EMI TEST REPORT

Test Report No.:

FCN21004

Applicant:

Hitachi, Ltd. Service & Platform Business Unit

Address:

2-1, Omika-cho 5-chome, Hitachi-shi

Ibaraki-ken, 319-1293 Japan

Equipment under test:

CE50-10N

H-7726-12

Test date:

July 6, 2021

Regulations applied:

FCC Part 15.107 (2020.10) Class A

FCC Part 15.109 (2020.10) Class A

Test method used:

ANSI C63.4-2014 including C63.4a-2017

Test result:

Pass

Modification during test: No

Test site: e-OHTAMA, LTD. NAKAI EMC Center

Address: 456 Sakai, Nakai-machi, Ashigarakami-gun, Kanagawa, 259-0157 Japan

TEL: +81-90-5814-7277 FAX: +81-465-81-5938

Verified by:

K. Terai Manager

Approved date: Tul. 13, 202/

Approved by:

R. Hoshi Manager

Notes

- \cdot This test report is related only to the equipment described in the cover page.
- This report must not be reproduced in part without written permission by e-OHTAMA, LTD.
- The test results are obtained with test facilities which are traceable to national standards and/or international standards.

1. Equipment under test (EUT) ······	3
1.1 Equipment rating	3
1.2 Condition	3
1.3 Receipt date	3
1.4 Sampling	3
2. Test conditions	4
2.1 Mode of operation	4
2.2 Measurement arrangements of EUT	4
2.3 Deviation from the test method	4
2.4 Submitted document	4
3. Summary of test results ······	5
4. Test configuration ······	
4.1 System diagram	
4.2 Equipment list of test configuration	
4.3 Cable list	
4.4 Noise suppression components	
5. EMI test (conducted emission, radiated emission)	
5.1 Test specifications	
5.2 Test procedure	
5.3 Calculation of measurement results	
5.3.1 Conducted emission	
5.3.2 Radiated emission	
5.4 Uncertainty of EMI measurement (MIU)	
5.5 Test results	
5.6 Angle of EUT for radiated emission	
5.7 Test layout of radiated emission (Above 1 GHz)	
6. List of measuring instruments	
Appendix 1 Test results	
Appendix 2 Photographs ························A2	1

1. Equipment under test (EUT)

1.1 Equipment rating

Model/Type	Equipment name	Manufacturer	Power supply rating			
H-7726-12	CF50-10N *1	Little also it had	AC100 - 240 V			
	CE50-10N *1	Hitachi, Ltd.	50/60 Hz, 1 Φ			

*1: Equipment name

Equipment name	OpenVINO software install
CE50-10A	Yes
CE50-10N	No

1.2 Condition

Condition	Preproduction sample
	op. outdoud. outp.o

1.3 Receipt date

Receipt date July 2, 2021	Receipt date	July 2, 2021
---------------------------	--------------	--------------

1.4 Sampling

Campling of the equipment	The equipment was selected by the applicant therefore the
Sampling of the equipment	test site has not sampling.

2. Test conditions

The information in this clause is based on the application from the applicant.

2.1 Mode of operation

	LAN Communication: Packet transmission				
	EXT: Loop back				
	BurnIn Test				
	·2D Graphics: 2D graphics continuous display				
	·3D Graphics: 3D graphics continuous display				
Mode of operation	·CPU Maths: Logical instructions				
	∙Disk Media (USB-HDD): Random read/write				
	•Disk SSD: Random read/write				
	·Plugin: Continuous display of color bar				
	(A standard color bar image with small moving elements				
	specified in CISPR 32 was selected by the applicant.)				
Program name / Version	BurnIn Test v4.1 (1000) Linux 64bit / 4.1				

2.2 Measurement arrangements of EUT

Intended operational arrangement	Can be floor-standing or tabletop or rack mounted
Measurement arrangement	Table-top (Radiated emission measurement is performed vertically and horizontally setting on the table.)

2.3 Deviation from the test method

Contents of deviation	No
contents of actiation	140

2.4 Submitted document

Submitted document	No
--------------------	----

3. Summary of test results

Conducted emission								
Test contents	The port with the EUT	Operator	Test site	Result	Remarks			
Mains power port	Yes	S. Nagashima	No. 3 Site Pass					
Radiated emission								
Test contents	The port with the EUT	Operator	Test site	Result	Remarks			
Radiated emission (Up to 1 GHz)	Yes	S. Nagashima	No. 3 Site Pass		Two types of settings			
Radiated emission (Above 1 GHz)	Yes	S. Nagashima	No. 3 Site	Pass	Two types of settings			

4. Test configuration

The test of this report was executed that takes into consideration risks in the maximum configurations by the applicant.

The all equipment and cables described in the test configuration were provided by the applicant.

4.1 System diagram

4.2 Equipment list of test configuration

No	СПТ	Model/Ture	Equipment	Com No	Ser. No. FCC ID Manufacturer		Input v	Input voltage		Damarka
No.	EUT	Model/Type	name	Ser. No.	FCC ID	Manuracturer	V	Hz	Φ	Remarks
1	0	H-7726-12	CE50-10N	S9903Y1-03 R2	_	Hitachi, Ltd.	_	-	_	
2	0	LFA75F-12-J1	PS	0202759PR	DoC	COSEL CO., LTD.	AC120	60	1	Built-in power supply
3		24UD58	LCD Monitor	102NTB8KH5669	DoC	LG Electronics.	AC120	60	1	
4		272P7V	LCD Monitor	UHBA1909014220	DoC	Philips	AC120	60	1	
5		KU-2971	Keyboard	8l00100948B	DoC	Chicony Electronics Co., Ltd	DC5	ı		
6		HD-PUSU3	HDD	40372170600082	DoC	Buffalo Inc.	DC5	-	_	
7		-	Terminator	-	_	Hitachi, Ltd.	_	ı	_	
8		H-7726-12	CE50-10N	S9903Y2-09 R2	_	Hitachi, Ltd.	_	-	_	
9		LFA75F-12-J1	PS	02555002PR	DoC	COSEL CO., LTD.	AC100	50	1	Built-in power supply
10		241E1	LCD Monitor	UHB2101000133	DoC	Philips	DC19	1	_	
11		ADPC1925	AC ADAPTER	5135782A0572	DoC	TPV Electronics Co., Ltd.	AC100	50	1	
12		MSU0939	Mouse	8C15000784B	DoC	Chicony Electronics Co., Ltd	DC5	_	_	

4.3 Cable list

No.	Connected from (port name) — to (port name)	Cable name	Length (m)	Qty.	Connector	Shielded	Remarks
а	2 — AC120 V	AC cable	2.0	1	Plastic	No	3pin
b	1(DisplayPort1) — 3	Display cable	1.8	1	Plastic	Yes	
С	3 — AC120 V	AC cable	2.0	1	Plastic	No	3pin
d	1(DisplayPort2) — 4	Display cable	2.0	1	Plastic	Yes	
е	4 — AC120 V	AC cable	2.0	1	Plastic	No	3pin
f	1(USB2) — 6	USB cable	3.0	1	Plastic	Yes	USB3.0
g	1(LAN0) — 8(LAN0)	LAN cable	5.0	1	Plastic	No	Cat.5e
h	1(LAN1) — 8(LAN1)	LAN cable	5.0	1	Plastic	No	Cat.5e
j	1(LAN2) — 8(LAN2)	LAN cable	5.0	1	Plastic	No	Cat.5e
k	1(EXT) $-$ 7(Terminator)	EXT cable	10.0	1	Metal	Yes	
m	9 — AC100 V	AC cable	2.0	1	Plastic	No	3pin
n	8(DisplayPort1) $-$ 10	Display cable	1.5	1	Plastic	Yes	DVI-DP Connector
0	11 — AC100 V	AC cable	1.5	1	Plastic	No	3pin

4.4 Noise suppression components

	No.	Suppression Place	Model	Type	Manufacturer	Remarks
I	1	Mouse cable	E04SR150718	Ferrite core	SEIWA ELECTRIC MFG. CO., Ltd.	2turn

5. EMI test (conducted emission, radiated emission)

5.1 Test specifications

Regulations applied	FCC Part 15.107 (2020.10) Class A
	FCC Part 15.109 (2020.10) Class A
Test method used	ANSI C63.4-2014 including C63.4a-2017

Test date		Jul. 6, 2021
	Temperature	25 °C
Environment	Relative humidity	62 %RH
	Atmospheric pressure	994 hPa

EUT'	s highest internal frequency (Fx):	lication by the applicant)	
Highest fundamental frequency generated or used within the EUT or highest frequency at which it operates			Highest measured frequency
	Fx ≤ 108 MHz		1 GHz
	108 MHz < Fx ≤ 500 MHz		2 GHz
	500 MHz < Fx ≤ 1000 MHz		5 GHz
	<i>F</i> x > 1 GHz		$5 \times Fx$ up to a maximum of 40 GHz
	or <i>F</i> x is unknown.	Highest measured frequency: 8 GHz	

	Conducted emission (Mains power port)	Radiated emission at frequencies up to 1 GHz	Radiated emission at frequencies above 1 GHz
Measurement facility	SAC	SAC SAC	FSOATS (SAC with RF absorber on the RGP)
Measurement frequency range	150 kHz – 30 MHz (LISN)	30 MHz - 300 MHz (Biconical antenna) 300 MHz - 1 GHz (LPDA antenna)	1 GHz – 8 GHz (Horn antenna)
Actual measured distance	ı	10 m	3.7 m (The result is converted into the level in the distance of 3 m.)
Antenna height scan range	1	1 m – 4 m	1 m – 4 m
EMI receiver detection mode	Average mode: CISPR-Ave 9 kHz (B_6) Quasi peak mode: QP 9 kHz (B_6)	Quasi peak mode: QP 120 kHz (<i>B</i> ₆)	Average mode: CISPR-Ave 1 MHz (B_{imp}) Peak mode: Peak 1 MHz (B_{imp})

5.2 Test procedure

	Measurement of wide range frequencies using spectrum analyzer
	Spectrum analyzer settings were optimized considering final measurement.
1	Confirming the measurement instruments were not saturation by overload.
	Determine the cable arrangement giving the maximum emission level by the
	arrangement of the EUT, the arrangement of the local AE and the placement of cables
	within the range of typical to attempt varied.
	Selection of the frequencies
2	The frequencies showing high noise levels were chosen from the data on spectrum
	analyzer.
	Measurement by EMI receiver for selected frequencies
	EMI receiver settings (IF bandwidth and detection mode) were in accordance with
	standards.
3	Confirming the measurement instruments were not saturation by overload.
	• The measured AV level is CISPR-Average of CISPR 16-1-1:2010.
	Radiated emission was measured at maximum radiation point obtained by operating
	the turn table and the antenna mast.
	Adjusting the angle of the antenna (above 1 GHz)
4	• In the measurement above 1 GHz, if the antenna height exceeds the EUT height was
	measured by adjusting the angle of the antenna to the direction of the EUT.

5.3 Calculation of measurement results

Measurement results are calculated by EMI measurement software as shown below subclause. The values of the factor and the cable loss at frequencies not selected at calibration are calculated by natural spline interpolation of the third degree.

5.3.1 Conducted emission

Mains power port

Measurement result = Measurement (receiver reading) + Correction factor (c.f.)

Correction factor (c.f.) = Factor of LISN + Cable loss

5.3.2 Radiated emission

Up to 1 GHz

Measurement result = Measurement (receiver reading) + Correction factor (c.f.)

Correction factor (c.f.) = Antenna factor + Cable loss - Preamp gain

Above 1 GHz

Measurement result = Measurement (receiver reading) + Correction factor (c.f.)

Correction factor (c.f.) = Antenna factor + Cable loss - Preamp gain +

Factor of distance [20 log (Actual measurement distance / 3.0 m)]

5.4 Uncertainty of EMI measurement (MIU)

The actual test results may contain measurement uncertainty and do not mean to assure complete repeatability and reproducibility. Our lab uses the CISPR International Standard CISPR 16-4-2 to calculate the measurement uncertainty as shown below. Our lab measurement uncertainty (MIU) coverage factor k=2, approximately 95 % confidence level:

Measurement contents	Meas	Uncertainty		
Conducted emission	9 kHz – 30 MHz (LISN)	Mains power port		3.34 dB
	30 MHz – 300 MHz	10 m	Horizontal	3.78 dB
	(Biconical antenna)	10 111	Vertical	3.75 dB
	300 MHz – 1000 MHz	10 m	Horizontal	3.84 dB
	(LPDA antenna)	10 111	Vertical	3.84 dB
	1 GHz – 6 GHz		Horizontal	E 10 dB
Radiated emission	(Horn antenna)		Vertical	3.75 dB 3.84 dB 3.84 dB 5.18 dB 4.99 dB
Radiated emission	6 GHz - 18 GHz		Horizontal	4 00 dB
	(Horn antenna)	3 m	Vertical	3.75 dB 3.84 dB 3.84 dB 5.18 dB
	18 GHz - 26.5 GHz	(With floor absorber)	Horizontal	E 26 dB
	(Horn antenna)		Vertical	5.30 UB
	26.5 GHz – 40 GHz		Horizontal	5.49 dB
	(Horn antenna)		Vertical	J.49 UD

5.5 Test results

15 rest results								
Conducted emissi	on							
Test item	Test point		Minimum mar	gin		Result		
Mains power port	А	L1 Phase	22.628 MHz	26.1 dB	(AV)	Pass		
Radiated emission	Radiated emission							
Test it	tem		Minimum mar	Result				
	Horizontal	Vertical	30.491 MHz	8.6 dB	(OP)	Pass		
Radiated emission	setting	polarization	30113111112	0.0 45	(4.)	. 455		
(Up to 1 GHz)	Vertical setting	Vertical	30 531 MHz	10.5 dB (QP)	(OP)	Pass		
	vertical secting	polarization	30.331 11112	10.5 00	(4)	F a S S		
	Horizontal	Horizontal	5400.053 MHz	1/1/3 dB	(^\/)	Pass		
Radiated emission	setting	polarization	3400.033 14112	14.5 UD ((AV)	Fa55		
(Above 1 GHz)	Vertical setting	Horizontal	4999.651 MHz	16.0 dB	(^\/)	Pass		
	vertical setting	polarization	4999.031 14112	10.0 00	(AV)	F 455		
Refer to appendix 1 for	details of the test resu	lt.						
Note 1: The phase of mains power port is temporarily defined for measurement.								

5.6 Angle of EUT for radiated emission

5.7 Test layout of radiated emission (Above 1 GHz)

6. List of measuring instruments

EMI test (conducted emission)

Instrument name	Туре	Ser. No. (ID)	Manufacturer	Due date of calibration
Spectrum analyzer / receiver	ESCI	100418	Rohde & Schwarz	2022.02
AMN (LISN) (Measurement port)	ESH3-Z5	831887/015 (R&SR)	Rohde & Schwarz	2021.12
AMN (LISN) (Un-measurement port)	ESH3-Z5	831887/016 (R&SB)	Rohde & Schwarz	2021.12
Attenuator	6810.01.A	(7018)	SUHNER	2021.08
	3D-2W	(2073)	Kansai Tsushin Densen	2021.08
Coax cable	5D-2W	(2041)	Kansai Tsushin Densen	2021.08
	TCF500DD4000	16G06010	TOKUDEN PROSELL	2021.08

EMI test (radiated emission / 30 MHz - 1 GHz)

Instrument name	Туре	Ser. No. (ID)	Manufacturer	Due date of calibration
Spectrum analyzer / receiver	ESCI	100418	Rohde & Schwarz	2022.02
Biconical antenna	BBA9106	B-002	Schwarzbeck	2021.10
Log-periodic antenna	UHALP9108-A	0764	Schwarzbeck	2022.01
Preamplifier	8447F	2805A03043	Agilent Technology	2021.08
	SUCOFLEX106	2371/6	SUHNER	2021.08
	LHPX-10D	(2096)	Hitachi	2021.08
Coax cable (10 m)	SUCOFLEX106	8910/6	SUHNER	2021.08
	TCF500DD4000	16G06011	TOKUDEN PROSELL	2021.08
	TCF500DD2000	16G06014	TOKUDEN PROSELL	2021.08
Test site (Semi anechoic chamber)	FACT-10-QZ3.0 Standard Plus	ETS B Pink (No.3)	ETS LINDGREN	2022.05

$\underline{\sf EMI}$ test (radiated emission / 1 $\underline{\sf GHz}$ – 18 $\underline{\sf GHz})$

Instrument name	Туре	Ser. No. (ID)	Manufacturer	Due date of calibration
Spectrum analyzer / receiver	ESW44	101693	Rohde & Schwarz	2022.02
Horn antenna	3117	00092375 (H-ETS)	ETS LINDGREN	2021.08
Preamplifier	8449B	3008A01297	Agilent Technology	2022.06
RF cable	TCF358FG5500	13X24001	TOKUDEN PROSELL	2022.06
	TCF358FG300	12G25001	TORODEN PROSELL	2022.06

Appendix 1 Test results

Conducted emission data (Mains power port)

Test point A

Final Result					
N (QP) No. Frequency [MHz] 1 0.199 2 0.257 3 0.801 4 2.274 5 7.972 6 22.885	Reading [dB(\(\mu \) V)] 29.5 31.6 25.4 19.1 18.7 21.7	c. f [dB] 10. 4 10. 4 10. 5 10. 6 11. 0 11. 8	Result [dB(µV)] 39.9 42.0 35.9 29.7 29.7 33.5	Limit [dB(µV)] 79.0 79.0 73.0 73.0 73.0 73.0	Margin [dB] 39.1 37.0 37.1 43.3 43.3 39.5
N (AV) No. Frequency [MHz] 1 0.199 2 0.257 3 0.801 4 2.274 5 7.972 6 22.885	Reading [dB(\(\mu \) V)] 13. 2 27. 0 7. 5 3. 5 17. 5 20. 7	c. f [dB] 10. 4 10. 4 10. 5 10. 6 11. 0 11. 8	Result [dB(µV)] 23.6 37.4 18.0 14.1 28.5 32.5	Limit [dB(µV)] 66.0 66.0 60.0 60.0 60.0 60.0	Margin [dB] 42.4 28.6 42.0 45.9 31.5 27.5
L1 (QP) No. Frequency [Mitz] 1 0.195 2 0.257 3 0.795 4 2.133 5 7.328 6 22.628	Reading [dB(\(\mu \) V)] 34.9 31.1 26.9 18.9 18.3 23.2	c. f [dB] 10. 4 10. 4 10. 5 10. 6 11. 0	Result [dB(µV)] 45.3 41.5 37.4 29.5 29.3 35.0	Limit [dB(µV)] 79.0 79.0 73.0 73.0 73.0 73.0	Margin [dB] 33.7 37.5 35.6 43.5 43.7 38.0
L1 (AV) No. Frequency [Mitz] 1 0.195 2 0.257 3 0.795 4 2.133 5 7.328 6 22.628	Reading [dB(\(\mu \) V)] 17.1 28.5 8.5 2.8 17.0 22.1	c. f [dB] 10. 4 10. 4 10. 5 10. 6 11. 0	Result [dB(µV)] 27.5 38.9 19.0 13.4 28.0 33.9	Limit [dB(µV)] 66.0 66.0 60.0 60.0 60.0 60.0	Margin [dB] 38.5 27.1 41.0 46.6 32.0 26.1

Radiated emission data (Up to 1 GHz) / Horizontal setting

Final Result

	- Horizontal	Polarizatio	on (QP)					
No.			c. f	Result	Limit	Margin		Angle
	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
	1 30. 397	25. 3	-8. 0	17. 3	39. 0	21. 7	400.0	21.0
	2 59. 179		-18.0	11. 3	39. 0	27. 7	343. 3	32.8
	3 146. 251	35. 3	-11.0	24. 3	43. 5	19. 2	400.0	228.8
	4 419. 389		-7.8	22. 4	46. 4	24.0	181. 1	33. 9
	5 693.612		-2.9	30. 1	46. 4	16. 3	100.0	215. 0
(6 905.846		2. 5	31. 2	46. 4	15. 2	100.0	122. 1
	7 998.817	23. 2	2.6	25.8	49. 5	23. 7	100.0	352. 4
	- Vertical P	olarization	(QP)					
No.				Dogu1+	T :: 4	Margin	Height	10010
110.	. Frequency	Reading	c.f	Result	Limit	margin	петдиі	Angle
110	. rrequency [MHz]		[dB(1/m)]	$[dB(\mu V/m)]$		[dB]	cm]	
110	[MHz] 1 30.491	[dB(μV)] 38.5	[dB(1/m)] -8.1	[dB(μ V/m)] 30.4	[dB(μ V/m)] 39.0	[dB] 8.6	[cm] 100.0	[°] 272. 4
	[MHz] 1 30.491 2 35.341	[dB(μ V)] 38. 5 33. 6	[dB(1/m)] -8.1 -10.7	[dB(μ V/m)] 30.4 22.9	$\begin{bmatrix} dB (\mu V/m) \\ 39.0 \\ 39.0 \end{bmatrix}$	[dB] 8.6 16.1	[cm] 100.0 202.2	[°] 272. 4 191. 8
	[MHz] 1 30.491 2 35.341 3 46.657	[dB(μ V)] 38. 5 33. 6 39. 3	[dB(1/m)] -8.1 -10.7 -14.2	[dB(μ V/m)] 30. 4 22. 9 25. 1	[dB(μ V/m)] 39. 0 39. 0 39. 0	[dB] 8.6 16.1 13.9	[cm] 100.0 202.2 313.3	[°] 272.4 191.8 0.0
	[MHz] 1 30. 491 2 35. 341 3 46. 657 4 56. 582	[dB(μ V)] 38. 5 33. 6 39. 3 44. 5	[dB(1/m)] -8.1 -10.7 -14.2 -17.2	$\begin{bmatrix} dB(\mu V/m) \\ 30.4 \\ 22.9 \\ 25.1 \\ 27.3 \end{bmatrix}$	$\begin{bmatrix} dB(\mu V/m) \\ 39.0 \\ 39.0 \\ 39.0 \\ 39.0 \\ 39.0 \\ \end{bmatrix}$	[dB] 8.6 16.1 13.9 11.7	[cm] 100.0 202.2 313.3 100.0	[°] 272.4 191.8 0.0 334.9
	[MHz] 1 30. 491 2 35. 341 3 46. 657 4 56. 582 5 106. 040	[dB(µV)] 38. 5 33. 6 39. 3 44. 5 36. 7	[dB(1/m)] -8.1 -10.7 -14.2 -17.2 -14.2	$\begin{bmatrix} \text{dB} (\mu\text{V/m}) \\ 30.4 \\ 22.9 \\ 25.1 \\ 27.3 \\ 22.5 \\ \end{bmatrix}$	[dB(µV/m)] 39.0 39.0 39.0 39.0 43.5	[dB] 8.6 16.1 13.9 11.7 21.0	[cm] 100. 0 202. 2 313. 3 100. 0 100. 0	[°] 272. 4 191. 8 0. 0 334. 9 255. 7
	[MHz] 1 30. 491 2 35. 341 3 46. 657 4 56. 582	[dB(µV)] 38.5 33.6 39.3 44.5 36.7 32.4	[dB(1/m)] -8.1 -10.7 -14.2 -17.2	$\begin{bmatrix} dB(\mu V/m) \\ 30.4 \\ 22.9 \\ 25.1 \\ 27.3 \end{bmatrix}$	$\begin{bmatrix} dB(\mu V/m) \\ 39.0 \\ 39.0 \\ 39.0 \\ 39.0 \\ 39.0 \\ \end{bmatrix}$	[dB] 8.6 16.1 13.9 11.7	[cm] 100.0 202.2 313.3 100.0	[°] 272.4 191.8 0.0 334.9

Radiated emission data (Up to 1 GHz) / Vertical setting

Final Result

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	No. 1 2 3 4 5 6 7	Horizontal Frequency [MHz] 30.315 60.440 146.238 527.986 767.997 908.050 989.450	Polarizatic Reading [dB(µV)] 25.5 33.2 34.5 32.2 32.3 26.3 23.1	on (QP)—— c. f [dB(1/m)] —8. 0 —18. 3 —11. 0 —6. 5 —1. 4 2. 5 2. 6	$\begin{array}{c} \text{Result} \\ [\text{dB}(\mu\text{V/m})] \\ 17.5 \\ 14.9 \\ 23.5 \\ 25.7 \\ 30.9 \\ 28.8 \\ 25.7 \end{array}$	Limit [dB(µV/m)] 39.0 39.0 43.5 46.4 46.4 49.5	Margin [dB] 21.5 24.1 20.0 20.7 15.5 17.6 23.8	Height [cm] 400.0 338.6 400.0 262.5 100.0 263.0 100.0	Angle [°] 100. 2 2. 5 182. 1 214. 4 131. 4 135. 1 222. 7
No. Frequency Reading c. f Result Limit Margin Height Angle [MHz] [dB(μ V)] [dB(μ V)] [dB(μ V/m)] [dB(μ V/m)] [dB(μ V/m)] [dB(μ V)] [dB(•				25. 7	49. 5	23.8	100. 0	222. 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					D1+	I imi+	Mazamin	11 - 2 - 1-4	A 1 -
3 46. 720 36. 9 -14. 2 22. 7 39. 0 16. 3 353. 5 10. 6 4 57. 738 43. 9 -17. 6 26. 3 39. 0 12. 7 100. 0 356. 5 5 105. 410 43. 5 -14. 3 29. 2 43. 5 14. 3 118. 5 30. 2 6 250. 000 35. 7 -7. 1 28. 6 46. 4 17. 8 100. 0 190. 1 7 528. 009 33. 9 -6. 5 27. 4 46. 4 19. 0 250. 7 39. 6	NO.	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]
4 57.738 43.9 -17.6 26.3 39.0 12.7 100.0 356.5 5 105.410 43.5 -14.3 29.2 43.5 14.3 118.5 30.2 6 250.000 35.7 -7.1 28.6 46.4 17.8 100.0 190.1 7 528.009 33.9 -6.5 27.4 46.4 19.0 250.7 39.6	1	[MHz] 30.531	[dB(μV)] 36.6	[dB(1/m)] -8.1	[dB(μ V/m)] 28.5	[dB(μ V/m)] 39.0	[dB] 10.5	[cm] 100.0	[°] 269. 3
5 105.410 43.5 -14.3 29.2 43.5 14.3 118.5 30.2 6 250.000 35.7 -7.1 28.6 46.4 17.8 100.0 190.1 7 528.009 33.9 -6.5 27.4 46.4 19.0 250.7 39.6	1 2	[MHz] 30.531 35.314	[dB (μ V)] 36. 6 34. 8	[dB(1/m)] -8.1 -10.7	[dB(μ V/m)] 28.5 24.1	[dB(μ V/m)] 39.0 39.0	[dB] 10.5 14.9	[cm] 100.0 100.0	[°] 269. 3 190. 1
6 250.000 35.7 -7.1 28.6 46.4 17.8 100.0 190.1 7 528.009 33.9 -6.5 27.4 46.4 19.0 250.7 39.6	1 2 3	[MHz] 30.531 35.314 46.720	[dB(μ V)] 36. 6 34. 8 36. 9	[dB(1/m)] -8.1 -10.7 -14.2	$\begin{bmatrix} dB (\mu V/m) \\ 28.5 \\ 24.1 \\ 22.7 \end{bmatrix}$	[dB(μ V/m)] 39.0 39.0 39.0	[dB] 10. 5 14. 9 16. 3	[cm] 100.0 100.0 353.5	[°] 269.3 190.1 10.6
7 528.009 33.9 -6.5 27.4 46.4 19.0 250.7 39.6	1 2 3 4	[MHz] 30. 531 35. 314 46. 720 57. 738	[dB(μ V)] 36. 6 34. 8 36. 9 43. 9	[dB(1/m)] -8.1 -10.7 -14.2 -17.6	$\begin{bmatrix} dB (\mu V/m) \\ 28.5 \\ 24.1 \\ 22.7 \\ 26.3 \end{bmatrix}$	$\begin{bmatrix} dB(\mu V/m) \\ 39.0 \\ 39.0 \\ 39.0 \\ 39.0 \\ 39.0 \\ \end{bmatrix}$	[dB] 10.5 14.9 16.3 12.7	[cm] 100.0 100.0 353.5 100.0	[°] 269. 3 190. 1 10. 6 356. 5
	1 2 3 4 5	[MHz] 30, 531 35, 314 46, 720 57, 738 105, 410	[dB (μ V)] 36. 6 34. 8 36. 9 43. 9 43. 5	[dB(1/m)] -8.1 -10.7 -14.2 -17.6 -14.3	$\begin{bmatrix} dB (\mu V/m) \\ 28.5 \\ 24.1 \\ 22.7 \\ 26.3 \\ 29.2 \end{bmatrix}$	[dB(µV/m)] 39.0 39.0 39.0 39.0 43.5	[dB] 10. 5 14. 9 16. 3 12. 7 14. 3	[cm] 100.0 100.0 353.5 100.0 118.5	[°] 269. 3 190. 1 10. 6 356. 5 30. 2
	1 2 3 4 5 6	[MHz] 30. 531 35. 314 46. 720 57. 738 105. 410 250. 000	[dB(μ V)] 36. 6 34. 8 36. 9 43. 9 43. 5 35. 7	[dB(1/m)] -8.1 -10.7 -14.2 -17.6 -14.3 -7.1	[dB (μ V/m)] 28. 5 24. 1 22. 7 26. 3 29. 2 28. 6	[dB(µV/m)] 39.0 39.0 39.0 39.0 43.5 46.4	[dB] 10.5 14.9 16.3 12.7 14.3 17.8	[cm] 100. 0 100. 0 353. 5 100. 0 118. 5 100. 0	[°] 269. 3 190. 1 10. 6 356. 5 30. 2 190. 1

Radiated emission data (Above 1 GHz) / Horizontal setting

Final	Result
гтпат	resuit

	Horizontal	Polarizatio	on (PK)						
No.	Frequency	_Reading_		Result	Limit	Margin	Height	Angle	
	LMHz]			$[dB(\mu V/m)]$		[dB]	[cm]	[° -]	
1	1055.978	48.6	-3.7	44. 9	80.0	35. 1	151.0	183. 9	
2	2400.020	48. 0	3.6	51.6	80.0	28.4	202.4	173.7	
3	5400.053	48.6	7. 1	55. 7	80.0	24. 3	210.0	202.5	
			()						
	Horizontal								
No.	Frequency	Reading	c. f	Result	Limit	Margin	Height	Angle	
	[MHz]	0.0 4			$[dB(\mu V/m)]$	[dB]	[cm]	[°]	
1	1055. 978	36. 4	-3.7	32. 7	60. 0	27.3	151.0	183. 9	
2	2400. 020	38. 1	3.6	41. 7	60. 0		202. 4	173. 7	
3	5400.053	38. 6	7.1	45. 7	60.0	14. 3	210.0	202. 5	
	V 1 D	1	(DV)						
	Vertical Po			D1+	T 33.4	M	II - 3 - 1-4	A T	
No.	Frequency	Reading	c.f [dB(1/m)]	Result	Limit	Margin [dB]	Height	Angle [°]	
1	[MHz] 1103.980	$[dB(\mu V)]$	-3.5	[dB(μ V/m)] 49.1	80. 0	30. 9	[cm] 188.2	186.8	
2	1453. 544	52. 6 49. 1	-3. 3 -2. 4	49. 1 46. 7	80. 0	30. 9 33. 3	100. 2	298. 4	
3	2400. 010	49.1 47.4	$\frac{-2.4}{3.6}$	51. 0	80. 0	33. 3 29. 0	100. 0	122. 2	
J 4	4999. 635	46. 1	6.8	52. 9	80. 0	27. 1	180. 6	36. 2	
4 5	4999. 824	46. 0	6.8	52. 9 52. 8	80. 0	$\frac{27.1}{27.2}$	162. 5	106. 1	
6	5400. 023	47. 5	7. 1	54. 6	80. 0	25. 4	100. 0	186. 4	
U	3400.023	41.5	1.1	54.0	00.0	20.4	100.0	100.4	
	Vertical Po	larization	(CAV)						
No.	Frequency	Reading	c.f	Result	Limit	Margin	Height	Angle	
	[MHz]	$[dB(\mu V)]$	[dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	[cm]	[°]	
1	1103. 980	40.7	-3.5	37. 2	60.0	22.8	188. 2	186.8	
2 3	1453.544	37.7	-2.4	35.3	60.0	24.7	100.0	298.4	
3	2400.010	36.6	3.6	40.2	60.0	19.8	100.0	122.2	
4	4999.635		6.8	43.3	60.0	16.7	180.6	36. 2	
5	4999.824	34.8	6.8	41.6	60.0	18.4	162.5	106. 1	
6	5400.023	36. 9	7. 1	44.0	60.0	16.0	100.0	186. 4	

Note: The measurement level (Result) of radiated emission is converted into the level in the distance of 3 m.

Radiated emission data (Above 1 GHz) / Vertical setting

Fina	1 R	esu1	t

	Horizontal	Polarizatio	on (PK)						
No.	Frequency	Reading	c. f	Result	Limit	Margin	Height	Angle	
	[MHz]	$\lceil dB(\mu V) \rceil$	$\lceil dB(1/m) \rceil$	$[dB(\mu V/m)]$	$\lceil dB (\mu V/m) \rceil$	[dB]	[cm]	[°]	
1	1056, 000	52. 7	-3. 7	49.0	80.0	$\bar{3}1.\ \bar{0}$	$\bar{3}12.7$	97.6	
$\hat{2}$	1600.000	48. 5	-1.9	46.6	80.0	33. 4	135. 0	109.6	
3	2400.029		3. 6	51. 9	80. 0	28. 1	170. 0	174. 1	
4	4999.651		6.8	53. 2	80. 0	26. 8	274. 4	219.6	
5	5400. 030	46.8	7. 1	53. 9	80. 0	26. 1	175.4	194.7	
J	3400.030	40.0	1. 1	55. 5	00.0	20. 1	110. 4	134.1	
	Horizontal	Polarizatio	on (CAV)	_					
No.	Frequency	Reading	c. f	Result	Limit	Margin	Height	Angle	
110.	[MHz]			$[dB(\mu V/m)]$		[dB]	[cm]		
1	1056.000	42. 1	-3. 7	38. 4	60. 0	21.6	312.7	97.6	
2	1600.000			33. 5	60. 0	26. 5	135. 0	109.6	
3	2400. 029	30. 1	3.6	42. 4	60. 0	17. 6	170. 0	174.1	
4	4999, 651	35. 4 38. 8 37. 2	6.8	44. 0	60. 0	16. 0	$\frac{170.0}{274.4}$	219. 6	
5	5400.030	36, 2	7. 1	43. 3	60. 0	16. 7	175. 4	194. 7	
5	3400.030	30. 2	1. 1	45.5	00.0	10. 1	175.4	134.1	
	Vertical Po	larization	(PK)						
		olarization Reading		Regult	Limit	Margin	Height	Angle	
 No.	Frequency	Reading	c.f	Result	Limit	Margin	Height	Angle 「°]	
No.	Frequency [MHz]	Reading [dB(μV)]	c.f [dB(1/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[d\bar{\mathrm{B}}]$	[cm]	[° -]	
No. 1	Frequency [MHz] 1103.985	Reading [dB(μ V)] 50.2	c. f [dB(1/m)] -3.5	[dB(μ V/m)] 46.7	[dB(μ V/m)] 80.0	[dB] 33. 3	[cm] 296.5	[° ¯] 58. 0	
No. 1 2	Frequency [MHz] 1103.985 1722.245	Reading [dB(μV)] 50.2 44.5	c. f [dB(1/m)] -3.5 -1.0	[dB(μ V/m)] 46.7 43.5	[dB(μ V/m)] 80.0 80.0	[dB] 33. 3 36. 5	[cm] 296.5 282.9	[°] 58. 0 227. 7	
No. 1 2 3	Frequency [MHz] 1103.985 1722.245 2400.005	Reading [dB(μV)] 50.2 44.5 47.3	c.f [dB(1/m)] -3.5 -1.0 3.6	[dB(μ V/m)] 46.7 43.5 50.9	[dB(µV/m)] 80.0 80.0 80.0	[dB] 33. 3 36. 5 29. 1	[cm] 296.5 282.9 100.0	[°] 58. 0 227. 7 146. 3	
No. 1 2 3 4	Frequency [MHz] 1103.985 1722.245 2400.005 4996.256	Reading [dB(µV)] 50.2 44.5 47.3 49.0	c.f [dB(1/m)] -3.5 -1.0 3.6 6.8	$\begin{bmatrix} \mathrm{dB}(\mu\mathrm{V/m})] \\ 46.7 \\ 43.5 \\ 50.9 \\ 55.8 \\ \end{bmatrix}$	[dB(µV/m)] 80.0 80.0 80.0 80.0	[dB] 33. 3 36. 5 29. 1 24. 2	[cm] 296.5 282.9 100.0 131.5	[°] 58. 0 227. 7 146. 3 198. 6	
No. 1 2 3	Frequency [MHz] 1103.985 1722.245 2400.005	Reading [dB(μV)] 50.2 44.5 47.3	c.f [dB(1/m)] -3.5 -1.0 3.6	[dB(μ V/m)] 46.7 43.5 50.9	[dB(µV/m)] 80.0 80.0 80.0	[dB] 33. 3 36. 5 29. 1	[cm] 296.5 282.9 100.0	[°] 58. 0 227. 7 146. 3	
No. 1 2 3 4 5	Frequency [MHz] 1103.985 1722.245 2400.005 4996.256 5400.010	Reading [dB (μ V)] 50. 2 44. 5 47. 3 49. 0 46. 5	c. f [dB(1/m)] -3. 5 -1. 0 3. 6 6. 8 7. 1	$\begin{bmatrix} \mathrm{dB}(\mu\mathrm{V/m})] \\ 46.7 \\ 43.5 \\ 50.9 \\ 55.8 \\ \end{bmatrix}$	[dB(µV/m)] 80.0 80.0 80.0 80.0	[dB] 33. 3 36. 5 29. 1 24. 2	[cm] 296.5 282.9 100.0 131.5	[°] 58. 0 227. 7 146. 3 198. 6	
No. 1 2 3 4 5	Frequency [MHz] 1103.985 1722.245 2400.005 4996.256 5400.010	Reading $[dB(\mu V)]$ 50. 2 44. 5 47. 3 49. 0 46. 5 clarization	c. f [dB(1/m)] -3. 5 -1. 0 3. 6 6. 8 7. 1 (CAV)	[dB(µV/m)] 46.7 43.5 50.9 55.8 53.6	[dB(µV/m)] 80.0 80.0 80.0 80.0 80.0	[dB] 33. 3 36. 5 29. 1 24. 2 26. 4	[cm] 296. 5 282. 9 100. 0 131. 5 100. 0	[°] 58. 0 227. 7 146. 3 198. 6 199. 7	
No. 1 2 3 4 5	Frequency [MHz] 1103.985 1722.245 2400.005 4996.256 5400.010 Vertical Po	Reading $[dB(\mu V)]$ 50.2 44.5 47.3 49.0 46.5	c. f [dB(1/m)] -3. 5 -1. 0 3. 6 6. 8 7. 1 (CAV)—— c. f	[dB(μ V/m)] 46.7 43.5 50.9 55.8 53.6	[dB(µV/m)] 80.0 80.0 80.0 80.0 80.0 Elimit	[dB] 33.3 36.5 29.1 24.2 26.4	[cm] 296.5 282.9 100.0 131.5 100.0	[°] 58.0 227.7 146.3 198.6 199.7	
No. 1 2 3 4 5 No.	Frequency [MHz] 1103.985 1722.245 2400.005 4996.256 5400.010 Vertical Po	Reading $[dB(\mu V)]$ 50. 2 44. 5 47. 3 49. 0 46. 5 clarization Reading $[dB(\mu V)]$	c. f [dB(1/m)] -3.5 -1.0 3.6 6.8 7.1 (CAV) c. f [dB(1/m)]	$\begin{bmatrix} dB (\mu V/m) \\ 46.7 \\ 43.5 \\ 50.9 \\ 55.8 \\ 53.6 \\ \end{bmatrix}$ $Result \\ [dB (\mu V/m)]$	[dB(µV/m)] 80.0 80.0 80.0 80.0 80.0 Limit [dB(µV/m)]	[dB] 33.3 36.5 29.1 24.2 26.4 Margin [dB]	[cm] 296.5 282.9 100.0 131.5 100.0	[°] 58. 0 227. 7 146. 3 198. 6 199. 7	
No. 1 2 3 4 5 No. 1	Frequency [MHz] 1103.985 1722.245 2400.005 4996.256 5400.010 Vertical Position Frequency [MHz] 1103.985	Reading $[dB(\mu V)]$ 50. 2 44. 5 47. 3 49. 0 46. 5 clarization Reading $[dB(\mu V)]$ 39. 7	c. f [dB(1/m)] -3. 5 -1. 0 3. 6 6. 8 7. 1 (CAV)—— c. f [dB(1/m)] -3. 5	$ \begin{bmatrix} \mathrm{dB} (\mu \mathrm{V/m})] \\ 46. 7 \\ 43. 5 \\ 50. 9 \\ 55. 8 \\ 53. 6 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	[dB(µV/m)] 80.0 80.0 80.0 80.0 80.0 Elimit [dB(µV/m)] 60.0	[dB] 33.3 36.5 29.1 24.2 26.4 Margin [dB] 23.8	[cm] 296.5 282.9 100.0 131.5 100.0 Height [cm] 296.5	[°] 58. 0 227. 7 146. 3 198. 6 199. 7	
No. 1 2 3 4 5 5 No. 1 2 2	Frequency [MHz] 1103.985 1722.245 2400.005 4996.256 5400.010 Vertical Porequency [MHz] 1103.985 1722.245	Reading [dB(μ V)] 50.2 44.5 47.3 49.0 46.5 clarization Reading [dB(μ V)] 39.7 31.4	c. f [dB(1/m)] -3. 5 -1. 0 3. 6 6. 8 7. 1 (CAV) c. f [dB(1/m)] -3. 5 -1. 0	$ \begin{bmatrix} \mathrm{dB} \left(\mu \mathrm{V/m} \right) \\ 46. 7 \\ 43. 5 \\ 50. 9 \\ 55. 8 \\ 53. 6 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{bmatrix} dB (\mu V/m) \\ 80.0 \\ 80.0 \\ 80.0 \\ 80.0 \\ 80.0 \\ 80.0 \\ \end{bmatrix}$	[dB] 33.3 36.5 29.1 24.2 26.4 Margin [dB] 23.8 29.6	[cm] 296.5 282.9 100.0 131.5 100.0 Height [cm] 296.5 282.9	[°] 58. 0 227. 7 146. 3 198. 6 199. 7 Angle [°] 58. 0 227. 7	
No. 1 2 3 4 5 5 No. 1 2 3 3	Frequency [MHz] 1103.985 1722.245 2400.005 4996.256 5400.010 Vertical Portical Port	Reading $[dB(\mu V)]$ 50.2 44.5 47.3 49.0 46.5 clarization Reading $[dB(\mu V)]$ 39.7 31.4 37.0	c. f [dB(1/m)] -3. 5 -1. 0 3. 6 6. 8 7. 1 (CAV) c. f [dB(1/m)] -3. 5 -1. 0 3. 6	$ \begin{bmatrix} \mathrm{dB} \left(\mu \mathrm{V/m} \right) \\ 46. 7 \\ 43. 5 \\ 50. 9 \\ 55. 8 \\ 53. 6 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \begin{bmatrix} dB (\mu V/m) \\ 80.0 \\ 80.0 \\ 80.0 \\ 80.0 \\ 80.0 \\ \end{bmatrix} $ $ \begin{bmatrix} b & b & b \\ 80.0 \\ 80.0 \\ \end{bmatrix} $ $ \begin{bmatrix} Limit \\ dB (\mu V/m) \\ 60.0 \\ 60.0 \\ 60.0 \\ \end{bmatrix} $	[dB] 33.3 36.5 29.1 24.2 26.4 Margin [dB] 23.8 29.6 19.4	[cm] 296.5 282.9 100.0 131.5 100.0	[°] 58. 0 227. 7 146. 3 198. 6 199. 7 Angle [°] 58. 0 227. 7 146. 3	
No. 1 2 3 4 5 5 No. 1 2 2	Frequency [MHz] 1103.985 1722.245 2400.005 4996.256 5400.010 Vertical Porequency [MHz] 1103.985 1722.245	Reading [dB(μ V)] 50.2 44.5 47.3 49.0 46.5 clarization Reading [dB(μ V)] 39.7 31.4	c. f [dB(1/m)] -3. 5 -1. 0 3. 6 6. 8 7. 1 (CAV) c. f [dB(1/m)] -3. 5 -1. 0	$ \begin{bmatrix} \mathrm{dB} \left(\mu \mathrm{V/m} \right) \\ 46. 7 \\ 43. 5 \\ 50. 9 \\ 55. 8 \\ 53. 6 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{bmatrix} dB (\mu V/m) \\ 80.0 \\ 80.0 \\ 80.0 \\ 80.0 \\ 80.0 \\ 80.0 \\ \end{bmatrix}$	[dB] 33.3 36.5 29.1 24.2 26.4 Margin [dB] 23.8 29.6	[cm] 296.5 282.9 100.0 131.5 100.0 Height [cm] 296.5 282.9	[°] 58. 0 227. 7 146. 3 198. 6 199. 7 Angle [°] 58. 0 227. 7	
No. 1 2 3 4 5 5 No. 1 2 3 3	Frequency [MHz] 1103.985 1722.245 2400.005 4996.256 5400.010 Vertical Portical Port	Reading $[dB(\mu V)]$ 50.2 44.5 47.3 49.0 46.5 clarization Reading $[dB(\mu V)]$ 39.7 31.4 37.0	c. f [dB(1/m)] -3. 5 -1. 0 3. 6 6. 8 7. 1 (CAV) c. f [dB(1/m)] -3. 5 -1. 0 3. 6	$ \begin{bmatrix} \mathrm{dB} \left(\mu \mathrm{V/m} \right) \\ 46. 7 \\ 43. 5 \\ 50. 9 \\ 55. 8 \\ 53. 6 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \begin{bmatrix} dB (\mu V/m) \\ 80.0 \\ 80.0 \\ 80.0 \\ 80.0 \\ 80.0 \\ \end{bmatrix} $ $ \begin{bmatrix} b & b & b \\ 80.0 \\ 80.0 \\ \end{bmatrix} $ $ \begin{bmatrix} Limit \\ dB (\mu V/m) \\ 60.0 \\ 60.0 \\ 60.0 \\ \end{bmatrix} $	[dB] 33.3 36.5 29.1 24.2 26.4 Margin [dB] 23.8 29.6 19.4	[cm] 296.5 282.9 100.0 131.5 100.0	[°] 58. 0 227. 7 146. 3 198. 6 199. 7 Angle [°] 58. 0 227. 7 146. 3	

Note: The measurement level (Result) of radiated emission is converted into the level in the distance of 3 m.

Appendix 2 Photographs

Conducted emission (Mains power port)

Test point A (1 of 2)

Test point A (2 of 2)

Radiated emission (Up to 1 GHz) / Horizontal setting

Radiated emission (Up to 1 GHz) / Vertical setting

Radiated emission (Above 1 GHz) / Horizontal setting

Radiated emission (Above 1 GHz) / Vertical setting

Equipment under test

width: 210 mm

Depth: 285 mm

Equipment under test

height: 69 mm (Excluding protrusions)

Name plate

Associated equipment (AE)

