

Matched Monolithic Dual Transistor

MAT01 **Data Sheet**

FEATURES

Low Vos (VBE match): 40 μV typical, 100 μV maximum

Low TCVos: 0.5 μV/°C maximum

High hfe: 500 minimum

Excellent hee linearity from 10 nA to 10 mA

Low noise voltage: 0.23 µV p-p from 0.1 Hz to 10 Hz

High breakdown: 45 V min

APPLICATIONS

Weigh scales Low noise, op amp, front end **Current mirror and current sink/source** Low noise instrumentation amplifiers Voltage controlled attenuators Log amplifiers

GENERAL DESCRIPTION

The MAT01 is a monolithic dual NPN transistor. An exclusive silicon nitride triple passivation process provides excellent stability of critical parameters over both temperature and time. Matching characteristics include offset voltage of 40 μV, temperature drift of 0.15 μ V/°C, and h_{FE} matching of 0.7%.

PIN CONNECTION DIAGRAM

Figure 1.

High h_{FE} is provided over a six decade range of collector current, including an exceptional hFE of 590 at a collector current of only 10 nA. The high gain at low collector current makes the MAT01 ideal for use in low power, low level input stages.

MAT01 Data Sheet

TABLE OF CONTENTS

Features
Applications1
Pin Connection Diagram1
General Description
Revision History
Specifications
Electrical Characteristics
Absolute Maximum Ratings5
REVISION HISTORY
9/14—Rev. C to Rev. D
9/14—Rev. C to Rev. D
9/14—Rev. C to Rev. D Changes to Figure 4 and Figure 7
9/14—Rev. C to Rev. D Changes to Figure 4 and Figure 7
9/14—Rev. C to Rev. D Changes to Figure 4 and Figure 7
9/14—Rev. C to Rev. D Changes to Figure 4 and Figure 7
9/14—Rev. C to Rev. D Changes to Figure 4 and Figure 7
9/14—Rev. C to Rev. D Changes to Figure 4 and Figure 7

ESD Caution	5
Typical Performance Characteristics	6
Test Circuits	8
Applications Information	9
Typical Applications	10
Outline Dimensions	11
Ordering Guide	11

2/02—Rev. A to Rev. B

Edits to Features	1
Deleted Wafer Test Limits	3
Deleted DICE Characteristics	3
Edits to Table 5	7

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

 V_{CB} = 15 V, I_C = 10 μA , T_A = 25°C, unless otherwise noted.

Table 1.

			MAT01AH		MAT01GH				
Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Min	Тур	Min	Unit
VOLTAGE									
Breakdown Voltage	BV_CEO	$I_{C} = 100 \mu A$	45			45			V
Offset Voltage	Vos			0.04	0.1		0.10	0.5	mV
Offset Voltage Stability									
First Month ¹	Vos/Time			2.0			2.0		μV/Mo
Long Term ²				0.2			0.2		μV/Mo
CURRENT									
Offset Current	los			0.1	0.6		0.2	3.2	nA
Bias Current	IB			13	20		18	40	nA
Current Gain	h _{FE}	$I_C = 10 \text{ nA}$		590			430		
		$I_C = 10 \mu A$	500	770		250	560		
		$I_C = 10 \text{ mA}$		840			610		
Current Gain Match	Δh_{FE}	$I_C = 10 \mu A$		0.7	3.0		1.0	8.0	%
		100 nA ≤ I _C ≤ 10 mA		0.8			1.2		%
NOISE									
Low Frequency Noise Voltage	e _n p-p	0.1 Hz to 10 Hz ³		0.23	0.4		0.23	0.4	μV p-p
Broadband Noise Voltage	e _n rms	1 Hz to 10 kHz		0.60			0.60		μV rms
Noise Voltage Density	en	$f_0 = 10 \text{ Hz}^3$		7.0	9.0		7.0	9.0	nV/√Hz
		$f_0 = 100 \text{ Hz}^3$		6.1	7.6		6.1	7.6	nV/√Hz
		$f_0 = 1000 \text{ Hz}^3$		6.0	7.5		6.0	7.5	nV/√Hz
OFFSET VOLTAGE/CURRENT									
Offset Voltage Change	$\Delta V_{OS}/\Delta V_{CB}$	$0 \le V_{CB} \le 30 \text{ V}$		0.5	3.0		0.8	8.0	μV/V
Offset Current Change	$\Delta I_{OS}/\Delta V_{CB}$	$0 \le V_{CB} \le 30 \text{ V}$		2	15		3	70	pA/V
LEAKAGE									
Collector to Base Leakage Current	I _{CBO}	$V_{CB} = 30 \text{ V, } I_E = 0^4$		15	50		25	200	pА
Collector to Emitter Leakage Current	I _{CES}	$V_{CE} = 30 \text{ V}, V_{BE} = 0^{4,5}$		50	200		90	400	pА
Collector to Collector Leakage Current	Icc	$V_{CC} = 30 V^5$		20	200		30	400	pA
SATURATION									
Collector Saturation Voltage	V _{CE(SAT)}	$I_B = 0.1 \text{ mA}, I_C = 1 \text{ mA}$		0.12	0.20		0.12	0.25	V
		$I_B = 1 \text{ mA}, I_C = 10 \text{ mA}$		8.0			0.8		V
GAIN BANDWIDTH PRODUCT	f _T	$V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}$		450			450		MHz
CAPACITANCE									
Output Capacitance	C _{OB}	$V_{CB} = 15 \text{ V}, I_{E} = 0$		2.8			2.8		рF
Collector to Collector Capacitance	Ccc	$V_{CC} = 0$		8.5			8.5		pF

¹ Exclude first hour of operation to allow for stabilization.

 $^{^{\}rm 2}\,\mbox{Parameter}$ describes long-term average drift after first month of operation.

³ Sample tested.

The collector to base (l_{CBO}) and collector to emitter (l_{CES}) leakage currents can be reduced by a factor of 2 to 10 times by connecting the substrate (package) to a potential that is lower than either collector voltage.

5 l_{CC} and l_{CES} are guaranteed by measurement of l_{CBO}.

 V_{CB} = 15 V, I_{C} = 10 μA , $-55^{\circ} C \leq T_{\text{A}} \leq +125^{\circ} C$, unless otherwise noted.

Table 2.

			MAT01AH		MAT01GH				
Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Min	Тур	Min	Unit
OFFSET VOLTAGE/CURRENT									
Offset Voltage	Vos			0.06	0.15		0.14	0.70	mV
Average Offset Voltage Drift ¹	TCVos			0.15	0.50		0.35	1.8	μV/°C
Offset Current	los			0.9	8.0		1.5	15.0	nA
Average Offset Current Drift ²	TCIos			10	90		15	150	pA/°C
BIAS CURRENT	I _B			28	60		36	130	nA
CURRENT GAIN	h _{FE}		167	400		77	300		
LEAKAGE CURRENT									
Collector to Base Leakage Current	I _{CBO}	$T_A = 125$ °C, $V_{CB} = 30$ V, $I_E = 0$ ³		15	80		25	200	nA
Collector to Emitter Leakage Current	I _{CES}	$T_A = 125$ °C, $V_{CE} = 30$ V, $V_{BE} = 0^{1,3}$		50	300		90	400	nA
Collector to Collector Leakage Current	Icc	$T_A = 125$ °C, $V_{CC} = 30 V^1$		30	200		50	400	nA

¹ Guaranteed by V_{OS} test $\left(TCV_{OS} \cong \frac{V_{OS}}{T} \text{ for } V_{OS} << V_{BE}\right)$, $T = 298 \text{ K for T}_{A} = 25^{\circ}\text{C}$.

² Guaranteed by los test limits over temperature.
³ The collector to base (l_{CBO}) and collector to emitter (l_{CES}) leakage currents can be reduced by a factor of 2 to 10 times by connecting the substrate (package) to a potential that is lower than either collector voltage.

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter ¹	Rating
Breakdown Voltage of	
Collector to Base Voltage (BV _{CBO})	45 V
Collector to Emitter Voltage (BV _{CEO})	45 V
Collector to Collector Voltage (BVcc)	45 V
Emitter to Emitter Voltage (BVEE)	45 V
Emitter to Base Voltage (BV _{EBO}) ²	5 V
Current	
Collector (Ic)	25 mA
Emitter (I _E)	25 mA
Total Power Dissipation	
Case Temperature ≤ 40°C³	1.8 W
Ambient Temperature ≤ 70°C ⁴	500 mW
Temperature Range	
Operating	−55°C to +125°C
Junction	−55°C to +150°C
Storage	−65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

¹ Absolute maximum ratings apply to packaged devices.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

 $^{^2}$ Application of reverse bias voltages in excess of rating shown can result in degradation of h_{FE} and h_{FE} matching characteristics. Do not attempt to measure BV_{EBO} greater than the 5 V rating.

³ Rating applies to applications using heat sinking to control case temperature. Derate linearity at 16.4 mW/°C for case temperatures above 40°C.

⁴ Rating applies to applications not using heat sinking; device in free air only. Derate linearity at 6.3 mW/°C for ambient temperatures above 70°C.

MATO1 Data Sheet

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 2. Offset Voltage vs. Temperature

Figure 3. Current Gain vs. Collector Current

Figure 4. Noise Voltage Density vs. Frequency

Figure 5. Offset Voltage vs. Time

Figure 6. Current Gain vs. Temperature

Figure 7. Noise Current Density vs. Frequency

Figure 8. Collector Current vs. Base to Emitter Voltage

Figure 9. Saturation Voltage vs. Collector Current

Figure 10. Unity-Gain Bandwidth vs. Collector Current

MATO1 Data Sheet

TEST CIRCUITS

Figure 11. Matching Measurement Circuit

S1_A S1_B S3** READING TEST S2 NOISE VOLTAGE DENSITY (PER TRANSISTOR) CLOSED CLOSED CLOSED Α $\rm V_{01}/\sqrt{2}$ NOISE CURRENT DENSITY (PER TRANSISTOR) OPEN Α $V_{01}/(\sqrt{2} \times 4M\Omega)$ OPEN CLOSED V₀₂ PEAK-TO-PEAK LOW FREQUENCY NOISE (REFERRED TO INPUT) CLOSED CLOSED OPEN В 25,000

Figure 12. Noise Measurement Circuit

^{**}A AND B REFER TO THE THROW POSITION OF THE SWITCH

APPLICATIONS INFORMATION

Application of reverse bias voltages to the emitter to base junctions in excess of ratings (5 V) may result in degradation of h_{FE} and h_{FE} matching characteristics. Check circuit designs to ensure that reverse bias voltages above 5 V cannot be applied during transient conditions, such as at circuit turn-on and turn-off.

Stray thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can prevent realization of the predicted drift performance. Maintain both input terminals at the same temperature, preferably close to the temperature of the device package.

MATO1 Data Sheet

TYPICAL APPLICATIONS

- NOTES 1. R1 MAY BE ADJUSTED TO MINIMIZE TCV_{REF}. INCREASING R1 CAUSES A POSITIVE CHANGE IN TCV_{REF}. 2. $h_{\rm FE}$ OF Q1 IS REDUCED BY OPERATION OF BREAKDOWN MODE.
 - Figure 13. Precision Reference

Figure 14. Basic Digital Thermometer Readout in Degrees Kelvin (K)

Figure 15. Digital Thermometer with Readout in ${}^\circ\!\text{C}$

OUTLINE DIMENSIONS

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 16. 6-Pin Metal Header Package [TO-78] (H-06) Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model ¹	Vos Maximum (T _A = 25°C)	Temperature Range	Package Description	Package Option
MAT01AH	0.1 mV	−55°C to +125°C	6-Pin Metal Header Package [TO-78]	H-06
MAT01AHZ	0.1 mV	−55°C to +125°C	6-Pin Metal Header Package [TO-78]	H-06
MAT01GH	0.5 mV	−55°C to +125°C	6-Pin Metal Header Package [TO-78]	H-06
MAT01GHZ	0.5 mV	−55°C to +125°C	6-Pin Metal Header Package [TO-78]	H-06

¹ Z = RoHS Compliant Part.

MAT01 Data Sheet

NOTES