Question 1(a) [3 marks]

List Various network Topologies of computer network and explain any one.

Answer:

Table: Network Topologies

Topology	Description
Star	Central hub connects all devices
Ring	Devices connected in circular chain
Bus	Single cable backbone connection
Mesh	Every device connects to every other
Tree	Hierarchical branching structure
Hybrid	Combination of multiple topologies

Star Topology Explanation:

• Central Hub: All devices connect to one central point

• **Easy Installation**: Simple to add/remove devices

• Single Point Failure: Hub failure affects entire network

Mnemonic: "SRBMTH - Star Ring Bus Mesh Tree Hybrid"

Question 1(b) [4 marks]

Compare LAN, WAN and MAN.

Answer:

Comparison Table:

Parameter	LAN	MAN	WAN
Coverage	Building/Campus	City/Metropolitan	Country/Global
Speed	Very High (1-100 Gbps)	High (10-100 Mbps)	Medium (1-100 Mbps)
Cost	Low	Medium	High
Ownership	Private	Public/Private	Public

Key Points:

• LAN: Local Area Network for small areas

• MAN: Metropolitan Area Network for cities

• WAN: Wide Area Network for large distances

Mnemonic: "LMW - Local Metropolitan Wide"

Question 1(c) [7 marks]

Draw the layered architecture of OSI reference model and write at least two services provided by each layer of the model.

Answer:

Services by Each Layer:

Layer	Services
Application (7)	Email services, File transfer
Presentation (6)	Data encryption, Data compression
Session (5)	Session establishment, Session termination
Transport (4)	Flow control, Error correction
Network (3)	Routing, Path determination
Data Link (2)	Frame synchronization, Error detection
Physical (1)	Bit transmission, Signal conversion

Mnemonic: "All People Seem To Need Data Processing"

Question 1(c OR) [7 marks]

Explain Each layer of TCP/IP Model with its protocol.

Answer:

TCP/IP Model Layers:

Layer	Protocols	Function
Application	HTTP, FTP, SMTP, DNS	User applications
Transport	TCP, UDP	End-to-end delivery
Internet	IP, ICMP, ARP	Routing packets
Network Access	Ethernet, Wi-Fi	Physical transmission

Key Features:

• Simplified Model: Only 4 layers vs OSI's 7

• **Protocol Suite**: Complete networking solution

• Internet Standard: Basis of modern internet

Mnemonic: "ATIN - Application Transport Internet Network"

Question 2(a) [3 marks]

Explain functions of following network devices: Repeater, Hub

Answer:

Device Functions:

Device	Function	Layer
Repeater	Signal amplification, Range extension	Physical (1)
Hub	Signal broadcasting, Collision domain sharing	Physical (1)

Details:

• Repeater: Regenerates weak signals over long distances

• **Hub**: Connects multiple devices in star topology

• Shared Medium: Both create single collision domain

Mnemonic: "RH - Repeat Hub signals"

Question 2(b) [4 marks]

Explain the following term 1) FDDI 2) ARP, RARP

Answer:

FDDI (Fiber Distributed Data Interface):

• Technology: 100 Mbps fiber optic network

• Topology: Dual ring for fault tolerance

• **Application**: Backbone networks, high reliability

ARP (Address Resolution Protocol):

• Function: Maps IP address to MAC address

• Process: Broadcasts request, receives reply

RARP (Reverse ARP):

• Function: Maps MAC address to IP address

• **Usage**: Diskless workstations, boot process

Mnemonic: "FAR - FDDI ARP RARP"

Question 2(c) [7 marks]

Explain the Function of firewall in network security with principles and Kerberos-concept.

Answer:

Firewall Functions:

Firewall Principles:

- Packet Filtering: Examines packet headers
- Stateful Inspection: Tracks connection states
- Application Gateway: Deep packet inspection

Kerberos Concept:

- Authentication Service: Secure user verification
- **Ticket System**: Time-limited access tokens
- Three-party Protocol: Client, Server, Key Distribution Center

Security Benefits:

- Access Control: Prevents unauthorized access
- **Network Protection**: Shields internal resources

Mnemonic: "FPK - Firewall Protects with Kerberos"

Question 2(a OR) [3 marks]

Explain functions of following network devices: Switch, Router

Answer:

Device Functions:

Device	Function	Layer
Switch	MAC address learning, Frame forwarding	Data Link (2)
Router	IP routing, Path selection	Network (3)

Details:

• Switch: Creates separate collision domains per port

• **Router**: Connects different networks, makes routing decisions

• Intelligence: Switch learns MAC, Router maintains routing table

Mnemonic: "SR - Switch Routes intelligently"

Question 2(b OR) [4 marks]

Explain the following term 1) CDDI 2) DHCP and BOOTP

Answer:

CDDI (Copper Distributed Data Interface):

• **Technology**: FDDI over copper cables

• **Speed**: 100 Mbps over twisted pair

• **Cost**: Cheaper alternative to fiber FDDI

DHCP (Dynamic Host Configuration Protocol):

• Function: Automatic IP address assignment

• Process: Discover, Offer, Request, Acknowledge

• Benefits: Centralized IP management

BOOTP (Bootstrap Protocol):

• Function: Network bootstrap for diskless clients

• Static: Fixed IP address assignment

• Predecessor: Earlier version of DHCP

Mnemonic: "CDB - CDDI DHCP BOOTP"

Question 2(c OR) [7 marks]

Explain Software define network(SDN) with its Architecture, Application, Advantage and limitation.

Answer:

SDN Architecture:

- Control Plane: Centralized network intelligence
- Data Plane: Packet forwarding devices
- Application Plane: Network applications and services

Applications:

- Cloud Computing: Dynamic resource allocation
- Network Virtualization: Multiple virtual networks
- Traffic Engineering: Optimized path selection

Advantages:

- **Centralized Control**: Simplified network management
- Programmability: Custom network behaviors
- Flexibility: Rapid service deployment

Limitations:

- Single Point Failure: Controller dependency
- **Scalability**: Performance bottlenecks
- **Security**: New attack vectors

Mnemonic: "SCAP - Software Control Application Programmable"

Question 3(a) [3 marks]

Find the class of following IP address.

- 1) 01111000 00001111 10101010 11000000
- 2) 11101000 01010101 11111111 11000011

Answer:

IP Address Classification:

Binary Address	Decimal	First Octet	Class
01111000	120.15.170.192	120 (64-127)	Class A
11101000	232.85.255.195	232 (224-239)	Class D

Class Ranges:

• Class A: 1-126 (0xxxxxxx)

• Class B: 128-191 (10xxxxxx)

• Class C: 192-223 (110xxxxx)

• Class D: 224-239 (1110xxxx)

Results:

• First IP: Class A (Unicast)

• Second IP: Class D (Multicast)

Mnemonic: "ABCD - A(1-126) B(128-191) C(192-223) D(224-239)"

Question 3(b) [4 marks]

Differentiate IPv4 and IPv6.

Answer:

IPv4 vs IPv6 Comparison:

Feature	IPv4	IPv6
Address Length	32 bits	128 bits
Address Format	Dotted decimal	Hexadecimal
Address Space	4.3 billion	340 undecillion
Header Size	Variable (20-60 bytes)	Fixed (40 bytes)
Security	Optional (IPSec)	Built-in (IPSec)
Configuration	Manual/DHCP	Auto-configuration

Key Differences:

- Addressing: IPv6 provides vastly more addresses
- **Security**: IPv6 has mandatory security features
- **Performance**: IPv6 has simplified header structure

Mnemonic: "IPv4 to IPv6 = More addresses, Better security"

Question 3(c) [7 marks]

Explain Static and Dynamic Routing Algorithms.

Answer:

Static Routing:

Dynamic Routing:

Comparison Table:

Aspect	Static Routing	Dynamic Routing
Configuration	Manual setup	Automatic discovery
Adaptability	No adaptation	Adapts to changes
Resource Usage	Low CPU/Memory	Higher CPU/Memory
Scalability	Poor for large networks	Good for large networks
Protocols	None required	RIP, OSPF, BGP

Applications:

• Static: Small networks, specific paths

• **Dynamic**: Large networks, fault tolerance

Mnemonic: "SD - Static=Simple, Dynamic=Automatic"

Question 3(a OR) [3 marks]

Explain CIDR. How does it differ from traditional IP address allocation methods?

Answer:

CIDR (Classless Inter-Domain Routing):

• Concept: Variable length subnet masking

• Notation: IP address/prefix length (e.g., 192.168.1.0/24)

• Flexibility: Subnets of any size

Traditional vs CIDR:

Method	Allocation	Efficiency
Traditional	Fixed class boundaries	Wasteful (Class B = 65,536 IPs)
CIDR	Variable subnet sizes	Efficient allocation

Benefits:

• Address Conservation: Reduces IP address waste

• Route Aggregation: Summarizes multiple routes

Mnemonic: "CIDR = Classless Intelligent Address Routing"

Question 3(b OR) [4 marks]

Describe DSL technology with its types, advantages and limitations.

Answer:

DSL (Digital Subscriber Line):

• Technology: High-speed internet over telephone lines

• Frequency: Uses higher frequencies than voice

DSL Types:

Туре	Speed	Application
ADSL	Asymmetric (faster download)	Home users
SDSL	Symmetric (equal up/down)	Business
VDSL	Very high speed	Short distances

Advantages:

• Always-on Connection: No dial-up required

• Existing Infrastructure: Uses phone lines

• Cost-effective: Affordable high-speed access

Limitations:

• **Distance Dependent**: Speed decreases with distance

• Line Quality: Requires good copper lines

• Availability: Not available everywhere

Mnemonic: "DSL = Digital Speed Limited by distance"

Question 3(c OR) [7 marks]

Explain error control and flow control at data link layer in detail.

Answer:

Error Control:

Error Control Methods:

Method	Technique	Application
Parity Check	Single bit error detection	Simple systems
Checksum	Mathematical sum verification	TCP/UDP
CRC	Polynomial division	Ethernet, Wi-Fi
ARQ	Automatic Repeat Request	Reliable protocols

Flow Control:

Flow Control Techniques:

• **Stop-and-Wait**: Send one frame, wait for ACK

• Sliding Window: Multiple frames in transit

• Buffer Management: Prevents overflow

Implementation:

• Hardware Level: Buffer status signals

• Software Level: Protocol acknowledgments

Mnemonic: "EF - Error detection, Flow regulation"

Question 4(a) [3 marks]

Explain video over IP.

Answer:

Video over IP (VoIP):

• Technology: Transmits video signals over IP networks

• **Digitization**: Converts analog video to digital packets

• **Real-time**: Requires low latency transmission

Components:

• **Encoder**: Compresses video data

• **Network**: IP infrastructure for transport

• **Decoder**: Decompresses at destination

Applications:

• Video Conferencing: Business communications

• Streaming: Entertainment services

• Surveillance: Security systems

Requirements:

• **Bandwidth**: High data rate needs

• **QoS**: Quality of Service guarantees

Mnemonic: "VIP = Video Internet Protocol"

Question 4(b) [4 marks]

Explain Electronic-Mail with its protocol.

Answer:

Email System Components:

Email Protocols:

Protocol	Function	Port
SMTP	Send/relay messages	25, 587
РОР3	Download messages	110
IMAP	Server-based access	143

Protocol Details:

• SMTP: Simple Mail Transfer Protocol for sending

• POP3: Downloads mail to local device

• IMAP: Keeps mail on server, multi-device access

Message Flow:

• Composition: User creates message

• Submission: SMTP sends to server

• **Delivery**: Server forwards to recipient

• Retrieval: POP3/IMAP downloads message

Mnemonic: "SPI - SMTP sends, POP3/IMAP receives"

Question 4(c) [7 marks]

Explain Role of DNS- Domain Name System Describe the process of DNS resolution.

Answer:

DNS Role:

• Name Resolution: Converts domain names to IP addresses

• Hierarchical System: Distributed database structure

• Internet Navigation: Makes web browsing user-friendly

DNS Resolution Process:

Resolution Steps:

1. Local Cache Check: Check local DNS cache

2. **Recursive Query**: Contact local DNS server

3. Root Server: Get TLD server reference

4. **TLD Server**: Get authoritative server reference

5. Authoritative Server: Get final IP address

6. Response Return: IP address returned to client

DNS Record Types:

• A Record: Maps name to IPv4 address

• AAAA Record: Maps name to IPv6 address

CNAME: Canonical name alias

• MX: Mail exchange server

Benefits:

• **User Friendly**: Remember names, not numbers

• Load Distribution: Multiple IP addresses

• Service Location: Find specific services

Mnemonic: "DNS = Directory Name Service"

Question 4(a OR) [3 marks]

Explain WWW, HTML.

Answer:

WWW (World Wide Web):

• **Definition**: Information system of interlinked documents

• Access: Through web browsers using HTTP

• Components: Web pages, links, URLs

HTML (HyperText Markup Language):

• Purpose: Standard markup language for web pages

• Structure: Tags define document elements

• Hyperlinks: Connect different web resources

Relationship:

• **WWW**: The system/platform

• HTML: The content format

• Integration: HTML creates WWW content

Mnemonic: "WWW uses HTML for content"

Question 4(b OR) [4 marks]

Explain HTTP and FTP.

Answer:

Protocol Comparison:

Feature	НТТР	FTP
Purpose	Web page transfer	File transfer
Port	80 (HTTP), 443 (HTTPS)	21 (control), 20 (data)
Connection	Stateless	Stateful
Security	HTTPS for security	FTPS for security

HTTP (HyperText Transfer Protocol):

• Function: Request-response protocol for web

• Methods: GET, POST, PUT, DELETE

• Stateless: Each request independent

FTP (File Transfer Protocol):

• Function: Upload/download files between systems

• Modes: Active and Passive

• Authentication: Username/password required

Applications:

• HTTP: Web browsing, API calls

• FTP: File sharing, website maintenance

Mnemonic: "HF - HTTP for Hypertext, FTP for Files"

Question 4(c OR) [7 marks]

Explain TCP and UDP protocol in transport layer in relation to connection oriented and connection less network.

Answer:

Transport Layer Protocols:

Protocol Comparison:

Feature	ТСР	UDP
Connection	Connection-oriented	Connectionless
Reliability	Guaranteed delivery	Best effort
Speed	Slower (overhead)	Faster (minimal overhead)
Header Size	20 bytes	8 bytes
Flow Control	Yes	No
Error Control	Yes	Limited

TCP (Transmission Control Protocol):

• Three-way Handshake: SYN, SYN-ACK, ACK

• Reliable: Acknowledgment and retransmission

• Flow Control: Prevents buffer overflow

• **Applications**: Web browsing, email, file transfer

UDP (User Datagram Protocol):

• No Connection Setup: Direct data transmission

• Lightweight: Minimal protocol overhead

• No Guarantees: Fire-and-forget approach

• Applications: Video streaming, DNS, gaming

Connection Models:

• Connection-Oriented: Establish, transfer, terminate

• Connectionless: Direct transmission without setup

Selection Criteria:

• Use TCP: When reliability is critical

• Use UDP: When speed is more important

Mnemonic: "TCP = Thorough, UDP = Ultra-fast"

Question 5(a) [3 marks]

Describe Hacking and its related precautions.

Answer:

Hacking Definition:

• Unauthorized Access: Breaking into computer systems

• Malicious Intent: Steal, modify, or destroy data

• Security Breach: Exploit system vulnerabilities

Types of Hacking:

• Ethical Hacking: Authorized security testing

• Malicious Hacking: Criminal activities

• Social Engineering: Manipulate human behavior

Precautions:

Security Measure	Implementation
Strong Passwords	Complex, unique passwords
Software Updates	Regular patches and updates
Firewalls	Network access control
Antivirus	Malware detection and removal
Backup	Regular data backups
User Training	Security awareness programs

Mnemonic: "HSPFAB - Hacking Stopped by Passwords, Firewalls, Antivirus, Backups"

Question 5(b) [4 marks]

Explain IPSec architecture.

Answer:

IPSec (Internet Protocol Security):

IPSec Components:

Component	Function
АН	Authentication and integrity
ESP	Confidentiality and authentication
SA	Security parameter agreement
IKE	Key management protocol

Operating Modes:

• Transport Mode: Protects payload only

• Tunnel Mode: Protects entire IP packet

Security Services:

• Authentication: Verify sender identity

• Integrity: Ensure data unchanged

• Confidentiality: Encrypt data content

• Anti-replay: Prevent packet replay attacks

Mnemonic: "AISE - AH, IPSec, SA, ESP"

Question 5(c) [7 marks]

Explain network Security topologies.

Answer:

Network Security Topologies:

Security Zones:

Zone	Purpose	Security Level
Internet	External untrusted network	Lowest
DMZ	Semi-trusted public services	Medium
Internal	Private trusted network	Highest

Topology Components:

• Perimeter Security: Firewalls, IDS/IPS

• Network Segmentation: VLANs, subnets

• Access Control: Authentication, authorization

• Monitoring: Logging, SIEM systems

Security Principles:

• Defense in Depth: Multiple security layers

• Least Privilege: Minimum required access

• Network Isolation: Separate critical systems

Implementation Strategies:

• Firewall Rules: Control traffic flow

• VPN Access: Secure remote connections

• Network Monitoring: Detect threats

• Incident Response: Handle security events

Benefits:

- Risk Reduction: Minimize attack surface
- Compliance: Meet regulatory requirements
- Business Continuity: Protect operations

Mnemonic: "NST = Network Security Through topology design"

Question 5(a OR) [3 marks]

Explain ISO and how it contributes to information security?

Answer:

ISO (International Organization for Standardization):

- **Global Standards**: Develops international standards
- **Quality Assurance**: Ensures consistent practices
- **Best Practices**: Provides framework for implementation

ISO 27001 - Information Security:

- ISMS: Information Security Management System
- **Risk Management**: Systematic approach to security
- Continuous Improvement: Regular review and updates

Contributions to Information Security:

- Framework: Structured approach to security
- **Compliance**: Meet regulatory requirements
- **Risk Assessment**: Identify and mitigate threats

Benefits:

- Standardization: Common security language
- Credibility: International recognition
- Improvement: Ongoing security enhancement

Mnemonic: "ISO = International Security Organization"

Question 5(b OR) [4 marks]

Give Difference between symmetric and asymmetric encryption algorithms.

Answer:

Encryption Algorithm Comparison:

Feature	Symmetric	Asymmetric
Keys	Single shared key	Key pair (public/private)
Speed	Fast	Slower
Key Distribution	Difficult	Easier
Scalability	Poor (n²-1 keys)	Better
Security	Depends on key secrecy	Mathematical complexity

Symmetric Encryption:

• **Examples**: AES, DES, 3DES

• **Process**: Same key encrypts and decrypts

• Challenge: Secure key distribution

Asymmetric Encryption:

• Examples: RSA, ECC, Diffie-Hellman

• Process: Public key encrypts, private key decrypts

• Advantage: No key distribution problem

Hybrid Approach:

• Combination: Use both types together

• Method: Asymmetric for key exchange, symmetric for data

Applications:

• **Symmetric**: Bulk data encryption

• Asymmetric: Digital signatures, key exchange

Mnemonic: "SA = Symmetric Shared, Asymmetric Apart"

Question 5(c OR) [7 marks]

Explain Email security with its standards.

Answer:

Email Security Challenges:

Email Security Standards:

Standard	Purpose	Function
S/MIME	Secure email content	Encryption and digital signatures
PGP	Pretty Good Privacy	End-to-end encryption
TLS	Transport security	Secure email transmission
SPF	Sender authentication	Prevent email spoofing
DKIM	Message integrity	Digital signature verification
DMARC	Policy enforcement	Email authentication policy

Security Mechanisms:

• Encryption: Protect message content

• Digital Signatures: Verify sender identity

• Authentication: Confirm message origin

• Integrity: Ensure message unchanged

Implementation Layers:

• Transport Layer: TLS/SSL encryption

• Message Layer: S/MIME, PGP encryption

• Policy Layer: SPF, DKIM, DMARC

Best Practices:

• User Education: Recognize phishing attempts

• Gateway Filtering: Block malicious emails

• Regular Updates: Keep security software current

• Backup Systems: Protect against data loss

Benefits:

• Confidentiality: Private communications

• Authentication: Verified senders

• Compliance: Meet regulatory requirements

• **Trust**: Secure business communications

Mnemonic: "SPTSD = S/MIME, PGP, TLS, SPF, DKIM protect email"