WHAT IS CLAIMED IS:

1	1.	A method for computing a diversity measure for a predetermined combinatorial
2	structu	are C having n elements, the method comprising steps of:
3	(a)	identifying M substructures c ₁ through c _M each having m elements from among the n
4	elemer	nts of the predetermined combinatorial structure C, where M equals n! / [(n-m)! m!];
5	(b)	for each substructure c _i , for i from 1 to M, determining a number n _i of the M
6	substr	uctures c ₁ through c _M that are similar to the substructure c _i ; and
7	(c)	computing a first entropy $\Phi(m)$ based upon all the numbers n_i computed during step
8	(b) and	d based upon M in computed step (a);
1	2.	A method as in claim , further comprising the steps of:
2	(d)	repeating steps (a) and (b) with m+1 substituted for m;
3	(e)	computing a second entropy $\Phi(m+1)$ based upon all the numbers n_i and M computed
4	during	step (d); and
5	(f)	subtracting the second entropy $\Phi(m+1)$ from the first entropy $\Phi(m)$ to produce the
6	divers	ity measure.
_1	3.	A method as in claim 2, wherein steps (c) and (e) comprise the steps of:
\int_{3}^{2}		for each i from 1 to M:
J_3		computing a fraction F _i by dividing n _i by M; and
4		computing a logarithm of fraction P
5		computing a sum by adding all logarithms of fractions F_i for i from 1 to M; and
6		dividing the sum by M.
1	4.	A method as in claim 2, wherein step (b) comprises the steps of, for each substructure
2	c_i for	i from 1 to M:
3		for each substructure c _j for j from 1 to M:
4		computing a distance function d(c, c,) representing a measure of a difference
5		hetween substructure c and substructure c:

6

comparing the distance function d(c_i,c_j) to a threshold and

7	$7 \qquad \qquad d$	letermining the substructures c_i and c_j to be similar if and only if the distance
8	3 \function	$d(c_i, c_j)$ is less than the threshold.
1	1 5. A metho	od as in claim 2, wherein steps (c) and (e) comprise the steps of:
2	2 for each	distinct substructure c _i :
3	3	computing a frequency fi by dividing ni by M;
4	4 (computing a logarithm of frequency f; and
5	5 (computing a product by multiplying the frequency fi and the logarithm of
6	6 frequency f; and	i \
7	7 computi	ng a sum by adding all products of the frequencies fi and the logarithms of
8	8 frequencies f _i .	
1	1 6. A metho	od as in claim 2, wherein step (b) comprises the steps of:
2	2 for each substru	icture c _i for i from \to M:
3	3 monoto	nically renumbering melements of c _i from 1 to m; and
4	4 for each	substructure c _j for j from 1 to M:
5	5	monotonically renumbering m elements of c _j from 1 to m; and
6	6 🖔	determining the substructures c _i and c _j to be similar if and only if they are
7		1.
1	1 7. A meth	od as in claim 2, wherein step (b) comprises the steps of:
2	2 for each substr	ucture c _i for i from 1 to M:
3	3 monoto	onically renumbering m elements of c _i from 1 to m; and
4	4 for each	h substructure c _j for j from 1 to M:
5	5	monotonically renumbering m elements of c _j from 1 to m; and
6	6	determining the substructures c _i and c _j to be similar if and only if they are
7	7 identica	al or isomorphic.
1	1 8. A meth	nod as in claim 2, wherein steps (c) and (e) comprise the steps of:
2	2 for eac	h distinct substructure c _i :
3	3	computing a frequency f _i by dividing n _i by M;

4	computing a quotient by dividing the frequency fi by an expected frequency p
5	computing a logarithm of quotient q _i , and
6	omputing a product by multiplying the frequency fi and the logarithm of
7	quotient q_i ; and
8	computing a sum by adding all products of the frequencies fi and the logarithms of
9	quotients q _i .
1	9. A method as in claim 2, wherein the predetermined combinational structure C
2	comprises a linked graph, wherein the n elements comprise n nodes.
2)	
1	10. A computer readable storage medium, comprising:
2	computer readable program code embodied on said computer readable storage
3	medium, said computer readable program code for programming a computer to perform a
4	method for computing a diversity measure for a predetermined combinatorial structure C
5	having n elements, the method comprising steps of:
6	(a) identifying M substructures c ₁ through c _M each having m elements from among the r
7	elements of the predetermined combinatorial structure C, where M equals n! / [(n-m)! m!];
8	(b) for each substructure c _i , for i from 1 to M, determining a number n _i of the M
9	substructures c_1 through c_M that are similar to the substructure c_i , and
10	(c) computing a first entropy $\Phi(m)$ based upon all the numbers n_i computed during step
11	(b) and based upon M in computed step (a);
12	
13	11. A computer readable storage medium as in claim 0, the method further comprising
14	the steps of:
15	(d) repeating steps (a) and (b) with m+1 substituted for n;
16	(e) computing a second entropy $\Phi(m+1)$ based upon all the numbers n_i and M compute
17	during step (d); and
18	(f) subtracting the second entropy $\Phi(m+1)$ from the first entropy $\Phi(m)$ to produce the

diversity measure.

19

1	12.	A computer readable storage medium as in claim 11, wherein steps (c) and (e)
2	compri	ise the steps of:
3		for each i from 1 to M:
4		computing a fraction F _i by dividing n _i by M; and
5		computing a logarithm of fraction F _i ;
6 .		computing a sum by adding all logarithms of fractions F _i for i from 1 to M; and
7		dividing the sum by M.
1	13.	A computer readable storage medium as in claim 11, wherein step (b) comprises the
2	steps o	of, for each substructure c _i for i from 1 to M:
3		for each substructure c _j for j from 1 to M:
4		computing a distance function d(c _i ,c _j) representing a measure of a difference
5	1	between substructure c _i and substructure c _j ;
9	Λ	comparing the distance function $d(c_i, c_j)$ to a threshold; and
7 \	(6)	determining the substructures c_i and c_j to be similar if and only if the distance
8(_)		function d(c _i ,c _j) is less than the threshold.
/		
1	14.	A computer readable storage medium as in claim 11, wherein steps (c) and (e)
2	comp	rise the steps of:
3		for each distinct substructure c _i :
4		computing a frequency f by dividing n by M;
5	•	computing a logarithm of frequency f; and
6		computing a product by multiplying the frequency f and the logarithm of
7	freque	ency f_i ; and
8		computing a sum by adding all products of the frequencies fi and the logarithms of
9	freque	encies f _i .
1	15.	A computer readable storage medium as in claim 11, wherein step (b) comprises the
2	steps	of:
3	for ea	ach substructure c _i for i from 1 to M:
4		monotonically renumbering m elements of c, from 1 to m; and
	YERY	-1016 MCF/SFS

5	for each substructure c _j for j from 1 to M:
6	monotonically renumbering m elements of c_j from 1 to m; and
7	determining the substructures c_i and c_j to be similar if and only if they are
8	identical.
1	16. A computer readable storage medium as in claim 11, wherein step (b) comprises the
2	steps of:
3	for each substructure c _i for i from 1 to M:
4	monotonically renumbering m elements of ci from 1 to m; and
5	for each substructure c _j for j from 1 to M:
6	monotonically renumbering m elements of c _j from 1 to m; and
7	determining the substructures c _i and c _j to be similar if and only if they are
8	identical or isomorphic.
1	17. A computer readable storage medium as in claim 11, wherein steps (c) and (e)
2	comprise the steps of:
3	for each distinct substructure c_i :
4	computing a frequency f by dividing n by M;
5	computing a quotient by dividing the frequency fi by an expected frequency pi;
6	computing a logarithm of quotient qi; and
7	computing a product by multiplying the frequency fi and the logarithm of
8	quotient q_i ; and
9	computing a sum by adding all products of the frequencies f_i and the logarithms of
10	quotients q _i .
1	18. A computer readable storage medium as in claim 11, wherein the predetermined
2	combinational structure C comprises a linked graph, wherein the n elements comprise n nodes
1	19. A computer system, comprising:
2	a processor; and

3		a processor readable storage medium coupled to the processor having processor
4	readabl	e program code embodied on said processor readable storage medium, said processor
5	readabl	e program code for programming the computer system to perform a method for
6	compu	ting a diversity measure for a predetermined combinatorial structure C having n
7	elemen	ts, the method comprising steps of:
8	(a)	identifying M substructures c_1 through c_M each having m elements from among the n
9 .	elemen	ts of the predetermined combinatorial structure C, where M equals n! / [(n-m)! m!];
10	(b)	for each substructure c _i , for i from 1 to M, determining a number n _i of the M
1	substru	ectures c_1 through c_M that are similar to the substructure c_i ; and
ι2	(c)	computing a first entropy $\Phi(m)$ based upon all the numbers n_i computed during step
13	(b) and	based upon M in computed step (a);
1	20.	A computer system as in claim 19, the method further comprising the steps of:
2	(d)	repeating steps (a) and (b) with m+1 substituted for m;
3	(e)	computing a second entropy $\Phi(m+1)$ based upon all the numbers n_i and M computed
4	during	step (d); and
5	(f)	subtracting the second entropy $\Phi(m+1)$ from the first entropy $\Phi(m)$ to produce the
(b)	diversi	ty measure.
1	21.	A computer system as in claim 20, wherein steps (c) and (e) comprise the steps of
2		for each i from 1 to M:
3		computing a fraction F _i by dividing n _i by M; and
4		computing a logarithm of fraction F _i ,
5		computing a sum by adding all logarithms of fractions F _i for i from 1 to M; and
6		dividing the sum by M.
1	22.	A computer system as in claim 20, wherein step (b) comprises the steps of, for each
2	substr	ucture c _i for i from 1 to M:
3		for each substructure c _j for j from 1 to M:
4		computing a distance function d(c, c,) representing a measure of a difference
5		between substructure c_i and substructure c_j ;
		\

	6		comparing the distance function $d(c_i, c_j)$ to a threshold; and
	7		determining the substructures ci and ci to be similar if and only if the distance
	8		function $d(c_i, c_j)$ is less than the threshold.
	1	23.	A computer system as in claim 20, wherein steps (c) and (e) comprise the steps of:
	2		for each distinct substructure c _i :
	3		computing a frequency f by dividing n by M;
	4		computing a logarithm of frequency f; and
	5		computing a product by multiplying the frequency fi and the logarithm of
	6	freque	ency f; and
to these Britis these Ann. Britis M. M.	7		computing a sum by adding all products of the frequencies fi and the logarithms of
	8	freque	encies f _i .
	1	24.	A computer system as in claim 20, wherein step (b) comprises the steps of:
Berg Berg	2	for ea	ch substructure c _i for i from 1 to M:
The stand	/3	`	monotonically renumbering m elements of ci from 1 to m; and
Tr. Hill	* (<i>y</i>	for each substructure c _j for j from 1 to M:
	75gN	λ)	monotonically renumbering m elements of c _j from 1 to m; and
	-6/		determining the substructures ci and cj to be similar if and only if they are
7.	Ź		identical.
	1	25.	A computer system as in claim 20, wherein step (b) comprises the steps of:
	2	for ea	ch substructure c, for i from 1 to M:
	3		monotonically renumbering m elements of c _i from 1 to m; and
	4		for each substructure c_j for j from 1 to M:
	5		monotonically renumbering m elements of c, from 1 to m; and
	6		determining the substructures c_i and c_j to be similar if and only if they are
	7		identical or isomorphic.
	1	26.	A computer system as in claim 20, wherein steps (c) and (e) comprise the steps of:
	2		for each distinct substructure c _i :
		VEDV	1016) (00) (00)

3

4

quotient q_i; and

computing a frequency f_i by dividing n_i by M; computing a quotient by dividing the frequency f_i by an expected frequency p_i ; computing a logarithm of quotient q_i ; and computing a product by multiplying the frequency f_i and the logarithm of

computing a sum by adding all products of the frequencies f_i and the logarithms of quotients q_i.

27. A computer system as in claim 20, wherein the predetermined combinational structure C comprises a linked graph, wherein the n elements comprise n nodes.