

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/11, 15/12, 15/06, 15/10

(11) International Publication Number:

WO 97/39119

A1

(43) International Publication Date:

23 October 1997 (23.10.97)

(21) International Application Number:

PCT/US97/06067

(22) International Filing Date:

11 April 1997 (11.04.97)

(30) Priority Data:

60/015,334

15 April 1996 (15.04.96)

US

(71) Applicant (for all designated States except US): DERBILT UNIVERSITY [US/US]; 405 Kirkland Hall, Nashville, TN 37240 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RUBIN, Donald, H. [US/US]; 1937 Edenbridge Way, Nashville, TN 37215 (US). ORGAN, Edward, L. [US/US]; 2505 Essex Place, Nashville, TN 37202 (US). DUBOIS, Raymond, N. [US/US]; 281 St. Andrew Drive, Franklin, TN 37064 (US).

(74) Agents: NEEDLE, William, H. et al.; Needle & Rosenberg, P.C., Suite 1200, 127 Peachtree Street N.E., Atlanta, GA 30309 (US).

(81) Designated States: AT, AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of

(54) Title: MAMMALIAN GENES INVOLVED IN VIRAL INFECTION AND TUMOR SUPPRESSION

(57) Abstract

The present invention provides methods of identifying cellular genes necessary for viral growth and cellular genes that function as tumor suppressors. Thus, the present invention provides nucleic acids related to and methods of reducing or preventing viral infection or cancer. The invention also provides methods of producing substantially virus-free cell cultures and methods for screening for additional such genes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AL		FI	Finland	LT	Lithuania	SK	Slovakia
AM	Armenia	FR	France	LU	Luxembourg	SN	Senegal
AT	Austria	GA	Gabon	LV	Latvia	SZ	Swaziland
AU	Australia	GB	United Kingdom	MC	Monaco	TD	Chad
AZ	Azerbaijan	GE	-	MD	Republic of Moldova	TG	Togo
BA	Bosnia and Herzegovina		Georgia Ghana	MG	Madagascar	TJ	Tajikistan
BB	Barbados	GH		MK	The former Yugoslav	TM	Turkmenistan
BE	Belgium	GN	Guinea	174.00	Republic of Macedonia	TR	Turkey
BF	Burkina Faso	GR	Greece	ML.	Mali	TT	Trinidad and Tobago
BG	Bulgaria	HU	Hungary	MN	Mongolia	UA	Ukraine
BJ	Benin	IB	Ireland	MR	Manritania	UG	Uganda
BR	Brazil	IL	Israel	MW	Malawi	US	United States of Americ
BY	Belarus	IS	keland		Mexico	UZ	Uzbekistan
CA	Canada	IT	Italy	MX	****	VN	Viet Nam
CF	Central African Republic	JP	Japan	NE	Niger	YU	Yugoslavia
CG	Congo	KE	Kenya	NL	Netherlands'	zw	Zimbabwe
CH	Switzerland	KG	Kyrgyzstán	NO	Norway	244	ZIIIIOEOWC
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
re	Estonia	LR	Liberia	SG	Singapore		

MAMMALIAN GENES INVOLVED IN VIRAL INFECTION AND TUMOR SUPPRESSION

BACKGROUND

5 Field of the Invention

The present invention provides methods of identifying cellular genes used for viral growth or for tumor progression. Thus, the present invention relates to nucleic acids related to and methods of reducing or preventing viral infection and for suppressing tumor progression. The invention also relates to methods for screening for additional such genes.

Background art

10

15

20

25

30

Various projects have been directed toward isolating and sequencing the genome of various animals, notably the human. However, most methodologies provide nucleotide sequences for which no function is linked or even suggested, thus limiting the immediate usefulness of such data.

The present invention, in contrast, provides methods of screening only for nucleic acids that are involved in a specific process, *i.e.*, viral infection or tumor progression, and further, for nucleic acids useful in treatments for these processes because by this method only nucleic acids which are also nonessential to the cell are isolated. Such methods are highly useful, since they ascribe a function to each isolated gene, and thus the isolated nucleic acids can immediately be utilized in various specific methods and procedures.

For, example, the present invention provides methods of isolating nucleic acids encoding gene products used for viral infection, but nonessential to the cell. Viral infections of the intestine and liver are significant causes of human morbidity and mortality. Understanding the molecular mechanisms of such infections will lead to new approaches in their treatment and control.

Viruses can establish a variety of types of infection. These infections can be generally classified as lytic or persistent, though some lytic infections are considered persistent. Generally, persistent infections fall into two categories: (1) chronic (productive) infection, *i.e.*, infection wherein infectious virus is present and can be

10

15

20

25

30

recovered by traditional biological methods and (2) latent infection, i.e., infection wherein viral genome is present in the cell but infectious virus is generally not produced except during intermittent episodes of reactivation. Persistence generally involves stages of both productive and latent infection.

Lytic infections can also persist under conditions where only a small fraction of the total cells are infected (smoldering (cycling) infection). The few infected cells release virus and are killed, but the progeny virus again only infect a small number of the total cells. Examples of such smoldering infections include the persistence of lactic dehydrogenase virus in mice (Mahy, B.W.J., *Br. Med. Bull.* 41: 50-55 (1985)) and adenovirus infection in humans (Porter, D.D. pp. 784-790 in Baron, S., ed. *Medical Microbiology* 2d ed. (Addison-Wesley, Menlo Park, CA 1985)).

Furthermore, a virus may be lytic for some cell types but not for others. For example, evidence suggests that human immunodeficiency virus (HIV) is more lytic for T cells than for monocytes/macrophages, and therefore can result in a productive infection of T cells that can result in cell death, whereas HIV-infected mononuclear phagocytes may produce virus for considerable periods of time without cell lysis. (Klatzmann, et al. Science 225:59-62 (1984); Koyanagi, et al. Science 241:1673-1675 (1988); Sattentau, et al. Cell 52:631-633 (1988)).

Traditional treatments for viral infection include pharmaceuticals aimed at specific virus derived proteins, such as HIV protease or reverse transcriptase, or recombinant (cloned) immune modulators (host derived), such as the interferons. However, the current methods have several limitations and drawbacks which include high rates of viral mutations which render anti-viral pharmaceuticals ineffective. For immune modulators, limited effectiveness, limiting side effects, a lack of specificity all limit the general applicability of these agents. Also the rate of success with current antivirals and immune-modulators has been disappointing.

The current invention focuses on isolating genes that are not essential for cellular survival when disrupted in one or both alleles, but which are required for virus replication. This may occur with a dose effect, in which one allele knock-out may confer the phenotype of virus resistance for the cell. As targets for therapeutic intervention, inhibition of these cellular gene products, including: proteins, parts of

WO 97/39119 PCT/US97/06067

3

proteins (modification enzymes that include, but are not restricted to glycosylation, lipid modifiers [myriolate, etc.]), lipids, transcription elements and RNA regulatory molecules, may be less likely to have profound toxic side effects and virus mutation is less likely to overcome the 'block' to replicate successfully.

The present invention provides a significant improvement over previous methods 5 of attempted therapeutic intervention against viral infection by addressing the cellular genes required by the virus for growth. Therefore, the present invention also provides an innovative therapeutic approach to intervention in viral infection by providing methods to treat viruses by inhibiting the cellular genes necessary for viral infection. Because these genes, by virtue of the means by which they are originally detected, are 10 nonessential to the cell's survival, these treatment methods can be used in a subject without serious detrimental effects to the subject, as has been found with previous methods. The present invention also provides the surprising discovery that virally infected cells are dependent upon a factor in serum to survive. Therefore, the present invention also provides a method for treating viral infection by inhibiting this serum survival factor. Finally, these discoveries also provide a novel method for removing virally infected cells from a cell culture by removing, inhibiting or disrupting this serum survival factor in the culture so that non-infected cells selectively survive.

The selection of tumor suppressor gene(s) has become an important area in the discovery of new target for therapeutic intervention of cancer. Since the discovery that cells are restricted from promiscuous entry into the cell cycle by specific genes that are capable of suppressing a 'transformed' phenotype, considerable time has been invested in the discovery of such genes. Some of these genes include the gene associated by rhabdomyosarcoma (Rb) and the p53 (apoptosis related) encoding gene. The present invention provides a method, using gene-trapping, to select cell lines that have transformed phenotype from cells that are not transformed and to isolate from these cells a gene that can suppress a malignant phenotype. Thus, by the nature of the isolation process, a function is associated with the isolated genes. The capacity to select quickly tumor suppressor genes can provide unique targets in the process of treating or preventing, and even for diagnostic testing of, cancer.

15

20

25

10

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

The present invention utilizes a "gene trap" method along with a selection process to identify and isolate nucleic acids from genes associated with a particular function. Specifically, it provides a means of isolating cellular genes necessary for viral infection but not essential for the cell's survival, and it provides a means of isolating cellular genes that suppress tumor progression.

The present invention also provides a core discovery that virally infected cells become dependent upon at least one factor present in serum for survival, whereas non-infected cells do not exhibit this dependence. This core discovery has been utilized in the present invention in several ways. First, inhibition of the "serum survival factor" can be utilized to eradicate persistently virally infected cells from populations of non-infected cells. Inhibition of this factor can also be used to treat virus infection in a subject, as further described herein. Additionally, inhibition of or withdrawal of the serum survival factor in tissue culture allows for the detection of cellular genes required for viral replication yet nonessential for an uninfected cell to survive. The present invention further provides several such cellular genes, as well as methods of treating viral infections by inhibiting the functioning of such genes.

Furthermore, the present invention provides a method for isolation of cellular genes utilized in tumor progression.

The present method provides several cellular genes that are necessary for viral growth in the cell but are not essential for the cell to survive. These genes are important for lytic and persistent infection by viruses. These genes were isolated by generating gene trap libraries by infecting cells with a retrovirus gene trap vector, selecting for cells in which a gene trap event occurred (i.e., in which the vector had inserted such that the promoterless marker gene was inserted such that a cellular promoter promotes transcription of the marker gene, i.e., inserted into a functioning gene), starving the cells of serum, infecting the selected cells with the virus of choice while continuing serum starvation, and adding back serum to allow visible colonies to develop, which colonies were cloned by limiting dilution. Genes into which the retrovirus gene trap vector inserted were then isolated from the colonies using probes specific for the retrovirus

gene trap vector. Thus nucleic acids isolated by this method are isolated portions of genes.

Thus the present invention provides a method of identifying a cellular gene necessary for viral growth in a cell and nonessential for cellular survival, comprising (a) transferring into a cell culture growing in serum-containing medium a vector encoding a selective marker gene lacking a functional promoter, (b) selecting cells expressing the marker gene, (c) removing serum from the culture medium, (d) infecting the cell culture with the virus, and (e) isolating from the surviving cells a cellular gene within which the marker gene is inserted, thereby identifying a gene necessary for viral growth in a cell and nonessential for cellular survival. The present invention also provides a method of identifying a cellular gene used for viral growth in a cell and nonessential for cellular survival, comprising (a) transferring into a cell culture growing in serumcontaining medium a vector encoding a selective marker gene lacking a functional promoter, (b) selecting cells expressing the marker gene, (c) removing serum from the culture medium, (d) infecting the cell culture with the virus, and (e) isolating from the surviving cells a cellular gene within which the marker gene is inserted, thereby identifying a gene necessary for viral growth in a cell and nonessential for cellular survival. In any selected cell type, such as Chinese hamster ovary cells, one can readily determine if serum starvation is required for selection. If it is not, serum starvation may be eliminated from the steps.

Alternatively, instead of removing serum from the culture medium, a serum factor required by the virus for growth can be inhibited, such as by the administration of an antibody that specifically binds that factor. Furthermore, if it is believed that there are no persistently infected cells in the culture, the serum starvation step can be eliminated and the cells grown in usual medium for the cell type. If serum starvation is used, it can be continued for a time after the culture is infected with the virus. Serum can then be added back to the culture. If some other method is used to inactivate the factor, it can be discontinued, inactivated or removed (such as removing the anti-factor antibody, e.g., with a bound antibody directed against that antibody) prior to adding fresh serum back to the culture. Cells that survive are mutants having an inactivating insertion in a gene necessary for growth of the virus. The genes having the insertions

10

15

20

25

10

15

20

25

30

can then be isolated by isolating sequences having the marker gene sequences. This mutational process disturbs a wild type function. A mutant gene may produce at a lower level a normal product, it may produce a normal product not normally found in these cells, it may cause the overproduction of a normal product, it may produce an altered product that has some functions but not others, or it may completely disrupt a gene function. Additionally, the mutation may disrupt an RNA that has a function but is never translated into a protein. For example, the alpha-tropomyosin gene has a 3' RNA that is very important in cell regulation but never is translated into protein. (Cell 75 pg 1107-1117, 12/17/93).

As used herein, a cellular gene "nonessential for cellular survival" means a gene for which disruption of one or both alleles results in a cell viable for at least a period of time which allows viral replication to be inhibited for preventative or therapeutic uses or use in research. A gene "necessary for viral growth" means the gene product, either protein or RNA, secreted or not, is necessary, either directly or indirectly in some way for the virus to grow, and therefore, in the absence of that gene product (*i.e.*, a functionally available gene product), at least some of the cells containing the virus die. For example, such genes can encode cell cycle regulatory proteins, proteins affecting the vacuolar hydrogen pump, or proteins involved in protein folding and protein modification, including but not limited to: phosphorylation, methylation, glycosylation, myrislation or other lipid moiety, or protein processing via enzymatic processing. Some examples of such genes are exemplified herein, wherein some of the isolated nucleic acids correspond to genes such as vacuolar H+ATPase, alpha tropomyosin, gas5 gene, ras complex, N-acetyl-glucosaminyltransferase I mRNA, and calcyclin.

Any virus capable of infecting the cell can be used for this method. Virus can be selected based upon the particular infection desired to study. However, it is contemplated by the present invention that many viruses will be dependent upon the same cellular genes for survival; thus a cellular gene isolated using one virus can be used as a target for therapy for other viruses as well. Any cellular gene can be tested for relevancy to any desired virus using the methods set forth herein, *i.e.*, in general, by inhibiting the gene or its gene product in a cell and determining if the desired virus can grow in that cell. Some examples of viruses include HIV (including HIV-1 and HIV-2);

ů

parvovirus; papillomaviruses; hantaviruses; influenza viruses (e.g., influenza A, B and C viruses); hepatitis viruses A to G; caliciviruses; astroviruses; rotaviruses; coronaviruses, such as human respiratory coronavirus; picornaviruses, such as human rhinovirus and enterovirus; ebola virus; human herpesvirus (e.g., HSV-1-9); human cytomegalovirus; human adenovirus; Epstein-Barr virus; hantaviruses; for animal, the animal counterpart to any above listed human virus, animal retroviruses, such as simian immunodeficiency virus, avian immunodeficiency virus, bovine immunodeficiency virus, feline immunodeficiency virus, equine infectious anemia virus, caprine arthritis encephalitis virus or visna virus.

The nucleic acids comprising cellular genes of this invention were isolated by the 10 above method and as set forth in the examples. The invention includes a nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID 15 NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEO ID 20 NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52. SEO ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEO ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID 25 NO:72, SEQ ID NO:73, SEQ ID NO:74 or SEQ ID NO:75 (this list is sometimes referred to herein as "SEQ ID NO:5 through SEQ ID NO:75" for brevity). Thus these nucleic acids can contain, in addition to the nucleotides set forth in each SEQ ID NO in the sequence listing, additional nucleotides at either end of the molecule. Such additional nucleotides can be added by any standard method, as known in the art, such 30 as recombinant methods and synthesis methods. Examples of such nucleic acids

comprising the nucleotide sequence set forth in any entry of the sequence listing contemplated by this invention include, but are not limited to, for example, the nucleic acid placed into a vector; a nucleic acid having one or more regulatory region (e.g., promoter, enhancer, polyadenylation site) linked to it, particularly in functional manner, i.e. such that an mRNA or a protein can be produced; a nucleic acid including additional nucleic acids of the gene, such as a larger or even full length genomic fragment of the gene, a partial or full length cDNA, a partial or full length RNA. Making and/or isolating such larger nucleic acids is further described below and is well known and standard in the art.

The invention also provides a nucleic acid encoding the protein encoded by the 10 gene comprising the nucleotide sequence set forth in SEQ ID NO:5, SEQ ID NO:6, SEO ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEO ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEO ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, 15 SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEO ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, 20 SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEO ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74 or SEQ ID NO:75, as well as allelic 25 variants and homologs of each such gene. The gene is readily obtained using standard methods, as described below and as is known and standard in the art. The present invention also contemplates any unique fragment of these genes or of the nucleic acids set forth in any of SEQ ID NO:5 through SEQ ID NO:75. Examples of inventive fragments of the inventive genes are the nucleic acids whose sequence is set forth in any 30 of SEQ ID NO:5 through SEQ ID NO:75. To be unique, the fragment must be of

sufficient size to distinguish it from other known sequences, most readily determined by comparing any nucleic acid fragment to the nucleotide sequences of nucleic acids in computer databases, such as GenBank. Such comparative searches are standard in the art. Typically, a unique fragment useful as a primer or probe will be at least about 20 to about 25 nucleotides in length, depending upon the specific nucleotide content of the sequence. Additionally, fragments can be, for example, at least about 30, 40, 50, 75, 100, 200 or 500 nucleotides in length. The nucleic acids can be single or double stranded, depending upon the purpose for which it is intended.

The present invention further provides a nucleic acid comprising the regulatory region of a gene comprising the nucleotide sequences set forth in SEQ ID NO:5, SEQ 10 ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16. SEQ ID NO:17. SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26. SEO ID NO:27. SEO ID NO:28. SEO ID NO:29. SEO ID NO:30. SEO ID 15 NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36. SEO ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41. SEO ID NO:42, SEO ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID 20 NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEO ID NO:67, SEO ID NO:68, SEO ID NO:69, SEO ID NO:70, SEO ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75. Additionally provided is a construct comprising such a regulatory region functionally 25 linked to a reporter gene. Such reporter gene constructs can be used to screen for

The nucleic acids set forth in the sequence listing are gene fragments; the entire coding sequence and the entire gene that comprises each fragment are both contemplated herein and are readily obtained by standard methods, given the nucleotide

compounds and compositions that affect expression of the gene comprising the nucleic

acids whose sequence is set forth in any of SEQ ID NO: 5 through SEQ ID NO: 75.

10

15

20

25

30

sequences presented in the sequence listing (see. e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989; DNA cloning: A Practical Approach, Volumes I and II, Glover, D.M. ed., IRL Press Limited, Oxford, 1985). To obtain the entire genomic gene, briefly, a nucleic acid whose sequence is set forth in any of SEQ ID NO:1 through SEQ ID NO:83, or preferably in any of SEQ ID NO:5 through SEQ ID NO:83, or a smaller fragment thereof, is utilized as a probe to screen a genomic library under high stringency conditions, and isolated clones are sequenced. Once the sequence of the new clone is determined, a probe can be devised from a portion of the new clone not present in the previous fragment and hybridized to the library to isolate more clones containing fragments of the gene. In this manner, by repeating this process in organized fashion, one can "walk" along the chromosome and eventually obtain nucleotide sequence for the entire gene. Similarly, one can use portions of the present fragments, or additional fragments obtained from the genomic library, that contain open reading frames to screen a cDNA library to obtain a cDNA having the entire coding sequence of the gene. Repeated screens can be utilized as described above to obtain the complete sequence from several clones if necessary. The isolates can then be sequenced to determine the nucleotide sequence by standard means such as dideoxynucleotide sequencing methods (see, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989).

The present genes were isolated from rat; however, homologs in any desired species, preferably mammalian, such as human, can readily be obtained by screening a human library, genomic or cDNA, with a probe comprising sequences of the nucleic acids set forth in the sequence listing herein, or fragments thereof, and isolating genes specifically hybridizing with the probe under preferably relatively high stringency hybridization conditions. For example, high salt conditions (e.g., in 6X SSC or 6X SSPE) and/or high temperatures of hybridization can be used. For example, the stringency of hybridization is typically about 5°C to 20°C below the T_m (the melting temperature at which half of the molecules dissociate from its partner) for the given chain length. As is known in the art, the nucleotide composition of the hybridizing region factors in determining the melting temperature of the hybrid. For 20mer probes,

WO 97/39119 PCT/US97/06067

11

for example, the recommended hybridization temperature is typically about 55-58°C. Additionally, the rat sequence can be utilized to devise a probe for a homolog in any specific animal by determining the amino acid sequence for a portion of the rat protein, and selecting a probe with optimized codon usage to encode the amino acid sequence of the homolog in that particular animal. Any isolated gene can be confirmed as the targeted gene by sequencing the gene to determine it contains the nucleotide sequence listed herein as comprising the gene. Any homolog can be confirmed as a homolog by its functionality.

Additionally contemplated by the present invention are nucleic acids, from any desired species, preferably mammalian and more preferably human, having 98%, 95%, 90%, 85%, 80%, 70%, 60%, or 50% homology, or greater, in the region of homology, to a region in an exon of a nucleic acid encoding the protein encoded by the gene comprising the nucleotide sequence set forth in any of SEQ ID NO:5 through SEQ ID NO:75 of the sequence listing or to homologs thereof. Also contemplated by the present invention are nucleic acids, from any desired species, preferably mammalian and more preferably human, having 98%, 95%, 90%, 85%, 80%, 70%, 60%, or 50% homology, or greater, in the region of homology, to a region in an exon of a nucleic acid comprising the nucleotide sequence set forth in any of SEQ ID NO:5 through SEQ ID NO 75 of the sequence listing or to homologs thereof. These genes can be synthesized or obtained by the same methods used to isolate homologs, with stringency of hybridization and washing, if desired, reduced accordingly as homology desired is decreased, and further, depending upon the G-C or A-T richness of any area wherein variability is searched for. Allelic variants of any of the present genes or of their homologs can readily be isolated and sequenced by screening additional libraries following the protocol above. Methods of making synthetic genes are described in U.S. Patent No. 5,503,995 and the references cited therein.

The nucleic acid encoding any selected protein of the present invention can be any nucleic acid that functionally encodes that protein. For example, to functionally encode, *i.e.*, allow the nucleic acid to be expressed, the nucleic acid can include, for example, exogenous or endogenous expression control sequences, such as an origin of replication, a promoter, an enhancer, and necessary information processing sites, such as

5

10

15

20

25

ribosome binding sites, RNA splice sites, polyadenylation sites, and transcriptional terminator sequences. Preferred expression control sequences can be promoters derived from metallothionine genes, actin genes, immunoglobulin genes, CMV, SV40, adenovirus, bovine papilloma virus, etc. Expression control sequences can be selected for functionality in the cells in which the nucleic acid will be placed. A nucleic acid encoding a selected protein can readily be determined based upon the amino acid sequence of the selected protein, and, clearly, many nucleic acids will encode any selected protein.

The present invention additionally provides a nucleic acid that selectively hybridizes under stringent conditions with a nucleic acid encoding the protein encoded 10 by the gene comprising the nucleotide sequence set forth in any sequence listed herein (i.e., any of SEQ ID NO:5 through SEQ ID NO:75). This hybridization can be specific. The degree of complementarity between the hybridizing nucleic acid and the sequence to which it hybridizes should be at least enough to exclude hybridization with a nucleic acid encoding an unrelated protein. Thus, a nucleic acid that selectively hybridizes with a 15 nucleic acid of the present protein coding sequence will not selectively hybridize under stringent conditions with a nucleic acid for a different, unrelated protein, and vice versa. Typically, the stringency of hybridization to achieve selective hybridization involves hybridization in high ionic strength solution (6X SSC or 6X SSPE) at a temperature that is about 12-25°C below the T_m (the melting temperature at which half of the molecules 20 dissociate from its partner) followed by washing at a combination of temperature and salt concentration chosen so that the washing temperature is about 5°C to 20°C below the T_m of the hybrid molecule. The temperature and salt conditions are readily determined empirically in preliminary experiments in which samples of reference DNA immobilized on filters are hybridized to a labeled nucleic acid of interest and then 25 washed under conditions of different stringencies. Hybridization temperatures are typically higher for DNA-RNA and RNA-RNA hybridizations. The washing temperatures can be used as described above to achieve selective stringency, as is known in the art. (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989; Kunkel et 30 al. Methods Enzymol. 1987:154:367, 1987). Nucleic acid fragments that selectively

10

15

20

hybridize to any given nucleic acid can be used, e.g., as primers and or probes for further hybridization or for amplification methods (e.g., polymerase chain reaction (PCR), ligase chain reaction (LCR)). A preferable stringent hybridization condition for a DNA:DNA hybridization can be at about 68°C (in aqueous solution) in 6X SSC or 6X SSPE followed by washing at 68°C.

The present invention additionally provides a protein encoded by a nucleic acid encoding the protein encoded by the gene comprising any of the nucleotide sequences set forth herein (i.e.., any of SEQ ID NO: 5 through SEQ ID NO:75). The protein can be readily obtained by any of several means. For example, the nucleotide sequence of coding regions of the gene can be translated and then the corresponding polypeptide can be synthesized mechanically by standard methods. Additionally, the coding regions of the genes can be expressed or synthesized, an antibody specific for the resulting polypeptide can be raised by standard methods (see, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1988), and the protein can be isolated from other cellular proteins by selective hybridization with the antibody. This protein can be purified to the extent desired by standard methods of protein purification (see, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989). The amino acid sequence of any protein, polypeptide or peptide of this invention can be deduced from the nucleic acid sequence, or it can be determined by sequencing an isolated or recombinantly produced protein.

The terms "peptide," "polypeptide"and "protein" are used interchangeably herein and refer to a polymer of amino acids and includes full-length proteins and fragments thereof. As used in the specification and in the claims, "a" can mean one or more, depending upon the context in which it is used. An amino acid residue is an amino acid formed upon chemical digestion (hydrolysis) of a polypeptide at its peptide linkages. The amino acid residues described herein are preferably in the "L" isomeric form. However, residues in the "D" isomeric form can be substituted for any L-amino acid residue, as long as the desired functional property is retained by the polypeptide.

Standard polypeptide nomenclature (described in J. Biol. Chem., 243:3552-59 (1969) and adopted at 37 CFR § 1.822(b)) is used herein.

15

20

25

30

As will be appreciated by those skilled in the art, the invention also includes those polypeptides having slight variations in amino acid sequences or other properties. Amino acid substitutions can be selected by known parameters to be neutral (see, e.g., Robinson WE Jr, and Mitchell WM., AIDS 4:S151-S162(1990)). Such variations may arise naturally as allelic variations (e.g., due to genetic polymorphism) or may be produced by human intervention (e.g., by mutagenesis of cloned DNA sequences), such as induced point, deletion, insertion and substitution mutants. Minor changes in amino acid sequence are generally preferred, such as conservative amino acid replacements, small internal deletions or insertions, and additions or deletions at the ends of the molecules. Substitutions may be designed based on, for example, the model of Dayhoff, et al. (in Atlas of Protein Sequence and Structure 1978, Nat'l Biomed. Res. Found., Washington, D.C.). These modifications can result in changes in the amino acid sequence, provide silent mutations, modify a restriction site, or provide other specific mutations. Likewise, such amino acid changes result in a different nucleic acid encoding the polypeptides and proteins. Thus, alternative nucleic acids are also contemplated by such modifications.

The present invention also provides cells containing a nucleic acid of the invention. A cell containing a nucleic acid encoding a protein typically can replicate the DNA and, further, typically can express the encoded protein. The cell can be a prokaryotic cell, particularly for the purpose of producing quantities of the nucleic acid, or a eukaryotic cell, particularly a mammalian cell. The cell is preferably a mammalian cell for the purpose of expressing the encoded protein so that the resultant produced protein has mammalian protein processing modifications.

Nucleic acids of the present invention can be delivered into cells by any selected means, in particular depending upon the purpose of the delivery of the compound and the target cells. Many delivery means are well-known in the art. For example, electroporation, calcium phosphate precipitation, microinjection, cationic or anionic liposomes, and liposomes in combination with a nuclear localization signal peptide for delivery to the nucleus can be utilized, as is known in the art.

The present invention also contemplates that the mutated cellular genes necessary for viral growth, produced by the present method, as well as cells containing

these mutants can also be useful. These mutated genes and cells containing them can be isolated and/or produced according to the methods herein described and using standard methods.

It should be recognized that the sequences set forth herein may contain minor sequencing errors. Such errors can be corrected, for example, by using the hybridization procedure described above with various probes derived from the described sequences such that the coding sequence can be reisolated and resequenced.

As described in the examples, the present invention provides the discovery of a "serum survival factor" present in serum that is necessary for the survival of persistently virally infected cells. Isolation and characterization of this factor have shown it to be a protein, to have a molecular weight of between about 50 kD and 100 kD, to resist inactivation in low pH (e.g., pH2) and chloroform extraction, to be inactivated by boiling for about 5 minutes and in low ionic strength solution (e.g., about 10 mM to about 50 mM). The present invention thus provides a purified mammalian serum protein having a molecular weight of between about 50 kD and 100 kD which resists inactivation in low pH and resists inactivation by chloroform extraction, which inactivates when boiled and inactivates in low ionic strength solution, and which when removed from a cell culture comprising cells persistently infected with reovirus selectively substantially prevents survival of cells persistently infected with reovirus. The factor, fitting the physical characteristics described above, can readily be verified by adding it to non-serum-containing medium (which previously could not support survival of persistently virally infected cells) and determining whether this medium with the added putative factor can now support persistently virally infected cells, particularly cells persistently infected with reovirus. As used herein, a "purified" protein means the protein is at least of sufficient purity such that an approximate molecular weight can be determined.

The amino acid sequence of the protein can be elucidated by standard methods. For example, an antibody to the protein can be raised and used to screen an expression library to obtain nucleic acid sequence coding the protein. This nucleic acid sequence is then simply translated into the corresponding amino acid sequence. Alternatively, a portion of the protein can be directly sequenced by standard amino acid sequencing

5

10

15

20

25

10

15

20

25

30

methods (amino-terminus sequencing). This amino acid sequence can then be used to generate an array of nucleic acid probes that encompasses all possible coding sequences for a portion of the amino acid sequence. The array of probes is used to screen a cDNA library to obtain the remainder of the coding sequence and thus ultimately the corresponding amino acid sequence.

The present invention also provides methods of detecting and isolating additional serum survival factors. For example, to determine if any known serum components are necessary for viral growth, the known components can be inhibited in, or eliminated from, the culture medium, and it can be observed whether viral growth is inhibited by determining if persistently infected cells do not survive. One can add the factor back (or remove the inhibition) and determine whether the factor allows for viral growth.

Additionally, other, unknown serum components can also be found to be essential for viral growth. Serum can be fractionated by various standard means, and fractions added to serum free medium to determine if a factor is present in a reaction that allows viral growth previously inhibited by the lack of serum. Fractions having this activity can then be further fractionated until the factor is relatively free of other components. The factor can then be characterized by standard methods, such as size fractionation, denaturation and/or inactivation by various means, etc. Preferably, once the factor has been purified to a desired level of purity, it is added to cells in serum free medium to confirm that it bestows the function of allowing virus to grow when serum-free medium alone did not. This method can be repeated to confirm the requirement for the specific factor for any desired virus, since each serum factor found to be required by any one virus can also be required by many other viruses. In general, the closer the viruses are related and the more similar the infection modes of the viruses, the more likely that a factor required by one virus will be required by the other.

The present invention also provides methods of treating virus infections utilizing applicants' discoveries. The subject of any of the herein described methods can be any animal, preferably a mammal, such as a human, a veterinary animal, such as a cat, dog, horse, pig, goat, sheep, or cow, or a laboratory animal, such as a mouse, rat, rabbit, or guinea pig, depending upon the virus.

15

20

25

30

The present invention provides a method of reducing or inhibiting, and thereby treating, a viral infection in a subject, comprising administering to the subject an inhibiting amount of a composition that inhibits functioning of the serum protein described herein, *i.e.* the serum protein having a molecular weight of between about 50 kD and 100 kD which resists inactivation in low pH and resists inactivation by chloroform extraction, which inactivates when boiled and inactivates in low ionic strength solution, and which when removed from a cell culture comprising cells persistently infected with the virus prevents survival of at least some cells persistently infected with the virus, thereby treating the viral infection. The composition can comprise, for example, an antibody that specifically binds the serum protein, or an antisense RNA that binds an RNA encoded by a gene functionally encoding the serum protein

Any virus capable of infecting the selected subject to be treated can be treated by the present method. As described above, any serum protein or survival factor found by the present methods to be necessary for growth of any one virus can be found to be necessary for growth of many other viruses. For any given virus, the serum protein or factor can be confirmed to be required for growth by the methods described herein. The cellular genes identified by the examples using reovirus, a mammalian pathogen, and a rat cell system have general applicability to other virus infections that include all of the known as well as yet to be discovered human pathogens, including, but not limited to: human immunodeficiency viruses (e.g., HIV-1, HIV-2); parvovirus; papillomaviruses; hantaviruses; influenza viruses (e.g., influenza A, B and C viruses); hepatitis viruses A to G: caliciviruses; astroviruses; rotaviruses; coronaviruses, such as human respiratory coronavirus; picornaviruses, such as human rhinovirus and enterovirus; ebola virus, human herpesvirus (e.g., HSV-1-9); human cytomegalovirus; human adenovirus; Epstein-Barr virus; hantaviruses; for animal, the animal counterpart to any above listed human virus, animal retroviruses, such as simian immunodeficiency virus, avian immunodeficiency virus, bovine immunodeficiency virus, feline immunodeficiency virus, equine infectious anemia virus, caprine arthritis encephalitis virus or visna virus.

A protein inhibiting amount of the composition can be readily determined, such as by administering varying amounts to cells or to a subject and then adjusting the

15

20

25

30

effective amount for inhibiting the protein according to the volume of blood or weight of the subject. Compositions that bind to the protein can be readily determined by running the putatively bound protein on a protein gel and observing an alteration in the protein's migration through the gel. Inhibition of the protein can be determined by any desired means such as adding the inhibitor to complete media used to maintain persistently infected cells and observing the cells' viability. The composition can comprise, for example, an antibody that specifically binds the serum protein. Specific binding by an antibody means that the antibody can be used to selectively remove the factor from serum or inhibit the factor's biological activity and can readily be determined by radio immune assay (RIA), bioassay, or enzyme-linked immunosorbant (ELISA) technology. The composition can comprise, for example, an antisense RNA that specifically binds an RNA encoded by the gene encoding the serum protein. Antisense RNAs can be synthesized and used by standard methods (e.g., Antisense RNA and DNA, D. A. Melton, Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1988)).

The present methods provide a method of screening a compound for treating a viral infection, comprising administering the compound to a cell containing a cellular gene functionally encoding a gene product necessary for reproduction of the virus in the cell but not necessary for survival of the cell and detecting level of the gene product produced, a decrease or elimination of the gene product indicating a compound for treating the viral infection. The present methods also provide a method of screening a compound for effectiveness in treating a viral infection, comprising administering the compound to a cell containing a cellular gene functionally encoding a gene product necessary for reproduction of the virus in the cell but not necessary for survival of the cell and detecting the level of the gene product produced, a decrease or elimination of the gene product indicating a compound effective for treating the viral infection. The cellular gene can be, for example, any gene provided herein, i.e., any of the genes comprising the nucleotide sequences set forth in any of SEQ ID NO:1 through SEQ ID NO:75, or any other gene obtained using the methods provided herein for obtaining such genes. Level of the gene product can be measured by any standard means, such as by detection with an antibody specific for the protein. The level of gene product can be compared to the level of the gene product in a control cell not contacted with the

compound. The level of gene product can be compared to the level of the gene product in the same cell prior to addition of the compound. Relatedly, the regulatory region of the gene can be functionally linked to a reporter gene and compounds can be screened for inhibition of the reporter gene. Such reporter constructs are described herein.

The present invention provides a method of selectively eliminating cells persistently infected with a virus from an animal cell culture capable of surviving for a first period of time in the absence of serum, comprising propagating the cell culture in the absence of serum for a second time period which a persistently infected cell cannot survive without serum, thereby selectively eliminating from the cell culture cells persistently infected with the virus. The second time period should be shorter than the first time period. Thus one can simply eliminate serum from a standard culture medium composition for a period of time (e.g. by removing serum containing medium from the culture container, rinsing the cells, and adding serum-free medium back to the container), then, after a time of serum starvation, return serum to the culture medium. Alternatively, one can inhibit a serum survival factor from the culture in place of the step of serum starvation. Furthermore, one can instead interfere with the virus-factor interaction. Such a viral elimination method can periodically be performed for cultured cells to ensure that they remain virus-free. The time period of serum removal can greatly vary, with a typical range being about 1 to about 30 days; a preferable period can be about 3 to about 10 days, and a more preferable period can be about 5 days to about 7 days. This time period can be selected based upon ability of the specific cell to survive without serum as well as the life cycle of the virus, e.g., for reovirus, which has a life cycle of about 24 hours, 3 days' starvation of cells provides dramatic results.

Furthermore, the time period can be shortened by also passaging the cells during the starvation; in general, increasing the number of passages can decrease the time of serum starvation (or serum factor inhibition) needed to get full clearance of the virus from the culture. While passaging, the cells typically are exposed briefly to serum (typically for about 3 to about 24 hours). This exposure both stops the action of the trypsin used to dislodge the cells and stimulates the cells into another cycle of growth, thus aiding in this selection process. Thus a starvation/serum cycle can be repeated to optimize the selective effect. Other standard culture parameters, such as confluency of

5

10

15

20

25

10

15

20

25

30

the cultures, pH, temperature, etc. can be varied to alter the needed time period of serum starvation (or serum survival factor inhibition). This time period can readily be determined for any given viral infection by simply removing the serum for various periods of time, then testing the cultures for the presence of the infected cells (e.g., by ability to survive in the absence of serum and confirmed by quantitating virus in cells by standard virus titration and immunohistochemical techniques) at each tested time period, and then detecting at which time periods of serum deprivation the virally infected cells were eliminated. It is preferable that shorter time periods of serum deprivation that still provide elimination of the persistently infected cells be used. Furthermore, the cycle of starvation, then adding back serum and determining amount of virus remaining in the culture can be repeated until no virtually infected cells remain in the culture.

Thus, the present method can further comprise passaging the cells, i.e., transferring the cell culture from a first container to a second container. Such transfer can facilitate the selective lack of survival of virally infected cells. Transfer can be repeated several times. Transfer is achieved by standard methods of tissue culture (see, e.g., Freshney, Culture of Animal Cells, A Manual of Basic Technique, 2nd Ed. Alan R. Liss, Inc., New York, 1987).

The present method further provides a method of selectively eliminating from a cell culture cells persistently infected with a virus, comprising propagating the cell culture in the absence of a functional form of the serum protein having a molecular weight of between about 50 kD and 100 kD which resists inactivation in low pH and resists inactivation by chloroform extraction, which inactivates when boiled and inactivates in low ionic strength solution, and which when removed from a cell culture comprising cells persistently infected with reovirus substantially prevents survival of cells persistently infected with reovirus. The absence of the functional form can be achieved by any of several standard means, such as by binding the protein to an antibody selective for it (binding the antibody in serum either before or after the serum is added to the cells; if before, the serum protein can be removed from the serum by, e.g., binding the antibody to a column and passing the serum over the column and then administering the survival protein-free serum to the cells), by administering a compound that

WO 97/39119 PCT/US97/06067

21

inactivates the protein, or by administering a compound that interferes with the interaction between the virus and the protein.

Thus, the present invention provides a method of selectively eliminating from a cell culture propagated in serum-containing medium cells persistently infected with a virus, comprising inhibiting in the serum the protein having a molecular weight of between about 50 kD and 100 kD which resists inactivation in low pH and resists inactivation by chloroform extraction, which inactivates when boiled and inactivates in low ionic strength solution, and which when removed from a cell culture comprising cells persistently infected with reovirus substantially prevents survival of cells persistently infected with reovirus. Alternatively, the interaction between the virus and the serum protein can be disrupted to selectively eliminate cells persistently infected with the virus.

Any virus capable of some form of persistent infection may be eliminated from a cell culture utilizing the present elimination methods, including removing, inhibiting or otherwise interfering with a serum protein, such as the one exemplified herein, and also including removing, inhibiting or otherwise interfering with a gene product from any cellular gene found by the present method to be necessary for viral growth yet nonessential to the cell. For example, DNA viruses or RNA viruses can be targeted. One can readily determine whether cells infected with a selected virus can be selectively removed from a culture through removal of serum by starving cells permissive to the virus of serum (or inhibiting the serum survival factor), adding the selected virus to the cells, adding serum to the culture, and observing whether infected cells die (i.e., by titering levels of virus in the surviving cells with an antibody specific for the virus).

A culture of any animal cell (i.e., any cell that is typically grown and maintained in culture in serum) that can be maintained for a period of time in the absence of serum, can be purified from viral infection utilizing the present method. For example, primary cultures as well as established cultures and cell lines can be used. Furthermore, cultures of cells from any animal and any tissue or cell type within that animal that can be cultured and that can be maintained for a period of time in the absence of serum can be used. For example, cultures of cells from tissues typically infected, and particularly persistently infected, by an infectious virus could be used.

5

10

15

20

25

10

15

20

25

30

As used in the claims "in the absence of serum" means at a level at which persistently virally infected cells do not survive. Typically, the threshold level is about 1% serum in the media. Therefore, about 1% serum or less can be used, such as about 1%, 0.75%, 0.50%. 0.25% 0.1% or no serum can be used.

As used herein, "selectively eliminating" cells persistently infected with a virus means that substantially all of the cells persistently infected with the virus are killed such that the presence of virally infected cells cannot be detected in the culture immediately after the elimination procedure has been performed. Furthermore, "selectively eliminating" includes that cells not infected with the virus are generally not killed by the method. Some surviving cells may still produce virus but at a lower level, and some may be defective in pathways that lead to death by the virus. Typically, for cells persistently infected with virus to be substantially all killed, more than about 90% of the cells, and more preferably less than about 95%, 98%, 99%, or 99.99% of virus-containing cells in the culture are killed.

The present method also provides a nucleic acid comprising the regulatory region of any of the genes. Such regulatory regions can be isolated from the genomic sequences isolated and sequenced as described above and identified by any characteristics observed that are characteristic for regulatory regions of the species and by their relation to the start codon for the coding region of the gene. The present invention also provides a construct comprising the regulatory region functionally linked to a reporter gene. Such constructs are made by routine subcloning methods, and many vectors are available into which regulatory regions can be subcloned upstream of a marker gene. Marker genes can be chosen for ease of detection of marker gene product.

The present method therefore also provides a method of screening a compound for treating a viral infection, comprising administering the compound to a cell containing any of the above-described constructs, comprising a regulatory region of one of the genes comprising the nucleotide sequence set forth in any of SEQ ID NO:1 through SEQ ID NO:75 functionally linked to a reporter gene, and detecting the level of the reporter gene product produced, a decrease or elimination of the reporter gene product indicating a compound for treating the viral infection. Compounds detected by this method would inhibit transcription of the gene from which the regulatory region was

WO 97/39119

10

15

20

25

isolated, and thus, in treating a subject, would inhibit the production of the gene product produced by the gene, and thus treat the viral infection.

The present invention additionally provides a method of reducing or inhibiting a viral infection in a subject, comprising administering to the subject an amount of a composition that inhibits expression or functioning of a gene product encoded by a gene comprising the nucleic acid set forth in any of SEQ ID NO:1 through SEQ ID NO:75, or a homolog thereof, thereby treating the viral infection, the composition can comprise, for example, an antibody that binds a protein encoded by the gene. The composition can also comprise an antibody that binds a receptor for a protein encoded by the gene. Such an antibody can be raised against the selected protein by standard methods, and can be either polyclonal or monoclonal, though monoclonal is preferred. Alternatively, the composition can comprise an antisense RNA that binds an RNA encoded by the gene. Furthermore, the composition can comprise a nucleic acid functionally encoding an antisense RNA that binds an RNA encoded by the gene. Other useful compositions will be readily apparent to the skilled artisan.

The present invention further provides a method of reducing or inhibiting a viral infection in a subject comprising mutating ex vivo in a selected cell from the subject an endogenous gene comprising the nucleic acid set forth in any of SEQ ID NO:1 through SEQ ID NO:75, or a homolog thereof, to a gene form incapable of producing a functional gene product of the gene or a gene form producing a reduced amount of a functional gene product of the gene, and replacing the cell in the subject, thereby reducing viral infection of cells in the subject. The cell can be selected according to the typical target cell of the specific virus whose infection is to be reduced, prevented or inhibited. A preferred cell for several viruses is a hematopoietic cell. When the selected cell is a hematopoietic cell, viruses which can be reduced or inhibited from infection can include, for example, HIV, including HIV-1 and HIV-2.

The present invention also provides a method of reducing or inhibiting a viral infection in a subject comprising mutating ex vivo in a selected cell from the subject an endogenous gene comprising a nucleic acid isolated by a method comprising

30 (a) transferring into a cell culture growing in serum-containing medium a vector encoding a selective marker gene lacking a functional promoter, (b) selecting cells

10

15

20

25

30

expressing the marker gene, (c) removing serum from the culture medium, (d) infecting the cell culture with the virus, and (e) isolating from the surviving cells a cellular gene within which the marker gene is inserted,

to a mutated gene form incapable of producing a functional gene product of the gene or to a mutated gene form producing a reduced amount of a functional gene product of the gene, and replacing the cell in the subject, thereby reducing viral infection of cells in the subject. Thus the mutated gene form can be one incapable of producing an effective amount of a functional protein or mRNA, or one incapable of producing a functional protein or mRNA, for example. The method can be performed wherein the virus is HIV. The method can be performed in any selected cell in which the virus may infect with deleterious results. For example, the cell can be a hematopoietic cell. However, many other virus-cell combinations will be apparent to the skilled artisan. [Dr. Rubin: any other virus-cell relationships particularly good targets for this method?]

The present invention additionally provides a method of increasing viral infection resistance in a subject comprising mutating ex vivo in a selected cell from the subject an endogenous gene comprising a nucleic acid isolated by a method comprising

(a) transferring into a cell culture growing in serum-containing medium a vector encoding a selective marker gene lacking a functional promoter, (b) selecting cells expressing the marker gene, (c) removing serum from the culture medium, (d) infecting the cell culture with the virus, and (e) isolating from the surviving cells a cellular gene within which the marker gene is inserted, to a mutated gene form incapable of producing a functional gene product of the gene or

a gene form producing a reduced amount of a functional gene product of the gene, and replacing the cell in the subject, thereby reducing viral infection of cells in the subject.

The virus can be HIV, particularly when the cell is a hematopoietic cell. However, many

The virus can be HIV, particularly when the cell is a hematopoietic cell. However, many other virus-cell combinations will be apparent to the skilled artisan.

The present invention provides a method of identifying a cellular gene that can suppress a malignant phenotype in a cell, comprising (a) transferring into a cell culture incapable of growing well in soft agar or Matrigel a vector encoding a selective marker gene lacking a functional promoter, (b) selecting cells expressing the marker gene, and (c) isolating from selected cells which are capable of growing in soft agar or Matrigel a

cellular gene within which the marker gene is inserted, thereby identifying a gene that can suppress a malignant phenotype in a cell. This method can be performed using any selected non-transformed cell line, of which many are known in the art.

The present invention additionally provides a method of identifying a cellular gene that can suppress a malignant phenotype in a cell, comprising (a) transferring into a cell culture of non-transformed cells a vector encoding a selective marker gene lacking a functional promoter, (b) selecting cells expressing the marker gene, and (c) isolating from selected and transformed cells a cellular gene within which the marker gene is inserted, thereby identifying a gene that can suppress a malignant phenotype in a cell. A non-transformed phenotype can be determined by any of several standard methods in the art, such as the exemplified inability to grow in soft agar, or inability to grow in Matrigel.

The present invention further provides a method of screening for a compound for suppressing a malignant phenotype in a cell comprising administering the compound to a cell containing a cellular gene functionally encoding a gene product involved in establishment of a malignant phenotype in the cell and detecting the level of the gene product produced, a decrease or elimination of the gene product indicating a compound effective for suppressing the malignant phenotype. Detection of the level, or amount, of gene product produced can be measured, directly or indirectly, by any of several methods standard in the art (e.g., protein gel, antibody-based assay, detecting labeled RNA) for assaying protein levels or amounts, and selected based upon the specific gene product.

The present invention further provides a method of suppressing a malignant phenotype in a cell in a subject, comprising administering to the subject an amount of a composition that inhibits expression or functioning of a gene product encoded by a gene comprising the nucleic acid set forth in SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82 or SEQ ID NO:83, or a homolog thereof, thereby suppressing a malignant phenotype. The composition can, for example, comprise an antibody that binds a protein encoded by the gene. The composition can, as another example, comprise an antibody that binds a receptor for a protein encoded by the gene. The composition can comprise an antisense

10

15

20

25

10

15

20

25

30

RNA that binds an RNA encoded by the gene. Further, the composition can comprise a nucleic acid functionally encoding an antisense RNA that binds an RNA encoded by the gene.

Diagnostic or therapeutic agents of the present invention can be administered to a subject or an animal model by any of many standard means for administering therapeutics or diagnostics to that selected site or standard for administering that type of functional entity. For example, an agent can be administered orally, parenterally (e.g., intravenously), by intramuscular injection, by intraperitoneal injection, topically, transdermally, or the like. Agents can be administered, e.g., as a complex with cationic liposomes, or encapsulated in anionic liposomes. Compositions can include various amounts of the selected agent in combination with a pharmaceutically acceptable carrier and, in addition, if desired, may include other medicinal agents, pharmaceutical agents, carriers, adjuvants, diluents, etc. Parental administration, if used, is generally characterized by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions. Depending upon the mode of administration, the agent can be optimized to avoid degradation in the subject, such as by encapsulation, etc.

Dosages will depend upon the mode of administration, the disease or condition to be treated, and the individual subject's condition, but will be that dosage typical for and used in administration of antiviral or anticancer agents. Dosages will also depend upon the composition being administered, e.g., a protein or a nucleic acid. Such dosages are known in the art. Furthermore, the dosage can be adjusted according to the typical dosage for the specific disease or condition to be treated. Furthermore, viral titers in culture cells of the target cell type can be used to optimize the dosage for the target cells in vivo, and transformation from varying dosages achieved in culture cells of the same type as the target cell type can be monitored. Often a single dose can be sufficient; however, the dose can be repeated if desirable. The dosage should not be so large as to cause adverse side effects. Generally, the dosage will vary with the age, condition, sex and extent of the disease in the patient and can be determined by

one of skill in the art. The dosage can also be adjusted by the individual physician in the event of any complication.

For administration to a cell in a subject, the composition, once in the subject, will of course adjust to the subject's body temperature. For ex vivo administration, the composition can be administered by any standard methods that would maintain viability of the cells, such as by adding it to culture medium (appropriate for the target cells) and adding this medium directly to the cells. As is known in the art, any medium used in this method can be aqueous and non-toxic so as not to render the cells non-viable. In addition, it can contain standard nutrients for maintaining viability of cells, if desired. For in vivo administration, the complex can be added to, for example, a blood sample or a tissue sample from the patient, or to a pharmaceutically acceptable carrier, e.g., saline and buffered saline, and administered by any of several means known in the art. Examples of administration include parenteral administration, e.g., by intravenous injection including regional perfusion through a blood vessel supplying the tissues(s) or organ(s) having the target cell(s), or by inhalation of an aerosol, subcutaneous or 15 intramuscular injection, topical administration such as to skin wounds and lesions, direct transfection into, e.g., bone marrow cells prepared for transplantation and subsequent transplantation into the subject, and direct transfection into an organ that is subsequently transplanted into the subject. Further administration methods include oral administration, particularly when the composition is encapsulated, or rectal 20 administration, particularly when the composition is in suppository form. A pharmaceutically acceptable carrier includes any material that is not biologically or otherwise undesirable, i.e., the material may be administered to an individual along with the selected complex without causing any undesirable biological effects or interacting in a deleterious manner with any of the other components of the pharmaceutical 25 composition in which it is contained.

Specifically, if a particular cell type *in vivo* is to be targeted, for example, by regional perfusion of an organ or tumor, cells from the target tissue can be biopsied and optimal dosages for import of the complex into that tissue can be determined *in vitro*, as described herein and as known in the art, to optimize the *in vivo* dosage, including

10

15

30

concentration and time length. Alternatively, culture cells of the same cell type can also be used to optimize the dosage for the target cells in vivo.

For either ex vivo or in vivo use, the complex can be administered at any effective concentration. An effective concentration is that amount that results in reduction, inhibition or prevention of the viral infection or in reduction or inhibition of transformed phenotype of the cells

A nucleic acid can be administered in any of several means, which can be selected according to the vector utilized, the organ or tissue, if any, to be targeted, and the characteristics of the subject. The nucleic acids, if desired in a pharmaceutically acceptable carrier such as physiological saline, can be administered systemically, such as intravenously, intraarterially, orally, parenterally, subcutaneously. The nucleic acids can also be administered by direct injection into an organ or by injection into the blood vessel supplying a target tissue. For an infection of cells of the lungs or trachea, it can be administered intratracheally. The nucleic acids can additionally be administered topically, transdermally, etc.

The nucleic acid or protein can be administered in a composition. For example, the composition can comprise other medicinal agents, pharmaceutical agents, carriers, adjuvants, diluents, etc. Furthermore, the composition can comprise, in addition to the vector, lipids such as liposomes, such as cationic liposomes (e.g., DOTMA, DOPE, DC-cholesterol) or anionic liposomes. Liposomes can further comprise proteins to facilitate targeting a particular cell, if desired. Administration of a composition comprising a vector and a cationic liposome can be administered to the blood afferent to a target organ or inhaled into the respiratory tract to target cells of the respiratory tract. Regarding liposomes, see, e.g., Brigham et al. Am. J. Resp. Cell. Mol. Biol. 1:95-100 (1989); Felgner et al. Proc. Natl. Acad. Sci USA 84:7413-7417 (1987); U.S. Pat. No.4,897,355.

For a viral vector comprising a nucleic acid, the composition can comprise a pharmaceutically acceptable carrier such as phosphate buffered saline or saline. The viral vector can be selected according to the target cell, as known in the art. For example, adenoviral vectors, in particular replication-deficient adenoviral vectors, can be

WO 97/39119 PCT/US97/06067

29

utilized to target any of a number of cells, because of its broad host range. Many other viral vectors are available, and their target cells known.

EXAMPLES

5

10

15

20

25

30

Selective elimination of virally infected cells from a cell culture

Rat intestinal cell line-1 cells (RIE-1 cells) were standardly grown in Dulbecco's modified eagle's medium, high glucose, supplemented with 10% fetal bovine serum. To begin the experiment, cells persistently infected with reovirus were grown to near confluence, then serum was removed from the growth medium by removing the medium, washing the cells in PBS, and returning to the flask medium not supplemented with serum. Typically, the serum content was reduced to 1% or less. The cells are starved for serum for several days, or as long as about a month, to bring them to quiescence or growth arrest. Media containing 10% serum is then added to the quiescent cells to stimulate growth of the cells. Surviving cells are found to not to be persistently infected cells by immunohistochemical techniques used to establish whether cells contain any infectious virus (sensitivity to 1 infectious virus per ml of homogenized cells).

Cellular Genomic DNA Isolation

Gene Trap Libraries: The libraries are generated by infecting the RIE-1 cells with a retrovirus vector (U3 gene-trap) at a ratio of less than one retrovirus for every ten cells. When a U3 gene trap retrovirus integrates within an actively transcribed gene, the neomycin resistance gene that the U3 gene trap retrovirus encodes is also transcribed, this confers resistance to the cell to the antibiotic neomycin. Cells with gene trap events are able to survive exposure to neomycin while cells without a gene trap event die. The various cells that survive neomycin selection are then propagated as a library of gene trap events. Such libraries can be generated with any retrovirus vector that has the properties of expressing a reporter gene from a transcriptionally active cellular promoter that tags the gene for later identification.

Reovirus selection: Reovirus infection is typically lethal to RIE-1 cells but can result in the development of persistently infected cells. These cells continue to grow while producing infective reovirus particles. For the identification of gene trap events

that confer reovirus resistance to cells, the persistently infected cells must be eliminated or they will be scored as false positives. We have found that RIE-1 cells persistently infected with reovirus are very poorly tolerant to serum starvation, passaging and plating at low density. Thus, we have developed protocols for the screening of the RIE-1 gene trap libraries that select against both reovirus sensitive cells and cells that are persistently infected with reovirus.

- 1. RIE-1 library cells are grown to near confluence and then the serum is removed from the media. The cells are starved for serum for several days to bring them to quiescent or growth arrest.
- The library cells are infected with reovirus at a titer of greater than ten reovirus per cell and the serum starvation is continued for several more days.
 - The infected cells are passaged, (a process in which they are exposed to serum for three to six hours) and then starved for serum for several more days.
 - 4. The surviving cells are then allowed to grow in the presence of serum until visible colonies develop at which point they are cloned by limiting dilution.

MEDIA: DULBECCO'S MODIFIED EAGLE'S MEDIUM, HIGH GLUCOSE (DME/HIGH) Hyclone Laboratories cat. no. SH30003.02.

NEOMYCIN: The antibiotic used to select against the cells that did not have a U3 gene trap retrovirus. We used GENETICIN, from Sigma. cat. no. G9516.

20 RAT INTESTINAL CELL LINE-1 CELLS (RIE-1 CELLS): These cells are from the laboratory of Dr. Ray Dubois (VAMC). They are typically cultured in Dulbecco's Modified Eagle's Medium supplemented with 10% fetal calf serum.

REOVIRUS: Laboratory strains of either serotype 1 or serotype 3 are used. They were originally obtained from the laboratories of Bernard N. Fields (deceased). These viruses

25 have been described in detail.

RETROVIRUS: The U3 gene trap retrovirus used here were developed by Dr. Earl Ruley (VAMC) and the libraries were produced using a general protocol suggested by him.

SERUM: FETAL BOVINE SERUM Hyclone Laboratories cat. no. A-1115-L.

15

WO 97/39119

Characteristics of some of the isolated sequences include the following:

SEQ ID NO:1- rat genomic sequence of vacuolar H+ATPase (chemically inhibiting the activity of the gene product results in resistance to influenza virus and reovirus)

SEQ ID NO:2- rat alpha tropomyosin genomic sequence

5 SEQ ID NO:3- rat genomic sequence of murine and rat gas5 gene (cell cycle regulated gene)

SEQ ID NO:4- rat genomic sequence of p162 of ras complex, mouse, human (cell cycle regulated gene)

SEQ ID NO:5- similar to N-acetyl-glucosaminyltransferase I mRNA, mouse, human (enzyme located in the Golgi region in the cell; has been found as part of a DNA containing virus)

SEQ ID NO:6- similar to calcyclin, mouse, human, reverse complement (cell cycle regulated gene)

SEQ ID NO:7- contains sequence similar to :LOCUS AA254809 364 bp mRNA EST

DEFINITION mz75a10.r1 Soares mouse lymph node NbMLN Mus musculus cDNA clone 719226 5'

SEQ ID NO:8- contains a sequence similar to No SW:RSP1_MOUSE Q01730 RSP-1 PROTEIN

SEQ ID NO:9- contains 5' UTR of gb | U25435 | HSU25435 Human transcriptional 20 repressor (CTCF) mRNA, complete cds, Length = 3780

SEO ID NO:38- similar to cDNA of retroviral origin

SEO ID NO: 50- trapped AYU-6 genetic element

Isolation of cellular genes that suppress a malignant phenotype

We have utilized a gene-trap method of selecting cell lines that have a transformed phenotype (are potentially tumor cells) from a population of cells (RIE-1 parentals) that are not transformed. The parental cell line, RIE-1 cells, does not have the capacity to grow in soft agar or to produce tumors in mice. Following gene-trapping, cells were screened for their capacity to grow in soft agar. These cells were cloned and genomic sequences were obtained 5' or 3' of the retrovirus vector (SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID

NO:81, SEQ ID NO:82, SEQ ID NO:83). All of the cell lines behave as if they are tumor cell lines, as they also induce tumors in mice.

Of the cell lines, two are associated with the enhanced expression of the prostaglandin synthetase gene II or COX 2. The COX 2 gene has been found to be increased in pre-malignant adenomas in humans and overexpressed in human colon cancer. Inhibitors of COX 2 expression also arrests the growth of the tumor. One of the cell lines, x18 (SEQ ID NO:76), has disrupted a gene that is now represented in the EST (dbest) database, but the gene is not known (not present in GenBank). (SEQ ID NO:76): >02-X18H-t7.., identical to: gb|W55397|W55397 mb13h04.r1 Life Tech mouse brain Mus at 1.0e-114. x18 has also been sequenced from the vector with 10 the same EST being found. (SEQ ID NO:77): >x8_b4_2.. (SEQ ID NO:78): >x7_b4.. (SEQ ID NO:79): >x4-b4.. (SEQ ID NO:80): >x2-b4... (SEQ ID NO:81): >x15-b4. (SEQ ID NO:82): >x13-re.., reverse complement. (SEQ ID NO:83): >x12 b4...

15

20

30

5

Each of the genes from which the provided nucleotide sequences is isolated represents a tumor suppressor gene. The mechanism by which the disrupted genes other than the gene comprising the nucleic acid which sequence is set forth in SEQ ID NO:76 may suppress a transformed phenotype is at present unknown. However, each one represents a tumor suppressor gene that is potentially unique, as none of the genomic sequences correspond to a known gene. The capacity to select quickly tumor suppressor genes may provide unique targets in the process of treating or preventing (potential for diagnostic testing) cancer.

Isolation of entire genomic genes 25

An isolated nucleic acid of this invention (whose sequence is set forth in any of SEQ ID NO:1 through SEQ ID NO: 83), or a smaller fragment thereof, is labeled by a detectable label and utilized as a probe to screen a rat genomic library (lambda phage or yeast artificial chromosome vector library) under high stringency conditions, i.e., high salt and high temperatures to create hybridization and wash temperature 5-20°C. Clones are isolated and sequenced by standard Sanger dideoxynucleotide sequencing

methods. Once the entire sequence of the new clone is determined, it is aligned with the probe sequence and its orientation relative to the probe sequence determined. A second and third probe is designed using sequences from either end of the combined genomic sequence, respectively. These probes are used to screen the library, isolate new clones, which are sequenced. These sequences are aligned with the previously obtained sequences and new probes designed corresponding to sequences at either end and the entire process repeated until the entire gene is isolated and mapped. When one end of the sequence cannot isolate any new clone, a new library can be screened. The complete sequence includes regulatory regions at the 5' end and a polyadenylation signal at the 3' end.

Isolation of cDNAs

5

10

15

20

25

30

An isolated nucleic acid (whose sequence is set forth in any of SEQ ID NO:1 through SEQ ID NO:83, and preferably any of SEQ ID NO:5 through SEQ ID NO:83), or a smaller fragment thereof, or additional fragments obtained from the genomic library, that contain open reading frames, is labeled by a detectable label and utilized as a probe to screen a portions of the present fragments, to screen a cDNA library. A rat cDNA library obtains rat cDNA; a human cDNA library obtains a human cDNA. Repeated screens can be utilized as described above to obtain the complete coding sequence of the gene from several clones if necessary. The isolates can then be sequenced to determine the nucleotide sequence by standard means such as dideoxynucleotide sequencing methods.

Serum survival factor isolation and characterization

The lack of tolerance to serum starvation is due to the acquired dependence of the persistently infected cells for a serum factor (survival factor) that is present in serum. The serum survival factor for persistently infected cells has a molecular weight between 50 and 100 kD and resists inactivation in low pH (pH2) and chloroform extraction. It is inactivated by boiling for 5 minutes [once fractionated from whole serum (50 to 100 kD fraction)], and in low ionic strength solution [10 to 50 mM].

10

15

20

The factor was isolated from serum by size fraction using centriprep molecular cut-off filters with excluding sizes of 30 and 100 kd (Millipore and Amnicon), and dialysis tubing with a molecular exclusion of 50 kd. Polyacrylamide gel electrophoresis and silver staining was used to determine that all of the resulting material was between 50 and 100 kd, confirming the validity of the initial isolation. Further purification was performed on using ion exchange chromatography, and heparin sulfate adsorption columns, followed by HPLC. Activity was determined following adjusting the pH of the serum fraction (30 to 100 kd fraction) to different pH conditions using HCl and readjusting the pH to pH 7.4 prior to assessment of biologic activity. Low ionic strength sensitivity was determined by dialyzing the fraction containing activity into low ionic strength solution for various lengths of time and readjusting ionic strength to physiologic conditions prior to determining biologic activity by dialyzing the fraction against the media. The biologic activity was maintained in the aqueous solution following chloroform extraction, indicating the factor is not a lipid. The biologic activity was lost after the 30 to 100 kd fraction was placed in a 100°C water bath for 5 minutes.

Isolated nucleic acids

Tagged genomic DIAS isolated were sequenced by standard methods using Sanger dideoxynucleotide sequencing. The nucleotide sequences of these nucleic acids are set forth herein as SEQ ID NO:1 through SEQ ID NO:75 (viral infection genes) and SEQ ID NO:76 through SEQ ID NO:83 (tumor suppressor genes). The sequences were run through computer databanks in a homology search. Sequences for some of the "6b" sequences [obtained from genomic library 6, flask b] (i.e., SEQ ID NO:37, 38, 39, 42, 61, 65, 66, 69) correspond to a known gene, alpha tropomyosin, and some of the others correspond to the vacuolar-H'-ATPase. These sequences are associated with both acute and persistent viral infection and the cellular genes which comprise them. 2., alpha tropomyosin and vacuolar-H'-ATPase, can be targets for drug treatments for viral infection using the methods described above. These genes can be therapy targets particularly because disruption of one or both alleles results in a viable cell.

240

35

SEQUENCE LISTING

(1) GENERAL INFORMATION:	
(i) APPLICANT: VANDERBILT UNIVERSITY 305 Kirkland Hall Nashville, TN 37240	
(ii) TITLE OF INVENTION: MAMMALIAN GENES INVOLVED IN VIRAL INFECTION	
(iii) NUMBER OF SEQUENCES: 83	
(iv) CORRESPONDENCE ADDRESS:	
(A) ADDRESSEE: Needle & Rosenberg, P.C.	
(B) STREET: 127 Peachtree Street, Suite 1200	
(C) CITY: Atlanta	
(D) STATE: Georgia	
(E) COUNTRY: USA	
(F) ZIP: 30303-1811	
(v) COMPUTER READABLE FORM:	
(A) MEDIUM TYPE: Floppy disk	
(B) COMPUTER: IBM PC compatible	
(C) OPERATING SYSTEM: PC-DOS/MS-DOS	
(D) SOFTWARE: PatentIn Release #1.0, Version #1.30	
(vi) CURRENT APPLICATION DATA:	
(A) APPLICATION NUMBER:	
(B) FILING DATE:	
(C) CLASSIFICATION:	
(viii) ATTORNEY/AGENT INFORMATION:	
(A) NAME: Selby, Elizabeth	
(B) REGISTRATION NUMBER: 38,298	
(C) REFERENCE/DOCKET NUMBER: 22000.0061/P	
(ix) TELECOMMUNICATION INFORMATION:	
(A) TELEPHONE: 404 688 0770	
(B) TELEFAX: 404 688 9880	
(2) INFORMATION FOR SEQ ID NO:1:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 828 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
AAAAAAAAT TACCATTTTT GGGNGAACCT TTNATANTTN GTTCCTAGAG GGNGAGTCAG	0
GGGTAAAAAA AACGATNAAG GGAGTTGNGG CGATTGGAGA AGCTATTATG AAGGGATAAA 12	O
ANACTTAGGT TGAGCCGGCG GGTGGGGTGT ATTCTTGGGG TGGNGAAAAG NNAGATCAAC 18	0

ATGAGATTTT TTTGTTTTAG GTTTTGCATG TTGTAATGCA ATANTTTAAC CTGATTTTAT

GTGCAGGATG	CCTGAGGTTT	GTGAGCAGGA	ACACAGGAAA	AGGAACACCG	GTANTCGAAC	300
ACCGGTGAGT	CCGCGCAGCC	GCAGAGAAGG	CGGGTATCAT	TCGNTCCACC	CTGTATGNTA	360
ATATGGAGCG	CTACGGCCCC	GCCCCTGGGG	CCGATGGGCC	CAAAAAGGTA	GGGTTCGAGA	420
AGACGTCTGC	ATGGAGCAGT	GGACCAGTGA	AGACCCAGGC	AAGGCCGAAC	GTTGGGCCCC	480
GGGCCCCGGG	GGCGGGTAGC	AGGGCCCATA	CATTGTCCAA	GGGCTGCTGG	AGAGCCTGGA	540
GCCTCGCTCC	CCCACCGGCG	CAAAGTGGTA	CAGCCCATGG	GGGCGTGGCC	CATATCATGG	600
ACGCGAGCGC	GGCCGCCATC	TTGNTCTGCG	GTGCTGGTAT	TTAGAGCGCA	GCGCCTGACT	660
GGCGGGGTCG	CCTTCGCATC	CGCCGCTTCG	AGAATCTTCT	TTCGTCTGCT	CGCTCTCTCT	720
CCCGTCGTCC	TAGCCCGCCG	CCGCCTGCTG	AGCTTGCCCT	CTTCCCCGCT	TGCAGACATG	780
GNGGACATTG	AAAGACCCTA	CCTNAAGGGC	CNGCANGCNA	GAAAAAGT		828

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 845 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

TCNCCTAAGA NANGAGANAG GTTAGATGGN AATGGAGANT ANATACCGGG CTTAGCTTCG 60 CCNNGGACCC ACCNAGGGGA AAAGAGCCNT CNNGCAACAA ACNAAAGGAN CGGAAAGAGG 120 AAGGGNANGN GGNNAAACAN ATTGGGCGAA TTTAAAANCT NNGNCCNGTT TGAAATAGNG 180 CNCGGCCGNT CCNTGGGCCN GATCCANCCT TCCNTNACTT TTCNTCCCCN GCNTTAAATT 240 GCGNCGNCGG CCCCCCAAC CATNITITCC GTTTINANCA CCNGNGGCCC CGGCAGTGCN 300 GATGNNGGGG AATTGNNAAT GCCCCCCANC CATTTTGNNT CNGNNCCTGG GGAGAGANTN 360 AAACGGTGNG NGNAGNNGTT AATATGGCGG CAGCGGNGAC ANCAGTAGCC AGNGCAGGCA 420 CGCGNAGTTG GCNGGGGACG CCANGTGNCN GGAGANNTGG AGCGGCGGCG GAGCGGGCNC 480 CNAAAAAAA AAANAANNGN TGGTAAGGGG GCCCGGGGTG GANGANATTT CNNGGGCNGC 540 TTCTAGGNGT CANGNTGNGG CCGCTNCGTT CGGCCCTGGA TGNAGCCCNG NGCCNGTGCC 600 NCCNCCGGGG GGAGTTTGTT TCCNTCTACC GTNCCCTGCT GNGGAGCGAC GANCTGCANT 660 CCCCNGGAGC GTCTANNAGG CCGTGGCNAA CCCCATCNAN GCNCNCCAGT NAGCTTCCTT 720 CNTCCCGACA TAGTAGGCGT CNGGNGGCGT TGNCGACAGN GGCCNNCGTC GATGGGANNN 780 TCTATTINNG NTTCATGGGC CGTATGTTAG ACCTNTCGAA GGACGCGNNA AATAGATAGG 840

37	
GGGGG	845
(2) INFORMATION FOR SEQ ID NO:3:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 818 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
TACACCTTTG NGNGTGTTGA AAATTACGGG GGANANGAAN AAAAANGTAT CCTTTTGGAN	60
GCCCGGNCT CTTGTGGAAT TTGTGATTTA CGGCGGNANT CATATGATTT CGGAAANAAG	120
ATAAAGCCNN NCNNNNNGGG GTAGGGAAGA AGGATTTTGN AAACAAANTN TGGGTNTATA	180
TAANNGTGGG GGGGGAGNT CATTGAGGNG GGGNGGAATA TNNAATNTTT TTTTTTNNT	240
TNNNNGGCAA GAGGGATGAA GGTAAGGTTA GTATGAAATG GCCNNNCCAG AGAAGTTNGA	300
TGAAAAAGAT AGTGCCACCA AGAGANATNA TTTGTTATTT TTAACAGTGG GGGGAGGTAG	360
TTNTAGACCA CCATTTATTA NAACTGAGGC ACAAAGAAGA TGATTGGGGG GCACTTACAG	420
AGTAAGCAGT ATTTACATAA AGATTTNTTC CCCAGGAATN ANGAGGAAGN TGGATAACTG	480
AACAAAGCCA TGTAAGCAGG CTTTTTGGTA TGCATGTGGT CCCATTACAA GGAATACCCA	540
ATAAATAGCA AATGCACACT GCCATTCACA AGCAATTGCA GAGAATGGGT GGGGGATGTG	600
AAACTAAAGA GCTTTGTAGC TGCCTGAGGA GGTGGGTTCT CTATATCCGT GGGAGCTAGT	660
GATCCCCCAC AGGTCTTAGC TGGTGCCATG ATTGTGATCT TAGGCCAGAT TTGATGTCCC	720
CCACATGGCC GAGTCCGCCA TGGATGCAAC AGGGCAGCTT TATTTGCTGT GGGCNGGTAN	780
TGAAGGATNT CACAAATGAA CTTGGCAAGT AGAGAGGT	818
(2) INFORMATION FOR SEQ ID NO:4:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 857 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
TGGAAAGANT GNGNTAAAGT TNAGTTNNNA GATATTGANN AANNTNGGGN AAAANAAGGT	60
CANDALL CROWN CHANGE THACTION CATALOGUE AT CHANGE AT CALLED AT CAL	

AAANAGGGGN	NANANGNTTN	NGGTTNAANA	NAAGGGGGGT	NTNCCCGTTT	TTTTTTAGG	180
ATCCTGGGAG	TAACCNACAG	GAACCNAAAA	TTNGNANAAG	GGNGNTCCTT	CCCTTCCNGT	240
CAGTAAGGGA	TGGGGCCCTA	TTTTTANCAA	CGAACACCAT	TGACAGGANA	CCGGTCAGNA	300
TTCCGTTAAG	TATTTTGACC	TTTCCAGGGG	ATGTNTCCGC	ACAGCCGTTG	NGACCTTAAA	360
CGCGNCCAGA	TTNTGCGAAN	GTCATTTTGG	GAATGACTGT	TGTAGACACT	GCTTTTTTAG	420
TCGCAGATNT	GACCGCAGAT	TTTCNTTTCC	CACCTTATGT	CCGNTGGAGC	AGTGGTGGCC	480
GGAGAAAAT T	TCTTGGGGTT	CCNTCCCGNG	ACCCAAAGAA	CACAACTGTT	CTCGCTGCCC	540
GGCACCCATC	GCCACGTCAG	CTCACGCTCG	CGACGCCAGC	ACGCNTGCGC	GCAGAGAAAG	600
GCGGAGCATG	CGCAAAGGCC	TGCNTNTAAC	ATCCGGGGCT	CGGCGGCGG	CGCTGCCGCC	660
GCGAGGGATT	AANGGGGTCT	TTCNTTTCNG	TCTCTGGCCG	GCTGGGCGCG	GGCGACTGCT	720
GGCGAGGCGC	GTGGAAGCTC	GCGATAGTTC	CCCTCCGCCT	CCTCTTCCCG	GTCCAGGCCA	780
CTAGGGAGTT	CGCTGACGCC	GGGTGAACTG	AGCGTACCGC	CTGAAAGACC	CCACAAGTAG	840
GTTTGGCAAG	TAGAAAG					857

(2) INFORMATION FOR SEQ ID NO:5:

PHICHOCID: 3410 072011041-

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 896 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GGGAGAAAGG	GGCGACNTTT	ATTGGTCCNG	GAGNGGGGGG	NCAAATGGGT	TTTTATCCAN	60
TTTAACGGGG	GGAGGCCCCG	GNNGAGGAAT	TCCCGGGGGA	GGAANAAAAA	CAAGATCCGC	120
NTAAGAGGGN	GGGGGTNTCC	GNNNTTNTTN	GAATNGTGGN	GCACCGGGGG	GGCAAGGAAG	180
AGGGTTCCCG	GAGAATGGGG	NGGATAAAAN	GATTGGCAAC	TCACCCGGN	TAGTTGTACC	240
AGGTGTTTTT	TTTTTTTTT	TTTGTTCANA	AANAGGAAAA	TGATTCAAGT	TAAAAAAGTA	300
ATTGGCAAGG	AAATTTTTTT	CCTANCCTCC	TTGAAAAATA	GTGGGAACAG	GGGTTCCCAA	360
GGGGAAAGGT	CCCCNATTNA	ACAAAATGNG	TTTCAGNGGA	GTGTGGCCCA	CCCATTGTGT	420
NTCCATGGAA	GAGTGGCTTT	TNTGGNGAAG	TTCATTTTCC	TTAACCTTNA	NNACTGTAAN	480
GGNTCTTGTG	CTTGAGAATA	TTGTTGGCCA	GCTTTATNGT	CTTCATTTNT	AANACTATTT	540
AGACTAGAGT	GTTNTAGATT	NTAGGTCTTC	ANGTTTCCAG	TCACCAGTCC	TTGGCTTTTT	600
AGTATGGAAA	TCACCAGTAA	TGGCAATATA	ACATCCCTGC	TTCTGTTTCT	TAGAAGGCTN	660

~	
•	•

NATTACAGTG	TGTTCAAACT	CCGTGTCATT	GCAACAGGTT	AAACTAACTT	TNTACGTAGG	720
ACATCAGGGT	ATTGACATTC	TCATCCTAAA	GTCAGTTTGT	CTGTTTCCAG	AGGAGGAACT	780
GAAGCAGTGG	TTCTTTAAGT	AACTGACTCA	GGGCTTTCCT	GCCTGGCGCG	CCTGCCAGGC	840
ATNGTGTAGC	ATTGTACTGC	ATCTTCTTTG	ACCAGTTTCC	CCAGGTGAAG	AGCCTG	896

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 937 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GGCCCCCCC	CCCCCNANTT	AATTTTNGGG	AAGAAAAAG	GGAAAAAANT	TTGGGGTCAG	60
GAAAAANGAA	GTTGGNAANC	GNNGGGGNGN	CAGNATTNGA	ANAGTGGGGG	ANNTTAATTT	120
NAGAGGTCCC	TTNNTTCCNN	GGAAAAGTTT	AAAAGGGGTT	CAATTAACTT	NGGATCNCCA	180
TTTATCAGAT	TACCCGNGNG	TCACCTGGGG	ACCCTTTACN	GGTGGCGGGA	CATTNGAAAN	240
ACATATTAGT	CAGATTATAC	ATAGCAAANA	TAGTTAGGAG	CACAANGAAT	CATTTATGGT	300
GGNGGTCACC	ACACAGGAGA	TGTATTATCC	GCAGTATTAG	AGAGTTGAGA	ACCATATNTT	360
AGAGATGCGG	TAGACTGACT	GTTCCCTTTT	CGNTTGGAGT	GACCTTGCCA	TTAGAGGCAA	420
CAGCATCAGT	ATTGTTCCCA	GTCCCCNTCA	CACTGATTCG	AACTTTAAGG	ACACTGATCT	480
NTGGCTGGTA	GAGGTTCAGC	ACACATACCA	GAGTTACGAG	TCACGTGCCA	GAAGGCCAAA	540
CTGAACACGG	AATTAGAGGG	AACTCGATGT	CTCCGGCTTG	CACTGGTCTT	CTCTTGCANT	600
AGAATCCTTC	ATCCTGCTCC	CAGTCCGGAC	GTCCAGGCAA	CAAGGGCGTG	GAAAGTGAGG	660
GGGCTGGGAG	GTGTGTTTGC	CTTGCCTCAG	GCGNTGGGTG	GGGTTGGGGC	GTGCCAGCAC	720
TCCCCTGGGC	GGGCNTCACC	GATGCTGGCC	ACTATAAGGC	CAGCCAGACT	GCGACACAGT	780
CCATCCCCTC	GACCACTCTT	TTGGCGCTTC	ATTGTCGACG	TGTGGTGAGC	TCTCACTGGG	840
GCGTCCCTCT	AAGATCTGTC	CACTNCCTGG	TCTAGGGGTT	AAGCNTTTTC	CTGCCCTGAA	900
AGACCCCACA	ATGTAGNTTT	GGCAAGCTAG	CAAAGGT			937

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 888 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:			
AAAAGGGGC CCCAGCGGNG GGGGGTTGTC CAAGGAATCA	aaangtgggg	NGGGGGGAA	60
AAAANTACTT TTAAAAAAGG CNGCCNNANA ATANANGACG	TTCNGGGGNG	TTTGAAAAAA	120
GGCCGGAAGC CTCGGACNGG TTTCNNTGTT AGGACAAGGA	AAAAGGGNAC	GCACNGGGAT	180
TTCCTTTCCT TATNTTAGCA AATNGCCGGC CAGGAAACCA	NCGAGTTGGG	NGGGNTTNGG	240
TTTTCNGTNA AAGGAAAGCA GGGGGGGGAN AAACACGGAN	AAAAAGGGAA	GAANNGGGTT	300
NATTNINGGTT AGNAATTGGN TCCCAGAGAG NGCCAAGAAA	ATNGGCCTGT	CCAAAATTCT	360
TTTTCCCNGC TTTTAAGACA GGCANGATAN TATNNGGCAG	CAGGTNATTA	CCANAGGTAA	420
GTAAATTACA ATGGGTAAGG GCTTGGCACA GGCCAGGGTA	AGTAGGGCAN	GTATGGATGT	480
TAAACATTAC CCTTCATCCN GAGGNAGTTA ACACAAGCAT	TCNTGGCGGG	TCTCACATAT	540
CCCAAANAAA AATNTTCAAA AGNAGCCCCN TGGGGAACGT	TAAGCCAAGC	NTANGACTCA	600
CAAGGGANGA CATGGGCAGG NTAGGGNACA GAATCAGTGN	TCAGAGACTC	CAGGGGCACC	660
CCTGATTCCN TTTGNTGTCA CACAGACANT GCTCCAGGGA	CAACCTTCCC	GGANGTGAGT	720
ATANGACTTT CCTGATGGNG ACGCTGCCGT GANGGGACAC	TNCCTCGTGG	TAGCACACAT	780
TCCTCAGTCA GCTTCTGAGC CTCAGGGTCC CAGCAGGCAC	AGTGGCAANG	ACCTCATTCT	840
TCTCGTCTGT CCCACTGAAA GACNNTCACN AAGGAGCTGG	CTAGTAGA		888
TO TO TO NO. 9.			

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 980 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

AGAAATGAAA	AAGAAGGAAA	GCTAAAAATA	GATTATAAGT	GTTCTATTTG	АААААА	60
GAAAAAAAAG	AAAAAGAACA	CAGAGAAGAA	TAAAGGAGAA	GAAAAAGGAA	GAGAAAAAA	120
AGAAAGAAAA	AACGGAAAAG	AAACCTAGAA	AATAAAAAA	CAAAGTATCC	GATAAGGAAG	180
AGAAAGGAGA	AAGACTTACC	TAGAGCCCAG	AAATAGAGAA	ACTAGAACAA	AAAATGGAGA	240
AGAAGAGGAG	AGAAAAAGGA	TTAGAGAGGG	TGAGGTAGAA	GGAAGAAAAG	ACAAGAAAGC	300
AGAAAAAAAC	TAACAAAGAT	GCATATAAAC	AGAGAGAAGA	TGATTAAGAT	TAGAGAAAAA	360

41

GACCAAAGAG	AGAAGGTAGA	CAGGACAAAT	AAAACAAAAA	CAGGAGGGGA	GAAGGGGAAA	420
GAAGAAAGAG	GGCAAAAGCA	AAGGAATAAG	ATAATAGCAC	CAATAGCAGG	ACAGTAAAGG	480
GTAGAGAAGG	GACCATTCCC	TACCCCATAG	GGGGGAACGA	CCCCGGAATC	AAAATACAAG	540
GCACCGAGCT	GAACCTGGTT	ATCACACAGG	CAGGAGTGGT	ATAGCACGGC	GTTCCGGGCA	600
AAAAAAAAA	TGAAAAATAA	ATTCCTTCGG	GCGGAGAACT	AGAAGAGGAT	GGGAACTCCT	660
TGACAGAAGT	AGCAGGCAGG	AAGCCAGCCA	GCACCCCAGC	CCAAACAGAA	GCAGCCGCAA	720
TGAAACGGGC	GGCAGATCCA	CATCCGCAAA	GTCCTCAAGG	GAGCATCGGC	GAGGCCCGGA	780
GCCAATGAGG	AAGGGCAGGA	AACCATATCA	AGCCGAGCGT	CGGGACGGCT	GCCATGAGAC	840
ACCCGGAGAG	GTAATTTTTT	TTTTACGGGA	AGCGTCCAGC	CAAGTTAGTG	GGCCGGAAGC	900
GACGGTACTT	TAGTATACAT	CGTTTTGCCC	GAGTGGTCAG	ATTCTTTTGT	TATCCCCAAC	960
AGAACCGTAA	GCTAGAAATA					980

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 845 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

TCNCCTAAGA	NANGAGANAG	GTTAGATGGN	AATGGAGANT	ANATACCGGG	CTTAGCTTCG	60
CCNNGGACCC	ACCNAGGGGA	AAAGAGCCNT	CNNGCAACAA	ACNAAAGGAN	CGGAAAGAGG	120
AAGGGNANGN	GGNNAAACAN	ATTGGGCGAA	TTTAAAANCT	NNGNCCNGTT	TGAAATAGNG	180
CNCGGCCGNT	CCNTGGGCCN	GATCCANCCT	TCCNTNACTT	TTCNTCCCCN	GCNTTAAATT	240
GCGNCGNCGG	CCCCCCAAC	CATNTNTTCC	GTTTTNANCA	CCNGNGGCCC	CGGCAGTGCN	300
GATGNNGGGG	AATTGNNAAT	GCCCCCANC	CATTTTGNNT	CNGNNCCTGG	GGAGAGANTN	360
AAACGGTGNG	NGNAGNNGTT	AATATGGCGG	CAGCGGNGAC	ANCAGTAGCC	AGNGCAGGCA	420
CGCGNAGTTG	GCNGGGGACG	CCANGTGNCN	GGAGANNTGG	AGCGGCGGCG	GAGCGGGCNC	480
CNAAAAAAA	AAANAANNGN	TGGTAAGGGG	GCCCGGGGTG	GANGANATTT	CNNGGGCNGC	540
TTCTAGGNGT	CANGNTGNGG	CCGCTNCGTT	CGGCCCTGGA	TGNAGCCCNG	NGCCNGTGCC	600
NCCNCCGGGG	GGAGTTTGTT	TCCNTCTACC	GTNCCCTGCT	GNGGAGCGAC	GANCTGCANT	660
CCCCNGGAGC	GTCTANNAGG	CCGTGGCNAA	CCCCATCNAN	GCNCNCCAGT	NAGCTTCCTT	720
CNTCCCGACA	TAGTAGGCGT	CNGGNGGCGT	TGNCGACAGN	GGCCNNCGTC	GATGGGANNN	780

42	
TCTATTTNNG NTTCATGGGC CGTATGTTAG ACCTNTCGAA GGACGCGNNA AATAGATAGG 84	10
GGGGG 84	15
(2) INFORMATION FOR SEQ ID NO:10:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 528 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
GGATTTNNTA ACCTTTCNGG GAAGGGNGNG GAAAAGGNGC CAAACAAAAA GACCCCNNTG	60
CCCGGAAATN CTTGGGGGNN ATTGNGGAGC GTTTTTTANN GGGGATTGGG GGGNTNGGGN 12	20
TGCNCCCNNA TATTCCCGGC TNAGGGGCAA CCCGAGGGGT NNTNTCCGAC CATGTAACTT	во
GTTTCGGAAT GAGGGGGAAT GCNNATTNTG ANTATTGAAN NGNGACCCGG NGGGGNCNTG 24	40
TTNNAATTAA CCTNNTACCC GGAATTTCNG CGAGANCGNG ANGATNNCTG GCACTTNTTC 30	00
	60
	20
	80
	28
(2) INFORMATION FOR SEQ ID NO:11:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 927 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
AANACGGTTT AATAAGGGGG ATGTTCAAAA CNCCACTCCG GGGGAANAAA ANAAAAAATT	60
AGGGGGGGAG AANGGATTGG NGTATAGTTT CCCACCACAA ACCTNGTTCC ATTTTTTCGG 1	20
GGGGGNAACG GAGGNCATGA TTATGGGGTG AAGGCAGCAC CCACCCATTT TTCGGGGGNA 1	80
AGTCAGTTTT TTTTGGTANA ATCAAAGTTC CTTCGAACAT NTCGTTTTAT CCAAGGAGTT 2	40
	00

ATTGGTTCAC CGGTTNTTTT GNGCCAGGAA AGCAGACCCN TGTTNGGAGG GGAGATTCCN 360

43

ATTTTTAGTT	CCCATTTGGT	GTTTCCNTAG	GTAATGGAGT	CTGCAGACAG	TTTGAGTNTA	420
NTGAGTTGAG	TCCCTTNTCC	TATCAGCCGG	GGTGGCATTC	TGTCCAAAGG	AGGAATCCAG	480
CAGCCAGATT	AGATTTCAGT	NTCNTTTNTA	ACAGGGAAGT	TAGACACACC	CGGCCAGNTT	540
GCAGCCTTTC	CACCCCAAN	GAGTGAACCC	TGCCNTTTCA	GCTTTTACCC	AATTTACTTT	600
CGTTGGCTTA	GCATGCAGAT	TNTTTGGCTC	CATGCCCGGA	GCAGCTGACA	TGGGAGGCTT	660
TGAAACTTCC	ATTATCATAG	AATGGCAGGC	AGGTCCTTTG	CGGTTAAAAC	CAGGAGCCTG	720
GGCCNAATGA	GATGGNTCAN	TGAGCAAAGG	CGNTTACTGC	CAACCCTGAT	GCCTTCAGTT	780
TAGTNTTGGA	ATTCACAGGG	TAGAAGTTGA	ANACNTTTGA	CTCTTCAAAA	GTTGTCCCTG	840
TAGCAGGGCA	GNNGTGGTGC	ATNCCTTTAA	TTTGGGCTAC	TTTGTGAAAG	ATATCCACAA	900
NGAACCTTGG	CAAGTAGAGG	ANGTOGT				927

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 911 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GGGAGTTTGC TCTCAGAGNG CCNATTACGC NACAGGGGGN GTCTCACANT ATAANCTCAT 60 ATANNATACT CTACNNTNCC CCCCTNANG TNTCAAGGGC AAGAGAATAT NNTCTCTCTC 120 NTATCGTCTN GGGGNNTCTN AAATGTTTGN GCTCCCGGG NAAAATANNT CTCTNTCNCG 180 NCTCTATNTT CTCNCCTCAC ATATNTGCGN ACTCTTTCTC NNCCACANNA AAAGCGCCCA 240 GTGNGGGGAN CTCNNAGAGT GTATNGNGAA GAACTGNNAG TGTNTNTGGG GCGCGTTCTC 300 GGGGAGANNA TACNCTTCTC TCNTCTCTCT NTAGAGTGNG ATGTANAAAA CCNCANNTGT 360 TGCANAGANA AATGGGGCTC NGAGNCTCTT ATATTTCCCC NCCCCTCTCN CCATATATNA 420 CCTNCGGGGG CTTNTNTNTA AATCNCCTNT CNCCATTNTT NNNANNNGCG TGTTTNTATT 480 GTNNGTNTCC NCNTGNTCCA AAAATCTCAA ATTTGTGTCT CTTNTCCCAA ACNCTATNTC 540 TCCCNTANCC CTGGGGGNGT NTATTATNTN TNTNTATATN CNTATNTTAT ATACNTATAN 600 THTATHTHT ATATATTGG GGTCNTTACC AAAACCCCHT TTTTHTCTCA CTTTTCHTCH 660 ACTCCCTTCC CGGGGCCTNG AAANTTTATT NCCNNCCNTT NNGNTCCTTT TCTNTTAAAT 720 TCNTTNCNTN NGGAAAACCC TTTTCNAAAC NGGNTTTCCC CTTTTNNCNT CCCNCTCAAA 780 CCCCCAAAT TNGGGCATTT TTTCTTTTCC CCTCACCNAA CCCCNTTTNC CTCCCCCCNC 840

CCCCCCAAA	NTGNGAATAC	CCTGNTTTTC	AGNGGNNNNG	AAAAATCCCT	CCCCGANGGN	900
GCCCCCTCC	т					911

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 880 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GGGCACCAAC	GGNGGAAGAG	TTTTCCANGG	TANAAGAAAG	NAGGANTGGG	NCGANAANAA	60
TTANTTTTNA	AAAAGGNCAC	CAGATANAAA	AAACTTTTNA	GGGGNGTTAA	NAAAAANGCN	120
GAAACCCTCN	GACGGTTTTC	NNGANTNTTA	AANAGATTCA	GGGGAAGCAC	GAGATTATCT	180
TTTCNTTTTT	GAGCAAATTG	CCAGCAGGGA	ACNGACNAGA	GGNTNGGTTT	TTGNATNCNN	240
TTAAACGTAA	CGCAGNTTTG	GANAAACACA	GNTNACATGG	AAAGACCTGG	GNNATTAGGG	300
TAANGNAAGN	GGTTCAAGAG	AGAGCCGATG	AAATNGCCNG	GTCCAAAATC	TTTTTCCTTG	360
NCTTTAANAC	AGGTNNNAAA	AATNNGGCTG	CTGTTTATAA	CNATAGNTAA	GTGAANNACA	420
ANGGGTAAGT	GNTTGGCACA	GNCCAGGGTA	AGTAGGCATN	NAAGGAATGT	TAAACATNAC	480
CNTTGATCGN	GNGGTTGTTT	ACACCGCNTT	AAAGAAANGT	TTAAAAATAT	CCCTGGGCTG	540
TTTCTTCCTN	GGTGCCNCAN	GGNGAACGAC	AAGCCAAGCG	NATGANTCAC	AGGAGACGAC	600
ATGGGCAGGT	TGGGTACAGA	ATCAGTGTTC	AGAGACTCCA	GGGGCACCCA	GATTCCNTCA	660
GNCTGTCACA	CAGACACTGC	TCCCAGGGAC	AACCCTCCGG	GATGTGAGGN	NANGACTTCC	720
GNGNNGGAGA	CGCTNCAGNG	ANGGGACACT	CCTGGTGGTA	GCACACATTC	TTCAGTCNGA	780
TTNTGAGCNT	CTGGTCCCNG	CAGAGNACAG	TGGNAATGAC	TTTTTTCTTA	CTTGNGNCTC	840
CAAGGGCGTC	TCCACAAGAC	AGCGTGNCNA	GTAGATAAGT			880

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 923 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

45

GGGAGGAGTA	CNGGANGGGT	CCGACGTAAN	TNTNTCACAG	GNAAGNCGAN	ANGAGGAGGG	60
GTNGCGTAGG [°]	NNACAAAGAG	ATAGGAACGG	GGNCGNNAAC	NTNNCNTNTN	GAAAAGGCCG	120
CCANNGTNAA	NCAACTNTGG	CGGGGGTGGG	ACNNAAGGCG	NGNGGCNNNA	GAAGGTTTNN	180
TTNNTTGNAA	CCNAGATTCG	AGGGACGGAC	NGGANTATCN	TATCCNTNTT	NGTTNCGANT	240
GCCNGCGNGN	ATCNGGCNAG	GGAGGGTNGG	TTNNNNGGTT	TCNGGNGACN	NCCCCAGTTT	300
NTGGNNNATA	CCCNGCTCTC	ACANGNNGGA	CGNGGGTNTT	TNNGGTGAGG	AAGNNGCNTC	360
CCCGCGAGAG	CCCGNGGNAA	GGGCGNGTCC	AAAANTCTTN	TTCCCTGCTT	NTNCNACAGG	420
CTNNGANANN	ATNNGGCTGN	TGTTNATCNC	NATAGGTAGN	TCAACCNNCA	NGGGGANGTG	480
CTNNCACACC	CCAGGTTAGT	GTCCCNTNCA	NGGTATGTTA	ANACGTTACC	NNTGATCGGG	540
GGTTNTTTAC	AANNAA	AAAAAAANTC	ACCNTCCCGG	GCNTGNTGNT	TCCTNGGGGC	600
CCCANGGTGA	ACGACNANCC	AANCTNTTGA	NTNACAAGGG	ACGACGTGNG	CAGGTTGNCG	660
TNCNGAGTCA	GTGTTCAGAG	ANTTCNGGGG	CACCCCTGAT	TCCCNCGGNN	GTNACACAGA	720
NACTGNTCCA	GGNNCNNCCC	TCCGGTTGNG	AGTCNAAGAC	TTCNGGNNGG	TGACNCTACN	780
GTGANNGGAC	ACTTCGTGGN	GGTGNCNCAC	ATTCGTCGGT	CGGCTTANGA	NCNTCTNGGT	840
CCCNGCAGAG	CACTNTNGCA	ATGNCTTTNT	TTGTTCTGGG	GCTTCCNAAT	GGGTCCTCCC	900
AAAAGNCNGC	TTTAGCTGTA	ATA				923

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 880 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

ANANAGAGTA ANTAANANAA GAGGAAGAGA NAAGAAAGNA GAAGGNAAGG ANANAAANGG 60 GNNGGCGAGG AAAAAAGGAA AGGAGAANAA TAAAAGAAAA AGTGAGGAAG GAAGGAGTAN 120 NAGAAAAAG NAAAGNGGAG ATAGNAGAAA GGNCCGGNGG ANAAAAGANT AGATTAANGA 180 NAGNTGAAAG AATAAAGANN ANGGCGANAA GGAAAGAAGA NCGAGNATTA GAAANAAGAG 240 AGGAAAGANN NGGGGGGAGG GAANGAGGCG AANTCNNGAG ANCAGTNNAN AAGGCAAGAG 300 AATNAGGAGN AGANANGAAG NNNANGANGA AGGAGGGGAA AGAGGGNACA GAAAAAACAA 360 GTANAGTAAC CNACNNCNGC GAGNGNGCCA AATAGGTNGC GCCAGCNACA NGGCCCGAGC 420 CCNGGGCGAG GGGGCATCAN GAGCCAAGGG GAGCGGGTCC AGNCNTAGTT NTGAAAGGAA 480

· · · · · · · · · · · · · · · · · · ·	
AGGGGAGGNG GGNAGATATT ATATGGTCGN GCCCCCCCN GTGTCTCGGT GAAAAAAAA	540
AGGNGTGANN AGCAGGGCCN TNTTGGNTGN GGGATCGNGC ATGATCAGAG ACCNGAGGCC	600
GGACNTTCCG CNGNGCCTTC CGTAGGCCCA NTGTCAAATG TATTCAAGCC GGTTNGAAGG	660
ATGCCGGNGN TAGNGANTGA TGCGGGGGCC NGCCCCCCG GNTTTCCGCC CCCGCAGCCN	720
CNGTGGCCGC CATNACGGAG TTCCCAGTGG TGAGNGTGCG GAGNTGAGGC CCCGCGGGTC	780
GCCGCCGGTC CCCGCAGACA GGAACGCGGA GCGNNCCCTG CGCTNGAACG TANGGGNCCA	840
CTTGAAAGAC TNNACNAAAN GACGCNGATT TGTAGAAAAG	880
(2) INFORMATION FOR SEQ ID NO:16:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 166 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
ATTCTTCAGC TTTTGCNTAG AGGAAAAAGA ATGGATTGTT TCTAGGACAA CCTGCTGAGG	60
TGCTCACCNA GNGTTCTCTC TCTCTCTCTC TCTCTCTCTC TCTCTCTCT	120
TNTGNCTCTC TCCTGAANNT CCCCANAGGN NCTTNGCAGN AAAANG	166
(2) INFORMATION FOR SEQ ID NO:17:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 162 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
CNTTTTNCTG CNAAGNNCCT NTGGGGANNT TCAGGAGAGA GNCANAGAGA GAGAGAGAGA	60
GAGAGAGAGA GAGAGAGAGA GAACNCTNGG TGAGCACCTC AGCAGGTTGT	120
CCTAGAAACA ATCCATTCTT TTTCCTCTAN GCAAAAGCTG AA	162

(i) SEQUENCE CHARACTERISTICS:

(2) INFORMATION FOR SEQ ID NO:18:

(A) LENGTH: 871 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) S	EQUENCE DES	CRIPTION: S	EQ ID NO:18	•		
Gaataaa	ACC	CCAGAAAGGT	TTTAAAACAT	TCCGTATAGA	AGTTGATNAA	TTNAAATAAT	60
TGGAGGT	GAA	ATACACAGAG	GGTTTTTCAA	TTAATCAATA	ААААААТААА	TTACNTACNT	120
NTTTTGG	GGG	GTTTTATGNA	NAAANGAATT	GGAGGGATCA	ATTTGCAAGA	AATTTATTTT	180
TTNGTAT	TAT	TTAAAAACCG	TTANGGATTC	NGTTGATTTT	AAATCAAGCA	GTAAATATAT	240
TAAAAGG	TAG	GAGAATGGTA	TCAATAGGCC	AAGATAACAG	AGTGTAAAAG	TTAAAAGTAT	300
TGGACAG	AAA	TATTAAGAGT	TATTGTTAAG	ATCCNGGACT	TTGGAAAATT	TAAAACCAAG	360
CGATTTA	GGC	CAAGTTATTT	CCACAGTATG	GTATCAGAAG	GAGTAAAGAG	ACAGCACAGG	420
TGCAGAT	NTG	ACGGCTTGGT	TCCTTAGGTT	ATTGCCACAG	CAACGGTCTT	GGCCGCAAGG	480
CAGGCTT	GGG	CCCAGCATGA	GAAGAGAGGG	GGAACCAAGT	TCTTCAGGGA	CCNGACGGGC	540
GGCGCCG	GTG	AGAAAGGACT	TCATCTTGCC	ATGNTCANTC	AGCGAAACTG	CAAACGCTTN	600
TGGCAGA	GAC	AACGCCAGAT	CTGCAGAGGC	ATTCCGGCCT	TTAACCGCTT	TCCCACAGTC	660
GGCCCAC	AGG	CCTȚACCGCA	GCAGAAAGCG	CGCGACCCGG	AGGTCCCGCC	AGTCAAAAGA	720
AAAAGGG	GGG	CGCAAAACCA	TATAAGGCNT	GGAGCAGGCG	GCCCGGCCCC	GCCCCAGGA	780
CATGGGC	CCG	GCCCCAATCA	TGCCCCGCCC	CCAGGATTCG	GTCCCGCCTC	CTCCCGCTCC	840
CGGGATG	GGC	CGTTATGCTC	CCGATACGCA	т			871

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 936 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

TGGGATTCAA AAATTGGAAG TTANTTTTN AGGAAATTN TTTTTAAAAT TNTAATTGGG 60
GGGNNTNGCC ACCAATTAAA ANGNGTTTGA ATTNAAAANG ATTGCCGGGG GAAAAANCCA 120
TTTNCTGCAN GGAATTAACC AAGTAATTTG GNTTGGNAGC ACTNGTTTTG GGCCTNTAAA 180
AGGCATTTTA AANACAAATT AACAGGGCNG GCATNTTCAA CGGGNGNTAG NTTGTTTTNA 240
TGAAACNGAG GNTTTTGGGG GCGGCCTTT CCNATTNGTT TCCTTTTTTA GGATTAACAG 300
ATGNGAAAAA AAATNATGGT TTTATATCAT CGTTNTTGGC ATCAGCAGAT TGGCNATTCA 360

WO 97/39119

ATTAAAACAG	ATCATTCATG	ATNGGCTTTT	TGGCCATTAC	CATGNAAACA	CAAAGAGCCA	420
GGGTTTGATT	GCCCTGACCC	GCCNACCTTC	GGTTGCTTAG	GTGAGGTGCA	GCACTGCGTT	480
TTTCCTTTTC	GGACTGAAAA	CAGGCGAATG	AATCATTTCN	GTCGTGTCTT	GAGGGTGCAT	540
TTTTNACATT	TTTGTGCCNT	GCTGTGCGCC	GGTGTGTGAT	TTCCCTGTTT	TAAGTGGCCC	600
CTGAGGATAA	CAGTGAAGTG	CTGTCTAGCA	TTCTTCTGCG	CAGGAAGGCG	GAGATCTGCC	660
CTGCGGAGAA	AGTATGCGTG	CTGGATAAGC	ATTACTGAGC	ATGACACAGA	GCACCGTTGA	720
CCCCGAGTGC	AGCGTTAGTG	AACCGGCCAA	TGTGCTGGGG	GATTTTAAAT	GGAATCACAC	780
AGAAGCTGAG	GCTGAGGATT	GATCTGTGAG	TAACAAGTTG	TGAATGAGGC	TGGCAGGAGC	840
TAGCCTGGGA	GTAAGATTCA	GTGTTTGNTA	ACAGCGTGCA	GGCATTAAGC	CAGGGAACTG	900
AAAGTNCCCA	CANNGNCTTT	GGCAAGTAAG	AAGTCG			936

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 888 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:20:

AGGNNGGGGG	GGGAAACTTN	TTTATNTGGA	AAANTTTTGT	TTNGGCGGGN	AAGGAGTTTT	60
TAANAANGTT	aanggaaaaa	GCTTTTANTT	AANATGACCT	TTTTGGGGGA	AANACAAANT	120
TGGTNNGTGT	ATTNGNGAAA	AAGATTTATT	ATAAGATTTT	TTATAANATT	TTNGGGGGGG	180
AAATATTTCA	AANAAAATTC	TGTAACAAAA	GGNTTTTTGT	TTTTTGTTNT	CCAAGNAGTT	240
NTCCAGGTAG	TTNTCAACAA	CNNANGCCNT	AGGGAAGGAC	ATCATATGGA	TATTTTCANA	300
GATTTGTTTT	TAGGAAACAT	TNTAAAGTCA	AGGTTAAGAT	GACAGTCAAN	TCCCANGAGN	360
GNGGTAACTG	TNTGCTTCTT	TATTTAAAAT	TCAATATTCA	GGATTTCATT	TATACTAACA	420
AGANTAATTA	CCATCTTAAT	GAAACATAAT	TTGAATAATT	TGCAAACAAT	NTGATTTTTC	480
TTGAATATAC	ATGTTACTAA	AATATTANGG	ATGCAAATAG	NTAATAAACA	AATAGATANG	540
NAACCATGGN	ACACCCCTTC	TGTGATTGGN	GGGACNTGGG	CATAAGGCTT	GTTTGTATAA	600
TAATGTTCAT	ATTTTACATT	CTTCCTNNGA	GGANGGTCCT	CCCTGTTAAG	AAAANGACTC	660
CAGGATAAGG	AGACAGCACC	AGTNTAGGAA	GTGAGGNTCT	GTTTAATGTC	TTAGCAAAGT	720
AGTAAATGNT	GGGACCATCA	GAATAGCCCN	TAAGGNTGTG	GANAGAACTC	TAAAAGCNTG	780
					ATAAAGAGGC	840

AGTATTGAAA GACNTNCACC AATNGAGCTG GCNAGCTAGA AGAGGTCG

888

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 903 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

CTTGGAAGGT	TTTTTTNNCA	AAANCCNGGG	NGGGTTTTTT	TTAANAAANA	GGNGAAAAGA	60
TTTGGAAACT	TTTTTTTTG	GTTGAAGTTA	NTTGGGGATT	GGGGGAAAAA	TTAAAAGGAT	120
TCAAAGTTCC	CATGGNTTGG	AAGTANAACT	TTTATTCAGA	AGNGAAAGTT	TTAATAATGA	180
AANATGTTTT	TTTGGATTNA	CGGNGGNGGA	ATTGGGGAGN	GGAGAGAGAA	GAGAGAGAGA	240
GAGGGAGAGA	GAGCCGGATC	CGCANTCGGG	GGTTTCTACC	GGCAGAGCCA	GGACGGAGAG	300
GGTTTTCGGC	AGCCGCNGCG	GGTTCGGAGN	TTTTAAGGTT	TNTTAATCTT	GGAAGGTGTC	360
TGANATNACC	CCGTTTCTTG	TCGGTGATGT	TTNGTACAAG	CTTTCATTTC	TTCAGGATTT	420
CGGAGCGCCA	ATTACTGCCC	CGATNTGGTG	TTTATGTTTG	CCCGTTCNTG	CGCNTGGCCC	480
CGCGCCCGCC	CGNGAGCTGC	GTTTTCCCTG	eccececec	CCGAGGGGGT	GGGTGGGGG	540
CCTTGGCCCG	CGCACCCCAG	CGCAAGGGAG	GGGTCCCCTT	CATTTTTTT	CATTGACTTC	600
AGCACCATGT	GATCAGGAAG	TCTGGCTCCN	TCCATTTCCC	NTCCCGACTG	AAGGGAAACA	660
TTGTGTAGCA	GCCCGCCGCG	GCCACTGGTG	GGATGGCNTT	CGCTGGCCTG	ANGTAGGGG	720
АТАААААТАА	CCGGCATATT	TAAGGCCGGA	GCAGGAATCC	CGGCGCTCAC	ACGCGGCCTG	780
GTCAGTTCCC	GAAGCCGCCA	GCAGCGCTCT	GCGCAGCGAG	CTGCTGCTGC	GCCAGCCAGN	, 840
TCGGGAGTGC	GGACACCGTG	AAAGACCTTC	ACCTATAGNG	CNTGGCAAGC	TAGAAGAGGT	900
CGT						903

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 918 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

	CD & & D & D & D D D D D D D D D D D D D	CCCTTTTCGN	ААААААААА	ANGGGCANAA	ACCCGGTNAA	60
						120
CNTATTNGTT	TTNGGCCCNG	AAAGTAAANA	ATTTTTTTT	NAAAANATGG	AAAAATTGAA	120
AAGGGANANG	CAGGGAAGGG	NGGNATTTTA	TNTCCAANTT	TCNGGTTCCT	ACTTTTTTCC	180
NGATTCTGTC	AGTTTCGCTT	TAAGCAAAGG	NGANGAAGGG	NNAGTTTCAG	AAGTTAGGCT	240
TGCCTGAGAA	AATTTCAATG	GGTGGCAATT	CTTAGGACTC	AGGACAGGAT	TCAGNGNGGA	300
				TCCGGACCGG		360
					CNNACCAGTA	420
-				GTTCCATTTG		480
					GCACGGAGCG	540
					AATCCGGAGG	600
					TTGGCTCTGC	660
					TCTTTCTGTG	720
ATTGGCTGGA	AGTGGTTAGT	GACGGAAAAC	TGTGGGCTTT	ACCAAATGTA	AAACGGAGTA	780
					AGTAGTCTCT	840
CTGGCAGTTT	AAATACAAAC	NATCTCTTTT	TAGGCATTGT	TTTGAAAGTC	CCCACAAGGN	900
TTTGCAAGTA	ANAAGTCG					918

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 309 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

							
,	AGAGAGGGTT	TAGCACAGGC	AGCNTATTCC	CAGTTTGTGC	TGTAGAACTG	GAACCTCAGG	60
(CCTCATTCTG	AAATNTGCAG	CCNTCCCCAG	CATCCTTCNT	GGCACAGCNT	GGCACAGACN	120
•	IGNTAAGTGT	CTATTAGTGA	СТААТАСААА	GGAGTATTTC	AGAACGTTGG	CACATCTCAG	180
(CACGTTGCAA	CTGGCTGGAG	CTGGTTGAGC	TCTTGCTGCT	TCCATATCCC	TTTGTAGCTG	240
(CTCTCCACTT	TTCTGAACCC	CGGGTCCATG	TGAAAGTCCC	CACAAGGNNC	TTTGCAAGTA	300
	GAGAAGNCG						309

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 904 base pairs

51

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24: TTTCATTTAA AACNCGGGGG NTGAACCCAA TCTTNANGGT GGCAGTGNGG NNGATCTTAA 60 CGGTTTTTNA GAAAAAAAN TNCTTCGCTC NCACCCCCAA GCCTCCCNTT CTTANCAGCT 120 TTTTTATANG AAAAAGATG ATAACGAAAT TTTAAAAACC GTCGTTAGAG GAAATGAAGG 180 TTCAGCCGAC CATTACCTGA NAGTAATGAA GGTNTTCCGG AGGGTTGCCT TCCAATCCCA 240 GATGGATTTG AGTTTCAGGA TCAATTCAGT TACCGNTGAC CATCCACCNN CCTCCNGTAT 300 AATCATTNGA TGAGGATGAA TGGTGAGTGA GTGATGATGA TGATGATGAT GATGAAGGGA 360 TGAGAAGNAC ACTATGATAA CAAGTGTCTC AGTCCACATT AAGGTTTGCC TGNAAATTAG 420 TGCATAAGCC ATGGGAGACA AATTCTTTTC NNACACAATT AATAGTNTCT TANTCCTTCC 480 CATCTTCTCT GCCCCATTCT GTTTTCCACC ACAGGTCTGC AGCGGGCTAC AGCTTCCAGT 540 CTCCAAGCAA ATACCAGAAC TGGAGGAGAA AATTCCAGTC CAGTGAGTCA TGGGCAGGGG 600 GAGGGGTGGG GTAAGGGCAG TGGCGCTCAT TCCTNACATG GTGTCTTCTC TTGCCTAGCC 660 720 ACTGCCAAGG GATTTGGGAC TTCTCCATCT CTCTCTAA CCTGAAATCC TTAGGATTCT 780 ATTATTTCAC CGGACCAGAG CTGTAGCAGA GATGAGCTCC AAGTTTGAAA TGAGAAAGGG 840 GAAATTGAGA GCTATGAGCT AGGNGCGAAA GNCCCCACAA AGNNTTTGGC AAGTAGAAAA 900 904 **GNCG**

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 883 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

GGGGGGGGAA ACTTNTTTAT NTGGAAAANT TTTGTTTNGG CGGGNAAGGA GTTTTTAANA 60
ANGTTAANGG AAAAAGCTTT TANTTAANAT GACCTTTTTG GGGGAAANAC AAANTTGGTN 120
NGTGTATTNG NGAAAAAGAT TTATTATAAG ATTTTTTATA ANATTTTNGG GGGGAAATA 180

TTTCAAANAA	AATTCTGTAA	CAAAAGGNTT	TTTGTTTTT	GTTNTCCAAG	NAGTTNTCCA	240
GGTAGTTNTC	AACAACNNAN	GCCNTAGGGA	AGGACATCAT	ATGGATATTT	TCANAGATTT	300
GTTTTTAGGA	AACATTNTAA	AGTCAAGGTT	AAGATGACAG	TCAANTCCCA	NGAGNGNGGT	360
AACTGTNTGC	TTCTTTATTT	AAAATTCAAT	ATTCAGGATT	TCATTTATAC	TAACAAGANT	420
AATTACCATC	TTAATGAAAC	ATAATTTGAA	TAATTTGCAA	ACAATNTGAT	TTTTCTTGAA	480
TATACATGTT	ACTAAAATAT	TANGGATGCA	AATAGNTAAT	AAACAAATAG	ATANGNAACC	540
ATGGNACACC	CCTTCTGTGA	TTGGNGGGAC	NTGGGCATAA	GGCTTGTTTG	TATAATAATG	600
TTCATATTTT	ACATTCTTCC	TNNGAGGANG	GTCCTCCCTG	TTAAGAAAAN	GACTCCAGGA	660
TAAGGAGACA	GCACCAGTNT	AGGAAGTGAG	GNTCTGTTTA	ATGTCTTAGC	AAAGTAGTAA	720
ATGNTGGGAC	CATCAGAATA	GCCCNTAAGG	NTGTGGANAG	AACTCTAAAA	GCNTGATATA	780
ТАТАТАТАТА	TATATATATA	TATATATATA	TATATATATA	TNTATATAAA	GAGGCAGTAT	840
TGAAAGACNT	NCACCAATNG	AGCTGGCNAG	CTAGAAGAGG	TCG		883

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 924 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

TTTGGAAGGN TTTTNAGGAA AGAAANTGTN TTTNAGGGNA GGGAACCCTA TTCCGACGGG 60 TTGGGGGAAA ATTTTGGGTT GACCCTTCGT TAAAAAGGGT TNCGGTAAAA GGGGGCNANG 120 TNTTNNAANA AAAATAATAG TAATAGTAGT AGTAATAGTA TTAATAATAA TAATAATTGC 180 AGGAATCCTG TNACCNTCAG GAATTGGGGA AGTAGTTTCT TATTTTAGGA CCAGGTGTTT 240 TGTTTCAGGG GAGTTATTTT TTGTTTTGTG GATGGGATGA GTGGTNTCAA TTGCTTTNAA 300 AAACCTGTAT TAGTTTTGGC ACAGTTAGTG TGTNTCNGNT TCGTTNGAGG AGTTTGAACT 360 GGATGGTAGG CAATGGNTGC ACAGATTCAT AGTGGCCAGA GTTAGAGTAA ATGCTTGCGG 420 AGCAGTCAGA ATAGATGAGA NTCAGGGACC CGGCAGATGA TGCAGGGAGA ATGTAAGAGC 480 AGAAGGTGGT GGGTAGCATG TGGAATGCAC ATTTCCAGGC GTGACATGAN TCGGAACAGC 540 TGTGACTGCT TAGACCAAAG TGATCCCATC AACACGGCCA TTCAGTAAGG AAGGGTCATG 600 GGNTCCCCCC NTCCCTTAGG ATTNACATAC AGATAATGAT TGATTGGTGG ACCAGGGGAA 660 TGGGGAAAAA TGTCNTTTTC GTTGGTATAG TCACTGGTAG CTGCCCATGT TTNTATAAAC 720

53

AAATTNTAAA	GAAANTCATT	GGTTCATACA	CGTAAGAAGA	CATCAAAACA	GAACTGAGGC	780
AAGTTGGGAA	GAGAAATGGG	ATTAGTAGGA	GAGGGTCAAG	AAAAGGCAAA	GGTATGTGCA	840
CATGCATGAA	TACATTGTAT	ACATGTATGA	AAGNGCCACA	ATGATGANTT	ACCCCANATG	900
GNNGTTTGGC	AAGTAAAAGÁ	GTCG			•	924

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 482 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

TCTCTCCTGA GGGGGGTTTT NTGGANGAAT AGAAGAANAN ACCNCCTCTT TGTTTCNTCC 60 TGTGGNGNNC CCTGCTGNTA AAGNNGATTT NCNCGGTGNT ATACANNTAA GAAGGAGGAT 120 CTCTCCCCC ATTGTNANAG AACCCCGTGT GTGGGGAGGG GGTGTNGCCA CNANCCAGAN 180 NTGGCCCNNG GGTCNTCTCC CCACTCNTNT GNATAACNTC TNNCCTCCAC AAANACCCCA 240 NANAAAANCA CCCCNCNTGT GAGNNCNGCA GANGCGCCCT NTNACAAGAN AAGAGNNCAT 300 GTGNTGTGGC CCTGTGCTNN GACANTNTAN ACTCTTCTNT NGNGGGGNGN GGNCTGTGGT 360 TTTATAAGAG NGTGTNNCCG TGGGGGGGAG AGTANTCNTT TTATATAGAG AGANAGNGNC 420 CTGTGNAAAC TNCCTCTGAG AAGAGCACCN TGGTGTTCTC TCCCATCTNC TAGNAGGGGA 480 482 GG

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 460 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

TAGCTTCTCT GTGAGGGGTA GAACTCAAGC TCCCCCATGA ACAGGCTTTG GGGTTCCTGC 60
CATCCCCTGG GGCTGTTCAT TAGGTGCCCA CACAGACTTC TCATGCCATG ACTCACACTT 120
GACGTCACAG AGCACACAAA GAGCACAAAA GCAGGCTGAC CACATCCGGC CATGCACACC 180
CCTTTAACAG TCCCAAGCTT TCTCTCTCTC TTCTAAGTCA CTGCCCTGGG AAGACGGTTT 240

_	4
•	л

CATACCCAAG	CTGATGTGCA	CTTATTTCTT	TGTGTTATTG	CTCTGACAGT	CTCACAGTGC	300
TCTGCAAACA	CTCTGCATTC	GCCTTTACCA	CACCAGAAGA	AATTCCTCTT	TGTGCAGGGA	360
AAAATACATT	CGTCTTAGTA	GCTTCTACTT	TCCAGCTTGT	CCCTAGTCTG	TCTGATATGT	420
GGTTACGTAN	TGTTAGGGGC	CACGGAAGGG	GGGGGGGG			460

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 465 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

TCCCAAGACA	AGAGGGGCTG	AAGAACGGGG	GGGGGAAGAA	TCAGGAGTGT	GTCGCTGCTT	60
CCCACATAAA	GACGGCACCT	ANATCTGTCT	CTCTCGGTGT	CTCCTCCCCA	CCTGGGGCAG	120
GGTGAGCTCT	CTAGACAAGA	GAGAGACTGT	CACAGAGAGA	GAGAGATGTG	TCACCCCTGT	180
GGAGATCAGA	GNCNCCGACA	CCTAGGGGAC	AAATGGGGAT	CTCTTTTTTT	TTTCTCTCTC	240
GAGACAGGGG	GTCTCTGTGC	AACACTTGCT	GTTCTGGAGA	TGTTCTGTAG	ACCAGGGTGT	300
CCCCCAACTC	AGAGAGCCTC	CTCCTTTNCA	CAACTGTGTC	GCCGCCGCCG	ccccccccc	360
CATCACCAGG	CTATATTTAC	TATTATCTCT	ATTACTATTG	TTGTGTGTTG	TGTTGAGACA	420
GGATGCTCAC	GCATAACCCT	ANCTATCCTA	GTGATAGACC	CCACC		465

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 568 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

TNNCNNTTNC CTGNGGCCGN GTANCTCTGA GNGANAGTNT CCCCGAGAGG GGGGTCTCA 60

CNNTAGNTNT ANANAGTATN GNGTGCTCGA GTTTNNAGAG AGCTCTCTT NNNTCTCTCT 120

CCCCNGAGCT ATNGNNTTAG GGNTATGGCA CNNCNCGTCT CTCNNCNCCN TATNGAGNGG 180

TGNGNTATNG GGGNGAGAGT NTCTGCCCGA GACCCACATT CTCNGAGTNN GGNAGAGTNT 240

GGGAGACACA CANCTCCGGG NANATCTNTC TCCNCCCCC CAGGGGCGGT GGTNCANATN 300

55

GNCNACAGAG	CCNCNGNNTT	NTATGTGGAG	AGGGGATATC	NCANCNCACN	CCCNGAGCAC	360
AGGNTCCACA	CNCAGAGANG	TGTCTCTCCC	CANCACACAA	GCACNTCTGG	TGAGNTCTAN	420
GTTTTGNGAG	AGACNNTGCC	CTGTCTCCCT	TTTCCCCGCT	CTNACACACA	TGAGAGGGTG	480
TGCACATCTT	CCCCATGTCC	СТСТСТАААА	CCNCCCCAGA	NTTTTGNGGT	TNTGTGCAAN	540
ACCCTTTTCA	CNCTCANGGG	AGATNTTT				568

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 920 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

GAGGGTTANT	TGGCCCAANT	CGGCAATCAT	CCNGGGAAGA	AGANGNCAGG	GTTTNGGCAA	60
ATCGGAAGAT	CAAGGACGCA	ATTCGNGGGG	GGGGATGGAT	AGNNGCNAAA	GGGNACNGAA	120
AGNNGGATTG	GNAGGNAAAA	TTAAACGGGA	GTTGTAATCC	AAAAGGACGA	CAAGGCAAAA	180
ACAAATCCGG	NAGTAAGCAG	GAAGCACAGT	GAANTTGGGG	GAGGCAGNGT	GGNGNAANTA	240
AAAAATNGTT	TTTTTAATCC	CAATANGGTC	AACANGTAGG	CAANTGGATN	TATTAGATAT	300
TATATCTTAG	CGCAAGNTTN	TCACCCATTG	GTCCAACCCA	TATAACATGG	CGGTGGTNAA	360
TNTNTGAGCN	TGGCACAATT	TTTNACCCAT	TAGTTCCCAA	GGCAGATCGC	CACCATGCCA	420
GAANAAAATC	CCAATTCCAT	GGTGGCCCAG	TGTGTCCAGC	CACCAATANT	TTCTTGAATT	480
CAATTAAATC	ACCACATGAA	GGAATACATA	ACACAATAAC	ATCTGATCCA	ATTGATAAGA	540
TATAATTTGC	TCACNTAGAC	ATACAAAATC	CTGTACATTC	CATCTCTTAA	GAATATTCAT	600
AACAAACTAT	AAATGTGTAG	AGAGGAATTT	TAATATCCAC	TTCCATGTTC	TCTTGGCTGC	660
TCCTCTCTCC	CAGTCTCCTC	стсстссттт	AAAACTTTTT	TCTCCCACCC	ATCATTTTTT	720
TTTGTCCNAA	GGACGGGCCT	TGTTNTATCC	TGNACCTGCN	TTCGTCTGCA	TAAGGCCATC	780
ATCCCACAGG	CAGGACTGGA	GCAATGGCTC	ATTGGTTAAG	AGCACTTGCT	GATCTTGAAG	840
AAGACCAGGG	TGCAATTCTC	AGAGCACTNC	ACTGCTNCAC	ACTGAAAGAC	CCCACNNGTA	900
GGTTTGGCAA	GTAGAAGAGA					920

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 176 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

(b) Topologi. Time-	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
TTGACCATAT TATTTTATT CACGTTGGGA CAAAAGAGCA AACGCAAAGG ATAGGAAACG	60
AAAGGAATTA ATTTCCTTTC AATAGAGATA TCGGTTTTTT TTAGAGGGAA AAAATTGAGT	120
ATTAGAAAAT AAAAATAGGT TTCGGAATTT CCGGAAAGAC CACTAAATTG TAGGTT	176
(2) INFORMATION FOR SEQ ID NO:33:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 336 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
AAAAGGGNTN CCGAANAAAA ANAATTNGGA TCTTNTGGGG GCCCNGAGGN AAAAAAAAANA	60
NTAANCNGGG GGNGACCCAG NGAANAGACA AATTNTTTTN CCNGGAGTCC TTGGGGTGNN	120
ANGCCAAACN GNCGTTTANN GNAANNNGNC GNGNTACCNC TTCGGAGNGG GGGCGCTGNA	180
AAAGAATNGT GAGAATNCNG TTACNNGTGT TGNTTNATCN GAGATAGTNG TNTGTAACAA	240
CCCCGATTCA GCCNGAAAGT TACGCATATG CGNANCGTTG TGTGAATCGA ACCTGGNNAA	300
AACAGACCCA TNGNCAAGNG GCAGACCNAA CGGAAC	336
(2) INFORMATION FOR SEQ ID NO:34:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 92 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
TGAATAAGGG TACAAAGATT GTGTTTCAGA GGAGAGAGGT AACAAGAAAA GACTCCTAAC	60
GCAATGGCCA GAGGGCCAAG AAAAAGGGAA AA	92
(2) INFORMATION FOR SEQ ID NO:35:	

(1) 5	SEQUENCE	CHARACTER	ISTICS
-------	----------	-----------	--------

(A) LENGTH: 838 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

GGNGTNATTT	TCTTCTNGTG	AANTCTTTNC	CAAATCCGNG	GGTNTGNCCC	ANNGCCCCNN	60
TTTATACACN	NNATTACNON	TNNNCCAAAA	CNCTATATGT	NTCGANATGT	CCCATNTTAA	120
ANATATGNGA	CTCAGTTTGA	GTNTCCCCAN	NTTGGNGTTG	GGGTATNTGG	GTAAANACAN	180
NGACCCTCTN	NGGNGNTTTA	TTTATATATN	NGNCCCNATA	TAACNCAGAG	ATCTGTGTAA	240
AAAATATNNC	NNTTCGCGGG	GNGGGAGATT	TCTCTCTGNN	GTAGNGCNCT	CNNCTGAGAN	300
GCACAGNGCC	CTGTGTTNTN	TCCCCCTCNC	CGAAAANAAT	TTTNTNCAAA	AANANAAT	360
ATNNACANAC	CCCNANAAAT	ATNCCCCTTN	TCTACCNCCC	CTCAAANACA	CCNCNNTTTT	420
TTTTTNCCCC	TCAGAAATNT	TTNTAATNTG	GGNNAAAAAA	ATCTNNGNTG	GNNTTNTCCC	480
CCCNTTTNNA	GNCGCCCCCT	NNAAACCCCC	NCTNTTNANA	GANAAATATG	TANACTCNTA	540
TTTAAAAAAAN	AACANTTTTT	GTTNGGGCTN	GGGTNTNCCA	NCCCTTCACT	CTCTTTGTGG	600
GTNTNCCTTN	CCATATNCCC	CCTNTTTGAG	ACNTTTAAAN	AACCCTCTCC	CTAATTCCTC	660
CNCCCNCTGT	TTCCCCCTTT	TNNAAAAACN	TCNGGCCCCT	TNGCCCCCCT	TTTCTNACTC	720
CCTCTTNTCC	NGAGATTTTT	TCCTCNTNNT	NNCTAATTCC	NTTNTTCNAN	TCTANATNNC	780
NNTGTTNCNA	NCGCANGNTN	NCCCCNCCTT	NNNCTNAATT	NTNGGGNAGG	TTCCAACC	838

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 314 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

CAAACCAGAA ATGGCCCAAG GGTCATCTCC CCACTCAGTA TGAATAACAT CTAACCTCCA 60 CAAAAACCCC AAAAAAAAC ACCCCAGATG TGAGAACAGC AGAAGCGCCC TATAACAAGA 120 AAAGAGAACA TGTGATGTGG CCCTGTGCTA AGACAATATA AACTCTTCTA TAGAGGGGAG 180 AGGACTGTGG TTTTATAAGA GAGTGTAACC GTGGGGGGGA GAGTAATCAT TTTTATATAG 240

600

660

58	
AGAGAAGAG ACCTGTGAAA ACTACCTCTG AGAAGAGCAC CATGGTGTTC TCTCCCATCT	300
ACTAGAAGGG GAGG	314
(2) INFORMATION FOR SEQ ID NO:37:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 226 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
AGGGGGGAA ACCCCTTCGC CNCGGGCCTA TCGNAANTTT TNNTCCACCG TAAAANATTT	60
NCCANGNGCN CCATGTANGG ATTGNGGGNG TAGTGGGGGG AACGATTNTG GAGGGGCCTA	120
AAAGGNANAT AGAGGACGTA TTGTATTTGG TTTTGCNGAG CCAGTACCTT NGAAAAAGGT	180
TGGTATTTTT GATCCGGCAA CAACCACNGT GGTAGNGTGT TTTTTT	226
(2) INFORMATION FOR SEQ ID NO:38:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 843 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
GAATTAAAAC GGGAAAGATT GGAATTCAAT TTCTTACAGC CAAAAGCTAG ACCGGGCATA	60
TAGGAGATTA TTTCGATTTA GCACCTTCCA AAGCCTGCCC CAGATTTAAA GTTTAGGGGT	120
ATTATTTAAA AGCAGGTTCC GGGAAGTTCC AAGATAGGCC TAGAGGTAAT GGTATGCAAG	180
CAGTCCTAGG TTTCAGAAGA GTTCAAACAC GGGTCTTCAG GAAAAGACGG AAAGTGTAGA	240
TTGATCAGGC CAGCAATCAT ACAACAGTGT TTGTTGTAGT ATTACCTTTT CTAATGGTTG	300
TCACTGAAAG GAGATTATTC TAGGTTTGGA GATACAAAAT TAAAAGAATA AACCCCAAAA	360
GGCCACAGAC CCAGGGTAAG CCCTGTAGCC AGGACTAGCA GGCCATAAAG AAAAAGGAGC	420
ACAGGAAACA CTGTCCAGGC AGGACTGGCA AGCCATAAAG ATAAGGAAAA GGAATGCAGG	480
AACCAGCCTG AGTTAATGAG AAAAATTAAT GGGACGTCTG GCAGGAAGAC ATCTCCCCCT	540

AGCACACTCC GGGCCATATC TCAACTAGGT GTCCTCCAGC CCCTGACTTA TAGCACGTAC

TCTATCTGCT TTGTTATCAC AGATATGTTT GAATGAGCCA ATTGTATGTA ACCACGCCAA

59

ааа						843
TTACATCATG	ACCAGTCTGG	TCCTGTTGTA	AGACATTGGC	AAAAGAGCCT	GAAAACTAGA	840
TATCTTGGGT	GAGACACGTG	TTGGCCCGGA	GCTTCGTTAT	TATTAAACGA	CCTCTTGCTA	780
AACCCCCTAG	CTTTGTCTAT	ATAACCGTCT	GACTTTTGAG	TTTCGTGTTC	AACTCCTCTG	720

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 943 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

TTTTTTTTT	GGAAAAACGG	GTTTAATAAG	GGGNANGNAT	CCGAACCCCC	ACTCGGGNGA	60
AAGGAAANAA	AANAATANGG	GGGGAANAAN	GANTTGGNGG	TAATGCTTTA	CCACGACAAA	120
CTAGTCCCAT	TNTTCGGGGG	GGGAAAGGGA	NGGCATGAAT	AATGGGGTGA	AGGCNGGCAC	180
CCACCCCATT	TTTTCGGGGG	TAAGTCNGTT	TTTTTTTGGT	ANATCAAAGT	TCCTTTCGGA	240
ANATGTCCGT	TTNATCCAAG	GNGTTTTGGG	TGTTNNAATT	AGNATTTNNG	NGAGTTTCAA	300
AAGTTTGTGT	TCNNGAGNAG	TTTGTAATTG	GTTCAGCNGG	TTTTTTTGTG	NCAGGAAAGC	360
AGACCCNTGT	TTGGGAGGGA	GATCCAATTT	TNTAGTTCCC	ATTTGGCTGT	TTCCTTAGTA	420
ATGGGTCTGC	AGACAGTNTG	AAGTNTATGA	GTTGGTCCCT	TCTCNTATCA	GCCCGGGGTG	480
GCATTNTGTC	CAAAGGAGGA	AATCCAGCAG	CCAGACTAGA	TTTCAGTNTC	CTTTNTAACA	540
GGGAAGTTAG	ACACACCCGG	CCAGTTGCAG	CCTTTCCACC	CCCAANGAGT	GAACCCTGCC	600
NTTTCAGNTT	TNACCCAATT	TACTTTCGTT	GGCTTAGCAT	GCAGANTCTT	TGGCTCCATG	660
CCCGGAGCAG	CTGACATGGG	AGGCTTTGAA	ACTTCCATTA	TCATAGAATG	GCAGGCAGGT	720
CNTTTGCGGT	TAAAACCAGG	AGCNTGGGCC	AATGAGATGG	NTCANTGAGC	AAAGGCGCTT	780
ACTGCCAACC	CTGATGCCNT	CAGTTTAGTN	TTGGAATTCA	CAGGGTAGAA	GTTGAAAACC	840
TTTGACTCTT	CAAAAGTTGT	CCTGTAGCAG	GGCAGTGGTG	GTGCANACNT	TTAATTGNNG	900
TACTTGTGAT	AGTCCCACAA	GGANCTTNGC	AAGTAAGAAG	TCG		943

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 904 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SI	EQUENCE DESC	CRIPTION: SE	Q ID NO:40:			
ACTTCTCTAC	TTGCCATGGT	CCTTGTGGAA	TCTTTCAATC	TGTGTCCTTA	GAACGCTAAG	60
CTAAGACTTG	ACCTTGGCTC	CCAGGGCGGG	CTGGGACTTG	GCCACCCCGT	GAAAAGGGCT	120
CTTTCTCAGG	CAGGTGTTTT	CGTTTAAGAA	AATAAACCAT	CCAAGTCCGG	GCAGACTGAG	180
AGCTACACAC	CCCTCCAAGC	CAATCTGGAG	TGGCTCTGCC	CAACCCCCAC	TGCTGGGAAA	240
ACATGGCTGC	CTCAGCACCT	CCCTAAATGA	AGGGAACAGA	GTGTCTCCTG	TGGCCTTGAA	300
AATATTAATA	AATGAGACTT	AACCTGATGG	CTCAAGGCTC	TCAGGGGGCT	TTTTTTTGTT	360
TTTACACACT	CTGTGGAGCT	GTTACAAGGT	CAGTCAGTCA	TTTGCATGGG	ACAGACAATC	420
TGTTTTAATA	TTTTATATGT	TTGTCTTTTA	АААААССТАА	GATCTATATC	TTTTTACATT	480
	GTTCAAAAAA					540
	TCTCTCCTGC					600
	TTTTACCCTG					660
					CTGACGGGCG	720
	CACCTGCCTT					780
					CCACTGTGGG	840
					AAATTTAGAA	900
AAAG				•		904

(2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 917 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

AAGGGGGGNG AAATTTAGN	G GACNAAAATT	ATTCCTTAAG	GGCCNCCTTT	CTTCAGGGAA	60
NANGGGGGAA GGAGATANI	N CGGCCCTTGT	CCGCCTTTTN	GGANACGATA	GGGNCGGTTC	120
GGNTTGGAAA TTTTTCCTC	C AAAATTNCCA	ACAAAAATNG	TTTTTCCCCT	TCCTTCAAAA	180
AGAAAATTGG TTTTTTTGN	IN GGCTTNGGGG	NGTCNGGAAG	TCANAACCCN	GNGTATTATT	240
GCNTTCCAGC CCCACCCGT	N AGTTCATTGG	TAATTCCTAT	TCGTTCGGNT	CAANATAATT	300

61

CGGNACTTCC	GCTTCCNAAT	GGATCCCTTC	AANGATTNGG	TTTTTCCGGA	TTATCGCAAG	360
TCCCCNGGTT	NTCCAATCCG	GAGCGCNTCG	GATATTTCCG	GNTNTCCGTG	CNTTTCTAGC	420
CCCACCCCCA	NGACCACCNT	TGGTTNTTTA	GGTGGGTCTT	TGATCCGCTT	CACGTTGCTT	480
CAGTGACNTA	GATCCTTNTT	CGGTCTTTCC	GGCTCATTTT	AGTCTCGAGT	TATTCTCAGC	540
TGTGTTANAA	AAAAACANNA	NAANAANCTC	CGCCTCGCCC	TTCCGNTTCG	GTTCTTTCCG	600
CNNGCNTTCG	GGCGGGCNGT	NTCTGCCTTC	TCCACGTGAC	GNTTNTTCGG	CNTCCCAGTN	660
ACCCCCTCCN	TCCACGCCTT	CNTCCAGNTT	CAGCTTNTGT	GCTCGTCCCG	GNTGTGCCGC	720
CANNTNGTGT	CAATTCCNGA	cceceecee	GGCCGGGCAG	NTGGGGNATN	TAGGGCGGC	780
AGACAGTCGG	CCNATCTCCA	TAGGCCGTTC	CCTATNCTNC	CCTGATTTTT	TTAAACCATT	840
TCCAAAAGCT	CGCTGTCCTC	TTTCCGGGNC	TTCCATTNNG	GNGTNTCCAN	AAGGAAGNAA	900
GNCNAGTAAA	GGANCTC					917

(2) INFORMATION FOR SEQ ID NO: 42:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 835 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

GGNCCCCTAN NGATTGGCCN TTGATCAAGA NGGGACCATC CTGNACCTGG NGGTNGNTGT 60 TTCCGCTTGG GACGGAGATG GTTGTTTTTG CGGAGTAGTT TCNGNGGGTT TGAGGCGCGG 120 NTANTTTTTT TGTTNTGGTC CAGACCGTTT TGATTTAGCC GCNGCNGACA GTAATGGGGC 180 GATACCTCAG NTCCTTGTGA ACCCAGGGTG CAGNTGGTTC AGCAGGATAG ATGTACAGCC 240 TCCGAACTTT TCAATTCCCN GACTAACCAT TGATGTCAAG TTGAGTGTTT AAATGCTTGC 300 TACCAAGCTG GTTGGTAACC TGAGTTCAGT CCCTGGAACC CACATGGGGA GAGAGAACAT 360 GCTTCTGTAA CTTGTCCCCT AACTACCCCC AATACACGCA TGCGCGCGCG CGCGCACACA 420 480 CAAACAATAA AAGAAAAAA TAAAATCTCA TTTAATTTTC ATTAGTATAA TACCTTGATT 540 CTTTGAATGA CAGCAAGATA AAGTAAACCA AAGCACACTG TAGAAGGGAT TACGCAACTG 600 AAAAGTGACA ATCCTTACTC CAGCCCTTCC TGCTATGTTG GCAGTCTTGC TGGGAGCCAT 660 TGATCTAATC AGTTTTATTT GAGGCAGGGG CTCATGTAGC CCAGGAGGAT GGTCAAATCC 720 ATAGCTCATC TGAGGATGAG TTTGAACCTC TGACCCTCCT CATTCTCCAG TTCTCCATAT 780

CCTGAGTGCT	GGCACTGAAA	GACNCCACNA	GTAGCCTTGG	CAGGCTAĞAA	ANGNT	835
(2) INFORM	ATION FOR SI	EQ ID NO: 43:	:			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 924 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43: GTNTTTTNGC CGNGGGAATT TAAGGGNGAT TTGGAGACTT TNGAATTTTC GAANGTTCCA 60 AAATAGANNT TNAGGNCAAT GGGNTTGGGG CAGNGGNGCT TTTTTAAATC ANANAAGTAT 120 TAGATTINTA TGGAAACCCT GGGGGTTCCA GTTTAATCCC TTCATCATCT TGAAATATNA 180 CTTGTTTATG GGAANGGTGN GATAGCAGCC NGAAACAGAG GTTTTTATTA TTACTGTTAG 240 AGANGAGGAT TGGGGAATAG AACAATGAGA GTCTTGGTAA TATTNTTCNG GAAACAACNG 300 ACATAATTGG AACATTAAGG AAATATATCC ATGCATTCTG TACTTGCAAA TTGCTCCAAG 360 GAAGATGGAG AGTATTGTAT TTCAGATAGA GATANGACTA TACCTGTTAT TTTTTTCATT 420 ATAGCAACAT TAAAAAAGAT AGTAATCTAA TTTCACATAA CCATTACTAC TAAAGTATAT 480 ATGTANTCTT TGTTTATCAG GTTTTACTTC TCAGAAATTG CAGCATCTCC TACAGAGCCT 540 GTCAAATGAG ACNGCATAGA TCCCCAGAGA ACAGAGAGAC TGGGAAATCA TTGAAATTAC 600 ACAATCCTAT CCCAAATGTT TGCGTAGACT CAAGCTCGTA TCAGCTCATA AGATCAGTGT 660 GTGTGTGTGT TTGTGTGTGT GTGTGTCCCG CACATGCTTG AGTATGCATG TGTGCATGCA 720 TGTGTGTATG TCTATTGCAT TAGTAGAGAT GTTAAGGTTG AATGTATTTT CTGCTCATGG 780 TCATTGTAAG ATATTGTGCT GTATGTGATA AGAATCAATG TAACAAGGCT GGAGAGATGA 840 CTTCAGCTGT TAAAGGCTAG ACTCACTACC AAAAATAGNG CNATCAGTGT GAANTTCCCC 900 924 ACAGGAGCTT AGCAAGNTAA TAGG
- (2) INFORMATION FOR SEQ ID NO:44:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 435 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

63

GATTCCAGAG	AGAGGAGTGA	ACTGGCAGAT	AAGGCAGTCA	GCATAATGGC	TTAGATACCA	60
TGTGCTTTCG	CTCACTATGC	ACCCATGACA	CAAGATCACA	GGGTACAGGC	CTGGACCATG	120
GCAGAGTATA	CACTGGTTGG	GTAAATGAAG	AGGAGAGACA	GAGTGGGAAG	TCGGCTTAGT	180
GGATATGGAC	TTCAAATTTG	ATGAACAAGC	AATTCAAATG	AGTATCGTGG	GCTTGANTGG	240
TATGAAGACC	CGTTTGCAAA	GCAGTGGTCA	TAAGAGAGAA	AAGAGAGAGA	GAGAGAGA	300
GAGAGAGAGA	GAGAGAGNAA	GAGAGAGAGN	GTGTGTTGTT	GTTGTTGTTG	TTGTTGTTTA	360
TTGGTTNATA	ACAANATNTA	CCTTTGGGCN	CTTTNGAAAG	ACTNTNCACA	AAGGAGCTTG	420
NCAAGCTAGA	AAGGT					435

(2) INFORMATION FOR SEQ ID NO: 45:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 919 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

CCCCNGTTAC CCNGANGTTT ACNNGTTGGA TTAAANGGGN NNNAAAACGG GTGGGGNNAA 60 ACGAATTTTT TGTNCNCGAC CCNTCCCCGG TTGGGGNTGG NGAAATAAGT TTTAAGGTGG 120 GAAANGGAAA GGAAATAAAA ANATTTTTT TNAAGGAAGT TCCTTNCCAC AAAAAANTNG 180 NTTNGTTCAG TAGGGTTCGG GCCCGGGAGG NAAGGCAANN TTGAANTNCA NTTAAAAATT 240 300 NCCNGGAANG TACCTTGGGN AGGGATTACC NTGNAATTTN TTTAAGAAAA NNTGGGTNTT TTGGGGNGAT TTTNNGCCCC ACCTGGACCA NTTTNGGGAA ANGCAGAAAC GTTCCAGNGN 360 GTTTTCCTTC CAGAGAGGG GTTAGGTTCC TTCAGGGGNT TCCAAGGACG GGGACCAGAA 420 NGTGAAACAA ACCAGGNTNT GAAGAGACCA GNCGGGGGGG GGGGAGGGGG CCGTTNTAGA 480 TAGATTGAAC CTGCAGAGTT GCCTGTTACC TGAAGTTGTC ACCNTTTNAC CNACANACTT 540 NATAAANNTN TGNTGACCAT NTCAGCAAGT GTCACCTTCG TTGCCAGGAC ACAAGTTTCT 600 TAAAGCTTAT TTCAGTNTCA CCCGCTGGGG AGANACATTC AGGGCATGGG CGTCCCCCAG 660 CCNTCGGGGA GATGTGGGA GGTGGCGATG TGGGAGGGAT TCGAGAGAAG AGAATGCTTA 720 AGAACCATCC AGGGAACCTG TGCGTTTGAA GGTNTGAGTT ACACACAGGC TGCTCAGGAA 780 GGAGCTAGAG CTCCAAATAG GAGCTGTGAT CAGGCTGTGT GTGTGTGCTG GAAGGGCCAG 840 TTAGCAGAGG TTGTNTTGAC CACCCAGNCT ATTGAATTGN GNNTNNTCCC AAANGGANNT 900 919 TTGGCAAGTT AATGAAGTC

(2) INFORMATION FOR SEQ ID NO: 46:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 915 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46: TTTTTTGGAA TNTTGGAACC NCGNTTTGGA AGAAGACCTT TNNNNTNCAA TTGGGGAANA 60 ATAACCGGGG CCAAACCTTG GGAAGGGGGG AAAANATTCC NGGGGGGAGG TAATTTNTTG 120 GNNGGNAGGG GNGGAGGTTA NTATNNCGGT TGNGGAAGTT TGGAATTGTC CNAANGGATT 180 TTGTTTAAAA AGAGGNTTGC NGGGCNTGNT CCCTTCAACC ANGAGGTGGG GCCNTTGCAT 240 TTATTTTCCT TTTAACNTTT GAAGGTGAAG CCGGGTTATT TNTTTGTCCT TCGTACATTT 300 ATCACCACGG NGTTTAAAAN GTNTTTTAT TTCGNTTTNA TGGAGGNGAG TTAAATNTCN 360 ATTTCCAATT AAACCTCNGT GAAACCTTCT TTGATCCTGC CTNGTGTTTC CTGAGTGNGA 420 CATACCTGCN TAGTTNTGGC CTTCCCTTTC CTTNTCGTCC TTCTTCCATT CCCTTCCGAA 480 GATTCCTGAA GGAGTGAAGG TTTGGGAAAG GGGGAGGGAC AGAGTGTCCA GGGCTTGCGT 540 GTCAGTAGAC ANNAAANAGC CGNAGGGCAG CCCGGGGTGA AACCACAAGG CAGAGGCCCC 600 AGGGTAGACA GCTGACAGGC CCGCCCACTT TGGCTCCTGC NTTCGCTGTC TCACCCCAGA 660 ATTTTCCTGG CAGGAGTGGA AGAAGTTGGT ATCGAGTCTT TGAGCCCTGA CTCATTNTCT 720 GTCCTAGCTG GGTGCTCCTC AGTTACATCT CCAAGTGTCT CTCAGGGGTT CAGTGTTAGC 780 CACATGGCTG CCTCAGNTCA AACCGGAAAC CCAAGAGGCG GAAACATGCT TCATTTAATT 840 CCCATCTGGG GACCCNTACA AATTTANGGN TTGTACTNAN GGATTNCCAC AANGNNAAAG 900
 - (2) INFORMATION FOR SEQ ID NO: 47:

GCNAGNTAGA NAGGT

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 849 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:
 GTTAAANANG AAAAAGNGGG GGTGACAGGG GGNGANACCC NTTGCGCCGG GCTATGGATT

915

PCT/US97/06067 WO 97/39119

65

NTNGGCACCG	ANAAGATTTN	CAGGNGACAN	GGAAGGTGGN	NGGGGANGGG	GGAAAGTTTN	120
GAGGGGCCAA	AAGGANAAGG	AGGANGATTG	ATTGGTTNGG	GAGCAGTACT	TGGAAAGAGT	180
GTGTTNGATC	GGNAAACAAC	CACGNGNAGN	GNGTTTTTGT	TGCAGCAGAG	ANAAGNGAGA	240
AAAAGATNTC	AGGAGATCTT	GATTTTTTC	GGGTCGAGCT	ANGTTGGGGG	ATGNGAGGGN	300
ACAATTCACA	AGATTTGTTC	ACAGGGAGNT	CNAGGAGGTG	GTCCCANTAG	CCGGTAGGGG	360
GGTTTTCTCA	ANAAATGGGN	TCAGTCAGGT	GNTTGCCTAG	ATCTTTCATT	AGTTCCTCCC	420
TTCAAAGGGA	NTTTGAAGGA	GTGCTTTGTC	CTGTGGAGCA	ATTGACTCAA	TCAATAAACN	480
TAAGTAATCT	CCCGGANTAC	TGNNGANGCG	TTCCCAGAGA	GGTCCCCCGT	AGTNACCAGT	540
GAATCACAAT	TTCCTAACCA	TANGANTNTT	GTTAATCTCA	CCACATAAAC	CCACAATTCT	600
CGCGTCCTTN	GTGATGGTTT	CAAAGTCNGG	AATATNTTTT	CCTCCATCCC	TCCTTTCCTT	660
CCTCCTTNTA	TCCCTCCCTT	CCTTTTTTCC	TTTCACAGGA	TCTCANNATG	CAGCCCAGTC	720
AGGCCTTAAA	CTTGTGATCC	TCCTGTCTCA	GCCTCCTAGG	TGTTAAGATG	ACCCAAATGT	780
AAACCATGTC	CAGNNACTTC	CTCCTAATCC	CATCTTCAGA	TATCCTTTAA	GACCAAATTA	840
AATATTAAC						849

(2) INFORMATION FOR SEQ ID NO:48:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 925 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

AAAAAAAAA	ATNTTGGNGG	ACCNAANACC	ACCAATGGGT	TTTGGGGTCC	GANCGNNCAA	60
ACNTGNTTTC	ANTGTTNTTC	TGGNTTTNTT	TGNNTAAACT	TGGGGTTTTA	AGGGTTNAAG	120
GTTCCAAACC	CNATGTTTTC	GCNCAATTTA	GGCGGGGNGG	GGAATCCNTT	TGGGGANGTT	180
TNAGTATCTA	GTTAAGAGGG	GCCATTTNGA	GATTGACACC	TGAGTTAAAC	TTCNGAACNN	240
AGNTGTNTAA	TNAACCCGTG	AAGGGGCTGA	GGGGNGTTGG	TTANGATNCT	CAATNNTAGG	300
GNAAAAANNA	ATGTGGTANG	GAGACAGTAG	NNTANTCGGA	NCAANTNCGC	ATCGGCCNTT	360
NNATTAATAA	GCAGNCAATT	GAGGAGGTTA	TCCACGACAG	NGANAGGTGC	AGACCCCACG	420
CACACTGTGA	CAGTGGTTTA	TGTNACANNA	TNTCGGGAGN	GATGGNGCCA	CACCNACTGA	480
GTTCCGTTTT	GTTCGGNTGA	AGGTAGGNCA	ANACTGGCAN	AGGTGTTNGG	GGGCNAGACG	540
NGAGATGNGG	NTTGAGCNTT	CAGACCNAGN	TNCANGGNNN	NGGACNANGG	TCCCCNGNGC	600

PCT/US97/06067 WO 97/39119

66

CNTTCTAGCC	TNGAGCAGNT	TCNAGAGAAN	TATTCGNCGG	GTATAGGTCG	CCCCNANGAC	660
GCNAAACGAC	CGNGAGCGAG	GGCGGAACAG	CCAATCAGTT	CGANTTATCG	TGTNTGTTNG	720
CGGGGTTTGA	TCCCNGAGTT	AGNTCAATGA	GCCCANAACC	CTGAGTGGAG	GNACCGTCAT	780
GGGAGGAGAG	GNGAGTCACC	NGGTACCTGG	CATACNGATG	GACCATCCAG	TANTTGGATN	840
GGAGGGCGAT	ATNGTNANTC	TTAGGGGNTC	TCCTGAGGAG	GGNATACCCG	TGAGTTCCGT	900
AAGGGCGTTN	GCAAGTAANA	AGTCG				925

(2) INFORMATION FOR SEQ ID NO:49:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 827 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

GCCAGTTGCC	CTCAGATGNC	CNATACCCCA	CNGGGGGNGT	CTCNCCCCTC	TCTCAANTGT	60
ACACACACTT	CCCCATAGAC	ACNGGGGACC	ATAGCTCTAG	GGGGAAAACA	AAATNTTATN	120
TGTGTGTGCA	CNTGTGNGTG	TGTGTGNTGC	CCCAAACACA	GGGGTNTCTC	TTCCCCAGNG	180
GCCCTAAAAT	GTTNTNTGTT	CNCCACTNGG	NCCTCATNTN	NACATACCCC	CCNNGNCTCN	240
GNCCCNNATA	CCCNGACANN	GAATGTGTGN	NTNCCCATNN	GCGCTNTCAC	CACCACAGNT	300
TTTNTAANAC	ATCTCTCCCC	NNNATATCTN	TTNTTTNNTN	NGGGTCTCAA	TGGAGACNAC	360
_				GNGCGGGGG	•	420
				AGAAAACTCA		480
-				AANACACAGA		540
				CCNAGNCCAC		600
•				TCNCCATCTC		660
•				CTCNNTTANC		720
						78
				ACCNANCCCC	00001 000 am 1	827
CCCCCCCNG	GNATCAACCC	CCCCGGGTAN	ACAACCCCCG	GAACCCC		021

(2) INFORMATION FOR SEQ ID NO:50:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 899 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50: AAAAATTGTA AGGAGTTGGG GGNATCCCCC ATAATTNAAA NAGGGAACAA NCCNTAAAGG 60 GAGGGNNGGG AANGGCCAAN ATTGGNTTAA AAANAGTANG TTTGGTTGAT CCANACACAA 120 GGAATTTGTT ANAATTTTNN TAATGGAAAT NGGGCACTTC AATTGGGANG ATAAAACCCC 180 AGGAAGTGAT ACCNGGGTTA TCAAGTNAAA CNTGATTCTT GGNGNNGAGG GAAAGGATAT 240 TGAATTTGAG TGAGTGCAGG TGAAGTGAGA CTTGGGAGNA CAGGTCATGC CCACCCAAGG 300 GAGGAGCAAG GGNTGGGCAG TGTAGGTGGT GNGGTGGTCC TTCCTGGGGT GGGCGGGGAG 360 ACAGATGAGA ACGTTATTGG AGGACAGGCA CAAGTGTTAC TGAAATGCAA ATCCCTGTAG 420 ATNTGGAAAA GTTCTGGNTT CAGGCTTGAT GCTTGGGCCG GCAACTGTGN ACTTTCCCTG 480 TACGTTCAGC CCCCCCACCC TTACGGAAGT TNTCGTCACT GAGANTAGTG GCTAATCAGA 540 GTCTTCAATG GACCTGCCAA TCAGAAAGGA AGGCGGGCTT TTCCGGGTGC NTAGGTGTAG 600 GATTCGCTCA GTAGTTAAGC AGTCTTAACT GGTTNTGGCT GCTGTGCTCT CTGTCCTGCC 660 GTTGGATTNT NTGAGGCATG TTCAGGCAAG CTCCAAAGTT GCGACATGGT GAGCACAGGG 720 GCAGGGGGG CGGGCGGACG GGCAGGGGAC TGAGCAGTGG GAGCTGGTGT GGTGGGTCTT 780 TCCCGGGGCT GAGTTGGAAT CCGCGGCTAC CCGTGAGGTC TTAGCCACTC ACTAGACCCÁ 840 GCGGCAGTTT CTGAATAACT TTCCTTGTAG GGGCTGCAAC TCTTGAAAGA CCCCACCAG 899

(2) INFORMATION FOR SEQ ID NO:51:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 852 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

AAAACATTGG	CNAGACTTGT	AATAATTNCC	NGTTNGGGGA	AAANAGNGGN	NTGNGCTTCG	60
GGGGNGGGGA	NCCGAGGTTC	CCCCAAATT	TCTTANNAAT	TGAGGGANAT	TNANGGGGG	120
AACCGANNGN	TCNNNAAGGN	GGGGTTTTTC	CCNTTNGCCC	CCTTGGGGNT	TNACAANTTG	180
ACCNTNAGTT	AACGGGGANA	ACCCGCCNTG	TCCTNNGGGA	GGGGGGTTCC	CTNGGGAGTT	240
NCGTNGTGGG	TTTCAGTTCG	GACCAGGTCG	TTNACTCGAA	AACNGGTCCG	CNGTATNCAC	300
CCGGTNGGCN	GNCTGTTGAN	NGCTAACGNG	GTAAGTATTT	TCATGTGTCC	GAACGTGTTA	360

GACTCCAAGT	ATGGCCATGT	GCANGAACCN	CCGGTTAGCN	AGACGCAGAG	CGTGATCNGN	420
GGAGGNTCTN	CAGGNGTCCA	ACCNGGNANG	NCAAGATNCG	TCGACACTGG	CAGNACCCAN	480
TGGNGACTGG	NNGATCAGAG	GGAGNCAGGT	ACGCNGGGAA	ACAGAGTTGN	TGNATTGGAT	540
CCGGNANACG	GACANNCNAG	NGGGNCNGTN	GTTTGGTATG	TGNGCTAGNA	GGANGCCAGG	600
NACAGTCGGA	AAGGNTGTCG	GGAGGNTCNG	ATCATGTCNT	ACATAACCNC	TCGTGAGTAT	660
GCGGTGGNTG	TGGAGTTGNG	CAGGCGGCAG	NTAACGCACC	AGAGAATTCN	GATNTNTCCG	720
CAGATCGACA	GATNTGTTAG	GTGGGTCTCT	GACGTTNAGG	NCGANAGGAN	NNGGGAGNGG	780
ATAACANTNT	CACACAGAAT	TTCACTGAGG	CTGAAAGACC	CCANTTGTAA	NTGNCCAAGC	840
TAGCTGAAAT	CG					852

(2) INFORMATION FOR SEQ ID NO:52:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 967 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

AAANCCTTCC CGGNGGGGTT AAAANAGATT ANGGGTTTTC CGNGGGGAAN CCCCNNCCNC 60 CGCCTTCGTA ATTTGTCCCC AAGAAAAATT CCCGCGCCCN CAAAAANNAG GGGANTNGGG 120 GAAATNTTAG NGGCCANAAG NAAAAAAGAN AATTGTTTNG TTTTGGAGNC CACNNCGNAA 180 NAGGGGGTNT TAAACGCAAN AACACCGGGG GGGGGNTTTT TNTTNCAACG CGAAAAANGC 240 GGAAAAAGAT TTCAGGANAC NTGAATTTTT TNGGGTCGAA GTTCAGTGGG GGGATTGGGG 300 NGNNAAAATT TNANACNGAT TATTGGTCCN ACCTTTCTCC TTCCCNTCCC TNCCAAAATT 360 TINTCCAATT TICTTCTTIN INTCCATTIC CCCACCAGGA GGGAGTCACC CACCTINIGC 420 NGCAACATTC TCAGGGTTCT TCATTCTCAG TGTAACAGCA GNTCTTCNGG TTCTNGGGNA 480 NTCAGAAACT GGGCTGAATC ATGTCCAGAG TTGCNGAGTT CCCACATAAC AGATAGTGTT 540 NGNGAGATTC TCAGTCTAGA ACCATGTGAG CCAATCCCCA TCAAATCTCT TCTCTCANGN 600 ATAAATNNAA ACATNCTTAN GGGAGGCTCT ATTTCTATGG AGAAACCAGN ACCCATATTT 660 NGGGCTGGAT CACTCTTTAT TTCCATTATG GGATGTTTAA CAGTAATCCT GGTCTGCATT 720 CCNTAGGTGC CAGTAGCCAT CTCCTAGTTG TGACAATCAT CATTTTCTGG GGATGAGGGT 780 GGAGAAGGGG GCAGATATCA AAACTATCCT GNATCTAAGA AATGTTAGTT GAAATGAAGT 840 TGTCATGGGT CATAAAGTCT AGGATAAAGA GTGATGAGAT GTCACTAACC CAACTCTTTT 900

67	
GGCCAGAACT CAATGAGGTN GTCCCATTTG ANTTACCCCA AAGGNGCNTT AGCAAGTAAA	960
AGGGNCG	967
(2) INFORMATION FOR SEQ ID NO:53:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 700 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53: GGNGTGCTGG GATTATAGAT GCACTCCCCC AAATCCAGCT TTTTACCTGA TACCGGAGGA 60 AGGAACGGAA GTCCNCCGGC TTGCACCGGA AGCAGTTTCA CCCACTGAGC CATCTCCCTG 120 GTCTGTCTGT CTCAGCTTCC TGAGCTGGTG TTATGGCTGT GCACCACCAT AGCTGGCTTC 180 TTTATTATTT ATGTATGACT NGGGTCTNTC TGGGGGTCTG TTAGNCAGTC TGTTAACTAC 240 CATCTTTTGN CTCAGGCAGC TGCAACAGAA AACAACNGGC TGTAAATNGT TTTGACAAAT 300 GGGTCTGGGG AGAAGTCTGT NATGCAGGGA GATCTNGAGT TTATNCAGAG GAAAAGGTGT 360 CTNTCAGNGN ATCTAGGGNA GCATNTCCTN TCNGCGTCTT GGTTTGGGNG AANGANGGAT 420 CAAGAGCCCC NNAGCNNNNN AANTTNCCNT CGAGCAGCCC AGGGATTTTN GCTTTCAACG 480 NANCTHNAGG GAACCCCCNA NCAACCTNGG CNACAATTGG GGNNTTTCCC CCNCCCCCC 540 CGATTACTTT TNCAAACCNT TGCCACNCCC TCGCNCNATG CCNANCCCCC AAAACGTCGT 600 NNTTCATAAN CNCNNCNCTC NCNCTTNNCC CATGGGGNGC ACACTCCCTT CNCCCNCNTN 660 TNTTAACNGG NGGCGCAAGN CCTTTCTTNC CCCCTNCCCC 700

(2) INFORMATION FOR SEQ ID NO:54:

OID: 380 073044084-

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 229 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54: NCNACGAGAN GTCAANGTGN AANCTGNCGA TGATNAAAAN AACCGANCTT AGGGTGNCAA 60 NGGGTTACCC AGGANGGGGN CAAAGCAAGN TCCAGGCCCA TNANGGACCT GCTGGTNCAT 120 NGCCNGNAAA NACCTACTTA TCCTNGAANA GCCCGAAANG TCCGCTNNGA CCANNTAAGT 180

70	
NCANNNCAAN ANGNACCACN CCNTTAACAC CACCGTATGA NCCCNAANT	229
(2) INFORMATION FOR SEQ ID NO:55:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 465 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:	
CCCCTTTCGN NGGCCTCAAT NANTNATTGN CTACCCNANA GTGGCGGTCT NNCATCATGA	60
CAAATAAANC AGCCTTCATG AAATACGATG GCGGGGGGAT TAGAGGNNTT TNTTGAAAGA	120
GCTGAAGGGG CTTGCAACCC CATAAGAACA ACAATGCCAA CCACCCAGAG CTTCNAGGGC	180
ATTAAAACAC TACTGAAAGA CTATACATGG ACTGACCCTG GNCTCCAACT GCATATGTAG	240
CAGAGCAAGA GCCTNGTTGG NGCACCAGTG GAAGGGGAAG CCCTTGNTCC TGCCAAGGTT	300
GGNCTCCCAG NCCAGGGGTA ATNTNGGGGG CGGNGGAGCA GTAAGGGAGG GTGGATGGCG	360
GGGCTACCCA TATNGNGTGG CGGAGGAGAT CGNNGCTNAT GGACAGGAAA CTGGNAAACG	420
GGAATNACAT TGGANATCTC NATAAAGNNN NCATTTCTTA TTCNA	465
(2) INFORMATION FOR SEQ ID NO:56:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 564 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:	
TTGGGGCCGN TNAACTCTGN GTNNNAGTAT NCCCNANAGG GGGGGTCTCA CANCGGGTCN	60
CACCNCATNT GNGGGNGCCC NTTCNCNACA ACACATTTTG TCNGGNGGTT ATAGNGAGAG	120
CACANATTTT GAGAGTCNCC NGANAGGGGA GAGAGACNCA CACNAGTCTC TTCTCCCCGT	180
GTTCGCGAGN GNACNCTTCT CTNCACATCT ANAGTATANC CCAGNGTCAC ATATGTGGCG	240
GGGGGTNGT GTCAGNNACA GNGTTTCCCC CNCCNGTNTT TCCCCCTNCC CCCCCNCAG	300
GGGNAGACAA NGTNNTAGAG AGAACAGGGG TTATCCACAC ATCNCACTGN GNGGCACAGG	360
AGGANNANAN TTGTGCTNAG AGCCCCTGCN CTTCTGGTGG TANCTCTGGG GCCCATATTC	420

10. MAIO 07004 (QA4)

480

TCTNCTCTGG GTCCCCCCG GGGGGGTGTN NCCCTCNCCG GGAGAGAGTN TTAGAGANAA

71

•	
ATCTCCATCN CANATGANAA AATNTGNGGG NGAGAANCCC GGGGGATATC ACTNTTTTAN	540
AANNGACCCC ACCCCCCCC CCCT	564
(2) INFORMATION FOR SEQ ID NO:57:	
AN GROUPING CURPACTEDISTICS.	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 822 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57: GATTTGCNCT CATATNTCNT TTACCAAACA GNGGGNGTCT GCCCCCCTGT NATANACCTC 60 TTGTTNTCGC GGGGTGCTNN TNGGGGCCCC CCNTGTAGAA AAAGAACANN NGNTGTGGGN 120 GGGGGATTTC TCTCTGNTGT AGANCTNTNC NCTGAGACAC ACAGNGCCCT GTGTGGGGTC 180 CCCCTCNCCG AAAAAGANAC CCCNAAAAAA AAAAAAAAAA AGACCGCGNG GGGNNGAAAA 240 ATATCTCTNG NNATCTTCTC TCTAANCTCG CTTTTANTCC TCAGAAAACC CCACCCCNCC 300 NCTCTNCCCA GAAATATNAT ACANNNNGNG TTCCCCTNCC CAAAACCCCA AAGGGNNTCC 360 CCTCTCNTCT NCCCCNAATA CTCTTCCNCC CCTTNATTCT CNTATCTCTN NGGACTCANA 420 CTCTAAAACA CANGNNNCTT NTCTGTGCCG CAATNTNTTN TGTNACANGG CNCCCTGAAA 480 AAAACCCCCG TGTTCTCCAC ATCNCCTCTN TNATATCTCT GCCCCCTTCC NCTATATCNC 540 TGNGTTTATA ATTTCCAAGG AGAATGTNCN CAGGGGGGCC CCAATCTCCC CCCCTNGTTT 600 CNNCGAGNAG GGCTCTTTTN TATATTTTTN NTCNAAACCN CCNTTGTCCT TTTAAATNGG 660 CNTTNACNCC CNGNCCCNCC CAACNNCCCG ANCGGGGGAA ACGTTCCCCA NTTTTCCNTT 720 TCCCCCGCC CNCCCNNACC CCAATNCCCT TTTTTCGCGT TCCGGGGGCC CTGTTTCCCT 780 AANCCCGGAA TNAANTNCNT TNTTCAANCC CCCCCCTTTT TT 822
- (2) INFORMATION FOR SEQ ID NO:58:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 553 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58: TTTGGGTGCG GTCTCCTCTG TGTTAGTGTA TCCCCCATAG GGGGGGTCTC ACAGGGAGCC 60

PCT/US97/06067 WO 97/39119

72

СТТСТСТТТТ	GGGGGGTTAT	ACACAGGGGA	CACACATGTG	ATATAGAGAG	AACACATGAG	120
AGTGGGAGAG	TGGGGGGGTG	GGTGGAAGTG	AGAAACAGAG	AGAGAGAGAC	TTTATTTTT	180
GTGGTGTAAA	ATGTGTTGAA	TCTCTGGTTT	GATAAATTTT	ACACATTGGG	GTTTGTGTAG	240
ATCCCTGATC	TCTCTCCTAT	CCCCATTCTC	TTTCAGAGAT	GTGTCTCTGG	ATTCTCAGAG	300
AGATTTTCTG	GTCTCACATG	TTTGGTCCCT	TATGTTCTCA	CTCTCTCTTC	TTTATTCTCT	360
GATACATGTG	CTCTTCCCCC	TTGGGTCTTC	TCTCTGTCTC	TGTCTCCCCC	CCCATGATAC	420
ATAGAGTGTG	TTTTCTCCCC	GGGGTTTCCC	TTGTTCACAA	GAAGAGCTCT	GGGGAATCTC	480
TATCTTCTCA	AGGGTATAGC	CCCCCAGTCC	CCAGGCCCTT	TTTCTTGGAA	TTTTGGAGGG	540
GGTTCCCCAT	ттт					553

(2) INFORMATION FOR SEQ ID NO:59:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 904 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

•						
GGGATTTGCT	CTCAGATGGT	AGTTTACGTA	AACTGTGGGT	GTCTTGCCTC	TCTCTCAAAA	60
CATGTGCGCG	TTTCTGGGCC	CGTGCGCGTT	TTCTGTGCTC	CTCCTTCTTC	ACTTCTTTGT	120
CGCGGGGGCG	CTCGCCCCTG	TGTTTTCTGT	GCTCCTCGGG	GAGATGCTCT	CCCTTGGGGC	180
TGTGGGGCTC	TGTGGCGGTG	GTGGCGGTGT	CCTCGATACC	GTGCTTTTTT	GTTTTCTCGA	240
GATCTTACTT	TTTCCTCTCC	CCCTTGTGTG	TTTCTTGGGT	ATACACGAGA	TTGTGTGTGT	300
CTCTTTTCTT	ACCCCCTCTC	TAGTTTATAT	TCACACTTAC	TCTCTCTCTT	TTCTTTTTCT	360
CTTTAGATTC	TATCCTTTGT	GCACTTTTTC	TATTGTGCTC	TAGATTTCTC	CCCTTTTTGT	420
TTATTTCTCT	TCTCCCTGTG	TCCAGTGTGG	TGAAAAAGAC	CCTTATTAAA	TTTAGACTTG	480
			ACAGTCTCTC			540
			ATCTCTTTTT			600
			CCCTCTCCTT			660
_					TGGCCCCTAA	720
					TTTTAATTCC	780
					GGATTTTAGG	840
					TTTTTTTTT	900
GTTGGTAAAA	ATTTCGGGTT	TIGATGGTTT	1900000000	ITARCCCCIC		

PHEDOCID: 380 072044084.

TTTT		904

73

(2) INFORMATION FOR SEQ ID NO:60:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 698 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

CTCAGCACTG	AAAGAGATAG	АТТАААААСА	AAACAAAACA	АСААССАААА	AAATACAAAC	60
АААСАААСАА	ааааааассс	CAAACAAGTC	GCTCAACTGT	CTTGAGTCAA	TAGATTTTAA	120
AAAATGAGTT	AAGGTTAGGG	TTAGGTTAGG	GTTAGGGTAT	AGCTCAGGCA	GTAAGGTACT	180
TGCCAAGAAT	GTTTGAGGAC	CTAAGTTTGN	CTTTTTTCTT	TCTTTCTTNT	GAAACAGGGT	240
TTCTCTGTGT	AGCCTTTGNT	ATAGACCAAG	GCTGGCTTCG	AACTCAGAGG	ATCCACCTGC	300
CTCTGNCTCC	GAGTGNCAGA	ATTAAAGGCA	TGTGCCATCA	CTGTCCAGCT	CTTAGGTATT	360
CATTTTTCAG	CTTATAGTCT	TTTGGCAAGG	GATGCCAGGG	NAGGAACCAG	AGGCAGGGTT	420
GAAAAACAGG	CCACNGNGGG	GGGAACGCTG	CTTCCCCGGG	TTATTTTCTT	GGGTCANATC	480
NTGTGGCCTT	CCNGGGGGGT	CTTTCCCCTT	TCAAAATTNT	TTGGGNTTGG	GGNGGGGTCC	540
AAATNANTTT	TTTNGGCCGG	GTTTNGGGGN	CCCCCNNTT	TGGNTTTTTT	TTTAGAAGGC	600
CCGGNGGGGA	NAAACCCCCC	GGACTAAAAA	AAAAAGGGGG	GGANCCCCCC	nggggnggaa	660
TTTTTCCCGN	CCCTNAAAAG	NAAAAATTTT	TNTTTTCC			698

(2) INFORMATION FOR SEQ ID NO:61:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 851 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

GAAANAANTC	GGGAGAAAA	NAAANNNCCN	TTAAGAGCTT	GCCCCANAG	AAAAANTANN	60
AAAAAATNAA	CTGNTAGACC	ANNNGAAAAG	GAAGCGCAGT	NANAAAATGG	TTCCTACGGG	120
TTAANTAAGA	AGCANGACNG	AAAGANNGNN	TNNATNTAAC	CGGGGNTAGN	AAACGGCCCN	180
CTTGTANNAG	GACCNAATCG	AANTAGTACG	ATCATGNTAC	ANAGGGAAGG	GGACGTTACC	240

				•		
CNCGGANGAA	ACCCGGCACA	AGATCTCNNA	AGGGAGAAGA	TTCTGAACGN	NANNAANCCA	300
CAAGGAAATT	ACTGTGGANA	CGGGAGGAAT	CNATNGTNAT	NNAGNNNAGC	TGGNCACTTT	360
GANAAGGCAT	CGATANAANT	GATGATGGNT	CAGGCGAAAG	AGCATACGTA	AAACCAAGCA	420
AGGNGGAATA	GTCATANAAC	CATGNAAAAA	ACNTTCAATA	AAAGATNNCC	NGAATATTGA	480
TCNGTANNNA	ANAACNCCCG	GTGGCCGTGA	TTCCTTTTTT	AACGGCAAAC	AGCANNTTAG	540
TTTCAGATCA	CCCAGATCAT	CGNTGNAGAT	NCCATNGATG	TTNTTGAAAC	TNANCTNGAG	600
GATTCAAGAA	NNGNTGACAT	GGTGAAATGA	TGTACAAATN	ACAACANAGA	NCGTCGAGAT	660
NNTATTCCCC	CNGNATGNAN	GGACNTCTTA	TGATGAANAC	CTTATACCAG	ACTCAAGTAN	720
AACNATATGA	TCCCATGAGG	GNGGNNACCC	AGGNAGTCAN	GAANAAATAC	CNGAGAGTTA	780
					ANAGCCCNAA	84
AATTAATCCA						85

(2) INFORMATION FOR SEQ ID NO:62:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 936 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

(VI) SOA	050					
CTAAGGAAAA G	GTTTTAGGA	GGGAAAACCA	ATAGGCCCTT	GAGTTCTTAT	TCTTAAGACA	60
TTGTAAAGGA A	AGGTTTAGG	GGAAAAATTA	CCAGCCCGAT	CCATTAGGGT	TCCAAAAGAA	120
CCGTTCTTCC A	TAAAGGCCA	GAGTTCACCA	TGAGTAACCA	GGATGTTTCT	TCGGACCTTA	180
ТАААТАТАТТ Т	TGAGGGGTT	CATGGAATTG	GGTTGCCATT	TGGTAGTTGG	TAGCCTACCC	240
TGCTCCTTCC C	AGTGTTGGA	TGCAGATATG	сесстетте	GTTTTGAGTA	GTTTTGAGAT	300
CAGTCAATTT T	TAGGTTTTAT	GGCAAGCATT	TATTCATCCC	CACATTTTCT	GCCAGGGTGT	360
AGTAAGTGAG 1	TTCTTACAGA	GCAGAGAGAA	GGAGCAATCT	GTGTTATCAA	ATCAACTAGC	420
ACCAAGCACA (CCAAGCAGCC	AATCCTTAGA	AGGAAGAAGC	AAACACTTGG	GTATCCTTCC	480
ATGGCTAGGA A	AATCTTCATG	GCTCACGAAC	CTTGGGATTT	CCCTGTCAGG	GTAGAATACA	540
AGCAGCTGAG A	ACCGAACAGG	TATGGGTGGC	ATGTCGAGAC	AGGAAAAGAA	CCTGTGTCTG	600
GGGAGAGGTG	rgtgctacaa	AGCCAGAGAG	AGGAACAGAT	AGGGAGGGGT	GTGCTGCACC	660
ATCATGGAGG (•	720
					GAGTGGGGAG	780

780

840

900

911

GAGGGTTGGA	AAGTTCCAAG	GAGAGAGGCG	TGGGGGTAAG	GGAAGCTCGC	AGGGCTCCGC	840
CTCTGCCAGT	GACCTTGGAC	CGCTTTCTCT	GAGGATCAGA	GTTATCTGTA	GGGGAGATGA	900
ggttgaaaga	TACCCACAAT	AACTTTGGCA	AGTAGA			936

- (2) INFORMATION FOR SEQ ID NO:63:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 911 base pairs

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- GGGAATTTAA GGGNGATTTG GAGACTTTNG AATTTTCGAA NGTTCCAAAA TAGANNTTNA 60 GGNCAATGGG NTTGGGGCAG NGGNGCTTTT TTAAATCANA NAAGTATTAG ATTTNTATGG 120 AAACCTGGG GGTTCCAGTT TAATCCCTTC ATCATCTTGA AATATNACTT GTTTATGGGA 180 ANGGTGNGAT AGCAGCCNGA AACAGAGGTT TTTATTATTA CTGTTAGAGA NGAGGATTGG 240 GGAATAGAAC AATGAGAGTC TTGGTAATAT TNTTCNGGAA ACAACNGACA TAATTGGAAC 300 ATTAAGGAAA TATATCCATG CATTCTGTAC TTGCAAATTG CTCCAAGGAA GATGGAGAGT 360 ATTGTATTC AGATAGAGAT ANGACTATAC CTGTTATTTT TTTCATTATA GCAACATTAA 420 AAAAGATAGT AATCTAATTT CACATAACCA TTACTACTAA AGTATATATG TANTCTTTGT 480 TTATCAGGTT TTACTTCTCA GAAATTGCAG CATCTCCTAC AGAGCCTGTC AAATGAGACN 540 GCATAGATCC CCAGAGAACA GAGAGACTGG GAAATCATTG AAATTACACA ATCCTATCCC 600 AAATGTTTGC GTAGACTCAA GCTCGTATCA GCTCATAAGA TCAGTGTGTG TGTGTGTTTG 660 TGTGTGTGTG TGTCCCGCAC ATGCTTGAGT ATGCATGTGT GCATGCATGT GTGTATGTCT 720

ATTGCATTAG TAGAGATGTT AAGGTTGAAT GTATTTTCTG CTCATGGTCA TTGTAAGATA

TTGTGCTGTA TGTGATAAGA ATCAATGTAA CAAGGCTGGA GAGATGACTT CAGCTGTTAA

AGGCTAGACT CACTACCAAA AATAGNGCNA TCAGTGTGAA NTTCCCCACA GGAGCTTAGC

(2) INFORMATION FOR SEQ ID NO:64:

AAGNTAATAG G

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 781 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION:	SEQ	ID	NO:64:
----------------------------	-----	----	--------

TTCAGGGGTA	ATCCTAAGGT	AAACGGACAA	AGTAAAGGGG	AGGTTGGACC	AATAAAGGGG	60
АДДДАТДДДД	GATTAACCGG	ATGTTCCCTG	GAACGACAAA	TTGCCTTGGA	AGTTTCCTAT	120
ACGGAAAAAA	ATGAACAAGT	TTCCTGTAAA	GCAGGTAGCC	GGAACGTTTC	TAGGCTATAA	180
ATTTAACTGG	CCTTATATTT	ACAAAGTCTA	AACATTTTAC	TGGGGCATTA	CAATTTTATA	240
ACACTAATTA	GATCATGTGT	GTACACCCAC	AGTCTGACAG	ACAGGGTATT	TTTTCCTTCT	300
TATCCCAAGT	GAGTTTAACC	TTCCTTCTCC	ACATTTATTG	CCATGTGCAA	TGCGTAGCTT	360
CTATTAACTC	CTGATTATTG	ATTGAACTTT	ATGAGACATA	AGAATGTACT	TGACAACAGC	420
				ACTGATAAGA		480
				TAAAGGTGAA		540
				TACAGAGTAT		600
					CTTTACATGG	660
					CAGTAAGGTA	720
					TTCATATGTG	780
TATTTCTTTC	TITITATIAA	CIAITIOGIO				781
Δ						/61

(2) INFORMATION FOR SEQ ID NO:65:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 389 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

TTGCTCTTAG	GAGTTTCCTA	ATACATCCCA	AACTCAAATA	TATAAAGCAT	TTGACTTGTT	60
CTATGCCCTA	GGGGGGGGG	GGAAGCTAAG	CCAGCTTTTT	TTAACATTTA	AAATGTTAAT	120
TCCATTTTAA	ATGCACAGAT	GTTTTTATTT	CATAAGGGTT	TCAATGTGCA	TGAATGCTGC	180
AATATTCCTG	TTACCAAAGC	TAGTATAAAT	AAAAATAGAT	AAACGTGGAA	ATTACTTAGA	240
GTTTCTGTCA	TTAACGTTTC	CTTCCTCAGT	TGACAACATA	AATGCGCTGC	TGAGAAGCCA	300
GTTTGCATCT	GTCAGGATCA	ATTTCCCATT	ATGCCAGTCA	TATTAATTAC	TAGTCAATTA	360
GTTGATTTT	ATTTTTGACA	TATACATGT				389

(2) INFORMATION FOR SEQ ID NO:66:

77

(i)	SEQUE	ENCE CHARACTERISTICS:
, .	(A)	LENGTH: 340 base pairs
	(B)	TYPE: nucleic acid
	(C)	STRANDEDNESS: double

(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66: AAATCGGGNT TNCGCGATTC GGTAATGACG NCNNATCCGT AAANNCATNC GCCGNNATNC 60 NATTNGAAAA TNCCGGGNGC AANNCGATGT CTNATTGAGG TNNCAGANCC ATCCGGCACA 120 GGCAATANGN AAAAAANGGG AGTTTCACAA TGTNTNTGAA TNTGNANCCA TTGGGCCCNA 180 AAAANTCCTN CGNTNNATGA ACCTTNNCGT NCAAAANTTT GGTNCGACNC AGCNGCTTTG 240 CNAGCNTTNA ATAAACACCG GNNTCCANAA TGNNACCAGN GNTGTTTNTN TCNANTNGCA 300 TNNCNNTTTG GAANCCCNCT TTTCCCAAAA CNTTNAAAAA

- (2) INFORMATION FOR SEQ ID NO:67:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 557 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

AGTCCGGGNA	TGGTGGCANA	TGCTTTTCAT	NCCAGCACTT	GGGAAGGCAA	AAAACAGTTA	60
NACCTNAGGT	TTANCCCAGN	CTTTATTAGN	ACCCCGTGTT	CTNAAACACA	AACNACAAAA	120
NTTTGNGGGN	NTTTAAGTGN	AAACACTGTG	TAAAACCTTG	GCCCTGATGN	AGGGNTCTCC	180
TTTNGAACAG	AAAATGTTTG	AAGANTCCNA	AAACATGTTG	GGATGCCANA	CGNGTTNTTG	240
NGCATCCATC	TCAACGANGT	TTTGNGAATA	AATGGCAGGT	NAAACTAGTA	CATCATCATG	300
TNGNANCCAC	CGGGCNTGCA	GATTTGTGGT	GGGAACCAAG	TCCTCCCATA	AAACAGGCTC	360
CTGTGGTACN	AACAGGGCTG	GANCCACNGA	ATCAGTGCAG	NTCTGGACAC	CTGTCTGGCC	420
GGANGGNCTG	GNCTAAGTNA	ANNCAGGGGG	GGCAAGAGCA	TNGGANCNAA	CGNCAGAAAN	480
CGNCCCNCCC	GGTGAGCTNT	TCCATGCCTN	NCCTCGNTTT	ATTTGGCACT	GGGCATGTCC	540
CAACTNAACT	TAGGATG					557

- (2) INFORMATION FOR SEQ ID NO:68:
 - (i) SEQUENCE CHARACTERISTICS:

(A)	LENGTH: 302 base pairs
(B)	TYPE: nucleic acid
	STRANDEDNESS: double
(D)	TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

GCCTATAAGT	TTTGATTCCA	TTCGTGAAAA	TTTTTCCTAT	ATCCCGAANA	GTCCACTTAT	60
TACTACTGCG	GCCTATTTGG	AAACTAACCG	AAATTCAGTT	AGTTCCCTAG	TAGCCTGCTC	120
TTGTAATATG	TGTACTTTTC	AATATTATAA	AAAATTGGTC	AGCAGATCTG	AGTAAAACAG	180
GTGAAATTCC	GATCGGTAGT	CCAATTTGGT	TAAAGAACAG	GATATCCAGT	GGTCCAAGGC	240
TCCAGTTTTG	AACTCAAACA	ATTATCAACC	AGCTGNAAGC	CCTATAGNAG	TACGNAGCCC	300
AT					-	302

(2) INFORMATION FOR SEQ ID NO:69:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 820 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

GACTGCCTTT	TTTTTCTTCC	CAAGGATACC	CTGCAGCACC	CAACAGTAAA	AGACTTCATA	60
AATAGGCAGC	TTGGAGAAGA	AGGCATTACC	ACTGAAGCCA	TATTAAATTT	CTTCCCTAAC	120
GGTCCCCGAG	AGAACCAAGC	TGATGACATG	ACCAGCTTTG	ACTGGAGGGA	TATATTCAAC	180
ATCACTGACC	GCTTCTGCGC	CTGGCTAATC	AATACCTGGA	GGTAAGAGGC	AGCAATCCAC	240
CCGAGGACCA	TAGTGAACCT	CTTAATGTCA	TGGGTGAGGC	TAGAGACCTG	TTAGCCAGTC	300
AGCTGGCACT	GGATTCAGTC	TTTCATCCTT	CGCACAAAGT	GGTAAGGGTG	CCATGGCCAT	360
CTGACAGACT	TGCGTGCGAC	TGTCCTCACA	TCTCGATAAC	TTCATGACTC	CTCTGGCTCC	420
CCCTCTTTCC	CTTCCAGCAC	ACATCCATTC	CCAGCTATCT	CCGGGCTGCC	ATTGTCTAAT	480
GACTTCTGTT	GGCCGGTGTC	CGCCAAACCT	TTGAGTTGAG	CTCATTGATT	GTGGACACTT	540
TACTCAAAGT	TTAACAGCAT	GTGAAAGACC	CCGCTGACGG	GTAGNAATCA	CTCAGAGGAN	600
CCTCCAAGGA	ACAGCGGGCC	ACAAGNGGTN	AACTNAANAG	GGTTATTGNT	AACGGGNNCC	660
GGGANCNAGT	AATCGGGNCT	GGCCCCAANT	AAGGGTTTGG	GCTTTATTNN	CNGGGACAAA	720

AACCGCAAAA	AAANNAAACG	CCTTNTTGTA	TTAAAANGCA	NGNTTTTAGC	CTTGGCCTGA	780
aatggngnta	AGNTACGGCC	CNCNGTCAAT	TCCTACTATA			820

- (2) INFORMATION FOR SEQ ID NO:70:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 955 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

AANCCGANAN	TTTNAAAAAA	CAANNANAAN	GGGCCANGAN	NTNAATANTT	TCTNAAAAAA	60
NGANTACANG	NACACGGCAG	GGNNGTTTAG	TCAGAATANA	ATNNAGNGNN	AACCATTGNC	120
TTTTGAGCAG	GGTTTATNGG	NCTACGTTGA	CCCAAGTCAC	ANTGNTANCA	GAGATNANNG	180
AGGGGGNGGG	AAGGGGTTNG	GNTTTCCACA	GCNTTNAAGT	CAGAANTNGG	AGAGACATTT	240
NGCCNTGATT	CANGNCTTTN	CCTCCTTATT	TCCNANCNTC	NCATTAANAN	NAGAAAAGAG	300
TNTTTTNTTG	TNTTGNGNAC	AGGTGCACAA	GTTTAGNANA	GAGGAGACAN	TGTNTAGAGA	360
TCAGATACGG	ATGAGAGTTT	CCGGGGANAG	TATGNGGGGA	TTTTCAGTCA	GNNCACTACC	420
CAGAANGGAT	TCAGTCGNGA	GGAGNCAGGG	ANGGGGTGNT	GGAGTTNAGA	CCGANAGAGC	480
GGNTAGCATN	TAATGNNNAG	AGAACACACA	TNTTTTGGAT	TTNAGAGACG	NCCAAANCGC	540
TATACANGAT	NTNTCGNTAN	AGGGTGAAGA	GTGAAGAAAG	TGATGTCTCC	ANCGCANACN	600
GGAACANGCN	GCGANTTTCT	TAGAGACCNA	GGTTTTGATA	NAGGGAAAGT	CTATTCAAGC	660
CTCCCGTANA	CTTGTAGGNC	AAGNAAATAN	TGCNNATTAT	GAGNCCGTTG	TTNTCAAACC	720
ANGTCCCCTA	TAGCAGCAAA	NAGTTGNCAG	AAANTCNCAC	AGAGNTCCCC	CGTGAGATNG	780
NNNTTATNGN	GGACACGATG	TCATCAAGAG	GGAGTNNTGN	ACTGTGACTC	CAGTCCTGTT	840
GAAGNGCATA	GTAGACCATT	CGCCGTGTTC	ACCNACANTC	AGCCNCTACC	AGCNGAAAGA	900
GNAAAGGAGA	GAGTTCGCAT	ATGANAGACC	CCACGGGTAG	TTTGCAAGTA	ATGAG	955

- (2) INFORMATION FOR SEQ ID NO:71:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 886 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:

, ,	_			•		
NTNGAAGNAN	AAATTNGNAA	AAANNCCNAA	AACCTCCAAA	TTTGCTACCA	NTCTTCNACG	60
GTNGACTTTT	АААСАААА GG	AGGGGGGGT	TCTTNTTCAA	ATGGGCCCCT	TCCCAATCCT	120
GTTCCCNAGG	CAATTGTTTC	TTNTTTCANC	NTTCAACGGT	TTTTGGGTTC	CATCCAACTT	180
TTATTTNACC	CNTTGAGTTT	CCTGGCCGGN	GCCTAGGGAC	CTCCTTTTTA	CNTGGGCCAG	240
TTCCCGTTCA	AGACNACCCG	GCGGTTAGTG	GNCATGGGGA	GATGGCCCCA	TGANTCCAAG	300
					CTTCCTTCCG	360
					CATGGAGANT	420
					CCNGAAGGCC	480
					TGGTTGGCAC	540
					CAAGATCTTA	600
					TTGGGATTCG	660
					TGTTGTGGGT	720
					CGCGCGGGCT	780
					TGTCGCCTGG	840
	CACCAATCCC					886
1110111100						

(2) INFORMATION FOR SEQ ID NO:72:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 900 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

GGGNGTTNGC	TCTCAGATGC	NAGNTACNNN	TCAGGGGGNG	TCTCACGAGA	AAANCTNATG	60
TGTGGGGGNT	ANTNTGTATC	CCCTNNNCTC	NCTCGAGANC	CCNNNTCTCG	ANATTTTGGN	120
GACCNGGGGC	CGGGGCCCAG	ANACTCNCCA	CCCCATATGG	NGACCCTNTA	TAAGTGTCNN	180
CCAGGGNNTG	TTTTGGGNAA	AATATANCNN	ANAGNGGTGT	NTNTNANATC	TCGGGGGGTG	240
ACAGACCCNN	ATTTTTTTT	ATAAAGACCC	GGGGCATNTT	CTCNGCCCCN	TCTCCTCNGC	300
TACANGNNAC	CCACACACAG	TGTGTCTCCT	CTCAGCCCCC	TGGCACACTT	TNTNTNGANT	360
CNGNGGGGAT	ATGAGATTCN	CNAGACTGGG	NCCGCNNTAN	TANNCNCCCC	CNTGTCTCCT	420
CTCATAGTGT	NGTGTCCCCC	CCTCACCCNN	TNTTGNGGTN	CCCTACACCC	ACACAATNTA	480

GACTCTNCCC	NCCNTCNGCT	NTGNGACNCA	CANCTGNAAA	TCCCGNNNCN	CAAAAAGGGC	540
TGTNCTCCTC	TCTNTTACNG	GGNGGTCNCC	CNCNNNNGAC	TCTNAAANGT	CCCTCNCAAA	600
AGGGACNCTT	TTCTATACAC	NCTTANTTTN	CCTCCTTTGT	NTNGCAAAAA	ANNANCCTGT	660
GTTNCCCCCC	NCTTTATNAT	NTTTNTTTTN	TTCCCCAAAC	TAANCTTTTA	GGNNTNANCT	720
TCCGGGGCCC	CAACCCCAAA	ATCCCANTNT	TCTTTTNTNT	TGGTTGGGGT	GTCAAAATTC	780
CTNCCCCTAA	ANTTTTGAAC	CCCCTTTAAT	TCCCCCCCC	GGNTNAAGGC	CCNACTTCCC	840
TNGGNTNTTT	TCNCTAAAAA	ATTTTTTGTN	GCCCTCCCTG	GGAAATCCCC	GGTATTCCTC	900

(2) INFORMATION FOR SEQ ID NO:73:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1033 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

CCTACGTTCA CCTATGCGTA	ACAGATCTGC	TGTGTCAGGA	GCCTCCTACC	CTCGCGCATC	60
CTGACCCCCA ACCACGTCCT	CTTATCTGAT	GACTGGTCAT	CTTCCCAAGT	CATACACCTC	120
ACCAGATCAC TCGTGGGGAT	CTCTAGGCCA	CCTCCTGTGG	TACCCTAGGC	CTTGGATCAC	180
TACTAACTCC TGCATCGTGG	TAACCTCAAT	GGCTGATCTT	GAGGATGCAG	TCTGGAGTTC	240
GACTCCATCA GGAAGCCACA	TGGGGAGGTG	GCTGAATGCC	ACAGGCACCT	ACCACATAAT	300
GCTTCATGTC CCCACAATAG	TGTCATCAAG	CANCGNTATC	TCCCTTTGTA	CCTGNCTATC	360
ACAGTAGGCC CTATGTGTTG	AAGACAGAAA	CGTTCTNATA	CTCAAAATAG	CTACCTACTT	420
TCATCTTTAG NAAAGTTATC	ACCAGAGATT	TCATCACATG	NCTNGGCTTA	NGTATTTTAT	480
CCCCTTTCTG AACTATTTAT	CACGGGCAGA	AAATNTACTG	ATTATCCCTG	TATCATGACA	540
TCGTGCTGNA GAGAAGACCC	GAGTGGGCAG	CATGGNGATC	CAAGGAGACA	AGGGAAACCA	600
AGCAGCTATA CATAGGATGT	CAGCAGCAAG	CCCTTCCCTG	CCCACGTCAG	ACTAAACCCT	660
TCAGTCCCTT CATCTTTTCC	TAGAAGGGTT	TGTAATTTCT	GTTGATTGTG	CACCAGCGCT	720
TCCCAATCGC TGAACATCTT	TCTTCGAATG	TGACTCAAAG	TGAGTGCACC	GAGTCTGGCT	780
AATGTCCTCT GCTCCTCTTA	ACCTCTGTGG	CACACTCCTC	CTAACACATG	TGTGTCGTCT	840
TGTTCCACAG TGGCCCCACG	GTACTGGTTT	CAATATAGCT	TATGTATGAG	CAATAAGGGC	900
TATGTATTTT TTTTTTCAG	ACACTGTTCC	TTTTGTATTC	AACAACCTCC	TCACATACTC	960
AGCCGNACCA CATTTCTTCC	AGGTCAAAAA	CCATCTCTCC	AATTTGTTAT	GAATTACTCC	1020

TNCAAGTTCA GGT

(2) INFORMATION FOR SEQ ID NO:74:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 883 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74: GGGGGGNNAA NAATTTCCCA AAAANNGNNG GNCCCNTTTT TTATCCAGTT TNNGGTTGAA 60 NATCTCNCCC CGGTTTNAAA ACCCNCAATG GGGAAAAAGG TACANCNGAT TNTTTATNGG 120 TTTGGGCGGA GGGGGAAATT TTTTTGGTTT TTTTNTTTNN GGGATTTTTG AAAAAAAAAN 180 GAANTTTTTA GGTTTCCCNN ANGTAATTTA TTTCAATGGA CCATTTTTGG GGTTCTCCCT 240 TTTGTAANAN GTTAAAAANA AGGGANTTCC AANNTTNCTT TTCAGTTTCC AGTTTCACCT 300 TCNGTAGCAG ACCCAGTTTT CATTTTGAGN TGGTNCCNAA AAGGNTTCCC AACTATGTTC 360 AATACCACAG GCAGCCTGCA GGAGGGAGAA TGGGTATGTA TTTAACAGCA TTTGACCAAA 420 TTATAAGAGC AGAGAGGAGC TTTACCAGGG ACAGGAAGGC AAAAGAGCTG AATNTTAAAC 480 AAAAGAATAA GAACAGGATN TCATCTGTGA GCTGTCACAG TGGGTTTCCA GAGCAGGAGA 540 ACACAGACAG GATTAGCTAT AAAGTTGTTA CATTAGTTAT TNTATTGGAG CATACAATAC 600 TTAAATAGTT CTAGGGCAAG AGAAATGAAC AGAAATGACC TTATAAGAGC CAGAGCTGTA 660 GCCACAGCTT TCTTTGTGCT TAGTTTGNTA GTTCANTCTT TCCAGGGCAG TCTGGTGGAT 720 NACACCAAAT TGCTTTAGAA AATGCTAGNT CTACTGTCCC TGTCTATTGT CAGCTTTGCA 780 ATGTGCATAG TGACAGGAGT TGCCTGGGAG CTTGGGGCTT ATGTTTTGCA GATCCATTGT **B40** AATTAAAAAA GAATTGTAAG GAGATGGAGG CACGGGGTGA GGG 883

(2) INFORMATION FOR SEQ ID NO:75:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 892 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

 GGGCCCCCCT CGAGGTCGAC GGTATCGATA AGCTTGATAT CGAATTCAGC TCTTAGCAAT

WO 97/39119 PCT/US97/06067

83

CTGACACCCT	CTTCTGGCCT	CTTCAGGCAC	CTGCATGGTT	CCACAGGACT	GTCACACCCA	120
CGTACATAGA	TAGTCAAAAT	CTAGAGCACT	GTTTCTATAC	CTGTGAGTTG	CAACCCCTTT	180
GGGAGTGCGG	TCAAATGACC	CTATCACAGG	GGTCTCAAAT	GAGATATCCT	GCATATCAAA	240
TATTTACATT	ATGATTCATA	GTAGTACCAG	AATTACAGTT	ATGAAGTTAC	AAAATAATTT	300
TATAGCTGAG	AGTCACCACA	ACATGCATAA	CTGTATTAAA	ATGTTACAGC	ATTAGCAAGG	360
TTGAGAAATA	CTGGTCTAGA	GCCATTCCTT	GTGCTGATAA	AGGTGGCAGT	GAGCATTATC	420
TTTCTGTCTC	CACACCACTA	GCAAATTTTT	TCTCTATATA	TAAACATGTA	ATATGAGACA	480
GTCTGAATCC	ACTGAGGCAC	GGTCTGACTC	CAGAACAAAG	GATCGTATTC	CTGAAAAGCA	540
AAACGTGTGT	TTGGCACTGA	CTGTGTGNCC	CAGGTTNTCT	TTCTGNACTC	CTAGAGGTCT	600
GTANTGGGTC	TTGAAGCACA	GATNCTCTAA	CCTTACCCTG	GNNGCTCAGT	AGNATGCCCC	660
AAAACNCANG	NTGTTCAACA	TNGGGNNCCN	CCCNGAAACA	GNGNTGTNGG	ATTTGGNAGA	720
AAGGTGNAAT	NCTTTGGGCN	NNTCGGTTTA	GGAATTTTAA	ACANNAACTG	GCTTNCNAGG	780
TCCNTTCCGG	AGTCATCCTT	NCACTGGNGC	CCNCTGGACC	CGGNGNANNG	GGCCANTTCG	840
CCAGTTCGTN	CCCCTGGNAC	CCNTCNCCGG	GGGCNAAANG	CCCCTNNNNT	TC	892

(2) INFORMATION FOR SEQ ID NO:76:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 884 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

TGGGCCCCCC	TCGAGGTCGA	CGGTATCGAT	AAGCTTGAGG	GACCCACGTG	ATGGAAAGGG	60
AGAAGCAATT	TAGTGTCCTT	TGTCCTCTGA	CCTCCACAAG	TGCTGTGGCA	TGGGGACACA	120
GGACTGTACA	CACACACACA	CACACACACA	CACACACACA	CACACACGCA	CGCACACACA	180
CCCCTCAAGT	AACCGTGGAA	TAAAGGTCCG	ACCAGAAACC	ACGCTGGAAC	GGGAGATGCT	240
GGAGCACATC	AGGGTGGTGC	TAAGCAGCAG	ATCGGCCTGT	AACTGGCAGC	AGAGGGGTGT	300
GGCTCTTTCA	GAACCAGGAG	GGCATCGCCC	CTCCAGCCAG	ACTCTCCAGC	TTTCTTCCCC	360
TCCTTGCCTC	CTGTTTTCCT	TCTGCCTACC	TTCCTTTGGC	CTCAAACCAT	AATGTGCAAC	420
ACATTCAAAC	TGTAGTAAGT	GTTTTAATTT	TCTACTAAAC	AATAAAACCT	TTAGATTTTC	480
ACTGGGCCAG	TGCTGGTAAC	AGCAGACTGG	GTGGAGTATC	ACAGAGGGTG	TGGAGCAAGC	540
TGGCTACCCA	GGGCTGGGCA	CACTCAACAC	TCTGGCATTC	TGTGGAAGTT	CTGGGCAGTA	600

WO 97/39119 PCT/US97/06067

•	A
ō	4

AAAACAGAAG	CATACGTCAC	GCACAGGTTC	CATAGTGTTA	GGCATCTTAA	TCTATCTAGA	660
ATACCTGGTG	TTTAGTTTGT	TTACAAAATT	GATTGTTGTA	CTTGGACAGT	GGTGTTTTT	720
TCCCAGGGCT	TCCAGGATTT	AGGGGTATAC	CAGGCCCATT	ACATTGGGTA	AACGTGTGTG	780
TTAATTTTTT	CTTTTTAAAC	CTCCTTGGTT	GACTACTTGT	TTTCCTTTTT	AATGGTCCCA	840
GTTCCCCTTG	GGGGGTTTGT	TTTGGAAAAA	GGCTTTCCGG	TTTC		884

(2) INFORMATION FOR SEQ ID NO:77:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 326 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

• •	_					
AGCACACCAC	AGAGAGGGGG	TCTCCGTGCC	CGAGAGGCAA	AAGTCTCCCA	CTGTGCTCCT	60
CTCCCCCCCT	GGTGGGGGTT	AAGAGATGGG	GGCTCTGGGG	GGTGATAGAA	CCCCTGGCGG	120
GACACCCCCC	CGCTCTCGTG	GAGAGAGACA	GAGGGGGGTG	CCCCTGATAT	CTCACTAGAG	180
GGGAGAGGTG	AGAGGGCTCC	ACAGTGTGGT	GTGGTGGTGA	GTGCTCTATC	TCCAGGTGTC	240
TCACATATTT	TCACAGCTCT	TGACCACAGA	GAGATCTTGT	TGACTCTGTG	CTCGCGGAAT	300
CTAATGTGCC	CCACATCATA	TACACA				326

(2) INFORMATION FOR SEQ ID NO:78:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 557 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

GGGGGGTCT	CACNNTANAN	CACTCNGGNG	TCTCCCATGT	CTAGATCTCC	CCCCNGCNCN	60
NGNGANGAGT	GTGNGGAGAT	CCCTCTCTGN	TCTCTACACT	CTAAAGGGTA	NGCGGGGAGA	120
GAGAGAGAGC	ACANTCTATA	GANCACANAG	CACACNCGCT	CNANGTGCCC	NANTNACANG	180
NNAGAGAGAN	CCCCTCTCNC	AGTATATNGG	GGAGAGAGTN	TGAGGGACNC	TCCTCTTTTC	240
				GGNGGAGNGG		300
				AATCNCCTNT		360

CAACAACAAC	CCCCGCACG	NGCACACACC	ACAACAACAA	NGGGACANCG	CGNGGGGGNT	420
NGNGCACACC	CAGNGGAGAC	ACTGTTTTCT	GTTTNACACA	CACACACACA	CACACACA	480
CNCNCCCCCC	ACANAGTTTT	TNGGAAAANC	GCNGGGGGGG	GNGGGNCTTT	TTGCCNCAAG	540
CCTTTTTTNA	NCNCCCA					557

(2) INFORMATION FOR SEQ ID NO:79:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 376 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

GTCTCCCCCA	AAGGGGGGGT	CTCACCCTCC	CGGACACCAC	ACATCTGTCT	GTCTCTCTGA	60
TCTCTGACAC	CCCACAGAGA	TATATATAGG	GACAACGCCG	CTGTCCCCAT	GATATAGAGA	120
GAAGCGAGAC	AAACTCTCAG	GTACACATGA	CACATGATCC	CCATGATCCC	CGGCACACTC	180
ттстаатата	GTTGAGAGAG	TTGTGTCTCT	CAAGTGTCTC	TGGTATTTTC	TAACCCCATG	240
TTTTCTCTCA	CAATGTCACA	CGGGGGAGCT	CGGACGCGGT	GCACATGGGG	GAGAGTTCGT	300
GTCTATGACA	CACTAGTCTT	GCCCCGAAC	CACAGAGACC	TCGACTCGGG	TTTAGTCTCC	360
TCTGCCCCCC	CAGCTC					376

(2) INFORMATION FOR SEQ ID NO:80:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 533 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

ATNNCCCAAN ATCANATGNG GAANNNCCCA CATTTTNTAT NTAGAAANGN GTTTTGTGTG 60
TGTGNGTNNA ATTTGAGNTT TCACAGAGNT NACATTCTCT GTGTCACAAN CCCTTTCTCT 120
CTACACTCCA CAGTGTGGTG NGAGATATAC TNTGANACAN ATGNGCTCTC TCCTCNCCCC 180
CCNNCATGTT NTNCCCCACA GTNTACNNCN NCNATATATN GNNCNCNGNA GANNGGTATG 240
NGNGNTGTNT TTNTTTAAAA AGATNTNANA NAGNGGGTAT GCGTGNGGGG TATGTNNANA 300
CATATATGTN NNAGAGGGTC TCTCTGNGGC CCNATGGAGG CANATCCCCC CCNCTCNGAG 360

0	_
O	o

NNATATAGAA	AAGAGTNTTT	NANGGTGTTT	GTGGACACAG	ATAAGGGGAG	AGAGAGAGAG	420
AGAGANAGAG	AGAGANAGAG	AGAGAGAGAG	AGAGAGANAN	GGNGTNTTNG	GNTTCNTCCC	480
CCCCNATATA	CAGAAAAANC	GGGGGGGGT	TAGGNGGNNG	GGGGTTTNCT	TTA	533

(2) INFORMATION FOR SEQ ID NO:81:

WO 97/39119

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 346 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

TTTCACACGA GATGTCGCGA CTCTCGCGAG ACTCTCAGCG CGGAGATATA GACCCACAAG 60

GGGAATCCCC CGGGTTTTT GCCACAGGAG AGCGCGAGGA GAGAGATATT CTTATTATGG 120

CTATAGACAC CCCCGTGGGT GGGGGACATT TGTGGTGTTT CCACAGGGGG GGGGATGTAC 180

CCCGGATATC AGAGTATTCT CTAAAAAAGG TGAGAAGAGG TCTTCTCTTT TGAGAGTATG 240

GGGACACTCG AGGAGAGCTC TCTATCTATC TCTCACAGCG CCCCTGTGTG GGCGGATCCT 300

CCACACCAGA TGTTAGTGTG NAGATCTCCC CATCTTCTAT ATTGAA 346

(2) INFORMATION FOR SEQ ID NO:82:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 461 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

GAANACCCAA	AATTGNGCTN	GTGGGCAAAN	NTTTTNCCGT	TTCTTGTGCT	TGNGCGGCNA	60
AGNNAAAAAT	TCAAAACCAA	NACCACANAA	GCGCGTTATC	CTGNCTNTCT	GCCNTTNCCC	120
TGTCACACTG	NGGCTGTACA	GACATCNANC	GCTTTCTAGA	GAGACGNGAG	AGTCAGGGGA	180
CTCTTTCCCC	CANNCGCATT	ATANCCACAT	ATTAGNGTAN	NANATTCAGC	TGTGNTNCAC	240
TGGGNGTGTC	TCCNTAGTGT	GAAGCAACAC	AGGGAAACTN	TTCGCNCACA	TGTCCTCTGG	300
TGTTCACAGA	NATAAGNAGG	CTCCTAGACC	NNTATNACTG	TGGGNAGAGN	ATGTTACCTC	360
CCTATANNTC	GGGGTCTATC	TCTGTGAGAN	AGAGNTTCCT	TTCTCCCATN	CCTACCTCAG	420
TGGGGTGNTA	TNTACATONO	AGAGAGCAGA	NAACTGTGAG	С		461

(2) INFORMATION FOR SEQ ID NO:83:

(i) SEQUENCE	CHARACTERISTICS:
--------------	------------------

- (A) LENGTH: 367 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

GGGGTNTCAC	AGAGANAGGG	CACANCTCTC	CCNAGAANGG	GNCNNCCCTC	TTTTTNNGGN	60
GTAACACCTC	TCNCCGTGTC	TCTTTCTTTC	TTTTTTTTT	TTTGGGGGGC	TCTTTTTCGN	120
GGAGGNGGAG	NNCGNCCGAG	GGTCGGGCNN	NNCNGNGGAN	AGCTCTNTCN	CANNGATATA	180
TCNCCNNANC	CCCCTGTNT	CTTATAANNN	ACATCTCTTC	NTCNCAGGGT	CACACCNAGA	240
NTCTCNTTTC	TACAACAACC	CCCACACGCN	AAAGCTCCCC	ACNNNGNGNG	GGGGTCTCNC	300
AAGAANATCT	CNGCGGAGAG	GTGGNGGAGA	GAGTGANATC	TGNATNTCTG	GNTTCCCCNC	360
ANTGCCC						367

What is claimed is:

- An isolated nucleic acid comprising a nucleotide sequence set forth in SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82 or SEQ ID NO:83.
- 2. An allelic variant or homolog of the nucleic acid of claim 1.
- An isolated nucleic acid encoding the protein encoded by the gene comprising the nucleotide sequence set forth in SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37,

SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82 or SEQ ID NO:83.

- 4. A host cell containing the nucleic acid of claim 1, 2 or 3.
- 5. A nucleic acid that selectively hybridizes under stringent conditions with the nucleic acid of claim 1, 2 or 3.
- 6. A nucleic acid having a region within an exon wherein the region has at least 50 % homology with the nucleic acid of claim 1, 2 or 3.
- 7. A nucleic acid having a region within an exon wherein the region has at least 60 % homology with the nucleic acid of claim 1, 2 or 3.
- 8. A nucleic acid having a region within an exon wherein the region has at least 70 % homology with the nucleic acid of claim 1, 2 or 3.
- 9. A nucleic acid having a region within an exon wherein the region has at least 80 % homology with the nucleic acid of claim 1, 2 or 3.
- 10. A nucleic acid having a region within an exon wherein the region has at least 90 % homology with the nucleic acid of claim 1, 2 or 3.

- 11 A nucleic acid having a region within an exon wherein the region has at least 95 % homology with the nucleic acid of claim 1, 2 3.
- 12. A protein encoded by the nucleic acid of claims 1, 2, 3, 5, 6, 7, 8, 9, 10 or 11.
- A nucleic acid comprising a regulatory region of a gene comprising the 13. nucleotide sequence set forth in SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82 or SEQ ID NO:83.
- 14. A construct comprising a regulatory region of claim 13, wherein the regulatory region is functionally linked to a reporter gene.
- 15. A method of identifying a cellular gene necessary for viral growth in a cell and nonessential for cellular survival, comprising
- (a) transferring into a cell culture growing in serum-containing medium a vector encoding a selective marker gene lacking a functional promoter,

- (b) selecting cells expressing the marker gene,
- (c) removing serum from the culture medium,
- (d) infecting the cell culture with the virus, and
- (e) isolating from the surviving cells a cellular gene within which the marker gene is inserted, thereby identifying a gene necessary for viral growth in a cell and nonessential for cellular survival.
- A method of reducing or inhibiting a viral infection in a subject, comprising 16. administering to the subject an amount of a composition that inhibits expression or functioning of a gene product encoded by a gene comprising the nucleic acid set forth in SEO ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11. SEO ID NO:12. SEO ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36. SEO ID NO:37. SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEO ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74 or SEQ ID NO:75, or a homolog thereof, thereby treating the viral infection.
- 17. The method of claim 16, wherein the composition comprises an antibody that binds a protein encoded by the gene.

- 18. The method of claim 16, wherein the composition comprises an antibody that binds a receptor for a protein encoded by the gene.
- 19. The method of claim 16, wherein the composition comprises an antisense RNA that binds an RNA encoded by the gene.
- 20. The method of claim 16, wherein the composition comprises a nucleic acid functionally encoding an antisense RNA that binds an RNA encoded by the gene.
- A method of reducing or inhibiting a viral infection in a subject comprising 21. mutating ex vivo in a selected cell from the subject an endogenous gene comprising the nucleic acid set forth in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74 or SEQ ID NO:75, or a homolog thereof, to a mutated gene incapable of producing a functional gene product of the gene or to a mutated gene producing a reduced amount of a functional gene product of the gene, and replacing the cell in the subject, thereby reducing viral infection of cells in the subject.

- 22. The method of claim 21, wherein the cell is a hematopoietic cell.
- A method of reducing or inhibiting a viral infection in a subject comprising mutating ex vivo in a selected cell from the subject an endogenous gene comprising a nucleic acid isolated by the method of claim 15, to a mutated gene incapable of producing a functional gene product of the gene or to a mutated gene producing a reduced amount of a functional gene product of the gene, and replacing the cell in the subject, thereby reducing viral infection of cells in the subject.
- 24. The method of claim 23, wherein the virus is HIV.
- 25. The method of claim 23, wherein the cell is a hematopoietic cell.
- A method of increasing viral infection resistance in a subject comprising mutating ex vivo in a selected cell from the subject an endogenous gene comprising a nucleic acid isolated by the method of claim 15, to a mutated gene incapable of producing a functional gene product of the gene or to a mutated gene producing a reduced amount of a functional gene product of the gene, and replacing the cell in the subject, thereby reducing viral infection of cells in the subject.
- The method of claim 26, wherein the virus is HIV.
- 28. The method of claim 26, wherein the cell is a hematopoietic cell.
- A method of screening a compound for effectiveness in treating a viral infection, comprising administering the compound to a cell containing a cellular gene functionally encoding a gene product necessary for reproduction of the virus in the cell but not necessary for survival of the cell and detecting the level of the gene product produced, a decrease or elimination of the gene product indicating a compound effective for treating the viral infection.

- The method of claim 29, wherein the cellular gene comprises the nucleic acid set **30**. forth in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74 or SEQ ID NO:75, or a homolog thereof.
- The method of claim 29, wherein the cellular gene is a gene identified by the method of claim 15.
- 32. A method of screening a compound for reducing or inhibiting a viral infection, comprising administering the compound to a cell containing the construct of claim 14 and detecting the level of the reporter gene product produced, a decrease or elimination of the reporter gene product indicating a compound for reducing or inhibiting the viral infection.
- 33. A purified mammalian serum protein having a molecular weight of between about 50 kD and 100 kD which resists inactivation in low pH and resists inactivation by chloroform extraction, which inactivates when boiled and inactivates in low ionic strength solution, and which when removed from a cell culture comprising cells

persistently infected with reovirus selectively prevents survival of cells persistently infected with reovirus.

- A method of selectively eliminating, from an animal cell culture capable of surviving for a first period of time in the absence of serum, cells persistently infected with a virus, comprising propagating the cell culture in the absence of serum for a second time period which a persistently infected cell cannot survive without serum, thereby selectively eliminating from the cell culture cells persistently infected with the virus.
- 35. The method of claim 34, wherein the second time period is from about three days to about ten days.
- The method of claim 34, further comprising transferring the cell culture from a first container to a second container.
- A method of selectively eliminating from a cell culture cells persistently infected with a virus, comprising propagating the cell culture in the absence of a functional form of the protein of claim 33.
- 38. A method of reducing or inhibiting a viral infection in a subject, comprising administering to the subject an amount of a composition that inhibits functioning of a serum protein having a molecular weight of between about 50 kD and 100 kD which resists inactivation in low pH and resists inactivation by chloroform extraction, which inactivates when boiled and inactivates in low ionic strength solution, and which, when removed from a cell culture comprising cells persistently infected with the virus, prevents survival of cells persistently infected with the virus, thereby reducing or inhibiting the viral infection.
- 39. The method of claim 38, wherein the composition comprises an antibody that binds the serum protein.

- 40. The method of claim 38, wherein the composition comprises an antisense RNA that binds an RNA encoded by the gene.
- A method of identifying a cellular gene that can suppress a malignant phenotype in a cell, comprising
- (a) transferring into a cell culture incapable of growing well in soft agar a vector encoding a selective marker gene lacking a functional promoter,
 - (b) selecting cells expressing the marker gene, and
- (c) isolating from selected cells which are capable of growing in agar a cellular gene within which the marker gene is inserted, thereby identifying a gene that can suppress a malignant phenotype in a cell.
- 42. A method of identifying a cellular gene that can suppress a malignant phenotype in a cell, comprising
- (a) transferring into a cell culture of non-transformed cells a vector encoding a selective marker gene lacking a functional promoter,
 - (b) selecting cells expressing the marker gene, and
- (c) isolating from selected and transformed cells a cellular gene within which the marker gene is inserted, thereby identifying a gene that can suppress a malignant phenotype in a cell.
- A method of screening for a compound for suppressing a malignant phenotype in a cell comprising administering the compound to a cell containing a cellular gene functionally encoding a gene product involved in establishment of a malignant phenotype in the cell and detecting the level of the gene product produced, a decrease or elimination of the gene product indicating a compound effective for suppressing the malignant phenotype.
- 44. A method of suppressing a malignant phenotype in a cell in a subject, comprising administering to the subject an amount of a composition that inhibits expression or functioning of a gene product encoded by a gene comprising the nucleic acid set forth in

SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82 or SEQ ID NO:83, or a homolog thereof, thereby suppressing a malignant phenotype.

- The method of claim 44, wherein the composition comprises an antibody that binds a protein encoded by the gene.
- The method of claim 44, wherein the composition comprises an antibody that binds a receptor for a protein encoded by the gene.
- The method of claim 44, wherein the composition comprises an antisense RNA that binds an RNA encoded by the gene.
- 48. The method of claim 44, wherein the composition comprises a nucleic acid functionally encoding an antisense RNA that binds an RNA encoded by the gene.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/06067

A. CLASSIFICATION OF SUBJECT MATTER	-			
IPC(6) :C12N 15/11, 15/12, 15/06, 15/10				
US CL :435/6, 23.1, 325 According to International Patent Classification (IPC) or to	hoth national classification and IPC			
	Com included Amountained and 11			
B. FIELDS SEARCHED	Harris Lands and the state of t			
Minimum documentation searched (classification system fo	nuowed by classification symbols)			
U.S. : 435/6, 23.1, 325, 172.3				
Documentation searched other than minimum documentation	n to the extent that such documents are included	in the fields searched		
	mb (name of data base and whose smatiachte	search terms used)		
Electronic data base consulted during the international sear Please See Extra Sheet.	ion (name of caus case and, where practicable			
C. DOCUMENTS CONSIDERED TO BE RELEVA	INT			
Category* Citation of document, with indication, wh	here appropriate, of the relevant passages	Relevant to claim No.		
A WATSON, James D., et al, Recombinant DNA, Second 1-11 and 1 Edition, New York, Scientific American Books, W.H. Freeman and Company, 1992, pages 99-133, see entire document.		1-11 and 15		
Further documents are listed in the continuation of Box C. See patent family annex.				
Special categories of cited documents:	"T" later document published after the in date and not in conflict with the appli	cation but cited to understand the		
A document defining the general state of the art which is not come to be of particular relevance	principle or theory underlying the in	vention		
E earlier document published on or after the international filing of	COMMISSION BOAST OF CHIMING DE COURSE	he claimed invention cannot be lered to involve an inventive step		
"L" document which may throw doubts on priority claim(s) or w	hich is when the document is taken alone			
cited to establish the publication date of another citation or special reason (se specified)	r other "Y" document of particular relevance; the considered to involve an inventive considered to inventive considered conside	he claimed invention cannot be a step when the document is		
"O" document referring to an oral disclosure, use, exhibition or means		ch documents, such combination		
P document published prior to the international filing date but late the priority date claimed				
Date of the actual completion of the international search Date of mailing of the international search report				
30 JULY 1997	13 AUG 1997			
Name and mailing address of the ISA/US	Authorized officer	1.3		
Commissioner of Patents and Trademarks Box PCT	Authorized officer JAMES MARTINELL	Miller for		
Washington, D.C. 20231	JAMES MARTINELL	<i>i</i>		
Facsimile No. (703) 305-3230	Telephone No. (703) 308-0196			

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/06067

Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)				
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:				
Claims Nos.: 12 and 31 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)				
This International Searching Authority found multiple inventions in this international application, as follows:				
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.				
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.				
3. X As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: 1-11 and 15				
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:				
Remark on Protest The additional search fees were accompanied by the applicant's protest.				
No protest accompanied the payment of additional search fees.				

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/06067

B. FIELDS SEARCHED Electronic data bases consulted (Name of data base and where practicable terms used):						
APS and CAS: promoter#, serum, virus, viral, vector# IG Suite and MPSRCH on SEQ ID NOs: 6, 7, 8, 22, 40, 41, 46, 69, 73, 76, and their complements						
·						
•						
·						