Методы машинного обучения. Интерпретируемость и объяснимость

Bоронцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: k.vorontsov@iai.msu.ru

материалы курса:

github.com/MSU-ML-COURSE/ML-COURSE-24-25 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 20 мая 2025

Содержание

- 🚺 Интерпретируемость и объяснимость
 - Цели, задачи, основные понятия
 - Интерпретируемые модели
 - Визуальные методы интерпретации
- Интерпретация в пространстве признаков
 - Методы оценивания важности признаков
 - Методы LIME и Anchors
 - Методы SHAP и SAGE
- Онтерпретация в пространстве объектов
 - Вектор Шепли для объектов
 - Метод Gradient Shapley
 - Контрфактическое объяснение

Объяснимость (XAI, eXplainable Artificial Intelligence)

Interpretability — пассивная интерпретируемость устройства модели или предсказания на объекте

Explainability — активная генерация объяснений как дополнительных выходных данных для объекта

Comprehensibility — возможность представить выученные закономерности в виде понятного людям знания

Understandability, Transparency — прозрачность всего процесса создания модели, её частей, промежуточных результатов

"Do you want an interpretable model, or the one that works?" [Yann LeCun, NIPS'17]

V.Belle, I.Papantonis. Principles and practice of explainable machine learning. 2020

Объяснимость — кому, зачем и какие нужны объяснения?

• **Кому**: экспертам предметной области
Зачем: доверие к моделям, получение знаний из данных

Кому: конечным пользователям
 Зачем: понимание причин принимаемых решений

Кому: регуляторам
 Зачем: аудит соответствия моделей стандартам и нормам

Кому: исследователям, разработчикам
 Зачем: понимание свойств моделей, продуктов и сервисов

• **Кому**: бенефициарам, менеджерам
Зачем: понимание влияния моделей на бизнес-процессы

A.B.Arrieta et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible Al. 2019.

Интерпретируемые модели машинного обучения

A.B.Arrieta et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible Al. 2019.

Напоминание. Многомерная линейная регрессия

Модель линейной регрессии на n признаках $f_1(x),\ldots,f_n(x)$:

$$f(x,\alpha) = \sum_{j=1}^{n} \alpha_j f_j(x), \qquad \alpha \in \mathbb{R}^n$$

Метод наименьших квадратов, обучение по выборке $(x_i, y_i)_{i=1}^\ell$:

$$Q(\alpha) = \sum_{i=1}^{\ell} (f(x_i, \alpha) - y_i)^2 = ||F\alpha - y||^2 \to \min_{\alpha}$$

$$lpha^* = (F^\mathsf{T} F)^{-1} F^\mathsf{T} y$$
 — решение задачи НК, $F = ig(f_j(x_i)ig)_{\ell imes n}$

Коэффициент детерминации $R^2 \in [0,1]$, чем выше, тем лучше:

$$R^2 = 1 - \frac{\min_{\alpha} \|F\alpha - y\|^2}{\min_{c} \|c - y\|^2} = 1 - \frac{\|F\alpha^* - y\|^2}{\|\bar{y} - y\|^2} = \frac{y^{\mathsf{T}} F\alpha^* - n\bar{y}^2}{y^{\mathsf{T}} y - n\bar{y}^2}$$

Оценки значимости признаков в линейной регрессии

- ullet Коэффициент $lpha_i^*$ равен изменению f при увеличении f_i на 1
- не учитывается масштаб, сдвиг, дисперсия, корреляции, мультиколлинеарность признаков (источник переобучения)
- t-статистика значимости признака (feature importance)
- учитывает дисперсию оценки α_i^* :

$$T_j = rac{lpha_j^*}{\hat{\sigma}\sqrt{(F^{\mathsf{T}}F)_{jj}^{-1}}} \sim t_{\ell-n}, \quad \hat{\sigma}^2 = rac{Q(lpha^*)}{\ell-n}$$

- позволяет проверять гипотезу $\alpha_i^* = 0$,
- вычислять p-value для этой гипотезы,
- доверительные интервалы для α_i^* .

Стьюдента с $\nu = \ell - n$ степенями свободы

• Чистый эффект (net effect) NEF; признака в разложении R^2 :

$$R^2=y^{\mathsf{T}}Flpha^*=\sum\limits_{j=1}^n lpha_j^*(f_j^{\mathsf{T}}y)=\sum\limits_{j=1}^n \mathsf{NEF}_j$$
 (при $y^{\mathsf{T}}y=1,\ ar{y}=0$)

Пример. Задача прогнозирования аренды велосипедов

$$x_i$$
 — дата, y_i — число арендованных велосипедов Weight $= \alpha_j^*$; Standard Error SE $= \hat{\sigma} \sqrt{(F^{\mathsf{T}} F)_{jj}^{-1}}$; $\mathsf{t} = |T_j|$ Intercept — свободный член, коэффициент при признаке $f_1 = 1$

	Weight	SE	t			
(Intercept)	2399.4	238.3	10.1			
season SUMMER	899.3	122.3	7.4			
season FALL	138.2	161.7	0.9			
season WINTER	425.6	110.8	3.8			
noliday	-686.1	203.3	3.4			
workingday	124.9	73.3	1.7			
weathersit MISTY	-379.4	87.6	4.3			
weathersit RAIN/SNOW/STORM	-1901.5	223.6	8.5	 		
emp	110.7	7.0	15.7			
num	-17.4	3.2	5.5			
windspeed	-42.5	6.9	6.2			
days_since_2011	4.9	0.2	28.5			
				-2000	-1000	Weight estimate

UCI ML Repo: http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
Christoph Molnar. Interpretable Machine Learning: A Guide for Making Black Box
Models Explainable. 2019

Оценки значимости признаков для фиксированного объекта

- ullet Важность признака (вклад, effect) eff $_j(x)=lpha_jf_j(x)$
- учитывается масштаб, не учитываются сдвиг и корреляции
- ullet Ситуативная важность situational importance $= lpha_j \left(f_j({m{x}}) ar{f_j}
 ight)$
- учитывается масштаб и сдвиг, не учитываются корреляции

Боксы (boxplot) показывают распределения $\{ \mathsf{eff}_j(x_i) \}_{i=1}^\ell$

 \times — вклады для конкретного выбранного объекта x_i

График объясняет, какие признаки обусловили низкий прогноз на данном объекте

Christoph Molnar. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2019

Графики частичной зависимости (Partial Dependence Plot, PDP)

Как модель f(x) зависит от части признаков $S\subseteq\{f_1,\ldots,f_n\}$? $x=(x_S,\tilde{x}),\ x_S$ — признаки из $S,\ \tilde{x}$ — остальные признаки.

Оценивание интеграла методом Монте-Карло:

$$g(x_S) = \mathsf{E}_{\tilde{x}} f(x_S, \tilde{x}) = \int f(x_S, \tilde{x}) dP(\tilde{x})$$
 или $\cdots dP(\tilde{x}|\mathbf{x}_S)$ $\hat{g}(x_S) = \frac{1}{\ell} \sum_{i=1}^{\ell} f(x_S, \tilde{x}_i)$ или $\hat{g}(x_S) = \frac{\sum_i \mathsf{K}(\mathbf{x}_S, \mathbf{x}_{Si}) f(\mathbf{x}_S, \tilde{x}_i)}{\sum_i \mathsf{K}(\mathbf{x}_S, \mathbf{x}_{Si})}$

Christoph Molnar. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2019

Графики индивидуальных условных зависимостей (ІСЕ)

Individual Conditional Expectation: PDP по отдельным объектам $f(x) = f(x_S, \tilde{x}), x_S$ — признаки из S, \tilde{x} — остальные признаки.

График зависимости $g_i(x_S) = f(x_S, \tilde{x}_i)$ для каждого $x_i = (x_{Si}, \tilde{x}_i)$:

Показывает, как изменится предсказание модели на объекте, если изменять значение выбранного признака x_S , |S| = 1.

Christoph Molnar. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2019

Перестановочные оценки значимости признаков

Перестановочная оценка PFI (permutational feature importance)

$$\mathsf{PFI}_j = Q^j/Q$$
 или $Q^j - Q$

потери на исходной выборке:

$$Q = \sum_{i} \mathcal{L}(f(x_i), y_i)$$

потери после перемешивания: $Oi = \sum \varphi(f(z^j), \psi)$

$$Q^{j} = \sum_{i} \mathcal{L}(f(\tilde{x}_{i}^{j}), y_{i})$$

где f(x) — обученная модель, $\mathscr{L}(f,y)$ — функция потерь, $\tilde{x}_i^j =$ замена $(f_i(x_i) o f_i(x_{\mathsf{rand}}))$.

- \oplus любая модель \oplus однократное обучение \oplus учёт корреляций
- ⊖ перемешивание может порождать нереалистичные объекты

Christoph Molnar. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2019

Вектор Шепли (из теории кооперативных игр)

Признаки $F = \{f_1, \dots, f_n\}$ играют в кооперативную игру V(S) — совместный выигрыш коалиции $S\subseteq F$, $V(\varnothing)=0$

Игроки вступают в S по очереди, задаваемой перестановкой π $\Delta(j,S) = V(S \cup j) - V(S)$ — полезность игрока f_i в коалиции S $S_{\pi i} \subset F$ — множество игроков, идущих перед f_i в перестановке π

Вектор Шепли ϕ — справедливый делёж общего выигрыша:

$$\phi_j = \frac{1}{n!} \sum_{\pi} \Delta(j, S_{\pi j}) = \sum_{S} \frac{|S|! (n - |S| - 1)!}{n!} \Delta(j, S)$$

|S|! — число способов образовать коалицию S(n-|S|-1)! — число способов продолжить образование коалиции после присоединения f_i к Sn! — число перестановок π множества n игроков

Lloyd Stowell Shapley. A value for n-person games. 1952

Свойства вектора Шепли

Теорема

Это единственный способ делёжа, удовлетворяющий аксиомам:

- эффективность:
 - $\sum_{i=1}^n \phi_i = V(F)$
- симметричность (анонимность игроков): $\forall S, j, k \ \Delta(j, S) = \Delta(k, S) \Rightarrow \phi_i = \phi_k$
- невозможность халявы для «болвана»: $\forall S, j \ \Delta(j, S) = 0 \Rightarrow \phi_i = 0$
- Состоятельность:

$$\forall S, j \ \Delta_1(j, S) \leqslant \Delta_2(j, S) \ \Rightarrow \ \phi_{1j} \leqslant \phi_{2j}$$

• аддитивность (по источникам выигрыша): $\forall S \ V(S) = \alpha_1 V_1(S) + \alpha_2 V_2(S) \Rightarrow \forall j \ \phi_i = \alpha_1 \phi_{1j} + \alpha_2 \phi_{2j}$

Оценивание вектора Шепли

Несмещённая оценка вектора Шепли методом Монте-Карло: Π — случайное подмножество перестановок; для каждой $\pi \in \Pi$ в модель инкрементно добавляются признаки $\pi(j), j=1,\ldots,n$:

$$\hat{\phi}_j = \frac{1}{|\Pi|} \sum_{\pi \in \Pi} \Delta(j, S_{\pi j})$$

Что считать выигрышем V(S) признаков $S\subseteq\{f_1,\ldots,f_n\}$:

- Коэффициент детерминации $V(S) = R_S^2$, модель дообучается при добавлении каждого признака
- Shapley regression value $V(S) = f_S(x)$ на объекте x, где модель f_S обучена только на признаках из S
- Shapley sampling value $V(S) = \mathsf{E}_{\tilde{x}} f(x_S, \tilde{x})$, где $x = (x_S, \tilde{x})$ $\mathsf{E}_{\tilde{x}}$ среднее по объектам выборки $x_i = (x_{Si}, \tilde{x}_i)$: $x_{Si} \approx x_S$

E.Strumbelj, I.Kononenko. Explaining prediction models and individual predictions with feature contributions. 2014

Методы оценивания важности признаков Методы LIME и Anchors Методы SHAP и SAGE

Вектор Шепли для признаков в линейной регрессии

$$lpha = (F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}y$$
 — решение задачи $\|Flpha - y\|^2 o \min_{lpha}$.

Разложение коэффициента детерминации на чистые эффекты:

$$R^2 = \sum\limits_{j=1}^n rac{lpha_j(extbf{f}_j^{\mathsf{T}} extbf{y})}{($$
при $extbf{y}^{\mathsf{T}} extbf{y} = 1, ar{y} = 0)$

Разложение R^2 по значениям Шепли признаков, при $V(S)=R_S^2$:

$$R^2 = \sum_{j=1}^n \frac{\phi_j}{\phi_j}$$

Приравнивая эффекты, $\phi_j = \alpha_j(f_j^\mathsf{T} y)$, получаем $\alpha_j = \phi_j/(f_j^\mathsf{T} y)$

Преимущество оценок Шепли $lpha_j$ для линейной регрессии:

- не подвержены мультиколлинеарности, более устойчивы
- коэффициенты интерпретируемы по знаку и величине
- могут иметь смещение, но оно незначительно

S.Lipovetsky, M.Conklin. Analysis of regression in game theory approach. 2001

Суррогатное моделирование в окрестности объекта x

 $(x_i,y_i)_{i=1}^\ell$ — обучающая выборка, $\mathscr{L}(f,y)$ — функция потерь $f(x,\alpha)$ — неинтерпретируемая модель, обученная по выборке:

$$\sum_{i=1}^{\ell} \mathscr{L}(f(x_i,\alpha),y_i) \to \min_{\alpha}$$

 $g_{\mathsf{x}}(\mathsf{z},\beta)$ — интерпретируемая суррогатная модель для аппроксимации f в окрестности объясняемого объекта x:

$$\sum_{i=1}^k w_{xi} \mathscr{L}(g_x(z_i,\beta), f(z_i,\alpha)) + \Omega(\beta) o \min_{\beta}$$

 $(z_i)_{i=1}^k \sim \pi(K_h(z,x))$ — суррогатные объекты, сэмплируемые из радиального распределения с центром в x и радиусом h $w_{xi} = K_h(z,x)$ — веса объектов в h-окрестности объекта x $K_h(z,x)$ — функция близости (kernel) радиуса h $\Omega(\beta)$ — регуляризатор, штраф за сложность модели $g_{x}(z,\beta)$

Mетод LIME (Local Interpretable Model-agnostic Explanations)

$$g_{x}(z,eta)=\sum\limits_{j=1}^{m}eta_{j}b_{j}(z)$$
 — локальная линейная аппроксимация

- фиксируется объект х, для которого требуется объяснение
- $oldsymbol{arphi}$ синтезируются суррогатные объекты z_i в его окрестности
- $oldsymbol{0}$ на них вычисляются значения основной модели $f(z_i,lpha)$
- строится локальная аппроксимация суррогатной моделью
- для объекта х строится объяснение и его визуализация

M.Ribeiro, S.Singh, C.Guestrin. "Why should I trust you?" Explaining the predictions of any classifier. 2016

Метод LIME: синтез суррогатных объектов

$$g_{\mathrm{x}}(z,eta) = \sum\limits_{j=1}^{m} eta_{j} b_{j}(z)$$
 — локальная линейная аппроксимация

Признаки $b_i(z) = [j$ -го искажения объекта x в суррогате z нет]Синтез суррогата z(b) = применить к x все искажения j: $b_i = 0$ Синтез выборки суррогатов $(z_i)_{i=1}^k$ — по случайным $b_i \in \{0,1\}$

Олег Седухин. Интерпретация моделей и диагностика сдвига данных: LIME, SHAP и Shapley Flow. 2022-01-13. https://habr.com/ru/companies/ods/articles/599573

Метод LIME: интерпретируемость суррогатной модели

$$g_{\scriptscriptstyle X}(z,eta) = \sum\limits_{j=1}^m eta_j b_j(z)$$
 — локальная линейная аппроксимация

Примеры *интерпретируемых искажений* объекта x:

- замена j-го признака в x на пропуск, среднее значение или 0;
- замена части объекта x частью другого объекта;
- выбрасывание j-го слова из текста x, и т.п.

Интерпретируемость линейной модели $g_{x}(z,\beta)$:

- вес β_i равен изменению g при устранении искажения b_i
- число m не должно быть слишком большим
- не должно быть мультиколлинеарности (регуляризация!)

$$\mathscr{L}(g,f)=(g-f)^2$$
 — квадратичная функция потерь $K_h(z,x)=\expig(-rac{1}{h^2}
ho^2(z,x)ig)$, где ho евклидова или косинусная

M.Ribeiro, S.Singh, C.Guestrin. "Why should I trust you?" Explaining the predictions of any classifier. 2016

Пример LIME. Задача классификации текстов (20NewsGroups)

Признаки $b_j(z) = ig[$ наличие слова j из текста x в тексте zig] Гистограмма весов eta_j : важности слов j для исходного текста x

Модель классификации SVM-RBF имеет точность 94% на тесте, но при различении классов «christianity» и «atheism» считает важными мусорные слова «Posting», «Host», «Re».

Ясно, в чём проблема, и как её исправлять (фильтровать слова)

Пример LIME. Задача классификации изображений

Признаки $b_j(z)_{i=1}^m$ — сегменты (super-pixel) из изображения xm=10, признаки конструируются под объясняемый объект x

(b) Explaining Electric guitar (c) Explaining Acoustic guitar

(d) Explaining Labrador

Модель классификации — глубокая нейросеть Google Inception Три наиболее вероятных класса: «electric guitar» (p = 0.32), «acoustic guitar» (p = 0.24), «labrador» (p = 0.21)

Ясно, почему модель перепутала «acoustic» с «electric» — из-за грифа, см. рис. (b)

Метод якорей (Anchors): аппроксимация конъюнкциями

 $g_{x}(z,eta)=igwedge_{i\in J}b_{j}(z)$ — правила-конъюнкции, образуемые небольшим числом бинарных признаков или пороговых условий

Правило стремится покрыть как можно большую область объектов, относящихся моделью f к тому же классу, что x

Обходит LIME по точности, покрытию, качеству объяснений

Meтод SHAP (SHapley Additive exPlanations)

$$g_{\mathrm{x}}(z,eta) = \sum\limits_{j=1}^{m} eta_{j} b_{j}(z)$$
 — локальная линейная аппроксимация

Признаки $b_i(z) = |j$ -го искажения объекта x в суррогате z нет Синтез суррогата z(b) = применить к x все искажения j: $b_i = 0$

Приращение $f(z, \alpha)$, если в суррогате z(b) убрать искажение j: $\Delta(j,b) = V(b|_{b_i=1}) - V(b|_{b_i=0}), V(b) = f(z(b),\alpha)$

Три желательных свойства локальной модели $g_x(z,\beta)$

- локальная согласованность аппроксимации в точке x: $\forall j \ b_i(z) = 1 \implies g_x(z,\beta) = f(x,\alpha)$
- $oldsymbol{arOmega}$ бесполезность болвана признака b_i , пропущенного в x: $\forall i \ b_i(x) = 0 \Rightarrow \beta_i = 0$
- lacktriangle состоятельность: с ростом приращения $\Delta(j,b)$ растёт eta_i , $\forall b, j \ \Delta_1(j, b) \leqslant \Delta_2(j, b) \ \Rightarrow \ \beta_{1j} \leqslant \beta_{2j}$

Метод SHAP: теоретическое обоснование

Теорема 1

Единственным распределением весов β_i , удовлетворяющим свойствам 💶 🝳 🚳 является вектор Шепли:

$$\beta_j = \sum_{b \in \{0,1\}^m} \frac{|b|! (m-|b|-1)!}{m!} \Delta(j,b)$$

где $|b| = \{j \colon b_i = 1\}$ — число единиц в векторе b.

Teopema 2 (метод Shapley Kernel)

Вектор Шепли (β_i) является решением задачи НК с весами:

$$\sum_{b \in \{0,1\}^m} w_b(g_x(z(b),\beta) - f(z(b),\alpha))^2 \to \min_{\beta}$$

где
$$w_b$$
 — веса 2^m суррогатов, $w_b = \frac{|b|! (m-|b|-1)!}{m!} \frac{m-1}{|b|} = \frac{1}{mC_{m-2}^{|b|-1}}$

Метод Shapley Kernel: вариант реализации SHAP

- \oplus Вектор Шепли (β_j) вычисляется взвешенной линейной регрессией
- \bigoplus LIME решает ту же задачу, но веса суррогатов w_b задаются эвристически, неоптимально
- \oplus При больших 2^m векторы b можно сэмплировать из распределения w_b

- ⊕ SHAP лучше LIME в экспериментах, где они сравнивались с тем, как эксперты объясняют решения моделей
- ⊖ Значимость признаков оценивается по нереалистичным (out-of-distribution) суррогатным объектам

Scott Lundberg, Su-In Lee. A unified approach to interpreting model predictions. 2017 E.Kumar, S. Venkatasubramanian, C.Scheidegger, S. A. Friedler. Problems with Shapley-value-based explanations as feature importance measures. 2020

Метод SHAP: пример визуализации

Модель вероятности дефолта f(x), градиентный бустинг

Индивидуальное объяснение для x: f(x) = 19% при $\bar{y} = 6\%$ Значения Шепли показываются цветом: $\beta_j(x) < 0$, $\beta_j(x) > 0$

Агрегированные объяснения по всей выборке $\{\beta_i(x_i)\}$:

ось X:
$$\beta_i(x_i)$$

ось Y: признаки *j*

цвет точки: значение признака $f_j(x_i)$

ширина линии \propto число точек

https://rb.ru/opinion/uzhe-ne-black-box

Метод SAGE (Shapley Additive Global importancE)

SHAP:

каковы вклады признаков f_i в предсказание f(x)

SAGE:

как качество модели в целом зависит от признаков f_i

Модификация $SHAP \rightarrow SAGE$:

$$V(S) = -\mathscr{L}ig(\mathsf{E}_{ ilde{x}}f(x_S, ilde{x})ig)$$
 — раскладываются потери (LossSHAP) $\phi_j = rac{1}{\ell}\sum_{i=1}^\ell \phi_j(x_i)$ — значения Шепли усредняются по выборке $\phi_j = rac{1}{|X|}\sum_{x_i \in X} \phi_j(x_i)$ — или по случайной подвыборке, если долго

Ian C. Covert, Scott Lundberg, Su-In Lee. Understanding Global Feature Contributions With Additive Importance Measures. 2020

Вектор Шепли для объектов: инкрементное обучение

Теперь обучающие объекты играют в кооперативную игру: $f_s(x)$ — модель, обученная на подвыборке $S \subseteq \{x_1, \dots, x_\ell\}$ $V(S) = -\sum_{x} \mathscr{L}(f_{S}(x))$ на тестовых объектах x (hold-out) $\Delta(i,S) = V(S \cup i) - V(S)$ — полезность обучающего объекта x_i $\phi_i = \frac{1}{|\Pi|} \sum_{\pi \in \Pi} \Delta(i, S_{\pi i})$ — несмещённая оценка Монте-Карло

```
для всех перестановок \pi_t \in \Pi, t = 1, \ldots, |\Pi|:
    S := \varnothing; v_0 := V(\varnothing);
    для всех i = \pi_t(1), \ldots, \pi_t(\ell):
         S := S \cup \{x_i\};
         обновить модель f_s(x), дообучив её на объекте x_i;
         оценить модель v_i := V(S);
      \phi_i := \frac{t-1}{4}\phi_i + \frac{1}{4}(v_i - v_{i-1});
```

Встраивание оценок Шепли в онлайновый градиентный спуск

Градиентная минимизация аддитивного критерия:

$$\sum_{i=1}^{\ell} \mathscr{L}(f(x_i,\alpha),y_i) \to \min_{\alpha}$$

Алгоритм инкрементного обучения Online Gradient Descent:

```
для всех перестановок \pi_t \in \Pi, t = 1, \ldots, |\Pi|:
     S := \varnothing; v_0 := V(\varnothing); инициализировать \alpha_0;
     для всех i = \pi_t(1), \ldots, \pi_t(\ell):
          S := S \cup \{x_i\};
          обновить модель \alpha_i := \alpha_{i-1} - \eta_i \nabla_{\alpha} \mathscr{L}(f(x_i, \alpha_{i-1}), y_i);
          оценить модель v_i := V(S);
      \phi_i := \frac{t-1}{t}\phi_i + \frac{1}{t}(v_i - v_{i-1});
```

A. Ghorbani, J. Zou. Data Shapley: equitable valuation of data for machine learning. 2019 M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. 2003.

Интерпретация объектов с помощью значений Шепли

- низкое ϕ_i выбросы, такие x_i можно удалять из выборки
- высокое ϕ_i опорные, пограничные, таких x_i не хватает
- более устойчивая оценка по сравнению с leave-one-out

Задача UCI:Breast Cancer

- изъятие из обучения лучших объектов, по убыванию ϕ_i
- (2) изъятие из обучения худших объектов, по возрастанию ϕ_i
- (3) добавление объектов, похожих на лучшие, по убыванию ϕ_i
- (4) добавление объектов, похожих на худшие, по возрастанию ϕ_i

Задача поиска контрфактов

Kонтрфакт x' — объект, схожий с x, но существенно отличающийся предсказанием модели $f(x', \alpha^*)$.

- Модель кредитного скоринга выдала отказ. Какие изменения признаков поменяют решение модели? (закрыть другие кредиты? переехать в другой город? сменить работу? изменить структуру расходов?)
- Модель оценила для собственника стоимость аренды. Какие факторы способны увеличить оценку стоимости? (улучшить ремонт? разрешить домашних животных?)

Важно: находить реализуемые изменения признаков:

- минимально изменять минимальное число признаков
- выбирать из множества разнообразных контрфактов

Riccardo Guidotti. Counterfactual explanations and how to find them: literature review and benchmarking. 2022

Метод поиска контрфактов (Counterfactual explanations)

Контрфакт x' — объект, минимально отличающийся от x и существенно отличающийся предсказанием модели $f(x',\alpha)$.

В психологии: мысленный альтернативный вариант развития событий.

Oптимизационная задача поиска контрфактов x' с заданным y':

$$\mathscr{L}(f(x',\alpha),y') + \lambda ||x-x'||_1 \to \min_{x'} \min_{\lambda}$$

 L_1 -регуляризатор обеспечивает разреженность решения — чем больше λ , тем больше совпадений признаков $x_j=x_i'$:

$$||x - x'||_1 = \sum_{j=1}^n \frac{|x_j - x'_j|}{\mathsf{MAD}_j},$$

Median Absolute Deviation $MAD_j = \underset{i}{\operatorname{med}} |x_{ij} - M_j|$, $M_j = \underset{i}{\operatorname{med}} x_{ij}$ Постепенно уменьшая λ , подгоняем $f(x', \alpha) \to y'$.

S. Wachter, B. Mittelstadt, C. Russell. Counterfactual explanations without opening the black box: Automated decisions and the GDPR. 2017

Подходы к объяснимости моделей

Резюме

- *Интерпретируемость* прозрачность строения модели, либо понятность её результата на объекте
- Интерпретируемых моделей не много: линейные (MVLR, LR, GAM, GLM), логические (DT, RI), метрические (kNN, PW, RBF), байесовские (NB, BN)
- *Объяснимость* решения на объекте как правило, с помощью интерпретируемой *суррогатной модели*
- Вектор Шепли оценивает вклады «игроков» в общий результат по данным об успешности их коалиций;
 «игроки» это признаки, но идея применима и к объектам
- SHAP, SAGE наиболее продвинутые методы объяснения

P.Linardatos, V.Papastefanopoulos, S.Kotsiantis. Explainable Al: A Review of Machine Learning Interpretability Methods. 2021

Zachary C. Lipton. The Mythos of Model Interpretability. 2018

Christoph Molnar. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2019

Ribana Roscher et al. Explainable Machine Learning for Scientific Insights and Discoveries. 2020