Cours avec Exercices

PROF: ATMANI NAJIB

Tronc CS

Avec solutions

TRIGONOMÉTRIE2

Leçon: TRIGONOMÉTRIE2 Présentation globale

Leçon : les équations et inéquations trigonométriques

- I) les équations trigonométriques élémentaires
- II) les inéquations trigonométriques élémentaires.

I) Les équations trigonométriques élémentaires

1) Equation: $\cos x = a$

Propriété: Soit a un nombre réel.

Si a > 1 ou a < -1 alors l'équation $\cos x = a$ n'admet pas de solution dans \mathbb{R} et on a : $S = \emptyset$.

Si a = -1 alors on a l'équation $\cos x = -1$

On sait que : $\cos \pi = -1$ donc tous les réels de la forme : $\pi + 2k\pi$ avec k un nombre relatif sont solution de l'équation dans \mathbb{R} et on a : $S = \{\pi + 2k\pi / k \in \mathbb{Z}\}$.

Si a=1 alors on a l'équation $\cos x=1$:

On sait que : $\cos 0 = 1$ donc tous les réels de la forme : $0+2k\pi$ avec k un nombre relatif sont solution de l'équation dans \mathbb{R} et on a : $S = \{2k\pi / k \in \mathbb{Z}\}$.

Si -1 < a < 1 réels alors on a l'équation $\cos x = a$: Et on sait qu'il existe un unique réels : α dans $[0; \pi]$ tel que $\cos x = \cos \alpha$ et alors on a :

 $S = \{ \alpha + 2k\pi; -\alpha + 2k\pi / k \in \mathbb{Z} \} .$

Exemple : Résoudre dans \mathbb{R} les équations suivantes

a)
$$\cos x = \frac{\sqrt{2}}{2}$$
 b) $\cos x = -\frac{1}{2}$ c) $\cos^2 x = \frac{1}{2}$

b)
$$\cos x = -\frac{1}{2}$$

c)
$$\cos^2 x = \frac{1}{2}$$

Correction: a) $\cos x = \frac{\sqrt{2}}{2}$ ssi $\cos x = \cos \frac{\pi}{4}$

Donc les solutions de l'équation dans $\mathbb R$ sont :

$$S_{\mathbb{R}} = \left\{ \frac{\pi}{4} + 2k\pi; -\frac{\pi}{4} + 2k\pi / k \in \mathbb{Z} \right\}$$

$$\cos x = -\frac{1}{2} \qquad \text{SSi} \quad \cos x = -\cos\frac{\pi}{3} \text{ SSi}$$

$$\cos x = \cos\left(\pi - \frac{\pi}{3}\right)$$
 SSi $\cos x = \cos\left(\frac{2\pi}{3}\right)$

Donc les solutions de l'équation dans $\mathbb R$ sont :

$$S_{\mathbb{R}} = \left\{ \frac{2\pi}{3} + 2k\pi; -\frac{2\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}$$

C)
$$\cos^2 x = \frac{1}{2} \Leftrightarrow \cos^2 x - \frac{1}{2} = 0 \Leftrightarrow \left(\cos x - \frac{\sqrt{2}}{2}\right) \left(\cos x + \frac{\sqrt{2}}{2}\right) = 0$$

$$\Leftrightarrow \cos x = \frac{\sqrt{2}}{2}$$
 ou $\cos x = -\frac{\sqrt{2}}{2}$ $\Leftrightarrow \cos x = \cos \frac{\pi}{4}$ ou $\cos x = \cos \frac{3\pi}{4}$

$$S_{\mathbb{R}}=\left\{\frac{\pi}{4}+2k\pi\;;-\frac{\pi}{4}+2k\pi\;;\frac{3\pi}{4}+2k\pi\;;-\frac{3\pi}{4}+2k\pi\;\right\}avec\;k\in\mathbb{Z}$$

2) Equation: $\sin x = a$

Propriété: Soit a un nombre réel.

Si a > 1 ou a < -1alors l'équation $\sin x = a$ n'admet pas de solution dans \mathbb{R} et on a : $S_{\mathbb{R}} = \emptyset$

Si a = -1 alors on a l'équation $\sin x = -1$ On sait que : $\sin\left(-\frac{\pi}{2}\right) = -1$ donc les solution dans \mathbb{R} de

l'équation sont : $S_{\mathbb{R}} = \left\{ -\frac{\pi}{2} + 2k\pi / k \in \mathbb{Z} \right\}$.

Si a=1 alors on a l'équation : $\sin x = 1$ On sait

que :
$$\sin\left(\frac{\pi}{2}\right) = 1$$
 donc on a : $S_{\mathbb{R}} = \left\{\frac{\pi}{2} + 2k\pi / k \in \mathbb{Z}\right\}$.

Si -1 < a < 1 réels alors on a l'équation $\sin x = a$: Et on sait qu'il existe un unique réels : lpha dans

$$\left] -\frac{\pi}{2}; \frac{\pi}{2} \right]$$
 tel que $\sin x = \sin \alpha$ et alors on a :

$$S_{\mathbb{R}} = \left\{ \alpha + 2k\pi; \pi - \alpha + 2k\pi / k \in \mathbb{Z} \right\} .$$

Exemple: Résoudre dans \mathbb{R} les équations suivantes:

a)
$$\sin x = \frac{\sqrt{3}}{2}$$

b)
$$\sin x = -\frac{1}{2}$$

a)
$$\sin x = \frac{\sqrt{3}}{2}$$
 b) $\sin x = -\frac{1}{2}$ c) $\sin^2 x = \frac{1}{2}$

Correction: a) $\sin x = \frac{\sqrt{3}}{2}$ ssi $\sin x = \sin \frac{\pi}{2}$

Donc les solutions de l'équation dans $\mathbb R$ sont :

$$S_{\mathbb{R}} = \left\{ \frac{\pi}{3} + 2k\pi; \pi - \frac{\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}$$

$$S_{\mathbb{R}} = \left\{ \frac{\pi}{3} + 2k\pi; \frac{2\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}$$

b)
$$\sin x = -\frac{1}{2} \operatorname{ssi} \sin x = -\sin \frac{\pi}{6} \operatorname{ssi} \sin x = \sin \left(-\frac{\pi}{6}\right)$$

L'équation a pour solution $-\frac{\pi}{6} + 2k\pi$ et

$$\pi - \left(-\frac{\pi}{6}\right) + 2k\pi = \frac{7\pi}{6} + 2k\pi \text{ où } k \in \mathbb{Z}$$

Donc les solutions de l'équation dans ${\mathbb R}$ sont :

$$S_{\mathbb{R}} = \left\{ -\frac{\pi}{6} + 2k\pi; \frac{7\pi}{6} + 2k\pi / k \in \mathbb{Z} \right\}$$

C)
$$\sin^2 x = \frac{1}{2} \Leftrightarrow \sin^2 x - \frac{1}{2} = 0 \Leftrightarrow \left(\sin x - \frac{\sqrt{2}}{2}\right) \left(\sin x + \frac{\sqrt{2}}{2}\right) = 0$$

$$\Leftrightarrow \sin x = \frac{\sqrt{2}}{2}$$
 ou $\sin x = -\frac{\sqrt{2}}{2} \Leftrightarrow \sin x = \sin \frac{\pi}{4}$ ou $\sin x = \sin \left(-\frac{\pi}{4}\right)$

Ainsi:
$$S_{\mathbb{R}} = \left\{ \frac{\pi}{4} + 2k\pi ; -\frac{\pi}{4} + 2k\pi ; \frac{5\pi}{4} + 2k\pi ; \frac{3\pi}{4} + 2k\pi \right\} avec \ k \in \mathbb{Z}$$

Exercice1: Résoudre dans $]-\pi,\pi]$ l'équation :

$$\cos 2x = \frac{\sqrt{3}}{2}$$

Solution : Étape 1 : utiliser le cercle trigonométrique et/ou le tableau de valeurs remarquables afin de retrouver <u>une</u> valeur dont le

cosinus vaut
$$\frac{\sqrt{3}}{2}$$

Le cosinus se lit sur l'axe des

abscisses

on peut dire que $\frac{\sqrt{3}}{2}$ est le cosinus de $\frac{\pi}{6}$ par exemple.

Étape 2 : Utiliser ce résultat pour écrire l'équation proposée sous la forme " $\cos U = \cos V$ "

$$\cos 2x = \frac{\sqrt{3}}{2} \quad \text{ssi} \quad \cos 2x = \cos \frac{\pi}{6}$$

On applique alors la propriété

Donc on a :
$$2x = \frac{\pi}{6} + 2k\pi$$
 ou $2x = -\frac{\pi}{6} + 2k'\pi$

Je divise par 2 chaque membre de chaque égalité, j'obtiens $x=\frac{\pi}{12}+k\pi$ ou $x=-\frac{\pi}{12}+k'\pi$ avec k et k' dans

$$x = \frac{\pi}{12} + k\pi$$
 ou $x = -\frac{\pi}{12} + k'\pi$

Étape3

Mais il ne va falloir garder que les valeurs de *x* dans

l'intervalle imposé c'est à dire dans $\left]-\pi,\pi\right]$

on a deux méthodes soit encadrement ou on donnant des valeurs a \boldsymbol{k}

Pour la première série de valeurs

:
$$x = \frac{\pi}{12} + k\pi$$
 avec k dans Z

Prenons par exemple la valeur k=-2 et remplaçons :

on obtient $x = \frac{\pi}{12} - 2\pi$; cette valeur n'appartient pas

à $\left]-\pi,\pi\right]$; il est donc évident que des valeurs

 $\det k$ inférieures à -2 ne conviendront pas non plus.

Par contre, si je choisis k=-1 : on obtient $x=\frac{\pi}{12}-\pi$;

cette valeur appartient à $]-\pi,\pi]$.

Il s'agit donc de trouver toutes les valeurs de k telles que les solutions trouvées appartiennent bien à l'intervalle imposé, en appliquant cette démarche de manière systématique.

pour
$$k = -1$$
 $x_1 = \frac{\pi}{12} - \pi = -\frac{11\pi}{12}$ convient car appartient

à
$$]-\pi,\pi]$$

pour
$$k = 0$$
 $x_2 = \frac{\pi}{12}$ convient car appartient à $]-\pi,\pi]$

pour
$$k=1$$
 $x=\frac{\pi}{12}+\pi=\frac{13\pi}{12}$ ne convient pas car

n'appartient pas à
$$\left[-\pi,\pi\right]$$

Il est inutile de poursuivre pour la première série de valeur (car si pour k=1, la valeur trouvée n'appartient plus à l'intervalle, il en sera de même a fortiori pour des valeurs supérieures de k)

Faisons de même pour la deuxième série de valeurs

$$x = -\frac{\pi}{12} + k'\pi$$
 avec k' dans **Z**

pour
$$k'=-1$$
 $x=-\frac{\pi}{12}-\pi=-\frac{13\pi}{12}$ ne convient pas car

n'appartient pas à $\left]-\pi,\pi\right]$

pour
$$k' = 0$$
 $x_3 = -\frac{\pi}{12}$ convient car appartient

à
$$]\!\!-\!\!\pi,\pi]$$

pour
$$k'=1$$
 $x=-\frac{\pi}{12}+\pi=\frac{11\pi}{12}$ convient pas car

appartient à
$$]-\pi,\pi]$$

pour
$$k' = 2$$
 $x = -\frac{\pi}{12} + 2\pi$ ne convient pas car

n'appartient pas à
$$\left[-\pi,\pi\right]$$

Donc L'ensemble solution de l'équation dans $\left]-\pi,\pi\right]$ est

donc:
$$S = \left\{ -\frac{11\pi}{12}; -\frac{\pi}{12}; \frac{\pi}{12}; \frac{11\pi}{12} \right\}$$

3) Equation : tan x = a

Propriété: Soit a un nombre réel.

L'équation $\tan x = a$ est définie dans $\mathbb R$ ssi

$$x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi \right\}$$
 avec k un nombre relatif

Donc
$$D = \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$$

Dans D il existe un unique réel : α dans $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$

tel que $\tan x = \tan \alpha$ et alors on a :

$$S_{\mathbb{R}} = \left\{ \alpha + k\pi / k \in \mathbb{Z} \right\} .$$

Exercice2 :1) Résoudre dans \mathbb{R} l'équations suivantes $4\tan x + 4 = 0$

2) Résoudre dans $\left[-\frac{\pi}{2}; \frac{5\pi}{2}\right]$ l'équations suivantes :

$$2\sqrt{2}\sin x + 2 = 0$$

Correction: 1) on a $4\tan x + 4 = 0$ est définie dans \mathbb{R} ssi $x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi \right\}$ avec k un nombre relatif Donc

$$D = \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$$

 $4\tan x + 4 = 0$ ssi $\tan x = -1$ ssi $\tan x = -\tan \frac{\pi}{4}$

ssi
$$\tan x = \tan \left(-\frac{\pi}{4} \right)$$

Donc les solutions de l'équation dans ${\mathbb R}$ sont :

$$S_{\mathbb{R}} = \left\{ -\frac{\pi}{4} + k\pi / k \in \mathbb{Z} \right\}$$

2)
$$2\sqrt{2}\sin x + 2 = 0$$
 ssi $\sin x = -\frac{\sqrt{2}}{2}$ ssi $\sin x = -\sin\frac{\pi}{4}$

L'équation a pour solution $-\frac{\pi}{4} + 2k\pi$

et
$$\pi - \left(-\frac{\pi}{4}\right) + 2k\pi = \frac{5\pi}{4} + 2k\pi$$
 où $k \in \mathbb{Z}$

• Encadrement de $-\frac{\pi}{4} + 2k\pi$: $-\frac{\pi}{2} \le -\frac{\pi}{4} + 2k\pi \le \frac{5\pi}{2}$

et $k \in \mathbb{Z}$

Donc
$$-\frac{1}{2} \le -\frac{1}{4} + 2k \le \frac{5}{2}$$
 Donc $-\frac{1}{2} + \frac{1}{4} \le 2k \le \frac{5}{2} + \frac{1}{4}$

Donc $-\frac{1}{8} \le k \le \frac{11}{8}$ Donc $-0.12 \le k \le 1.37$ et $k \in \mathbb{Z}$

Donc k=0 ou k=1

Pour
$$k=0$$
 on trouve $x_1 = -\frac{\pi}{4} + 2 \times 0\pi = -\frac{\pi}{4}$

Pour
$$k=1$$
 on trouve $x_2 = -\frac{\pi}{4} + 2 \times 1\pi = \frac{7\pi}{4}$

• Encadrement de $\frac{5\pi}{4} + 2k\pi$: $-\frac{\pi}{2} \le \frac{5\pi}{4} + 2k\pi \le \frac{5\pi}{2}$

et
$$k \in \mathbb{Z}$$

Donc
$$-\frac{1}{2} \le \frac{5}{4} + 2k \le \frac{5}{2}$$
 Donc $-\frac{1}{2} - \frac{5}{4} \le 2k \le \frac{5}{2} - \frac{5}{4}$

Donc $-\frac{7}{8} \le k \le \frac{5}{8}$ Donc $-0.8 \le k \le 0.6$ et $k \in \mathbb{Z}$

Donc k = 0

Pour
$$k = 0$$
 on trouve $x_3 = \frac{5\pi}{4} + 2 \times 0\pi = \frac{5\pi}{4}$

Donc
$$S = \left\{ -\frac{\pi}{4}; \frac{7\pi}{4}; \frac{5\pi}{4} \right\}$$

Exercice3:1) Résoudre dans R l'équations

suivantes :
$$\cos 2x = \cos \left(x - \frac{\pi}{3}\right)$$

2) Résoudre dans $[0;\pi]$ l'équations suivantes :

$$\sin\left(2x - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{4} - x\right)$$

3) Résoudre dans $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ l'équations suivantes :

$$\tan\left(2x-\frac{\pi}{5}\right)=1$$

Correction: 1) on a $\cos 2x = \cos \left(x - \frac{\pi}{3}\right)$ ssi

$$2x = x - \frac{\pi}{3} + 2k\pi$$
 ou $2x = -\left(x - \frac{\pi}{3}\right) + 2k\pi$

Ssi
$$2x - x = -\frac{\pi}{3} + 2k\pi$$
 ou $2x + x = \frac{\pi}{3} + 2k\pi$ Ssi

$$x = -\frac{\pi}{3} + 2k\pi$$
 ou $x = \frac{\pi}{9} + \frac{2k\pi}{3}$ et $k \in \mathbb{Z}$

$$S_{\mathbb{R}} = \left\{ -\frac{\pi}{3} + 2k\pi; \frac{\pi}{9} + \frac{2k\pi}{3} / k \in \mathbb{Z} \right\}$$

2) on a
$$\sin\left(2x - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{4} - x\right)$$
 ssi

$$2x - \frac{\pi}{3} = \frac{\pi}{4} - x + 2k\pi$$
 ou $2x - \frac{\pi}{3} = \pi - \frac{\pi}{4} + x + 2k\pi$

ssi
$$3x = \frac{\pi}{4} + \frac{\pi}{3} + 2k\pi$$
 ou $x = \pi - \frac{\pi}{4} + \frac{\pi}{3} + 2k\pi$

Donc
$$x = \frac{7\pi}{36} + \frac{2k\pi}{3}$$
 ou $x = \frac{13\pi}{12} + 2k\pi$

• Encadrement de $\frac{7\pi}{36} + \frac{2k\pi}{3}$: $0 \le \frac{7\pi}{36} + \frac{2k\pi}{3} \le \pi$ et $k \in \mathbb{Z}$

Donc
$$0 \le \frac{7}{36} + \frac{2k}{3} \le 1$$
 Donc $-\frac{7}{24} \le k \le \frac{29}{36}$ Donc

$$-0.29 \le k \le 1.2$$
 et $k \in \mathbb{Z}$

Donc
$$k=0$$
 ou $k=1$

Pour
$$k = 0$$
 on trouve $x_1 = \frac{7\pi}{36}$

Pour
$$k = 1$$
 on trouve $x_2 = \frac{7\pi}{36} + \frac{2\pi}{3} = \frac{31\pi}{36}$

• Encadrement de
$$x = \frac{13\pi}{12} + 2k\pi$$

$$0 \le \frac{13\pi}{12} + 2k\pi \le \pi \quad \text{ et } k \in \mathbb{Z}$$

Donc
$$0 \le \frac{13}{12} + 2k \le 1$$
 Donc $-\frac{13}{24} \le k \le -\frac{1}{24}$ Donc

$$-0.54 \le k \le 0.04$$
 et $k \in \mathbb{Z}$

Donc k n'existe pas

• Donc
$$S_{[0,\pi]} = \left\{ \frac{7\pi}{36}; \frac{31\pi}{36} \right\}$$

3) on a
$$\tan\left(2x-\frac{\pi}{5}\right)=1$$
 est définie ssi

$$2x - \frac{\pi}{5} \neq \frac{\pi}{2} + k\pi$$
 ssi $2x \neq \frac{\pi}{2} + \frac{\pi}{5} + k\pi$

ssi
$$2x \neq \frac{7\pi}{10} + k\pi$$
 ssi $x \neq \frac{7\pi}{20} + \frac{k\pi}{2}$ Donc

$$D = \mathbb{R} - \left\{ \frac{7\pi}{20} + \frac{k\pi}{2}; k \in \mathbb{Z} \right\}$$

or on sait que :
$$\tan\left(\frac{\pi}{4}\right) = 1$$
 Donc $\tan\left(2x - \frac{\pi}{5}\right) = \tan\left(\frac{\pi}{4}\right)$

Donc
$$2x - \frac{\pi}{5} = \frac{\pi}{4} + k\pi$$
 ssi $2x = \frac{\pi}{4} + \frac{\pi}{5} + k\pi$ ssi

$$2x = \frac{9\pi}{20} + k\pi$$
 ssi $x = \frac{9\pi}{40} + \frac{k\pi}{2}$

Encadrement de
$$\frac{9\pi}{40} + \frac{k\pi}{2}$$

$$-\frac{\pi}{2} \le \frac{9\pi}{40} + \frac{k\pi}{2} \le \frac{\pi}{2}$$
 et $k \in \mathbb{Z}$ donc

$$-\frac{1}{2} \le \frac{9}{40} + \frac{k}{2} \le \frac{1}{2} \quad \text{donc} \qquad -\frac{29}{40} \le \frac{k}{2} \le \frac{11}{40}$$

donc
$$-\frac{29}{40} \le \frac{k}{2} \le \frac{11}{40}$$
 donc $-\frac{29}{20} \le k \le \frac{11}{20}$ Donc

$$-1,45 \le k \le 0,55$$
 et $k \in \mathbb{Z}$

Donc
$$k=0$$
 ou $k=-1$

Pour
$$k = 0$$
 on trouve $x_1 = \frac{9\pi}{40}$

Pour
$$k = -1$$
 on trouve $x_2 = \frac{9\pi}{40} - \frac{\pi}{2} = -\frac{11\pi}{40}$

Donc
$$S = \left\{ -\frac{11\pi}{40}; \frac{9\pi}{40} \right\}$$

II) Les inéquations trigonométriques élémentaires

Exemple1: Résoudre dans $[0,2\pi[$ l'inéquation

suivante :
$$\sin x \ge \frac{1}{2}$$

$$\sin x \ge \frac{1}{2}$$
 ssi $\sin x \ge \sin \frac{\pi}{6}$

donc
$$S = \left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$$

Exemple2: Résoudre dans $]-\pi,\pi]$ l'inéquation

suivante :
$$\sin x \le -\frac{1}{2}$$

$$\sin x \le -\frac{1}{2}$$

ssi
$$\sin x \le \sin \left(-\frac{\pi}{6} \right)$$

donc
$$S = \left[-\frac{5\pi}{6}; -\frac{\pi}{6} \right]$$

Exemple3:

Résoudre dans $\left]-\pi,\pi\right]$ l'inéquation suivante :

$$\cos x \ge \frac{\sqrt{2}}{2}$$

$$\cos x \ge \frac{\sqrt{2}}{2}$$
 ssi $\cos x \ge$

donc
$$S = \left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$$

Exemple4: Résoudre dans $\left|-\frac{\pi}{2},\pi\right|$ l'inéquation

suivante : $\cos x \le \frac{1}{2}$

$$\cos x \le \frac{1}{2} \quad \text{ssi } \cos x \le \cos \frac{\pi}{3}$$

Donc
$$S = \left[-\frac{\pi}{2}, -\frac{\pi}{3} \right] \cup \left[\frac{\pi}{3}, \pi \right]$$

Exemple5: Résoudre dans $]-\pi,\pi]$ les inéquations

suivantes : 1) $\cos x \le 0$ 2) $\sin x \ge 0$

Solution : on utilise le cercle trigonométrique

1)
$$S = \left] -\pi, -\frac{\pi}{2} \right] \cup \left[\frac{\pi}{2}, \pi \right]$$

2)
$$S = [0, \pi]$$

Exemple6: Résoudre dans $S = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

l'inéquation suivante : $\tan x \ge 1$

Solution:

$$S = \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$$

Exemple7: Résoudre dans $[0; 2\pi]$ l'inéquation

suivante : $\sin x > -\frac{\sqrt{2}}{2}$

On sait que :
$$\sin\left(-\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$
 et $\sin\left(\frac{7\pi}{4}\right) = -\frac{\sqrt{2}}{2}$

L'arc MM' en rouge correspond a tous les points M(x)

$$tq x \text{ v\'erifie } \sin x > -\frac{\sqrt{2}}{2}$$

Donc

$$\sin x \ge \frac{1}{2}$$
 ssi $\sin x \ge \sin \frac{\pi}{6}$

donc
$$S = \left[0; \frac{5\pi}{4}\right] \cup \left[\frac{7\pi}{4}; 2\pi\right]$$

Exemple8 : Résoudre dans $\left[-\pi\,;\pi\right]$ l'inéquation

suivante : $3 \tan x - \sqrt{3} \ge 0$

On a $3\tan x - \sqrt{3} \ge 0$ ssi $\tan x \ge \frac{\sqrt{3}}{3}$

On sait que : $\tan \frac{\pi}{6} = \frac{\sqrt{3}}{2}$

Les arc MJ et M'J' en rouge correspond a tous

les points M(x) tq x vérifie $3 \tan x - \sqrt{3} \ge 0$

Exemple9 : Résoudre dans $[0;2\pi]$ l'inéquation

suivante : $\tan x - 1 \ge 0$

On a $\tan x - 1 \ge 0$ ssi $\tan x \ge 1$

On sait que : $\tan \frac{\pi}{4} = 1$

Les arc MJ et M'J' en rouge correspond a tous les points

Exercice4 :1) a)Résoudre dans \mathbb{R} l'équations suivantes : $2\sin^2 x - 9\sin x - 5 = 0$ et en déduire les solutions dans $[0; 2\pi]$

b) résoudre dans $\left[0\,;2\pi\right]$ l'inéquation suivante :

 $2\sin^2 x - 9\sin x - 5 \le 0$

2)Résoudre dans $\left[0\,;\pi\right]$ l'inéquation suivante :

 $(2\cos x - 1)(\tan x + 1) \ge 0$

Correction: 1) a)on pose $t = \sin x$

 $2\sin^2 x - 9\sin x - 5 \le 0 \text{ ssi } 2t^2 - 9t - 5 \le 0$

On cherche les racines du trinôme $2t^2 - 9t - 5$:

Calcul du discriminant : Δ = (-9) 2 – 4 x 2 x (-5) = 121

Les racines sont : $t_1 = \frac{9 - \sqrt{121}}{2 \times 2} = -\frac{1}{2}$ et

$$t_2 = \frac{9 + \sqrt{121}}{2 \times 2} = 5$$
 Donc $\sin x = -\frac{1}{2}$ et $\sin x = 5$

Or on sait que $-1 \le \sin x \le 1$ donc l'équation $\sin x = 5$ n'admet pas de solutions dans \mathbb{R}

$$\sin x = -\frac{1}{2} \operatorname{ssi} \sin x = \sin \left(-\frac{\pi}{6} \right) \operatorname{ssi} x = -\frac{\pi}{6} + 2k\pi \text{ ou}$$

$$x = \pi - \left(-\frac{\pi}{6}\right) + 2k\pi$$

ssi
$$x = -\frac{\pi}{6} + 2k\pi$$
 ou $x = \frac{7\pi}{6} + 2k\pi$ et $k \in \mathbb{Z}$

$$S_{\mathbb{R}} = \left\{ -\frac{\pi}{6} + 2k\pi; \frac{7\pi}{6} + 2k\pi / k \in \mathbb{Z} \right\}$$

• Encadrement de
$$-\frac{\pi}{6} + 2k\pi$$
 : $0 \le -\frac{\pi}{6} + 2k\pi \le 2\pi$

et $k \in \mathbb{Z}$

Donc
$$0 \le -\frac{1}{6} + 2k \le 2$$
 Donc $\frac{1}{12} \le k \le \frac{13}{12}$ Donc

$$0.08 \le k \le 1.02$$
 et $k \in \mathbb{Z}$

Donc k=1

Pour k = 1 on remplace on trouve

$$x_1 = -\frac{\pi}{6} + 2\pi = \frac{11\pi}{6}$$

• Encadrement de
$$\frac{7\pi}{6} + 2k\pi$$
 : $0 \le \frac{7\pi}{6} + 2k\pi \le 2\pi$

et
$$k \in \mathbb{Z}$$

Donc
$$0 \le \frac{7}{6} + 2k \le 2$$
 Donc $-\frac{7}{12} \le k \le \frac{5}{12}$ Donc

$$-0.5 \le k \le 0.41$$
 et $k \in \mathbb{Z}$

Donc k = 0 on remplace on trouve $x_2 = \frac{7\pi}{6}$

Donc
$$S_{[0;2\pi]} = \left\{ \frac{11\pi}{6}; \frac{7\pi}{6} \right\}$$

1) b) $2\sin^2 x - 9\sin x - 5 \le 0$ ssi

$$2\left(\sin x + \frac{1}{2}\right)\left(\sin x - 5\right) \le 0$$

Or on sait que $-1 \le \sin x \le 1$ donc $-1 \le \sin x \le 1 < 5$ Donc $\sin x - 5 < 0$

Puisque $\sin x - 5 < 0$ et 2 > 0 alors

$$2\left(\sin x + \frac{1}{2}\right)\left(\sin x - 5\right) \le 0 \text{ ssi } \sin x + \frac{1}{2} \ge 0$$

ssi
$$\sin x \ge -\frac{1}{2}$$
 ssi $\sin x \ge \sin\left(-\frac{\pi}{6}\right)$

L'arc en rouge correspond a tous les points M(x)

tq x vérifie
$$\sin x \ge -\frac{1}{2}$$

donc
$$S = \left[0; \frac{7\pi}{6}\right] \cup \left[\frac{11\pi}{6}; 2\pi\right]$$

2) l'inéquation $(2\cos x - 1)(\tan x + 1) \ge 0$ est définie

dans
$$[0; \pi]$$
 ssi $x \neq \frac{\pi}{2} + k\pi$

Donc
$$D = [0; \pi] - \left\{\frac{\pi}{2}\right\}$$

$$2\cos x - 1 \ge 0$$
 ssi $\cos x = \frac{1}{2}$ ssi $\cos x \ge \cos \frac{\pi}{3}$

 $\tan x + 1 \ge 0$ ssi $\tan x \ge -1$ ssi $\tan x \ge \tan \left(\frac{3\pi}{4}\right)$

l		π	7	$7 3\pi$	
	x	0 3	2	$\frac{1}{4}$	π
	2cosx-1	+ () –	-	-
	tanx+1	+	+	- (+
	(2cosx-1)(tanx+1)	+	-	+	-

donc
$$S = \left[0; \frac{\pi}{3}\right] \cup \left[\frac{\pi}{2}; \frac{3\pi}{4}\right]$$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

