Specifications for Exponentiation x^{ν} over the Extended Reals X:

W. Kahan

EXPONENTIATION		xy with	y = integer j
	j < 0	j = 0	j > 0
x in X	(1/x)-,		x ³
x is NaN	X	i 1	×

EXPONENTIATION x^{ν} with $y \neq integer$

	$y = -\infty$	-\alpha < \mathbf{y} < 0 0 < \mathbf{y} < +0	$\mathbf{x} \mathbf{y} = +\infty $	
x < -1	+0		m+	
x = -1		NaN *		
-1 < x < 0				
x = 0	+03	+(0 *	+0	
0 < x < 1			+	
x = 1	NaN *	exp(y*ln(x))	NaN *	
1 < x < +®				
x = +00	+0		+00	
x is NaN		x		

All entries in this table except $(x<0)^{\pm w}$, $0^{(v) > 0}$ and 0^{-w} are produced automatically, including the signals where marked by an *, by the expression $\exp(y*\ln(x))$ provided it is evaluated in a way analogous to the specifications of the IEEE standards, and then the expression $\exp(NaN*\ln(x))$ quietly produces NaN for x^{NaN} too. In the previous table 1/0 signals DIVBZ.