Math 402/502 Homework 1 – due Friday, January 24

Nat Steven

- (1) Let variables range over the natural numbers \mathbb{N} , and let P(n) be the relation that n is prime, L(n,m) the relation that n < m, and E(n) the relation that n is even.
 - (a) Express the following symbolic statement as an English sentence:

$$\forall n \exists m (L(n,m) \land P(m))$$

For all natural numbers n, there exists a natural number m such that n is less than m and m is prime. Alternatively, there always exists a prime natural number greater than any given natural number.

(b) Express the following English sentence as a symbolic statement. Do not use the $\exists!$ abbreviation.

"There is a unique natural number n which is both even and prime."

$$\exists n((E(n) \land P(n)) \land (\forall m(E(m) \land P(m)) \implies m = n))$$

(2) Let \oplus be a new connective representing exclusive or (XOR), so that $P \oplus Q$ is true precisely when exactly one of P and Q is true. Write a truth table for \oplus .

P	Q	$P\oplus Q$
Τ	Т	F
Τ	\mathbf{F}	${ m T}$
\mathbf{F}	Γ	${ m T}$
F	F	\mathbf{F}

(3) Consider the following three statements, where $P,\ Q,$ and R are three predicates:

• Statement 1: $(P \rightarrow Q) \rightarrow R$ • Statement 2: $P \rightarrow (Q \rightarrow R)$ • Statement 3: $(P \land Q) \rightarrow R$

(a) Show Statement 2 is logically equivalent to Statement 3.

			P	Q	R	$P \to (Q \to R)$
			$\overline{\mathrm{T}}$	Τ	T	${ m T}$
P		$D \oplus O$	${ m T}$	\mathbf{T}	\mathbf{F}	\mathbf{F}
	T	$P \oplus Q$	${ m T}$	\mathbf{F}	Γ	${ m T}$
T T	L. T	r T	${ m T}$	\mathbf{F}	F	\mathbf{F}
	r	I T	\mathbf{F}	${ m T}$	T	${ m T}$
F	Т		\mathbf{F}	${ m T}$	F	${ m T}$
F	F	F	\mathbf{F}	\mathbf{F}	T	${ m T}$
A D I	E3	1 Truth	\mathbf{F}	F	F	${ m T}$

Table 1. Truth table for \oplus

Table 2. Truth table for $P \to (Q \to R)$

(b) Show Statement 1 is not logically equivalent to Statement 2.

(4) The symmetric difference of two sets, $X\Delta Y$, is defined to consist of those sets which are elements of exactly one of the two sets.

Write a formula in the language of set theory which expresses the statement $Z=X\Delta Y.$