Machine Learning

Daniel Drake

May 18, 2020

1 Gradients, Jacobian, Ferchet Drivative, and Sub-Gradients

Definition 1.1. Gradient

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a Differentiable function. Then $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ where:

$$\nabla f(x) := \begin{bmatrix} \frac{\partial}{\partial x_1} f(x) \\ \vdots \\ \frac{\partial}{\partial x_n} f(x) \end{bmatrix} \forall x \in \mathbb{R}^n$$

is called the Gradient of f. Reference

Definition 1.2. Jacobian

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ where:

$$f(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{bmatrix} \forall x \in \mathbb{R}^n \text{ and } (\forall j \in \mathbb{N}_m)(f_j : \mathbb{R}^n \to \mathbb{R})$$

Then $J_f: \mathbb{R}^n \to \mathbb{R}^{m \times n}$ where:

$$J_f(x) := \begin{bmatrix} \frac{\partial}{\partial x_1} f_1(x) & \cdots & \frac{\partial}{\partial x_n} f_1(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_1} f_m(x) & \cdots & \frac{\partial}{\partial x_n} f_m(x) \end{bmatrix}$$

Reference

Definition 1.3. Derivative with respect to a vector and the subspace gradient.

Let $X = \{X_j\}_{j=0}^{n-1}$ be a sequence of finite dimensional vector spaces where $\dim(X_j) = k_j$ Let $T : \prod_{j=0}^{n-1} X_j \to Y$ where Y is a finite dimensional vector space with $\dim(Y) = k_y$ Let $x \in X_j$ for some $j \in \{0, ..., n-1\}$

$$D_x T(z) = \begin{bmatrix} \frac{\partial}{\partial x_1} T_1(z) & \cdots & \frac{\partial}{\partial x_{k_j}} T_1(z) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_1} T_{k_y}(z) & \cdots & \frac{\partial}{\partial x_{k_j}} T_{k_y}(z) \end{bmatrix}$$

If $k_y = 1$ then $[D_x T(z)]^T$ is called the subspace gradient with respect to X_j at the point z and is written $\nabla_x T(z)$

Definition 1.4. Product space Derivative

Let $X = \{X_j\}_{j=0}^{n-1}$ be a sequence of finite dimensional vector spaces where $\dim(X_j) = k_j$ Let $T : \prod_{j=0}^{n-1} X_j \to Y$ where Y is a finite dimensional vector space with $\dim(Y) = k_y$ Let $\{x_j\}_{j=0}^{n-1}$ be a sequence of vectors such that: $(\forall j \in \{0, ..., n-1\})(x_j \in X_j)$ The product space derivative at the point $z \in X$ is:

$$D_X T(z) = \begin{bmatrix} \nabla_{x_0} T(z) \\ \vdots \\ \nabla_{x_{n-1}} T(z) \end{bmatrix}$$

Example 1.1.

Let
$$X_0 = \mathbb{R}^n, X_1 = \mathbb{R}^m, X_2 = \mathbb{R}^m, X_3 = \mathbb{R}^m$$

Let $Y_0 = \mathbb{R}^{n \times m}, Y_1 = \mathbb{R}^m, Y_2 = \{0\}$ and $Y = \prod_{i=0}^2 Y_i$

$$T^{3}: X_{0} \times \prod_{j=0}^{2} Y_{j} \to X_{3} \text{ where } T^{3}(x, A, a, 0) = atan(a + Ax)$$

$$T_{0}: X_{0} \times Y_{0} \to X_{1} \text{ where } T_{0}(x, A) = Ax$$

$$T_{1}(x, a) = a + x$$

$$T_{2}(x) = atan(x)$$

$$T^{3}(x, A, a, 0) = T_{2}(T_{1}(T_{0}(x, A), a))$$

Now fix $x \in X_0$

Then we have a new operator, $T_x: \prod_{i=0}^2 Y_i \to X_3$ where:

$$T_x(y) = T^3(x, y)$$
 and $y = (A, a, 0)$

With all this we can now look at this:

Let
$$z \in \prod_{j=0}^2 Y_j$$

 $D_X||T_x(z)||$ where $||\cdot||$ is the one norm.

First:

$$\nabla_{y_0}||T_x(z)|| = \begin{bmatrix} \frac{\partial}{\partial a_{1,1}} ||T_x(z)|| & \cdots & \frac{\partial}{\partial a_{1,n}} ||T_x(z)|| \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial a_{m,1}} ||T_x(z)|| & \cdots & \frac{\partial}{\partial a_{m,n}} ||T_x(z)|| \end{bmatrix} Since \ y_0 = A$$

So then we will just look at: $\frac{\partial}{\partial a_{i,j}} ||T_x(z)||$ $\frac{\partial}{\partial a_{i,j}} ||T_x(z)|| = \frac{\partial}{\partial a_{i,j}} ||atan(a + Ax)||$

$$atan(Ax + a) = \begin{bmatrix} \arctan(\sum_{l=1}^{n} a_{1,l}x_l + a_1) \\ \vdots \\ \arctan(\sum_{l=1}^{n} a_{m,l}x_l + a_m) \end{bmatrix}$$

and so $||atan(Ax + a)|| = \sum_{i=1}^{m} |\arctan(\sum_{l=1}^{n} a_{i,l} x_l + a_i)|$ Thus the partial with respect to $a_{i,j}$ zeros out all but:

$$\frac{\partial}{\partial a_{i,j}}|\arctan(\sum_{l=1}^{n}a_{i,l}x_{l}+a_{i})| = \frac{\arctan(\sum_{l=1}^{n}a_{i,l}x_{j}+a_{i})}{((\sum_{l=1}^{n}a_{i,l}x_{l}+a_{i})^{2}+1)|\arctan(\sum_{l=1}^{n}a_{i,l}x_{l}+a_{i})|}a_{i,j}x_{j} \text{ by the chain rule.}$$

Definition 1.5. Fréchet derivative

Let V, W be normed vector spaces and $U \subset V$ be an open set.

An operator $f: U \to W$ is said to be Fréchet differentiable if there exists a bounded linear operator $A: V \to W$ such that:

$$\lim_{||h|| \to 0} \frac{||f(x+h) - f(x) + Ah||_W}{||h||_V} = 0$$

Reference

Theorem 1.1. Fréchet derivative of a bounded linear operator

Let V, W be normed vector spaces and $U \subset V$ be an open set.

Let $\hat{f}: V \to W$ be a bounded linear operator.

Then lets look at $f = \hat{f}|_U$

My guess is that $A = \hat{f}$

Let $x \in U$ and $h \in U \cap ||h|| \neq 0$ and $x + h \in U$, Then:

$$\frac{||f(x+h) - f(x) + Ah||_W}{||h||_V} = \frac{||f(x) + f(h) - f(x) + \hat{f}(h)||_W}{||h||_V} = \frac{||f(x) + f(h) - f(x) + f(h)||_W}{||h||_V} = 0$$

Thus let $\epsilon > 0$ and $\delta > 0$

Then if $0 < ||h|| < \delta$ we know that $\frac{||f(x+h)-f(x)+Ah||_W}{||h||_V} = 0 < \epsilon$

Therefore:

$$\lim_{||h|| \to 0} \frac{||f(x+h) - f(x) + Ah||_W}{||h||_V} = 0$$

Thus $A = \hat{f}$ is the Fréchet derivative of f.

1.1 Finite Composition Operator

Definition 1.6. Finite Composition Operator

Let the collection $X = \{X_j\}_{j=0}^n$ be a finite sequence of sets.

Further let $\{T_j\}_{j=0}^{n-1}$ be a finite sequence of operators such that $(\forall j \in \mathbb{N}_{n-1})(T_j : X_j \to X_{j+1})$

Then $T^n: X_0 \to X_n$ defined by:

$$T^n := \bigcap_{j=0}^{n-1} T_j$$

is called the Finite Composition Operator defined on X.

Theorem 1.2. Finite Composition Jacobian

Let T^n be defined as above.

Then:

$$J_{T^n}(x) = J_{T_{n-1} \circ T^{n-1}}(x) = J_{T_{n-1}}(T^{n-1}(x))J_{T^{n-1}}(x)$$

where:

$$J_{T^1}(x) = J_{T_0}(x)$$

Definition 1.7. Multi-variable Finite Composition Iteration

Let the collection $X = \{X_j\}_{j=0}^n$ and $Y = \{Y_j\}_{j=0}^{n-1}$ be finite sequences of sets.

Further let $\{T_j\}_{j=0}^{n-1}$ be a finite sequence of operators such that: $(\forall j \in \mathbb{N}_{n-1})(T_j : X_j \times Y_j \to X_{j+1})$

Let $T^n: X_0 \times \prod_{j=0}^{n-1} Y_j \to X_n$ where:

$$T^{n}(x,y) = z_{n}$$
 where $z_{j+1} = T_{j}(z_{j}, \pi_{j}(y))$ or $z_{j+1} = T_{j}(z_{j})$ and $z_{0} = x \in X_{0}$

Example 1.2. MVFCI

Let
$$X_0 = \mathbb{R}^n, X_1 = \mathbb{R}^m, X_2 = \mathbb{R}^m, X_3 = \mathbb{R}^m$$

Let $Y_0 = \mathbb{R}^{n \times m}, Y_1 = \mathbb{R}^m, Y_2 = \{0\}$

$$T^{3}: X_{0} \times \prod_{j=0}^{2} Y_{j} \to X_{n} \text{ where } T^{3}(x, A, a, 0) = atan(a + Ax)$$

$$T_{0}: X_{0} \times Y_{0} \to X_{1} \text{ where } T_{0}(x, A) = Ax$$

$$T_{1}(x, a) = a + x$$

$$T_{2}(x) = atan(x)$$

$$T^{3}(x, A, a, 0) = T_{2}(T_{1}(T_{0}(x, A), a))$$

Definition 1.8. Gradient Descent

Let $E: \mathbb{R}^n \to \mathbb{R}$ be a differentiable operator.

The method of Gradient Descent says that a local minimum of E can be found using the following iteration:

$$a_{n+1} = a_n - \gamma \nabla E(a_n)$$

Where $\gamma > 0$

Example 1.3. Objective Operator for Data Set Defined Operator Approximation Let $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ such that $X \times Y$ defines an operator T.

$$E(a) = \sum_{x \in X} ||T(x) - T^{n}(x, a)||$$

2 Surjective Continuous Non-decreasing Bounded Functionals

Let $B = \{f : \mathbb{R} \to [0,1] | f \text{ is surjective, continuous, and non-decreasing.} \}$

Theorem 2.1. B is convex.

Let $f, g \in B$ and $h(x) := \lambda f(x) + (1 - \lambda)g(x)$ where $\lambda \in [0, 1]$

Then h is still continuous since the linear combination of continuous functions is continuous.

Since both f and g are surjective and non-decreasing, then there exists x_0, y_0, x_1, y_1 in \mathbb{R} such that:

$$f(x_0) = 0 = g(y_0)$$
 and $f(x_1) = 1 = g(y_1)$

Suppose WLOG that $x_0 \leq y_0$ and $x_1 \leq y_1$

Then we know that:

$$h(x_0) = \lambda f(x_0) + (1 - \lambda)g(x_0) = \lambda 0 + (1 - \lambda)0 = 0$$

and

$$h(y_1) = \lambda f(y_1) + (1 - \lambda)g(y_1) = \lambda 1 + (1 - \lambda)1 = 1$$

Now if we pick $\alpha \in [0,1]$ by the intermediate value theorem, we know that there exists an $x_{\alpha} \in [x_0, y_1]$ such that:

$$h(x_{\alpha}) = \alpha$$

Since α was arbitrary element, I have shown that h is surjective.

Finally, let $x_0 < x_1$ be elements in \mathbb{R}

Then we know that $f(x_0) \leq f(x_1)$ and $g(x_0) \leq g(x_1)$

$$\Rightarrow \lambda f(x_0) \leq \lambda f(x_1)$$
 and $(1 - \lambda)g(x_0) \leq (1 - \lambda)g(x_1)$

$$\Rightarrow \lambda f(x_0) + (1 - \lambda)g(x_0) \le \lambda f(x_1) + (1 - \lambda)g(x_1)$$

$$\Rightarrow h(x_0) \le h(x_1)$$

Thus h is non-decreasing.

Since h is surjective, continuous, and non-decreasing, then $h \in B$

Thus B is convex.

Theorem 2.2. B is translation invariant.

Let $f \in B$ and g(x) := f(x+c) where $c \in \mathbb{R}$

f is continuous and so is the addition operator so g is continuous.

Let $\alpha \in [0,1]$ since f is surjective then $\exists x \in \mathbb{R} \cap f(x) = \alpha$

Then $g(x-c) = f(x+c-c) = f(x) = \alpha$ and so g is surjective.

Let x < y be elements in \mathbb{R}

Then $f(x) \le f(y) \Rightarrow f(x+c) \le f(y+c)$

 $\Rightarrow g(x) \leq f(y)$ and so g is non-decreasing.

Thus $g \in B$ and B is therefore translation invariant.

Theorem 2.3. B is not complete.

Theorem 2.4. Every element in B can be decomposed as a finite non-trivial convex combination from B