Homework 5

- Ex. 1. Show that if σ is a polynomial of degree $n \geq 0$, then it is not discriminatory. <u>Hint</u>: Take $\mu = L_{n+1}(x)dx$ where L_{n+1} is the Legendre polynomial of degree n+1 and dx is the Lebesgue mesure.
- Ex. 2. Let f(x) = x, show that

$$E_{n,H}\left(f\right) = \frac{1}{2(n+1)}$$

Ex. 3. Let H the be Heaviside function, $f \in C^1[0,1]$. We have

$$E_{n,H}(f) \le \frac{1}{2(n+1)} ||f'||.$$

This approximation order and the coefficient are the best possible.

Ex. 4. Let H the be Heaviside function, $f \in C^1[0,1]$. We have

$$E_{n,H}(f) \le \frac{1}{2(n+1)} ||f'||.$$

This approximation order and the coefficient are the best possible.

Ex. 5. Let BV denote the class of continuous functions of bounded variation on [0,1], and let V(f) denote the total variation of $f \in BV$. Let σ be a bounded sigmoidal function. Show that if $f \in BV$, then

$$E_{n,\sigma}(f) \le \frac{\|\sigma\|}{n+1} V(f)$$

where $\|\sigma\| = \sup_{x \in \mathbb{R}} |\sigma(x)|$