

Tema 5: Organización de los Datos

Informática

Departamento de Informática Israel González Carrasco (israel.gonzalez@uc3m.es) María Belén Ruiz Mezcua (mbelen.ruiz@uc3m.es)

Contenido

- 1. Objetivos.
- 2. Introducción.
- 3. Tipos de Organización.
- 4. Tratamiento de Información no Estructurada.
- 5. Tratamiento de Información Estructurada.

Objetivos

- Comprender la necesidad y utilidad de organizar y estructurar la información para almacenarla y recuperarla.
- Reconocer los diferentes tipos de datos, bases de datos y sistemas de recuperación con las que se pueden manejar la información.
- Ser capaces de entender y manejar una base de datos en Microsoft Access a nivel usuario.

Introducción

- Una organización de datos es una estructura física-lógica que permite realizar operaciones computacionales (editar, guardar, actualizar, etc.) sobre un contenido de información.
 - Estructura física; describe la manera física (bytes) de almacenar los datos en un soporte (como se almacenan los datos en el soporte).
 - Estructura lógica; describe la manera lógica de representar la información a los usuarios (como ve el usuario la información).

Introducción (II)

Representación lógica

Almacenamiento físico

Tipos de Organización

- Organización no estructurada
 - Utiliza información no estructurada contenida en libros, artículos informes.
 - Es tan grande la variedad de información que es muy difícil saber que es lo que nos va a interesar en el caso de una búsqueda y seria imposible determinar un campo por cada tema.
- Organización estructurada
 - Utiliza información estructurada o datos definidos (facturas, recibos de clientes, etc.).
 - El diseño de una buena base de datos deberá reconocer con método y exactitud los datos que se van a utilizar, antes de su implementación.
 - Esta organizada mediante campos.

Tipos de Organización (II)

- Tratamiento de datos formateados (organizados).
 - Sistemas orientados a proceso.
 - Sistemas orientados a datos.
 - Sistema de Gestión de Datos Relacionales.
 - Tratamiento de datos no formateados (No organizados)
 - Documentos.
 - Sistemas de Recuperación de Información.
 - ✓ Sistemas de Gestión de Bases de Datos Documentales.

Índice

- Sistemas orientados al proceso.
- Sistemas orientados a los datos.
- Bases de Datos Relacionales (BDR).
- Sistema Gestor de Bases de Datos Relacionales (SGBDR).

Sistemas orientados al proceso

- Son los sistemas tradicionales.
- En ellos se pone más énfasis en los tratamientos que en los datos.
- Los datos se encuentran repetidos en diversos ficheros tratados de forma independiente por cada aplicación.
- En cada Programa hace falta definir con que datos trabaja y en que fichero están.

Sistemas orientados al proceso (II)

Sistemas orientados al proceso (III)

- Ejemplo de Sistemas orientados al proceso.
 - Departamento de RRHH utiliza el fichero Selección.
 - Campos:

DNI	Fecha Ingreso	Nombre	Formación	Dirección	Especialidad	Puesto	Nivel de conocimiento

• En una reunión posterior se decide informatizar la *Nómina* de los trabajadores.

¿Qué soluciones puede adoptar la empresa?

Sistemas orientados al proceso (IV)

Posibles Soluciones:

- Solución 1:
 - Crear una aplicación para la gestión de las Nóminas (con su fichero correspondiente) independiente de la de Selección.
- Solución 2:
 - ✓ Modificar el fichero *Selección* existente para que puedan usarlo ambas aplicaciones.
- Solución 3:
 - Crear un nuevo fichero que contenga información específica de la aplicación de gestión de las Nóminas.

Sistemas orientados al proceso (V)

Comentarios:

- Solución 1:
 - Esta solución producirá datos duplicados.
 - Conjuntos de datos iguales para aplicaciones distintas
- Solución 2:
 - ✓ Implica modificar la aplicación de Selección.
- Solución 3:
 - En el nuevo fichero hay que incluir "enlaces" al primer fichero para usar los datos comunes.
 - ✓ Al existir dos ficheros el proceso es más lento.

Sistemas orientados al proceso (VI)

- Problemas:
 - Dificultad de mantenimiento.
 - Excesiva dependencia del soporte físico.
 - Dependencia de los datos respecto de los programas.
 - Dificultad para montar sistemas de información orientados a la toma de decisiones.
 - Los ficheros están muy orientados a cada aplicación.

Sistemas orientados a los datos

- Tratan de resolver los problemas del enfoque tradicional (Sistemas orientados al proceso).
- Se fundamentan en la utilización de una Base de Datos que sustituye todos los ficheros por una única colección de datos que puede ser utilizada por todas las aplicaciones.

Sistemas orientados a los datos (II)

Sistemas orientados a los datos (III)

- Conceptos Básicos:
 - Bases de Datos
 - ✓ Una base de datos es un conjunto de información estructurada en registros y almacenada en un soporte electrónico legible desde un ordenador.
 - Cada registro constituye una unidad autónoma de información que puede estar a su vez estructurada en diferentes campos o tipos de datos que se recogen en dicha base de datos.
 - Sistema Gestor de Bases de Datos (SGBD).
 - ✓ Surgieron para sistematizar el tratamiento de grandes volúmenes de información con alto grado de homogeneidad y compartida por varios usuarios.

Sistemas orientados a los datos (IV)

Sistemas orientados a los datos (V)

- Base de datos:
 - Colección o depósito de datos integrados.
 - Con redundancia controlada.
 - Su estructura refleja las interrelaciones y restricciones del mundo real.
 - Los datos son independientes de la aplicación o del usuario.
 - Los datos tendrán definición y descripción únicas (y almacenada con ellos).
 - Los procedimientos que involucre tendrán que preservar su integridad, respetando además unas normas de disponibilidad y confidencialidad.

Sistemas orientados a los datos (VI)

- Conjunto coordinado de herramientas que proporciona los medios necesarios para interaccionar con la BD a todos los niveles.
 - Herramientas: programas, procedimientos, lenguajes, etc.
 - Interaccionar con la base: describir, recuperar y manipular datos almacenados en la base, preservando su integridad, confidencialidad, y seguridad.
 - A todos los niveles: usuario, programador, analista, etc.
- Funciones esenciales de un SGBD:
 - Descripción.
 - Manipulación.
 - Utilización.

Sistemas orientados a los datos (VII)

- Un SGBD debe disponer de lenguajes y procedimientos que posibiliten la interacción con la BD.
 - LDD (Lenguaje de Definición de Datos).
 - ✓ Para la definición de las estructuras de datos a todos los niveles (externo, conceptual e interno).
 - LMD (Lenguaje de Manipulación de Datos).
 - ✓ Permite la ejecución de operaciones de recuperación y actualización sobre un conjunto de registros (identificado a través de un criterio de selección), indicando las estructuras externas sobre las que se actúa.
 - LCD (Lenguaje de Control de Datos).
 - ✓ El administrador de la BD utiliza este lenguaje para especificar los aspectos de seguridad física así como de protección frente a accesos no permitidos.
 - Procedimientos de administración: copias de seguridad, estadísticas, carga de datos, ...

Sistemas orientados a los datos (VIII)

- Niveles de Abstracción en una BD.
 - En un sistema de almacenamiento de datos, se distinguen siempre los niveles lógico (dato-usuario) y físico (datosoporte).
 - Esta separación permite solventar varias problemáticas.
 - La idea de Base de Datos permite abstraer aún más, apareciendo un tercer nivel: lógico global (aúna los niveles lógicos de todos los usuarios).
 - Este nivel contendrá (esquema lógico global):
 - Descripción de datos e interrelaciones entre ellos
 - Restricciones de integridad y confidencialidad

Sistemas orientados a los datos (IX)

- Niveles de Abstracción en un SGBD:
 - Arquitectura a tres niveles: Interno, Conceptual y Externo.
 - Nivel Interno:
 - Es el nivel más cercano a la máquina.
 - Describe cómo y dónde se almacena un conjunto determinado de datos.
 - Nivel Conceptual:
 - ✓ Proporciona un eslabón intermedio entre la visión de la BD que se ofrece al usuario y el nivel de almacenamiento físico.
 - ✓ Es una representación del contenido total de la BD.
 - Nivel Externo:
 - ✓ Es el nivel más cercano al usuario.
 - ✓ Cada usuario está interesado en un subconjunto concreto de la Base de Datos Global.

Sistemas orientados a los datos (X)

NIVELES DE UN SGBD

Sistemas orientados a los datos (XI)

- Existen varios modelos de SGBD:
 - Definen como se definen las estructuras y operaciones que se permiten en ellas.
- Modelo Relacional:
 - Basado en la noción matemática de Relación.
 - Propuesto por Codd.
 - El mas extendido en la actualidad
 - Ejemplos de SGBD relacionales comerciales:
 - ✓ Microsoft Access.
 - ✓ Oracle.
 - ✓ Microsoft SQL Server.
 - ✓ BD2.
 - MySQL.
 - ✓ Informix.

Bases de Datos Relacionales (BDR)

- Colección o depósito de datos integrados, almacenados en soporte secundario cuyos datos son compartidos por diferentes usuarios y aplicaciones, deben mantenerse independientes de ellos.
- Los procedimientos de actualización y recuperación facilitarán el conjunto de los datos.
- Una base de datos relacional permite almacenar, relacionar y acceder a la información de la forma más estructurada posible.
- La información aparece estructurada en campos de longitud fija.

Bases de Datos Relacionales (BDR) (II)

- Es un modelo de datos extremadamente simple y claro, que también ha resultado potente para la mayor parte de las aplicaciones de BDs.
- Sus principales características son:
 - Independencia de datos y programas.
 - Integración de diferentes aplicaciones.
 - Escasa o nula redundancia.
 - Acceso múltiple.
 - Seguridad.

Bases de Datos Relacionales (BDR). Terminología

- Los elementos más importantes de las bases de datos relacionales son las tablas (relaciones), asociaciones entre ellas (interrelaciones), filas (tuplas), columnas (atributos o campos) y consultas.
- Una relación es una colección de datos acerca de un tema en particular.
 - Los datos de la relación se representan en formato tabular en tuplas (columnas y filas).
 - Agrupan un conjunto de atributos o campos.

Atributo 1	Atributo 2	•••••	Atributo n	
XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	Tupla 1
XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	Tupla 2
XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	
XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	
XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	Tupla n

TRIOS III.

FICHERO

REGISTRO

CAMPO

Tratamiento de la Información Estructurada

Bases de Datos Relacionales (BDR). Terminología (II)

- Una consulta son preguntas acerca de los datos en su base de datos.
 - Los datos fuente pueden provenir de una o varias tablas.
 - La consulta reúne la información solicitada.
 - No almacenan la información en un fichero.
- Comparación de la terminología

TUPLA FILA COLUMNA

GRADO N. DE COLUMNAS N. DE CAMPOS
CARDINALIDAD N. DE FILAS N. DE REGISTROS

Bases de Datos Relacionales (BDR). Claves

- Clave de una relación:
 - Una clave candidata de una relación es un conjunto de atributos que identifican unívoca y mínimamente cada tupla de la misma.
- Tipos de Claves:
 - Clave primaria (PRIMARY KEY o PK) permite declarar un atributo o conjunto de atributos como la clave primaria de una tabla.
 - Conjunto no vacío de atributos que identifican unívoca y mínimamente cada tupla.
 - ✓ Los valores de la clave primaria han de ser distintos y siempre tiene que tener algún valor
 - Ejemplo: La tabla Alumno está identificada por el atributo NIA (clave primaria).

Bases de Datos Relacionales (BDR). Claves (II)

- Tipos de Clave:
 - Clave de unicidad (UNIQUE) nos permite definir claves alternativas (que pueden ser en algún momento PRIMARY KEY).
 - Clave ajena (FOREGEIN KEY o FK) es una clave que referencia una clave de una tabla con otra tabla (crear una interrelación).
 - ✓ Se denomina clave ajena de una relación R2 a un conjunto de atributos cuyos valores han de coincidir con los valores de la clave primaria de una relación R1 (R1 y R2 no son necesariamente distintas).

Bases de Datos Relacionales (BDR). Restricciones del modelo

- Restricciones inherentes: impuestas por el propio modelo
 - 1. En una relación no puede haber dos tuplas iguales (obligatoriedad de clave primaria).
 - 2. El orden de las tuplas y el de los atributos no es relevante.
 - 3. Cada atributo sólo puede tomar un único valor del dominio sobre el cual está definido (no hay grupos repetitivos).
 - 4. Ningún atributo que forme parte de la clave primaria de una relación puede tomar un valor nulo (regla de integridad de entidad).
- Restricciones semánticas (o de usuario): facilidades ofrecidas por el modelo para representar la semántica del mundo real.

Bases de Datos Relacionales (BDR). Restricciones del modelo (II)

- Regla de Integridad referencial:
 - Lo valores que tome la clave ajena en la tabla hija han de ser los mismos que tiene en la tabla padre.
 - La clave primaria de la tabla padre ha de tener un campo en la tabla Hija.
 - Clave ajena del mismo tipo datos y que contenga los mismos valores.

Bases de Datos Relacionales (BDR). Interrelaciones

- Asociaciones entre tablas:
 - Asociaciones definidas entre los esquemas de relación. No existen vinculaciones físicas, sólo lógicas.
 - Se distinguen distintos tipos según el número máximo de tuplas que intervienen por parte de cada relación.
 - A este número se le denomina cardinalidad de la relación.
 - Pueden ser 1:1, 1:N o N:M.

Bases de Datos Relacionales (BDR). Interrelación 1:N

Correspondencia 1:1

Correspondencia 1:N

Bases de Datos Relacionales (BDR). Interrelación 1:N (II)

- Ejemplo: Empleados asociados a un Departamento de una empresa.
 - Cardinalidad 1:N.
 - ✓ Un departamento puede tener varios empleados y un empleado solo pertenecer a un departamento.
 - Regla de Integridad referencial.
 - ✓ Lo valores que tome la clave ajena en la tabla hija han de ser los mismos que tiene en la tabla padre.
 - ✓ Los valores que toma la clave ajena DEPARTAMENTO de la tabla EMPLEADO (11,13,14) son los que tiene la clave principal NUMERO_DEPT en la tabla DEPARTAMENTO.

Bases de Datos Relacionales (BDR). Interrelación 1:N (III)

MODELO RELACIONAL

Clave primaria

Clave ajena

EMPLEADO (NOMBRE, DEPARTAMENTO, SALARIO, FECHA_NAC, EXT_TELEFÓNICA)

Interrelación

Clave primaria

TDEPARTAMENTO(NUMERO_DEPT, NOMBRE)

TABLAS

EMPLEADO

NOMBRE	DEP	ARTAMENTO	SALARIO	FECHA_NAC	EXT_TELEFÓNICA
Pablo Montero	14		220.000	10-11-67	6543
Beatriz Cristoba	13		300.000	20-9-68	6577
J. Luís Martín	11		150.000	25-6-77	6433
Almudena Lópe	13		350.000	4-5-60	6422
Angel Vallejo	14		400.000	15-4-72	6321
Pedro García	11		200.000	12-3-70	6323

DEPARTAMENTO

NUL	EKO_DEPT	NOMBRE
11		Contabilidad
13		Marketing
14		Informática

Bases de Datos Relacionales (BDR). Interrelación N:M

Correspondencia N:M

- Se crea una nueva tabla (intermedia) entre la entidad A y la entidad B.
- Esta tabla ha de tener como clave principal la que resulta de unir las dos claves principales de las tablas que une.

Bases de Datos Relacionales (BDR). Interrelación N:M (II)

- Ejemplo: Libros escritos por un Autor.
 - Cardinalidad N:M.
 - ✓ Un libro puede ser escrito por varios autores y un autor puede escribir varios libros.
 - Regla de Integridad referencial.
 - ✓ Es necesario crear una nueva tabla (tabla intermedia) ESCRIBE para reflejar la semántica de este tipo de relaciones.
 - Esta nueva tabla ESCRIBE tiene un clave ajena a cada una de las tablas «padres» (AUTOR y LIBRO).
 - ✓ Los valores de las claves ajenas de la tabla ESCRIBE deben coincidir con los existentes en las tablas «padres».

Bases de Datos Relacionales (BDR). Interrelación N:M (III)

Sistema Gestor de Bases de Datos Relacionales (SGBDR)

- Herramienta Software que proporciona una interfaz entre los datos almacenados y los programas de aplicación que acceden a éstos.
- Se caracteriza fundamentalmente por permitir una descripción centralizada de los datos y por la posibilidad de definir vistas parciales de los mismos para los diferentes usuarios.
- Conjunto de programas, procedimientos y lenguajes que nos proporcionan las herramientas necesarias para trabajar con una base de datos.
- Incorpora una serie de funciones que nos permite definir los registros, sus campos, sus relaciones, insertar, suprimir, modificar y consultar los datos.

Sistema Gestor de Bases de Datos Relacionales (SGBDR) (II)

- Entre sus funciones:
 - Recuperar la BD, si es dañada
 - Seguridad contra accesos no autorizados
 - Que la base de datos se actualice correctamente cuando varios usuarios la usan concurrentemente
 - Proporciona una catálogo de la descripción de los datos:
 Diccionario de datos (Relaciones, Usuarios)
 - Integridad : Restricciones y validación de los datos.

Sistema Gestor de Bases de Datos Relacionales (SGBDR) (III)

- Ejemplos de SGBD relacionales comerciales:
 - Microsoft Access.
 - ✓ Integrado en la suite de Office.
 - Microsoft SQL Server.
 - ✓ Integrado en la suite de desarrollo Visual Studio.
 - Oracle.
 - ✓ Líder del mercado.
 - MySQL (en la actualidad de SUN MicroSystems).
 - Licencia GPL.
 - PostGreSQL
 - ✓ Licencia BSD de código abierto.
 - Informix y DB2 (en la actualidad de IBM).
 - ✓ Poca cuota de mercado.

Índice

- Informática Documental.
- Base de Datos Documental (BBD).
- Sistema Gestor de Bases de Datos Documentales (SGBDD)

Informática Documental

- Trata de la resolución de los problemas que implican el tratamiento de la incertidumbre en la búsqueda de información de documentos.
- Objetivo:
 - Ofrecer herramientas para automatizar el análisis documental como parte fundamental de la documentación.
- Documentación:
 - Disciplina teórica que permite describir de forma científica los documentos.

Base de Datos Documental (BBD)

- Las BDDs están especialmente concebidas para almacenar y extraer información no estructurada.
- La unidad básica y única para obtener información es el documento.
- Para el acceso de las BDDs se persigue obtener una flexibilidad en la consulta, de forma que el cliente no deba estar restringido a un número limitado de términos de búsqueda.
 - Resolver el problema de incertidumbre en la búsqueda de información

Base de Datos Documental (BBD) (II)

- Características:
 - Mantienen una base de datos de información textual de longitud variable.
 - Son capaces de recuperar documentos selectivamente a partir de cualquiera de los aspectos de su contenido.
 - Los documentos se representan en la base de datos en forma de registros.
 - Se utilizan descriptores para acceder al contenido y contemplan la gestión de sinónimos.

Bases de Datos Documentales (BBDs) (II)

- Funcionamiento interno
 - Disponen de un sistema de indexación por el que el SGBD genera índices en cada campo por cada elemento, es decir cada palabra es indexada.
 - Para palabras posteriores el sistema SGBD lee textos y comprueba si han sido almacenadas en el diccionario con lo cual las almacena una sola vez con un puntero al documento y situación exacta, donde la palabra se repite.
 - La localización de una palabra se hace por consulta en el índice.

Sistema Gestor de Bases de Datos Documentales (SGBDD)

- Los sistemas de gestión documental permiten la elaboración de diccionarios o índices alfabéticos.
 - Permiten la indexación de textos completos.
- Para ello recurren a diferentes técnicas o heurísticas:
 - Diccionarios terminológicos.
 - Enuncian y definen los términos propios de una ciencia, una técnica u otra actividad.
 - Tesauro (Thesaurus).
 - Listado de palabras o términos empleados para representar conceptos.
 - Estrategias de búsqueda.
 - Conjunto de procedimientos y operaciones que un usuario realiza con el fin de obtener una determinada información.

Sistema Gestor de Bases de Datos Documentales (SGBDD) (II)

- Tienen en común una serie de funciones especialmente diseñadas para resolver los problemas típicos de un entorno documental:
 - Lenguaje de definición de datos
 - Lenguaje de interrogación de la base de datos
 - Hipertexto
 - Mecanismos de seguridad
 - Facilidades para introducción de información
 - Entorno amigable y facilidad de uso

Sistema Gestor de Bases de Datos Documentales (SGBDD) (III)

- Lenguaje de definición de datos
 - Permite al diseñador de la base de datos especificar las características estructurales de la misma: Campos que la componen, restricciones y mecanismos de validación asociados a ellos.
- Lenguaje de interrogación de la base de datos
 - Tiene una sintaxis que lo caracteriza, y que precisa cuáles son las frases correctas que se puedan escribir en él.
- Hipertexto
 - Enlaces que permiten moverse por los documentos de múltiples formas, utilizando referencias cruzadas.

Sistema Gestor de Bases de Datos Documentales (SGBDD) (IV)

- Mecanismos de seguridad
 - Permite establecer diferentes categorías de usuarios en función de los distintos tipos de privilegios que tengan sobre los documentos.
- Facilidades para introducción de información
 - Una vez generada la base de datos, se carga luego la información, que se realiza por:
 - ✓ Entrada directa de la información
 - Entrada diferida, trabajando sobre un fichero auxiliar
- Entorno amigable y facilidad de uso
 - Lo más importante es que las BDDs sea fácil de utilizar.