Math 217 Worksheet 24: The Characteristic Polynomial (§7.2, §7.3)

Fix a linear transformation $V \xrightarrow{T} V$, where V is an n-dimensional vector space.

Definition. The **characteristic polynomial** of T is

$$\chi_T(x) = \det(T - xI_V)$$

where $\det(T - xI_V)$ denotes the determinant of the linear transformation $V \xrightarrow{S} V$ such that S(v) = T(v) - xv for any $v \in V$. Here, we can think of x as an indeterminate real number.

Theorem A. The characteristic polynomial is a polynomial of degree n in x (where $n = \dim V$).

Theorem B. The (real) eigenvalues of T are the (real) roots of the characteristic polynomial.

Corollary. The transformation T has at most n distinct eigenvalues (where $n = \dim V$).

Problem 1. Let $V \xrightarrow{T} V$ be a linear transformation, where V is a finite dimensional vector space.

- (a) Discuss with your group how to define the determinant of T. How can you get a matrix out of T? Why is the determinant of this matrix independent of any choices you made?
- (b) Now let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be reflection over the line spanned by $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$.
 - (i) Compute $[T]_{\mathcal{E}}$, $[xI_V]_{\mathcal{E}}$, and $[T-xI_V]_{\mathcal{E}}$ (where x is an indeterminate scalar).
 - (ii) Thinking geometrically, find an eigenbasis \mathcal{B} for T. Compute $[T]_{\mathcal{B}}$, $[xI_V]_{\mathcal{B}}$, $[T-xI_V]_{\mathcal{B}}$.
 - (iii) Compute and compare the determinants of $[T xI_V]_{\mathcal{E}}$ and $[T xI_V]_{\mathcal{B}}$. What is the determinant of $[T xI_V]_{\mathcal{C}}$ where \mathcal{C} is some third basis?
 - (iv) Compute the polynomial $\chi_T(x)$ and confirm that its roots are the eigenvalues of T.

Solution:

- (a) To define the determinant of T, we pick any basis \mathcal{B} . This allows us to model V as the \mathcal{B} -coordinate space \mathbb{R}^n (where $n=\dim V$) and T by the matrix multiplication by the $n\times n$ matrix $[T]_{\mathcal{B}}$. The determinant of $[T]_{\mathcal{B}}$ is the determinant of T. It doesn't depend of the choice of basis \mathcal{B} , since two matrices representing T in different basis are similar, meaning that $[T]_{\mathcal{B}} = S[T]_{\mathcal{A}}S^{-1}$ where S is a change of basis matrix. By the multiplicative property of determinants, we see $\det[T]_{\mathcal{B}} = \det S \det[T]_{\mathcal{A}} \det S^{-1} = \det[T]_{\mathcal{A}}$. Since the characteristic polynomial is a determinant, it doesn't depend on choice of basis used to compute it.
- (b) (i) $[T]_{\mathcal{E}} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, [xI_V]_{\mathcal{E}} = \begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix}, \text{ and } [T xI_V]_{\mathcal{E}} = \begin{bmatrix} -x & -1 \\ -1 & -x \end{bmatrix}.$
 - (ii) An eigenbasis \mathcal{B} for T is $\left\{\begin{bmatrix}1\\-1\end{bmatrix},\begin{bmatrix}1\\1\end{bmatrix}.\right\}$ In this basis, we have $[T]_{\mathcal{B}} = \begin{bmatrix}1&0\\0&-1\end{bmatrix}, [xI_V]_{\mathcal{B}} = \begin{bmatrix}x&0\\0&x\end{bmatrix}$, and $[T-xI_V]_{\mathcal{B}} = \begin{bmatrix}1-x&0\\0&-1-x\end{bmatrix}$.
 - (iii) All are $x^2 1$.
 - (iv) $\chi_T(x) = x^2 1$. Its roots are ± 1 , the eigenvalues of T.

Problem 2. Find the matrix $[T - xI_V]_{\mathcal{B}}$ and the characteristic polynomial of each transformation below, for some *conveniently chosen basis* \mathcal{B} . Then use Theorem B to find all eigenvalues of each.

- (a) $T: \mathcal{P}_2 \to \mathcal{P}_2$ is differentiation.*
- (b) $T: \mathbb{R}^3 \to \mathbb{R}^3$ is projection onto the plane with normal vector $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$.
- (c) $T: \mathbb{R}^2 \to \mathbb{R}^2$ whose standard matrix is $A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$.
- (d) $T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ defined by $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} a & a+b \\ a+b+c & a+b+c+d \end{bmatrix}$.

Solution:

- (a) Using the basis $\mathcal{B} = (1, x, x^2)$, the \mathcal{B} -matrix of $T xI_V$ is $\begin{bmatrix} -x & 1 & 0 \\ 0 & -x & 2 \\ 0 & 0 & -x \end{bmatrix}$ and the characteristic polynomial is $-x^3$. So 0 is the only eigenvalue.
- (b) Using a basis \mathcal{B} consisting of the normal vector $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ together with a spanning set for the plane, the \mathcal{B} -matrix of $T xI_V$ is $\begin{bmatrix} -x & 0 & 0 \\ 0 & 1-x & 0 \\ 0 & 0 & 1-x \end{bmatrix}$ and the characteristic polynomial is $-x(x-1)^2$. The eigenvalues are the roots—so 0 and 1.
- (c) Using the standard basis, we have $[T xI_V]_{\mathcal{E}}$ is $A xI_2 = \begin{bmatrix} 1 x & 2 \\ -1 & 4 x \end{bmatrix}$. Its char poly is $(1 x)(4 x) + 2 = x^2 5x + 6$. This factors as (x 2)(x 3) so the eigenvalues are 2 and 3.
- (d) $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ defined by $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} a & a+b \\ a+b+c & a+b+c+d \end{bmatrix}$. Using the basis $\mathcal{E} = (E_{11}, E_{12}, E_{21}, E_{22})$, the matrix T xI is $\begin{bmatrix} 1-x & 0 & 0 & 0 \\ 1 & 1-x & 0 & 0 \\ 1 & 1 & 1-x & 0 \\ 1 & 1 & 1-x & 0 \end{bmatrix}$. The char poly is $(1-x)^4 = (x-1)^4$. The only eigenvalue is 1.

Definition. Let f(x) be a polynomial, and let λ be a root. The **multiplicity of the root** λ is the largest m so that we can factor $f(x) = (x - \lambda)^m g(x)$ for some $m \in \mathbb{N}$ for some g(x).

Definition. Let λ be an eigenvalue of a linear transformation T of a finite dimensional space. The **algebraic multiplicity** of λ is its multiplicity as a root of the characteristic poly $\chi_T(x)$.

^{*}Save your answers to (a) and all other parts of Problem 2! You will need them for Problem 4.

Problem 3.

- (a) Find the algebraic multiplicity (or "almu") of each eigenvalue in each part of Problem 2.
- (b) Prove that the Corollary follows from Theorems A and B.

 [Hint: You may assume basic facts about roots of polynomials of degree n learned in high school or Math 115.]
- (c) Prove that for any linear transformation $T: V \to V$, with V a finite dimensional vector space, the sum of the algebraic multiplicities of the eigenvalues of T is at most dim V.

Solution:

(a) We factor each characteristic polynomial into linear factors to see the multiplicities of each root. For (a): $\chi(x) = -x^3$, so almu(0) = 3.

For (b):
$$\chi(x) = -x(x-1)^2$$
, so almu(1) = 2. almu(0) = 1.

For (c):
$$\chi(x) = (x-2)(x-3)$$
, almu(2) = 1. almu(3) = 1.

For (d):
$$\chi(x) = (x-1)^4$$
, so almu(1) = 4.

- (b) Remembering that a polynomial of degree n has at most n real roots, it follows immediately that a linear transformation $T: V \to V$ of an n dimensional space V has at most n eigenvalues. Indeed, the eigenvalues are precisely the roots of the Char poly (by Theorem B), which has degree n (by Theorem A).
- (c) Let $\chi(x)$ be the characteristic polynomial for a linear transformation $T:V\to V$ of an n dimensional space V. Factor $\chi(x)$ as much as possible:

$$\chi(x) = (x - \lambda_1)^{a_1} (x - \lambda_2)^{a_2} \cdots (x - \lambda_d)^{a_d} g(x)$$

where $\lambda_1, \ldots, \lambda_d$ are all the eigenvalues of T (of algebraic multiplicities a_1, \ldots, a_d , respectively) and g(x) is a polynomial with no linear factors. Note that the degree of the polynomial χ is $n = a_1 + \ldots a_d + \deg(g)$. So $\sum_{i=1}^d \operatorname{almu}(\lambda_i) \leq n$.

Theorem C. Let $T: V \to V$ be a linear transformation of a finite dimensional vector space V. For each eigenvalue λ of T, the geometric multiplicity of λ is at most the algebraic multiplicity of λ . For short, we write "gemu(λ) \leq almu(λ)."

Problem 4. For each transformation in Problem 2, find the eigenspace of each eigenvalue. Then confirm, in these examples, that Theorem C holds.

Solution: To find the geometric multiplicity of λ , we need the dimension of the corresponding eigenspace. The eigenspace is modeled by the kernel of the matrix $[T - xI_V]_{\mathcal{B}}$ with the specific value λ plugged in for x.

(a) For T as in part (a) of Problem 2, the kernel of differentiation is just the constant functions, a space of dimension one. So $E_0 = \mathcal{P}_0$, and gemu(0) = 1. As we saw in Problem 3, almu(0) = 3, so we've conformed gemu(0) \leq almu(0) for this map.. Alternatively, we can compute the geometric multiplicity using rank-nullity: the 0-eigenspace is modeled by the kernel of the

matrix
$$[T-1I_V]_{\mathcal{B}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
. By rank-nullity, we know the kernel, and hence the 0-

eigenspace is one dimensional, and gemu(0) = 1.

(b) To find the eigenspaces for the map in Problem 2b, we can argue geometrically: the vectors sent to zero by the projection are normal to the plane, so $E_0 = \operatorname{Span}(\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix})$; the vectors sent to themselves by the projection are on the plane, so $E_1 =$ the plane. Note that here $\operatorname{gemu}(1) = 2$. $\operatorname{gemu}(0) = 1$. The almu and gemu of each eigenvalue are equal for this T.

You can also find the eigenspaces algebraically, by finding the kernels of $\begin{bmatrix} -x & 0 & 0 \\ 0 & 1-x & 0 \\ 0 & 0 & 1-x \end{bmatrix}$ after plugging in x=0 or x=1.

(c) The 2-eigenspace is the kernel of $A - 2I_2 = \begin{bmatrix} -1 & 2 \\ -1 & 2 \end{bmatrix}$, which is the span of $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$. So gemu(2)=almu(2)=1.

The 3-eigenspace is the kernel of $A - 3I_2 = \begin{bmatrix} -2 & 2 \\ -1 & 1 \end{bmatrix}$, which is the span of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. So gemu(3)=almu(3)=1.

(d) The 1-eigenspace is represented by the kernel of the matrix $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$. Since this matrix is

rank three, its kernel is 1-dimensional. We can take \vec{e}_4 as a basis, so E_{22} spans the 1-eigenspace of T. The geometric multiplicity is one, while the algebraic multiplicity is 4.

Problem 5: Proof of Theorem B. Fix $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$. Show the following are equivalent:

- (i) λ is an eigenvalue of the transformation $T_A: \mathbb{R}^n \to \mathbb{R}^n$ given by $T_A(\vec{v}) = A(\vec{v})$.
- (ii) The matrix $A \lambda I_n$ has nullity greater than zero.
- (iii) The matrix $A \lambda I_n$ has rank less than n.
- (iv) The matrix $A \lambda I_n$ has determinant zero.
- (v) λ is a root of the characteristic polynomial $\det(A xI_n)$.

Now explain why Theorem B follows.

Solution: We've mostly already done this on WS 23. The scalar λ is an eigenvalue for T if and only if the kernel of $A - \lambda I_n$ is not zero (since this kernel is the λ -eigenspace when it is non-zero). That is, (i) and (ii) are equivalent. Note (ii) and (iii) are equivalent by rank-nullity. Because the matrix $A - \lambda I_n$ is square, its kernel is non-zero if and only if its determinant is zero, so (iv) is also equivalent. Of course, (v) is just the definition of the characteristic polynomial. Theorem B follows: modeling T in any basis \mathcal{B} , we know λ is an eigenvalue of T if and only if λ is an eigenvalue of T and T and T and T and T are the same characteristic polynomial, by definition.

Theorem D. Eigenvectors of distinct eigenvalues are linearly independent. That is, if $T: V \to V$ is a linear transformation, and $\{\vec{v}_1, \ldots, \vec{v}_n\}$ are eigenvectors with different eigenvalues, then $\{\vec{v}_1, \ldots, \vec{v}_n\}$ is a linearly independent subset of V.

Problem 6. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation in Problem 2b. Let \vec{v} and \vec{w} be eigenvectors of T with different eigenvalues. Verify Theorem D for the set $\{\vec{v}, \vec{w}\}$. [Hint: Think geometrically!]

Solution: In Problem 2a, we have only 0 and 1 as the distinct eigenvalues. The zero eigenvectors lie in $\operatorname{Span}(\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix})$, while the 1-eigenvectors lie in $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}^{\perp}$. So every zero-eigenvector is orthogonal

to every 1-eigenvector. Since orthogonal vectors are linearly independent, we conclude that if \vec{v} and \vec{w} are eigenvectors of T with different eigenvalues, then $\{\vec{v}, \vec{w}\}$ are linearly independent.

Problem 7. Let $T: V \to V$ be a linear transformation. Using Theorem D, prove that:

- (a) If T has n distinct eigenvalues where $n = \dim V$, then T has an eigenbasis. Find an example where this occurs from among the transformations in Problem 2.
- (b) If $A \in \mathbb{R}^{n \times n}$ has n distinct eigenvalues, then A is similar to a diagonal matrix. For the matrix A in Problem 2c, find a diagonal matrix D and an invertible matrix S such that $A = SDS^{-1}$.
- (c) The converses of (a) and (b) are *false*. Find two counterexamples to (b) when n = 3. One example should have only one eigenvalue and the other two. Use your examples to disprove (a) as well.

Solution:

- (a) If there are n-distinct eigenvalues, the corresponding n eigenvectors are linearly independent by Theorem D. Since these are n linearly independent vectors in an n dimensional space, they form a basis (Theorem A WS12). Thus, they form an eigenbasis.
- (b) If the matrix A has n distinct eigenvalues, then the corresponding transformation has an eigenbasis \mathcal{B} . In this basis, the matrix is diagonal and all other matrices for the transformation, including A (which is the matrix in the standard basis) are similar to it. The matrix S is the change of basis matrix. For example, with A as in Problem 2c, we have $A = SDS^{-1}$ where $S = S_{\mathcal{B} \to \mathcal{E}} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.
- (c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is diagonalizable and has only the eigenvalue 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ has two eigenvalues, 0 and 1

Problem 8. Let $\lambda_1, \lambda_2, \dots, \lambda_d$ be distinct eigenvalues of a linear transformation $T: V \to V$.

- (a) Say that v_1 is an λ_1 -eigenvector and v_2 is an λ_2 -eigenvector. Without using Theorem D, prove that v_1 is not a scalar multiple of v_2 .
- (b) Prove Theorem D. [Hint: Induce on d. Assume a relation $c_1v_1 + \cdots + c_dv_d = 0$. Now apply T and suitably subtract to find a relation on fewer vectors.]

Solution:

(a) If v_2 is a scalar multiple of v_1 , then since $v_1 \in E_{\lambda_1}$, and E_{λ_1} is a vector space, also v_2 is in E_1 . But then v_2 has eigenvalue λ_1 , not λ_2 . (b) We induce on d. If d=1, the statement is trivial since eigenvectors are never zero, so $\{v_1\}$ is a linearly independent set. Part (a) takes care of the case where d=2. Assume, inductively, that any set of d-1 eigenvectors with distinct eigenvalues are linearly independent. Suppose, by way of contradiction, that there is a non-trivial relation on the set $\{v_1,\ldots,v_d\}$. Without loss of generality, we can write $a_1v_1+\cdots+a_nv_n=0$ with all a_i non-zero (by re-ordering the v_i 's if needed). If n< d, we are done by induction. So assume n=d. Apply T. We have $0=T(a_1v_1+\cdots+a_nv_n)=T(a_1v_1)+\cdots+T(a_nv_n)=a_1\lambda_1v_1+\cdots+a_n\lambda_n\vec{v}_n$. Here the λ are the eigenvalues, and by assumption, no two are equal. Note that no $\lambda_i=0$, or else we already have a non-trivial relation with fewer non-zero terms. Now multiply the original relation by λ_1 and subtract.

We get $0 = (\lambda_1 a_2 - \lambda_2 a_2)v_2 + \cdots + (\lambda_1 a_n - \lambda_n a_n)v_n = 0$. This is a relation on n-1 (which is d-1) eigenvectors with distinct eigenvalues, so it must be trivial, by induction. So each $\lambda_1 a_i - \lambda_i a_i = 0$. But this also gives a contradiction, since $a_i \neq 0$ and $\lambda_1 \neq \lambda_i$. QED

Problem 9*. Prove Theorem A. [Hint: If you have done the Extra WS on "Patterns and Determinants," the easiest way uses the pattern definition of determinant. Otherwise, use induction and the multilinearity of the determinant.]

Solution: By fixing a basis, it suffices to show that for $A \in \mathbb{R}^{n \times n}$, $\det(A - xI_n)$ is a polynomial of degree n in x. For a proof using the "pattern" definition of determinant, see the book; proof of Theorem 7.2.5.

We give a different proof, by induction on n.

Base Case: When n = 1, A = [a] and $det(A - xI_1) = det[a - x] = (a - x)$. This is a degree 1 polynomial in x.

Inductive Step: Assume that for $B \in \mathbb{R}^{n-1 \times n-1}$, $\det(B - xI_{n-1})$ is a polynomial of degree n-1 in x. Now, for $A \in \mathbb{R}^{n \times n}$, $\det(A - xI_n)$, we consider the determinant as a linear function in column one to get

$$\det(A - xI_n) = \det \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} - x & a_{23} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} - x \end{bmatrix} + \det \begin{bmatrix} -x & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} - x & a_{23} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ 0 & a_{n2} & a_{n3} & \cdots & a_{nn} - x \end{bmatrix}.$$

Consider only the second summand for a moment: computing its determinant using a Laplace expansion down the first column, we have

$$\det \begin{bmatrix} -x & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} - x & a_{23} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ 0 & a_{n2} & a_{n3} & \cdots & a_{nn} - x \end{bmatrix} = -x \det \begin{bmatrix} a_{22} - x & a_{23} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n2} & a_{n3} & \cdots & a_{nn} - x \end{bmatrix} = -x\chi_B,$$

where B is the $(n-1) \times (n-1)$ matrix obtained by deleting the first row and column of A. By induction, we can assume that χ_B is a polynomial of degree n-1, so this summand is a polynomial of degree n. To complete the proof, it suffices to show that the other summand,

$$\det \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} - x & a_{23} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} - x \end{bmatrix},$$

is a polynomial of degree at most n-1. This can be accomplished by induction as well. When n-1=1, we have

$$\det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} - x \end{bmatrix} = a_{11}(a_{22} - x) - a_{12}a_{21},$$

which is a polynomial of degree zero or one in x, depending on whether $a_{11} = 0$ or not. Then computing the determinant by Laplace expansion down the first column, we have

$$\det \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} - x & a_{23} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} - x \end{bmatrix}$$

$$= a_{11}(\det B - xI_{n-1}) - a_{21} \det B_{21} - a_{31} \det B_{31} + \dots + (-1)^{n+1} a_{n1} \det B_{n1}$$

$$(1)$$

where B is the same $(n-1) \times (n-1)$ matrix as above and each B_{i1} is an $(n-1) \times (n-1)$ matrix of the form

$$\begin{bmatrix} a_{12} & a_{13} & \cdots & a_{1n} \\ b_{22} & b_{23} - x & \cdots & b_{2n} \\ \vdots & & \ddots & \vdots \\ b_{n2} & b_{n2} & \cdots & b_{nn} - x \end{bmatrix}.$$

By induction, each of the summands in (1) is a polynomial of degree at most n-1. QED.