

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) **Patentschrift**
(10) **DE 101 00 586 C 1**

(51) Int. Cl.⁷:
C 12 N 15/11
C 12 N 15/87
C 12 N 15/63

(21) Aktenzeichen: 101 00 586.5-41
(22) Anmeldetag: 9. 1. 2001
(43) Offenlegungstag: -
(45) Veröffentlichungstag der Patenterteilung: 11. 4. 2002

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber: Ribopharma AG, 95447 Bayreuth, DE	(72) Erfinder: Kreutzer, Roland, Dr., 95447 Bayreuth, DE; Limmer, Stefan, Dr., 95447 Bayreuth, DE; Rost, Sylvia, Dr., 95447 Bayreuth, DE; Hadwiger, Philipp, Dr., 95447 Bayreuth, DE
(74) Vertreter: Gaßner, W., Dr.-Ing., Pat.-Anw., 91052 Erlangen	(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften: WO 00 44 895 A1

- (54) Verfahren zur Hemmung der Expression eines Ziegen
(57) Die Erfindung betrifft ein Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle, umfassend die folgenden Schritte:
Einführen mindestens eines Oligoribonukleotids (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge, wobei das Oligoribonukleotid (dsRNA I) eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur komplementär zum Zielgen ist, und wobei zumindest ein Ende (E1) des Oligoribonukleotids (dsRNA I) einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist.

DE 101 00 586 C 1

Beschreibung

- [0001] Die Erfindung betrifft ein Verfahren, eine Verwendung, ein Oligoribonukleotid und einen Kit zur Hemmung der Expression eines Zielgens.
- 5 [0002] Aus der WO 99/32619 sowie der WO 00/44895 sind Verfahren zur Hemmung der Expression von medizinisch oder biotechnologisch interessanten Genen mit Hilfe eines doppelsträngigen Oligoribonukleotids (dsRNA) bekannt. Die bekannten Verfahren sind nicht besonders effektiv.
- [0003] Aufgabe der vorliegenden Erfindung ist es, die Nachteile nach dem Stand der Technik zu beseitigen. Es sollen insbesondere ein möglichst wirksames Verfahren, eine möglichst wirksame Verwendung, ein Oligoribonukleotid und ein 10 Kit angegeben werden, mit denen eine noch effizientere Hemmung der Expression eines Zielgens erreichbar ist.
- [0004] Diese Aufgabe wird durch die Merkmale der Ansprüche 1, 36 und 71 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den Merkmalen der Ansprüche 2 bis 35, 37 bis 70 und 72 bis 98.
- [0005] Mit den erfundungsgemäß beanspruchten Merkmalen wird überraschender Weise eine drastische Erhöhung der Effektivität der Hemmung der Expression eines Zielgens erreicht. Die genauen Umstände dieses Effekts sind noch nicht 15 geklärt. Es wird angenommen, dass durch die besondere Ausbildung zumindest eines Endes des Oligoribonukleotids die Stabilität desselben erhöht wird. Durch die Erhöhung der Stabilität wird die wirksame Konzentration in der Zelle erhöht. Die Effektivität ist gesteigert.
- [0006] Die Effektivität kann weiter gesteigert werden, wenn zumindest ein Ende zumindest ein nicht nach Watson & Crick gepaartes Nukleotid aufweist. Es können auch beide Enden ungepaarte Nukleotide aufweisen. Eine besondere Erhöhung der Stabilität des erfundungsgemäßen Oligoribonukleotids ist beobachtet worden, wenn das Ende das 3'-Ende eines Strangs der doppelsträngigen Struktur ist.
- [0007] Nach einem weiteren Ausgestaltungsmerkmal wird die Effektivität des Verfahrens erhöht, wenn zumindest ein weiteres, vorzugsweise ein entsprechend dem erfundungsgemäßen Oligoribonukleotid ausgebildetes, Oligoribonukleotid in die Zelle eingeführt wird, wobei ein Strang oder zumindest ein Abschnitt des Strangs der doppelsträngigen Struktur 25 des Oligoribonukleotids komplementär zu einem ersten Bereich des Zielgens ist, und wobei ein Strang oder zumindest ein Abschnitt des Strangs der doppelsträngigen Struktur des weiteren Oligoribonukleotids komplementär zu einem zweiten Bereich des Zielgens ist. Die Hemmung der Expression des Zielgens ist in diesem Fall deutlich gesteigert.
- [0008] Es hat sich weiter als vorteilhaft erwiesen, wenn das weitere Oligoribonukleotid eine doppelsträngige, aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist. Nach einem weiteren Ausgestaltungsmerkmal kann das Oligoribonukleotid und/oder das weitere Oligoribonukleotid auch eine doppelsträngige aus weniger als 25 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweisen.
- [0009] Der erste und der zweite Bereich können abschnittsweise überlappen, aneinandergrenzen oder auch voneinander beabstandet sein.
- [0010] Insbesondere hinsichtlich der Tumorthерапie wird eine weitere Steigerung der Effizienz dann beobachtet, wenn 35 die Zelle vor dem Einführen des/der Oligoribonukleotid/e mit Interferon behandelt wird.
- [0011] Die erfundungsgemäßen Oligoribonukleotide können dann besonders einfach in die Zelle eingeschleust werden, wenn sie in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen werden. Es ist auch möglich das/die Oligoribonukleotid/e in virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen einzuschließen.
- [0012] Das Zielgen kann nach einem weiteren Ausgestaltungsmerkmal eine der in dem anhängenden Sequenzprotokoll 40 wiedergegebenen Sequenzen SQ001 bis SQ140 aufweisen. Es kann auch aus der folgenden Gruppe ausgewählt sein: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen.
- [0013] Das Zielgen wird zweckmäßiger Weise in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert. Es kann Bestandteil eines Virus oder Viroids, insbesondere eines humanpathogenen Virus oder Viroids, sein. Das Virus oder 45 Viroid kann auch ein tier- oder pflanzenpathogenes Virus oder Viroid sein.
- [0014] Nach einem weiteren Ausgestaltungsmerkmal ist vorgesehen, dass die ungepaarten Nukleotide durch Nukleosidthiophosphate substituiert sind.
- [0015] Die doppelsträngige Struktur der erfundungsgemäßen Oligoribonukleotide kann weiter durch eine chemische Verknüpfung der beiden Stränge stabilisiert werden. Die chemische Verknüpfung kann durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder 50 Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet werden. Es hat sich weiter als zweckmäßig und die Stabilität erhöhend erwiesen, wenn die chemische Verknüpfung in der Nähe des einen oder in der Nähe der beiden Enden des erfundungsgemäßen Oligoribonukleotids gebildet ist. Weitere vorteilhafte Ausgestaltungen hinsichtlich der chemischen Verknüpfung können den Merkmalen der Ansprüche 23 bis 29 entnommen werden, ohne dass es dafür einer näheren Erläuterung bedarf.
- [0016] Zum Transport der erfundungsgemäßen Oligoribonukleotide hat es sich ferner als vorteilhaft erwiesen, dass diese an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben werden. Das Hüllprotein kann vom Polyomavirus abgeleitet sein. Das Hüllprotein kann insbesondere das Virus-Protein **1** und/oder das Virus-Protein **2** des Polyomavirus enthalten.
- Nach einer weiteren Ausgestaltung ist vorgesehen, dass bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist. Ferner ist es von Vorteil, dass das/die Oligoribonukleotid/e zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist/sind. Die Zelle kann eine Vertebratenzelle oder eine menschliche Zelle, wobei eine menschliche embryonale Stammzelle oder eine menschliche Keimzelle ausgeschlossen sind, sein.
- [0017] Erfundungsgemäß ist weiterhin die Verwendung eines Oligoribonukleotids mit den vorgenannten Merkmalen zur Hemmung der Expression eines Zielgens in einer Zelle vorgesehen. Es wird insoweit auf die vorangegangenen Ausführungen verwiesen.
- [0018] Nach weiterer Maßgabe der Erfindung wird die Aufgabe gelöst durch ein Oligoribonukleotid mit einer doppel-

DE 101 00 586 C 1

strängigen, aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildeten Struktur, wobei ein Strang oder zumindest ein Abschnitt des Strangs der doppelsträngigen Struktur komplementär zu einem Zielgen ist, wobei zumindest ein Ende des Oligoribonukleotids zumindest einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist, und wobei die Sequenz des Zielgens eine der im anhängenden Sequenzprotokoll wiedergegebenen Sequenzen SQ001 bis SQ140 ist.

5

[0019] Wegen der weiteren vorteilhaften Ausgestaltung des Oligoribonukleotids wird auf die vorangegangenen Ausführungen verwiesen.

[0020] Nach weiterer Maßgabe der Erfindung wird die Aufgabe außerdem gelöst durch einen Kit mit einem erfindungsgemäßen Oligoribonukleotid und einem weiteren doppelsträngigen Oligoribonukleotid, wobei das weitere Oligoribonukleotid eine doppelsträngige aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, wobei ein Strang oder zumindest ein Abschnitt eines Strangs der doppelsträngigen Struktur komplementär zum Zielgen ist, und/oder Interferon.

10

[0021] Die Erfindung wird nachfolgend anhand der Zeichnungen beispielhaft erläutert. Es zeigen:

[0022] Fig. 1a–c schematisch ein erstes, zweites und drittes Oligoribonukleotid und

15

[0023] Fig. 2 schematisch ein Zielgen.

15

[0024] Die in den Fig. 1a bis c gezeigten Oligoribonukleotide dsRNA I, dsRNA II und dsRNA III weisen jeweils ein erstes Ende E1 und ein zweites Ende E2 auf. Das erste Oligoribonukleotid dsRNA I und das dritte Oligoribonukleotid dsRNA III weisen an ihren Enden E1 und E2 einzelsträngige aus etwa 1 bis 4 ungepaarten Nukleotiden gebildete Abschnitte auf. Beim zweiten Oligoribonukleotid dsRNA II handelt es sich um ein langes Oligoribonukleotid mit mehr als 49 Nukleotidpaaren.

20

[0025] In Fig. 2 ist schematisch ein auf einer DNA befindliches Zielgen gezeigt. Das Zielgen ist durch einen schwarzen Balken kenntlich gemacht. Es weist einen ersten Bereich B1, einen zweiten Bereich B2 und einen dritten Bereich B3 auf.

[0026] Jeweils ein Strang S1, S2 und S3 des ersten dsRNA I, zweiten dsRNA II und dritten Oligoribonukleotids dsRNA III ist komplementär zum entsprechenden Bereich B1, B2 und B3 auf dem Zielgen.

25

[0027] Die Expression des Zielgens wird dann besonders wirkungsvoll gehemmt, wenn die kurzkettigen ersten dsRNA I und dritten Oligoribonukleotide dsRNA III an ihren Enden E1, E2 einzelsträngige Abschnitte aufweisen. Die einzelsträngigen Abschnitte können sowohl am Strang S1, S3 als auch am Gegenstrang oder am Strang S1, S3 und am Gegenstrang ausgebildet sein. Es hat sich weiter gezeigt, dass ab einer bestimmten Länge der Oligoribonukleotide, z. B. ab einer Länge von mehr als 49 Nukleotidpaaren, eine einzelsträngige Ausbildung der Enden E1, E2 weniger stark zur Unterdrückung der Expression des Zielgens beiträgt. Bei langen Oligoribonukleotiden, hier beim zweiten Oligoribonukleotid dsRNA II, ist eine einzelsträngige Ausbildung an den Enden E1, E2 nicht unbedingt erforderlich.

30

[0028] Die Bereiche B1, B2 und B3 können, wie in Fig. 2 gezeigt, von einander beabstandet sein. Sie können aber auch an einander grenzen oder überlappen.

[0029] Im Falle der einzelsträngigen Ausbildung der Enden E1, E2 sind alle denkbaren Permutationen möglich, d. h. es können ein Ende oder beide Enden des Strangs S1, S2, S3 oder ein Ende oder beide Enden des Gegenstrangs überstehen. Der einzelsträngige Abschnitt kann 1 bis 4 gepaarte Nukleotide aufweisen. Es ist auch möglich, dass ein Ende oder beide Enden E1, E2 mindestens ein nicht nach Watson & Crick gepaartes Nukleotidpaar aufweisen.

35

Ausführungsbeispiel

40

[0030] Es wurden aus Sequenzen des Grün-fluoreszierenden Proteins (GFP) der Alge *Aequoria victoria* abgeleitete doppelsträngige RNAs (dsRNAs) hergestellt und zusammen mit dem GFP-Gen in Fibroblasten mikroinjiziert. Anschließend wurde die Fluoreszenzabnahme gegenüber Zellen ohne dsRNA ausgewertet.

Versuchsprotokoll

45

[0031] Mittels eines RNA-Synthesizer (Typ Expedite 8909, Applied Biosystems, Weiterstadt, Deutschland) und herkömmlicher chemischer Verfahren wurden die aus den Sequenzprotokollen SQ141 und SQ142 ersichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge (bei SQ142 mit zwei Nukleotiden langen überstehenden Einzelstrangenden) synthetisiert. Die Hybridisierung der Einzelstränge zum Doppelstrang erfolgte durch Aufheizen des stöchiometrischen Gemisches der Einzelstränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM NaCl, auf 90°C und nachfolgendes langsames Abkühlen über 6 Stunden auf Raumtemperatur. Anschließend erfolgte Reinigung mit Hilfe der HPLC. Die so erhaltenen dsRNAs wurden in die Testzellen mikroinjiziert.

50

[0032] Als Testsystem für diese in vivo-Experimente diente die murine Fibroblasten-Zelllinie NIH/3T3. Mit Hilfe der Mikroinjektion wurde das GFP-Gen in die Zellen eingebracht. Die Expression des GFP wurde unter dem Einfluß gleichzeitig mittransfizierter sequenzhomologer dsRNA untersucht. Die Auswertung unter dem Fluoreszenzmikroskop erfolgte 3 Stunden nach Injektion anhand der grünen Fluoreszenz des gebildeten GFP.

55

Vorbereitung der Zellkulturen

60

[0033] Die Zellen wurden in DMEM mit 4,5 g/l Glucose, 10% fötalem Rinderserum unter 7,5% CO₂-Atmosphäre bei 37°C in Kulturschalen inkubiert und vor Erreichen der Konfluenz passagiert.

[0034] Das Ablösen der Zellen erfolgte mit Trypsin/EDTA. Zur Vorbereitung der Mikroinjektion wurden die Zellen in Petrischalen überführt und bis zu Bildung von Mikrokolonien weiter inkubiert.

65

Mikroinjektion

[0035] Die Kulturschalen wurde zur Mikroinjektion für ca. 10 Minuten aus dem Inkubator genommen. Es wurde in ca.

DE 101 00 586 C 1

50 Zellen pro Ansatz innerhalb eines markierten Bereiches unter Verwendung des Mikroinjektionssystems FemtoJet der Firma Eppendorf, Deutschland, einzeln injiziert. Anschließend wurden die Zellen weitere drei Stunden inkubiert. Für die Mikroinjektion wurden Borosilikat-Glaskapillaren der Firma Eppendorf mit einem Spalteninnendurchmesser von 0,5 µm verwendet. Die Mikroinjektion wurde mit dem Mikromanipulator 5171 der Firma Eppendorf durchgeführt. Die 5 Injektionsdauer betrug 0,8 Sekunden, der Druck ca. 80 hPa. Die in die Zellen injizierten Proben enthielten 0,01 µg/µl PGFP-C1 (Clontech Laboratories GmbH, Heidelberg, Deutschland) sowie an Dextran-70000 gekoppeltes Texas-Rot in 14 mM NaCl, 3 mM KCl, 10 mM KPO₄, pH 7,5. Zusätzlich wurden in ca. 100 µl folgende dsRNAs zugegeben:
10 Ansatz 1: 10 µM dsRNA (Sequenzprotokoll SQ141); Ansatz 2: 10 µM dsRNA (Sequenzprotokoll SQ142); Ansatz 3: ohne RNA. Die Zellen wurden bei Anregung mit Licht der Anregungswellenlänge von Texas-Rot, 568 nm, bzw. von GFP, 513 nm, mittels eines Fluoreszenzmikroskops untersucht. Die Fluoreszenz aller Zellen im Gesichtsfeld wurde bestimmt und in Relation zur Zelldichte (ausgedrückt durch deren Gesamtproteinkonzentration) gesetzt.

Ergebnis und Schlussfolgerung

- 15 [0036] Bei einer Gesamtkonzentration von 10 µM dsRNA konnte beim Einsatz der dsRNA mit den an beiden 3'-Enden um je zwei Nukleotide überstehenden Einzelstrangbereichen (Sequenzprotokoll SQ142) eine merklich erhöhte Hemmung der Expression des GFP-Gens in Fibroblasten beobachtet werden im Vergleich zur dsRNA ohne überstehende Einzelstrangenden (Tabelle 1).
[0037] Die Verwendung von kurzen (20–25 Basenpaare enthaltenden) dsRNA-Molekülen mit Überhängen aus wenigen, vorzugsweise ein bis drei nicht-basengepaarten, einzelsträngigen Nukleotiden ermöglicht somit eine vergleichsweise stärkere Hemmung der Genexpression in Säugerzellen als mit dsRNAs derselben Anzahl von Basenpaaren ohne die entsprechenden Einzelstrangüberhänge bei jeweils gleichen RNA-Konzentrationen.
20

Tabelle 1

Ansatz	dsRNA	10 µM
1	SQ141	-
2	SQ142 (überstehende Enden)	++
3	ohne RNA	-

[0038] Die Symbole geben den relativen Anteil an nicht oder schwach fluoreszierende Zellen an (+++> 90%; ++60–90%; +30–60%; < 10%).

40

45

50

55

60

65

DE 101 00 586 C 1

SEQUENZPROTOKOLL

<110> Ribopharma AG

<120> Verfahren zur Hemmung der Expression eines Zielgens 5

<130>

<140>

<141>

10

<160> 142

<170> PatentIn Ver. 2.1

15

<210> 1

<211> 2955

<212> DNA

<213> Homo sapiens

20

<300>

<302> Eph A1

<310> NM00532

25

<300>

<302> ephrin A1

<310> NM00532

<400> 1

atggagcggc gctggccctt ggggcttaggg ctggtgctgc tgctctgcgc cccgctgccc 60
 ccggggggcgc ggcacaagga agttactctg atggacacaa gcaaggcaca gggagagctg 120
 ggctggctgc tggatccccca aaaagatggg tggagtgaac agcaacagat actgaatggg 180
 acaccctctt acatgtacca ggactgcca atgcaaggac gcagagacac tgaccactgg 240
 ctgcgttcca attggatcta ccgcggggag gaggcttccc gcgtccacgt ggagctgcag 300
 ttccaccgtgc gggactgcaa gagtttcctt gggggagccg ggcctctggg ctgcaaggag 360
 accttcaacc ttctgtcat ggagagtgc caggatgtgg gcattcaactt cgcacggccc 420
 ttgttccaga aggttaaccac ggtggctgca gaccagagct tcaccatcg agaccttgcg 480
 tctggctctcg tgaagctgaa tggggagcgc tgctctctgg gccgcctgac cccgcgtggc 540
 ctctacccctcg ctttccacaa cccgggtgcc ttgtggccccc ttgtgtctgtt cccggcttcc 600
 taccagcgct gtcctgagac cctgaatggc ttggcccaat tcccaagacac tctgcctggc 660
 cccgctgggt tggtggaaat ggcgggcacc tgcttgccttcc acgcgcgggc cagccccagg 720
 ccctcaggtg caccggcat gcaactgcgc cctgatggcg agtggcttgtt gcctgttagga 780
 cggtgcccact gtgagcctgg ctatgagaa ggtggcagtgc gcaagacatg tggcctgc 840
 cctagcggtt cctaccggat ggacatggac acacccatt gtctcacgtg ccccccagcag 900
 agcaactgtg agtctgaggg ggccaccatc tgcacctgtg agagcggcca ttacagacgt 960
 cccggggagg gcccccaagg ggcatacaca ggtttttttt cggccccccg aaacctgagc 1020
 ttctctgcctt cagggactca gctctccctg cgttggaaac ccccaagcaga tacgggggg 1080
 cggccaggatg tcagatacag tggaggtgt tcccaatgtgc agggcacagc acaggacggg 1140
 gggccctgcc agccctgtgg ggtggggctg cacttctcg cggggggcccg ggcgttcacc 1200
 acacctgcac tgcacgtcaa tggccttggaa ccttatgcca actacacatt taatgtggaa 1260
 gccccaaatg gagtgcagg gctggggcagc tctggccatg ccagcacctc agtcagcatc 1320
 agcatggggc atgcagatgc actgtcagggc ctgtctctga gactgggtgaa gaaaagaaccg 1380
 aggcaactag agtgcacgtg ggcgggggtcc cggccccggaa gcccctggggc gaaacctgacc 1440
 tatgagctgc acgtgcgtgaa ccaggatgaa gaacggtacc agatggttct agaaccagg 1500
 gtcttgcgtgaa cagagctgca gctgtacacc acatacatcg tcagagtcgg aatgtgtacc 1560
 ccactgggtc ctggcccttt ctccctgtat catgagtttcc ggaccagccc accagtgtcc 1620
 agggggcctga ctggaggaga gattgttagcc gtcacattttg ggctgctgct tggtgcc 1680

40

45

50

55

60

65

DE 101 00 586 C 1

ttgctgcttg ggattctcg tttccggtcc aggagagccc agcggcagag gcagcagagg 1740
 cacgtgaccg cgccaccgat gtggatcagag aggacaagct gtgctgaagc cttatgttgt 1800
 acctccaggc atacgaggac cctgcacagg gagccttggc ctttaccggg aggctggct 1860
 5 aattttccctt ccoggagact tgatccagcg tggctgtatgg tggacactgt cataggagaa 1920
 ggagagttt gggaaagtgtt tcgagggacc ctcaggctcc ccagccagga ctgcaagact 1980
 gtggccatta agaccttaaa agacacatcc ccaggtggcc agtggtgaa cttccttcga 2040
 gaggcaacta tcatgggcca gtttagccac ccgcataattc tgcatactgga aggctcgctc 2100
 acaaagcgaa agccgatcat gatcatcaca gaatttatgg agaatgcagc cctggatgcc 2160
 10 ttcctgaggg agcggggagga ccagctggc cctgggcagc tagtggccat gctgcagggc 2220
 atagcatcg gcatgaacta cctcagtaat cacaattatg tccacccggg cctggctgcc 2280
 agaaaacatcg tggtaatca aaacctgtgc tgaaggtgt ctgactttgg cctgactcgc 2340
 ctcctggatg actttgtgg cacatcagaa acccaggag gaaagatccc tatccgttgg 2400
 acagccccctg aaggcattgc ccatacgatc ttaccacag ccagcgatgt gtggagctt 2460
 15 gggattgtga tggggaggt gctgagctt ggggacaagc cttatgggg gatgagcaat 2520
 caggaggtt tgaagagcat tgaggatggg taccgggtgc cccctctgt ggactgccc 2580
 gcccctctgt atgagctcat gaagaactgc tggcatatg accgtgccc cccggccacac 2640
 ttccagaagc ttcaaggcaca tctggagcaa ctgttgcca accccccactc cctgcggacc 2700
 attgccaact ttgacccccag ggtgactctt cgctgtccca gcctgagtgg ctcagatggg 2760
 20 atcccgatc gaaccgtctc tgagtggtc gagtcatac gcatgaaacg ctacatctg 2820
 cacttccact cggctggctt ggacaccatg gagtggtgtc tggagctgac cgctgaggac 2880
 ctgacgcaga tgggaatcac actgccccggg caccagaagc gcattcttg cagttttag 2940
 ggattcaagg actga 2955

25 <210> 2
 <211> 3042
 <212> DNA
 <213> Homo sapiens

30 <300>
 <302> ephrin A2
 <310> XM002088

35 <400> 2
 gaagttgcgc gcaggccggc gggcggggagc ggacaccgag gccggcgtgc aggctgcgg 60
 gtgtcgggga gcccggctcg gggggatcg accgagagcg agaagcgcgg catggagctc 120
 caggcagccc ggcctgttt cgcctgtcg tggggctgtc cgctggccgc ggcgcggcg 180
 40 ggcgcaggcgca aggaagtgtt actgctggac tttgtgtcg ctggagggga gctcggctgg 240
 ctcacacacc cgtatggcaa agggtggac ctgtgcaga acatcatgaa tgacatgcc 300
 atctacatgt actccgtgtg caacgtgtg tctggcgacc aggacaactg gctccgcacc 360
 aactgggtgt accgaggaga ggctgagct atcttcattt agctaaggat tactgtacgt 420
 gactgcaaca gcttccctgg tggcgccagc ttctgcaagg agacttcaa cctctactat 480
 gcccggctgg acctggacta cggcaccaac ttccagaagc gcctgttcac caagattgac 540
 45 accattgcgc ccgtgagat caccgtcagc agcgacttcg aggcacgcca cgtgaagctg 600
 aacgtggagg agcgctccgt gggccgcgc acccgcaaa gcttctacat ggccttccag 660
 gatatcggtg cctgtgtggc gctgctctcc gtcctgtct actacaagaa gtgcggccgag 720
 ctgctgcagg gcctggccca ctccctgtg accatgcgcg gctctgtatc accttccctg 780
 50 gcccactgtgg cggcacctg tgggaccat gccgtgtgc caccgggggg tgaagagccc 840
 cgtatgcact gtgcagtgg tggcgagtgg ctggtgcaca ttggcagtg cctgtgccag 900
 gcaggctacg agaagggtgg gatgcctgc caggcctgtc cgcctggatt ttttaagttt 960
 55 gaggcatctg agagccccctg ctggagtgcc cctgagcaca cgctgcacat ccctgagggt 1020
 gcccacctct gcgagtgtga ggaaggcttc ttccgggcac ctcaggaccc agcgtcgatg 1080
 ctttgcacac gaccctccctc cggccacac tacctcacag cctgtggcat gggtgccaag 1140
 gtcacactggc gctgacgccc ccctcaggac agcggggggcc gcgaggacat tgtctacagc 1200
 gtcacactggc aacagtgtg gcccggatct gggaaatgcg ggccgtgtga ggccagtg 1260
 cgctactctgg agccctctca cggactgacc cgcaccatgt tgacagtgtg cgacactggag 1320
 ccccacatga actacacccat caccgtggag gcccgcataatg gctgtctcagg cctggtaacc 1380

60

65

DE 101 00 586 C 1

agccgcagct	tccgtactgc	cagtgtcagc	atcaaccaga	cagagcccc	caaggtgagg	1440	
ctggagggcc	gcagcaccac	ctcgcttagc	gtctcctgga	gcatcccc	gcccgcagcag	1500	
agccgagtgt	ggaagtacga	ggtcacttac	cgcaagaagg	gagactccaa	cagctacaat	1560	5
gtgcgcgcga	ccgagggttt	ctccgtgacc	ctggacgacc	tggccccaga	caccacctac	1620	
ctggtccagg	tgcaaggact	gacgcaggag	ggccaggggg	ccggcagcaa	ggtgcacgaa	1680	
ttccagacgc	tgtccccgga	ggatctggc	aacttggcg	tgattggcg	cgtggctgtc	1740	
ggtgtggcc	tgtttctggt	gctggcagga	gttggcttct	ttatccaccg	caggaggaag	1800	
aaccagcgtg	cccgccagtc	ccggaggac	gttacttct	ccaagtcaaga	acaactgaag	1860	
cccctgaaga	catacgtgga	cccccacaca	tatgaggacc	ccaaccaggc	tgtgttgaag	1920	10
ttcactaccg	agatccatcc	atcctgtgtc	actcggcaga	aggtgatcgg	agcaggagag	1980	
tttggggagg	tgtacaaggg	catgctgaag	acatcctcg	ggaagaagga	ggtgcccgtg	2040	
gcacatcaaga	cgctgaaaggc	cggctacaca	gagaagcgc	gagtggactt	cctcggcgag	2100	
gcccgcatca	tggcccgatt	cagccaccac	aacatcatcc	gcctagaggg	cgtcatctcc	2160	
aaatacaagc	ccatgatgtat	catcactgag	tacatggaga	atggggccct	ggacaagttc	2220	
cttcgggaga	aggatggcga	gttcagctg	ctgcagctgg	tggcatgt	gccccggcattc	2280	
gcagctggca	tgaagtacct	ggccaacatg	aactatgtgc	accgtgacct	ggctgcccc	2340	
aacatcccg	tcaacagcaa	cctggcttc	aagggtgtc	actttggctt	gtcccccggt	2400	
ctggaggacg	accccgaggc	cacctacacc	accagtggcg	gcaagatccc	catccgctgg	2460	
accgccccgg	agggcatttc	ctaccggaaag	ttcacctctg	ccagcgtacgt	gtggagcttt	2520	
ggcattgtca	tgtggaggt	gatgacctat	ggcgagcggc	cctactggg	gttgtccaac	2580	
cacgaggtga	tgaagccat	caatgatggc	ttceggctcc	ccacacccat	ggactgcccc	2640	
tccgcctatct	accagctcat	gatgcagtgc	tggcagcagg	agcgtgccc	ccgccccaaag	2700	
ttcgctgaca	tcgtcagcat	cctggacaag	ctcattcgtg	cccctgactc	cctcaagacc	2760	
ctggctgact	ttgacccccc	cgtgtctatc	cggtccccca	gcacgagcgg	ctcggagggg	2820	
gtgccttcc	gcacgggtgc	cgagtggctg	gagtcatca	agatgcagca	gtatacggag	2880	
cacttcatgg	cggccggcta	cactgccatc	gagaagggtg	tgcagatgac	caacgacgac	2940	
atcaagagga	ttggggtgcg	gctgccccgc	caccagaagc	gcatgcctta	cagcctgctg	3000	
ggactcaagg	accaggtgaa	cactgtgggg	atccccatct	ga		3042	
							30
<210> 3							
<211> 2953							
<212> DNA							
<213> Homo sapiens							35
<300>							
<302> ephrin A3							
<310> NM005233							
							40
<400> 3							
atggattgtc	agctctccat	cctcctcctt	ctcagctgct	ctgttctcga	cagttcggg	60	
gaactgatTC	cgcagcCTTC	caatgaagtC	aatctactgg	attcaaaaAC	aattcaaggG	120	
gagctgggt	ggatcttta	tccatcacat	gggtgggaag	agatcagtgg	tgtggatgaa	180	
cattacacac	ccatcaggac	ttaccagggt	tgcataatgtca	tggaccacag	tcaaaacaat	240	
tggctgagaa	caaactgggt	ccccaggaac	tcaagtcaga	agatttatgt	ggagctcaag	300	
ttcactctac	gagactgcaa	tagcatttca	ttgggttttag	gaacttgcaa	ggagacattc	360	
aacctgtact	acatggagtc	tgatgatgtat	catgggggtga	aatttcgaga	gcatcgttt	420	
acaaaagattg	acaccattgc	agctgatgaa	agtttcaactc	aatggatct	tggggaccgt	480	
attctgaagc	tcaacactga	gattagagaa	gtaggtcctg	tcaacaagaa	gggattttat	540	
ttggcatttc	aagatgttgg	tgcttgtgtt	gccttgggt	ctgtgagagt	atacttcaaa	600	
aagtgcctat	ttacagtgaa	gaatctggct	atgtttccag	acacggtacc	catggactcc	660	
cagtccctgg	tggaggttag	agggtcttgc	gtcaacaatt	ctaaggagga	agatcctcca	720	
aggatgtact	gcagttacaga	aggcgaatgg	cttgcacca	ttggcaagtg	tccctgcaat	780	
gctggctatg	aagaaaagagg	ttttatgtgc	caagcttgc	gaccaggttt	ctacaaggca	840	
ttggatgtat	atatgaagtg	tgctaagtgc	ccgcctcaca	gttctactca	ggaagatgg	900	
tcaatgaact	gcaggtgtga	gaataattac	ttccgggcag	acaaagaccc	tccatccatg	960	
gcttgcaccc	gaccctccatc	ttcaccaaga	aatgttatct	ctaataaaaa	cgagacctca	1020	

60

65

DE 101 00 586 C 1

gttatcctgg actggagttt gcccctggac acaggaggcc ggaaagatgt taccttcaac 1080
 atcatatgtta aaaaatgtgg gtggaatata aaacagtgtg agccatgcag cccaaatgtc 1140
 cgcttcctcc ctgcacagtt tggactcacc aacaccacgg tgacagtgc agaccttctg 1200
 gcacatacta actacacctt tgtagattgat gccgttaatg gggtgtcaga gctgagctcc 1260
 ccaccaagac agtttgctgc ggtcagcatt acaactaattc aggctgtcc atcacctgtc 1320
 ctgacgatta agaaagatcg gacccctcaga aatagcatct ctttgcctcg gcaagaacct 1380
 gaacatccta atgggatcat attggactac gaggtcaaat actataaaaa gcaggaacaa 1440
 gaaacaaggat ataccattct gagggcaaga ggcacaatg ttaccatcag tagctcaag 1500
 cctgacacta tatacgattt ccaaattccga gcccgaacag cgcgtggata tgggacgaac 1560
 agccgcaagt tttaggttga aactagtcca gactcttct ccatctctgg tgaaagatgc 1620
 caagtggtca tgatcgccat ttccagccgca gtagcaatta ttccctcac tgggtgcac 1680
 tatgttttga ttgggaggtt ctgtggctat aagtcaaaac atggggcaga tgaaaaaaa 1740
 cttcattttg gcaatgggca tttaaaactt ccaggtctca ggacttatgt tgacccacat 1800
 acatatgaag acccttaccca agctgttcat gagttgcca aggaatttggga tgccaccaac 1860
 atatccattt ataaaggatgt tggagcaggt gaatttggag aggtgtgcag tggtcgctt 1920
 aaacttcctt caaaaaaaaaa gatttcagtg gccattaaaa ccctgaaagt tggctacaca 1980
 gaaaaggcaga ggagagactt cctgggagaa gcaagcatta tgggacagtt tgaccacccc 2040
 aatatcattt gactggagg agttgttacc aaaagtaagc cagttatgt tgcacagaaa 2100
 tacatggaga atggttcctt ggatagttt ctacgtaaac acgatgccc gtttactgtc 2160
 attcagctag tggggatgtc tcgagggata gcatctggca tgaagtaccc gtcagacatg 2220
 ggtatgttc accgagaccc cgctgtcg aacatcttga tcaacagtaa cttgggtgt 2280
 aagggttctg attcogact ttccgctgtc ctggaggatg acccagaagc tgcttataca 2340
 acaagaggag ggaagatccc aatcagggtgg acatcaccag aagctatagc ctaccgcaag 2400
 ttacgtcag ccacgtatgt atggagttat gggattgttc tctgggaggt gatgtttat 2460
 ggagagagac catactggga gatgtccaat caggatgtaa ttaaagctgt agatgaggc 2520
 ttcgtactgc ccccccccat ggactgccc gctgcctgt atcagctgt gctggactgc 2580
 tggcagaaag acagggaaaca cagaccccaag tttgagcaga ttgttagtat tctggacaag 2640
 cttatccggaa atccggcag cctgaagatc atcaccagtg cagccgcaag gccatcaaac 2700
 cttcttctgg accaaagcaa tggatgttcc tctacccatc gcacaacagg tgactggctt 2760
 aatgggtgtcc ggacagcaca ctgcaaggaa atcttcacgg gctggagta cagttctgt 2820
 gacacaatag ccaagatttc cacagatgac atggaaaaagg ttgggtgcac cgtgggtggg 2880
 ccacagaaga agatcatcag tagcattaaa gctctagaaa cgcaatcaaa gaatggccca 2940
 gttccctgtt aaaa 2953

<210> 4
 <211> 2784
 <212> DNA
 <213> Homo sapiens

<300>
 <302> ephrin A4
 <310> XM002578

<400> 4
 atggatggaaa aaaatacacc aatccgaacc taccaagtgt gcaatgtgt ggaacccagc 60
 cagaataact ggctacaaac tgattggatc acccgagaag gggctcagag ggtgtatatt 120
 gagattaaat tcaccttgag ggactgcaat agtcttccgg gctgtcatgg gacttgcac 180
 gagacgttta acctgtacta ctatgaatca gacaacgaca aagagcgtt catcagagag 240
 aaccaggttt tcaaaattga caccattgtc gctgatgaga gcttcacccca agtggacatt 300
 ggtgacagaaa tcatgaagct gaacaccggag atccggatg tagggccatt aagaaaaaag 360
 gggttttacc tggctttca ggtatgtgggg gcctgcacg cccctggatc agtccgtgt 420
 ttctataaaaa agtgtccact cacagtcgc aatctggccc agttcctga caccatcaca 480
 ggggctgata cgtctccct ggtggaaagtt cgaggctcct gtgtcaacaa ctcagaagag 540
 aaagatgtgc caaaaatgtt ctgtggggca gatggtaat gctggatc cattggcaac 600
 tgcctatgca acgctggcga tgaggagcgg agcggagaat gccaagctt caaaatttgg 660
 tattacaagg ctctctccac ggtgccacc tgcgtcaat gcccacccca cagctactct 720

DE 101 00 586 C 1

gtctgggaag gagccaccc	gtgcacctgt gaccgaggct	tttcagagc tgacaacgt	780
gctgcctcta tgcctgcac	ccgtccacca tctgtcccc	tgaacttgat ttcaaattgtc	840
aacgagacat ctgtgaacct	ggaatggagt agccctcaga	atacagtgcc cgccaggac	900
atttccata atgtggtagt	caagaaatgt ggagctggg	accccacaa gtgccgaccc	960
tgtggaaagt gggtccacta	caccccacag cagaatggct	tgaagaccac caaagtctcc	1020
atcaactgacc tcctagctca	taccaattac acctttgaaa	tctggctgt gaatggagtg	1080
tccaaatata accctaacc	agaccaatca gttctgtca	ctgtgaccac caaccaagca	1140
gcaccatcat ccattgttt	ggtccaggct aaagaagtca	caagatacag tgggcactg	1200
gcttggctgg aaccagatcg	gcccataatggg gtaatcctgg	aatatgaagt caagtattat	1260
gagaaggatc agaatggcg	aagctatcgat atagttcgga	cagctgccag gaacacagat	1320
atcaaaggcc tgaaccctct	cacttcctat gtttccacg	tgcgaggccag gacagcagct	1380
ggctatggag acttcgtga	gcccgtggg gttacaacca	acacagtgcc ttcccgatc	1440
attggagatg gggctaaactc	cacagtctt ctggctctg	tctcggcag tgggtgctg	1500
gtggtaattc tcattgcagc	ttttgtcatac agccggagac	ggagtaataa cagtaaagcc	1560
aaacaagaag cggatgaaga	gaaacatgg aatacaagg	taagaacata tggtggaccc	1620
tttacgtacg aagatccaa	ccaagcaatcg cgagatgg	ccaaagaaat tgacgcatec	1680
tgcattaaga ttgaaaaagt	tataggagtt ggtgaatttg	gtgaggatg cagtggcg	1740
ctcaaagtgc ctggcaagag	agagatctgt gtgctatca	agactctgaa agtggttat	1800
acagacaaac agaggagaga	cttcctgagt gagccagca	tcatggaca gttgaccat	1860
ccgaacatca ttcaatttgg	aggcgtgtc actaaatgt	aaccagtaat gatcataaca	1920
gagtagatgg agaatggctc	cttggatgca ttccctcagga	aaaatgatgg cagattaca	1980
gtcattcagc tgggggcat	gttctcggtc attgggtctg	ggatgaagta tttatctgat	2040
atgagctatg tgcatacgta	tctggccgca cggAACATCC	ttgtgaacag caacttggtc	2100
tgcaaaatgt ctgatTTGG	catgtcccgaa gtgttggagg	atgatccgaa agcagcttac	2160
accaccaggg gtggcaagat	tcctatccgg tggactgcgc	cagaagcaat tgccatcg	2220
aaattcacat cagcaagtga	tgtatggagc tatggatcg	ttatgtggga atgtatgtcg	2280
tacggggaga ggcctattt	ggatatgtcc aatcaagatg	tgattaaagc cattgaggaa	2340
ggctatcggt tacccctcc	aatggactgc cccattgcgc	tccaccagct gatgttagac	2400
tgctggcaga aggagaggag	cgacaggcct aaatttgggc	agattgtcaa catgtggac	2460
aaactcatcc gcaaccccaa	cagcttgaag aggacaggga	cgagagctc cagacctaac	2520
actgccttgt tggatccaag	ctccccctgaa ttctctgt	ttgtatcagt gggcgattgg	2580
ctccaggcct taaaatgg	ccggtataag gataacttca	cagctgctgg ttataccaca	2640
ctagaggctg tgggtcacgt	ggattgttac agtcttcctg	gagttactggg aacttgcag	2700
acgcaccaga ataagatTTT	ggattgttac gaggcatgc	gaatggatat cacagccatc	2760
cacggcagaa tggtcccgt	ggatgttaggg gcttgcata	gaacccaaat gcagcagatg	2784

<210> 5
<211> 2997
<212> DNA

<213> Homo sapiens

<300>
<302> ephrin A7
<310> XM004485

<400> 5

atggtttttc aaactcggtt	cccttcatgg attatTTT	gctacatctg gctgctccgc	60
tttgcacaca caggggaggc	gcaggctcg aaggaagtac	tactgttggaa ttctaaagca	120
caacaaacag agttggagt	gatttcctt ccacccaaatg	ggtggaaaga aattatgtgt	180
ttggatgaga actatacccc	gatacgaaca taccagggt	gccaagtcat ggagccaaac	240
caaaaacaact ggctgcccac	taactggatt tccaaaggca	atgcacaaag gatTTTgt	300
gaattgaaat tcaccctgag	ggattgttac agtcttcctg	gagttactggg aacttgcag	360
gaaacattta atttgtacta	ttatgaaaca gactatgaca	ctggcagaa tataagagaa	420
aacctctatg taaaataga	caccattgtc gcagatgaaa	gttttaccca aggtgacctt	480
ggtggaaagaa agatgaagct	taacactgag gtgagagaga	ttggaccctt gtccaaaaag	540
ggattctatc ttgccttca	ggatgttaggg gcttgcata	tttggttgc tgcataatgt	600

60

65

DE 101 00 586 C 1

	tactacaaga	agtgtctggc	cattattgag	aacttagcta	tctttccaga	tacagtact	660
5	ggttcagaat	tttccctttt	agtcgagggt	cgagggacat	gtgtcagcag	tgcagagaa	720
	gaagcggaaa	acgccccca	gatgcactgc	agtgcagaag	gagaatgggt	agtcccatt	780
	ggaaaatgta	tctgcaaaggc	aggctaccag	aaaaaaggag	acacttgta	accctgtggc	840
	cgtgggtct	acaagtcttc	ctctcaagat	cttcagtgt	ctcggtgtcc	aactcacagt	900
10	tttctgata	aagaaggctc	ctccagatgt	aatgtgaag	atgggttatta	cagggctcca	960
	tctgaccac	catacgttgc	atgcacaagg	cctccatctg	caccacagaa	cctcattttc	1020
	aacatcaacc	aaaccacagt	aagtttgaa	tggagtcctc	ctgcagacaa	tggggaaaga	1080
	aacatgtga	cctacagaat	attgtgtaa	cggtgagtt	gggagcaggg	cgaatgtgtt	1140
	ccctgtggg	gtaacattgg	atacatgccc	cagcagactg	gattagagga	taactatgtc	1200
15	actgtcatgg	acctgctagc	ccacgctaatt	tatactttt	aagttgaagc	tgtaaatgga	1260
	gtttctgact	taagccgatc	ccagaggctc	tttgcgtct	tcaagtatcac	cactggtaaa	1320
	gcagctccct	cgcaagtgg	tggagtaat	aaggagagag	tactgcagcg	gagtgtcgag	1380
	ctttcctggc	aggaaccaga	gcatcccaat	ggagtcatca	cagaatatga	aatcaagtat	1440
20	tacgagaaag	atcaaagg	acggacctac	tcaacagtaa	aaaccaagtc	tacttcagcc	1500
	tccattaata	atctgaaacc	aggaacagt	tatgtttcc	agattcgggc	ttttaactgct	1560
	gctggttatg	gaaattacag	tccagactt	gatgttgcta	cactagagga	agctacaggt	1620
	aaaatgttt	aagctacagc	tgtctccagt	gaacagaatc	ctgttattat	cattgctgt	1680
25	gttgcgttag	ctgggaccat	cattttgg	ttcatggtct	ttggcttcat	cattgggaga	1740
	aggcaactgt	gttatagcaa	agtcgaccaa	gaaggcgatg	aagagcttta	ctttcatttt	1800
	aaatttccag	gcacccaaac	ctacattgac	cctgaaacct	atgaggaccc	aaatagagct	1860
	gtccatcaat	tcgccaagga	gctagatgcc	tcctgttatta	aaatttgagcg	tgtgattgg	1920
	gcaggagaat	tcgggtaa	ctgcagtggc	cgttgaaac	ttccagggaa	aagagatgtt	1980
30	gcagtagcca	taaaaaacct	gaaagtgg	tacacagaaa	aacaaaggag	agactttt	2040
	tgtgaagcaa	gcatcatgg	gcatgttgc	cacccaaatg	ttgtccattt	ggaagggg	2100
	gttacaagag	ggaaaaccgt	catgatgta	atagagttc	tgaaaaatgg	agccctagat	2160
	gcatttctca	ggaaaacatga	tggcaattt	acgtcattc	atgttagtagg	aatgtcgaga	2220
	ggaattgctg	ctggaaatgag	atatttgg	gatatggat	atgttcacag	ggacccgtca	2280
35	gctcgcaata	ttcttgc	cagcaatctc	gttgtaaag	tgcagattt	tggccgttcc	2340
	cgagttatag	aggatgatcc	agaagctgtc	tatacaacta	ctgggtggaa	aattccatgt	2400
	aggtggacag	cacccgaagc	catccagtc	cggaaattca	catcagccag	tgtatgtatgg	2460
	agctatggaa	tagtcatgt	ggaagttatg	tcttatggag	aaagacctt	ttgggacatg	2520
40	tcaaatcaag	atgttataaa	agcaatagaa	gaaggttac	gttaccags	acccatggac	2580
	tgcccagctg	gccttcacca	gctaatttt	gattgttgc	aaaaggagcg	tgctgaaagg	2640
	ccaaaatttg	aacagatagt	tggatttca	gacaaaatga	ttcgaaaccc	aaatagtct	2700
	aaaactcccc	tgggaaactt	tagtaggca	ataagccctc	ttctggatca	aaacactct	2760
	gatttcaacta	cctttgtt	agttggagaa	tggctacaag	ctattaagat	gaaaagatat	2820
	aaagataatt	tcacggcagc	tggctacaat	tcccttgaat	cagttagccag	gatgactatt	2880
	gaggatgtga	tgagttttag	gatcacactg	gttggtc	aaaagaaaat	catgagcagc	2940
	attcagacta	tgagagcaca	aatgctacat	ttacatggaa	ctggcattca	agtgtga	2997

```
45 <210> 6
    <211> 3217
    <212> DNA
    <213> Homo sapiens

50 <300>
    <302> ephrin A8
    <310> XM001921

55 <400> 6
    ncbsncvrb mdnctdrtn g nmstrctrst tanmy mmsar chbmdrtnc tdstrctrn 60
    mstmmmtanmy rmtsndhstr ycbardasna stagnbankg rahcsmmdatv washtmant 120
    hdbrandnkb arggnbankh msanshahar tntanmy csm bmrnarnvdn tnhmsansha 180
    hamrnaaccs snmvrsmgta tggcccccgc ccggggccgc ctgccccctg cgctctgggt 240
    cgtcacggcc gcggcggcgg cgccacactg cgtgtccgcg gcgcgcggcq aaqtqaattt 300
```

DE 101 00 586 C 1

gctggacacg tcgaccatcc acggggactg gggctggctc acgtatccgg ctcatgggtg 360	5
ggactccatc aacgagggtgg acgagtcctt ccagccatc cacacgtacc aggtttgcaa 420	
cgtcatgagc cccaaaccaga acaactggct gcgcacgagc tgggtcccccc gagacggcgc 480	
ccggcgcgtc tatgctgaga tcaagttac cctgcgcgac tgcaacagca tgcctgggt 540	
gctggcacc tgcaaggaga cttcaacct ctactacctg gagtcggacc ggcacctggg 600	
ggccagcaca caagaaagcc agttcctcaa aatgcacacc attgcggccg acgagagctt 660	
cacaggtgcc gacccctggt tgcggcgctc caagctcaac acggaggtgc gcagtgtggg 720	
tcccctcage aagcgccggct tctacctggc ctccaggac atagggtgcct gcctggccat 780	10
cctctctctc cgcattacta ataagaagtg ccctgcacatg gtgcgaatc tggctgcctt 840	
ctcgaggca gtgacggggg ccgactcgct ctcactgggt gagggtgaggg gccagtgcgt 900	
gcccacacta gaggagccggg acacacccaa gatgtactgc agcgcggagg gcgagtgggt 960	
cgtccccatc ggcaaatgcg tgcgcagtgc cggtacgag gagcggccggg atgcctgtgt 1020	
ggcctgtgag ctggcttct acaagtccgc ccctggggac cagctgtgtg cccgctgccc 1080	15
tccccacacgc cactccgcg cttccagccgc ccaaggctgc cactgtgacc tcagctacta 1140	
ccgtgcagcc ctggacccgc cgtcttcage ctgcacccgg ccacccctcg caccagtgtaa 1200	
cctgatctcc agtgtgaatg ggacatcaatg gactctggag tggggccctc ccctggacc 1260	
aggtgtccgc agtgacatca cctacaatgc cgtgtccgc cgctgcccct gggcactgtaa 1320	
ccgctgcgag gcatgtggga gcggcacccg ctttgcgtcc cagcagacaa ggcctgggtca 1380	20
ggccagcctg ctgtggcca acctgcgtgc ccacatgaac tactccctt ggtcgaggc 1440	
cgtcaatggc gtgtccgacc ttagccccga gccccgcccgg gcccgtgtgg tcaacatcac 1500	
cacgaaccag gcagccccgt cccagggtgt ggtgatccgt caagagccggg cggggcagac 1560	
cagcgtctcg ctgctgtggc aggagccga gcagccgaac ggcacatcc tggagatgtg 1620	
gatcaagttac tacgagaagg acaaggagat gcagagctac tccaccccta aggcgtc 1680	
caccagagcc accgtctccg gcctcaagcc gggcacccgc tacgtttcc agtccgagc 1740	
ccgcacccatca gcaggctgtg gcccgttcag ccaggccatg gaggtggaga cccggaaacc 1800	
ccggccccgc tatgacaccca ggaccattgt ctggatctgc ctgacgctca tcaacggccct 1860	
ggtgggtctt ctgctctgc tcatctgcaa gaagaggcac tgggtgtaca gcaaggcctt 1920	30
ccaggactcg gacgaggaga agatgcacta tcagaatggc caggcacccc cacctgtctt 1980	
cctgcctctg catccccccc cggaaagct cccagagccc cagtttatg cggaaacccca 2040	
cacctacagag gaccaggccc gggcgccccg cagtttactt cggagatcg aggctctag 2100	
gatccacatc gaaaaatca tcggctctgg agactccggg gaagtctgtc acgggaggct 2160	
gccccgtggca gggcagccggg atgtgccccgt ggcacatcaag gcccctaaag cccgctacac 2220	
ggagagacag aggccggact tcctgagcga ggegtccatc atgggcaat tcgaccatcc 2280	35
caacatcatc cgcctcgagg gtgtcgatc acgtggccgc ctggcaatga ttgtgactga 2340	
gtatcgag aacggcttc tggacaccc tctgaggacc cacgacgggc agttcaccat 2400	
catgcagctg gtggccatgc tgagaggagt ggtgccccgg atgcgttacc tctcagacat 2460	
gggctatgtc caccgagacc tggcccccgg caacgtctcg gttgacagca acctggctcg 2520	
caaggtgtct gacttcgggc tctcacgggt gctggaggac gacccggatg ctgcctacac 2580	40
caccacgggc gggaaagatcc ccatccgctg gacggccccc gaggccatcg cttccgcac 2640	
cttctccctcg gccagcgacg tggaggtt cggcggtggc atgtgggagg tgctggctta 2700	
tggggagcgg ccctactgga acatgaccaa cggggatgtc atcagctctg tggaggagg 2760	
gtaccgcctg cccgcaccca tgggctgccc caacgcctg caccagtc tgcctcgactg 2820	
ttggcacaag gaccggccgc agcggcctcg ctttcccag attgtcaatg tctcgatgc 2880	45
gctcatccgc agccctgaga gtctcaggcc caccggccaca gtcagcaggc gcccacccca 2940	
tgccttcgtc cggagctgtt ttagccctcg agggggcagc ggtggcggtg ggggcctc 3000	
cgtgggggac tggctggact ccatccgcat gggccggatc cggagaccat tgcgtgcggg 3060	
cggatactcc tctctggca tggtgctacg catgaacgcc caggacgtgc ggcctggg 3120	
catcaccctc atgggcccacc agaagaagat cctggccagc attcagacca tgcggggccca 3180	50
gctgaccaggc acccaggggc cccggccggca cctctga 3217	

<210> 7

55

<211> 1497

<212> DNA

<213> Homo sapiens

<300>

60

65

DE 101 00 586 C 1

<308> U83508

<300>

5 <302> angiopoietin 2
 <310> U83508

<400> 7

10	atgacagtt tccttcctt	tgccttcctc	gctgccattc	tgactcacat	agggtgcagc	60
	aatcagcgcc	gaagtccaga	aaacagtggg	agaagatata	accggattca	acatggcaa
	tgtgcctaca	ctttcattct	tccagaacac	gatggcaact	gtcgtgagag	tacgacagac
	cagtacaaca	caaacgctc	gcagagagat	gctccacacg	tggaaccgga	tttctttcc
	cagaaaacct	aacatctgga	acatgtatg	gaaaattata	ctcagtggct	gcaaaaactt
	gagaattaca	tttgtggaaaa	catgaagtgc	gagatggccc	agatacagca	aatgcagtt
15	cagaaccaca	cggctaccat	gctggagata	ggaaccagcc	tcctctctca	gactgcagag
	cagaccagaa	agctgacaga	tgttgagacc	cagactaa	atcaaacttc	tcgacttgag
	atacagctgc	tggagaattc	attatccacc	tacaagctag	agaagcaact	tcttcacacg
	acaaatgaaa	tcttgaagat	ccatgaaaaa	aacagtttat	tagaacataa	aatcttagaa
	atggaaggaa	aacacaagga	agagttggac	accttaaagg	aagagaaaaga	gaaccttcaa
20	ggcttggta	ctcgtaaac	atataatac	caggagctgg	aaaagcaatt	aaacagagct
	accaccaaca	acagtgtcct	tcagaagcag	caactggagc	tgatggacac	agtccacaac
	cttgcataatc	tttgcactaa	agaagggttt	ttactaaagg	gaggaaaaag	agaggaagag
	aaaccattta	gagactgtgc	agatgtatata	caagctgggt	ttaataaaaag	tggaatctac
	actatttata	ttaataatata	gccagaaccc	aaaaaggtgt	tttgcataat	ggatgtcaat
25	gggggagggtt	ggactgtaat	acaacatcg	gaagatggaa	gtcttagattt	ccaaagaggc
	tggaaaggaat	ataaaaatggg	ttttggaaat	ccctccgggt	aatattggct	gggaaatgag
	tttatttttg	ccattaccag	tcagaggcag	tacatgctaa	gaatttgagtt	aatggactgg
	gaagggAAC	gagcctattc	acagtatgac	agattccaca	taggaaatga	aaagcaaaac
	tataggttgt	atttaaaagg	tcacactggg	acagcaggaa	aacagagcag	cctgatctta
30	cacgggtctg	atttcagcac	taaagatgt	gataatgaca	actgtatgtg	caaatgtgcc
	ctcatgttaa	caggaggatg	gtggtttgc	gcttggcc	cctccaatct	aaatggaaatg
	ttctatactg	cgggacaaaa	ccatggaaaa	ctgaatggga	taaagtggca	ctacttcaaa
	gggcccagtt	actccttacg	ttccacaact	atgatgattc	gacctttaga	tttttga

35

<210> 8
 <211> 3417
 <212> DNA
 <213> Homo sapiens

40

<300>
 <310> XM001924

45

<300>
 <302> Tie1

<400> 8

50	atggtctggc	gggtgcccc	tttcttgctc	cccatcctct	tcttggcttc	tcatgtggc
	gcggcggtgg	acctgacgct	gctggccaac	ctggggctca	cggaccccca	gcgttcttc
	ctgacttgcg	tgtctggga	ggccggggcg	gggaggggct	cggaacgcctg	ggggccggccc
	ctgctgctgg	agaaggacga	ccgtatcg	cgcacccgc	ccggccacc	cctgcgcctg
	gcgcgcacg	gttcgcacca	ggtcacgtt	cgccgttct	ccaagccctc	ggacctcg
	ggcgtcttct	cctgcgtgg	cggtgctgg	gcgcggcgca	cgcgctcat	ctacgtgcac
	aacagccctg	gagcccac	gcttccagac	aaggcacac	acactgtgaa	caaaggtgac
55	accgctgtac	tttctgcacg	tgtgcacaag	gagaagcaga	cagacgtat	ctgaaagagc
	aacggatct	acttctacac	cctggactgg	catgaagccc	aggatggcg	gttccctgt
	cagctcccaa	atgtgcagcc	accatcgac	ggcatctaca	gtgccactt	cctgaaagcc
	agcccccctgg	gcagcgcc	ctttcggtc	atcgatgggg	gttgcgtggc	tggcgctgg

60

65

DE 101 00 586 C 1

gggccaggct gtaccaagga gtgcccagggt tgccctacatg gaggtgtctg ccacgaccat 720
 gacggcgaat gtgtatgccc ccctggcttc actggcaccc gctgtgaaca ggctgcaga 780
 gagggccgtt ttggcagag ctgccaggag cagtgcggc gcatatcagg ctgcggggc 840
 ctcacccct gcctccaga cccctatggc tgctcttgc gatctggctg gagaggaagc 900 5
 cagtgcgaag aagttgtgc ccctggctat tttgggctg attggcact ccagtgcag 960
 tgtcagaatg gtggcaactg tgaccgggtc agtgggtgtg tctgccttc tgggtggcat 1020
 ggagtgcact gtgagaagtc agaccggatc cccagatcc tcaacatggc ctcagaactg 1080
 gagttcaact tagagacat gccccggatc aactgtgcag ctgcaggaa ccccttcccc 1140
 gtgcgggca gcatagagct acgcaagcca gacggcaactg tgctcctgtc caccaggcc 1200 10
 attgtggcag cagagaagac cacagctgag ttgcagggtgc cccgcttggt tcttgccgac 1260
 agtgggttct gggagtgcgg tgtgtccaca tctggggcc aagacagccg ggcgttcaag 1320
 gtcaatgtga aagtgcggcc cgtgccccctg gtcacccctc ggctcctgac caagcagago 1380
 cgccagcttgg tggctccccc gctggctcg ttctctgggg atggaccat ctccactgtc 1440
 cgcctgcact accggcccca ggacagtacc atgactgtt cgaccattgt ggtggacccc 1500 15
 agtgagaacg tgacgttaat gaacctgagg ccaaagacag gatacagtgt tcgtgtcag 1560
 ctgagccggc caggggaagg aggagagggg gcctggggc ctccccccat catgaccaca 1620
 gactgtcctg agcctttgtt gcagccgtgg ttggagggct ggcatgtgga aggcactgac 1680
 cggctgcgag tgagctggtc cttgccccctg gtggccggc cactgggtgg cgacggttc 1740
 ctgctgcgcc tggggacgg gacacggggg caggagcggc gggagaacgt ctcatcccc 1800 20
 caggcccgca ctgcctcct gacgggactc acgcctggca cccactacca gctggatgtg 1860
 cagctctacc actgcacccct cctggggccg gcctcgcccc ctgcacacgt gcttctgccc 1920
 cccagtggc ctccagcccc ccgacacccct cacgcccagg ccctctcaga ctccgagatc 1980
 cagctgacat ggaagcaccgc ggaggctctg cctggggccaa tatccaagta cgttgtggag 2040
 gtgcagggtgg ctgggggtgc aggagacca ctgtggatag acgtggacag gcctgaggag 2100 25
 acaagcacca tcatccgtgg cctcaacgcc agcacgcgt acctcttcg catgcggggc 2160
 agcattcagg ggctggggga ctggagcaac acagtagaaag agtccacccct gggcaacggg 2220
 ctgcaggctg agggcccaactt ccaagagac cggcagctg aagaggccct ggatcagcag 2280
 ctgatcctgg cgggtgtggg ctccgtgtct gccacctggc tcaccatect ggctgccctt 2340
 ttaaccctgg tggcatccg cagaagctgc ctgcacatggc gacgcaccc tacccatccag 2400 30
 tcaggctcg ggcaggagac catcctgcag ttcaagctcg ggcacccctg acattaccgg 2460
 cggccaaaac tgcagcccgaa gcccctgagc tacccagtgc tagagtggga ggacatcacc 2520
 tttgaggacc tcatccggga ggggaaactt ggccaggtca tccggccat gatcaagaag 2580
 gacgggctga agatgaacgc agccatcaa atgtgaaag agtgcctc tgaaaatgac 2640
 catcgtaat ttgggggaga actggaaattt ctgtgcataat tggggcatca ccccaacatc 2700 35
 atcaacctcc tggggccctg taagaacgcg gttactgtt atatcgctat tgaatatgcc 2760
 ccctacggaa acctgttaga ttttctgcgg aaaagccggg tccctagac tgacccagct 2820
 tttgctcgag agcatggac agccttacc cttagctccc ggcagctgt gcgtttcgcc 2880
 agtgatcgcc ccaatggcat gcagttaccgc agtggaaagc agttcatcca cagggacctg 2940
 gctgcccggaa atgtgtcggtt cggagagaaac ctggcctcca agattgcaga ctccggccctt 3000 40
 tctcggggag aggaggatca tggtaagaag acgatggggc gtctccctgt ggcgtggatg 3060
 gccattgagt ccctgaacta cagtgtctat accaccaaga gtgatgtctg gtctttggaa 3120
 gtccttctt gggagatagt gagccttggaa ggtacaccct actgtggcat gacctgtgcc 3180
 gagctctatg aaaagctgcc ccagggtctac cgcacatggac agcctcgaaa ctgtgacgat 3240
 gaagtgtacg agctgtatgcg tcagtgtcg cgggaccgtc cctatgagcg accccccctt 3300 45
 gcccagatgg cgttacagatc agggccgtat ctggaaagcca ggaaggctt tggtaacatg 3360
 tcgctgtttt agaacttcac ttacgcgggc attgtatgcca cagctgagga ggctgtga 3417

<210> 9
 <211> 3375
 <212> DNA
 <213> Homo sapiens

<300>
 <302> TEK
 <310> L06139

50

55

60

65

DE 101 00 586 C 1

<400> 9
atggactttagccagctt agttctctgt ggagtca gtcctttc tggaacttg 60
gaagggtgcca tggacttgat ctgtatcaat tccctac ctc ttgtatctga tgctgaaaca 120
5 tctctcacct gcattgc ctc tgggtggcgc ccccatgagc ccatcaccat aggaaggac 180
tttgaaggcct taatgaacca gcaccaggat ccgctggaag ttactcaaga tgtgaccaga 240
gaatgggcta aaaaagggtgt ttggaagaga gaaaaggcta gtaagatcaa tggtgcttat 300
10 ttctgtgaag ggcgaggctcg aggagaggca atcaggatac gaaccatgaa gatgctcaa 360
caagcttccct tcctaccagg tactttaact atgactgtgg acaagggaga taacgtgaac 420
atatcttca aaaaggatt gattaaagaa gaagatgc gat tgatttacaa aaatggttcc 480
ttcatccatt cagtgccccg gcatgaagta cctgatattc tagaagtaca cctgcctcat 540
15 gctcagcccc agatgctgg agtgtactcg gccaggatata taggaggaaa cctcttcacc 600
tcggccttca ccaggctgat agtccggaga tgtgaagccc agaagtgggg acctgaatgc 660
aaccatctct gtactgctt gatgaacaat ggtgtctgcc atgaagatac tggagaatgc 720
atttgccttc ctgggtttat gggaggacg tggagaagg cttgtgaact gcacacgtt 780
20 ggcaagaacct gtaaaaggaaag gtgcagtgg caagaggat gcaagtctt tgggttctgt 840
ctccctgacc cctatgggtg ttccctgtgcc acaggctgga agggtctgca gtgcaatgaa 900
gcatgccacc ctggttttt cgggcccagat tgtaagctt ggtgcagctg caacaatggg 960
gagatgtgtg atcgcttcca aggatgtctc tgctctccag gatggcagg gctccagtgt 1020
gagagagaag gcatacccgag gatgacc cca aagatagtgg atttgc caga tcataatagaa 1080
25 gtaaacagt gtaaattttaa tccatattgc aaagcttctg gctggccgct acctactaat 1140
gaagaatga cccctggtaa gccggatggg acagtgc tcc atccaaaaga ctttaaccat 1200
acgatcatt tctcagtagc catattcacc atccaccggg tcctcccccc tgactcaggaa 1260
gttgggtct gcagtgtgaa cacagtggct gggatgggtgg aaaagccctt caacattttc 1320
gttaaagttc ttccaaagcc cctgaatgccc cccaaacgtgaa ttgacactgg acataactt 1380
30 gctgtcatca acatca gtc tgagccttac ttggggatg gaccaatcaa atccaagaag 1440
cttctataca aaccctgtt aactatgag gctggcaac atattcaagt gacaaatgag 1500
attgttacac tcaactattt ggaacctcgg acagaatatg aactctgtgt gcaactggc 1560
cgtcgtggag agggtgggaa agggcatcct ggacctgtgaa gacgcttca aacagcttct 1620
35 atcggaactcc ctccctccaag aggtctaaat ctctgcctt aagtctcagac cacttaaat 1680
ttgacctggc aaccaatatt tccaagctcg gaaagatgact ttatgttga agtggagaga 1740
aggctgtgc aaaaaaggta tcagcagaat attaaatgtt caggcaactt gacttcgggt 1800
ctacttaaca acttacatcc cagggagcag tacgtggtcc gagctagagt caacaccaag 1860
40 gcccaggggg aatggagtga agatctcact gcttggaccc ttatgtgacat tcttcctct 1920
caaccagaaa acatcaagat ttccaacatt acacactcct cggtgtgat ttcttggaca 1980
atattggatg gctattctat ttcttctatt actatccgtt acaagggttca aggcaagaat 2040
gaagaccagc acgttgcgtt gaagataaaag aatgccacca tcaattcaga tcagotcaag 2100
50 ggcttagagc ctgaaacagc ataccagggtt gacattttt cagagaacaa catagggtca 2160
agcaacccag cctttctca tgaactgggtt accctcccg aatctcaagc accagcggac 2220
ctcgaggggg ggaagatgct gcttata gtc atccttggct ctgctggaaat gacctgcctg 2280
actgtgtgt tggcctttt gatcatattt caattgaaga gggcaatgt gcaaggaga 2340
atggcccaag ctttccaaaaa cgtgaggggaa gaaccagctg tgcagttcaa ctcaggact 2400
ctggccctaa acaggaaggt caaaaacaac ccagatccta caatttatcc agtgcgttgc 2460
tggaatgaca tcaaaatttca agatgtgatt ggggaggggca attttggcca agttcttaag 2520
55 gcgccatca agaaggatgg gttacggatg gatgctgca toaaaagaat gaaagaat 2580
gcctccaaag atgatcacag ggactttgca ggagaactgg aagttctttg taaacttgg 2640
caccatccaa acatcatcaa tctttagga gcatgtgaaat atcgaggctt cttgtacctg 2700
gccatttagt acgcggccca tggaaacccctt ctggacttcc ttcgcaagag ccgtgtgctg 2760
gagacggacc cagcatttgc cattgccaat agcaccgggtt ccacactgtc ctccacagc 2820
ctccttcaat tcgtggccga cgtggcccg ggcatggactt acttggccca aaaacagtt 2880
atccacaggg atctggctgc cagaaacattt tagttggtgg aaaaactatgt ggcaaaaata 2940
60 gca gat tttt gattgtcccg aggtcaagag gtgtacgtgaaaagacaat gggaggctc 3000
ccagtgcgtt ggtggccat cagtcactg aattacagtgt tgcacacaaac caacagtgt 3060
gtatggtctt atggtgcgtt actatgggag attgttagct taggaggccac accctactgc 3120
ggatgactt gtgcagaacttacgagaag ctgccccagg gtcacagact ggagaaggccc 3180
ctgaactgtg atgatgagggt gatgatcta atgagacaat gctggccggaa gacgccttat 3240
gagaggccat catttgc cca gatattgggtg tccttaaaca gaatgtttaga ggagcggaaag 3300
acctacgtga ataccacgct ttatgagaag tttacttatq caqqaattqa ctgttctgt 3360

DE 101 00 586 C 1

gaagaagcgg cctag

3375

<210> 10
 <211> 2409
 <212> DNA
 <213> Homo sapiens

<300> 10
 <300>
 <302> beta5 integrin
 <310> X53002

<400> 10
 ncbsncvwra tgccgcggc cccggcgccc ctgtacgcct gcctctggg gctctgcgcg 60
 ctccctcccc ggctcgagg tctcaacata tgcaactatgt gaagtgcac ctcatgtgaa 120
 gaatgtctgc taatccaccc aaaatgtgcc tgggtctcca aagaggactt cggaagccca 180
 cggtccatca cctctcggtg tgatctgagg gcaaaccctt tcaaaaatgg ctgtggaggt 240
 gagatagaga gcccagccag cagctccat gtcctgagga gcctgcctt cagcagcaag 300
 ggttcgggct ctgcaggctg ggacgtcatt cagatgacac cacaggagat tgccgtgaa 360
 ctccggcccg gtgacaagac caccttccag ctacagggtt gccagggttgg ggactatcc 420
 gtggacctgt actacctgtat ggacctctcc ctgtccatga aggtgactt ggacaatatc 480
 cggagccctgg gcaccaaact cgcggaggag atgaggaagc tcaccagcaa cttccgggtt 540
 ggatttgggt cttttgttga taaggacatc ttcctttct cctacacggc accgaggtac 600
 cagaccaatc cgtgcattgg ttacaagttt tttccaaatt gcgtccctc ctttgggttc 660
 cgcacatctgc tgcctctcac agacagagt gacagcttca atgaggaagt tcggaaacag 720
 agggtgtccc ggaaccgaga tgcccctgag gggggcttgg atgcagtaact ccaggcagoc 780
 gtctgcaagg agaagattgg ctggcggaaag gatgcactgc atttgcgtgt gttcacaaca 840
 gatgatgtgc cccacatcgc attggatgga aaattgggag gcctgggtca gccacacgt 900
 ggccagtgcc acctgaacga ggcacacgg tacacagcat ccaaccagat ggactatcca 960
 tcccttgccc tgcttggaga gaaattggca gagaacaaca tcaacccatc ctttgcagt 1020
 aaaaaaaacc attatatgtct gtacaagaat ttacagccc tgataacctgg aacaacgggt 1080
 gagattttag atggagactc caaaaatattt attcaactgtt ttattaatgc atacaatagt 1140
 atccggctta aagtggagg tgcagtcgg gatcggctgg aggatcttaa tctcttc 1200
 actgcactt gccaagatgg ggtatccat cctgggtcaga ggaagtgtga gggctgtgaa 1260
 attggggaca cggcatctt tgaagtatca ttggaggccc gaagctgtcc cagcagacac 1320
 acggagcatg tggttgcctt gggccgggt ggttccggg acagcttggc ggtgggggtc 1380
 acctaacaact gcacgtgcgg ctgcagcgtg ggcgttggaa ccaacacgcg caggtcaac 1440
 gggagcggga cctatgtctg cggcctgtgt gagtgcagcc cggcttaccc gggcaccagg 1500
 tgcgagtgcc aggatggggaa gaaccagagc gtgtaccaga acctgtgccg ggaggcagag 1560
 ggcaaggccac tgtcagcgg gctggggac tgcaactgtca accagtgtcc ctgcttcgag 1620
 agcgagttt gcaagatcta tggcccttc tgtgagtgtcg acaacttctc ctgtgccagg 1680
 aacaaggggag tccctgtctc aggccatggc gagtgtcact gggggaaatg caagtgcct 1740
 gcaggttaca tcggggacaa ctgttaactgc tcgacagaca tcagcacatg ccggggcaga 1800
 gatggccaga tctgcagcga gctggggac tgcgttgcgtt ggcagtgcac atgcacggag 1860
 ccggggccct ttggggagat gtgtgagaag tggccaccc gcccggatgc atgcagcacc 1920
 aagagagatt gctcgatgt cctgtctctc cactctggaa aacctgacaa ccagacctgc 1980
 cacagccat gcaggatga ggtgatcaca tgggtggaca ccacgtgaa agatgaccag 2040
 gaggctgtgc tatgtttctt caaaaaccggc aaggactgcg tcatgtatgtt cacctatgt 2100
 gagctccccca gtggggagtc caacctgacc gtcctcaggg agccagactg tggaaacacc 2160
 cccaaacgcca tgaccatctt cctggctgtg gtcggtagca tcctccctgt tgggcttgca 2220
 ctcctggcta tctggaaagct gcttgcacc atccacgacc ggaggagtt tgcaaagttt 2280
 cagagcgagc gatccaggc cccgtatgaa atggcttcaa atccattata cagaaaggct 2340
 atctccacgc acactgtgga ctgcacccatc aacaagttca acaaattctt caatggcact 2400
 gtggactga 2409

60

65

DE 101 00 586 C 1

```

<210> 11
<211> 2367
<212> DNA
<213> Homo sapiens
5

<300>
<302> beta3 integrin
<310> NM000212

10 <400> 11
atgcgagcgc ggccgcggcc ccggccgctc tggcgactg tgctggcgct gggggcgctg 60
gcgggcgttg gcgttaggagg gcccaacatc tgtaccacgc gaggtgttag ctccctgccag 120
cagtgcctgg ctgtgagccc catgtgtgcc ttgtgtctg atgaggccct gcctctggc 180
15 tcacctcgct gtgacctgaa ggagaatctg ctgaaggata actgtgcccc agaatccatc 240
gagttcccaag tgagttagggc ccgagacta gaggacaggc ccctcagcga caagggctct 300
ggagacagct cccaggtcac tcaagtcaat cccagagga ttgcacttgc gtcggggcca 360
gatgattcga agaatttctc catccaagtgc cgccaggtgg aggattaccc tggacatc 420
tactacttga tggacctgtc ttactccatg aaggatgtac tggagacat ccagaacactg 480
20 ggtaccaagc tggccaccca gatgcgaaag ctcaccagta acctgcggat tggcttcggg 540
gcattttgtgg acaaggctgt gtcaccatac atgtatatct cccaccaga gcccctcgaa 600
aaccctgtct atgatatgaa gaccacctgc ttgcccattgt ttggctacaa acacgtgctg 660
acgctaactg accaggtgac ccgcttcaat gaggaagtga agaagcagag tggacatc 720
aaccggatgt cccagaggg tggcttgcat gccatcatgc aggctacatg ctgtatgaa 780
25 aagattggct ggaggaatga tgcatttttttgc ttgctgggtt ttaccactga tggcaagact 840
catatagcat tggacggaag gctggcaggc attgtccaggc ctaatgacgg gcaagtgtcat 900
gttggtagtg acaatcatta ctctgcctcc actaccatgg attatccctc tttggggctg 960
atgactgaga agctatccca gaaaaacatc aatttgcattt tgcaggatgc tggaaatgt 1020
gtcaatctct atcagaacta tagtgagctc atcccaaggaa ccacagggtt ggttctgtcc 1080
30 atggatttca gcaatgtctt ccagctcattt gttgtatgtt atggaaaat ccgttctaaa 1140
gttagagctgg aagtgcgtga cttccctgaa gagttgtctc tattcctcaa tggccacctgc 1200
ctcaacaatg aggtcatccc tggcctcaag tcttgtatgg gactcaagat tggagacacg 1260
gtgagcttca gcatttgcggc caaggtgcga ggtgtcccc aggagaagga gaagtccctt 1320
accataaaagg ccgtgggtt caaggacagc ctgatcgatc aggtcacctt tgattgtgac 1380
35 tggcctgccc agggccaaagg tgaacctaattt accatcgatc gcaacaatgg caatgggacc 1440
tttgagttgtg gggatgcggc ttgtgggcctt ggctggctgg gatcccaggc tgagtgtca 1500
gaggaggact atgccttc ccaggcaggac gaatgcaggc cccgggggg tcagcccgcc 1560
tgcaggccagg gggcgagtg cctctgtgtt caatgtgtt gccacaggc tgactttggc 1620
aagatcacagg gcaagttactg cgagtgtgac gacttctctt gtgtccctta caagggggag 1680
40 atgtgctcag gccatggcca gtgcagctgtt ggggactgccc tggccatc gcaactggacc 1740
ggctactact gcaactgtac cacgcgtactt gacacctgca tggccatc gcaactggacc 1700
tgcagcgccc gggcaagtg tgaatgtggc agtgtgtctt gtatccagcc ggcttcttat 1860
ggggacacctt gtgagaagtg cccacccgc ccagatgcctt gacacccat gaaagaatgt 1920
gtggagttgtt agaagttgtt ccgggagccc tacatgaccg aaaatacttca caaccgttac 1980
45 tggcgtgacg agattggatc agtggaaatgg cttaaggaca tggcaagga tgcagtgaat 2040
tgtacctata agaatgagga tgactgtgtc gtcaaggatcc agtactatgt agattcttagt 2100
ggaaagtcca tccgttatgtt ggttagaagag ccagatgtgc ccaagggccc tgacatcctg 2160
gtggccttc tctcagtgtt gggggccattt ctgttcattt gccttgcgc cctgctcatc 2220
tggaaactcc tcatcaccat ccacgaccga aaagaatttcg taaaatttga ggaagaacgc 2280
50 gccagagcaaa attgggacac agccaaacaac ccactgtata aagaggccac gtctaccc 2340
accaatatca cgtaccgggg cacttaa 2367

```

```

<210> 12
<211> 3147
<212> DNA
<213> Homo sapiens

```

60

65

DE 101 00 586 C 1

<300>
<302> alpha v intergrin
<310> NM0022210

60

DE 101 00 586 C 1

tttaaacggg tccggccacc tcaagaagaa caagaaaggg agcagctca acctcatgaa 3120
 aatggtgaag gaaactcaga aacttaa 3147

5

<210> 13
 <211> 402
 <212> DNA
 <213> Homo sapiens

10

<300>
 <302> CaSm (cancer associated SM-like oncogene)
 <310> AF000177

15

<400> 13
 atgaactata tgcctggcac cgccagcctc atcgaggaca ttgacaaaaa gcacttggtt 60
 ctgcttcgag atggaaggac acttataggc ttttaagaa gcattgatca atttgcaaac 120
 ttagtgctac atcagactgt ggagcgtatt catgtggca aaaaatacgg tgatattcct 180
 20 cgagggattt ttgtggtcag aggagaaaaat gtgtcctac taggagaaat agacttgaa 240
 aaggagagtg acacacccct ccagcaagta tccattgaag aaattctaga agaacaaaagg 300
 gtggaacagc agaccaagct ggaagcagag aagttgaaag tgcaggccct gaaggaccga 360
 ggtctttcca ttcctcgagc agatactctt gatgagtact aa 402

25

<210> 14
 <211> 1923
 <212> DNA
 <213> Homo sapiens

30

<300>
 <302> c-myb
 <310> NM005375

35

<400> 14
 atggccccgaa gaccggca cagcatatat agcagtgacg aggatgatga ggactttgag 60
 atgtgtgacc atgactatga tgggctgctt cccaagtctg gaaagcgtca cttggggaaa 120
 acaagggtgga cccgggaaga ggatgaaaaa ctgaagaagc tggtgaaaca gaatggaaaca 180
 gatgactgga aagttattgc caattatctc ccgaatcgaa cagatgtgca gtgccagcac 240
 40 cgatggcaga aagtactaaa ccctgagtc atcaagggtc cttggaccaa agaagaagat 300
 cagagagtga tagagcttg acagaaatac ggtccgaaac gttggctgt tattgccaag 360
 cacttaaagg ggagaattgg aaaacaatgt agggagaggt ggcataacca cttgaatcca 420
 gaagttaaga aaacctcttg gacagaagag gaagacagaa ttatttacca ggcacacaag 480
 agactgggga acagatgggc agaaatcgca aagttactgc ctggacgaaac tgataatgct 540
 45 atcaagaacc actgaattc tacaatgcgt cggaaaggc aacaggaagg ttatctgcag 600
 gagtcttcaa aagccagcca gccagcagt gcccacaagct tccagaagaa cagtcatttgc 660
 atgggttttgc ctcaggctcc gcctacagct caactccctg ccactggcca gcccactgtt 720
 aacaacgact attcttatta ccacatttct gaagcacaaa atgtctccag tcattgttcca 780
 taccctgttag cgttacatgt aaatatagtc aatgtccctc agccagctgc cgccagccatt 840
 50 cagagacact ataatgtga agaccctgag aaggaaaagc gaataaaagga attagaatttgc 900
 ctcctaatgt caaccggagaa tgagctaaaa ggacagcagg tgctaccaac acagaaccac 960
 acatgcagct accccgggtg gcacagcacc accattgccg accacaccag acctcatgg 1020
 gacagtgcac ctgtttctg tttggggagaa caccactcca ctccatctt gccagcggat 1080
 cctggctccc tacctgaaga aagcgccctg ccagcaaggt gcatgatctg ccaccaggc 1140
 55 accattctgg ataatgttaa gaacctttaa gaatttgcag aaacactcca atttatagat 1200
 tctttcttaa acacttccag taaccatgaa aactcagact tggaaatgcc ttctttaact 1260
 tccacccccc tcattggtca caaattgact gttacaacac catttcataag agaccagact 1320
 gtgaaaactc aaaaggaaaa tactgtttt agaaccccag ctatcaaaag gtcaatctta 1380
 gaaagctctc caagaacttcc tacaccattc aaacatgcac ttgcagctca agaaattaaa 1440

60

DE 101 00 586 C 1

tacggcccc tgaagatgct acctcagaca ccctctcatc tagtagaaga tctgcaggat 1500
 gtgatcaaac aggaatctga tgaatcttga tttttgtctg agtttcaaga aaatggacca 1560
 cccttactga agaaaatcaa acaagaggtg gaatctccaa ctgataaattc aggaaacttc 1620
 ttctgctcac accactggga aggggacagt ctgaataaccc aactgttcac gcagacctcg 1680
 cctgtgcgag atgoaccgaa tattcttaca agctccgtt taatggcacc agcatcagaa 1740
 gatgaagaca atgttctcaa agcatttaca gtacctaaaa acaggtccct ggcgagccccc 1800
 ttgcagcctt gttagcagtac ctgggaacct gcattctgtg gaaagatgga ggagcagatg 1860
 acatcttcca gtcaagctcg taaaatacgtg aatgcattct cagccggac gctggtcatg 1920
 tga 1923

5
10

<210> 15
 <211> 544
 <212> DNA
 <213> Homo sapiens

15

<300>
 <302> c-myc
 <310> J00120

20

<400> 15
 gacccccc gag ctgtgctgct cggggccgcc accggccggc cccggccgtc cctggctccc 60
 ctcctgcctc gagaagggc gggcttctca gaggcttgc gggaaaaaaga acggaggagg 120
 ggatcgcgct gagtataaaa gccgggtttc gggctttat ctaactcgct gtagtaattc 180
 cagcggagg cagaggggagc gagcggggcg cggcttaggg tggaaagagcc gggcgagcag 240
 agctgcgtg cgggcgtctt gggaaaggag atccggagcg aatagggggc ttgcctctg 300
 gcccagccct cccgcgtatc ccccagccag cggccgc当地 cccttgc当地 atccacgaaa 360
 ctggcccat agcagcgggc gggcacttg cacttgcact tacaacacccc gagcaaggac 420
 gcgactctcc cgacgcgggg aggctattct gcccatttgg ggacacttcc ccggcgctgc 480
 caggaccgcg ttctctgaaa ggctctcctt gcagctgctt agacgctgga ttttttcgg 540
 gtag 544

25
30

<210> 16
 <211> 618
 <212> DNA
 <213> Homo sapiens

35

<300>
 <302> ephrin-A1
 <310> NM004428

40

<400> 16
 atggagttcc tctggggccc tctcttgggt ctgtgctgca gtctggccgc tgctgatcgc 60
 cacaccgtct tctggAACAG ttcaaatccc aagttccggaa atgaggacta caccatacat 120
 gtgcagctga atgactacgt ggacatcatc tgtccgact atgaagatca ctctgtggca 180
 gacgctgcca tggagcagta catactgtac ctgggtggagc atgaggagta ccagctgtgc 240
 cagccccagt ccaaggacca agtccgctgg cagtgc当地 ggcccagtgc caagcatggc 300
 ccggagaagc tgtctgagaa gttccagcgc ttcacaccc ttccacccccc tcaccctggg caaggagttc 360
 aaagaaggac acagctacta ctacatctcc aaacccatcc accagcatga agaccgctgc 420
 ttgaggttga aggtgactgt cagtggccaa atcactcaca gtccctcaggc ccatgtcaat 480
 ccacaggaga agagacttgc agcagatgac ccagaggtgc gggttctaca tagcatcggt 540
 cacagtgc当地 cccacgcctt ctggactg tgctgctctt tccacttctg 600
 ctgctgcaaa ccccggtga 618

45
50
55

<210> 17

60

65

DE 101 00 586 C 1

```

<211> 642
<212> DNA
<213> Homo sapiens

5 <400> 17
atggcgcccg cgcaagcgccc gctgctcccg ctgctgctcc tgctgttacc gctgccgccc 60
ccgccttcg cgcgccgcca ggacgcccgg cgcgcacta cggaccgcta cgccgtctac 120
tggAACCGCA gcaacccccag gttccacgca ggcgcggggg acgacggcgg gggctacacg 180
10 gtggagggtga gcatcaatga ctacctggac atctactgccc cgcactatgg ggcgcgcgtg 240
ccgcggcccg agcgcatggc gcactacgtg ctgtacatgg tcaacggcga gggccacgccc 300
tectgcgacc accggccagcg cggcttcaag cgctgggagt gcaaccggcc cgcggccccc 360
ggggggccgc tcaagttctc ggagaaggta cagctttca cgccttc cctgggcttc 420
gagttccggc cccggccacgaa gtattactac atctctgcca cgcctcccaa tgctgtggac 480
15 cggccctgccc tgcgactgaa ggtgtacgtg cggccgacca acgagacccct gtacgaggct 540
cctgagccca tcttaccagg caataactcg tgttagcagcc cggccggctg cgccttc 600
ctcagcacca tccccgtgct ctggaccctc ctgggttcct ag 642

20 <210> 18
<211> 717
<212> DNA
<213> Homo sapiens

25 <300>
<302> ephrin-A3
<310> XM001787

<400> 18
30 atggcgccgg ctccgctgct gctgctgtg ctgctcgcc cgcgtccgct gctgccgctg 60
ctggcccaag ggccggagg ggcgctggaa aaccggcatg cggtgtactg gaacagctcc 120
aaccagcacc tgcggcgaga gggctacacc gtgcagggtga acgtgaacga ctagctggat 180
atttactgccc cgcactacaa cagctcgaaa gtggggcccg gggcgggacc gggggcccgaa 240
ggcggggcag agcagtaegt gctgtacatg gtgagccgca acggctacccg cactgcaac 300
35 gccagccagg gcttcaagcg ctgggagtgcc aaccggccgc acgccccgca cagccccatc 360
aagttctcg agaaatccca ggcgtacagg gccttcttc tgggctacga gttccacgccc 420
ggccacgagg actactacat ctccacgccc actacaacc tgcaactggaa gtgtctgagg 480
atgaagggtgt tgcgtctgct cgcctccaca tcgcactccg gggagaagcc ggtccccact 540
40 ctcccccaatg tcaccatggg ccccaatatg aagatcaacg tgctggaaa ctttgaggaa 600
gagaaccctc aggtgcccgg gcttgagaag agcatcagcg ggaccagccc caaacgggaa 660
cacctgcccc tggccgtggg catcgccctc ttccatgca cgttcttggc ctcctag 717

45 <210> 19
<211> 606
<212> DNA
<213> Homo sapiens

50 <300>
<302> ephrin-A3
<310> XM001784

<400> 19
55 atgcggctgc tgccctgtc gcgactgtc ctctggccgg cttccctcg ctccctctg 60
cgcgggggct ccagccctcg ccacgtatgc tactggaaact ccagtaaccc cagttgttt 120
cgaggagacg ccgtgggtgg aactgggctc aacgattacc tagacattgt ctggccccac 180
tacgaaggcc caggcccccc tgagggcccc gagacgtttg ctttgtacat ggtggactgg 240
ccaggctatg agtcctgcca ggcagaggc ccccgccct acaagcgctg ggtgtgtcc 300

```

60

65

DE 101 00 586 C 1

ctgcccttg gccatgttca atttcagag aagattcagc gcttcacacc cttctccctc 360
 ggctttagt tcttacctgg agagacttac tactacatct cggtgcccac tccagagagt 420
 tctggccagt gcttggaggct ccaggtgtct gtctgctgca aggagaggaa gtctgagtca 480
 gccccatctg ttgggagccc tggagagagt ggcacatcag ggtggcgagg gggggacact 540
 cccagccccc tctgtcttct gcttactg ctgcttctga ttcttctgtct tctgcgaatt 600
 ctgtga 606

5

<210> 20
 <211> 687
 <212> DNA
 <213> Homo sapiens

10

<300>
 <302> ephrin-A5
 <310> NM001962

15

<400> 20
 atgttgcacg tggagatgtt gacgctggc tttctggc tctggatgtg tggatc 60
 caggaccgg gctccaaggc cgccggc acggc tctactggaa cagcagcaac 120
 cccagattcc agaggggtga ctaccatatt gatgtctgta tcaatgacta cctggatgtt 180
 ttctggccctc actatgagga ctccgtccca gaagataaga ctgagcgcta tgccctctac 240
 atggtaact ttgatggcta cagtgcctgc gaccacactt ccaaagggtt caagagatgg 300
 gaatgttaacc ggcctcactc tccaaatggc cgcgtgaagt tctctgaaaa attccagctc 360
 ttcaactccct tttctctagg atttgaattt cggccaggcc gagaatattt ctacatctcc 420
 tctgcaatcc cagataatgg aagaaggcc tggatctaaagc tcaaagtctt tggagacca 480
 acaaataatgt gtatgaaaac tatagggtt catgatcgta tttcgatgt taacgacaaa 540
 gtagaaaattt cattagaacc agcagatgac accgtacatg agtcagccga gccatccgc 600
 ggcgagaacg cggcacaaac accaaggata cccagccgccc tttggcaat cctactgttc 660
 ctccctggcga tgctttgac attatag 687

20

25

<210> 21
 <211> 2955
 <212> DNA
 <213> Homo sapiens

35

<400> 21
 atggccctgg attatctact actgctccctc ctggcatccg cagtggctgc gatggaagaa 60
 acgttaatgg acaccagaac ggctactgca gagctggct ggacggccaa tcctgcgtcc 120
 ggggtggaaag aagtcaatgg ctacgatgaa aacctgaaca ccatccgcac ctaccagggtg 180
 tgcaatgtct tcgagcccaa ccagaacaat tggctgctca ccaccttcat caaccggcg 240
 gggggcccatc gcacccatcac agagatgcgc ttcactgtga gagactgcag cagccctccct 300
 aatgtcccaag gatctgcaaa ggagacccctt aacttgtatt actatgagac tgactctgtc 360
 attgccacca agaagtcaac cttctggctt gaggccccctt acctcaaagt agacaccatt 420
 gctgcagatg agagtttcc ccagggtggac tttggggaa ggctgatgaa ggtaaacaca 480
 gaagtcaagga gcttggcc tcttactcgg aatggttttt acctcgcttt tcaggattat 540
 ggagccctgta tgtctttctt ttctgtccgt gtcttcttca aaaagtgtcc cagcattgtg 600
 caaaaattttt cagttttcc agagactatg acagggcag agagcacatc tctggtgatt 660
 gctcgccggca catgcacccc caacgcagag gaagtggacg tgcccatcaa acttactgc 720
 aacggggatg gggaatggat ggtgcctatt gggcgatgca cctgcaagcc tggctatgag 780
 cctgagaaca gcggtggcatg caaggcttgc cctgcaggga cattcaaggc cagccaggaa 840
 gctgaaggct gctccactg cccctccaaac agccgctccc ctgcagagggc gtctccatc 900
 tgcacccgtc ggaccggta ttaccggcgc gactttgacc ctccagaatg ggcacatgcact 960
 agcgtcccat caggcccccg caatgttatac tccatcgta atgagacgtc catcattctg 1020
 gagtggcacc ctccaaaggga gacaggtggg cgggatgtg tgacactacaa catcatctgc 1080
 aaaaagtgcc gggcagaccg ccggagctgc tcccgtgtg acgacaatgt ggagttgtg 1140

45

50

55

60

65

DE 101 00 586 C 1

cccaggcagc tgggcctgac ggagtgccgc gtctccatca gcagcctgtg ggcccacacc 1200
 ccctacacct ttgacatcca ggccatcaat ggagtctcca gcaagagtcc ctccccccca 1260
 cagcacgtct ctgtcaacat caccacaaaac caagccgccc cctccaccgt tcccatcatg 1320
 5 caccaggtaa gtgccactat gaggagcatc accttgcata ggcacagcc ggagcagccc 1380
 aatggcatca tcctggacta tgagatccgg tactatgaga aggaacacaa tgagttcaac 1440
 tcctccatgg ccaggagtca gaccaacaca gcaaggattg atggcgtcg gctggcatg 1500
 gtatatgtgg tacaggtgcg tgcccgact gttgtggct acggcaagtt cagtggcaag 1560
 atgtgctcc agactctgac tgacgatgat tacaagtca agctgaggga gcagctgcc 1620
 10 ctgattgtg gctccggcagc ggccggggtc gtgttcgttg tgtccttgg ggcacatctct 1680
 atcgtctgt a cagggaaacg ggcttatagc aaagaggctg tgtacagcga taagctccag 1740
 cattacagca caggccgagg ctccccaggg atgaagatct acattgaccc cttcaactat 1800
 gaggatccca acgaagctgt ccgggagtt gccaaggaga ttgatgtatc ttttgtaaa 1860
 attgaagagg tcatcgagc aggggagtt ggagaagtgt acaaggggcg ttgaaaactg 1920
 15 ccaggcaaga gggaaatcta cgtggccatc aagaccctga aggccaggta ctcggagaag 1980
 cagcgtcggg acttctgag tgaggcgagc atcatggcc agttcgacca tccatacatc 2040
 attcgcctgg aggggtgtgt caccaagagt cggcgtgtca tgatcatcac agagttcatg 2100
 gagaatgtt cattggatc ttccctcagg caaaatgacg ggcagttac cgtgatccag 2160
 cttgtgggtt tgctcagggg catcgctgtc ggcatgaagt acctggctga gatgaattat 2220
 20 gtgcatcggtt acctggctgc taggaacatt ctggtcaaca gtaacctggt gtcaagggtg 2280
 tccgacttt gcctctcccg ctaccttcag gatgacaccc cagatccac ctacaccagc 2340
 tccttggag ggaagatccc tggatgtt acagctccag aggccatcgc ctaccgcaag 2400
 ttcacttcag ccagcgtacgt ttggagctat gggatgtca tggggaaat catgtcattt 2460
 ggagagagac cctattggga tatgtccaaac caagatgtca tcaatgccc egaggcaggac 2520
 25 taccggctgc cccacccat ggactgttca gctgtctac accagctcat gctggactgt 2580
 tggcagaagg accggaaacag ccggccccc tttcgggaga ttgtcaacac cctagataag 2640
 atgatccgga accccggcaag tctcaagact gtggcaacca tcaccggcgt gccttcccg 2700
 cccctgctcg accgctccat cccagacttc acggcctta ccacccgttga tgactggctc 2760
 agcgccatca aaatggtcca gtacaggagc agtttcctca ctgctggctt caccccttc 2820
 30 cagctggtca cccagatgac atcagaagac ctctctgagaa taggcattcac cttggcaggc 2880
 catcagaaga agatcctgaa cagcattcat tctatgaggg tccagataag tcagtcacca 2940
 acggcaatgg catga 2955

35 <210> 22
 <211> 3168
 <212> DNA
 <213> Homo sapiens

40 <400> 22
 atggctctgc ggaggctggg ggccgcgtc ctgtctgtc cgctgctgc cgccgtggaa 60
 gaaacgctaa tggactccac tacagcgact gctgagctgg gctggatgtt gcatcccca 120
 tcagggtggg aagaggtag tggctacat gagaacatga acacgatccg cacttaccag 180
 gtgtcaacac tggatgtt aagccagaac aactggctac ggaccaagtt tatccggcgc 240
 45 cgtggccccc accgcatcca cgtggagatg aagtttcgg tgcgtgactg cagcagcatc 300
 cccagcgtgc ctggctctg caaggagacc ttcaacctctt attacttga ggctgactt 360
 gactcggcca ccaagaccc tcccaactgg atggagaatc catgggtgaa ggtggatacc 420
 attgcagccg acgagagctt ctcccgagggt gacccgggtg gccgcgtcat gaaaatcaac 480
 accgagggtgc ggaggcttcgg acctgtgtcc cgcagccgt tctacctggc cttccaggac 540
 tatggcggt gcatgtccct catcgccgt cgtgttttctt accgcaagtg ccccccgcate 600
 atccagaatg ggcgcattt ccagggaaacc ctgtcggtttt ctgagagcac atgcgtggg 660
 gctgcccggg gcagctgcat cggccatgcg gaagagggtt atgtacccat caagctctac 720
 tggtaacgggg acggcgagtg gctgggtccc atccggcgct gcatgtgcaa agcaggcttc 780
 55 gaggccgtt agaatggcac cgtctgcca ggttgcattt ctgggacttt caaggccaaac 840
 caaggggatg aggctgtac ccactgtccc atcaacagcc ggaccacttc tgaaggggccc 900
 accaactgtg tctggcccaa tggctactac agagcagacc tggaccctt ggacatgccc 960
 tgcacaacca tccctccgc gccccaggct gtgatttcca gtgtcaatga gaccccttc 1020
 atgctggagt ggacccttcc cccgcactcc ggaggccgag aggacctcg tataacatc 1080

60

65

DE 101 00 586 C 1

atctgcaaga gctgtggctc gggccggggt gcctgcaccc gctgcgggga caatgtacag 1140
 tacgcaccac gccagctagg cctgaccagg ccacgcattt acatcagtga cctgctggcc 1200
 cacacccagt acacccctcg aatccaggt gttaacggcg ttactgacca gagccccttc 1260
 tcgcctcagt tcgcctctgt gaacatcacc accaaccagg cagctccatc ggagtggtcc 1320 5
 atcatgcac aggtgagccg caccgtggac agcattaccc tgcgtggtc ccagccagac 1380
 cagcccaatg gcgtgatcct ggactatgag ctgcgtact atgagaagga gtcagttag 1440
 tacaacgcca cagccataaa aagccccacc aacacggtca cctgacaggc cctcaaagcc 1500
 ggcgccatct atgtttcca ggtgcggca cgacccgtgg caggctacgg ggcgtacagc 1560
 ggcagatgt acttccagac catgacagaa gcccaggatc agacaagcat ccaggagaag 1620
 ttgccactca tcatcgctc ctcggccgt ggcctggct tcctcattgc tgggttggtc 1680 10
 atcgccatcg tggtaacag acgggggtt gaggctgtg actcggagta cacggacaag 1740
 ctgcaacact acaccgtgg ccacatgacc ccaggcatga agatctacat cgatccttc 1800
 acctacgagg accccaacga ggcgtgcgg gagtttgcga aggaaattga catctcctgt 1860
 gtcaaaaattg agcagggtat cggagcaggg gagtttgcg aggtctgcag tggccacctg 1920
 aagctgccag gcaagagaga gatcttgcg gccatcaga cgctcaatc ggcgtacacg 1980
 gagaagcgc gccgggactt ctcggcaaa gtcgtgacc aagagcacac ctgtgtatg catcaccgag 2100
 aacgtcatcc acctggaggg ttcatggaga atggctccct ggactccctt ctccggcaaa acatgggca gttcacagtc 2160
 atccagctgg tgggcatgct tcggggcatc gcagctggca tgaagtacct ggcagacatg 2220 20
 aactatgttc accgtgaccc ggctgcccgc aacatcctcg tcaacagcaa cctggctgc 2280
 aagggtgtcg acttgggct ctcacgcctt ctagaggacg atacctcaga ccccacctac 2340
 accagtgcctc tggggggaaa gatccccatc cgctggacag ccccgaaagc catccagta 2400
 cggaatgtca cctcgccag tggatgtgtt agtacggca ttgtcatgtg ggagggtatg 2460
 tcctatgggg agcggcccta ctgggacatg accaaccagg atgtaatcaa tgccattgag 2520 25
 caggactatc ggctgcccacc gcccattggac tgcccgagcg ccctgcacca actcatgctg 2580
 gactgttggc agaaggacg caaccacccg cccaaatgtt gccaaattgt caacacgta 2640
 gacaagatga tccgcaatcc caacagcctc aaagccatgg cggccctctc ctctggcatc 2700
 aacctgcccgc tgctggacgg cacgatcccc gactacacca gtttaaacac ggtggacgag 2760
 tggctggagg ccatacaagat ggggcagtag aaggagagct tcgcaatgc cggcttcacc 2820
 tccttgcacg tcgtgtctca gatgtatgt gaggacattc tccgggttgg ggtcactttg 2880 30
 gctggccacc agaaaaaaat cctgaacagt atccaggtga tgcgggcga gatgaaccag 2940
 attcgtctg tggagggcca gccactcgcc aggaggccac gggccacggg aagaaccaag 3000
 cggtgcacgc cacgagacgt caccacaaa acatgcaact caaacacggg aaaaaaaaaag 3060
 ggaatggggaa aaaagaaaac agatctggg agggggcggg aaatacaagg aatattttt 3120 35
 aaagaggatt ctcataagga aagcaatgac tggcttgcg gggataa 3168

<210> 23
 <211> 2997
 <212> DNA
 <213> Homo sapiens

40

<400> 23
 atggccagag cccgcccccc gccgcccggc tcggccggcc cggggcttct gccgctgctc 60 45
 cctccgctgc tgctgtgcc gctgtgtgt ctggccggcc gtcggggc gctggaaagag 120
 accctcatgg acacaaaatg ggtAACATCT gagttggcgt ggacatotca tccagaaagt 180
 ggggtggaaag aggtgagtg ccacgtatgg gccatgaatc ccacccgcac ataccaggta 240
 tggtaatgtgc gcgagtcaag ccagaacaa tggcttcga cggggttcat ctggccggcgg 300
 gatgtgcagc gggctacgt ggagctcaag ttcactgtgc gtgactgcaa cagcatcccc 360
 aacatccccg gtcctgcaa ggagacccctc aaccccttct actacgaggc tgacagcgat 420
 gtggcctcag ctcctccccc cttctggatg gagaacccct acgtgaaagt ggacaccatt 480
 gcaccccgatg agacgttctc gccggctggat gccggccgtg tcaacacca ggtgcgcagc 540
 tttggccac tttccaaggc tggcttctac ctggcccttc aggaccagg cgctgcattg 600
 tcgctcatct ccgtgcgcgc cttctacaag aagtgtgcatt ccaccacccg aggcttcgca 660
 ctcttccccg agacccctcac tggggcggag cccacccctc tggctattgc tcctggcacc 720 55
 tgcatacccta acgcgtggg ggtgtcggtt ccactcaagc tctactgcaac cggcgatggg 780
 gagtggatgg tgcctgtggg tgcctgcacc tggccacccg gccatgagcc agctgccaag 840
 60

60

65

DE 101 00 586 C 1

gagtcccagt gccgccccctg tccccctggg agctacaagg cgaagcaggg agagggggccc 900
 tgcctccat gtccccccaa cagccgtacc acctccccag ccgccagcat ctgcacctgc 960
 cacaataact tctaccgtgc agactcggac tctcgccaca gtgcctgtac caccgtgcca 1020
 5 tctccacccc gaggtgtat ctccaatgtg aatgaaaccc cactgatcct cgagtggagt 1080
 gagccccggg acctgggtgt ccgggatgac ctccgttaca atgtcatctg caagaagtgc 1140
 catggggctg gaggggcctc agcctgtca cgctgtatg acaacgtgga gtttgcct 1200
 cggcagctgg gcctgtcgga gccccgggtc cacaccagcc atctgctggc ccacacgcgc 1260
 tacacccctt aggtgcaggc ggtcaacccgt gtctcgccca agagccctct gcccctcg 1320
 10 tatgcggccg tgaatatcac cacaaccagg gctgccccgt ctgaagtgc cacactacgc 1380
 ctgcacagca gtcaggcag cagccctacc ctatcctggg cacccccaga gggccccaaac 1440
 ggagtcatcc tggactacga gatgaagttt tttgagaaga gcgagggtat cgcctccaca 1500
 gtgaccagcc agatgaactc cgtcagctg gacggggctt ggcctgacgc cgcctatgtg 1560
 gtccagggtcc gtgccccac agtagctggc tatggggcgtt acagccccc tgccgagttt 1620
 15 gagaccacaa gtgagagagg ctctggggcc cagcagctcc agggacactt tcccctcatc 1680
 gtgggctccg ctacagctgg gcttgcttc gtgtggctg tcgtggatcat cgctatcg 1740
 tgcctcagga agcagcggaca cggctctgtat tccggatcat cggagaactt gcaagcgtac 1800
 attgctccctg gaatgaaggt ttatatttgc ccttttaccc acgaggaccg taatgaggct 1860
 gttcggggat ttgccaagga gatcgacgtg tcctgcgtca agatcgagga ggtgatcgga 1920
 20 gctggggaaat ttggggaaatgt gtgcccgtgtt cgactgaaac agcctggccg ccgagagggtg 1980
 ttttgtggcca tcaagacgct gaagggtggc tacaccgaga ggcagggcg ggacttccta 2040
 agcgaggcct ccatcatggg tcagtttgc cacccttataa taatccggct cgaggggctg 2100
 gtcaccaaaa gtcggccagt tatgatccctc actgagttca tggaaaactg cgcctggac 2160
 tccttcctcc ggctcaacga tggggcagttc acggtcatcc agctgggtgg catgttgcgg 2220
 25 ggcattgtcg ccggcatgaa gtacctgtcc gagatgaact atgtgcaccc cgacctggct 2280
 gctcgcaaca tccttgtcaa cagcaacctg gtctgcaag tctcagactt tggcctctcc 2340
 cgcttcctgg aggatgaccc ctccgatctt acctacacca gttccctggg cggaaagatc 2400
 cccatccgct ggactgcccc agaggccata gcctatcgga agttcacttc tgctagtgtat 2460
 gtctggagct acggaattgt catgtggag gtcatgagct atggagagcg accctactgg 2520
 30 gacatgagca accaggatgt catcaatgcc gtggagcagg attaccggct gccaccaccc 2580
 atggactgtc ccacagcact gcaccagctc atgctggact gctgggtgcg ggaccggAAC 2640
 ctcaggccca aattctccca gattgtcaat accctggaca agtcatccg caatgtgc 2700
 agcctcaagg tcattgcctc cgctcagttc ggcatgtcac agcccctctt ggaccgcacg 2760
 gtcccagatt acacaacctt cacgacagtt ggtgattggc tggatgccat caagatgggg 2820
 35 cggtaacagg agacttgcg cagtgcgggg tttgcattttt ttgacctggt ggcccagatg 2880
 acggcagaag acctgtccg tattggggtc accctggccg gccaccagaa gaagatcctg 2940
 agcagtatcc aggacatgcg gtcgcagatg aaccagacgc tgcctgtgca ggtctga 2997

40 <210> 24
 <211> 2964
 <212> DNA
 <213> Homo sapiens

45 <400> 24
 atggagctcc ggggtgctgt ctgctggct tcgttggccg cagctttggaa agagaccctg 60
 ctgaacacaa aattggaaac tgctgatctg aagtgggtga cattccctca ggtggacggg 120
 cagtgggagg aactgagccg cctggatgag gaacagcaca gcgtgcgcac ctacgaagtg 180
 tgtgaagtgc agcgtgcccc gggccaggcc cactggctt gcacagggtt ggtccacgg 240
 50 cggggcgcgg tccacgtgtc cgccacgtc cgcttcacca tgctcgatgt cctgtccctg 300
 ctcgggctg ggcgtctctg caaggagacc ttcaccgtct tctactatga gagcgatgcg 360
 gacacggcca cggccctcac gccagcctgg atggagaacc cctacatcaa ggtggacacg 420
 gtggccgccc agcatctcac ccggaaagcgc cctggggccg aggccaccgg gaaggtgaat 480
 gtcaagacgc tgcgtctggg accgctcagc aaggctggct tctacctggc cttccaggac 540
 55 caggggtgct gcatggccct gctatccctg cacccttttcc acaaaaagtg cgcccagctg 600
 actgtgaacc tgactcgatt cccggagact gtgcctggg agctgggtgt gcccgtggcc 660
 ggttagctgcg tgggtggatgc cgtccccggcc cctggggccca gccccagccctt ctactgcctg 720
 gaggatggcc agtggggccga acagccggc acgggctgcg gctgtgcctcc ggggttcag 780

60

65

DE 101 00 586 C 1

gcagctgagg ggaacaccaa gtgccgagcc tggcccagg gcaccccaa gccccgtca 840
 ggagaagggt cctgccagcc atgcccagcc aatagccact ctaacaccat tggatctgcc 900
 gtctgccagt gccgcgtcgg ggacttccgg gcacgcacag acccccgggg tgcaccctgc 960 5
 accaccctc ctteggctcc gcgagcgtg gttcccgcc tgaacggctc ctccctgcac 1020
 ctggaatgga gtgccccctt ggagtctggt ggccgagagg acctcaccta cgccctccgc 1080
 tgccgggagt gcccacccgg aggctctgt gcgcctcgc gggagacct gacttttgc 1140
 cccggccccc gggacctggt ggagccctgg ttggtggttc gagggctacg tccggacttc 1200
 acctataacet ttgaggtcac tgcattgaac ggggtatcct ctttagccac ggggcccgtc 1260
 ccatttgagc ctgtcaatgt caccactgac cgagaggtac ctcctgcagt gtctgacatc 1320
 cgggtgacgc ggtcctcacc cagcagcttgc agcctggctt gggctgttcc cggggcaccc 1380
 agtggggcgt ggtggacta cgaggtaaa taccatgaga agggcgccga gggcccagc 1440
 agcgtgcgt tccgtaaagac gtcagaaaac cgggcagagc tgcggggctt gaagcgggga 1500
 gccagctacc tggtcggat acggggcgc tctgaggccg gctacgggcc cttcggccag 1560
 gaacatcaca gccagaccca actggatgag agcgagggtc ggcgggagca gctggccctg 1620 15
 attgcgggca cggcagtcgt gggtgtggc ctggctctgg tggtcattgt gtcgcagtt 1680
 ctctgcctca ggaagcagag caatgggaga gaagcagaat attcggacaa acacggacag 1740
 tatctcatcg gacatggtac taaggcttac atcgacccct tcacttatga agacccta 1800
 gaggctgtga gggaaatttgc aaaagagatc gatgtcttct acgtcaatgat taaagagggt 1860
 attggtgcaag gtgagtttgg cgagggtgtc cggggcggc tcaaggcccc aggaagaag 1920
 gagagctgtg tggcaatcaa gaccctgaag ggtggctaca cggagccgc gggcgtgag 1980
 tttctgagcg aggccctcat catggggcag ttcgagcacc ccaatatcat ccgcctggag 2040
 ggcgtggta ccaacagcat gcccgtcatg atttcacag agttcatgga gaacggcgc 2100
 ctggactctt tcctgcggct aaacgacgga cagttcacag tcatccagct cgtgggcata 2160
 ctgcggggca tcggctcggt catcggtac cttggcgaga tgagctcaatg ccacccgagac 2220
 ctggctgctc gcaacatcct agtcaacagc aacctcgctc gcaaagtgtc tgactttggc 2280
 ctttcccgat tcctggagga gaacttccctt gatcccacct acacgagctc cttggggagga 2340
 aagattccca tccgatggac tgccccggag gccattgcct tccggaaatgt cacttccgc 2400
 agtgatgcct ggagttacgg gattgtgatg tggggagggtg tgcattttgg ggagaggccc 2460
 tactgggaca tgagcaatca ggacgtgatc aatggcattt aacaggacta cccgctgccc 2520 30
 ccgcggcccg actgtcccac ctccctccac cagctcatgc tggactgttg gcagaaagac 2580
 cggaatggcc gggcccgctt cccccagggt gtcagcgc cggacaagat gatccggAAC 2640
 cccggccagcc tcaaaaatcg ggccggggag aatggcggggg cctcacaccc tctcctggac 2700
 cagcggcgc ctcactactc agcttttggc tctgtggcgg agtggcttcg gcccattaaa 2760
 atgggaatg acgaaggcccg tttcgagcc gctggctttt gctccctcga gctggtcagc 2820
 cagatctctg ctgaggaccc gctccgaatc ggagtcaact tgggggaca ccagaagaaaa 2880
 atcttggcca gtgtccagca catgaagtcc cagggccaagc cgggaacccc ggggggaca 2940
 ggaggaccgg ccccgagta ctga 2964

40

<210> 25
 <211> 1041
 <212> DNA
 <213> Homo sapiens

45

<300>
 <302> ephrin-B1
 <310> NM004429

50

atggctcgcc ctgggcagcg ttggctcggt aagtggcttg tggcgatggt cgtgtggcgc 60
 ctgtgccggc tcgcacacc gctggccaag aacctggagc ccgtatcctg gagctccctc 120
 aaccccaagt tcctgagtgg gaagggtttt gtatctatc cgaaaattgg agacaagctg 180
 gacatcatct gccccggcaga agaaggcaggg cggccctatg agtactacaa gctgtacctg 240
 gtgcggccgt agcaggcagc tgcctgttagc acagttctcg aacccaaatgt gttggtcacc 300 55
 tgcaataggc cagaggcagga aatacgtttt accatcaatg tccaggagtt cagccccaaac 360
 tacatggggcc tggagttcaa gaaggcaccat gattactaca ttacctcaac atccaatgg 420
 agcctggagg ggctggaaaa cggggagggc ggtgtgtgcc gcacacgcac catgaagatc 480

60

65

DE 101 00 586 C 1

atcatgaagg ttggcaaga tcccaatgct gtgacgcctg agcagctgac taccagcagg 540
 cccagcaagg aggagacaa cactgtcaag atggccacac aggcccctgg tagtcggggc 600
 tccctgggtg actctgtatgg caagcatgag actgtgaacc aggaagagaa gagtggccca 660
 5 ggtcaagtg gggcagcag cggggaccct gatggcttct tcaactccaa ggtggcattg 720
 ttgcgcgtg tcgtgccgg ttgcgtcata tcctgtctca tcatcatctt cctgacggtc 780
 ctactactga agctacgc aaaggcaccgc aagcacacac agcagcgggc ggctgcccctc 840
 tgcgtca gtcgtccag tcccaagggg ggcagtggca cagcgggcac cgagcccagc 900
 gacatcatca ttcccttacg gactacagag aacaactact gccccacta tgagaagggtg 960
 10 agtggggact acgggcaccc tgtctacatc gtccaagaga tgccgcacca gagcccgccg 1020
 aacatctact acaaggtctg a 1041

<210> 26
 15 <211> 1002
 <212> DNA
 <213> Homo sapiens

<300>

20 <400> 26
 atggctgtga gaaggactc cgtgtggaa tactgctggg gtgttttatgc gtttttatgc 60
 agaactgcga ttccaaatc gatagttta gagcctatct attggattc ctcgaactcc 120
 aaatttctac ctggacaagg actggtaacta taccacaga taggagacaa attggatatt 180
 25 atttgccccca aagtggactc taaaactgtt ggcagatgt aatattataa agtttatatg 240
 gttgataaaag accaaggcaga cagatgcaact attaagaagg aaaatacccc tctcctcaac 300
 tggccaaac cagaccaaga tatcaaattc accatcaagt ttcaagaatt cagccctaac 360
 ctctgggtc tagaatttca gaagaacaaa gattattaca ttatatctac atcaaattggg 420
 tcttggagg gcctggataa ccaggaggga ggggtgtgcc agacaagagc catgaagatc 480
 30 ctcatgaaag ttggacaaga tgcaagttct gctggatcaa ccaggaataa agatccaaca 540
 agacgtccag aactagaagc tggtacaaat ggaagaagtt cgacaacaag tccctttgtc 600
 aaaccaaatc caggttctag cacagacggc aacagcggc gacattcggg gaacaacatc 660
 ctccgttccg aagtggcctt atttgcaggg attgcttcag gatgcatcat cttcatctgc 720
 atcatcatca cgctgggtgt cctcttgctg aagtagccga ggagacacag gaagcactcg 780
 35 ccgcgcgc aaccacgcgt gtcgctcagc acactggcca caccgaagcg cagcggcaac 840
 aacaacggct cagaccccgat tgacattatc atcccgctaa ggactgcgga cagegtcttc 900
 tgccctact acgagaaggc cagcggcgc tacgggcacc cggtgtacat cgtccaggag 960
 atgccccccgc agageccggc gaacatttac tacaagggtct ga 1002

40 <210> 27
 <211> 1023
 <212> DNA
 <213> Homo sapiens

45 <400> 27
 atggggcccc cccattctgg gccggggggc gtgcgagtcg gggccctgtc gctgctgggg 60
 gttttggggc tgggtctgg gtcagcctg gagcctgtct actggaactc ggcaataag 120
 aggttccagg cagaggggtgg ttatgtgtc taccctcaga tcggggaccg gctagacctg 180
 50 ctctgcccccc gggccggcc tcctggccct cactcctctc ctaattatga gttctacaag 240
 ctgtacctgg taggggggtgc tcagggccgg cgctgtgagg cacccttcg cccaaacctc 300
 cttctcactt gtgatcgccc agacctggat ctccgttca ccatcaagtt ccaggagtt 360
 agccctaatac tctggggcca cgagttccgc tcgcaccacg attactacat cattgccaca 420
 tcggatggga cccgggaggg cctggagagc ctgcaggaggg gtgtgtgcct aaccagaggc 480
 55 atgaagggtgc ttctccgagt gggacaaagt ccccgaggag gggctgtccc ccggaaaacct 540
 gtgtctgaaa tgcccatgga aagagacccgaa gggccagccc acagcctgga gcctggaaag 600
 gagaacctgc caggtgaccc caccagcaat gcaacctccc ggggtgtga aggccccctg 660
 cccccctccca gcatgcctgc agtggctggg gcagcagggg ggctggcgct gctttgtcg 720

60

65

DE 101 00 586 C 1

ggcgtggcag gggctggggg tgccatgtgt tggcgagac ggcccccaa gccttcggag 780
 agtcgccacc ctggccctgg ctccccccc aggggagggt ctctgggcct ggggggttgg 840
 ggtggatgg gacotcggga ggctgagccct gggagctag ggatagctct ggggggttggc 900
 gggctgcag atccccccctt ctgcccccac tatgagaagg tgagtggtga ctatggcat 960
 cctgtgtata tcgtgcagga tggggccccc cagagccctc caaacatcta ctacaaggta 1020
 tga 1023

5

<210> 28
 <211> 3399
 <212> DNA
 <213> Homo sapiens

10

<300>
 <302> telomerase reverse transcriptase
 <310> AF015950

15

<400> 28
 atgccgcgcg ctccccgctg ccgagccgtg cgctccctgc tgccgcagcca ctaccgcgag 60
 gtgctgccgc tggccacgtt cgtgcggcgc ctggggccccc agggctggcg gctgggtcag 120
 cgccgggacc cggccggcttt ccgcgcgcgt gtggcccagt gcctgggtg cgtccctgg 180
 gacgcacggc cgcggcccccgc cgccccctcc ttccgcagg tgcctgcct gaaggagctg 240
 gtggcccgag tgctgcagag gctgtgcgag cgccgcgcga agaacgtct gccttcggc 300
 ttccgcgtgc tggacggggc ccgcgggggc ccccccggagg cttcaccac cagcgtcgc 360
 agctacctgc ccaacacggc gaccgcacgc ctgcggggga gcggggcggt ggggctgtg 420
 ctgcgcgcgc tggcgacga cgtgctgtt caccgcgtt caccgcgtt gctctttgtg 480
 ctggtggtc ccaactgcgc ctaccaggtt tgcggccgc cgcgttacca gctccggcgt 540
 gcaactcagg cccggccccc gccacacgcg agtggacccc gaaggcgctt gggatgcgaa 600
 cgggccttgg accatagcgt cagggaggcc ggggtcccccc tggccttggcc agccccgggt 660
 gggaggaggc gcgggggcag tggccagccg agtgcgttgc tggccaaagag gcccaggcgt 720
 ggcgtgtccc ctgagccggc gcggacgccc gttggcagg gttccttggc ccacccgggc 780
 aggacgcgtg gaccgagtga ccgtgtttt tgcgtgttgc caccgcgtt acccgccgaa 840
 gaagccact cttttggaggc tgccgttgc ggcacgcgc actcccaccc atccgtggc 900
 cgccagcacc acggggggcc cccatccaca tcgcggccac caccgcgtt ggacacgcct 960
 tggcccccgg tgcgttgcgc gaccaagcac ttccctact cccatccaca caccgcgtt 1020
 ctgcggccct ctttctact cagctctgc agggcccgcc tgcgttgcgc caccgcgtt 1080
 gtggagacca tttttgtgg ttccaggccc tggatgcgc ggcgttcccg caccgcgtt 1140
 cgcctgcccc agcgttactg gcaaatgcgg cccctgttcc tggatgcgc tggagctgt 1200
 ggcgtgtcc ctttccgggt gctccctcaag acgcactgcgc cgcgttgcgc tggcgttcc 1260
 ccagcagccg gtgttgcgc ccggagaaag ccccaaggct tggatgcgc tggcgttcc 1320
 gaggacacag acccccgctc ctttgcgc ctttgcgc cccatccaca caccgcgtt 1380
 gtgtacggc tggatgcgc ctttgcgc cccatccaca caccgcgtt 1440
 aggccacaacg aacccgcgtt ctttgcgc accaagaagt tgcgttgcgc tggatgcgc 1500
 gccaagctt cgcgttgcgc gctgttgcgc aagatgagcg tggatgcgc tggatgcgc 1560
 cgcaggagcc cagggttgg tggatgcgc ggcgttgcgc tggatgcgc tggatgcgc 1620
 ctggccaagt tggatgcgc gctgttgcgc tggatgcgc tggatgcgc tggatgcgc 1680
 ttttatgtca cggagaccac gtttcaaaag aacaggctt tggatgcgc tggatgcgc 1740
 tggagcaagt tgcaagcat tggatgcgc cggatgcgc tggatgcgc tggatgcgc 1800
 ctgtcggaag cagaggctc gcaatgcgc gaaatgcgc tggatgcgc tggatgcgc 1860
 ctccgcgttca tggatgcgc tggatgcgc tggatgcgc tggatgcgc tggatgcgc 1920
 ggagccagaa cggatgcgc agaaaagagg gggatgcgc tggatgcgc tggatgcgc 1980
 ctgttgcgtt cggatgcgc tggatgcgc tggatgcgc tggatgcgc tggatgcgc 2040
 ctggccctgg acgtatcca cggatgcgc tggatgcgc tggatgcgc tggatgcgc 2100
 gacccggccg ctttgcgc tggatgcgc tggatgcgc tggatgcgc tggatgcgc 2160
 ccccaaggaca ggatgcgc ggtatgcgc agcatcatca aaccccaaggaa caccgtactgc 2220
 gtgcgtcggt atgcgttgcgc ccagaaggcc gcccattggc acgtccgcac ggccttcaag 2280
 agccacgttca tggatgcgc tggatgcgc tggatgcgc tggatgcgc tggatgcgc 2340

35

40

45

55

60

65

DE 101 00 586 C 1

caggagacca gcccgtcgag ggatgccgtc gtcatcgagc agagctccctc cctgaatgag 2400
 gcccggcgtg gcctttcgta cgttcccta cgccatgtt gcccaccgc cgtgcgcata 2460
 aggggcaagt cttacgtcca gtgccagggg atccccgagg gtcctatccct ctccacgctg 2520
 5 ctctgcagcc tggcttacgg cgacatggag aacaagctgt ttgcgggat tcggcgggac 2580
 gggctgtcc tgcgtttgtt ggatgattt tcgttgggtga cacccatccct caccacgctg 2640
 aaaaccttcc tcaggaccct ggtccgaggt gtcctgttgt atggctgcgt ggtgaacttg 2700
 cggaagacag tggtaactt ccctgttagaa gacgaggccc tgggtggcac ggctttgtt 2760
 cagatgcggg cccacggctt atccccctgg tgccgcctgc tgctggatac cccgaccctg 2820
 gaggtgcaga ggcgtactc cagctatgcc cggacccctca tcagagccag tctcacccctc 2880
 10 aaccgcggct tcaaggctgg gaggAACATC cgtcgcaaac tctttgggt ctgcggctg 2940
 aagtgtcaca gcctgtttctt ggatttgcag gtgaacagcc tccagacggt gtgcaccaac 3000
 atctacaaga tcctctgtc gcaggcgatc aggtttcacg catgtgttgt gcagctccca 3060
 tttcatcagc aagtttggaa gaaccccaaca ttttctgc gcgtcatctc tgacacggcc 3120
 15 tccctctgtc actccatctt gaaagccaaag aacgcaggaa tgctcgctgg gccaaggggc 3180
 gccggccggcc ctctgccttc cgaggccgtg cagtggtgtt gccaacaaac attcctgctc 3240
 aagctgactc gacaccgtgtt cacctacgtg ccactctgg ggtcacttag gacagcccaag 3300
 acgcagctga gtccggaaactt cccggggacg acgtgactt ccctggaggc cgcagccaaac 3360
 ccggcactgc cttcagactt caagaccatc ctggactga 3399

20

<210> 29
<211> 567
<212> DNA
25 <213> Homo sapiens

<300>
<302> K-ras
<310> M54968

30 <400> 29
atgactgaat ataaaacttgtt ggttagtttga gcttggcg taggcaagag tgccttgacg 60
atacagctaa ttccagaatca ttttggac gaatatgatc caacaataga ggattccatc 120
aggaagcaag tagtaatttga tggagaaacc tgcgttctgg atattctcgat cacagcagg 180
35 caagaggagt acatgtcaat gaggggaccat tacatgagga ctggggagggtt cttctttgt 240
gtatttgcca taaaataatac taaatcattt gaagatattt accattatag agaacaattt 300
aaaagagtttta aggactctga agatgttacctt atgtccttag taggaaataa atgtgattt 360
ccttcttagaa cagtagacac aaaacaggtt cagacttagt caagaagttt tggaaatttctt 420
tttatttggaaa catcagcaaa gacaagacag ggtttgtt atgccttctt tacatttagtt 480
40 cgagaaatttcaaaacataa agaaaatgtt agcaaagatg gtaaaaaagaa gaaaaagaag 540
tcaaagacaa agtgtgtat tatgttt 567

<210> 30
45 <211> 3840
<212> DNA
<213> Homo sapiens

<300>
50 <302> mdr-1
<310> AF016535

<400> 30
atggatcttg aaggggaccg caatggagga gcaaaagaaga agaacttttt taaaactgttac 60
55 aataaaaatgtt aaaaagataaa gaaggaaaag aaaccaacttgc tcagtgtatt ttcaatgtttt 120
cgctattcaa attggcttgc caagttgtat atgggtgggtt gaaactttggc tgcctatcatc 180
catggggcttgc gacttccctt catgtgtgtt gttttggag aaatgacaga tatctttgtca 240
aatgcaggaa attttagaaatgtt tctgtatgttca aacatcacta atagaagtgttataatgtt 300

60

65

DE 101 00 586 C 1

acagggttct	tcatgaatct	ggaggaagac	atgaccagg	atgcctatta	ttacagtgg	360	
attgggtctg	gggtgctgg	tgctgcttac	attcagg	cattttgg	cctggcag	420	
ggaagacaaa	tacacaaaat	tagaaaacag	tttttcat	ctataatgc	acaggagata	480	
ggctgggtt	atgtcacga	tgttgggg	cttaacacc	gacttacaga	tgatgtct	540	
aagattaatg	aaggaattgg	tgacaaaatt	gaaatgtt	ttcagtc	ggcaacatt	600	
ttcactgggt	ttatagtagg	atttacacgt	ggttgg	taaccctt	gattttgg	660	
atcagtcc	ttcttggact	gtcagtc	gtctgg	agataactat	ttcatttact	720	
gataaaagaac	tcttagcgta	tgcaaaagct	ggagc	ctgaagaggt	cttggcag	780	
attagaactg	tgattgcatt	tggaggaca	aagaaagaac	ttgaaaggta	caacaaaat	840	
ttagaagaag	ctaaaagaat	tggataaaag	aaagctatt	cagccaat	ttctataggt	900	
gctgtttcc	tgctgatcta	tgcatctt	gctctgg	tctggat	gaccac	960	
gtcctctcag	gggaatattc	tattggaca	gtactcact	tat	ttctgt	attaattgg	1020
gcttttagt	ttggacaggc	atctcca	atgaaagcat	ttgcaa	atgc	aagaggagc	1080
gcttatgaaa	tcttcaagat	aattgataat	aagccaagta	ttgacag	cta	ttcgaagagt	1140
gggcacaaac	cagataat	taagggaa	ttgaattc	gaaatgtt	ca	ttcagtt	1200
ccatctcgaa	aagaagttaa	gatcttgaag	ggtctga	tgaagg	tgca	gagtgg	1260
acggtgccc	tggttggaaa	cagtggct	ggaagagc	caacagt	c	gtgtgc	1320
aggctctatg	accccacaga	ggggatgg	agtgtt	gacaggat	at	taggacc	1380
aatgttaagg	ttctacggg	aatcat	gtgg	aggact	tttgc	ttgttgc	1440
accacatag	ctgaaaacat	tcgctat	cgtgaaa	tcaccat	g	tgagattg	1500
aaagctgtca	aggaagccaa	tgcctat	gaaat	tttgc	ttttgc	1560	
accctgg	gagagagagg	ggccc	atgttgg	agaagc	atgc	ccatt	1620
gcacgtgccc	tgg	ccccaa	atctgt	atgg	gtc	agcctt	1680
gacacagaaa	gcgaagcagt	gttca	gtctgg	aggcc	agg	tcggacc	1740
accattgt	tagtc	tttgc	taca	gttgc	atgc	gtgtt	1800
gatgatgg	tcat	gttgc	atat	ctgac	gtc	atgc	1860
tacttcaa	ttgtcacaat	gaaaggaa	catgt	tcat	gaaagg	atgc	1920
gatgaatcc	aaagtgaaat	tgatgc	tttgc	gaaatgt	ttttgc	ttgtc	1980
ctaataagaa	aaagatcaac	tcgt	tttgc	tttgc	tttgc	ttgtc	2040
cttagtacca	aagaggct	ggatgaa	atac	tttgc	tttgc	ttgtc	2100
aagctaaatt	taactgaa	gcctt	ttttt	gttgc	tat	tttgc	2160
ggagggctgc	aaccagcatt	tgcaata	tttcaaa	ttatagg	tttaca	ttgtc	2220
attgatgatc	ctgaaacaaa	acgac	aaatgtt	tttgc	tttgc	ttgtc	2280
cttggatt	tttctttt	tacattt	cttcagg	tcacattt	tttgc	ttgtc	2340
gagatcctca	ccaa	ccgata	gtt	ccatgt	tttgc	ttgtc	2400
agttgg	atgaccctaa	aaacacc	ggac	ctacc	tttgc	ttgtc	2460
gctgctcaag	ttaaagg	tatagg	aggcttgc	taatt	tttgc	ttgtc	2520
aatcttgg	cagaataat	tata	tttgc	tttgc	tttgc	ttgtc	2580
ttagcaatt	tacccatcat	tgcaat	ggagt	tttgc	tttgc	ttgtc	2640
caagca	aaagataagaa	agaact	gggt	atgc	tttgc	ttgtc	2700
gaaaacttcc	gaaccgtt	ttctt	tgact	cagg	tttgc	ttgtc	2760
cagagt	aggaccata	caga	actt	tttgc	tttgc	ttgtc	2820
tttcc	cccaagg	gtat	tttgc	tttgc	tttgc	ttgtc	2880
tacttgg	cacataa	catgag	tttgc	tttgc	tttgc	ttgtc	2940
gtcttgg	ccatgg	gggg	ca	tttgc	tttgc	ttgtc	3000
aaaatata	cagcc	catc	atgc	tttgc	tttgc	ttgtc	3060
agcacgg	gcctaa	gaac	atgc	tttgc	tttgc	ttgtc	3120
ttcaactatc	ccacccg	ggac	atgc	tttgc	tttgc	ttgtc	3180
aagg	cgctgg	gg	tttgc	tttgc	tttgc	ttgtc	3240
ctcctgg	gg	cc	tttgc	tttgc	tttgc	ttgtc	3300
aagcgact	atgttca	gtc	tttgc	tttgc	tttgc	ttgtc	3360
ctgtt	gcac	tg	tttgc	tttgc	tttgc	ttgtc	3420
cagga	aggaga	agca	tttgc	tttgc	tttgc	ttgtc	3480
cctaataa	atagcact	at	tttgc	tttgc	tttgc	ttgtc	3540
caacgcatt	ccatag	tg	tttgc	tttgc	tttgc	ttgtc	3600
gccacgtc	ctctgg	agaa	tttgc	tttgc	tttgc	ttgtc	3660
agagaagg	gcac	tgt	tttgc	tttgc	tttgc	ttgtc	3720

60

DE 101 00 586 C 1

ttaatagtgg tgtttcagaa tggcagagtc aaggagcatg gcacgcata gcaagctgctg 3780
 gcacagaaag gcatctattt ttcaatggtc agtgtccagg ctggaacaaa gcccagtg 3840

```

5 <210> 31
<211> 1318
<212> DNA
<213> Homo sapiens

10 <300>
<302> UPAR (urokinase-type plasminogen activator receptor)
<310> XM009232

15 <400> 31
atgggtcacc cggcgctgct gccgctgctg ctgctgctcc acacctgcgt cccagcctct 60
tggggcctgc ggtgcata gtaaagacc aacggggatt gccgtgttga agagtgcgcc 120
ctgggacagg acctctgcag gaccacgatc gtgcgttgc ggaaagaagg aagaagagctg 180
gagctgggtt agaaaagctg tacccactca gagaagacca acaggaccct gagctatcg 240
20 actggcttga agatcaccag ccttaccagg gttgtgtgtt ggttagactt gtgcacccag 300
ggcaactctg gcccggctgt cacctattcc cgaagccgtt acctcgaatg catttcctgt 360
ggctcatcag acatgagctg tgagaggggc cggcaccaga gcctgcagtgc ccgcagccct 420
gaagaacagt gcctggatgt ggtgaccac tggatccagg aaggtgaaga agggcgtcca 480
aaggatgacc gcccaccccg tggctgttgc tacccctccg gtcgccccggg ctccaatgg 540
25 ttccacaaca acgacacccctt ccacttcctg aaatgtgcac acaccaccaa atgcacacg 600
ggcccaatcc tggagcttga aaatctggcc cagaatggcc gccagtgtt cagctgc 660
gggaacagca cccatggatg ctccctctgaa gagactttcc tcatttgactg ccgaggcccc 720
atgaatcaat gtctggtagc caccggcact cacgaaccga aaaaccaaag ctatatggta 780
agaggctgtg caaccgcctc aatgtgcacca catgcccacc tgggtgacgc cttcagcatg 840
30 aaccacatg atgtcttcctg ctgtactaaa agtggctgtt accaccacaga cctggatgtc 900
cagtaccgca gtggggctgc tcctcaggctt ggcctgccc atctcaggctt caccatcacc 960
ctgctaata gtcgcacact gtggggaggc acttcctctt ggacctaaac ctgaaatccc 1020
cctctctgtcc ctggctggat ccgggggacc ccttgcctt tccctcgctt cccagcccta 1080
cagactgtgtt gttgacactt agggcactgtt ggcacccctt ctgggcctca gtttccca 1140
35 ctataaaaac agctatctca caaagttgtg tgaagcagaa gagaaaaagct ggaggaaggc 1200
cgtggccaa tggagagctt ctgttattt ttaatattgt tgccgctgtt gtgttgtt 1260
tattaattaa tattcatatt atttatttt tactacata aagattttt accagtgg 1318

40 <210> 32
<211> 636
<212> DNA
<213> Homo sapiens

45 <300>
<302> Bak
<310> U16811

<400> 32
atggcttcgg ggcaaggccc aggtcctccc aggaggagg gcccggagcc tgccctgccc 60
50 tctgcttcgtt aggaggcagg agcccccaggac acaggaggagg ttttcccgag ctacgttttt 120
taccggccatc agcaggaaca ggaggctgaa ggggtggctg cccctgcggc cccagagatg 180
gtcaccttac ctctgcaccc tagcagcacc atggggcagg tggacggca gctcgccatc 240
atcggggacg acatcaaccc acgttatgac tcagacttcc agaccatgtt gcagcacctg 300
55 cagccccacgg cagagaatgc ctatgagtttac ttccaccaaga ttggccacccag cctgtttgag 360
agtggcatca attggggcccg tgggtggctt ctctggctt tcggctacccg tctggcccta 420
cacgtctacc agcatggccct gactggctt ctaggccagg tgaccgcctt cgtggctc 480
ttcatgctgc atcactgcattt tgcccggtgg attgcacaga ggggtggctg ggtggcagcc 540

```

60

65

DE 101 00 586 C 1

ctgaacttgg gcaatggtcc catcctgaac gtgctggtgg ttctgggtgt gttctgttg 600
 gccagtttgc tggtacgaag attcttcaaa tcatga 636

<210> 33	5
<211> 579	
<212> DNA	
<213> Homo sapiens	
<300>	10
<302> Bax alpha	
<310> L22473	
<400> 33	15
atggacgggt ccggggagca gcccagaggg gggggggcca ccagctctga gcagatcatg 60 aagacaggggg ccctttgct tcagggttgc atccaggatc gagcaggcg aatggggggg 120 gaggcacccg agctggccct ggaccgggtg cctcaggatg cgtccaccaa gaagctgagc 180 gagtgctcta agcgcacatcg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240 gcccgggtgg acacagactc ccccccggagag gtcttttcc gagtggcagc tgacatgttt 300 tctgacggca acttcaactg gggccgggtt gtgcgccttt tctactttgc cagcaaactg 360 gtgctcaagg ccctgtgcac caaggtggcg gaactgatca gaaccatcat gggctggaca 420 ttggacttcc tccgggagcg gctgttggc tggatccaag accagggtgg ttgggacggc 480 ctccctctctt actttggac gcccacgtgg cagaccgtga ccattttgtt ggcgggagtg 540 ctaccggct cgctcaccat ctggagaag atggctga 579	20
<210> 34	30
<211> 657	
<212> DNA	
<213> Homo sapiens	
<300>	35
<302> Bax beta	
<310> L22474	
<400> 34	40
atggacgggt ccggggagca gcccagaggg gggggggcca ccagctctga gcagatcatg 60 aagacaggggg ccctttgct tcagggttgc atccaggatc gagcaggcg aatggggggg 120 gaggcacccg agctggccct ggaccgggtg cctcaggatg cgtccaccaa gaagctgagc 180 gagtgctcta agcgcacatcg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240 gcccgggtgg acacagactc ccccccggagag gtcttttcc gagtggcagc tgacatgttt 300 tctgacggca acttcaactg gggccgggtt gtgcgccttt tctactttgc cagcaaactg 360 gtgctcaagg ccctgtgcac caaggtggcg gaactgatca gaaccatcat gggctggaca 420 ttggacttcc tccgggagcg gctgttggc tggatccaag accagggtgg ttgggtgaga 480 ctccctcaagg ctccctcaccc ccaccacccg gcccctacca ccccccgtgc cccacccgtcc 540 ctccccatct tcagatcatc agatgtggtc tataatgcgt ttcccttacg tgtctga 657	45
<210> 35	50
<211> 432	
<212> DNA	
<213> Homo sapiens	
<300>	55
<302> Bax delta	
<310> U19599	

DE 101 00 586 C 1

```

<400> 35
atggacgggt ccggggagca gcccagaggc ggggggcca ccagctctga gcagatcatg 60
aagacagggg ccctttgct tcagggatg attgccgccc tggacacaga ctcccccca 120
5   gaggtcttt tccgagtggc agctgacatg tttctgacg gcaacttcaa ctggggccgg 180
gttgtcgccc ttttctactt tgccagcaaa ctgtgctca aggcctgtg caccaggta 240
ccggaactga tcagaaccat catgggctgg acattggact tcctccggga gcggctgtt 300
ggctggatcc aagaccaggg tggttggac ggctcctct cctactttgg gacgcccacg 360
tggcagaccg tgaccatctt tgtggcgaaa gtgctcaccc cctcgctcac catctggaag 420
10  aagatggct ga                                432

<210> 36
<211> 495
15 <212> DNA
<213> Homo sapiens

<300>
<302> Bax epsolin
20 <310> AF007826

<400> 36
atggacgggt ccggggagca gcccagaggc ggggggcca ccagctctga gcagatcatg 60
aagacagggg ccctttgct tcagggttc atccaggatc gagcaggcg aatggggggg 120
25   gaggcacccg agctggccct ggacctggcgtg ctcaggatg cgtccaccaa gaagctgagc 180
gagtgtctca agcgcatacg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240
gccgcgtgg acacagactc ccccccggag gtcttttcc gagtgccggc tgacatgtt 300
tctgacggca acttcaactg gggccgggtt gtcgccttt tctactttgc cagcaaactg 360
gtgctcaagg ctggcgtgaa atggcgtgat ctggcgtcac tgcaacccct gcctcctggg 420
30  ttcaagcgat tcacctgcct cagcatccca aggagctggg attacaggcc ctgtgcacca 480
aggtgccgga actga                                495

<210> 37
35 <211> 582
<212> DNA
<213> Homo sapiens

<300>
40 <302> bcl-w
<310> U59747

<400> 37
atggcgaccc cagcctcgcc cccagacaca cgggctctgg tggcagactt tggtaggttat 60
45   aagctgagggc agaagggtta tgcgtgtgg gctggccccc gggagggccc agcagctgac 120
ccgctgcacc aagccatgcg ggcagctgg aatgagttcg agacccgtt ccggcgcacc 180
ttctctgtat tggcggctca gctgcatacg accccaggct cagcccaactgca acgtttcacc 240
caggtctccg acgaactttt tcaagggggc cccaaactggg gccgccttgt agctttttt 300
50   gtctttgggg ctgcactgtg tgcgtgaggt gtcaacaagg agatgaaacc actgggtggg 360
caagtgcagg agtggatggt ggccttacctg gagacgcggc tggctgactg gatccacage 420
agtgggggct gggcggagtt cacagctcta tacggggacg gggccctggg ggaggcgcgg 480
cgtctgcggg aggggaactg ggcatacg tggacactgc tgacggggc cgtggcactg 540
ggggccctgg taactgttagg ggcctttttt gctagcaagt ga                                582

55 <210> 38
<211> 2481

```

60

65

DE 101 00 586 C 1

<212> DNA
 <213> Homo sapiens

<300>
 <302> HIF-alpha
 <310> U22431

<400> 38

atggagggcg ccggcggcgc	gaacgacaag	aaaaagataa	gttctgaacg	togaaaagaa	60	
aagtctcgag atgcagccag	atctcggcga	agtaaagaat	ctgaagttt	ttatgagctt	120	5
gctcatcgt tgccacttc	acataatgtg	agttcgcac	ttgataaggc	ctctgtatg	180	
aggcttacca tcagtttgc	gctgtgagg	aaacttctgg	atgctggta	tttggatatt	240	
gaagatgaca tgaaaggaca	gatgaattgc	ttttatgttga	aaggcttgg	tggtttgtt	300	
atggttctca cagatgtgg	tgacatgatt	tacatttctg	ataatgtgaa	caaatacatg	360	10
ggattaactc agtttgaact	aactggcac	agtgtgttg	attttactca	tccatgtgac	420	
catgaggaaa tgagagaaaat	gcttacacac	agaaatggcc	tttgtaaaaa	gggtaaaagaa	480	
caaaacacac agcgaagctt	ttttctcaga	atgaagtgt	ccctaactag	ccgaggaaga	540	
actatgaaca taaagtctgc	aacatgaaag	gtattgcact	gcacaggcca	cattcacgt	600	
tatgataacca acagtaacca	acctcagtgt	gggtataaga	aaccacccat	gacctgctt	660	15
gtgctgattt gtgaacccat	tcctcacca	tcaaatattt	aaattcttt	agatagcaag	720	
actttcctca gtcgacacag	cctggatatg	aaattttctt	attgtgatga	aagaattacc	780	
gaattgtatgg gatatgagcc	agaagaactt	ttaggccgct	caatttatga	atattatcat	840	
gctttggact ctgatcatct	gaccaaaact	catcatgata	tgtttactaa	aggacaagtc	900	
accacaggac agtacaggat	gcttgccaaa	agaggtggat	atgtctgggt	tgaaaactcaa	960	
gcaactgtca tatataaacac	caagaattct	caaccacagt	gcattgtatg	tgtgaattac	1020	25
gttgtgagtg gtattattca	gcacgactt	attttctccc	ttcaacaaac	agaatgtgtc	1080	
cttaaaccgg ttgaatcttc	agatatgaaa	atgactcagc	tattcaccaa	agttgaatca	1140	
gaagatacaa gtggctctt	tgacaaacctt	aagaaggaac	ctgatgctt	aactttgtt	1200	
gccccagccg ctggagacac	aatcatatct	tttagatttg	gcagcaacga	cacagaaact	1260	
gatgaccagc aacttgagga	agtaccatta	tataatgtat	taatgctccc	ctcacccaaac	1320	30
aaaaaaattac agaatataaa	tttggcaatg	tctccattac	ccaccgctga	aacgccaaag	1380	
ccacttcgaa gtgtgctga	ccctgcactc	aatcaagaag	ttgcattaaa	attagaacca	1440	
aatccagagt cacttggact	ttcttttacc	atgcccaga	ttcaggatca	gacaccaagt	1500	
ccttccgatg gaagcactag	acaaaagtca	cctgagccct	atagtcccag	tgaatattgt	1560	35
tttttatgtgg atagtgat	ggtcaatgaa	ttcaagttgg	aattggtaga	aaaactttt	1620	
gctgaagaca cagaagcaaa	gaacccattt	tctactcagg	acacagattt	agacttggag	1680	
atgttagctc ccttatatccc	aatggatgt	gacttccagt	tacgttccct	cgatcagtt	1740	
tcaccattag aaagcagttc	cgcaagccct	gaaagcga	gtcctcaaaag	cacagtatac	1800	
gtattccagc agactcaa	acaagaacct	actgcta	ccaccactac	cactgccacc	1860	40
actgtatgaat taaaacagt	gacaaaagac	cgtatggaa	acattaaaat	attgattgca	1920	
tctccatctc ctacccacat	acataaaagaa	actactgtt	ccacatcattc	accatataga	1980	
gataactcaa gtcgacacg	ctcaccaaa	agagcaggaa	aaggagtcat	agaacagaca	2040	
aaaaaaatctc atccaagaag	ccctaaacgt	ttatctgtcg	ctttgagtc	aagaactaca	2100	
gttcctgagg aagaactaaa	tccaaagata	ctagcttgc	agaatgctca	gagaaagcga	2160	
aaaatggaaac atgtggttc	actttttca	gcagtaggaa	ttggAACATT	attacagcag	2220	45
ccagacgatc atgcagctac	tacatcactt	tcttggaaac	gtgtaaaagg	atgcaaatct	2280	
agtgaacaga atggaatgg	gcaaaagaca	attatttaa	taccctctga	tttagcatgt	2340	
agactgctgg ggcaatcaat	ggatgaaagt	ggattaccac	agctgaccag	ttatgattgt	2400	
gaagttaatg ctcctataca	aggcagcaga	aacctactgc	agggtgaaga	attactcaga	2460	
gctttggatc aagttaactg	a				2481	50

<210> 39
 <211> 481
 <212> DNA
 <213> Homo sapiens

55

60

65

DE 101 00 586 C 1

```

<300>
<302> ID1
<310> X77956

5 <400> 39
atgaaagtgc ccagtggcag caccgccacc gcccggcg ggcccaactg cgccgtgaag 60
gccggcaaga cagcgagcg tgccccggag gtgtgcgt gtctgtctga gcagagcgtg 120
gccatctcgc gtcgtccggg cgccggggcg cgctgcctg ccctgcttga cgacgacgag 180
10 gtaaacgtgc tgcgtcacga catgaacggc tgttactcac gcctcaagga gctgggtgcc 240
accctgcccc agaaccgcaa ggtgagcaag gtggagattc tccagcacgt catcgactac 300
atcaggacc ttcaagttgg gctgaactcg gaatccgaa ttgggacccc cgggggcccga 360
gggctgcgg tccgggtcc gtcagcacc ctcaacggcg agatcagcgc cctgacggcc 420
gaggcggcat gcgttccctgc ggacgatcgc atttgtgtc gctgaatggt gaaaaaaaaa 480
15 a
481

<210> 40
<211> 110
20 <212> DNA
<213> Homo sapiens

<300>
<302> ID2B
25 <310> M96843

<400> 40
tgaaaaggctt cagtccctg aggtccatta gaaaaaacag cctgttggac caccgcctgg 60
gcatctccca gagcaaaacc ccgggtggatg acctgtatgg cctgtctgtaa 110
30

<210> 41
<211> 486
<212> DNA
35 <213> Homo sapiens

<300>
<302> ID4
<310> Y07958

40 <400> 41
atgaaggccg tgagccccgt ggcggccctcg ggccgcaagg cgccgtcg ggccggggc 60
ggggagctgg cgctgcgtg cctggccag cacggccaca gcctgggtgg ctccgcagcc 120
45 gccggccggg cggccggccgc agcgcgtgt aaggccggc aggccggccgc cgacgagccg 180
gctgtgtgcc tgcagtgcga tatgaacgac tgctatagcc gcctgcggag gctgggtgcc 240
accatccccc ccaacaagaa agtcagcaaa gtggagatcc tgcagcacgt tattcgactac 300
atcctggacc tgcagctggc gctggagacg caccggccc tgctgaggca gccaccaccc 360
cccggccgc cacaccaccc ggccgggacc tgcgtccagcc cgccggccgc gaccccgctc 420
actgcgtca acaccgaccc ggccggccgc gtgaacaagc agggcgacag cattctgtgc 480
50 cgctga
486

<210> 42
<211> 462
55 <212> DNA
<213> Homo sapiens

<300>

```

60

65

DE 101 00 586 C 1

<302> IGF1
<310> NM000618

<400> 42
atggaaaaaa tcagcagtct tccaaacccaa ttatttaagt gctgctttg tgatttcttg 60
aaggtaaga tgcacaccat gtcctcctcg catctcttct acctggcgct gtgcctgctc 120
accttcacca gctctgccac ggctggaccg gagacgctct gcggggctga gctgggtggat 180
gctcttcagt tcgtgtgtgg agacaggggc ttttatttca acaagcccac agggtatggc 240
tccagcagtc ggagggcgcc tcagacaggc atcgtggatg achtgctgctt ccggagctgt 300
gatctaagga ggctggagat gtattgcgca cccctcaagc ctgccaagtc agctcgctct 360
gtccgtgccc agcgcacac cgacatgccc aagacccaga aggaagtaca tttgaagaac 420
gcaagtagag ggagtgcagg aaacaagaac tacaggatgt ag 462

5

<210> 43
<211> 591
<212> DNA
<213> Homo sapiens

<300>
<302> PDGFA
<310> NM002607

<400> 43
atgaggacct tggcttgcct gctgctcctc ggctgcggat acctcgccca ttttctggcc 60
gaggaagccg agatcccccg cgaggtgatc gagaggctgg cccgcagtca gatccacago 120
atccgggacc tccagcgact cctggagata gactccgtag ggagtgagga ttctttggac 180
accagcctga gagtcacgg ggtccacgcc actaagcatg tgcccggagaa gcggccctg 240
cccatcgga ggaagagaag catcgagaa gctgtcccg ctgtctgcaa gaccaggacg 300
gtcatttaacg agattcctcg gagtcagtc gaccccacgt cccccaactt cctgatctgg 360
ccccctgtgcg tggaggtgaa acgctgcacc ggctgctgca acacgagcag tgtcaagtgc 420
cagccctccc gcgtccacca ccgcagcgtc aagggtggcca aggtggaata cgtcaggaag 480
aagccaaaat taaaagaagt ccaggtgagg ttagaggagc atttggagtg cgctctgcg 540
accacaagcc tgaatccgga ttatcggaa gaggacacgg atgtgaggtg a 591

25

30

35

<210> 44
<211> 528
<212> DNA
<213> Homo sapiens

<300>
<302> PDGFRA
<310> XM003568

40

45

<400> 44
atggccaagc ctgaccacgc taccagtgaa gtctacgaga tcatggtgaa atgctggAAC 60
agtgagccgg agaagagacc ctcctttac cacctgagtg agattgtggaa gaatctgctg 120
cctggacaat ataaaaagag ttatgaaaaaa attcacctgg acttcctgaa gagtgaccat 180
cctgctgtgg cacgcatgca tggactca gacaatgcat acattgggtcacctacaaa 240
aacgaggaag acaagctgaa ggactggggag ggtggcttg atgagcagag actgagcgct 300
gacagtggtt acatcattcc tctgcctgac attgaccctg tccctgagga ggaggacctg 360
ggcaagagga acagacacag ctcgcagacc tctgaagaga gtgcatttg aacgggttcc 420
agcagttcca ctttcatcaa gagagaggac gagaccattg aagacatcga catgatggat 480
gacatcgccca tagactcttc agacctggatg gaagacagct tcctgtaa 528

50

55

60

65

DE 101 00 586 C 1

```

<210> 45
<211> 1911
<212> DNA
<213> Homo sapiens
5

<300>
<302> PDGFRB
<310> XM003790

10 <400> 45
atgcggcttc cgggtgcgat gccagctctg gccctcaaag gcgagctgct gttgctgtct 60
ctcctgttac ttcttggAAC acagatctc cagggtctgg tgcgtcacacc cccggggcca 120
gacttggcc tcaatgttcc cagcacccctt gttctgacct gtcgggttc agtccgggt 180
15 gtgtggaaac ggatgtccca ggagccccca caggaatgg ccaaggcccggatggcacc 240
ttctccagcg tgctcacact gacaacccctt actgggcttag acacggaga atactttgc 300
acccacaatg actccccgtgg actggagacc gatggcgaga aacggctcta catcttgg 360
ccagatccca ccgtggctt cctccctaat gatggcgagg aactattcat ctttctca 420
gaaataactg agatcaccat tccatgcccga gtaacagacc cacagctgtt ggtgacactg 480
20 cacgagaaga aaggggacgt tgcaactgctt gtccctatg atccaacacg tggcttttc 540
ggtatcttg aggacagaag ctacatctgc aaaaccacca ttggggacag ggagggtggat 600
tctgatggct actatgtcta cagactccag gtgtcatcca tcaacgttcc tggtaacgca 660
gtgcagactg tggtccggca gggtgagaac atcaccctca tggcattgtt gatcgaaat 720
gaggtggta acttggagtg gacatacccc cgccaaagaaa gtggggcgctt ggtggagccg 780
25 gtgactgact tcctcttggat tatgccttac cacatccgctt ccattctgca catccccagt 840
gccgagtttag aagactcggtt gacccatacc tgcaatgtga cggagagtgtt gaatgaccat 900
caggatggaaa agggccatcaa catcaccgtt gttggagagcg gctacgttcc gctccctgg 960
gaggtgggca cactacaatt tgctgagctt catggggccg ggacactgca ggttgttcc 1020
gaggcctacc caccggccac tggcctgtgg ttcaaagaca accgcaccctt gggcgactcc 1080
30 agcgctggcg aaatcgccct tggcacccgc aacgtgttgg agacccggta tgggtcagag 1140
ctgacactgg ttcggctgtt ggtggcagag gctggccactt acaccatgcg ggccttccat 1200
gaggatgttgg aggtccagctt ctcccttccatg ctacagatca atgtccctgtt ccgagtgttcc 1260
gagctaagtg agagccaccc tgacagtggg gaacagacag tccgctgttgg tggccggggc 1320
atgccccccat cgaacatcat ctgggtctgttcc tggcagagacc tcaaaagggtt tccacgttcc 1380
35 ctggccggccat cgctgttgggg acgtactggg aggaggagca ggaggtttggat gttggtggat gactaacgttcc 1440
gatcgccacat tggcgtgttcc ctgcacccgtt ccggccatccatc tggcgtgttcc 1500
gtcatcggttgg tggccacactt ctggccctt aagggtggat tgatcttccatc catccctggcc 1560
ctgggtgttcc tcaaccatcat ctcccttccatc atccctcatca tgctttggccatc gaagaagccat 1620
40 cgttacgaga tccgatggaa ggtgttggat tctgttggat ctgacggccatc tgagtacatc 1680
tacgtggacc ccatgcagctt gcccatttgc tccacgttgg agctggcccg ggaccagctt 1740
gtgtgggacat gcaccctcggtt ctctggggccatc tttttggcagg tgggtggaggc cacgggttcat 1800
ggcctgagcc atttcaagcccaatgaaa gtggccgtca aaaaatgotta a 1860
1911

45 <210> 46
<211> 1176
<212> DNA
<213> Homo sapiens
50 <300>
<302> TGFbeta1
<310> NM000660

55 <400> 46
atgcggccctt ccgggtgttcc gctgtgttcc ctgtgttccat cggctgtgtt gctactgggt 60
ctgacccctt gcccggccatc cggccggactt tccacatccatc agactatccatc catggagatc 120
gtgaagccatc agcgcacatccatc ggccatccatc ggccagatcc tggccaaatccatc gcgctccatc 180

```

60

65

DE 101 00 586 C 1

agccccccga	gccaggggga	ggtgcgcgccc	ggcccgctgc	ccgaggccgt	gctcgccctg	240	
tacaacagca	cccgcgaccg	ggtggccggg	gagagtgcag	aaccggagcc	cgagcctgag	300	
gcccactact	acgccaagga	ggtcacccgc	gtgctaattgg	tggaaaccca	caacgaaatc	360	
tatgacaagt	tcaagcagag	tacacacagc	atatataatgt	tcttcaaacac	atcagagctc	420	5
cgagaagcgg	tacctgaacc	cgtttgctc	tcccgccag	agctgcgtct	gctgaggagg	480	
ctcaagttaa	aagtggagca	gcacgtggag	ctgtaccaga	aatacagcaa	caattcctgg	540	
cgataccctca	gcaaccggct	gctggcaccc	agcgactcgc	cagagtgggtt	atcttttgat	600	
gtcaccggag	tttgtccggca	gtggttgagc	cgtggagggg	aaattgaggg	cttcgcctt	660	
agcgcccact	gctctctgtga	cagcaggat	aacacactgc	aagtggacat	caacgggttc	720	10
actaccggcc	gcccgggtga	cctggccacc	attcatggca	tgaaccggcc	tttcctgctt	780	
ctcatggcca	ccccgctggta	gagggcccaag	catctgc当地	gctccggca	ccgccc当地	840	
ctggacacca	actattgtct	cagctccacg	gagaagaact	gctgcgtgcg	gcagctgtac	900	
attgacttcc	gcaaggacct	cggctggaaag	tggatccacg	agcccaaggg	ctaccatgcc	960	
aacttctgcc	tcggccctgt	cccctacatt	tggagcctgg	acacgc当地	cagcaagggtc	1020	
ctggccctgt	acaaccagca	taacccgggc	gceteggc当地	cgccgtgctg	cgtgccgc当地	1080	
gcgc当地	cgctgccc当地	cgttactac	gtggggccgca	agcccaaggt	ggagcagctg	1140	
tccaacatga	tcgtgc当地	ctgcaagtgc	agctga			1176	
							20
<210>	47						
<211>	1245						
<212>	DNA						
<213>	Homo sapiens						
							25
<300>							
<302>	TGFbeta2						
<310>	NM003238						
							30
<400>	47						
atgcactact	gtgtgcttag	cgctttctg	atcctgc当地	tggtcacgg	cgcgctc当地	60	
ctgtctacct	gcagcacact	cgatatggac	cagttcatgc	gcaagaggat	cgaggc当地	120	
cgcggccaga	tcctgagca	gctgaagctc	accagtcccc	cagaagacta	tcctgagccc	180	
gaggaagttcc	ccccggaggt	gattttccatc	tacaacagca	ccagggactt	gctccaggag	240	
aaggcgagcc	ggagggccggc	cgcctgc当地	cgc当地	gc当地	gtactacgcc	300	
aaggaggtt	acaaaataga	catgccgccc	tttccccc	ccgaaaatgc	catccgccc	360	35
actttctaca	gaccctactt	cagaatttgc当地	cgatggacg	tctc当地	ggagaagaat	420	
gcttccaatt	ttgtgaaagc	agagttc当地	gtcttc当地	tgc当地	aaaagccaga	480	
gtgcctgaac	aacggattga	gctatatc当地	atttcaatg	ccaaagat	aatatctca	540	
acccagcgct	acatcgacag	caaatttgc当地	aaaacaagag	cagaaggc当地	atggctctcc	600	40
ttcgatgtaa	ctgatgctgt	tcatgaatgg	cttc当地	aagcaggaa	cctgggat	660	
aaaataagct	tacactgtcc	ctgctgca	tttgc当地	ctaaataat	catcatccca	720	
aataaaaatgt	aagaactaga	agcaagat	tttgc当地	atggcac	cacatatacc	780	
agtgggtatc	agaaaaactat	aaagtccact	aggaaaaaaa	acagtgggaa	gacccc当地	840	
ctccctgctaa	ttgttattgccc	ctc当地	cttgc当地	aa	ccggc当地	900	
aagcgtgctt	ttggatgc当地	ctattgc当地	agaaatgtgc	aggataat	ctgc当地	960	45
ccactttaca	ttgatttcaa	gaggatct	gggtggaaat	ggata	acc	1020	
tacaatgc当地	acttctgtgc	tggagcatgc	ccgtat	ggat	ca	1080	
agcagggtcc	tgagcttata	taataccata	aatccagaag	cat	ct	1140	
gtgtcccaag	atttagaacc	tctaaccatt	ctctactaca	ttggcaaaac	acc	1200	
gaacagctt	ctaataatgtat	tgtaaatgtct	tgcaatgc当地	gctaa		1245	
							50
<210>	48						
<211>	1239						
<212>	DNA						
<213>	Homo sapiens						
							55
							60
							65

DE 101 00 586 C 1

<300>
 <302> TGFbeta3
 <310> XM007417

5 <400> 48
 atgaagatgc acttgcaaag ggctctggtg gtctggccc tgctgaactt tgccacggc 60
 agcctcttc tgtccacttg caccacccgt gacttcggcc acatcaagaa gaagagggtg 120
 gaagccatta ggggacagat ctttagcaag ctccaggctca ccagcccccc tgagccaacg 180
 10 gtgatgaccc acgtccccata tcaggtcctg gcccttaca acagcaccccg ggagctgctg 240
 gaggagatgc atggggagag ggaggaaggc tgccacccagg aaaacaccga gtcggaatac 300
 tatgccaaag aaatccataa attcgacatg atccaggggc tggcggagca caacgaactg 360
 gctgtctgc ctaaaggaaat tacctccaaag gtttccgt tcaatgtgtc ctcagtggag 420
 aaaaatagaa ccaacctatt ccggcagaat ttccgggtct tgccgggtgcc caaccccagc 480
 15 tctaaggcga atgacgacat gatcgacatc ttccagatcc ttccggccaga tgagcacatt 540
 gccaaacacgc gcttatatcg tggcaagaat ctggccacac gggggactgc cgagtggctg 600
 tcctttagatg tcactgacac tggcgtgag tggctgtga gaagagatgc caacttaggt 660
 ctagaaatca gcattcactg tccatgtcac acctttcagc ccaatggaga tatcctggaa 720
 aacattcactg aggtgatgga aatcaaattc aaaggcgtgg acaatgagga tgaccatggc 780
 20 cgtggagatc tggggcgcct caagaacgc aaggatcacc acaacccctca tctaattcctc 840
 atgatgattc ccccacaccc gctcgacac ccggggcagg ggggtcagag gaagaagcgg 900
 gctttggaca ccaattactg cttccgcac ttggaggaga actgctgtgt gcgccccctc 960
 tacattgact tccgacagga tctgggctgg aagtgggtcc atgaacctaa gggctactat 1020
 gccaacttct gctcaggccc ttgcccatac ctccgcagtg cagacacaac ccacagcacg 1080
 25 gtgctgggac tgtacaacac tctgaaccct gaagcatctg cctcgccctg ctgcgtgccc 1140
 caggacctgg agccctgac catcctgtac tatgttggga ggaccccaa agtggagcag 1200
 ctctccaaca tggtggtaaa gtctgtaaa tgtagctga 1239

30 <210> 49
 <211> 1704
 <212> DNA
 <213> Homo sapiens

35 <300>
 <302> TGFbetaR2
 <310> XM003094

<400> 49
 40 atgggtcggg ggctgctcag gggcctgtgg ccgcgtcaca tcgtcctgtg gacgcgtatc 60
 gccagcacga tcccacccga cgttcagaag tcggtaata acgacatgtat agtcaactgac 120
 aacaacggtg cagtcagtt tccacaactg tgtaaaatttt gtgatgtgag attttccacc 180
 tgtgacaacc agaaatccctg catgagcaac tgcacatca cttccatctg tgagaagcca 240
 caggaagttt gtgtggctgt atggagaaag aatgacgaga acataacact agagacagtt 300
 45 tgccatgacc ccaagctccc ctaccatgac tttattctgg aagatgtgc ttctccaaag 360
 tgcattatga aggaaaaaaa aaaggcttgtt gagactttct tcatgttttc ctgtagctct 420
 gatgagtgc aatgacaacat catcttctca gaagaatata acaccagcaa tcctgacttg 480
 ttgctagtca tatttcaagt gacaggcatc agcctcttc caccactggg agttgccata 540
 tctgtcatca tcatcttctca ctgttacccgc gttAACCGGC agcagaagct gagttcaacc 600
 50 tggggaaaccc gcaagacgcg gaagctcatg gagttcagcg agcactgtgc catcatctg 660
 gaagatgacc gctctgacat cagctccacg tggccaca acatcaacca caacacagag 720
 ctgctgcca ttgagctgga caccctgggtt gggaaaggc gctttgttgc ggttctataag 780
 gccaagctga agcagaacac ttccagagcag ttggagacag tggcagtcac gatcttccc 840
 tatgaggagt atgccttcttgc gaagacagag aaggacatct tctcagacat caatctgaag 900
 55 catgagaaca tactccagtt cctgacggctt gaggagcggaa agacggagtt gggaaaccaa 960
 tactggctga tcaccgcctt ccacgcacaa ggcaacctac aggagtacct gacgcggcat 1020
 gtcatcagctt gggaggaccc ggcacagctg ggcacgtccc tcgccccgggg gattgctcac 1080
 ctccacagtg atcacactcc atgtgggagg cccaaagatgc ccatcgtgca caggacaccc 1140

60

65

DE 101 00 586 C 1

aagagctcca atatcctcgtaa gaaacgcac ctaacactgct gcctgtgtga ctttgggctt 1200
 tccctgcgtc tggaccctac tctgtctgtg gatgacctgg ctaacagtgg gcagggtggga 1260
 actgcaagat acatggctcc agaagtccta gaatccagga tgaatttggaa gaatgttgag 1320
 tccttcaagc agaccgtatgt ctactccatg gctctgggtgc tctgggaaat gacatctcg 1380
 tgtaatgcgtggagaatgaaaagatttgcgctccat ttgggttccaa ggtgcgggag 1440
 caccctgtgtcgtaaagcatgaaaggacaac gtgttgagag atcgaggcg accagaaattt 1500
 cccagttctggctcaacca ccaggccatc cagatgggtgt gtgagacgtt gactgagtgc 1560
 tgggaccacg acccagaggccgtctcaca gcccaagtgtgtggcagaacg cttcagttag 1620
 ctggagcatctggacaggctctcggttggaggaggactgctcaggaggagaatgttccctgaagac 1680
 ggctccctaaacactaccaa atag 1704

5

<210> 50
 <211> 609
 <212> DNA
 <213> Homo sapiens

15

<300>
 <302> TGFbeta3
 <310> XM001924

20

<400> 50
 atgtctcatt acaccattat tgagaatattt tgcctaaag atgaatctgt gaaattctac 60
 agtcccaaga gagtgactt tcctatcccc caagctgaca tggataagaa gcgattcagc 120
 tttgtctca agctgttca caacacctca ctgtctttc tacagtgtga gctgacgctg 180
 tgtacgaaga tggagaagca cccccagaag ttgcctaaatgtgtgcctcc tgacgaagcc 240
 tgcacccctc tggacgcctc gataatctgg gccatgtatgc agaataagaa gacgttcact 300
 aagcccttg ctgtgatcca ccatgaagca gaatctaaatggaaaagggtcc aagcatgaag 360
 gaaccaaatac caatttctcc accaattttc catggctctgg acacccttaac cgtgatgggc 420
 attgcgttttgcggctttgtt gatcggagca ctcctgacgg gggccttggtg gtacatcttat 480
 totcacacag gggagacagc aggaaggcagc caagtccccca ctcctccggcc agcctcggaa 540
 aacagcagtg ctgcccacag catcggcagc acgcagagca cgccttgctc cagcagcagc 600
 acggccctag 609

35

<210> 51
 <211> 3633
 <212> DNA
 <213> Homo sapiens

40

<300>
 <302> EGFR
 <310> X00588

45

<400> 51
 atgcgaccct ccgggacggccggc cggggcagcg ctctggcgc tgctggctgc gctctgccc 60
 gcgagtcggg ctctggagga aaagaaaatgtt tgccaaggca cgagtaacaa gctcacgcag 120
 ttgggcactt ttgaagatca ttttctcagc ctccagggaa tggtaataatgtgtgg 180
 gtccttggaaattttggaaat tacctatgtc cagaggaattt atgatctttc ctttttaaaatgg 240
 accatccagg aggtggctgg ttatgtccttca attggccctca acacagtggaa gcgaaattcct 300
 ttggaaaacc tgcagatcat cagaggaat atgtactacg aaaattctta tgcccttagca 360
 gtcttatcta actatgtatgc aaataaaacc ggactgaagg agctgcccattt gagaatatta 420
 cagggaaatcc tgcattggcgc cgtgcgggttca agcaacaacc ctgccttggag 480
 agcatccagt ggcgggacat agtcagcagt gactttctca gcaacatgtc gatggacttc 540
 cagaaccacc tggcagctg cccaaaatgtt gatccaagct gtcccaatgg gagctgttgg 600
 ggtgcaggag aggagaactg ccagaaaactg accaaaatca tctgtccccca gcaagtgttcc 660
 gggcgctgccctggcaagtc ccccaagtgtac accagtgtgc tgcaaggctgc 720

50

55

60

65

DE 101 00 586 C 1

acaggcccccc gggagagcga ctgcctggtc tgccgcaaat tccgagacga agccacgtgc 780
 aaggacacct gccccccact catgctctac aaccccacca cgtaccagat ggatgtgaac 840
 cccgagggca aatacagctt tggtgccacc tgctgtgaaga agtgtccccg taattatgtg 900
 5 gtgacagatc acggctcgta cgtccgagcc tggggggccg acagctatga gatggaggaa 960
 gacggcggtcc gcaagtgtaa gaagtgcgaa gggcccttgcc gcaaagggtg taacggaata 1020
 ggtattggtg aatttaaaga ctcactctcc ataaatgcta cgaatattaa acacttcaa 1080
 aactgcaccc ccatcagttt cgatctccac atctgcggg tggcatattag gggtgactcc 1140
 10 ttcacacata ctcctctt ggttccacag gaactggata ttctgaaaac cgtaaaggaa 1200
 atcacagggt ttttgcgtat tcaggcttgg cctgaaaaca ggacggaccc ccatgcctt 1260
 15 gagaaccttag aaatcatacg cggcaggacc aagcaacatg gtcagtttc tcttgcagtc 1320
 gtcagcctga acataacatc cttgggatta cgctccctca aggagataag tgatggagat 1380
 gtgataattt caggaaacaa aaatttgtgc tatgcaaata caataaactg gaaaaaaactg 1440
 tttgggaccc ccggtcagaa aaccaaattt ataagcaaca gaggtgaaaa cagctgcaag 1500
 20 gccacaggcc aggtctgcca tgccttgcc tccccggagg gctgtgggg cccggagccc 1560
 agggactgcg tctttgcgg cttctggagg gtgagccaag gaatgtcagc cgagggcaggg aatgcgtgga caagtgcaag 1620
 cttctggagg gtgagccaag gtagtgcctc ctcaggccat gaacatcacc tgacaggac ggggaccaga caactgtatc 1740
 cagtgtgccc actacattga cggcccccc tgcgtcaaga cctgccccgc aggagtcatg 1800
 25 ggagaaaaca acaccctggt ctggaaagtac gcagacgccc gccatgtgtg ccacctgtgc 1860
 catccaaact gcacccatcg ctaagatcc cgtccatcg cactggatg gtggggggcc tcctcttgct gctgggtgtg 1980
 cccctgggaa tcggcctt catgcgaagg cgcacatcg gcttgcggag cctcttacac ccagtggaga agtcaccaac 2100
 aggctgcgtc aggagaggaa ctggaaactt gatgcacttgc ccaggtcttgc aaggctgtcc aacgaatggg 1920
 30 caagctctt tgaggatctt gaaggaaact taaggactc tggatcccag aagggtgagaa agttaaaatt 2220
 cccgtcgcta tcaaggaatt aagagaagca acatctccga gatgaagcct acgtgtatggc cagcgtgac aaccccccacg tgcgtccactt ccaccgtgca actcatcacg cagctcatgc cttcggctg cttctggac 2400
 tatgtccggg aacacaaaga caatattggc tcccaagtacc tgctcaactg gtgtgtgcag 2460
 35 atcgcaaagg gcatgaacta cttggaggac cgtcgcttgc tgcaccgcga cttggcagcc 2520
 aggaacgtac tggtaaaaac accgcagcat gtcaagatca gatgtttgg ctgctgggatc 2580
 ctgctgggtg cggaaagagaa agaataccat gcagaaggag gcaaaagtgcc tatcaagtgg 2640
 atggcattgg aatcaattt acacagaatc tataccacc agagtgtatg ctggagctac 2700
 40 ggggtgaccc tttgggagtt gatgacccctt ggatccaagg catatgacgg aatccctgccc 2760
 agcgagatct cttccatctt ggagaaaggaa gaacgcctcc ctcagccacc catatgtacc 2820
 atcgatgtct acatgtatcat ggtcaagtgc tggatgtatg acgagatag tcgccccaaag 2880
 ttccgtgagt tgatcatcgat atttcacccaaatgatggccgg accccccacg ctacccgtc 2940
 attcaggggg atgaaagaat gcatttgcca agtccatcg actccaaactt ctaccgtgcc 3000
 45 ctgatggatg aagaagacat ggacgacgtg gtggatgccc acgagttacccat ccccccacag 3060
 cagggcttct tcagcagccccc ctccacgtca cggactcccc tcctgagctc tctgagtgca 3120
 accagcaaca attccacccgt ggcttgcat gatagaaatg ggctgcaaaag ctgtccccatc 3180
 aaggaagaca gcttcttgca ggcatacagc tcagacccca caggcgccct gactgaggac 3240
 agcatagacg acacccctt cccagtgccct gaatacataa accagtcgt tcccaaaaagg 3300
 cccgctggct ctgtcagaa tcctgtctat cacaatcagc ctctgaaccc cggccccagc 3360
 50 agagaccac actaccagga ccccccacagc actgcgtgg gcaaccccgaa gtatctcaac 3420
 actgtccacg ccacccgtt caacagcaca ttgcacagcc ctgcccactg ggcccagaaa 3480
 ggcagccacc aaattagcct ggacaaccct gactaccagc aggacttctt tcccaaggaa 3540
 gccaagccaa atggcatctt taagggtctt acagctgaaa atgcagaata cctaagggtc 3600
 gcgccacaaa gcagtgaatt tattggagca tga 3633

<210> 52
 <211> 3768
 <212> DNA
 55 <213> Homo sapiens

<300>

DE 101 00 586 C 1

<302> ERBB2
<310> NM004448

<400> 52		5
atggagctgg cggccttgg ccgctgggg ctcccttcg ccctcttgcc ccccggagcc	60	
gcgagcaccc aagtgtgcac cggcacagac atgaagctgc ggctccctgc cagtcccgag	120	
accacacctgg acatgtctcg ccacctctac cagggctgcc aggtggtgca gggaaacctg	180	
gaactcacct acctgcccac caatgccagc ctgtccttcc tgcaaggatcc ccaggaggtg	240	
cagggctacg tgctcatcgc tcacaaccaa gtgagggcagg tcccactgca gaggctgcgg	300	
attgtgcgag gcacccagct ctttgaggac aactatgccc tggccgtgct agacaatgga	360	
gaccgcgtga acaataccac ccctgtcaca ggggcctccc caggaggcct gggggagctg	420	
cagcttcgaa gcctcacaga gatctggaaa ggagggggtct tgatccagcg gaacccccag	480	
ctctgttacc aggacacagat tttgtggaaag gacatcttcc acaagaacaa ccagctggct	540	
ctcacactga tagacaccaa ccgctctcg gcctgccacc cctgttctcc gatgtgtaaag	600	
ggctcccgct gctggggaga gagttctgag gattgtcaga gcctgacgc cactgtctgt	660	
gccggtggtc gtggccgctg caagggggca ctggccactg actgtgcac tgagcagtgt	720	
gctgccggct gcacggggccca caagcactt gactgcctgg cctgcctcca cttcaaccac	780	
agtggcatct gtgagctgca ctgcccagcc ctgtcaccat acaacacaga cacgttttag	840	
tccatgcccc atcccgaggg cggtatatac ttccggcgcca gctgtgtgac tgccctgtcc	900	
tacaactacc tttctacggc cgtggatcc tgcaaccctcg tctgccccct gcacaaccaa	960	
gaggtgacag cagaggatgg aacacagcgg ttttggaaagt gcagcaagcc ctgtgcccga	1020	
gtgtgtatcg gtctgggcat ggagcactt gtaggggtga gggcagttac cagtgc当地 1080		
atccaggagt ttgtggctg caagaagatc ttggggagcc tggcatttct gcccggagagc	1140	
ttttagtgggg acccagcctc caacactgccc cccgtccagc cagagcagct ccaagtgttt	1200	
gagactctgg aagagatcac aggttaccta tacatctcg catggccgga cagcctgc当地 1260		
gacctcagcg tcttccagaa cctgcaagta atccggggac gaaattctgca caatggcgcc	1320	
tactcgctga ccctgcaagg gctggcatac agctggctgg ggctgc当地 1380		
ctgggcagtg gactggccct catccaccat aacaccacc tctgttctgt gcacacaggc	1440	
ccctgggacc agcttttcg gaacccgcac caagctctgc tccacactgc caaccggcca	1500	
gaggacgagt gtgtggcga gggcctgccc tgccaccagc tggc当地 1560		
tggggtccag gcccaccca gtgtgtcaac tgcaaggatc tcccttc当地 1620		
gtggaggaat gccgagttact gcaggggctc cccaggaggat atgtgaatgc caggcactgt	1680	
ttggccgtgccc accctgagtg tcagccctcg aatggctcg tggacctgtt tggaccggag	1740	
gtgtgaccatgt gtgtggctg cccagggtg taaaaacctgatc cctcttc当地 1800		
ggcgcatgccc agccttgcctc catcaactgc accactctt ggaagttcc agatgaggag	1860	
ggctgccccg ccgagcagag agccagccct ctgacgtcca tggctctgc ggtgggtggc	1920	
attctgtctgg tcgtggctt ggggggtgtc tttgggatcc tcatcaagcg acggcagcag	1980	
aagatccgga agtacacatg cgggagactg ctgcaggaaa cggagctgtt ggagccgtc	2040	
acacctagcg gagcgtgcc caaccaggcg cagatgc当地 2100		
aggaaggtga aggtgttgg atctggcgct tttggc当地 2160		
cctgatgggg agaatgtgaa aattcccgatg gccatcaag tctacaaggatc catctggate	2220	
cccaaagcca acaaagaaat ctttagacaa gcatacgtga tggctgggtt gggctcccc	2280	
tatgtctccc gccttctggg catctgc当地 2340		
atgccttatg gctgc当地 2400		
gacctgctga actgggtat gcagattgcc aaggggatga gtc当地 2460		
ctcgatcaca gggacttggc cgctcgaaac gtgtggtca agagtc当地 2520		
attacagact tcgggctggc tcggctgtc gacattgacg agacagatgc ccatgc当地 2580		
ggggggcaagg tgcccatcaa gtggatggcg ctggagtc当地 2640		
caccagatgt atgtgtggag ttatgggtgactgtgtgg agctgatgc ttttggggcc	2700	
aaaccttacg atggatccc agcccgaggatccctgacc tgctggaaaa gggggagcgg	2760	
ctgccccagc ccccatctg caccattgtat gtctacatga tcatggtcaa atgttggatg	2820	
attgactctg aatgtcgcc aagattccgg gagttgggtt ctgaatttctc cc当地 2880		
agggacccccc agcgcttgc ggtcatccag aatgaggact tgggccc当地 2940		
gacagcacct tctaccgc当地 3000		
gaggagttatc tggtacccca gcagggcttcc ttctgtccag accctgc当地 3060		
ggcatggtcc accacaggca cc当地 3120		
gtggcggtgg ggacctgaca 3180		

60

65

DE 101 00 586 C 1

ctagggctgg agccctctga agaggaggcc cccaggtctc cactggcacc ctccgaaggg 3240
 gctggctccg atgtatttga tggtgacctg ggaatggggg cagccaaagg gctgcaaagc 3300
 ctc(cccacac atgaccccag ccctctacag cggtacagtg aggacccac agtacccctg 3360
 5 ccctctgaga ctgtatggcta cgttgc(cccc ctgacctgca gccccca(gcc tgaatatgtg 3420
 aaccagccag atgttcggcc ccagccccct tcgccccgag agggccctct gcctgctgcc 3480
 cgacactgctg gtgcactct ggaaagggcc aagactctct ccccaggaa gaatggggtc 3540
 gtcaaagacg ttttgcctt tgggggtgcc gtggagaacc ccgagtactt gacacccag 3600
 ggaggagctg cccctcagcc ccaccctct cctgccttca gccagcctt cgacaacctc 3660
 10 tattactggg accaggaccc accagagcgg ggggctccac ccagcacctt caaaggaca 3720
 cctacggcag agaacc(caga gtacctgggt ctggacgtgc cagtgtga. 3768

<210> 53
 15 <211> 1986
 <212> DNA
 <213> Homo sapiens

<300>
 20 <302> ERBB3
 <310> XM006723

<400> 53
 atgcacaact tcagtgttt ttccaattt(a cacaaccattg gaggcagaag cctctacaac 60
 25 cggggcttct cattgttcat catgaagaac ttgaatgtca catctctggg cttccgatcc 120
 ctgaaggaaa tttagtgc(tgg gcttatctat ataagtgc(a ataggcagct ctgctaccac 180
 cactcttga actggaccaa ggtgcttcgg gggctacgg aagagcact agacatcaag 240
 cataatcggc cgcgcagaga ctgcgtggca gagggcaaa(tg tggtgaccc actgtgtcc 300
 tctggggat gctggggccc aggcccttgtt cagtgttgc cctgtcgaaa ttatagccga 360
 30 ggaggtgtct gtgtgaccca ctgcaactt ctgaatgggg agcctcgaga atttgc(ccat 420
 gaggccgaat gcttctcctg ccaccggaa tgccaa(ccca tggagggcac tgccacatgc 480
 aatggctcg gctctgatac ttgtgctcaa tggccatt ttcgagatgg gcccactgt 540
 gtgagcact gccccatgg agtccctaggt gccaaggggc caatctacaa gtacccagat 600
 gttcagaatg aatgtcgcc ctgcctatgag aactgcaccc aggggtgtaa aggaccagag 660
 35 cttcaagact gtttaggaca aacactgggt ctgatcgcc aaaccatct gacaatggct 720
 ttgacagtga tagcaggatt ggtagtgtt ttcatgatgc tggcggcac tttctctac 780
 tggcgtggc gccgattca gaataaaagg gctatgagc gatacttgg acggggtag 840
 agcatagagc ctctggaccc cagtggaa(g gctaacaagg tcttggccag aatcttcaaa 900
 gagacagagc taagaagct taaagtgttt ggctcggtg tcttggaa(tgtgcacaaa 960
 40 ggagtgtgga tccctgaggg tgaatcaatc aagattccag tctgcattaa agtatttgc 1020
 gacaagagtg gacggcagag ttttcaagct gtgacagatc atatgctggc cattggcagc 1080
 ctggaccatg cccacattgt aaggctgtg ggactatgcc cagggtcatc tctgcagctt 1140
 gtcactaat atttgcctct gggttctctg ctggatcatg tgagacaaca ccggggggca 1200
 ctggggccac agctgtgtc caactggggta gtacaaattt ccaagggaa(tgtactacctt 1260
 45 gaggaacatg gtatggtgc tagaaacactg gctgcccga acgtgctact caagtccaccc 1320
 agtcagggtc aggtggcaga ttttgggtgt gctgaccc(tc tgccctctga tgataagcag 1380
 ctgctataca gtgaggccaa gactccaatt aagtggatgg cccttggagag tatccactt 1440
 gggaaataca cacccagag tgatgtctgg agctatggt tgacagttt ggagttgatg 1500
 accttcggg cagacccctt tgca(gggctt cgttggctg aagtaccaga cctgctagag 1560
 50 aagggggagc gggtggcaca gccccagatc tgcacaattt atgtctacat ggtgatggc 1620
 aagtgttgg(ta tgattgtatc(ga acattcgc ccaacccatc aagaacttagc caatgagttc 1680
 accaggatgg cccgagaccc accacggat cttgtcataa agagagagag tggccctgg 1740
 atagccccctg ggccagagcc ccatggctg acaaacaaga agcttagagga agtagagctg 1800
 gagccagaac tagacctaga cctagactt(gaa(gcagagg aggacaaacctt ggcacaccacc 1860
 55 acactgggtc cccctcctcag cctaccagtt ggaacactt atcggccacg tggagccag 1920
 agccttttaa gtccatcatc tggatcatg cccatgaacc aggtaatct tgggttctt 1980
 ccttag 1986

60

65

DE 101 00 586 C 1

<210> 54
 <211> 1437
 <212> DNA
 <213> Homo sapiens

5

<300>
 <302> ERBB4
 <310> XM002260

10

<400> 54
 atgatgtacc tggaagaaaag acgactcggtt catcgggatt tggcagcccg taatgtctta 60
 gtgaaatctc caaacatgt gaaaatcaca gattttgggc tagccagact ctggaaagga 120
 gatggaaaaag agtacaatgc tgatggagga aagatgccaa taaaatggat ggctctggag 180
 tgtatacatt acaggaaatt caccatcg agtgacgttt ggagctatgg agttactata 240
 tgggaactga tgaccttgg aggaaaaccc tatgatggaa ttccaacgcg agaaatccct 300
 gatttattag agaaaggaga acgtttgcct cagcctccca tctgcactat tgacgtttac 360
 atggcatatgg tcaaatagttg gatgattgat gctgacagta gacctaatt taaggaactg 420
 gctgctgagt ttcaaggat ggctcgagac cctcaaagat acctagttat tcaggggtat 480
 gatcgatgatga agcttcccag tccaaatgac agcaagttct ttcagaatct ctggatgaa 540
 gaggatttgg aagatatgtatggatgctgag gaggacttgg tccctcaggc ttcaacatc 600
 ccacctccca tctatacttc cagagcaaga attgactcga ataggagatgaa aattggacac 660
 agccctctc ctgcctacac ccccatgtca gggaaaccatgtt gatggaggt 720
 tttgctgctg aacaaggagt gtctgtgcc tacagagccc caactagcac aattcccgaa 780
 gctcctgtgg cacagggtgc tactgtcgatgatggatgactcctgtg taatggcacc 840
 ctacgcaagc cagttggcacc ccatgtccaa gaggacagta gcacccagag gtacagtgtc 900
 gaccccaccc tgtttgcctt agaacggagc ccacgaggag agctggatgaa ggaaggatcc 960
 atgactccta tgcgagacaa acccaaacaa gaatacctga atccagtggaa ggagaaccct 1020
 tttgttctc ggagaaaaaaa tggagacctt caagcattgg ataatcccgaa atatcacaat 1080
 gcatccaatg gtccacccaa ggccgaggat gagtatgtgaa atgagccact gtacctcaac 1140
 acctttgcctt acaccccttggg aaaagctgag tacctgaaga acaacatact gtcaatgcct 1200
 gagaaggccca agaaagcggtt tgacaaccctt gactactgga accacagccct gccacctcg 1260
 agcaccccttc agcaccccaga ctacctgcag gagtacagca caaaatattttt ttataaacag 1320
 aatggggcggaa tccggcctat tggcagag aatccctgaa acctctctgaa gtctccctg 1380
 aagccaggca ctgtgctgcc gcctccaccc tacagacacc ggaataactgt ggtgtaa 1437

25

30

35

<210> 55
 <211> 627
 <212> DNA
 <213> Homo sapiens

40

<300>
 <302> FGF10
 <310> NM004465

45

<400> 55
 atgtggaaat ggatactgac acattgtgcc tcagccttcc cccacctgcc cggtcgctgc 60
 tgctgctgt ttttgtgtt gttcttgggt tcttcggcc ctgtcacctt ccaagccctt 120
 ggtcaggaca tgggtcacc agaggccacc aactcttctt ctcctccctt ctccctctctt 180
 tccagcgcgg gaaggcatgt gcggagctac aatcaccttcc aaggagatgt ccgctggaga 240
 aagctattct cttcaccaat gtactttctt aagattgaga agaacgggaa ggtcagcggg 300
 accaagaagg agaactgccc gtacagcatc ctggagatata catcagtaga aatcgaggtt 360
 gttgccgtca aagccattaa cagcaactat tacttagcca tgaacaagaa gggaaaactc 420
 tatggctcaa aagaatttaa caatgactgt aagctgaagg agaggataga gggaaaatggaa 480
 tacaataacctt atgcatcatt taactggcag cataatggaa ggcaaatgtt tggcattt 540
 aatggaaaaag gagctccaag gagaggacacaaaacac gggaaaacac ctctgctcac 600

50

55

60

65

DE 101 00 586 C 1

tttcttccaa tggtggtaca ctcata

627

5 <210> 56
 <211> 1069
 <212> DNA
 <213> Homo sapiens

10 <300>
 10 <302> FGF11
 <310> XM008660

15 <400> 56
 15 ncbsncvwrn mdnctdrtng nmstrctrst tanmymmsar chbmdrtnn nc tdstrctrn 60
 mstmmtammy rmtsdhstr ycbardasna stagnbankg rahcsmdatv washtmantt 120
 hdbrandnkb arggnbankh msansbrbas tgrrtntanm ycsmbmrnar nvdntnhmsa 180
 nsbrbastgr wthactrgmr naaccssnmv rsnmgkywrd ssrchmanrg ansmhmsans 240
 karytamtaa chrdatacra natavrthra tatstmmamm aathrarmat scatarrhnh 300
 20 mndahmrrnc basstathrs ncbanntatn rcttdrcts bmssnrnasb mtdinvnatn 360
 acnrrrbtch ngynrmatnn hbthsdamds aatggcgccg ctggccagta gcctgatccg 420
 gcagaagcgg gagggtcccg agccccgggg cagccggccg gtgtcggcgc agccgcgcgt 480
 gtgtcccccgc ggcaccaagt cccttgcca gaagcagctc ctcatctgc tgccaagg 540
 gcgactgtgc gggggccggc ccgcgcggcc ggaccgcggc ccggagcctc agctcaaagg 600
 25 catcgtcacc aaactgttct gcccgcagg tttctacctc caggcgaatc ccgacggaa 660
 catccaggc accccagagg ataccagctc ctccacccac ttcaacctga tccctgtggg 720
 cctccgtgtg gtcacccatcc agagcgccaa gctgggtcac tacatggcca tgaatgtga 780
 gggactgctc tacagttcgc cgcatccac agctgagtgt cgcttaagg agtgtgtctt 840
 tgagaattac tacgtcctgt acgcctctgc tctctaccgc cagcgtcgtt ctggccggc 900
 30 ctggtaaccgc ggcctggaca aggagggca ggtcatgaag ggaaaccgag ttaagaagac 960
 caaggcagct gcccaacttc tgcccaagct octggaggtg gccatgtacc aggagccttc 1020
 tctccacagt gtccccgagg cctcccttc cagtcctc gccccctga 1069

35 <210> 57
 <211> 732
 <212> DNA
 <213> Homo sapiens

40 <300>
 40 <302> FGF12
 <310> NM021032

45 <400> 57
 45 atggctgcgg cgatagccag ctccctgatc cggcagaagc ggcaggcgag ggagtccaa 60
 agcgaccgag tgtccgcctc caagcgccgc tccagccca gcaaagacgg gcgcctccctg 120
 tgcgagaggc acgtcctcgg ggtgttcagc aaagtgcgt tctgcagccg ccgcaagagg 180
 ccggtgaggc ggagaccaga accccagctc aaagggattg tgacaagg 240
 cagggatact tcctgcagat gcacccagat ggtaccattg atgggaccaa ggacgaaaac 300
 50 agcgactaca ctctcttcaa tctaattccc gtgggcctgc gtgttagtggc catccaagga 360
 gtgaaggcta gcctctatgt ggccatgaat ggtgaaggct atctctacag ttcatgtt 420
 ttcactccag aatgaaattt caaggaatct gtgtttgaaa actactatgt gatctattct 480
 tccacactgt accggccagca agaatcaggc cgagcttggt ttctggact caataaagaa 540
 ggtcaaatta tgaagggaa cagagtgaag aaaaccaagc cctcatcaca ttttgtaccg 600
 55 aaacctatgt aagtgtgtat gtacagagaa ccatcgctac atgaaatgg agaaaaacaa 660
 ggcggttcaa ggaaaagttc tggAACACCA accatgaatg gaggcaaagt tgtgaatcaa 720
 gattcaacat ag 732

60

65

DE 101 00 586 C 1

```

<210> 58
<211> 738
<212> DNA
<213> Homo sapiens
                                         5

<300>
<302> FGF13
<310> XM010269

<400> 58
atggcggccg ctatcgccag ctcgctcatc cgtcagaaga ggcaaggccc cgagcgcgag 60
aaatccaacg cctgcaagtg tgcagcgc cccagcaaag gcaagaccag ctgcgacaaa 120
aacaagttaa atgtctttc ccgggtcaaa ctctcggct ccaagaagag gcgcagaaga 180
agaccagagc ctcagcttaa gggtatagtt accaagctat acagccgaca aggttaccac 240
ttgcagctgc aggccgatgg aaccattgtt ggcaccaaag atgaggacag cacttacact 300
ctgtttaacc tcatccctgt gggctcgca gtggcggcta tccaaggagt tcaaaccaag 360
ctgtacttgg caatgaacag tgagggatac ttgtacacct cggaacttt cacacctgag 420
tgcaaattca aagaatcagt gtttggaaat tattatgtga catattcatc aatgatatac 480
cgtcagcgc agtcaggccg agggtggat ctgggtctga acaaagaagg agagatcatg 540
aaaggcaacc atgtqaagaa gaacaaggct gcagctcatt ttctgcctaa accactgaaa 600
gtggccatgt acaaggagcc atcaactgcac gatctcacgg agttctcccg atctggaa 660
gggaccccaa ccaagagcag aagtgtctt ggctgtga acggaggcaa atccatgagc 720
cacaatgaat caacgttag                                         738
                                         10

<210> 59
<211> 624
<212> DNA
<213> Homo sapiens
                                         30

<300>
<302> FGF16
<310> NM003868

<400> 59
atggcagagg tggggggcgt ctgcgcctcc ttggactggg atctacacgg ctctctctcg 60
tctctgggaa acgtgcctt agctgactcc ccaggttcc tgaacgagcg cctggggccaa 120
atcgaggggaa agctgcagcg tggctcaccc acagacttcg cccacctgaa gggatcctg 180
cggcgccccc agctctactg ccgcacccgc ttccacctgg agatcttccc caacggcacg 240
gtgcacggaa ccccccacga ccacagccgc ttctggaaatcc tggagtttat cagcctggct 300
gtggggctga tcagcatccg gggagtgac tctggctgt accttaggaat gaatgagcga 360
ggagaactct atgggtcgaa gaaactcaca cgtgaatgt tttccggaa acagttgaa 420
gaaaacttgtt acaacaccta tgcctcaacc ttgtacaaac attcggactc agagagacag 480
tattacgtgg ccctgaacaa agatggctca cccccggagg gatacaggac taaaacgacac 540
cagaaattca ctcactttt acccaggcct gtagatcctt ctaagttgcc ctccatgtcc 600
agagacctct ttcactatag gtta                                         624
                                         35

<210> 60
<211> 651
<212> DNA
<213> Homo sapiens
                                         50

<300>
<302> FGF17
<310> XM005316
                                         55

```

60

65

DE 101 00 586 C 1

```

<400> 60
atgggagccg cccgcctgct gccccaccc actctgtgct tacagctgct gattctctgc 60
tgtcaaactc agggggagaa tcacccgtct cctaatttta accagtacgt gagggaccag 120
5   ggcgccatga ccgaccagct gagcaggcg  cagatcccg  agtaccaact ctacagcagg 180
accagtggca agcacgtca ggtcaccggg cgtcgcatct cgcaccgc  cgaggacggc 240
aacaagtttgc caaagctcat agtggagacg gacacgttg gcagccgggt tcgcatcaa 300
ggggctgaga gtgagaagta catctgtatg aacaagaggg gcaagctcat cggaaagccc 360
agcggaaaga gcaaagactg cgtgttacag gagatctgc tggagaacaa ctatacggcc 420
10  ttccagaacg cccggcacga gggctggtc atggcctca cgccgcagg  gcggccccgc 480
caggcttccc gcagccgcca gaaccagcgc gaggcccact tcatcaagcg cctctaccaa 540
ggccagctgc cttttccaa ccacgcccag aagcagaagc agttcgagtt tggggctcc 600
ccccccaccc gcccggaccaa gcccacacgg cggcccccagc ccctcacgta g 651

15 <210> 61
<211> 624
<212> DNA
<213> Homo sapiens

20 <300>
<302> FGF18
<310> AF075292

25 <400> 61
atgtattcag cgcgcctccgc ctgcacttgc ctgtgtttac acttcctgct gctgtgttc 60
caggtacagg tgctgggtgc cgaggagaac gtggacttcc gcatccacgt ggagaaccag 120
acgcgggctc gggacgtatg gagccgtaa cagctcgcc  tgtaccagct ctacagccgg 180
accagtggaa aacacatcca ggtcctggc cgcaggatca gtgcggcg  cgaggatggg 240
30  gacaagtatg cccagctct agtggagaca gacacctcg gtagtcaagt ccggatcaag 300
ggcaaggaga cggaaattcta cctgtgcata aaccgcaaag gcaagctgt gggaaagccc 360
gtatggcacca gcaaggagtg tgggttcatc gagaagggtc tggagaacaa ctacacggcc 420
ctgatgtcgg ctaagtactc cggctggta gttggcttc ccaagaagg  gcggccgg 480
aaggggccca agacccgggaa gaaccagcag gacgtgcatt tcatgaagcg ctaccccaag 540
35  gggcagccgg agcttcagaa gcccctcaag tacacgacgg tgaccaagag gtcccgctgg 600
atccggccca cacaccctgc ctag 624

<210> 62
40 <211> 651
<212> DNA
<213> Homo sapiens

<300>
45 <302> FGF19
<310> AF110400

<400> 62
atgcggagcg ggtgtgtgg ggtccacgta tggatcctgg cccgcctctg gctggccgtg 60
50  gcccggccccc ccctcgccctt ctcggacgcg gggcccccacg tgcactacgg ctggggcgac 120
cccatccggcc tgcggcacct gtacacccctc ggcacccacg ggctctccag ctgttccctg 180
cgcacatccgtg cccgacggcgt cgtggactgc ggcggggcc agagcgcgc  cagtttgc 240
gagatcaagg cagtcgtctc gcccggccgtg gccatcaagg gctgcacag cgtgcggta 300
ctctgcattgg ggcgcgacgg caagatgcag gggctgttca agtactcgga ggaagactgt 360
55  gctttcgagg aggagatccg cccagatggc tacaatgtgt accgatcga gaagcaccgc 420
ctcccggtct ccctgagcag tgccaaacag cggcagctgt acaagaacag aggctttctt 480
ccactctctc atttccctgcc catgctccccatggatcccag aggacccctgaa ggacccctcagg 540

```

60

65

DE 101 00 586 C 1

ggccacttgg aatctgacat gttctcttcg cccctggaga ccgacagcat ggaccattt 600
 gggcttgtca ccggactgga ggccgtgagg agtcccagct ttgagaagta a 651

5

<210> 63
 <211> 468
 <212> DNA
 <213> Homo sapiens

10

<400> 63
 atggctgaag gggaaatcac caccttcaca gccctgaccg agaagttaa tctgcctcca 60
 gggattaca agaagccaa actcctctac tgttagcaacg ggggccactt cctgaggate 120
 ctcccgatg gcacagtgg tgggacaagg gacaggagcg accagcacat tcagctgcag 180
 ctcagtgcgg aaagcgtggg ggaggtgtat ataaagagta ccgagactgg ccagtacttg 240
 gccatggaca ccgacgggct tttatacggc tcacagacac caaatgagga atgtttgttc 300
 ctggaaaaggc tggaggagaa ccattacaac acctatatat ccaagaagca tgcagagaag 360
 aattggttt tgccctcaa gaagaatggg agctgcaaac gcggccctcg gactcactat 420
 ggcagaaaag caatcttgtt tctccccctg ccagtctctt ctgattaa 468

15

20

<210> 64
 <211> 636
 <212> DNA
 <213> Homo sapiens

25

<300>
 <302> FGF20
 <310> NM019851

30

<400> 64
 atggctccct tagccgaagt cgggggcctt ctggggcggcc tggagggctt gggccagcag 60
 gtgggttcgc atttctgtt gcctcctgccc gggagcggc cgccgctgtt gggcgagcgc 120
 aggagcggcg cggagcggag cggccggc gggccgggg ctgcgcagct ggcgcacctg 180
 cacggcatcc tgcggccggc gcagcttat tgccgcaccc gcttccacct gcagatcctg 240
 cccgacggca gcgtgcaggg caccggcag gaccacagcc tcttcggat ttttggatc 300
 atcagtgtgg cagtgggact ggtcagtatt agaggtgtgg acagtggctt ctatcttgaa 360
 atgaatgaca aaggagaact ctatggatca gagaaactta cttccgaatg catctttagg 420
 gaggcgttg aagagaactg gtataacacc tattcatcta acatataaa acatggagac 480
 actggccgca ggtttttgt ggcacttaac aaagacggaa ctccaagaga tggcgccagg 540
 tccaaaggagc atcagaattt tacacatttcc ttaccttagac cagtggatcc agaaagagtt 600
 ccagaattgt acaaggaccc actgtatgtac acttga 636

35

40

<210> 65
 <211> 630
 <212> DNA
 <213> Homo sapiens

45

<300>
 <302> FGF21
 <310> XM009100

50

<400> 65
 atggactcgg acgagaccgg gttcgagcac tcaggactgt gggtttctgt gctggctgg 60
 cttctgtgg gagctgcca ggcacacccc atccctgact ccagtcctct cctgcaattc 120
 gggggccaaag tccggcagcg gtacctctac acagatgtat cccagcagac agaagccac 180
 ctggagatca gggaggatgg gacgggtggg ggcgctgctg accagagcccc cgaaagtctc 240

55

60

65

DE 101 00 586 C 1

ctgcagctga aagccttcaa gcccggagtt attcaaattct tgggagtc aa gacatccagg 300
 ttccctgtgcc agcggccaga tggggccctg tatggatc gc tccacttga ccctgaggcc 360
 tgcagcttcc gggagctgct tc ttgaggac ggatacaatg tttaccagtc cgaagccccac 420
 5 ggcctcccgcc tgcacccgtcc agggaaacaag tccccacacc gggaccctgc accccgagga 480
 ccagctcgct tcctgccact accaggcctg cccccccgcac tcccccggagcc accccgaaatc 540
 ctggccccc agccccccga tggggctcc tcggaccctc tgagcatggt gggaccttcc 600
 cagggccgaa gccccagcta cgcttcctga 630

10 <210> 66
 <211> 513
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> FGF22
 <310> XM009271

20 <400> 66
 atgcgcggcc gcctgtggct gggcctggcc tggctgtgc tggcgccggc gccggacgcc 60
 gcgaaaaccc cgagcgcgtc gcggggaccg cgca gctacc cgcaccttga gggcgacgtg 120
 cgctggccgc gccttcttc ctccactcac ttcttcttgc gcgtggatcc cggcgccgc 180
 gtgcaggggca cccgctggcg ccacggccag gacagcatcc tggagatccg ctctgtacac 240
 25 gtgggcgtcg tggtcataa agcagtgtcc tcaggcttct acgtggccat gaaccggccgg 300
 ggccgcctct acgggtcgcg actctacacc gtggactgca gttccggga ggcgcatacgaa 360
 gagaacggcc acaacaccta cgcctcacag cgctggccgc gccgcggcca gccatgttc 420
 ctggcgctgg acaggagggg gggggccccc ccaggccggc ggacgcggcg gtaccacctg 480
 tccggccact tcctggccgt cctggctcc tga 513

30 <210> 67
 <211> 621
 <212> DNA
 <213> Homo sapiens

35 <300>
 <302> FGF4
 <310> NM002007

40 <400> 67
 atgtcggggc cggggacggc cgcggtagcg ctgtccccc cggtcctgct ggcttgc 60
 gcgcctggg cggggcgagg gggcgccgc gcacccactg caccacaacgg cacgtggag 120
 gcccggctgg agcggccgtc ggagagctg gtggcgtct cgttggcgcg cttccgggtg 180
 45 gcagcgcagc ccaaggaggc ggcgtccag a cggcgccg gcgactacat gctgggcata 240
 aaggcgctgc ggcggctcta ctgcaacgtg ggcatacggt tccacccca ggcgtcccc 300
 gacggccgca tcggcgccgc gcaacgcggac accccgcaca gcctgcttga gctctcgccc 360
 gtggagcggg gcgtggtgag catcttcggc gtggccagcc gttcttcgt ggcatacgac 420
 50 agcaaggggca agcttatgg ctcgccttc ttcaccgtg agtgcacgtt caaggagatt 480
 ctccttccca acaactacaa cgcctacgag tcctacaatg accccggcat gttcatcgcc 540
 ctgagcaaga atggaaagac caagaagggg aaccgagtgt cgcccaccat gaaggtcacc 600
 cacttcctcc ccaggctgtg a 621

55 <210> 68
 <211> 597
 <212> DNA
 <213> Homo sapiens

60

65

DE 101 00 586 C 1

<300>
 <302> FGF6
 <310> NM020996

<400> 68
 atgtcccgaa gggcaggacg tctgcagggc acgctgtggg ctctcgctt cctaggcatc 60
 ctatgtggca tggtgggtgcc ctcgcctgca ggcacccgtg ccaacaacac gctgctggac 120
 tcgaggggct gggcacccct gctgtccagg tctcgccgg ggctagctgg agagattgcc 180
 ggggtgaact gggaaagtgg ctatgttgg gggatcaagc ggcagcggag gctctactgc 240
 aacgtgggca tcggcttca cctccaggtg ctccccgacg gccggatcag cgggaccac 300
 gaggagaacc cctacagccct gctggaaatt tccactgtgg agcgaggcgt ggtgagtctc 360
 ttggagtgaa gaagtgcctt cttegttgcc atgaacagta aaggaagatt gtacgcaacg 420
 cccagcttcc aagaagaatg caagttcaga gaaaccctcc tgcccaacaa ttacaatgcc 480
 tacgagtcag acttgtacca agggacctac attgcccgtg gcaaatacgg acgggtaaag 540
 cggggcagca aggtgtcccc gatcatgact gtcactcatt tcctcccgatctaa 597

<210> 69
 <211> 150
 <212> DNA
 <213> Homo sapiens

<300>
 <302> FGF7
 <310> XM007559

<400> 69
 atgtcttggc aatgcacttc atacacaatg actaatctat actgtgatga tttgactcaa 60
 aaggagaaaa gaaatttatgt agtttcaat tctgattcct attcaccttt tgtttatgaa 120
 tggaaagctt tgtcaaaaat atacatataa 150

<210> 70
 <211> 628
 <212> DNA
 <213> Homo sapiens

<300>
 <302> FGF9
 <310> XM007105

<400> 70
 gatggctccc tttaggtgaag ttgggaacta tttcggtgtg caggatgcgg taccgtttgg 60
 gaatgtgccc gtgttgcgg tggacagccc ggaaaaatgttta agtggccacc tgggtcagtc 120
 cgaaggcaggg gggctccca ggggaccggc agtacacggac ttggatcatt taaagggat 180
 tctcaggcgg aggccagctat actgcaggac tggatttcac ttagaaatct tcccaatgg 240
 tactatccag ggaaccagga aagaccacag ccgatttggc attctggaat ttatcagtat 300
 agcagtgggc ctggtcagca ttggggcgt ggacagtggc ctctaccccg ggatgaatga 360
 gaagggggag ctgtatggat cagaaaaact aacccaagag tggatgttca gagaacagtt 420
 cgaagaaaaac tggtataata cgtactcatc aaacctatat aagcacgtgg acactggaaag 480
 gcgatactat gttgcattaa ataaagatgg gaccccgaga gaagggacta ggactaaacg 540
 gcaccagaaa ttccacacatt ttttaccttag accagtggac cccgacaaag tacctgaact 600
 gtataaggat attctaagcc aaagttga 628

<210> 71

60

65

DE 101 00 586 C 1

```

<211> 2469
<212> DNA
<213> Homo sapiens
5 <300>
<302> FGFR1
<310> NM000604

10 <400> 71
atgtggagct ggaagtgcct cctcttctgg gctgtgtgg tcacagccac actctgcacc 60
gctaggccgt ccccgacctt gcctgaacaa gcccagccct ggggagcccc tgtggaaagt 120
gagtccttcc tggtccaccc cggtgacactg ctgcagctt gctgtcggt gccccgacat 180
gtgcagagca tcaactggct gccccgacggg gtgcagctgg cggaaagcaa ccgcacccgc 240
15 atcacagggg aggaggtgga ggtgcaggac tccgtgccc cagactccgg cctctatgct 300
tgcgtAACCA gcagccccctc gggcagtgc accacactact tctccgtcaa tggttcagat 360
gctctccctt cctcgaggaa tgatgtatgatgact cctcttcaga ggagaaaagaa 420
acagataaca ccaaaccaaa cctgtatccc gtatgtccat attggacatc cccagaaaaag 480
atggaaaaga aattgcatgc agtgcggct gccaagacag tgaagtcaa atgccttcc 540
20 agtgggaccc caaacccccac actgcgcgtt ttgaaaaatg gcaaaagaatt caaacctgac 600
cacagaattt gaggctacaa ggtccgttat gccacctgga gcatcataat ggactctgtg 660
gtgccctctg acaagggcaa ctacacctgc atttgggaga atgagtaacgg cagcatcaac 720
cacacatacc agctggatgt cgtggagcgg tccctcacc gccccatctt gcaagcagg 780
ttgcccggca acaaaaacagt gggccctgggt agcaacgtgg agttcatgtg taagggtgtac 840
25 agtgaccggc agccgcacat ccagtggcta aagcacatcg aggtgaatgg gagcaagatt 900
ggcccgagaca acctgcctta tgcacatgtt gtcacatgtt ctggagttaa taccaccgac 960
aaagagatgg aggtgttca cttaaagaaat gtccttcattt aggacgcagg ggagtataacg 1020
tgcttggcg gtaactctat cggactctcc catcaactgt catgttgcg cgttctggaa 1080
gccctggaaag agaggccggc agtgtatgacc tcggccctgtt acctggagat catcatctat 1140
30 tgcacagggg ctttcctcat ctcctgcattt gtgggggtgg tcatcgcttca caagatgaag 1200
agtggatcca agaagagtga cttccacagc cagatggctg tgcacaagct ggccaagagc 1260
atccctctgc gcagacaggt aacagtgtct gtcacttca gtcacatccat gaactctggg 1320
gttcttctgg ttcggccatc acggctctcc tccagtggaa ctccatgtt acaggggtt 1380
tctgagttt agtgcgttca agaccctcg tggagctgc ctcgggacag actggcttta 1440
35 ggcääaccaccc tgggagaggg ctgccttggg cagttgtgt tggcagaggc tatecggtt 1500
gacaaggaca aaccaccaaccg tgcacccaaat gtcgtgtga agatgttcaa gtcggacgca 1560
acagagaaag acttgtcaga cctgatctca gaaatggaga tgcacatgtt gatcgaaaag 1620
cataagaata tcatcaacctt gtcgggggccc tgcacgcagg atggccctt gtatgtcatc 1680
gtggagttt cttccaaaggc caacctgcgg gatcacatcg aggcccgag gcccccaagg 1740
40 ctggataact gtcaccaacc cagccacaaac ccagaggagc agtctcttc caaggacctg 1800
gtgtcctcgcc cttaccaggc ggccccggc atggatgttccaa gaagtgcata 1860
caccgagacc tggcagccag gatgtcttgc tgcacagagg acaatgttgc 1920
gactttggcc tcgcacggga cattcaccac atgcactact ataaaaaagac aaccaacggc 1980
cgactgcctg tgaagtggat ggcacccggc gcattatttgc accggatcta caccaccc 2040
45 agtgtatgtt ggtcttccgg ggtgcctctg tgggagatct tcactctggg cggctccccca 2100
taccccggtt tgcctgtggaa ggaacttttca aagctgtga aggagggtca ccgcattggac 2160
aagcccaactt actgcaccaa cggatgtac atgatgtgc gggactgtt gcatgcgtt 2220
ccctcacaga gaccacccctt caagcagctg gtggaaagacc tggaccgtt cgtggccctt 2280
accttcaacc aggatgttcc ggcacctgttcc atgcccctgg accagtttcc ccccaactt 2340
50 cccgacaccc ggagctctac tgcgttcata ggggaggatt ccgtcttctc tcatgagccg 2400
ctgcccggagg agccctgcctt gccccgacac ccagccaggc ttgccaatgg cgactcaaa 2460
ccggctgtga 2469

55 <210> 72
<211> 2409
<212> DNA
<213> Homo sapiens

```

60

65

DE 101 00 586 C 1

<300>
<302> FGFR4
<310> XM003910

<400> 72 5
atgcggctgc tgctggccct gttgggggtc ctgctgagtg tgcctgggcc tccagtcttg 60
tccctggagg cctctgagga agtggagctt gagccctgccc tggctcccaag cctggagcag 120
caagagcagg agctgacagt agcccttggg cagcctgtgc ggctgtgtg tggggggct 180
gagcgtgggt gccactggta caaggaggcc agtcgctgg caccctgtgg ccgtgtacgg 240
ggctggaggg gcccctaga gattgccagc ttccatctcg aggatgtgg ccgttacctc 300 10
tgcctggcac gaggctccat gategtctcg cagaatctca cttgtattac aggtgactcc 360
ttgacacctca gcaacgtatg tgaggacccc aagtccata gggaccttc gaataggcac 420
agttaccccc agcaagcacc ctactggaca cacccccagc gcatggagaa gaaactgcat 480
gcagtacctt cggggaaacac cgtcaagtt cgctgtccag ctgcaggcaa ccccacgccc 540
accatccgtt ggcttaagga tggacagggc ttcatgggg agaaccgtat tggaggcatt 600 15
cggctgcgcc atcagcaatg gagtctcgat atggagagcg tgggccctc ggaccgcggc 660
acatacacct gcctggtaga gaacgctgtg ggcagcatcc tttataacta cctgctagat 720
gtgctggagc ggtccccgca cccggccatc ctgcaggccg ggctcccgcc caacaccaca 780
gccgtgggg gcaagcgacgt ggagctgtg tgcaaggtgt acagcgatgc ccagccccac 840
atccagtggc tgaagcacat cgtcatcaac ggcagcagct tcggagccga cgggttcccc 900
tatgtgcaag tcctaaagac tgcagacatc aatacgatcg aggtggaggt cctgtacctg 960
cggaacgtgt cagccgagga cgcaggccag tacacctggc tcgcaggcaa ttccatcgcc 1020
ctctcctacc agtctgctg gtcacgggt ctgcaggccg aggaccacat atggaccgca 1080
gcagcgcccg aggccaggtt tacggacatc atccgtacg cgtcgggctc cttggccctg 1140 25
gctgtgtcc tgcgtgtggc caggctgtat cgagggcagg cgctccacgg cccgcacccc 1200
cgcccccccg ccactgtgca gaagcttcc cgctccctc tggccgaca gttctccctg 1260
gagtcaaggct ttccggcaa gtcaagctca tccctggta gaggcgtgcg tctctccctc 1320
agcggccccc cttgtctgcg cggcctcgat agtctagatc tacctctcgaa cccactatgg 1380
gagttccccc gggacaggct ggtgttggg aagccccatg gcgaggctg cttggccag 1440 30
gtatgtacgtg cagaggccctt tggcatggac cctgcccggc ctgaccaagc cagactgtg 1500
gccgtcaaga tgctcaaaga caacgcctt gacaaggacc tggccgaccc ggtctcgag 1560
atggagggtgt tgaagctgtat cggccgacac aagaacatca tcaacctgtt tgggtctgc 1620
accaggaaag gcccctgtt cgtgategtg gagtgcggc ccaaggaaaa cctgcgggag 1680
ttcctgcggg cccggccccc cccaggcccc gacccatggc cgcacggtcc tcggagcagt 1740 35
gagggggccgc ttccttccc agtccctggc tccctggc accagggtgc cggaggcatg 1800
cagtatctgg agtcccgaa gtgtatccac cgggacctgg ctgcccggaa tggctgggtg 1860
actgaggaaat atgtatgaa gattgtgtac tttgggtgg cccgggggtt ccaccacatt 1920
gactactata agaaaaccag caacggccgc ctgcctgtga agtggatggc gcccggggcc 1980
ttgtttgacc ggggttacac acaccagat gacgtgtgtt cttttggat cctgtatgg 2040
gagatcttca ccctcggggg ctcccccgtat cctggcatcc cgggtggagga gcttttcgt 2100
ctgctgcggg agggacatcg gatggaccga ccccccacact gccccccaga gctgtacggg 2160
ctgatgcgtg agtgcgtggca cgcagcgcccc tcccaagggc ctaccttcaa gcagctggg 2220
gaggcgctgg acaaggctt gctggccgtc tctgaggagt acctcgaccc ccgcctgacc 2280
ttcggaccctt attccccctc tgggtggggac gccagcagca cctgtctctc cagcgattct 2340
gttttcagcc acgacccccc gccattggga tccagctctt tcccccttcgg gtcgtgggtg 2400 45
cagacatga 2409

<210> 73 50
<211> 1695
<212> DNA
<213> Homo sapiens

<300> 55
<302> MT2MMP
<310> D86331

60

65

DE 101 00 586 C 1

<400> 73

```

atgaagcggc cccgctgtgg ggtgccagac cagttcgaaaa tacgagtgaa agccaacctg 60
cggcggcgta ggaagcgcta cgccctcacc gggaggaagt ggaacaacca ccatctgacc 120
5 ttttagcatcc agaactacac ggagaaggta ggctggtacc actcgatgga ggcggtcgc 180
agggccttcc gcgtgtggaa gcaggccacg cccctggct tccaggaggt gccttatgag 240
gacatccggc tgcggcgaca gaaggagcc gacatcatgg tactcttgc ctctggcttc 300
cacggcgaca gctcgccgtt tgatggcacc ggtggcttc tggcccacgc ctatccct 360
ggccccggcc taggcgggaa caccattt gacgcagatg agccctggac cttctccagc 420
actgacctgc atggaaacaa cctttcttg gtggcagtgc atagagctggg ccacgcgc 480
10 gggctggagc actccagcaa ccccaatgcc atcatggcgc cgttctacca gtggaaaggac 540
gttgacaact tcaagctgcc cgaggacat ctccgtggca tccagcagct ctacggtaacc 600
ccagacggc ageccacagcc taccggcct cttcccaactg tgacgcccacg gcccggcaggc 660
cgccctgacc accggccgccc cccggctccc cagccacac ccccaagggtgg gaagccagag 720
15 cgccccccaa agccggggccc cccagttccag ccccgagccca cagageggcc cgaccagtt 780
ggcccccaaca tctgcgacgg ggactttgac acatggcca tgcttcggg ggagatgttc 840
gtgttcaagg gcccgtgggt ctggcgagtc cggcacaacc ggttcttggaa caactatccc 900
atgcccatacg ggcacttctg gctgtggctc cccggtgaca tcagtgtgc ctacgagcgc 960
caagacggc ttttgtctt ttcaaaaggta gaccgctact ggcttcttcg agaagcgaac 1020
20 ctggagcccg gctaccacca gccgctgacc agctatggcc tggcatccc ctatgaccgc 1080
attgacacgg ccatctgggt ggagccacca ggcacacact ttttcttcca agaggacagg 1140
tactggcgct tcaacgagga gacacagcgt ggagaccctg ggtaccccaa gcccattcagt 1200
gtctggcagg ggatccctgc cttccctaaa gggcccttcc tgagcaatga cgcagcctac 1260
acctacttct acaagggcac caaatactgg aaattcgaca atgagcgtt gcggatggag 1320
25 cccggctacc ccaagtccat cctgcgggac ttcatgggt gccaggagca cgtggagcca 1380
ggccccccat ggcccgacgt ggcccgcccg cccttcaacc cccacggggg tgcagagccc 1440
ggggcggaca gcgcagaggg cgacgtgggg gatggggatg gggactttgg ggcgggggtc 1500
aacaaggaca gggcagccg cgtgggtgtg cagatggagg aggtggcactc gacggtaac 1560
gtggatgg tgctggtgcc actgctgtc ctgtctcg tccctggcct cacctacgcg 1620
30 ctggtgacaga tgcagcgaa gggtgcgcca cgtgtcctgc ttactgcaa gcgctcgctg 1680
caggagtggg tctga 1695

```

<210> 74

```

35 <211> 1824
<212> DNA
<213> Homo sapiens

```

<300>

```

40 <302> MT3MMP
<310> D85511

```

<400> 74

```

atgatcttac tcacatttcg cactggaaaga cgggtggatt tcgtgcata ttccgggggtg 60
45 tttttcttgc aaaccttgc ttggatttta tttgtctacag tctgcggAAC ggagcagttat 120
ttcaatgtgg aggtttgggtt acaaaaatgc ggctaccttcc caccgactga ccccaagaatg 180
tcagtgtgc gctctgcaga gaccatgcacg tctgccttag ctgcctatgc gcagttctat 240
ggcattaaca tgacaggaaa agtggacaga aacacaattt actggatgaa gaagccccga 300
tgcgggttac ctgaccagac aagaggtagc tccaaatttca atattcgtcg aaagcgatata 360
50 gcattgacag gacagaaatg gcacgcacaa cacatcaactt acagtataaa gaacgtaact 420
ccaaaatgtg gagaccctga gactcgtaaa gctattcgcc gtgccttga tttgtggcag 480
aatgttaactc ctctgacatt tgaagaagtt ccctacagtg aatttagaaaa tggcaaacgt 540
gatgtggata taaccattat ttttgcatact ggttccatg gggacagtc tccctttgtat 600
ggagagggag gattttggc acatgcctac ttccctggac caggaattgg aggagatacc 660
55 cattttgact cagatgagcc atggacacta ggaaatccta atcatgtatgg aaatgactta 720
tttcttgcgt cagttccatga actgggacat gctctggat tggagcatc caatgacccc 780
actgcccatacg tggctccatt ttaccagtttac atggaaacag acaacttcaa actacctaata 840

```

60

65

DE 101 00 586 C 1

gatgatttac	aggccatcca	gaagatata	gttccacctg	acaagattcc	tccacctaca	900
agacctctac	cgacagtgc	cccacaccgc	tctattc	cggctgaccc	aaggaaaaat	960
gacaggccaa	aacctcctcg	gcctccaacc	ggcagaccct	cctatcccgg	agccaaaccc	1020
aacatctgt	atgggaactt	taacactcta	gttattcttc	gtcgtgagat	gtttgtttc	1080
aaggaccagt	ggttttggcg	agtgagaaac	aacagggtga	tggatggata	cccaatgcaa	1140
attacttact	tctggcgggg	cttgccctct	agtatcgat	cagtttatga	aatagcgcac	1200
gggaattttg	tgttctttaa	aggtaacaaa	tattgggtgt	tcaaggatac	aactcttcaa	1260
cctgggttacc	ctcatgactt	gataaccctt	ggaagtggaa	ttccccctca	tgttattgat	1320
tcagccattt	ggtgggagga	cgtcgggaaa	acattttct	tcaagggaga	cagatattgg	1380
agatatagtg	aagaaatgaa	aacaatggac	ctggctatc	ccaagccaa	cacagtctgg	1440
aaagggtatcc	ctgaatctcc	tcagggagca	tttgtacaca	aagaaaatgg	ctttacgtat	1500
ttctacaaaag	gaaaggagta	ttggaaattc	aacaaccaga	tactcaaggt	agaacacctgga	1560
tatccaagat	ccatcctcaa	ggattttatg	ggctgtgat	gaccaacaga	cagagttaaa	1620
gaaggacaca	gccaccaga	tgatgttagac	attgtcatca	aactggacaa	cacagccacg	1680
actgtgaaaag	ccatagctat	tgtcattccc	tgatcttgg	ccttgcct	ccttgtattt	1740
gtttacactg	tgtccagtt	caagagaaa	ggaacacccc	gccacatact	gtactgtaaa	1800
cgctctatgc	aagagtgggt	gtga				1824

<210> 75
<211> 1818
<212> DNA
<213> *Homo sapiens*

<300>
<302> MT4MMP
<310> AB021225

60

DE 101 00 586 C 1

gaggtctgct catgcaccc tggggcatcc tctcccccg gggccccagg cccactggtg 1740
 gctgccacca tgctgctgct gctgccgcca ctgtcaccag gcccctgtg gacagcggcc 1800
 caggccctga cgctatga 1818

5

<210> 76
 <211> 1938

<212> DNA

<213> Homo sapiens

10

<300>
 <302> MT5MMP
 <310> AB021227

15

<400> 76

atgccgagga gccggggcgg ccgcgcgcg cggggggcgc cgccgcgcg 60
 ggccaggccc cgcgctggag cgcgcgcg gtccctggc ggctgctgct gctgctgct 120
 cccgcgctct gctgcctccc gggcgccgcg cggcgccgg cgccggccg 180
 20 aaccgggcag cggtgtggcgt ggcgtggcg cggcgccgacg aggcggaggc gcccttcgcc 240
 gggcagaact ggttaaaagtc ctatggctat ctgcctccct atgactcacg ggcatactgcg 300
 ctgcactcag cgaaggcatt gcagtcgca gtctccacta tgcagcagtt ttacgggatc 360
 cccgtcaccg gtgtgttggta tcagacaacg atcagtgga tgaagaaaacc cccatgtgg 420
 gtccctgatc acccccaactt aagccgtagg cggagaaaca agcgtatgc cctgactgga 480
 25 cagaagtggaa ggcaaaaaca catcacccatc agcattcaca actatacccc aaaagtgggt 540
 gagctagaca cgcggaaagc tattcgccag gtttcgatg tttggcagaa ggtgacccca 600
 ctgacctttt aagagggtgc ataccatgag atcaaaaatgt accggaagga ggcagacatc 660
 atgatctttt ttgcctctgg tttccatggc gacagctccc catttgcattt agaaggggg 720
 ttcctggccc atgcctactt ccctggccca gggattggag gagacaccca ctttgactcc 780
 30 gatgagccat ggacgctagg aaacgcaac catgacggga acgacccctt cctgggtggct 840
 gtgcatgagc tggggcacgc gctgggactg gagactcca ggcacccca cgcacatcatc 900
 gccccttacc accagtacat ggagacgcac aacctcaagc tgccccagga cgcacatccag 960
 ggcatccaga agatctatgg acccccaagcc gagcctctgg agcccacaag gccactccct 1020
 acactccccg tccgaggat ccactccacca tcggagagga aacacgagcg ccagccagg 1080
 35 cccctcgcc cgcgcctcgcc ggacccggca tccacaccag gcaccaaacc caacatctgt 1140
 gacggcaact tcaacacagt ggcgccttc cggggcgaga tttttgtctt taaggatcgc 1200
 tggttctggc gtctgcgaa taacccgatgt caggagggtt accccatgca gatcgagcag 1260
 ttctggaaagg gcctgcctgc cgcacatcgac gcagcctatg aaaggggccga tggagatgtt 1320
 gtcttcttca aaggtgacaa gtattgggtg tttttagggg tgacgggttgc gcctgggtac 1380
 40 cccccacagcc tgggggagct gggcagctgt ttggccctgt aaggcattga cacagctctg 1440
 cgctgggaac ctgtgggcaa gacccatctt ttcaaaaggcg agcggtaactg ggcgtacago 1500
 gaggagcggc gggcacccga ccctggctac cctaagccca tcaccgtgtg gaaggggcatc 1560
 ccacaggctc cccaaaggagc cttccatcagc aaggaaggat attacaccta tttctacaag 1620
 45 ggcggggact actggaagtt tgacaaccag aaactgagcg tggagccagg ctacccgcgc 1680
 aacatccctgc gtgactggat gggctgcaac cagaaggagg tggagcggcg gaaggagcgg 1740
 cggctgcccc aggacgacgt ggacatcatg gtgaccatca acgatgtgcc gggctccgtg 1800
 aacgcgcgtgg ccgtggtcat cccctgcata ctgtccctct gcattctggt gctggctac 1860
 accatcttcc agttcaagaa caagacaggc cctcagcctg tcacctacta taagcggcca 1920
 gtccaggaat ggggtgtga 1938

50

<210> 77
 <211> 1689

<212> DNA

55

<213> Homo sapiens

<300>
 <302> MT6MMP

60

65

DE 101 00 586 C 1

<310> AJ27137

<400> 77

atgcggctgc	ggctccggct	tctggcgctg	ctgcttctgc	tgctggcacc	gcccgccgc	60	5
gccccgaagc	cctcggcgca	ggacgtgagc	ctgggcgtgg	actggctgac	tcgctatggt	120	
tacctgcgc	caccccaccc	tgcccaggcc	cagctgcaga	gccctgagaa	gttgcgcgat	180	
gccccatcaaag	tcatgcagag	gttcgegggg	ctgcccggaga	ccggccgc	ggaccagggg	240	
acagtggcca	ccatgcgtaa	gccccgtgc	tccctgcctg	acgtgctggg	gttggcgggg	300	
ctggtcaggg	ggcgtcgccg	gtacgctctg	agcggcagcg	tgtggaagaa	gcaaccctg	360	10
acatggaggg	tacgttcctt	cccccagagc	tcccagctga	gccaggagac	cgtgcggg	420	
ctcatgagct	atgcctgtat	ggcctggggc	atggagtctag	gcctcacatt	tcatgagggt	480	
gattcccccc	aggccagga	gcccgcacate	ctcatgcact	ttgcccgc	cttccaccag	540	
gacagctacc	ccttgcacgg	gttggggggc	accttagccc	atgccttctt	ccctggggag	600	15
caccccatct	ccggggacac	tcactttgac	gatgaggaga	cctggacttt	tgggtcaaaa	660	
gacggcgagg	ggaccgcac	gtttgcgtg	gctgtccatg	agtttggca	cgccctgggc	720	
ctgggccact	cctcagcccc	caactccatt	atgaggccct	tctaccagg	tccgggtggc	780	
gaccctgaca	agtaccgcct	gtctcaggat	gaccgcgtat	gcctgcagca	actctatggg	840	
aaggcgcccc	aaaccccata	tgacaagccc	acaaggaaac	ccctggctcc	tccgccccag	900	
ccccccggct	cgcccacaca	cagcccatcc	ttccccatcc	ctgatcgat	ttagggcaat	960	20
tttgacgcca	tcgccaacat	ccgaggggaa	actttttct	tcaaaggccc	ctgggtctgg	1020	
cgcctccagc	cctccggaca	gctgggtgtcc	ccgcgcacccg	cacggctgca	ccgcctctgg	1080	
gagggggctgc	ccgcccaggt	gagggtgtg	cagccgcct	atgctcgca	ccgagacggc	1140	
cgaatcctcc	tcttagcg	gccccagttc	tgggtgttcc	aggaccggca	gttggagggc	1200	
ggggcgccgc	cgctcaggg	gctggggctg	cccccgggag	aggaggtgga	cgccgtgttc	1260	25
tcgtggccac	agaacggaa	gacctactg	gtccgcggcc	ggcagtaactg	gcgcgtacgac	1320	
gagggggcg	cgcgcggg	ccccgggtac	cctcgcgcacc	tgagcctctg	ggaaggcg	1380	
ccccccctccc	ctgacgatgt	caccgtcagc	aacgcaggtg	acacctaactt	cttcaagg	1440	
gccccactact	ggcgcttccc	caagaacagc	atcaagaccc	agccggacgc	ccccagccc	1500	
atggggccca	actggctgga	ctgccccg	ccgagctctg	gtccccgc	ccccaggccc	1560	
cccaaagcga	ccccctgtc	cgaaacctgc	gattgtcagt	gcgagctcaa	ccaggccgca	1620	30
ggacggttggc	ctgtcccat	cccgctgctc	ctcttgc	tgctggtggg	gggtgtagcc	1680	
tcccgtga						1689	

<210> 78
<211> 1749
<212> DNA
<213> Homo sapiens

35

<300>
<302> MTMMP
<310> X90925

40

<400> 78

atgtctcccg	ccccaaagacc	ctcccggtgt	ctcctgctcc	ccctgctcac	gctcgccacc	60	45
gcgctcgct	ccctcggctc	ggcccaaagc	agcagcttca	gccccgaagc	ctggctacag	120	
caatatggct	acctgcctcc	cggggaccta	cgtaccacca	cacagcgctc	accccgatca	180	
ctctcagcgg	ccatcgctgc	catgcagaag	ttttacggct	tgcaagtaac	aggcaaagct	240	
gatgcagaca	ccatgaaggc	catgaggcgc	ccccgatgtg	gtgttccaga	caagtttggg	300	
gctgagatca	aggccaatgt	tcgaaggaag	cgctacgca	tccagggtct	caaatggca	360	
cataatgaaa	tcactttctg	catccagaat	tacacccca	aggtgggcga	gtatgccaca	420	
tacgaggcca	ttcgcaaggc	gttccgcgt	tggagagtg	ccacaccact	gcgc	480	
gaggtgcct	atgcctacat	ccgtgagg	catgagaagc	aggccgacat	catgatctc	540	
tttgcgagg	gttccatgg	cgacagcacg	cccttcgatg	gtgagggcgg	cttcc	600	
catgcctact	tcccaggccc	caacattgga	ggagacaccc	actttgactc	tgccgagc	660	55
tggactgtca	ggaatgagga	tctgaatgga	aatgacatct	tcctggtggc	tgtgcacgag	720	
ctggggccatg	ccctggggct	cgagcattcc	agtgacc	cgccatcat	ggcaccc	780	

60

65

DE 101 00 586 C 1

taccagtgga tggacacgga gaattttgtg ctgcccgtat atgaccgcgg gggcatccag 840
 caactttatg ggggtgagtc agggttcccc accaagatgc cccctcaacc caggactacc 900
 tcccggcctt ctgttcctga taaaacccaaa aaccccacct atggggccaa catctgtgac 960
 5 gggacttt acaccgtggc catgctccga gggagatgt ttgtcttcaa ggagcgctgg 1020
 ttctggcggg tgaggaataa ccaagtatg gatggatacc caatgccat tggccagttc 1080
 tggcggggcc tgcctgcgtc catcaacact gcctacgaga ggaaggatgg caaattcgtc 1140
 ttcttcaaag gagacaagca ttgggtgtt gatgaggcgt ccctggaaacc tggctacccc 1200
 aagcacatta aggagctggg ccgagggtcg cctaccgaca agattgtatgc tgctctttc 1260
 10 tggatgcca atggaaagac ctacttcttc cgtggaaaca agtactaccg tttcaacgaa 1320
 gagctcaggc cagtgatag cgagtacccc aagaacatca aagtctggg aggatccct 1380
 gagtctccca gagggtcatt catggcagc gatgaagtct tcacttactt ctacaagggg 1440
 aacaaataact gggaaattcaa caaccagaag ctgaaggtag aaccgggcta ccccaagcca 1500
 gcccctgaggg actggatggg ctgcccattcg ggaggccggc cgatgaggg gactgaggag 1560
 15 gagacggagg tgatcatcat tgaggtggac gaggaggcg gggggggctt gagcgcggct 1620
 gccgtgggtgc tgccctgtctc gctgtgtctc ctgtgtctgg cggggggct tgcagtcttc 1680
 ttcttcagac gccatggac ccccaggcga ctgtctact gccagcgttc cctgctggac 1740
 aaggctctga 1749

20 <210> 79
 <211> 744
 <212> DNA
 <213> Homo sapiens

25 <300>
 <302> FGF1
 <310> XM003647

30 <400> 79
 atggccgcgg ccatcgctag cggcttgcgtc cgccagaagc ggcaggcgcg ggagcagcac 60
 tgggaccggc cgtctgcccag caggaggcg agcagccca gcaagaaccg cgggtctgc 120
 aacggcaacc tggggatat cttctccaaa gtgcgcattt tcggcctcaa gaagcgcagg 180
 ttgcggcgcc aagatccca gctcaagggt atagtgcattt ggttatattt caggcaaggc 240
 35 tactacttgc aaatgcaccc cgatggagct ctcgtggaa ccaaggatga cagcactaat 300
 tctacacttgc tcaacctcat accagtggaa ctacgtgtt ttgcatttcca gggagtgaaa 360
 acagggttgt atataggcat gaatggagaa gtttacctt acccatcaga acttttacc 420
 cctgaatgca agttaaaga atctgtttt gaaaattt atgttaatcta ctcatccatg 480
 ttgtacagac aacaggaatc ttgttagagcc ttgtttttgg gattaaataa ggaagggcaa 540
 40 gctatgaaag ggaacagagt aaagaaaaacc aaaccagcag ctcattttctt acccaagcca 600
 ttggaaatgtt ccatgtaccg agaaccatct ttgcattgtat ttggggaaac ggtcccgaag 660
 cctgggggtga cgccaaatggaa aagcacaagt gctgtgtcaa taatgaatgg agccaaacca 720
 gtcacaacaaga gtggacaaat atag 744

45 <210> 80
 <211> 468
 <212> DNA
 <213> Homo sapiens

50 <300>
 <302> FGF2
 <310> NM002006

55 <400> 80
 atggcagccg ggagcatcac cacgtgtccc gccttgcgg aggatggcg cagcggcgcc 60
 ttcccggccg gccacttcaa ggaccccaag cggctgtact gcaaaaacgg gggcttcttc 120
 ctgcgcattcc accccgacgg ccgagttgac ggggtccggg agaagagcga ccctcacatc 180

60

65

DE 101 00 586 C 1

aagctacaac ttcaaggaga agagagagga gttgtgtcta tcaaaggagt gtgtgctaac 240
 cgttacctgg ctatgaagga agatggaaga ttactggctt ctaaatgtgt tacggatgag 300
 tggcctttt ttgaacgatt ggaatctaata aactacaata cttaccggtc aaggaaatac 360
 accagtttgtt atgtggcact gaaaacgaact gggcagttata aacttggatc caaaaacagga 420
 cctgggcaga aagctatact ttttcttcca atgtctgcta agagctga 468

5

<210> 81
 <211> 756
 <212> DNA
 <213> Homo sapiens

10

<300>
 <302> FGF23
 <310> NM020638

15

<400> 81
 atgttggggg cccgcctcag gctctgggtc tgcgttgc tgcgttgc cagcatgagc 60
 gtcctcagag cctatcccaa tgcctccca ctgtcggtt ccagctgggg tggcctgatc 120
 cacctgtaca cagccacacgc caggaacacgc taccacctgc agatccacaa gaatggccat 180
 gtggatggcg caccatca gaccatctac agtgcctga tgatcagatc agaggatgct 240
 ggctttgtgg tgattacagg tgcgtatgagc agaagatacc tgcgtatgga tttcagaggc 300
 aacattttg gatcacacta ttgcgacccg gagaactgca gtttccaaaca ccagacgctg 360
 gaaaacgggt acgacgtcta ccactctcct cagtatcact tcctggtcag tctggccgg 420
 gcgaaagagag ctttcctgcc aggcatttgcac ccacccccgt actcccaagt cctgtccgg 480
 aggaacgaga tccccctaat tcacttcaac acccccatac cacggcggca caccgggagc 540
 gccgaggacg actcggagcg ggacccctg aacgtgtca agccccgggc ccggatgacc 600
 ccggccccgg cctctgttc acaggagtc ccgagcccg aggacaacag cccatggcc 660
 agtgcacccat taggggtggt cagggccgt cgagtgaaca cgacgctgg gggAACGGGC 720
 ccggaaggct gccggccctt cgccaagttc atctag 756

20

25

30

<210> 82
 <211> 720
 <212> DNA
 <213> Homo sapiens

35

<300>
 <302> FGF3
 <310> NM005247

40

<400> 82
 atgggcctaa tctggctgct actgctcagc ctgcgtggagc ccggctggcc cgcaaggggc 60
 cctggggcgcg ggttgcggcg cgatgcgggc ggcgtggcg gctctacga gcaccttggc 120
 ggggcccccc ggcggccgaa gctctactgc gccacgaatg accaccccttca gtcgcacccg 180
 agcggcccg tcaacggcag cctggagaac agcgcctaca gtattttggg gataacggca 240
 gtggaggtgg gcattgtggc catcagggtt ctcttctccg ggccgttaccc ggcacatgaa 300
 aagaggggac gactctatgc ttccggacac tacagcccg agtgcgagtt tgcgtggagcgg 360
 atccacgagc tggctataa tacgtatgcc tccggctgtt accggacggt gtcttagtacg 420
 cctggggccc gccggcagcc cagcggccgag agactgtggt acgtgtctgtt gaaacggcaag 480
 ggcggccccc gcaggggctt caagacccgc cgcacacaga agtccctccct gttctgccc 540
 cgcgtgtgg accacaggga ccacgagatg gtgcggcagc tacagatgg gctgcccaga 600
 cccctggta aggggtcca gccccgacgg cggccggcaga agcagagccc ggataaacctg 660
 gagccctctc acgttcaggc ttccgagactg ggctcccagc tggaggccag tgcgcactag 720

45

50

55

<210> 83

60

65

DE 101 00 586 C 1

```

<211> 807
<212> DNA
<213> Homo sapiens
5 <300>
<302> FGF5
<310> NM004464

10 <400> 83
atgagcttgt ccttcctcct cctccttc ttcagccacc tgatccttag cgccctggct 60
cacggggaga agcgctctgc ccccaaaggg caacccggac ccgctgccac tgataggaac 120
cctataggtt ccagcagcag acagagcagc agtagcgta tgtcttc ttcgtcc 180
tcctcccccg cagcttctct gggcagccaa ggaagtggct tggagcagag cagtttccag 240
15 tggagccccct cggggcgccg gaccggcagc ctctactgca gagtgccat cggtttccat 300
ctgcagatct accccggatgg caaagtcaat ggatcccacg aagccaatat gttaaatgtt 360
ttggaaatatt ttgtgtgtc tcagggtt gtaggaatac gaggagttt cagcaacaaa 420
tttttagcga tgtcaaaaaaa agggaaaactc catgcaagtg ccaagttcac agatgactgc 480
aagttcaggg agcgtttca agaaaatagc tataatacct atgcctcagc aatacataga 540
20 actgaaaaaaaaa cagggcggga gtggatgtt gcctgaaaa aaagagggaaa agccaaacga 600
gggtgcagcc cccgggttaa acccccagcat atctctaccc attttcttcc aagattcaag 660
cagtcggagc agccagaact ttctttcacg gttactgttc ctgaaaagaa aaatccacct 720
agccctatca agtcaaagat tcccccttgc gcacctcgga aaaataccaa ctcagtgaaa 780
tacagactca agttcgctt tggataa 807

25 <210> 84
<211> 649
<212> DNA
<213> Homo sapiens

30 <300>
<302> FGF8
<310> NM006119

35 <400> 84
atgggcagcc cccgctccgc gctgagctgc ctgtgttgc acttgctggc cctctgcctc 60
caagcccaagg taactgttca gtcctcacct aattttacac agcatgttag ggagcagagc 120
ctggtgacgg atcagctcag ccggccgcctc atccggaccc accaactcta cagccgcacc 180
40 agcgggaagc acgtgcaggc cctggccaaac aagcgcatac acgccatggc agaggacggc 240
gacccttcg caaaagctcat cgtggagacg gacaccttg gaagcagagt tcgagtccga 300
ggagccgaga cggccctcta catctgcata aacaagaagg ggaagctgat cgccaaagagc 360
aacggcaaaag gcaaggactg cgtcttcacg gagattgtgc tggagaacaa ctacacagcg 420
ctgcagaatg ccaagttacga gggctggtag atggccttca cccgcaaggg cggccccgc 480
45 aagggtctca agacgcggca gcaccagcgt gagggtccact tcatgaagcg gctgccccgg 540
ggccaccacca ccaccgagca gaggctgcgc ttggatgttca tcaactaccc gccttcacg 600
cgccagcctgc gccggcagcca gaggacttgg gccccggaaac cccgatagg 649

50 <210> 85
<211> 2466
<212> DNA
<213> Homo sapiens

55 <300>
<302> FGFR2
<310> NM000141

```

60

65

DE 101 00 586 C 1

<400> 85
atggtcagct ggggtcggtt catctgcctg gtctgggtca ccatggcaac cttgtccctg 60
gcccgccct cttcagttt agttgaggat accacattag agccagaaga gccaccaacc 120
aaataccaaa tctctcaacc agaagtgtac gtggctgcgc caggggagtc gctagaggtg 180
cgctgcctgt taaaagatgc cgccgtgatc agttggacta aggatgggt gcacttgggg 240
cccaacaata ggacagtgtc tattggggag tacttgcaaa taaagggcgc cacgcctaga 300
gactccggcc tctatgttt tactgcccgt aggactgttag acagtgaac ttgttacttc 360
atggtgaatg tcacagatgc catctcatcc ggagatgtatc aggatgacac cgatgggtgcg 420
gaagattttg tcagtgagaa cagtaacaac aagagagcac catactggac caacacagaa 480
aagatggaaa agcggctcca tgctgtgcct gcccacaaca ctgtcaagtt tcgctgccc 540
gcggggggga accaatgcc aaccatgcgg tgggtaaaa acgggaagga gtttaagcag 600
gagcatcgca ttggaggcta caaggtacga aaccagcact ggagcctcat tatggaaagt 660
gtggtccccat ctgacaagggg aaattatacc tggtgtgggg agaatgaata cgggtccatc 720
aatcacacgt accacctggaa tggtgtgggg cgatgcctc accggcccat cctccaagcc 780
ggactgcccgg caaatgcctc cacagtggtc ggaggagacg tagagtttgt ctgcaagggtt 840
tacagtgtatc cccagccccca catccagtg atcaagcactg tggaaaagaa cggcagtaaa 900
tacgggcccgg acgggctgccc ctacctcaag gttctcaagg cccggcgtgt taacaccacg 960
gacaaagaga ttgaggattct ctatattcgg aatgttaactt ttgaggacgc tggggatat 1020
acgtgcttgg cgggttaattt tattgggata tccttact ctgcatgtt gacagttctg 1080
ccagcgcctg gaagagaaaa ggagattaca gcttccccag actaccttggaa gatagccatt 1140
tactgcatacg gggcttctt aatgcctgt atgggtgtt cagtcatct gtggcaatg 1200
aagaacacga ccaagaagcc agacttcagc agccagccgg ctgtgcacaa gctgaccaaa 1260
cgtatcccccc tgcggagaca ggtAACAGTT tcggctgagt ccagctctc catgaactcc 1320
aacaccccccgc tgggtgaggat aacaacacgc ctctcttcaa cggcagacac cccatgctg 1380
gcagggggtct ccgagtatga acttccagag gacccaaat gggagtttcc aagagataag 1440
ctgacactgg gcaagccccct gggagaaggt tgctttggc aagtggtcat ggcggaaagca 1500
gtgggaattt acaaagacaa gcccaggag gcggtcaccg tggccgtgaa gatgttggaa 1560
gatgtatcaca cagagaaaga ccttctgtat ctgggtcgtt agatggagat gatgaagatg 1620
attgggaac acaagaatat cataaaatctt cttggagcct gcacacagga tggccctctc 1680
tatgtcatcg ttgagtatgc ctctaaaggc aacccctccg aataaccttccg agcccggagg 1740
ccacccggga tggagtactc ctatgacatt aaccgtgttc ctgaggagca gatgaccttc 1800
aaggacttgg tgcacatgcac ctaccagctg gccagaggca tggagtactt ggcttcccaa 1860
aaatgtatcc atcgagatcc agcagccaga aatgtttttgg taacagaaaa caatgtatg 1920
aaaatagcag acttggact cggccagagat atcaacaata tagactatta caaaagacc 1980
accaatgggc ggctccagt caagtggat gctccagaag ccctgttga tagagtatac 2040
actcatcaga gtgtatgtctg tgccttgggg gtgttaatgt gggagatctt cacttttaggg 2100
ggctcgccct acccaggat tccctgtggag gaactttta agctgtctaa ggaaggacac 2160
agaatggata agccagccaa ctgcaccaac gaactgtaca tgcgtatgag ggactgttgg 2220
catgcagtgc cctcccagag accaacgttc aagcagttgg tagaagactt ggatcgaatt 2280
ctcactctca caaccaatga ggaataactt gacccctcgtt aacctctcga acagtattca 2340
cctagttacc ctgacacaag aagttctgt tcttcaggag atgattctgt ttttctcca 2400
gaccccatgc cttacgaacc atgccttcct cagtatccac acataaacgg cagtgttaaa 2460
acatga 2466

45

<210> 86
<211> 2421
<212> DNA
<213> Homo sapiens

50

<300>
<302> FGFR3
<310> NM000142

<400> 86
atgggcggccc ctgcctgcgc cctcgccgtc tgctggccg tggccatcgt ggccggcgcc 60
tcctcgaggat ctttggggac ggagcagcgc gtctggggc gagcggcaga agtcccgcc 120

55

60

65

DE 101 00 586 C 1

ccagagccccg gccagcagga gcagttggtc ttccggcagcg gggatgtgt ggagctgagc 180
 tgtccccccgc cgggggggtgg tcccatgggg cccactgtct gggtaagga tggcacagg 240
 ctggtgccct cggagcgtgt cctgggtgggg ccccaagcggc tgcaggtgct gaatgcctcc 300
 cacgaggact cgggggccta cagctgcgg cagcggctca cgcagcgcgt actgtgccac 360
 5 ttcagtgtgc ggggtgacaga cgctccatcc tcgggagatg acgaagacgg ggaggacgag 420
 gctgaggaca caggtgtgga cacaggggcc ccttactgga cacggcccga goggatggac 480
 aagaagctgc tggccgtgcc gcccgcAAC accgtccgct tccgctgccc agccgctggc 540
 aaccccaactc cctccatctc ctggctgaag aacggcaggg agttccgcgg cgagcaccgc 600
 atggaggcca tcaagctcg 10 tcatcagcag tggagcctgg tcatggaaag cgtggtgc 660
 tcggaccgcg gcaactacac ctgcgtcg gagaacaagt ttggcagcat cggcagacg 720
 tacacgtgg acgtgctgga gcgcccccc caccggccca tcctgcaggc ggggctgccc 780
 gccaaccaga cgggggtgct gggcagcag gtggaggtga actgcaaggt gtacagtgac 840
 gcacagcccc acatccagtg gctcaagcac gtggaggtga acggcagcaa gttgggccc 900
 15 gacggcacac cctacgttac cgtgctcaag acggcggggcg ctaacaccac cgacaaggag 960
 ctagagggtc ttccttgc 15 caacgtcacc tttggaggac ccggggagta cacctgcctg 1020
 gccggcaatt ctattgggtt ttctcatcac tctgcgtggc ttgtgggtct gccagccgag 1080
 gaggagctgg tggaggctga cgaggcgggc agtgtgtatg caggcatctt cagctacggg 1140
 gtgggcttct tcctgttcat cctgggtgt gcgctgtga cgctctgcg cctgcgcagc 1200
 20 ccccccaga aaggcctggg ctcccccaacc gtgcacaaga tctcccgctt cccgctcaag 1260
 cgacagggtt ccctggagtc caacgcgtcc atgagctcca acacaccact ggtgcgcata 1320
 gcaaggctgt cctcagggga gggcccccacg ctggccaatg tctccgagct cgagctgcct 1380
 gccgacccca aatggggagct gtctcgggcc cggctgaccc tgggaagcc cttggggag 1440
 ggctgcttcg gccagggtgtt catggcggag gccatggca ttgacaagga cggggccg 1500
 25 aagcctgtca ccgtagccgt gaagatgtg aaagacgtatg ccactgacaa ggacctgtcg 1560
 gacctgggtt ctgagatgg 15 gatgatgaag atgatggga aacacaaaaa catcatcaac 1620
 ctgctggcg cctgcacgca gggcgcccc ctgtacgtgc ttgtggagta cgccggccaag 1680
 ggtaacctgc gggagttctt gccccggcgg cggccccccgg gcctggacta ctccttcgac 1740
 acctgcaagc cgcccgagga 20 gcagctcacc ttcaaggacc ttgtgtcctg tgcttaccag 1800
 30 gtggcccggtt gcatggagta ctggccctt cagaagtgc 20 tccacaggga cctggctgcc 1860
 cgcaatgtgc tggtgaccga ggacaacgtg atgaagatcg cagacttcgg gctggcccg 1920
 gacgtgcaca acctcgacta ctacaagaag acaaccaacg gccggctgcc cgtgaagtgg 1980
 atggcgcctg aggcttgc 25 tgaccgagtc tacactcacc agagtgcacgt ctggtcctt 2040
 ggggtcctgc tctggagat cttcacgtg gggggtccc cgtaccccg 2100
 35 gaggagctt tcaagctgtc 25 gaaggaggc caccgcattgg acaagccgc caactgcaca 2160
 cacgacctgt acatgatcat gggggagtg tggcatggc cgcctccca gagggccacc 2220
 ttcaaggcagc tggtgagga cctggacgt gtccttaccc tgacgtccac cgacgagttac 2280
 ctggacctgtt cggccctttt 25 cgacgatc tccccgggtg gccaggacac cccagctcc 2340
 agctccatcg gggacgactc cgtgtttgcc cacgacctgc tgccccggc cccacccagc 2400
 40 agtgggggtc cgcggacgtg a 2421

<210> 87
 <211> 2102
 45 <212> DNA
 <213> Homo sapiens

<300>
 <302> HGF
 50 <310> E08541

<400> 87
 atgcagaggg acaaaggaaa agaagaata caattcatga attaaaaaaaa tcagcaaaga 60
 ctaccctaat caaaatagat ccagcactga agataaaaac caaaaaagtg aataactgcag 120
 55 accaatgtgc taatagatgt actaggaata aaggacttcc attcacttgc aaggctttg 180
 ttttgataa agcaagaaaa caatgcctt ggttcccctt caatagcatg tcaagtggag 240
 taaaaaaaat tttggccat gaatttgacc tctatgaaaa caaagactac attagaaaact 300
 gcatcattgg taaaggacgc agctacaagg gaacagtatc tatcactaag agtggcatca 360

60

65

DE 101 00 586 C 1

aatgtcagcc ctggagttcc atgataccac acgaacacag cttttgcct tcgagctatc 420
 ggggtaaaga cctacaggaa aactactgtc gaaatcctcg aggggaagaa gggggaccct 480
 ggtgtttcac aagcaatcca gaggtacgt acgaagtctg tgacattcct cagtgttcag 540
 aagttgaatg catgacctgc aatgggaga gttatcgagg tctcatggat catacagaat 600
 caggcaagat ttgtcagcgc tggatcatc agacaccaca cggcacaaa ttcttcctg 660
 aaagatatacc cgacaaggc tttgatgata attattgccg caatcccgt ggcagccga 720
 ggccatggtg ctatactctt gaccctcaca cccgctggga gtactgtgca attaaaacat 780
 gcgctgacaa tactatgaat gacactgtat ttccttggaa aacaactgaa tgcatccaag 840
 gtcaaggaga aggtacagg ggcactgtca ataccatggaa gaatggaaatttccatgtcagc 900
 gttgggattc tcagttatcct cacgagcatg acatgactcc tgaaaatttcaagtcaagg 960
 acctacgaga aaattactgc cgaaatcccg atgggtctga atcaccctgg tggtttacca 1020
 ctgatcccaa catccggat ggtactgtc cccaaatttccaaactgtatgatgtcacatg 1080
 gacaagattt ttatcggtt aatggcaaaa attatatggg caatttatcc caaacaagat 1140
 ctggactaac atgtcaatg tggacaaga acatggaaaga cttacatcgatcatatcttct 1200
 gggaccaga tgcaagtaag ctgaatgaga attactgccc aaatccagat gatgatgctc 1260
 atggaccctg gtgtacacg gaaatccac tcatttccttggattattgc cctatttctc 1320
 gttgtgaagg tgataccaca cctacaatag tcaatttaga ccatccccgtatattttgt 1380
 cccaaaggaa acaattgcga tttgtaaatgggatttccaaac acgaacaaac ataggatgga 1440
 tggtagtt gagatacaga aataaaacata tctgcggagg atcattgata aaggagagtt 1500
 gggttcttac tgacgcacag ttttccttctcgagactt gaaagatttataatgttggc 1560
 ttggaattca tgatgtccac ggaagaggag atgagaaatg caaacaggat tcoaatgttt 1620
 cccagctggt atatggccct gaaggatcatg atctgggttt aatgaagctt gccaggcctg 1680
 ctgtccttggatgatgtt agtacgattt atttacctaa ttatggatgc acaatttcctg 1740
 aaaagaccag ttgcagtgtt tatggctggg gctacactgg attgatcaac tatgtatggcc 1800
 tattacgagt ggcacatctc tatataatgg gaaatgagaa atgcagccag catcatcgag 1860
 ggaaggtgac tctgaatgag tctgaaatat gtgtggggc tgaaaagatttggatcaggac 1920
 catgtgaggg ggattatggt ggcaccttggatgtt acataaaatg agaatggttc 1980
 ttgggtgtcat ttttccttggatgtt cgtggatgtt ccattccaaa tcgtccttggatgtt 2040
 gagtagcata ttatgcaaaa tggatacaca aaattatgtt aacatataag gtaccacagt 2100
 ca 2102

<210> 88
 <211> 360
 <212> DNA
 <213> Homo sapiens

<300>
 <302> ID3
 <310> XM001539

<400> 88
 atgaaggcgc tgagcccggt gcgcggctgc tacgaggcggt tttgtctgcct gtcggAACGC 60
 agtctggcca tggccggggccgaggaaag ggccggcgatctgaggagcc gctgagcttgc 120
 ctggacgaca tgaaccactgttactcccgctggggaaatgggtaccggatgtccggaga 180
 ggcactcagctttagccagggttggaaatcttca cagcgcgtca tcgactacat tctcgacactg 240
 caggttagtcc tggccgagcc agccctgttgc cccctgtatgc gccccccacct tcccatccag 300
 acagccgagc tcactccggacttgcatac tccaaacgaca aaaggagctt ttggccactga 360

<210> 89
 <211> 743
 <212> DNA
 <213> Homo sapiens

<300>
 <302> IGF2

60

65

DE 101 00 586 C 1

<310> NM000612

<400> 89

```

5 atgggaatcc caatggggaa gtcgatgtg gtgcattctca ctttcttggc cttcgccctcg 60
tgctgcattg ctgcttaccc ccccagttag accctgtcg gcggggagct ggtggacacc 120
ctccagttcg tctgtgggaa ccgcggcttc tacttcagca ggcccgaag ccgtgtgagc 180
cgtegcagcc gtggcatcg tggaggatgc tgtttccgca gctgtgaccc ggcctctcg 240
gagacgtact gtgcataccc cgccaagtcc gagagggacg tgctgacccc tccgaccgtg 300
10 ctccggaca acttccccag atacccctgt ggcaagtct tccaatatga cacctggaaag 360
cagtccaccc agcgccctgcg caggggcctg cctgcctcc tgcgtgccccg ccggggtcac 420
gtgctcgcca aggagctega ggcgttcagg gaggccaaac gtcaccgtcc cctgattgt 480
ctaccaccc aagacccccc ccacggggc gcggggccag agatggcagc caatcggaag 540
tgagaaaaac tgccgcaagt ctgcagccg ggcgcacccat cctgcagccct cctctgacc 600
15 acggacgtt ccatacggtt ccataccgaa aatctctcg ttcacgtcc ccctggggct 660
tctcctgacc cagttccccgt gccccgcctc cccgaaacag gctactctcc tcggccccct 720
ccatcggtt gaggaagcac agc 743

```

20 <210> 90

<211> 7476

<212> DNA

<213> Homo sapiens

25 <300>

<302> IGF2R

<310> NM000876

<400> 90

```

30 atggggcccg ccgcggcccg gagccccac ctggggcccg cgcccgccccg ccggccgcag 60
cgctctctgc tcctgctgca gctgctgtg ctcgtcgctg ccccggggtc cacgcaggcc 120
caggccgccc cgccccccga gctgtgcagt tatacatggg aagctgtta taccaaaaat 180
aatgtacttt ataaaatcaa catctgtgga agtgtggata ttgtccactgt cggccatca 240
agtgtgtt gtatgcacga cttgaagaca cgcacttac attcagtggg tgactctgtt 300
35 ttgagaagtg caaccagatc tctcctgaa ttcaacacaa cagtggctg tgaccagcaa 360
ggcacaaatc acagagtcca gaggcaggat gccttcctgt gtggggaaac cctgggaact 420
cctcatttg taactgcaac agaatgtgtg cactacttgc agtggaggac cactgcagcc 480
tgcaagaaaa acatattaa agcacaaatag gaggtgccat gctatgtt tgatgaagag 540
ttgaggaagc atgatctaa tcctctgatc aagcttagtg gtgcctactt ggtggatgac 600
40 tccgatccgg acacttctctt attcatcaat gttttagag acatagacac actacgagac 660
ccaggttac agctgcgggc ctgtcccccc ggcactgccc cctgcctgtt aagaggacac 720
caggcggtt atgttggcca gccccgggac ggactgaagc tggtgcgcaaa ggacaggctt 780
gtcctgagtt acgtgaggga agaggcagga aagctagact tttgtatgg tcacagccct 840
gccccgtacta ttacattttt ttgcccgtcg gagcggagag agggcaccat tcccaaactc 900
45 acagctaaat ccaactgccc ctatgaaatt gagtggatta ctgagtatgc ctggccacaga 960
gattacctgg aaagtaaaac ttgttctctg agcggcgagc agcaggatgt ctccatagac 1020
ctcacaccac ttgcccagag cggagggtca tcctatattt cagatggaaa agaatatttg 1080
ttttatttga atgtctgtgg agaaactgaa atacagttct gtaataaaaa acaagctgca 1140
gtttgc当地 tgaaaaaagag cgataccctt caagtcaaag cagcaggaaat ataccacaat 1200
50 cagaccctcc gatattcgga tggagaccc accttgcata attttggagg tgatgaatgc 1260
agctcagggt ttcaagcgat gagcgtcata aactttgagt gcaataaaaac cgcaaggtaac 1320
gatggggaaag gaactcctgt attcacaggg gaggttgact gcacctactt cttcacatgg 1380
gacacggaaat acgcctgtgt taaggagaag gaagacctcc tctgcgggtgc caccgacggg 1440
aagaagcgct atgacctgtc cgcgctgtc cgccatgcag aaccagagca gaattggaa 1500
55 gctgtggatg gcagtcagac ggaaacagag aagaagcatt ttttcatcaa tatttgcac 1560
agagtgcgtc aggaaggca ggcacgggg tggccggagg acgcggcagt gtgtgcagtg 1620
gataaaaaatg gaagtaaaaaa tctggggaaa ttttatttctt cttccatgaa agagaaagga 1680
aacattcaac tctcttatttc agatggtgat gattgtggtc atggcaagaa aattaaaaact 1740

```

60

65

DE 101 00 586 C 1

aatatcacac ttgtatgcaa gccaggtgat ctggaaagtg caccagtgtt gagaacttct	1800
ggggaaggcg gttgtttta tgagtttgag tggcgacag ctgcggctg tgcgtgtct	1860
aagacagaag gggagaactg cacggcttt gactcccagg cagggtttc ttttactta	1920
tcacctctca caaagaaaaa tgggtccat aaagttgaga caaagaagta tgactttat	1980
ataaatgtgt gtggcccggt gtctgtgagc ccctgtcagc cagactcagg agcctgccag	2040
gtggcaaaaa gtgatgagaa gacttggaaac ttgggtctga gtaatgcgaa gcttcatat	2100
tatgatggaa tgatccaact gaactacaga ggccgcacac cctataacaa taaaagacac	2160
acaccgagag ctacgctcat cacccttctc tgcgtatcgag acgcgggagt gggcttcct	2220
gaatatcagg aagaggataa ctccacccat aacctccggt ggtacaccag ctatgcctgc	2280
ccggaggagc cccttggaaatg cgttagtgcacc gacccttcca cgctggagca gtacgacctc	2340
tccagtctgg caaaatctga aggtggcctt ggaggaaact ggtatccat ggacaactca	2400
ggggacatg tcacgtggag gaaataactac attaacgtgt gtcggctct gaatccagtg	2460
ccgggctgca accgatatgc atcggctgc cagatggaaatg atgaaaaaga tcagggtctc	2520
ttcactgaag tgggttccat cagtaacttg ggaatggcaa agacgggccc ggtgggttag	2580
gacagcggca gcctccttctt ggaataacgtg aatgggtcg gctgcaccac cagcgatggc	2640
agacagacca catataaccac gaggatccat ctgcgtctgt ccaggggcag gctgaacagc	2700
caccccatct tttctctcaa ctggggagttgt gtgtcagtt tcctgtggaa cacagaggct	2760
gcctgtccca ttcagacaac gacggataca gaccaggctt gctctataag ggatcccaac	2820
agtggattt gttttatct taatccgcta aacagttcgc aaggatataa cgctcttgc	2880
attgggaaa tttttatgtt taatgtctgc ggacaaatgc ctgtctgtgg gaccatctg	2940
ggaaaacctg cttctggctg tgagggagaa acccaaactg aagagctcaa gaattggaaag	3000
ccagcaaggc cagtcggaaat tgagaaaagc ctcagctgt ccacagaggg cttcatact	3060
ctgacctaca aaggccctct ctctgccaaa ggtaccgctg atgctttat cgtcgcctt	3120
gtttcaatg atgatgtttt ctcaggggcc ctcaaattcc tgcatcaaga tatcgactct	3180
gggcaaggga tccgaaacac ttacttttag tttgaaacccg cggtggctg tggtcccttct	3240
ccagtggact gccaagtcac cgacctggct ggaatgagt acgacctgac tggcctaagc	3300
acagtcaagga aaccttggac ggctgttgc acctctgtcg atggagaaaa gaggacttgc	3360
tattttagcgt tttgcaatcc tctcccttac attcctggat gccaggggcag cgcaagtgggg	3420
tcttgcttag tgtcagaagg caatagctgg aatctgggtg tggtgcagat gagtccccaa	3480
gccgcggcga atggatctt gagcatcatg tatgtcaacg gtgacaagtg tggaaaccag	3540
cgcttctcca ccagatcac ttttagtgcgt gtcagatata cgggctcacc agcatttcag	3600
cttcaggatg gttgtgagta cgtgtttatc tggagaactg tggaagcctg tccctgttc	3660
agagtggaaag gggacaactg tgaggtggaaa gacccaaggc atggcaactt gtatgacctg	3720
aagcccttgg gcctcaacga caccatctg agcgttgcgc aatacactt ttacttccgg	3780
gtctgtggga agctttccctc agacgtctgc cccacaagtg acaagtccaa ggtggcttcc	3840
tcatgtcagg aaaagcggga accgcggagg tttcacaaag tggcaggtct cctgactcag	3900
aagctaactt atgaaaatgg ctgtttaaa atgaaactca cggggggggcacttgcctat	3960
aaggtttatac agcgttccac agccatctt ttctactgtg accgcggcacttgcac	4020
gtatttctaa aggagacttcc agattgttcc tactgtttt gttggcaac gcaatgttcc	4080
tgcccacctt tcgatctgac tgaatgttca ttcaaagatg gggctggcaa ctccttcgac	4140
ctctcgcccc tgcgttcaactt cagtgtacac tgggaagcca tcaactggac gggggacccg	4200
gagcactacc tcataatgt ctgtcaagtct ctggccccgc aggctggcac tgagccgtgc	4260
cctccagaag cagccgcgtg tctgtgggt ggctccaagc ccgtgaacct cggcagggtt	4320
agggacggac ctcaatggag agatggcata attgtctgtg aatacgttga tggcgactta	4380
tgtccatgtt ggattcggaa aaagtcaacc accatccgt tcacctgcag cgagagccaa	4440
gtgaacttca gggccatgtt catcagcgcc gtggaggact gtgagttacac cttgtccctgg	4500
cccacagccca cagcgttcc catgaagagg aacgagcatg atgacttccca ggtcaccaac	4560
ccaaggcacag gacacccgtt tgatctgtgc tccttaatgt gcaggggccggg attcacagct	4620
gcttacagcg agaagggtt gtttacatg agcatctgtg gggagaatga aaactgcctt	4680
cctggcgctgg gggctgtt tggacagacc aggattagcg tggcaaggc caacaagagg	4740
ctgagatacg tggaccaggc cctgcagctg gtgtacaagg atgggtcccc ttgtccctcc	4800
aaatccggcc tgagctataa gagtgtgtatc agtttctgtt gcaggcctga ggccgggcca	4860
accaataggc ccatgtctcat ctccttggac aagcagacat gcactctt cttctcttgc	4920
cacacgccc tggctcgca gcaagcgacc gaatgttccg tgaggaatgg aagctctatt	4980
gttgacttgt ctcccttat tcatcgact ggtgggtatg aggcttatga tgagagtgag	5040
gatgatgcct ccgatacaa ccctgattt tacatcaata ttgtcagcc actaaatccc	5100
atgcacgcag tgccctgtcc tgccggagcc gctgtgtca aagttccat tgcgttccccc	5160

60

65

DE 101 00 586 C 1

	cccatagata	tcggccgggt	agcaggacca	ccaatactca	atccaatagc	aaatgagatt	5220
	tacttgaatt	ttgaaaagcag	tactccttgc	ttagcggaca	agcatttcaa	ctacacctcg	5280
5	ctcatcgct	ttcactgtaa	gagaggtgtg	agcatggaa	cgcctaagct	gttaaggacc	5340
	agcgagtgcg	actttgttt	cgaatgggag	actcctgtcg	tctgtcctga	tgaagtgagg	5400
	atggatggct	gtaccctgac	agatgagcag	ctcctctaca	gcttcaactt	gtccagcctt	5460
	tccaccgagca	ccttaaggt	gactcgcgac	tcggcgacac	acagcgttgg	ggtgtgcacc	5520
10	tttgcagtcg	ggccagaaca	aggaggctgt	aaggacggag	gagtctgtct	gctctcaggc	5580
	accaaggggg	catttttgg	acggctgcaa	tcaatgaaac	tggattacag	gcaccaggat	5640
	gaagcggtcg	ttttaagtt	cgtgaatgg	gatcggtgcc	ctccagaaac	cgatgacggc	5700
	gtccccctgt	tctcccccct	catattcaat	ggaaagagct	acgaggagt	catcatagag	5760
15	agcaggggca	agctgtggtg	tagcacaact	gcggactacg	acagagacca	cgagtggggc	5820
	ttctgcagac	actccaaacag	ctaccggaca	tccagcatca	tatthaagtg	tgatgaagat	5880
	gaggacattg	ggggccaca	agtcttoga	gaagtgcgtg	ggtgtatgt	gacatttgag	5940
20	tggaaaacaa	aagtgtctg	ccctccaaag	aagttggagt	gcaaattcgt	ccagaaacac	6000
	aaaacctacg	acctgcggct	gctccctct	ctcaccgggt	cctggccct	gttccacaac	6060
	ggagtctcg	actatataaa	tctgtgcag	aaaatataa	aaggggccct	gggctgtct	6120
	gaaaggggca	gcatttgcag	aaggaccaca	actggtgacg	tccaggct	gggactcggt	6180
25	cacacgcaga	agctgggtgt	cataggtgac	aaagttgttg	tcacgtactc	caaaggttat	6240
	ccgtgtggtg	gaaataagac	cgcatctcc	gtatagata	tgacctgtac	aaagacggtg	6300
	ggcagacacctg	cattcaagag	gtttgatata	gacagctgca	cttactactt	cagctggac	6360
	tcccgggctg	cctgcgcgt	gaagcctcag	gaggtgcaga	tgtgaatgg	gaccatcacc	6420
30	aaccctataa	atggcaagag	cttcagcctc	ggagatattt	attttaagct	gttcagagcc	6480
	tctggggaca	tgaggacaa	tggggacaac	tacctgtatg	agatccaact	ttcctccatc	6540
35	acaagctcca	gaaacccggc	gtgtcttgg	gccaacatat	gccaggtgaa	gcccaacgat	6600
	cagcacttca	gtcgaaaagt	tggAACCTCT	gacaagacca	agtactacct	tcaagacggc	6660
	gatctcgat	tcgtgtttgc	ctcttcctct	aagtgcggaa	aggataagac	caagtctgtt	6720
	tcttccacca	tcttcttcca	ctgtgaccct	ctgggtggagg	acgggatccc	cgagttcagt	6780
40	cacgagactg	ccgactgcca	gtaccttcc	tcttggtaca	cctcagccgt	gtgtctctg	6840
	gggggtggct	ttgacacgca	gaatccccgg	gacgacggggc	agatgcacaa	ggggctgtca	6900
	gaacggagcc	aggcagtcgg	cgccgtgtct	agctgtgc	tgggtggcgct	cacctgtgc	6960
	ctgctggccc	tgttgcctca	caagaaggag	aggagggaaa	cagtgataag	taagctgacc	7020
	acttgctgt	ggagaagttc	caacgtgtcc	tacaaataact	caaagggtgaa	taaggaagaa	7080
	gagacagatg	agaatgaaac	agagttggctg	atgaaagaga	tccagctgcc	tcctccacgg	7140
45	caggaaaaagg	aagggcagga	gaacggccat	attaccacca	agtcagtgaa	agccctcagc	7200
	tccctgcat	gggatgacca	ggacagtgag	gatgagggtt	tgaccatccc	agaggtgaaa	7260
	gttcactcgg	gcggggggac	tggggcagag	agctcccacc	cagtgagaaa	cgcacagagc	7320
	aatgcccttc	aggagcgtga	ggacgatagg	gtggggctgg	tcaggggtga	gaaggcgagg	7380
50	aaagggaagt	ccagctctgc	acagcagaag	acagttagct	ccaccaagct	ggtgtccctc	7440
	catgacgaca	gcgacgagga	cctcttacac	atctga			7476

	<210>	91					
	<211>	4104					
45	<212>	DNA					
	<213>	Homo sapiens					
	<300>						
	<302>	IGF1R					
50	<310>	NM000875					
	<400>	91					
	atgaagtctg	gctccggagg	agggtccccg	acctcgctgt	gggggctctt	gtttctctcc	60
	gccgcgtct	cgctctggcc	gacgagtgg	gaaatctcg	ggccaggcat	cgacatccgc	120
55	aacgactatc	agcagctgaa	gcccctggag	aactgcacgg	tgatcgagg	ctacctccac	180
	atcctgtca	tctccaaggc	cgaggactac	cgacgttacc	gcttcccaa	gctcacggc	240
	attaccgagt	acttgctgt	gttccgagtg	gctggcctcg	agacgcctcg	agaccttcc	300
	cccaacccatca	cggtcatccg	cggctggaaa	ctcttctaca	actacgcct	ggtcatcttc	360

60

65

DE 101 00 586 C 1

gagatgacca atctcaagga tattgggctt tacaacctga ggaacattac tcggggggcc 420
 atcaggattg agaaaaatgc tgacctctgt tacctctcca ctgtggactg gtccctgatc 480
 ctggatgcgg tgtccaataa ctacattgtg gggataaagc ccccaaagga atgtggggac 540
 ctgtgtccag ggaccatgga ggagaagccg atgtgtgaga agaccaccaat caacaatgag 600 5
 tacaactacc gctgctggac cacaaaccgc tgccagaaaa tgtgccaag cacgtgtggg 660
 aagcgggctg gcaccgagaa caatgagtgc tgccaccccg agtgcctggg cagctgcagc 720
 ggcctgaca acgacacacgc ctgtgttagt tgccgcccact actactatgc cggtgtctgt 780
 gtgcctgcct gcccgccaa cacctacagg tttgagggtc ggccgtgtgt ggaccgtgac 840
 ttctgcgcca acatccctcg cgccgagagc agcactccg aggggtttgt gatccacgac 900 10
 ggcgagtgca tgcaggagtg cccctcggttcatccgca acggcagcca gagcatgtac 960
 tgcattccctt gtgaagggtc ttggccgaaatgtc gtcgtgagg aagaaaagaa aacaaagacc 1020
 attgattctt ttacttctgc tcatatgtc caaggatgca ccattctcaa gggcaatttg 1080
 ctcattaaca tccgacgggg gaataacatt gcttcagagc tggagaactt catggggctc 1140
 atcgagggtgg tgacgggcta cgtgagatc cgccattctc atgccttggt ctccctgtcc 1200
 ttccctaaaaa accttcgcct catcctagga gaggagcagc tagaaggggaa ttactccctc 1260 15
 tacgtcctcg acaaccagaa cttgcagcaa ctgtggggc aacccatccg caccaccacg 1320
 atcaaagcag gggaaaatgta ctttgcttc aatcccaaat tatgtgtttc cgaattttac 1380
 cgcattggagg aagtgacggg gactaaaggcg cgcacccat aaggggacat aaacaccagg 1440
 aacaacgggg agagagcctc ctgtgaaagt gacgtctgc atttcacctc caccaccacg 1500
 tcgaagaatc qcatcatcat aacctggcac cggtaaccggc cccctgacta cagggatctc 1560
 atcagcttca ccgttacta caaggaagca ccctttaaga atgtcacaga gtatgtggg 1620
 caggatgcct gcccgtccaa cagctggAAC atgtgtggacg tggacccccc gccaacaag 1680
 gacgtggagc cccgcattt actacatggg ctgaagccct ggactcagta cgccgtttac 1740
 gtcaagggtg tgaccctcac catggtgag aacgaccata tccgtggggc caagagttag 1800 25
 atcttgtaca ttgcaccaa tgcttcagtt cttccattt ctttggacgt tcttcagca 1860
 tcgaactctt cttctcagtt aatcgtgaag ttggaaaccctt cctctctgca caacggcaac 1920
 ctgagttact acattgtcg cttggcaggg cagcctcagg acggctaccc ttaccggcac 1980
 aattactgtc ccaaagacaa aatccccatc aggaagtatg cgcacggcac catcgacatt 2040
 gaggaggtca cagagaaccc caagactgag gtgtgtggg gggagaaagg gccttgcgc 2100 30
 gcctgccccca aaactgaagc cgagaagcag gcccagaagg gaggaggtga ataccgcaaa 2160
 gtctttgaga atttctctgca gatgtcatgc aagtggccaa caccaccatc tccagccgaa 2220
 gacaccttac acatcaccga agatggata acaaggagag aactgtcatt tctaaccctt 2280
 atcgatatcc acagctgca gactatgcc gacccatgc aacttccatc ttctggggcc 2340
 gtctttgcaaa ggactatgcc cgcagaagga gcatatgaca catcttttta aagtggccgg 2400
 gagccaaggc ctgaaaactc ttgattctaa tttatgaaat aaaatacggta tcacaagttt 2460
 tccagacagg aatacaggaa gtatggaggg gccaagctaa ccggcttaaa cccggggaaac 2520 35
 tacacagccc ggattcaggc ccatcttc tctgggatg ggtcgtggac agatcctgtg 2580
 ttcttctatg tccaggccaa aacaggatata aacaggatata aacctctca tccatctgt 2640
 cccgtcgctg tcctgttgc cgtggggaggg ttggtgatta tgctgtacgt cttccataga 2700
 aagagaaaata acagcaggct ggggaatggta gtgtgtatg cctctgtgaa cccggaggatc 2760
 ttcagcgctg ctgtgtgtc cttccgtat gatggggagg tggctgggaa gaagatcacc 2820 40
 atgagccggg aacttgggca ggggtcggtt gggatggctc atgaaggagt tgccaagggt 2880
 gtggtaaaag atgaacctga aaccagagt gcccattaaa cagtgaacga ggcgcac 3120
 atgcgtgaga ggattgagtt tctcaacaa gcttctgtga tgaaggagt caattgtcac 3180
 catgtgggtc gattgtggg tttgggtgtcc caaggccagc caacactgtt catcatggaa 3240
 ctgtatgacac gggcgatct caaaagtat ctccggctc tgaggccaga aatggagaat 3300 45
 aatccagttcc tagcacctcc aaggctgagc aagatgattc agatggccgg agagattgca 3360
 gacggcatgg catacctaa cggcaataag ttgtccaca gagacccctgc tgcccgaaat 3420
 tgcattggtag ccgaagattt cacagtcaaa atcggagatt ttggatgtac gcgagatatc 3480
 tatgagacag actattaccg gaaaggaggg aaagggtgc tgcccgtgc ctggatgtct 3540
 cctgagtcctc tcaaggatgg agtcttacc acttactcg acgtctgtc cttccgggtc 3600
 gtccctctggg agatgcacact gctggccgag cagccctacc agggcttgatc caacgagcaa 3660 50
 gtccctcgct tcgtcatgga gggggccctt ctggacaagc cagacaactg tcctgacatg 3720
 ctgtttgaac tggatgcgcata tggatggcag tataacccca agatgaggcc ttccttcctg 3780
 60

DE 101 00 586 C 1

5 gagatcatca gcagcatcaa agaggagatg gagcctggct tccgggaggt ctccttctac 3840
 tacagcgagg agaacaagct gcccggccg gagagactgg acctggagcc agagaacatg 3900
 gagagcgtcc ccctggaccc ctgcgcctcc tcgtcctccc tgccactgcc cgacagacac 3960
 tcaggacaca aggccgagaa cggccccggc cctgggtgc tggcctccg cgccagcttc 4020
 gacgagagac agccttacgc ccacatgaac gggggccgca agaacgagcg ggccttgccg 4080
 ctgccccagt cttcgacctg ctga 4104

10 <210> 92
 <211> 726
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> PDGFB
 <310> NM002608

20 <400> 92
 20 atgaatcgct gctggggcgt cttcctgtct ctctgctgct acctgcgtct ggtcagcgcc 60
 gagggggacc ccattcccgaa ggagcttat gagatgtga gtgaccactc gatccgctcc 120
 ttttagatc tccaacgcct gctgcacgga gaccccgag aggaaagatgg ggcggagttg 180
 gacctgaaca tgacccgctc ccactctggaa ggcgagctgg agagcttggc tcgtggaaaga 240
 aggagcctgg gttccctgac cattgtgag cccgcatga tcgcccggatgt caagacgcgc 300
 25 accgaggtgt tcgagatctc cccgcgcctc atagaccgca ccaacgccaa cttcctggtg 360
 tggccgcctt gtgtggaggt gcagcgctgc tccggctgct gcaacaaccg caacgtgcag 420
 tgccgccttcca cccaggtgca gctgcgcacct gtccaggtga gaaagatcgaa gattgtgcgg 480
 aagaagccaa tcttaagaa ggccacggtg acgctggaaag accacctggc atgcaagtgt 540
 gagacagttgg cagctgcacg gcctgtgacc cgaagcccg ggggttccca ggagcagcga 600
 30 gccaaaaacgc cccaaactcg ggtgaccatt cggacgggtc gagtccggcg gccccccaag 660
 ggcaaggacc gaaattcaa gcacacgcata gacaagacgg cactgaagga gacccttgaa 720
 gcctag 726

35 <210> 93
 <211> 1512
 <212> DNA
 <213> Homo sapiens

40 <300>
 <302> TGFbetaR1
 <310> NM004612

45 <400> 93
 45 atggaggccgg cggtcgctgc tccgcgtccc cggctgctcc tcctcggtgt ggcggccggcg 60
 gcggccggccgg cggccggcggt gctcccgcccc ggcacggcggt tacagtgttt ctggcaccc 120
 tgtacaaaaag acaattttac ttgtgtgaca gatgggctct gctttgtctc tgtcacagag 180
 accacagaca aagtataaca caacagcatg tgtatagctg aaattgactt aattcctcgaa 240
 gataggccgt ttgtatgtgc accctcttca aaaaactgggt ctgtgactac aacatattgc 300
 50 tgcaatcagg accattgcaaa taaaatagaa cttccaaacta ctgtaaagtc atcacctggc 360
 cttggtcctg tggaaactggc agctgtcatt gctggaccag tggcttcgt ctgcacatctca 420
 ctcatgttga tggctatat ctgcacacaac cgcactgtca ttcaccatcg agtgc当地 480
 gaagaggacc cttcattaga tcgcctttt atttcagagg gtactacgtt gaaagactta 540
 atttatgata tgacaacgatc aggttctggc tcaggtttac cattgttgcgt tcagagaaca 600
 55 attgcgagaa ctattgtgtt acaagaaagc attggcaaag gtcgattttgg agaagttgg 660
 agaggaaagt ggcggggaga agaagttgtct gttaaagatat tctcctctag agaagaacgt 720
 tcgtgggtcc gttggcaga gatttatcaa actgtaatgt tacgtcatga aaacatcctg 780
 ggattttatag cagcagacaa taaagacaat ggtacttgaa ctcagctctg gttgggtgtca 840

60

65

DE 101 00 586 C 1

gattatcatg agcatggatc ccttttgat tacttaaaca gatacacagt tactgtggaa 900
 ggaatgataa aacttgcctc gtccacggcg agccgtcttgc cccatctca catggagatt 960
 gttggtagcc aaggaaagcc agccattgtc catagagatt tgaaatcaa gaatatcttgc 1020
 gtaaagaaga atgaaacttgc ctgtatttgc gacttaggac tggcagaatg acatgattca 1080
 gccacagata ccattgtat tgcctccaa cacagagtgg gaacaaaag gtacatggcc 1140
 cctgaagttc tcgatgattc cataaatatg aaacattttg aatccttcaa acgtgctgac 1200
 atctatgca tggcttagt attctggaa attgctcgac gatgttccat tggtgaaatt 1260
 catgaagatt accaactgcc ttattatgt ctgttacctt ctgaccatc agttgaagaa 1320
 atgagaaaag ttgttgtga acagaagttt aggccaaata tcccaaacag atggcagagc 1380
 tgtgaagctt tgagagtaat ggctaaaattt atgagagaaat gttgttatgc caatggagca 1440
 gctaggctt cagcatttgc gattaagaaa acattatcgc aactcagtca acaggaaggc 1500
 atcaaaaatgt aa 1512

5

10

15

<210> 94
 <211> 4044
 <212> DNA
 <213> Homo sapiens

20

<300>
 <302> Flk1
 <310> AF035121

<400> 94

atgcagagca aggtgctgct ggccgtcgcc ctgtggctct	gcgtggagac ccgggcccgc 60	
tctgtgggtt tgccttagtgt ttcttcttgc ctgcccaggc	tcagcataca aaaagacata 120	
cttacaatta aggctaatac aactcttcaa attacttgc	ggggacagag ggacttggac 180	
tggctttggc ccaataatca gagtggcagt gagcaaagg	tggaggtgac tgagtgcage 240	
gatggccctt tctgttaagac actcacaatt ccaaaaatgt	tcggaaatga cactggagcc 300	
tacaagtgtc tctaccggga aactgacttgc gcctcggtca	tttatgtcta ttttcaagat 360	
tacagatctc cattatttgc ttctgttagt gaccaacatg	gagtcgtgtt cattacttag 420	
aacaaaaaca aaactgtggt gattccatgt ctccgggtca	tttcaatctt caacgtgtca 480	
ctttgtgcaaa gatacccaga aaagagattt gttcctgtat	gtaacagaat ttcttggac 540	
agcaagaagg gctttactat tcccagctac atgatcagct	atgctggcat ggtcttctgt 600	
gaagaaaaaa ttaatgtatgaa aagttaccatg tctattatgt	acatagttgt cgtttaggg 660	
tataggattt atgatgtgtt tctgagttcc tctcatggaa	ttgaactatc ttttggagaa 720	
aagcttgtct taaattgtac agcaagaatg gaactaaatg	tggggatgtt ctcaactgg 780	
gaataaccctt cttcaagca tcagcataag aacattgtaa	accggacatc aaaaaccac 840	
tctgggagtg agatgaagaa atttttgagc accttaacta	tagatgggtt aacccggagt 900	
gaccaaggat tgcacacccgt tgcagcatcc agtgggctga	tgaccaagaa gaacagcaca 960	
tttgcaggg tccatgaaaaa acctttgtt gctttggaa	gtggcatgaa atcttgggt 1020	
gaagccacgg tgggggagcg tgcagaatc cctgcgaatg	accttggta cccacccccca 1080	
gaaataaaaat ggtataaaaaa tggaaatcccc cttgagtc	atcacacaat taaaggggg 1140	
catgtactga cgattatggaa agtgagtgaa agagacacag	gaaattacac tgcacatcc 1200	
accaatccca tttcaaaagga gaagcagacg catgtggct	ctctgggtt gtatgtccca 1260	
ccccagattt gtgagaaatc tctaattctt cctgtggatt	cctaccatc cggcaccact 1320	
caaacgcgtt catgtacggt ctatgcatt cctccccccgc	atcacatcca ctggatattgg 1380	
cagttggagg aagagtgcgc caacgagccc agccaagctg	tctcagtgac aaacccatac 1440	
ccttggtaag aatggagaag tggggaggac ttccaggag	gaaataaaaat tgaagttat 1500	
aaaaatcaat ttgcctaat tgaaggaaaa aacaaaactg	taagtaccct ttttatccaa 1560	
gcggcaatg tgcagctt gtacaaatgt gaagcggtca	acaaagtctgg gagaggagag 1620	
agggtgatct cttccacgt gaccagggtt cctgaaat	cttgcacacc tgacatgcag 1680	
cccaactgagc aggagagcgt gtctttgtgg tgcactgc	acagatctac gtttgagaac 1740	
ctcacatgtt acaagcttgg cccacagccct tggccaaatcc	atgtgggaga gttccccaca 1800	
cctgttgtca agaacttggaa tactctttgg aaattgtat	ccaccatgtt ctctaatagc 1860	
acaaatgaca ttttgcattt ggagcttaag aatgcaccc	tgcaggacca aggagactat 1920	
gtctgccttgc ctcaagacag gaagaccaag aaaagacatt	gcgtggctcag gcagctaca 1980	

30

35

40

45

50

55

60

65

DE 101 00 586 C 1

	gtcctagagc	gtgtggcacc	cacgatcaca	ggaaacctgg	agaatcagac	gacaagtatt	2040
	ggggaaagca	tgcgaagtctc	atgcacggca	tctgggaatc	cccctccaca	gatcatgtgg	2100
	tttaaagata	atgagaccct	tgtagaagac	tcaggcattt	tattgaagga	tgggaaccgg	2160
5	aacctcacta	tccgcagagt	gaggaaggag	gacgaaggcc	tctacacctt	ccaggcatgc	2220
	agtgttcttg	gctgtgcaaa	agtggaggca	ttttcataa	tagaaggtgc	ccaggaaaag	2280
	acgaacttgg	aaatcattat	tctagtaggc	acggcggtga	ttgcctatgtt	cttctggcta	2340
10	cttcttgtca	tcatcctacg	gaccgttaag	cgggccaatg	gaggggaact	gaagacaggc	2400
	tacattgtcca	tcgtcatgga	tccagatgaa	ctccccattgg	atgaacattt	tgaacactg	2460
	ccttatgtatg	ccagcaatg	ggaattcccc	agagaccggc	tgaagctagg	taagccttctt	2520
	ggccgtgggt	cctttggcca	agtgattgaa	gcagatgcct	ttggaaattga	caagacagca	2580
15	acttgcagga	cagtagcagt	caaaatgtt	aaagaaggag	caacacacag	tgagcatcga	2640
	gctctcatgt	ctgaactcaa	gatcctcatt	catattggtc	accatctcaa	tgtggtaaac	2700
	cttcttaggtg	cctgtaccaa	gccaggaggg	ccactcatgg	tgattgtgg	attctgaaaa	2760
	tttggaaacc	tgtccactt	cctgaggagc	aagagaaaatg	aatttgcctt	ctacaagacc	2820
20	aaaggggcac	gattccgtca	agggaaagac	tacgttggag	caatccctgt	ggatctgaaa	2880
	cggcgcttgg	acagcatcac	cagtagccag	agctcagcca	gctctggatt	tgtggaggag	2940
	aagtccctca	gtgatgtaga	agaagaggaa	gctcctgaag	atctgtataa	ggacttcctg	3000
	accttggagc	atctcatctg	ttacagcttc	caagtggcta	agggcatgga	gttctggca	3060
25	tcgcgaaagt	gtatccacag	ggacctggcg	gcacgaaaata	tcctcttattc	ggagaagaac	3120
	gtggttaaaa	tctgtgactt	tggcttggcc	cgggatattt	ataaaagatcc	agattatgtc	3180
	agaaaaggag	atgctgcct	cccttggaaa	tggatggccc	cagaaaacaat	ttttgacaga	3240
	gtgtacacaa	tccagagtga	cgtctggct	tttgggtttt	tgtctgtgg	aatattttcc	3300
30	ttaggtgtt	ctccatatcc	tggggtaaaag	attgtatgaag	aattttgtag	gcgattgaaa	3360
	gaaggaaacta	gaatgagggc	ccctgttatt	actacaccag	aatatgtacca	gaccatgctg	3420
	gactgctggc	acggggagcc	cagttagaga	cccacgttt	cagagttgtt	ggaacatttg	3480
	ggaaatctct	tgcaagctaa	tgctcagcag	gatggcaaaag	actacatttt	tcttcggata	3540
	tcaagactt	tgagcatgga	agaggattct	ggactctctc	tgccctacctt	acctgtttcc	3600
35	tgtatggagg	aggaggaagt	atgtgacccc	aaattccatt	atgacaacac	agcaggaaatc	3660
	agtcaagtatc	tgcagaaacag	taagcgaaaag	agccggctgt	tgagtgtaaa	aacatttgaa	3720
	gatatccctgt	tagaagaacc	agaagtaaaa	gtaatccctag	atgacaaccca	gacggacagt	3780
	ggtatggttc	ttgcctcaga	agagctgaaa	actttggaaag	acagaaccaa	attatctcca	3840
	tctttgggt	gaatgggtcc	cagcaaaagc	agggagttctg	tggcatctga	aggctaaac	3900
	cagacaagcg	gctaccatgtc	cggatatac	tccgtatgaca	cagacaccac	cgtgtactcc	3960
	agtgaggaag	cagaactttt	aaagctgata	gagattggag	tgcaaaccgg	tagcacagcc	4020
	cagattctcc	agcctgactc	gggg				4044

```
    <210> 95
40   <211> 4017
      <212> DNA
      <213> Homo sapiens

        <3.00>
45   <302> Flt1
      <310> AF063657
```

<400> .95	
50	atggtcagct actgggacac cggggtcctg ctgtgcgcgc tgctcagctg tctgcttctc 60 acaggatcta gtccagggttc aaaattaaaa gatcctgaac tgagttaaa aggcaccccg 120 cacatcatgc aaggcaggcca gacactgcat ctccaaatgca ggggggaagc agccccataaa 180 tggtctttgc ctgaaatggt gagtaaggaa agcgaaaggc tgagcataac taaatctgcc 240 tgtggaagaa atggcaaaaca attctgcagt actttaacct tgaacacacgc tcaagacaac 300 cacactggct tctacagctg ccaaatactca gctgtaccta cttaaaagaa gaaggaaaaca 360 55 gaatctgcaa tctatataatt tatttagtgat acaggtagac ctttcgtaga gatgtacagt 420 gaaatccccg aaattataaca catgactgaa ggaaggggagc tcgtcattcc ctggccgggtt 480 acgtcaccta acatcactgt tacttttaaa aagtttccac ttgacacttt gatccctgtat 540 ggaaaacgcgtaatctggca cagtagaaag ggcttcatca tatcaaatacg aacgtacaaa 600

60

65

DE 101 00 586 C 1

gaaaatagggc ttctgacctg tgaagcaaca gtcaatgggc atttgtataa gacaaactat 660
 ctcacacatc gacaaaaccaa tacaatcata gatgtccaaa taagcacacc acgcccagtc 720
 aaattactta gaggccatac tcttgcctc aattgtactg ctaccactcc cttaaacacg 780
 agagttcaaa tgacctggag ttaccctgtat gaaaaaaaata agagagttc cgtaaaggcga 840 5
 cgaatttgacc aaagcaattc ccatgccaac atattctaca gtgttcttac tattgacaaa 900
 atgcagaaca aagacaaaagg actttatact tgctgtgtaa ggagtggacc atcattcaaa 960
 tctgttaaca cctcagtgc tatatatgtat aaagcattca tcactgtgaa acatcgaaaa 1020
 cagcagggtgc ttgaaaccgt agctggcaag cggtcttacc ggctcttat gaaagtgaag 1080
 gcatttccct cgccggaagt tgtatggta aaagatgggt tacctgcgac tgagaaatct 1140 10
 gctcgctatt tgactcgtgg ctactcgta attatcaagg acgtaactga agaggatgca 1200
 gggattata caatcttgc gggataaaaa cagtcaaatg tgttaaaaaa cctcaactgcc 1260
 actctaattt tcaatgtgaa accccagatt tagaaaaagg ccgtgtcattc gttccagac 1320
 ccggctctt acccaactggg cagcagacaa atcctgactt gtaccgcata tggatccct 1380
 caacctacaa tcaagtgggt ctggcaccc tgtaaccata atcattccga agcaagggt 1440 15
 gactttgtt ccaataatga agagtcctt atcctggatg ctgacagcaa catggaaac 1500
 agaattgaga gcatcactca ggcgtatggca ataatagaag gaaagaataa gatggcttagc 1560
 accttgggtt tggctactc tagaatttct ggaatctaca ttgcatacg ttcaataaa 1620
 gttgggactg tgggaagaaa cataagctt tataatcacag attgccaaa tgggttcat 1680
 gttacttgg aaaaaatgcc gacggaagga gagacctgaa actgtcttgc cacagttac 1740 20
 aagttcttat acagagacgt tacttggatt ttactcgaa cagttataa cagaacaatg 1800
 cactacagta ttagcaagca aaaaatggcc atactaagg agcactccat cactcttaat 1860
 cttaccatca tgaatgtttc cctgcaagat tcagggcacct atgcctgcag agccaggaat 1920
 gtatacacag gggaaagaaat cctccagaag aaagaaatta caatcagaga tcaggaagca 1980
 ccataccctc tgcaaaacct cagtgtatcac acagtggcca tcagcagttc caccactta 2040 25
 gactgtcatg ctaatgggtt ccccgagccct cagatcaattt ggtttaaaaaa caaaccacaaa 2100
 atacaacaag agcctggaaat tatttttagga ccaggaagca gcacgctgtt tattgaaaga 2160
 gtcacagaag aggatgaagg tgtctatcac tgcaaaagcca ccaaccagaa gggctctgt 2220
 gaaagttcag catacctcac tggtaagga acctcggaca agtctaatttctt gtagctgatc 2280
 actctaacat gcacctgtgt ggctgcact ctcttctggc tccttataac cctctttatc 2340 30
 cgaaaaatga aaaggtcttc ttctgaaata aagactgact acctatcaat tataatggac 2400
 ccagatgaag ttcccttggg tgagcagtgt gagcggcgtcc cttatgatgc cagcaagtgg 2460
 gagtttgcggc gggagagact taaaactggc aaatcacttg gaagaggggc ttttggaaaa 2520
 gtgggtcaag catcagcatt tggcattaaag aaatcaccta cgtgcccggac tggctgtgt 2580
 aaaatgctga aagagggggc cacggccagc gatcacaag ctctgtatgac tgagctaaaa 2640 35
 atcttgaccc acattggccca ccatctgaaatc gtggtaacc tgctgggagc ctgcaccaag 2700
 caaggagggc ctctgtatgtt gattttgaa tactgcaat atggaaatct ctccaactac 2760
 ctcaagagca aacgtgactt attttttctc aacaaggatg cagcaactaca catggagcc 2820
 aagaaagaaa aaatggagcc aggcctgaa caaggcaga aaccaagact agatagcg 2880
 accagcagcg aaagcttgc gagctccggc tttcaggaag ataaaatgtt gatgtatgtt 2940 40
 gaggaagagg aggattctga cggttctac aaggagccca tcactatgaa agatctgatt 3000
 tcttacagg ttcagtgcc cagaggcatg gagttctgtt cttccagaaa gtgcattcat 3060
 cgggacctgg cagcggaaaaa cattcttta tctgagaaca acgtggtaa gattgtatc 3120
 tttggccttg cccggatata ttataagaac cccgattatg tgagaaaagg agataactcga 3180
 cttcctctga aatggatggc tcctgaatct atctttgaca aaatctacag caccaagagc 3240 45
 gacgtgttgtt ctacggagt attgctgtgg gaaatcttct ccttaggtgg gtctccatac 3300
 ccaggaggtaa aatggatga ggacttttc agtgcctga gggaggcat gaggatgaga 3360
 gtcctgttgtt actctactcc tggaaatctat cagatcatgc tggactgct gcacagagac 3420
 cccaaaagaaa ggccaaagatt tgcaaaactt gtggaaaaac taggtgatc gcttcaagca 3480
 aatgtacaac aggatggtaa agactacatc ccaatcaatg ccataactgac agggaaatagt 3540 50
 gggtttacat actcaactcc tgccttctc gaggacttct tcaaggaaag tatttcagct 3600
 ccgaagtttta attcaggaag ctctgtatgtt gtcagatgt taaaatgtttt caagttcatg 3660
 agcctggaaa gaatcaaacc ctttgaagaa cttttaccga atgccaccc catgtttgtat 3720
 gactaccagg ggcacagcag cactctgttg gcctctccca tgctgaagcg cttcacctgg 3780
 actgacagca aacccaaggc ctcgctcaag attgacttga gatgtacccag taaaagtaag 3840
 gagtcggggc tgcgtatgtt cagcaggccc agttctgccc attccagctg tggcacgtc 3900 55
 agcgaaggca agecgcagggtt cacctacgac cacgctgacg tggaaagaa aatcgcgtc 3960
 tgctccccgc cccagacta caactcggtg gtcctgtact ccacccacc catctag 4017

60

65

DE 101 00 586 C 1

<210> 96
 <211> 3897
 <212> DNA
 <213> Homo sapiens
 5
 <300>
 <302> Flt4
 <310> XM003852
 10 <400> 96
 atgcagcggg gcccgcgt gtgcctgcga ctgtggctct gcctggact cctggacggc 60
 ctggtagtg gctactccat gacccccc accttgaaca tcacggagga gtcacacgtc 120
 atcgacacccg gtgacaggcgt gtccatctcc tgcaggggac agcaccccc ctgatgggct 180
 15 tggccagag ctcaggaggg gccagccacc ggagacaagg acagcgagga cacgggggtg 240
 gtgcgagact gcgagggcac agacgccagg ccctactgca aggtgttgct gctgcacgag 300
 gtacatgcca acgacacagg cagctacgtc tgctactaca agtacatcaa ggcacgcata 360
 gagggcacca cggccgcagg ctccctacgtg ttctgtgagag actttgagca gccattcatc 420
 aacaagcctg acacgctt ggtcaaacagg aaggacgcca tgggggtgcc ctgtctgggt 480
 20 tccatccccg gcctcaatgt cacgctgcgc tcgcaaaagct cggtgtgt gccagacggg 540
 caggagggtgg tggggatgac cggcgggggc atgctcggtg ccacgcact gctgcacgat 600
 gccctgtacc tgcagtgcga gaccacctgg ggagaccagg acttccttcc caacccttc 660
 ctggtgacaca tcacaggcaaa cgagctctat gacatccagc tggcccttcc gaagtcgctg 720
 gagctgctgg taggggagaa gctggctctg aactgcacccg tggggctgaa gtttaactca 780
 25 ggtgtcacct ttgactgggat ctacccagg aaggaggcag agcggggtaa gttgggtgcc 840
 gagcgcacgtt cccacgcac ccacacagaa ctctccagca tcctgaccat ccacaacgtc 900
 agccagcact acctgggtcc gtatgtgtc aaggccaaca acggcatcca gcgatttcgg 960
 gagagcaccg aggtcattgt gcatgaaaat cccttcatca gcgtcgagtg gctcaaagga 1020
 cccatcctgg aggccacggc aggagacgag ctggtaagc tggccgtgaa gctggcagcg 1080
 30 taccccccgc ccgagttcca gtggtacaag gatggaaagg cactgtccgg ggcacacagt 1140
 ccacatgccc tgggtctcaa ggaggtgaca gaggccagca caggcaccta caccctcgcc 1200
 ctgtgaaact ccgctgctgg cctgaggcgc aacatcagcc tggagcttgt ggtgaatgtg 1260
 ccccccaga tacatgagaa ggaggccctcc tcccccagca tctactcgcg tcacagccgc 1320
 cagggccctca cctgcacggc ctacgggtg cccctgcctc tcagcatcca gtggcactgg 1380
 35 cggcccttggc caccctgcaaa gatgtttgcc cagcgttagtc tccggcgccg gcacgcacaa 1440
 gacctcatgc cacagtggcc tgactggagg gcggtgaccg cgcaggatgc cgtgaacccc 1500
 atcgagagcc tggcacccctg gaccgagttt gtggaggggaa agaataagac tggagcaag 1560
 ctggtgatcc agaatgccaat cgtgtctgc atgtacaagt gtgtggtctc caacaagggtg 1620
 ggccaggatg agcggctcat ctacttctat gtgaccacca tccccgacgg cttcaccatc 1680
 40 gaatccaacgc catccggaga gctactagag ggccagccgg tgctcttgag ctgccaagcc 1740
 gacagctaca agtaacgagca tctgcgtgg taccgcctca acctgtccac gtcgcacgat 1800
 ggcacggga acccgcttct gctcgactgc aagaacgtgc atctgttgc caccctctg 1860
 gcccggcc tggaggaggt ggcacctggg ggcgcacccg ccacgctcag cctgagtatc 1920
 ccccgctcg cgcccgagca cgagggccac tatgtgtgcg aagtgcacaa ccggcgcagc 1980
 45 catgacaacgc actgcccacaa gaagtacctg tcgggtcagg cccttggaaac ccctcggtcc 2040
 acgcagaact tgaccgaccc cttgggtgaaat gtgagcgact cgctggagat gcaatgtttg 2100
 gtggccggag cgacgcgcgc cagcatcggt tggtacaaag acgagaggct gctggaggaa 2160
 aagtctggag tcgacttggc ggactccaaat cagaagctga gcatccacgc cgtgcgcgag 2220
 gaggatgcgg gacgctatct gtgcagcggt tgcaacgcca agggctgcgt caactcctcc 2280
 50 gccagcgtgg ccgttggaaagg ctcccgaggat aaggcagca tggagatcgat gatccttgc 2340
 ggttaccggcg tcatcgctgt ctcttctgg tccctctcc tcctcatctt ctgtaaatcg 2400
 aggaggccgg cccacgcaga catcaagac ggctacctgt ccatcatcat ggaccccccgg 2460
 gaggtgcctc tggaggagca atgcgaataac ctgtccctacg atgccagcca gtggaaattc 2520
 ccccgagagc ggctgcaccc ggggagagtg ctccggctacg ggcgccttcgg gaaggtgggt 2580
 55 gaaggcctccg ctccggcat ccacaaggc acagctgtg acaccgtggc cgtgaaaaatg 2640
 ctgaaagagg ggcacacggc cagcgagcag cgccgcgtga tggcgagct caagatcctc 2700

60

65

DE 101 00 586 C 1

attcacatcg gcaaccacct caacgtggtc aacctcctcg gggcgtgcac caagccgcag 2760		
ggccccctca tggtgtatcg ggagttctgc aagtacggca acctctccaa cttcctgcgc 2820		
gccaaggcggg acgccttcag cccctgcgcg gagaagtcgc ccgagcagcg cgacgcgttc 2880		
cgcgcctatgg tggagctcgc caggctggat cggaggcggc cggggagcag cgacagggtc 2940		5
ctcttcgcgc gggttctcgaa gaccgaggc ggagcaggc gggcttctcc agaccaagaa 3000		
gctgaggacc tgtggctgag cccgctgacc atgaaagatc ttgtctgcta cagettccag 3060		
gtggccagag ggtatggagtt cctggcttcc cgaaagtgc tccacagaga cctggctgct 3120		
cggAACATTC tgctgtcgga aagcgcacgt gtgaagatct gtgactttgg cctggcccg 3180		
gacatctaca aagaccccgaa ctacgtccgc aaggcgcgtg cccggctgccc cctgaagtgg 3240		
atggccccctg aaagcatctt cgacaagggt tacaccacgc agagtgcacgt gtggcttctt 3300		
gggggtgcctc tctgggagat cttctctcg gggcctccc cgtaccctgg ggtgcagatc 3360		
aatggaggat tctggcagcg gctgagagac ggcacaagga tgagggccccc ggagctggcc 3420		
actcccgcaca tacggcgcac catgctgaac tgctggtccg gagaccccaa ggcagacact 3480		
gcattctcgg agctgggtgaa gatcctgggg gacctgcctc agggcagggg cctgcaagag 3540		
gaagaggagg tctgcatggc cccgcgcagc tctcagagct cagaagaggg cagttctcg 3600		
caggtgtcca ccatggccct acacatcgcc caggctgacg ctgaggacag cccgccaagc 3660		
ctgcagcgcc acaggctggc cgccaggatataactggg tgccttctcc cgggtgcctg 3720		
gccagagggg ctgagaccccg tgggtctcc aggatgaaga catttgagga attccccatg 3780		
accccaacga cctacaaagg ctctgtggac aaccagacag acagtgggat ggtgcggcc 3840		
tcggaggagt ttgagcagat agagagcagg catagacaag aaagcggctt cagtag 3897		

<210> 97

<211> 4071

<212> DNA

<213> Homo sapiens

25

<300>

<302> KDR

<310> AF063658

30

<400> 97

atggagagca aggtgtgtgtt ggccgtcgcc ctgtggctct gcgtggagac ccggggccgc 60		
tctgtgggtt tgccttagtgt ttctcttgat ctgcggcaggc tcagcataca aaaagacata 120		
cttacaattta aggctaatac aactcttcaa attacktgc ggggacagag ggacttggac 180		
tggctttggc ccaataatca gagtggcagt gagcaaaggg tggaggtgcac tgagtgcagc 240		
gatggccttctc tcttaagac actcacaattt ccaaaaatgtc tcggaaatgtc cactggagcc 300		
tacaagtgtt tctaccggga aactgtactt gcctcggtca tttatgtcta tggtaagat 360		
tacagatctc catttattgc ttctgttagt gaccaacatg gagtcgtgtc cattactgag 420		
aacaaaaaca aaactgtgtt gattccatgt ctgggtcca ttcacaaatctt caacgtgtca 480		
ctttgtgcaaa gatacccgaga aaagagattt gttcctgtat gtaacagaat ttctggggac 540		
agcaagaagg gcttactat tcccagctac atgatcagct atgctggcat ggtcttctgt 600		
gaagcaaaaa ttaatgtatga aagttaccatg tctattatgt acatagttgt cgtttaggg 660		
tataggattt atgatgtggt tctgagtcgt tctcatggaa ttgaactatc tggtaggaa 720		
aagcttgcct taaattgtac agcaagaact gaactaaatg tgggattgtc ctcaactgg 780		
gaataaccctt cttcgaagca tcagcataag aaacttgtaa accgagacact aaaaacccag 840		
tctgggagtg agatgaagaa attttgcac accttaacta tagatgtgt aacccggagt 900		
gaccaaggat tgtacacctg tgcagcatcc agtgggctga tgaccaagaa gaacagcaca 960		
tttgcaggg tccatgaaaa acctttgtt gctttggaa gtggcatgga atctctgggt 1020		
gaagccacgg tgggggagcg tgcagaatc cctgcgaagt accttggta cccacccca 1080		
gaaataaaaat ggtataaaaa tggaaatcccc cttgagtcac atcacacaat taaagcgggg 1140		
catgtactga cgattatggc agtgagtgaa agagacacag gaaattacac tgtcatcctt 1200		
accaatccca tttcaaaggc gaagcagacgc catgtggtct ctctgggtgt gtatgtccca 1260		
ccccagatgt gtgagaaatc tctaattctt cctgtggatt cctaccagta cggcaccact 1320		
caaacgctga catgtacggc ctatgccatt cctccccccgc atcacatcca ctgttattgg 1380		
cagttggagg aagagtgcgc caacgagcccc agccaagctg tctcagtgac aaacccatac 1440		
ccttgcgtaaat aatggagaag tggaggac ttccaggagg gaaataaaaat tgaatgtat 1500		

50

55

60

65

DE 101 00 586 C 1

aaaaaatcaat ttgctctaat tgaaggaaaa aacaaaactg taagtaccct tgttatccaa 1560
gcggcaaatg tgtcagctt gtacaaatgt gaagcggtca acaaagtccg gagaggagag 1620
agggtgatct cttccacgt gaccagggt cctgaaatta ctttgcaacc tgacatgcag 1680
5 cccactgagc aggagagcgt gtcttgcgg tgcactgcag acagatctac gttgagaac 1740
ctcacatggt acaagcttgg cccacagcct ctgccaatcc atgtggaga gttccccaca 1800
cctgtttgca agaacttgg tactcttgg aaattgaatg ccaccatgtt ctctaatacg 1860
acaaatgaca ttttgcataa ggagcttaag aatgcaccc tgcaggacca aggagactat 1920
gtctgcctg ctcaagacag gaagaccaag aaaagacatt gcgtggtcag gcagctcaca 1980
10 gtccttagagc gtgtggcacc cacgatcaca gaaacctgg agaatcagac gacaagtatt 2040
ggggaaagca tcgaagtctc atgcacggca tctggaaatc cccctccaca gatcatgtgg 2100
tttaaagata atgagaccct tftagaagac tcaggcattt gatggaaatg tggaaccgg 2160
aacctcacta tcccgaggt gaggaaaggag gacgaaggcc tctacacctg ccaggcatgc 2220
agtgttcttg gctgtgcaaa agtggaggca ttttcataa tagaagggtc ccaggaaaag 2280
15 acgaacttgg aaatcattt tcttagtaggc acggcggtga ttgcccattt cttctggcta 2340
cttcttgtca tcatcttacg gaccgttaag cggccaatg gaggaaactt gaaagacaggc 2400
tacttgtcca tcgtcatgg tccagatgaa ctccatgg atgaacattt tgacgactg 2460
ccttatgatg ccagcaaatg ggaattcccc agagaccggc tgaagctagg taagccttt 2520
ggccgtgggt ccttggcca agtgattgaa gcagatgcct ttggaattta caagacagca 2580
20 acttgcagga cagtagcagt caaaatgtt aaagaaggag caacacacag tgagcatcga 2640
gctctcatgt ctgaactcaa gatcctcatt catattggc accatctcaa tgggtcaac 2700
cttcttaggtg cctgtaccaa gccaggaggg ccactcatgg tgattgtgaa attctgcaaa 2760
tttggaaacc tftccactt cctgaggagc aagagaaatg aatttgcattt ctacaagacc 2820
aaaggggcac gattccgtca agggaaagac tacgttggag caatccctgt ggatctgaaa 2880
25 cgccgcttgg acagcatcac cagtagccag agtcagcca gctctggatt tggaggag 2940
aagtccctca gtgtatgtaga agaagaggaa gctctgtaa atctgtataa ggacttcctg 3000
accttggagc atctcatctg ttacagcttca caagtggcta agggcatgaa gttcttgca 3060
tcgcgaaatg gtatccacag ggacctggcg gcacgaaata tcctcttatac ggagaagaac 3120
gtggtaaaaa tctgtgactt tggcttggcc cggatattt ataaagatcc agattatgtc 3180
30 agaaaaggag atgctcgcct ccctttgaaa tggatggccc cagaaacaat ttttgacaga 3240
gtgtacacaa tccagagtga cgtctggct tttgtgttt tgctgtggaa aatatttcc 3300
tttagtgctt ctccatatcc tgggttaaag attgtgaag aattttgttag gogattgaaa 3360
gaaggaacta gaatgagggc ccctgattt actacaccag aaatgtacca gaccatgctg 3420
gactgctggc acggggagcc cagtcagaga cccacgtttt cagagttgg ggaacattt 3480
35 gggaaatctt tgcaagctaa tgctcagcag gatggcaaa actacattt tcttcgata 3540
tcagagactt tgagcatgaa agaggattt ggactctctc tgcctaccc acctgtttcc 3600
tgtatggagg aggaggaaatg atgtgacccc aaatccatt atgacaacac agcagaaatc 3660
agtcaagt tgcagaaacg taagcgaag agccggctg tgagtgtaaa aacatttggaa 3720
40 gatatccctg tagaaagaacc agaagtaaaa gtaatcccag atgacaacca gacggacagt 3780
ggtatggttc ttgcctcaga agagctgaaa acttggaaag acagaaccaa attatctcca 3840
tctttgggtg gaatggtgcc cagaaaagc agggagtctg tggcatctga aggctcaaac 3900
cagacaagcg gctaccagtc cggatatcac tccgatgaca cagacaccac cgtgtactcc 3960
agtgaggaag cagaactttt aaagctgata gagattggag tgcaaaccgg tagcacagcc 4020
cagattctcc agcctgactc ggggaccaca ctgagctctc ctccctgttta a 4071

45

<210> 98
<211> 1410
<212> DNA
50 <213> Homo sapiens

<300>
<302> MMP1
<310> M13509

55

<400> 98
atgcacagct ttcctccact gctgctgctg ctgttctggg gtgtgggtc tcacagcttc 60
ccagcgactc tagaaacaca agagcaagat gtggacttag tccagaaata cctggaaaaaa 120

60

65

DE 101 00 586 C 1

tactacaacc tgaagaatga tgggaggcaa gttgaaaagc ggagaatag tggcccagtg	180	
gttgaaaaat tgaagcaaat gcaggaattc ttgggctga aagtgactgg gaaaccagat	240	
gctgaaaccc tgaaggttat gaagcagccc agatgtggag tgccctgatgt ggctcagttt	300	5
gtcctcactg agggaaaccc tcgctggag caaacacatc tgaggtacag gattgaaaat	360	
tacacgcag atttgccaag agcagatgtg gaccatgcca ttgagaaagc cttccaactc	420	
tggagtaatg tcacacctt gacattcacc aagtcctctg agggtcaagc agacatcatg	480	
atatcttttgc tcaggggaga tcatcgggac aactctcctt ttgatggacc tggagggaaat	540	
cttgctcatg ctttcaacc aggcccaggat attggagggg atgctcattt tgatgaagat	600	
gaaagggtgga ccaacaattt cagagagatc aacttacatc gtgttgcggc tcatgaactc	660	10
ggccattctc ttggactctc ccattctact gatatgggg ctttgatgtt ccctagctac	720	
accttcagtg gtgatgttca gctagctcag gatgacattt atggcatcca agccatataat	780	
ggacgttccc aaaatcctgt ccagccccatc ggcccacaaa ccccaaaaagc gtgtgacagt	840	
aagctaacct ttgatgttat aactacgatt cggggagaag tgatgttctt taaagacaga	900	
ttctacatgc gcacaaatcc cttctacccg gaagttgagc tcaatttcat ttctgtttc	960	15
tggccacaac tgccaaatgg gcttgaagct gcttacgaat ttccgcacag agatgaagtc	1020	
cgggttttca aagggaataaa gtactgggtt gttcaggagc agaatgtgct acacggatac	1080	
cccaaggaca tctacagctc ctttggctt cctagaactg tgaagcatat cgatgctgct	1140	
ctttctgagg aaaacactgg aaaaacctac ttctttgtt ctaacaaata ctggaggtat	1200	
gatgaatata aacgatctat ggatccaagt tatccccaaa tgatagcaca tgactttctt	1260	
ggaattggcc acaaaggatg tgcagtttc atgaaagatg gattttcta ttctttcat	1320	
ggaacaagac aatacaaatt tgatcctaaa acgaagagaa ttgtactct ccagaaagct	1380	
aatagctggt tcaactgcag gaaaaattga	1410	

<210> 99	25
<211> 1743	
<212> DNA	
<213> Homo sapiens	
<300>	30
<302> MMP10	
<310> XM006269	

<400> 99	35
aaagaaggta agggcagtga gaatgatgca tcttcattt cttgtgttgt tgggtctgcc	60
agtctgctct gcctatcctc tgagtgggc agcaaaaagag gaggactcca acaaggatct	120
tgcccagcaa tacctagaaa agtactacaa cctcgaaaag gatgtgaaac agtttagaag	180
aaaggacagt aatcttattt taaaaaaaaat ccaaggaatg cagaagtcc ttgggttgg	240
ggtgacaggg aagctagaca ctgacactt ggaggtatg cgcaagccca ggtgtggagt	300
tcctgacgtt ggtcaatttca gtcctttcc tggcatgccc aagtggagga aaacccacct	360
tacatacagg attgtgaatt atacaccaga ttgccaaga gatgtgttg attctgcccatt	420
tgagaaaagct ctgaaagtct gggaaagaggt gactccactc acattctcca ggctgtatga	480
aggagaggtt gatataatga tctcttttc agttaaagaa catggagact ttactctt	540
tgatggccca ggacacagtt tggctcatgc ctacccaccc ggacctggc ttatggaga	600
tatttactttt gatgtatgtt aaaaatggac agaagatgca tcaggcacca atttatttctt	660
cgttgcgtct catgaacttgc gccactccct ggggccttt cactcagccca acactgaagc	720
tttgcgttac ccactctaca actcatttac agatctgccc cagttccgccc ttgcgaaga	780
tgatgtgtt ggcatttgc ctctctacgg acctccccct gcctctactg aggaacccct	840
ggtgcccaaca aaatctgttcc ttccggatc tgagatgcca gccaagtgtg atctctt	900
gtccttcgtt gccatcagca ctctggggg agaataatctg ttctttaaag acagatattt	960
ttggcgaaga tcccacttgg accctgaacc tgaatttcat ttgatttctg cattttggcc	1020
ctctcttcca tcatattttgg atgctgcata tgaagtttac agcaggacca ccgtttttat	1080
ttttaaagga aatgagttct gggccatcag agggaaatggat gtacaaggac gttatccaa	1140
aggcatccat accctgggtt ttcccttccac cataaggaaa attgtatgcag ctgtttctg	1200
caaggaaaaag aagaaaacat acttctttgc agcaggacaaa tactggagat ttgatgaaaa	1260
tagccagtcc atggagcaag gcttccctag actaataatgc gatgactttc cagggatgt	1320
gcctaagggtt gatgtgttat tacaggcatt tggattttc tacttcttca gtggatcattc	1380

60

65

DE 101 00 586 C 1

```

acagtttgag tttgacccca atgccaggat ggtgacacac atattaaaga gtaacagctg 1440
gttacattgc taggcgagat aggggaaaga cagatatggg tgaaaaat aaatctaata 1500
attattcattc taatgtatta tgagccaaaa tggtaattt ttccctgcatt ttctgtgact 1560
5 gaagaagatg agccttcag atatctgcatt gtgtcatgaa gaatgttctt ggaattcttc 1620
acttgctttt gaattgcact gaacagaatt aagaaatact catgtcaat aggtgagaga 1680
atgtatTTTc atagatgtgt tattacttcc tcaataaaaaa gttttatTTT gggcctgttc 1740
ctt 1743

10 <210> 100
<211> 1467
<212> DNA
<213> Homo sapiens

15 <300>
<302> MMP11
<310> XM009873

20 <400> 100
atggctccgg ccgcctggct ccgcagcgcg gccgcgcgcg ccctctgccc cccgatgctg 60
ctgctgtgc tccagccggc gcccgtctg gcccggctc tgccggcggg cccccaccac 120
ctccatgccc agaggagggg gccacagccc tggcatgcag ccctgcccag tagcccgca 180
cttgcctcg ccacgcagga agccccccgg cctgcccagca gcctcaggcc tcccccgtgt 240
25 ggcgtgcctcg accatctga tgggtctgagt gcccgcacc gacagaagag gttcgtgtt 300
tctggcgggc gctgggagaa gacggaccc acctacagga tccttcgggtt cccatggca 360
ttgggtgcagg agcaggtgcg gcagacatg gcagaggccc taaaggatag gagcgtatgt 420
acgccactca ccttactga ggtgcacgag ggcgtgtcg acatcatgtat cgacttcgccc 480
aggtactggc atggggacga cctgcccgtt gatgggcgtt ggggcatact ggcccatgccc 540
30 ttcttccccca agactcacccg agaagggat gtccacttcg actatgtatg gacctggact 600
atcggggatg accagggcac agacctgtc caggtggcag cccatgaatt tggccacgtg 660
ctggggctgc agcacacaac agcagccaag gcctgtatgt ccgccttcta caccttcgc 720
tacccactga gtctcagccc agatgactgc aggggcgttc aacacctata tggccagccc 780
tggcccactg tcacccctccag gaccccgcc ctggggccccc aggctggat agacaccaat 840
35 gagatggcactcgcc cgtggggcc agacgccccg ccagatgcct gtgaggccct ctttgcgcg 900
gtctccacca tccgaggcgca gctcttttc ttcaaagcgg gctttgtgtg ggcctccgt 960
ggggggccagg tgcagccccgg ctacccagca ttggccctc gcactggca gggactgccc 1020
agccctgtgg acgtgcctt cgaggatgcc cagggccaca ttgggttctt ccaagggtgt 1080
cagttactggg tgtacgacgg tgaaaagcca gtctggggcc cgcacccct caccgagctg 1140
40 ggcctggta ggtccccggt ccatgtgcct ttgggtctggg gtcggagaa gaacaagatc 1200
tacttctcc gaggcaggga ctactggcgt ttccacccca gcacccggcg ttagacagt 1260
cccggtcccccc gcagggccac tgactggaga ggggtgcctt ctgagatcg cgcgtccccc 1320
caggatgctg atgctatgc ctacttctcg cgcggccccc tctactggaa gtttgcaccct 1380
gtgaagggtga aggctctggaa aggctccccc cgtctcggtt gtcctgactt ctttggctgt 1440
45 ggcgagcctg ccaacacttt cctctga 1467

<210> 101
<211> 1653
50 <212> DNA
<213> Homo sapiens

<300>
<302> MMP12
<310> XM006272

55 <400> 101
atgaagtttc ttcttaataact gtcctgcag gccactgctt ctggagctct tccctgaac 60

```

60

65

DE 101 00 586 C 1

agctctacaa gcctggaaaa aaataatgtc ctatttgggtg agagatactt agaaaaaattt 120
 tatggccttg agataaaacaa acttccagtgc acaaaaaatga aatatagtgg aaacttaatg 180
 aaggaaaaaaa tccaagaaat gcagcaccc ttgggtctga aagtgaccgg gcaactggac 240
 acatctaccc tggagatgat gcacgcaccc cgatgtggag tccccatgt ccatcatttc 300 5
 agggaaatgc cagggggggcc cgtatggagg aaacattata tcacctacag aatcaataat 360
 tacacaccctg acatgaaccg tgaggatgtt gactacgcaa tccggaaagc tttccaagta 420
 tggagtaatg ttaccccctt gaaattcagc aagattaaca caggcatggc tgacatTTT 480
 gtggtttttgc cccgtggagc tcatggagac ttccatgctt ttgatggcaa aggtgaaatc 540
 ctagccatg ctttggacc tggatctggc attggagggg atgcacattt cgatgaggac 600 10
 gaattctgga ctacacattc aggagnnnnn nnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnn 660
 nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn 720
 nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn 780
 nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn 840
 nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn 900 15
 nnnnnngagag gatccaaagg ccgtaatgtt ccccacctac 960
 aaatatgttgc acatcaacac atttcgcctc tctgtgtatgc acatacggtt cattcagtc 1020
 ctgtatggag accaaaaaga gaaccacacgc ttgccaatgc ctgacaattt agraccagct 1080
 ctctgtgacc ccaatttgc ttgtatgtt gtaactaccg tggaaataa gatcttttc 1140
 ttcaaagaca ggttttctg gctgaaggtt tctgagagac caaagaccag tggtaattt 1200
 atttcttcct tatggccaaac cttgcctatc ggcatgttgc ctgcttatga aattgaagcc 1260
 agaaatcaag tttttttttt taaagatgac aaatactggt taatttagcaa ttttaagacca 1320
 gagccaaatt atcccaagag catacatatc ttgggttttc ctaactttgt gaaaaaaaaatt 1380
 gatgcagctg ttttaaccc acgtttttt aggacctact tctttgttgc taaccagtt 1440
 tggaggtatg atgaaaggag acagatgttgc gaccctgggtt atcccaaact gattaccaag 1500
 aacttccaag gaatcgccccc taaaattgtt gcagtcttct actctaaaaaa caaataactac 1560
 tatttcttcc aaggatctaa ccaatttgc tatgacttcc tactccaacg tattcaccaaa 1620
 acactgaaaaa gcaatagctg gtttggttgc tag 1653 20

<210> 102
 <211> 1416
 <212> DNA
 <213> Homo sapiens 30

<400> 102 35
 atgcatccag gggctctggc tgccttcctc ttcttggatgc ggactcattt tggggccctg 60
 ccccttccca gtgggtgtt tgaagatgat ttgtctgagg aagaccttca gttgcagag 120
 cgctacctga gatcatatca ccattctaca aatctcgccg gaatccgtt gggaaatgca 180
 gcaagcttca tgactgagag gctccgagaa atgcgttctt tcttcggctt agaggtgact 240
 ggcaaaacttgc acgataaacac ctttagatgtc atgaaaaaaggc caagatgcgg gtttcgtat 300
 gtgggtgaat acaatgtttt ccctcgaaact cttaaatggt ccaaaatgaa tttaacctac 360
 agaattgttgc attacaccccc tgatatgact cattctgaaag tcgaaaaggc attcaaaaaa 420
 gccttcaag tttgtccga tggtaacttct ctgaaattttt ccagacttca cgatggcatt 480
 gctgacatca tgatctttt tggaaatttgc gggatggcg acttctaccc atttggatgg 540 45
 ccctctggcc tgctggctca tgcttttctt cctggggccaa attatggagg agatgccat 600
 tttgatgttgc atgaaaccttgc gacaaggatgc tccaaaggctt acaacttgc ttgtgttgc 660
 ggcgtatgttgc tggccactc ctttaggttgc gaccacttca aggaccctgg agcaactcatg 720
 tttccctatctt acacccatcac cggccaaaggc cactttatgc ttccgtatgc cgatgtacaa 780
 gggatccatgc ctcttatgg tccaggagat gaagacccca accctaaaca tccaaaaacg 840 50
 ccagacaaat gtgacccttc ttatccctt gatgccattt ccagtctccg aggagaaaca 900
 atgatcttta aagacagatt ctctggcgcc ctgcatttc acgcaggatgc tgccggactg 960
 tttttaaatgc aatcattttgc gggatgttgc cccaaaccgtt ttgtatgttgc atatgagcac 1020
 ctttctcatgc acctcatctt catcttgc gggatgttgc tttggctt tttggatgttgc 1080
 gacattctgg aaggatgttgc caaaaaaaaata tctgtatgttgc tttggatgttgc tttggatgttgc 1140
 aagataatgttgc cagctgttca ctgtatgttgc acaggatgttgc tttggatgttgc tttggatgttgc 1200
 caggtctgg aatgtatgttgc tactaaccat attatggatgc aagactatcc gagactaata 1260
 gaagaagact tcccaatgttgc tttggatgttgc tttggatgttgc tttggatgttgc tttggatgttgc 1320 55

60

65

DE 101 00 586 C 1

atctatttt tcaacggacc catacagttt gaatacagca tctggagtaa ccgtattgtt 1380
 cgcgtcatgc cagcaaattc cattttgtgg tgttaa 1416

5 <210> 103
 <211> 1749
 <212> DNA
 <213> Homo sapiens

10 <300>
 <302> MMP14
 <310> NM004995

15 <400> 103
 atgtctcccg ccccaagacc cccccgttgt ctctgtctcc ccctgctcac gctcggcacc 60
 gcgctcgctt ccctcggtc ggcccaaaggc agcagcttc gccccgaaggc ctggctacag 120
 caaatatggct acctgcctcc cggggaccta cgtacccaca cacagcgctc accccagtca 180
 ctctcagcgg ccatcgctgc catcgagaag ttttacggct tgcaagtaac aggcaaagct 240
 20 gatgcagaca ccatgaaggc catgaggcgc ccccgatgt tggttcaga caagtttggg 300
 gctgagatca agggcaatgt tcgaaggaaag cgtagccca tccagggtct caaatggcaa 360
 cataatgaaa tcactttctg catccagaat tacaccccca aggtggcga gtatgccaca 420
 tacgaggcca ttgcgaaggc gttccgcgtg tggagagtg ccacaccact ggcgttccgc 480
 gaggtgcctt atgcctacat ccgtgaggcgc catcgagaagc aggccgacat catgatctt 540
 25 tttgcggagg gcttccatgg cgacagcacg cccttcgatg gtgaggcgg cttctggcc 600
 catgcctact tcccaggccc caacatttga ggagacaccc actttgactc tgccgagct 660
 tggactgtca ggaatgagga tctgaatggaa aatgacatct tcctgggtgc tgcacgag 720
 ctggccatg ccctggggct cgagcattcc agtgaccctt cggccatcat ggacccctt 780
 taccagtggaa tggacacggc gaattttgtg ctggccgatg atgaccgcgg gggcatccag 840
 30 caactttatg ggggtgagtc agggttccccc accaagatgc cccctcaacc caggactacc 900
 tcccgccctt ctgttccctga taaacccaaa aaccccacct atgggcccaa catctgtgac 960
 gggactttt acaccgtggc catgctccga gggagatgt ttgttccaa ggagcgctgg 1020
 ttctggcggt tgaggaataa ccaagtgtatg gatggatacc caatgcccattt tgccagttc 1080
 tggcgccggc tgccgtcgct catcaacact gcctacgaga ggaaggatgg caaattcgct 1140
 35 ttcttcaaaag gagacaagca ttgggtgtt gatggcgatg ccctggaaacc tggctacccc 1200
 aagcacatc aggagctggg ccgagggtc cttaccgaca agattgtatc tgctctttc 1260
 tggatgcccc atggaaagac ctacttcctt cgtggaaaca agtactaccg tttcaacgaa 1320
 gagctcagggg cagttggatag cgagtacccc aagaacatca aagtctgggaa agggatccct 1380
 gagtcctcca gaggttcatt catgggcagc gatgaagtct tcacttactt ctacaagggg 1440
 40 aacaataact gggaaattcaa caaccagaag ctgaaggtag aaccgggcta ccccaagtca 1500
 gccctgaggg actggatggg ctgcccattcg ggaggccggc cggatggagg gactgaggag 1560
 gagacggagg tgatcatcat tgaggtggac gaggaggcg ggggggggtt gagcgccgct 1620
 gccgtgggtgc tgccgtgtc gctgctgtc ctgggtgtgg cgggtggccct tgcagtcttc 1680
 ttcttcagac gccatgggac ccccaaggcga ctgtctactt gccagcgatc cctgctggac 1740
 45 aaggctctga 1749

<210> 104
 <211> 2010
 50 <212> DNA
 <213> Homo sapiens

<300>
 <302> MMP15
 <310> NM002428

<400> 104
 atgggcagcg acccgagcgc gccccggacgg ccgggctgga cgggcagccct cctcgccgac 60

60

65

DE 101 00 586 C 1

cgggaggagg	cggcgcggcc	gchgactgctg	ccgctgctcc	tggtgcttct	gggctgcctg	120	
ggccttggcg	tagcggccga	agacgcggag	gtccatgccg	agaactggct	ggggctttat	180	
ggctacctgc	ctcagccccag	ccgccccatag	tccaccatgc	gttccggcca	gatcttggcc	240	5
tcggcccttg	cagagatgca	gchgcttctac	gggatcccag	tcaccgggtgt	gctcgacgaa	300	
gagaccaagg	agtggatgaa	gcccggcccg	tgtggggtgc	cagaccagt	cggggtacga	360	
gtgaaagcca	acctgcggcg	gchgtcgaaag	cgctacgccc	tcaccgggag	gaagtggAAC	420	
aaccaccatc	tgacccttag	catccagaac	tacacggaga	agttgggctg	gtaccactcg	480	
atggaggcgg	tgcgccaggc	cttccgcgtg	tgggagcagg	ccacgcccct	ggtcttccag	540	
gaggtgcct	atgaggacat	ccggctgcgg	cgacagaagg	aggccgacat	catggtaactc	600	10
tttgcctctg	gtttccacgg	cgacagctcg	ccgttgcgt	gcacccgggt	cttctggcc	660	
cacgcctatt	tccctggccc	ccggcttaggc	ggggacaccc	attttgacgc	agatgagccc	720	
tggaccttct	ccagcaactg	cctgcatgg	aacaacctct	tcctgggtgc	agtgcatgag	780	
ctgggcccacg	cgctggggct	ggagcacactc	agcaacccca	atgcccattat	ggggccgttc	840	
taccagtgg	aggacgttga	caacttcaag	ctgcccggagg	acatctccg	tggcatccag	900	
cagctctacg	gtaccccaga	cggtcagcca	cagccctaccc	agcctctccc	cactgtacg	960	15
ccacggccgc	caggccggcc	tgaccacgg	ccggcccccgg	ctcccccagcc	accaccccca	1020	
ggtgtggaaagc	cagacggcc	cccaaagccg	ggcccccggag	tccagccccc	agccacagag	1080	
cggcccgacc	agtatggccc	caacatctgc	gacggggact	ttgacacagt	ggccatgctt	1140	
cgcggggaga	tgttcgtgtt	caagggccgc	tgggtctggc	gagtccggca	caaccgcgtc	1200	
ctggacaact	atccatgcc	catcgggcac	ttctggcgtg	gtctggccgg	tgacatcagt	1260	
gctgcctacg	agcgcctaaga	cggtegtttt	gtcttttca	aagggtacccg	ctactggctc	1320	
tttcgagaag	cgaacctgga	gcccggctac	ccacagccgc	tgaccagcta	tggctgggc	1380	
atccctatg	accgcattga	cacggccatc	tggggggagc	ccacaggcca	caccccttc	1440	
ttccaagagg	acaggtactg	gchgttcac	gaggagacac	agcgtggaga	ccctgggtac	1500	
cccaagccca	tcagtgtctg	gcaggggatc	cctgcctccc	ctaaaggggc	cttcctgagc	1560	
aatgacgoag	cctacaccta	cttctacaag	ggcaccaat	actggaaatt	cgacaatgag	1620	
cgcctgcgga	tggagccccc	ctaccccaag	tccatcctgc	gggacttcat	gggctgcccag	1680	
gagcacgtgg	agccaggccc	ccgatggccc	gacgtggccc	ggccgcctt	caaccccccac	1740	
gggggtgcag	agcccggggc	ggacagcgca	gagggcgacg	tggggatgg	ggatggggac	1800	30
tttggggccg	gggtcaacaa	ggacgggggc	agccgcgtgg	tggtcagat	ggaggaggtg	1860	
gcacggacgg	tgaacgttgt	gatgggtgt	gtgccactgc	tgctgctgt	ctgcgtcctg	1920	
ggcctcacct	acgcgttgt	gcagatgcag	cgcaagggtg	cgccacgtgt	cctgctttac	1980	
tgcaagcgct	cgctgcagga	gtgggtctga				2010	

35

<210> 105
<211> 1824
<212> DNA
<213> Homo sapiens

40

<300>
<302> MMP16
<310> NM005941

45

<400> 105							
atgatcttac	tcacattcag	cactggaaaga	cggttggatt	tcgtgcata	ttcggggggt	60	
tttttcttgc	aaaccttgc	ttggattttt	tgtgtacag	tctgcggaaac	ggagcagtat	120	
ttcaatgtgg	aggtttggtt	acaaaagtag	ggctacctc	caccgactga	ccccagaatg	180	
tcagtgtgc	gctctgcaga	gaccatgcag	tctgcctag	ctgccatgca	gcagttctat	240	
ggcattaaca	tgacaggaaa	agtggacaga	aacacaattt	actggatgaa	gaagccccga	300	
tgcgggtgtac	ctgaccagac	aagaggtagc	tccaaattt	atattcgtcg	aaagcgatat	360	
gcattgacag	gacagaaatg	gcagcacaag	cacatcactt	acagtataaa	gaacgttaact	420	
ccaaaagttag	gagaccctga	gactcgtaaa	gctattcgcc	tgcccttga	tgtgtggcag	480	
aatgtaaatc	ctctgacatt	tgaagaagtt	ccctacagtg	aatttagaaaa	tggcaaacgt	540	
gatgtggata	taaccattat	ttttgcattt	ggttccatg	gggacagtc	tccctttgat	600	
ggagagggag	gattttggc	acatgcctac	ttccctggac	caggaatttg	aggagatacc	660	
cattttgact	cagatgagcc	atggacacta	ggaaatccca	atcatgtatgg	aatgactta	720	

60

65

DE 101 00 586 C 1

tttctttag cagtccatga actgggacat gctctggat tggagcattc caatgacccc 780
 actgccatca tggctccatt ttaccagtac atggaaacag acaacttcaa actaccta 840
 gatgatttac agggcatcca gaaaatatat ggtccacctg acaagattcc tccacctaca 900
 5 agacctctac cgacagtgc cccacaccgc tctattcctc cggctgaccc aaggaaaaat 960
 gacaggccaa aacctccctcg gcctccaacc ggcagaccct cctatcccg accaaaccc 1020
 aacatctgtg atggaaacctt taacactcta gctattctc gtcgtgagat gtttgtttc 1080
 aaggaccagt ggtttggcg agtgagaaac aacagggtga tggatggata cccaatgcaa 1140
 attacttact tctggcgggg ctgcctctc agtacatcgatc cagtttatga aaatagcgac 1200
 10 gggaatttt tgttcttaa aggtAACAAA tattgggtgt tcaaggatac aactcttcaa 1260
 cctggttacc ctcatgactt gataaccctt ggaagtggaa ttccccctca tggtattgtat 1320
 tcagccattt ggtgggagga cgtcggggaa acctatttct tcaagggaga cagatattgg 1380
 agatatagtg aagaaatgaa aacaatggac cctggctatc ccaagccat cacagtctgg 1440
 15 aaaggatcc ctgaatctcc tcagggagca tttgtacaca aagaaaatgg ctttacgtat 1500
 ttctacaaag gaaaggagta ttggaaattt aacaaccaga tactcaaggt agaacctgga 1560
 catccaagat ccattctcaa ggatttatg ggctgtatc gaccaacaga cagagttaaa 1620
 gaaggacaca gcccaccaga ttagttagac attgtcatca aactggacaa cacagccagc 1680
 actgtgaaag ccatacgat tgcattccc tgcattttgg ccttatgcct cttgttattg 1740
 gtttacactg tgttccagtt caagaggaaa ggaacacccc gccacatact gtactgtaaa 1800
 20 cgctctatgc aagagtgggt gtga 1824

<210> 106

<211> 1560

<212> DNA

<213> Homo sapiens

<300>

<302> MMP17

<310> NM004141

<400> 106

atgcagcagt ttggtggct ggaggccacc ggcattctgg acgaggccac cctggccctg 60
 atggaaaaccc cacgtgtct cctggcagac ctcctgtcc tgacccaggc tcgcaggaga 120
 35 cgccaggctc cagcccccac caagtggaa aagagggaaacc tgctgtggag ggtccggacg 180
 ttcccacggg actcaccact ggggcacgc acggtcgtg cactcatgtc ctacgcccctc 240
 aagggtctgga ggcacattgc gccccctgaa ttcacacggg tggcgggacg caccggccac 300
 atccagatcg atttttccaa ggccgacccat aacgcggct acccccttgc cggccccggc 360
 ggcaccgtgg cccacgcctt cttcccccgc caccacca cccgggggaa caccacttt 420
 40 gacgatgacg aggccctggac cttccgtcc tcggatgccc acggatggc cctgtttgca 480
 gtggctgtcc acgagtttgg ccacgcattt gggtaagcc atgtggccgc tgcacactcc 540
 atcatgcccgc cgtactacca gggcccggtg ggtgacccgc tgcgtacgg gctccccctac 600
 gaggacaagg tgcgcgtctg gcaagctgtac ggtgtgcggg agtctgtgtc tcccacggcg 660
 cagcccgagg agccctccct gctgcccggag ccccccagaca accggtccag cgcccccggcc 720
 45 aggaaggacg tgccccacag atgcagcact cactttgacg cgggtggccca gatccggggt 780
 gaagctttct tcttcaaagg caagtactt cttggcgtca cgggggaccc gcacctgggt 840
 tccctgcagc cggcacagat gcacccgttc tggcggggcc tggcgtcga cctggacagc 900
 gtggaccccg tgtacgagcg caccagcgac cacaagatcg tcttctttaa aggagacagg 960
 tactgggtgt tcaaggacaa taacgttagag gaaggatacc cgcggccctg ctccgacttc 1020
 50 agcctcccgcc ctggcggcat cgacgtgtcc ttctcctggg cccacaatga caggacttat 1080
 ttctttaagg accagctgtt ctggcgtac gatgaccaca cgaggcacat ggacccggc 1140
 taccggccccc agagccccctt gtggagggggt gtcccccagca cgctggacga cgccatgcgc 1200
 tggtccgacg gtgcctctca cttcttccgt ggcaggaggt actggaaagt gctggatggc 1260
 gagctggagg tggcaccggg gtacccacag tccacggccc gggactggct ggtgtgtgga 1320
 55 gactcacagg ccgtggatc tggcgtcg ggcgtggacg cggcagagg gcccccggcc 1380
 cctccaggac aacatgacca gagccgtcg gaggacgggtt acggatgtctg ctcatgcacc 1440
 tctggggcat cctctcccccc gggggccca ggccactgg tggctgccac catgctgtcg 1500
 ctgctgcccgc cactgtcacc aggcgcctg tggacagcgg cccaggccct gacgctatga 1560

60

65

DE 101 00 586 C 1

<210> 107
<211> 1983
<212> DNA
<213> Homo sapiens

5

<300>
<302> MMP2
<310> NM004530

10

<400> 107
atggaggcgc taatggcccg gggcgcgctc acgggtcccc tgagggcgct ctgtctcctg 60
ggctgcctgc tgagccacgc cgccgcccgc ccgtcgccca tcatacgat ccccgccat 120
gtcgccccca aaacggacaa agagttggca gtgcaatacc tgaacaccc ttatggctgc 180
cccaaggaga gctgcaacct gtttgcgtg aaggacacac taaagaagat gcagaagttc 240
tttggactgc cccagacagg tcatcttgc cagaatacca tcgagaccat gcggaagcca 300
cgctgcggca acccagatgt ggccaactac aacttcttc ctcgcaagcc caagtgggac 360
aagaaccaga tcacatacag gatcattggc tacacaccc atctggaccc agagacagtg 420
gatgatgcct ttgctcgtgc cttcaagtc tggagcgatg tgacccact gcggtttct 480
cgaatccatg atggagaggc agacatcatg atcaacttt gccgctggga gcatggcgat 540
ggataccctt ttgacggtaa ggacggactc ctgctcatg ctttcggcccc aggcaactgg 600
gttgggggag actcccattt tcatgacat gagctatgga ctttgggaga aggccaagtg 660
gtccgtgtga agtatggcaa cgccgatggg gactgtca agttccctt cttgttcaat 720
ggcaaggagt acaacagctg cactgatact ggcgcagcg atggcttccct ctgggtgctcc 780
accacctaca actttgagaa ggtatggcaag tacggcttct gtcccccattga agccctgttc 840
accatggcg gcaacgctga aggacagccc tgaagttt cattccgctt ccagggcaca 900
tcctatgaca gctgcaccac tgagggccgc acggatggct accgctggtg cggcaccact 960
gaggactacg acccgacaa gaagtatggc ttctgcctg agaccgcatt gtcactgtt 1020
ggtgggaaact cagaagggtgc cccctgtgtc ttccccttca ctttccctggg caacaaatat 1080
gagagctgca ccagcccgcc cgcaagtgc gggaaagatgt ggtgtgcgac cacagccaa 1140
tacgatgacg accgcaagtg gggcttctgc cctgaccaag ggtacagcct gtctctgtg 1200
gcagccacag agtttggcca cgccatgggg ctggagcact cccaaagaccc tggggccctg 1260
atggcaccca ttacaccta caccaagaac ttccgtctgt cccaggatga catcaagggc 1320
attcaggagc tctatggggc ctctctgtac attgaccttgc gcaccggcccc caccggccaca 1380
ctggccctg tcactctga gatctgcaaa caggacattt tatttgcatttgcgatgttgc 1440
atccgtgtt agatcttctt cttcaaggac cgggttcatgg ggcggactgt gacgccacgt 1500
gacaaggccca tggggccctt gctgggtggcc acattctggc ctgagctccc ggaaaagatt 1560
gatgcggat acggggcccc acaggaggag aaggctgtgt tctttgcagg gaatgaatac 1620
tggatctact cagccagcac cctggagggc gggtaaaaaa agccactgac cagcctggga 1680
ctgccccctg atgtccagcg agtggatgcc gcctttaact ggagaaaaaa caagaagaca 1740
tacatctttg ctggagacaa attctggaga tacaatgagg tgaagaagaa aatggatctt 1800
ggcttccca agctcatcgc agatgcctgg aatgccttcc ccgataaacct ggatgcgcgc 1860
gtggacctgc agggcgccgg tcacagctac ttcttcaagg gtgccttattt cctgaagctg 1920
gagaaccaaa gtctgaagag cgtgaagttt ggaagcatca aatccgactg gctaggctgc 1980
tga 1983 45

<210> 108
<211> 1434
<212> DNA
<213> Homo sapiens

50

<300>
<302> MMP2
<310> XM006271

55

60

65

DE 101 00 586 C 1

5 <400> 108
 atgaagagtc ttccaatcct actgttgctg tgcgtggcag tttgctcagc ctatccattt 60
 gatggagctg caaggggtga ggacaccagc atgaaccctt ttcagaaaata tctagaaaaac 120
 tactacgacc tcgaaaaaga tgtgaaacag tttgttagga gaaaggacag tggctctgtt 180
 10 gtaaaaaaaaa tccgagaaat gcagaagttc cttggattgg aggtgtacggg gaagctggac 240
 tccgacactc tggagggtat ggcgaagccc aggtgtggag ttctctgacgt tggtcacttc 300
 agaacctttc ctggcatccc gaagtggagg aaaaccacc ttacatacag gattgtgaat 360
 tatacaccag atttgcacaa agatgtgtt gattctgctg ttgagaaaagc tctgaaaatgc 420
 tggaaagagg tgactccact cacattctcc aggctgtatg aaggagagac tgatataatg 480
 atctctttt cagttagaga acatggagac ttttaccctt ttgatggacc tggaaatgtt 540
 ttggcccatg cctatgcccc tgggcaggg attaatggag atgcccactt tgatgtatgat 600
 gaacaatgga caaaggatac aacagggacc aatttattt tgcgttgc tcataaaaaatt 660
 ggccactccc tgggtcttta taactcagcc aacactgaag ctttgatgta cccactctat 720
 cactcactca cagacotgac tgggtccgc ctgtctcaag atgatataaa tggcattcag 780
 20 tcctctatg gacccccc tggactccct gagacccccc tggtacccac ggaacctgtc 840
 cctccagaac ctgggacgccc agccaaactgt gatcctgtt tgcctttga tgctgtcagc 900
 actctgaggg gagaatccct gatctttaaa gacaggcaact tttggcgcaa atccctcagg 960
 aagcttgaac ctgaatttgc tttgatctct tcattttggc catctttcc ttcaggcgtg 1020
 gatgccatc atgaagttac tagcaaggac ctcgtttca ttttaaagg aaatcaattc 1080
 25 tggccatca gaggaaatga ggtacgagct ggatacccaa gaggcatcca cacccttaggt 1140
 ttccctccaa ccgtgaggaa aatcgatgca gccatttctg ataaggaaaaa gaacaaaaca 1200
 tattttttt tagaggacaa atactggaga tttgatgaga agagaaattt catggagcca 1260
 ggcttccca agcaaataagc tgaagacttt ccaggattt actcaaagat tgatgtgtt 1320
 tttgaagaat ttgggtctt ttattttttt actggatctt cacagttgga gtttgaccca 1380
 30 aatgcaaaaaga aagtgcacaca cacttgaag agtaacagct ggcttaattt ttga 1434

35 <210> 109
 <211> 1404
 <212> DNA
 <213> Homo sapiens

40 <300>
 <302> MMP8
 <310> NM002424

45 <400> 109
 atgttctccc tgaagacgct tccatttctg ctcttactcc atgtgcagat ttccaaggcc 60
 tttcctgtat cttctaaaaga gaaaaataca aaaactgttc aggactacat gaaaaagttc 120
 taccattttac caagcaacca gtatcgtct acaaggaaga atggcactaa tgcgtatcg 180
 gaaaagctta aagaatgca gcgatttttt gggttgaatg tgacggggaa gccaaatgag 240
 gaaactctgg acatgatgaa aaagcctcgc tggagatgc ctgacagtgg tggtttatg 300
 50 ttaaccccaag gaaaccccaa gtgggaacgc actaacttga cttcacaggat tcgaaactat 360
 accccacacgc tgcagaggc tgaggtagaa agagctatca agatgcctt tgaactctgg 420
 agtgttgcac cacctctcat cttcaccagg atctcacagg gagaggcaga tatcaacatt 480
 gtttttacc aaagagatca cggtgacaat tctccattt atggacccaa tggaaatcctt 540
 gtcatgcct ttcagccagg ccaaggatatt ggaggagatg ctcattttga tgccgaagaa 600
 acatggacca acacccctccgca aatttacaac ttgtttctt tgcgtgtca tgaatttgc 660
 55 cattcttgg ggctcgatca ctctctgtac cttgggtgc tgcgtatcc caactatgct 720
 ttcaaggaaa ccagcaacta ctcactccctt caagatgaca tcgatggcat tcagggccatc 780
 tatggactttt caagcaaccc tatccaacctt actggacccaa gcacacccaa accctgtgac 840
 cccagtttga catttgc tattcaccaca ctccgtggag aaatactt tttttaaagac 900
 aggtacttctt ggagaaggca tcctcagcta caaagagtcg aaatgaattt tatttctcta 960

60

65

DE 101 00 586 C 1

ttctggccat cccttccaac tggtatacag gctgcttatg aagatttga cagagacctc 1020
 attttcctat ttaaaggcaa ccaatactgg gctctgagtg gctatgatat tctgcaaggt 1080
 tatcccaagg atatatcaaa ctatggcttc cccagcagcg tccaaagcaat tgacgcagct 1140
 gtttctaca gaagtaaaaac atacttctt gtaaatgacc aattctggag atatgataac 1200
 caaagacaat tcatggagcc aggttatccc aaaagcatat caggtgcctt tccaggaata 1260
 gagagtaaaag ttgatgcagt ttccagcaa gaacatttct tccatgtctt cagtgacca 1320
 agatattacg catttgatct tattgcttag agagttacca gagttgcaag aggcaataaa 1380
 tggcttaact gtagatatgg ctga 1404

5

10

<210> 110
 <211> 2124
 <212> DNA
 <213> Homo sapiens

15

<300>
 <302> MMP9
 <310> XM009491

20

<400> 110
 atgagcctct ggcagccccct ggtcctggtg ctccctggc tgggctgctg ctttgctgcc 60
 cccagacaga gccagtcac ccttgcgtc ttccctggag acctgagaac caatctcacc 120
 gacaggcagc tggcagagga atacctgtac cgctatgggt acactcggtt ggcagagatg 180
 cgtggagagt cgaardatctct ggggcctgcg ctgtgcgttc tccagaagca actgtccctg 240
 cccgagacgc gtgagactgga tagcgccacg ctgaaggcga tgcgaacccc acggtgccgg 300
 gtcggcagacc tggcagatt ccaaaccctt gagggcgacc tcaagtggca ccaccacaaac 360
 atcacctatt ggatccaaaaa ctactcgaa gacttgcgc gggcggtat tgacgacgccc 420
 tttgcccgcg ccttcgact gtggagcgcg gtgacgcgc tcaccttcac tcgcgtgtac 480
 agccgggacg cagacatcgt catccagtt ggtgcgcgg agcacggaga cgggtatccc 540
 ttcgacggga aggacgggct cctggcacac gccttcctc ctggccccgg cattcaggga 600
 gacgcccatt tcgacgatga cgagttgtgg tccctggca agggcgctgt gtttccaact 660
 cgggttggaa acgcagatgg cgccgcctgc cacttccct tcacccatca gggccgcctcc 720
 tactctgcgt gcaccacccg cggtcgcgtcc gacggcttgc cctggtcgag taccacggcc 780
 aactacgaca cgcacgaccc gtttggcttc tgccccagcg agagactcta caccaggac 840
 ggcacatgcg atggaaacc ctggcagtt ccatttcattc tccaaaggcca atctactcc 900
 gcctgcacca cggacggctg ctccgcacgc taccgcgtgt ggcacccac cgccaactac 960
 gacccggacg agctttcgg cttcgcgg acccgagctg actcgacggat gatgggggggc 1020
 aactcggcgg gggagctgtg ctgtttcccc ttcaacttcc tgggttaagga gtactcgacc 1080
 tgttaccagcg agggccgcgg agatgggcgc ctctggcgt ctaccaccc gaactttgac 1140
 agcgacaaaga agtggggctt ctggccggac caaggataca gtttggccct cgtggccggc 1200
 catgagttcg gccacgcgtc gggcttagat cattcctcgt tgccggaggc gctcatgtac 1260
 cctatgtacc gtttactga gggggcccccc ttgcataagg acgacgtgaa tggcatccgg 1320
 cacctctatg gtcctcgccc tgaacctgag ccacggcctc caaccaccac cacaccgcag 1380
 cccacggctc cccgcacggcgt ctggcccccgg accggccctt ctgtccaccc ctcagagcgc 1440
 cccacagctg gccccacagg tccccctca gctggccccc caggtccccca cactgctggc 1500
 ctttctacgg ccactactgt gcctttgagt ccggtgacg atgcctgcaa cgtgaacatc 1560
 ttcgacgcga tcggggagat tgggaaccag ctgtattttgt tcaaggatgg gaagtactgg 1620
 cgattctctg agggcagggg gagccggccg cagggccctt tccttacgc cgacaagtgg 1680
 cccgcgtgc cccgcacgtc ggactcggtc ttggaggac ggctctccaa gaagctttc 1740
 ttcttctctg ggcggccagggt gtgggtgtac acaggcgcgt cgggtctggg cccggggcgt 1800
 ctggacaagc tgggctggg agccgacgtg gcccagggtga cggggccct ccggagtgcc 1860
 agggggaaaga tgctgctgtt cagcgccggc cgcctctgaa ggttcgaatgt gaaggcgcag 1920
 atgggtggatc cccggagcgc cagcgaggtg gaccggatgt tcccccgggt gcctttggac 1980
 acgcacgcgc tctttccagta ccgagagaaaa gcctatttct gccaggacccg cttctactgg 2040
 cgcgtgagggt cccggaggtga gttgaaccag gtggaccaag tggctacgt gacctatgac 2100
 atccctgaggt gcccgtggaa ctag 2124

35

40

45

50

55

60

65

DE 101 00 586 C 1

<210> 111
 <211> 2019
 <212> DNA
 <213> Homo sapiens
 5
 <300>
 <302> PKC alpha
 <310> NM002737
 10 <400> 111
 atggctgacg ttttccccggg caacgactcc acggcgtctc aggacgtggc caaccgcttc 60
 gcccgc当地 gggcgcttag gcagaagaac gtgcacgagg tgaaggacca caaattcatc 120
 gcgcgcttct tcaagcagcc cactttgc agccactgca ccgacttcat ctgggggttt 180
 15 gggaaaacaag gcttccagtg ccaagtttg tgggtgc当地 aagggacccg acactgatga ccccaggagc 300
 aaggcacaagt tcaaaaatcca cacttacgga agccccacct tctgc当地 ctgtgggtca 360
 ctgctctatg gacttatcca tcaagggtg aaatgtgaca cctgc当地 gaacgttcac 420
 aagcaatgctg tcatcaatgt ccccaagcctc tgccgaatgg atcacactga gaagaggggg 480
 20 cggttattacc taaaggctga ggttgctgat gaaaagctcc atgtcacagt acgagatgca 540
 aaaaatctaa tccctatgaa tccaaacggg cttcagatc cttatgtgaa gctgaaactt 600
 attcctgatc ccaagaatgaa aagcaagcaa aaaacccaaa cc当地 cctgctc cacactaaat 660
 cc当地 cgtgaa atgactc当地 tacattcaaa ttgaaacccctt cagacaaaga cc当地 gactg 720
 tctgttagaaa tctgggactg ggatc当地 acaaggaatg acttcatggg atcccttcc 780
 25 tttggaggtt cggagctgat gaagatgccg gccagtgat ggtacaagtt gcttaaccaa 840
 gaagaagggtg agtactacaa cgttaccatt cc当地 gagggg acgaggaagg aaacatggaa 900
 ctc当地 cggcaga aattcgagaa agccaaactt ggccctgctg gcaacaaagt catcagtccc 960
 tctgaagaca gggaaaacaacc ttccaaacaac cttgaccggg tgaaactcac ggacttcaat 1020
 ttcctcatgg tggggaaa ggggagttt ggaaagggtg tgcttgc当地 caggaaggc 1080
 30 acagaagaac tgtatgcaat caaaatcctg aagaaggatg tggtgattca ggatgatgac 1140
 gtggagtgca ccatggtaga aaagc当地 gtc ttggccctgc ttgacaaaacc cccgcttctg 1200
 acgc当地 cgtgc actcctgctt cc当地 gagatg gatc当地 gctgt acttc当地 gatc ggaatatgtc 1260
 aacgggtgggg acctcatgta cc当地 attc当地 caagtagggaa aatttaagga accacaagca 1320
 gtattctatg cggc当地 gagat ttccatc当地 ttgttcttc ttcataaaaag aggaatcatt 1380
 35 tataagggatc tgaagtttaga taacgtcatg ttggattc当地 aaggacatata caaaattgct 1440
 gactttggga tggcaagga acacatgatg gatgggatc当地 cgaccaggac ct当地 tgggg 1500
 actccagatt atatcgcccc agagataatc gcttacatc当地 cgtatggaaa atctgtggac 1560
 tggggggccct atggcgtctt gttgtatgaa atgcttgc当地 ggc当地 cctcc attt当地 gatggt 1620
 gaagatgaag acgagctatt tc当地 gatc当地 atggacaca acgcttctt当地 tccaaaatcc 1680
 40 ttgtccaagg aggctgtttc tatctgcaaa ggactgatg cccaaacaccc agccaagcgg 1740
 ctgggctgtg ggc当地 gagggg gggaggacatc当地 gtgagagac当地 atgc当地 ct当地 cc当地 gagggatc 1800
 gactggggaaa aactgggagaa caggggatc当地 cagccaccat tcaagcccaa agtggatggc 1860
 aaaggagcag agaactttga caagttctt当地 acacgaggac agccctt当地 aacaccacct 1920
 gatcagctgg ttattgctaa catagaccag tctgatggg aagggttctc gatgtcaac 1980
 45 ccccaagttt当地 tgccaccat cttacagatc当地 gc当地 gatgat 2019

<210> 112
 <211> 2022
 <212> DNA
 <213> Homo sapiens
 50
 <300>
 <302> PKC beta
 <310> X07109
 55 <400> 112

60

65

DE 101 00 586 C 1

atggctgacc cggtgcggg gcccggccg agcgaggcg aggagagcac cgtgcgcttc 60
 gcccggcaag gcgcctccg gcagaagaac gtgcattgagg tcaagaacca caaattcacc 120
 gcccgtctc tcaagcagcc caccttctgc agccactgca ccgacttcat ctggggcttc 180
 gggaaagcagg gattccagtg ccaagttgc tgctttgtgg tgcacaagcg gtgcacatgaa 240
 5
 tttgtcacat tctcctgccc tggcgctgac aagggtccag cctccgatga cccccgcagc 300
 aaacacaagt ttaagatcca cacgtactcc agccccacgt tttgtgacca ctgtgggtca 360
 ctgctgtatg gactcatcca ccagggatg aaatgtgaca cctgcatgat gaatgtgcac 420
 aagcgctgctg tgatgaatgt tcccagcctg tgtggcacgg accacacgga ggcgcgcggc 480
 cgcacatcaca tccaggccca catcgacagg gacgtcctca ttgtcctcgt aagagatgct 540
 10
 aaaaaccttg tacctatgga ccccaatggc ctgtcagatc cctacgtaaa actgaaaactg 600
 attcccgatc cccaaaagtga gagcaaacag aagaccaaaaa ccatcaaatg ctccctcaac 660
 cctgagtgga atgagacatt tagatgttag ctagaaagaactt cggacaaaga cagaagactg 720
 tcagtagaga tttgggattt ggatttgacc agcaggaatg acttcattggg atctttgtcc 780
 tttgggattt ctgaacttca gaaggccagt gttgatggct ggttaagt actgagccag 840
 15
 gaggaaggcg agtacttcaa tggcctgtg ccaccagaag gaagtgggc caatgaagaa 900
 ctgcggcaga aatttgagag gccaagatc agtcaggaa ccaaggcccc ggaagaaaaag 960
 acgaccaaca ctgtctccaa atttgacaaac aatggcaaca gagacccgat gaaactgacc 1020
 gattttact tcctaatttgt gctggggaaa ggcagcttt gcaaggctat gcttcagaa 1080
 cggaaaaggca cagatgagct ctatgctgt aagatcctga agaaggacgt tttgatccaa 1140
 gatgatgacg tggagtgcac tatggtgag aagcgggtgt tggccctgcc tggaaagccg 1200
 20
 cccttcctga cccagctcca ctcctgttc cagaccatgg accgcctgta ctttgtatg 1260
 gagtacgtga atggggcgaa cctcatgtat cacatccagc aagtcggccg gttcaaggag 1320
 ccccatgtg tattttacgc tgcagaaatt gccatcggtc tggatctt acagagtaag 1380
 ggcattt accgtgaccc aaaacttgc aacgtgatgc tcgattctga gggacacatc 1440
 aagattggcg atttggcat gtgtaaaggaa aacatctggg atgggggtgac aaccaagaca 1500
 ttctgtggca ctccagacta catcgccccc gagataattt cttatcagcc ctatggaaag 1560
 tccgtggatt ggtggcatt tggagtctgt ctgtatgaaa tggatcttgc gcaaggccccc 1620
 tttgaagggg aggatgaaga tgaactttc caatccatca tggaaacacaa cgtagcctat 1680
 cccaaatctt tggccaaggaa agctgtggcc atctgaaag ggctgatgac caaacaccca 1740
 30
 ggcggaaacgtc tgggttgtgg acctgtaaaggc gaaatgtgata tcaaagagca tgcattttc 1800
 cggtatattt attggggagaa acttgaacgc aaagagatcc agccccctta taagccaaaa 1860
 gcttggggc gaaatgtgaa aaacttcgac cgattttca cccggccatcc accagtccata 1920
 acacccccc accaggaagt catcaggaat attgaccaat cagaattcga aggattttcc 1980
 tttgttaact ctgaattttt aaaacccgaa gtcaagagct aa 2022
 35

<210> 113
 <211> 2031
 <212> DNA
 <213> Homo sapiens 40

<300>
 <302> PKC delta
 <310> NM006254 45

<400> 113
 atggcgccgt tcctgcgcac cgccttcaac tcctatgagc tgggctccct gcaggccgag 60
 gacgaggcga accagccctt ctgtgcgtg aagatgaagg aggcgctcag cacagagcgt 120
 50
 gggaaaacac tgggtcagaa gaagccgacc atgtatcctg agtggaaatc gacgttcgtat 180
 gcccacatct atgagggcg cgtcatccag attgtctaa tgcggccagc agaggagcca 240
 gtgtctgagg tgacccgtgg tggatctgtt ctggccgagc gctgcaagaa gaacaatggc 300
 aaggctgatg tctgctggc cctgcagccct caggccaaagg tggatgttc tggatgtat 360
 ttccgtggagg acgtggattt caaacaatct atgcgcgtg aggacgaggc caagttccca 420
 acgatgaacc gcccggagc catcaaacag gccaaaatcc actacatcaa gaaccatgag 480
 tttatcgcca ctttctttgg gcaacccacc ttctgttctg tggcaaaaga ctttgcgtgg 540
 ggcctcaaca agcaaggctc caaatgcagg caatgtaaacg ctgcattcca caagaaatgc 600
 atcgacaaga tcatcgccag atgcactggc accgcggca acagccggga cactatattc 660
 55

60

65

DE 101 00 586 C 1

cagaaagaac gcttcaacat cgacatgccg caccgcttca aggttcacaa ctacatgagc 720
 cccaccttct gtgaccactg cggcagcctg ctctggggac tggtaagca gggattaaag 780
 tgtgaagact gcggcatgaa tgtgcaccat aaatgccggg agaaggtagc caacctctgc 840
 5 ggcatcaacc agaagcttt ggctgaggcc ttgaaccaag tcacccagag agcctcccg 900
 agatcagact cagcctcctc agagcctgtt gggatatac agggttcga gaagaagacc 960
 ggagttgctg gggaggacat gcaagacaac atgaaaacct acggcaagat ctgggagggc 1020
 agcagcaagt gcaacatcaa caacticatc ttccacaagg tcctggcaa aggcaagttc 1080
 gggaaaggtagc tgcttggaga gctgaaggc agaggagagt actctgccat caaggccctc 1140
 10 aagaaggatg tggccctgtat cgacgacgac gtggagtgc ccatgggtga gaagcgggtg 1200
 ctgacacttg ccgcagagaa tcccttctc acccacctca tctgcacccctt ccagaccaag 1260
 gaccacccgt tcttgtat ggagttcctc aacggggggg acctgtatca ccacatccag 1320
 gacaaaggcc getttgact ctaccgtgcc acgtttatg ccgctgagat aatgtgtgga 1380
 15 ctgcagttt tacacagcaa gggcatatt tacagggacc tcaaactgga caatgtgtctg 1440
 ttggaccggg atgcccacat caagattgcc gactttggga tggcaaaaaa gaacatattc 1500
 ggggagagcc gggccagcac cttctgcggc acccctgact atatgcggcc ttagatcccta 1560
 caggccctga agtacacatt ctctgtggac tgggtgttctt tgggggtctt tctgtacgag 1620
 atgctcatgt gccagtcccc cttccatgtt gatgtatggg atgaactt ccgtccatc 1680
 cgtgtggaca cgccacatta tccccgttgg atcacaagg agtccaagga catcctggag 1740
 20 aagctcttg aaaggaaacc aaccaagagg ctggaatga cgggaaacat caaaatccac 1800
 cccttcttca agaccataaa ctggactctg ctggaaaago ggaggttgg ggcacccctc 1860
 aggcccaaag tgaagtcacc cagagactac agtaacttt accaggagtt cctgaacgag 1920
 aaggcgcgcc tctcctacag cgacaagaac ctcatcgact ccatggacca gtcgtcattc 1980
 gctggcttctt ccttgtgaa ccccaattt gggcacctcc tggaaattt a 2031

25

<210> 114
 <211> 2049
 <212> DNA
 30 <213> Homo sapiens

<300>
 <302> PKC eta
 <310> NM006255

35 <400> 114

atgtcgctcg gcaccatgaa gttcaatggc tattttgggg tccgcacatcg tgaggcagt 60
 gggctgcagc ccacccgctg gtccctgcgc cactcgctt tcaagaaggcc acccagctg 120
 ctggaccctt atctgacgtt gaggcgtggc cagggtgcgc tggccagac cagcaccaag 180
 40 cagaagacca acaaaccac cacccgttgcgtt tcaacgtcac cgacggcgcc 240
 cacctcgagt tggccgttcc ccaacggacc cccctgggtt acgacttcgt gccaactgc 300
 accctgcagt tccaggagct cgtcgccacg accggcgccctt cggacacccctt cgagggttgg 360
 gtggatctcg agccagaggg gaaagtattt gtgtataaa cccttacccgg gagtttact 420
 gaagctactc tccagagaga ccggatcttca aaacattttt ccaggaagcg ccaaagggt 480
 45 atgcgaaggc gagttccacca gatcaatggc cacaagtttca tggccacgtt tctgaggcag 540
 cccacctact gctctcaactt caggggagttt atctggggag tggggggaa acagggttat 600
 cagtgcacccat tgcacccctg tgcgtccat aaacgctgc atcatctaattt tggtaaccc 660
 tggacttgc aaaaatat taacaaatgtt gattcaaaaga ttgcagaaca gaggttggg 720
 atcaacatcc cacacaagtt cagcatccac aactacaaag tgccaacattt ctgcgtatcac 780
 50 tgggttccac tgcgtctgggg aataatgcga caaggacttca agttaaaat atgtttttt 840
 aatgtgcata ttcatgttca agcgaacgtt gcccctaact tggggtaaa tgggttggaa 900
 cttgccaaga ccctggcagg gatgggttcc caacccggaa atatttctcc aacccgtaaa 960
 ctgcgttccat gatgcacccat aagacgacag gggaaaggaga gcaacaaaga agggaaatggg 1020
 attgggggttta attttccaa ccgacttggt atcgacaact ttgagttcat ccgagttgg 1080
 55 gggaaaggggg gttttggaa ggtgtatgtt gcaagagttt aagaaacagg agacccctat 1140
 gctgtgaagg tgctgaagaa ggacgttattt ctgtgtggat atgtgttggg atgcaccatg 1200
 accggagaaaa ggatccgttc tctggcccgcc aatcaccctt tcctcactca gttttctgc 1260
 tgcttcaga ccccccgtatcg tctgtttttt gtgtatgggat ttgtgaatgg ggggtacttg 1320

60

65

DE 101 00 586 C 1

atgttccaca ttcagaagtc tcgtcgaaaa gatgaaggcac gagctcgctt ctatgctgca 1380
 gaaaatcattt cggtctcat gttcctccat gataaaaggaa tcatactatag agatctgaaa 1440
 ctggacaatg tcctgttggc ccacgagggt cactgtaaac tggcagactt cgaatgtgc 1500
 aaggaggggc tttgcaatgg tgtcaccacg gccacattct gtggcacgccc agactatatac 1560
 gctccagaga tcctccagga aatgctgtac gggctgcag tagactggtg gcaatgggc 1620
 gtgttgcctt atgagatgct ctgtggtcac gcgcctttt aggccagagaa tgaagatgac 1680
 ctcttgagg ccatactgaa tgatgagggt gtctacccta cctggctcca tgaagatgcc 1740
 acagggatcc taaaatctt catgaccaag aacccccacca tgcgcttggg cagcctgact 1800
 cagggagcgc agcacgccccat cttgagacat cctttttta aggaatcga ctgggcccag 1860
 ctgaaccatc gccaaataga accgccttcc agacccagaa tcaaattcccg agaagatgtc 1920
 agtaattttg accctgactt cataaaggaa gagccagtt taactccaat tgatgaggga 1980
 catcttccaa tgattaacca ggatgagttt agaaactttt cctatgtgtc tccagaattt 2040
 caaccatag 2049

5

10

15

<210> 115
 <211> 948
 <212> DNA
 <213> Homo sapiens

20

<300>
 <302> PKC epsilon
 <310> XM002370

25

<400> 115
 atgttggcag aactcaaggg caaagatgaa gtatatgctg tgaaggtctt aaagaaggac 60
 gtcatccttc aggatgatga cgtggactgc acaatgacag agaagaggat tttggctctg 120
 gcacggaaac acccgtaacct tacccaactc tactgctgct tccagaccaa ggaccgcctc 180
 ttttgcgtca tggaaatatgt aaatggtggc gacctcatgt ttcagattca gcgcgtcccg 240
 aaattcgaac agcctcggtc acggttctat gctcagagg tcacatcgcc cctcatgttc 300
 ctccaccaggc atggagtcat ctacaggat ttgaaaactgg acaacatcct tctggatgca 360
 gaaggtaact gcaagctggc tgacttcggg atgtgcaagg aagggattct gaatgggtgt 420
 acgaccacca cgttctgtgg gactctgtac tacatagctc ctgagatcct gcaggagttg 480
 gagtatggcc cttccgtggc ctgggtggcc ctgggggtgc tgatgtacga gatgtggct 540
 ggacagccct ctttgaggc cgacaatgag gaccacctat ttgagtccat cttccatgac 600
 gacgtgctgt acccagtctg gtcagcaag gagctgtca gcatcttgc agctttcatg 660
 acgaagaatc cccacaagcg cctgggtgt gtggcatcgc agaatggcga ggacgcccattc 720
 aagcagcacc cattttcaaa agagatttgc tgggtgtcc tggagcagaa gaagatcaag 780
 ccacccttca aaccacgcat taaaacccaaa agagacgtca ataattttga ccaagacttt 840
 acccgggaaag agccgtact cacccttgtc gacaaagcaa ttgtaaagca gatcaaccag 900
 gaggaattca aaggttctc ctacttttgtt gaagacctga tgccctgaa 948

30

35

40

<210> 116
 <211> 1764
 <212> DNA
 <213> Homo sapiens

45

<300>
 <302> PKC iota
 <310> NM002740

50

<400> 116
 atgtcccaaca cggtcgcagg cggcgccagc ggggaccatt cccaccaggc ccgggtgaaa 60
 gcctactacc gcggggatatacatgataaca cattttgaac cttccatctc ctttgagggc 120
 ctttgcatacg aggttcgaga catgtgttct tttgacaacg aacagcttcc caccatgaaa 180
 tggatagatg aggaaggaga cccgtgtaca gtatcatctc agttggagtt agaagaagcc 240

55

60

65

DE 101 00 586 C 1

ttttagacttt atgagctaaa caaggattct gaactcttga ttcatgtgtt cccttgtgtta 300
 ccagaacgtc ctggatgcc ttgtccagga gaagataaat ccatctaccg tagaggtgca 360
 cggcgctgga gaaagcttta ttgtgc当地 ggc当地 acct tccaagccaa gc当地 ttcaac 420
 5 aggctgctc actgtgccat ctgc当地 acgac cgaatatggg gacttggacg ccaaggat 480
 aagtgc当地 catca actgc当地 acct cttggatccat aagaagtgcc ataaactcgt cacaattgaa 540
 tgtggccggc attcttgc当地 acaggaacca gtatgc当地 tggatc当地 atccatgc当地 600
 tctgaccatg cacagacatg aattccat aatccctcaa gtcatgagag tttggatcaa 660
 gttggtaag aaaaagaggc aatgaacacc agggaaagtg gcaaagcttc atccagtcta 720
 10 ggtcttc当地 cagg attttgattt gctccggta ataggaagag gaagttatgc caaagta 780
 ttggatc当地 taaaaaaaac agatcgatt tatgc当地 aagttgtgaa aaaagagctt 840
 gtaatgatg atgaggatat tgatggta cagacagaga agcatgtgt tgacaggca 900
 tccaatc当地 ctttctt当地 tgggctgcat tctgtt当地 agacagaaaag cagattgtt 960
 tttgttata tagatgtaaa tggaggagac ctaatgtt当地 atatgc当地 cggc acaaagaaaa 1020
 15 cttcctgaaag aacatgccc atttacttgc gcaatgc当地 gtcttagc当地 aaatttatctt 1080
 catgagcgag ggataattt tagagatgg aactggaca atgtt当地 acttgc当地 ggactctgaa 1140
 ggccacat当地 aactcactgat ctacggcatg tgaaggaaag gattacggcc agggataca 1200
 accagcactt tctgtggatc tcctaattt accatgtt当地 aattttaag agggaaagat 1260
 tatggtttca gtgtgactg gtgggctt当地 ggagtgc当地 tggatgagat gatggcagga 1320
 20 aggtctccat ttgatattt tgggagctt当地 gataaccctg accagaacac agaggattat 1380
 ctcttccaag ttatttgaa aaaacaattt cgataccac gttctctgatc tggaaaagct 1440
 gcaagtgtt当地 tgaagagttt tcttaataag gaccctt当地 aacgatttggg ttgtc当地 tctt 1500
 caaacaggat ttgctgat当地 tcaggacac ccgtt当地 tcc gaaatgtt当地 ttggatatg 1560
 atggagcaaa aacagggtt当地 acctccctt当地 aaaccaaata tttctgggaa atttggttt 1620
 25 gacaactttt atttc当地 agt tactatgaa cctgtccagc tcactcc当地 tgacgatgac 1680
 attgtgagga agattgtatca gtctgaaattt gaaggttt当地 agtataatcaa tcctt当地 ttg 1740
 atgtctgc当地 aagaatgtt当地 ctga 1764

30 <210> 117
 <211> 2451
 <212> DNA
 <213> Homo sapiens

35 <300>
 <302> PKC mu
 <310> XM007234

<400> 117

40 atgtatgata agatcctgct ttttgc当地 gaccctt当地 ctgaaaacat cttc当地 agtgc当地 60
 gtgaaagccg ccagtat当地 ccaggaaggc gatctt当地 aagtggatctt gtca当地 gtttcc 120
 gccc当地 cttt当地 aagactt当地 caattt当地 gattc当地 gttt当地 cttt当地 atacagat 180
 ccagctt当地 ctgtatc当地 tggagaaatg ctgtggggcc tggatc当地 agtctt当地 240
 tgtgaagggt gtgtctgaa ttaccataag agatgtc当地 taaaatacc caacaattgc 300
 45 agcgggtgtgaa ggc当地 ggggaaag gctctcaaaat gtttccctca ctggggtc当地 caccatccgc 360
 acatcatctg ctgaaactctc tacaatgtcc cctgatgagc cc当地 ttctgatc当地 aaaatcacca 420
 tc当地 agtctgatc当地 ttatggatc当地 agagaagg tcaaattt当地 aatcatatcat tggacgacca 480
 attcacctt当地 acaagat当地 tt当地 gatgtctt当地 gttt当地 aatgtt当地 tggatccac 540
 tc当地 ctacaccc ggccc当地 caccatgatc tggccatgatc tgcaagaaggc ttctgaaaggc gctttc当地 600
 50 cagggtctgaa agtgc当地 aaaaacttgc当地 ttgc当地 gagattt aactgccc当地 aacgatgtgc accgaaagat 660
 ccaaacaact gc当地 ctggc当地 agtgc当地 accatgatc aatgggat当地 tgctt当地 tagcc local tggggc当地 720
 tctgatgtgg tcatgaaaggc agggatgtatc gacaatgata gtgaaaggaa cagtgccgatc 780
 atggatgata tggaaaggc aatggatctt当地 gatgc当地 gagatgc当地 tggatccatg agatgtccatg 840
 aacgacatg ggc当地 gagatgc当地 agatccatg accgaccatg aggacgc当地 cagaaccatc 900
 55 agtccatcaa caagcaacaa tatccactc atgaggatgatc tgcaatgtc当地 caaacacacg 960
 aagagaaaaa gc当地 gagatc当地 catgaaaggc ggatggatgg tccactacac cagcaaggac 1020
 acgctgc当地 gga aacggcacta ttggatgatc gatgc当地 caatgtc当地 gtattaccctt cttc当地 1080
 gacacaggaa gc当地 gagatc当地 caagggaaattt cctt当地 atctgatc当地 aaattttgc当地 tctggaaacca 1140

60

65

DE 101 00 586 C 1

gtaaaaactt cagcttaat tcctaattggg gccaaatcctc attgttcga aatcaactacg 1200
 gcaaattgttag tgtatttatgt gggagaaaaat gtggtaatc cttccagccc atcaccaat 1260
 aacagtgttc tcaccagtgg cggtggcgca gatgtggcca ggatgtggga gatagccatc 1320
 5
 cagcatgccc ttatgcccg tattcccaag ggctcctccg tgggtacagg aaccaacttg 1380
 cacagagata tctctgtgag tatttcagta tcaaattgcc agattcaaga aaatgtggac 1440
 atcagcacag tatatcagat tttcctgat gaagtactgg gttctggaca gtttggaaatt 1500
 gtttatggag gaaaacatcg taaaacagga agagatgtag ctattaaaat cattgacaaa 1560
 ttacgatttc caacaaaaca agaaaaggccag ctgcgtaatg aggttgcaat tctacagaac 1620
 cttcatcacc ctgtgttgtt aaatttgag tgatgtttg agacgcctga aagagtgttt 1680
 10
 gttttagg aaaaactcca tggagacatg ctggaaatga tcttgcataag tgaaaaggcc 1740
 aggttgcac agcacataac gaagtttta attactcaga tactcgtggc tttgcggcac 1800
 cttcattta aaaatatcg tcaactgtgac ctcaaaaccag aaaatgtgtt gctagcctca 1860
 gctgatcctt ttcctcaggtaaaacttgg gaaacttgg tattttgggtt ttgccccggat cattggagag 1920
 aagtcttcc ggaggtcagt ggtgggtacc cccgcttacc tggctcctga ggtcctaagg 1980
 15
 aacaaggct acaatcgctc tctagacatg tggctgttgg gggtcatcat ctatgtaaac 2040
 ctaaggcgca catcccatt taatgaagat gaagacatac acgacccaaat tcagaatgca 2100
 gctttcatgt atccacaaa tccctggaaag gaaatatctc atgaaggccat tcatcttatac 2160
 aacaatttgc tgcaagtaaa aatgagaaaag cgctacagt tggataagac cttgagccac 2220
 ccttggctac aggactatca gacctggta gatttgcgg agctggaaatg caaaatcgcc 2280
 gagegctaca tcacccatga aagtgtatgc ctgaggtggg agaagtatgc aggcgagcag 2340
 gggctgcagt accccacaca cctgatcaat ccaagtgtca gccacagtga cactcctgag 2400
 actgaagaaa cagaaatgaa agccctcggt gagcgtgtca gcacccatgt a 2451

25

<210> 118
 <211> 2673
 <212> DNA
 <213> Homo sapiens

30

<300>
 <302> PKC nu
 <310> NM005813

35

<400> 118
 atgtctgcaa ataattcccc tccatcagcc cagaagtctg tattaccac agtattcct 60
 gctgtgcttc cagctgcttc tccgtgttca agtccataaga cgggactctc tgcccgactc 120
 tctaattggaa gcttcagtgc accatcactc accaactcca gaggctcagt gcatacagtt 180
 tcatttctac tgcaattgg cctcacacgg gagagtgtt ccattgaagc ccaggaactg 240
 tctttatctg ctgtcaagga ttttgcgtgc tccatagttt atcaaaatgtt tccagagtgt 300
 ggattcttg gcatgtatga caaaattttt ctcttcgcgc atgacatgaa ctcagaaaaac 360
 attttgcacg tgattacctc agcagatgaa atacatgaaag gagacctagt ggaagtgggtt 420
 cttdcagctt tagccacagt agaagactc cagattcgct cacatactct ctatgtacat 480
 tcttacaaag ctcctacttt ctgtgattac tgggtgaga tgctgtgggg attggtagt 540
 caaggactga aatgtgaagg ctgtggatata aattaccata aacgatgtgc cttcaagatt 600
 ccaaataact gtatggagt aagaaagaga cgtctgtcaa atgtatctt accaggacc 660
 ggcctctcag ttccaaagacc cctacacgct gaatatgtag cccttcccgag tgaagagtca 720
 catgtccacc aggaaccaag taagagaatt ccttcttggg gtggcgcccc aatctggatg 780
 gaaaagatgg taatgtgcag agtggaaatgtt ccacacacat ttgctgttca ctcttacacc 840
 cgtcccacga tatgtcagta ctgcaagcggtt ttactgaaag gctctttcg ccaaggaatg 900
 45
 cagtgtaaag attgtcaattt caactgccc aaacgctgtg catcaaaatgtt accaagagac 960
 tgccttggag aggttactttt caatggagaa cttccagtc tgggaacaga tacagatata 1020
 ccaatggata ttgacaataa tgacataat agtggatgtt gtcgggggtt ggatgacaca 1080
 gaagagccat caccggcaga agataagatg ttcttcttgg atccatctga tctcgatgt 1140
 gaaagagatg aagaagccgt taaaacaatc agtccatcaa caagcaataa tattccgcta 1200
 atgaggggtt tacaatccat caagcacaca aagagggat aacctggat aagggatata ttggagactt 1260
 gggtggatgg tccattacac cagcaggat aacctggat aagggatata ttggagactt 1320
 gacagcaat gtctaacattt atttcagaat gaatctggat ccaaggttta taagggaaatt 1380

50

55

60

65

DE 101 00 586 C 1

ccactttcag aaattctccg catatctca ccacgagatt tcacaaacat ttcacaaggc 1440
 agcaatccac actgtttga aatcattact gatactatgg tatacttcgt tggtgagaac 1500
 aatggggaca gctctataa tcctgttctt gctccactg gagttgact ttagttagca 1560
 5 cagagctggg aaaaagcaat tcgccaagcc ctcatgcctg ttactcctca agcaagtgtt 1620
 tgcacttctc cagggcaagg gaaagatcac aaagatttg ctacaagtat ctctgtatct 1680
 aattgtcaga ttcaggagaa tgtggatatc agtactgttt accagatctt tgcatgatgag 1740
 gtgcttgggtt caggccagtt tggcatcggtt tatggaggaa aacatagaaa gactgggagg 1800
 gatgtggta ttaaaagtaat tgataagatg agattccccca caaaacaaga aagtcaactc 1860
 cgtaatgaag tggctatccc acagaatttg caccatcctg ggattgtaaa ccttggatgt 1920
 10 atgtttggaa ccccagaacg agtcttgcata gtaatggaaa agctgcattgg agatatgtt 1980
 gaaatgattc tattcaggta gaaaagtccg cttccagaac gaattactaa attcatggtc 2040
 acacagatac ttgtgcctt gaggaaatctg cattttaaga atattgtgca ctgtgattta 2100
 aagccagaaa atgtgctgtc tgcatcagca gagccatttc ctcagggtgaa gctgtgtgac 2160
 15 tttggatttgc cacgcattcat tggtaaaag tcattcaggaa gatctgttgtt aggaactcca 2220
 gcatacttag cccctgaagt tctccggcgc aaaggttaca accgttccct agatatgtgg 2280
 tcagtgggag ttatcatcta tggtagcctc agtggcacat ttccctttaa tgaggatgaa 2340
 gatataaatg accaaatcca aatgtctca ttatgtacc caccaaatacc atggagagaa 2400
 atttctgggt aagcaattga tctgataaaac aatctgcctc aagtgaagat gagaacacgt 2460
 20 tacagtgtt acaaatactt tagtcatccc tggctacagg actatcagac ttggcttgac 2520
 ctttagagaat ttgaaaactcg cattggagaa cgttacatta cacatgaaag tgatgtgct 2580
 cgctggggaa tacatgcata cacacataac ctgtataacc caaagcactt cattatggct 2640
 cctaattccag atgatatgga agaagatcct taa 2673

25 <210> 119
 <211> 2121
 <212> DNA
 <213> Homo sapiens

30 <300>
 <302> PKC tau
 <310> NM006257

35 <400> 119
 atgtcgccat ttcttcggat tggcttgcc aactttgact gcgggtcctg ccagtcttgt 60
 cagggcgagg ctgttaaccc ttactgtgt gtgtctgtca aagagtatgt cgaatcagag 120
 aacggggcaga tggatatacc gaaaaagcc accatgtacc caccctggga cagcactttt 180
 gatgccatca tcaacaaggaa aagagtcatg cagatcattt tgaaaggcaaa acacgtggac 240
 40 ctcatctctg aaaccaccgt ggagctctac tcgtctggctg agaggtgcag gaagaacaaac 300
 gggaaagacag aaatatgtt agagctgaaa cctcaaggcc gaatgctaat gaatgcaaga 360
 tactttctgg aaatgagtga cacaaggac atgaatgaat ttgagacgga aggtttttt 420
 gctttgcattc agcggccgggg tgccatcaag caggcaaaagg tccaccacgt caagtgcac 480
 gagttcaactg ccaccttctt cccacagccc acatttgtct ctgtctgcca cgagtttgac 540
 45 tggggcctga acaaacaggc ctaccagtgc cgacaatgca atgcagcaat tcacaagaag 600
 tggatgtata aagttatagc aaagtgcaca ggatcagcta tcaatagccg agaaaccatg 660
 ttccacaagg agagattcaa aattgacatg ccacacagat taaaagtcta caattacaag 720
 agcccgacct tctgtgaaca ctgtgggacc ctgtctgggg gactggcact gcaaggactc 780
 aagtgtgtatg catgtggcat gaatgtgtcat catagatgcc agacaaagg ggcacaaacctt 840
 50 tggggcataa accagaagct aatggctgaa ggcgtggcca tgattgagag cactcaacag 900
 gctcgctgt taagagatac tgaacagatc ttcagagaag gtccgggttga aattgggtctc 960
 ccatgctcca tcaaaaatga agcaaggccg ccatgtttac cgacaccggg aaaaagagag 1020
 cctcaggggca tttctgggg gtctccgtt gatgaggtgg ataaaatgtt ccatcttcca 1080
 gaacctgaaac tgaacaaaga aagaccatct ctgcagatc aactaaaaat tgaggatttt 1140
 55 atcttgacaca aatgttggg gaaaggaagt tttggcaagg tcttcctggc agaattcaag 1200
 aaaaccaatc aatttttcgc aataaaaggcc ttaaaagaaaat atgtgggtt gatggacgtt 1260
 gatgttgagt gcacgatgtt agagaagaga gttcttccct tggcctggga gcatccgttt 1320
 ctgacgcaca tggttgtac attccagacc aaggaaaacc tctttttgtt gatggagttt 1380

60

65

DE 101 00 586 C 1

ctcaacggag	gggacttaat	gtaccacatc	caaagctgcc	acaagttcga	ccttccaga	1440
gcgacgtttt	atgctgctga	aatcattctt	ggctcgagt	tccttcattc	caaaggaaata	1500
gtctcacaggg	acctgaagct	agataaacatc	ctgttagaca	aagatggaca	tatcaagatc	1560
gcggattttg	gaatgtgcaa	ggagaacatg	ttaggagatg	ccaagacgaa	tacttctgt	1620
gggacacctg	actacatcgc	cccagagatc	ttgctgggtc	agaaaatacaa	ccactctgtg	1680
gactgggttgt	ccttcggggt	ttcctttat	gaaatgctga	ttggtcagtc	gccttccac	1740
gggcaggatg	aggaggagct	cttccactcc	atccgcatgg	acaatccctt	ttacccacgg	1800
tggctggaga	aggaagcaa	ggaccttctg	gtgaagctct	tcgtgcgaga	acctgagaag	1860
aggctgggcg	tgagggggaga	catccgccag	caccctttgt	ttcgggagat	caactggag	1920
gaacttgaac	ggaaggagat	tgaccacccg	ttccggccga	aagtaaaatc	accatttgac	1980
tgcagcaatt	tcgacaaaaga	attcttaaac	gagaagcccc	ggctgtcatt	tgccgacaga	2040
gcactgtatca	acagcatgga	ccagaatatg	ttcaggaact	tttccttcat	gaaccccgagg	2100
atggagcggc	tgatatcctg	a				2121

5

```
<210> 120  
<211> 1779  
<212> DNA  
<213> Homo sapiens
```

15

<300>
<302> PKC zeta
<310> NM2744

20

<400> 120

25

atggcccgac	ggaccgaccc	caagatggaa	gggagcggcg	gccgcgtccg	cctcaaggcg	60
cattacgggg	gggacatctt	catcaccagc	gtggacgccc	ccacgacatt	cgaggagctc	120
tgtgaggaag	ttagagacat	gtgtcgctg	caccagcagc	acccgctcac	cctcaagtgg	180
gtggacacgc	aaggtgaccc	ttgcacggtg	tcctcccaga	tggagctgga	agaggcttc	240
cgccctggccc	gtcagtgcag	ggatgaaggc	ctcatcattc	atgtttccc	gagcacccct	300
gagcagcctg	gcctgcccc	tccggagaa	gacaaaatcta	tctaccgccc	gggagccaga	360
agatggagga	agctgtaccg	tgccaaacggc	cacctcttcc	aagccaagcg	ctttaacagg	420
agagcgtact	gccccgtcag	cagcgagagg	atatggggcc	tcgcgaggca	aggctacagg	480
tgcatcaact	gcaaactgct	ggtccataag	cgctgccacg	gcctcgccc	gctgaccctgc	540
aggaagcata	tggattctgt	catgcottcc	caagagcctc	cagtagacga	caagaaccgag	600
gacgcccggacc	ttccctccga	ggagacagat	ggaattgctt	acatttcctc	atcccggaaag	660
catgacacga	ttaaagacga	ctcggaggac	cttaagccag	ttatcgatgg	gatggatgga	720
atcaaaatct	ctcaggggct	tggtctgcag	gactttgacc	taatcagagt	catcgccgc	780
gggagctacg	ccaagggttct	cctgggtcg	ttgaagaaga	atgaccaaat	ttacgcccatt	840
aaagtgtgt	agaaaagagct	gggtcatgt	gacgaggata	ttgactgggt	acagacagag	900
aagcacgtgt	ttgagcaggc	atccagcaac	cccttcctgg	tcggattaca	ctccctgcttc	960
cagacgacaa	gtcggttgtt	cctggtcatt	gagttacgtca	acggcgggga	cctgtatgttc	1020
cacatgcaga	ggcagaggaa	gtccccctgag	gagcacgc	ggttctacgc	ggccgagatc	1080
tgcatecgccc	tcaacttctt	gcacgagagg	gggatcatct	acagggacct	gaagctggac	1140
aacgtccccc	tggatgcgg	cgggcacatc	aagctcacag	actacggcat	gtgcaaggaa	1200
ggcctggggcc	ctgtgtgacac	aacgagact	ttctgcggaa	ccccgatta	catcgcccc	1260
gaaatcctgc	ggggagagga	gtacgggtt	agcgtggact	ggtgggcgt	gggatgtcc	1320
atgtttgaga	tgtggccgg	ggcgtcccc	ttcgacatca	tcaccgacaa	cccccgcatt	1380
aacacagagg	actacccccc	ccaagtgtatc	ctggagaagc	ccatccggat	ccccccgtt	1440
ctgtccgtca	aaggctccca	tgttttaaaa	ggatttttaa	ataaggaccc	caaagagagg	1500
ctcggtcgcc	ggccacacagac	tggattttct	gacatcaagt	cccacgcgtt	cttccgcagc	1560
atagactggg	acttgcgtga	gaagaagcag	gcccgtccctc	cattccagcc	acagatcaca	1620
gacgactacg	gtctggacaa	ctttgacaca	cagttcacca	gcccgttgcgtt	gcagctgacc	1680
ccagacgatg	aggatgcccatt	aaagaggatc	gaccagtcag	agttcgaagg	ctttgagttat	1740
atcaaccat	tattgcgtgc	caccgaggag	tcgggtgtqa			1779

30

35

40

DE 101 00 586 C 1

```

<210> 121
<211> 576
<212> DNA
<213> Homo sapiens
5

<300>
<302> VEGF
<310> NM003376

10 <400> 121
atgaacttgc tgctgtcttg ggtgcattgg agccttgcct tgctgctcta cctccaccat 60
gccaagtgg tccaggctgc acccatggca gaaggaggag ggcagaatca tcacgaagtg 120
gtgaagttca tggatgtcta tcagcgcagc tactgccatc caatcgagac cctgggtggac 180
15 atcttcagg agtaccctga tgagatcgag tacatcttca agccatctg tgtgcccctg 240
atgcgtatcg ggggctgctg caatgacag ggcctggagt gtgtgcccac tgaggagtcc 300
aacatcacca tgcagattat gggatcaaa cctcaccaag gccagcacat aggagagatg 360
agttcctac agcacaacaa atgtaatgc agaccaaaga aagatagagc aagacaagaa 420
aatccctgtg ggccttgctc agagcggaga aagcatttg ttgtacaaga tcccgagacg 480
20 tgtaaatgtt cctgcaaaaa cacagactcg cgttgcaagg cgaggcagct tgagttaaac 540
gaacgtactt gcagatgtga caagccgagg cggta 576

<210> 122
25 <211> 624
<212> DNA
<213> Homo sapiens

<300>
30 <302> VEGF B
<310> NM003377

<400> 122
atgagccctc tgctccggcc cctgctgctc gccgcactcc tgcagctggc ccccgccccag 60
35 gcccctgtct cccagcctga tgcccccggc caccagagga aagtgggtgc atggatagat 120
gtgtataactc gcgctacctg ccagccccgg gaggtgggtgg tgcccttgac tgtggagctc 180
atggcaccgg tggccaaaca gctgggtggcc agtgcgtga ctgtgcageg ctgtgggtggc 240
tgctggccctg acgatggccct ggagtgtgtg cccatggc agcacaagt cggatgcag 300
atcctcatga tccggtagcc gaggcgtcag ctgggggaga tgtccctgga agaacacagc 360
40 cagtgtgaat gcagacctaa aaaaaagac agtgcgtga agccagacag ggctggccact 420
ccccaccacc gtccccagcc ccgttctgtt cggggctggg actctgcaccc cggagcaccc 480
tccccagctg acatcaccctt tcccacttca gccccaggcc cctctgcccc catgtcacc 540
agcaccacca ggcgcctgac ccccgaccc gcccggccg ctgcccggcc cgccgacgc cgca gttcc 600
tccgttgcca agggcggggc ttag 624

45 <210> 123
<211> 1260
<212> DNA
50 <213> Homo sapiens

<300>
<302> VEGF C
<310> NM005429

55 <400> 123
atgcacttgc tgggcttctt ctctgtggcg tttctctgc tcgcccgtgc gctgctcccg 60
ggtcctcgcg aggccggccgc cggccggcc gccttcgagt cctctcggac 120

```

60

65

DE 101 00 586 C 1

gcggagcccc acgcggcgca ggccacggct tatgcaagca aagatctgga ggagcagtta 180
 cggtctgtgt ccagttaga tgaactcatg actgtactct acccagaata ttggaaaatg 240
 tacaagtgtc agctaaggaa aggaggctgg caacataaca gagaacacaggc caacctcaac 300
 tcaaggacag aagagactat aaaatttgc gcagcacatt ataatacaga gatcttgaaa 360 5
 agtattgata atgagtgagg aaagactcaa tgcattgcac gggaggtgt tatagatgtg 420
 gggaggagt ttggagtcgc gacaaacacc ttctttaaac ctccatgtgt gtccgtctac 480
 agatgtgggg gttgctgaa tagtgagggg ctgcagtgc tgaacaccag cacgagctac 540
 ctcagcaaga cgttatttga aattacagtgc cctctctc aaggccccaa accagtaaca 600
 atcgttttgc ccaatcacac ttccctgcga tgcattgtca aactggatgt ttacagacaa 660
 gttcatttca ttattagacg ttccctgcga gcaacactac cacagtgtca ggcagcgaac 720 10
 aagacctgcc ccaccaatta catgtggaaat aatcacatct gcagatgcct ggctcaggaa 780
 gatTTTATGT ttccctcgga tgctggagat gactcaacag atggatttca tgacatctgt 840
 ggaccaaaaca aggagctgga tgaagagacc tgctcgtgt tctgcagagc ggggcttcgg 900
 CCTGCCAGCT gtggacccc caaagaacta gacagaaact catgcgcgtg tgtctgtaaa 960 15
 aacaaactct tccccagcca atgtggggcc aaccgagaat ttgatgaaaa cacatgccag 1020
 tgtgtatgtaa aagaacacctg ccccaagaaat caacccctaa atcctggaaa atgtgcctgt 1080
 gaatgtacag aaagtccaca gaaatgctt taaaaggaa agaagttcca ccaccaaaca 1140
 tgcagctgtt acagacggcc atgtacgaac cgccagaagg cttgtgagcc aggatttca 1200
 tatagtgaag aagtgtgtcg ttgtgtccct tcatatttggaa aagaccaca aatgagctaa 1260 20

<210> 124
<211> 1074
<212> DNA
<213> Homo sapiens 25

<300>
<302> VEGF D
<310> AJ000185 30

<400> 124
atattcaaaa tgtacagaga gtgggttagtg gtgaatgttt tcatgtatgtt gtacgtccag 60
ctgggtcagg gctccagtaa tgaacatggc ccagtgaagc gatcatctca gtcacatttgc 120
gaacgatctg aacagcagat cagggctgtct tctagttttgg aggaactact tcgaattact 180
caactctgagg actggaaact gtggagatgc aggctgaggc tcaaaagttt taccagtatg 240 35
gactctcgct cagcatccca tcggtccact aggtttgcgg caactttctca tgacattgaa 300
acactaaaag ttatagatga agaatggcaa aagaactcgt gcaagcccttag agaaacgtgc 360
gtggaggtgg ccagtggact ggggaagagt accaacacat tcttcaagcc cccttgcgtg 420
aacgtgttcc gatgtgggtgg ctgttgcattt gaagagagcc ttatctgttat gaacaccagc 480
acctcgtaca tttccaaaca gctctttgat atatcgtgc ttttgacatc agtacctgaa 540 40
tttagtgcctg ttaaagtgtc caatcatataa ggttgttaagt gcttgccaaac agccccccgc 600
catccataact caattatcag aagatccatc cagatccctg aagaagatcg ctgttccat 660
tccaagaaac tctgtccat tgacatgtca tgggatagca acaaatgtaa atgtgttttg 720
caggagggaa atccacttgc tggAACAGAA gaccactctc atctccagga accagctctc 780
tgtggccac acatgtatgtt tgacgaagat cgttgcgagt gtgtctgtaa aacaccatgt 840 45
cccaaagatc taatccagca ccccaaaaaac tgcaattgttctt ttgagtgc taaaaggatctg 900
gagacctgtt gccagaagca caagctattt caccctggaca cctgcagctg tgaggacaga 960
tgccttc ataccagacc atgtgcattt ggcaaaacag catgtgc taaa gcattgcccgc 1020
tttccaaagg agaaaaggcc tgcccagggg ccccacagcc gaaagaatcc ttga 1074 50

<210> 125
<211> 1314
<212> DNA
<213> Homo sapiens 55

<300>

60

65

DE 101 00 586 C 1

<302> E2F
 <310> M96577

5 <400> 125
 atggccttgg ccggggcccc tgcgggccc ccatgcgcgc cggcgctgga ggccctgctc 60
 ggggcccggcg cgctgcccgt gctcgactcc tcgcagatcg tcatacatctc cgccgcgcag 120
 gacgccagcg cccgcggc tcccacccgc cccgcggcgc cccgcggcgg cccctgcgac 180
 cctgacccgc tgctcttcgc cacaccgcag gcggccggc ccacacccag tgcgcgcgg 240
 10 cccgcgtcg gccgcggcc ggtgaaggcg aggctggacc tgaaaactga ccatcagtac 300
 ctggccgaga gcagtggcc agctcgggc agaggccgc atccaggaaa aggtgtgaaa 360
 tccccgggg agaaatcgcg ctatgagacc tcactgaatc tgaccaccaa gcgttcctg 420
 gagctgcgta gccactcgat tgacgggtgc gtgcacatc actgggtgcg cgagggtctg 480
 aaggtgcaga agccgcgcat ctatgacatc accaacgtcc ttgaggccat ccagctatt 540
 15 gccaagaagt ccaagaacca catccagatgg ctgggcgc acaccacagt gggcgccggc 600
 ggacggcttg aggggttgac ccaggaccc cgacagctgc aggagagcga gcagcagctg 660
 gaccacctga tgaatatctg tactacgcg ctgcgcctgc tctccggaga cactgacagc 720
 cagcgccctgg cctacgtgac gtgtcagac cttctgtaca ttgcagaccc tgcagagcag 780
 atggttatgg tgatcaaagc ccctccttag acccagctcc aaggccgtgga ctcttcggag 840
 20 aactttcaga tctcccttaa gagcaaacaa ggcccgtcg atgttttct gtgcctgag 900
 gagaccgtag gtgggatcg ccctggaaag accccatccc aggaggcac ttctgaggag 960
 gagaacaggg ccactgactc tgccaccata gtgtcaccac caccatcatc tccccctca 1020
 tccctcacca cagatcccag ccagtctcta ctgcgcctgg agcaagaacc gctgttgtcc 1080
 cggatgggca gcctgcgggc tcccgtggac gaggaccgcg tgcgtccctg ggtggccggcc 1140
 25 gactcgctcc tggagcatgt gggggaggac ttctccggcc tcctccctga ggagttcatc 1200
 agccttccca caccacca ggcctcgac taccactcg gcctcgagga gggcgaggcc 1260
 atcagagacc tcttcgactg tgactttgg gacctcaccc ccctggattt ctga 1314

30 <210> 126
 <211> 166
 <212> DNA
 <213> Human papillomavirus

35 <300>
 <302> EBER-1
 <310> J02078

40 <400> 126
 ggacctacgc tgccctagag gttttcttag ggaggagacg tttgtggctg tagccaccccg 60
 tcccgggtac aagtccgggg tggtgaggac ggtgtctgtg gttgtcttcc cagactctgc 120
 tttctgcgtt cttcggtcaa gtaccagctg gtggtccgca tgttt 166

45 <210> 127
 <211> 172
 <212> DNA
 <213> Hepatitis C virus

50 <300>
 <302> EBER-2
 <310> J02078

55 <400> 127
 ggacagccgt tgccctagtg gtttcggaca caccgccaac gtcagtgcg gtgttaccga 60
 cccgagggtca agtccgggg gaggagaaga gaggttccc gcctagagca ttgcgttgc 120
 aggattctct aatccctctg ggagaagggt attcggcttg tccgtatcc tt 172

60

65

DE 101 00 586 C 1

<210> 128
 <211> 651
 <212> DNA
 <213> Hepatitis C virus

<300>
 <302> NS2
 <310> AJ238799

<400> 128

atggaccggg agatggcagc atcggtcgga ggccgcggtt tcgttaggtct gatactctt 60
 accttgtcac cgcaactataa gctgttcctc gctaggctca tatggtggtt acaatatttt 120
 atcaccaggc cggaggcaca ctgtcaagt tgatcccc ccctcaacgt tcgggggggc 180
 cgcgtatggc tcatcttctt cacgtgcgcg atccacccag agctaattt taccatcacc 240
 aaaatcttc tcgcccatact cggtccactc atgggtctcc aggctggtat aaccaaagt 300
 ccgtacttcg tgcgcgcaca cgggctcatt cggtcatgca tgctggtgcg gaaggttget 360
 ggggggttcat atgtccaaat ggctctcatg aagttggccg cactgacagg tacgtacgtt 420
 tatgaccatc tcacccact gggggactgg gcccacgcgg gcctacgaga ccttgcgggt 480
 gcagttgagc cctgtgttctt ctctgtatg gagaccaagg ttatcacctg gggggcagac 540
 accgcggcgt gtggggacat catcttggc ctgcccgtt ccgcggcag ggggagggag 600
 atacatctgg gaccggcaga cagcattgaa gggcagggtt ggcgactcct c 651

10
 15
 20
 25
 30
 35
 40
 45
 50
 55

<210> 129
 <211> 161
 <212> DNA
 <213> Hepatitis C virus

<300>
 <302> NS4A
 <310> AJ238799

<400> 129

gcacacctgggt gctggtaggc ggagtccttag cagctctggc cgcgtattgc ctgacaacag 60
 gcagcgtggc cattgtgggc aggtatct tggccggaaa gccggccatc attcccgaca 120
 ggaagtctt ttaccgggag ttcatgtgaga tggaaagatgt c 161

35
 40

<210> 130
 <211> 783
 <212> DNA
 <213> Hepatitis C virus

<300>
 <302> NS4B
 <310> AJ238799

<400> 130

gcctcacacc tcccttacat cgaacaggga atgcagctcg ccgaacaatt caaacagaag 60
 gcaatcggtt tgctgcaaac agccaccaag caagcggagg ctgctgtcc cgtggtgaa 120
 cccaaatggc ggaccctcg agccttctgg gcaagcata tggaaattt catcagcggg 180
 atacaatatt tagcaggctt gtccactctg cctggcaacc cgcgtatgc atcaactgt 240
 gcattcacag cctctatcac cagccgcctc accacccaac atacccttctt gtttaacatc 300
 ctgggggat ggggtggccgc ccaacttgc cttccagcg ctgcttctgc ttctgtggc 360
 gccggcatacg ctggagcggc tggatggcagc ataggcttgc ggaagggtct tggatatt 420
 ctggcagggtt atggagcagg ggtggcagggc ggcgtctgtt ctttaaggt catgagcggc 480

DE 101 00 586 C 1

gagatgccct ccaccgagga cctggtaac ctactccctg ctatccctc ccctggcgcc 540
 ctatccctc ccctggcgcc 540
 ctagtcgtcg gggcgtgtg cgcaagcgata ctgcgtcgac acgtggggcc aggggagggg 600
 gctgtcagt ggatgaaccg gctgatagcg ttgcgttgcg gggtaacca cgtctcccc 660
 5 acgcactatg tgctgagag cgacgctgca gcacgtgtca ctcagatcct ctctagtctt 720
 accatcactc agctgctgaa gaggctcac cagtggatca acgaggactg ctccacgcca 780
 tgc 783

10 <210> 131
 <211> 1341
 <212> DNA
 <213> Hepatitis C virus

15 <300>
 <302> NS5A
 <310> AJ238799

<400> 131
 20 tccggctcg ggctaagaga tggatatgca cggtgttgac tgatttcaag 60
 acctggctcc agtccaagct cctggcgca ttgggggag tccccttctt ctcatgtcaa 120
 cgtgggtaca agggagtctg gcggggcgac ggcacatcatgc aaaccacctg cccatgtgga 180
 gcacagatca cggacatgt gaaaaacggt tccatgagga tcgtggggcc taggacctgt 240
 agtaaacacgt ggcacatggaa attccccatt aacgcgtaca ccacggggcc ctgcacgccc 300
 25 tccccggcgc caaattattc tagggcgctg tggcggtgg ctgctgagga gtacgtggag 360
 gttacgcggg tgggggattt ccactacgtg acgggcattga ccactgacaa cgtaaagtgc 420
 ccgtgtcagg ttccggcccc cgaattttc acagaagtgg atggggtgcg gttgcacagg 480
 tacgctccag cgtcaaacc cctcctacgg gaggagggtca cattccctgg cgggctcaat 540
 caataccctgg ttgggtcaca gtcacatgc gagcccaac cggacgttagc agtgcctact 600
 30 tccatgcgtca cggacccctc ccacattacg gcggagacgg ctaagcgtag gctggccagg 660
 ggatctcccc cctcttggc cagctcatca gctagccagc tgcgtcgcc ttcccttgaag 720
 gcaacatgca ctaccctgtca tgactccccg gacgtgacc tcatcgaggc caacccctcg 780
 tggccggcagg agatgggggg gaacatcacc cgcgtggagt cagaaaataa ggtagtaatt 840
 ttggacttctt cgcgtggcgt ccaagcggag gaggatgaga gggaaagtatc cgttccggcg 900
 35 gagatcctgc ggaggtccag gaaattccct cgacgcgtac ccatatggc acgcccggat 960
 tacaaccctc cactgttaga gtcctggaaag gacccggact acgtccctcc agtggtacac 1020
 ggggtccat tgccgcctgc caaggccct cgcataaccac ctccacggag gaagaggacg 1080
 gttgtctgt cagaatctac cgtgtcttgc gccttggcg agctcgccac aaagaccttc 1140
 ggcagctccg aatcgccgc cgtcgacacg ggcacggcaa cggcctctcc tgaccagccc 1200
 40 tccgacgacg ggcacgcggg atccgacgtt gagtcgtact ctcacatgcc cccctttag 1260
 ggggagccgg gggatcccgat tctcagcgtac gggcttggt ctaccgtaaag cgaggaggct 1320
 agtgaggacg tcgtctgctg c 1341

45 <210> 132
 <211> 1772
 <212> DNA
 <213> Hepatitis C virus

50 <300>
 <302> NS5B
 <310> AJ238799

<400> 132
 55 tcgatgtcct acacatggac aggccctg atcacgcct ggcgtgcggaa ggaaaccaag 60
 ctgcccata atgcactgag caactcttgc ctcgtcacc acaacttggt ctatgctaca 120
 acatctcgca ggcacggct gcccggcagaag aaggtcacct ttgacagact gcagggtcctg 180
 gacgaccact accgggacgt gtcacaggag atgaaggcga aggacgtccac agttaaggct 240

60

65

DE 101 00 586 C 1

aaacttctat ccgtggagga agcctgtaag ctgacgcccc cacattccgc cagatctaaa 300	
tttggctatg gggcaaagga cgtccggAAC ctatccagca aggccgttaa ccacatccgc 360	
tccgtgtgga aggacttgct ggaagacact gagacaccaa ttgacaccac catcatggca 420	
aaaaatgagg ttttctcggt ccaaccagag aaggggggcc gcaagccagc tcgccttatac 480	5
gtattcccag atttgggggt tcgtgtgtc gagaaaatgg cccttacga tgtggtctcc 540	
accctccctc aggccgtgtat gggcttca tacggattcc aatactctcc tggacagcgg 600	
gtcgagttcc tggtgaatgc ctggaaagcg aagaatgcct cstatggcctt cgcatatgac 660	
acccgctgtt ttgactcaac ggtcactgag aatgacatcc gtgttgagga gtcaatctac 720	
caatgttgc acyttggcccc cgaagccaga caggccataa ggtcgctcac agagcggctt 780	
tacatcgggg gccccctgac taattctaaa gggcagaact gcggtatcgcc cggtgcccgc 840	10
gcgagcgggt tactgacgac cagctgcggg aataccctca catgttactt gaaggccgct 900	
geggcgttc gagctgcaaa gtcggcggac tgacgatgc tcgtatgcgg agacgacett 960	
gtcggtatgt gtgaaagcgc ggggacccaa gaggacgagg cgacccctacg gccttacg 1020	
gaggctatga cttagactc tggcccccctt gggacccgc ccaaaccaga atacgacttg 1080	
gagttgataa catcatgctc tcggatgtc tgatgcgc acatgcac tggcaaaagg 1140	
gtgtactata tcaccctgtc ccccaaccacc ccccttgcgc gggctgcgtg ggagacagct 1200	
agacacactc cagtcatttc ctggcttaggc aacatcatca tggatgcgc caccttgtgg 1260	
gcaaggatga tcctgatgac tcatttcttc tccatcttc tagctcagga acaacttgaa 1320	
aaagccctag attgtcagat ctacggggcc tggatctcca ttgagccact tgacctac 1380	
cagatcatc aacgactcca tggccttagc gcatttcac tccatagtt ctctccagg 1440	20
gagatcaata gggggcttc atgcctcagg aaacttgggg taccgcctt gcgagtctgg 1500	
agacatcggt ccagaaggtgt ccgcgcgtt ctactgtccc agggggggag gggtgccact 1560	
tgtggcaagt acctcttcaa ctggcagta aggaccaagc tcaaaactcac tcaaatcccg 1620	
gctgcgtccc agttggattt atccagctgg ttcgttgcgt gttacagcgg gggagacata 1680	
tatcacagcc tgcgtgtc ccgacccgc tggatcttgc ggtgcctact cctactttct 1740	
gtaggggtag gcatctatct actcccaac cg 1772	

<210> 133	30
<211> 1892	
<212> DNA	
<213> Hepatitis C virus	
<300>	
<302> NS3	35
<310> AJ238799	

<400> 133	
cgcctattac ggcctactcc caacagacgc gaggcctact tggctgcata atcaactagcc 60	40
tcacaggccg ggacaggaac caggtcgagg gggaggtcca aytggtotcc accgcaacac 120	
atctttctt ggcgcacctgc gtcaatggcg tggatggac tggatctatcat ggtggccggct 180	
caaagacccct tggccggccca aaggggccaa tcacccaaat gtacaccaat gtggaccagg 240	
acctcgtcgg ctggcaagcg ccccccgggg cgcgttccctt gacaccatgc acctgcggca 300	
gctcgaccc ttacttggtc acgaggcatc cgcgtatcat tccggtgccgc cggcgggccg 360	
acagcagggg ggcctactc tcccccaggc cgcgttccctt cttgaaggc tcttcggccg 420	45
gtccactgtc tgcgttccgt gggcacgtt tggcatctt tgggtgtcc gtgtgcaccc 480	
gaggggttgc gaaggcgggt gactttgtac cgcgtcagtc tatggaaacc actatgcgg 540	
ccccggctt cacggacaac tgcgttccctc cggccgtacc gcagacattc caggtggccc 600	
atctacacgc ccctactggt agcggcaaga gcactaagg gcccgtcg tatgcagccc 660	50
aagggtataa ggtgttgc tgcgttccgt cgcgttccgc caccctagg ttcggggcgt 720	
atatgtctaa ggcacatggt atgcacccca acatcagaac cggggtaagg accatcacca 780	
cgggtgcccc catcacgtac tccacctatg gcaagttct tggatggccgt ggtgtctctg 840	
ggggcgccta tgcacatcata atatgtatg agtgcactc aactgactcg accactatcc 900	
tgggcatgg cacagtccgt gaccaagcgg agacggctgg agcgcactc gtcgtgtcc 960	
ccaccgtac gcctccggga tggatggccgt tggatggccgt aaacatcgag gagggtggc 1020	55
tgtccagcac tggagaaatc ccctttatg gcaaaagccat ccccatcgag accatcaagg 1080	
gggggaggca ctcattttc tggatggccgt agaagaaatg tgcgtgtcc gccgcgaagg 1140	

60

65

DE 101 00 586 C 1

tgcgtccgtt cggactcaat gctgttagcat attaccgggg cttgtatgtt tccgtcatac 1200
 caactagcg agacgtcatt gtcgttagcaa cgacgtct aatgacggc ttaccggc 1260
 attcgactc agtgatcgac tgcaatacat gtgtcaccca gacagtgcac ttacgcctgg 1320
 5 acccgacctt caccattgag acgacgaccg tgccacaaga cgccgtgtca cgctcgac 1380
 ggcgaggcag gactggtagg ggcaggatgg gcatttacag gtttgtact ccaggagaac 1440
 ggcctcggg catgttcgtat tcctcggtt tgcgtcgat ctatgacgc ggctgtgctt 1500
 ggtacgact cacgcccccc gagacccctag ttaggttgcg ggcttaccta aacacaccag 1560
 ggttgcctgt ctggcaggac catctggagt tctggagag cgtcttaca ggcctcacc 1620
 acatagacgc ccatttcttgc tcccagacta agcaggcagg agacaacttc ccctacctgg 1680
 10 tagcataccaa ggctacgggtg tgccgcaggg ctcaaggctcc acctccatcg tgggaccaaa 1740
 tgcgtaaatgt tctcatacgg ctaaaggctt cgcgtcgcgg gccaacgccc ctgctgtata 1800
 ggctggggagc cgtcaaaaac gaggttacta ccacacaccc cataaccaaa tacatcatgg 1860
 catgcatgtc ggctgacgtt gaggctgtca cg 1892
 15
 <210> 134
 <211> 822
 <212> DNA
 20 <213> Homo sapiens
 <300>
 <302> stmn cell factor
 <310> M59964
 25 <400> 134
 atgaagaaga cacaacttg gattctcaact tgcatttata ttcagctgct cctatttaat 60
 cctctcgta aaactgaagg gatctgcagg aatcggtgtt ctaataatgt aaaagacgtc 120
 actaaatgg tggcaaatct tccaaaagac tacatgataa ccctcaataa tgcgtccggg 180
 30 atggatgtt tgccaaatgtt ttgttggata agcgagatgg tagtacaatt gtcagacagc 240
 ttgactgatc ttctggacaa gtttcaaat atttctgtt gcttggatg ttattccatc 300
 atagacaaac ttgtgaatat agtgcgttgc cttgtggatg gctcaaaaaga aactcatct 360
 aaggatctaa aaaaatcatt caagagccca gaacccaggc tcttactcc tgaagaattc 420
 ttttagattt ttaatagatc cattgtatgcc ttcaaggact ttgttagtggc atctgaaact 480
 35 agtattgttgggttctt aacattaatg cctgagaaag attccagatg cagtgtcaca 540
 aaaccattt tggttacccctt tggtgcagcc agtccctta ggaatgacag cagtagcgt 600
 aataggaagg cccaaatcc ccctggagac tccagctac actggcagc catggcattt 660
 ccagcattgt ttctcttat aattggctt gctttggatg ctttatactg gaagaagaga 720
 cagccaagtc ttacaagggc agttgaaaat atacaaatata atgaagagga taatgagata 780
 40 agtatgttgc aagagaaaga gagagatggt caagaatgtt aa 822
 <210> 135
 <211> 483
 45 <212> DNA
 <213> Homo sapiens
 <300>
 <302> TGFalpha
 50 <310> AF123238
 <400> 135
 atggccccctt cggctggaca gctcgccctt ttcgtctgg gtattgtgtt ggctgcgtgc 60
 caggccttgg agaacagcac gtcggcgttgc agtgcagacc cggccgtggc tgcagcgttgc 120
 55 gtgtccccatt ttaatgactt cccagattcc cacactgtt cttgttcca tggaaacctgc 180
 aggtttttgg tgcaggagga caagccagca tgcgtctgccc attctggatg cgttgggtgc 240
 cgcgtgtgagc atgcggaccc cctggccgtt gtcggctgcca gccagaagaa gcaaggccatc 300
 accgccttgg tgggtgttcc catcggttgc ctggctgtcc ttatcatcac atgtgtgttgc 360
 60

65

DE 101 00 586 C 1

atacactgct gccagggtccg aaaacactgt gagtggtgcc gggccctcat ctgcccggcac 420
gagaagccca gcgccttcct gaagggaaaga accgcttgct gccactcaga aacagtggtc 480
tqa 483

5

<210> 136
<211> 1071
<212> DNA
<213> *Homo sapiens*

10

<300>
<302> GD3 synthase
<310> NM003034

1

```

<400> 136
atgagccccct gcgggcgggc ccggcgacaa acgtccagag gggccatggc tgtactggcg 60
tggaaagtcc cgcggaccccg gctgccatg ggagccagtg ccctctgtgt cgtggtcctc 120
tgttggctct acatcttccc cgtctaccgg ctgccccaaacg agaaaagatg cgtgcagggg 180
gtgctgcaac aggacacggc gtggaggagg aaccagaccg cggccagagc gttcaggaaa 240
caaataggaa actgctgcga ccctgcctcat ctcttgcta tgactaaaat gaattccct 300
atggggaaaga gcatgtggta tgacggggag ttttatact cattcaccat tgacaattca 360
acttactctc tcttcccaca ggcaacccca ttccagctgc cattgaagaa atgcgcggtg 420
gtggggaaatg gtgggattct gaagaagagt ggctgtggcc gtcaaataaga tgaagcaaat 480
tttgtcatgc gatgcaatct ccctcccttg tcaagtgaat acactaaggta tgttggatcc 540
aaaagtcagt tagtgacagc taatcccgac ataattcgcc aaaggttca gaaccttctg 600
tggtccagaa agacatttgt ggacaacatg aaaatctata accacagttt catctacatg 660
cctgcctttt ctatgaagac aggaacagag ccatcttgc gggtttatta tacactgtca 720
gatgttggtg ccaatcaaac agtgctgttt gccaacccca actttctgcg tagcattgga 780
aagtcttggaa aagttagagg aatccatgccc aagcgcctgt ccacaggact ttttctggtg 840
agcgcagctc tgggtctctg tgaagaggtg gccatctatg gcttctggcc ctctctgtg 900
aatatgcatg agcagccccat cagccaccac tactatgaca acgtcttacc cttttctggc 960
ttccatgcca tgccccgagga atttctccaa ctctggatcc ttcataaaaat cggtgcactg 1020
agaatgcagc tggaccccatg tgaagatacc tcactccaggccacttccta g 1071

```

<210> 137
<211> 744
<212> DNA
<213> *Homo sapiens*

40

<300>
<302> FGF14
<310> NM004115

```

<400> 137
atggccgcgg ccatcgctag cggttgcata cgccagaagc ggcaggcgcg ggagcagcac 60
tgggaccggc cgtctgccag caggaggcg agcagcccc gcaagaacct cggctctgc 120
aacggcaacc tggtgatat ctctccaaa gtgcgcatct tcggcctcaa gaagcgcagg 180
ttgcggcgcc aagatcccc a gctcaagggt atagtgcacca ggttatattt caggcaaggc 240
tactacttgc aaatgcaccc c cgatggagct ctcgtatggaa ccaaggatga cagcactaat 300
tctacactct tcaacctcat accagttggg ctaacgtgtt g tgccatcca gggagtgaaa 360
acagggtgtt atatagccat gaatggagaa ggttacctct acccatcaga actttttacc 420
cctgaatgca agttttaaaa atctgtttt gaaaattatt atgtaatcta ctcatccatg 480
ttgtacagac aacaggaatc ttgttaggcc ttgtttttgg gattaataaa ggaagggc 540
gctatgaaag ggaacagagt aaagaaaaacc aaaccagcag ctcattttct acccaagc 600
ttggaaagtgc ccatgttaccg agaaccatct ttgcattatg ttggggaaac ggtcccgaa 660
cctgggggtga cgccaaqt aaqcacaqaa qcqctctqaa taatqaatqg aqgcaaaacca 720

```

60

gtcaacaaga gtaagacaac atag

744

5 <210> 138
 <211> 1503
 <212> DNA
 <213> Human immunodeficiency virus

10 <300>
 10 <302> gag (HIV)
 <310> NC001802

15 <400> 138
 15 atgggtgcga gagcgtcagt attaagcggg ggagaattag atcgatggga aaaaattcgg 60
 ttaaggccag gggaaaagaa aaaatataaa taaaacata tagtatggc aagcagggag 120
 ctagaacgat tcgcagttaa tcctggctg ttagaaacat cagaaggctg tagacaaaata 180
 ctgggacagc tacaaccatc cttcagaca ggatcagaag aacttagatc attatataat 240
 acagtagcaa ccctctattg tgtcatcaa aggatagaga taaaagacac caaggaagct 300
 20 ttagacaaga tagaggaaga gcaaaaacaaa agtaagaaaa aagcacagca agcagcagct 360
 gacacaggac acagaatca ggtcagccaa aattacccta tagtgcagaa catccagggg 420
 caaatggta atcaggccat atcacctaga actttaatg catgggtaaa agtagtagaa 480
 gagaaggctt tcagccaga agtgataccc atgttttcag cattatcaga aggagccacc 540
 ccacaagatt taaacaccat gctaaacaca gtggggggac atcaagcagc catgcaaatg 600
 25 ttaaaagaga ccatcaatga ggaagctgca gaatggata gagtgcattc agtgcattc 660
 gggcctattt caccaggcca gatgagagaa ccaagggaa gtgacatagc aggaactact 720
 agtacccttc aggaacaaat aggatggatg acaaataatc cacctatccc agtaggagaa 780
 atttataaaa gatggataat cctgggatta aataaaatag taagaatgta tagccctacc 840
 agcattctgg acataagaca aggaccaaag gaacccttta gagactatgt agaccgggtc 900
 30 tataaaactc taagagccga gcaagctca caggaggtaa aaaattggat gacagaaacc 960
 ttgttggtcc aaaatgcgaa cccagattt aagactattt taaaagcatt gggaccagcg 1020
 gctacactag aagaaatgt gacagcatgt cagggagtag gaggaccgg ccataaggca 1080
 agagtttttg ctgaagcaat gagccaagta acaaattcag ctaccataat gatgcagaga 1140
 ggcaattttt ggaaccaaag aaagatttgtt aagtgttca attgtggcaa agaagggcac 1200
 35 acagccagaa attgcaggc cccttagggaa aaggctgtt ggaaatgtgg aaaggaagga 1260
 cacccaaatg aagattgtac tgagagacag gctaatttt taggaaagat ctggccttcc 1320
 tacaaggggaa ggccaggaa ttttcttcag agcagaccag agccaacagc cccaccagaa 1380
 gagagcttca ggtctgggtt agagacaaca actccccctc agaagcagga gccgatagac 1440
 aaggaactgt atccttaac ttccctcagg tcactcttg gcaacgcacc ctgtcacaa 1500
 40 taa
 1503

45 <210> 139
 <211> 1101
 <212> DNA
 <213> Human immunodeficiency virus

50 <300>
 50 <302> TARBP2
 <310> NM004178

55 <400> 139
 55 atgagtgaag aggagcaagg ctccggcaact accacgggt gcgggctgcc tagtatagag 60
 caaatgctgg ccgcacccc aggcaagacc ccgatcagcc ttctgcagga gtatgggacc 120
 agaatagggaa agacgcctgt gtacgaccc tccaaagccg agggccaagc ccaccagcct 180
 aatttcaccc tccgggtcac cggtggcgac accagctca ctggtcaggg ccccagcaag 240
 aaggcagcca agcacaaggc agctgagggt gcccctcaac acctcaaaagg ggggagcatg 300
 ctggagccgg ccctggagga cagcagtct ttttctcccc tagactcttc actgcctgag 360

60

65

DE 101 00 586 C 1

gacattccgg ttttactgc tgcagcagct gctaccccag ttccatctgt agtcctaacc 420 aggagcccccc ccatggaact gcagccccct gtctccccc agcagtctga gtgcaacccc 480 gttggtgctc tgcaggagct ggtggcgcag aaaggctggc ggttgcggc gtacacagtg 540 acccaggagt ctggccagc ccaccgcaaa gaattcacca tgacctgtcg agtggagcgt 600 ttcattgaga ttgggagtgg cacttccaaa aaattggcaa agcggaatgc ggcggccaaa 660 atgctgcttc gagttcacac ggtgcctctg gatgcccggg atggcaatga ggtggagcct 720 gatgatgacc actttccat tggtgtggc ttccgcctgg atggcttcg aaaccggggc 780 ccaggttgca cctgggattc tctacgaaat tcagtaggag agaagatcct gtccctccgc 840 agttgtccc tgggtccct ggggtccctg ggcctgcct gctgccgtg cctcagttag 900 ctctctgagg agcaggcctt tcacgtcagc tacctggata ttgaggagct gagcctgagt 960 ggactctgcc agtgcctggt ggaactgtcc acccagccgg ccactgtgt tcatggctct 1020 gcaaccacca gggaggcage ccgtggtag gctgcccggc gtgcctgca gtacctcaag 1080 atcatggcag gcagcaagt a 1101	5 10 15 20 25 30 35 40 45 50 55
<210> 140 <211> 219 <212> DNA <213> Human immunodeficiency virus	
<300> <302> TAT (HIV) <310> U44023	
<400> 140 atggagccag tagatcctag cctagagccc tggaaagcatc caggaagtca gcctaagact 60 gcttgtacca cttgttattt taaagagtgt tgctttcatt gccaagtttgc tttcataaca 120 aaaggcttag gcatctccta tggcaggaag aagcggagac agcgacgaag aactcctcaa 180 ggtcatcaga ctaatcaagt ttctctatca aagcagtaa	
<210> 141 <211> 21 <212> RNA <213> Künstliche Sequenz	
<220> <223> Beschreibung der künstlichen Sequenz: anti-GFP	
<400> 141 ccacaugaag cagcacgacu u	21
<210> 142 <211> 27 <212> RNA <213> Künstliche Sequenz	
<220> <223> Beschreibung der künstlichen Sequenz: anti-GFP; 3`-Überhänge	
<400> 142 gacccacau gaaagcagcac gacuucu	27

Literatur

- Bass, B. L., 2000. Double-stranded RNA as a template for gene silencing. *Cell* 101, 235–238.
- Bosher, J. M. and Labouesse, M., 2000. RNA interference: genetic Wand and genetic watchdog. *Nature Cell Biology* 2, E31–E36.
- Caplen, N. J., Fleenor, J., Fire, A., and Morgan, R. A., 2000. dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. *Gene* 252, 95–105.
- Clemens, J. C., Worby, C. A., Simonson-Leff, N., Muda, M., Machama, T., Hemmings, B. A., and Dixon, J. E., 2000. Use of doublestranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. *Proc.Natl.Acad.Sci.USA* 97, 6499–6503.
- Ding, S. W., 2000. RNA silencing. *Curr. Opin. Biotechnol.* 11, 152–156.

DE 101 00 586 C 1

- Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C., 1998. Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*. *Nature* 391, 806–811.
- Fire, A., 1999. RNA-triggered genesilencing. *Trends Genet.* 15, 358–363.
- Freier, S. M., Kierzek, R., Jaeger, J. A., Sugimoto, N., Caruthers, M. H., Neilson, T., and Turner, D. H., 1986. Improved freeenergy parameters for prediction of RNA duplex stability. *Proc. Natl. Acad. Sci. USA* 83, 9373–9377.
- Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J., 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in *Drosophila* cells. *Nature* 404, 293–296.
- Limmer, S., Hofmann, H.-P., Ott, G., and Sprinzl, M., 1993. The 3'-terminal end (NCCA) of tRNA determines the structure and stability of the aminoacyl acceptor stem. *Proc. Natl. Acad. Sci. USA* 90, 6199–6202.
- Montgomery, M. K. and Fire, A., 1998. Double-stranded RNA as a mediator in sequence-specific genetic silencing and cosuppression. *Trends Genet.* 14, 255–258.
- Montgomery, M. K., Xu, S., and Fire, A., 1998. RNA as a target of double-stranded RNA-mediated genetic interference in *Caenorhabditis elegans*. *Proc. Natl. Acad. Sci. USA* 95, 15502–15507.
- Ui-Tei, K., Zenno, S., Miyata, Y., and Saigo, K., 2000. Sensitive assay of RNA interference in *Drosophila* and Chinese hamster cultured cells using firefly luciferase gene as target. *FEBS Lett.* 479, 79–82.
- Zamore, P. D., Tuschl, T., Sharp, P. A., and Bartel, D. P., 2000. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. *Cell* 101, 25–33.

Patentansprüche

1. Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle umfassend die folgenden Schritte:
Einführen mindestens eines Oligoribonukleotids (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,
wobei das Oligoribonukleotid (dsRNA I) eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur komplementär zum Zielgen ist,
und wobei zumindest ein Ende (E1) des Oligoribonukleotids (dsRNA I) einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist.
2. Verfahren nach Anspruch 1, wobei zumindest ein Ende (E1, E2) zumindest ein nicht nach Watson & Crick gepaartes Nukleotid aufweist.
3. Verfahren nach einem der vorhergehenden Ansprüche, wobei beide Enden (E1, E2) ungepaarte Nukleotide aufweisen.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Ende (E1) das 3'-Ende eines Strangs der doppelsträngigen Struktur ist.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest ein weiteres, vorzugsweise entsprechend dem Oligoribonukleotid (dsRNA I) nach einem der vorhergehenden Ansprüche ausgebildetes, Oligoribonukleotid (dsRNA II) in die Zelle eingeführt wird,
wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur des Oligoribonukleotids (dsRNA I) komplementär zu einem ersten Bereich (B1) des Zielgens ist,
und wobei ein Strang (S2) oder zumindest ein Abschnitt des Strangs (S2) der doppelsträngigen Struktur des weiteren Oligoribonukleotids (dsRNA II) komplementär zu einem zweiten Bereich (B2) des Zielgens ist.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei das weitere Oligoribonukleotid (dsRNA II) eine doppelsträngige aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist.
7. Verfahren nach einem der Ansprüche 1 bis 5, wobei das Oligoribonukleotid (dsRNA I) und/oder das weitere Oligoribonukleotid (dsRNA II) eine doppelsträngige aus weniger als 25 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist/en.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinandergrenzen.
9. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) voneinander abstandet sind.
10. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Zelle vor dem Einführen des/der Oligoribonukleotids/e (dSRNA I, dsRNA II) mit Interferon behandelt wird.
11. Verfahren nach einem der vorhergehenden Ansprüche, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) in micellare Strukturen, vorzugsweise in Liposomen, eingeschlossen wird/werden.
12. Verfahren nach einem der vorhergehenden Ansprüche, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) in virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen eingeschlossen wird/werden.
13. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 des Sequenzprotokolls aufweist.
14. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen.
15. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmoidien, exprimiert wird.
16. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.
17. Verfahren nach Anspruch 16, wobei das Virus ein humanpathogenes Virus oder Viroid ist.
18. Verfahren nach Anspruch 17, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

DE 101 00 586 C 1

19. Verfahren nach einem der vorhergehenden Ansprüche, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind. 5
20. Verfahren nach einem der vorhergehenden Ansprüche, wobei die doppelsträngige Struktur durch eine chemische Verknüpfung der beiden Stränge stabilisiert wird.
21. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird. 10
22. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung in der Nähe des einen oder in der Nähe der beiden Enden (E1, E2) gebildet ist.
23. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Polyethylenglycol-Ketten sind. 15
24. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Purinanaloge gebildet wird.
25. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet wird. 15
26. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet wird.
27. Verfahren nach einem der vorhergehenden Ansprüche, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N^t-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen. 20
28. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet wird.
29. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt wird. 25
30. Verfahren nach einem der vorhergehenden Ansprüche, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird/werden. 30
31. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.
32. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein das Virus-Protein **1** (VP1) und/oder das Virus-Protein **2** (VP2) des Polyomavirus enthält.
33. Verfahren nach einem der vorhergehenden Ansprüche, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist. 35
34. Verfahren nach einem der vorhergehenden Ansprüche, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist/sind.
35. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.
36. Verwendung eines Oligoribonukleotids (dsRNA I) zur Hemmung der Expression eines Zielgens in einer Zelle, wobei das Oligoribonukleotid (dsRNA I) eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur komplementär zum Zielgen ist, und wobei zumindest ein Ende (E1) des Oligoribonukleotids (dsRNA I) einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist. 40
37. Verwendung nach Anspruch 36, wobei zumindest ein Ende (E1, E2) zumindest ein nicht nach Watson & Crick gepaartes Nukleotid aufweist.
38. Verwendung nach einem der Ansprüche 36 oder 37, wobei beide Enden (E1, E2) ungepaarte Nukleotide aufweist. 45
39. Verwendung nach einem der Ansprüche 36 bis 38, wobei das Ende (E1) das 3'-Ende eines Strangs der doppelsträngigen Struktur ist.
40. Verwendung nach einem der Ansprüche 36 bis 39, wobei zumindest ein weiteres, vorzugsweise entsprechend dem Oligoribonukleotid (dsRNA I) nach einem der vorhergehenden Ansprüche ausgebildetes, Oligoribonukleotid (dsRNA II) in die Zelle eingeführt wird, wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur des Oligonukleotids komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei ein Strang (S2) oder zumindest ein Abschnitt des Strangs (S2) der doppelsträngigen Struktur des weiteren Oligonukleotids (dsRNA II) komplementär zu einem zweiten Bereich (B2) des Zielgens ist. 50
41. Verwendung nach einem der Ansprüche 36 bis 40, wobei das weitere Oligoribonukleotid eine doppelstängige aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist. 55
42. Verwendung nach einem der Ansprüche 36 bis 40, wobei das Oligoribonukleotid und/oder das weitere Oligoribonukleotid eine doppelstängige aus weniger als 25 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist/en.
43. Verwendung nach einem der Ansprüche 36 bis 42, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinandergrenzen. 60
44. Verwendung nach einem der Ansprüche 36 bis 43, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabstandet sind.
45. Verwendung nach einem der Ansprüche 36 bis 44, wobei die Zelle vor dem Einführen des/der Oligoribonukleotids/e mit Interferon behandelt wird. 65
46. Verwendung nach einem der Ansprüche 36 bis 45, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) in micellare Strukturen, vorzugsweise in Liposomen, eingeschlossen wird/werden.
47. Verwendung nach einem der Ansprüche 36 bis 46, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) in

DE 101 00 586 C 1

- virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen eingeschlossen wird/werden.
48. Verwendung nach einem der Ansprüche 36, bis 47, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 des Sequenzprotokolls aufweist.
- 5 49. Verwendung nach einem der Ansprüche 36 bis 48, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen.
50. Verwendung nach einem der Ansprüche 36 bis 49, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert wird.
- 10 51. Verwendung nach einem der Ansprüche 36 bis 50, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.
52. Verwendung nach Anspruch 51, wobei das Virus ein humanpathogenes Virus oder Viroid ist.
53. Verwendung nach Anspruch 52, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.
- 15 54. Verwendung nach einem der Ansprüche 36 bis 53, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.
55. Verwendung nach einem der Ansprüche 36 bis 54, wobei die doppelsträngige Struktur durch eine chemische Verknüpfung der beiden Stränge stabilisiert wird.
56. Verwendung nach einem der Ansprüche 36 bis 55, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird.
- 20 57. Verwendung nach einem der Ansprüche 36 bis 56, wobei die chemische Verknüpfung in der Nähe des einen oder in der Nähe der beiden Enden (E1, E2) gebildet ist.
58. Verwendung nach einem der Ansprüche 36 bis 57, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Polyethylenglycol-Ketten sind.
- 25 59. Verwendung nach einem der Ansprüche 36 bis 58, wobei die chemische Verknüpfung durch Purinanaloge gebildet ist.
60. Verwendung nach einem der Ansprüche 36 bis 59, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet ist.
- 30 61. Verwendung nach einem der Ansprüche 36 bis 60, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet ist.
62. Verwendung nach einem der Ansprüche 36 bis 61, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.
- 35 63. Verwendung nach einem der Ansprüche 36 bis 62, wobei die chemische Verknüpfung durch in der Nähe der Enden des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet wird.
64. Verwendung nach einem der Ansprüche 36 bis 63, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen gebildet ist.
- 40 65. Verwendung nach einem der Ansprüche 36 bis 64, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben ist.
66. Verwendung nach einem der Ansprüche 36 bis 65, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.
67. Verwendung nach einem der Ansprüche 36 bis 66, wobei das Hüllprotein das Virus-Protein **1** (VP1) und/oder das Virus-Protein **2** (VP2) des Polyomavirus enthält.
- 45 68. Verwendung nach einem der Ansprüche 36 bis 67, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.
69. Verwendung nach einem der Ansprüche 36 bis 68, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.
70. Verwendung nach einem der Ansprüche 36 bis 67, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.
- 50 71. Oligoribonukleotid (dsRNA I) mit einer doppelsträngigen aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildeten Struktur, wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur komplementär zu einem Zielgen ist, wobei zumindest ein Ende (E1) des Oligoribonukleotids (dsRNA I) einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist, und wobei die Sequenz des Zielgens eine der Sequenzen SQ001 bis SQ140 des Sequenzprotokolls ist.
72. Oligoribonukleotid nach Anspruch 71, wobei zumindest ein Ende (E1, E2) zumindest ein nicht nach Watson & Crick gepaartes Nukleotid aufweist.
73. Oligoribonukleotid nach einem der Ansprüche 71 und 72, wobei beide Enden (E1, E2) ungepaarte Nukleotide aufweisen.
74. Oligoribonukleotid nach einem der Ansprüche 71 bis 73, wobei das Ende (E1) das 3'-Ende eines Strangs oder beider Stränge der doppelsträngigen Struktur ist.
- 60 75. Oligoribonukleotid nach einem der Ansprüche 71 bis 74, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen.
76. Oligoribonukleotid nach einem der Ansprüche 71 bis 75, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert wird.
- 65 77. Oligoribonukleotid nach einem der Ansprüche 71 bis 76, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.
78. Oligoribonukleotid nach Anspruch 77, wobei das Virus ein humanpathogenes Virus oder Viroid ist.
79. Oligoribonukleotid nach Anspruch 17, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus

DE 101 00 586 C 1

oder Viroid ist.

80. Oligoribonukleotid nach einem der Ansprüche 71 bis 79, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

5

81. Oligoribonukleotid nach einem der Ansprüche 71 bis 80, wobei die doppelsträngige Struktur durch eine chemische Verknüpfung der beiden Stränge stabilisiert ist.

82. Oligoribonukleotid nach einem der Ansprüche 71 bis 81, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet ist.

10

83. Oligoribonukleotid nach einem der Ansprüche 71 bis 82, wobei die chemische Verknüpfung in der Nähe des einen oder in der Nähe der beiden Enden gebildet ist.

10

84. Oligoribonukleotid nach einem der Ansprüche 71 bis 83, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicooxy-1,3-propandiol)- und/oder Polyethylenglycol-Ketten sind.

85. Oligoribonukleotid nach einem der Ansprüche 71 bis 84, wobei die chemische Verknüpfung durch Purinanaloge gebildet ist.

15

86. Oligoribonukleotid nach einem der Ansprüche 71 bis 85, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet ist.

87. Oligoribonukleotid nach einem der Ansprüche 71 bis 86, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloge gebildet ist.

20

88. Oligoribonukleotid nach einem der Ansprüche 71 bis 87, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N¹-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.

89. Oligoribonukleotid nach einem der Ansprüche 71 bis 88, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet ist.

90. Oligoribonukleotid nach einem der Ansprüche 71 bis 89, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt ist.

25

91. Oligoribonukleotid nach einem der Ansprüche 71 bis 90, wobei die Oligoribonukleotid (dsRNA I, dsRNA II) an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben ist.

92. Oligoribonukleotid nach einem der Ansprüche 71 bis 91, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

30

93. Oligoribonukleotid nach einem der Ansprüche 71 bis 92, wobei das Hüllprotein das Virus-Protein **1** (VP1) und/oder das Virus-Protein **2** (VP2) des Polyomavirus enthält.

94. Oligoribonukleotid nach einem der Ansprüche 71 bis 93, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

35

95. Oligoribonukleotid nach einem der Ansprüche 71 bis 94, wobei die Oligoribonukleotid (dsRNA I, dsRNA II) zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

96. Oligoribonukleotid nach einem der Ansprüche 71 bis 95, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) in micellare Strukturen, vorzugsweise in Liposomen, eingeschlossen ist.

40

97. Oligoribonukleotid nach einem der Ansprüche 71 bis 96, wobei das/die Oligoribonukleotid/e (dSRNA I, dsRNA II) in virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen eingeschlossen wird/werden.

98. Kit umfassend mindestens ein Oligoribonukleotid (dsRNA I) nach einem der vorhergehenden Ansprüche und

45

mindestens ein weiteres Oligoribonukleotid (dsRNA II) mit einer doppelsträngigen aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildeten Struktur, wobei ein Strang oder zumindest ein Abschnitt des Strangs der doppelsträngigen Struktur komplementär zum Zielgen ist, und/oder

Interferon.

99. Kit nach Anspruch 98, wobei zumindest ein Ende (E1) des weiteren Oligoribonukleotids (dsRNA II) zumindest einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist.

50

Hierzu 1 Seite(n) Zeichnungen

55

60

65

Fig. 1a

Fig. 1b

Fig. 1c

Fig. 2