COMP107: Relations

• Human Relations

- Human Relations
- Numeric Comparisons: (==,<,<=,>,>=,!=)

- Human Relations
- Numeric Comparisons: (==,<,<=,>,>=,!=)
- String comparisons:

- Human Relations
- Numeric Comparisons: (==,<,<=,>,>=,!=)
- String comparisons:
- Functions of numbers: (log, sqrt, abs)

Definition of a relation

Definition

Relation. Let A and B be sets. A relation from A into B is any subset of $A \times B$.

Definition of a relation

Definition

Relation. Let A and B be sets. A relation from A into B is any subset of $A \times B$.

Definition

A Relation between some number of sets is a set of tuples where the first element of the tuple is from the first set, the second from the second set and so on

Examples of Relation I

Example

Let $A = \{1, 2, 3\}$ and $B = \{4, 5\}$. Then $\{(1, 4), (2, 4), (3, 5)\}$ is a relation from A into B.

There are many others we could describe. How many relations may be defined?

Number of relations that may be defined on two sets.

Examples of Relations II

Example

Let $A = \{2, 3, 5, 6\}$ and define a relation r from A into A by $(a, b) \in r$ if and only if a divides evenly into b. The set of pairs that qualify for membership is?

Example II

$$r = \{(2,2), (3,3), (5,5), (6,6), (2,6), (3,6)\}.$$

Relation on a Set

Definition

Relation on a Set. A relation from a set A into itself is called a relation on A.

Graph of a Relation

Figure 1: Graph of a Relation.

A function is a special relation

What does the graph of a function from x to y look like?

Definition

Relation Notion. Let s be a relation from a set A into a set B. Then the fact that $(x, y) \in s$ is frequently written xsy.

Definition

Relation Notion. Let s be a relation from a set A into a set B. Then the fact that $(x, y) \in s$ is frequently written xsy.

Sometimes the relation has a name: e.g. \leq . Then to say that two objects (e.g. numbers) are related by this relation we write $x \leq y$.

Definition

Relation Notion. Let s be a relation from a set A into a set B. Then the fact that $(x, y) \in s$ is frequently written xsy.

Sometimes the relation has a name: e.g. \leq . Then to say that two objects (e.g. numbers) are related by this relation we write $x \leq y$.

We can define the relation using set-builder notation as:

Definition

Relation Notion. Let s be a relation from a set A into a set B. Then the fact that $(x, y) \in s$ is frequently written xsy.

Sometimes the relation has a name: e.g. \leq . Then to say that two objects (e.g. numbers) are related by this relation we write $x \leq y$.

We can define the relation using set-builder notation as:

$$s = \{(x, y) | x \le y\}.$$

Let $A = \{2, 3, 5, 8\}$, $B = \{4, 6, 16\}$, and $C = \{1, 4, 5, 7\}$; let r be the relation "divides," denoted by |, from A into B; and let s be the relation \leq from B into C.

Let $A = \{2, 3, 5, 8\}$, $B = \{4, 6, 16\}$, and $C = \{1, 4, 5, 7\}$; let r be the relation "divides," denoted by |, from A into B; and let s be the relation \leq from B into C. So: r =

```
Let A = \{2,3,5,8\}, B = \{4,6,16\}, and C = \{1,4,5,7\}; let r be the relation "divides," denoted by |, from A into B; and let s be the relation \leq from B into C. So: r = and s =.
```

Graph of Composition

$$r = \{(2,4), (2,6), (2,16), (3,6), (8,16)\}$$

$$s = \{(4,4), (4,5), (4,7), (6,7)\}.$$

$$\begin{split} r &= \{(2,4),(2,6),(2,16),(3,6),(8,16)\} \text{ and } \\ s &= \{(4,4),(4,5),(4,7),(6,7)\}. \end{split}$$

$$\begin{split} r &= \{(2,4), (2,6), (2,16), (3,6), (8,16)\} \text{ and } \\ s &= \{(4,4), (4,5), (4,7), (6,7)\}. \end{split}$$

Figure 2: Graphical Representation of Composition of Relations

$$2|4$$
 and $4 \leq 4$

$$2|4 \text{ and } 4 \leq 4$$

$$2|4$$
 and $4 \leq 5$

$$2|4$$
 and $4 \leq 4$

$$2|4$$
 and $4 \leq 5$

$$2|4$$
 and $4 \le 7$

$$2|4$$
 and $4 \leq 4$

$$2|4$$
 and $4 \le 5$

$$2|4$$
 and $4 \leq 7$

$$2|6$$
 and $6 \le 7$

$$2|4$$
 and $4 \le 4$

$$2|4$$
 and $4 \leq 5$

$$2|4$$
 and $4 \leq 7$

$$2|6$$
 and $6 \le 7$

$$3|6$$
 and $6 \leq 7$

We can define a new relation, call it rs, from A into C. In order for (a, c) to be in rs, it must be possible to travel along a path from a to c. In other words, $(a, c) \in rs$ if and only if there exists a b such that (a r b) and (b s c).

We can define a new relation, call it rs, from A into C. In order for (a,c) to be in rs, it must be possible to travel along a path from a to c. In other words, $(a,c) \in rs$ if and only if there exists a b such that (a r b) and (b s c).

Recall:

$$r = \{(2,4), (2,6), (2,16), (3,6), (8,16)\}$$
 and $s = \{(4,4), (4,5), (4,7), (6,7)\}.$

We can define a new relation, call it rs, from A into C. In order for (a,c) to be in rs, it must be possible to travel along a path from a to c. In other words, $(a,c) \in rs$ if and only if there exists a b such that (a r b) and (b s c).

Recall:

$$\begin{split} r &= \{(2,4), (2,6), (2,16), (3,6), (8,16)\} \text{ and } \\ s &= \{(4,4), (4,5), (4,7), (6,7)\}. \end{split}$$

The complete listing of all elements in *rs* is:

The complete listing of all elements in rs is $\{(2,4),(2,5),(2,7),(3,7)\}.$

Definition of Composition

Definition

Composition of Relations. Let r be a relation from a set A into a set B, and let s be a relation from B into a set C. The composition of r with s, written rs, is the set of pairs of the form $(a,c) \in A \times C$, where $(a,c) \in rs$ if and only if there exists $b \in B$ such that $(a,b) \in r$ and $(b,c) \in s$.

Example

Let
$$A = \{0, 1, 2, 3\}$$
, and let $r = \{(0, 0), (0, 3), (1, 2), (2, 1), (3, 2), (2, 0)\}$.

Example

Let
$$A = \{0, 1, 2, 3\}$$
, and let $r = \{(0, 0), (0, 3), (1, 2), (2, 1), (3, 2), (2, 0)\}$.

Figure 3: Directed Graph (digraph) of a Relation.

Figure 4: Directed Graph (digraph) of a Relation.

Figure 4: Directed Graph (digraph) of a Relation.

Digraph of a Relation

• The elements of A are the vertices of the graph.

Figure 4: Directed Graph (digraph) of a Relation.

- The elements of A are the vertices of the graph.
- We connect vertex a to vertex b with an arrow, called an edge, going from vertex a to vertex b if and only if arb.

Figure 4: Directed Graph (digraph) of a Relation.

- The elements of A are the vertices of the graph.
- We connect vertex a to vertex b with an arrow, called an edge, going from vertex a to vertex b if and only if arb.
- This type of graph of a relation *r* is called a *directed graph* or *digraph*.

Figure 4: Directed Graph (digraph) of a Relation.

- The elements of A are the vertices of the graph.
- We connect vertex a to vertex b with an arrow, called an edge, going from vertex a to vertex b if and only if arb.
- This type of graph of a relation r is called a directed graph or digraph.
- Notice that since 1r2 and 2r1, we draw a single edge between 1 and 2 with arrows in both directions. Since 0 is related to itself, we draw a "self-loop" at 0.

Layout of the Graph does not matter.

Figure 5: Directed Graph of a Relation.

Layout of the graph does not matter

Figure 6: Directed Graph of a Relation.

Figure 7: Directed Graph (digraph) of a Relation.

Another Digraph Example

Figure 8: Directed Graph of a Relation.

What information does this graph give us? The graph tells us that s is a relation on A = and that s =

Another Digraph Example

Figure 9: Directed Graph of a Relation.

What information does this graph give us? The graph tells us that s is a relation on $A=\{1,2,3\}$ and that $s=\{(1,2),(2,1),(1,3),(3,1),(2,3),(3,3)\}$

Yet Another Digraph

Example

Let $B = \{1, 2\}$, and let $A = \mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$. Then \subseteq is a relation on A whose digraph is Figure 10.

Figure 10: Directed Graph of a Relation.