Identifier Namespaces in Mathematical Notation

Master Thesis by Alexey Grigorev

Advisers: Moritz Schubotz, Juan Soto Supervisor: Prof. Dr. Volker Markl

Outline

- 1. Motivation
- 2. Namespace Discovery
- 3. Implementation
- 4. Evaluation
- 5. Conclusions

[[Namespace]]

In programming, namespaces are employed to group symbols and identifiers around a particular functionality and to avoid name collisions between multiple identifiers that share the same name

No namespaces (C, old PHP)

```
Text
Figlet

Calcal Text_Figlet

Calcal Text_Figlet Exception

Table

Calcal Text_Table

Calcal Text_Table
```

\$foo = new Zend CodeGenerator Php Class();

With namespaces (C++, Java, C#, Python)

- org.apache.flink.api.java
- org.apache.flink.api.java.aggregation
- a
 org.apache.flink.api.java.functions
 - ▶ ╬ FirstReducer.class
 - ▶ IntMapIterator.class
 - ▶ In FormattingMapper.class
 - ▶ In Function Annotation.class
 - GroupReduceIterator.class

import o.a.f.api.java.ExecutionEnvironment; ExecutionEnvironment.getExecutionEnvironment()

Namespaces in Mathematics

- Can resolve it by introducing namespaces to Mathematics
 - import Physics/General/Relativity and Gravitation/{E, m, c}
- It can give:
 - identifier disambiguation
 - better user experience
 - additional context

Namespaces in Mathematics

- Problem: How to organize identifiers into namespaces?
- Manual assignment would take a lot of time
- Our approach: employ automatic namespace discovery from a collection of documents

import Physics/General/Relativity and Gravitation/{E, m, c}

Outline

- 1. Motivation
- 2. Namespace Discovery
- 3. Implementation
- 4. Evaluation
- 5. Conclusions

Definition Extraction

How to get the definitions? Extract them!

[[Mass-energy equivalence]]

The equivalence of energy *E* and mass *m* is reliant on the speed of light *c* and is described by the famous equation:

ID	Definition
E	energy
m	mass
С	speed of light

Namespace Discovery

Want to find groups of documents that use identifiers in the same way

Cluster analysis

λ: wavelength v: speed

 $k=2x\lambda$ $Ax = \lambda x$ $a x^2 + b x$

E: energy m: mass c: speed of light

Identifier VSM

d_1			d_2		d_3		d_4	
		Definition		Definition		Definition		Definition
	Ε	energy	m	mass	E	energy	m	integer
	m	mass	С	speed of light			С	constant
	С	speed of light						

Build identifier-document matrix

TF of terms

	$\mid d_1 floor$	$^{\prime}d_2$	d_3	d_4
\overline{E}	1	0	1	0
m	1	1	0	1
$\lfloor c \rfloor$	1	1	0	1 _

	d_1	d_2	d_3	d_4
-	1	0	1	0
m	1	1	0	1
c	1	1	0	1
energy	1	0	1	0
mass	1	1	0	0
speed of light	1	1	0	0
integer	0	0	0	1
constant	0	0	0	1

	d_1	d_2	d_3	d_4
$E_{\text{-energy}}$	1	0	1	0
$m_{ ext{-}} ext{mass}$	1	1	0	0
c _speed of light	1	1	0	0
m_{\perp} integer	0	0	0	1
c_{-} constant	0	0	0	1

No definitions

"Weak" association

"Strong" association

Document Clustering

Once documents are represented using vectors

we can cluster them

- K-Means [IR]
- DBSCAN [SNN]
- LSA [LSI]

Outline

- 1. Motivation
- 2. Namespace Discovery
- 3. Implementation
- 4. Evaluation
- 5. Conclusions

Implementation

[MLP]

Output

Definition

extraction

TfidfVectorizer(min_df=2)

Kmeans and MiniBatchKMeans

DBSCAN

randomized_svd and NMF

Represent using a VSM Cluster analysis Filter clusters Extract namespaces Organize to hierarchy

All obtained clusters are "homogenous": within-cluster similarity is maximal.

We keep those clusters whose documents correspond to the the same category.

Otherwise, we discard uncategorised clusters.

"namespace-defining" clusters

Represent using a VSM

Cluster analysis

Filter clusters

Extract namespaces

Organize to hierarchy

	ı		Def	S
$E_0 = M_0 c^2$		E_0	energy	0.90
		M_0	mass	0.99
		С	speed of light	0.90

\overline{F}		Def	S
$M_0 = \frac{E_0}{2}$	E_0	energy	0.99
С	M_0	mass	0.95
	С	speed of light	0.90
	С	energy	0.80

Relativity

	Def	S
E	energy	0.99
m	mass	0.99
С	speed of light	3.70
e_0	energy	0.99
M_0	mass	1.94
E_0	energy	1.89
С	energy	0.80

Represent using a VSM

Cluster analysis

Filter clusters

Extract namespaces

Organize to hierarchy

		Def	S
	E	energy	0.99
	m	mass	0.99
_	C	speed of light	0.90
	С	speed of light	1.00

		Def	S
$E_0 = M_0 c^2$	E_0	energy	0.90
	M_0	mass	0.99
	С	speed of light	0.90
		mass	0.99

E	l		De
$M_0 = \frac{E_0}{2}$		E_0	en
С		M_0	ma
		С	sp

		Def	S
	E_0	energy	0.99
_	M_0	mass	0.95
	С	speed of light	0.90
	С	energy	0.80

Relativity

	Def	S
E	energy	0.46
m	mass	0.46
С	speed of light	0.87
e_0	energy	0.46
M_0	mass	0.60
E_0	energy	0.57
С	energy	0.20

	Def	S	
E	energy	0.99	
m	mass	0.99	
С	speed of light	3.70	
С	speed of light in vacuum	0.99	
m	mass	1.94	
m	total mass	1.89	

Fuzzy grouping

FuzzyWuzzy https://github.com/seatgeek/fuzzywuzzy

A reference hierarchy: drawn from what source?

M General Particles and Fields Nuclear Physics

Optics

Physics

Mathematics

PACS

Computer Science

Represent using a VSM

Cluster analysis

Filter clusters

Extract namespaces

Organize to hierarchy

00—General

- 01. Communication, education, history, and philosophy
- 02. Mathematical methods in physics
- 03. Quantum mechanics, field theories, and special relativity
- 04. General relativity and gravitation
- ar dynamical systems 05. Statistical physics, thermodynamics, and no
- 06. Metrology, measurements, and laboratory produces
- 07. Instruments, apparatus physics and astronomy
- 10—The Physics of Elemen
- 11. General theory of fields
- 12. Specific theories and in
- 13. Specific reactions and p
- 14. Properties of specific p
- 20—Nuclear Physics
- 21. Nuclear structure
- 23. Radioactive decay and
- 24. Nuclear reactions: gene
- 25. Nuclear reactions: sped
- 26. Nuclear astrophysics

- 04. General relativity and gravitation (for astrophysical aspects, gravitation; for relativistic aspects of cosmology, see 98.80.Jk; for 03.30.+p)
- 04.20.-q Classical general relativity (see also 02.40.-k Geometry, diffe topology)
- 04.20.Cv Fundamental problems and general formalism
- 04.20.Dw Singularities and cosmic censorship
- 04.20.Ex Initial value problem, existence and uniqueness of solutions
- 04.20.Fy Canonical formalism, Lagrangians, and variational principles
- 04.20.Gz Spacetime topology, causal structure, spinor structure
- 04.20.Ha Asymptotic structure
- 04.20.Jb Exact solutions
- 04.25.-g Approximation methods; equations of motion
- 04.25.D- Numerical relativity

Calculate cosine between them

Outline

- 1. Motivation
- 2. Namespace Discovery
- 3. Implementation
- 4. Evaluation
- 5. Conclusions

Java Language Processing

How to evaluate the quality?

- Hard! IUse da
- Hard! No ground truth, unsupervised settings
 - Use data where ground truth is known: source code!

- > 🌐 org.apache.flink.api.java
- > 🌐 org.apache.flink.api.java.aggregation
- grg.apache.flink.api.java.functions
 - ▶ InstReducer.class
 - FlatMapIterator.class
 - FormattingMapper.class
 - FunctionAnnotation.class
 - GroupReduceIterator.class

```
package org.apache.flink.api.java.functions;
         "definition"
                         identifier
public class FirstReducer<T/>
implements ... {
  private final(int count;
  // ...
  @Override
  public void reduce(Iterable<T> values, Collector<T> out) {
   int emitCnt = 0;
    for ((T val ) values) {
      out.collect(val);
                                                           26
```

Java Language Processing

Apache Mahout

- 1560 Java Classes
- 46k variable declarations
- 150 packages

Experimental Setup

Objective: want to find as many namespacedefining clusters as possible

Cluster is namespace-defining if it

- has at least purity p and
- contains at least n documents

p = 0.8, n = 5

Relativity, Einstein

Physics, **Relativity**

Physics, Gravitation

Purity *p* vs size *n* tradeoff:

- Larger p only pure clusters, smaller p allow some slack
- Larger n only big well-connected clusters are taken into account

Our settings: $p \ge 80\%$ and $n \ge 3$

Parameter Tuning

Represent using a VSM

Cluster analysis

Filter clusters

Extract namespaces

Organize to hierarchy

- Identifier VSM: no-def, weak, strong
- Weighting: TF, TF-IDF, logTF-IDF

- DBSCAN
 - base similarity function, ε , MinPts
- K-Means
 - number of clusters K
- Latent Semantic Analysis
 - matrix decomposition: SVD or NMF
 - rank of reduced matrix k

Random cluster assignment

Algorithm:

- let k = 0
- take three unseen documents at random
- assign them to cluster k
- increment k
- repeat until no documents left

Parameter Tuning

Best result is obtained with:

- Weak association
- LSA via SVD with k = 350 + K-Means with K = 9750

Evaluation & Results

- Results: bitly.com/1fWlbO2
- Evaluation:
 - draw 100 relations at random
 - verify if they are correct or not manually

	E	m	С	λ	σ	μ
Linear algebra	matrix	matrix	scalar	eigenvalue	related permutation	algebraic multiplicity
General relativity	energy	mass	speed of light	length	shear	reduced mass
Coding theory	encoding function	message	transmitted codeword		natural isomorphisms	
Optics		order fringe	speed of light in vacuum	wavelength	conductivity	permeability
Probability	expectation	sample size		affine parameter	variance	mean vector

Experiments

- Available on Github:
 - github.com/alexeygrigorev/namespacediscovery
- Software used for experiments
 - Apache Flink 0.8.1
 - numpy 1.9.2, scipy 0.15.1, scikit-learn 0.16.1
 - IPython notebook 3.1.0
- Hardware used for experiments:

Manufacturer: Samsung Electronics

Rating: Windows Experience Index

Processor: Intel(R) Pentium(R) CPU B950 @ 2.10GHz 2.10 GHz

Installed memory (RAM): 8,00 GB

System type: 64-bit Operating System

Outline

- 1. Motivation
- 2. Namespace Discovery
- 3. Implementation
- 4. Evaluation
- 5. Conclusions

Conclusions

- We are the very first to approach the problem of namespace discovery
- Automatic namespace discovery is possible
- We can employ established methods such as VSM and Document Clustering
- Best result: 414 namespaces, 10 times better than random guessing
- Suitable for other natural languages, besides English

Future Work

Definition extraction

Namespace discovery

- Other datasets:
 - arXiv
 - StackExchange Q/A network: mathematics, crossvalidated, physics, ...
- ML methods for identifier extraction may give better results
- Other ways to embed definitions: 3-D tensors
- Expect advanced clustering algorithms to perform better
 - Split and Join operations in Scatter/Gather
 - Spectral Clustering
 - Cluster Ensembles
 - Topic Modeling: LDA

Acknowledgments

- My adviser Moritz Schubotz
- Sergey Dudoladov and Juan Soto
- All IT4BI teachers from ULB, UFRT, TUB
 - especially teachers of IR and DM courses

References

- [MLP] Pagel, Robert, and Schubotz, Moritz.
 "Mathematical Language Processing Project.", 2014.
- [IR] Manning, Christopher et al. "Introduction to Information Retrieval", 2008.
- [SSN] Ertöz, Levent, et al. "Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data.", 2003.
- [LSI] Deerwester, Scott, et al. "Indexing by Latent Semantic Analysis.", 1990.

Questions?

Back-up slide: Clustering Algorithms

Back-up slide: LSA

- Natural language data is "noisy"
 - Synonymy: "graph" vs "chart"
 - Polysemy: "trunk" (part of elephant vs part of car)
- Denoise with dimensionality reduction
 - SVD: $D = U\Sigma V^T$ $D \approx U_k \Sigma_k V_k^T$
 - NMF: $D = UV^T$ $D \approx U_k V_k^T$
- Not only denoises but also reveals the latent structure in data