Introduction to Deep Learning

Chia-Po Wei

Department of Electrical Engineering National Sun Yat-sen University

Outline

- Timeline
- Supervised Learning
 - Convolutional Neural Networks (CNN)
- Unsupervised Learning
 - Generative Adversarial Networks (GAN)
- Reinforcement Learning

What is Deep Learning?

Artificial Intelligence

Any technique that enables computers to mimic human behavior

Machine Learning

Ability to learn without explicitly being programmed

Deep Learning

Learn underlying features in data using neural networks

[slide credit: Alexander Amini]

Timeline

Perceptron (Rosenblatt 1957)

• The perceptron algorithm is guaranteed to converge only if the data are **linearly separable**.

Backpropagation (Rumelhart et al. 1986)

• Backpropagation calculates a gradient that is needed for updating the weights of the neural network.

[slide credit: Stanford CS231n]

Support Vector Machine (Cortes & Vapnik 1995)

- The support vector machine (SVM) is a maximal margin classifier.
- Both SVMs and perceptrons are shallow (only one hidden layer).

Resurgence of Neural Networks

- Neural networks went out of fashion between 1990-2006.
 - 1. Neural networks were difficult to train.
 - 2. Neural networks did not outperform other approaches.
- Why the resurgence?
 - 1. Big data: Large open datasets
 - 2. Hardware: GPU & parallelization
 - 3. Software: Open source framework

Data Size vs. Performance

• The performance of traditional ML methods saturates as data sizes increase, while that of Neural Networks keeps growing.

[image credit: Andrew Ng]

Timeline

Heroes of Deep Learning

 LeCun, Hinton, and Bengio are
ACM Turing Award Winners in 2018.

Speech Recognition (Hinton & MSR 2009)

• Deep learning helped speech recognition take a huge leap forward at Microsoft in 2009, and then Google as well in 2010.

[image credit: Kate Knill]

AlexNet (Krizhevsky 2012)

• The AlexNet achieved a top-5 error of 15.3%, more than 10.8 percentage points ahead of the runner up for the ImageNet competition.

[image credit: Stanford CS231n]

Revolution of Network Depth

ImageNet Classification top-5 error (%)

[image credit: Kaiming He]

Generative Adversarial Networks

• Generative models take training samples from some data distribution and learn a model representing that distribution.

Training samples

Model samples

Generative adversarial nets

I Goodfellow, J Pouget-Abadie, M Mirza... - Advances in neural ..., 2014 - papers.nips.cc

AlphaGo (DeepMind 2016)

AlphaGo's Opening Novelties

AlphaGo's Opening Novelties (Cont.)

Textbook sequence

AlphaGo's innovation

 Early 3-3 invasion now becomes a common opening strategy adopted by professional go players.

Three Pillars of Machine Learning

- Supervised Learning:
 - Data: (x, y), where x is data, y is label
 - Goal: Learn a function that maps x to y
- Unsupervised Learning:
 - Data: Just data x and no labels
 - Goal: Learn underlying hidden structure of the data
- Reinforcement Learning:
 - Problems involving an agent interacting with an environment, which provides numeric reward signals
 - Goal: Learn how to take actions to maximize reward

Supervised Learning

• Given a training set of input-output pairs, supervised learning learns a function f that can predict the response to the input: f(x) = y

Supervised Learning

Deep Learning = Learning Representations

> The traditional model of pattern recognition (since the late 50's)

End-to-end learning / Feature learning / Deep learning

Pipelines of Pattern Recognition

➤ Speech recognition: early 90's – 2011

Object Recognition: 2006 - 2012

Deep Learning = Learning Hierarchical Representations

[image credit: Yann LeCun]

Fully Connected Neural Network

- Each neuron is connected to **all** neurons in the previous layer.
- No spatial information!
- And many, many parameters!

Convolutional Neural Network (VGG16)

Three Pillars of Machine Learning

- Supervised Learning:
 - Data: (x, y), where x is data, y is label
 - Goal: Learn a function that maps x to y
- Unsupervised Learning:
 - Data: Just data x and no labels
 - Goal: Learn underlying hidden structure of the data
- Reinforcement Learning:
 - Problems involving an agent interacting with an environment, which provides numeric reward signals
 - Goal: Learn how to take actions to maximize reward

Unsupervised Learning: Clustering

• **Clustering** groups a set of objects such that objects in the same group are more similar to each other than to those in other groups.

Outline

- Timeline
- Supervised Learning
 - Convolutional Neural Networks (CNN)
- Unsupervised Learning
 - Generative Adversarial Networks (GAN)
- Reinforcement Learning

4.5 Years of GAN Progress

Which Person is Real?

Generative Adversarial Network (GAN)

- The image **x** is sampled from input data distribution.
- The vector **z** is drawn from a random variable of noise.
- D tries to make $D(G(\mathbf{z}))$ near 0
- G tries to make $D(G(\mathbf{z}))$ near 1

Two Player Minmax Game¹

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\mathbf{x}}[\log(D(\mathbf{x}))] + \mathbb{E}_{\mathbf{z}}[\log(1 - D(G(\mathbf{z})))]$$

¹ Goodfellow et al., Generative Adversarial Nets, NIPS 2014.

Three Pillars of Machine Learning

- Supervised Learning:
 - Data: (x, y), where x is data, y is label
 - Goal: Learn a function that maps x to y
- Unsupervised Learning:
 - Data: Just data x and no labels
 - Goal: Learn underlying hidden structure of the data
- Reinforcement Learning:
 - Problems involving an agent interacting with an environment, which provides numeric reward signals
 - Goal: Learn how to take actions to maximize reward

Reinforcement Learning

- At each step *t* the agent:
 - \blacksquare Executes action A_t
 - \blacksquare Receives observation O_t
 - \blacksquare Receives scalar reward R_t
- The environment:
 - \blacksquare Receives action A_t
 - Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}
- t increments at env. step

[image credit: David Silver]

Cart Pole Problem

[image credit: Stanford CS231n]

- **Objective**: Balance a pole on top of a movable cart
- **State**: angle, angular speed, position, horizontal velocity
- Action: horizontal force applied on the cart
- **Reward:** 1 at each time step if the pole is upright

Robot Locomotion

[image credit: Stanford CS231n]

- Objective: Make the robot move forward
- **State**: Angle & position of the joints
- Action: Torques applied on joints
- Reward: 1 at each time step upright
 - + forward movement

The Game of Go

- **Objective**: Win the game
- **State**: Position of all pieces
- **Action:** Where to put the next piece down
- **Reward:** 1 if win at the end of the game, 0 other wise

Conclusion

