



# **MOTEUR A COURANT CONTINU**

Esteban Chevalier-Drevon Matyas Ricci Groupe F





## Exercices: Le moteur à courant continu

## Exercice 1 : Schéma électrique du MCC

**Question 1** : Dessiner le schéma électrique équivalent d'un moteur à courant continu permanents (U, E et R doivent apparaître)



#### Exercice 2 : Mesure de la résistance du Moteur à Courant Continu (MCC)

A l'aide d'un multimètre, mesurer la résistance du moteur. Faire plusieurs mesures en tournant l'axe et faire une moyenne des valeurs obtenues.

| Position | 1   | 2   | 3   | 4   | 5   | 6    | 7    | 8   |
|----------|-----|-----|-----|-----|-----|------|------|-----|
| R(Ω)     | 2,4 | 1,8 | 2,8 | 2,9 | 2,6 | 2,25 | 1,95 | 2,3 |

 $R_{mov} = 2,375\Omega$ 

#### Exercice 3 : Mesure du courant consommé

Dévisser les deux fils qui relient le moteur à la carte de commande (Double pont en H). Brancher le moteur sur une alimentation stabilisée. Faire varier la tension entre 0 et 12 V et relever le courant consommé (le moteur doit tourner à vide, sans couple résistant)

| Tension(V) | 0 | 2     | 4     | 6     | 8     | 10    | 12    |
|------------|---|-------|-------|-------|-------|-------|-------|
| Courant(A) | 0 | 0,185 | 0,210 | 0,240 | 0,256 | 0,264 | 0,270 |



Figure 1 Courbe A=f(U)

Il n'y a pas de couple donc l'intensité n'évolue pas énormément, elle reste à peu près la même.





## Exercice 4 : Calcul du rapport de réduction

**Question 1**: En observant les engrenages entre la roue et le moteur (il faut les compter !), calculer le rapport de réduction.

Il y a 60 dents la roue blanche et 12 dents sur le pignon du moteur. Le rapport de réduction est de 0,2. (12/60)

#### Exercice 5 : Mesure de la vitesse angulaire

Mesurer la vitesse angulaire de la roue à l'aide du tachymètre pour chaque tension d'alimentation

| U(Volt)                     | 3      | 6     | 9     | 12     |
|-----------------------------|--------|-------|-------|--------|
| Ω <sub>ROUE</sub> (Rpm)     | 235    | 492   | 749   | 1010   |
| Ω <sub>MOTEUR</sub> (Rpm)   | 1175   | 2460  | 3745  | 5050   |
| Ω <sub>ROUE</sub> (Rad/s)   | 24,61  | 51,52 | 78,44 | 105,77 |
| Ω <sub>MOTEUR</sub> (Rad/s) | 123,05 | 257,6 | 392,2 | 528,85 |
| Vitesse (m/s)               | 0,647  | 1,355 | 2,063 | 2,782  |

Diamètre de la Roue = 52,7 mm

Périmètre de la roue :  $0,16525 \text{ m } (2\pi r)$ 

**Question 1**: La courbe  $\Omega$ =f(U) est-elle linéaire?

D'après le graphique réalisé la courbe  $\Omega$ =f(U) est linéaire.



Figure 2 Courbe  $\Omega$ =f(U)

**Question 2** : A l'aide de toutes les données calculées précédemment, en déduire la valeur de K  $(E=K,\Omega)$ 

Pour 12V:

E = 12 - 2,375 \* 0,270 = 11,36 V K = 11,36 / 528,85 = 0,02148 V/(rad/s)

Pour 6V:

E = 6 - 2,375 \* 0,240 = 5,43V K = 5,43 / 257,6 = 0,02108 V/(rad/s)

Moyenne: k = 0.02128V/(rad/s)



#### Réalisation d'un robot autonome détecteur d'obstacles



**Question 3** : Freiner, sans bloquer, doucement la roue avec la main, alors que le moteur est alimenté en 6V. Comment évolue le courant I ? Justifier.

Le courant augmente car plus le couple augmente, plus le courant va augmenter, et ce d'après les relations U = E + RI et  $E = K * \Omega$ . Si la vitesse angulaire  $\Omega$  diminue, E diminue et sachant que R est constant seul I augmente pour obtenir une tension U de 12V.

<u>Question 4</u>: Pour U=3V puis 4 V, freiner la roue jusqu'à la bloquer, **pendant moins d'une seconde**., et mesurer le courant I. Vérifier que la résistance correspond à celle mesurée en 1.

 $U=3V \rightarrow 2,1A$  roue bloquée

E = 123,05\*0,02128 = 2,619 V  $R = 3 - 2.619 / 0,195 = 1,95 \Omega$ 

 $U = 4V \rightarrow 2,5A$  roue bloquée

E = 164,07\*0,02128 = 3,491 V R = 4-3,491/0,210 = 2,42

Les résistances ne correspondent pas exactement à celle mesurée en 1, mais elles restent dans le même ordre de grandeur soit environ 2  $\Omega$ .