B.C.A. (Sem. I)

Dis. Maths.

BCA First Semester Examination, Dec-2018

FOURTH PAPER

Discrete Mathematics

Paper Code-1741

Time Allowed: Three Hours

Maximum Marks.70

- (1) No supplementary answer book will be given to any candidate. Hence the candidates should write the answers precisely in the main answer book only.
- (2)All the parts of one question should be answered at one place in the answer book.

(Attempt all six questions.)

Part A and Part B are compulsory (Question No. 1& 2) & Part C (Question No. 3, 4, 5 & 6) has internal choice.

Part-A

1. Answer any 10 questions. Each question carries 1 mark.

10x1 = 10

- (Words limit up to 20 words each) a) If $A = \{1,2,5,6,7\}$ and $B = \{5,7,8,11\}$, then find (A - B).
 - b) Find $(A \cup \emptyset)$ where $A = \{1,2,3,4\}$
 - c) Convert (10101)₂ into decimal form.
 - d) Find the number of different permutations of the word "ANKIT".
 - e) If $n_{C_{12}} = n_{C_8}$, then find the value of 'n'.
 - f) Find the total number of relations on the set $A = \{a, b\}$.
 - g) Find the truth table of $(p \lor q)$.
 - h) Find the truth table for $(p \land \neg p)$.
 - i) Write associate laws for p, q and r.
 - j) Find the number of vertices in the graph K_5 .
 - k) Draw the graph $K_{2,3}$.
 - 1) Find the number of edges in the graph C_5 .

2. Answer all the questions. Each question carries ${\bf 5}$ marks.

4x5 = 20

(Words limit up to 50 words each)

- a) Suppose $S = \{1,2,34\}$ then find the power set of S. Also find the number of subsets of S with 3 elements.
- b) How many integers are divisible by 3 or 5 among integers 1 to 1000.
- c) Show that the proposition $[\{(p \to q) \land \sim q\} \to \sim p]$ is a tautology.
- d) Show that the complete graph K_5 is nonplanar.

Part-II

Unit-I

- 3. (a) Evaluate $(162)_8 + (537)_8$ in octal number system.
 - (b) Find $(10110)_2$ $(01101)_2$ in binary number system.

5

- (a) Evaluate the set $(A \cup B) \cap (A \cup \overline{B})$ using Venn diagram. (b) Let $A = \{a, a, a, b, b, c\}$ and $B = \{a, a, b, b, b, d, d, d, d\}$ be two multi sets. Find $(A \cap B)$
 - and (A B).

5

5

5

5

5

5

5

5

5

5

5

5

5

Unit-II

- **4.** (a) Prove the following by the principle of Mathematical induction. 5 $1+3+5+\dots+(2n+1) = n^2$
 - (b) State Pigeon Hole principle with example.

- (a) Let $A = \{1,2,3,4\}$ and $R = \{(a,b)|a \text{ divides } b\}$ be a relation on the set A. List all the elements of R.
- (b) Let $A = \{1,2,3,4\}$ and $B = \{x, y, z\}$ and $R = \{(1, y) (1, z) (3, y) (4, x) (4, z)\}$ be the relation from A to B. Find R⁻¹ of R.

- **5.** (a) Show that the proposition $[(p \lor q) \land \sim p] \rightarrow q$ is a tautology.
 - (b) Using truth table, prove that $p \lor (q \land r) = (p \lor q) \land (p \lor r)$

OR

- (a) Show that the propositions $\sim (p \land q)$ and $(\sim p \lor \sim q)$ are logically equivalent.
- (b) Show that the propositions $(q \to p)$ and $(\sim p \to \sim q)$ are logically equivalent.

Unit-IV

- **6.** (a) Show that each tree has either one or two centers.
 - (b) Find minimum spanning tree for the following graph.

- (a) Find the condition for the complete bipartite graph $K_{m,n}$ to be Eulerian graph.
- (b) Draw all the trees with five vertices.
