Preliminaries

- There is a problem set due on Friday.
- There is a pre-class assignment for Wednesday.
- There is a skill check in the next class.
- There is no class on Friday Feb 9th.

Skill Check 06 practice

Assume the time evolution of the phase difference, ϕ , between an oscillator and a reference signal is given by the system $\dot{\phi} = 1.1 - \sin \phi$.

What is the long term behavior of the phase difference in this system? If it approaches a fixed value, provide an estimate of that value.

Extra example: Assume the time evolution of the phase difference, ϕ , between an oscillator and a reference signal is given by the system $\dot{\phi} = 0.8 - \sin \phi$.

What is the long term behavior of the phase difference in this system? If it approaches a fixed value, provide an estimate of that value.

Skill Check practice solution

Answer: the phase difference is drifting (always increasing).

Explanation (not needed on the skill check itself):

This question requires us to interpret ϕ as a phase difference, rather than as the phase of a single oscillator.

If there were an intersection between the sinusoid and the straight line then the phase difference would approach a fixed value (that you could identify) associated with a stable or half-stable fixed point.

In this picture, though, $\dot{\phi}=1.1-\sin\phi$ and $\sin\phi<1.1$ for all values of ϕ . So $\dot{\phi}>0$ for all phase differences, ϕ . This means that **the phase difference is always changing**. In some sense, it is always increasing ($\dot{\phi}>0$, after all). However, when the phase difference passes through $2\pi n$

for n an integer, the oscillator and the reference momentarily have the same phase angle, so if we look at the two oscillators on a circle, one of them will appear to 'lap' the other one over and over again.

Extra Example Answer:

Approximately 1.

Explanation (not needed on the skill check itself):

There are two fixed points, (where 0.8 and $\sin \phi$ intersect). These are at $\phi \approx 1$ and $\phi \approx 2$.

The phase difference, ϕ , will approach the stable fixed point, which is the one at 1.

Activity

Teams

- 1. Alice, Alexander, Thea
- 2. Iona, Van, Emily
- 3. Noah, Sophie, Michail
- 4. Katheryn, Mariana, Ada
- 5. David H, Mallory, Joseph
- 6. Camilo, Margaret, George
- 7. Dina, David A, Isaiah
- 8. Hiro, Shefali, Allison

Teams 1 and 2: Post screenshots of your work to the course Google Drive today (make or use a C07 folder). Include words, labels, and other short notes that might make those solutions useful to you or your classmates. Find the link in Canvas.

Extra vocabulary / extra facts:

An oscillator model might be used to represent the **phase of a single oscillator** (often denoted θ), or the **phase difference** between two oscillators (often denoted ϕ).

When the phase difference between two oscillators approaches a non-zero constant we call the oscillators **phase locked**.

When one oscillator is able to phase lock to another, we call the oscillators **entrained** and call this process of phase locking **entrainment**.

When the oscillator is not entrained there is **phase drift** between it and the reference.

1. (4.1.1)

For which values of a does the equation $\dot{\theta}=\sin a\theta$ give a well-defined vector field on the circle? For a=3, find and classify all the fixed points and sketch the phase portrait on the circle.

You might plot $\sin 3\theta$ to help you.

Answers:

 $\sin(a(\theta+2\pi))=\sin(a\theta+a2\pi)=\sin(a\theta)\cos(2\pi a)+\cos(a\theta)\sin(2\pi a)$. When a is an integer, this will lead to $\sin(a(\theta+2\pi))=\sin(a\theta)$. Otherwise, there's a non-zero cosine contribution, which would be a problem.

- 2. (4.3.3) For $\dot{\phi} = \mu \sin \phi \sin 2\phi$:
 - (a) Check that the vector field is well-defined on the circle.
 - (b) Draw phase portraits for:
 - ullet large positive μ
 - $\mu = 0$
 - large negative μ
 - (c) Use $\sin 2\phi = 2\cos\phi\sin\phi$ to find mathematical expressions for fixed points.
 - (d) Classify the bifurcations that occur as μ varies.
 - (e) Find the bifurcation values of μ .
 - (f) Think of ϕ as describing the **phase of a single oscillator**. For what values of μ is the system "oscillating"?
 - (g) Think of ϕ as describing the **phase difference** between an oscillator and a reference. For what values of μ is the oscillator entrained (phase-locked) to the reference? What sets their phase difference?

Answers:

a: $\mu \sin(\phi + 2\pi) - \sin(2\phi + 4\pi) = \mu \sin \phi - \sin 2\phi$. well-defined.

b:

c: $\dot{\phi} = \mu \sin \phi - 2 \sin \phi \cos \phi = \sin \phi (\mu - 2 \cos \phi)$ so $\phi = 0, \pi$ from $\sin \phi = 0$ and $\cos \phi = \mu/2$, which will have zeros for $-2 \le \mu \le 2$.

d: Two subcritical pitchfork bifurcations.

e: $\mu \sin \phi$ is tangent to $\sin 2\phi$ at the 0 fixed point when $\mu \phi$ (the linear approximation) is equal to 2ϕ , so when $\mu=2$. At π the tangency occurs when $\mu=-2$. So a subcritical pitchfork for $\phi=0$ and $\mu=2$ and a subcritical pitchfork for $\phi=\pi$ at $\mu=-2$.

f: no oscillation ever.

g: there is always entrainment (there is always a fixed point).

Period of the oscillation: see section 4.3

Consider the system $\dot{\theta} = \omega - a \sin \theta$