Méthodes d'approximation de faible rang pour la réduction de modèles

Anthony Nouy

Ecole Centrale Nantes, GeM

Joint work with Mathilde Chevreuil, Loic Giraldi, Prashant Rai

Parameter-dependent models

$$\mathcal{M}(\mathbf{u}(\mathbf{X});\mathbf{X})=0$$

where $X = (X_1, \dots, X_d)$ are random variables.

• Forward problem: evaluation of statistics, probability of events, sensitivity indices...

$$\mathbb{E}(f(u(X))) = \int_{\mathbb{R}^d} f(u(x_1, \dots, x_d)) p(x_1, \dots, x_d) dx_1 \dots dx_d$$

• Inverse problem: from (partial) observations of u, estimate the density of X

$$p(x_1,\ldots,x_d)$$

Anthony Nouy Ecole Centrale Nantes

- Solving forward and inverse UQ problems requires the evaluation of the model for many instances of X.
- In practice, we rely on approximations of the solution map

$$x \mapsto u(x)$$

which are used as surrogate models.

- Solving forward and inverse UQ problems requires the evaluation of the model for many instances of X.
- In practice, we rely on approximations of the solution map

$$x \mapsto u(x)$$

which are used as surrogate models.

- Complexity issues:
 - High-dimensional functions

$$u(x_1,\ldots,x_d)$$

 For complex numerical models, only a few evaluations of the function are available.

- Solving forward and inverse UQ problems requires the evaluation of the model for many instances of X.
- In practice, we rely on approximations of the solution map

$$x \mapsto u(x)$$

which are used as surrogate models.

- Complexity issues:
 - High-dimensional functions

$$u(x_1,\ldots,x_d)$$

 For complex numerical models, only a few evaluations of the function are available.

The small data challenge!

High-dimensional approximation

The goal is to approximate a multivariate function

$$u(x_1,\ldots,x_d)$$

A "naive" tensor product approximation

$$u(x_1,\ldots,x_d) \approx \sum_{\alpha_1=1}^n \ldots \sum_{\alpha_d=1}^n \frac{\mathbf{a}_{\alpha_1\ldots\alpha_d}}{\mathbf{a}_{\alpha_1}\ldots\mathbf{a}_d} \psi_{\alpha_1}^{(1)}(x_1)\ldots\psi_{\alpha_d}^{(d)}(x_d), \quad \mathbf{a} \in \mathbb{R}^{n^d}$$

yields a representation with a high number of parameters

$$N = n^d$$

High-dimensional approximation

The goal is to approximate a multivariate function

$$u(x_1,\ldots,x_d)$$

A "naive" tensor product approximation

$$u(x_1,\ldots,x_d) \approx \sum_{\alpha_1=1}^n \ldots \sum_{\alpha_d=1}^n \frac{\mathbf{a}_{\alpha_1\ldots\alpha_d}}{\mathbf{a}_{\alpha_1}\ldots\mathbf{a}_d} \psi_{\alpha_1}^{(1)}(x_1)\ldots\psi_{\alpha_d}^{(d)}(x_d), \quad \mathbf{a} \in \mathbb{R}^{n^d}$$

yields a representation with a high number of parameters

$$N = n^d$$

• Assuming $u \in C^s$, the number of parameters to achieve a precision ϵ is

$$N = O(\epsilon^{-d/s})$$
 (Curse of dimensionality)

Ecole Centrale Nantes Anthony Nouy

High-dimensional approximation

The goal is to approximate a multivariate function

$$u(x_1,\ldots,x_d)$$

A "naive" tensor product approximation

$$u(x_1,\ldots,x_d) \approx \sum_{\alpha_1=1}^n \ldots \sum_{\alpha_d=1}^n \frac{\mathbf{a}_{\alpha_1\ldots\alpha_d}}{\mathbf{a}_{\alpha_1}\ldots\mathbf{a}_d} \psi_{\alpha_1}^{(1)}(x_1)\ldots\psi_{\alpha_d}^{(d)}(x_d), \quad \mathbf{a} \in \mathbb{R}^{n^d}$$

yields a representation with a high number of parameters

$$N = n^d$$

• Assuming $u \in C^s$, the number of parameters to achieve a precision ϵ is

$$N = O(\epsilon^{-d/s})$$
 (Curse of dimensionality)

• Extra smoothness does not help.

How to beat the curse of dimensionality ?

The key is to consider classes of functions with specific low-dimensional structures and to propose approximation formats (models) which exploit these structures (application-dependent).

Approximations are searched in subsets M_n with a number of parameters

$$n = O(d^p)$$

but

- \bullet M_n is usually nonlinear, and
- M_n may be non smooth.

This turns approximation problems

$$\min_{v \in M_n} d(u, v)$$

into nonlinear and possibly non smooth optimization problems.

Low-dimensional models for high-dimensional approximation

- Low-order interactions, e.g.
 - No interaction (additive model)

$$u(x_1,\ldots,x_d)\approx \underline{u_0}+\underline{u_1}(x_1)+\ldots+\underline{u_d}(x_d)$$

First-order interactions

$$u(x_1,\ldots,x_d) \approx u_0 + \sum_i u_i(x_i) + \sum_{i\neq j} u_{i,j}(x_i,x_j)$$

- Small number of interactions
 - For a given $\Lambda \subset 2^{\{1,\ldots,d\}}$ (set of interaction groups),

$$u(x_1,\ldots,x_d)\approx \sum_{\alpha\in\Lambda} \underline{u_\alpha}(x_\alpha)$$

↑ as a parameter

$$u(x_1,\ldots,x_d) \approx \sum_{\alpha \in \Lambda} u_{\alpha}(x_{\alpha})$$
 with $\#\Lambda = n$

Low-dimensional models for high-dimensional approximation

ullet Sparsity relatively to a basis or frame $\{\psi_{lpha}\}_{lpha\in\mathbb{N}}$

$$u(x_1,\ldots,x_d) \approx \sum_{\alpha \in \Lambda} \frac{a_\alpha}{a_\alpha} \psi_\alpha(x_1,\ldots,x_d), \quad \#\Lambda = n$$

ullet Sparsity relatively to a dictionary ${\cal D}$

$$u(x_1,\ldots,x_d)\approx \sum_{i=1}^n a_i\psi_i(x_1,\ldots,x_d),\quad \psi_i\in\mathcal{D}$$

Anthony Nouy Ecole Centrale Nantes

Low-dimensional models for high-dimensional approximation

Low rank,

$$u(x_1, ..., x_d) \approx \underbrace{u_1(x_1) ... u_d(x_d)}_{u(x_1, ..., x_d)} \approx \sum_{i=1}^r \underbrace{u_{1,i}(x_1) ... u_{d,i}(x_d)}_{u_{1,i}(x_1, ..., x_d)} \approx \sum_{i_1=1}^{r_1} ... \sum_{i_{d-1}=1}^{r_{d-1}} \underbrace{u_{1,i_1}(x_1) u_{i_1,i_2}(x_2) ... u_{i_{d-1},1}(x_d)}_{...}$$

Anthony Nouy Ecole Centrale Nantes

Outline

- Rank-structured approximation
- Statistical learning methods for tensor approximation
- 3 Adaptive approximation in tree-based low-rank formats

Outline

- Rank-structured approximation
- 2 Statistical learning methods for tensor approximation
- 3 Adaptive approximation in tree-based low-rank formats

Tensor product of functions

For $1 \leq \nu \leq d$, let V_{ν} be a space of functions defined on an interval $\mathcal{X}_{\nu} \subset \mathbb{R}$.

The tensor product of functions $v^{(\nu)} \in V_{\nu}$, denoted

$$v = v^{(1)} \otimes \ldots \otimes v^{(d)},$$

is a multivariate function defined on $\mathcal{X} = \mathcal{X}_1 \times \ldots \times \mathcal{X}_d$ and such that

$$v(x_1,...,x_d) = v^{(1)}(x_1)...v^{(d)}(x_d)$$

For example, for $i \in \mathbb{N}_0^d$, the monomial $x^i = x_1^{i_1} \dots x_d^{i_d}$ is an elementary tensor.

Tensor product of functions

The algebraic tensor product of spaces V_{ν} , denoted

$$V_1 \otimes \ldots \otimes V_d$$
,

is the space of multivariate functions v which can be written as a finite linear combination of elementary (separated functions), i.e.

$$v(x) = \sum_{k=1}^{n} v_k^{(1)}(x_1) \dots v_k^{(d)}(x_d).$$

Anthony Nouy Ecole Centrale Nantes

Rank of order-two tensor

In the case d=2, the rank of a bivariate function $v(x_1,x_2)$ is defined as the minimal integer r such that

$$v(x_1, x_2) = \sum_{i=1}^r v_i^{(1)}(x_1)v_i^{(2)}(x_2).$$

For a matrix $v \in \mathbb{R}^{n \times m}$ representing the values of a function on a grid, of the coefficients of the function on a product basis, this corresponds to the standard notion of matrix rank.

The set of order-two tensors with rank bounded by r, although it is not a linear space nor a convex set, has many favorable properties for numerical use.

Canonical rank of higher-order tensors

For tensors $v \in V_1 \otimes ... \otimes V_d$ with $d \geq 3$, there are different notions of rank.

The canonical rank of a function $v(x_1, \ldots, x_d)$, which is the natural extension of the notion of rank for order-two tensors, is the minimal integer r such that

$$v(x) = \sum_{k=1}^{r} v_k^{(1)}(x_1) \dots v_k^{(d)}(x_d),$$

where the $v_{\nu}^{(\nu)}(x_{\nu})$ are in the function space V_{ν} .

The storage complexity of such a function is

$$storage(v) = r \sum_{\nu=1}^{d} dim(V_{\nu}) = O(r dn),$$

for dim $(V_{\nu}) = O(n)$, and scales linearly in d.

Canonical rank of higher-order tensors

But for $d \ge 3$, the set of tensors with canonical rank bounded by r looses many of the favorable properties of the case d = 2. The consequence is that no robust numerical method exists for approximation in this format.

Matricisation of tensors

For a non-empty subset α of $D = \{1, ..., d\}$, an order-d tensor $u(x_1, ..., x_d)$ can be identified with an order-two tensor

$$\mathcal{M}_{\alpha}(u)(x) = u(x_{\alpha}, x_{\alpha^c}),$$

where

$$x_{\alpha} = \{x_{\nu}\}_{\nu \in \alpha}$$
 and $x_{\alpha^{c}} = \{x_{\nu}\}_{\nu \in \alpha^{c}}$

are two complementary groups of variables.

The operator \mathcal{M}_{α} is called a matricisation operator.

$$\xrightarrow{\mathcal{M}_{\{2\}}}$$

α -rank

The α -rank of u, denoted $\operatorname{rank}_{\alpha}(u)$, is the rank of the order-two tensor $\mathcal{M}_{\alpha}(u)$,

$$\operatorname{rank}_{\alpha}(u) = \operatorname{rank}(\mathcal{M}_{\alpha}(u)).$$

The motivation behind the definition of approximation formats based on α -ranks is to benefit from the nice properties of the rank of order-two tensors.

A multivariate function $u(x_1,\ldots,x_d)$ with $\operatorname{rank}_{\alpha}(u) \leq r_{\alpha}$ is such that

$$u(x) = \sum_{k=1}^{r_{\alpha}} v_k^{\alpha}(x_{\alpha}) w_k^{\alpha^c}(x_{\alpha^c})$$

Example

 $u(x_1,\ldots,x_d)=u_1(x_1)+\ldots+u_d(x_d)$ where u_1,\ldots,u_d are non constant functions satisfies $\operatorname{rank}_{\alpha}(u)=2$ for all α .

The corresponding storage complexity is

storage(
$$v$$
) = $O(r_{\alpha}(n^{\#\alpha} + n^{\#\alpha^c}))$.

Anthony Nouy Ecole Centrale Nantes

α -ranks and related tensor formats

For T a collection of subsets of D, we define the T-rank of a tensor v, denoted $\operatorname{rank}_T(u)$, as the tuple

$$\mathsf{rank}_{\mathcal{T}}(v) = \{\mathsf{rank}_{\alpha}(v)\}_{\alpha \in \mathcal{T}}.$$

The subset of tensors in V with T-rank bounded by $r=(r_{\alpha})_{\alpha\in T}$ is

$$\mathcal{T}_r^T = \{v : \mathsf{rank}_T(v) \le r\} = \bigcap_{\alpha \in T} \{v : \mathsf{rank}_\alpha(v) \le r_\alpha\}.$$

As a finite intersection of subsets of tensors with bounded α -ranks, \mathcal{T}_r^T inherits from geometrical and topological properties which are favorable for numerical simulation.

Tensor train format

For

$$T = \{\{1\}, \{1, 2\}, \dots, \{1, \dots, d-1\}\},\$$

 $\operatorname{rank}_{T}(v)$ is called the TT-rank of the tensor v. A tensor v with $\operatorname{rank}_{T}(v) \leq r = (r_1, \dots, r_{d-1})$ admits a representation

$$v(x) = \sum_{k_1=1}^{r_1} \dots \sum_{k_{d-1}=1}^{r_{d-1}} v^{(1)}(x_1, k_1) v^{(2)}(k_1, x_2, k_2) \dots v^{(d)}(k_{d-1}, x_d).$$

The storage complexity of an element in TT_r is

$$\mathsf{storage}(v) = \sum_{\nu=1}^d r_{\nu-1} r_{\nu} \dim(V_{\nu}) = O(dnR^2)$$

with dim $(V_{\nu}) = O(n)$, $r_{\nu} = O(R)$.

Anthony Nouy Ecole Centrale Nantes

Tree-based (hierarchical) Tucker format

Tree-based (or hierarchical) Tucker formats are associated with a partition dimension tree T over $D = \{1, \ldots, d\}$, with root D and leaves $\{\nu\}$, $1 \le \nu \le d$.

The tree-based rank of a tensor v is the tuple rank_T $(v) = (rank_{\alpha}(v))_{\alpha \in T}$.

Anthony Nouy Ecole Centrale Nantes

Parametrization and storage of low-rank tensor formats

Ultimately, a tensor in a certain low-rank tensor format $\mathcal{M}_{\leq r} = \{v : \text{rank}(v) \leq r\}$ admits a multilinear parametrization of the form

$$v(x) = \sum_{k_1=1}^{r_1} \dots \sum_{k_L=1}^{r_L} \prod_{\nu=1}^{d} p_{\nu} (x_{\nu}, (k_i)_{i \in S_{\nu}}) \prod_{\nu=d+1}^{M} p_{\nu} ((k_i)_{i \in S_{\nu}}) = \Psi(p_1, \dots, p_M)(x)$$

where the parameter p_{ν} is a tensor which depends on a small subset of summation variables $(k_i)_{i \in S_{\nu}}$.

The storage complexity scales as

$$O(dnR^k)$$

where R is a bound of the representation ranks.

Anthony Nouy Ecole Centrale Nantes

Outline

- Rank-structured approximation
- 2 Statistical learning methods for tensor approximation
- 3 Adaptive approximation in tree-based low-rank formats

Anthony Nouy Ecole Centrale Nantes

Statistical learning methods for tensor approximation

• Approximation of a function $u(X) = u(X_1, ..., X_d)$ from evaluations $\{y_k = u(x^k)\}_{k=1}^K$ on a training set $\{x^k\}_{k=1}^K$ (i.i.d. samples of X)

Anthony Nouy Ecole Centrale Nantes

Statistical learning methods for tensor approximation

- Approximation of a function $u(X) = u(X_1, ..., X_d)$ from evaluations $\{y_k = u(x^k)\}_{k=1}^K$ on a training set $\{x^k\}_{k=1}^K$ (i.i.d. samples of X)
- Approximation in subsets of rank-structured functions

$$\mathcal{M}_{\leq r} = \{v : rank(v) \leq r\}$$

by minimization of an empirical risk

$$\widehat{\mathcal{R}}_{K}(v) = \frac{1}{K} \sum_{k=1}^{K} \ell(u(x^{k}), v(x^{k}))$$

where ℓ is a certain loss function.

Anthony Nouy Ecole Centrale Nantes

Statistical learning methods for tensor approximation

- Approximation of a function $u(X) = u(X_1, ..., X_d)$ from evaluations $\{y_k = u(x^k)\}_{k=1}^K$ on a training set $\{x^k\}_{k=1}^K$ (i.i.d. samples of X)
- Approximation in subsets of rank-structured functions

$$\mathcal{M}_{\leq r} = \{v : rank(v) \leq r\}$$

by minimization of an empirical risk

$$\widehat{\mathcal{R}}_{K}(v) = \frac{1}{K} \sum_{k=1}^{K} \ell(u(x^{k}), v(x^{k}))$$

where ℓ is a certain loss function.

• Here, we consider for least-squares regression

$$\widehat{\mathcal{R}}_{K}(v) = \frac{1}{K} \sum_{k=1}^{K} (u(x^{k}) - v(x^{k}))^{2} = \widehat{\mathbb{E}}_{K}((u(X) - v(X))^{2})$$

but other loss functions could be used for different objectives than L^2 -approximation (e.g. classification).

Alternating minimization algorithm

Multilinear parametrization of tensor manifolds

$$\mathcal{M}_{\leq r} = \{ v = \Psi(p_1, \dots, p_L) : p_l \in \mathbb{R}^{m_l}, 1 \leq l \leq L \}$$

so that

$$\min_{v \in \mathcal{M}_{\leq r}} \widehat{\mathcal{R}}_K(v) = \min_{p_1, \dots, p_M} \widehat{\mathcal{R}}_K(\Psi(p_1, \dots, p_M))$$

Anthony Nouy Ecole Centrale Nantes

Alternating minimization algorithm

Multilinear parametrization of tensor manifolds

$$\mathcal{M}_{\leq r} = \{ v = \Psi(p_1, \dots, p_L) : p_l \in \mathbb{R}^{m_l}, 1 \leq l \leq L \}$$

so that

$$\min_{v \in \mathcal{M}_{< r}} \widehat{\mathcal{R}}_K(v) = \min_{p_1, \dots, p_M} \widehat{\mathcal{R}}_K(\Psi(p_1, \dots, p_M))$$

• Alternating minimization algorithm: Successive minimization problems

$$\min_{p_l \in \mathbb{R}^{m_l}} \widehat{\mathcal{R}}_{K}(\underbrace{\Psi(p_1, \dots, p_l, \dots, p_M)}_{\Psi_l(\cdot)^T p_l})$$

which are standard linear approximation problems

$$\min_{\mathbf{p}_l \in \mathbb{R}^{m_l}} \frac{1}{K} \sum_{k=1}^{K} \ell(u(x^k), \Psi_l(x^k)^T \mathbf{p}_l)$$

Anthony Nouy Ecole Centrale Nantes

Regularization

Regularization

$$\min_{p_1,\ldots,p_M} \widehat{\mathcal{R}}_K(\Psi(p_1,\ldots,p_M)) + \sum_{l=1}^L \frac{\lambda_l}{\lambda_l} \Omega_l(p_l)$$

with regularization functionals Ω_I promoting

- sparsity (e.g. $\Omega_{l}(p_{l}) = ||p_{l}||_{1}$),
- smoothness,
- ...
- Alternating minimization algorithm requires the solution of successive standard regularized linear approximation problems

$$\min_{\boldsymbol{p}_{l}} \frac{1}{K} \sum_{k=1}^{K} \ell(\boldsymbol{u}(\boldsymbol{x}^{k}), \boldsymbol{\Psi}_{l}(\boldsymbol{x}^{k})^{T} \boldsymbol{p}_{l}) + \lambda_{l} \Omega_{l}(\boldsymbol{p}_{l}) \tag{*}$$

- For square-loss and $\Omega_l(p_l) = ||p_l||_1$, (\star) is a LASSO problem.
- Cross-validation methods for the selection of regularization parameters λ_l .

Illustrations

• Approximations in canonical format

$$v(x_1,...,x_d) = \sum_{k=1}^r v_k^{(1)}(x_1)...v_k^{(d)}(x_d)$$

or in tensor-train (TT) format:

$$v(x_1,\ldots,x_d)=\sum_{k_1=1}^{r_1}\ldots\sum_{k_d-1=1}^{r_{d-1}}v_{1,k_1}^{(1)}(x_1)\ldots v_{k_{d-1},1}^{(d)}(x_d)$$

Polynomial approximations

$$v_k^{(\nu)}$$
 and $v_{i_{\nu-1},i_{\nu}}^{(\nu)} \in \mathbb{P}_q$

- $v = \Psi(p_1, ..., p_d)$ with parameter p_{ν} gathering the coefficients of functions of x_{ν} on a polynomial basis (orthonormal in $L^2_{P_{X_{\nu}}}(\mathcal{X}_{\nu})$).
- Sparsity inducing regularization and cross-validation (leave one out) for the automatic selection of polynomial basis functions. Use of standard least-squares in the selected basis.

Anthony Nouy Ecole Centrale Nantes

Illustration: Borehole function

The Borehole function models water flow through a borehole:

$$u(X) = \frac{2\pi T_u(H_u - H_l)}{\ln(r/r_w)\left(1 + \frac{2LT_u}{\ln(r/r_w)r_w^2K_w} + \frac{T_u}{T_l}\right)}, \quad X = (r_w, \log(r), T_u, H_u, T_l, H_l, L, K_w)$$

r_w	radius of borehole (m)	$N(\mu = 0.10, \sigma = 0.0161812)$
r	radius of influence (m)	$LN(\mu = 7.71, \sigma = 1.0056)$
T_u	transmissivity of upper aquifer (m ² /yr)	U(63070, 115600)
H_u	potentiometric head of upper aquifer (m)	U(990, 1110)
T_I	transmissivity of lower aquifer (m ² /yr)	U(63.1, 116)
H_l	potentiometric head of lower aquifer (m)	U(700, 820)
L	length of borehole (m)	U(1120, 1680)
K_w	hydraulic conductivity of borehole (m/yr)	U(9855, 12045)

- Polynomial approximation with degree q = 8.
- Test set of size 1000.

Anthony Nouy Ecole Centrale Nantes

Illustration: Borehole function

 Approximation in canonical format for different sizes K of training set, selection of optimal rank.

K	rank	test error
100	2	1.010^{-3}
1000	5	3.810^{-4}
10000	7	6.010^{-6}

Anthony Nouy Ecole Centrale Nantes

Illustration: Borehole function

 Approximation in canonical format for different sizes K of training set, selection of optimal rank.

K	rank	test error	
100	2	1.010^{-3}	
1000	5	3.810^{-4}	
10000	7	6.010^{-6}	

• Approximation in tensor train format for different ranks and for different sizes *K* of the training set.

rank	K = 100	K=1000	K=10000
$(1\ 1\ 1\ 1\ 1\ 1)$	1.710^{-2}	1.410^{-2}	1.410^{-2}
(2 2 2 2 2 2 2)	6.710^{-4}	9.110^{-4}	3.310^{-4}
(3 3 3 3 3 3 3)	3.210^{-3}	1.210^{-4}	1.010^{-5}
(4 4 4 4 4 4 4)	2.110^{-1}	7.610^{-5}	1.910^{-7}
(5 5 5 5 5 5 5)	7.310^{0}	3.810^{-4}	2.810^{-7}
(6 6 6 6 6 6 6)	7.910^{-1}	4.110^{-3}	2.110^{-7}

Illustration: Borehole function

 Approximation in canonical format for different sizes K of training set, selection of optimal rank.

K	rank	test error
100	2	1.010^{-3}
1000	5	3.810^{-4}
10000	7	6.010^{-6}

 Approximation in tensor train format for different ranks and for different sizes K of the training set.

rank	K = 100	K=1000	K=10000
$(1\ 1\ 1\ 1\ 1\ 1)$	1.710^{-2}	1.410^{-2}	1.410^{-2}
(2 2 2 2 2 2 2)	6.710^{-4}	9.110^{-4}	3.310^{-4}
(3 3 3 3 3 3 3)	3.210^{-3}	1.210^{-4}	1.010^{-5}
(4 4 4 4 4 4 4)	2.110^{-1}	7.610^{-5}	1.910^{-7}
(5 5 5 5 5 5 5)	7.310^{0}	3.810^{-4}	2.810^{-7}
(6 6 6 6 6 6 6)	7.910^{-1}	4.110^{-3}	2.110^{-7}

Finding optimal rank is a combinatorial problem...

Anthony Nouy Ecole Centrale Nantes

Outline

- Rank-structured approximation
- Statistical learning methods for tensor approximation
- 3 Adaptive approximation in tree-based low-rank formats

Anthony Nouy Ecole Centrale Nantes

Heuristic strategy for rank adaptation (tree-based Tucker format)

• Given $T \subset 2^{\{1,\dots,d\}}$, construction of a sequence of approximations u_m in tree-based Tucker format with increasing rank:

$$u_m \in \{v : rank_T(v) \le (r_\alpha^m)_{\alpha \in T}\}$$

Anthony Nouy Ecole Centrale Nantes

Heuristic strategy for rank adaptation (tree-based Tucker format)

• Given $T \subset 2^{\{1,\dots,d\}}$, construction of a sequence of approximations u_m in tree-based Tucker format with increasing rank:

$$u_m \in \{v : rank_T(v) \le (r_\alpha^m)_{\alpha \in T}\}$$

• At iteration m,

$$\begin{cases} r_{\alpha}^{m+1} = r_{\alpha}^{m} + 1 & \text{if } \alpha \in T_{m} \\ r_{\alpha}^{m+1} = r_{\alpha}^{m} & \text{if } \alpha \notin T_{m} \end{cases}$$

where T_m is selected in order to obtain (hopefully) the fastest decrease of the error.

Anthony Nouy Ecole Centrale Nantes

Heuristic strategy for rank adaptation (tree-based Tucker format)

• Given $T \subset 2^{\{1,\dots,d\}}$, construction of a sequence of approximations u_m in tree-based Tucker format with increasing rank:

$$u_m \in \{v : rank_T(v) \leq (r_\alpha^m)_{\alpha \in T}\}$$

• At iteration m,

$$\begin{cases} r_{\alpha}^{m+1} = r_{\alpha}^{m} + 1 & \text{if } \alpha \in T_{m} \\ r_{\alpha}^{m+1} = r_{\alpha}^{m} & \text{if } \alpha \notin T_{m} \end{cases}$$

where T_m is selected in order to obtain (hopefully) the fastest decrease of the error.

• A possible strategy consists in computing the singular values

$$\sigma_1^{\alpha} \geq \ldots \geq \sigma_{r_n^m}^{\alpha}$$

of α -matricizations $\mathcal{M}_{\alpha}(u_m)$ of u_m for all $\alpha \in \mathcal{T}$. Letting $0 \leq \theta \leq 1$, can we choose

$$\mathbf{T}_{m} = \left\{ \alpha \in \mathbf{T} : \sigma_{r_{\alpha}^{m}}^{\alpha} \geq \theta \max_{\beta \in \mathbf{T}} \sigma_{r_{\beta}^{m}}^{\beta} \right\}$$

Illustration: Borehole function

• Training set of size K = 1000

iteration	rank	test error
0	$(1\ 1\ 1\ 1\ 1\ 1)$	1.410^{-2}
1	(2 2 2 2 2 2 2)	4.410^{-4}
2	(2 2 2 3 3 2 2)	8.110^{-6}
3	(3 3 3 4 3 2 2)	6.210^{-6}
4	(3 3 3 4 4 3 2)	2.110^{-5}
5	(3 3 3 4 4 3 3)	9.610^{-6}
6	(3 4 4 4 5 4 4)	1.510^{-5}

The selected rank is one order of magnitude better than the optimal "isotropic" rank (r, r, \ldots, r)

Anthony Nouy Ecole Centrale Nantes

Illustration: Borehole function

• Different sizes K of training set, selection of optimal ranks.

TT format

K	rank	test error
100	(3 4 4 3 3 2 1)	7.110^{-4}
1000	(3 3 3 4 4 3 2)	6.210^{-6}
10000	(5 6 6 7 7 5 4)	2.410^{-8}

Canonical format

K	rank	test error
100	2	1.010^{-3}
1000	5	3.810^{-4}
10000	7	6.010^{-6}

Influence of the tree (TT format)

• Test error for different trees T (Training set of size K = 50)

tree	$\{\nu_1,\ldots,\nu_d\}$	optimal rank	test error
T_1	(1 2 3 4 5 6 7 8)	(2 2 2 2 2 1 1)	6.210^{-4}
T_2	(1 3 8 5 6 2 4 7)	(2 2 2 2 2 2 1)	1.310^{-3}
<i>T</i> ₃	(7 6 8 1 4 5 2 3)	$(1\ 1\ 1\ 1\ 1\ 1)$	1.510^{-2}
T_4	(8 2 4 7 5 1 3 6)	(1 1 2 3 3 2 2)	1.310^{-2}

Finding the optimal tree is a combinatorial problem...

Strategy for tree adaptation in (TT format)

Starting from an initial tree, we perform iteratively the following two steps:

 Run the algorithm with rank adaptation to compute an approximation v associated with the current tree

$$v(x_1,\ldots,x_d) = \sum_{i_1=1}^{r_1} \ldots \sum_{i_{d-1}=1}^{r_{d-1}} v_{1,i_1}^1(x_{\nu_1}) \ldots v_{i_{d-1},1}^d(x_{\nu_d})$$

 Run a tree optimization algorithm yielding an equivalent representation of v (at the current precision)

$$v(x_1,\ldots,x_d) \approx \sum_{i_1=1}^{\tilde{i}_1} \ldots \sum_{i_{d-1}=1}^{\tilde{i}_{d-1}} v_{1,i_1}^1(x_{\tilde{\nu}_1}) \ldots v_{i_{d-1},1}^d(x_{\tilde{\nu}_d})$$

with reduced ranks $\{\tilde{r}_1,\ldots,\tilde{r}_{d-1}\}$, where $\{\tilde{\nu}_1,\ldots,\nu_d\}$ is a permutation of $\{\nu_1,\ldots,\nu_d\}$.

Anthony Nouy Ecole Centrale Nantes

Strategy for tree adaptation in (TT format)

Illustration with training set of size K = 50.

We run the algorithm for different initial trees.

Indicated in blue are the permuted dimensions in the final tree.

tree	$\{\nu_1,\ldots,\nu_d\}$	optimal rank	test error
initial	(1 2 3 4 5 6 7 8)	(2 2 2 2 2 1 1)	6.210^{-4}
final	(1 2 3 5 4 6 7 8)	(2 2 2 2 2 1 1)	4.510^{-4}
initial	(1 3 8 5 6 2 4 7)	(2 2 2 2 2 2 1)	1.310^{-3}
final	(1 3 8 5 2 6 4 7)	(2 2 2 2 2 2 1)	5.110^{-4}
initial and final	(7 6 8 1 4 5 2 3)	(1 1 1 1 1 1 1)	1.510^{-2}
initial	(8 2 4 7 5 1 3 6)	(1 1 2 3 3 2 2)	1.310^{-2}
	(8 2 7 5 1 4 3 6)	(1 1 2 2 2 2 2)	1.210^{-3}
final	(8 2 7 5 1 3 4 6)	(1 1 2 2 2 2 2)	1.310^{-3}

Anthony Nouy Ecole Centrale Nantes

Concluding remarks and on-going works

- Need for robust strategies for tree adaptation.
- "Statistical dimension" of low-rank subsets?
- Adaptive sampling strategies.
- Goal-oriented construction of low-rank approximations.

Anthony Nouy Ecole Centrale Nantes

Concluding remarks and on-going works

- Need for robust strategies for tree adaptation.
- "Statistical dimension" of low-rank subsets ?
- Adaptive sampling strategies.
- Goal-oriented construction of low-rank approximations.
- For Régis, estimation of high-dimensional copula

$$C(x_1,\ldots,x_d)$$

using low-rank formats.

Anthony Nouy Ecole Centrale Nantes

References

A. Nouy.

Low-rank methods for high-dimensional approximation and model order reduction. arXiv:1511.01554

Low-Rank Tensor Methods for Model Order Reduction, pages 1–26. Springer International Publishing, Cham, 2016.

M. Chevreuil, R. Lebrun, A. Nouy, and P. Rai.

A least-squares method for sparse low rank approximation of multivariate functions. SIAM/ASA Journal on Uncertainty Quantification, 3(1):897–921, 2015.