THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1510 Calculus for Engineers (2020-2021) Supplementary Exercise 1

Trigonometry

Change of Units

1. Fill in the blanks.

Trigonometric Identities

- 2. Find $\tan 75^{\circ}$ and express your answer in surd form.
- 3. Find $\cos 165^{\circ}$ and $\sin 165^{\circ}$ and express your answers in surd form.
- 4. Find $\cos^2 \frac{7\pi}{12}$ and $\sin^2 \frac{7\pi}{12}$ and express your answers in surd form.
- 5. By using the product to sum formula, express each of the following expressions as a sum of trigonometric functions.
 - (a) $\cos 5x \cos 3x$;
 - (b) $\sin 4x \sin 2x$;
 - (c) $\sin 7x \cos 3x$.
- 6. Show that $\sin 2x \cos 3x \cos 5x = \frac{1}{4}(\sin 4x \sin 6x + \sin 10x)$.
- 7. Show that $\sin 3x \sin 4x \cos 5x = \frac{1}{4}(-\cos 2x + \cos 4x + \cos 6x \cos 12x)$.

8. Prove that
$$\frac{\cos(x+y) + \cos(x-y)}{\sin(x-y) - \sin(x+y)} = -\cot y.$$

9. Prove that
$$\frac{1}{\tan(x+y) - \tan(x-y)} = \frac{\cos 2x}{2\sin 2y} + \frac{\cot 2y}{2}.$$

10. Prove that
$$\tan \frac{x+y}{2} = \frac{\sin x + \sin y}{\cos x + \cos y}$$
.

11. Let
$$t = \tan \frac{x}{2}$$
.

(a) By considering
$$\tan x = \tan \left(2 \cdot \frac{x}{2}\right)$$
, show that $\tan x = \frac{2t}{1-t^2}$.

(b) By using the result in (a), express $\sin x$ and $\cos x$ in terms of t.

(Remark: The result of this question will be useful for integration of trigonometric function, called t-substitution.)

12. Prove that
$$\cot \frac{x}{2} = \frac{1 + \cos x}{\sin x}$$
.

13. Prove the following identities:

(a)
$$\sin^4 x = \frac{3 - 4\cos 2x + \cos 4x}{8}$$
;

(b)
$$\sin^5 x = \frac{10\sin x - 5\sin 3x + \sin 5x}{16}$$
;

(c)
$$\cos^4 x = \frac{3 + 4\cos 2x + \cos 4x}{8}$$
;

(d)
$$\cos^5 x = \frac{10\cos x + 5\cos 3x + \cos 5x}{16}$$
;

(e)
$$\sin^4 x \cos^4 x = \frac{3 - 4\cos 4x + \cos 8x}{128}$$
;

(f)
$$\sin^5 x \cos^5 x = \frac{10\sin 2x - 5\sin 6x + \sin 10x}{512}$$
.

14. Show that
$$\sin^2 x \cos^4 x = \frac{1}{32}(2 + \cos 2x - 2\cos 4x - \cos 6x)$$
.

15. Prove the following identites (called triple angle formula):

(a)
$$\sin 3x = 3\sin x - 4\sin^3 x$$
;

(b)
$$\cos 3x = 4\cos^3 x - 3\cos x$$
;

(c)
$$\tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$$
.

16. Given that A, B, C, D are four interior angles of a quadrilateral ABCD. Prove that

$$\cos A + \cos B + \cos C + \cos D = -4\cos\frac{A+B}{2}\cos\frac{A+C}{2}\cos\frac{A+D}{2}.$$

17. If $A + B + C = \pi$, show that

- (a) $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$;
- (b) $\tan A + \tan B + \tan C = \tan A \tan B \tan C$;
- (c) $\cot A \cot B + \cot B \cot C + \cot C \cot A = 1$.
- 18. Prove that for any $x \neq 2m\pi$, m is an integer,

$$1 + 2\cos x + 2\cos 2x + 2\cos 3x + \dots + 2\cos nx = \frac{\sin(n + \frac{1}{2})x}{\sin\frac{x}{2}}.$$

General Solutions of Trigonometric Equations

19. (General Solutions of Trigonometric Equations)

- If $\sin x = p$, then let $\alpha = \sin^{-1}(p)$, then all solutions of the equation $\sin x = p$ are in form of $n\pi + (-1)^n \alpha$ where n is an integer;
- If $\cos x = p$, then let $\alpha = \cos^{-1}(p)$, then all solutions of the equation $\cos x = p$ are in form of $2n\pi \pm \alpha$ where n is an integer;
- If $\tan x = p$, then let $\alpha = \tan^{-1}(p)$, then all solutions of the equation $\tan x = p$ are in form of $n\pi + \alpha$ where n is an integer.

By using the above, solve the following equations.

- (a) $\sin x = \frac{1}{2};$
- (b) $\cos x = -\frac{\sqrt{3}}{2};$
- (c) $\tan x = -\sqrt{3}$.

20. Solve the following equations.

- (a) $\cos 5x = \frac{1}{2}$, where $0 \le x < 2\pi$; (Hint: $0 \le 5x < 10\pi$.)
- (b) $\sin 4x = \sin 24^{\circ}$, where $0^{\circ} \le x < 180^{\circ}$;
- (c) $\tan 3x = 1$, where $\pi \le x < 2\pi$.
- 21. Solve $\sin 7x \sin x = \cos 4x$ for $0^{\circ} \le x \le 180^{\circ}$.
- 22. Solve $\sin x \sin 2x = \cos 3x \cos 4x$ for $0 \le x \le \frac{\pi}{2}$.