

Basics of biological Chemistry

Assignment

January 2015 Finals

Author: Cedric Lood

Supervisors:
Prof. J. VANDERLEYDEN
dr. H. STEENACKERS
Prof. B. SELS
Prof. J. VANDERLEYDEN

Contents

1	Que	estions from Prof. J. Vanderleyden – dr. H. Steenackers	2
	1.1	Chemical reaction equation	2
		a.) Balance the equation	2
		b.) Reactants and products	2
		c.) Lewis structure, VESPR	2
		d.) Oxidation states	3
		e.) Mass	3
	1.2	DNA sequence analysis	3
		a.) DNA Replication	3
		b.) Translated Protein	4
		c.) Mutated exon	4
		d.) Interactions with antibiotics	4
		e.) Comparison of error rates	4
	1.3	tRNA 3D-Structure	5
2	Que	estions from Prof. B. Sels	5
	2.1	Biopolymer organisation	5
	2.2	Chemical structure of proteins and proteins separation	5
	2.3		6
3	Que	estions from Prof. D. De Vos	7
	3.1	Functional groups	8
	3.2		

1 Questions from Prof. J. Vanderleyden – dr. H. Steenackers

1.1 Chemical reaction equation

Consider the following reaction: $(NH_4)_2CO_3 + Zn(NO_3)_2 \rightarrow NH_4NO_3 + ZnCO_3$

a.) Balance the equation

$$(\mathrm{NH_4})_2\mathrm{CO_3} \,+\, \mathrm{Zn}(\mathrm{NO_3})_2 \,\rightarrow\, 2\,\,\mathrm{NH_4NO_3} \,+\, \mathrm{ZnCO_3}$$

b.) Reactants and products

Q: Name all reactants and reaction products.

A:

• $(NH_4)_2CO_3$: Ammonium carbonate

• $Zn(NO_3)_2$: Zinc nitrate

• NH₄NO₃ : Ammonium nitrate

• ZnCO₃ : Zinc carbonate

c.) Lewis structure, VESPR

Q: Construct the Lewis structures of the polyatomic ions you recognize and predict their molecular structure using the VSEPR theory.

A:

• Lewis Structure of the ions:

Ammonium	Carbonate	Zinc	Nitrate
H—N+—H	;o=-c	:Zn ²⁺	;O=N+

• Molecular structure prediction:

Ammonium	Carbonate	Zinc	Nitrate
H H N+	O=C O-	Zn ²⁺	O-N+ O-

d.) Oxidation states

Q: Determine the oxidation state of all the atoms in all the compounds. Is this an oxidation-reduction reaction?

A: Ammonium Carbonate and Zinc Nitrate (the reactants) are very soluble in water and will thus move freely. The Zinc and Carbonate ions will then precipitate.

- Zn has an oxidation state of 2: Zn \rightarrow Zn²⁺ + 2 e⁻
- (CO₃) has an oxidation state of 4: (CO₃)²⁻ + 2 e⁻ \rightarrow CO₃

e.) Mass

 \mathbb{Q} : How many grams of ZnCO3 can be prepared from 400g Zn(NO3)2 by using sufficient(NH4)2CO3?

A: Let's start by computing the molecular weight of the 2 reactants:

Molecular weigth of Zn(NO₃)₂ 189.36 g/mol

Molecular weigth of (NH₄)₂CO₃ 96.09 g/mol

Given that there are 400g of $Zn(NO_3)_2$, we can calculate the number of moles of reactant (and ignore that of $(NH_4)_2CO_3$ since it is in excess):

Moles of $Zn(NO_3)_2$ 400 g / 189.36 g/mol = 2.11237 moles

From this last figure, we can infer that the number of moles of $ZnCO_3$ will be 2.11237. Given the molecular mass of $ZnCO_3$, we can compute the amount of $ZnCO_3$ produced to be: 2.11237 mol * 125.3889 g/mol = 264.8678 g.

1.2 DNA sequence analysis

The following diagram shows part of a template DNA strand, with sections X,Y and Z being the exons of a gene:

a.) DNA Replication

Q: What is the corresponding sequence on the new daughter strand made from the given parent strand during replication?

A: Given the principle of base pairing, we can determine the daughter sequence to be (here in the 3' to 5' direction):

b.) Translated Protein

- Q: What polypeptide sequence will be synthesized from the given template DNA? Give a short overview of the different processes (and enzymes) involved in the synthesis of polypeptides from template DNA. Where in the cell do these processes take place?
- A: The synthesized polypeptide will consist of the amino acids Val-Cys-Ile-His. Since it is mentioned that exons are present, we can assume the translation will take place with the eukaryotic machinery. It will consist of the following stages:
 - Transcription: In the nucleus, the RNA Polymerase II will be recruited and will bind to the promoter of the gene. It will produce, by moving in the 5' to 3' direction, a pre messenger RNA which will be identical to the DNA template sequence (with the exception that Uracyl will be used instead of Thymine, and also the addition of a 5' CAP). That messenger RNA will then be processed by the spliceosome, which will remove the introns, and a Poly-A tail will also be added at the 3' end of the mRNA. The mRNA is then ready to go outside of the nucleus to be translated.
 - Translation: the mRNA leaves the nucleus and passes through the reticulated ER where it will be captured by a ribosome that will either bind to the ER or not. It will then start scanning for a start codon in the mRNA. From that point on, the synthesis of a polypeptide will be accomplished by reading 3 base pairs at a time and pairing these 3 with the correct tRNA. After that, the polypeptide will either be processed further and sent to the golgi apparatus, or will remain in the cytosol.

c.) Mutated exon

Q: What polypeptide sequence will be synthesized if the ATC in exon Y is mutated to TTC? What polypeptide sequence will be synthesized if the ATC in exon Y is mutated to ATG? Which of those substitution mutations is likely to be more harmful? Why?

A: Here are the new sequences with mutated exons:

- TGTATC -> TGTTTC : the resulting polypeptide will be Val-Phe-His
- -> ATG: the resulting polypeptide will be Val-Met-His

The second

d.) Interactions with antibiotics

Q: Which steps in polypeptide synthesis are affected by resp. the macrolide antibiotics and the tetracycline antibiotics?

A:

e.) Comparison of error rates

Q: The error rate in RNA synthesis is much higher than the error rate of DNA replication. What is the origin of this difference? Motivate why this is not a serious problem.

A:

1.3 tRNA 3D-Structure

Q: All tRNA molecules have a particular 3D-structure. Which functional groups and which chemical bonds/interactions contribute to this particular structure? Why is this particular structure of importance for the biological function?

A:

2 Questions from Prof. B. Sels

2.1 Biopolymer organisation

Q: The course and the textbook systematically organize four important biopolymers mainly according to their chemical structure. Attempt a complete reorganization of the various biopolymer structures (and subfamilies!) according to the following three physiological functions: energy, structure, and communication. Explain the physiological function of each biopolymer type with regard to its chemical structure and/or physical properties.

A:

2.2 Chemical structure of proteins and proteins separation

Q: Draw the chemical structure of the following two oligopeptide structures, a) Gln-Ser-Lys-Lys-Ser and b) Cys-Asp-Asp-Glu-Lys, determine its net charge in physiological conditions. How would you separate the two peptides?

A: These are the chemical structures of:

• Gln-Ser-Lys-Lys-Ser

• Cys-Asp-Asp-Glu-Lys

Under physiological conditions (ie, pH around 7.35), these would be the net charge on each polypeptide:

$$\bullet$$
 Gln-Ser-Lys-Lys-Ser: net charge is +2 $^{\oplus}_{\rm NH3}-{\rm Gln}-{\rm Ser}-{\rm Lys}-{\rm Lys}-{\rm Eys}-{\rm Ser}-{\rm COO}$

Separation of both proteins can thus be achieved by ion exchange chromatography since they both have a distinct charge.

2.3 Chemical structure of disaccharides

Q: Draw the chemical structure of the following disaccharides: a) the β -anomer of $\alpha(1\rightarrow 6)$ galactoglucose and b) $\beta, \alpha(1\rightarrow 2)$ glucofructose.

A: These are the chemical structure of:

• β -anomer of $\alpha(1\rightarrow 6)$ galactoglucose

Beta anomers have a cis relationship between the CH_2OH group on the C_1 and the OH group on the C_6 . This helps us determine the structure of the monosaccharides galactose and glucose. The polymerisation is achieved through an α binding between the C_6 of the Galactose, and the C_1 of the glucose molecule, giving the following molecular structure:

• $\beta, \alpha(1 \rightarrow 2)$ glucofructose

3 Questions from Prof. D. De Vos

Considering the following molecule:

3.1 Functional groups

Q: Name all functional groups

A: See annoted figure below

3.2 Water and oil solubility factors

Q: Indicate which groups make the molecule rather water-soluble than oil-soluble

A: The following groups can partake in hydrogen bonds with water molecules and increase the solubility of the molecule in water :

- Hydroxyl groups (5 of them)
- Carbonyl groups (3 of them)

• Amino group (1 present)