.001031
-----+
            0.015727
            0.384606
+----+
            0.121212
-----LINEAR-----
 ----+-
                 | fi
| N p.p. | xi
           | yi
                        | ei
 -----+----+----+-----+
    | -2.000000 | -0.258000 | -0.341364 | -0.083364
+----+---+----+----+
    | -1.800000 | -0.282000 | -0.312927 | -0.030927
_____+
    | -1.600000 | -0.297000 | -0.284491 | 0.012509
_____+___+____+____+
    | -1.400000 | -0.297000 | -0.256055 | 0.040945
    | -1.200000 | -0.281000 | -0.227618 | 0.053382
I 5
```

_		L	_		
6			-0.199182 +		
•	-0.800000	-0.208000	-0.170745 +	0.037255	
8	-0.600000	-0.159000	-0.142309 -+	0.016691	
•	•	•	•	-0.007873	
			-0.085436		
11	0.000000	0.000000	-0.057000	-0.057000	
•			++		
Key			 Value		
·	Correlation C	oefficient	0.898626		
Standard	Deviation		0.043901		
Minimiza	tion criterion		0.021201		
a0 +			-0.057000		
a1			0.142182		
BEST APPROXIMATION					
DESI APPRUATINATIUN					

Best approximation: Cubic Standard Deviation: 0.00249577

+	_+	+	+ ·	+ -	
N p.p.	xi	yi -	fi 	ei	
1 1	0.000000	0.000000	nan	nan	
2 	0.200000	2.396000	nan 	nan 	
3	0.400000	4.680000	nan 	nan 	
4 	0.600000	6.374000	nan 	nan 	
5 +	0.800000	6.810000	nan 	nan 	
6 +	1.000000	6.000000	nan 	nan 	
7 *	1.200000	4.685000	nan	nan	
8 	1.400000	3.470000	nan 	 nan ++	
9 -	1.600000	2.542000	nan	nan + + +	
10	1.800000	1.879000	nan	nan	
11 	2.000000	1.412000	nan	nan + + +	
+	· 	+	_+		
Key +		Value	 -+		
Standar	d Deviation	nan			
Minimiz: +	ation criteri	on nan	 _+		
++ a0			 -		
++ a1					
++ LOGARITHMIC+ ++					
N p.p.	xi -+	l yi	 fi 	ei	
 1 +	0.000000	,		nan 	
+ 2 +	0.200000		 nan +		
+ 3 -	0.400000	•	nan	nan	
	0.600000 +	6.374000	nan		
	- '				

5	0.800000	6.810000	nan	nan
6	1.000000	6.000000 +	nan	nan
7	1.200000	•	nan	nan
8	1.400000	3.470000 	nan	nan
9	1.600000	2.542000	nan	nan
10	1.800000		nan +	nan
11 11	2.000000	1.412000	•	nan
+ Key +	·	+ Value +	+ +	
Standar	d Deviation	nan		
Minimiz	ation criteri	on nan _		
++ a0				
a1		nan		
_				
	EXPONENTIAL-	+ 	+	
+ + N p.p.	+	·	+ -+ fi -	++ ei
+ N p.p. +	+	 +	-+	++
+ N p.p. + 1 +	+ xi +		-+ nan -+	++
+ N p.p. + 1 +	+	+	-+ nan -+ nan	++ nan ++
+ N p.p. + 1 + 2 +	xi -+	+	-+ nan -+ nan -+ nan	++ nan ++ nan ++ nan ++
+	xi xi 0.000000 0.200000 0.400000	+	-+ nan -+ nan -+ nan -+ nan	++ nan ++ nan ++ nan ++
+	xi xi 0.000000 0.200000 0.400000 0.600000	+	-+	++ nan ++ nan ++ nan ++ nan ++ nan ++
+	xi xi 0.000000 0.200000 0.400000 0.600000 0.800000	+	-+ nan -+ nan -+ nan -+ nan -+ nan -+ nan	++ nan ++ nan ++ nan ++ nan ++ nan ++ nan ++
+	xi xi 0.000000 0.200000 0.400000 0.600000 0.800000 1.000000	+	-+ nan -+ nan -+ nan -+ nan -+ nan -+ nan	++ nan ++ nan ++ nan ++ nan ++ nan ++ nan ++
+	xi xi 0.000000 0.200000 0.200000 0.400000 0.600000 0.800000 1.000000 1.200000	+	-+ nan	++ nan ++

```
+----+
   | 2.000000 | 1.412000 | nan | nan |
_____+
 -----+
           | Value |
+----+
Standard Deviation
           l nan
+----+
| Minimization criterion | nan
_____+
l a0
           nan
+----+
l a1
           l nan
+----+
 -----CUBTC-----
 _____+
| N p.p. | xi
         | yi
               | fi
+----+
    | 0.000000 | 0.000000 | -0.435566 | -0.435566
+----+
    1 0.200000 | 2.396000 | 2.984385 | 0.588385
0.416664
    0.400000 | 4.680000 | 5.096664
| 0.600000 | 6.374000 | 6.121599
                     -0.252401
| 0.800000 | 6.810000 | 6.279515
                     | -0.530485
+----+---+----+----+
    | 1.000000 | 6.000000 | 5.790739
                     1 -0.209261
+----+
    | 1.200000 | 4.685000 | 4.875597
1 7
                     0.190597
+----+
   | 1.400000 | 3.470000 | 3.754415 | 0.284415
+----+
    | 1.600000 | 2.542000 | 2.647520 | 0.105520
+----+
    | 1.800000 | 1.879000 | 1.775238 | -0.103762 |
+----+---+----+----+
    | 2.000000 | 1.412000 | 1.357895 | -0.054105 |
+----+
| Key
           | Value
+----+
| Standard Deviation
           0.335814
+----+
| Minimization criterion | 1.240482
           | -0.435566
| a0
```

```
+----+
            20.736144
_____+
            | -19.099971 |
l a2
+----+
            1 4.590132
+----+
-----QUADRATIC-----
+----+
          | yi
                     | ei
| N p.p. | xi
               | fi
+----+
    1 0.000000 | 0.000000 | 0.886392 | 0.886392
+----+---+----+----+
    | 0.200000 | 2.396000 | 2.719993 | 0.323993
+----+
    | 0.400000 | 4.680000 | 4.127228 | -0.552772
+----+---+----+----+
    | 0.600000 | 6.374000 | 5.108098 | -1.265902 |
+----+---+----+----+
    0.800000 | 6.810000 | 5.662601 | -1.147399 |
+----+----+-----+
    | 1.000000 | 6.000000 | 5.790739 | -0.209261
+----+
    | 1.200000 | 4.685000 | 5.492510 | 0.807510
1 7
+----+
    | 1.400000 | 3.470000 | 4.767916 | 1.297916
+----+
    +----+
    | 1.800000 | 1.879000 | 2.039629 | 0.160629
+----+---+----+
    | 2.000000 | 1.412000 | 0.035937 | -1.376063 |
+----+
| Kev
            | Value
+----+
| Standard Deviation
           0.932766
+----+
| Minimization criterion | 9.570580
+----+
l a0
            1 0.886392
+----+
            | 10.233922 |
l a1
| a2
            | -5.329575 |
+----+
-----LINEAR-----
```

N p.p.	xi +	yi +	fi +	ei	
1	0.000000	0.000000	4.084136	4.084136	
2	0.200000	2.396000	3.999091	1.603091	
3	0.400000	4.680000	3.914045	-0.765955	
4	0.600000	6.374000	3.829000	-2.545000	
5	0.800000	6.810000	3.743955	-3.066045	
6	1.000000	6.000000	3.658909	-2.341091	
7	1.200000	4.685000	3.573864	-1.111136	
8	1.400000	3.470000	3.488818	0.018818	
9	1.600000	2.542000	3.403773	0.861773	
10	1.800000	1.879000 	3.318727 	1.439727	
11	2.000000	1.412000	3.233682 	1.821682	
+			-+ Value	+ 	
+			_+	+ I	
+			-+	+	
Standard Deviation +			2.101171 -+	 +	
Minimization criterion			48.564093		
+			4.084136	, _	
a1			-0.425227	Ī	
++BEST APPROXIMATION					

Best approximation: Cubic Standard Deviation: 0.335814

7 Выводы

В этой лабораторной работе я изучил методы нахождения функции являющейся наилучшим приближением заданной табличной функции по методу наименьших квадратов, выполнил программную реализацию методов.