P1:

The j. p. m. f of X and X_n is given by

X_n	0	0	P(X=x)
X			
0	0	1	1
		$\overline{2}$	$\overline{2}$
1	1		1
	$\overline{2}$	0	$\overline{2}$
$P(X_n = x)$	1	1	1
	$\overline{2}$	$\overline{2}$	

Show that $X_n \xrightarrow{d} X$ but $X_n \xrightarrow{P} 0$

Solution:

The p.m.f of X_n is $P(X_n = 0) = \frac{1}{2} = P(X_n = 1)$ and its c.d.f is given by

$$F_n(x) = \begin{cases} 0 & , & x < 0 \\ \frac{1}{2} & , 0 \le x < 1 \\ 1 & , x \ge 1 \end{cases}$$

The p.m.f of X is $P(X = 0) = \frac{1}{2} = P(X = 1)$ and its c.d.f is given by

$$F(x) = \begin{cases} 0 & , & x < 0 \\ \frac{1}{2} & , 0 \le x < 1 \\ 1 & , & x \ge 1 \end{cases}$$

Thus, $F_n(x) \xrightarrow{w} F(x)$ as $n \to \infty$. That is $X_n \xrightarrow{d} X$

But
$$P[|X_n - X| > \frac{1}{2}] = P[|X_n - X| = 1]$$

= $P[X_n = 0, X = 1] + P[X_n = 1, X = 0]$
= $\frac{1}{2} + \frac{1}{2} = 1 \not\to 0$ as $n \to \infty$

and hence $X_n \stackrel{P}{\longrightarrow} 0$. Therefore, $X_n \stackrel{d}{\longrightarrow} X$ but $X_n \stackrel{P}{\longrightarrow} 0$