Exploring data quality

In [8]:

```
import pandas as pd
import numpy as np
import os
import gc
import matplotlib.pyplot as plt

_FOLDER = "database/"
_FOLDER_2 = "figures/"
_FOLDER_3 = "results/"
SAVE_FIGURES = False

from functions.filtering import *
from functions.plotting import *
```

In [9]:

```
Y_LIMIT_1 = 0.8 # for group 1a
R2_LIMIT = 0.9 # for S-shape fitting
Y_LOWER_LIMIT = 0.5 #for group 2a
```

Original data

In [19]:

```
_FOLDER = "C:/Users/junny/GitRepos/DrugProfiles_2/database/"
drug_curves = pd.read_csv(_FOLDER+"normalised_dose_response_data.csv")
if "Unnamed: 0" in drug_curves:
    drug_curves.drop("Unnamed: 0", axis=1, inplace =True)
col_to_drop = ["per_slope_change_"+str(i) for i in range(8)]+\( \psi \)
            ["slope_" + str(i) for i in range(9)]
drug_curves.drop(col_to_drop, axis=1, inplace=True)
conc_columns= ["fd_num_"+str(i) for i in range(10)]
response_norm = ['norm_cells_'+str(i) for i in range(10)]
CCL_names = dict(zip(drug_curves["COSMIC_ID"], drug_curves["CELL_LINE_NAME"]))
df= pd.read_csv(_FOLDER+'Drug_Features.csv')
drug_names = dict(zip(df["Drug ID"].values, df["Drug Name"].values))
del df
drug_curves["drug_name"] = drug_curves["DRUG_ID"].map(drug_names)
drug_curves["CCL_name"] = drug_curves["COSMIC_ID"].map(CCL_names)
drug_curves.shape
```

Out[19]:

(225384, 28)

Group 1: Responses above 1

```
In [20]:
#available functions in a filtering script
print("Available functions in filtering module: ₩n")
for func in content_filtering().keys():
    print(func)
Available functions in filtering module:
find_high_responses
cut_off_outliers
find_ascending_data
filtering_sigmoid_curves
auc_filtration
filter_good_response
select_group_limits
select_group_1
select_group_1a
select_group_1b
select_group_2
select_group_2a
select_group_2b
In [21]:
# group 1 - all responses above 1
gr_1 = select_group_1(drug_curves, response_norm)
gr_1.shape
Out [21]:
(162059, 28)
In [22]:
```

```
gr_1a = select_group_1a(gr_1, response_norm, Y_LIMIT_1)
gr_1a.shape
```

Out [22]:

(74115, 28)

```
In [23]:
```

```
%%time
fit_functions = ["sigmoid_4_param","logistic_4_param"]
gr_1b = select_group_1b(gr_1.loc[list(set(gr_1.index)-set(gr_1a.index))],
                        fit_functions, conc_columns, response_norm,
                        y_limit=Y_LIMIT_1, r2_limit=R2_LIMIT,
gr_1b.shape
 sigmoid_4_param
100%
                                                                              8794
4/87944 [08:28<00:00, 172.85it/s]
<function sigmoid_4_param at 0x000002864B5791C0>
 logistic_4_param
100%
                                                                               8794
4/87944 [07:51<00:00, 186.59it/s]
<function logistic_4_param at 0x000002864B5793A0>
CPU times: total: 16min 23s
Wall time: 16min 20s
Out [23]:
(41602, 32)
In [24]:
gr_1b.columns
Out [24]:
Index(['CELL_LINE_NAME', 'COSMIC_ID', 'DRUG_ID', 'DRUG_ID', 'DRUG_ID',
       'FOLD_DILUTION', 'MAX_CONC', 'fd_num_0', 'fd_num_1', 'fd_num_2',
       'fd_num_3', 'fd_num_4', 'fd_num_5', 'fd_num_6', 'fd_num_7', 'fd_num_8',
       'fd_num_9', 'norm_cells_0', 'norm_cells_1', 'norm_cells_2',
       'norm_cells_3', 'norm_cells_4', 'norm_cells_5', 'norm_cells_6',
       'norm_cells_7', 'norm_cells_8', 'norm_cells_9', 'drug_name', 'CCL_name',
       'sigmoid_4_param_r2', 'sigmoid_4_param', 'logistic_4_param_r2',
       'logistic_4_param'].
      dtype='object')
In [25]:
gr_1c = gr_1.loc[list(set(gr_1.index)-set(gr_1a.index)-set(gr_1a.index)-set(gr_1b.index))]
gr_1c.shape
Out [25]:
(46342, 28)
In [26]:
assert gr_1.shape[0]==gr_1a.shape[0]+gr_1b.shape[0]+gr_1c.shape[0]
```

```
In [27]:
gr_2 = select_group_2(drug_curves, response_norm)
gr_2.shape
Out [27]:
(63325, 28)
In [28]:
gr_2a = select_group_2a(drug_curves, response_norm, Y_LOWER_LIMIT)
gr_2a.shape
Out [28]:
(26849, 29)
In [30]:
%%time
fit_functions = ["sigmoid_4_param","logistic_4_param"]
gr_2b = select_group_2b(gr_2.loc[list(set(gr_2.index)-set(gr_2a.index))],
                        fit_functions, conc_columns, response_norm,
                        y_lower_limit =Y_LOWER_LIMIT, r2_limit= R2_LIMIT
gr_2b.shape
 sigmoid_4_param
100%
                                                                        3647
6/36476 [03:41<00:00, 164.31it/s]
<function sigmoid_4_param at 0x000002864B5791C0>
 logistic_4_param
6/36476 [02:29<00:00, 244.71it/s]
<function logistic_4_param at 0x000002864B5793A0>
CPU times: total: 6min 12s
Wall time: 6min 11s
Out[30]:
(24026, 32)
In [31]:
gr_2c = gr_2.loc[list(set(gr_2.index)-set(gr_2a.index)-set(gr_2b.index))]
gr_2c.shape
Out [31]:
```

(12450, 28)

```
In [32]:
```

```
assert gr_2.shape[0]==gr_2a.shape[0]+gr_2b.shape[0]+gr_2c.shape[0]
```

Save figures for the paper

In [46]:

```
def OneFigNoFitting(df, drug_id, ccl_name,
                    x_columns, y_columns, size=8,dpi=300,
                    upper_limit=None, lower_limit=None, save_fig_name=None):
    ind = df[(df["DRUG_ID"]==drug_id)&(df["CELL_LINE_NAME"]==ccl_name)].index
    drug_name = df.loc[ind, "drug_name"].values[0]
    print(f"Drug: {drug_name} ({drug_id}) / CCL: {ccl_name}")# % drug_name +str(drug_id) +" / CCL: "+ s
    x = df.loc[ind, x\_columns]
    y = df.loc[ind, y_columns].values[0] #possible problems are here
    plt.figure(figsize=(size, size))
    if max(y)>1:
        \max_{y} = \max(y) + 0.1
    else:
        max_y = 1.1
    plt.ylim([0, max_y])
    plt.scatter(x,y)
    plt.xlabel("Scaled dosage")
    plt.ylabel("Normalised response")
    if upper_limit:
        plt.axhline(upper_limit,color='red',ls='--')
    if lower limit:
        plt.axhline(lower_limit, color='black', ls='--')
    plt.tick_params(labelsize=14)
    plt.xlabel("Scaled dosage", fontsize=14)
    plt.ylabel("Normalised Response", fontsize=14)
    if save_fig_name:
        plt.savefig(save_fig_name, bbox_inches='tight', dpi=dpi)
        plt.show();
    else:
        plt.show();
```

In [36]:

Drug: Avagacestat (205) / CCL: ES6

In [51]:

Drug: UNC0638 (245) / CCL: HDQ-P1

In [50]:

Drug: WH-4-023 (56) / CCL: RKO

In [49]:

Drug: ZSTK474 (223) / CCL: HDQ-P1

In [48]:

Drug: WZ3105 (252) / CCL: SK-MEL-30

In [43]:

gr_2c.sample(5)

Out [43]:

CELL_LINE_NAME	COSMIC_ID	DRUG_ID	DRUGID_COSMICID	FOLD_DILUTION	MAX_CONC
JHU-028	1298154	1372	1372_1298154	4	1.(
A101D	910921	1219	1219_910921	4	10.0
NB12	949172	1243	1243_949172	4	10.0
ETK-1	906861	1268	1268_906861	4	5.0
ESO51	1503367	1012	1012_1503367	2	10.0
	JHU-028 A101D NB12 ETK-1	A101D 910921 NB12 949172 ETK-1 906861	JHU-028 1298154 1372 A101D 910921 1219 NB12 949172 1243 ETK-1 906861 1268	JHU-028 1298154 1372 1372_1298154 A101D 910921 1219 1219_910921 NB12 949172 1243 1243_949172 ETK-1 906861 1268 1268_906861	JHU-028 1298154 1372 1372_1298154 4 A101D 910921 1219 1219_910921 4 NB12 949172 1243 1243_949172 4 ETK-1 906861 1268 1268_906861 4

5 rows × 28 columns

In [47]:

Drug: (5Z)-7-0xozeaenol (1242) / CCL: CAL-29

In []:

In []:

In [63]:

import all_functions

Ambigous data: Are some points wrong?

In [65]:

Part 3: Explore curves with normalised responses above 1.0

In [55]:

```
%%time
# Number of responses > 1
drug_curves["high_responses"] = drug_curves[response_norm].apply(lambda row: sum(row>1), axis=1)
drug_curves[["high_responses"]+ response_norm]
```

CPU times: total: 16.2 s Wall time: 16.2 s

Out [55]:

	high_responses	norm_cells_0	norm_cells_1	norm_cells_2	norm_cells_3	norm_cells_4	no
0	7	1	1.039343	0.998020	1.005715	1.055723	
1	6	1	0.969418	0.987582	1.052708	1.072808	
2	1	1	0.956127	0.887779	0.941691	0.839059	
3	4	1	1.087946	0.980767	1.118407	1.234735	
4	6	1	1.035268	1.040170	0.972972	1.029729	
225379	3	1	0.970321	0.864856	1.326808	1.100719	
225380	3	1	0.329169	0.284518	1.088894	1.090624	
225381	3	1	0.914628	0.840454	1.116674	1.096159	
225382	2	1	0.884687	1.000038	1.051918	0.790004	
225383	4	1	1.053967	0.831009	1.155885	1.149906	

225384 rows × 11 columns

In [56]:

```
bad_data = drug_curves[drug_curves["high_responses"]>1]
print("Original data:", drug_curves.shape)
print("Ambiguos data:", bad_data.shape)
```

Original data: (225384, 29) Ambiguos data: (127590, 29)

Note: Half of the data can be regarded as ambiguous!!!

In [57]:

```
bad_data["high_responses"].value_counts()
```

Out [57]:

- 2 28485
- 3 24334
- 4 20015
- 5 17201
- 6 12366
- 7 10712
- 8 8487
- 9 5990

Name: high_responses, dtype: int64

Bad data by CCL

Check whether bad data are actually bad

In [66]:

Samples with 2 bad responses

In [67]:

Number of samples with 2 bad responses: 28485

Among samples with only 2 norm_responses >1 some data are not so bad

In [68]:

In [69]:

Number of samples with 2 bad responses, but with 2 last responses below 0.2: 2728

Conclusion - we can't delete just samples which with 2 responses>1.0

The question: What is the accuracy of measuring responses? Can we treat samples with responses up to 1.01 as valid ones?

Samples with 3 bad responses

In [70]:

Number of samples with 3 bad responses: 24334

In [71]:

```
specific_samples = [("THZ-2-49", "HDQ-P1"),
                               ("Vinorelbine", "NMC-G1"),
("Dacinostat", "JHH-2"),
("Dacinostat", "LU-65")
show_specific(bad_data, specific_samples, conc_columns, response_norm, upper_limit=1, lower_limit=0.2)
      Drug: THZ-2-49 / CCL: HDQ-P1
                                          Drug: Vinorelbine / CCL: NMC-G1
                                                                                                                  Drug: Dacinostat / CCL: LU-65
                                                                               Drug: Dacinostat / CCL: JHH-2
  0.8
                                      0.8
  0.6
                                                                         0.6
                                                                                                             0.6
                                      0.6
  0.4
                                                                         0.4
                                      0.4
                                                                          0.2
```

In [72]:

```
N = 3
df = bad_data[(bad_data["high_responses"]==N) & (bad_data["norm_cells_9"]<0.2) & (bad_data["norm_cells_print("Number of samples with %d bad responses, but with 2 last responses below 0.2: %d" % (N, df.shape show_response_curves(df, plots_in_row=3, plots_in_column=3, \forall x_columns=conc_columns, y_columns=response_norm, indexes=df.index[:9], drug_dict = drug_names, CCL_dict = CCL_names, upper_limit=1)</pre>
```

Number of samples with 3 bad responses, but with 2 last responses below 0.2: 1780

Samples with 4 bad responses

In [73]:

Number of samples with 4 bad responses: 20015

In []:

In [74]:

Number of samples with 4 bad responses, but with 2 last responses below 0.2: 879

Samples with 5+ bad responses

In [75]:

Number of samples with more than 5 bad responses: 54756

In [76]:

Number of samples with 5 bad responses, but with 2 last responses below 0.2: 441

In [77]:

Number of samples with 6 bad responses, but with 2 last responses below 0.2: 135

In [78]:

Number of samples with 7 bad responses, but with 2 last responses below 0.2: 18

In [79]:

Number of samples with 8 bad responses, but with 2 last responses below 0.2: 0

<Figure size 1400x1100 with 0 Axes>

```
In [80]:
```

Number of samples with 9 bad responses, but with 2 last responses below 0.2: 0 <Figure size 1400x1100 with 0 Axes>

Conclusion from Part 3: Curves with up to 7 suspiciously high normalised responses look pretty reasonable

Part 4: Explore curves with normalised response above 1 but low final response

```
In [81]:
```

```
%%time
drug_curves["low_response_02"] = drug_curves[response_norm].apply(lambda_row: sum(row<=0.2), axis=1)
drug_curves["low_response_04"] = drug_curves[response_norm].apply(lambda row: sum(row<=0.4), axis=1)
CPU times: total: 31.8 s
Wall time: 31.8 s
In [82]:
not_bad_02 = drug_curves[(drug_curves["high_responses"]>1) & (drug_curves["low_response_02"])]
not_bad_04 = drug_curves[(drug_curves["high_responses"]>1) & (drug_curves["low_response_04"])]
print("Number of all suspicious samples:", bad_data.shape[0])
print("\nNumber of potentionally good samples among all bad data:")
print("With responses below 0.2:", not_bad_02.shape[0])
print("With responses below 0.4:", not_bad_04.shape[0])
Number of all suspicious samples: 127590
Number of potentionally good samples among all bad data:
With responses below 0.2: 9892
With responses below 0.4: 16438
```

In [83]:

```
not_bad_02["low_response_02"].value_counts()
```

Out [83]:

```
1 7742
3 1755
5 387
7 8
Name: low_response_02, dtype: int64
```

In [84]:

```
not_bad_04["low_response_04"].value_counts()
```

Out[84]:

1 12144 3 3301 5 974 7 19

Name: low_response_04, dtype: int64

In [85]:

Part 5: Repeat with an additional constrain

Among all "middle" datapoints a subsequent point should not be higher than antecedent by some limit

In [88]:

```
not_bad_02_2 = cut_off_outliers(drug_curves, middle_points_limit=-0.2, response_columns = response_norm
print("Before filtration: %d, After filtration: %d" % (not_bad_04.shape[0], not_bad_02_2.shape[0]))
not_bad_02_2["low_response_02"].value_counts()
```

Before filtration: 16438, After filtration: 190245

Out[88]:

```
0
      151335
       16124
1
2
        7155
        5384
3
        4025
5
        2654
6
        1551
7
         857
         678
9
         482
8
```

Name: low_response_02, dtype: int64

In [90]:

In []: