Exercises on multiplication and inverse matrices

Problem 3.1: Add AB to AC and compare with A(B+C):

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad C = \begin{bmatrix} 0 & 0 \\ 5 & 6 \end{bmatrix}$$

$$AB + AC = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix} + \begin{bmatrix} 10 & 12 \\ 20 & 24 \end{bmatrix} = \begin{bmatrix} 11 & 12 \\ 23 & 24 \end{bmatrix}$$

$$A(B+C) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 11 & 12 \\ 23 & 24 \end{bmatrix}$$

Problem 3.2: (2.5 #24. *Introduction to Linear Algebra:* Strang) Use Gauss-Jordan elimination on $[U\ I]$ to find the upper triangular U^{-1} :

$$UU^{-1} = I \quad \left[\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{ccc} x_1 & x_2 & x_3 \end{array} \right] = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

$$U^{-1} = \begin{bmatrix} 1 & -a & ac - b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix}$$