<u>ALGORYTMY EWOLUCYJNE – TECHNIKI ZAAWANSOWANE</u>

- Reprezentacja zmiennych decyzyjnych.
- Reprodukcja mechanizmy selekcji.
- Operatory ewolucyjne: krzyżowanie, mutacja.

REPREZENTACJA ZMIENNYCH DECYZYJNYCH

1. Kodowanie binarne

- 1. Konieczność stosowania długich łańcuchów binarnych dla zadań wielowymiarowych w problemach silnie nieliniowych przy żądaniu wysokiej dokładności.
- 2. Nie gwarantuje dobrej korelacji pomiędzy przestrzenią zadania i przestrzenią reprezentacji (odległości pomiędzy dwoma punktami w obu przestrzeniach mogą się istotnie różnić).

Ad. 1.1 Komentarz:

Zmienna x z przedziału $< x_{\min}, x_{\max} >$ określana z dokładnością k cyfr znaczących <u>musi</u> być zapisana na m bitach (genach), gdzie:

$$(x_{\text{max}} - x_{\text{min}}) \cdot 10^k \le 2^m - 1$$

zaś jej wartość dziesiątkowa wynosi:

$$x = x_{\min} + (01001 \cdots 001_2)_{10} \cdot \frac{x_{\max} - x_{\min}}{2^m - 1}$$

<u>Długość chromosomu:</u> $[n \cdot m]$ gdzie n jest liczbą zmiennych.

Przykład:

10 zmiennych (n = 10), każda zmienna, zapisana z dokładnością do 4 cyfr znaczących, zawiera się w przedziale <10,100>:

Zatem:
$$(100-10) \cdot 10^4 \le 2^m - 1 \implies m = 20$$

 $900\ 000 \le 2^{20} - 1 (= 1048575)$

i długość jednego chromosomu wynosi $10 \cdot 20 = 200$ bitów.

<u>Ad. 1.2</u> Rozważmy dwie wartości zmiennej: $x = 7_{10}$ i $x = 8_{10}$.

W systemie dziesiątkowym odległość między tymi wartościami wynosi 1, zaś w systemie dwójkowym $x = 0111_2$ i $x = 1000_2$

Traktując każdą cyfrą w zapisie dwójkowym liczby jako niezależną współrzędną, "odległość" między tymi wartościami wynosi $\sqrt{(0-1)^2+(1-0)^2+(1-0)^2+(1-0)^2}=\sqrt{4}=2$, zaś np. dla liczb x=8₁₀=1000₂ i x=9₁₀=1001 ta "odległość" jest równa 1.

2. Kodowanie przy wykorzystaniu kodu Gray'a

- 1. Poprawia korelację pomiędzy przestrzenią zadania i przestrzenia reprezentacji.
- 2. Dowolne dwa punkty leżące obok siebie w przestrzeni zadania różnią się zawsze jednym bitem w przestrzeni reprezentacji.

Lub inaczej:

Kod Graya: reprezentacja binarna dwóch kolejnych liczb dziesiątkowych różni się tylko jednym bitem.

Przykładowo, dla pierwszych 16 liczb całkowitych:

Liczba	Kod binarny	
dziesiątkowa		Kod Gray'a
0	0000	0000
1	0001	0001

Liczba	Kod binarny	
dziesiątkowa		Kod Gray'a
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Prosta konwersja z <u>naturalnego kodu binarnego</u> na kod Graya

Zamiast konstruowania tablicy kodu Graya dla liczby zapisanej w kodzie dwójkowym można znaleźć odpowiednik w kodzie Graya w następujący sposób:

1. Przesunąć liczbę w postaci binarnej o jeden bit w prawo (podzielić przez 2).

liczba $DIV 2 \rightarrow$ liczba podzielona przez 2

2. Wykonać operację XOR (różnica symetryczna - jest prawdziwa wtedy i tylko wtedy, gdy dokładnie jedno ze zdań p,q jest prawdziwe) na odpowiednich bitach liczby i wyniku dzielenia liczby przez 2.

XOR:

 $0 \operatorname{xor} 1 \to 1$ $1 \operatorname{xor} 1 \to 0$ $0 \operatorname{xor} 0 \to 0$

Np. w języku <u>C</u> tę operację można zapisać następującym wyrażeniem:

gray = liczba XOR (liczba DIV 2).

Konwersja z kodu Graya na naturalny kod binarny

Kolejne cyfry naturalnego kodu binarnego wyznacza się iteracyjnie, od najbardziej znaczącej, w oparciu o odpowiednią cyfrę kodu Graya i poprzednio wyznaczoną cyfrę kodu naturalnego:

- 1. Przyjmij pierwszą (najbardziej znaczącą) cyfrę kodu naturalnego równą pierwszej cyfrze kodu Graya
- 2. Każdą kolejną cyfrę oblicz jako różnicę symetryczną (XOR) odpowiedniej cyfry kodu Graya i poprzednio wyznaczonej cyfry kodu naturalnego.

Przykład przeliczenia:

Krok	Kod Graya	XOR	Kod naturalny
1.	1 010	$1 \rightarrow 1$	1—
2.	1 0 10	$0 \text{ xor } 1 \to 1$	11—

3.	10 1 0	$1 \text{ xor } 1 \to 0$	110–
4.	101 0	$0 \text{ xor } 0 \to 0$	1100

Wynik: słowu 1010 w kodzie Graya odpowiada ciąg 1100 w kodzie naturalnym, czyli liczba 12.

Rzeczywiście, jak pokazuje przedstawiona wyżej konstrukcja, 1010 jest trzynastym słowem kodowym 4-bitowego kodu, a więc (przy numeracji rozpoczynającej się od zera) odpowiada mu liczba 12.

3. Kodowanie zmiennoprzecinkowe

Chromosom jest kodowany jako wektor liczb rzeczywistych o tej samej długości co wektor zmiennych decyzyjnych.

<u>Gen:</u> - liczba zmiennoprzecinkowa zapisana z największą dokładnością wynikającą ze specyfiki komputera i stosowanego systemu operacyjnego.

<u>Chromosom:</u> - tablica jednowymiarowa o *n* elementach, gdzie *n* jest liczbą zmiennych.

Populacja: - Tablica dwuwymiarowa, gdzie drugim wymiarem jest liczność populacji.

REPRODUKCJA - MECHANIZMY SELEKCJI.

Selekcja to wybór chromosomów do reprodukcji, tzn. wybór kandydatów na *rodziców* następnego pokolenia.

Najczęstsze metody selekcji

- Selekcja proporcjonalna
- Selekcja turniejowa
- Selekcja rankingowa

Selekcja proporcjonalna

Omówiona poprzednio metoda ruletki z wagą proporcjonalna do względnej wartości funkcji przystosowania chromosomu w populacji.

<u>Najistotniejsza wada:</u> może być stosowana jedynie w problemach maksymalizacji funkcji celu, która jest dodatnia w całym obszarze.

Wymaga więc wprowadzenia skalowania funkcji celu dla problemów minimalizacji oraz funkcji celu o możliwych ujemnych wartościach.

Selekcja turniejowa

Zalety: znak funkcji celu nie ma znaczenia, może być stosowana zarówno do problemów minimalizacyjnych jak i maksymalizacyjnych.

Idea: Aktualna populacje dzieli się na podgrupy i najlepszy chromosom z każdej podgrupy staje się kandydatem na *rodzica* następnej populacji.

Schemat 1:

Dla kolejnych j = 1, ..., J:

- 1. Losuje się dwie liczby całkowite a i b z przedziału <1,J>.
- 2. Porównuje się chromosomy x_a i x_b z aktualnej populacji. Lepszy z tych dwóch chromosomów (na podstawie funkcji przystosowania) staje się kandydatem na rodzica następnej populacji.

Schemat 2:

Dla kolejnych j = 1, ..., J:

- 1. Losuje się liczbę całkowitą a z przedziału <1,*J*>.
- 2. Porównuje się chromosomy x_a i x_j z aktualnej populacji. Lepszy z tych dwóch chromosomów (na podstawie funkcji przystosowania) staje się kandydatem na rodzica następnej populacji.

(najlepszy z chromosomów będzie co najmniej raz skopiowany)

Selekcja rankingowa

Idea: Populację sortuje się od najlepszego do najgorszego chromosomu (z uwagi na wartość funkcji przystosowania) i każdemu chromosomowi populacji przypisuje się wagę. Prawdopodobieństwo selekcji zależy od wagi chromosomu a nie wartości jego funkcji przystosowania.

Ranking liniowy

Prawdopodobieństwo selekcji *j*-tego chromosomu ma postać:

$$p_j = q - (q - q_0) \frac{j-1}{J-1}$$

gdzie:

q - prawdopodobieństwo selekcji najlepszego chromosomu,

 q_0 - prawdopodobieństwo selekcji najgorszego chromosomu.

Selekcja następuje metoda ruletki.

Ranking wykładniczy

Prawdopodobieństwo selekcji *j*-tego chromosomu ma postać:

$$p_j = q(1-q)^{j-1}$$
 lub $p_j = q^{j-1}$

gdzie:

q - prawdopodobieństwo selekcji najlepszego chromosomu,

Selekcja następuje metoda ruletki.

PRZYKŁAD

• Chromosom 10 bitowy (10 genowy) reprezentuje 2 nieujemne zmienne całkowite:

$$x_1$$
: bity $0-4$ oraz x_2 : bity $5-9$.

- Funkcja przystosowania ma postać: $f(x_1, x_2) = 2000 x_1 x_2 x_1 x_2$
 - Populacja składa się z 6 chromosomów.

Aktualna populacja:

$$ch1 = (1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1)$$

$$ch2 = (1\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0)$$

$$ch3 = (0\ 0\ 0\ 1\ 1\ 0\ 1\ 1\ 0\ 1)$$

$$ch4 = (0\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 0)$$

$$ch5 = (0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1)$$

$$ch6 = (0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0)$$

$$f(x_1, x_2) = 2000 - x_1 - x_2 - x_1 x_2$$

$$\sum f = 10425$$

ch 1
$$\Rightarrow$$
 $\begin{cases} x_1 = (11101)_2 = 29_{10} \\ x_2 = (11101)_2 = 29_{10} \end{cases} \Rightarrow f(x_1, x_2) = 1101$

ch 2
$$\Rightarrow$$

$$\begin{cases} x_1 = (10100)_2 = 20_{10} \\ x_2 = (10001)_2 = 17_{10} \end{cases} \Rightarrow f(x_1, x_2) = 1623$$

ch 3
$$\Rightarrow$$

$$\begin{cases} x_1 = (01101)_2 = 13_{10} \\ x_2 = (00011)_2 = 3_{10} \end{cases} \Rightarrow f(x_1, x_2) = 1945$$

ch 4
$$\Rightarrow$$

$$\begin{cases} x_1 = (01000)_2 = 8_{10} \\ x_2 = (00100)_2 = 4_{10} \end{cases} \Rightarrow f(x_1, x_2) = 1956$$

ch 5
$$\Rightarrow$$
 $\begin{cases} x_1 = (01101)_2 = 13_{10} \\ x_2 = (01101)_2 = 13_{10} \end{cases} \Rightarrow f(x_1, x_2) = 1805$

ch 6
$$\Rightarrow$$

$$\begin{cases} x_1 = (00000)_2 = 0_{10} \\ x_2 = (00101)_2 = 5_{10} \end{cases} \Rightarrow f(x_1, x_2) = 1995$$

$$\sum f = 10425$$

Przyjmijmy, że

selekcja + krzyżowanie = nowe pokolenie

selekcja: proporcjonalna, turniejowa, rankingowa.

krzyżowanie: ch1 z ch2 na pozycji 5

ch3 z ch4 na pozycji 3

ch5 z ch6 na pozycji 6

Selekcja proporcjonalna + krzyżowanie

	FP	Wycinek	Prawdopodo-	Skumulowane
		koła ruletki	bieństwo wy-	wycinki koła
		w %	losowania	
Ch1	1101	10.5%	0.105	0≤ <i>p</i> ≤10.5
Ch2	1623	15.6%	0.156	10.5
Ch3	1945	18.7%	0.187	26.1< <i>p</i> ≤44.8
Ch4	1956	18.8%	0.188	44.8< <i>p</i> ≤63.6
Ch5	1805	17.3%	0.173	63.6< <i>p</i> ≤80.9
Ch6	1995	19.1%	0.191	80.9< <i>p</i> ≤100.0
Σ:	10425	100%	1.000	

Losuje się sześć liczb z przedziału [0,100]:

np.: 17, 56, 28, 89, 41, 96.

Do reprodukcji wybrano:

ch2, ch4, ch3, ch6, ch3, ch6

Populacja po reprodukcji i krzyżowaniu:

	Rodzice	Potomkowie	<i>x</i> 2	x1	f(x1,x2)
ch1	$(1\ 0\ 0\ 0\ 1\ \ 1\ 0\ 1\ 0\ 0)$	$(1\ 0\ 0\ 0\ 1\ \ 0\ 1\ 0\ 0\ 0)$	17	8	1839
ch2	(0 0 1 0 0 0 1 0 0 0)	$(0\ 0\ 1\ 0\ 0\ \ 1\ 0\ 1\ 0\ 0)$	4	20	1896
ch3	$(0\ 0\ 0\ \ 1\ 1\ 0\ 1\ 1\ 0\ 1)$	$(0\ 0\ 0\ 0\ 1\ \ 0\ 0\ 0\ 0\ 0)$	1	0	1999
ch4	$(0\ 0\ 1\ \ 0\ 1\ 0\ 0\ 0\ 0)$	$(0\ 0\ 1\ 1\ 1\ \ 0\ 1\ 1\ 0\ 1)$	7	13	1889
ch5	$(0\ 0\ 0\ 1\ 1\ 0\ \ 1\ 1\ 0\ 1)$	$(0\ 0\ 0\ 1\ 1\ \ 0\ 0\ 0\ 0\ 0)$	3	0	1997
ch6	(0 0 1 0 1 0 0 0 0 0)	$(0\ 0\ 1\ 0\ 1\ \ 0\ 1\ 1\ 0\ 1)$	5	13	1967
		11537			

Selekcja turniejowa + krzyżowanie

Schemat 1

j	a	b	f(a)	f(b)	chromosom
1	1	3	1101	1945	3
2	3	3	1945	1945	3
3	5	6	1805	1995	6
4	2	5	1623	1805	5
5	5	4	1805	1956	4
6	3	5	1945	1805	3

Do reprodukcji wybrano:

ch3, ch3, ch6, ch5, ch4, ch3

Populacja po reprodukcji i krzyżowaniu:

	Rodzice	Potomkowie	<i>x</i> 2	x1	f(x1,x2)
ch1	$(0\ 0\ 0\ 1\ 1\ \ 0\ 1\ 1\ 0\ 1)$	$(0\ 0\ 0\ 1\ 1\ \ 0\ 1\ 1\ 0\ 1)$	3	13	1945
ch2	$(0\ 0\ 0\ 1\ 1\ \ 0\ 1\ 1\ 0\ 1)$	$(0\ 0\ 0\ 1\ 1\ \ 0\ 1\ 1\ 0\ 1)$	3	13	1945
ch3	$(0\ 0\ 1\ \ 0\ 1\ 0\ 0\ 0\ 0\ 0)$	$(0\ 0\ 1\ 0\ 1\ \ 0\ 1\ 1\ 0\ 1)$	5	13	1917
ch4	$(0\ 1\ 1\ \ 0\ 1\ 0\ 1\ 1\ 0\ 1)$	(0 1 1 0 1 0 0 0 0 0)	13	0	1987

ch5	$(0\ 0\ 1\ 0\ 0\ 0\ \ 1\ 0\ 0\ 0\)$	(0 0 1 0 0 0 1 1 0 1) 4 13 19	931		
ch6	(0 0 0 1 1 0 1 1 0 1)	(0 0 0 1 1 0 1 0 0 0) 3 8 19	965		
	Suma funkcji przystosowania = 11690				

Selekcja turniejowa + krzyżowanie (c.d.)

Schemat 2 – wersja 1

j	a	f(j)	f(a)	chromosom
1	1	1101	1101	1
2	3	1623	1945	3
3	5	1945	1805	3
4	2	1956	1623	4
5	5	1805	1805	5
6	3	1995	1945	6

Do reprodukcji wybrano:

ch1, ch3, ch3, ch4, ch5, ch6

Populacja po reprodukcji i krzyżowaniu:

	Rodzice	Potomkowie	<i>x</i> 2	<i>x1</i>	f(x1,x2)
ch1	(1 1 1 0 1 1 1 1 0 1)	(1 1 1 0 1 0 1 1 0 1)	29	13	1581
ch2	$(0\ 0\ 0\ 1\ 1\ \ 0\ 1\ 1\ 0\ 1)$	$(0\ 0\ 0\ 1\ 1\ \ 1\ 1\ 1\ 0\ 1)$	3	29	1881
ch3	$(0\ 0\ 0\ \ 1\ 1\ 0\ 1\ 1\ 0\ 1)$	$(0\ 0\ 0\ 0\ 0\ \ 0\ 1\ 0\ 0\ 0)$	0	8	1992
ch4	$(0\ 0\ 1\ \ 0\ 0\ 0\ 1\ 0\ 0\ 0)$	(0 0 1 1 1 0 1 1 0 1)	7	13	1889
ch5	$(0\ 1\ 1\ 0\ 1\ 0\ \ 1\ 1\ 0\ 1)$	$(0\ 1\ 1\ 0\ 1\ \ 0\ 0\ 0\ 0\ 0)$	13	0	1987
ch6	$(0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0)$	$(0\ 0\ 1\ 0\ 1\ \ 0\ 1\ 1\ 0\ 1)$	5	13	1917
	Suma funkcji przystosowania =				

Selekcja turniejowa + krzyżowanie (c.d.)

Schemat 2 – wersja 2

j	b	f(j)	f(b)	chromosom
1	3	1101	1945	3
2	3	1623	1945	3
3	6	1945	1995	6
4	5	1956	1805	4
5	4	1805	1956	4
6	5	1995	1805	6

Do reprodukcji wybrano:

ch3, ch3, ch6, ch4, ch4, ch6

Populacja po reprodukcji:

	Rodzice	Potomkowie	<i>x</i> 2	<i>x1</i>	f(x1,x2)
ch1	$(0\ 0\ 0\ 1\ 1\ \ 0\ 1\ 1\ 0\ 1)$	$(0\ 0\ 0\ 1\ 1\ \ 0\ 1\ 1\ 0\ 1)$	3	13	1945
ch2	$(0\ 0\ 0\ 1\ 1\ \ 0\ 1\ 1\ 0\ 1)$	$(0\ 0\ 0\ 1\ 1\ \ 0\ 1\ 1\ 0\ 1)$	3	13	1945

ch3	$(0\ 0\ 1\ \ 0\ 1\ 0\ 0\ 0\ 0)$	$(0\ 0\ 1\ 0\ 0\ \ 0\ 1\ 0\ 0\ 0)$	4 8	1956	
ch4	$(0\ 0\ 1\ \ 0\ 0\ 0\ 1\ 0\ 0\ 0)$	$(0\ 0\ 1\ 0\ 1\ \ 0\ 0\ 0\ 0\ 0)$	5 0	1995	
ch5	$(0\ 0\ 1\ 0\ 0\ 0\ \ 1\ 0\ 0\ 0\)$	$(0\ 0\ 1\ 0\ 0\ \ 0\ 0\ 0\ 0\ 0)$	4 0	1996	
ch6	(0 0 1 0 1 0 0 0 0 0)	$(0\ 0\ 1\ 0\ 1\ \ 0\ 1\ 0\ 0\ 0)$	5 8	1947	
	Suma funkcji przystosowania = 11784				

Selekcja rankingowa + krzyżowanie

Kolejność aktualnych chromosomów od najlepszego do najgorszego: 6-4-3-5-2-1

- Chromosom najlepszy (6): q = 0.90
- Chromosom najgorszy (1): q = 0.10
- Wagi przypisane kolejnym chromosomom:

Ranking liniowy: $p_{i} = 0.9 - 0.16(j-1)$

Ranking wykładniczy: $p_i = 0.9^{j-1}$

Ranking liniowy

	j	p_j	% koła	Skum. % koła
Ch6	1	0.90	30.00	70.00 - 100.00
Ch4	2	0.74	24.67	45.33 – 70.00
Ch3	3	0.58	19.33	26.00 – 45.33
Ch5	4	0.42	14.00	12.00 - 26.00
Ch2	5	0.26	8.67	3.33 - 12.00

Ch1	6	0.10	3.33	0 - 3.33
Σ :		3.0	100	

Losuje się sześć liczb [0,100]: np.: 17, 56, 28, 89, 41, 96.

<u>Do reprodukcji wybrano:</u> ch5, ch4, ch3, ch6, ch3, ch6

Populacja po reprodukcji i krzyżowaniu:

	Rodzice	Potomkowie	<i>x</i> 2 .	<i>x1</i>	f(x1,x2)
ch1	(0 1 1 0 1 0 1 1 0 1)	(0 1 1 0 1 0 1 0 0 0)	13	8	1875
ch2	$(0\ 0\ 1\ 0\ 0\ \ 0\ 1\ 0\ 0\ 0)$	$(0\ 0\ 1\ 0\ 0\ \ 0\ 1\ 1\ 0\ 1)$	4	13	1931
ch3	$(0\ 0\ 0\ \ 1\ 1\ 0\ 1\ 1\ 0\ 1)$	$(0\ 0\ 0\ 0\ 1\ \ 0\ 0\ 0\ 0\ 0)$	1	0	1999
ch4	$(0\ 0\ 1\ \ 0\ 1\ 0\ 0\ 0\ 0)$	$(0\ 0\ 1\ 1\ 1\ \ 0\ 1\ 1\ 0\ 1)$	7	13	1889
ch5	$(0\ 0\ 0\ 1\ 1\ 0\ \ 1\ 1\ 0\ 1)$	$(0\ 0\ 0\ 1\ 1\ \ 0\ 0\ 0\ 0\ 0)$	3	0	1997
ch6	$(0\ 0\ 1\ 0\ 1\ 0\ \ 0\ 0\ 0\ 0)$	$(0\ 0\ 1\ 0\ 1\ \ 0\ 1\ 1\ 0\ 1)$	5	13	1917
	Suma funkcji przystosowania =				11608

Ranking wykładniczy

	j	p_j	% koła	Skum. % koła
Ch6	1	1.00	21.35	78.65 - 100.00
Ch4	2	0.90	19.20	59.45 – 78.65
Ch3	3	0.81	17.29	42.16 – 59.45
Ch5	4	0.73	15.56	26.60 – 42.16
Ch2	5	0.66	14.00	12.60 - 26.60
Ch1	6	0.59	12.60	0 - 12.60
Σ:		4.69	100	

Losuje się sześć liczb [0,100]: np.: 17, 56, 28, 89, 41, 96.

Do reprodukcji wybrano: ch2, ch3, ch5, ch6, ch5, ch6

Populacja po reprodukcji i krzyżowaniu:

	Rodzice	Potomkowie	<i>x</i> 2	<i>x1</i>	f(x1,x2)
ch1	$(1\ 0\ 0\ 0\ 1\ \ 1\ 0\ 1\ 0\ 0)$	$(1\ 0\ 0\ 0\ 1\ \ 0\ 1\ 1\ 0\ 1)$	17	13	1749
ch2	(0 0 0 1 1 0 1 1 0 1)	(0 0 0 1 1 1 0 1 0 0)	3	20	1917
ch3	(0 1 1 0 1 0 1 1 0 1)	$(0\ 1\ 1\ 0\ 1\ \ 0\ 0\ 0\ 0\ 0)$	13	0	1987
ch4	$(0\ 0\ 1\ \ 0\ 1\ 0\ 0\ 0\ 0)$	$(0\ 0\ 1\ 0\ 1\ \ 0\ 1\ 1\ 0\ 1)$	5	13	1917
ch5	(0 1 1 0 1 0 1 1 0 1)	$(0\ 1\ 1\ 0\ 1\ \ 0\ 0\ 0\ 0\ 0)$	13	0	1987
ch6	(0 0 1 0 1 0 0 0 0 0)	$(0\ 0\ 1\ 0\ 1\ \ 0\ 1\ 1\ 0\ 1)$	5	13	1917
	Suma funkcji przystosowania = 11474				

Podsumowanie:

Selekcja	Suma FP	Najlepsze	Najgorsze
		x_1, x_2	x_1,x_2
-	10425	-	-
Proporcjonalna	11537	0,3	8,17
Turniejowa 1	11690	0,13	13,5
Turniejowa 2.1	11247	8,0	13,29
Turniejowa 2.2	11784	0,4	13,3
Rankingowa liniowa	11608	0,3	8,13
Rankingowa wykładnicza	11474	0,13	13,17