# ECO364H1S: International Trade Theory Lecture 3

Palermo Penano

University of Toronto, Department of Economics

- ▶ Last Class
  - · Gains from Trade, Trade Equilibrium, Relative Wages

- Last Class
  - Gains from Trade, Trade Equilibrium, Relative Wages
- Today
  - Heckscher-Ohlin (HO) Model
    - Introduction and Definitions
    - Relate Factor Prices to Factor Demand (FF Curve)
    - Relate Good Prices to Factor Prices (SS Curve)

- Last Class
  - Gains from Trade, Trade Equilibrium, Relative Wages
- Today
  - Heckscher-Ohlin (HO) Model
    - Introduction and Definitions
    - Relate Factor Prices to Factor Demand (FF Curve)
    - Relate Good Prices to Factor Prices (SS Curve)
- Readings
  - KMO Ch. 5 (including appendix)
  - · Economist "In the Shadow of Prosperity"
  - Hanson "The Rise of Middle Kingdoms"

# Heckscher-Ohlin Model

- ▶ In the Ricardian model, we assumed that only technological differences in production gave rise to specialization and trade
- We also assumed that only one factor is used in production
- Although the Ricardian model was able to make predictions about welfare, the worst that could happen to a country is to have similar welfare as the autarky scenario under trade conditions
  - No welfare loss when moving from autarky to trade

- ▶ But welfare losses could arise if a factor benefits more than the other in a trading equilibrium
  - · Some sectors do get hurt by international trade
- Perhaps the welfare outcomes under trade in the Ricardian model is too far remove from reality

- In addition, we may be interested in
  - The structure of production before and after trade
  - · How factor endowments determine specialization
- A model that explicitly accounts for factor endowment differences may be better in addressing these issues
  - Where in the Ricardian model trade arises from difference in technology, in the HO model trade arises from difference in factor endowment

- Ultimately, our goal in developing the HO model is to answer the following question:
- How does the income distribution in a country change following a price shock arising from international trade?

- ► Two countries: North and South
- Two goods: Computers and Textiles
- Two factors: Capital (K) and Labour (L)
  - K: buildings, machinery
  - Supply of K and L are fixed and differ between the two countries
- Production exhibits constant returns to scale
  - Scale all inputs by a factor of 2 results in an increase in output by the same factor

- Countries face the same production function (i.e. same technology)
  - For any good j and inputs,  $F_j^N(K_j, L_j) = F_j^S(K_j, L_j)$
- Perfect competition
  - Firms take prices as given, marginal revenue = marginal cost
- Factors are mobile across sectors but not across countries
  - Factor returns—wage and rental rate—will equalize across sectors within each country

Assume that North's stock of factors is such that they are relatively abundant in capital:

$$\frac{K^N}{L^N} > \frac{K^S}{L^S}$$

▶ The production functions for the two goods are

$$F_C(K_C, L_C)$$
 and  $F_T(K_T, L_T)$ 

- In the Ricardian model, this was  $F_C(L) = \frac{1}{a_C}L$
- These production functions will be increasing in each input, but at a diminishing rate:

  - $\frac{\partial F(K,L)}{\partial K} > 0$  and  $\frac{\partial^2 F(K,L)}{\partial^2 K} < 0$   $\frac{\partial F(K,L)}{\partial L} > 0$  and  $\frac{\partial^2 F(K,L)}{\partial L} < 0$
  - First-order derivatives are the marginal products of each input
    - e.g. Adding a second cook to the kitchen provides a significant increase in output, but the 10th cook provides much less

## Input Intensity of a Good

- ▶ Because there are now two factors used in production, goods differ in terms of how each factor is used in their production:
  - · Computers are relatively more capital intensive than textiles
  - Textiles are relatively more labour intensive than computers

## Input Intensity of a Good

- ▶ Definition: A good is **relatively capital intensive** if, for a given relative factor price, the capital-labour ratio used in production is higher than the capital-labour ratio used in the production of the other good
- Relative factor price is  $\frac{w}{r}$ , where w is the factor price of labour and r is the factor price of capital
- We can represent differences in relative capital intensity using what is called the FF curve

#### FF Curve: Factor Prices and Input Ratio

- For a fixed value of  $\frac{w}{r}$ , computers uses more capital relative to labour than textile
- ► As wages go up relative to capital, producers will use more capital relative to labour



#### Example

- Suppose that computers are relatively capital intensive and textiles are relatively labour intensive
- ▶ The production function below reflects these properties:

$$Q_C = K_C^{2/3} L_C^{1/3}$$
  $Q_T = K_T^{1/3} L_T^{2/3}$ 

▶ To derive the optimal values of  $K_C$ ,  $K_T$ ,  $L_C$ ,  $L_T$ , we maximize the profit functions

$$P_CQ_C - rK_C - wL_C$$

$$P_TQ_T - rK_T - wL_T$$

► The derivatives of these profit functions with respect to each input give us the necessary conditions for optimality

#### Example

$$P_C K_C^{2/3} L_C^{1/3} - rK_C - wL_C$$
  
 $P_T K_T^{1/3} L_T^{2/3} - rK_T - wL_T$ 

When profits are maximized, marginal cost = marginal revenue

$$w = P_T \frac{2}{3} K_T^{1/3} L_T^{-1/3} \qquad w = P_C \frac{1}{3} K_C^{2/3} L_C^{-2/3}$$
  
$$r = P_T \frac{1}{3} K_T^{-2/3} L_T^{2/3} \qquad r = P_C \frac{2}{3} K_C^{-1/3} L_C^{2/3}$$

Take the ratio of wage to capital factor prices for each good

$$\frac{w}{r} = 2\frac{K_T}{L_T}, \quad \frac{w}{r} = \frac{1}{2}\frac{K_C}{L_C}$$

# Example



#### What Determines Factor Prices?

- ► The FF curves provides the relationship between relative factor price and relative factor demands
- ▶ But what drives relative factor price?
  - It turns out that in our model, it is the relative price of goods

#### What Determines Factor Prices?

- To show this, we derive what's called the Stolper-Samuelson curve (SS curve)
  - The SS curve relates relative **good** price  $\frac{P_T}{P_C}$  to relative **factor** price  $\frac{w}{r}$
- But before we can derive the SS curve, we need to introduce the Lerner Diagram
  - The Lerner Diagram will help us understand the underlying mechanism for the relationship between relative good price and relative factor price
  - It contains two curves: the iso-value curve and the iso-cost curve

# Lerner Diagram



#### Lerner Diagram: Iso-Value Curves

- Iso-value curves maps all the combinations of capital and labour that yield \$1 of revenue for some given price
  - Start with  $1 = P_C F_C(K, L)$ , where  $F_C(K, L)$  is the production function of computers (i.e. the output of computers for a given K and L)
  - For a given price of computers, P<sub>C</sub>, what values of K and L produce \$1 of revenue?
    - · Similar idea to indifference curves for consumer preferences

#### Lerner Diagram: Iso-Value Curves

Iso-value curves for prices  $P_{C,3} > P_{C,2} > P_{C,1}$ 



#### Lerner Diagram: Iso-Cost Curves

- ► The iso-cost curves maps combinations of capital and labour that (as a bundle) cost \$1
- ▶ Given w and r, it is derived from

$$wL + rK = 1$$

Rearranging gives

$$K = \frac{1}{r} - \frac{w}{r}L$$

We can draw this curve in our Lerner Diagram

## Lerner Diagram: Iso-Cost Curves



- Two conditions for an equilibrium:
- 1. The equilibrium bundle  $(K^*, L^*)$  must lie on **both** the iso-value and iso-cost curve
  - Why? because perfect competition results in revenue = cost
    - · If profits were positive, firms enter driving down prices
    - · If profits were negative, firms exit driving up prices
- 2. Both the iso-value and iso-cost curve have the same slope
  - The slope of the iso-cost curve is just  $-\frac{w}{r}$  (which comes from the cost equation set to \$1)
- We derive the iso-value slope below



# Lerner Diagram: Slope of the Iso-Value Curve

- The slope of the iso-value curve is the marginal rate of technical substitution (MRTS)
  - Similar idea as the marginal rate of substitution from consumer theory
- To derive the MRTS, start with

$$1 = P_C F_C(K, L)$$

Move price to the left-hand side

$$\frac{1}{P_C} = F_C(K, L)$$

## Lerner Diagram: Slope of the Iso-Value Curve

- ▶ In the Lerner Diagram we show the relationship between the input K as a function of L
- ▶ Keeping this in mind, take the total derivative of the equation  $\frac{1}{P_C} = F_C(K, L)$  with respect to L
- ▶ In other words, take the derivative of both sides of the equation with respect to *L*

$$\frac{d(1/P_C)}{dL} = \frac{dF_C(K, L)}{dL} 
= \frac{\partial F_C(K, L)}{\partial K} \frac{dK}{dL} + \frac{\partial F_C(K, L)}{\partial L} \frac{dL}{dL} 
= \frac{\partial F_C(K, L)}{\partial K} \frac{dK}{dL} + \frac{\partial F_C(K, L)}{\partial L}$$

## Lerner Diagram: Slope of the Iso-Value Curve

▶ Because  $1/P_C$  is a constant,  $\frac{d(1/P_C)}{dL} = 0$ 

$$0 = \frac{\partial F_C(K, L)}{\partial K} \frac{dK}{dL} + \frac{\partial F_C(K, L)}{\partial L}$$

Rearranging the expression above

$$\frac{dK}{dL} = -\frac{\frac{\partial F_C(K,L)}{\partial L}}{\frac{\partial F_C(K,L)}{\partial K}}$$

- ► The derivatives on the right are the marginal products of labour and capital
  - They are a decreasing function of the inputs themselves based on our assumption on the production functions:  $\frac{\partial F(K,L)}{\partial K} > 0$  and  $\frac{\partial^2 F(K,L)}{\partial^2 K} < 0$ ,  $\frac{\partial F(K,L)}{\partial L} > 0$  and  $\frac{\partial^2 F(K,L)}{\partial^2 L} < 0$

- Now that we have the slope of both the iso-cost and iso-value curves, we can solve for the equilibrium input bundle
  - Iso-cost slope

$$-\frac{w}{r}$$

Iso-value slope

$$-\frac{\frac{\partial F_C(K,L)}{\partial L}}{\frac{\partial F_C(K,L)}{\partial K}}$$

- Recall that the equilibrium conditions must satisfy the following:
  - 1. The equilibrium bundle  $(K^*, L^*)$  must lie on both the iso-cost and iso-value curve
  - 2. The slopes of the iso-cost and iso-value curves must be equal
    - Note: In consumer theory, the equilibrium bundle is such that the slope of the indifference curve is equal to the slope of the budget constraint
- Therefore, the equilibrium set of inputs must be where the iso-cost curve and the iso-value curves are tangent to each other



## Lerner Diagram: Two Industries

- So far, we have only considered one industry: computers
- ▶ With two industries, both industries share the same iso-cost curve (their cost functions are the same)

$$1 = rK + wL$$

- Note: Wages and rental rates are the same across industries due to perfect labour/capital mobility
- Their iso-value curves are different because each industry face a different production function and prices

$$1 = P_C F_C(K, L)$$

$$1 = P_T F_T(K, L)$$

# Lerner Diagram: Two Industries



### Lerner Diagram: Two Industries

- ► The straight line from the origin is the Output Expansion Path (OEP)
  - They reflect the factor intensity of a good
  - · Steeper OEP means the good is more capital intensive

## Drawing the SS Curve

- So how does any of this relate back to the SS curve
  - The curve that show the relationship between  $\frac{P_T}{P_C}$  and  $\frac{w}{r}$
- ► Let's conduct a thought experiment to see how a change in relative price changes relative factor returns in the model

- ightharpoonup Suppose there was some exogenous shock causing an increase in price of textile,  $P_T$
- ► To produce \$1 worth of revenue for textiles, we now need *fewer* inputs (both capital or labour) than before
  - $1 = P_T F_T(K, L)$
- ▶ Thus, the iso-value curve for textiles shifts in
- ► The iso-value curve for computers does not change



- ► Following this increase in textile price, there are now profits to be earned in the textile industry
  - · Wages and rental of capital have not changed
- This will induce new firms to enter (or incumbent firms to expand their production)
  - As a result, capital and labour will flow into the textile industry to satisfy production demands by the new firms
- The economy produces more textiles and fewer computers
- Since textile is relatively labour-intensive, the increase demand for labourers will cause an increase in wages
- On the other hand, return to capital will decrease

- ► The increase in  $\frac{w}{r}$  is a combination of an increase in w due to greater labour demand and a decrease in r
  - For every unit of labour that leaves the computer industry, firms manufacturing computers must give up more capital than what's demanded by textile firms
  - The supply of capital increases and as a result returns to capital, r, decreases
  - The decrease in r and the corresponding increase in w causes the iso-cost curve to pivot
  - Adjustment continues until firms in each industry make zero profit



# SS Curve

▶ When  $\frac{P_T}{P_C}$  increases,  $\frac{w}{r}$  rises



#### Next Class

- ► The thought experiment allows us to map changes in relative prices to changes in relative factor returns
  - · We call the curve describing this relationship the SS curve
- Next class, we will bring this together with the FF curve to relate relative goods prices, relative factor prices, and the resulting optimal capital-labour ratio in each industry
- We will then introduce the Stolper-Samuelson Theorem, which will confirm our theoretical prediction about how changes in goods prices affects the real returns of the factors used in the production for those goods

#### **Next Class**

From this we are going to be able to answer the question we stated in the beginning of the lecture: How does the income distribution in a country change following a price shock arising from international trade?