Transmissions de puissance et trains épicycloïdaux

CTI2 – Chapitre 4

I. Les différents systèmes de transmission de puissance

Système		Glissement relatif	Trans- mission	Dessin	Formules
Roue de friction		Oui	Directe	α_s	$F=Nf_0$ $f_0= anarphi$ Pour des cônes de friction : $r=rac{\sinlpha_e}{\sinlpha_s}$
Courroies	lisses	Oui	- Indirecte	Tension t Brin mou Brin tendu Tension T	$T_0 = rac{T+t}{2}$ T (N): tension du brin tendu t (N): tension du brin mou $T_0 = t e^{lpha f_0}$ T (N): tension de pose
	crantées	Non			$T=te^{\alpha f_0}$ T_0 (N): tension de pose $\alpha:$ angle d'enroulement de la courroie C (N.m): couple transmissible
Engrenages		Non	Directe	Contact extérieur Contact intérieur	m Module de l'engrenage Z Nombre de dents p Pas
				Contact extérieur Contact intérieur	b Largeur de denture $b = km \ (k \in [6; 10])$

Transmissions de puissance et trains épicycloïdaux

CTI2 – Chapitre 4

II. Formules générales

III. Trains épicycloïdaux

1. Définition

Un train épicycloïdal est un train qui possède au moins une roue en rotation autour d'un axe Δ , axe en rotation autour d'un autre axe Δ_1 .

2. Relation cinématique

$$\lambda = \frac{\omega_{d/ps}}{\omega_{p/ps}} = \frac{\omega_{d/0} - \omega_{ps/0}}{\omega_{p/0} - \omega_{ps/0}}$$

$$\Rightarrow r = \frac{\omega_e}{\omega_s} = f(\lambda) = \cdots$$
Formule de Willis

Calculer λ avec la formule classique des rapports de réductions, puis arranger la formule de Willis pour trouver $r = f(\lambda)$.

3. Types de trains épicycloïdaux

4. Condition de montage pour le type I

La somme du nombre de dents des planétaires doit être divisible par le nombre de satellites.