

CHAPTER 7

Memory and Programmable Logic

AGENDA

- RAM
- Programmable logic
 - ROM
 - PLA
 - PAL

MEMORY

- A memory unit is a collection of storage cells, together with associated circuits needed
- The architecture of memory is such that information can be selectively retrieved from any of its internal locations.
- A memory unit stores binary information in groups of bits called words. A word in memory is an entity of bits that move in and out of storage as a unit.
- A memory word is a group of 1's and 0's and may represent a number, an instruction, one or more
 alphanumeric characters, or any other binary-coded information.
- A group of 8 bits is called a byte. Most computer memories use words that are multiples of 8 bits in length.

FIGURE 7.2 Block diagram of a memory unit

RANDOM - ACCESS MEMORY (RAM)

- Random Access Memory (RAM) is a type of computer memory that stores data temporarily while a computer is running. It's called "random access" because the computer can access any part of the memory directly and quickly.
- The binary storage cell is the basic building block of a memory unit

FIGURE 7.5 Memory cell

RANDOM - ACCESS MEMORY (RAM)

- The logical construction of a small RAM is shown.
- This RAM consists of four words of four bits each and has a total of 16 binary cells. The small blocks labeled BC represent the binary cell with its three inputs and one output

READ ONLY MEMORY (ROM)

- A read-only memory (ROM) is essentially a memory device in which permanent binary information is stored.
- A block diagram of a ROM consisting of k inputs and n outputs and one output.
- The inputs provide the address for memory, and the outputs give the data bits of the stored word that is selected by the address. The number of words in a ROM is determined from the fact that k address input lines
- Example, a 32 * 8 ROM

READ ONLY MEMORY (ROM)

• Programming the ROM according to Example Table :

ROM Truth Table (Partial)

		Input	S		Outputs							
14	I ₃	I ₂	<i>I</i> ₁	I ₀	A ₇	A ₆	A ₅	A_4	A_3	A ₂	<i>A</i> ₁	A_0
0	0	0	0	0	1	0	1	1	0	1	1	0
0	0	0	0	1	0	0	0	1	1	1	0	1
0	0	0	1	0	1	1	0	0	0	1	0	1
0	0	0	1	1	1	0	1	1	0	0	1	0
		:						:				
1	1	1	0	0	0	0	0	0	1	0	0	1
1	1	1	0	1	1	1	1	0	0	0	1	0
1	1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	0	0	1	1	0	0	1	1

CLASSIFICATION OF ROM (1)

Mask ROM

In this type of ROM, the specification of the ROM (its contents and their location), is taken by the manufacturer from the customer in tabular form in a specified format and then makes corresponding masks for the paths to produce the desired output. This is costly, as the vendor charges special fee from the customer for making a particular ROM (recommended, only if large quantity of the same ROM is required). Uses – They are used in network operating systems, server operating systems, storing of fonts for laser printers, sound data in electronic musical instruments.

CLASSIFICATION OF ROM (2)

PROM

It stands for Programmable Read-Only Memory . It is first prepared as blank memory, and then it is programmed to store the information . The difference between PROM and Mask ROM is that PROM is manufactured as blank memory and programmed after manufacturing, whereas a Mask ROM is programmed during the manufacturing process. To program the PROM, a PROM programmer or PROM burner is used . The process of programming the PROM is called as burning the PROM . Also, the data stored in it cannot be modified, so it is called as one – time programmable device. **Uses –** They have several different applications, including cell phones, video game consoles, RFID tags, medical devices, and other electronics.

CLASSIFICATION OF ROM (3)

EPROM

It stands for Erasable Programmable Read-Only Memory . It overcomes the disadvantage of PROM that once programmed, the fixed pattern is permanent and cannot be altered . If a bit pattern has been established, the PROM becomes unusable, if the bit pattern has to be changed . This problem has been overcome by the EPROM, as when the EPROM is placed under a special ultraviolet light for a length of time, the shortwave radiation makes the EPROM return to its initial state, which then can be programmed accordingly . Again for erasing the content, PROM programmer or PROM burner is used. **Uses** –Before the advent of EEPROMs, some micro-controllers, like some versions of Intel 8048, the Freescale 68HC11 used EPROM to store their program .

CLASSIFICATION OF ROM (4)

EEPROM

It stands for Electrically Erasable Programmable Read-Only Memory . It is similar to EPROM, except that in this, the EEPROM is returned to its initial state by application of an electrical signal, in place of ultraviolet light . Thus, it provides the ease of erasing, as this can be done, even if the memory is positioned in the computer. It erases or writes one byte of data at a time . **Uses** – It is used for storing the computer system BIOS.

• Flash ROM

It is an enhanced version of EEPROM .The difference between EEPROM and Flash ROM is that in EEPROM, only 1 byte of data can be deleted or written at a particular time, whereas, in flash memory, blocks of data (usually 512 bytes) can be deleted or written at a particular time . So, Flash ROM is much faster than EEPROM . Uses – Many modern PCs have their BIOS stored on a flash memory chip, called as flash BIOS and they are also used in modems as well.

PROGRAMMABLE LOGIC DEVICES (PLD)

FIGURE 7.13

Basic configuration of three PLDs

PROGRAMMABLE LOGIC ARRAY (PLA)

- Pre-fabricated building block of many AND/OR gates (or NOR, NAND) "Personalized" by making/breaking connections among the gates.
- The PLA is similar in concept to the PROM, except that the PLA does not
 provide full decoding of the variables and does not generate all the minterms.

PROGRAMMABLE LOGIC ARRAY (PLA)

- Programmable Array Logic (PAL) is a commonly used programmable logic device (PLD).
- It has programmable AND array and fixed OR array.
- Because only the AND array is programmable, it is easier to use but not flexible as compared to Programmable Logic Array (PLA).

$$A=XY+XZ'$$

 $B=XY'+YZ'$

THANK YOU

Digital Design, With an Introduction to the Verilog HDL M. Morris Mano

