Aprendizagem Automática || Home Assignment 3 || Grupo 16

Andreia Araújo nº62912 (16 horas)

Carolina Rodrigues nº62910 (16 horas)

Filipa Branco nº62762 (16 horas)

INTRODUÇÃO

O presente trabalho tem como objetivo explorar e comparar o desempenho de três modelos de regressão distintos – *Random Forest Regression*, *Linear Regression* e *Decision Tree Regression* – no contexto da inferência da atividade molecular sobre os recetores de Dopamina2.

Ao utilizar diferentes modelos de regressão, procurou-se identificar a abordagem que melhor se adaptaria aos dados específicos e, consequentemente, proporcionaria previsões mais meticulosas. A escolha dos modelos - *Random Forest, Linear Regression* e *Decision Tree* - foi baseada na necessidade de explorar diferentes paradigmas de modelagem, desde métodos baseados em árvores até abordagens mais lineares.

Além disso, a abordagem usada inclui uma análise do processo de pré-processamento dos dados, a avaliação do desempenho dos modelos e uma discussão sobre os resultados obtidos. Ir-se-á, por fim, justificar qual o modelo mais adequado ao *dataset*, dos três utilizados.

O repositório online do *Github* deste trabalho, contendo os ficheiros pertinentes, pode ser acessado a partir deste link: https://github.com/Princesacorderosa/AAut.

OBJETIVO

O objetivo é, através da exploração de diversos modelos de regressão, entender qual o modelo mais indicado para a previsão da atividade molecular dos recetores da Dopamina2.

OS MODELOS

No início deste projeto, analisaram-se diferentes modelos de regressão, tendo-se optado por usar os três modelos que se encontram na *Tabela 1*, por todos os pontos a favor referidos na mesma.

Foram então treinados estes modelos de forma a entender qual destes se adequaria melhor ao *dataset* em questão.

Tabela 1: Modelos de Regressão utilizados.

Modelo	Pontos a Favor		
Random Forest Regression	Aleatoriedade, menos sensível a <i>overfitting</i> , requer menor ajuste de hiperparâmetros		
Linear Regression	Modelo simples, grande interpretabilidade, rápido de treinar		
Decision Tree Regression			

Andreia Araújo nº62912 (16 horas)

Carolina Rodrigues nº62910 (16 horas)

Filipa Branco nº62762 (16 horas)

DISCUSSÃO DE RESULTADOS

No âmbito desta análise, uma etapa crítica envolveu a identificação de *missing values* nos conjuntos de dados **X_train**, **X_ivs** e **y_train**. Uma vez que não existiam, não foi necessário removê-los, pudemos assim prosseguir para os próximos passos.

Na fase de seleção de características (feature selection), utilizou-se um Random Forest Regressor para avaliar a importância de cada característica. O limiar de importância (threshold) foi definido em 0,005. Características com importância superior a este limiar são consideradas relevantes para os modelos de regressão. Este processo permitiu concentrar a análise num conjunto mais restrito que contribuíram significativamente para a modelagem preditiva.

A Análise de Componentes Principais (PCA) com *n_components* = 3, resultou na extração de três componentes principais que retêm a maior parte da variabilidade dos dados originais. A avaliação da eficácia dessa redução de dimensionalidade foi crucial para compreender se a variância foi mantida.

A validação cruzada foi implementada com *KFold* (**n_splits = 5**) para garantir uma avaliação robusta e evitar enviesamento nos resultados.

O IVS foi utilizado como uma métrica abrangente para entender e comparar aspetos diversos relacionados ao desenvolvimento e qualidade do modelo, neste caso o *Random Forest Regression.*

Desta forma, para uma melhor compreensão, obteve-se uma visualização gráfica de cada modelo de regressão, que oferecem insights valiosos sobre o desempenho dos modelos.

Através dos gráficos e das métricas utilizadas, como *RVE*, *RMSE*, *Correlation Score*, *Maximum Error* e *Mean Absolute Error*, será possível orientar a escolha da seleção do modelo mais adequado.

A. PCA

PCA é uma técnica de pré-processamento que transforma as suas características originais em combinações lineares (componentes principais **PC0**, **PC1**, **PC2**), da qual são frequentemente usadas para reduzir a dimensionalidade de um determinado conjunto de dados. A escolha de como se usa essas componentes pode influenciar de como os modelos de regressão interpretam e preveem os dados.

Tabela 2: Variação da Variância pela análise de PCA

	Variância explicada	Variância Total	
PC0	0.2048	0.2048	
PC1	0.1716	0.3764	
PC2	0.1068	0.4832	

Aprendizagem Automática || Home Assignment 3 || Grupo 16

Esses resultados (*Tabela 2*) refletem a influência da escolha das componentes principais dos modelos. A técnica do PCA ajudou a melhorar o desempenho, reduzindo a dimensionalidade dos dados e destacando as informações mais importantes.

Com base na análise, retira-se que:

- ▶ PC0 Variance explained: 0.2048 Total Variance: 0.2048
 Percentagem relativamente baixa (20.48%). PC0 não consegue capturar completamente as informações mais importantes nos dados originais.
- PC1 Variance explained: 0.1716 Total Variance: 0.3764
 PC0 e PC1 explicam 37.64% da variância total. Essa percentagem sugere que essas duas componentes principais, em conjunto, representam uma parte significativa das variações nos dados originais.
- PC2 Variance explained: 0.1068 Total Variance: 0.4832
 Com PC0, PC1 e PC2 juntos, apresentam 48.32% da variância total.

B. REGRESSION MODELS

Fig. 1. Representação gráfica dos modelos de Regressão de Árvore de Decisão a) e b), Regressão Linear c), e Random Forest (d).

Andreia Araújo nº62912 (16 horas)

Carolina Rodrigues nº62910 (16 horas)

Filipa Branco nº62762 (16 horas)

Tabela 3: Parâmetros dos Modelos de Regressão utilizados.

	RVE	RMSE	Correlation Score	Maximum Error	Mean Absolute Error
Regressão Linear	0.258	0.236	0.508	0.855	0.189
Árvore de Decisão	0.170	0.249	0.416	0.875	0.198
Random Forest	0.498	0.194	0.705	0.800	0.145

Com base nas métricas apresentadas, o modelo de *Random Forest* parece ser o melhor entre os modelos utilizados.

No caso da *Random Forest*, um valor alto de *RVE* sugere que o modelo está capturando efetivamente a variabilidade nos dados, porém, um *RMSE*, *Maximum Error* e *MAE*, baixos indicam que o modelo apresenta previsões próximas aos valores reais. Desta forma, este modelo é o mais promissor fornecendo uma relação linear eficaz e previsões precisas.

Desta forma, com base nas informações fornecidas, a escolha de incluir PC0 na análise com o modelo *Random Forest* foi orientada pelo objetivo de reter a maior quantidade possível de informação individual.

PC0, que explica 20.48% da variância total, foi considerado crucial para preservar as características individuais dos dados durante a previsão com o modelo *Random Forest*. Essa estratégia visa maximizar a capacidade do modelo em capturar padrões complexos e fornecer previsões mais precisas.