# Computational Tractability

As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise - By what course of calculation can these results be arrived at by the machine in the shortest time? - Charles Babbage



Charles Babbage (1864)



Analytic Engine (schematic)

#### Polynomial-Time

Brute force. For many non-trivial problems, there is a natural brute force search algorithm that checks every possible solution.

- $\blacksquare$  Typically takes  $2^N$  time or worse for inputs of size N.
- Unacceptable in practice.

n! for stable matching with n men and n women

Desirable scaling property. When the input size doubles, the algorithm should only slow down by some constant factor C.

There exists constants c > 0 and d > 0 such that on every input of size N, its running time is bounded by  $c N^d$  steps.

Def. An algorithm is poly-time if the above scaling property holds.

choose  $C = 2^d$ 

#### Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time of algorithm on input of a given size N.

- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N.

- Hard (or impossible) to accurately model real instances by random distributions.
- Algorithm tuned for a certain distribution may perform poorly on other inputs.

## Worst-Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

#### Justification: It really works in practice!

- $\blacksquare$  Although 6.02  $\times$   $10^{23}$   $\times$   $N^{20}$  is technically poly-time, it would be useless in practice.
- In practice, the poly-time algorithms that people develop almost always have low constants and low exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

#### Exceptions.

- Some poly-time algorithms do have high constants and/or exponents, and are useless in practice.
- Some exponential-time (or worse) algorithms are widely used because the worst-case instances seem to be rare.

simplex method Unix grep

# Why It Matters

**Table 2.1** The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds  $10^{25}$  years, we simply record the algorithm as taking a very long time.

|               | п       | $n \log_2 n$ | $n^2$   | $n^3$        | $1.5^{n}$    | 2 <sup>n</sup>         | n!              |
|---------------|---------|--------------|---------|--------------|--------------|------------------------|-----------------|
| n = 10        | < 1 sec | < 1 sec      | < 1 sec | < 1 sec      | < 1 sec      | < 1 sec                | 4 sec           |
| n = 30        | < 1 sec | < 1 sec      | < 1 sec | < 1 sec      | < 1 sec      | 18 min                 | $10^{25}$ years |
| n = 50        | < 1 sec | < 1 sec      | < 1 sec | < 1 sec      | 11 min       | 36 years               | very long       |
| n = 100       | < 1 sec | < 1 sec      | < 1 sec | 1 sec        | 12,892 years | 10 <sup>17</sup> years | very long       |
| n = 1,000     | < 1 sec | < 1 sec      | 1 sec   | 18 min       | very long    | very long              | very long       |
| n = 10,000    | < 1 sec | < 1 sec      | 2 min   | 12 days      | very long    | very long              | very long       |
| n = 100,000   | < 1 sec | 2 sec        | 3 hours | 32 years     | very long    | very long              | very long       |
| n = 1,000,000 | 1 sec   | 20 sec       | 12 days | 31,710 years | very long    | very long              | very long       |

#### Linear Time: O(n)

Linear time. Running time is at most a constant factor times the size of the input.

Computing the maximum. Compute maximum of n numbers  $a_1, ..., a_n$ .

```
max ← a<sub>1</sub>
for i = 2 to n {
   if (a<sub>i</sub> > max)
      max ← a<sub>i</sub>
}
```

#### Linear Time: O(n)

Merge. Combine two sorted lists  $A = a_1, a_2, ..., a_n$  with  $B = b_1, b_2, ..., b_n$  into sorted whole.



```
i = 1, j = 1
while (both lists are nonempty) {
   if (a<sub>i</sub> ≤ b<sub>j</sub>) append a<sub>i</sub> to output list and increment i
   else(a<sub>i</sub> b<sub>j</sub>) append b<sub>j</sub> to output list and increment j
}
append remainder of nonempty list to output list
```

Claim. Merging two lists of size n takes O(n) time.

Pf. After each comparison, the length of output list increases by 1.

# O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.

also referred to as linearithmic time

Sorting. Mergesort and heapsort are sorting algorithms that perform  $O(n \log n)$  comparisons.

Largest empty interval. Given n time-stamps  $x_1$ , ...,  $x_n$  on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

#### Polynomial Time: O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?

 $O(n^k)$  solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
   check whether S in an independent set
   if (S is an independent set)
      report S is an independent set
   }
}
```

• Check whether S is an independent set =  $O(k^2)$ .

Number of k element subsets = 
$$O(k^2 n^k / k!) = O(n^k).$$

$$\binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots(2)(1)} \le \frac{n^k}{k!}$$

$$poly-time for k=17, but not practical$$

#### Exponential Time

Independent set. Given a graph, what is maximum size of an independent set?

 $O(n^2 2^n)$  solution. Enumerate all subsets.

```
S* ← φ
foreach subset S of nodes {
   check whether S in an independent set
   if (S is largest independent set seen so far)
      update S* ← S
   }
}
```



# Chapter 5 Divide and Conquer



Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

#### Divide-and-Conquer

#### Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

#### Most common usage.

- Break up problem of size n into two equal parts of size  $\frac{1}{2}$ n.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

#### Consequence.

- Brute force: n<sup>2</sup>.
- Divide-and-conquer: n log n.

Divide et impera.
Veni, vidi, vici.
- Julius Caesar

# 5.1 Mergesort

## Mergesort

#### Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.



Jon von Neumann (1945)

|   | A   | L   | G   | 0 | R | I | T | Н | M | S |   |        |         |
|---|-----|-----|-----|---|---|---|---|---|---|---|---|--------|---------|
| A | . I | . G | ; C | R |   |   | I | T | Н | M | S | divide | O(1)    |
| A | . 0 | j I | . C | R |   |   | Н | I | M | s | T | sort   | 2T(n/2) |
|   | A   | G   | Н   | I | L | M | 0 | R | s | T | ı | merge  | O(n)    |

# Proof by Recursion Tree

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging



# 5.3 Counting Inversions

#### Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank:  $a_1, a_2, ..., a_n$ .
- Songs i and j inverted if i < j, but  $a_i > a_j$ .

|     | Songs |   |   |   |   |  |  |  |  |  |
|-----|-------|---|---|---|---|--|--|--|--|--|
|     | Α     | В | С | D | Е |  |  |  |  |  |
| Me  | 1     | 2 | 3 | 4 | 5 |  |  |  |  |  |
| You | 1     | 3 | 4 | 2 | 5 |  |  |  |  |  |
|     |       |   |   |   |   |  |  |  |  |  |

Inversions 3-2, 4-2

Brute force: check all  $\Theta(n^2)$  pairs i and j.

#### **Applications**

#### Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).

Divide-and-conquer.

| 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 12 | 11 | 3 | 7 |
|---|---|---|---|----|---|---|---|----|----|---|---|
|   | _ | - | _ | _  |   | _ |   |    |    | _ |   |

# Divide-and-conquer.

Divide: separate list into two pieces.



#### Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.



5 blue-blue inversions

8 green-green inversions

5-4, 5-2, 4-2, 8-2, 10-2

6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

#### Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a<sub>i</sub> and a<sub>j</sub> are in different halves, and return sum of three quantities.



9 blue-green inversions 5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

Combine: ???

# Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- $\blacksquare$  Count inversions where  $a_i$  and  $a_j$  are in different halves.
- Merge two sorted halves into sorted whole.



to maintain sorted invariant





13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Count: O(n)

Merge: O(n)

$$T(n) \leq T\Big(\left\lfloor n/2\right\rfloor\Big) + T\Big(\left\lceil n/2\right\rceil\Big) + O(n) \implies \mathrm{T}(n) = O(n\log n)$$

# Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted. Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
   if list L has one element
      return 0 and the list L

Divide the list into two halves A and B
   (r<sub>A</sub>, A) ← Sort-and-Count(A)
   (r<sub>B</sub>, B) ← Sort-and-Count(B)
   (r<sub>C</sub>, L) ← Merge-and-Count(A, B)

return r = r<sub>A</sub> + r<sub>B</sub> + r and the sorted list L
}
```