معماری افزارههای شبکه دکتر صبائی

دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران) دانشکده مهندسی کامپیوتر

رضا آدینه پور ۴۰۲۱۳۱۰۵۵

تمرین سری پنجم

۲۳ آذر ۱۴۰۳

دانشکده معندس کامسوند

معماري افزارههاي شبكه

تمرین سری پنج

رضا آدینه پور ۴۰۲۱۳۱۰۵۵

— سوال اول

 ۱. تفاوت اصلی بین سوییچینگ و مسیریابی چیست؟ چگونه هرکدام در انتقال اطلاعات از یک نقطه به نقطه دیگر عمل می کنند؟

پاسخ

- سوئیچینگ: سوئیچینگ فرآیندی است که در سطح لایه ۲ (لایه پیوند داده) انجام می شود و هدف آن انتقال داده ها بین دستگاههای موجود در یک شبکه محلی (LAN) است. سوئیچها از آدرسهای MAC برای هدایت داده ها استفاده می کنند.
- روش انجام: سوئیچ، فریم داده را دریافت کرده، آدرس مقصد آن را بررسی میکند و دادهها را تنها به پورتی ارسال میکند که دستگاه مقصد به آن متصل است.
- مسیریابی: مسیریابی فرآیندی است که در سطح لایه ۳ (لایه شبکه) انجام می شود و هدف آن انتقال داده ها بین شبکه های مختلف است. روترها از آدرسهای IP برای هدایت داده ها استفاده میکنند.
- روش انجام: مسیریاب بسته ها را بررسی میکند، جدول مسیریابی را جستجو میکند و بهترین مسیر برای ارسال داده به مقصد را انتخاب میکند.
- تفاوت کلیدی: سوئیچینگ در سطح شبکه محلی (LAN) عمل میکند و از آدرسهای MAC استفاده میکند، در حالی که مسیریابی در سطح شبکه گسترده (WAN) یا بین شبکههای مختلف عمل کرده و از آدرسهای IP استفاده میکند.
- ۲. چه مکانیزمهایی برای پشتیبانی از multicast در سوییچها لازم است و چگونه این مکانیزمها به ارسال داده از یک ورودی به چندین خروجی کمک میکنند؟

پاست

برای پشتیبانی از multicast، سوئیچها نیاز به مکانیزمهای زیر دارند:

(آ) جدول عضویت گروه (Group Membership Table):

- سوئیچ باید نگهدارنده جدولی باشد که در آن پورتی که اعضای گروه multicast در آن قرار دارند مشخص شده باشد.
 - پروتکلهایی مانند IGMP snooping میتوانند در شناسایی عضویت گروهها کمک کنند.

صفحه ۱ از ۱۱

پاسخ

(ب) پشتیبانی از ارسال انتخابی (Selective Forwarding):

• سوئیچ باید دادههای multicast را تنها به پورتی ارسال کند که عضو گروه مقصد در آن قرار دارد، نه به تمام پورتها.

(ج) پشتیبانی از VLAN:

• اگر گروههای multicast در شبکهای مبتنی بر VLAN باشند، سوئیچ باید این ترافیک را به درستی در محدوده VLAN مربوطه ارسال کند.

این مکانیزمها امکان ارسال دادهها از یک ورودی به چندین خروجی را بدون تداخل و با بهینهسازی پهنای باند فراهم میکنند.

۱. تعریف throughput و speedup در سوییچینگ چیست؟ چگونه speedup می تواند باعث افزایش speedup در سوییچینگ شده د؟

پاسخ

- :Throughput نرخ موثر انتقال داده از طریق سوئیچ یا شبکه. واحد آن معمولاً بیت در ثانیه است و نشاندهنده عملکرد کلی سیستم در ارسال دادهها است.
 - Speedup: نسبت بین نرخ پردازش داخلی سوئیچ به نرخ ارسال داده در پورتها.
 - فرمول: Speedup= Switch Internal Rate Port Rate

افزایش Throughput با Speedup: با افزایش Speedup، سوئیچ میتواند دادهها را سریعتر از نرخ پورتها پردازش کند و این باعث کاهش تأخیر و جلوگیری از ازدحام در شبکه میشود، که به افزایش Throughput منجر میگردد.

۲. تفاوت بین blocking و output contention در سوییچهای مبتنی بر تقسیم فضایی چیست؟ چگونه هرکدام میتوانند
بر عملکرد سوییچ تأثیر بگذارند؟

پاسخ

- Blocking: زمانی رخ میدهد که منابع سوئیچ (مانند پهنای باند یا پورتها) نتوانند به دلیل محدودیت، دادهها را از یک ورودی به خروجی موردنظر منتقل کنند.
 - تأثیر: بسته ممکن است نتواند به مقصد برسد یا تأخیر زیادی را تجربه کند.
- Output Contention: زمانی رخ میدهد که چندین بسته به طور همزمان قصد ارسال به یک خروجی مشترک را دارند. در این حالت، بسته ها باید در صف قرار گیرند یا برخی از آنها دور ریخته شوند.
 - تأثیر: ایجاد تأخیر در ارسال یا اتلاف داده.

صفحه ۲ از ۱۱

پاسخ

تفاوت: Blocking به محدودیتهای داخلی سوئیچ مرتبط است، در حالی که Output Contention به محدودیتهای مربوط به تقاضا برای یک خروجی خاص اشاره دارد.

۱. توضیح دهید که تفاوت بین سوییچینگ به صورت packet-mode و cell-mode چیست؟ مزایا و معایب هرکدام .۱ چیست و چگونه به طراحی سوییچهای IP کمک میکنند؟

پاسخ

:Packet-Mode Switching (Ĭ)

- بسته ها به صورت کامل در سوئیچ پردازش می شوند. اندازه بسته ها می تواند متغیر باشد.
 - مزایا: انعطافپذیری بالا، بهینه برای پروتکلهای موجود.
 - معایب: ممکن است منجر به تأخیر و ایجاد مشکل در کنترل جریان شود.

:Cell-Mode Switching (ب)

- بستهها به قطعات کوچکتر (سلولها) با اندازه ثابت تقسیم شده و سپس پردازش میشوند.
 - مزایا: پیشبینیپذیری در زمان انتقال و کاهش تأخیر.
 - معایب: افزایش overhead به دلیل قطعهبندی.

در Packet-Mode، سوئیچها انعطافپذیری بیشتری در پردازش بستهها دارند، اما Cell-Mode برای محیطهایی با نیاز به زمان انتقال ثابت مناسبتر است (مانند ATM).

صفحه ۳ از ۱۱

در یک سوییچ با Speedup برابر با ۳ و سرعت خط ورودی ۴۰ گیگابیت بر ثانیه:

۱. حداقل سرعت باس داخلی برای پشتیبانی از ۱۶ پورت چقدر باید باشد؟

پاسخ

برای محاسبه حداقل سرعت باس داخلی، از فرمول زیر استفاده میکنیم:

Internal Bus Speed = Speedup \times Aggregate Input Rate

که در آن، Aggregate Input Rate به صورت زیر محاسبه می شود:

Aggregate Input Rate = Number of Ports \times Line Rate

با جایگذاری مقادیر:

Aggregate Input Rate = $16 \times 40 \,\text{Gbps} = 640 \,\text{Gbps}$

Internal Bus Speed = $3 \times 640 \, \text{Gbps} = 1920 \, \text{Gbps}$

بنابراین، حداقل سرعت باس داخلی باید برابر با:

1920 Gbps (1.92 Tbps)

باشد.

۲. اگر هر پورت دارای ۱ مگابایت بافر باشد، حداکثر تأخیر بافرینگ چقدر خواهد بود؟

پاسِ

حداکثر تأخیر بافرینگ را میتوان با استفاده از فرمول زیر محاسبه کرد:

 $\label{eq:maximum_buffering_delay} \text{Maximum Buffering Delay} = \frac{\text{Buffer Size}}{\text{Line Rate}}$

با توجه به اینکه:

Buffer Size = $1 \text{ MB} = 8 \times 10^6 \text{ bits}$

و

Line Rate = $40 \, \text{Gbps} = 40 \times 10^9 \, \text{bits/second}$

تأخیر بافرینگ به صورت زیر محاسبه میشود:

Maximum Buffering Delay = $\frac{8 \times 10^6}{40 \times 10^9}$

Maximum Buffering Delay = $0.2 \,\mathrm{ms}$

بنابراین، حداکثر تأخیر بافرینگ برابر با:

0.2 ms

است

صفحه ۴ از ۱۱

—— سوال سوم

در یک Time-Division Switch با سرعت خط برابر است با ۳۰ گیگابیت بر ثانیه:

۱. اگر زمان دسترسی حافظه برابر باشد با ۳ نانوثانیه، برای پشتیبانی از ۲۴ پورت، حداکثر اندازه سلول مجاز چقدر است؟

پاسخ

برای محاسبه حداکثر اندازه سلول، از فرمول زیر استفاده میکنیم:

 $\label{eq:continuous} \text{Cell Size} \leq \frac{\text{Time Slot Duration}}{\text{Number of Memory Accesses Per Slot}}$

که در آن:

Time Slot Duration = $\frac{1}{\text{Line Rate}}$

محاسبات

Time Slot Duration = $\frac{1}{30 \times 10^9}$ = 33.33 ns

تعداد دسترسیهای حافظه در هر اسلات زمانی برابر با تعداد پورتها است:

Number of Memory Accesses Per Slot = 24

زمان در دسترس برای هر دسترسی حافظه:

Available Memory Access Time Per Port = $\frac{\text{Time Slot Duration}}{\text{Number of Memory Accesses Per Slot}}$ = $\frac{33.33}{24} = 1.39 \, \text{ns}$

برای پشتیبانی از 24 پورت با زمان دسترسی حافظه 3 ns، حداکثر اندازه سلول به صورت زیر محاسبه میشود:

 $\label{eq:cellSize} \text{Cell Size} = \frac{\text{Time Slot Duration}}{\text{Number of Memory Accesses Per Slot}} \times \text{Line Rate}$

جایگذاری مقادیر:

Cell Size = $\frac{33.33}{24} \times 30 \times 10^9 \, \text{bits}$

محاسبه:

Cell Size = $\frac{33.33 \times 30}{24} = 41.66 \, \text{bits}$

بنابراین، حداکثر اندازه سلول مجاز برابر است با:

41.66 bits

۲. اگر بخواهیم اندازه سلول را ۵۰ درصد افزایش دهیم، چقدر باید زمان دسترسی حافظه را کاهش دهیم؟

صفحه ۵ از ۱۱

پاسخ

اگر اندازه سلول 50% افزایش یابد، اندازه جدید سلول به صورت زیر خواهد بود:

New Cell Size = $1.5 \times 41.66 = 62.49$ bits

زمان دسترسی حافظه باید به صورت زیر محاسبه شود:

Time Slot Duration

New Memory Access Time = $\frac{1 \text{ InterSlot Duration}}{\text{New Cell Size} \times \text{Number of Memory Accesses Per Slot}}$

جاىگذارى مقادىر:

New Memory Access Time = $\frac{33.33}{62.49 \times 24}$ ns

محاسبه:

New Memory Access Time = $\frac{33.33}{1499.76}$ ns ≈ 0.0222 ns

بنابراین، برای افزایش اندازه سلول به 50%، زمان دسترسی حافظه باید به:

 $0.0222\,{\rm ns}$

كاهش يابد.

صفحه ۶ از ۱۱

---- سوال چهارم

ما به یک سوییچ فضایی سهمرحلهای با N=100 بنیاز داریم، در مرحله اول و سوم از $\cos \sin n$ و در مرحله میانی از $\cos \sin n$ استفاده میکنیم.

۱. نمودار پیکربندی را ترسیم کنید.

۲. تعداد کل crosspoints را محاسبه کنید.

Crosspoints in Stage $1=10\times(10\times4)=400$ Crosspoints in Stage $2=4\times(10\times10)=400$ Crosspoints in Stage $3=10\times(4\times10)=400$ تعداد کل crosspoints برابر است با: Total Crosspoints =400+400+400=1200

٣. تعداد اتصالات همزمان ممكن را بيابيد.

پاسخ
تعداد اتصالات همزمان ممكن توسط محدودكنندهترين مرحله مشخص مىشود:
${\bf Maximum~Simultaneous~Connections} =$
Number of Crossbars in Stage 2 \times Columns in Each Crossbar in Stage 2
Maximum Simultaneous Connections = $4 \times 10 = 40$

صفحه ۷ از ۱۱

۴. تعداد اتصالات همزمان ممكن را در صورتی كه از یک crossbar واحد 100×100 استفاده كنیم، بیابید.

پاسخ

تعداد اتصالات همزمان ممکن در یک crossbar واحد برابر با تعداد ورودیها (یا خروجیها) است:

Maximum Simultaneous Connections in Single Crossbar = min(100, 100) = 100

۵. ضریب blocking، یعنی نسبت تعداد اتصالات در قسمت (۳) به قسمت (۴) را بیابید.

پاس

ضریب blocking به صورت نسبت تعداد اتصالات ممکن در سوئیچ سهمرحلهای به تعداد اتصالات ممکن در یک crossbar واحد محاسبه می شود:

 $\label{eq:Blocking Ratio} Blocking \ Ratio = \frac{Simultaneous \ Connections \ in \ Three-Stage \ Switch}{Simultaneous \ Connections \ in \ Single \ Crossbar}$

Blocking Ratio =
$$\frac{40}{100} = 0.4$$

صفحه ۸ از ۱۱

سوال پنجم

مسئله ۴ را در صورتی که از ۶ crossbar در مرحله میانی استفاده شود، تکرار کنید.

صفحه ۹ از ۱۱

—— سوال ششم

پیکربندی مسئله ۴ را با استفاده از معیارهای Clos تکرار کنید.

صفحه ۱۰ از ۱۱

سوال هفتم

در یک Parallel Packet Switch با k=3 با Parallel Packet Switch با در یک

- ۱. سرعت خط مورد نیاز در هر صفحه را محاسبه کنید.
- ۲. اگر بسته ها ۱۵۰۰ بایتی باشند، فاصله زمانی بین بسته های متوالی در هر صفحه چقدر است؟

صفحه ۱۱ از ۱۱