The British University in Egypt Faculty of Informatics and Computer Science

Year Three After Prep 2019-2020

19CSSE03H

Software Development for Real-Time Systems

Automobile Management System

Group (7)

Name	ID	Email
Mahmoud Magdy Abdalfatah	160024	Mahmoud160024@bue.edu.eg
Omar Khaled	161417	Omar161417@bue.edu.eg
Samir Mohamed	162462	Samir162462@bue.edu.eg
Moamen Tawfick	161469	Moamen161469@bue.edu.eg
Anas Mohamed	138778	Anas138778@bue.edu.eg

Problem Definition:

The Automobile Management System is a real time system that consists of electrical sensors and mechanical parts composed together in order to work with one another to reduce the driver's strain while driving on long journeys. On the other hand, the system comes equipped with a numeric keyboard as an input, and CRT output monitor that tracks the vehicle's mileage and average fuel consumption, and the average speed in a certain trip upon user's selection. Therefore, Real Time Systems shall be taken into development and modeling conception as for this study.

The Cruise Control System, is a system that maintains the vehicle's speed upon user's selection meanwhile the engine is running and its current gear is the top gear, it maintains the speed by controlling the throttle body through the actuator attached to it by a range of volts from 0 to 8 (closed – fully opened) in order to hold the car at that desired speed, as well as the vehicle's speed can be increased dynamically by depressing on the accelerator regardless of the current selected speed to be cruised on, but once the pedal is held out, the vehicle will be running back on the previously cruised speed. And vice versa for the braking pedal, until the speed reaches the previously selected cruising speed.

Closed (0)

Open (8)

Throttle body [1]

Also, the system will be outputting the speed on a speedometer that measures the speed and distance by counting the revolutions it receives from the drive shaft sensor to draw the actual speed after the effect of the tire size and wear.

The system will be monitoring the vehicle's mileage, and notify the driver of determined factory scheduled maintenances, such as regular oil and filter changes, and such on.

The display.

Required Diagrams:

Usecase Diagram:

Automobile Management System Use Case Diagram

Class Diagram:

<<enumeration>> CruiseControllerState

ACTIVATE DEACTIVATE RESUME

<enumeration>> CruiseControllerAcceleration

START_ACCELERATE STOP_ACCELERATE

<<enumeration>> EngineState

RUNNIN

<<enumeration>> TransmissionState

TOP_GEAR MID_GEAR LOW_GEAR

<<enumeration>> Calibration

START_CALIBRATE STOP_CALIBRATE

<<enumeration>> ServiceCompletion

SERVICE_COMPLETED SERVICE_INCOMPLETE

Sequence Diagram:

Average Speed Sequence Diagram

Mileage Measurement Sequence Diagram

Fuel Quantity Sequence Diagram

Throttle Sequence Diagram

State Machine Diagram

Cruise Controller State Machine Diagram

Calibrator State Machine Diagram

Average Speed State Machine Diagram