Security and Risk: Quick Summary

Gabriel Rovesti

Contents

1. Disclaimer	3
2. M1.1 - Basic concepts	4
2.1. aaa	4
3. M1.2 - Basic concepts	5
3.1. aaa	
4. M2.1 - Planning for Cybersecurity	6
4.1. aaa	
5. M2.2 - Planning for Cybersecurity 5.1. aaa	
6. M3.1 - Cybersecurity Operations and Management	
6.1. Human Resource Security	
6.2. Hiring process	
6.3. During and after employment	
6.4. Security awareness	
6.6. Office equipment	
6.7. Equipment disposal	
6.8. Industrial Control System (ICS) security	
6.9. Mobile device security	
7. M3.2 - Cybersecurity Operations and Management	
7.1. System access and its functions	12
7.2. Authentication factors and means	
7.3. Authenticators	
7.4. Vulnerability of a password	
7.5. Hashed password and salt	
7.6. Password cracking	
7.7. Password file access control	
7.8. Possession-based authentication	13
7.9. Biometric authentication	13
7.10. Access control	13
7.11. Access control elements	14
7.12. Access control policies	
7.13. Access control structures	
7.14. Customer access	
8. M3.3 - Cybersecurity Operations and Management	
8.1. Computer Security Incident Response Team (CSIRT)	
8.2. Security Incidents	
8.3. Managing, detecting and responding to incidents	
8.4. Malware and protection	17

8.5. Intrusion Detection	. 17
8.6. Data Loss Prevention	18

1. Disclaimer

Given the course has so much content, a complete notes file is available, basically an extended transcript of file, here I will give a full revised short summary to avoid the unreadable sets of slides of this course. Hope this could be useful, between all of my other works.

2. M1.1 - Basic concepts

2.1. aaa

- 3. M1.2 Basic concepts
- 3.1. aaa

4. M2.1 - Planning for Cybersecurity

4.1. aaa

5. M2.2 - Planning for Cybersecurity

5.1. aaa

6. M3.1 - Cybersecurity Operations and Management

6.1. Human Resource Security

- Includes hiring, training, monitoring and handling employees
- Not only a technical challenge, also employees have to be aware of incidents and problems
- · Harmful behaviors can occur, being both malicious and non-malicious

6.2. Hiring process

- ISO 27002 specifies "the hiring process ensures employees and contractors understand their responsibilities, suitable for their roles"
- They should be fully capable of perform the intended job, without making unfounded claims and avoiding "negligent hiring"
- Ask applicants as much detail as possible and in case get even criminal/credit record check, according to the country's law
- Employees should agree and sign the terms and conditions of contracts, including non-disclosure agreement and ensuring assets are confidential, agreeing to respect both the policy and confidentiality

6.3. During and after employment

- Each job should have specific cybersec tasks associated
- Employers and contractors should be aware of responsibilities, policy and training programs
- Several principles for personnel security:
 - ▶ Least privilege
 - Separation of duties
 - Mandatory vacations
 - Limited reliance on key employees
 - Dual operator policy
- During the termination of employment phase, organization's interests should be protected and all data/accounts/codes/assets regarding specific individuals will be removed

6.4. Security awareness

- Having a good security awareness and appropriate security training is as important as any other security countermeasure or control
- Activities that explain and promote security should develop into secure practices according to the specific role, accompanying good education/certification
- All employees have security responsibilities which the awareness program should constantly push, being focused on all people and categories
- A good program should include all aspects (e.g., communication, responsibility, help, security culture)

- According to ENISA we should have:
 - ▶ Plan/Assess/Design
 - ► Execute/Manage
 - ► Evaluate/Adjust
- Good communication materials should be available:
 - both in-house
 - and externally obtained
- Good education/certification programs should be also available, considering specialized training
- Role-based training also should encompass:
 - Manage
 - ▶ Design
 - Implement
 - ► Evaluate

6.5. Hardware management

- Hardware = any physical asset used to support corporate information or systems, including the software embedded within them and the operating systems
- Hardware Asset Management (HAM) deals specifically with hardware portion of IT assets, managing the physical components
- Its lifecycle is composed by:
 - ► Planning
 - Acquiring
 - Deploying
 - Managing
 - Disposing
- Destruction is important to handle data safely

6.6. Office equipment

- Every hardware inside an office, containing sensitive information processed by or stored inside of it
- Could be also multifunction devices (MFD)
- Each contains some processing power and each is an asset to protect opportunities for threat and protection
- Could be exposed to several threats:
 - Network services
 - ► Information disclosure
 - DoS attacks
 - Physical security

- ► OS security
- They can have a checklist containing organization measures

6.7. Equipment disposal

- SOGP recommends sensitive information should be securely destroyed
- Three main actions:
 - ► Clear = sanitize storage locations
 - ► Purge = apply logical/physical techniques to destoy encryption key on devices
 - ► Destroy = renders target data recovery infeasible

6.8. Industrial Control System (ICS) security

- Used in control industrial processes, including Supervisory Control and Data Acquisition (SCADA)
- Consists of a combination of control components used to achieve industrial objectives
 - ► HMI Human-Machine Interface
 - Remote diagnostics and maintenance
 - Sensors
 - Actuators
 - Control
- They are distributed in insecure locations, often with microcontrollers with limited processing power
- There could be several threats:
 - ▶ Blocked/delayed flow of information
 - Unauthorized changes to instructions
 - ► Inaccurate information
 - ICS software or settings modified
 - Interference with operation of equipment protection systems, safety systems and system settings

6.9. Mobile device security

- Mobile device = Portable computing and communications device
- Prior to the use of smartphones, user devices were clearly confined over defined perimeters
- Now devices are constantly connected and there's always the need for more
- Each has a full stack, from hardware/firmware/mobile OS/application, being an entire ecosystem
- Millions of apps are available and each should conform to the organization security requirements; some examples
 - ▶ Rooting/Jailbreaking
 - Sideloading
- Many vulnerabilities to list, given they are outside of the corporate perimeter

- *Bring Your Own Device (BYOD)* many organizations find convenient to have such a policy, inspecting devices and their features
 - configuring devices in such a way it's possible to access, protect and wipe data from them safely, even remotely

7. M3.2 - Cybersecurity Operations and Management

7.1. System access and its functions

- Capability that restricts access to business applications, denying or limiting access to specific users
- Functions:
 - Authentication
 - Verifying the identity of user
 - Authorization
 - Granting of access by a security administrator, based on a security policy
 - Access control
 - Granting or denying specifing access requests
- Functions to establish rules and privileges and moderate access to an object in the system
- Each user has to be authorized properly, defining access privileges

7.2. Authentication factors and means

- · Simplest way to access, including an identification and verification step
- Authentication factors are methods
 - ► The user has (possession factor) tokens/smart cards/wireless tags
 - ► The user knows (knowledge factor) passwords/PINs/tokens
 - ► The user is or does (inherence factor) biometrics

7.3. Authenticators

- Means used to confirm a user/process/device
- Can be:
 - Multi-factor: use of one or more authentication means
 - Password-based: use of an ID and a password

7.4. Vulnerability of a password

- Instead of using a file retrieved by ID, to avoid storing password one can use a one-way hash function of the password
- · Different kinds of attacks exist
 - Dictionary attacks
 - ► Specific account
 - Popular password
 - Password guessing
 - Hijacking
 - Monitoring/Exploiting
- Rely on hardware/SSO/password managers to avoid problems
- Select password not too short or easy to guess, eliminating guessable passwords

7.5. Hashed password and salt

- Combine the password with a fixed length salt value using an hashing algorithm
- In verification, the ID is used to see if result matches, therefore password is accepted
- Salt usage
 - prevents duplicate password
 - increases difficulty for attacks
 - nearly impossible to use same password for more systems
 - ► is non-deterministic

7.6. Password cracking

- Process of recovering secret password stored in a system
- Many approaches like developing a dictionary to crack all words or precomputing hash values

7.7. Password file access control

- · Deny the attacker access to the password file
- · Allowing it only for a privieged user
- File can become readable or physical security might be a problem, to use a policy to force users selecting passwords difficult to guess

7.8. Possession-based authentication

- Object the user possess for user authentications = hardware tokens
- *Memory cards*: have an electronic memory, store but do not process data, used for physical access alone
 - May require specific requirements and can be lost
- *Smart tokens*: have some specific physical characteristics, user interface, electronic interface and authentication protocol
 - ► Have a smart card, a microprocessor and a processing circuit
- *Electronic identity cards*: also called eID, they provide stronger proofs of identity, given thy are verified by a government
- One-Time Password (OTP) device: it generates one time passwords, using a seed embedded

7.9. Biometric authentication

- Based on the specific individual characteristics
- Technically complex and expensive
- Nature and requirements should be considered, being universal, distinct, permanent and collectable
- Should meet some criteria:
 - Performance and accuracy
 - Difficulty of circumventing
 - Acceptability by users

7.10. Access control

• Gaining the ability to communicate or interact with a system. In other words, the process of granting or denying specific requests, via specific services and mechanisms

- ACCESS CONTROL = AUTHENTICATION + AUTHORISATION
- Has different inputs
 - ▶ Who issued the request
 - What is requires
 - What rules apply
- *System access* deals with moderating access to system objects via authentication (establishing user identity) and authorisation (defining user privileges)

7.11. Access control elements

- Subject
 - Entity capable of accessing objects
 - Typically considered accountable for their actions
 - ► Can be creators of resources, groups of users or every user possible to access
- Object
 - Resource which access is controlled and used to contain and/or receive information
- · Access rights
 - ► The ways in which a subject can access an object

7.12. Access control policies

- Dictates what types of access are permitted
- Different categories exist:
 - Discretionary access control (DAC)
 - Based on requestor identity and on access rules, granting specific permissions
 - ► Mandatory access control (MAC)
 - Comparison between security labels (sensitiveness of resources) with security clearances (which resources to access)
 - Has to be mandatory, so not to enable user wishes
 - ▶ Role-based access control (RBAC)
 - Access control based on user roles
 - Role permissions can be inherited through an hierarchy
 - Can apply to a single or several individuals
 - ► Attribute-based access control (ABAC)
 - Access control based on attributes associated with and abot subjects and objects, combining attributes under which an access takes place

7.13. Access control structures

- Access matrix = using access control lists (ACLs) or capability tickets
- Governed by a set of rules granting the subject access

7.14. Customer access

- Each customer needs to be uniquely approved and identified, both indivodual and in groups, responding to organization's business requirements
- Each one should be aware and trained
- Balance between customer satisfaction and meeting security requirements
- Subject to the same types of technical controls, defining access privileges and selecting an appropriate authentication procedure

8. M3.3 - Cybersecurity Operations and Management

8.1. Computer Security Incident Response Team (CSIRT)

- Responsible for rapidly detecting incidents
- Minimizing loss and destruction
- · Mitigating the weaknesses that were exploited
- Restoring computing services
- Calculates the added value to invest in safety resources
- In small organizations can be the security team, in large ones they are two separate entities

8.2. Security Incidents

- Any action that threatens one or more of the classic security services
- Unauthorized access or modification
- Procedures to manage them
 - Sorting, detecting, identifying, documenting

8.3. Managing, detecting and responding to incidents

- Should be detected and reported
 - ► Manually (reports)
 - ► Automatically (with integrity/log tools)
- Triage
 - find the single point of contact for services and request additional information to categorize the incident and notify parts of the enterprise
- Documentation to respond to them
 - ► Detail/Describe/Identify categories, personnel, circumstances
 - ▶ Should immediately follow a response to the incidents
 - What
 - How
 - Details
 - Impact
 - ► Allows for reviewing the risk assessment and strengthening controls
- Once an incident is opened, has to go through a number of states until no further action is required and is considered closed

Security controls are in place throughout:

- Hardware
- Software
- Firmware

8.4. Malware and protection

- · Program inserted into others compromising confidentiality, integrity, availability
- Many types and should be protected against them as much as possible
 - Clickless
 - ► Fileless
 - Adwares
 - Worms/Viruses, etc.
- Businesses are experiencing more and more
- · Practical steps to take, avoiding attack and defending against different attack surfaces
- Protection software to use to protect against them, automating actions as much as possible, verifying all defenses and collecting results from all points of attack
 - Scanning
 - Monitoring
 - Identifying
 - Disinfecting
- Software has to be accompanied by other measures like whitelist, firewalls and virtualization

8.5. Intrusion Detection

- The sooner the intrusion is detected, the less damage can be done
- When an intrusion happens, confidentiality is lost on all levels and collecting informations can help assessing risks and other means of security
- No exact distinction between an attack and normal use of resource: some overlap might happen
- · Identification between legitimate and new user
- Approaches
 - *Misuse detection*: take the strange behaviour and consider it as normal attack, via usage of patterns and signatures. It cannot detect novel/unknown attacks
 - *Anomaly detection*: detect activities different from normal behavior and be able to detect previously unknown attacks, having a trade-off between false positives and false negatives
- Intrusion Detection System
 - ▶ Sensors: collecting data and inputs
 - ► Analyzers: receive data from sensors and support evidence
 - User interface: give user output
- Techniques
 - ► Host-based
 - Layer of security to detect intrusions, events and send alerts
 - Detect thresholds and profiles

- Network-based
 - Monitor the traffic on the networks and see if packets match signatures
 - Can use sensors to gather data and feed information
 - It can see data inside the network but also outside of firewalls

8.6. Data Loss Prevention

- Information leakage can happen in an untrusted environment
- Monitor, and protect data in use and data at rest through deep content inspection
- Often includes unencrypted content
- Sensitive data should be precisely identified in an enterprise via different means
 - rule-based/fingerprinting/exact-partial file matching
- Data states
 - ► Data at rest = big risk with info stored throughout the enterprise
 - ► Data in motion = data trasmitted over enterprise networks, subject to active/passive monitoring of information across enterprise networks
 - Data in use = part of media and saved physically somewhere, controlling the movement in enduser systems