Lecture 16: Sensitivity, SFDR, MOSFET 2-port
roue parametus
* Sensitivity = minimum rignal power level that can be detected with derived SNR
detected with derived SNR
Re call that available noise power = KTB watts
SNRin = Prig where this exectived signal kTB power
una mant to defend los for a desired
we want to determine Psignin for a desired SNR out, min.
F = SNRm SNRont
SNROW
- Pria/KTB
= Paig/KTB SNRout
⇒ Paig = (KTB). (SNRowt). (F)
=> Prig = (KTB). (SNRout). (F) expressed in decibels (dBm or dB)
Pin, min dBm = 10log (KT) + NFlas + SNRmin dB
Yin, min d Bm
+ colog B
, ,
@ T= 300K, 10/0g KT = -174 dBm/HZ

Pinsmin = -174 dBm/HZ +NF+(ologB+SNRmin.
= noire ploor
* Pin, min is a function of BW
> a receive with narrow band channel man
> a receiver with narrow band channel may appear to be sensitive compared to another
with a wider channel
Dynamic Range:
DR = max imput level tolerated min. input level meeting SNR requirements
min, input level meeting SNR requirements
towever in RF derign
* Distortion is defined differently (11P3)
r it to the constitute of sold in
* input signal must provide SNR min.
Spurious Free Dynamic Range = SFDR
-> upper end defined by IM behaviour
and each delinged by sometime
-> lower end defined by sensitivity
* upper end = max input level for which IM3
products in a two tone test
do not exceed the noise ploor.
Recall that
PIPS = Pin + Pout - PIMOUT
= rin + 7in - rim,in
= Pin + Pin - PiM, in Pout = Pin + aldB $= Pin + Pin - PiM, in Pout = Pin + aldB$
= 3Pin - Pimin 2

i) input is shorted => gate noise does not go to of OKT > Vgs = 0, lout = ind 2-port > Vgs=En > iont = In En equating $\Rightarrow R_N = \frac{\overline{G_N^2}}{4kT\Delta f} = \frac{89do}{9m^2} = \frac{8}{49m}$ 2) Input is open ckt:

a) id^2 only: $in^2 = \frac{1}{ind} \cdot (ju(gs)^2 = e_n^2 \cdot (ju(gs)^2)$ $\Rightarrow in is completely correlated into en$ b) ing + inA let ing = ingc + ingn
correlated uncorrelated
with En with En ⇒ Yc = in+ ingc = jw Go + ingc En En = jw Cgs + gm ingc { multiply and } divide by ind } = jw Gs + gm ingc·int ind·int = iw Gs + gm ingci int

3)
$$\frac{\text{Gu}!}{\text{ling}} = \frac{1}{(\text{ling}_{c} + \text{ling}_{u})^{2}} = \frac{1}{(\text{ling}_{c} + \text{ling}_{u})^{2}} = \frac{1}{(\text{ling}_{c} + \text{ling}_{u})^{2}} = \frac{1}{(\text{ling}_{c} + \text{ling}_{u})^{2}} = \frac{1}{(\text{ling}_{u} +$$

* Bopt =
$$-Bc = -W(g_s(1+x|c|\frac{s}{s_8}))$$
 \Rightarrow inductive in character

 \Rightarrow warry frequence behaviour ($\propto w$ instead

of $\propto \frac{1}{W}$) \Rightarrow broadband noise match

is fundamentally difficult

 $Copt = \frac{au}{RN} - a^2 = \propto W(g_s \frac{s}{s_8}(1-1c)^2)$
 $Copt = \frac{au}{RN} - a^2 = \propto W(g_s \frac{s}{s_8}(1-1c)^2)$
 $Copt = \frac{au}{RN} - a^2 = \propto W(g_s \frac{s}{s_8}(1-1c)^2)$
 $Copt = \frac{au}{RN} - a^2 = \propto W(g_s \frac{s}{s_8}(1-1c)^2)$

-> Faster devices yield lower noise at given w
→ e-g. 8=2, 8=4
WT IW Form (dB)
20 0.5 15 0.6
10 0.9
5 1, 6
-> Frin assumes no containt on power