Esercizi 02 — 8 pt

1-1 pt

L'esponenziale di un numero reale $x \ge 1$, ovvero e^x , può essere approssimato come $S_n = 1 + \sum_{k=1}^n \frac{x^k}{k!}$, per $n \ge 1$. Posto x = 2, qual è il minimo valore di n, ovvero n_{min} , tale per cui l'errore corrispondente a $S_{n_{min}}$ risulta inferiore a 10^{-1} ?

6

2 — 2 pt

Si considerino N coppie $\{(x_i,y_i)\}_{i=1}^N$ di numeri casuali compresi tra 0 e 1, che corrispondono a N punti nel piano \mathbb{R}^2 . Indicato con M il numero dei precedenti punti che cadono nel quarto di cerchio di raggio unitario centrato nell'origine, si può calcolare il valore $S_N=4\frac{M}{N}$. Si scriva una funzione Matlab® che implementa il precedente calcolo di S_N . Che valore di S_N si ottiene per $N=10^6$?

 π (si tratta del metodo di Monte Carlo)

Si consideri il sistema lineare $A \mathbf{x} = \mathbf{b}$, dove \mathbf{x} , $\mathbf{b} \in \mathbb{R}^{100}$ e $A \in \mathbb{R}^{100 \times 100}$ è una matrice non singolare tale che $(A)_{i,j} = 0$ per j > i oppure j < (i-1), ovvero A è bidiagonale inferiore. Si determini il costo computazionale corrispondente all'applicazione dell'algoritmo delle sostituzioni in avanti adattato a questo tipo di sistema lineare.

298

Si consideri la matrice $A=\begin{bmatrix} 1 & \beta & 0 \\ 1 & 5 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ dipendente da un parametro $\beta\in\mathbb{R}$. Per quali valori di $\beta\in\mathbb{R}$ la matrice A ammette un'unica fattorizzazione LU ottenibile senza applicare la tecnica del pivoting?

 $\beta \neq 5$

Sia dato un sistema lineare A \mathbf{x} = \mathbf{b} , dove A = $\begin{bmatrix} (2\gamma) & 2 & -8 \\ \gamma & 1 & 8 \\ 2 & 0 & 1 \end{bmatrix}$ è una matrice

dipendente da un parametro $\gamma > 0$ e $\mathbf{b} = (1\ 2\ 8)^{\overline{T}}$. Si risolva il sistema tramite il metodo della fattorizzazione LU con pivoting per righe, con seconda e terza riga permutate. Si riportino, in funzione di γ , gli elementi $l_{21}=(L)_{21}$ e $u_{33}=(U)_{33}$ dei fattori L ed U della matrice permutata e la seconda componente y_2 del vettore ausiliario y associato alla soluzione del sistema triangolare inferiore che compare durante l'applicazione del metodo.

$$l_{21} = \frac{1}{\gamma} \qquad u_{33} = 12 \qquad y_2 = 8 - \frac{1}{\gamma}$$

Si consideri una matrice $A \in \mathbb{R}^{3 \times 3}$, non singolare. Applicando il metodo della fattorizzazione LU di A tramite il metodo di eliminazione di Gauss con pivoting

per righe, si ottiene una matrice $U=\begin{bmatrix}3&4&7\\0&-2&5\\0&0&1\end{bmatrix}$. Sapendo che durante l'applicazione di tale metodo è avvenuta una sola permutazione di due righe di A,

si riporti il valore del determinante di A.

6