Mathématiques Discrètes - Série 2

Combinatoire I

- 1. Prouver que le nombre de diviseurs distincts de $n \in \mathbb{N}^*$ est impair si et seulement si n est un carré parfait (c'est-à-dire $n = k^2$ pour un $k \in \mathbb{N}^*$).
- 2. Vous êtes piégé-e dans le monde d'Alice in Borderland! La dame de coeur est une cartomancienne, et les règles de son jeu sont les suivantes: vous recevez 60 énigmes, chacune ayant pour thème un des 12 signes du zodiaque (il y a donc 5 énigme par signe du zodiaque). Vous remportez un signe du zodiaque si vous résolvez au moins 3 de ses énigmes, et vous gagnez la partie si vous remportez au moins 9 signes du zodiaque.
 - (a) Combien de manières minimales (c'est-à-dire en résolvant exactement 3 énigmes dans exactement 9 signes du zodiaque) avez-vous de sortir vainqueur·e?
 - (b) Vous avez résolu exactement 27 énigmes. Quelle est la probabilité que vous ayez remporté la partie ?
 - (c) Combien d'énigmes vous faut-il résoudre pour être certain·e de gagner la partie, indépendamment des signes du zodiaque? A partir de combien d'énigmes échouées êtes-vous certain·e de perdre la partie, indépendamment des signes du zodiaque?
 - (d) Vous estimez que votre fidèle partenaire a une chance sur deux de résoudre chaque énigme. Quelle est la probabilité *a priori* qu'il/elle remporte sa partie ?
- 3. Pour ce problème, on suppose que toutes les années ont 365 jours. Pour $k \geq 2$, soit p_k la probabilité que parmi k personnes il y en ait 2 qui ont le même jour d'anniversaire.
 - (a) Quelle est la probabilité qu'une personne parmi $n \ge 1$ autre(s) personne(s) aient la même date d'anniversaire que vous ?
 - (b) Calculer p_k .
 - (c) Reformuler le problème en termes d'application entre des ensembles.
 - (d) Exprimer p_{k+1} en fonction de p_k .
 - (e) Trouver le plus petit k tel que $p_k > 50\%$.