Chapitre 1

Série entière

Considérons l'équation différentielle suivante :

$$y' = y, \quad y(0) = 1(E)$$

L'unique solution sur $\mathbb{R}^{=}$ de cette équation différentielle linéaire homogène du premier ordre sans second membre est l'application $x \to e^x$. Par définition, la fonction exponentielle est l'unique fonction égale à sa dérivée.

- 1. Déterminons les solutions de (E) sous forme polynomiale. Soit $f: x \to \sum_{n=0}^{N} a_n x^n$. Pour des raisons de degré, uniquement le polynôme nul convient.
- 2. Déterminons les solutions de (E) sous forme "polynomiale de degré infini". Soit $f: x \to \sum_{n=0}^{+\infty} a_n x^n$. Par dérivation, on obtient :

$$f'(x) = (\sum_{n=0}^{+\infty} a_n x^n)'$$

$$f'(x) = \sum_{n=0}^{+\infty} (a_n x^n)' \text{ "par permutaion dérivé et somme"}$$

$$f'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1}$$

$$f'(x) = \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n \text{ "par translation d'indice"}$$

Comme f'(x) = f(x), on obtient :

$$\sum_{n=0}^{+\infty} a_n x^n = \sum_{n=0}^{+\infty} (n+1)a_{n+1} x^n.$$

Par identification, on obtient:

$$\forall n \in \mathbb{N}(n+1)a_{n+1} = a_n.$$

Ce premier exemple soulève de nombreuses questions auxquelles nous al Une série entière est une série de fonctions de la forme

$$\sum a_n z^n$$

FIGURE 1.1 – La fonction exponentielle, $x \mapsto e^x$ en bleue, et la somme des n+1 termes $x \mapsto \sum_{0}^{n} \frac{x^n}{n!}$ en rouge.

où les coefficients a_n forment une suite réelle ou complexe et z une variable complexe.

Les séries entières possèdent des propriétés de convergence remarquables, qui s'expriment pour la plupart à l'aide de son rayon de convergence R, grandeur associée à la série. Sur le disque de convergence (disque ouvert de centre 0 et de rayon R), la fonction somme de la série peut être dérivée indéfiniment terme à terme.

Les séries entières sont

1. un outil:

- (a) dans la résolution d'équations différentielles, par exemple $(1+x)y' = \alpha y$, en cherchant les solutions sous la forme $y(x) = \sum a_n x^n$,
- (b) dans l'étude du comportement asymptotique d'un somme de variable aléatoires et la caractérisation d'une variable aléatoire par la fonction génératrice : $G_X(t) = E[t^X] = \sum_{k=0} P(X=k)t^k$,
- (c) dans la modélisation des systèmes dynamiques de manière discrète à l'aide de la transformée en Z, soit s(n) l'état du système au temps n, sa transformée en Z est

$$S(z) = \mathcal{Z}\{s(n)\} = \sum_{n=-\infty}^{+\infty} s(n)z^{-n}.$$

2. un objet préalable à l'analyse complexe des fonctions holomorphes et analytiques.

1.1 Généralités

Définition 1 (Série entière)

On appelle série entière toute série de fonctions de la forme $\sum_n f_n$ où $(a_n)_{n\in\mathbb{C}}$ est une suite numérique et où $f_n:\mathbb{C}\to\mathbb{C}$ est définie par $f_n(z)=a_nz^n$. La somme de la série entière est la fonction

$$f \colon z \mapsto \sum_{n=0}^{+\infty} a_n z^n.$$

Exemple 1 (Série exponentielle)

La somme de la série $\sum_{n} \frac{x^{n}}{n!}$ est la fonction exponentielle :

$$\forall x \in \mathbb{R} : e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

1.1 Généralités 3

Exemple 2 (Série géométrique)

La somme de la série $\sum_{n} x^{n}$ est :

$$\forall x \in]-1,1[: \frac{1}{1-x} = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + x^2 + x^3 + \cdots.$$

Lemme 1.1.1 (Lemme d'Abel)

Soit $\sum_n a_n z^n$ une série entière et $z_0 \in \mathbb{C}$ telle que la suite numérique $(a_n z_0^n)_{n \in \mathbb{N}}$ soit bornée. Alors :

- 1. La série $\sum_n a_n z^n$ converge absolument pour tout $z \in \mathbb{C}$ tel que $|z| < |z_0|$.
- 2. Plus précisément, la série de fonctions $\sum_n a_n z^n$ converge normalement sur $\{z \in \mathbb{C} : |z| \leq r\}$ dès que $0 \leq r < |z_0|$.

Remarque 1

Il n'y a pas toujours convergence normale (ni uniforme) sur $\{z \in \mathbb{C} : |z| < |z_0|\}$.

Définition 2 (rayon de convergence)

Soit $\sum_n a_n z^n$ une série entière. Le rayon de convergence $R \in \mathbb{R} \cup \{+\infty\}$ de la série entière $\sum_n a_n z^n$ est défini par

 $R = \sup \{ r > 0 \text{ tel que la suite de terme général } |a_n| r^n \text{ est bornée } \}.$

Corollaire 1.1.2 (Convergence)

Soit $\sum_{n} a_n z^n$ une série entière de rayon de convergence R et $z_0 \in \mathbb{C}$.

- $-|Si|z_0| < R$, la série numérique $\sum_n a_n z_0^n$ converge absolument.
- $Si |z_0| > R$, la série numérique $\sum_n a_n z_0^n$ diverge grossièrement; plus précisément, la suite $(a_n z_0^n)_{n \in \mathbb{N}}$ n'est pas bornée.
- $Si |z_0| = R$, la série peut ou non converger.

FIGURE 1.2 – Disque de convergence d'une série entière

Para

Définitions

Soit $\sum_n a_n z^n$ une série entière de rayon de convergence R.

— On appelle disque ouvert de convergence de la série entière $\sum_n a_n z^n$ l'ensemble

$$\{z \in \mathbb{C} : |z| < R\}.$$

— On appelle cercle d'incertitude (et parfois aussi, malheureusement, cercle de convergence) de la série entière $\sum_n a_n z^n$ l'ensemble

$$\{z \in \mathbb{C} : |z| = R\}.$$

1.2 Détermination du rayon de convergence

1.2.1 Avec le lemme d'Abel

Para

Proposition

Soit $\sum_n a_n z^n$ une série entière de rayon de convergence R. Soit $z_0 \in \mathbb{C}$.

- Si $(a_n z_0^n)$ est bornée, alors $R? |z_0|$.
- Si $\sum_n |a_n z_0^n|$ diverge, alors $R! |z_0|$

Exemple 3

La rayon de convergence de la série entière $\sum x^n$ est 1 car

- la suite (x^n) tend vers 0 si |x| < 1 (donc est bornée), donc R?1,
- la suite (x^n) diverge si |x| > 1, donc R?1,

En conclusion R = 1.

1.2.2Avec d'Alembert

Soit $\sum_n a_n z^n$ une série entière et R son rayon de convergence. On suppose que :

- il existe $N \in \mathbb{N}$ tel que pour tout n?N on ait $a_n?0$,
- $\left| \frac{a_{n+1}}{a_n} \right| \to \in \mathbb{R} \cup \{+\infty\}.$

Alors R = 1/? si $l \neq 0$ et $+\infty$ si l = 0.

Exemple 4

La rayon de convergence de la série entière $\sum \frac{x^n}{n!}$ est $+\infty$ car — la suite (x^n) tend vers 0 si |x| < 1 (donc est bornée), donc R?1,

- la suite (x^n) diverge si |x| > 1, donc R?1,

En conclusion R = 1.

Avec les règles de comparaison

Para

Théorème

Soit $\sum_n a_n z^n$ et $\sum_n b_n z^n$ deux séries entières de rayons de convergence respectivement R_a et

- 1. S'il existe $\alpha \in \mathbb{R}$ tel que $|a_n| = O(n^{\alpha} |b_n|)$ quand $n \to +\infty$, alors $R_a?R_b$.
- 2. S'il existe $\alpha \in \mathbb{R}$ et K > 0 tel que $|a_n| \sim K n^{\alpha} |b_n|$ quand $n \to +\infty$, alors $R_a = R_b$.

1.3 Opérations sur les séries entières

Para

Notations

- Étant donné une série entière $\sum_n a_n z^n$, on note R_a son rayon de convergence et f_a sa somme.
- De même pour $\sum_n b_n z^n$ et $\sum_n c_n z^n$.

1.3.1 Somme

Définition 3

Soit $\sum_n a_n z^n$ et $\sum_n b_n z^n$ deux séries entières. On définit la somme de ces deux séries entières comme étant la série entière $\sum_n c_n z^n$ où

$$?n \in \mathbb{N}, \quad c_n = a_n + b_n.$$

Para

Proposition

Dans ces conditions,

- R_c ? min (R_a, R_b) avec égalité si R_a ? R_b ,
- pour tout $z \in \mathbb{C}$ tel que $|z| < \min(R_a, R_b)$, on a $f_c(z) = f_a(z) + f_b(z)$.

1.3.2 Multiplication par un scalaire

Définition 4

Soit ? un scalaire et $\sum_n a_n z^n$ une série entière. On définit le **produit** du scalaire et de la série entière comme étant la série entière $\sum_n b_n z^n$ où

$$?n \in \mathbb{N}, \quad b_n = ?a_n.$$

Para

Proposition

Dans ces conditions,

- $R_b = R_a$ si ??0, et $R_b = +\infty$ si ? = 0,
- pour tout $z \in \mathbb{C}$ tel que $|z| < R_a$, on a $f_b(z) = ?f_a(z)$.

1.3.3 Produit de Cauchy

Définition 5

Soit $\sum_n a_n z^n$ et $\sum_n b_n z^n$ deux séries entières. On définit le **produit de Cauchy** de ces deux séries entières comme étant la série entière $\sum_n c_n z^n = \sum_n a_n z^n \times \sum_n b_n z^n$ où

$$?n \in \mathbb{N}, \quad c_n = \sum_{k=0}^n a_k b_{n-k}.$$

Para

Proposition

Dans ces conditions,

- $-R_c? \min(R_a, R_b),$
- pour tout $z \in \mathbb{C}$ tel que $|z| < \min(R_a, R_b)$, on a $f_c(z) = f_a(z) f_b(z)$.

Propriétés de la somme 1.4

Para

Théorème continuité sur le disque ouvert de convergence

Soit $\sum_n a_n z^n$ une série entière de rayon de convergence R et de somme f. Alors f est continue sur le disque ouvert de convergence

$$\{z \in \mathbb{C} : |z| < R\}.$$

Para

Proposition

Soit $\sum_n a_n z^n$ une série entière de rayon de convergence R. Alors les deux séries entières sui-

— la « dérivée formelle » $\sum_n b_n z^n$ où $b_n = (n+1)a_{n+1}$, — la « primitive formelle » $\sum_n c_n z^n$ où $c_n = \frac{a_{n-1}}{n}$ ont également un rayon de convergence égal à R.

Théorème[primitivation terme à terme]

Soit $\sum_n a_n x^n$ une série entière de rayon de convergence R et de somme f. Une primitive de fsur] – R, R[est donnée par

$$F: x \mapsto \sum_{n=0}^{+\infty} a_n \frac{x^{n+1}}{n+1} = \sum_{n=1}^{+\infty} \frac{a_{n-1}}{n} x^n.$$

Para

Proposition dérivation terme à terme

Soit $\sum_n a_n x^n$ une série entière de rayon de convergence R et de somme f. Alors f est une fonction de classe C^1 sur]-R,R[et $\forall x \in]-R,R[$,

$$f'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} = \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n.$$

Para

Théorème[généralisation]

Soit $\sum_{n} a_n x^n$ une série entière de rayon de convergence R et de somme f. Alors f est une fonction de classe C^1 sur]-R, R[et $\forall p \in \mathbb{N}, \forall x \in]-R, R[$,

$$f^{(p)}(x) = \sum_{n=p}^{+\infty} a_n n(n-1) \cdots (n-p+1) x^{n-p}$$
$$= \sum_{n=0}^{+\infty} a_{n+p} \frac{(n+p)!}{n!} x^n.$$

Para

Corollaire

Soit $\sum_n a_n x^n$ une série entière de rayon de convergence R > 0 et de somme f. Alors pour tout $n \in \mathbb{N}$, on a

$$a_n = \frac{f^{(n)}(0)}{n!}.$$

Fonctions développables en séries entières 1.5

Para

Notation

— I désigne un intervalle de \mathbb{R} tel qu'il existe $\alpha > 0$ tel que $]-\alpha, +\alpha \subset I$.

1.6 Fonctions usuelles

7

Définition 6

Soit $f: I \to \mathbb{C}$. On dit que f est développable en série entière au voisinage de 0 si et seulement si il existe $\alpha > 0$ et une série entière $\sum_n a_n x^n$ de rayon de convergence $R! \alpha$ tels que $]-\alpha, \alpha[\subset I]$ et

$$\forall x \in]-\alpha, \alpha[, \quad f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Para

Proposition

Si $f: I \to \mathbb{C}$ est développable en série entière au voisinage de 0, alors il existe $\alpha > 0$ tel que f soit de classe C^1 sur $]-\alpha,\alpha[$.

Définition 7

Soit $f: I \to \mathbb{C}$ une fonction de classe C^1 . On appelle série de Taylor de f au voisinage de 0 la série entière

$$\sum_{n} a_n z^n \quad \text{où} \quad \forall n \in \mathbb{N}, \quad a_n = \frac{f^{(n)}(0)}{n!}.$$

Para

Théorème[unicité du développement en série entière]

Soit $f: I \to \mathbb{C}$ développable en série entière au voisinage de 0. Alors tout développement en série entière de f au voisinage de 0 est égal à sa série de Taylor au voisinage de 0.

Para

Corollaire

Soit $f: I \to \mathbb{C}$ développable en série entière au voisinage de 0. Alors f admet un développement limité au voisinage de 0 à tout ordre, et ce développement limité s'obtient en tronquant le développement en série entière.

Para

Proposition

Soit $f: I \to \mathbb{C}$. Alors f est développable en série entière au voisinage de 0 si et seulement si il existe $\alpha > 0$ tel que

- f est de classe C^1 sur $]-\alpha,\alpha[$,
- la série de Taylor de f converge sur] α , α [,
- f soit égale à la somme de se série de Taylor sur $]-\alpha,\alpha[$.

1.6 Fonctions usuelles

1.6.1 Exponentielle complexe

Para

Proposition

La série entière $\sum_{n} \frac{z^n}{n!}$ a un rayon de convergence infini. Notons $\phi: z \mapsto \sum_{n=0}^{+\infty} \frac{z^n}{n!}$ sa somme. On montre successivement :

- 1. $\phi(z_1, z_2) \in \mathbb{C}^2$, $?(z_1 + z_2) = ?(z_1)?(z_2)$
- 2. $\forall x \in \mathbb{R}, \ \phi(x) = e^x$
- 3. $\forall \theta \in \mathbb{R}, \ \phi(i\theta) = \cos \theta + i \sin \theta$
- 4. $\forall (x,y) \in \mathbb{R}^2$, $\phi(x+iy) = e^x(\cos y + i\sin y)$

Définition 8

On appelle exponentielle la fonction définie par

$$\forall z \in \mathbb{C}, \quad \exp(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!}.$$

Il s'agit d'une série entière de rayon de convergence infini. On note fréquemment e^z au lieu de

Para

Proposition

Soit
$$z \in \mathbb{C}$$
 fixé et $\phi \mid \mathbb{R} \longrightarrow \mathbb{C}$
 $t \longmapsto \exp(tz)$

Alors ϕ est de classe $C^{\stackrel{1}{\sim}}$ e

$$\forall n \in \mathbb{N}, \quad \forall t \in \mathbb{R}, \quad \phi^{(n)}(t) = z^n \exp(tz).$$

1.6.2 Trigonométrie

Para

Définitions

On définit, pour tout $z \in \mathbb{C}$:

$$\begin{aligned}
&-\cos z = \frac{e^{iz} + e^{-iz}}{2} & - \cot z = \frac{e^{z} + e^{-z}}{2} \\
&-\sin z = \frac{e^{iz} - e^{-iz}}{2i} & - \sin z = \frac{e^{z} - e^{-z}}{2}
\end{aligned}$$

Il s'agit de prolongement des fonctions cosinus, sinus, cosinus hyperbolique et sinus hyperbolique, classiquement définies sur \mathbb{R} .

Para

Proposition

- Les formules usuelles de trigonométries restent valables, notamment $\forall (a,b) \in \mathbb{C}^2$:
 - $--\cos(a+b) = \cos(a)\cos(b) \sin(a)\sin(b)$
 - $-\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$
- On peut passer de la trigonométrie directe à la trigonométrie hyperbolique sachant que $?z \in \mathbb{C}$:

$$\begin{aligned} &--- \cosh(iz) = \cos(z) & ---- \cos(iz) = \cosh(z) \\ &--- \sin(iz) = i \sin(z) & ---- \sin(iz) = i \sin(z) \end{aligned}$$

Para

Proposition

On a, pour tout
$$z \in \mathbb{C}$$
:
$$-\cos z = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} z^{2n}$$

$$-\sin z = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1}$$

$$-\cot z = \sum_{n=0}^{+\infty} \frac{1}{(2n)!} z^{2n}$$

$$-\sin z = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)!} z^{2n+1}$$

Il s'agit de séries entières de rayon de convergence infini.

1.6.3
$$x \mapsto (1+x)^{\alpha}$$

Para

Proposition

Soit $\alpha \in \mathbb{R}$ et $f:]-1, +\infty[\to \mathbb{R}$ définie par $f(x) = (1+x)^{\alpha}$. Alors f est développable en série entière au voisinage de 0. Plus précisément, on a

9

$$\forall x \in]-1,1[, (1+x)^{\alpha} = \sum_{n=0}^{+\infty} a_n x^n$$

où $a_0 = 1$ et

1.6 Fonctions usuelles

$$\forall n \in \mathbb{N}^*, \quad a_n = \frac{1}{n!} \prod_{k=0}^{n-1} (\alpha - k).$$

On note parfois $a_n = \binom{\alpha}{n}$. Il s'agit d'une série entière de rayon de convergence égal à 1 si α ? \mathbb{N} , et $+\infty$ si $\alpha \in \mathbb{N}$.

Para

Remarque

Si $\alpha \in ?$, le développement est également valable dans \mathbb{C}

$$?z \in \mathbb{C} \text{ tel que } |z| < 1, \quad (1+z)^{\alpha} = \sum_{n=0}^{+\infty} a_n z^n,$$

où $(a_n)_{n\in\mathbb{N}}$ est défini comme ci-dessus.

Exemple 5

Déterminer le développement en série entière de la fonction $x \mapsto \arcsin x$.

1.6.4 Fractions rationnelles

Para

Méthode

Pour obtenir un développement en série entière (au voisinage de 0) d'une fraction rationnelle,

- la décomposer en éléments simples $\frac{1}{(x-a)^n}$ où $a \in \mathbb{C}^*$;
- remarquer que $\frac{1}{(x-a)^n} = (-a)^{-n} \left[1 + \left(-\frac{x}{a}\right)\right]^{-n}$; se ramener à $(1+u)^{\alpha}$.

On obtient une série entière de rayon de convergence |a|.