EECS C106B - Robotic Manipulation and Interaction

(Week 12)

Discussion #11

Author: Valmik Prabhu

Problem 1 - Camera Intrinsics

The camera intrinsic parameter matrix K can be represented

$$\begin{bmatrix} fs_x & s_\theta & o_x \\ 0 & fs_y & o_y \\ 0 & 0 & 1 \end{bmatrix}$$
 (0.1)

What do each of these terms represent?

Problem 2 - Homography Matrix Transform

When the image features lie in a plane in the real world, the two-image correspondence problem is called planar homography. The real world coordinates of a point X are X_1 in the frame of camera 1, and X_2 in the frame of camera 2. We assume that X lies on a plane with normal vector N (defined with respect to camera 1). We know that the transform between the cameras is of the form $X_2 = RX_1 + T$, an affine transformation, but by assuming that X lies on the plane we can represent this transformation with a homography matrix H where

$$X_2 = HX_1 \tag{0.2}$$

where $H = R + \frac{1}{d}TN^T$, where d is the shortest distance between the plane and camera 1 $(d = N^TX_1)$.

1. If we switch the roles of the first and second cameras, we should still be able to define a homography matrix \tilde{H} such that $X_1 = \tilde{H}X_2$. Assume that $d_1 = 1$, so $H = R + TN^T$. Show that the new homography matrix \tilde{H} is defined

$$\tilde{H} = \left(R^T + \frac{-R^T T}{1 + N^T R^T T} N^T R^T\right) \tag{0.3}$$

2. What is the relationship between H and \tilde{H} ?