

كوبرنتيز

پارسا محمد پور ۲۰ دی ۱۴۰۳

فهرست

- ماشینهای مجازی
 - مجازیسازی
 - هايپروايزر
- نحوه كاركردن هايپروايزر
 - كانتينر
 - مقدمه ا
- مقایسه با ماشین مجازی
 - ا داکر
 - مقدمات
 - اعضای سازنده
- اعضای سازنده هسته داکر
 - معماری
 - دستورات

- تبدیل برنامه به کانتینر
 - كوبرنتيز
 - مقدمه
 - اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع ا

ماشینهای مجازی

- مجازیسازی
 - ۰ هایپروایزر
- نحوه کارکردن هاییروایزر
 - كانتينر
 - مقدمه
- مقایسه با ماشین مجازی
 - 513
 - مقدمات
 - اعضای سازنده
- اعضای سازنده هسته داکر
 - معماری
 - ا دستورات

• تبدیل برنامه به کانتینر

- كوبرنتيز
- مقدمه
- اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع

ماشینهای مجازی – مجازیسازی

- تعریف مجازی سازی
 - انواع
 - سرور
 - شىكە
 - حافظه
- دستگاههای فیزیکی

ماشینهای مجازی

- مجازیسازی
 - هايپروايزر
- نحوه کارکردن هایپروایزر
 - ا كانتينر
 - مقدمه
- مقایسه با ماشین مجازی
 - 515
 - مقدمات
 - اعضای سازنده
- اعضای سازنده هسته داکر
 - معماري
 - و دستورات

- تبدیل برنامه به کانتینر
 - كوبرنتيز
 - مقدمه
 - اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع

ماشینهای مجازی - هایپروایزر

- هایپروایزر
- نرمافزار

- مزیتهای هایپروایزر
 - بهینهسازیمنابع
- به اشتراک گذاشتن محیط دسکتاپ (Desktop environment mirroring)

ماشینهای مجازی

- مجازیسازی
 - هایپروایزر
- نحوه کارکردن هایپروایزر
 - ا كانتينر
 - ا مقدمه
 - مقایسه با ماشین مجازی
 - 513
 - مقدمات
 - اعضای سازنده
 - اعضای سازنده هسته داکر
 - معماری
 - ا دستورات

- تبدیل برنامه به کانتینر
 - كوبرنتيز
 - مقدمه
 - اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع

ماشینهای مجازی - نحوه کارکردن هایپروایزر

• نحوه کارکرد هایپوروایزر

- انواع هایپروایزر
- نوع یک (متا هایپروایزر)
- VMware hypervisor •
- Microsoft Hyper-V
 - Oracle VM Server •
- نوع دو
- VMware workstation
 - VMware fusion •
 - Oracle VirtualBox •

- ماشینهای مجازی
 - مجازیسازی
 - هایپروایزر
- نحوه کارکردن هایپروایزر
 - كانتينر
 - مقدمه
- مقایسه با ماشین مجازی
 - داكر
 - مقدمات
 - اعضای سازنده
- اعضای سازنده هسته داکر
 - معماري
 - دستورات

- تبدیل برنامه به کانتینر
 - كوبرنتيز
 - مقدمه
 - اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع

كانتينر – مقدمه

Container Engine (LXC, Docker)

Host OS

Hardware

• كانتينر

- مستقل
- بستههای نرمافزاری قابل اجرا
- دارای یک هسته سیستم عامل مانند
 - مزایا
 - قابل حمل بودن
 - سازگار و با ثبات
 - كارآمد
 - سبک
 - چابک و سریع

- ماشینهای مجازی
 - مجازیسازی
 - ۰ هایپروایزر
- نحوه کارکردن هایپروایزر
 - كانتينر
 - مقدمه
- مقایسه با ماشین مجازی
 - 51s °
 - مقدمات
 - اعضای سازنده
- اعضای سازنده هسته داکر
 - معماری
 - دستورات

- تبدیل برنامه به کانتینر
 - كوبرنتيز
 - مقدمه
 - اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع

کانتینر – مقایسه با ماشین مجازی

- تفاوت بین کانتینر و ماشین مجازی
 - سیستم عامل مشترک
 - (less overhead) دردسر کمتر

- ماشینهای مجازی
 - مجازیسازی
 - هایپروایزر
- نحوه کارکردن هایپروایزر
 - كانتينر
 - مقدمه
- مقایسه با ماشین مجازی
 - داکر
 - مقدمات
 - اعضای سازنده
- اعضای سازنده هسته داکر
 - معماري
 - دستورات

- تبدیل برنامه به کانتینر
 - كوبرنتيز
 - مقدمه
 - اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع

داكر – مقدمات

• پلتفورم به عنوان سرویس

- ماشینهای مجازی
 - مجازیسازی
 - هایپروایزر
- نحوه کارکردن هایپروایزر
 - كانتينر
 - مقدمه
- مقایسه با ماشین مجازی
 - داکر
 - مقدمات
 - اعضای سازنده
- اعضای سازنده هسته داکر
 - معماري
 - ا دستورات

- تبدیل برنامه به کانتینر
 - كوبرنتيز
 - مقدمه
 - اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع

داکر – اعضای سازنده

- اعضای سازنده اصلی
- هسته داکر (docker engine)
- داکر دیمون (docker daemon)
- ایپیآی های رست (REST API)
 - سوکت UNIX
- كلاينت يا همان واسط ترمينال (docker CLI) داكر دسكتاپ
 - كانتينر
 - ايميج
 - شبکه
 - واليوم يا حجم دادهها (Data Volume)

- ماشینهای مجازی
 - مجازیسازی
 - هایپروایزر
- نحوه کارکردن هایپروایزر
 - کانتینر
 - مقدمه ا
- مقایسه با ماشین مجازی
 - داکر
 - ا مقدمات
 - اعضای سازنده
- اعضای سازنده هسته داکر
 - معماري
 - ا دستورات

- تبدیل برنامه به کانتینر
 - كوبرنتيز
 - مقدمه
 - اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع

داکر – اعضای سازنده هسته داکر

هسته داکر

- ماشینهای مجازی
 - مجازیسازی
 - هایپروایزر
- نحوه کارکردن هایپروایزر
 - کانتینر
 - مقدمه
- مقایسه با ماشین مجازی

• داکر

- مقدمات
- اعضای سازنده
- اعضای سازنده هسته داکر
 - معماری
 - ا دستورات

- تبدیل برنامه به کانتینر
 - كوبرنتيز
 - مقدمه
 - اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع

داکر – معماری

- داکر دیمونکلاینت داکررجیستریها
 - اشیاء داکر
 - ايميجها داكر فايل
 - - كانتينرها
 - سرویسها
 - شبکه
- حجم دادهها يا واليوم (Data Volume)
 - پلاگینها

- ماشینهای مجازی
 - مجازیسازی
 - هایپروایزر
- نحوه کارکردن هایپروایزر
 - كانتينر
 - مقدمه
- مقایسه با ماشین مجازی

• داکر

- مقدمات
- اعضای سازنده
- اعضای سازنده هسته داکر
 - معماري
 - دستورات

- تبدیل برنامه به کانتینر
 - كوبرنتيز
 - مقدمه
 - اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع

داکر – دستورات

- بالا آوردن (شروع) هسته داکر (start)
 - گرفتن ایمیج (pull)
 - فرستادن ایمیج (push)
 - اجرای ایمیج (run)
 - ساختن ايميج (build)
 - متوقف کردن کانتینر (stop)
 - از بین بردن کانتینر (kill)

داکر – دستورات

	www.metakoder.com		
Docker Cheat Sheet			
	General	Container Regis	
	Start the docker daemon \$ docker -d	Login into Docker	
	Get help with Docker. Can also use –help on all subcommands	\$ docker login -u <username> Publish an image to Docker Hub</username>	
	\$ dockerhelp	<pre>\$ docker push <username>/<image_ <tag=""></image_></username></pre>	
	Images	Search Hub for an image \$ docker search <image_name></image_name>	
	Build an Image from a Dockerfile	Pull an image from a Docker Hub	
	\$ docker build -t <image_name></image_name>	<pre>\$ docker pull <image_name>:<tag></tag></image_name></pre>	
	Build an Image from a Dockerfile without the cache	Rename an existing Docker Image	
	<pre>\$ docker build -t <image_name>no-cache List local images</image_name></pre>	<pre>\$ docker tag <imagename> <newname <version=""></newname></imagename></pre>	
	\$ docker images	Status	
	Delete an Image	Docker Stats of all the Containers	
	\$ docker rmi <image_name></image_name>	\$ docker statsall	
	Remove all unused images	Display the running processes of a contain	
	\$ docker image prune	<pre>\$ docker top <container_name or<br="">container_id></container_name></pre>	
		Show History of a Docker Image	
		\$ docker history <imagename i<="" or="" td=""></imagename>	

custo Container Registry Run Star docker push <username>/<image_name>: Rem Ope Kill/ docker tag <imagename> <newname>: Fetcl To it splay the running processes of a container To li List

×)		
Containers Create and run a container from an image, with a	Networking	
custom name \$ docker runname <container_name></container_name>	List all the Networks	
<pre><image_name></image_name></pre>	\$ docker network ls	
Run a container in the background	Create a new Network	
\$ docker run -d <image_name></image_name>	<pre>\$ docker network createdriver <driver- name> <bridge-name></bridge-name></driver- </pre>	
Run a container and publish a container's port(s) to the host.	Connect a running container to a network	
<pre>\$ docker run -p <host_port>:<container_port></container_port></host_port></pre>	\$ docker network connect <network-name></network-name>	
<pre><image_name></image_name></pre>	<pre></pre>	
Start or stop an existing container	Disconnects a container from a network	
<pre>\$ docker start stop <container_name> (or <container-id>)</container-id></container_name></pre>	\$ docker network disconnect <network-< td=""></network-<>	
Remove a stopped container	name> <container-name></container-name>	
<pre>\$ docker rm <container_name></container_name></pre>	Remove a network	
Open/ Attach a shell inside a running container	\$ docker network rm <network-name></network-name>	
<pre>\$ docker exec -it <container_name> sh</container_name></pre>		
Kill/ Stop a running container	Docker Compose	
<pre>\$ docker kill <container_id></container_id></pre>	· ·	
Fetch and follow the logs of a container	Create and start containers	
<pre>\$ docker logs -f <container_name></container_name></pre>	\$ docker compose up	
To inspect a running container	Stop and remove containers, networks	
\$ docker inspect <container_name> (or</container_name>	\$ docker compose down	
<pre><container_id>)</container_id></pre>	View output from containers	
To list currently running containers	\$ docker compose logs	
\$ docker ps	Receive real time events from containers	
List all docker containers (running and stopped):	\$ docker compose events	
\$ docker psall	List containers launched as part of compose.	
View resource usage stats	\$ docker compose ps	
\$ docker container stats		

- ماشینهای مجازی
 - مجازيسازي
 - هایپروایزر
- نحوه کارکردن هایپروایزر
 - كانتينر
 - مقدمه
- مقایسه با ماشین مجازی

• داکر

- مقدمات
- اعضای سازنده
- اعضای سازنده هسته داکر
 - معماری
 - ا دستورات

- تبدیل برنامه به کانتینر
 - كوبرنتيز
 - مقدمه
 - اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع

داکر – تبدیل برنامه به کانتینر

- نوشتن برنامه
- ساختن داکر فایل (docker file)
- ساختن فایل داکر کامپوز (docker compose) اختیاری
 - داکر کامپوز
 - .yml •
 - .yaml •
 - اجرای دستور مرتبط

داکر – تبدیل برنامه به کانتینر

۱ – برنامه پایتون

```
import time
import redis
from flask import Flask
app = Flask(__name__)
cache = redis.Redis(host='redis', port=6379)
def get_hit_count():
   retries = 5
   while True:
           return cache.incr('hits')
       except redis.exceptions.ConnectionError as exc:
           if retries == 0:
                raise exc
           retries -= 1
           time.sleep(0.5)
@app.route('/')
def hello():
   count = get_hit_count()
   return f'Hello World! I have been seen {count} times.\n'
```

۲- داکر فایل

```
# syntax=docker/dockerfile:1
FROM python:3.10-alpine
WORKDIR /code
ENV FLASK_APP=app.py
ENV FLASK_RUN_HOST=0.0.0.0
RUN apk add --no-cache gcc musl-dev linux-headers
COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
EXPOSE 5000
COPY . .
CMD ["flask", "run", "--debug"]
```

٣- فایل داکر کامپوز

```
services:
    web:
    build: .
    ports:
        - "8000:5000"
    redis:
    image: "redis:alpine"
```

۴- اجرای دستور

```
$ docker compose up

Creating network "composetest_default" with the default driver
Creating composetest_web_1 ...
Creating composetest_redis_1 ...
Creating composetest_web_1
Creating composetest_redis_1 ... done
```


- تبدیل برنامه به کانتینر
 - كوبرنتيز
 - مقدمه
 - اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع

- ماشینهای مجازی
 - مجازیسازی
 - هایپروایزر
- نحوه کارکردن هایپروایزر
 - ا كانتينر
 - مقدمه
- مقایسه با ماشین مجازی
 - ۰ داکر
 - مقدمات
 - اعضای سازنده
- اعضای سازنده هسته داکر
 - ا معماری
 - دستورات

كوبرنتيز – مقدمه

- K8S •
- مدیریت کانتینرها روی چند تا ماشین (Host)
 - مكانيزم اپليكيشنها
 - ديپلوی کردن
 - نگهداری
 - مقایس کردن
 - اتوماسيون (automation)
 - ساخته گوگل ۲۰۱۴
 - ترکیب بورگ (Borg) و ایدههای کامیونیتی

كوبرنتيز - مقدمه

- در سطح کانتینر (نه سختافزار)
 - پلتفورم به عنوان سرویس (PaaS)
 - مونولوتیک ا
 - فرآیند CI/CD ف
 - لاگ رصد کردن (مانیتور) 🖓
 - ابزار و بستر
 - ارکستراسیون ایج
 - بینیاز کردن

- تبدیل برنامه به کانتینر
 - كوبرنتيز
 - مقدمه
- اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفي چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع

- ماشینهای مجازی
 - مجازیسازی
 - هایپروایزر
- نحوه کارکردن هایپروایزر
 - كانتينر
 - مقدمه ا
- مقایسه با ماشین مجازی
 - ۰ داکر
 - مقدمات
 - اعضای سازنده
- اعضای سازنده هسته داکر
 - معماری
 - ا دستورات

کوبرنتیز – اجزای اصلی سازنده

- صفحه کنترل (control plane)
 - مديريت وضعيت كلى كلاستر
 - نود (node)
 - نگهداری از یادها
- فراهم کردن محیط اجرا (runtime environment)
 - ادونس (addons)
 - افزایش کارکرد کوبرنتیز

کوبرنتیز – اجزای اصلی سازنده

المائد ال

کوبرنتیز - اجزای اصلی سازنده - صفحه کنترل

- اجزا
- kube-apiserver •
- اینیسیدی (etcd)
- برنامهریز کیوب (kube scheduler)
 - مدیر کنترول
 ۲ manager
 - (kube-controller-manager)
 - مدیر کنترل ابری اختیاری (cloud-control-manager)

کوبرنتیز – اجزای اصلی سازنده – نود

- اجزا
- کیوبلِت (kubelet)
- کیوبپراکسی اختیاری (kube-proxy)
 - کانتینر زماناجرا (container-runtime)

کوبرنتیز – اجزای اصلی سازنده – ادونس

- اجزا
- دىاناس (DNS)
- داشبورد یوزر در وب (Web UI/Dashboard)
- رصد کردن منابع کانتینر (container resource monitoring)
 - لاگ در سطح کلاستر (cluster-level logging)

Kubernetes Extensions

- تبدیل برنامه به کانتینر
 - كوبرنتيز
 - مقدمه ا
 - اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع

- ماشینهای مجازی
 - مجازیسازی
 - هایپروایزر
- نحوه کارکردن هایپروایزر
 - كانتينر
 - مقدمه
- مقایسه با ماشین مجازی
 - ۰ داکر
 - مقدمات
 - اعضای سازنده
- اعضای سازنده هسته داکر
 - معماري
 - ا دستورات

كوبرنتيز - مفاهيم مقدماتي

- ديمون ست (DaemonSet)
- نگاشت تنظیمات (config map)
- مدیر کنترل (controller) manager
 - برنامه ریز (scheduler)
 - ای تی سی دی (etcd)
- نیماسپیس (namespace)

- کلاستر (cluster)
 - نود (node)
 - مدیر (master)
 - کارگر (slave)
 - یاد (pod)
- سرویس (service)
- دیپلوی (deployment)
 - مجموعه وضعیت (statefulset)

كوبرنتيز – مفاهيم مقدماتي – كلاستر

كوبرنتيز – مفاهيم مقدماتي – كلاستر

- مجموعهای از نودها
- اجازه اجرا شدن در چند ماشین
 - مجازی
 - فیزیکی
 - ابری (cloud-based)
 - اجزا
- حداقل یک نود مدیر (master node)
 - چندین نود کارگر (slave nodes)

كوبرنتيز – مفاهيم مقدماتي – نود

- یک ماشیناجزا
- کیوبپراکسی (kube-proxy)
 - کیوبلت (kubelet)
 - کانتینر (container)

 - داکرپادمن

كوبرنتيز - مفاهيم مقدماتي - نود

- انواع
- کارگر (slave)
- همکاری مستقیم در یک شبکه (network)
 - قابل جايگزين شدن
 - بدون وضعیت (stateless)
- نگه نداشتن دادههای مداوم (not saving persistent data)
 - دلیل راحتی جایگزینی

كوبرنتيز - مفاهيم مقدماتي - نود

- انواع نودها
- مدیر (master)
- نگهداری وضعیت کلاستر (saving cluster state)
 - نگهداری در ای تی سیدی (etcd)
 - دیپلوی شدن در نودهای (ماشینهای) مختلف
 - به شدت در دسترس (highly available)

كوبرنتيز - مفاهيم مقدماتي - نود

- مزایا روش مدیر و کارگر
- مقیاس پذیری راحت هنگام از بین رفتن نود کارگر
 - تخصیص وظیفه به نودهای دیگر
 - آسان بودن از بین بردن نود
 - پاک کردن از ایتیسیدی (etcd)
- تحمل پذیری خطای بالا (high fault tolerance)
 - در صورت بروز خطا برای یک نود کارگر
 - برنامه ریزی مجدد بوسیله نود مدیر
 - تخصیص وظایف به نودهای کارگر در دسترس
 - نتیجه:
 - تضمین ادامه به عملکرد کلاستر

كوبرنتيز - مفاهيم مقدماتي - پاد

- اجرای کانتینر
- کوچکترین واحد کوبرنتیز
- استفاده برای اجرای اپلیکیشن
 - شامل یک یا چند کانتینر
 - معمولا یک کانتینر
- تقسیم منابع مشترک بین کانتینرها (پیشرفتهتر)
 - شبکه
 - حافظه
 - نیم اسپیس

كوبرنتيز - مفاهيم مقدماتي - پاد

Cluster

كوبرنتيز – مفاهيم مقدماتي – سرويس

- روشی برای باز کردن یک شبکه برای اپلیکیشن
 - اپلیکیشن در یک پاد یا پادهای مختلف
 - در یک کلاستر
 - یک لایه انتزاعی
 - نگهداری کارکردهای مهم
 - بازکردن کارکردهای مورد نیاز
 - هدف
 - قراردادن یک یا چندپاد درون شبکه
 - بدون وضعیت (stateless)
 - تضمینی برای نگهداری دادهها ندارد

کوبرنتیز – مفاهیم مقدماتی – دیپلوی

- مسئول چرخه زندگی اپلیکیشن (lifecycle)
 - فراهم كننده نظم
- مديريت تعداد نمونههاي اپليكيشن (instance)
 - نمونه اپلیکیشن
 - یاد •
 - مفهوم رپلیکا (replica) و رپلیکاست

کوبرنتیز – مفاهیم مقدماتی – دیپلوی

- تضمین وجود تعداد مشخصشده از نمونهها
 - ساختن یاد جدید
 - خطا (fail)
 - نابودی (termination)
 - مقیاسبندی (scaling)
 - اضافه کردن نمونهها
 - درصورت افزایش درخواست

كوبرنتيز - مفاهيم مقدماتي - مجموعه وضعيت

- منبع مجازی (virtual resource)
- مدیریت اپلیکیشنهای نیازمند دادههای ماندگار
 - نگهداری وضعیت در طول زمان
 - برخلاف ديپلويمنت
 - مدیریت مجموعهای از پادها
 - ديپلوي کردن
 - مقیاس کردن

كوبرنتيز - مفاهيم مقدماتي - مجموعه وضعيت

- تضمین
- نظم و ترتیب یادها
- یکتا بودن (uniqueness)
 - مثال
 - یک مجموعه وضعیت سه تایی
 - پادهایی با اسامی زیر
 - وب یک
 - وب دو
 - وب سه
 - از بین رفتن پاد یک
 - ایجاد دوباره پاد با همان اسم

کوبرنتیز – مفاهیم مقدماتی – دیمون ست

- برای اجرا روی تمام نودها
- تضمین اجرای یک پاد در هر نود کارگر
 - مقیاس پذیر نیست
 - فقط یکی
 - در صورت از بین رفتن
 - تلاش برای ساختن دوباره
 - قابل محدود كردن
- انتخاب نود برای اجرا (nodeSelector)

كوبرنتيز – مفاهيم مقدماتي – مقايسه

كوبرنتيز – مفاهيم مقدماتي – نگاشت تنظيمات

- نگهداری دادههای غیر مهم
- نگهداری به شکل کلید داده (key value)
 - استفاده
- به عنوان ورودی خط اجرا پادها (command line argument)
 - متغیرهای محیطی (environment variables)
 - فایل تنظیمات روی دیسک
 - مزیت
 - جداسازی تنظیمات از ایمیج کانتینر
 - متغیر بودن تنظیمات

کوبرنتیز – مفاهیم مقدماتی – نگاشت تنظیمات

- (kube controller manager) مدیر کنترل
 - یک دیمون مهم در کلاستر
 - مرکز کنترل ماندگاری وضعیت کلاستر
 - فرآیند همواره در حال اجرا

- وظایف مهم
- رصد کردن پیوسته (continuous monitoring)
 - رصد کردن مداوم کلاستر
 - از طریق ایپیآی سرور کوبرنتیر (API server)
 - شامل دنبال کردن
 - يادها
 - ديپلويمنتها
 - سرویسها
 - منابع دیگر

- وظایف مهم (ادامه)
- تطابق وضعیت (state reconciliation)
- پیدا کردن تفاوت وضعیت کنونی با وضعیت مورد انتظار
 - عملیات اصلاح (corrective actions)
- بعد از پیدا کردن تفاوت بین وضعیت کنونی و مورد انتظار
 - اصلاح بوسیله کنترولر مربوطه
 - شامل
 - مقایس کردن پادها
- شروع مجدد کانتینرهای خطا خورده (restarting failed containers)
 - ساختن مجدد منابع مورد نیاز

• شامل چندین کنترلر

- کنترلر رپلیکیشن (Replication Controller)
 - مسئول تضمين بالا بودن تعداد مشخصي از پادها
 - کنترلر اندپوینت (Endpoint Controller)
 - مسئول ماندگاری اندپوینت هر سرویس
- کنترلر نیماسپیس (Namespace Controller)
 - مسئول ساختن و نگهداری از نیم اسپیسها
- کنترلر حساب سرویس (Service Account Controller)
- مسئول ساختن و مديريت حساب سرويس (service account) هر پاد
 - کنترلر نود (Node Controller)
 - مسئول بررسی وضعیت سلامت و دسترسپذیری هر نود
 - کنترلر توکن (Token Controller)
- مسئول بررسی مشکلات توکن حساب سرویسها (service account)
 - کنتلر اجازه (Lease Controller)
- مسئول مکانیزم اجازه (Leasing Mechanism) برای دسترسی به منابع مشترک (shared resource)

كوبرنتيز - مفاهيم مقدماتي- برنامهريز

- مسئول دادن پادها به نود در یک کلاستر
 - مسئولیت اصلی
 - بهینهسازی مصرف منابع
 - تضمین اجرا شدن کارا و راحت اپلیکیشن
 - وابسته
 - توانایی سختافزار
 - منابع در دسترس
 - کیفیت سرویس (Quality of Service QoS)
 - تنظیمات

كوبرنتيز – مفاهيم مقدماتي – برنامهريز

- تاثیر در صورت انجام بهینه برنامهریزی
 - بهبود استفاده از منابع
- نقش مهم توزیع منابع (resource allocation)
 - بهبود عملكرد اپليكيشن
- تضمين دردسترسبودن بالا (Highly Available)
- توزیع حجم کاری در سیستم (Workload distribution)
- متوازن کردن حجم کاری درخواستها (Load balancing)
 - خطاپذیری (Fault tolerancing)
 - کمتر کردن تنگناهها (bottlenecks)

كوبرنتيز – مفاهيم مقدماتي – برنامهريز

Queue

Filter

Score

(Notifier)

(Binding Policies)

Binding

PodFitsHostPorts

PodFitsHost

PodFitsResources

PodMatchNodeSelector

NoVolumeZoneConflict

NoDiskConflict

MaxCSIVolumeCount

CheckNodeMemPressure

CheckNodePIDPressure

CheckNodeDiskPressure

CheckNodeCondition

PodToleratesNodeTaints

CheckVolumeBinding

scheduler's default filters

كوبرنتيز – مفاهيم مقدماتي – برنامهريز

کوبرنتیز – مفاهیم مقدماتی – ای تی سی دی

- و نگهداشتن تمام اطلاعات کلاستر
 - وضعیت فعلی (current state)
- وضعیت مورد نظر (desired state)
- تنظیمات منابع (resource configuration)
 - رruntime data) اجرا (runtime data) دادههای زمان
- نگهداری به صورت کلید-داده (key-value)
- پیداکردن سرویسها (service discovery)

کوبرنتیز – مفاهیم مقدماتی – ای تی سی دی

- کارایی
- رصد کردن نودها
- پیدا کردن منابع خالی (در دسترس)
 - رصد کردن سلامتی نودها
- پیادهسازی چند مکانیزم برای جلوگیری از استارویشن (starvation) منابع
 - تضمین در دسترس بودن و قابل اطمینان بودن

کوبرنتیز – مفاهیم مقدماتی – ای تی سی دی

- کارایی (ادامه)
- ویژگیها سیستمهای توزیعشده (پیادهسازی الگوریتمها)
 - پیداکردن سرویسها (service discovery)
 - انتخاب فرمانده (Leader Election)
 - قفل توزيعشده (Distributed Locks)
 - ساير موارد

كوبرنتيز - مفاهيم مقدماتي- نيماسپيس

- راهی برای تبدیل کلاستر به زیرکلاستر مجازی (-virtual sub) (cluster)
 - تفاوت زير كلاسترها از نظر منطقى
 - امکان ارتباط بین دو زیرکلاستر
 - استفاده
 - در زمان استفاده همزمان
 - تیمهای متفاوت
 - پروژههای متفاوت
 - بدون محدودیت در تعداد نیم اسپیسها در یک کلاستر

كوبرنتيز – مفاهيم مقدماتي– نيم إسپيس

Kubernetes - Namespaces

كوبرنتيز – مفاهيم مقدماتي – واليوم

- دایرکتوری (directory) با دادههای مشترک
 - بین چند کانتینر در یک پاد
 - تفاوت واليوم و كانتينر
- ماندگاری دادهها در والیوم بعد از شروع مجدد ناشی از خطا (crash)
 - برداشتن داده از وضعیت قبلی (data at the state before crash)

كوبرنتيز – مفاهيم مقدماتي – واليوم

- مدل واليومها
- زودگذر (Ephemeral)
- زمان ماندگاری (Lifetime) برابر با پاد
- استفاده برای دادههای گذرا (temporary)
- دادهها و اپلیکیشنهای بدون نیاز به ماندگاری دادهها (data persistency)
 - سريع
 - انواع از این مدل
 - داير كتورى خالى (emptyDir)
- اولین موجودیت ساخته شده هنگان واگذار شدن (assign) پاد به نود
 - نگاشت تنظیمات (configMap)
 - محرمانه (Secret)
 - ساير موارد

كوبرنتيز – مفاهيم مقدماتي – واليوم

- مدل واليومها ادامه
- با دوام (Durable)
- زمان ماندگاری (Lifetime) جدا از پاد
- ماندگاری دادهها در زمان متوقف شدن (crash) یا پاکشدن کانتینر
 - انواع این مدل
 - واليوم كيليمهاى ماندگار (persistent Volume Claim)
 - بوكاستور الاستيك (awsElasticBlockStore)
 - دیسک آزور (azureDisk)
 - دیسک ماندگار جیسیای (gcePersistentDisk)
 - ساير موارد

كوبرنتيز - مفاهيم مقدماتي- واليوم ماندگار

- بیانگر حافظه ماندگار در کوبرنتیر
 - منظور از حافظه
- حافظه در کلاستر(storage resource in cluster)
- ارتباط تنگاتنگ با ادعای والیوم ماندگار (Claims PVC)
 - ادعای والیوم ماندگار (PVC)
 - اجازه دادن به پاد برای درخواست کردن والیوم ماندگار
 - بهینهسازی حافظه ماندگار در کلاستر

كوبرنتيز - مفاهيم مقدماتي- واليوم ماندگار

- انواع
- محلی (local)
- ذخیرهسازی دادهها به صورت محلی در نودهای کلاستر
 - مسير ميزبان (hostPath)
- ذخیرهسازی دادهها در دایرکتوری نامگذاری شده در نود
 - طراحی شده برای اهداف تستی (تست کردن)
- فایل سیستم شبکه (nfs network file system)
 - آیاسسیاسآی (iscsi)
- سیاس آی (Container Storage Interface CSI)
 - سف (CephFS)
 - افسی (Fibre channel fc)
 - آربی دی (Rados Black Device RBD)

• تبدیل برنامه به کانتینر

• كوبرنتيز

- مقدمه
- اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع

- ماشینهای مجازی
 - مجازیسازی
 - هایپروایزر
- نحوه کارکردن هایپروایزر
 - كانتينر
 - مقدمه
- مقایسه با ماشین مجازی
 - ۰ داکر
 - مقدمات
 - اعضای سازنده
- اعضای سازنده هسته داکر
 - معماري
 - ا دستورات

- محرمانگی با سکرت
- حاوی دادههای حساس و مهم (sensitive) کم حجم
 - مثال
 - پسورد
 - يوزرنيم
 - توكن
 - کلید
 - سرتیفیکیتها (certificates)
 - اگر نبود
 - داخل پاد
 - داخل ایمیج

- نحوه استفاده
- متغیرهای محیطی در کانتینر (Environment Variables)
 - استفاده راحت
 - دسترسی راحت اپلیکیشن
 - فایل در کانتیرنر
 - قرار گرفتن (mounted) به عنوان فایل در کانتینر
- به عنوان ورودی خط اجرا پادها (command line argument)

- انواع سِكرِت
- كدر يا مات (Opaque)
 - يايهاي
- نگهداری دادهها در فرمت دلخواه
 - جيسون (json)
 - باینری (binary files)
 - کلید-داده (key-value)
 - برای نگهداری دادههای حساس
 - پسورد
 - سرتیفیکیتها (certificates)
 - توكن (token)

- انواع سِكرِت ادامه تى إل إس (TLS)
 - - استفاده
- برای نگهداری سرتیفیکیتها و کلیدها
- امن کردن ارتباط بین اعضای مختلف کوبرنتیز
 - دریک کلاستر
- بین سرویسها و کلاینتهای خارجی (external clients)

- انواع سكرت ادامه
- داکر سیافجی (Dockercfg)
 - یکی از اجزای داکر
 - داکر
- ذخیره کردن دادههای حساس داکر
 - مثال
- اطلاعات رجیستری (registry credentials)
- توکن احراز هویت (authentication token)
- كوبرنتيز
- در زمان اجرا (container runtime)
 - برای گرفتن ایمیج از رجیستری

- انواع سِكرِت ادامه
- اساساچ (SSH)
- نگهداری کلیدهای اِساِساِچ (SSH)
- قابل احراز شدن بوسیله سرویسهای دیگر

- تبدیل برنامه به کانتینر
 - كوبرنتيز
 - مقدمه
 - اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع

- ماشینهای مجازی
 - مجازیسازی
 - هایپروایزر
- نحوه کارکردن هایپروایزر
 - ا كانتينر
 - مقدمه
- مقایسه با ماشین مجازی
 - ۰ داکر
 - مقدمات
 - اعضای سازنده
- اعضای سازنده هسته داکر
 - معماری
 - دستورات

کوبرنتیز – معرفی چند ابزار – کیوبلت

- کیوبلت
- مامور نود اولیه (primary node agent)
- توانایی اضافه کردن نود با ای پی آی سرویس (API server)

کوبرنتیز – معرفی چند ابزار – هلم

- کمک کردن در مدیریت اپلیکیشنهای کوبرنتیز
 - کمک کردن در
 - نصد
 - بروزرسانی
- تا حدی شبیه یک پکیج منیجر برای یک زبان برنامه نویسی
 - مثل پیپ (pip) برای پایتون

کوبرنتیز – معرفی چند ابزار – کیوبپراکسی

- کیوبپراکسی
- میرا بودن (Ephemeral) پادها
 - آیپی آدرس غیر قابل اطمینان
- فراهم کردن یک آیپی آدرس مطمئن برای برقراری ارتباط دو پاد
 - نصب شده در هر نود
 - نحوه کارکرد
- رصد کردن تمامی تغیرات در سرویسها و اندپوینتهایشان (endpoints)
 - تصویر کردن (translate) تغیرات در شبکه واقعی داخل نود
 - اجرا در کلاستر عموما به صورت دیمونست
 - قابلیت نصب جداگانه در لینوکس

کوبرنتیز – معرفی چند ابزار – کیوب پراکسی

كوبرنتيز – معرفي چند ابزار – كيوبسي تي اِل

- کیوبسی تی ال (kubectl)
- ابزار خط اجرا (command line tool)
 - اجرا کردن دستورات در کوبرنتیز
 - استفاده
 - ديپلوي کردن اپليکيشن
 - نظارت و مدیریت منابع کلاستر
 - ديدن لاگها
 - ساير موارد

كوبرنتيز – معرفي چند ابزار – كيوبسي تي اِل

كوبرنتيز – معرفي چند ابزار –كيوبسي تيال

دستورات كيوبسي تيال

Kubectl Commands Cheat Sheet

Pod & Container Introspection

List the current pods kubectl get pods # Describe pod < name > kubectl describe pod < name > # List the replication controllers kubectl get rc # List the replication controllers in < namespace > kubectl get rc --namespace="<namespace>" # Describe replication controller < name > kubectl describe rc < name> # List the services kubectl get svc # Describe service < name > kubectl describe svc <name> # Delete pod < name > kubectl delete pod <name> #Watch nodes continuously kubectl get nodes -w

Cluster Introspection

Get version information kubectl version # Get cluster information kubectl cluster-info # Get the configuration kubectl config view # Output information about a node kubectl describe node < node >

Debugging

Execute <command> on <service> optionally
selecting container <\$container>
kubectl exec <service> <command> [-c <\$container>]
Get logs from service <name> optionally # selecting
container <\$container>
kubectl logs -f <name> [-c <\$container>]
Watch the Kubelet logs
watch -n 2 cat /var/log/kublet.log
Show metrics for nodes
kubectl top node
Show metrics for pods
kubectl top pod

Quick Commands

Launch a pod called < name > # using image < image-name> kubectl run <name> --image=<image-name> # Create a service described # in < manifest.vaml> kubectl create -f < manifest.vaml> # Scale replication controller # <name > to <count > instances kubectl scale --replicas=<count> rc <name> # Map port <external > to # port <internal > on replication # controller < name > kubectl expose rc <name> --port=<external> --targetport=<internal> # Stop all pods on <n> kubectl drain <n> --delete-local-data --force --ignoredaemonsets # Create namespace < name > kubectl create namespace < namespace > # Allow Kubernetes master nodes to run pods kubectl taint nodes -- all node-role.kubernetes.io/master-

Objects

clusterrolebindings clusterroles cm = configmaps controllerrevisions crd = customresourcedefinition cronjobs cs = componentstatuses csr = certificatesigningrequests deploy = deployments ds = daemonsets ep = endpoints ev = events hpa = horizontalpodautoscalers ing = ingresses iobs limits = limitranges netpol = networkpolicies no = nodes ns = namespaces pdb = poddisruptionbudgets po = pods podpreset podtemplates psp = podsecuritypolicies pv = persistentvolumes pvc = persistentvolumedaims quota = resourcequotas rc = replicationcontrollers rolebindings roles rs = replicasets sa = serviceaccounts sc = storageclasses secrets sts = statefulsets

کوبرنتیز – معرفی چند ابزار – مینی کیوب

- ' مینی کیوب (minikube)
- ابزاری برای نصب و تنظیم محیط کوبرنتیز
 - بر روی کامپیوتر شخصی (local PC)
 - بر روی لپتاپ
 - مثل کوبر در همه چیز به جز
 - فقط یک ماشین
 - کوبر در چند ماشین
 - پیچیدگی بیشتر برای برخی از کارها
 - باز کردن پورت
 - امكان يذير
- اضافه کردن vm-driver=none-- به دستور minikube start برای اجرا
 - به همراه sudo در لینوکس

- تبدیل برنامه به کانتینر
 - كوبرنتيز
 - مقدمه
 - اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری
 - منابع

- ماشینهای مجازی
 - مجازیسازی
 - هایپروایزر
- نحوه کارکردن هایپروایزر
 - كانتينر
 - مقدمه
- مقایسه با ماشین مجازی
 - ۰ داکر
 - مقدمات
 - اعضای سازنده
- اعضای سازنده هسته داکر
 - معماري
 - ا دستورات

کوبرنتیز – فراهم کننده سرویس کوبر در بستر ابری

- برترینها (پر استفاده ترینها)
- آمازون وب سرویس (Amazon Web Service AWS)

• آژور کوبرنتیز (Azure Kubernetes)

• گوگل کلود یلتفرم (Google Kubernetes Platform - GKE) گوگل کلود یلتفرم

و فراهم کننده سرویس کوبر در بستر ابری

- چندتای دیگر
- آمازون الاستیک کوبرنتیز (Amazon Elastic Kubernetes)
 - جي کياي (GKE)
 - دیجیتا اوشن (DigitalOcean)
 - رد هَت اُپنشيفت (Red Hat OpenShift)
- آیبیام کلود کوبرنتیز سرویس (IBM Cloud Kubernetes Service)
- علیبابا کلود کانتینر سرویس فور کوبرنتیز (Service for Kubernetes)

- ماشینهای مجازی
 - مجازیسازی
 - هایپروایزر
- نحوه کارکردن هایپروایزر
 - ا كانتينر
 - مقدمه
- مقایسه با ماشین مجازی
 - ۰ داکر
 - مقدمات
 - اعضای سازنده
- اعضای سازنده هسته داکر
 - معماري
 - دستورات

- تبدیل برنامه به کانتینر
 - كوبرنتيز
 - مقدمه
 - اجزای اصلی سازنده
 - مفاهیم مقدماتی
 - امنیت
 - معرفی چند ابزار
- فراهم کننده سرویس کوبر در بستر ابری

منابع

منابع

- . سایت رسمی کوبرنتیز
 - 2. سایت رسمی <mark>داکر</mark>
 - 3. سایت <u>مدیوم</u>
- ². سایت گیکز-فور-گیکز
 - 5. سایت <u>آیبیام</u>
- 6. سایت پارک پلیس تکنولوژی
 - 7. کانال نانا در یوتیوب
- 8. بقیه منابع که تعدادشان زیاد است و در دسترس نیستند.