Pomiar zużycia paliwa i temperatur

Strona sprzętowa

Topologia sieci

Propozycja pracy kanałów pomiaru zużycia paliwa

Slave Atmega168

Zasilanie 24V

6 Fuel channel

1-wire max.20 termometrów

RS-485

Adresy cewek (coils) modbusa:							
Adres	15	14	13	12	11	10	
Uruchamianie kanału pomiaru zużycia paliwa	OIL_CH1 (0/1)	OIL_CH2 (0/1)	OIL_CH3 (0/1)	OIL_CH4 (0/1)	OIL_CH5 (0/1)	OIL_CH6 (0/1)	
Adres	65	64	63	62	61	60	
Reset przepływu	OIL_CH6 (0/1)	OIL_CH5 (0/1)	OIL_CH4 (0/1)	OIL_CH3 (0/1)	OIL_CH2 (0/1)	OIL_CH1 (0/1)	
Above make follows a management and above an information of the second and an arrangement							

Aby uzyskać dany przepływ, należy najpierw ustawić 1 w resecie przepływu.

Adresy rejestrów modbusa:

120-131 12 rejestrów	W dwóch rejestrach(32bity) przechowywany średni przepływ. 2 rejestry * 6 kanałów = 12 rejestrów (float CDAB); Średni przepływ z każdego kanału liczony wzorem X [ml/min] =RATIO [ml/imp]* (ilość_impulsów*60000[ms])/okres[ms]; RATIO w naszym przypadku to 100 ml na impuls. RATIO dodawane w LabVIEW
140-145 6 rejestrów	W każdym rejestrze przechowywana jest zużycie paliwa (ilość impulsów).

Slave Atmega168

Zasilanie 24V

6 Fuel channel

1-wire max.20 termometrów

RS-485

Propozycja pracy kanałów pomiaru zużycia paliwa cd.

Metoda pomiaru czasu impulsu.

```
W procesorze uruchomiony Timer sprzętowy, który co 1ms wyzwala przerwanie. W przerwaniu inkrementowana jest zmienna uint32_t czas_glowny.

Przy zboczu narastającym z danego kanału wyzwalane jest przerwanie PCINT.

W przerwaniu realizowany jest następujący kod:

If(czas_bufor[kanal]) //jeżeli czas_bufor różny od zera

{

okres_impulsow[kanal]=czas-czas_bufor[kanal];

zuzycie_paliwa[kanal]++;

}

Czas bufor[kanal]=czas glowny;
```

Przykład:

Warunki początkowe: czas_glowny=150; okres_impulsow=0; czas_bufor=0, impulsy występują co 200 ms

Nr impulsu	1	2	3	4
Okres_impulsow[kanal]	0	200 200		200
Czas_bufor[kanal]	0 -> 150	150 -> 350	350->550	550->750
Czas_glowny	150	350	550	750
zuzycie_paliwa[kanal]	0	1	2	3

Slave Atmega168

Zasilanie 24V

6 Fuel channel

1-wire max.20 termometrów

RS-485

Propozycja pracy kanałów pomiaru zużycia paliwa cd. Sposób uzyskania przepływu.

W trakcie przerwania PCINT wyzwolonego impulsem oprócz liczenia okresu, zbierana jest ilość impulsów od ostatniego resetu(resetu procesora lub resetu przepływu). W momencie resetu przepływu danego kanału, czyli ustawienia 1 w danej cewce(tabela niebieska kolumna, moment między 4 a 5 impulsem) obliczany jest przepływ od momentu poprzedniego resetu przepływu. Zerowane są natomiast okres impulsow i ilosc impulsow. Sekwencja odczytu przepływu np. OIL CH1:

- 1. Ustawienie 1 w adresie cewki 60, czyli reset zbierania średniego przepływu,
- 2. Odczyt adresu 110 i 111, czyli odczyt obliczonego przepływu.

Warto wspomnieć, że przepływ ma typ float CD AB, czyli aby uzyskać właściwy wynik należy odczyt należy zapisać do zmiennej typu float w następującej sekwencji: liczba z adresu 111, potem liczba z adresu 110. Można to zrobić na przykład w ten sposób: (float) zmienna=a111, potem zmienna=(zmienna<<16), potem zmienna|=a110; Gdzie a111 to wartość z adresu 111, a110 to wartość z adresu 110, operator | to lub, operator << to przesunięcie bitowe.

Nr impulsu	1	2	3	4	4	5	6
Ilość impulsow	0	1	2	3	3	0	1
Okres_impulsow[kanal] (SUMA)	0	200	400	600	600	0	200
Reset przepływu (kanal)	0	0	0	0	1	0	0
Przepływ	0	0	0	0	0	300	300
zuzycie_paliwa[ka nal]	0	1	2	3	3	4	5

Warunki początkowe: czas glowny=150; okres impulsow=0; czas bufor=0, impulsy występują co 200 ms

Slave Atmega168

Zasilanie 24V

6 Fuel channel

1-wire max.20 termometrów

RS-485

Propozycja pracy kanałów pomiaru zużycia paliwa cd.

Propozycje akwizycji zużycia paliwa.

- Częste odpytywanie modułu w celu uzyskania okresów impulsów i ilości impulsów z każdego kanału. Następnie obróbka tych danych w LabVIEW.
- Jak wyżej z tą różnicą, że zamiast odczytywania okresu, w module obliczane jest chwilowe zużycie [ml/min] i wysyłane razem z ilością impulsów. LabVIEW będzie tylko przemnażać zużycie przez ilość mililitrów na impuls. Istnieje możliwość umieszczenia tego współczynnika w pamięci procesora. Jednak należy pamiętać przy zmianach mierników o modyfikacji tych wartości.
- Rzadsze odpytywanie modułu w celu uzyskania okresów impulsów i ilości impulsów z każdego kanału. Moduł będzie obliczał średni czas trwania impulsu od momentu ostatniego odczytu.
- Jak w pkt.3 z tą różnicą, że zamiast odczytywania okresu, w module obliczane jest chwilowe średnie zużycie [ml/min] i wysyłane razem z ilością impulsów. LabVIEW będzie tylko przemnażać zużycie przez ilość mililitrów na impuls. Istnieje możliwość umieszczenia tego współczynnika w pamięci procesora. Jednak należy pamiętać przy zmianach mierników o modyfikacji tych wartości.

Proszę o dodanie uwag, propozycji, pytań.

Przypuszczam, że częstotliwość impulsów będzie niska w związku z czym uważam, że dwa ostanie punkty to najlepsza propozycja. Oczywiście wszystko można zmodyfikować wedle uznania.

Slave Atmega168

Zasilanie 24V

6 Fuel channel

1-wire max.20 termometrów

RS-485

Propozycja pracy magistrali 1-wire

Adresy cewek (coils) modbusa:	
20-39 20 - bitów	Sygnalizacja błędów termometrów. Np.: Jeżeli na termometrze nr 5 wystąpi błąd to cewka(bit) w adresie 24 będzie miał stan wysoki.	
40-59 Włączanie/ wyłączanie termometrów. 20 – bitów (opcja)		
Adresy rejestró	w modbusa:	
20-39(input register) 20 rejestrów	Odczyt temperatury. Starszy bajt słowa (rejestru) to część całkowita temperatury ze znakiem, młodszy bajt to miejsce po przecinku.	
40-119 (holding register) 80 rejestrów	tego rozwiązania. Po pierwsze szkoda SRAM na tak dużo informacji.	
1(holding register)	W tym rejestrze przechowywane jest adres slave. Domyślnie jest ustawiony na Po podłączeniu powinno się go zmienić na adres z puli 2-127. Po zapisie nowej adresu nie istnieje możliwość powrotu do wartości 1.	

Adres termometru zapisany w rejestrach 40-43 jest pierwszym termometrem. Jego pomiar jest przechowywany w rejestrze 20. Sygnalizacja jego ewentualnego błędu jest przechowywana w cewce 20. Włącznik tego termometru to cewka 40.

Slave Atmega168
Zasilanie 24V

6 Fuel channel

1-wire max.20 termometrów

RS-485

Propozycja pracy magistrali 1-wire cd.

Do uruchamiania sekwencji wykorzystano timer programowy. Sekwencja wygląda następująco. W pierwszej sekundzie wysyłany jest rozkaz do wszystkich termometrów o rozpoczęcie pomiaru. W drugiej sekundzie każdy termometr jest odpytywany, a temperatura zapisywana jest w odpowiednich rejestrach. Czasy te można odpowiednio modyfikować, tak na razie działa prototyp. Do pomiarów proponuję 11-bitową dokładność, co da czas konwersji ok. 350 ms.

Proszę o dodanie uwag, propozycji, pytań.

Informacje na temat RS-485

Slave Atmega168

Zasilanie 24V

6 Fuel channel

1-wire max.20
termometrów

RS-485

- Separacja galwaniczna,
- Terminator załączany zworką,
- Tryb fail safe załączany zworkami,
- Transile zabezpieczające,
- Domyślny baud rate 38400.

Wizualizacja płytki

Slave Atmega168

Zasilanie 24V

6 Fuel channel

1-wire max.20 termometrów

RS-485

Slave STM32

Zasilanie 24V

USB

1-wire max.50

Local 1-wire

RS-232

RS-485

Moduł slave STM32 oferuje możliwości podobne do tych z slave'a Atmega168 tylko bez pomiaru zużycia paliwa. Na pokładzie znajduje się więcej portów:

- USB, który pełni rolę konwertera USB <-> RS-485, po USB odpytywany będzie STM32,
- 1-wire do obsługi termometrów,
- Local 1-wire do dodawania nowych termometrów w obiekcie,
- RS-232 do komunikacji z TLS 300,
- RS-485 do komunikacji z pozostałymi modułami.

Slave STM32

Zasilanie 24V

USB

1-wire max.50

Local 1-wire

RS-232

RS-485

Adresy związane ze stanem modułu STM32

Adresy cewek (coils) modbusa:				
3 FRESH_START Cewka 3 to świeży start. Po każdym resecie procesora, np.: w przypadku zaniku zasilania, ma wartość 1. Powinno się go zawsze sprawdzać i zerować po wgraniu konfiguracji.				
Adres slave modułu to niemodyfikowalna wartość 128.				

Slave STM32

Zasilanie 24V

USB

1-wire max.50

Local 1-wire

RS-232

RS-485

Adresy związane z magistralą 1-wire

Adresy cewek (coils) modbusa:				
15-64 50 - bitów	Sygnalizacja błędów termometrów. Np.: Jeżeli na termometrze nr 5 wystąpi błąd to cewka(bit) w adresie 19 będzie miał stan wysoki.			
70-119 Włączanie/ wyłączanie termometrów. 20 – bitów (opcja)				
Adresy rejestrów modbusa:				

20-69(input register) 50 rejestrów	Odczyt temperatury. Starszy bajt słowa (rejestru) to część całkowita temperatury ze znakiem, młodszy bajt to miejsce po przecinku.
40-239 (holding register) 200 rejestrów	Adresy termometrów. Jeden adres termometru zajmuje 4 rejestry(8 bajtów). W przypadku tego modułu zawartość nie jest przechowywana w pamięci EEPROM, gdyż moduł takiej nie posiada. Stąd istnieje obowiązek wgrania adresów po każdym wykryciu resetu procesora (sprawdzanie bitu FRESH_START).

Adres termometru zapisany w rejestrach 40-43 jest pierwszym termometrem. Jego pomiar jest przechowywany w rejestrze 20. Sygnalizacja jego ewentualnego błędu jest przechowywana w cewce 15. Włącznik tego termometru to cewka 70.

Slave STM32

Zasilanie 24V

USB

1-wire max.50

Local 1-wire

RS-232

RS-485

Adresy związane z magistralą Local 1-wire

Adresy cewek (coils) modbusa:						
4 CHECK_LOCAL	Wartość 1 uruchamia procedurę odczytu adresu i temperatury z termometru podłączonego do lokalnego złącza 1-wire.					
65	Sygnalizacja błędu w trakcie obsługi lokalnego termometru.					
Adresy rejestróv	Adresy rejestrów modbusa:					
19(input register)	Odczyt lokalnej temperatury. Starszy bajt słowa (rejestru) to część całkowita temperatury ze znakiem, młodszy bajt to miejsce po przecinku.					
15-18 (holding register) 4 rejestry	Adres lokalnego termometru. Jeden adres termometru zajmuje 4 rejestry(8 bajtów).					

Slave STM32

Zasilanie 24V

USB

1-wire max.50

Local 1-wire

RS-232

RS-485

Adresy związane z obsługą zbiorników paliwa(RS-232)

Adresy cewek (coil	s) modbusa:					
66-68	Sygnalizacja błędu w trakcie obsługi zbiorników.					
Adresy rejestrów n	nodbusa:					
5 (holding register) CHECK_TANK	Zmiana wartości rejestru na 1 rozpoczyna procedurę odczytu danych ze zbiorników paliwa. Za pomocą tego rejestru można śledzić etapy procedury odczytu. Poniżej wartość rejestru wraz z opisem etapu: -0 – odczyt wyłączony, - 1 – wysłanie polecenia do sterownika zbiorników o odczyt zbiornika nr 1, -2 – oczekiwanie na dane o zbiorniku nr 1, -3 – przeliczenie odebranych danych zbiornika nr 1 (dane gotowe do odczytu) oraz wysłanie polecenia do sterownika zbiorników o odczyt zbiornika nr 2, - 4 – oczekiwanie na dane o zbiorniku nr 2, - 5 - przeliczenie odebranych danych zbiornika nr 2 (dane gotowe do odczytu) oraz wysłanie polecenia do sterownika zbiorników o odczyt zbiornika nr 3, - 6 - oczekiwanie na dane o zbiorniku nr 3, - 7 - przeliczenie odebranych danych zbiornika nr 3 (dane gotowe do odczytu).					
70-77(zbiornik1) 78-85(zbiornik2) 86-93(zbiornik3) (input register)	W dwóch rejestrach(32bity) w formie (float CDAB) przechowywane są: POJEMNOŚĆ, POJEMNOŚĆ KT, REZERWA, SŁUP. Dla zbiornika 1 POJEMNOŚĆ KT to rejestry 71-72. Dla zbiornika 3 słup cieczy to rejestry 92-93.					

Slave STM32

Zasilanie 24V

USB

1-wire max.50

Local 1-wire

RS-232

RS-485

Wizualizacja płytki

Propozycja przebiegu konfiguracji modułów ATmega 168 w LabVIEW

Ekran Konfiguracja

ID		5				
☑						
OIL_C H6	OIL_CH 5	OIL_ CH4	- 1 – 1		OIL _C H1	Lokalna temperatura
	TERMOMETRY					
1	POLE n	umiejs	pis np.: cowien t, pom	iia(ag	Przycisk Czytaj	
220	1 OLE 11d ddi es			Opis np.: umiejscowienia(ag regat, pompa)		Przycisk Czytaj
Częstotliwość odpytywania			2	000 ms		

Przycisk zapisz konfigurację i prześlij

Po wciśnięciu przycisku "Czytaj" (może być inny tekst) czytany jest termometr umieszczony w porcie LOCAL 1-WIRE modułu STM32, znajdującego się niedaleko komputera. Wtedy LabVIEW wyśle polecenie zmiany cewki(bitu) z 0 na 1. Wtedy wyzwalany jest odczyt adresu i temperatury. Pole adres wtedy wypełni się jakimś adresem. Konfiguracja całego obiektu powinna być gdzieś zapisana do pliku, aby w razie zaniku zasilania przywrócić obiekt do poprzedniego stanu.

To taka luźna propozycja.