Length

Length: True or False?

For any vector \mathbf{a} , we have that $\mathbf{a} \cdot \mathbf{a}$ equals the length of \mathbf{a} .

Length: components

Suppose ${\bf u}$ is a unit vector (i.e., a vector of length 1). Then for any vector ${\bf a}$, the new vector

$$\text{proj}_{\mathbf{u}}(\mathbf{a}) = (\mathbf{a} \cdot \mathbf{u})\mathbf{u}$$

gives the projection of a onto u.

The number $\mathbf{a} \cdot \mathbf{u}$ is called the component of \mathbf{a} in the direction of \mathbf{u} .

Example

Practice

• Let ${\bf u}$ be a unit vector in the same direction as $\langle 1,1,1 \rangle$. Find ${\bf u}$ and compute the projection

$$\mathbf{c} = \operatorname{proj}_{\mathbf{u}}(\langle 3, 4, 5 \rangle).$$

• Does the difference vector $\langle 3, 4, 5 \rangle - \mathbf{c}$ have endpoint in the plane x + y + z = 0?

