```
10
 1
Leu Thr Ser Glu Asp Ala Val Leu Asn Met Ala Ala Ser Leu Ser Gly
            20
Trp Gln Glu Ala Ala Leu Val Gly Leu Ala Ser Gly Met Thr Pro Glu
                            40
Gln Val Arg Gln Glu Leu Leu Glu Ser Pro Glu Glu Leu Pro Glu Pro
                        55
Ser Lys Lys Gln His Gly His Ala Ala Ser Pro Arg Glu Pro Asp Val
                                        75
                    70
Glu Leu Leu Glu Ser Leu Arg Arg Pro Ala Ala Ala Met Glu Phe Ala
Thr Ile Glu Gly Val Asp
            100
<210> 229
<211> 743
<212> DNA
<213> Homo sapiens
<400> 229
nnggctaggg acacggcctc ctcctcaaca ggcagtgcct gtgcaggctc aggggcatca
tcaaagataa cacagggctg gtcaggggct gctggctgct cctgccccag gactggctcc
aggatgggca aggctgcctc cctggtagcc agggggagag gggaagggag caccagggag
tgggccagca ggtgtggcat cggccaggag gagatggagg ccagcagcag ccaagaccag
agtaaagtgt ctgccccagg ggtgctcaca gcccaggacc gggtagttgg aaagccagcc
cagettggca etcageggag ecaggaggca gatgtteagg aetgggagtt eagaaagagg
gattcccagg gcacttactc cagccgggat gcagaactcc aggaccagga attcggaaag
420
agagattcac tgggtaccta cagtagtcga gatgtaagcc ttgggggactg ggaatttggg
aagagagatt ctctgggtgc ttatgccagc caagatgcca acgagcaggg ccaagatttg
540
gggaagaggg accaccatgg taggtacagc agccaggatg ccgatgagca ggactgggag
tttcagaaga gagatgtgtc actcggcacc tatggcagcc gggctgcgga gccacaggaa
caggagtttg ggaagagcgc ttggataagg gactacagca gtggtggcag ctccaggacc
720
cttgacgccc aggacagaag ctt
743
<210> 230
<211> 247
<212> PRT
<213> Homo sapiens
Xaa Ala Arg Asp Thr Ala Ser Ser Ser Thr Gly Ser Ala Cys Ala Gly
```

```
Ser Gly Ala Ser Ser Lys Ile Thr Gln Gly Trp Ser Gly Ala Ala Gly
Cys Ser Cys Pro Arg Thr Gly Ser Arg Met Gly Lys Ala Ala Ser Leu
                            40
Val Ala Arg Gly Arg Gly Glu Gly Ser Thr Arg Glu Trp Ala Ser Arg
                       55
Cys Gly Ile Gly Gln Glu Glu Met Glu Ala Ser Ser Ser Gln Asp Gln
                                       75
                   70
Ser Lys Val Ser Ala Pro Gly Val Leu Thr Ala Gln Asp Arg Val Val
                                   90
Gly Lys Pro Ala Gln Leu Gly Thr Gln Arg Ser Gln Glu Ala Asp Val
           100
                               105
Gln Asp Trp Glu Phe Arg Lys Arg Asp Ser Gln Gly Thr Tyr Ser Ser
                                               125
                           120
Arg Asp Ala Glu Leu Gln Asp Gln Glu Phe Gly Lys Arg Asp Ser Leu
                       135
   130
Gly Thr Tyr Ser Ser Arg Asp Val Ser Leu Gly Asp Trp Glu Phe Gly
                                       155
                   150
Lys Arg Asp Ser Leu Gly Ala Tyr Ala Ser Gln Asp Ala Asn Glu Gln
                                   170
Gly Gln Asp Leu Gly Lys Arg Asp His His Gly Arg Tyr Ser Ser Gln
                                                    190
                               185
           180
Asp Ala Asp Glu Gln Asp Trp Glu Phe Gln Lys Arg Asp Val Ser Leu
                           200
                                                205
Gly Thr Tyr Gly Ser Arg Ala Ala Glu Pro Gln Glu Gln Glu Phe Gly
                                           220
                       215
Lys Ser Ala Trp Ile Arg Asp Tyr Ser Ser Gly Gly Ser Ser Arg Thr
                   230
                                       235
Leu Asp Ala Gln Asp Arg Ser
               245
<210> 231
<211> 431
<212> DNA
<213> Homo sapiens
<400> 231
acgcgttggc caccgagagg ctggcgaggg tgtgcagcac ggcgcagtgt ggcagggtcc
cagggtgcag cetgegcage agetecteca teacettget gatgaactgt etteccaegg
ccaccaggac gccactcgcc gcctgctgcc agtcccagac caggtccttc gtcttggtca
tctcgctgga ggccaggagg atgatggtgc tggctgtgtc cttgtccagc tcactggcgc
gactgctcag gaccctctcc atggccctca ggaccgctgc tcggtatggg tgtgccagct
tgtcatgctg ccgcagatac tcctcgcagg cacggagcgt ctccaccctg ctggacgcca
teaceqataa qqaeeceetq qtgcaqqaqe aggtetgcaq tgeectgtge teectegggg
aggtgcggcc g
431
```

```
<210> 232
<211> 120
<212> PRT
<213> Homo sapiens
<400> 232
Met Ala Ser Ser Arg Val Glu Thr Leu Arg Ala Cys Glu Glu Tyr Leu
                                    10
Arg Gln His Asp Lys Leu Ala His Pro Tyr Arg Ala Ala Val Leu Arg
Ala Met Glu Arg Val Leu Ser Ser Arg Ala Ser Glu Leu Asp Lys Asp
                            40
Thr Ala Ser Thr Ile Ile Leu Leu Ala Ser Ser Glu Met Thr Lys Thr
                        55
Lys Asp Leu Val Trp Asp Trp Gln Gln Ala Ala Ser Gly Val Leu Val
                    70
                                        75
Ala Val Gly Arg Gln Phe Ile Ser Lys Val Met Glu Glu Leu Leu Arg
                                    90
Arg Leu His Pro Gly Thr Leu Pro His Cys Ala Val Leu His Thr Leu
                                105
            100
Ala Ser Leu Ser Val Ala Asn Ala
                            120
       115
<210> 233
<211> 606
<212> DNA
<213> Homo sapiens
<400> 233
acgcgttcag ggatgccaga aatctaactg ggtaataaaa agctgggaga acattccaga
aaggtgggca cccttagcat teccaaaaag caccageeet ceteateett eecagettet
gtgctggaat gcaccccat cggaaaggct cgaaaactca ggacacatta ggatcacctg
gaaagcattt gtcaaaacgc atctccctgc gggtcagggt ccaagttaaa atcaaacttc
aggtgatget gacteaggtg getecagaaa caeetgggga ageageaett tggaggetge
300
eteteacate caececacag caagtgggca gggagetagg taaateteet teecagttga
gaaggggete ggagcaggea cagagaagag ataccettag aatgcaagtt gtteagetge
gaaagtccag cetgcagget teetgggcaa getagtggge tgaagtatge cacagcaaca
ggettetaga geeggetgee eageteetae tetgeetetg ceacteaetg aetgtgtggt
cttgagcagg tcacctgtct gacttggtga gagctgacag gcatcacctg ttagaggctt
600
acqcqt
606
```

<210> 234

```
<211> 108
<212> PRT
<213> Homo sapiens
<400> 234
Met His Pro His Arg Lys Gly Ser Lys Thr Gln Asp Thr Leu Gly Ser
Pro Gly Lys His Leu Ser Lys Arg Ile Ser Leu Arg Val Arg Val Gln
                                25
Val Lys Ile Lys Leu Gln Val Met Leu Thr Gln Val Ala Pro Glu Thr
Pro Gly Glu Ala Ala Leu Trp Arg Leu Pro Leu Thr Ser Thr Pro Gln
                        55
                                            60
Gln Val Gly Arg Glu Leu Gly Lys Ser Pro Ser Gln Leu Arg Arg Gly
                    70
Ser Glu Gln Ala Gln Arg Arg Asp Thr Leu Arg Met Gln Val Val Gln
                85
Leu Arg Lys Ser Ser Leu Gln Ala Ser Trp Ala Ser
            100
<210> 235
<211> 328
<212> DNA
<213> Homo sapiens
<400> 235
cgaccgttga ctattctcta caaaccacaa agacaatgat tgatttaact gaatttagaa
atagcaaaca cttaaaacag cagcagtaca gagctgaaaa ccagattctt ttgaaagaga
ttgaaagtct agaggaagaa cgacttgatc tgaaaaaaaa aattcgccaa atggctcaag
aaagaggaaa aagaagggca acttcaggat taaccactgg ggacctgaac ctaactgaaa
acatttctca aggagataga ataagtgaaa gaaaattgga tttattgagc ctcaaaaata
tgagtgaagc acaatcaaag aatgaatt
328
<210> 236
<211> 97
<212> PRT
<213> Homo sapiens
<400> 236
Met Ile Asp Leu Thr Glu Phe Arg Asn Ser Lys His Leu Lys Gln Gln
                                    10
Gln Tyr Arg Ala Glu Asn Gln Ile Leu Leu Lys Glu Ile Glu Ser Leu
                               25
Glu Glu Arg Leu Asp Leu Lys Lys Ile Arg Gln Met Ala Gln
                           40
Glu Arg Gly Lys Arg Arg Ala Thr Ser Gly Leu Thr Thr Gly Asp Leu
Asn Leu Thr Glu Asn Ile Ser Gln Gly Asp Arg Ile Ser Glu Arg Lys
```

75 70 65 Leu Asp Leu Leu Ser Leu Lys Asn Met Ser Glu Ala Gln Ser Lys Asn 90 95 Glu <210> 237 <211> 2059 <212> DNA <213> Homo sapiens <400> 237 ggccataagg gcacgacgca ttcctagccg atgcaccaac acgggcatga agcctgccga 60 gagcacgaag ccggcgtcca tagctacggc ccatacggtc atgtctgcca tggctccgtt 120 gatgtcagac tgcacatgaa atcggttacg gtaccccagg atcatcgcta ccgagtacac cccgaacage accegetggg cgccgatcag cgtgagggag tgccccacca gtggcacttt tettagatag eggaacecat ceaceaeate eccagteace gtteteateg teegggaacg atccaccagt ggcggcccaa gctcccgacg tgaaaactgc agcccctagg cgaccgagac tgcgaagagg gctgcggaga tgcagaaaat gatcgtgtcg gcgtggtgca caggaatatg gegteeggea ateatgegea etgetgeage aacaacegea eegateatga geeetagegg ccaatcgttg gcatgattga cgatgccgtc aggtagtcgc gcttgtcgat ggtgtattcc aacccagcga ccaaggcggt gagcaaaaac cggttcaggc tcatcgcgat gagcaaccca atgagcaagg ccaggtggga gggcttatcg cgcgcaccac cccagaccaa gatccccagc ccgacccagg tgacggcacg cattcatctg cgtattgtcc cgactacacc gtgagggcgc 720 tetetgatet geageteate aaggttaege gaetgeagta eeteaatgea eteetggeta cccqaqccca gaacctgcca cagtcccctg agaacaccga cctgcaggtt attccaggca gecagaceag geteettggt gagaagacea ceacagegge agettteeca gtagecettt ccctctttgg cacagttgga acctccagtt gataaatgac tgtggactag cgcgcgtttt ttgttttcag agcacacgta agggtccagc cacagcaggc ccggcgtccc ggtggaaggc agccctgggc ggaacccagg cgtttaacgg ctcactaggc agccccagat ctggggaagc agatgagcac gtggggagct ggagtgagct gagcagaagt tttgtgcccg cctgcccca 1140 tecectecag gecaegitti agatggeeet tgtagttgeg ggteetgggt gteeteagaa ctagacatca atgectggat cetteageeg geeetgeeet cetttaggag acaggagtea 1260

```
ccaqqqcaca gccctccagg cccgcctcag gaaggaatga aaggaatgcc atcatctcta
1320
gttcccaggg cccagccttc cccttctccc ccggggcagg gacagtgcgg catattcaga
ttcagacctc tttgggctga gccaccttgt gagtgcagtt actgcctttg tgtggccgtg
acctetattt gtttgetttt aatttgecaa cetategetg etggeageae tttttgagea
1500
agecgagage acceattttg getggggatt cagategatg geettgteea tgttgteett
tetggettee etgatggtgt catgttteag egeatgegee ceageettte ecatgtgeea
aaccagaagc tecactgeec gtaggetgte cetgtageec tgeteectee etggaggetg
1680
ctettetgat tetgagaget ggeetagtgg tgetgaggge ccetttetge ttetetgece
1740
acctgctgag ttgccactcg cagtgttgtc agttcccgtg ttctgagaag aggtcatgcc
1800
tgggaggaag ggatcgtcat gctgcatcga atcctctctc cgccgtgtgg cccccaggag
1860
agtagetgee tgttgeacet getecacace tecceacage etcectgeag gtgetgtgtg
qccqtgatgt gcagagagca gtgagggagg gttcatgaac caggtggatc ctctttaaaa
1980
aaaaaaaaag tttttgttat atctctaaaa tcccatagct aggaacagaa aaaaaggaaa
agacttgaaa tgttctaga
2059
<210> 238
<211> 129
<212> PRT
<213> Homo sapiens
<400> 238
Ala Glu Gln Lys Phe Cys Ala Arg Leu Pro Pro Ser Pro Pro Gly His
                                                        15
1
Val Leu Asp Gly Pro Cys Ser Cys Gly Ser Trp Val Ser Ser Glu Leu
            20
                                25
Asp Ile Asn Ala Trp Ile Leu Gln Pro Ala Leu Pro Ser Phe Arg Arg
                            40
Gln Glu Ser Pro Gly His Ser Pro Pro Gly Pro Pro Gln Glu Gly Met
                                            60
                        55
Lys Gly Met Pro Ser Ser Leu Val Pro Arg Ala Gln Pro Ser Pro Ser
                                        75
                    70
Pro Pro Gly Gln Gly Gln Cys Gly Ile Phe Arg Phe Arg Pro Leu Trp
                                    90
                85
Ala Glu Pro Pro Cys Glu Cys Ser Tyr Cys Leu Cys Val Ala Val Thr
                                105
                                                    110
Ser Ile Cys Leu Leu Ile Cys Gln Pro Ile Ala Ala Gly Ser Thr
                            120
                                                125
        115
Phe
```

```
<210> 239
<211> 388
<212> DNA
<213> Homo sapiens
<400> 239
ntctagatca ctctgtagcg catggttaaa tgctgacaca atagaaaagt gcgaggacat
cctcgaatta atgagatggt ggactggatg agtcaagttc tcgtcgttgc ggcggctgtc
ggtcagetge ecctecteca ettetgette teggegttae eccatacegt attggeegeg
tqttcacctt tqaatqcaqc catgtcgtcg tctccgtatc gaaatgatgt gccatcgaag
atgccgacct cagcatcggc atctgcagtg atgagtgcgt atcgcgccac acgaaacgcc
cagegeaace gtgteetege aegataegaa gtgettgggt ateteagete tggtaeetat
ggtcgtgtat ataaagcaaa ggaacttn
388
<210> 240
<211> 104
<212> PRT
<213> Homo sapiens
<400> 240
Met Val Asp Trp Met Ser Gln Val Leu Val Val Ala Ala Val Gly
                                    1.0
Gln Leu Pro Leu Leu His Phe Cys Phe Ser Ala Leu Pro His Thr Val
                                25
                                                    30
Leu Ala Ala Cys Ser Pro Leu Asn Ala Ala Met Ser Ser Ser Pro Tyr
                            40
                                                 45
Arg Asn Asp Val Pro Ser Lys Met Pro Thr Ser Ala Ser Ala Ser Ala
                        55
                                            60
Val Met Ser Ala Tyr Arg Ala Thr Arg Asn Ala Gln Arg Asn Arg Val
65
                    70
Leu Ala Arg Tyr Glu Val Leu Gly Tyr Leu Ser Ser Gly Thr Tyr Gly
                                    90
                                                         95
                85
Arg Val Tyr Lys Ala Lys Glu Leu
<210> 241
<211> 330
<212> DNA
<213> Homo sapiens
<400> 241
neggggggee gagttgaaag etgeeggeae aetggetgtg etgettgett eaettetegg
gatgetgett ccagggeggg cetgggggaa acateggeet teccaggeae cettageeeg
120
teccatetgg gggcccttag cacagtecet gggaceceae atgetgeett teaggetgat
180
```

```
gtgggcaaac tcggcagccc agcctactcc cgggccatgg gccaccatct cagcttccct
ggggctaagc cgtgtgctct gaatcaaaag cagtagtggc atcggcggca ctggcgccat
300
gggaaacggg ttgacttgca caaccagcac
330
<210> 242
<211> 100
<212> PRT
<213> Homo sapiens
<400> 242
Met Ala Pro Val Pro Pro Met Pro Leu Leu Leu Ile Gln Ser Thr
Arg Leu Ser Pro Arg Glu Ala Glu Met Val Ala His Gly Pro Gly Val
Gly Trp Ala Ala Glu Phe Ala His Ile Ser Leu Lys Gly Ser Met Trp
Gly Pro Arg Asp Cys Ala Lys Gly Pro Gln Met Gly Arg Ala Lys Gly
                        55
Ala Trp Glu Gly Arg Cys Phe Pro Gln Ala Arg Pro Gly Ser Ser Ile
                    70
                                        75
Pro Arg Ser Glu Ala Ser Ser Thr Ala Ser Val Pro Ala Ala Phe Asn
                                    90
Ser Ala Pro Arg
            100
<210> 243
<211> 330
<212> DNA
<213> Homo sapiens
<400> 243
nnaccttctc tccgcgttat taccaaagat gctatgcacg taactgcgga ggaaattctt
cacacaggee acceegeee cactgegete gtegetaate tteeetataa egttgeggta
120
cccgtactgc tacacatgct agatattctc ccctccttgc ggactacagt ggtgatggtg
180
caggcagaag tagccgatcg attggctgcc acaccaggca gccgcattta cggtgtcccc
agegteaaag teaactttta egggaetgte tegegtgegg gageaattgg aegeaatgte
ttctggccgg ctcccaatgt tgattctggn
330
<210> 244
<211> 110
<212> PRT
<213> Homo sapiens
Xaa Pro Ser Leu Arg Val Ile Thr Lys Asp Ala Met His Val Thr Ala
```

```
5
Glu Glu Ile Leu His Thr Gly His Pro Ala Pro Thr Ala Leu Val Ala
                                25
Asn Leu Pro Tyr Asn Val Ala Val Pro Val Leu Leu His Met Leu Asp
Ile Leu Pro Ser Leu Arg Thr Thr Val Val Met Val Gln Ala Glu Val
Ala Asp Arg Leu Ala Ala Thr Pro Gly Ser Arg Ile Tyr Gly Val Pro
Ser Val Lys Val Asn Phe Tyr Gly Thr Val Ser Arg Ala Gly Ala Ile
                                    90
                85
Gly Arg Asn Val Phe Trp Pro Ala Pro Asn Val Asp Ser Gly
                                105
<210> 245
<211> 355
<212> DNA
<213> Homo sapiens
<400> 245
totagatoot gaatcaccca cotoctagtt toggattcac otcogooggo gtoacctgaa
aacaatgtcg agcccgaatg gatgatggta gccacaccca tctcggaaag gtggaatgca
gcgtgttgca gaaacagaag ttgaccgtcg gaggtaggcg gcattcgctt cggatcgaag
cgtcccgagg catccatctc gagttgacga cgaaaatctt tccagtccac gccgtagggg
ganttggcaa ccacagcatc gaatttgtcc agaaggaagt ggtcgttggt gagggtattg
ccccattcaa tacgcgcatc ttcccggaag cgcgcctcta ttgcggccaa cgcgt
355
<210> 246
<211> 101
<212> PRT
<213> Homo sapiens
<400> 246
Met Arg Val Leu Asn Gly Ala Ile Pro Ser Pro Thr Thr Thr Ser Phe
Trp Thr Asn Ser Met Leu Trp Leu Pro Xaa Pro Pro Thr Ala Trp Thr
                                25
Gly Lys Ile Phe Val Val Asn Ser Arg Trp Met Pro Arg Asp Ala Ser
                            40
Ile Arg Ser Glu Cys Arg Leu Pro Pro Thr Val Asn Phe Cys Phe Cys
                        55
                                            60
Asn Thr Leu His Ser Thr Phe Pro Arg Trp Val Trp Leu Pro Ser Ser
                    70
                                        75
Ile Arg Ala Arg His Cys Phe Gln Val Thr Pro Ala Glu Val Asn Pro
                                    90
Lys Leu Gly Gly Gly
            100
```

```
<210> 247
<211> 333
<212> DNA
<213> Homo sapiens
<400> 247
atggccgcga atgggcaccg tgtcatggtc gtctctcccc gctacgacca gtacaaggac
gcctgggaca ccagcgtcgt gtccgagatc aagatgggag acaggtacga gacggtcagg
120
ttettecaet getacaageg eggagtggae egegtgtteg ttgaceaece actgtteetg
gagagggttt ggggaaagac cgaggagaag atctacgggc ctgacgctgg aacggactac
agggacaacc agctgcggtt cagcctgcta tgccaggcag cacttgaagc tccaaggatc
ctgagcctca acaacaaccc atacttctcc gga
333
<210> 248
<211> 111
<212> PRT
<213> Homo sapiens
<400> 248
Met Ala Ala Asn Gly His Arg Val Met Val Val Ser Pro Arg Tyr Asp
                                    10
Gln Tyr Lys Asp Ala Trp Asp Thr Ser Val Val Ser Glu Ile Lys Met
                                25
            20
Gly Asp Arg Tyr Glu Thr Val Arg Phe Phe His Cys Tyr Lys Arg Gly
                            40
Val Asp Arg Val Phe Val Asp His Pro Leu Phe Leu Glu Arg Val Trp
                        55
Gly Lys Thr Glu Glu Lys Ile Tyr Gly Pro Asp Ala Gly Thr Asp Tyr
                                        75
                    70
Arg Asp Asn Gln Leu Arg Phe Ser Leu Leu Cys Gln Ala Ala Leu Glu
                                    90
Ala Pro Arg Ile Leu Ser Leu Asn Asn Asn Pro Tyr Phe Ser Gly
                                105
            100
<210> 249
<211> 5503
<212> DNA
<213> Homo sapiens
<400> 249
atgacccagg ggattttggc cttggtcacg tccactggct gtgcatctgc caatgccctg
cagtecetea eggatgecat geacatecea eacetetttg tecagegeaa eeegggaggg
togocacgoa cogcatgoca cotgaaccoo agoccogatg gtgaggocta cacactggot
tcgagaccac ccgtccgcct caatgatgtc atgctcaggc tggtgacgga gctgcgctgg
240
```

cagaagttcg 300	tcatgttcta	cgacagcgag	tatgatatcc	gtgggcttca	aagctttctg
	cgcggctggg	ccttgacgtc	tctttacaaa	aggtggacaa	gaacattagc
	ccagcctgtt	caccacgatg	aagacagagg	agctgaatcg	ctaccgggac
	gegecatect	gctgctcagc	ccacagggag	cccactcctt	catcaacgag
	ccaacctggc	ttccaaggac	agccactggg	tctttgtgaa	tgaggaaatc
	agatcctgga	tctggtccat	agtgcccttg	gaaggatgac	cgtggtccgg
	cgtctgcaaa	ggacaatcag	aaatgcacga	ggaacaacca	ccgcatctcc
tecetgetet 720	gcgaccccca	ggaaggctac	ctccagatgc	tgcagatctc	caacctctat
ctgtatgaca 780	gtgttctgat	gctggccaac	gcctttcaca	ggaagctgga	ggaccggaag
tggcatagca 840	tggcgagcct	caactgcata	cggaaatcca	ctaagccatg	gaatggtggg
aggtccatgc 900	tggataccat	caaaaagggc	cacatcactg	gcctcactgg	ggtgatggag
tttcgggagg 960	acagttcgaa	tccctatgtc	cagtttgaaa	tccttggcac	tacctatagt
1020		gcgcaagttg			
1080		catgggcagc			
1140		cgtgatggtg			
1200		tgtcctggat			
1260		tggcaggtac			
1320		cagcaagaga			
1380		tgtggacttc			
1440		ggagaaaatc			
1500					gatatttgtg
1560					gtcagcttct
1620					aggtggcgaa
1680					cttcacgctc
1740					caggatggac
1800					tggcactgtc
cgggattctg 1860	ctgtatatga	gtacttccga	gccaagggca	ccaaccccct	ggagcaggac

agcacgtttg 1920	ctgaactctg	geggaceate	agcaagaacg	gaggggctga	caactgcgtg
tccagtcctt 1980	cagaaggcat	caggaaggca	aagaagggga	actacgcctt	cctgtgggat
gtggccgtgg 2040	tggaatacgc	agccctgacg	gatgacgact	gctcggtgac	tgtcatcggc
aacagcatca 2100	gcagcaaggg	ttacgggatt	gccctgcagc	atggcagccc	ctacagggac
ctcttctccc 2160	agaggatcct	ggagetgeag	gacacagggg	acctggatgt	gctgaagcag
	cgcacatggg	ccgctgtgac	ctcaccagcc	atgccagcgc	ccaggccgac
ggcaaatccc 2280	tcaagetgca	cagettegee	ggggtcttct	gcatcctggc	cattggcctg
ctcctggcct 2340	gcctggtggc	tgccctggag	ttgtggtgga	acagcaaccg	gtgccaccag
gagaccccca 2400	aggaggacaa	agaagtgaac	ttggagcagg	tecaceggeg	catgaacagc
ctcatggatg 2460	aagacattgc	tcacaagcag	atttccccag	cgtcgattga	gctctcggcc
ctggagatgg 2520	ggggcctggc	teccaeccag	accttggagc	cgacacggga	gtaccagaac
acccagetet	cggtcagcac	ctttctgcca	gagcagagca	gccatggcac	cagccggaca
ctctcatcag 2640	ggcccagcag	caacctgccg	ctgccgctga	gcagctcggc	gaccatgccc
tccatgcagt 2700	gcaaacacag	gtcacccaac	ggggggctgt	teeggeagag	cccggtgaag
acccccatcc 2760	ccatgtcctt	ccagcccgtg	cctggaggcg	tccttccaga	ggctctggac
acctcccacg 2820	ggacctccat	ctgactgcgc	cgcctgccct	cctgcccacc	ctcccaccca
cccgaccagc 2880	agagcttttt	aatacaagaa	aacaacaaca	caaaccacac	acactcgcac
2940			ttettgtaca		
atggagtggg 3000	gtaaaagtgt	attttgaata	ttcccaattt	tcgaagtcag	taaaaaaaca
3060			tgttctatat		
3120			ccccattcct		
3180					ggaaccccac
3240					tggcacctcg
tecettttag 3300	teceteaget	tgataaagag	tgagtttgga	gcccgcattg	ggctggccca
ctgggttgct 3360	gtgctgtagg	gtgatcggct	gttctgggta	gcctggggct	gaggaggtgc
	gggctatcct	gtcctgtctt	ggatettgeg	ggacgagtta	gtcaccgctg
	agtgtgcctc	tgccccatgg	gcccgagaga	agctgacaat	tacccatagt

cathtetett teaaaattag aagaatcaaa aagtgatgag aagaatgagga aagaaggagag 3600 gactecateg titeeteagg gagactgggg tiggtetgag agaaggteag gagagteag gagagteag gytggaacaa 3620 aaggecagg gagtigaggag gyttigaaca catiggecag gytggaacaa 3720 aaggegagag catagatga agggagtaga tigetigaaca catiggecaa gytgaacaa 3780 gaaggagaag tigegggagg gytgaacaa tigegggaaca tigeaggaca dactecagg gatagagaca acggaacaca dactecagg gatagagaca tigeaggaca gatagagaca dactecaggacaa acggaacacaa acgagaacaaa acgacaaggaca tigeaggaacaa dactecaggacaa dactecagaacaaa gacacaacaaa gagaaaacaa gagaaaaacaa gacacaacaaa gagaaagaca tigeaggaacaa cacaaaaacaa gagaagaacaa dacacaacaaaa gagaagagaca cacaaaaaaaa gagaagaacaa dacacacaaaa gagaagaacaa tigeagaacaa acaaacaacaaa gagaagaacaa dacacacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	gaggtaattg 3540	agggctttga	tactgagctg	ttctcatatc	atactgttgg	ccttgttttt
3660taggggcagggagttgcgaggagtgggttagttgcattggaccaggtggaggtggtggaacaa3720aaggccaggtagaggaagaatattcccttgggtttggaccatggtcccaggtgagaaga3780ggaagttgaggccatagatgcagggagttagaagctttgtggtgtcaggcaaacggactctg3840ttagtaagagttgggggaggtgcccaggtgggtggaccagtactccaggtgatggggcag3900gctgagaaatagagaataagtgtaactcccatccaccagggaagttgcttgtagcccaaa3960cttaggtgagagacataagtttaactcccatccaccaggaagttgcttgtagccccaaa4020agacacaaactctccttgggtcataaatcctgcaggcagtccaacaaacagggctggctc4140cagcacaaactctcccctgtgcaggtacaacctctccagaggcttgctt4200gattccaggcctatccctgtgcaggtacaagcccagttttctaagccta4210gattccaggcctatccctgtgcaggtacaagcccagttttctaagccta4220gattccaggaaagaccattaggagctggaatcaagcccagttttctaagccta4320gattccaacaaggaaagaccattaggggtggaatcgggtggaatcgagttgtgcacttcagtca4320gaatgggaaagaccattaggagtggaatcgggtggaatcgagttgtgcacttcagtca4320gattcttgtaacaaggggaaaccattggaaaccattggaaaccattggaaaccattggaa4320accattgtcaaaacaaggggaaaccattggaaacttcttgtatttctttct4300aggttcttggacaagaggaaggagttctcatagcattgg	3600					
3720 aaggcaagt aagggaagaa attecectty ggtttggac catggtccaag ggtgaagaagaa 3880 ggaagtgagg ccatagatgc agggagtaga agctttgtgg tgtcaggcaa acggacttg 3840 ttagtaagaag ttgggggagg tgcccaagtg ggtggaccag tactccaagt gatggggcab 3900 gctgagaaat aggcataagt gaccatgtt atttgggtag gaggaagcct tgccttgcc 3960 cttaggtgag agcataagt gtaactccca tcacacaagg agttgtgttg tgccccaaa 4020 agcaacaaca tcatctctgg tcatcacaagg acctttacg gggcatctt 4080 cagcacaaca tccccatcc accagacaagac taacctctga 4140 caagcacaca accaaccaag accattcatga agcaggtaca accaagcatt tctaagaaga 4260 ggacacaaca accatcactg ggtggaactg gaggaatctg accaagagat accaagagat accaagagat accaagagat accaagagat accaagagat accaagagat gagaccagta accaagaagat gagacatcacta acaacaagat	3660					
3780 gaaagtagag ccatagatcc agggagtaga agctttgtgg tgtcaggca acggactctg 3840 ttagtaaagag ttgggggagg tgcccaggtg ggtggaccag tactccaggt gatgggacag 3900 cttaggtgaa aagcataagt gataactccca tccaaccaggg aagttgctt tgccttggcg 3960 cttaggtgag aagcataagt gtaactccca tccaaccagg aagttgctt tagcccaaa 4020 agcaacaaac tctccttgg tcataaatcc tgcaggcagt ccaacaacac gggctgctct 4080 cagcacaaac tctccacccaa agcagggggc ctcaccacct accagacctg gattcttt 4140 cagcacacaca tccaaccaag agcaggggac ctcaccacta accagcacta tctaacctaga 4200 gatttccag cctatccctg tgcaggtaca gctgcagtca tctaacctcta 4200 gatttccag ctcaccacta accagcaccta accagcaccta tctaatccata 4220 gaggaatag gatggaactg ggggaatctg ggggaatctg tctaatcagaa actcacagaa		gagttgcgag	gtggggttag	ttgcatggac	caggtgaggt	ggtggaacaa
1840 ttagtagaaga teggggagg tegccaggtg ggtggaccag tactccagg gatgggaccag tactccagg gatggggcag gatggggacag 3900 gctgagaaaat agagaaaaga gaccatgttt attgggtag gaggaagcc tegcctgggag tegcctgggag 3960 cttaggggag aagcataagt gtaactcca tecacaggg agagaagcc tegcccaaaa tegcccaaaa 4020 aagcaaaaag teccetteeg teataaatcc tecacagggaga ccaacaaaac ggggtgcc caacaaaaa gggctgcc 4080 cegcacaaaac teccacag agaaggggcc cetectecag accacaca agagaggggacc cetectecag accagaactg gaggacctg tetaagccta 4200 gaaccaccaca accacag agaaggggacc tecccacacta agagacagaacag tecaacaccaa agaggagaacag tetaagcacaaaacagaacagaacagaacagaacagaaca		agaggaagaa	tattecettg	ggtttggacc	catggtccca	ggtgagagaa
3900 gctgagaaat agagaaaag gaccatgtt atttgggtag tgccttgcgc 3960 cttaggtgag aagcataagt gtaactccca tccaccaggg aagttgcttg tagccccaaa 4020 agtaaaggcc tatctctggg ccataaatcc tgcaggcagt ccaacaaaca gggctggct 4080 cagcacaaac tctcccttcc accttctcag accagacctg gagtcctct 4140 caagcaggaca tccaacccag agcaggggcc ctccccact aggcatctg taacctctga 4200 gatttccagg cctatccctg tgcaggtaca gctgcaggga accagactg taacctctga 4200 gatttcagg cctcttctag aggcaacta actaagcagta accagcagta 4200 gagcacacta acagggagad agcccagttt tctaagctta 4200 gagcacacacta acaggaggaca ggggaatct agttgtgtc 4200 gagcacacta acaggagaad acttctctagt ggggaatct agttgtgtc ctcagacagga acttcagaaga actacagaa 4320 tagagagatgt gagctccca c		ccatagatgc	agggagtaga	agctttgtgg	tgtcaggcaa	acggactctg
3960 cttaggtgag d2020 agtaaagggag 		ttgggggagg	tgcccaggtg	ggtggaccag	tactccaggt	gatggggcat
4020 agtaaaaggcc tateteteggg teataaatec tgeaggeagg ceaacaaaca gggctggctc 4080 cagcacaaaac tetecettec acctttaega cectetecag accagacctg gagtcetett 4140 caagcagcaca tecaacccag agcaggggcc ctececact aggcatetga taacctetga 4200 gattecagg cecttecagg aggcaacac tecaagcaga accagggaca 4260 gaccacaccta acaagggcecc ctectteagt tgccetttet gaggcaacac acattagg 4260 gagcacaccacta acaagggcecc ctectteagt tgccetttet gaggcaacac acattagga 4320 teagggaaag agtgggaacteg ggggaatetg agttggtcc cteaggtaa acatacaggac 4320 teaggggaaag agteggaacteg ggggaatetg agaatggat cteagggaa acacaggcec 4380 tetetetaag ggggaatete agaatagagt tatetagagg gettggagce 4560 gagtttetag acatagagg tatetagagg tatetttete tatetttete 4620	3960					
4080 cagcacaaaac tctcccttcc acctttacga ccctctccag accagacctg gagtcctctt 4140 caagcagcaca tccaacccag agcaggggcc ctccccactc aggcatctga taacctctga 4200 gatttccagg cctatccctg tgcaggtaca gctgcaggga agccagtt tctaagccta 4260 gagcacaccta accagcgccc ctccttaag tgccctttct gaggcaacta aactacagaa 4320 tcaagggaaag aaccattagg agggaaatcg agtgtgaactg agtgtgaactg agtgtgaactg agtgtgaactg actcacagaa accaaggccc cttcagttcc 4380 ctcccttaaag accaaaggtta gtctgatctc cagcccagcag taatcaggaag gctgagagcc cagccagcag taatcaggag gctgagagcc taaccaggagc gctgagagcc taaccaggagcc taaccaggagcc taaccaggagcc taaccaggagcc taaccaggagcc taggcatttgt taggcatttgt taggcatttgt taggcatttgt taggcatttgt taggcatttgt ttcttttcct taggcatttgt ttcttttcct taggcatttgt ttctttttcct taggaactggt ttctttaatt ta	4020					
4140 caagcagcaaa tocaacccag agcaggggc ctoccactc aggcatctga taacctctga 4200 gatttccagg cctatccctg tgcaggtaca gctgcaggga agcccagttt totaagccta 4260 ggaccaccta acagcgcccc ctocctcagt tgccctttct gaggcaacta acactacagaa 4320 tcagggaaaag aaccattagg agtggaactg ggggaatctg agttgtgtca cttcagttc 4380 tctcctcaaaag acaaaggtta gctgaatctc cagacccgtc agaatggaat acacagccca 4440 catctgtcac tgaaaggaggt ggagctccca cagacccgtc agaatggaat acacagccca 4500 tggttctgtg atcatggaga aatacaaagt cctattgatt gcttctcta tagccttgta 4560 gagtttctag agaagtgtat ttatgagggt gataactag ccaggattga ttcttctc 4620 aaagtcccta gtgacatgat tgagcagtaa agaacggcca aatcacacag tcagctaaaa 4680 gcactgtggg gaagaaggtg tttataatta tgttattat tgctggatgc tgagaatggt 4740 ctgatattcg tgctacctag gcaatccatt gacatttct caatcagaga atgtggacct 4800 tggagccagg catgctcaga gaagcctagg tgggctacca tgaccccga aatcacacag tcagaatggt 4860 ctttgttttc catcagcacg ttgggggcc tgccctgaat ggtcaattt tcacacatat 4920 atcttctctat tttttaatc aacctctggt ctcactgcct tatcacac caacctctgtt 4980 tcctcattgcct agaatggatg tcaaggagga aagagggaa agagggga gattggatg cttcttggat 5040 ggttctgctt agaatgagtg tcaaggagga aagagggaa agagggga aagaggga ctccctcttgtt 4980 tcctcattgct agaatgagtg tcaaggagga aagagggaa aagagggaa aagagggaa agagggaag ctcccttctgat 5040	4080					
4200 gathtcoaggcctatcoctgtgcaggtacagctgcagggaagcccagtttctaagccta4260 ggaccacectaacagcgcccctcctcagttgcccttctgaggcaactaaactacagaa4320 tcagggaaagaaccattaggagtggaactgggggaatctgagttgtgtcacttcagttcc4380 tctcctaaagacaaaggttagtctgatctccagacccgtcagaatggaatacacagccca4440 catctgtcactgaaggaggtggagctcccacagccagcagtaatcagggagctgaaggcc4500 tggttctggatcatggagaaatacaaagtcctattgattgcttcttctatagccttgta4560 gagtttctagagaagatgtatttatgagggtgataactagcccaggattgatttctttct4620 aaagtccctagtgacatgattgagcagtaaagaacggccaaatcacacagtcagctaaaa4680 gcactgtggggaagaagaggttttataattatgttatttattgctggatgctgagaatggt4740 ctgatattcgtgctacctaggaagcctaggtgacctcgatgaccccgagatgtggacc4800 tggagccaggcatgctcagagaagcctaggtgggctacctgaccccgaggaagaggagg4860 ctttgtttccatcagcacgttgggggcctgccctgaattgaccccgaggaagaggagg4860 ctttgtttccatcagcacgttgggggcctgccctgaattgccccgagacactctgt4860 cttctcttatttttttaatcaaactctggtccctgaatggtcaattttcaccatatat4920 acttctctttttttttaatcaaactctggtccctgggtatgcttggatgcttcttggat4980 tcctcattgccccctgagatggcctgtctt <td< td=""><td>4140</td><td></td><td></td><td></td><td></td><td></td></td<>	4140					
4260 ggaccaccta acagcgcccc ctccttcagt tgccctttct gaggcaacta aactacagaa 4320 tcagggaaag aaccattagg agtggaactg ggggaatctg agttgtgtca cttcagttcc 4380 tctcctaaag acaaaggtta gtctgatctc cagacccgtc agaatggaat acacagccca 4440 catctgtcac tgaaggaggt ggagctccca cagccagcag taatcaggga gctgagagcc 4500 tggttctgtg atcatggaga aatacaaagt cctattgatt gcttcttcta tagccttgta 4560 gagtttctag agaagtgtat ttatgagggt gataactagc ccaggattga ttcttcct 4620 aaagtcccta gtgacatgat tgagcagtaa agaacggcca aatcacacag tcagctaaaa 4680 gcactgtggg gaagaagatg tttataatta tgttattat tgctggatgc tgagaatggt 4740 ctgatattcg tgctacctag gcaatccatt gacatttctc caatcagag atgggacct 4800 tggagccagg catgctcaga gaagcctagg tgggctacca tgaccccgag gaagagcgg 4860 ctttgtttc catcagcacg ttgggggcc tgcctgaat ggtcaattt tcacatatat 4920 atctctctat tttttaatc aaactctggt ctcactgcct tatctcacac caactctgtt 4980 tcctcattgc cccctgagat ggcctgtctt ctggggtata gcttggatgt cttcttggat 5040 ggttctgctt agaatgagt tcaaggagga aagagggga gatggaggat gtgtttgtgc	4200					
tcagggaaag aaccattagg agtggaactg ggggaatctg agttgtgtca cttcagttcc 4380 tctcctaaag acaaaggtta gtctgatctc cagacccgtc agaatggaat acacagccca 4440 catctgtcac tgaaggaggt ggagctccca cagccagcag taatcaggga gctgagagcc 4500 tggttctgtg atcatggaga aatacaaagt cctattgatt gcttcttcta tagccttgta 4560 gagtttctag agagatgtat ttatgagggt gataactagc ccaggattga tttcttct4620 aaaagtcccta gtgacatgat tgagcagtaa agaacggcca aatcacacag tcagctaaaa 4680 gcactgtggg gaaggagtg tttataatta tgttattat tgctggatgc tgagaatggt 4740 ctgatattcg tgctacctag gcaatccatt gacatttctc caatcagagc tgagaatggt 4800 tggagccagg catgctcaga gaagcctagg tgggctacca tgaccccgag gaagagcgg 4860 ctttgtttc catcagcacg ttgggggcc tgccctgaat ggtcaattt tcacatatat 4920 atctctctat tttttaatc aaactctggt ctcactgcct tatctcacac caactctgtt 4980 tcctcattgc cccctgagat ggcctgtct ctggggtata gcttggatgt ctctcttggat 5040 ggttctgctt agaatgagtg tcaaggaga aagagagga gatggaggat gtgtttgtgc	4260					
tccctaaag acaaaggtta gtctgatct cagacccgtc agaatggaat acacagccca 4440 catctgtcac tgaaggaggt ggagctccca cagccagcag taatcaggga gctgaaggcc4500 tggttctgtg atcatggaga aatacaaagg cctattgatt gcttcttcta tagccttgta 4560 gagttcttag agagatgtat ttatgagggt gataactagc ccaggattga ttcttctct4620 aaagtcccta gtgacatgat tgagcagtaa agaacggcca aatcacacag tcagctaaaa 4680 gcactgtggg gaagagagtg tttataatta tgttatttat tgctggatgc tgagaatggt 4740 ctgatattcg tgctacctag gcaatccatt gacatttctc caatcagagc atgtggacct4800 tggagccagg catgctcaga gaagcctagg tgggctacca tgaccccgag gaagagcagg 4860 ctttgtttc catcagcacg ttgggggccc tgccctgaat ggtcaattt tcacatata 4920 atctctctat tttttaatc aaactctggt ctcactgcct tatctcacac caactctgtt 4980 tcctcattgc cccctgagat ggcctgtctt ctggggtata gcttggagg gatggagg tctttgtg	4320					
4440 catctgtcac tgaaggaggt ggagctccac cagccagcag taatcaggga gctgagagcc 4500 tggttctgtg atcatggaga aatacaaagt cctattgatt gcttcttcta tagccttgta 4560 gagtttctag agagatgtat ttatgagggt gataactagc ccaggattga tttctctct 4620 aaagtcccta gtgacatgat tgagcagtaa agaacggcca aatcacacag tcagctaaaa 4680 gcactgtggg gaagagagtg tttataaatta tgttattatt tgctggatgc tgagaatggt 4740 ctgatattcg tgctacctag gcaatccatt gacatttctc caatcagagc atggacct 4800 tggagccagg catgctcaga gaagcctagg tgggctacca tgaccccgag gaagagcagg 4860 ctttgtttc catcagcacg ttgggggcc tgcctgaat ggtcaattt tcacatatat 4920 atctctctat tttttaatc aaactctggt ctcactgcc tatctcacac caactctgtt 4980 tcctcattgc cccctgagat ggcctgtct ctggggtata gcttggatgt cttcttggat 5040 ggttctgctt agaatgagtg tcaaggagg aagagagga gatggaggat gtgtttgtgc	4380					
tggttctgtg atcatggaga aatacaaagt cctattgatt gcttcttcta tagccttgta 4560 gagtttctag agagatgtat ttatgagggt gataactagc ccaggattga tttctct 4620 aaagtcccta gtgacatgat tgagcagtaa agaacggcca aatcacacag tcagctaaaa 4680 gcactgtggg gaagagagtg tttataatta tgttatttat tgctggatgc tgagaatggt 4740 ctgatattcg tgctacctag gcaatccatt gacatttctc caatcagage tgagacct 4800 tggagccagg catgctcaga gaagcctagg tgggctacca tgaccccgag gaagagcagg 4860 ctttgtttc catcagcacg ttgggggcc tgcctgaat ggtcaattt tcccacattt 4920 atctctctat ttttaatc aaactctggt ctcactgggtata gcttggatgt tccactgg 4980 tcctcattgc cccctgagat ggcctgtct ctggggtata gcttggatgt cttctggat 5040 ggttctgctt agaatgagtg tcaaggagga aagagagga gatggaggat gtgtttgtgc	4440					
4560 gagtttctag agagatgtat ttatgagggt gataactagc ccaggattga tttcttcct 4620 aaagtcccta gtgacatgat tgagcagtaa agaacggcca aatcacacag tcagctaaaa 4680 gcactgtggg gaagaagtg tttataatta tgttatttat tgctggatgc tgagaatggt 4740 ctgatattcg tgctacctag gcaatccatt gacatttctc caatcagagc atgtggacct 4800 tggagccagg catgctcaga gaagcctagg tgggctacca tgaccccgag gaagagcagg 4860 ctttgtttc catcagcacg ttgggggccc tgccctgaat ggtcaattt tcacatatt 4920 atctctctat tttttaatc aaactctggt ctcactgcct tatctcacac caactctgtt 4980 tcctcattgc cccctgagat ggcctgtct ctggggtata gcttggatgt cttcttggat 5040 ggttctgctt agaatgagtg tcaaggagga aagagagga gatggagga gtgtttggatgt gtgtttgtgc	4500					
4620 aaagtcccta gtgacatgat tgagcagtaa agaacggcca aatcacacag tcagctaaaa 4680 gcactgtggg gaagagagtg tttataatta tgttatttat tgctggatgc tgagaatggt 4740 ctgatattcg tgctacctag gcaatccatt gacattctc caatcagagc atgtggacct 4800 tggagccagg catgctcaga gaagcctagg tgggctacca tgaccccgag gaagagcagg 4860 ctttgtttc catcagcacg ttgggggcc tgccctgaat ggtcaattt tcacatatat 4920 atctctctat tttttaatc aaactctggt ctcactgcct tatctcacac caactctgtt 4980 tcctcattgc cccctgagat ggcctgtct ctggggtata gcttggatgt cttcttggat 5040 ggttctgctt agaatgagtg tcaaggagga aagagggga gatggagga gtgtttgtgc	4560					
4680 gcactgtggg gaagagagtg tttataatta tgttattat tgctggatgc tgagaatggt 4740 ctgatattcg tgctacctag gcaatccatt gacatttctc caatcagagc atgtggacct 4800 ttggagccagg catgctcaga gaagcctagg tgggctacca tgaccccgag gaagagcagg 4860 ctttgtttc catcagcacg ttgggggccc tgccctgaat ggtcaattt tcacatatat 4920 atctctctat ttttaatc aaactctggt ctcactgcct tatctcacac caactctgtt 4980 tcctcattgc cccctgagat ggcctgtct ctggggtata gcttggatgt cttcttggat 5040 ggttctgctt agaatgagtg tcaaggagga aagagggga gatggagga gtgtttggc	4620					
4740 ctgatattcg tgctacctag gcaatccatt gacattctc caatcagagc atgtggacct 4800 tggagccagg catgctcaga gaagcctagg tgggctacca tgaccccgag gaagagcagg 4860 ctttgtttc catcagcacg ttgggggccc tgccctgaat ggtcaatttt tcaccatatat 4920 atctctctat tttttaatc aaactctggt ctcactgcct tatccacac caactctgtt 4980 tcctcattgc cccctgagat ggcctgtctt ctggggtata gcttggatgt cttctggat 5040 ggttctgctt agaatgagtg tcaaggagga aagagggga gatggagga gtgtttgtgc	4680			:		
4800 tggagccagg catgctcaga gaagcctagg tgggctacca tgaccccgag gaagagcagg 4860 ctttgttttc catcagcacg ttgggggccc tgccctgaat ggtcaatttt tcacatatat 4920 atctctctat tttttaatc aaactctggt ctcactgcct tatctcacac caactctgtt 4980 tcctcattgc cccctgagat ggcctgtctt ctggggtata gcttggatgt cttctggat 5040 ggttctgctt agaatgagtg tcaaggagga aagagaggga gatggaggat gtgtttgtgc	4740					
4860 ctttgtttc catcagcacg ttgggggcc tgccctgaat ggtcaattt tcacatatat 4920 atctctctat tttttaatc aaactctggt ctcactgcct tatccacac caactctgtt 4980 tcctcattgc cccctgagat ggcctgtct ctggggtata gcttggatgt cttctggat 5040 ggttctgctt agaatgagtg tcaaggagga aagagggga gatggaggat gtgtttgtgc	4800					
4920 atctctctat tttttaatc aaactctggt ctcactgcct tatctcacac caactctgtt 4980 tcctcattgc cccctgagat ggcctgtctt ctggggtata gcttggatgt cttcttggat 5040 ggttctgctt agaatgagtg tcaaggagga aagagggga gatggaggat gtgtttgtgc	4860					
4980 tcctcattgc cccctgagat ggcctgtctt ctggggtata gcttggatgt cttcttggat 5040 ggttctgctt agaatgagtg tcaaggagga aagagggga gatggaggat gtgtttgtgc	4920					
5040 ggttctgctt agaatgagtg tcaaggagga aagagaggga gatggaggat gtgtttgtgc	4980					
·	5040					
		agaatgagtg	tcaaggagga	aagagagga	gatggaggat	gtgtttgtgc

```
gaccagcate tteaagagaa gtattetget tatacaaaat eettaacaee teatggtgtt
attottcacc atgittatat atatatata atattttttt titttttag aattttctac
5280
ccttggcatg aggggaaatg attgatattc aagcaagttc tctaggaaaa aaaaaaaact
teccaactea gatttetgtg teageteaga atgtatettt tttteatget ttgetetttg
gatttataac tetgtttaga etatteeata eattttaggt atattttgtg eetteagaea
ctgcaaataa taatcagcat ttggattaaa gttgtttaat aat
<210> 250
<211> 927
<212> PRT
<213> Homo sapiens
<400> 250
Met Thr Gln Gly Ile Leu Ala Leu Val Thr Ser Thr Gly Cys Ala Ser
                                   10
1
Ala Asn Ala Leu Gln Ser Leu Thr Asp Ala Met His Ile Pro His Leu
           20
Phe Val Gln Arg Asn Pro Gly Gly Ser Pro Arg Thr Ala Cys His Leu
                           40
Asn Pro Ser Pro Asp Gly Glu Ala Tyr Thr Leu Ala Ser Arg Pro Pro
                                          60
                       55
Val Arg Leu Asn Asp Val Met Leu Arg Leu Val Thr Glu Leu Arg Trp
                                      75
                   70
Gln Lys Phe Val Met Phe Tyr Asp Ser Glu Tyr Asp Ile Arg Gly Leu
                                  90
Gln Ser Phe Leu Asp Gln Ala Ser Arg Leu Gly Leu Asp Val Ser Leu
                              105
           100
Gln Lys Val Asp Lys Asn Ile Ser His Val Phe Thr Ser Leu Phe Thr
                                              125
                          120
Thr Met Lys Thr Glu Glu Leu Asn Arg Tyr Arg Asp Thr Leu Arg Arg
                       135
Ala Ile Leu Leu Ser Pro Gln Gly Ala His Ser Phe Ile Asn Glu
                                      155
                   150
Ala Val Glu Thr Asn Leu Ala Ser Lys Asp Ser His Trp Val Phe Val
                                  170
Asn Glu Glu Ile Ser Asp Pro Glu Ile Leu Asp Leu Val His Ser Ala
                               185
Leu Gly Arg Met Thr Val Val Arg Gln Ile Phe Pro Ser Ala Lys Asp
                           200
Asn Gln Lys Cys Thr Arg Asn Asn His Arg Ile Ser Ser Leu Leu Cys
                                          220
                       215
Asp Pro Gln Glu Gly Tyr Leu Gln Met Leu Gln Ile Ser Asn Leu Tyr
                   230
                                      235
Leu Tyr Asp Ser Val Leu Met Leu Ala Asn Ala Phe His Arg Lys Leu
                                  250
               245
Glu Asp Arg Lys Trp His Ser Met Ala Ser Lèu Asn Cys Ile Arg Lys
```

			260					265					270		
Ser	Thr	Lys 275		Trp	Asn	Gly	Gly 280	Arg	Ser	Met	Leu	Asp 285	Thr	Ile	Lys
Lys	Gly 290	His	Ile	Thr	Gly	Leu 295	Thr	Gly	Val	Met	Glu 300	Phe	Arg	Glu	Asp
Ser 305	Ser	Asn	Pro	Tyr	Val 310	Gln	Phe	Glu	Ile	Leu 315	Gly	Thr	Thr	Tyr	Ser 320
	Thr	Phe	Gly	Lys 325	Asp	Met	Arg	Lys	Leu 330	Ala	Thr	Trp	Asp	Ser 335	Glu
Lys	Gly	Leu	Asn 340	Gly	Ser	Leu	Gln	Glu 345	Arg	Pro	Met	Gly	Ser 350	Arg	Leu
Gln	Gly	Leu 355	Thr	Leu	Lys	Val	Val 360	Thr	Val	Leu	Glu	Glu 365	Pro	Phe	Val
Met	Val 370	Ala	Glu	Asn	Ile	Leu 375	Gly	Gln	Pro	Lys	Arg 380	Tyr	Lys	Gly	Phe
Ser 385	Ile	Asp	Val	Leu	Asp 390	Ala	Leu	Ala	Lys	Ala 395	Leu	Gly	Phe	Lys	Tyr 400
Glu	Ile	Tyr	Gln	Ala 405	Pro	Asp	Gly	Arg	Tyr 410	Gly	His	Gln	Leu	His 415	Asn
Thr	Ser	Trp	Asn 420	Gly	Met	Ile	Gly	Glu 425	Leu	Ile	Ser	Lys	Arg 430	Ala	Asp
Leu	Ala	Ile 435	Ser	Ala	Ile	Thr	Ile 440	Thr	Pro	Glu	Arg	Glu 445	Ser	Val	Val
Asp	Phe 450	Ser	Lys	Arg	Tyr	Met 455	Asp	Tyr	Ser	Val	Gly 460	Ile	Leu	Ile	Lys
Lys 465	Pro	Glu	Glu	Lys	Ile 470	Ser	Ile	Phe	Ser	Leu 475	Phe	Ala	Pro	Phe	Asp 480
				485					490					Gly 495	
			500					505					510	Ser	
		51 5					520					5 25		Ile	
Ile	Val 530	Tyr	Gly	Ala	Phe	Val 535	Gln	Gln	Gly	Gly	Glu 540	Ser	Ser	Val	Asn
Ser 545	Met	Ala	Met	Arg	Ile 550	Val	Met	Gly	Ser	Trp 555	Trp	Leu	Phe	Thr	Leu 560
				565					570					Thr 575	
			580					585					590	Lys	
		5 95					600					605			Tyr
	610					615					620			Phe	
Glu 625	Leu	Trp	Arg	Thr	Ile 630	Ser	Lys	Asn	Gly	Gly 635	Ala	Asp	Asn	Cys	Val 640
				645					650					Tyr 655	
			660					665					670	Asp	
_	_	675					680					685		Gly	
Gly	Ile	Ala	Leu	Gln	His	Gly	Ser	Pro	Tyr	Arg	Asp	Leu	Phe	Ser	Gln

```
695
Arg Ile Leu Glu Leu Gln Asp Thr Gly Asp Leu Asp Val Leu Lys Gln
                           715
                  710
Lys Trp Trp Pro His Met Gly Arg Cys Asp Leu Thr Ser His Ala Ser
                                  730
               725
Ala Gln Ala Asp Gly Lys Ser Leu Lys Leu His Ser Phe Ala Gly Val
                              745
Phe Cys Ile Leu Ala Ile Gly Leu Leu Leu Ala Cys Leu Val Ala Ala
                          760
Leu Glu Leu Trp Trp Asn Ser Asn Arg Cys His Gln Glu Thr Pro Lys
                      775
Glu Asp Lys Glu Val Asn Leu Glu Gln Val His Arg Arg Met Asn Ser
                  790
                                      795
Leu Met Asp Glu Asp Ile Ala His Lys Gln Ile Ser Pro Ala Ser Ile
                                  810
Glu Leu Ser Ala Leu Glu Met Gly Gly Leu Ala Pro Thr Gln Thr Leu
                              825
           820
Glu Pro Thr Arg Glu Tyr Gln Asn Thr Gln Leu Ser Val Ser Thr Phe
                          840
                                             845
Leu Pro Glu Gln Ser Ser His Gly Thr Ser Arg Thr Leu Ser Ser Gly
                                         860
                       855
Pro Ser Ser Asn Leu Pro Leu Pro Leu Ser Ser Ser Ala Thr Met Pro
                                      875
                   870
Ser Met Gln Cys Lys His Arg Ser Pro Asn Gly Gly Leu Phe Arg Gln
                                  890
               885
Ser Pro Val Lys Thr Pro Ile Pro Met Ser Phe Gln Pro Val Pro Gly
                             905
           900
Gly Val Leu Pro Glu Ala Leu Asp Thr Ser His Gly Thr Ser Ile
                         920
<210> 251
<211> 291
<212> DNA
<213> Homo sapiens
<400> 251
nngatcagec geggggteeg egecetegat teggeggtgg agaccgagag tetgegtgag
qacqtcaacg cgctcgaacg gctgcggttg gccgtgcgcg ccagcgtggt catcctcatc
120
gagtaccacc atteggtgac cetgetgetg egggtgegeg ggaacteacc tetggaacga
gaggeeeteg aggeeegeeg eegtategat gegaaggtte eegetetegt egagagegee
ategeegagg gtggtetgeg eteggattte acteeeggge teateaegeg t
291
<210> 252
<211> 97
<212> PRT
<213> Homo sapiens
<400> 252
```

Xaa Ile Ser Arg Gly Val Arg Ala Leu Asp Ser Ala Val Glu Thr Glu

```
10
Ser Leu Arg Glu Asp Val Asn Ala Leu Glu Arg Leu Arg Leu Ala Val
            20
                                25
Arg Ala Ser Val Val Ile Leu Ile Glu Tyr His His Ser Val Thr Leu
                            40
Leu Leu Arg Val Arg Gly Asn Ser Pro Leu Glu Arg Glu Ala Leu Glu
Ala Arg Arg Ile Asp Ala Lys Val Pro Ala Leu Val Glu Ser Ala
                    70
Ile Ala Glu Gly Gly Leu Arg Ser Asp Phe Thr Pro Gly Leu Ile Thr
                                    90
                85
Arg
<210> 253
<211> 327
<212> DNA
<213> Homo sapiens
<400> 253
gtgcacggat gggagcgctc gcgcgcgtgc tggtgccttc acagcccggc gagcggcgtg
cgctcacggt cctgtaccga ccgatctcgc aaccttccgc agaccgatcc accaaccgcg
cccacatgtc ggcagtgatg gcgggcacct tgcgggagaa ggccgggaaag gtcgagcgag
ccaatgaccg tegeacggte ggcaegetee acgageggga egagaagete geggeaggae
geteactegt egeggtgtee teegeggtet ceateacegt eeetgegaca tggaacgeec
acgacttcgg acggcgactc gacgcgt
327
<210> 254
<211> 106
<212> PRT
<213> Homo sapiens
<400> 254
Met Gly Ala Leu Ala Arg Val Leu Val Pro Ser Gln Pro Gly Glu Arg
Arg Ala Leu Thr Val Leu Tyr Arg Pro Ile Ser Gln Pro Ser Ala Asp
                                25
Arg Ser Thr Asn Arg Ala His Met Ser Ala Val Met Ala Gly Thr Leu
                            40
Arg Glu Lys Ala Gly Lys Val Glu Arg Ala Asn Asp Arg Arg Thr Val
                        55
Gly Thr Leu His Glu Arg Asp Glu Lys Leu Ala Ala Gly Arg Ser Leu
                                        75
                    70
Val Ala Val Ser Ser Ala Val Ser Ile Thr Val Pro Ala Thr Trp Asn
                                    90
Ala His Asp Phe Gly Arg Arg Leu Asp Ala
            100
                                105
```

<210> 255 <211> 372 <212> DNA

```
<213> Homo sapiens
<400> 255
ctagaaatgg ctggctacga atacatggaa gctgaaaata gccaacaagc ccacgaaatt
60
atcqtqqacc atagacctga cttaatctta tgtgattgga tgatgccagg agggagtggc
atcgagctaa ctcgtcgctt aaagaaagac agcacgacag cagaaatccc tgttatttta
ctaacggcca aaagtgaaga agacaataaa attcaaggct tagaagtcgg tgcagatgac
tacatcacta aacctttctc tcctcgtgaa ctagtagcac gcctcaaggc ggtattacgc
cgagcgactc cacaaggtat tgatgatcct attgaaattg atggtttaac gcttgatccc
360
attagccaac gc
372
<210> 256
<211> 124
<212> PRT
<213> Homo sapiens
<400> 256
Leu Glu Met Ala Gly Tyr Glu Tyr Met Glu Ala Glu Asn Ser Gln Gln
                                    10
Ala His Glu Ile Ile Val Asp His Arg Pro Asp Leu Ile Leu Cys Asp
                                25
Trp Met Met Pro Gly Gly Ser Gly Ile Glu Leu Thr Arg Arg Leu Lys
                            40
Lys Asp Ser Thr Thr Ala Glu Ile Pro Val Ile Leu Leu Thr Ala Lys
                        55
Ser Glu Glu Asp Asn Lys Ile Gln Gly Leu Glu Val Gly Ala Asp Asp
                                        75
                    70
Tyr Ile Thr Lys Pro Phe Ser Pro Arg Glu Leu Val Ala Arg Leu Lys
                                    90
Ala Val Leu Arg Arg Ala Thr Pro Gln Gly Ile Asp Asp Pro Ile Glu
                                105
            100
Ile Asp Gly Leu Thr Leu Asp Pro Ile Ser Gln Arg
                            120
<210> 257
<211> 639
<212> DNA
<213> Homo sapiens
<400> 257
nnacgcgtag cggtcgaggt tgcggacacc atgcccgaac ccggcctgct cgccatcgag
gcacccatgg gacacggcaa gaccgaggcc gccctcatgt gcgcacaggt gctcgccgaa
120
```

```
cggttcgggc tcggcggcat cttcttcggt ctaccgacga tggccacgtc caatcccatg
ttcggtcgag ttcgggaatg gctggacgct gtgccagcca aggacccgtc aagcatttcc
ctggctcact cgaaagctgg actcaacgag gagtaccagc agctcatgcc gtggaacgcc
accatggccg totacgacga aggtgccggc acgcagcgtg aagcttcggc gatcgtccat
gagtggttct tgggccgcaa gcgcgcgatc ctggccgacc acgtcgtcgg gaccatcgac
caggeactgt teaceggtet caaagecaag catgtggtgt taegecaeet eggtetggeg
agcaaggtcg tcatcattga tgaggtccac gccgccgacg tctatatgcg cgaatacctc
aaggtegtee tegaatgget eggegeetae egcaegeeag teatecteat gteegegaeg
ctgccaccgg cccaacgtca tgaactcgcg ctagcgtac
639
<210> 258
<211> 213
<212> PRT
<213> Homo sapiens
<400> 258
Xaa Arg Val Ala Val Glu Val Ala Asp Thr Met Pro Glu Pro Gly Leu
Leu Ala Ile Glu Ala Pro Met Gly His Gly Lys Thr Glu Ala Ala Leu
                                25
Met Cys Ala Gln Val Leu Ala Glu Arg Phe Gly Leu Gly Gly Ile Phe
                            40
Phe Gly Leu Pro Thr Met Ala Thr Ser Asn Pro Met Phe Gly Arg Val
                        55
Arg Glu Trp Leu Asp Ala Val Pro Ala Lys Asp Pro Ser Ser Ile Ser
                                        75
Leu Ala His Ser Lys Ala Gly Leu Asn Glu Glu Tyr Gln Gln Leu Met
                                    90
                85
Pro Trp Asn Ala Thr Met Ala Val Tyr Asp Glu Gly Ala Gly Thr Gln
                                105
Arg Glu Ala Ser Ala Ile Val His Glu Trp Phe Leu Gly Arg Lys Arg
                            120
Ala Ile Leu Ala Asp His Val Val Gly Thr Ile Asp Gln Ala Leu Phe
                                            140
Thr Gly Leu Lys Ala Lys His Val Val Leu Arg His Leu Gly Leu Ala
                                        155
                    150
Ser Lys Val Val Ile Ile Asp Glu Val His Ala Ala Asp Val Tyr Met
                                    170
Arg Glu Tyr Leu Lys Val Val Leu Glu Trp Leu Gly Ala Tyr Arg Thr
                                185
Pro Val Ile Leu Met Ser Ala Thr Leu Pro Pro Ala Gln Arg His Glu
                            200
        195
Leu Ala Leu Ala Tyr
    210
```

```
<210> 259
<211> 252
<212> DNA
<213> Homo sapiens
<400> 259
acgegtgcac tgtgtgtatg catggtaacg tacacgtgtg cactgtgtgt ggtgtgcatg
ncatggtgtg tgcacgtgtg cnactgtgta tgcatggtaa tgtgcacgtg tgcanctgtg
tgtnggtgtg tatgcatgng tgtgtgcacg tgtgcactgn agtgtggggt gtatgcatgg
tgtgtgcaca tgagcactgt gtggtgtgta tgcatggtgn ggtgcacgtg tgcactgtgt
atgcaatggt gt
252
<210> 260
<211> 84
<212> PRT
<213> Homo sapiens
<400> 260
Thr Arg Ala Leu Cys Val Cys Met Val Thr Tyr Thr Cys Ala Leu Cys
                                    10
Val Val Cys Met Xaa Trp Cys Val His Val Cys Xaa Cys Val Cys Met
                                25
Val Met Cys Thr Cys Ala Xaa Val Cys Xaa Cys Val Cys Met Xaa Val
                            40
Cys Thr Cys Ala Leu Xaa Cys Gly Val Tyr Ala Trp Cys Val His Met
Ser Thr Val Trp Cys Val Cys Met Val Xaa Cys Thr Cys Ala Leu Cys
                                                             80
                    70
Met Gln Trp Cys
<210> 261
<211> 1202
<212> DNA
<213> Homo sapiens
<400> 261
getagecegg tegegttegt egtegatttg etggeggeag teceetegat egtetteggt
ctgtggggcg gcatcgtctt cggatcgtcg ggaatcatca acggttacgc gggggcctta
ttcaaagcgc tcggctggat tccgatcttt tccgaagatc cgtcgtggtc ctcggctact
ggcacggtct accttgccag tetegteetg gccatcatga teetgccaat tateactgct
gttagccgcg acgtcatgcc ccgaacgccc catgatcaag tcgaggccgc gctcgccctc
ggatcgacgc gctgggaggt catcaagctt gcagtgttcc cccactcgcg gtccggcatc
360
```

```
atttccggat ccatgttggg tctaggacgc gccctcggcg agaccctggc tgtcaccctc
atcctgcaga cgatgagccc catggcgctc aaacagaacc tcaacctgtc gatcttcgtc
480
ggtggtgaga cattcgcgtc gaagattgcc ggtaacttct ccgaggccat tagcgatccc
540
acctegetgg gtgccctcgt ggcgtcggcc ctggccctgt tcgtcattac cttcgtggtc
600
aacgcgactg cccggttgat tgcggcgaag ggggttaagc gatgagcgcc accacccctg
accacatcac ccaccatgge gacaacacge ceggacaget agatetetee egecegtetg
gtaaacggac tatcaagage ggetgegeet caacatteat gategtggee accgtactgg
ctgttatccc actggcctgg ctgctcttcg cggccgtccg gcgcggcatc ggatcactat
tccacgcgtc gtggtggacc cactcgatgg atccctcctt cgacttggcc gagcagggcg
ccatccacgc tatcgtcgga accettgaaa ttggccttat tacatcgatt atctcggtac
cgatcgctct gatgaccgcg atcttcctag tcgagtacgc ccgcggaact aagatcgcca
1020
aggteattag ettegeegte gaegtgetaa eeggtgtaee tteaategte geggeeetet
1080
tegtettege egtagtegtt accaectteg gtggcaccca atcegegtgg geeteetegt
tggccctcat gatcctcatg gttccgacgg tgctgcgatc aaccgaggaa atgctcaagc
tt
1202
<210> 262
<211> 214
<212> PRT
<213> Homo sapiens
<400> 262
Ala Ser Pro Val Ala Phe Val Val Asp Leu Leu Ala Ala Val Pro Ser
                                    10
Ile Val Phe Gly Leu Trp Gly Gly Ile Val Phe Gly Ser Ser Gly Ile
                                25
Ile Asn Gly Tyr Ala Gly Ala Leu Phe Lys Ala Leu Gly Trp Ile Pro
Ile Phe Ser Glu Asp Pro Ser Trp Ser Ser Ala Thr Gly Thr Val Tyr
                        55
Leu Ala Ser Leu Val Leu Ala Ile Met Ile Leu Pro Ile Ile Thr Ala
                                        75
Val Ser Arg Asp Val Met Pro Arg Thr Pro His Asp Gln Val Glu Ala
                                    90
Ala Leu Ala Leu Gly Ser Thr Arg Trp Glu Val Ile Lys Leu Ala Val
                                105
            100
Phe Pro His Ser Arg Ser Gly Ile Ile Ser Gly Ser Met Leu Gly Leu
                            120
Gly Arg Ala Leu Gly Glu Thr Leu Ala Val Thr Leu Ile Leu Gln Thr
```

```
135
Met Ser Pro Met Ala Leu Lys Gln Asn Leu Asn Leu Ser Ile Phe Val
                    150
                                        155
Gly Gly Glu Thr Phe Ala Ser Lys Ile Ala Gly Asn Phe Ser Glu Ala
                                    170
Ile Ser Asp Pro Thr Ser Leu Gly Ala Leu Val Ala Ser Ala Leu Ala
                                185
Leu Phe Val Ile Thr Phe Val Val Asn Ala Thr Ala Arg Leu Ile Ala
                            200
                                                 205
Ala Lys Gly Val Lys Arg
    210
<210> 263
<211> 424
<212> DNA
<213> Homo sapiens
<400> 263
acgcgtgagt gctctgcgct ggaaacaacg gtgatagagc ccatccgccg tgaactttcc
gacgtggtgc tcgtgaacaa gctcgaaaag tatgtacgcg aacgtacctc ggaagacgtt
gegeacatgg aagaggatge ggaccagaeg ggeaacgaca teeteacgae gateetgetg
tegaactggg atecaetatt ggatatgaeg aegeaggate atgtgetgge eatgeaaaag
gettatatgg cetegecatt cegtgecaat ttggacetgg catacecate ttegaceca
300
caggeceagt eccageegge gatgeegeeg tgggagacag ggaceteage cagtageatg
qeqqatgete gtgaatttge getgetgaag etgtacetge gtagettget geagaageae
gann
424
<210> 264
<211> 99
<212> PRT
<213> Homo sapiens
<400> 264
Met Glu Glu Asp Ala Asp Gln Thr Gly Asn Asp Ile Leu Thr Thr Ile
                 5
Leu Leu Ser Asn Trp Asp Pro Leu Leu Asp Met Thr Thr Gln Asp His
                                25
Val Leu Ala Met Gln Lys Ala Tyr Met Ala Ser Pro Phe Arg Ala Asn
                            40
Leu Asp Leu Ala Tyr Pro Ser Ser Thr Pro Gln Ala Gln Ser Gln Pro
                        55
Ala Met Pro Pro Trp Glu Thr Gly Thr Ser Ala Ser Ser Met Ala Asp
                    70
                                        75
Ala Arg Glu Phe Ala Leu Leu Lys Leu Tyr Leu Arg Ser Leu Leu Gln
                                    90
Lys His Xaa
```

```
<210> 265
<211> 360
<212> DNA
<213> Homo sapiens
<400> 265
negtacggcc etggcgtecg catggacgag ggataccatt ceggcatgac ggtgeegggt
geettegact eceteategg caageteate ateaetggtg atageegtga geaageeetg
getegagetg eccgegeett egacgaaate gteategaeg geatgeegae ggteatteee
tttcaccagg cggtggttca cgacccggct ttcactgccg ccgacggctg cttcggcgtc
tttaccgact ggatcgaaac cgagttcgac aacaagatcg agccatacac cgggtctctg
ggcgagtctg ccaattccga gcctcctcgt gaggtcgtcg tcgaggtcaa cggtaaacgc
360
<210> 266
<211> 120
<212> PRT
<213> Homo sapiens
<400> 266
Xaa Tyr Gly Pro Gly Val Arg Met Asp Glu Gly Tyr His Ser Gly Met
                                    10
Thr Val Pro Gly Ala Phe Asp Ser Leu Ile Gly Lys Leu Ile Ile Thr
            20
                                25
Gly Asp Ser Arg Glu Gln Ala Leu Ala Arg Ala Arg Ala Leu Asp
       35
                            40
Glu Ile Val Ile Asp Gly Met Pro Thr Val Ile Pro Phe His Gln Ala
                        55
                                            60
Val Val His Asp Pro Ala Phe Thr Ala Ala Asp Gly Cys Phe Gly Val
                                        75
Phe Thr Asp Trp Ile Glu Thr Glu Phe Asp Asn Lys Ile Glu Pro Tyr
                                    90
                85
Thr Gly Ser Leu Gly Glu Ser Ala Asn Ser Glu Pro Pro Arg Glu Val
                                105
Val Val Glu Val Asn Gly Lys Arg
<210> 267
<211> 471
<212> DNA
<213> Homo sapiens
<400> 267
natecteaac gtgtgtteag ttecaegega aagateatgt tegteategg ategatgeeg
ttaacgcatc ctagtcaatc caccgatggc gaccctggca aaaaatacga ggtgacttgg
120
```

```
ctagateteg ggeacettea ecetagtegg eegggaeteg teactateae cacaactgte
gatgatgacg teateacete tteecaggta aatgteggea aceteeaceg eggggatgaa
aaacttttcg aagctcgcga ttaccgccag attccgatgc ttgcatcacg tcatggctgg
acagetecat teattggtga gaceggegea geccatgeea tegaggatge gatgggcatt
accateceaa etegegtgge atggatacga accetgeteg etgagtteag cagaateace
tcacacttca catttttgtc atgggtaggc catcactgtg atgatgccgg c
471
<210> 268
<211> 157
<212> PRT
<213> Homo sapiens
<400> 268
Xaa Pro Gln Arg Val Phe Ser Ser Thr Arg Lys Ile Met Phe Val Ile
                                    10
Gly Ser Met Pro Leu Thr His Pro Ser Gln Ser Thr Asp Gly Asp Pro
                                25
            20
Gly Lys Lys Tyr Glu Val Thr Trp Leu Asp Leu Gly His Leu His Pro
                            40
Ser Arg Pro Gly Leu Val Thr Ile Thr Thr Thr Val Asp Asp Asp Val
                        55
Ile Thr Ser Ser Gln Val Asn Val Gly Asn Leu His Arg Gly Asp Glu
                                        75
                    70
Lys Leu Phe Glu Ala Arg Asp Tyr Arg Gln Ile Pro Met Leu Ala Ser
                                    90
               85
Arg His Gly Trp Thr Ala Pro Phe Ile Gly Glu Thr Gly Ala Ala His
                                105
            100
Ala Ile Glu Asp Ala Met Gly Ile Thr Ile Pro Thr Arg Val Ala Trp
                            120
                                                125
       115
Ile Arg Thr Leu Leu Ala Glu Phe Ser Arg Ile Thr Ser His Phe Thr
                        135
Phe Leu Ser Trp Val Gly His His Cys Asp Asp Ala Gly
                                        155
                    150
<210> 269
<211> 387
<212> DNA
<213> Homo sapiens
<400> 269
acgcgtgtcg tgtttccaga aaaaaccaat aaattagagt ttatggtaga agtgattgct
gatatgacgg taatcaatcc atttgatttc tttgtggaaa gctacgcaga agactaccca
120
tttgcttatg acaaagctct taaaaaagag ttagaacctt atttacaggt ttctgaacct
tgttcgttac tcgacaaatg gctgtctggt gttgatcgtg aaaaaacacc gatcaatgat
240
```

```
tttctagtcg caataaacag tcgccttgcc ggtgatattg gctatggtat tcgcttagaa
ccgggcgttc agtcacctga agaaacgctc acattaatga aaggctcttg tcgcgatacc
tcggggttat tggttcaaat actacgc
<210> 270
<211> 129
<212> PRT
<213> Homo sapiens
<400> 270
Thr Arg Val Val Phe Pro Glu Lys Thr Asn Lys Leu Glu Phe Met Val
Glu Val Ile Ala Asp Met Thr Val Ile Asn Pro Phe Asp Phe Phe Val
                                25
            20
Glu Ser Tyr Ala Glu Asp Tyr Pro Phe Ala Tyr Asp Lys Ala Leu Lys
                            40
                                                45
Lys Glu Leu Glu Pro Tyr Leu Gln Val Ser Glu Pro Cys Ser Leu Leu
                        55
                                            60
Asp Lys Trp Leu Ser Gly Val Asp Arg Glu Lys Thr Pro Ile Asn Asp
                                        75
Phe Leu Val Ala Ile Asn Ser Arg Leu Ala Gly Asp Ile Gly Tyr Gly
Ile Arg Leu Glu Pro Gly Val Gln Ser Pro Glu Glu Thr Leu Thr Leu
            100
                                105
Met Lys Gly Ser Cys Arg Asp Thr Ser Gly Leu Leu Val Gln Ile Leu
                            120
                                                125
Arg
<210> 271
<211> 443
<212> DNA
<213> Homo sapiens
geoggeacca acggaaagte etetacegeg egeatggteg attegetttt gegtgeette
caccgccgag tgggtttggt aaccagccca cacctgcagc gcgttactga gcgcatcggc
120
attqatqqcc aqcccattca cccqcqcgat tatgtacqca tctgqcacqa gattaaqcca
tttgtggaaa tggtcgatgc cgaatcggac gtgcctatgt ctaagttcga ggtcttcgtg
ggcctgtcct atgctgcgtt tgccgacgcc cccggggacg tcgctgtcgt cgaagtcggc
cttggcggac gttgggacgc taccaatgtg gtcaacgcgg atgtctctgt cattaccccg
gtgggcatgg accacacgga ttacctgggg gagacgatca ctgaaatcgc aggcgagaaa
gctggcatta ttaagccacg cgt
443
```

```
<210> 272
<211> 147
<212> PRT
<213> Homo sapiens
<400> 272
Ala Gly Thr Asn Gly Lys Ser Ser Thr Ala Arg Met Val Asp Ser Leu
               5
                                  10
Leu Arg Ala Phe His Arg Arg Val Gly Leu Val Thr Ser Pro His Leu
Gln Arg Val Thr Glu Arg Ile Gly Ile Asp Gly Gln Pro Ile His Pro
Arg Asp Tyr Val Arg Ile Trp His Glu Ile Lys Pro Phe Val Glu Met
Val Asp Ala Glu Ser Asp Val Pro Met Ser Lys Phe Glu Val Phe Val
                                      75
                   70
Gly Leu Ser Tyr Ala Ala Phe Ala Asp Ala Pro Gly Asp Val Ala Val
                                  90
Val Glu Val Gly Leu Gly Gly Arg Trp Asp Ala Thr Asn Val Val Asn
                              105
Ala Asp Val Ser Val Ile Thr Pro Val Gly Met Asp His Thr Asp Tyr
                          120
Leu Gly Glu Thr Ile Thr Glu Ile Ala Gly Glu Lys Ala Gly Ile Ile
                                          140
   130
Lys Pro Arg
145
<210> 273
<211> 864
<212> DNA
<213> Homo sapiens
<400> 273
caaagtaaga ctgcttcaaa ttttgtgttc tgctctgcag ctcgctcccc cctgctgtcg
aagagaagee aaageeeee ceeeccaeet caaaggeteg gaagtetgge atceetaett
ccgagcctgg atcccagtaa ggatcttgcc ctccctgcaa caccgagtgc cttagacagc
tgctgcctga gaactggcct ccagccggtg tcctcattcc atggggctcc ctgctgactg
catttcctga tctgggatga tgtttaccag cccaaaacca gtcatgttct tccaaaagct
tetetttgat agaattttga ggecatgeca ecteeettee agteeacatg gaattecaga
atcagtcaca gcctctgatt ttttccaaga agagattgcc ttcaccattg ttaaatgtca
geetgtacgg cagagacatg gtggtetgca caageetgga caagttette catattgatg
tgtgcttgag acttaggtac ttttctcacg tggacacact gatcccatcc catattgcat
```

```
ctttgaagag atggatatca agtacacttt ggtagctgaa ataatcatat ctttctgatg
totattqtat ctcctttgag gaaaagaaca cacattttta atggagattg gctgctttca
ggtatgtgtg totatcattg aaagagcatg gactcaaaca tcagccctga gttcttgagt
ccaccaact cccatcttct tgtggcacag gaaagetgcc ctctccctct cccaccacac
840
tectgaetaa tgeeetteae gegt
<210> 274
<211> 116
<212> PRT
<213> Homo sapiens
<400> 274
Met Trp Thr Gly Arg Glu Val Ala Trp Pro Gln Asn Ser Ile Lys Glu
                                    10
Lys Leu Leu Glu Glu His Asp Trp Phe Trp Ala Gly Lys His His Pro
            2.0
                                25
Arg Ser Gly Asn Ala Val Ser Arg Glu Pro His Gly Met Arg Thr Pro
Ala Gly Gly Gln Phe Ser Gly Ser Ser Cys Leu Arg His Ser Val Leu
Gln Gly Gly Gln Asp Pro Tyr Trp Asp Pro Gly Ser Glu Val Gly Met
                    70
                                        75
Pro Asp Phe Arg Ala Phe Glu Val Gly Gly Gly Phe Gly Phe Ser
                                    90
Ser Thr Ala Gly Gly Ser Glu Leu Gln Ser Arg Thr Gln Asn Leu Lys
                                105
            100
Gln Ser Tyr Phe
        115
<210> 275
<211> 911
<212> DNA
<213> Homo sapiens
<400> 275
naaatttaaa ggaacctccc ttctataacg gagagtattt attgcagctt tcctttctgt
ttattttcag gaatgaaagg aattacccag ccttctgctt ttatacctac agctgaaagt
aattoottto agootoaggt gaagactttg coatotocaa ttgatgotaa acagcagttg
caacggaaaa tccagaagaa gcagcaagaa cagaaactac aatccccttt gccaggagaa
tctqcaqcaa aaaagtcaga aagtgctaca agcaatggag tgactaatct tcctaatgga
aatcettcaa teetttetee teaacetatt ggtategttg tggcagetgt ceetagteee
attccggtcc agcggactag gcaattggta acttcaccga gtccaatgag ttcttctnga
```

```
cggcaaagtt cttcccctca atgtacaggt ggtcactcag cacatgcagt ctgtgaaaca
qqcaccaaaq actccccaga acgttccagc agtcctggtg ggaatcgttc tgcccggcac
cgttaccctc agatettacc caaaccageg aacaccagtg cactcaccat tegeteteca
actactgtcc totttactag tagtoccate aaaactgotg ttgtaccogo ttcacacatg
aqttetetaa atqtqqtqaa aatqacaaca atateeetca caeecageaa cagtaacaee
cctcttaaac attctgcctc agtcagcagt gctacaggaa caacagaaga atcaaggagt
gttccacaga tcaagaatgg ttctgtcgtg tcgcttcagt ctcctgggtc caggagcagc
agtgcggggg gaacatctgc tgtggaagtc aaagtggaac ccgaaacatc atcagatgag
catcctgtac a
911
<210> 276
<211> 279
<212> PRT
<213> Homo sapiens
<400> 276
Met Lys Gly Ile Thr Gln Pro Ser Ala Phe Ile Pro Thr Ala Glu Ser
                                    10
Asn Ser Phe Gln Pro Gln Val Lys Thr Leu Pro Ser Pro Ile Asp Ala
            20
                                25
Lys Gln Gln Leu Gln Arg Lys Ile Gln Lys Lys Gln Gln Glu Gln Lys
                            40
Leu Gln Ser Pro Leu Pro Gly Glu Ser Ala Ala Lys Lys Ser Glu Ser
                        55
Ala Thr Ser Asn Gly Val Thr Asn Leu Pro Asn Gly Asn Pro Ser Ile
Leu Ser Pro Gln Pro Ile Gly Ile Val Val Ala Ala Val Pro Ser Pro
                                    90
                85
Ile Pro Val Gln Arg Thr Arg Gln Leu Val Thr Ser Pro Ser Pro Met
                                105
Ser Ser Ser Xaa Arg Gln Ser Ser Ser Pro Gln Cys Thr Gly Gly His
                            120
Ser Ala His Ala Val Cys Glu Thr Gly Thr Lys Asp Ser Pro Glu Arg
Ser Ser Ser Pro Gly Gly Asn Arg Ser Ala Arg His Arg Tyr Pro Gln
                    150
                                        155
Ile Leu Pro Lys Pro Ala Asn Thr Ser Ala Leu Thr Ile Arg Ser Pro
                                    170
Thr Thr Val Leu Phe Thr Ser Ser Pro Ile Lys Thr Ala Val Val Pro
                                185
Ala Ser His Met Ser Ser Leu Asn Val Val Lys Met Thr Thr Ile Ser
                            200
                                                205
        195
Leu Thr Pro Ser Asn Ser Asn Thr Pro Leu Lys His Ser Ala Ser Val
                        215
Ser Ser Ala Thr Gly Thr Thr Glu Glu Ser Arg Ser Val Pro Gln Ile
```

225 230 Lys Asn Gly Ser Val Val Ser Leu Gln Ser Pro Gly Ser Arg Ser Ser 250 245 Ser Ala Gly Gly Thr Ser Ala Val Glu Val Lys Val Glu Pro Glu Thr 260 Ser Ser Asp Glu His Pro Val 275 <210> 277 <211> 652 <212> DNA <213> Homo sapiens <400> 277 nnaccggtgg ggactctcgc tgaggtcctt aatggccctt ctcgtgtccc ggacggcacc atquaecttq ttqqtqqqct qcqtcagqca atqqccacca ctggttactc ggaggtcaaa gagttccagc gcatcgagct gacgattcgc taaccgttcc accacgcaga atggtgttcc qqtqaqcqqq tqgatagcta gccttcggcc atgagtgaag tgcccgatga attggtcgtg ttgcgtggcg cgattgacaa catggacgcc gccctcatcc atctgcttgc cgaaaggttc eggattacte gegaggtagg eegeeteaag geggagtgeg gtttacetee ggeegaeeee geocgtgagg ctgagcagat cgcgcggttg cggcagttag cggtcgagtc gaacctcgac 420 cccgaattcg cgcagaaggt catcacgttc atcgtggccg aggtggtgcg tcaccacgaa gctattgctg acgattctgg cgacgactct ggagtggcgg atacgggggga ggcggatgtc cctgggtcgg gcagctgagt tacagatcag gcgatgacgt cgccctggtg caccttcgac gggatteega egaegaetgt geegggggeg acateettga egaeeaaege gt <210> 278 <211> 115 <212> PRT <213> Homo sapiens <400> 278 Met Ser Glu Val Pro Asp Glu Leu Val Val Leu Arg Gly Ala Ile Asp Asn Met Asp Ala Ala Leu Ile His Leu Leu Ala Glu Arg Phe Arg Ile 25 Thr Arq Glu Val Gly Arg Leu Lys Ala Glu Cys Gly Leu Pro Pro Ala 40 Asp Pro Ala Arg Glu Ala Glu Gln Ile Ala Arg Leu Arg Gln Leu Ala Val Glu Ser Asn Leu Asp Pro Glu Phe Ala Gln Lys Val Ile Thr Phe Ile Val Ala Glu Val Val Arg His His Glu Ala Ile Ala Asp Asp Ser

```
85
                                  90
Gly Asp Asp Ser Gly Val Ala Asp Thr Gly Glu Ala Asp Val Pro Gly
                             105
Ser Gly Ser
       115
<210> 279
<211> 348
<212> DNA
<213> Homo sapiens
<400> 279
taccacaatc cttaaaaaga aaagaaagaa aggcatatgg aacccctagt tacctctcat
ccagetteaa aattgteagt geatggteaa tettgtetta tetgeecete acceaecett
ttccagaaag aagacccaga ggattccaca tctgcctgga aaccacgacc agtctcgact
ggaagttgtt gttaatgttg catgtattca taaaacctct aggcatttct agtgtccctc
agaatttttc caaattcagg caaacacaga aattacttcc aaaaattt
348
<210> 280
<211> 99
<212> PRT
<213> Homo sapiens
<400> 280
Met Cys Ile Leu Pro Gln Ser Leu Lys Arg Lys Glu Arg Lys Ala Tyr
                                  10
Gly Thr Pro Ser Tyr Leu Ser Ser Phe Lys Ile Val Ser Ala Trp
                              25
           20
Ser Ile Leu Ser Tyr Leu Pro Leu Thr His Pro Phe Pro Glu Arg Arg
                          40
Pro Arg Gly Phe His Ile Cys Leu Glu Thr Thr Thr Ser Leu Asp Trp
                                         60
Lys Leu Leu Met Leu His Val Phe Ile Lys Pro Leu Gly Ile Ser
                   70
                                      75
Ser Val Pro Gln Asn Phe Ser Lys Phe Arg Gln Thr Gln Lys Leu Leu
Pro Lys Ile
<210> 281
<211> 384
<212> DNA
<213> Homo sapiens
<400> 281
agatctgcgc agatcgataa tggattaaag actcttgacg ctggagtcac cgagatgaac
60
```

```
aacaaggtgt tgggggcaac gaaggctgtc ggtgattcca ccactaccgt caaccaggtg
aattctgcgt taggaantgc cgactcagcg gcagagaaga cgtcgagcgc cgttactcag
acgegegtgg gtgeccagge gattacegge getgetcaaa atgteatgge tgatteccaa
getgteaact cagecatggt teegettatt aataacgtga caaagaatet teetacettg
300
caaaaacagg ccaggaatct cgtgtcagtg aacggtaccc tgcagaaccc caacggtgat
totgtoatta agattoaaca gaco
384
<210> 282
<211> 110
<212> PRT
<213> Homo sapiens
<400> 282
Met Asn Asn Lys Val Leu Gly Ala Thr Lys Ala Val Gly Asp Ser Thr
Thr Thr Val Asn Gln Val Asn Ser Ala Leu Gly Xaa Ala Asp Ser Ala
                                25
Ala Glu Lys Thr Ser Ser Ala Val Thr Gln Thr Arg Val Gly Ala Gln
Ala Ile Thr Gly Ala Ala Gln Asn Val Met Ala Asp Ser Gln Ala Val
                        55
Asn Ser Ala Met Val Pro Leu Ile Asn Asn Val Thr Lys Asn Leu Pro
                    70
                                        75
Thr Leu Gln Lys Gln Ala Arg Asn Leu Val Ser Val Asn Gly Thr Leu
                                    90
                85
Gln Asn Pro Asn Gly Asp Ser Val Ile Lys Ile Gln Gln Thr
                                105
            100
<210> 283
<211> 426
<212> DNA
<213> Homo sapiens
<400> 283
cgcgtagacc aatgtgagac ggccgtcacc aagggcatgc gcgacaagtc ggttggtagc
ggaccggata ttgtgcgtcg cgagctgcgc catgtcgtga cgagcggcac gattgtcgat
120
ggaagegtae tggetgaega attgageage tactgeatga gtateaagga geaegteege
totgatggcc tatecgagtt tggcatetgc accetegacg cegecacege egagtteega
tacatgacat tegtegacga tgeegtgetg teacaacteg agacattget gegtteteta
cqcatcaagg aagtettgca tgaaaaaggg gtcatgttgc cttccacgct gcgcttgatc
cgcaacgcgg tgcccaccac ctgccaaatt accatgctca agcctgatac cgaattgtcg
420
```

```
gagaga
426
<210> 284
<211> 142
<212> PRT
<213> Homo sapiens
<400> 284
Arg Val Asp Gln Cys Glu Thr Ala Val Thr Lys Gly Met Arg Asp Lys
                5
Ser Val Gly Ser Gly Pro Asp Ile Val Arg Arg Glu Leu Arg His Val
                                25
Val Thr Ser Gly Thr Ile Val Asp Gly Ser Val Leu Ala Asp Glu Leu
Ser Ser Tyr Cys Met Ser Ile Lys Glu His Val Arg Ser Asp Gly Leu
                        55
Ser Glu Phe Gly Ile Cys Thr Leu Asp Ala Ala Thr Ala Glu Phe Arg
                    70
                                        75
Tyr Met Thr Phe Val Asp Asp Ala Val Leu Ser Gln Leu Glu Thr Leu
                                    90
Leu Arg Ser Leu Arg Ile Lys Glu Val Leu His Glu Lys Gly Val Met
                                                    110
                                105
            100
Leu Pro Ser Thr Leu Arg Leu Ile Arg Asn Ala Val Pro Thr Thr Cys
                            120
Gln Ile Thr Met Leu Lys Pro Asp Thr Glu Leu Ser Glu Arg
                        135
    130
<210> 285
<211> 345
<212> DNA
<213> Homo sapiens
<400> 285.
acgcgtgcag tecettaccg acatgctgge agatgagete gacggcagee getteaccgg
cgatttctca gaaatctaca aacgtcagaa ctcgatcttc ggcgatgtaa ggaataactt
ttacaaaaaa ggataccgca tcatcaacgt agcgaatggt gtattgcgca agatttcact
ggtaagcgca ggcaatgcag acaatgtgaa aggtcaggcc ctgttcttcc gcggtgtggc
gcatttcgaa ctcgtgcgtt tgtttgcaca accctggggt tatacttcgg acaattcaca
ctacggcatc ccgctccgca atgaaatcgt aattggttct attcn
345
<210> 286
<211> 107
<212> PRT
<213> Homo sapiens
<400> 286
Met Leu Ala Asp Glu Leu Asp Gly Ser Arg Phe Thr Gly Asp Phe Ser
```

10 Glu Ile Tyr Lys Arg Gln Asn Ser Ile Phe Gly Asp Val Arg Asn Asn 25 Phe Tyr Lys Lys Gly Tyr Arg Ile Ile Asn Val Ala Asn Gly Val Leu 40 Arg Lys Ile Ser Leu Val Ser Ala Gly Asn Ala Asp Asn Val Lys Gly Gln Ala Leu Phe Phe Arg Gly Val Ala His Phe Glu Leu Val Arg Leu 75 70 Phe Ala Gln Pro Trp Gly Tyr Thr Ser Asp Asn Ser His Tyr Gly Ile 90 Pro Leu Arg Asn Glu Ile Val Ile Gly Ser Ile 100 <210> 287 <211> 1379 <212> DNA <213> Homo sapiens <400> 287 nnttaactgc ccctttgcag tetttattet gggacattag cactgtetgg ttatettget tcagttgagg gattcgggac aatagcagtg ctgatggtaa tgttggcgat ttccctgttt gttttgcagg tcacggccag gggctttggg ccgctgttac agtttgccta cactgccaag ctgttactca gcagagaaaa catccgcgag gtcatccgct gtgctgagtt cctgcgcatg cacaacctqq aggactcctg cttcagcttc ctgcagaccc agctcctgaa cagtgaggat qqcctqtttg tgtgccggaa ggatgctgcg tgccagcgcc cacacgagga ctgcgagaac tctqcaqqaq aqqaqqagga tgaagaggag gagacgatgg attcagagac ggccaagatg gettgeecca gggaecagat gettecagag eccateaget ttgaggeege egecateece gtagcagaga aggaagaagc cctgctgccc gagcctgacg tgcccacaga caccaaggag ageteagaaa aggaegegtt aacgeagtae eecagataca agaaataeca gettgeatgt accaagaatg totataatgc atcatcacac agtacctcag gttttgcaag cacattccgg gaagataact ctagcaacag cctcaagccg gggcttgcca gggggcagat taaaagtgag 720 ccgcccagtg aagagaatga ggaagagagc atcacgctct gcctgtctgg agatgagcct gacgccaagg acagagcggg ggatgtcgag atggaccgga aacagcccag ccctgcccct acceccacgg ceccagetgg ggecgeetge etggagagat ceaggagegt ggeetegeee tectgettaa ggtetetgtt cageataaeg aaaagtgtgg agetgtetgg eetgeecagt acateteage ageaetttge caggagteea geetgeeett ttgacaaggg gateaeteag 1020

qqtgacctta aaactgacta caccctttc acagggaatt atggacagcc ccacgtgggc cagaaggagg tgtccaactt caccatgggg tcgcccctca gggggcctgg gttggaggct ctctgtaaac aggagggaga gctggaccgg aggagcgtga tcttctcctc cagcgcttgt gaccaagtga gcacctcggt gcattcttat tctggggtga gcagtttgga caaagacctc totgagoogg tgccaaaggg totgtgggtg ggagooggco agtocotoco cagotogcag gectaetece aeggtggget gatggeegae caettgeeag gaaggatgeg geccaacae 1379 <210> 288 <211> 428 <212> PRT <213> Homo sapiens <400> 288 Met Val Met Leu Ala Ile Ser Leu Phe Val Leu Gln Val Thr Ala Arg 5 10 Gly Phe Gly Pro Leu Leu Gln Phe Ala Tyr Thr Ala Lys Leu Leu 25 Ser Arg Glu Asn Ile Arg Glu Val Ile Arg Cys Ala Glu Phe Leu Arg 40 45 Met His Asn Leu Glu Asp Ser Cys Phe Ser Phe Leu Gln Thr Gln Leu 55 60 Leu Asn Ser Glu Asp Gly Leu Phe Val Cys Arg Lys Asp Ala Ala Cys 75 70 Gln Arg Pro His Glu Asp Cys Glu Asn Ser Ala Gly Glu Glu Glu Asp 90 85 Glu Glu Glu Glu Thr Met Asp Ser Glu Thr Ala Lys Met Ala Cys Pro 105 Arg Asp Gln Met Leu Pro Glu Pro Ile Ser Phe Glu Ala Ala Ala Ile 120 125 Pro Val Ala Glu Lys Glu Glu Ala Leu Leu Pro Glu Pro Asp Val Pro 135 Thr Asp Thr Lys Glu Ser Ser Glu Lys Asp Ala Leu Thr Gln Tyr Pro 150 155 Arg Tyr Lys Lys Tyr Gln Leu Ala Cys Thr Lys Asn Val Tyr Asn Ala 170 Ser Ser His Ser Thr Ser Gly Phe Ala Ser Thr Phe Arg Glu Asp Asn 180 185 Ser Ser Asn Ser Leu Lys Pro Gly Leu Ala Arg Gly Gln Ile Lys Ser 200 205 Glu Pro Pro Ser Glu Glu Asn Glu Glu Glu Ser Ile Thr Leu Cys Leu 215 Ser Gly Asp Glu Pro Asp Ala Lys Asp Arg Ala Gly Asp Val Glu Met 230 235 Asp Arg Lys Gln Pro Ser Pro Ala Pro Thr Pro Thr Ala Pro Ala Gly 245 250 Ala Ala Cys Leu Glu Arg Ser Arg Ser Val Ala Ser Pro Ser Cys Leu 260 265 270 Arg Ser Leu Phe Ser Ile Thr Lys Ser Val Glu Leu Ser Gly Leu Pro

```
275
                            280
Ser Thr Ser Gln Gln His Phe Ala Arg Ser Pro Ala Cys Pro Phe Asp
                        295
                                            300
Lys Gly Ile Thr Gln Gly Asp Leu Lys Thr Asp Tyr Thr Pro Phe Thr
                    310
                                        315
Gly Asn Tyr Gly Gln Pro His Val Gly Gln Lys Glu Val Ser Asn Phe
                                    330
                325
Thr Met Gly Ser Pro Leu Arg Gly Pro Gly Leu Glu Ala Leu Cys Lys
            340
Gln Glu Gly Glu Leu Asp Arg Arg Ser Val Ile Phe Ser Ser Ser Ala
                            360
                                                365
Cys Asp Gln Val Ser Thr Ser Val His Ser Tyr Ser Gly Val Ser Ser
                        375
Leu Asp Lys Asp Leu Ser Glu Pro Val Pro Lys Gly Leu Trp Val Gly
                    390
                                        395
Ala Gly Gln Ser Leu Pro Ser Ser Gln Ala Tyr Ser His Gly Gly Leu
                                    410
                                                        415
Met Ala Asp His Leu Pro Gly Arg Met Arg Pro Asn
                                425
            420
<210> 289
<211> 822
<212> DNA
<213> Homo sapiens
<400> 289
ngcattaccg ggctgaagac gggtgctcat gacctcaacg atataggcta ttgctagaac
60
cacgoogge cacgooge aaagogcaga cacggcacca ggaggggtca catggctgat
agcaagtcga aggcgaagga cgagcgcact gccgatgaga tcaggcggga tattgcagcg
accogtgett geetggeage eggggtggag aacctegtgg aggaggtgea teeggeaace
ctcaagcgtg aagcatctga tcgtgcccgt gattttgtgc agggtgagtt tgatcaggtc
aagagccagg tcaaagatga gaaatggtgg cgcgtgcagc ggatcgcgat ggccgcagga
gtgctcgctg ccggcgtcgt cagcattatt gtgctgcgcg cgatagtcgg tcgcgcaacg
ggcgctaccg ctcgtcgcaa gcttgagaag ctgcagcttt ctcaggcgaa gcgggttcga
480
aaagatgcca agcagcgtag taaggaagat gaaaaggcag ccaagaaaaa tgccaagctc
ggcaagaaga acgctaagaa gtacggcaag ctcgataccg atgactcgtc ggtaagcaac
600
cttgccgaga aaatgctcaa acaggccgcc gtgctgcgtg cacaggcggc tgccgggggg
tgagaacagt gccgcctagc aaacagcggt cacagcgcaa aacaggtttg gctccgaccc
720
atggtggacc ggagccaaac tgtgttaccg catcatttga taccgccagc agccaggcct
gegacaatge gaegetggaa taccageace atgatgaeta gt
822
```

```
<210> 290
<211> 183
<212> PRT
<213> Homo sapiens
<400> 290
Met Ala Asp Ser Lys Ser Lys Ala Lys Asp Glu Arg Thr Ala Asp Glu
                5
                                    10
1
Ile Arg Arg Asp Ile Ala Ala Thr Arg Ala Cys Leu Ala Ala Gly Val
                                25
Glu Asn Leu Val Glu Glu Val His Pro Ala Thr Leu Lys Arg Glu Ala
Ser Asp Arg Ala Arg Asp Phe Val Gln Gly Glu Phe Asp Gln Val Lys
                       55
Ser Gln Val Lys Asp Glu Lys Trp Trp Arg Val Gln Arg Ile Ala Met
                    70
                                        75
Ala Ala Gly Val Leu Ala Ala Gly Val Val Ser Ile Ile Val Leu Arg
                                    90
               85
Ala Ile Val Gly Arg Ala Thr Gly Ala Thr Ala Arg Arg Lys Leu Glu
                               105
Lys Leu Gln Leu Ser Gln Ala Lys Arg Val Arg Lys Asp Ala Lys Gln
                            120
Arg Ser Lys Glu Asp Glu Lys Ala Ala Lys Lys Asn Ala Lys Leu Gly
                                            140
                       135
Lys Lys Asn Ala Lys Lys Tyr Gly Lys Leu Asp Thr Asp Asp Ser Ser
                                       155
                   150
Val Ser Asn Leu Ala Glu Lys Met Leu Lys Gln Ala Ala Val Leu Arg
                                   170
               165
Ala Gln Ala Ala Ala Gly Ala
           180
<210> 291
<211> 351
<212> DNA
<213> Homo sapiens
<400> 291
ctccacgccg acaagactta cgacgggcgt cgctgccggg ctgagtgccg ggcccgctcc
atcaccccc geategeteg cegeggegtg gagaccageg agegettggg ceggtatege
120
tgggtcgtcg agcgcacctt cgcctggctc aaccgctttc ggcgcctcgc catccgctac
gageggegtg etgacateca egaageette gtgateeteg getgegeeet eatetgeete
aaccagatca gacggttttg ttaggtgctg taaagggaga atggctgcag ctgggctatc
tgctccctcg tcaaccagaa acaggctgct catcctcact caacaacgcg t
351
<210> 292
<211> 87
<212> PRT
```

<213> Homo sapiens <400> 292 Leu His Ala Asp Lys Thr Tyr Asp Gly Arg Arg Cys Arg Ala Glu Cys 5 10 Arg Ala Arg Ser Ile Thr Pro Arg Ile Ala Arg Arg Gly Val Glu Thr Ser Glu Arg Leu Gly Arg Tyr Arg Trp Val Val Glu Arg Thr Phe Ala 40 Trp Leu Asn Arg Phe Arg Arg Leu Ala Ile Arg Tyr Glu Arg Arg Ala Asp Ile His Glu Ala Phe Val Ile Leu Gly Cys Ala Leu Ile Cys Leu 75 Asn Gln Ile Arg Arg Phe Cys <210> 293 <211> 716 <212> DNA <213> Homo sapiens <400> 293 nnetteacea caceggeeat caacgeacet cetegtgata acttgacett etgeegaace 60 ggttaatcag tttagtggcg aggcatgaca cgttgacgag tcagctgtgg tacatgtgcg 120 gaacactcac aatgccacgg cggcatgttg ctgtcggtca cgacccttat ggtgatcgct gtgagaaccc gaacggcaga tgcgattctg gcggcactgg atctgaacag gtttaaggtt gcgaagactt tcgatgttcc agtgtgcgtc atagctggtg ccgggacagg taaaactcgt getgteacte ategeattge etaeggtgea gegacaggea agettgatee gegtegtace ctcgcggtca cttttacgac taaggcagct ggcacgatga gaggtcgact cgccgatctg ggggttgttg gtgtgcaggc tcgcactatt cattctgcgg cgttgcggca gatcaagttt ttctggcctc gtgcatataa ctgtgagttg ccaccggtga gtgattctcg tttctcgatg gtggcggaga cgacccatcg cattggtctg ggcaatgaca aggcgctgct gcgcgacttg 600 teegeegaga tetegtggge gaaggtetea aatgtgeega etgateaata egeateeetg gctagggcgg aaggtcgggt ggtggcggga gtttcggcaa ctgacgtagg acgcgt 716 <210> 294 <211> 190 <212> PRT <213> Homo sapiens <400> 294 Met Leu Leu Ser Val Thr Thr Leu Met Val Ile Ala Val Arg Thr Arg

```
10
Thr Ala Asp Ala Ile Leu Ala Ala Leu Asp Leu Asn Arg Phe Lys Val
                                25
Ala Lys Thr Phe Asp Val Pro Val Cys Val Ile Ala Gly Ala Gly Thr
                            40
Gly Lys Thr Arg Ala Val Thr His Arg Ile Ala Tyr Gly Ala Ala Thr
Gly Lys Leu Asp Pro Arg Arg Thr Leu Ala Val Thr Phe Thr Thr Lys
                                        75
                    70
Ala Ala Gly Thr Met Arg Gly Arg Leu Ala Asp Leu Gly Val Val Gly
                                    90
Val Gln Ala Arg Thr Ile His Ser Ala Ala Leu Arg Gln Ile Lys Phe
                               105
            100
Phe Trp Pro Arg Ala Tyr Asn Cys Glu Leu Pro Pro Val Ser Asp Ser
                            120
                                                125
       115
Arg Phe Ser Met Val Ala Glu Thr Thr His Arg Ile Gly Leu Gly Asn
                       135
                                            140
Asp Lys Ala Leu Leu Arg Asp Leu Ser Ala Glu Ile Ser Trp Ala Lys
                   150
                                       155
Val Ser Asn Val Pro Thr Asp Gln Tyr Ala Ser Leu Ala Arg Ala Glu
                                    170
                165
Gly Arg Val Val Ala Gly Val Ser Ala Thr Asp Val Gly Arg
            180
                                185
<210> 295
<211> 417
<212> DNA
<213> Homo sapiens
<400> 295
ttcatatcag gcagtacccg agtccatgcg atcaacaacg tcagcgtatc tttcacccat
totggagtgc accttotoat gggagaaagc ggatcaggaa aaagcaccot catcaatoto
ctagctggtc tggatacccc agattcgggg tccgtctacg cagaaggcgt caccgtatct
gatcagagcg aggcgagcag agcccaattt cgattacgcc acatcgccgt catcttccag
gacgacaacc tcatcgctga gttgaccaat accgagaata ttgcgctacc cctgtgggcg
cagggcacat cgaagtccga tgccactgaa atcgcccacg aagccatgcg aaaactagga
atcqaqtcat tgggcagacg ctaccccggc gaggtctcgg gtggccaacg gcaacgc
417
<210> 296
<211> 139
<212> PRT
<213> Homo sapiens
<400> 296
Phe Ile Ser Gly Ser Thr Arg Val His Ala Ile Asn Asn Val Ser Val
Ser Phe Thr His Ser Gly Val His Leu Leu Mèt Gly Glu Ser Gly Ser
```

```
25
Gly Lys Ser Thr Leu Ile Asn Leu Leu Ala Gly Leu Asp Thr Pro Asp
Ser Gly Ser Val Tyr Ala Glu Gly Val Thr Val Ser Asp Gln Ser Glu
Ala Ser Arg Ala Gln Phe Arg Leu Arg His Ile Ala Val Ile Phe Gln
                    70
                                        75
Asp Asp Asn Leu Ile Ala Glu Leu Thr Asn Thr Glu Asn Ile Ala Leu
                                    90
Pro Leu Trp Ala Gln Gly Thr Ser Lys Ser Asp Ala Thr Glu Ile Ala
                                105
His Glu Ala Met Arg Lys Leu Gly Ile Glu Ser Leu Gly Arg Arg Tyr
                            120
Pro Gly Glu Val Ser Gly Gly Gln Arg Gln Arg
    130
                        135
<210> 297
<211> 378
<212> DNA
<213> Homo sapiens
<400> 297
tacaccateg gtgaccagat tgtcgaaget ctgcaggtgc actcgaagat gtccgacaag
qacgettqqq eqeqtqccat eqaqetqctc gacttqqtqq qqattccqaa tcccqaqqtq
cgtgccaaag cttttccgca cgagttttcc ggtggcatga ggcaacgagt cgtcatcgcc
atggccatcg cgaacgaccc tgacctcatc atcgccgacg agccgacgac ggccctcgac
qtqaccatcc aggcccagat tctcgatttg ctgcgcgtag cccagcgtga aacccatgcg
ggcgtcgtta tgatcaccca cgacctcggt gtggtagctg gtctggctga cagggttgcc
gtgatgtatg ccggacgc
<210> 298
<211> 126
<212> PRT
<213> Homo sapiens
<400> 298
Tyr Thr Ile Gly Asp Gln Ile Val Glu Ala Leu Gln Val His Ser Lys
Met Ser Asp Lys Asp Ala Trp Ala Arg Ala Ile Glu Leu Leu Asp Leu
Val Gly Ile Pro Asn Pro Glu Val Arg Ala Lys Ala Phe Pro His Glu
Phe Ser Gly Gly Met Arg Gln Arg Val Val Ile Ala Met Ala Ile Ala
                        55
                                            60
Asn Asp Pro Asp Leu Ile Ile Ala Asp Glu Pro Thr Thr Ala Leu Asp
                    70
                                        75
Val Thr Ile Gln Ala Gln Ile Leu Asp Leu Lèu Arg Val Ala Gln Arg
```

```
85
                                     90
Glu Thr His Ala Gly Val Val Met Ile Thr His Asp Leu Gly Val Val
                                 105
Ala Gly Leu Ala Asp Arg Val Ala Val Met Tyr Ala Gly Arg
        115
                             120
<210> 299
<211> 368
<212> DNA
<213> Homo sapiens
<400> 299
gtgcacggtt tcgttggcat gcgcaatgac cgggagaact tgcgttttga tccgagactt
ccagcccaat ggacgtcgat caaacaccac atgctcattg gcgactctca catgctcgtt
ttcctggaac gtgacgccat tacgttccag attctgtcgg gccatgaccg cgacgtgaca
gtgcgcggtg agctctacca cattggggtt gagccggtga gggtgccgtt gtccgatcag
gggccgttgc gtcctagcct gcgcgttacc catccgatct cggggttgcg tcgagctgac
ggttetetta teaetgeaga agtteeegge ageattgetg agacqattgg gtetteteeg
360
atctcgac
368
<210> 300
<211> 122
<212> PRT
<213> Homo sapiens
Val His Gly Phe Val Gly Met Arg Asn Asp Arg Glu Asn Leu Arg Phe
                                    10
Asp Pro Arg Leu Pro Ala Gln Trp Thr Ser Ile Lys His His Met Leu
                                25
Ile Gly Asp Ser His Met Leu Val Phe Leu Glu Arg Asp Ala Ile Thr
                            40
Phe Gln Ile Leu Ser Gly His Asp Arg Asp Val Thr Val Arg Gly Glu
Leu Tyr His Ile Gly Val Glu Pro Val Arg Val Pro Leu Ser Asp Gln
                    70
                                        75
Gly Pro Leu Arg Pro Ser Leu Arg Val Thr His Pro Ile Ser Gly Leu
                85
                                    90
Arg Arg Ala Asp Gly Ser Leu Ile Thr Ala Glu Val Pro Gly Ser Ile
            100
                                105
                                                    110
Ala Glu Thr Ile Gly Ser Ser Pro Ile Ser
        115
                            120
<210> 301
<211> 456
<212> DNA
<213> Homo sapiens
```

```
<400> 301
ggccgggtta ttgcccgcc gtttgtcggg gaaacccggc agaccttcga gcgcaccggc
aaceggegeg actatteegt acegeegeee gaacegacet tgetegacag gettaeggac
gegggeegga eggtgatege aateggeaag attggtgata tetaegegea caaaggegtg
teteaggtge gtaaggeaat ggeaatattg geettgtteg atgaaacaet cattgeeatg
gacgacgcgc aggacggcga tetggtette accaaetteg tggatttega catgetetae
gggcatcgca gggatgtgcc cggctatgcc gccgcgctcg aggctttcga ccggaggctg
ccggaagcca tggcgaaatt gcggacgggc gatcttctga tcctgacagc cgatcatggc
tgcgacccga ccctcaaggg aaccgaccac acgcgt
456
<210> 302
<211> 152
<212> PRT
<213> Homo sapiens
<400> 302
Gly Arg Val Ile Ala Arg Pro Phe Val Gly Glu Thr Arg Gln Thr Phe
                                    10
Glu Arg Thr Gly Asn Arg Arg Asp Tyr Ser Val Pro Pro Glu Pro
Thr Leu Leu Asp Arg Leu Thr Asp Ala Gly Arg Thr Val Ile Ala Ile
                            40
                                                45
Gly Lys Ile Gly Asp Ile Tyr Ala His Lys Gly Val Ser Gln Val Arg
                        55
Lys Ala Met Ala Ile Leu Ala Leu Phe Asp Glu Thr Leu Ile Ala Met
                    70
                                        75
Asp Asp Ala Gln Asp Gly Asp Leu Val Phe Thr Asn Phe Val Asp Phe
                                    90
Asp Met Leu Tyr Gly His Arg Arg Asp Val Pro Gly Tyr Ala Ala Ala
            100
                                105
Leu Glu Ala Phe Asp Arg Leu Pro Glu Ala Met Ala Lys Leu Arg
        115
                            120
                                                125
Thr Gly Asp Leu Leu Ile Leu Thr Ala Asp His Gly Cys Asp Pro Thr
                        135
Leu Lys Gly Thr Asp His Thr Arg
145
                    150
<210> 303
<211> 402
<212> DNA
<213> Homo sapiens
<400> 303
nnegtgggca tegaggagtt cetegacatg aagtateaeg egaegeegat teategtege
60
```

```
tgacagcggt tttccggaac acatcagcgt tcagacagga gcgaggagac catgtacctg
120
ggtgctcagc tgttcagtga cagcgagtac gagcagcgcc tgagacgtgt ccgtgagctc
180
atggaccgtc agggtctgtc ggcgatcatc gtcaccgatc cggccaacat cttctatctg
ateggttaca acgcetggte gttetacace eegeagatge tgttegtgee gategaegga
gagatggtcc tctacgctcg cgagatggat cgcatggcgc acatenqcac gacgtcqttq
cccgccgatc agatcgtcgg ttacccggag agttatgtgc ac
402
<210> 304
<211> 97
<212> PRT
<213> Homo sapiens
<400> 304
Met Tyr Leu Gly Ala Gln Leu Phe Ser Asp Ser Glu Tyr Glu Gln Arg
Leu Arg Arg Val Arg Glu Leu Met Asp Arg Gln Gly Leu Ser Ala Ile
            20
                                25
Ile Val Thr Asp Pro Ala Asn Ile Phe Tyr Leu Ile Gly Tyr Asn Ala
                            40
Trp Ser Phe Tyr Thr Pro Gln Met Leu Phe Val Pro Ile Asp Gly Glu
Met Val Leu Tyr Ala Arg Glu Met Asp Arg Met Ala His Ile Xaa Thr
                    70
                                        75
Thr Ser Leu Pro Ala Asp Gln Ile Val Gly Tyr Pro Glu Ser Tyr Val
                85
                                    90
His
<210> 305
<211> 375
<212> DNA
<213> Homo sapiens
<400> 305
nnacgegteg gtteegeate gagegaeegg ategeatega egageaeget geaceagtge
gtgtcgtcct ggcgaatatg ggcgatcagc cggtacagtt cgggatcgtc gctcacctcg
120
geogecattt eggatgegae aegegegeet gegegetegg cetecageaa etegtegage
180
gtegecacca gegeggegeg atetteatge ggagteagat eggegeggge gteaggeeeg
tegecatgeg teggaatega catgeageae ceteetgeea ggategatgg egtaataegt
gegacggtac acggegegtg ttgcacgaac gtgcaaatca gegegtgeet egtgccatat
360
acgtcacatc atatg
375
```

```
<210> 306
<211> 125
<212> PRT
<213> Homo sapiens
<400> 306
Xaa Arg Val Gly Ser Ala Ser Ser Asp Arg Ile Ala Ser Thr Ser Thr
                                    10
Leu His Gln Cys Val Ser Ser Trp Arg Ile Trp Ala Ile Ser Arg Tyr
Ser Ser Gly Ser Ser Leu Thr Ser Ala Ala Ile Ser Asp Ala Thr Arg
        35
                            40
Ala Pro Ala Arg Ser Ala Ser Ser Asn Ser Ser Ser Val Ala Thr Ser
                        55
Ala Ala Arg Ser Ser Cys Gly Val Arg Ser Ala Arg Ala Ser Gly Pro
                    70
                                        75
Ser Pro Cys Val Gly Ile Asp Met Gln His Pro Pro Ala Arg Ile Asp
                                    90
Gly Val Ile Arg Ala Thr Val His Gly Ala Cys Cys Thr Asn Val Gln
            100
                                105
Ile Ser Ala Cys Leu Val Pro Tyr Thr Ser His His Met
                                                125
        115
                            120
<210> 307
<211> 685
<212> DNA
<213> Homo sapiens
<400> 307
actagttetg geogeteece tggggetttg ggtaacaatt gteageecea eccateetag
ggttaggaag gctattctct ttggccactc tcatcctaag acctatttgg agaacctctg
gggtttgagt cttttttca gcagaatgag gcttgatccc gcattatagc acctcgcaca
180
tttgatgtct cttcttctca cccactcacc ccaccetggg ggttggggca aaaaagtggc
tcaaagctgc ggttcagagt tccttgtaaa caaggctcct ccctcactgt cctcaccctg
300
ctccagcaga gggagcagcg gaaggaccac tetgetgcag ccatgettgt ttctaaccca
gcagaactgg acataatggg aacagggtct gaagacaatc aatccagggc tgcagtgggt
420
gctgagtctg gggaagcctc cacctggagg ggcagctggg cagtggcagc tcccttggaa
tggctcagcc tctggacatc accccaccca accagagccc tggctcttgc tggatgtcca
cagatgagtg cctgggattg gtctcagcca ctatgggggg gatgtgcagg gagaggtgat
gagggagtga gcaggactgt ctatgtgcct ctgtcctcat cctgaggctt gggtctqaaa
ttggtgctgc agcactggca cgcgt
685
```

```
<210> 308
<211> 100
<212> PRT
<213> Homo sapiens
<400> 308
Met Leu Val Ser Asn Pro Ala Glu Leu Asp Ile Met Gly Thr Gly Ser
Glu Asp Asn Gln Ser Arg Ala Ala Val Gly Ala Glu Ser Gly Glu Ala
            20
                                 25
Ser Thr Trp Arg Gly Ser Trp Ala Val Ala Ala Pro Leu Glu Trp Leu
                            40
Ser Leu Trp Thr Ser Pro His Pro Thr Arg Ala Leu Ala Leu Ala Gly
                        55
Cys Pro Gln Met Ser Ala Trp Asp Trp Ser Gln Pro Leu Trp Gly Gly
Cys Ala Gly Arg Gly Asp Glu Gly Val Ser Arg Thr Val Tyr Val Pro
Leu Ser Ser Ser
            100
<210> 309
<211> 432
<212> DNA
<213> Homo sapiens
<400> 309
caggetegta etattegtat ecetgtgeat atggtegagg teatcaataa getggetege
gtecagegte agatgeteca ggacetaggt egtgageeca ecceggaaga gettgecaac
gaactcgata tgaccgcaga gaaggtcatt gaggtgcaga aatacggtcg cgagccgatc
tegetgeata ceceaetggg tgaggatgge gattetgagt teggtgaeet tattgaggat
teegaggeea tegtgeeage agacgeegte aactteacee tgttgeagga geagetgeat
300
gatgtcctcg atacettgtc cgagcgagag gccggtgtcg tgtcgatgcg attcggcttg
360
accgacggac agcccaagac cctggatgag atcggcaaag tctacggtgt tactcgggag
cgcatccgcc ag
432
<210> 310
<211> 144
<212> PRT
<213> Homo sapiens
<400> 310
Gln Ala Arg Thr Ile Arg Ile Pro Val His Met Val Glu Val Ile Asn
Lys Leu Ala Arg Val Gln Arg Gln Met Leu Gln Asp Leu Gly Arg Glu
```

```
Pro Thr Pro Glu Glu Leu Ala Asn Glu Leu Asp Met Thr Ala Glu Lys
                            40
Val Ile Glu Val Gln Lys Tyr Gly Arg Glu Pro Ile Ser Leu His Thr
                        55
Pro Leu Gly Glu Asp Gly Asp Ser Glu Phe Gly Asp Leu Ile Glu Asp
                    70
                                         75
Ser Glu Ala Ile Val Pro Ala Asp Ala Val Asn Phe Thr Leu Leu Gln
                                    90
Glu Gln Leu His Asp Val Leu Asp Thr Leu Ser Glu Arg Glu Ala Gly
            100
                                105
Val Val Ser Met Arg Phe Gly Leu Thr Asp Gly Gln Pro Lys Thr Leu
                            120
Asp Glu Ile Gly Lys Val Tyr Gly Val Thr Arg Glu Arg Ile Arg Gln
    130
                        135
<210> 311
<211> 358
<212> DNA
<213> Homo sapiens
<400> 311
acgcgtatcg aaaatatccc tcccattatt accgctcgcc ctgaactgat ggctcatgaa
ctgacgccag aatctcttga tgcgagcctg gagtgggccg atgtggtggt cattggtcct
ggactgggac aacaagcgtg gggcaaaaaa gcgctacaaa aggtcgagaa ttgtcgtaaa
ccgatgctgt gggatgccga cgcgcttaac cttctggcaa tcaatcctga taaacgtcac
aategeatee tgaegeeaca eeeeggegag geegeggge tgettagetg eagegtegea
gaaattgaaa acgatcgctt acttntctgc gcacgtctgg taaaacggta acccgagt
358
<210> 312
<211> 116
<212> PRT
<213> Homo sapiens
<400> 312
Thr Arg Ile Glu Asn Ile Pro Pro Ile Ile Thr Ala Arg Pro Glu Leu
                                    10
Met Ala His Glu Leu Thr Pro Glu Ser Leu Asp Ala Ser Leu Glu Trp
                                25
Ala Asp Val Val Ile Gly Pro Gly Leu Gly Gln Gln Ala Trp Gly
                            40
                                                45
Lys Lys Ala Leu Gln Lys Val Glu Asn Cys Arg Lys Pro Met Leu Trp
Asp Ala Asp Ala Leu Asn Leu Leu Ala Ile Asn Pro Asp Lys Arg His
                    70
Asn Arg Ile Leu Thr Pro His Pro Gly Glu Ala Ala Arg Leu Leu Ser
Cys Ser Val Ala Glu Ile Glu Asn Asp Arg Leu Leu Xaa Cys Ala Arg
```

```
105
                                                   110
            100
Leu Val Lys Arg
        115
<210> 313
<211> 347
<212> DNA
<213> Homo sapiens
<400> 313
ncaactgaaa gcattgagat gagcgacgtg ctgtccccct tccaccccac caaggccaac
acceptggtg gegaacegeg caccateege acctegaacg egeacateat tgccgtcace
aqtqqcaaag gcggcgtggg caagaccttt gtctccgcca acctggccgc cgcgctgacc
cgcctgggac tgcgcgtgct ggtactggac gccgacctgg gcctggccaa cttggacgtg
gtgctgaacc tctaccccaa ggtgacgctg cacgatgtgt tcaccggcaa ggcctcgctg
caagacgcgg tggtcacggc ccccggcggc ttccatgtgc tgctagc
347
<210> 314
<211> 115
<212> PRT
<213> Homo sapiens
<400> 314
Xaa Thr Glu Ser Ile Glu Met Ser Asp Val Leu Ser Pro Phe His Pro
                 5
                                    10
Thr Lys Ala Asn Thr Pro Gly Gly Glu Pro Arg Thr Ile Arg Thr Ser
                                25
Asn Ala His Ile Ile Ala Val Thr Ser Gly Lys Gly Gly Val Gly Lys
                                                45
                            40
Thr Phe Val Ser Ala Asn Leu Ala Ala Ala Leu Thr Arg Leu Gly Leu
Arg Val Leu Val Leu Asp Ala Asp Leu Gly Leu Ala Asn Leu Asp Val
65
                    70
                                        75
Val Leu Asn Leu Tyr Pro Lys Val Thr Leu His Asp Val Phe Thr Gly
                                    90
                85
Lys Ala Ser Leu Gln Asp Ala Val Val Thr Ala Pro Gly Gly Phe His
                                105
Val Leu Leu
        115
<210> 315
<211> 544
<212> DNA
<213> Homo sapiens
<400> 315
nnacgcgttc gtcaacagga aaacaacaac ggcttctcgc tggagggaac catgcttgcc
```

```
gaagatatet acgcgatcat getgttttca tegetcatee tggtegteec ggggecatee
aacaccttgc tgctcagcgc ccgtttccat ttcggctcgc tgcgggcggc gcccttcatc
ctgcttgagg cgttgggcta ctcgctatcc atttcggcat ggggctgggt attggcgcgc
ctgtccgaga gcaatccatg gatcatcagt ctgaccaagg cactctgcgc gctatatgtg
300
gegettetgg eggtgaagae etggaatgee ntegateege agtgegggge eggtaaette
cgccatgggc ccctgcccct gttcgtggca accctgtcga acccgaaggc gctgatcttc
gecagegtga tettteeegg caaggegtte etegaettet ggaacaacta caegateteg
ctgctqgcct tcctggttgt gctggcgccc atcgggatgc tttgggtcgg gctgggggcc
540
ggta
544
<210> 316
<211> 159
<212> PRT
<213> Homo sapiens
<400> 316
Ile Tyr Ala Ile Met Leu Phe Ser Ser Leu Ile Leu Val Val Pro Gly
                                    10
Pro Ser Asn Thr Leu Leu Leu Ser Ala Arg Phe His Phe Gly Ser Leu
                                                    30
                                25
Arg Ala Ala Pro Phe Ile Leu Leu Glu Ala Leu Gly Tyr Ser Leu Ser
                            40
Ile Ser Ala Trp Gly Trp Val Leu Ala Arg Leu Ser Glu Ser Asn Pro
                        55
Trp Ile Ile Ser Leu Thr Lys Ala Leu Cys Ala Leu Tyr Val Ala Leu
                    70
Leu Ala Val Lys Thr Trp Asn Ala Xaa Asp Pro Gln Cys Gly Ala Gly
                                    90
                85
Asn Phe Arg His Gly Pro Leu Pro Leu Phe Val Ala Thr Leu Ser Asn
                                105
Pro Lys Ala Leu Ile Phe Ala Ser Val Ile Phe Pro Gly Lys Ala Phe
                                                125
                            120
        115
Leu Asp Phe Trp Asn Asn Tyr Thr Ile Ser Leu Leu Ala Phe Leu Val
                        135
Val Leu Ala Pro Ile Gly Met Leu Trp Val Gly Leu Gly Ala Gly
                    150
<210> 317
<211> 343
<212> DNA
<213> Homo sapiens
<400> 317
nggtcagcct ctcgcccagg caattctctt aagatacatg agctgctatg agtaccaaag
60
```

```
ccagaggttt gtccactgag agaagcacat tggaaagggg ggcgtgggcc tgggactgtg
tggcacttta tgcacggggg gggcctaagg ggggnggtcc accaaccatg cactgngggt
ggggtgtggg taacatgccg tgcattttgg gggtgtgcca tgagtggcac accatggggg
tggcatgtgg ggcatgtatg catgtggtgt tggcgcagca aactcagctc ttacctggct
ggggccagcc tctaaaactt ctcacattgg gctcccttct gac
343
<210> 318
<211> 98
<212> PRT
<213> Homo sapiens
<400> 318
Met Ser Thr Lys Ala Arg Gly Leu Ser Thr Glu Arg Ser Thr Leu Glu
                                    10
Arg Gly Ala Trp Ala Trp Asp Cys Val Ala Leu Tyr Ala Arg Gly Gly
                                25
Pro Lys Gly Gly Pro Pro Thr Met His Xaa Gly Trp Gly Val Gly
                            40
Asn Met Pro Cys Ile Leu Gly Val Cys His Glu Trp His Thr Met Gly
                                            60
Val Ala Cys Gly Ala Cys Met His Val Val Leu Ala Gln Gln Thr Gln
                    70
Leu Leu Pro Gly Trp Gly Gln Pro Leu Lys Leu Leu Thr Leu Gly Ser
                                    90
                85
Leu Leu
<210> 319
<211> 429
<212> DNA
<213> Homo sapiens
<400> 319
quattetequa totaccecet eceggeagte etattetega getgageggg eacagtggee
ccgttaacag tgtggcttgg ggtccaccca gccagagcac gttgcgaaat ggacctagta
120
agggcatgat atgtacagga ggcgacgatg ctcagtgcct cgtatatgat ctgactagct
caactetteg aacageatet geteaaggae ggegeteteg aaacagteea tataaacaaa
gccattcacc gggaatagac ggatggcgtg tcggcgcaga agtgccggtg ctcgcttata
eggeeegte tatggteaac aatgetaget ggeteggeat geetgegeea teaaaaegea
categotaca gageaaacac egeageettt acegeagett acteagtgag tggactgagt
420
atacgtccn
429
```

```
<210> 320
<211> 101
<212> PRT
<213> Homo sapiens
<400> 320
Met Ile Cys Thr Gly Gly Asp Asp Ala Gln Cys Leu Val Tyr Asp Leu
                                                         15
                 5
Thr Ser Ser Thr Leu Arg Thr Ala Ser Ala Gln Gly Arg Arg Ser Arg
                                25
Asn Ser Pro Tyr Lys Gln Ser His Ser Pro Gly Ile Asp Gly Trp Arg
                            40
Val Gly Ala Glu Val Pro Val Leu Ala Tyr Thr Ala Pro Ser Met Val
Asn Asn Ala Ser Trp Leu Gly Met Pro Ala Pro Ser Lys Arg Thr Ser
                    70
                                        75
Leu Gln Ser Lys His Arg Ser Leu Tyr Arg Ser Leu Leu Ser Glu Trp
                85
                                    90
Thr Glu Tyr Thr Ser
            100
<210> 321
<211> 530
<212> DNA
<213> Homo sapiens
<400> 321
ngtgcacgac gtgctcgcca agtccctcgg gtcctctaat gcgatcaacg tggttcacgc
caccytcgat gcgttgcagc agctcgagga gcccgaagag gtcgcccgtc gccgcggcaa
qtccqttgag gagatcgccc cagcagccat gctgcgtgcg cgcaaggagg ccgacgaggc
cgccgctgct gcccgcatgg aggaaaaggc gggggttaac tgatgagcaa gctgaagatc
acccagatca agtetggcat egetaceaag ecaaatcate gtgagaceet gegeageete
ggactgaage gtattggtga caeggtcate aaggaggace geeeggagtt eegeggeatg
gteeggaceg ttegteacet egteaceatg gaagaggtgg actgacatgg ctattgaget
ccatqacctc aaqcccqctc ctqqtqccca caaqqccaaq acccqcgttg gtcqtqqtga
gggttccaag ggtaagaccg ctggtcgcgg taccaagggc accggtgcac
530
<210> 322
<211> 60
<212> PRT
<213> Homo sapiens
<400> 322
Met Ser Lys Leu Lys Ile Thr Gln Ile Lys Sèr Gly Ile Ala Thr Lys
```

```
10
Pro Asn His Arg Glu Thr Leu Arg Ser Leu Gly Leu Lys Arg Ile Gly
                                25
Asp Thr Val Ile Lys Glu Asp Arg Pro Glu Phe Arg Gly Met Val Arg
                            40
Thr Val Arg His Leu Val Thr Met Glu Glu Val Asp
<210> 323
<211> 468
<212> DNA
<213> Homo sapiens
<400> 323
nteeggacce getgtggeca egtattetge egtteetgta ttgetaccag tetaaagaac
aacaagtgga cotgtootta ttgoogggca tatottoott cagaaggagt tocagcaact
gatgtagcca aaagaatgaa atcagagtat aagaactgcg ctgagtgtga caccctggtt
tgcctcagtg aaatgagggc acatattcgg acttgtcaga agtacataga taagtatgga
240
ccactacaag aacttgagga gacagcagca aggtgtgtat gtcccttttg tcagagggaa
ctgtatgaag acagettget ggatcattgt attactcate acagategga acggaggeet
gtgttctgtc cactttgcca tttaataccc gatgagaatc caagcagctt cagtggcagt
ttaataagac atctgcaagt tagtcacact ttggtttatg atgatttc
<210> 324
<211> 156
<212> PRT
<213> Homo sapiens
<400> 324
Xaa Arg Thr Arg Cys Gly His Val Phe Cys Arg Ser Cys Ile Ala Thr
                 5
Ser Leu Lys Asn Asn Lys Trp Thr Cys Pro Tyr Cys Arg Ala Tyr Leu
Pro Ser Glu Gly Val Pro Ala Thr Asp Val Ala Lys Arg Met Lys Ser
                                                45
Glu Tyr Lys Asn Cys Ala Glu Cys Asp Thr Leu Val Cys Leu Ser Glu
                        55
Met Arg Ala His Ile Arg Thr Cys Gln Lys Tyr Ile Asp Lys Tyr Gly
                    70
Pro Leu Gln Glu Leu Glu Glu Thr Ala Ala Arg Cys Val Cys Pro Phe
                85
                                    90
Cys Gln Arg Glu Leu Tyr Glu Asp Ser Leu Leu Asp His Cys Ile Thr
            100
                                105
                                                    110
His His Arg Ser Glu Arg Arg Pro Val Phe Cys Pro Leu Cys His Leu
                            120
Ile Pro Asp Glu Asn Pro Ser Ser Phe Ser Gly Ser Leu Ile Arg His
```

```
135
Leu Gln Val Ser His Thr Leu Val Tyr Asp Asp Phe
145
                    150
<210> 325
<211> 374
<212> DNA
<213> Homo sapiens
<400> 325
acgcgtgaag ggaggacgag gaagtaacgg gaagcacaag gccgctgctg gggagatggc
actggagccc cctaggaagc atctcacagg ctgtggccct tggcacgggg atctggggcc
aggtcgagcg caggtctggg tatcatgcga gtgcgggctc gctggggcgg gaaagagttt
ggagetetge teccagggaa tecceaetee egeagatgae ttgccegaga gagttetget
ggtggatttt gatggaaatt ctatttgatc gcacccactt ggttcactgt gtgcttccgg
gtccccaggt tttaggtgct tcatgccctg ctgggaacga gacacgctcc tgccctcagt
gaatcttcag tcta
374
<210> 326
<211> 108
<212> PRT
<213> Homo sapiens
<400> 326
Met Lys His Leu Lys Pro Gly Asp Pro Glu Ala His Ser Glu Pro Ser
                                    10
Gly Cys Asp Gln Ile Glu Phe Pro Ser Lys Ser Thr Ser Arg Thr Leu
            20
                                25
Ser Gly Lys Ser Ser Ala Gly Val Gly Ile Pro Trp Glu Gln Ser Ser
                            40
                                                 45
Lys Leu Phe Pro Ala Pro Ala Ser Pro His Ser His Asp Thr Gln Thr
    50
                        55
Cys Ala Arg Pro Gly Pro Arg Ser Pro Cys Gln Gly Pro Gln Pro Val
                    70
Arg Cys Phe Leu Gly Gly Ser Ser Ala Ile Ser Pro Ala Ala Ala Leu
                                    90
                85
Cys Phe Pro Leu Leu Pro Arg Pro Pro Phe Thr Arg
<210> 327
<211> 538
<212> DNA
<213> Homo sapiens
<400> 327
cactataaaa tooagtttgg ggcccgtgtt ctttcctatt ggtctgtcag gtgaaaaact
```

```
ccggctgggg gaaaagcgtc cggtggtttg ttggtaaaga gggtgcgtga tgggctctgg
ggaatggagg atggcgcacc ggctgtgggt ggactgtgga aacggggggt ggcagtgccg
180
qqqtaqttqt cctqctqqtc tqqttttqgq atcctggqct ggagaaatqc gatccaaaaq
agctcgggat gggctcagag cgacccacga aaataccagg ggccaagtaa aatgaaccca
300
ccctttaaca gtgcacaaag cgctggcaca cggtccacgt ctggtgacgc aggctgcccg
aagegeteea accattttge aaacetggga gagcaagagg ggetetgeag gtetageege
cgcccctgtc ccactctggc cagccggagt ttttcaccta cagaccaata ggaaagaaca
cgggccccaa actggatttt atagtctgag ctctcagcat ctaaggaatg atatgccc
538
<210> 328
<211> 125
<212> PRT
<213> Homo sapiens
<400> 328
Met Val Gly Ala Leu Arg Ala Ala Cys Val Thr Arg Arg Gly Pro Cys
                                    10
Ala Ser Ala Leu Cys Thr Val Lys Gly Trp Val His Phe Thr Trp Pro
Leu Val Phe Ser Trp Val Ala Leu Ser Pro Ser Arg Ala Leu Leu Asp
                            40
Arg Ile Ser Pro Ala Gln Asp Pro Lys Thr Arg Pro Ala Gly Gln Leu
                                            60
Pro Arq His Cys His Pro Pro Phe Pro Gln Ser Thr His Ser Arq Cys
                    70
                                        75
Ala Ile Leu His Ser Pro Glu Pro Ile Thr His Pro Leu Tyr Gln Gln
                85
                                    90
Thr Thr Gly Arg Phe Ser Pro Ser Arg Ser Phe Ser Pro Asp Arg Pro
                                105
Ile Gly Lys Asn Thr Gly Pro Lys Leu Asp Phe Ile Val
        115
                            120
<210> 329
<211> 407
<212> DNA
<213> Homo sapiens
<400> 329
teeggagagt teeeteeca ggaatteett etaagaatee atgtggaaat agageetgaa
getetteagt etttetgete eactgageag tgtttteetg ataceettgg tateetgeea
geageetegt tatgaeteet aacteeattg ceetecatgg eccetgggeg etetetetet
etttetete aggtagtaga geaetgette tggettettg tgcacagaag ggttteecac
240
```

```
agetgagage tgggetecta etgacatagt tattteettt atateetgee ecacettett
ctggtagcac acagcaacct tgcatagtag ctggtatcat taccttccca atcaacaggc
cttgatttct tataggactt tttctctcag atttacattg cttcttt
<210> 330
<211> 113
<212> PRT
<213> Homo sapiens
<400> 330
Met Ile Pro Ala Thr Met Gln Gly Cys Cys Val Leu Pro Glu Glu Gly
                                    10
Gly Ala Gly Tyr Lys Gly Asn Asn Tyr Val Ser Arg Ser Pro Ala Leu
Ser Cys Gly Lys Pro Phe Cys Ala Gln Glu Ala Arg Ser Ser Ala Leu
                            40
Leu Pro Gly Glu Lys Glu Arg Glu Ser Ala Gln Gly Pro Trp Arg Ala
                        55
                                            60
Met Glu Leu Gly Val Ile Thr Arg Leu Leu Ala Gly Tyr Gln Gly Tyr
                    70
                                        75
Gln Glu Asn Thr Ala Gln Trp Ser Arg Lys Thr Glu Glu Leu Gln Ala
                                    90
Leu Phe Pro His Gly Phe Leu Glu Gly Ile Pro Gly Glu Gly Thr Leu
                                105
Arg
<210> 331
<211> 523
<212> DNA
<213> Homo sapiens
<400> 331
tgtaccgaac ctgctggtct cgagggcctt gctgggctcg tcgtacgcac agctgacgaa
tecaceggee eccatecegg egecacttte getgaggeea tggagtegat eggageeage
tacgacggat cggccgggtt ggccggaagt cacgtcggcg tcgatgtgcc cgtgacaagg
ttcgacqcaq cqqctqaact cttcgtcgaa ttgttgaaca ccacgagcct ggttgaagag
qacatcqccc qtcagatcqa cgcggcgcga gcctccctgg cccagaccag ccagcgcgga
300
teggeectag cegagatgge ageageacgt gegetatgge cagtggggte aeggtegtee
ctgcccacga teggtaccct ctcgtcggtg gaaaagctca acgccgcagc cgcacgagaa
ttctgggccg cgcactggac gatctccgat gccgtgctgg tggttgccgg agagggagtc
gaggaceteg aettgteaat atteaaggag tggaegaeea get
523
```

```
<210> 332
<211> 174
<212> PRT
<213> Homo sapiens
<400> 332
Cys Thr Glu Pro Ala Gly Leu Glu Gly Leu Ala Gly Leu Val Val Arg
                5
Thr Ala Asp Glu Ser Thr Gly Pro His Pro Gly Ala Thr Phe Ala Glu
Ala Met Glu Ser Ile Gly Ala Ser Tyr Asp Gly Ser Ala Gly Leu Ala
Gly Ser His Val Gly Val Asp Val Pro Val Thr Arg Phe Asp Ala Ala
Ala Glu Leu Phe Val Glu Leu Leu Asn Thr Thr Ser Leu Val Glu Glu
                                        75
                    70
Asp Ile Ala Arg Gln Ile Asp Ala Ala Arg Ala Ser Leu Ala Gln Thr
                                    90
Ser Gln Arg Gly Ser Ala Leu Ala Glu Met Ala Ala Ala Arg Ala Leu
                                105
           100
Trp Pro Val Gly Ser Arg Ser Ser Leu Pro Thr Ile Gly Thr Leu Ser
                            120
Ser Val Glu Lys Leu Asn Ala Ala Ala Ala Arg Glu Phe Trp Ala Ala
                        135
                                            140
His Trp Thr Ile Ser Asp Ala Val Leu Val Val Ala Gly Glu Gly Val
                   150
                                        155
Glu Asp Leu Asp Leu Ser Ile Phe Lys Glu Trp Thr Thr Ser
               165
<210> 333
<211> 372
<212> DNA
<213> Homo sapiens
<400> 333
nntqttcqtc qtqtcqaccc ggaactcaag gcccaggcga tgacggtgaa ggtgccaacc
gatececate accgeceggg agttecattg aagtetgega aggacegtat ggacateatt
totgettacc gagaactegg aagetatege geegeageeg aggtgtgegg caccacceae
aagaccgtca agcgggtggt cgatcggttt gaagccggcg atccacccac cggtggcaag
gaacgggccc gcaactacga tgcggtggcc cagctcgtcg cgcagcgagt cgcgcggtca
cacggccgga tcactgccaa acggctgcta ccggtagcgc gagcggcagg atatgagggg
teggegegga at
372
<210> 334
<211> 88
<212> PRT
```

<213> Homo sapiens <400> 334 Met Asp Ile Ile Ser Ala Tyr Arg Glu Leu Gly Ser Tyr Arg Ala Ala Ala Glu Val Cys Gly Thr Thr His Lys Thr Val Lys Arg Val Val Asp 25 Arg Phe Glu Ala Gly Asp Pro Pro Thr Gly Gly Lys Glu Arg Ala Arg 40 Asn Tyr Asp Ala Val Ala Gln Leu Val Ala Gln Arg Val Ala Arg Ser 55 His Gly Arg Ile Thr Ala Lys Arg Leu Leu Pro Val Ala Arg Ala Ala 70 Gly Tyr Glu Gly Ser Ala Arg Asn 85 <210> 335 <211> 356 <212> DNA <213> Homo sapiens <400> 335 gtgcacgcct tgctgggcga gggcgatgcg cctgcgcgca ccttcgtgga cggtaccttt ggcaggggag ggcattcgcg gctcatcctg cagcggttgg ggccgcaagg ccgcctggtg 120 gegttegaca aggacacega agecatteaa geageggege geateaegga tgegegettt tccatcnggc accaggggtt cagccatctc ggggaactgc ccgccgccag cgtgtccggt gtgctgctgg acctgggcgt gagctccccg cagatcgacg acccccagcg cgggttcagt 300 tttcgtttcg atggtccgct ggacatgcgc atggacacca ctccgatgca tggatg <210> 336 <211> 118 <212> PRT <213> Homo sapiens <400> 336 Val His Ala Leu Leu Gly Glu Gly Asp Ala Pro Ala Arg Thr Phe Val Asp Gly Thr Phe Gly Arg Gly Gly His Ser Arg Leu Ile Leu Gln Arg Leu Gly Pro Gln Gly Arg Leu Val Ala Phe Asp Lys Asp Thr Glu Ala 45 40 Ile Gln Ala Ala Ala Arg Ile Thr Asp Ala Arg Phe Ser Ile Xaa His 55 Gln Gly Phe Ser His Leu Gly Glu Leu Pro Ala Ala Ser Val Ser Gly 70 75 Val Leu Leu Asp Leu Gly Val Ser Ser Pro Gln Ile Asp Asp Pro Gln 85 90

Arg Gly Phe Ser Phe Arg Phe Asp Gly Pro Lèu Asp Met Arg Met Asp

```
110
                               105
            100
Thr Thr Pro Met His Gly
        115
<210> 337
<211> 447
<212> DNA
<213> Homo sapiens
<400> 337
cagectetet eegacegege eggtgtgaag caegggeatg eeggtgtgea agtggeacea
cagecaaaac agegagetea caetteaaac teetteaaag acceeaggee tetgtaagaa
cegeteatet etgtgeecae ageteeceeg ettecatgtg acceagaaat ggaaceaege
agcagaggcg gggatcacag gtgaagcagc tgtgaacatt tgcttcaggc ttctgtgcaa
acaggegeca teatgteage eggtgageag gageaacgtg egtgggteag ggggtggeea
cacgtccaac tttataagaa atgacagatt ccctgatggc catagggatc tgcagggcca
gcagcaggca taggacttcc ggtggccctg cgtcttcatc aacactgagt attgtcaggg
420
tttctgtact gtttttacag ccaattg
<210> 338
<211> 111
<212> PRT
<213> Homo sapiens
<400> 338
Met Pro Val Cys Lys Trp His His Ser Gln Asn Ser Glu Leu Thr Leu
Gln Thr Pro Ser Lys Thr Pro Gly Leu Cys Lys Asn Arg Ser Ser Leu
                                25
Cys Pro Gln Leu Pro Arg Phe His Val Thr Gln Lys Trp Asn His Ala
Ala Glu Ala Gly Ile Thr Gly Glu Ala Ala Val Asn Ile Cys Phe Arg
Leu Leu Cys Lys Gln Ala Pro Ser Cys Gln Pro Val Ser Arg Ser Asn
Val Arg Gly Ser Gly Gly His Thr Ser Asn Phe Ile Arg Asn Asp
                                    90
Arg Phe Pro Asp Gly His Arg Asp Leu Gln Gly Gln Gln Gln Ala
                               105
<210> 339
<211> 588
<212> DNA
<213> Homo sapiens
<400> 339
```

```
totaqaatqa aqoqotqtat ootaqoacog goaqaogtac caagactato aagggogtca
gatcgtttat cctgcagttg ccattcatca gacaaatcca gtggaaccca atggaagaca
cogacotgca agogotgatg gocagactog aattgotaat tgatogggto gagoaactta
180
agagtcaaaa cggactccta ttagctcagg aaaagacctg ggcgcganaa cgcgctcacc
240
tcattgaaaa aaacgaaatc gcccggcgta aggtcgaatc gatgatttcg cgcctgaagg
ccctggagca agactatgag ttaagcaata gcgttacgtg cagatcctcg acaaagaata
ttcgatcatc tgcccccagg aagaacgcag cacctggtga gtgctgcccg ctacctggaa
ggccaaaagg cgtgaaatcc gcagcagcgg caaagtcatc ggtgccgacc gcatcgccgt
gatggccgcg ctgaacatca cccacgatct gctgcataag caggaacggc ctgacgttca
ggccagcggc tcaacgcgcg agcaagtgcg tgacctgctg gaacgcgt
588
<210> 340
<211> 123
<212> PRT
<213> Homo sapiens
<400> 340
Met Glu Asp Thr Asp Leu Gln Ala Leu Met Ala Arg Leu Glu Leu Leu
                                    10
Ile Asp Arg Val Glu Gln Leu Lys Ser Gln Asn Gly Leu Leu Leu Ala
            20
                                25
Gln Glu Lys Thr Trp Ala Arg Xaa Arg Ala His Leu Ile Glu Lys Asn
                            40
Glu Ile Ala Arg Arg Lys Val Glu Ser Met Ile Ser Arg Leu Lys Ala
                        55
                                            60
Leu Glu Gln Asp Tyr Glu Leu Ser Asn Ser Val Thr Cys Arg Ser Ser
                                        75
                    70
Thr Lys Asn Ile Arg Ser Ser Ala Pro Arg Lys Asn Ala Ala Pro Gly
                                    90
Glu Cys Cys Pro Leu Pro Gly Arg Pro Lys Gly Val Lys Ser Ala Ala
                                105
Ala Ala Lys Ser Ser Val Pro Thr Ala Ser Pro
                            120
<210> 341
<211> 401
<212> DNA
<213> Homo sapiens
<400> 341
ngccgcgcgg cctacctgct gtacctggcc tatgccacct ggcgtgaccg ctcggccttt
gcaatgaacg acacgccgac agttgcgacc gcgcgcagcc tgatcctgcg tggcttcttg
120
```

```
ctqaacattc ttaaccccaa qctqacaatt ttcttcctgg ccttcctgcc tcaattcgta
acqccaqqcq gcaccqcqcc ggccttgcag atgctggtac tgagcggcgt gttcatggcg
atqacqcttg caqtqtttgt gctgtatggc ctgttggcga atgtgtttcg tcgtgcagtg
gtcgagtcgc cacgtgtgca gaactggctg cgacgcagtt ttgccacggc ctttgccggg
ctggggttga acctggcgtt tgcgcagcgc tgaggacgcg t
401
<210> 342
<211> 130
<212> PRT
<213> Homo sapiens
<400> 342
Xaa Arg Ala Ala Tyr Leu Leu Tyr Leu Ala Tyr Ala Thr Trp Arg Asp
                                    10
Arg Ser Ala Phe Ala Met Asn Asp Thr Pro Thr Val Ala Thr Ala Arg
            20
                                25
Ser Leu Ile Leu Arg Gly Phe Leu Leu Asn Ile Leu Asn Pro Lys Leu
                            40
Thr Ile Phe Phe Leu Ala Phe Leu Pro Gln Phe Val Thr Pro Gly Gly
Thr Ala Pro Ala Leu Gln Met Leu Val Leu Ser Gly Val Phe Met Ala
                    70
                                        75
Met Thr Leu Ala Val Phe Val Leu Tyr Gly Leu Leu Ala Asn Val Phe
                                    90
Arg Arg Ala Val Val Glu Ser Pro Arg Val Gln Asn Trp Leu Arg Arg
                                105
            100
Ser Phe Ala Thr Ala Phe Ala Gly Leu Gly Leu Asn Leu Ala Phe Ala
                                                125
                            120
Gln Arg
    130
<210> 343
<211> 389
<212> DNA
<213> Homo sapiens
<400> 343
gtgttgegea actacatgge gteeetgeeg tteagegtgg tegagtegge gegeategae
gggtgctcca acttccagat cttctggaag ctgatcgccc cgatggcgat gccggcgatg
geggegtteg egaccetgea gtteetgtgg gtgtggaaeg acetgeteat egecaagete
ttcctcacca acgacaaccc cacggtgatc gtcaagctcc aacagctttc cnngggcccc
aaggeceagg gtgeggaget getgaeggeg ggegeettea teteeategt getaeceatg
atcgtcttct tcgtgctcca gaacttcctg gtgcgcggta tgacgtcggg tgccgtcaag
360
```

```
gggtgaccgc tcaactgcag tggcccggg
389
<210> 344
<211> 121
<212> PRT
<213> Homo sapiens
<400> 344
Val Leu Arg Asn Tyr Met Ala Ser Leu Pro Phe Ser Val Val Glu Ser
 1
                                    10
                 5
Ala Arg Ile Asp Gly Cys Ser Asn Phe Gln Ile Phe Trp Lys Leu Ile
Ala Pro Met Ala Met Pro Ala Met Ala Phe Ala Thr Leu Gln Phe
                            40
Leu Trp Val Trp Asn Asp Leu Leu Ile Ala Lys Leu Phe Leu Thr Asn
Asp Asn Pro Thr Val Ile Val Lys Leu Gln Gln Leu Ser Xaa Gly Pro
                    70
                                         75
Lys Ala Gln Gly Ala Glu Leu Leu Thr Ala Gly Ala Phe Ile Ser Ile
                85
                                    90
Val Leu Pro Met Ile Val Phe Phe Val Leu Gln Asn Phe Leu Val Arg
            100
                                105
                                                    110
Gly Met Thr Ser Gly Ala Val Lys Gly
        115
                            120
<210> 345
<211> 360
<212> DNA
<213> Homo sapiens
<400> 345
ctagtacttt atgetgatgg tgaacgtcgt tacatecttg cccctaaagg catggttgct
ggtgatgtga tccaatctgg tgaagatgca tcaattaaag taggtaactg cttaccgatg
cgtaatattc cagttggtac aacagtacac gctgtagaaa tgaaacctgc taaaggtgca
caaattgcac gttctgctgg ttcttacagc caaattatag ctcgtgatgg tgcttacgtt
actictacgtt tacgtagtgg tgaaatgcgt aaaatccctg ctgagtgtcg tgcaacaatc
ggtgaagttg gtaatgcaga acatatgcta cgtcaactag gtaaagctgg tgctacgcgt
360
<210> 346
<211> 120
<212> PRT
<213> Homo sapiens
<400> 346
Leu Val Leu Tyr Ala Asp Gly Glu Arg Arg Tyr Ile Leu Ala Pro Lys
                                    10
Gly Met Val Ala Gly Asp Val Ile Gln Ser Gly Glu Asp Ala Ser Ile
```

```
Lys Val Gly Asn Cys Leu Pro Met Arg Asn Ile Pro Val Gly Thr Thr
                            40
Val His Ala Val Glu Met Lys Pro Ala Lys Gly Ala Gln Ile Ala Arg
                        55
Ser Ala Gly Ser Tyr Ser Gln Ile Ile Ala Arg Asp Gly Ala Tyr Val
                    70
                                         75
Thr Leu Arg Leu Arg Ser Gly Glu Met Arg Lys Ile Pro Ala Glu Cys
                                     90
Arg Ala Thr Ile Gly Glu Val Gly Asn Ala Glu His Met Leu Arg Gln
            100
                                105
Leu Gly Lys Ala Gly Ala Thr Arg
        115
<210> 347
<211> 565
<212> DNA
<213> Homo sapiens
<400> 347
acceggtgatg ccaaaggtgc tgtgacaagg ggattcatcg gttcgggcaa ggtcgtcacg
geagetgeeg teateatgat treggtgtte gtettettea teecegaggg catgaacgee
atcaaggaaa tegeeetgge cetggeegte gggateetea eggatgeett ettggtgegg
atgacecteg teeeggeegt gatggeeetg etaggtgaca aggeatggtg gttgeeeggg
tggctggatc gacgcctacc ccgcctcgac atcgagggag aagggatcac ccacgaggaa
300
aagetggeeg cetggeeeac ageggateac acegaggeec tgeacgeega ggggateggg
gtggagggc tcttcgaagg cctcgatctg cacgtcgaac cgcgtcaggt gcaagccgtc
gteggatege agaacagtgt cteggeegte ctgetggega tegggggaeg getgeeettg
gatcacggcc ggatgaggtc gggaggattg ctgctacccg agcgggcttc cagagtgcgt
cgggtgacgt ggttcctcga cgcgt
565
<210> 348
<211> 188
<212> PRT
<213> Homo sapiens
<400> 348
Thr Gly Asp Ala Lys Gly Ala Val Thr Arg Gly Phe Ile Gly Ser Gly
Lys Val Val Thr Ala Ala Ala Val Ile Met Ile Ser Val Phe Val Phe
                                25
Phe Ile Pro Glu Gly Met Asn Ala Ile Lys Glu Ile Ala Leu Ala Leu
Ala Val Gly Ile Leu Thr Asp Ala Phe Leu Val Arg Met Thr Leu Val
```

55 60 Pro Ala Val Met Ala Leu Leu Gly Asp Lys Ala Trp Trp Leu Pro Gly 70 Trp Leu Asp Arg Arg Leu Pro Arg Leu Asp Ile Glu Gly Glu Gly Ile 9**0** 85 Thr His Glu Glu Lys Leu Ala Ala Trp Pro Thr Ala Asp His Thr Glu 105 Ala Leu His Ala Glu Gly Ile Gly Val Glu Gly Leu Phe Glu Gly Leu 120 125 Asp Leu His Val Glu Pro Arg Gln Val Gln Ala Val Val Gly Ser Gln 135 Asn Ser Val Ser Ala Val Leu Leu Ala Ile Gly Gly Arg Leu Pro Leu 155 150 Asp His Gly Arg Met Arg Ser Gly Gly Leu Leu Pro Glu Arg Ala 170 Ser Arg Val Arg Arg Val Thr Trp Phe Leu Asp Ala 185 180 <210> 349 <211> 339 <212> DNA <213> Homo sapiens <400> 349 ntqctqqcca cqqataatga ccgtactctg cgtgatgtcg ttgccgctga ccctacccat qaqcteggtt eggetaeege teataegttt geggacaatt tgeegtteet tettaaaetg ctcgcggcag aagagccact atcgttgcag gctcatccca gtttggcgca agcacaggaa gggtacgggc gggagaatcg caaaggggtg ccattagatg ccccagaccg gaattaccac qatcccaacc ataaaccgga gcttattgtt gggctgacgc gattccacgc actagccggc ttccgtgaac cacaacgcac acttgagctt tttgacgcg 339 <210> 350 <211> 113 <212> PRT <213> Homo sapiens <400> 350 Xaa Leu Ala Thr Asp Asn Asp Arg Thr Leu Arg Asp Val Val Ala Ala 1 Asp Pro Thr His Glu Leu Gly Ser Ala Thr Ala His Thr Phe Ala Asp Asn Leu Pro Phe Leu Leu Lys Leu Leu Ala Ala Glu Glu Pro Leu Ser 40 Leu Gln Ala His Pro Ser Leu Ala Gln Ala Gln Glu Gly Tyr Gly Arg Glu Asn Arg Lys Gly Val Pro Leu Asp Ala Pro Asp Arg Asn Tyr His 70 Asp Pro Asn His Lys Pro Glu Leu Ile Val Gly Leu Thr Arg Phe His

```
90
                85
Ala Leu Ala Gly Phe Arg Glu Pro Gln Arg Thr Leu Glu Leu Phe Asp
            100
                                105
Ala
<210> 351
<211> 354
<212> DNA
<213> Homo sapiens
<400> 351
gegegeeeca gtgeegagae eeggggette aggageegge eeegggagag aagagtgegg
eggeggacgg agaaaacaac tecaaagttg gegaaaggea eegeceetae teeegggetg
ccgccgcctc cccgcccca gccctggcat ccagagtacg ggtcgagccc gnggccatgg
agececetg gggaggegge accagggage etgggeeeeg gggeteegee gegaeeeeat
eggqtaqacc acaqaaqcte eggqaccett cegqcacete tggacageec aggatgetgt
tggccaccon ntcctcctcc tcctccttgg aggcgctctg gcccatccag accg
<210> 352
<211> 118
<212> PRT
<213> Homo sapiens
<400> 352
Ala Arg Pro Ser Ala Glu Thr Arg Gly Phe Arg Ser Arg Pro Arg Glu
                                    10
Arg Arg Val Arg Arg Thr Glu Lys Thr Thr Pro Lys Leu Ala Lys
                                25
Gly Thr Ala Pro Thr Pro Gly Leu Pro Pro Pro Pro Arg Pro Gln Pro
                            40
Trp His Pro Glu Tyr Gly Ser Ser Pro Xaa Pro Trp Ser Pro Pro Gly
Glu Ala Ala Pro Gly Ser Leu Gly Pro Gly Ala Pro Pro Arg Pro His
                                        75
                    70
Arg Val Asp His Arg Ser Ser Gly Thr Leu Pro Ala Pro Leu Asp Ser
                                    90
Pro Gly Cys Cys Trp Pro Pro Xaa Pro Pro Pro Pro Pro Trp Arg Arg
                                105
Ser Gly Pro Ser Arg Pro
        115
<210> 353
<211> 1469
<212> DNA
<213> Homo sapiens
<400> 353
```

nntcatgaag 60	gcttgaactt	gcgtgatctt	cagcctgcgg	acctggcggt	tgacggcgtt
attgagccgg 120	tggacctcgt	ggtcggagat	gtctctttta	teteettgae	gatgatcctt
gaacccattt 180	cagctgttgt	cagcccacac	ggcctcatgc	tgttgctggt	gaagcctcaa
tttgaggttg 240	gttgcaaggc	tttgggagcc	catggcgttg	tcacggaccc	ggccctgcgc
ttgcaggcca 300	tegegggtgt	catggcagca	gcggtagatt	tgggttggcg	tatgcgtgac
gagtgcgata 360	gcccgttgcc	cgggcaggat	ggaaacgttg	agcacttcgt	cttgctggaa
cgtacgggtc 420	ggtgacagac	gtccgggcat	atcatgggcc	gctactgtgg	tcttgtgaac
gacacgagcc 480	cttcgagata	cgttgtcgtc	gtcacccatg	ccacgcggga	cgacgctttt
gacgcggctg 540	ccgaattcat	ctctgaaatg	gcggggcgag	acattggttg	cgcggttccg
gatgatcagg 600	tgaagccgat	gtcaagcaag	ctgccaggga	tcgatcttga	aagcttggga
gagttcgccc 660	acgaggcgga	ggtggtcgtc	gtctttggcg	gcgacggcac	gatcttgcga
gctgctgaat 720	ggtcattacc	tcgccacgtt	cccatgattg	gcgtcaacct	tggccatgtc
ggttttctgg 780	ctgagctgga	gcgctccgat	atggcggatc	tagtgaacaa	ggtgtgttcg
cgcgactaca 840	ccgttgagga	tegeetegtg	cttaaaacca	ccgtcaccga	gcattccgga
caacaccgtt 900	ggagttettt	tgccgtcaac	gagttgtctc	tggaaaaggc	agcccggcgg
cgcatgctcg 960	acgttctggc	gtctgtcgac	gagttgccgg	tgcaacgctg	gagttgcgac
gggateetgg 1020	tctcgacccc	gaccggatcg	acggcctacg	cgttctcagc	tggcggcccg
gtcatgtggc 1080	ccgatctcga	cgccatgctc	atggtgccgt	tgagcgctca	cgctctcttt
gctcgaccgc 1140	tggtcatgag	cccagctgct	cgagtggacc	ttgacatcca	gccagacggt
1200				gcaccgtacg	
agaatcaccg 1260	tegteegeea	tcccgaccgt	ctgcgcattg	ctcgtctggc	cgcgcagccc
ttcacatcgc 1320	gtctggtcaa	gaagtttgag	ctcccggtca	gcgggtggcg	tcagggtcgt
gaccgtcatc 1380	acctagagga	gacttcgtga	tacgtagtgt	gcgaattcgt	ggactcggcg
tcatcgatga 1440	gacggtcctc	gaaccctcat	ccgcgctgac	ggcagtcacc	ggcgagaccg
g c gccggaaa 1469	gaccatggtg	gtcaccggt			
<210> 354					
<211> 318 <212> PRT					

<213> Homo sapiens

<400> 354 Met Gly Arg Tyr Cys Gly Leu Val Asn Asp Thr Ser Pro Ser Arg Tyr 10 Val Val Val Thr His Ala Thr Arg Asp Asp Ala Phe Asp Ala Ala 25 Ala Glu Phe Ile Ser Glu Met Ala Gly Arg Asp Ile Gly Cys Ala Val 40 Pro Asp Asp Gln Val Lys Pro Met Ser Ser Lys Leu Pro Gly Ile Asp Leu Glu Ser Leu Gly Glu Phe Ala His Glu Ala Glu Val Val Val 70 75 Phe Gly Gly Asp Gly Thr Ile Leu Arg Ala Ala Glu Trp Ser Leu Pro 90 Arg His Val Pro Met Ile Gly Val Asn Leu Gly His Val Gly Phe Leu 105 100 Ala Glu Leu Glu Arg Ser Asp Met Ala Asp Leu Val Asn Lys Val Cys 120 Ser Arg Asp Tyr Thr Val Glu Asp Arg Leu Val Leu Lys Thr Thr Val 135 140 Thr Glu His Ser Gly Gln His Arg Trp Ser Ser Phe Ala Val Asn Glu 150 155 160 Leu Ser Leu Glu Lys Ala Ala Arg Arg Arg Met Leu Asp Val Leu Ala 170 Ser Val Asp Glu Leu Pro Val Gln Arg Trp Ser Cys Asp Gly Ile Leu 185 Val Ser Thr Pro Thr Gly Ser Thr Ala Tyr Ala Phe Ser Ala Gly Gly 200 Pro Val Met Trp Pro Asp Leu Asp Ala Met Leu Met Val Pro Leu Ser 215 220 Ala His Ala Leu Phe Ala Arg Pro Leu Val Met Ser Pro Ala Ala Arg 230 235 Val Asp Leu Asp Ile Gln Pro Asp Gly Ser Glu Ser Ala Val Leu Trp 250 Cys Asp Gly Arg Arg Ser Cys Thr Val Arg Pro Gly Glu Arg Ile Thr 265 260 Val Val Arg His Pro Asp Arg Leu Arg Ile Ala Arg Leu Ala Ala Gln 280 Pro Phe Thr Ser Arg Leu Val Lys Lys Phe Glu Leu Pro Val Ser Gly 295 Trp Arg Gln Gly Arg Asp Arg His His Leu Glu Glu Thr Ser <210> 355 <211> 558 <212> DNA <213> Homo sapiens

<400> 355

nggatcccac ctcctggaat ggaaacccac ataccagttc tcttcctcga tttgaatgcg

gatgacetea gtgccaatga geagettgtt ggcccceatg cateeggegt gaactecate 120

```
ctgcccaagg agcatggcag ccagtttttc tacctgccca tcataaagca cagtgatgat
gaggtttcag ccacagcctc ttgggattcc tcggtgcatg attctgttca cttgaatggg
240
gtcacaccac agaatgaaag gatttaccta attgtgaaaa ccacagttca actcagccac
cctgctgcta tggagttagt attacgaaaa cgaattgcag ccaatattta caacaaacag
agtttcacgc agagtttgaa gaggagaata tccctgaaaa atatatttta ttcctgtggt
gtaacctatg aaatagtatc caatatacca aaggcaactg aggagataga ggaccgggaa
acgctggctc tcctggcagc aaggagtgaa aacgaaggca catcagatgg gaagacgtac
540
attgagaagt acactcga
558
<210> 356
<211> 186
<212> PRT
<213> Homo sapiens
<400> 356
Xaa Ile Pro Pro Pro Gly Met Glu Thr His Ile Pro Val Leu Phe Leu
                                    10
Asp Leu Asn Ala Asp Asp Leu Ser Ala Asn Glu Gln Leu Val Gly Pro
His Ala Ser Gly Val Asn Ser Ile Leu Pro Lys Glu His Gly Ser Gln
                            40
Phe Phe Tyr Leu Pro Ile Ile Lys His Ser Asp Asp Glu Val Ser Ala
Thr Ala Ser Trp Asp Ser Ser Val His Asp Ser Val His Leu Asn Gly
                    70
                                        75
Val Thr Pro Gln Asn Glu Arg Ile Tyr Leu Ile Val Lys Thr Thr Val
                                    90
Gln Leu Ser His Pro Ala Ala Met Glu Leu Val Leu Arg Lys Arg Ile
                                105
                                                    110
Ala Ala Asn Ile Tyr Asn Lys Gln Ser Phe Thr Gln Ser Leu Lys Arg
                            120
Arg Ile Ser Leu Lys Asn Ile Phe Tyr Ser Cys Gly Val Thr Tyr Glu
                        135
                                            140
Ile Val Ser Asn Ile Pro Lys Ala Thr Glu Glu Ile Glu Asp Arg Glu
                    150
                                        155
Thr Leu Ala Leu Leu Ala Ala Arg Ser Glu Asn Glu Gly Thr Ser Asp
                165
                                    170
                                                        175
Gly Lys Thr Tyr Ile Glu Lys Tyr Thr Arg
            180
                                185
<210> 357
<211> 323
<212> DNA
<213> Homo sapiens
<400> 357
```

```
acgogtgcgt gtgttgtgtg agtcgggtgt gtgcatgcgt gtgggtgtgc agcaggtggg
gtacgatcag gctgaaggct gatcaggcac aaggctctgg gggagagccc tggttccagc
cctggggtca gagcagcagg ggccagaaag acggcagggg tgagcactgc acccgctggg
caqqqcaqqq ccacagaagg cagggcatgg aggccacgtg aagggcttga cagagtggat
ggatgtctcc ggaagcacct gcgtggccca gtcagcagga tcagactcgc atgtgtcagg
gtcaccatgg gtcagcgagg atn
323
<210> 358
<211> 102
<212> PRT
<213> Homo sapiens
<400> 358
Met Val Thr Leu Thr His Ala Ser Leu Ile Leu Leu Thr Gly Pro Arg
                                    10
Arg Cys Phe Arg Arg His Pro Ser Thr Leu Ser Ser Pro Ser Arg Gly
                                25
Leu His Ala Leu Pro Ser Val Ala Leu Pro Cys Pro Ala Gly Ala Val
                            40
Leu Thr Pro Ala Val Phe Leu Ala Pro Ala Ala Leu Thr Pro Gly Leu
                        55
Glu Pro Gly Leu Ser Pro Arg Ala Leu Cys Leu Ile Ser Leu Gln Pro
Asp Arg Thr Pro Pro Ala Ala His Pro His Ala Cys Thr His Pro Thr
                                    90
                85
His Thr Thr His Ala Arg
            100
<210> 359
<211> 265
<212> DNA
<213> Homo sapiens
<400> 359
acgcgtaccg acaagcgccc ggtgatggcc gaccttcgcg aatcgggcgc aatcgagcag
gatgeggaca tgategtett catetacege gacgattact acaacaagga aaattegeeg
120
gacaaggggc tggccgagat catcatcggc aagcatcggg ggggccccac cggctcgtgc
aagetgaagt tetteggega gtacaceegt ttegacaace tggeecacaa eteggttggt
240
tegttegaat aacggatgat teegg
265
<210> 360
<211> 83
<212> PRT
```

<213> Homo sapiens

<400> 360 Thr Arg Thr Asp Lys Arg Pro Val Met Ala Asp Leu Arg Glu Ser Gly Ala Ile Glu Gln Asp Ala Asp Met Ile Val Phe Ile Tyr Arg Asp Asp 20 2.5 Tyr Tyr Asn Lys Glu Asn Ser Pro Asp Lys Gly Leu Ala Glu Ile Ile 40 Ile Gly Lys His Arg Gly Gly Pro Thr Gly Ser Cys Lys Leu Lys Phe 55 60 Phe Gly Glu Tyr Thr Arg Phe Asp Asn Leu Ala His Asn Ser Val Gly 70 Ser Phe Glu <210> 361 <211> 453 <212> DNA <213> Homo sapiens <400> 361 getttgeagg aggaaatete tatetetgge tgeaagatga ggetgageta eetgageage eggacecetg getacaaate tgteetgagg ateageetea eccacecgae cateceette aacctcatga aggtgcacct catggtagcg gtggagggcc gcctcttcag gaagtggttc getgeageee cagacetgte etattattte atttgggaca agacagaegt etacaaceag 240 aaqqtqtttq ggctttcaqa agcctttgtt tccqtqggtt atgaatatqa atcctgccca gatetaatee tgtgggaaaa aagaacaaca gtgetgeagg getatgaaat tgaegegtee 360 aagettggag gatggageet agacaaacat catgecetea acatteaaag tggcateetg cacaaaggga atggngagaa ccagtttgtg tct 453 <210> 362 <211> 151 <212> PRT <213> Homo sapiens <400> 362 Ala Leu Gln Glu Glu Ile Ser Ile Ser Gly Cys Lys Met Arg Leu Ser 15 10 Tyr Leu Ser Ser Arg Thr Pro Gly Tyr Lys Ser Val Leu Arg Ile Ser 25 Leu Thr His Pro Thr Ile Pro Phe Asn Leu Met Lys Val His Leu Met 40 Val Ala Val Glu Gly Arg Leu Phe Arg Lys Trp Phe Ala Ala Pro 55 Asp Leu Ser Tyr Tyr Phe Ile Trp Asp Lys Thr Asp Val Tyr Asn Gln

```
70
                                         75
                                                             80
Lys Val Phe Gly Leu Ser Glu Ala Phe Val Ser Val Gly Tyr Glu Tyr
                85
                                     90
Glu Ser Cys Pro Asp Leu Ile Leu Trp Glu Lys Arg Thr Thr Val Leu
            100
                                105
Gln Gly Tyr Glu Ile Asp Ala Ser Lys Leu Gly Gly Trp Ser Leu Asp
                            120
                                                 125
        115
Lys His His Ala Leu Asn Ile Gln Ser Gly Ile Leu His Lys Gly Asn
                        135
                                             140
Gly Glu Asn Gln Phe Val Ser
145
                    150
<210> 363
<211> 502
<212> DNA
<213> Homo sapiens
<400> 363
ggtaccaaaa aagtttgcca cagtattcac actccaggtc tccataaacc ttccagatcc
geteacacaa getggtgtte atttgettet tetgtaaact gtteaggace tteatgaaag
cggtgatgcc tgaccggtgc tcaggggcag ctttgcaaga gtcaggctga tgtgtgatgg
tgtccccacc accagctact ggagggagga ggtctgaggc ctcagctggg tttgacctga
gacacctgct gggatctggg tcaccagctg aaagcacagc catgttctgc ccttccccta
gggggctctg ggcgccatgg ctttcctgat ctgacccagc actctgggcc ttggacagca
gtagtgtgat cacttcacct tgcgtctgga ctgagcttct gtgctgcatg tctgggggct
tctcaggagc agcatgagcc tctgcggagg aggtatcatt tttcaacaaa aaatcatctg
aaaccacctc ttgagaatgc ag
502
<210> 364
<211> 136
<212> PRT
<213> Homo sapiens
<400> 364
Met Gln His Arg Ser Ser Val Gln Thr Gln Gly Glu Val Ile Thr Leu
Leu Leu Ser Lys Ala Gln Ser Ala Gly Ser Asp Gln Glu Ser His Gly
                                25
Ala Gln Ser Pro Leu Gly Glu Gly Gln Asn Met Ala Val Leu Ser Ala
Gly Asp Pro Asp Pro Ser Arg Cys Leu Arg Ser Asn Pro Ala Glu Ala
                        55
Ser Asp Leu Leu Pro Pro Val Ala Gly Gly Gly Asp Thr Ile Thr His
Gln Pro Asp Ser Cys Lys Ala Ala Pro Glu His Arg Ser Gly Ile Thr
```

```
Ala Phe Met Lys Val Leu Asn Ser Leu Gln Lys Lys Gln Met Asn Thr
                               105
            100
Ser Leu Cys Glu Arg Ile Trp Lys Val Tyr Gly Asp Leu Glu Cys Glu
Tyr Cys Gly Lys Leu Phe Trp Tyr
    130
                        135
<210> 365
<211> 333
<212> DNA
<213> Homo sapiens
<400> 365
atctcaacgg atgcatccat caaggagatg atccccccag gtgctcttgt tatgctcaca
ccactgateg ttgggattet atttggggtt gagaceetet etggagteet tgetggtgee
cttgtctctg gtgttcagat tgccatttct gcatccaaca ctggtggtgc ctgggacaac
gccaagaagt acattgaggc tggagtttca gagcatgcca ggacccttgg cccaaaaggt
totgaccotc acaaggogge tgtcattggt gacaccattg gagatcotct caaggacacg
tetggeeett ceetcaacat cetcatcaag ett
333
<210> 366
<211> 111
<212> PRT
<213> Homo sapiens
<400> 366
Ile Ser Thr Asp Ala Ser Ile Lys Glu Met Ile Pro Pro Gly Ala Leu
Val Met Leu Thr Pro Leu Ile Val Gly Ile Leu Phe Gly Val Glu Thr
Leu Ser Gly Val Leu Ala Gly Ala Leu Val Ser Gly Val Gln Ile Ala
                            40
Ile Ser Ala Ser Asn Thr Gly Gly Ala Trp Asp Asn Ala Lys Lys Tyr
Ile Glu Ala Gly Val Ser Glu His Ala Arg Thr Leu Gly Pro Lys Gly
                                        75
Ser Asp Pro His Lys Ala Ala Val Ile Gly Asp Thr Ile Gly Asp Pro
                                    90
Leu Lys Asp Thr Ser Gly Pro Ser Leu Asn Ile Leu Ile Lys Leu
                                105
<210> 367
<211> 381
<212> DNA
<213> Homo sapiens
<400> 367
```

```
gcgttcgtcg cactacccgg cggcggcgga accettgacg agctactcga agcatggaca
tggcagcagc tcggtgtaca cagcaaaccc gtgngccttg tacgactcga cnncttctgg
quaccqctga cogcqctact caaccacatq accateqaaa qcttcattcg ccctgaggac
egegeetege tegtgatege egataceata cateagetga tggeegatet tgagggatgg
240
accccaccac caccgaagtg gcgctcgtga catagaacaa atgattctga ctatggctca
ttgacatctg cgcagcggct actagctcca ttgacttcaa atcgggcctt ggccgaggct
cngttcaggt ggcccggaat g
381
<210> 368
<211> 89
<212> PRT
<213> Homo sapiens
<400> 368
Ala Phe Val Ala Leu Pro Gly Gly Gly Gly Thr Leu Asp Glu Leu Leu
                                    10
Glu Ala Trp Thr Trp Gln Gln Leu Gly Val His Ser Lys Pro Val Xaa
Leu Val Arg Leu Asp Xaa Phe Trp Ala Pro Leu Thr Ala Leu Leu Asn
                            40
His Met Thr Ile Glu Ser Phe Ile Arg Pro Glu Asp Arg Ala Ser Leu
                        55
Val Ile Ala Asp Thr Ile His Gln Leu Met Ala Asp Leu Glu Gly Trp
                    70
                                        75
Thr Pro Pro Pro Pro Lys Trp Arg Ser
                8.5
<210> 369
<211> 313
<212> DNA
<213> Homo sapiens
<400> 369
gatacatgat cototoatac egeacacaca cegeteceet etgeegeaat tegeagacaa
acttgcgcag gcttcacage aagccgtcaa ggctgcttcc tgtgggctac cgatagtctc
gtacgcgagt tctcggacat caacgccaac qtcqqqcaaq atactqtcaa cgccatctac
180
acattetacg ageageaage gaccagttte ettegecage tgaacgacet eccaccegaa
gagetteecg acgteatega ggaettette egeetgteea etgatgteet tetttaceat
300
ttccagcaag ctt
313
<210> 370
```

<211> 101 <212> PRT

<213> Homo sapiens

```
<400> 370
Ser Ser His Thr Ala His Thr Pro Leu Pro Ser Ala Ala Ile Arg Arg
Gln Thr Cys Ala Gly Phe Thr Ala Ser Arg Gln Gly Cys Phe Leu Trp
                                 25
Ala Thr Asp Ser Leu Val Arg Glu Phe Ser Asp Ile Asn Ala Asn Val
                             40
Gly Gln Asp Thr Val Asn Ala Ile Tyr Thr Phe Tyr Glu Gln Gln Ala
Thr Ser Phe Leu Arg Gln Leu Asn Asp Leu Pro Pro Glu Glu Leu Pro
                    70
                                         75
Asp Val Ile Glu Asp Phe Phe Arg Leu Ser Thr Asp Val Leu Leu Tyr
                                    90
His Phe Gln Gln Ala
            100
<210> 371
<211> 380
<212> DNA
<213> Homo sapiens
<400> 371
atgacgggtc acgtcatcct ggcgattcca caggtggtga cgtcatggat cggcctcatc
tgcatcgcca ttggcacggg ctttatcaag ccgaacctct ccacggtggt aggaggtctt
tacgatgacg gtgacccccg ccgcgatcag ggtttcctgt acttctacat gtcgatcagt
attggatete tettegegee gategteace ggeeteetea aggaceatta eggetaceae
gtaggtttca ttgccgctgc tatcggtatg gctctgggtc tgatcgcctt cttccacggt
cgttccaaac tgcgtgaget cgccttcgac atccccaatc cgctggcccc cggcgagggt
cgccggatgg tgctccgcgg
380
<210> 372
<211> 126
<212> PRT
<213> Homo sapiens
<400> 372
Met Thr Gly His Val Ile Leu Ala Ile Pro Gln Val Val Thr Ser Trp
                                    1.0
Ile Gly Leu Ile Cys Ile Ala Ile Gly Thr Gly Phe Ile Lys Pro Asn
Leu Ser Thr Val Val Gly Gly Leu Tyr Asp Asp Gly Asp Pro Arg Arg
                            40
Asp Gln Gly Phe Leu Tyr Phe Tyr Met Ser Ile Ser Ile Gly Ser Leu
```

```
55
Phe Ala Pro Ile Val Thr Gly Leu Leu Lys Asp His Tyr Gly Tyr His
                    70
Val Gly Phe Ile Ala Ala Ile Gly Met Ala Leu Gly Leu Ile Ala
                                    90
Phe Phe His Gly Arg Ser Lys Leu Arg Glu Leu Ala Phe Asp Ile Pro
                                105
Asn Pro Leu Ala Pro Gly Glu Gly Arg Arg Met Val Leu Arg
<210> 373
<211> 475
<212> DNA
<213> Homo sapiens
<400> 373
acatgttgga aaaattgcct cccactctgg tgctacaggt atgaatctca gccacagtga
tgactgtggc agctacaggc ctgatgaaca ccccaccaag aaaaggagca tcatgtgcct
qcttctctct ggttcctaaa tcctttggcc aaacattttc cccacaaccc tccactccag
ttqqctqqtc actqcctctc aqaaaqaaqt cccaqqtccc tqtcaqcccc agagcgcctg
catqqactct qcccactqtc cctttccaac acggaggccc ccaattctgg ggacccctac
accetacect qtaccaccac atccccatqc ctqctccaqa caqcactaac ctcccatgac
agtgggacca aagcagttct taaaggtcca atccactcag ttcttaaatg aaaaacagtt
qeccatqaqt caccecaaa gacgteegca catatgecaa acatteggtg tgcac
475
<210> 374
<211> 109
<212> PRT
<213> Homo sapiens
<400> 374
Met Gly Met Trp Trp Tyr Arg Val Gly Cys Arg Gly Pro Gln Asn Trp
Gly Pro Pro Cys Trp Lys Gly Thr Val Gly Arg Val His Ala Gly Ala
            20
                                25
Leu Gly Leu Thr Gly Thr Trp Asp Phe Phe Leu Arg Gly Ser Asp Gln
Pro Thr Gly Val Glu Gly Cys Gly Glu Asn Val Trp Pro Lys Asp Leu
                        55
Gly Thr Arg Glu Lys Gln Ala His Asp Ala Pro Phe Leu Gly Gly Val
65
Phe Ile Arg Pro Val Ala Ala Thr Val Ile Thr Val Ala Glu Ile His
                                   90
Thr Cys Ser Thr Arg Val Gly Gly Asn Phe Ser Asn Met
```

```
<210> 375
<211> 332
<212> DNA
<213> Homo sapiens
<400> 375
nnacgcgtcg cotccacctc gaaacccgcc ggcggtcgtt ttttcaccat ggccgaccgc
aaggeecaag ttgegaeggt caeggaeaeg etgtatttea egeegtegea atgggatgga
tgcatggcac ggatgcgtgg ggataagata tcagcactga agtggaatca gatgcagatg
geggeatget cetteatage ggeagtgggt gegaagetgg getgeeegea gegeaetatg
240
ggcacggcgc agctgctgta ccagcgtttc catctatttc atgcgccgac tgagttttcg
ttacatgagg tggctttgac gtgtctcttc ac
332
<210> 376
<211> 110
<212> PRT
<213> Homo sapiens
<400> 376
Xaa Arg Val Ala Ser Thr Ser Lys Pro Ala Gly Gly Arg Phe Phe Thr
Met Ala Asp Arg Lys Ala Gln Val Ala Thr Val Thr Asp Thr Leu Tyr
            20
                                25
Phe Thr Pro Ser Gln Trp Asp Gly Cys Met Ala Arg Met Arg Gly Asp
Lys Ile Ser Ala Leu Lys Trp Asn Gln Met Gln Met Ala Ala Cys Ser
                        55
Phe Ile Ala Ala Val Gly Ala Lys Leu Gly Cys Pro Gln Arg Thr Met
                    70
                                        75
Gly Thr Ala Gln Leu Leu Tyr Gln Arq Phe His Leu Phe His Ala Pro
                                    90
Thr Glu Phe Ser Leu His Glu Val Ala Leu Thr Cys Leu Phe
            100
                                105
                                                     110
<210> 377
<211> 369
<212> DNA
<213> Homo sapiens
<400> 377
egegtgecag gtatgteaac tgatetgteg gatattteeg aggttgagta eegteaactg
aggetggaac gagtggtget gtgtteggtg tggaeteagg gaactgeege agaegeegag
120
aacgctatgg cggagctgaa agcccttgct gaaacggcgg gatctcaggt actcgaagct
gteatgeaac gteggaetac ceeggateeg gegaegtaca ttggtteggg caaggtgget
240
```

```
gagettgeeg aggtggtgeq qgegaetggt geegataetg teatttgtga eggtgaaett
gacgccgctc agttgcgcaa cctcgaggat cgggtcaagn gcaaagttgt ggaccggtcg
gtctgattc
369
<210> 378
<211> 121
<212> PRT
<213> Homo sapiens
<400> 378
Arg Val Pro Gly Met Ser Thr Asp Leu Ser Asp Ile Ser Glu Val Glu
1
                 5
                                    10
Tyr Arg Gln Leu Arg Leu Glu Arg Val Val Leu Cys Ser Val Trp Thr
                                25
                                                     30
Gln Gly Thr Ala Ala Asp Ala Glu Asn Ala Met Ala Glu Leu Lys Ala
                            40
                                                 45
Leu Ala Glu Thr Ala Gly Ser Gln Val Leu Glu Ala Val Met Gln Arg
                        55
Arg Thr Thr Pro Asp Pro Ala Thr Tyr Ile Gly Ser Gly Lys Val Ala
                    70
Glu Leu Ala Glu Val Val Arg Ala Thr Gly Ala Asp Thr Val Ile Cys
                85
                                    90
Asp Gly Glu Leu Asp Ala Ala Gln Leu Arg Asn Leu Glu Asp Arg Val
                                105
Lys Xaa Lys Val Val Asp Arg Ser Val
        115
                            120
<210> 379
<211> 408
<212> DNA
<213> Homo sapiens
<400> 379
acqcgttact taaacttatc tgtaaataat aaattcatta tttctagttg gttaggtact
atgggetgtg gtttaccagg tgctatggca gctaaaattg cttatccaaa ccgtcaagca
gtagetatea caggegaegg tgegtteeaa atggtaatge aagaetttge tacagetgtt
caatataact taccaatgac aatctttgta ttaaataaca aacaattgtc attcattaaa
tatgaacaac aagctgctgq tgaattagag tatgccattg atttctctga tatggatcat
gctaaatttg ctgaagctgc tggtggtaaa ggctatgttg tgagagatgt aagtcgtctt
gacgacatcg ttgaagaggc aatggctcaa gatgttccaa caatcgtt
408
<210> 380
<211> 136
<212> PRT
```

<213> Homo sapiens

<400> 380 Thr Arg Tyr Leu Asn Leu Ser Val Asn Asn Lys Phe Ile Ile Ser Ser Trp Leu Gly Thr Met Gly Cys Gly Leu Pro Gly Ala Met Ala Ala Lys 20 Ile Ala Tyr Pro Asn Arg Gln Ala Val Ala Ile Thr Gly Asp Gly Ala 40 Phe Gln Met Val Met Gln Asp Phe Ala Thr Ala Val Gln Tyr Asn Leu 55 Pro Met Thr Ile Phe Val Leu Asn Asn Lys Gln Leu Ser Phe Ile Lys 70 75 Tyr Glu Gln Gln Ala Ala Gly Glu Leu Glu Tyr Ala Ile Asp Phe Ser Asp Met Asp His Ala Lys Phe Ala Glu Ala Ala Gly Gly Lys Gly Tyr 105 110 Val Val Arg Asp Val Ser Arg Leu Asp Asp Ile Val Glu Glu Ala Met 120 115 Ala Gln Asp Val Pro Thr Ile Val 130 <210> 381 <211> 613 <212> DNA <213> Homo sapiens <400> 381 nacgcgtcat aggcgggccc agtggaagac cacgccaaca cagttggttg agatccgcgt tgagggcaag gtcctgcgcg tcccgcgaaa tctggtcaag gcctaccact ctgggctgat cgacgtcgag gactgaaccc tgggagcctg ggcggtccag catqactgct caqqctcatt 180 accaaaacgc gtcgatcccg tagggttqtc qtcatqaqca aqcccqaaqt qaccctqccc gattccgccc ccgacgacct cgtcgttgag gacatcacca tcggcgacgg ccctgaagcg 300 teegetggea acetegtega agtgeactae gteggegtgg cettaaqeaa tqqteqtqaq ttcgattctt cctggaaccg cggggagccg ctgaccttcc aactaggggc tggccaggtg atccccgagt gggatgaagg tgtccaaggt atgaaggtcg gtggacgacg caaactcgtc atcocccacc accttgctta cggtccgcaa ggaatctccg gtgtgatcgc tggcggtqag acgetggtet tegtetgega cettgteaac atcatetgae gtgaceeceg etcaageagt cttcgcgccc ggg 613 <210> 382 <211> 137 <212> PRT

<213> Homo sapiens <400> 382 Leu Leu Arg Leu Ile Thr Lys Thr Arg Arg Ser Arg Arg Val Val Met Ser Lys Pro Glu Val Thr Leu Pro Asp Ser Ala Pro Asp Asp Leu 20 25 3.0 Val Val Glu Asp Ile Thr Ile Gly Asp Gly Pro Glu Ala Ser Ala Gly 40 45 Asn Leu Val Glu Val His Tyr Val Gly Val Ala Leu Ser Asn Gly Arg 55 Glu Phe Asp Ser Ser Trp Asn Arg Gly Glu Pro Leu Thr Phe Gln Leu 70 75 Gly Ala Gly Gln Val Ile Pro Glu Trp Asp Glu Gly Val Gln Gly Met 85 90 Lys Val Gly Gly Arg Arg Lys Leu Val Ile Pro His His Leu Ala Tyr 105 Gly Pro Gln Gly Ile Ser Gly Val Ile Ala Gly Gly Glu Thr Leu Val 115 120 125 Phe Val Cys Asp Leu Val Asn Ile Ile 130 <210> 383 <211> 352 <212> DNA <213> Homo sapiens <400> 383 nggagcaaca cctggtcctt gggaatgaag tgtaggagtt gcatttgctg aggttggtgt ttgccaaaqa gatgccaqct tcttcgaact actgctgtgc aactcttcat gttcaaaacc 120 cagtittetg titteacac etgaacatac accecetge agtitgggtgg etceceegtt accagetggg etetatetae agagagagea atggetteee tteeettgaa ggaagtetea ccctcacaag gacacttgat ccgctgcaaa gcagaaagtg tgcggaccct ttgggaaggg cgttcttttc ttgtttagaa cctaggattc tgtttttccc aaacaggatc an <210> 384 <211> 93 <212> PRT <213> Homo sapiens <400> 384 Met Pro Ala Ser Ser Asn Tyr Cys Cys Ala Thr Leu His Val Gln Asn 1 5 10 Pro Val Phe Cys Phe Ser His Leu Asn Ile His Pro Pro Ala Val Gly 20 25 Trp Leu Pro Arg Tyr Gln Leu Gly Ser Ile Tyr Arg Glu Ser Asn Gly 40 45

Phe Pro Ser Leu Glu Gly Ser Leu Thr Leu Thr Arg Thr Leu Asp Pro

```
55
Leu Gln Ser Arg Lys Cys Ala Asp Pro Leu Gly Arg Ala Phe Phe Ser
                    70
Cys Leu Glu Pro Arg Ile Leu Phe Phe Pro Asn Arg Ile
                85
<210> 385
<211> 342
<212> DNA
<213> Homo sapiens
<400> 385
geeggegeea egaaatgeaa aatgegeeet teaceggaeg eeaggttgat egageegeea
gcacctcggg caatgtcctg ggcctgactg gcacacgcaa tcaaagcgag caacaacaca
caaaaacqca tcatqaqqca gacgccaggg aagtgacaga agccgcagca ggcgcgcggc
gattggaaat atcggtgagg ctaatggtca ccagcgcttg caggttgtat tcggtggcca
atteqeqqaa eqacaqeace qecaqtteca qeteqeegeg cageaceagg egacgcaage
tgeggegeaa eteegggtge accaacaaca eegcactgtt ca
342
<210> 386
<211> 109
<212> PRT
<213> Homo sapiens
<400> 386
Met Gln Asn Ala Pro Phe Thr Gly Arg Gln Val Asp Arg Ala Ala Ser
Thr Ser Gly Asn Val Leu Gly Leu Thr Gly Thr Arg Asn Gln Ser Glu
                                25
Gln Gln His Thr Lys Thr His His Glu Ala Asp Ala Arg Glu Val Thr
                            40
Glu Ala Ala Ala Gly Ala Arg Arg Leu Glu Ile Ser Val Arg Leu Met
Val Thr Ser Ala Cys Arg Leu Tyr Ser Val Ala Asn Ser Arg Asn Asp
                                        75
Ser Thr Ala Ser Ser Ser Pro Arg Ser Thr Arg Arg Arg Lys Leu
                                    90
                85
Arg Arg Asn Ser Gly Cys Thr Asn Asn Thr Ala Leu Phe
<210> 387
<211> 379
<212> DNA
<213> Homo sapiens
<400> 387
acgcgtgacg cgccggcatc ggaagcgttg actgcagaga agaccgcgca cgtggctgtg
```

```
ggacgtgctg gcacgtctga catggtgcgt ggacccgcct tctcttcgcc tgcgcatgcc
atgcaagagg agcttgacaa tgtgcgtgat ctcgcccatg cgcggcagca agcgctcgat
getgttegtt eegagetget egaagegeag caageatgtg eetegtgeea getgeagetg
cagcatgtgc cagatgateg tgtgcgageg catcccatat accaggeget ccatgcggac
qttqcttaca tgcagcaaga acttgatcac gtacgagacg cattggcttc ggcagaatct
gagaatgcga gcctgcgcg
379
<210> 388
<211> 114
<212> PRT
<213> Homo sapiens
<400> 388
Met Arg Leu Val Arg Asp Gln Val Leu Ala Ala Cys Lys Gln Arg Pro
                                    10
His Gly Ala Pro Gly Ile Trp Asp Ala Leu Ala His Asp His Leu Ala
                                25
His Ala Ala Ala Ala Gly Thr Arg His Met Leu Ala Ala Leu Arg
                            40
Ala Ala Arg Asn Glu Gln His Arg Ala Leu Ala Ala His Gly Arg
                        55
Asp His Ala His Cys Gln Ala Pro Leu Ala Trp His Ala Gln Ala Lys
65
Arg Arg Val His Ala Pro Cys Gln Thr Cys Gln His Val Pro Gln
                                    90
Pro Arg Ala Arg Ser Ser Leu Gln Ser Thr Leu Pro Met Pro Ala Arg
                                105
His Ala
<210> 389
<211> 382
<212> DNA
<213> Homo sapiens
<400> 389
ngatggccga ctgtcccact gtcagtacgc gaagctcgcc gtcgagtcgg tccacgtccg
ggcctcccac gtgctccgca accctccgaa gcgatgacct ggcccggggg cggcaacgag
120
gtattgcgtt tggagacgct tggggtcaat tacggccagg tgcgcgccgt cgatgccctg
180
acgaccaccg tagagegegg caccatcacc tgeetcatgg gtegaaatgg ateaggeaag
tegtetetga tgtgggegat ccaaggggea acaaagteet cagggagggt actggtcaac
cacgagggtt cttgggctga cccccgcaaa gccgacgccg cgaccgctcg acgaatggtg
360
```

```
agettagtee egeagteage en
382
<210> 390
<211> 127
<212> PRT
<213> Homo sapiens
<400> 390
Xaa Trp Pro Thr Val Pro Leu Ser Val Arg Glu Ala Arg Arg Arg Val
                 5
                                    10
Gly Pro Arg Pro Gly Leu Pro Arg Ala Pro Gln Pro Ser Glu Ala Met
                                25
Thr Trp Pro Gly Gly Gly Asn Glu Val Leu Arg Leu Glu Thr Leu Gly
                            40
Val Asn Tyr Gly Gln Val Arg Ala Val Asp Ala Leu Thr Thr Thr Val
Glu Arg Gly Thr Ile Thr Cys Leu Met Gly Arg Asn Gly Ser Gly Lys
                    70
Ser Ser Leu Met Trp Ala Ile Gln Gly Ala Thr Lys Ser Ser Gly Arg
Val Leu Val Asn His Glu Gly Ser Trp Ala Asp Pro Arg Lys Ala Asp
                                105
Ala Ala Thr Ala Arg Arg Met Val Ser Leu Val Pro Gln Ser Ala
                            120
<210> 391
<211> 456
<212> DNA
<213> Homo sapiens
<400> 391
nnacqcqttg ccgctctgtg aggcgcctat cacggtgaca ctctcggtgc tatgagcgtg
tgcgacccta tcggtggcat gcacgccntg ttcagcgact ctattcccca gcagatcttc
120
ctgcccgcgc cctccttctt tcgccgccga cgaggccgac gtggagacgt ggtgcagcga
qqccqatqaa tcctggacac ccaccgcgac gacctggccg ggatcattgt cgagcccatc
ttgcaaggag ccggaggcat gtggccgtgg tctccgtcct gtctgaagca cctgcgccgt
cgtgctgatg aacttgacct agttcttatc gccgacgagg tcgctactgg atttgggcgg
actggcaaac ttttcgcatg cgagtgggcc gatatcgttc ctgacatcat ggtggttggg
420
aaatccatga ctggcggata cctgacccag tcggcc
456
<210> 392
<211> 55
<212> PRT
<213> Homo sapiens
```

```
<400> 392
Gly Ala Tyr His Gly Asp Thr Leu Gly Ala Met Ser Val Cys Asp Pro
Ile Gly Gly Met His Ala Xaa Phe Ser Asp Ser Ile Pro Gln Gln Ile
            20
                                25
Phe Leu Pro Ala Pro Ser Phe Phe Arg Arg Arg Gly Arg Arg Gly
                            40
Asp Val Val Gln Arg Gly Arg
    50
                        55
<210> 393
<211> 371
<212> DNA
<213> Homo sapiens
<400> 393
nacgcgttgc tcgtcattgg tggctactcg gcctacgaag gtatctacac catgatgact
qaqcqqqacc ggtacccqgc tttccgtatt ccgacggtgt gcatcccggc ttctatcgac
aacaacetee eeggttegga aetgteeate ggeacegaea eegeteteaa egteategte
gaggegatgg acaagattaa ggagtegggt ategegteca gaegetgett egtegtegag
acqatqqqtc qtqactqcqq atacctcqcq ttqatqtcqq gtatcqcaqc tqqcqctqaq
eggatetata ecaaegagga eggtatetee etggaegate tageeaaega egteeattgg
ttqcqqgagt c
371
<210> 394
<211> 123
<212> PRT
<213> Homo sapiens
<400> 394
Xaa Ala Leu Leu Val Ile Gly Gly Tyr Ser Ala Tyr Glu Gly Ile Tyr
                                    10
Thr Met Met Thr Glu Arg Asp Arg Tyr Pro Ala Phe Arg Ile Pro Thr
                                25
Val Cys Ile Pro Ala Ser Ile Asp Asn Leu Pro Gly Ser Glu Leu
                            40
Ser Ile Gly Thr Asp Thr Ala Leu Asn Val Ile Val Glu Ala Met Asp
                        55
Lys Ile Lys Glu Ser Gly Ile Ala Ser Arg Arg Cys Phe Val Val Glu
Thr Met Gly Arg Asp Cys Gly Tyr Leu Ala Leu Met Ser Gly Ile Ala
                                    90
Ala Gly Ala Glu Arg Ile Tyr Thr Asn Glu Asp Gly Ile Ser Leu Asp
                                105
Asp Leu Ala Asn Asp Val His Trp Leu Arg Glu
        115
                            120
```

```
<210> 395
<211> 351
<212> DNA
<213> Homo sapiens
<400> 395
gaattctagt tgggagattc attgaccaga cttttggaat aaacactagt catcatgcta
gcgacaggtg gtcttgtgca tggtagaaag gcagtccaag cctatgtctc tgaaacctgc
teteatttet gttttetaet ttaegattta tgttatetea taeteeceat gttgeetgtt
180
ctccagtttt tttacttgtg ttatttccat tcttctattc ctgctcaatt tctgcctcag
ggcagaattg tgtccaacag ctcttaaatg cagcgcagaa actgtgatgt taaaaacatc
ttgttatccg gccccaaaac atgttgtcct tggtaactct tactggtttg t
351
<210> 396
<211> 90
<212> PRT
<213> Homo sapiens
<400> 396
Met Val Glu Arg Gln Ser Lys Pro Met Ser Leu Lys Pro Ala Leu Ile
Ser Val Phe Tyr Phe Thr Ile Tyr Val Ile Ser Tyr Ser Pro Cys Cys
            20
Leu Phe Ser Ser Phe Phe Thr Cys Val Ile Ser Ile Leu Leu Phe Leu
                            40
Leu Asn Phe Cys Leu Arg Ala Glu Leu Cys Pro Thr Ala Leu Lys Cys
                        55
                                            60
Ser Ala Glu Thr Val Met Leu Lys Thr Ser Cys Tyr Pro Ala Pro Lys
                    70
                                        75
His Val Val Leu Gly Asn Ser Tyr Trp Phe
                85
<210> 397
<211> 483
<212> DNA
<213> Homo sapiens
<400> 397
geogteatta aagagateae ceeteteete caacetggtg atgteetegt egacggtggt
aatgettatt ttggtgatae cegeegeegt gaggaggaaa taegteecae eggeatteae
120
tatgttggta ctggcatctc cggtggggga gtcggggccc tgagggtccc atcaattatg
cctggcgggg ttaaggaatc ttacgaaatc atcggaccgg tcttagaaaa aatctccgcc
cacqtcqacg gtgaaccctg ctgcgcatgg atgggtactg acggcgccgg acacttcgtc
300
```

```
aagatggtcc ataatggcat cgagtacgcc gatatgcagt tcattggcga ggcgcccttc
ctttttgcgn tgcccgccgg tttgaccaat gctgaggccg ccgatgcctt cgagtcgtgg
aaccatggcg acctcaattc ctacctcgtc gaaatcactt ctcgggtact gcgtgccaag
gat
483
<210> 398
<211> 161
<212> PRT
<213> Homo sapiens
<400> 398
Ala Val Ile Lys Glu Ile Thr Pro Leu Leu Gln Pro Gly Asp Val Leu
                                   10
Val Asp Gly Gly Asn Ala Tyr Phe Gly Asp Thr Arg Arg Glu Glu
                                25
Glu Ile Arg Pro Thr Gly Ile His Tyr Val Gly Thr Gly Ile Ser Gly
                           40
Gly Val Gly Ala Leu Arg Val Pro Ser Ile Met Pro Gly Gly Val
                                           60
                       55
Lys Glu Ser Tyr Glu Ile Ile Gly Pro Val Leu Glu Lys Ile Ser Ala
                   70
                                       75
His Val Asp Gly Glu Pro Cys Cys Ala Trp Met Gly Thr Asp Gly Ala
                85
                                   90
Gly His Phe Val Lys Met Val His Asn Gly Ile Glu Tyr Ala Asp Met
            100
                               105
Gln Phe Ile Gly Glu Ala Pro Phe Leu Phe Ala Xaa Pro Ala Gly Leu
                           120
Thr Asn Ala Glu Ala Ala Asp Ala Phe Glu Ser Trp Asn His Gly Asp
                                          140
                      135
Leu Asn Ser Tyr Leu Val Glu Ile Thr Ser Arg Val Leu Arg Ala Lys
                  150
Asp
<210> 399
<211> 314
<212> DNA
<213> Homo sapiens
<400> 399
nngggaatga agaccaccca gcccttcctt tcctcaaatc ttctccaggc ttctgtgcat
ggeteateca eccatecaet catteaceca tetatecate caeteateca eccatecagt
cattcactca tttgtccatc cactcatgta cccatccact cattcgccca tttatccatc
cactcaacca tocactcatc cacccatcca notcatcate egiceagica cecatctate
cacccatgta tocatccact catccaccca tocactcatc tgtccatcca cttatccacc
300
```

```
catctactca ccca
314
<210> 400
<211> 104
<212> PRT
<213> Homo sapiens
<400> 400
Xaa Gly Met Lys Thr Thr Gln Pro Phe Leu Ser Ser Asn Leu Leu Gln
1
                                    10
Ala Ser Val His Gly Ser Ser Thr His Pro Leu Ile His Pro Ser Ile
                                25
His Pro Leu Ile His Pro Ser Ser His Ser Leu Ile Cys Pro Ser Thr
                            40
                                                 45
His Val Pro Ile His Ser Phe Ala His Leu Ser Ile His Ser Thr Ile
                        55
His Ser Ser Thr His Pro Xaa His His Pro Ser Ser His Pro Ser Ile
                    70
                                        75
His Pro Cys Ile His Pro Leu Ile His Pro Ser Thr His Leu Ser Ile
                                    90
His Leu Ser Thr His Leu Leu Thr
            100
<210> 401
<211> 2165
<212> DNA
<213> Homo sapiens
<400> 401
qaqaaaatqq aactacctqt atataaatta qgtqaqcaaa caqtqataca ggtagtttta
60
agaaqcaaat atatacaqtc aatttaacag tgtttacttc tctggattgt ttaatggtgt
120
caaaatgaaa gatctattga agtttcacta tacattgcat tgattgaacc ttggagagtt
ttatqaaaaa qaqqqqcatc ccttqccatc tqtttqccag tcttccttqc cccttccttt
gaaatgcctg cctcttttt gcccagattg tttcctgacc atccgaactc agatggggtc
ctctaaqttc ttcctggata ttcacaaatc ccttcacaag gcccacgtgc gaagtgaatg
atctggaggt gcctgggcat ctgtgttgga agggagtcaa gactcaccag ccagtcagtt
420
tgtgggctac agttgtccca caaaaatcag gcatgttcac ctcccctctg ggcccctaca
gctgggactg atcatagcct cagattagaa gaaatactga cttctaactc tataagccag
540
cacteetggg taaggagtga agetetgttg gecatgeege tttggactge tgggeagage
600
tgagcctaca gttttgtact ggggtgcacg gatgacagct gggaagatgg aaaggcagct
660
tgaggattta tagcagctaa agggtaaatg ctgttatgca aaaggtcccc atatgaactt
720
```

cctacaggtg 780	tagccgcagc	caagtgtctg	tacagetget	gagaatttgt	cggtgatgta
aaaattcctc 840	tttgcatcac	aagcgagtgg	aaagccaggg	gctgcatgag	tggagaaagc
acagtctggt 900	ttttcaagta	ctgcagagaa	tgagaatacc	cagccgggag	cctggagttg
aggcccgagt 960	tacacagget	cccggaatac	agacctggga	agatagggga	ggagaggga
1020	cttttgatcc				
1080	agaggccttc				
1140	ctttttccct				
1200	cccaatgttc				
1260	cctgaaattc				
1320	ttttttaggg				
gacagtctcg 1380	actetggetg	cctaagacct	ggaactggga	gatgcctttg	ctctcctggg
gccctgtggt 1440	ggaatgagcc	aggcccagga	ccttgccggt	aggtttgtgc	gggttcttgg
gaaggeteag 1500	atctgtaggc	tgatcatccg	taggggcttc	tgctgccgcc	gactttttgt
cttgcaggtg 1560	cagggacgtg	agataattta	catggagctt	ttcttggtgt	ctgtgggaag
gaaaagaact 1620	gttttccgat	tccctgtaca	tgtccctgga	agggtatttg	gatgtctgtt
cattatgaag 1680	atggtgctcg	gtgtgtctgt	agaggctatg	gagatgaggg	gacgagtaga
1740	gaagctaggc				
cettgeeete 1800	ctgaatttct	tgcttcagga	cgtaggagtc	agcaaggggg	ttaaggtgat
1860	gctgcagcgg				
cattgatggt 1920	ctttctctct	tccgagggct	tgcttctgaa	actctggacg	tgctgaatca
1980	gctgaccgcc	_			
tggaacacaa 2040	gtcatcccta	gcaatcagtt	tetttttget	gatcaaaggg	ggtggggagc
cataagggta 2100	gctgctggag	aggctggccc	cactcacttg	ggacaaaagc	tttttcttgg
ccagtggga 2160 catgg 2165	catcatgcct	gggttgcccc	tagagtagag	caggggcgtg	taattaagtc
<210> 402 <211> 87 <212> PRT					

<213> Homo sapiens <400> 402 Glu Tyr Pro Ala Gly Ser Leu Glu Leu Arg Pro Glu Leu His Arg Leu Pro Glu Tyr Arg Pro Gly Lys Ile Gly Glu Glu Arg Gly Ser Leu Trp 20 25 Pro Phe Asp Pro Pro Pro Glu Cys Pro Pro Cys Ala Ala Leu Leu Pro 40 Ser Ser Pro Ala Gln Arg Pro Ser Pro Ser Gln Arg Pro Pro Trp Met 5**5** 60 Gly Leu Arg Glu Thr Leu Pro Gly Pro Phe Ser Leu Gln Ser Gln Gly 65 75 80 Pro Asn Pro Pro Gly Cys Ala <210> 403 <211> 369 <212> DNA <213> Homo sapiens <400> 403 cccatgggtg tgtcccagga cggcgtcatg aagcgtcagg taaatgacaa ggaaacggtc gegeactigt tegaatacae gaegeaagtg tetgtegaet egaegeegea aetegteeag cettequeca egtegeacqa caacetegtg cetgtecaga tgatettttg etteaagcag cqcaacqcga aaaagatcaa tagccaccgc tgggtatttc atgcactggg ccgcatgcta cagecegaca tggtegtett ggtggaegte ggeaegaage eeggeeacet egeeetatae catctatqqc aggcattcta tcaccgacct accttgggcg gtgcttgcgg cgaaattcat 360 gctatgatc 369 <210> 404 <211> 123 <212> PRT <213> Homo sapiens <400> 404 Pro Met Gly Val Ser Gln Asp Gly Val Met Lys Arg Gln Val Asn Asp Lys Glu Thr Val Ala His Leu Phe Glu Tyr Thr Thr Gln Val Ser Val 20 25 Asp Ser Thr Pro Gln Leu Val Gln Pro Ser Pro Thr Ser His Asp Asn Leu Val Pro Val Gln Met Ile Phe Cys Phe Lys Gln Arg Asn Ala Lys 55 Lys Ile Asn Ser His Arg Trp Val Phe His Ala Leu Gly Arg Met Leu 70 75 Gln Pro Asp Met Val Val Leu Val Asp Val Gly Thr Lys Pro Gly His

```
90
Leu Ala Leu Tyr His Leu Trp Gln Ala Phe Tyr His Arg Pro Thr Leu
                                1.05
            100
Gly Gly Ala Cys Gly Glu Ile His Ala Met Ile
        115
                            120
<210> 405
<211> 840
<212> DNA
<213> Homo sapiens
<400> 405
quattecege geaceagete gaagetggag caetttgtgt etateetget gaagtgette
gactogccct ggaccacgag ggccctgtcg gagacagtgg tggaggagag cgaccccaag
ccggccttca gcaagatgaa tgggtccatg gacaaaaagt catcgaccgt cagtgaggac
gtggaggcca ccgtgcccat gctgcagcgg accaagtcac ggatcgagca gggtatcgtg
gaccgctcag agacgggcgt gctggacaag aaggaggggg agcaagccaa ggcgctgttt
gagaaggtga agaagtteeg gacceatgtg gaggaggggg acattgtgta cegeetetae
atgcggcaga ccatcatcaa ggtgatcaag ttcatcctca tcatctgcta caccgtctac
tacgtgcaca acatcaagtt cgacgtggac tgcaccgtgg acattgagag cctgacgggc
taccgcacct accgctgtgc ccaccccctg gccacactct tcaagatcct ggcgtccttc
tacatcagcc tagtcatctt ctacggcctc atctgcatgt atacactgtg gtggatgcta
eggegetece teaagaagta etegtttgag tegateegtg aggagageag etacagegae
atccccgacg tcaagaacga cttcgccttc atgctgcacc tcattgacca atacgacccg
ctctactcca agegettege egtetteetg teggaggtga gtgagaacaa getgeggeag
ctgaacctca acaacgagtg gacgctggac aagctccggt acggagagaa gacaacgcgt
840
<210> 406
<211> 91
<212> PRT
<213> Homo sapiens
<400> 406
Leu Ile Cys Met Tyr Thr Leu Trp Trp Met Leu Arg Arg Ser Leu Lys
Lys Tyr Ser Phe Glu Ser Ile Arg Glu Glu Ser Ser Tyr Ser Asp Ile
                                25
Pro Asp Val Lys Asn Asp Phe Ala Phe Met Leu His Leu Ile Asp Gln
Tyr Asp Pro Leu Tyr Ser Lys Arg Phe Ala Val Phe Leu Ser Glu Val
```

```
50
                        55
                                             60
Ser Glu Asn Lys Leu Arg Gln Leu Asn Leu Asn Asn Glu Trp Thr Leu
                    70
Asp Lys Leu Arg Tyr Gly Glu Lys Thr Thr Arg
                85
<210> 407
<211> 535
<212> DNA
<213> Homo sapiens
<400> 407
gcctattgta ccagctctcc agggctgggg acttgctaga gcagggttcc cagtgccccc
aggetetact ttgetetgee tggteteagg gtgtagggga tggagagetg gaetteeage
120
ctgcttcttg gctgtctagg ggccaggggc tcgggacaca gagctcctgg aggccgagca
caageettgg geagaggtga ggeagagete tgaetgttte attegaetae gttgeeaagg
agatgetege teggagtggt tgetetgget etgggattee aaaccaaget geettetetg
atgtggcctt agtgctctgg geggatgtac cttggctctg cctggaccet ctctctcttc
caggoetetg teccaccagg atgatgeeta tecagagete attgteetet eccaetteet
420
ccccqagctt cccattccgt gtctctctgg agggcccatc atcatcctgg tggaggtgtt
gcactgagga ccacagcage cetegcatte ccaegggeaa aggggtatgt gtagg
535
<210> 408
<211> 97
<212> PRT
<213> Homo sapiens
Met Leu Ala Arg Ser Gly Cys Ser Gly Ser Gly Ile Pro Asn Gln Ala
Ala Phe Ser Asp Val Ala Leu Val Leu Trp Ala Asp Val Pro Trp Leu
Cys Leu Asp Pro Leu Ser Leu Pro Gly Leu Cys Pro Thr Arg Met Met
                            40
Pro Ile Gln Ser Ser Leu Ser Ser Pro Thr Ser Ser Pro Ser Phe Pro
                                            60
Phe Arg Val Ser Leu Glu Gly Pro Ser Ser Ser Trp Trp Arg Cys Cys
                    70
                                        75
Thr Glu Asp His Ser Ser Pro Arg Ile Pro Thr Gly Lys Gly Val Cys
Val
<210> 409
<211> 375
```

```
<212> DNA
<213> Homo sapiens
<400> 409
ngtgtcatgg gtgtctatac cagcgatgag gccaagactg ccaagacttt tggtattggt
ggacttccga ttacgactaa tatttctctt gccaacaact tcaatatgga tgaaatttct
gatattgtct tccgtgtcaa tgataccagt ttgacaccaa ctgtgggacc agaattagct
agaaaattga ccgaaattgc tggtcttcag caaggggagt atcaggtgtc agatgcgact
240
gcagcettee aagaagtgca acaattgtte ggetttataa etacgattat tagtgecatt
300
qcaqqaattt ccctttttqt tqqaqqqact qqtqttatqa acatcatqct qqtttcqqtq
acggagcgta cgcgt
375
<210> 410
<211> 125
<212> PRT
<213> Homo sapiens
<400> 410
Xaa Val Met Gly Val Tyr Thr Ser Asp Glu Ala Lys Thr Ala Lys Thr
Phe Gly Ile Gly Gly Leu Pro Ile Thr Thr Asn Ile Ser Leu Ala Asn
Asn Phe Asn Met Asp Glu Ile Ser Asp Ile Val Phe Arg Val Asn Asp
Thr Ser Leu Thr Pro Thr Val Gly Pro Glu Leu Ala Arg Lys Leu Thr
                        55
                                            60
Glu Ile Ala Gly Leu Gln Gln Gly Glu Tyr Gln Val Ser Asp Ala Thr
                                        75
Ala Ala Phe Gln Glu Val Gln Gln Leu Phe Gly Phe Ile Thr Thr Ile
                                    90
Ile Ser Ala Ile Ala Gly Ile Ser Leu Phe Val Gly Gly Thr Gly Val
                                105
Met Asn Ile Met Leu Val Ser Val Thr Glu Arg Thr Arg
                                                125
        115
                            120
<210> 411
<211> 409
<212> DNA
<213> Homo sapiens
<400> 411
ccacatactt caccetecte acceceteca cetactecae cacetggeag tegecatega
60
ggatgggacg caactccacg tccacatgct ccggaccacg cggcgtgtgg tggatgtgca
gcacgcggtc ggggcccctt gagctcgaag gcgcggcgca tcgggcagtg ctcgccggcc
180
```

```
tggtcgcagg gcacgtcgta ctggtgcgag acgcggaagc acttgtggcc gatgtaggcg
cgatcggctg tcccgaactg gcgctgatag gccgtgtaca caacacaaac tgttgtactc
ceggtccacc acgatcatgg getgggactc gtgttccagg tggggggcca gggcttgggc
ctgcggtgag cgcgtggggt ggatggggca tagcgtcggt gaggaggtg
409
<210> 412
<211> 119
<212> PRT
<213> Homo sapiens
<400> 412
Met Pro His Pro Pro His Ala Leu Thr Ala Gly Pro Ser Pro Gly Pro
                                    10
Pro Pro Gly Thr Arg Val Pro Ala His Asp Arg Gly Gly Pro Gly Val
                                25
Gln Gln Phe Val Leu Cys Thr Arg Pro Ile Ser Ala Ser Ser Gly Gln
Pro Ile Ala Pro Thr Ser Ala Thr Ser Ala Ser Ala Ser Arg Thr Ser
                        55
Thr Thr Cys Pro Ala Thr Arg Pro Ala Ser Thr Ala Arg Cys Ala Ala
                    70
                                         75
Pro Ser Ser Ser Arg Gly Pro Asp Arg Val Leu His Ile His His Thr
                                    90
Pro Arg Gly Pro Glu His Val Asp Val Glu Leu Arg Pro Ile Leu Asp
            100
                                105
Gly Asp Cys Gln Val Val Glu
        115
<210> 413
<211> 357
<212> DNA
<213> Homo sapiens
<400> 413
cegggcatec caccaceggg tgtcatgaac caagtagtgg cecetatggt agggaeteca
gcaccgggtg gaagtccata tggacaacag gtgggagttt tggggcctcc agggcagcag
gcaccacete catatecegg cccacateca getggacece etgteataca geagecaaca
acacccatgt ttgtagctcc ccccccaaag acccageggc ttcttcactc agaggcctac
ctgaaataca ttgaaggact cagtgcggag tccaacagca ttagcaagtg ggatcagaca
ctggcagete ggagaegega egtecatttg tegaaagaac aggagageeg eetaece
357
<210> 414
<211> 119
<212> PRT
```

<213> Homo sapiens <400> 414 Pro Gly Ile Pro Pro Pro Gly Val Met Asn Gln Val Val Ala Pro Met Val Gly Thr Pro Ala Pro Gly Gly Ser Pro Tyr Gly Gln Gln Val Gly 25 Val Leu Gly Pro Pro Gly Gln Gln Ala Pro Pro Pro Tyr Pro Gly Pro 40 45 His Pro Ala Gly Pro Pro Val Ile Gln Gln Pro Thr Thr Pro Met Phe Val Ala Pro Pro Pro Lys Thr Gln Arg Leu Leu His Ser Glu Ala Tyr 70 Leu Lys Tyr Ile Glu Gly Leu Ser Ala Glu Ser Asn Ser Ile Ser Lys 90 Trp Asp Gln Thr Leu Ala Ala Arg Arg Asp Val His Leu Ser Lys 100 105 Glu Gln Glu Ser Arg Leu Pro 115 <210> 415 <211> 332 <212> DNA <213> Homo sapiens <400> 415 tetagageca acttggttat egtaatgaat agagagaeta catetatate aattattaeg 60 ctctatagta atcatgaagc ttgggttata tgtatgacaa aaattgcaga aaaatcgaaa caagaatatg gcgacttact aaaagaaaaa gaccatttac aagatatgga acagcttgag atgactatcg tetegateca tacgeogtat cegtecattg teagaattea aggaaaaate aacacattac agccagagct ttggcaagct cccaatttag caatteggtt aattgtgagc aatccgccag agggacaacc catctcacgc gt <210> 416 <211> 102 <212> PRT <213> Homo sapiens <400> 416 Met Asn Arg Glu Thr Thr Ser Ile Ser Ile Ile Thr Leu Tyr Ser Asn 1 10 His Glu Ala Trp Val Ile Cys Met Thr Lys Ile Ala Glu Lys Ser Lys 25 Gln Glu Tyr Gly Asp Leu Leu Lys Glu Lys Asp His Leu Gln Asp Met 40 Glu Gln Leu Glu Met Thr Ile Val Ser Ile His Thr Pro Tyr Pro Ser Ile Val Arg Ile Gln Gly Lys Ile Asn Thr Leu Gln Pro Glu Leu Trp

70

```
75
Gln Ala Pro Asn Leu Ala Ile Arg Leu Ile Val Ser Asn Pro Pro Glu
Gly Gln Pro Ile Ser Arg
            100
<210> 417
<211> 483
<212> DNA
<213> Homo sapiens
<400> 417
gaatteeteg cegtetetga ggtgggegag gacacetttg tgegetecac cgagggagac
tacqcqqcca acqtcqaqqc cqtqgtqacc ccaqcaccqq cqgaqaaaga tattgagggc
caqccaqaag cacaggaaca tgacacccg ggtacagaga ccattgagaa gctggtcgaa
tgggcccagg gcgcaggcat tactgtaaac ccccgcgttg tttgttatta taccctcaag
tgcatgatga tcaageteca ccaeceggee geggagageg aagagegega gtcegagttg
geggeggtte teatecetgg egategagag etggatgaaa agegeettga ggeegeacte
qaqccggtgg agtttgagtt ggcaggggat aaggactttg cagacaatga cttcctagtc
aagggetatg ttggeeegeg egetttgaae gecaatggea teaaggtett ggeegateea
480
cqc
483
<210> 418
<211> 161
<212> PRT
<213> Homo sapiens
<400> 418
Glu Phe Leu Ala Val Ser Glu Val Gly Glu Asp Thr Phe Val Arg Ser
Thr Glu Gly Asp Tyr Ala Ala Asn Val Glu Ala Val Thr Pro Ala
           20
                                25
Pro Ala Glu Lys Asp Ile Glu Gly Gln Pro Glu Ala Gln Glu His Asp
Thr Pro Gly Thr Glu Thr Ile Glu Lys Leu Val Glu Trp Ala Gln Gly
Ala Gly Ile Thr Val Asn Pro Arg Val Val Cys Tyr Tyr Thr Leu Lys
Cys Met Met Ile Lys Leu His His Pro Ala Ala Glu Ser Glu Glu Arg
                                    90
Glu Ser Glu Leu Ala Ala Val Leu Ile Pro Gly Asp Arg Glu Leu Asp
                                105
Glu Lys Arg Leu Glu Ala Ala Leu Glu Pro Val Glu Phe Glu Leu Ala
                            120
Gly Asp Lys Asp Phe Ala Asp Asn Asp Phe Leu Val Lys Gly Tyr Val
```

```
130
                       135
                                           140
Gly Pro Arg Ala Leu Asn Ala Asn Gly Ile Lys Val Leu Ala Asp Pro
                                                          160
145
                   150
                                       155
Arq
<210> 419
<211> 797
<212> DNA
<213> Homo sapiens
<400> 419
atttcacccc aggaaaacca gtaaggacca atgattaagc ccaaggttgg gtaccgagtt
eggatecata agtaceggee geecagggtg etggaatttg ggeteeece ggtgaaaata
120
180
aagcccctgc ctacatactt tagtagtaac gactcccgat ctgcatccaa cacatttacc
gaacttctag taagegeeee eegetgeaag egaaageact eeeetgeeaa gaaacagate
ttttccactt aaaattccca aactcagacc ttccactttt tactgaacaa aaagcgtgta
catgatctga agggttgaca tgacattttc taaattgggc gaatcaggaa gaggttgatg
aaaatccttg acgttttctg gggataggac atttgtgtgt gataacgttc ttaagtcgaa
tttcagtgtg gcagtgcacg cagattette attggtgtta gtgtatttee atacggtatg
tattagtaca agaaatagtg ttccctttga cactcgaacc caaggagtgg tccgaggctt
tttgaggcaa cgtaggatca atgtctctga agcagatttg gtgaaggatg caggtctcat
aatttacaga gcaatcacag ccttctttga aacggagaaa ttagattcta tgaaattttg
720
tcagtgcaga tagatatgat gtggagaaaac ggggaaaatt gagtacaaaa agatgaggct
780
tgaatgatgg ctggcca
797
<210> 420
<211> 106
<212> PRT
<213> Homo sapiens
<400> 420
Met Arg Pro Ala Ser Phe Thr Lys Ser Ala Ser Glu Thr Leu Ile Leu
                                  10
Arg Cys Leu Lys Lys Pro Arg Thr Thr Pro Trp Val Arg Val Ser Lys
           20
Gly Thr Leu Phe Leu Val Leu Ile His Thr Val Trp Lys Tyr Thr Asn
                           40
Thr Asn Glu Glu Ser Ala Cys Thr Ala Thr Leu Lys Phe Asp Leu Arg
```

```
50
                        55
                                             60
Thr Leu Ser His Thr Asn Val Leu Ser Pro Glu Asn Val Lys Asp Phe
                    70
                                        75
His Gln Pro Leu Pro Asp Ser Pro Asn Leu Glu Asn Val Met Ser Thr
                85
Leu Gln Ile Met Tyr Thr Leu Phe Val Gln
            100
                                105
<210> 421
<211> 406
<212> DNA
<213> Homo sapiens
<400> 421
ggatccacca tgatggagcc cacccaccca tectcagtec acetgetgea gettetecat
aacccaacac aggtcaatct tgtctcccta aacacaccat gtgctctcat gctgccatgg
tttgcctggg gccctctcta cctcctctgc tttctggaga acccttgcac tcctcccaag
ccttcaagtt ggaaagtgaa cagtcagcat atgtctctag ctcagccctt actgcgtgga
ttcatgaaga ttggttcact gtcagcccct gaccagaacg tgtgttttag gaaagcagga
accaagtett accaatgtet gtagteecag cetecaceet ggcatacagt aggtgeteat
tgaatgtggg agggaaagag gagacacatg gaagggaatg tcattc
406
<210> 422
<211> 104
<212> PRT
<213> Homo sapiens
Met Met Glu Pro Thr His Pro Ser Ser Val His Leu Leu Gln Leu Leu
                                    10
His Asn Pro Thr Gln Val Asn Leu Val Ser Leu Asn Thr Pro Cys Ala
                                25
Leu Met Leu Pro Trp Phe Ala Trp Gly Pro Leu Tyr Leu Leu Cys Phe
Leu Glu Asn Pro Cys Thr Pro Pro Lys Pro Ser Ser Trp Lys Val Asn
Ser Gln His Met Ser Leu Ala Gln Pro Leu Leu Arg Gly Phe Met Lys
                                        75
                    70
Ile Gly Ser Leu Ser Ala Pro Asp Gln Asn Val Cys Phe Arg Lys Ala
                                    90
                                                        95
Gly Thr Lys Ser Tyr Gln Cys Leu
            100
<210> 423
<211> 628
<212> DNA
<213> Homo sapiens
```

<400> 423

```
ngccaccota cycotogoot gcaatgycaa cttcaqatcc ccqqtggcac cqtaqtotta
gagccaccgg ttctgagcgg ggaggacgac ggggttgggg cggaggaagg agagggagaa
120
ggagatgggg atttgctgac gcagacccaa gcccaaacgc cgactccagc acccgcttqq
coggogococ cagocacaco gogottoctg gocotogoaa atggotocot gttggtgcco
ctectgagtg ccaaggagge gggegtetae acttgeegtg cacacaatga getgggegee
aactctacgt caatacgcgt ggcggtggca gcaaccgggc ccccaaaaca cgcgcctggc
gccgggggag aacccgacgg acaggccccq acctctqaqc qcaaqtccac aqccaaqqqc
cggggcaaca gcgtcctgcc ttccaaaccc gagggcaaaa tcaaaggcca aggcctggcc
aaggtcagca ttctcgggga gaccgagacg gagccggagg aggacacaag tgagggagag
gaggccgaag accagatect egeggaeeeg geggaggage agegetgtgg caacggggae
ccctctcggt acgtttctaa ccacgcgt
628
<210> 424
<211> 209
<212> PRT
<213> Homo sapiens
<400> 424
Xaa His Pro Thr Pro Arg Leu Gln Trp Gln Leu Gln Ile Pro Gly Gly
Thr Val Val Leu Glu Pro Pro Val Leu Ser Gly Glu Asp Asp Gly Val
Gly Ala Glu Gly Glu Gly Glu Gly Asp Gly Asp Leu Leu Thr Gln
                            40
Thr Gln Ala Gln Thr Pro Thr Pro Ala Pro Ala Trp Pro Ala Pro Pro
                        55
Ala Thr Pro Arg Phe Leu Ala Leu Ala Asn Gly Ser Leu Leu Val Pro
Leu Leu Ser Ala Lys Glu Ala Gly Val Tyr Thr Cys Arg Ala His Asn
Glu Leu Gly Ala Asn Ser Thr Ser Ile Arg Val Ala Val Ala Ala Thr
            100
                                105
Gly Pro Pro Lys His Ala Pro Gly Ala Gly Glu Pro Asp Gly Gln
                            120
                                                125
Ala Pro Thr Ser Glu Arg Lys Ser Thr Ala Lys Gly Arg Gly Asn Ser
                        135
                                            140
Val Leu Pro Ser Lys Pro Glu Gly Lys Ile Lys Gly Gln Gly Leu Ala
                                        155
Lys Val Ser Ile Leu Gly Glu Thr Glu Thr Glu Pro Glu Glu Asp Thr
                165
                                    170
Ser Glu Gly Glu Glu Ala Glu Asp Gln Ile Leu Ala Asp Pro Ala Glu
```

```
180
                                185
                                                     190
Glu Gln Arg Cys Gly Asn Gly Asp Pro Ser Arg Tyr Val Ser Asn His
        195
                            200
                                                 205
Ala
<210> 425
<211> 471
<212> DNA
<213> Homo sapiens
<400> 425
ceggeegteg aagaetttga ggaegatgta getegeageg cagegttaeg ageeetggag
tacgtggatt tgaccccagg cactnaagtg cgcgtcatcg ccattgacac cgtgttccta
120
ggategtgca egaatggeeg tgaggaetta eggetggetg etgaggttee caaaggaega
catatogoag ogggcaccog gatgotogto geocotggat otgotogtgt cogtotgoag
gctatggagg aaggcctcga cgagatcggt tcccggtttg ctgacatctt tcgcaataac
tetgegaaca atggettqtt actggeteaq qttqaceceq aqgtegtega agagttgtgg
gaetttgeeg ageageatee tggtgageag etcaeegtet ecetegagaa teggaegate
aaccttccqq gtcqcacqac ctacccqttc catattqatq acqtcacqcq t
471
<210> 426
<211> 157
<212> PRT
<213> Homo sapiens
<400> 426
Pro Ala Val Glu Asp Phe Glu Asp Asp Val Ala Arg Ser Ala Ala Leu
Arg Ala Leu Glu Tyr Val Asp Leu Thr Pro Gly Thr Xaa Val Arg Val
                                25
Ile Ala Ile Asp Thr Val Phe Leu Gly Ser Cys Thr Asn Gly Arg Glu
Asp Leu Arg Leu Ala Ala Glu Val Pro Lys Gly Arg His Ile Ala Ala
                        55
Gly Thr Arg Met Leu Val Ala Pro Gly Ser Ala Arg Val Arg Leu Gln
                    70
                                        75
Ala Met Glu Glu Gly Leu Asp Glu Ile Gly Ser Arg Phe Ala Asp Ile
                                    90
Phe Arg Asn Asn Ser Ala Asn Asn Gly Leu Leu Ala Gln Val Asp
Pro Glu Val Val Glu Glu Leu Trp Asp Phe Ala Glu Gln His Pro Gly
                            120
                                                125
       115
Glu Gln Leu Thr Val Ser Leu Glu Asn Arg Thr Ile Asn Leu Pro Gly
                        135
Arg Thr Thr Tyr Pro Phe His Ile Asp Asp Val Thr Arg
```

155

150

145

```
<210> 427
<211> 546
<212> DNA
<213> Homo sapiens
<400> 427
ctageggtag tagaaggtat geagtttgat egeggetaet tgteteegta ttteateaae
aatcaagaaa caatgaatgc agagctagaa aacccattta ttcttcttgt tgataagaaa
atttetaata teegtqaett getaccaatt ttggaaggtg ttgetaaage ategegeeca
180
ttgttgatca ttgcggaaga cgttgaaggc gaagcgttgg caaccttggt tgttaacact
atgogoggca togtaaaagt agoggcagog aaagogocag gttttggtga togcogtaaa
gcaatgette aagacattge tgtgetaaeg ggtteaaetg ttattteaga agaaattgge
attaaqcttq aaqaaqcqac aattgaacaq ttgggtacag cgaagcgcgt tacattgaca
aaagaaagta caacgattgt tgatggtgcg ggtgttgcag ctaatattac tggtcgtgtt
qaqcaaattc qtqcaqaaat tqctaactct tcttctqqct acgataaaga gaaattqcaa
540
gaacgc
546
<210> 428
<211> 182
<212> PRT
<213> Homo sapiens
<400> 428
Leu Ala Val Val Glu Gly Met Gln Phe Asp Arq Gly Tyr Leu Ser Pro
Tyr Phe Ile Asn Asn Gln Glu Thr Met Asn Ala Glu Leu Glu Asn Pro
                                25
Phe Ile Leu Leu Val Asp Lys Lys Ile Ser Asn Ile Arg Asp Leu Leu
Pro Ile Leu Glu Gly Val Ala Lys Ala Ser Arg Pro Leu Leu Ile Ile
                        55
                                            60
Ala Glu Asp Val Glu Gly Glu Ala Leu Ala Thr Leu Val Val Asn Thr
Met Arg Gly Ile Val Lys Val Ala Ala Ala Lys Ala Pro Gly Phe Gly
Asp Arg Arg Lys Ala Met Leu Gln Asp Ile Ala Val Leu Thr Gly Ser
                                105
Thr Val Ile Ser Glu Glu Ile Gly Ile Lys Leu Glu Glu Ala Thr Ile
                            120
                                                125
Glu Gln Leu Gly Thr Ala Lys Arg Val Thr Leu Thr Lys Glu Ser Thr
                        135
Thr Ile Val Asp Gly Ala Gly Val Ala Ala Asn Ile Thr Gly Arg Val
```

```
150
                                       155
Glu Gln Ile Arg Ala Glu Ile Ala Asn Ser Ser Gly Tyr Asp Lys
                165
                                   170
Glu Lys Leu Gln Glu Arg
            180
<210> 429
<211> 425
<212> DNA
<213> Homo sapiens
<400> 429
getageagee ettacaggag acgggetaat aataatgeag eagtggetee gacaacttge
60
ccgttgcagc cggtcacgga tccatttgct tttagtagac aggcgctcca aagtacacca
ctgggcagtt cgtccaaaag cagtccacct gtcttgcaag gcccagcccc cgcagggttt
totcaacaco coggettect totcaccacateca aaaaatagot cecagogaco
ctqtqaqccc ctqcctqqac ctctqacaca qcccaqagca catgccagtc cgttttctgg
tgcattgaca cettcagcac etectgggee tgagatgaac aggagtgeag aggteggtee
caqttcaqaq cctgaagttc agactctgcc atatcttcct cactacattc caggagtgga
420
tcctg
425
<210> 430
<211> 130
<212> PRT
<213> Homo sapiens
<400> 430
Met Gln Gln Trp Leu Arg Gln Leu Ala Arg Cys Ser Arg Ser Arg Ile
                                   10
His Leu Leu Val Asp Arg Ser Lys Val His His Trp Ala Val
Arg Pro Lys Ala Val His Leu Ser Cys Lys Ala Gln Pro Pro Gln Gly
                           40
Phe Leu Asn Thr Pro Val Cys Leu Cys Leu Thr His Asn Ala Lys Asn
                       55
Ser Ser Gln Gly Pro Cys Glu Pro Leu Pro Gly Pro Leu Thr Gln Pro
                                        75
                    70
Arg Ala His Ala Ser Pro Phe Ser Gly Ala Leu Thr Pro Ser Ala Pro
                                    90
Pro Gly Pro Glu Met Asn Arg Ser Ala Glu Val Gly Pro Ser Ser Glu
                               105
Pro Glu Val Gln Thr Leu Pro Tyr Leu Pro His Tyr Ile Pro Gly Val
                           120
Asp Pro
    130
```

```
<210> 431
<211> 192
<212> DNA
<213> Homo sapiens
<400> 431
ctagccatec accagegtae acacaeggga gagaggeeet acaetggeet egggtgeaae
egeogettee gecagegeae ggeeetegte atecaceage geatecacae gggegagaag
ectnacecgt geoeggactg egageggege tteteeteet cetetegeet ggteagteae
180
cggcgtgtgc ac
192
<210> 432
<211> 64
<212> PRT
<213> Homo sapiens
<400> 432
Leu Ala Ile His Gln Arg Thr His Thr Gly Glu Arg Pro Tyr Thr Gly
Leu Gly Cys Asn Arg Arg Phe Arg Gln Arg Thr Ala Leu Val Ile His
                                25
Gln Arg Ile His Thr Gly Glu Lys Pro Xaa Pro Cys Pro Asp Cys Glu
                            40
Arg Arg Phe Ser Ser Ser Ser Arg Leu Val Ser His Arg Arg Val His
    50
                        55
<210> 433
<211> 635
<212> DNA
<213> Homo sapiens
<400> 433
nngccggcgg ctgcgttggg atacgacgtc gctgcgattg ggcgtgagta tctttggtac
ctcatggagg agcgtggcgc gtatgcggag gccgccgcgc tcatgccgct gctgctccgg
accgaccgag gcgcgtggga cacgtttgtg tgctgctacc tcgagcggca ccaaagggat
gegatactee egeacattee gaegeaggae eeccagetga gtgagatggt gtacgatete
gtgctggtgc atctgctgca gcacgatccc acgcagctgt tggcgacgct ccgcgcatgg
ccgagtcaca tctactcgaa gcaggcggtg gctgcggcga tcggcgatca cgcacgaacc
ageogeacge tgetegagtg cetegeacag etgtacatgg eegeacatea geeeggeaag
420
getetgacat actacatgcg cetgcgtgat ccatgcgtgt ttgateteat tegcgagtae
gatetgetga tegatgtgea geaceacate ggeaegeteg tegagetega teaggaatge
540
```

```
geoggeteca etgageogeg etceagegeg ettatgeoge tgetegtgee atatacceae
tegattecca tecagegege catggegeag etega
<210> 434
<211> 211
<212> PRT
<213> Homo sapiens
<400> 434
Xaa Pro Ala Ala Leu Gly Tyr Asp Val Ala Ala Ile Gly Arg Glu
                 5
1
Tyr Leu Trp Tyr Leu Met Glu Glu Arg Gly Ala Tyr Ala Glu Ala Ala
            20
                                25
Ala Leu Met Pro Leu Leu Leu Arg Thr Asp Arg Gly Ala Trp Asp Thr
                            40
Phe Val Cys Cys Tyr Leu Glu Arg His Gln Arg Asp Ala Ile Leu Pro
His Ile Pro Thr Gln Asp Pro Gln Leu Ser Glu Met Val Tyr Asp Leu
Val Leu Val His Leu Leu Gln His Asp Pro Thr Gln Leu Leu Ala Thr
                                    90
Leu Arg Ala Trp Pro Ser His Ile Tyr Ser Lys Gln Ala Val Ala Ala
                               105
           100
Ala Ile Gly Asp His Ala Arg Thr Ser Arg Thr Leu Leu Glu Cys Leu
                           120
Ala Gln Leu Tyr Met Ala Ala His Gln Pro Gly Lys Ala Leu Thr Tyr
                        135
                                            140
Tyr Met Arg Leu Arg Asp Pro Cys Val Phe Asp Leu Ile Arg Glu Tyr
                                        155
                    150
Asp Leu Leu Ile Asp Val Gln His His Ile Gly Thr Leu Val Glu Leu
                                    170
Asp Gln Glu Cys Ala Gly Ser Thr Glu Pro Arg Ser Ser Ala Leu Met
                                185
Pro Leu Leu Val Pro Tyr Thr His Ser Ile Pro Ile Gln Arg Ala Met
       195
                            200
Ala Gln Leu
    210
<210> 435
<211> 493
<212> DNA
<213> Homo sapiens
<400> 435
nncqtacqtt cqcqtatttt ccgcgcccgg gaagctatcg ataataaagt tcaaccgctg
atccagcgtt agcaatggcg ggcacaggaa gggtacttag gcatgcagaa agaaaagctt
tecqetetqa tggatqqtga ateqttegae agegagetgt tgagttetet gtegeaagat
cgaacgette aacaaagetg geagggetat cacetgatae gtgacacaet gegaggtgat
240
```

```
gtegggeaag tgatgeatet egacategee gategegtag eegetgeact tgagaaagaa
cccgcccggc tggtgccttc cgccgttcag gaatctcagc cgcagcctca cacctggcag
aaaatgccgt tctgggacaa agtgcgtccc tgggcgagcc agattacgca aatcggtatg
geggeetgeg tgtegetgge ggtgategte ggegtgeage agtacaacea geettetgeg
ccatcgaacg cgt
493
<210> 436
<211> 130
<212> PRT
<213> Homo sapiens
<400> 436
Met Gln Lys Glu Lys Leu Ser Ala Leu Met Asp Gly Glu Ser Phe Asp
                                     10
Ser Glu Leu Leu Ser Ser Leu Ser Gln Asp Arg Thr Leu Gln Gln Ser
                                 25
Trp Gln Gly Tyr His Leu Ile Arg Asp Thr Leu Arg Gly Asp Val Gly
                            40
                                                 45
Gln Val Met His Leu Asp Ile Ala Asp Arg Val Ala Ala Ala Leu Glu
                        55
Lys Glu Pro Ala Arg Leu Val Pro Ser Ala Val Gln Glu Ser Gln Pro
                    70
                                        75
Gln Pro His Thr Trp Gln Lys Met Pro Phe Trp Asp Lys Val Arg Pro
                                    90
Trp Ala Ser Gln Ile Thr Gln Ile Gly Met Ala Ala Cys Val Ser Leu
                                105
Ala Val Ile Val Gly Val Gln Gln Tyr Asn Gln Pro Ser Ala Pro Ser
                            120
Asn Ala
   130
<210> 437
<211> 447
<212> DNA
<213> Homo sapiens
<400> 437
ntggtaaccg gtgtccctga tatggaccct gctgtgttag agcgtaaatt atttatttta
cgtaattatg taacacgcat ctgtttggag tctgttaatg gaattaagga caacttttac
attaatacat teteatacaa aacaategtt tataaaggte agttaaecae tgaacaagtg
ccacaatatt tottagattt acaaaatcca agtatggtaa cggcattagc gcttgttcat
240
teacgtttet caacaaatac attteetegt tggcgtttag cacaaccatt ccgttacate
geteataatg gegaaateaa taeggttege ggtaatatea attqqatqaa ageaegtgaa
360
```

```
qegttacttg aagetgaatt tttcactege teaqaattaq atatqttaat gecaatetgt
acggatggta tgtctgactc ggcaagg
447
<210> 438
<211> 149
<212> PRT
<213> Homo sapiens
<400> 438
Xaa Val Thr Gly Val Pro Asp Met Asp Pro Ala Val Leu Glu Arg Lys
 1
                 5
                                     10
Leu Phe Ile Leu Arg Asn Tyr Val Thr Arg Ile Cys Leu Glu Ser Val
                                25
Asn Gly Ile Lys Asp Asn Phe Tyr Ile Asn Thr Phe Ser Tyr Lys Thr
                            40
Ile Val Tyr Lys Gly Gln Leu Thr Thr Glu Gln Val Pro Gln Tyr Phe
Leu Asp Leu Gln Asn Pro Ser Met Val Thr Ala Leu Ala Leu Val His
                                         75
                    70
Ser Arg Phe Ser Thr Asn Thr Phe Pro Arg Trp Arg Leu Ala Gln Pro
Phe Arg Tyr Ile Ala His Asn Gly Glu Ile Asn Thr Val Arg Gly Asn
                                105
            100
                                                     110
Ile Asn Trp Met Lys Ala Arg Glu Ala Leu Leu Glu Ala Glu Phe Phe
                            120
                                                125
Thr Arg Ser Glu Leu Asp Met Leu Met Pro Ile Cys Thr Asp Gly Met
                        135
Ser Asp Ser Ala Arg
145
<210> 439
<211> 395
<212> DNA
<213> Homo sapiens
<400> 439
nacgcgtgaa gggagagtgg ggccgagccc caggaggctg tcctgcagca gctgcaccag
cttcccaggg gccggctgga cctggccacg caaagcctga cggtggagac ctgcagggcc
ctgggcaagc tgctgccgag ggagacgctg tgcacggagc tggtcctgag tgactgcatg
ctcagcgagg aaggggccac actgctgctc cgaggcctgt gtgccaacac cgtgctgcgc
tttctggact taaagggcaa caacettcgg gctgcagggg ccgaggctct gggaaaactc
300
ctccaacaga acaagtccat tcagagcctc acgctggagt ggaacagcct gggcacgtgg
gacgatgcct tcgccacctt ctgcgggggc ctggc
395
<210> 440
```

```
<211> 128
<212> PRT
<213> Homo sapiens
<400> 440
Arg Glu Ser Gly Ala Glu Pro Gln Glu Ala Val Leu Gln Gln Leu His
                                    1.0
Gln Leu Pro Arg Gly Arg Leu Asp Leu Ala Thr Gln Ser Leu Thr Val
            20
                                25
Glu Thr Cys Arg Ala Leu Gly Lys Leu Leu Pro Arg Glu Thr Leu Cys
                            40
                                                 45
Thr Glu Leu Val Leu Ser Asp Cys Met Leu Ser Glu Glu Gly Ala Thr
                                             60
Leu Leu Arg Gly Leu Cys Ala Asn Thr Val Leu Arg Phe Leu Asp
                    70
                                        75
Leu Lys Gly Asn Asn Leu Arg Ala Ala Gly Ala Glu Ala Leu Gly Lys
                85
                                    90
Leu Leu Gln Gln Asn Lys Ser Ile Gln Ser Leu Thr Leu Glu Trp Asn
                                105
Ser Leu Gly Thr Trp Asp Asp Ala Phe Ala Thr Phe Cys Gly Gly Leu
        115
                            120
<210> 441
<211> 364
<212> DNA
<213> Homo sapiens
<400> 441
geocagtact acgtgaacat gttcgatgec gagcaggget tettegacag gegcageceg
ggeggegagt tecaageegg ettggateeg gaateetggg geggtetgtt caetgagaee
qacqqttqqa acttcqcctt ccacqctcca caggacqqcc gggggctgqc cgcqctctac
180
ggcggtccga aaggcttgga gaacaagctc gatgcctttt tcgcgacgcc ggaaaacgcg
qacaaqccqq cqtacqqcqq aatccacqaa atggtcgagg ccagagcggt ccggatgggc
caattgggca tgtccaacga gccctcgcac catattccct acatctacaa ctatgccggc
gcgc
364
<210> 442
<211> 121
<212> PRT
<213> Homo sapiens
<400> 442
Ala Gln Tyr Tyr Val Asn Met Phe Asp Ala Glu Gln Gly Phe Phe Asp
                 5
                                    10
1
Arg Arg Ser Pro Gly Gly Glu Phe Gln Ala Gly Leu Asp Pro Glu Ser
                                25
Trp Gly Gly Leu Phe Thr Glu Thr Asp Gly Trp Asn Phe Ala Phe His
```

```
40
        35
                                                 45
Ala Pro Gln Asp Gly Arg Gly Leu Ala Ala Leu Tyr Gly Gly Pro Lys
                        55
Gly Leu Glu Asn Lys Leu Asp Ala Phe Phe Ala Thr Pro Glu Asn Ala
                                         75
Asp Lys Pro Ala Tyr Gly Gly Ile His Glu Met Val Glu Ala Arg Ala
                                    90
Val Arg Met Gly Gln Leu Gly Met Ser Asn Glu Pro Ser His His Ile
                                105
            100
Pro Tyr Ile Tyr Asn Tyr Ala Gly Ala
                            120
<210> 443
<211> 430
<212> DNA
<213> Homo sapiens
<400> 443
accegettace geteagteca acaagagate ttegecaaca acctegteee gatecegete
ctcatggtgc tggcaatccc cttcgccaag atcctctcga cgaccctgtc catcggatcg
ggeggteegg eggegtette eggeeetgge atggteateg geggageeae tggegeggea
180
ctgtggcgcc tcctcgaggg gctgccaggt atcccatcct caccgatgag tttcgtcatt
gteggeatga tegeetgett eggtgeggtt geceatgeee caeteggegt getgeteatg
gttggcgaga tgaccggaaa cctgtcgctg ctcgctcctg gcatgatcgc cgtcgccgtc
getggeegag ttgtegggga caettegate tacacetete ageteaagga tegeetggag
420
ggcgacgcgt
430
<210> 444
<211> 143
<212> PRT
<213> Homo sapiens
<400> 444
Thr Gly Tyr Gly Ser Val Gln Gln Glu Met Phe Ala Asn Asn Leu Val
                                    10
Arg Met Pro Leu Leu Met Val Leu Ala Ile Pro Phe Ala Lys Ile Leu
                                25
Ser Thr Thr Leu Ser Ile Gly Ser Gly Gly Pro Ala Ala Ser Ser Gly
                            40
Pro Gly Met Val Ile Gly Gly Ala Thr Gly Ala Ala Leu Trp Arg Leu
                        55
                                            60
Leu Glu Gly Leu Pro Gly Ile Pro Ser Ser Pro Met Ser Phe Val Ile
                    70
                                        75
Val Gly Met Ile Ala Cys Phe Gly Ala Val Ala His Ala Pro Leu Gly
Val Leu Leu Met Val Gly Glu Met Thr Gly Asn Leu Ser Leu Leu Ala
```

```
100
                                105
                                                     110
Pro Gly Met Ile Ala Val Ala Val Ala Gly Arg Val Val Gly Asp Thr
                            120
                                                 125
        115
Ser Ile Tyr Thr Ser Gln Leu Lys Asp Arg Leu Glu Gly Asp Ala
    130
                        135
                                            140
<210> 445
<211> 360
<212> DNA
<213> Homo sapiens
<400> 445
ccatggggct gcctagcctc tggggaggcc cctcagctgg tgacaccagc agggcagatt
tettgettta ttgeteacce tgtecagggt teeetetgtt tgtgagggag etgetgeeac
120
cttgggtcca ggaagcatga agetcegcag gtcagectce tggtgggagg actttteett
agttttettt getettetge tetgagteea geeetggetg gaeetttgat eeettetete
tttatcagga aattttctga ctttcttctt ttgccttttc aagatctgtg atgccatctc
caagtgggaa caagccatga aggagctgca ccccggaaag tctgagggtg ggacacgcgt
<210> 446
<211> 101
<212> PRT
<213> Homo sapiens
<400> 446
Met Ala Cys Ser His Leu Glu Met Ala Ser Gln Ile Leu Lys Arg Gln
Lys Lys Lys Val Arg Lys Phe Pro Asp Lys Glu Arg Arg Asp Gln Arg
                                25
Ser Ser Gln Gly Trp Thr Gln Ser Arg Arg Ala Lys Lys Thr Lys Glu
                            40
Lys Ser Ser His Gln Glu Ala Asp Leu Arg Ser Phe Met Leu Pro Gly
                        55
                                            60
Pro Lys Val Ala Ala Ala Pro Ser Gln Thr Glu Gly Thr Leu Asp Arg
                                        75
Val Ser Asn Lys Ala Arg Asn Leu Pro Cys Trp Cys His Gln Leu Arg
                                    90
Gly Leu Pro Arg Gly
           100
<210> 447
<211> 487
<212> DNA
<213> Homo sapiens
<400> 447
acgogtgaag ggggaaattg ctogtgocac otgaggatta atcattacco tggaaccott
```

```
cocaaqqcca tcaaqqaaca cqcaccctt accaqacctt ccaqctqctg ggggctctcc
gagtgagget gaggteatgg agaagggaat ggggggeeee catggeeage tggaeetgat
cactgootec ccactcagec acagcootea gggccotgtg ccaqtocaga agcccattca
gggacacctt tggccaatgt tctgtttcat ctgcgaggca accttcccca gtgccccaac
catagogttt toccccaaac accotcagga aggagggacc actacotgtg caggggggc
caggageete etgagageet catatgggga ggaagtggta ceateteace cecattgeet
tteteteeta ettecacety gecagettee etcagtgeee etcetgeete agtgeeeett
480
cacqcqt
487
<210> 448
<211> 117
<212> PRT
<213> Homo sapiens
<400> 448
Met Glu Lys Gly Met Gly Gly Pro His Gly Gln Leu Asp Leu Ile Thr
                                    10
Ala Ser Pro Leu Ser His Ser Pro Gln Gly Pro Val Pro Val Gln Lys
            20
                                25
Pro Ile Gln Gly His Leu Trp Pro Met Phe Cys Phe Ile Cys Glu Ala
                            40
Thr Phe Pro Ser Ala Pro Thr Ile Ala Phe Ser Pro Lys His Pro Gln
                        55
Glu Gly Gly Thr Thr Cys Ala Gly Gly Ala Arg Ser Leu Leu Arg
Ala Ser Tyr Gly Glu Glu Val Val Pro Ser His Pro His Cys Leu Ser
                85
                                    90
Leu Leu Pro Pro Gly Gln Leu Pro Ser Val Pro Leu Leu Pro Gln
            100
                                105
Cys Pro Phe Thr Arg
        115
<210> 449
<211> 353
<212> DNA
<213> Homo sapiens
<400> 449
gageteagee agttggagtt tgagaagegg cagetgeaca gggaettgga geaggeeaag
gagaaggggg agcgggcaga gaagctggag agggagctac agcgactcca ggaggagaac
gggaggctgg ccaggaaggt gacctccctg gagacagcca ccgagaaagt cgaggccctg
gagcatgaga gccagggcct gcagctggag aaccggactc tgaggaagtc tctggacacc
240
```

```
ttgcagaacg tgtccctgca gcttgagggc ctggagcgtg acaacaagca gctggacgca
gagaacctgg agctgcgcag gctggtggag accatgcgga gacgacaacg cgt
<210> 450
<211> 117
<212> PRT
<213> Homo sapiens
<400> 450
Glu Leu Ser Gln Leu Glu Phe Glu Lys Arg Gln Leu His Arg Asp Leu
Glu Gln Ala Lys Glu Lys Gly Glu Arg Ala Glu Lys Leu Glu Arg Glu
Leu Gln Arg Leu Gln Glu Glu Asn Gly Arg Leu Ala Arg Lys Val Thr
                            40
Ser Leu Glu Thr Ala Thr Glu Lys Val Glu Ala Leu Glu His Glu Ser
                        55
Gln Gly Leu Gln Leu Glu Asn Arg Thr Leu Arg Lys Ser Leu Asp Thr
                    70
Leu Gln Asn Val Ser Leu Gln Leu Glu Gly Leu Glu Arg Asp Asn Lys
                                     90
Gln Leu Asp Ala Glu Asn Leu Glu Leu Arg Arg Leu Val Glu Thr Met
            100
                                105
                                                     110
Arg Arg Gln Arg
        115
<210> 451
<211> 444
<212> DNA
<213> Homo sapiens
<400> 451
gtgatgcggc tgactaagcc tactttattc accaatatcc caqtaacatq tqaaqaqaaa
60
gacttacetg gagatetett taaccagetg atgagagatg atcetteaac cgttaatggt
gcagaagttt taatgttggg agaaatgctg actttaccac agaattttgg gaatatattt
ttgggagaga cettttccag ttatatcage gttcataatg atagcaatca agttgtaaaa
gacatattag taaaagctga tottcagaca agttotcago gtttaaatot ttcagcotco
aatgctgcag tggctgaact taaaccggat tgttgtattg atgatgtcat acatcatgaa
gtcaaagaaa ttggaacaca catcttggta tgtgctgtga gttatacaac tcaggctgga
gaaaaaatgt atttcagaaa attt
444
<210> 452
<211> 148
<212> PRT
```

<213> Homo sapiens

<400> 452 Val Met Arg Leu Thr Lys Pro Thr Leu Phe Thr Asn Ile Pro Val Thr 10 Cys Glu Glu Lys Asp Leu Pro Gly Asp Leu Phe Asn Gln Leu Met Arg 20 25 Asp Asp Pro Ser Thr Val Asn Gly Ala Glu Val Leu Met Leu Gly Glu 40 45 Met Leu Thr Leu Pro Gln Asn Phe Gly Asn Ile Phe Leu Gly Glu Thr 55 Phe Ser Ser Tyr Ile Ser Val His Asn Asp Ser Asn Gln Val Val Lys 75 70 Asp Ile Leu Val Lys Ala Asp Leu Gln Thr Ser Ser Gln Arg Leu Asn Leu Ser Ala Ser Asn Ala Ala Val Ala Glu Leu Lys Pro Asp Cys Cys 100 105 Ile Asp Asp Val Ile His His Glu Val Lys Glu Ile Gly Thr His Ile 120 125 Leu Val Cys Ala Val Ser Tyr Thr Thr Gln Ala Gly Glu Lys Met Tyr 135 Phe Arg Lys Phe 145 <210> 453 <211> 373 <212> DNA <213> Homo sapiens <400> 453 gctagetetg acceaectt tgccaagtgg cactagggtg gccaatgggg actagggttg tataattqqa aaatacaqtc tcccctqttq tccaagaaag gccccagatg acctggggct tqaaaggcac tcccgctggg tgcttcctgg gagcaggtgg ggggcagcgg ggcggcggggg cetqtetqtq etqaqeatec ceaqetecaq ggeaggtget gggetetgag ceceaetggt gegttttggg atgggetgge etgegegget gtegttteag ageacacaga agagaceetg ccacaggagg agtgggagga gaagetgttg atgttcctgc gagacaccct ggccatcatt tctgacaacg cgt 373 <210> 454 <211> 108 <212> PRT <213> Homo sapiens <400> 454 Met Met Ala Arg Val Ser Arg Arg Asn Ile Asn Ser Phe Ser Ser His 10 5 Ser Ser Cys Gly Arg Val Ser Ser Val Cys Ser Glu Thr Thr Ala Ala

30

25

Gln Ala Ser Pro Ser Gln Asn Ala Pro Val Gly Leu Arg Ala Gln His

20

```
40
Leu Pro Trp Ser Trp Gly Cys Ser Ala Gln Thr Gly Pro Ala Ala Pro
                        55
Leu Pro Pro Thr Cys Ser Gln Glu Ala Pro Ser Gly Ser Ala Phe Gln
Ala Pro Gly His Leu Gly Pro Phe Leu Asp Asn Arg Gly Asp Cys Ile
                                    90
                                                         95
Phe Gln Leu Tyr Asn Pro Ser Pro His Trp Pro Pro
<210> 455
<211> 602
<212> DNA
<213> Homo sapiens
<400> 455
cctaqqcaaa gcatgcccac cctacctccc cttaccctta cccttcattt tcccctaagc
acceateace accgatgtta etgtatgtgt ttgettaege tgacageeca ceaeceacae
tggaatgtcc gcacgacaaa ggcaggactc ttggctgcct tagccacagc tggatcccca
qaqctttqta qqqtqttqqq cacaqaqtqq agtqgqtact taataaqtat ctqtqqaatq
aacatgtaca gagtgaagcc ctgtgcccag aacaggctca aaataagctc aattcctttc
cttqccactt actaagtcct ttttctctcg ccccctctca ctgacctggt tttgatgcca
qacaqcacag atgggctagg gaggcaggtg gggaagcaga gatctgcgtc tcttggagct
qqaqctqqtq qqtqqqqctc cttcctqqtq ctqcqqaqqc tcattqqqqa qqtqqcaqcq
480
acceceteaq gaqeetetgt egeetgeact cagatetgtg cetttecaca gegeeeggag
qaaqacttgc tcaggagata aattcaaaga caacaggaag ctggacgtgg tggctcacgc
gt
602
<210> 456
<211> 100
<212> PRT
<213> Homo sapiens
<400> 456
Met Pro Thr Leu Pro Pro Leu Thr Leu Thr Leu His Phe Pro Leu Ser
1
Thr His His Arg Cys Tyr Cys Met Cys Leu Leu Thr Leu Thr Ala
His His Pro His Trp Asn Val Arg Thr Thr Lys Ala Gly Leu Leu Ala
                            40
Ala Leu Ala Thr Ala Gly Ser Pro Glu Leu Cys Arg Val Leu Gly Thr
```

```
55
Glu Trp Ser Gly Tyr Leu Ile Ser Ile Cys Gly Met Asn Met Tyr Arg
                                        75
                    70
Val Lys Pro Cys Ala Gln Asn Arg Leu Lys Ile Ser Ser Ile Pro Phe
                                    90
Leu Ala Thr Tyr
            100
<210> 457
<211> 324
<212> DNA
<213> Homo sapiens
<400> 457
acgcgtcatg tggatattcc tgggaggttc ccaggaacgt ttctggacgg gcccccgacc
agaggtcagg gaacttttct tattattctg cacgtgccca gggatagtca aaccaggtct
teccettetg etggeegeaa caegecagee geegecaega eegeaegetg aatteatgae
ceqacacqcq acqtqqcaqc gagcacaccc accgctagga gaaagagcgc tcatcgaaga
tegttttetg tecaetggee agegeeacta tgateaggtg gggtateege eeggeggegg
gagcaccggg acgccggggc gccg
324
<210> 458
<211> 105
<212> PRT
<213> Homo sapiens
<400> 458
Met Trp Ile Phe Leu Gly Gly Ser Gln Glu Arg Phe Trp Thr Gly Pro
                                    10
Arg Pro Glu Val Arg Glu Leu Phe Leu Leu Phe Cys Thr Cys Pro Gly
                                25
Ile Val Lys Pro Gly Leu Pro Leu Leu Ala Ala Thr Arg Gln Pro
                            40
Pro Pro Arg Pro His Ala Glu Phe Met Thr Arg His Ala Thr Trp Gln
Arg Ala His Pro Pro Leu Gly Glu Arg Ala Leu Ile Glu Asp Arg Phe
                    70
                                        75
Leu Ser Thr Gly Gln Arg His Tyr Asp Gln Val Gly Tyr Pro Pro Gly
Gly Gly Ser Thr Gly Thr Pro Gly Arg
            100
<210> 459
<211> 415
<212> DNA
<213> Homo sapiens
<400> 459
```

```
acgogttcat teggeatetg ettecatgga titeetgegg ggaggegegg cegagagtge
60
gggtgtcgaa cacgacactt cagtgatcgt ttcaaccacc ggccgagatg ggtcctgacg
ctgggcttca agecgcttgc gctcgcgctc ctgatctcgg gcagcgcgat tccggtggtt
tatgetgeeg geagacgact gegeaegeee etcacgaggt atetgeaeat gettaaaggg
agaggeetea eeegacaget gggeategga tttacgaage eeaegacgaa tetteetege
ctcctcaaag ccgatcatcg gcatgccagg tttgtggttg aatgcttcga tcaacacact
aggategttg gggtecacca catacacega geggeaateg ageggataeg acete
415
<210> 460
<211> 105
<212> PRT
<213> Homo sapiens
<400> 460
Met Pro Met Ile Gly Phe Glu Glu Ala Arg Lys Ile Arg Arg Gly Leu
Arg Lys Ser Asp Ala Gln Leu Ser Gly Glu Ala Ser Pro Phe Lys His
                                25
Val Gln Ile Pro Arg Glu Gly Arg Ala Gln Ser Ser Ala Gly Ser Ile
                            40
Asn His Arg Asn Arg Ala Ala Arg Asp Gln Glu Arg Glu Arg Lys Arg
                        55
Leu Glu Ala Gln Arg Gln Asp Pro Ser Arg Pro Val Val Glu Thr Ile
                    70
                                        75
Thr Glu Val Ser Cys Ser Thr Pro Ala Leu Ser Ala Ala Pro Pro Arq
                85
                                    90
Arg Lys Ser Met Glu Ala Asp Ala Glu
            100
                                105
<210> 461
<211> 357
<212> DNA
<213> Homo sapiens
<400> 461
acgcgttcga ggtcggctaa atttatcatg cgcacgacaa agagagtagt ggctcacaac
egggteacat geatgatgae aaaaactgge agaatagagt tgatgteate eegtetacea
geteetagaa eeageteaga gagteeeggt gteggtaeeg tegagaetea gtacacaaet
gtegegatac eggacgaece tetteatetg gttgeagatg ggegteteaa teaegteaet
240
gtcgcttacg aaacctacgg gaagctcaat acgtccagcg acaatgcggt ctatacctgt
300
catgegetta etggtgatge ceatgeagee ggattteace eeggtgtagt eegteeg
357
```

```
<210> 462
<211> 119
<212> PRT
<213> Homo sapiens
<400> 462
Thr Arg Ser Arg Ser Ala Lys Phe Ile Met Arg Thr Thr Lys Arg Val
                                    10
Val Ala His Asn Arg Val Thr Cys Met Met Thr Lys Thr Gly Arg Ile
                                25
Glu Leu Met Ser Ser Arg Leu Pro Ala Pro Arg Thr Ser Ser Glu Ser
                            40
Pro Gly Val Gly Thr Val Glu Thr Gln Tyr Thr Thr Val Ala Ile Pro
Asp Asp Pro Leu His Leu Val Ala Asp Gly Arg Leu Asn His Val Thr
65
                    70
                                        75
Val Ala Tyr Glu Thr Tyr Gly Lys Leu Asn Thr Ser Ser Asp Asn Ala
                                    90
Val Tyr Thr Cys His Ala Leu Thr Gly Asp Ala His Ala Ala Gly Phe
                                105
His Pro Gly Val Val Arg Pro
        115
<210> 463
<211> 434
<212> DNA
<213> Homo sapiens
<400> 463
gtgcacgggg tatgcgaggg atgcggcatt gccaccaatg ccgctgacct gcgcagatac
qaqqcaqctq gtgacgatga agtggtgcga tgcgaggaat gcgatcgtat cctggtgcgt
120
acceggagagt ccatctgage cettettgtg geggtgatge egggatatee gtagaattag
cggtcggacg agccatccgg gtgatcgcgg cagcggtgag ttgtcgagga aagtccgggc
tccatagagc agggtggtgg gtaacgccca cccggggtga cccgcgggaa agtgccacag
agaacagact geeggttteg ageeggtgaa ggtgaaaegg tggagtaagt geecacegeg
tcatcggtga cggtgacggc atggcaaacc ccacctggag caaggccaag aagaccgtga
420
ggtcgcggac gcgt
434
<210> 464
<211> 127
<212> PRT
<213> Homo sapiens
<400> 464
Met Pro Ser Pro Ser Pro Met Thr Arg Trp Ala Leu Thr Pro Pro Phe
```

10

```
His Pro His Arg Leu Glu Thr Gly Ser Leu Phe Ser Val Ala Leu Ser
                                25
Arg Gly Ser Pro Arg Val Gly Val Thr His His Pro Ala Leu Trp Ser
                            40
Pro Asp Phe Pro Arg Gln Leu Thr Ala Ala Ala Ile Thr Arg Met Ala
                        55
                                            60
Arg Pro Thr Ala Asn Ser Thr Asp Ile Pro Ala Ser Pro Pro Gln Glu
                    70
                                        75
65
Gly Leu Arg Trp Thr Leu Arg Tyr Ala Pro Gly Tyr Asp Arg Ile Pro
                                    90
Arg Ile Ala Pro Leu His Arg His Gln Leu Pro Arg Ile Cys Ala Gly
            100
                                105
Gln Arg His Trp Trp Gln Cys Arg Ile Pro Arg Ile Pro Arg Ala
                            120
<210> 465
<211> 438
<212> DNA
<213> Homo sapiens
<400> 465
gatcatttag aatttatgga agaagctgat gtgaaagcta tggtcaaatc tggcactgtg
getgtattgc taccaggagc attttacacc ttgaaagaaa ctcaacttcc accgatgaat
ttqttacqtc aqtacqqaqt aqacattqct atttcqacqq atqctaatcc agggacqtcq
ccagcgttat cattacggtt aatgatgaat atggcatgta ccttgtttgg tatgacacct
gaaaccgccc ttgcaggggt aacaattcat gcggcaaaag cgttggggat tagcgattct
300
catggcactt tagaagttgg caaggtagct gattttgtct gctgggatgt ggaaagcccc
qqtgaacttt gttattggtt aggagagcag ttagtaaagc aacgtattca gcacggagta
tcccatgaat aatctaga
438
<210> 466
<211> 143
<212> PRT
<213> Homo sapiens
<400> 466
Asp His Leu Glu Phe Met Glu Glu Ala Asp Val Lys Ala Met Val Lys
1
Ser Gly Thr Val Ala Val Leu Leu Pro Gly Ala Phe Tyr Thr Leu Lys
            20
                                25
Glu Thr Gln Leu Pro Pro Met Asn Leu Leu Arg Gln Tyr Gly Val Asp
                            40
Ile Ala Ile Ser Thr Asp Ala Asn Pro Gly Thr Ser Pro Ala Leu Ser
                        55
Leu Arg Leu Met Met Asn Met Ala Cys Thr Leu Phe Gly Met Thr Pro
```

```
70
                                        75
Glu Thr Ala Leu Ala Gly Val Thr Ile His Ala Ala Lys Ala Leu Gly
Ile Ser Asp Ser His Gly Thr Leu Glu Val Gly Lys Val Ala Asp Phe
            100
                                105
Val Cys Trp Asp Val Glu Ser Pro Gly Glu Leu Cys Tyr Trp Leu Gly
                           120
Glu Gln Leu Val Lys Gln Arg Ile Gln His Gly Val Ser His Glu
                        135
                                            140
<210> 467
<211> 460
<212> DNA
<213> Homo sapiens
<400> 467
ntttccctgg ctattggcca tgtgggacac aacgttccgc ctaccccaga gcggttaagc
tgcatccctg caccttcttc tcccaccgct tcaaagccac agtgaggaac ttcggagctt
120
ctegeagtga agatggegtt ggaggaatgg atgeeetgge tagaagagge ggaatatetq
ttgattgtgt ggaccgacca caaaaacctg gagtatctcc acacaaccaa gtgcctcaac
tocaggoaag caagaagggo coagetqttt acetqqttoc acttttocot otoctaccqq
ccggggtcca agaacatcag gctggatgcc ctttcttgcc actttatggg catgggccca
ttcctccagg cttgcctgtc acccgggctc ccgtcaaacc ctggccttcg tgcgacaaca
ctcttggtgc cttctatggt tctgtatgtt gccqcaattg
460
<210> 468
<211> 118
<212> PRT
<213> Homo sapiens
<400> 468
Gly Thr Ser Glu Leu Leu Ala Val Lys Met Ala Leu Glu Glu Trp Met
Pro Trp Leu Glu Glu Ala Glu Tyr Leu Leu Ile Val Trp Thr Asp His
            20
                                25
Lys Asn Leu Glu Tyr Leu His Thr Thr Lys Cys Leu Asn Ser Arg Gln
Ala Arg Arg Ala Gln Leu Phe Thr Trp Phe His Phe Ser Leu Ser Tyr
Arg Pro Gly Ser Lys Asn Ile Arg Leu Asp Ala Leu Ser Cys His Phe
                    70
                                        75
Met Gly Met Gly Pro Phe Leu Gln Ala Cys Leu Ser Pro Gly Leu Pro
                                    90
Ser Asn Pro Gly Leu Arg Ala Thr Thr Leu Leu Val Pro Ser Met Val
            100
                                105
Leu Tyr Val Ala Ala Ile
```

115 <210> 469 <211> 381 <212> DNA <213> Homo sapiens <400> 469 cttgtgcaca cgttattttt ccaatacaaa tagtttaaaa agtaaactcc aaatacctat aagcccctc aaagcacctt ccaaatatga accttgttaa tgcccaaggt ccagaggggt ccccagaaa ggcccaggag cctggggcat gggaaagctg tcggggtccc catgctgact ccctggactc caagegatat tccataaagc cagggcctcc tggctgcggg agggaggcct tqacccaaaa tccattcqgc cctggatact ggagaggcag aggcctctgc tgatgagaag 300 ccctgagttc ctggctagct gtggttaacc acaaaaaatg cggggggtga tgattttcga agtccatcgg caaagaaaga c 381 <210> 470 <211> 110 <212> PRT <213> Homo sapiens <400> 470 Met Asp Phe Glu Asn His His Pro Pro His Phe Leu Trp Leu Thr Thr Ala Ser Gln Glu Leu Arg Ala Ser His Gln Gln Arg Pro Leu Pro Leu 25 30 Gln Tyr Pro Gly Pro Asn Gly Phe Trp Val Lys Ala Ser Leu Pro Gln Pro Gly Gly Pro Gly Phe Met Glu Tyr Arg Leu Glu Ser Arg Glu Ser 55 Ala Trp Gly Pro Arg Gln Leu Ser His Ala Pro Gly Ser Trp Ala Phe 70 75 Leu Gly Asp Pro Ser Gly Pro Trp Ala Leu Thr Arg Phe Ile Phe Gly 90 Arg Cys Phe Glu Gly Ala Tyr Arg Tyr Leu Glu Phe Thr Phe 105 110 100 <210> 471 <211> 378 <212> DNA <213> Homo sapiens <400> 471 accggtgact acctgcagca ctggattgac atgggtaaaa agggcggcga ccgcatgcca gaggictice tggttaactg giteegeege ggegacgatg geegeticet gitggeegngg

120

```
cttggcgaaa acttcccggt cctanagtgg atcatcqacc gcattgaagg caacgtagag
geogaggaca eggtggtegg aegeacegee egegeegagg acategaett geaaggeett
gacttegatg tegacgaegt tegegeegea etegeegttg accegaagga atgggaagge
300
qatatqcaaq acaacqccqa qtacctqaac ttcctqqqct cccqcqtqcc cqaqqaaqtq
tggaaccagt tccgcgcc
378
<210> 472
<211> 126
<212> PRT
<213> Homo sapiens
<400> 472
Thr Gly Asp Tyr Leu Gln His Trp Ile Asp Met Gly Lys Lys Gly Gly
                                    10
                                                        15
Asp Arg Met Pro Glu Val Phe Leu Val Asn Trp Phe Arg Arg Gly Asp
                                25
Asp Gly Arg Phe Leu Trp Pro Xaa Leu Gly Glu Asn Phe Pro Val Leu
Xaa Trp Ile Ile Asp Arg Ile Glu Gly Asn Val Glu Ala Glu Asp Thr
                        55
Val Val Gly Arg Thr Ala Arg Ala Glu Asp Ile Asp Leu Gln Gly Leu
                                        75
                    70
Asp Phe Asp Val Asp Asp Val Arg Ala Ala Leu Ala Val Asp Pro Lys
                                    90
Glu Trp Glu Gly Asp Met Gln Asp Asn Ala Glu Tyr Leu Asn Phe Leu
                                105
            100
Gly Ser Arg Val Pro Glu Glu Val Trp Asn Gln Phe Arg Ala
        115
                            120
<210> 473
<211> 339
<212> DNA
<213> Homo sapiens
<400> 473
accggttggt gggggaaggg acccatecea tgccacetgt cetagaaaat gttteceett
gttgagcagc tgctggatct agggctgctg ggtctaagtc caaaaaggga aaaaggaaaa
aggcaccaag taaaagaagg gggaagctgc caaaaccccc cctgccaaaa ctctcccacc
etgetteeat tteeetetee agggaacagg tqtaceteee eteeteeetg teeteeteag
atgecceagg ggetetetae tteatteetg cegaceetge caggagtgge etcaggggta
gaggeteeta gttggagaat ttgettgeag gaaggtgaa
339
<210> 474
```

```
<211> 97
<212> PRT
<213> Homo sapiens
<400> 474
Met Phe Pro Leu Val Glu Gln Leu Leu Asp Leu Gly Leu Leu Gly Leu
Ser Pro Lys Arg Glu Lys Gly Lys Arg His Gln Val Lys Glu Gly Gly
            20
                                25
Ser Cys Gln Asn Pro Pro Cys Gln Asn Ser Pro Thr Leu Leu Pro Phe
                            40
Pro Ser Pro Gly Asn Arg Cys Thr Ser Pro Pro Pro Cys Pro Pro Gln
                        55
Met Pro Gln Gly Leu Ser Thr Ser Phe Leu Pro Thr Leu Pro Gly Val
                                        75
                    70
Ala Ser Gly Val Glu Ala Pro Ser Trp Arg Ile Cys Leu Gln Glu Gly
Glu
<210> 475
<211> 345
<212> DNA
<213> Homo sapiens
<400> 475
acgogtgaag ggtcccctcc aaactctgag cctccttcca agccttgctg ggagctcccc
agegectgee ggagaggeet etecteeagg egggetteee gegeegatgt gaaggagagg
ctgccccaga ggggtctgga tcgtaatcca gaaagggaca gtcccacagc cataatcccg
aatgotggga otottoagta aaggaagaga tggottttto gttoatotgo otttotgaaa
ggtaaaatat ctccagatcc gggctctctg ggcgactgcg tatgtggggg tccctgaagc
300
ctttgatgga tcttgttaga agtgggttgt tcatcttggg gtttt
345
<210> 476
<211> 111
<212> PRT
<213> Homo sapiens
<400> 476
Met Asn Asn Pro Leu Leu Thr Arg Ser Ile Lys Gly Phe Arg Asp Pro
                                    10
His Ile Arg Ser Arg Pro Glu Ser Pro Asp Leu Glu Ile Phe Tyr Leu
            20
                                25
Ser Glu Arg Gln Met Asn Glu Lys Ala Ile Ser Ser Phe Thr Glu Glu
                            40
Ser Gln His Ser Gly Leu Trp Leu Trp Asp Cys Pro Phe Leu Asp Tyr
                        55
                                            60
Asp Pro Asp Pro Ser Gly Ala Ala Ser Pro Ser His Arg Arg Gly Lys
```

```
65
                    70
                                        75
Pro Ala Trp Arg Arg Gly Leu Ser Gly Arg Arg Trp Gly Ala Pro Ser
Lys Ala Trp Lys Glu Ala Gln Ser Leu Glu Gly Thr Leu His Ala
            100
                                105
<210> 477
<211> 422
<212> DNA
<213> Homo sapiens
<400> 477
acgogtggcc gagccagogt gotcaaggaa atggtcaacg gcactottat taacggctgg
gacteteccg aggtggaacg ggcaetggae etgtgcatgg egtgcaaagg gtgegeecga
120
gattgcccca ccggaatcga catggccagc taccgcagca cggttcttga cgaaaaatac
cgtcaccgtc tecgeceteg eteccacctg acgatgggge tgetgeccat gtgggaacgt
ttgctcaatc ggaccccagg agcgccgtcg ctggctaacg cagtgctttc gatgccggtc
300
ttegcaegte ttgctagatg gaeageeggg gtggateage gtegteecet ecceegatte
cagecetegg ccagattgge cagteegeag geogeceegg ttaaggagat tgtggeggat
420
CC
422
<210> 478
<211> 140
<212> PRT
<213> Homo sapiens
<400> 478
Thr Arg Gly Arg Ala Ser Val Leu Lys Glu Met Val Asn Gly Thr Leu
                                    10
Ile Asn Gly Trp Asp Ser Pro Glu Val Glu Arg Ala Leu Asp Leu Cys
Met Ala Cys Lys Gly Cys Ala Arg Asp Cys Pro Thr Gly Ile Asp Met
                            40
Ala Ser Tyr Arg Ser Thr Val Leu Asp Glu Lys Tyr Arg His Arg Leu
Arg Pro Arg Ser His Leu Thr Met Gly Leu Leu Pro Met Trp Glu Arg
                    70
                                        75
Leu Leu Asn Arg Thr Pro Gly Ala Pro Ser Leu Ala Asn Ala Val Leu
                                    90
Ser Met Pro Val Phe Ala Arg Leu Ala Arg Trp Thr Ala Gly Val Asp
                                105
Gln Arg Arg Pro Leu Pro Arg Phe Gln Pro Ser Ala Arg Leu Ala Ser
Pro Gln Ala Ala Pro Val Lys Glu Ile Val Ala Asp
                        135
```

```
· <210> 479
  <211> 348
  <212> DNA
  <213> Homo sapiens
  <400> 479
  cgcgtggcca ttggccgggc gctggtgcgg cacccgcgac tggtgattgc cgatgagccg
  atctcggcgt tggacatgac catccagaag cagattcttg agctgttcga gegcctgcag
  120
  gegeagtacg getttgeetg cetgtteate teccaegace tggcageggt ggaacgeate
  geccaceggg tggeggtgat gagegaggge agggtggtgg aaatgggtge cegegaegag
  240
  atottogaco geoegoagea cocotacaco egoaagetgo tggcegeego cageccettg
 gagaaacttq aaaacqqtqq ctaccqcatc cqccaggqcc ccqtaccq
  348
  <210> 480
  <211> 116
  <212> PRT
  <213> Homo sapiens
  <400> 480
 Arg Val Ala Ile Gly Arg Ala Leu Val Arg His Pro Arg Leu Val Ile
                                      10
 Ala Asp Glu Pro Ile Ser Ala Leu Asp Met Thr Ile Gln Lys Gln Ile
              20
  Leu Glu Leu Phe Glu Arg Leu Gln Ala Gln Tyr Gly Phe Ala Cys Leu
 Phe Ile Ser His Asp Leu Ala Ala Val Glu Arg Ile Ala His Arg Val
                         55
 Ala Val Met Ser Glu Gly Arg Val Val Glu Met Gly Ala Arg Asp Glu
 Ile Phe Asp Arg Pro Gln His Pro Tyr Thr Arg Lys Leu Leu Ala Ala
                                     90
                 85
 Ala Ser Pro Leu Glu Lys Leu Glu Asn Gly Gly Tyr Arg Ile Arg Gln
             100
                                  105
                                                      110
 Gly Pro Val Pro
         115
 <210> 481
 <211> 441
 <212> DNA
 <213> Homo sapiens
 <400> 481
 aagettetga etgtggeatt etecetgett aatatgteet eaatateece taettaetgg
 gcaaaatcct gcttatgctt tgggactagc tcaaagacca ctcccttgga tggtgccttc
 cotgocotgo oggottgogo tggottooto agtgttagga ttaccatoac attgcatoat
 180
```

```
gagagcagaa gaccatetee atgtgaetge tgeceetget eecagcaggg eecacaanea
240
cccagtccag gacctggctc acgctgggtg gcggatgccc aggaatgggg ctctggatct
geotettete etgeaggace aggaaacege tgeeetgtee etgeeecagg aaaceeteag
taaateecca gteatttgag ttteecetea gegeeagaga eeaataacae ateteeacea
acctgaaaaa ccttcacgcg t
441
<210> 482
<211> 120
<212> PRT
<213> Homo sapiens
<400> 482
Lys Leu Leu Thr Val Ala Phe Ser Leu Leu Asn Met Ser Ser Ile Ser
                                    10
Pro Thr Tyr Trp Ala Lys Ser Cys Leu Cys Phe Gly Thr Ser Ser Lys
                                25
Thr Thr Pro Leu Asp Gly Ala Phe Pro Ala Leu Pro Ala Cys Ala Gly
                            40
Phe Leu Ser Val Arg Ile Thr Ile Thr Leu His His Glu Ser Arg Arg
                        55
Pro Ser Pro Cys Asp Cys Cys Pro Cys Ser Gln Gln Gly Pro Gln Xaa
                    70
                                         75
Pro Ser Pro Gly Pro Gly Ser Arg Trp Val Ala Asp Ala Gln Glu Trp
                                    90
Gly Ser Gly Ser Ala Ser Ser Pro Ala Gly Pro Gly Asn Arg Cys Pro
            100
                                105
                                                    110
Val Pro Ala Pro Gly Asn Pro Gln
        115
                            120
<210> 483
<211> 330
<212> DNA
<213> Homo sapiens
<400> 483
acgogttcat tocotgatgg coacgoacga gotaacggag ggatggggcg aagggaaggc
caaggttgcc tcgaagacca aggagtgtgc agggcaggac ctcgttttaa aggaatatcc
tetcaccaga gacacgegge ggccaggcag ggccggageg gggcctgtgc ccaggetceg
agogtotgoo cagoocagoa toootgtooo cagocaggaa tatgtottog tggcatagag
ggagetettg gagecaeaee tgegtgtgea eatgtgteae eccaetgetg ggaggggete
300
tecegggace etgeagegtg ggetgggeee
330
<210> 484
```

```
<211> 96
<212> PRT
<213> Homo sapiens
<400> 484
Met Gly Arg Arg Glu Gly Gln Gly Cys Leu Glu Asp Gln Gly Val Cys
                                    10
Arg Ala Gly Pro Arg Phe Lys Gly Ile Ser Ser His Gln Arg His Ala
                                25
Ala Ala Arg Gln Gly Arg Ser Gly Ala Cys Ala Gln Ala Pro Ser Val
                            40
Cys Pro Ala Gln His Pro Cys Pro Gln Pro Gly Ile Cys Leu Arg Gly
Ile Glu Gly Ala Leu Gly Ala Thr Pro Ala Cys Ala His Val Ser Pro
65
                    70
                                        75
His Cys Trp Glu Gly Leu Ser Arg Asp Pro Ala Ala Trp Ala Gly Pro
                                    90
<210> 485
<211> 377
<212> DNA
<213> Homo sapiens
<400> 485
acgogtgoto gogoggacga agtoggogot gatogocoag toatgogoco tgocogtgoo
gcccagttcg gcgatcgccg cattcggccg gccggaatcg agaaggaatg cgtggacgta
egggggatac caaaggaatc ttgtegaggg cttegeggec ctegaegtgg atcacetgta
cccgacggac gtggggaagc cgtcccgcaa gctcacggga ctccgcgaca tcgatgtgcg
atacgatttg caccgtcgtc ggctgcgtgc gcgacacatg ctccgcgatc gcctcagcgg
tggtttccga cgtcagcagg aacgtggcga cgggttggcat ggcggtcgcc gttatgtcgg
cattcccatt cctcggg
377
<210> 486
<211> 111
<212> PRT
<213> Homo sapiens
<400> 486
Met Arg Pro Ala Arg Ala Ala Gln Phe Gly Asp Arg Ile Arg Pro
                                                        15
                                    10
Ala Gly Ile Glu Lys Glu Cys Val Asp Val Arg Gly Ile Pro Lys Glu
                                                    30
Ser Cys Arg Gly Leu Arg Gly Pro Arg Arg Gly Ser Pro Val Pro Asp
                            40
Gly Arg Gly Glu Ala Val Pro Gln Ala His Gly Thr Pro Arg His Arg
Cys Ala Ile Arg Phe Ala Pro Ser Ser Ala Ala Cys Ala Thr His Ala
```

```
80
65
                     70
                                         75
Pro Arg Ser Pro Gln Arg Trp Phe Pro Thr Ser Ala Gly Thr Trp Arg
                                    90
                85
Arg Val Ala Trp Arg Ser Pro Leu Cys Arg His Ser His Ser Ser
            100
                                105
<210> 487
<211> 459
<212> DNA
<213> Homo sapiens
<400> 487
nnacgcgtaa gatcgattgt ggatcagcac cgatgctggt ccccccgacg ttgttgttgg
cgggtgttgt tgtaaggagt gtgtgtgatg cgtgttggtg ttcctactga ggttaagaat
120
agtgagtttc gtgtggctgt gacgccggcg ggtgttcatg cgttggttgg tcgtggtcat
gaggtgttgg ttcaggctgg tgctggtgtg ggttcgggta ttccggattc ggattttgtg
ggtgctggtg cgcgggttgt gggtgatgtg gagtcggtgt ggggtgatgc tgatttggtg
ttgaaggtga aggageetgt tgeggaggag tatgggeggt tgeatgaggg tttggttett
tttacgtatc ttcatttggc tgctgatgag gcgttgactc gtgagctttt ggggcgtggg
gtgacgtcga ttgcgtatga gacggtggag ttggccgat
459
<210> 488
<211> 124
<212> PRT
<213> Homo sapiens
<400> 488
Met Arg Val Gly Val Pro Thr Glu Val Lys Asn Ser Glu Phe Arg Val
Ala Val Thr Pro Ala Gly Val His Ala Leu Val Gly Arg Gly His Glu
                                25
Val Leu Val Gln Ala Gly Ala Gly Val Gly Ser Gly Ile Pro Asp Ser
                            40
Asp Phe Val Gly Ala Gly Ala Arg Val Val Gly Asp Val Glu Ser Val
                        55
Trp Gly Asp Ala Asp Leu Val Leu Lys Val Lys Glu Pro Val Ala Glu
                    70
                                        75
Glu Tyr Gly Arg Leu His Glu Gly Leu Val Leu Phe Thr Tyr Leu His
                                    90
Leu Ala Ala Asp Glu Ala Leu Thr Arg Glu Leu Leu Gly Arg Gly Val
                                105
                                                     110
Thr Ser Ile Ala Tyr Glu Thr Val Glu Leu Ala Asp
                            120
<210> 489
<211> 542
```

<212> DNA <213> Homo sapiens <400> 489 nacgcgtttg gcgtactgag tgcggtggtg gatggcgacg acagtggcaa gccgctgctc aaccaqcacg gttgctacaa agtgcgcttt ccatttaccc gcgatcaaaa gcccagcact cggggttcgg catggctgcg cagggtgtcg ttgtctgccg gttccagcca tggcatgcac tttccgctgc tcaaaggcag tgaagtgttg gtgtcatttc tggggggcga ccccgaccgg ccgattatcg ttggctgcgt accaaactcg gaaaccccga gcatggtcgt tgagcgtaac gecaeccaga geggettete caeggeegga gggeaettee tggegatgga agaccaecce 360 ggggetgeec atetgaaget gggtgegeet ggeggeaaca gegtetteae aetgggeaat qqcaaaqtcq ccqqcqcqca actqcqcacc aacqccccac atqcaattqa catcqtcttc gctcaaacac gaagtgcccg gcgtgtactc attgtcgatg ggcaccgggg acccggcggc 540 cg 542 <210> 490 <211> 180 <212> PRT <213> Homo sapiens <400> 490 Xaa Ala Phe Gly Val Leu Ser Ala Val Val Asp Gly Asp Asp Ser Gly Lys Pro Leu Leu Asn Gln His Gly Cys Tyr Lys Val Arg Phe Pro Phe 25 Thr Arq Asp Gln Lys Pro Ser Thr Arg Gly Ser Ala Trp Leu Arg Arg 40 45 Val Ser Leu Ser Ala Gly Ser Ser His Gly Met His Phe Pro Leu Leu 55 Lys Gly Ser Glu Val Leu Val Ser Phe Leu Gly Gly Asp Pro Asp Arg 70 75 Pro Ile Ile Val Gly Cys Val Pro Asn Ser Glu Thr Pro Ser Met Val Val Glu Arg Asn Ala Thr Gln Ser Gly Phe Ser Thr Ala Gly Gly His 100 105 110 Phe Leu Ala Met Glu Asp His Pro Gly Ala Ala His Leu Lys Leu Gly 120 Ala Pro Gly Gly Asn Ser Val Phe Thr Leu Gly Asn Gly Lys Val Ala 135 Gly Ala Gln Leu Arg Thr Asn Ala Pro His Ala Ile Asp Ile Val Phe 150 155 Ala Gln Thr Arg Ser Ala Arg Arg Val Leu Ile Val Asp Gly His Arg 170 Gly Pro Gly Gly

180 <210> 491 <211> 825 <212> DNA <213> Homo sapiens <400> 491 nacgogtoga ggogacggto ggogocgtoa tggogactgt totogagggo acatgggaac gcateggtgc eggatteegg actgeettaa ceacageett ggaaegeace gatgaatggg 120 tgggcggccc tgacagcaag cccctcaacg aagtcgagac actgcgccgg tgcgccgatg aactcategg egggeeegte ggegeggttg eegegatgea eggagggtea ategaattgg 240 tegaegtgte ggteggtgae gaagagegea gagtegaegt caccatgaag ggageatgee 300 gaggttgece ggeagecate agacectaea teagegeetg gaacateaae tgagtetgeg nattgcgcga gccggtcacc gtgcgggaaa tctgacacct actccgacag ctccacctcg acgageacet ceaegacgag gecaageeac tegtagaege attectecte ggcatecaat tecteceggg eegeeegage gaettegteg geagtaaeet ggtegatgat eectageetg geggecatea tgecaegeag egeattgaca gtaegaagee aaegttgegt cateaeaggg ttcatqqaqa tacaqccqqt tcqqtqcaac qtctccacat cagcacttaa ggactgagcg tetteccage gegeegegae atecteggeg teatggtega catggaattg egegteaget 720 gagtegtegt cacgatagge getgggeagg ateaategae geacetegte gtecteetgg 780 agtocagaaa actggctctc ccaaaaagcg aacgggtccc cctcc 825 <210> 492 <211> 58 <212> PRT <213> Homo sapiens <400> 492 Met Asn Gly Trp Ala Ala Leu Thr Ala Ser Pro Ser Thr Lys Ser Arg 10 His Cys Ala Gly Ala Pro Met Asn Ser Ser Ala Gly Pro Ser Ala Arg 20 25 Leu Pro Arg Cys Thr Glu Gly Gln Ser Asn Trp Ser Thr Cys Arg Ser 40 Val Thr Lys Ser Ala Glu Ser Thr Ser Pro

<210> 493 <211> 863

<212> DNA <213> Homo sapiens <400> 493 nacqcqttcc aacctcqtca aaacggctat cgcaggaaat gaccccaact ggggtcgcat cetegeggeg ateggatgtg tteetgagaa tatageteee ttegateeeg accaggtgga tgtgtccatc aatgacattc agatctgtaa ggccgggggt atcggggagg accgcaacct cgtcgatatg aggccacgag aggttcacat cgatattgag ctgcatgcgg gtgatgccga agetgeggta tggactaatg atetgaceca ecaatacgte gaagagaata gegegtatae 300 atcatgaccc ttgctcttga catccccctc aacgactccc agttctcggc tcagcggaaa totgaggtee tggtagaage getgeettgg ateaggeggt tteagggeeg caetgtegte gtgaaatatg gcggcaacgc gatggttgat cccggtctgc agcaggcctt cgccgacgac attqtqttta tqqcctctqt qqqqattcqc cctattgtcg tccacggtgg tggccctcag atcaatgcca tgcttgctga atccgctacc ccggtggagt tccgtaatgg tttgcgggtg acateteegg aggteatgga ggttgteegg atggtgeteg tegggeaggt gggeegteag ctcgttaacc gaatcaacgc ctatgcgccg ctagcagctg gcatgtcagg cgaggacttt ggcctttttt cggcccggaa gtcgcgggta attgttgatg gcgagcaaat agacatgggt ttaqtgggag acategttga egteaacate gatetegtta tetetatget tgategeggt cagattccgg tcattgcacc ggt 863 <210> 494 <211> 186 <212> PRT <213> Homo sapiens <400> 494 Met Thr Leu Ala Leu Asp Ile Pro Leu Asn Asp Ser Gln Phe Ser Ala Gln Arg Lys Ser Glu Val Leu Val Glu Ala Leu Pro Trp Ile Arg Arg 25 Phe Gln Gly Arg Thr Val Val Val Lys Tyr Gly Gly Asn Ala Met Val Asp Pro Gly Leu Gln Gln Ala Phe Ala Asp Asp Ile Val Phe Met Ala Ser Val Gly Ile Arg Pro Ile Val Val His Gly Gly Pro Gln Ile 70 75 Asn Ala Met Leu Ala Glu Ser Ala Thr Pro Val Glu Phe Arg Asn Gly Leu Arg Val Thr Ser Pro Glu Val Met Glu Val Val Arg Met Val Leu

110

105

100

```
Val Gly Gln Val Gly Arg Gln Leu Val Asn Arg Ile Asn Ala Tyr Ala
                            120
                                                 125
Pro Leu Ala Ala Gly Met Ser Gly Glu Asp Phe Gly Leu Phe Ser Ala
                        135
                                             140
Arg Lys Ser Arg Val Ile Val Asp Gly Glu Gln Ile Asp Met Gly Leu
145
                    150
                                        155
Val Gly Asp Ile Val Asp Val Asn Ile Asp Leu Val Ile Ser Met Leu
                165
                                    170
Asp Arg Gly Gln Ile Pro Val Ile Ala Pro
<210> 495
<211> 514
<212> DNA
<213> Homo sapiens
<400> 495
gegegegaca ceggtgeece gattagegtg ceagtgggtg acgteactaa gggteacgte
tggaatgtga caggtgacgt tettaacgcc ngatecetec acaategagg tgacnntgag
egttggeega teeaceggga teeceeggee ttegatgace ttgageeega gacegagatg
ctggagaccg gtattaaggt ccttgacttg ctgactcctt acgtcaaggg cggcaagatt
ggcctctttg gcggcgctgg tgtgggtaag acggtgctca ttcaggagat gatttaccgt
ategeceaca actteggegg tactteggtt ttegeeggtg teggtgageg taceegegag
ggtaacgacc tcatcaacga gatggacgag gccggtgtgc tcaaagacac cgccctggta
420
tteggecaga tggacgagec ceegggcaeg eggtacgage tgtegegetg geagecetge
ggcccatgcc tggtcaactg ctgtgggacc ttgg
514
<210> 496
<211> 171
<212> PRT
<213> Homo sapiens
<400> 496
Ala Arg Asp Thr Gly Ala Pro Ile Ser Val Pro Val Gly Asp Val Thr
Lys Gly His Val Trp Asn Val Thr Gly Asp Val Leu Asn Ala Xaa Ser
            20
                                25
Leu His Asn Arg Gly Asp Xaa Glu Arg Trp Pro Ile His Arg Asp Pro
                            40
Pro Ala Phe Asp Asp Leu Glu Pro Glu Thr Glu Met Leu Glu Thr Gly
Ile Lys Val Leu Asp Leu Leu Thr Pro Tyr Val Lys Gly Gly Lys Ile
                    70
                                        75
Gly Leu Phe Gly Gly Ala Gly Val Gly Lys Thr Val Leu Ile Gln Glu
```

```
95
                85
                                    90
Met Ile Tyr Arg Ile Ala His Asn Phe Gly Gly Thr Ser Val Phe Ala
                                105
            100
Gly Val Gly Glu Arg Thr Arg Glu Gly Asn Asp Leu Ile Asn Glu Met
                            120
Asp Glu Ala Gly Val Leu Lys Asp Thr Ala Leu Val Phe Gly Gln Met
    130
                        135
                                            140
Asp Glu Pro Pro Gly Thr Arg Tyr Glu Leu Ser Arg Trp Gln Pro Cys
                    150
                                        155
Gly Pro Cys Leu Val Asn Cys Cys Gly Thr Leu
                165
<210> 497
<211> 662
<212> DNA
<213> Homo sapiens
<400> 497
acqcqtcctg ggatctcaac cccaqcaqtc tqqcttqttt ctcattccca caatttcctg
ggttccacca agcagcgaaa actgccagga tgaatgagga aaaaacccag ccccacaaac
120
gagacacacg ctggcgggga gagacgcagc agagctcctt cctgtctgtg gactcggagc
aaaqacqtqq qqccccatct tttqtqttttt cctcaaqcqq qqaaaqaatq qactqtttqc
atgettegtg ccaeaegeee geggtgatee cagecaggge ceegagegea gaggeggage
tqtqctcaqc acaqqcctqq qacctccccc qqcaqqcacc tgtggggggt gcagccccg
ggaaggagge aactgcctca cttaacatcc tccgctgcaa ggtggtggcg ccgagaggcg
420
tqtctqtqaa qacaqqtacc aqqatqqcaq qacccqcacq cctcttccca cacctgtcag
480
cttcggaage atctctcgag gactctggtc ccaggatgtc tcccaggaca agccagtctg
cetetteete etaettetge tgtageetgg gaecagacet ggecaaggte agecageggg
gagggccgag gtctgagctc tcgtcctgcc gtggcccccg cgatggcttg gggtgcaagc
660
t.t.
662
<210> 498
<211> 191
<212> PRT
<213> Homo sapiens
<400> 498
Met Asn Glu Glu Lys Thr Gln Pro His Lys Arg Asp Thr Arg Trp Arg
1
                 5
                                    10
Gly Glu Thr Gln Gln Ser Ser Phe Leu Ser Val Asp Ser Glu Gln Arg
            20
                                25
Arg Gly Ala Pro Ser Phe Val Phe Ser Ser Ser Gly Glu Arg Met Asp
```

45

40

Cys Leu His Ala Ser Cys His Thr Pro Ala Val Ile Pro Ala Arg Ala

```
55
Pro Ser Ala Glu Ala Glu Leu Cys Ser Ala Gln Ala Trp Asp Leu Pro
                    70
Arg Gln Ala Pro Val Gly Gly Ala Ala Pro Gly Lys Glu Ala Thr Ala
                85
                                    90
Ser Leu Asn Ile Leu Arg Cys Lys Val Val Ala Pro Arg Gly Val Ser
                                105
                                                     110
Val Lys Thr Gly Thr Arg Met Ala Gly Pro Ala Arg Leu Phe Pro His
                            120
                                                125
        115
Leu Ser Ala Ser Glu Ala Ser Leu Glu Asp Ser Gly Pro Arg Met Ser
                        135
                                             140
Pro Arg Thr Ser Gln Ser Ala Ser Ser Ser Tyr Phe Cys Cys Ser Leu
                    150
                                         155
Gly Pro Asp Leu Ala Lys Val Ser Gln Arg Gly Gly Pro Arg Ser Glu
                165
                                    170
Leu Ser Ser Cys Arg Gly Pro Arg Asp Gly Leu Gly Cys Lys Leu
<210> 499
<211> 444
<212> DNA
<213> Homo sapiens
<400> 499
acqcqtqaaq qqtqqqcaqt gttgagctga gtgagccctc ctccctgcaa tgctggagcc
ctgccttctg cctgaccctc tggcttccta agcagtctat acgtgagaag ccctttcttc
120
aagtgaaagc ttctgagctc actacgagag cactggagct ggaacctctc tgggttcaaa
180
tecteaactq qqqqqttqqa qqaqqttact teaettetea aaaccteaat tteettatet
qcaaaatggg gtaataggag cccctcttca tcaatgcttg gagggaatgc ctggcacagt
agggcagtta ccgtcatgga gaacagaaag gccccgagct atcctggatg tggtgagaat
gggtcctgga tcctgcctgc tcggcctttt cattctcttc ttcacctaca ggctcccaca
420
aagggcctct gaaaacacag ggtg
<210> 500
<211> 105
<212> PRT
<213> Homo sapiens
<400> 500
Met Thr Val Thr Ala Leu Leu Cys Gln Ala Phe Pro Pro Ser Ile Asp
٦
                                    10
Glu Glu Gly Leu Leu Pro His Phe Ala Asp Lys Glu Ile Glu Val
                                25
Leu Arg Ser Glu Val Thr Ser Ser Asn Pro Pro Val Glu Asp Leu Asn
```

```
35
                            40
                                                45
Pro Glu Arg Phe Gln Leu Gln Cys Ser Arg Ser Glu Leu Arg Ser Phe
                        55
His Leu Lys Lys Gly Leu Leu Thr Tyr Arg Leu Leu Arg Lys Pro Glu
                    70
Gly Gln Ala Glu Gly Arg Ala Pro Ala Leu Gln Gly Gly Leu Thr
Gln Leu Asn Thr Ala His Pro Ser Arg
            100
<210> 501
<211> 800
<212> DNA
<213> Homo sapiens
<400> 501
agatetgate egagaagtgg etgeteaggg aaatgaetae teeatggett tettaaetea
60
ggtactcctt attcaatgag aggcctgagg tgagacccgc catgcggcgc gtggatcgca
tggtgttagt gcacactage aaggggetta ggtetecage tgaggteaga tgcacacttg
gaccttgtac tggggagtaa cacacatctc tgtgttcagc gaaccatcca ggagctgttt
gaagtttatt ctcccatgga tgatgctggc ttcccggtca aagctgagga gtttgtggtg
ctttctcagg aaccttctgt cacggaaacc attgcaccca aaattgcaag acctttcata
gaggecetea agagtattga gtatetggag gaggatgeec agaagteege acaggagggg
gtgctgggac cacacactga tgctctgtca tcagactctg agaacatgcc gtgtgatgaa
480
qaaccatccc aattagagga gctagctgac ttcatggagc agcttacacc aattgaaaaa
540
tatqctttaa attacctqqa atcttqaqqc aqqqcctqaq aqaqcacqct gcgccgtact
600
tocagcaget geggeagace aeggeteeae geetgetgea gtteeetgag etgaggetgg
tgcagttcga ctcaggtatg cggcagttgg gggcgtggcc cgtgcgggag ctgcactggc
cottggatgat gaggegetet tgatgtgatt egttteecag ggaagttgga agetttaget
atcttqcttc agaaactgaa
<210> 502
<211> 103
<212> PRT
<213> Homo sapiens
<400> 502
Met Asp Asp Ala Gly Phe Pro Val Lys Ala Glu Glu Phe Val Val Leu
1
                                    10
Ser Gln Glu Pro Ser Val Thr Glu Thr Ile Ala Pro Lys Ile Ala Arg
```

25 Pro Phe Ile Glu Ala Leu Lys Ser Ile Glu Tyr Leu Glu Glu Asp Ala

20

30

```
Gln Lys Ser Ala Gln Glu Gly Val Leu Gly Pro His Thr Asp Ala Leu
                        55
Ser Ser Asp Ser Glu Asn Met Pro Cys Asp Glu Glu Pro Ser Gln Leu
Glu Glu Leu Ala Asp Phe Met Glu Gln Leu Thr Pro Ile Glu Lys Tyr
                                    90
                85
Ala Leu Asn Tyr Leu Glu Ser
            100
<210> 503
<211> 538
<212> DNA
<213> Homo sapiens
<400> 503
nnacgcgttg tcgtctctcc gatcattgat tttgttgtat tctgcaatga tgtaaaggaa
gatgatgaca cggagaagtt taaagaagcc attgtgaaat ttcataggct gtttgggatg
ccagaggaag agaaactcgt caactattac tettgcaget attggaaggg gaaggtcccc
cgtcagggtt ggatgtacct cagcattaac cacctttgct tttattcttt tcttatggga
agggaagcga aactggtcat ccggtgggta gacatcactc agcttgagaa gaatgccccc
etgettetge etgatgtgat caaagtgage acaeggteea gtgageattt ettetetgta
ttcctcaaca tcaacgagac cttcaagtta atggagcagc ttgccaacat agccatgagg
420
caactettag acaatgaggg atttgaacaa gategateee tgeecaaaet caaaaggaaa
tetectaaaa aaqtqtetqe tetaaaacqt qatettqatq eetqqqeeet teacqeqt
538
<210> 504
<211> 179
<212> PRT
<213> Homo sapiens
Xaa Arq Val Val Val Ser Pro Ile Ile Asp Phe Val Val Phe Cys Asn
Asp Val Lys Glu Asp Asp Asp Thr Glu Lys Phe Lys Glu Ala Ile Val
                                25
Lys Phe His Arg Leu Phe Gly Met Pro Glu Glu Lys Leu Val Asn
                            40
                                                45
Tyr Tyr Ser Cys Ser Tyr Trp Lys Gly Lys Val Pro Arg Gln Gly Trp
Met Tyr Leu Ser Ile Asn His Leu Cys Phe Tyr Ser Phe Leu Met Gly
                    70
                                        75
Arg Glu Ala Lys Leu Val Ile Arg Trp Val Asp Ile Thr Gln Leu Glu
```

90

85

95

```
Lys Asn Ala Pro Leu Leu Pro Asp Val Ile Lys Val Ser Thr Arg
                               105
            100
Ser Ser Glu His Phe Phe Ser Val Phe Leu Asn Ile Asn Glu Thr Phe
        115
                            120
Lys Leu Met Glu Gln Leu Ala Asn Ile Ala Met Arg Gln Leu Leu Asp
    130
                        135
                                            140
Asn Glu Gly Phe Glu Gln Asp Arg Ser Leu Pro Lys Leu Lys Arg Lys
                    150
                                       155
Ser Pro Lys Lys Val Ser Ala Leu Lys Arg Asp Leu Asp Ala Trp Ala
                                    170
Leu His Ala
<210> 505
<211> 381
<212> DNA
<213> Homo sapiens
<400> 505
gtgcacgaca ccgaacggta cgaacgtatc tcccaggcac gtcgcgagga acagcaggcc
atgetegget aegacngete aagaacetgt egeatgacet tgeteacegg geagetggae
gacccctcca cgactccttg cggacgctgc gacgtctgtg ctggcccgtg gtactcagtc
gaggtegate agteageege tgtgagagee gteeaateee teaacegggt gggagtteeg
qtqqaaccac gcgccgcctg gcccgcaggg atggacgccc tccaggttgc gctcaagggt
egeateagtg cegaggagat egetgeagag ggeegegtea tegecagaet eteegatetg
gqttqqqqaq gggcgctgcg c
381
<210> 506
<211> 127
<212> PRT
<213> Homo sapiens
<400> 506
Val His Asp Thr Glu Arg Tyr Glu Arg Ile Ser Gln Ala Arg Arg Glu
Glu Gln Gln Ala Met Leu Gly Tyr Asp Xaa Ser Arg Thr Cys Arg Met
            20
                                25
Thr Leu Leu Thr Gly Gln Leu Asp Asp Pro Ser Thr Thr Pro Cys Gly
Arg Cys Asp Val Cys Ala Gly Pro Trp Tyr Ser Val Glu Val Asp Gln
Ser Ala Ala Val Arg Ala Val Gln Ser Leu Asn Arg Val Gly Val Pro
Val Glu Pro Arg Ala Ala Trp Pro Ala Gly Met Asp Ala Leu Gln Val
                                    90
Ala Leu Lys Gly Arg Ile Ser Ala Glu Glu Ile Ala Ala Glu Gly Arg
```

```
100
                                105
Val Ile Ala Arg Leu Ser Asp Leu Gly Trp Gly Gly Ala Leu Arg
        115
                            120
<210> 507
<211> 499
<212> DNA
<213> Homo sapiens
<400> 507
geoggegtgt teaaceteat ggtgtgggee tteattaceg acgteatega tgcccaggag
gtcatgtccg gggagcgtga agacggtgtc atctatggcg tgaactcctt cgcccgcaaa
120
cttgcccagg ccattgccgg tggaatcggc ggagccatgc tgacgatgat cggctaccag
tectectece aaggtggtge egtteagteg gagteegteg teaateacet gtacaegete
gecacegeca teeegacgat etgetgeete ggegetgeee tgeteatget gggetaceeg
cteaccegeg acaaggtggt egecaaegee gaegagttgg etegtegeea egeagtacag
geogageaaa aeteetgace cataaeggag geacateatg gacaegetea tgeggateae
cgaccacttg acaacctcgc cgggtatcca attgaaaatt gacaagcgat ggggtgcctc
cgtcacattt gtgacgcgt
499
<210> 508
<211> 125
<212> PRT
<213> Homo sapiens
<400> 508
Ala Gly Val Phe Asn Leu Met Val Trp Ala Phe Ile Thr Asp Val Ile
Asp Ala Gln Glu Val Met Ser Gly Glu Arg Glu Asp Gly Val Ile Tyr
                                25
Gly Val Asn Ser Phe Ala Arg Lys Leu Ala Gln Ala Ile Ala Gly Gly
                            40
Ile Gly Gly Ala Met Leu Thr Met Ile Gly Tyr Gln Ser Ser Gln
                        55
Gly Gly Ala Val Gln Ser Glu Ser Val Val Asn His Leu Tyr Thr Leu
                                        75
                    70
Ala Thr Ala Ile Pro Thr Ile Cys Cys Leu Gly Ala Ala Leu Leu Met
                                    90
Leu Gly Tyr Pro Leu Thr Arg Asp Lys Val Val Ala Asn Ala Asp Glu
                                105
Leu Ala Arg Arg His Ala Val Gln Ala Glu Gln Asn Ser
<210> 509
<211> 360
```

```
<212> DNA
<213> Homo sapiens
<400> 509
ttggccatgg atttggctcg caagttcagt cccaaagatg tcacgctcta tctaatggac
ttcgggacca atggtgtggc accactaggc caattaccac aggtggccga caccttgctt
ttggatcata cggagaagat tgccaagttt gtacgcatca tggagcggga gctcaaccgg
cgtaaqaagc tottgtocga ctacggtgtt ggtacactag agctctaccg tcaggctagc
ggtcagcaag agccggccat cgtcatcctg ctggacagtt atgagtccat gaaggaagag
gcctatgaag cggagctctt cacgctcttg gtgcggatct cccgggaagg tctcagcatc
360
<210> 510
<211> 120
<212> PRT
<213> Homo sapiens
<400> 510
Leu Ala Met Asp Leu Ala Arg Lys Phe Ser Pro Lys Asp Val Thr Leu
                                    10
Tyr Leu Met Asp Phe Gly Thr Asn Gly Val Ala Pro Leu Gly Gln Leu
            20
                                25
                                                     30
Pro Gln Val Ala Asp Thr Leu Leu Leu Asp His Thr Glu Lys Ile Ala
                            40
Lys Phe Val Arg Ile Met Glu Arg Glu Leu Asn Arg Arg Lys Lys Leu
Leu Ser Asp Tyr Gly Val Gly Thr Leu Glu Leu Tyr Arg Gln Ala Ser
Gly Gln Glu Pro Ala Ile Val Ile Leu Leu Asp Ser Tyr Glu Ser
                                    90
                85
Met Lys Glu Glu Ala Tyr Glu Ala Glu Leu Phe Thr Leu Leu Val Arg
            100
                                105
Ile Ser Arg Glu Gly Leu Ser Ile
        115
<210> 511
<211> 361
<212> DNA
<213> Homo sapiens
<400> 511
ntegegaace geggetatge ggtgeteeag cecaatttee geggateggg eggttatgge
actgcgttcg gcgatgccgg catcggccag atcgggcgca agatgcagga cgatctcgac
gacgggatgg actggctggt caaggagggc atcgtcgaca agggccgggt gtgcatcgtc
180
ggggcctcct atggcggcta tgccgcgatg tggggcgcga tccgcaatcc cgaacgctat
240
```

```
eqetqeqqq eqaqeetqqe qqqqqttqee qattaaqqee atgeteaaat ataaceggeg
ctatctcgac aaggaggcgg gcaagcgctg gccgcccgn tcaaccggcg aacccgaatt
С
361
<210> 512
<211> 91
<212> PRT
<213> Homo sapiens
<400> 512
Xaa Ala Asn Arg Gly Tyr Ala Val Leu Gln Pro Asn Phe Arg Gly Ser
1
                 5
                                    10
Gly Gly Tyr Gly Thr Ala Phe Gly Asp Ala Gly Ile Gly Gln Ile Gly
            20
                                25
Arg Lys Met Gln Asp Asp Leu Asp Asp Gly Met Asp Trp Leu Val Lys
                            40
Glu Gly Ile Val Asp Lys Gly Arg Val Cys Ile Val Gly Ala Ser Tyr
                        55
Gly Gly Tyr Ala Ala Met Trp Gly Ala Ile Arg Asn Pro Glu Arg Tyr
Arg Cys Ala Ala Ser Leu Ala Gly Val Ala Asp
                85
<210> 513
<211> 369
<212> DNA
<213> Homo sapiens
<400> 513
nnatgcagac tagaagatgg catgacggtt ttggctggcg gtttcgggct atgcggcatt
ccagaaaatc tgattcaaga gatcaaacga cgccagactt gtgatttgac catagtgtca
aataactgtg gtgtagatgg ttttggttta ggggttttgc tagaagataa gcaagtacgc
aaaatggtgt cttcttatgt gggtgaaaat gcactgtttg agaagcaatt attacaaggt
qaqttqqaag tcqaqetcac tcctcaaggc actettgccg aaaaactacg cgctggcggc
gegggaatte etgeetttt cacageaacg ggtgtaggta cacetattgg tgagggtaaa
360
gacacgcgt
369
<210> 514
<211> 123
<212> PRT
<213> Homo sapiens
<400> 514
Xaa Cys Arg Leu Glu Asp Gly Met Thr Val Leu Ala Gly Gly Phe Gly
```

```
10
                 5
Leu Cys Gly Ile Pro Glu Asn Leu Ile Gln Glu Ile Lys Arg Arg Gln
                               25
           20
Thr Cys Asp Leu Thr Ile Val Ser Asn Asn Cys Gly Val Asp Gly Phe
                            40
Gly Leu Gly Val Leu Leu Glu Asp Lys Gln Val Arg Lys Met Val Ser
                        55
Ser Tyr Val Gly Glu Asn Ala Leu Phe Glu Lys Gln Leu Leu Gln Gly
                   70
                                        75
Glu Leu Glu Val Glu Leu Thr Pro Gln Gly Thr Leu Ala Glu Lys Leu
                                    90
Arg Ala Gly Gly Ala Gly Ile Pro Ala Phe Phe Thr Ala Thr Gly Val
                                105
Gly Thr Pro Ile Gly Glu Gly Lys Asp Thr Arg
<210> 515
<211> 387
<212> DNA
<213> Homo sapiens
<400> 515
gegtgggaeg agaaggeege eggeaactge gegategaet aegggtteea eeagateete
tecgaegtge aggaetegte getgaeegeg atggaegage tgateaeega gggegtgaea
tcettcaage tettegtgge etacaaggge gtetteetet eggaegaegg geagateetg
cgggcgttcc agaagggcgc cgacaacggc gcgatgatga tgatgcacgc cgagaacggc
gegateateg aegtgetegt geageaggeg etegaggeeg ggaagaeeae eeegtaetae
cacggcatca gccggccgtg gcaggccgag gaggaggcca cccaccgcgc gatcatgatc
geegaeetga eeggtgegee gttgtae
387
<210> 516
<211> 129
<212> PRT
<213> Homo sapiens
<400> 516
Ala Trp Asp Glu Lys Ala Ala Gly Asn Cys Ala Ile Asp Tyr Gly Phe
                 5
                                    10
His Gln Ile Leu Ser Asp Val Gln Asp Ser Ser Leu Thr Ala Met Asp
            20
                                25
Glu Leu Ile Thr Glu Gly Val Thr Ser Phe Lys Leu Phe Val Ala Tyr
Lys Gly Val Phe Leu Ser Asp Asp Gly Gln Ile Leu Arg Ala Phe Gln
                        55
Lys Gly Ala Asp Asn Gly Ala Met Met Met His Ala Glu Asn Gly
                    70
                                        75
Ala Ile Ile Asp Val Leu Val Gln Gln Ala Leu Glu Ala Gly Lys Thr
```

```
85
                                     90
                                                         95
Thr Pro Tyr Tyr His Gly Ile Ser Arg Pro Trp Gln Ala Glu Glu Glu
                                105
Ala Thr His Arg Ala Ile Met Ile Ala Asp Leu Thr Gly Ala Pro Leu
                            120
                                                 125
Tyr
<210> 517
<211> 377
<212> DNA
<213> Homo sapiens
<400> 517
acgcgtgaag ggctggtggg caggccttgc gcccctctg gggacagetc tcctccaccc
agaccccttc gggccaacag tggggagggg ctgccgtctg agccactgtt ccgacagggg
120
attegegagt teegggggag etggggaetg agetgeggge eteetggget ggggetette
tccgaggttg gaggcagctt tagaaacttg agacccctag ctggagaggg cagaaggggt
ccctgagctt ccccaggaga aggggggcca atttggagct tgcttttcac ctgagatgag
gaatgggggt ggccaggccg agagcccagt ggggcatccc cagcacccat gaacatgcta
aggaagggga ggggccc
377
<210> 518
<211> 118
<212> PRT
<213> Homo sapiens
<400> 518
Met Phe Met Gly Ala Gly Asp Ala Pro Leu Gly Ser Arg Pro Gly His
                                    10
Pro His Ser Ser Ser Gln Val Lys Ser Lys Leu Gln Ile Gly Pro Pro
                                25
Ser Pro Gly Glu Ala Gln Gly Pro Leu Leu Pro Ser Pro Ala Arg Gly
                            40
Leu Lys Phe Leu Lys Leu Pro Pro Thr Ser Glu Lys Ser Pro Ser Pro
Gly Gly Pro Gln Leu Ser Pro Gln Leu Pro Arg Asn Ser Arg Ile Pro
                    70
                                        75
Cys Arg Asn Ser Gly Ser Asp Gly Ser Pro Ser Pro Leu Leu Ala Arg
                                    90
Arg Gly Leu Gly Gly Glu Leu Ser Pro Glu Gly Ala Gln Gly Leu
                                105
            100
Pro Thr Ser Pro Ser Arg
        115
<210> 519
<211> 311
```

```
<212> DNA
 <213> Homo sapiens
<400> 519
gcgcgccagg gggaagggag agaaaacaca gaaaaatgag ggggaaatac cagatactga
agaatttaaa ttattataaa ggaacctttt ctgcaactct gaaaaatgtt agaatatcca
120
aaqaaattga taattttcta ggaaaacatg acttaccaaa attaactcta gaaaagaatc
gatacacatc agtaacaaca gaagttgaga aagtagttaa catattgcca aacctggaat
teatqattqa attetttqag atetactgtg agtacatact etgectetgt teagetgtte
caqaacttaa q
311
<210> 520
<211> 92
<212> PRT
<213> Homo sapiens
<400> 520
Met Arg Gly Lys Tyr Gln Ile Leu Lys Asn Leu Asn Tyr Tyr Lys Gly
                                           5
                                                                                           10
Thr Phe Ser Ala Thr Leu Lys Asn Val Arg Ile Ser Lys Glu Ile Asp
Asn Phe Leu Gly Lys His Asp Leu Pro Lys Leu Thr Leu Glu Lys Asn
                                                                        40
Arg Tyr Thr Ser Val Thr Thr Glu Val Glu Lys Val Val Asn Ile Leu
                                                              55
                                                                                                                 60
Pro Asn Leu Glu Phe Met Ile Glu Phe Phe Glu Ile Tyr Cys Glu Tyr
                                                   70
                                                                                                       75
Ile Leu Cys Leu Cys Ser Ala Val Pro Glu Leu Lys
                                         85
<210> 521
<211> 352
<212> DNA
<213> Homo sapiens
<400> 521
nnngatgcca cgccggtcta cggaatctcc accggcttcg gcgcgcttgc ccgccgccac
attocagaag agatgegege geagetgeag etgteeetgg tgegeteeea egeggeegge
accggccctg aggtggaaga agaagtaatt cgcgcgctca tgctgctgcg cctatccacc
ctgtgtaccg gccgtaccgg cgtgcgccc gtggtggtag aaacttatgc caaggcgctc
aacgccggca tcgtgccggg ggtgcgcgaa tacgggtcgc tgggctgctc cggcgacttg
geological geological strategies and geological geologi
352
```

```
<210> 522
<211> 117
<212> PRT
<213> Homo sapiens
<400> 522
Xaa Asp Ala Thr Pro Val Tyr Gly Ile Ser Thr Gly Phe Gly Ala Leu
Ala Arg Arg His Ile Pro Glu Glu Met Arg Ala Gln Leu Gln Leu Ser
Leu Val Arg Ser His Ala Ala Gly Thr Gly Pro Glu Val Glu Glu Glu
                            40
Val Ile Arq Ala Leu Met Leu Leu Arg Leu Ser Thr Leu Cys Thr Gly
                        55
                                            60
Arg Thr Gly Val Arg Pro Val Val Val Glu Thr Tyr Ala Lys Ala Leu
                    70
Asn Ala Gly Ile Val Pro Gly Val Arg Glu Tyr Gly Ser Leu Gly Cys
Ser Gly Asp Leu Ala Pro Leu Ala His Cys Ala Leu Ala Leu Leu Gly
            100
                                105
Glu Gly Glu Val Arg
        115
<210> 523
<211> 693
<212> DNA
<213> Homo sapiens
<400> 523
agegetteca cagtegegea aacteetett ggtetageeg eccatteaet tteagtteca
tcagagccac caagctgcgg caccatctaa ggagaacatg tcccctggag gtcctgttag
aageteetgg ttgagaagge eetgaagetg ggtggeatea atgteeagee tetgetgage
180
atatetgttg aaaatgettt gttgggagee atgttetgaa gggetteeet teattetgag
gttgaaatgg ctgctcaggt gcctgtcact gtctggcatt ttcaggaaga ttcggagcaa
300
gaactccgct gattttctcc gtgtctgtgc aaccacaaca tagttcccag ggctcagatg
gtaagtcatg gtgaagttgc ggcggaattt attatttgag ctttggacag tgtttctgaa
cgaggaaaaa aacacgggtg gaaatttctc ccggaaccgc tgtgagccag ccagaatcac
ttggaaatcg agtggaaatt ttgcatcttc tgctttcaaa tttgatggtg tgacagcaac
tgtgacgcac acgacaacat tggtgccttc cattggctct tgcacagaga agttgaattg
ageateattt coggetecte ctggcgtgtt tectagaate attgetteet aaacattatt
tgggaccatc cttcgtggag tgtgtttcca tgg
693
```

```
<210> 524
<211> 193
<212> PRT
<213> Homo sapiens
<400> 524
Met Ile Leu Gly Asn Thr Pro Gly Gly Pro Gly Asn Asp Ala Gln Phe
Asn Phe Ser Val Gln Glu Pro Met Glu Gly Thr Asn Val Val Cys
            20
                                25
Val Thr Val Ala Val Thr Pro Ser Asn Leu Lys Ala Glu Asp Ala Lys
                            40
                                                45
Phe Pro Leu Asp Phe Gln Val Ile Leu Ala Gly Ser Gln Arg Phe Arg
Glu Lys Phe Pro Pro Val Phe Phe Ser Ser Phe Arg Asn Thr Val Gln
                    70
                                        75
Ser Ser Asn Asn Lys Phe Arg Arg Asn Phe Thr Met Thr Tyr His Leu
                                    90
Ser Pro Gly Asn Tyr Val Val Val Ala Gln Thr Arg Arg Lys Ser Ala
                                105
Glu Phe Leu Leu Arg Ile Phe Leu Lys Met Pro Asp Ser Asp Arg His
                            120
                                                125
Leu Ser Ser His Phe Asn Leu Arg Met Lys Gly Ser Pro Ser Glu His
                        135
                                           140
Gly Ser Gln Gln Ser Ile Phe Asn Arg Tyr Ala Gln Gln Arg Leu Asp
                    150
                                        155
Ile Asp Ala Thr Gln Leu Gln Gly Leu Leu Asn Gln Glu Leu Leu Thr
                                    170
Gly Pro Pro Gly Asp Met Phe Ser Leu Asp Gly Ala Ala Ala Trp Trp
            180
                                185
Leu
<210> 525
<211> 1101
<212> DNA
<213> Homo sapiens
<400> 525
nggcaagttg caaagagagc ctcagaggtc cgaagagcgc tgcgctccta ctcgcgttcg
cttcttcctc ttctcggttc cctactgtga aatcgcagcg acatttacaa aggcctccgg
gtectacega gacegateeg cagegtttgg ceeggtegeg cetattgcat egggageece
cgagcaccgg cgaaggactg gcgggtgggg tagggaggtg gcggcggcgg catggcgagg
ttcccgaagg ccgacctggc cgctgcagga gttatgttac tttgccactt cttcacggac
caqtttcaqt tcqccqatqq qaaacccqqa qaccaaatcc ttqattqqca qtatqqaqtt
actcaggeet teeetcacac agaggaggag gtggaagttg attcacacge gtacagecac
420
```

aggtggaaaa gaaacttgga ctttctcaag gcggtagaca cgaaccgagc aagcgtcggc 480 caagactote ttgagcccaq aaqettcaca qacetqctqc tqqatqatqq gcaggacaat aacactcaga togaggagga tacagaccac aattactata tatctcgaat atatggtcca totgattotg coagooggga tttatgggtg aacatagaco aaatggaaaa agataaagtg aagattcatg gaatattgtc caatactcat cggcaagctg caagagtgaa tctgtccttc gattttccat tttatggcca cttcctacgt gaaatcactg tggcaaccgg gggtttcata tacactggag aagtcgtaca tcgaatgcta acagccacac agtacatagc acctttaatg gcaaatttcg atcccaqtqt atccagaaat tcaactqtca gatattttga taatggcaca gcacttgtgg tocagtqgga ccatgtacat ctccaggata attataacct gggaagcttc 960 acattccagg caaccctgct catggatgga cgaatcatct ttggatacaa agaaattcct 1020 gtcttggtca cacagataag ttcaaccaat catccagtga aagtcggact gtccgatgca 1080 tttgtcgttg tccacaggat c 1101 <210> 526 <211> 290 <212> PRT <213> Homo sapiens <400> 526 Met Ala Arg Phe Pro Lys Ala Asp Leu Ala Ala Gly Val Met Leu Leu Cys His Phe Phe Thr Asp Gln Phe Gln Phe Ala Asp Gly Lys Pro Gly Asp Gln Ile Leu Asp Trp Gln Tyr Gly Val Thr Gln Ala Phe Pro 40 His Thr Glu Glu Glu Val Glu Val Asp Ser His Ala Tyr Ser His Arg 55 Trp Lys Arg Asn Leu Asp Phe Leu Lys Ala Val Asp Thr Asn Arg Ala 75 Ser Val Gly Gln Asp Ser Leu Glu Pro Arg Ser Phe Thr Asp Leu Leu 90 Leu Asp Asp Gly Gln Asp Asn Asn Thr Gln Ile Glu Glu Asp Thr Asp 100 105 His Asn Tyr Tyr Ile Ser Arg Ile Tyr Gly Pro Ser Asp Ser Ala Ser 115 120 125 Arg Asp Leu Trp Val Asn Ile Asp Gln Met Glu Lys Asp Lys Val Lys 135 Ile His Gly Ile Leu Ser Asn Thr His Arg Gln Ala Ala Arg Val Asn 155 160 Leu Ser Phe Asp Phe Pro Phe Tyr Gly His Phe Leu Arg Glu Ile Thr 170 165 Val Ala Thr Gly Gly Phe Ile Tyr Thr Gly Glu Val Val His Arg Met

	180				185					190		
Leu Thr Al		Gln T	yr Ile	200	Pro	Leu	Met	Ala	Asn 205	Phe	Asp	Pro
Ser Val Se 210			215	;	_	_		220				
Leu Val Va 225	l Gln '	_	sp His 30	Val	His	Leu	Gln 235	Asp	Asn	Tyr	Asn	Leu 240
Gly Ser Ph		Phe G 245	ln Ala	Thr	Leu	Leu 250	Met	Asp	Gly	Arg	Ile 255	Ile
Phe Gly Ty	r Lys (260	Glu I	le Pro) Val	Leu 265	Val	Thr	Gln	Ile	Ser 270	Ser	Thr
Asn His Pr 27		Lys V	al Gly	Leu 280	Ser	Asp	Ala	Phe	Val 285	Val	Val	His
Arg Ile 290												
<210> 527												
<211> 5343 <212> DNA												
<213> Homo	sapie	ns										
<400> 527												
nngtgccgtg 60	tgete	ctcac	attca	.cgcac	, act	gaga	actg	agct	gccc	ga g	ggaag	agtgt
gaaggcccca 120	agctgo	cccac	cgaac	ggcc	tgc	ettec	etgg	aago	atgo	ga t	gaga	gcccg
gcctcccgag	agctag	gacat	ccctc	tccct	gag	gaca	igtg	agac	ggct	ta c	gact	gggag
180 tacgctgggt	tcacco	cctta	cacaq	caaca	ı tac	ttac	raaq	асса	tcaa	ıqa a	acca	tagca
240												
gtgtgcttac 300	atatco	cagac	ccago	agaca	gto	aatg	jaca	gctt	gtgt	ga t	atgg	tccac
cgtcctccag 360	ccatga	agcca	ggcct	gtaac	aca	gago	cct	gtcc	cccc	ag g	jtggd	atgtg
ggctcttggg 420	ggccct	tgctc	agcta	cctgt	. gga	gttg	gaa	ttca	gaco	cg a	ıgatg	tgtac
tgcctgcacc 480	cagggg	gagac	ccctg	cccct	cct	gagg	ragt	gccg	agat	ga a	aago	cccat
gctttacaag 5 40	catgca	aatca	gtttg	actgo	cct	cctg	gct	ggca	catt	ga a	ıgaat	ggcag
cagtgttcca 600	ggactt	gtgg	cgggg	gaact	cag	aaca	gaa	gagt	cacc	tg t	cggc	agctg
ctaacggatg 660	gcagct	tttt	gaatc	tctca	gat	gaat	tgt	gcca	agga	cc c	aagg	catcg
tctcacaagt 720	cctgtg	gccag	gacag	actgt	cct	ccac	att	tagc	tgtg	gg a	gact	ggtcg
aagtgttctg 780	tcagtt	gtgg	tgttg	gaato	cag	agaa	gaa	agca	ggtg	tg t	caaa	ggctg
gcagccaaag 840	gtcggc	gcat	ccccc	tcagt	gag	atga	tgt	gcag	ggat	ct a	.ccag	ggctc
cctcttgtaa 900	gatctt	gcca	gatgc	ctgag	tgc	agta	aaa	tcaa	atca	ga g	atga	agaca
aaacttggtg 960	agcagg	gtcc	gcaga	tcctc	agt	gtcc	aga	gagt	ctac	at t	caga	caagg

gaagagaagc 1020	gtattaacct	gaccattggt	agcagagcct	atttgctgcc	caacacatcc
gtgattatta 1080	agtgccccgt	gcgacgattc	cagaaatctc	tgatccagtg	ggagaaggat
ggccgttgcc 1140	tgcagaactc	caaacggctt	ggcatcacca	agtcaggctc	actaaaaatc
cacggtcttg 1200	ctgcccccga	categgegtg	taccggtgca	ttgcaggctc	tgcacaggaa
acagttgtgc 1260	tcaagctcat	tggtactgac	aaccggctca	tegeaegeee	agccctcagg
gagcctatga 1320	gggaatatcc	tgggatggac	cacagegaag	ccaatagttt	gggagtcaca
tggcacaaaa 1380	tgaggcaaat	gtggaataac	aaaaatgacc	tttatctgga	tgatgaccac
attagtaacc 1440	agcctttctt	gagagctctg	ttaggccact	gcagcaattc	tgcaggaagc
accaactect 1500	gggagttgaa	gaataagcag	tttgaagcag	cagttaaaca	aggagcatat
agcatggata 1560	cagcccagtt	tgatgagctg	ataagaaaca	tgagtcagct	catggaaacc
ggagaggtca 1620	gcgatgatct	tgcgtcccag	ctgatatatc	agctggtggc	cgaattagcc
aaggcacagc 1680	caacacacat	gcagtggcgg	ggcatccagg	aagagacacc	tcctgctgct
cagctcagag 1740	gggaaacagg	gagtgtgtcc	caaagetege	atgcaaaaaa	ctcaggcaag
ctgacattca 1800	agccgaaagg	acctgttctc	atgaggcaaa	gecaacetee	ctcaatttca
tttaataaaa 1860	caataaattc	caggattgga	aatacagtat	acattacaaa	aaggacagag
gtcatcaata 1920	tactgtgtga	ccttattacc	cccagtgagg	ccacatatac	atggaccaag
gatggaacct 1980	tgttacagcc	ctcagtaaaa	ataattttgg	atggaactgg	gaagatacag
atacagaatc 2040	ctacaaggaa	agaacaaggc	atatatgaat	gttctgtagc	taatcatctt
ggttcagatg 2100	tggaaagttc	ttctgtgctg	tatgcagagg	cacctgtcat	cttgtctgtt
gaaagaaata 2160	tcaccaaacc	agagcacaac	catctgtctg	ttgtggttgg	aggcatcgtg
gaggcagccc 2220	ttggagcaaa	cgtgacaatc	cgatgtcctg	taaaaggtgt	ccctcagcct
aatataactt 2280	ggttgaagag	aggaggatct	ctgagtggca	atgtttcctt	gcttttcaat
ggatccctgt 2340	tgttgcagaa	tgtttccctt	gaaaatgaag	gaacctacgt	ctgcatagec
accaatgctc 2400	ttggaaaggc	agtggcaaca	tctgtactcc	acttgctgga	acgaagatgg
ccagagagta 2460	gaatcgtatt	tctgcaagga	cataaaaagt	acattctcca	ggcaaccaac
actagaacca 2520	acagcaatga	cccaacagga	gaacccccgc	ctcaagagcc	tttttgggag
cctggtaact 2580	ggtcacattg	ttctgccacc	tgtggtcatt `	tgggagcccg	cattcagaga

ccccagtgtg 2640	tgatggccaa	tgggcaggaa	gtgagtgagg	ccctgtgtga	tcagcctcca
gaagccactg 2700	gctgggtttg	agccctgtaa	catccgggac	tgcccagcga	ggtggttcac
aagtgtgtgg 2760	tcacagtgct	ctgtgtcttg	cggtgaagga	taccacagtc	ggcaggtgac
gtgcaagcgg 2820	acaaaagcca	atggaactgt	gcaggtggtg	tctccaagag	catgtgcccc
taaagaccgg 2880	cctctgggaa	gaaaaccatg	ttttggtcat	ccatgtgttc	agtgggaacc
agggaaccgg 2940	tgtcctggac	gttgcatggg	eegtgetgtg	aggatgcagc	agcgtcacac
3000	_	_	ctgtgatgac		
3060			gtgttggcac		
tacagcagcc 3120	tgtggcaggg	gtttccagtc	teggaaagte	gactgtatcc	acacaaggag
ttgcaaacct 3180	gtggccaaga	gacactgtgt	acagaaaaag	aaaccaattt	cctggcggca
ctgtcttggg 3240	ccctcctgtg	atagagactg	cacagacaca	actcactact	gtatgtttgt
aaaacatctt 3300	aatttgtgtt	ctctagaccg	ctacaaacaa	aggtgctgcc	agtcatgtca
agagggataa 3360	acctttggag	gggtcatgat	gctgctgtga	agataaaagt	agaatataaa
agctcttttc 3420	cccatgtcgc	tgattcaaaa	acatgtattt	cttaaaagac	tagattctat
ggatcaaaca 3480	gaggttgatg	caaaaacacc	actgttaagg	tgtaaagtga	aattttccaa
tggtagtttt 3540	atattccaat	tttttaaaat	gatgtattca	aggatgaaca	aaatactata
gcatgcatgc 3600	cactgcactt	gggacctcat	catgtcagtt	gaatcgagaa	atcaccaaga
ttatgagtgc 3660	atcctcacgt	gctgcctctt	tcctgtgata	tgtagactag	cacagagtgg
tacatcctaa 3720	aaacttggga	aacacagcaa	cccatgactt	cctcttctct	caagttgcag
gttttcaaca 3780	gttttataag	gtatttgcat	tttagaagct	ctggccagta	gttgttaaga
tgttggcatt 3840	aatggcattt	tcatagatcc	ttggtttagt	ctgtgaaaaa	gaaaccatct
ctctggatag 3900	gctgtcacac	tgactgacct	aagggttcat	ggaagcatgg	catcttgtcc
ttgcttttag 3960	aacacccatg	gaagaaaaca	cagagtagat	attgctgtca	tttatacaac
tacagaaatt 4020	tatctatgac	ctaatgaggc	atctcggaag	tcaaagaaga	gggaaagtta
accttttcta 4080	ctgatttcgt	agtatattca	gagctttctt	ttaagagctg	tgaatgaaac
tttttctaag 4140	cactattcta	ttgcacacaa	acagaaaacc	aaagccttat	tagacctaat
ttatgcataa 4200	agtagtattc	ctgagaactt	tattttggaa `	aatttataag	aaagtaatcc

```
aaataagaaa cacgatagtt gaaaataatt tttatagtaa ataattgttt tgggctgatt
tttcagtaaa tccaaagtga cttaggttag aagttacact aaggaccagg ggttggaatc
agaatttagt ttaagatttg aggaaaaggg taagggttag tttcagtttt aggattagag
ctagaattgg gttaggtgag aaagaaagtt aaggttaagg ctagagttgt ctttaagggt
tagggttagg accaggttag gtcagggttg gattgggttt agattggggc cagtgctggt
4500
gttagtgata gtgtcaggat ggaggttagg tttggagtaa gcgttgttgc tgaagtgagt
tcaggctage attaaattgt aagttctgaa gctgatttgg ttatggggtc tttcccctgt
4620
atactaccag ttgtgtcttt agatggcaca caagtccaaa taagtggtca tacttcttta
ttcagggtct cagctgcctg tacacctgct gcctacatct tcttggcaac aaagttacct
gccacaggct ctgctgagcc tagttcctgg tcagtaataa ctgaacagtg cattttggct
ttggatgtgt etgtqqaeaa qettqetqaq tttetetace atattetgag cacaeggtet
cttttgttct aacttcaget teactgacac tgggttgage actactgtat gtggagggtt
tggtgattgg gaatggatgg gggacagtga ggaggacaca ccagcccatt agttgttaat
catcaatcac atctgattgt tgaaggttat taaattaaaa gaaagatcat ttgtaacata
ctctttgtat atatttatta tatgaaaggt gcaatatttt attttgtaca gtatgtaata
aagacatggg acatatattt ttcttattaa caaaatttca tattaaattg cttcactttg
tatttaaagt taaaagttac tatttttcat ttgctattgt actttcattg ttgtcattca
attgacattc ctgtgtactg tattttacta ctgtttttat aacatgagag ttaatgtttc
tgtttcatga tccttatgta attcagaaat aaatttactt tgattattca gtggcatcct
5340
tat
5343
<210> 528
<211> 886
<212> PRT
<213> Homo sapiens
<400> 528
Xaa Cys Arg Val Leu Leu Thr Phe Thr Gln Thr Glu Thr Glu Leu Pro
1
                                    10
Glu Glu Cys Glu Gly Pro Lys Leu Pro Thr Glu Arg Pro Cys Phe
                                25
Leu Glu Ala Cys Asp Glu Ser Pro Ala Ser Arq Glu Leu Asp Ile Pro
Leu Pro Glu Asp Ser Glu Thr Ala Tyr Asp Trp Glu Tyr Ala Gly Phe
```

	50					55					60				
Thr		Cys	Thr	Ala	Thr		Leu	Gly	Gly	His		Glu	Ala	Ile	Ala
65		•			70	•		•	•	75					80
Val	Cys	Leu	His	Ile	Gln	Thr	Gln	Gln	Thr	Val	Asn	Asp	Ser	Leu	Cys
				85					90					95	
Asp	Met	Val		Arg	Pro	Pro	Ala		Ser	Gln	Ala	Cys		Thr	Glu
Dro	Cva	Dro	100	7~~	Twn	uio	37-7	105	Com	Two	~1	D~~	110	C ~ ~	7.1 a
PIO	Cys	115	PIO	Arg	Trp	urs	120	GIY	Ser	пр	GIY	125	Cys	Ser	Ala
Thr	Cys		Val	Gly	Ile	Gln		Arq	asA	Val	Tvr		Leu	His	Pro
	130	•		•		135		_	•		140	•			
Gly	Glu	Thr	Pro	Ala	Pro	Pro	Glu	Glu	Cys	Arg	Asp	Glu	Lys	Pro	His
145		_			150					155					160
Ala	Leu	Gln	Ala		Asn	Gln	Phe	Asp		Pro	Pro	Gly	Trp		Ile
Glu	Glu	Trn	Gla	165	Cys	Sar	7 ~~	Thr.	170	Clv	Clar	G1.v	Thr	175	λαn
GIU	Gru	TTP	180	GIII	Суз	361	Arg	185	cys	Gry	СТУ	GIY	190	GIII	ASII
Arg	Arg	Val		Cys	Arg	Gln	Leu		Thr	Asp	Gly	Ser		Leu	Asn
_	_	195		-	_		200			-	•	205			
Leu	Ser	Asp	Glu	Leu	Cys	Gln	Gly	Pro	Lys	Ala	Ser	Ser	His	Lys	Ser
_	210	_		_	_	215	_				220				
Cys 225	Ala	Arg	Thr	Asp	Cys 230	Pro	Pro	His	Leu		Val	Gly	Asp	Trp	
	Cvs	Ser	Val	Ser	Cys	Glv	Val	Glv	Tle	235 Gln	Ara	Δνα	Lvg	Gln	240 Val
,	Cyc		,,,	245	Cyb	G ₂	V 44 1	O ₂ y	250	GIII	9	9	Буб	255	val
Cys	Gln	Arg	Leu	Ala	Ala	Lys	Gly	Arg		Ile	Pro	Leu	Ser		Met
			260					265					270		
			200					200					2,0		
Met	Cys			Leu	Pro	Gly			Leu	Val	Arg			Gln	Met
		275	Asp				280	Pro			_	285	Cys		
	Glu	275	Asp		Pro Ile	Lys	280	Pro			Thr	285	Cys		
Pro	Glu 290	275 Cys	Asp	Lys	Ile	Lys 295	280 Ser	Pro Glu	Met	Lys	Thr	2 8 5 Lys	Cys Leu	Gly	Glu
Pro	Glu 290	275 Cys	Asp	Lys		Lys 295	280 Ser	Pro Glu	Met	Lys	Thr	2 8 5 Lys	Cys Leu	Gly	Glu
Pro Gln 305	Glu 290 Gly	275 Cys Pro	Asp Ser Gln	Lys Ile	Ile Leu	Lys 295 Ser	280 Ser Val	Pro Glu Gln	Met Arg	Lys Val 315	Thr 300 Tyr	285 Lys Ile	Cys Leu Gln	Gly Thr	Glu Arg 320
Pro Gln 305 Glu	Glu 290 Gly Glu	275 Cys Pro Lys	Asp Ser Gln Arg	Lys Ile Ile 325	Ile Leu 310 Asn	Lys 295 Ser Leu	280 Ser Val Thr	Pro Glu Gln Ile	Met Arg Gly 330	Lys Val 315 Ser	Thr 300 Tyr Arg	285 Lys Ile Ala	Cys Leu Gln Tyr	Gly Thr Leu 335	Glu Arg 320 Leu
Pro Gln 305 Glu	Glu 290 Gly Glu	275 Cys Pro Lys	Asp Ser Gln Arg Ser	Lys Ile Ile 325	Ile Leu 310	Lys 295 Ser Leu	280 Ser Val Thr	Pro Glu Gln Ile Cys	Met Arg Gly 330	Lys Val 315 Ser	Thr 300 Tyr Arg	285 Lys Ile Ala	Cys Leu Gln Tyr Phe	Gly Thr Leu 335	Glu Arg 320 Leu
Pro Gln 305 Glu Pro	Glu 290 Gly Glu Asn	275 Cys Pro Lys Thr	Asp Ser Gln Arg Ser 340	Lys Ile Ile 325 Val	Ile Leu 310 Asn Ile	Lys 295 Ser Leu Ile	280 Ser Val Thr	Pro Glu Gln Ile Cys 345	Met Arg Gly 330 Pro	Lys Val 315 Ser Val	Thr 300 Tyr Arg	285 Lys Ile Ala Arg	Cys Leu Gln Tyr Phe 350	Gly Thr Leu 335 Gln	Glu Arg 320 Leu Lys
Pro Gln 305 Glu Pro	Glu 290 Gly Glu Asn	275 Cys Pro Lys Thr	Asp Ser Gln Arg Ser 340	Lys Ile Ile 325 Val	Ile Leu 310 Asn	Lys 295 Ser Leu Ile	280 Ser Val Thr	Pro Glu Gln Ile Cys 345	Met Arg Gly 330 Pro	Lys Val 315 Ser Val	Thr 300 Tyr Arg	285 Lys Ile Ala Arg Gln	Cys Leu Gln Tyr Phe 350	Gly Thr Leu 335 Gln	Glu Arg 320 Leu Lys
Pro Gln 305 Glu Pro Ser	Glu 290 Gly Glu Asn Leu	275 Cys Pro Lys Thr	Asp Ser Gln Arg Ser 340 Gln	Lys Ile Ile 325 Val	Ile Leu 310 Asn Ile Glu	Lys 295 Ser Leu Ile Lys	280 Ser Val Thr Lys Asp 360	Pro Glu Gln Ile Cys 345 Gly	Met Arg Gly 330 Pro	Lys Val 315 Ser Val Cys	Thr 300 Tyr Arg Arg	285 Lys Ile Ala Arg Gln 365	Cys Leu Gln Tyr Phe 350 Asn	Gly Thr Leu 335 Gln Ser	Glu Arg 320 Leu Lys
Pro Gln 305 Glu Pro Ser	Glu 290 Gly Glu Asn Leu	275 Cys Pro Lys Thr	Asp Ser Gln Arg Ser 340 Gln	Lys Ile Ile 325 Val	Ile Leu 310 Asn Ile	Lys 295 Ser Leu Ile Lys	280 Ser Val Thr Lys Asp 360	Pro Glu Gln Ile Cys 345 Gly	Met Arg Gly 330 Pro	Lys Val 315 Ser Val Cys	Thr 300 Tyr Arg Arg	285 Lys Ile Ala Arg Gln 365	Cys Leu Gln Tyr Phe 350 Asn	Gly Thr Leu 335 Gln Ser	Glu Arg 320 Leu Lys
Pro Gln 305 Glu Pro Ser Arg	Glu 290 Gly Glu Asn Leu Leu 370	275 Cys Pro Lys Thr Ile 355 Gly	Asp Ser Gln Arg Ser 340 Gln Ile	Lys Ile Ile 325 Val Trp	Ile Leu 310 Asn Ile Glu Lys Val	Lys 295 Ser Leu Ile Lys Ser 375	280 Ser Val Thr Lys Asp 360 Gly	Pro Glu Gln Ile Cys 345 Gly Ser	Met Arg Gly 330 Pro Arg Leu	Lys Val 315 Ser Val Cys Lys Ala	Thr 300 Tyr Arg Arg Leu Ile 380	285 Lys Ile Ala Arg Gln 365 His	Cys Leu Gln Tyr Phe 350 Asn	Gly Thr Leu 335 Gln Ser Leu	Glu Arg 320 Leu Lys Lys Ala Glu
Pro Gln 305 Glu Pro Ser Arg Ala 385	Glu 290 Gly Glu Asn Leu Leu 370 Pro	275 Cys Pro Lys Thr Ile 355 Gly Asp	Asp Ser Gln Arg Ser 340 Gln Ile	Lys Ile Ile 325 Val Trp Thr	Ile Leu 310 Asn Ile Glu Lys Val 390	Lys 295 Ser Leu Ile Lys Ser 375 Tyr	280 Ser Val Thr Lys Asp 360 Gly	Pro Glu Gln Ile Cys 345 Gly Ser Cys	Met Arg Gly 330 Pro Arg Leu Ile	Lys Val 315 Ser Val Cys Lys Ala 395	Thr 300 Tyr Arg Arg Leu Ile 380 Gly	285 Lys Ile Ala Arg Gln 365 His	Cys Leu Gln Tyr Phe 350 Asn Gly Ala	Gly Thr Leu 335 Gln Ser Leu Gln	Glu Arg 320 Leu Lys Lys Ala Glu 400
Pro Gln 305 Glu Pro Ser Arg Ala 385	Glu 290 Gly Glu Asn Leu Leu 370 Pro	275 Cys Pro Lys Thr Ile 355 Gly Asp	Asp Ser Gln Arg Ser 340 Gln Ile	Lys Ile Ile 325 Val Trp Thr Gly Lys	Ile Leu 310 Asn Ile Glu Lys Val	Lys 295 Ser Leu Ile Lys Ser 375 Tyr	280 Ser Val Thr Lys Asp 360 Gly	Pro Glu Gln Ile Cys 345 Gly Ser Cys	Met Arg Gly 330 Pro Arg Leu Ile Asp	Lys Val 315 Ser Val Cys Lys Ala 395	Thr 300 Tyr Arg Arg Leu Ile 380 Gly	285 Lys Ile Ala Arg Gln 365 His	Cys Leu Gln Tyr Phe 350 Asn Gly Ala	Gly Thr Leu 335 Gln Ser Leu Gln Ala	Glu Arg 320 Leu Lys Lys Ala Glu 400
Pro Gln 305 Glu Pro Ser Arg Ala 385 Thr	Glu 290 Gly Glu Asn Leu Leu 370 Pro	275 Cys Pro Lys Thr Ile 355 Gly Asp	Asp Ser Gln Arg Ser 340 Gln Ile Ile Leu	Lys Ile Ile 325 Val Trp Thr Gly Lys 405	Ile Leu 310 Asn Ile Glu Lys Val 390 Leu	Lys 295 Ser Leu Ile Lys Ser 375 Tyr	280 Ser Val Thr Lys Asp 360 Gly Arg	Pro Glu Gln Ile Cys 345 Gly Ser Cys	Met Arg Gly 330 Pro Arg Leu Ile Asp 410	Lys Val 315 Ser Val Cys Lys Ala 395 Asn	Thr 300 Tyr Arg Arg Leu Ile 380 Gly Arg	285 Lys Ile Ala Arg Gln 365 His Ser Leu	Cys Leu Gln Tyr Phe 350 Asn Gly Ala Ile	Gly Thr Leu 335 Gln Ser Leu Gln Ala 415	Glu Arg 320 Leu Lys Lys Ala Glu 400 Arg
Pro Gln 305 Glu Pro Ser Arg Ala 385 Thr	Glu 290 Gly Glu Asn Leu Leu 370 Pro	275 Cys Pro Lys Thr Ile 355 Gly Asp	Asp Ser Gln Arg Ser 340 Gln Ile Ile Leu	Lys Ile Ile 325 Val Trp Thr Gly Lys 405	Ile Leu 310 Asn Ile Glu Lys Val 390	Lys 295 Ser Leu Ile Lys Ser 375 Tyr	280 Ser Val Thr Lys Asp 360 Gly Arg	Pro Glu Gln Ile Cys 345 Gly Ser Cys	Met Arg Gly 330 Pro Arg Leu Ile Asp 410	Lys Val 315 Ser Val Cys Lys Ala 395 Asn	Thr 300 Tyr Arg Arg Leu Ile 380 Gly Arg	285 Lys Ile Ala Arg Gln 365 His Ser Leu	Cys Leu Gln Tyr Phe 350 Asn Gly Ala Ile	Gly Thr Leu 335 Gln Ser Leu Gln Ala 415	Glu Arg 320 Leu Lys Lys Ala Glu 400 Arg
Pro Gln 305 Glu Pro Ser Arg Ala 385 Thr	Glu 290 Gly Glu Asn Leu 370 Pro Val	275 Cys Pro Lys Thr Ile 355 Gly Asp Val Leu	Asp Ser Gln Arg Ser 340 Gln Ile Ile Leu Arg 420	Lys Ile Ile 325 Val Trp Thr Gly Lys 405 Glu	Ile Leu 310 Asn Ile Glu Lys Val 390 Leu	Lys 295 Ser Leu Ile Lys Ser 375 Tyr Ile Met	280 Ser Val Thr Lys Asp 360 Gly Arg	Pro Glu Gln Ile Cys 345 Gly Ser Cys Thr Glu 425	Met Arg Gly 330 Pro Arg Leu Ile Asp 410 Tyr	Lys Val 315 Ser Val Cys Lys Ala 395 Asn	Thr 300 Tyr Arg Arg Leu Ile 380 Gly Arg	285 Lys Ile Ala Arg Gln 365 His Ser Leu Met	Cys Leu Gln Tyr Phe 350 Asn Gly Ala Ile Asp 430	Gly Thr Leu 335 Gln Ser Leu Gln Ala 415 His	Glu Arg 320 Leu Lys Lys Ala Glu 400 Arg Ser
Pro Gln 305 Glu Pro Ser Arg Ala 385 Thr Pro Glu	Glu 290 Gly Glu Asn Leu 370 Pro Val Ala	275 Cys Pro Lys Thr Ile 355 Gly Asp Val Leu Asn 435	Asp Ser Gln Arg Ser 340 Gln Ile Ile Leu Arg 420 Ser	Lys Ile Ile 325 Val Trp Thr Gly Lys 405 Glu Leu	Leu 310 Asn Ile Glu Lys Val 390 Leu Pro Gly	Lys 295 Ser Leu Ile Lys Ser 375 Tyr Ile Met	280 Ser Val Thr Lys Asp 360 Gly Arg Gly Arg	Pro Glu Gln Ile Cys 345 Gly Ser Cys Thr Glu 425 Trp	Met Arg Gly 330 Pro Arg Leu Ile Asp 410 Tyr His	Lys Val 315 Ser Val Cys Lys Ala 395 Asn Pro	Thr 300 Tyr Arg Arg Leu Ile 380 Gly Arg Gly Met	285 Lys Ile Ala Arg Gln 365 His Ser Leu Met Arg 445	Cys Leu Gln Tyr Phe 350 Asn Gly Ala Ile Asp 430 Gln	Gly Thr Leu 335 Gln Ser Leu Gln Ala 415 His	Glu Arg 320 Leu Lys Lys Ala Glu 400 Arg Ser Trp
Pro Gln 305 Glu Pro Ser Arg Ala 385 Thr Pro Glu	Glu 290 Gly Glu Asn Leu 370 Pro Val Ala Ala	275 Cys Pro Lys Thr Ile 355 Gly Asp Val Leu Asn 435	Asp Ser Gln Arg Ser 340 Gln Ile Ile Leu Arg 420 Ser	Lys Ile Ile 325 Val Trp Thr Gly Lys 405 Glu Leu	Ile Leu 310 Asn Ile Glu Lys Val 390 Leu Pro	Lys 295 Ser Leu Ile Lys Ser 375 Tyr Ile Met Val	280 Ser Val Thr Lys Asp 360 Gly Arg Gly Arg	Pro Glu Gln Ile Cys 345 Gly Ser Cys Thr Glu 425 Trp	Met Arg Gly 330 Pro Arg Leu Ile Asp 410 Tyr His	Lys Val 315 Ser Val Cys Lys Ala 395 Asn Pro	Thr 300 Tyr Arg Arg Leu Ile 380 Gly Arg Gly Met	285 Lys Ile Ala Arg Gln 365 His Ser Leu Met Arg 445	Cys Leu Gln Tyr Phe 350 Asn Gly Ala Ile Asp 430 Gln	Gly Thr Leu 335 Gln Ser Leu Gln Ala 415 His	Glu Arg 320 Leu Lys Lys Ala Glu 400 Arg Ser Trp
Pro Gln 305 Glu Pro Ser Arg Ala 385 Thr Pro Glu Asn	Glu 290 Gly Glu Asn Leu 370 Pro Val Ala Ala Asn 450	275 Cys Pro Lys Thr Ile 355 Gly Asp Val Leu Asn 435 Lys	Asp Ser Gln Arg Ser 340 Gln Ile Ile Leu Arg 420 Ser Asn	Lys Ile Ile 325 Val Trp Thr Gly Lys 405 Glu Leu Asp	Ile Leu 310 Asn Ile Glu Lys Val 390 Leu Pro Gly Leu	Lys 295 Ser Leu Ile Lys Ser 375 Tyr Ile Met Val	280 Ser Val Thr Lys Asp 360 Gly Arg Gly Arg Thr 440 Leu	Pro Glu Gln Ile Cys 345 Gly Ser Cys Thr Glu 425 Trp Asp	Met Arg Gly 330 Pro Arg Leu Ile Asp 410 Tyr His Asp	Lys Val 315 Ser Val Cys Lys Ala 395 Asn Pro Lys Asp	Thr 300 Tyr Arg Arg Leu Ile 380 Gly Arg Gly Met His 460	285 Lys Ile Ala Arg Gln 365 His Ser Leu Met Arg 445 Ile	Cys Leu Gln Tyr Phe 350 Asn Gly Ala Ile Asp 430 Gln Ser	Gly Thr Leu 335 Gln Ser Leu Gln Ala 415 His Met Asn	Glu Arg 320 Leu Lys Lys Ala Glu 400 Arg Ser Trp Gln
Pro Gln 305 Glu Pro Ser Arg Ala 385 Thr Pro Glu Asn Pro	Glu 290 Gly Glu Asn Leu 370 Pro Val Ala Ala Asn 450	275 Cys Pro Lys Thr Ile 355 Gly Asp Val Leu Asn 435 Lys	Asp Ser Gln Arg Ser 340 Gln Ile Ile Leu Arg 420 Ser Asn	Lys Ile Ile 325 Val Trp Thr Gly Lys 405 Glu Leu Asp	Leu 310 Asn Ile Glu Lys Val 390 Leu Pro Gly Leu Leu Leu	Lys 295 Ser Leu Ile Lys Ser 375 Tyr Ile Met Val	280 Ser Val Thr Lys Asp 360 Gly Arg Gly Arg Thr 440 Leu	Pro Glu Gln Ile Cys 345 Gly Ser Cys Thr Glu 425 Trp Asp	Met Arg Gly 330 Pro Arg Leu Ile Asp 410 Tyr His Asp	Lys Val 315 Ser Val Cys Lys Ala 395 Asn Pro Lys Asp Ser	Thr 300 Tyr Arg Arg Leu Ile 380 Gly Arg Gly Met His 460	285 Lys Ile Ala Arg Gln 365 His Ser Leu Met Arg 445 Ile	Cys Leu Gln Tyr Phe 350 Asn Gly Ala Ile Asp 430 Gln Ser	Gly Thr Leu 335 Gln Ser Leu Gln Ala 415 His Met Asn Gly	Glu Arg 320 Leu Lys Lys Ala Glu 400 Arg Ser Trp Gln Ser
Pro Gln 305 Glu Pro Ser Arg Ala 385 Thr Pro Glu Asn Pro 465	Glu 290 Gly Glu Asn Leu 370 Pro Val Ala Ala Asn 450 Phe	275 Cys Pro Lys Thr Ile 355 Gly Asp Val Leu Asn 435 Lys	Asp Ser Gln Arg Ser 340 Gln Ile Ile Leu Arg 420 Ser Asn Arg	Lys Ile Ile 325 Val Trp Thr Gly Lys 405 Glu Leu Asp Ala	Ile Leu 310 Asn Ile Glu Lys Val 390 Leu Pro Gly Leu	Lys 295 Ser Leu Ile Lys Ser 375 Tyr Ile Met Val Tyr 455 Leu	280 Ser Val Thr Lys Asp 360 Gly Arg Gly Arg Thr 440 Leu	Pro Glu Gln Ile Cys 345 Gly Ser Cys Thr Glu 425 Trp Asp His	Met Arg Gly 330 Pro Arg Leu Ile Asp 410 Tyr His Asp Cys	Lys Val 315 Ser Val Cys Lys Ala 395 Asn Pro Lys Asp Ser 475	Thr 300 Tyr Arg Arg Leu Ile 380 Gly Arg Gly Met His 460 Asn	285 Lys Ile Ala Arg Gln 365 His Ser Leu Met Arg 445 Ile Ser	Cys Leu Gln Tyr Phe 350 Asn Gly Ala Ile Asp 430 Gln Ser Ala	Gly Thr Leu 335 Gln Ser Leu Gln Ala 415 His Met Asn Gly	Glu Arg 320 Leu Lys Lys Ala Glu 400 Arg Ser Trp Gln Ser 480

				485					490					495	
Gln	Glv	Ala	Tvr			Asp	Thr	Ala			Asn	Glu	Leu		Arg
			500					505		1110	115p		510		5
Asn	Met	Ser	Gln	Leu	Met	Glu	Thr			Val	Ser	Asp			Ala
		515					520					525			
Ser	Gln	Leu	Ile	Tyr	Gln	Leu	Val	Ala	Glu	Leu	Ala			Gln	Pro
	530			•		535					540				
Thr	His	Met	Gln	Trp	Arg	Gly	Ile	Gln	Glu	Glu	Thr	Pro	Pro	Ala	Ala
545				_	550	-				555					560
Gln	Leu	Arg	Gly	Glu	Thr	Gly	Ser	Val	Ser	Gln	Ser	Ser	His	Ala	Lys
				565					570					575	
Asn	Ser	Gly	Lys	Leu	Thr	Phe	Lys	Pro	Lys	Gly	Pro	Val	Leu	Met	Arg
			580					585					590		
Gln	Ser	Gln	Pro	Pro	Ser	Ile	Ser	Phe	Asn	Lys	Thr	Ile	Asn	Ser	Arg
		595					600					605			
Ile		Asn	Thr	Val	Tyr		Thr	Lys	Arg	Thr	Glu	Val	Ile	Asn	Ile
	610			_		615					620				
	Cys	Asp	Leu	Ile		Pro	Ser	Glu	Ala		Tyr	Thr	Trp	Thr	
625	~ 1		_	_	630	_	_		_	635		_	_		640
Asp	GIY	Thr	Leu		GIn	Pro	Ser	Val		Ile	Ile	Leu	Asp		Thr
C1	T	T1.	~1 ~	645	<i>a</i> 1	7	D	m\	650	T	01	a 1	61	655	
GIY	гуѕ	тте	660	ire	GIN	Asn	Pro		Arg	гÀг	GIU	GIN	Gly	тте	Tyr
Glu	Cvc	Sar		ת ז ת	λcn	ui c	Lou	665	e~~	7 co	1707	C1.,	670 Ser	C ~~	C ~ ~
GIU	Cys	675	Val	Ala	ASII	птэ	680	GIY	ser	ASP	val	685	Ser	Ser	ser
Val	Len		Δla	Glu	Δla	Pro		Tle	T.011	Ser	Val		Arg	Agn	Tle
,,,,	690	- 7 -		014	n_u	695	Val	110	БСи	DCI	700	GIU	n-9	ASII	TIC
Thr		Pro	Glu	His	Asn		Leu	Ser	Val	Val		Glv	Gly	Tle	Val
705	•				710					715		1	1		720
Glu	Ala	Ala	Leu	Gly	Ala	Asn	Val	Thr	Ile		Cys	Pro	Val	Lys	
				725					730	_	-			735	•
Val	Pro	Gln	Pro	Asn	Ile	Thr	Trp	Leu	Lys	Arg	Gly	Gly	Ser	Leu	Ser
			740					745					750		
Gly	Asn	Val	Ser	Leu	Leu	Phe	Asn	Gly	Ser	Leu	Leu	Leu	Gln	Asn	Val
		755					760					765			
Ser	Leu	Glu	Asn	Glu	Gly	Thr	Tyr	Val	Cys	Ile	Ala	Thr	Asn	Ala	Leu
	770					775					780				
	Lys	Ala	Val	Ala		Ser	Val	Leu	His		Leu	Glu	Arg	Arg	
785 -		_	_		790		_			795					800
Pro	GLu	Ser	Arg		Val	Phe	Leu	Gln		His	Lys	Lys	Tyr		Leu
a1 -	7.7 -	~ 1	.	805				_	810	_	_	_,		815	_
GIN	Ala	Thr		Inr	Arg	Thr	Asn		Asn	Asp	Pro	Thr	Gly	GIu	Pro
Dwo	Dwo	C1=	820	D	Dh.	m	a 1	825	a 1	3		a	830	a	G
PIO	PIO	835	Giu	PIO	Pile	пр	840	PIO	GIY	ASII	пр		His	Cys	Ser
λla	Thr		Gly	Wic	Lou	Cl.		7. ~~	тіо	C15	7 ~~	845	Cln	Crea	3707
ALA	850	Cys	GIY	птэ	Leu	855	AId	чтд	TTE	GIII	860	PLO	Gln	cys	v at⊤
Met		Agn	Glv	Gln	Glu		Ser	Glu	בומ	Leu		Aen	Gln	Dro	Pro
865			- Y		870	Val	JCT	Jau	A.a	875	Cys	vəh	GIII	210	880
Glu	Ala	Thr	Glv	Trn						J .J					555
			,	885											

<210> 529 <211> 4566

<212> DNA <213> Homo sapiens <400> 529 nggcgagcta agccggagga tgtgcagctg cggcggcggc gccggctacg aagaggacgg ggacaggege egtgegaace gageceagee ageeggagga egegggeagg gegggaeggg ageocoggaet egtetgeege egeegtegte geegtegtge eggeecegeg teecegegeg cgagegggag gageegeege cacetegege eegageegee getagegege geegggeatg gtcccctctt aaaggcgcag gccgcggcgg cgggggcggg cgtgcggaac aaagcgccgg 300 egeggggeet gegggegget egggggeege gatgggegeg gegggeeege ggeggeggeg gegetgeeeg ggeegggeet egeggegeta gggegggetg geeteegegg gegggggeag 420 egggetgagg gegegggg cetgeggegg eggeggegge ggeggegge geceggeggg 480 eggagegeg egggeatgge egegegege eggegegeet ggeteagegt getgeteggg ctcgtcctgg gcttcgtgct ggcctcgcgg ctcgtcctgc cccgggcttc cgagctgaag 600 cgagcgggcc cacggcgccg cgccagcccc gagggctgcc ggtccgggca ggcggcgct teccaggeeg geggggegeg eggegatgeg egeggggege agetetggee geeeggeteg gacccagatg geggeeegeg egacaggaac tttetetteg tgggagteat gaccgcccag aaatacctgc agactcgggc cgtggccgcc tacagaacat ggtccaagac aattcctggg aaagttcagt tottotcaag tgagggttot gacacatotg taccaattco agtagtgoca ctacggggtg tggacgactc ctacccgccc cagaagaagt ccttcatgat gctcaagtac 960 atgcacgacc actacttgga caagtatgaa tggtttatga gagcagatga tgacgtgtac atcaaaggag accgtctgga gaacttcctg aggagtttga acagcagcga gcccctcttt cttgggcaga caggcctggg caccacggaa gaaatgggaa aactggccct ggagcctggt 1140 gagaacttet geatggggg geetggegtg ateatgagee gggaggtget teggagaatg gtgccgcaca ttggcaagtg tctccgggag atgtacacca cccatgagga cgtggaggtg ggaaggtgtg tccggaggtt tgcaggggtg cagtgtgtct ggtcttatga gatgcagcag cttttttatg agaattacga gcagaacaaa aaggggtaca ttagagatct ccataacagt 1380 aaaattcacc aagctatcac attacacccc aacaaaaacc caccctacca gtacaggctc cacagetaca tgetgageeg caagatatee gageteegee ategeacaat acagetgeae 1500

cgcgaaattg 1560	tcctgatgag	caaatacagc	aacacagaaa	ttcataaaga	ggacctccag
ctgggaatcc 1620	ctccctcctt	catgaggttt	cagccccgcc	agcgagagga	gattctggaa
tgggagtttc 1680	tgactggaaa	atacttgtat	tcggcagttg	acggccagcc	ccctcgaaga
ggaatggact 1740	ccgcccagag	ggaagccttg	gacgacattg	tcatgcaggt	catggagatg
atcaatgcca 1800	acgccaagac	cagagggcgc	atcattgact	tcaaagagat	ccagtacggc
taccgccggg 1860	tgaaccccat	gtatggggct	gagtacatcc	tggacctgct	gcttctgtac
1920			cctgtgagga		
1980			gaggagetgg		
agaatcaatc 2040	aggaatctgg	atccttgtcc	tttctctcaa	actccctgaa	gaagctcgtc
ccctttcagc 2100	tccctgggtc	gaagagtgag	cacaaagaac	ccaaagataa	aaagataaac
2160			atgtttgtga		
aagacgtgtc 2220	ttatccccaa	tcagaacgtc	aagctcgtgg	ttetgetttt	caattctgac
tccaaccctg 2280	acaaggccaa	acaagttgaa	ctgatgacag	attaccgcat	taagtaccct
2340			ggagagtttt		
2400			ttgctcttct		
tttactacag 2460	aatteettea	gcgatgtcga	gcaaatacag	ttetgggeea	acaaatatat
tttccaatca 2520	tetteageea	gtatgaccca	aagattgttt	atagtgggaa	agttcccagt
2580	_		ggcttctgga		
2640			gtgggtggct		
2700			aaggttgtcc		
2760			caccatcctg		
gaccccaaac 2 82 0	agtacaaaat	gtgcttgggg	tccaaagcat	cgacctatgg	gtccacacag
cagctggctg 2880	agatgtggct	ggaaaaaaat	gatccaagtt	acagtaaaag	cagcaataat
2940		_	getttgetgg		
taatttattt 3000	ttcaaaaatt	ttttgtatga	tcagtttttg	aagtccgtat	acaaggatat
attttacaag 3060	tggttttctt	acataggact	cctttaagat	tgagctttct	gaacaagaag
gtgatcagtg 3120	tttgcctttg	aacacatctt	cttgctgaac	attatgtagc	agacctgctt

aactttgact 3180	tgaaatgtac	ctgatgaaca	aaacttttt	aaaaaaatgt	tttcttttga
	tccagtccta	tggcagaaaa	cgtgaacatt	cctgcaaagt	attattgtaa
	taactctggt	aaatgttctg	ttgtgattgt	taacattcca	cagattctac
	ttgtttttt	ttttttacaa	ttgttttaaa	gccatttcat	gttccagttg
taagataagg 3420	aaatgtgata	atagctgttt	catcattgtc	ttcaggagag	ctttccagag
ttgatcattt 3480	cccctcatgg	tactctgctc	agcatggcca	cgtaggtttt	ttgtttgttt
tgttttgttc 3540	tttttttgag	acggagtctc	actctgttac	ccaggctgga	atgcagtggc
gcaatcttgg 3600	ctcactttaa	cctccacttc	cctggttcaa	gcaattcccc	tgcctttgcc
tcccgagtag 3660	ctgggattac	aggcacacac	caccacgccc	agctagtttt	tttgtatttt
3720				cgtaggtttt	
3780				gtagttcatt	
agacctggca 3840	ttaaatttca	agaaggattt	ggcattttct	cttcttgacc	cttctcttta
3900	_			attacaataa	
3960				ttggggaaaa	
4020				tggttttcat	
4080				tatttaatat	
gagetetgee 4140	atttcttgag	tacctgttag	ttagtattat	ttatgtgtat	cgggagtgtg
tttagtctgt 4200	tttatttgca	gtaaaccgat	ctccaaagat	ttccttttgg	aaacgctttt
teceeteett 4260	aatttttata	ttccttactg	ttttactaaa	tattaagtgt	tetttgacaa
4320				tctgtcatta	
ttaaattctc 4380	agatcaaatg	tgccttaata	aatttgtttt	catttagatt	tcaaacagtg
4440				tatttgtaaa	
ctcatttgga 4500	aaaataaacc	agtgaacaat	atttttctat	tgtacttttc	gaaccatttt
gtctcattat 4560	tcctgtttta	gctgaagaat	tgtattacat	ttggagagta	aaaacttaa
acacga 4566					
<210> 530 <211> 802					
<211> 802 <212> PRT			~		

<213> Homo sapiens

<400> 530 Met Ala Ala Arg Gly Arg Arg Ala Trp Leu Ser Val Leu Leu Gly Leu 10 Val Leu Gly Phe Val Leu Ala Ser Arg Leu Val Leu Pro Arg Ala Ser 25 Glu Leu Lys Arg Ala Gly Pro Arg Arg Arg Ala Ser Pro Glu Gly Cys 40 Arg Ser Gly Gln Ala Ala Ala Ser Gln Ala Gly Gly Ala Arg Gly Asp 55 Ala Arg Gly Ala Gln Leu Trp Pro Pro Gly Ser Asp Pro Asp Gly Gly 75 70 Pro Arg Asp Arg Asn Phe Leu Phe Val Gly Val Met Thr Ala Gln Lys 85 90 Tyr Leu Gln Thr Arg Ala Val Ala Ala Tyr Arg Thr Trp Ser Lys Thr 105 Ile Pro Gly Lys Val Gln Phe Phe Ser Ser Glu Gly Ser Asp Thr Ser 120 Val Pro Ile Pro Val Val Pro Leu Arg Gly Val Asp Asp Ser Tyr Pro 135 Pro Gln Lys Lys Ser Phe Met Met Leu Lys Tyr Met His Asp His Tyr Leu Asp Lys Tyr Glu Trp Phe Met Arg Ala Asp Asp Asp Val Tyr Ile 165 170 Lys Gly Asp Arg Leu Glu Asn Phe Leu Arg Ser Leu Asn Ser Ser Glu 185 190 Pro Leu Phe Leu Gly Gln Thr Gly Leu Gly Thr Thr Glu Glu Met Gly 200 Lys Leu Ala Leu Glu Pro Gly Glu Asn Phe Cys Met Gly Gly Pro Gly 215 220 Val Ile Met Ser Arg Glu Val Leu Arg Arg Met Val Pro His Ile Gly 230 235 Lys Cys Leu Arg Glu Met Tyr Thr Thr His Glu Asp Val Glu Val Gly 245 250 Arg Cys Val Arg Arg Phe Ala Gly Val Gln Cys Val Trp Ser Tyr Glu 265 Met Gln Gln Leu Phe Tyr Glu Asn Tyr Glu Gln Asn Lys Lys Gly Tyr 285 280 Ile Arg Asp Leu His Asn Ser Lys Ile His Gln Ala Ile Thr Leu His 290 295 300 Pro Asn Lys Asn Pro Pro Tyr Gln Tyr Arg Leu His Ser Tyr Met Leu 310 315 Ser Arg Lys Ile Ser Glu Leu Arg His Arg Thr Ile Gln Leu His Arg 325 330 Glu Ile Val Leu Met Ser Lys Tyr Ser Asn Thr Glu Ile His Lys Glu 345 Asp Leu Gln Leu Gly Ile Pro Pro Ser Phe Met Arg Phe Gln Pro Arg 360 365 Gln Arg Glu Glu Ile Leu Glu Trp Glu Phe Leu Thr Gly Lys Tyr Leu 375 Tyr Ser Ala Val Asp Gly Gln Pro Pro Arg Arg Gly Met Asp Ser Ala 390 395 Gln Arg Glu Ala Leu Asp Asp Ile Val Met Gln Val Met Glu Met Ile

				405					410					415	
Asn	Ala	Asn	Ala 420	Lys	Thr	Arg	Gly	Arg 425		Ile	Asp	Phe	Lys 430	Glu	Ile
Gln	TÀż	Gly 435	Tyr	Arg	Arg	Val	Asn 440	Pro	Met	Tyr	Gly	Ala 4 4 5	Glu	Tyr	Ile
Leu	Asp 450	Leu	Leu	Leu	Leu	Tyr 455	Lys	Lys	His	Lys	Gly 460	Lys	Lys	Met	Thr
Val 465	Pro	Val	Arg	Arg	His 470	Ala	Tyr	Leu	Gln	Gln 475	Thr	Phe	Ser	Lys	Ile 480
Gln	Phe	Val	Glu	His 485	Glu	Glu	Leu	Asp	Ala 490	Gln	Glu	Leu	Ala	Lys 495	Arg
Ile	Asn	Gln	Glu 500	Ser	Gly	Ser	Leu	Ser 505	Phe	Leu	Ser	Asn	Ser 510	Leu	Lys
Lys	Leu	Val 515	Pro	Phe	Gln	Leu	Pro 520	Gly	Ser	Lys	Ser	Glu 525	His	Lys	Glu
Pro	Lys 530	Asp	Lys	Lys	Ile	Asn 535	Ile	Leu	Ile	Pro	Leu 540	Ser	Gly	Arg	Phe
Asp 545	Met	Phe	Val	Arg	Phe 550	Met	Gly	Asn	Phe	Glu 555	Lys	Thr	Cys	Leu	Ile 560
Pro	Asn	Gln	Asn	Val 565	Lys	Leu	Val	Val	Leu 570	Leu	Phe	Asn	Ser	Asp 575	Ser
Asn	Pro	Asp	Lys 5 80	Ala	Lys	Gln	Val	Glu 585	Leu	Met	Thr	Asp	Tyr 590	Arg	Ile
Lys	Tyr	Pro 595	Lys	Ala	Asp	Met	Gln 600	Ile	Leu	Pro	Val	Ser 605	Gly	Glu	Phe
Ser	Arg 610	Ala	Leu	Ala	Leu	Glu 615	Val	Gly	Ser	Ser	Gln 620	Phe	Asn	Asn	Glu
Ser 625	Leu	Leu	Phe	Phe	Cys 630	Asp	Val	Asp	Leu	Val 635	Phe	Thr	Thr	Glu	Phe 640
Leu	Gln	Arg	Cys	Arg 645	Ala	Asn	Thr	Val	Leu 650	Gly	Gln	Gln	Ile	Tyr 655	Phe
Pro	Ile	Ile	Phe 660	Ser	Gln	Tyr	Asp	Pro 665	Гуs	Ile	Val	Tyr	Ser 670	Gly	Lys
Val	Pro	Ser 675	Asp	Asn	His	Phe	Ala 680	Phe	Thr	Gln	Lys	Thr 685	Gly	Phe	Trp
Arg	Asn 690	Tyr	Gly	Phe	Gly	Ile 695	Thr	Cys	Ile	Tyr	Lys 700	Gly	Asp	Leu	Val
705		_			710					715	_	Gly			720
Val	Asp	Leu	Phe	Asn 725	Lys	Val	Val	Gln	Ala 730	Gly	Leu	Lys	Thr	Phe 735	Arg
			740	_				745				Val	75 0	_	_
		755	_				760					Gly 765			
Ser	Thr 770	Tyr	Gly	Ser	Thr	Gln 775	Gln	Leu	Ala	Glu	Met 780	Trp	Leu	Glu	Lys
785		Pro	Ser	Tyr	Ser 790	Lys	Ser	Ser	Asn	Asn 795	Asn	Gly	Ser	Val	Arg 800
Thr	Ala														

<210> 531 <211> 321

```
<212> DNA
<213> Homo sapiens
<400> 531
nqatqatqaa tccccccgca gcctcgtcaa tatggggggc ttcctacccc agcaaaaggc
acqqcaatac gtctcgaaca aaggtctttt gtttcgaaat aacaaggggt tagagctaag
aggaagaage gtgaaacget gtaggaccag cgtttcgaac gcccccgagg tgaaccctcg
ggggggtctg aatcaggcca gttgggcctg ggacgacagc ggttgcagcg gcagcaatgg
cgcgtgcgga tcagccttga tcgattcacg ccaggcgccg agccactcgg cgtggccttc
gttccacacc tgctggtgca g
321
<210> 532
<211> 96
<212> PRT
<213> Homo sapiens
<400> 532
Met Gly Gly Phe Leu Pro Gln Gln Lys Ala Arg Gln Tyr Val Ser Asn
Lys Gly Leu Leu Phe Arg Asn Asn Lys Gly Leu Glu Leu Arg Gly Arg
Ser Val Lys Arg Cys Arg Thr Ser Val Ser Asn Ala Pro Glu Val Asn
                            40
                                                 45
Pro Arg Gly Arg Leu Asn Gln Ala Ser Trp Ala Trp Asp Asp Ser Gly
                        55
Cys Ser Gly Ser Asn Gly Ala Cys Gly Ser Ala Leu Ile Asp Ser Arg
                    70
                                        75
Gln Ala Pro Ser His Ser Ala Trp Pro Ser Phe His Thr Cys Trp Cys
                85
                                    90
<210> 533
<211> 335
<212> DNA
<213> Homo sapiens
<400> 533
nagtttccgg tgaacccgtc cgcaatgcct cgtgacatcg acttcagcga agccaacagg
ageateateg acaacatgge aactgeetea atccegettt teegaaceca caaaaactgg
gagacgtggt cgagtcaggt ccggcattte attagcettt tacacccaaa agtcaccete
accaacattg acaacgteet caacaaagat cacctgegtt ggetacaett tettitggag
ggtegeetgg agecaaaegt gegeetgatt gteeaggget aetgttegee tggcaagetg
taccgcaage ttgaggaget atatgcccct tetge
335
```

<210> 534 <211> 103

```
<212> PRT
<213> Homo sapiens
<400> 534
Met Pro Arg Asp Ile Asp Phe Ser Glu Ala Asn Arg Ser Ile Ile Asp
                                    10
Asn Met Ala Thr Ala Ser Ile Pro Leu Phe Arg Thr His Lys Asn Trp
                                25
                                                    30
Glu Thr Trp Ser Ser Gln Val Arg His Phe Ile Ser Leu Leu His Pro
                            40
Lys Val Thr Leu Thr Asn Ile Asp Asn Val Leu Asn Lys Asp His Leu
Arg Trp Leu His Phe Leu Leu Glu Gly Arg Leu Glu Pro Asn Val Arg
65
                    70
Leu Ile Val Gln Gly Tyr Cys Ser Pro Gly Lys Leu Tyr Arg Lys Leu
                                    90
                85
Glu Glu Leu Tyr Ala Pro Ser
            100
<210> 535
<211> 402
<212> DNA
<213> Homo sapiens
<400> 535
acgcgtctct acagccggac taagcacagg ctcagccccg gtcgccatgc gcccaggctc
gqttatcagc cgaggaatcc acggcgaaat gaccagtagc ggccctaata caactatgct
120
geogageage agacgtogag gtogggtoat gaggatgoog acggcoaccg cgaccgggta
tacccacaat qcaqqaacaa ggctgatagc tagggctgac cacagagcca ggccgcctgc
cqaqqaaacg cccccacct ggtgactgcc agtatcagca ccgcgcagct caacgacgtc
aacaqtctcq qqattqacca accqccacqt atqcaqqqcc atqtqqqqqa qaatcacccc
caacgccaat gctgtcaccg agcctcgggc taggccgccg gc
<210> 536
<211> 114
<212> PRT
<213> Homo sapiens
<400> 536
Met Ala Leu His Thr Trp Arg Leu Val Asn Pro Glu Thr Val Asp Val
Val Glu Leu Arg Gly Ala Asp Thr Gly Ser His Gln Val Gly Gly Val
            20
                                25
Ser Ser Ala Gly Gly Leu Ala Leu Trp Ser Ala Leu Ala Ile Ser Leu
```

```
40
Val Pro Ala Leu Trp Val Tyr Pro Val Ala Val Ala Val Gly Ile Leu
                        55
Met Thr Arg Pro Arg Arg Leu Leu Gly Ser Ile Val Val Leu Gly
                    70
Pro Leu Leu Val Ile Ser Pro Trp Ile Pro Arg Leu Ile Thr Glu Pro
                                    90
                85
Gly Arg Met Ala Thr Gly Ala Glu Pro Val Leu Ser Pro Ala Val Glu
Thr Arg
<210> 537
<211> 404
<212> DNA
<213> Homo sapiens
<400> 537
gtgcacatcg gcggcaccga cttcgacaaa caactctcgc tggctggcat gatgccgctg
tteggetaeg geageegeat gaagagegge geetacatge ceaceageea ceacatgaae
ctggcgacct ggcacaccat caactcggtg tactcgcaaa aatcccagct ggccctgggc
agcatgcgct acgacatcga agacaccggc ggcatcgacc gcctgttcaa gctgatcgaa
caqcqtqctg ggcactqqct tqccatggaa gtggaagaaa ccaagatcca gctcacccat
caagacagee gecaegtgee getggaeege ategaagegg geetgagegt agacetgage
cgggcgctgt tcgaatcgtc catcgacaac ctgctcgaac gcgt
404
<210> 538
<211> 118
<212> PRT
<213> Homo sapiens
<400> 538
Met Met Pro Leu Phe Gly Tyr Gly Ser Arg Met Lys Ser Gly Ala Tyr
Met Pro Thr Ser His His Met Asn Leu Ala Thr Trp His Thr Ile Asn
            20
                                25
Ser Val Tyr Ser Gln Lys Ser Gln Leu Ala Leu Gly Ser Met Arg Tyr
Asp Ile Glu Asp Thr Gly Gly Ile Asp Arg Leu Phe Lys Leu Ile Glu
                        55
Gln Arg Ala Gly His Trp Leu Ala Met Glu Val Glu Glu Thr Lys Ile
Gln Leu Thr His Gln Asp Ser Arg His Val Pro Leu Asp Arg Ile Glu
                85
                                    90
Ala Gly Leu Ser Val Asp Leu Ser Arg Ala Leu Phe Glu Ser Ser Ile
           100
                                105
Asp Asn Leu Leu Glu Arg
```

115 <210> 539 <211> 534 <212> DNA <213> Homo sapiens <400> 539 nnacgcgtga aaaagaagaa aatgaaggaa agcgaggctg acagcgaggt gaagcatcaa ccaattttca taaaaqaaaq attgaagctt tttgaaatac tgaagaaaga ccatcagctc 120 ttacttgcca tttatggaaa aaagggggat acaagcaaca tcatcacagt aagagtggct gatgggcaaa cagtgcaagg ggaagtctgg aaaacaacgc cttaccaagt ggctgctgaa attagtcagg aactggctga aagcacggta atagccaaag tcaatggtga actgtgggac ctggaccgcc cattggaagg ggactcttct ctagagctgc ttacatttga taatgaggaa gctcaagctg tgagtatttt aaaaccagac agccaaactt tgggtagtta tgttgtaaac 420 tacattatat aagaggccac atattgaatt cacgaatgtt gagttttttg ggggtttcta agatttaaaa tttgattatt gatgtttaat aaatatttgc ctcatgaatg ttaa 534 <210> 540 <211> 143 <212> PRT <213> Homo sapiens Xaa Arg Val Lys Lys Lys Met Lys Glu Ser Glu Ala Asp Ser Glu 10 Val Lys His Gln Pro Ile Phe Ile Lys Glu Arg Leu Lys Leu Phe Glu 25 Ile Leu Lys Lys Asp His Gln Leu Leu Ala Ile Tyr Gly Lys Lys 40 Gly Asp Thr Ser Asn Ile Ile Thr Val Arg Val Ala Asp Gly Gln Thr 55 Val Gln Gly Glu Val Trp Lys Thr Thr Pro Tyr Gln Val Ala Ala Glu 70 75 Ile Ser Gln Glu Leu Ala Glu Ser Thr Val Ile Ala Lys Val Asn Gly 85 90 Glu Leu Trp Asp Leu Asp Arg Pro Leu Glu Gly Asp Ser Ser Leu Glu 100 105 Leu Leu Thr Phe Asp Asn Glu Glu Ala Gln Ala Val Ser Ile Leu Lys 120 Pro Asp Ser Gln Thr Leu Gly Ser Tyr Val Val Asn Tyr Ile Ile 130 135 <210> 541

<211> 551

<212> DNA

```
<213> Homo sapiens
<400> 541
ggtaccgage tgcgcgtgtg gtatgcggcc ttctatqcca agaagatgga caagcccatg
ctgaagcagg ccggctctgg cgtccacgct gcaggcaccc cagaaaacag cgcccccgtg
gagteggage ecagecagtg ggegtgtaaa gtgtgttetg ecaeetteet ggagetgeag
ctcctcaatg gtaaggagga cgtgtgggga gccccagttg taaaactcct gtgtcgattt
ctctctgact tacgctgtca cctgtctgcg gctgtcgggg gtgtcccaga ctttgtcctg
300
totgocccat tgccccacaa tgtagtcgcc agaaccaagg ctttctcagg gtttaaagct
tetgggcagt cocgetteec accecegace cetgcaggee teactectea etecteetgg
420
ttgggaagtt gcatttcagc tgggcgcctt gactctggag cactggcagg ggccaggggc
caggagecag cegtggeatg tgttgtgeac tettgeettt gttgteteta ettgacagec
540
ccctcacgcg t
551
<210> 542
<211> 168
<212> PRT
<213> Homo sapiens
<400> 542
Met Asp Lys Pro Met Leu Lys Gln Ala Gly Ser Gly Val His Ala Ala
Gly Thr Pro Glu Asn Ser Ala Pro Val Glu Ser Glu Pro Ser Gln Trp
            20
                                25
Ala Cys Lys Val Cys Ser Ala Thr Phe Leu Glu Leu Gln Leu Leu Asn
                            40
                                                45
Gly Lys Glu Asp Val Trp Gly Ala Pro Val Val Lys Leu Leu Cys Arg
                        55
Phe Leu Ser Asp Leu Arg Cys His Leu Ser Ala Ala Val Gly Gly Val
                                        75
                    70
Pro Asp Phe Val Leu Ser Ala Pro Leu Pro His Asn Val Val Ala Arg
Thr Lys Ala Phe Ser Gly Phe Lys Ala Ser Gly Gln Ser Arg Phe Pro
            100
                                105
                                                    110
Pro Pro Thr Pro Ala Gly Leu Thr Pro His Ser Ser Trp Leu Gly Ser
                            120
Cys Ile Ser Ala Gly Arg Leu Asp Ser Gly Ala Leu Ala Gly Ala Arg
                        135
                                            140
Gly Gln Glu Pro Ala Val Ala Cys Val Val His Ser Cys Leu Cys Cys
                    150
Leu Tyr Leu Thr Ala Pro Ser Arg
                165
```

```
<210> 543
<211> 349
<212> DNA
<213> Homo sapiens
<400> 543
nnaaageegg acatgaatac cegcattget ggcaaaaetg teetgaccat cattetggce
gggggcaaag gcagccgcct ggccccgatg accgatcagg tggccaaacc agccgtgccg
tttatgggga cgtaccgcct gattgacttt tcgctgtcca acattgtcca cagcggcttg
caggacgtct ggatcattga gcaaaacctg ccccatagct taaacgagca cctggctggg
qqqcqctcct qqqatctqqa ccqcacccqc qqtqqcctqa aggtcatqcc gcccttttcc
ggccctgccg atgaggacgg tggcttttcc gaaggcaacg cacacgcgt
349
<210> 544
<211> 116
<212> PRT
<213> Homo sapiens
<400> 544
Xaa Lys Pro Asp Met Asn Thr Arg Ile Ala Gly Lys Thr Val Leu Thr
Ile Ile Leu Ala Gly Gly Lys Gly Ser Arg Leu Ala Pro Met Thr Asp
                                25
Gln Val Ala Lys Pro Ala Val Pro Phe Met Gly Thr Tyr Arg Leu Ile
                            40
Asp Phe Ser Leu Ser Asn Ile Val His Ser Gly Leu Gln Asp Val Trp
Ile Ile Glu Gln Asn Leu Pro His Ser Leu Asn Glu His Leu Ala Gly
                    70
                                        75
Gly Arg Ser Trp Asp Leu Asp Arg Thr Arg Gly Gly Leu Lys Val Met
                                    90
Pro Pro Phe Ser Gly Pro Ala Asp Glu Asp Gly Gly Phe Ser Glu Gly
            100
                                105
Asn Ala His Ala
        115
<210> 545
<211> 390
<212> DNA
<213> Homo sapiens
<400> 545
catgatgcaa aaacagacat gcttatttca aaatataaaa gtgaaaaaga tcgtttagca
caagaaattg ttggtgtcat cacaggttct gcaatgccgg gtggttcagc aaaccgtatc
ccaaataaag caggetcaaa tecagaaggt tetattgcaa egegttttat tgcagaaaca
180
```

```
atgtataacg aactcaaaac agtggattta actattcaaa atgctggcgg tgtacgcgca
240
qatattttac cggggaatgt aacctttaac gatgcttata ctttcttacc tttcgggaat
acgttatata cctataaaat ggaaagttca ttagtgaaac aagtgcttga agatgcaatg
ctatttgctt tgggtccccc cccccccc
<210> 546
<211> 130
<212> PRT
<213> Homo sapiens
<400> 546
His Asp Ala Lys Thr Asp Met Leu Ile Ser Lys Tyr Lys Ser Glu Lys
Asp Arg Leu Ala Gln Glu Ile Val Gly Val Ile Thr Gly Ser Ala Met
                                25
Pro Gly Gly Ser Ala Asn Arg Ile Pro Asn Lys Ala Gly Ser Asn Pro
                            40
                                                45
Glu Gly Ser Ile Ala Thr Arg Phe Ile Ala Glu Thr Met Tyr Asn Glu
Leu Lys Thr Val Asp Leu Thr Ile Gln Asn Ala Gly Gly Val Arg Ala
                    70
Asp Ile Leu Pro Gly Asn Val Thr Phe Asn Asp Ala Tyr Thr Phe Leu
                85
Pro Phe Gly Asn Thr Leu Tyr Thr Tyr Lys Met Glu Ser Ser Leu Val
            100
                                105
                                                    110
Lys Gln Val Leu Glu Asp Ala Met Leu Phe Ala Leu Gly Pro Pro
                            120
                                                125
Pro Pro
    130
<210> 547
<211> 306
<212> DNA
<213> Homo sapiens
<400> 547
aagcttgttt ttctgatttt tattcaaatc tctatcatgg atgaagcatg cagtttcaga
atcagttcag tgttgacaac atatcaagat attctgcagt caatctcaat gtatgttcat
gaagcctcca acatattttg tgggatacca tctttgtcag gcattgtgct aggcactgtc
cctqcaqtqa ataaqaaaqa caqqatttct gtatttatgg ggcttagtac caagttgttc
tcaaactttc atqtttqtqt atacaaatca gctgaggcct tcactaaact cnnnnnccnn
300
nnccnn
306
<210> 548
```

```
<211> 90
<212> PRT
<213> Homo sapiens
<400> 548
Met Asp Glu Ala Cys Ser Phe Arg Ile Ser Ser Val Leu Thr Thr Tyr
Gln Asp Ile Leu Gln Ser Ile Ser Met Tyr Val His Glu Ala Ser Asn
Ile Phe Cys Gly Ile Pro Ser Leu Ser Gly Ile Val Leu Gly Thr Val
                            40
Pro Ala Val Asn Lys Lys Asp Arg Ile Ser Val Phe Met Gly Leu Ser
Thr Lys Leu Phe Ser Asn Phe His Val Cys Val Tyr Lys Ser Ala Glu
                    70
                                        75
Ala Phe Thr Lys Leu Xaa Xaa Xaa Xaa Xaa
<210> 549
<211> 780
<212> DNA
<213> Homo sapiens
<400> 549
nnacgegtac ttccaacace tatgetecag tatggaggac gggtaaagtc tettgttaat
gttttaatca tacacatatt gtctgtaagt atgaagagaa aggcatatca gaaatatttc
aattcagcga tttgaaatgt ttactttctg tttattgaaa atttttgttc tttttcacca
tgttattttt ttctcctcgt gtagaatcgg acagtagcaa caccgagcca tggagtatgg
gacatgcgag ggaaacaatt ccacacagga gttgaaatca aaatgtgggc tatcgcttgt
300
tttgccacac agaggcagtg cagagaagaa atattgaagg gtttcacaga ccagctgcgt
360
aagatttcta aggatgcagg gatgcccatc cagggccagc catgcttctg caaatatgca
420
cagggggcag acagcgtaga gcccatgttc cggcatctca agaacacata ttctggccta
caqcttatta togtcatcot googggaag acaccagtgt atgoggaagt gaaacgtgta
ggagacacac ttttgggtat ggctacacaa tgtgttcaag tcaagaatgt aataaaaaca
600
totoctcaaa ctctqtcaaa cttqtqccta aaqataaatq ttaaactcqq agggatcaat
aatattottg tacctcatca aagacottot gtgttocago aaccagtgat ctttttggga
geogatgica eteatecace tgetggtgat ggaaagaage ettetatige tgetgitgia
780
<210> 550
<211> 192
<212> PRT
```

<213> Homo sapiens <400> 550 Asn Arg Thr Val Ala Thr Pro Ser His Gly Val Trp Asp Met Arg Gly Lys Gln Phe His Thr Gly Val Glu Ile Lys Met Trp Ala Ile Ala Cys 25 Phe Ala Thr Gln Arg Gln Cys Arg Glu Glu Ile Leu Lys Gly Phe Thr 40 Asp Gln Leu Arg Lys Ile Ser Lys Asp Ala Gly Met Pro Ile Gln Gly 55 Gln Pro Cys Phe Cys Lys Tyr Ala Gln Gly Ala Asp Ser Val Glu Pro Met Phe Arg His Leu Lys Asn Thr Tyr Ser Gly Leu Gln Leu Ile Ile 90 85 Val Ile Leu Pro Gly Lys Thr Pro Val Tyr Ala Glu Val Lys Arg Val 110 Gly Asp Thr Leu Leu Gly Met Ala Thr Gln Cys Val Gln Val Lys Asn 120 Val Ile Lys Thr Ser Pro Gln Thr Leu Ser Asn Leu Cys Leu Lys Ile 135 140 Asn Val Lys Leu Gly Gly Ile Asn Asn Ile Leu Val Pro His Gln Arg 150 155 Pro Ser Val Phe Gln Gln Pro Val Ile Phe Leu Gly Ala Asp Val Thr 165 170 His Pro Pro Ala Gly Asp Gly Lys Lys Pro Ser Ile Ala Ala Val Val 185 <210> 551 <211> 291 <212> DNA <213> Homo sapiens <400> 551 nnggatccgg attatggggc tattgctaac aggtcaacgg ccatcaaggt gctcgttgcc qtqqcaccqc caqcccqqa qcctactcqc qagccaccqa cgaactccqc tccttccqag gaaccgtcct cgtcgtcaat cgcaccggtc ccgccggccc cgacgactgc agtacccacg actagttcgt cgtcgggccg ctgaccgatg cgcccatcgg cgggctcatc tggctggcgc tagegggge ttegatgtee ceataceaea gegteegeta aattgeeene e 291 <210> 552 <211> 67 <212> PRT <213> Homo sapiens <400> 552 Xaa Asp Pro Asp Tyr Gly Ala Ile Ala Asn Arg Ser Thr Ala Ile Lys

Val Leu Val Ala Val Ala Pro Pro Ala Pro Glu Pro Thr Arg Glu Pro

10

```
30
                                25
Pro Thr Asn Ser Ala Pro Ser Glu Glu Pro Ser Ser Ser Ile Ala
                            40
Pro Val Pro Pro Ala Pro Thr Thr Ala Val Pro Thr Thr Ser Ser Ser
    50
                        55
Ser Gly Arg
65
<210> 553
<211> 471
<212> DNA
<213> Homo sapiens
<400> 553
ctagecgatg taggattagt aggtttteeg agegtgggta aatetacett aeteteaata
gtatctaaag ccaaaccgaa aattggtgca tatcatttca ctacaattaa acctaactta
ggtgttgttt ccacaaaaga tcaacgtagt tttgttatgg cagatttacc aggtttaatt
gaaggtgcat ctgatggcgt tggattagga catcaatttt taagacatgt agagagaaca
aaagttattg ttcacatgat tgatatgagc ggttctgaag gtagagaacc tattgaagat
tataaagtca ttaatcaaga attagctgcg tacgagcaac gtttagaaga tagacctcaa
atcgtagtag ctaacaagat ggatttacct gaatcacaag ataatttaaa cttgtttaaa
gaagaaattg gcgaagatgt gccagttatt ccagtttcaa caataacgcg t
471
<210> 554
<211> 157
<212> PRT
<213> Homo sapiens
Leu Ala Asp Val Gly Leu Val Gly Phe Pro Ser Val Gly Lys Ser Thr
                                    10
Leu Leu Ser Ile Val Ser Lys Ala Lys Pro Lys Ile Gly Ala Tyr His
Phe Thr Thr Ile Lys Pro Asn Leu Gly Val Val Ser Thr Lys Asp Gln
                            40
Arg Ser Phe Val Met Ala Asp Leu Pro Gly Leu Ile Glu Gly Ala Ser
Asp Gly Val Gly Leu Gly His Gln Phe Leu Arg His Val Glu Arg Thr
                    70
Lys Val Ile Val His Met Ile Asp Met Ser Gly Ser Glu Gly Arg Glu
Pro Ile Glu Asp Tyr Lys Val Ile Asn Gln Glu Leu Ala Ala Tyr Glu
            100
                                105
Gln Arg Leu Glu Asp Arg Pro Gln Ile Val Val Ala Asn Lys Met Asp
                            120
Leu Pro Glu Ser Gln Asp Asn Leu Asn Leu Phe Lys Glu Glu Ile Gly
```

```
130
                        135
Glu Asp Val Pro Val Ile Pro Val Ser Thr Ile Thr Arg
                    150
<210> 555
<211> 300
<212> DNA
<213> Homo sapiens
<400> 555
tctagagatt gagaacaatt atggatacag aaatggttga ttccgtcaaa tatattcgag
atteggaate atgtgagget egegtgetgg agatettage cagaaggeeg tecatgatgg
tgcagatctt gcgtggcgac ggcttaatta acgaagacca gagattagtc agattatggc
ttaataaagt acctagaatt gttcgcctgc ttctccggct tagtgtgttc gtcgctgcgg
caataggtgc ccgtgcggta tgggcggcgg cttccggtaa tcccgatctt gttcacgcgt
300
<210> 556
<211> 93
<212> PRT
<213> Homo sapiens
<400> 556
Met Asp Thr Glu Met Val Asp Ser Val Lys Tyr Ile Arg Asp Ser Glu
                                    10
Ser Cys Glu Ala Arg Val Leu Glu Ile Leu Ala Arg Arg Pro Ser Met
            20
                                25
Met Val Gln Ile Leu Arg Gly Asp Gly Leu Ile Asn Glu Asp Gln Arg
                            40
Leu Val Arg Leu Trp Leu Asn Lys Val Pro Arg Ile Val Arg Leu Leu
Leu Arg Leu Ser Val Phe Val Ala Ala Ala Ile Gly Ala Arg Ala Val
                    70
Trp Ala Ala Ala Ser Gly Asn Pro Asp Leu Val His Ala
                                    90
                85
<210> 557
<211> 678
<212> DNA
<213> Homo sapiens
<400> 557
atottcccgg tttatgagga gaatgcgctg cgtgtcgagt ttttcggcga cgaaattgag
geoetcaega egatgeaece geteaeeggg gaggteatea gegaggaega geaggtetae
gtgttcccgg ctacccacta tgtcgccggc ccggaacgta tggagcgggc catagcgtcc
atccagcagg agctcgagga gcgcctggcc gttctagagc gtgatgggaa actgttggag
240
```

gcccaacggt tacgtatgcg tactacctac gatatcgaga tgatgcagca ggtcggtgcc tgtgctggca tcgaaaacta ttcgcggcac atcgacggac gcgctcccgg ctcagccccg 360 aactgtctgc ttgactactt tccggaagat tttgtgctcg tcattgatga atcccacgtg accgtcccgc agattggcgg gatgtatgag ggggacatga gccgcaagcg gacattggta gaacatggtt tecgaetgee cagegegatg gacaacegte eteteaaatt egaegagtte acccagegga teggecagae tgtetacetg teegecaege eeggttegta egagaeegaa cgageteacg gegtegtega acaaateatt egteegacag gtetggttgga teeggagatt 660 atcgtcaagc ctacgcgt 678 <210> 558 <211> 226 <212> PRT <213> Homo sapiens <400> 558 Ile Phe Pro Val Tyr Glu Glu Asn Ala Leu Arg Val Glu Phe Phe Gly 5 10 Asp Glu Ile Glu Ala Leu Thr Thr Met His Pro Leu Thr Gly Glu Val 25 Ile Ser Glu Asp Glu Gln Val Tyr Val Phe Pro Ala Thr His Tyr Val 40 Ala Gly Pro Glu Arg Met Glu Arg Ala Ile Ala Ser Ile Gln Glu 55 Leu Glu Glu Arg Leu Ala Val Leu Glu Arg Asp Gly Lys Leu Leu Glu 70 75 Ala Gln Arg Leu Arg Met Arg Thr Thr Tyr Asp Ile Glu Met Met Gln 90 Gln Val Gly Ala Cys Ala Gly Ile Glu Asn Tyr Ser Arg His Ile Asp 105 110 Gly Arg Ala Pro Gly Ser Ala Pro Asn Cys Leu Leu Asp Tyr Phe Pro 120 Glu Asp Phe Val Leu Val Ile Asp Glu Ser His Val Thr Val Pro Gln 135 140 Ile Gly Gly Met Tyr Glu Gly Asp Met Ser Arg Lys Arg Thr Leu Val 150 155 Glu His Gly Phe Arg Leu Pro Ser Ala Met Asp Asn Arg Pro Leu Lys 170 Phe Asp Glu Phe Thr Gln Arg Ile Gly Gln Thr Val Tyr Leu Ser Ala 185 190 Thr Pro Gly Ser Tyr Glu Thr Glu Arg Ala His Gly Val Val Glu Gln 200 205 Ile Ile Arg Pro Thr Gly Leu Val Asp Pro Glu Ile Ile Val Lys Pro 215 220 Thr Arg 225

```
<210> 559
<211> 335
<212> DNA
<213> Homo sapiens
<400> 559
qqatcctatq qaqctcaaqt tcaaqaaaaq aaactqtaaa catqqaqqtt ttgtgataaa
tggaatgcag tcagagggaa ggaactgccn gcttaaagtg tcctatgctg cgctttccag
agcaatacag tacacagtgg agggcgctac catggagtct ctgggtgaaa gttaggatgg
tatggtggca ccagccaaac ttctcagggt tcataggcag acagcagctc tggagtggaa
ctaaagtgta tccaggagct gaagccctta atcagctagg gctcacacag agtcaaggta
gggtcaaaaa cattcagtct gggaccatat ctaga
335
<210> 560
<211> 92
<212> PRT
<213> Homo sapiens
<400> 560
Met Glu Cys Ser Gln Arg Glu Gly Thr Ala Xaa Leu Lys Cys Pro Met
                                  10
Leu Arg Phe Pro Glu Gln Tyr Ser Thr Gln Trp Arg Ala Leu Pro Trp
                              25
Ser Leu Trp Val Lys Val Arg Met Val Trp Trp His Gln Pro Asn Phe
       35
                           40
Ser Gly Phe Ile Gly Arg Gln Gln Leu Trp Ser Gly Thr Lys Val Tyr
                       55
                                          60
Pro Gly Ala Glu Ala Leu Asn Gln Leu Gly Leu Thr Gln Ser Gln Gly
Arg Val Lys Asn Ile Gln Ser Gly Thr Ile Ser Arg
               85
                                  90
<210> 561
<211> 477
<212> DNA
<213> Homo sapiens
<400> 561
ngegegeece etecteegat ggeggeggag atceageeca ageetetgae eegeaageeg
atcotgotgo agoggatgga ggggtoccag gaggtggtga atatggcogt gatcgtgcco
180
gacagtggac agtattggcc aagcgtatac catgcaatgc cttgagttta tattgtcaga
agattataac aagatgactc ctgtgaaaaa ctatcaagcg catcagagca gagtgacgat
300
```

```
gatectgttt gteetggage tggagtgggt getgageaca ggacaggaca ageaatttge
360
ctqqcactqc tctqaqaqtq gqcaqcgcct gggaggttat cggaccagtg ctgtggcctc
aggeetgeaa titgatgttg aaaceeggea tgtgtttate ggtgaecaet caggeea
477
<210> 562
<211> 74
<212> PRT
<213> Homo sapiens
<400> 562
Xaa Ala Pro Pro Pro Met Ala Ala Glu Ile Gln Pro Lys Pro Leu
                                  1.0
1
                5
Thr Arg Lys Pro Ile Leu Leu Gln Arg Met Glu Gly Ser Gln Glu Val
Val Asn Met Ala Val Ile Val Pro Lys Glu Glu Gly Val Ile Ser Val
                           40
Ser Glu Asp Arg Thr Val Arg Val Trp Leu Lys Arg Asp Ser Gly Gln
Tyr Trp Pro Ser Val Tyr His Ala Met Pro
                   70
<210> 563
<211> 403
<212> DNA
<213> Homo sapiens
<400> 563
ccatggcaga cagggagctg ageggcctgc ggacccaggt gcaccagagc atggtgcccc
tgctcctaca cctgaaggac caatgcccaa ctgtcgccac gggcaatgcc caccccaaga
120
aaaqqaaqqq aaaaggcctc aaccttggcc agggctggaa cccacaggag gccagggtac
qqqqcaqacg gatggcagca gcactgcctg agagttgggg gagctcccac ggggcagcaa
240
qtqqcqqqca qaqqqtctqq ccatctqcac tggtttctgt gaccacagtt ggcctgcccg
aacaaaaaaa aaactcaaac ttcacactgg agatctgtgc aat
<210> 564
<211> 105
<212> PRT
<213> Homo sapiens
<400> 564
Met Ala Asp Arq Glu Leu Ser Gly Leu Arq Thr Gln Val His Gln Ser
                                  10
7
Met Val Pro Leu Leu His Leu Lys Asp Gln Cys Pro Thr Val Ala
```

```
30
            20
                                25
Thr Gly Asn Ala His Pro Lys Lys Arg Lys Gly Lys Gly Leu Asn Leu
                            40
Gly Gln Gly Trp Asn Pro Gln Glu Ala Arg Val Arg Gly Arg Arg Met
                        55
Ala Ala Leu Pro Glu Ser Trp Gly Ser Ser His Gly Ala Ala Ser
                    70
Gly Gly Gln Arg Val Trp Pro Ser Ala Leu Val Ser Val Thr Thr Val
                85
                                    90
Gly Leu Pro Ala Pro Pro Leu His His
            100
<210> 565
<211> 311
<212> DNA
<213> Homo sapiens
<400> 565
nectetecat ggageageec catetteact etteacetgg ggeeaggeet tecacageag
ccaccaccca gcgaccacag agaggctgcg cggaggacac aggagagagg gagcccacgg
geacgatete caeeggettt eccageteee tgggteagee ceaegggaee teteeteete
totoccacat otocaagoca goottgoata tagtaagago tgtgatcagg atggaaagag
gettgggeeg caeagaeetg gacaatgtee eagtgaggge tggaggtget agaagggeae
aggaggcccc n
311
<210> 566
<211> 101
<212> PRT
<213> Homo sapiens
<400> 566
Met Glu Gln Pro His Leu His Ser Ser Pro Gly Ala Arg Pro Ser Thr
Ala Ala Thr Thr Gln Arg Pro Gln Arg Gly Cys Ala Glu Asp Thr Gly
Glu Arq Glu Pro Thr Gly Thr Ile Ser Thr Gly Phe Pro Ser Ser Leu
                            40
Gly Gln Pro His Gly Thr Ser Pro Pro Leu Ser His Ile Ser Lys Pro
                        55
Ala Leu His Ile Val Arg Ala Val Ile Arg Met Glu Arg Gly Leu Gly
                    70
                                        75
Arg Thr Asp Leu Asp Asn Val Pro Val Arg Ala Gly Gly Ala Arg Arg
                                    90
                85
Ala Gln Glu Ala Pro
            100
<210> 567
<211> 929
```

```
<212> DNA
<213> Homo sapiens
<400> 567
atcacategg tegetgaace eegacgagee teacettgte gaaatattea teettgagat
cageceaegt geogtegace tetacetegg tgagggtege gggegggtac caacageega
cottegtecte ggetecacte atggeggeaa gtteegetge eagteegggg ategtegggg
catgggcgat gatgagcagg ttatccacat cgtcgtcgat ttctccgatg cgccgacgca
cggtatcagt gccgcagtaa tagagggctc gcatgaattc gaccggacaa tccagttgga
ggcagtccca ggtctggcgg gtgcgtaggg catcggagac cagagcatgt ccaacattgc
360
gcagtcctaa acgcgtgccg acctcacggg cctgacggcg ccccacgtcg gtgagcggac
420
getecegate ecegecegga geatgggatg egggetgtge atgteteatg aggaacagag
tgtgcatgga tccatcgttg cacttcgcgg tcgccgcggt tctacgatgt tggcatgccg
ttgacggatt tgggcattga tgaggcgcgt acctaccgcc cgaacgtccc tgaacccgat
ggtttcgact ctttttgggc cgagaccctc gatgagtatt ccggcgttcc ccaagatctg
acggcggtgc ctttcgataa ccgtcaggct ctgatagata cctgggattt gtcgtgggtg
gggtatcaca actctcgggt gagcgggtga ttacatgccc cagccgctgt gaacggccca
tteeceettg teategagta eetegggtae tegagttege gtggtgtgee gattggatea
qtcttcgctg ctqctggcta tgcacatatc gtcgtcgatc cacgtqgtca ggqgtgggqc
cacccaacct tgacggaaaa ctgtccgga
929
<210> 568
<211> 71
<212> PRT
<213> Homo sapiens
<400> 568
Met Pro Leu Thr Asp Leu Gly Ile Asp Glu Ala Arg Thr Tyr Arg Pro
Asn Val Pro Glu Pro Asp Gly Phe Asp Ser Phe Trp Ala Glu Thr Leu
Asp Glu Tyr Ser Gly Val Pro Gln Asp Leu Thr Ala Val Pro Phe Asp
                            40
Asn Arg Gln Ala Leu Ile Asp Thr Trp Asp Leu Ser Trp Val Gly Tyr
His Asn Ser Arg Val Ser Gly
65
```

<210> 569 <211> 371

```
<212> DNA
<213> Homo sapiens
<400> 569
ncqcaaactt caacggtgcc atctgccata ttccagggat gccagatttg gatggaaaat
accatatcac tetegattca gaattegtac ttgatttagt ggeetttaac aaaacgetac
ctgtcgatta cttaatggtc gaaggaacgg aacttgtgta ttcaaacatg gaagaactac
ctgaatgccc atattatcca aaagatcaaa agccaatcgt gattgggaaa aacacaaaac
tcaaggaaca accaacagcc gttgctctct tctcggatgt tgataaacgg ccagagatta
aatcaaaaat cttagaccgc tatgataatg atattgaaat ccgtacttgg ggcggtactt
360
cccatgtcta n
371
<210> 570
<211> 111
<212> PRT
<213> Homo sapiens
<400> 570
Met Pro Asp Leu Asp Gly Lys Tyr His Ile Thr Leu Asp Ser Glu Phe
Val Leu Asp Leu Val Ala Phe Asn Lys Thr Leu Pro Val Asp Tyr Leu
                                25
Met Val Glu Gly Thr Glu Leu Val Tyr Ser Asn Met Glu Glu Leu Pro
Glu Cys Pro Tyr Tyr Pro Lys Asp Gln Lys Pro Ile Val Ile Gly Lys
                        55
Asn Thr Lys Leu Lys Glu Gln Pro Thr Ala Val Ala Leu Phe Ser Asp
                    70
                                        75
Val Asp Lys Arq Pro Glu Ile Lys Ser Lys Ile Leu Asp Arg Tyr Asp
                                    90
Asn Asp Ile Glu Ile Arg Thr Trp Gly Gly Thr Ser His Val Xaa
                                                    110
            100
                                105
<210> 571
<211> 407
<212> DNA
<213> Homo sapiens
<400> 571
nacgcgtatc ttcgctggtc cacaccagac gtggcattaa acgacgtcac aagaacgaca
cogggeetty acgggeecae geacgaagag gecaagacae tgaccgagae tactgtttee
gttcccacct ccttcgccga cctcggcgtc cgagaagata tctgccaggc gctggaaggg
180
```

```
gtgggaattg teteceegtt ceegateeag geeatgtega teeegattge egtegaggge
240
acqqatctta ttqqqcaqqc qcqtactqqc actqqcaaaa cactcqcctt cqqcatcacc
atottgcago gcatcaccot gcccggtgac gaaggttggg aagaactcac caccaaaggc
aagcccccaa gcactcgtga tgtgccccta cccgggagct aggtcgg
407
<210> 572
<211> 100
<212> PRT
<213> Homo sapiens
<400> 572
Leu Thr Glu Thr Thr Val Ser Val Pro Thr Ser Phe Ala Asp Leu Gly
1
                 5
Val Arg Glu Asp Ile Cys Gln Ala Leu Glu Gly Val Gly Ile Val Ser
                                25
Pro Phe Pro Ile Gln Ala Met Ser Ile Pro Ile Ala Val Glu Gly Thr
Asp Leu Ile Gly Gln Ala Arg Thr Gly Thr Gly Lys Thr Leu Ala Phe
Gly Ile Thr Ile Leu Gln Arg Ile Thr Leu Pro Gly Asp Glu Gly Trp
Glu Glu Leu Thr Thr Lys Gly Lys Pro Pro Ser Thr Arg Asp Val Pro
                                    90
Leu Pro Gly Ser
            100
<210> 573
<211> 393
<212> DNA
<213> Homo sapiens
<400> 573
acgegictae egiaggatee atgaeettee geaagaeega ceaceaeaag aacgeeattg
actacqaqqt cgccggacta atgtggctcg ctgctgcccg gccaqatggg gccggcatcg
tegaggtget egaceaegge aagggatgge teaeegaaee egaattgtee aetgggeaee
ccaccegega ggeageegag gaetttggee geegaetgge teacaceeae geageegggg
ceteacacet gggggetgea cetgaegggt ttgttecega cgatgggtat ateggeegtg
ctcccctgcc actgccgtcc gaaccaatct cctcctgggg agagttttac gctcagtgcc
gcatcgaacc atatatggac agtctcgacg ctg
393
<210> 574
<211> 124
<212> PRT
```

<213> Homo sapiens <400> 574 Met Thr Phe Arg Lys Thr Asp His His Lys Asn Ala Ile Asp Tyr Glu 10 Val Ala Gly Leu Met Trp Leu Ala Ala Ala Arg Pro Asp Gly Ala Gly Ile Val Glu Val Leu Asp His Gly Lys Gly Trp Leu Thr Glu Pro Glu 40 45 Leu Ser Thr Gly His Pro Thr Arg Glu Ala Ala Glu Asp Phe Gly Arg 55 Arg Leu Ala His Thr His Ala Ala Gly Ala Ser His Leu Gly Ala Ala 70 75 Pro Asp Gly Phe Val Pro Asp Asp Gly Tyr Ile Gly Arg Ala Pro Leu 90 Pro Leu Pro Ser Glu Pro Ile Ser Ser Trp Gly Glu Phe Tyr Ala Gln 105 Cys Arg Ile Glu Pro Tyr Met Asp Ser Leu Asp Ala 120 <210> 575 <211> 372 <212> DNA <213> Homo sapiens nntatccatg cagacatggg accagggtet ctgagggcag gaagcaaagt gggtgagggg gatgggacaa gatgccctgg tgctaaggcc tctggagctg gagctggtta tagggatgat accaggeace etgagteact egeaceteac aatggggeeg ettetgggag eeagtggget tatggggctg gcaatgtgct gggttatgag gatggatcag aacttccagg gcctcaggga actggggtca gaacagccta tggagaaagg tcaaggggcc ttgggcctag gagtacaggg ccagggggtg aggcaggctt tagagatggt tcaggaggcc tccaaggaat gggatcagca 360 gatgggcccg gt 372 <210> 576 <211> 124 <212> PRT <213> Homo sapiens <400> 576 Xaa Ile His Ala Asp Met Gly Pro Gly Ser Leu Arg Ala Gly Ser Lys 10 Val Gly Glu Gly Asp Gly Thr Arg Cys Pro Gly Ala Lys Ala Ser Gly Ala Gly Ala Gly Tyr Arg Asp Asp Thr Arg His Pro Glu Ser Leu Ala

Pro His Asn Gly Ala Ala Ser Gly Ser Gln Trp Ala Tyr Gly Ala Gly

```
60
Asn Val Leu Gly Tyr Glu Asp Gly Ser Glu Leu Pro Gly Pro Gln Gly
                    70
                                         75
Thr Gly Val Arg Thr Ala Tyr Gly Glu Arg Ser Arg Gly Leu Gly Pro
Arg Ser Thr Gly Pro Gly Gly Glu Ala Gly Phe Arg Asp Gly Ser Gly
            100
                                 105
                                                     110
Gly Leu Gln Gly Met Gly Ser Ala Asp Gly Pro Gly
<210> 577
<211> 432
<212> DNA
<213> Homo sapiens
<400> 577
nagogoaatg toatgatgto ggatttgtoa atgtoggatt totoatocca gooatcacco
cegeagegee gggegeggat gaccagegge cagegeegtg aacageteat cagegtggee
egtegeetet tegeagaeaa tggeatggea gggaeeteeg tegaggagat egeegetaee
gegggagtet ccaaaccegt catctacgag catttegggt ccaaggatgg getgtacgec
gtcgtcgtag accgcgaggt acgccaccta caagattccc tcaacgccgc catgacccgc
ccaaagcaag gcccgaaacg caccetggag teageggtae tggccetget ggaetacate
gacgaccgtc cagacggttt tcggatcatc tcgcgagact cctcggtcgg ttcagccacc
420
ggttcgtacg cg
432
<210> 578
<211> 118
<212> PRT
<213> Homo sapiens
<400> 578
Met Thr Ser Gly Gln Arg Arg Glu Gln Leu Ile Ser Val Ala Arg Arg
Leu Phe Ala Asp Asn Gly Met Ala Gly Thr Ser Val Glu Glu Ile Ala
                                25
Ala Thr Ala Gly Val Ser Lys Pro Val Ile Tyr Glu His Phe Gly Ser
                            40
Lys Asp Gly Leu Tyr Ala Val Val Asp Arg Glu Val Arg His Leu
                        55
Gln Asp Ser Leu Asn Ala Ala Met Thr Arg Pro Lys Gln Gly Pro Lys
                    70
                                        75
Arg Thr Leu Glu Ser Ala Val Leu Ala Leu Leu Asp Tyr Ile Asp Asp
Arg Pro Asp Gly Phe Arg Ile Ile Ser Arg Asp Ser Ser Val Gly Ser
            100
                                105
Ala Thr Gly Ser Tyr Ala
```

115 <210> 579 <211> 320 <212> DNA <213> Homo sapiens <400> 579 ggccccaaac actccgacct cagctggtcc agcatgctgg gcaccgtgct gctgctggcc ctgctcccag ggatcaccac cttacccagc gggccacctg etcccccgtt ccccgggcg cccggcccct ggctgcgcag acccctcttc agcctgaagc tgtccgacac agaggacgtc 180 tttcctcgcc gcgcggggcc gctcgaggtc ccggccgaca gccgcgtgtt cgtgcaggcg 240 geettggeee gteeeteece gegetgggge etggeeetge aeegetgete agtgaegeeg 300 tectcaegee eggeeeeggg 320 <210> 580 <211> 95 <212> PRT <213> Homo sapiens <400> 580 Met Leu Gly Thr Val Leu Leu Leu Ala Leu Leu Pro Gly Ile Thr Thr 10 Leu Pro Ser Gly Pro Pro Ala Pro Pro Phe Pro Ala Ala Pro Gly Pro 20 25 Trp Leu Arg Arg Pro Leu Phe Ser Leu Lys Leu Ser Asp Thr Glu Asp Val Phe Pro Arg Arg Ala Gly Pro Leu Glu Val Pro Ala Asp Ser Arg 55 60 Val Phe Val Gln Ala Ala Leu Ala Arg Pro Ser Pro Arg Trp Gly Leu 70 75 Ala Leu His Arg Cys Ser Val Thr Pro Ser Ser Arg Pro Ala Pro 85 90 <210> 581 <211> 419 <212> DNA <213> Homo sapiens <400> 581 nacgacggca accattcgct gtggaaggag ctgaacggcc agctcgacgt gcagtttttc cacgteggea tgggetteaa gaegeeagta egeatgeaca gegtegaece caagaecege gaagecegeg aggtgcattt cegecegteg etgttcaact atgccaagac caeggtggac

accaagcage tgaceggega cetgggttte teeggtttea agetgtteaa ggegeeggaa

240

```
ctggatcgcc atgacgtgct gtcgtttctc ggcgccagtt acttccgtgc ggtggacgca
acceptcagt acggettete egeacgegge etggegattg atacetacge gaaaaaaege
gaggaattcc ccgacttcac gcagttctgg ttcgaaaccc cgagcaagga cccacgcgt
419
<210> 582
<211> 139
<212> PRT
<213> Homo sapiens
<400> 582
Xaa Asp Gly Asn His Ser Leu Trp Lys Glu Leu Asn Gly Gln Leu Asp
                                    10
1
Val Gln Phe Phe His Val Gly Met Gly Phe Lys Thr Pro Val Arg Met
                                25
                                                     30
His Ser Val Asp Pro Lys Thr Arg Glu Ala Arg Glu Val His Phe Arg
                            40
Pro Ser Leu Phe Asn Tyr Ala Lys Thr Thr Val Asp Thr Lys Gln Leu
                        55
Thr Gly Asp Leu Gly Phe Ser Gly Phe Lys Leu Phe Lys Ala Pro Glu
Leu Asp Arg His Asp Val Leu Ser Phe Leu Gly Ala Ser Tyr Phe Arg
                85
                                    90
Ala Val Asp Ala Thr Arg Gln Tyr Gly Leu Ser Ala Arg Gly Leu Ala
                                105
Ile Asp Thr Tyr Ala Lys Lys Arg Glu Glu Phe Pro Asp Phe Thr Gln
                            120
                                                125
        115
Phe Trp Phe Glu Thr Pro Ser Lys Asp Pro Arg
    130
                        135
<210> 583
<211> 407
<212> DNA
<213> Homo sapiens
<400> 583
cttttgatca atgctgatgg cacgaagcta tcgaaaaggt cgggtgatgt ccgcgtagct
gattatatgg agcagggatg ggagccggag acgctggtga acctagttgc cctcacgggc
tatagctatg cgaatttgga gcatgctgat catgatgtca agacgatgaa cgaactcatc
eqtgaetttg agettaeteg tateteecat aegegageea caeteeceat ggacaagett
gtgtttttga acaagcatca cttgacaaat aagctggcgc tcgccacgac gtgtgagcag
300
accaaacaag acctattgtc gcgtatccgg ccgatcacta cctcgtggta cggcgattat
tcagatgatt atatcctgcg cgtcgtaaca ctgggacccc aacgcgt
407
<210> 584
```

```
<211> 135
<212> PRT
<213> Homo sapiens
<400> 584
Leu Leu Ile Asn Ala Asp Gly Thr Lys Leu Ser Lys Arg Ser Gly Asp
                                     1.0
Val Arg Val Ala Asp Tyr Met Glu Gln Gly Trp Glu Pro Glu Thr Leu
            20
                                25
                                                     30
Val Asn Leu Val Ala Leu Thr Gly Tyr Ser Tyr Ala Asn Leu Glu His
Ala Asp His Asp Val Lys Thr Met Asn Glu Leu Ile Arg Asp Phe Glu
Leu Thr Arg Ile Ser His Thr Arg Ala Thr Leu Pro Met Asp Lys Leu
                                         75
Val Phe Leu Asn Lys His His Leu Thr Asn Lys Leu Ala Leu Ala Thr
                85
                                     90
Thr Cys Glu Gln Thr Lys Gln Asp Leu Leu Ser Arg Ile Arg Pro Ile
                                105
Thr Thr Ser Trp Tyr Gly Asp Tyr Ser Asp Asp Tyr Ile Leu Arg Val
                            120
                                                 125
Val Thr Leu Gly Pro Gln Arg
    130
<210> 585
<211> 502
<212> DNA
<213> Homo sapiens
<400> 585
nnacgcgtcc tcgctggata tgaggctgtg aagagggaac gctqcgtcat tgatctqqac
gatattttgt tgtgcgcggt gggattgttg gttcagcacc gtgacatcac tgaggagatt
120
egggeteggt acegacattt egttgtegae gaataceagg aegtttetee getgeageat
180
aggttgcttg aactgtggtt tggcgatcga aatgatgtat gcgtcgtggg agatccgcac
caggocattc actettatgc aggogoacga gotgactacc tectogactt cgttgccgat
catcctggcg ctaaacgcat cgatttggtt cgcaactacc gctccactcc cgagatcgtt
cagttggcca atgaagttct tgtcaaccgt atgactccag aggaggcttt ggaacatggc
aggggagtea cattggttte geggggtega teeggteeeg ageceateta teaggetete
480
ggggacgatg cctccgaagc tt
502
<210> 586
<211> 167
<212> PRT
<213> Homo sapiens
```

<400> 586 Xaa Arg Val Leu Ala Gly Tyr Glu Ala Val Lys Arg Glu Arg Cys Val 10 Ile Asp Leu Asp Asp Ile Leu Leu Cys Ala Val Gly Leu Leu Val Gln His Arg Asp Ile Thr Glu Glu Ile Arg Ala Arg Tyr Arg His Phe Val 40 Val Asp Glu Tyr Gln Asp Val Ser Pro Leu Gln His Arg Leu Leu Glu Leu Trp Phe Gly Asp Arg Asn Asp Val Cys Val Val Gly Asp Pro His 75 70 Gln Ala Ile His Ser Tyr Ala Gly Ala Arg Ala Asp Tyr Leu Leu Asp 90 Phe Val Ala Asp His Pro Gly Ala Lys Arg Ile Asp Leu Val Arg Asn 105 110 Tyr Arg Ser Thr Pro Glu Ile Val Gln Leu Ala Asn Glu Val Leu Val Asn Arg Met Thr Pro Glu Glu Ala Leu Glu His Gly Arg Gly Val Thr 140 130 135 Leu Val Ser Arg Gly Arg Ser Gly Pro Glu Pro Ile Tyr Gln Ala Leu 145 150 155 160 Gly Asp Asp Ala Ser Glu Ala 165 <210> 587 <211> 746 <212> DNA <213> Homo sapiens <400> 587 qcqtcctqcc tcqaqqqcct cgggagcttc cgctgcctct gttggccagg ctacagcggc gagetgtgeg aggtggaega ggaegagtgt geategagee eetgeeagea tgggggeega 120 tgcctgcage getetgaece ggeeetetae gggggtgtee aggeegeett eeetggegee ttcagcttcc gccatgctgc gggtttcctg tgccactgcc ctcctggctt tgagggagcc gactgeggtg tggaggtgga cgagtgtgcc tcacggccat gcctcaatgg aggccactgc caqqacctqc ccaatqqctt ccaqtqtcac tqcccaqatg gctacqcagg gccgacatgt qaqqaaqatq tqqatqaatq cctqtccqat ccctqcctgc acqqcggaac ctgcagtgac actgtggcag gctatatctg caggtgccca gagacctggg gtgggcgcga ctgttctgtg caqctcactg getgecaqqg ccacacetqc ccqctggctg ccacctgcat ccctatettc gagtotgggg tocacagtta cqtctqccac tqcccacctg gtacccatgg accgttctgt ggccagaata ccaccttctc tgtgatggct gggagcccca ttcaggcatc agtgccagct ggtggccccc tgggtctggc actgaggttt cgcaccacac tgcccgctgg gaccttggcc 720

actogoaatg acaccaagga aagott

```
746
<210> 588
<211> 248
<212> PRT
<213> Homo sapiens
<400> 588
Ala Ser Cys Leu Glu Gly Leu Gly Ser Phe Arg Cys Leu Cys Trp Pro
                                    10
Gly Tyr Ser Gly Glu Leu Cys Glu Val Asp Glu Asp Glu Cys Ala Ser
Ser Pro Cys Gln His Gly Gly Arg Cys Leu Gln Arg Ser Asp Pro Ala
                            40
Leu Tyr Gly Gly Val Gln Ala Ala Phe Pro Gly Ala Phe Ser Phe Arg
His Ala Ala Gly Phe Leu Cys His Cys Pro Pro Gly Phe Glu Gly Ala
                                        75
                    70
Asp Cys Gly Val Glu Val Asp Glu Cys Ala Ser Arg Pro Cys Leu Asn
                                    90
Gly Gly His Cys Gln Asp Leu Pro Asn Gly Phe Gln Cys His Cys Pro
                                105
Asp Gly Tyr Ala Gly Pro Thr Cys Glu Glu Asp Val Asp Glu Cys Leu
                            120
Ser Asp Pro Cys Leu His Gly Gly Thr Cys Ser Asp Thr Val Ala Gly
                        135
Tyr Ile Cys Arg Cys Pro Glu Thr Trp Gly Gly Arg Asp Cys Ser Val
                   150
                                        155
Gln Leu Thr Gly Cys Gln Gly His Thr Cys Pro Leu Ala Ala Thr Cys
                                    170
Ile Pro Ile Phe Glu Ser Gly Val His Ser Tyr Val Cys His Cys Pro
                                185
Pro Gly Thr His Gly Pro Phe Cys Gly Gln Asn Thr Thr Phe Ser Val
                            200
Met Ala Gly Ser Pro Ile Gln Ala Ser Val Pro Ala Gly Gly Pro Leu
                        215
Gly Leu Ala Leu Arg Phe Arg Thr Thr Leu Pro Ala Gly Thr Leu Ala
                   230
                                       235
Thr Arg Asn Asp Thr Lys Glu Ser
                245
<210> 589
<211> 381
<212> DNA
<213> Homo sapiens
<400> 589
atotoacaag tacaattaca gtotoaagaa otgagotato agcaaaagca aggtottoag
ccagtacete tgcaagecae tatgagtget gcaactggta tecagecate gcetgtaaat
gtggttggtg taacttcagc tttaggtcag cagcettcca tttccagttt ggctcaacce
180
```

```
cagetaceat atteteagge ggeteeteea gtgeaaacte ceetteeagg ggeaceacea
240
ccccaacagt tacagtatgg acaacagcaa ccaatggttt ctacacagat ggccccaggc
catgicaaat cagigactca aaatccigci tcagagtaig tacaacagca gccaattcit
caaacagcaa tgtcctccgg a
381
<210> 590
<211> 127
<212> PRT
<213> Homo sapiens
<400> 590
Ile Ser Gln Val Gln Leu Gln Ser Gln Glu Leu Ser Tyr Gln Gln Lys
                 5
Gln Gly Leu Gln Pro Val Pro Leu Gln Ala Thr Met Ser Ala Ala Thr
Gly Ile Gln Pro Ser Pro Val Asn Val Val Gly Val Thr Ser Ala Leu
                            40
Gly Gln Gln Pro Ser Ile Ser Ser Leu Ala Gln Pro Gln Leu Pro Tyr
                        55
Ser Gln Ala Ala Pro Pro Val Gln Thr Pro Leu Pro Gly Ala Pro Pro
                                        75
                    70
Pro Gln Gln Leu Gln Tyr Gly Gln Gln Gln Pro Met Val Ser Thr Gln
                                    90
Met Ala Pro Gly His Val Lys Ser Val Thr Gln Asn Pro Ala Ser Glu
                                105
            100
Tyr Val Gln Gln Gln Pro Ile Leu Gln Thr Ala Met Ser Ser Gly
                                                125
        115
                            120
<210> 591
<211> 684
<212> DNA
<213> Homo sapiens
<400> 591
tegaccatgg atcatetgeg ceaeggeate cacetgegtg gttatgegea gaagaacceg
aagcaggaat acaagcgcga gtcgttcacc ctgttctccg agctgctgga ctcgatcaag
cgcgattcga ttcgggtcct cttccacgtc caggggccgg gggaaaaatc cgtatcgaaa
180
naaaaaqqqc qcctqcqtca qqaaqccqaa gccctqqccc agcgcatgca gttcgagcac
getgaagece caggeetgga egegeeggaa ateeteggtg aagaagtega tgtegeeetg
qccaccqcqc cqqtacqcaa cqaqcaqaaq ctqqqccqta acqaactqtq ctactqcqqt
tegggeaaga agtacaagea etgecaeggt cagateaget aaggtettta eeggataetg
420
aaatacotgo geogogacog geattageog tegeggegtt tttecatttg aaacactgee
480
```

```
cttgtgacgg cagtgcagat atcacattaa aaggagggca ttcatgggtg ttggttctgg
qtecttqqee taeqttqeac cegqttqeeq qttttqaact eqqtategee teggeeggta
teaagegeec tgggegeaag gatgtggtgg cgatgegetg cgccgaaggt tecacggtgg
cqqqqqtqtt taccctcaac gcgt
684
<210> 592
<211> 133
<212> PRT
<213> Homo sapiens
<400> 592
Ser Thr Met Asp His Leu Arg His Gly Ile His Leu Arg Gly Tyr Ala
1
                 5
                                                         15
Gln Lys Asn Pro Lys Gln Glu Tyr Lys Arg Glu Ser Phe Thr Leu Phe
                                25
Ser Glu Leu Leu Asp Ser Ile Lys Arg Asp Ser Ile Arg Val Leu Phe
His Val Gln Gly Pro Gly Glu Lys Ser Val Ser Lys Xaa Lys Ala Arg
                        55
Leu Arg Gln Glu Ala Glu Ala Leu Ala Gln Arg Met Gln Phe Glu His
                    70
Ala Glu Ala Pro Gly Leu Asp Ala Pro Glu Ile Leu Gly Glu Glu Val
                                    90
                85
Asp Val Ala Leu Ala Thr Ala Pro Val Arg Asn Glu Gln Lys Leu Gly
            100
                                105
Arg Asn Glu Leu Cys Tyr Cys Gly Ser Gly Lys Lys Tyr Lys His Cys
        115
                            120
                                                125
His Gly Gln Ile Ser
    130
<210> 593
<211> 615
<212> DNA
<213> Homo sapiens
<400> 593
nnacgcgtgc agaccgcgcg gagtctcgct ccggtgcgga tagcgttagg ctcccaaacc
tgtgaaaccg tcacggtaga gcgtcgtggc gggctaccac ttagagcggc ccgattcacc
gataccatec ecgegeeget aggeeageea egatggtega eggeeaceat ecagacceca
gteataceta etacaegtgg tegattegtg ateggeeeeg teatgatgeg caccategae
ccgtttggca tggcccgcca tcacaccgat ctcggtcagg ttgccgaagt cattgtcacg
300
ccaaggateg tegatttggg egecteeggg gagetegggg gteagggatt egacacaagg
tecteagega tecatgeegg acgaegtggt ecegaegatg ceatggtgeg egattggeae
420
```

```
accggagact cggtgcgacg cattcactgg cgctccaccg ctcaccgcgg ggacctcatg
480
gtocgatgcg aggagcaggc ctggaaccca tccgtcgtca tcgtgttgga ttctcgggct
cggcgtcacg ctggaactgg ccccgacgca tcctttgaat gggccgtcaa cgcggtggca
tccatctcga cgcgt
615
<210> 594
<211> 205
<212> PRT
<213> Homo sapiens
<400> 594
Xaa Arg Val Gln Thr Ala Arg Ser Leu Ala Pro Val Arg Ile Ala Leu
Gly Ser Gln Thr Cys Glu Thr Val Thr Val Glu Arg Arg Gly Gly Leu
Pro Leu Arg Ala Ala Arg Phe Thr Asp Thr Ile Pro Ala Pro Leu Gly
                            40
Gln Pro Arg Trp Ser Thr Ala Thr Ile Gln Thr Pro Val Ile Pro Thr
Thr Arg Gly Arg Phe Val Ile Gly Pro Val Met Met Arg Thr Ile Asp
                    70
                                        75
Pro Phe Gly Met Ala Arg His His Thr Asp Leu Gly Gln Val Ala Glu
                                    90
Val Ile Val Thr Pro Arg Ile Val Asp Leu Gly Ala Ser Gly Glu Leu
                                105
Gly Gly Gln Gly Phe Asp Thr Arg Ser Ser Ala Ile His Ala Gly Arg
        115
                            120
                                                125
Arg Gly Pro Asp Asp Ala Met Val Arg Asp Trp His Thr Gly Asp Ser
                        135
                                            140
Val Arg Arg Ile His Trp Arg Ser Thr Ala His Arg Gly Asp Leu Met
                    150
                                        155
Val Arg Cys Glu Glu Gln Ala Trp Asn Pro Ser Val Val Ile Val Leu
                165
                                    170
Asp Ser Arg Ala Arg Arg His Ala Gly Thr Gly Pro Asp Ala Ser Phe
                                185
Glu Trp Ala Val Asn Ala Val Ala Ser Ile Ser Thr Arg
       195
                            200
                                                205
<210> 595
<211> 303
<212> DNA
<213> Homo sapiens
<400> 595
acgcgtccta gccgcagtga atgttgctga accccggtga cctcacagtg gagggggg
cccatggggc catcggaccg cgccgcgcgg gggcgttcgc cagggcctcc gcagaagccc
geotytycee geaacegeee egaaattete teeetygeae egtyteeget ttaeggagee
180
```

```
cggagcaagg ctcagaaaaa tgtcccagcc aaaaacatgg tacatgcctg tcatcaggca
agtetteaaa gageggetgg gaeeagggge egagggaeet egtttagagg eggettaggg
300
qqa
303
<210> 596
<211> 88
<212> PRT
<213> Homo sapiens
<400> 596
Met Leu Leu Asn Pro Gly Asp Leu Thr Val Glu Gly Arg Pro His Gly
 1
                                     10
Ala Ile Gly Pro Arg Arg Ala Gly Ala Phe Ala Arg Ala Ser Ala Glu
Ala Arg Leu Cys Pro Gln Pro Pro Arg Asn Ser Leu Pro Gly Thr Val
                            40
Ser Ala Leu Arg Ser Pro Glu Gln Gly Ser Glu Lys Cys Pro Ser Gln
                        55
Lys His Gly Thr Cys Leu Ser Ser Gly Lys Ser Ser Lys Ser Gly Trp
                    70
                                        75
Asp Gln Gly Pro Arg Asp Leu Val
                85
<210> 597
<211> 2709
<212> DNA
<213> Homo sapiens
<400> 597
nacgcqtgca cgcagtgcgg caaagccttc cgctggaagt ccaactttaa tttgcacaag
aagaaccaca tggtggagaa gacctacgaa tgtaaagaat gcgggaaatc ctttggcgat
ctcgtgtccc ggaggaaaca catgaggatt cacatcgtca agaaacccgt ggaatgtcgg
cagtgcggga agacettccg aaaccagtce atcettaaga etcacatgaa etctcacact
ggagagaaac catacgggtg cgatctctgc gggaaagctt tcagcgcgag ttcaaacctc
accgcacaca ggaagataca cacgcaagag agacgctacg aatgcgccgc ctgcgggaaa
gtcttcggtg actatttatc ccggcggagg cacatgagcg ttcaccttgt aaagaaacga
gttgagtgta ggcattgtgg caaggccttc aggaaccagt caacgctgaa gacgcacatg
cgaagccaca cgggggagaa accgtacgaa tgcgatcact gtgggaaggc cttcagcata
540
ggctccaacc tgaatgtgca caggcggatc cacaccgggg agaagcccta cgaatgcctt
gtctgcggga aagecttcag cgaccactca tccctcagga gccacgtgaa aactcaccgg
660
```

ggagagaagc 720	tetttnngtg	tcatccgtgt	ggaaaaggct	ccagtgagcg	cgccntgctt
tagagacaca 780	ggatgattca	gaccggaaac	agacctcgtg	ggtgtaagag	gaagcetetg
tgagctcgca 840	ccttactggg	tgcaaaagaa	tccacggaac	ttgggagaag	tccagttcct
gtaaaaactg 900	ggaagacgag	gcgttctcat	cccataggag	gtttgtgaga	actcacgccg
ggggtgaaaa 960	tgtacgtctg	tagcatggag	aagccttcag	gtacattcag	ctcttaacaa
acacaggaag 1020	acttaatggc	agcttggcat	ttaatgtcaa	aatccaagcc	gtggcattta
atgtcaaaat 1080	gacttcagac	cacttctagc	cttctgggcc	catgagtaat	aatgagcaca
ctagggagca 1140	tctctgtaaa	cacagtggct	ggggaaaccc	ttcctagtct	cacttgattc
ctcatgacgg 1200	aaatcacact	aaagagagaa	atcagtgaag	taaggaacgt	ggaaggtcat
gaatgggccg 1260	caaaccacgg	ccagctgctt	gtctttgtat	ggcttgccag	ctaacaatag
1320		aagaatgttt			
gaaatacttc 1380	ctgtcatctg	cccctttcca	gaaaaacttg	gccgaccctt	ggtctacagc
acgggttctc 1440	agtcgggcga	cgatttggct	gtctaggcgt	catttggcaa	tgtctagaga
catttttggt 1500	agttagaatg	gggggaagat	actcctgact	tgtaataaga	agacatcaga
gatgctgcta 1560	agtcggctcc	agcacacagg	agccccccac	aacgaagagt	tagtgcccc
1620		ttgaaaataa			
agcaattcct 1680	ccatttttat	gaatcttgtg	agcacttacg	ctaggagaaa	tttcttttac
aaaactttta 1740	aaatacaatt	agtgctgata	attcctatgt	ggaaatgatt	ccagccatgg
1800		aatattctca			
gaatacggga 1860	ttgcacttac	tctttcatca	cggaaacaga	cccccgaga	gaagccccaa
1920		gggactgcac			
1980		atttttaagg			
2040		agtatttta			
2100		tgaccaatgg			
ttctcagtac 2160	cactttgtta	ctggtacctg	atgcacacgg	attgcgacca	gagcatgatg
2220		gtttgcagcc			
tagtgacttc 2280	cccggtatcc	actctcatct	tcttccaata `	tcaagagaat	ccaggttctg

tragattagt aaggtgtgct aatctaaatt ttaaaaaaatc tottacaggt tttottgcag ctqqtaccat ccatqtctca cagccctggc cactgacaga tcagcagatg tcaccacqtg 2400 ggcttctgag aaagctcttg aatggggatc gttcttaaac atgaattcct ccctgtatgt tttgttcttt gctttacttt tcaccttgca aagagatcca gtacctagta ttggaagatc caccttaacq accqtqcata tqaaaaccac agtctaagga agtgactgca gaaagctcac 2580 agegaccetg geeteecetg tggeetettt gagtgtetge ageageeetg gaetteeaga 2640 2700 aaaaaaaa 2709 <210> 598 <211> 240 <212> PRT <213> Homo sapiens <400> 598 Xaa Ala Cys Thr Gln Cys Gly Lys Ala Phe Arg Trp Lys Ser Asn Phe 10 Asn Leu His Lys Lys Asn His Met Val Glu Lys Thr Tyr Glu Cys Lys 25 Glu Cys Gly Lys Ser Phe Gly Asp Leu Val Ser Arg Arg Lys His Met 40 Arg Ile His Ile Val Lys Lys Pro Val Glu Cys Arg Gln Cys Gly Lys 55 60 Thr Phe Arg Asn Gln Ser Ile Leu Lys Thr His Met Asn Ser His Thr 70 Gly Glu Lys Pro Tyr Gly Cys Asp Leu Cys Gly Lys Ala Phe Ser Ala 85 90 Ser Ser Asn Leu Thr Ala His Arg Lys Ile His Thr Gln Glu Arg Arg 105 Tyr Glu Cys Ala Ala Cys Gly Lys Val Phe Gly Asp Tyr Leu Ser Arg 115 120 125 Arg Arg His Met Ser Val His Leu Val Lys Lys Arg Val Glu Cys Arg 135 140 His Cys Gly Lys Ala Phe Arg Asn Gln Ser Thr Leu Lys Thr His Met 155 150 Arg Ser His Thr Gly Glu Lys Pro Tyr Glu Cys Asp His Cys Gly Lys 170 175 Ala Phe Ser Ile Gly Ser Asn Leu Asn Val His Arg Arg Ile His Thr 190 180 185 Gly Glu Lys Pro Tyr Glu Cys Leu Val Cys Gly Lys Ala Phe Ser Asp 205 His Ser Ser Leu Arg Ser His Val Lys Thr His Arg Gly Glu Lys Leu 220 215 Phe Xaa Cys His Pro Cys Gly Lys Gly Ser Ser Glu Arg Ala Xaa Leu 230 235

```
<210> 599
<211> 340
<212> DNA
<213> Homo sapiens
<400> 599
acqcqtqcct cqcqactctt qacqtcgtgg tqqctqcqct cqgtcqtgtc actcctcttq
tteggegtea tggegeaggt getaggegtg geegtgeate tgagtetgea eegetttgee
caggeatgtt tgeegggeeg catecettge aettgeagte egtggeetat eggeegagge
gcaggcctgc agttggagcc gtgcgtgggt gtcccgcgcg aggagcgtgt tggcagacta
tggggetegt eggaggaega ggatgtgagt ggegatgget ttgegegaet gggegtatte
cacceggega tggtgeteca gategtecag ggeatgatea
340
<210> 600
<211> 111
<212> PRT
<213> Homo sapiens
<400> 600
Met Pro Trp Thr Ile Trp Ser Thr Ile Ala Gly Trp Asn Thr Pro Ser
                                    10
Arg Ala Lys Pro Ser Pro Leu Thr Ser Ser Ser Asp Glu Pro His
                                25
                                                     30
Ser Leu Pro Thr Arg Ser Ser Arg Gly Thr Pro Thr His Gly Ser Asn
        35
                            40
Cys Arg Pro Ala Pro Arg Pro Ile Gly His Gly Leu Gln Val Gln Gly
                        55
                                            60
Met Arq Pro Gly Lys His Ala Trp Ala Lys Arq Cys Arq Leu Arq Cys
                                        75
Thr Ala Thr Pro Ser Thr Cys Ala Met Thr Pro Asn Lys Arg Ser Asp
                85
                                    90
Thr Thr Glu Arg Ser His His Asp Val Lys Ser Arg Glu Ala Arg
            100
                                105
<210> 601
<211> 421
<212> DNA
<213> Homo sapiens
<400> 601
geoggeggea gegacatete geteaacgte ggegtgegeg geetgactte gegtetttet
cegegeteca ccattttgat ggacggegte cegetggegg tegegeetta eggecageeg
cagctgtcga tggccccgct gtctatcggt aatctgcaat cggtggacgt ggtgcgcggc
ggcggcgcgg tgcgctacgg gccgcagaac gtcggcggcg tgatcaactt cgttacccga
240
```

```
gacattecca aaacgtttgg eggtgeegee agegtacaaa eecagggtge eagecaegge
300
ggcctgaaga ccctgaccag cgcctccgtg ggcgqcaccq caqacaacgg cctcqqcqcc
gagetgetet acteeggeet geaeggeeag ggetaeegeg acaacaacqa caacaceqae
420
n
421
<210> 602
<211> 140
<212> PRT
<213> Homo sapiens
<400> 602
Ala Gly Gly Ser Asp Ile Ser Leu Asn Val Gly Val Arg Gly Leu Thr
 1
                 5
                                     10
Ser Arg Leu Ser Pro Arg Ser Thr Ile Leu Met Asp Gly Val Pro Leu
Ala Val Ala Pro Tyr Gly Gln Pro Gln Leu Ser Met Ala Pro Leu Ser
                             40
Ile Gly Asn Leu Gln Ser Val Asp Val Val Arg Gly Gly Gly Ala Val
                         55
Arg Tyr Gly Pro Gln Asn Val Gly Gly Val Ile Asn Phe Val Thr Arg
                                         75
Asp Ile Pro Lys Thr Phe Gly Gly Ala Ala Ser Val Gln Thr Gln Gly
                85
                                     90
Ala Ser His Gly Gly Leu Lys Thr Leu Thr Ser Ala Ser Val Gly Gly
            100
                                105
Thr Ala Asp Asn Gly Leu Gly Ala Glu Leu Leu Tyr Ser Gly Leu His
                             120
Gly Gln Gly Tyr Arg Asp Asn Asn Asp Asn Thr Asp
    130
                        135
                                             140
<210> 603
<211> 309
<212> DNA
<213> Homo sapiens
<400> 603
nagggeggea tgeacgaaag ettgegeaaa egeteqetqq aaqqettqqa caaqateqqe
ttegacggcc tggccategg eggtetgteg gtgggegage ecaaqeacqa gatqateaaq
gtgctggatt acctgccggg cctgatgccg gctgacaaac ctcgttacct tatqqqcqtt
ggcaaaccgg aagacctcgt agagggtgtg cgccgcggtg tggacatgtt cgattgcgtq
atgccaaccc gtaatgcccg caatgggcat ctgttcatcg atacaggcgt gctgaagatc
300
cgtaacgcg
309
<210> 604
```

```
<211> 103
<212> PRT
<213> Homo sapiens
<400> 604
Xaa Gly Gly Met His Glu Ser Leu Arg Lys Arg Ser Leu Glu Gly Leu
Asp Lys Ile Gly Phe Asp Gly Leu Ala Ile Gly Gly Leu Ser Val Gly
            20
                                 25
Glu Pro Lys His Glu Met Ile Lys Val Leu Asp Tyr Leu Pro Gly Leu
                             40
                                                 45
Met Pro Ala Asp Lys Pro Arg Tyr Leu Met Gly Val Gly Lys Pro Glu
Asp Leu Val Glu Gly Val Arg Arg Gly Val Asp Met Phe Asp Cys Val
                                         75
Met Pro Thr Arg Asn Ala Arg Asn Gly His Leu Phe Ile Asp Thr Gly
                85
                                     90
Val Leu Lys Ile Arg Asn Ala
            100
<210> 605
<211> 428
<212> DNA
<213> Homo sapiens
<400> 605
acgogttcac gatagggtag ttgcctattt caacgoggtc ggtattttcc tgcacaacaa
actggcccaa ggctgggcta tagtcaggtg catagtactt ggtgaagtag cgtacgtccg
cacccacate acattteagt acettggeta tetteaateg gaaaaaaaaga ttggagtaaa
tgttgagttt tggtaatggc aacgecgttt gactggaaga gttttggaag gtaatgaccg
240
attoccagtg caaaggtccc catgctacat cotgcgacaa tgaggccgtt agcacgttta
ttgcctcgct gctttgccga acgccaacct ctgtaccgat acgctgatac tgattgttga
tggtataggc ttgcgccagg taggtataat tggtcaattc gtccatggca atgcgcagtg
420
aagtettq
428
<210> 606
<211> 135
<212> PRT
<213> Homo sapiens
<400> 606
Met Asp Glu Leu Thr Asn Tyr Thr Tyr Leu Ala Gln Ala Tyr Thr Ile
1
                                    10
Asn Asn Gln Tyr Gln Arg Ile Gly Thr Glu Val Gly Val Arg Gln Ser
                                25
Ser Glu Ala Ile Asn Val Leu Thr Ala Ser Leu Ser Gln Asp Val Ala
```

```
35
                             40
                                                 45
Trp Gly Pro Leu His Trp Glu Ser Val Ile Thr Phe Gln Asn Ser Ser
                        55
Ser Gln Thr Ala Leu Pro Leu Pro Lys Leu Asn Ile Tyr Ser Asn Leu
                     70
                                         75
Phe Phe Arg Leu Lys Ile Ala Lys Val Leu Lys Cys Asp Val Gly Ala
                85
                                     90
Asp Val Arg Tyr Phe Thr Lys Tyr Tyr Ala Pro Asp Tyr Ser Pro Ala
            100
                                 105
Leu Gly Gln Phe Val Val Gln Glu Asn Thr Asp Arg Val Glu Ile Gly
        115
                             120
                                                 125
Asn Tyr Pro Ile Val Asn Ala
    130
<210> 607
<211> 366
<212> DNA
<213> Homo sapiens
<400> 607
gatcacgatg aattgtgggc gtacacgtac gagaatgtga tggcgctaaa cttgccgcct
gacattgtgt gtaaaggatt ctttagaaaa ttggaaaacg tagtgaccgg agtcaatttg
gttttcaacg gcaaacatta tcaaattgta aagaaagagg atgacctatt caaattgacc
aaaagcaatt gttacaagtt gagcaacata aaatttaaca attggaaata cttgtacttg
acaacgcacg gtgtgtacaa cqtqttcacc aacaqctttc attcqaqctq tccatttttq
ttgggcacca cgttgccgca gacattcaag aagcccaccg acgaaaagta tttgcccgag
360
gacgcg
366
<210> 608
<211> 122
<212> PRT
<213> Homo sapiens
<400> 608
Asp His Asp Glu Leu Trp Ala Tyr Thr Tyr Glu Asn Val Met Ala Leu
Asn Leu Pro Pro Asp Ile Val Cys Lys Gly Phe Phe Arg Lys Leu Glu
            20
                                25
Asn Val Val Thr Gly Val Asn Leu Val Phe Asn Gly Lys His Tyr Gln
                            40
                                                 45
Ile Val Lys Lys Glu Asp Asp Leu Phe Lys Leu Thr Lys Ser Asn Cys
Tyr Lys Leu Ser Asn Ile Lys Phe Asn Asn Trp Lys Tyr Leu Tyr Leu
                    70
                                        75
Thr Thr His Gly Val Tyr Asn Val Phe Thr Asn Ser Phe His Ser Ser
                85
                                    90
Cys Pro Phe Leu Leu Gly Thr Thr Leu Pro Gln Thr Phe Lys Lys Pro
```

```
110
           100
                             105
Thr Asp Glu Lys Tyr Leu Pro Glu Asp Ala
       115
                         120
<210> 609
<211> 291
<212> DNA
<213> Homo sapiens
<400> 609
nacgogttat gacacggcct cctccaaggt cagtgtcatc gagtcacgta actcgtcggt
tgggtcggtt ggaacgagtc cgtcatgagc ccggtcgcca tggacgactc cagcagtccg
tacccagect ggaageagga ceceeaegeg aeggaatege eggetteeaa gtegtegeee
180
cctggaccat ctggggcggg ggcgccgccg tggtggtggc gggtggagcc g
291
<210> 610
<211> 69
<212> PRT
<213> Homo sapiens
<400> 610
Met Ser Pro Val Ala Met Asp Asp Ser Ser Pro Tyr Pro Ala Trp
                                10
Lys Gln Asp Pro His Ala Thr Glu Ser Pro Ala Ser Lys Ser Ser Pro
          20
Pro Lys Pro Gln Thr Ser Pro Ala Pro Tyr Ala Gly Pro Ala Pro Lys
Thr Pro Ala Thr Pro Gly Pro Ser Gly Ala Gly Ala Pro Pro Trp Trp
                                       60
                     55
   50
Trp Arg Val Glu Pro
<210> 611
<211> 393
<212> DNA
<213> Homo sapiens
<400> 611
nnnatettgt gtegatttte ggtegeatat actatggggg agtattgtat aatgeggegg
acgegeatea ggegeateaa aggteaggta gegaetettg ageaageget tgatgeaggt
180
gegaaatgte etgeaattet teageagett geggeegtte gtggegeagt caacggattg
240
atggcaacgg ttctggagag ctatctgcgg gaagagtttc ccagtagcga aatcaggagc
300
```

```
gattegeaga acaagteeat tgaegagaee atetetateg teegeteeta tetgeggtag
aggcaccagg gtgtcctcgg tgagggcaaa ttt
<210> 612
<211> 119
<212> PRT
<213> Homo sapiens
<400> 612
Xaa Ile Leu Cys Arg Phe Ser Val Ala Tyr Thr Met Gly Glu Tyr Cys
                                     1.0
Ile Met Arg Arg Cys Thr Gln Val Glu Arg Cys Ser Met Pro His Ser
Pro Glu Glu Lys Lys Gln Ala Leu Thr Arg Ile Arg Arg Ile Lys Gly
Gln Val Ala Thr Leu Glu Gln Ala Leu Asp Ala Gly Ala Lys Cys Pro
                        55
                                             60
Ala Ile Leu Gln Gln Leu Ala Ala Val Arg Gly Ala Val Asn Gly Leu
                                        75
Met Ala Thr Val Leu Glu Ser Tyr Leu Arg Glu Glu Phe Pro Ser Ser
                                     90
Glu Ile Arg Ser Asp Ser Gln Asn Lys Ser Ile Asp Glu Thr Ile Ser
Ile Val Arg Ser Tyr Leu Arg
        115
<210> 613
<211> 567
<212> DNA
<213> Homo sapiens
<400> 613
qaaaatqctc ctqqcqcctc aqqqaaqqtc cttctcaaaq aaaaqqatqq qqctqaatcq
60
ctggaaacgg ttcacaagga agccgagtcc caagcctact tttggtcctg acagtgtgga
acactggata aagagagtgg agaaagcctc agagtttgca gtgtcaaatg cattttttac
tagaaattca gatttaccta gaagtccctg gggccaaatc acagatttga aaacatctga
gcaaatagag gatcatqatq aaatctatqc aqaaqctcaq qagctggtca atgactggtt
agacaccaaa cttaagcaag aattagcaag tgaggaagaa ggtgatgcta aaaacactgt
gtcaagtgtc actattatgc cggaagccaa tggccatttg aaatatgaca agtttgatga
tttatgtggc tatttggagg aagaagagga aagtaccacc gttcaaaaaat ttatagacca
tetgetecat aaaaatgtgg tagattetge aatgatggaa gatettggaa ggaaggaaaa
ccaagacaag aagcagcaga aggatcc
567
```

<210> 614

```
<211> 187
<212> PRT
<213> Homo sapiens
<400> 614
Met Leu Leu Ala Pro Gln Gly Arg Ser Phe Ser Lys Lys Arg Met Gly
                                    10
Leu Asn Arg Trp Lys Arg Phe Thr Arg Lys Pro Ser Pro Lys Pro Thr
            20
Phe Gly Pro Asp Ser Val Glu His Trp Ile Lys Arg Val Glu Lys Ala
                                                 45
        35
                            40
Ser Glu Phe Ala Val Ser Asn Ala Phe Phe Thr Arg Asn Ser Asp Leu
Pro Arg Ser Pro Trp Gly Gln Ile Thr Asp Leu Lys Thr Ser Glu Gln
                    70
                                         75
Ile Glu Asp His Asp Glu Ile Tyr Ala Glu Ala Gln Glu Leu Val Asn
                                    90
Asp Trp Leu Asp Thr Lys Leu Lys Gln Glu Leu Ala Ser Glu Glu Glu
                                105
            100
Gly Asp Ala Lys Asn Thr Val Ser Ser Val Thr Ile Met Pro Glu Ala
                                        125
Asn Gly His Leu Lys Tyr Asp Lys Phe Asp Asp Leu Cys Gly Tyr Leu
                                            140
                        135
Glu Glu Glu Glu Glu Ser Thr Thr Val Gln Lys Phe Ile Asp His Leu
                                        155
                    150
Leu His Lys Asn Val Val Asp Ser Ala Met Met Glu Asp Leu Gly Arg
                165
                                    170
Lys Glu Asn Gln Asp Lys Lys Gln Gln Lys Asp
                                185
            180
<210> 615
<211> 685
<212> DNA
<213> Homo sapiens
<400> 615
nnacqcqtqc tgccctaagt gacggattcc atgtcggtgc gagtcgggtc ggggccgatg
ggccatgaac gggccctagc gagggccgga ctcggccccg tggccggatg cgacgaggcg
gggcggggcg cgtgtgcagg gccattggta gccgcagctg tcattcttga tgatcgcaga
teeggeagga ttgegggget ageagattee aagacaetat etgeggeeaa gagagaggee
ctgtttaacg tcatcatgga taaagctttg gcagtgtcgt gggtacgtgt agaagccgac
gaatgegate ggttggggat geaggaggea gatateageg gettgaggeg tgeegtggtg
aggetgggag ttgaaceggg etaegtgetg teggaeggtt teeeggtega eggaetgaeg
gttcccgatc tgggaatgtg gaagggcgat tcagtgtgtg cgtgtgtggc agctgcctcc
480
```

```
atcgtggcca aagtggccag ggatcgcatc atgatcgcta tggacgccga gattcctggt
tacgattttg cggtgcacaa ggggtacgcg acagccttac accagcgtcg tctgaaggag
ttaggaccgt ctcgtcagca ccggatgagc tacgccaatg tgcgacgagc ggctaggctt
cattcatcat gagtgccgaa gatct
<210> 616
<211> 213
<212> PRT
<213> Homo sapiens
<400> 616
Met Ser Val Arg Val Gly Ser Gly Pro Met Gly His Glu Arg Ala Leu
Ala Arg Ala Gly Leu Gly Pro Val Ala Gly Cys Asp Glu Ala Gly Arg
Gly Ala Cys Ala Gly Pro Leu Val Ala Ala Val Ile Leu Asp Asp
                            40
Arg Arg Ser Gly Arg Ile Ala Gly Leu Ala Asp Ser Lys Thr Leu Ser
                        55
                                            60
Ala Ala Lys Arg Glu Ala Leu Phe Asn Val Ile Met Asp Lys Ala Leu
                    70
                                        75
Ala Val Ser Trp Val Arg Val Glu Ala Asp Glu Cys Asp Arg Leu Gly
                85
                                    90
Met Gln Glu Ala Asp Ile Ser Gly Leu Arg Arg Ala Val Val Arg Leu
                                105
Gly Val Glu Pro Gly Tyr Val Leu Ser Asp Gly Phe Pro Val Asp Gly
                            120
                                                125
Leu Thr Val Pro Asp Leu Gly Met Trp Lys Gly Asp Ser Val Cys Ala
                        135
                                            140
Cys Val Ala Ala Ala Ser Ile Val Ala Lys Val Ala Arg Asp Arg Ile
                    150
                                        155
Met Ile Ala Met Asp Ala Glu Ile Pro Gly Tyr Asp Phe Ala Val His
                165
                                    170
Lys Gly Tyr Ala Thr Ala Leu His Gln Arg Arg Leu Lys Glu Leu Gly
                               185
Pro Ser Arg Gln His Arg Met Ser Tyr Ala Asn Val Arg Arg Ala Ala
       195
                            200
                                                205
Arg Leu His Ser Ser
    210
<210> 617
<211> 337
<212> DNA
<213> Homo sapiens
<400> 617
nncacctgtt tggctcgggg cactcgcgga tcatggtcga ggaaatgtgg ccgcgctacg
gctcgtttcc cggcttcaac cccatcgtcg agctgtcgct gtcgttccac aacctcgtcg
120
```

```
teggegecaa eggeeagege eaggeeatgt teetegaaaa egttteegge etteeeggag
cgaatcctcc gaaacttcga cctgtcccaa caagactctg cactcgtgat ttcatcaagc
gctgcaacgt cgtgccaatc gagatggccg aggagttcca gcgtcgcggc gtccgcgtcg
tetegateat etegetggeg caetegeagg egtegae
337
<210> 618
<211> 112
<212> PRT
<213> Homo sapiens
<400> 618
Xaa Thr Cys Leu Ala Arg Gly Thr Arg Gly Ser Trp Ser Arg Lys Cys
                                    10
Gly Arg Ala Thr Ala Arg Phe Pro Ala Ser Thr Pro Ser Ser Cys
                                25
Arg Cys Arg Ser Thr Thr Ser Ser Ser Ala Pro Thr Ala Ser Ala Arg
                            40
Pro Cys Ser Ser Lys Thr Phe Pro Ala Phe Pro Glu Arg Ile Leu Arg
                        55
                                            60
Asn Phe Asp Leu Ser Gln Gln Asp Ser Ala Leu Val Ile Ser Ser Ser
                    70
                                        75
Ala Ala Thr Ser Cys Gln Ser Arg Trp Pro Arg Ser Ser Ser Val Ala
                                    90
Ala Ser Ala Ser Ser Arg Ser Ser Arg Trp Arg Thr Arg Arg Arg Arg
            100
                                105
<210> 619
<211> 425
<212> DNA
<213> Homo sapiens
<400> 619
acgcgttttt tatgccgatc ttatgctcta acctagaaac aatatcagct acaaacctaa
tagctataag ataatattcg aaagcatcaa taggagtttt gatcatttcc gcatacctaa
gttttatagc atctttgtca gaaggcaaac ctgccaaacc agatgaatcg atgccactct
caaacttgct caaatgttca attaaatcat ccaagttgtg gccatgctta ccgcttccag
attttgaatg aatcattact ttaattgatt tttcaatcgc taaatggaat tcccagcaag
caatagaagc ccgctcattt ttaaagctca gtatgtcact aatgcctttt tcgaagtggc
tecatattee etgegecata ttagaagetg aetggttgga atggettgee atgtteaaat
420
ctaga
425
<210> 620
```

```
<211> 137
<212> PRT
<213> Homo sapiens
<400> 620
Met Ala Ser His Ser Asn Gln Ser Ala Ser Asn Met Ala Gln Gly Ile
                                     10
Trp Ser His Phe Glu Lys Gly Ile Ser Asp Ile Leu Ser Phe Lys Asn
            20
                                25
Glu Arg Ala Ser Ile Ala Cys Trp Glu Phe His Leu Ala Ile Glu Lys
                            40
                                                 45
Ser Ile Lys Val Met Ile His Ser Lys Ser Gly Ser Gly Lys His Gly
His Asn Leu Asp Asp Leu Ile Glu His Leu Ser Lys Phe Glu Ser Gly
                    70
Ile Asp Ser Ser Gly Leu Ala Gly Leu Pro Ser Asp Lys Asp Ala Ile
                85
                                     90
Lys Leu Arg Tyr Ala Glu Met Ile Lys Thr Pro Ile Asp Ala Phe Glu
                                105
Tyr Tyr Leu Ile Ala Ile Arg Phe Val Ala Asp Ile Val Ser Arg Leu
                            120
                                                 125
Glu His Lys Ile Gly Ile Lys Asn Ala
    130
<210> 621
<211> 453
<212> DNA
<213> Homo sapiens
<400> 621
cccggcaagg gagccatctt gacgaatatg tccttgtggt ggttcgacca attggccgac
atoqtoqata accatotoqt gagogtggat gtoccogoog aggtogcagg gogogocatg
qtcgttgagg aactcgacat gttcccggtc gaatgcgtcg tgcggggcta cctcaccggt
tcagggtggg ccgaatatca gcgcaaccag gccgtgtgcg gaatccgcct tcccgagggg
ctgcagaatg ggtcccggct cgaagagccc attttcaccc cggcaattaa ggccccgcag
qqaqaacatg acgagaacat cgactatcta cgcctggtag aactcgtcgg tcccngatgn
teagegeage tgeatgacet ttegetgegg gtetaceage gtgeagagga gategetegg
aagcgaggca tcctcctggc ggataccaag ctt
453
<210> 622
<211> 151
<212> PRT
<213> Homo sapiens
<400> 622
Pro Gly Lys Gly Ala Ile Leu Thr Asn Met Ser Leu Trp Trp Phe Asp
```

```
1
                                     10
                 5
Gln Leu Ala Asp Ile Val Asp Asn His Leu Val Ser Val Asp Val Pro
            20
                                25
Ala Glu Val Ala Gly Arg Ala Met Val Val Glu Glu Leu Asp Met Phe
                            40
Pro Val Glu Cys Val Val Arg Gly Tyr Leu Thr Gly Ser Gly Trp Ala
                                             60
Glu Tyr Gln Arg Asn Gln Ala Val Cys Gly Ile Arg Leu Pro Glu Gly
                                         75
Leu Gln Asn Gly Ser Arg Leu Glu Glu Pro Ile Phe Thr Pro Ala Ile
                                    90
                85
Lys Ala Pro Gln Gly Glu His Asp Glu Asn Ile Asp Tyr Leu Arg Leu
            100
                                105
Val Glu Leu Val Gly Pro Xaa Xaa Ser Ala Gln Leu His Asp Leu Ser
        115
                            120
Leu Arg Val Tyr Gln Arg Ala Glu Glu Ile Ala Arg Lys Arg Gly Ile
                        135
Leu Leu Ala Asp Thr Lys Leu
                    150
<210> 623
<211> 345
<212> DNA
<213> Homo sapiens
<400> 623
acqcgtccag tatqtccacq gaggacatgc ttgacctcga ctcgaacgtc tcctactacg
cgaggaacta tcaggccgcg caatcagttg tggcgaaatt cgacgcgggc accattgccc
aagccgaaga cctgccacct gacgacaccc acacgggggc ggaactggta aagagcgtgg
tcaacagcat cacctgtgtg tcacccctgt acatcgaaga tttcaccacc atagagatcc
aggggctggg actgcactgt gtcaggctct gggcgcctgg gctgctcgcc ctgtcactgc
ccagcgcacc catgcgggca cacccccgct acgccgcata tggcg
345
<210> 624
<211> 111
<212> PRT
<213> Homo sapiens
Met Ser Thr Glu Asp Met Leu Asp Leu Asp Ser Asn Val Ser Tyr Tyr
Ala Arg Asn Tyr Gln Ala Ala Gln Ser Val Val Ala Lys Phe Asp Ala
Gly Thr Ile Ala Gln Ala Glu Asp Leu Pro Pro Asp Asp Thr His Thr
                                                45
                            40
Gly Ala Glu Leu Val Lys Ser Val Val Asn Ser Ile Thr Cys Val Ser
Pro Leu Tyr Ile Glu Asp Phe Thr Thr Ile Glu Ile Gln Gly Leu Gly
```

```
75
65
                    70
Leu His Cys Val Arg Leu Trp Ala Pro Gly Leu Leu Ala Leu Ser Leu
                                     90
Pro Ser Ala Pro Met Arg Ala His Pro Arg Tyr Ala Ala Tyr Gly
            100
                                105
<210> 625
<211> 339
<212> DNA
<213> Homo sapiens
<400> 625
ggtacccage atgatgetge tagacatttg ctgaatgcat agatgatttt tecagggeet
qtaatttaca qqqaqaqcaa tqqqqqcca qaqacaaqat qattcagctc ctccactctg
ttcaggatca tatcctaagg accaacatgt ctgtctacct ttacactgag cccccaccca
qccaaccacc tcccatqaqa gacaggctct ccctgcctga gcttggaccc aggccccttc
totgotgago toagaacaca tgottgactg tgatgtaaca gggtggcago coccacagoa
ttgcatctgc cccatactca gtgtggggag ataggacgc
339
<210> 626
<211> 105
<212> PRT
<213> Homo sapiens
<400> 626
Met Gly Gln Met Gln Cys Cys Gly Gly Cys His Pro Val Thr Ser Gln
                                    10
Ser Ser Met Cys Ser Glu Leu Ser Arg Glu Gly Ala Trp Val Gln Ala
            20
                                25
Gln Ala Gly Arg Ala Cys Leu Ser Trp Glu Val Val Gly Trp Val Gly
                            40
Ala Gln Cys Lys Gly Arg Gln Thr Cys Trp Ser Leu Gly Tyr Asp Pro
Glu Gln Ser Gly Gly Ala Glu Ser Ser Cys Leu Trp Ala Ser Ile Ala
                    70
                                        75
Leu Pro Val Asn Tyr Arg Pro Trp Lys Asn His Leu Cys Ile Gln Gln
                85
                                    90
Met Ser Ser Ser Ile Met Leu Gly Thr
                                105
            100
<210> 627
<211> 10319
<212> DNA
<213> Homo sapiens
<400> 627
nttcctccgc gaaggctcct ttgatattaa tagtgttggt gtcttgaaac tgacgtaatg
60
```

cgcggagact 120	gaggtcctga	caagcgataa	catttctgat	aaagacccga	tettaetgea
atctctagcg 180	tectetttt	tggtgctgct	ggtttctcca	gacctcgcgt	cctctcgatt
getetetege 240	cttcctattt	ctttttttt	tttttaaaca	aaaaacaaca	cccctcccc
	ggcaccgggc	acatccttgc	tctatttcct	ttctctttct	ctctctct
	cttttttaat	aagggtgggg	gagggaaagg	ggggggatgc	aggaaagacc
	ccccccgcaa	taatccaaga	tcaactctgc	aaacaacaga	agacggttca
	cgccgcgcca	ccatctttcg	ggctgccgag	ggtgttcttg	acgattaatc
	cagatcagct	ctcaaaatgt	cttctgtgtc	ttctgagcgt	cttctaagac
	gcctcctgct	agttgactaa	tagaattaat	aattgtaaaa	agcactctaa
	cttatgaagt	caatgctggg	tatgatttta	caaatatggt	ccggaaaaag
	tgagaaacgt	tgcaagtgaa	ggcgagggcc	agateetgga	gcctataggt
	aggtatctgg	aaagaacaaa	gaattttctg	cagatcagat	gtcagaaaat
	gtgatgctgc	agaactaaat	cataaggagg	aacatagctt	gcatgttcaa
	ctagcagtaa	gaaggacttg	aaaagcgcag	ttctgagtga	gaaggctggc
	aaagccccag	taagggagga	aactttccct	cctttccgca	tgatgaggtg
	atatgttggc	tttctcatct	ccagctgctg	ggggagtctg	tgagcccttg
	aaagagcaga	ggcagatgac	cctcaagata	tggcctgcac	cccctcaggg
	agacaaagga	agatcagaag	atgtcaccaa	aggctacaga	ggaaacaggg
	gtggtcaagc	caattgtcaa	ggtttgagcc	cagtttcagt	ggcctcaaaa
	tgeetteaga	tgggggtgta	agactgaata	aatccaaaac	tgacttactg
	acccagaccc	ggcacctctg	tctccagagc	ttcaggactt	taaatgcaat
	atggttacta	cggcaacgac	cccacagatc	tgattaagca	cttccgaaag
	gactgcataa	ccgcaccagg	caagatgctg	agctggacag	caaaatcttg
	acatggtgca	gttcagccat	tccaaagact	tccagaaggt	caaccgttct
	gtgtgctgca	ggacatcaat	tcttcaaggc	ctgttttact	aaatgggacc
* *	aggtgacttc	aggtggaaca	ttcattggca	ttggacggaa	aacaccagat
	acaccaagta	tttccgctgt	aaattctgca	atttcactta	tatgggcaac
_000			•		

tcatccaccg 1740	aattagaaca	acattttctt	cagactcacc	caaacaaaat	aaaagcttct
ctcccctcct	ctgaggttgc	aaaaccttca	gagaaaaact	ctaacaagtc	catecetgea
cttcaatcca 1860	gtgattctgg	agacttggga	aaatggcagg	acaagataac	agtcaaagca
ggagatgaca 1920	ctcctgttgg	gtactcagtg	cccataaagc	ccctcgattc	ctctagacaa
aatggtacag 1980	aggccaccag	ttactactgg	tgtaaatttt	gtagtttcag	ctgtgagtca
tctagctcac 2040	ttaaactgct	agaacattat	ggcaagcagc	acggagcagt	gcagtcaggc
ggccttaatc 2100	cagagttaaa	tgataagctt	tccaggggct	ctgtcattaa	tcagaatgat
ctagccaaaa 2160	gttcagaagg	agagacaatg	accaagacag	acaagagctc	gagtggggct
aaaaagaagg 2220	acttctccag	caagggagcc	gaggataata	tggtaacgag	ctataattgt
cagttctgtg 2280	acttccgata	ttccaaaagc	catggccctg	atgtaattgt	agtggggcca
2340		gctccataac			
ttetgteeca 2400	gaggactttg	cagcccagaa	aagcaccttg	gagaaattac	ttatccgttt
gcttgtagaa 2460	aaagtaattg	ttcccactgt	gcactcttgc	ttctgcactt	gtctcctggg
2520		caaacatcag			
gtagatgtac 2580	tcctctttca	ctatgaaagt	gtgcatgagt	cccaagcatc	ggatgtcaaa
caagaagcaa 2640	atcacctgca	aggatcggat	gggcagcagt	ctgtcaagga	aagcaaagaa
cactcatgta 2700	ccaaatgtga	ttttattacc	caagtggaag	aagagatttc	ccgacactac
aggagagcac 2760	acagctgcta	caaatgccgt	cagtgcagtt	ttacagctgc	cgatactcag
tcactactgg 2820	agcacttcaa	cactgttcac	tgccaggaac	aggacatcac	tacagccaac
ggcgaagagg 2880	acggtcatgc	catatccacc	atcaaagagg	agcccaaaat	tgacttcagg
gtctacaatc 2940	tgctaactcc	agactctaaa	atgggagagc	cagtttctga	gagtgtggtg
aagagagaga 3000	agctggaaga	gaaggacggg	ctcaaagaga	aagtttggac	cgagagttcc
agtgatgacc 3060	ttcgcaatgt	gacttggaga	ggggcagaca	tcctgcgggg	gagtccgtca
tacacccaag 3120	caagcctggg	gctgctgacg	cctgtgtctg	gcacccaaga	gcagacaaag
actctaaggg 3180	atagtcccaa	tgtggaggcc	gcccatctgg	cgcgacctat	ttatggcttg
gctgtggaaa 3240	ccaagggatt	cctgcagggg	gcgccagctg	gcggagagaa	gtctggggcc
ctccccagc 3300	agtateetge	atcgggagaa	aacaagtcca 、	aggatgaatc	ccagtccctg

ttacggaggc 3360	gtagaggctc	cggtgttttt	tgtgccaatt	gcctgaccac	aaagacctct
ctctggcgaa 3420	agaatgcaaa	tggcggatat	gtatgcaacg	cgtatggcct	ctaccagaag
cttcactcga 3480	ctcccaggcc	tttaaacatc	attaaacaaa	acaacggtga	gcagattatt
aggaggagaa 3540	caagaaagcg	ccttaaccca	gaggcacttc	aggetgagea	gctcaacaaa
3600			aatggaagcc		
3660			attccactcc		
3720	-	_	gctcagcagc	-	-
3780			cacattcaga		
3840			tctgaaggga		
3900			aaacacccaa		
3960			ggacttccct		
4020			aaatataagc aatccttgcc		
4080			gttggatcag		
4140	_	_	actgcaaacg		
4200			cccttgaatg		
4260			aaatgtgtgc		
4320			tgccatggtg		
4380			tatgacttca		
4440			aatggaaaac		
4500	_		cttgatggga		
4560			agagcetgee		
4620			ggttaccaag		
4680			aatcactttt		
4740			atccataaga		
4800	_				
4860			gtctagaatt gaccatttgt		
4920	caycactyya	cryyctatig	yaccarrige .	Locadaocc	acadactyce

gcctaaattt 4980	ataatgatca	tgaaacccta	ggcagaggag	gagaaattga	aggtccaggg
caatgaaaga 5040	aaaatggcgc	cctctcaatt	tagtcttctc	tcattggcca	tgtttcagat
tttgacctag 5100	aaatgcgagc	tgtggttagg	cttggttaga	gtgcagcaag	caacatgaca
gatggtggca 5160	cgctgttttt	acccagccct	gcctgtacat	acacatgcac	accctctctg
atatttttgt 5220	cctttagatg	ttcaaatact	cagtagtcct	tttgtttgcg	gtttagattc
	cacatgtacc	cattttaaaa	aacaatgtcc	tegatgette	tgtagtgatt
tcattttagc 5340	caggtatttc	tttcttgtgt	gtgatgaacc	agtatggatt	tgcttttcta
agcctcctgt 5400	tggttactaa	tctcacttgg	cacattataa	ctaaaggaat	cccctcaatt
caaaagcata 5460	gatggataca	aatgtcagac	cgtgggttta	atttgtttag	aacacatggc
atttcttcac 5520	aaggtaacct	gctgtattta	tttattttct	tttggttaaa	tataatttcc
aaactttgtg 5 58 0	gtcaggcagc	gtctaaggtt	acgttaccac	agactgacag	ttggtatatg
	tcccttcatt	aaatgtatac	agatttagtt	aagtagcatt	aaataggatt
cttagaagta 57 0 0	tgtcctcata	gaacttttäa	tacttaaggc	tttgtaaaaa	ctatccatga
agggaaagct 5760	cctcagcata	actgctcagg	gaaatagggc	taaataactg	aacattaaat
aattggttaa 5820	aggtgctgtt	agtcgagcct	caatgcttgc	tacaaggatg	tatgtacaag
gactgacttt 5880	aataatttgc	attatattgt	cccaaccagt	agtttatttt	ttgccacgga
gatgtagaag 5940	atattacaag	ctactggatg	cactgtcaga	ttaacttatt	tcattaaaga
agttgggaga 6000	acaaatagga	aaaaaaaac	ttatttttct	agtaaatatt	aatgtattac
atttcaaata 6060	atggtgcctg	acatattgaa	taattattt	ctacagtgta	cgtatgcaac
aaagatattc 6120	catcatgcat	tagagtcagt	tctggctctg	cctagctgtt	tacatttgca
aatgtagcaa 6180	acaaggtaat	gaagcaacta	tttctattgc	agtagatatc	cttttgtgtg
tgtgtgtgtg 6240	cattaaagtt	gtaaacggta	acatgaaaca	aatgaaagtt	cttgctataa
tggtatggaa 6300	aacaagaagg	aaatgaaaat	atttttatgc	ctacttagga	aaaaaagggt
agcacttatt 6360	cattccaagt	acttttttt	ttttaatttt	taagctctta	actcacattg
ttatgcttaa 6420	gatgataaac	atatateete	tttttattgc	tttgtctatg	tttcatatga
aacatttcag 6480	aaattatttt	gataagtgtt	gctggaatct	gcaacgctga	ttttttttg
cattctgtag 6540	tcgcatttgc	actccatttt	tacattaatt `	cgcagttgct	ttgtatcatt

gttttgtttg 6600	ggttttgttt	ctttttcaca	gtgccgggtc	ttcgtttctt	aaagttggat
ggcaggtaga 6660	gttcaaccag	ttcgtgactg	ttgtagcgaa	tgaagttaaa	aaaatgtctt
tctgatgttg 6720	tgttgtcatt	ttcatttttg	catttttttg	tttgcatatt	aaaaaaagag
aaaagagaaa 6780	gcaagagaca	gaaatcagga	ctaagtcctc	tgcttcagtt	tcattgttaa
cgggccttat 6840	tctgatctca	cctgtcgcgt	agctctaata	ttcacataaa	ctgaaataaa
gaagtggaat 6900	gaggagcttt	gacattcaaa	ttatgtgatg	taatttatct	tccttaggaa
ttttgatgga 6960	tgcatctcaa	aatgtatagc	cagacttgag	aggtgacaat	taaagatcta
aaaaagagag 7020	gagattcccc	caaacaacaa	tatttaattt	tcttagtaaa	aagaataaca
gaatgcatcg 7080	tggcaatcct	taagcaacat	tatctatgtg	gactgcttaa	atcagcaaaa
caccagaagt 7140	ttggttaact	tgggcaatat	gacaagtatt	actttttggg	caaaactact
cattaagcaa 7200	tttctctagt	gtgtcggaca	caaataggtt	ctttatttt	ggcatgtatg
cctttttatt 7260	ttcattcaat	tttttttt	tctcagacag	acatagtagt	atcaactagc
attggaaaat 7320	acatatcact	attcttggaa	tatttatggt	cagtctactt	tttagtaaaa
tatttttgga 7380	tagcgttgac	acgatagatc	ttattccata	cttctttatt	attgataatt
ttattttcat 7440	tttttgcttt	cattattata	catattttgg	tggagaagag	gttgggcttt
tttgaaagag 7500	acaaaaattt	attataacac	taaacactcc	ttttttgaca	tattaaagcc
tttattccat 7560	ctctcaagat	atattataaa	atttatttt	ttaatttaag	atttctgaat
tattttatct 7620	taaattgtga	ttttaaacga	gctattatgg	tacggaactt	tttttaatga
ggaatttcat 7680	gatgatttag	gaattttctc	tcttggaaaa	ggcttcccct	gtgatgaaaa
tgatgtgcca 7740	gctaaaattg	tgtgccattt	aaaaactgaa	aatattttaa	aattatttgt
ctatattcta 7800	aattgagctt	tggatcaaac	tttaggccag	gaccagetea	tgcgttctca
ttcttccttt 7860	tctcactctt	tctctcatca	ctcacctctg	tattcattct	gttgtttggg
atagaaaaat 7920	cataaagagc	caacccatct	cagaacgttg	tggattgaga	gagacactac
atgactccaa 7980	gtatatgaga	aaaggacaga	gctctaattg	ataactctgt	agttcaaaag
gaaaagagta 8040	tgcccaattc	tctctacatg	acatattgag	attttttta	atcaactttt
8100	tgttctgttc				
aagcatgggg 8160	attettttet	aaggtaatat	taatgagaag	ggaaaaaagt	atctttaaca

gctctttgtt 8220	gaagcctgtg	gtagcacatt	atgtttataa	ttgcacatgt	gcacataatc
tattatgatc 8280	caatgcaaat	acagctccaa	aaatattaaa	tgtatatata	ttttaaaatg
cctgaggaaa 8340	tacatttttc	ttaataaact	gaagagtctc	agtatggcta	ttaaaataat
tattagcctc 8400	ctgttgtgtg	gctgcaaaac	atcacaaagt	gaccggtctt	gagacctgtg
aactgctgcc 8460	ctgtttagta	aataaaatta	atgcatttct	agagggggaa	tatctgccat
ccagtggtgg 8520	aaatgtggag	taaagaagct	ggtggtctgc	ttctgtgctg	tatgccagcc
ttttgcctta 8580	agttgagagg	aggtcaactt	tagctactgt	ctttggtttg	agagccatgg
caaaaaaaaa 8640	aaaaaaaaa	aagatcaagt	cgtctttggt	gagccagtaa	ggtgaaagct
tgctgactgt 8700	ccaaggcaca	agagaaaatt	gaggaattga	aatgcaacct	gagtatcaaa
ctaaatattc 8760	taatcaaagg	taggtactgt	taggtggaat	tctatcagca	ggcaactgca
aatgagaaga 8820	agatagaagg	acgcccgtcg	ggactttgga	gggcattgtt	attttcccaa
agaaagacgg 8880	ccaagggcag	aggcatggat	tctttgcaga	gcacttcctt	ttggtttttc
agtactgttt 8940	catagacagt	gggctcacat	gttcctgata	gtgctgcagt	tgcttagaaa
gcatcccagt 9000	taattgcagt	aattagaact	tctggaatat	gctagggcag	aagtatgtca
agtatgtcac 9060	atgaagaaaa	tgtgaaattc	aagagtaatc	cacacgtgag	aaactagaca
atgtacattc 9120	atgtgttctc	ttgaaaggaa	agggagagct	gtaagcttca	ctctgtccta
caccggagaa 9180	aagcaggaat	aactttaccg	tggaaataat	gtttagcttt	tatcagagaa
aattgtcctt 9240	ctagagcata	gagtcccaaa	actcaattct	ggttttcccc	tgttttttt
tttttttt 9300	ttcccaacat	atgaactgca	gcatatcact	ttttctttt	gtgcctcagg
ttcctcagct 9360	gtaaaattga	aaaatatatg	tattaataat	attattaata	ataataatgg
taatgtagta 9420	cttgtttgta	aagcactttg	agatccttgg	ttgaaaggca	ccataggagt
gccaagtatt 9480	attatgtggc	caagggggtt	atttaaactg	tcagttccca	aaggccagga
aaggttgggg 9540	tcatttttct	taaagacgag	ctgtaaatat	caactaggca	gccaatagtg
ttgactatga 9600	agatgcaaaa	ctattactag	gctgataaaa	tcatagtttc	ttaatggcta
ccaataaggc 9660	aaatatcaca	ataataaacg	ccaaattcct	tagggcggac	tatttgacaa
ccacatggaa 9720	aactttgggg	gaggcatgag	gggggaacat	ctcaaaatgc	caatgtaaaa
tttaacttac 9780	agcaatattc	accagcagaa	aatgtctttc `	atatggaatg	atttcatgtt

```
gctaagaaaa agaattcaat ttgtagtcct gatttgaata ctagaatgtt ggctataata
9840
gttctgttct tacaacacat gaaatttttt cgttttattt tattttgttt tcatagtgca
tgttcatttc tactcacaaa catgttcttg gtgtatttct tatgcaaaca atcttcaggc
agcaaagatg totgttacat otaaacttga ataataaagt tttaccacca gttacacata
acqqcqttqq tatqqtttat atqqattcac tttcatcctt ctagcaatag gaaatacaga
tcattqtaat atatatatat atatatacag gctctgctga attgaaatgg tgaaatcaaa
tcaccattct aaaaaattat tacttatatt gataaagcct ggattctctc aacttgtttt
getttgettt ttttetttaa ccaatcaate tettaetgat agattttgtg taaaaagata
10260
tatactagtt tcttcagaaa gattaacaat aaaaattgtg tttatttcaa aaaaaaaaa
10319
<210> 628
<211> 1294
<212> PRT
<213> Homo sapiens
<400> 628
Met Pro Tyr Glu Val Asn Ala Gly Tyr Asp Phe Thr Asn Met Val Arg
Lys Lys Asn Pro Pro Leu Arg Asn Val Ala Ser Glu Gly Glu Gly Gln
                                25
Ile Leu Glu Pro Ile Gly Thr Glu Ser Lys Val Ser Gly Lys Asn Lys
                            40
                                                45
Glu Phe Ser Ala Asp Gln Met Ser Glu Asn Thr Asp Gln Ser Asp Ala
                        55
                                            60Glu Leu Asn His Lys Glu
Glu His Ser Leu His Val Gln Asp Pro
                                        75
Ser Ser Ser Lys Lys Asp Leu Lys Ser Ala Val Leu Ser Glu Lys
Ala Gly Phe Asn Tyr Glu Ser Pro Ser Lys Gly Gly Asn Phe Pro Ser
                                105
Phe Pro His Asp Glu Val Thr Asp Arg Asn Met Leu Ala Phe Ser Ser
                            120
                                                125
Pro Ala Ala Gly Gly Val Cys Glu Pro Leu Lys Ser Pro Gln Arg Ala
                        135
                                            140
Glu Ala Asp Asp Pro Gln Asp Met Ala Cys Thr Pro Ser Gly Asp Ser
                    150
                                        155
Leu Glu Thr Lys Glu Asp Gln Lys Met Ser Pro Lys Ala Thr Glu Glu
                                    170
                165
Thr Gly Gln Ala Gln Ser Gly Gln Ala Asn Cys Gln Gly Leu Ser Pro
                                185
Val Ser Val Ala Ser Lys Asn Pro Gln Val Pro Ser Asp Gly Gly Val
                                                205
                            200
Arg Leu Asn Lys Ser Lys Thr Asp Leu Leu Val Asn Asp Asn Pro Asp
    210
Pro Ala Pro Leu Ser Pro Glu Leu Gln Asp Phe Lys Cys Asn Ile Cys
```

225					220					225					240
225		~1	T1	Ф	230		7 ~~	D	mh	235		T 1.	T	ui.	240 Phe
GIY	ıyı	GLY	LYL	245		ASII	Asp	PIO	250	Asp	Leu	116	цуз	255	
Ara	Lvs	Tvr	His			Leu	His	Asn		Thr	Ara	Gln	Asp		Glu
5	-7-	- 1 -	260		7		*****	265				0111	270		
Leu	Asp	Ser	Lys		Leu	Ala	Leu		Asn	Met	Val	Gln		Ser	His
		275	_		_		280	-				285			
Ser	Lys	Asp	Phe	Gln	Lys	Val		Arq	Ser	Val	Phe		Gly	Val	Leu
	290	_			•	295		_			300		•		
Gln	Asp	Ile	Asn	Ser	Ser	Arg	Pro	Val	Leu	Leu	Asn	Gly	Thr	Tyr	Asp
305	_				310	_				315		-		-	320
Val	Gln	Val	Thr	Ser	Gly	Gly	Thr	Phe	Ile	Gly	Ile	Gly	Arg	Lys	Thr
				325					330					335	
Pro	Asp	Cys	Gln	Gly	Asn	\mathtt{Thr}	Lys	Tyr	Phe	Arg	Cys	Lys	Phe	Cys	Asn
			340					345					3 50		
Phe	Thr	Tyr	Met	Gly	Asn	Ser	Ser	Thr	Glu	Leu	Glu	Gln	His	Phe	Leu
		355					360					365			
Gln		His	Pro	Asn	Lys		Lys	Ala	Ser	Leu		Ser	Ser	Glu	Val
	370	_			_	375	_	_	_	_	380		_	_	
	Lys	Pro	Ser	Glu	_	Asn	Ser	Asn	Lys		Ile	Pro	Ala	Leu	
385	a			~1	390		~1.	_		395		_			400
ser	Ser	Asp	Ser		Asp	Leu	GIY	гàг		GIN	Asp	ьуs	шe		vai
T	7.7.~	a 1	7	405	The sec	Dwa	77-7	<i>α</i> 1	410	C	77-7	D	T1.	415	Dua
ьys	Ala	GIY	Asp 420	Asp	IIII	Pro	val	425	IYL	ser	vai	PIO	430	ьys	PIO
Len	Nen	Car	Ser	Dra.	Gln	λen	Glv		Glu	λla	Thr	Sor		Tur	Trn
Dea	no p	435	501	 9	O.I.I.	ASII	440	* ***	51 u	ALG	1111	445	-y-	171	115
Cvs	Lvs		Cys	Ser	Phe	Ser		Glu	Ser	Ser	Ser		Leu	Lvs	Leu
-1 -	450	_	- 4			455	- 4				460				
Leu	Glu	His	Tyr	Gly	Lys	Gln	His	Gly	Ala	Val	Gln	Ser	Gly	Gly	Leu
465			_	_	470			_		475			_	_	480
Asn	Pro	Glu	Leu	Asn	Asp	Lys	Leu	Ser	Arg	Gly	Ser	Val	Ile	Asn	Gln
				485					490					495	
Asn	Asp	Leu	Ala	Lys	Ser	Ser	Glu	Gly	Glu	Thr	Met	Thr	Lys	Thr	Asp
			500					505					510		
Lys	Ser	Ser	Ser	Gly	Ala	Lys	Lys	Lys	Asp	Phe	Ser	Ser	Lys	Gly	Ala
		515					520					5 25			
Glu		Asn	Met	Val	Thr		Tyr	Asn	Cys	Gln		Cys	Asp	Phe	Arg
_	530		_		~ 1	535	_			1	540	~ >	_	_	_
	Ser	ьуs	Ser	His		Pro	Asp	Vai	IIe		vaı	GIA	Pro	Leu	Leu
545	1710	T	C1 n	~1 ~	550	77.6	7.00	- 1-	77.5 m	555	Crea	Th.	71.	T	560
Arg	HIS	TYE	Gln	565	Leu	HIS	ASI	TTE	570	Lys	Cys	THE	тте		HIS
Cvc	Dro	Dhe	Cys		7 ~~	Glv	T.011	Cvc		Dro	GI u	Luc	Uic	575	Clu
cys	FIO	FIIC	580	FIO	Arg	Gry	Бец	585	OCT	FIO	GIU	БуБ	590	пец	GIY
Glu	Tle	Thr	Tyr	Pro	Dhe	Δla	Cvs		Lvc	Ser	Δen	Cvs		Hie	Cve
O L u		595	1 7 1	FIU	FIIC	AIG	600	AL 9	цуы	DCI	ABII	605	561	1113	Cys
Ala	Leu		Leu	Len	His	Leu		Pro	Glv	Ala	Ala		Ser	Ser	Ara
	610					615			1		620	1			5
Val		His	Gln	Cys	His		Cys	Ser	Phe	Thr		Pro	Asp	Val	asp
625	-		-	• -	630		•	_		635		•	Ŀ		640
	Leu	Leu	Phe	His		Glu	Ser	Val	His		Ser	Gln	Ala	Ser	
				645	-				650					655	•
Val	Lys	Gln	Glu	Ala	Asn	His	Leu	Gln	Gly	Ser	Asp	Gly	Gln	Gln	Ser

			660					665					670		
Val	Lys	Glu 675	Ser	Lys	Glu	His	Ser 680	Cys	Thr	Lys	Cys	Asp 685	Phe	Ile	Thr
Gln	Val 690	Glu	Glu	Glu	Ile	Ser 695	Arg	His	Tyr	Arg	Arg 700	Ala	His	Ser	Cys
705	_	_	_		710		Phe			715	_				720
Leu	Glu	His	Phe	Asn 725	Thr	Val	His	Cys	Gln 730	Glu	Gln	Asp	Ile	Thr 735	Thr
Ala	Asn	Gly	Glu 740	Glu	Asp	Gly	His	Ala 745	Ile	Ser	Thr	Ile	Lys 750	Glu	Glu
Pro	Lys	Ile 75 5	Asp	Phe	Arg	Val	Tyr 760	Asn	Leu	Leu	Thr	Pro 765	Asp	Ser	Lys
Met	Gly 7 7 0	Glu	Pro	Val	Ser	Glu 775	Ser	Val	Val	Lys	Arg 780	Glu	Lys	Leu	Glu
Glu 785	Lys	Asp	Gly	Leu	Lys 790	Glu	Lys	Val	Trp	Thr 795	Glu	Ser	Ser	Ser	Asp 800
Asp	Leu	Arg	Asn	Val 805	Thr	Trp	Arg	Gly	Ala 810	Asp	Ile	Leu	Arg	Gly 815	Ser
		_	820				Leu	825					830		
Thr	Gln	Glu 835	Gln	Thr	Lys	Thr	Leu 840	Arg	Asp	Ser	Pro	Asn 845	Val	Glu	Ala
Ala	His 850	Leu	Ala	Arg	Pro	Ile 855	Tyr	Gly	Leu	Ala	Val 860	Glu	Thr	Lys	Gly
Phe 865	Leu	Gln	Gly	Ala	Pro 870	Ala	Gly	Gly	Glu	Lys 875	Ser	Gly	Ala	Leu	Pro 880
Gln	Gln	Tyr	Pro	Ala 885	Ser	Gly	Glu	Asn	Lys 890	Ser	Lys	Asp	Glu	Ser 895	Gln
Ser	Leu	Leu	Arg 900	Arg	Arg	Arg	Gly	Ser 905	Gly	Val	Phe	Cys	Ala 910	Asn	Cys
		915	_				Trp 920		_			925			
	930					935	Tyr				940				
Pro 945	Leu	Asn	Ile	Ile	Lys 950	Gln	Asn	Asn	Gly	Glu 955	Gln	Ile	Ile	Arg	Arg 960
_		_	_	965			Pro		970					975	
Asn	Lys	Gln	Gln 980	Arg	Gly	Ser	Asn	Glu 985	Glu	Gln	Val	Asn	Gly 990	Ser	Pro
Leu	Glu	Arg 995	Arg	Ser	Glu	Asp	His 1000		Thr	Glu	Ser	His 1005		Arg	Glu
Ile	Pro 1010		Pro	Ser	Leu	Ser 1015	Lys	Tyr	Glu	Ala	Gln 1020		Ser	Leu	Thr
-		His	Ser	Ala			Pro	Val	Leu			Gln	Thr	Leu	_
1025		T	3		1030		T	***	T 7 ~	1035		T	Com	Dwa	1040
тте	nis	гуѕ	arg	Met 1045		Pro	Leu	HIS	11e 1050		TTE	ьys	ser	Pro 1055	
Glu	Ser	Thr	Gly			Gly	Asn	Ser			Val	Ser	Glu		
			1060)				1065	5				1070)	
Gly	Ser	Ser 1075		Arg	Gly	Ser	Pro 1080		Glu	Lys	Tyr	Met 1085		Pro	Ala
Lys	His			туг	Ser	Pro	Pro		Ser	Pro	Ile			Tyr	Gln

```
1100
   1090
                      1095
Tyr Pro Leu Phe Gly Leu Pro Phe Val His Asn Asp Phe Gln Ser Glu
                  1110
                                     1115
Ala Asp Trp Leu Arg Phe Trp Ser Lys Tyr Lys Leu Ser Val Pro Gly
                       1130
               1125
Asn Pro His Tyr Leu Ser His Val Pro Gly Leu Pro Asn Pro Cys Gln
                              1145
           1140
Asn Tyr Val Pro Tyr Pro Thr Phe Asn Leu Pro Pro His Phe Ser Ala
                         1160
                                            1165
Val Gly Ser Asp Asn Asp Ile Pro Leu Asp Leu Ala Ile Lys His Ser
                     1175
                                        1180
Arg Pro Gly Pro Thr Ala Asn Gly Ala Ser Lys Glu Lys Thr Lys Ala
                                     1195
                  1190
Pro Pro Asn Val Lys Asn Glu Gly Pro Leu Asn Val Val Lys Thr Glu
              1205
                        1210
Lys Val Asp Arg Ser Thr Gln Asp Glu Leu Ser Thr Lys Cys Val His
                  1225
                                                1230
           1220
Cys Gly Ile Val Phe Leu Asp Glu Val Met Tyr Ala Leu His Met Ser
              1240
                                            1245
       1235
Cys His Gly Asp Ser Gly Pro Phe Gln Cys Ser Ile Cys Gln His Leu
                                         1260
                      1255
Cys Thr Asp Lys Tyr Asp Phe Thr Thr His Ile Gln Arg Gly Leu His
                  1270
                                  1275
Arg Asn Asn Ala Gln Val Glu Lys Asn Gly Lys Pro Lys Glu
               1285
<210> 629
<211> 411
<212> DNA
<213> Homo sapiens
<400> 629
nacgcgttcg ctgaggaggg aaccggtgcc agcaccttcc agctttccga gatctggatt
qqcatcttca ttggcgctct taccttcacg gggtcgctgg tggcctgggg caagctctcg
qqcaaaqtcq cttcaaaqcc actgaccctg ccaggtcgta attggatcaa ccttggtctg
ctggtcgtta tcatcgcctg cgggatctgg ttctccaatg tttctggtgg tatcgcgtgg
ctgccgctgg cgctactgac cctggcctcg ctgttcctcg gcttccactt cgtcgccgct
ateggtggcg cggatatgcc agtcgtcatt tcgatgctga acagctactc cggttgggca
getgeettet eeggatttag titgeacate eeggtgetta tegteacegg t
<210> 630
<211> 137
<212> PRT
<213> Homo sapiens
<400> 630
Xaa Ala Phe Ala Glu Glu Gly Thr Gly Ala Ser Thr Phe Gln Leu Ser
```

```
10
                 5
Glu Ile Trp Ile Gly Ile Phe Ile Gly Ala Leu Thr Phe Thr Gly Ser
            20
Leu Val Ala Trp Gly Lys Leu Ser Gly Lys Val Ala Ser Lys Pro Leu
Thr Leu Pro Gly Arg Asn Trp Ile Asn Leu Gly Leu Leu Val Val Ile
                        55
Ile Ala Cys Gly Ile Trp Phe Ser Asn Val Ser Gly Gly Ile Ala Trp
                                        75
                   70
Leu Pro Leu Ala Leu Leu Thr Leu Ala Ser Leu Phe Leu Gly Phe His
                                    90
Phe Val Ala Ala Ile Gly Gly Ala Asp Met Pro Val Val Ile Ser Met
                               105
Leu Asn Ser Tyr Ser Gly Trp Ala Ala Ala Phe Ser Gly Phe Ser Leu
                           120
His Ile Pro Val Leu Ile Val Thr Gly
                        135
   130
<210> 631
<211> 275
<212> DNA
<213> Homo sapiens
<400> 631
geeggeeage geatggagga ggaggeeatg aacggegaee ggaetgagag egaetggeag
gggctggtga gcgagtacct ggtgtgtaag aggaagctgg agagtaagaa ggaagccctg
ctgatectet ccaaggaget ggacacetgt caacaggaaa gggaccagta caaactcatg
qccaatcaqc tccqqqaqcq ccaccagtca ctgaagaaga agtaccgaga gctgattgat
ggagatccat cacttcctcc tgaaaaaagg aaaca
275
<210> 632
<211> 87
<212> PRT
<213> Homo sapiens
<400> 632
Met Glu Glu Glu Ala Met Asn Gly Asp Arg Thr Glu Ser Asp Trp Gln
Gly Leu Val Ser Glu Tyr Leu Val Cys Lys Arg Lys Leu Glu Ser Lys
            20
                                25
Lys Glu Ala Leu Leu Ile Leu Ser Lys Glu Leu Asp Thr Cys Gln Gln
                            40
Glu Arg Asp Gln Tyr Lys Leu Met Ala Asn Gln Leu Arg Glu Arg His
                       55
Gln Ser Leu Lys Lys Lys Tyr Arg Glu Leu Ile Asp Gly Asp Pro Ser
Leu Pro Pro Glu Lys Arg Lys
                85
```

```
<210> 633
<211> 420
<212> DNA
<213> Homo sapiens
<400> 633
nnacgcgtgg aagatctgct cgggcgccac cagttgaact acagcatcga atggcgcctg
tegggecage cgtteetgae cgcaegegeg neaetggtgg atgeggtggt taaegeegte
120
quacactatt ctgagetgac gecacagttg ctgaccaccg ggggcacctc agacggtege
180
tttatcgccc agatgggcnc gcaagtggtt gagctggggc cggtcaacgc gacgatccat
aaggtcaacg aatgcgtaca cgcagccgac ttgcaactgc tcagccgcat gtaccagcgc
atcatggage aactggtege atgateaege cagaaatget gacegggege tegacagate
acctqqtqcc gctctqqtaa accaccqgtt gcagcccgcc gccgtaggcg cgttcctcgg
<210> 634
<211> 107
<212> PRT
<213> Homo sapiens
<400> 634
Xaa Arg Val Glu Asp Leu Leu Gly Arg His Gln Leu Asn Tyr Ser Ile
                                                        15
1
                                    10
Glu Trp Arg Leu Ser Gly Gln Pro Phe Leu Thr Ala Arg Ala Xaa Leu
            20
                                25
Val Asp Ala Val Val Asn Ala Val Glu His Tyr Ser Glu Leu Thr Pro
                            40
Gln Leu Leu Thr Thr Gly Gly Thr Ser Asp Gly Arg Phe Ile Ala Gln
                        55
Met Gly Xaa Gln Val Val Glu Leu Gly Pro Val Asn Ala Thr Ile His
                                        75
Lys Val Asn Glu Cys Val His Ala Ala Asp Leu Gln Leu Leu Ser Arg
                85
                                    90
Met Tyr Gln Arg Ile Met Glu Gln Leu Val Ala
            100
                                105
<210> 635
<211> 6918
<212> DNA
<213> Homo sapiens
<400> 635
nnccccaacc ggcagcccat cggcatcgtg ctcacggtgc tgggagtggt ggtcctggac
ttcagcgccg atgccaccga ggggcccatc cgtgcctatc tgctggacgt ggtggacagc
gaggagcagg acatggccct caacatccac gccttctctg ccggcctcgg cggagccatc
```

ggctacgtgc 240	tgggtgggct	ggactggacc	cagacettee	tgggcagctg	gttccggacc
cagaaccagg 300	tgctcttctt	ctttgccgcc	atcatcttca	cggtgtccgt	ggccctgcac
ctgttcagca 360	tcgacgagga	gcagtacagc	ccgcagcagg	agegeagege	tgaggagccc
ggcgccctgg 420	atgggggcga	gccgcacggc	gtccctgcct	tcccagacga	ggtacagtcg
gagcacgagc 480	tggccctgga	ctacccggac	gtggacatca	tgcgcagcaa	aagcgactcg
gcgttgcacg 540	tgccggacac	cgcgctggac	ctggagcccg	agctgctgtt	cctgcacgac
atcgagccct 600	ccatcttcca	cgacgcctcc	taccccgcca	cccccgcag	caccagccag
gagetegeca 660	agaccaagct	geceegeetg	gccaccttcc	tcaaggaagc	cgccaaggag
gacgagacct 720	tgctggataa	tcacttgaat	gaagctaaag	tcccaaacgg	aagtggctcc
cccacaaaag 780	acgccctcgg	cggctacacc	agggtggaca	cgaagccctc	ggccacgtcg
agctccatgc 840	ggcggcggcg	gcacgcgttc	cgcaggcagg	cctccagcac	cttctcctac
tacggcaagc 900	ttgggtccca	ctgctaccgc	taccggcgcg	ccaacgccgt	ggtgctgatc
aagccgtcgc 960	gcagcatgag	cgacctgtac	gacatgcaga	agcggcagcg	gcagcaccgg
caccggaacc 1020	agagcggggc	caccacctcc	agcggggaca	ccgagagtga	ggaggggag
ggcgagacca 1080	eggtgegeet	getgtggete	tccatgctga	agatgcccag	ggagctgatg
cggctgtgcc 1140	tctgccacct	cetcacetgg	ttctctgtca	tegeegagge	cgtgttctac
accgacttca 1200	tgggccaggt	catcttcgaa	ggcgacccca	aggccccctc	gaactcgacc
gcctggcaag 1260	cctacaacgc	cggggtcaag	atgggctgct	ggggcctggt	catttatgcc
gccactggtg 1320	ctatttgttc	agccctgtta	cagaagtact	tggacaacta	cgacctgagc
gtcagggtga 1380	tctacgtgct	ggggacgctg	ggettetetg	tcggcacagc	cgtgatggcc
atgtttccca 1440	acgtctacgt	cgccatggtc	accatcagca	ccatgggcat	cgtctccatg
agcatctcct 1500	actgcccgta	cgccctgctg	ggccagtacc	atgacatcaa	gcagtacatc
caccacagec	ccgggaactc	caagcgaggg	tttggcatag	attgtgccat	cctgtcctgc
caagtgtaca 1620	tctcgcagat	cctggtggcc	tetgeeettg	ggggcgtggt	cgacgccgtg
	gcgtcatccc	catggtggcc	tetgtggget	ctttcctggg	cttcctgacg
	tggtgatcta	tcccgacgtg	tcagaggagg	ccaaggagga	gcagaaaggc
	cgttggccgg	cgaaggcagg	gccggcggga	acagcgaaaa	gcccaccgtg

ctgaagctca 1860	cgcggaagga	gggcctgcag	ggaccggtgg	agacagagtc	cgtggtctga
gccgcactcc 1920	cgtttacaca	cattccagcg	ggcgggtggg	cgggcgggcg	ggcggcgggg
ccaggccatg 1980	ggcgggagca	gagacaccgc	ggaaccctgc	agatgctgtg	gccgacccgg
cagtgcgggc 2040	cagagecect	ccgccccat	agccacaatt	cagtagtcgt	agggtaggtt
tgagctacta 2100	agcaaatacc	acactaacca	ctttttcgat	aattaaaaga	atcatttgaa
atatttttt 2160	taattgaaaa	agatatttta	atttcagctc	ttttattctg	caggtgtatt
attctgcatg 2220	tttttaaatg	atataaaaca	tttatataga	caataagcaa	cttagaaaaa
ataagatttt 2280	gcatttctaa	aattataatt	gaaaacaaaa	tctgacattc	tctgctaagt
cttatctgaa 2340	tgcttcagat	aatggtagtg	tagtcagtga	ctaaaatatt	tttatcaaat
ttcctctctg 2400	tagacgcctg	caggtattga	cgtctgtcag	atctcgtcac	attggctggt
gccgcagctg 2460	ttggagagta	tttttcttta	tgattatttt	agaaaaaaaa	ttttctttc
cacaatgtgg 2520	ttctcttaga	agaatgacgt	atcttcttt	cctcagcgag	ttggacacat
tgtgcccagg 2580	gcagccctgt	ccttgggcag	cgaccgcaca	ccaaagctgg	gaggaggctg
gtccgggggg 2640	cctgggcaga	agacagtgat	ttgcaggggt	ggctcccaga	caccctgccc
agggatgggc 2700	tgggcaccac	ctgggggcgg	agcgtgagct	ccagacgagc	tcctgcgtgc
gcgtgtgagt 2760	gtgtctgcgc	ccagccatgt	gaccetgete	gtcccgtctg	aaggactctc
ctaggaggcc 2820	aggttgcccc	tccagacccc	tcccaacgtc	agggggaagg	aaacgttgac
2880	ctttgattcg				
ccagcgggcc 2940	ctgcctccca	agtcccgccg	caaggctacc	tcgggtgtgt	ggatgtgcga
gggcctcccc 3000	cgcttgcgaa	ggggacatgc	gtgctggaac	ctgtcggaac	tccatgcctt
3060	tcacctgctc				
3120	aaggcccgtg				
taagcaaaac 3180	tcgggcaagt	actgcagcta	tttggaaatg	ttttccaaac	cacagtetet
ttagaactaa 3240	gcctatttga	aacggtcggt	gtaggcttac	tgagatcagg	agacagggag
gccccgcaca 3300	tcacacagat	aaagtcagac	aattgtaatt	aatacttttg	ctgcctcaag
3360	aataaagtac				
agagcaaata 3420	tatatataca	cgtatatata	tttcaagatg	aaactaaagc	agtttttaaa

taaattactt 3480	gaattttctg	tgtatttaaa	ggaacgactg	tttaatgtac	ttgatgggcc
totggtottg	ccgtgtctcc	tgccgctggt	ggcactttgt	agattgtgtg	tttgtgtccg
	gggtacctgc	tcacgcacgg	tgtgtctgcc	aggccacggt	gtcccaggat
	tgacttcaag	acttcaagaa	cattttctgg	atgtgtggaa	acttgagaat
	atctcgtgct	tggacagggc	aagteegaet	actgaaagtg	ctgccagctt
	cctccggcca	gcgggagccc	cgtgggctgg	gcactgtggc	ccttcttctc
	cacccctggc	tteeteacet	cggccgggcg	tccgtggcag	ctcactctat
	cctctagcgg	ctttaagact	gtagatcccc	tctctgagac	ctggctgtac
	ctcgaggcgc	agctcccgtc	ttagctggtt	tctccggctt	ctcgtcctga
	acagttggag	gcaagaaagc	ageggatgtg	gggtggcagt	ggcctgaccc
gaatcaagat 4080	ccgacccaaa	ccacaccaaa	tgtgggttca	tctgggggcc	accccttgcc
tgaggettee 4140	caccctcatc	tgaaggccca	ggggccggat	ccagggctca	ccaaagccga
ttcctcgcca 4200	gctgggagtg	cagaagtctc	agggcctggc	tgcgacttga	tttttaggag
gaagaggggc 4260	ttcgcaaccc	ccctctgaat	agtgtgttaa	cccttgagat	cccagcctcg
actaatctga 4320	agtaaggaca	acaaaggcca	ttcagtgccc	tccacatggc	cttgccacag
tcactgtcag 4380	ggtatgaatg	tgccggaagc	cagtgccagc	cagggacagg	cgtgactgtt
gtgtgctcct 4440	cggtgacagg	agteggtgge	tgcacacttt	gtagactcgt	caagctgtca
gcacttcagg 4500	tgtttgcaag	caaagccctt	cttagtgtgc	aggtcagtgt	gcagagccca
	ccgcaggggc	tggggtccag	ggtcagtaga	gtcggtttct	ggagctgcct
tcctgggagg 4620	caggtgtggg	tgaccggggc	tctggcggtg	cgtgtgggcc	cggcctggcc
acagcgggga 4680	ccaggtcacg	acatctttgg	cctcaacccc	tcccctgcac	tgagattatt
tccagattgc 4740	actcacttga	aaccgtccgt	gtcgtcacct	tgtgtcttaa	gggaagccga
gaagaagggc 4800	agacgggcag	gctgtcttgt	ctgcaaagcg	ccattgcgcc	cgcagcttgt
gtgggtcagg 4860	ctgcagctcg	ggtgtctgtg	gcttctaacc	ttgtacctca	gacggatgca
	ggggctgggg	acgccggtca	gtgtcaaagg	ggaggtgctc	tggctgatag
	gagggacgag	gaggccgtgc	gggtgccccc	tggggaagct	ggccagccat
	ggacgcagct	ggagttgggc	tcgtggcacc	cttggggtgt	gggctgtgca

ggctggtggc 5100	ctgggtgcct	ctgcacactg	agtggagtgt	caggcagggt	gtgtcggttg
gtcgagtctt 5160	gtgtaatgtg	cgcagaccag	ttaccaaact	aggataatgt	tggtctcatt
tgtggtggtt 5220	ttgttcccta	tacaagtcag	ctaagtaaag	actcttttaa	cgagcttccc
cttaacacat 5280	ggcagaagtt	tccaggtgca	ggaatgcgag	ctggcgggaa	ggggcagagg
ccgtgagctc 5340	tcagctgggc	cggcctgcct	gtgtcccctt	tcctgggtct	gtcggcagac
tggcatcatg 5400	acgttccctg	gtggctgaag	agctagcttt	ggagtgttgt	ttttctcact
ctcaggcagg 5460	ggccttagct	ggaatcctcc	aacctgccac	tgaacacgtc	agtgctgtgt
5520			ctcaggcccc		
5580			tgagccctcc		
aacagccatc 5640	aggagtgttt	cttgaatgcc	ccaggtgtgg	aggacttggt	ctgtgaccac
5700			ccctgcagca		
5760			ctggggcggt		
5820			ccttatatgg		
5880			tttgttaaaa		
5940			gacacctttt		
6000			cgtgtgaggg		
6060			gcgccgcttc		
6120			gagggacccc		
6180			tgtcagttca		
6240			aaagttcttg		
6300			ggccccttgg		
6360			atcccttgcc		
6420			tcccctggtg		
6480			ggcatctcgg		
6540			caacttatta		
6600			gtgttaaaca		
gagagaggtc 6660	gtaaggaagt	gtcgtgtcgc	tcatgactct	cttctattag	ttgggtaaca

qtggcctcat gtttqtqtct gtqtgtacac agagccctta ggttctgctc tgtttctttg ccaqqtqaat qtttqtqqca tqcqctqctq tccqcqcccc tctqtcctgc gcagggttca getgtgegge geeetgattt eetecatgea cacagaacet eettgtgtet gtttetetgt aaaaaaaaa aaaaaaag 6918 <210> 636 <211> 619 <212> PRT <213> Homo sapiens <400> 636 Xaa Pro Asn Arg Gln Pro Ile Gly Ile Val Leu Thr Val Leu Gly Val 10 Val Val Leu Asp Phe Ser Ala Asp Ala Thr Glu Gly Pro Ile Arg Ala 25 Tyr Leu Leu Asp Val Val Asp Ser Glu Glu Gln Asp Met Ala Leu Asn 40 Ile His Ala Phe Ser Ala Gly Leu Gly Gly Ala Ile Gly Tyr Val Leu 55 Gly Gly Leu Asp Trp Thr Gln Thr Phe Leu Gly Ser Trp Phe Arg Thr 70 75 Gln Asn Gln Val Leu Phe Phe Phe Ala Ala Ile Ile Phe Thr Val Ser 90 Val Ala Leu His Leu Phe Ser Ile Asp Glu Glu Gln Tyr Ser Pro Gln 100 105 Gln Glu Arg Ser Ala Glu Glu Pro Gly Ala Leu Asp Gly Gly Glu Pro 120 125 His Gly Val Pro Ala Phe Pro Asp Glu Val Gln Ser Glu His Glu Leu 135 140 Ala Leu Asp Tyr Pro Asp Val Asp Ile Met Arg Ser Lys Ser Asp Ser 150 155 Ala Leu His Val Pro Asp Thr Ala Leu Asp Leu Glu Pro Glu Leu Leu 165 170 Phe Leu His Asp Ile Glu Pro Ser Ile Phe His Asp Ala Ser Tyr Pro 190 180 185 Ala Thr Pro Arg Ser Thr Ser Gln Glu Leu Ala Lys Thr Lys Leu Pro 200 Arg Leu Ala Thr Phe Leu Lys Glu Ala Ala Lys Glu Asp Glu Thr Leu 215 220 Leu Asp Asn His Leu Asn Glu Ala Lys Val Pro Asn Gly Ser Gly Ser 235 Pro Thr Lys Asp Ala Leu Gly Gly Tyr Thr Arg Val Asp Thr Lys Pro 250 245 Ser Ala Thr Ser Ser Met Arg Arg Arg Arg His Ala Phe Arg Arg 265 Gln Ala Ser Ser Thr Phe Ser Tyr Tyr Gly Lys Leu Gly Ser His Cys 280 Tyr Arg Tyr Arg Arg Ala Asn Ala Val Val Leu Ile Lys Pro Ser Arg

```
290
                      295
                                         300
Ser Met Ser Asp Leu Tyr Asp Met Gln Lys Arg Gln Arg Gln His Arg
           310
                                    315
His Arg Asn Gln Ser Gly Ala Thr Thr Ser Ser Gly Asp Thr Glu Ser
              325
                              330
Glu Glu Gly Glu Gly Glu Thr Thr Val Arg Leu Leu Trp Leu Ser Met
                345
Leu Lys Met Pro Arg Glu Leu Met Arg Leu Cys Leu Cys His Leu Leu
       355
                         360
                                  365
Thr Trp Phe Ser Val Ile Ala Glu Ala Val Phe Tyr Thr Asp Phe Met
Gly Gln Val Ile Phe Glu Gly Asp Pro Lys Ala Pro Ser Asn Ser Thr
                  390
                                     395
Ala Trp Gln Ala Tyr Asn Ala Gly Val Lys Met Gly Cys Trp Gly Leu
               405
                                 410
Val Ile Tyr Ala Ala Thr Gly Ala Ile Cys Ser Ala Leu Leu Gln Lys
                             425
Tyr Leu Asp Asn Tyr Asp Leu Ser Val Arg Val Ile Tyr Val Leu Gly
                         440
Thr Leu Gly Phe Ser Val Gly Thr Ala Val Met Ala Met Phe Pro Asn
                      455
Val Tyr Val Ala Met Val Thr Ile Ser Thr Met Gly Ile Val Ser Met
                  470
                                     475
Ser Ile Ser Tyr Cys Pro Tyr Ala Leu Leu Gly Gln Tyr His Asp Ile
              485
                                 490
Lys Gln Tyr Ile His His Ser Pro Gly Asn Ser Lys Arg Gly Phe Gly
          500
                             505
Ile Asp Cys Ala Ile Leu Ser Cys Gln Val Tyr Ile Ser Gln Ile Leu
                         520
Val Ala Ser Ala Leu Gly Gly Val Val Asp Ala Val Gly Thr Val Arg
                      535
                                        540
Val Ile Pro Met Val Ala Ser Val Gly Ser Phe Leu Gly Phe Leu Thr
                  550
                                     555
Ala Thr Phe Leu Val Ile Tyr Pro Asp Val Ser Glu Glu Ala Lys Glu
                                570
Glu Gln Lys Gly Leu Ser Ser Pro Leu Ala Gly Glu Gly Arg Ala Gly
          580
                             585
Gly Asn Ser Glu Lys Pro Thr Val Leu Lys Leu Thr Arg Lys Glu Gly
                        600
Leu Gln Gly Pro Val Glu Thr Glu Ser Val Val
   610
                      615
<210> 637
<211> 370
<212> DNA
<213> Homo sapiens
ngaaaaacag gatgaatccc gtatcattct taagcccgaa aagtactgaa tgtcgtcttc
tetegategg tgatgatetg gaaaggaaaa atcategtga etaetaeate accegetaet
```

acgcaaagac cgtcagttgg caggaaagtt ggttcctggt cccttaatcc atggtgtttt

180

```
tgtaggccct tattattttt cqqaatqgtt cqqtttattq cgattccagt attcctcact
240
gtgccgaata tcattaatat cggaatccaa gccgcggtgg tggcgattat ggccttcggt
atgacetteg teategttae eteeggeatt gatttgtetg tgggtteggt egeagetett
tcaqccatqg
370
<210> 638
<211> 99
<212> PRT
<213> Homo sapiens
<400> 638
Met Ile Trp Lys Gly Lys Ile Ile Val Thr Thr Ser Pro Ala Thr
                                    10
Thr Gln Arg Pro Ser Val Gly Arg Lys Val Gly Ser Trp Ser Leu Asn
                                25
Pro Trp Cys Phe Cys Arg Pro Leu Leu Phe Phe Gly Met Val Arg Phe
                            40
Ile Ala Ile Pro Val Phe Leu Thr Val Pro Asn Ile Ile Asn Ile Gly
Ile Gln Ala Ala Val Val Ala Ile Met Ala Phe Gly Met Thr Phe Val
                                        75
Ile Val Thr Ser Gly Ile Asp Leu Ser Val Gly Ser Val Ala Ala Leu
                85
                                    90
Ser Ala Met
<210> 639
<211> 330
<212> DNA
<213> Homo sapiens
<400> 639
nacgogtoga tgggcaacta catottoagt cgggatgccc tggtcgaggc actottogca
gactcccagt cogetgagte gegtcatgae atgggtggeg acateatece gagattegte
gaggeegggg aegegeaggt ctaegaette tgtgaeaace aggtgeeegg aaccaeegaq
aaggateggg actaetggeg ggaegtggga actategatg cetaceaega egegeaeatg
gacctcgtgt cggtggaacc ggagttcaac ctctacaacc ccgactggcc gatctggagc
300
atccaggaac aggcaccggg agcgaaattt
330
<210> 640
<211> 110
<212> PRT
<213> Homo sapiens
```

<400> 640 Xaa Ala Ser Met Gly Asn Tyr Ile Phe Ser Arg Asp Ala Leu Val Glu Ala Leu Phe Ala Asp Ser Gln Ser Ala Glu Ser Arg His Asp Met Gly 25 Gly Asp Ile Ile Pro Arg Phe Val Glu Ala Gly Asp Ala Gln Val Tyr Asp Phe Cys Asp Asn Gln Val Pro Gly Thr Thr Glu Lys Asp Arg Asp 55 60 Tyr Trp Arg Asp Val Gly Thr Ile Asp Ala Tyr His Asp Ala His Met 70 75 Asp Leu Val Ser Val Glu Pro Glu Phe Asn Leu Tyr Asn Pro Asp Trp Pro Ile Trp Ser Ile Gln Glu Gln Ala Pro Gly Ala Lys Phe 100 105 <210> 641 <211> 491 <212> DNA <213> Homo sapiens <400> 641 cgcgtgaccg gcgcggagaa cgtgcgcaag atcctcatgg gcgagcacca cctcgtgagc accgagtggc ctcgcagcac ccgcatgttg ctgggcccca acacggtgtc caattccatt ggcgacatcc accgcaacaa gcgcaaggtc ttctccaaga tcttcagcca cgaggccctg gagagttacc tgcccaagat ccagctggtg atccaggaca cactgcgcgc ctggagcagc caccccgagg ccatcaacgt gtaccaggag gcgcagaagc tgaccttccg catggccatc egggtgetge tgggetteag catecetgag gaggaeettg ggeacetett tgaggtetae cagcagtttg tggacaatgt cttctccctg cctgtcgacc tgcccttcag tggctaccgg cggggcattc aggctcggca gatcctgcag aaggggctgg agaaggccat ccgggagaag ctgcagtgca c 491 <210> 642 <211> 163 <212> PRT <213> Homo sapiens <400> 642 Arg Val Thr Gly Ala Glu Asn Val Arg Lys Ile Leu Met Gly Glu His 10 His Leu Val Ser Thr Glu Trp Pro Arg Ser Thr Arg Met Leu Leu Gly Pro Asn Thr Val Ser Asn Ser Ile Gly Asp Ile His Arg Asn Lys Arg 40 Lys Val Phe Ser Lys Ile Phe Ser His Glu Ala Leu Glu Ser Tyr Leu

60

5**5**

```
Pro Lys Ile Gln Leu Val Ile Gln Asp Thr Leu Arg Ala Trp Ser Ser
                     70
                                         75
His Pro Glu Ala Ile Asn Val Tyr Gln Glu Ala Gln Lys Leu Thr Phe
                85
                                     90
Arg Met Ala Ile Arg Val Leu Leu Gly Phe Ser Ile Pro Glu Glu Asp
            100
                                105
Leu Gly His Leu Phe Glu Val Tyr Gln Gln Phe Val Asp Asn Val Phe
        115
                             120
                                                 125
Ser Leu Pro Val Asp Leu Pro Phe Ser Gly Tyr Arg Arg Gly Ile Gln
                        135
                                             140
Ala Arg Gln Ile Leu Gln Lys Gly Leu Glu Lys Ala Ile Arg Glu Lys
                    150
Leu Gln Cys
<210> 643
<211> 628
<212> DNA
<213> Homo sapiens
<400> 643
nagatetttg acatetacgt ggtcaccget gactacetge eectagggge tgagcaggat
gccatcacgc tgcgggaagg ccagtatgtg gaggtcctgg atgcagccca cccactgcgc
tggcttgtcc gcaccaagcc caccaagtcc agcccctcac ggcagggctg ggtgtcacca
gectacetgg acaggagget caagetgtea cetgagtggg gggeegetga ggeecetgag
ttccctgggg aggctgtgtc tgaagacgaa tacaaggcaa ggctgagctc tgtgatccag
gagetgetga gttetgagea ggeettegtg gaggagetge agtteetgea gagecaceae
360
etgeageace tggagegetg ecceaegtg eccatagetg tggeeggeea gaaggeagte
420
atetteegea atgtgeggga categgeege tteeacagea getteetgea ggagttgeag
480
cagtgcgaca cggacgacga cgtggccatg tgcttcatca agaaccaggc ggcctttgaq
cagtacctgg agttcctggt gggacgtgtg caggctgagt cggtggtcgt cagcacggcc
atccaggagt tctacaagaa atacgcgt
628
<210> 644
<211> 209
<212> PRT
<213> Homo sapiens
<400> 644
Xaa Ile Phe Asp Ile Tyr Val Val Thr Ala Asp Tyr Leu Pro Leu Gly
                                    10
Ala Glu Gln Asp Ala Ile Thr Leu Arg Glu Gly Gln Tyr Val Glu Val
```

```
20
                                 25
                                                     30
Leu Asp Ala Ala His Pro Leu Arg Trp Leu Val Arg Thr Lys Pro Thr
Lys Ser Ser Pro Ser Arg Gln Gly Trp Val Ser Pro Ala Tyr Leu Asp
                         55
Arg Arg Leu Lys Leu Ser Pro Glu Trp Gly Ala Ala Glu Ala Pro Glu
Phe Pro Gly Glu Ala Val Ser Glu Asp Glu Tyr Lys Ala Arg Leu Ser
                 85
                                     90
Ser Val Ile Gln Glu Leu Leu Ser Ser Glu Gln Ala Phe Val Glu Glu
            100
                                 105
Leu Gln Phe Leu Gln Ser His His Leu Gln His Leu Glu Arg Cys Pro
                            120
His Val Pro Ile Ala Val Ala Gly Gln Lys Ala Val Ile Phe Arg Asn
Val Arg Asp Ile Gly Arg Phe His Ser Ser Phe Leu Gln Glu Leu Gln
                    150
                                         155
Gln Cys Asp Thr Asp Asp Val Ala Met Cys Phe Ile Lys Asn Gln
                165
                                     170
Ala Ala Phe Glu Gln Tyr Leu Glu Phe Leu Val Gly Arg Val Gln Ala
                                 185
Glu Ser Val Val Val Ser Thr Ala Ile Gln Glu Phe Tyr Lys Lys Tyr
                            200
                                                 205
Ala
<210> 645
<211> 417
<212> DNA
<213> Homo sapiens
<400> 645
atccataggc attgccagag tattcacttc ctgttggagg cacacagggg agaggcctgt
gaggggaagg gcatcaatgc agggctgggg tgtgggaagg tctgcagggc tggcaatggg
120
caagetcagg aatggtgggg gagacagttg gagecacqqc aqqqacaatq qaqetcaqaa
ggtccctctg tcatcccttt tggaacccat tgatctggaa aatttggggc agtgtccttt
teegtaggta etggaggeac tggettgaca tactacagee etcecaggag geecagaagg
tagatgttat aactaccccc attttccaga tgaagaaact qaqcctctqq gatctqcqqa
ageteccaga getggageag ttagtecetg ggeeetacae teacageaca gtttece
417
<210> 646
<211> 95
<212> PRT
<213> Homo sapiens
<400> 646
Met Val Gly Glu Thr Val Gly Ala Thr Ala Gly Thr Met Glu Leu Arg
```

```
1
                 5
                                     10
Arg Ser Leu Cys His Pro Phe Trp Asn Pro Leu Ile Trp Lys Ile Trp
            20
                                25
Gly Ser Val Leu Phe Arg Arg Tyr Trp Arg His Trp Leu Asp Ile Leu
                            40
Gln Pro Ser Gln Glu Ala Gln Lys Val Asp Val Ile Thr Thr Pro Ile
                        55
Phe Gln Met Lys Lys Leu Ser Leu Trp Asp Leu Arg Lys Leu Pro Glu
                    70
                                        75
Leu Glu Gln Leu Val Pro Gly Pro Tyr Thr His Ser Thr Val Ser
<210> 647
<211> 421
<212> DNA
<213> Homo sapiens
<400> 647
acgegttteg gttettgage gettecacea atteageggt ggtgagegge ceetgtgeat
cgcgcagcag ggtgatcaga taggcgatat ccgcctcgtt cagttgcacg gtgtcgttat
120
cggtagccat gcgtggcgaa ctcctttggc atgggaaaat cgggtgaggc caacgggcac
agcaacagga cgtgtccctt gcggcacgtg gcaacacgtc agtatagcgc gtttccgccg
ggatttccgt tgaatgaagg caagaagtcg ggcacgcatc cacctgctac cgctcggtgg
tacgatagec geggegeeae caqqttqqet acattecaaa eqeaaeqeaq qaaceeqeat
gaacagcgtt tttcgcaaca aaccccttat gacgctggct ctcgggcatt tcagtgtcga
420
С
421
<210> 648
<211> 90
<212> PRT
<213> Homo sapiens
<400> 648
Met Gly Lys Ser Gly Glu Ala Asn Gly His Ser Asn Arq Thr Cys Pro
                                    10
Leu Arg His Val Ala Thr Arg Gln Tyr Ser Ala Phe Pro Pro Gly Phe
            20
                                25
Pro Leu Asn Glu Gly Lys Lys Ser Gly Thr His Pro Pro Ala Thr Ala
Arg Trp Tyr Asp Ser Arg Gly Ala Thr Arg Leu Ala Thr Phe Gln Thr
                        55
Gln Arg Arg Asn Pro His Glu Gln Arg Phe Ser Gln Gln Thr Pro Tyr
                                        75
Asp Ala Gly Ser Arg Ala Phe Gln Cys Arg
                85
```

```
<210> 649
<211> 563
<212> DNA
<213> Homo sapiens
<400> 649
equality atalacaet gigeteetee gagacteage tacticetti geceteteig
qacctcagtg tccaggcttg tgcatttagg ggctcaggtt tgggctctgt gcctatgagc
cagtctatgt gtgcactgtc tgtctgtctg tccgtctgcc agcaaccttc aaggccccag
gaggggaagg caccaatgga aggtggggc agggaaggag gtagcgttga caagttccaa
tgtctggctt tccctcctgg aaaccccgag ctggggctgg ccccccttc ccttcctgtc
tototogoto aagcacqtoo ottotaagag cocotototg cagacgcccc cagtggaacc
360
aagectagat tegetgeeaa gaaggeegac attttttaga ettgeeaegt taaaggggee
tgcacaggca cgcactcaaa tcccccctc catgtcctcc gcctgtgcac attcaggcaa
cccgaaacac acaaagacac ggttggacac agcggccacc tgtgcacaca ggaggtagca
catggagcgc atctgacccc ggg
563
<210> 650
<211> 106
<212> PRT
<213> Homo sapiens
<400> 650
Met His Lys His Met Cys Ser Ser Glu Thr Gln Leu Leu Pro Leu Pro
Ser Leu Asp Leu Ser Val Gln Ala Cys Ala Phe Arg Gly Ser Gly Leu
            20
                                25
Gly Ser Val Pro Met Ser Gln Ser Met Cys Ala Leu Ser Val Cys Leu
                            40
Ser Val Cys Gln Gln Pro Ser Arg Pro Gln Glu Gly Lys Ala Pro Met
                        55
Glu Gly Gly Gly Arg Glu Gly Gly Ser Val Asp Lys Phe Gln Cys Leu
                                        75
Ala Phe Pro Pro Gly Asn Pro Glu Leu Gly Leu Ala Pro Pro Ser Leu
                85
Pro Val Ser Leu Ala Gln Ala Arg Pro Phe
            100
                                105
<210> 651
<211> 351
<212> DNA
<213> Homo sapiens
<400> 651
```

```
gaattettea acaagetete etgetetagg atcaaggata gacetataca aggtecaaac
60
cataatggag tecatggggt caaagttate teetggaget cagcagttga tggatatggt
taggtgtcag cagcggaatt gtattcccat tggagagcag cttcagtcgg tgttgggcaa
180
ttctggatac aagcatatga ttggactaca atcctcatct accttaggaa ccttaaacaa
gtcgtcctcc acaccttttc cttttagaac tggattgaca tctgggaacg tgactgaaaa
cttacaagcg tacattgata aaagtacaca actgcctggt ggagagaatt c
<210> 652
<211> 95
<212> PRT
<213> Homo sapiens
<400> 652
Met Glu Ser Met Gly Ser Lys Leu Ser Pro Gly Ala Gln Gln Leu Met
                 5
                                    10
Asp Met Val Arg Cys Gln Gln Arg Asn Cys Ile Pro Ile Gly Glu Gln
                                25
                                                     30
Leu Gln Ser Val Leu Gly Asn Ser Gly Tyr Lys His Met Ile Gly Leu
Gln Ser Ser Thr Leu Gly Thr Leu Asn Lys Ser Ser Ser Thr Pro
                                            60
Phe Pro Phe Arg Thr Gly Leu Thr Ser Gly Asn Val Thr Glu Asn Leu
Gln Ala Tyr Ile Asp Lys Ser Thr Gln Leu Pro Gly Gly Glu Asn
                85
                                    90
<210> 653
<211> 399
<212> DNA
<213> Homo sapiens
<400> 653
nncccgggtg gggctggggt ggggccagca tcagaggagg acatgaccaa gctgtgcaac
caceggegga aagetgttge tatggeaact etgtacegea geatggagae cacetgetea
120
cactettete etggagaggg agegageee caaatgttee acactgtgte eccagggeee
coctetgece geoetecetg tegagitect cetacaacte cacttaatgg gggteetgge
tecetteece cagaaccace etcagtttee caggeettte ceaetctage aggeeetggg
gggcttttcc ccccaaggct tgctgaccca gtcccttctg ggggcagtag cagcccccgt
ttecteccaa qqqqcaatge ceceteteca qeeccaeet
399
<210> 654
```

```
<211> 133
<212> PRT
<213> Homo sapiens
<400> 654
Xaa Pro Gly Gly Ala Gly Val Gly Pro Ala Ser Glu Glu Asp Met Thr
                                     1.0
Lys Leu Cys Asn His Arg Arg Lys Ala Val Ala Met Ala Thr Leu Tyr
            20
                                25
Arg Ser Met Glu Thr Thr Cys Ser His Ser Ser Pro Gly Glu Gly Ala
                            40
                                                 45
Ser Pro Gln Met Phe His Thr Val Ser Pro Gly Pro Pro Ser Ala Arg
                        55
Pro Pro Cys Arg Val Pro Pro Thr Thr Pro Leu Asn Gly Gly Pro Gly
                    70
                                         75
Ser Leu Pro Pro Glu Pro Pro Ser Val Ser Gln Ala Phe Pro Thr Leu
                85
                                     90
Ala Gly Pro Gly Gly Leu Phe Pro Pro Arg Leu Ala Asp Pro Val Pro
                                105
Ser Gly Gly Ser Ser Pro Arg Phe Leu Pro Arg Gly Asn Ala Pro
        115
                            120
                                                125
Ser Pro Ala Pro Pro
    130
<210> 655
<211> 368
<212> DNA
<213> Homo sapiens
<400> 655
tgaaggaaat tototatggo ttgtgttcat catgtagaac agcccatgag gagaatagga
gatgaggtgg gaagtgcact gggatctggg ggaaqaaqcc cggggttcaa gactcagcta
120
ctgactgcat ggtgtcaaag gattcgggca tcctctctga ggctgagtct tcagatgaca
gtgagaacag ggacacctgc cctgcccttc tcacggggcg tgtggggcacc catgagcatg
cttgacaaat gcaaggtgcc atacaaacag gaactgcaca atctcaccgc ccggcctact
cagcattgtt attittacct ttacatctat atgaagatgt agttccattc cttttaactg
ttattttc
368
<210> 656
<211> 108
<212> PRT
<213> Homo sapiens
<400> 656
Met Ala Cys Val His His Val Glu Gln Pro Met Arg Arg Ile Gly Asp
                5
                                    10
Glu Val Gly Ser Ala Leu Gly Ser Gly Gly Arg Ser Pro Gly Phe Lys
```

```
20
                                25
                                                    30
Thr Gln Leu Leu Thr Ala Trp Cys Gln Arg Ile Arg Ala Ser Ser Leu
                            40
Arg Leu Ser Leu Gln Met Thr Val Arg Thr Gly Thr Pro Ala Leu Pro
                        55
Phe Ser Arg Gly Val Trp Ala Pro Met Ser Met Leu Asp Lys Cys Lys
                    70
                                        75
Val Pro Tyr Lys Gln Glu Leu His Asn Leu Thr Ala Arg Pro Thr Gln
                85
                                    90
His Cys Tyr Phe Tyr Leu Tyr Ile Tyr Met Lys Met
<210> 657
<211> 330
<212> DNA
<213> Homo sapiens
<400> 657
gtogaccacg gcatgaaaaa gccggggatg atcetcatca acaacccctg gggcgagtcc
aacgaggcgg gettcaageg egeectegaa gagegtggca tggecaaege eggtgtegag
cgtattcagg acagcgacct ggacgtggtg ccgcaattga ccccgcctga aaaacgccgg
tgccgacacc ttgctgatgg tcggcaacgt cggcccttcg gcacaggtgg tcaagtccct
ggaccgcatg ggttgggacg tgcctgtggt gtctcactgg gggccggccg gnggtcgctt
tggcgagctg gcggggccta acgcttctcg
330
<210> 658
<211> 102
<212> PRT
<213> Homo sapiens
<400> 658
Met Lys Lys Pro Gly Met Ile Leu Ile Asn Asn Pro Trp Gly Glu Ser
Asn Glu Ala Gly Phe Lys Arg Ala Leu Glu Glu Arg Gly Met Ala Asn
            20
                                25
Ala Gly Val Glu Arg Ile Gln Asp Ser Asp Leu Asp Val Val Pro Gln
                            40
Leu Thr Pro Pro Glu Lys Arg Arg Cys Arg His Leu Ala Asp Gly Arg
                        55
Gln Arg Arg Pro Phe Gly Thr Gly Gly Gln Val Pro Gly Pro His Gly
                    70
                                        75
Leu Gly Arg Ala Cys Gly Val Ser Leu Gly Ala Gly Arg Xaa Ser Leu
                                    90
Trp Arg Ala Gly Gly Ala
<210> 659
<211> 1505
```

<212> DNA <213> Homo sapiens <400> 659 qccaqqatca tgtccaccac cacatgccaa gtggtggcgt tcctcctgtc catcctgggg ctggccggct gcatcgcggc caccgggatg gacatgtgga gcacccagga cctgtacgac aaccccgtca cctccgtgtt ccagtacgaa gggctctgga ggagctgcgt gaggcagagt traggettra regaatgrag geoctattte accatertgg gaettreage catgetgrag gcagtgcgag ccctgatgat cgtaggcatc gtcctgggtg ccattggcct cctggtatcc atotttqccc tqaaatgcat ccgcattggc agcatggagg actctgccaa agccaacatg acactgacct cogggatcat gttcattgtc tcaggtcttt gtgcaattgc tggagtgtct gtgtttgcca acatgctggt gactaacttc tggatgtcca cagctaacat gtacaccggc atgggtggga tggtgcagac tgttcagacc aggtacacat ttggtgcggc tctgttcgtg ggctgggtcg ctggaggcct cacactaatt gggggtgtga tgatgtgcat cgcctgccgg ggcctggcac cagaagaaac caactacaaa gccgtttctt atcatgcctc aggccacagt gttgcctaca agcctggagg cttcaaggcc agcactggct ttgggtccaa caccaaaaac aagaagatat acgatggagg tgcccgcaca gaggacgagg tacaatctta tccttccaag cacgactatg tgtaatgctc taagacctct cagcacgggc ggaagaaact cccggagagc 840 tcacccaaaa aacaaggaga tcccatctag atttcttctt gcttttgact cacagctgga aqttaqaaaa gcctcgattt catctttgga gaggccaagt ggtcttagcc tcagtctctg tototaaata ttooaccata aaacagotga gttatttatg aattagaago tatagotcao attttcaatc ctctatttct ttttttaaat ataactttct actctgatga gagaatgtgg 1080 ttttaatete teteteacat tttgatgatt tagacagaet ceceetette etectagtea ataaacccat tgatgatcta tttcccagct tatccccaag aaaacttttg aaaggaaaga gtaqacccaa agatgttatt ttctgctgtt tgaattttgt ctccccaccc ccaacttggc tagtaataaa cacttactga agaagaagca ataagagaaa gatatttgta atctctccag agtttgagge aaccaaacct ttctactgct gttgacatct tcttattaca gcaacaccat totaggagtt tootgagete tecaetggag tootcooott etgtegtett etegeagegg 1500

```
taccc
1505
<210> 660
<211> 261
<212> PRT
<213> Homo sapiens
<400> 660
Met Ser Thr Thr Cys Gln Val Val Ala Phe Leu Leu Ser Ile Leu
                                  10
Gly Leu Ala Gly Cys Ile Ala Ala Thr Gly Met Asp Met Trp Ser Thr
                             25
Gln Asp Leu Tyr Asp Asn Pro Val Thr Ser Val Phe Gln Tyr Glu Gly
                       40
Leu Trp Arg Ser Cys Val Arg Gln Ser Ser Gly Phe Thr Glu Cys Arg
                      55
Pro Tyr Phe Thr Ile Leu Gly Leu Pro Ala Met Leu Gln Ala Val Arg
Ala Leu Met Ile Val Gly Ile Val Leu Gly Ala Ile Gly Leu Leu Val
                                 90
Ser Ile Phe Ala Leu Lys Cys Ile Arg Ile Gly Ser Met Glu Asp Ser
                             105
Ala Lys Ala Asn Met Thr Leu Thr Ser Gly Ile Met Phe Ile Val Ser
                         120
Gly Leu Cys Ala Ile Ala Gly Val Ser Val Phe Ala Asn Met Leu Val
                     135 140
Thr Asn Phe Trp Met Ser Thr Ala Asn Met Tyr Thr Gly Met Gly Gly
                 150
                                     155
Met Val Gln Thr Val Gln Thr Arg Tyr Thr Phe Gly Ala Ala Leu Phe
                                170
              165
Val Gly Trp Val Ala Gly Gly Leu Thr Leu Ile Gly Gly Val Met Met
                             185
Cys Ile Ala Cys Arg Gly Leu Ala Pro Glu Glu Thr Asn Tyr Lys Ala
                         200
Val Ser Tyr His Ala Ser Gly His Ser Val Ala Tyr Lys Pro Gly Gly
                      215
Phe Lys Ala Ser Thr Gly Phe Gly Ser Asn Thr Lys Asn Lys Lys Ile
               230
                                     235
Tyr Asp Gly Gly Ala Arg Thr Glu Asp Glu Val Gln Ser Tyr Pro Ser
                                250
Lys His Asp Tyr Val
           260
<210> 661
<211> 451
<212> DNA
<213> Homo sapiens
nnacqcqtqt aqtttqtqta tcggcqcgga actcgccgcg tctgatctcg aggagcttcc
cocatggacg agattttaac cttgcttgcc ggaggcggtg acgacgagcc agagtggcat
120
```

```
gacaaggcat tatgtgccca gactgatccg gaggcattct tccctgaaaa gggtggatcc
180
acceptgagg ccaagegeat etgtgagtee tgtgaggtee geeaggagtg ettggagtae
gcccttgcga atgacgagag gttcggaatc tggggcggat tgtccgagat ggagaggcgt
eggetgegea agegggegtg acetgaegte ggagegeggt tattgaeaeg geeeggtaaa
atgecetate taccequat agetatetae acquiagege atatacquata atequaaqacq
tggtgtgcat cccgtgctcc atgacgtcga c
451
<210> 662
<211> 85
<212> PRT
<213> Homo sapiens
<400> 662
Met Asp Glu Ile Leu Thr Leu Leu Ala Gly Gly Asp Asp Glu Pro
1
                                    10
                                                        15
Glu Trp His Asp Lys Ala Leu Cys Ala Gln Thr Asp Pro Glu Ala Phe
                                25
Phe Pro Glu Lys Gly Gly Ser Thr Arg Glu Ala Lys Arg Ile Cys Glu
                            40
Ser Cys Glu Val Arg Gln Glu Cys Leu Glu Tyr Ala Leu Ala Asn Asp
Glu Arg Phe Gly Ile Trp Gly Gly Leu Ser Glu Met Glu Arg Arg Arg
                    70
                                        75
Leu Arg Lys Arg Ala
                85
<210> 663
<211> 552
<212> DNA
<213> Homo sapiens
<400> 663
ctegagegte tegacgeega egeegeecag ggageeaagg aagacetete geagegegae
ccctacgacg tgctcqtcgt aggggcgggt cccgccggtg ccgcggccgc cgtgtacgcg
getegtaagg geattegeac egecatggte gggtetegga teggeggeea ggtaetegat
accgaggeca tegacaacet cateteggtg cegeacacea eeggteegeg tetggeegac
geceteegea gecaegteaa egaetacaae attgaegtta ttgagegtea gaeegeeage
gecatagaga ccaeeggegg tatgaecaee gtgeatetga eegaeggega eetgegggeg
egeteagtea tegtggeeae eggtgeeege tggegeaaee ttggegtaee tggegaggag
qaataccqca ccaaqqqtqt qacctactqc ccqcactqcq atggcccgct attcacaggc
480
```

```
aaaaaggtgg ccgtcgtcgg aggtggaaac tccggtattg aggccgctat cgacctcgcc
540
ggcgtcgtcg ac
552
<210> 664
<211> 184
<212> PRT
<213> Homo sapiens
<400> 664
Leu Glu Arg Leu Asp Ala Asp Ala Gln Gly Ala Lys Glu Asp Leu
                                    10
Ser Gln Arg Asp Pro Tyr Asp Val Leu Val Val Gly Ala Gly Pro Ala
                                25
Gly Ala Ala Ala Val Tyr Ala Ala Arg Lys Gly Ile Arg Thr Ala
                            40
                                                45
Met Val Gly Ser Arg Ile Gly Gly Gln Val Leu Asp Thr Glu Ala Ile
Asp Asn Leu Ile Ser Val Pro His Thr Thr Gly Pro Arg Leu Ala Asp
                    70
                                        75
Ala Leu Arg Ser His Val Asn Asp Tyr Asn Ile Asp Val Ile Glu Arg
                                    90
Gln Thr Ala Ser Ala Ile Glu Thr Thr Gly Gly Met Thr Thr Val His
                                105
Leu Thr Asp Gly Asp Leu Arg Ala Arg Ser Val Ile Val Ala Thr Gly
                            120
                                                125
Ala Arg Trp Arg Asn Leu Gly Val Pro Gly Glu Glu Glu Tyr Arg Thr
                        135
                                            140
Lys Gly Val Thr Tyr Cys Pro His Cys Asp Gly Pro Leu Phe Thr Gly
                    150
                                        155
Lys Lys Val Ala Val Val Gly Gly Asn Ser Gly Ile Glu Ala Ala
                165
                                    170
Ile Asp Leu Ala Gly Val Val Asp
            180
<210> 665
<211> 352
<212> DNA
<213> Homo sapiens
<400> 665
acgegtacag ttegeogteg aggttgaaca ceaegategg tgtaceggte acttegtega
acacgetett catttegece ggeageagtt eggegeegge geagacaaag gteeaggeet
egeteaegeg gtggeeeegg eeageggett tteeaggate tegaaaegea ggtegtegeg
cttggggatg ccgaatcgtt cgtcgccata cgggaacggc ttcttgatgc cggtgcgcaq
gtageegegg egetegtaga agegateaga tegegegeae gtegateaet gteatetgea
ttaccggcac gttccattcg cgcgcggcgt gggcttcggc ggcgtccatc aa
352
```

```
<210> 666
<211> 105
<212> PRT
<213> Homo sapiens
<400> 666
Met Glu Arg Ala Gly Asn Ala Asp Asp Ser Asp Arg Arg Ala Arg Asp
Leu Ile Ala Ser Thr Ser Ala Ala Ala Thr Cys Ala Pro Ala Ser Arg
            20
Ser Arg Ser Arg Met Ala Thr Asn Asp Ser Ala Ser Pro Ser Ala Thr
                                                 45
                            40
Thr Cys Val Ser Arg Ser Trp Lys Ser Arg Trp Pro Gly Pro Pro Arg
Glu Arg Gly Leu Asp Leu Cys Leu Arg Arg Arg Thr Ala Ala Gly
                                        75
                    70
Arg Asn Glu Glu Arg Val Arg Arg Ser Asp Arg Tyr Thr Asp Arg Gly
                                    90
Val Gln Pro Arg Arg Arg Thr Val Arg
            100
<210> 667
<211> 391
<212> DNA
<213> Homo sapiens
<400> 667
nacgcgtacg aatcggtgtt gcgtcgcaac ccaggggagg ccgagttcca ccaggctgtg
cgggagatet ttgaatetet eggeeeggtg etegacaaga ateegeagta egtggaggea
qccqtqttqt cqcqcatctq cqaaccqqaa cqccaqatca ttttccqqqt gccqtqqqtt
gacgacgagg gcaagatccg tatcaaccgt ggcttccgcg ttgaatattc gtcggtactg
gggccgtata agggtggatt gcgattccac ccctcggtgt acttaggaac gattaagttc
cttggttttg agcagatctt caaaaatgct ctgactggca tgccgatcgg tggcgcgaag
ggtgggtcgg actttgatcc ccatgacgcg t
391
<210> 668
<211> 130
<212> PRT
<213> Homo sapiens
<400> 668
Xaa Ala Tyr Glu Ser Val Leu Arg Arg Asn Pro Gly Glu Ala Glu Phe
His Gln Ala Val Arg Glu Ile Phe Glu Ser Leu Gly Pro Val Leu Asp
Lys Asn Pro Gln Tyr Val Glu Ala Ala Val Leu Ser Arg Ile Cys Glu
```

```
35
                             40
                                                 45
Pro Glu Arg Gln Ile Ile Phe Arg Val Pro Trp Val Asp Asp Glu Gly
Lys Ile Arg Ile Asn Arg Gly Phe Arg Val Glu Tyr Ser Ser Val Leu
                                        75
Gly Pro Tyr Lys Gly Gly Leu Arg Phe His Pro Ser Val Tyr Leu Gly
                                    90
Thr Ile Lys Phe Leu Gly Phe Glu Gln Ile Phe Lys Asn Ala Leu Thr
                                105
Gly Met Pro Ile Gly Gly Ala Lys Gly Gly Ser Asp Phe Asp Pro His
                            120
Asp Ala
    130
<210> 669
<211> 707
<212> DNA
<213> Homo sapiens
<400> 669
nnqaqtecqt tecceqteta aqeteateqt qqtqqtqetq qeatqqeeqt caacaaqqqa
attgagaaca cccttgctgc cttcggccac gcggtcgagg tgggatgcac ctaccttgaa
actgacgttc acgcgaccag cgacggggtg ctagtggcct tccacgatcc gatactcgat
cgcgtcactg aatcaggcgg agtcatcgcc gccatgccgt ggcacaaggt caaacaagcc
aaggttggtg gcgaaccgat ccccacctta gatgagattt tcgacgcctt tcccgacgcg
ttcatcaata tcgacatcaa gcatgatggc gccaccatgc cgctcatcga cgttctttcc
cgtcaccggg cttggagtcg ggtttgcgtc gggtcgttca gcagtaaacg catccagacc
ttccgtcgcc tggttcaggg acgcactgcg actgcagtgg ggtcggtggg agtcnnggct
gggctgtcat cagccctcat agcatgcaga tggcacagtc ccatgggaat gcgtaccagg
tgccgcaccg cttgacccgg tnatggggtg ccccttgtga caccgacctt cattaaagct
gcccatcgtc aggggcgagc tgttcatgtc tggacggtta atgagatctc tgaggctcga
gaactgatgg atatgggggt cgacggcatc gtcacagatc gtccgga
<210> 670
<211> 170
<212> PRT
<213> Homo sapiens
<400> 670
Met Ala Val Asn Lys Gly Ile Glu Asn Thr Leu Ala Ala Phe Gly His
1
                                    10
Ala Val Glu Val Gly Cys Thr Tyr Leu Glu Thr Asp Val His Ala Thr
```

```
20
                                                     3.0
                                 25
Ser Asp Gly Val Leu Val Ala Phe His Asp Pro Ile Leu Asp Arg Val
Thr Glu Ser Gly Gly Val Ile Ala Ala Met Pro Trp His Lys Val Lys
                         55
Gln Ala Lys Val Gly Gly Glu Pro Ile Pro Thr Leu Asp Glu Ile Phe
                    70
                                         75
Asp Ala Phe Pro Asp Ala Phe Ile Asn Ile Asp Ile Lys His Asp Gly
                85
                                     90
Ala Thr Met Pro Leu Ile Asp Val Leu Ser Arg His Arg Ala Trp Ser
            100
                                105
Arg Val Cys Val Gly Ser Phe Ser Ser Lys Arg Ile Gln Thr Phe Arg
        115
                            120
                                                 125
Arg Leu Val Gln Gly Arg Thr Ala Thr Ala Val Gly Ser Val Gly Val
                        135
                                             140
Xaa Ala Gly Leu Ser Ser Ala Leu Ile Ala Cys Arg Trp His Ser Pro
                    150
                                         155
                                                             160
Met Gly Met Arg Thr Arg Cys Arg Thr Ala
                165
<210> 671
<211> 444
<212> DNA
<213> Homo sapiens
<400> 671
acgegtgggc cttcgggttg atgggatcag aaggggacgg gacctgtaga aaggggcctg
cageteagag catggggegg cettggetea etacgeetge agetgtgaat tegtteteeg
gtgctggaga gggatctggt tatctccatt ctcttgtctc cacgtggaaa ggaaggacgt
gegeteteat cetaegtgtt ttgagaaate geattgteee cagetetgeg ggaggatetg
gggacgcagt ggggaaccag acaggcagtt ggaggtctag tgcgcgccag aagccagttc
ccacccaggg tgccatttgc tgggcgccct agggagctgc gtgggcatcc agaggagtga
gtegeeecet getetgetea gtgeeeactt ceeegggeag ggeaggegtt attaacgtag
agggagaaca cccatgcaca caac
444
<210> 672
<211> 103
<212> PRT
<213> Homo sapiens
<400> 672
Met Gly Ser Glu Gly Asp Gly Thr Cys Arg Lys Gly Pro Ala Ala Gln
                 5
                                    10
Ser Met Gly Arg Pro Trp Leu Thr Thr Pro Ala Ala Val Asn Ser Phe
            20
Ser Gly Ala Gly Glu Gly Ser Gly Tyr Leu His Ser Leu Val Ser Thr
```

```
40
Trp Lys Gly Arg Thr Cys Ala Leu Ile Leu Arg Val Leu Arg Asn Arg
Ile Val Pro Ser Ser Ala Gly Gly Ser Gly Asp Ala Val Gly Asn Gln
                                         75
Thr Gly Ser Trp Arg Ser Ser Ala Arg Gln Lys Pro Val Pro Thr Gln
                                    90
                85
Gly Ala Ile Cys Trp Ala Pro
            100
<210> 673
<211> 452
<212> DNA
<213> Homo sapiens
<400> 673
acgegteect geagaaatee teteggeeta ggteateege aagatgtgge agggeatgea
ccqtqaaaqc cttcaaqtct qccqcaqcaa qaccgcacgc ctgctgaaat tcgcagttgt
qeeqeqqtee etgatgegga caaactegge caecacgate ageetgaege ttgeggaeea
180
acqttcaaat actqtqcact tqaaacqtcc qqqccqcatc acctgggtga ctttgtgcga
240
cogacattac ttatqttcac gctctttcag ttcttgtcaa taccgtattt ttcgtcgacg
totocatoaq aaaaatgtog gtgttacogo acogoagacg atgogtacoo ttgogotgac
gatggaggcc ttgaaaagtg cattagccac tactgggcga atctacggca aaaagctgtt
actaggcggt gattggggag gcccgtagtg gc
452
<210> 674
<211> 134
<212> PRT
<213> Homo sapiens
<400> 674
Met Trp Gln Gly Met His Arg Glu Ser Leu Gln Val Cys Arg Ser Lys
1
Thr Ala Arg Leu Leu Lys Phe Ala Val Val Pro Arg Ser Leu Met Arg
                                25
Thr Asn Ser Ala Thr Thr Ile Ser Leu Thr Leu Ala Asp Gln Arg Ser
Asn Thr Val His Leu Lys Arg Pro Gly Arg Ile Thr Trp Val Thr Leu
                                            60
Cys Asp Arg His Tyr Leu Cys Ser Arg Ser Phe Ser Ser Cys Gln Tyr
Arg Ile Phe Arg Arg Leu His Gln Lys Asn Val Gly Val Thr Ala
                85
                                    90
Pro Gln Thr Met Arg Thr Leu Ala Leu Thr Met Glu Ala Leu Lys Ser
Ala Leu Ala Thr Thr Gly Arg Ile Tyr Gly Lys Lys Leu Leu Leu Gly
```

125 115 120 Gly Asp Trp Gly Gly Pro 130 <210> 675 <211> 8564 <212> DNA <213> Homo sapiens <400> 675 atgteggget ceacacaget tgtggeacag aegtggaggg ceactgagee eegetaceeg ceccacagee ttteetacce agtgeagate geoeggaege acaeggaegt egggeteetg gagtaccage accaeteceg egactatgee teccaeetgt egeegggete cateatecag ceccagegge ggaggeeete cetgetgtet gagtteeage cegggaatga aeggteeeag gagetecace tgeggecaga gteccaetea tacetgeeeg agetggggaa gteagagatg gagttcattg aaagcaagcg ccctcggcta gagctgctgc ctgaccccct gctgcgaccg 360 tcacccetge tggccacggg ccagcctgcg ggatctgaag acctcaccaa ggaccgtage ctgacgggca agctggaacc ggtgtctccc cccagccccc cgcacactga ccctgagctg 480 gagetggtge egecaegget gtecaaggag gagetgatee agaacatgga eegegtggae cgagagatca ccatggtaga gcagcagatc tctaagctga agaagaagca gcaacagctg gaggaggagg etgecaagee geeegageet gagaageeeg tgteaeegee geeeategag tegaageace geageetggt geagateate taegaegaga aceggaagaa ggetgaaget gcacatcgga ttctggaagg cctggggccc caggtggagc tgccgctgta caaccagccc tecgacacce ggeagtatea tgagaacate aaaataaace aggegatgeg gaagaageta atcttgtact tcaagaggag gaatcacgct cggaaacaat gggagcagaa gttctgccag cgctatgacc agctcatgga ggcctgggaa aaaaaggtgg agcgcatcga gaacaacccc cggcggcggg ccaaggagag caaggtgcgc gagtactacg aaaagcagtt ccctgagatc 1020 ctgtccatgt cggccgcccg cagcgagcac gaggtgtcag agatcatcga tggcctctca 1140 gagcaggaga acctggagaa gcagatgcgc cagctggccg tgatcccgcc catgctgtac gacgctgacc agcagcgcat caagttcatc aacatgaacg ggcttatggc cgaccccatg aaggtgtaca aagaccgcca ggtcatgaac atgtggagtg agcaggagaa ggagaccttc 1320

cgggagaagt 1380	tcatgcagca	tcccaagaac	tttggcctga	tegeateatt	cctggagagg
aagacagtgg 1440	ctgagtgcgt	cctctattac	tacctgacta	agaagaatga	gaactataag
agcctggtga 1500	gacggagcta	tcggcgccgc	ggcaagagcc	agcagcagca	acaacagcag
cagcagcagc 1560	agcagcagca	gcagcagcag	cageccatge	cccgcagcag	ccaggaggag
aaagatgaga 1620	aggagaagga	aaaggaggcg	gagaaggagg	aggagaagcc	ggaggtggag
aacgacaagg 1680	aagacctcct	caaggagaag	acagacgaca	cctcagggga	ggacaacgac
gagaaggagg 1740	ctgtggcctc	caaaggccgc	aaaactgcca	acagccaggg	aagacgcaaa
ggccgcatca 1800	cccgctcaat	ggctaatgag	gccaacagcg	aggaggccat	caccccccag
cagagcgccg 1860	agctggcctc	catggagctg	aatgagagtt	ctcgctggac	agaagaagaa
atggaaacag 1920	ccaagaaagg	tctcctggaa	cacggccgca	actggtcggc	catcgcccgg
atggtgggct 1980	ccaagactgt	gtcgcagtgt	aagaacttct	acttcaacta	caagaagagg
cagaacctcg 2040	atgagatett	gcagcagcac	aagctgaaga	tggagaagga	gaggaacgcg
cggaggaaga 2100	agaagaaagc	gccggcggcg	gecagegagg	aggctgcatt	cccgcccgtg
gtggaggatg 2160	aggagatgga	ggcgtcgggc	gtgagcggaa	atgaggagga	gatggtggag
gaggetgaag 2220	ccttacatgc	ctctgggaat	gaggtgccca	gaggggaatg	cagtggccca
gccactgtca 2280	acaacagctc	agacaccgag	agcatcccct	ctcctcacac	ggaggccgcc
aaggacacag 2340	ggcagaatgg	geccaagece	ccagccaccc	tgggcgccga	cgggccaccc
ccaggcccac 2400	ccaccccacc	acggaggaca	tcccgggccc	ccattgagcc	caccccggcc
tctgaagcca 2460	ccggagcccc	tacgccccca	ccagcacccc	catcgccctc	tgcacctcct
cctgtggtcc 2520	ccaaggagga	gaaggaggag	gagaccgcag	cagcgccccc	agtggaggag
ggggaggagc 2580	agaagccccc	cgcggctgag	gagctggcag	tggacacagg	gaaggccgag
gagcccgtca 2640	agagcgagtg	cacggaggaa	gccgaggagg	ggccggccaa	gggcaaggac
geggaggeeg 2700	ctgaggccac	ggccgagggg	gcgctcaagg	cagagaagaa	ggagggcggg
agcggcaggg 2760	ccaccactgc	caagagctcg	ggcgcccccc	aggacagcga	ctccagtgct
acctgcagtg 2820	cagacgaggt	ggatgaggcc	gagggcggcg	acaagaaccg	gctgctgtcc
ccaaggccca 2880	gcctcctcac	cccgactggc	gacccccggg	ccaatgcctc	accccagaag
ccactggacc 2940	tgaagcagct	gaagcagcga	gcggctgcca	tccccccat	ccaggtcacc

aaagtccatg 3000	agcccccccg	ggaggacgca	gctcccacca	agccagctcc	cccagcccca
ccgccaccgc 3060	aaaacctgca	gccggagagc	gacgcccctc	agcagcctgg	cagcagcccc
cggggcaaga 3120	gcaggagccc	ggcaccccc	gccgacaagg	aggccttcgc	agccgaggcc
cagaagetge 3180	ctggggaccc	cccttgctgg	acttccggcc	tgcccttccc	cgtgccccc
cgtgaggtga 3240	tcaaggcctc	cccgcatgcc	ccggacccct	cageettete	ctacgctcca
cctggtcacc 3300	cactgcccct	gggcctccat	gacactgccc	ggcccgtcct	gccgcgccca
cccaccatct 3360	ccaacccgcc	tcccctcatc	tcctctgcca	agcaccccag	cgtcctcgag
3420		ccaaggaatg			_
3480		ccctgtcacc			
aagctggcac 3540	ccttcagcgg	agtgaagcag	gagcagctgt	ccccacgggg	ccaggctggg
3600		gcccacagcc			
3660		aagcatcacc			
3720		eggetecate			
3780		catcggcgag			
3840		ccacgtcatc			
3900		gacccagtgc			
3960		ccccaagcgc			
4020		catcgaaggt			
4080		agagcagcac			
4140		acaggaggac			
4200		cccaccgccc			
4260		gctgaagccg			
4320		tgagateceg			
cccctggccc 4380	cgcggccgct	caaggagggc	tccatcacgc	agggcacccc	gctcaagtac
gacaccggcg 4440	cgtccaccac	tggctccaaa	aagcacgacg	tacgctccct	catcggcagc
4500		cgtgcacccg			
gaacgtgcct 4560	gctacgagga	gagcctgaag	agccggccag `	ggaccgccag	cagctcgggg

ggctccattg	cgcgcggcgc	cccggtcatt	gtgcctgagc	tgggtaagcc	gcggcagagc
	atgaggacca	cggggcaccc	tttgccggcc	acctcccacg	aggttcgccc
gtgaccacgc 4740	gggagcccac	gccgcgcctg	caggagggca	gcctttcgtc	cagcaaggca
teccaggace 4800	gaaagctgac	gtcgacgcct	cgtgagatcg	ccaagtcccc	gcacagcacc
gtgcccgagc 4860	accacccaca	ccccatctcg	ccctatgagc	acctgcttcg	gggcgtgagt
ggcgtggacc 4920	tgtatcgcag	ccacatcccc	ctggccttcg	accccacctc	cataccccgc
ggcatccctc 4980	tggacgcagc	cgctgcctac	tacctgcccc	gacacctggc	ccccaacccc
acctacccgc 5040	acctgtaccc	accetacete	atccgcggct	accccgacac	ggcggcgctg
gagaaccggc 5100	agaccatcat	caatgactac	atcacctcgc	agcagatgca	ccacaacacg
gccaccgcca 5160	tggcccagcg	agctgatatg	ctgaggggcc	tctcgccccg	cgagtcctcg
ctggcactca 5220	actacgctgc	gggtccccga	ggcatcatcg	acctgtccca	agtgccacac
ctgcctgtgc 5280	tegtgeecce	gacaccaggc	accccagcca	ccgccatgga	ccgccttgcc
tacctcccca 5340	ccgcgcccca	gcccttcagc	agccgccaca	gcagctcccc	actctcccca
ggaggtccaa 5400	cacacttgac	aaaaccaacc	accacgtcct	cgtccgagcg	ggagcgagac
cgggatcgag 5460	agcgggaccg	ggatcgggag	cgggaaaagt	ccatcctcac	gtccaccacg
acggtggagc 5520	acgcacccat	ctggagacct	ggtacagagc	agagcagcgg	cagcagcggc
agcagcggcg 5580	ggggtggggg	cagcagcagc	cgccccgcct	cccactccca	tgcccaccag
cactegeeca 5640	teteceeteg	gacccaggat	gccctccagc	agagacccag	tgtgcttcac
aacacaggca 5700	tgaagggtat	catcaccgct	gtggagccca	gcacgcccac	ggtcctgagg
tccacctcca 5760	cctcctcacc	cgttcgcccg	gctgccacat	tcccacctgc	cacccactgc
ccactgggcg 5820	gcaccctcga	tggggtctac	cctaccctca	tggagcccgt	cttgctgccc
aaggaggccc 5880	cccgggtcgc	ccggccagag	cggccccgag	cagacaccgg	ccatgccttc
ctcgccaagc 5940	ccccagcccg	ctccgggctg	gagcccgcct	cctccccag	caagggctcg
gagccccggc 6000	ccctagtgcc	tectgtetet	ggccacgcca	ccatcgcccg	cacccctgcg
aagaacctcg 6060	cacctcacca	cgccagcccg	gacccgccgg	cgccacctgc	ctcggcctcg
gacccgcacc 6120	gggaaaagac	tcaaagtaaa	cccttttcca	tccaggaact	ggaactccgt
tctctgggtt 6180	accacggcag	cagctacagc	cccgaagggg .	tggagcccgt	cagccctgtg

6240	gtctgaccca	_			
agccacctgg 6300	agggggagct	gcggcccaag	cagccaggcc	ccgtgaagct	tggcggggag
geegeeeace 6360	tcccacacct	geggeegetg	cctgagagcc	agecetegte	cagcccgctg
ctccagaccg 6420	ccccaggggt	caaaggtcac	cagcgggtgg	tcaccctggc	ccagcacatc
agtgaggtca 6480	tcacacagga	ctacacccgg	caccacccac	agcagctcag	cgcacccctg
cccgccccc 6540	tctactcctt	ccctggggcc	agctgccccg	tcctggacct	ccgccgccca
cccagtgacc 6600	tctacctccc	gcccccggac	catggtgccc	cggcccgtgg	ctcccccac
agcgaagggg 6660	gcaagaggtc	tccagagcca	aacaagacgt	cggtcttggg	tggtggtgag
gacggtattg 6720	aacctgtgtc	cccaccggag	ggcatgacgg	agccagggca	ctcccggagt
gctgtgtacc 6780	cgctgctgta	ccgggatggg	gaacagacgg	agcccagcag	gatgggctcc
aagtctccag 6840	gcaacaccag	ccagccgcca	gccttcttca	gcaagctgac	cgagagcaac
tccgccatgg 6900	tcaagtccaa	gaagcaagag	atcaacaaga	agctgaacac	ccacaaccgg
aatgagcctg 6960	aatacaatat	cagccagcct	gggacggaga	tcttcaatat	gcccgccatc
accggaacag 7020	gccttatgac	ctatagaagc	caggcggtgc	aggaacatgc	cagcaccaac
atggggctgg 7080	aggccataat	tagaaaggca	ctcatgggta	aatatgacca	gtgggaagag
tccccgccgc 7140	tcagcgccaa	tgcttttaac	cctctgaatg	ccagtgccag	cctgcccgct
gctatgccca 7200	taaccgctgc	tgacggacgg	agtgaccaca	cactcacctc	gccaggtggc
	ccaaggtctc	tggcagaccc	agcagccgaa	aagccaagtc	cccggccccg
ggcctggcat	ctggggaccg	gccaccctct	gtctcctcag	tgcactcgga	gggagactgc
aaccgccgga 7380	cgccgctcac	caaccgcgtg	tgggaggaca	ggccctcgtc	cgcaggttcc
acgccattcc 7440	cctacaaccc	cctgatcatg	cggctgcagg	cgggtgtcat	ggcttcccca
	gcctccccgc	gggcagcggg	cccctcgctg	gcccccacca	cgcctgggac
	agccactgct	ctgctcgcag	tacgagacac	tctccgacag	cgagtgactc
	aaaaaaaaac	gggcggtgtc	aggtcccagc	gagccacagg	aacggccctg
	geggetgeeg	actcccccaa	ccaaggaagg	agcccctgag	teegeetgeg
	tctgtccgtc	cagagccggc	atccttgcct	gtctaaagcc	ttaactaaga
	gggctggccc	tgtgcagacc	ttactcaggg ·	gatgtttacc	tggtgctcgg

gaagggaggg gaaggggccg gggagggggc acggcaggcg tgtggcagcc acacacaggc

qqccaqqqcq qccaqqqacc caaaqcaqqa tqaccacqca cctccacqcc actgcctccc 7920 cegaatgeat tiggaaceaa agtetaaact gagetegeag ceeeegegee cicecteege eteccatece gettageget etggacagat ggacgcagge cetgtecage ceccagtgeg 8040 ctcgttctgg tccccacaga ctgccccage caacgagatt gctggaaacc aagtcaggcc aggtgggggg acaaaagggc caggtgcggc ctggggggaa cggatgctcc gaggactgga ctgttttttt cacacatcgt tgccgcagcg gtgggaagga aaggcagatg taaatgatgt 8220 gttggtttac agggtatatt tttgatacct tcaatgaatt aattcagatg ttttacgcaa ggaaggactt acccagtatt actgctgctg tgcttttgat ctctgcttac cgttcaagag 8340 gegtgtgcag gecgacagte ggtgacecea teactegcag gaccaagggg geggggactg etggeteacg eccegetgtg tectecetec etceetteet tgggeagaat gaattegatg 8460 cgtattctgt ggccgccatt tgcgcagggt ggtggtattc tgtcatttac acacgtcgtt 8564 <210> 676 <211> 2518 <212> PRT <213> Homo sapiens <400> 676 Met Ser Gly Ser Thr Gln Leu Val Ala Gln Thr Trp Arg Ala Thr Glu 10 Pro Arg Tyr Pro Pro His Ser Leu Ser Tyr Pro Val Gln Ile Ala Arg 20 25 Thr His Thr Asp Val Gly Leu Leu Glu Tyr Gln His His Ser Arg Asp Tyr Ala Ser His Leu Ser Pro Gly Ser Ile Ile Gln Pro Gln Arg Arg Arg Pro Ser Leu Leu Ser Glu Phe Gln Pro Gly Asn Glu Arg Ser Gln Glu Leu His Leu Arg Pro Glu Ser His Ser Tyr Leu Pro Glu Leu Gly 85 90 Lys Ser Glu Met Glu Phe Ile Glu Ser Lys Arg Pro Arg Leu Glu Leu 100 105 Leu Pro Asp Pro Leu Leu Arg Pro Ser Pro Leu Leu Ala Thr Gly Gln 120 125 Pro Ala Gly Ser Glu Asp Leu Thr Lys Asp Arg Ser Leu Thr Gly Lys 135 140 Leu Glu Pro Val Ser Pro Pro Ser Pro Pro His Thr Asp Pro Glu Leu 160 150 155 Glu Leu Val Pro Pro Arg Leu Ser Lys Glu Glu Leu Ile Gln Asn Met

				165					170					175	
Asp	Arg	Val	Asp 180	Arg	Glu	Ile	Thr	Met 185		Glu	Gln	Gln	Ile 190	Ser	Lys
Leu	Lys	Lys 195	Lys	Gln	Gln	Gln	Leu 200	Glu	Glu	Glu	Ala	Ala 205	Lys	Pro	Pro
Glu	Pro 210	Glu	Lys	Pro	Val	Ser 215	Pro	Pro	Pro	Ile	Glu 220	Ser	Lys	His	Arg
Ser 225	Leu	Val	Gln	Ile	Ile 230	Tyr	Asp	Glu	Asn	Arg 235	Lys	Lys	Ala	Glu	Ala 240
Ala	His	Arg	Ile	Leu 245	Glu	Gly	Leu	Gly	Pro 250	Gln	Val	Glu	Leu	Pro 255	Leu
			Pro 260					265					270		
Asn	Gln	Ala 275	Met	Arg	Lys	Lys	Leu 280	Ile	Leu	Tyr	Phe	Lys 285	Arg	Arg	Asn
	290		Lys			295		_		_	300			_	
305			Ala		310		_			315					320
			Ala	325					330		_	_		335	
			11e 340	_	_		_	345					350		_
		355	Gln				360					365			
	370		Val			375		_	_		380				
385			Gln		390					395					400
_			Gln	405	_		-		410				_	415	
			Met 420					425	_				430		_
		435	Glu	_			440	_		_		445			
	450					455					460				
465			Leu		470				_	475				_	480
			Gln	485					490					495	
			500 Ser					505					510		
		515	Lys				520	_	_		_	525	_		_
	530		Lys			535					540				
545					550					555	_				560
			Ala	565					570					575	
			Lys 580					585					590		
ser	GIU	GIU	Ala	TYG	1111	FIO	GTU	σŢΠ	ser	ньа	GIU	Leu	нта	ser	met

		595					600					605			
Glu	Leu			Ser	Ser	Arq			Glu	Glu	Glu			Thr	Ala
	610					615					620				
Lys	Lys	Gly	Leu	Leu	Glu	His	Gly	Arg	Asn	Trp	Ser	Ala	Ile	Ala	Arg
625					630					635					640
				645					650					655	
Tyr	Lys	Lys	Arg 660		Asn	Leu	Asp	Glu 665		Leu	Gln	Gln	His 670		Leu
Lys	Met	Glu 675	Lys	Glu	Arg	Asn	Ala 680		Arg	Lys	Lys	Lys 6 8 5	_	Ala	Pro
Ala	Ala 690	Ala	Ser	Glu	Glu	Ala 695		Phe	Pro	Pro	Val 700	Val	Glu	Asp	Glu
Glu 705		Glu	Ala	Ser	Gly 710		Ser	Gly	Asn	Glu 715		Glu	Met	Val	Glu
		Glu	Δla	T.A11		Ala	Car	Clv	λen			Pro	7 200	Glas	720 Glu
				725					730					735	
			740			Val		745					750		
		755				Ala	760					765			
Lys	Pro 770	Pro	Ala	Thr	Leu	Gly 775	Ala	Asp	Gly	Pro	Pro 780	Pro	Gly	Pro	Pro
Thr 785	Pro	Pro	Arg	Arg	Thr 790	Ser	Arg	Ala	Pro	Ile 795	Glu	Pro	Thr	Pro	Ala 800
Ser	Glu	Ala	Thr	Gly 805	Ala	Pro	Thr	Pro	Pro 810	Pro	Ala	Pro	Pro	Ser 815	Pro
Ser	Ala	Pro	Pro 820	Pro	Val	Val	Pro	Lys 825		Glu	Lys	Glu	Glu 830		Thr
Ala	Ala	Ala 835	Pro	Pro	Val	Glu	Glu 840	Gly	Glu	Glu	Gln	Lys 845		Pro	Ala
Ala	Glu 850		Leu	Ala	Val	Asp 855		Gly	Lys	Ala	Glu 860		Pro	Val	Lys
Ser 865		Cys	Thr	Glu	Glu 870	Ala	Glu	Glu	Gly	Pro 875		Lys	Gly	Lys	Asp 880
	Glu	Ala	Ala	Glu 885		Thr	Ala	Glu	Gly 890	_	Leu	Lys	Ala	Glu 895	
Lys	Glu	Gly	Gly 900		Gly	Arg	Ala	Thr 905		Ala	Lys	Ser	Ser 910		Ala
Pro	Gln	Asp 915		Asp	Ser	Ser	Ala 920		Cys	Ser	Ala	Asp 925		Val	Asp
Glu	Ala 930		Gly	Gly	Asp	Lys 935		Arg	Leu	Leu			Arg	Pro	Ser
		Thr	Pro	Thr	_	Asp	Pro	Arg	Ala		940 Ala	Ser	Pro	Gln	-
945 Pro	Leu	Asp	Leu	-	950 Gln	Leu	Lys	Gln	_	955 Ala	Ala	Ala	Ile		960 Pro
T 1	a.	**- 3	m1.	965			~1	_	970			_		975	_
			980			His		985					990		
Thr	Lys	Pro 995	Ala	Pro	Pro	Ala	Pro 1000		Pro	Pro	Gln	Asn 1005		Gln	Pro
Glu	Ser 1010		Ala	Pro	Gln	Gln 1015		Gly	Ser	Ser	Pro 1020		Gly	Lys	Ser
Arg	Ser	Pro	Ala	Pro	Pro	Ala	Asp	Lys	Glu	Ala			Ala	Glu	Ala

1025	1030		1035	1040
Gln Lys Leu Pro			Thr Ser Gly Leu	
	1045	105		1055
		T THE LYS ALA 1065	Ser Pro His Ala 107	
106			His Pro Leu Pro	
1075	Sei lyi Ai	1080	1085	Deu Giy
	Ala Arg Pr		Arg Pro Pro Thr	Ile Ser
1090		95	1100	
Asn Pro Pro Pro	Leu Ile Se	r Ser Ala Lys	His Pro Ser Val	Leu Glu
1105	1110		1115	1120
Arg Gln Ile Gly	Ala Ile Se	r Gln Gly Met	: Ser Val Gln Leu	His Val
	1125	113		1135
			. Gly Pro Val Thr	
114		1145	115	
	Met Asp Pr		Ala Pro Phe Ser	GIY VAI
1155	Ion Com Dr	1160	1165 Ala Gly Pro Pro	Glu Ser
1170		75	1180	GIU DEI
			Val Leu Arg Gly	Thr Ala
1185	1190		1195	1200
Leu Gly Ser Val	Pro Gly Gl	y Ser Ile Thr	Lys Gly Ile Pro	Ser Thr
<u>-</u>	1205	121	.0	1215
Arg Val Pro Ser	Asp Ser Al	a Ile Thr Tyr	Arg Gly Ser Ile	Thr His
122		1225	123	
Gly Thr Pro Ala 1235	Asp Val Le	u Tyr Lys Gly 1240	Thr Ile Thr Arg 1245	Ile Ile
Gly Glu Asp Ser	Pro Ser Ar	g Leu Asp Arg	Gly Arg Glu Asp	Ser Leu
1250		55	1260	
		r Glu Gly Lys	Lys Gly His Val	
1265	1270	1 mb G1 G	1275	1280
Tyr Glu Gly Gly	Met Ser va 1285	1 Thr Gin Cys	Ser Lys Glu Asp	1295
Ser Ser Ser Gly			Ala Pro Lys Arg	
130		1305	131	
			Ile Ser Ser Ala	Ser Ile
1315		1320	1325	
Glu Gly Leu Met	Gly Arg Al	a Ile Pro Pro	Glu Arg His Ser	Pro His
1330	13		1340	
His Leu Lys Glu		s Ile Arg Gly	Ser Ile Thr Gln	
1345	1350		1355	1360
Pro Arg Ser Tyr	Val Glu Al 1365	a Gln Glu Asp 137	Tyr Leu Arg Arg	Glu Ala 1375
			Pro Pro Pro Pro	
138		1385	139	
-	Ala Tyr Ly		Leu Gly Pro Leu 1405	Lys Leu
1395	Glu Gly Le	1400 u Val Ala Thr	Val Lys Glu Ala	Gly Ara
1410	14		1420	or, mrg
			Arg His Thr Pro	Glu Leu
1425	1430	J ===	1435	1440
Pro Leu Ala Pro		u Lvs Glu Glv		Gly Thr
	3	a myo oma omy	DCT TTC 1111	4
	1445	145		1455

			146	0				146	5				147	0	
Asp	Val	Arg 147		Leu	Ile	Gly	Ser 148		Gly	Arg	Thr	Phe 148		Pro	Val
His	Pro 149		Asp	Val	Met	Ala 149		Ala	Arg	Ala	Leu 150		Arg	Ala	Cys
Tyr 150		Glu	Ser	Leu	Lys 151		Arg	Pro	Gly	Thr 151		Ser	Ser	Ser	Gly 1520
Gly	Ser	Ile	Ala	Arg 152		Ala	Pro	Val	Ile 153		Pro	Glu	Leu	Gly 153	Lys 5
Pro	Arg	Gln	Ser 154		Leu	Thr	Tyr	Glu 154		His	Gly	Ala	Pro 1550		Ala
Gly	His	Leu 155!		Arg	Gly	Ser	Pro 156		Thr	Thr	Arg	Glu 1569		Thr	Pro
Arg	Leu 157		Glu	Gly	Ser	Leu 1579		Ser	Ser	Lys	Ala 1580		Gln	Asp	Arg
Lys 1589		Thr	Ser	Thr	Pro 159	_	Glu	Ile	Ala	Lys 159		Pro	His	Ser	Thr 1600
Val	Pro	Glu	His	His 1609		His	Pro	Ile	Ser 161	Pro 0	Tyr	Glu	His	Leu 161	
Arg	Gly	Val	Ser 1620		Val	Asp	Leu	Tyr 1625		Ser	His	Ile	Pro 1630		Ala
Phe	Asp	Pro 1635		Ser	Ile	Pro	Arg 1640	_	Ile	Pro	Leu	Asp 1645		Ala	Ala
Ala	Tyr 1650		Leu	Pro	Arg	His 1655		Ala	Pro	Asn	Pro 1660		Tyr	Pro	His
Leu 1665		Pro	Pro	Tyr	Leu 1670		Arg	Gly	Tyr	Pro 1679		Thr	Ala	Ala	Leu 1680
Glu	Asn	Arg	Gln	Thr 1685		Ile	Asn	Asp	Tyr 1690	Ile O	Thr	Ser	Gln	Gln 1695	
His	His	Asn	Thr		Thr	Ala	Met	Ala 1709		Arg	Ala	Asp	Met 1710		Arg
Gly	Leu	Ser 1715		Arg	Glu	Ser	Ser 1720		Ala	Leu	Asn	Tyr 1725		Ala	Gly
Pro	Arg 1730		Ile	Ile	Asp	Leu 1735		Gln	Val	Pro	His 1740		Pro	Val	Leu
Val 1745		Pro	Thr	Pro	Gly 1750		Pro	Ala	Thr	Ala 1755		Asp	Arg	Leu	Ala 1760
				1765	5				1770		_			1775	;
			1780)				1785	i	Thr			1790	ı	
		1795	i				1800)		Arg		1805			
Arg	Glu 1810		Glu	Lys	Ser	Ile 1815		Thr	Ser	Thr	Thr 1820		Val	Glu	His
Ala 1825		Ile	Trp	Arg	Pro 1830		Thr	Glu	Gln	Ser 1835		Gly	Ser	Ser	Gly 1840
Ser	Ser	Gly	Gly	Gly 1845		Gly	Ser	Ser	Ser 1850	Arg	Pro	Ala	Ser	His 1855	
His	Ala	His	Gln 1860		Ser	Pro	Ile	Ser 1865		Arg	Thr		Asp 1870		Leu
Gln	Gln	Arg 1875		Ser	Val	Leu	His 1880		Thr	Gly	Met	Lys 1885	_	Ile	Ile
Thr	Ala	Val	Glu	Pro	Ser	Thr	Pro	Thr	Val	Leu	Arg	Ser	Thr	Ser	Thr

	1890	0				189	5				1900)			
Ser	Ser	Pro	Val	Arg	Pro	Ala	Ala	Thr	Phe	Pro	Pro	Ala	Thr	His	Cys
190				_	1910					191					1920
Pro	Leu	Gly	Gly	Thr	Leu	Asp	Gly	Val	Tyr	Pro	Thr	Leu	Met	Glu	Pro
				192					1930					193	
Val	Leu	Leu	Pro	Lys	Glu	Ala	Pro	Arg	Val	Ala	Arg	Pro	Glu	Arg	Pro
			1940	_				194					1950		
Arg	Ala	Asp	Thr	Gly	His	Ala			Ala	Lys	Pro			Arg	Ser
		195					196			_		1965			
Gly	Leu		Pro	Ala	Ser			Ser	Lys	Gly			Pro	Arg	Pro
	1970			_		197		_ •			1980		_,	_	
	Val	Pro	Pro	Val		-	His	Ala	Thr			Arg	Thr	Pro	
198		.			1990		77 -	0	D	1999		D	71 -	Dwa	2000
ьys	Asn	ьeu	АТА			Hls	Ата	ser			Pro	PFO	АТА	2019	
חות	Ser	ח ד ת	602	2009		uic	7~~	C1.,	2010		Gla	Car	Laze		
Ala	Ser	ALA	2020	-	PIO	HIS	Arg	2025		1111	GIII	261	2030		FILE
Ser	Ile	Gln			Glu	T.eu	Ara			Glv	Tvr	His			Ser
DCI		203		LCu	0 1u		204			01,	- 7	2045			
Tvr	Ser		-	Glv	Val	Glu			Ser	Pro	Val			Pro	Ser
-1-	2050			1	-	2055					2060				
Leu	Thr		Asp	Lys	Gly	Leu	Pro	Lys	His	Leu	Glu	Glu	Leu	Asp	Lys
2069			-		2070			-		2075					2080
Ser	His	Leu	Glu	Gly	Glu	Leu	Arg	Pro	Lys	Gln	Pro	Gly	Pro	Val	Lys
				2085					2090					2099	
Leu	Gly	Gly	Glu	Ala	Ala	His	Leu	Pro	His	Leu	Arg	Pro	Leu	Pro	Glu
			2100					2109					2110		
Ser	Gln	Pro	Ser	ser	Ser	Pro			Gln	Thr	Ala			Val	Lys
		2115					212				_	2125			
-	His		Arg	Val	Val			Ala	Gln	His			Glu	Val	Ile
	2130			 1		2135		D	~1	G1	2140		21-	Dage	T
	Gln	Asp	Tyr	Thr	Arg 2150		HIS	Pro	GIII	2155		ser	Ата	PIO	2160
2145	Ala	Dro	LON	Time			Pro	Glw	λlo			Pro	Va 1	T.e.11	
PIO	міа	PIU	пеп	2169		FIIC	FIO	GIY	2170		Cys	110	V C I	2175	
Leu	Arg	Ara	Pro			Asp	Len	Tvr			Pro	Pro	Asp		
LCu	7119	•••	2180				200	2185					2190		1
Ala	Pro	Ala			Ser	Pro	His			Gly	Gly	Lys	Arg	Ser	Pro
		2195	_	-			2200			-	-	2205			
Glu	Pro	Asn	Lys	Thr	Ser	Val	Leu	Gly	Gly	Gly	Glu	Asp	Gly	Ile	Glu
	2210)				2215	5				2220)			
Pro	Val	Ser	Pro	Pro	Glu	Gly	Met	Thr	Glu	Pro	Gly	His	Ser	Arg	Ser
2225					2230					2235					2240
Ala	Val	Tyr	Pro			Tyr	Arg	Asp			Gln	Thr	Glu		
				2245					2250					2255	
Arg	Met	Gly			Ser	Pro	Gly			Ser	Gln	Pro			Phe
			2260			_		2265				_	2270		_
Phe	Ser			Thr	GIu	ser			Ala	Met	Val			гÀг	гàг
01	<i>α</i> 1	2275		*	Ŧ	τ	2280		TT: _	3	7	2285		Dwa	C1.,
GIN	Glu		ASI	гÀг	ьys	Leu 2299		Inr	nıs	ASN	Arg 2300		Gru	FIO	GIU
T'1	2290 Asn		Ser	Gla	Dro			G111	Tla	Dha			Pro	Δla	Tle
2305	Vall	7 T C	JEL	111.	FIU		TIIL	GIU	116	FIIC	VPII	1.100		.¬.r.a	
	5				2317)				2315	;				2320
Thr	Gly	Thr	G] v	Len	2310 Met		Tvr	Ara	Ser	2315		Val	Gln	Gl 11	2320 His

2325 2330 2335 Ala Ser Thr Asn Met Gly Leu Glu Ala Ile Ile Arg Lys Ala Leu Met 2345 Gly Lys Tyr Asp Gln Trp Glu Glu Ser Pro Pro Leu Ser Ala Asn Ala 2360 2365 2355 Phe Asn Pro Leu Asn Ala Ser Ala Ser Leu Pro Ala Ala Met Pro Ile 2375 2380 Thr Ala Ala Asp Gly Arg Ser Asp His Thr Leu Thr Ser Pro Gly Gly 2390 2395 Gly Gly Lys Ala Lys Val Ser Gly Arg Pro Ser Ser Arg Lys Ala Lys 2405 2410 Ser Pro Ala Pro Gly Leu Ala Ser Gly Asp Arg Pro Pro Ser Val Ser 2425 2420 Ser Val His Ser Glu Gly Asp Cys Asn Arg Arg Thr Pro Leu Thr Asn 2440 2445 Arg Val Trp Glu Asp Arg Pro Ser Ser Ala Gly Ser Thr Pro Phe Pro 2455 2460 Tyr Asn Pro Leu Ile Met Arg Leu Gln Ala Gly Val Met Ala Ser Pro 2470 2475 Pro Pro Pro Gly Leu Pro Ala Gly Ser Gly Pro Leu Ala Gly Pro His 2485 2490 His Ala Trp Asp Glu Glu Pro Lys Pro Leu Leu Cys Ser Gln Tyr Glu 2500 2505 Thr Leu Ser Asp Ser Glu 2515 <210> 677 <211> 345 <212> DNA <213> Homo sapiens <400> 677 qtaatqcaaq gtgaacqccc aatggctgcg caqaacaaqa gcattggtca gttcaccctt gagggtatag ctccggcacg ccgtggtgtt ccacagattg aagttacttt cgatatcgat 120 gccaacggta tcttgaatgt gagcgcaaag gataaggcta ccggtaagga acagaagatt cgcatcgaag cttcaagtgg tttgagtcag gaagaaatcg acagaatgaa agctgaggca gaacagaatg caqcagcagg caaggctgaa cgcgaaaaga ttqataagct gaaccaaqct gactcaatga tttccccccc cgaaaactcc tgaaagacaa cgatn 345 <210> 678 <211> 110 <212> PRT <213> Homo sapiens <400> 678 Val Met Gln Gly Glu Arg Pro Met Ala Ala Gln Asn Lys Ser Ile Gly 5 10 Gln Phe Thr Leu Glu Gly Ile Ala Pro Ala Arg Arg Gly Val Pro Gln

```
20
                                25
                                                     3.0
Ile Glu Val Thr Phe Asp Ile Asp Ala Asn Gly Ile Leu Asn Val Ser
Ala Lys Asp Lys Ala Thr Gly Lys Glu Gln Lys Ile Arg Ile Glu Ala
Ser Ser Gly Leu Ser Gln Glu Glu Ile Asp Arg Met Lys Ala Glu Ala
Glu Gln Asn Ala Ala Gly Lys Ala Glu Arg Glu Lys Ile Asp Lys
                85
                                    90
Leu Asn Gln Ala Asp Ser Met Ile Ser Pro Pro Glu Asn Ser
<210> 679
<211> 362
<212> DNA
<213> Homo sapiens
<400> 679
acgcgtgacg tcaccgctcc atggggaaga tgacgactat ccctgtgaaa gtaaagcata
atgggaaaaa tgtacgttaa atgtgctaac gcgcagtatg atgtatctat gaatcttgag
ggtacaggcc tggatttcaa gcgtgccatt gctgacgtca cgcatgtgcc acccgaacgc
caaaaagtac tcatcaaggg aggattgcta aaagacgata ccccattagg taaagtgggt
gegegtgeag gaeageagtt catggtgetg ggtgetgtgg gtgagetgee caaggeecea
gaaaaacctg tgctgttcct ggaggatttg ccggaagacg agctcaacaa ggctaaggat
360
CC
362
<210> 680
<211> 100
<212> PRT
<213> Homo sapiens
Met Gly Lys Met Tyr Val Lys Cys Ala Asn Ala Gln Tyr Asp Val Ser
Met Asn Leu Glu Gly Thr Gly Leu Asp Phe Lys Arg Ala Ile Ala Asp
Val Thr His Val Pro Pro Glu Arg Gln Lys Val Leu Ile Lys Gly Gly
                            40
Leu Leu Lys Asp Asp Thr Pro Leu Gly Lys Val Gly Ala Arg Ala Gly
Gln Gln Phe Met Val Leu Gly Ala Val Gly Glu Leu Pro Lys Ala Pro
                                        75
                    70
Glu Lys Pro Val Leu Phe Leu Glu Asp Leu Pro Glu Asp Glu Leu Asn
                                    90
Lys Ala Lys Asp
            100
```

```
<210> 681
<211> 357
<212> DNA
<213> Homo sapiens
<400> 681
acgcgtccaa atggacaaac gcttgatgat ttctaccatg aaattagagc aaaatatcca
gaacaattac tgatggcaga ctgttcaaca gtagaagaaa tgattcacgc tgatgaactc
ggtttttgatt ttatcggaag tactttagta ggatatacaa aacaaagtaa aggtgacaaa
atcgaagaaa atgactttga aatcttgaga acagttttag aacgaattaa acatccacta
attgcagaag gcaatatcga tacacctgaa aaqqtqaaac qtqtqcttqa qttaqqcqcq
tatagtgtcg ttgtagggtc agcgattact cgtccacaac tcatcacgaa aaaattt
357
<210> 682
<211> 119
<212> PRT
<213> Homo sapiens
<400> 682
Thr Arg Pro Asn Gly Gln Thr Leu Asp Asp Phe Tyr His Glu Ile Arg
                                    10
Ala Lys Tyr Pro Glu Gln Leu Leu Met Ala Asp Cys Ser Thr Val Glu
Glu Met Ile His Ala Asp Glu Leu Gly Phe Asp Phe Ile Gly Ser Thr
                            40
Leu Val Gly Tyr Thr Lys Gln Ser Lys Gly Asp Lys Ile Glu Glu Asn
                        55
                                            60
Asp Phe Glu Ile Leu Arg Thr Val Leu Glu Arg Ile Lys His Pro Leu
                    70
                                        75
Ile Ala Glu Gly Asn Ile Asp Thr Pro Glu Lys Val Lys Arg Val Leu
                                    90
Glu Leu Gly Ala Tyr Ser Val Val Gly Ser Ala Ile Thr Arg Pro
Gln Leu Ile Thr Lys Lys Phe
        115
<210> 683
<211> 411
<212> DNA
<213> Homo sapiens
<400> 683
ntctccgacc gcgtggtaaa actggcgacc ttaattgctg aagatgagca agctgaaatg
aatattgttt tgcccgcagc gtggttgcat gattgcgtca gttaccctaa aaaccatgta
ttaagagcac aaagtgcatt acatgcagca gataaagcga ttgtattttt gcgcagtatt
180
```

```
aattacccca aacaatactt attagcaatt catcatgcaa tttcagcgca cagtgtcagt
ggtaaaatac aggcaatgag tttagaagct caaatagtgc aagatgcaga tagattggat
300
gcgctagggg caattggcgt ggctcgttgc attcaagtaa gtagccagtt acagcgccca
ctatattctg aagttgaccc cttcagcgag acacgatctc tagtctgcat g
411
<210> 684
<211> 137
<212> PRT
<213> Homo sapiens
<400> 684
Xaa Ser Asp Arg Val Val Lys Leu Ala Thr Leu Ile Ala Glu Asp Glu
                                    10
1
Gln Ala Glu Met Asn Ile Val Leu Pro Ala Ala Trp Leu His Asp Cys
Val Ser Tyr Pro Lys Asn His Val Leu Arg Ala Gln Ser Ala Leu His
                            40
Ala Ala Asp Lys Ala Ile Val Phe Leu Arg Ser Ile Asn Tyr Pro Lys
                                            60
Gln Tyr Leu Leu Ala Ile His His Ala Ile Ser Ala His Ser Val Ser
                    70
Gly Lys Ile Gln Ala Met Ser Leu Glu Ala Gln Ile Val Gln Asp Ala
                                    90
Asp Arg Leu Asp Ala Leu Gly Ala Ile Gly Val Ala Arg Cys Ile Gln
            100
                                105
Val Ser Ser Gln Leu Gln Arg Pro Leu Tyr Ser Glu Val Asp Pro Phe
                            120
                                                 125
        115
Ser Glu Thr Arg Ser Leu Val Cys Met
                        135
    130
<210> 685
<211> 417
<212> DNA
<213> Homo sapiens
<400> 685
acgcgttgcg ttgcggagtg aacccggaac gatggatgga ttgacactat tcggcctgtt
egeegteact gegatgetgg tetgetatge catggaggae egeageeact ggttegtget
getgttcgcg gecgettggc geteggttcg gectacgget teetecaagg egeetggeeg
tteggetteg tegaggegat atgggegete gttgeetgeg gegtggtgga egateaggee
qcqatqaccq catcqtccqq cttaagcccq gaaacgaaac cgaccagtgc gctggtttga
tgggcggcgc gtcgctggat gcacagcgtc tcgacgcgag cgtgatgatg gcctcagcgc
qtqcatqccq acqctgtcgc tcatcgcgct acgctcgacc acggcgcgcg gcaatag
417
```

```
<210> 686
<211> 110
<212> PRT
<213> Homo sapiens
<400> 686
Met Pro Trp Arg Thr Ala Ala Thr Gly Ser Cys Cys Ser Arg Pro
Leu Gly Ala Arg Phe Gly Leu Arg Leu Pro Pro Arg Arg Leu Ala Val
                                25
            20
Arg Leu Arg Arg Gly Asp Met Gly Ala Arg Cys Leu Arg Arg Gly Gly
                            40
                                                45
Arg Ser Gly Arg Asp Asp Arg Ile Val Arg Leu Lys Pro Gly Asn Glu
                        55
                                            60
Thr Asp Gln Cys Ala Gly Leu Met Gly Gly Ala Ser Leu Asp Ala Gln
                    70
                                        75
Arg Leu Asp Ala Ser Val Met Met Ala Ser Ala Arg Ala Cys Arg Arg
Cys Arg Ser Ser Arg Tyr Ala Arg Pro Arg Arg Ala Ala Ile
                                105
<210> 687
<211> 412
<212> DNA
<213> Homo sapiens
<400> 687
nnaegegtga eegaceaact gegageeace etgetegeea tggetgetat ggggttgeac
gacggcatcg atattccgtc tggggcgatt attgaaagct gccgcacctt atcagccgtt
ctcqatqaaa cccacggtgg tcgcacgatc gagcttcggg taccacctgc gtgcgcggtt
caattggegg ccattgagtc gggccccaac caccacggg gcactcegcc caatgtggcc
gagaccgacc ctgtcacctt cctgcagttg gcaactggct tctcacactg gccagaaatg
egeteageag gaegggttea ggegtetgga teccaegteg aegaegttge tggegtgtte
ccagtcgttg atatggccgg ggttttccgc gacatttttg ccgacgacta ga
412
<210> 688
<211> 136
<212> PRT
<213> Homo sapiens
<400> 688
Xaa Arq Val Thr Asp Gln Leu Arq Ala Thr Leu Leu Ala Met Ala Ala
                                    10
Met Gly Leu His Asp Gly Ile Asp Ile Pro Ser Gly Ala Ile Ile Glu
Ser Cys Arg Thr Leu Ser Ala Val Leu Asp Glu Thr His Gly Gly Arg
```

40

35

```
Thr Ile Glu Leu Arg Val Pro Pro Ala Cys Ala Val Gln Leu Ala Ala
Ile Glu Ser Gly Pro Asn His His Arg Gly Thr Pro Pro Asn Val Ala
                                        75
                    70
Glu Thr Asp Pro Val Thr Phe Leu Gln Leu Ala Thr Gly Phe Ser His
                                    90
Trp Pro Glu Met Arg Ser Ala Gly Arg Val Gln Ala Ser Gly Ser His
                                105
                                                     110
Val Asp Asp Val Ala Gly Val Phe Pro Val Val Asp Met Ala Gly Val
                            120
                                                125
Phe Arg Asp Ile Phe Ala Asp Asp
    130
                        135
<210> 689
<211> 499
<212> DNA
<213> Homo sapiens
<400> 689
cgcgtcgcgg tactcgacgt cgattttcat cacggtaacg gcacccagaa cattttttac
ecgegeaatg acgtgatgtt catategetg caeggegage eggeegtgte etatecetae
120
tattcggggt tcagcgatga agtcggcgca ggtgttggcg aagggttcaa cctcaactac
ccgctgccga aaaacaccgc ctgggatacc taccgcgacg ccctgctgca tgcctgcagg
aaactccagc aattctcgcc gcaggtattg gtgatctcac tgggggtcga caccttcaag
qacqacccqa tcaqtcactt cctqctqqaa qqcqaqqatt tcatcgqqat cggcqaqctq
atagogagtg tgggttgccc caccetgttt gtgatggaag geggetatat ggtegatgaa
atoggaatca acgoggtgaa ogtactgoat ggottogaga gcaagogogo ttgagcatoo
gcccgaagac ggcgtgata
499
<210> 690
<211> 157
<212> PRT
<213> Homo sapiens
<400> 690
Arg Val Ala Val Leu Asp Val Asp Phe His His Gly Asn Gly Thr Gln
                                    10
Asn Ile Phe Tyr Pro Arg Asn Asp Val Met Phe Ile Ser Leu His Gly
            20
                                25
Glu Pro Ala Val Ser Tyr Pro Tyr Tyr Ser Gly Phe Ser Asp Glu Val
                            40
Gly Ala Gly Val Gly Glu Gly Phe Asn Leu Asn Tyr Pro Leu Pro Lys
                        55
Asn Thr Ala Trp Asp Thr Tyr Arg Asp Ala Leu Leu His Ala Cys Arg
```

```
65
                                        75
                                                            80
                    70
Lys Leu Gln Gln Phe Ser Pro Gln Val Leu Val Ile Ser Leu Gly Val
                                   90
               85
Asp Thr Phe Lys Asp Asp Pro Ile Ser His Phe Leu Leu Glu Gly Glu
            100
                               105
Asp Phe Ile Gly Ile Gly Glu Leu Ile Ala Ser Val Gly Cys Pro Thr
       115
                           120
                                               125
Leu Phe Val Met Glu Gly Gly Tyr Met Val Asp Glu Ile Gly Ile Asn
                       135
Ala Val Asn Val Leu His Gly Phe Glu Ser Lys Arg Ala
                    150
<210> 691
<211> 336
<212> DNA
<213> Homo sapiens
<400> 691
ntgctgcgtg aaaacgtgca gcgcggcgca tcagcgactg gcgagcgctt tggctggagt
tegeaaagge aaggeeeetg ggagttggee tgegacateg egetgeegtg egecaceeag
aacgaactgg acgccgacgc cgcccgcacg ctgctgcgca acggctgcct ttgcgtggct
ggaggegega atatgeegee egegettgag getgtggata tetttatega ggegggeatt
ctgttcgcgc ccggcaaggc atccaatgcc ggcggcgtgg ccgtgagtgg cctggaaatg
tegcagaacg ccatgegeet getgtggaec geegge
336
<210> 692
<211> 112
<212> PRT
<213> Homo sapiens
<400> 692
Xaa Leu Arg Glu Asn Val Gln Arg Gly Ala Ser Ala Thr Gly Glu Arg
Phe Gly Trp Ser Ser Gln Arg Gln Gly Pro Trp Glu Leu Ala Cys Asp
           20
                               25
Ile Ala Leu Pro Cys Ala Thr Gln Asn Glu Leu Asp Ala Asp Ala Ala
                           40
Arg Thr Leu Leu Arg Asn Gly Cys Leu Cys Val Ala Gly Gly Ala Asn
                       55
Met Pro Pro Ala Leu Glu Ala Val Asp Ile Phe Ile Glu Ala Gly Ile
                   70
Leu Phe Ala Pro Gly Lys Ala Ser Asn Ala Gly Gly Val Ala Val Ser
                                    90
Gly Leu Glu Met Ser Gln Asn Ala Met Arg Leu Leu Trp Thr Ala Gly
                               105
<210> 693
<211> 580
```

794

```
<212> DNA
<213> Homo sapiens
<400> 693
ngggcaaccc ggaaggtccg gcgtcccagc cgcctacctc gctgggaccc tggtcttgct
gteccceget ggeeteetge ecaagegaet geggeeagga tgggeeggaa ggtgaeegtg
gecacetgeg cacteaacca gtgggccctg gacttegagg geaatttgca aagaatttta
aagagtattg aaattgccaa aaacagagga gcaagataca ggcttggacc agagctggaa
atatgegget geggatgttg ggateattat tacqagtegg acaccetett geactegttt
caagtectag eggeeettgt ggagteteee gteacteagg acateatetg egaegtgggg
atacetgtaa tgeacegaaa egteegetae aactgeagag tgatatteet caacaggaaq
420
atcctgctca tcagacccaa gatggccttg gccaatgaag gcaactaccg cgagctgcgc
480
tggttcaccc cgtggtcgag gagtcggtga gtcgggtgcc tgaccactcc tgggatgtgc
gttaagcacc tccgctgtgt gtagccttgg gtcctgatca
580
<210> 694
<211> 136
<212> PRT
<213> Homo sapiens
<400> 694
Met Gly Arg Lys Val Thr Val Ala Thr Cys Ala Leu Asn Gln Trp Ala
                                    10
Leu Asp Phe Glu Gly Asn Leu Gln Arg Ile Leu Lys Ser Ile Glu Ile
Ala Lys Asn Arg Gly Ala Arg Tyr Arg Leu Gly Pro Glu Leu Glu Ile
Cys Gly Cys Gly Cys Trp Asp His Tyr Tyr Glu Ser Asp Thr Leu Leu
                        55
                                            60
His Ser Phe Gln Val Leu Ala Ala Leu Val Glu Ser Pro Val Thr Gln
Asp Ile Ile Cys Asp Val Gly Ile Pro Val Met His Arg Asn Val Arg
                                    90
Tyr Asn Cys Arg Val Ile Phe Leu Asn Arg Lys Ile Leu Leu Ile Arg
                                105
Pro Lys Met Ala Leu Ala Asn Glu Gly Asn Tyr Arg Glu Leu Arg Trp
        115
                            120
                                                125
Phe Thr Pro Trp Ser Arg Ser Arg
   130
                        135
<210> 695
<211> 439
<212> DNA
<213> Homo sapiens
```

```
<400> 695
 ntggtgactc aggegtccaa tggcacgatg getgacgtcg tcaatatgcc gtcctcgacc
 atcatggete tgtegaggge tgattacetg etegatateg agaetteggt geeeggtate
 ggcgacaagt tcgtcccgga cgtctggggc aaactcaaac tcggcaagga caacgagcac
 180
 accepting cottents of contrast acceptance ac
 gatgttggcc tcgatcccga aatcccgccg aagacgatga ccgagtacct cgacttcgcc
 aagaaaatca ccgctgccgg caagcaggcg gtctatggca acacgtcgtg gtacatgctc
 geggaatgge gtgeeetegg egteaaggte atgaatgaeg actteaceaa gtteaetttt
 420
 gcctcggaat ccaacgcgt
 439
 <210> 696
 <211> 146
 <212> PRT
 <213> Homo sapiens
 <400> 696
Xaa Val Thr Gln Ala Ser Asn Gly Thr Met Ala Asp Val Val Asn Met
Pro Ser Ser Thr Ile Met Ala Leu Ser Arg Ala Asp Tyr Leu Leu Asp
                              20
                                                                                 25
 Ile Glu Thr Ser Val Pro Gly Ile Gly Asp Lys Phe Val Pro Asp Val
                                                                       40
Trp Gly Lys Leu Lys Leu Gly Lys Asp Asn Glu His Thr Ala Leu Pro
                                                             55
Trp Tyr Phe Gly Pro Phe Val Val Thr Tyr Asn Lys Asp Ile Phe Lys
                                                   70
                                                                                                      75
Asp Val Gly Leu Asp Pro Glu Ile Pro Pro Lys Thr Met Thr Glu Tyr
Leu Asp Phe Ala Lys Lys Ile Thr Ala Ala Gly Lys Gln Ala Val Tyr
                              100
                                                                                 105
Gly Asn Thr Ser Trp Tyr Met Leu Ala Glu Trp Arg Ala Leu Gly Val
                                                                      120
Lys Val Met Asn Asp Asp Phe Thr Lys Phe Thr Phe Ala Ser Glu Ser
         130
                                                                                                               140
                                                            135
Asn Ala
145
<210> 697
<211> 368
<212> DNA
<213> Homo sapiens
<400> 697
nggcaataac gccgtcgtcg aaatccgttc ccttgatctc gaacatgccg atgaagcggt
60
```

```
tgtcggtgat ggggtcggag atgtcgccct cccacaactt gaacttgatc ggaccaaccc
120
tttccaccct ggagagactc gcctgccttg aaagtcttct tgcccttctt gggcaactga
tegecetece gaacgagata atecaagete aagegacege ceacettgte gegegeetee
240
acaccgacgg aatgcgatgc cgggatcgca tcgatgctag cggcggtgcg tgcaatgaca
atcttqtctt cacqcaqcqa tacqqqcccq ccqttqqaat cqaacacaaa caccttqaaq
gcgttgtn
368
<210> 698
<211> 108
<212> PRT
<213> Homo sapiens
<400> 698
Met Pro Met Lys Arg Leu Ser Val Met Gly Ser Glu Met Ser Pro Ser
                 5
                                    10
His Asn Leu Asn Leu Ile Gly Pro Thr Leu Ser Thr Leu Glu Arg Leu
                                25
Ala Cys Leu Glu Ser Leu Leu Ala Leu Leu Gly Gln Leu Ile Ala Leu
                            40
Pro Asn Glu Ile Ile Gln Ala Gln Ala Thr Ala His Leu Val Ala Arg
Leu His Thr Asp Gly Met Arg Cys Arg Asp Arg Ile Asp Ala Ser Gly
                    70
                                        75
Gly Ala Cys Asn Asp Asn Leu Val Phe Thr Gln Arg Tyr Gly Pro Ala
                85
                                    90
Val Gly Ile Glu His Lys His Leu Glu Gly Val Val
            100
                                105
<210> 699
<211> 363
<212> DNA
<213> Homo sapiens
<400> 699
nacgegtaca caaatagtat eggaatcatt teetateatg etgetatgae gagatttete
cacacctcag attggcaact ggggatgact cggcactacc tgtcgaagcg cggcgacgac
qacccacaqq cacqqtttac tqccqatcqa atcqaqacqq tqcqcaqqct gggcgacgtt
geoeggaagg agggetgega gtttgtegte gtegeeggag atgtettega aacceacaat
qtetecacte agateattqc ceqeqeqtqt qaqqcqataq cetecattga teteceegtg
tacctgctgc ccggaaatca cgacagctta gagccggggt gtctctggga tgggccagaa
360
ttc
363
```

```
<210> 700
<211> 121
<212> PRT
<213> Homo sapiens
<400> 700
Xaa Ala Tyr Thr Asn Ser Ile Gly Ile Ile Ser Tyr His Ala Ala Met
Thr Arg Phe Leu His Thr Ser Asp Trp Gln Leu Gly Met Thr Arg His
            20
                                25
Tyr Leu Ser Lys Arg Gly Asp Asp Pro Gln Ala Arg Phe Thr Ala
                                                 45
Asp Arg Ile Glu Thr Val Arg Arg Leu Gly Asp Val Ala Arg Lys Glu
                                             60
Gly Cys Glu Phe Val Val Val Ala Gly Asp Val Phe Glu Thr His Asn
65
                     70
Val Ser Thr Gln Ile Ile Ala Arg Ala Cys Glu Ala Ile Ala Ser Ile
                85
                                    90
Asp Leu Pro Val Tyr Leu Leu Pro Gly Asn His Asp Ser Leu Glu Pro
                                105
Gly Cys Leu Trp Asp Gly Pro Glu Phe
        115
                            120
<210> 701
<211> 585
<212> DNA
<213> Homo sapiens
<400> 701
nacgegteeg ggeacacegt cacegaggeg acgttecacg gccaceceac gctgatetat
ttcggctacg tccattgcgc ggatgtctgc ccgctgacac tgggcaacat ggtctcggcc
120
ctegategee tgggeteeeg ggeggaegge ategtteega tetteatete egtegateeg
180
geoegegaca caccegeget ggteggacag tatgtegege atttetegee geggategte
240
gggctgaccq gcaccqcagc gcagctgqcq ccqqtactqq cggagttcca catcaccgcg
cgcgccgaac ctgcggcaca cgacatggcc gccgacatgt atgccgtcga ccacagcgcc
ctectetate tgatggaegg caacaacege etgttgeggg tgatggeggt cagegeegae
getgeetege tgaegeacea getggeggee ggeetggeeg gggeaagaat gagaecatga
aagegategg acegaeggae geeceegaae aggeagegee gggetggteg tteggeatea
tectgetget eggeategee ggeatgeteg atttegtega eeggt
585
<210> 702
<211> 159
<212> PRT
```

<213> Homo sapiens <400> 702 Xaa Ala Ser Gly His Thr Val Thr Glu Ala Thr Phe His Gly His Pro 10 Thr Leu Ile Tyr Phe Gly Tyr Val His Cys Ala Asp Val Cys Pro Leu 25 Thr Leu Gly Asn Met Val Ser Ala Leu Asp Arg Leu Gly Ser Arg Ala 40 45 Asp Gly Ile Val Pro Ile Phe Ile Ser Val Asp Pro Ala Arg Asp Thr 55 Pro Ala Leu Val Gly Gln Tyr Val Ala His Phe Ser Pro Arg Ile Val 70 75 Gly Leu Thr Gly Thr Ala Ala Gln Leu Ala Pro Val Leu Ala Glu Phe 90 His Ile Thr Ala Arg Ala Glu Pro Ala Ala His Asp Met Ala Ala Asp 105 Met Tyr Ala Val Asp His Ser Ala Leu Leu Tyr Leu Met Asp Gly Asn 115 120 Asn Arg Leu Leu Arg Val Met Ala Val Ser Ala Asp Ala Ala Ser Leu 135 Thr His Gln Leu Ala Ala Gly Leu Ala Gly Ala Arg Met Arg Pro 150 <210> 703 <211> 390 <212> DNA <213> Homo sapiens <400> 703 ttctctgctc catacacacc tcagcagaat ggcatcgccg agcgcaagaa cataactctt attgagatgg cccgaacgat gcttgatgag tacaagactc cgcggaagtt ctggcctgaa qccattqata ctqcttqtca caccatcaac cqcqtttatc ttcacaaqqt tttqqaqaaa 180 acctettatg agtteetaac tggtaaqaaa eecaatqtaa qetattteaq agtatttqqt gctaggtgct ggatcaagga tcctcatcac acttcaaaat ttgcaccgaa agcacatgaa ggttttatgc ttggttacgg aaaggattcg cactcctaca gagtcttcaa cctctttcac tataaagtgg ttcaaactgt ggatgtgcgn <210> 704 <211> 130 <212> PRT <213> Homo sapiens <400> 704 Phe Ser Ala Pro Tyr Thr Pro Gln Gln Asn Gly Ile Ala Glu Arg Lys 5 10

Asn Ile Thr Leu Ile Glu Met Ala Arg Thr Met Leu Asp Glu Tyr Lys

```
20
                                 25
                                                     30
Thr Pro Arg Lys Phe Trp Pro Glu Ala Ile Asp Thr Ala Cys His Thr
                             40
Ile Asn Arg Val Tyr Leu His Lys Val Leu Glu Lys Thr Ser Tyr Glu
                        55
Phe Leu Thr Gly Lys Lys Pro Asn Val Ser Tyr Phe Arg Val Phe Gly
                    70
                                         75
Ala Arg Cys Trp Ile Lys Asp Pro His His Thr Ser Lys Phe Ala Pro
                85
                                     90
Lys Ala His Glu Gly Phe Met Leu Gly Tyr Gly Lys Asp Ser His Ser
                                 105
Tyr Arg Val Phe Asn Leu Phe His Tyr Lys Val Val Gln Thr Val Asp
                             120
Val Arg
    130
<210> 705
<211> 513
<212> DNA
<213> Homo sapiens
<400> 705
acgegtattt egtecaaatg atteaaatea aaaegeegee gttaaaaaeg atgeaggega
agacaatgcg aataaaaaag gtggtaaata agcatgagtt ttaaaaatgac acaatctcaa
tacacaagtc tttatggacc aactgtagga gactccgtga gattaggaga tacgaacttg
tttgcacaag ttgagaaaga ctatgcaaat tatgggggatg aagctacttt cggtggcgga
aaatcaatto gtgatggtat ggotcaaaat ootaatgtga caagagatga taaaaatgta
qccqatttaq ttttaactaa cqcattaatt attqattatq acaaqattqt taaaqcaqat
360
atoggtatta aaaatggtta tatttttaag attggtaaag otggaaacco agatataatg
gataacgttg acatcatcat tggtgcaaca actgatatta ttgctgctga aggtaaaatt
gttactgccg gcggtatcga tacacacgtg cac
513
<210> 706
<211> 140
<212> PRT
<213> Homo sapiens
<400> 706
Met Ser Phe Lys Met Thr Gln Ser Gln Tyr Thr Ser Leu Tyr Gly Pro
Thr Val Gly Asp Ser Val Arg Leu Gly Asp Thr Asn Leu Phe Ala Gln
            20
                                25
Val Glu Lys Asp Tyr Ala Asn Tyr Gly Asp Glu Ala Thr Phe Gly Gly
                            40
Gly Lys Ser Ile Arg Asp Gly Met Ala Gln Asn Pro Asn Val Thr Arg
```

```
50
                        55
                                             60
Asp Asp Lys Asn Val Ala Asp Leu Val Leu Thr Asn Ala Leu Ile Ile
                    70
Asp Tyr Asp Lys Ile Val Lys Ala Asp Ile Gly Ile Lys Asn Gly Tyr
                                     90
Ile Phe Lys Ile Gly Lys Ala Gly Asn Pro Asp Ile Met Asp Asn Val
            100
                                105
Asp Ile Ile Ile Gly Ala Thr Thr Asp Ile Ile Ala Ala Glu Gly Lys
                            120
Ile Val Thr Ala Gly Gly Ile Asp Thr His Val His
    130
                        135
<210> 707
<211> 409
<212> DNA
<213> Homo sapiens
<400> 707
acgcgtggca tcctcagacc accaaagaca atcctgtcct gggaggcagg gagaaagccg
gcacactaca cagtgcacag gtgaagccet cagggggtcc tggagcaggg ccacctccct
gggggatece caggtgecat tttcatggea gtgtctatgg acggctecec ttggcatggt
getgggtgge aatcetgget gtagetgeea ceceetgeee tittitgette eeteegaggg
cattgtgatc atcagtgtga gtctgttggg aaggagagcc aggtccccag gtttgggaaa
ggagtagggt tteccageet gtetggeeat cacceccag cecageeest cetgetgggt
gaegtgetea gtteggeece tgetgtaetg ggaggggget aggageata
409
<210> 708
<211> 136
<212> PRT
<213> Homo sapiens
<400> 708
Met Leu Leu Ala Pro Ser Gln Tyr Ser Arg Gly Arg Thr Glu His Val
Thr Gln Gln Glu Gly Leu Gly Trp Gly Val Met Ala Arg Gln Ala Gly
Lys Pro Tyr Ser Phe Pro Lys Pro Gly Asp Leu Ala Leu Leu Pro Asn
                            40
Arg Leu Thr Leu Met Ile Thr Met Pro Ser Glu Gly Ser Lys Lys Gly
                                            60
Arg Gly Trp Gln Leu Gln Pro Gly Leu Pro Pro Ser Thr Met Pro Arg
                                        75
                    70
Gly Ala Val His Arg His Cys His Glu Asn Gly Thr Trp Gly Ser Pro
Arg Glu Val Ala Leu Leu Gln Asp Pro Leu Arg Ala Ser Pro Val His
                                105
Cys Val Val Cys Arg Leu Ser Pro Cys Leu Pro Gly Gln Asp Cys Leu
```

125

120

115

```
Trp Trp Ser Glu Asp Ala Thr Arg
    130
                        135
<210> 709
<211> 771
<212> DNA
<213> Homo sapiens
<400> 709
acgogtotga oggagagoot cotgagtoto occaegoaga ggactoagaa agggaatogg
tgaccacacc tgggccagcg acgtgtggtg cgccagcctc cccagcggat cacctcctcc
teccetecca ggaggagat ttetecgaag tecceatgag tgaagcaage teagegaaag
180
acactccact ctttaggatg gagggagagg atgcccttgt gactcagtat cagagcaaag
ccagtgacca cgaaggttta ttgtctgacc ccttgagtga ccttcagttg gtctcagatt
ttaaatetee aateatggee gatetgaaet taageettee tteeatteet gaagtegeat
cggatgatga aagaatagat caggttgaag atgacggaga tcaggttgaa gatgatggag
agacagcaaa gtogtcaact otggacatag gagotttgto ottgggottg gtagtoccot
gteetgagag gggaaagggg eecagtggeg aggeagatag gttggtaetg ggggagggee
tgtgtgattt caggetgcaa gcaccccagg catctgtgac ageteettea gageagacca
cagagttcgg aattcacaaa ccacatcttg gcaagagctc aagcttggat aaacagctgc
caggececag tggtggtgag gaagaaaaac egatgggaaa tgggagteca agecegeete
ctggcacatc cctggacaat cctgtaccca gcccctcccc ttctgagatc t
771
<210> 710
<211> 205
<212> PRT
<213> Homo sapiens
<400> 710
Met Ser Glu Ala Ser Ser Ala Lys Asp Thr Pro Leu Phe Arg Met Glu
                 5
                                    10
Gly Glu Asp Ala Leu Val Thr Gln Tyr Gln Ser Lys Ala Ser Asp His
            20
                                25
Glu Gly Leu Leu Ser Asp Pro Leu Ser Asp Leu Gln Leu Val Ser Asp
        35
Phe Lys Ser Pro Ile Met Ala Asp Leu Asn Leu Ser Leu Pro Ser Ile
                                            60
Pro Glu Val Ala Ser Asp Asp Glu Arg Ile Asp Gln Val Glu Asp Asp
                    70
                                        75
Gly Asp Gln Val Glu Asp Asp Gly Glu Thr Ala Lys Ser Ser Thr Leu
```

```
85
                                    90
Asp Ile Gly Ala Leu Ser Leu Gly Leu Val Val Pro Cys Pro Glu Arg
                                105
Gly Lys Gly Pro Ser Gly Glu Ala Asp Arg Leu Val Leu Gly Glu Gly
                            120
                                                125
        115
Leu Cys Asp Phe Arg Leu Gln Ala Pro Gln Ala Ser Val Thr Ala Pro
                        135
                                            140
Ser Glu Gln Thr Thr Glu Phe Gly Ile His Lys Pro His Leu Gly Lys
                    150
                                        155
Ser Ser Ser Leu Asp Lys Gln Leu Pro Gly Pro Ser Gly Glu Glu
                165
                                    170
Glu Lys Pro Met Gly Asn Gly Ser Pro Ser Pro Pro Pro Gly Thr Ser
                                185
Leu Asp Asn Pro Val Pro Ser Pro Ser Pro Ser Glu Ile
        195
                            200
<210> 711
<211> 432
<212> DNA
<213> Homo sapiens
<400> 711
nnggatccga cggcgcaaag ccttaatgaa gggtaggcag ttacctcttt ttctgtagga
atteteetgt tttatateta etececeeta ggtteateet aeteceteat ettetgaget
aatgtgcccg ctttatttgc acttgcatgg aatatgatta tgaacacagt ttttatcatt
gatgaccacc ccgttatcag gttggcgatt cgtatgttgt tggaacacga gggttataag
gtcgttggtg aaacggacaa cggttgtgac gcgatccaaa tggttcgcga atgcctgccg
gacctgatca teetggatat cagcateceg aaactegaeg geetegaagt getetgeega
ttcaacqcca tqaacacatc catgaaaacc ctgattctta ccgcccagag tccgacgttg
420
ttcgccacgc gt
432
<210> 712
<211> 93
<212> PRT
<213> Homo sapiens
<400> 712
Met Ile Met Asn Thr Val Phe Ile Ile Asp Asp His Pro Val Ile Arg
                                    10
Leu Ala Ile Arg Met Leu Leu Glu His Glu Gly Tyr Lys Val Val Gly
            20
                                25
Glu Thr Asp Asn Gly Cys Asp Ala Ile Gln Met Val Arg Glu Cys Leu
Pro Asp Leu Ile Ile Leu Asp Ile Ser Ile Pro Lys Leu Asp Gly Leu
    50
Glu Val Leu Cys Arg Phe Asn Ala Met Asn Thr Ser Met Lys Thr Leu
```

```
65
                     70
                                                             80
                                         75
 Ile Leu Thr Ala Gln Ser Pro Thr Leu Phe Ala Thr Arg
                 85
<210> 713
<211> 465
<212> DNA
 <213> Homo sapiens
<400> 713
atcctgatcg ccaacggtgg tatgcagaac ccggtgggcg cggtgttcaa ccccqacacc
atgcgcatgg aaatgaccga cttcgccgcg gtgatcttca acccggtggc gcaggccaaq
ttegtgeata eggteagege gggetaegtg geeggegeea tgttegteat gtegateage
180
geetggtace tgetcaaggg cegecacace gaeetggeea agegetegat ggeggtegee
240
gccagcttcg gcctggcgtc ggcgctgtcg gtcgtcgtgc tgggtgacga aagcggttat
300
ctcaccaccg aacaccagaa gatgaagatc gcggccatgg aatccatgtg gcacaccgag
ceggegeeeg egteetteaa eetgategeg etgeeeaace aggeegaacg caagaacgae
ttcgccatcg agattcccta cgtcatgngc ctcatcggca cgcgt
465
<210> 714
<211> 155
<212> PRT
<213> Homo sapiens
<400> 714
Ile Leu Ile Ala Asn Gly Gly Met Gln Asn Pro Val Gly Ala Val Phe
Asn Pro Asp Thr Met Arg Met Glu Met Thr Asp Phe Ala Ala Val Ile
                                25
Phe Asn Pro Val Ala Gln Ala Lys Phe Val His Thr Val Ser Ala Gly
                            40
Tyr Val Ala Gly Ala Met Phe Val Met Ser Ile Ser Ala Trp Tyr Leu
                        55
Leu Lys Gly Arg His Thr Asp Leu Ala Lys Arg Ser Met Ala Val Ala
                    70
                                        75
Ala Ser Phe Gly Leu Ala Ser Ala Leu Ser Val Val Leu Gly Asp
                                    90
Glu Ser Gly Tyr Leu Thr Thr Glu His Gln Lys Met Lys Ile Ala Ala
            100
                                105
Met Glu Ser Met Trp His Thr Glu Pro Ala Pro Ala Ser Phe Asn Leu
                            120
                                                125
Ile Ala Leu Pro Asn Gln Ala Glu Arg Lys Asn Asp Phe Ala Ile Glu
                        135
Ile Pro Tyr Val Met Xaa Leu Ile Gly Thr Arg
                    150
                                        155
```

```
<210> 715
<211> 354
<212> DNA
<213> Homo sapiens
<400> 715
nnaccggtgg atgccaacga atatcgtggc gagctgaaag tcggcgccat caccaccgcc
cagaccggcc tgctgcctca ggcactggtg cgtttgcgcc aggcagcgcc gacggtggag
tgcaagttgg taccgggggt ttccctggag ttgctcagcc aggtggacgc aggcgagctg
gacteggega teateatteg coegecettt gatttgeeca aggagttgea egtacaggta
ctgcgcaagg agccgtttgt gttgatcgtg ccccaggcgg tcgggggtga tgacccgttg
caactgoteg aageteatee ceaegtgege tacgacegeg ettegtttgg eggg
354
<210> 716
<211> 118
<212> PRT
<213> Homo sapiens
<400> 716
Xaa Pro Val Asp Ala Asn Glu Tyr Arg Gly Glu Leu Lys Val Gly Ala
Ile Thr Thr Ala Gln Thr Gly Leu Leu Pro Gln Ala Leu Val Arg Leu
                                25
Arg Gln Ala Ala Pro Thr Val Glu Cys Lys Leu Val Pro Gly Val Ser
                            40
Leu Glu Leu Leu Ser Gln Val Asp Ala Gly Glu Leu Asp Ser Ala Ile
                        55
                                             60
Ile Ile Arg Pro Pro Phe Asp Leu Pro Lys Glu Leu His Val Gln Val
Leu Arg Lys Glu Pro Phe Val Leu Ile Val Pro Gln Ala Val Gly Gly
                                    90
Asp Asp Pro Leu Gln Leu Leu Glu Ala His Pro His Val Arg Tyr Asp
            100
                                105
                                                     110
Arg Ala Ser Phe Gly Gly
        115
<210> 717
<211> 401
<212> DNA
<213> Homo sapiens
<400> 717
acgcgtatct tttcggtaaa cctactaatt tttcattcaa cgctcgacgc ccaggtaaag
ccgttaagtc atctaaatag gccattctgt ggctctccat cagtaagaac caaatccata
ggagaagttg ageggatagt aatgcatcaa attgatgetg agaaacegaa aaatgggaca
180
```

```
atataatcaa getgacaata etgatcaaac cactegeatg aaagetaeta eegettgace
240
accaagcaga aaaaaccaat gaaatgetta aaaataaaat egteeaaagt aaaaagetag
accaggtggt agccagatta aaaataggcc gctctagaaa atgaaaagaa atccaatgag
attcaacggc gtagcaccag cacagcaaca tagccactag t
<210> 718
<211> 130
<212> PRT
<213> Homo sapiens
<400> 718
Met Leu Cys Trp Cys Tyr Ala Val Glu Ser His Trp Ile Ser Phe
1
                 5
His Phe Leu Glu Arg Pro Ile Phe Asn Leu Ala Thr Thr Trp Ser Ser
                                25
Phe Leu Leu Trp Thr Ile Leu Phe Leu Ser Ile Ser Leu Val Phe Ser
                            40
Ala Trp Trp Ser Ser Gly Ser Ser Phe His Ala Ser Gly Leu Ile Ser
                                            60
                        55
Ile Val Ser Leu Ile Ile Leu Ser His Phe Ser Val Ser Gln His Gln
                    70
                                        75
Phe Asp Ala Leu Leu Ser Ala Gln Leu Leu Leu Trp Ile Trp Phe Leu
                85
Leu Met Glu Ser His Arg Met Ala Tyr Leu Asp Asp Leu Thr Ala Leu
            100
                                105
                                                     110
Pro Gly Arg Arg Ala Leu Asn Glu Lys Leu Val Gly Leu Pro Lys Arg
                            120
                                                 125
Tyr Ala
    130
<210> 719
<211> 685
<212> DNA
<213> Homo sapiens
<400> 719
tatatagggc tatctacctt attcacagca cattccatct acacaacctt gtagcgttca
ctcttgaagg cggattttca taggcgctgc gcctctcata ttcaagcatc aaggcaatcc
aatctccctq cqttqqtaac tqggcaaaag aaagacctct gcagtccagc aacctcatcg
tgcaaatgcc gtggcgtggt caactctgac ggcctggaag ctgcagacct tgtcaaagga
ceteggeega aatteaceet tgatetettt gtettgteea aetettgtee etgagaatga
aactgtette tgagagteca teaatgegae getgaetegt gagaagtget gaateaegte
gecattttgg agacetgeca acgeagetet ggaacetgec aggacgeett ccacaacace
420
```

```
agaacqcaqc qactttqcqt taaatccaaq ctcaaacacc tcttqctcca caggcctgag
480
cataaaaagg tattctgcga cgggaaatgt aaagtctgag cttaggtgca gagtaccgcc
atequateaqt qtetquataet qettqteege gaettetttg eegageaatg ggtatagegt
600
tttcaaccaa gtggaagcag tcgtttgctc accctggcga ttccggcgag ttagggacat
gaccacgtca tcgatgggat tttgc
685
<210> 720
<211> 161
<212> PRT
<213> Homo sapiens
<400> 720
Met Ser Leu Thr Arg Arg Asn Arg Gln Gly Glu Gln Thr Thr Ala Ser
                 5
Thr Trp Leu Lys Thr Leu Tyr Pro Leu Leu Gly Lys Glu Val Ala Asp
            20
Lys Gln Tyr Gln Thr Leu Ile Asp Gly Gly Thr Leu His Leu Ser Ser
Asp Phe Thr Phe Pro Val Ala Glu Tyr Leu Phe Met Leu Arg Pro Val
Glu Gln Glu Val Phe Glu Leu Gly Phe Asn Ala Lys Ser Leu Arg Ser
                    70
                                        75
Gly Val Val Glu Gly Val Leu Ala Gly Ser Arg Ala Ala Leu Ala Gly
                                    90
Leu Gln Asn Gly Asp Val Ile Gln His Phe Ser Arg Val Ser Val Ala
            100
                                105
Leu Met Asp Ser Gln Lys Thr Val Ser Phe Ser Gly Thr Arg Val Gly
                            120
Gln Asp Lys Glu Ile Lys Gly Glu Phe Arg Pro Arg Ser Phe Asp Lys
                                            140
                        135
Val Cys Ser Phe Gln Ala Val Arg Val Asp His Ala Thr Ala Phe Ala
145
                    150
                                        155
                                                             160
Arg
<210> 721
<211> 579
<212> DNA
<213> Homo sapiens
<400> 721
aagettggga teagggtgtg geagtgtggc gggagtgtgg aggteetgee etgeteaegg
attgcccaca ttgagcgagc ccacaagccc tacacagagg acctcaccgc ccatgtccgc
aggaacgctc tcagggtggc tgaagtctgg atggatgaat ttaaaagcca cgtctactgg
catggaacat accaggagga ctcaggaatt gacattgggg acatcactgc aaggaaggct
240
```

```
ctcaggaaac agctgcagtg caagaccttc cggtggtacc tggtcagcgt gtacccagag
atgaggatgt actccqacat cattgcctat ggagtgctgc agaattctct gaagactgat
ttgtgtcttg accaggggcc agatacagag aatgtcccca tcatgtacat ctgccatggg
atqacqcctc aqaacqtqta ctacacqaqc aqtcaqcaqa tccatqtqqq cattctqagc
cccaccgtgg atgatgatga caaccgatgc ctggtggacg tcaacagccg gccccggctc
atcqaatqca gctacqccaa aqccaagagg atgaagctt
<210> 722
<211> 193
<212> PRT
<213> Homo sapiens
<400> 722
Lys Leu Gly Ile Arg Val Trp Gln Cys Gly Gly Ser Val Glu Val Leu
                                    10
1
Pro Cys Ser Arg Ile Ala His Ile Glu Arg Ala His Lys Pro Tyr Thr
Glu Asp Leu Thr Ala His Val Arg Arg Asn Ala Leu Arg Val Ala Glu
Val Trp Met Asp Glu Phe Lys Ser His Val Tyr Trp His Gly Thr Tyr
                                             60
                        55
Gln Glu Asp Ser Gly Ile Asp Ile Gly Asp Ile Thr Ala Arg Lys Ala
                                         75
Leu Arg Lys Gln Leu Gln Cys Lys Thr Phe Arg Trp Tyr Leu Val Ser
                                    90
Val Tyr Pro Glu Met Arg Met Tyr Ser Asp Ile Ile Ala Tyr Gly Val
                                105
                                                     110
Leu Gln Asn Ser Leu Lys Thr Asp Leu Cys Leu Asp Gln Gly Pro Asp
                            120
                                                 125
Thr Glu Asn Val Pro Ile Met Tyr Ile Cys His Gly Met Thr Pro Gln
                        135
                                            140
Asn Val Tyr Tyr Thr Ser Ser Gln Gln Ile His Val Gly Ile Leu Ser
                    150
                                        155
Pro Thr Val Asp Asp Asp Asp Asp Asp Cys Leu Val Asp Val Asn Ser
                                    170
Arg Pro Arg Leu Ile Glu Cys Ser Tyr Ala Lys Ala Lys Arg Met Lys
            180
                                185
                                                     190
Leu
<210> 723
<211> 384
<212> DNA
<213> Homo sapiens
<400> 723
acgegtecte ttacgeteag ttttgacaat gegtgetgge agecaacega agecgtaaaa
60
```

ctcaacgaaa tgctctcgct taaaccgtgc gaaggaaccc caccgcaatg gcgcttattc cgcgaagggg attaccaaat gcgcattgat acgcgctccg gaacgcctac gctgatgctt acceptacaaa gtgtaaccega caaacctgtt accepacetca ctcgacaatg tcctaaatgg gacggcaage cecteaceet tgacgtaacg aatacattee eggaaggete egtegtaega gacttctaca gcaagcaaac cgctatggtg cagcaaggta aaatcacact tcagcctgcc gctaacagca atggcctgct gctg 384 <210> 724 <211> 128 <212> PRT <213> Homo sapiens <400> 724 Thr Arg Pro Leu Thr Leu Ser Phe Asp Asn Ala Cys Trp Gln Pro Thr 10 Glu Ala Val Lys Leu Asn Glu Met Leu Ser Leu Lys Pro Cys Glu Gly 25 Thr Pro Pro Gln Trp Arg Leu Phe Arg Glu Gly Asp Tyr Gln Met Arg 40 Ile Asp Thr Arg Ser Gly Thr Pro Thr Leu Met Leu Thr Val Gln Ser 55 60 Val Thr Asp Lys Pro Val Thr Asp Val Thr Arq Gln Cys Pro Lys Trp 70 75 Asp Gly Lys Pro Leu Thr Leu Asp Val Thr Asn Thr Phe Pro Glu Gly 85 90 Ser Val Val Arg Asp Phe Tyr Ser Lys Gln Thr Ala Met Val Gln Gln 100 105 Gly Lys Ile Thr Leu Gln Pro Ala Ala Asn Ser Asn Gly Leu Leu 115 120 125 <210> 725 <211> 521 <212> DNA <213> Homo sapiens <400> 725 teatgaettg etttattgea gtggtetgga aetgttggat ggaacqaatt ttatetaqaq cctggtgaac agcttcccag gtgtgcattt agggcctcct agggatcatc aaagttttta gaaaataggt ttccttcttc cacaggcatg gagaaggaag gaaattttgc actggccttt gggaagetga agaagagetg gggggagget tgttetgaca aaatagtgae teteteeetg 240 ettgaaatgt cecacagaag getgtttetg gtteacattt geceetetag gtecaeteee teceetteat cetgeteact gecagagaga etatgetggg agtggtgcat eggtggtete 360

```
caggecettt taggetcaag gtgttcattc cetqqetcet teeetgecat gtetttgtte
420
cttcctccct ccttcccatc ccaqcaqcca ccctcctcct tccaccaqac ctgggaacca
tcatcccaac cacaatcacc ccgtggttct attacacgcg t
<210> 726
<211> 124
<212> PRT
<213> Homo sapiens
<400> 726
Met Glu Lys Glu Gly Asn Phe Ala Leu Ala Phe Gly Lys Leu Lys Lys
Ser Trp Gly Glu Ala Cys Ser Asp Lys Ile Val Thr Leu Ser Leu Leu
            20
                                25
Glu Met Ser His Arg Arg Leu Phe Leu Val His Ile Cys Pro Ser Arg
Ser Thr Pro Ser Pro Ser Ser Cys Ser Leu Pro Glu Arg Leu Cys Trp
                        55
Glu Trp Cys Ile Gly Gly Leu Gln Ala Leu Leu Gly Ser Arg Cys Ser
Phe Pro Gly Ser Phe Pro Ala Met Ser Leu Phe Leu Pro Pro Ser Phe
                                    90
                85
Pro Ser Gln Gln Pro Pro Ser Ser Phe His Gln Thr Trp Glu Pro Ser
            100
                                105
Ser Gln Pro Gln Ser Pro Arg Gly Ser Ile Thr Arg
                            120
<210> 727
<211> 629
<212> DNA
<213> Homo sapiens
<400> 727
naccggtgtt cgtcccaact ccggtgtcta cgcccgcacg aaccagattg gtgctccggc
tetgttgeet gaeggeaegg tggeteagga etegateteg ggaacettgg egaetegegg
tgccattate gaegetggtg agttgaagge teegaegeat egggegtttg egtcaateag
tgccgcccgc cacgaggtcc aaggagaact cgaatgaatc cgaatgacta cctggtgctc
teggegatet tgttegetat eggeategtg ggetteetga egaggegtaa tgeeetggtg
geetttatgt eggtggagtt gatgeteaac geegegaace tggegetggt gaettteget
cacgtacacg getetetega eggacaggte ggggttttet tegtgatgat egtggeagee
getgaggtgg ttgteggttt ggegateate gteactattt teegtteeeg tegeaceact
teggtggaeg acaccaacet getgaagtte tgagggaggt acegtgaetg tettggaaac
540
```

eggettgtte aaegtggeet ggeteatgat tgeggtgeea etggtggttg eegegetget 600 attggtgctg ggacgccgca gcgacgcgt 629 <210> 728 <211> 99 <212> PRT <213> Homo sapiens <400> 728 Met Asn Pro Asn Asp Tyr Leu Val Leu Ser Ala Ile Leu Phe Ala Ile Gly Ile Val Gly Phe Leu Thr Arg Arg Asn Ala Leu Val Ala Phe Met 20 25 Ser Val Glu Leu Met Leu Asn Ala Ala Asn Leu Ala Leu Val Thr Phe Ala His Val His Gly Ser Leu Asp Gly Gln Val Gly Val Phe Phe Val Met Ile Val Ala Ala Ala Glu Val Val Gly Leu Ala Ile Ile Val 75 Thr Ile Phe Arg Ser Arg Arg Thr Thr Ser Val Asp Asp Thr Asn Leu 85 90 Leu Lys Phe <210> 729 <211> 4716 <212> DNA <213> Homo sapiens <400> 729 nnaqqaqaga aqaaattqaa aagcaggcac ttqaqaagtc taagagaagc tttaagacgt ttaaggaaat gctgcaggac agggaatccc aaaatcaaaa gtctacagtt ccgtcaagaa ggagaatgta ttcttttgat gatgtgctgg aggaaggaaa gcgaccccct acaatgactg tgtcagaagc aagttaccag agtgagagag tagaagagaa gggagcaact tattcttcag aaattcccaa agaagattct accacttttg caaaaagaga ggacccgtgt aacaactgaa attcagette ettetcaaag teetgtggaa gaacaaagee cageetettt gtettetetg cgttcacgga gcacacaaat ggaatcaact cgtgtttcag cttctctccc cagaagttac eggaaaactg atacagteag gttaacatet gtggtcacac caagaceett tggeteteag 480 acaaggggaa totcatcact coccagatot tacacgatgg atgatgottg gaagtataat 540 ggagatgttg aagacattaa gagaactcca aacaatgtgg tcagcacccc tgcaccaagc ccqqacqcaa gccaactggc ttcaagctta tctagccaga aagaggtagc agcaacagaa 660

gaagatgtga 720	caaggctgcc	ctctcctaca	tcccccttct	catctctttc	ccaagaccag
gctgccactt 780	ctaaagccac	attgtcttcc	acatctggtc	ttgatttaat	gtctgaatct
ggagaagggg 840	aaatctcccc	acaaagagaa	gtctcaagat	cccaggatca	gttcagtgat
atgagaatca 900	gcataaacca	gacgcctggg	aagagtcttg	actttgggtt	tacaataaaa
tgggatattc 960	ctgggatctt	cgtagcatca	gttgaagcag	gtageceage	agaattttct
1020		aattattgct		_	
1080		catggctaag			
1140		tggttcacct			
1200		ttcaaatcta	_	_	
1260		caaagaaatc			
1320	-	catttctttg			
1380		ggtggttcct			
1440		agaggaggag			
1500		aaaatatcaa		-	
1560		agagagagag			
1620		gtctctgacc			
1680		caagtettea			
1740		ggaagttgtt			
1800		gaggaaatgg			
1860		tgaggagcag			
1920		atcagtcaga			
1980		agaagcatct			
2040		ggatgattac			
2100		gacctcttca			
2160		gcaacaaatc			
2220		ccgacagcgc			
cttcctggga 2280	tcatgagaag	aggcgaatct	ttagataacc `	tggactcccc	ccgatccaat

tcttggagac 23 4 0	agcctccttg	gctcaatcag	cccacaggat	tctatgcttc	ttcctctgtg
caagacttta 2400	gtcgcccacc	acctcagctg	gtgtccacat	caaaccgtgc	ctacatgcgg
aacccctcct 2460	ccagcgtgcc	cccaccttca	gctggctccg	tgaagacctc	caccacaggt
gtggccacca 2520	cacagteece	caccccgaga	agccattccc	cttcagcttc	acagtcaggc
tctcagctgc 2580	gtaacaggtc	agtcagtggg	aagcgcatat	gctcctactg	caataacatt
ctgggcaaag 2640	gagccgccat	gatcatcgag	tccctgggtc	tttgttatca	tttgcattgt
tttaagtgtg 2700	ttgcctgtga	gtgtgacctc	ggaggetett	cctcaggagc	tgaagtcagg
atcagaaacc 2760	accaactgta	ctgcaacgac	tgctatctca	gattcaaatc	tggacggcca
accgccatgt 2820	gatgtaagcc	tccatacgaa	agcactgttg	cagatagaag	aagaggtggt
tgctgctcat 2880	gtagatctat	aaatatgtgt	tgtatgtctt	ttttgctttt	ttttttaaaa
aaaagaataa 2940	cttttttgc	ctctttagat	tacatagaag	cattgtagtc	ttggtagaac
cagtattttt 3000	gttgtttatt	tataaggtaa	ttgtgtgtgg	ggaaaagtgc	agtatttacc
tgttgaattc 3060	agcatcttga	gagcacaagg	gaaaaaataa	gaacctacga	atatttttga
ggcagataat 3120	gatctagttt	gactttctag	ttagtggtgt	tttgaagagg	gtattttatt
gttttttaaa 3180	aaaaggttct	taaacattat	ttgaaatagt	taatataaat	acataattgc
atttgctctg 3240	tttattgtaa	tgtattctaa	attaatgcag	aaccatatgg	aaaatttcat
taaaatctat 3300	ccccaaatgt	gctttctgta	teetteette	tacctattat	tctgattttt
3360	_		ttgatgaagg		
gaaatgttgc 3420	taagtaattc	ccaatagaaa	gctgcttatt	ttcattaatg	aaaaataacc
atggtttgta 3480	tactagaagt	cttcttcaga	aactggtgag	cctttctgtt	caattgcatt
tgtaaataaa 3540	cttgctgatg	catttaacga	gtgggtcgtc	tttttcttag	gtgtatgtgt
ctgacctcag 3600	gccttttagc	catatttcag	tatgtggcct	tttttgatgt	tatgttttat
ccagtagett 3660	tactaaggta	taattgatgt	aataaactgc	atatatttaa	agtgtatact
ttgacaaatt 3720	ttgacatggt	gtataccttc	gaaactatgc	cacagtctgg	atgtgtttac
tgaaacattt 3780	taataaggaa	gtttattttt	gataaagtta	tgtttttgga	tacaatatat
ttgtatggtg 3840	agagtgatga	attgttggat	catttgaata	aaatctttta	ctaaccccat
gataaaagga 3900	gaagacaaca	gtgagcttag	aatatctata `	aagcaaaaaa	tgtagtctct

```
tgtttaaaaa atctggagcg ggaatgcaag gatacaaaac tttagcatgc tttgagcaaa
3960
aatttaaact tactggaatc ttttataata atgtaagtgg aatggaggat tctaggaact
4020
gagaactgta ttggaatagg ttcaaaatat gtaagaaatg ctaatgtggg agataaaaat
tttatttagt acttattctg attattatta aagtaataat gtgttccttg aggataactt
gtcaaatgcc ccaaaqcata aaqaatataa ttctqaatcc caaattccaa aqacaaqaac
totgtgtttg aattcattct gcatataatt atttataagt atagattgtg aatttttcca
tgttcttaaa attattttta tettttttea tggttgeata gtgeteeatt gtttggeett
ggtaatattt agttgataat tccattactg tgtatttttc acttgtttct aagatcaaac
4380
attttaatat gtgcatgtta tatataaata tgtaaattct gtgatactct atgatcatct
4440
ctttctttat attattttca tagacatgaa atagttgctc agagattatg cattttaaga
4500
cactcatagt atatattgcc aaagtggttt ccagaaaggc actgctggct tcgactccta
4560
taagcagcac gtgggcttgt tcatctcact gcatgtttat qaaqatacaq ttcttttqcc
ttgttctctg cctgatgtgt atgcagaggc agccctcaat atgcagtggt tgaataaatg
aatgaagaaa ccactatcaa aaaaaaaaa aaaaaa
4716
<210> 730
<211> 797
<212> PRT
<213> Homo sapiens
<400> 730
Met Glu Ser Thr Arg Val Ser Ala Ser Leu Pro Arg Ser Tyr Arg Lys
                                    10
Thr Asp Thr Val Arg Leu Thr Ser Val Val Thr Pro Arg Pro Phe Gly
                                25
Ser Gln Thr Arg Gly Ile Ser Ser Leu Pro Arg Ser Tyr Thr Met Asp
Asp Ala Trp Lys Tyr Asn Gly Asp Val Glu Asp Ile Lys Arg Thr Pro
                        55
                                            60
Asn Asn Val Val Ser Thr Pro Ala Pro Ser Pro Asp Ala Ser Gln Leu
                    70
Ala Ser Ser Leu Ser Ser Gln Lys Glu Val Ala Ala Thr Glu Glu Asp
                85
                                    90
Val Thr Arg Leu Pro Ser Pro Thr Ser Pro Phe Ser Ser Leu Ser Gln
                                105
Asp Gln Ala Ala Thr Ser Lys Ala Thr Leu Ser Ser Thr Ser Gly Leu
                            120
Asp Leu Met Ser Glu Ser Gly Glu Gly Glu Ile Ser Pro Gln Arg Glu
   130
                        135
                                            140
Val Ser Arg Ser Gln Asp Gln Phe Ser Asp Met Arg Ile Ser Ile Asn
```

145					150					155					160
	Thr	Pro	Glv	Lvs			Asp	Phe	Glv		Thr	Tle	Lvs	Trp	Asp
0211			O.T.	165	001				170					175	_
Ile	Pro	Gly	Ile		Val	Ala	Ser	Val	Glu	Ala	Gly	Ser	Pro	Ala	Glu
		-	180					185			_		190		
Phe	Ser	Gln	Leu	Gln	Val	Asp	Asp	Glu	Ile	Ile	Ala	Ile	Asn	Asn	Thr
		195					200					205			
Lys	Phe	Ser	Tyr	Asn	Asp		Lys	Glu	Trp	Glu		Ala	Met	Ala	Lys
_	210			_		215	_				220				
	Gln	Glu	Thr	Gly		Leu	Val	Met	Asp		Arg	Arg	Tyr	Gly	Lys
225	0 3	0	D	0 3	230	T		7 1.	7	235	mb	C	a1	T1.	240
Ата	СТУ	ser	PIO	245	1111	цуъ	пр	TTE	250	Ala	1111	ser	Сту	255	Tyr
Asn	Ser	Glu	Lvs		Ser	Asn	Leu	Ser		Thr	Thr	Asp	Phe		Glu
		014	260		502			265					270		
Ser	Leu	Gln		Ser	Asn	Ile	Glu		Lys	Glu	Ile	Asn	Gly	Ile	His
		275					280		-			285	-		
Asp	Glu	Ser	Asn	Ala	Phe	Glu	Ser	Lys	Ala	Ser	Glu	Ser	Ile	Ser	Leu
	290					295					300				
_	Asn	Leu	Lys	Arg	-	Ser	Gln	Phe	Phe		Gln	Gly	Ser	Ser	_
305		••- 1	5	•	310	D		D	m)	315			B	0	320
Ser	Val	vai	Pro		Leu	Pro	Val	Pro		lle	Ser	Ата	Pro	335	Arg
Trn	Val	Trn	Λcn	325	Glu	Glu	Glu	Δνα	330	λνα	Gln	Glu	Δνα		Gln
112	val	TIP	340	0111	OIU	Olu	GIU	345	נעם	n. 9	OIII	014	350	111	0111
Lys	Glu	Gln		Arg	Leu	Leu	Gln		Lys	Tyr	Gln	Arg		Gln	Glu
•		355	-				360		-	-		365			
Lys	Leu	Arg	Glu	Glu	Trp	Gln	Arg	Ala	Lys	Gln	Glu	Ala	Glu	Arg	Glu
	370					375					380				
	Ser	Lys	Tyr	Leu	_	Glu	Glu	Leu	Met		Leu	Ser	Ser	Asn	
385	_	_		_,	390	~ 3	_	_	_	395		_	~ 1		400
Met	Ser	Leu	Thr		Arg	GIU	Pro	Ser		Ala	Thr	Trp	GIU		Thr
Trn	Ser	Glu	Gl v	405	Lve	Sar	Sar	λen	410	Glu	Glv	Thr	Δrα	415	Glv
пр	261	GIU	420	261	шys	Jer	261	425	AL 9	314	CTY	1114	430	πıα	Gry
Glu	Glu	Glu		Arq	Gln	Pro	Gln		Glu	Val	Val	His		Asp	Gln
		435					440					445		•	
Gly	Lys	Lys	Pro	Gln	Asp	Gln	Leu	Val	Ile	Glu	Arg	Glu	Arg	Lys	Trp
	450					455					460				
Glu	Gln	Gln	Leu	Gln		Glu	Gln	Glu	Gln		Arg	Leu	Gln	Ala	Glu
465				_	470	_				475	_	_			480
Ala	GLu	GIu	GIn	-	Arg	Pro	Ala	G⊥u		GIn	Lys	Arg	Gln		Glu
Tlo	Glu	7.50	G111	485	Cor	17-1	7~~	Tlo	490	Gln	Тил) ra	λνα	495 Pro	17 n T
TTG	Giu	Arg	500	TITE	Ser	vai	Arg	505	TYL	GIII	TYL	Arg	510	FIO	vaı
Asp	Ser	Tvr		Ile	Pro	Lvs	Thr		Glu	Ala	Ser	Ser		Phe	Leu
E		515				-1-	520					525	1		
Pro	Gly		Arg	Asn	Lys	Ser		Ser	Thr	Thr	Glu		Asp	Asp	Tyr
	530	-	-		_	535	_				540		-	_	
Ser	Thr	Asn	Lys	Asn	Gly	Asn	Asn	Lys	${\tt Tyr}$	Leu	Asp	Gln	Ile	Gly	Asn
545					550					555		=			560
Thr	Thr	Ser	Ser		Arg	Arg	Ser	Lys		Glu	Gln	Val	Pro		Gly
				565					570					575	
Ala	C1	T	01		~7~	~1 ~	T1 -	T 0	a1 -	C1	Ma-	7 ~~~	T	7~~	Th-

```
580
                                585
                                                     590
Pro Leu His Asn Asp Asn Ser Trp Ile Arg Gln Arg Ser Ala Ser Val
                            600
Asn Lys Glu Pro Val Ser Leu Pro Gly Ile Met Arg Arg Gly Glu Ser
                        615
                                             620
Leu Asp Asn Leu Asp Ser Pro Arg Ser Asn Ser Trp Arg Gln Pro Pro
                    630
                                        635
Trp Leu Asn Gln Pro Thr Gly Phe Tyr Ala Ser Ser Ser Val Gln Asp
                645
                                    650
Phe Ser Arg Pro Pro Pro Gln Leu Val Ser Thr Ser Asn Arg Ala Tyr
            660
                                665
Met Arg Asn Pro Ser Ser Ser Val Pro Pro Pro Ser Ala Gly Ser Val
                            680
                                                685
Lys Thr Ser Thr Thr Gly Val Ala Thr Thr Gln Ser Pro Thr Pro Arg
                        695
                                             700
Ser His Ser Pro Ser Ala Ser Gln Ser Gly Ser Gln Leu Arg Asn Arg
                    710
                                        715
Ser Val Ser Gly Lys Arg Ile Cys Ser Tyr Cys Asn Asn Ile Leu Gly
                725
                                    730
Lys Gly Ala Ala Met Ile Ile Glu Ser Leu Gly Leu Cys Tyr His Leu
                                745
His Cys Phe Lys Cys Val Ala Cys Glu Cys Asp Leu Gly Gly Ser Ser
                            760
Ser Gly Ala Glu Val Arg Ile Arg Asn His Gln Leu Tyr Cys Asn Asp
                        775
Cys Tyr Leu Arg Phe Lys Ser Gly Arg Pro Thr Ala Met
785
                    790
<210> 731
<211> 513
<212> DNA
<213> Homo sapiens
<400> 731
tegegageae acteeageet etgettitet eagtggettg geeagaacag aattigttet
60
actegaatga coccagatto cetecaagaa etteceteet eteatteage ttetetggat
tetteaaatg aetgaetggg gaaacagatt gttggaaaaa caettteggg ttgeetegat
ggggtcaata ccttatcagg ccacaggaaa gacaaaggaa aatgcttcct gctggagcat
gtgcacatat gttgttcctt taactccaaa tacgtatgca ggggtggtgg taggatcaga
aaatgtgtga tcagaaagtg accagttccc caccattttg tgtgggtttt attttctttc
tgctccgtgt tgactctttt ccccacaaca cggaagctgc ttaatccaaa gacttggacc
atttcattct gtttcagatc cattccaaca aaatgatcag ttggtggctt atgtaaaaag
cagetecatg actacattta aatattgact agt
513
<210> 732
```

<211> 113 <212> PRT <213> Homo sapiens <400> 732 Met Asp Leu Lys Gln Asn Glu Met Val Gln Val Phe Gly Leu Ser Ser 10 Phe Arg Val Val Gly Lys Arg Val Asn Thr Glu Gln Lys Glu Asn Lys 20 25 Thr His Thr Lys Trp Trp Gly Thr Gly His Phe Leu Ile Thr His Phe 40 Leu Ile Leu Pro Pro Pro Leu His Thr Tyr Leu Glu Leu Lys Glu Gln 55 His Met Cys Thr Cys Ser Ser Arg Lys His Phe Pro Leu Ser Phe Leu Trp Pro Asp Lys Val Leu Thr Pro Ser Arg Gln Pro Glu Ser Val Phe 85 90 Pro Thr Ile Cys Phe Pro Ser Gln Ser Phe Glu Glu Ser Arg Glu Ala 110 Glu <210> 733 <211> 4366 <212> DNA <213> Homo sapiens <400> 733 nttttaacaa aaaaaatata ttaataaaaa aqttcaaaaa agggggggga ttgtcatctc ctttggggtg cgatggcttc aaatccaaac tgaggctctc cgggtggtaa ggatgtgcga qqaqqcctct tqaaqaactc caqqcctatc atqctqtctc tccqctaaag cctqagqccc 180 gaggteagag gatteaggaa ggetetgeag teggeecagg agggeggggt ecegtggtgg 240 aggegggag agggaaggac egeaeggage aceaaceeet geteggeeee gtaceaggaa gcgctggggg gcagaggagc ggagttgagg cagaagccag gtgaggctgg agtcctgggg taggcagget gtcgctgccg ccgccgctgc ctgagatgga aatcggggga ggaagctcgc ggaagaaaca gcggagggtt cgtggaaaaa aaagcaatgg ctgagctaag ggatggggta ccaggttagg gggaggaaac ggtagagaga aataggtggg gctcccgcgc atgctcaata gggaaggggc gcccgtgggg tgcggacgca tgcgtagtgg gcttctcggg cggtggggtg ggcgcggaat ttggagaccc acttcgggaa aggtaaaatg cgggcgcaat tttagggtac ctgtgggacc cgggctctta gggtcttgac acaggacggg cctgggccga aagcccaggc acgcccgacc agagagtgtt tetecactce eggactetge cagtcaggat ggtggtgcet 780

tcgctgaagc 840	ttcaggacct	catcgaagag	attcgcgggg	ccaagactca	ggcccaggag
cgggaggtga 900	tccaaaagga	gtgtgcccac	atccgggcct	ccttccgcga	cggggaccca
gtgcacaggc 960	accggcagct	ggccaaactg	ctctacgtcc	acatgttggg	ctaccccgcc
cactttggac 1020	agatggagtg	cctgaaactg	atcgcctcct	ccagattcac	agacaagagg
gtgggctacc 1080	tgggggccat	gcttctattg	gatgagaggc	acgatgccca	cctgctcatt
accaacagca 1140	tcaagaatga	cctgagccag	gggattcagc	cagtacaagg	cctggccttg
tgcactttga 1200	gcaccatggg	ctctgctgag	atgtgccgag	acctggcccc	agaggtggag
aaactgctcc 1260	tgcagcccag	tccctacgtg	cgcaagaagg	ctattctgac	tgcagtgcac
atgatccgga 1320	aggtccctga	actctccagt	gtcttcctcc	caccctgtgc	ccaactgctt
catgagcgtc 1380	accatggcat	cctgctgggc	accatcacgc	tgatcacgga	gctctgcgaa
cgaagccctg 1440	cagccctcag	gcacttccga	aaggtggtac	cccagctggt	acacatcctc
cggactctgg 1500	tgacaatggg	atactccaca	gaacacagca	tatctggagt	cagcgacccc
ttcctgcagg 1560	tccagatact	tegtetgett	cggatcctgg	gccggaacca	cgaggagagc
agtgagacca 1620	tgaatgactt	gctggcccag	gtggccacta	acacggacac	cagccgaaat
gccggaaatg 1680	cggtcctgtt	tgagacagta	ctcaccatca	tggatatccg	ctctgcagct
ggcctacggg 1740	ttctagctgt	caacattctt	ggtcgcttcc	tactcaacag	tgacaggaac
attaggtatg 1800	tagccctgac	atcactgctt	cgactggtgc	agtctgatca	cagtgctgtg
cagcggcatc 1860	ggcccactgt	ggtggaatgt	ctacgggaaa	ctgatgcctc	cctcagccgg
tgagccctgg 1920	aactaagcct	ggctctggta	aatagctcca	atgtgcgagc	catgatgcaa
gagctgcagg 1980	cctttctgga	gtcctgccct	cctgacctac	gggctgactg	tgcctcaggc
atcctgctgg 2040	ctgcagagag	gtttgctcca	accaaacgct	ggcacataga	caccatcctg
catgtgctga 2100	caacggcggg	cacccatgtg	cgggatgatg	cagtggccaa	cctgacccag
ctgattgggg 2160	gggcccagga	gctacatgcc	tactctgtgc	gccgcctcta	caatgccctg
gcagaagaca 2220	tttcccagca	accactggtg	caggtggcag	cctggtgcat	tggggagtat
ggggacctcc 2280	tgctggcagg	gaactgcgag	gagattgagc	cccttcaggt	ggacgaagag
gaagtgctgg 2340	cattgctgga	aaaggtgctg	cagtcccaca	tgtccctgcc	agccactcga
ggatatgccc 2400	tcacagecet	catgaagctc	agcactcgcc	tctgtgggga	caacaaccgc

atccgccagg 2460	tggtgtccat	ctacgggagc	tgcttggacg	tggagctgca	gcagcgggct
gtggagtatg 2520	acacactctt	ccggaaatac	gaccacatga	gggctgccat	cctggaaaaa
atgcctcttg 2580	tggagcgaga	tggccctcag	gctgatgagg	aagcaaagga	aagcaaagaa
gcagcccagc 2640	tttcagaagc	agccccagtg	cccacagagc	cccaggcctc	acagctcctg
gatctgctag 2700	atctcctgga	tggggcttct	ggggatgtcc	agcatectee	ccatctggac
ccctccccag 2760	gaggtgccct	ggtacacctg	cttgaccttc	cctgtgtacc	tccaccccca
gctcccatcc 2820	cagateteaa	agtgtttgag	cgtgagggag	tacagctgaa	tctgtctttc
attcgacccc 2880	ctgaaaaccc	tgctttgctg	ttaatcacca	tcactgccac	caacttctca
gagggtgatg 2940	tcacccattt	catctgccag	gctgctgtgc	ccaagagtct	ccagctgcag
ctgcaggccc 3000	ccagtgggaa	cacagttcca	gctcggggtg	gccttcctat	cacccagctc
ttcagaatcc 3060	tcaatcctaa	caaggccccc	ctgcggctaa	agctgcgcct	cacctacgac
cactttcacc 3120	agtcggtgca	ggagatettt	gaggtgaaca	acttgcctgt	ggaatcgtgg
cagtaactgt 3180	ctccactcac	agcctgaaat	tctcctgtgt	cccaaacccc	agggggcccc
agcagetteg 3240	aacctacacc	tgagggctac	cagcaggtgg	cgctctggct	ttgcactgca
aaaactgggg 3300	accageceee	ttctcccaca	aataaagccc	aataaagcct	gagaagtgag
gaaagccata 3360	tttgggtata	tttgaagtgg	aaagtgtgta	tgaataacag	caagggaaga
3420		_	cctgagcctt		
gggcggggag 3480	ggggcagctg	ttggttettt	ctaaccctct	ccaggtcagg	gaacaaattt
gcccctaaac 3540	ttccacagga	ggcactctac	cctctgggcc	agagctgggc	acagtggcaa
agtcagatta 3600	gaatttctag	agttctaaca	gcgattccca	accatttcct	caacttttct
tctgtttccc 3660	acatcccaag	gcagggaaat	ccctgctgcc	tctcctcatc	ttctaactca
gctgtaaggc 3720	ggtttaggag	ccgctggcag	aatcaatggc	atcgaccaag	ggagggggg
tggcaaggga 3780	ttttcctgtg	cttaactact	gatcacggct	aagtggaaat	cctataaaca
cgagcggaaa 3840	tcaatggagg	ctgcttagcg	gccaggggag	aggggcggcc	cacagattgc
atctgacgga 3900	tgagcgagag	gaagcagcca	gggagggctc	aaggaagagt	agcttagagg
agggggaaga 3960	aacaggcagc	gctggagaga	gaggagtcac	tgtcagaagg	gacactgagg
ggagaggcac 4020	agtgggccca	ggagtggact	ccgttagacc	cagagttccc	ttccccttct

aggaagtgac acceptages caggeagtgg teaggatett cagteteetg tggestetet ctggagctgt tcacttctag caggcgctga tagtcttgag gccggaaacg ctgtagatac 4140 acaatcaget tggetggtge tgteteetgt geaggeacae eteaaageee gagagtetee tegegggace cacagagggg gaagggagee caegecatae aetegegagg aatgeeggga geagtteegg atceeggace teggeeegac ceteegegeg eeeggeaggt eeeggeacea gcggccatat tacgcccgtt gtggcggtgc cgagagcagg ccaggc 4366 <210> 734 <211> 364 <212> PRT <213> Homo sapiens <400> 734 Met Val Val Pro Ser Leu Lys Leu Gln Asp Leu Ile Glu Glu Ile Arg 10 Gly Ala Lys Thr Gln Ala Gln Glu Arq Glu Val Ile Gln Lys Glu Cys 25 Ala His Ile Arg Ala Ser Phe Arg Asp Gly Asp Pro Val His Arg His 40 Arg Gln Leu Ala Lys Leu Leu Tyr Val His Met Leu Gly Tyr Pro Ala His Phe Gly Gln Met Glu Cys Leu Lys Leu Ile Ala Ser Ser Arq Phe 70 75 Thr Asp Lys Arg Val Gly Tyr Leu Gly Ala Met Leu Leu Leu Asp Glu 90 Arg His Asp Ala His Leu Leu Ile Thr Asn Ser Ile Lys Asn Asp Leu 100 105 Ser Gln Gly Ile Gln Pro Val Gln Gly Leu Ala Leu Cys Thr Leu Ser 120 125 Thr Met Gly Ser Ala Glu Met Cys Arg Asp Leu Ala Pro Glu Val Glu 135 140 Lys Leu Leu Gln Pro Ser Pro Tyr Val Arg Lys Lys Ala Ile Leu 150 155 Thr Ala Val His Met Ile Arg Lys Val Pro Glu Leu Ser Ser Val Phe 170 Leu Pro Pro Cys Ala Gln Leu Leu His Glu Arg His His Gly Ile Leu 180 190 185 Leu Gly Thr Ile Thr Leu Ile Thr Glu Leu Cys Glu Arg Ser Pro Ala 200 205 Ala Leu Arg His Phe Arg Lys Val Val Pro Gln Leu Val His Ile Leu 215 220 Arg Thr Leu Val Thr Met Gly Tyr Ser Thr Glu His Ser Ile Ser Gly 230 235 Val Ser Asp Pro Phe Leu Gln Val Gln Ile Leu Arg Leu Leu Arg Ile 245 250 Leu Gly Arg Asn His Glu Glu Ser Ser Glu Thr Met Asn Asp Leu Leu 270 265 Ala Gln Val Ala Thr Asn Thr Asp Thr Ser Arg Asn Ala Gly Asn Ala

```
275
                            280
Val Leu Phe Glu Thr Val Leu Thr Ile Met Asp Ile Arg Ser Ala Ala
                        295
                                             300
Gly Leu Arg Val Leu Ala Val Asn Ile Leu Gly Arg Phe Leu Leu Asn
305
                                        315
                    310
Ser Asp Arg Asn Ile Arg Tyr Val Ala Leu Thr Ser Leu Leu Arg Leu
                325
                                    330
Val Gln Ser Asp His Ser Ala Val Gln Arg His Arg Pro Thr Val Val
                                345
Glu Cys Leu Arg Glu Thr Asp Ala Ser Leu Ser Arg
        355
                            360
<210> 735
<211> 597
<212> DNA
<213> Homo sapiens
<400> 735
qtcqactaqc caaaccqccc qggaaagtct tgtaccaccg atcctggttt atgcggatct
categocace atggactego geaatetgga aacegocaac ettattecag aaaaaataat
120
tgcttggtgt cctcgatccc gctctgaccg cccactggac cgctcaaccc aggacatcct
caqtqccatc cacqacqtqq ctqcaccqct ggcactaccc atcttcgtgg tgggtgccac
agegegegae attetgetga cacaegtgtt eggtategag aceggaegtg ceaegetega
cgtggatttc gccgttgccg tagaacattg gccgcagttc gaaaacatca agcagcacct
qctaqccaac qaccatttcg actctqccgc cagcatcacc catcgactgc tctatcgcac
qaqcgacaac acgatcgccc ggccaatcga tctcatccca ttcggcggca tcgaacagcc
qccaqccacc atcaaatqqc cqcccqacat qqctqtcatg atgaatgttg ctggctacgc
agatgeetgg egggeegeag tegaagtaga gtttgtgeee gggegeagea taegegt
597
<210> 736
<211> 175
<212> PRT
<213> Homo sapiens
<400> 736
Met Asp Ser Arg Asn Leu Glu Thr Ala Asn Leu Ile Pro Glu Lys Ile
Ile Ala Trp Cys Pro Arg Ser Arg Ser Asp Arg Pro Leu Asp Arg Ser
            20
                                25
Thr Gln Asp Ile Leu Ser Ala Ile His Asp Val Ala Ala Pro Leu Ala
                            40
                                                45
Leu Pro Ile Phe Val Val Gly Ala Thr Ala Arg Asp Ile Leu Leu Thr
                        55
                                            60
His Val Phe Gly Ile Glu Thr Gly Arg Ala Thr Leu Asp Val Asp Phe
```

```
65
                    70
                                         75
Ala Val Ala Val Glu His Trp Pro Gln Phe Glu Asn Ile Lys Gln His
Leu Leu Ala Asn Asp His Phe Asp Ser Ala Ala Ser Ile Thr His Arg
            100
                                105
                                                     110
Leu Leu Tyr Arg Thr Ser Asp Asn Thr Ile Ala Arg Pro Ile Asp Leu
        115
                            120
                                                 125
Ile Pro Phe Gly Gly Ile Glu Gln Pro Pro Ala Thr Ile Lys Trp Pro
                                             140
                        135
Pro Asp Met Ala Val Met Met Asn Val Ala Gly Tyr Ala Asp Ala Trp
                    150
                                        155
Arg Ala Ala Val Glu Val Glu Phe Val Pro Gly Arg Ser Ile Arg
                165
                                     170
                                                         175
<210> 737
<211> 497
<212> DNA
<213> Homo sapiens
<400> 737
ntgcgcctgg ccaattccgg cgccatcctc qggcacgatc tggggaaaac ctccatggtg
egegeeggea tegttgggta eggataegat eccaaceete aegeegaeeg tgeegaeeta
120
caccetgeee tgteetggat cagecacqte acetteqtta aaactgteag tgtgggggat
accategget aeggeagaac atggacagec agegaaacga caaaaatege caeegteeca
gteggttaeg cegaeggaet gteeegagga etgteaaata aaggaeaegt teteattaga
gggtccgttc atcccatcgt cggtcggatc tqcatqqacc aattcatggt cgatcttggc
cccgattcga acgtcacggt gggagatgag qtqqtqctca ttggaaccca ggaggacgaa
actotgaccg ctgatgacat ggccgaactc ctcggaacca ttagctacga gatcacttgc
gccatttcca aacgcgt
497
<210> 738
<211> 165
<212> PRT
<213> Homo sapiens
<400> 738
Xaa Arg Leu Ala Asn Ser Gly Ala Ile Leu Gly His Asp Leu Gly Lys
Thr Ser Met Val Arg Ala Gly Ile Val Gly Tyr Gly Tyr Asp Pro Asn
                                25
Pro His Ala Asp Arg Ala Asp Leu His Pro Ala Leu Ser Trp Ile Ser
                            40
His Val Thr Phe Val Lys Thr Val Ser Val Gly Asp Thr Ile Gly Tyr
                                            60
Gly Arg Thr Trp Thr Ala Ser Glu Thr Thr Lys Ile Ala Thr Val Pro
```

```
80
                    70
                                        75
65
Val Gly Tyr Ala Asp Gly Leu Ser Arg Gly Leu Ser Asn Lys Gly His
                85
                                    90
Val Leu Ile Arg Gly Ser Val His Pro Ile Val Gly Arg Ile Cys Met
                                105
            100
Asp Gln Phe Met Val Asp Leu Gly Pro Asp Ser Asn Val Thr Val Gly
                           120
                                                125
Asp Glu Val Val Leu Ile Gly Thr Gln Glu Asp Glu Thr Leu Thr Ala
                        135
                                            140
Asp Asp Met Ala Glu Leu Leu Gly Thr Ile Ser Tyr Glu Ile Thr Cys
                                        155
                                                            160
                    150
Ala Ile Ser Lys Arg
                165
<210> 739
<211> 438
<212> DNA
<213> Homo sapiens
<400> 739
cggctgcggg aagagcgggc gcacgcgctc aagaccaagg aaaagctggc acagaccgcc
acggecteat cageagetgt gggeteagge ecceeteeg aggeggagea ggegtggeeg
cagagcagcg gggaggagga gctgcagctc cagctggccc tggccatgag caaggaggag
geogaecage ecceptecty eggeecegay gaegaegeec ageteeaget ggeeettagt
ttgagccgag aagagcatga taaggaggag cggatccgtc gcggggatga cctgcggctg
cagatggcaa tcgaggagag caagagggag actgggggca aggaggagtc gtccctcatg
gacettgetg aegtetteae geecceaget eetgeeega eeacagaeee etgggggge
ccagcaccca tggctgct
438
<210> 740
<211> 146
<212> PRT
<213> Homo sapiens
<400> 740
Arq Leu Arq Glu Glu Arq Ala His Ala Leu Lys Thr Lys Glu Lys Leu
Ala Gln Thr Ala Thr Ala Ser Ser Ala Ala Val Gly Ser Gly Pro Pro
                                25
Pro Glu Ala Glu Gln Ala Trp Pro Gln Ser Ser Gly Glu Glu Leu
                            40
Gln Leu Gln Leu Ala Leu Ala Met Ser Lys Glu Glu Ala Asp Gln Pro
Pro Ser Cys Gly Pro Glu Asp Asp Ala Gln Leu Gln Leu Ala Leu Ser
                                        75
Leu Ser Arg Glu Glu His Asp Lys Glu Glu Arg Ile Arg Arg Gly Asp
```

```
85
                                     90
                                                          95
Asp Leu Arg Leu Gln Met Ala Ile Glu Glu Ser Lys Arg Glu Thr Gly
            100
                                                     110
                                 105
Gly Lys Glu Glu Ser Ser Leu Met Asp Leu Ala Asp Val Phe Thr Pro
                            120
Pro Ala Pro Ala Pro Thr Thr Asp Pro Trp Gly Gly Pro Ala Pro Met
    130
                                             140
                         135
Ala Ala
145
<210> 741
<211> 726
<212> DNA
<213> Homo sapiens
<400> 741
geotetetee gacegegttg ttgtaaggat gtegegaegg tgegeaaaaa tgaatatgtg
aatttgeegg teatetgeet egtegggeee aetgetageg gaaaateagg getageggtg
120
cgagtgtgcc gccgcttgta tgtcgatgag caccccgccg aaattattaa tactgactcg
atggtggtgt atcgcgggat ggacattggc actgccaccc ctacactgcg cgagcagcgc
acggtagtgc atcacctggt gtcgattctt gatgtgactg tgccctcctc gctagtactg
atgcagacgc tggcccgtga tgccgtcgag gattgtctgt cgcgtggtgt catccctgtc
ttggtgggag ggtctgcgct gtacaccaag gccatcattg acgaaatgtc catcccgcca
actgatecgg aagtgaggge teggtggeag gagaagetag atgeegaggg geegegagtt
ctgcatgacg agcttgcccg tcgcgatccc aaggcggctg agtcaatctt gcccggcaac
ggcaggcgaa togtttcgtg ccctcgaagt ttattgaccc tgacagggtc ctttactgcc
600
accgatecee gaegggaece tecaetggee aagaeggtge aaatgggett agaaetgteg
cgcaaagaca tagaccagcg tattgccgat cgggttgacc agatgtgggc atacggtttc
720
gtcgac
726
<210> 742
<211> 242
<212> PRT
<213> Homo sapiens
<400> 742
Ala Ser Leu Arg Pro Arg Cys Cys Lys Asp Val Ala Thr Val Arg Lys
                                                         15
1
                                    10
Asn Glu Tyr Val Asn Leu Pro Val Ile Cys Leu Val Gly Pro Thr Ala
            20
Ser Gly Lys Ser Gly Leu Ala Val Arg Val Cys Arg Arg Leu Tyr Val
```

```
35
                            40
Asp Glu His Pro Ala Glu Ile Ile Asn Thr Asp Ser Met Val Val Tyr
                        55
Arg Gly Met Asp Ile Gly Thr Ala Thr Pro Thr Leu Arg Glu Gln Arg
Thr Val Val His His Leu Val Ser Ile Leu Asp Val Thr Val Pro Ser
                85
                                     90
Ser Leu Val Leu Met Gln Thr Leu Ala Arg Asp Ala Val Glu Asp Cys
                                105
Leu Ser Arg Gly Val Ile Pro Val Leu Val Gly Gly Ser Ala Leu Tyr
        115
                            120
                                                 125
Thr Lys Ala Ile Ile Asp Glu Met Ser Ile Pro Pro Thr Asp Pro Glu
                        135
                                             140
Val Arg Ala Arg Trp Gln Glu Lys Leu Asp Ala Glu Gly Pro Arg Val
                    150
                                        155
Leu His Asp Glu Leu Ala Arg Arg Asp Pro Lys Ala Ala Glu Ser Ile
                                     170
Leu Pro Gly Asn Gly Arg Arg Ile Val Ser Cys Pro Arg Ser Leu Leu
                                                     190
            180
                                 185
Thr Leu Thr Gly Ser Phe Thr Ala Thr Asp Pro Arg Asp Pro Pro
                            200
                                                 205
Leu Ala Lys Thr Val Gln Met Gly Leu Glu Leu Ser Arg Lys Asp Ile
                        215
Asp Gln Arg Ile Ala Asp Arg Val Asp Gln Met Trp Ala Tyr Gly Phe
225
                    230
                                        235
Val Asp
<210> 743
<211> 430
<212> DNA
<213> Homo sapiens
<400> 743
naaaaaagtg atggtttcgg atctgtggcc agtcgtcttg caagaaatca ttatgacgtg
gatgagggca acagcancat tcatgttaat caagacattg cgcgcagaac agggacggga
120
aagctattgg tacgagtgtg cccggcgcac gtgtactcag aggagcccga tggcactatt
teegtggagt aegeagegtg tetggagtgt ggeaettgte tggeggttge tgegeeaggg
240
tegettgaat ggeactatee egeaggtgea atgggtattt egtteagaga aggatgaagt
ccttgtgggc gactgtaaag cgacatggcc gtcgctcggt aggaggaatt gtggtgtccg
caccaaatag tgctcaggat gaagttcgtc atggaaatcc ggctccaacc gtttcgggag
420
ctggtcgcga
430
<210> 744
<211> 98
<212> PRT
```

<213> Homo sapiens <400> 744 Xaa Lys Ser Asp Gly Phe Gly Ser Val Ala Ser Arg Leu Ala Arg Asn His Tyr Asp Val Asp Glu Gly Asn Ser Xaa Ile His Val Asn Gln Asp 20 Ile Ala Arg Arg Thr Gly Thr Gly Lys Leu Leu Val Arg Val Cys Pro 40 Ala His Val Tyr Ser Glu Glu Pro Asp Gly Thr Ile Ser Val Glu Tyr 55 Ala Ala Cys Leu Glu Cys Gly Thr Cys Leu Ala Val Ala Ala Pro Gly 75 Ser Leu Glu Trp His Tyr Pro Ala Gly Ala Met Gly Ile Ser Phe Arg 85 Glu Gly <210> 745 <211> 362 <212> DNA <213> Homo sapiens <400> 745 eggeegattg aagegteget geggtttgag teggtgatgg atgeggtgga eggtgetteg qcqtcqtqqt qqcqcatqqc qcqqtatttc atcqccqagc ttgaacqcag cagcqagttg tatgagcagg eggegtttac eegegatetg gaaagetege tgatcaaggg eetgateete gcccagccga acaactactc cgaagaactg cgcgacgtac tcggcgtgaa gctgccgcat tacttgattc gcgcgcgca gtacatccac gacaacgccc gcgaagccgt gcatctggaa gacctggaaa cogctgcogg ggtatogogg ttoaagttgt togatgcgtt togcaaatac 360 tt 362 <210> 746 <211> 108 <212> PRT <213> Homo sapiens <400> 746 Met Asp Ala Val Asp Gly Ala Ser Ala Ser Trp Trp Arg Met Ala Arg 10 Tyr Phe Ile Ala Glu Leu Glu Arg Ser Ser Glu Leu Tyr Glu Gln Ala 25 Ala Phe Thr Arg Asp Leu Glu Ser Ser Leu Ile Lys Gly Leu Ile Leu 40 Ala Gln Pro Asn Asn Tyr Ser Glu Glu Leu Arg Asp Val Leu Gly Val 60 55

Lys Leu Pro His Tyr Leu Ile Arg Ala Arg Gln Tyr Ile His Asp Asn

```
70
                                         75
Ala Arg Glu Ala Val His Leu Glu Asp Leu Glu Thr Ala Ala Gly Val
                85
Ser Arg Phe Lys Leu Phe Asp Ala Phe Arg Lys Tyr
            100
<210> 747
<211> 416
<212> DNA
<213> Homo sapiens
<400> 747
nacgogttga tegeogoega cegttteate cegeaateae eegacatgge ggeetatttt
ctgaatgccg atggcacgcc taaagccacc ggcacgctgc tcaagaaccc agcgctggcc
geogtqttca aacqtatcgc caaqgaaqga ccqqacqcqc tqtaccacqq qccqattqcc
gacgagateg egegeaaggt teagggeaac egeaatgegg geageetgte geaageggae
ctcaaqqctt acaccqccaa qqaacqcacq ccqctqtqca ccqactacaa qcaatatcaq
300
gtgtgcggca tgccaccgcc gtcgtcaggc gggattgcgg tggcgcagat cctcggcacg
etgeaggeeg tggaageeeg egaeeeaege etggeeateg eeeeeatgaa aceggt
416
<210> 748
<211> 138
<212> PRT
<213> Homo sapiens
<400> 748
Xaa Ala Leu Ile Ala Ala Asp Arg Phe Ile Pro Gln Ser Pro Asp Met
Ala Ala Tyr Phe Leu Asn Ala Asp Gly Thr Pro Lys Ala Thr Gly Thr
            20
                                25
Leu Leu Lys Asn Pro Ala Leu Ala Ala Val Phe Lys Arg Ile Ala Lys
Glu Gly Pro Asp Ala Leu Tyr His Gly Pro Ile Ala Asp Glu Ile Ala
                        55
                                             60
Arg Lys Val Gln Gly Asn Arg Asn Ala Gly Ser Leu Ser Gln Ala Asp
                    70
                                        75
Leu Lys Ala Tyr Thr Ala Lys Glu Arg Thr Pro Leu Cys Thr Asp Tyr
                85
                                    90
Lys Gln Tyr Gln Val Cys Gly Met Pro Pro Pro Ser Ser Gly Gly Ile
                                105
Ala Val Ala Gln Ile Leu Gly Thr Leu Gln Ala Val Glu Ala Arg Asp
                            120
Pro Arg Leu Ala Ile Ala Pro Met Lys Pro
    130
                        135
<210> 749
<211> 1211
```

```
<212> DNA
<213> Homo sapiens
<400> 749
nagtectaga egecagaece geteagaece teetgecagg tgacageege caagatgggg
tettgggece tgetgtggee teecetgetg tteaceggge tgetegteeg acceeegggg
accatggccc aggcccagta ctgctctgtg aacaaggaca tctttgaagt agaggagaac
acaaatgtca ccgagccgct ggtggacatc cacgtcccgg agggccagga ggtgaccctc
ggagecttgt ccacccctt tgcatttcgg atccagggaa accagctgtt tctcaacgtg
actectgatt acgaggagaa gtcactgctt gaggctcagc tgctgtgtca gagcggaggc
acattggtga cccagctaag ggtgttcgtg tcagtgctgg acgtcaatga caatgccccc
gaattcccct ttaagaccaa ggagataagg gtggaggagg acacgaaagt gaactccacc
gtcatccccg agacgcaact gcaggctgag gaccgcgaca aggacgacat tctgttctac
accetecagg aaatgacage aggtgecagt gaetaettet eeetggtgag tgtaaacegt
600
cccgccctga ggctggaccg gcccctggac ttctacgagc ggccgaacat gaccttctgg
ctgctggtgc gggacactcc gggggagaat gtggaaccca gccacactgc caccgccaca
ctagtgctga acgtggtgcc cgccgacctg cggcccccgt ggttcctgcc ctgcaccttc
tragatgget argtetgeat traagetrag tarranggg ctgtccccar ggggcacata
ctgccatctc ccctcgtcct gcgtcccgga cccatctacg ctgaggacgg agaccgcggc
900
atcaaccage ceateateta cageatettt aggggaaaeg tgaatggtae atteateate
cacceagact egggeaacct caccgtggcc aggagtgtcc ecagceccat gacetteett
ctgctggtga agggccaaca ggccgacctt gcccgctact cagtgaccca ggtcaccgtg
gagggetgtg getgeggeeg ggageeegee eegetteeee cagageetgt ategtggeae
1140
cgtggcgcgt ggcgctggag cgggcgttgt ggtcaaggat gcagctgccc cttttcagcc
tctgaggatc c
1211
<210> 750
<211> 385
<212> PRT
<213> Homo sapiens
<400> 750
Met Gly Ser Trp Ala Leu Leu Trp Pro Pro Leu Leu Phe Thr Gly Leu
```

```
5
                               10
Leu Val Arg Pro Pro Gly Thr Met Ala Gln Ala Gln Tyr Cys Ser Val
                  25
Asn Lys Asp Ile Phe Glu Val Glu Glu Asn Thr Asn Val Thr Glu Pro
                        40
Leu Val Asp Ile His Val Pro Glu Gly Gln Glu Val Thr Leu Gly Ala
                    55
Leu Ser Thr Pro Phe Ala Phe Arg Ile Gln Gly Asn Gln Leu Phe Leu
                                  75
Asn Val Thr Pro Asp Tyr Glu Glu Lys Ser Leu Leu Glu Ala Gln Leu
             85
                   90
Leu Cys Gln Ser Gly Gly Thr Leu Val Thr Gln Leu Arg Val Phe Val
                           105 110
Ser Val Leu Asp Val Asn Asp Asn Ala Pro Glu Phe Pro Phe Lys Thr
                        120
                             125
Lys Glu Ile Arg Val Glu Glu Asp Thr Lys Val Asn Ser Thr Val Ile
Pro Glu Thr Gln Leu Gln Ala Glu Asp Arg Asp Lys Asp Asp Ile Leu
145 150
                                  155
Phe Tyr Thr Leu Gln Glu Met Thr Ala Gly Ala Ser Asp Tyr Phe Ser
                               170
Leu Val Ser Val Asn Arg Pro Ala Leu Arg Leu Asp Arg Pro Leu Asp
                           185
Phe Tyr Glu Arg Pro Asn Met Thr Phe Trp Leu Leu Val Arg Asp Thr
      195 200
Pro Gly Glu Asn Val Glu Pro Ser His Thr Ala Thr Ala Thr Leu Val
                    215
Leu Asn Val Val Pro Ala Asp Leu Arg Pro Pro Trp Phe Leu Pro Cys
                 230
                                  235
Thr Phe Ser Asp Gly Tyr Val Cys Ile Gln Ala Gln Tyr His Gly Ala
                              250
Val Pro Thr Gly His Ile Leu Pro Ser Pro Leu Val Leu Arg Pro Gly
          260
                            265
Pro Ile Tyr Ala Glu Asp Gly Asp Arg Gly Ile Asn Gln Pro Ile Ile
                        280
Tyr Ser Ile Phe Arg Gly Asn Val Asn Gly Thr Phe Ile Ile His Pro
                    295
                                      300
Asp Ser Gly Asn Leu Thr Val Ala Arg Ser Val Pro Ser Pro Met Thr
                310
                                  315 320
Phe Leu Leu Val Lys Gly Gln Gln Ala Asp Leu Ala Arg Tyr Ser
                               330
Val Thr Gln Val Thr Val Glu Gly Cys Gly Cys Gly Arg Glu Pro Ala
         340
                           345
Pro Leu Pro Pro Glu Pro Val Ser Trp His Arg Gly Ala Trp Arg Trp
                       360
Ser Gly Arg Cys Gly Gln Gly Cys Ser Cys Pro Phe Ser Ala Ser Glu
           375
                                     380
Asp
385
<210> 751
<211> 345
<212> DNA
<213> Homo sapiens
```

```
<400> 751
cgcgtcgcgg tcatcgtcaa cgacatgagc gaggtcaaca tcgacgeggc gctggtggcg
gcaggcggcg ggctgtcgcg caccgaggag aagctcgtcg agatgtcgaa cggctgcatc
tgctgcacgc tgcgcgacga cctgatgcag gaagtggcga gactggcggg cgaaggccgc
ttegatgege tggteatega gageaeegge gtgteegage egatgeeggt egeegeeaeg
ttegatttee gtgaceagga eggegteteg etegeegaeg tegegegget ggataecatg
gtcaccgtcg tcgacgccgc gtccttcctg cgcgactacg gctcg
<210> 752
<211> 115
<212> PRT
<213> Homo sapiens
<400> 752
Arg Val Ala Val Ile Val Asn Asp Met Ser Glu Val Asn Ile Asp Ala
Ala Leu Val Ala Ala Gly Gly Leu Ser Arg Thr Glu Glu Lys Leu
                                25
Val Glu Met Ser Asn Gly Cys Ile Cys Cys Thr Leu Arg Asp Asp Leu
                            40
Met Gln Glu Val Ala Arg Leu Ala Gly Glu Gly Arg Phe Asp Ala Leu
                        55
                                            60
Val Ile Glu Ser Thr Gly Val Ser Glu Pro Met Pro Val Ala Ala Thr
                    70
                                        75
Phe Asp Phe Arg Asp Gln Asp Gly Val Ser Leu Ala Asp Val Ala Arg
                                    90
Leu Asp Thr Met Val Thr Val Val Asp Ala Ala Ser Phe Leu Arg Asp
                                105
                                                    110
Tyr Gly Ser
        115
<210> 753
<211> 352
<212> DNA
<213> Homo sapiens
<400> 753
qeqeqecaqt acqccaaqac cqtccqcaaq qaccqcaaqq qcqaacggcg gcgtcggggc
gegteggaet agtecaegat geatecgaae egegeettee getttgeega tgatgteteg
atgetegatt tegeggeeaa gegageettt gegeaeatet tegtgageae geeegagggg
cetatggtag egeatgeece ggttaegeee ttegaeggag cetteegett ceatgtegeg
eqeggeaate ggategegeg geacetggat ggegegaege tgetgeteag cateagegeg
300
```

```
accgacggct atatcaqccc gagctggtac gccgacccgc agggaccaca gt
352
<210> 754
<211> 91
<212> PRT
<213> Homo sapiens
<400> 754
Met His Pro Asn Arg Ala Phe Arg Phe Ala Asp Asp Val Ser Met Leu
                                     10
Asp Phe Ala Ala Lys Arg Ala Phe Ala His Ile Phe Val Ser Thr Pro
Glu Gly Pro Met Val Ala His Ala Pro Val Thr Pro Phe Asp Gly Ala
                             40
Phe Arg Phe His Val Ala Arg Gly Asn Arg Ile Ala Arg His Leu Asp
Gly Ala Thr Leu Leu Ser Ile Ser Ala Thr Asp Gly Tyr Ile Ser
65
                    70
                                         75
Pro Ser Trp Tyr Ala Asp Pro Gln Gly Pro Gln
                85
<210> 755
<211> 301
<212> DNA
<213> Homo sapiens
<400> 755
tgggatgcag ggtctttctt ctccaaggat ttcattcctg gagggagaaa agggcccag
ctgtctgcca tcaaaccggg ttgccgggct ggagctcctc ccaggcccgt gtgaggaaga
gcaaaggccg gcaggggctc gatgggacca gtcgctcgct caggcccagg aaaaccacac
agctgggggc tgtcaggatt ggaccagggt caggccggcc aggcgatggc gggaaaagca
ggcccactct gcagacctca atgtctcagg tgcactgcag ggcaaccccg cctaccccgg
300
g
301
<210> 756
<211> 99
<212> PRT
<213> Homo sapiens
<400> 756
Met Gln Gly Leu Ser Ser Pro Arg Ile Ser Phe Leu Glu Gly Glu Lys
                                    10
Gly Pro Ser Cys Leu Pro Ser Asn Arg Val Ala Gly Leu Glu Leu Leu
            20
                                25
Pro Gly Pro Cys Glu Glu Glu Gln Arg Pro Ala Gly Ala Arg Trp Asp
                            40
```

Gln Ser Leu Ala Gln Ala Gln Glu Asn His Thr Ala Gly Gly Cys Gln

```
50
                        55
                                             60
Asp Trp Thr Arg Val Arg Pro Ala Arg Arg Trp Arg Glu Lys Gln Ala
                    70
                                         75
His Ser Ala Asp Leu Asn Val Ser Gly Ala Leu Gln Gly Asn Pro Ala
                85
                                    90
Tyr Pro Gly
<210> 757
<211> 311
<212> DNA
<213> Homo sapiens
<400> 757
actgaggega tegecagagg ggtgggegtg egagggetge teaacateca gttegecetg
gtotocgatg ttototacgt catcgaggec aaccccaggg catcgcgcac agtcccctto
120
gtctcaaagg catccggcgt gcagctcgcc aaagcggcgg ccctcatcat gacaggggag
180
acgatogect cgctcaggcg ctccggccac ctgcccgagg ccgacgccgc cgtcaccgat
ceegatgace egategeegt caaggaggeg gteetaceet teaaaegatt eegeaceaee
gagggacgcg t
311
<210> 758
<211> 103
<212> PRT
<213> Homo sapiens
<400> 758
Thr Glu Ala Ile Ala Arg Gly Val Gly Val Arg Gly Leu Leu Asn Ile
Gln Phe Ala Leu Val Ser Asp Val Leu Tyr Val Ile Glu Ala Asn Pro
Arg Ala Ser Arg Thr Val Pro Phe Val Ser Lys Ala Ser Gly Val Gln
                            40
Leu Ala Lys Ala Ala Ala Leu Ile Met Thr Gly Glu Thr Ile Ala Ser
                        55
                                            60
Leu Arg Arg Ser Gly His Leu Pro Glu Ala Asp Ala Ala Val Thr Asp
Pro Asp Asp Pro Ile Ala Val Lys Glu Ala Val Leu Pro Phe Lys Arg
Phe Arg Thr Thr Glu Gly Arg
           100
<210> 759
<211> 391
<212> DNA
<213> Homo sapiens
<400> 759
```

```
gtgcacaccg gcaagctggt gtggaactgg gacagcggca acccggacga cactacgccg
60
attgccgagg gcaagaccta cacccgcaac tcgccgaaca tgtggtccat gttcgccgtc
gacgaaaaac teggeatget etacetgeeg atgggeaace agacceegga ceagtteggg
ggetaeegea egeetgegte ggaactgeae getgeeggee tgacageget ggatategae
240
actggtaaag tgcgctggca ctaccagttc acccaccatg acctgtggga catggacgtg
ggcggccage cgagectgat cgacateaag accgccgccg gcgtgaaaca agccgtgatg
geetegaeca ageaaggeag catetaegeg t
391
<210> 760
<211> 130
<212> PRT
<213> Homo sapiens
<400> 760
Val His Thr Gly Lys Leu Val Trp Asn Trp Asp Ser Gly Asn Pro Asp
Asp Thr Thr Pro Ile Ala Glu Gly Lys Thr Tyr Thr Arg Asn Ser Pro
                                25
Asn Met Trp Ser Met Phe Ala Val Asp Glu Lys Leu Gly Met Leu Tyr
Leu Pro Met Gly Asn Gln Thr Pro Asp Gln Phe Gly Gly Tyr Arg Thr
                        55
                                            60
Pro Ala Ser Glu Leu His Ala Ala Gly Leu Thr Ala Leu Asp Ile Asp
                    70
                                        75
Thr Gly Lys Val Arg Trp His Tyr Gln Phe Thr His His Asp Leu Trp
Asp Met Asp Val Gly Gln Pro Ser Leu Ile Asp Ile Lys Thr Ala
            100
                                105
Ala Gly Val Lys Gln Ala Val Met Ala Ser Thr Lys Gln Gly Ser Ile
                            120
                                                125
Tyr Ala
   130
<210> 761
<211> 324
<212> DNA
<213> Homo sapiens
<400> 761
cctaggtagg cccaaagggg cctaactttc ttgctgccct ggtggagcaa gaaatatctt
ctaggagagg ccaatcette cetgeeceae ageteettet etgeaaaget cagggggeaa
teaggtacet cetgeceaag aggececeat ggtteetege etaaggaagg cagggegggg
cattgggagc cgttgacagc tgggctcagc tggggggagg ggtcagtttg ggagcaggtg
240
```

```
cagatttcag ggagggggg gcctaaaggg aagtagggat cttggtaggc tgcaaaattt
300
tectececat eccecateca caga
324
<210> 762
<211> 105
<212> PRT
<213> Homo sapiens
<400> 762
Met Gly Asp Gly Glu Glu Asn Phe Ala Ala Tyr Gln Asp Pro Tyr Phe
                                     10
                 5
Pro Leu Gly Pro Pro Leu Pro Glu Ile Cys Thr Cys Ser Gln Thr Asp
                                25
Pro Ser Pro Gln Leu Ser Pro Ala Val Asn Gly Ser Gln Cys Pro Ala
                                                 45
                            40
Leu Pro Ser Leu Gly Glu Glu Pro Trp Gly Pro Leu Gly Gln Glu Val
Pro Asp Cys Pro Leu Ser Phe Ala Glu Lys Glu Leu Trp Gly Arg Glu
65
                    70
                                         75
Gly Leu Ala Ser Pro Arg Arg Tyr Phe Leu Leu His Gln Gly Ser Lys
                85
                                    90
Lys Val Arg Pro Leu Trp Ala Tyr Leu
            100
<210> 763
<211> 301
<212> DNA
<213> Homo sapiens
<400> 763
acgogttatg ggcggcccgg atgggcgatg cgctatccca cacctcgatg atggcggaca
tecteggegg tgtgetggaa gtggeggeea atategegat tactgeggge gegaeegetg
ccgcggtggc cgccaccggc tttaccgagg ccaccggcgg cctcggctgc ttcctgctgg
gegetgeett gggeaceatt geeggeetgg ceatgageaa cattggegeg gacacaggge
tgaccaagat atgcaatgcc tttaacaacg ccttatttgc gcccaccgtg catgcgaaca
300
t
301
<210> 764
<211> 100
<212> PRT
<213> Homo sapiens
<400> 764
Met Phe Ala Cys Thr Val Gly Ala Asn Lys Ala Leu Leu Lys Ala Leu
                                                         15
                                    10
His Ile Leu Val Ser Pro Val Ser Ala Pro Met Leu Leu Met Ala Arg
```

```
20
                                25
                                                     30
Pro Ala Met Val Pro Lys Ala Ala Pro Ser Arg Lys Gln Pro Arg Pro
                            40
Pro Val Ala Ser Val Lys Pro Val Ala Ala Thr Ala Ala Val Ala
                        55
Pro Ala Val Ile Ala Ile Leu Ala Ala Thr Ser Ser Thr Pro Pro Arg
                    70
                                        75
Met Ser Ala Ile Ile Glu Val Trp Asp Ser Ala Ser Pro Ile Arg Ala
                                    90
                85
Ala His Asn Ala
            100
<210> 765
<211> 831
<212> DNA
<213> Homo sapiens
<400> 765
nqcacactcc agectctqtt ctttctctcc ttqtqccttt qcccttacca cqqttcctca
60
taacattgtt gttcctgtat ttaaggccct ataaacaggg agatgcgcca cctcatcagt
120
aqcctccaga atcacaatca ccagctgaaa ggggaggtcc tgagatataa gcggaaattg
agagaageee agtetgaeet gaacaagaca egeetgegta gtggtagtge eeteetgeag
teccagteta gtaetgagga eeegaaggat gageetgegg agetaaaaee agattetggg
qacttatcct cccagtcctc agcttcaaag gcatctcagg aggatgccaa tgaaatcaag
tctaaacggg atgaagaaga acgagaacga gaaaggaggg agaaggagag ggaacgagaa
agagaacggg agaaggagaa ggagagagaa cgagagaagc agaagctaaa agagtcagaa
480
aaagagagag attetgetaa ggataaagag aaaggeaaac atgatgatgg aeggaaaaag
gaagcagaaa ttatcaaaca attgaagatt gaactcaaga aggcacagga gagccaaaag
600
gagatgaaac tattgctgga tatgtaccgt tctgccccaa aggaacagag agacaaagtt
660
cagctgatgg cagctgagaa gaagtctaag gcagagttgg aagatctaag gcaaagactc
aaggatctgg aagataaaga gaagaaagag aacaagaaaa tggctgatga ggatgccttg
aggaagatcc gggcagtgga ggagcagata gaatacctac agaagaagct a
831
<210> 766
<211> 243
<212> PRT
<213> Homo sapiens
<400> 766
Met Arg His Leu Ile Ser Ser Leu Gln Asn His Asn His Gln Leu Lys
```

10

```
Gly Glu Val Leu Arg Tyr Lys Arg Lys Leu Arg Glu Ala Gln Ser Asp
                                25
Leu Asn Lys Thr Arg Leu Arg Ser Gly Ser Ala Leu Leu Gln Ser Gln
                            40
Ser Ser Thr Glu Asp Pro Lys Asp Glu Pro Ala Glu Leu Lys Pro Asp
                       55
                                            60
Ser Gly Asp Leu Ser Ser Gln Ser Ser Ala Ser Lys Ala Ser Gln Glu
                   70
                                        75
Asp Ala Asn Glu Ile Lys Ser Lys Arg Asp Glu Glu Glu Arg Glu Arg
                                   90
Glu Arg Arg Glu Lys Glu Arg Glu Arg Glu Arg Glu Arg Glu Lys Glu
           100
                               105
Lys Glu Arg Glu Arg Glu Lys Gln Lys Leu Lys Glu Ser Glu Lys Glu
                                                125
                           120
Arg Asp Ser Ala Lys Asp Lys Glu Lys Gly Lys His Asp Asp Gly Arg
                       135
Lys Lys Glu Ala Glu Ile Ile Lys Gln Leu Lys Ile Glu Leu Lys Lys
                   150
                                        155
Ala Gln Glu Ser Gln Lys Glu Met Lys Leu Leu Asp Met Tyr Arg
                                    170
Ser Ala Pro Lys Glu Gln Arg Asp Lys Val Gln Leu Met Ala Ala Glu
            180
                                185
Lys Lys Ser Lys Ala Glu Leu Glu Asp Leu Arg Gln Arg Leu Lys Asp
                           200
Leu Glu Asp Lys Glu Lys Lys Glu Asn Lys Lys Met Ala Asp Glu Asp
                                            220
                       215
Ala Leu Arg Lys Ile Arg Ala Val Glu Glu Gln Ile Glu Tyr Leu Gln
                   230
                                        235
Lys Lys Leu
<210> 767
<211> 431
<212> DNA
<213> Homo sapiens
<400> 767
qctaqctcgc tcgcactcat tctcgggagg cttccccgcg ccggccgcgt cccgcccgct
ecceggeace agaagtteet etgegegtee gaeggegaca tgggegteee caeggeeeeg
gaggooggea gotggogotg gggatocotg otottogoto tottoctggo tgogtocota
ggtccggtgg cagcettcaa ggtcgccacg ccgtattccc tgtatgtctg tcccgagggg
cagaacgtca coetcacetg caggetettg ggccetgtgg acaaagggca cgatgtgace
ttctacaaga cgtggtaccg cagctcgagg ggcgaggtgc agacctgctc agagcgccgg
cccatccgca acctcacgtt ccaggacctt cacctgcacc atggaggcca ccaggetgcc
aacaccagcc a
431
```

```
<210> 768
<211> 110
<212> PRT
<213> Homo sapiens
<400> 768
Met Gly Val Pro Thr Ala Pro Glu Ala Gly Ser Trp Arg Trp Gly Ser
Leu Leu Phe Ala Leu Phe Leu Ala Ala Ser Leu Gly Pro Val Ala Ala
            20
                                2.5
Phe Lys Val Ala Thr Pro Tyr Ser Leu Tyr Val Cys Pro Glu Gly Gln
Asn Val Thr Leu Thr Cys Arg Leu Leu Gly Pro Val Asp Lys Gly His
                        55
Asp Val Thr Phe Tyr Lys Thr Trp Tyr Arg Ser Ser Arg Gly Glu Val
                    70
Gln Thr Cys Ser Glu Arg Arg Pro Ile Arg Asn Leu Thr Phe Gln Asp
                                    90
Leu His Leu His His Gly Gly His Gln Ala Ala Asn Thr Ser
<210> 769
<211> 422
<212> DNA
<213> Homo sapiens
<400> 769
tgtacacete gtaatacatg ategegatac egecegegat gacectaage aacteattet
cqacttcqaa ctccatcaaq tqatttttgc qqtcqacgaa tctggtttcc gtatgaaaga
acggtatgtt ttgtatgteg eggecetgee acteaaacet caeegtgtea eccaceteaa
aaaaatcccg ggtcggccca caaataaatc aattgcgccg ctcctccgag ttcttccatg
tcaacgatct cccctggctg ctcaagccaa ggccctcgcg gccgtgggac tccaaggttg
acgttgaccc gactgatttc ggaccagttg gcgtcggtat tgggggcagg gtagttaccg
cccatgtcga tgatctacat cgccaccggc agcgtgtctt cgtagtcgtc atgcctgatc
420
an
422
<210> 770
<211> 99
<212> PRT
<213> Homo sapiens
<400> 770
Met Phe Cys Met Ser Arg Pro Cys His Ser Asn Leu Thr Val Ser Pro
Thr Ser Lys Lys Ser Arg Val Gly Pro Gln Ile Asn Gln Leu Arg Arg
```

3.0

25

20

```
Ser Ser Glu Phe Phe His Val Asn Asp Leu Pro Trp Leu Leu Lys Pro
                            40
Arg Pro Ser Arg Pro Trp Asp Ser Lys Val Asp Val Asp Pro Thr Asp
Phe Gly Pro Val Gly Val Gly Ile Gly Gly Arg Val Val Thr Ala His
Val Asp Asp Leu His Arg His Arg Gln Arg Val Phe Val Val Wat
                85
                                    90
Pro Asp Xaa
<210> 771
<211> 369
<212> DNA
<213> Homo sapiens
<400> 771
gcctacgcgc aattcctcgc gggtatggcg tttaacaatg cgtctctcgg gtatgtgcat
gcaatggcgc atcagctggg cggtttttac gatctgccgc acggcgtgtg caatgcgata
ctgttgccac acgtgcagac gtttaactgc aaagtggcgg cctcgcgcct gcgtgattgc
geccaggeca tgggtgtega tgteagteaa atgacageag aacagggege acaggegtgt
ategeagaga ttegetetet ggeaegteag gtgaatatee eggtgggatt gegtgaeete
aacgtgaagg aagcggactt cccgattctg gcgaccaacg cgctaaaaga ccctgtgggt
360
ttgattaat
369
<210> 772
<211> 123
<212> PRT
<213> Homo sapiens
<400> 772
Ala Tyr Ala Gln Phe Leu Ala Gly Met Ala Phe Asn Asn Ala Ser Leu
                                    10
Gly Tyr Val His Ala Met Ala His Gln Leu Gly Gly Phe Tyr Asp Leu
                                25
Pro His Gly Val Cys Asn Ala Ile Leu Leu Pro His Val Gln Thr Phe
        35
                            40
Asn Cys Lys Val Ala Ala Ser Arg Leu Arg Asp Cys Ala Gln Ala Met
Gly Val Asp Val Ser Gln Met Thr Ala Glu Gln Gly Ala Gln Ala Cys
                                        75
                    70
Ile Ala Glu Ile Arg Ser Leu Ala Arg Gln Val Asn Ile Pro Val Gly
Leu Arg Asp Leu Asn Val Lys Glu Ala Asp Phe Pro Ile Leu Ala Thr
                                105
Asn Ala Leu Lys Asp Pro Val Gly Leu Ile Asn
```

```
115
                            120
<210> 773
<211> 309
<212> DNA
<213> Homo sapiens
<400> 773
ccgccgttgc cggcggtgga ttttctggta ggcttgaatc agcgcctggc tgccgacatc
ggttacttga tccgcgtgga gccgggcgta caaactccgg aattcaccct ggaaaacgcc
teeggtteet geegggatte ggegtggttg etggtgeaac tgetgegeaa eetgggeetg
geggegegat ttgtgtetgg etatetgate caactgaceg eegaegteaa ageeetegae
ggcccgtccg gcaccgaggt ggatttcacc gacctgcatg cctggtgcga agtgtatttg
300
cccggcgcc
309
<210> 774
<211> 103
<212> PRT
<213> Homo sapiens
<400> 774
Pro Pro Leu Pro Ala Val Asp Phe Leu Val Gly Leu Asn Gln Arg Leu
                                    10
Ala Ala Asp Ile Gly Tyr Leu Ile Arg Val Glu Pro Gly Val Gln Thr
            20
                                25
Pro Glu Phe Thr Leu Glu Asn Ala Ser Gly Ser Cys Arg Asp Ser Ala
Trp Leu Leu Val Gln Leu Leu Arg Asn Leu Gly Leu Ala Ala Arg Phe
                        55
Val Ser Gly Tyr Leu Ile Gln Leu Thr Ala Asp Val Lys Ala Leu Asp
                    70
                                        75
Gly Pro Ser Gly Thr Glu Val Asp Phe Thr Asp Leu His Ala Trp Cys
                85
                                    90
Glu Val Tyr Leu Pro Gly Ala
            100
<210> 775
<211> 4125
<212> DNA
<213> Homo sapiens
<400> 775
nncaggatgg gcgcgaacaa tggcaaacag tacggcagtg agggcaaagg cagctcgagc
atotoatotg acgtgagttc aagtacagat cacacgccca ctaaagccca gaagaatgtg
getaccageg aagacteega cetgageatg egcacactga geaegeecag eccageeetg
180
```

atatgtccac 240	cgaatctccc	aggatttcag	aatggaaggg	gctcgtccac	ctcctcgtcc
tccatcaccg 300	gggagacggt	ggccatggtg	cactccccgc	ccccgacccg	cctcacacac
ccgctcatcc 360	ggctcgcctc	cagaccccag	aaggatcagg	ccagcataga	ccggctcccg
gaccactcca 420	tggtgcagat	cttctccttc	ctgcccacca	accagctgtg	ccgctgcgcg
cgagtgtgcc 480	gccgctggta	caacctggcc	tgggacccgc	ggctctggag	gactatccgc
ctgacgggcg 540	agaccatcaa	cgtggaccgc	gccctcaagg	tgctgacccg	cagactetge
600			gaaaccgtaa		
660			cagtgctgcc		
720			gccgtctttg		
780			tccaaagtga		
gaggcctcca 840	ttaaactgtc	acccttgcat	ggcaaacaga	tttccatccg	ctacctggac
900			ggcctgcaca		
cageteacee 960	acctctacct	gegeegetge	gtccgcctga	ccgacgaagg	cctgcgctac
1020			ctgagcgtca		
1080			gagtecegee		
1140			cgctacgtgg		
1200			atcacggacc		
1260			atcggcaaat		
ggcctggagt 1320	gcctggccct	gaactgcttc	aacctcaagc	ggctcagcct	caagtcctgc
1380			gtggccgcca		
1440			gaggccctgc		
1500			getttettet		
1560			aaatttttt		
ccgacaccca 1620	ctcaaaacag	ctctttcttc	cgggaaggtt	attaggaatc	tggcctttat
1680			caaagaaacg		
1740			tttetettet		
aggctgatcg 1800	ctgttccttg	agcaaggcgc	ttactctcct	ccgctcaggc	ccccaaggcc

gecettteee 1860	tegcacacag	gececaeeee	cacagttcca	cgccccccc	ccaaggccac
accctccctc	cctagagcag	cagcgaggat	ccatcatcag	aatcacagtg	ctctccagac
ctcctctcta 1980	aactgcttca	ttgacctaag	tcactctctt	caatcccaca	cccatggaca
	ctcaatacca	tagcactttg	cataggcaaa	atacttttca	ggccttttta
	tacagcaaac	agctggggaa	ggacatgcag	tcctcccca	gctctgtcaa
	cttggccaaa	gcacttcact	getetggget	gcagcttcca	gcactgaatc
	cagcccaaag	attagcttca	tgtccattat	agcattgagg	gagcagagat
	agaagcacct	tggcatagag	cacccaggca	tcgacctctt	ccaggagaac
	gatggatgtg	atttcaggag	attgtgcagt	gccagcatca	gtgcataaag
	gteetttgge	tgcaaatcac	ccacttccct	gtgtttcagt	gggagaattt
	ctcctcacat	cctcttttgc	caggctggat	gctgtcgtct	ctgtacacaa
	cattcccccc	tccacaccat	cctagcgagg	caccagcaca	cctaatcaca
	gatecececa	tcagttgctt	ttactcagtg	ttttcaaata	ggagtaaagg
	ttttaattaa	caagcaaggc	ccaagggaac	acatgteete	aaaagttttt
	gccttgcaca	cctggcatgc	atcaggcaca	tctgtcctac	agctggcaga
	teggttettt	gtcattcaga	ttgcatttga	cctcttctca	tctatttatt
	tccagacttc	atcacatgaa	gcctattggg	gttaagtttg	taagtgttta
	ttgccaccct	gtgtacctcc	tccatgtctg	tctgcgtgtt	ttccaccaaa
	cagacttcca	ggtgtttaaa	ttctgttcac	tcaacaatgc	cagatgaatg
	cacactgaga	tgacttagac	tctggtccac	caaccagacc	cttggaaagg
	tcattacaag	gtatggattt	taaatggatg	aaacttcaaa	ttatcttatt
	tctatattct	agcctcattt	gcatgaagtc	agatagccag	aagaaattcc
	ttcacgaaat	tcacttgtct	tttgctaata	aacacatggc	cctttcccag
	agccaagccc	cacctttgtt	acgttgaaat	ccctcattta	tttcttctc
	ttatccaaat	gcagaacctc	tgcatctcca	agccagttat	gctgaatttg
	acacccttga	caactgcact	cctactgtag	geteetgtge	atactgtcgt
	ggatggagag	gttagtgtga	tgaggtggtg	tctgcccagg	aggtttcttt

caaacatcat ggcctcccat ccaatcaaca tcatcaaatt acatgtgtaa tcaaggctct qtgccatggg ggaaatgaat catttagcta ggccaggatc tagtgaaagc cacagagttt 3540 aaaaccatga aagaagttga aggcagcatt cctcagctct gtgacttgtg accctatttg aagtttcagg atttgggtgt cacaaaggat tgtccctaat ccttggccct ggggtcttcc 3660 gagtgagctg gtttaatact ctgagaatga gcagggagat ccagagaatg aatccctgac cgcatcacct aaactgtctt ccaaacatga gacaaagctg actgttcaca ctgattgccc 3780 agcacatace gtettgecag tttettettt teteccagte teetgtteat ceattetgtt 3840 ctcccttggg gtgggaatct atgatggagg ttactgggga aacagctcag cagatttttg 3900 gagaccaaac caaaggtotc actaggaaat ttatctgttt taaaacattg cttccttcct ggctctgcta aattgaatgc tcattgtttg ttgttgttgt tttttaattc taatgttcaa 4020 atcactgcgt gctgtatgaa tctagaaagc cttaatttac taccaagaaa taaagcaata 4125 <210> 776 <211> 483 <212> PRT <213> Homo sapiens <400> 776 Tyr Gly Ser Glu Gly Lys Gly Ser Ser Ser Ile Ser Ser Asp Val Ser Ser Ser Thr Asp His Thr Pro Thr Lys Ala Gln Lys Asn Val Ala Thr 20 25 Ser Glu Asp Ser Asp Leu Ser Met Arg Thr Leu Ser Thr Pro Ser Pro Ala Leu Ile Cys Pro Pro Asn Leu Pro Gly Phe Gln Asn Gly Arg Gly 55 Ser Ser Thr Ser Ser Ser Ile Thr Gly Glu Thr Val Ala Met Val 70 75 His Ser Pro Pro Pro Thr Arg Leu Thr His Pro Leu Ile Arg Leu Ala 85 90 Ser Arg Pro Gln Lys Asp Gln Ala Ser Ile Asp Arg Leu Pro Asp His 105 110 Ser Met Val Gln Ile Phe Ser Phe Leu Pro Thr Asn Gln Leu Cys Arg 120 125 Cys Ala Arg Val Cys Arg Arg Trp Tyr Asn Leu Ala Trp Asp Pro Arg 140 135 Leu Trp Arg Thr Ile Arg Leu Thr Gly Glu Thr Ile Asn Val Asp Arg 145 150 155 Ala Leu Lys Val Leu Thr Arg Arg Leu Cys Gln Asp Thr Pro Asn Val 175 170 Cys Leu Met Leu Glu Thr Val Thr Val Ser Gly Cys Arg Arg Leu Thr

```
180
                               185
Asp Arg Gly Leu Tyr Thr Ile Ala Gln Cys Cys Pro Glu Leu Arg Arg
                          200
Leu Glu Val Ser Gly Cys Tyr Asn Ile Ser Asn Glu Ala Val Phe Asp
                      215
                                         220
Val Val Ser Leu Cys Pro Asn Leu Glu His Leu Asp Val Ser Gly Cys
                  230
                           235
Ser Lys Val Thr Cys Ile Ser Leu Thr Arg Glu Ala Ser Ile Lys Leu
               245
                                  250
Ser Pro Leu His Gly Lys Gln Ile Ser Ile Arg Tyr Leu Asp Met Thr
                              265
Asp Cys Phe Val Leu Glu Asp Glu Gly Leu His Thr Ile Ala Ala His
                          280
Cys Thr Gln Leu Thr His Leu Tyr Leu Arg Arg Cys Val Arg Leu Thr
                       295
Asp Glu Gly Leu Arg Tyr Leu Val Ile Tyr Cys Ala Ser Ile Lys Glu
                   310
                                      315
Leu Ser Val Ser Asp Cys Arg Phe Val Ser Asp Phe Gly Leu Arg Glu
               325
                                  330
Ile Ala Lys Leu Glu Ser Arg Leu Arg Tyr Leu Ser Ile Ala His Cys
                              345
Gly Arg Val Thr Asp Val Gly Ile Arg Tyr Val Ala Lys Tyr Cys Ser
                          360
                                             365
Lys Leu Arg Tyr Leu Asn Ala Arg Gly Cys Glu Gly Ile Thr Asp His
                      375
Gly Val Glu Tyr Leu Ala Lys Asn Cys Thr Lys Leu Lys Ser Leu Asp
                  390
                                      395
Ile Gly Lys Cys Pro Leu Val Ser Asp Thr Gly Leu Glu Cys Leu Ala
               405
                                 410
Leu Asn Cys Phe Asn Leu Lys Arg Leu Ser Leu Lys Ser Cys Glu Ser
                              425
Ile Thr Gly Gln Gly Leu Gln Ile Val Ala Ala Asn Cys Phe Asp Leu
                          440
Gln Thr Leu Asn Val Gln Asp Cys Glu Val Ser Val Glu Ala Leu Arg
                      455
Phe Val Lys Arg His Cys Lys Arg Cys Val Ile Glu His Thr Asn Pro
                  470
                                      475
Ala Phe Phe
```

<210> 777

<211> 705

<212> DNA

<213> Homo sapiens

<400> 777

ggtaccatcg tttttaaacc taattaagat attactcatt cttgttggtg cccaattcca 60

caccaatctg ctctttaatg ccagactgat ggctctaaca atccttatta actccttttt 120

gtggetteaa ggaaaaacaa aaacetette teteatteae cacetetagg ecaggagaaa 180

ttatttttgg ttcaggcttt cacagtgggg gtctgaaagt gaccagtcta gaaaaggatg 240

```
actcagcaaa aggagagcte tgaaggteee tgaggeggea eggteeagea ttattaggte
300
acatggtatg acctgaaaca aatacgttet teecaaatgt ggeaggaeeg ggagagette
teaccaqqaq qqaaccgccg caatgaccgc cggacgtcca gcaacacttg ttggtagtcc
ttqctcatct gccqtaggtt cttccctgat ataggaggtg ggtcattggc attgacattg
aggagettgg gecacaettt tegtetgate teateagtea ggageeetee tteaetgata
gecatgegte taagggeage cacateagtg ggateactgt teagageetg gtgtatetet
aacactttct ttttcctttt qqcqttaaaq tctqccttct ccqcqccqcc gtcccagtgg
ceggaggtgg geegteeect gegeacteeg gaggeeatee eeggg
705
<210> 778
<211> 134
<212> PRT
<213> Homo sapiens
<400> 778
Met Ala Ser Gly Val Arg Arg Gly Arg Pro Thr Ser Gly His Trp Asp
                                    10
Gly Gly Ala Glu Lys Ala Asp Phe Asn Ala Lys Arg Lys Lys Val
                                25
Leu Glu Ile His Gln Ala Leu Asn Ser Asp Pro Thr Asp Val Ala Ala
                                                45
                            40
Leu Arg Arg Met Ala Ile Ser Glu Gly Gly Leu Leu Thr Asp Glu Ile
                                            60
Arg Arg Lys Val Trp Pro Lys Leu Leu Asn Val Asn Ala Asn Asp Pro
                    70
                                        75
Pro Pro Ile Ser Gly Lys Asn Leu Arg Gln Met Ser Lys Asp Tyr Gln
                                    90
Gln Val Leu Leu Asp Val Arg Arg Ser Leu Arg Arg Phe Pro Pro Gly
                                105
Glu Lys Leu Ser Arg Ser Cys His Ile Trp Glu Glu Arg Ile Cys Phe
                            120
                                                125
       115
Arg Ser Tyr His Val Thr
    130
<210> 779
<211> 322
<212> DNA
<213> Homo sapiens
<400> 779
teeggacatg tgcaaacaat tcaatgatgt ggtgcgtcga catggtgtgc atcactctgt
gactgtgagt gattetgagg atacegttge geegteecag etggttegat eccetegtaa
cgccttgcct ttgaaggaac ccagtgggaa ggctagacca agtaaatatg aatcaccaaa
180
```

```
cgccagcaac ttcatcgtca ggcatgtggc aactggcaaa gagggcactg atgatgagta
240
tqctaactca aactactact actcgatgtc tgccaatcga ctaggagacg aggaaacgga
ggaaatgata ggtttggcta cc
322
<210> 780
<211> 105
<212> PRT
<213> Homo sapiens
<400> 780
Met Cys Lys Gln Phe Asn Asp Val Val Arg Arg His Gly Val His His
                                     10
1
Ser Val Thr Val Ser Asp Ser Glu Asp Thr Val Ala Pro Ser Gln Leu
                                 25
Val Arg Ser Pro Arg Asn Ala Leu Pro Leu Lys Glu Pro Ser Gly Lys
        35
                            40
Ala Arg Pro Ser Lys Tyr Glu Ser Pro Asn Ala Ser Asn Phe Ile Val
                        55
Arg His Val Ala Thr Gly Lys Glu Gly Thr Asp Asp Glu Tyr Ala Asn
                                         75
                    70
Ser Asn Tyr Tyr Tyr Ser Met Ser Ala Asn Arg Leu Gly Asp Glu Glu
                85
                                     90
Thr Glu Glu Met Ile Gly Leu Ala Thr
            100
<210> 781
<211> 297
<212> DNA
<213> Homo sapiens
<400> 781
nntcgcgtgc ctggaatgtg tgtctgtgta tgtgtgtgta tgtatgtgtg tatggaatgt
60
gtgtgtatgn gaatatgtgt gtgtatgnga atgtgtgtgt gtgtttggaa tgtgtgtatg
120
qaatqtqtgt ctqtgtatgg aatatgtgtg agtatgngaa tgtgtgtgtg tgtttggaat
gtatcgaatg tgtgtctgtg tgtaaggaat gtgtgtgtat ggaatgtgtt tacgtgcatg
240
tgtctggaat gtgtgtgtat ggaatgtgtg tgtatgtgta tgngaatgtg tgtgtgt
<210> 782
<211> 99
<212> PRT
<213> Homo sapiens
<400> 782
Xaa Arq Val Pro Gly Met Cys Val Cys Val Cys Val Cys Met Tyr Val
1
                 5
                                    10
Cys Met Glu Cys Val Cys Met Xaa Ile Cys Val Cys Met Xaa Met Cys
```

```
20
                                 25
                                                     30
Val Cys Val Trp Asn Val Cys Met Glu Cys Val Ser Val Tyr Gly Ile
                            40
Cys Val Ser Met Xaa Met Cys Val Cys Val Trp Asn Val Ser Asn Val
                         55
Cys Leu Cys Val Arg Asn Val Cys Val Trp Asn Val Phe Thr Cys Met
Cys Leu Glu Cys Val Cys Met Glu Cys Val Cys Met Cys Met Xaa Met
                85
                                     90
Cys Val Cys
<210> 783
<211> 612
<212> DNA
<213> Homo sapiens
<400> 783
accggtgacg taactgctcc cgctggcagc ttcgagggcg atgtcgattt gcgtgcccgg
caccgggtcg agtgagctgc ccagcagcaa gcccaccaca tcggtgacca gaccgatcac
tttgttgagc acgtcgatga cgggcaactt caaggaaatc caggtgcgga cttgcgcggt
ccgcacaaaa atcggctggg tgtcgatcaa ctgcgggttg ccaatcgcag aatttgcgcg
gttcgatgac acgtgtcttc accgtgatat tcagcagccc cagtacgtcc accggcaact
cgacggccac cgcgctggct ttgttggaca gctgcacaaa gccctgaatc aggttgaaca
gttgcaggtt gacgtccagg gcgctcttgt ccgtgccgtt ttgtatattg atcaggtcgc
ccaqqtqcaq gatctqcqtq cctqqqqcaa tcaqcttqat tqcttcqaqq ttattqatca
ccacctggac cgcattaccg cccagcttga gcacatcgat ggcggcctgg atcaactggc
cgacggtcgc gtcggtcttg agcaactggt cgtagttgcc ggcgctgacg ttgaggcgga
tggccgacgc gt
612
<210> 784
<211> 190
<212> PRT
<213> Homo sapiens
<400> 784
Met Ser Ile Cys Val Pro Gly Thr Gly Ser Ser Glu Leu Pro Ser Ser
                                                        15
1
                                    1.0
Lys Pro Thr Thr Ser Val Thr Arg Pro Ile Thr Leu Leu Ser Thr Ser
Met Thr Gly Asn Phe Lys Glu Ile Gln Val Arg Thr Cys Ala Val Arg
        35
                            40
                                                45
Thr Lys Ile Gly Trp Val Ser Ile Asn Cys Gly Leu Pro Ile Ala Glu
```

```
55
                                            60
Phe Ala Arg Phe Asp Asp Thr Cys Leu His Arg Asp Ile Gln Gln Pro
                    70
                                        75
Gln Tyr Val His Arg Gln Leu Asp Gly His Arg Ala Gly Phe Val Gly
Gln Leu His Lys Ala Leu Asn Gln Val Glu Gln Leu Gln Val Asp Val
                                105
                                                    110
            100
Gln Gly Ala Leu Val Arg Ala Val Leu Tyr Ile Asp Gln Val Ala Gln
                            120
       115
Val Gln Asp Leu Arg Ala Trp Gly Asn Gln Leu Asp Cys Phe Glu Val
                        135
                                            140
Ile Asp His His Leu Asp Arg Ile Thr Ala Gln Leu Glu His Ile Asp
                    150
                                        155
Gly Gly Leu Asp Gln Leu Ala Asp Gly Arg Val Gly Leu Glu Gln Leu
                                    170
Val Val Val Ala Gly Ala Asp Val Glu Ala Asp Gly Arg Arg
                                185
<210> 785
<211> 408
<212> DNA
<213> Homo sapiens
<400> 785
accttggact acttcactat cgaccctcgg ctaggcgacg acgatgactt cgatcacctg
cttcaggccg cccacgctcg tggtctgtca gtactgctcg acggggtggt caaccacgtc
tegegtegea acceptategt geaggatgeg cagagtgetg ggecagatte agacgeegge
cgtatggttc gctggtgtga ggggcgcctc gacgttttcg agggtcatag tgacctggtc
gcactcaacc acgacaaccc cgcagtgcgg gaacatgtca cccggatcat gaactattgg
tgcggtcgcg gtgttgacgg ctggcggctg gacgccgcta ttccgtcaat cctgagttct
gggctgcggt gctgcctccg gtgcgagaga agcgccctga cgtgagga
408
<210> 786
<211> 134
<212> PRT
<213> Homo sapiens
Thr Leu Asp Tyr Phe Thr Ile Asp Pro Arg Leu Gly Asp Asp Asp
Phe Asp His Leu Leu Gln Ala Ala His Ala Arg Gly Leu Ser Val Leu
Leu Asp Gly Val Val Asn His Val Ser Arg Arg Asn Arg Ile Val Gln
                            40
Asp Ala Gln Ser Ala Gly Pro Asp Ser Asp Ala Gly Arg Met Val Arg
Trp Cys Glu Gly Arg Leu Asp Val Phe Glu Gly His Ser Asp Leu Val
```

```
65
                    70
                                         75
                                                             80
Ala Leu Asn His Asp Asn Pro Ala Val Arg Glu His Val Thr Arg Ile
                85
                                    90
Met Asn Tyr Trp Cys Gly Arg Gly Val Asp Gly Trp Arg Leu Asp Ala
            100
                                105
Ala Ile Pro Ser Ile Leu Ser Ser Gly Leu Arg Cys Cys Leu Arg Cys
        115
                            120
                                                 125
Glu Arg Ser Ala Leu Thr
    130
<210> 787
<211> 310
<212> DNA
<213> Homo sapiens
<400> 787
acgcgtgaag gggaatgaaa gggtttttcc tggatcaaaa tgatgcttgt ggcagacaca
gttggaacca cagacgatgc cacgcttgtg tcagcagtgc gacactggcc cacgtggcgt
cettggtete tecteattge tgeegteaet gtgtgetggg catgecetge agttacecea
aagetttatg teacaacatt gaggetggeg gagaaaqace ggeecettea ceecacetta
gactteetgg aagggeegee egggteeaca acetggeeeg ttaacteeet gggeagetge
tgggggagaa
310
<210> 788
<211> 90
<212> PRT
<213> Homo sapiens
<400> 788
Met Met Leu Val Ala Asp Thr Val Gly Thr Thr Asp Asp Ala Thr Leu
Val Ser Ala Val Arg His Trp Pro Thr Trp Arg Pro Trp Ser Leu Leu
            20
                                25
Ile Ala Ala Val Thr Val Cys Trp Ala Cys Pro Ala Val Thr Pro Lys
                            40
Leu Tyr Val Thr Thr Leu Arg Leu Ala Glu Lys Asp Arg Pro Leu His
                        55
Pro Thr Leu Asp Phe Leu Glu Gly Pro Pro Gly Ser Thr Trp Pro
                    70
Val Asn Ser Leu Gly Ser Cys Trp Gly Arg
                85
<210> 789
<211> 369
<212> DNA
<213> Homo sapiens
<400> 789
```

```
acgcgtgaag ttgcagcagc aagcaatctg cctcqcttct qqtqcccacc gaaaccaagg
60
totgecagae ageagegetg ggacetetee cetececage aggatgggee ggetetggaa
gcacgaggtg ttccaaagtg caaacaagct gctgttaaat aattattccc aaacgccaaa
geoettgetg gtttgettge ttgetttttt ettttttge etegeacaga tategetagg
gcagagtatt gacatttegt tttetttttg ttatgggtga taaagcacgg tgtttettgt
gagtgtatgc ctqtatttcc ctqcaqaqct gattqccaqt ccattttctt ctatcccatc
cccattttc
369
<210> 790
<211> 114
<212> PRT
<213> Homo sapiens
<400> 790
Met Asp Trp Gln Ser Ala Leu Gln Gly Asn Thr Gly Ile His Ser Gln
Glu Thr Pro Cys Phe Ile Thr His Asn Lys Lys Lys Thr Lys Cys Gln
                                25
Tyr Ser Ala Leu Ala Ile Ser Val Arg Gly Lys Lys Arg Lys Lys Gln
                            40
                                                45
Ala Ser Lys Pro Ala Arg Ala Leu Ala Phe Gly Asn Asn Tyr Leu Thr
                        55
Ala Ala Cys Leu His Phe Gly Thr Pro Arg Ala Ser Arg Ala Gly Pro
                    70
                                        75
Ser Cys Trp Gly Glu Arg Ser Gln Arg Cys Cys Leu Ala Asp Leu
                                    90
Gly Phe Gly Gly His Gln Lys Arg Gly Arg Leu Leu Ala Ala Ala Thr
                                105
Ser Arg
<210> 791
<211> 420
<212> DNA
<213> Homo sapiens
<400> 791
nctctgacca aaaggaaggt atatgaaaac acaacactag gcttcattgt tgaagttgaa
ggtcttccag ttcctggtgt gaaatggtat cgaaataaat ctttactaga gccagatgaa
agaatcaaaa tggaaagagt gggtaatgtg tgttcactgg aaatttctaa cattcaaaaa
180
ggagaagggg gagagtacat gtgtcatgct gtaaacatca taggggaagc aaagagcttt
gcaaatgtag acataatgcc ccaggaagaa agagtggtgg cactaccacc tccagtaaca
300
```

catcagcatg tcatggagtt tgatttggaa cacaccacat catcaagaac acctteteet 360 caagaaattg tcctggaagt tgaattaagt gaaaaagacg ttaaagaatt tgagaagcag 420 <210> 792 <211> 138 <212> PRT <213> Homo sapiens <400> 792 Thr Lys Arg Lys Val Tyr Glu Asn Thr Thr Leu Gly Phe Ile Val Glu 10 Val Glu Gly Leu Pro Val Pro Gly Val Lys Trp Tyr Arg Asn Lys Ser 25 Leu Leu Glu Pro Asp Glu Arg Ile Lys Met Glu Arg Val Gly Asn Val Cys Ser Leu Glu Ile Ser Asn Ile Gln Lys Gly Glu Gly Glu Tyr 50 55 Met Cys His Ala Val Asn Ile Ile Gly Glu Ala Lys Ser Phe Ala Asn 70 75 Val Asp Ile Met Pro Gln Glu Glu Arg Val Val Ala Leu Pro Pro Pro Val Thr His Gln His Val Met Glu Phe Asp Leu Glu His Thr Thr Ser 105 100 Ser Arg Thr Pro Ser Pro Gln Glu Ile Val Leu Glu Val Glu Leu Ser 115 120 125 Glu Lys Asp Val Lys Glu Phe Glu Lys Gln 130 135 <210> 793 <211> 479 <212> DNA <213> Homo sapiens <400> 793 nacgcgtgcc ggttctcgga aattcattat gggaatgtgc gcgttgtgga gatgctcaga ccgcgaacag tactgcggga acccaaacga tcatttttaa ccccagacgt ccctgaacca aaqccaaaqt ctacaggtca ctggggcaga ggccgcccga aaccagcttc ccctcccggc ctaggcgcgc caggtccccg cccagccggg gcgatccttt ggtcggacag tgaggttggg ageccacege acceaagtee geograteea eccqqeqeag gegaceeeeg aegggeagee geteacette teetggeece ggetteagga aaaetgeetg gaggtggeeg gggtteeeta geggaggetg ggeggegge ttegegeetg ceteagtete eceateegtg geeeggggga tggagecege tgegegeaga ggetgeggea ggteeeagee aggtgeeetg gaacgtgga 479

850

<210> 794

<211> 159 <212> PRT <213> Homo sapiens <400> 794 Xaa Ala Cys Arg Phe Ser Glu Ile His Tyr Gly Asn Val Arg Val Val 10 Glu Met Leu Arg Pro Arg Thr Val Leu Arg Glu Pro Lys Arg Ser Phe 20 25 Leu Thr Pro Asp Val Pro Glu Pro Lys Pro Lys Ser Thr Gly His Trp 40 35 Gly Arg Gly Arg Pro Lys Pro Ala Ser Pro Pro Gly Leu Gly Ala Pro 55 60 Gly Pro Arg Pro Ala Gly Ala Ile Leu Trp Ser Asp Ser Glu Val Gly 70 75 Ser Pro Pro His Pro Ser Pro Pro His Pro Pro Gly Ala Gly Asp Pro 90 Arg Arg Ala Ala Ala His Leu Leu Leu Ala Pro Ala Ser Gly Lys Leu Pro Gly Gly Gry Arg Gly Ser Leu Ala Glu Ala Gly Arg Arg Ala Ser 120 125 115 Arg Leu Pro Gln Ser Pro His Pro Trp Pro Gly Gly Trp Ser Pro Leu 135 140 Arq Ala Glu Ala Ala Gly Pro Ser Gln Val Pro Trp Asn Val 150 <210> 795 <211> 1418 <212> DNA <213> Homo sapiens <400> 795 geeggeggeg gggaggeegg ggeetgeagg ceeeeggtae gacaagatee ggaeteegge ceggactacg aggegetgee ggetggagee actgteacca egeacatggt ggeaggegee gtggcaggga tcctggagca ctgcgtgatg taccccatcg actgcgtcaa gacccggatg 180 cagagtetac ageetgacec agetgeeege tategeaatg tgttggagge cetetggagg 240 attataagaa eggaggeet atgagggeec atgagggge tgaacgteac agcaacagge gcagggcctg cccacgccct ttattttgcc tgctacgaaa agttaaaaaa gacattgagt gatgtaatcc accetggggg caatagccat attgccaatg gtgcggccgg gtgtgtggca acattactic atqatqcaqc catqaaccct qcqqaaqgct gatctgctga cttggggctc tgaatctgga tactctccat caccggttgg ctgctgtcac catttccttc ctcgttgatg gcactactaq tqqtcaagca qaqqatqcaq atqtacaact caccatacca ccgggtgaca gactgtgtac gggcagtgtg gcaaaatgaa ggggccgggg ccttttaccg cagctacacc 660

acccagctga ccatgaacgt teetttecaa gecatteact teatgaceta tgaatteetg 720 caggagcact ttaaccccca gagacggtac aacccaagct cccacgtcct ctctggagct tgcgcaggag ctgtagctgc cgcagccaca accccactgg acgtttgcaa aacactgctc aacacccagg agtccttggc tttgaactca cacattacag gacatatcac aggcatggct agtgeettea ggaeggtata teaagtaggt ggggtgaeeg cetattteeg aggggtgeag qccaqaqtaa tttaccaqat cccctccaca gccatcgcat ggtctgtgta tgagttcttc aaatacctaa tcactaaaag gcaagaagag tggagggctg gcaagtgaag tagcactgaa 1080 cgaagccagg ggttcagatg acactgctgc atcctggtca cattctctgt ctcctggaat 1140 gctcccacct caagtggagt tagaaggaag gtagaggggc tctcccccag gattttggtg 1200 ttttqactaa caccaqttcc tqccaacctc tgttgccacc acctttcctt ccaggcccta 1260 ageaegtgca gcaaagcaca ccacagcacc tttgataacc tctctccatc ctgggcctga tqacctqctc taqactgtta taqagggata agcagctcat tcccctggtt cctaataaaa agcctttaaa ttaaaaaaaa aaaaaaaaa aaaaaaaa 1418 <210> 796 <211> 176 <212> PRT <213> Homo sapiens <400> 796 Met Ala Leu Leu Val Val Lys Gln Arg Met Gln Met Tyr Asn Ser Pro Tyr His Arg Val Thr Asp Cys Val Arg Ala Val Trp Gln Asn Glu Gly Ala Gly Ala Phe Tyr Arg Ser Tyr Thr Thr Gln Leu Thr Met Asn Val 40 Pro Phe Gln Ala Ile His Phe Met Thr Tyr Glu Phe Leu Gln Glu His 60 Phe Asn Pro Gln Arg Arg Tyr Asn Pro Ser Ser His Val Leu Ser Gly 75 Ala Cys Ala Gly Ala Val Ala Ala Ala Thr Thr Pro Leu Asp Val 90 Cys Lys Thr Leu Leu Asn Thr Gln Glu Ser Leu Ala Leu Asn Ser His 110 105 Ile Thr Gly His Ile Thr Gly Met Ala Ser Ala Phe Arg Thr Val Tyr 120 125 Gln Val Gly Gly Val Thr Ala Tyr Phe Arg Gly Val Gln Ala Arg Val 135 Ile Tyr Gln Ile Pro Ser Thr Ala Ile Ala Trp Ser Val Tyr Glu Phe 145 150 155 Phe Lys Tyr Leu Ile Thr Lys Arg Gln Glu Glu Trp Arg Ala Gly Lys

170

175

165

<210> 797 <211> 585 <212> DNA <213> Homo sapiens <400> 797 aaatttaccg geggeaaaac ccacgtcacc gactacacca aegectegeg caccatgete ttcaacatcc acacgctgga gtgggatgcg aagatgctgg agattctcga cgtgccgcgc gagatgetge eggaagttaa gtegtettea gaaatetaeg geegeaceaa aageggtate gctatcggcg gcatcgcggg cgaccaacag gctgctctgt tcggccagat gtgcgtggaa geegggeagg ccaagaacae ttatggeace ggetgettee tgetgatgaa caeeggegae aaagccgtca aatccaaaca cggcatgctc accaccatcg cctgcggtcc acgcggcgaa qtqqcttatq cqctqqaaqq cqcqqtqttc aacggtggtt cccccgtgca gtggctgcgt 420 gatgagetga agateatege ggaegeeace gacacegaat acttegeegg caaggteaag 480 gacageaacg gegtetaect ggtgeeggee tttaceggee tgggegetee gtactgggae ccgtatgccc gtggcgcttt gtttggcctg actcgtggcg tacgc 585 <210> 798 <211> 195 <212> PRT <213> Homo sapiens <400> 798 Lys Phe Thr Gly Gly Lys Thr His Val Thr Asp Tyr Thr Asn Ala Ser 10 1 Arg Thr Met Leu Phe Asn Ile His Thr Leu Glu Trp Asp Ala Lys Met 25 Leu Glu Ile Leu Asp Val Pro Arg Glu Met Leu Pro Glu Val Lys Ser 40 Ser Ser Glu Ile Tyr Gly Arg Thr Lys Ser Gly Ile Ala Ile Gly Gly 55 60 Ile Ala Gly Asp Gln Gln Ala Ala Leu Phe Gly Gln Met Cys Val Glu 70 75 Ala Gly Gln Ala Lys Asn Thr Tyr Gly Thr Gly Cys Phe Leu Leu Met 90 Asn Thr Gly Asp Lys Ala Val Lys Ser Lys His Gly Met Leu Thr Thr 100 105 Ile Ala Cys Gly Pro Arg Gly Glu Val Ala Tyr Ala Leu Glu Gly Ala 115 120 125 Val Phe Asn Gly Gly Ser Pro Val Gln Trp Leu Arg Asp Glu Leu Lys 135 140 Ile Ile Ala Asp Ala Thr Asp Thr Glu Tyr Phe Ala Gly Lys Val Lys

```
145
                    150
                                        155
                                                             160
Asp Ser Asn Gly Val Tyr Leu Val Pro Ala Phe Thr Gly Leu Gly Ala
Pro Tyr Trp Asp Pro Tyr Ala Arg Gly Ala Leu Phe Gly Leu Thr Arg
            180
                                185
Gly Val Arg
        195
<210> 799
<211> 2152
<212> DNA
<213> Homo sapiens
<400> 799
nnttttttt ttttttgat ggtgcatgta gttttattta tgtgttttca tctggaaaac
caaqtqtccc aqcaqcatqa ctqaacatca ctcacttccc ctacttgatc tacaaggcca
acqccgagag cccagaccag gattccaaac acactgcacg agaatattgt ggatccgctg
teaggtaagt gteegteact gacceagacg ctgttacgtg geacatgact gtacagtgcc
240
acgtaacagc actgtacttt tctcccataa acagttacct gccatgtatc tacatgattc
300
agaacatttt gaacagttaa ttctgacact tgaataatcc catcaaaaac cgtaaaatca
ctttgatgtt gtaacgacaa catagcatca ctttacgaca gaatcatctg gaaaaaacaga
acaacgaata catacatctt aaaaaatgct ggggtgggcc aggcacagct cacgcctgta
ateceageae tttgggagge tgaggegggt ggateaegta ateceageae tttgagggge
agaggtggac agatcatgag gtcaagagat caagaccatc ctggtcaaaa tggtgaaacc
coqtetetac taaaaataca aaaattaget gagettagtg geacacacet gtagteecag
ctacttggga ggctgaggca ggagaatcgc ttgaacccag gagacacagg ctgcagtgac
tegagateae gecaetgeae tecageetgg egacagageg agaetecate teaaaaaaaa
780
aaaccaacaa aaaaactggg gtgaaaatct aacggataat tcagcattgc cgcatagaaa
840
cetecgeaaa aceggeeaaa caaacgegga caggeggeee tggegteage geacgacagt
cacgtgggga ggggcagtgg ccaggtcggc cttggacggg tacaccacct tcaggctccc
ttccagatcc accaccogga cotgetecac caccagaagg gagggcccgt cotttccage
actgggattc gttgtgggat ctggaagttg tccagagact gcatcggctt cagtatctga
1080
qaqtqatcct tcctctttat tttctaaagt gtactttttc atttctgcca ttttcagaat
gagggcatcc atgacatcct tgcaaatctg cagactggtg gcacttgtta cttccaaaaa
1200
```

```
caaatcagaa gtcgttttct taacctttgt cttctcactg ttggttattg gtgggaagga
1260
aatcacatca cogtotgcat coacaagaca ogggtaattt toatttocat coagcaagtg
aaggtatetg tgeaggeeeg acaeactetg cegettette tgetteetet geteetegge
1380
ctccagctgc agetgccgca ccagctcctt ggcettgget tetttccgcc ccaaggggac
aatcttgagg tootgtgggg googggcgca gtacagcagg ggccctttga cggcacggag
1500
ctcgtgggtg gcaagggtgg cagccgtcct cttctcacag agatcttcgt ggagcttggt
ctgcgaggtg aggaagcgct tgagtgcatt ccctggctgc aggtccatgc ctcgcaccac
ggcccccaca atgtagggcc gcacatcccg gacctcgggg ctcactctga ctgtcagagg
tacqqqqttt tcaqaqacqt qcaqqacct qagcaqcaqc cggccggcat ctcccacgtc
etgetectee ceateaceae ettecegeet etgetteete teeeteetet teeteegget
1800
ctetteette teeqaqeet eqqeaeqqee ettqeeette eqqeaecac ggeeteegae
1860
gegeaggtae tecaggatgg atetggtetg geageegetg accatettet ceaggegett
1920
gteectcage tigtteecac ggaaattgat eteettgage tiggggeagt eegeaagete
tgcagggatc tcgctcagct ggttgttcga gaggtccaac gtcttgagcg aggccaggtg
ggegatgteg gggetgagtt eteggaggea gttgteagea geegeeagtt eaetgageag
2100
gggcagcgcg ccggggcgaa agagctcggc gggaaaggag tctaggcaat tg
2152
<210> 800
<211> 95
<212> PRT
<213> Homo sapiens
<400> 800
Cys Cys Asn Asp Asn Ile Ala Ser Leu Tyr Asp Arg Ile Ile Trp Lys
1
                                    10
Asn Arg Thr Thr Asn Thr Tyr Ile Leu Lys Asn Ala Gly Val Gly Gln
                                25
Ala Gln Leu Thr Pro Val Ile Pro Ala Leu Trp Glu Ala Glu Ala Gly
                            40
Gly Ser Arg Asn Pro Ser Thr Leu Arg Gly Arg Gly Gln Ile Met
                                            60
Arg Ser Arg Asp Gln Asp His Pro Gly Gln Asn Gly Glu Thr Pro Ser
Leu Leu Lys Ile Gln Lys Leu Ala Glu Leu Ser Gly Thr His Leu
                85
                                    90
                                                        95
<210> 801
<211> 424
```

```
<212> DNA
<213> Homo sapiens
<400> 801
nntcatgaat cgttataaac acaatggtta gtgtatatca tatctatagg agatactatg
tatcaaatta atcagctgtc tttttcttat gaaacaaaag aagtgttaaa gaatatttct
gtaacatttc ctaccaataa aataacagcc ataattggac cgaatggatg tggtaagtct
accetactta queatetata tegactteat teaacaaaaa acaaaateac attaaaegga
aaacctttag agtcttataa aggtcgcgaa tttgctcaat tggtagcagt cttaacacaa
tctagagacg ctatgattga tgattttctc gtaaaagata tcgttctcat gggacgggat
ccgtacaaac aacactttgg cacctatagt tctgaagatg ttaaaattgc agagcattat
420
atgn
424
<210> 802
<211> 122
<212> PRT
<213> Homo sapiens
<400> 802
Met Tyr Gln Ile Asn Gln Leu Ser Phe Ser Tyr Glu Thr Lys Glu Val
                                    10
Leu Lys Asn Ile Ser Val Thr Phe Pro Thr Asn Lys Ile Thr Ala Ile
                                25
Ile Gly Pro Asn Gly Cys Gly Lys Ser Thr Leu Leu Ser His Leu Tyr
                            40
Arg Leu His Ser Thr Lys Asn Lys Ile Thr Leu Asn Gly Lys Pro Leu
                        55
                                            60
Glu Ser Tyr Lys Gly Arg Glu Phe Ala Gln Leu Val Ala Val Leu Thr
                    70
                                        75
Gln Ser Arg Asp Ala Met Ile Asp Asp Phe Leu Val Lys Asp Ile Val
                                    90
                85
Leu Met Gly Arg Asp Pro Tyr Lys Gln His Phe Gly Thr Tyr Ser Ser
            100
                                105
                                                    110
Glu Asp Val Lys Ile Ala Glu His Tyr Met
        115
<210> 803
<211> 6863
<212> DNA
<213> Homo sapiens
<400> 803
gegeggeeeg getggeegte tgegeaceet eteteeeete ggetetttee taggaaaget
gagecteata getteeggga gaaggtttte eggaagaaac etecagtetg tgeagtatgt
120
```

aaggtgacca 180	tcgatgggac	aggcgtttcg	tgcagagtct	gcaaggtggc	gacgcacaga
aaatgtgaag 240	caaaggtgac	ttcagcctgt	caggeettge	ctcccgtgga	gttgcggcga
aacacggccc 300	cagtcaggcg	catagagcac	ctgggatcca	ccaaatctct	gaaccactca
aagcagcgca 360	gcactctgcc	caggagette	agcctggacc	cgctcatgga	gcggcgctgg
gacttagacc 420	tcacctacgt	gacggagcgc	atcttggccg	ccgccttccc	cgcgcggccc
gatgaacagc 480	ggcaccgggg	ccacctgcgc	gagctggccc	atgtgctgca	atccaagcac
cgggacaagt 540	acctgctctt	caacctttca	gagaaaaggc	atgacctgac	ccgcttaaac
cccaaggttc 600	aagacttcgg	ctggcctgag	ctgcatgctc	cacccctgga	caagctgtgc
tccatctgca 660	aagccatgga	gacatggctc	agtgctgacc	cacagcacgt	ggtcgtacta
tactgcaagg 720	gaaacaaggg	caagcttggg	gtcatcgttt	ctgcctacat	gcactacagc
aagatctctg 780	caggggcgga	ccaggcactg	gccactctta	ccatgcggaa	attctgcgag
gacaaggtgg 840	ccacagaact	gcagccctcc	cagcgtcgat	atatcagcta	cttcagtggg
ctgctatctg 900	gctccatcag	aatgaacagc	agccctctct	tcctgcacta	tgtgctcatc
cccatgctgc 960	cagcctttga	acctggcaca	ggcttccagc	ccttccttaa	aatctaccag
tccatgcagc 1020	ttgtctacac	atctggagtc	tatcacattg	caggccctgg	tccccagcag
ctttgcatca 1080	gcctggagcc	agccctcctc	ctcaaaggcg	atgtcatggt	aacatgttat
cacaagggtg 1140	gccggggcac	agaccggacc	ctcgtgttcc	gagtccagtt	ccacacctgc
accatccacg 1200	gaccacagct	cactttcccc	aaggaccagc	ttgacgaggc	ctggactgat
gagaggttcc 1260	ccttccaagc	ctccgtggag	tttgtcttct	cctccagccc	cgagaagatc
aaaggcagca 1320	ctccacggaa	cgacccctcg	gtctctgtcg	actacaacac	cactgagcca
gccgtgcgct 1380	gggactccta	tgagaacttc	aaccagcacc	acgaggacag	tgtggatggc
tccttgaccc 1440	acacccgggg	tcccctggat	ggcagtcctt	atgcccaggt	gcagcggcct
ccccggcaga 1500	ccccccggc	accctctcca	gageetecae	cacccccat	gctctctgtc
agcagcgact 1560	caggccattc	ctccacgctg	accacagagc	cggctgctga	gtcccctggc
cggccgcccc 1620	ctacagctgc	tgaacggcag	gagctggatc	gcctcctagg	aggctgcgga
gtggccagtg 1680	aaaaccaaaa	agctgggcgc	gagacggcca	tcctagatga	cgaagagcag
cccactgtgg 1740	gcggaggccc	ccacctcgga	gtgtatccag	gccataggcc	tggcctcagc

cgccactgct 1800	cctgccgcca	gggctaccgg	gagecetgeg	gggttcccaa	tgggggctac
taccggccag 1860	agggaaccct	gg agaggagg	cgactggcct	acgggggcta	tgagggatcc
ccccagggct 1920	acgccgaggc	ctcgatggag	aagaggcgcc	tctgccgatc	gctgtcagag
gggctatacc 1980	cctacccacc	tgagatgggg	aaaccagcca	ctggggactt	tggctaccgc
gccccaggct 2040	accgggaggt	ggtcatcctg	gaggaccctg	ggctgcctgc	cctataccca
tgcccagcct 2100	gcgaggagaa	gctggcgctg	cctacagcag	ccttgtatgg	actgcggctg
g aga gggagg 2160	ctggagaagg	gtgggcaagt	gaggctggca	agcctctcct	gcacccagtg
cggcctgggc 2220	acccgctgcc	tctgctcttg	cctgcctgtg	ggcatcacca	tgccccgatg
cctgactaca 2280	gctgcctgaa	gccacccaag	gcaggcgagg	aagggcacga	gggctgctcc
tacaccatgt 2340	gccccgaagg	caggtatggg	catccagggt	accetgeeet	ggtgacatac
agctatggag 2400	gagcagttcc	cagttactgc	ccagcatatg	gccgtgtgcc	tcatagctgt
ggctctccag 2460	gagagggcag	agggtatccc	agccctggtg	cccactcccc	acgggctggc
tccatttccc 2520	cgggcagccc	gccctatcca	caatctagga	agctgagcta	cgagatccct
acggaggagg 2580	gaggggacag	gtacccattg	cctgggcacc	tggcctcagc	aggacctttg
gcatctgcag 2640	agtcgctgga	gccggtgtcc	tggagggagg	gccccagtgg	gcacagcaca
ctgcctcggt 2700	ctccccgaga	tgccccatgc	agtgcttcgt	cagagttgtc	tggtccctcc
acgeceetge 2760	acaccagcag	tccagtccag	ggcaaggaaa	gcacccggcg	acaggacacc
aggtccccca 2820	cctcagcgcc	cactcagaga	ctgagtcctg	gcgaggcctt	gccccctgtt
2880	gcaccggaaa				
gcccctagcc 2940	cagtctctcc	gacetteeet	cccagctcgc	ccagtgactg	gcctcaggaa
aggagtccag 3000	ggggccactc	agatggcgcc	agtcctcgga	gccctgtgcc	caccacactt
3060	gccacgcccc				
3120	ctcctgtgcc				
cagageteae 3180	ctacacctgc	tttccccctg	gctgcctcct	atgacaccaa	tggccttagc
cagcccccac 3240	ttcctgagaa	acgccacctg	cccgggccgg	ggcaacagcc	aggaccctgg
ggcccagagc 3300	aggcatcatc	gccagccaga	ggcatcagtc	accatgtcac	cttcgcacct
ctgctctcag 3360	ataatgtccc	ccaaacccca	gagcctccta `	cacaagagag	ccaaagcaat

gtcaagtttg 3420	tccaggatac	atccaagttc	tggtacaagc	cacacctgtc	ccgtgaccaa
gccattgccc 3480	tgctgaagga	caaggaccct	ggggccttcc	tgatcaggga	cagtcattca
ttccaaggag 3540	cttatgggct	ggccctcaag	gtggccacac	cgccacccag	tgcccagccc
tggaaagggg 3600	accccgtgga	acagctggtc	cgccatttcc	tcatcgagac	tgggcccaaa
ggggtgaaga 3660	tcaagggctg	ccccagtgag	ccctactttg	gcagcctgtc	cgccttggtc
tcccagcact 3720	ccatctccc	catctccctg	ccctgctgcc	tgcgcattcc	cagcaaagat
cctctggaag 3780	agaccccaga	ggctccagtg	cccaccaaca	tgagcacagc	ggcagacctc
ctgcgtcagg 3840	gtgctgcctg	cagcgtgctc	tacttgacct	cagtggagac	agagtcactg
acgggccccc 3900	aagctgtggc	ccgggccagc	tctgcagctc	tgagctgtag	cccccgcccg
acaccagctg 3960	ttgtccactt	caaggtgtca	gcccagggca	ttacactgac	ggacaaccaa
aggaagetet 4020	tetttegeeg	ccattatcca	gtgaacagca	tcaccttctc	cagcactgac
cctcaagacc 4080	ggagatggac	caacccagac	gggaccacct	ccaagatctt	tggtttcgtg
gccaagaagc 4140	cgggaagccc	ctgggagaat	gtgtgtcacc	tctttgcaga	gcttgaccca
gatcagcctg 4200	ctggcgccat	tgtcaccttc	atcaccaaag	ttctactggg	ccagagaaaa
tgaaggaagg 4260	ccacaagete	agagcccaca	tcaacactgc	cccctccca	gcaccccaca
4320			gacccaggag		
tgaggagtgg 4380	gcatcaggcc	tgggacactg	ctctccttcc	ccgccccag	cctgctaagt
taagtggaca 4440	ggcccacaag	atgaccttgc	atgtgagcag	atggcagaga	tgggtgtgtg
4500			cgaaggagat		
agaacgtcag 4560	ccctccaggg	gattacaggg	gatcagcccc	tgccagttcc	acccagctgc
aggtgccagc 4620	acggcaggga	tgggagaggg	gtggggagcg	agtcactgcc	tcctctgagc
agagattcag 4680	agtaggatca	catgaatagg	ggaaaaaaga	gagtctattt	ttgtctaata
4740			ttggagtcaa		
aaagcctcat 4800	ctcccagggg	acgtatctgt	gctcaggcct	gtagecagge	ccatggaaca
tatgattccc 4860	atccctggcc	caacattggt	ccacatctcc	ccatgagcaa	getgeetteg
4920			cccagtggac		
gccatactga 4980	taaatacgga	aactccatct	ttatcggctg	tataaacatc	tctggtctgt

acatacattt 5040	catacatcgt	agggtgggaa	gcgagggcca	aagggaggcc	cagcagcaca
acageteace 5100	cgatttacat	acagccctac	ccgctctgtg	caaaccaagg	ccaacagctc
ctgctgcctc 5160	ttcctccctg	gaaaagtcac	tgttacgggg	agggggccag	gggttgaagg
attagaagga 5220	gatagagggc	ttggtgggga	ggacacatgt	aagtgctaga	atcaaacact
gaagcgaaac 5280	aggcaactgg	cacaagcagc	aagctgaggc	atgggacggg	gcaggaaaag
gggagggagg 5340	ggccacgctg	ccctctggg	cttgctcagc	taaggetetg	gggtcttgcc
5400		ggccccagag			
5460		aaggatggaa			
5520		ctcttaaaca			
5580		agatectetg			
5640		agagcctaga			
5700		aggtcccctg			
5760		aaacaagaaa			
5820		tctaccctct	_		
5880	_	cacccacaca			
cccactgacc 5940	aaagcgagtg	ggaccaccca	cataccaaca	ccattctttg	ggtccattcc
tgtccaacca 6000	gggactcagg	cccagggact	gacaacagtg	gcagcaccag	gtcagaaacg
6060		aggggcctga			
caggggcctg 6120	ctgggtaaac	gaagcctctg	ggaagtcagg	aactgggtgc	ctggcccagc
agagggtgag 6180	cagggagaag	gagcaggtct	ggagggagg	ccctagccac	tcaaggggtg
cagatctact 6240	ttgactttct	ccccgcagct	cagcattcca	atggtgggga	agaagcctcc
6300	_	tcttcccaat			_
caccttcctg 6360	ccctcatgct	ccggctctat	ctcttcccca	toctcttcct	cttcctcttc
ctcctcttcc 6420	tcttcccctt	cctggtgcag	gtacatgaca	ttccgcacgt	tccggacggc
ccgggcagtc 6480	ggagacagga	tcactgtgtc	acaactgtca	tcactgtccc	cctcactgtc
caaaatgtag 6540	tcccggggga	acatgattcc	acagcccatg	atgtcccctt	tgtaacagcg
tggcccaaag 6600	gggtccccca	caccactgcc	atggaagatc `	ttcccatcgt	ctgcatgata

agecacagac cetetgetee agecagggtg cetgttettg ggatagteet teegtgecag ecceagggeg atqtageatt tetetecagg qtecaegate tecaectega agtagtgget gegggtgetg agtgggtgee gggeetggge cageeceaca tecaegatge tittgeeett ccctaagtac tccagcagag tcccacagac tctqacatca tqtaqccggc cccattcatc ctcgtagctg tccaccatca tga 6863 <210> 804 <211> 1400 <212> PRT <213> Homo sapiens <400> 804 Ala Arg Pro Gly Trp Pro Ser Ala His Pro Leu Ser Pro Arg Leu Phe 5 10 Pro Arg Lys Ala Glu Pro His Ser Phe Arg Glu Lys Val Phe Arg Lys 25 Lys Pro Pro Val Cys Ala Val Cys Lys Val Thr Ile Asp Gly Thr Gly 40 Val Ser Cys Arg Val Cys Lys Val Ala Thr His Arg Lys Cys Glu Ala Lys Val Thr Ser Ala Cys Gln Ala Leu Pro Pro Val Glu Leu Arg Arg 70 75 Asn Thr Ala Pro Val Arg Arg Ile Glu His Leu Gly Ser Thr Lys Ser 85 90 Leu Asn His Ser Lys Gln Arg Ser Thr Leu Pro Arg Ser Phe Ser Leu 105 Asp Pro Leu Met Glu Arg Arg Trp Asp Leu Asp Leu Thr Tyr Val Thr 120 Glu Arg Ile Leu Ala Ala Ala Phe Pro Ala Arg Pro Asp Glu Gln Arg 135 140 His Arg Gly His Leu Arg Glu Leu Ala His Val Leu Gln Ser Lys His 150 155 Arg Asp Lys Tyr Leu Leu Phe Asn Leu Ser Glu Lys Arg His Asp Leu 170 Thr Arg Leu Asn Pro Lys Val Gln Asp Phe Gly Trp Pro Glu Leu His 180 185 Ala Pro Pro Leu Asp Lys Leu Cys Ser Ile Cys Lys Ala Met Glu Thr 200 Trp Leu Ser Ala Asp Pro Gln His Val Val Leu Tyr Cys Lys Gly 220 215 Asn Lys Gly Lys Leu Gly Val Ile Val Ser Ala Tyr Met His Tyr Ser 230 235 Lys Ile Ser Ala Gly Ala Asp Gln Ala Leu Ala Thr Leu Thr Met Arg 250 Lys Phe Cys Glu Asp Lys Val Ala Thr Glu Leu Gln Pro Ser Gln Arg 265 Arg Tyr Ile Ser Tyr Phe Ser Gly Leu Leu Ser Gly Ser Ile Arg Met 280 Asn Ser Ser Pro Leu Phe Leu His Tyr Val Leu Ile Pro Met Leu Pro

	290					295					300				
Ala		Glu	Pro	Glv	Thr			Gln	Pro	Phe		Lvs	Ile	Tvr	Gln
305				1	310	1				315		•		•	320
Ser	Met	Gln	Leu	Val	Tyr	Thr	Ser	Gly	Val	Tyr	His	Ile	Ala	Gly	Pro
				325					330					335	
Gly	Pro	Gln	Gln	Leu	Cys	Ile	Ser	Leu	Glu	Pro	Ala	Leu	Leu	Leu	Lys
			340					345					350		
Gly	Asp		Met	Val	Thr	Cys	_	His	Lys	Gly	Gly		Gly	Thr	Asp
_		355		_,	_		360	_,		»	_	365		'	~ 3
Arg		Leu	val	Phe	Arg	741 375	GIn	Pne	HIS	Tnr	_	Thr	iie	His	Gly
Pro	370	Len	Thr	Dha	Dro		Λen	Gln	T. 211	Aen	380	בומ	Trn	Thr	Asp
385	0111	пси	1111	1110	390	шуз	АЗР	OIII	DC u	395	014	ALU	111	1111	400
	Arq	Phe	Pro	Phe	Gln	Ala	Ser	Val	Glu		Val	Phe	Ser	Ser	
				405					410					415	
Pro	Glu	Lys	Ile	Lys	Gly	Ser	Thr	Pro	Arg	Asn	Asp	Pro	Ser	Val	Ser
			420					425					430		
Val	Asp		Asn	Thr	Thr	Glu		Ala	Val	Arg	Trp		Ser	Tyr	Glu
	_,	435					440	_		_		445	_		
Asn		Asn	Gln	His	His	G1u 455	Asp	Ser	Val	Asp		ser	Leu	Thr	His
Thr	450	Glaz	Dro	T 011	Asp		Sar	Pro	Тълъ	Λla	460 Gln	Wa l	Gln	7 ~~	Dro
465	Arg	Gry	FIU	пец	470	GIY	Ser	FIU	1 7 1	475	GIII	vai	GIII	Arg	480
	Arg	Gln	Thr	Pro	Pro	Ala	Pro	Ser	Pro		Pro	Pro	Pro	Pro	
				485					490					495	
Met	Leu	Ser	Val	Ser	Ser	Asp	Ser	Gly	His	Ser	Ser	Thr	Leu	Thr	Thr
			500					505					510		
Glu	Pro		Ala	Glu	Ser	Pro		Arg	Pro	Pro	Pro		Ala	Ala	Glu
_		515	_	_	_	_	520	~ 3		_	~-7	525		_	
Arg		Glu	Leu	Asp	Arg		Leu	GIY	GIY	Cys	G1y 540	Val	Ala	Ser	GIY
Glv	530 Ara	Glv	Δla	Glv	Arg	535	Thr	Δla	Tle	T.em		Δen	Glu	Glu	Gln
545	Arg	O.L.y	nia	QT Y	550	OI u	****	ALG	110	555	WD.	мэр	O.L.u.	Olu	560
	Thr	Val	Gly	Gly	Gly	Pro	His	Leu	Gly		Tyr	Pro	Gly	His	
			_	565	_				570		_		_	575	_
Pro	Gly	Leu	Ser	Arg	His	Cys	Ser	Cys	Arg	Gln	Gly	Tyr	Arg	Glu	Pro
			580					585					590		
Cys	Gly		Pro	Asn	Gly	Gly		Tyr	Arg	Pro	Glu		Thr	Leu	Glu
7	3	595	T	33-	·	~1	600	m	01	01	C	605	01 -	01. .	m
Arg	A19	Arg	Leu	Ата	Tyr	615	СТУ	Tyr	GIU	GLY	620	PIO	GIII	GLY	Tyr
Ala		Ala	Ser	Met	Glu		Ara	Ara	T.eu	Cvs		Ser	Len	Ser	Glu
625					630	_,_				635					640
	Leu	Tyr	Pro	Tyr	Pro	Pro	Glu	Met	Gly	Lys	Pro	Ala	Thr	Gly	
				645					650					655	
Phe	Gly	Tyr	Arg	Ala	Pro	Gly	Tyr	Arg	Glu	Val	Val	Ile	Leu	Glu	Asp
			660					665					670		
Pro	Gly		Pro	Ala	Leu	Tyr		Cys	Pro	Ala	Cys		Glu	Lys	Leu
	•	675					680	~ 3				685		~1	
ΑΙΑ		Pro	inr	Ата	Ala	Leu 695	ıyr	GTÅ	ьeu	arg	100	GIU	arg	GIU	нта
Glv	690 Glu	Glv	Trn	Ala	Ser		Ala	Glv	Lve	Pro		T.em	His	Pro	va 1
705		1	1		710	4		y	_, _	715				0	720
	Pro	Gly	His	Pro	Leu	Pro	Leu	Leu	Leu		Ala	Cys	Gly	His	
~		-										-	-		

				725					730					735	
His	Ala	Pro	Met 740		Asp	Tyr	Ser	Cys 745		Lys	Pro	Pro	Lys 750		Gly
Glu	Glu	Gly 755		Glu	Gly	Cys	Ser 760		Thr	Met	Cys	Pro 765	Glu	Gly	Arg
Tyr	Gly 770	His	Pro	Gly	Tyr	Pro 775	Ala	Leu	Val	Thr	Tyr 780	Ser	Tyr	Gly	Gly
Ala 785	Val	Pro	Ser	Tyr	Cys 7 90	Pro	Ala	Tyr	Gly	Arg 795	Val	Pro	His	Ser	Cys 800
Gly	Ser	Pro	Gly	Glu 805	Gly	Arg	Gly	Tyr	Pro 810	Ser	Pro	Gly	Ala	His 815	Ser
Pro	Arg	Ala	Gly 820	Ser	Ile	Ser	Pro	Gly 825	Ser	Pro	Pro	Tyr	Pro 830	Gln	Ser
Arg	Lys	Leu 835	Ser	Tyr	Glu	Ile	Pro 840	Thr	Glu	Glu	Gly	Gly 845	Asp	Arg	Tyr
Pro	Leu 850	Pro	Gly	His	Leu	Ala 855	Ser	Ala	Gly	Pro	Leu 860	Ala	Ser	Ala	Glu
Ser 865	Leu	Glu	Pro	Val	Ser 870	Trp	Arg	Glu	Gly	Pro 875	Ser	Gly	His	Ser	Thr 880
Leu	Pro	Arg	Ser	Pro 885	Arg	Asp	Ala	Pro	Cys 890	Ser	Ala	Ser	Ser	Glu 895	Leu
Ser	Gly	Pro	Ser 900	Thr	Pro	Leu	His	Thr 905	Ser	Ser	Pro	Val	Gln 910	Gly	Lys
Glu	Ser	Thr 915	Arg	Arg	Gln	Asp	Thr 920	Arg	Ser	Pro	Thr	Ser 925	Ala	Pro	Thr
Gln	Arg 930	Leu	Ser	Pro	Gly	Glu 935	Ala	Leu	Pro	Pro	Val 940	Ser	Gln	Ala	Gly
Thr 945	Gly	Lys	Ala	Pro	Glu 950	Leu	Pro	Ser	Gly	Ser 955	Gly	Pro	Glu	Pro	Leu 960
Ala	Pro	Ser	Pro	Val 965	Ser	Pro	Thr	Phe	Pro 970	Pro	Ser	Ser	Pro	Ser 975	Asp
Trp	Pro	Gln	Glu 980	Arg	Ser	Pro	Gly	Gly 985	His	Ser	Asp	Gly	Ala 990	Ser	Pro
Arg	Ser	Pro 9 95	Val	Pro	Thr	Thr	Leu 1000		Gly	Leu	Arg	His 1009		Pro	Trp
Gln	Gly 1010		Arg	Gly	Pro	Pro 1019		Ser	Pro	Asp	Gly 1020		Pro	Leu	Thr
Pro	Val	Pro	Ser	Gln			${\tt Trp}$	Leu	Val	Ala	Ser	Pro	Glu	Pro	
1029		_	_		1030		-,	_	_	1035			_		1040
				1045	5				1050					1055	5
Asn	Gly	Leu	Ser 1060		Pro	Pro	Leu	Pro 1065		Lys	Arg	His	Leu 1070		Gly
Pro	Gly	Gln 1075		Pro	Gly	Pro	Trp	_	Pro	Glu	Gln	Ala 1085		Ser	Pro
Ala	Arg 1090	_	Ile	Ser	His	His 1099		Thr	Phe	Ala	Pro 1100		Leu	Ser	Asp
Asn	Val	Pro	Gln	Thr	Pro	Glu	Pro	Pro	Thr	Gln	Glu	Ser	${\tt Gln}$	Ser	Asn
1105	5				1110)				1115	5				1120
Val	Lys	Phe	Val	Gln	Asp	Thr	Ser	Lys	Phe	Trp	Tyr	Lys	Pro	His	Leu
				1125					1130					1135	
Ser	Arg	Asp	Gln 1140		Ile	Ala	Leu	Leu 1145	_	Asp	Lys	Asp	Pro 1150		Ala
Phe	Leu	Ile	Arg	Asp	Ser	His	Ser	Phe	Gln	Gly	Ala	Tyr	Gly	Leu	Ala

1155 1160 1165 Leu Lys Val Ala Thr Pro Pro Pro Ser Ala Gln Pro Trp Lys Gly Asp 1175 1180 Pro Val Glu Gln Leu Val Arg His Phe Leu Ile Glu Thr Gly Pro Lys 1190 1195 Gly Val Lys Ile Lys Gly Cys Pro Ser Glu Pro Tyr Phe Gly Ser Leu 1210 1205 1215 Ser Ala Leu Val Ser Gln His Ser Ile Ser Pro Ile Ser Leu Pro Cys 1220 1225 Cys Leu Arg Ile Pro Ser Lys Asp Pro Leu Glu Glu Thr Pro Glu Ala 1240 Pro Val Pro Thr Asn Met Ser Thr Ala Ala Asp Leu Leu Arg Gln Gly 1255 1260 Ala Ala Cys Ser Val Leu Tyr Leu Thr Ser Val Glu Thr Glu Ser Leu 1270 1275 Thr Gly Pro Gln Ala Val Ala Arg Ala Ser Ser Ala Ala Leu Ser Cys 1285 1290 Ser Pro Arg Pro Thr Pro Ala Val Wal His Phe Lys Val Ser Ala Gln 1305 Gly Ile Thr Leu Thr Asp Asn Gln Arg Lys Leu Phe Phe Arg Arg His 1315 1320 1325 Tyr Pro Val Asn Ser Ile Thr Phe Ser Ser Thr Asp Pro Gln Asp Arg 1335 Arg Trp Thr Asn Pro Asp Gly Thr Thr Ser Lys Ile Phe Gly Phe Val 1350 1355 Ala Lys Lys Pro Gly Ser Pro Trp Glu Asn Val Cys His Leu Phe Ala 1365 1370 Glu Leu Asp Pro Asp Gln Pro Ala Gly Ala Ile Val Thr Phe Ile Thr 1380 1385 Lys Val Leu Leu Gly Gln Arg Lys 1395 1400 <210> 805 <211> 550 <212> DNA <213> Homo sapiens <400> 805 cccgagagag gcttcaatcc aatgagctgc cagctgaact tactcaacaa qcaaqqaccc atgggcagac ccaggaaatc tcgccaagta ccccattcat gggaggccag cagcacaatt agtcatccat ttacttatca agctgttact gtgtgtgcaa gaagcgccag agagatgata tcaaggaget ettaccatgg etggeataga geggetgatg agtaagttee gtetgeacaa agagtocota agcattoatt ottggotgao attottggot cagggggtot ccatggoott gtteccetec tegggtcace agtteaggte gagggggeet atgettggaa gggccacace 360 aatggacctt gccaggacac tcagtcacag gtttcacacc caaagagaag acagcccaac ccagaccete aaaagagage acetggggga agggagegtg gaaaccagga etcagaaaga 480

```
cacaagagaa aaagaagctg tacactgggg aggcttccgg ggtacctgtg cctgccatgt
540
ctctgaaggc
550
<210> 806
<211> 118
<212> PRT
<213> Homo sapiens
<400> 806
Met Ala Gly Ile Glu Arg Leu Met Ser Lys Phe Arg Leu His Lys Glu
Ser Leu Ser Ile His Ser Trp Leu Thr Phe Leu Ala Gln Gly Val Ser
            20
                                25
Met Ala Leu Phe Pro Ser Ser Gly His Gln Phe Arg Ser Arg Gly Pro
Met Leu Gly Arg Ala Thr Pro Met Asp Leu Ala Arg Thr Leu Ser His
                        55
Arg Phe His Thr Gln Arg Glu Asp Ser Pro Thr Gln Thr Leu Lys Arg
                                        75
Glu His Leu Gly Glu Gly Ser Val Glu Thr Arg Thr Gln Lys Asp Thr
                                    90
Arg Glu Lys Glu Ala Val His Trp Gly Gly Phe Arg Gly Thr Cys Ala
           100
                                105
Cys His Val Ser Glu Gly
        115
<210> 807
<211> 287
<212> DNA
<213> Homo sapiens
<400> 807
acgcgtcgat ggcggttgcc ctgcctcact ggcaagacgc gaaatttctt gccatgattt
60
cccgaggtgg gagagcgcgc ggcatggcga ccgtaaacgt atcgttgtcc gatgcgatga
ccgagtgggt cgaagctcag accgggacag gccgctatac cagcgcgagc gattatatct
gegeeetgat tegeeaggae caggagegaa gegaeggeet caggeagett caaaegttga
tcaccgaggg gttcgacagc ggcatcagcg cctcgtcgct tgatgac
287
<210> 808
<211> 93
<212> PRT
<213> Homo sapiens
<400> 808
Met Ala Val Ala Leu Pro His Trp Gln Asp Ala Lys Phe Leu Ala Met
Ile Ser Arg Gly Gly Arg Ala Arg Gly Met Ala Thr Val Asn Val Ser
```

```
25
            20
Leu Ser Asp Ala Met Thr Glu Trp Val Glu Ala Gln Thr Gly Thr Gly
                            40
Arg Tyr Thr Ser Ala Ser Asp Tyr Ile Cys Ala Leu Ile Arg Gln Asp
                        55
Gln Glu Arg Ser Asp Gly Leu Arg Gln Leu Gln Thr Leu Ile Thr Glu
                    70
                                        75
Gly Phe Asp Ser Gly Ile Ser Ala Ser Ser Leu Asp Asp
                85
<210> 809
<211> 405
<212> DNA
<213> Homo sapiens
<400> 809
nngggggggg ggggggggg ggttttttc cccccaaaga aaaaaaaagg ggggggggg
gggcccccc cccccccc ccttttttc ccccggggg tttattccca gggccaacag
gacgcgtggt cgcgtcaaat ggagagacga tcggtgccgc ccttgcccca cgatcctgat
ggccccgaga ttcctgacga tgtcaccacc ctcgcccaac aggtaatggg tctgccacgt
cacctqqqta tccactcagc tggaatggtg ctgacqcgag aaccagtagg acgcatctgc
cccattgagc cggctcgaat gtttggtcgc acggggctgc agtgggacaa anaaaactgt
gcctggatgg ggttggggaa gtttgatctg cttgggttgg ggatg
<210> 810
<211> 135
<212> PRT
<213> Homo sapiens
<400> 810
Xaa Gly Gly Gly Gly Gly Val Phe Pro Pro Lys Lys Lys Lys
                                   10
Gly Gly Gly Gly Pro Pro Pro Pro Pro Pro Leu Phe Phe Pro Arg
                               25
Gly Val Tyr Ser Gln Gly Gln Gln Asp Ala Trp Ser Arg Gln Met Glu
                            40
Arq Arq Ser Val Pro Pro Leu Pro His Asp Pro Asp Gly Pro Glu Ile
                                            60
                        55
Pro Asp Asp Val Thr Thr Leu Ala Gln Gln Val Met Gly Leu Pro Arg
                   70
                                       75
His Leu Gly Ile His Ser Ala Gly Met Val Leu Thr Arg Glu Pro Val
                                    90
Gly Arg Ile Cys Pro Ile Glu Pro Ala Arg Met Phe Gly Arg Thr Gly
                                105
Leu Gln Trp Asp Lys Xaa Asn Cys Ala Trp Met Gly Leu Gly Lys Phe
                            120
       115
Asp Leu Leu Gly Leu Gly Met
```

```
130
                      135
<210> 811
<211> 642
<212> DNA
<213> Homo sapiens
<400> 811
acgegtgaag gggcagtgat aggegegeae catttgagee eecagtgtga tgaatgtaag
cagtgccaat gactgccaat ggcaaagaag agctccaacc aaacaccagg tgcttcatgg
tggtgacaca ttaacaacac ccgggaagca gtactgccaa cacctagata tgagaaaaag
aaaacaggca cttaaagcga ggctaaccca ctttcaggaa tgataaaggg cagaggaccc
tqtcacctct acccctqcta ctaaaggcgt ggcccacaga gcagcagcac cagcagcaca
taaaatgggg ttaaatatga caggaaaaac aaggtgacag ggaaatgggg tgaagatcaa
qttcqtqqta nqtctttctt tcctagaggc tttgggcctg agctcttgga gaaagctctc
420
caacacctca qqqtqtqcct gttcccctgc cctgtgggga tgctctttgt acgggtggct
480
gactggctcc cactttcctc cgtattgttg tcttgtctct tccctcacaa ccatcaaggc
tettteeett aattetataa gacagtaeet etggettaga aattatatge eeteetttaa
aaaaacqaaa tqctagagga catagaactt gaggaaaaat tt
<210> 812
<211> 106
<212> PRT
<213> Homo sapiens
<400> 812
Met Val Val Arg Glu Glu Thr Arg Gln Gln Tyr Gly Gly Lys Trp Glu
                                                        15
                 5
Pro Val Ser His Pro Tyr Lys Glu His Pro His Arg Ala Gly Glu Gln
Ala His Pro Glu Val Leu Glu Ser Phe Leu Gln Glu Leu Arg Pro Lys
                            40
Ala Ser Arg Lys Glu Arg Xaa Thr Thr Asn Leu Ile Phe Thr Pro Phe
                        55
Pro Cys His Leu Val Phe Pro Val Ile Phe Asn Pro Ile Leu Cys Ala
                                        75
                    70
Ala Gly Ala Ala Ala Leu Trp Ala Thr Pro Leu Val Ala Gly Val Glu
                85
Val Thr Gly Ser Ser Ala Leu Tyr His Ser
            100
                                105
<210> 813
<211> 558
```

```
<212> DNA
<213> Homo sapiens
<400> 813
cccgggcgat agtcgcgtgg ggtcatggcg gatgaggggt taagagcgcg tttactgcgg
eqecegacte egateageeg tteggaaagg egacgeegaa gateatgaca tteteggeeg
gttegetgae eageaceggg cegecegget gggeegggaa acegtggaae aagggaageg
ggggcggcgc gcggggtgac gccttcggcc ccctcgcctt cggtcagcgt gcggcgcaat
toggggtcga ggatgatccg cggcccttcg atcttgacca cgatctccag ttgcccgcca
ttgtcttcgc cgccgacatc cagcgtgccg ccgcgcacca gcgcctcgct ggcgatcagg
gcgaggttca gcatcacctt cagcgcggac ttgggcagcg tctccgtttc cacccaccag
ttgaattgcg tgcgcttatt gtcggcaacc agcccctcgt tcgcggtttt cgcttcgcgc
qeqteqaect gtteqeegaa ceegeeggeg gegeagaagg egaggeggaa gaatttgage
540
ttgttggcgg atacgcgt
558
<210> 814
<211> 151
<212> PRT
<213> Homo sapiens
<400> 814
Met Thr Phe Ser Ala Gly Ser Leu Thr Ser Thr Gly Pro Pro Gly Trp
                                    10
Ala Gly Lys Pro Trp Asn Lys Gly Ser Gly Gly Ala Arg Gly Asp
                                25
                                                    30
Ala Phe Gly Pro Leu Ala Phe Gly Gln Arg Ala Ala Gln Phe Gly Val
                            40
Glu Asp Asp Pro Arg Pro Phe Asp Leu Asp His Asp Leu Gln Leu Pro
Ala Ile Val Phe Ala Ala Asp Ile Gln Arg Ala Ala Ala His Gln Arg
Leu Ala Gly Asp Gln Gly Glu Val Gln His His Leu Gln Arg Gly Leu
                85
                                    90
Gly Gln Arg Leu Arg Phe His Pro Pro Val Glu Leu Arg Ala Leu Ile
                                105
Val Gly Asn Gln Pro Leu Val Arg Gly Phe Arg Phe Ala Arg Val Asp
                            120
                                                125
Leu Phe Ala Glu Pro Ala Gly Gly Ala Glu Gly Glu Ala Glu Glu Phe
                        135
Glu Leu Val Gly Gly Tyr Ala
145
                    150
<210> 815
<211> 315
```

```
<212> DNA
<213> Homo sapiens
<400> 815
acgcgttgag actgtcacaa ggctaggcta acttcatata gctatgccat cagatctgcc
caaagtggac gatgagaaag ctcacgacgc gcctcacacg gatgggtcgg agcctggaca
120
agctagcgca ggagaaagcc gagacctcac gtccgaagcg gattcagcaa gtgcacaacc
ttctacccac gctgaggttt ccagtgaagt tactgctacg tccagtatag atgagcaggt
agacctcatt gctgcaccgt taagcgaaga gtccaatgtc agcaagctcg ggccgtcccc
300
tgaggccgat acatc
315
<210> 816
<211> 90
<212> PRT
<213> Homo sapiens
<400> 816
Met Pro Ser Asp Leu Pro Lys Val Asp Asp Glu Lys Ala His Asp Ala
1
Pro His Thr Asp Gly Ser Glu Pro Gly Gln Ala Ser Ala Gly Glu Ser
            20
                                25
                                                     30
Arg Asp Leu Thr Ser Glu Ala Asp Ser Ala Ser Ala Gln Pro Ser Thr
His Ala Glu Val Ser Ser Glu Val Thr Ala Thr Ser Ser Ile Asp Glu
                        55
                                            60
Gln Val Asp Leu Ile Ala Ala Pro Leu Ser Glu Glu Ser Asn Val Ser
                    70
Lys Leu Gly Pro Ser Pro Glu Ala Asp Thr
                85
                                    90
<210> 817
<211> 321
<212> DNA
<213> Homo sapiens
<400> 817
gaattcaaaq agaaatatct gcctagacct tatgtgatta atctaatgga cgaactgacc
60
ctgaaaggaa tcacacaata ttatgctttt gttgaagagg ggcagaaggt tcattgcctg
120
aatacacttt totcaaagot toaaattaat caatocatta tattotgoaa ototgttaat
agtgttgagc tgctggctaa aaaaataact gaactcggtt attcatgctt ctacattcat
gctaagatgt tgcaagacca cagaaatcga gtattccatg attgtcgtaa tggtgcttgc
agaaaccttg tgtgcacaga t
321
```

```
<210> 818
<211> 107
<212> PRT
<213> Homo sapiens
<400> 818
Glu Phe Lys Glu Lys Tyr Leu Pro Arg Pro Tyr Val Ile Asn Leu Met
                                    10
Asp Glu Leu Thr Leu Lys Gly Ile Thr Gln Tyr Tyr Ala Phe Val Glu
Glu Gly Gln Lys Val His Cys Leu Asn Thr Leu Phe Ser Lys Leu Gln
Ile Asn Gln Ser Ile Ile Phe Cys Asn Ser Val Asn Ser Val Glu Leu
                        55
Leu Ala Lys Lys Ile Thr Glu Leu Gly Tyr Ser Cys Phe Tyr Ile His
                    70
                                        75
Ala Lys Met Leu Gln Asp His Arg Asn Arg Val Phe His Asp Cys Arg
                                    90
                85
Asn Gly Ala Cys Arg Asn Leu Val Cys Thr Asp
            100
                                105
<210> 819
<211> 3422
<212> DNA
<213> Homo sapiens
<400> 819
atgaacagta agaaactgtc ttctactgac tgtttcaaaa ccgaggcctt cacatccccg
gaggecetge ageotggggg gactgeeetg gegeetaaga agaggageeg gaaaggeegg
gcaggggccc atggactotc caaaggcccg ctggagaagc ggccctatot tggcccggct
ctgcccctga ctccccgaga cagggccagt ggcacacaag gggccagtga ggacaactct
ggtggaggag gcaagaagcc aaagatggag gagctgggcc tggcctccca cccccggag
300
ggcaggccct gccagcccca gacaagggca cagaaacagc caggccacac caactacagc
agetatteca ageggaageg ceteactegg ggeegggeea agaacaceae etetteacee
420
tgtaagggc gtgccaagcg acgacgacag cagcaggtgc tgcccctgga tcccgcagag
cctgaaatcc gcctcaagta catttcctct tgcaagcggc tgaggtcaga cagccggacc
cocgcettet caccettegt gegggtggag aagegagaeg egtteaceae catatgeaet
qttgtcaact cccctggaga tgcgcccaag ccccacagga agccttcctc ctctgcctcc
tetteeteat cetegteete gtteteettg gatgeageeg gggeeteeet ggeeacaete
cotggaggot coatcotgca geogoggood toottgoogo totoctocac gatgeacttg
780
```

gggcctgtgg 840	tttccaaggc	cctgagtacc	tettgeettg	tttgctgcct	ctgccaaaac
ccggccaact 900	tcaaggacct	tggggacctc	tgtgggccct	actaccctga	acactgcctc
cccaaaaaga 960	agccaaaact	caaggagaag	gtgcggccag	aaggcacctg	tgaggaggcc
tegetgeege 1020	ttgagagaac	actcaaaggt	cccgagtgtg	cagctgccgc	cactgccggg
aagcccccca 1080	ggcctgacgg	cccagctgac	ccggccaagc	agggcccact	gcgcaccagt
gcccggggcc 1140	tgtcccggag	gctgcagagc	tgctactgct	gtgatggccg	ggaggatggg
ggcgaggagg 1200	cagccccagc	cgacaagggt	cgcaaacatg	agtgcagcaa	ggaggctccg
gcagagcccg 1260	gcggggaggc	ccaggagcac	tgggtgcatg	aggcctgtgc	cgtgtggacc
ggcggcgtct 1320	acctggtggc	cgggaagctc	tttgggctgc	aggaggccat	gaaggtggcc
gtggacatga 1380	tgtgttccag	ctgccaagaa	gccggggcca	ccatcgggtg	ctgccacaaa
ggatgcctcc 1440	acacctacca	ctacccgtgt	gccagcgatg	caggttgcat	attcatcgaa
gagaactttt 1500	ctttgaaatg	tcccaaacat	aagaggctgc	cgtagtaatc	caccccaacg
gccggaggag 1560	ccgccggagc	ccgcctgccc	gcccgccgcc	gaaggagagg	agccgcctgc
gcagcccccg 1620	ggcctttgag	ctgctcccag	cgctggtcca	gagccgatcc	ttgatccggg
tcccggatcg 1680	tggatccggc	cgcctagggc	tcagacttgc	ggccccgggt	tgggaggaaa
acccgttccg 1740	gageegeetg	ctcccggaac	cggacggcac	agggcgttct	tgeccacece
aggggccagg 1800	cttgcggagg	gggagcccgc	ggagcggcca	gactccccgg	ggcgctcagc
ctccggcgag 1860	ggtgggagac	ggctttgtcc	tggggacact	ttccctctgg	aatctcaaga
cgacgtggca 1920	cacattccac	gtgggtgctg	ccgccacccc	agtcggtcgt	ggcgtgcagc
tgggagccct 1980	gggcttgggg	gtgggggtcg	aaacagtact	ggaagaggcg	gagggcggct
cctagctccg 2040	tggactaggc	gggggagaaa	ggaagccttt	ctgagagcgg	gctaggccgg
cactggagag 2100	gccggagcct	ttggaacaaa	ccgtgcggaa	cgcgtccagg	ggccttcccg
cccagccttt 2160	gccagatctc	tcgtgcggtt	cgggcaaagc	cggggtagac	ctgggctatg
ctcagttagg 2220	ggttgcggga	tccccgagtg	tgggcgggac	tgggacaccc	tttggcctct
gtttgtcccc 2280	tttccagtcc	tccaccccac	ccctggagcc	cagcctggga	gcgcaaaacc
caagaagcgg 2340	ccagaacgca	cctccggctc	cggcggacgc	gcgaccgttg	tgcaccacca
gggaccgccg 2400	cgcctactct	gcacgggagc	agggacagcg	ctagatttcg	tgtacaaaac

```
ctgtgtaccc ctctatatat atgttacata gaatgtatat atgttgggaa catgctcgct
2460
tetecegtgt gtegeegeeg tgegtegtge geeegeaaca gageeceaac egggeetttg
cogggtaagg ggctacogcg acqccacttg tocacgcage caccaccggc cogggccagt
coetgocagt cogtocgoot grocqtoogt groctcagot ctgtccacgo ttogataggo
etgacgcage ecceagecca qqqcegccet ageaacttee tgtacatatg actgtaaaat
2700
ggtaaacgtg tgtattatat ctggcctcgt tatatagtgt atatatatgt atacatatac
atatatataa tatatatgaa gactgtaaat gttaagacga ctagtgttct tattagtata
ttgcttcaca ctgaagattg tgtgtatcga gctgtttcta aaagatgttt attttcctta
agagtaaaaa acagtcattq cattcaqaaa aaaaaaaaaa aagtcaataa agatacaacq
attgttttgg aaaatctgca gcccgtggat tccgaccaga ttcagctggg agccgggcca
ggctttaggt tggggaatgg gaatgaaggg aggggctggg ggggggggca tgaatggagt
cagggagtcg gcctttcaca gaacaggaaa cctcccccgc ccctgtgccc cctctccagt
gtggcggcag gtcgggaggg aggaggcttc tttgctgtga aatgaccagg ggccgggatg
3180
ggggaggtga gacgtgccag acttcttgca gggagaccca agctgtagct cctgtcacac
3240
aacaggteet ggaagteagt ceatecteec gtgecaceca gggacettgt gteeggaggg
3300
ggaggggaag cetttgeeta ggtgetgggg gagggeecaa geaeteteae tagteageae
atccatcago tgaagacaca aaacccagat tataaataat ttcattttta attctctgta
3420
ca
3422
<210> 820
<211> 494
<212> PRT
<213> Homo sapiens
<400> 820
Met Asn Ser Lys Lys Leu Ser Ser Thr Asp Cys Phe Lys Thr Glu Ala
1
                 5
Phe Thr Ser Pro Glu Ala Leu Gln Pro Gly Gly Thr Ala Leu Ala Pro
                                25
Lys Lys Arg Ser Arg Lys Gly Arg Ala Gly Ala His Gly Leu Ser Lys
Gly Pro Leu Glu Lys Arg Pro Tyr Leu Gly Pro Ala Leu Pro Leu Thr
                        55
                                            60
Pro Arg Asp Arg Ala Ser Gly Thr Gln Gly Ala Ser Glu Asp Asn Ser
Gly Gly Gly Lys Lys Pro Lys Met Glu Glu Leu Gly Leu Ala Ser
```

				85					90					95	
His	Pro	Pro	Glu	Gly	Ara	Pro	Cvs	Gln		Gln	Thr	Arg	Ala		Lvs
			100	017			0,0	105		0111		5	110		-10
Gln	Pro	Gly	His	Thr	Asn	Tyr	Ser		Tyr	Ser	Lvs	Arq		Arg	Leu
		115				- 1	120		1 -		_1	125	•		
Thr	Arq	Gly	Arq	Ala	Lys	Asn	Thr	Thr	Ser	Ser	Pro	Cys	Lys	Gly	Arq
	130	•			•	135					140	•	-	-	Ū
Ala	Lys	Arq	Arg	Arg	Gln	Gln	Gln	Val	Leu	Pro	Leu	Asp	Pro	Ala	Glu
145	_	_	_	_	150					155		-			160
Pro	Glu	Ile	Arg	Leu	Lys	Tyr	Ile	Ser	Ser	Cys	Lys	Arg	Leu	Arg	Ser
				165					170					175	
Asp	Ser	Arg	Thr	Pro	Ala	Phe	Ser	Pro	Phe	Val	Arg	Val	Glu	Lys	Arg
			180					185					190		
Asp	Ala	Phe	Thr	Thr	Ile	Cys	Thr	Val	Val	Asn	Ser	Pro	Gly	Asp	Ala
		195					200					205			
Pro	Lys	Pro	His	Arg	Lys	Pro	Ser	Ser	Ser	Ala	Ser	Ser	Ser	Ser	Ser
	210					215					220				
Ser	Ser	Ser	Phe	Ser	Leu	Asp	Ala	Ala	Gly		Ser	Leu	Ala	Thr	Leu
225					230					235					240
Pro	Gly	Gly	Ser	Ile	Leu	Gln	Pro	Arg		Ser	Leu	Pro	Leu		Ser
				245			_		250					255	
Thr	Met	His		Gly	Pro	Val	Val		Lys	Ala	Leu	Ser		Ser	Cys
_		_	260	_	_		_	265		_	_,	_	270	_	~3
Leu	Val	-	Cys	Leu	Cys	GIn		Pro	Ala	Asn	Phe		Asp	Leu	Gly
		275	~1	5		m	280	~1	***		-	285	•	•	•
Asp		Cys	GIY	Pro	Tyr	-	Pro	GIU	His	Cys		Pro	ьуs	гуѕ	Lys
n	290	T	T	a 3	7	295	7	D	0 1	G1	300	C	G 3	G1	71-
	ьys	ьeu	ьуѕ	Glu		vai	Arg	Pro	GIU		THE	Cys	GIU	GIU	
305	Lou	Dro	T au	Glu	310	Thr	T	Tuc	Glv	315 Pro	Glu	Cve	בות	λla	320 Ala
ser	ьец	PIO	Leu	Glu 325	Arg	1111	Leu	цуъ	330	PIO	GIU	Cys	нта	335	Ala
λls	Thr	Δ] a	Glaz	Lys	Pro	Pro	Δνα	Pro		Glv	Pro	Δla	Asn		Δla
AIG	1111	AIG	340	цуз	110	110	-T- 9	345	ADP	G L y	110	AIG	350	110	1114
Lvs	Gln	Glv		Leu	Ara	Thr	Ser		Ara	Glv	Leu	Ser		Ara	Leu
- y J		355			5		360		5	1		365	5	5	
Gln	Ser		Tvr	Cys	Cvs	Asp		Arg	Glu	Asp	Glv		Glu	Glu	Ala
	370	-1-	- 4 -	- 2 -	-2-	375	1	ر			380	1			
Ala		Ala	Asp	Lys	Gly	-	Lys	His	Glu	Cys		Lys	Glu	Ala	Pro
385			•	•	390	_	-			395		•			400
	Glu	Pro	Gly	Gly	Glu	Ala	Gln	Glu	His	Trp	Val	His	Glu	Ala	Cys
			-	405					410	-				415	=
Ala	Val	Trp	Thr	Gly	Gly	Val	Tyr	Leu	Val	Ala	Gly	Lys	Leu	Phe	Gly
		_	420	=	_			425			_		430		
Leu	Gln	Glu	Ala	Met	Lys	Val	Ala	Val	Asp	Met	Met	Cys	Ser	Ser	Cys
		435					440					445			
Gln	Glu	Ala	Gly	Ala	Thr	Ile	Gly	Cys	Cys	His	Lys	Gly	Cys	Leu	His
	450					455					460				
Thr	Tyr	His	Tyr	Pro	Cys	Ala	Ser	Asp	Ala	Gly	Cys	Ile	Phe	Ile	Glu
465					470					475					480
Glu	Asn	Phe	Ser	Leu	Lys	Cys	Pro	Lys	His	Lys	Arg	Leu	Pro		
				485					490						

<210> 821

<211> 420

```
<212> DNA
<213> Homo sapiens
<400> 821
acgcgtcccg tcacctgcgg tatggaccaa gtgagttgtg tgctcgacaa tgggttcgcc
gccatcatgg atgtgccggg tttcaactat cgcgcccatc gttacaccga agcctatcgg
cgtttgccgc aaaatgtggt gctaggttcg gaaacgacct cgacggtgag cagccgtggt
qtctacaaqt ttcctqttgt gctgaagtcc gatgccatct atcccgacca tcagtcgtca
ggctacgaca cagagtattg ttcgtggtcg aacacccccg atgtcgattt cgccctcgcc
gaagactatc cctggacgat ggggcagttt gtctggacgg gcttcgacta cctcggtgaa
cettegeett acgacacega tgeetggeec tetcaegeet ecetettegg cattgtegae
420
<210> 822
<211> 133
<212> PRT
<213> Homo sapiens
<400> 822
Met Asp Gln Val Ser Cys Val Leu Asp Asn Gly Phe Ala Ala Ile Met
Asp Val Pro Gly Phe Asn Tyr Arg Ala His Arg Tyr Thr Glu Ala Tyr
                                25
Arg Arg Leu Pro Gln Asn Val Val Leu Gly Ser Glu Thr Thr Ser Thr
                            40
Val Ser Ser Arg Gly Val Tyr Lys Phe Pro Val Val Leu Lys Ser Asp
                                            60
                        55
Ala Ile Tyr Pro Asp His Gln Ser Ser Gly Tyr Asp Thr Glu Tyr Cys
Ser Trp Ser Asn Thr Pro Asp Val Asp Phe Ala Leu Ala Glu Asp Tyr
                                    90
                85
Pro Trp Thr Met Gly Gln Phe Val Trp Thr Gly Phe Asp Tyr Leu Gly
                                105
                                                    110
Glu Pro Ser Pro Tyr Asp Thr Asp Ala Trp Pro Ser His Ala Ser Leu
       115
                            120
Phe Gly Ile Val Asp
    130
<210> 823
<211> 550
<212> DNA
<213> Homo sapiens
<400> 823
totagattot tgggcagoog agoccotott gaattootca gootaccato atgatcaaca
ceteccatgt teegtecatg aatgacegea etgacageae tggagagatt taatgggtea
120
```

```
ccaattgagg cagtgaaggc actcatggca ctcagagctg gaatggggct gatctgagtt
 qtactqttqa ctqcaqtqqt qatqacaacc tqcattcctt tgctggctgc atcgacaact
 getttgtaaa tggcatctac ggaagcatca cetgggecac ceacaacgag gecatcette
 acctqttqac caaqaqatqq gtcaatcctc ggttgcaact cacaaggtgt atcttgaaaa
 ggtggaagtg tagtgtttgg attctcagga agtgctgtga gcccaggctg agtgcttatt
 cttttqttta qqaqaqctgc atcttcctgc attctcacct gaaagttctg aaacagacaa
 gccatggggt tattgttagc tgggcaagga attgtggact gtccttggaa cgcctggaga
 540
 ttctggtacc
 550
 <210> 824
 <211> 161
 <212> PRT
 <213> Homo sapiens
 <400> 824
 Met Ala Cys Leu Phe Gln Asn Phe Gln Val Arg Met Gln Glu Asp Ala
                                     10
 Ala Leu Leu Asn Lys Arg Ile Ser Thr Gln Pro Gly Leu Thr Ala Leu
                                 25
             20
 Pro Glu Asn Pro Asn Thr Thr Leu Pro Pro Phe Gln Asp Thr Pro Cys
                             40
 Glu Leu Gln Pro Arg Ile Asp Pro Ser Leu Gly Gln Gln Val Lys Asp
                         55
 Gly Leu Val Val Gly Gly Pro Gly Asp Ala Ser Val Asp Ala Ile Tyr
                     70
                                         75
 Lys Ala Val Val Asp Ala Ala Ser Lys Gly Met Gln Val Val Ile Thr
                                     90
 Thr Ala Val Asn Ser Thr Thr Gln Ile Ser Pro Ile Pro Ala Leu Ser
                                                     110
                                 105
             100
 Ala Met Ser Ala Phe Thr Ala Ser Ile Gly Asp Pro Leu Asn Leu Ser
                             120
 Ser Ala Val Ser Ala Val Ile His Gly Arg Asn Met Gly Gly Val Asp
                                             140
                        135
 His Asp Gly Arg Leu Arg Asn Ser Arg Gly Ala Arg Leu Pro Lys Asn
                                                             160
 145
                     150
                                         155
 Leu
 <210> 825
 <211> 327
<212> DNA
 <213> Homo sapiens
 <400> 825
 gegtttgcga ceggeegtaa eeegcagaat geggeggtgt gttgcaetga gggtattttg
 60
```

```
cagttgctgg atgagegega gatgegegge gtgcteggee aegagetgat geaegtgtae
120
aaccgcgata tectcacete tteggtggeg gegggtateg ectecateat eggtacgatt
gegeagatte titegtitigg egegatgite ggtggateea acegegatgg tgaaegitee
aaccccctcg ccatgttcgt ggttgctatg ctggctccca ttgctactca ggtcatccag
atggctatta gccgcacccg tgaattc
<210> 826
<211> 109
<212> PRT
<213> Homo sapiens
<400> 826
Ala Phe Ala Thr Gly Arg Asn Pro Gln Asn Ala Ala Val Cys Cys Thr
                 5
1
Glu Gly Ile Leu Gln Leu Leu Asp Glu Arg Glu Met Arg Gly Val Leu
                                25
                                                    30
Gly His Glu Leu Met His Val Tyr Asn Arg Asp Ile Leu Thr Ser Ser
Val Ala Ala Gly Ile Ala Ser Ile Ile Gly Thr Ile Ala Gln Ile Leu
                        55
Ser Phe Gly Ala Met Phe Gly Gly Ser Asn Arg Asp Gly Glu Arg Ser
                    70
Asn Pro Leu Ala Met Phe Val Val Ala Met Leu Ala Pro Ile Ala Thr
                85
Gln Val Ile Gln Met Ala Ile Ser Arg Thr Arg Glu Phe
                                105
            100
<210> 827
<211> 534
<212> DNA
<213> Homo sapiens
<400> 827
nacgogtacg tcaatatgca togtocagto gttatogcaa cgccgaaato gatgotgcgc
aacaagatgg cgacctcgga tcccgaagag ttcaccaccg gtaggtggcg tcctgttcta
cccgacccat cgatcaccga cccgacggcc gttacgagga ttatcttgtg ctctggcaag
gegeggtggg agetggteaa geaacgtaag geegeeagte ttgaeggaea getegeeate
atcccqatqq aqcqtctcta cccqctacca qtcqacqaqt tqqctqaggt tttttgcgcct
tacaccaacg tcacggatgt ccgctgggtc caagaagagc cagagaacca gggcgcctgg
tactacatqc tgacccacct gccccaggcc atgtcggaga agctgccagg attctttgat
qqqttaqtcq gcatcacccg cccaccgtcc tcagctccgt cggtgggaca gcacagcgtc
480
```

cacatecgtg aagageagga gttactegag aaggetatag eetgagegae etga

534 <210> 828 <211> 174 <212> PRT <213> Homo sapiens <400> 828 Xaa Ala Tyr Val Asn Met His Arg Pro Val Val Ile Ala Thr Pro Lys Ser Met Leu Arg Asn Lys Met Ala Thr Ser Asp Pro Glu Glu Phe Thr 25 20 Thr Gly Arg Trp Arg Pro Val Leu Pro Asp Pro Ser Ile Thr Asp Pro Thr Ala Val Thr Arg Ile Ile Leu Cys Ser Gly Lys Ala Arg Trp Glu 60 Leu Val Lys Gln Arg Lys Ala Ala Ser Leu Asp Gly Gln Leu Ala Ile Ile Pro Met Glu Arg Leu Tyr Pro Leu Pro Val Asp Glu Leu Ala Glu 90 85 Val Phe Ala Pro Tyr Thr Asn Val Thr Asp Val Arg Trp Val Gln Glu 105 110 Glu Pro Glu Asn Gln Gly Ala Trp Tyr Tyr Met Leu Thr His Leu Pro 120 Gln Ala Met Ser Glu Lys Leu Pro Gly Phe Phe Asp Gly Leu Val Gly 140 135 Ile Thr Arg Pro Pro Ser Ser Ala Pro Ser Val Gly Gln His Ser Val 150 His Ile Arg Glu Glu Glu Leu Leu Glu Lys Ala Ile Ala 170 165 <210> 829 <211> 492 <212> DNA <213> Homo sapiens <400> 829 nagtggccgg gtggccggcg ggtgccagcc gccatggagg ccgtgccccg catgcccatg atctggctgg acctgaagga ggccggtgac tttcacttcc agccagctgt gaagaagttt gtectgaaga attatggaga gaacccagaa geetacaatg aagaactgaa gaagetggag ttgctcagac agaatgctgt ccgtgtccca cgagactttg agggctgtag tgtcctccgc aaqtaceteq gecagettea ttacetgeag agtegggtee ceatgggete gggecaggag geogetytee etyteacaty gacagagate tteteaggea agtetytyge ecatyaggae atcaagtacg agcaggeetg tattttetee aacnttggag egetgeacte catgetgggg qccatqqaca aqcqggtgtc tgaggagggc atgaaggtct cctgtaccca tttccagtgc 480

```
gcagccggcg cc
492
<210> 830
<211> 164
<212> PRT
<213> Homo sapiens
<400> 830
Xaa Trp Pro Gly Gly Arg Arg Val Pro Ala Ala Met Glu Ala Val Pro
                5
                                     10
Arg Met Pro Met Ile Trp Leu Asp Leu Lys Glu Ala Gly Asp Phe His
                                25
Phe Gln Pro Ala Val Lys Lys Phe Val Leu Lys Asn Tyr Gly Glu Asn
                            40
Pro Glu Ala Tyr Asn Glu Glu Leu Lys Lys Leu Glu Leu Leu Arg Gln
                        55
Asn Ala Val Arg Val Pro Arg Asp Phe Glu Gly Cys Ser Val Leu Arg
                    70
                                        75
Lys Tyr Leu Gly Gln Leu His Tyr Leu Gln Ser Arg Val Pro Met Gly
                                    90
Ser Gly Gln Glu Ala Ala Val Pro Val Thr Trp Thr Glu Ile Phe Ser
                                105
            100
Gly Lys Ser Val Ala His Glu Asp Ile Lys Tyr Glu Gln Ala Cys Ile
                           120
Phe Ser Asn Xaa Gly Ala Leu His Ser Met Leu Gly Ala Met Asp Lys
                        135
                                            140
Arg Val Ser Glu Glu Gly Met Lys Val Ser Cys Thr His Phe Gln Cys
145
                    150
                                        155
                                                             160
Ala Ala Gly Ala
<210> 831
<211> 303
<212> DNA
<213> Homo sapiens
<400> 831
gcgttgctgc ggcgtggcga gaccatgacg gcggagaatc agcgtgccaa tgtgcgcatc
geogeaaacc acatcaagga ggttgeggte gatcacgagg tegttgtage ccatggtaat
ggcccccagg taggtctgtt ggctctgcaa tcgacagcct acgaggaagt cggtatctat
ccgctggatg tcctgggcgc agagtcacag gccatgatcg gctacatgat cgagcaggaa
cteggeaatg tgatgeetea ggateageag ategteacea tgateaegat gaeagtegte
300
gac
303
<210> 832
<211> 101
<212> PRT
```

<213> Homo sapiens

<400> 832 Ala Leu Leu Arg Arg Gly Glu Thr Met Thr Ala Glu Asn Gln Arg Ala 10 Asn Val Arg Ile Ala Ala Asn His Ile Lys Glu Val Ala Val Asp His 25 Glu Val Val Ala His Gly Asn Gly Pro Gln Val Gly Leu Leu Ala Leu Gln Ser Thr Ala Tyr Glu Glu Val Gly Ile Tyr Pro Leu Asp Val Leu Gly Ala Glu Ser Gln Ala Met Ile Gly Tyr Met Ile Glu Gln Glu 70 75 Leu Gly Asn Val Met Pro Gln Asp Gln Gln Ile Val Thr Met Ile Thr 85 90 Met Thr Val Val Asp 100 <210> 833 <211> 466 <212> DNA <213> Homo sapiens <400> 833 nngateegeg egategaega ggegggtgeg tgatgttgae agegaaaatg egeaqeegge catttgacga gggctgaaaa cgtcttctac cggtctgctg tgccgcctgg tgtcagcaaa cgacgccatg atcgtccagt gggtatcgat ttgttctgcg gcgctggggg attcagttgc ggattccacc aggccgggtg gcatgttgcg gcggcggttg agcacgacgt gtcggcgtct 240 ctgacctatg tcatgaatct cgctcggccc ggcgtcaaga ttcacatcga ccccgagcac ccggagctgg gcccaagacc accgcgaacc aagaagaaga gcggcggcgc agtgccgttc gatgcgcatg tcggaactgg gtggatcgcc agcgagcccg ccgacgatcc cggctgcgaa cacttctacg tgtacgacgt caagaacctc agcggcgagc ggatcc <210> 834 <211> 142 <212> PRT <213> Homo sapiens <400> 834 Gln Arg Lys Cys Ala Ala Gly His Leu Thr Arg Ala Glu Asn Val Phe Tyr Arg Ser Ala Val Pro Pro Gly Val Ser Lys Arg Arg His Asp Arg Pro Val Gly Ile Asp Leu Phe Cys Gly Ala Gly Gly Phe Ser Cys Gly Phe His Gln Ala Gly Trp His Val Ala Ala Ala Val Glu His Asp Val

60

5**5**

```
Ser Ala Ser Leu Thr Tyr Val Met Asn Leu Ala Arg Pro Gly Val Lys
                    70
                                        75
Ile His Ile Asp Pro Glu His Pro Glu Leu Gly Pro Arg Pro Pro Arg
                85
                                    90
Thr Lys Lys Lys Ser Gly Gly Ala Val Pro Phe Asp Ala His Val Gly
                                105
            100
Thr Gly Trp Ile Ala Ser Glu Pro Ala Asp Asp Pro Gly Cys Glu His
        115
                            120
Phe Tyr Val Tyr Asp Val Lys Asn Leu Ser Gly Glu Arg Ile
<210> 835
<211> 482
<212> DNA
<213> Homo sapiens
<400> 835
acqcqtqaaq qqattttqat cacccaqaac aaccacctgt ctttttagat caagaagcag
aagctcagag caaagaacat cacaccacgt coctcagtga ttgaagcagt gattgagtca
cagaataaat ctggaactca ggtcttctga tctttgctcc agatgttaga gacaaaacta
aaaqtaaaat accaaqtqaa atcaaaqcat cacqattgag cccagaacat gaaaaagaac
ttcctqqccc acttqaqaaa ctqttaaacc ggacatacct ttggggactt cttcccttct
ctggaataag attgatgttt ccatgctgtg aaagacgatg atgttccttc tcccagattc
ctgctgtctt caaaaggcct agcaaaaacc actgctgctg ggtgcagttg agaaagggaa
tqaaqaacaa tcccatqqcc atgcaggcac tcctcccctc cacctctctg cccttcacgc
gt
482
<210> 836
<211> 120
<212> PRT
<213> Homo sapiens
<400> 836
Met Ala Met Gly Leu Phe Phe Ile Pro Phe Leu Asn Cys Thr Gln Gln
                                    10
Gln Trp Phe Leu Leu Gly Leu Leu Lys Thr Ala Gly Ile Trp Glu Lys
                                25
Glu His His Arg Leu Ser Gln His Gly Asn Ile Asn Leu Ile Pro Glu
                            40
Lys Gly Arg Ser Pro Gln Arg Tyr Val Arg Phe Asn Ser Phe Ser Ser
                        55
Gly Pro Gly Ser Ser Phe Ser Cys Ser Gly Leu Asn Arg Asp Ala Leu
                    70
                                        75
Ile Ser Leu Gly Ile Leu Leu Val Leu Ser Leu Thr Ser Gly Ala
```

```
85
Lys Ile Arg Arg Pro Glu Phe Gln Ile Tyr Ser Val Thr Gln Ser Leu
            100
                                105
Leu Gln Ser Leu Arg Asp Val Val
        115
                            120
<210> 837
<211> 509
<212> DNA
<213> Homo sapiens
<400> 837
acgogtggac coccepttoty coccepttty cagteatoge cotcoctgaa gtcaccgcty
cagaaatacg caggcactga cctgggggta cagccaggca agggagagac gaggggctca
120
ctctgcacca gccaaggcct gtgtcctggc atggctcccc caggaagcga ggatggcggt
geetggeggt egageeete ttateetggg gaatgetggg gggegtteet gageagaeet
geotgetgee cetgetgget ggeactgeee etececeggg gaaaggttgg gtggteeece
caqqqqaact caaaqcaqqq qaqcccctqq aqqccccaaq tccctqqaat atcttqqcqc
teagatggee ecectegaae acceteacae gggggggeeg egeggtggga ggtgaeecag
caqccactet tacttqqcqa aqacttttct cccaatqcqa qcqcqqqtqq tatcaqcctq
agcetteagg ttggtgagge tggggtace
509
<210> 838
<211> 119
<212> PRT
<213> Homo sapiens
<400> 838
Met Ala Pro Pro Gly Ser Glu Asp Gly Gly Ala Trp Arg Ser Ser Pro
Ser Tyr Pro Gly Glu Cys Trp Gly Ala Phe Leu Ser Arg Pro Ala Cys
Cys Pro Cys Trp Leu Ala Leu Pro Leu Pro Arg Gly Lys Val Gly Trp
                                                45
        35
                            40
Ser Pro Gln Gly Asn Ser Lys Gln Gly Ser Pro Trp Arg Pro Gln Val
Pro Gly Ile Ser Trp Arg Ser Asp Gly Pro Pro Arg Thr Pro Ser His
                    70
                                        75
Gly Gly Ala Ala Arg Trp Glu Val Thr Gln Gln Pro Leu Leu Gly
Glu Asp Phe Ser Pro Asn Ala Ser Ala Gly Gly Ile Ser Leu Ser Leu
            100
                                105
Gln Val Gly Glu Ala Gly Val
        115
```

```
<210> 839
<211> 347
<212> DNA
<213> Homo sapiens
<400> 839
acgogtotog tgttogtgog gcacggcagg acggcgttca atgtggaggg toggctocag
ggccgtctcg acatgccgtt ggatgaggtg gggcgccgtc aggcactcac agtggctcaa
gtcatcgccg agatggaacc tgacgcgatc atggcctctc cgctacaacg tgcgcgcgac
acageteagg caateggtge ttgtgetgga ttgggegtae agetggatga tegaeteate
gagategatg teggaegttg gtegggaeaa egggetgegg acetgegteg caaegateet
gagtacgcag caagtgtggt cagccctatc gattaccggg tcggagn
347
<210> 840
<211> 115
<212> PRT
<213> Homo sapiens
<400> 840
Thr Arg Leu Val Phe Val Arg His Gly Arg Thr Ala Phe Asn Val Glu
                                    10
Gly Arg Leu Gln Gly Arg Leu Asp Met Pro Leu Asp Glu Val Gly Arg
                                25
Arg Gln Ala Leu Thr Val Ala Gln Val Ile Ala Glu Met Glu Pro Asp
                                                45
                            40
Ala Ile Met Ala Ser Pro Leu Gln Arg Ala Arg Asp Thr Ala Gln Ala
Ile Gly Ala Cys Ala Gly Leu Gly Val Gln Leu Asp Asp Arg Leu Ile
                    70
Glu Ile Asp Val Gly Arg Trp Ser Gly Gln Arg Ala Ala Asp Leu Arg
                85
                                    90
Arg Asn Asp Pro Glu Tyr Ala Ala Ser Val Val Ser Pro Ile Asp Tyr
                                105
                                                     110
Arg Val Gly
        115
<210> 841
<211> 351
<212> DNA
<213> Homo sapiens
<400> 841
teeggaacte acceegacge egteattatg gaegteatga tgeegegtet agatggettg
gaagccaccc ggatgctgcg cagcaatggc aacgacgtcc cgatcctcgt cctcaccgcc
120
egegatgetg tegacgateg egttgaegge etegacgetg gegeegatga etacatggte
180
```

```
aaqceetteq coeteqaeqa acteeteqet eqeetaegeg coeteacteg tegtteeegt
240
cccgagccag agcaaaacga ggcccctgaa caactctcct tcgctgacct cacccttgat
ccaqqcaccc qcqaqatcac ccqcgggaac cgtcgcatca gtttgacgcg t
<210> 842
<211> 117
<212> PRT
<213> Homo sapiens
<400> 842
Ser Gly Thr His Pro Asp Ala Val Ile Met Asp Val Met Met Pro Arg
                 5
                                    10
1
Leu Asp Gly Leu Glu Ala Thr Arg Met Leu Arg Ser Asn Gly Asn Asp
                                25
                                                     30
Val Pro Ile Leu Val Leu Thr Ala Arg Asp Ala Val Asp Asp Arg Val
                            40
Asp Gly Leu Asp Ala Gly Ala Asp Asp Tyr Met Val Lys Pro Phe Ala
                        55
                                             60
Leu Asp Glu Leu Leu Ala Arg Leu Arg Ala Leu Thr Arg Arg Ser Arg
Pro Glu Pro Glu Gln Asn Glu Ala Pro Glu Gln Leu Ser Phe Ala Asp
                85
                                    90
Leu Thr Leu Asp Pro Gly Thr Arg Glu Ile Thr Arg Gly Asn Arg Arg
            100
                                105
Ile Ser Leu Thr Arg
        115
<210> 843
<211> 393
<212> DNA
<213> Homo sapiens
<400> 843
ctaqcccaqq ctctcqtcca cgaggggctg cgcgctgtgg cctctggggc aaacccggtc
ggcctcaagc geggtatega gaaggetgte gacgeegttg tggaggaget cegetetate
tegegegea tegacaccae eteggacatg gecagegttg ceaccatete cageegtgac
gagaccatcg gcgccctcat cgctgaggcc ttcgacaagg ttggtaagga cggggttatc
acceptogace agtogoagac ottoggoact gagettgact toaccegages categoagtto
gacaagggtt acctgtcgcc ctacatggtc accgaccagg ttcgcatgga ggctgtgatc
gaggatectt acatecteat teacteeege aag
393
<210> 844
<211> 131
<212> PRT
```

```
<213> Homo sapiens
<400> 844
Leu Ala Gln Ala Leu Val His Glu Gly Leu Arg Ala Val Ala Ser Gly
Ala Asn Pro Val Gly Leu Lys Arg Gly Ile Glu Lys Ala Val Asp Ala
            20
Val Val Glu Glu Leu Arg Ser Ile Ser Arg Ala Ile Asp Thr Thr Ser
                            40
                                                 45
Asp Met Ala Ser Val Ala Thr Ile Ser Ser Arg Asp Glu Thr Ile Gly
                        55
                                             60
Ala Leu Ile Ala Glu Ala Phe Asp Lys Val Gly Lys Asp Gly Val Ile
65
                                         75
Thr Val Asp Glu Ser Gln Thr Phe Gly Thr Glu Leu Asp Phe Thr Glu
Gly Met Gln Phe Asp Lys Gly Tyr Leu Ser Pro Tyr Met Val Thr Asp
                                105
                                                     110
Gln Val Arg Met Glu Ala Val Ile Glu Asp Pro Tyr Ile Leu Ile His
                            120
Ser Arg Lys
    130
<210> 845
<211> 505
<212> DNA
<213> Homo sapiens
<400> 845
qccacctqcc caaqqctqqa tgacqqqcct aqqqcacatc taaqqaacaa ggacaqqaca
gaagcaaagc cacagctgct ggggcagggt gggggccggt atgtctggcc agcagcatca
120
cccetqccc cqqcqqqct ccaqqaccqq qaqactcatc aqccqqaaqc tcttqqaqqa
180
ggeggetgee gtgaagaeag geaccettge teetgagagg ggeacceaga gaaccaagae
240
teageagagg gaacacaggg ctacgeecag geeceaggee tgatatecag agtetaaate
ccacctcage ccagggggga gccttgagag gagctatgte cctcatggae cccagtttee
tetgeatacg ggeteegage cetgeaetge etceagggta gtteecaagg tetttteeca
ttacctccta cqtqaqcact cagtaaacca atacacatac acaaqqgtga cattaattcc
agccacagaa tcccaggcca cgcgt
<210> 846
<211> 130
<212> PRT
<213> Homo sapiens
<400> 846
Met Gly Lys Asp Leu Gly Asn Tyr Pro Gly Gly Ser Ala Gly Leu Gly
```

```
10
                                                        15
Ala Arg Met Gln Arg Lys Leu Gly Ser Met Arg Asp Ile Ala Pro Leu
                                25
            20
Lys Ala Pro Pro Trp Ala Glu Val Gly Phe Arg Leu Trp Ile Ser Gly
                            40
Leu Gly Pro Gly Arg Ser Pro Val Phe Pro Leu Leu Ser Leu Gly Ser
                        55
Leu Gly Ala Pro Leu Arg Ser Lys Gly Ala Cys Leu His Gly Ser Arg
                    70
                                        75
Leu Leu Gln Glu Leu Pro Ala Asp Glu Ser Pro Gly Pro Gly Ala Pro
                                    90
Pro Gly Ala Gly Val Met Leu Leu Ala Arg His Thr Gly Pro His Pro
                                105
Ala Pro Ala Ala Val Ala Leu Leu Ser Cys Pro Cys Ser Leu Asp
Val Pro
    130
<210> 847
<211> 448
<212> DNA
<213> Homo sapiens
<400> 847
aagettttaa aggageaaga aaacatgaaa gagetagtag teaacettet eegcatgaet
caaatcaaaa ttgatgaaaa ggaacaaaag tccaaggatt tcctgaaagc tcagcaaaaa
tacaccaaca ttqttaaaqa aatqaaaqca aaqqatcttq aaatcaggat acacaagaag
aaaaaatgtg aaatttatcg gagactgaga gagcttgcta aactgtatga caccattcga
aatqaaaqaa acaaatttgt taacttactc cacaaagctc atcagaaagt aaatgaaata
aaagaaaggc ataaaatgtc attaaatgaa cttgaaattc tgagaaatag tgccgttagt
caaqaaaqaa aqctacaaaa ttccatgctg aaacacgcca acaatgttac catcagagag
agcatgcaaa acgatgtgcg caaaattt
448
<210> 848
<211> 149
<212> PRT
<213> Homo sapiens
<400> 848
Lys Leu Leu Lys Glu Gln Glu Asn Met Lys Glu Leu Val Val Asn Leu
Leu Arg Met Thr Gln Ile Lys Ile Asp Glu Lys Glu Gln Lys Ser Lys
                                25
Asp Phe Leu Lys Ala Gln Gln Lys Tyr Thr Asn Ile Val Lys Glu Met
                            40
Lys Ala Lys Asp Leu Glu Ile Arg Ile His Lys Lys Lys Cys Glu
```

```
55
Ile Tyr Arg Arg Leu Arg Glu Leu Ala Lys Leu Tyr Asp Thr Ile Arg
                    70
                                        75
Asn Glu Arq Asn Lys Phe Val Asn Leu Leu His Lys Ala His Gln Lys
                85
                                    90
Val Asn Glu Ile Lys Glu Arg His Lys Met Ser Leu Asn Glu Leu Glu
            100
                                105
Ile Leu Arg Asn Ser Ala Val Ser Gln Glu Arg Lys Leu Gln Asn Ser
                            120
Met Leu Lys His Ala Asn Asn Val Thr Ile Arg Glu Ser Met Gln Asn
                        135
Asp Val Arg Lys Ile
145
<210> 849
<211> 463
<212> DNA
<213> Homo sapiens
<400> 849
nnacgcgtga ttgttggggc caaggaatgc catgtggaga gtgcaggtga agtgataagt
cttttggaga tggggaatgc agccagacat acaggtacca ctcaaatgaa tgagcactcc
agcaqatcac atgcaatttt tacaatcagc atttgtcaag ttcataaaaa tatggaggca
getgaagatg gateatggta tteecetegg catattgtet caaagtteea etttgtggat
ttggcaggat cagaaagagt aaccaaaacg gggaatactg gtgaacggtt caaagaatcc
attcaaatca ataqtqqatt gctggcttta ggaaatgtaa taagcgctct tggggaccca
cgcaggaaga gttcacatat tccatatagg gatgctaaaa ttacccggct tctgaaagat
tototgggag goagtgotaa gactgtoatg atcacatgtg toa
<210> 850
<211> 154
<212> PRT
<213> Homo sapiens
<400> 850
Xaa Arg Val Ile Val Gly Ala Lys Glu Cys His Val Glu Ser Ala Gly
Glu Val Ile Ser Leu Leu Glu Met Gly Asn Ala Ala Arg His Thr Gly
                                25
Thr Thr Gln Met Asn Glu His Ser Ser Arg Ser His Ala Ile Phe Thr
                            40
Ile Ser Ile Cys Gln Val His Lys Asn Met Glu Ala Ala Glu Asp Gly
                       55
Ser Trp Tyr Ser Pro Arg His Ile Val Ser Lys Phe His Phe Val Asp
                                        75
Leu Ala Gly Ser Glu Arg Val Thr Lys Thr Gly Asn Thr Gly Glu Arg
```

```
95
                85
                                    90
Phe Lys Glu Ser Ile Gln Ile Asn Ser Gly Leu Leu Ala Leu Gly Asn
                                105
Val Ile Ser Ala Leu Gly Asp Pro Arg Arg Lys Ser Ser His Ile Pro
                            120
Tyr Arg Asp Ala Lys Ile Thr Arg Leu Leu Lys Asp Ser Leu Gly Gly
                        135
                                            140
Ser Ala Lys Thr Val Met Ile Thr Cys Val
                    150
<210> 851
<211> 372
<212> DNA
<213> Homo sapiens
<400> 851
aaattteetg tttetgateg aegaaataaa gtttagegtg atgagtgage tgettatgea
gttcctccat tcgcttataa acagttttat ttctcatttc gaaaactctc gatgcagaat
aaaggetaga gtetggggae caagteecca geteegttta egegaettee ttgaeettgt
ttgttatget gataaggtta ttcagcttga cgatttgttc gtggtctttc aaccgttttg
cagctggtcg acgatattcc tggtaggaac tacgatagaa gaccagcatc ggaagaactt
tqtaqatqct qaacaaacac ccaccgatca cttcaqcctc gaagtaaggg ttatactgtc
taacccacgc gt
372
<210> 852
<211> 110
<212> PRT
<213> Homo sapiens
<400> 852
Met Ser Glu Leu Met Gln Phe Leu His Ser Leu Ile Asn Ser Phe
                                    10
Ile Ser His Phe Glu Asn Ser Arg Cys Arg Ile Lys Ala Arg Val Trp
Gly Pro Ser Pro Gln Leu Arg Leu Arg Asp Phe Leu Asp Leu Val Cys
                            40
Tyr Ala Asp Lys Val Ile Gln Leu Asp Asp Leu Phe Val Val Phe Gln
                        55
                                            60
Pro Phe Cys Ser Trp Ser Thr Ile Phe Leu Val Gly Thr Thr Ile Glu
                    70
                                        75
Asp Gln His Arg Lys Asn Phe Val Asp Ala Glu Gln Thr Pro Thr Asp
                                    90
His Phe Ser Leu Glu Val Arg Val Ile Leu Ser Asn Pro Arg
                                105
<210> 853
<211> 423
```

887

```
<212> DNA
<213> Homo sapiens
<400> 853
acgcgttcag aaacttatgg tgaaatggcc gaactagaaa acctagtcga cgaatattac
caagetatgg geatggatgt gegtegagaa acetggetge gegageagat acteaagaaa
gtccaagaaa cgcatttgtt agaagagctt gcaggcatag aatcaggtga tgatggcgca
gtggtggaag agagcgtatt agaaggcctc gatacctatt tatgtgagat aaaagaagca
cagattcgtc atggattgca tcgtcttgga gaattaccag aagacgataa attggccgat
accttqqtcg ccttattgcg tttaccccgt ggcagtgaca ttaccagcaa gggaattttg
catgccttaa tggcagattt agagttagaa caagacgatt ttgacccaat gcaaagcacg
420
cgt
423
<210> 854
<211> 141
<212> PRT
<213> Homo sapiens
<400> 854
Thr Arg Ser Glu Thr Tyr Gly Glu Met Ala Glu Leu Glu Asn Leu Val
                                    10
Asp Glu Tyr Tyr Gln Ala Met Gly Met Asp Val Arg Arg Glu Thr Trp
            20
                                25
Leu Arg Glu Gln Ile Leu Lys Lys Val Gln Glu Thr His Leu Leu Glu
Glu Leu Ala Gly Ile Glu Ser Gly Asp Asp Gly Ala Val Val Glu Glu
Ser Val Leu Glu Gly Leu Asp Thr Tyr Leu Cys Glu Ile Lys Glu Ala
                    70
                                        75
Gln Ile Arg His Gly Leu His Arg Leu Gly Glu Leu Pro Glu Asp Asp
                                    90
Lys Leu Ala Asp Thr Leu Val Ala Leu Leu Arg Leu Pro Arg Gly Ser
                                                    110
            100
                                105
Asp Ile Thr Ser Lys Gly Ile Leu His Ala Leu Met Ala Asp Leu Glu
        115
                            120
Leu Glu Gln Asp Asp Phe Asp Pro Met Gln Ser Thr Arg
    130
                        135
                                            140
<210> 855
<211> 338
<212> DNA
<213> Homo sapiens
<400> 855
acgcgtgaag ggggagetea aagtagatgg acctetgaet agatggaget etgagtaaga
60
```

```
tgaatgtotg tgoggatgtt gotcacagca agatagtgot tggagogatt ggcacttoga
120
acaaqatqqa qcatqqaqca qatqqaqctc tqaqcaaqat qqaqcqtqqa gtaqataqaq
cttggagcaa gaaggagctc caagcaagat ggagcttgca gcaggtgctt ctcagtgtaa
qatqqaqete agagaaqatq atgeteagag taagattqaq eteggtgatt ggeacteeaa
acattgctct gagcccattg gagnctctga gcagaaag
<210> 856
<211> 93
<212> PRT
<213> Homo sapiens
<400> 856
Met Asn Val Cys Ala Asp Val Ala His Ser Lys Ile Val Leu Gly Ala
                 5
                                    10
Ile Gly Thr Ser Asn Lys Met Glu His Gly Ala Asp Gly Ala Leu Ser
                                25
Lys Met Glu Arg Gly Val Asp Arg Ala Trp Ser Lys Lys Glu Leu Gln
                            40
Ala Arg Trp Ser Leu Gln Gln Val Leu Leu Ser Val Arg Trp Ser Ser
Glu Lys Met Met Leu Arg Val Arg Leu Ser Ser Val Ile Gly Thr Pro
                    70
                                        75
Asn Ile Ala Leu Ser Pro Leu Glu Xaa Leu Ser Arg Lys
               85
                                    90
<210> 857
<211> 435
<212> DNA
<213> Homo sapiens
<400> 857
coqqacagtg ggccaccaqt gtttgccccc agcaatcatg tcagtgaagc ccaacctcgg
gagacacccc ggcccctcat gcctcctacc aagcctttcc tagcacctga gaccaccagc
cctggtgaca gggtggagac ccctgtgggg gagagagccc caacccctgt ctcagcaagc
tetgaggtet eeeetgagag eeaagaggae teagagaeee eageagagga ggaeagtgge
tetgageage eteceaacag egteetgeet gacaaactga aggtgagetg ggagaaceee
agececeagg aggecectge tgeagagagt geagaacegt eeeaggeace etgttetgag
acttetgagg etgececag ggagggtggg aageceeta caccecace caagatetta
420
tcagagaaac tgaaa
435
<210> 858
```

```
<211> 145
<212> PRT
<213> Homo sapiens
<400> 858
Pro Asp Ser Gly Pro Pro Val Phe Ala Pro Ser Asn His Val Ser Glu
Ala Gln Pro Arg Glu Thr Pro Arg Pro Leu Met Pro Pro Thr Lys Pro
                                25
            20
Phe Leu Ala Pro Glu Thr Thr Ser Pro Gly Asp Arg Val Glu Thr Pro
                            40
Val Gly Glu Arg Ala Pro Thr Pro Val Ser Ala Ser Ser Glu Val Ser
                        55
                                             60
Pro Glu Ser Gln Glu Asp Ser Glu Thr Pro Ala Glu Glu Asp Ser Gly
                    70
                                         75
Ser Glu Gln Pro Pro Asn Ser Val Leu Pro Asp Lys Leu Lys Val Ser
                85
                                    90
Trp Glu Asn Pro Ser Pro Gln Glu Ala Pro Ala Ala Glu Ser Ala Glu
            100
                                105
Pro Ser Gln Ala Pro Cys Ser Glu Thr Ser Glu Ala Ala Pro Arq Glu
                            120
Gly Gly Lys Pro Pro Thr Pro Pro Pro Lys Ile Leu Ser Glu Lys Leu
                        135
Lys
145
<210> 859
<211> 561
<212> DNA
<213> Homo sapiens
<400> 859
nacgogtggt gtggtaatcc ggtttctggt ggcgacggct gccacccctc gtggcaagac
atgeegttge gtgeegatat geeataegaa gettggeeta gtgegaaaag etegetggaa
120
ccctcgaaga ggcagggtcg gcaggttacc gtggtcggtg tacgcatcgt ttcgacgatg
aaccccattc tgggagcaga tatgacgacg taccagtacc tcattgtcgg tggcgggatg
geogetgatt etgeegeeeg eggtateege gacategaca agaaagggte gategeeate
300
ctcagcgctg acgtcgacgc cccgtatcct cggccagcgc tgagcaagaa gctgtggact
gaccetgagt teacetggga ecaggtegae ettgetaetg tegetgaeae eggegeggaa
ttgeggeteg geaetgaggt geteageatt gaeegtgaeg geaagaeegt eetgaeeget
teeggeeagg tatteggeta ceagaagttg etgetegtta eeggeettae eeegtegege
attgacgacg acggcgatgc c
561
<210> 860
```

890

```
<211> 187
<212> PRT
<213> Homo sapiens
<400> 860
Xaa Ala Trp Cys Gly Asn Pro Val Ser Gly Gly Asp Gly Cys His Pro
                                    1.0
Ser Trp Gln Asp Met Pro Leu Arg Ala Asp Met Pro Tyr Glu Ala Trp
            20
                                25
Pro Ser Ala Lys Ser Ser Leu Glu Pro Ser Lys Arg Gln Gly Arg Gln
                            40
Val Thr Val Val Gly Val Arg Ile Val Ser Thr Met Asn Pro Ile Leu
                        55
Gly Ala Asp Met Thr Thr Tyr Gln Tyr Leu Ile Val Gly Gly Met
                    70
                                        75
Ala Ala Asp Ser Ala Ala Arq Gly Ile Arg Asp Ile Asp Lys Lys Gly
                                    90
Ser Ile Ala Ile Leu Ser Ala Asp Val Asp Ala Pro Tyr Pro Arg Pro
                                105
Ala Leu Ser Lys Lys Leu Trp Thr Asp Pro Glu Phe Thr Trp Asp Gln
                            120
Val Asp Leu Ala Thr Val Ala Asp Thr Gly Ala Glu Leu Arg Leu Gly
                        135
Thr Glu Val Leu Ser Ile Asp Arg Asp Gly Lys Thr Val Leu Thr Ala
                    150
                                        155
Ser Gly Gln Val Phe Gly Tyr Gln Lys Leu Leu Leu Val Thr Gly Leu
                                    170
               165
Thr Pro Ser Arg Ile Asp Asp Asp Gly Asp Ala
           180
<210> 861
<211> 352
<212> DNA
<213> Homo sapiens
<400> 861
ccatgggttt ctatgctctg aggtttcatc tgtggggaac agtattgact tacttacaaa
qagataatgg tcatacccta tggtcactca ccatagtctg gcggtacatg gacttctcag
120
ccccagtaag atctgtatcc acaggacact taaagtcacc ttacagaggg ctatcccagt
gcctgaggcc tattagaggc gtctcttttc agccatcagt gttagaggcc atctgcatgg
gateceagag cetgeetegg gaatggeaga agetggetgg tgettggegt gggetttgee
tgtttcactg ctttcaggga ggcctgccac aggggagaaa ctgggggggg ga
<210> 862
<211> 116
<212> PRT
<213> Homo sapiens
```

```
<400> 862
Met Gly Phe Tyr Ala Leu Arg Phe His Leu Trp Gly Thr Val Leu Thr
                                    10
Tyr Leu Gln Arg Asp Asn Gly His Thr Leu Trp Ser Leu Thr Ile Val
Trp Arg Tyr Met Asp Phe Ser Ala Pro Val Arg Ser Val Ser Thr Gly
                            40
His Leu Lys Ser Pro Tyr Arg Gly Leu Ser Gln Cys Leu Arg Pro Ile
Arg Gly Val Ser Phe Gln Pro Ser Val Leu Glu Ala Ile Cys Met Gly
                                        75
                    70
Ser Gln Ser Leu Pro Arg Glu Trp Gln Lys Leu Ala Gly Ala Trp Arg
                                    90
Gly Leu Cys Leu Phe His Cys Phe Gln Gly Gly Leu Pro Gln Gly Arg
            100
                                105
Asn Trp Gly Gly
        115
<210> 863
<211> 327
<212> DNA
<213> Homo sapiens
<400> 863
teeggatega eeeggaegaa tteeaeggte eagceattga etteeaaatg etetttgaea
tacqccqtqa catqttcaat qtccaactta cqcatqtcca cccqctcacc ggtctcattg
agtttgaget gegagtagae gttgeggtag ttetegttga eegactgete atacgagatg
tgcagaagca tcggtttgcg gccatcctcg gacggcattg gcttgttgta catggccgct
tggcggaaca tgttcagggt aaagcccgac ttgaagttgt gcgacagggc agaaacacac
agcatttctg accggcgatg acccatn
327
<210> 864
<211> 108
<212> PRT
<213> Homo sapiens
<400> 864
Met Gly His Arg Arg Ser Glu Met Leu Cys Val Ser Ala Leu Ser His
Asn Phe Lys Ser Gly Phe Thr Leu Asn Met Phe Arg Gln Ala Ala Met
                                25
Tyr Asn Lys Pro Met Pro Ser Glu Asp Gly Arg Lys Pro Met Leu Leu
                            40
His Ile Ser Tyr Glu Gln Ser Val Asn Glu Asn Tyr Arg Asn Val Tyr
                        55
                                            60
Ser Gln Leu Lys Leu Asn Glu Thr Gly Glu Arg Val Asp Met Arg Lys
                                        75
Leu Asp Ile Glu His Val Thr Ala Tyr Val Lys Glu His Leu Glu Val
```

```
95
                85
                                     90
Asn Gly Trp Thr Val Glu Phe Val Arg Val Asp Pro
            100
<210> 865
<211> 729
<212> DNA
<213> Homo sapiens
<400> 865
acgegteate eteatteaag aggeeeagga ggageaceae ceteegeata ttgegegtge
agetetegtt etggtetetg ageatgeeea eggegetetg cacacagett etcageagee
tggtggtgtc caggatcgac acatcactgc ctccgagttc agaggtttcc tttcccacct
totcagaact ttotgtttcc atggcctcct ctgccacctc tgccacctcc cctgatgtgc
tggcctccgt ctccatcgcc tcctcatggc cgtcttccgc ccggtgttcc aagcccagct
caggcaagtc tccgggcgcg aacagctggc tgatggtgac atgctgcagc ctggtcacat
cagaaaccat gagggtggat ctccggaggt catcgatgtg gacagactgc cacagccctc
cgtggaagcc cacataggct gttcctcttc ccacccggga cagttttgtg atgaaataga
480
cgaagatacg gtcctcattt tctcgtattt tgttgatttc atttataaca gaatacttag
ctgaggcaat gagctgggcg ctacggattc catcttcaaa atctgtctga aaaatgagga
ttttacattt ggctgtattc gttaaacagt ttcggacttc tttgaggaat gagtactcgg
tqtcaaactg ctgcaqccac aggagtqtgg gtttcqqaqc cctgcctgtg acctctgatt
ctaaaattt
729
<210> 866
<211> 83
<212> PRT
<213> Homo sapiens
Ala Cys Pro Arg Arg Ser Ala His Ser Phe Ser Ala Ala Trp Trp Cys
                                    10
Pro Gly Ser Thr His His Cys Leu Arg Val Gln Arg Phe Pro Phe Pro
                                25
Pro Ser Gln Asn Phe Leu Phe Pro Trp Pro Pro Leu Pro Pro Leu Pro
                            40
Pro Pro Leu Met Cys Trp Pro Pro Ser Pro Ser Pro Pro His Gly Arg
                        55
Leu Pro Pro Gly Val Pro Ser Pro Ala Gln Ala Ser Leu Arg Ala Arg
                                        75
                                                            80
                    70
Thr Ala Gly
```

```
<210> 867
<211> 640
<212> DNA
<213> Homo sapiens
<400> 867
nntccggaac atcaagatcc aggcgcagaa gaccgtcaga agctgcactg gccacctcct
teaggtggae tetegttggt ggeeggegte getggeecee tegeaceegg tecegtgtea
catgetecag ggegeagete ttgtecacet ttaceteate gaaageettg tttttgeete
ggttaatccc ttcattgagg gctttgatcc aggattcctt ctcctccccg gtgggtgcct
ggaatttgat gtcgctgacc ttgttccctg gggatcgcag caggataaag cggtgttttc
gettgaggag ggeacgaagg teetggeact teteataget geecagetee acagteteea
cacacttctg atcatcctca ttctcataga ccagcagctg ggcctggcag aggagcagat
ateggtettt ccagaaacce aggaggeeec caetgetett ettgateeag ccageettgt
ccaccatctg tgctccccga ggcttctcac cggcttcctt cacaccetcc tcctccatgg
540
cgagtccgcc gaggtcccgc cgctccgcca ctcgcttcca gcgccgcgcg ggctctgcca
600
cegegtetac geceggeeag geggegaete teegegttet
640
<210> 868
<211> 52
<212> PRT
<213> Homo sapiens
<400> 868
Gly Gly His Glu Gly Pro Gly Thr Ser His Ser Cys Pro Ala Pro Gln
Ser Pro His Thr Ser Asp His Pro His Ser His Arg Pro Ala Ala Gly
                                25
            20
Pro Gly Arg Gly Ala Asp Ile Gly Leu Ser Arg Asn Pro Gly Gly Pro
                            40
His Cys Ser Ser
    50
<210> 869
<211> 321
<212> DNA
<213> Homo sapiens
<400> 869
ngggtgatgc tgctcgcggc attgagcatc tttgtgctca gcgcgctgtt tatcgacaac
60
```

```
ttcctgtcgc cgctgaatat gcgcgggctg ggcctggcga tttcgacggt gggcatcgct
qcqtqcacca tqctqttctq cctqqcqtcq qggcatttcq acttqtcgqt qggctcgqtq
ategeetgtg eeggtgtggt egeggggatt gtgattegtg acaeegatag egtggeaete
ggegtgteeg etgegttgge catgggeetg gtagtgggge tgateaacgg categtgate
gccaagctgc gcatcaacgc g
321
<210> 870
<211> 107
<212> PRT
<213> Homo sapiens
<400> 870
Xaa Val Met Leu Leu Ala Ala Leu Ser Ile Phe Val Leu Ser Ala Leu
                                     10
Phe Ile Asp Asn Phe Leu Ser Pro Leu Asn Met Arg Gly Leu Gly Leu
            20
                                 25
Ala Ile Ser Thr Val Gly Ile Ala Ala Cys Thr Met Leu Phe Cys Leu
Ala Ser Gly His Phe Asp Leu Ser Val Gly Ser Val Ile Ala Cys Ala
Gly Val Val Ala Gly Ile Val Ile Arg Asp Thr Asp Ser Val Ala Leu
65
                    70
                                         75
Gly Val Ser Ala Ala Leu Ala Met Gly Leu Val Val Gly Leu Ile Asn
                                    90
Gly Ile Val Ile Ala Lys Leu Arg Ile Asn Ala
            100
<210> 871
<211> 320
<212> DNA
<213> Homo sapiens
<400> 871
agatetteag agteetegte tittaaatgg gggtaacage ageaagteet cagaggtgte
ctgagectea aaacacatee tggtttgtaa egteegeage eteageaggg getaggeaca
120
qaacaaqcat tcaqqacctq qaaqqtacca qcqacacctq qtcctccctt cccaqqcaca
aggeageece tetecattea agetetgeec cageecagea aagagagggg teeteageea
240
etgececcae cactaccaea ateatactea ceteteetgg tecatacgtg acaaaggace
tgccacggcc agggagacaa
320
<210> 872
<211> 98
<212> PRT
```

<213> Homo sapiens <400> 872 Met Gly Val Thr Ala Ala Ser Pro Gln Arg Cys Pro Glu Pro Gln Asn Thr Ser Trp Phe Val Thr Ser Ala Ala Ser Ala Gly Ala Arg His Arg Thr Ser Ile Gln Asp Leu Glu Gly Thr Ser Asp Thr Trp Ser Ser Leu 40 Pro Arg His Lys Ala Ala Pro Leu His Ser Ser Ser Ala Pro Ala Gln 55 Gln Arg Glu Gly Ser Ser Ala Thr Ala Pro Thr Thr Thr Ile Ile 75 Leu Thr Ser Pro Gly Pro Tyr Val Thr Lys Asp Leu Pro Arg Pro Gly 85 90 Arg Gln <210> 873 <211> 363 <212> DNA <213> Homo sapiens <400> 873 nttgtttagc atcgttttt acgggtgtat cagcgcgttt agcagcgttt ttagcggatg catcagcatg ttttgcgtca cgttttacaa ctgtgctacc gtgtttagca tcatttttga cggaggtatc aatacgttta gcatcgtttt taacagatgt atcaacacgg ggttcatccg ctttagcaga atccccagct ctagtagcca ctttagatac ttcagatttt atatgagtcg caqttqtttc aqcqtqaqcc atqctqaatq taqaaccaaq gqccaatgta attgctaaag acaaagataa tttatttagt ttcatgttcg gagagaagtg tgcgaattcg gcgatacagt 360 cag 363 <210> 874 <211> 108 <212> PRT <213> Homo sapiens <400> 874 Met Lys Leu Asn Lys Leu Ser Leu Ser Leu Ala Ile Thr Leu Ala Leu 10 Gly Ser Thr Phe Ser Met Ala His Ala Glu Thr Thr Ala Thr His Ile Lys Ser Glu Val Ser Lys Val Ala Thr Arg Ala Gly Asp Ser Ala Lys 40 Ala Asp Glu Pro Arg Val Asp Thr Ser Val Lys Asn Asp Ala Lys Arg 55 60

Ile Asp Thr Ser Val Lys Asn Asp Ala Lys His Gly Ser Thr Val Val

```
70
                                         75
Lys Arg Asp Ala Lys His Ala Asp Ala Ser Ala Lys Asn Ala Ala Lys
                                     90
Arg Ala Asp Thr Pro Val Lys Asn Asp Ala Lys Gln
            100
<210> 875
<211> 355
<212> DNA
<213> Homo sapiens
<400> 875
acgcgtgaag gggaccctaa ctcgtctggg ctgtaggatg cgggcgaggc ttccacaaac
teaetgtetg ggggagaaga aaagcagaaa acaaetegaa tegetaecat teaggaegaa
cccgccaagc accaqctcaa qcgcaggtcc ccqqqaaaaa qcqcqqqctt ctctctccca
gegeteagaa teeetgagee ggaggeeeeg egggatteag acegeeagat eeceagggag
tgacaaatcg ccgcagaaac ttgggggaca actcggccct ggcaccgcgc ggcttccagg
egegggeagg egegeeaa ettteeeege gtgeeaeeee geggeteeee eggen
355
<210> 876
<211> 106
<212> PRT
<213> Homo sapiens
<400> 876
Met Arg Ala Arg Leu Pro Gln Thr His Cys Leu Gly Glu Lys Lys Ser
                                    10
Arg Lys Gln Leu Glu Ser Leu Pro Phe Arg Thr Asn Pro Pro Ser Thr
Ser Ser Ser Ala Gly Pro Arg Glu Lys Ala Arg Ala Ser Leu Ser Gln
                            40
Arg Ser Glu Ser Leu Ser Arg Arg Pro Arg Gly Ile Gln Thr Ala Arg
Ser Pro Gly Ser Asp Lys Ser Pro Gln Lys Leu Gly Gly Gln Leu Gly
                    70
Pro Gly Thr Ala Arg Leu Pro Gly Ala Gly Arg Arg Ala Pro Thr Phe
                85
Pro Ala Cys His Pro Ala Ala Pro Pro Ala
            100
<210> 877
<211> 487
<212> DNA
<213> Homo sapiens
<400> 877
acgogtactt tgggtaatga actgacgacc gotgagatcg actgccttta totgtgttac
60
```

```
caatccacct atgctaaacg tggtcagcaa ggttatctca cacgagaatt ctttggtttg
120
ttggccaata ccatgggaga tcaaatcctt ttagtacagg cgtacagaga aggcgaagcg
180
ategeegegt egtggtgttt etttgatgat eatteactat atgggegtta ttggggetgt
atggaagaag tggattgcct gcattttgaa gcttgttatt accaaggaat cgagttttgt
ctcgaaaaag ggttacagca tttcgatccg ggtacacaag gggaacacaa gattgcgcgc
ggctttgaac ctgtttttag ccacagcgtg cattacattg ctcatcaagg ttttcgtgaa
420
gcgattggga atttctgtga ggaagaagcg caagctgtgc gcgagtatca tcaagatacc
cacgcgt
487
<210> 878
<211> 162
<212> PRT
<213> Homo sapiens
<400> 878
Thr Arg Thr Leu Gly Asn Glu Leu Thr Thr Ala Glu Ile Asp Cys Leu
                                    10
                                                        15
Tyr Leu Cys Tyr Gln Ser Thr Tyr Ala Lys Arg Gly Gln Gln Gly Tyr
                                25
Leu Thr Arq Glu Phe Phe Gly Leu Leu Ala Asn Thr Met Gly Asp Gln
                            40
Ile Leu Leu Val Gln Ala Tyr Arg Glu Gly Glu Ala Ile Ala Ala Ser
                        55
Trp Cys Phe Phe Asp Asp His Ser Leu Tyr Gly Arg Tyr Trp Gly Cys
                    70
Met Glu Glu Val Asp Cys Leu His Phe Glu Ala Cys Tyr Tyr Gln Gly
                                    90
                85
Ile Glu Phe Cys Leu Glu Lys Gly Leu Gln His Phe Asp Pro Gly Thr
Gln Gly Glu His Lys Ile Ala Arg Gly Phe Glu Pro Val Phe Ser His
                            120
Ser Val His Tyr Ile Ala His Gln Gly Phe Arg Glu Ala Ile Gly Asn
                        135
Phe Cys Glu Glu Glu Ala Gln Ala Val Arg Glu Tyr His Gln Asp Thr
145
                    150 -
                                        155
His Ala
<210> 879
<211> 993
<212> DNA
<213> Homo sapiens
<400> 879
nncttagcat ttaagccaac gaggcagcta atgtcctctg aacagcaaag gaaattcagc
```

```
aqccaqtcca qtaqqqctct qacccctcct tcctacagta ctgctaaaaa ttcattggga
tcaaqatcca qtqaatcctt tqqqaaqtac acatcgccag taatgagtga gcatggggac
qaqcacaqgc agctectete teaeccaatg caaggeeetg gacteegtgc agetacetea
tecaaceact etgtggacga geaactgaag aatactgaca egeaceteat egacetggta
300
accaatgaga ttatcaccca aggacctcca gtggactgga atgacattgc tggtctcgac
ctggtgaagg ctgtcattaa agaggaggtt ttatggccag tgttgaggtc agacgcgttc
agtggactga cggccttacc tcggagcatc cttttatttg gacctcgggg gacaggcaaa
acattattqq qcaqatqcat cgctagtcag ctgggggcca catttttcaa aattgccggt
tctggactag tcgccaaggg gttaggagaa gcagagaaaa ttatccatgc ctctttctt
gtggccaggt gtcgccagcc ctcggtgatt tttgttagtg acattgacat gcttctctcc
teteaagtga atgaggaaca tagteeagte agteggatga gaacegaatt tetgatgeaa
ctggacactg tactaacttc ggctgaggac caaatcgtag taatttgtgc caccagtaaa
ccagaagaaa tagatgaatc ccttcggagg tacttcatga aacgactttt aatcccactt
840
cctqacaqca caqcqaqqca ccagataata qtacaactgc tctcacagca caattactgt
900
ctcaatgaca aggagtttgc actgctcgtc cagcgcacag aaggcttttc tggactagat
gtggctcatt tgtgtcagga agcagtggtg ggc
993
<210> 880
<211> 331
<212> PRT
<213> Homo sapiens
<400> 880
Xaa Leu Ala Phe Lys Pro Thr Arg Gln Leu Met Ser Ser Glu Gln Gln
Arg Lys Phe Ser Ser Gln Ser Ser Arg Ala Leu Thr Pro Pro Ser Tyr
Ser Thr Ala Lys Asn Ser Leu Gly Ser Arg Ser Ser Glu Ser Phe Gly
                            40
Lys Tyr Thr Ser Pro Val Met Ser Glu His Gly Asp Glu His Arg Gln
                        55
Leu Leu Ser His Pro Met Gln Gly Pro Gly Leu Arg Ala Ala Thr Ser
                                        75
Ser Asn His Ser Val Asp Glu Gln Leu Lys Asn Thr Asp Thr His Leu
Ile Asp Leu Val Thr Asn Glu Ile Ile Thr Gln Gly Pro Pro Val Asp
                                105
                                                    110
            100
Trp Asn Asp Ile Ala Gly Leu Asp Leu Val Lys Ala Val Ile Lys Glu
```

```
120
                                                125
        115
Glu Val Leu Trp Pro Val Leu Arg Ser Asp Ala Phe Ser Gly Leu Thr
                        135
                                             140
Ala Leu Pro Arg Ser Ile Leu Leu Phe Gly Pro Arg Gly Thr Gly Lys
                    150
                                        155
Thr Leu Leu Gly Arg Cys Ile Ala Ser Gln Leu Gly Ala Thr Phe Phe
                165
                                    170
Lys Ile Ala Gly Ser Gly Leu Val Ala Lys Gly Leu Gly Glu Ala Glu
                                                     190
            180
                                185
Lys Ile Ile His Ala Ser Phe Leu Val Ala Arg Cys Arg Gln Pro Ser
                            200
        195
Val Ile Phe Val Ser Asp Ile Asp Met Leu Leu Ser Ser Gln Val Asn
                                             220
                        215
Glu Glu His Ser Pro Val Ser Arg Met Arg Thr Glu Phe Leu Met Gln
                    230
                                        235
Leu Asp Thr Val Leu Thr Ser Ala Glu Asp Gln Ile Val Val Ile Cys
                                    250
                245
Ala Thr Ser Lys Pro Glu Glu Ile Asp Glu Ser Leu Arg Arg Tyr Phe
                                265
                                                     270
Met Lys Arg Leu Leu Ile Pro Leu Pro Asp Ser Thr Ala Arg His Gln
                            280
                                                 285
        275
Ile Ile Val Gln Leu Leu Ser Gln His Asn Tyr Cys Leu Asn Asp Lys
                        295
                                             300
Glu Phe Ala Leu Leu Val Gln Arg Thr Glu Gly Phe Ser Gly Leu Asp
305
                    310 .
                                        315
Val Ala His Leu Cys Gln Glu Ala Val Val Gly
                325
<210> 881
<211> 313
<212> DNA
<213> Homo sapiens
<400> 881
cgcgtgagcg tcgacaatgc tccaggaacc ggtgtgtatg aggccgggga ttctaccggt
cgtggtttgc agggcatgcg tgagcgcgc cgtatccatg gcggcaccgc gcgctggggc
gactogoagt attatgaagg oggtttcaac gtcacggtgg agattccaac atgagoggco
180
aaaggatgaa catggacacg acgcgcccca atcacggtcg gggcttgccg acgatcagcc
ggctgggtgc gcaccggttt tgccatggtg ctggattcgc aggacgacat cacggtggcc
300
tggcaagccg acn
313
<210> 882
<211> 57
<212> PRT
<213> Homo sapiens
<400> 882
Arg Val Ser Val Asp Asn Ala Pro Gly Thr Gly Val Tyr Glu Ala Gly
```

```
1
                                    10
Asp Ser Thr Gly Arg Gly Leu Gln Gly Met Arg Glu Arg Ala Arg Ile
            20
                                25
His Gly Gly Thr Ala Arg Trp Gly Asp Ser Gln Tyr Tyr Glu Gly Gly
                                                 45
Phe Asn Val Thr Val Glu Ile Pro Thr
    50
<210> 883
<211> 576
<212> DNA
<213> Homo sapiens
<400> 883
naattaagat etggggteee agtgteattg gtgaaggeet tgggattega ggeagetgag
tcctcactga ccaaggcaag ccatgcttct gagtgcttga ggccaccgaa atgaacaaat
ggaaaacact cccatctttt tcaagcctac cttttagcag aagaggcaga tacacaagcc
ctaaagatgt aacatcaggc tgagtggagg aaggctgaga agaaaaataa agcaggctca
ggaggagaga gtgatgtcag gatgcccttg tgcttactcc agcctccttg tgaaaaccca
300
qctctcctqt ctcccaqtqa aqacttqqat qqcaqccatc agggaaggct gggtcccagc
360
tgggagtatg ggtgtgaget ctatagacca tecetetetg caatcaataa acaettgeet
qtqaaaqaqq cccaaqccac catccqcatq qacaccaqtg caagtggccc cacccgcctg
qtcctcaqtq actqtqccac caqccatqqq aqcctqcqca tccaactqct gcataagctc
teetteetgg tgaacgeett agetaageag gteatg
576
<210> 884
<211> 105
<212> PRT
<213> Homo sapiens
<400> 884
Met Pro Leu Cys Leu Gln Pro Pro Cys Glu Asn Pro Ala Leu Leu
                                    10
1
Ser Pro Ser Glu Asp Leu Asp Gly Ser His Gln Gly Arg Leu Gly Pro
                                25
Ser Trp Glu Tyr Gly Cys Glu Leu Tyr Arg Pro Ser Leu Ser Ala Ile
Asn Lys His Leu Pro Val Lys Glu Ala Gln Ala Thr Ile Arg Met Asp
Thr Ser Ala Ser Gly Pro Thr Arg Leu Val Leu Ser Asp Cys Ala Thr
                                        75
Ser His Gly Ser Leu Arg Ile Gln Leu Leu His Lys Leu Ser Phe Leu
                                                        95
                85
                                    90
Val Asn Ala Leu Ala Lys Gln Val Met
```

105

100

<210> 885

<211> 370 <212> DNA <213> Homo sapiens <400> 885 actagtggeg coctcateeg ggccgctgtc ccgctctcgg agtcggctgc gttggagtcc ggtgaggcga tgctgacgaa cgacacaccg gtgacttggg atggcgggaa agtacggggc aggegggtgt egegeetegg tgegategag ttgtegtega eeeeggteeg eeeagateeg gtacgggctc gccacgtggc gctggaagca gtgaggtctg ggggacttga cgtagcgagc ctgacgaaga acggtgaatc tttgcgacgc cgtcttgccc tggcccatcg ggtgtttggt gatecetgge eegatgteag egatgagget etgetageet gegeegagga gtggettgae ctcgacgcgt 370 <210> 886 <211> 123 <212> PRT <213> Homo sapiens <400> 886 Thr Ser Gly Ala Leu Ile Arg Ala Ala Val Pro Leu Ser Glu Ser Ala 10 Ala Leu Glu Ser Gly Glu Ala Met Leu Thr Asn Asp Thr Pro Val Thr Trp Asp Gly Gly Lys Val Arg Gly Arg Arg Val Ser Arg Leu Gly Ala 40 Ile Glu Leu Ser Ser Thr Pro Val Arg Pro Asp Pro Val Arg Ala Arg 60 His Val Ala Leu Glu Ala Val Arg Ser Gly Gly Leu Asp Val Ala Ser 75 70 Leu Thr Lys Asn Gly Glu Ser Leu Arg Arg Arg Leu Ala Leu Ala His 90 Arg Val Phe Gly Asp Pro Trp Pro Asp Val Ser Asp Glu Ala Leu Leu 100 105 Ala Cys Ala Glu Glu Trp Leu Asp Leu Asp Ala 115 120 <210> 887 <211> 447 <212> DNA <213> Homo sapiens <400> 887 cagggcgttg cgctcggtcg cgtgctgccg atggtcatgc tcggaggctt aaccgccatc

```
attateteeg getgeetgaa ceagettggt aaaegetate egeatetgae eggegaagge
120
caactgatgc caaaccgtgc taatgctgat accacggctt cccaaccggc gttctccggt
aaaqqqqacq tqaccaccat tqcctccggc gcgttgctgg ccgtgctgct ttacatggtg
240
ggtaggttgg ttcacaagtt gattggcctg cctgctccgg ttggcatgtt gtttgtggcg
300
qtqctqqtca aactqtgcaa cggcgcttct ccccgcctgc tcgaaggctc gcaggtggtt
tacaaattct tecagacete egteacetat eegattetgt tegeegttgg egtggegatt
acgccgtggc aggaactggt caacgcg
447
<210> 888
<211> 149
<212> PRT
<213> Homo sapiens
<400> 888
Gln Gly Val Ala Leu Gly Arg Val Leu Pro Met Val Met Leu Gly Gly
1
Leu Thr Ala Ile Ile Ile Ser Gly Cys Leu Asn Gln Leu Gly Lys Arg
                                25
Tyr Pro His Leu Thr Gly Glu Gly Gln Leu Met Pro Asn Arg Ala Asn
Ala Asp Thr Thr Ala Ser Gln Pro Ala Phe Ser Gly Lys Ala Asp Val
                        55
Thr Thr Ile Ala Ser Gly Ala Leu Leu Ala Val Leu Leu Tyr Met Val
                                        75
Gly Arg Leu Val His Lys Leu Ile Gly Leu Pro Ala Pro Val Gly Met
                                    90
                85
Leu Phe Val Ala Val Leu Val Lys Leu Cys Asn Gly Ala Ser Pro Arg
                                105
            100
Leu Leu Glu Gly Ser Gln Val Val Tyr Lys Phe Phe Gln Thr Ser Val
                            120
Thr Tyr Pro Ile Leu Phe Ala Val Gly Val Ala Ile Thr Pro Trp Gln
    130
                        135
Glu Leu Val Asn Ala
145
<210> 889
<211> 450
<212> DNA
<213> Homo sapiens
<400> 889
ggtaccaccc cacacctgac aagaggtggc cagggaggaa gggagggttc ttacctcccc
atctccctc agtaaaattc aggatgccca gtgaagtttg aatgtcagat aaacaatttg
ttagtataag gatgtaccta gcattgaaat gatgccttgt aatttactaa atctgcaact
180
```

```
atgcageett attteatgge gggeagtgge ggtgateeea ggttteaggg geggggaagg
gtgctgggga gatcctgagg tcaggaaccc gtacacctct gcttctgccc tctcttccct
300
gtgccggcca caaggcaatg actectgtgt gggtgcagag gcagaaatgg gtctggaagg
ggattcccag tgtctggcaa gttctggtaa attctgcatt ggaggttctc tctgtagtaa
420
ggggagttgg cctggccgcc cttcacgcgt
450
<210> 890
<211> 100
<212> PRT
<213> Homo sapiens
<400> 890
Met Met Pro Cys Asn Leu Leu Asn Leu Gln Leu Cys Ser Leu Ile Ser
Trp Arg Ala Val Ala Val Ile Pro Gly Phe Arg Gly Gly Glu Gly Cys
                                                     30
Trp Gly Asp Pro Glu Val Arg Asn Pro Tyr Thr Ser Ala Ser Ala Leu
Ser Ser Leu Cys Arg Pro Gln Gly Asn Asp Ser Cys Val Gly Ala Glu
                                             60
                        55
Ala Glu Met Gly Leu Glu Gly Asp Ser Gln Cys Leu Ala Ser Ser Gly
                    70
                                        75
Lys Phe Cys Ile Gly Gly Ser Leu Cys Ser Lys Gly Ser Trp Pro Gly
                                    90
                85
Arg Pro Ser Arg
            100
<210> 891
<211> 318
<212> DNA
<213> Homo sapiens
<400> 891
nncaccgtcc ccgtactgga tccgcgcgag gatttcgccg actgcatgca cattgacgta
ctggatecet tecacactga caacaccagt gagcacagtg acetggecac agatggecag
120
actaacggcc cggctgatag cgggactggc acccactctg agcagggaaa ctccgacata
180
totageceeg teagetetag tgaegetget aacaccaceg acagcactge tggcaatace
ggtgaaggta ctgccgcgaa tatgcctggt gacatggctc attcttcgac ggctacccac
300
ccctatgcaa gcaccggt
318
<210> 892
<211> 106
<212> PRT
```

<213> Homo sapiens <400> 892 Xaa Thr Val Pro Val Leu Asp Pro Arg Glu Asp Phe Ala Asp Cys Met His Ile Asp Val Leu Asp Pro Phe His Thr Asp Asn Thr Ser Glu His Ser Asp Leu Ala Thr Asp Gly Gln Thr Asn Gly Pro Ala Asp Ser Gly 40 Thr Gly Thr His Ser Glu Gln Gly Asn Ser Asp Ile Ser Ser Pro Val 55 Ser Ser Ser Asp Ala Ala Asn Thr Thr Asp Ser Thr Ala Gly Asn Thr 75 70 Gly Glu Gly Thr Ala Ala Asn Met Pro Gly Asp Met Ala His Ser Ser Thr Ala Thr His Pro Tyr Ala Ser Thr Gly 105 100 <210> 893 <211> 510 <212> DNA <213> Homo sapiens <400> 893 nnggatecta teeetgaate taaggttggt gacacatgtg tttgggatag caaggtagag 60 aagtcacaga aaaagcctgt ggaaaacagg atgaaggagg acaaaagcag catcagggaa gcaatcagca aagccaagag tacagcaaat ataaagacag aacaggaagg tgaggcatct qaqaaqaqct tqcatctqaq cccacagcat atcacacac agactatgcc tataggacag agaggcagtg agcaaggcaa acgtgtggag aacattaatg gaacctccta ccctagtcta cagcagaaaa ccaatgctgt taagaaatta cataaatgtg atgaatgtgg gaaatccttc aaatataatt cccqccttgt tcaacataaa attatgcaca ctggggaaaa gcgctatgaa tgtgatgact gtggagggac tttccggagc agctcgagcc ttcgggtcca caaacggatc cacactgggt acggagagaa gacaacgcgt 510 <210> 894 <211> 170 <212> PRT <213> Homo sapiens <400> 894 Xaa Asp Pro Ile Pro Glu Ser Lys Val Gly Asp Thr Cys Val Trp Asp Ser Lys Val Glu Lys Ser Gln Lys Lys Pro Val Glu Asn Arg Met Lys 20 25 Glu Asp Lys Ser Ser Ile Arg Glu Ala Ile Ser Lys Ala Lys Ser Thr

40 Ala Asn Ile Lys Thr Glu Gln Glu Gly Glu Ala Ser Glu Lys Ser Leu 55 60 His Leu Ser Pro Gln His Ile Thr His Gln Thr Met Pro Ile Gly Gln 70 75 Arg Gly Ser Glu Gln Gly Lys Arg Val Glu Asn Ile Asn Gly Thr Ser Tyr Pro Ser Leu Gln Gln Lys Thr Asn Ala Val Lys Lys Leu His Lys Cys Asp Glu Cys Gly Lys Ser Phe Lys Tyr Asn Ser Arg Leu Val Gln 115 120 125 His Lys Ile Met His Thr Gly Glu Lys Arg Tyr Glu Cys Asp Asp Cys 135 140 Gly Gly Thr Phe Arg Ser Ser Ser Ser Leu Arg Val His Lys Arg Ile 160 150 155 His Thr Gly Tyr Gly Glu Lys Thr Thr Arg 165 <210> 895 <211> 1119 <212> DNA <213> Homo sapiens <400> 895 eggeegeaga attgggtegg geattteeag atgtteeegt ggttgatteg teeggeaate acgtteggga gagggtegat teaacteece gattaategt tgecaceeca agggeegaac 120 cegcacegga ategggettt teetgggget geetteetaa atgeggtgte eteettgteg aggectggee tggeggeggt ggageagace gtegateggt ggatggeaat cetggeettg gtecgateag tgcgggatgg gggccgggca gttatcgtcg ggccttcgga ggacgccgcc 300 ttgcaggcca tggttcgaaa tgatccagtc gggtgggcga cacgtgaact cgccgatcgt cgggaggcac atttcccgcc cgcggtgccg tgcggaattg tcgacggtga cccgaaagcg qtggctacag cggcacagcg actacgcgag tggttcggaa ccgaccttga gatgcttggc ccagetecae aaccaegeeg tgecagegaa teggaaeggg ategaattat egtgegteet 540 egtageaega tgeetetege egagetttee eagggtetat tteggetaeg tteeaaaeae actatgagee gegaaceagg aagettaege gtggtcateg acceggeeaa ettgttgtga 660 ggtcggtagg cttgcggtgt gagacttctt tttgctggta ccccggacgt ggccgtccca acgettaccg cettggtage egateccegt cacgaggtag etgecgteet gacgegteeg gatgcagcag taggacggca ccgtactcca cgtccatgcc cggtcgccaa ggctgccgag gaacteggta teecegecat taaggegaee agegtgaagt eeggegaggg teaegatgee 900

```
gtcacttccc tcgatgtcga cgtagccgtc gtcgtagcct acggaggtct cattcccgcc
gatetgetgg cagtaccaeg acaeggetgg attaacttac acttttetet cetacegega
1020
tggcgcggcg ctgctcccat acaacgggcc atcatggcgg gggatgagga gacgggcgct
tgtgtctttc agctagttga aagcctcgat gccggaccg
1119
<210> 896
<211> 147
<212> PRT
<213> Homo sapiens
<400> 896
Val Arg Leu Leu Phe Ala Gly Thr Pro Asp Val Ala Val Pro Thr Leu
                                    10
Thr Ala Leu Val Ala Asp Pro Arg His Glu Val Ala Ala Val Leu Thr
                                25
                                                    30
Arg Pro Asp Ala Ala Val Gly Arg His Arg Thr Pro Arg Pro Cys Pro
                            40
                                                45
Val Ala Lys Ala Ala Glu Glu Leu Gly Ile Pro Ala Ile Lys Ala Thr
Ser Val Lys Ser Gly Glu Gly His Asp Ala Val Thr Ser Leu Asp Val
                    70
                                                             80
65
Asp Val Ala Val Val Ala Tyr Gly Gly Leu Ile Pro Ala Asp Leu
                                    90
Leu Ala Val Pro Arg His Gly Trp Ile Asn Leu His Phe Ser Leu Leu
                                105
                                                    110
Pro Arg Trp Arg Gly Ala Ala Pro Ile Gln Arg Ala Ile Met Ala Gly
                                                125
                            120
        115
Asp Glu Glu Thr Gly Ala Cys Val Phe Gln Leu Val Glu Ser Leu Asp
                        135
                                            140
Ala Gly Pro
145
<210> 897
<211> 384
<212> DNA
<213> Homo sapiens
<400> 897
gagetegagg etggeaagee ggaagtgeeg etgtteeega egeeegaegg eatgtegete
60
gacgactace tegtecaget gtegaaggaa gggetegaga eeegtetege geagetgtat
ceggtegaag ceegacgega egegeagege gacacetact acaagegeet egaattegag
tgcgggacca tcacgaagat gggctttccc ggctacttcc tgatcgtcgc ggacttcatc
aactgggcaa agaacaacgg cgtgccggtc ggcccgggcc gcggctcggg cgccggttcg
ctggtcgcgt atgcgctcgg cattaccgat ctcgaagtac tgcgctacga cctgctgttc
```

```
gagcgcttcc tgaacccgga acgc
384
<210> 898
<211> 128
<212> PRT
<213> Homo sapiens
<400> 898
Glu Leu Glu Ala Gly Lys Pro Glu Val Pro Leu Phe Pro Thr Pro Asp
Gly Met Ser Leu Asp Asp Tyr Leu Val Gln Leu Ser Lys Glu Gly Leu
                                25
Glu Thr Arg Leu Ala Gln Leu Tyr Pro Val Glu Ala Arg Arg Asp Ala
Gln Arg Asp Thr Tyr Tyr Lys Arg Leu Glu Phe Glu Cys Gly Thr Ile
                        55
Thr Lys Met Gly Phe Pro Gly Tyr Phe Leu Ile Val Ala Asp Phe Ile
                    70
                                        75
Asn Trp Ala Lys Asn Asn Gly Val Pro Val Gly Pro Gly Arg Gly Ser
Gly Ala Gly Ser Leu Val Ala Tyr Ala Leu Gly Ile Thr Asp Leu Glu
                                105
Val Leu Arg Tyr Asp Leu Leu Phe Glu Arg Phe Leu Asn Pro Glu Arg
<210> 899
<211> 6171
<212> DNA
<213> Homo sapiens
<400> 899
ttctccaagg ccttaaatct cagatacttg aatgcatctg caaatagtct ggagtcttta
ccatccgcct gcactggaga ggagagtttg agtatgctgc agctgcttta tctgaccaac
aatctcctga cggatcagtg catacctgtc ctggtagggc acctgcacct gcgaatcttg
caccttqcaa acaatcagtt acagaccttt cctgcaagca aactaaataa attggagcaa
ttqqaqqaac tqaacctaag tggcaacaag cttaaaacca ttcccacaac catagcaaac
tqtaaaaqqc tqcacacct tqttqcacac tccaacaaca tcaqcatttt cccagaaata
ctgcagttgc ctcagatcca gtttgtagac ctaagttgca acgacttgac agaaatcctg
attocagagg ctttgcctgc tacattacaa gaccttgacc tgactggaaa tacaaatctg
gttctggaac acaagacact ggacatattt agccatatca caaccctgaa aattgatcag
aaacetttge caaceacaga ttetacagtt acgteaacet tetggageca tggactgget
gagatggcag ggcagagaaa taagctgtgt gtctcagcac ttgctatgga tagctttgca
660
```

gagggggtgg 720	gagctgtgta	tggcatgttt	gatggagacc	gaaatgagga	gctcccgcgc
ctgctgcagt 780	gtacgatggc	agatgtgctt	ttagaagagg	tacagcagtc	aactaatgac
acagttttca 840	tggctaacac	cttcttggta	tctcacagga	aattaggaat	ggctggccag
aagttgggct 900	cetecgetet	cctgtgctac	atccgccctg	acactgccga	tccagcaagt
agctttagct 960	tgactgtagc	caatgttggc	acgtgccaag	cagteetgtg	ccgaggtggg
aagccagtgc 1020	ccctctctaa	agtettcage	ctggagcagg	acccagagga	ggctcaaagg
gtgaaggacc 1080	aaaaagccat	catcacagag	gacaacaaag	tgaatggggt	aacctgctgt
acccggatgc 1140	tgggctgtac	atacctctac	ccttggatcc	tecceaagee	ccacatatct
tccactccgc 1200	tgaccattca	agatgagttg	ctgattctgg	gaaacaaagc	attgtgggaa
cacttgtcct 1260	acacagaagc	tgtcaatgct	gtacgtcacg	tacaagaccc	attagcagct
gctaagaagc 1320	tgtgcacatt	agcgcagagc	tatggctgtc	aggacagtgt	aggggcgatg
gtagtttatt 1380	tgaatattgg	tgaggaaggc	tgcacttgtg	aaatgaatgg	gctcaccctc
ccaggtcctg 1440	tgggatttgc	ttcaaccacc	actatcaagg	atgcccctaa	gccagccact
ccatcctcta 1500	gcagtgggat	tgcctctgag	ttcagcagtg	agatgtccac	ctcagaggtg
agcagtgaag 1560	tggggtecae	tgcttctgat	gagcataatg	ctgggggcct	ggacactgcc
ttgcttccga 1620	ggccagagcg	gegetgeage	ctccacccaa	cacccacctc	tgggctgttt
cagegeeage 1680	cttcttctgc	taccttctcc	agtaaccagt	ctgacaacgg	cctggacagt
gatgatgacc 1740	agcccgttga	gggggtcata	accaatggca	gcaaggtaga	ggtggaagta
gacatccact 1800	gctgcagggg	gagggatctg	gagaactcac	cccctctcat	agagagttct
cctaccctgt 1860	gttctgagga	acatgctaga	gggtcgtgtt	ttgggatccg	aagacagaac
agtgtgaata 1920	gtggcatgct	cctgccaatg	agcaaggaca	ggatggagtt	acagaagtct
ccctccacct 1980	cctgcctcta	tgggaagaaa	ctctccaatg	gctctattgt	gcccctagag
gacagcctga 2040	acctcattga	agtggccaca	gaagtgccca	agaggaaaac	tggctatttt
gctgccccca 2100	ctcagatgga	accagaggac	cagtttgttg	tgcctcatga	cctggaagaa
gaagtgaagg 2160	aacaaatgaa	acagcaccag	gacagccggc	tcgagcctga	gccccatgaa
gaggatcgga 2220	ccgagccccc	ggaggagttc	gacacagcac	tatgactgcc	ccactgggca
cagtgtggga 2280	ggaggctgtg	cagggttggg	gtagggactt `	gctagaggca	ttctgcctct

.

acattlettt ttgtttgtte gttttttttt tgtttgtttg ttttgagaeg gagtettget 2340 cagtegetea ggetggagtg caatggtggg gtetegggte actgeagect etgteeetgg 2400 gttcaagcca ttctcctgtc tcagcctccc gagtagctgg gattacaggc acctgccatt atgcccggct aagttttatt tttttttta gagacggggt ttcaccatgt tggccaggct ggtgttgaac tettgacete aggtgateca cectectetg ceteceaaag tgetgtgatt 2580 acaggeetea gecaecatge ceagecetge gtetacattt etaaaceata qetqtqtqqq gttgaactcg gagccaaaaa gtgtgagagc catcaggggc tggctctgga taaactggta gccactatca gtgttaagtt tcacatttaa cctgcattgg aattcccagg ggtactggga agaaagcage tgttetgtat cagteetace acetgeeatt aaccetttet eteetaggat cattttgaga atttgcctgc ctgggcagga aagggactat ttctqtqqaq qaaaaaaqtq aagattgatt ctctttacta gttgctgctg atggatctct gtgacagaga aatcacctta 2940 teteagaeta atggggtgtg atgtgaetag teacatgget ttteattett etetacgaga atacagecta teaaaatgat gtetgttgga aatgtagaac caateaaaca gataatttat gtatgtaatg taatgagagc acttttcatt gactgtgaac tttttatttt tgaatctgca 3120 ctcgagccaa tcttcttaga ggcagcccgg caccttcatc cataggcaga gagagaactg ggtgttggag acttattcga gggtatagga agggccctgt gaagttgatt taacttttgg atgtcagact gtgaaagctc ctgagaaact tggggtaata ggatcttctt ttggggatga aaatggggaa ggcgtgagga cctagactac ttctccctag atcagaaaaa gagaattacc ccttgacaaa tatgatacct gctaggtatt tcccagggaa atttagggat tggcctcttt ccctagcatg tggaggaatt ggcagacagc ttcctaaggg cggggagcgg gggcccaagg 3480 ccgacactgc ttgcatccac gtgaccttaa gttatggcag atgactctga aacggactga ggccaatgag aacagatgga tggagcactc aggttagact tgttccttct cctatgctgg aggagaggga tggtteteta gaatgttgga ggtgagttga gagetegeet ettgaatgtt 3660 gaacagtgta ctcttctgaa aactgcatat tcactttatg tggtttcaga atactgggct 3720 caatactaac ataagaaaga cacttcattg agaaattctt aagcttacag aaaacctata 3780 ctetttgeac attecacata accetageaa aatgeagttt etteataett etgteacttt 3840 ttccattgga agatttgctt aggaaaatta attcctattt attcccacaa aatgttggca 3900

ttgcttgatt 3960	ttacccaatg	gggaatgtgc	tttgaatttt	tggaacactt	ttacaattaa
aaataaagta 4020	gggccatttt	taatttgttt	catcagaaac	tatgttaaag	agagggttaa
atataaatat 4080	attttcgtgt	gtatttttgg	gaagattttt	gttcaaagca	atagtcaaaa
tcagatgacc	tgtccataat	aattatgtgt	cttcatcttc	tcagaggccc	catgctcata
tgcacgtgtc 4200	attgggatac	actcttgggg	gatttggtac	actctaatgg	atgtctaatg
ttcaacccct 4260	cgagaatctg	aacttgagtc	cccagattgt	caaactactg	gtcagctatt
4320			aagtagggaa		
4380			gtgttttgcc		
4440			aaataacagg		
4500			gggttgtaga		
aagttatttt 4560	gggaatacac	cactttaata	gtatagtctt	ataaaaatta	ttcattatgg
4620	-	_	aacctactta		
agttctgaaa 4680	tgaccttacc	aaaagtaaat	gtatttattt	tttagtcagc	agaactctgt
4740			tttttttcag		
4800			attattcttt		
4860			cagggtaaaa		
4920			ggtaacttac		
4980			caggtgaatg		
5040	_		gagtacagtt		
5100	_		gtgtgtacct		
5160			attgtgggag		
5220			tggtgtattt		
5280			ataaagctgc		
5340			tattgtacta		
5400			ggaagagcca		
5460			gtgctgtttt		
ggtgtggcag 5520	atctactgaa	tatcaaatga	tgetettett	cccatgtaga	ccttcagcaa

aagceggtac ttggaagcea caggeteace ttetetatet atecaataat tattaatgaa 5580 qaqacctcca taaqqqaqca qctggctqtt atcqataaat gtaccaatta ttaaataatt 5640 agtotocaag coattoagtg atgtottoag catcactata ggactgtota gtgtcacttt 5700 ttacttcctt ctgggtggag gctttccgac tcccaatcat gaaggcaagt taatctttcc agttagtgac ttttgcccca tagttggggt aagcacttcc tagattgaga aaaagcagct 5820 acagtcaatc ctgctctgtt tgcctcattt ggtgatcagt cagtcacaca taagttcctt gtattctaaa tttcatgcac ttctcccaga tgctataggg ttttctctca ctgttgccaa tggatgtcat ccagacagtg ggctcatatc ttacggtttt gtgcaatcat tgtcgtattg taqtcttaaq actcattata qtqtattttt qatatttttq aaatqtqtta aattttttaa 6060 ttcagtaata tgagccagag catgttgcag caaatctatt gtttgtaaaa ataacaataa caataataaa taaaataaag tggaatcttt ttcatggctt tgttttaaaa a 6171 <210> 900 <211> 734 <212> PRT <213> Homo sapiens <400> 900 Phe Ser Lys Ala Leu Asn Leu Arg Tyr Leu Asn Ala Ser Ala Asn Ser Leu Glu Ser Leu Pro Ser Ala Cys Thr Gly Glu Glu Ser Leu Ser Met 20 25 Leu Gln Leu Leu Tyr Leu Thr Asn Asn Leu Leu Thr Asp Gln Cys Ile 40 Pro Val Leu Val Gly His Leu His Leu Arg Ile Leu His Leu Ala Asn 55 Asn Gln Leu Gln Thr Phe Pro Ala Ser Lys Leu Asn Lys Leu Glu Gln Leu Glu Glu Leu Asn Leu Ser Gly Asn Lys Leu Lys Thr Ile Pro Thr 90 Thr Ile Ala Asn Cys Lys Arg Leu His Thr Leu Val Ala His Ser Asn 105 110 Asn Ile Ser Ile Phe Pro Glu Ile Leu Gln Leu Pro Gln Ile Gln Phe 120 125 Val Asp Leu Ser Cys Asn Asp Leu Thr Glu Ile Leu Ile Pro Glu Ala 135 140 Leu Pro Ala Thr Leu Gln Asp Leu Asp Leu Thr Gly Asn Thr Asn Leu 155 150 Val Leu Glu His Lys Thr Leu Asp Ile Phe Ser His Ile Thr Thr Leu 170 Lys Ile Asp Gln Lys Pro Leu Pro Thr Thr Asp Ser Thr Val Thr Ser 185 Thr Phe Trp Ser His Gly Leu Ala Glu Met Ala Gly Gln Arg Asn Lys

Leu Cys Val Ser Ala Leu Ala Met Asp Ser Phe Ala Glu Gly Val Gly 215			195					200					205			
10	Leu	Cys		Ser	Ala	Leu	Ala		Asp	Ser	Phe	Ala		Gly	Val	Gly
245		210					215					220				
Leu Leu Gln Cys Thr Met Ala Asp Val Leu Leu Glu Glu Val Gln Gln 245 Ser Thr Asn Asp Thr Val Phe Met Ala Asn Thr Phe Leu Val Ser His 260 Arg Lys Leu Gly Met Ala Gly Gln Lys Leu Gly Ser Ser Ala Leu Leu 290 Cys Tyr Ile Arg Pro Asp Thr Cys Gln Ala Val Leu Cys Arg Gly Gly 305 Thr Val Ala Asn Val Gly Thr Cys Gln Ala Val Leu Cys Arg Gly Gly 305 Cys Pro Val Pro Leu Ser Lys Val Phe Ser Leu Glu Gln Asp Pro Glu 325 Glu Ala Gln Arg Val Lys Asp Gln Lys Ala Ile Ile Thr Glu Asp Asp Asp 360 Leu Tyr Pro Trp Ile Leu Pro Lys Pro His Ile Ser Ser Thr Pro Leu 306 Thr Ile Gln Asp Glu Leu Leu Lys Pro His Ile Ser Ser Thr Pro Leu 307 Thr Ile Gln Asp Glu Leu Leu Ile Leu Gly Gly Asp Leu Gly Gly 305 Thr Ile Gln Asp Glu Leu Leu Ile Leu Gly Asp Leu Gly Cys Thr Tyr 365 Leu Tyr Pro Trp Ile Leu Pro Lys Pro His Ile Ser Ser Thr Pro Leu 370 Thr Ile Gln Asp Glu Leu Leu Ile Leu Gly Asp Lys Glu Asp Asp 306 His Leu Ser Tyr Thr Glu Ala Val Asp Ala Val Arg His Val Gln Asp Pro Glu 385 Cys Gln Asp Ser Val Gly Ala Met Val Val Tyr Leu Asp Ile Gly Gly 406 His Leu Ser Tyr Thr Cys Glu Met Asp Gly Leu Thr Leu Pro Gly Pro Val 450 Gly Phe Ala Ser Thr Thr Thr Ile Lys Asp Ala Pro Lys Pro Gly Pro Val 450 Gly Phe Ala Ser Thr Thr Thr Ile Lys Asp Ala Pro Lys Pro Glu Asp Cys Thr Ser Glu Gly Gly Gly Fro Val 450 Gly Phe Ala Ser Thr Thr Thr Ile Lys Asp Ala Pro Lys Pro Glu Asp Asp Asp 360 Gly Phe Ala Ser Thr Thr Thr Ile Lys Asp Ala Pro Lys Pro Glu Asp Asp Asp 360 Asp Asp Gly Leu Asp Thr Ala Leu Leu Pro Arg Pro Glu Arg Asp 1460 Fro Ser Ser Ser Ser Gly Ile Ala Ser Glu Pro Ser Ser Glu Met Ser 450 Asp Asp Asp Gly Leu Asp Thr Ala Leu Leu Pro Arg Pro Glu Arg Asp 515 Cys Ser Leu His Pro Thr Pro Thr Ser Gly Leu Phe Gln Arg Gln Pro 530 Ser Ser Ala Thr Phe Ser Ser Asp Gln Ser Asp Asp Gly Leu Asp Ser 550 Glu Val Glu Val Asp Ile His Cys Cys Arg Gly Arg Asp Leu Glu Glu Asp 550 Ser Ser Ala Thr Phe Ser Ser Asp Gly Arg Asp Leu Glu Glu Glu Wal Glu Val Asp Fer 550 Glu Val Glu Val Asp Ile His Cys Cys Arg Gly Arg Asp Leu Glu Glu Glu Wal Glu Wal Glu Glu Glu Glu Glu Gl	Ala	Val	Tyr	Gly	Met	Phe	Asp	Gly	Asp	Arg	Asn	Glu	Glu	Leu	Pro	Arg
Ser									_				_	_		
Part	Leu	Leu	Gln	Cys		Met	Ala	Asp	Val		Leu	Glu	Glu	Val		Gln
Cys Tyr Ile Arg Pro Asp Thr Ala Asp Pro Ala Ser Ser Ser Pero Ala Ser Ser Pero Ala Ser Pero Ala Asp Pro Ala Asp Pro Ala Asp Ala Ser Leu Glu Asp Glu Asp Asp Asp Leu Glu Asp Asp<	Ser	Thr	Asn		Thr	Val	Phe	Met		Asn	Thr	Phe	Leu		Ser	His
Cys	Arg	Lys		Gly	Met	Ala	Gly		Lys	Leu	Gly	Ser		Ala	Leu	Leu
The Val	Cys	-	Ile	Arg	Pro	Asp		Ala	Asp	Pro	Ala		Ser	Phe	Ser	Leu
Lys Pro Val Pro Leu Ser Lys Val Phe Ser Leu Glu Asp Pro Glu 335 330 335 335 335 335 335 335 335 335 335 335 350 335 350 350 350 350 355 350 350 355 350 350 360 365 362 <td>Thr</td> <td></td> <td>Ala</td> <td>Asn</td> <td>Val</td> <td>Gly</td> <td></td> <td>Cys</td> <td>Gln</td> <td>Ala</td> <td>Val</td> <td></td> <td>Cys</td> <td>Arg</td> <td>Gly</td> <td>Gly</td>	Thr		Ala	Asn	Val	Gly		Cys	Gln	Ala	Val		Cys	Arg	Gly	Gly
Glu Ala Gln Arg Val Lys Asp Gln Lys Ala Ile Ile Thr Glu Asp Asn 340																
Lys	Lys	Pro	Val	Pro		Ser	Lys	Val	Phe		Leu	Glu	Gln	Asp		Glu
Leu	Glu	Ala	Gln	Arg	Val	Lys	Asp	Gln		Ala	Ile	Ile	Thr		Asp	Asn
Leu		_			_	-	_			_		_		-		
The file of the			355					360					365			
385 Leu Ser Tyr Thr Glu Ala Val Ala Val Ala Val Ala Ala Val Ala Ala Val Ala Ala Lys Lys Leu Cys Hr Leu Ala Gln Ala Ala Lys Lys Leu Cys Tr Leu Ala Gln Ala Ala Lys Leu Cys Tr Leu Ala Gln Ala Ala Lys Leu Tr Leu Ala Gln Ala	Leu		Pro	Trp	Ile	Leu		Lys	Pro	His	Ile		Ser	Thr	Pro	Leu
His Leu Ser Tyr Thr Glu Ala Val Asn Ala Val Arg His Val Gln Asp 405		Ile	Gln	Asp	Glu		Leu	Ile	Leu	Gly		Lys	Ala	Leu	Trp	
Pro Leu Ala Ala Ala Ala Leu Leu Cys Thr Leu Ala		T 011	cor	Tr. roc	Thr		71 ₂	นาไ	λαπ	בות		ስ ra	Wie	val	Gln	
Cys Heap (1) Asp (2) Val (3) Heap (3) He					405					410					415	
State Stat				420					425					430		
State Stat	Cys	Gln	_	Ser	Val	Gly	Ala		Val	Val	Tyr	Leu		Ile	Gly	Glu
Gly Phe Ala Ser Thr Thr Thr Ile Lys Asp Ala Pro Lys Ala Thr 480 Pro Ser Ser Ser Gly Ile Ala Ser Glu Phe Ser Glu Met Ser App Ile Ala Ser Glu Phe Ser Glu Met Ser App Ile Ala Ser Ile App App Ile App App Ile App App Ile App	Glu	-	Cys	Thr	Cys	Glu		Asn	Gly	Leu	Thr		Pro	Gly	Pro	Val
Pro Ser Ser Ser Gly Ile Ala Ser Glu Phe Ser Glu Met Ser 495 The 490 The Ser 495 The 495 The 495 The 495 The 490 The Ser 495 The 495 The 490 The 495 The 495 The 495 The 490 The 495 The 495 The 495 The 490 The 495 The 495 The 490 The 495 The 490 The 495 The 500 The 500 The 500 The 500 The 500 The 500 The 520 The 520 The 520 The 520 The 540 The 480 Ash 610 Ash 580 Ash 580 Ash 580 Ash 580 <td>Gly</td> <td></td> <td>Ala</td> <td>Ser</td> <td>Thr</td> <td>Thr</td> <td>Thr</td> <td>Ile</td> <td>Lys</td> <td>Asp</td> <td>Ala</td> <td>Pro</td> <td>Lys</td> <td>Pro</td> <td>Ala</td> <td>Thr</td>	Gly		Ala	Ser	Thr	Thr	Thr	Ile	Lys	Asp	Ala	Pro	Lys	Pro	Ala	Thr
Here the first set of the set of																
Asn Ala Gly Gly Gly Leu Asp Thr Ala Leu Leu Pro Arg Pro Glu Arg A	Pro	Ser	Ser	Ser		Gly	Ile	Ala	Ser		Phe	Ser	Ser	Glu		Ser
Cys Ser Leu His Pro Thr Pro Thr Ser Gly Leu Phe Gln Arg Gln Pro Ser Ser Leu His Pro Ser Ser Ser Asp Asp Asp Leu Asp Ser Ser Asp Asp Asp Glu Pro Val Glu Gly Val Ile Thr Asp Gly Ser Lys Val Glu Val Glu Val Asp Ile His Cys Cys Arg Gly Asp Leu Glu Asp Glu Val Asp Ile His Cys Cys Arg Gly Asp Leu Glu Asp Ile A	Thr	Ser	Glu		Ser	Ser	Glu	Val	_	Ser	Thr	Ala	Ser		Glu	His
Cys Ser Leu His Pro Thr Pro Thr Ser Gly Leu Phe Gln Arg Gln Pro Squ Pro Squ Ser Ser Ser Ser Ser Asn Gln Ser Asn Gln Ser Ser Ser Ser Ser Asn Gln Ser Ser </td <td>Asn</td> <td>Ala</td> <td></td> <td>Gly</td> <td>Leu</td> <td>Asp</td> <td>Thr</td> <td></td> <td>Leu</td> <td>Leu</td> <td>Pro</td> <td>Arg</td> <td></td> <td>Glu</td> <td>Arg</td> <td>Arg</td>	Asn	Ala		Gly	Leu	Asp	Thr		Leu	Leu	Pro	Arg		Glu	Arg	Arg
Ser Ser Ala Thr Phe Ser Asn Gln Ser Asp Asp Asp Leu Asp Ser Ser Asp Gln Ser S	Cys			His	Pro	Thr			Ser	Gly	Leu			Arg	Gln	Pro
545 550 555 556 560 5	Ser		Ala	Thr	Phe	Ser		Asn	Gln	Ser	Asp	_	Gly	Leu	Asp	Ser
Ser Pro Ser Crys Ser				_									-		-	
Glu Val Glu Val Asp Ile His Cys Cys Arg Gly Arg Asp Leu Glu Asn 580	Asp	Asp	Asp	Gln		Val	Glu	Gly	Val		Thr	Asn	Gly	Ser		Val
Ser Pro Pro Leu Ile Glu Ser Ser Pro Thr Leu Cys Ser Glu Glu His 595 600 605 Ala Arg Gly Ser Cys Phe Gly Ile Arg Arg Gln Asn Ser Val Asn Ser 610 615	Glu	Val	Glu			Ile	His	Cys	-		Gly	Arg	Asp			Asn
Ala Arg Gly Ser Cys Phe Gly Ile Arg Arg Gln Asn Ser Val Asn Ser 610 620	Ser	Pro			Ile	Glu	Ser			Thr	Leu	Cys			Glu	His
	Ala			Ser	Cys	Phe			Arg	Arg	Gln			Val	Asn	Ser
	Gly		Leu	Leu	Pro	Met		Lys	Asp	Arg	Met		Leu	Gln	Lys	Ser

```
625
                    630
                                        635
Pro Ser Thr Ser Cys Leu Tyr Gly Lys Leu Ser Asn Gly Ser Ile
                645
                                    650
Val Pro Leu Glu Asp Ser Leu Asn Leu Ile Glu Val Ala Thr Glu Val
                                665
Pro Lys Arg Lys Thr Gly Tyr Phe Ala Ala Pro Thr Gln Met Glu Pro
        675
                            680
Glu Asp Gln Phe Val Val Pro His Asp Leu Glu Glu Glu Val Lys Glu
                        695
                                            700
Gln Met Lys Gln His Gln Asp Ser Arg Leu Glu Pro Glu Pro His Glu
                   710
                                        715
Glu Asp Arg Thr Glu Pro Pro Glu Glu Phe Asp Thr Ala Leu
                                    730
                725
<210> 901
<211> 309
<212> DNA
<213> Homo sapiens
<400> 901
tratgatora cotgectogg cotoccaaag tgotgggatt acatacagat ggcaaactto
atttectttt tetettaatg caacaaggte ateccaagat caggetteet teagtttetg
120
tggtaagtag tgatggacac ttatggagtt ttcagagact tatgcattgg gtaacaaggc
actgeaagag accceagata geacageate ateteacatt tacaceacat cacateaaca
tcgatgctag gaggtctaaa gctgatgcca ccttcagagc tgcaagtatc caaaagactc
300
cactcatqa
309
<210> 902
<211> 102
<212> PRT
<213> Homo sapiens
<400> 902
Met Ile His Leu Pro Arg Pro Pro Lys Val Leu Gly Leu His Thr Asp
                                    10
Gly Lys Leu His Phe Leu Phe Leu Leu Met Gln Gln Gly His Pro Lys
                                25
Ile Arg Leu Pro Ser Val Ser Val Ser Ser Asp Gly His Leu Trp
                            40
Ser Phe Gln Arg Leu Met His Trp Val Thr Arg His Cys Lys Arg Pro
                       55
Gln Ile Ala Gln His His Leu Thr Phe Thr Pro His His Ile Asn Ile
                   70
                                        75
Asp Ala Arg Arg Ser Lys Ala Asp Ala Thr Phe Arg Ala Ala Ser Ile
               85
                                    90
Gln Lys Thr Pro Leu Met
            100
```

```
<210> 903
<211> 349
<212> DNA
<213> Homo sapiens
<400> 903
agatettagt gaaaactgga agcaggaaga ataagttagt catggaagce actttggete
taagggettt gatggeetea tgggttgaca ggaacagaag acaaagaeta gggeeeacee
aaggtgtgaa gtctaatagg aaaccttttc tccataaggc tacaatgggt ctaccaaaaa
taaaaccatg ccacccagg gactgcagcc caattttata tcaccatgag gtccaaaaaa
ttccaagetg tgaatttagt ttcaaatggc cttggtctcc agtatcccta gccatgtggc
aaaaacaaac aattotottt qqaqqataca totttatott aagacttgn
<210> 904
<211> 102
<212> PRT
<213> Homo sapiens
<400> 904
Met Glu Ala Thr Leu Ala Leu Arg Ala Leu Met Ala Ser Trp Val Asp
                                    10
Arg Asn Arg Arg Gln Arg Leu Gly Pro Thr Gln Gly Val Lys Ser Asn
                                25
Arg Lys Pro Phe Leu His Lys Ala Thr Met Gly Leu Pro Lys Ile Lys
                            40
Pro Cys His Pro Arg Asp Cys Ser Pro Ile Leu Tyr His His Glu Val
                        55
Gln Lys Ile Pro Ser Cys Glu Phe Ser Phe Lys Trp Pro Trp Ser Pro
                    70
Val Ser Leu Ala Met Trp Gln Lys Gln Thr Ile Leu Phe Gly Gly Tyr
                                    90
Ile Phe Ile Leu Arg Leu
            100
<210> 905
<211> 377
<212> DNA
<213> Homo sapiens
<400> 905
nntccggaac cggtggtgtg gaccgagcac gattctcacc tagctcaccc ggatcagcgt
ctcaacgaag acatcattat cgcgggtgac cgggcagacg cggtgattag cgtatcccag
qqqctctqcq acaggctggc tqqacatggc qtqacctcaa cggtggttcc caacatcgtt
gacgtcgagc tqtttgaccg tcctgatcga cgacatgagg ggacgatcgt cgtcagcgtc
240
```

```
gccaccctca acccgggaaa gggcatgatt gagttagetc aggctgttga gcgtcttccc
300
gaggttcagt tgagaatcat cggagatgga ccgcagcggc accaactgga ggccattgcc
360
gctgataatc cacgcgt
377
<210> 906
<211> 125
<212> PRT
<213> Homo sapiens
<400> 906
Xaa Pro Glu Pro Val Val Trp Thr Glu His Asp Ser His Leu Ala His
                                     10
Pro Asp Gln Arg Leu Asn Glu Asp Ile Ile Ile Ala Gly Asp Arg Ala
                                25
                                                     30
Asp Ala Val Ile Ser Val Ser Gln Gly Leu Cys Asp Arg Leu Ala Gly
                             40
                                                 45
        35
His Gly Val Thr Ser Thr Val Val Pro Asn Ile Val Asp Val Glu Leu
Phe Asp Arg Pro Asp Arg Arg His Glu Gly Thr Ile Val Val Ser Val
                     70
Ala Thr Leu Asn Pro Gly Lys Gly Met Ile Glu Leu Ala Gln Ala Val
                85
                                     90
Glu Arg Leu Pro Glu Val Gln Leu Arg Ile Ile Gly Asp Gly Pro Gln
                                105
Arg His Gln Leu Glu Ala Ile Ala Ala Asp Asn Pro Arg
                            120
                                                 125
        115
<210> 907
<211> 332
<212> DNA
<213> Homo sapiens
<400> 907
acqcqtaqqa tqatqaaqtc cqtcactgga tcgttcttgg gtggcaaccq ggaagtcggt
gaccagttct tcaacggcga ggttcaactg aaccttgtgc cgcagggtac attcgccgag
cgcattcgtg ccggcgctgc tggtattgca gcattcttca cgcctactgg ctatggtaca
180
gccgtgcaga agggtgagct tgttcttaag tatgaaaaga aggacggtaa ggctgtgcca
240
gtcatgacgt ccaagccgcg tgaagtgcgc tcgtttgacg gccgtgacta tataatagaa
gaggttatta aggatgaata ggatatggtg aa
332
<210> 908
<211> 106
<212> PRT
<213> Homo sapiens
```

<400> 908 Thr Arg Arg Met Met Lys Ser Val Thr Gly Ser Phe Leu Gly Gly Asn Arg Glu Val Gly Asp Gln Phe Phe Asn Gly Glu Val Gln Leu Asn Leu Val Pro Gln Gly Thr Phe Ala Glu Arg Ile Arg Ala Gly Ala Ala Gly 40 Ile Ala Ala Phe Phe Thr Pro Thr Gly Tyr Gly Thr Ala Val Gln Lys 55 Gly Glu Leu Val Leu Lys Tyr Glu Lys Lys Asp Gly Lys Ala Val Pro Val Met Thr Ser Lys Pro Arg Glu Val Arg Ser Phe Asp Gly Arg Asp 85 Tyr Ile Ile Glu Glu Val Ile Lys Asp Glu 100 105 <210> 909 <211> 318 <212> DNA <213> Homo sapiens <400> 909 acgcgtcggg catggcagct gtacagatct atcgcgtcag cagggcctac gcacacatga tqccqcaqqq qcaccqacqc tqtcqccatc aaaagagccg cctcgcgccc gcagcgcctc ccagggacgg cgactcacgt ggctcgacac gcgcgcgcga gtcgcgtggg tgtgtcacgc cccttttttt cccacccaa caccgaaccg gcgggccatg gctgaggatt cgcaccccat tegeteegge ttgegeatge teaagegete etggageteg aatgagaatg tacegeegee acaaageteg eegeegge 318 <210> 910 <211> 102 <212> PRT <213> Homo sapiens <400> 910 Met Ala Ala Val Gln Ile Tyr Arg Val Ser Arg Ala Tyr Ala His Met Met Pro Gln Gly His Arg Arg Cys Arg His Gln Lys Ser Arg Leu Ala 25 Pro Ala Ala Pro Pro Arg Asp Gly Asp Ser Arg Gly Ser Thr Arg Ala Arg Glu Ser Arg Gly Cys Val Thr Pro Leu Phe Pro Pro Gln His Arg Thr Gly Gly Pro Trp Leu Arg Ile Arg Thr Pro Phe Ala Pro Ala 70 75 Cys Ala Cys Ser Ser Ala Pro Gly Ala Arg Met Arg Met Tyr Arg Arg 85 90 His Lys Ala Arg Arg Arg

100

```
<210> 911
<211> 506
<212> DNA
<213> Homo sapiens
<400> 911
acgogtgtgc agcactctcc acaagctggc cccaatcact tttgcatcaa attggtacag
caacettatg aggetggeet tgggggaace etgttttagg gatgagetga aettaceggg
aggetgeatg egaggttggt gtgaaatgea tatetggett tgtagetggt eggeteacet
ctggggttgg cacaggggcg ggggttctgc catggctaga atgcgctaag gggtggaaac
gaagcctgct gggcccggga accacagagc agcctggcct ttgaaggaga ccctgtggca
300
coccetque accecaagt ceaqueattt caetteectg gagatggtge aaagcaagaa
aaaaaaaaa atccagtgtt ctcaggtcag ccttccacca gccaggattc atcgtctgat
420
ctgtttgggg agagagcatg gagtggtgga gatgggttgg gccccagtgt tttctgatta
actogoagtt cacotgaaac attttg
506
<210> 912
<211> 129
<212> PRT
<213> Homo sapiens
<400> 912
Met Phe Gln Val Asn Cys Glu Leu Ile Arg Lys His Trp Gly Pro Thr
                                    10
His Leu His His Ser Met Leu Ser Pro Gln Thr Asp Gln Thr Met Asn
Pro Gly Trp Trp Lys Ala Asp Leu Arg Thr Leu Asp Phe Phe Phe Phe
Leu Ala Leu His His Leu Gln Gly Ser Glu Met Ala Gly Leu Gly Gly
                        55
Gly Gln Gly Val Pro Gln Gly Leu Leu Gln Arg Pro Gly Cys Ser Val
Val Pro Gly Pro Ser Arg Leu Arg Phe His Pro Leu Ala His Ser Ser
                                    90
His Gly Arg Thr Pro Ala Pro Val Pro Thr Pro Glu Val Ser Arg Pro
           100
                                105
Ala Thr Lys Pro Asp Met His Phe Thr Pro Thr Ser His Ala Ala Ser
                                                125
       115
                            120
Arq
<210> 913
<211> 339
```

```
<212> DNA
<213> Homo sapiens
<400> 913
cgcttcatgg cgtggttcag gcgtacggtt ccggctactg gtgactaccg tggcacgaaa
60
tttttcgttc gcgagaacgg taaaaccctc gcaacctcga tgttcatggt ttgtgtcgcc
ctgggcgcca cggacctgct tttcgccctc gactcgattc cggcgtccta tggtttcacc
aacgagggt accttatect taccgctaac gtetttgete teatgggett gegteagttg
tattteetta ttggaageet gttggaaegt etggtgtaet tgtegetggg aetggtegtg
attttgggct ttatcgccct caagctcatt ggccacgcg
<210> 914
<211> 113
<212> PRT
<213> Homo sapiens
<400> 914
Arg Phe Met Ala Trp Phe Arg Arg Thr Val Pro Ala Thr Gly Asp Tyr
                5
                                    10
Arg Gly Thr Lys Phe Phe Val Arg Glu Asn Gly Lys Thr Leu Ala Thr
                                25
Ser Met Phe Met Val Cys Val Ala Leu Gly Ala Thr Asp Leu Leu Phe
                            40
Ala Leu Asp Ser Ile Pro Ala Ser Tyr Gly Phe Thr Asn Glu Gly Tyr
                        55
Leu Ile Leu Thr Ala Asn Val Phe Ala Leu Met Gly Leu Arg Gln Leu
                    70
                                        75
Tyr Phe Leu Ile Gly Ser Leu Leu Glu Arg Leu Val Tyr Leu Ser Leu
                                    90
Gly Leu Val Val Ile Leu Gly Phe Ile Ala Leu Lys Leu Ile Gly His
            100
                                105
                                                    110
Ala
<210> 915
<211> 663
<212> DNA
<213> Homo sapiens
<400> 915
nnggtacctg tcaatcagta tgtaaacctc actttatgtc gtggttatcc acttcctgat
gacagtgaag atcctgttgt ggacattgtt gctgctaccc ctgtcatcaa tggacagtca
ttaaccaagg gagagacttg catgaatcet caggatttta agccaggage aatggttetg
gagcagaatg gaaaatcggg acacactttg actggtgatg gtctcaatgg accatcagat
240
```

```
gcaaqtgagc agagagtatc catggcatcg tcaggcaqct cccagcctga actagtgact
300
atccctttga ttaagggccc taaagggttt gggtttgcaa ttgctgacag ccctactgga
cagaaggtga aaatgatact ggatagtcag tggtgtcaag gccttcagaa aggagatata
attaaggaaa tataccatca aaatgtgcag aatttaacac atctccaagt ggtagaggtg
ctaaagcagt ttccagtagg tgctgatgta ccattgctta tcttaagagg aggtcccct
tcaccaacca aaagtgccaa aatgaaaaca gataaaaagg aaaatgcagg aagtttggag
qccataaatq aqcctattcc tcaqcctatg ccttttccac cgagcattat caggtcagga
tcc
663
<210> 916
<211> 221
<212> PRT
<213> Homo sapiens
<400> 916
Xaa Val Pro Val Asn Gln Tyr Val Asn Leu Thr Leu Cys Arg Gly Tyr
                 5
                                    10
Pro Leu Pro Asp Asp Ser Glu Asp Pro Val Val Asp Ile Val Ala Ala
                                25
Thr Pro Val Ile Asn Gly Gln Ser Leu Thr Lys Gly Glu Thr Cys Met
                            40
Asn Pro Gln Asp Phe Lys Pro Gly Ala Met Val Leu Glu Gln Asn Gly
Lys Ser Gly His Thr Leu Thr Gly Asp Gly Leu Asn Gly Pro Ser Asp
                    70
                                        75
Ala Ser Glu Gln Arg Val Ser Met Ala Ser Ser Gly Ser Ser Gln Pro
                                    90
Glu Leu Val Thr Ile Pro Leu Ile Lys Gly Pro Lys Gly Phe Gly Phe
                                105
Ala Ile Ala Asp Ser Pro Thr Gly Gln Lys Val Lys Met Ile Leu Asp
                            120
Ser Gln Trp Cys Gln Gly Leu Gln Lys Gly Asp Ile Ile Lys Glu Ile
                        135
                                            140
Tyr His Gln Asn Val Gln Asn Leu Thr His Leu Gln Val Val Glu Val
                    150
                                        155
Leu Lys Gln Phe Pro Val Gly Ala Asp Val Pro Leu Leu Ile Leu Arg
                                    170
Gly Gly Pro Pro Ser Pro Thr Lys Ser Ala Lys Met Lys Thr Asp Lys
            180
                                185
                                                    190
Lys Glu Asn Ala Gly Ser Leu Glu Ala Ile Asn Glu Pro Ile Pro Gln
        195
                            200
Pro Met Pro Phe Pro Pro Ser Ile Ile Arg Ser Gly Ser
                                            220
    210
                        215
<210> 917
<211> 615
```

920

```
<212> DNA
<213> Homo sapiens
<400> 917
atogtggacc agaagttccc tgagtgtggc ttctacggcc tttacgacaa gatcctgctt
ttcaaacatg accccacgte ggccaaccte etgeagetgg tgegetegte eggagacate
caggagggcg acctggtgga ggtggtgctg tcggcctcgg ccaccttcga ggacttccag
atcogocogo acgocotoac ggtgcactoo tatogggcgo otgcottotg tgatcactgo
ggggagatge tetteggeet agtgegeeag ggeeteaagt gegatggetg egggetgaae
taccacaagc gctgtgcctt cagcatecec aacaactgta gtggggeeeg caaacggege
etgteateca egtetetgge cagtggeeae teggtgegee teggeaeete egagteeetg
ccctgcacgg ctgaagagga gccgtagcac caccgaactc ctgcctcgcc gtccccgtca
tectetteet cetettetge etcategtat acgggeegee ceattgaget ggacaagatg
ctgctctcca aggtcaaggt gccgcacacc ttcctcatcc acagctatac acggcccacc
600
gtttgccagg cttgc
615
<210> 918
<211> 148
<212> PRT
<213> Homo sapiens
<400> 918
Ile Val Asp Gln Lys Phe Pro Glu Cys Gly Phe Tyr Gly Leu Tyr Asp
                 5
                                    10
Lys Ile Leu Leu Phe Lys His Asp Pro Thr Ser Ala Asn Leu Leu Gln
            20
                                25
Leu Val Arg Ser Ser Gly Asp Ile Gln Glu Gly Asp Leu Val Glu Val
Val Leu Ser Ala Ser Ala Thr Phe Glu Asp Phe Gln Ile Arg Pro His
Ala Leu Thr Val His Ser Tyr Arg Ala Pro Ala Phe Cys Asp His Cys
                    70
                                        75
                                                             80
Gly Glu Met Leu Phe Gly Leu Val Arg Gln Gly Leu Lys Cys Asp Gly
                85
                                    90
Cys Gly Leu Asn Tyr His Lys Arg Cys Ala Phe Ser Ile Pro Asn Asn
            100
                                105
Cys Ser Gly Ala Arg Lys Arg Arg Leu Ser Ser Thr Ser Leu Ala Ser
                            120
                                                125
Gly His Ser Val Arg Leu Gly Thr Ser Glu Ser Leu Pro Cys Thr Ala
    130
                        135
                                            140
Glu Glu Glu Pro
145
```

```
<210> 919
<211> 294
<212> DNA
<213> Homo sapiens
<400> 919
accegtatge gteegetgge tgtgetegge gacaacatea ecacegacea tetategeeg
acaaatgcga tcctgctcga tagcgcagcg ggtgagtacc tcgccaagat gggcccgccg
gaagaagact tcatttegaa egegacecat egtggegate acetgacege acagegegee
accttcgcca acccgacctt gctcaacgag atggccgtag tcgatggtga agtgaagaaa
ggetegettg eeegegtgga aeeggaagge catgtgatge geatgtggga agee
294
<210> 920
<211> 98
<212> PRT
<213> Homo sapiens
<400> 920
Thr Gly Met Arg Pro Leu Ala Val Leu Gly Asp Asn Ile Thr Thr Asp
                 5
                                    10
His Leu Ser Pro Thr Asn Ala Ile Leu Leu Asp Ser Ala Ala Gly Glu
                                25
Tyr Leu Ala Lys Met Gly Pro Pro Glu Glu Asp Phe Ile Ser Asn Ala
                            40
Thr His Arg Gly Asp His Leu Thr Ala Gln Arg Ala Thr Phe Ala Asn
Pro Thr Leu Leu Asn Glu Met Ala Val Val Asp Gly Glu Val Lys Lys
                    70
                                        75
Gly Ser Leu Ala Arg Val Glu Pro Glu Gly His Val Met Arg Met Trp
                85
                                    90
Glu Ala
<210> 921
<211> 378
<212> DNA
<213> Homo sapiens
<400> 921
acgcgtttgc gcatcgcttt gaccggtctg acgatggctg agtacttccg cgatgttcag
aaccaggacg tgctgttgtt catcgacaac atcttccggt tctcccaggc tggttctgag
gtttcaaccc tgctaggtcg tatgccctcg gcggtgggct accagcccaa cttggccgac
gagatqqqcc aattqcagga gcqaatcacc tcgacccgtg gtcactccat cacctcgatg
caggeeqtet acqteccege tgacgattac accgaccegg ctccggcgac gaccttcgcc
300
```

```
cacctggatg ccaccacgga getttetegt gagattgeet etegtggeet gtacceggee
gtggatccgc tggcgtcg
378
<210> 922
<211> 126
<212> PRT
<213> Homo sapiens
<400> 922
Thr Arg Leu Arg Ile Ala Leu Thr Gly Leu Thr Met Ala Glu Tyr Phe
 1
Arg Asp Val Gln Asn Gln Asp Val Leu Leu Phe Ile Asp Asn Ile Phe
                                 25
Arg Phe Ser Gln Ala Gly Ser Glu Val Ser Thr Leu Leu Gly Arg Met
                            40
Pro Ser Ala Val Gly Tyr Gln Pro Asn Leu Ala Asp Glu Met Gly Gln
                        55
Leu Gln Glu Arg Ile Thr Ser Thr Arg Gly His Ser Ile Thr Ser Met
                    70
                                         75
Gln Ala Val Tyr Val Pro Ala Asp Asp Tyr Thr Asp Pro Ala Pro Ala
                85
                                    90
Thr Thr Phe Ala His Leu Asp Ala Thr Thr Glu Leu Ser Arg Glu Ile
            100
                                105
Ala Ser Arg Gly Leu Tyr Pro Ala Val Asp Pro Leu Ala Ser
                            120
<210> 923
<211> 571
<212> DNA
<213> Homo sapiens
<400> 923
accggtatcg aactgccgca agacacgggc aagcatgtcg ccgacgaaca actgcaacgc
ctggacaccg cgctggagca cgtgcgcgga gaaatccgca ttaccctgga gcatgcacgc
120
caacgcaaga atgtcgaaga agaagacatc ttcgccgccc accttgcgct attggaagac
cccacgctgc tggacgccgc cactggtgcc atcgaacacg gcagcgccgc cacccacgcc
tggcgcgatg caatccaggc gcaatgcgcc gtgttgctgg ccctgggcaa accgctgttt
gccgagcgcg ccaacgacct gcgcgatctg caacagcgag tactgcgtgc gctgttgggg
gaageetgge acttegaatt geeggeeggg eegattttea ggnnggeeat taaettaeee
420
cetteegeet tgttgcaact gagtgcccaa aacgeegtgg gtatttgcat ggeegaagge
480
ggcgctacgt ctcacgtcgc gattttggcc cqaqqcaaag gcttgccgtg cgtggtcgcg
ctgggcgccg aagtgctcga cgtgccccaa g
571
```

```
<210> 924
<211> 190
<212> PRT
<213> Homo sapiens
<400> 924
Thr Gly Ile Glu Leu Pro Gln Asp Thr Gly Lys His Val Ala Asp Glu
                                     10
Gln Leu Gln Arg Leu Asp Thr Ala Leu Glu His Val Arg Gly Glu Ile
                                25
Arg Ile Thr Leu Glu His Ala Arg Gln Arg Lys Asn Val Glu Glu Glu
                            40
Asp Ile Phe Ala Ala His Leu Ala Leu Leu Glu Asp Pro Thr Leu Leu
Asp Ala Ala Thr Gly Ala Ile Glu His Gly Ser Ala Ala Thr His Ala
                    70
                                        75
Trp Arg Asp Ala Ile Gln Ala Gln Cys Ala Val Leu Leu Ala Leu Gly
Lys Pro Leu Phe Ala Glu Arg Ala Asn Asp Leu Arg Asp Leu Gln Gln
                                105
Arg Val Leu Arg Ala Leu Leu Gly Glu Ala Trp His Phe Glu Leu Pro
                            120
Ala Gly Pro Ile Phe Arg Xaa Ala Ile Asn Leu Pro Pro Ser Ala Leu
                        135
                                            140
Leu Gln Leu Ser Ala Gln Asn Ala Val Gly Ile Cys Met Ala Glu Gly
                    150
                                        155
Gly Ala Thr Ser His Val Ala Ile Leu Ala Arg Gly Lys Gly Leu Pro
                165
                                    170
Cys Val Val Ala Leu Gly Ala Glu Val Leu Asp Val Pro Gln
            180
                                185
<210> 925
<211> 620
<212> DNA
<213> Homo sapiens
<400> 925
acgcgtgcac tgtgtgtatg catggtaacg tacacgtgtg cactgtgtgt ggtgtgcatg
60
neatggtgtg tgeacgtgtg enactgtgta tgeatggtaa tgtgcacgtg tgeactqtqt
gtggtgtgta tgcatggtgt gtgcacgtgt gcactgtgtg tgtgtgtatg catgtgtgtg
caegigtgcc tgtgtgtatg catggtaatg tgcgtgtgca ctgtqtqqtq tqtatqcatq
tgtgtgcacg tgtgcactgt gtatgcatag tgtgtgcacg tgtgcactgt gtgtggatgc
atggtaatgt geacgtgtge aetgtgtgtg gtgtgtatga tggtgtgtgc aegtgtgcae
ggtgtgtggt gtgtatgcat gtgtgtgcac gtgtgcactg tgtggcaggg gtgtttggtg
tgtgtgcatg tatgcatggt gtgtgcatac gtgtgcagca gcacctggtc ccatctccag
480
```

```
tgcccagcag catcacacgc actttggtgc tttataaatg catggtcagt gaggctgcca
 gcaccaaget gteeetttae cataacaeet ggaatagtea eetgtgataa getateaeat
 aggaaacatt tttaaaattt
 620
<210> 926
 <211> 89
 <212> PRT
 <213> Homo sapiens
<400> 926
Thr Arg Ala Leu Cys Val Cys Met Val Thr Tyr Thr Cys Ala Leu Cys
                                     10
Val Val Cys Met Xaa Trp Cys Val His Val Cys Xaa Cys Val Cys Met
Val Met Cys Thr Cys Ala Leu Cys Val Val Cys Met His Gly Val Cys
                             40
                                                 45
Thr Cys Ala Leu Cys Val Cys Val Cys Met Cys Val His Val Cys Leu
                         55
                                             60
Cys Val Cys Met Val Met Cys Val Cys Thr Val Trp Cys Val Cys Met
                    70
                                         75
Cys Val His Val Cys Thr Val Tyr Ala
                85
<210> 927
<211> 360
<212> DNA
<213> Homo sapiens
<400> 927
gtgcacactc tggaagccac aggatggagc tcctagagat agtgaggcat gaccagaggg
aagaggcatt tggggtcctg ttcagatcat tccaacagca aaccgggcat ggagacccca
teteaggtet gtgettetet gggggeeace eagceateet geeeaceage teagaggeag
ggacaaagcc ctcccaagag gcagcaggca gcaagggtca gccagcgcag tggggacagg
caggtacaac ctggaaaccc caaaggaccc cagatggcaa tgtgacacgg cccatccacc
aagcacctgt aatgccggct tcccacagag gcgagccaga tcctggcact attctttaag
360
<210> 928
<211> 111
<212> PRT
<213> Homo sapiens
<400> 928
Met Glu Leu Leu Glu Ile Val Arg His Asp Gln Arg Glu Glu Ala Phe
Gly Val Leu Phe Arg Ser Phe Gln Gln Gln Thr Gly His Gly Asp Pro
```

20 25 3.0 Ile Ser Gly Leu Cys Phe Ser Gly Gly His Pro Ala Ile Leu Pro Thr 40 Ser Ser Glu Ala Gly Thr Lys Pro Ser Gln Glu Ala Ala Gly Ser Lys 55 60 Gly Gln Pro Ala Gln Trp Gly Gln Ala Gly Thr Thr Trp Lys Pro Gln 70 75 Arg Thr Pro Asp Gly Asn Val Thr Arg Pro Ile His Gln Ala Pro Val 95 90 Met Pro Ala Ser His Arg Gly Glu Pro Asp Pro Gly Thr Ile Leu 100 <210> 929 <211> 2340 <212> DNA <213> Homo sapiens <400> 929 nnctccccag ggccgagtct tccggagtca gcagagagcc tggatggatc acaggaggat aageeteggg geteatgtge ggageeeact tttactgata egggaatggt ggeteacata aacaacagcc ggctcaaggc caagggcgtg ggccagcacg acaacgccca gaactttggt aaccagaget ttgaggaget gegageagee tgtetaagaa agggggaget ettegaggae cccttattcc ctgctgaacc cagctcactg ggcttcaagg acctgggccc caactccaaa aatgtgcaga acatctcctg gcagcggccc aaggatatca taaacaaccc tctattcatc atggatggga tttctccaac agacatctgc caggggatcc tcggggactg ctggctgctg getgecateg getecettae cacetgeece aaactgetat acegegtggt geceagagga cagagettea agaaaaacta tgetggeate ttecatttte agatttggea gtttggacag tgggtgaacg tggtggtaga tgaccggctg cccacaaaga atgacaagct ggtgtttgtg cactcaaccg aacgcagtga gttctggagt gccctgctgg agaaggcgta tgccaagctg agtgggteet atgaageatt gteaggggge agtaceatgg agggeettga ggaetteaea ggaggcgtgg cccagagctt ccaactccag aggccccctc agaacctgct caggctcctt aggaaggeeg tggagegate eteceteatg ggttgeteea ttgaagteae cagtgatagt gaactggaat ccatgactga caagatgctg gtgagagggc acgcttactc tgtgactggc 900 cttcaggatg tccactacag aggcaaaatg gaaacactga ttcgggtccg gaatccctgg ggccggattg agtggaatgg agcttggagt gacagtgcca gggagtggga agaggtggcc teagacatee agatgeaget getgeacaag aeggaggaeg gggagttetg gatgteetae

1080

```
caagatttcc tgaacaactt cacgctcctg gagatctgca acctcacgcc tgatacactc
tetggggaet acaagageta etggeacace acettetacg agggeagetg gegeagagge
ageteegeag ggggetgeag gaaccaccet ggeacgttet ggaccaacce ccagtttaag
atctctcttc ctgaggggga tgacccagag gatgacgcag agggcaatgt tgtggtctgc
acctgcctgg tggccctaat gcagaagaac tggcggcatg cacggcagca gggagcccag
ctgcagacca ttggctttgt cctctacgcg gtcccaaaag agtttcagaa cattcaggat
gtccacttga agaaggaatt cttcacgaag tatcaggacc acggcttctc agagatettc
1500
accaactcac gggaggtgag cagccaactc cggctgcctc cggggggaata tatcattatt
ccctccacct ttgagccaca cagagatgct gacttcctgc ttcgggtctt caccgagaag
cacagegagt catgggaatt ggatgaagte aactatgetg ageaacteea agaggaaaag
gtetetgagg atgacatgga ecaggaette etacatttgt ttaagatagt ggeaggagag
ggcaaggaga taggggtgta tgagctccag aggctgctca acaggatggc catcaaattc
aaaagettea agaceaaggg etttggeetg gatgettgee getgeatgat caaceteatg
gataaagatg gctctggcaa gctggggctt ctagagttca agatcctgtg gaaaaaactc
aagaaatgga tggacatctt cagagagtgt gaccaggacc attcaggcac cttgaactcc
tatgagatgc gcctggttat tgagaaagca ggcatcaagc tgaacaacaa ggtaatgcag
2040
gtcctggtgg ccaggtatgc agatgatggc ctgatcatag actttgacag cttcatcagc
tgtttcctga ggctaaagac catgttcaca ttctttctaa ccatggaccc caagaatact
2160
ggccatattt gcttgagcct ggaacagtgg ctgcagatga ccatgtgggg atagaggcgc
2220
tgtaggagcc tggtcatctc taccagcagc agcagcagcg aggttctagc ccaggagggt
ggggtgcttc ttgtagccct cagctctcca gtctctgctg atgaaatggg atccaggtgg
<210> 930
<211> 702
<212> PRT
<213> Homo sapiens
<400> 930
Met Val Ala His Ile Asn Asn Ser Arg Leu Lys Ala Lys Gly Val Gly
Gln His Asp Asn Ala Gln Asn Phe Gly Asn Gln Ser Phe Glu Glu Leu
Arg Ala Ala Cys Leu Arg Lys Gly Glu Leu Phe Glu Asp Pro Leu Phe
```

		35					40					45			
Pro	Ala 50		Pro	Ser	Ser	Leu 55	Gly	Phe	Lys	Asp	Leu 60	Gly	Pro	Asn	Ser
Lys 65	Asn	Val	Gln	Asn	Ile 70	Ser	Trp	Gln	Arg	Pro 75	Lys	Asp	Ile	Ile	Asn 80
Asn	Pro	Leu	Phe	Ile 85	Met	Asp	Gly	Ile	Ser 90	Pro	Thr	Asp	Ile	Cys 95	Gln
Gly	Ile	Leu	Gly 100	Asp	Cys	Trp	Leu	Leu 105	Ala	Ala	Ile	Gly	Ser 110	Leu	Thr
Thr	Cys	Pro 115	Lys	Leu	Leu	Tyr	Arg 120	Val	Val	Pro	Arg	Gly 125	Gln	Ser	Phe
Lys	Lys 130	Asn	Tyr	Ala	Gly	Ile 135	Phe	His	Phe	Gln	Ile 140	Trp	Gln	Phe	Gly
Gln 145	Trp	Val	Asn	Val	Val 150	Val	Asp	Asp	Arg	Leu 155	Pro	Thr	Lys	Asn	Asp 160
Lys	Leu	Val	Phe	Val 165	His	Ser	Thr	Glu	Arg 170	Ser	Glu	Phe	Trp	Ser 175	Ala
Leu	Leu	Glu	Lys 180	Ala	Tyr	Ala	Lys	Leu 185	Ser	Gly	Ser	Tyr	Glu 190	Ala	Leu
	_	195					200			Asp		205	_	_	
	210					215				Gln	220			_	
225					230	_				Met 235	_				240
			_	245					250	Thr	_	_		255	
			260					265		Gln			270		
_	_	275					280			Asn		285			
	290				_	295	_			Arg	300				
305					310					115					320
				325					330	Asn				335	
			340			_		345		Gly	-	_	350		
		355					360			Arg		365			
	370	_				375	_			Trp	380				
385					390					Glu 395					400
				405					410	Leu				415	
			420					425		Gln			430		
		435					440			Ile		445			
	450					455				His	460				
Phe	Thr	Asn	ser	Arg	Glu	Val	Ser	Ser	Gln	Leu	Arg	Leu	Pro	Pro	Gly

```
465
                    470
                                         475
Glu Tyr Ile Ile Ile Pro Ser Thr Phe Glu Pro His Arg Asp Ala Asp
                485
                                    490
Phe Leu Leu Arg Val Phe Thr Glu Lys His Ser Glu Ser Trp Glu Leu
            500
                                505
Asp Glu Val Asn Tyr Ala Glu Gln Leu Gln Glu Glu Lys Val Ser Glu
                            520
                                                 525
Asp Asp Met Asp Gln Asp Phe Leu His Leu Phe Lys Ile Val Ala Gly
                        535
                                            540
Glu Gly Lys Glu Ile Gly Val Tyr Glu Leu Gln Arg Leu Leu Asn Arg
                    550
                                        555
Met Ala Ile Lys Phe Lys Ser Phe Lys Thr Lys Gly Phe Gly Leu Asp
                565
                                    570
Ala Cys Arg Cys Met Ile Asn Leu Met Asp Lys Asp Gly Ser Gly Lys
                                585
Leu Gly Leu Leu Glu Phe Lys Ile Leu Trp Lys Lys Leu Lys Lys Trp
                            600
Met Asp Ile Phe Arg Glu Cys Asp Gln Asp His Ser Gly Thr Leu Asn
                        615
Ser Tyr Glu Met Arg Leu Val Ile Glu Lys Ala Gly Ile Lys Leu Asn
                    630
                                        635
Asn Lys Val Met Gln Val Leu Val Ala Arg Tyr Ala Asp Asp Gly Leu
                                    650
Ile Ile Asp Phe Asp Ser Phe Ile Ser Cys Phe Leu Arg Leu Lys Thr
            660
                                665
Met Phe Thr Phe Phe Leu Thr Met Asp Pro Lys Asn Thr Gly His Ile
                            680
Cys Leu Ser Leu Glu Gln Trp Leu Gln Met Thr Met Trp Gly
                        695
<210> 931
<211> 297
<212> DNA
<213> Homo sapiens
<400> 931
tegegaaggg agectgacat qqqccaqaaa atcaateece atqqttteeq teteqqtqtq
acgaccgatc acaagacccg ctggtacgcc gagaagcagt acgccgagct cgtgggtgag
gatgtcaaga teegagagtg getecacaag aatetggage gegeeggtet ttegtecate
gagategage gtegeteega gegegtgaee atttteettt aegeegeteg ceegggeate
gttateggge geaatggeeg ggaggeegag egegtgegtn ntgagetega aaagett
<210> 932
<211> 93
<212> PRT
<213> Homo sapiens
<400> 932
Met Gly Gln Lys Ile Asn Pro His Gly Phe Arg Leu Gly Val Thr Thr
```

```
1
                  5
                                     10
Asp His Lys Thr Arg Trp Tyr Ala Glu Lys Gln Tyr Ala Glu Leu Val
                                25
Gly Glu Asp Val Lys Ile Arg Glu Trp Leu His Lys Asn Leu Glu Arg
                             40
Ala Gly Leu Ser Ser Ile Glu Ile Glu Arg Arg Ser Glu Arg Val Thr
Ile Phe Leu Tyr Ala Ala Arg Pro Gly Ile Val Ile Gly Arg Asn Gly
                    70
                                         75
Arg Glu Ala Glu Arg Val Arg Xaa Glu Leu Glu Lys Leu
                85
<210> 933
<211> 305
<212> DNA
<213> Homo sapiens
<400> 933
nnacgcgtcg ccaagctgtt gatggccgaa tacaaggggc tcaacgtcat cgtcaaaacc
tccgccgatc cggcaagcca agccaatgcc gtgcaggatc tggcgggggc aggcatcgac
gegetggeea teetgeegae egaceeggat cagetggttt eggegateea geaggteaag
gacgacggca agttcgtggc gctggtcgac cgtgcgcctt ccgtcaacga caacacgatc
cgcgatctct acgtggccgg caacaacccg gcgctcggcg aagtggcggg caaattcatg
300
ggcga
305
<210> 934
<211> 101
<212> PRT
<213> Homo sapiens
<400> 934
Xaa Arg Val Ala Lys Leu Leu Met Ala Glu Tyr Lys Gly Leu Asn Val
                                    10
Ile Val Lys Thr Ser Ala Asp Pro Ala Ser Gln Ala Asn Ala Val Gln
                                25
Asp Leu Ala Gly Ala Gly Ile Asp Ala Leu Ala Ile Leu Pro Thr Asp
                            40
Pro Asp Gln Leu Val Ser Ala Ile Gln Gln Val Lys Asp Asp Gly Lys
                        55
                                            60
Phe Val Ala Leu Val Asp Arg Ala Pro Ser Val Asn Asp Asn Thr Ile
Arg Asp Leu Tyr Val Ala Gly Asn Asn Pro Ala Leu Gly Glu Val Ala
                                    90
Gly Lys Phe Met Gly
            100
<210> 935
<211> 333
```

```
<212> DNA
<213> Homo sapiens
<400> 935
acgcgtgaag ggctgatgag tgctatgaaa aagccagggg cccgaggaca ctggggtgga
caggetecee tggggaagte etettagaae tgagggatea acaetggagg agaetgeaag
gggtacggga taaatgttcc tggtgaagga aacagcaggg gcaaaggccc tgcagcagaa
aggagcgagg ccctttggag taacagaaag accatggtga caggagctca gaaagaccac
gaagaccatg gtgaggctct cttggtcttt act
333
<210> 936
<211> 103
<212> PRT
<213> Homo sapiens
<400> 936
Met Val Phe Lys His Pro Ser His Pro Ile Pro Gln Ser Gly Leu His
                                  10
Trp Leu Ile Val Leu Thr Pro Val Val Phe Leu Ser Ser Cys His His
           20
                              25
                                                  30
Gly Leu Ser Val Thr Pro Lys Gly Leu Ala Pro Phe Cys Cys Arg Ala
                           40
Phe Ala Pro Ala Val Ser Phe Thr Arg Asn Ile Tyr Pro Val Pro Leu
                                          60
                       55
Ala Val Ser Ser Ser Val Asp Pro Ser Val Leu Arg Gly Leu Pro Gln
Gly Ser Leu Ser Thr Pro Val Ser Ser Gly Pro Trp Leu Phe His Ser
                                  90
               85
Thr His Gln Pro Phe Thr Arg
           100
<210> 937
<211> 464
<212> DNA
<213> Homo sapiens
<400> 937
nnnttatctg cggaggggt ggccaccctg cccacactca tgctgcaggc ctccaccgac
coggoggacg acgageteaa ggatetgttg acggeegace teatggacca gcacaacete
gaccgtgccc tggcagggtt gcgtgccagt cacgtcatcg acgaagctcg cgccgaggtg
180
cageggegtg ecgatetege eegtggeeat etegecatee tteeegeagg egatgeeegt
acggcgttgg agaccctgtg cgacgaggtg ggttcccggg cggcctgaac cccgaccctg
300
```

```
ccagnetgeg teccatetee tggcegggae egetecageg tetgetetet gacageteat
cgttcttccg acaccaagga gtttctcgtg gcccgtcatc tcgatctcat cggcattggt
eccqqcaacc cqqactqqat caccetqqct gecqtcaaqq ccan
<210> 938
<211> 95
<212> PRT
<213> Homo sapiens
<400> 938
Xaa Leu Ser Ala Glu Gly Val Ala Thr Leu Pro Thr Leu Met Leu Gln
                                     10
Ala Ser Thr Asp Pro Ala Asp Asp Glu Leu Lys Asp Leu Leu Thr Ala
Asp Leu Met Asp Gln His Asn Leu Asp Arg Ala Leu Ala Gly Leu Arg
                            40
Ala Ser His Val Ile Asp Glu Ala Arg Ala Glu Val Gln Arg Arg Ala
                        55
Asp Leu Ala Arg Gly His Leu Ala Ile Leu Pro Ala Gly Asp Ala Arg
                    70
                                         75
Thr Ala Leu Glu Thr Leu Cys Asp Glu Val Gly Ser Arg Ala Ala
                85
                                     90
<210> 939
<211> 385
<212> DNA
<213> Homo sapiens
<400> 939
ntgactatec tegaceeega tggtcaggag acgaeteeag gaagtgtcat egaagggett
ggactgctgc cggtcgaggt ggacttcgcc gccacgaaga cccttgcctt gtcgcacggg
acatggcggg ggatcgaggt tggtggctat gaaatccatc acgggcgtct gtcgttcgct
gaggacgetg aageetteet egaeggegta cacgteggte eggtatgggg gaegatgtgg
caeggggeat tegageaega egaatteegt egeaegtgge tggetgaege ggeeegteae
getggateat cetggegtee geacteegae gagetgggtt ateaggeteg acgegaggeg
atgategaaa eeetegeega egegt
385
<210> 940
<211> 128
<212> PRT
<213> Homo sapiens
<400> 940
Xaa Thr Ile Leu Asp Pro Asp Gly Gln Glu Thr Thr Pro Gly Ser Val
```

```
5
                                    10
Ile Glu Gly Leu Gly Leu Leu Pro Val Glu Val Asp Phe Ala Ala Thr
                                25
Lys Thr Leu Ala Leu Ser His Gly Thr Trp Arg Gly Ile Glu Val Gly
                            40
Gly Tyr Glu Ile His His Gly Arg Leu Ser Phe Ala Glu Asp Ala Glu
Ala Phe Leu Asp Gly Val His Val Gly Pro Val Trp Gly Thr Met Trp
                    70
                                        75
His Gly Ala Phe Glu His Asp Glu Phe Arg Arg Thr Trp Leu Ala Asp
                                    90
Ala Ala Arg His Ala Gly Ser Ser Trp Arg Pro His Ser Asp Glu Leu
                                105
Gly Tyr Gln Ala Arg Arg Glu Ala Met Ile Glu Thr Leu Ala Asp Ala
                            120
<210> 941
<211> 348
<212> DNA
<213> Homo sapiens
<400> 941
atcttctggt cggcggtgat cacgctggtg accatcggcc tgctgtttgc cggcaacttc
gaagccatgc aaaccatggt cgtgctggcc gggctgccgt tctcggtggt gctgattttc
ttcatgttcg gtttgcacaa ggcgatgcgc caggacgtgg ccatggagca ggagcaggca
caattggctg aacgtggtcg ccgtggtttc agcgagcgcc tgaccgcgct ggacctgcaa
ccgagccagg gcaccgtgca acgctttatg gacaaacatg tgacgccggc gttggaacaa
geggegactg egttgegtga teaagggetg gaagtgeaga eeetgett
<210> 942
<211> 116
<212> PRT
<213> Homo sapiens
<400> 942
Ile Phe Trp Ser Ala Val Ile Thr Leu Val Thr Ile Gly Leu Leu Phe
Ala Gly Asn Phe Glu Ala Met Gln Thr Met Val Val Leu Ala Gly Leu
            20
                                25
Pro Phe Ser Val Val Leu Ile Phe Phe Met Phe Gly Leu His Lys Ala
Met Arg Gln Asp Val Ala Met Glu Gln Glu Gln Ala Gln Leu Ala Glu
                                            60
                        55
Arg Gly Arg Arg Gly Phe Ser Glu Arg Leu Thr Ala Leu Asp Leu Gln
Pro Ser Gln Gly Thr Val Gln Arg Phe Met Asp Lys His Val Thr Pro
                                    90
Ala Leu Glu Gln Ala Ala Thr Ala Leu Arg Asp Gln Gly Leu Glu Val
```

```
110
            100
                              105
Gln Thr Leu Leu
       115
<210> 943
<211> 439
<212> DNA
<213> Homo sapiens
<400> 943
ccatggcagg agcagagcag atagagcagg acctcgtctc cttctctttg cattttgtgc
ctectetaat geateetggg eteetgetaa eeetgtggga aacacegtet etteteteet
120
ttgccctctt ctgtgatcac atcctcactt ctgagcctat ctgcccatcc agtcaatccc
ccttggttct gggatgctat ttccctggcc gcctccctct aggagtgttt agaaccctca
ctgtgggcag aagggaggga agatggctga ggtacctgga aagggacgtg tggatccccg
ggcatggaag gaaggaggca ggagagctag aaaaagggat gagatctaat gttccctaag
gaacctggct tagtgctggc ccttcacata ctgagacatg gaatccttac tactgttctc
tgaggaaaga ggctgttcc
439
<210> 944
<211> 118
<212> PRT
<213> Homo sapiens
<400> 944
Met Ala Gly Ala Glu Gln Ile Glu Gln Asp Leu Val Ser Phe Ser Leu
His Phe Val Pro Pro Leu Met His Pro Gly Leu Leu Thr Leu Trp
            20
                                25
Glu Thr Pro Ser Leu Leu Ser Phe Ala Leu Phe Cys Asp His Ile Leu
                            40
Thr Ser Glu Pro Ile Cys Pro Ser Ser Gln Ser Pro Leu Val Leu Gly
                        55
Cys Tyr Phe Pro Gly Arg Leu Pro Leu Gly Val Phe Arg Thr Leu Thr
                                        75
Val Gly Arg Arg Glu Gly Arg Trp Leu Arg Tyr Leu Glu Arg Asp Val
Trp Ile Pro Gly His Gly Arg Lys Glu Ala Gly Glu Leu Glu Lys Gly
                                                    110
                                105
Met Arg Ser Asn Val Pro
        115
<210> 945
<211> 339
<212> DNA
<213> Homo sapiens
```

```
<400> 945
ngaattcgtg aagcgttcca tatttttttc cttttaataa tttcaattgc actttatgtc
gagatggtga tatatatata tactcacaca catatatatg tgtgtgtgtg tatatatgta
tatatatata gegtgtacaa caaaacatgc actgtttact cagcaccccg tgtttgtctc
agcaatagct tttctaaaga actgctacta tttgaaatgg agggggaggg gggtcctgga
cagagtattg tgcaagttga aagtctctgg atggggctat gtatatccta ccagccaatt
300
tgggtgcaaa ttggatttga aggcctgcct ctgtccacn
339
<210> 946
<211> 113
<212> PRT
<213> Homo sapiens
<400> 946
Xaa Ile Arq Glu Ala Phe His Ile Phe Phe Leu Leu Ile Ile Ser Ile
                                    10
Ala Leu Tyr Val Glu Met Val Ile Tyr Ile Tyr Thr His Thr His Ile
            20
                                25
Tyr Val Cys Val Cys Ile Tyr Val Tyr Ile Tyr Ser Val Tyr Asn Lys
                            40
Thr Cys Thr Val Tyr Ser Ala Pro Arg Val Cys Leu Ser Asn Ser Phe
                        55
Ser Lys Glu Leu Leu Phe Glu Met Glu Gly Glu Gly Pro Gly
Gln Ser Ile Val Gln Val Glu Ser Leu Trp Met Gly Leu Cys Ile Ser
                                    90
                85
Tyr Gln Pro Ile Trp Val Gln Ile Gly Phe Glu Gly Leu Pro Leu Ser
            100
                                105
                                                    110
Thr
<210> 947
<211> 648
<212> DNA
<213> Homo sapiens
<400> 947
tctagatctg ttctcaggga agctgagatg gagatgagtg ggcagcaggt ttatggagtg
ctcgtggcat cacacctgtg cacgggggtg gggaaggagt ggacaggagt ggacaagtca
agtagtgctg ccggctcaag cgatgcctca gcctttctgc tgtgtgcgaa gctttgcaga
180
ggagatgatg cttcaaagtt gtccctgttg gggatgagca gccaggcctt tatacactgg
gacagtcagt catggatacg tggatactct ggaaaccctc atccctggag gtctgagccc
300
```

```
ctggatacca tgcccttctt aggctggagt tgctgccctt gtccatttac cataaaaaatt
qqacaaqaqa ataccaggac acacctgagt ttctcatcgt atgctaaacc tgttcttcca
cqtacatccc caatgtgtac agccctactt ttttctgctg atcaagttca attacttctg
ctaagatggt gactattctt gcctgctggt ccttggatgc aaggacccca atgttcaggc
ageetttggt geettetage atacgaatea gageattate tttaggtgtg gaataagetg
ccccaaaacc tqttqaaqcc aqccaqqcac tqtgctccct tcacgcgt
648
<210> 948
<211> 154
<212> PRT
<213> Homo sapiens
<400> 948
Met Glu Met Ser Gly Gln Gln Val Tyr Gly Val Leu Val Ala Ser His
Leu Cys Thr Gly Val Gly Lys Glu Trp Thr Gly Val Asp Lys Ser Ser
                                25
Ser Ala Ala Gly Ser Ser Asp Ala Ser Ala Phe Leu Leu Cys Ala Lys
                            40
Leu Cys Arg Gly Asp Asp Ala Ser Lys Leu Ser Leu Leu Gly Met Ser
                        55
                                            60
Ser Gln Ala Phe Ile His Trp Asp Ser Gln Ser Trp Ile Arg Gly Tyr
                                        75
Ser Gly Asn Pro His Pro Trp Arg Ser Glu Pro Leu Asp Thr Met Pro
                                    90
Phe Leu Gly Trp Ser Cys Cys Pro Cys Pro Phe Thr Ile Lys Ile Gly
            100
                                105
Gln Glu Asn Thr Arg Thr His Leu Ser Phe Ser Ser Tyr Ala Lys Pro
                            120
Val Leu Pro Arg Thr Ser Pro Met Cys Thr Ala Leu Leu Phe Ser Ala
                       135
                                            140
Asp Gln Val Gln Leu Leu Leu Leu Arg Trp
145
                    150
<210> 949
<211> 661
<212> DNA
<213> Homo sapiens
<400> 949
acqcqtactg gttggctcat tcactgaaaa tatgatgaca tttaaaggaa atgcaagaat
60
aagtaatgtg gaattttatc acagtggtca agaaggcttc agggatagca cagatccaag
atatgctgta acgtttctta acctaggaca gattcaagaa catggctcat cttatattcg
aggetgtget titeaceatg gettetetee ageaattggt gtatttggga cagatggatt
```

```
qqacataqat qacaacatca ttcactttac agtgggggaa ggcataagaa tatgggggaa
tgccaaccga gtccgaggga atttgattgc actttcggtt tggccaggaa cctatcagaa
caqaaaaqat ttaaqttcaa ctctctggca tgcagcaatt gagataaata gagggaccaa
tacagtttta cagaataatg tagtggctgg atttggaaga gcaggatacc gcattgatgg
tqaaccttgc ccaggccagt ttaatcctgt ggaaaagtgg tttgacaatg aagcccatgg
aggtttatat gggatctata tgaaccaaga tggccttcct ggatgttctc ttatacaagg
atttaccatt tggacatgct gggattatgg aatttatttt cagaccacag agagtgtgca
660
С
661
<210> 950
<211> 210
<212> PRT
<213> Homo sapiens
<400> 950
Met Met Thr Phe Lys Gly Asn Ala Arg Ile Ser Asn Val Glu Phe Tyr
                                    10
His Ser Gly Gln Glu Gly Phe Arg Asp Ser Thr Asp Pro Arg Tyr Ala
                                25
Val Thr Phe Leu Asn Leu Gly Gln Ile Gln Glu His Gly Ser Ser Tyr
                            40
Ile Arg Gly Cys Ala Phe His His Gly Phe Ser Pro Ala Ile Gly Val
                                            60
Phe Gly Thr Asp Gly Leu Asp Ile Asp Asp Asn Ile Ile His Phe Thr
Val Gly Glu Gly Ile Arg Ile Trp Gly Asn Ala Asn Arg Val Arg Gly
                                    90
                85
Asn Leu Ile Ala Leu Ser Val Trp Pro Gly Thr Tyr Gln Asn Arg Lys
                                105
                                                    110
Asp Leu Ser Ser Thr Leu Trp His Ala Ala Ile Glu Ile Asn Arg Gly
                            120
Thr Asn Thr Val Leu Gln Asn Asn Val Val Ala Gly Phe Gly Arg Ala
                        135
                                            140
Gly Tyr Arg Ile Asp Gly Glu Pro Cys Pro Gly Gln Phe Asn Pro Val
                    150
                                        155
Glu Lys Trp Phe Asp Asn Glu Ala His Gly Gly Leu Tyr Gly Ile Tyr
                165
                                    170
Met Asn Gln Asp Gly Leu Pro Gly Cys Ser Leu Ile Gln Gly Phe Thr
                                1.85
            180
Ile Trp Thr Cys Trp Asp Tyr Gly Ile Tyr Phe Gln Thr Thr Glu Ser
                            200
Val His
    210
<210> 951
<211> 2615
```

<212> DNA <213> Homo sapiens <400> 951

nntccagccc ccaccatgcc gtggcccctg ctgctgctgc tggccgtgag tggggcccag acaacccggc catgetteec egggtgecaa tgegaggtgg agacettegg cettttegae agetteagee tgaetegggt ggattgtage ggeetgggee ceeacateat geeggtgeee atcoctctgg acacagccca cttggacctg tcctccaacc ggctggagat ggtgaatgag 240 teggtgttgg eggggeeggg etacaegaeg ttggetggee tggateteag ecacaacetg 300 ctcaccagca teteacecae tgeettetee egeetteget acetggagte gettgacete 360 agccacaatg gcctgacagc cctgccagcc gagagcttca ccagctcacc cctgagcgac gtgaacctta gccacaacca gctccgggag gtctcagtgt ctgccttcac gacgcacagt 480 cagggeeggg cactacacgt ggacetetee cacaacetet caeegeeteg tgeeceaece cacqagggcc ggcctgcctg cgcccaccat tcagagcctg aacctggcct ggaaccggct ccatgccgtg cccaacctcg agacttgccc ctgcgctacc tgagcctgga tgggaaccet ctaqctqtca ttqgtccggg tgccttcgcg gggctgggag gccttacaca cctgtctctg gccagcctgc agaggctccc tgagctggcg cccagtggct tccgtgagct accgggcctg 780 caggicotgg acctgicggg caaccccaag citaactggg caggagetga ggigittica 840 ggcctgagct ccctgcagga gctggacctt tcgggcacca acctggtgcc cctgcctgag 900 gegetgetee tecaceteee ggeactgeag agegteageg tgggeeagga tgtgeggtge cggcgcctgg tgcgggaggg cacctacccc cggaggcctg gctccagccc caaggtggcc 1020 ctgcactgcg tagacacccg ggaatctgct gccaggggcc ccaccatctt gtgacaaatg 1080 gtgtggccca gggccacata acagactgct gtcctgggct gcctcaggtc ccgagtaact tatgttcaat gtgccaacac cagtggggag cccgcaggcc tatgtggcag cgtcaccaca ggagttgtgg gcctaggaga ggctttggac ctgggagcca cacctaggag caaagtctca cccctttgtc tacgttgctt ccccaaacca tgagcagagg gacttcgatg ccaaaccaga 1320 ctegggtece etectgette eetteeceae ttateceeca agtgeettee eteatgeetg 1380 ggccggcctg acccgcaatg ggcagagggt gggtgggacc ccctgctgca gggcagagtt caggiccact gggctgagtg teceetiggg eccatggece agicacteag gggcgagtit 1500

```
cttttctaac atagcccttt ctttgccatg aggccatgag gcccgcttca tccttttcta
1560
tttccctaqa accttaatqq taqaaqqaat tqcaaaqaat caagtccacc cttctcatgt
gacagatggg gaaactgagg ccttgagaag gaaaaaggct aatctaagtt cctgcgggca
1680
qtqqcatqac tqqaqcacaq cctcctgcct cccaqcccgg acccaatgca ctttcttgtc
tectetaata agececaece teccegeetg ggeteecett getgeeettg cetgtteece
1800
attagcacag gagtagcagc agtaggacag gcaagagcct cacaagtggg actctgggcc
tetgaccage tgtgeggeat gggetaagte actetgeeet teggageete tggaagetta
1920
gggcacattg gttccagcct agccagtttc tcaccctggg ttggggtccc ccagcatcca
gactggaaac ctacccattt tcccctgagc atcctctaga tgctgcccca aggagttgct
2040
gcagttetgg agecteatet ggetgggate tecaagggge etectggatt cagteeceae
tggccctgag cacgacagcc cttcttaccc tcccaggaat gccgtgaaag gagacaaggt
2160
ctgcccgacc catgtctatg ctctaccccc agggtagcat ctcagcttcc gaaccctggg
2220
ctgtttcctt agtcttcatt ttataaaagt tgttgccttt ttaacggagt gtcactttca
accggcctcc cctacccctg ctggccgggg atggagacat gtcatttgta aaagcagaaa
aaggttgcat ttgttcactt ttgtaatatt gtcctgggcc tgtgttgggg tgttggggga
agetgggcat cagtggccac atgggcatca ggggctggcc ccacagagac cccacagggc
agtgagetet gtetteecee acetgeetag cecateatet atetaacegg teettgattt
2520
aataaacact ataaaatqaa qactaagqaa acaqcccaqg gttcggaagc tgagatgcta
2580
ccctgggggt agagcataga catgggtcgg gcaga
2615
<210> 952
<211> 357
<212> PRT
<213> Homo sapiens
<400> 952
Xaa Pro Ala Pro Thr Met Pro Trp Pro Leu Leu Leu Leu Ala Val
Ser Gly Ala Gln Thr Thr Arg Pro Cys Phe Pro Gly Cys Gln Cys Glu
            20
                                25
                                                    30
Val Glu Thr Phe Gly Leu Phe Asp Ser Phe Ser Leu Thr Arg Val Asp
Cys Ser Gly Leu Gly Pro His Ile Met Pro Val Pro Ile Pro Leu Asp
Thr Ala His Leu Asp Leu Ser Ser Asn Arg Leu Glu Met Val Asn Glu
```

```
75
                   70
Ser Val Leu Ala Gly Pro Gly Tyr Thr Thr Leu Ala Gly Leu Asp Leu
                                  90
Ser His Asn Leu Leu Thr Ser Ile Ser Pro Thr Ala Phe Ser Arg Leu
                             105
           100
Arg Tyr Leu Glu Ser Leu Asp Leu Ser His Asn Gly Leu Thr Ala Leu
             120
Pro Ala Glu Ser Phe Thr Ser Ser Pro Leu Ser Asp Val Asn Leu Ser
                      135
                                          140
His Asn Gln Leu Arg Glu Val Ser Val Ser Ala Phe Thr His Ser
                           155
Gln Gly Arg Ala Leu His Val Asp Leu Ser His Asn Leu Ser Pro Pro
                                  170
               165
Arg Ala Pro Pro His Glu Gly Arg Pro Ala Cys Ala His His Ser Glu
                              185
Pro Glu Pro Gly Leu Glu Pro Ala Pro Cys Arg Ala Gln Pro Arg Asp
                          200
Leu Pro Leu Arg Tyr Leu Ser Leu Asp Gly Asn Pro Leu Ala Val Ile
                      215
                                          220
Gly Pro Gly Ala Phe Ala Gly Leu Gly Gly Leu Thr His Leu Ser Leu
                  230
                                      235
Ala Ser Leu Gln Arg Leu Pro Glu Leu Ala Pro Ser Gly Phe Arg Glu
                                  250
               245
Leu Pro Gly Leu Gln Val Leu Asp Leu Ser Gly Asn Pro Lys Leu Asn
                              265
Trp Ala Gly Ala Glu Val Phe Ser Gly Leu Ser Ser Leu Gln Glu Leu
                          280
       275
Asp Leu Ser Gly Thr Asn Leu Val Pro Leu Pro Glu Ala Leu Leu Leu
                       295
                                          300
His Leu Pro Ala Leu Gln Ser Val Ser Val Gly Gln Asp Val Arg Cys
                  310
                                      315
Arg Arg Leu Val Arg Glu Gly Thr Tyr Pro Arg Arg Pro Gly Ser Ser
              325
                                 330
Pro Lys Val Ala Leu His Cys Val Asp Thr Arg Glu Ser Ala Ala Arg
                             345
          340
Gly Pro Thr Ile Leu
       355
<210> 953
<211> 347
<212> DNA
<213> Homo sapiens
acgcgtgaag ccatccctgt gcgcaggcca gtctcgcggg ggtcaccacg gagcgtgtgc
accacacttt coccatcoct tgatccatca ttgggcgttg aggttttccc atgtcttgac
tgttqtacct gqcqqctctg cggagtaacc gctgcggaca cacagtagga cgggagggag
aaqceattqc qtttcaccct ttcatggccc ttcctttccc cttccaagtg agctctttga
ggtgagtcat ggagggcagt gtccctctgc atcctgtctg gggttgtcaa atatggccaa
300
```

```
qtqqqctcca tcqqqqcagc gggtqgggtg gggggtgtct gtcagag
347
<210> 954
<211> 103
<212> PRT
<213> Homo sapiens
<400> 954
Met Glu Pro Thr Trp Pro Tyr Leu Thr Thr Pro Asp Arg Met Gln Arg
                                    1.0
1
Asp Thr Ala Leu His Asp Ser Pro Gln Arg Ala His Leu Glu Gly Glu
                                                    3.0
Arg Lys Gly His Glu Arg Val Lys Arg Asn Gly Phe Ser Leu Pro Ser
                                                45
                            40
Tyr Cys Val Ser Ala Ala Val Thr Pro Gln Ser Arg Gln Val Gln Gln
                                            60
Ser Arg His Gly Lys Thr Ser Thr Pro Asn Asp Gly Ser Arg Asp Gly
                                        75
                    70
Glu Ser Val Val His Thr Leu Arg Gly Asp Pro Arg Glu Thr Gly Leu
                                    90
Arg Thr Gly Met Ala Ser Arg
            100
<210> 955
<211> 634
<212> DNA
<213> Homo sapiens
<400> 955
acqcqtqaaq qqctctqcaq qtqaqcqqct ctgcaqgtga agggttctgc aggtgagcgg
60
ctctgcaggt gaatggttct gcaggtgaag ggctctgcag gtgaacggtt ctgcaggtga
agggetetge aggtgaaegg ttetgeaggt gageggetet geaggtgage ggetetgeat
gtgagtgcct ctgtgactgg ctcgcaagca gcatttgtgc acacttgact ggccacaaca
gaatgttett etetgttgte ageaetgagg aggaagetee tgeetaageg aecacageea
ggcacccgct ccatggagac attgctctct ccagactcca ttcagactca ggaaacctga
gctcctggaa tgcaggctga ggcagctccc acacaaaagc tatctactct ggcagttatc
agaggeetee gttgcacaaa teacacacet actgtgeetg acgtggetgg geetecagea
480
ggacccgctc ctgagaacac acgggtgcta gtccaagttc acagcacggc tcaagtcact
cccacaaacc tctctataca aacacacaaa gctctgggag gctaccctgc atccaagagt
caccatctca cacctggaac aagggttacg gccg
634
<210> 956
```

```
<211> 113
<212> PRT
<213> Homo sapiens
<400> 956
Met Glu Ser Gly Glu Ser Asn Val Ser Met Glu Arg Val Pro Gly Cys
                                     10
Gly Arg Leu Gly Arg Ser Phe Leu Leu Ser Ala Asp Asn Arg Glu Glu
            20
                                25
His Ser Val Val Ala Ser Gln Val Cys Thr Asn Ala Ala Cys Glu Pro
Val Thr Glu Ala Leu Thr Cys Arg Ala Ala His Leu Gln Ser Arg Ser
Pro Ala Glu Pro Phe Thr Cys Arg Ala Leu His Leu Gln Asn Arg Ser
                                                             80
                    70
                                         75
Pro Ala Glu Pro Phe Thr Cys Arg Thr Ile His Leu Gln Ser Arg Ser
                                     90
Pro Ala Glu Pro Phe Thr Cys Arg Ala Ala His Leu Gln Ser Pro Ser
                                105
            100
Arg
<210> 957
<211> 823
<212> DNA
<213> Homo sapiens
<400> 957
acqcgtqqcc tqaccaccgt gtcccgccca tctacaggtg cccgagatcg tgagcgtcct
qeqetecaaq etteaqqaqq eecaqqqaqa qeacqteetq eeqqeeacce ageacaqegt
120
gtaceteetg gecacecage aetgegeage egtggtgtee agecteetgg geageceett
180
qecettqqae aggtacecag etcagaetee aggettaggg gteeetetgg aatgatgete
cccctggaat gatgeteccc gageceteca cccggetetg caccccgaet ttetgcatga
gttcccatgg ctgtaggcca cgtgggacag aaagtgacat ggagccaggc cccagtctct
caggtaccca cggggacctc tectetecag gegttttggg atceteactg geteeggtgg
geoetgeaca geacceccae agggaagetg etgtttetge etteetetaa ggteecaaaa
ctgcctggct gctctgttgg ccccaggctc cagcacacac tggaggctgc ccctcaccct
540
gtgtettggt teeggetaet ceaageettg teetetgeag ggeateeaet getgeetgtg
agcagacccc tgggaactgc ctgatctgag ccccctcagg agcccaagga caaccttgtc
660
tgtaccatac atcactatgt cttcccaage tcacacctcc cagetcccag caaagggcag
ggcgtgtcta ccaccacca gcccactggg gtcccccttc ctcgccgagg cctccggagc
780
```

```
atgggtctgc tggcccttcc tttctttgcc tcttagtctg gaa
823
<210> 958
<211> 105
<212> PRT
<213> Homo sapiens
<400> 958
Met Ala Val Gly His Val Gly Gln Lys Val Thr Trp Ser Gln Ala Pro
                                    10
Val Ser Gln Val Pro Thr Gly Thr Ser Pro Leu Gln Ala Phe Trp Asp
                                25
Pro His Trp Leu Arg Trp Ala Leu His Ser Thr Pro Thr Gly Lys Leu
Leu Phe Leu Pro Ser Ser Lys Val Pro Lys Leu Pro Gly Cys Ser Val
                        55
Gly Pro Arg Leu Gln His Thr Leu Glu Ala Ala Pro His Pro Val Ser
                                        75
Trp Phe Arg Leu Leu Gln Ala Leu Ser Ser Ala Gly His Pro Leu Leu
                                    90
                85
Pro Val Ser Arg Pro Leu Gly Thr Ala
            100
<210> 959
<211> 586
<212> DNA
<213> Homo sapiens
<400> 959
ngtcatgact gcatggccaa gcatgactcc aacaccatca ttaagtttgc cgacgacaca
acagtggtag gcctgatcac cgacaacgat gaggcagcct atagggagga ggtcagagac
120
ctggcagtgt ggtgccagga taacaacctc tccctcaacg tgatcaagac cacgaagatg
atcgtggact acaggaaaag gagggtcgag cacgcccca ttctcattga tggggctgta
tgggagccag ttgagagctt caagtteett ggtgteeaca teaceatega actateatgg
tecaaacaca ecaagacagt agtgaagagg gtgegacaat geetatteca eeteggtaga
caaaaaagat ttggaatgga tcctcagacc ctcaaaaagt ttgacatcta caccatcgag
agcatcatga ctggttgcat caccgcctgg tatggcaact gctcggcctc cgaccgcaag
gcactacaga gggtagtgcg tacggcccag tacatcactg gggctaagct tcctgccatc
caggacetet ataccaggeg gtgtcagegg aagaceetga caattg
586
<210> 960
<211> 195
<212> PRT
```

<213> Homo sapiens <400> 960 Xaa His Asp Cys Met Ala Lys His Asp Ser Asn Thr Ile Ile Lys Phe Ala Asp Asp Thr Thr Val Val Gly Leu Ile Thr Asp Asn Asp Glu Ala 20 Ala Tyr Arg Glu Glu Val Arg Asp Leu Ala Val Trp Cys Gln Asp Asn 40 45 Asn Leu Ser Leu Asn Val Ile Lys Thr Thr Lys Met Ile Val Asp Tyr Arg Lys Arg Arg Val Glu His Ala Pro Ile Leu Ile Asp Gly Ala Val 75 70 Trp Glu Pro Val Glu Ser Phe Lys Phe Leu Gly Val His Ile Thr Ile Glu Leu Ser Trp Ser Lys His Thr Lys Thr Val Val Lys Arg Val Arg 110 100 105 Gln Cys Leu Phe His Leu Gly Arg Gln Lys Arg Phe Gly Met Asp Pro 125 120 Gln Thr Leu Lys Lys Phe Asp Ile Tyr Thr Ile Glu Ser Ile Met Thr 140 135 Gly Cys Ile Thr Ala Trp Tyr Gly Asn Cys Ser Ala Ser Asp Arg Lys 150 155 Ala Leu Gln Arg Val Val Arg Thr Ala Gln Tyr Ile Thr Gly Ala Lys 170 165 Leu Pro Ala Ile Gln Asp Leu Tyr Thr Arg Arg Cys Gln Arg Lys Thr 185 180 Leu Thr Ile 195 <210> 961 <211> 502 <212> DNA <213> Homo sapiens <400> 961 acgcgttgtc gtctctccgt agaccattca gtttggcaaa acttccactg gagtctgtgc atgactggat ggtctctttg acagccctgt caaggaatac caacagaata ttgattctcc taaactqtat aqtaacctqc taaccaqtcq qaaaaqaqcta ccacccaatq qaqatactaa atecatggta atggaccate gagggeaace tecagagttg getgetette ceacteetga gtotacacco gtgottcacc agaagaccot gcaggccatg aagagccact cagaaaaggc ccatggccat ggagcttcaa ggaaagaaac ccctcagttt tttccgtcta gtccgccacc tcattcccca ataagtcatg ggcatatccc cagtgccatt gttcttccaa atgctaccca 420 tgactacaac acgtctttct caaactccaa tgctcacaaa gctgaaaaga agcttcaaaa

cattgatcac cccttcacgc gt

502

<210> 962 <211> 106 <212> PRT <213> Homo sapiens <400> 962 Met Val Met Asp His Arg Gly Gln Pro Pro Glu Leu Ala Ala Leu Pro Thr Pro Glu Ser Thr Pro Val Leu His Gln Lys Thr Leu Gln Ala Met 25 Lys Ser His Ser Glu Lys Ala His Gly His Gly Ala Ser Arg Lys Glu 40 Thr Pro Gln Phe Pro Ser Ser Pro Pro Pro His Ser Pro Ile Ser 55 His Gly His Ile Pro Ser Ala Ile Val Leu Pro Asn Ala Thr His Asp 75 Tyr Asn Thr Ser Phe Ser Asn Ser Asn Ala His Lys Ala Glu Lys Lys Leu Gln Asn Ile Asp His Pro Phe Thr Arg 100 <210> 963 <211> 1298 <212> DNA <213> Homo sapiens <400> 963 nntcgcgagc acactccagc ctctggggag caggccacag aacgcagggt gaaacccaag qcqctctaqa qqaqatqaat tatqqatccq ccctcccqqa atcctqqctc gqccctcccc acgccacca gggccagtcg ggtctgctca cagcccgagg aggccgcgtg tccagccgcg ggcaagagac agagcaggte cetgtgtate caagteeetg ageeegtgae aeeggeeeea 240 ggccctgtag agagccagca gccaccatgg cgaaggagga agatgaggag aagaaagcca 300 agaaagggaa gaaggggaag aaggcaccgg acccggagaa gcccaaacgg agcctgaagg ggacgtcgcg ggtgttcatg ggcttccgcg accgaacacc caagatctac aagaagggcc agtteeqeaq eqecteggee ttettetggg geetecaeae eggeeeceae aagaccaage qcacqaqqaa qqcccqcacc gtgctcgggt acacgtcaga gcttatgacg cacatgcgca tgggcaaqaa qaaqcqqqcq atgaagggca agaagccgtc cttcatggtg atccgcttcc caqqeeqeeg tqqetaeqqe egeetgegge egeggeeeg gteaeteage aaagegteea eggecateaa etggeteaca aaaaagttee teeteaagaa ggeegaggag tegggeageg aacaggccac agtggacgcc tggctgcagc gctcgagctc ccgcatgggc tcccgcaaac 780

teceetteee gtegggtgee gagateetge ggeetggggg eeggeteegg aggtteeeee qeaqeeqeaq catetaeqeq teaqqegage ceetgggett cetgecette gaggaegagg ccccattcca tcactcgggc tcccgcaagt cgctgtacgg gcttgagggc ttccaggacc tqqqcqaqta ttatgactat caccgcgacg gcgacgacta ctacgaccgg cagtcactcc acceptacea ggagcaggaa coctaceteg cegecteeg cocctacage cegecteege caccetacqq cqaccactac tacqqqtacc cqcccgagga tccctacgac tactaccacc ccgactatta cggtggcccc gttgatccgg ggtacaccta cggctacggc tacgacgatt 1200 acquaecccc atatqcqccc ccgtcggggt actcgtctcc ttacagctac cacgatgggt acgagggega ggcgcaccct tatggctact acctggat 1298 <210> 964 <211> 235 <212> PRT <213> Homo sapiens <400> 964 Ser Ala Ser Gln Ala Ala Val Ala Thr Ala Ala Cys Gly Arg Ala Pro 1.0 5 Gly His Ser Ala Lys Arg Pro Arg Pro Ser Thr Gly Ser Gln Lys Ser 20 25 Ser Ser Ser Arg Arg Pro Arg Ser Arg Ala Ala Asn Arg Pro Gln Trp 40 Thr Pro Gly Cys Ser Ala Arg Ala Pro Ala Trp Ala Pro Ala Asn Ser Pro Ser Arg Arg Val Pro Arg Ser Cys Gly Leu Gly Ala Gly Ser Gly 70 Gly Ser Pro Ala Ala Ala Ser Thr Arg Gln Ala Ser Pro Trp Ala 85 90 Ser Cys Pro Ser Arg Thr Arg Pro His Ser Ile Thr Arg Ala Pro Ala 105 100 Ser Arg Cys Thr Gly Leu Arg Ala Ser Arg Thr Trp Ala Ser Ile Met 125 115 120 Thr Ile Thr Ala Thr Ala Thr Thr Thr Thr Gly Ser His Ser Thr 135 Ala Thr Arg Ser Arg Asn Pro Thr Trp Arg Ala Ser Ala Pro Thr Ala 150 155 Arg Pro Gly His Pro Thr Ala Thr Thr Thr Thr Gly Thr Arg Pro Arg 170 Ile Pro Thr Thr Thr Thr Pro Thr Ile Thr Val Ala Pro Leu Ile 180 185 Arg Gly Thr Pro Thr Ala Thr Ala Thr Thr Ile Thr Asn Pro His Met 200 Arg Pro Arg Arg Gly Thr Arg Leu Leu Thr Ala Thr Thr Met Gly Thr 210 215 Arg Ala Arg Arg Thr Leu Met Ala Thr Thr Trp

```
225
                    230
                                        235
<210> 965
<211> 336
<212> DNA
<213> Homo sapiens
<400> 965
nnngtgacca ttatgggtgg tgcccgtacc cgtgaagtgg aaggcgttga ttttgttggc
cgggtcagcg atgccgaaaa ggctgaaatc ctcggccgcg ccgatgtgta tgtcgccccc
aataccggcg gtgagagctt tggcattgtc ttggtggaag ccatggcggc aggcgcagcc
gttgttgctt cagacttgga ggccttccgc gcagtgtgca acgccgattc cgatgatgtt
geoggegege tatategeaa tgaggatagt aatgacettg etegtgtaet caaegaggtg
ctcgaggatc ctgagtatcg tgcccgctta gtgcac
336
<210> 966
<211> 112
<212> PRT
<213> Homo sapiens
<400> 966
Xaa Val Thr Ile Met Gly Gly Ala Arg Thr Arg Glu Val Glu Gly Val
                                    10
Asp Phe Val Gly Arg Val Ser Asp Ala Glu Lys Ala Glu Ile Leu Gly
                                25
            20
Arg Ala Asp Val Tyr Val Ala Pro Asn Thr Gly Gly Glu Ser Phe Gly
                            40
Ile Val Leu Val Glu Ala Met Ala Ala Gly Ala Ala Val Val Ala Ser
Asp Leu Glu Ala Phe Arg Ala Val Cys Asn Ala Asp Ser Asp Asp Val
                                        75
                    70
Ala Gly Ala Leu Tyr Arg Asn Glu Asp Ser Asn Asp Leu Ala Arg Val
                                    90
Leu Asn Glu Val Leu Glu Asp Pro Glu Tyr Arg Ala Arg Leu Val His
                                105
<210> 967
<211> 393
<212> DNA
<213> Homo sapiens
<400> 967
ncaaatggca attcatagcc cgccagatcg gacacggagc tggtggtatc cacggattcg
ggcgcggagg cgtcgggctc aagctccgct tcggcaccgg tcggcactga ggaatctccg
teggeeteeg etteggeege ageetggget gegeeagaet etgegggagg eacettetee
180
```

```
eggqttegee agecaaatgg egttgeagge tecageatee agteeggtge etteggeace
cccgcactgc gcagagaggc cgccagaaac gatggcaccg gcggcgcggg aggtgataca
ggcgcttcgg ccggagcgct cacggactcc ggcactacag gtgcagcttg cgcttcctgc
ggcggagcaa cagggtcact tcgaggcggg gat
393
<210> 968
<211> 125
<212> PRT
<213> Homo sapiens
<400> 968
Pro Ala Arg Ser Asp Thr Glu Leu Val Val Ser Thr Asp Ser Gly Ala
                                    10
Glu Ala Ser Gly Ser Ser Ala Ser Ala Pro Val Gly Thr Glu Glu
                                25
            20
Ser Pro Ser Ala Ser Ala Ser Ala Ala Ala Trp Ala Ala Pro Asp Ser
Ala Gly Gly Thr Phe Ser Arg Val Arg Gln Pro Asn Gly Val Ala Gly
                        55
Ser Ser Ile Gln Ser Gly Ala Phe Gly Thr Pro Ala Leu Arg Arg Glu
                    70
                                        75
Ala Ala Arg Asn Asp Gly Thr Gly Gly Ala Gly Gly Asp Thr Gly Ala
                85
                                    90
Ser Ala Gly Ala Leu Thr Asp Ser Gly Thr Thr Gly Ala Ala Cys Ala
                                105
            100
Ser Cys Gly Gly Ala Thr Gly Ser Leu Arg Gly Gly Asp
                            120
        115
<210> 969
<211> 880
<212> DNA
<213> Homo sapiens
<400> 969
caattgtcat gcaggacacc aaagatgaac acaggcttca cagtggcaaa ctctgtctga
ttateettae atgtattgea gaggateaat atgaceatge atttttgeat gatgateaae
120
atqaattttc gagtaaactt acatagaatg cctatgagac acaggaagaa ggcagcagac
aagaatetta eeetgeegte tittagtatgt gaagtactgg acetgatggt agagtitatt
gtaacacaca tgatgaagga gtttcctatg gatctctata tacgctgcat ccaggtagta
cacaaactgc tctgctacca gaagaagtgt cgggtacgcc tgcattacac ctggcgggag
ctctggtcag ccttgataaa tttgctgaag ttccttatgt caaatgagac tgtacttttg
gccaaacaca acatttttac attagccctt atgattgtga acctatttaa tatgtttatc
480
```

acatatggcg acacatttct gccaaccccc agcagctatg atgaacttta ctatgagatt atcequatge accagagett tgacaacete tactecatgg teetgagget ttetaccaat qcaggccagt ggaaggaagc agctagcaag gtgacccatg cattggttaa tatcagagcc atcatcaacc actttaaccc caaaattgag tcctacgctg ctgtgaatca catatcccaa ctgtcagagg agcaggtgct ggaggtggtg agagccaact atgacacgct cacgctgaag ctgcaggatg gcctggacca gtatgagcgc tactcagagc agcacaagga agctgccttc ttcaaagagc tggttcgatc cattagcacc aacgtccgga 880 <210> 970 <211> 263 <212> PRT <213> Homo sapiens <400> 970 Met Thr Met His Phe Cys Met Met Ile Asn Met Asn Phe Arg Val Asn 5 10 Leu His Arg Met Pro Met Arg His Arg Lys Lys Ala Ala Asp Lys Asn 20 25 Leu Thr Leu Pro Ser Leu Val Cys Glu Val Leu Asp Leu Met Val Glu 40 Phe Ile Val Thr His Met Met Lys Glu Phe Pro Met Asp Leu Tyr Ile 55 Arg Cys Ile Gln Val Val His Lys Leu Leu Cys Tyr Gln Lys Lys Cys 75 Arg Val Arg Leu His Tyr Thr Trp Arg Glu Leu Trp Ser Ala Leu Ile 90 8.5 Asn Leu Leu Lys Phe Leu Met Ser Asn Glu Thr Val Leu Leu Ala Lys 105 His Asn Ile Phe Thr Leu Ala Leu Met Ile Val Asn Leu Phe Asn Met 120 Phe Ile Thr Tyr Gly Asp Thr Phe Leu Pro Thr Pro Ser Ser Tyr Asp 135 140 Glu Leu Tyr Tyr Glu Ile Ile Arg Met His Gln Ser Phe Asp Asn Leu 150 155 Tyr Ser Met Val Leu Arg Leu Ser Thr Asn Ala Gly Gln Trp Lys Glu 175 170 165 Ala Ala Ser Lys Val Thr His Ala Leu Val Asn Ile Arg Ala Ile Ile 185 Asn His Phe Asn Pro Lys Ile Glu Ser Tyr Ala Ala Val Asn His Ile 200 Ser Gln Leu Ser Glu Glu Gln Val Leu Glu Val Val Arg Ala Asn Tyr 215 Asp Thr Leu Thr Leu Lys Leu Gln Asp Gly Leu Asp Gln Tyr Glu Arg 235 230 Tyr Ser Glu Gln His Lys Glu Ala Ala Phe Phe Lys Glu Leu Val Arg 250 Ser Ile Ser Thr Asn Val Arg

260
<210> 971
<211> 337
<212> DNA

<213> Homo sapiens

<400> 971

tegegaggee teactatgga geettetgag gtgeteaace ttattaaaga eteeggaeta 60

cgcggtcgtg gtggtgcagg cttccccact ggggtgaaat ggtcctttgt tccccaaaac

aatcccaacc ccaaatacct ggttgttaac ggagacgaat ccgaacccgg cacgtgcaag 180

gacatgccgc tcattatggc aagcccgcac acgcttgtcg aaggtgctct tatctcccgc 240

tacgettteg gateegagea ggettteate taceteegtg gagaagttgt teaggtagee

cggcgccttg aagaaaaaa aaaaatgcga nnnnnnn 337

<210> 972

<211> 112

<212> PRT

<213> Homo sapiens

<400> 972

Ser Arg Gly Leu Thr Met Glu Pro Ser Glu Val Leu Asn Leu Ile Lys

1 5 10 15

Asp Ser Gly Leu Arg Gly Arg Gly Gly Ala Gly Phe Pro Thr Gly Val

Lys Trp Ser Phe Val Pro Gln Asn Asn Pro Asn Pro Lys Tyr Leu Val

Val Asn Gly Asp Glu Ser Glu Pro Gly Thr Cys Lys Asp Met Pro Leu 50 55 60

Ile Met Ala Ser Pro His Thr Leu Val Glu Gly Ala Leu Ile Ser Arg 65 70 75 80

Tyr Ala Phe Gly Ser Glu Gln Ala Phe Ile Tyr Leu Arg Gly Glu Val
85 90 95

Val Gln Val Ala Arg Arg Leu Glu Glu Lys Lys Lys Met Arg Xaa Xaa 100 105 110

<210> 973

<211> 360

<212> DNA

<213> Homo sapiens

<400> 973

acgcgtgaag gggaaagggg gagtcgtctc cttggttcct aagtgcgccc tctccaggtt

ccagcagggc ggcacagcca aggaaatggc atggtcctgc tgcatggttc tcagtggggt 120

ccgggacctt ctgtataggc atcacttagg aaccagtcag accatcagat tctcaggacc 180

cactggatca actgagtcag gaactcaggg ttttcaacac atcctccggg gggattccag tggctgtgta actttgagga ccactggcaa agtggctctg gggtcagaga tccgagttca tattctgggt ctgcctctga ctgactgcaa cggtgggcaa gtcacttgcc gtgcccagcc 360 <210> 974 <211> 91 <212> PRT <213> Homo sapiens <400> 974 Met Ala Trp Ser Cys Cys Met Val Leu Ser Gly Val Arg Asp Leu Leu 5 10 Tyr Arg His His Leu Gly Thr Ser Gln Thr Ile Arg Phe Ser Gly Pro 25 Thr Gly Ser Thr Glu Ser Gly Thr Gln Gly Phe Gln His Ile Leu Arg 40 Gly Asp Ser Ser Gly Cys Val Thr Leu Arg Thr Thr Gly Lys Val Ala 50 55 60 Leu Gly Ser Glu Ile Arg Val His Ile Leu Gly Leu Pro Leu Thr Asp 70 75 Cys Asn Gly Gly Gln Val Thr Cys Arg Ala Gln 90 85 <210> 975 <211> 2604 <212> DNA <213> Homo sapiens <400> 975 geagectete tgagetggag egtetgaage tgeaagagae tgettaeeae gaactegtgg ccagacattt cctctccgaa ttcaaacctg acagagetet gcctattgac cgtccgaaca ccttggataa gtggtttctg attttgagag gacagcagag ggctgtatca cacaagacat ttggcattag cctggaagag gtcctggtga acgagtttac ccgccgcaag catcttgaac tgaccaqcca cgatgcaggt tgaagaagcc accggtcagg ctgcggggccg tcgtcgggga aacgtggtgc gaagggtgtt tggccgcatc cggcgctttt tcagtcgcag gcggaatgag cecacettqe eccqqqaqtt cactegeegt gggegtegag gtgeagtgte tgtggatagt 420 ctggctgagc tggaagacgg agccctgctg ctgcagaccc tgcagctttc aaaaatttcc tttccaattq qccaacqact tctqggatcc aaaaggaaga tgagtctcaa tccgattgcg aaacaaatcc cccaggttgt tgaggcttgc tgccaattca ttgaaaaaca tggcttaagc geagtgggga tttttaccct tgaatactcc gtgcagcgag tgcgtcagct ccgtgaagaa 660

tttgatcaag 720	gtctggatgt	agtgctggat	gacaatcaga	atgtgcatga	tgtggctgca
	agtttttccg	tgacatgaag	gattctctgc	tgccagatga	tctgtacatg
	tgacagcaac	tttaaagccc	caggatcagc	tttctgccct	gcagttgctg
	cgccaccctg	ccacagtgat	accctggagc	gtctgctgaa	ggccctgcat
	agaactgcga	ggactcaatt	ggcattgatg	gacagttggt	cccaggcaac
	ccactaactt	ggccttggtg	tttggatctg	ctctcctgaa	aaaaggaaag
	gagagtccag	gaaaacaaag	ctggggattg	atcactatgt	tgcttctgtc
	gtgccatgat	tgataactgg	gatgtcctct	tccaggtgcc	tccccatatt
	ttgctaagcg	cgtgtggaag	tccagcccgg	aagcacttga	ttttatcaga
	tgaggaagat	ccagagtgca	cgcataaaga	tggaagagga	tgcactactt
	tggaaacctc	tgctgaagcc	cgggctgctg	tccttgctca	aagcaagcct
	gttcctctga	ggagccagct	gtgccttccg	gcactgcccg	ttcccatgac
	gagcgggtaa	ccctcccatt	ccggagcaag	accgcccatt	gctccgtgtg
	aggaggccaa	aactggcgtc	agctacttct	ttccttagat	gtttttcctt
	ccagacaggg	gaaaagggtg	ggggtacatc	tgggatgtca	caggaaacat
	gttgaaggta	aagatctgaa	ggtaagaagg	agttccacct	gatgctcggg
	aattccaaac	acactgccag	ccccttcact	ggggatgctt	ggtctcttct
	gcagagatgt	ttctgtgtca	tgcccaagct	ccccggtgct	accttgcctt
	ccctgatctt	ggctttctct	ctctctctgc	agactttcct	ttaattgatg
	ggtaaacacc	tttcccaggg	aacctcacaa	atcttgagat	gctttccctt
	gattgcatga	tttccctgac	tttcctaccc	tcctccagag	agctcagttg
	caagaggcat	gctagaacgt	taggtcagcc	tactgacagc	tgacaaacaa
	atcatgtcac	accaacccat	agccgtgtcc	acgcagcaac	tccaccacct
taggatttcc 2100	ccctccaaat	tattcagacc	aatggcttgc	caaatggcct	ctcccaaaat
	tttgctcagg	tcacgccaac	agggaaacct	caagtgtagg	tctaattagt
	tccaaagtta	gaggaaaatt	tagattttat	tgcctggatc	tgctttaaag
	tttacaccct	cttgtcagca	aaacagctag	ttaggtaagg	acatatagtt

ccaagtaggt aaagtcactt gattacaaat gttcttaact atcgtctctg taattccttt atacaggaca gtacaaaatt gtgggacatg ctctggtaac acacagatat gggttgcata tqatccaqaa ttacaqctqa tattatggat gacaactgct aaggtccata aaatgaagac tgtattgtat tgagggatag aaattgatca tttaatgggt aacaactgct gagctcaaag attiqtqatt qttaaaactt ctctqqcatt taatcattaa taaacatctq tattqtqaca gcaaaaaaa aaaaaaaaaa aaaa 2604 <210> 976 <211> 411 <212> PRT <213> Homo sapiens <400> 976 Met Gln Val Glu Glu Ala Thr Gly Gln Ala Ala Gly Arg Arg Arg Gly 10 Asn Val Val Arg Arg Val Phe Gly Arg Ile Arg Arg Phe Phe Ser Arg 20 25 Arg Arg Asn Glu Pro Thr Leu Pro Arg Glu Phe Thr Arg Arg Gly Arg 40 Arg Gly Ala Val Ser Val Asp Ser Leu Ala Glu Leu Glu Asp Gly Ala 60 55 Leu Leu Gln Thr Leu Gln Leu Ser Lys Ile Ser Phe Pro Ile Gly 75 70 Gln Arg Leu Leu Gly Ser Lys Arg Lys Met Ser Leu Asn Pro Ile Ala 90 Lys Gln Ile Pro Gln Val Val Glu Ala Cys Cys Gln Phe Ile Glu Lys 100 105 His Gly Leu Ser Ala Val Gly Ile Phe Thr Leu Glu Tyr Ser Val Gln 120 125 Arg Val Arg Gln Leu Arg Glu Glu Phe Asp Gln Gly Leu Asp Val Val 135 140 Leu Asp Asp Asn Gln Asn Val His Asp Val Ala Ala Leu Leu Lys Glu 150 155 Phe Phe Arg Asp Met Lys Asp Ser Leu Leu Pro Asp Asp Leu Tyr Met 165 170 Ser Phe Leu Leu Thr Ala Thr Leu Lys Pro Gln Asp Gln Leu Ser Ala 1.85 180 Leu Gln Leu Leu Val Tyr Leu Thr Pro Pro Cys His Ser Asp Thr Leu 200 Glu Arg Leu Leu Lys Ala Leu His Lys Ile Thr Glu Asn Cys Glu Asp 215 Ser Ile Gly Ile Asp Gly Gln Leu Val Pro Gly Asn Arg Met Thr Ser 230 235 Thr Asn Leu Ala Leu Val Phe Gly Ser Ala Leu Leu Lys Lys Gly Lys 250 Phe Gly Lys Arg Glu Ser Arg Lys Thr Lys Leu Gly Ile Asp His Tyr 265 Val Ala Ser Val Asn Val Val Arg Ala Met Ile Asp Asn Trp Asp Val

```
280
                                                285
        275
Leu Phe Gln Val Pro Pro His Ile Gln Arg Gln Val Ala Lys Arg Val
                        295
Trp Lys Ser Ser Pro Glu Ala Leu Asp Phe Ile Arg Arg Asn Leu
                    310
                                        315
Arg Lys Ile Gln Ser Ala Arg Ile Lys Met Glu Glu Asp Ala Leu Leu
                325
                                    330
Ser Asp Pro Val Glu Thr Ser Ala Glu Ala Arg Ala Ala Val Leu Ala
            340
                                345
Gln Ser Lys Pro Ser Asp Glu Gly Ser Ser Glu Glu Pro Ala Val Pro
        355
                            360
Ser Gly Thr Ala Arg Ser His Asp Asp Glu Glu Gly Ala Gly Asn Pro
                        375
                                            380
Pro Ile Pro Glu Gln Asp Arg Pro Leu Leu Arg Val Pro Arg Glu Lys
                                        395
                    390
Glu Ala Lys Thr Gly Val Ser Tyr Phe Phe Pro
                405
<210> 977
<211> 378
<212> DNA
<213> Homo sapiens
<400> 977
cgcgtgaagg gggccatcca gaggagcacg gagacgggcc tggcagtgga gatgcccagc
cqqacactqc gccaggccag ccacgagtcc attgaggaca gcatgaacag ctatggctca
gagggcaacc ttaactatgg aggagtttgc ctggcgtcgg acgcccagtt cagtgacttc
ctgggaagca tggggccggc acagtttgtg ggccgccaga ccctggccac cacacccatg
ggggatgtgg agatcggtct gcaggagcgg aacggtcagt tggaggtgga cattatccag
300
geteggggae tgacagecaa gecaggetee aagacaetge cageggeeta catcaaggee
tacctgctag agatggca
378
<210> 978
<211> 126
<212> PRT
<213> Homo sapiens
<400> 978
Arg Val Lys Gly Ala Ile Gln Arg Ser Thr Glu Thr Gly Leu Ala Val
                                    10
Glu Met Pro Ser Arg Thr Leu Arg Gln Ala Ser His Glu Ser Ile Glu
                                25
Asp Ser Met Asn Ser Tyr Gly Ser Glu Gly Asn Leu Asn Tyr Gly Gly
        35
                            40
Val Cys Leu Ala Ser Asp Ala Gln Phe Ser Asp Phe Leu Gly Ser Met
                        55
Gly Pro Ala Gln Phe Val Gly Arg Gln Thr Lèu Ala Thr Thr Pro Met
```

80 70 75 65 Gly Asp Val Glu Ile Gly Leu Gln Glu Arg Asn Gly Gln Leu Glu Val Asp Ile Ile Gln Ala Arg Gly Leu Thr Ala Lys Pro Gly Ser Lys Thr 105 100 Leu Pro Ala Ala Tyr Ile Lys Ala Tyr Leu Leu Glu Met Ala 125 120 <210> 979 <211> 3500 <212> DNA <213> Homo sapiens <400> 979 nnttttttt ttccagggga aaatgcttta ttgagtaaag tatccgagga agtgatgcag ggcaggtaaa cagctggtgc tcagcagcga gaggacgcgt cactctgccg ttctgcaggg tgacgeette ecegtacete getgagagee acetgeagae acageaggee acageagaat gcacaggtca ctgttgtagg ggaacaaatc gtaatgccca gagaaaacct cagcctccca aagtgetggg attacaggeg tgagecaegg egeetggeet eetteettea ettttgaaat taaageetet ttgeaagtee tgetetgaga aatggteaet geacatggta aagaggeeet gagececatg gecatetete ttggtgaggg gtggegggee egggtgetgt etgagatgee ageteaggag ggetecatee tggetetget geeceaggge eggegtteee ggagggetee 540 geotetggga ggtgcageee caceceatge cecacaceee gggaeteete gcagaegggg acacgtgtgg gagtgtccgc ggagettcac atttcagggc cgtctcagcc agtgcctctg aagtggccgc agcettgggg ccaggttccc teetgagtee acetgggeca cattgeteec acggtgcaca ctccagcaca agaatggctc agccttgatc ccccaaactg ggcaccgtcc ctgcatgtag gtgtgtgggg gggcctcagc agcagacggg gccatgggcc tctggtgggg cacteggete etgeteetgg gacgagetee ggggggeeet ggtggeattg geeeggacag agatatggtc ccagcctccc ccgatgccgt agtcccagcc gtggcccttg ggctcgtgag 960 gctgcacgcc ggtgcgatga cacactgtcc cccggctcag gctgtggctg ccctgcactt 1020 tgttggcgat cacccagacc tggtccaggg gccccacgga cactcggcac acgttgttgg acacgtgctc ccagctggag ccctgcgggt agctgggcgt gatcccttgg cgataccaca ggtttccatt ctcatccagg gcatacaccg acgtctgccc cgcggacacc tgcttcagcc 1200

tctgtctcgg 1260	tggggacggg	atgtggtacc	agcagtcacc	ggctggctgc	gaggggtaca
cggatccccg 1320	gtagaaggcg	gageegteee	ttgccacggc	ccacacctgg	tagcaggccc
cgatggagat 1380	ggaggcgaag	agctggtcgg	tgccaacgtg	cagccaggag	gagcccgcag
1440		aggcggcaca			
gggcgatgct 1500	gtgcccactc	ccctcggcac	ccgggctctc	cgggatgatg	gacacgtccc
1560		tecagecagg			
1620		aaatccttca	•		
1680		ccctcctggt			
1740		cactgcaggg			
1800		ctccacatgt			
1860		cgctggttct			
1920		ctgctggcca			
1980		tggtcatagc			
2040		cctcccatct	_		
2100		tctgggtggg			
2160		gggacgggcg			
2220		agtcattcat			
2280		gctcaggggt			
2340		ccacctcatt			
2400		agaggatgct			
2460		ccacccactt			
2520		ccgactgctc			
2580		ccgtgagctg			
2640		gggacagcat			
2700		gcactgtcct			
2760		tttctagctc			
caccetttge 2820	cctgatggat	gagttgctct	ccccagtaa	ttcagcctgg	aaagcagcca

```
ccaccgctag cacaggggag gggctgcaga caggggaagg ggcactggcc accgtgcttc
caggicciga cagccicggg ciggicticig gaggicacag aggagicaa igcciggicic
2940
agagetgetg ageacagtga ggegtecagg gaggacagea ggeetgeeeg ageceeetga
3000
coccygente eteccacace ceacacece agggeacety gecatytyga tycecceagy
ccctgcagga gcccttaccc gcctggacag tgaaccatct gggcatggca catgcctcca
3120
ceacgcagec geeteecgae acceaggeec acagegggtg gteatecace ceatacgget
cetecaagee cagtgggagg ageeccagag aggagagget ggtggteteg gggaageeag
eggeegagtg getgggeact ttettggeet cettgaggte aatattggte eagggeaget
eggeegggt gggggeeggg eeggggtgeg tgttgggtet ggeeteeetg etgeeetegg
ctgggcagge atcttccacg gtatcttctg cggtcctgcc agcccccagg cctgaggctg
agttccctgt ggcattcttg gaatcgtcta gaggttctgc agggagaatc tggccaggcc
ctggtctctc gacttccgag
3500
<210> 980
<211> 73
<212> PRT
<213> Homo sapiens
<400> 980
Met Ser Cys Ser Pro Pro Val Ile Gln Pro Gly Lys Gln Pro Pro Pro
                 5
                                    10
Leu Ala Gln Gly Arg Gly Cys Arg Gln Gly Lys Gly His Trp Pro Pro
            20
                                25
Cys Phe Gln Val Leu Thr Ala Ser Gly Trp Ser Leu Glu Ala Thr Glu
        35
Glu Arg Asn Ala Trp Leu Arg Ala Ala Glu His Ser Glu Ala Ser Arg
Glu Asp Ser Arg Pro Ala Arg Ala Pro
                    70
<210> 981
<211> 404
<212> DNA
<213> Homo sapiens
<400> 981
naegegtacg eggaetegae ggeagtggte ggeeegettg egeeegegee egaeeeceae
gcctgggact tgtgcgagcg ccactccgcc cacatcacag cgccggtggg gtgggagctg
gttcgcgtcg agcacgtcga gcttgacgac gaagacgtgg acgacgagaa caccgacatc
180
```

```
accgcacteg eggaggeggg tgegegagge ggggegggta accaceggtt tggtggagae
cggccaggat ccgatcgagt actcggcaga caaagacttc aacaacccag acacctccaa
ccatccggtg caccggacca agcgtgtgga ggaacagcta gcggcgcaca aggcggcgcg
cegeteceae etgegeattg teeeggatee gaacegggae gegt
404
<210> 982
<211> 134
<212> PRT
<213> Homo sapiens
<400> 982
Xaa Ala Tyr Ala Asp Ser Thr Ala Val Val Gly Pro Leu Ala Pro Ala
                                    10
Pro Asp Pro His Ala Trp Asp Leu Cys Glu Arg His Ser Ala His Ile
Thr Ala Pro Val Gly Trp Glu Leu Val Arg Val Glu His Val Glu Leu
                            40
                                                45
Asp Asp Glu Asp Val Asp Asp Glu Asn Thr Asp Ile Thr Ala Leu Ala
                                            60
Glu Ala Gly Ala Arg Gly Gly Ala Gly Asn His Arg Phe Gly Gly Asp
                    70
                                        75
Arg Pro Gly Ser Asp Arg Val Leu Gly Arg Gln Arg Leu Gln Pro
                                    90
Arg His Leu Gln Pro Ser Gly Ala Pro Asp Gln Ala Cys Gly Gly Thr
                                105
Ala Ser Gly Ala Gln Gly Gly Ala Pro Leu Pro Pro Ala His Cys Pro
                            120
       115
Gly Ser Glu Pro Gly Arg
    130
<210> 983
<211> 579
<212> DNA
<213> Homo sapiens
<400> 983
ettteteeca tggetgeeae etgeeteaae aaaageeaaa geeeteaeea tggeeeaaag
accetacata atetgggtee etttacetet ettacettgt etectateae teteaatate
acteactett etecagetae actggeetee ttgetgttee ceaagegtge tagataceet
teetttteag ggeetttgta ettgttette teactgeetg aaacaceett eeteetaaat
aatotgatga gttgooctag taottocagt gtgotcaaat gtcacctocc tagagaagtg
tttcctgatc aacatatcta aaatcgcccc atcacatgca ttttatatcc ctttatccta
atttatgtat gtttttctac aaagcactga tcaccacctg gtatatttta tatttattta
420
```

```
ttgtggttag tgttcgtctc tcttcagtag actgtaagct ccataaagca gggacttctg
ttttgttcac tgctgtatcc ccagtgccaa aaacaacagt gcatagtaga tactcaataa
atatttgtgg aataaactga aaaaaaaaa aaaaaaaaa
579
<210> 984
<211> 103
<212> PRT
<213> Homo sapiens
<400> 984
Met Ala Ala Thr Cys Leu Asn Lys Ser Gln Ser Pro His His Gly Pro
                                                        1.5
                                    10
                 5
Lys Thr Leu His Asn Leu Gly Pro Phe Thr Ser Leu Thr Leu Ser Pro
                                25
Ile Thr Leu Asn Ile Thr His Ser Ser Pro Ala Thr Leu Ala Ser Leu
                            40
Leu Phe Pro Lys Arg Ala Arg Tyr Pro Ser Phe Ser Gly Pro Leu Tyr
Leu Phe Phe Ser Leu Pro Glu Thr Pro Phe Leu Leu Asn Asn Leu Met
                                        75
                    70
Ser Cys Pro Ser Thr Ser Ser Val Leu Lys Cys His Leu Pro Arg Glu
                                    90
Val Phe Pro Asp Gln His Ile
            100
<210> 985
<211> 313
<212> DNA
<213> Homo sapiens
<400> 985
acgcgtccct caaggtgaaa tgaatggcct tgctgtcacg gtacatacta agcttgataa
aaagcaacaa cttggcaata ttcaaatgag ttactctgct aagaacatcg atgtggcaaa
ctttaaaqct catqatctta aacttgtcac agaaattaat catttagaca accagatctt
tattgattat gcaaaattga ttaaagaatc cgatgcgctg ccagtagatc aacaagtcgc
qtttttctta aataatatgc aaagtattat tgacggaaag cctgagctaa atataacaga
300
gttgagcggg ttc
313
<210> 986
<211> 98
<212> PRT
<213> Homo sapiens
<400> 986
Met Asn Gly Leu Ala Val Thr Val His Thr Lys Leu Asp Lys Lys Gln
```

10 Gln Leu Gly Asn Ile Gln Met Ser Tyr Ser Ala Lys Asn Ile Asp Val Ala Asn Phe Lys Ala His Asp Leu Lys Leu Val Thr Glu Ile Asn His 40 Leu Asp Asn Gln Ile Phe Ile Asp Tyr Ala Lys Leu Ile Lys Glu Ser 50 Asp Ala Leu Pro Val Asp Gln Gln Val Ala Phe Phe Leu Asn Asn Met Gln Ser Ile Ile Asp Gly Lys Pro Glu Leu Asn Ile Thr Glu Leu Ser 85 Gly Phe <210> 987 <211> 4224 <212> DNA <213> Homo sapiens <400> 987 nnttttggat tettaetgta getetatete atttateeat catagegtee eggggagatg gggtcaggag atagcagtgc caacccacta gcaagggctt gactggtata tatcacatga tccccaaagg cataacatga agtctgtatt atccccacat atgcagaagg aaggcttgga gaagcaatct gaccaagatc acatcccttt ttttttttcg gagatggagg gggagtctca 240 ctgtgttacc ccagctagtc ttgaactcct ggcctcaggg atccacctgc ctcagccccc caagtagctg ggattacaag tgctagccac tgaacctggc cagaatcaca tcatttttaa atggctgaac taggatttaa acccatgtct gattaaacat cccaagatgt tttccatggt aagtetgtgt caategttag tteeetgaag gaaggettaa tetageaaca gtatttetg tatetactee cetggtttet ceccacagag ctagggeeat gagtacettg tttttgaetg gaaggagctg tggggtggac cgtttccctg aaagctagaa gaatgtttga agcctgttcc caaggaceet tgaacatetg tgaagaaatg actattetge atggaggett ettgetggee gagcagctgt tccaccctaa ggcactggca gaattaacaa agtctgactg ggaacgtgtt 720 ggacggccca tcgtgggggc cttaagggag atctcctcgg ctgcagcaca ctcccagccc 780 tttgcctgga agaagaaagc cctgatcatc atctgggcca aggttctgca gccgcacccc qtqaccccqt ccgacacaga gacacggtgg caggaagacc tgttcttctc ggtgggcaac atgatececa ecateaacea caccatecte ttegagetge teaaatecet ggaagettet ggactettta tecageteet gatggeeetg eccaceacea tetgecatge agaactagag 1020

cgctttctgg 1080	aacatgtgac	cgttgacact	tctgccgaag	acgtggcctt	cttcctggac
gtctggtggg 1140	aggtgatgaa	gcacaagggt	cacccgcagg	accccctgct	ctcccagttt
agtgcaatgg 1200	cccataagta	cctgcctgcc	ttagatgagt	tcccccatcc	tccaaagagg
1260			atgeceetgt		
1320			ccggggagga		
1380			acagaggacg		
1440			atctctgtgt		
1500			gtgaaggagg		
1560			attttcgtgg		
1620			geegtgetee		
1680			acttccttca		
ctgaaccgca 1740	ccagcctgtc	caaggaggac	aggcaggtgg	tctctgagct	ggcggagtgt
1800			gtgctgaaga		
1860			cagaagatgg		
1920			ttctcggacg		
1980			ttggtgttga		
2040			gagtctcaga		
2100			ccaggtaaaa		
2160			gaaaagttgc		
2220			ctcactcaga		
2280			gtcatagtgc		
2340			ggcacccaca		
2400			gtgcagggtc		
2460			atgaagttct		
2520			agtecegtga		
2580			aaggaatttg		
gatgttgaag 2640	aggtagacct	cagtetgagg	atcttcatcc	agactctaga	ggcaaacgcg

tgccgagagg 2700	aatactggct	ccagacctgc	tccccgtttc	cactcctctt	cagcttgtgc
cagctcttgg 2760	accgcttcag	caaatactgg	cagetteeca	aggagaagcg	gtgcctctct
ttggatagga 2820	aggatctagc	gatccatatc	ctggagctcc	tgtgtgagat	tgtatcagcc
aatgctgaga 2880	ccttctccc	ggatgtctgg	atcaagtccc	tgtcctggct	ccaccgcaag
ttagaacagc 2940	tagactggac	tgtgggcctg	aggctgaaga	gcttcttcga	ggggcacttc
3000				tttcagaaga	
3060				tggcctggat	
3120				tggtggtgga	
3180				ccctggtgca	
3240				ccaggagact	
3300				ttgttcccct	
3360				tgaggacttt	
3420				ggaaccacgt	
3480				cgatacaggc	
3540				tgtttgttta	
3600				aggtctgtga	
3660		_		gcaagaccaa	
3720				agtccattgc	
3780				gcagcttctg	
3840				cagcttctta	
3900				tcagacccga	
3960				ataatggtgt	
4020				teteetettt	
4080				aaatatgctc	
4140				ttcataactg	
4200	·		gaaaccatgt	gagtggaaaa	agcattacat
ggtacgtata 4224	accccaaaa	aaaa	•		

<210> 988 <211> 873 <212> PRT <213> Homo sapiens <400> 988 Ala His Lys Tyr Leu Pro Ala Leu Asp Glu Phe Pro His Pro Pro Lys Arg Leu Arg Ser Asp Pro Asp Ala Cys Pro Thr Met Pro Leu Leu Ala 20 25 Met Leu Leu Arg Gly Leu Thr Gln Ile Gln Ser Arg Ile Leu Gly Pro Gly Arg Lys Cys Cys Ala Leu Ala Asn Leu Ala Asp Met Leu Thr Val Phe Ala Leu Thr Glu Asp Asp Pro Gln Glu Val Ser Ala Thr Val Tyr 70 75 8**0** Leu Asp Lys Leu Ala Thr Val Ile Ser Val Trp Asn Ser Asp Thr Gln 85 90 Asn Pro Tyr His Gln Gln Ala Leu Ala Glu Lys Val Lys Glu Ala Glu 105 110 Arg Asp Val Ser Leu Thr Ser Leu Ala Lys Leu Pro Ser Glu Thr Ile 115 120 Phe Val Gly Cys Glu Phe Leu His His Leu Leu Arg Glu Trp Gly Glu 130 135 Glu Leu Gln Ala Val Leu Arg Ser Ser Gln Gly Thr Ser Tyr Asp Ser 150 155 160 Tyr Arg Leu Cys Asp Ser Leu Thr Ser Phe Ser Gln Asn Ala Thr Leu 165 170 175 Tyr Leu Asn Arg Thr Ser Leu Ser Lys Glu Asp Arg Gln Val Val Ser 185 180 Glu Leu Ala Glu Cys Val Arg Asp Phe Leu Arg Lys Thr Ser Thr Val 200 205 Leu Lys Asn Arg Ala Leu Glu Asp Ile Thr Ala Ser Ile Ala Met Ala 215 Val Ile Gln Gln Lys Met Asp Arg His Met Glu Val Cys Tyr Ile Phe 230 235 Ala Ser Glu Lys Lys Trp Ala Phe Ser Asp Glu Trp Val Ala Cys Leu 245 250 Gly Ser Asn Arg Ala Leu Phe Arg Glu Pro Asp Leu Val Leu Arg Leu 260 265 Leu Glu Thr Val Ile Asp Val Ser Thr Ala Asp Arg Ala Ile Pro Glu 280 Ser Gln Ile Arg Gln Val Ile His Leu Ile Leu Glu Cys Tyr Ala Asp 295 Leu Ser Leu Pro Gly Lys Asn Lys Val Leu Ala Gly Ile Leu Arg Ser 310 Trp Gly Arg Lys Gly Leu Ser Glu Lys Leu Leu Ala Tyr Val Glu Gly 330 Phe Gln Glu Asp Leu Asn Thr Thr Phe Asn Gln Leu Thr Gln Ser Ala 340 345 350 Ser Glu Gln Gly Leu Ala Lys Ala Val Ala Ser Val Ala Arg Leu Val 360 Ile Val His Pro Glu Val Thr Val Lys Lys Met Cys Ser Leu Ala Val

	370					375					380				
Val	Asn	Leu	Gly	Thr	His	Lys	Phe	Leu	Ala	Gln	Ile	Leu	Thr	Ala	
3 85					390	_				395		_	_		400
	Ala			405					410					415	
Phe	Met	Val	Ser 420	Сув	Leu	Lys	Glu	Thr 425	Val	Trp	Met	Lys	Phe 430	Ser	Thr
Pro	Lys	Glu 435	Glu	Lys	Gln	Phe	Leu 440	Glu	Leu	Leu	Asn	Cys 445	Leu	Met	Ser
Pro	Val 450		Pro	Gln	Gly	Ile 455		Val	Ala	Ala	Leu 460	Leu	Glu	Pro	Asp
	Val	Leu	Lys	Glu	Phe 470		Leu	Pro	Phe	Leu 475	Arg	Leu	Asp	Val	Glu 480
465	Val	Asn	T.em	Ser		Δrα	Tle	Phe	Tle		Thr	Leu	Glu	Ala	
OI u	Val	АЗР	204	485		9			490					495	
Ala	Cys	Arg	Glu 500	Glu	Tyr	Trp	Leu	Gln 505	Thr	Суѕ	Ser	Pro	Phe 510	Pro	Leu
Leu	Phe	Ser 515	Leu	Cys	Gln	Leu	Leu 520	Asp	Arg	Phe	Ser	Lys 525	Tyr	Trp	Gln
Leu	Pro 530	Lys	Glu	Lys	Arg	Cys 535	Leu	Ser	Leu	Asp	Arg 540	Lys	Asp	Leu	Ala
Ile	His	Ile	Leu	Glu	Leu	Leu	Cys	Glu	Ile	Val	Ser	Ala	Asn	Ala	Glu
545					550					555					560
	Phe			56 5		,			570					575	
_	Leu		580					585					590		
	Glu	595					600					605			
Cys	Lys 610	Leu	Ser	Glu	Asp	Glu 615	Trp	Thr	Ser	Gln	Ala 620	His	Pro	Gly	Tyr
Gly 625	Ala	Gly	Thr	Gly	Leu 630	Leu	Ala	Trp	Met	Glu 635	Cys	Cys	Cys	Val	Ser 640
	Gly	Ile	Ser	Glu		Met	Leu	Ser		Leu	Val	Val	Asp		Gly
7 cm	Pro	Glu	Glu	645 Val	λκα	T.e.11	Dhe	Ser	650		Phe	Len	Val	655 Ala	Leu
			660					665					670		
	Gln	675					680					685			
Gln	Leu 690	Thr	Arg	Arg	Leu	Leu 695	Glu	Lys	Gln	Leu	Leu 700	His	Val	Pro	Tyr
Ser 705	Leu	Glu	Tyr	Ile	Gln 710	Phe	Val	Pro	Leu	Leu 715	Asn	Leu	Lys	Pro	Phe 720
	Gln	Glu	Leu	Gln 725		Ser	Val	Leu	Phe		Arg	Thr	Phe	Gln 735	Phe
Leu	Cys	Ser			Cys	Arg	Asn	Trp 745		Pro	Leu	Glu	Gly 750		Asn
His	Val		740 Lys	Leu	Leu	Сув			Leu	Thr	Arg			Asp	Ser
Val	Arg	755 Ala	Ile	Gln	Ala	Ala	760 Gly	Pro	Trp	Val		765 Gly	Pro	Glu	Gln
	770		-			775	_,		_	_,	780		5 1	a .	***
Asp 785	Leu	Thr	Gln	Glu	Ala 790	Leu	Phe	Val	Tyr	Thr 795	Gln	Val	Phe	Cys	His 800
Ala	Leu	His	Ile	Met	Ala	Met	Leu	His	Pro	Glu	Val	Cys	Glu	Pro	Leu

```
815
                805
                                    810
Tyr Val Leu Ala Leu Glu Thr Leu Thr Cys Tyr Glu Thr Leu Ser Lys
                                825
Thr Asn Pro Ser Val Ser Ser Leu Leu Gln Arg Ala His Glu Gln Cys
                            840
                                                845
Phe Leu Lys Ser Ile Ala Glu Gly Ile Gly Pro Glu Glu Arg Arg Gln
                        855
                                            860
Thr Leu Leu Gln Lys Met Ser Ser Phe
865
                    870
<210> 989
<211> 402
<212> DNA
<213> Homo sapiens
<400> 989
gegtgggata tegataceeg tettgageag gecatggaeg cettgeagtg ceeeceagge
gacacccctg ttgacgtctt gtcaggcggt gagcggcgtc gtgtcgcgct atgcaagctg
ttgatcgagc agcctgacct gctgcttctc gatgagccca ccaaccacct ggatgctgag
tetgteaact ggttggaggg acaceteaag teetateegg gagetgtget ageegteaet
cacgaccgct atttccttga tcacgtcgcc gagtggatct gtgaggtcga tcgcggccag
ttgcacccct acgagggcaa ctactcgacg tacctggaca ccaagcgcaa gcgtctccag
atequaggea agaaagaege taaaegegee aagateeteg ag
402
<210> 990
<211> 134
<212> PRT
<213> Homo sapiens
<400> 990
Ala Trp Asp Ile Asp Thr Arg Leu Glu Gln Ala Met Asp Ala Leu Gln
                                    10
Cys Pro Pro Gly Asp Thr Pro Val Asp Val Leu Ser Gly Gly Glu Arg
                                25
Arg Arg Val Ala Leu Cys Lys Leu Leu Ile Glu Gln Pro Asp Leu Leu
                            40
Leu Leu Asp Glu Pro Thr Asn His Leu Asp Ala Glu Ser Val Asn Trp
                        55
Leu Glu Gly His Leu Lys Ser Tyr Pro Gly Ala Val Leu Ala Val Thr
                    70
                                        75
His Asp Arg Tyr Phe Leu Asp His Val Ala Glu Trp Ile Cys Glu Val
Asp Arg Gly Gln Leu His Pro Tyr Glu Gly Asn Tyr Ser Thr Tyr Leu
                                105
Asp Thr Lys Arg Lys Arg Leu Gln Ile Glu Gly Lys Lys Asp Ala Lys
       115
                            120
Arg Ala Lys Ile Leu Glu
```

130 <210> 991 <211> 359 <212> DNA <213> Homo sapiens <400> 991 totagaatta aagocaaaaa aactoaggot gaagtggoag aagotgtaaa gatgtogoaa cocqcctate aggetttaga gtcagggaaa aatttaaaaat etgcatttet teetttaatt gcccaatttt taggagtaga tggttattgg ttaacgacgg ggaatactga agattctttt 180 agagaaagtg atgtatttag cccgactgta gtgagtgcag aatctactga tcagtatgtt 240 tggattgaag ttgtagaagc taacttttct tgcgggacag gtgaatctat tgaatttcac tttgatgcta ttaatggaaa aattccattc cctgcttcat tctttaaaga aaaacgcgt 359 <210> 992 <211> 119 <212> PRT <213> Homo sapiens <400> 992 Ser Arg Ile Lys Ala Lys Lys Thr Gln Ala Glu Val Ala Glu Ala Val 10 Lys Met Ser Gln Pro Ala Tyr Gln Ala Leu Glu Ser Gly Lys Asn Leu 25 20 Lys Ser Ala Phe Leu Pro Leu Ile Ala Gln Phe Leu Gly Val Asp Gly . 40 Tyr Trp Leu Thr Thr Gly Asn Thr Glu Asp Ser Phe Arg Glu Ser Asp 50 55 Val Phe Ser Pro Thr Val Val Ser Ala Glu Ser Thr Asp Gln Tyr Val 70 75 Trp Ile Glu Val Val Glu Ala Asn Phe Ser Cys Gly Thr Gly Glu Ser 90 Ile Glu Phe His Phe Asp Ala Ile Asn Gly Lys Ile Pro Phe Pro Ala 100 105 Ser Phe Phe Lys Glu Lys Arg 115 <210> 993 <211> 450 <212> DNA <213> Homo sapiens <400> 993 ngcgcgccgg gcaccacata cgacgacggg acgttattca cctctaacgt gtagccgccg togoggtoog gatoogogat gatggoogog tggootgaag caatggggta ggtgoocgtg 120

```
atgcgtcgct ttggcgcacg aggtttacgc cgtggggagt tcataaggga aataccagca
180
caqqqtcqqa ccaqttqtta cqatcqctgc atgatctact tgtcgcagga ttatatcggt
gagetaceca ageaacatat etegetggga aagtttgate eegacaatat teetgeggae
300
ccqaacqaac tqtttqccac gtggtttaaa gaagccgttg agaacqaagt cggcgaccct
actgeggtea eegtggeeac ggtggaegae aaeggteage eegatgegeg agtegtegae
cttctgtacc tcaactccga cggcttccac
450
<210> 994
<211> 110
<212> PRT
<213> Homo sapiens
<400> 994
Met Arg Arg Phe Gly Ala Arg Gly Leu Arg Arg Gly Glu Phe Ile Arg
Glu Ile Pro Ala Gln Gly Arg Thr Ser Cys Tyr Asp Arg Cys Met Ile
Tyr Leu Ser Gln Asp Tyr Ile Gly Glu Leu Pro Lys Gln His Ile Ser
Leu Gly Lys Phe Asp Pro Asp Asn Ile Pro Ala Asp Pro Asn Glu Leu
                        55
Phe Ala Thr Trp Phe Lys Glu Ala Val Glu Asn Glu Val Gly Asp Pro
                    70
                                        75
Thr Ala Val Thr Val Ala Thr Val Asp Asp Asn Gly Gln Pro Asp Ala
                                    90
                85
Arg Val Val Asp Leu Leu Tyr Leu Asn Ser Asp Gly Phe His
                                105
                                                     110
            100
<210> 995
<211> 924
<212> DNA
<213> Homo sapiens
<400> 995
egggagetgg tggaceagga egtgeageet geeegetaee acategeett tgggeeegtg
qtqqatqqcq acqtqqtccc cgatgaccct gagatcctca tgcagcaggg agaattcctc
aactacgaca tgctcatcgg cgtcaaccag ggagagggcc tcaagttcgt ggaggactct
gcagagagcg aggacggtgt gtctgccagc gcctttgact tcactgtctc caactttgtg
gacaacctgt atggctaccc ggaaggcaag gatgtgcttc gggagaccat caagtttatg
300
tacacaqaet gggeegaeeg ggaeaatgge gaaatgegee geaaaaeeet getggegete
tttactgacc accaatgggt ggcaccagct gtggccactg ccaagctgca cgccgactac
420
```

cagteteceg tetaetttta caeettetae caeeaetgee aggeggaggg ceggeetgag tgggcagatg cggcgcacgg ggatgaactg ccctatgtct ttggcgtgcc catggtgggt 540 qccaccqacc tcttcccctq taacttctcc aaqaatqacq tcatqctcag tgccgtggtc atgacctact ggaccaactt cgccaagact ggggacccca accagccggt gccgcaggat accaagttca tecacaccaa geecaatege ttegaggagg tggtgtggag caaattcaac agcaaggaga agcagtatot gcacataggo otgaagcoac gogtgogtga caactacogo 780 gccaacaagg tggccttctg gctggagctc gtgccccacc tgcacaacct gcacacggag ctetteacca ccaccacgeg cetgectece taegecacge getggeegee tegteceeee 900 gctggcgccc cgggcacacg ccgg 924 <210> 996 <211> 308 <212> PRT <213> Homo sapiens <400> 996 Arg Glu Leu Val Asp Gln Asp Val Gln Pro Ala Arg Tyr His Ile Ala 10 Phe Gly Pro Val Val Asp Gly Asp Val Val Pro Asp Asp Pro Glu Ile 20 25 Leu Met Gln Gln Gly Glu Phe Leu Asn Tyr Asp Met Leu Ile Gly Val Asn Gln Gly Glu Gly Leu Lys Phe Val Glu Asp Ser Ala Glu Ser Glu 55 60 Asp Gly Val Ser Ala Ser Ala Phe Asp Phe Thr Val Ser Asn Phe Val 70 75 Asp Asn Leu Tyr Gly Tyr Pro Glu Gly Lys Asp Val Leu Arg Glu Thr 85 90 Ile Lys Phe Met Tyr Thr Asp Trp Ala Asp Arg Asp Asn Gly Glu Met 100 105 110 Arg Arg Lys Thr Leu Leu Ala Leu Phe Thr Asp His Gln Trp Val Ala 120 Pro Ala Val Ala Thr Ala Lys Leu His Ala Asp Tyr Gln Ser Pro Val 135 140 Tyr Phe Tyr Thr Phe Tyr His His Cys Gln Ala Glu Gly Arg Pro Glu 150 155 Trp Ala Asp Ala Ala His Gly Asp Glu Leu Pro Tyr Val Phe Gly Val 170 Pro Met Val Gly Ala Thr Asp Leu Phe Pro Cys Asn Phe Ser Lys Asn 185 Asp Val Met Leu Ser Ala Val Val Met Thr Tyr Trp Thr Asn Phe Ala 205 200 Lys Thr Gly Asp Pro Asn Gln Pro Val Pro Gln Asp Thr Lys Phe Ile His Thr Lys Pro Asn Arg Phe Glu Glu Val Val Trp Ser Lys Phe Asn

```
230
                                        235
Ser Lys Glu Lys Gln Tyr Leu His Ile Gly Leu Lys Pro Arg Val Arg
                                    250
                245
Asp Asn Tyr Arg Ala Asn Lys Val Ala Phe Trp Leu Glu Leu Val Pro
                               265
His Leu His Asn Leu His Thr Glu Leu Phe Thr Thr Thr Arg Leu
                                                285
                           280
Pro Pro Tyr Ala Thr Arg Trp Pro Pro Arg Pro Pro Ala Gly Ala Pro
                        295
                                            300
Gly Thr Arg Arg
305
<210> 997
<211> 320
<212> DNA
<213> Homo sapiens
<400> 997
aaatttaata ccatagcctt ctcttggttg atccttctag gcatgagtta tggcattaaa
acgggcatec atcttggtgt cgatategta cttaatgeeg tgeetaaaeg agtateaaga
geettgtett tgtteggtge etttgeeget attatgtaeg gteteattet aettgattet
acctggttag ccttactcgg tatcgatgta cgaggtggtg ccatcgaata ttgggcgaag
atgttcaaaa taggtattgg tactgaagag cttcgttacc ctatctttat gcaagatatg
tttgatttgc gcccacgcgt
320
<210> 998
<211> 106
<212> PRT
<213> Homo sapiens
<400> 998
Lys Phe Asn Thr Ile Ala Phe Ser Trp Leu Ile Leu Leu Gly Met Ser
                                    10
Tyr Gly Ile Lys Thr Gly Ile His Leu Gly Val Asp Ile Val Leu Asn
                                25
Ala Val Pro Lys Arg Val Ser Arg Ala Leu Ser Leu Phe Gly Ala Phe
                            40
Ala Ala Ile Met Tyr Gly Leu Ile Leu Leu Asp Ser Thr Trp Leu Ala
Leu Leu Gly Ile Asp Val Arg Gly Gly Ala Ile Glu Tyr Trp Ala Lys
                                        75
                    70
Met Phe Lys Ile Gly Ile Gly Thr Glu Glu Leu Arg Tyr Pro Ile Phe
Met Gln Asp Met Phe Asp Leu Arg Pro Arg
           100
<210> 999
<211> 401
```

```
<212> DNA
<213> Homo sapiens
<400> 999
acqcqttcaq qcqqttaaca atcqcqctaa gaaqctqacc aaggaaaatg tcggcatggt
acatetqaqe aaqagettea tegqtqttta tetetactea gaaggeaagt ttgtgaecag
caactatete aateqtqqet acaaggacat tetgagetat geagaegatg etagtetttt
gcaaaagcct ccagcagtgg cttcagatga tctggataca ggtctcttga agagggcctt
ggatgagtgg gtggctgatg ctaagaacca cattctcaat actgaaaact tctttagcgg
gtcaaccggt ctcaacattg acagtttcta cgtctttggt gaccaagaca tctgctggca
gttggcagct attctgaagc agagcatgaa tcgggaattg t
401
<210> 1000
<211> 115
<212> PRT
<213> Homo sapiens
<400> 1000
Met Val His Leu Ser Lys Ser Phe Ile Gly Val Tyr Leu Tyr Ser Glu
Gly Lys Phe Val Thr Ser Asn Tyr Leu Asn Arg Gly Tyr Lys Asp Ile
            20
                                25
Leu Ser Tyr Ala Asp Asp Ala Ser Leu Leu Gln Lys Pro Pro Ala Val
                            40
Ala Ser Asp Asp Leu Asp Thr Gly Leu Leu Lys Arg Ala Leu Asp Glu
                        55
                                            60
Trp Val Ala Asp Ala Lys Asn His Ile Leu Asn Thr Glu Asn Phe Phe
                                        75
Ser Gly Ser Thr Gly Leu Asn Ile Asp Ser Phe Tyr Val Phe Gly Asp
                                    90
Gln Asp Ile Cys Trp Gln Leu Ala Ala Ile Leu Lys Gln Ser Met Asn
                                                     110
                                105
Arg Glu Leu
        115
<210> 1001
<211> 351
<212> DNA
<213> Homo sapiens
<400> 1001
cgcggtattg caatgcgcct ggtgccgaat gctaaacctg ctcttgattg cccggtactg
60
ttcccttatg cccctaatgc ggtgattgtt ggcttcctgg ccactaccgt tggttcaatt
ateggtatga ttgtetteec getgtttggt etggegatga teetteeggg tetgetaaet
180
```

```
aacttcttcg ctggtggtgc cgctggagtc tttggcaacg cgatgggagg acgtaaaggg
240
qeaattattq qeqqegtaqt geacgggetg tttateacce tgttaccage gatgetaate
cccttactgg aaaccttcgg cttcaaaggc gtcaccttca gtgattccga t
351
<210> 1002
<211> 117
<212> PRT
<213> Homo sapiens
<400> 1002
Arg Gly Ile Ala Met Arg Leu Val Pro Asn Ala Lys Pro Ala Leu Asp
Cys Pro Val Leu Phe Pro Tyr Ala Pro Asn Ala Val Ile Val Gly Phe
Leu Ala Thr Thr Val Gly Ser Ile Ile Gly Met Ile Val Phe Pro Leu
                            40
Phe Gly Leu Ala Met Ile Leu Pro Gly Leu Leu Thr Asn Phe Phe Ala
                        55
Gly Gly Ala Ala Gly Val Phe Gly Asn Ala Met Gly Gly Arg Lys Gly
                                        75
                    70
Ala Ile Ile Gly Gly Val Val His Gly Leu Phe Ile Thr Leu Leu Pro
                                    90
Ala Met Leu Ile Pro Leu Leu Glu Thr Phe Gly Phe Lys Gly Val Thr
                                105
            100
Phe Ser Asp Ser Asp
        115
<210> 1003
<211> 444
<212> DNA
<213> Homo sapiens
<400> 1003
acqcqtcctc ctttagtcga tcgcgaatat gataggcgaa gcgacgtgat ggtgtgacgc
acquired coccatctcc taggettagg qttatgcaga ctcccatcga cgctacctcc
accecequat qqqqcacact ctccqqccta aaqtcccqct tcgctgacgg gccacataaa
etgegeeqtt tqtteqaeqe egaeecteae egegetgage getaeaectt tgaegtegeg
qatttqcacq tcqatttatc gaagaacctc cttaccgacg agattcgtga cgctctcctc
gaactggctg cqcaqatqcg cgtcaccgag cgtcgtgacg cgatgtatgc cggtgagcac
atcaacgtca cegaggaceg egeegteete catacegege tgtgtegtee cegcactgae
gagetgeatg ttgaeggtea ggat
444
<210> 1004
```

<211> 117

```
<212> PRT
<213> Homo sapiens
<400> 1004
Met Gln Thr Pro Ile Asp Ala Thr Ser Thr Pro Ala Trp Gly Thr Leu
Ser Gly Leu Lys Ser Arg Phe Ala Asp Gly Pro His Lys Leu Arg Arg
            20
                                25
Leu Phe Asp Ala Asp Pro His Arg Ala Glu Arg Tyr Thr Phe Asp Val
                            40
Ala Asp Leu His Val Asp Leu Ser Lys Asn Leu Leu Thr Asp Glu Ile
                        55
Arg Asp Ala Leu Leu Glu Leu Ala Ala Gln Met Arg Val Thr Glu Arg
Arg Asp Ala Met Tyr Ala Gly Glu His Ile Asn Val Thr Glu Asp Arg
                                    90
                85
Ala Val Leu His Thr Ala Leu Cys Arg Pro Arg Thr Asp Glu Leu His
                                105
Val Asp Gly Gln Asp
       115
<210> 1005
<211> 299
<212> DNA
<213> Homo sapiens
<400> 1005
ccatggccat toctctggtg actgcatcca gtccgatgga tttaaacacc cccaatgtgc
tqqtqactcc caaqtttaca cctccaqcca qqqcttctct cctgggtttg catacccacc
120
tatetatetg cettaqeeac teqtqtetga egaqeacete acacetecag aggetectea
tttetteeca tgeetgette teecacaete etecetetea catgagggea aetteateet
cccagttget caggecccaa acctecatca gttttgacte ttetetegea cactacteg
<210> 1006
<211> 99
<212> PRT
<213> Homo sapiens
<400> 1006
Met Ala Ile Pro Leu Val Thr Ala Ser Ser Pro Met Asp Leu Asn Thr
Pro Asn Val Leu Val Thr Pro Lys Phe Thr Pro Pro Ala Arg Ala Ser
            20
                                25
Leu Leu Gly Leu His Thr His Leu Ser Ile Cys Leu Ser His Ser Cys
Leu Thr Ser Thr Ser His Leu Gln Arg Leu Leu Ile Ser Ser His Ala
Cys Phe Ser His Thr Pro Pro Ser His Met Arg Ala Thr Ser Ser Ser
```

```
65
                    70
                                         75
Gln Leu Leu Arg Pro Gln Thr Ser Ile Ser Phe Asp Ser Ser Leu Ala
                85
                                     90
His Tyr Ser
<210> 1007
<211> 389
<212> DNA
<213> Homo sapiens
<400> 1007
geeggegega agatetaaag agetggaaag geaacegeaa gagagegggg ttettgeetg
atgagegege tttcatggae tecatetteg geeggggee tggtgtgaeg gtetetgaaa
tcaacgacgc caccgaggca cccagaggtg tgacgttgag tgatggccga cgacagggca
acgccggagc aatcggtgac ttcttcgcat cgaaggacta caagccgtcc gcggcgagcc
tecgaggtee ggegagggat eegaaatgga tegaegttea aegeteatte caegagaaeg
300
aagaaggccc gtacagctgg tacacctggc gcgggcaggc ttttgacacg ggcgctggat
ggcgtaaata cgtccatgcc gcgacaacg
389
<210> 1008
<211> 105
<212> PRT
<213> Homo sapiens
<400> 1008
Met Asp Ser Ile Phe Gly Pro Gly Pro Gly Val Thr Val Ser Glu Ile.
                                    10
Asn Asp Ala Thr Glu Ala Pro Arg Gly Val Thr Leu Ser Asp Gly Arg
Arg Gln Gly Asn Ala Gly Ala Ile Gly Asp Phe Phe Ala Ser Lys Asp
Tyr Lys Pro Ser Ala Ala Ser Leu Arg Gly Pro Ala Arg Asp Pro Lys
                        55
Trp Ile Asp Val Gln Arg Ser Phe His Glu Asn Glu Glu Gly Pro Tyr
Ser Trp Tyr Thr Trp Arg Gly Gln Ala Phe Asp Thr Gly Ala Gly Trp
                                                         95
                                    90
                85
Arg Lys Tyr Val His Ala Ala Thr Thr
            100
<210> 1009
<211> 324
<212> DNA
<213> Homo sapiens
<400> 1009
```

```
ngccttcatg gctgntatgc ctggcctcat ccccatccct ggcacccgtg acgatagcca
60
cattecactg gtgtttcccc aggaaagcca accetacetg cateteagca gagettecac
qqaqttqqaa ccccqctccq aqaqqqtgtg gqctcagggg ccaggggtca cacaaactcc
agaaggagga cqtaqttggt ttgcaaggct gtcctttgcc ctggttgaat aaccttcggt
ctgccccqaq aqqaacqtqq gcattaggct gcacccgcag gaagccatgt attttctgag
aaacttggcc catggtgcag atct
324
<210> 1010
<211> 104
<212> PRT
<213> Homo sapiens
<400> 1010
Met Gly Gln Val Ser Gln Lys Ile His Gly Phe Leu Arg Val Gln Pro
                                    10
Asn Ala His Val Pro Leu Gly Ala Asp Arg Arg Leu Phe Asn Gln Gly
Lys Gly Gln Pro Cys Lys Pro Thr Thr Ser Ser Phe Trp Ser Leu Cys
                            40
Asp Pro Trp Pro Leu Ser Pro His Pro Leu Gly Ala Gly Phe Gln Leu
                        55
Arg Gly Ser Ser Ala Glu Met Gln Val Gly Leu Ala Phe Leu Gly Lys
                                        75
                    70
His Gln Trp Asn Val Ala Ile Val Thr Gly Ala Arg Asp Gly Asp Glu
                85
                                    90
                                                         95
Ala Arg His Xaa Ser His Glu Gly
            100
<210> 1011
<211> 330
<212> DNA
<213> Homo sapiens
<400> 1011
ctgcagaaaa ggaggggtt cccatgccaa ggcagaactg tctgggacag acgctgcccg
gatecetqeg getgeetqea etetggaeea eqaqetetga gageageagg ttgagggeeg
120
qtqqqcaqca qctcqqaqqc tccqcqaqqt qcaqqagacg caggcatggc cggtgagctg
actectgagg aggaggeea gtacaaaaag gettteteeg eggttgacae ggatggaaac
ggcaccatca atqcccagga gctgggcgcg qcqctgaagg ccacgggcaa gaacctctcg
gaggeceage taaagaaact cateteegag
330
<210> 1012
```

```
<211> 55
<212> PRT
<213> Homo sapiens
<400> 1012
Met Ala Gly Glu Leu Thr Pro Glu Glu Glu Ala Gln Tyr Lys Lys Ala
                                    10
Phe Ser Ala Val Asp Thr Asp Gly Asn Gly Thr Ile Asn Ala Gln Glu
            20
                                25
Leu Gly Ala Ala Leu Lys Ala Thr Gly Lys Asn Leu Ser Glu Ala Gln
        35
                            40
Leu Lys Lys Leu Ile Ser Glu
    50
                        55
<210> 1013
<211> 432
<212> DNA
<213> Homo sapiens
<400> 1013
nacttgcaca tcgtggtggc gtcgctgcgt gcggcactga caatgtgact ggcgcattcg
tggcggcgtc tcctcgtcgc cgggagcggc gaggaaggat taacgatgac cagcgacgtc
ccegggattg gctcgaacgc cgccactttg gcgcgttccc aggctcgcag tgacaaggtc
qaqqctqatt tqqcqqtcca tcccqacaaq tqqcqcattc tgggggggga ccgtcctact
ggcagcctgc acateggtca ctactteggg tegetggega ategggtaeg egtgeagaac
aagggcattg agtettteet tgtegteget gactaceagg ttatetatga eegegggggg
qqtqqtqacc tqcaqqccaa tqttatqtcq aatqtcgccg attacctggc aatcggcatt
420
gacccaacgc gt
432
<210> 1014
<211> 109
<212> PRT
<213> Homo sapiens
<400> 1014
Met Thr Ser Asp Val Pro Gly Ile Gly Ser Asn Ala Ala Thr Leu Ala
                                    1.0
Arg Ser Gln Ala Arg Ser Asp Lys Val Glu Ala Asp Leu Ala Val His
                                25
Pro Asp Lys Trp Arg Ile Leu Gly Gly Asp Arg Pro Thr Gly Ser Leu
His Ile Gly His Tyr Phe Gly Ser Leu Ala Asn Arg Val Arg Val Gln
                        55
Asn Lys Gly Ile Glu Ser Phe Leu Val Val Ala Asp Tyr Gln Val Ile
                    70
                                        75
Tyr Asp Arg Gly Gly Gly Asp Leu Gln Ala Asn Val Met Ser Asn
```

95

```
90
Val Ala Asp Tyr Leu Ala Ile Gly Ile Asp Pro Thr Arg
            100
                                105
<210> 1015
<211> 467
<212> DNA
<213> Homo sapiens
<400> 1015
nngaattoga tggctgtgaa aggtcgagct cttaagtgtt ttcatatccc ctgtgtggtt
gaaaacttcc cgatgaaagc gcgcacggtt gaagagctga aagaattgga aagagtttta
cagcaaaaga agattgaagc agagtgtctt aaactacgga aggaaattgt agaggctcag
tctqqaqtta agttgattaa acagcgtcat gaagaggatg atgaagaaga ggaagaggaa
gacaagacag taaaatatag caatttgccc aattacctgc ttggtagtct gagtactgat
tttqqqqtaq atacctcttt attqtcaagc caattggagc ttcattccag agaagagaaa
atcaaccaaa ttatattatt gaaagatatc atttacaagg taaaaactgt tttcaataat
gagtttgacg ctgcatataa acaaaaagag tttgaaattg cacgcgt
467
<210> 1016
<211> 155
<212> PRT
<213> Homo sapiens
<400> 1016
Xaa Asn Ser Met Ala Val Lys Gly Arg Ala Leu Lys Cys Phe His Ile
                                    10
Pro Cys Val Val Glu Asn Phe Pro Met Lys Ala Arg Thr Val Glu Glu
            20
                                25
Leu Lys Glu Leu Glu Arg Val Leu Gln Gln Lys Lys Ile Glu Ala Glu
Cys Leu Lys Leu Arg Lys Glu Ile Val Glu Ala Gln Ser Gly Val Lys
                        55
Leu Ile Lys Gln Arg His Glu Glu Asp Asp Glu Glu Glu Glu Glu Glu
                    70
                                        75
Asp Lys Thr Val Lys Tyr Ser Asn Leu Pro Asn Tyr Leu Leu Gly Ser
                                    90
Leu Ser Thr Asp Phe Gly Val Asp Thr Ser Leu Leu Ser Ser Gln Leu
            100
                                105
Glu Leu His Ser Arg Glu Glu Lys Ile Asn Gln Ile Ile Leu Leu Lys
        115
                            120
Asp Ile Ile Tyr Lys Val Lys Thr Val Phe Asn Asn Glu Phe Asp Ala
                        135
Ala Tyr Lys Gln Lys Glu Phe Glu Ile Ala Arg
                    150
                                        155
```

```
<210> 1017
<211> 335
<212> DNA
<213> Homo sapiens
<400> 1017
acgcgtggct ggttgggtat gtggaaccat gtgcgcgcta atgagaagga tgcgaagggg
aacattaaag tgggtcgccc cggctacttt gcggaggtca tggatttcta tgcgcattat
ctgaagggtg cggttacccg tttccgtccg aattttattg tgcaggataa tacgggccgt
tggcgtgttc agtcgtcgtg gccgcagccg aatcgcactg ttacttttgc gggaccccgc
ggcattgtcc gctacggtac gacgttggcg gcccgcacgc atgggaatgg tcaggctatt
ccgcaggcgg atgcacagtc tcttaaccgc gagaa
<210> 1018
<211> 105
<212> PRT
<213> Homo sapiens
<400> 1018
Met Trp Asn His Val Arg Ala Asn Glu Lys Asp Ala Lys Gly Asn Ile
Lys Val Gly Arg Pro Gly Tyr Phe Ala Glu Val Met Asp Phe Tyr Ala
                                25
His Tyr Leu Lys Gly Ala Val Thr Arg Phe Arg Pro Asn Phe Ile Val
                            40
Gln Asp Asn Thr Gly Arg Trp Arg Val Gln Ser Ser Trp Pro Gln Pro
                                            60
                        55
Asn Arg Thr Val Thr Phe Ala Gly Pro Arg Gly Ile Val Arg Tyr Gly
                    70
                                         75
Thr Thr Leu Ala Ala Arg Thr His Gly Asn Gly Gln Ala Ile Pro Gln
                85
Ala Asp Ala Gln Ser Leu Asn Arg Glu
            100
                                105
<210> 1019
<211> 454
<212> DNA
<213> Homo sapiens
<400> 1019
acgcgtgaag gggtagtcgt agtagaagtc gtccacaaac acgggccccg gcaggtccag
ctctggagcc tcctcctcaa tggcgttgcc catggtgcct ggcttgggtg atgaggcggg
tgaagggcgt ggggccaggt ggtgcgggat gaagtcagcc tcgttgaaga gctcgtggct
ggaggagccg ctgcctgagc cttcagggcc cagtgtgccc aggggccacc gacagagtgg
240
```

```
cagagagcag gtgacttcct ggcactgcgg agcgaggacc cggagaagta cttcctcaat
300
ggtggctgga ccatccagtg gaacggggac taccaggtgg cagggaccac cttcacatac
gcacgcaggg gcaactggga gaacctcacg tccccgggtc ccaccaagga gcctgtctgg
atccagctgc tgttccagga gagcaaccct gggg
<210> 1020
<211> 125
<212> PRT
<213> Homo sapiens
<400> 1020
Met Ala Leu Pro Met Val Pro Gly Leu Gly Asp Glu Ala Gly Glu Gly
Arg Gly Ala Arg Trp Cys Gly Met Lys Ser Ala Ser Leu Lys Ser Ser
                                                     30
                                2.5
Trp Leu Glu Glu Pro Leu Pro Glu Pro Ser Gly Pro Ser Val Pro Arg
Gly His Arg Gln Ser Gly Arg Glu Gln Val Thr Ser Trp His Cys Gly
                        55
Ala Arg Thr Arg Arg Ser Thr Ser Ser Met Val Ala Gly Pro Ser Ser
                                         75
                    70
Gly Thr Gly Thr Thr Arg Trp Gln Gly Pro Pro Ser His Thr His Ala
Gly Ala Thr Gly Arg Thr Ser Arg Pro Arg Val Pro Pro Arg Ser Leu
                                105
            100
Ser Gly Ser Ser Cys Cys Ser Arg Arg Ala Thr Leu Gly
                            120
<210> 1021
<211> 366
<212> DNA
<213> Homo sapiens
<400> 1021
cagctgtgtc gtgacctcct gtagaccaga gagaggtaga gcatgaaaaa tgctcattga
geogagatta tetgacagga ecaaagcata taaagttgae tgaagcagga geaaacaege
tggttgaggg tcaagtgctg gggcagcagc aacaacaaac caaaaaaaag ccctttgaac
tcccttaatg ttgcccaaag gttctggtag agaacaagtc acatgcctaa gaaggtcttt
taaagggcac tettgeagtt teageatttg gteeggggaa ttgeacaagg etetgettaa
atqcaqaqct ctttctagca tcttcatatt caaggcggaa aaactgagct tggcgaggaa
360
ccctgt
366
<210> 1022
```

```
<211> 109
<212> PRT
<213> Homo sapiens
<400> 1022
Met Lys Met Leu Glu Arg Ala Leu His Leu Ser Arg Ala Leu Cys Asn
Ser Pro Asp Gln Met Leu Lys Leu Gln Glu Cys Pro Leu Lys Asp Leu
Leu Arg His Val Thr Cys Ser Leu Pro Glu Pro Leu Gly Asn Ile Lys
                            40
Gly Val Gln Arg Ala Phe Phe Trp Phe Val Val Ala Ala Ala Pro Ala
Leu Asp Pro Gln Pro Ala Cys Leu Leu Leu Gln Ser Thr Leu Tyr
                                        75
                    70
Ala Leu Val Leu Ser Asp Asn Leu Gly Ser Met Ser Ile Phe His Ala
                                    90
                                                        95
Leu Pro Leu Ser Gly Leu Gln Glu Val Thr Thr Gln Leu
            100
                                105
<210> 1023
<211> 426
<212> DNA
<213> Homo sapiens
<400> 1023
geogggette gggtetetga agegateaac etggeogaet eggatgeaga tetggaegge
ggcatcctga ccatacagca gaccaagttt ggcaagtccc gcatggtgcc gctacacccc
agcqtqatcq qtccqatqqc agcctaccqq qccttqcqcc gccagtacqt gcctqcqaaq
cegeagatga cattettegt gggetegegt ggegtgeace ggggtgaace getgggagat
aggcaggtgc atcgagtgtt ctgtcagctg cgcgagcaat tgggttggat cgatcgcggc
ggccatggcc gaccgcgggt gcatgacctg cgccatagct tcgccgtgag acggatgatc
ctgtggcacc agcagggagc gaaccttgac caacgaatgc tggccctgtc cacgtacatg
420
ggccac
426
<210> 1024
<211> 142
<212> PRT
<213> Homo sapiens
<400> 1024
Ala Gly Leu Arg Val Ser Glu Ala Ile Asn Leu Ala Asp Ser Asp Ala
Asp Leu Asp Gly Gly Ile Leu Thr Ile Gln Gln Thr Lys Phe Gly Lys
                                25
Ser Arg Met Val Pro Leu His Pro Ser Val Ile Gly Pro Met Ala Ala
```

```
45
        35
                            40
Tyr Arg Ala Leu Arg Arg Gln Tyr Val Pro Ala Lys Pro Gln Met Thr
                                            60
                        55
Phe Phe Val Gly Ser Arg Gly Val His Arg Gly Glu Pro Leu Gly Asp
                    70
                                        75
Arg Gln Val His Arg Val Phe Cys Gln Leu Arg Glu Gln Leu Gly Trp
Ile Asp Arq Gly Gly His Gly Arg Pro Arg Val His Asp Leu Arg His
            100
                                105
                                                     110
Ser Phe Ala Val Arg Arg Met Ile Leu Trp His Gln Gln Gly Ala Asn
                            120
        115
Leu Asp Gln Arg Met Leu Ala Leu Ser Thr Tyr Met Gly His
                                            140
    130
                        135
<210> 1025
<211> 518
<212> DNA
<213> Homo sapiens
<400> 1025
nacqcqtqqt qcqcqcagqt gqcqccqcqq tccctttqct ccctqcqcaa gccqqaqqqq
tgcccaqaaq gctaccacta gcctcagcga agggtgcgcc ctgagagccg ggtagcctcg
gatageggeg etgegtaege gatgatggat gageegtggt gggaagggeg egtegeeteg
gacgtecact geaccetgeg egagaaggaa etgaagetge eeacetteeg ageceactee
ccactcctga agagecgecg gttettegtg gacatectga ccetgetgag cagecactge
cagetetgee etgeageeeg geacetggee gtetacetge tggaceaett catggatege
tacaacgtca ccacctccaa gcagctctac accgtggccg tetectgect cetgettgca
agtaagtteg aggateggga agaccaegte eecaagttgg agcaaataaa eagcaegagg
atcctgagca gccagaactt caccctcacc aagaagga
518
<210> 1026
<211> 125
<212> PRT
<213> Homo sapiens
<400> 1026
Met Met Asp Glu Pro Trp Trp Glu Gly Arg Val Ala Ser Asp Val His
Cys Thr Leu Arg Glu Lys Glu Leu Lys Leu Pro Thr Phe Arg Ala His
                                25
Ser Pro Leu Lys Ser Arg Phe Phe Val Asp Ile Leu Thr Leu
Leu Ser Ser His Cys Gln Leu Cys Pro Ala Ala Arg His Leu Ala Val
Tyr Leu Leu Asp His Phe Met Asp Arg Tyr Asn Val Thr Thr Ser Lys
```

```
65
                    70
                                        75
Gln Leu Tyr Thr Val Ala Val Ser Cys Leu Leu Leu Ala Ser Lys Phe
                                    90
Glu Asp Arg Glu Asp His Val Pro Lys Leu Glu Gln Ile Asn Ser Thr
            100
                                105
Arg Ile Leu Ser Ser Gln Asn Phe Thr Leu Thr Lys Lys
                            120
       115
<210> 1027
<211> 465
<212> DNA
<213> Homo sapiens
<400> 1027
ggcccaaaag tcatcaaaga aaagctgaca caggagctga aggaccacaa cgccaccagc
atcctgcagc agetgccgct gctcaaggcc atgcgggaaa agccagccgg aggcatccct
gtgctgggca gcctggtgaa caccngtcct gaagcacatc atnnctggct gaaggtcatc
acagetaaca teeteeaget qeaqqtqaag eeeteggeea atgaccagga getgetagte
240
aagatccccc tggacatggt ggctggattc aacacgcccc tggtcaagac catcgtggag
ttccacatga cgactgaggc ccaagccacc atccgcatgg acaccagtgc aagtggcccc
accepectgg tectcagtga etgtgecace agecatggga geetgegeat ecaactgetg
cataagetet cetteaaget gaacgeetea getaageagg teatg
<210> 1028
<211> 155
<212> PRT
<213> Homo sapiens
<400> 1028
Gly Pro Lys Val Ile Lys Glu Lys Leu Thr Gln Glu Leu Lys Asp His
                                    10
1
Asn Ala Thr Ser Ile Leu Gln Gln Leu Pro Leu Leu Lys Ala Met Arg
            20
Glu Lys Pro Ala Gly Gly Ile Pro Val Leu Gly Ser Leu Val Asn Thr
                            40
Xaa Pro Glu Ala His His Xaa Trp Leu Lys Val Ile Thr Ala Asn Ile
Leu Gln Leu Gln Val Lys Pro Ser Ala Asn Asp Gln Glu Leu Leu Val
                    70
Lys Ile Pro Leu Asp Met Val Ala Gly Phe Asn Thr Pro Leu Val Lys
                                    90
Thr Ile Val Glu Phe His Met Thr Thr Glu Ala Gln Ala Thr Ile Arg
                                                    110
                                105
Met Asp Thr Ser Ala Ser Gly Pro Thr Arg Leu Val Leu Ser Asp Cys
                                                125
                            120
Ala Thr Ser His Gly Ser Leu Arg Ile Gln Leu Leu His Lys Leu Ser
```

```
130
                        135
Phe Lys Leu Asn Ala Ser Ala Lys Gln Val Met
                   150
<210> 1029
<211> 479
<212> DNA
<213> Homo sapiens
<400> 1029
acgogtgaag ggaaactgtc ctcacagatg agtgtgaggg ttcaaaaaaga tactgcctgc
caagcactqq ccacaaatqc ctggcaqaac aactgctcat aagtgtgtag ttgttgttat
tattactaac caaqtgagga aaattatccc tagcaggtcc agatgaccgt gtgcatgaat
cacagggaga coctaaagga tttcctcctg taaagctctt tccccaccta tttgctactg
cctgaaattg ctttagcagg aaacagaatc tctcatgcca caagtgagca taaagtttaa
aatqtaaatq ctctaqqaaa aqqcaactca tctcttaaat tctctccaag gttcaaatcc
tttccaaaga ggaggctttt gtataagtca gaaggcccag tccctgaagg tcatggaaaa
ggtcatgaca cacggaggg gtgtcaaagg gagactggga aactgaagat gaagctagc
479
<210> 1030
<211> 110
<212> PRT
<213> Homo sapiens
<400> 1030
Met Ser Cys Leu Phe Leu Glu His Leu His Phe Lys Leu Tyr Ala His
                                    10
Leu Trp His Glu Arg Phe Cys Phe Leu Leu Lys Gln Phe Gln Ala Val
            20
                                25
Ala Asn Arg Trp Gly Lys Ser Phe Thr Gly Gly Asn Pro Leu Gly Ser
                            40
Pro Cys Asp Ser Cys Thr Arg Ser Ser Gly Pro Ala Arg Asp Asn Phe
                        55
Pro His Leu Val Ser Asn Asn Asn Asn Tyr Thr Leu Met Ser Ser
                    70
                                        75
Cys Ser Ala Arg His Leu Trp Pro Val Leu Gly Arg Gln Tyr Leu Phe
Glu Pro Ser His Ser Ser Val Arg Thr Val Ser Leu His Ala
                                                    110
                                105
            100
<210> 1031
<211> 322
<212> DNA
<213> Homo sapiens
<400> 1031
```

```
nacqcqtttt atgtcagcgt tgaattggaa gacggcaagt ctatcgccat gctgccccag
gcagatggct ggtttgaagt ggaggtgaag tgcccggcgg gcactcacta ccgctataac
120
ategaeggeg aaacegatgt accegaeceg geatecaggg egeaageeaa egatgtgeat
180
gggtggagcg tcgtcgtcga cccgctcgcc tatcaatggc gacaccctaa ctggcaaggc
240
egeceetgge atgaggeggt gatttaegag etgeaegttg gegtaetggg egggtaegee
gctgttgaac agcaactgcc gc
322
<210> 1032
<211> 107
<212> PRT
<213> Homo sapiens
<400> 1032
Xaa Ala Phe Tyr Val Ser Val Glu Leu Glu Asp Gly Lys Ser Ile Ala
                 5
1
Met Leu Pro Gln Ala Asp Gly Trp Phe Glu Val Glu Val Lys Cys Pro
                                25
                                                     30
Ala Gly Thr His Tyr Arg Tyr Asn Ile Asp Gly Glu Thr Asp Val Pro
                            40
Asp Pro Ala Ser Arg Ala Gln Ala Asn Asp Val His Gly Trp Ser Val
                        55
Val Val Asp Pro Leu Ala Tyr Gln Trp Arg His Pro Asn Trp Gln Gly
                                         75
                    70
Arg Pro Trp His Glu Ala Val Ile Tyr Glu Leu His Val Gly Val Leu
                                    90
                85
Gly Gly Tyr Ala Ala Val Glu Gln Gln Leu Pro
            100
                                105
<210> 1033
<211> 579
<212> DNA
<213> Homo sapiens
<400> 1033
tgcqtccacc ggggtgacct cctgactgcc tcagtcacga ttccttatgg tcgaagtgtc
60
acagegecaa gggttgtgag gagggeeett egegggteae ggataggtee aaggtggeae
120
aattcacatt caaatccatc acttttcaca taattgctgt taatatgaac gtcatgagtc
gttgttgctc gcggttgcga gtgggactcc ccatacacgg cagcgagaca tggaggaacc
atgggactaa ggatcgttgt cgccgctgat ccggcggcag tcgagtacaa ggatgtcgtc
aaggetgace tggaagegga ttegegagte gatgaegtta tegaegtegg egtteagget
ggtgacgaca ccctctaccc gcgcatcggc atcaagggag ctcacgtcat caaggacgga
420
```

```
aaagccgatc gaggaatctt tttctgcggc accgggatgg gcatggccat cacggccaac
480
aaggtgccag gcattcgcgc ctgcaccgcc cacgactcct tctccgtaga gcggctcatc
atgtccaacg acgcccacgt gctatgcctc ggccaacgc
579
<210> 1034
<211> 113
<212> PRT
<213> Homo sapiens
<400> 1034
Met Gly Leu Arg Ile Val Val Ala Ala Asp Pro Ala Ala Val Glu Tyr
                                    10
Lys Asp Val Val Lys Ala Asp Leu Glu Ala Asp Ser Arg Val Asp Asp
            20
                                25
Val Ile Asp Val Gly Val Gln Ala Gly Asp Asp Thr Leu Tyr Pro Arg
Ile Gly Ile Lys Gly Ala His Val Ile Lys Asp Gly Lys Ala Asp Arg
Gly Ile Phe Phe Cys Gly Thr Gly Met Gly Met Ala Ile Thr Ala Asn
65
                    70
                                        75
Lys Val Pro Gly Ile Arg Ala Cys Thr Ala His Asp Ser Phe Ser Val
                                    90
Glu Arg Leu Ile Met Ser Asn Asp Ala His Val Leu Cys Leu Gly Gln
            100
                                105
Arg
<210> 1035
<211> 363
<212> DNA
<213> Homo sapiens
<400> 1035
nacqcgtgca atgtgtgtgt gtgtatgnga ccatgtctct gtgtgtgtat gngcatatgt
gtgtgtatan gaatgtgtgt atgtgtantg gaatgtgtgt gtgtantgga agctgtgtgc
120
atatgtnaat gtctgtgtgc atgtacgnga atgtgcgcgt gtatggaatg tatctgtgta
tgtgtatgga ccgtttgtgt gattatgcaa tatgtccgtg tgtgcgtatg gagtgtctca
gtatggcatg tgtgtgta tctactgtgc gtctctgtgt gtgtantgac atgcatatgt
atagaaagcg totgcgctgt gtgcatgtgt gtcagtatcg aacgagtcgg agatgtggta
360
atn
363
<210> 1036
<211> 121
<212> PRT
```

<213> Homo sapiens <400> 1036 Xaa Ala Cys Asn Val Cys Val Cys Met Xaa Pro Cys Leu Cys Val Cys Met Xaa Ile Cys Val Cys Ile Xaa Met Cys Val Cys Val Xaa Glu Cys 20 Val Cys Val Xaa Glu Ala Val Cys Ile Cys Xaa Cys Leu Cys Ala Cys 40 Thr Xaa Met Cys Ala Cys Met Glu Cys Ile Cys Val Cys Val Trp Thr 60 55 Val Cys Val Ile Met Gln Tyr Val Arg Val Cys Val Trp Ser Val Ser Val Trp His Val Cys Val Tyr Leu Leu Cys Val Ser Val Cys Val Xaa 90 Thr Cys Ile Cys Ile Glu Ser Val Cys Ala Val Cys Met Cys Val Ser 105 110 Ile Glu Arg Val Gly Asp Val Val Xaa 120 115 <210> 1037 <211> 5832 <212> DNA <213> Homo sapiens <400> 1037 cetteteetg ggggeeagat geatgetgga ateagtaget tteageagag taaeteaagt gggacttacg gtccacagat gagccagtat ggaccacaag gtaactactc cagaccccca gcgtatagtg gggtgcccag tgcaagctac agcggcccag ggcccggtat gggtatcagt gccaacaacc agatgcatgg acaagggcca agccagccat gtggtgctgt gcccctggga cgaatgccat cagctgggat gcagaacaga ccatttcctg gaaatatgag cagcatgacc 300 cccagttctc ctggcatgtc tcagcaggga gggccaggaa tggggccgcc aatgccaact qtqaaccqta aqqcacaqqa qgcagccqca gcagtgatgc aggctgctgc gaactcagca caaagcaggc aaggcagttt ccccggcatg aaccagagtg gacttatggc ttccagctct ccctacagec ageccatgaa caacagetet agectgatga acaegeagge geegeeetae agcatggcgc ccgccatggt gaacagctcg gcagcatctg tgggtcttgc agatatgatg teteetggtg aatecaaact geeetgeet eteaaageag aeggeaaaga agaaggeaet ccacagcccg agagcaagtc aaaggatagc tacagctctc agggtatttc tcagccccca accocaggea acctgocagt coetteccea atgtccccca getetgetag catetectea

tttcatggag atgaaagtga tagcattagc agcccagget ggccaaagac tccatcaagc

840

cctaagtcca 900	gctcctccac	cactactggg	gagaagatca	cgaaggtgta	cgagctgggg
_	agagaaagct	ctgggtcgac	cgatacctca	ccttcatgga	agagagaggc
tctcctgtct	caagtetgee	tgccgtgggc	aagaagcccc	tggacctgtt	ccgactctac
gtctgcgtca 1080	aagagatcgg	gggtttggcc	caggttaata	aaaacaagaa	gtggcgtgag
ctggcaacca 1140	acctaaacgt	tggcacctca	agcagtgcag	cgagctccct	gaaaaagcag
tatattcagt 1200	acctgtttgc	ctttgagtgc	aagatcgaac	gtggggagga	gcccccgccg
gaagtettea 1260	gcaccgggga	caccaaaaag	cagcccaagc	tecageegee	atctcctgct
aactcgggat 1320	ccttgcaagg	cccacagacc	ccccagtcaa	ctggcagcaa	ttccatggca
gaggttccag 1380	gtgacctgaa	gccacctacc	ccagcctcca	cccctcacgg	ccagatgact
ccaatgcaag 1440	gtggaagaag	cagtacaatc	agtgtgcacg	acccattctc	agatgtgagt
gattcatcct 1500	tcccgaaacg	gaactccatg	actccaaacg	ccccctacca	gcagggcatg
agcatgcccg 1560	atgtgatggg	caggatgccc	tatgagccca	acaaggaccc	ctttggggga
atgagaaaag 1620	tgcctggaag	cagcgagccc	tttatgacgc	aaggacagat	gcccaacagc
agcatgcagg 1680	acatgtacaa	ccaaagtccc	tccggagcaa	tgtctaacct	gggcatgggg
cagcgccagc 1740	agtttcccta	tggagccagt	tacgaccgaa	ggcatgaacc	ttatgggcag
cagtatccag 1800	gccaaggccc	tccctcggga	cageegeegt	atggagggca	ccagcccggc
ctgtacccac 1860	agcagccgaa	ttacaaacgc	catatggacg	gcatgtacgg	gececeagee
aagegeeaeg 1920	agggcgacat	gtacaacatg	cagtacagca	gccagcagca	ggagatgtac
aaccagtatg 1980	gaggctccta	ctcgggcccg	gaccgcaggc	ccatccaggg	ccagtacccg
2040		gatgcagggc			
cttcagatga 2100	tgggcggccc	gctgcagtcg	tcctccagtg	aggggcctca	gcagaatatg
2160		geettateee			
2220		aggcatgaac			
aggataaatc 2280	atgagagcca	gtggccttct	cacgtcagcc	agegteagee	ttatatgtcg
tcctcagcct 2340	ccatgcagcc	catcacacgc	ccaccacagc	cgtcctacca	gacgccaccg
2400		cagggcgccc			
aaccgcatgt 2460	ctccaagcaa	gtctcctttt	ctgccgtcta	tgaagatgca	gaaggtcatg

cccacggtcc 2520	ccacatccca	ggtcaccggg	ccaccacccc	aaccaccccc	aatcagaagg
gagatcacct 2580	tteeteetgg	ctcagtagaa	gcatcacaac	cagtettgaa	acaaaggcga
aagattacct 2640	ccaaagatat	cgttactcct	gaggcgtggc	gtgtgatgat	gtcccttaaa
	tggctgagag	tacgtgggct	ttggacacta	ttaatattct	tctgtatgat
	ttgctacttt	caatctctcc	cagttgtctg	gatttctcga	acttttagtc
gagtacttta 2820	gaaaatgcct	gattgacatt	tttggaattc	ttatggaata	tgaagtggga
	aaaaagcact	tgatcacaac	gcagcaagga	aggatgacag	ccagtccttg
gcagacgatt 2940	ctgggaaaga	ggaggaagat	gctgaatgta	ttgatgacga	cgaggaagac
gaggaggatg 3000	aggaggaaga	cagcgagaag	acagaaagcg	atgaaaagag	cagcatcgct
ctgactgccc 3060	cggacgccgc	tgcagaccca	aaggagaagc	ccaagcaagc	cagtaagttc
gacaagctgc 3120	caataaagat	agtcaaaaag	aacaacctgt	ttgttgttga	ccgatctgac
aagttggggc 3180	gtgtgcagga	gttcaatagt	ggccttctac	actggcagct	cggcgggggt
gacaccaccg 3240	agcacattca	gactcacttt	gagagcaaga	tggaaattcc	tcctcgcagg
cgcccacctc 3300	ccccttaag	ctccgcaggt	aagaagaaag	agctggcagg	caaaggcgac
tctgaagagc 3360	agcaagagaa	aagcatcata	gcaaccattg	atgacgtcct	gtctgctcgg
ccaggggcat 3420	tgccggaaga	cgcaaaccct	gggccccaga	ccgaaagcag	taagtttccc
tttggtatcc 3480	agcaagccaa	aagtcaccgg	aacatcaagc	tgctggagga	cgagcccagg
agccgagacg 3540	agactcccct	gtgtaccatc	gcgcactggc	aggactcgct	ggctaagcga
tgcatctgtg 3600	tgtccaatat	tgtccgtagc	ttgtcattcg	tgcctggcaa	tgatgccgaa
atgtccaaac 3660	atccaggcct	ggtgctgatc	ctggggaagc	tgattcttct	tcaccacgag
catccagaga 3720	gaaagcgagc	accgcagacc	tatgagaaag	aggaggatga	ggacaagggg
gtggcctgca 3780	gcaaagatga	gtggtggtgg	gactgcctcg	aggtcttgag	ggataacacg
ttggtcacgt 3840	tggccaacat	ttccgggcag	ctagacttgt	ctgcttacac	ggaaagcatc
tgcttgccaa 3900	ttttggatgg	cttgctgcac	tggatggtgt	gcccgtctgc	agaggcacaa
gatecettte 3960	caactgtggg	acccaactcg	gtecegtege	ctcagagact	tgtgctggag
accetetgta 4020	aactcagtat	ccaggacaat	aatgtggacc	tgatcttggc	cactcctcca
tttagtcgtc 4080	aggagaaatt	ctatgctaca	ttagttaggt -	acgttgggga	tcgcaaaaac

ccagtctgtc 4140	gagaaatgtc	catggcgctt	ttatcgaacc	ttgcccaagg	ggacgcacta
gcagcaaggg 4200	ccatagctgt	gcagaaagga	agcattggaa	acttgataag	cttcctagag
gatggggtca 4260	cgatggccca	gtaccagcag	agccagcaca	acctcatgca	catgcagccc
ccgcccctgg 4320	aaccacctag	cgtagacatg	atgtgcaggg	cggccaaggc	tttgctagcc
atggccagag 4380	tggacgaaaa	ccgctcggaa	ttccttttgc	acgagggccg	gttgctggat
atctcgatat 4440	cagctgtcct	gaactctctg	gttgcatctg	tcatctgtga	tgtactgttt
cagattgggc 4500	agttatgaca	taagtgagaa	ggcaagcatg	tgtgagtgaa	gattagaggg
tcacatataa 4560	ctggctgttt	tctgttcttg	tttatccagc	gtaggaagaa	ggaaaagaaa
atctttgctc 4620	ctctgcccca	ttcactattt	accaattggg	aattaaagaa	ataattaatt
tgaacagtta 4680	tgaaattaat	atttgctgtc	tgtgtgtata	agtacatcct	ttggggtttt
ttttttctct 4740	tttttttaac	caaagttgct	gtctagtgca	ttcaaaggtc	actttttgtt
cttcacagat 4800	ctttttaatg	ttctttccca	tgttgtattg	catttttggg	ggaagcaaat
tgactttaaa 4860	gaaaaaagtt	gtggcaaaag	atgctaagat	gcgaaaattt	caccacactg
agtcaaaaag 4920	gtgaaaaatt	atccatttcc	tatgcgtttt	actcctcaga	gaatgaaaaa
aactgcatcc 4980	catcacccaa	agttetgtge	aatagaaatt	tctacagata	caggtatagg
ggctcaagga 5040	ggtatgtcgg	tcagtagtca	aaactatgaa	atgatactgg	tttctccaca
ggaatatggt 5100	tccattaggc	tgggagcaaa	aacaatgttt	tttaagattg	agaatacata
5160		_	cactcccgtc		
accttccacg 5220	tgacagttct	tcacaattcc	tttcatcatt	ttttaaatat	ttttttact
gcctatgggc 5280	tgtgatgtat	atagaagttg	tacattaaac	ataccctcat	ttttttttt
tcttttttt 5340	tttttttag	tacaaagttt	tagtttcttt	ttcatgatgt	ggtaactacg
aagtgatggt 5 40 0	agatttaaat	aattttttat	ttttatttta	tatattttt	cattagggcc
atatctccaa 5460	aaaaagaaag	aaaaaataca	aaaaacaaaa	acaaaaaaa	aagagggtaa
tgtacaagtt 5520	tctgtatgta	taaagtcatg	ctcgatttca	ggagagcagc	tgatcacaat
ttgcttcatg 5580	aatcaaggtg	tggaaatggt	tatatatgga	ttgatttaga	aaatggttac
cagtacagtc 5640	aaaaaagaga	aaatgaaaaa	aatacaacta	aaaggaagaa	acacaacttc
aaagattttt 5700	cagtgatgag	aatccacatt	tgtatttcaa	gataatgtag	tttaaaaaaa

aaaaaaagaa aaaaacttga tgtaaattee teetttteet etggettaat gaatateatt tattcagtat aaaatcttta tatgttccac atgttaagaa taaatgtaca ttaaatcttg ttaagcactg tg 5832 <210> 1038 <211> 1485 <212> PRT <213> Homo sapiens <400> 1038 Pro Ser Pro Gly Gly Gln Met His Ala Gly Ile Ser Ser Phe Gln Gln 10 Ser Asn Ser Ser Gly Thr Tyr Gly Pro Gln Met Ser Gln Tyr Gly Pro 25 Gln Gly Asn Tyr Ser Arg Pro Pro Ala Tyr Ser Gly Val Pro Ser Ala 40 Ser Tyr Ser Gly Pro Gly Pro Gly Met Gly Ile Ser Ala Asn Asn Gln 55 Met His Gly Gln Gly Pro Ser Gln Pro Cys Gly Ala Val Pro Leu Gly 70 75 Arg Met Pro Ser Ala Gly Met Gln Asn Arg Pro Phe Pro Gly Asn Met 90 Ser Ser Met Thr Pro Ser Ser Pro Gly Met Ser Gln Gln Gly Pro 100 105 Gly Met Gly Pro Pro Met Pro Thr Val Asn Arg Lys Ala Gln Glu Ala 115 120 125 Ala Ala Ala Val Met Gln Ala Ala Ala Asn Ser Ala Gln Ser Arg Gln 135 140 Gly Ser Phe Pro Gly Met Asn Gln Ser Gly Leu Met Ala Ser Ser Ser 150 155 160 Pro Tyr Ser Gln Pro Met Asn Asn Ser Ser Ser Leu Met Asn Thr Gln 170 165 Ala Pro Pro Tyr Ser Met Ala Pro Ala Met Val Asn Ser Ser Ala Ala 185 190 Ser Val Gly Leu Ala Asp Met Met Ser Pro Gly Glu Ser Lys Leu Pro 200 Leu Pro Leu Lys Ala Asp Gly Lys Glu Glu Gly Thr Pro Gln Pro Glu 220 215 Ser Lys Ser Lys Asp Ser Tyr Ser Ser Gln Gly Ile Ser Gln Pro Pro 235 230 Thr Pro Gly Asn Leu Pro Val Pro Ser Pro Met Ser Pro Ser Ser Ala 250 Ser Ile Ser Ser Phe His Gly Asp Glu Ser Asp Ser Ile Ser Ser Pro 265 270 260 Gly Trp Pro Lys Thr Pro Ser Ser Pro Lys Ser Ser Ser Ser Thr Thr 280 Thr Gly Glu Lys Ile Thr Lys Val Tyr Glu Leu Gly Asn Glu Pro Glu 295 Arg Lys Leu Trp Val Asp Arg Tyr Leu Thr Phe Met Glu Glu Arg Gly 315 310 Ser Pro Val Ser Ser Leu Pro Ala Val Gly Lys Lys Pro Leu Asp Leu

				325					330					335	
Phe	Arg	Leu	Tyr 340	Val	Cys	Val	Lys	Glu 345		Gly	Gly	Leu	Ala 350	Gln	Val
Asn	Lys	Asn 355	Lys	Lys	Trp	Arg	Glu 360	Leu	Ala	Thr	Asn	Leu 365	Asn	Val	Gly
	370					375					380				Tyr
385					390	-				395					Pro 400
Glu	Val	Phe	Ser	Thr 405	Gly	Asp	Thr	Lys	Lys 410	Gln	Pro	Lys	Leu	Gln 415	Pro
			Ala 420			-		425					430		
Ser	Thr	Gly 435	Ser	Asn	Ser	Met	Ala 440	Glu	Val	Pro	Gly	Asp 445	Leu	Lys	Pro
Pro	Thr 450	Pro	Ala	Ser	Thr	Pro 455	His	Gly	Gln	Met	Thr 460	Pro	Met	Gln	Gly
Gly 465	Arg	Ser	Ser	Thr	Ile 470	Ser	Val	His	Asp	Pro 475	Phe	Ser	Asp	Val	Ser 480
Asp	Ser	Ser	Phe	Pro 485	Lys	Arg	Asn	Ser	Met 490	Thr	Pro	Asn	Ala	Pro 495	Tyr
		_	Met 500				_	505		_	_		510	_	
Pro	Asn	Lys 5 15	Asp	Pro	Phe	Gly	Gly 520	Met	Arg	Lys	Val	Pro 525	Gly	Ser	Ser
Glu	Pro 530	Phe	Met	Thr	Gln	Gly 535	Gln	Met	Pro	Asn	Ser 540	Ser	Met	Gln	Asp
Met 545	Tyr	Asn	Gln	Ser	Pro 550	Ser	Gly	Ala	Met	Ser 555	Asn	Leu	Gly	Met	Gly 560
Gln	Arg	Gln	Gln	Phe 565	Pro	Tyr	Gly	Ala	Ser 570	Tyr	Asp	Arg	Arg	His 575	Glu
			Gln 580				_	585					590		
		595	Gly				600					605			
	610		Met			615					620				
625	_		Tyr		630		-			635					640
			Gly	645					650					655	
			660					665					670		Gly
Gln	Ile	Gln 6 7 5	Thr	His	Gly	Ile	Pro 680	Leu	Gln	Met	Met	Gly 685	Gly	Pro	Leu
Gln	Ser 690	Ser	Ser	Ser	Glu	Gly 695	Pro	Gln	Gln	Asn	Met 700	Trp	Ala	Ala	Arg
Asn 705	Asp	Met	Pro	Tyr	Pro 710	Tyr	Gln	Asn	Arg	Gln 715	Gly	Pro	Gly	Gly	Pro 720
			Pro	725					730					735	
Val	Pro	Asp	Gln 740	Arg	Ile	Asn	His	Glu 745	Ser	Gln	Trp	Pro	Ser 750	His	Val
Ser	Gln	Arg	Gln	Pro	Tyr	Met	Ser	Ser	Ser	Ala	Ser	Met	Gln	Pro	Ile

		755					760					765			
Thr	Arg 770	Pro	Pro	Gln	Pro	Ser 775	Tyr	Gln	Thr	Pro	Pro 780	Ser	Leu	Pro	Asn
His	Ile	Ser	Arg	Ala	Pro	Ser	Pro	Ala	Ser	Phe	Gln	Arg	Ser	Leu	Glu
785					790					795					800
			ser	805					810					815	
Gln	Lys	Val	Met 820	Pro	Thr	Val	Pro	Thr 825	Ser	Gln	Val	Thr	Gly 830	Pro	Pro
Pro	Gln	Pro 835	Pro	Pro	Ile	Arg	Arg 840	Glu	Ile	Thr	Phe	Pro 845	Pro	Gly	Ser
Val	Glu 850	Ala	Ser	Gln	Pro	Val 855	Leu	Lys	Gln	Arg	Arg 860	Lys	Ile	Thr	Ser
Lys 865	Asp	Ile	Val	Thr	Pro 870	Glu	Ala	Trp	Arg	Val 875	Met	Met	Ser	Leu	Lys 880
Ser	Gly	Leu	Leu	Ala 885	Glu	Ser	Thr	Trp	Ala 890	Leu	Asp	Thr	Ile	Asn 895	Ile
Leu	Leu	Tyr	Asp 900	Asp	Ser	Thr	Val	Ala 905	Thr	Phe	Asn	Leu	Ser 910	Gln	Leu
		915	Leu				920					925			
Asp	Ile 930	Phe	Gly	Ile	Leu	Met 935	Glu	Tyr	Glu	Val	Gly 940	Asp	Pro	Ser	Gln
Lys 945	Ala	Leu	Asp	His	Asn 950	Ala	Ala	Arg	Lys	Asp 955	Asp	Ser	Gln	Ser	Leu 960
Ala	Asp	Asp	Ser	Gly 965	Lys	Glu	Glu	Glu	Asp 970	Ala	Glu	Cys	Ile	Asp 975	Asp
Asp	Glu	Glu	Asp 980	Glu	Glu	Asp	Glu	Glu 9 8 5	Glu	Asp	Ser	Glu	Lys 990	Thr	Glu
Ser	Asp	Glu 995	Lys	Ser	Ser	Ile	Ala 1000		Thr	Ala	Pro	Asp 1009		Ala	Ala
Asp	Pro 1010		Glu	Lys	Pro	Lys 1019		Ala	Ser	Lys	Phe 1020		Lys	Leu	Pro
Ile	Lys	Ile	Val	Lys	Lys	Asn	Asn	Leu	Phe	Val	Val	Asp	Arg	Ser	Asp
1025		_		_	1030				_	1035		_		_	1040
			Arg	1045	5				1050	כ				1055	5
			Gly 1060)				1065	5				1070)	
		1075					1080)				1085	5		
	1090)	Lys	_		1095	5				1100)			
Gln	Glu	Lys	Ser	Ile			Thr	Ile	Asp	_		Leu	Ser	Ala	
1105					1110					1115		_			1120
Pro	Gly	Ala	Leu			Asp	Ala	Asn			Pro	Gln	Thr		
Ser	Lys	Phe	Pro			Ile	Gln				Ser	His			
Lys	Leu		1140 Glu -		Glu	Pro				Asp	Glu				Cys
ሞሎ∽	т1а	1155		Trr	C1 =	7.00	1160		ת א	Tva	λrσ	1165		Cve	17=1
	1170)	His			1175	5				1180)			
Ser	Asn	ITE	Val	Arg	Ser	Leu	Ser	Phe	∨al	Pro	GIY	Asn	qaA	Ата	GIU

1190 1195 Met Ser Lys His Pro Gly Leu Val Leu Ile Leu Gly Lys Leu Ile Leu 1210 1205 Leu His His Glu His Pro Glu Arg Lys Arg Ala Pro Gln Thr Tyr Glu 1230 1220 1225 Lys Glu Glu Asp Glu Asp Lys Gly Val Ala Cys Ser Lys Asp Glu Trp 1240 1245 Trp Trp Asp Cys Leu Glu Val Leu Arg Asp Asn Thr Leu Val Thr Leu 1255 1260 Ala Asn Ile Ser Gly Gln Leu Asp Leu Ser Ala Tyr Thr Glu Ser Ile 1270 1275 Cys Leu Pro Ile Leu Asp Gly Leu Leu His Trp Met Val Cys Pro Ser 1290 1295 1285 Ala Glu Ala Gln Asp Pro Phe Pro Thr Val Gly Pro Asn Ser Val Pro 1300 1305 1310 Ser Pro Gln Arg Leu Val Leu Glu Thr Leu Cys Lys Leu Ser Ile Gln 1315 1320 1325 Asp Asn Asn Val Asp Leu Ile Leu Ala Thr Pro Pro Phe Ser Arg Gln 1335 1340 Glu Lys Phe Tyr Ala Thr Leu Val Arg Tyr Val Gly Asp Arg Lys Asn 1350 1355 Pro Val Cys Arg Glu Met Ser Met Ala Leu Leu Ser Asn Leu Ala Gln 1365 1370 1375 Gly Asp Ala Leu Ala Ala Arg Ala Ile Ala Val Gln Lys Gly Ser Ile 1380 1385 1390 Gly Asn Leu Ile Ser Phe Leu Glu Asp Gly Val Thr Met Ala Gln Tyr 1395 1400 1405 Gln Gln Ser Gln His Asn Leu Met His Met Gln Pro Pro Pro Leu Glu 1415 1420 Pro Pro Ser Val Asp Met Met Cys Arg Ala Ala Lys Ala Leu Leu Ala 1430 1435 Met Ala Arq Val Asp Glu Asn Arg Ser Glu Phe Leu Leu His Glu Gly 1445 1450 1455 Arg Leu Leu Asp Ile Ser Ile Ser Ala Val Leu Asn Ser Leu Val Ala 1460 1465 1470 Ser Val Ile Cys Asp Val Leu Phe Gln Ile Gly Gln Leu 1480 <210> 1039 <211> 379 <212> DNA <213> Homo sapiens <400> 1039 geaggageca gggatgetge tgaacateee geagtgeaeg agacaggeet ceaceacaeg gaattacctt ggcctgaggt gttacgagag cacagagaga aaccaggtac agacgcgggg cagaggggag agagggagag agtgtgagag ctaaggtttc gggagaagac tttgtggaaa aagtetttgg etgggteetg caacatagee aggatteagt gaeaggtgag gaecaeteea gattttgtat gtattgaagg ccctgaatac ttttttgaaa gagaatgaca tgagtacacc 300

```
tggtcagcca cacgtgagag gggttggagg agggaagtac cagaggcagg gagaccaggt
agaaagacct cgccatagt
379
<210> 1040
<211> 125
 <212> PRT
<213> Homo sapiens
<400> 1040
Met Ala Arg Ser Phe Tyr Leu Val Ser Leu Pro Leu Val Leu Pro Ser
Ser Asn Pro Ser His Val Trp Leu Thr Arg Cys Thr His Val Ile Leu
                                20
                                                                                     25
Phe Gln Lys Ser Ile Gln Gly Leu Gln Tyr Ile Gln Asn Leu Glu Trp
                                                                           40
Ser Ser Pro Val Thr Glu Ser Trp Leu Cys Cys Arg Thr Gln Pro Lys
                                                                55
Thr Phe Ser Thr Lys Ser Ser Pro Glu Thr Leu Ala Leu Thr Leu Ser
                                                     70
                                                                                                          75
Pro Ser Leu Pro Ser Ala Pro Arg Leu Tyr Leu Val Ser Leu Cys Ala
                                                                                               90
Leu Val Thr Pro Gln Ala Lys Val Ile Pro Cys Gly Gly Gly Leu Ser
                                                                                     105
Arg Ala Leu Arg Asp Val Gln Gln His Pro Trp Leu Leu
                                                                          120
<210> 1041
<211> 388
<212> DNA
<213> Homo sapiens
<400> 1041
ttagtggccg tggaggccat cggctacatc gcgagtattg acaaggccga tatgtcaatc
gaaacggcgt acctgccgcg gctgttggtt tccctggccc tgaccatccc ggtgctcgcc
120
ttgtcgatga tcccggccct gcacttcccg cattggccgt tgtgggcgtt ggcgcttacc
accompany totate to the control of t
cacggcgcgg ccatcatgga caccctggtg tcgctcggcg tcctcacttc gtacctctgg
teggtatgga tgctgaccac aggeggegag cacctctacc tggaggtagc cgtccaccgt
cacgacgetg atcetggeeg geaaattt
388
<210> 1042
<211> 129
<212> PRT
<213> Homo sapiens
```

```
<400> 1042
Leu Val Ala Val Glu Ala Ile Gly Tyr Ile Ala Ser Ile Asp Lys Ala
                                    10
Asp Met Ser Ile Glu Thr Ala Tyr Leu Pro Arg Leu Leu Val Ser Leu
Ala Leu Thr Ile Pro Val Leu Ala Leu Ser Met Ile Pro Ala Leu His
Phe Pro His Trp Pro Leu Trp Ala Leu Ala Leu Thr Thr Pro Val Val
                        55
                                             60
Phe Trp Gly Ala Trp Pro Leu His His Ala Ala Trp Thr Asn Leu Arg
                    70
His Gly Ala Ala Ile Met Asp Thr Leu Val Ser Leu Gly Val Leu Thr
                                    90
Ser Tyr Leu Trp Ser Val Trp Met Leu Thr Thr Gly Gly Glu His Leu
                                105
            100
Tyr Leu Glu Val Ala Val His Arg His Asp Ala Asp Pro Gly Arg Gln
                            120
                                                 125
        115
Ile
<210> 1043
<211> 555
<212> DNA
<213> Homo sapiens
<400> 1043
accqqtqaaa ccctqatcqq ccaatcqttt tccaccqttc ccggcggcaa gggcgcaaac
caggeggteg ctteggegeg tettggggee gaagtegega tggteggttg egtgggtace
120
gatgectacg gegegeaatt aegegaegea ttgttggtgg aaggeatega ttgccaggee
qtcaqcaccq tcqacqqttc caqcqqtqtq qcqctqatcg tggtggatga cagcagccag
aatgegateg ttategtege eggtageaat ggegagetga eteeggeeaa gttacagace
tttgacageq tqctqcaqqc tqccqacqtq attqtctqcc aqcttgagac gccgatggac
actgteggee atgegeetaa gegeggtege gaactgggea agaeggtgat ceteaateeg
420
gegeeggeea geggeeeget geetgaggat tggtaegeeg ceategatta cetgatteee
480
aacgaaagcg aagcctcggc cttgagtggc gtggtggtgg attcactgga cagcgccaag
540
gtcgctgcta cgcgt
555
<210> 1044
<211> 185
<212> PRT
<213> Homo sapiens
<400> 1044
Thr Gly Glu Thr Leu Ile Gly Gln Ser Phe Ser Thr Val Pro Gly Gly
```

```
1
                 5
                                    10
Lys Gly Ala Asn Gln Ala Val Ala Ser Ala Arg Leu Gly Ala Glu Val
                                25
Ala Met Val Gly Cys Val Gly Thr Asp Ala Tyr Gly Ala Gln Leu Arg
                            40
Asp Ala Leu Leu Val Glu Gly Ile Asp Cys Gln Ala Val Ser Thr Val
                        55
Asp Gly Ser Ser Gly Val Ala Leu Ile Val Val Asp Asp Ser Ser Gln
                    70
                                        75
Asn Ala Ile Val Ile Val Ala Gly Ser Asn Gly Glu Leu Thr Pro Ala
                85
                                    90
Lys Leu Gln Thr Phe Asp Ser Val Leu Gln Ala Asp Val Ile Val
                                105
            100
Cys Gln Leu Glu Thr Pro Met Asp Thr Val Gly His Ala Pro Lys Arg
                            120
Gly Arg Glu Leu Gly Lys Thr Val Ile Leu Asn Pro Ala Pro Ala Ser
                        135
Gly Pro Leu Pro Glu Asp Trp Tyr Ala Ala Ile Asp Tyr Leu Ile Pro
                    150
Asn Glu Ser Glu Ala Ser Ala Leu Ser Gly Val Val Asp Ser Leu
                165
                                    170
Asp Ser Ala Lys Val Ala Ala Thr Arg
            180
<210> 1045
<211> 371
<212> DNA
<213> Homo sapiens
<400> 1045
ctattgccat actaccgccg cggcaaccta caggacatga tcaacgccaa cctcttcaat
cactocaaat tococqaqac qcaccttatq aatctattto toggogtotg caaggoootg
cgcgccatgc acgattacca cgcaccgccg gcagagcgca tgccaattgg gcaccgaagg
180
cagaccacca cccaggtgca aagcaacagt ggtagagcgg tcgctcatcg acgaaacgta
cggaagaaga cgaagagacg gagcaggaaa gacctgttat ggaatcacag aaccacatcg
ggcagggcgg cgagcacaaa accatatgcg catcgcgaca ttaaaccagg tacgtgctgc
aagctcctcg g
371
<210> 1046
<211> 123
<212> PRT
<213> Homo sapiens
<400> 1046
Leu Leu Pro Tyr Tyr Arg Arg Gly Asn Leu Gln Asp Met Ile Asn Ala
                 5
Asn Leu Phe Asn His Ser Lys Phe Pro Glu Thr His Leu Met Asn Leu
```

```
20
                                25
                                                     30
Phe Leu Gly Val Cys Lys Ala Leu Arg Ala Met His Asp Tyr His Ala
Pro Pro Ala Glu Arg Met Pro Ile Gly His Arg Arg Gln Thr Thr Thr
                        55
Gln Val Gln Ser Asn Ser Gly Arg Ala Val Ala His Arg Arg Asn Val
                                        75
Arg Lys Lys Thr Lys Arg Arg Ser Arg Lys Asp Leu Leu Trp Asn His
                                    90
Arg Thr Thr Ser Gly Arg Ala Ala Ser Thr Lys Pro Tyr Ala His Arg
                                105
                                                     110
Asp Ile Lys Pro Gly Thr Cys Cys Lys Leu Leu
        115
                            120
<210> 1047
<211> 754
<212> DNA
<213> Homo sapiens
<400> 1047
natgeccaga aggaectgga egaggegttg ccagecetgg atgeggetet ggecageeta
cgcaacctca acaagaacga agtgacccag gtacgtgcca tgcagcggcc acccccgggt
120
qtqaaactqq tcataqaaqc tqtqtqcatt atqaaaqqca tcaagcccaa gaaggtgcct
ggagaaaagc caggcaccaa ggtggatgac tactgggagc ctggcaaggg gctgctgcag
240
gaccegggce actteettga gageetette aagtttgaca aggacaacat tggagatgtg
gtgatcaaag ccatccagcc gtacatcgat aatgaagagt tccagccagc caccattgcc
aaggtgtcca agggttgccc cttcatttgg ccgtgggggg gggcaatgcc caagtacccc
tttqtqqcca aggccgtgga gcccaagcgg caagccctgc tggaggccca ggatgacctg
ggggtgacac agaggateet ggatgaggea aaacagegee ttegtgaggt ggaggaegge
540
atogocacaa tgcaqqctaa qtaccqqqaa tgcattacca agaaggagga gctggagctg
600
aagtgtgagc agtgtgagca gcggctgggc cacgctggca aggtgcgcac cctcctcctg
660
caaggeetge aagegggeee ggeeeagaca ggggeeagaa aggaeeaggg egeeggtggg
teetggggtg getgtecaac ecectecetg geaa
754
<210> 1048
<211> 251
<212> PRT
<213> Homo sapiens
<400> 1048
Xaa Ala Gln Lys Asp Leu Asp Glu Ala Leu Pro Ala Leu Asp Ala Ala
```

```
10
 1
Leu Ala Ser Leu Arg Asn Leu Asn Lys Asn Glu Val Thr Gln Val Arg
            20
                                25
Ala Met Gln Arg Pro Pro Gly Val Lys Leu Val Ile Glu Ala Val
Cys Ile Met Lys Gly Ile Lys Pro Lys Lys Val Pro Gly Glu Lys Pro
Gly Thr Lys Val Asp Asp Tyr Trp Glu Pro Gly Lys Gly Leu Leu Gln
                    70
                                        75
Asp Pro Gly His Phe Leu Glu Ser Leu Phe Lys Phe Asp Lys Asp Asn
                                    90
                85
Ile Gly Asp Val Val Ile Lys Ala Ile Gln Pro Tyr Ile Asp Asn Glu
            100
                                105
Glu Phe Gln Pro Ala Thr Ile Ala Lys Val Ser Lys Gly Cys Pro Phe
                            120
                                                125
Ile Trp Pro Trp Gly Gly Ala Met Pro Lys Tyr Pro Phe Val Ala Lys
                        135
                                            140
Ala Val Glu Pro Lys Arg Gln Ala Leu Leu Glu Ala Gln Asp Asp Leu
                    150
                                        155
Gly Val Thr Gln Arg Ile Leu Asp Glu Ala Lys Gln Arg Leu Arg Glu
                                    170
Val Glu Asp Gly Ile Ala Thr Met Gln Ala Lys Tyr Arg Glu Cys Ile
            180
                                185
Thr Lys Lys Glu Glu Leu Glu Leu Lys Cys Glu Gln Cys Glu Gln Arg
        195
                            200
                                                205
Leu Gly His Ala Gly Lys Val Arg Thr Leu Leu Gln Gly Leu Gln
                        215
Ala Gly Pro Ala Gln Thr Gly Ala Arg Lys Asp Gln Gly Ala Gly Gly
                    230
                                        235
Ser Trp Gly Gly Cys Pro Thr Pro Ser Leu Ala
                245
<210> 1049
<211> 558
<212> DNA
<213> Homo sapiens
<400> 1049
eqeaqeaata qetqeacttq accaqactqq qetttqcaat aagcqcattc ceegggetga
atgctgcaga tccttacagg ctgactgcag ggtgtttcag attctcctgg agtcacacgt
qecaqettga tttcaaqaaa caactagaat aacagtttte tgataagaag tetatageae
180
tttatggctt acataatcca gagatagatg ggctgggcat gattcccatt ttctgttggg
gaaaccgact cacagagaag ttaagggaca agtataaagt gatgaaactg tgtactgaac
cteatgtete ceagacteee gggteeeegg getttttete ggggeggeee catteacatt
gcaattcatg gccggggcaa atgctcaccc acagagatat taagcactcc aacactccat
ccaccaggtt gcagccaaag gattcagaag acaatgatca ttccatcagc atgcactatg
```

480

```
cagetaaaga aaggttttgg catgetetge tttattgttt cacagaagat aagaaaataa
actgcaaagt aacttaag
558
<210> 1050
<211> 112
<212> PRT
<213> Homo sapiens
<400> 1050
Met Ile Pro Ile Phe Cys Trp Gly Asn Arg Leu Thr Glu Lys Leu Arg
Asp Lys Tyr Lys Val Met Lys Leu Cys Thr Glu Pro His Val Ser Gln
            20
                                25
Thr Pro Gly Ser Pro Gly Phe Phe Ser Gly Arg Pro His Ser His Cys
                            40
Asn Ser Trp Pro Gly Gln Met Leu Thr His Arg Asp Ile Lys His Ser
                        55
Asn Thr Pro Ser Thr Arg Leu Gln Pro Lys Asp Ser Glu Asp Asn Asp
                    70
                                        75
His Ser Ile Ser Met His Tyr Ala Ala Lys Glu Arg Phe Trp His Ala
Leu Leu Tyr Cys Phe Thr Glu Asp Lys Lys Ile Asn Cys Lys Val Thr
            100
                                105
<210> 1051
<211> 317
<212> DNA
<213> Homo sapiens
<400> 1051
qcqttqaqtc qqqatqtcqc attcatqccc qqcqaacctt tttttqccqa accqgaqcqt
aatccgggta atcttcgtct caatttcagt cacatcgcac cggagcgtct ggacgaaggt
ctcaagcgcc tggctgctgt catccgtcac gcacaggctg cacaagcggc ttaaggggag
qqccatqtac aaggtttatq qcgattacca gtcgggcaat tgctacaaga tcaagctgat
qctqcacctg ctgggqcagg aatatcgctg gcacccgggg gacatcctca aggtgacacc
gagaccccgg aattttt
317
<210> 1052
<211> 57
<212> PRT
<213> Homo sapiens
<400> 1052
Ala Leu Ser Arg Asp Val Ala Phe Met Pro Gly Glu Pro Phe Phe Ala
Glu Pro Glu Arg Asn Pro Gly Asn Leu Arg Leu Asn Phe Ser His Ile
```

```
20
                                25
Ala Pro Glu Arg Leu Asp Glu Gly Leu Lys Arg Leu Ala Ala Val Ile
                                                 45
                            40
Arg His Ala Gln Ala Ala Gln Ala Ala
    50
<210> 1053
<211> 318
<212> DNA
<213> Homo sapiens
<400> 1053
caattggcta cgcgatccga acgggcgcat gggtctctat gactggcaag ccgtcgctcg
cggggagtgg gccctcgact atgcctacgc gatgtcggtg aacctgacca ccgagaaccg
gegtgeetgg gaaegegaee tgetegageg ttatetgtgg egeetegeeg aagagggtgt
cyccaacccy coctcyttcy agcaagcyty gctacyctac cygcaacayc cyttccacyt
cgggatette teaetettga ceateggege eggaegettt caaceggeea tgcaacegge
ggactennnn ccccncnc
318
<210> 1054
<211> 96
<212> PRT
<213> Homo sapiens
<400> 1054
Met Gly Leu Tyr Asp Trp Gln Ala Val Ala Arg Gly Glu Trp Ala Leu
                                    10
Asp Tyr Ala Tyr Ala Met Ser Val Asn Leu Thr Thr Glu Asn Arg Arg
Ala Trp Glu Arg Asp Leu Leu Glu Arg Tyr Leu Trp Arg Leu Ala Glu
                            40
Glu Gly Val Ala Asn Pro Pro Ser Phe Glu Gln Ala Trp Leu Arg Tyr
                        55
                                            60
Arq Gln Gln Pro Phe His Val Gly Ile Phe Ser Leu Leu Thr Ile Gly
                    70
                                        75
Ala Gly Arg Phe Gln Pro Ala Met Gln Pro Ala Asp Ser Xaa Pro Xaa
                                    90
                85
<210> 1055
<211> 391
<212> DNA
<213> Homo sapiens
<400> 1055
tacaatgtat catcaaccag aaatacaatg agaaccacct gccagtctcc caaatactat
ctgcagccac tcatttaact ctcctggcta gctccacgtg ggccgtctga actctcttag
120
```

```
aagaatcatc tototgotca ggcaccggga gcaaggggca totgtegotc tgcagaacgg
aggggaccag gcctgatgaa caccatcctg ggcccagaaa cctgggaggg taaagagaac
tgccaggggt gaagtccaag gatgggaaaa aggcctccgg ggcagagtcc tgaaatgtca
qaaqtacacc aaagaggaaa cagcatcacg ttattgctga ggcagggcct cattctgttg
ccaaggetge agtgeagtgg tgacaccatg g
<210> 1056
<211> 83
<212> PRT
<213> Homo sapiens
<400> 1056
Met Val Ser Pro Leu His Cys Ser Leu Gly Asn Arg Met Arg Pro Cys
                                    10
Leu Ser Asn Asn Val Met Leu Phe Pro Leu Trp Cys Thr Ser Asp Ile
                                25
            20
Ser Gly Leu Cys Pro Gly Gly Leu Phe Pro Ile Leu Gly Leu His Pro
                                                45
        35
                            40
Trp Gln Phe Ser Leu Pro Ser Gln Val Ser Gly Pro Arg Met Val Phe
Ile Arg Pro Gly Pro Leu Arg Ser Ala Glu Arg Gln Met Pro Leu Ala
                                        75
65
                    70
Pro Gly Ala
<210> 1057
<211> 341
<212> DNA
<213> Homo sapiens
<400> 1057
gaattccctg cgcgttgac gccggtcgcc gagcaactcg gcgtgtcgct gacgctgcat
cocqatqatc cgccqcqtcc qctgttcggg ttgccgcgca ttgcgtccag cgccgaggac
tatcaqqqqc tqttcqatqc qgtaccqtcc aaggcgaacq gcatctgcct gtgcacqggt
tegeteggeg tgegeggga gaacgatetg cetgaaatgg cegaaegttt eggeeegegt
240
ategeetttg egeatetgeg egegaceaag egegaegeeg atggeetgte gtttcatgaa
tecgaccate tegacggega tgtcgacatg gtcgcgtget c
341
<210> 1058
<211> 113
<212> PRT
<213> Homo sapiens
```

```
<400> 1058
Glu Phe Pro Ala Arg Val Thr Pro Val Ala Glu Gln Leu Gly Val Ser
Leu Thr Leu His Pro Asp Asp Pro Pro Arg Pro Leu Phe Gly Leu Pro
Arg Ile Ala Ser Ser Ala Glu Asp Tyr Gln Ala Leu Phe Asp Ala Val
Pro Ser Lys Ala Asn Gly Ile Cys Leu Cys Thr Gly Ser Leu Gly Val
Arg Ala Glu Asn Asp Leu Pro Glu Met Ala Glu Arg Phe Gly Pro Arg
                    70
                                        75
Ile Ala Phe Ala His Leu Arg Ala Thr Lys Arg Asp Ala Asp Gly Leu
                                    90
Ser Phe His Glu Ser Asp His Leu Asp Gly Asp Val Asp Met Val Ala
                                105
Cys
<210> 1059
<211> 372
<212> DNA
<213> Homo sapiens
<400> 1059
nagetgaceg getggeagat caacatcatg acgeeggaag aaagegtgaa cegeegggaa
gtcgagcgtt cgggcctgcg caccacgttc atgaacaagc tggacgtcga tgaggaagtc
gccgacatcc tgatcgacga aggtttcacc ggtatcgagg aaatcgccta cgtccccatg
caggaactgc tggagatcga ggcgttcgac gaagacacca tcaacgagtt gcgcgcccgt
gcccgcaatg cgctgctgac cgaggccatc gcccaggaag agcgccttga gaccgcgcag
gatetgettg aactegaagg egtgaegeeg gaactggetg eeaagetgge egagegteaa
gtgcgtacgc gt
372
<210> 1060
<211> 124
<212> PRT
<213> Homo sapiens
Xaa Leu Thr Gly Trp Gln Ile Asn Ile Met Thr Pro Glu Glu Ser Val
                                    10
Asn Arg Arg Glu Val Glu Arg Ser Gly Leu Arg Thr Thr Phe Met Asn
                                25
Lys Leu Asp Val Asp Glu Glu Val Ala Asp Ile Leu Ile Asp Glu Gly
                            40
Phe Thr Gly Ile Glu Glu Ile Ala Tyr Val Pro Met Gln Glu Leu Leu
Glu Ile Glu Ala Phe Asp Glu Asp Thr Ile Asn Glu Leu Arg Ala Arg
```

```
75
                                                            80
65
                    70
Ala Arg Asn Ala Leu Leu Thr Glu Ala Ile Ala Gln Glu Glu Arg Leu
Glu Thr Ala Gln Asp Leu Leu Glu Leu Glu Gly Val Thr Pro Glu Leu
            100
                                105
Ala Ala Lys Leu Ala Glu Arg Gln Val Arg Thr Arg
                            120
<210> 1061
<211> 456
<212> DNA
<213> Homo sapiens
<400> 1061
tctagactcc atggcaccgg gctgagcggg taagtaagaa agataaaaag tgccttttgc
cccttcgagg aaaccctttt gcaggccaag caagggctgc aagtgtttgg gagctgagag
gagaaggagg attctggagc attgtatttg gcagccggag cgggcagtgg gcgggggtt
gggacacgaa gggctcttcg gacccctgtg cctcttctgc cccaagggcg agaagacggg
cttegeageg accetegggg gteeatggag cegeetgeet tegeeceete getetteeca
ggtctgaacc tggatgggga gaagaaattg aagtgctttg gagacggggg ggcttaaaac
actagggage etcategece ageettggge ceaettteet ttegategtg aggatteege
acceegaage egtetteteg gggeteeggg gegege
456
<210> 1062
<211> 125
<212> PRT
<213> Homo sapiens
<400> 1062
Met Arg Leu Pro Ser Val Leu Ser Pro Pro Val Ser Lys Ala Leu Gln
Phe Leu Leu Pro Ile Gln Val Gln Thr Trp Glu Glu Arg Gly Glu
                                25
Gly Arg Arg Leu His Gly Pro Pro Arg Val Ala Ala Lys Pro Val Phe
                            40
Ser Pro Leu Gly Gln Lys Arg His Arg Gly Pro Lys Ser Pro Ser Cys
                                            60
Pro Asn Pro Pro Pro Thr Ala Arg Ser Gly Cys Gln Ile Gln Cys Ser
                    70
Arg Ile Leu Leu Leu Ser Ala Pro Lys His Leu Gln Pro Leu Leu
                                    90
Gly Leu Gln Lys Gly Phe Leu Glu Gly Ala Lys Gly Thr Phe Tyr Leu
                                105
Ser Tyr Leu Pro Ala Gln Pro Gly Ala Met Glu Ser Arg
        115
                            120
```

<210> 1063 <211> 3760 <212> DNA <213> Homo sapiens <400> 1063 ntagtagaga cagggtttca ccatgttggc caggctggtc ttgaactcct gagcttgtga tecaccegee teageeteee aaagtgetgg gattacagge gtgacgactg cacceageet taaggtetta taactagtaa atatetgeat taaagaacga gttgaatgaa aattetgata aatteetaet taaaqtgtat eeaaagaaaa eggaaaaaagt etaggagtta gtgatattag attcagaaga atgagctttg taattcttaa aaattagtct cagaatagaa aggattttaa aagtaattga gtaaagtcat aggaaatgtg accatataaa ggaatggctc taaatgtatt aatccagaag gaagcaacag gttaaacagt aagaggtaag aaacaaaaaa taaggaacga gagagagaga gtgacaggga gagagagaca gagcggggaa ggagagaatg agaaggaaaa tcaggaaaac gaggagaaac agaattaagg aggtgatact ggaatagtat cagaccattc 540 tgaatcaatt taagaattgc catgtctaat tcttatatgg aagatttgaa atacaaggat attgaaagga ataacaaatt ataatgaatg catagaaatc cttatgtaat ccaaggtcat taatttgaag gaagacatca agaaaatgtg atctagaaat aaaggttgag attgctccat ttacaaaatt attatgetet ataatettee catatgeaaa tattteatat teeetetttt gtcccatgga catatttcac agcaacaacg aatcaagtgc tgacctaaat ggggtatctg ttaaaactta gtatattgat atcettcacc ccactccagg aacgtteget acgetaggac tgcatcttgg gaacagaatt ttagagatga tcatctctta catcagaagc aggatctaaa 960 tgatccctgg atgcccaatt tcctgaccct gctattgttg tgggtggcaa gataagagga 1020 gttgcatcac agatgaaaaa gtaaggccga agaagaccag agaagagttg gttgaatgtg tagatataag atccatctgt gacattgtag aatgaaattt caccggcttc atagtccaag aaaatcccaa tgcagtgagg actttccagt tggagaagag gcactgatgg ggaggcaagg accatgtact cattecettt cagcagecae agggeecaga ecceattete aggagatgge gtggtttccc cctttcttgg cagtgtgtct tgacagaccc ctaaacccca ctctgctcct totoccacca gaacctccca gtaatgcctc cctgatgaga agototgcaa acccaggatg cagggccatg tgtcaaatcg ctcagggttg ttggggacat ccctccatgg ttctccatcc 1440

tgcacactgc 1500	gcaggtcggc	ggtcaagagc	agactcgggt	gcgccgtggc	gggatccagc
tttacatcca 1560	cttggaactt	ccttaagagc	tecetectee	cagggatgca	gcatgctgtc
ttcagttcca 1620	tggggatgtt	ctctgcttcc	agccttgtga	cagccttact	tetgeteagg
actectetca 1680	caccctccag	cagacccagg	gctgggcgct	ggcacctctc	ctgcagctca
teegeeaget 1740	ccttcagggc	cttgctctgc	tggaccagcc	ggetettget	ctcccgcagt
ctctgcagcg 1800	tegetegete	ctccgcctcc	agccgcctca	gctaccaggt	aaagctccag
atggctctgg 1860	aacttatgag	gaaagagttg	gaggacgcct	tgactcagga	ggccaacgtg
gggaaaaaga 1920	ctgtcatttg	gaaggagaaa	gtggaaatgc	agaggcagcg	cttcagattg
gagtttgaga 1980	agcatcgtgg	ctttctggcc	caggaggagc	aacggcagct	gaggcggctg
gaggcggagg 2040	agcgagcgac	gctgcagaga	ctgcgggaga	gcaagagccg	gctggtccag
cagagcaagg 2100	ccctgaagga	gctggcggat	gagctgcagg	agaggtgcca	gcgcccagcc
ctgggtctgc 2160	tggagggtgt	gagaggagtc	ctgagcagaa	gtaaggctgt	cacaaggctg
gaagcagaga 2220	acatececat	ggaactgaag	acagcatget	gcatccctgg	gaggagggag
ctcttaagga 2280	agttccaagt	ggatgtaaag	ctggatcccg	ccacggcgca	cccgagtctg
ctcttgaccg 2340	ccgacctgcg	cagtgtgcag	gatggagaac	catggaggga	tgtccccaac
aaccctgagc 2400	gatttgacac	atggccctgc	atcctgggtt	tgcagagctt	ctcatcaggg
aggcattact 2460	gggaggttct	ggtgggagaa	ggagcagagt	ggggtttagg	ggtctgtcaa
gacacactgc 2520	caagaaaggg	ggaaaccatg	ccatctcctg	ag aa tggggt	ctgggccctg
tggctgctga 2580	aagggaatga	gtacatggtc	cttgcctccc	catcagtgcc	tcttctccaa
ctggaaagtc 2640	ctcgctgcat	tgggattttc	ttggactatg	aagccggtga	aatttcattc
tacaatgtca 2700	cagatggatc	ttatatctac	acattcaacc	aactcttctc	tggtcttctt
cggccttact 2760	ttttcatctg	tgatgcaact	cctcttatct	tgccacccac	gacaatagca
gggtcaggaa 2820	attgggcatc	cagggatcat	ttagatcctg	cttctgatgt	aagagatgat
catctctaaa 2880	attctgttcc	caagatgcag	tcctagcgta	gcgaacgttc	ctggagtggg
gtgaaggata 2940	tcaatatact	aagttttaac	agatacccca	tttaggtcag	cacttgattc
gttgttgctg 3000	tgaaatatgt	ccatgggaca	aaagagggaa	tatgaaatat	ttgcatatgg
gaagattata 3060	gagcataata	attttgtaaa	tggagcaatc	tcaacctcta	tttctagatc

```
acattttett qatqtettee tteaaattaa tqaeettqqa ttacataagg atttetatge
3120
atteattata attigitati eetticaata teetigitati teaaatetie eatataagaa
ttagacatqq caattettaa attgatteaq aatqqtetqa taetatteea gtateacete
3240
cttaattetg titeteeteg titteetgat titeettete atteteteet teecegetet
gtetetetet ecetgteact etetetetet egiteettat tittigitte tiacetetta
3360
ctgtttaacc tgttgcttcc ttctggatta atacatttag agccattcct ttatatggtc
acatttccta tgactttact caattacttt taaaatcctt tctattctga gactaatttt
taagaattac aaagctcatt cttctgaatc taatatcact aactcctaga ctttttccgt
tttctttqqa tacactttaa gtaggaattt atcagaattt tcattcaact cgttctttaa
tgcagatatt tactggttat aagaccttaa ggctgggtgc agtggctcac gcctgtggtc
3660
ccagcgcttt ggggggctga ggcgggtgga tcacaggctc gggagttcgg ggccagcctg
3720
3760
<210> 1064
<211> 483
<212> PRT
<213> Homo sapiens
<400> 1064
Met Gln Gly His Val Ser Asn Arg Ser Gly Leu Leu Gly Thr Ser Leu
                                   10
His Gly Ser Pro Ser Cys Thr Leu Arg Arg Ser Ala Val Lys Ser Arg
Leu Gly Cys Ala Val Ala Gly Ser Ser Phe Thr Ser Thr Trp Asn Phe
Leu Lys Ser Ser Leu Leu Pro Gly Met Gln His Ala Val Phe Ser Ser
Met Gly Met Phe Ser Ala Ser Ser Leu Val Thr Ala Leu Leu Leu Leu
                   70
Arg Thr Pro Leu Thr Pro Ser Ser Arg Pro Arg Ala Gly Arg Trp His
                                   90
                                                       95
Leu Ser Cys Ser Ser Ser Ala Ser Ser Phe Arg Ala Leu Leu Cys Trp
           100
                               105
Thr Ser Arg Leu Leu Ser Arg Ser Leu Cys Ser Val Ala Arg Ser
                           120
                                               125
Ser Ala Ser Ser Arg Leu Ser Tyr Gln Val Lys Leu Gln Met Ala Leu
                       135
Glu Leu Met Arg Lys Glu Leu Glu Asp Ala Leu Thr Gln Glu Ala Asn
                                       155
Val Gly Lys Lys Thr Val Ile Trp Lys Glu Lys Val Glu Met Gln Arg
               165
                                   170
Gln Arg Phe Arg Leu Glu Phe Glu Lys His Arg Gly Phe Leu Ala Gln
```

185

180

```
Glu Glu Gln Arg Gln Leu Arg Arg Leu Glu Ala Glu Glu Arg Ala Thr
                         200
Leu Gln Arg Leu Arg Glu Ser Lys Ser Arg Leu Val Gln Gln Ser Lys
                      215
                                         220
Ala Leu Lys Glu Leu Ala Asp Glu Leu Gln Glu Arg Cys Gln Arg Pro
                  230
                                     235
Ala Leu Gly Leu Leu Glu Gly Val Arg Gly Val Leu Ser Arg Ser Lys
                                 250
              245
Ala Val Thr Arg Leu Glu Ala Glu Asn Ile Pro Met Glu Leu Lys Thr
                             265
           260
Ala Cys Cys Ile Pro Gly Arg Arg Glu Leu Leu Arg Lys Phe Gln Val
                         280 285
       275
Asp Val Lys Leu Asp Pro Ala Thr Ala His Pro Ser Leu Leu Leu Thr
        295
Ala Asp Leu Arg Ser Val Gln Asp Gly Glu Pro Trp Arg Asp Val Pro
                  310
                                     315
Asn Asn Pro Glu Arg Phe Asp Thr Trp Pro Cys Ile Leu Gly Leu Gln
Ser Phe Ser Ser Gly Arg His Tyr Trp Glu Val Leu Val Gly Glu Gly
                              345
Ala Glu Trp Gly Leu Gly Val Cys Gln Asp Thr Leu Pro Arg Lys Gly
                          360
Glu Thr Met Pro Ser Pro Glu Asn Gly Val Trp Ala Leu Trp Leu Leu
                      375
Lys Gly Asn Glu Tyr Met Val Leu Ala Ser Pro Ser Val Pro Leu Leu
                  390
                                     395
Gln Leu Glu Ser Pro Arg Cys Ile Gly Ile Phe Leu Asp Tyr Glu Ala
              405
                                 410
Gly Glu Ile Ser Phe Tyr Asn Val Thr Asp Gly Ser Tyr Ile Tyr Thr
           420
                             425
                                                430
Phe Asn Gln Leu Phe Ser Gly Leu Leu Arg Pro Tyr Phe Phe Ile Cys
                          440
Asp Ala Thr Pro Leu Ile Leu Pro Pro Thr Thr Ile Ala Gly Ser Gly
                     455
                                         460
Asn Trp Ala Ser Arg Asp His Leu Asp Pro Ala Ser Asp Val Arg Asp
                  470
                                     475
                                                        480
Asp His Leu
<210> 1065
<211> 892
<212> DNA
<213> Homo sapiens
<400> 1065
nacgcgtggt gtcatgggga ggtgggctgc agtgatgaga aaaggccggg ggctgtgcaa
```

taccatgctt cacaaaggga gaagatcaaa gtgaccctcc cccatggctt tggaaccttc

ttgtccagtc tggaaggggg gaagaagaga tgaggggaag gctgtccagg ggggtgcaag

geoctagaga cecageagag aagggaetet ggeeactgaa ggggeeetee cattgtgget

240

```
etggtteeet agageagete eagettettg geeteeeeg tetgatgett ageteateee
300
ateceetqqa qtqctqtqqa qettaqatqa aacaqeecaq tqeteactet teaatgagee
cacccagage ageateaaga tgeagttgge ggggtaetgg aaetggettg geaagggetg
cqcaqqcaac aqqtcccaqc aagagtcagc taqcctagct cagccctgca cacctggaga
cetgggggtg etecagacae eteggeeett taggteeett taattgaatg tgtgtggate
agtgaaggtt gaggaatcat ttctctatgg cccaagacgt ttctctctgc agttgtcatg
ttagtacctg ccagetttte etetettaca taaattteat gecagageet ggaaatgtgt
660
gccctttgta ggagggcat cacaggctgg ctcacctcag cagtgccagg cagagcccgt
cecteteatt geaggaggeg catgaagegt gtetgggace gagetgtgga gtteetggee
780
tecaaegaat eeeggateea gaeggagtee caeegegttg eaggagagga catgetggtg
ttgagatgga ctaagccctc ttccttctct gactcagagc gataagcccg gg
892
<210> 1066
<211> 76
<212> PRT
<213> Homo sapiens
<400> 1066
Met Cys Ala Leu Cys Arg Gly Ile Thr Gly Trp Leu Thr Ser Ala
                                    10
Val Pro Gly Arg Ala Arg Pro Ser His Cys Arg Arg Arg Met Lys Arg
                                25
Val Trp Asp Arq Ala Val Glu Phe Leu Ala Ser Asn Glu Ser Arg Ile
Gln Thr Glu Ser His Arg Val Ala Gly Glu Asp Met Leu Val Leu Arg
                        55
Trp Thr Lys Pro Ser Ser Phe Ser Asp Ser Glu Arg
                    70
<210> 1067
<211> 418
<212> DNA
<213> Homo sapiens
<400> 1067
qaattcqaqq tcaccgcqaa tqtqttccqc qaaqqccacg acgccgtcgg ggctagtgtc
gttctcaccg atcccgaggg caaccgtcac ctcactgaca tgcaccaggt cgagccctgg
ggactagaca totggaaage cogagtotee gotgacateg aaggegactg gactatgeac
180
gttgaaggct ggtcagacac ctggggcacg tggcatcaca atgccaatgc caagctcgcc
240
```

```
getgecateg aegtegaact ggtgtgegee gaaggeeatg ceetcataaa egaggeggte
300
cggcacgccg agcaatccgg ggatactgac gcgatcacgg ctctgcgcga gaccgatgcc
aacctaaccc ttgaccgtgc ccccgactcg ctacaacagg tcatcaacac ctacgcgt
418
<210> 1068
<211> 139
<212> PRT
<213> Homo sapiens
<400> 1068
Glu Phe Glu Val Thr Ala Asn Val Phe Arg Glu Gly His Asp Ala Val
Gly Ala Ser Val Val Leu Thr Asp Pro Glu Gly Asn Arg His Leu Thr
                                25
Asp Met His Gln Val Glu Pro Trp Gly Leu Asp Ile Trp Lys Ala Arg
Val Ser Ala Asp Ile Glu Gly Asp Trp Thr Met His Val Glu Gly Trp
                        55
Ser Asp Thr Trp Gly Thr Trp His His Asn Ala Asn Ala Lys Leu Ala
                                        75
                    70
Ala Ala Ile Asp Val Glu Leu Val Cys Ala Glu Gly His Ala Leu Ile
                85
Asn Glu Ala Val Arg His Ala Glu Gln Ser Gly Asp Thr Asp Ala Ile
            100
                                105
                                                    110
Thr Ala Leu Arg Glu Thr Asp Ala Asn Leu Thr Leu Asp Arg Ala Pro
                            120
                                                125
Asp Ser Leu Gln Gln Val Ile Asn Thr Tyr Ala
   130
                        135
<210> 1069
<211> 371
<212> DNA
<213> Homo sapiens
<400> 1069
ntqtacaatt teettqetqq aaqtactqqa qegaatatga taeggtetee ggceteteag
cagttcatat gccgtcactc ccagggacca ccagtcaaca gcaaaggaat agcctgctcc
ttttctggag ctgaacatct caggtgccat gtaaggcttg gtgccagcca tggtggagac
ctgcgttatc acctgcaaca gaacgtccac ttcaaggaag aaacagtgaa gctcttcatc
tgtgagctgg tcatggccct ggactacctg cagaaccagc gcatcattca cagggatatg
aagcotgaca atattttact tgacgaacat gggcacgtgc acatcacaga tttcaacatt
gctgcgatgc t
371
<210> 1070
```

```
<211> 123
<212> PRT
<213> Homo sapiens
<400> 1070
Xaa Tyr Asn Phe Leu Ala Gly Ser Thr Gly Ala Asn Met Ile Arg Ser
Pro Ala Ser Gln Gln Phe Ile Cys Arg His Ser Gln Gly Pro Pro Val
                                25
Asn Ser Lys Gly Ile Ala Cys Ser Phe Ser Gly Ala Glu His Leu Arg
Cys His Val Arg Leu Gly Ala Ser His Gly Gly Asp Leu Arg Tyr His
                        55
Leu Gln Gln Asn Val His Phe Lys Glu Glu Thr Val Lys Leu Phe Ile
Cys Glu Leu Val Met Ala Leu Asp Tyr Leu Gln Asn Gln Arg Ile Ile
                                    90
His Arg Asp Met Lys Pro Asp Asn Ile Leu Leu Asp Glu His Gly His
                                105
Val His Ile Thr Asp Phe Asn Ile Ala Ala Met
                            120
<210> 1071
<211> 998
<212> DNA
<213> Homo sapiens
<400> 1071
nnacgcgttt gtgtcgtcca tcagaagctg tgctcgattt gttaccgcaa gagcagcgtg
ggagtttcgt caaggaagac ggacaaatcg tcattgatga gaatggcaac agggtttgat
120
cccacccgaa gtacgtggcc ttggagtgcc attcgcactc cacttggcca ccgtttgcat
tegacetaae cageaattge atetegtttg acetgetege gttgtcaaca teatageaac
gageggeeaa tageagagtt etggteatee tgtteegeee tteeteetat ttgaageete
agttttcagca aagagetgtt tatgagtttt cegtcaaacg gegettgtat aggeataggg
ggtataccta tgatgcgtgt attcacagtt aaaaaggttt ctctcatggg ccatacagct
420
tcaaacaaag acgatettet caaacgegtg aaacgcateg eggggcaaat ecaggeegtt
gagogtgcac tggagtcgga tgccgattgc gcgaaaacat tgcatctcgt agctgccaca
cgtggagcta tcaacggctt gatggacgaa attattgagg atcacgccag aaaacatgtg
gegageceaa egettagega ttaataaege aacaagggtg tegaagaget tettgaagee
660
attegeeget actecaagtg aagaatecag gtacatgtee atgagtagea geeceaatat
cgagattage cacatacatg accatgtgtt cettgggtca geacgegaag aaaatgecaa
780
```

```
gegtaccett tgggttgtgg egettacggt ggtgatgatg gttggegaaa tegtegeegg
840
ctatctcact gqctcaatqq ctttacttgc cgacgggttt tcacaaggca accccatgca
ggcgctttgg gcatcgctgc agctgcctac ggttacgcaa aacgccacgc ttccagcagt
960
cgttatagct tcggtacggg caaggttgga gacctagg
998
<210> 1072
<211> 72
<212> PRT
<213> Homo sapiens
<400> 1072
Met Gly His Thr Ala Ser Asn Lys Asp Asp Leu Leu Lys Arg Val Lys
                                     10
Arg Ile Ala Gly Gln Ile Gln Ala Val Glu Arg Ala Leu Glu Ser Asp
                                25
            20
Ala Asp Cys Ala Lys Thr Leu His Leu Val Ala Ala Thr Arg Gly Ala
                            40
Ile Asn Gly Leu Met Asp Glu Ile Ile Glu Asp His Ala Arg Lys His
Val Ala Ser Pro Thr Leu Ser Asp
                    70
<210> 1073
<211> 468
<212> DNA
<213> Homo sapiens
<400> 1073
tgtacaacac tcccatcctc tactctctgc atataccctg tatgtacttc atgttatagc
60
tacaatqqac aattttctat tcttcaagta cactcttccc atgtcccaac tgggatgctt
120
ttcccccact gataaaatct tgcttctctt caaactccta ggcaaatttc tcctacttca
180
qaaaqtettq ttteteeata teetteqtaa ceaceaeetg qtgcacatge tgaaggeaga
atteattgte teeteteett eaetetegaa tagetttgee cagaccetea ggtaeteett
catectetgt ataatatttg gttttcacet etttatgaac tettttgtat teteattact
ggctctggaa cccagaacat accacgggtt caaggtatgt tttaatgaat tgaatggaat
aaattttgtt gtgcttatgc agatacagat gccactaaac actgatca
468
<210> 1074
<211> 134
<212> PRT
<213> Homo sapiens
```

<400> 1074 Met Asp Asn Phe Leu Phe Phe Lys Tyr Thr Leu Pro Met Ser Gln Leu 10 Gly Cys Phe Ser Pro Thr Asp Lys Ile Leu Leu Leu Phe Lys Leu Leu Gly Lys Phe Leu Leu Gln Lys Val Leu Phe Leu His Ile Leu Arg 40 Asn His His Leu Val His Met Leu Lys Ala Glu Phe Ile Val Ser Ser Pro Ser Leu Ser Asn Ser Phe Ala Gln Thr Leu Arg Tyr Ser Phe Ile 70 Leu Cys Ile Ile Phe Gly Phe His Leu Phe Met Asn Ser Phe Val Phe 85 90 Ser Leu Leu Ala Leu Glu Pro Arq Thr Tyr His Gly Phe Lys Val Cys 105 Phe Asn Glu Leu Asn Gly Ile Asn Phe Val Val Leu Met Gln Ile Gln 125 115 120 Met Pro Leu Asn Thr Asp 130 <210> 1075 <211> 1633 <212> DNA <213> Homo sapiens <400> 1075 qcqcqccaqq gatgagtccc aqtacttccg ctttcatgct gacgaggaga tggaggggac cagcagcaag aacaaacagc ttcgcaacga cttcaagctg gtggagaaca ttctggccaa gegeetgetg atcetgeece aggaggagga etatggettt gacategagg agaagaacaa ggctgtggtg gtgaagtceg tecagagggg ettgetgget gaggtggetg geetgeaggt 240 ggggaggaag atctactcca tcaatgagga cctggtgttc ctgcggccgt tttcagaggt 300 ggagtccatc ctcaaccagt cettetgete eegeegeeet etgegeetee tggtggeeae 360 gaaggccaaa gagatcatca aaatccccga ccagccggac acactgtgct tccagattcg tggagetqcc ccaccgtacg tctatgctgt ggggagaggc tctgaggcca tggctgcagg gctctgtgct ggtcagtgca ttctgaaggt caatggcagc aacgtgatga acgatggtgc 540 ccctqaqqtc ctqqaqcact tccaqqcatt ccqqaqtcgg cqcqaagagg ccctgggcct gtaccagtgg atctaccaca cccatgagga tgcccaggaa gcacgagcca gtcaggaggc 660 ctccactqaq qaccccaqtq qcqaqcaqqc ccaqqaggaa gaccaggctg attcagcctt cccactgctg tccctgggtc cccggctgag cctgtgtgag ggcagcccca tggtcaccct qactgtqqac aacgtgcacc tqgaacacqq cgtqgtgtat gagtatgtga gcacggcagg 840

```
cgtcaggtgc catgtgctgg agaagatcgt ggagccccgc ggctgcttcg gcctcaccgc
900
caagateete gaggeettig etgecaatga cagegtette gtggagaaet geaggegget
catqqccctq aqcaqcqcca tcqtgaccat qccccacttt gagttccgca acatctgtga
1020
caccaagetg gagageattg gccagaggat tgcctgctac caggagtttg cagcccaact
gaagagcagg gtcagcccac ccttcaaaca agcccccctg gagccccacc cgctgtgtgg
1140
cctacttctg ccccaccaat tgccacatca acctcatgga agtgtcctac cccaagacca
ccccctcagt gggcaggtcc ttcagcatcc gctttggacg caaaccctcc ctcatcggcc
1260
ttgaccegga gcaaggccac etgaacceca tgtegtacae eeagcactge atcaccacca
tggctgctcc ctcctggaag tgcttgcctg ctgcagaggg tgatccccaa ggccagggtc
1380
tocatgatgg cagetteggg ccagecagtg ggaccettgg tcaggaagac cggggcetca
getteetact caagcaggag gaccgtgaga tecaggatge ctacctgcag ctettcacca
1500
agetggatgt ggeeetgaag gagatgaage aatatgteae eeagateaae aggetgetgt
1560
ccaccatcac agageccacc tegggtgggt cetgegaege atecttgget gaggaggeet
1620
cctccctqcc cct
1633
<210> 1076
<211> 87
<212> PRT
<213> Homo sapiens
<400> 1076
His Gln Ala Gly Glu His Trp Pro Glu Asp Cys Leu Leu Pro Gly Val
                                    1.0
                                                         15
Cys Ser Pro Thr Glu Glu Gln Gly Gln Pro Thr Leu Gln Thr Ser Pro
Pro Gly Ala Pro Pro Ala Val Trp Pro Thr Ser Ala Pro Pro Ile Ala
Thr Ser Thr Ser Trp Lys Cys Pro Thr Pro Arg Pro Pro Pro Gln Trp
                        55
                                            60
Ala Gly Pro Ser Ala Ser Ala Leu Asp Ala Asn Pro Pro Ser Ser Ala
                                        75
                                                             80
Leu Thr Arg Ser Lys Ala Thr
                85
<210> 1077
<211> 419
<212> DNA
<213> Homo sapiens
<400> 1077
```

```
nnacgcgtaa cgcgcctcgc gacgcgcctc cacagcatgt cgaccaagtg gacgtgcaat
gcaaacgagg caacatgttt gegeetegee ggageaceet caeceagega tgetttgttt
120
cacccagagt ttacatatcc aatttttgga gaggctgagg caatttacgg ctacaacggc
ttgcacatga atcttgcctt tgcgagcggc agcctggtgc cgtcgctcga aatcacttac
cgcgctaaga atacgacgac gtccgctaaa gtagatgacg tggagcaggc tctgcgcgga
gtgctcccgc cagatgtcgt tactcctgca gaacttgatg ctatcgttgc acgcgacgcc
agggeggtee gggegeattt aegeegeegg geaceaagat tgegaegtae aetegegeg
419
<210> 1078
<211> 139
<212> PRT
<213> Homo sapiens
<400> 1078
Xaa Arg Val Thr Arg Leu Ala Thr Arg Leu His Ser Met Ser Thr Lys
                 5
                                     10
Trp Thr Cys Asn Ala Asn Glu Ala Thr Cys Leu Arg Leu Ala Gly Ala
                                25
Pro Ser Pro Ser Asp Ala Leu Phe His Pro Glu Phe Thr Tyr Pro Ile
                             40
Phe Gly Glu Ala Glu Ala Ile Tyr Gly Tyr Asn Gly Leu His Met Asn
Leu Ala Phe Ala Ser Gly Ser Leu Val Pro Ser Leu Glu Ile Thr Tyr
                    70
                                         75
Arg Ala Lys Asn Thr Thr Thr Ser Ala Lys Val Asp Asp Val Glu Gln
                                     90
Ala Leu Arq Gly Val Leu Pro Pro Asp Val Val Thr Pro Ala Glu Leu
            100
                                1.05
Asp Ala Ile Val Ala Arg Asp Ala Arg Ala Val Arg Ala His Leu Arg
                            120
                                                 125
Arg Arg Ala Pro Arg Leu Arg Arg Thr Leu Ala
    130
                        135
<210> 1079
<211> 584
<212> DNA
<213> Homo sapiens
<400> 1079
acqcqtqaag ggtctqcaqc ctqtacaact caqacatqct tcacgtggtc tcagccagtc
agocttggga aatgtacccc catgctgtgg catctacaat cggcctcctg ttcttactct
geteaaactg etteecaage cageaqqqaq qqqaaccatg etgeetgetg acctgggtag
ttctatttag gtcttgtgac acaacagtgg gcaaggtgat gccctctgtg accaaaagta
240
```

```
tttaccccaa gttcccccag gccctccctt tcgtctgcaa agacacacat ctgtttcact
300
qtqtcttctq caaaqacaca catctgtttc actqgggttt tctgcaaaga cacccatttg
tttccccttt taagggtttt cccctccatc ttgtctattt ttaaaaaaaat aaaccgggtt
cccaqqataq ccttccccc caqatcaaga gcccatgtga aatgaggggg ccgacttgac
cacagcacct tgttcctttc tgtaatctag acacttctgc acaatagagg gcccacccct
caagggcaca ggccatggtt tgtcctcagg ctccctccac gcgt
<210> 1080
<211> 122
<212> PRT
<213> Homo sapiens
<400> 1080
Met Leu His Val Val Ser Ala Ser Gln Pro Trp Glu Met Tyr Pro His
1
                                    10
Ala Val Ala Ser Thr Ile Gly Leu Leu Phe Leu Leu Cys Ser Asn Cys
                                25
Phe Pro Ser Gln Gln Gly Gly Glu Pro Cys Cys Leu Leu Thr Trp Val
                            40
Val Leu Phe Arg Ser Cys Asp Thr Thr Val Gly Lys Val Met Pro Ser
Val Thr Lys Ser Ile Tyr Pro Lys Phe Pro Gln Ala Leu Pro Phe Val
Cys Lys Asp Thr His Leu Phe His Cys Val Phe Cys Lys Asp Thr His
                                    90
                85
Leu Phe His Trp Gly Phe Leu Gln Arg His Pro Phe Val Ser Pro Phe
            100
                                105
                                                    110
Lys Gly Phe Pro Leu His Leu Val Tyr Phe
        115
                            120
<210> 1081
<211> 3077
<212> DNA
<213> Homo sapiens
<400> 1081
naaccagtag tagaagtcta ttcttgttcc tattgtacaa attcgccaat attcaacagc
gttcttaaac tgaacaagca tatcaaagag aatcataaaa acattccctt ggccctgaat
tatatccaca atgggaagaa atccagggcc ttaagccccc tatctcctgt ggccatagag
cagacatete ttaagatgat geaggeagta ggaggtgeae etgeaegtee caetggagaa
tatatetgta ateaatgtgg tgetaagtae acateeetag acagetttea gaeteaceta
aaaactcatc tegacactgt gettecaaaa ttgacetgte etcagtgeaa caaggaatte
360
```

cccaaccaag 420	aatccttgct	gaagcatgtt	accattcact	ttatgatcac	ttcaacgtat
tacatctgtg 480	agagttgtga	caagcaattc	acatcagtgg	atgaccttca	gaaacacctg
ctggacatgc 540	acacctttgt	cttctttcgc	tgcaccetct	gccaggaagt	ttttgactca
aaagteteea 600	ttcagctcca	cttggctgtg	aagcacagta	acgaaaagaa	agtctatagg
tgcacatctt 660	gcaactggga	cttccgcaac	gaaactgact	tgcagctcca	tgtgaaacac
aaccacctgg 720	aaaaccaagg	gaaagtgcat	aagtgcattt	tctgcggtga	gtcctttggc
accgaggtgg 780	agctgcaatg	ccacatcacc	actcacagta	agaagtacaa	ctgcaagttc
tgtagcaaag 840	ccttccatgc	gatcattttg	ttagaaaaac	acttgcgaga	aaaacactgt
			acaaatggag agg agtccca		
			cctatgtacg		
gcctacacta 1080	tggaaacttt	gctgcagaat	caccagctcc	gagaccacaa	catcagacct
ggagaaagtg 1140	ccatcgtgaa	aaagaaagct	gagctcatta	aagggaatta	caagtgcagc
gtgtgetete 1200	gaacettett	ctccgaaaat	ggeeteeggg	aacatatgca	gacccaccta
ggccctgtca 1260	aacactacat	gtgccctatt	tgcggagagc	ggtttccctc	ccttttaact
cttactgaac 1320	acaaagtcac	gcatagtaag	agtcttgata	ctggaaactg	ccggatttgc
aagatgeete 1380	tccagagtga	agaggagttt	ttagagcatt	gccaaatgca	ccctgacttg
aggaattccc 1440	tgacaggctt	tegetgegtg	gtgtgcatgc	agacagtgac	ctccaccttg
gaactcaaaa 1500	tccatgggac	gttccacatg	caaaagacag	ggaatgggtc	tgcagttcag
accacagggc 1560	ggggccagca	cgtccaaaaa	ctgtataagt	gegeatettg	cctcaaagaa
ttccgttcca 1620	agcaagatct	ggtgaaactt	gatatcaatg	gcctgccata	tggtctgtgt
gccggctgcg 1680	tgaatctcag	taagagcgcc	agcccaggca	ttaacgtccc	tcccggcacg
aatagaccag 1740	gcttgggcca	gaatgagaat	ctgagtgcca	ttggggaaag	gcaaggtggg
gggactgaaa 1800	cacgctgctc	tagctgcaac	gttaagtttg	agtctgaaag	tgaactccag
aaccacatcc 1860	aaaccatcca	ccgagagctc	gtgccagaca	gcaacagcac	acagttgaaa
acgccccaag 1920	tatcaccaat	gcccagaatc	agtccctccc	agtcggatga	gaagaagacc
tatcaatgca 1980	tcaagtgtca	gatggttttc	tacaatgaat	gggatattca	ggttcatgtt
gcaaatcaca 2040	tgattgatga	aggactgaac	catgaatgca 、	aactctgcag	ccagaccttt

```
gacteteetg ecaaacteea gtgecaeetg atagageaca gettegaagg gatgggagge
2100
accttcaagt gtccagtctg ctttacagta tttgttcaag caaacaagtt gcagcagcat
2160
attttctctg cccatggaca agaagacaag atctatgact gtacacaatg tccacagaag
2220
tttttcttcc aaacagagct gcagaatcat acaatgaccc aacacagcag ttagtgcaag
tacagtetet caaggagaat tgattttgtg geacaaaaag ggaacatgtt ttactetttg
cacgaaactt tcattgttaa tgtatattat tcagaaacat tgtattgtac cataaaactt
gtattatcaa actgttggat gttcatgtgt ttgaactttt gcgcaccgga tagacccctt
gtatataaag tgttgcacat gtattatgtc gtctgatact aaaatggtct tataaagaca
2580
qcttaaqata aagtattttt aaggaagaaa gattaaaaaac aactgttata catgagacta
tggttggact teettttett tacaettaag cetagaattt etetttaggt atateagege
ttaaatccaa gactattttt tattgctgaa gattcttgca aaccatgaag agatgttctc
acagaacaga accccacagc tggataaggc ccgtatatat atatttgtaa gccttgcaat
gtgacaggta gcatcactat atatgcaata gttgttatgt agactgtcaa agaatttttt
2880
tttccctgga tacatttgaa gctttgagtg ttcaaggttt tccttaatga tttcacgcag
ccaaattott gaatcagttg aactaacctg tatgttactg ttattaatgt ttactctgca
gtctgaacct ggagattact ggaattgttt tccaagagga aataaattca gtttaccatt
aggaaaaaaa aaaaaaa
3077
<210> 1082
<211> 757
<212> PRT
<213> Homo sapiens
<400> 1082
Xaa Pro Val Val Glu Val Tyr Ser Cys Ser Tyr Cys Thr Asn Ser Pro
Ile Phe Asn Ser Val Leu Lys Leu Asn Lys His Ile Lys Glu Asn His
                               25
Lys Asn Ile Pro Leu Ala Leu Asn Tyr Ile His Asn Gly Lys Lys Ser
                           40
Arg Ala Leu Ser Pro Leu Ser Pro Val Ala Ile Glu Gln Thr Ser Leu
                                           60
Lys Met Met Gln Ala Val Gly Gly Ala Pro Ala Arg Pro Thr Gly Glu
                                                          80
                   70
                                      75
Tyr Ile Cys Asn Gln Cys Gly Ala Lys Tyr Thr Ser Leu Asp Ser Phe
```

				85					90					95	
Gln	Thr	His	Leu 100	Lys	Thr	His	Leu	Asp 105		Val	Leu	Pro	Lys 110	Leu	Thr
Cys	Pro	Gln 115	Cys	Asn	Lys	Glu	Phe 120	Pro	Asn	Gln	Glu	Ser 125	Leu	Leu	Lys
His	Val 130	Thr	Ile	His	Phe	Met 135	Ile	Thr	Ser	Thr	Tyr 140	Tyr	Ile	Cys	Glu
Ser 145	Cys	Asp	Lys	Gln	Phe 150	Thr	Ser	Val	Asp	Asp 155	Leu	Gln	Lys	His	Leu 160
	_		His	165					170					175	
		_	Ser 180	•				185					190		
		195	Lys				200					205			
	210		Thr	_		215					220				
225			Lys		230					235					240
			Glu	245					250					255	
			Phe 260			_		265					270		
_		275	Arg				280					285			
-	290		Asn	_		295					300				
305			Leu		310					315					320
			Glu	325					330					335	
	-	_	Ala 340		_			345					350		
	_	355	His				360					365			
_	370		Leu		_	375					380				
385			Ser		390	-		_		395					400
			Lys	405					410					415	
			Thr 420					425					430		
_		435	Asn	_	_		440					445			
	450		Glu		-	455					460				
465	_		Arg	_	470					475					480
			Ile	485					490					495	
			Gln 500					505					510		
Lys	Cys	Ala	Ser	Cys	Leu	Lys	Glu	Phe	Arg	Ser	Lys	Gln	Asp	Leu	Val

```
515
                            520
                                                525
Lys Leu Asp Ile Asn Gly Leu Pro Tyr Gly Leu Cys Ala Gly Cys Val
                        535
                                            540
Asn Leu Ser Lys Ser Ala Ser Pro Gly Ile Asn Val Pro Pro Gly Thr
                    550
                                        555
Asn Arg Pro Gly Leu Gly Gln Asn Glu Asn Leu Ser Ala Ile Gly Glu
                                                        575
                565
                                    570
Arg Gln Gly Gly Thr Glu Thr Arg Cys Ser Ser Cys Asn Val Lys
                                585
Phe Glu Ser Glu Ser Glu Leu Gln Asn His Ile Gln Thr Ile His Arg
                                                605
                            600
Glu Leu Val Pro Asp Ser Asn Ser Thr Gln Leu Lys Thr Pro Gln Val
                        615
Ser Pro Met Pro Arg Ile Ser Pro Ser Gln Ser Asp Glu Lys Lys Thr
                    630
                                        635
Tyr Gln Cys Ile Lys Cys Gln Met Val Phe Tyr Asn Glu Trp Asp Ile
Gln Val His Val Ala Asn His Met Ile Asp Glu Gly Leu Asn His Glu
            660
                                665
Cys Lys Leu Cys Ser Gln Thr Phe Asp Ser Pro Ala Lys Leu Gln Cys
                            680
                                                685
His Leu Ile Glu His Ser Phe Glu Gly Met Gly Gly Thr Phe Lys Cys
                                            700
                        695
Pro Val Cys Phe Thr Val Phe Val Gln Ala Asn Lys Leu Gln Gln His
                    710
                                        715
Ile Phe Ser Ala His Gly Gln Glu Asp Lys Ile Tyr Asp Cys Thr Gln
                725
                                    730
Cys Pro Gln Lys Phe Phe Phe Gln Thr Glu Leu Gln Asn His Thr Met
            740
                                745
Thr Gln His Ser Ser
        755
<210> 1083
<211> 516
<212> DNA
<213> Homo sapiens
<400> 1083
naccggtgag gcatctctgc agggtgtccg gctagctaag cagagcggct ggaaggctcc
agatecgaat aacetgeeeg eteeegetga geeegtggaa gaggagaaga agtgacegat
ccactgaccc cggttctgtc ggccaattgg gatgaagagc gcagttggaa gctgcttaac
tacgagcgac agggcggata caccggcctt cgtaaggctt tgacgatgcc gcctgacgac
gttgtctcgc tggttaagga cgctaacctg cgtggccgtg gtggcgccgg gttccccacc
ggcatgaagt ggtccttcgt gcctaaggac aatcccaacc cgacctacct cgttgtcaac
ggcgacgagt ctgagccggg cacgtgcaag gacatgccgc tcatgatggc ctccccgcac
accetegted adddegteat cattgeetee tacqueatea aggeeaagat ggeetteate
480
```

```
tacatccgcg gtgaggtgct gcacgtcgtc cgacgc
516
<210> 1084
<211> 142
<212> PRT
<213> Homo sapiens
<400> 1084
Ala Arq Gly Arg Gly Glu Glu Val Thr Asp Pro Leu Thr Pro Val Leu
Ser Ala Asn Trp Asp Glu Glu Arg Ser Trp Lys Leu Leu Asn Tyr Glu
            20
                                25
Arg Gln Gly Gly Tyr Thr Gly Leu Arg Lys Ala Leu Thr Met Pro Pro
Asp Asp Val Val Ser Leu Val Lys Asp Ala Asn Leu Arg Gly Arg Gly
                        55
Gly Ala Gly Phe Pro Thr Gly Met Lys Trp Ser Phe Val Pro Lys Asp
                                         75
Asn Pro Asn Pro Thr Tyr Leu Val Val Asn Gly Asp Glu Ser Glu Pro
Gly Thr Cys Lys Asp Met Pro Leu Met Met Ala Ser Pro His Thr Leu
            100
                                105
Val Glu Gly Val Ile Ile Ala Ser Tyr Ala Ile Lys Ala Lys Met Ala
                            120
Phe Ile Tyr Ile Arg Gly Glu Val Leu His Val Val Arg Arg
    130
                        135
<210> 1085
<211> 374
<212> DNA
<213> Homo sapiens
<400> 1085
acgcgtagcg tttatacata gttttcacgt agccatacct ccatgtgggt catacqttca
60
aaatogtaga gtgtctctga gctgcctagg gggctgtttg cgatcttgcg gacagtgtct
atatecacaa ggtteagete egecaggaga etgtegeega teattiteag gaagttitet
ttgctgcgtt cgtagtcttg gtgcaggtcg aagctgtagt cgcttttgta gatgtcccgg
tagaagaact cgggcagggt gcctttcatg gcttccagga tgacgggttt gctcatcccg
tgcccgctca gaacacccgg gtacaccagg gaagagegga tcatgtegte etcaaggtag
360
gggggggga attc
374
<210> 1086
<211> 110
<212> PRT
<213> Homo sapiens
```

```
<400> 1086
Met Ile Arg Ser Ser Leu Val Tyr Pro Gly Val Leu Ser Gly His Gly
                                    10
Met Ser Lys Pro Val Ile Leu Glu Ala Met Lys Gly Thr Leu Pro Glu
Phe Phe Tyr Arg Asp Ile Tyr Lys Ser Asp Tyr Ser Phe Asp Leu His
                            40
Gln Asp Tyr Glu Arg Ser Lys Glu Asn Phe Leu Lys Met Ile Gly Asp
                                            60
                        55
Ser Leu Leu Ala Glu Leu Asn Leu Val Asp Ile Asp Thr Val Arg Lys
                                        75
                    70
Ile Ala Asn Ser Pro Leu Gly Ser Ser Glu Thr Leu Tyr Asp Phe Glu
                                    90
Arg Met Thr His Met Glu Val Trp Leu Arg Glu Asn Tyr Val
            100
                                105
<210> 1087
<211> 423
<212> DNA
<213> Homo sapiens
<400> 1087
atgacgateg tggcccacc accgccgacc gcgggcgccg ccattagett cettgtcgac
qqcatccacc cqcacqacct cqgccaqgtc ctcgacqacc acggcgtgag catccgggtg
nggcaccact gtgcctggcc catccaccgg agtctagggg tgcaatccac cgcccgtgca
tegttetaet tetacaacae ttteeeggaa gtggatgegt tagegtegge ggtgegggee
qcccqqqaat ttttcqqaqt qcattaqqat tggtctqaac gtgaaccttg aatccatgta
ccaggaagte atectggace actacaagaa teccaegeae gcagggttga aggeteeett
tgatgccgaa gtgcaccatg tgaacccttc ctgcggtgac ganaccgtct ccgggtgaag
420
ctt
423
<210> 1088
<211> 88
<212> PRT
<213> Homo sapiens
Met Thr Ile Val Ala Pro Pro Pro Pro Thr Ala Gly Ala Ala Ile Ser
                                    1.0
Phe Leu Val Asp Gly Ile His Pro His Asp Leu Gly Gln Val Leu Asp
                                25
Asp His Gly Val Ser Ile Arg Val Xaa His His Cys Ala Trp Pro Ile
                                                45
                            40
His Arg Ser Leu Gly Val Gln Ser Thr Ala Arg Ala Ser Phe Tyr Phe
                        55
                                            60
Tyr Asn Thr Phe Pro Glu Val Asp Ala Leu Ala Ser Ala Val Arg Ala
```

```
65
                    70
                                         75
                                                             80
Ala Arg Glu Phe Phe Gly Val His
<210> 1089
<211> 750
<212> DNA
<213> Homo sapiens
<400> 1089
tctagaggac gtgagacatt ggggatggta acatgggtag agctgaaagg aaggttgacc
caggagatgg cctgtgagga taaaaccaag ggagggagag taggacagag gcagtacata
agagtggtaa gaatggggct cggggaagaa gccttacccc ttttcttctt taatttggcg
aaaggacttt tgggccaagg tcaccctagc cttctcttgg gggcctcaat tttccttcat
totgtaaaaa atggggggt aattoagaag taccotoott attgtoaggg tttttggggaa
gggagtaaaa agaaattggc ttgggaaaat acttaataca gggcctgggc atgtaacaaa
360
tattcacaaa atgctagcag ttatcaccac agtgggagcc acagggagct ctgaggataa
gcagggatgt cgagggatgg gacagaactt gattgaaggc agacagacct ccaaattett
gactcagaca gaatgatcac tgatccagcg agacgtcagg atcgagagga gtgtagcaag
gagtcaggag ggtgggcctg cgccagtgtc gccccgactc tgttcagtaa catgaaggca
aacacagaag ggcatgtgcg gagacacacg tgatcacgct agtgatgcag aggcagaccc
agacaaaaga ccgagacagg agctaggcag acacacagac agagacagcc ccgcggagtc
atgtagacag ggataatgac aggaacgcgt
750
<210> 1090
<211> 103
<212> PRT
<213> Homo sapiens
<400> 1090
Met Val Thr Trp Val Glu Leu Lys Gly Arg Leu Thr Gln Glu Met Ala
Cys Glu Asp Lys Thr Lys Gly Gly Arg Val Gly Gln Arg Gln Tyr Ile
Arg Val Val Arg Met Gly Leu Gly Glu Glu Ala Leu Pro Leu Phe Phe
                            40
                                                45
Phe Asn Leu Ala Lys Gly Leu Leu Gly Gln Gly His Pro Ser Leu Leu
Leu Gly Ala Ser Ile Phe Leu His Ser Val Lys Asn Gly Gly Val Ile
                    70
                                        75
Gln Lys Tyr Pro Pro Tyr Cys Gln Gly Phe Gly Glu Gly Ser Lys Lys
```

```
85
                                    90
                                                        95
Lys Leu Ala Trp Glu Asn Thr
            100
<210> 1091
<211> 438
<212> DNA
<213> Homo sapiens
<400> 1091
acgcgtaagt taactgaagt tgtcatgagt ttattactgg aatatcacta ttcaaagtcg
gcgattatta cggcttatat gaacgaagtg tatttggctc aagtaggtaa tgaggggctt
catggctttg ccgaggcgag tcagcacttt tttggacgac ctttaaaaga acttaatatc
gacgagtttg cottgttagt aggaatggtg aaagggcott ctatttataa tootgaacga
caccetaaac qtqctttate acqcaqaaat acqqtattag caattttaaa aagccaagat
cqtttaaccq aqtcqqatta taatatttta cggaaacaac ccattcgctt ggcagataaa
caccaaqaac gctcagtata tggggattat ttagatctag tctctatgca gttatcgcga
420
gactttgatc gctgcatg
438
<210> 1092
<211> 146
<212> PRT
<213> Homo sapiens
<400> 1092
Thr Arg Lys Leu Thr Glu Val Val Met Ser Leu Leu Glu Tyr His
                                    10
Tyr Ser Lys Ser Ala Ile Ile Thr Ala Tyr Met Asn Glu Val Tyr Leu
            20
                                25
Ala Gln Val Gly Asn Glu Gly Leu His Gly Phe Ala Glu Ala Ser Gln
                            40
His Phe Phe Gly Arg Pro Leu Lys Glu Leu Asn Ile Asp Glu Phe Ala
Leu Leu Val Gly Met Val Lys Gly Pro Ser Ile Tyr Asn Pro Glu Arg
                    70
                                        75
His Pro Lys Arg Ala Leu Ser Arg Arg Asn Thr Val Leu Ala Ile Leu
                                    90
Lys Ser Gln Asp Arg Leu Thr Glu Ser Asp Tyr Asn Ile Leu Arg Lys
            100
                                105
                                                    110
Gln Pro Ile Arg Leu Ala Asp Lys His Gln Glu Arg Ser Val Tyr Gly
                            120
Asp Tyr Leu Asp Leu Val Ser Met Gln Leu Ser Arg Asp Phe Asp Arg
                                            140
    130
                        135
Cys Met
145
```

```
<210> 1093
<211> 351
<212> DNA
<213> Homo sapiens
<400> 1093
cgcgttctct acttcgagag ctatgtcgtt atcgatccag gcatgaccac ccttgagaaa
ggtcagctgc tgaacgacga gcagtacttc gaagcgctgg aagagttcgg cgacgatttc
gatgcccgca tgggtgccga agctgtccgt gaactgctgc acgctatcga cctggaacac
qaqattqqcc qtctqcqtqa acaaattccq caaaccaact ccgaaaccaa gatcaagaag
ctqtccaagc gtctgaagtt gatggaagcc ttccagggtt ccggcaactt gccagagtgg
atggtgetga cegttetgee ggttetgeeg ceagatetge gteegetggt a
351
<210> 1094
<211> 117
<212> PRT
<213> Homo sapiens
<400> 1094
Arg Val Leu Tyr Phe Glu Ser Tyr Val Val Ile Asp Pro Gly Met Thr
                                    10
Thr Leu Glu Lys Gly Gln Leu Leu Asn Asp Glu Gln Tyr Phe Glu Ala
                                25
            20
Leu Glu Glu Phe Gly Asp Asp Phe Asp Ala Arg Met Gly Ala Glu Ala
                            40
                                                45
Val Arg Glu Leu Leu His Ala Ile Asp Leu Glu His Glu Ile Gly Arg
                        55
Leu Arg Glu Gln Ile Pro Gln Thr Asn Ser Glu Thr Lys Ile Lys Lys
                                        75
                    70
Leu Ser Lys Arg Leu Lys Leu Met Glu Ala Phe Gln Gly Ser Gly Asn
                                    90
Leu Pro Glu Trp Met Val Leu Thr Val Leu Pro Val Leu Pro Pro Asp
                                105
            100
Leu Arg Pro Leu Val
        115
<210> 1095
<211> 619
<212> DNA
<213> Homo sapiens
<400> 1095
nnacgcqtga gatccaqcca ggccctcaac gaggacatcg tgcgagtgtc cagccggctg
gagcacctgg agaaggagct gtccgagaag agcgggcagc tgcggcaggg cagcgcccag
agccagegge agateegeg ggagategae ageetgegee aggagaagga eteaetgete
180
```

```
aagcagcgcc tggagatcga cggcaagctg aggcagggga gtctgctgtc ccccgaggag
240
qaqcqqacqc tqttccagtt ggatgaggcc atcgaggccc tggatgctgc cattgagtat
aaqaatqaqq ccatcacatg ccgccagcgg gtgcttcggg cctcagcctc gttgctgtcc
cagtgcgaga tgaacctcat ggccaagctc agctacctct catcctcaga gaccagagcc
ctcctctgca agtattttga caaggtgggc cagcagccca tggccccccc agctcctcct
cacggcacgt gtggggaggt gtctcatggc agctgctcca gcggatatcc cgtttcctcc
cagactgggg gacagaatca ggaccaactc atctgcaggg ccgcctgacc ttaaagccta
ttttacttgt gaacctaag
619
<210> 1096
<211> 195
<212> PRT
<213> Homo sapiens
<400> 1096
Xaa Arg Val Arg Ser Ser Gln Ala Leu Asn Glu Asp Ile Val Arg Val
                5
                                    10
Ser Ser Arg Leu Glu His Leu Glu Lys Glu Leu Ser Glu Lys Ser Gly
                                25
Gln Leu Arg Gln Gly Ser Ala Gln Ser Gln Arg Gln Ile Arg Gly Glu
                            40
Ile Asp Ser Leu Arg Gln Glu Lys Asp Ser Leu Leu Lys Gln Arg Leu
Glu Ile Asp Gly Lys Leu Arg Gln Gly Ser Leu Leu Ser Pro Glu Glu
                                        75
                    70
Glu Arq Thr Leu Phe Gln Leu Asp Glu Ala Ile Glu Ala Leu Asp Ala
                                    90
Ala Ile Glu Tyr Lys Asn Glu Ala Ile Thr Cys Arg Gln Arg Val Leu
            100
                                105
Arg Ala Ser Ala Ser Leu Leu Ser Gln Cys Glu Met Asn Leu Met Ala
                            120
Lys Leu Ser Tyr Leu Ser Ser Ser Glu Thr Arg Ala Leu Leu Cys Lys
                        135
Tyr Phe Asp Lys Val Gly Gln Gln Pro Met Ala Pro Pro Ala Pro Pro
                    150
                                        155
His Gly Thr Cys Gly Glu Val Ser His Gly Ser Cys Ser Ser Gly Tyr
                                    170
Pro Val Ser Ser Gln Thr Gly Gly Gln Asn Gln Asp Gln Leu Ile Cys
            180
                                185
Arg Ala Ala
       195
<210> 1097
<211> 5108
<212> DNA
<213> Homo sapiens
```

100 1007					
<400> 1097 nacgcgttgt 60	cttctctccg	taccaccccc	cccttcacac	tcttttattc	aagtacctat
	cattgaaaaa	actatgtttt	caatttaagc	tatgtacata	ccggggaaat
gacaaagagt 180	tcacttccca	tgagatcaaa	caccctcaca	gttcctgtgc	tttcggcata
ggccagtagg 240	gtacaatcgt	aactccatgc	tacccgtctc	cactggggtt	tcgggtcttt
cggaacttga 300	catttcccaa	taatggatgt	aaaatcatct	tttgcagacc	tgatttccac
acactgatct 360	tgaacagcag	ccaaaagctt	tccattgctt	gcaagtacca	aatgccagtt
tatctgttta 420	ttaaccaagc	gaaccagtcc	atcagggagc	aaaaaaggtg	ccgggctgta
ccagatgtat 480	tggcgtaaaa	ataataaacg	atctcgaatt	gctttcgtga	tgataaagga
tgcaccatgt 540	ttttggttgc	ctctaggctg	tacttcagtc	tccggtggcc	actcggtgtt
gaccaacaag 600	tcatagagaa	tcgtctcctc	gactceteeg	ctgcctgagt	cctcggcgaa
660			gagtccaggc		
720			cgaaagcaat		
tacgccaata 780	catctggtac	ageceggeae	ettttttget	ccctgatgga	ctggttcgct
tggttaataa 840	acagataaac	tggcatttgg	tacttgcaag	caatagcact	agagtgcatc
tatacctgtg 900	aacgaaatga	tcaactctgt	ctttgctatg	acctactaga	atgtctgcca
gaaagaggat 960	atggtgataa	gacagaggca	accacaaagc	ttcatgacat	ggtagaccaa
ctggaacaaa 1020	ttctcagtgt	gtcagagctt	ttggaaaaac	atggactcga	gaaaccaatt
tcatttgtta 1080	aaaacactca	atctagctca	gaagaggcac	gcaagctgat	ggttagattg
acgaggcaca 1140	ctggccggaa	gcagcctcct	gtcagtgagt	ctcattggag	aacgttgctg
caagacatgt 1200	taactatgca	gcagaatgta	tacacatgtc	tagattctga	tgcctgctat
gagatattta 1260	cagaaagcct	tetgtgetet	agtcgccttg	aaaacatcca	cctggctgga
cagatgatgc 1320	actgcagtgc	ttgttcagaa	aatcctccag	ctggtatagc	ccataaaggg
aaaccccact 1380	acagggtcag	ctacgaaaag	agtattgact	tggttttggc	tgccagcaga
gagtacttca 1440	attettetae	caacctcact	gatagctgca	tggatctagc	caggtgctgc
ttacaactga 1500	taacagacag	accccctgcc	attcaagagg	agctagatct	tatccaagcc
gttggatgtc 1560	ttgaagaatt	tggggtaaag	atcctgcctt	tgcaagtgcg	attgtgccct

gatcggatca 1620	gtctcatcaa	ggagtgtatt	teccagtece	ccacatgcta	taaacaatcc
accaagette 1680	tgggccttgc	tgagctgctg	agggttgcag	gtgagaaccc	agaagaaagg
cggggacagg 1740	ttctaatcct	tttagtggag	caggcacttc	gcttccatga	ctacaaagca
	attgtcagga	gctgatggcc	acaggttatc	ctaaaagttg	ggatgtttgt
agccagttag 1860	gacaatcaga	aggttaccag	gacttggcca	ctcgtcaaga	gctcatggct
tttgctttga 1920	cacattgccc	tcctagcagc	attgaacttc	ttttggcagc	tagcagctct
	aaattcttta	tcaaagagtg	aatttccaga	tccatcatga	aggagggaa
aatatcagtg 2040	cttcaccatt	aactagtaaa	gcagtacaag	aggatgaagt	aggtgttcca
	cagctgacct	attgcgctgg	accactgcta	ccaccatgaa	agtcctttcc
	ccaccaccaa	agcggtgctg	caggccgtca	gtgatgggca	gtggtggaag
	cttaccttcg	accccttcag	gggcaaaaat	gtggtggtgc	atatcaaatc
	ccaatgaaga	tctagagaaa	caagggtgtc	atcctttta	tgaatctgtc
	cttttgtcgc	tgagtctgaa	gggacctatg	acacctatca	gcatgttcca
gtggaaagct 2400	ttgcagaagt	attgctgaga	actggaaaat	tggcagaggc	taaaaataaa
ggagaagtat 2460	ttccaacaac	tgaagttctc	ttgcaactag	caagtgaagc	cttgccaaat
gacatgacct 2520	tggctcttgc	ttaccttctt	gccttaccac	aagtgttaga	tgctaaccgg
tgctttgaaa 2580	agcagtcccc	ctctgcatta	tetetecage	tggcagcgta	ttactatagc
ctccagatct 2640	atgcccgatt	ggccccatgt	ttcagggaca	agtgccatcc	tctttacagg
gctgatccca 2700	aagaactaat	caagatggtc	accaggcatg	tgactcgaca	tgagcacgaa
gcctggcctg 2760	aagaccttat	ttcactgacc	aagcagttac	actgctacaa	tgaacgtctc
ctggatttca 2820	ctcaggcgca	gatccttcag	ggccttcgga	agggtgtgga	cgtgcagcgg
tttactgcag 2880	atgaccagta	taaaagggaa	actatecttg	gtctggcaga	aactctagag
gaaagegtet 2940	acagcattgc	tatttctctg	gcacaacgtt	acagtgtctc	ccgctgggaa
gtttttatga 3000	cccatttgga	gttccccttc	acggacagtg	gtttgtccac	actagaaatt
gaaaatagag 3060	cccaagacct	tcatctcttt	gagactttga	agactgatcc	agaagccttt
caccagcaca 3120	tggtcaagta	tatttaccct	actattggtg	gctttgatca	cgaaaggctg
cagtattatt 3180	tcactcttct	ggaaaactgt	ggctgtgcag	atttggggaa	ctgtgccatt

aaaccagaaa 3240	cccacattcg	actgctgaag	aagtttaagg	ttgttgcatc	aggtcttaat
tacaaaaagc 3300	tgacagatga	aaacatgagt	cctcttgaag	cattggagcc	agttctttca
agtcaaaata 3360	tcttgtctat	ttccaaactt	gttcccaaaa	tccctgaaaa	ggatggacag
atgettteee 3420	caagctctct	gtacaccatc	tggttacaga	agttgttctg	gactggagac
cctcatctca 3480	ttaaacaagt	cccaggctct	tcaccggagt	ggcttcatgc	ctatgatgtc
3540			ggtgacctca		
3600			tctgtggaag		
3660	_		gagaagccaa		
3720			acctatgcag		
3780			cacagettea		
3840	_	-	ctctatgatc	_	
3900			ttagatggtc		
3960			gacatctcac		
4020			ggtggcagtg		
4080			gcagcagtcc		
4140			gagtggctgc		
4200			ctgcagattt		
4260	-		tttagaactg		
4320			attgagaatg		_
4380			gaggctgaat		
ttgcaagctt 4440	ggccacctat	gaaaagtgaa	tatgtcataa	ccaataatcc	atgggtgaga
4500			atggagaaca		
gttttgaaaa 4560	tgtgtcgctc	tttgtataac	accaagcaga	tgetgeetge	agaggg t gtg
aaggagctgt 4620	gtetgetget	gcttaaccag	tccctcctgc	ttccatctct	gaaacttctc
ctcgagagcc 4680	gagatgagca	tetgeaegag	atggcactgg	agcaaatcac	ggcagtcact
acggtgaatg 4740	attccaattg	tgaccaagaa	cttctttccc	tgctcctgga	tgccaagctg
ctggtgaagt 4800	gtgtctccac	tcccttctat	ccacgtattg .	ttgaccacct	cttggctagc

ctccagcaag ggcgctggga tgcagaggag ctgggcagac acctgcggga ggccggccat 4860 gaageegaag eegggtetet eettetggee gtgaggggga eteaceagge etteagaace 4920 ttcagtacag ccctccgcgc agcacagcac tgggtgtgag ggccacctgt ggccctgctc cttaqcaqaa aaaqcatctg gagttgaatg ctgttcccag aagcaacatg tgtatctgcc gattgttctc catggttcca acaaattgca aataaaactg tatggaaacg atgaaaaaaa 5100 aaaaaaa 5108 <210> 1098 <211> 1336 <212> PRT <213> Homo sapiens <400> 1098 Met Val Asp Gln Leu Glu Gln Ile Leu Ser Val Ser Glu Leu Leu Glu 1 5 Lys His Gly Leu Glu Lys Pro Ile Ser Phe Val Lys Asn Thr Gln Ser 25 Ser Ser Glu Glu Ala Arg Lys Leu Met Val Arg Leu Thr Arg His Thr Gly Arg Lys Gln Pro Pro Val Ser Glu Ser His Trp Arg Thr Leu Leu 55 Gln Asp Met Leu Thr Met Gln Gln Asn Val Tyr Thr Cys Leu Asp Ser 70 75 Asp Ala Cys Tyr Glu Ile Phe Thr Glu Ser Leu Leu Cys Ser Ser Arg 90 85 Leu Glu Asn Ile His Leu Ala Gly Gln Met Met His Cys Ser Ala Cys 105 100 Ser Glu Asn Pro Pro Ala Gly Ile Ala His Lys Gly Lys Pro His Tyr 120 Arg Val Ser Tyr Glu Lys Ser Ile Asp Leu Val Leu Ala Ala Ser Arg 135 140 Glu Tyr Phe Asn Ser Ser Thr Asn Leu Thr Asp Ser Cys Met Asp Leu 155 150 Ala Arg Cys Cys Leu Gln Leu Ile Thr Asp Arg Pro Pro Ala Ile Gln 170 165 Glu Glu Leu Asp Leu Ile Gln Ala Val Gly Cys Leu Glu Glu Phe Gly 185 Val Lys Ile Leu Pro Leu Gln Val Arg Leu Cys Pro Asp Arg Ile Ser 200 195 Leu Ile Lys Glu Cys Ile Ser Gln Ser Pro Thr Cys Tyr Lys Gln Ser 215 220 Thr Lys Leu Leu Gly Leu Ala Glu Leu Leu Arg Val Ala Gly Glu Asn 235 230 Pro Glu Glu Arg Arg Gly Gln Val Leu Ile Leu Leu Val Glu Gln Ala 250 Leu Arg Phe His Asp Tyr Lys Ala Ala Ser Met His Cys Gln Glu Leu 265 Met Ala Thr Gly Tyr Pro Lys Ser Trp Asp Val Cys Ser Gln Leu Gly

		275					280					285			
Gln	Ser 290		Gly	Tyr	Gln	Asp 295	Leu	Ala	Thr	Arg	Gln 300	Glu	Leu	Met	Ala
Phe	Ala	Leu	Thr	His		Pro	Pro	Ser	Ser		Glu	Leu	Leu	Leu	
305					310				_	315		_		_	320
				325		Thr			330					335	
Gln	Ile	His	His 340	Glu	Gly	Gly	Glu	Asn 345	Ile	Ser	Ala	Ser	Pro 350	Leu	Thr
Ser	Lys	Ala 355	Val	Gln	Glu	Asp	Glu 360	Val	Gly	Val	Pro	Gly 365	Ser	Asn	Ser
Ala	Asp 370	Leu	Leu	Arg	Trp	Thr 375	Thr	Ala	Thr	Thr	Met 380	Lys	Val	Leu	Ser
Asn 385	Thr	Thr	Thr	Thr	Thr 390	Lys	Ala	Val	Leu	Gln 395	Ala	Val	Ser	Asp	Gly 400
Gln	Trp	Trp	Lys		Ser	Leu	Thr	Tyr		Arg	Pro	Leu	Gln		Gln
Luc	Cvc	Glar	Gly	405	Tur	Gln	Tla	Glv	410 Thr	Thr	Δla	Δsn	Glu	415 Asp	Len
БУБ	Cys	Gry	420	AIA	ıyı	G111	116	425	1111	1111	ALG	non	430	мор	
Glu	Lys	Gln 435		Cys	His	Pro	Phe 440	Tyr	Glu	Ser	Val	Ile 445	Ser	Asn	Pro
Phe	Val 450	Ala	Glu	Ser	Glu	Gly 455	Thr	Tyr	Asp	Thr	Tyr 460	Gln	His	Val	Pro
	Glu	Ser	Phe	Ala		Val	Leu	Leu	Arg		Gly	Lys	Leu	Ala	
465	T 160	λαπ	Tura	Clar	470	Val	Dhe	Dro	Thr	475	Glu	V=1	T. - 211	T.em	480 Gln
				485					490					495	
			500			Pro		505					510		
		515				Val	520					525			
	530					Ser 535					540				
Leu 545	Gln	Ile	Tyr	Ala	Arg 550	Leu	Ala	Pro	Cys	Phe 555	Arg	Asp	Lys	Cys	His 560
Pro	Leu	Tyr	Arg	Ala 5 65	Asp	Pro	Lys	Glu	Leu 570	Ile	Lys	Met	Val	Thr 575	Arg
His	Val	Thr	Arg 580	His	Glu	His	Glu	Ala 585	Trp	Pro	Glu	Asp	Leu 590	Ile	Ser
Leu	Thr	Lys 595		Leu	His	Cys	Tyr 600	Asn	Glu	Arg	Leu	Leu 605	Asp	Phe	Thr
Gln	Ala 610		Ile	Leu	Gln	Gly 615		Arg	Lys	Gly	Val 620		Val	Gln	Arg
Phe		Ala	Asp	Asp	Gln	Tyr	Lys	Arg	Glu	Thr		Leu	Gly	Leu	Ala
625					630					635					640
Glu	Thr	Leu	Glu	Glu 645	Ser	Val	Tyr	Ser	Ile 650	Ala	Ile	Ser	Leu	Ala 655	Gln
Arg	Tyr	Ser	Val 660	Ser	Arg	Trp	Glu	Val 665	Phe	Met	Thr	His	Leu 670	Glu	Phe
Pro	Phe	Thr 675		Ser	Gly	Leu	Ser 680	Thr	Leu	Glu	Ile	Glu 685	Asn	Arg	Ala
Gln	Asp 690		His	Leu	Phe	Glu 695		Leu	Lys	Thr	Asp 700	Pro	Glu	Ala	Phe
His		His	Met	Val	Lys	Tyr	Ile	Tyr	Pro	Thr	Ile	Gly	Gly	Phe	Asp

705					710					715					720
His	Glu	Arg	Leu	Gln 725	Tyr	Tyr	Phe	Thr	Leu 730	Leu	Glu	Asn	Cys	Gly 735	Cys
Ala	Asp	Leu	Gly 740	Asn	Cys	Ala	Ile	Lys 745	Pro	Glu	Thr	His	Ile 750	Arg	Leu
Leu	Lys	Lys 755	Phe	Lys	Val	Val	Ala 760	Ser	Gly	Leu	Asn	Tyr 765	Lys	Lys	Leu
Thr	Asp 770	Glu	Asn	Met	Ser	Pro		Glu	Ala	Leu	Glu 780	_	Val	Leu	Ser
Ser 785	Gln	Asn	Ile	Leu	Ser 790		Ser	Lys	Leu	Val 795		Lys	Ile	Pro	Glu 800
	Asp	Gly	Gln	Met 805		Ser	Pro	Ser	Ser 810	Leu	Tyr	Thr	Ile	Trp 815	
Gln	Lys	Leu	Phe 820		Thr	Gly	Asp	Pro 825		Leu	Ile	Lys	Gln 830		Pro
Gly	Ser	Ser 835		Glu	Trp	Leu	His 840		Tyr	Asp	Val	Cys 845		Lys	Tyr
Phe	Asp 850		Leu	His	Pro	Gly 855		Leu	Ile	Thr	Val 860		Asp	Ala	Val
Thr 865		Ser	Pro	Lys	Ala 870		Thr	Lys	Leu	Ser 875		Glu	Ala	Arg	Lys 880
	Met	Thr	Arg	Lys 885		Ile	Lys	Thr	Val 890	Lys	His	Phe	Ile	Glu 895	
Pro	Arg	Lys	Arg		Ser	Glu	Asp	Glu 9 05		Gln	Glu	Ala	Lys 910		Ser
Lys	Val	Thr 915		Ala	Asp	Thr	Leu 920		His	Leu	Glu	Lys 925		Leu	Ala
His	Leu 930		Thr	Leu	Ser	His 935		Phe	Ile	Leu	Ser 940		Lys	Asn	Ser
Glu 945		Glu	Thr	Leu	Gln 950		Tyr	Ser	His	Leu 955		Asp	Leu	Ser	Arg 960
	Glu	Lys	Glu	Lys 965		His	Asp	Glu	Ala 970	Val	Ala	Ile	Cys	Leu 975	
Gly	Gln	Pro	Leu 980		Met	Ile	Gln	Gln 985	_	Leu	Glu	Val	Ala 990		Gly
Pro	Leu	Asp 995	Ile	Ser	Pro	Lys	Asp	Ile	Val	Gln	Ser	Ala 1005		Met	Lys
Ile	Ile 1010	Ser	Ala	Leu	Ser	Gly 1015	Gly		Ala	Asp	Leu 1020	Gly		Pro	Arg
Asp	Pro	T.e.11	Lvs	Val	Leu			Val	Val	Ala			Hie	Thr	Ser
1025			_,,	141	1030		OLY	vai	VUL	1035		VUI	*****	1111	1040
		T	C1	G2			170]	C	Dean			T 0	T 011	<i>α</i> 1	
				1049	5				1050)				1055	
			1060)				1065	5	Pro			1070)	
		1075	5				1080)		His		1085	;		_
Ser	Lys 1090		Leu	Val	Phe	Phe 1095		Thr	Glu	Ala	Ile 1100		Lys	Ala	Ser
Trp 1105		Gln	Arg	Gln	Val 1110		Ile	Ala	Asp	Ile 1115		Asn	Glu	Glu	Asn 1120
Arg	Tyr	Cys	Leu	Phe 1125		Glu	Leu	Leu	Glu 1130	Ser	Ser	His	His	Glu 1135	
Glu	Phe	Gln	His	Leu	Val	Leu	Leu	Leu	Gln	Ala	Trp	Pro	Pro	Met	Lys

1145 1150 1140 Ser Glu Tyr Val Ile Thr Asn Asn Pro Trp Val Arg Leu Ala Thr Val 1160 1155 1165 Met Leu Thr Arg Cys Thr Met Glu Asn Lys Glu Gly Leu Gly Asn Glu **117**5 1180 Val Leu Lys Met Cys Arg Ser Leu Tyr Asn Thr Lys Gln Met Leu Pro 1190 1195 Ala Glu Gly Val Lys Glu Leu Cys Leu Leu Leu Leu Asn Gln Ser Leu 1205 1210 Leu Leu Pro Ser Leu Lys Leu Leu Glu Ser Arg Asp Glu His Leu 1220 1225 His Glu Met Ala Leu Glu Gln Ile Thr Ala Val Thr Thr Val Asn Asp 1240 1245 Ser Asn Cys Asp Gln Glu Leu Leu Ser Leu Leu Leu Asp Ala Lys Leu 1255 1260 Leu Val Lys Cys Val Ser Thr Pro Phe Tyr Pro Arg Ile Val Asp His 1275 1265 1270 Leu Leu Ala Ser Leu Gln Gln Gly Arg Trp Asp Ala Glu Glu Leu Gly 1285 1290 Arg His Leu Arg Glu Ala Gly His Glu Ala Glu Ala Gly Ser Leu Leu 1305 1310 1300 Leu Ala Val Arg Gly Thr His Gln Ala Phe Arg Thr Phe Ser Thr Ala 1320 Leu Arg Ala Ala Gln His Trp Val 1330 1335 <210> 1099 <211> 309 <212> DNA <213> Homo sapiens <400> 1099 acgegtgete tetecegett ggcaateage atggeetttt egagetegge ggtgegeaat tgaaccattt cttccagttg cgatttttca gaaagcagcg tcgattgacc ttcggtcagc ttgcgcacat agcgcttggt gcggctggca aggatatagg cgagtatcaa tgcacctgcg agggcgagga togaggcaat ggtcagccag aagcgcaact tgtccatggc tatgttgcgg qcqattaqcc qacqatcttc ttcacccaqg aaactgttga tggttttcct gacgtcatcc 300 atctggcca 309 <210> 1100 <211> 100 <212> PRT <213> Homo sapiens <400> 1100 Met Asp Asp Val Arg Lys Thr Ile Asn Ser Phe Leu Gly Glu Glu Asp 5 10 Arg Arg Leu Ile Ala Arg Asn Ile Ala Met Asp Lys Leu Arg Phe Trp

```
20
                                25
                                                     3.0
Leu Thr Ile Ala Ser Ile Leu Ala Leu Ala Gly Ala Leu Ile Leu Ala
Tyr Ile Leu Ala Ser Arg Thr Lys Arg Tyr Val Arg Lys Leu Thr Glu
                        55
Gly Gln Ser Thr Leu Leu Ser Glu Lys Ser Gln Leu Glu Glu Met Val
Gln Leu Arg Thr Ala Glu Leu Glu Lys Ala Met Leu Ile Ala Lys Arg
                                     90
Glu Arg Ala Arg
            100
<210> 1101
<211> 540
<212> DNA
<213> Homo sapiens
<400> 1101
gtogacgtta ccaactacgt catgttggag totggtcagc cgcttcatgc ctatgatgcc
gacaacgtca gegggaegat tgtggteegt aaggeecaeg agggtgagea tetattgaee
ctegacgaca cegategeac cetegatect gacgatetag teategeega egacteggga
gccattggcc tggctggcgt catgggtggt gcggccaccg aagtgactgc tgagacgacg
tcaatcatcc tcgagggcgc tcacttcgac ccgatgacgg gcgctcgtgc ttaccgacgc
cacaageteg gtteggagge etceegeege tttgageggg gegttgatee gatttgegee
cataccgcag cogttcgcgc agcggaattg ctcgcccagt acggcggtgc caccgtcggt
gageccaceg tegttggtga ggteeeegag atgeeaegte aaaegateaa egetgattta
cctaaccgga ttctcggcac gaaggtgcca actgaagagg tcatcgagat cttgacgcgt
540
<210> 1102
<211> 180
<212> PRT
<213> Homo sapiens
<400> 1102
Val Asp Val Thr Asn Tyr Val Met Leu Glu Ser Gly Gln Pro Leu His
Ala Tyr Asp Ala Asp Asn Val Ser Gly Thr Ile Val Val Arg Lys Ala
His Glu Gly Glu His Leu Leu Thr Leu Asp Asp Thr Asp Arg Thr Leu
                            40
Asp Pro Asp Asp Leu Val Ile Ala Asp Asp Ser Gly Ala Ile Gly Leu
Ala Gly Val Met Gly Gly Ala Ala Thr Glu Val Thr Ala Glu Thr Thr
Ser Ile Ile Leu Glu Gly Ala His Phe Asp Pro Met Thr Gly Ala Arg
```

```
95
                                    90
                85
Ala Tyr Arg Arg His Lys Leu Gly Ser Glu Ala Ser Arg Arg Phe Glu
                                105
Arg Gly Val Asp Pro Ile Cys Ala His Thr Ala Ala Val Arg Ala Ala
                                                125
                            120
Glu Leu Leu Ala Gln Tyr Gly Gly Ala Thr Val Gly Glu Pro Thr Val
                        135
                                             140
Val Gly Glu Val Pro Glu Met Pro Arg Gln Thr Ile Asn Ala Asp Leu
                    150
                                        155
Pro Asn Arg Ile Leu Gly Thr Lys Val Pro Thr Glu Glu Val Ile Glu
                                    170
                                                         175
Ile Leu Thr Arg
            180
<210> 1103
<211> 537
<212> DNA
<213> Homo sapiens
<400> 1103
cetttectee aaccaggege tgeggegeeg geacttgeee gaegttataa aacaatteaa
cgtcaggttt accategetg tactcaacca aatggtagec gtatccacct tececaccga
tegegaceca ggtgatettt ceeteggeat agattgaegt ggeatteteg teggagtgaa
tcaaqcaqcq cttaggcagc tgctgggccg gcggcttcgc ctagctcgcc ggagcacacg
aaccettece qaaqataacc gecaaggeet ggeacacett etgetgeace catteegget
tqacqccqac cgccaccgca ctggtgaaca tagccgcaat aaggagaatt gcgatgtatt
ceggegege ggcaccega tegtecettg teegeatggg teteceetee actacctace
420
caatacaggg gagagcataa aaagaaaccc atagccgcac ctgagcccat ggccccaaac
cggggcccaa gccgggccca aaccatggga tcaaccggat gtccgtacat cacgcgt
<210> 1104
<211> 112
<212> PRT
<213> Homo sapiens
<400> 1104
Met Tyr Gly His Pro Val Asp Pro Met Val Trp Ala Arg Leu Gly Pro
Arg Phe Gly Ala Met Gly Ser Gly Ala Ala Met Gly Phe Phe Leu Cys
Ser Pro Leu Tyr Trp Val Gly Ser Gly Gly Glu Thr His Ala Asp Lys
                            40
Gly Arg Ser Gly Cys Arg Arg Ala Gly Ile His Arg Asn Ser Pro Tyr
Cys Gly Tyr Val His Gln Cys Gly Gly Gly Arg Arg Gln Ala Gly Met
```

```
75
                   70
65
Gly Ala Ala Glu Gly Val Pro Gly Leu Gly Gly Tyr Leu Arg Glu Gly
               85
Phe Val Cys Ser Gly Glu Leu Gly Glu Ala Ala Gly Pro Ala Ala Ala
           100
                               105
<210> 1105
<211> 448
<212> DNA
<213> Homo sapiens
<400> 1105
agggacctgg ggcagcacgt gcacgtgggt gggaggctcc ttgctaccga cagccagcca
tggggtgggc cetteegagg etgeeteeag gacetgegae tegatggetg ceaecteece
ttotttooto tgocactgga taactcaago cagoccagog agotoggogg caggoagtoo
tqqaacctca ctqcqqqctq cqtctccqag qacatgtgca gtcctgaccc ctgtttcaat
gggcctacat gtgcccagca gctgtggtgt cccggccagc cctgtctccc acctgccacg
tgtgaggagg tccctgatgg ctttgtgtgt gtggcggagg ccacgttccg cgagggtccc
cccgccgcgt tcagcgggca caacgcgt
448
<210> 1106
<211> 149
<212> PRT
<213> Homo sapiens
<400> 1106
Arq Asp Leu Gly Gln His Val His Val Gly Gly Arg Leu Leu Ala Thr
Asp Ser Gln Pro Trp Gly Gly Pro Phe Arg Gly Cys Leu Glm Asp Leu
                               25
Arg Leu Asp Gly Cys His Leu Pro Phe Phe Pro Leu Pro Leu Asp Asn
                           40
Ser Ser Gln Pro Ser Glu Leu Gly Gly Arg Gln Ser Trp Asn Leu Thr
Ala Gly Cys Val Ser Glu Asp Met Cys Ser Pro Asp Pro Cys Phe Asn
                                      75
                   70
Gly Gly Thr Cys Leu Val Thr Trp Asn Asp Phe His Cys Thr Cys Pro
                                   90
               85
Ala Asn Phe Thr Gly Pro Thr Cys Ala Gln Gln Leu Trp Cys Pro Gly
                              105
Gln Pro Cys Leu Pro Pro Ala Thr Cys Glu Glu Val Pro Asp Gly Phe
                           120
Val Cys Val Ala Glu Ala Thr Phe Arg Glu Gly Pro Pro Ala Ala Phe
                                          140
   130
                       135
Ser Gly His Asn Ala
```

```
145
<210> 1107
<211> 618
<212> DNA
<213> Homo sapiens
<400> 1107
acgcgttgat gaagtacctg ccacgcttca gcaatgacgg ctcggtgaac ggcttctata
tetttgttat egatgagace gaacgcaaac teacegaaga ggccetgege caceteaacg
agaacetega agagegegte geecagegea cacaggeget ggetgaagee aaccaacgee
tggcaaaaca aaatgttcaa acgcaagcgc gccgaagacg cgctgcgtca cgcgcagaaa
atggaageeg ggggecaget caeeggegge ategeceatg atttcaacaa catgetgaee
gggattatcg gcagcctgga cttgatgcag cgctacatcn aggccgggcg cagcgacgaa
360
ateggeeque ttactgaege egeegtateg teegeecate gegeggeege ceteacecat
cggctgctgg cgttctcgcg ccgccagtcg ctggcccccc gcccgctgga ccccaaccag
480
ctggtagcgt ccctggagga tctgttccag cgaaccaaag gcgcgcatat cacgctcaaa
gtgcaactgg gccgcgatat ctggcccgtg aataccgatg ccagccagtt ggaaaacgcc
600
ctgctcaacc tggcgatc
618
<210> 1108
<211> 182
<212> PRT
<213> Homo sapiens
<400> 1108
Met Arg Pro Asn Ala Asn Ser Pro Lys Arg Pro Cys Ala Thr Ser Thr
Arg Thr Ser Lys Ser Ala Ser Pro Ser Ala His Arg Arg Trp Leu Lys
Pro Thr Asn Ala Trp Gln Asn Lys Met Phe Lys Arg Lys Arg Ala Glu
                            40
Asp Ala Leu Arg His Ala Gln Lys Met Glu Ala Gly Gly Gln Leu Thr
                        55
Gly Gly Ile Ala His Asp Phe Asn Asn Met Leu Thr Gly Ile Ile Gly
                                        75
Ser Leu Asp Leu Met Gln Arg Tyr Ile Xaa Ala Gly Arg Ser Asp Glu
                                    90
Ile Gly Arg Leu Thr Asp Ala Ala Val Ser Ser Ala His Arg Ala Ala
                                                     110
            100
                                105
Ala Leu Thr His Arg Leu Leu Ala Phe Ser Arg Arg Gln Ser Leu Ala
                                                 125
        115
                            120
Pro Arg Pro Leu Asp Pro Asn Gln Leu Val Ala Ser Leu Glu Asp Leu
```

```
130
                        135
Phe Gln Arg Thr Lys Gly Ala His Ile Thr Leu Lys Val Gln Leu Gly
                    150
                                        155
Arg Asp Ile Trp Pro Val Asn Thr Asp Ala Ser Gln Leu Glu Asn Ala
                165
                                    170
Leu Leu Asn Leu Ala Ile
           180
<210> 1109
<211> 325
<212> DNA
<213> Homo sapiens
<400> 1109
accggtgage atcagggagg caccatgcag acgaetetee catccagtet caageegtee
agecteaaga tegtegeace getggggggc atcetegtge ceetggatea ggtgeeegat
cccgttttcg cccagaagat ggtgggagac gggatctccc tggaccccat ctcaaacgaa
ttgctggcgc cggtcgccgg caccgtgacc cagctccaca acgcccacca cgcgctcacg
atcacgaccc eggaaggcat egaggttetg gtecatateg gaetggatac egtgatgetg
cqcqqcqaca qctatccccc ccccn
325
<210> 1110
<211> 108
<212> PRT
<213> Homo sapiens
<400> 1110
Thr Gly Glu His Gln Gly Gly Thr Met Gln Thr Thr Leu Pro Ser Ser
                                    10
Leu Lys Pro Ser Ser Leu Lys Ile Val Ala Pro Leu Gly Gly Ile Leu
                                25
Val Pro Leu Asp Gln Val Pro Asp Pro Val Phe Ala Gln Lys Met Val
Gly Asp Gly Ile Ser Leu Asp Pro Ile Ser Asn Glu Leu Leu Ala Pro
                        55
Val Ala Gly Thr Val Thr Gln Leu His Asn Ala His His Ala Leu Thr
                    70
                                        75
Ile Thr Thr Pro Glu Gly Ile Glu Val Leu Val His Ile Gly Leu Asp
Thr Val Met Leu Arg Gly Asp Ser Tyr Pro Pro
            100
                                105
<210> 1111
<211> 385
<212> DNA
<213> Homo sapiens
<400> 1111
```

```
nnacgcgtcg ccccggtgcg cctggcagtg ggagaagagc atgaccttac cgagctcgcg
60
actgaactcg tcaacgccgc ctatagccgg gttgacatgg tggaacgccg tggcgaattc
120
geagtacgtg geggeategt egacgtette ecaceggtge tagaacacec ggteegtate
180
gatttttttg gtgacgagat cgaggaaatg acctccttcg cggtagccga ccagcgatcc
accgacgaga ctcaccaaga actgatctgc gctccttgcc gtgagctcat cctcaccgac
gaggtacgtt cccgagccaa ggctttgctg accgaccatc ccgaattagc tgacatgttg
gageggateg geaacggtea agett
385
<210> 1112
<211> 128
<212> PRT
<213> Homo sapiens
<400> 1112
Xaa Arg Val Ala Pro Val Arg Leu Ala Val Gly Glu Glu His Asp Leu
                                    10
Thr Glu Leu Ala Thr Glu Leu Val Asn Ala Ala Tyr Ser Arg Val Asp
                                25
Met Val Glu Arg Arg Gly Glu Phe Ala Val Arg Gly Gly Ile Val Asp
                                                 45
                            40
Val Phe Pro Pro Val Leu Glu His Pro Val Arg Ile Asp Phe Phe Gly
                        55
                                             60
Asp Glu Ile Glu Glu Met Thr Ser Phe Ala Val Ala Asp Gln Arg Ser
                    70
Thr Asp Glu Thr His Gln Glu Leu Ile Cys Ala Pro Cys Arg Glu Leu
                85
                                    90
Ile Leu Thr Asp Glu Val Arg Ser Arg Ala Lys Ala Leu Leu Thr Asp
                                105
His Pro Glu Leu Ala Asp Met Leu Glu Arg Ile Gly Asn Gly Gln Ala
                            120
                                                 125
        115
<210> 1113
<211> 400
<212> DNA
<213> Homo sapiens
<400> 1113
nnncgaccga tgagcgatcg cgaacccgtc aacctgggat acccctacgt cgagtctttc
cactoggact totoggggac oggoggagto gatoagacog acogttotac caatatogac
gagcacacca togaggagat gcatcagatc gcctcgcgtt accccgactc ccgttcggcg
180
ttqctqccqa tcctqcacct qqttcaqtcg gtggacggac gcatctcgcc ggtcggtatt
gagactgegg etgaagtget eggeattace accgcccagg tatceggggt ggegacette
300
```

```
tacaccatqt ataaqaaqca coctgogggc cagcatcaca toggtgtotg caccacggog
360
ctgtgcgccg tcatgggtgg cgaggaggtg cttgcccgtn
400
<210> 1114
<211> 133
<212> PRT
<213> Homo sapiens
<400> 1114
Xaa Arg Pro Met Ser Asp Arg Glu Pro Val Asn Leu Gly Tyr Pro Tyr
Val Glu Ser Phe His Ser Asp Phe Ser Gly Thr Gly Gly Val Asp Gln
            20
                                25
Thr Asp Arg Ser Thr Asn Ile Asp Glu His Thr Ile Glu Glu Met His
                            40
Gln Ile Ala Ser Arg Tyr Pro Asp Ser Arg Ser Ala Leu Leu Pro Ile
                                             60
                        55
Leu His Leu Val Gln Ser Val Asp Gly Arg Ile Ser Pro Val Gly Ile
                                         75
Glu Thr Ala Ala Glu Val Leu Gly Ile Thr Thr Ala Gln Val Ser Gly
                                    90
                85
Val Ala Thr Phe Tyr Thr Met Tyr Lys Lys His Pro Ala Gly Gln His
                                105
His Ile Gly Val Cys Thr Thr Ala Leu Cys Ala Val Met Gly Gly Glu
                            120
        115
Glu Val Leu Ala Arg
    130
<210> 1115
<211> 402
<212> DNA
<213> Homo sapiens
<400> 1115
tctccqactg cacagattag agaaaggact gcgatgacca ttcgcaccac tcatgttggt
tecetgeece geaceceega getgategag gegaategtg egegeegtga gggttegete
ggcgaggctg acttcacgtc gctgctgcag gatcaggttg acggcgttgt gaagcgtcag
gctgagattg gcctggatat cgtcaatgac ggcgagtacg gtcacgcgat gcttgacacg
gttgattacg gcgcgtggtg gacgtattcc atctctcgtt tcggcgggct gtcctttgag
gacgtgcagc gttttgatgt gcgtcccccg gctggccgtg acggtcgcct gtctttctcg
tegttegetg agegeegega etggeagegt tteeggaege gt
402
<210> 1116
<211> 134
<212> PRT
```

<213> Homo sapiens <400> 1116 Ser Pro Thr Ala Gln Ile Arg Glu Arg Thr Ala Met Thr Ile Arg Thr 10 Thr His Val Gly Ser Leu Pro Arg Thr Pro Glu Leu Ile Glu Ala Asn Arg Ala Arg Arg Glu Gly Ser Leu Gly Glu Ala Asp Phe Thr Ser Leu Leu Gln Asp Gln Val Asp Gly Val Val Lys Arg Gln Ala Glu Ile Gly Leu Asp Ile Val Asn Asp Gly Glu Tyr Gly His Ala Met Leu Asp Thr 75 70 Val Asp Tyr Gly Ala Trp Trp Thr Tyr Ser Ile Ser Arg Phe Gly Gly 90 Leu Ser Phe Glu Asp Val Gln Arg Phe Asp Val Arg Pro Pro Ala Gly 105 Arg Asp Gly Arg Leu Ser Phe Ser Ser Phe Ala Glu Arg Arg Asp Trp 120 Gln Arg Phe Arg Thr Arg 130 <210> 1117 <211> 307 <212> DNA <213> Homo sapiens ggcgccggtc ttgccctggc tggaagtggc atgcagacct tggtgcggaa cccgctggct qacccctacc tgctaggtgt atcggctggc gcaagtgtgg gagcaaccgc agtcatcgct ttggggatgt tcacttcgtg gggaactcac cgactcactc ttggtgccct tgtaggggcc ttggcggcag ctgcattggt ctatctcatt tccatggcgc aaggaggcat gacgccgctt cggttggtgc tgtcgggcgt ggtgttgtcc tcggcgttct cgcgttggcg agtttcctcg 300 tctttcg 307 <210> 1118 <211> 102 <212> PRT <213> Homo sapiens <400> 1118 Gly Ala Gly Leu Ala Leu Ala Gly Ser Gly Met Gln Thr Leu Val Arg 10 Asn Pro Leu Ala Asp Pro Tyr Leu Leu Gly Val Ser Ala Gly Ala Ser 30 Val Gly Ala Thr Ala Val Ile Ala Leu Gly Met Phe Thr Ser Trp Gly Thr His Arg Leu Thr Leu Gly Ala Leu Val Gly Ala Leu Ala Ala Ala

```
50
                        55
                                            60
Ala Leu Val Tyr Leu Ile Ser Met Ala Gln Gly Gly Met Thr Pro Leu
                    70
                                        75
Arg Leu Val Leu Ser Gly Val Val Leu Ser Ser Ala Phe Ser Arg Trp
                                    90
Arg Val Ser Ser Ser Phe
            100
<210> 1119
<211> 353
<212> DNA
<213> Homo sapiens
<400> 1119
cgcgtccttg agatgcttga gcaggtcggt attgaggatc cagccagggt gatggattcc
tatccqcatc aactqtccqq tqqccaqcqt caacqggttc tgcttgccat ggcgttggtg
aactcqccqq atctqctcat ttgtgacgag ccgacgaccg ccttggacgt cacggtgcag
totcaggtac tggcgactat cgatgaggtg cttgactcgg ttggtgccgc atgcctattt
attacccacg atttggcggt tgtctcgcac atctgccggg agcttatcgt gatgacgtcg
qqcaaqqtcq ttqaaqccqq atcagcgcgt gatgtgttat ctcaccctga tca
353
<210> 1120
<211> 117
<212> PRT
<213> Homo sapiens
<400> 1120
Arg Val Leu Glu Met Leu Glu Gln Val Gly Ile Glu Asp Pro Ala Arg
Val Met Asp Ser Tyr Pro His Gln Leu Ser Gly Gln Arg Gln Arg
            20
                                25
Val Leu Leu Ala Met Ala Leu Val Asn Ser Pro Asp Leu Leu Ile Cys
Asp Glu Pro Thr Thr Ala Leu Asp Val Thr Val Gln Ser Gln Val Leu
                        55
Ala Thr Ile Asp Glu Val Leu Asp Ser Val Gly Ala Ala Cys Leu Phe
                    70
                                        75
Ile Thr His Asp Leu Ala Val Val Ser His Ile Cys Arg Glu Leu Ile
                                    90
Val Met Thr Ser Gly Lys Val Val Glu Ala Gly Ser Ala Arg Asp Val
            100
                                105
                                                    110
Leu Ser His Pro Asp
        115
<210> 1121
<211> 406
<212> DNA
<213> Homo sapiens
```

```
<400> 1121
tgatcaccca tgctccactc gaccgcgcgc tcgacgatgc gacggctgag acgatgctcg
60
cccagggcac ggtgttcatc ccgaccttga cgatgatgaa aggcgtcgcc gcgaatctca
ccgcagcggg cgttcccggt gtgagctatg cacacgccca cgagagcacg cgcgcgatgc
atgeographic cttqqcqqca ccgacqccta catcgggtcc ttcacacggg
categoegee atacggegag ageatgeacg acgaagaege ctacateggg cteetegaac
gggcaatgc gccatacggc gagagcatgc acgacgaact cgctctgctc gtggacgccg
gcctgtcaac agccgaagcg ctgcgcgctg ccacctcgac gggcgc
406
<210> 1122
<211> 117
<212> PRT
<213> Homo sapiens
<400> 1122
Met Leu Ala Gln Gly Thr Val Phe Ile Pro Thr Leu Thr Met Met Lys
                                    10
Gly Val Ala Ala Asn Leu Thr Ala Ala Gly Val Pro Gly Val Ser Tyr
Ala His Ala His Glu Ser Thr Arg Ala Met His Ala Ala Gly Val Pro
                            40
Val Leu Ala Gly Thr Asp Ala Tyr Ile Gly Ser Phe Thr Arg Ala Ser
                        55
                                            60
Pro Pro Tyr Gly Glu Ser Met His Asp Glu Asp Ala Tyr Ile Gly Leu
                    70
                                        75
Leu Glu Arg Ala Met Pro Pro Tyr Gly Glu Ser Met His Asp Glu Leu
                                    90
Ala Leu Leu Val Asp Ala Gly Leu Ser Thr Ala Glu Ala Leu Arg Ala
            100
                                105
Ala Thr Ser Thr Gly
        115
<210> 1123
<211> 337
<212> DNA
<213> Homo sapiens
<400> 1123
geoggegatg egiteattaa ggeetaagat gegeegaege eteceegett teetegeeet
egectecace gecettgeeg cageggggat ggtggggtge tegteegagg gggeategee
aagegaatge teeeetgttg atattgeege agtgegegag geeetgeege attegetege
taaqqoqaaq ctoqaccqqc actocaccaa cqaqqatqaa cactcotttt ccatgotota
240
```

```
ccqcqcqcaa qataaqqaqc aggtcagctt gctggggacg aagtatgagg ccgacggtgc
300
acceptetge eccgatgace ecaatgagge agegege
337
<210> 1124
<211> 110
<212> PRT
<213> Homo sapiens
<400> 1124
Met Arg Ser Leu Arg Pro Lys Met Arg Arg Arg Leu Pro Ala Phe Leu
Ala Leu Ala Ser Thr Ala Leu Ala Ala Ala Gly Met Val Gly Cys Ser
            20
                                25
Ser Glu Gly Ala Ser Pro Ser Glu Cys Ser Pro Val Asp Ile Ala Ala
                                                45
                            40
Val Arg Glu Ala Leu Pro His Ser Leu Ala Lys Ala Lys Leu Asp Pro
                        55
His Ser Thr Asn Glu Asp Glu His Ser Phe Ser Met Leu Tyr Arg Ala
                    70
Gln Asp Lys Glu Gln Val Ser Leu Leu Gly Thr Lys Tyr Glu Ala Asp
Gly Ala Pro Val Cys Pro Asp Pro Asn Glu Ala Ala Arg
                                                     110
                                105
<210> 1125
<211> 555
<212> DNA
<213> Homo sapiens
<400> 1125
nnettgaate gaateggeat tgegtetaaa catgacgttg agacactete tgetaagete
gaagagctga cggcattgct agaacgtgtc gcgcgtaaac actaaggaga catcgggatg
gctgttaaaa agactactca gaaagaaggc agctcgtgga tcgggggaagt tgaaaaatat
tecegtaaaa tetggettge tggtttagge gtgtaetega aggttageag tgaeggegge
aaatacttcg agacgttggt caaggacggc gagaaggccg agaagttgac caagagccca
gtcggtaaaa aagtagaggc ggcaaaagcg agcgccggtt ctgcgaaatc gagcatttcg
gatacctggg gcaagttgga agagactttc gacaagcgtc tcaacagtgc tatttcgcga
ttgggcgtgc ccagcaaagc ggaactgaag acgctgcaca gcaaggtcga taccctgacc
aagcaaatcg aaaaactcac cggtgccaaa gtggccccgg ctaaaacggc agccgctaaa
540
cctgctgcca agctt
555
<210> 1126
```

```
<211> 146
 <212> PRT
 <213> Homo sapiens
 <400> 1126
 Met Ala Val Lys Lys Thr Thr Gln Lys Glu Gly Ser Ser Trp Ile Gly
                                                                                             10
 Glu Val Glu Lys Tyr Ser Arg Lys Ile Trp Leu Ala Gly Leu Gly Val
                               20
                                                                                  25
 Tyr Ser Lys Val Ser Ser Asp Gly Gly Lys Tyr Phe Glu Thr Leu Val
                                                                        40
Lys Asp Gly Glu Lys Ala Glu Lys Leu Thr Lys Ser Pro Val Gly Lys
                                                              55
Lys Val Glu Ala Ala Lys Ala Ser Ala Gly Ser Ala Lys Ser Ser Ile
                                                    70
                                                                                                       75
Ser Asp Thr Trp Gly Lys Leu Glu Glu Thr Phe Asp Lys Arg Leu Asn
                                         85
Ser Ala Ile Ser Arg Leu Gly Val Pro Ser Lys Ala Glu Leu Lys Thr
Leu His Ser Lys Val Asp Thr Leu Thr Lys Gln Ile Glu Lys Leu Thr
Gly Ala Lys Val Ala Pro Ala Lys Thr Ala Ala Ala Lys Pro Ala Ala
          130
                                                             135
Lys Leu
145
<210> 1127
<211> 352
<212> DNA
<213> Homo sapiens
<400> 1127
ccegacegeg tactegtggt eggtgeegga gtgatgggtg eageacaege acaegegete
cgcgggtccc tccaggcagt cgtgtgcggc gtggtcgacc tgcaggagcg agcagcgcaa
teactegett eggaagtggg egtaceeggg tteacegace tggtgaagge gategagteg
acceptacegg acgeogoggt categocaeg coggactogg ctcacegoca accegottgag
acceptated acceptated from the second acceptated accept
gacgccgaag cgatcgtgct ccgcgctgaa cgggccggcg tccgtctcat ga
<210> 1128
<211> 117
<212> PRT
<213> Homo sapiens
<400> 1128
Pro Asp Arg Val Leu Val Val Gly Ala Gly Val Met Gly Ala Ala His
                                                                                           10
Ala His Ala Leu Arg Gly Ser Leu Gln Ala Val Val Cys Gly Val Val
```

```
20
                                25
Asp Leu Gln Glu Arg Ala Ala Gln Ser Leu Ala Ser Glu Val Gly Val
Pro Gly Phe Thr Asp Leu Val Lys Ala Ile Glu Ser Thr Ala Pro Asp
Ala Ala Val Ile Ala Thr Pro Asp Ser Ala His Arg Gln Pro Ala Glu
                    70
                                        75
Thr Ala Ile Asp Ala Gly Leu Ala Val Leu Val Glu Lys Pro Leu Ala
                                    90
Thr Thr Val Asp Asp Ala Glu Ala Ile Val Leu Arg Ala Glu Arg Ala
            100
                                105
Gly Val Arg Leu Met
        115
<210> 1129
<211> 336
<212> DNA
<213> Homo sapiens
<400> 1129
ntqqcaqccc tqqaqqaqcc gatggtggac ctggacggcg agctgccttt cgtgcggccc
ctgccccaca ttgccgtgct ccaggacgag ctgccgcaac tcttccagga tgacgacgtc
ggggccgatg aggaagaggc agagttgcgg ggcgaacaca cgctcacaga gaagtttgtc
tgcctggatg actcctttgg ccatgactgc agcttgacct gtgatgactg caggaacgga
gggacctgcc tectgggcct ggatggctgg gattgccccg agggctggac tgggctcatc
tgcaatgaga cttggtcctc gggctgcatg gatatt
336
<210> 1130
<211> 112
<212> PRT
<213> Homo sapiens
Xaa Ala Ala Leu Glu Glu Pro Met Val Asp Leu Asp Gly Glu Leu Pro
                                    10
Phe Val Arg Pro Leu Pro His Ile Ala Val Leu Gln Asp Glu Leu Pro
Gln Leu Phe Gln Asp Asp Val Gly Ala Asp Glu Glu Glu Ala Glu
                            40
Leu Arg Gly Glu His Thr Leu Thr Glu Lys Phe Val Cys Leu Asp Asp
Ser Phe Gly His Asp Cys Ser Leu Thr Cys Asp Asp Cys Arg Asn Gly
                    70
Gly Thr Cys Leu Leu Gly Leu Asp Gly Trp Asp Cys Pro Glu Gly Trp
                                    90
Thr Gly Leu Ile Cys Asn Glu Thr Trp Ser Ser Gly Cys Met Asp Ile
            100
                                105
```

```
<210> 1131
<211> 672
<212> DNA
<213> Homo sapiens
<400> 1131
gegttggtgg tgetcatgge cegggaaaat cegetggate aatacetett tgageacece
gaattattgt tetegteete ggtggaateg aetgtgttge aeceggataa eeegtatgtg
ctcqqcccqc acgtggccgc ggccgcccag gaggcatacc tctcccctgc ggacgaagag
ttttacgggt cggcctttgc cgggatatgc aaaacgctga caggccagaa cgtactgcga
eqteqeqqaa ateqqetqtt etgqaetegt eeggaaeggg etgtegaege eategaeetg
cgatcggcgg caggcaaagg gattgacatt atcgacgtgt ccaccgggag ggtcatcggg
qtaqtcqacq aagccgccgc agaccgtacc gtgcatccag gcgcggtgta cctgcatcag
420
ggggatcagt ggctggtcga cgaatacaac ccggtcgagc accacgccct ggtgcaccag
480
gacctgccgg gatattggac tcaaccgcag tcagcgtcga cggtgagaat ccttcgggag
gagagacgtc gcgcttgtgg tcccggatat gtggcgtgcg ggcaggtgga actgacagag
caagttgttg ggtatctgcg tcgcgacgaa ttcaccaatg atgtgtggta ctcgctggcc
ctcgagatgc cc
672
<210> 1132
<211> 224
<212> PRT
<213> Homo sapiens
<400> 1132
Ala Leu Val Val Leu Met Ala Arg Glu Asn Pro Leu Asp Gln Tyr Leu
1
Phe Glu His Pro Glu Leu Leu Phe Ser Ser Ser Val Glu Ser Thr Val
                                25
Leu His Pro Asp Asn Pro Tyr Val Leu Gly Pro His Val Ala Ala Ala
                            40
Ala Gln Glu Ala Tyr Leu Ser Pro Ala Asp Glu Glu Phe Tyr Gly Ser
                        55
Ala Phe Ala Gly Ile Cys Lys Thr Leu Thr Gly Gln Asn Val Leu Arg
Arg Arg Gly Asn Arg Leu Phe Trp Thr Arg Pro Glu Arg Ala Val Asp
                                    90
                85
Ala Ile Asp Leu Arg Ser Ala Ala Gly Lys Gly Ile Asp Ile Ile Asp
                                                    110
Val Ser Thr Gly Arg Val Ile Gly Val Val Asp Glu Ala Ala Asp
Arg Thr Val His Pro Gly Ala Val Tyr Leu His Gln Gly Asp Gln Trp
```

```
130
                        135
                                             140
Leu Val Asp Glu Tyr Asn Pro Val Glu His His Ala Leu Val His Gln
145
                    150
                                        155
Asp Leu Pro Gly Tyr Trp Thr Gln Pro Gln Ser Ala Ser Thr Val Arg
Ile Leu Arg Glu Glu Arg Arg Ala Cys Gly Pro Gly Tyr Val Ala
                                                     190
            180
                                185
Cys Gly Gln Val Glu Leu Thr Glu Gln Val Val Gly Tyr Leu Arg Arg
                            200
                                                 205
Asp Glu Phe Thr Asn Asp Val Trp Tyr Ser Leu Ala Leu Glu Met Pro
                        215
                                             220
    210
<210> 1133
<211> 796
<212> DNA
<213> Homo sapiens
<400> 1133
acgcgtgaag gggggtccag cgggtgtggc actcgatgac aagacagttt gagagcggct
tgtctccggg gacctggcgt aggtctcctc tgccttaacc cttggctttt gcacttcctc
tqtctqtcct ccatacaaqc ttcttqcccc tagggaggac gggcttctta acagggggag
180
coggttectg tectaaccc actggcatet tacactetgg gagatagett coccetgaga
ggcgagtgag ccacgtaagg ggaggtgggc gatggcttcc cttctgtctt gggttggggg
agtcaggtac agtattttt cttttaaagc atcattgatc acataataag gtttgtcata
qtccttaatc acagacctgt gaaatttgga gaattcacgg cacctaggat gggagtgagc
ttetqattqt qaqetqattt qqqaqetaac etcaaggaaa etcetettge aageceeetg
ctgggtgtcg gggccttcgc cagggacctc ccggggactc tggacgctct ttgtctgccc
tteettttee eteacetege teeceegtga gaaagtgggg eteatgeage teageteagt
gacagagggt ttattagggg tagctctggg acccatcttt tggtgatttc ttctctctct
660
ttctctaatq qaataattqt ttctqtctac acttctttat tttctcctct ctacagctgc
720
cttctaaaaa tgtgcttttc tgttcctgca gaactgaagc ttgcatggcc tttgttgtga
780
ctttcccttc acgcgt
796
<210> 1134
<211> 147
<212> PRT
<213> Homo sapiens
<400> 1134
Met Gly Pro Arg Ala Thr Pro Asn Lys Pro Ser Val Thr Glu Leu Ser
```

```
5
                                    10
 1
Cys Met Ser Pro Thr Phe Ser Arg Gly Ser Glu Val Arg Glu Lys Glu
                                25
Gly Gln Thr Lys Ser Val Gln Ser Pro Arg Glu Val Pro Gly Glu Gly
                            40
Pro Asp Thr Gln Gln Gly Ala Cys Lys Arg Ser Phe Leu Glu Val Ser
                        55
Ser Gln Ile Ser Ser Gln Ser Glu Ala His Ser His Pro Arg Cys Arg
                                        75
                    70
Glu Phe Ser Lys Phe His Arg Ser Val Ile Lys Asp Tyr Asp Lys Pro
                85
Tyr Tyr Val Ile Asn Asp Ala Leu Lys Glu Lys Ile Leu Tyr Leu Thr
            100
                                105
                                                    110
Pro Pro Thr Gln Asp Arg Glu Ala Ile Ala His Leu Pro Leu Arg
                            120
Gly Ser Leu Ala Ser Gln Gly Glu Ala Ile Ser Gln Ser Val Arg Cys
                        135
                                            140
    130
Gln Trp Gly
145
<210> 1135
<211> 376
<212> DNA
<213> Homo sapiens
<400> 1135
gatcaggcca cacaggacaa cttcgagaag ggctccatct tcccaccctt caccagcatc
agaaagatet etgegeacat egetgeagee gtggetgeaa aageetaega geteggtetg
gegaeeegte tgeeteeece cagegaeetg gtgaaatatg cagagaaetg catgtacaet
cccqtctacc gcaactaccq gtagtgctgc ggggatcaat tttgcagtaa taaaaaatct
actatcaacg cggatggtac tetgttgttt atagteeetg etgetaacea ecettgttge
tggtgctgct ggagaggcat tgtacctgtc catgcatata tgatatatat atgttgtaac
gttgtgaaag caaact
376
<210> 1136
<211> 67
<212> PRT
<213> Homo sapiens
<400> 1136
Asp Gln Ala Thr Gln Asp Asn Phe Glu Lys Gly Ser Ile Phe Pro Pro
                                    10
Phe Thr Ser Ile Arg Lys Ile Ser Ala His Ile Ala Ala Ala Val Ala
                                25
Ala Lys Ala Tyr Glu Leu Gly Leu Ala Thr Arg Leu Pro Pro Pro Ser
                            40
Asp Leu Val Lys Tyr Ala Glu Asn Cys Met Tyr Thr Pro Val Tyr Arg
```

```
50
                        55
                                             60
Asn Tyr Arg
<210> 1137
<211> 357
<212> DNA
<213> Homo sapiens
<400> 1137
acgcgtcgct ggaacccgaa gatgaagcgc ttcatcttca ccgagcgcaa cggtatctac
atcattgacc tgcaccagtc gctgacctac attgataagg cgtacgcctt cgtcaaggag
actgtcgcca agggcggcca gattcttttc gtcggcacga agaagcaggc ccaggagtcc
ategttgage aggecacteg egttggeatg cectatgtea accagegttg gettggggga
atgeteacta atttecagae catetegaag egeattgeee ggeteaagga getegaggee
atggaetttg acaaggttte eggeteeggt etcaccaaga aggagetget tatgete
<210> 1138
<211> 119
<212> PRT
<213> Homo sapiens
<400> 1138
Thr Arg Arg Trp Asn Pro Lys Met Lys Arg Phe Ile Phe Thr Glu Arg
                                    10
Asn Gly Ile Tyr Ile Ile Asp Leu His Gln Ser Leu Thr Tyr Ile Asp
                                                     30
            20
                                25
Lys Ala Tyr Ala Phe Val Lys Glu Thr Val Ala Lys Gly Gln Ile
                            40
Leu Phe Val Gly Thr Lys Lys Gln Ala Gln Glu Ser Ile Val Glu Gln
                        55
                                             60
Ala Thr Arg Val Gly Met Pro Tyr Val Asn Gln Arg Trp Leu Gly Gly
                    70
Met Leu Thr Asn Phe Gln Thr Ile Ser Lys Arg Ile Ala Arg Leu Lys
                                    90
Glu Leu Glu Ala Met Asp Phe Asp Lys Val Ser Gly Ser Gly Leu Thr
            100
                                105
Lys Lys Glu Leu Leu Met Leu
        115
<210> 1139
<211> 456
<212> DNA
<213> Homo sapiens
<400> 1139
gtgcacaggt cgtctgaggc catgccgcgg acgatcgatc cgagtatggc ggcaccttca
60
```

```
ccaatcccgt aggacccgtc tcgtccagca tcgaccaagg cgctgttgag gcgttcggct
 120
 teggtaatga actegatgeg etcaatatee acgggggtag egaaategta gatettggee
 agactgaggc cttggaggag cgcggccgtc ggggggacgt ggcctgcggc cgggcgttcc
 ttgctctcaa ggacttcgtc gtcgcggctg acaaggaata cgtttgtgtg gtcgcctgca
atgcatgctc gagcgtggtg accatcgagg tgaaggacgg tttcggcata gaggtcatcg
tccacatcgg ccacagtgag ttcgacgact cctgagtcga ctagatgacg cgccttctct
 geogegtett egetgaegte ggeoaggace getage
 <210> 1140
 <211> 122
<212> PRT
<213> Homo sapiens
<400> 1140
Met Trp Thr Met Thr Ser Met Pro Lys Pro Ser Phe Thr Ser Met Val
                                     10
Thr Thr Leu Glu His Ala Leu Gln Ala Thr Thr Gln Thr Tyr Ser Leu
Ser Ala Ala Thr Thr Lys Ser Leu Arg Ala Arg Asn Ala Arg Pro Gln
                             40
                                                 45
Ala Thr Ser Pro Arg Arg Pro Arg Ser Ser Lys Ala Ser Val Trp Pro
                        55
Arg Ser Thr Ile Ser Leu Pro Pro Trp Ile Leu Ser Ala Ser Ser Ser
                    70
                                         75
Leu Pro Lys Pro Asn Ala Ser Thr Ala Pro Trp Ser Met Leu Asp Glu
                85
                                     90
Thr Gly Pro Thr Gly Leu Val Lys Val Pro Pro Tyr Ser Asp Arg Ser
            100
                                                     110
Ser Ala Ala Trp Pro Gln Thr Thr Cys Ala
        115
                            120
<210> 1141
<211> 354
<212> DNA
<213> Homo sapiens
<400> 1141
ggcgccatgc teggeggget ggtgctgggt gtggccgaag cetttggege egatatette
ggcgaccagt acaaggacgt ggtggcgttt ggcctgttgg ttctggtgct gttgttccgt
ccgaccggca ttctgggccg tccggaggtt gagaaagtat gagcagatat cttaaatcgg
cgtttttcag cgccctgttg gtgtgggccg tggcctttcc ggtactcggc ctcaagctga
gcattgtcgg gatcaaccac gaagtgcatg gcaccggtcc cgtgaccttg accatcatcg
300
```

```
coetgtgete ggtgeegatg tteetgegeg tgetgtttac ccagcaagte ggtg
354
<210> 1142
<211> 53
<212> PRT
<213> Homo sapiens
<400> 1142
Gly Ala Met Leu Gly Gly Leu Val Leu Gly Val Ala Glu Ala Phe Gly
Ala Asp Ile Phe Gly Asp Gln Tyr Lys Asp Val Val Ala Phe Gly Leu
                                25
Leu Val Leu Val Leu Phe Arg Pro Thr Gly Ile Leu Gly Arg Pro
                            40
        35
Glu Val Glu Lys Val
    50
<210> 1143
<211> 353
<212> DNA
<213> Homo sapiens
<400> 1143
acgcgttgca catccccag gaccatcaac cgcggcattg ccgcatagac ctggagatcc
catgcaacgt gaaatgaagt tegaategat caaggcaaag gecaaggega tgeteategg
cgcagccgac gacacagcaa gcgcaggcgc gaccaaccga gggtggctca acagcgccgc
attegaaate etggeecaeg tggeegteaa tgeecaacae taegegetet eegagagaee
ggcgctggag gagttcgcca agagcttcca gccgcgcaac aaccaggact acgtggccgc
gategecaag aaggeegega accaeaceat geateeegge aggeagtega ttt
353
<210> 1144
<211> 102
<212> PRT
<213> Homo sapiens
<400> 1144
Met His Gly Val Val Arg Gly Leu Leu Gly Asp Arg Gly His Val Val
Leu Val Val Ala Arg Leu Glu Ala Leu Gly Glu Leu Leu Gln Arg Arg
                                25
Ser Leu Gly Glu Arg Val Val Leu Gly Ile Asp Gly His Val Gly Gln
Asp Phe Glu Cys Gly Ala Val Glu Pro Pro Ser Val Gly Arg Ala Cys
Ala Cys Cys Val Val Gly Cys Ala Asp Glu His Arg Leu Gly Leu Cys
                    70
                                        75
Leu Asp Arq Phe Glu Leu His Phe Thr Leu His Gly Ile Ser Arg Ser
```

```
90
                                                         95
                85
Met Arg Gln Cys Arg Gly
            100
<210> 1145
<211> 360
<212> DNA
<213> Homo sapiens
<400> 1145
gtcttcggcg ggctcggcct gttctattgc gtcatgaccc cggtgtactg gttctcggcc
catgaagtgg ccggcacctg ggtactcggg ctgtcggcgg cgatggctct gatggtgttt
ttctacqtcc aggtcatcgc caagaagatc aatcctcgac cctccgacga gaaggacgcc
gaggtgatcg acggggctgg tccggtcggt ttcttcccgc cacagagtat ctggccgttc
tggtgcgcgc tcgttgtcgc catcatgtgc ctcggcccga tcttcggctg gtggatctct
ctgctcgggc tgggcattgt tatctgggcc gcctcgggtt gggcttttga gtactaccgc
360
<210> 1146
<211> 120
<212> PRT
<213> Homo sapiens
<400> 1146
Val Phe Gly Gly Leu Gly Leu Phe Tyr Cys Val Met Thr Pro Val Tyr
                                    10
Trp Phe Ser Ala His Glu Val Ala Gly Thr Trp Val Leu Gly Leu Ser
                                25
                                                    30
Ala Ala Met Ala Leu Met Val Phe Phe Tyr Val Gln Val Ile Ala Lys
                            40
Lys Ile Asn Pro Arg Pro Ser Asp Glu Lys Asp Ala Glu Val Ile Asp
                                            60
                        55
Gly Ala Gly Pro Val Gly Phe Phe Pro Pro Gln Ser Ile Trp Pro Phe
                    70
                                        75
Trp Cys Ala Leu Val Val Ala Ile Met Cys Leu Gly Pro Ile Phe Gly
                                    90
Trp Trp Ile Ser Leu Leu Gly Leu Gly Ile Val Ile Trp Ala Ala Ser
            100
Gly Trp Ala Phe Glu Tyr Tyr Arg
                            120
        115
<210> 1147
<211> 409
<212> DNA
<213> Homo sapiens
<400> 1147
tgtacattgg ctatgcagtc tggcctcctg aaggttatga tagtagccaa aaatatagaa
60
```

```
gccaaaaagg catccacctt cttcatcaat ccagaattga tcatgctcat gcctgtgggt
120
ggatcactat gtgctctcca aattgggagg ggaagtctac tetectetet cetetetet
180
ccaecttece etetetete teteettet atteccaggg cagtggaaca tgatgaggtt
cttttccctt catggatatc ctctttctgc cctccacata aaggggcatt gatggatctt
caagaatggg atgcctttcc ctagaaaggc taaatattca tgaggctgaa tgtgaggatc
cagagtacac tgaaatataa ctggtcatca gtacacatag aatctgatn
<210> 1148
<211> 103
<212> PRT
<213> Homo sapiens
<400> 1148
Met Gln Ser Gly Leu Leu Lys Val Met Ile Val Ala Lys Asn Ile Glu
1
                 5
Ala Lys Lys Ala Ser Thr Phe Phe Ile Asn Pro Glu Leu Ile Met Leu
            20
                                25
Met Pro Val Gly Gly Ser Leu Cys Ala Leu Gln Ile Gly Arg Gly Ser
                            40
Leu Leu Ser Ser Leu Leu Ser Leu Pro Pro Ser Pro Leu Ser Ser Leu
                        55
Leu Ser Ile Pro Arg Ala Val Glu His Asp Glu Val Leu Phe Pro Ser
                    70
                                        75
Trp Ile Ser Ser Phe Cys Pro Pro His Lys Gly Ala Leu Met Asp Leu
                                    90
                85
Gln Glu Trp Asp Ala Phe Pro
            100
<210> 1149
<211> 309
<212> DNA
<213> Homo sapiens
<400> 1149
gtcgacttct gcatggaaaa acgcgatctg gtgattgagc acgttgcgga gatgtacggc
cgtgaggcgg tatcgcagat cattaccttc ggtaccatgg cggcgaaagc ggttattcgt
gacgtgggcc gtgtactggg tcacccgtat ggcttcgtcg atcgcatctc caagctggtg
180
cegecegate egggeatgae getggaaaaa geetttgeeg eegaacegea gttgeeggaa
atctacqaqq ccgatqaqqa aqtcaaagcg ctgatcgaca tggcgcgcaa gctgggaagg
300
gtgacgcgg
309
<210> 1150
```

```
<211> 103
<212> PRT
<213> Homo sapiens
<400> 1150
Val Asp Phe Cys Met Glu Lys Arg Asp Leu Val Ile Glu His Val Ala
                                    10
Glu Met Tyr Gly Arg Glu Ala Val Ser Gln Ile Ile Thr Phe Gly Thr
                                25
            20
Met Ala Ala Lys Ala Val Ile Arg Asp Val Gly Arg Val Leu Gly His
                                                 45
                            40
Pro Tyr Gly Phe Val Asp Arg Ile Ser Lys Leu Val Pro Pro Asp Pro
                        55
Gly Met Thr Leu Glu Lys Ala Phe Ala Ala Glu Pro Gln Leu Pro Glu
                                        75
                    70
Ile Tyr Glu Ala Asp Glu Glu Val Lys Ala Leu Ile Asp Met Ala Arg
                                    90
Lys Leu Gly Arg Val Thr Arg
            100
<210> 1151
<211> 360
<212> DNA
<213> Homo sapiens
<400> 1151
gegegeattt tttgcaacce aagegaegte attatggeeg agtegeegge ttatgteggg
gegetcaata cettegeete gtaccaaact gaggtcatte aegtegacat ggacgacage
gggttggttc cggaatccct gcgtgagaaa gtgactgcag cgcgtcaaga cggcaagtcg
gtgaagttee tttacaeggt teetaaetae tegaaeeegt egggaatete geaateeaee
qaqcqtcqcc gggagatcct agcggtggct gacgagctgg atctgttggt ggttgaggac
aaccogtacg ggttactcaa cctcgatggt gatccactgc cgacgttgaa gtcgatggat
<210> 1152
<211> 120
<212> PRT
<213> Homo sapiens
<400> 1152
Ala Arg Ile Phe Cys Asn Pro Ser Asp Val Ile Met Ala Glu Ser Pro
                5
                                    10
Ala Tyr Val Gly Ala Leu Asn Thr Phe Ala Ser Tyr Gln Thr Glu Val
                                25
Ile His Val Asp Met Asp Asp Ser Gly Leu Val Pro Glu Ser Leu Arg
Glu Lys Val Thr Ala Ala Arq Gln Asp Gly Lys Ser Val Lys Phe Leu
                        55
Tyr Thr Val Pro Asn Tyr Ser Asn Pro Ser Gly Ile Ser Gln Ser Thr
```

```
65
                    70
                                        75
                                                             80
Glu Arg Arg Glu Ile Leu Ala Val Ala Asp Glu Leu Asp Leu Leu
Val Val Glu Asp Asn Pro Tyr Gly Leu Leu Asn Leu Asp Gly Asp Pro
            100
                                105
Leu Pro Thr Leu Lys Ser Met Asp
<210> 1153
<211> 416
<212> DNA
<213> Homo sapiens
<400> 1153
gegtggatte gteetggegg egtegetaee gaeetgeeeg agaeeggget egaeeagttg
cgtgacctca tcaagcggat ggaaaagtac ctccccgaga tcggtcagtt ctgcaatgag
aatccgatct ttaaggcccg cactcagggc attggttacg ctgatctgtc tacctgtatg
gecetgggag ttactggtee tgetetgege getaceggee tgeegtggga cetgegeaag
240
accoagocot attgogatta ogacacgtat gacttogacg togocacctg ggatacctgt
gactgttacg ggcgtttccg catccgcctg gaagagatgg accagtcggt gcgcattctc
aagcaatgcc tcaaacgcct cgaggacacc cagggtgacc gtaatatggt cgagga
416
<210> 1154
<211> 138
<212> PRT
<213> Homo sapiens
<400> 1154
Ala Trp Ile Arg Pro Gly Gly Val Ala Thr Asp Leu Pro Glu Thr Gly
Leu Asp Gln Leu Arg Asp Leu Ile Lys Arg Met Glu Lys Tyr Leu Pro
Glu Ile Gly Gln Phe Cys Asn Glu Asn Pro Ile Phe Lys Ala Arg Thr
                            40
Gln Gly Ile Gly Tyr Ala Asp Leu Ser Thr Cys Met Ala Leu Gly Val
Thr Gly Pro Ala Leu Arg Ala Thr Gly Leu Pro Trp Asp Leu Arg Lys
                                        75
Thr Gln Pro Tyr Cys Asp Tyr Asp Thr Tyr Asp Phe Asp Val Ala Thr
Trp Asp Thr Cys Asp Cys Tyr Gly Arg Phe Arg Ile Arg Leu Glu Glu
                                105
Met Asp Gln Ser Val Arg Ile Leu Lys Gln Cys Leu Lys Arg Leu Glu
                            120
Asp Thr Gln Gly Asp Arg Asn Met Val Glu
   130
                        135
```

```
<210> 1155
<211> 339
<212> DNA
<213> Homo sapiens
<400> 1155
cttaagttat tttggtcttt gcctctctcc tcaggttgtg aagattacag aaatctggga
tggcttatgg gacgcttctc agccctaagt aggaaaacag cagtgaaaat ggcaaccaaa
acatcacgca ggactggggg ttttggggaa acagctcact ttagagcagt gcagtgtaga
gettteegte ttetaceagg gtecacettt aacaetgttt atetgaaaat tttececetg
gettactege ttgcagetge ceaetttgca gaaagatgge getetgatet etaegeteee
tgttccttca gggactccat agtattttt ttcacgcgt
<210> 1156
<211> 91
<212> PRT
<213> Homo sapiens
<400> 1156
Met Gly Arg Phe Ser Ala Leu Ser Arg Lys Thr Ala Val Lys Met Ala
Thr Lys Thr Ser Arg Arg Thr Gly Gly Phe Gly Glu Thr Ala His Phe
                                25
Arg Ala Val Gln Cys Arg Ala Phe Arg Leu Leu Pro Gly Ser Thr Phe
                            40
Asn Thr Val Tyr Leu Lys Ile Phe Pro Leu Ala Tyr Ser Leu Ala Ala
                        55
Ala His Phe Ala Glu Arg Trp Arg Ser Asp Leu Tyr Ala Pro Cys Ser
                    70
                                        75
Phe Arq Asp Ser Ile Val Phe Phe Phe Thr Arg
                85
<210> 1157
<211> 426
<212> DNA
<213> Homo sapiens
<400> 1157
nnacagecte tetecgacce ggeggeggtt geacacgtee eegtetgagg agtattegtg
ctggcaaaac tcgtgacccg acacctgagg gcctatcggt tgcacgttgc cgtcatcatc
gttatgcagg tttgcgccca aatcgcggcc ctgaccttgc caaccatcaa cgcagacatc
atcaacaagg gcgtcgtgac agcggatacc ggatatgtca ccacccactc cctcttcatg
etggeggteg etttagggea ggeeatetge eaggteattg eggtttatet egeegeteag
300
```

```
gtggcgatgg gaatgggccg tgacgttcgc gacgccatct tcacccgcac ccttgacttc
360
teggeceggq aqateaacaa atteggagca ceateactea ttaceeggae taceaacgae
420
gtccag
426
<210> 1158
<211> 123
<212> PRT
<213> Homo sapiens
<400> 1158
Val Leu Ala Lys Leu Val Thr Arq His Leu Arg Ala Tyr Arg Leu His
                                    10
Val Ala Val Ile Ile Val Met Gln Val Cys Ala Gln Ile Ala Ala Leu
            20
                                25
Thr Leu Pro Thr Ile Asn Ala Asp Ile Ile Asn Lys Gly Val Val Thr
                                                 45
Ala Asp Thr Gly Tyr Val Thr His Ser Leu Phe Met Leu Ala Val
Ala Leu Gly Gln Ala Ile Cys Gln Val Ile Ala Val Tyr Leu Ala Ala
65
                    70
Gln Val Ala Met Gly Met Gly Arg Asp Val Arg Asp Ala Ile Phe Thr
                                    90
Arg Thr Leu Asp Phe Ser Ala Arg Glu Ile Asn Lys Phe Gly Ala Pro
            100
                                105
                                                     110
Ser Leu Ile Thr Arg Thr Thr Asn Asp Val Gln
                            120
<210> 1159
<211> 434
<212> DNA
<213> Homo sapiens
<400> 1159
teteteegae egegeetggg geeeggtggg gteetgeggg gaegegggeg aggaeggege
ggacgaggca ggagcaggcc gggctctcgc catgggtcac tgtcgcctct gccacgggaa
120
gttttcctcg agaagcctgc gcagcatctc cgagagggcg cctggagcga gcatggagag
gccatccgca gaggagcgcg tgctcgtacg ggacttccag cgcctgcttg gtgtggctgt
ccgccaggac cccaccttgt ctccgtttgt ctgcaagagc tgccacgccc agttctacca
gtgccacagc cttctcaagt ccttcctgca gagggtcaac gcctccccgg ctggtcgccg
gaageettgt geaaaggteg gtgeeeagee eecaacaggg geagaggagg gagegtgtet
420
ggtggatctg atca
434
<210> 1160
```

```
<211> 114
<212> PRT
<213> Homo sapiens
<400> 1160
Met Gly His Cys Arg Leu Cys His Gly Lys Phe Ser Ser Arg Ser Leu
Arg Ser Ile Ser Glu Arg Ala Pro Gly Ala Ser Met Glu Arg Pro Ser
Ala Glu Glu Arg Val Leu Val Arg Asp Phe Gln Arg Leu Leu Gly Val
Ala Val Arg Gln Asp Pro Thr Leu Ser Pro Phe Val Cys Lys Ser Cys
                        55
His Ala Gln Phe Tyr Gln Cys His Ser Leu Leu Lys Ser Phe Leu Gln
                                        75
Arg Val Asn Ala Ser Pro Ala Gly Arg Arg Lys Pro Cys Ala Lys Val
Gly Ala Gln Pro Pro Thr Gly Ala Glu Glu Gly Ala Cys Leu Val Asp
            100
                                105
Leu Ile
<210> 1161
<211> 355
<212> DNA
<213> Homo sapiens
<400> 1161
ctgcacacac accaggccac gcccacgagg acggccagtc agcatgcagc caatacaccc
acagagggat ggggagcagc cctcagtgcc agctccaaca ggcccactgc aggtcctgtc
actgcaccca aggagetgce ttecatttea cetgacattt ceactaaggg eccagegttt
atcattccag aagagcagca ggcagaacct tcacctccca agagctgcaa gtgcgctgtg
gcaggaaaag aagatctggc gtctgaagtc agctcctgct ctccaggaaa agagggacga
tgacatagga cttgagcaaa atgagagccc cgtgatggga gagaacacct gatca
<210> 1162
<211> 102
<212> PRT
<213> Homo sapiens
<400> 1162
Met Gln Pro Ile His Pro Gln Arg Asp Gly Glu Gln Pro Ser Val Pro
Ala Pro Thr Gly Pro Leu Gln Val Leu Ser Leu His Pro Arg Ser Cys
            20
                                25
Leu Pro Phe His Leu Thr Phe Pro Leu Arg Ala Gln Arg Leu Ser Phe
Gln Lys Ser Ser Arg Gln Asn Leu His Leu Pro Arg Ala Ala Ser Ala
```

```
60
    50
                        55
Leu Trp Gln Glu Lys Lys Ile Trp Arg Leu Lys Ser Ala Pro Ala Leu
                                        75
                    70
Gln Glu Lys Arg Asp Asp Ile Gly Leu Glu Gln Asn Glu Ser Pro
                                    90
Val Met Gly Glu Asn Thr
            100
<210> 1163
<211> 466
<212> DNA
<213> Homo sapiens
<400> 1163
ngcgcgccag gaagcgggag gtcagctgta cacccagggt aatagaactt ctaccctcag
aggagtcaaa gagaaggcag aactatggca ggaaagctcc ggaagtccca catccctgga
gtgagcatct ggcagctggt ggaggagatc cctgaaggct gcagcacgcc ggactttgag
180
cagaagcccg tcacctcggc tctgccagag gggaaaaatg ctgtctttcg ggctgtggtc
tgtggggage ccaggecega ggtgegttgg cagaacteca aaggtgacet cagtgattee
agcaagtaca agateteete cageeetgge agcaaggage aegtgetgea gateaacaag
ctqacaqqcq aqqacacqqa tctqtaccac tgcacagcag taaatqcgta cggagaggcc
gettgeteag tgagaeteae egteategaa gttggettte ggaaga
466
<210> 1164
<211> 127
<212> PRT
<213> Homo sapiens
<400> 1164
Met Ala Gly Lys Leu Arg Lys Ser His Ile Pro Gly Val Ser Ile Trp
                                    10
Gln Leu Val Glu Glu Ile Pro Glu Gly Cys Ser Thr Pro Asp Phe Glu
Gln Lys Pro Val Thr Ser Ala Leu Pro Glu Gly Lys Asn Ala Val Phe
Arg Ala Val Val Cys Gly Glu Pro Arg Pro Glu Val Arg Trp Gln Asn
Ser Lys Gly Asp Leu Ser Asp Ser Ser Lys Tyr Lys Ile Ser Ser Ser
                                        75
                    70
Pro Gly Ser Lys Glu His Val Leu Gln Ile Asn Lys Leu Thr Gly Glu
                                    90
Asp Thr Asp Leu Tyr His Cys Thr Ala Val Asn Ala Tyr Gly Glu Ala
            100
                                105
Ala Cys Ser Val Arg Leu Thr Val Ile Glu Val Gly Phe Arg Lys
                            120
```

```
<210> 1165
<211> 414
<212> DNA
<213> Homo sapiens
<400> 1165
tgggtggttc cggacacana aaatcacgtg ttgaaccgaa tttcaggcat ggtgaaaggc
tgetttagta aagteettgt tgageegegt etgeteaage teaacttgae nattatgtgt
ctgcacattc tgctgatgtc cacgttcgtg gccctgcccg gtcagttggc tgcagcagga
ttccccgccg ctgaacactg gaaagtgtat ctggtgacga tgctcatctc cttcgtctcc
gttgtccctt tcattatcta tgcagaagtg aaacgccgca tgaagcgcgt attcctgacg
tgtgttgcgc tgctgttgat tgccgaaatc gtactatggg gctccggtcc acacttctgg
gaactggtca tcggcgtaca gcttttcttc ctcgccttta atctcatgga agcc
<210> 1166
<211> 138
<212> PRT
<213> Homo sapiens
<400> 1166
Trp Val Val Pro Asp Thr Xaa Asn His Val Leu Asn Arg Ile Ser Gly
                                    10
Met Val Lys Gly Cys Phe Ser Lys Val Leu Val Glu Pro Arg Leu Leu
Lys Leu Asn Leu Thr Ile Met Cys Leu His Ile Leu Leu Met Ser Thr
                            40
Phe Val Ala Leu Pro Gly Gln Leu Ala Ala Gly Phe Pro Ala Ala
                        55
                                            60
Glu His Trp Lys Val Tyr Leu Val Thr Met Leu Ile Ser Phe Val Ser
                    70
Val Val Pro Phe Ile Ile Tyr Ala Glu Val Lys Arg Met Lys Arg
                                    90
Val Phe Leu Thr Cys Val Ala Leu Leu Leu Ile Ala Glu Ile Val Leu
                                105
Trp Gly Ser Gly Pro His Phe Trp Glu Leu Val Ile Gly Val Gln Leu
                                                125
                            120
Phe Phe Leu Ala Phe Asn Leu Met Glu Ala
                        135
    130
<210> 1167
<211> 464
<212> DNA
<213> Homo sapiens
<400> 1167
gtcgaccccg tgggcaagag tcgcggcccc tgacgataac ttcaccccgc cggccttgag
```

```
ctgttgggac cggctggcta aggcctgggc accggtagcg gcctggtgga taccctcatg
tageogggtg acctgcctga ccatcttcgg caaaccagtg cgcagttgtg tggtgaactc
attgacccct cgagacagtc gtgaggaacc gtcagcaagt tcgtcgatgc cgtcgtcgat
qctcttgcca gagttcggat ccttgatcgc catcgccttg acggccaccc ccgacccagc
ecquacquee agggeqtace categgteat egegtegegg aegatgggta ecaggtegtg
geatteetge geggtgtgge ttegeaegea tegaegeagg aagteageet egeeeeggga
cagggettee ttactaagtt cegeggtttt ettteeegae gegt
<210> 1168
<211> 110
<212> PRT
<213> Homo sapiens
<400> 1168
Met Thr Asp Gly Tyr Ala Leu Gly Val Arg Ala Gly Ser Gly Val Ala
                                                         15
1
Val Lys Ala Met Ala Ile Lys Asp Pro Asn Ser Gly Lys Ser Ile Asp
Asp Gly Ile Asp Glu Leu Ala Asp Gly Ser Ser Arg Leu Ser Arg Gly
                            40
Val Asn Glu Phe Thr Thr Gln Leu Arg Thr Gly Leu Pro Lys Met Val
                        55
Arg Gln Val Thr Arg Leu His Glu Gly Ile His Gln Ala Ala Thr Gly
                    70
                                        75
Ala Gln Ala Leu Ala Ser Arg Ser Gln Gln Leu Lys Ala Gly Gly Val
                                    90
Lys Leu Ser Ser Gly Ala Ala Thr Leu Ala His Gly Val Asp
                                105
                                                     110
            100
<210> 1169
<211> 486
<212> DNA
<213> Homo sapiens
<400> 1169
nacqcgtgaa gggagcagaa cggacaccag ttactagtgg ctctggtcgg ggacagcctc
ctagagcctt tctggccaat gggaacagga atagcccggg gctttctagc tgctatggac
120
tetgeetgga tggteegaag ttggteteta ggaacgagee etttggaagt getggeagag
agggaaagta tttacaggtt gctgcctcag accacccctg agaatgtgag taagaacttc
agccagtaca gtategaeee tgteactegg tateceaata teaacgteaa etteeteegg
ccaagccagg tgcgccattt atatgatact ggcgaaacaa aagatattca cctggaaatg
360
```

gagageetgg tgaatteeeg aaccaeeeee aaattgaete geaatgagte tgtagetegt tcaaqcaaac tgctgggttg gtgccagagg cagacagatg gctatgcagg ggtaaacgtg 480 acagat 486 <210> 1170 <211> 159 <212> PRT <213> Homo sapiens <400> 1170 Arg Glu Gln Asn Gly His Gln Leu Leu Val Ala Leu Val Gly Asp Ser 10 Leu Leu Glu Pro Phe Trp Pro Met Gly Thr Gly Ile Ala Arg Gly Phe 25 20 Leu Ala Ala Met Asp Ser Ala Trp Met Val Arg Ser Trp Ser Leu Gly 4.5 40 Thr Ser Pro Leu Glu Val Leu Ala Glu Arg Glu Ser Ile Tyr Arg Leu 60 Leu Pro Gln Thr Thr Pro Glu Asn Val Ser Lys Asn Phe Ser Gln Tyr 75 70 Ser Ile Asp Pro Val Thr Arg Tyr Pro Asn Ile Asn Val Asn Phe Leu 90 Arg Pro Ser Gln Val Arg His Leu Tyr Asp Thr Gly Glu Thr Lys Asp 105 100 Ile His Leu Glu Met Glu Ser Leu Val Asn Ser Arg Thr Thr Pro Lys 125 120 Leu Thr Arg Asn Glu Ser Val Ala Arg Ser Ser Lys Leu Leu Gly Trp 135 Cys Gln Arg Gln Thr Asp Gly Tyr Ala Gly Val Asn Val Thr Asp 155 145 150 <210> 1171 <211> 429 <212> DNA <213> Homo sapiens <400> 1171 acgcgttcaa caaagcacag aaccggagat gcagtgggag ccgagagcag gaagcgcgga ggcagcgcca ggtgctggcg ctgcccgagg ccccgtgcca agtggggccc atagcagccg 120 actoqotaqa cootoccaaa acgoacacca egegegacca ggacegagag geeegeaegg ccctgctagg ccacaaacac tocactgtct ccagggtaaa agacaaacac agcctcgctt gtocctccaa gagtacaacc totgtotgat gaaaaacaaa cgacccagag aggaggcagc tgccqqqaca ctqcagqctg ggcccgccgc gcccttggag ggcaggtcaa aatcccggaa 420

```
acctcctac
429
<210> 1172
<211> 118
<212> PRT
<213> Homo sapiens
<400> 1172
Met Gln Trp Glu Pro Arg Ala Gly Ser Ala Glu Ala Ala Pro Gly Ala
Gly Ala Ala Arg Gly Pro Val Pro Ser Gly Ala His Ser Ser Arg Leu
                                25
Ala Arg Pro Ser Gln Asn Ala His His Ala Arg Pro Gly Pro Arg Gly
                            40
Pro His Gly Pro Ala Arg Pro Gln Thr Leu His Cys Leu Gln Gly Lys
Arg Gln Thr Gln Pro Arg Leu Ser Leu Gln Glu Tyr Asn Leu Cys Leu
                                        75
                    70
Met Lys Asn Lys Arg Pro Arg Glu Glu Ala Ala Gly Thr Leu Gln
                                    90
Ala Gly Pro Ala Ala Pro Leu Glu Gly Arg Ser Lys Ser Arg Asn Arg
            100
                                105
His Ser Val Gln Ala Asp
        115
<210> 1173
<211> 435
<212> DNA
<213> Homo sapiens
<400> 1173
cgcgtcaatg acgacggcga gcattctgcc gagcaggtga tgcgagccac ccgcggtgct
ggacttgggg ccgaggccaa gcgtcgcatc atcttgggta cctatgcctt gtcggctggg
tactatgacg cctactacgg ctcggctcag aaagtccgta ccctcatcca acgcgacttc
qaqaaaqcat qqcaqatqtq cqatqtqctc gtgtcaccgg ccacgccaac gactgccttc
cggctgggtg agcgtactgc tgacccgatg gcgatgtacc gctccgatct atgcacggtc
ccggccaata tggccggaag tcccgcagga tctttcccga tcggtctatc agagaccgac
ggcatgcccg tcggcatgca ggtgatggcg ccaatcatgg cggacgatcg aatctaccga
gttggggccg ctcta
435
<210> 1174
<211> 145
<212> PRT
<213> Homo sapiens
```

<400> 1174 Arg Val Asn Asp Asp Gly Glu His Ser Ala Glu Gln Val Met Arg Ala Thr Arg Gly Ala Gly Leu Gly Ala Glu Ala Lys Arg Arg Ile Ile Leu Gly Thr Tyr Ala Leu Ser Ala Gly Tyr Tyr Asp Ala Tyr Tyr Gly Ser 40 Ala Gln Lys Val Arg Thr Leu Ile Gln Arg Asp Phe Glu Lys Ala Trp 60 55 Gln Met Cys Asp Val Leu Val Ser Pro Ala Thr Pro Thr Thr Ala Phe 75 70 Arg Leu Gly Glu Arg Thr Ala Asp Pro Met Ala Met Tyr Arg Ser Asp 90 Leu Cys Thr Val Pro Ala Asn Met Ala Gly Ser Pro Ala Gly Ser Phe 105 100 Pro Ile Gly Leu Ser Glu Thr Asp Gly Met Pro Val Gly Met Gln Val 120 125 Met Ala Pro Ile Met Ala Asp Asp Arg Ile Tyr Arg Val Gly Ala Ala 135 130 Leu 145 <210> 1175 <211>. 729 <212> DNA <213> Homo sapiens <400> 1175 gategeactg caatecacec acatetactt gatatgaaaa ttggtcaagg caaatatgag caqqqqttct ttccaaaqtt acaqtccgat gtcttggcaa caggaccaac cagtaacaat cgctgggtaa gtcggagtgc cactgcacag cgcaggaaag gacgccttcg ccagcattct gagcatgttg ggctggacaa cgacttgagg gagaaatata tgcaagaggc acgaagttta ggaaaaaacc tgaggcaacc caaactgtca gacctctctc ctgcagttat tgcacagacc aactgtaaat tcgtagaagg cttattaaaa gaatgtagaa ataagacaaa gcgcatgttg gtggagaaga tgggacatga agcggtggaa cttggccatg gagaagcaaa catcaccggc 420 ctggaggaga acacettgat cgccagcett tgtgacetge tggagaggat atggagceat ggcttgcagg tcaagcaggg gaagtcggtt ttgtggtcac atttaattcc ttttcaggac agagaagaga accaagagcc ccttgcagaa tcaccagttg ccctcggacc agaaagaaaa aaatctgact caggagttat gttgccaacg ctcagggtct ctcttattca ggacatgagg catattcaaa acatgagtga gatcaagact gatgttggac gagctcgggc gtggataaga 720 ctgtctcta 729

```
<210> 1176
<211> 243
<212> PRT
<213> Homo sapiens
<400> 1176
Asp Arg Thr Ala Ile His Pro His Leu Leu Asp Met Lys Ile Gly Gln
                                   10
Gly Lys Tyr Glu Gln Gly Phe Phe Pro Lys Leu Gln Ser Asp Val Leu
           20
                               25
Ala Thr Gly Pro Thr Ser Asn Asn Arg Trp Val Ser Arg Ser Ala Thr
                           40
Ala Gln Arg Arg Lys Gly Arg Leu Arg Gln His Ser Glu His Val Gly
                       55
Leu Asp Asn Asp Leu Arg Glu Lys Tyr Met Gln Glu Ala Arg Ser Leu
                                       75
Gly Lys Asn Leu Arg Gln Pro Lys Leu Ser Asp Leu Ser Pro Ala Val
                                   90
Ile Ala Gln Thr Asn Cys Lys Phe Val Glu Gly Leu Leu Lys Glu Cys
                               105
Arg Asn Lys Thr Lys Arg Met Leu Val Glu Lys Met Gly His Glu Ala
                           120
                                               125
Val Glu Leu Gly His Gly Glu Ala Asn Ile Thr Gly Leu Glu Glu Asn
                       135
Thr Leu Ile Ala Ser Leu Cys Asp Leu Leu Glu Arg Ile Trp Ser His
                                       155
                   150
Gly Leu Gln Val Lys Gln Gly Lys Ser Val Leu Trp Ser His Leu Ile
               165
                                   170
Pro Phe Gln Asp Arg Glu Glu Asn Gln Glu Pro Leu Ala Glu Ser Pro
           180
                               185
Val Ala Leu Gly Pro Glu Arg Lys Lys Ser Asp Ser Gly Val Met Leu
                                              205
                           200
Pro Thr Leu Arg Val Ser Leu Ile Gln Asp Met Arg His Ile Gln Asn
                       215
                                          220
Met Ser Glu Ile Lys Thr Asp Val Gly Arg Ala Arg Ala Trp Ile Arg
                                       235
225
                   230
Leu Ser Leu
<210> 1177
<211> 581
<212> DNA
<213> Homo sapiens
<400> 1177
acgcgtgatg agttgcgcga gaccagcaac tgcagccgaa tacagttttc ttgtgtaccc
cgtcgcacag ctgcgagagg tgggcattgc cgagtgaggc aacgatgtct aaggcggaaa
qctcatcctc qqcaqacqqq aaqactttqt cqtcqqqqat qttqtcaatg agagcgggga
egtegatete ggtaetgeee atggegteat gaaggatege gegataeggg gegaegaeee
240
```

```
cgatgagggc gtcgtcgaat ccagcgatga tcgatacctc tctcggtagc acgtccgtgg
300
ccaacaggtg gtcgacttgg gcgggggcta gccatgtaat tgttccgagc acatggaggg
tggctgccag gaggcggatg gccggttctg gggcatcttt ggagatcttc agccggacat
420
cagtgggcag teeggeeggg acttggcaga gggeetggge gggatgggag egetgggega
cgacgaaacg ccccgacgcc gtaacgccgt gggcttggag atcgcaggtc cacttetetg
ggctttcacc ggcagagatc atggtgtgga ccaccattgt g
581
<210> 1178
<211> 192
<212> PRT
<213> Homo sapiens
<400> 1178
Met Val Val His Thr Met Ile Ser Ala Gly Glu Ser Pro Glu Lys Trp
                 5
                                    10
Thr Cys Asp Leu Gln Ala His Gly Val Thr Ala Ser Gly Arg Phe Val
            20
                                25
Val Ala Gln Arg Ser His Pro Ala Gln Ala Leu Cys Gln Val Pro Ala
                            40
Gly Leu Pro Thr Asp Val Arg Leu Lys Ile Ser Lys Asp Ala Pro Glu
                        55
Pro Ala Ile Arg Leu Leu Ala Ala Thr Leu His Val Leu Gly Thr Ile
                    70
                                        75
Thr Trp Leu Ala Pro Ala Gln Val Asp His Leu Leu Ala Thr Asp Val
                85
                                    90
Leu Pro Arg Glu Val Ser Ile Ile Ala Gly Phe Asp Asp Ala Leu Ile
            100
                                105
                                                     110
Gly Val Val Ala Pro Tyr Arg Ala Ile Leu His Asp Ala Met Gly Ser
                            120
Thr Glu Ile Asp Val Pro Ala Leu Ile Asp Asn Ile Pro Asp Asp Lys
    130
                        135
                                            140
Val Phe Pro Ser Ala Glu Asp Glu Leu Ser Ala Leu Asp Ile Val Ala
                    150
                                        155
Ser Leu Gly Asn Ala His Leu Ser Gln Leu Cys Asp Gly Val His Lys
                                    170
Lys Thr Val Phe Gly Cys Ser Cys Trp Ser Arg Ala Thr His His Ala
            180
                                185
<210> 1179
<211> 597
<212> DNA
<213> Homo sapiens
<400> 1179
gtgcactttc tqqcttctaa ctqtqgcccc aqccctgact ccttgaggtg ctcctgtgct
gattggggct tetggacatg etgecacaag atgtetggaa aetecagggg geacetgeeg
120
```

```
agaccttqcc ctqqqaacqq ccqqaaqaat cccaaaacat gagattccgg tgcagctgag
180
ccccgccaat tcattgtctc tttcagtccc ttctgaaggc tgcatttggc aatgtgaccc
tcggggtggg gaaggcatca gaggaataca ggctatggga cgccagaggc agcgtcctgg
ggacaaagcc cacttettee catgeceagg getteeteat ggacecagea tggtggacgt
360
ggccctcaga cgtccatggg tggtggggga ggcacgtgct gtttggccct gtctctgctc
agagteteat aggaagatge atggteeaca caacagtgag teggeaggga gteeaggett
480
cccctcccaa ccagtggtgt tgagacgctt ggtttataac ccaagatccc ttgtcccatt
ggtgcctcct gaatctccca cctcccgcgg cacctgcatg gcctctacct gacgcgt
597
<210> 1180
<211> 105
<212> PRT
<213> Homo sapiens
<400> 1180
Met Gly Arg Gln Arg Gln Arg Pro Gly Asp Lys Ala His Phe Pro
                                    10
Cys Pro Gly Leu Pro His Gly Pro Ser Met Val Asp Val Ala Leu Arg
Arg Pro Trp Val Val Gly Glu Ala Arg Ala Val Trp Pro Cys Leu Cys
                                                45
Ser Glu Ser His Arg Lys Met His Gly Pro His Asn Ser Glu Ser Ala
                        55
Gly Ser Pro Gly Phe Pro Ser Gln Pro Val Val Leu Arg Arg Leu Val
                    70
Tyr Asn Pro Arg Ser Leu Val Pro Leu Val Pro Pro Glu Ser Pro Thr
                                                         95
                85
                                    90
Ser Arg Gly Thr Cys Met Ala Ser Thr
            100
<210> 1181
<211> 352
<212> DNA
<213> Homo sapiens
<400> 1181
gtcgactacc tcgatgtttc cccgcgtcag atggtctccg tggctactgc catgattccg
ttcctcgagc acgacgacgc taaccgtgcc ctgatgggtg cgaacatgca gcgtcaggct
gtgccgctgc tgcgttcgga ggctccgttc gtcggtaccg gtatggagca gcgtgctgct
180
tacgacgccg gcgatgtcat tgtcgcttcg gccacaggtg tggtcgagac cgtgtcggca
ggottcatca ccatcatgga cgatgagggo cagogocaca cotacotgot gogoaagtto
300
```

```
gagegeacca accagggeac etgetacaac cagaageeac tgttgaegag gg
352
<210> 1182
<211> 117
<212> PRT
<213> Homo sapiens
<400> 1182
Val Asp Tyr Leu Asp Val Ser Pro Arg Gln Met Val Ser Val Ala Thr
Ala Met Ile Pro Phe Leu Glu His Asp Asp Ala Asn Arg Ala Leu Met
                                25
            20
Gly Ala Asn Met Gln Arg Gln Ala Val Pro Leu Leu Arg Ser Glu Ala
                            40
Pro Phe Val Gly Thr Gly Met Glu Gln Arg Ala Ala Tyr Asp Ala Gly
                        55
Asp Val Ile Val Ala Ser Ala Thr Gly Val Val Glu Thr Val Ser Ala
Gly Phe Ile Thr Ile Met Asp Asp Glu Gly Gln Arg His Thr Tyr Leu
Leu Arg Lys Phe Glu Arg Thr Asn Gln Gly Thr Cys Tyr Asn Gln Lys
            100
                                105
Pro Leu Leu Thr Arq
        115
<210> 1183
<211> 432
<212> DNA
<213> Homo sapiens
<400> 1183
qateettetg ggegetggte caagegegtg gtgaggeegt ceteteetge agaaceeegg
cctcttcgcc cctgcccgct cacctgttct gtcctgctca cctcctccag gaagcctgcc
tggccttctc catgctgatg ggcgtggccc ttgtccctgc agccatgcat tgacctccgt
ggeteetgga ggecaggeca egteeteate eeetetgggt gagtgagagg cacageetgg
240
gtgcgtgggg ccgtggcggc tccgaggcgc caccgctgtg tcctctcatg agtgggtgcc
gtccaggtct gtcctgggct ggctgcgagg aggaggttgg cctcgcgcgg ccatgtgcgt
gacagtggag acatcgccag cctcctgctt gcacagctga cggcagcccc tctctctcca
420
gccatgtccc ca
432
<210> 1184
<211> 141
<212> PRT
<213> Homo sapiens
```

```
<400> 1184
 Met Ala Gly Glu Arg Gly Ala Ala Val Ser Cys Ala Ser Arg Arg Leu
 Ala Met Ser Pro Leu Ser Arg Thr Trp Pro Arg Glu Ala Asn Leu Leu
             20
 Leu Ala Ala Ser Pro Gly Gln Thr Trp Thr Ala Pro Thr His Glu Arg
                              40
 Thr Gln Arg Trp Arg Leu Gly Ala Ala Thr Ala Pro Arg Thr Gln Ala
 Val Pro Leu Thr His Pro Glu Gly Met Arg Thr Trp Pro Gly Leu Gln
                     70
                                          75
 Glu Pro Arg Arg Ser Met His Gly Cys Arg Asp Lys Gly His Ala His
                 85
                                     90
 Gln His Gly Glu Gly Gln Ala Gly Phe Leu Glu Glu Val Ser Arg Thr
                                 105
 Glu Gln Val Ser Gly Gln Gly Arg Arg Gly Arg Gly Ser Ala Gly Glu
                             120
 Asp Gly Leu Thr Thr Arg Leu Asp Gln Arg Pro Glu Gly
     130
 <210> 1185
 <211> 423
 <212> DNA
 <213> Homo sapiens
 <400> 1185
 accygtgaat ttggccttaa cagcgatgga actcctggcc catcttatga acctggcatg
gaattacgcg gcaaatatgt attgttgggt gaaggtgtac ggggctctct atctaaacaa
120
gtcatcaata aataccaatt atccgagggt catgaaccac aaaagttcgg ccttggctta
aaagaaattt gggaaataga cccagaaaaa cacaaagaag gcagagtcag tcataccatg
ggctggccat taaatggcaa tgctggcggc ggttctttta tttatcatgc agaaaacaat
caagtettta teggetttgt ggtgeatett aattaegeea accettaeet ateceettae
caagaatttc aacgetttaa acaccateeg attategegg agetattaae tggeggtaaa
420
cgc
423
<210> 1186
<211> 141
<212> PRT
<213> Homo sapiens
<400> 1186
Thr Gly Glu Phe Gly Leu Asn Ser Asp Gly Thr Pro Gly Pro Ser Tyr
                                    10
Glu Pro Gly Met Glu Leu Arg Gly Lys Tyr Val Leu Leu Gly Glu Gly
                                25
Val Arg Gly Ser Leu Ser Lys Gln Val Ile Asn Lys Tyr Gln Leu Ser
```

```
35
                            40
                                                 45
Glu Gly His Glu Pro Gln Lys Phe Gly Leu Gly Leu Lys Glu Ile Trp
                        55
Glu Ile Asp Pro Glu Lys His Lys Glu Gly Arg Val Ser His Thr Met
                    70
                                        75
Gly Trp Pro Leu Asn Gly Asn Ala Gly Gly Gly Ser Phe Ile Tyr His
                                     90
Ala Glu Asn Asn Gln Val Phe Ile Gly Phe Val Val His Leu Asn Tyr
                                                     110
            100
                                105
Ala Asn Pro Tyr Leu Ser Pro Tyr Gln Glu Phe Gln Arg Phe Lys His
                            120
His Pro Ile Ile Ala Glu Leu Leu Thr Gly Gly Lys Arg
    130
                        135
<210> 1187
<211> 387
<212> DNA
<213> Homo sapiens
<400> 1187
acgcgtgctg gtgagtttaa attgaatgct gatggtaatt tggtgacgaa ttcaggggct
aaggtccagg gctataatgc aatagatggc atagtcggtg ggaacttaga agatatggta
gtacccactg ctcgaatttc tcctcaagca acatcaagtg ttgatttaaa agtgaatctt
aatteegaag gtgaggatgt geegeettat attegagegg aetttgatee ageeaateea
gatacttatg actatactca gacccaaacg gttgcggatg ggagtggtaa taatcattta
attagttatt actatgctaa aagtgatgta gcaaatacct atcaggttta tgccacggta
gatgggaagt cgactgatga taccggt
387
<210> 1188
<211> 129
<212> PRT
<213> Homo sapiens
<400> 1188
Thr Arg Ala Gly Glu Phe Lys Leu Asn Ala Asp Gly Asn Leu Val Thr
                                    10
Asn Ser Gly Ala Lys Val Gln Gly Tyr Asn Ala Ile Asp Gly Ile Val
                                25
Gly Gly Asn Leu Glu Asp Met Val Val Pro Thr Ala Arg Ile Ser Pro
                            40
Gln Ala Thr Ser Ser Val Asp Leu Lys Val Asn Leu Asn Ser Glu Gly
                        55
Glu Asp Val Pro Pro Tyr Ile Arg Ala Asp Phe Asp Pro Ala Asn Pro
                    70
Asp Thr Tyr Asp Tyr Thr Gln Thr Gln Thr Val Ala Asp Gly Ser Gly
                85
                                    90
Asn Asn His Leu Ile Ser Tyr Tyr Tyr Ala Lys Ser Asp Val Ala Asn
```

```
100
                                105
                                                    110
Thr Tyr Gln Val Tyr Ala Thr Val Asp Gly Lys Ser Thr Asp Asp Thr
                            120
        115
Gly
<210> 1189
<211> 330
<212> DNA
<213> Homo sapiens
<400> 1189
tegategeeg acegeeeggg cettgeeeee ggeatgateg gtggeetgtt ggeeageace
ctgggtgctg gtttcattgg cggcatcgtt gcaggttttc tggccggtta cagcgccaag
gccattgccc gctgggcacg gctgcccagc agcctggatg cgctcaaacc gattctgatc
atttcgctgc tggccagcct gttcactggg ttggtgatga tctacgtggt cggccagccg
gtggcggcca tgctcggagg cctgacacac tttctcgaca gcatgggtac caccaacgcc
attetectgg gentgttget eggeggetag
330
<210> 1190
<211> 109
<212> PRT
<213> Homo sapiens
<400> 1190
Ser Ile Ala Asp Arg Pro Gly Leu Ala Pro Gly Met Ile Gly Gly Leu
Leu Ala Ser Thr Leu Gly Ala Gly Phe Ile Gly Gly Ile Val Ala Gly
                                25
            20
Phe Leu Ala Gly Tyr Ser Ala Lys Ala Ile Ala Arg Trp Ala Arg Leu
                            40
Pro Ser Ser Leu Asp Ala Leu Lys Pro Ile Leu Ile Ile Ser Leu Leu
                        55
Ala Ser Leu Phe Thr Gly Leu Val Met Ile Tyr Val Val Gly Gln Pro
                    70
                                        75
Val Ala Ala Met Leu Gly Gly Leu Thr His Phe Leu Asp Ser Met Gly
                85
Thr Thr Asn Ala Ile Leu Leu Gly Xaa Leu Leu Gly Gly
           100
                                105
<210> 1191
<211> 351
<212> DNA
<213> Homo sapiens
<400> 1191
cggccgacga tgtgcggtga gcaagagatt tggagagcca tgatgacgtc agcagacaaa
```

gcagggacta acggacagac catgcagaca ccgccggtgg tgtcgccgca ggactgggag 120 gcagcccgtc agcaactgct cgtgaaqqaa aaqqcgcata cccgtgcccq cgacgcactc gccgccgaac ggaggcgcat gccgtggatg gaagtgacaa aaacctacgc attcgaggcg 240 ccctcgggca aggccagtct gctcgatctg ttccagggcc ggaagcagct gatcctgtac egggeettet tegageeggg egtgttegge tggeeegaee atgeetgeeg e 351 <210> 1192 <211> 114 <212> PRT <213> Homo sapiens <400> 1192 Met Cys Gly Glu Gln Glu Ile Trp Arg Ala Met Met Thr Ser Ala Asp 10 Lys Ala Gly Thr Asn Gly Gln Thr Met Gln Thr Pro Pro Val Val Ser 30 20 2.5 Pro Gln Asp Trp Glu Ala Ala Arg Gln Gln Leu Leu Val Lys Glu Lys 40 Ala His Thr Arg Ala Arg Asp Ala Leu Ala Ala Glu Arg Arg Met 55 Pro Trp Met Glu Val Thr Lys Thr Tyr Ala Phe Glu Ala Pro Ser Gly 80 65 70 75 Lys Ala Ser Leu Leu Asp Leu Phe Gln Gly Arg Lys Gln Leu Ile Leu Tyr Arg Ala Phe Phe Glu Pro Gly Val Phe Gly Trp Pro Asp His Ala 105 110 Cys Arg <210> 1193 <211> 722 <212> DNA <213> Homo sapiens <400> 1193 ggatcccaqc ctccaqatcc catcttqtaq ctcttctttc tctacactna ggttgctccc 60 cgacttagga cgcccagttt gtactcagtg tttgctcttt tatggcagag cctctgcact 120 cocagostoc tggccccttc tgtacatgat tttccttgtg gccactccat gcatttttct tggctcagga cttagtgggc ctccatggga cttggtacct ctacttgttc ccttctggaa totgtaactt tgtgttcccc accattottt cotttatgaa cogatggtgc aacagcatga ctacctgaaa ttcttagtca ctcccagctg ctttagtgga gggaaaatgc ccacagcaca ggaaatagtc ctgcccttcg agagaggcca ggggatggga gcgtgtccag agaagggcga 420

```
tqqqttqatq aaqqqtqqcc acaqcqcccq qqaqqaaqqq gccaqaacqc tctctgttct
gttccatgag gaggattatg ttggtgtgtg tagtcccctg gttcagagtt gtccagaaat
540
agctcagtqt aaggaacaat tttccaaaga tcaaaagagc tgtctcaaga tagcagtgcg
600
ttcccagccc ctacaggtgt atacagcaca aagggaggga ccccctagtg tggctgtcac
agagggaagt ggacgtcctg tggtttgacc ccaccagatg gctttagaga tctgggcccg
ag
722
<210> 1194
<211> 134
<212> PRT
<213> Homo sapiens
<400> 1194
Met Val Gln Gln His Asp Tyr Leu Lys Phe Leu Val Thr Pro Ser Cys
                                                         15
1
                                    1.0
Phe Ser Gly Gly Lys Met Pro Thr Ala Gln Glu Ile Val Leu Pro Phe
Glu Arg Gly Gln Gly Met Gly Ala Cys Pro Glu Lys Gly Asp Gly Leu
                                                 45
        35
                            40
Met Lys Gly Gly His Ser Ala Arg Glu Glu Gly Ala Arg Thr Leu Ser
Val Leu Phe His Glu Glu Asp Tyr Val Gly Val Cys Ser Pro Leu Val
                                         75
                    70
Gln Ser Cys Pro Glu Ile Ala Gln Cys Lys Glu Gln Phe Ser Lys Asp
Gln Lys Ser Cys Leu Lys Ile Ala Val Arg Ser Gln Pro Leu Gln Val
                                105
            100
Tyr Thr Ala Gln Arg Glu Gly Pro Pro Ser Val Ala Val Thr Glu Gly
                                                 125
        115
                            120
Ser Gly Arg Pro Val Val
    130
<210> 1195
<211> 391
<212> DNA
<213> Homo sapiens
<400> 1195
tctagagcat gatattccgc gggcgcggcc gggtggactt tggttcgaga gtggaactaa
gtgagtaatg ggggcggcgc ggccagacgc gctcccagcc tcctggcgag agtgctgccc
120
ggtttcccgg gggcacggga gtgtgtctag gaggggaggc caggatcctt cctcgagtcc
tgtcctgaac aaaagaaaac gaggtgggtg gtgcttgaac ggccctgttt actctgcaga
tagecgaact ggtaggaete eggegegeee tatttatett gattggetet geetgaagge
300
```

```
aagegttaat cocqtccaac ctqtatcact gcgaagagct cgttcgggag cgctttttgg
aaatgcagat tottagcccc cacccagato t
391
<210> 1196
<211> 102
<212> PRT
<213> Homo sapiens
<400> 1196
Met Gly Ala Ala Arg Pro Asp Ala Leu Pro Ala Ser Trp Arg Glu Cys
Cys Pro Val Ser Arg Gly His Gly'Ser Val Ser Arg Arg Gly Gln
                                                    30
                                25
            20
Asp Pro Ser Ser Pro Val Leu Asn Lys Arg Lys Arg Gly Gly Trp
                            40
                                                45
Cys Leu Asn Gly Pro Val Tyr Ser Ala Asp Ser Arg Thr Gly Arg Thr
                                            60
                        55
Pro Ala Arg Pro Ile Tyr Leu Asp Trp Leu Cys Leu Lys Ala Ser Val
                    70
                                        75
Asn Pro Val Gln Pro Val Ser Leu Arg Arg Ala Arg Ser Gly Ala Leu
Phe Gly Asn Ala Asp Ser
            100
<210> 1197
<211> 386
<212> DNA
<213> Homo sapiens
<400> 1197
acgogtgatg atcatgaaaa tggtacagag cgtctagcag aagtcgcctc tgtgatgggc
tggcagcaag atgaaatcat cgttaacgta caaggggatg aaccctttct gcctgttgca
cttattcatg ccacggttaa agcgttagcc gatgatgctg aatctgaaat ggccacgatt
gcctgtgcga ttgataacgt agcagagctg tttaacccaa atgtagttaa agtcgtttgt
gatgaaaaac agcgcgcctt gtatttcagt cgtgcgccta tgccatggga ccgtaatggt
300
tttatggaaa aaacagacga tcaagcgtta ccagcggatt ttcctgcgtt gcgtcatatt
ggtccgtatg tttaccgcac gacatn
386
<210> 1198
<211> 128
<212> PRT
<213> Homo sapiens
<400> 1198
Thr Arq Asp Asp His Glu Asn Gly Thr Glu Arg Leu Ala Glu Val Ala
```

```
1.
                 5
                                    10
Ser Val Met Gly Trp Gln Gln Asp Glu Ile Ile Val Asn Val Gln Gly
                                25
Asp Glu Pro Phe Leu Pro Val Ala Leu Ile His Ala Thr Val Lys Ala
                            40
Leu Ala Asp Asp Ala Glu Ser Glu Met Ala Thr Ile Ala Cys Ala Ile
Asp Asn Val Ala Glu Leu Phe Asn Pro Asn Val Val Lys Val Val Cys
                                        75
                    70
Asp Glu Lys Gln Arg Ala Leu Tyr Phe Ser Arg Ala Pro Met Pro Trp
Asp Arg Asn Gly Phe Met Glu Lys Thr Asp Asp Gln Ala Leu Pro Ala
                                105
Asp Phe Pro Ala Leu Arg His Ile Gly Pro Tyr Val Tyr Arg Thr Thr
                            120
<210> 1199
<211> 318
<212> DNA
<213> Homo sapiens
<400> 1199
acgegtteag egteatgtae ageceeggge eggteaattt gatgggeete aatgeeggge
ttacgggcaa attgcgtcgc tccagcggtt tctacatcgg cgtggggtgc gcgatgctgc
tgatggtcgg gctggttggg ctcaccggcg aagcgatcat ctcccaggcg gcgctgccgt
atatttettt gattggeggg gtgtacaege tgtacetege etaceaggtg tteaeegeae
gtaccgaagt ggatgacgcc ccaagcgcgc ctgccaagac cttgaccttc tggaatggcc
tggtgatcca gttgctcc
318
<210> 1200
<211> 101
<212> PRT
<213> Homo sapiens
<400> 1200
Met Tyr Ser Pro Gly Pro Val Asn Leu Met Gly Leu Asn Ala Gly Leu
                                    10
Thr Gly Lys Leu Arg Arg Ser Ser Gly Phe Tyr Ile Gly Val Gly Cys
            20
                                25
Ala Met Leu Leu Met Val Gly Leu Val Gly Leu Thr Gly Glu Ala Ile
                            40
Ile Ser Gln Ala Ala Leu Pro Tyr Ile Ser Leu Ile Gly Gly Val Tyr
Thr Leu Tyr Leu Ala Tyr Gln Val Phe Thr Ala Arg Thr Glu Val Asp
                    70
                                        75
Asp Ala Pro Ser Ala Pro Ala Lys Thr Leu Thr Phe Trp Asn Gly Leu
                                    90
                                                        95
Val Ile Gln Leu Leu
```

100

```
<210> 1201
<211> 360
<212> DNA
<213> Homo sapiens
<400> 1201
gtcgacgcac aactccagct ggtcgctccc aacagcccga acatccccct ttatcgcgat
atgatectea cegtgetgeg catggecaag gatgacegca acegttggaa tgcaaaaate
acgctgcagg cgatccgcga gctggataac gccttccgcg tgctggaaca gttcaagggc
cgccgcaagg tcacggtgtt tggctcggcg cgcacgccgg tcgaaagccc gctgtacgcc
ttggcaaggg aagtcggcac gctgctggcg caatccgacc tgatggtgat caccggcggt
ggeggeggea teatggeege tgeecaegag ggegeaaggt etggaacaca geetgggggt
<210> 1202
<211> 120
<212> PRT
<213> Homo sapiens
<400> 1202
Val Asp Ala Gln Leu Gln Leu Val Ala Pro Asn Ser Pro Asn Ile Pro
Leu Tyr Arg Asp Met Ile Leu Thr Val Leu Arg Met Ala Lys Asp Asp
                                25
Arg Asn Arg Trp Asn Ala Lys Ile Thr Leu Gln Ala Ile Arg Glu Leu
                            40
Asp Asn Ala Phe Arg Val Leu Glu Gln Phe Lys Gly Arg Arg Lys Val
                        55
Thr Val Phe Gly Ser Ala Arg Thr Pro Val Glu Ser Pro Leu Tyr Ala
                    70
                                        75
Leu Ala Arg Glu Val Gly Thr Leu Leu Ala Gln Ser Asp Leu Met Val
                                    90
Ile Thr Gly Gly Gly Gly Ile Met Ala Ala His Glu Gly Ala
            100
                                105
Arg Ser Gly Thr Gln Pro Gly Gly
        115
<210> 1203
<211> 477
<212> DNA
<213> Homo sapiens
<400> 1203
coggatatgg cagotogact toattogaco agagttottg gaacatttgg ctatoatgca
cctgagtatg caatgactgg acaacttagc tctaagagtg acgtttacag ttttggagtt
120
```

qqtcttctqq aqctcctqac tqgaagaaaq cctqtqqatc ttccattacc aagaggacag

180

```
caaagtettg tgacatgggc aactecacgg ctttgtgaag ataaagttag gcaatgcgtt
qattcaaqac ttggagtaga atatcctcct aaatccgttg caaagtttgc agctgttgct
300
geactgtgtg tgcaatatga agetgaettt egaeceaaca tgageategt ggtgaaggeg
360
cttcagcccc tgctgaatgc acgtgcatcc aacaaccctg gatgaatgaa tgaatgactg
ccgttgcttt tccctgacga gagtatctga atcagacaat catgtagcat tgaattc
477
<210> 1204
<211> 134
<212> PRT
<213> Homo sapiens
<400> 1204
Pro Asp Met Ala Ala Arg Leu His Ser Thr Arg Val Leu Gly Thr Phe
1
                                    1.0
Gly Tyr His Ala Pro Glu Tyr Ala Met Thr Gly Gln Leu Ser Ser Lys
Ser Asp Val Tyr Ser Phe Gly Val Gly Leu Leu Glu Leu Leu Thr Gly
                            40
Arg Lys Pro Val Asp Leu Pro Leu Pro Arg Gly Gln Gln Ser Leu Val
Thr Trp Ala Thr Pro Arg Leu Cys Glu Asp Lys Val Arg Gln Cys Val
                                        75
                    70
Asp Ser Arg Leu Gly Val Glu Tyr Pro Pro Lys Ser Val Ala Lys Phe
                                    90
Ala Ala Val Ala Ala Leu Cys Val Gln Tyr Glu Ala Asp Phe Arg Pro
            100
                                105
Asn Met Ser Ile Val Val Lys Ala Leu Gln Pro Leu Leu Asn Ala Arg
        115
                            120
                                                125
Ala Ser Asn Asn Pro Gly
    130
<210> 1205
<211> 407
<212> DNA
<213> Homo sapiens
<400> 1205
acqcgttgcc attgaagact gqcaattaca cgatttacac atcattgatg ctgcagttga
tgtgcacagg gaaacactag ctaccgtgca gcaggaaatg atgggagaaa tcagccatgg
taacaagaac caagccatcc tggacacaga cggccggggt tgtgcgaacg gaacgttagt
ctatcaatgt gttgcggaac gattcaaggg atgctggccc cccccatcac ttgcccaatc
aagatgtgga gggaatctgt ctgcgcagaa cctggatctc gtggttgtac gacgttgtcc
300
```

```
cetteteget eggacgeege teatgeteeg ceaegteget gagegagtga caaggtatee
tgggaccatq cqtatqqttt caactqaaqc qctqqcqaat cgtaaan
407
<210> 1206
<211> 103
<212> PRT
<213> Homo sapiens
<400> 1206
Met Met Gly Glu Ile Ser His Gly Asn Lys Asn Gln Ala Ile Leu Asp
                                     10
Thr Asp Gly Arg Gly Cys Ala Asn Gly Thr Leu Val Tyr Gln Cys Val
            20
                                 25
Ala Glu Arg Phe Lys Gly Cys Trp Pro Pro Pro Ser Leu Ala Gln Ser
                                                 45
                            40
Arg Cys Gly Gly Asn Leu Ser Ala Gln Asn Leu Asp Leu Val Val
                        55
Arg Arg Cys Pro Leu Leu Ala Arg Thr Pro Leu Met Leu Arg His Val
                    70
                                         75
Ala Glu Arg Val Thr Arg Tyr Pro Gly Thr Met Arg Met Val Ser Thr
                                     90
Glu Ala Leu Ala Asn Arg Lys
            100
<210> 1207
<211> 292
<212> DNA
<213> Homo sapiens
<400> 1207
gctagcatgt cacttttttc ttcagtagat ggcactggag agacattgca ggatgaagag
gettgeette atteetatgt gettteeegt cettgettet ceagecatgt gtgggacaae
caqqqqtqct caccacctaq tqaqtttcaq qqacactcca catgtcccag caagtcttat
cagcatetta getggettet caacaagaet cagtggeace cetgtggatg teteceatea
agtttcatta gtgccccagg gggagactcc cagaaagttt cagcagcacc ac
292
<210> 1208
<211> 95
<212> PRT
<213> Homo sapiens
<400> 1208
Met Ser Leu Phe Ser Ser Val Asp Gly Thr Gly Glu Thr Leu Gln Asp
Glu Glu Ala Cys Leu His Ser Tyr Val Leu Ser Arg Pro Cys Phe Ser
            20
                                25
                                                    30
Ser His Val Trp Asp Asn Gln Gly Cys Ser Pro Pro Ser Glu Phe Gln
```

```
40
Gly His Ser Thr Cys Pro Ser Lys Ser Tyr Gln His Leu Ser Trp Leu
                                            60
                        55
Leu Asn Lys Thr Gln Trp His Pro Cys Gly Cys Leu Pro Ser Ser Phe
                    70
Ile Ser Ala Pro Gly Gly Asp Ser Gln Lys Val Ser Ala Ala Pro
                                    90
                85
<210> 1209
<211> 431
<212> DNA
<213> Homo sapiens
<400> 1209
ttggttccta taatggcggt agcttacatt tttgctggta tcattatttt gttaatgcat
gccagtgaag ttattccggc aatatcaact attgtcgagt atgcctttac gccagcttct
gcgcagggtg gttttgctgg tgcaacggta tggatggcga ttcgttttgg tgttgcccgt
ggtgtatttt caaatgaggc aggtttaggt teggegeega tegeteatge eagtgeacaa
actaatqaac cggttcgcca agggttggtg gcgatgttag gtactttcct tgatacactt
attatttgta caggtttagt gattgttatt tctggtgctt ggacagaagg attgtcgggt
gctgcgttaa catctgctgc atttaatctg gcgttacctg gttgggggggg atacttagtc
420
gctatcagct g
431
<210> 1210
<211> 143
<212> PRT
<213> Homo sapiens
<400> 1210
Leu Val Pro Ile Met Ala Val Ala Tyr Ile Phe Ala Gly Ile Ile Ile
                5
                                    10
Leu Leu Met His Ala Ser Glu Val Ile Pro Ala Ile Ser Thr Ile Val
Glu Tyr Ala Phe Thr Pro Ala Ser Ala Gln Gly Gly Phe Ala Gly Ala
Thr Val Trp Met Ala Ile Arg Phe Gly Val Ala Arg Gly Val Phe Ser
                        55
Asn Glu Ala Gly Leu Gly Ser Ala Pro Ile Ala His Ala Ser Ala Gln
                                        75
                    70
Thr Asn Glu Pro Val Arg Gln Gly Leu Val Ala Met Leu Gly Thr Phe
                                    90
Leu Asp Thr Leu Ile Ile Cys Thr Gly Leu Val Ile Val Ile Ser Gly
                                105
            100
Ala Trp Thr Glu Gly Leu Ser Gly Ala Ala Leu Thr Ser Ala Ala Phe
                            120
Asn Leu Ala Leu Pro Gly Trp Gly Gly Tyr Leu Val Ala Ile Ser
```

```
135
                                        140
    130
<210> 1211
<211> 480
<212> DNA
<213> Homo sapiens
<400> 1211
qaqqaqqac qaqaqqctgg tgagatggag tccagcaccc tgcaggagag ccccagggcc
agageegaag etgtgettet eeatgagatg gatgaagatg atetggeeaa tgeeetgate
tggcctgaga ttcaacagga gctgaaaatc attgaatctg aggaggagct ctcatcgttg
tttattecet caqaqeetee tgggagettg cettgtgget cettecetge tecagtetee
acceptetgg aggtgtggae tagggateca gecaateaga geacacaggg ggettecaca
gcaqccaqca gagagaagcc ggaacctgag cagggcctgc acccagacct cgccagcctg
gctcctctgg aaatagttcc ttttgagaag gcatctccag aggctggagt gtgctcgcga
480
<210> 1212
<211> 160
<212> PRT
<213> Homo sapiens
<400> 1212
Glu Glu Gly Arg Glu Ala Gly Glu Met Glu Ser Ser Thr Leu Gln Glu
                                  10
Ser Pro Arg Ala Arg Ala Glu Ala Val Leu Leu His Glu Met Asp Glu
                              25
Asp Asp Leu Ala Asn Ala Leu Ile Trp Pro Glu Ile Gln Gln Glu Leu
                          40
Lys Ile Ile Glu Ser Glu Glu Leu Ser Ser Leu Pro Pro Pro Ala
                      55
                                          60
Leu Lys Thr Ser Pro Ile Gln Pro Ile Leu Glu Ser Ser Leu Gly Pro
                  70
Phe Ile Pro Ser Glu Pro Pro Gly Ser Leu Pro Cys Gly Ser Phe Pro
                                  90
Ala Pro Val Ser Thr Pro Leu Glu Val Trp Thr Arg Asp Pro Ala Asn
           100
                              105
Gln Ser Thr Gln Gly Ala Ser Thr Ala Ala Ser Arg Glu Lys Pro Glu
                          120
Pro Glu Gln Gly Leu His Pro Asp Leu Ala Ser Leu Ala Pro Leu Glu
                      135
                                         140
Ile Val Pro Phe Glu Lys Ala Ser Pro Glu Ala Gly Val Cys Ser Arg
145
                                      155
                                                         160
                   150
<210> 1213
<211> 1141
```

```
<212> DNA
<213> Homo sapiens
<400> 1213
nntcatgatg geggeetggt gtgtgggtat gtccacgatg ggegegteac gegtgtegee
cgtgatgctc aggggcggt taccgggata gaggggccat cagggcgttg gagttacggc
tacaacgagg ctgggtcact catcagcgcg acggggcccc gcacacaaca taactggact
cacgacgeet atggeegget caccageeae gecacateeg gaacegaeae cacettegee
tgggaccagg aaggccacct ggcgcagacg tgtacgcgtg cacacgggca tgccactgcc
accoagtate getatgacge agegggacgg egegteagtg egaceagete agaeggeeag
qaqqaqcqtt actcctqqqa tggacqgggt tggctgtctg acatcaccac cgacqccacg
420
accgtatcga ctcacgtcga tgcattgggg cgcgccagtc gtatcaccac taagggccag
caggtacgag tggactggga cctcgtgacc ggagccccca cctcgattga tggtcgtcct
gtgetteece tgeceggagg acgeatecte ggegeeacae ceateggega taccaaceta
600
tggcgtgagg tcatgcccac cgaccctgac aacccttacc agcccgccac ggccactatt
gagggtgtcc ccgagacgat caggatggcc gggaacacgc tagtggttga tggtcaccct
tggtgggggc gcgcctctac gacccaacta ccaccacctt cttgtctcct gacccgttaa
coccedecede eggegegeta teggeceaca acceetacea etaceceac aacaacceee
tcaccetcac egatectete gggacecace cegteacega egaceaactg geacteetea
cccaccccat cggcacactc gcacactacg tcgccaactc cgtcagcaca ctcgtgcatc
acatcaccga tecgatcage caetggtggg ceaeceaeaa agaceggate eteteceggg
1020
acttcctgat cggtgccggc ctcgtcatcg gcggtatcgc gtagcggcca cgggcgtagg
aggaccecte ctageegegg ceattteegg gggaeteate teaggegget ttteegetag
1140
С
1141
<210> 1214
<211> 259
<212> PRT
<213> Homo sapiens
<400> 1214
Xaa His Asp Gly Gly Leu Val Cys Gly Tyr Val His Asp Gly Arg Val
1
                                    10
Thr Arg Val Ala Arg Asp Ala Gln Gly Arg Val Thr Gly Ile Glu Gly
```

```
20
                                25
Pro Ser Gly Arg Trp Ser Tyr Gly Tyr Asn Glu Ala Gly Ser Leu Ile
                           40
Ser Ala Thr Gly Pro Arg Thr Gln His Asn Trp Thr His Asp Ala Tyr
                       55
                                            60
Gly Arq Leu Thr Ser His Ala Thr Ser Gly Thr Asp Thr Thr Phe Ala
                    70
Trp Asp Gln Glu Gly His Leu Ala Gln Thr Cys Thr Arg Ala His Gly
                85
His Ala Thr Ala Thr Gln Tyr Arg Tyr Asp Ala Ala Gly Arg Arg Val
                               105
                                                    110
Ser Ala Thr Ser Ser Asp Gly Gln Glu Glu Arg Tyr Ser Trp Asp Gly
                           120
Arg Gly Trp Leu Ser Asp Ile Thr Thr Asp Ala Thr Thr Val Ser Thr
                       135
                                           140
His Val Asp Ala Leu Gly Arg Ala Ser Arg Ile Thr Thr Lys Gly Gln
                   150
                                      155
Gln Val Arg Val Asp Trp Asp Leu Val Thr Gly Ala Pro Thr Ser Ile
                                   170
               165
Asp Gly Arg Pro Val Leu Pro Leu Pro Gly Gly Arg Ile Leu Gly Ala
            180
                               185
Thr Pro Ile Gly Asp Thr Asn Leu Trp Arg Glu Val Met Pro Thr Asp
                            200
Pro Asp Asn Pro Tyr Gln Pro Ala Thr Ala Thr Ile Glu Gly Val Pro
                        215
Glu Thr Ile Arg Met Ala Gly Asn Thr Leu Val Val Asp Gly His Pro
                                       235
                   230
Trp Trp Gly Arg Ala Ser Thr Thr Gln Leu Pro Pro Pro Ser Cys Leu
                                  250
Leu Thr Arg
<210> 1215
<211> 317
<212> DNA
<213> Homo sapiens
<400> 1215
acgcqttcqc tgcagatcga gtcgccggtg agctcgatct acctgtggat gtactacgtg
ggcgtgccga catccggcat cgggggggat cccaacctgc ttacctttta ttggaaccgc
120
ecceqqqqte aacceggeca teaccqqqag aacqcegete etcgqagggg gtgttetege
180
agtegeegge gtgggtgegt ggaagaagta cegeggeaeg acetteggeg ggetgeteee
gtegetgtee eteggeeteg tgetegegtt categtgetg aacaaggteg getegeegea
gtacatcgcc tggatcn
317
<210> 1216
<211> 102
<212> PRT
```

<213> Homo sapiens

<400> 1216 Met Tyr Cys Gly Glu Pro Thr Leu Phe Ser Thr Met Asn Ala Ser Thr 10 Arg Pro Arg Asp Ser Asp Gly Ser Ser Pro Pro Lys Val Val Pro Arg Tyr Phe Phe His Ala Pro Thr Pro Ala Thr Ala Arg Thr Pro Pro Pro 40 Arg Ser Gly Val Leu Pro Val Met Ala Gly Leu Thr Pro Gly Ala Val Pro Ile Lys Gly Lys Gln Val Gly Ile Pro Pro Asp Ala Gly Cys Arg 70 His Ala His Val Val His Pro Gln Val Asp Arg Ala His Arg Arg Leu 90 Asp Leu Gln Arg Thr Arg 100 <210> 1217 <211> 548 <212> DNA <213> Homo sapiens <400> 1217 nacgcgtggg ttgacgcgct attaaacgat aagagcaaaa aaacatttcc tcatttatta cgttgtcggg tgaatgatgt ttctggtgat agtcagtgga tagagatgcg aggcagtgtg acaqqttqqq acaqccqtca tcgagctcag atggtgagag ggacattcga gcgtattaac catcttattg acgctgaaaa tgaattaatt gcggcccgtg aagatgctca gcgacgagag cttattttat cqqctttqct aaataatatt ccagaccctg tttggtctaa agatgaaagc ggtcgttatt tggactgtaa ccatgcgttt tgtctgttta atggtttaga gcagagtgat qttcaqqqqc aaaaagacag tgaattaaac ttagataata atggtcaata ttatcaagat atgggcggtg aggtattagc gcgaggggag atttttcatg aacattgttg gggtacgcct gcagatggaa gtgacaaccg cttgtttgaa gtatatcgag tccctatcaa agagcctacc gtgaattc 548 <210> 1218 <211> 182 <212> PRT <213> Homo sapiens <400> 1218 Xaa Ala Trp Val Asp Ala Leu Leu Asn Asp Lys Ser Lys Lys Thr Phe 5 10 1 Pro His Leu Leu Arg Cys Arg Val Asn Asp Val Ser Gly Asp Ser Gln

```
25
            20
Trp Ile Glu Met Arg Gly Ser Val Thr Gly Trp Asp Ser Arg His Arg
                            40
Ala Gln Met Val Arg Gly Thr Phe Glu Arg Ile Asn His Leu Ile Asp
                       55
Ala Glu Asn Glu Leu Ile Ala Ala Arg Glu Asp Ala Gln Arg Arg Glu
Leu Ile Leu Ser Ala Leu Leu Asn Asn Ile Pro Asp Pro Val Trp Ser
               85
                                   90
Lys Asp Glu Ser Gly Arg Tyr Leu Asp Cys Asn His Ala Phe Cys Leu
                               105
Phe Asn Gly Leu Glu Gln Ser Asp Val Gln Gly Gln Lys Asp Ser Glu
                                               125
                           120
Leu Asn Leu Asp Asn Asn Gly Gln Tyr Tyr Gln Asp Met Gly Glu
                       135
Val Leu Ala Arg Gly Glu Ile Phe His Glu His Cys Trp Gly Thr Pro
                   150
                                       155
Ala Asp Gly Ser Asp Asn Arg Leu Phe Glu Val Tyr Arg Val Pro Ile
                                  170
Lys Glu Pro Thr Val Asn
           180
<210> 1219
<211> 308
<212> DNA
<213> Homo sapiens
<400> 1219
acgcgtgaag ggaggaatac agatggagaa atgggtccac caaaaaatga tgagggtacc
tccaqaqaaa attaccaaga ccattctgtt agtattttcc agctccacag gcctttggaa
gttcccagac caccctccct cttttcaaac taaaacaggg atggctctta accaccaccc
aaaggcaagg ggggtettaa aacccaaacc aagtggggca ggggccagcc tettcaggag
qqcccaaccc tqcaqcctct gcccatttgg gaaagaccgt gagttggaat tatgggtcgg
300
tggggggc
308
<210> 1220
<211> 95
<212> PRT
<213> Homo sapiens
<400> 1220
Met Glu Lys Trp Val His Gln Lys Met Met Arg Val Pro Pro Glu Lys
                5
                                   10
Ile Thr Lys Thr Ile Leu Leu Val Phe Ser Ser Ser Thr Gly Leu Trp
           20
                                25
Lys Phe Pro Asp His Pro Pro Ser Phe Gln Thr Lys Thr Gly Met Ala
                            40
Leu Asn His His Pro Lys Ala Arg Gly Val Leu Lys Pro Lys Pro Ser
```

```
50
                        55
                                            60
Gly Ala Gly Ala Ser Leu Phe Arg Arg Ala Gln Pro Cys Ser Leu Cys
                    70
                                        75
Pro Phe Gly Lys Asp Arg Glu Leu Glu Leu Trp Val Gly Gly
                                    90
<210> 1221
<211> 569
<212> DNA
<213> Homo sapiens
<400> 1221
gegegecagg ggeaggtage etgtggeagg tgaggetgeg tgtggggtgt geteceagag
gecegtecag gaaagetgea ceteagagaa geagttteet teettacetg ggaagtttet
tetgtaacac gttaageece acaggtaagg cetgateece cetggaegge teceetetee
agtgttccca gtctggaggt antcttttct aagccatcct ctcagaatgt gatgggtacc
aggatgcaca cccggtggcc ctgtggtgtg aggcctcagc aaacacggtc agaagatgaa
cacacaqaqa cccgcccqtc ggaaggagag gagggagcgg atacggaggc ccacgtgcca
gaagggteee ttgeagtggt gtggttatgt geetgeaate ceagagtgte etegaaggae
ctcaqatcta acqaqctcaq ccggcaqctq cacgtgggac cagccctctg agcttcactt
qttttcctct qtqccatcag aaaccaatac gaagataaaa tgggaaaaaa aaaaatccca
ttcacggcac agcctgccga gaaacgcgt
<210> 1222
<211> 91
<212> PRT
<213> Homo sapiens
<400> 1222
Met Asn Thr Gln Arg Pro Ala Arg Arg Lys Glu Arg Arg Glu Arg Ile
Arg Arg Pro Thr Cys Gln Lys Gly Pro Leu Gln Trp Cys Gly Tyr Val
Pro Ala Ile Pro Glu Cys Pro Arg Arg Thr Ser Asp Leu Thr Ser Ser
Ala Gly Ser Cys Thr Trp Asp Gln Pro Ser Glu Leu His Leu Phe Ser
Ser Val Pro Ser Glu Thr Asn Thr Lys Ile Lys Trp Glu Lys Lys
                    70
Ser His Ser Arg His Ser Leu Pro Arg Asn Ala
                85
                                    90
<210> 1223
<211> 450
```

1084

```
<212> DNA
<213> Homo sapiens
<400> 1223
aagettgete aggetagtge egacgetget geteteaaac tegtegatge ecaceggttg
ttgtgcgctc accgagaggg gccatacggg gtagacgagt ggtctcagcg catggttact
gtactttcag atgtgttgcc tggtgttggc caaggccggt gggttctcgg cgaaactgca
ataqtaacqc ataacctcqc acaattqqqa qtcaataacq qtgattqcgg ggtcatcgtt
gaaacaaggc ccgtccccac gatagctcta ccgggacccg gtggagtccc cagacggttg
ccctgttccc tcatcccatc gctgcaaccc ttacaggcga tgacgattca caaagcgcag
ggcagccaat teaeggaegt aacqgtqgte etgecaceae eegactegee eetectetet
420
cgtgagttgc tctataccgc catcacgcgt
450
<210> 1224
<211> 150
<212> PRT
<213> Homo sapiens
<400> 1224
Lys Leu Ala Gln Ala Ser Ala Asp Ala Ala Leu Lys Leu Val Asp
                                    10
                5
Ala His Arg Leu Leu Cys Ala His Arg Glu Gly Pro Tyr Gly Val Asp
                                25
Glu Trp Ser Gln Arg Met Val Thr Val Leu Ser Asp Val Leu Pro Gly
Val Gly Gln Gly Arg Trp Val Leu Gly Glu Thr Ala Ile Val Thr His
                        55
Asn Leu Ala Gln Leu Gly Val Asn Asn Gly Asp Cys Gly Val Ile Val
                                        75
Glu Thr Arg Pro Val Pro Thr Ile Ala Leu Pro Gly Pro Gly Val
                                    90
                8.5
Pro Arg Arg Leu Pro Cys Ser Leu Ile Pro Ser Leu Gln Pro Leu Gln
                               105
Ala Met Thr Ile His Lys Ala Gln Gly Ser Gln Phe Thr Asp Val Thr
                           120
Val Val Leu Pro Pro Pro Asp Ser Pro Leu Leu Ser Arg Glu Leu Leu
                       135
                                           140
Tyr Thr Ala Ile Thr Arg
145
                   150
<210> 1225
<211> 436
<212> DNA
<213> Homo sapiens
<400> 1225
```

```
neceatecee cacceggat ggtgaacaet gggatggeca ettgggaget caaagtgttg
60
tcagtgggag gacaaggtcc tcaattcctg gcacattggc ccagagaagt catgaaaacc
caaaqccccc cqaaaqtaaq aagtagaaaa aaacccgacc ccgaccagat gaagggacct
gggaagtttt tggaaaagag actgctgaag tgtctccttg caggcatcac cgtgagctgg
ggctttgcac acagcatctt catggctttc cacaatgatc ccagaactga tccagagaaa
cccagggatc aggggttgac ccgaccctgt catcatccca ttctacaaat gaggacactg
aggcctggtg aaaagggagg ggtggatgga accaggtggc ctggctctaa gacccagagg
ctggagtgtg ctcatg
<210> 1226
<211> 139
<212> PRT
<213> Homo sapiens
<400> 1226
Met Val Asn Thr Gly Met Ala Thr Trp Glu Leu Lys Val Leu Ser Val
                                    10
                 5
Gly Gly Gln Gly Pro Gln Phe Leu Ala His Trp Pro Arg Glu Val Met
                                                    30
Lys Thr Gln Ser Pro Pro Lys Val Arg Ser Arg Lys Lys Pro Asp Pro
                            40
Asp Gln Met Lys Gly Pro Gly Lys Phe Leu Glu Lys Arg Leu Leu Lys
                                            60
                        55
Cys Leu Leu Ala Gly Ile Thr Val Ser Trp Gly Phe Ala His Ser Ile
                                        75
                    70
Phe Met Ala Phe His Asn Asp Pro Arg Thr Asp Pro Glu Lys Pro Arg
                                    90
Asp Gln Gly Leu Thr Arg Pro Cys His His Pro Ile Leu Gln Met Arg
                                105
Thr Leu Arg Pro Gly Glu Lys Gly Gly Val Asp Gly Thr Arg Trp Pro
                            120
Gly Ser Lys Thr Gln Arg Leu Glu Cys Ala His
    130
                        135
<210> 1227
<211> 756
<212> DNA
<213> Homo sapiens
<400> 1227
gttgagttcc acgtgaaaca aaatgcactt tacaatagaa tgacgattcg tatcaaagat
aatggtattg gaataccgat taacaaggta gataaaatct ttgatagatt ctaccgtgtc
gacaaagcac gtacacgtaa gatgggcggt acaggactag gtctagctat ttccaaagag
180
```

```
attgtcgaag cacataatgg ccgtatttgg gcaaatagtg tcgaaggaca aggtacatct
atcttcatta ccctaccatg tgaaattatt gaagatggtg attgggatga atagtaaaga
atacatcaaa acgattatcc tgatactact tgtattaatg agtatcgtct taacctacat
ggtatggaac ttctcacctg atctatcaaa tgctgatagt acgtcatcag ataataagaa
420
agataattot aaacotattg gaaaaccaat gagtgcgaaa acggataaaa ccatcacacc
atttcaaatc qttcaatcta atggcgaaaa aacaaaaggt atgccagcaa caggtcatgc
agtateteaa attttaagee eattaaaaga taaaaatgtt gatteagtae aacatttaaa
acqaaatcat aacttaatta ttcctgaatt aagtgataac tttatcgttc ttgatttcac
atatgattta ccgttatcaa tttacttaag ccaagtatta aacatagatg ctaagacacc
taatcatttt aactttaatc gactactgat tgatca
<210> 1228
<211> 97
<212> PRT
<213> Homo sapiens
<400> 1228
Val Glu Phe His Val Lys Gln Asn Ala Leu Tyr Asn Arg Met Thr Ile
Arg Ile Lys Asp Asn Gly Ile Gly Ile Pro Ile Asn Lys Val Asp Lys
                                25
Ile Phe Asp Arg Phe Tyr Arg Val Asp Lys Ala Arg Thr Arg Lys Met
                            40
Gly Gly Thr Gly Leu Gly Leu Ala Ile Ser Lys Glu Ile Val Glu Ala
His Asn Gly Arg Ile Trp Ala Asn Ser Val Glu Gly Gln Gly Thr Ser
                    70
                                        75
Ile Phe Ile Thr Leu Pro Cys Glu Ile Ile Glu Asp Gly Asp Trp Asp
                                                        95
                85
                                    90
Glu
<210> 1229
<211> 377
<212> DNA
<213> Homo sapiens
<400> 1229
nacgcgtcgt gaacgcggcg tcaacagctt ttcggatata cctctgagga gcccaagatg
cttqtcqccc ccatggcaaa ccagggggtc gaggccactg gagcgatggg aaccgacacc
ccgctggccg tgctatctaa ctgtccgcgg atgctctggg actatttcag tcagcttttc
```

```
getcaggtaa ccaateegee ettggaeget ateegegagg agettgteae eteeetgaeg
qqcaccatcq qcccqqaqqc gaacttgctt gagcctggcc cggaatcatg tcggcaagtg
gtegteaact accegateat egatteegae eagettgeea agateattea eategaeget
360
gacggggagc atccgga
377
<210> 1230
<211> 121
<212> PRT
<213> Homo sapiens
<400> 1230
Thr Arg Arg Gln Gln Leu Phe Gly Tyr Thr Ser Glu Glu Pro Lys Met
Leu Val Ala Pro Met Ala Asn Gln Gly Val Glu Ala Thr Gly Ala Met
            20
                                25
Gly Thr Asp Thr Pro Leu Ala Val Leu Ser Asn Cys Pro Arg Met Leu
Trp Asp Tyr Phe Ser Gln Leu Phe Ala Gln Val Thr Asn Pro Pro Leu
                        55
                                            60
Asp Ala Ile Arg Glu Glu Leu Val Thr Ser Leu Thr Gly Thr Ile Gly
                                        75
65
                    70
Pro Glu Ala Asn Leu Leu Glu Pro Gly Pro Glu Ser Cys Arg Gln Val
                85
Val Val Asn Tyr Pro Ile Ile Asp Ser Asp Gln Leu Ala Lys Ile Ile
                                105
His Ile Asp Ala Asp Gly Glu His Pro
        115
<210> 1231
<211> 351
<212> DNA
<213> Homo sapiens
<400> 1231
aaatttcatt taaaatcaat tqattqctta aataaggcag ttcatctgct gcgccaggag
cqqaaqtaaq gagtttttat ggcggtttta atcaccggag acgccggtta tatcggttct
cacactottc togetttott agaacatogc gaagatotto tagtottaga taatttatca
180
aactetteeg atgagtetet gegtegegtt gagaaacteg egggtagaag tgeteagtte
taccaaggeg atatettgga tgetgagtgt etgeategea tettegagge teaegacate
teggetgtga tecattttge tgggetaaag ggtgteggag agtegaegeg t
351
<210> 1232
<211> 91
<212> PRT
```

<213> Homo sapiens <400> 1232 Met Ala Val Leu Ile Thr Gly Asp Ala Gly Tyr Ile Gly Ser His Thr Val Leu Ala Leu Leu Glu His Gly Glu Asp Val Val Leu Asp Asn Leu Ser Asn Ser Ser Asp Glu Ser Leu Arg Arg Val Glu Lys Leu Ala Gly Arg Ser Ala Gln Phe Tyr Gln Gly Asp Ile Leu Asp Ala Glu Cys Leu His Arg Ile Phe Glu Ala His Asp Ile Ser Ala Val Ile His Phe 70 Ala Gly Leu Lys Gly Val Gly Glu Ser Thr Arg 85 <210> 1233 <211> 4982 <212> DNA <213> Homo sapiens <400> 1233 nnqqcttaaq cagtggtaac aacgcagagt acgcggggtg atggcctccc tgaaattaaa catttctatt aqtqqcttcc cqttaatctc atccttctta gatcaaacct cgttatatct 120 cctgcctatc tcttttgcat tccaaagttc agttttatta aatcccaggg tctaagattt tttctttgag aatttatctc cagtgtttct atggaaatta aaaaagaaaa ttaggataat

960

ttggcagaga 1020	ctgaagaggc	ttcttcaata	ataaatgagc	aagacagagc	tcgatggagg
ggaagttgca 1080	gtagtggtaa	tagccaaagg	agatcacctc	ctgctacgaa	gcgggactct
gaagtgaaaa 1140	tggattttca	gaggattgaa	ttggctggtg	ctgtgggaag	caaggaggaa
cttgaagtag 1200	actttaaaaa	actaaagcaa	attaaaaaca	ggatgaaaaa	gactgattgg
ctcttcctca 1260	atgcttgtgt	gggggttgta	gaaggtgatt	tagetgecat	agaagcatac
aagtcatcag 1320	gaggagacat	tgcacgtcag	ctcaccgcag	atgaagtacg	cttgctgaat
1380	cctttgatgt				
1440	tagcaatatt				
1500	gtcctgaact				
1560	gggattttgc				
1620	aagatttgcc				
agagacgttc 1680	aaaaagaatt	agaagaagaa	tctccaatta	ttaactggtc	cttggaattg
1740	tggacagtcg				
cttgattcag 1800	ttctacaagc	tacctggggc	atctatgaca	aggactcagt	gcttcggaaa
1860	acageetgea				
1920	attctcagag				
1980	catttatact				
2040	tactggcaca				
2100	tccggggaga				
2160	aacagagttt				
2220	ctttggttgc				
2280	ccgatgatga				
2340	atgtgcactt				
2400	gggagtggct				
2460	ctcggcggcg				
2520	gacagatccg				
gatgaagatg 2580	aatgaaaaaa	aaaatcaaac	agcagaagac	caaggcatca	gatctgtaat

gaccctaaag 2640	ttagtgtggt	gctccaagca	gagtcgacat	catggaatga	accaaatctg
gcaggatctg 2700	ctcggggaag	tgttttcctg	gaccacacac	accttatgga	gataatgcct
ctgctgcgtg 2760	aggagacaga	gaactttagt	tggactacag	tttgtaaaaa	aaactaattt
tattaagaca 2820	gaactttttt	tccttccaaa	ttgtaaatct	gtctataaat	gtaacgcatg
tggttgtgta 2880	agacattgtt	taataggaaa	agttgtacca	gcatcttcat	attattgaga
aaatttttc 2940	cagcatgggc	acttagaaaa	agcacatggc	aaatggctct	ttgttccttt
cagatattat 3000	ttcagtagaa	cctggcattc	tcctttcacc	ttaaaagatc	catctaagtc
tcagatctgg	aaacgttttg	taccgattat	ccacagcaaa	acaaaaataa	gcttttattt
	ttcgttcctc	ttgtgcccaa	tcaaatcttt	taggaacaaa	ctgcaagaaa
	gttttagagt	gaactaaata	cagacattgc	ttacttgttt	tgaagagggt
	gttattgtgt	cttttaagtt	ttctgatatg	ccccctttca	atatttagat
	tgggaagaat	accttaaaat	gagggttctt	attccagatt	ctgggcagtg
	agttttttc	ctggatgaaa	agggagcaag	cccacttgtc	actaaatgaa
	tgtgctcact	tggactccat	caacaatgtg	ctgctcccag	attgccatgc
	tcggattctt	ccttctatca	cctctgctct	aagcaaatct	tgttagaagg
	gcttaggcag	attgggaata	ccaattcact	acagaataaa	gattttaaaa
	gtggcaaatg	cattgtatga	agaatttctc	agtgtttagt	ctgagaattt
	gttaattgtg	gccattcttt	aatttaaagt	taaaactata	atcttaggta
	tttataagaa	gtattatttg	accacttcag	gtatacattc	aatactgggt
-	gacctatctc	aggaacacag	aaatatttgg	tgtcctgata	agcactttct
	tgtggccagg	aatttggaaa	gacgacacac	gcacgcacac	acacacacac
	acagttttt	ccttccctgt	gatgaaaaag	gctgtgaaaa	ccttaaagta
	tcttgttttg	tttagttgat	aatgaaatgt	gtacaacctc	aaatttgctg
	aaaaatagaa	aaatacccac	aaaactgtca	tgtctttagt	tettteeece
	gtaaaaaggt	gttcccagga	tgaaaagatc	attttttgct	gcatgctaaa
	aaaatgattt	tttagtacga	ttctgtagaa	atgaatcttt	gatataatgt
	gtttgtttca	agtggtgaat	gtgttgttaa `	aaattggctg	tttgctttca

```
ttttggccaa taagtaatca agtttgtaga aaatgttagc attctgacta cttagcatct
qtaqtaattt ctctatqtat aqqqataatt ttttaqtqqq caqaqatcct qttctaqttq
4320
cctgtgaagc aaaatctgcc ctcccaattg aaaaagccaa agagaattgt tagagggaaa
4380
agcatqtaqc cattqcaqtc tgcattgcaq ccaqcqttqt ccaqaqagta cacqctcagc
4440
acttagette tactgtgtgt tgtggtetgg tgagtgttgt tteecetgag egetetatta
tttatttatt tattatcaat cagtgaccct gaccacatag tgtgataggt gcagcattct
tccctgtggg aaagaattaa agatggttcc atttcctagg ctacagacag gaatgggct
4620
ctaaatggtt ttcatagact ggctgttaaa ggccaaaaat tttggtaaat caatgctata
ttatgctctt gaactattaa aacagccata attattgtcc caagatagat agaatatagt
cctttttcaa agatgattat acgtggctag gtgacagaca ttaatgactg actctggaga
gtaagtcata cctgcactct gtggacttga tggttctttt tctagagcaa acagagcgtg
4860
gcattttgtt ttgacttgtt cttccttggg gtcaaattta tatatata tataaatttt
4980
aa
4982
<210> 1234
<211> 708
<212> PRT
<213> Homo sapiens
<400> 1234
Met Ser Glu Arg Gly Ile Lys Trp Ala Cys Glu Tyr Cys Thr Tyr Glu
                                   10
Asn Trp Pro Ser Ala Ile Lys Cys Thr Met Cys Arg Ala Gln Arg Pro
           20
                               25
Ser Gly Thr Ile Ile Thr Glu Asp Pro Phe Lys Ser Gly Ser Ser Asp
                           40
Val Gly Arg Asp Trp Asp Pro Ser Ser Thr Glu Gly Gly Ser Ser Pro
Leu Ile Cys Pro Asp Ser Ser Ala Arg Pro Arg Val Lys Ser Ser Tyr
                   70
                                       75
                                                          80
Ser Met Glu Asn Ala Asn Lys Trp Ser Cys His Met Cys Thr Tyr Leu
                                   90
Asn Trp Pro Arg Ala Ile Arg Cys Thr Gln Cys Leu Ser Gln Arg Arg
           100
                               105
                                                  110
Thr Arg Ser Pro Thr Glu Ser Pro Gln Ser Ser Gly Ser Gly Ser Arg
       115
                           120
Pro Val Ala Phe Ser Val Asp Pro Cys Glu Glu Tyr Asn Asp Arg Asn
   130
                       135
                                          140
Lys Leu Asn Thr Arg Thr Gln His Trp Thr Cys Ser Val Cys Thr Tyr
```

145					150					155					160
Glu	Asn	Trp	Ala	Lys 165	Ala	Lys	Arg	Cys	Val 170	Val		Asp	His	Pro 175	
Pro	Asn	Asn	Ile 180		Ala	Ile	Glu	Leu 185		Glu	Thr	Glu	Glu 190		Ser
Ser	Ile	Ile 195		Glu	Gln	Asp	Arg 200	Ala	Arg	Trp	Arg	Gly 205	Ser	Cys	Ser
Ser	Gly 210		Ser	Gln	Arg	Arg 215	Ser	Pro	Pro	Ala	Thr 220	Lys	Arg	Asp	Ser
Glu 225	Val	Lys	Met	Asp	Phe 230	Gln	Arg	Ile	Glu	Leu 235	Ala	Gly	Ala	Val	Gly 240
	_			245	Glu		_		250	_		_		255	_
			260		Thr			265					270		
		275			Leu		280					285			
	290				Gln	295			_		300	_			
305					Asp 310			_		315					320
_			_	325	Asp				330					335	
			340	_	Cys			345			_		350		
		355			Glu		360					365	_		_
	370				Phe Leu	375					380				
385					390 Asp					395		_			400
				405	Leu				410					415	
			420		Arg			425		_		_	430	_	
		435			Gly		440	_	_			445	_		
	450			_	Leu	455	_	_	-	-	460			_	-
465					470 Ser					475					480
				485					490					495	
			500		Gln			505					510		
		515			Gly		520					525			
	530				Arg	535					540				
5 4 5					Gly 550					555					560
Va 1	_											FT			
	Tyr			565	Leu			•	570		_			575	

580 585 Glu Asn Asp Gly Tyr Gly Asn Arg Gly Ala Gly Ala Asn Leu Asn Thr 600 Asp Asp Asp Val Thr Ile Thr Phe Leu Pro Leu Val Asp Ser Glu Arg 615 Lys Leu Leu His Val His Phe Leu Ser Ala Gln Glu Leu Gly Asn Glu 630 635 Glu Gln Gln Glu Lys Leu Leu Arg Glu Trp Leu Asp Cys Cys Val Thr 650 Glu Gly Gly Val Leu Val Ala Met Gln Lys Ser Ser Arg Arg Arg Asn 660 665 His Pro Leu Val Thr Gln Met Val Glu Lys Trp Leu Asp Arg Tyr Arg 680 Gln Ile Arg Pro Cys Thr Ser Leu Ser Asp Gly Glu Glu Asp Glu Asp 695 Asp Glu Asp Glu 705 <210> 1235 <211> 383 <212> DNA <213> Homo sapiens <400> 1235 gcgtctcagg ccgtgnctca gatacctgtc gatatgacga ccttgggcgc tgatttggtg gccttcaccg gtcacaagat gtgcggtccg acgggtatcg gcattctctg gggacgctat gacctecteg etgagetace gecetteete ggaggeggeg agatgatega ggtegtgege 180 atggagggat cgacctacgc cgagcctcca catcgttttg aggcaggcac cccgccgatc gcacagetgg etgecetegg ggtggcegee gactacetag atggcategg gatgcaggee ategeegage aegaacatga getggetget eggatgeteg aagaetaeca gaeegteaag ggagtgcagc cggagagagg ctg 383 <210> 1236 <211> 127 <212> PRT <213> Homo sapiens <400> 1236 Ala Ser Gln Ala Val Xaa Gln Ile Pro Val Asp Met Thr Thr Leu Gly 10 Ala Asp Leu Val Ala Phe Thr Gly His Lys Met Cys Gly Pro Thr Gly 25 Ile Gly Ile Leu Trp Gly Arg Tyr Asp Leu Leu Ala Glu Leu Pro Pro 40 45 Phe Leu Gly Gly Glu Met Ile Glu Val Val Arg Met Glu Gly Ser Thr Tyr Ala Glu Pro Pro His Arg Phe Glu Ala Gly Thr Pro Pro Ile

70 75 RΩ 65 Ala Gln Leu Ala Ala Leu Gly Val Ala Ala Asp Tyr Leu Asp Gly Ile 90 Gly Met Gln Ala Ile Ala Glu His Glu His Glu Leu Ala Ala Arg Met 100 105 Leu Glu Asp Tyr Gln Thr Val Lys Gly Val Gln Pro Glu Arg Gly 120 115 <210> 1237 <211> 1608 <212> DNA <213> Homo sapiens <400> 1237 ccatggccga agggccatac tctacaggcc tcctttctac agcaaaacag agcttcagct acaccagcac attotgactc aacatggcta tacggttgtc atcgctgaag aaaggctcaa tgctggccta gggccggggc tactagaaca aggtgatctg ggctcttggg atctgctcat 180 ttgcctgtct tctaagaaag cagaaggaac accetgtata tccaaggaag tcatgtgcca gttaggttta catcaaaagg caaacagatt accagaaata cagcagccac tttgcagaaa ggaaggatta tgtcaaatag ttagaagatt cccagaactg caacttccag tgagtccctc tgtgtgtctg gatcagggaa tgcaattaaa gccgagtact tcgagtcacc ttttaaaaaac agtgaagcca cgtgtgtgga aaccagggga ctggagtcgt gaacagctga atgaaacgac agtccttgct ccacatgaaa caatctttcg agccaaagat ctatctgtga ttcttaaagc gtatgtgttg gtgacgtcct taaccccttt gcgtgcattc attcattcga ctggcacagt ttggaatcca ccaaagaaaa aacgcttcac tgtcaagctg caaacatttt ttgagacatt cctgagagcc agttcacctc aacaggcttt tgacattatg aaggaagcaa ttggcaaact 720 actgctagcc gctgaagtat tcagtgaaac atctactctg ggaccaaaga ccttccatag 780 atgeagatte tgettteaac ttetaacttt tgatattggt tatggeagtt teatgtacee tgtagtgctc caggtacacg agcatttaaa ttttcaagat tatgataata tggattttga ggaccaaaat acagaagaat toottttaaa tgacacttto aattttotot tooctaatga atcatcactt tccatatttt ctqaqatatt tcaqaqactt tataqatcag atgttttcaa gggtgaaaac tatcaaaagg aactaaatca gtgtctgtcc ttagaagaaa ttaactcaat tatgactttc ataaaggaac ttggaagtct gggacaattc caactgctct tcccatctac tacteetggg atteagteae tgatgeatga attttatgat gtggeaaate etgtgggaaa 1200

tectgqctca gtcctgaccc aatactggtc tettttaaat gtatttgaac aatttcagtt 1260 cattgaaaaa ccacaagtgc catttgatgc aatagaaaat aaaaaagctg cagttccaca aattaaaaat gaaaataaag aaatacattg cagtgatgat gaaaacacac catgtcatat caagcagatc ttcacacatc cacatttgga actaaatcct gactttcatc caaagatcaa agattattac tqtqaaqtcc catttqatqt qqtaacagtg acaattggag tggaaactcc taagtgtetg tgcaaggtgc acctgtacga gcaggcaggg ccaagctt <210> 1238 <211> 458 <212> PRT <213> Homo sapiens <400> 1238 Met Cys Gln Leu Gly Leu His Gln Lys Ala Asn Arg Leu Pro Glu Ile 10 Gln Gln Pro Leu Cys Arg Lys Glu Gly Leu Cys Gln Ile Val Arg Arg 25 Phe Pro Glu Leu Gln Leu Pro Val Ser Pro Ser Val Cys Leu Asp Gln 40 Gly Met Gln Leu Lys Pro Ser Thr Ser Ser His Leu Leu Lys Thr Val 55 Lys Pro Arg Val Trp Lys Pro Gly Asp Trp Ser Arg Glu Gln Leu Asn 75 70 Glu Thr Thr Val Leu Ala Pro His Glu Thr Ile Phe Arg Ala Lys Asp 90 Leu Ser Val Ile Leu Lys Ala Tyr Val Leu Val Thr Ser Leu Thr Pro 100 105 Leu Arg Ala Phe Ile His Ser Thr Gly Thr Val Trp Asn Pro Pro Lys 120 Lys Lys Arg Phe Thr Val Lys Leu Gln Thr Phe Phe Glu Thr Phe Leu 140 135 Arg Ala Ser Ser Pro Gln Gln Ala Phe Asp Ile Met Lys Glu Ala Ile 150 155 Gly Lys Leu Leu Leu Ala Ala Glu Val Phe Ser Glu Thr Ser Thr Leu 170 165 Gly Pro Lys Thr Phe His Arg Cys Arg Phe Cys Phe Gln Leu Leu Thr 180 185 Phe Asp Ile Gly Tyr Gly Ser Phe Met Tyr Pro Val Val Leu Gln Val 200 195 His Glu His Leu Asn Phe Gln Asp Tyr Asp Asn Met Asp Phe Glu Asp 220 215 Gln Asn Thr Glu Glu Phe Leu Leu Asn Asp Thr Phe Asn Phe Leu Phe 235 230 Pro Asn Glu Ser Ser Leu Ser Ile Phe Ser Glu Ile Phe Gln Arg Leu 250 Tyr Arg Ser Asp Val Phe Lys Gly Glu Asn Tyr Gln Lys Glu Leu Asn

```
260
                                265
Gln Cys Leu Ser Leu Glu Glu Ile Asn Ser Ile Met Thr Phe Ile Lys
                            280
Glu Leu Gly Ser Leu Gly Gln Phe Gln Leu Leu Phe Pro Ser Thr Thr
                        295
                                            300
Pro Gly Ile Gln Ser Leu Met His Glu Phe Tyr Asp Val Ala Asn Pro
                   310
                                        315
Val Gly Asn Pro Gly Ser Val Leu Thr Gln Tyr Trp Ser Leu Leu Asn
                                    330
               325
Val Phe Glu Gln Phe Gln Phe Met Asn Lys Lys Thr Gln Pro His Pro
                                345
                                                    350
Leu Glu Trp Asn Ser Phe Thr Glu Asp Lys Asn Ile Glu Lys Pro Gln
                            360
        355
Val Pro Phe Asp Ala Ile Glu Asn Lys Lys Ala Ala Val Pro Gln Ile
                        375
                                            380
Lys Asn Glu Asn Lys Glu Ile His Cys Ser Asp Asp Glu Asn Thr Pro
                    390
                                        395
Cys His Ile Lys Gln Ile Phe Thr His Pro His Leu Glu Leu Asn Pro
                405
                                    410
Asp Phe His Pro Lys Ile Lys Asp Tyr Tyr Cys Glu Val Pro Phe Asp
                                425
Val Val Thr Val Thr Ile Gly Val Glu Thr Pro Lys Cys Leu Cys Lys
                            440
        435
Val His Leu Tyr Glu Gln Ala Gly Pro Ser
<210> 1239
<211> 447
<212> DNA
<213> Homo sapiens
<400> 1239
atacctactg aacgtgaacg aacagaaagg ctaattaaaa ccaaattaag ggagatcatg
atgcagaagg atttggagaa tattacatcc aaagagataa gaacagagtt ggaaatgcaa
atggtgtgca acttgcggga attcaaggaa tttatagaca atgaaatgat agtgatcctt
ggtcaaatgg atagccctac acagatattt gagcatgtgt tcctgggctc agaatggaat
gcctccaact tagaggactt acagaaccga ggggtacggt atatcttgaa tgtcactcga
gagatagata actititicco aggagtotiti gagtatoata acattogggt atatgatgaa
gaggeaacgg atctcctggc gtactggaat gacacttaca aattcatctc taaagcaaag
aaacatggat ctaaatgcct tgtgcac
447
<210> 1240
<211> 149
<212> PRT
<213> Homo sapiens
```

```
<400> 1240
Ile Pro Thr Glu Arg Glu Arg Thr Glu Arg Leu Ile Lys Thr Lys Leu
Arg Glu Ile Met Met Gln Lys Asp Leu Glu Asn Ile Thr Ser Lys Glu
                                25
Ile Arg Thr Glu Leu Glu Met Gln Met Val Cys Asn Leu Arg Glu Phe
                            40
Lys Glu Phe Ile Asp Asn Glu Met Ile Val Ile Leu Gly Gln Met Asp
                        55
Ser Pro Thr Gln Ile Phe Glu His Val Phe Leu Gly Ser Glu Trp Asn
                    70
Ala Ser Asn Leu Glu Asp Leu Gln Asn Arg Gly Val Arg Tyr Ile Leu
                85
                                    90
Asn Val Thr Arg Glu Ile Asp Asn Phe Phe Pro Gly Val Phe Glu Tyr
            100
                                105
His Asn Ile Arq Val Tyr Asp Glu Glu Ala Thr Asp Leu Leu Ala Tyr
                            120
Trp Asn Asp Thr Tyr Lys Phe Ile Ser Lys Ala Lys Lys His Gly Ser
                                            140
                        135
Lys Cys Leu Val His
145
<210> 1241
<211> 489
<212> DNA
<213> Homo sapiens
<400> 1241
acqcqtqtqc aqcqtatcca gcaccqtcct cagaataata gctqtqaaaa ggaggaaggg
aactaggcag acagaccgac agataggggg aaaccgggat gtttaatgtg tccgaacaag
taggaagatc aatgaggcgc gagtgtgtgt gtgtacgtgt gcgcgtgtgt gtgtgagaga
gagagaaaga aagaagaaag gtcccgattg caacgtgtca gatcttgcaa ccttcccccc
240
acccaacaca acaaccctca gacacaaaaa caccattgct gactgatacc ccaggtcttc
agggttaaag gaaccgtgtg ttggcagcgc aattgtgcag acgctgtaag gccaaaacga
ggatttgtgt tgtgaggtcg gtggtgcgtt cttttctttc tcttctcgcc tgttttcccg
gagtgcctgg gttgcgagaa aggcgcatcg caggctgtgc agccgaatcg cttcgcaatt
480
attcatgct
489
<210> 1242
<211> 127
<212> PRT
<213> Homo sapiens
<400> 1242
Met Asn Asn Cys Glu Ala Ile Arg Leu His Ser Leu Arg Cys Ala Phe
```

```
10
Leu Ala Thr Gln Ala Leu Arg Glu Asn Arg Arg Glu Glu Lys Glu Lys
Asn Ala Pro Pro Thr Ser Gln His Lys Ser Ser Phe Trp Pro Tyr Ser
Val Cys Thr Ile Ala Leu Pro Thr His Gly Ser Phe Asn Pro Glu Asp
                        55
Leu Gly Tyr Gln Ser Ala Met Val Phe Leu Cys Leu Arg Val Val Val
Leu Gly Gly Lys Val Ala Arg Ser Asp Thr Leu Gln Ser Gly Pro
                85
                                    90
Phe Phe Phe Leu Ser Leu Ser Leu Thr His Thr Arg Ala His Val His
                                105
            100
Thr His Thr Arg Ala Ser Leu Ile Phe Leu Leu Val Arg Thr His
                            120
<210> 1243
<211> 390
<212> DNA
<213> Homo sapiens
<400> 1243
ntagactecg tegatecect catggagaat ceagtgtgee aggteeette ggegtaetgg
qaqatqatat acctaccggg aatgttcact gtctacttcg atggccagtt ctgggtcgga
gtectagaga ggegegaega gggtttggtg egtgeegtaa aagteaegtt tggegeegaa
ccgtctgaca cggaattgta cgggtgggtt agccgtcatg gcaacgcact tatagagcga
ttggagteta eegetgetgt eectaceace egeagteeee gageeaageg aetgaaceee
aagagggcgt tacgagatgc agcgcgagct gcccaagcac accgtgccag cacgnccgca
caggeegega ttaaggeega teaggaaget
390
<210> 1244
<211> 130
<212> PRT
<213> Homo sapiens
<400> 1244
Xaa Asp Ser Val Asp Pro Leu Met Glu Asn Pro Val Cys Gln Val Pro
Ser Ala Tyr Trp Glu Met Ile Tyr Leu Pro Gly Met Phe Thr Val Tyr
Phe Asp Gly Gln Phe Trp Val Gly Val Leu Glu Arg Arg Asp Glu Gly
                            40
Leu Val Arg Ala Val Lys Val Thr Phe Gly Ala Glu Pro Ser Asp Thr
                        55
Glu Leu Tyr Gly Trp Val Ser Arg His Gly Asn Ala Leu Ile Glu Arg
                                        75
Leu Glu Ser Thr Ala Ala Val Pro Thr Thr Arg Ser Pro Arg Ala Lys
```

```
90
                85
Arg Leu Asn Pro Lys Arg Ala Leu Arg Asp Ala Ala Arg Ala Ala Gln
                               105
           100
Ala His Arq Ala Ser Thr Xaa Ala Gln Ala Ala Ile Lys Ala Asp Gln
                            120
Glu Ala
    130
<210> 1245
<211> 339
<212> DNA
<213> Homo sapiens
<400> 1245
gccaagcagc aaaaaccaca gatcattgct atgggaaatg tgtcattttc ttgttcacaa
60
ccacaatcta tqcccqtqac ttttctqaqc tccaqqagtt ttttagcact gccagacttc
120
tetggagagg aggaggttte tgecaetttt caatttegaa ettggaataa ggeagggett
ctgctgttca gtgaacttca gctgatttca gggggtatcc tcctctttct gagtgatgga
aaacttaagt cgaatctcta ccagccaaga aaattaccca gtgacatcac agcaggtgtc
gaattaaatg atgggcagtg gcattctgtc tctttatct
<210> 1246
<211> 113
<212> PRT
<213> Homo sapiens
<400> 1246
Ala Lys Gln Gln Lys Pro Gln Ile Ile Ala Met Gly Asn Val Ser Phe
Ser Cys Ser Gln Pro Gln Ser Met Pro Val Thr Phe Leu Ser Ser Arg
            20
                                25
Ser Phe Leu Ala Leu Pro Asp Phe Ser Gly Glu Glu Glu Val Ser Ala
                          40
Thr Phe Gln Phe Arg Thr Trp Asn Lys Ala Gly Leu Leu Leu Phe Ser
                        55
Glu Leu Gln Leu Ile Ser Gly Gly Ile Leu Leu Phe Leu Ser Asp Gly
                                        75
                    70
Lys Leu Lys Ser Asn Leu Tyr Gln Pro Arg Lys Leu Pro Ser Asp Ile
                                    90
Thr Ala Gly Val Glu Leu Asn Asp Gly Gln Trp His Ser Val Ser Leu
            100
                                105
Ser
<210> 1247
<211> 366
<212> DNA
<213> Homo sapiens
```

```
<400> 1247
ttgacctcca accegggcac gcgcatcctg ccccagatcc cgatggatgg gcatgacctc
aacceggtgt ggegggaegt eggeetgate gtgeaccege egatgeteta catgggetae
gteggtttet cegtggeett tgegtttgee ategeegeet tgeteggegg gegeetegat
180
geggeetggg egegetggte geggeeatgg accattgtgg cetgggegtt ceteggtate
ggtatcaccc teggttegtg gtgggcetac tacgaacteg getggngegg etggtggtte
tgggaccccg gggaaaaccc cttcttcatg ccctggctgg ggggcacccc gctgattcac
tcacta
366
<210> 1248
<211> 122
<212> PRT
<213> Homo sapiens
<400> 1248
Leu Thr Ser Asn Pro Gly Thr Arg Ile Leu Pro Gln Ile Pro Met Asp
Gly His Asp Leu Asn Pro Val Trp Arg Asp Val Gly Leu Ile Val His
Pro Pro Met Leu Tyr Met Gly Tyr Val Gly Phe Ser Val Ala Phe Ala
                            40
Phe Ala Ile Ala Ala Leu Leu Gly Gly Arg Leu Asp Ala Ala Trp Ala
                        55
                                            60
Arg Trp Ser Arg Pro Trp Thr Ile Val Ala Trp Ala Phe Leu Gly Ile
                                        75
Gly Ile Thr Leu Gly Ser Trp Trp Ala Tyr Tyr Glu Leu Gly Trp Xaa
                                    90
Gly Trp Trp Phe Trp Asp Pro Gly Glu Asn Pro Phe Phe Met Pro Trp
Leu Gly Gly Thr Pro Leu Ile His Ser Leu
        115
                            120
<210> 1249
<211> 374
<212> DNA
<213> Homo sapiens
<400> 1249
acgcgtgtcc tcaacaccct ggcgcccacg ctgattgccg tggaaccggt gccggcaatg
ggegegeagt tgageaaget getgeeggat gtgeacetgg teaatggeac tgeegaggee
attocactgg aaagegeegt ggeggatgeg gtggtgtgeg cacaageett ccattggttt
tecagegagg eggeeetgge ggaaateeat egggtaetea aaceggatgg gegeetgggg
240
```

```
ctggtgtgga atgtgcgcga cgagtcggtg gattgggtcg ccgccattac tcaaatcatc
300
acgeettatg aaggegacae geegegettt cataceggee gttggegega ageetteact
ggcgagtatt tttg
374
<210> 1250
<211> 124
<212> PRT
<213> Homo sapiens
<400> 1250
Thr Arg Val Leu Asn Thr Leu Ala Pro Thr Leu Ile Ala Val Glu Pro
Val Pro Ala Met Gly Ala Gln Leu Ser Lys Leu Leu Pro Asp Val His
                                                    30
                                25
Leu Val Asn Gly Thr Ala Glu Ala Ile Pro Leu Glu Ser Ala Val Ala
Asp Ala Val Val Cys Ala Gln Ala Phe His Trp Phe Ser Ser Glu Ala
                        55
Ala Leu Ala Glu Ile His Arg Val Leu Lys Pro Asp Gly Arg Leu Gly
                    70
                                        75
Leu Val Trp Asn Val Arg Asp Glu Ser Val Asp Trp Val Ala Ala Ile
                                    90
Thr Gln Ile Ile Thr Pro Tyr Glu Gly Asp Thr Pro Arg Phe His Thr
                                105
                                                    110
Gly Arg Trp Arg Glu Ala Phe Thr Gly Glu Tyr Phe
        115
                            120
<210> 1251
<211> 742
<212> DNA
<213> Homo sapiens
<400> 1251
accggtetet teeteggaaa ggeagggeeg aggggettge ggggeageea tggaggegae
gcggaggcgg cagcacgtgg gagcgacggg cggcccaggc gcgcagttgg gcgcctcctt
120
ccctgcaggc caggcatggc tctgtgagcg ctgatgaggc tgcccgcacg gctcccttcc
acctegacet etggttetae tteacactge agaactgggt tetggacttt gggegteeca
ttgccatgct ggtattccct ctcgagtggt ttccactcaa caagcccagt gttggggact
acttccacat ggcctacaac gtcatcacgc cctttctctt gctcaagctc atcgagcggt
coccegeae cetgetacge tecateacgt acgtgageat cateatette atcatgggtg
ccagcatcca cctqqtqqqt qactctqtca accaccqcct gctcttcagt ggctaccagc
accacctgtc tgtccgtgag aaccccatca tcaagaatct caagccggag acgctgatcg
540
```

```
actoctttga gotgototac tattatgatg agtacotggg toactgoatg tggtacatoo
600
cettetteet cateetette atgtaettea geggetgetn ttaetgeete taaagetgag
agettgatte cagggeetge cetgeteetg gtggeaceca gtggeetgta etactggtae
ctggtcaccg agggccagat ct
742
<210> 1252
<211> 80
<212> PRT
<213> Homo sapiens
<400> 1252
Met Arg Leu Pro Ala Arg Leu Pro Ser Thr Ser Thr Ser Gly Ser Thr
                                                         15
1
                 5
                                    10
Ser His Cys Arg Thr Gly Phe Trp Thr Leu Gly Val Pro Leu Pro Cys
            20
Trp Tyr Ser Leu Ser Ser Gly Phe His Ser Thr Ser Pro Val Leu Gly
                            40
                                                45
        35
Thr Thr Ser Thr Trp Pro Thr Thr Ser Ser Arg Pro Phe Ser Cys Ser
                        55
Ser Ser Ser Ser Gly Pro Pro Ala Pro Cys Tyr Ala Pro Ser Arg Thr
                    70
                                        75
<210> 1253
<211> 675
<212> DNA
<213> Homo sapiens
<400> 1253
gggcccctc ccaggcgctt tctgggagct tttagaactg cgctctgaag tttccagaga
60
qcqaggagct tttgcggcag gcagagacaa tggaagaaaa tgaaagccag aaatgtgagc
120
cgtgccttcc ttactcagca gacagaagac agatgcagga acaaggcaaa ggcaatctgc
180
atgtaacatc accagaagat gcagaatgcc gcagaaccaa ggaacgcctt tctaatggaa
acagtogtgg ttcagtttcc aagtottccc gcaatatccc aaggagacac accctagggg
ggccccgaag ttccaaggaa atactgggaa tgcaaacatc tgagatggat cggaagagag
360
qaaaaaqqqt tootaqaaca totqaagcag aagtaccccc accacgcotc tgcaatcatg
ggtcaccaag agaggctgag agaccagaca aggatcccca aactgtctca cagtcctcaa
ccacccaqtq tqqqtqaccc gqtcqaqcat ttatcaqaqa cqtccqctqa ttctttqqaa
gccatgtctg agggggatgc tccaacccct ttttccagag gcagccggac tcgtgcgagc
cttcctgtgg tgaggtcaac caaccagacg aaagaaagat ctctgggggt tctctatctc
660
```

```
cagtatggag atgaa
675
<210> 1254
<211> 86
<212> PRT
<213> Homo sapiens
<400> 1254
Met Gly His Gln Glu Arg Leu Arg Asp Gln Thr Arg Ile Pro Lys Leu
Ser His Ser Pro Gln Pro Pro Ser Val Gly Asp Pro Val Glu His Leu
            20
                                 25
Ser Glu Thr Ser Ala Asp Ser Leu Glu Ala Met Ser Glu Gly Asp Ala
                            40
Pro Thr Pro Phe Ser Arg Gly Ser Arg Thr Arg Ala Ser Leu Pro Val
                        55
Val Arg Ser Thr Asn Gln Thr Lys Glu Arg Ser Leu Gly Val Leu Tyr
                                         75
Leu Gln Tyr Gly Asp Glu
<210> 1255
<211> 401
<212> DNA
<213> Homo sapiens
<400> 1255
negcegatta ceaaggetat ggatgtgtgg geettgggeg taacgetata etgtetgetg
ttcggtcgag tgccatttga tgcagagacg gagtacttgc tgctggaaag tatcctgcat
gacgattatg ccgtcccgac gcacatgggt agcgaccgcg tgttggtagg cccgcgacca
gcacgttggc cctcgtcgca agagacgccc aacgtgccgc tgtccggcga ggcgcatgca
gtacgccatc tgctcgatgc ccttctcgac aaggatccag cgacgcgcct cactctcgat
300
cgtgttataa cacacccatg gctcgtggca gagtcatggt aatagtagca attgtatata
360
ccctcatcac caagatggcc aaagcggtac aaggcccgcg g
401
<210> 1256
<211> 113
<212> PRT
<213> Homo sapiens
<400> 1256
Xaa Pro Ile Thr Lys Ala Met Asp Val Trp Ala Leu Gly Val Thr Leu
                 5
                                    10
Tyr Cys Leu Leu Phe Gly Arg Val Pro Phe Asp Ala Glu Thr Glu Tyr
Leu Leu Leu Glu Ser Ile Leu His Asp Asp Tyr Ala Val Pro Thr His
```

```
40
Met Gly Ser Asp Arg Val Leu Val Gly Pro Arg Pro Ala Arg Trp Pro
                        55
Ser Ser Gln Glu Thr Pro Asn Val Pro Leu Ser Gly Glu Ala His Ala
                    70
                                        75
Val Arg His Leu Leu Asp Ala Leu Leu Asp Lys Asp Pro Ala Thr Arg
                                    90
Leu Thr Leu Asp Arg Val Ile Thr His Pro Trp Leu Val Ala Glu Ser
                                105
            100
Trp
<210> 1257
<211> 294
<212> DNA
<213> Homo sapiens
<400> 1257
egegtacage tgattgaagg tgatgtegee aacgeegace tggtggegea ageegeeate
ggcgccacgg cggtggtgca tttggcagcg gtggcttcgg tgcaagcctc ggtggatgac
120
ccggtcagca cgcgccagag caattttgtc ggcaccttga atgtctgcga agccatgcgc
aaggeeggtg tgaagegtgt ggtatttget teeagegttg eggtgtatgg caacaatgge
gagggcgctt cgattgacga agagaccatc aaggccccgc tgacgcctta cgcg
<210> 1258
<211> 98
<212> PRT
<213> Homo sapiens
<400> 1258
Arg Val Gln Leu Ile Glu Gly Asp Val Ala Asn Ala Asp Leu Val Ala
Gln Ala Ala Ile Gly Ala Thr Ala Val Val His Leu Ala Ala Val Ala
                                25
Ser Val Gln Ala Ser Val Asp Asp Pro Val Ser Thr Arg Gln Ser Asn
                            40
Phe Val Gly Thr Leu Asn Val Cys Glu Ala Met Arg Lys Ala Gly Val
                        55
Lys Arg Val Val Phe Ala Ser Ser Val Ala Val Tyr Gly Asn Asn Gly
                                        75
                    70
Glu Gly Ala Ser Ile Asp Glu Glu Thr Ile Lys Ala Pro Leu Thr Pro
                85
Tyr Ala
<210> 1259
<211> 417
<212> DNA
<213> Homo sapiens
```

```
<400> 1259
nnacacteta gcctctgact caaggaaget gcccagggtc ttgcccttcg gtttggggg
atcoogtoto cottogtotg gagcagacat agtgagaacg tgagaagctg caggcgtggc
120
ctcaccgtgg tgtgttccaa gatgtccagg gccaaggatg ccgtgtcctc cggggtggcc
agegtggtgg aegtggetaa gggagtggte eagggaggee tggacaceae teggtetgea
240
cttacgggca ccaaggaggc ggtgtccagc ggggtcacag gggccatgga catggctaag
ggggccgtcc aagggggtct ggacacctcg aaggctgtcc tcaccggcac caaggacacg
gtgtccactg ggctcacggg ggcagtgaat gtggccaaag ggcccgtaca ggccggc
<210> 1260
<211> 133
<212> PRT
<213> Homo sapiens
<400> 1260
Leu Lys Glu Ala Ala Gln Gly Leu Ala Leu Arg Phe Gly Gly Ile Pro
Ser Pro Phe Val Trp Ser Arg His Ser Glu Asn Val Arg Ser Cys Arg
                                25
Arg Gly Leu Thr Val Val Cys Ser Lys Met Ser Arg Ala Lys Asp Ala
                            40
Val Ser Ser Gly Val Ala Ser Val Val Asp Val Ala Lys Gly Val Val
                        55
Gln Gly Gly Leu Asp Thr Thr Arg Ser Ala Leu Thr Gly Thr Lys Glu
                                        75
                    70
Ala Val Ser Ser Gly Val Thr Gly Ala Met Asp Met Ala Lys Gly Ala
                                    90
Val Gln Gly Gly Leu Asp Thr Ser Lys Ala Val Leu Thr Gly Thr Lys
                                105
            100
Asp Thr Val Ser Thr Gly Leu Thr Gly Ala Val Asn Val Ala Lys Gly
                            120
Pro Val Gln Ala Gly
    130
<210> 1261
<211> 330
<212> DNA
<213> Homo sapiens
<400> 1261
ngtgcacgtg ccgttcggca tcaggagatg aacatggatt tgaacgctga agtcgatcag
ctqqtccqcc aatcccagac ctggatcccc ttgatcatgg agtacggcag ccgcctgctg
120tgaccctggc ggtcggctgg tggatcgaca acaaggtcag cgcccgcctg
ggcaaactgg taggcctgcg caacgccgac ctggcactgc aaggctttat cagcaccttg
240
```

```
togaacatog ggotgaaagt gotgetgtto gtoagtgtgg ogtogatgat oggoattgag
300
accacctcgt tcgtcgcgga catcggtgct
330
<210> 1262
<211> 110
<212> PRT
<213> Homo sapiens
<400> 1262
Xaa Ala Arg Ala Val Arg His Gln Glu Met Asn Met Asp Leu Asn Ala
                                    10
Glu Val Asp Gln Leu Val Arg Gln Ser Gln Thr Trp Ile Pro Leu Ile
            20
                                25
Met Glu Tyr Gly Ser Arg Leu Leu Leu Ala Leu Leu Thr Leu Ala Val
Gly Trp Trp Ile Asp Asn Lys Val Ser Ala Arg Leu Gly Lys Leu Val
                                            60
                        55
Gly Leu Arg Asn Ala Asp Leu Ala Leu Gln Gly Phe Ile Ser Thr Leu
                                        75
Ser Asn Ile Gly Leu Lys Val Leu Leu Phe Val Ser Val Ala Ser Met
                85
                                    90
Ile Gly Ile Glu Thr Thr Ser Phe Val Ala Asp Ile Gly Ala
                                105
<210> 1263
<211> 351
<212> DNA
<213> Homo sapiens
<400> 1263
acgcgtggac gatggacttc gtcggtctgc ggtacgacga agggctcaac attgccggtg
gcatcgatga tgagtttgct cgcctgggca acacctagca gcaatggcat cgatagtccc
tgcccagcct gctccatttc gacgacgatg gtcgccgggt tcagtttctt ctcgctccac
gtcaacagac cgtcaccgtg gttgacgatc tcgccggtgg aggcgtcctt gacgacgatc
tggccacgcg ccagggaata catctccca tccacccaaa agaacgcccc caagctgggc
atcttggcca gcccgatgat cgagagggtt tcaacaagcg actcgggatc c
<210> 1264
<211>, 100
<212> PRT
<213> Homo sapiens
<400> 1264
Met Pro Ser Leu Gly Ala Phe Phe Trp Val Asp Gly Glu Met Tyr Ser
                 5
                                    10
Leu Ala Arg Gly Gln Ile Val Val Lys Asp Ala Ser Thr Gly Glu Ile
```

```
20
                                25
Val Asn His Gly Asp Gly Leu Leu Thr Trp Ser Glu Lys Lys Leu Asn
                            40
Pro Ala Thr Ile Val Val Glu Met Glu Gln Ala Gly Gln Gly Leu Ser
Met Pro Leu Leu Gly Val Ala Gln Ala Ser Lys Leu Ile Ile Asp
                    70
Ala Thr Gly Asn Val Glu Pro Phe Val Val Pro Gln Thr Asp Glu Val
                                    90
His Arg Pro Arg
            100
<210> 1265
<211> 318
<212> DNA
<213> Homo sapiens
<400> 1265
accggtgtat gcaactgaaa tgctgtccga tatgcctgcg ctccagctcg tgaatcgaaa
gttggataac gctcgcttgg tggaatcgtc gctacggaag cttatcaagg atacggatgc
tqctqcaccq ccaaaattat ggacgccccc cgaccccact cgctctgacg ataccattgc
180
acagoogaaa gtgcaaccag cocaagcagt gggagatgac togatcatgt cggtcgatga
geetgatgea acceptecatg acatgecact caccacgaca etegacaacg tgggtegete
agatccatcg cgacgcgt
318
<210> 1266
<211> 99
<212> PRT
<213> Homo sapiens
<400> 1266
Met Leu Ser Asp Met Pro Ala Leu Gln Leu Val Asn Arg Lys Leu Asp
Asn Ala Arg Leu Val Glu Ser Ser Leu Arg Lys Leu Ile Lys Asp Thr
Asp Ala Ala Pro Pro Lys Leu Trp Thr Pro Pro Asp Pro Thr Arg
                            40
Ser Asp Asp Thr Ile Ala Gln Pro Lys Val Gln Pro Ala Gln Ala Val
Gly Asp Asp Ser Ile Met Ser Val Asp Glu Pro Asp Ala Thr Val His
                                        75
                   70
Asp Met Pro Leu Thr Thr Leu Asp Asn Val Gly Arg Ser Asp Pro
                                    90
                85
Ser Arg Arg
<210> 1267
<211> 343
```

<212> DNA

```
<213> Homo sapiens
<400> 1267
ngqacacttq tgggaaatgc cccacagcct gtgtttttat tccccttgtg aacacttgtg
qqaactqtcc cacqgcccgt gtttctgtgc gcctgcagac actcgtggga aatgccccac
120
aacctgtgtt tttgttcccc ttgtgaacac tcgtgggaaa tgccccacaa cctgtgtttt
tattcccctt gtgaacactc gtgggaaatg tcccatggcc cgtgtttccg tgcacctgcg
gatactcatc aaacaccagg ctgtcattgg ggacagggtg agctctggct gttggtgcag
300
catggtagga agagcaccaa gtcctggact ctgttgattt ata
<210> 1268
<211> 106
<212> PRT
<213> Homo sapiens
<400> 1268
Met Pro His Ser Leu Cys Phe Tyr Ser Pro Cys Glu His Leu Trp Glu
1
                 5
                                    10
Leu Ser His Gly Pro Cys Phe Cys Ala Pro Ala Asp Thr Arg Gly Lys
            20
                                25
Cys Pro Thr Thr Cys Val Phe Val Pro Leu Val Asn Thr Arg Gly Lys
Cys Pro Thr Thr Cys Val Phe Ile Pro Leu Val Asn Thr Arg Gly Lys
                        55
Cys Pro Met Ala Arg Val Ser Val His Leu Arg Ile Leu Ile Lys His
                    70
                                        75
Gln Ala Val Ile Gly Asp Arg Val Ser Ser Gly Cys Trp Cys Ser Met
                                    90
                85
Val Gly Arg Ala Pro Ser Pro Gly Leu Cys
            100
<210> 1269
<211> 391
<212> DNA
<213> Homo sapiens
<400> 1269
tegegateeg gagegategg tgetgeagat ggetggegae geeetgeggg gegeattgeg
ggacgccgac ctggagccgg ccgccctaga cgggctgatc gtccaggtgg ggtccccccg
120
cggcgcggac tacgacaccg tgtccgaaac ctttggtctt tcgccacaat tctgcagcca
gacctggggc gcacggccgg ttcaccgcaa cggtgatcct ggcagcggcc atggcggtgt
ccageggeet egegeggegg gtggettgee teatgggeat gaagaatteg gaeeteggge
300
```

ggttgggtga ggcggacaat ccctttcatc atgagcaatt ccgggagaat ggcgggccgc acggggaaga gggttggatc ggcatggcct c 391 <210> 1270 <211> 110 <212> PRT <213> Homo sapiens <400> 1270 Met Met Lys Gly Ile Val Arg Leu Thr Gln Pro Pro Glu Val Arg Ile Leu His Ala His Glu Ala Ser His Pro Pro Arg Glu Ala Ala Gly His Arg His Gly Arg Cys Gln Asp His Arg Cys Gly Glu Pro Ala Val Arg 45 40 35 Pro Arg Ser Gly Cys Arg Ile Val Ala Lys Asp Gln Arg Phe Arg Thr 55 60 Arg Cys Arg Ser Pro Arg Arg Gly Gly Thr Pro Pro Gly Arg Ser Ala 75 70 Arg Leu Gly Arg Pro Ala Pro Gly Arg Arg Pro Ala Met Arg Pro Ala 90 Gly Arg Arg Gln Pro Ser Ala Ala Pro Ile Ala Pro Asp Arg 110 <210> 1271 <211> 661 <212> DNA <213> Homo sapiens <400> 1271 acgegtegtt actggecace tgegagegea ceagggtagg cageactegg teteegtega accagaaagc gtcatcgggg tggtgaacga gaacgggcga tgttgtggtg ggacggataa cccccggttg cgtcaccata tggcccacta aagagttcac cagggttgat ttaccagccc eggtegacce tectaceace gecagaageg gegeateaat agtetetaag egeggeaaaa 240 tatagtcgtt aagctggtta gcgatgcgtc gtgccagccc ggcctgagta atagcctccg gcaaatccaa ggggaactgg gcctgacgca ggttgtgccg cagatcggtc aacgacagca 360 gtatctgctc agtgttcatg gtgatccttc ctggtcactc gtcaggcctg tggcggcgcc cactgcaact cgttgttgac cggctggttg cgacgtcgct tgaggaatgc gggcagtctc ggcttcgaca atttggcacc tcgggcgacg gtgatagccg ccgggcgcag cacgttcata cggttgatga gctcgatctg aagcggacca ggatcatcgt ccaacccacg cacaatggcg tcacgaagat aagcaagatc tgtcccaacg cgcaggaact ctaacgtgtg ccaccaccgg 660

```
t
661
<210> 1272
<211> 126
<212> PRT
<213> Homo sapiens
<400> 1272
Met Asn Thr Glu Gln Ile Leu Leu Ser Leu Thr Asp Leu Arg His Asn
                                    10
Leu Arg Gln Ala Gln Phe Pro Leu Asp Leu Pro Glu Ala Ile Thr Gln
                                25
Ala Gly Leu Ala Arg Arg Ile Ala Asn Gln Leu Asn Asp Tyr Ile Leu
                            40
Pro Arg Leu Glu Thr Ile Asp Ala Pro Leu Leu Ala Val Val Gly Gly
Ser Thr Gly Ala Gly Lys Ser Thr Leu Val Asn Ser Leu Val Gly His
                    70
                                        75
Met Val Thr Gln Pro Gly Val Ile Arg Pro Thr Thr Ser Pro Val
Leu Val His His Pro Asp Asp Ala Phe Trp Phe Asp Gly Asp Arg Val
                                105
Leu Pro Thr Leu Val Arg Ser Gln Val Ala Ser Asn Asp Ala
<210> 1273
<211> 489
<212> DNA
<213> Homo sapiens
<400> 1273
geoggegaga ceggtgeogg aaagaceatg gtggteaceg gtattggttt getgetegge
qacaaqqctq acactqqatt qqtccqqcat qqctqcqatc gtgccgtcgt cgaaqccqtt
ctcgacacgc ctgatgccgg tcgcgtcagc gagcttggcg gaacagtcga ggatggtgag
gttatctgcg ctcgacacat cacgagtcgt cgctctcgag cgctgcttgg aggagctcaa
gttaccgcta gtcagctggc ccacatcgtt ggggatcagg tgaccatcca tggccaatct
qaacaaqtqa qqttqqtcqa cqcaqcqcqq cagctcqacq tcqttqaccg ggctgccgga
gatgagetgg caggetacet aagtegacat geacagetgt ggteggagtt tegtgetgea
teccaqeqte tteaqeqeet caacqaqqat egegetqqqq ceqaqatgga acgegaggtq
cttacgcgt
489
<210> 1274
<211> 163
<212> PRT
```

<213> Homo sapiens <400> 1274 Ala Gly Glu Thr Gly Ala Gly Lys Thr Met Val Val Thr Gly Ile Gly Leu Leu Gly Asp Lys Ala Asp Thr Gly Leu Val Arg His Gly Cys 25 Asp Arg Ala Val Val Glu Ala Val Leu Asp Thr Pro Asp Ala Gly Arg 40 Val Ser Glu Leu Gly Gly Thr Val Glu Asp Gly Glu Val Ile Cys Ala 55 Arg His Ile Thr Ser Arg Arg Ser Arg Ala Leu Leu Gly Gly Ala Gln Val Thr Ala Ser Gln Leu Ala His Ile Val Gly Asp Gln Val Thr Ile 85 90 His Gly Gln Ser Glu Gln Val Arg Leu Val Asp Ala Ala Arg Gln Leu 100 105 Asp Val Val Asp Arg Ala Ala Gly Asp Glu Leu Ala Gly Tyr Leu Ser 120 Arg His Ala Gln Leu Trp Ser Glu Phe Arg Ala Ala Ser Gln Arg Leu 135 Gln Arg Leu Asn Glu Asp Arg Ala Gly Ala Glu Met Glu Arg Glu Val Leu Thr Arg <210> 1275 <211> 384 <212> DNA <213> Homo sapiens nngctagcaa gtgcaagtac gagcaaaagt tatcagcaac agcgggaggc tgaacttctc gtcgcacggc tagaggggga aatgcacgca cacagcgacc cgaccccgtc gccacaacca cccgaggatg cagggttgat tgatgttgcc ctgaaagagg cgaagaaagc ctttgatgaa ggcaaggtcg atctaatgga taaactcaat caggagatac ttcgcctggc aaacgaattc ggtgegeteg ggettgaate tattgagett ggeteegaeg egaagatgge agtaegeaaa 300 ggcaatcaga aatcagcgtt cagcaggetg actcccggtg aacgtctcag gctgcgcatt 360 gctacagcca tcgcgttgtt acgc <210> 1276 <211> 128 <212> PRT <213> Homo sapiens <400> 1276 Xaa Leu Ala Ser Ala Ser Thr Ser Lys Ser Tyr Gln Gln Gln Arg Glu

```
10
Ala Glu Leu Leu Val Ala Arg Leu Glu Gly Glu Met His Ala His Ser
                                25
Asp Pro Thr Pro Ser Pro Gln Pro Pro Glu Asp Ala Gly Leu Ile Asp
                            40
Val Ala Leu Lys Glu Ala Lys Lys Ala Phe Asp Glu Gly Lys Val Asp
Leu Met Asp Lys Leu Asn Gln Glu Ile Leu Arg Leu Ala Asn Glu Phe
                    70
Gly Ala Leu Gly Leu Glu Ser Ile Glu Leu Gly Ser Asp Ala Lys Met
                                    90
Ala Val Arg Lys Gly Asn Gln Lys Ser Ala Phe Ser Arg Leu Thr Pro
                                105
Gly Glu Arg Leu Arg Leu Arg Ile Ala Thr Ala Ile Ala Leu Leu Arg
                            120
<210> 1277
<211> 392
<212> DNA
<213> Homo sapiens
<400> 1277
cagtttcage ecceptgtgt gtececaatt cetgtetete etaccageeg gattcagaac
ccagtggctt tcctcagctc tgttctgcct tctctccctg ccatcccacc cacaaatgcc
120
atggggctgc ctagaagtgc accatccatg ccatcccagg gattagcgaa gaaaaataca
aagteteete aaccagtgaa tgatgataac attegtgaaa etaagaacge agtgattega
gacttgggga aaaaaataac tttcagtgat gtcagaccaa accagcagga gtacaaaatt
tcaagetttg agcagagget gatgaatgaa atagagttte gettggaaeg taeteetgtt
gatgaatcac atgatgaaat tcaacatgat gg
392
<210> 1278
<211> 130
<212> PRT
<213> Homo sapiens
<400> 1278
Gln Phe Gln Pro Arg Cys Val Ser Pro Ile Pro Val Ser Pro Thr Ser
                                    10
Arg Ile Gln Asn Pro Val Ala Phe Leu Ser Ser Val Leu Pro Ser Leu
                                25
Pro Ala Ile Pro Pro Thr Asn Ala Met Gly Leu Pro Arg Ser Ala Pro
                            40
Ser Met Pro Ser Gln Gly Leu Ala Lys Lys Asn Thr Lys Ser Pro Gln
Pro Val Asn Asp Asp Asn Ile Arg Glu Thr Lys Asn Ala Val Ile Arg
                   70
                                        75
Asp Leu Gly Lys Lys Ile Thr Phe Ser Asp Val Arg Pro Asn Gln Gln
```

```
85
                                    90
Glu Tyr Lys Ile Ser Ser Phe Glu Gln Arg Leu Met Asn Glu Ile Glu
                               105
Phe Arq Leu Glu Arg Thr Pro Val Asp Glu Ser His Asp Glu Ile Gln
                           120
His Asp
    130
<210> 1279
<211> 297
<212> DNA
<213> Homo sapiens
<400> 1279
atggagtege agaeteteeg ecacatgate gaggaegaet gegeegaeaa eggeateeea
ctccccaacg tcaactccag gatcctctct aaggtcatcg agtactgcaa cagtcacgtc
cacgccgccg ccaaacccgc tgactccgct gcctccgagg gcggcgagga cctcaagagc
tgggacgcga agttcgtcaa ggtggaccag gctacgctct tcgacctcat cctggctgcc
aactatctga acatcaaggg attgctggac ctgacctgcc agacgggtgc tgacatg
297
<210> 1280
<211> 99
<212> PRT
<213> Homo sapiens
<400> 1280
Met Glu Ser Gln Thr Leu Arg His Met Ile Glu Asp Asp Cys Ala Asp
                5
                                    10
Asn Gly Ile Pro Leu Pro Asn Val Asn Ser Arg Ile Leu Ser Lys Val
            20
                                25
Ile Glu Tyr Cys Asn Ser His Val His Ala Ala Ala Lys Pro Ala Asp
                            40
Ser Ala Ala Ser Glu Gly Gly Glu Asp Leu Lys Ser Trp Asp Ala Lys
                        55
Phe Val Lys Val Asp Gln Ala Thr Leu Phe Asp Leu Ile Leu Ala Ala
                                        75
                    70
Asn Tyr Leu Asn Ile Lys Gly Leu Leu Asp Leu Thr Cys Gln Thr Gly
                                    90
Ala Asp Met
<210> 1281
<211> 515
<212> DNA
<213> Homo sapiens
<400> 1281
acgcgtgaag ggggctttgg aggggatggc ttctggactg cacgatgggt gaacacagtt
```

```
ttttaaactc ttttccacat ctgtataggt ttgaaaatta tcaacaactc atggggaggg
120
tggcgtgcca ggtcatggct gcctggagcc cttctgagga gggccggctc aaccgaggac
geeeteecca etaccaagta ggeactgegg geaggagteg ecaceeccae eccaaggaag
240
ttcagaacag gcaacaggag gagcctgact ccaacagagt tggtgtcatc cggcgcatcg
ctaaggacgt cacaacacat caactctggg agcccaaggg ggtgtgtggt ccactcaagg
ggaagatgat ccagaagctc tgctccctcc ctttgctttt gaagaacaca ggagtgacac
gtggggaatc taccggctta atttcttctt agtaacaggc atagtaggat caaaaaattt
ttgcttctaa tttttaaaaa cattcaatgt gtaca
515
<210> 1282
<211> 135
<212> PRT
<213> Homo sapiens
<400> 1282
Met Gly Glu His Ser Phe Leu Asn Ser Phe Pro His Leu Tyr Arg Phe
Glu Asn Tyr Gln Gln Leu Met Gly Arg Val Ala Cys Gln Val Met Ala
Ala Trp Ser Pro Ser Glu Glu Gly Arg Leu Asn Arg Gly Arg Pro Pro
His Tyr Gln Val Gly Thr Ala Gly Arg Ser Arg His Pro His Pro Lys
                        55
Glu Val Gln Asn Arg Gln Gln Glu Pro Asp Ser Asn Arg Val Gly
                    70
                                        75
Val Ile Arg Arg Ile Ala Lys Asp Val Thr Thr His Gln Leu Trp Glu
Pro Lys Gly Val Cys Gly Pro Leu Lys Gly Lys Met Ile Gln Lys Leu
                                105
            100
Cys Ser Leu Pro Leu Leu Lys Asn Thr Gly Val Thr Arg Gly Glu
Ser Thr Gly Leu Ile Ser Ser
    130
                        135
<210> 1283
<211> 296
<212> DNA
<213> Homo sapiens
<400> 1283
gaatteetea caatgaactg cagtgtetgg aggaccagtt gggtageett acteegggte
tecaetqeaq aacttataca tatatqettt qtgcacacaa agaaaaacag cageecaaaa
gaateeegge tggggetett aggagggagg aaagtteeea caggtaaete aetggttaat
180
```

```
tttaaagagc tcaggaaagg aaggaaggat qqctttttct cttgtgagtc aagacaaggt
cotgatgata accotoccag atcagaacgt aactttcaac ccacgagtgc tgctcn
296
<210> 1284
<211> 94
<212> PRT
<213> Homo sapiens
<400> 1284
Met Asn Cys Ser Val Trp Arg Thr Ser Trp Val Ala Leu Leu Arg Val
Ser Thr Ala Glu Leu Ile His Ile Cys Phe Val His Thr Lys Lys Asn
            20
                                25
Ser Ser Pro Lys Glu Ser Arg Leu Gly Leu Leu Gly Gly Arg Lys Val
                            40
                                                 45
Pro Thr Gly Asn Ser Leu Val Asn Phe Lys Glu Leu Arg Lys Gly Arg
                        55
Lys Asp Gly Phe Phe Ser Cys Glu Ser Arg Gln Gly Pro Asp Asp Asn
                                                             80
                    70
                                        75
65
Pro Pro Arg Ser Glu Arg Asn Phe Gln Pro Thr Ser Ala Ala
<210> 1285
<211> 526
<212> DNA
<213> Homo sapiens
<400> 1285
qqqccccttc ttacctqccc cttccccqtq ccaccaaccc gtagacaggg agggcaagca
qtgaaaggtc catctagagg aggtaaaaga cagggctgag ggaaaacgcc ttgtacagtc
aggatggcag atgtactctg tcagggaaga cagccccaca gaaaaggctc ggcttggcca
agaaqcaaca aaaqqqattc tacacctcaq accagggagg gggaatgtgt acaaagattg
gatttactaa attcagagcc acagactttc aggtacttcg gtgaagatca gtgctctttc
300
aaacccacac ttcagaggca ggctttaaaa cgcctgactt ctgtcagggc cacaggctgg
getgeccaaa geteetaegg ggetggggga teegagagag gaetteecae tagteeaaga
420
tgtggtgact agtttcaagc cagagattga ggagcagacc tgatgccctt tcgggcccct
gctaagaacc tgattcgagg aaaaggaagt gaagacagta acgcgt
526
<210> 1286
<211> 102
<212> PRT
<213> Homo sapiens
```

```
<400> 1286
Met Ala Asp Val Leu Cys Gln Gly Arg Gln Pro His Arg Lys Gly Ser
Ala Trp Pro Arg Ser Asn Lys Arg Asp Ser Thr Pro Gln Thr Arg Glu
                                25
Gly Glu Cys Val Gln Arg Leu Asp Leu Leu Asn Ser Glu Pro Gln Thr
Phe Arg Tyr Phe Gly Glu Asp Gln Cys Ser Phe Lys Pro Thr Leu Gln
                                            60
                        55
Arg Gln Ala Leu Lys Arg Leu Thr Ser Val Arg Ala Thr Gly Trp Ala
Ala Gln Ser Ser Tyr Gly Ala Gly Gly Ser Glu Arg Gly Leu Pro Thr
                                    90
                85
Ser Pro Arg Cys Gly Asp
            100
<210> 1287
<211> 333
<212> DNA
<213> Homo sapiens
<400> 1287
acgcgtgaag gggagaggca gctccaggtg gagggaagtg catgaggaag cagagaggca
ggcgacaggc agcgtggctg gggctgggca ggccttccag tttgattgca gcccagaggt
120
caggtgagaa gaaggtacaa caagcaagga aggccccagg aagccactgg gggtgtttga
qccattqaat attctggatt ttaggacatt tctgtggctg actccactgc catcagagtt
catecacce aactecagee tgagagtget ggggcactgg gcactecgga attetteaaa
getetgatge aacatgteee cagggtgtet gae
333
<210> 1288
<211> 105
<212> PRT
<213> Homo sapiens
<400> 1288
Met Leu His Gln Ser Phe Glu Glu Phe Arg Ser Ala Gln Cys Pro Ser
Thr Leu Arg Leu Glu Leu Gly Trp Met Asn Ser Asp Gly Ser Gly Val
                                25
Ser His Arg Asn Val Leu Lys Ser Arg Ile Phe Asn Gly Ser Asn Thr
Pro Ser Gly Phe Leu Gly Pro Ser Leu Leu Val Val Pro Ser Ser His
                        55
                                            60
Leu Thr Ser Gly Leu Gln Ser Asn Trp Lys Ala Cys Pro Ala Pro Ala
Thr Leu Pro Val Ala Cys Leu Ser Ala Ser Ser Cys Thr Ser Leu His
                                    90
                85
Leu Glu Leu Pro Leu Pro Phe Thr Arg
```

100 105 <210> 1289 <211> 336 <212> DNA <213> Homo sapiens <400> 1289 acgcgtgtct gtgtacaggt ggaaggggat gggtatgaga tggtgcagcg tgtgcatggg caeggegtat ggtgtgtgag tgcaetegtg tgceggagag etgtaagetg etggetgagt cctgcacggt ggaggaggca aggtggcccc tgcctgtggg cacagagccc accttccggt ccageccgag geceetttee cagageeeee teccaagggg ecataceaee tgcateeeca agatggcgtg gggcgtccct ggtgcaggag caggggacag tcagggaggc gtgtggcgga cagtagoago coccoagoco coctococo acoggt 336 <210> 1290 <211> 89 <212> PRT <213> Homo sapiens <400> 1290 Met Val Cys Glu Cys Thr Arg Val Pro Glu Ser Cys Lys Leu Leu Ala Glu Ser Cys Thr Val Glu Glu Ala Arg Trp Pro Leu Pro Val Gly Thr Glu Pro Thr Phe Arg Ser Ser Pro Arg Pro Leu Ser Gln Ser Pro Leu 40 Pro Arg Gly His Thr Thr Cys Ile Pro Lys Met Ala Trp Gly Val Pro 55 60 Gly Ala Gly Ala Gly Asp Ser Gln Gly Gly Val Trp Arg Thr Val Ala 70 Ala Pro Gln Pro Pro Ser Pro His Arg 85 <210> 1291 <211> 379 <212> DNA <213> Homo sapiens <400> 1291 tggccatcca cctctgtcag ctgttccggc aacccattca gatcattgtg gtagtaacga atettetgea aeggeeegge aeegteeaeg egageeagag gttgatagee tteateetea taaacgtaca ggcttgtctg gctgtgttta tgctcctgca ataaccgcaa accatcccag gtaaaccggg tttcccccaa cggataccca tcactgccat gctcggtttt ttctatccga 240

```
egececageg ggteatacac cateetgace aegetaceat egteattacg caetteaace
  300
  ageoggetht cagegicata egeaaacege tgeacgecae getiggeact gegetheteg
  accatecgee caaacgegt
  379
  <210> 1292
  <211> 121
  <212> PRT
  <213> Homo sapiens
  <400> 1292
Met Val Glu Lys Arg Ser Ala Lys Arg Gly Val Gln Arg Phe Ala Tyr
                                      10
  Asp Ala Glu Ser Arg Leu Val Glu Val Arg Asn Asp Asp Gly Ser Val
  Val Arg Met Val Tyr Asp Pro Leu Gly Arg Arg Ile Glu Lys Thr Glu
                              40
  His Gly Ser Asp Gly Tyr Pro Leu Gly Glu Thr Arg Phe Thr Trp Asp
  Gly Leu Arg Leu Leu Gln Glu His Lys His Ser Gln Thr Ser Leu Tyr
                                          75
  65
  Val Tyr Glu Asp Glu Gly Tyr Gln Pro Leu Ala Arg Val Asp Gly Ala
                                      90
  Gly Pro Leu Gln Lys Ile Arq Tyr Tyr His Asn Asp Leu Asn Gly Leu
                                  105
  Pro Glu Gln Leu Thr Glu Val Asp Gly
          115
                              120
  <210> 1293
  <211> 340
  <212> DNA
  <213> Homo sapiens
  <400> 1293
  nngccggccg cccgagagct gttcgaggcg tgccgcaacg gggacgtgga acgagtcaag
  aggetggtga egeetgagaa ggtgaacage egegacaegg egggeaggaa atecaeeeeg
  120
  ctgcacttcg ccgcaggttt tgggcggaaa gacgtagttg aatatttgct tcagaatggt
  gcaaatgtcc aagcacgtga tgatgggggc cttattcctc ttcataatgc atgctctttt
  ggtcatgctg aagtagtcaa tctccttttg cgacatggtg cagaccccaa tgcttgagat
  aattggaatt atactcctag agggtggagt gtgctcgcga
  <210> 1294
  <211> 98
  <212> PRT
  <213> Homo sapiens
```

```
<400> 1294
Xaa Pro Ala Ala Arg Glu Leu Phe Glu Ala Cys Arg Asn Gly Asp Val
                                    10
Glu Arg Val Lys Arg Leu Val Thr Pro Glu Lys Val Asn Ser Arg Asp
                                25
Thr Ala Gly Arg Lys Ser Thr Pro Leu His Phe Ala Ala Gly Phe Gly
                            40
Arg Lys Asp Val Val Glu Tyr Leu Leu Gln Asn Gly Ala Asn Val Gln
                        55
                                            60
Ala Arg Asp Asp Gly Gly Leu Ile Pro Leu His Asn Ala Cys Ser Phe
                    70
Gly His Ala Glu Val Val Asn Leu Leu Leu Arg His Gly Ala Asp Pro
                                    90
                85
Asn Ala
<210> 1295
<211> 351
<212> DNA
<213> Homo sapiens
<400> 1295
ggatcccgga gacctcgtcg gcgaacgtca cctcgtccag ggccgaggcg cggaacaccg
acqtqtcqat gccctcqccc tcgatgcagt cggtcagcgg tacgacggcg ccgcgggagg
cqaaqqtqcc qatctqqctq cqctcgqcgt aqaccaqcga cggcggttcg cccgacgcca
cggaggagag gaactgctgg atgtcgaggt caccctcgat cagcttgacc ttggcgtcgc
eqaqetecte ettegecegg tegageegea cegtegegat etegtegeeg geacegaage
ccatcacctc gacctcgccg gagagettcg ccccgctgtc gaaagacgcg t
351
<210> 1296
<211> 75
<212> PRT
<213> Homo sapiens
<400> 1296
Gly Ser Arg Arg Pro Arg Arg Arg Thr Ser Pro Arg Pro Gly Pro Arg
Arg Gly Thr Pro Thr Cys Arg Cys Pro Arg Pro Arg Cys Ser Arg Ser
                                25
Ala Val Arg Arg Arg Gly Arg Arg Cys Arg Ser Gly Cys Ala
                            40
Arg Arg Arg Pro Ala Thr Ala Val Arg Pro Thr Pro Arg Arg Arg Gly
                       55
                                            60
Thr Ala Gly Cys Arg Gly His Pro Arg Ser Ala
                    70
<210> 1297
<211> 356
```

```
<212> DNA
<213> Homo sapiens
<400> 1297
gtgcacccgg attcccattg ccaccgactt cgagtaaact ccagtcccga ggacacgaga
60
gacacccagg ceteaggeee catgggeacg etecacgeea eggeteetae cagagggaca
gatacactet acaaateteg gggeecacea caccaagaag acaeggagga gecaacaaaa
gaaggaccat acgaaatgca cccccaaagc aaccaaccaa tccaagaaaa aatacgtctc
agggttctgt gggccctctt gcatgggctg ccctgccccc ctgttctggc ctggctcaag
caccttaccc cagcetgete gaaagageee tggetaccag ageagageae tggeet
<210> 1298
<211> 91
<212> PRT
<213> Homo sapiens
<400> 1298
Met Gly Thr Leu His Ala Thr Ala Pro Thr Arg Gly Thr Asp Thr Leu
                                    10
Tyr Lys Ser Arg Gly Pro Pro His Gln Glu Asp Thr Glu Glu Pro Thr
                                                     30
                                25
Lys Glu Gly Pro Tyr Glu Met His Pro Gln Ser Asn Gln Pro Ile Gln
                            40
Glu Lys Ile Arg Leu Arg Val Leu Trp Ala Leu Leu His Gly Leu Pro
                                            60
                        55
Cys Pro Pro Val Leu Ala Trp Leu Lys His Leu Thr Pro Ala Cys Ser
                    70
Lys Glu Pro Trp Leu Pro Glu Gln Ser Thr Gly
                85
                                    90
<210> 1299
<211> 307
<212> DNA
<213> Homo sapiens
<400> 1299
ggatccactt ctaagatgtc tcactcacgt ggtgatggca gcaggcctca gactctggtg
gttgttggca ggatgtctca gttccttgcc atgtgggtct ctacacaggg cagcttcctg
tgtctttgcc atatggcaac tgagaatgat cttggctacc ttctccagcc cgggagtcgg
gagttttctg gggtggggtc acgggtcttg cccggagttc gccctggcaa aggcctgtgc
cagtgatect ggageggage gaagtgttte egtgaetetg cageegeagt tettaggget
300
tccttag
307
```

```
<210> 1300
<211> 90
<212> PRT
<213> Homo sapiens
<400> 1300
Met Ala Ala Gly Leu Arg Leu Trp Trp Leu Leu Ala Gly Cys Leu Ser
Ser Leu Pro Cys Gly Ser Leu His Arg Ala Ala Ser Cys Val Phe Ala
            20
                                25
Ile Trp Gln Leu Arg Met Ile Leu Ala Thr Phe Ser Ser Pro Gly Val
        35
                            40
Gly Ser Phe Leu Gly Trp Gly His Gly Ser Cys Pro Glu Phe Ala Leu
                        55
                                            60
Ala Lys Ala Cys Ala Ser Asp Pro Gly Ala Glu Arg Ser Val Ser Val
                    70
Thr Leu Gln Pro Gln Phe Leu Gly Leu Pro
<210> 1301
<211> 408
<212> DNA
<213> Homo sapiens
<400> 1301
ctgagcaagt taaaagaagt tcttgaattt tataacttta ttttgacaaa ctattataaa
gttgagccta tttcctttga tgcagtatac gctgaaggtt tggaaatggc tgagttcttg
egecetatgg tgteagatac gattacactt ttgcatgace ttagaaggte tggcgcaaac
atcatgtttg aaggegegea agggtetttg ttggatgttg atcatggtac ttaccegtat
gtgacttcat ctaatacgac tgcgggcgga gcgccagcgg gaacaggttt tggtcctttg
tacttagatt atgtattagg tatcactaag gcttatacga ctcgcgttgg ttctggacct
ttecetactg agttgtttga cgaagatggt gagegtettg gtacgegt
<210> 1302
<211> 136
<212> PRT
<213> Homo sapiens
<400> 1302
Leu Ser Lys Leu Lys Glu Val Leu Glu Phe Tyr Asn Phe Ile Leu Thr
                                    10
Asn Tyr Tyr Lys Val Glu Pro Ile Ser Phe Asp Ala Val Tyr Ala Glu
            20
                                25
Gly Leu Glu Met Ala Glu Phe Leu Arg Pro Met Val Ser Asp Thr Ile
Thr Leu Leu His Asp Leu Arg Arg Ser Gly Ala Asn Ile Met Phe Glu
```

```
50
                        55
                                            60
Gly Ala Gln Gly Ser Leu Leu Asp Val Asp His Gly Thr Tyr Pro Tyr
Val Thr Ser Ser Asn Thr Thr Ala Gly Gly Ala Pro Ala Gly Thr Gly
                85
                                    90
Phe Gly Pro Leu Tyr Leu Asp Tyr Val Leu Gly Ile Thr Lys Ala Tyr
                                105
                                                     110
Thr Thr Arg Val Gly Ser Gly Pro Phe Pro Thr Glu Leu Phe Asp Glu
                                                125
                            120
        115
Asp Gly Glu Arg Leu Gly Thr Arg
    130
                        135
<210> 1303
<211> 1037
<212> DNA
<213> Homo sapiens
<400> 1303
gccggggggg ggatgctatc taacatcttc atgttcaacc cagagaagaa acatcccgcc
gtttgccctg gggccctctc atcccacatc attttttcaa cccttcccca ncctttcnga
120
aatagggcca acceettaaa aancaaatnt teanataaae eetttteeet eeaceetttt
cccatcccat cctttttccc tcacaaacac aaacaaaang cctctttcct ttgccatttc
cacteetttt ggaagaaaca ggeeetgtte eeteeetget caccacttea eecageteag
ctggcacaaa aatactgcca ccacaccttc accetgccta gcccaacctg gcagggcctc
ggagtagcct gccagctaaa atacgggttg cccagataac tgtgaatgtc agataagaat
cttctgggac aagtatgtcc catgccatat ttgggacata cttacactaa taaatttctg
tttatctgaa actcaaattt geetgggegt eetgtaettt tettaactaa atttggtgee
totacacaca aggitocotgg ggitggggggg cacaggagca agcocottoo caggoigggi
ccctgccggc atctcccaca ggccaggact ggccacccag atggagcccg tgccaggcag
660
ccggcgacag acggacaaag gctgctcagg agacactgca caccttcctc tttcttgtct
gggggctcaa gaatccagac gcccacctcc ccgagcgagc accaagacag gaagccaacc
tgcaatgccc agcccactgc gaccacaggg ctctgccggg gtcctgccgg aacccagggt
teeggteeag aageeaggga taaatgeege tteteetata gggaeggtea gagtagagag
ggggaggcct acagtctcac ctgcagggag aggaagtcct cggggcgggc acgtgggggg
cotqacaqot coqaqoacac coqqocacaq tqaccacqqa ctqcacacqc agaagcagto
1020
tggatcccac gcgtggc
1037
```

```
<210> 1304
<211> 132
<212> PRT
<213> Homo sapiens
<400> 1304
Met Glu Pro Val Pro Gly Ser Arg Arg Gln Thr Asp Lys Gly Cys Ser
Gly Asp Thr Ala His Leu Pro Leu Ser Cys Leu Gly Ala Gln Glu Ser
            20
Arg Arg Pro Pro Pro Arg Ala Ser Thr Lys Thr Gly Ser Gln Pro Ala
                            40
Met Pro Ser Pro Leu Arg Pro Gln Gly Ser Ala Gly Val Leu Pro Glu
                                            60
Pro Arg Val Pro Val Gln Lys Pro Gly Ile Asn Ala Ala Ser Pro Ile
                                        75
                    70
Gly Thr Val Arg Val Glu Arg Gly Arg Pro Thr Val Ser Pro Ala Gly
Arg Gly Ser Pro Arg Gly Gly His Val Gly Gly Leu Thr Ala Pro Ser
                                105
Thr Pro Gly His Ser Asp His Gly Leu His Thr Gln Lys Gln Ser Gly
                            120
                                                125
Ser His Ala Trp
    130
<210> 1305
<211> 775
<212> DNA
<213> Homo sapiens
<400> 1305
nacqcqttct qcgaggccat qcgggtctat gccccgcggc cgttgacctc gcccacactc
ceggecege tgegggtgga gagaegtegg gecetetaeg ggteetggta egagttttte
ccgcgctctc agggtgctta tgtcgatgcg gacggtcact gggtttcagg tactttcgac
180
acctectggg agegeetgga egeegeeget gegatgggat ttgaegttgt ttaeetgeee
gegatecate ceatgggeea ageetteege aagggeaagg acaacaceet gaceceaggt
ccggacgatc cgggatcgcc gtgggccatc ggatcgtctg atggcggcca tgacaccatt
caccecgace taggeacett egacgacete gacegttteg tggeceaege teatgaceta
ggcatggagg tggccctaga ttttgccttg caagcctcac cagaccaccc gtgggtacac
caqcacccqq aqtqqttcac qacccqcqtt gatggcacca tcgcctatgc agaaaattca
cccaaaaaqt atcaggacat ctacccgatc aacttcgaca atgaccctga cggtatctac
caggaatgct tgcggctgct ggagttatgg atctcccacg gcgtgacgat tttccgcgtc
660
```

```
gataatccac ataccaagcc totgaattto tgggcotggc toatggaaca ggttcatcgt
eqteaceeq aqqteatett cetggcagag qeetteacee gteeegagat gatea
775
<210> 1306
<211> 258
<212> PRT
<213> Homo sapiens
<400> 1306
Xaa Ala Phe Cys Glu Ala Met Arg Val Tyr Ala Pro Arg Pro Leu Thr
                                   10
                5
Ser Pro Thr Leu Pro Ala Pro Leu Arg Val Glu Arg Arg Ala Leu
                              25
Tyr Gly Ser Trp Tyr Glu Phe Phe Pro Arg Ser Gln Gly Ala Tyr Val
                           40
Asp Ala Asp Gly His Trp Val Ser Gly Thr Phe Asp Thr Ser Trp Glu
                      55
Arg Leu Asp Ala Ala Ala Met Gly Phe Asp Val Val Tyr Leu Pro
65
Ala Ile His Pro Met Gly Gln Ala Phe Arg Lys Gly Lys Asp Asn Thr
                                  90
Leu Thr Pro Gly Pro Asp Asp Pro Gly Ser Pro Trp Ala Ile Gly Ser
                              105
Ser Asp Gly Gly His Asp Thr Ile His Pro Asp Leu Gly Thr Phe Asp
                          120
                                              125
Asp Leu Asp Arg Phe Val Ala His Ala His Asp Leu Gly Met Glu Val
                      135
                                          140
Ala Leu Asp Phe Ala Leu Gln Ala Ser Pro Asp His Pro Trp Val His
                  150
                                      155
Gln His Pro Glu Trp Phe Thr Thr Arg Val Asp Gly Thr Ile Ala Tyr
               165
                                  170
Ala Glu Asn Ser Pro Lys Lys Tyr Gln Asp Ile Tyr Pro Ile Asn Phe
                              185
Asp Asn Asp Pro Asp Gly Ile Tyr Gln Glu Cys Leu Arg Leu Leu Glu
                                              205
                           200
Leu Trp Ile Ser His Gly Val Thr Ile Phe Arg Val Asp Asn Pro His
                       215
Thr Lys Pro Leu Asn Phe Trp Ala Trp Leu Met Glu Gln Val His Arg
                                      235
                  230
Arg His Pro Glu Val Ile Phe Leu Ala Glu Ala Phe Thr Arg Pro Glu
                                  250
Met Ile
<210> 1307
<211> 624
<212> DNA
<213> Homo sapiens
<400> 1307
eggeeggtgg ggagtgeeaa geeceagget eeetgeatee eacttetggt gaggteagtg
60
```

```
atgotgggca catgoggtca gggccctgtg cotgagoogt ggaactocac agccattoca
catqttcaqt cccacaccct gaggccaagg caccccqaqt ccctgaggga gcaaggccct
gecaceegag getgeegetg cagaggeaaa cageeeegag caaggeeegg caaceeeagg
240
ctqtqqctqc atggggcaaa cacagcctgg cctgaggctg ccggccagtc ggggtggcca
taggetaacg agaagecagg geeteeetee ceaetggget ttecacaaaa acetgactaa
tgtccaggga cagccaaagg ccttgaggtc agctgggtgg aacacctttc ccctaccatc
ccgagatatt gtcttcttgg atggagtttt caaagccctc catgtggagg tctcgggatg
agaggeeteg getgagetet gtgeagagga geaggaaget geagaatggg caccegeete
ceteccagea cetecagteg etgecaegee ceaageteet gagetgetet geccaagace
tececcaace ttggtetgae gegt
624
<210> 1308
<211> 100
<212> PRT
<213> Homo sapiens
<400> 1308
Met Ala Thr Pro Thr Gly Arg Gln Pro Gln Ala Arg Leu Cys Leu Pro
His Ala Ala Thr Ala Trp Gly Cys Arg Ala Leu Leu Gly Ala Val Cys
                                2.5
Leu Cys Ser Gly Ser Leu Gly Trp Gln Gly Leu Ala Pro Ser Gly Thr
                            40
Arg Gly Ala Leu Ala Ser Gly Cys Gly Thr Glu His Val Glu Trp Leu
                        55
Trp Ser Ser Thr Ala Gln Ala Gln Gly Pro Asp Arg Met Cys Pro Ala
                    70
                                        75
Ser Leu Thr Ser Pro Glu Val Gly Cys Arq Glu Pro Gly Ala Trp His
                                    90
Ser Pro Pro Ala
            100
<210> 1309
<211> 563
<212> DNA
<213> Homo sapiens
<400> 1309
ntgatcatcg ccaaccacca gtccaactat gacctgttcg tgtttggcac gggagtgccc
taccgtactg tgtgtatcgg caaaaagagc ctgaaatggg tgccgctgtt cggtcagttg
ttctggctgg cgggcaatgt gttgattgac cggggcaacg cgcacaaggc gcgccgctca
```

atgctcacca ccacccacac cttqcaqcat aaagacacat cgatctgggt atttgccgaa

```
ggtacacgca acttcggtga aaccttgctg ccgttcaaga aaggtgcgtt ccagatggcg
300
attqccqcaq qtqtqccqat cqtgcaggtg tgtgtcagca cgtatgtgaa gcacatgaag
360
ctcaatcgtt gggacagtgg cgatatttta attcgctcgt tgccgccaat tcctacgacc
ggactgacgt tggatgacat gccacggttg atggagacct gccgtcaaca aatgcgcgag
tgcattgagg caatggaccg cgagctggaa atcgtccctt gtaggaacga attggctcgc
gaagggcgtt aacgactacg cgt
<210> 1310
<211> 183
<212> PRT
<213> Homo sapiens
<400> 1310
Xaa Ile Ile Ala Asn His Gln Ser Asn Tyr Asp Leu Phe Val Phe Gly
1
                 5
                                    10
Thr Gly Val Pro Tyr Arg Thr Val Cys Ile Gly Lys Lys Ser Leu Lys
            20
                                25
Trp Val Pro Leu Phe Gly Gln Leu Phe Trp Leu Ala Gly Asn Val Leu
Ile Asp Arg Gly Asn Ala His Lys Ala Arg Arg Ser Met Leu Thr Thr
                       55
Thr His Thr Leu Gln His Lys Asp Thr Ser Ile Trp Val Phe Ala Glu
                                        75
                   70
Gly Thr Arg Asn Phe Gly Glu Thr Leu Leu Pro Phe Lys Lys Gly Ala
                85
                                    90
Phe Gln Met Ala Ile Ala Ala Gly Val Pro Ile Val Gln Val Cys Val
                                105
           100
Ser Thr Tyr Val Lys His Met Lys Leu Asn Arg Trp Asp Ser Gly Asp
                            120
Ile Leu Ile Arg Ser Leu Pro Pro Ile Pro Thr Thr Gly Leu Thr Leu
                        135
                                            140
Asp Asp Met Pro Arg Leu Met Glu Thr Cys Arg Gln Gln Met Arg Glu
                    150
                                        155
Cys Ile Glu Ala Met Asp Arg Glu Leu Glu Ile Val Pro Cys Arg Asn
                                    170
                165
Glu Leu Ala Arg Glu Gly Arg
           180
<210> 1311
<211> 674
<212> DNA
<213> Homo sapiens
<400> 1311
gagettgacg acgeceaacg tgacateett gtatcaggeg ggtacttgac caatgateee
```

```
tocagggccg accoggcaca caccgtcggg ctgacggatg atctgagctg ggtcaagcgc
atotocoggo ogcogaaago oggaatacca ogaqqoqotg gatoggogat totgttcaca
gggctgaccc ccgatcagga tcgactgacc aacgagtggg cgcaggcgca cgggttgggg
240
gaattttatg teatggeece cegaateete ggtgatgtee egetgeeaae gateaceate
300
gtogogacog teacetteat egtgttgteg gecateatgg egggeetgtt ggegaaggag
qaqaqaqccg ccaacagtga tctggtgacc agcctcaaac gcatcggatt gggcaggcgt
tgggtggacc aggtcatcct tgtggaggtg gctaccacaa tgctggccgc cctgatatgc
ggggtgatet ecteggttgt egeggtgtgg etcaeaggea ggateetgte gggageettg
gacctgcttg gggccgcgtg gtgggtcttc ggtgcgttgg ccgccgggat gttcggtgga
teettgetgg gggeegecat ceategeegt taccaetteg acatgagage tacetgatee
acgaccccgt gaca
674
<210> 1312
<211> 196
<212> PRT
<213> Homo sapiens
<400> 1312
Met Asp Gly Gly Pro Gln Gln Gly Ser Thr Glu His Pro Gly Gly Gln
                                    10
Arg Thr Glu Asp Pro Pro Arg Gly Pro Lys Gln Val Gln Gly Ser Arg
                                25
Gln Asp Pro Ala Cys Glu Pro His Arg Asp Asn Arg Gly Asp His Pro
                            40
Ala Tyr Gln Gly Gln His Cys Gly Ser His Leu His Lys Asp Asp
                                            60
                        55
Leu Val His Pro Thr Pro Ala Gln Ser Asp Ala Phe Glu Ala Gly His
                                        75
Gln Ile Thr Val Gly Gly Ser Leu Leu Leu Arg Gln Gln Ala Arg His
Asp Gly Arg Gln His Asp Glu Gly Asp Gly Arg Asp Asp Gly Asp Arg
                                105
Trp Gln Arg Asp Ile Thr Glu Asp Ser Gly Gly His Asp Ile Lys Phe
                            120
                                                125
        115
Pro Gln Pro Val Arg Leu Arg Pro Leu Val Gly Gln Ser Ile Leu Ile
                        135
                                            140
Gly Gln Pro Cys Glu Gln Asn Arg Arg Ser Ser Ala Ser Trp Tyr
                                        155
                    150
Ser Gly Phe Arg Arg Pro Gly Asp Ala Leu Asp Pro Ala Gln Ile Ile
                                    170
Arg Gln Pro Asp Gly Val Cys Arg Val Gly Pro Gly Gly Ile Ile Gly
                                                    190
            180
                                185
Gln Val Pro Ala
```

195

<210> 1313 <211> 367 <212> DNA <213> Homo sapiens <400> 1313 cgaatatcca tgcagccgcg ccaggtggca ggtgcaggtg gtgcggcagg ggctgcagcg gtggtggcag ctagcgtagg acagtcacga gatttaggag ataaaataga aggtggcggc aaggaaggga gaggacagag cctggtgtga ctcctgggtt tctggtgtgt atagctggtg gacagtggtg tetttgecaa gaggggagee etggaagagg agaggtttge agggeaggtg ctgagtccgg ttttggacac gctgaatttg aggtatctgt cagatatgag acccaaaagg tgagggcggg gaagtggatg tgcaggccct gagctctggg aggggtctgg gtatgctgtg 360 gtcatga 367 <210> 1314 <211> 121 <212> PRT <213> Homo sapiens <400> 1314 Met Thr Thr Ala Tyr Pro Asp Pro Ser Gln Ser Ser Gly Pro Ala His 5 10 Pro Leu Pro Arg Pro His Leu Leu Gly Leu Ile Ser Asp Arg Tyr Leu 25 20 Lys Phe Ser Val Ser Lys Thr Gly Leu Ser Thr Cys Pro Ala Asn Leu 40 Ser Ser Ser Arg Ala Pro Leu Leu Ala Lys Thr Pro Leu Ser Thr Ser 55 Tyr Thr His Gln Lys Pro Arg Ser His Thr Arg Leu Cys Pro Leu Pro 70 75 Ser Leu Pro Pro Pro Ser Ile Leu Ser Pro Lys Ser Arg Asp Cys Pro 90 Thr Leu Ala Ala Thr Thr Ala Ala Pro Ala Ala Pro Pro Ala Pro 105 100 Ala Thr Trp Arg Gly Cys Met Asp Ile 120 115 <210> 1315 <211> 5245 <212> DNA <213> Homo sapiens <400> 1315 nntccggaga ccatggacga agattcttcg ttgagagatt atactgtaag cttggactct 60

gacatggatg 120	atgcatctaa	gcttcttcag	gattatgata	ttcgaactgg	caacaccagg
gaagctttga 180	gtccttgtcc	aagtactgta	agtaccaagt	ctcagccagg	cagcagtgct
tcttctagtt 240	ctggagttaa	aatgaccagc	tttgctgaac	aaaaattcag	gaaactgaat
cataccgatg 300	gaaaaagtag	tggaagcagt	tctcaaaaaa	ctacaccaga	aggctctgaa
cttaatattc 360	ctcatgtggt	tgcttgggca	caaattccag	aagaaacagg	gcttccacag
ggacgggaca 420	ctacccagct	gttggcctct	gaaatggtgc	atcttaggat	gaaactagaa
gaaaagaggc 480	gtgctataga	agcccagaaa	aagaaaatgg	aagctgcttt	taccaaacag
agacagaaaa 540	tgggaaggac	agcattcctt	actgtagtga	aaaagaaagg	ggatgggata
tctcctctac 600	gagaggaagc	ggcgggtgca	gaagatgaga	aagtatatac	tgatcgagca
aaagaaaagg 660	aatcacaaaa	aactgatgga	caaaggagca	agtcactggc	agatataaaa
gagagcatgg 720	agaatcctca	agccaaatgg	ctaaagtctc	caactacacc	tattgatcct
gagaagcagt 780	ggaacctggc	aagcccctca	gaagaaactt	taaatgaagg	agagatttta
gaatatacca 840	aatccattga	aaagttaaat	tcatccctgc	attttctaca	acaagaaatg
caacgcttgt 900	cacttcagca	ggagatgtta	atgcagatga	gagagcaaca	atcttgggtg
atttcacctc 960	cacaaccctc	tccacagaaa	cagattcgag	attttaaacc	ttctaagcag
1020	_		tcctcagact		
1080			tctttttctg		
1140			aatcgaacct		
gatageette 1200	ctcggttaag	gaggttttca	ccaagtcaag	ttcctattca	aactaggtca
tttgtatgtt 1260	ttggggatga	tggagaacct	cagttaaagg	aatccaaacc	taaagaggaa
1320			actttggaac		
gaaaaggaaa 1380	tcaaaccttt	tgagtcaaca	gtctctgaag	tcctatcact	gcctgtcaca
gagactgtat 1440	gtctgacacc	aaatgaggac	caattgaatc	aacccacaga	accccctcct
aaacccgttt 1500	teccacecae	tgctccaaaa	aatgttaatc	tgattgaagt	ttccctctca
1560			cctgttgaaa		
1620			tgctgtggat		
aaagcagaaa 1680	atgatatggc	aatgaaacgg	gcagctttgt `	tggagaaaag	attaagaagg

gaaaaggaaa 1740	ctcagctccg	gaaacaacag	ttggaagcag	aaatggagca	taagaaggag
gaaacaaggc 1800	gtaaaactga	ggaagaacgt	cagaagaaag	aagatgagag	agcacgcaga
gaatttatta 1860	ggcaagaata	tatgaggcgg	aaacaactga	aactaatgga	agatatggat
acagtaatta 1920	aaccccgtcc	tcaagtagta	aaacaaaaaa	aacagcgacc	aaaatctatt
cacagagatc 1980	atattgaatc	ccccaaaaca	ccaataaagg	gtcctccagt	ctctagcctt
tctttggcat 2040	cgctgaacac	gggtgataac	gagagtgtac	attcaggcaa	gaggacgcca
agatcagagt 2100	ctgtagaagg	cttcttatct	ccaagtcgtt	gtggcagtcg	aaatggagaa
aaagactggg 2160	agaatgcatc	aacaacttct	tcagtggctt	ctggaacaga	atatacagga
ccaaagctct 2220	acaaagaacc	cagtgcaaaa	tccaataagc	acataataca	aaatgcttta
gctcattgct 2280	gtttggctgg	aaaagtaaat	gaaggtcaga	agaaaaaaat	actggaggaa
atggagaaat 2340	cagatgccaa	caacttctta	atcttgttcc	gggattcagg	atgccagttc
agatetttat 2400	acacttattg	cccagaaact	gaagaaatca	ataaactgac	tgggataggc
cctaaatcta 2460	tcactaaaaa	aatgattgaa	ggactttaca	aatataattc	tgacaggaaa
cagtttagcc 2520	acatacccgc	taaaacttta	tctgccagtg	ttgatgcaat	taccattcat
agccatttat 2580	ggcagaccaa	aagaccagta	acacccaaaa	aacttttacc	cactaaggca
tagaagttgg 2640	gaaatacttg	cttcagaaca	ttcatggtaa	atttgcactt	catctttcct
gcctatagaa 2700	aatctttcta	attgccaaca	agacttttat	taattaaaac	tggacattaa
gctctgttgt 2760	catgaacaac	tggaatgtaa	accacagtat	tttggagtgc	agaacattct
caattaagtg 2820	ataagtccaa	atgatgaagg	aaatgtttta	attcacaaat	ggagatttgt
atgtgttatc 2880	aggttcacct	gcttgatatt	agatacatta	aagcactgaa	ttttcatgga
2940		gaaatatggt			
gcttttttt 3000	aaccttttaa	tgtatattct	tgtcttcaga	tggtttgcta	tttttctctc
ctgggggttt 3060	attctaagat	acctttgtat	tttatttcat	gtggagatca	tgaaagtagg
aaatatacct 3120	ttagaagtaa	ctcgcacctt	tcttatgatg	ttaagagaaa	cactagtgtt
tagttttaca 3180	gtaaccctca	tattttaatg	gtgttacagc	atttgcaaaa	attattctgc
taagtattta 3240	caactctatt	tattattcac	tcaagtatta	acattctcta	ttaaataaga
ggaggtgttg 3300	taaagagctg	ctagtaggtt	cgctttaaac	cacatgagct	taaccaagaa

tatgttatga 3360	gaagttgctg	attaaatcag	tgctgttttt	acaccacttc	tggccaactc
agaataattt 3420	agattgttct	tttaacaaaa	aaggctttct	atctctttta	aagtaagtca
ctttataagt 3480	tggcagaagt	gaatgacact	ttgagagtag	tctttcaatc	tgaagatgta
agacttcctg 3540	aaacaagttc	tcaagaagtc	tttacattat	atttataact	catataaaaa
ttatatttag 3600	aatttttaaa	catgtacaaa	gggctacatt	ttaattttaa	aatagcttca
cattatttta 3660	cttatattgg	gtttttcttc	attttaatcc	ttttcaagtg	gaatggctta
gaataagtat 3720	acacttgaaa	tctcctctac	atgatctttg	ttctttaaca	gtgtatacca
gagggttagt 3780	tggggaaaaa	cttcattctc	aggaaaagac	ttgaatgatt	atgtgaccct
gttatatttc 3840	agtgttgtga	caaatgtgta	aactagcggg	ggaagacagt	attgtatcat
aagtgagatg 3900	cgtagtttgt	tttctgtcat	gggaagtaga	gataaaaata	tgtacatttc
tctaattgag 3960	ttgtttagag	aaagaactaa	tgtctcacgt	gatgtattta	cttattttaa
aaagaagaat 4020	aggagtggga	agcccctgag	ctgtactttt	ctattattat	aaggccttta
ggcatcagtg 4080	catctgggtt	atcaacattt	tctcaaatgc	tgtcaatatt	ttactgtaat
ttatgttctt 4140	atatttatgt	atatttgtta	aaactgtaaa	aaaatttcac	agatttttt
ccaatacctg 4200	tgcaagatac	atgtgtagct	caaaactatt	tgtgatctac	tgtttgcatg
taagagacca 4260	ggatatgtaa	ctcttatatt	ttaagtgtat	acatattgtg	tatataacat
atggatatta 4320	aaaatgggga	attgcacatt	ttaccttttg	gacagtaatt	tctatcacag
ttagaaggaa 4380	atgatagtca	aatacacgtt	tagattaaaa	ctagtttaaa	aaattataaa
tgaatctaat 4440	caaaatgtga	atagtagtca	aaaggataat	ttaataagca	ttttacgtta
ctaaatttgt 4500	tcatttcaat	attaactaaa	tttccctcat	caaagcaatc	tttgtgatat
tacttcgcta 4560	ttaaataaag	aaaattggat	gcaagacaat	ggagaaactt	taaaactaaa
caggaccacc 4620	ctttattctt	aaatttgtgt	gtgtccaaca	gttgaattga	atgtctataa
ggtctaaagg 4680	tagaatgtga	atattgccac	agagttcatt	gctctcagta	taagatttta
ctttattaat 4740	gcagaaggaa	tatggatata	tttctttaag	tctgcagatt	tttttattat
ggtgcagctt 4800	ttttttaatt	atgtttttaa	aattatacag	ttgaaaaata	tgccatttca
taaagtetga 4860	ggattttcgt	caaccttact	gaaacacact	ggtgctttca	tcatcagagg
tcaaattatt 4920	atgataacta	ttccattaag	tttgccaaac	atttgtcgtg	gttaccagtg
			•		

cagootgtca aattotgota tttgacacag otttggaaag atttagttot tggtttttoo qttttqtatt aqaatqactq ttacaqtttt atttqqctqt ttaaaqccaa attcaqctat 5040 ttaattatgg tttcatggac actgttgagc aatgtacagt gtatggtgtg cttacctgtc cactetaqaq cattqcttac aqqtttttttg ttttttaaga tgctgtgctg taaaatactg teatacttge tattteetgg tacagtgtag ttttteecet tteatttgaa taaaageatg gcaccaaaaa aaaaaaaaaa aaaaa 5245 <210> 1316 <211> 856 <212> PRT <213> Homo sapiens <400> 1316 Met Asp Glu Asp Ser Ser Leu Arg Asp Tyr Thr Val Ser Leu Asp Ser 10 Asp Met Asp Asp Ala Ser Lys Leu Leu Gln Asp Tyr Asp Ile Arg Thr Gly Asn Thr Arg Glu Ala Leu Ser Pro Cys Pro Ser Thr Val Ser Thr 40 Lys Ser Gln Pro Gly Ser Ser Ala Ser Ser Ser Ser Gly Val Lys Met 55 Thr Ser Phe Ala Glu Gln Lys Phe Arg Lys Leu Asn His Thr Asp Gly 70 75 Lys Ser Ser Gly Ser Ser Gln Lys Thr Thr Pro Glu Gly Ser Glu 90 85 Leu Asn Ile Pro His Val Val Ala Trp Ala Gln Ile Pro Glu Glu Thr 105 Gly Leu Pro Gln Gly Arg Asp Thr Thr Gln Leu Leu Ala Ser Glu Met 120 115 125 Val His Leu Arg Met Lys Leu Glu Glu Lys Arg Arg Ala Ile Glu Ala 135 140 Gln Lys Lys Lys Met Glu Ala Ala Phe Thr Lys Gln Arg Gln Lys Met 150 155 Gly Arg Thr Ala Phe Leu Thr Val Val Lys Lys Gly Asp Gly Ile 170 Ser Pro Leu Arg Glu Glu Ala Ala Gly Ala Glu Asp Glu Lys Val Tyr 180 185 190 Thr Asp Arg Ala Lys Glu Lys Glu Ser Gln Lys Thr Asp Gly Gln Arg 200 205 Ser Lys Ser Leu Ala Asp Ile Lys Glu Ser Met Glu Asn Pro Gln Ala 220 215 Lys Trp Leu Lys Ser Pro Thr Thr Pro Ile Asp Pro Glu Lys Gln Trp 230 235 Asn Leu Ala Ser Pro Ser Glu Glu Thr Leu Asn Glu Gly Glu Ile Leu 250 245 Glu Tyr Thr Lys Ser Ile Glu Lys Leu Asn Ser Ser Leu His Phe Leu 260 265 Gln Gln Glu Met Gln Arg Leu Ser Leu Gln Gln Glu Met Leu Met Gln

		275					280					285			
Met	Arg 290	Glu	Gln	Gln	Ser	Trp 295	Val	Ile	Ser	Pro	Pro 300	Gln	Pro	Ser	Pro
Gln 305	Lys	Gln	Ile	Arg	Asp 310	Phe	Lys	Pro	Ser	Lys 315	Gln	Ala	Gly	Leu	Ser 320
Ser	Ala	Ile	Ala	Pro 325	Phe	Ser	Ser	Asp	Ser 330	Pro	Arg	Pro	Thr	His	Pro
Ser	Pro	Gln	Ser 340	Ser	Asn	Arg	Lys	Ser 345	Ala	Ser	Phe	Ser	Val 350	Lys	Ser
Gln	Arg	Thr 355	Pro	Arg	Pro	Asn	Glu 360	Leu	Lys	Ile	Thr	Pro 365	Leu	Asn	Arg
Thr	Leu 370	Thr	Pro	Pro	Arg	Ser 3 75	Val	Asp	Ser	Leu	Pro 380	Arg	Leu	Arg	Arg
Phe 385	Ser	Pro	Ser	Gln	Val 390	Pro	Ile	Gln	Thr	Arg 395	Ser	Phe	Val	Cys	Phe 400
Gly	Asp	Asp	Gly	Glu 405	Pro	Gln	Leu	Lys	Glu 410	Ser	Lys	Pro	Lys	Glu 415	Glu
			420		Leu			425					430		
His	Asn	Pro 435	Glu	Glu	Lys	Glu	Ile 440	Lys	Pro	Phe	Glu	Ser 445	Thr	Val	Ser
	450				Pro	455					460				
465	_				Gln 470					475		-			480
				485	Lys				490					495	
			500		Glu			505					510		
		515			Glu		520					525			
_	530			_	Asp	535		_			540				
545					Leu 550					555					560
		_	_	565	Gln				570				_	575	
		_	580	-	Thr			585	_		-	•	590	_	
		595			Phe		600					605			
	610				Asp	615					620				
625				_	630					635					640
				645	Thr				650					655	
Ser	Leu	Ala	Ser 660	Leu	Asn	Thr	Gly	Asp 665	Asn	Glu	Ser	Val	His 670	Ser	Gly
-	_	675		_	Ser		680					685			
Arg	Cys 690	Gly	Ser	Arg	Asn	Gly 695	Glu	Lys	Asp	Trp	Glu 700	Asn	Ala	Ser	Thr
Thr	Ser	Ser	Val	Ala	Ser	Gly	Thr	Glu	Tyr	Thr	Gly	Pro	Lys	Leu	Tyr

```
705
                                        715
                    710
Lys Glu Pro Ser Ala Lys Ser Asn Lys His Ile Ile Gln Asn Ala Leu
                725
                                    730
Ala His Cys Cys Leu Ala Gly Lys Val Asn Glu Gly Gln Lys Lys
                                745
            740
Ile Leu Glu Glu Met Glu Lys Ser Asp Ala Asn Asn Phe Leu Ile Leu
                                                765
                            760
Phe Arg Asp Ser Gly Cys Gln Phe Arg Ser Leu Tyr Thr Tyr Cys Pro
                                            780
                        775
Glu Thr Glu Glu Ile Asn Lys Leu Thr Gly Ile Gly Pro Lys Ser Ile
                                        795
                    790
Thr Lys Lys Met Ile Glu Gly Leu Tyr Lys Tyr Asn Ser Asp Arg Lys
                                    810
                805
Gln Phe Ser His Ile Pro Ala Lys Thr Leu Ser Ala Ser Val Asp Ala
                                825
Ile Thr Ile His Ser His Leu Trp Gln Thr Lys Arg Pro Val Thr Pro
                            840
Lys Lys Leu Leu Pro Thr Lys Ala
    850
                        855
<210> 1317
<211> 1123
<212> DNA
<213> Homo sapiens
<400> 1317
neggeegagg geatteacet caacatggea geaggeageg gtgteceegg cagtggactg
ggcgaggagg tgccctgtgc catgatggag ggtgtggcag cctacaccca gacagagccc
gagggtagec agectageac catggaegec acegeagtag caggeatega gaccaagaaa
gagaaggagg acctgtgctt gctaaagaag gaggagaagg aggagccagt agccccggag
ctggcaacaa cggtgcctga gagcgcagag cctgaggcag aggcggacgg ggaggagctg
300
gacggcagcg acatgtcagc catcatctat gaaatcccca aggagcctga gaagaggcgg
360
cggagcaagc ggtcgcgggt gatggatgct gacggcctgc tcgagatgtt ccactgccca
420
tacgagget geagecaagt ctacgtggee cteageaget teeagaacea egteaatett
gtgcatcgga aaggaaagac caaagtgtgc cctcatcctg gctgtggcaa gaagttctat
540
ttatccaacc acctgcggcg gcacatgatc atccattcag gtgtccgtga attcacctgc
gagacctgcg gcaagtcctt caagaggaag aaccacctgg aggtacatcg gcgcacccac
accggcgaga ccccctqca gtgcgtgatc tgtggctacc agtgccggca gcgcgcgtcg
ctcaactggc acatgaagaa gcacactgcg gaggtgcagt acaacttcac gtgcgatgcc
tgcgggaage gettcgagaa getggacage gtcaagttee acaegeteaa aagecaeeeg
840
```

```
qatcacaaqc ccacctgacc cacctgacca ctgaccgccc ctatttattc gtccgctcgg
acaccacage eegggettge eggggeetgg acagetgega gggeeggeeg gaeegeggge
cggaaggagc gccccgccc cgccccagag ctggcgcccc tgggcaggtt ccccaccccg
ccccaccgca tccttctcgg agctggtgcc tggggctgca ttgctggaac tgtgtcaaga
gagcagagtg agattaaaga gcgagaaagg aaaaaaaaa aaa
<210> 1318
<211> 285
<212> PRT
<213> Homo sapiens
<400> 1318
Xaa Ala Glu Gly Ile His Leu Asn Met Ala Ala Gly Ser Gly Val Pro
               5
                       10
Gly Ser Gly Leu Gly Glu Glu Val Pro Cys Ala Met Met Glu Gly Val
Ala Ala Tyr Thr Gln Thr Glu Pro Glu Gly Ser Gln Pro Ser Thr Met
                          40
Asp Ala Thr Ala Val Ala Gly Ile Glu Thr Lys Lys Glu Lys Glu Asp
Leu Cys Leu Leu Lys Lys Glu Glu Lys Glu Glu Pro Val Ala Pro Glu
                                      75
                  70
Leu Ala Thr Thr Val Pro Glu Ser Ala Glu Pro Glu Ala Glu Ala Asp
                                  90
Gly Glu Glu Leu Asp Gly Ser Asp Met Ser Ala Ile Ile Tyr Glu Ile
           100
                              105
Pro Lys Glu Pro Glu Lys Arg Arg Ser Lys Arg Ser Arg Val Met
                          120
                                              125
Asp Ala Asp Gly Leu Leu Glu Met Phe His Cys Pro Tyr Glu Gly Cys
                       135
                                          140
Ser Gln Val Tyr Val Ala Leu Ser Ser Phe Gln Asn His Val Asn Leu
                                      155
                   150
Val His Arg Lys Gly Lys Thr Lys Val Cys Pro His Pro Gly Cys Gly
                                   170
                                                      175
               165
Lys Lys Phe Tyr Leu Ser Asn His Leu Arg Arg His Met Ile Ile His
           180
                               185
Ser Gly Val Arg Glu Phe Thr Cys Glu Thr Cys Gly Lys Ser Phe Lys
                          200
                                              205
Arg Lys Asn His Leu Glu Val His Arg Arg Thr His Thr Gly Glu Thr
                      215
Pro Leu Gln Cys Val Ile Cys Gly Tyr Gln Cys Arg Gln Arg Ala Ser
                                      235
                   230
Leu Asn Trp His Met Lys Lys His Thr Ala Glu Val Gln Tyr Asn Phe
                                  250
               245
Thr Cys Asp Ala Cys Gly Lys Arg Phe Glu Lys Leu Asp Ser Val Lys
                              265
Phe His Thr Leu Lys Ser His Pro Asp His Lys Pro Thr
                           280
```

```
<210> 1319
<211> 538
<212> DNA
<213> Homo sapiens
<400> 1319
cgggagcgga gcccagctct tggctggtga tgagggcctg gaagcagatg gcctctcagt
cctccatttg ggaggactcc caaaatagtg caggctcgag ggggtgggga atggctcctg
ctgaatgtgt gaatgggtcc ctgggtgctt tccttcctct gggagctccg tgggagagtg
gagtcgatgc caagtcagag agcagttggg gaggaaccca gaagccctgg gatggtgtct
gcatgggaat gtgtagggag gcagccacaa tgggcctggg ccttcctttc tctccttcct
360
acacacacag gtgggatgca ggtatccggg aagctcatag aagctgccac gctgctggag
tttgcctcat acaggagcgt gggcatgccc cgcgtggagt tgtgctgtgt gtgtgcatat
gtatggttgt gtgtgcatgg gggtggggga ttctgacctg gggtcactcc caaagctt
<210> 1320
<211> 169
<212> PRT
<213> Homo sapiens
<400> 1320
Met Arg Ala Trp Lys Gln Met Ala Ser Gln Ser Ser Ile Trp Glu Asp
                                  10
Ser Gln Asn Ser Ala Gly Ser Arg Gly Trp Gly Met Ala Pro Ala Glu
                              25
Cys Val Asn Gly Ser Leu Gly Ala Phe Leu Pro Leu Gly Ala Pro Trp
                           40
Glu Ser Gly Val Asp Ala Lys Ser Glu Ser Ser Trp Gly Gly Thr Gln
                       55
Lys Pro Trp Asp Gly Val Cys Met Gly Met Cys Arg Glu Ala Ala Thr
                   70
                                      75
Met Gly Leu Gly Leu Pro Phe Ser Pro Ser Cys Pro Pro Pro Pro Ser
                                  90
Pro Ser Leu Leu Pro Ser Phe Trp Lys Pro Ser Thr Gly Gly Asn Thr
                                                  110
                              105
His Arg Trp Asp Ala Gly Ile Arg Glu Ala His Arg Ser Cys His Ala
                          120
       115
Ala Gly Val Cys Leu Ile Gln Glu Arg Gly His Ala Pro Arg Gly Val
                       135
                                          140
Val Leu Cys Val Cys Ile Cys Met Val Val Cys Ala Trp Gly Trp Gly
                                      155
                                                          160
                   150
Ile Leu Thr Trp Gly His Ser Gln Ser
               165
```

```
<210> 1321
<211> 1292
<212> DNA
<213> Homo sapiens
<400> 1321
nacgcgtacc gtcgctgatc tcccccgtgg tcgtgaccaa cgcggccggg ttcaccatct
cggaacgcag caatgatccg gcgtcagtgc tctcagtcac cgcaggatga cccggtgcaa
120
cgcccggatc gctcacggta cgcaacgacg aagcagggat cgctcagacc cgggcacgtc
atogtoaaga agatttacaa caacaatgto ottotoggog toaacggtto ggggaccgaa
240
atggtegtea atgetegegg tategeetae ggaegaeaee geggggagat egtegatgee
togtoggood agogatatgt ogdagagggt godtatogda ogacogodat ogdatoactg
ctaacgaacg ccactcacac cgaggtgcga gtggcacagg caatcgtcga attggcgcgc
gaagagetgg geacteecca tgeeegaegg atgatgetge ceateetega teacetegte
gcagctgtgc accgagctaa gcagggggcc gtcatcgatt ttcccctgga atgggaagtc
cgtcagctct atcccgatga ggcggaactg ggccgacgcg ctgtcgaaat cgtcgacggt
600
getetegaaa teeatttgea accegaggaa tgggtggeat tetecetgea etteateaat
660
cagcggtggg acagtagaga cgtttcgcgg accatgtcga tgactcagac gatctgcgac
gttttcaccg agctggagga cctgtggcac gttgagatcg accgttcgtc catgagcgca
tecegetteg teacceacet tegetatetg ttegeteggg ceteggacaa caageagete
totcacqttq acctggacat tgtgggactc atgtcagatc gctacccaga agccacattg
gcagctagcc aagtggccga gcacatatcg aaagcaatcg gcaacgacct gacggaaqce
qaaatcaact acatcqcctt acacaccacc cggctctaca acgaggtgat ggggatggat
1020
gactgacgat cgcgcacctg ttaaggctca tcggtagtgg gcaatacaca aaatggcgat
gacettectg eeggaaagee ageaceaaag teaceeagat caaaatteag atgegtgeet
1140
aattcccacc ccgacatcca agaggtcagg ggggggttgt tggggggtggt gggtggggg
1200
gggggggttt gcatgctcag gggtgggggc tttgttgaag ccatcatgaa gttgcaaacc
caggactgtt ccactagtaa agcccctgcc tt
1292
<210> 1322
<211> 317
<212> PRT
```

<213> Homo sapiens

<400> 1322 Met Ile Arg Arg Gln Cys Ser Gln Ser Pro Gln Asp Asp Pro Val Gln Arg Pro Asp Arg Ser Arg Tyr Ala Thr Thr Lys Gln Gly Ser Leu Arg 20 25 Pro Gly His Val Ile Val Lys Lys Ile Tyr Asn Asn Asn Val Leu Leu 40 Gly Val Asn Gly Ser Gly Thr Glu Met Val Val Asn Ala Arg Gly Ile 55 Ala Tyr Gly Arg His Arg Gly Glu Ile Val Asp Ala Ser Ser Ala Gln 70 75 Arg Tyr Val Ala Glu Gly Ala Tyr Arg Thr Thr Ala Ile Ala Ser Leu 90 Leu Thr Asn Ala Thr His Thr Glu Val Arg Val Ala Gln Ala Ile Val 105 Glu Leu Ala Arg Glu Glu Leu Gly Thr Pro His Ala Arg Arg Met Met 120 Leu Pro Ile Leu Asp His Leu Val Ala Ala Val His Arg Ala Lys Gln 135 Gly Ala Val Ile Asp Phe Pro Leu Glu Trp Glu Val Arg Gln Leu Tyr 150 155 160 Pro Asp Glu Ala Glu Leu Gly Arg Arg Ala Val Glu Ile Val Asp Gly 165 170 Ala Leu Glu Ile His Leu Gln Pro Glu Glu Trp Val Ala Phe Ser Leu 185 His Phe Ile Asn Gln Arg Trp Asp Ser Arg Asp Val Ser Arg Thr Met 200 Ser Met Thr Gln Thr Ile Cys Asp Val Phe Thr Glu Leu Glu Asp Leu 220 215 Trp His Val Glu Ile Asp Arg Ser Ser Met Ser Ala Ser Arg Phe Val 230 235 Thr His Leu Arg Tyr Leu Phe Ala Arg Ala Ser Asp Asn Lys Gln Leu 245 250 Ser His Val Asp Leu Asp Ile Val Gly Leu Met Ser Asp Arg Tyr Pro 265 Glu Ala Thr Leu Ala Ala Ser Gln Val Ala Glu His Ile Ser Lys Ala 280 Ile Gly Asn Asp Leu Thr Glu Ala Glu Ile Asn Tyr Ile Ala Leu His 290 295 300 Thr Thr Arg Leu Tyr Asn Glu Val Met Gly Met Asp Asp 310 <210> 1323 <211> 306 <212> DNA <213> Homo sapiens

<400> 1323

cgcgtgatgg gaatgcgtca ctatgatgtt cagttgattg gtggtatcac tctgcacgaa 60 ggcaaaattg ctgagatgcg tacaggtgaa ggtaaaaccc tgatgggtac tttagcgtgt 120

```
tacctcaatg cattgagtgg tcagggtgtg catgtcatca ccgtcaatga ctatcttgca
180
caacgtgatg ctgaactcaa ccgcccatta tttgagtttt tgggtttaag catcggtgtg
atttattega tgeaaatgee tgetgagaaa geacaagett atttageaga cattaettae
300
ggtacc
306
<210> 1324
<211> 102
<212> PRT
<213> Homo sapiens
<400> 1324
Arg Val Met Gly Met Arg His Tyr Asp Val Gln Leu Ile Gly Gly Ile
Thr Leu His Glu Gly Lys Ile Ala Glu Met Arg Thr Gly Glu Gly Lys
                                                     30
                                25
Thr Leu Met Gly Thr Leu Ala Cys Tyr Leu Asn Ala Leu Ser Gly Gln
Gly Val His Val Ile Thr Val Asn Asp Tyr Leu Ala Gln Arg Asp Ala
                        55
Glu Leu Asn Arg Pro Leu Phe Glu Phe Leu Gly Leu Ser Ile Gly Val
                    70
                                        75
Ile Tyr Ser Met Gln Met Pro Ala Glu Lys Ala Gln Ala Tyr Leu Ala
                                    90
                85
Asp Ile Thr Tyr Gly Thr
            100
<210> 1325
<211> 391
<212> DNA
<213> Homo sapiens
<400> 1325
gtgcacatgg gcccactggc gaatccgacg cgcggcctac ggcgcgcaat actggcggcc
60
attgtegeeg catgtteegt eteegeteat geeggaaget ggeeagagaa acegateaeg
120
atggtcgtgc cgtttcccgc cggaggcggc accgatctcg tggcgcgctc gatccagccg
180
cttttgcagc gcgaactcgg acaaccggtg gtgatcgaca accgcagcgg cgcaggcggc
acgetegget ceagettegt ggegegggee gttgeegaeg getaeaegge tggegtggte
accacgagca cccacgcggt aagcgtcgcg ctctatcccc ggctggccta caacccgaca
geggactttg catacgeegg etteategge n
391
<210> 1326
<211> 130
<212> PRT
```

<213> Homo sapiens <400> 1326 Val His Met Gly Pro Leu Ala Asn Pro Thr Arg Gly Leu Arg Arg Ala 10 Ile Leu Ala Ala Ile Val Ala Ala Cys Ser Val Ser Ala His Ala Gly 25 20 Ser Trp Pro Glu Lys Pro Ile Thr Met Val Val Pro Phe Pro Ala Gly 40 Gly Gly Thr Asp Leu Val Ala Arg Ser Ile Gln Pro Leu Leu Gln Arg 55 Glu Leu Gly Gln Pro Val Val Ile Asp Asn Arg Ser Gly Ala Gly Gly 70 75 Thr Leu Gly Ser Ser Phe Val Ala Arg Ala Val Ala Asp Gly Tyr Thr Ala Gly Val Val Thr Thr Ser Thr His Ala Val Ser Val Ala Leu Tyr 105 Pro Arg Leu Ala Tyr Asn Pro Thr Ala Asp Phe Ala Tyr Ala Gly Phe Ile Gly 130 <210> 1327 <211> 324 <212> DNA <213> Homo sapiens nnacgcgtga tttcggaact gcagcagttc gagcagtcgc atggacagag cgacgggagc tactggctat ggttcgagct gctgtggcga gactatttcc gctttctgca tcttcggcat ggcgctcggc tgtaccgcgc acgcggcctc gcaaatgagg tacggcacgc ggagcgccca 180 gatgtgcagg gettegageg etggegtegt geategaeeg gegageeget egtegatgee gegatgegeg agetggagae caeeggetae etcageaaca ggeteagaea ggtggtegeg agctacctcg tgcacgagct ggga 324 <210> 1328 <211> 108 <212> PRT <213> Homo sapiens <400> 1328 Xaa Arg Val Ile Ser Glu Leu Gln Gln Phe Glu Gln Ser His Gly Gln 5 Ser Asp Gly Ser Tyr Trp Leu Trp Phe Glu Leu Leu Trp Arg Asp Tyr 20 Phe Arg Phe Leu His Leu Arg His Gly Ala Arg Leu Tyr Arg Ala Arg Gly Leu Ala Asn Glu Val Arg His Ala Glu Arg Pro Asp Val Gln Gly

```
60
   50
                        55
Phe Glu Arg Trp Arg Arg Ala Ser Thr Gly Glu Pro Leu Val Asp Ala
                                        75
                   70
Ala Met Arg Glu Leu Glu Thr Thr Gly Tyr Leu Ser Asn Arg Leu Arg
                                    90
               85
Gln Val Val Ala Ser Tyr Leu Val His Glu Leu Gly
                                105
           100
<210> 1329
<211> 438
<212> DNA
<213> Homo sapiens
<400> 1329
ngtgcacget tagcattaga tttagettee agtggcaaaa etaegtegtt gattteaage
ggcgatatcg gcatttacgc gatggcgacc ctggtgtttg aactgctgga tagacaactc
120
cagggeettg aagaccatee tgaatggtta gatgttgaaa tegatgtggt acetggeate
tetgeaatge aagetggtge aagtegtatt ggtgegatgt taggteatga ettttgtaeg
gtgagtttgt ctgatttatt aaccccttgg gaaactatta ataaacgtat tcatagtgca
ggtgaggggg attttgttat ctctttttat aaccetgttt ctaagaaacg tgattggcag
cttaaccacg cgcgtgatgt attattgaaa taccgtccag catcaacgcc agttttatta
ggtcgtcagt tgacgcgt
438
<210> 1330
<211> 146
<212> PRT
<213> Homo sapiens
<400> 1330
Xaa Ala Arg Leu Ala Leu Asp Leu Ala Ser Ser Gly Lys Thr Thr Ser
Leu Ile Ser Ser Gly Asp Ile Gly Ile Tyr Ala Met Ala Thr Leu Val
                                25
Phe Glu Leu Leu Asp Arg Gln Leu Gln Gly Leu Glu Asp His Pro Glu
                            40
Trp Leu Asp Val Glu Ile Asp Val Val Pro Gly Ile Ser Ala Met Gln
                                            60
Ala Gly Ala Ser Arg Ile Gly Ala Met Leu Gly His Asp Phe Cys Thr
                                        75
                    70
Val Ser Leu Ser Asp Leu Leu Thr Pro Trp Glu Thr Ile Asn Lys Arg
                                    90
Ile His Ser Ala Gly Glu Gly Asp Phe Val Ile Ser Phe Tyr Asn Pro
                                105
Val Ser Lys Lys Arg Asp Trp Gln Leu Asn His Ala Arg Asp Val Leu
                            120
Leu Lys Tyr Arg Pro Ala Ser Thr Pro Val Leu Leu Gly Arg Gln Leu
```

```
135
                                           140
    130
Thr Arg
145
<210> 1331
<211> 453
<212> DNA
<213> Homo sapiens
<400> 1331
gcgtaccgct ccgcggaact ggtgatgatg accgaggcac cgggatgcgg aatcccctgg
catcttctgg ccggcatcgg acgcatcgaa tccggtcacg ccaacggcgg caagacgacc
teggtgggta egaacgteac eeegateete ggeeceatee tegaeggaeg getggeagge
aacqaaqtca ttcqqqacac cqacaaqqqc aatcqacggc gacccactca cgaccgcgcc
gtcgggccga tgcagttcat tccggccacc tgggccggat atgccagcga cggcaacggg
qacqqaatca aggacccaa caacgtotto gatgoggcao totoggcago gaagtacoto
tgcagcggcg gactcaacct gcgcgatgtc gcccaggaga ccaaagctgt tctgcgatac
aacaactegg cegettacge ageaaacgtg atc
<210> 1332
<211> 151
<212> PRT
<213> Homo sapiens
<400> 1332
Ala Tyr Arg Ser Ala Glu Leu Val Met Met Thr Glu Ala Pro Gly Cys
Gly Ile Pro Trp His Leu Leu Ala Gly Ile Gly Arg Ile Glu Ser Gly
            20
                                25
His Ala Asn Gly Gly Lys Thr Thr Ser Val Gly Thr Asn Val Thr Pro
                            40
Ile Leu Gly Pro Ile Leu Asp Gly Arg Leu Ala Gly Asn Glu Val Ile
                        55
Arg Asp Thr Asp Lys Gly Asn Arg Arg Pro Thr His Asp Arg Ala
                                        75
                    70
Val Gly Pro Met Gln Phe Ile Pro Ala Thr Trp Ala Gly Tyr Ala Ser
                                    90
Asp Gly Asn Gly Asp Gly Ile Lys Asp Pro Asn Asn Val Phe Asp Ala
                                105
Ala Leu Ser Ala Ala Lys Tyr Leu Cys Ser Gly Gly Leu Asn Leu Arg
                            120
Asp Val Ala Gln Glu Thr Lys Ala Val Leu Arg Tyr Asn Asn Ser Ala
    130
                        135
                                            140
Ala Tyr Ala Ala Asn Val Ile
145
                    150
```

```
<210> 1333
<211> 540
<212> DNA
<213> Homo sapiens
<400> 1333
acgegtegee cacactgttg cegeegagge ggetegagee gggtgtgagg aaggateege
60
ggcacagete gteggteaag atgggtetag tgetgetegt atggeggegg aggeateege
gcgaagggct aaagcggatg gactaagcca gcttgtcatc gatgtcaatg gagacgccgt
180
cagogtogog acggaaatca cooggoctac togtotatta gocottattg gactaaccga
agtacacggt cgggcgagcg aaatgtgtat tttgctggct cgctgaggcc gttgcagcga
tacaatgatg aggtgtctaa gtattttccg gtccacccgg agaacccgca gcagcgttct
ctcaatcaqa tcqtcqacat cctgcaccat ggcggtctta tcgcctaccc gacagacacg
ggttatgcct tcggtgcccg gntagggaat aaggatgccg tggaccggat tcgcaaactt
cqccaqttat ttqacaaqca tcacttcacc ctqqtcatqa gccaqtttgc gcaggttggc
540
<210> 1334
<211> 70
<212> PRT
<213> Homo sapiens
<400> 1334
Val His Pro Glu Asn Pro Gln Gln Arg Ser Leu Asn Gln Ile Val Asp
                                    10
Ile Leu His His Gly Gly Leu Ile Ala Tyr Pro Thr Asp Thr Gly Tyr
            20
                                25
Ala Phe Gly Ala Arg Kaa Gly Asn Lys Asp Ala Val Asp Arg Ile Arg
Lys Leu Arg Gln Leu Phe Asp Lys His His Phe Thr Leu Val Met Ser
    50
                                            60
Gln Phe Ala Gln Val Gly
                    70
<210> 1335
<211> 748
<212> DNA
<213> Homo sapiens
<400> 1335
noteteatae ttttttteee tatteetate ecceptetet eegacegegt gaagegttet
gtgaatgcca agaagaagcg tcgtgaggtc ctcgatcagg cctccggtta ccgtggtcag
egetegegee tgtacegeaa ggeeaaggag cagaceetee atteggeeae ttattegtte
180
```

```
egtgacegte gtgctaagaa gggtgactte egetegetgt ggatecageg cateaatget
240
qcttcccqtq cccaqggcat gacctacaac cgtttcatca acggtctgaa gaacgctggc
300
gtcgaggtcg accgcaagat gctcgctgag cttgccgtct ccgacattaa cgccttcaac
agectggteg aggtegetaa ggetagecag cegeagaaeg etgetgeetg agatggeeat
gactggcggg ccgaacgacg actatttggg atgggatcgc atctcgaagg ggtcattgcg
480
tteggeeegt egtettteat eteggegegg aegegatgag teegggetgt tettggtaga
aggtgcgcag gcagttcgtg aagccctagc atggccgggt aaagtcaatt tgttggcaac
ctcqqaccca gctcqcqatg ctgagcatgt cqaggtggct acatgtcgtg gcgttcgggt
cgtggtgctc actgacgagg atgtcaatgc gctttctgat accgtcacca gtcaggggat
720
cttcgcggta tgtcggcagg ttacgcgt
748
<210> 1336
<211> 136
<212> PRT
<213> Homo sapiens
<400> 1336
Xaa Leu Ile Leu Phe Phe Pro Ile Pro Ile Pro Pro Leu Ser Asp Arg
                                    10
Val Lys Arg Ser Val Asn Ala Lys Lys Arg Arg Glu Val Leu Asp
            20
                                2.5
Gln Ala Ser Gly Tyr Arg Gly Gln Arg Ser Arg Leu Tyr Arg Lys Ala
                            40
                                                45
Lys Glu Gln Thr Leu His Ser Ala Thr Tyr Ser Phe Arg Asp Arg Arg
                        55
Ala Lys Lys Gly Asp Phe Arg Ser Leu Trp Ile Gln Arg Ile Asn Ala
                                        75
                    70
Ala Ser Arg Ala Gln Gly Met Thr Tyr Asn Arg Phe Ile Asn Gly Leu
Lys Asn Ala Gly Val Glu Val Asp Arg Lys Met Leu Ala Glu Leu Ala
            100
                                105
                                                    110
Val Ser Asp Ile Asn Ala Phe Asn Ser Leu Val Glu Val Ala Lys Ala
Ser Gln Pro Gln Asn Ala Ala Ala
   130
                        135
<210> 1337
<211> 364
<212> DNA
<213> Homo sapiens
<400> 1337
acgegtgagg ccaggecact gggeacegee gttagecagg geagecteet teagtggtea
60
```

```
aggcagactc agctcatggg cgagcatgtc agtgaagggc acagcaaggc tcacgagtgg
120
geetettgee teatggteag tgtgggteag tgettteget gtatgagaet acagggttte
180
tetgeeteae catgggggae gattgggtet gggteaette etgetgtggg acetgteetg
240
ggcactgcag gatgtggggc agggctccta cgtgccagct accagatgcc agcagcaccc
ccaqaaqtqa caaccacaac catctccagg tgttgccagt gtcccctggg ggtcagagtg
gccc
364
<210> 1338
<211> 96
<212> PRT
<213> Homo sapiens
<400> 1338
Met Gly Glu His Val Ser Glu Gly His Ser Lys Ala His Glu Trp Ala
                                                         1.5
Ser Cys Leu Met Val Ser Val Gly Gln Cys Phe Arg Cys Met Arg Leu
Gln Gly Phe Ser Ala Ser Pro Trp Gly Thr Ile Gly Ser Gly Ser Leu
        35
                            40
Pro Ala Val Gly Pro Val Leu Gly Thr Ala Gly Cys Gly Ala Gly Leu
Leu Arg Ala Ser Tyr Gln Met Pro Ala Ala Pro Pro Glu Val Thr Thr
                                        75
                    70
Thr Thr Ile Ser Arg Cys Cys Gln Cys Pro Leu Gly Val Arg Val Ala
                85
                                    90
<210> 1339
<211> 653
<212> DNA
<213> Homo sapiens
<400> 1339
egegttqtet teaacatega egaaaageag tgcattgace tggegeaceg tggtactgag
tgggtcgtca ggtacgccga caagtacctc ggcgacgttg agttcggcta cgagtactct
120
coggagatgt ttagccagac cogcacggac ttogctatog acgtotgtca ctccgtgatg
gacgtgtggc agccggggcc aggccgtgag attatcctta atctgccggc taccgtcgag
atgagtactc cgaacaccta cgccgaccaa atcgagtact tctgccgcaa tatccgtgat
egtgageacg tgtgegtete tttgeacceg cacaatgate gtggeacgge gategeggee
geogagttog egeagatgge gggegeegat egegtegagg getgtttett tggeeeegge
gagegeeegg geacegtega eetggteace etgggeatga acetegteag eeagggagtt
480
```

```
qacqccqqta tcqacttctc cqacatgccc aagatccgcc gcaccgtcga gtactgcacc
540
tgtctgccag taccggcccg ccagccctac tccggcgatc tggtcttcac cgccttctcc
qqttcccacc aqqacqccat caagaagggt ctggaagacc tggcccggcg cgc
653
<210> 1340
<211> 217
<212> PRT
<213> Homo sapiens
<400> 1340
Arg Val Val Phe Asn Ile Asp Glu Lys Gln Cys Ile Asp Leu Ala His
Arg Gly Thr Glu Trp Val Val Arg Tyr Ala Asp Lys Tyr Leu Gly Asp
            20
                                25
Val Glu Phe Gly Tyr Glu Tyr Ser Pro Glu Met Phe Ser Gln Thr Arg
                            40
Thr Asp Phe Ala Ile Asp Val Cys His Ser Val Met Asp Val Trp Gln
                                            60
                        55
Pro Gly Pro Gly Arg Glu Ile Ile Leu Asn Leu Pro Ala Thr Val Glu
                                        75
Met Ser Thr Pro Asn Thr Tyr Ala Asp Gln Ile Glu Tyr Phe Cys Arg
                                    90
                85
Asn Ile Arg Asp Arg Glu His Val Cys Val Ser Leu His Pro His Asn
                                105
Asp Arg Gly Thr Ala Ile Ala Ala Ala Glu Phe Ala Gln Met Ala Gly
                            120
Ala Asp Arg Val Glu Gly Cys Phe Phe Gly Pro Gly Glu Arg Pro Gly
                                            140
                        135
Thr Val Asp Leu Val Thr Leu Gly Met Asn Leu Val Ser Gln Gly Val
                   150
                                        155
Asp Ala Gly Ile Asp Phe Ser Asp Met Pro Lys Ile Arg Arg Thr Val
                                                        175
                                    170
                165
Glu Tyr Cys Thr Cys Leu Pro Val Pro Ala Arg Gln Pro Tyr Ser Gly
                               185
Asp Leu Val Phe Thr Ala Phe Ser Gly Ser His Gln Asp Ala Ile Lys
                            200
Lys Gly Leu Glu Asp Leu Ala Arg Arg
    210
                        215
<210> 1341
<211> 666
<212> DNA
<213> Homo sapiens
<400> 1341
accepting gaitheouth tiggageth caccactain agranteet coatingith
gcaaagtttc ttgccttgct ttgatcatat tttcacaact ggattcccaa cagaagtgtg
gcaatctgta atagaaaagt tggcaaagaa aggattatgg cattcatttc tgcttctgtc
180
```

```
agcaaaaaaa gaccgattac caagaaatat tcatgtccca gagttatcac tgaaaagtct
ctttgagaaa tacgttttca ttggacttta tgagaagatg gaacaagtgc ccaagttagt
ccagtggctc atctccattg gtgcaagtgt tgagactata ggaccgtatc cccttcatgc
cctcatgcga ctctgtatcc aagccagaga aaaccatctt ttccggtggt taatggatca
420
caagecegag tggaaaggee geattaaeea gaaggatggg gatggetgea etgteetgea
egtegteget geceaetece caggatacet egttaagega caaacagagg atgtgeagat
gctcctgcgc tttggggcag atcccacttt gctggatcga cagtctcggt ctgttgtgga
tqtcctqaaq aqqaataaqa acttcaaagc catcgagaaa atcaacagtc acttagaaaa
gctagc
666
<210> 1342
<211> 209
<212> PRT
<213> Homo sapiens
<400> 1342
Met Ser Ser Asp Ser Ile Val Leu Gln Ser Phe Leu Pro Cys Phe Asp
                                    10
                 5
His Ile Phe Thr Thr Gly Phe Pro Thr Glu Val Trp Gln Ser Val Ile
Glu Lys Leu Ala Lys Lys Gly Leu Trp His Ser Phe Leu Leu Leu Ser
                            40
Ala Lys Lys Asp Arg Leu Pro Arg Asn Ile His Val Pro Glu Leu Ser
Leu Lys Ser Leu Phe Glu Lys Tyr Val Phe Ile Gly Leu Tyr Glu Lys
                    70
Met Glu Gln Val Pro Lys Leu Val Gln Trp Leu Ile Ser Ile Gly Ala
                                    90
Ser Val Glu Thr Ile Gly Pro Tyr Pro Leu His Ala Leu Met Arg Leu
                                105
Cys Ile Gln Ala Arg Glu Asn His Leu Phe Arg Trp Leu Met Asp His
                            120
Lys Pro Glu Trp Lys Gly Arg Ile Asn Gln Lys Asp Gly Asp Gly Cys
                        135
Thr Val Leu His Val Val Ala Ala His Ser Pro Gly Tyr Leu Val Lys
                                        155
                    150
Arg Gln Thr Glu Asp Val Gln Met Leu Leu Arg Phe Gly Ala Asp Pro
                                    170
Thr Leu Leu Asp Arg Gln Ser Arg Ser Val Val Asp Val Leu Lys Arg
            180
                                185
Asn Lys Asn Phe Lys Ala Ile Glu Lys Ile Asn Ser His Leu Glu Lys
                            200
                                                205
        195
Leu
```

```
<210> 1343
<211> 270
<212> DNA
<213> Homo sapiens
<400> 1343
coqqaaatqt qooqaqttot cotqacqcac qaaqtqatqt gtagtogatg ctgcgaaaag
aaaagctgtg gaaaccgaaa tgagactcca tcggacccag tcataattga cagattcttt
ttaaaatttt tootcaagtg caatcagaat tgtttgaaaa cagcaggaaa cccaagggac
atgagacggt ttcaggttgt gttgtcaaca acggtgaatg tggatggaca cgtcctggct
gtttctgaca acatgtttgt tcataacaac
270
<210> 1344
<211> 90
<212> PRT
<213> Homo sapiens
<400> 1344
Pro Glu Met Cys Arg Val Leu Leu Thr His Glu Val Met Cys Ser Arg
                 5
                                    10
1
Cys Cys Glu Lys Lys Ser Cys Gly Asn Arg Asn Glu Thr Pro Ser Asp
                                25
Pro Val Ile Ile Asp Arg Phe Phe Leu Lys Phe Phe Leu Lys Cys Asn
                            40
Gln Asn Cys Leu Lys Thr Ala Gly Asn Pro Arg Asp Met Arg Arg Phe
                        55
Gln Val Val Leu Ser Thr Thr Val Asn Val Asp Gly His Val Leu Ala
                    70
Val Ser Asp Asn Met Phe Val His Asn Asn
                85
<210> 1345
<211> 402
<212> DNA
<213> Homo sapiens
<400> 1345
acqcqtttqa aacccaccqa tqacttqtcq qtqatcctgg gtacccgcgt cagcaacttc
ageggeaceg acaacacega ettetacgae eegaceaagg eegacaaceg teteacetae
cgccagacgg gcgtcgtcac gccctatgcc ggcatcgtct acgacctgaa tgacatctgg
teggtgtaca ecagetacae caagatetae aageegeaga acageaagga egeegaeege
aagttgctcg atccgattga aggtgacacc tacgaagccg ggctcaaggc agcgtttttc
gacggccgcc tgaacgccag ttttgccgca ttccgcatcg aacaggacaa cgtcgcacag
360
```

```
tacgtttccg ggtttgagac cgactcgtgt atcgcccatt gc
402
<210> 1346
<211> 134
<212> PRT
<213> Homo sapiens
<400> 1346
Thr Arg Leu Lys Pro Thr Asp Asp Leu Ser Val Ile Leu Gly Thr Arg
Val Ser Asn Phe Ser Gly Thr Asp Asn Thr Asp Phe Tyr Asp Pro Thr
            20
                                 25
Lys Ala Asp Asn Arg Leu Thr Tyr Arg Gln Thr Gly Val Val Thr Pro
Tyr Ala Gly Ile Val Tyr Asp Leu Asn Asp Ile Trp Ser Val Tyr Thr
                        55
Ser Tyr Thr Lys Ile Tyr Lys Pro Gln Asn Ser Lys Asp Ala Asp Arg
                    70
Lys Leu Leu Asp Pro Ile Glu Gly Asp Thr Tyr Glu Ala Gly Leu Lys
                                     90
                85
Ala Ala Phe Phe Asp Gly Arg Leu Asn Ala Ser Phe Ala Ala Phe Arg
                                105
Ile Glu Gln Asp Asn Val Ala Gln Tyr Val Ser Gly Phe Glu Thr Asp
                            120
Ser Cys Ile Ala His Cys
    130
<210> 1347
<211> 415
<212> DNA
<213> Homo sapiens
<400> 1347
naccaccttc tgggcaggct ctcattcttt cattccaaga agcatttatt aaagactggc
tagggcgagg gaacccagct aggggctggg gataaaaaat aagaaataac tgaaggacct
tgctcttaag gaactccatc ttactgggtg gagccaaacg agaaaagaga gctcgggagg
gcaccaaagc ggtcttgccg aaattgcctg aggcagggga agggcacgc tttctgaaaa
accecccaa accgatteca ggaageecaa agggeggeee etetgeeege ageaetgeet
teacgtttac ttecateceg geetectect teecetaagg ettggeatge aacateeetg
cttctcaccc accttttatt taagactcct attatctgca cacaatggaa gttag
<210> 1348
<211> 105
<212> PRT
<213> Homo sapiens
```

<400> 1348 Met Glu Val Asn Val Lys Ala Val Leu Arg Ala Glu Gly Pro Pro Phe Gly Leu Pro Gly Ile Gly Leu Gly Gly Phe Phe Arg Lys Arg Ala Pro 20 25 Ser Pro Ala Ser Gly Asn Phe Gly Lys Thr Ala Leu Val Pro Ser Arg Ala Leu Phe Ser Arg Leu Ala Pro Pro Ser Lys Met Glu Phe Leu Lys 55 Ser Lys Val Leu Gln Leu Phe Leu Ile Phe Tyr Pro Gln Pro Leu Ala 75 70 Gly Phe Pro Arg Pro Ser Gln Ser Leu Ile Asn Ala Ser Trp Asn Glu 90 85 Arg Met Arg Ala Cys Pro Glu Gly Gly 100 105 <210> 1349 <211> 924 <212> DNA <213> Homo sapiens <400> 1349 geogggateg teacaceaea geaggtegeg ttaccecatg aegtetteeg tgagettgge qctcaqacgg tcatgcgttc gatcgccgaa aagcttggcc ttccggtcat cgttaagccg 120 gcacgtgggg gctcaagcct cggcgtcaca aaagtcgatg gcgtcgacga tcttcctcag 180 gccgtcgcga acgcctatgc ctatgacgac atggttgtag tcgaggaatt cattgtgggc aacqaactcq caataqqcat gatcacgacg tctgaaggca cgcgtgtgct gccagccgtc gagattegee etgteggtgg tgtttatgat tatteagega tgtacaeegg tggtgagaca cqactaacaq ctcctqcaqa cattaqcqat acggcggccc aaaccgcgac ggcgatggcc cgagtcgtgc aaaaggagct cgatttctcc gggatatctc gtgtcgatgc gatcgtggac qaqtccggtc gcccagtttt cttggaggcc ggtgctgctc ccgggatgac agctacttcg ctcgtacccg tggctatgaa agctgccggt ctagaccttg gcgaggtgtg ctctcgacta qtcqatqacq tcqctcqcaa ccatqqctga caqtqtqcac acgaggggct cgcgccacgc 660 egtgegegte aageaggeat etgtegtett geteggegte gteettgeea gtgtgatggt 720 cttcctcgga ctgtggcaga tgaacgtttt tgagtcccaa cgtgacgact cgacgcaggc gegtateaac gagecagtga teacetggaa tgaggegeet aagaaggeea gtgteatgge teagtacgga egeegggtga eggtgaeggg eaegtteeaa eegtegaeea eaacettgat aggcacatcg tggccagtac gcgt 924

```
<210> 1350
<211> 209
<212> PRT
<213> Homo sapiens
<400> 1350
Ala Gly Ile Val Thr Pro Gln Gln Val Ala Leu Pro His Asp Val Phe
Arg Glu Leu Gly Ala Gln Thr Val Met Arg Ser Ile Ala Glu Lys Leu
                                25
Gly Leu Pro Val Ile Val Lys Pro Ala Arg Gly Gly Ser Ser Leu Gly
                            40
Val Thr Lys Val Asp Gly Val Asp Asp Leu Pro Gln Ala Val Ala Asn
Ala Tyr Ala Tyr Asp Asp Met Val Val Val Glu Glu Phe Ile Val Gly
Asn Glu Leu Ala Ile Gly Met Ile Thr Thr Ser Glu Gly Thr Arg Val
                85
                                    90
Leu Pro Ala Val Glu Ile Arg Pro Val Gly Gly Val Tyr Asp Tyr Ser
                                105
Ala Met Tyr Thr Gly Gly Glu Thr Arg Leu Thr Ala Pro Ala Asp Ile
                            120
        115
Ser Asp Thr Ala Ala Gln Thr Ala Thr Ala Met Ala Arg Val Val Gln
                        135
Lys Glu Leu Asp Phe Ser Gly Ile Ser Arg Val Asp Ala Ile Val Asp
                                                            160
                                        155
                    150
Glu Ser Gly Arg Pro Val Phe Leu Glu Ala Gly Ala Ala Pro Gly Met
                                    170
                165
Thr Ala Thr Ser Leu Val Pro Val Ala Met Lys Ala Ala Gly Leu Asp
                                                    190
                                185
Leu Gly Glu Val Cys Ser Arg Leu Val Asp Asp Val Ala Arg Asn His
                            200
Gly
<210> 1351
<211> 398
<212> DNA
<213> Homo sapiens
<400> 1351
nnqtqcacqq aqqqcqtqct ggtctacgcc ctgtatctgc tgtctcgatg cacgatgggc
gacgagacgc aaaacgcatt getteteagt attetgetge acceeggtet geteategte
qaccacatte acttecagta caacgggtte ctaattegeg ggeeeettta tegtttgggg
geoegeacgg acgeategge cetetttete tgaacegeee tgtttgeete getgeteeag
ttcaagcaca tttacgtata cgtcgcgccg gcgtactttg tgtacctgct gcgtgcgtac
atgetecega geatgeegae gteegeateg aeggggageg eggegatega tegeaceate
360
```

```
aagettggeq cagegaeget ggtgeettee tgetgage
<210> 1352
<211> 70
<212> PRT
<213> Homo sapiens
<400> 1352
Xaa Cys Thr Glu Gly Val Leu Val Tyr Ala Leu Tyr Leu Leu Ser Arg
Cys Thr Met Gly Asp Glu Thr Gln Asn Ala Leu Leu Leu Ser Ile Leu
                                25
Leu His Pro Gly Leu Leu Ile Val Asp His Ile His Phe Gln Tyr Asn
                            40
Gly Phe Leu Ile Arg Gly Pro Leu Tyr Arg Leu Gly Ala Arg Thr Asp
                                             60
Ala Ser Ala Leu Phe Leu
65
<210> 1353
<211> 480
<212> DNA
<213> Homo sapiens
<400> 1353
ngggcccaa tccctagcct agggcctgga ggtcccctga gtttgctcag ccaactcatt
acceteacae ecaceecace eccagteaca eggategtge ggggeattgg acageetegg
ggcaacatgc teetggtggg tategggggc ageggaegec agagtetggc eegeetgget
tcatccatct gcgactacac caccttccag atcgaggtca ccaaacatta tcggaagcag
qaqttccqaq atgatatcaa gcgtctgtat cgccaggctg gggtggagct caagaccacg
teetteattt ttgtggacae eeaaataget gatgagteet teetagagga catcaacaae
atcctcagct caggcgaggt gccccatctt ttcaggcctg atgaatttga agagatccag
togcatatea tagaceagge cogggtggag caggtgeetg agteategga cageetette
480
<210> 1354
<211> 160
<212> PRT
<213> Homo sapiens
<400> 1354
Xaa Ala Pro Ile Pro Ser Leu Gly Pro Gly Gly Pro Leu Ser Leu Leu
                                    10
Ser Gln Leu Ile Thr Leu Thr Pro Thr Pro Pro Pro Val Thr Arg Ile
                                25
Val Arg Gly Ile Gly Gln Pro Arg Gly Asn Met Leu Leu Val Gly Ile
```

```
45
        35
                            40
Gly Gly Ser Gly Arg Gln Ser Leu Ala Arg Leu Ala Ser Ser Ile Cys
                        55
Asp Tyr Thr Thr Phe Gln Ile Glu Val Thr Lys His Tyr Arg Lys Gln
                                                             80
                    70
                                        75
Glu Phe Arg Asp Asp Ile Lys Arg Leu Tyr Arg Gln Ala Gly Val Glu
Leu Lys Thr Thr Ser Phe Ile Phe Val Asp Thr Gln Ile Ala Asp Glu
                                                     110
            100
                                105
Ser Phe Leu Glu Asp Ile Asn Asn Ile Leu Ser Ser Gly Glu Val Pro
                                                 125
                            120
His Leu Phe Arg Pro Asp Glu Phe Glu Glu Ile Gln Ser His Ile Ile
                                            140
                        135
Asp Gln Ala Arg Val Glu Gln Val Pro Glu Ser Ser Asp Ser Leu Phe
                                                             160
                                        155
145
                    150
<210> 1355
<211> 1063
<212> DNA
<213> Homo sapiens
<400> 1355
ngagaacgca ggtctccatc ctgacctgca ggcaaggggg actctactga cccctgaggt
gecetgteet aggececace eggteagtge acacetgete eccagteeeg ectecacaaa
120
ggccctgtga gaccctgtcc tccaccgcct ctttccttgt gtccattccc tgagcctggg
qaaqttqcqt cagaqccaca ggtcggngag acgctgagtc tgggcgagcg cttgctgccg
240
gacagetgga gaaacageag eggggggeeg tgtecatgtg geaagecaag ecategaggg
gatcacagge ceetteaggg aagggactga geacetgeea cetgeeteea ggatgggeet
gatececect cetgtgtace ecacaggetg cagtgeacet gecageacaa cacetgeggg
qqcacctqcq accgctgctq ccccggcttc aatcagcagc cgtggaagcc tgcgactgcc
aacagtgcca acgagtgcca gtcctgtaac tgctacggcc atgccaccga ctgttactac
gaccetgagg tggaceggeg eegegeeage cagageetgg atggcaceta teagggtggg
ggtgtctgta tcgactgcca gcaccacacc gccggcgtca actgtgagcg ctgcctgccc
660
ggettetace geteteccaa ecaccetete gaetegeece aegtetgeeg eegetgeaac
tgcgagtccg acttcacgga tggcacctgc gaggacctga cgggtcgatg ctactgccgg
cccaacttct ctggggagcg gtgtgacgtg tgtgccgagg gcttcacggg cttcccaagc
tqctacccga cgccctcgtc ctccaatgac accagggagc aggtgctgcc agccggccag
attgtgaatt gtgactgcag cgcggcaggg acccagggca acgcctgccg gaaggaccca
```

agggtgggcc gctgttttgc caaccccaac ttccaaggca cccattgtga gctctgcgcg

ccagggttet acggccccgg ctgccctggg tcccttcacg cgt 1063 <210> 1356 <211> 244 <212> PRT <213> Homo sapiens <400> 1356 Ala Pro Ala Thr Cys Leu Gln Asp Gly Pro Asp Pro Pro Ser Cys Val 10 Pro His Arg Leu Gln Cys Thr Cys Gln His Asn Thr Cys Gly Gly Thr 25 Cys Asp Arg Cys Cys Pro Gly Phe Asn Gln Gln Pro Trp Lys Pro Ala 45 40 Thr Ala Asn Ser Ala Asn Glu Cys Gln Ser Cys Asn Cys Tyr Gly His Ala Thr Asp Cys Tyr Tyr Asp Pro Glu Val Asp Arg Arg Ala Ser 75 70 Gln Ser Leu Asp Gly Thr Tyr Gln Gly Gly Gly Val Cys Ile Asp Cys 90 Gln His His Thr Ala Gly Val Asn Cys Glu Arg Cys Leu Pro Gly Phe 105 Tyr Arg Ser Pro Asn His Pro Leu Asp Ser Pro His Val Cys Arg Arg 125 120 Cys Asn Cys Glu Ser Asp Phe Thr Asp Gly Thr Cys Glu Asp Leu Thr 135 Gly Arg Cys Tyr Cys Arg Pro Asn Phe Ser Gly Glu Arg Cys Asp Val 155 150 Cys Ala Glu Gly Phe Thr Gly Phe Pro Ser Cys Tyr Pro Thr Pro Ser 165 170 Ser Ser Asn Asp Thr Arg Glu Gln Val Leu Pro Ala Gly Gln Ile Val 180 185 Asn Cys Asp Cys Ser Ala Ala Gly Thr Gln Gly Asn Ala Cys Arg Lys 205 200 Asp Pro Arg Val Gly Arg Cys Phe Ala Asn Pro Asn Phe Gln Gly Thr 215 His Cys Glu Leu Cys Ala Pro Gly Phe Tyr Gly Pro Gly Cys Pro Gly 240 235 230 Ser Leu His Ala <210> 1357 <211> 663 <212> DNA <213> Homo sapiens <400> 1357 ntccccccc cccgggggg ggggggggg ggaaacaaca ccagaaaagt agacagatac ccaagttggt ccagctggtc catatacggc cccaggtgcg gattcggtac cgaagttgaa

```
ttcaacaccc ccgttttgcc tgtggggggg gtacgccctg taatcctgca aaggcccggt
tggtgtccgg gggttttcgt cggtctcccc aaccatcatc tagacggcgt ggcgatgtgg
tqcqaqctqc ttqcqgcggt gttctgtgcc cgagcttgcc tcgcctggct gcaagaatcc
etggeteate gagetteage gteagteaag tegeaattge ggegegaeat eetgeaagee
360
aggttgtcgc gtcccactga cgcaacaatg ccgtcgagaa ccctcatcag cctgatgaca
acaggtetgg acgeettega eggetactae tegaagtace tteeceaget tgtgetggee
gtcatcgtgc cagcagtgct agccaccgct atcggcctaa acgacctcac cagcctcgtc
atoqtoqtoq tqacqatoco qotcatocoo gttttcatgg coctcattgg ctggcggaco
gaggeggeeg tageaaaacg gtteaaggta geeaccegae tggeeaacca ettegetgat
660
ctg
663
<210> 1358
<211> 221
<212> PRT
<213> Homo sapiens
<400> 1358
Xaa Pro Pro Pro Gly Gly Gly Gly Gly Asn Asn Thr Arg Lys
Val Asp Arg Tyr Pro Ser Trp Ser Ser Trp Ser Ile Tyr Gly Pro Arg
                                25
Cys Gly Phe Gly Thr Glu Val Glu Phe Asn Thr Pro Val Leu Pro Val
                            40
Gly Gly Val Arg Pro Val Ile Leu Gln Arg Pro Gly Trp Cys Pro Gly
                                            60
                        55
Val Phe Val Gly Leu Pro Asn His His Leu Asp Gly Val Ala Met Trp
                    70
                                        75
Cys Glu Leu Leu Ala Ala Val Phe Cys Ala Arg Ala Cys Leu Ala Trp
                                    90
Leu Gln Glu Ser Leu Ala His Arg Ala Ser Ala Ser Val Lys Ser Gln
                                105
Leu Arg Arg Asp Ile Leu Gln Ala Arg Leu Ser Arg Pro Thr Asp Ala
        115
                            120
Thr Met Pro Ser Arg Thr Leu Ile Ser Leu Met Thr Thr Gly Leu Asp
                                            140
                        135
Ala Leu Asp Gly Tyr Tyr Ser Lys Tyr Leu Pro Gln Leu Val Leu Ala
                    150
                                        155
Val Ile Val Pro Ala Val Leu Ala Thr Ala Ile Gly Leu Asn Asp Leu
                                    170
                165
Thr Ser Leu Val Ile Val Val Val Thr Ile Pro Leu Ile Pro Val Phe
            180
                                185
Met Ala Leu Ile Gly Trp Arg Thr Glu Ala Ala Val Ala Lys Arg Phe
                            200
                                                205
Lys Val Ala Thr Arg Leu Ala Asn His Phe Ala Asp Leu
```

```
220
    210
                        215
<210> 1359
<211> 423
<212> DNA
<213> Homo sapiens
<400> 1359
acgcgtattc ctctgttttg acctgcgctc ttacatctgt actaagacct tgtttttgca
tgataaagtt ccaagactcc aaaatgtcac atggtgtacg agaaacaaaa ggttgtttgt
ctatttgctt aatagataga gaggtgtagt cagctagcca atagccgact ggcatcgcca
eqaeqtaate gtetteecat aaagggtaaa atacateate ttetttggtg taaetgtege
aagtaaagcg taaatcagcg ctttctgagg catcgactaa actgagtgtg agtcctggaa
tategtegag catggttttg atcacttgae taatcagggt gecagataga aaaggtgeta
atgaaataga cagcgccagg tttgcgcgtt tttacgaaac atatccttaa tatcgttaag
420
ctt
423
<210> 1360
<211> 104
<212> PRT
<213> Homo sapiens
<400> 1360
Met Leu Asp Asp Ile Pro Gly Leu Thr Leu Ser Leu Val Asp Ala Ser
                                    10
Glu Ser Ala Asp Leu Arg Phe Thr Cys Asp Ser Tyr Thr Lys Glu Asp
                                25
            20
Asp Val Phe Tyr Pro Leu Trp Glu Asp Asp Tyr Val Val Ala Met Pro
                            40
Val Gly Tyr Trp Leu Ala Asp Tyr Thr Ser Leu Ser Ile Lys Gln Ile
                                            60
                        55
Asp Lys Gln Pro Phe Val Ser Arg Thr Pro Cys Asp Ile Leu Glu Ser
                                        75
Trp Asn Phe Ile Met Gln Lys Gln Gly Leu Ser Thr Asp Val Arg Ala
                85
Gln Val Lys Thr Glu Glu Tyr Ala
            100
<210> 1361
<211> 5300
<212> DNA
<213> Homo sapiens
<400> 1361
nnccccgcag gggaaggcgg gtcctggcgg ccagcgcgcg gtccgcgccc accctagccg
```

acggggccgg 120	cagagcgcgc	ggcgtcggtg	cccttgacca	tggeggegge	tgcgcttctg
ctggggctgg 180	cgctgctggc	accgcgggcg	gccggcgcgg	gcatgggcgc	gtgctatgac
240	gcccgcagcg				
300	cgcacacgtg				
360	gggctcattg				
420	tcaccgactt				
480	gcgtgcagta				
540	cgtatgtgag				
600	gccgcgccga				
660	acggccggcc				
720	cctctgagtt				
780	agggccggcc				
840	gcaccgaact				
900	accccaaggt				
960	gcaagtgcaa				
1020	ggtgccagca				
1080	gcccgtgggc				
1140	geegeteega				
1200	gctgtcacca				
1260	tctatcactg				
1320	tacacctcca				
1380	agtgtgaccg				
1440	cttgcaatcc				
1500	aagagaatgt				
1560	cccacaatcc				
1620	ccactgccca				
gccgaaggct 1680	ggtgggccag	aagtgtgggg	ggctctgagc	actccccaca	acggagecea

aatggggtcc 1740	teetgageee	agaagacgag	gaggagctca	cagcaccagg	gaagttcctg
ggagaccagc 1800	ggttcagcta	tgggcagece	ctcatactga	ccttccgggt	gcccccggg
gactccccac	tecetgtaca	gctgaggctg	gaagggacag	gettggeeet	gtccctgagg
cactctagcc 1920	tgtctggccc	ccaggatgcc	agggcatccc	agggaggtag	agctcaggtt
	agacctccga	ggacgtggcc	cctccactgc	ccccttcca	cttccagcgg
	acctgaccag	cctccgcctc	cgcgtcagtc	ccggccccag	ccctgccggt
	tgactgaggt	ccggctcaca	tccgcccggc	cagggctttc	cccgccagcc
	agatttgttc	atgtcccact	ggctacacgg	gccagttctg	tgaatcctgt
	acaagaggga	gatgccacag	gggggtccct	atgccagctg	tgtcccctgc
acctgtaacc 2280	agcatggcac	ctgtgacccc	aacacaggga	tetgtgtetg	cagccaccat
accgagggcc 2340	catcctgtga	acgctgtttg	ccaggtttct	atggcaaccc	tttcgcgggc
caageegaeg 2400	actgccagcc	ctgtccctgc	cctggccagt	cggcctgtac	gaccatccca
gagagcgggg 2460	aggtggtgtg	tacccactgc	ccccgggcc	agagagggcg	gcgctgtgag
gtctgtgatg 2520	atggcttttt	tggggacccg	ctggggctct	ttgggcaccc	ccagccctgc
caccagtgcc 2580	agtgtagcgg	gaacgtggac	cccaatgccg	tgggcaactg	tgaccccctg
tctggccact 2640	gcctgcgctg	cctgcacaac	accacgggtg	accactgtga	gcactgtcag
gaaggettet 2700	acgggagcgc	cctggcccct	cgacccgcag	acaaatgcat	gccttgcagc
tgtcacccac 2760	agggctcggt	cagtgagcag	atgccctgcg	acccagtgac	aggccaatgc
tcctgcctgc 2820	ctcatgtgac	tgcacgggac	tgcagccgct	gctaccctgg	cttcttcgac
ctccagectg 2880	ggaggggctg	ccggagctgc	aagtgtcacc	cactgggctc	ccaggaggac
cagtgccatc 2940	ccaagactgg	acagtgcacc	tgccgcccag	gtgtcacagg	ccaggcctgt
gacaggtgcc 3000	agctgggttt	cttcggctcc	tcaatcaagg	gctgccgggc	ctgcaggtgc
tccccactgg 3060	gcgctgcctc	ggcccagtgc	cactataacg	gcacatgcgt	gtgcaggcct
ggcttcgagg 3120	gctacaaatg	tgaccgctgc	cactacaact	tcttcctcac	ggcagacggc
acacactgcc 3180	agcaatgtcc	gtcctgctac	gccctggtga	aggaggagac	agccaagctg
aaggccagac 3240	tgactttgac	ggaggggtgg	ctccaagggt	ccgactgtgg	cagteeetgg
ggaccactag 3300	acattctgct	gggagaggcc	ccaagggggg	acgtctacca	gggccatcac

3360		agcetteetg			
3420		gcagaggctg			
tcccagaaga 3480	cctgcaccca	gctggcagac	ctggaggcag	tgctggagtc	ctcggaagag
gagattetge 3540	atgcagctgc	cattetegeg	tctctggaga	ttcctcagga	aggtcccagt
cagccgacca 3600	aatggagcca	cctggccata	gaggcccgtg	ccctcgccag	gagccacaga
gacaccgcca 3660	ccaagatcgc	agccactgct	tggagggccc	tgctcgcctc	caacaccagc
	tctggaatct	gctggaggga	agggtggccc	tagagaccca	gcgggacctg
	accaggaggt	ccaggcggcc	cagaaagcac	tgaggacggc	tgtggcagag
	aagcggaaag	cgtgttggcc	accgtgcggc	aagttggcgc	agatacagcc
	ccttgctggc	ttccccggga	getetgeete	agaagtcccg	ggctgaagac
	aggcgaaggc	cctggagaag	acagttgcat	catggcagca	catggccact
	gaaccctcca	gactgctgcc	caggcgacgc	tacggcaaac	agaacccctc
	gatctcggct	cactgcaacc	tttgcctccc	agctgcacca	ggaggccaga
	cccaggette	ctcatctgtc	caggctgcga	cagtgactgt	catgggagcc
	tggctgatct	ggaaggaatg	aagctgca g t	ttccccggcc	caaggaccag
	agaggaaggc	agactccgtc	agtgacagac	tccttgcaga	cacgagaaag
	aggcggagag	gatgctggga	aacgcggccc	ctctttcctc	cagtgccaag
	gagaagcaga	ggtgttggcc	aaggacagtg	ccaagettge	caaggccttg
	ggaaacaggc	gcaccgccgt	gccagcaggc	tcaccagcca	gacgcaagcc
	aggcgtccca	gcaggtgctg	gcgtctgaag	cacgcagaca	ggagctggag
gaagctgagc 4560	gggtgggtgc	tgggctgagc	gagatggagc	agcagatccg	ggaatcgcgt
atctcactgg 4620	agaaggacat	cgagaccttg	tcagagetge	ttgccaggct	ggggtcgctg
gacacccatc 4680	aagccccagc	ccaggccctg	aacgagactc	agtgggcact	agaacgcctg
aggctgcagc 4740	tgggctcccc	ggggtccttg	cagaggaaac	tcagtctgct	ggagcaggaa
teccageage	aggagctgca	gatccagggc	ttcgagagtg	acctcgccga	gatccgcgcc
	acctggaggc	cattctgcac	agcctgcccg	agaactgtgc	cagctggcag
	ccagatcccc	ggcacacact	ccccacctg .	ctgtttacat	gacccagggg

gtgcacacta ccccacaggt gtgcccatac agacattccc cggagccggc tgctgtgaac tegaceceqt qtqqataqte acaetecetq cegattetgt etgtggette tteeetgeea qcaqqactqa gtqtqcqtac ccagttcacc tggacatgag tgcacactct cacccctgca catqcataaa cqqqcacacc ccaqtqtcaa taacatacac acgtqaqqqt qcatqtctqt gtgtatgacc cacacgtgtt caagtctaat ccatccagtc agcagcttac ggtccacaca cattacagte cacagetqtt qtqaqaqcae ctqtqtqctq gacaceetet ggatqttqqq caagttgtac atgagatgcc 5300 <210> 1362 <211> 1587 <212> PRT <213> Homo sapiens <400> 1362 Met Ala Ala Ala Leu Leu Leu Gly Leu Ala Leu Leu Ala Pro Arg 10 Ala Gly Ala Gly Met Gly Ala Cys Tyr Asp Gly Ala Gly Arg Pro 25 Gln Arg Cys Leu Pro Val Phe Glu Asn Ala Ala Phe Gly Arg Leu Ala 40 45 Gln Ala Ser His Thr Cys Gly Ser Pro Pro Glu Asp Phe Cys Pro His Val Gly Ala Ala Gly Ala Gly Ala His Cys Gln Arg Cys Asp Ala Ala 70 75 Asp Pro Gln Arg His His Asn Ala Ser Tyr Leu Thr Asp Phe His Ser 90 Gln Asp Glu Ser Thr Trp Trp Gln Ser Pro Ser Met Ala Phe Gly Val 105 100 Gln Tyr Pro Thr Ser Val Asn Ile Thr Leu Arg Leu Gly Lys Ala Tyr 120 125 Glu Ile Thr Tyr Val Arq Leu Lys Phe His Thr Ser Arg Pro Glu Ser 135 140 Phe Ala Ile Tyr Lys Arg Ser Arg Ala Asp Gly Pro Trp Glu Pro Tyr 150 155 Gln Phe Tyr Ser Ala Ser Cys Gln Lys Thr Tyr Gly Arg Pro Glu Gly 165 170 Gln Tyr Leu Arg Pro Gly Glu Asp Glu Arg Val Ala Phe Cys Thr Ser 190 180 185 Glu Phe Ser Asp Ile Ser Pro Leu Ser Gly Gly Asn Val Ala Phe Ser 200 Thr Leu Glu Gly Arg Pro Ser Ala Tyr Asn Phe Glu Glu Ser Pro Gly 215 220 Leu Gln Glu Trp Val Thr Ser Thr Glu Leu Leu Ile Ser Leu Asp Arg 230 235 Leu Asn Thr Phe Gly Asp Asp Ile Phe Lys Asp Pro Lys Val Leu Gln 245 250 Ser Tyr Tyr Tyr Ala Val Ser Asp Phe Ser Val Gly Gly Arg Cys Lys

			260					265					270		
Cys	Asn	Gly 2 7 5	His	Ala	Ser	Glu	Cys 280	Gly	Pro	Asp	Val	Ala 285	Gly	Gln	Leu
	290		Cys			295					300				
305			Phe		310	_		_		315					320
			Cys	325					330					335	
		-	Arg 340					345					350		
		355	Arg	-			360	_			_	365		-	
	370		Tyr			375					380				
385			Ala	_	390					395					400
_			Lys	405					410					415	
	_		His 420					425	_	_			430		
		435	Gly			_	440	_	_			445			
	450	_	Glu			455					460				
465			Asn		470					475					480
				485				Cys	490					495	
Val	His	His	Ile 500	485 Leu	Ser	Asp	Phe	His 505	490 Gln	Gly	Ala	Glu	Gly 510	495 Trp	Trp
Val Ala	His Arg	His Ser 515	Ile 500 Val	485 Leu Gly	Ser Gly	Asp Ser	Phe Glu 520	His 505 His	490 Gln Ser	Gly Pro	Ala Gln	Glu Trp 525	Gly 510 Ser	495 Trp Pro	Trp Asn
Val Ala Gly	His Arg Val 530	His Ser 515 Leu	Ile 500 Val Leu	485 Leu Gly Ser	Ser Gly Pro	Asp Ser Glu 535	Phe Glu 520 Asp	His 505 His Glu	490 Gln Ser Glu	Gly Pro Glu	Ala Gln Leu 540	Glu Trp 525 Thr	Gly 510 Ser Ala	495 Trp Pro	Trp Asn Gly
Val Ala Gly Lys 545	His Arg Val 530 Phe	His Ser 515 Leu Leu	Ile 500 Val Leu Gly	485 Leu Gly Ser Asp	Ser Gly Pro Gln 550	Asp Ser Glu 535 Arg	Phe Glu 520 Asp	His 505 His Glu Ser	490 Gln Ser Glu Tyr	Gly Pro Glu Gly 555	Ala Gln Leu 540 Gln	Glu Trp 525 Thr	Gly 510 Ser Ala Leu	495 Trp Pro Pro	Trp Asn Gly Leu 560
Val Ala Gly Lys 545 Thr	His Arg Val 530 Phe	His Ser 515 Leu Leu Arg	Ile 500 Val Leu Gly Val	485 Leu Gly Ser Asp Pro 565	Ser Gly Pro Gln 550 Pro	Asp Ser Glu 535 Arg	Phe Glu 520 Asp Phe Asp	His 505 His Glu Ser	490 Gln Ser Glu Tyr Pro 570	Gly Pro Glu Gly 555 Leu	Ala Gln Leu 540 Gln Pro	Glu Trp 525 Thr Pro Val	Gly 510 Ser Ala Leu Gln	495 Trp Pro Pro Ile Leu 575	Trp Asn Gly Leu 560 Arg
Val Ala Gly Lys 545 Thr	His Arg Val 530 Phe Phe Glu	His Ser 515 Leu Leu Arg	Ile 500 Val Leu Gly Val Thr 580	485 Leu Gly Ser Asp Pro 565 Gly	Ser Gly Pro Gln 550 Pro	Asp Ser Glu 535 Arg Gly Ala	Phe Glu 520 Asp Phe Asp	His 505 His Glu Ser Ser 585	490 Gln Ser Glu Tyr Pro 570 Leu	Gly Pro Glu Gly 555 Leu Arg	Ala Gln Leu 540 Gln Pro	Glu Trp 525 Thr Pro Val Ser	Gly 510 Ser Ala Leu Gln Ser 590	495 Trp Pro Pro Ile Leu 575 Leu	Trp Asn Gly Leu 560 Arg
Val Ala Gly Lys 545 Thr Leu Gly	His Arg Val 530 Phe Phe Glu	His Ser 515 Leu Leu Arg Gly Gln 595	Ile 500 Val Leu Gly Val Thr 580 Asp	485 Leu Gly Ser Asp Pro 565 Gly Ala	Ser Gly Pro Gln 550 Pro Leu Arg	Asp Ser Glu 535 Arg Gly Ala Ala	Phe Glu 520 Asp Phe Asp Leu Ser 600	His 505 His Glu Ser Ser 585 Gln	490 Gln Ser Glu Tyr Pro 570 Leu	Gly Pro Glu Gly 555 Leu Arg	Ala Gln Leu 540 Gln Pro His	Glu Trp 525 Thr Pro Val Ser Ala 605	Gly 510 Ser Ala Leu Gln Ser 590 Gln	495 Trp Pro Pro Ile Leu 575 Leu Val	Trp Asn Gly Leu 560 Arg Ser
Val Ala Gly Lys 545 Thr Leu Gly Leu	His Arg Val 530 Phe Phe Glu Pro Gln 610	His Ser 515 Leu Leu Arg Gly Gln 595 Glu	Ile 500 Val Leu Gly Val Thr 580 Asp	485 Leu Gly Ser Asp Pro 565 Gly Ala Ser	Ser Gly Pro Gln 550 Pro Leu Arg Glu	Asp Ser Glu 535 Arg Gly Ala Ala Asp 615	Phe Glu 520 Asp Phe Asp Leu Ser 600 Val	His 505 His Glu Ser Ser 585 Gln Ala	490 Gln Ser Glu Tyr Pro 570 Leu Gly	Gly Pro Glu Gly 555 Leu Arg Gly Pro	Ala Gln Leu 540 Gln Pro His Arg Leu 620	Glu Trp 525 Thr Pro Val Ser Ala 605 Pro	Gly 510 Ser Ala Leu Gln Ser 590 Gln	495 Trp Pro Pro Ile Leu 575 Leu Val	Trp Asn Gly Leu 560 Arg Ser Pro His
Val Ala Gly Lys 545 Thr Leu Gly Leu Phe 625	His Arg Val 530 Phe Phe Glu Pro Gln 610 Gln	His Ser 515 Leu Leu Arg Gly Gln 595 Glu Arg	Ile 500 Val Leu Gly Val Thr 580 Asp Thr	485 Leu Gly Ser Asp Pro 565 Gly Ala Ser Leu	Ser Gly Pro Gln 550 Pro Leu Arg Glu Ala 630	Asp Ser Glu 535 Arg Gly Ala Ala Asp 615 Asn	Phe Glu 520 Asp Phe Asp Leu Ser 600 Val Leu	His 505 His Glu Ser Ser 585 Gln Ala Thr	490 Gln Ser Glu Tyr Pro 570 Leu Gly Pro Ser	Gly Pro Glu Gly 555 Leu Arg Gly Pro Leu 635	Ala Gln Leu 540 Gln Pro His Arg Leu 620 Arg	Glu Trp 525 Thr Pro Val Ser Ala 605 Pro Leu	Gly 510 Ser Ala Leu Gln Ser 590 Gln Pro	495 Trp Pro Pro Ile Leu 575 Leu Val Phe	Trp Asn Gly Leu 560 Arg Ser Pro His Ser 640
Val Ala Gly Lys 545 Thr Leu Gly Leu Phe 625 Pro	His Arg Val 530 Phe Phe Glu Pro Gln 610 Gln Gly	His Ser 515 Leu Leu Arg Gly Gln 595 Glu Arg	Ile 500 Val Leu Gly Val Thr 580 Asp Thr Leu Ser	485 Leu Gly Ser Asp Pro 565 Gly Ala Ser Leu Pro 645	Ser Gly Pro Gln 550 Pro Leu Arg Glu Ala 630 Ala	Asp Ser Glu 535 Arg Gly Ala Ala Asp 615 Asn	Phe Glu 520 Asp Phe Asp Leu Ser 600 Val Leu Pro	His 505 His Glu Ser Ser 585 Gln Ala Thr	490 Gln Ser Glu Tyr Pro 570 Leu Gly Pro Ser Phe 650	Gly Pro Glu Gly 555 Leu Arg Gly Pro Leu 635 Leu	Ala Gln Leu 540 Gln Pro His Arg Leu 620 Arg	Glu Trp 525 Thr Pro Val Ser Ala 605 Pro Leu Glu	Gly 510 Ser Ala Leu Gln Ser 590 Gln Pro Arg	495 Trp Pro Pro Ile Leu 575 Leu Val Phe Val Arg 655	Trp Asn Gly Leu 560 Arg Ser Pro His Ser 640 Leu
Val Ala Gly Lys 545 Thr Leu Gly Leu Phe 625 Pro	His Arg Val 530 Phe Phe Glu Pro Gln 610 Gln Gly Ser	His Ser 515 Leu Leu Arg Gly Gln 595 Glu Arg Pro Ala	Ile 500 Val Leu Gly Val Thr 580 Asp Thr Leu Ser Arg 660	485 Leu Gly Ser Asp Pro 565 Gly Ala Ser Leu Pro 645 Pro	Ser Gly Pro Gln 550 Pro Leu Arg Glu Ala 630 Ala Gly	Asp Ser Glu 535 Arg Gly Ala Ala Asp 615 Asn Gly Leu	Phe Glu 520 Asp Phe Asp Leu Ser 600 Val Leu Pro Ser	His 505 His Glu Ser Ser 585 Gln Ala Thr Val	490 Gln Ser Glu Tyr Pro 570 Leu Gly Pro Ser Phe 650 Pro	Gly Pro Glu Gly 555 Leu Arg Gly Pro Leu 635 Leu Ala	Ala Gln Leu 540 Gln Pro His Arg Leu 620 Arg Thr Ser	Glu Trp 525 Thr Pro Val Ser Ala 605 Pro Leu Glu Trp	Gly 510 Ser Ala Leu Gln Ser 590 Gln Pro Arg Val	495 Trp Pro Pro Ile Leu 575 Leu Val Phe Val Arg 655 Glu	Trp Asn Gly Leu 560 Arg Ser Pro His Ser 640 Leu Ile
Val Ala Gly Lys 545 Thr Leu Gly Leu Phe 625 Pro Thr Cys	His Arg Val 530 Phe Phe Glu Pro Gln 610 Gln Gly Ser Ser	His Ser 515 Leu Leu Arg Gly Gln 595 Glu Arg Pro Ala Cys 675	Ile 500 Val Leu Gly Val Thr 580 Asp Thr Leu Ser Arg	485 Leu Gly Ser Asp Pro 565 Gly Ala Ser Leu Pro 645 Pro	Ser Gly Pro Gln 550 Pro Leu Arg Glu Ala 630 Ala Gly Gly	Asp Gly Ala Ala Asp 615 Asn Gly Leu	Phe Glu 520 Asp Phe Asp Leu Ser 600 Val Leu Pro Ser Thr 680	His 505 His Glu Ser Ser 585 Gln Ala Thr Val Pro 665 Gly	490 Gln Ser Glu Tyr Pro 570 Leu Gly Pro Ser Phe 650 Pro Gln	Gly Pro Glu Gly 555 Leu Arg Gly Pro Leu 635 Leu Ala Phe	Ala Gln Leu 540 Gln Pro His Arg Leu 620 Arg Thr Ser Cys	Glu Trp 525 Thr Pro Val Ser Ala 605 Pro Leu Glu Trp Glu 685	Gly 510 Ser Ala Leu Gln Ser 590 Gln Pro Arg Val Val 670 Ser	495 Trp Pro Pro Ile Leu 575 Leu Val Phe Val Arg 655 Glu Cys	Trp Asn Gly Leu 560 Arg Ser Pro His Ser 640 Leu Ile Ala

	690					695					700				
Val		Cvs	Thr	Cvs	Asn		His	Glv	Thr	Cys		Pro	Asn	Thr	Glv
705		•		- , -	710			2		715	-				720
Ile	Cys	Val	Cys	Ser	His	His	Thr	Glu	Gly	Pro	Ser	Cys	Glu	Arg	Cys
	•		•	725					730			•		735	•
Leu	Pro	Gly	Phe	Tyr	Gly	Asn	Pro	Phe	Ala	Gly	Gln	Ala	Asp	Asp	Cys
		•	740	•	-			745		-			750	_	_
Gln	Pro	Cys	Pro	Cys	Pro	Gly	Gln	Ser	Ala	Cys	Thr	Thr	Ile	Pro	Glu
		755		-		-	760			-		765			
Ser	Gly	Glu	Val	Val	Cys	Thr	His	Cys	Pro	Pro	Gly	Gln	Arg	Gly	Arg
	770					775					780				
Arg	Cys	Glu	Val	Cys	Asp	Asp	Gly	Phe	Phe	Gly	Asp	Pro	Leu	Gly	Leu
785					790					795					800
Phe	Gly	His	Pro	Gln	Pro	Cys	His	Gln	Cys	Gln	Cys	Ser	Gly	Asn	Val
				805					810					815	
Asp	Pro	Asn	Ala	Val	Gly	Asn	Cys	Asp	Pro	Leu	Ser	Gly	His	Cys	Leu
			820					825					830		
Arg	Cys	Leu	His	Asn	Thr	Thr	Gly	Asp	His	Cys	Glu	His	Cys	Gln	Glu
		835					840					845			
Gly	Phe	Tyr	Gly	Ser	Ala	Leu	Ala	Pro	Arg	Pro	Ala	Asp	Lys	Cys	Met
	850					855					860				
Pro	Суѕ	Ser	Cys	His	Pro	Gln	Gly	Ser	Val	Ser	Glu	Gln	Met	Pro	Cys
865					870					875					880
Asp	Pro	Val	Thr	_	Gln	Cys	Ser	Cys		Pro	His	Val	Thr		Arg
				885					890					895	
Asp	Cys	Ser	_	Cys	Tyr	Pro	Gly		Phe	Asp	Leu	Gln		Gly	Arg
		_	900	_	_	_		905	_		_		910	_	~ 3
Gly	Cys		Ser	Cys	Lys	Cys		Pro	Leu	Gly	Ser		Glu	Asp	GIn
_		915	_	 1	~ 3	~ 1	920		_			925	1	m)	~1
Cys		Pro	ьуs	Thr	GTA		Cys	Thr	Cys	Arg		GIY	vaı	Thr	GIY
a1	930	C	7	3 w.w.	C	935	7	~3	Dho	Dho	940	C ~ ~	Cor	710	Tria
	Ala	Cys	Asp	Arg	_	GIII	Leu	GIY	Pne	Phe	GIY	Ser	ser	ııe	
945	C	7 ~~~	ת ז ת	C	950	Cira	Com	Dwo	T 011	955	ח ו ת	ת ד ת	505	ת ו ת	960
GIY	Сув	Arg	Aid	965	Arg	Суз	ser	PIO	970	Gly	ніа	AIA	Ser	975	GIII
Cvc	uic	Т. с.	N cm		Thr	Cvc	17-1	Cvc		Pro	Clv	Dhe	Glu	-	Туг
Cys	1113	LYL	980	Gry	1111	Cys	vai	985	Arg	rio	Cry	LIIC	990	O ₁ y	TYT
Lvs	Cvs	Asn		Cvs	Hic	Tur	Δsn		Phe	Leu	Thr	Ala		Glv	Thr
_, _	0,0	995	=	- 7-2		- / -	1000					1005	-	-	
His	Cvs		Gln	Cvs	Pro	Ser			Ala	Leu	Val			Glu	Thr
	1010			-1-		1015		-1-			1020				
Ala			Lvs	Ala	Arg			Leu	Thr	Glu			Leu	Gln	Gly
1025			-2		1030					1035		-			1040
Ser	Asp	Cys	Gly	Ser			Gly	Pro	Leu	Asp	Ile	Leu	Leu	Gly	Glu
	-	•	•	1045		-	•		1050					1055	
Ala	Pro	Arq	Gly	Asp	Val	Tyr	Gln	Gly	His	His	Leu	Leu	Pro	Gly	Ala
		_	1060	-		-		1065					1070		
Arq	Glu	Ala	Phe	Leu	Glu	Gln	Met	Met	Gly	Leu	Glu	Gly	Ala	Val	Lys
		1075					1080		•			1085			•
Ala	Ala	Arq	Glu	Gln	Leu	Gln			Asn	Lys	Gly	Ala	Arq	Cys	Ala
	1090					1095				-	1100		_	-	
Gln			Ser	Gln	Lys			Thr	Gln	Leu			Leu	Glu	Ala
1105		- 4			1110		•			1115		•			1120
		Glu	Ser	Ser			Glu	Ile	Leu	His		Ala	Ala	Ile	
										-					

	1125			1130			1135	
Ala Ser Leu Glu		Gln Gl	-		Gln P			
114			1145			1150		
Ser His Leu Ala	lle Glu			Leu Ala			arg Asp	
1155	T] - 3]-		.60	m 3		165	71a Cam	
Thr Ala Thr Lys	ile Ala		ir Ala	Trp Arg		eu Leu	Ala Sei	
1170	57 - 7	1175		· · ·	1180	1	77-3 D3-	
Asn Thr Ser Tyr			p Asn			TY Arg		
1185	119			1195		1 1/21	1200	
Leu Glu Thr Gln	1205	, ren Gr		1210	GIII G	iu vai	1215	
Ala Gln Lys Ala 122	_	Thr Al	a Val . 1225		Val L	eu Pro 1230		
Glu Ser Val Leu		Val Ar			Ala A			
1235			40			245		
Tyr Leu Ala Leu	Leu Ala			Ala Leu			Ser Arg	
1250		1255	,		1260		3	
Ala Glu Asp Leu	Gly Leu	Lys Al	a Lys i	Ala Leu	Glu L	ys Thr	Val Ala	
1265	127	=	•	1275		•	1280	
Ser Trp Gln His	Met Ala	Thr Gl	u Ala	Ala Arg	Thr L	eu Gln	Thr Ala	
-	1285			1290			1295	
Ala Gln Ala Thr	Leu Arg	Gln Th	r Glu	Pro Leu	Thr M	et Ala	Arg Ser	
130	0		1305			1310	1	
Arg Leu Thr Ala	Thr Phe	Ala Se	r Gln 1	Leu His	Gln G	lu Ala	Arg Ala	
1315		13	20		1	325		
Ala Leu Thr Gln 1330	Ala Ser	Ser Se 1335	r Val (Gln Ala	Ala Ti 1340	hr Val	Thr Val	
Met Gly Ala Arg	Thr Leu	Leu Al	a Asp	Leu Glu	Gly M	et Lys	Leu Gln	
1345	135		-			•		
エンマン	133	0		1355	5		1360	
Phe Pro Arg Pro			a Ala 1			ys Ala		
						ys Ala		
	Lys Asp 1365	Gln Al	=	Leu Gln 1370	Arg L		Asp Ser 1375	
Phe Pro Arg Pro	Lys Asp 1365 Leu Leu	Gln Al	=	Leu Gln 1370	Arg L		Asp Ser 1375 Gln Ala	
Phe Pro Arg Pro Val Ser Asp Arg	Lys Asp 1365 Leu Leu O	Gln Al Ala As	p Thr <i>i</i> 1385	Leu Gln 1370 Arg Lys	Arg L	hr Lys 1390	Asp Ser 1375 Gln Ala	
Phe Pro Arg Pro Val Ser Asp Arg 138 Glu Arg Met Leu 1395	Lys Asp 1365 Leu Leu O Gly Asn	Gln Al Ala As Ala Al 14	p Thr A 1385 a Pro 1	Leu Gln 1370 Arg Lys Leu Ser	Arg Lys Ti	hr Lys 1390 er Ala 405	Asp Ser 1375 Gln Ala Lys Lys	
Phe Pro Arg Pro Val Ser Asp Arg 138 Glu Arg Met Leu	Lys Asp 1365 Leu Leu O Gly Asn	Gln Al Ala As Ala Al 14 Val Le	p Thr A 1385 a Pro 1	Leu Gln 1370 Arg Lys Leu Ser	Arg L Lys T Ser Se 1 Ser A	hr Lys 1390 er Ala 405	Asp Ser 1375 Gln Ala Lys Lys	
Phe Pro Arg Pro Val Ser Asp Arg 138 Glu Arg Met Leu 1395 Lys Gly Arg Glu 1410	Lys Asp 1365 Leu Leu O Gly Asn Ala Glu	Gln Al Ala As Ala Al 14 Val Le 1415	p Thr A 1385 a Pro 1 00 u Ala 1	Leu Gln 1370 Arg Lys Leu Ser Lys Asp	Arg L Lys T Ser Se 1420	hr Lys 1390 er Ala 405 la Lys	Asp Ser 1375 Gln Ala Lys Lys Leu Ala	
Phe Pro Arg Pro Val Ser Asp Arg 138 Glu Arg Met Leu 1395 Lys Gly Arg Glu 1410 Lys Ala Leu Leu	Lys Asp 1365 Leu Leu O Gly Asn Ala Glu Arg Glu	Ala As Ala Al 14 Val Le 1415 Arg Ly	p Thr A 1385 a Pro 1 00 u Ala 1	Leu Gln 1370 Arg Lys Leu Ser Lys Asp	Arg L Lys T Ser S 1 Ser A 1420 Arg A	hr Lys 1390 er Ala 405 la Lys	Asp Ser 1375 Gln Ala Lys Lys Leu Ala Ser Arg	
Phe Pro Arg Pro Val Ser Asp Arg 138 Glu Arg Met Leu 1395 Lys Gly Arg Glu 1410 Lys Ala Leu Leu 1425	Lys Asp 1365 Leu Leu O Gly Asn Ala Glu Arg Glu 143	Gln Al Ala As Ala Al 14 Val Le 1415 Arg Ly 0	p Thr A 1385 a Pro 1 00 u Ala 1 s Gln A	Leu Gln 1370 Arg Lys Leu Ser Lys Asp Ala His 1435	Arg L Lys T Ser S 1 Ser A 1420 Arg A	hr Lys 1390 er Ala 405 la Lys rg Ala	Asp Ser 1375 Gln Ala Lys Lys Leu Ala Ser Arg 1440	
Phe Pro Arg Pro Val Ser Asp Arg 138 Glu Arg Met Leu 1395 Lys Gly Arg Glu 1410 Lys Ala Leu Leu	Lys Asp 1365 Leu Leu O Gly Asn Ala Glu Arg Glu 143 Thr Gln	Gln Al Ala As Ala Al 14 Val Le 1415 Arg Ly 0	p Thr A 1385 a Pro 1 00 u Ala 1 es Gln A	Leu Gln 1370 Arg Lys Leu Ser Lys Asp Ala His 1435 Gln Gln	Arg L Lys T Ser S 1 Ser A 1420 Arg A	hr Lys 1390 er Ala 405 la Lys rg Ala er Gln	Asp Ser 1375 Gln Ala Lys Lys Leu Ala Ser Arg 1440 Gln Val	
Phe Pro Arg Pro Val Ser Asp Arg 138 Glu Arg Met Leu 1395 Lys Gly Arg Glu 1410 Lys Ala Leu Leu 1425 Leu Thr Ser Gln	Lys Asp 1365 Leu Leu O Gly Asn Ala Glu Arg Glu 143 Thr Gln 1445	Gln Al Ala As Ala Al 14 Val Le 1415 Arg Ly 0 Ala Th	p Thr A 1385 a Pro 1 00 u Ala 1 s Gln A r Leu (Leu Gln 1370 Arg Lys Leu Ser Lys Asp Ala His 1435 Gln Gln	Arg L Lys T Ser S 1 Ser A 1420 Arg A	hr Lys 1390 er Ala 405 la Lys rg Ala er Gln	Asp Ser 1375 Gln Ala Lys Lys Leu Ala Ser Arg 1440 Gln Val	
Phe Pro Arg Pro Val Ser Asp Arg 138 Glu Arg Met Leu 1395 Lys Gly Arg Glu 1410 Lys Ala Leu Leu 1425 Leu Thr Ser Gln Leu Ala Ser Glu	Lys Asp 1365 Leu Leu O Gly Asn Ala Glu Arg Glu 143 Thr Gln 1445 Ala Arg	Gln Al Ala As Ala Al 14 Val Le 1415 Arg Ly 0 Ala Th	p Thr A 1385 a Pro I 00 u Ala I r Leu (I n Glu I	Leu Gln 1370 Arg Lys Leu Ser Lys Asp Ala His 1435 Gln Gln	Arg L Lys T Ser S 1 Ser A 1420 Arg A	hr Lys 1390 er Ala 405 la Lys rg Ala er Gln la Glu	Asp Ser 1375 Gln Ala Lys Lys Leu Ala Ser Arg 1440 Gln Val 1455 Arg Val	
Phe Pro Arg Pro Val Ser Asp Arg 138 Glu Arg Met Leu 1395 Lys Gly Arg Glu 1410 Lys Ala Leu Leu 1425 Leu Thr Ser Gln Leu Ala Ser Glu 1466	Lys Asp 1365 Leu Leu O Gly Asn Ala Glu Arg Glu 143 Thr Gln 1445 Ala Arg	Gln Al Ala As Ala Al 14 Val Le 1415 Arg Ly 0 Ala Th Arg Gl	p Thr A 1385 a Pro I 00 u Ala I r Leu (1 n Glu I 1465	Leu Gln 1370 Arg Lys Leu Ser Lys Asp Ala His 1435 Gln Gln 1450 Leu Glu	Arg L Lys T Ser S 1 Ser A 1420 Arg A Ala S Glu A	hr Lys 1390 er Ala 405 la Lys rg Ala er Gln la Glu 1470	Asp Ser 1375 Gln Ala Lys Lys Leu Ala Ser Arg 1440 Gln Val 1455 Arg Val	
Phe Pro Arg Pro Val Ser Asp Arg	Lys Asp 1365 Leu Leu O Gly Asn Ala Glu Arg Glu 143 Thr Gln 1445 Ala Arg	Gln Al Ala As Ala Al 14 Val Le 1415 Arg Ly 0 Ala Th Arg Gl Met Gl	p Thr A 1385 a Pro 1 00 u Ala I s Gln A r Leu (1 n Glu I 1465 u Gln (Leu Gln 1370 Arg Lys Leu Ser Lys Asp Ala His 1435 Gln Gln 1450 Leu Glu	Arg L Lys T Ser S 1 Ser A 1420 Arg A Ala S Glu A Arg G	hr Lys 1390 er Ala 405 la Lys rg Ala er Gln la Glu 1470 lu Ser	Asp Ser 1375 Gln Ala Lys Lys Leu Ala Ser Arg 1440 Gln Val 1455 Arg Val	
Phe Pro Arg Pro Val Ser Asp Arg	Lys Asp 1365 Leu Leu O Gly Asn Ala Glu Arg Glu 143 Thr Gln 1445 Ala Arg	Gln Al Ala As Ala Al 14 Val Le 1415 Arg Ly 0 Ala Th Arg Gl Met Gl 14	p Thr 2 1385 a Pro 1 00 u Ala 1 r Leu (1 n Glu I 1465 u Gln (Leu Gln 1370 Arg Lys Leu Ser Lys Asp Ala His 1435 Gln Gln 1450 Leu Glu Gln Ile	Arg L Lys T Ser S 1 Ser A 1420 Arg A Ala S Glu A Arg G 1	hr Lys 1390 er Ala 405 la Lys rg Ala er Gln la Glu 1470 lu Ser	Asp Ser 1375 Gln Ala Lys Lys Leu Ala Ser Arg 1440 Gln Val 1455 Arg Val Arg Ile	
Phe Pro Arg Pro Val Ser Asp Arg	Lys Asp 1365 Leu Leu O Gly Asn Ala Glu Arg Glu 143 Thr Gln 1445 Ala Arg	Gln Al Ala As Ala Al 14 Val Le 1415 Arg Ly 0 Ala Th Arg Gl Met Gl 14 Glu Th	p Thr 2 1385 a Pro 1 00 u Ala 1 r Leu (1 n Glu I 1465 u Gln (Leu Gln 1370 Arg Lys Leu Ser Lys Asp Ala His 1435 Gln Gln 1450 Leu Glu Gln Ile	Arg L Lys T Ser S 1. Ser A 1420 Arg A Glu A Arg G 1. Leu Le	hr Lys 1390 er Ala 405 la Lys rg Ala er Gln la Glu 1470 lu Ser	Asp Ser 1375 Gln Ala Lys Lys Leu Ala Ser Arg 1440 Gln Val 1455 Arg Val Arg Ile	
Phe Pro Arg Pro Val Ser Asp Arg	Lys Asp 1365 Leu Leu O Gly Asn Ala Glu Arg Glu 143 Thr Gln 1445 Ala Arg O Ser Glu	Gln Al Ala As Ala Al 14 Val Le 1415 Arg Ly 0 Ala Th Arg Gl Met Gl 14 Glu Th 1495	p Thr 2 1385 a Pro 1 00 u Ala 1 s Gln 2 r Leu 0 1465 u Gln 0 80 r Leu 9	Leu Gln 1370 Arg Lys Leu Ser Lys Asp Ala His 1435 Gln Gln 1450 Leu Glu Gln Ile	Arg L Lys T Ser S 1420 Arg A Ala S Glu A Arg G 14 Leu L 1500	hr Lys 1390 er Ala 405 la Lys rg Ala er Gln la Glu 1470 lu Ser 485 eu Ala	Asp Ser 1375 Gln Ala Lys Lys Leu Ala Ser Arg 1440 Gln Val 1455 Arg Val Arg Ile Arg Leu	
Phe Pro Arg Pro Val Ser Asp Arg	Lys Asp 1365 Leu Leu O Gly Asn Ala Glu Arg Glu 143 Thr Gln 1445 Ala Arg Ser Glu Asp Ile	Gln Al Ala As Ala Al 14 Val Le 1415 Arg Ly O Ala Th Arg Gl Met Gl 14 Glu Th 1495 Gln Al	p Thr 2 1385 a Pro 1 00 u Ala 1 s Gln 2 r Leu 0 1465 u Gln 0 80 r Leu 9	Leu Gln 1370 Arg Lys Leu Ser Lys Asp Ala His 1435 Sln Gln 1450 Leu Glu Gln Ile Ser Glu Ala Gln	Arg L Ser S Ser A 1420 Arg A Ala S Glu A Arg G Leu L 1500 Ala Lea	hr Lys 1390 er Ala 405 la Lys rg Ala er Gln la Glu 1470 lu Ser 485 eu Ala	Asp Ser 1375 Gln Ala Lys Lys Leu Ala Ser Arg 1440 Gln Val 1455 Arg Val Arg Ile Arg Leu Glu Thr	
Phe Pro Arg Pro Val Ser Asp Arg	Lys Asp 1365 Leu Leu O Gly Asn Ala Glu Arg Glu 143 Thr Gln 1445 Ala Arg O Ser Glu Asp Ile Thr His 151	Gln Al Ala As Ala Al 14 Val Le 1415 Arg Ly O Ala Th Arg Gl Met Gl Glu Th 1495 Gln Al O	p Thr A 1385 a Pro 1 00 u Ala 1 s Gln A r Leu 6 n Glu I 1465 u Gln 6 80 r Leu 5 a Pro A	Leu Gln 1370 Arg Lys Leu Ser Lys Asp Ala His 1435 Gln Gln 1450 Leu Glu Gln Ile Ser Glu Ala Gln 1515	Arg L Lys T Ser S 1 Ser A 1420 Arg A Ala S Glu A Arg G 1 Leu L 1500 Ala L	hr Lys 1390 er Ala 405 la Lys rg Ala er Gln la Glu 1470 lu Ser 485 eu Ala eu Asn	Asp Ser 1375 Gln Ala Lys Lys Leu Ala Ser Arg 1440 Gln Val 1455 Arg Val Arg Ile Arg Leu Glu Thr 1520	
Phe Pro Arg Pro Val Ser Asp Arg	Lys Asp 1365 Leu Leu O Gly Asn Ala Glu Arg Glu 143 Thr Gln 1445 Ala Arg Ser Glu Asp Ile Thr His 151 Glu Arg	Gln Al Ala As Ala Al 14 Val Le 1415 Arg Ly O Ala Th Arg Gl Met Gl Glu Th 1495 Gln Al O	p Thr 2 1385 a Pro 1 00 u Ala 1 2 5 Gln 2 1 1465 u Gln 0 80 r Leu S a Pro 2 4 g Leu C	Leu Gln 1370 Arg Lys Leu Ser Lys Asp Ala His 1435 Sin Gln 1450 Leu Glu Gln Ile Ser Glu Ala Gln 1515	Arg L Lys T Ser S 1 Ser A 1420 Arg A Ala S Glu A Arg G 1 Leu L 1500 Ala L	hr Lys 1390 er Ala 405 la Lys rg Ala er Gln la Glu 1470 lu Ser 485 eu Ala eu Asn er Pro	Asp Ser 1375 Gln Ala Lys Lys Leu Ala Ser Arg 1440 Gln Val 1455 Arg Val Arg Ile Arg Leu Glu Thr 1520 Gly Ser	
Phe Pro Arg Pro Val Ser Asp Arg 138 Glu Arg Met Leu 1395 Lys Gly Arg Glu 1410 Lys Ala Leu Leu 1425 Leu Thr Ser Gln Leu Ala Ser Glu 1466 Gly Ala Gly Leu 1475 Ser Leu Glu Lys 1490 Gly Ser Leu Asp 1505 Gln Trp Ala Leu	Lys Asp 1365 Leu Leu O Gly Asn Ala Glu Arg Glu 143 Thr Gln 1445 Ala Arg Ser Glu Asp Ile Thr His 151 Glu Arg 1525	Gln Al Ala As Ala Al 14 Val Le 1415 Arg Ly O Ala Th Arg Gl Met Gl Glu Th 1495 Gln Al O Leu Ar	p Thr A 1385 a Pro 1 00 u Ala 1 s Gln A r Leu 6 n Glu I 1465 u Gln 6 80 r Leu 5 a Pro A	Leu Gln 1370 Arg Lys Leu Ser Lys Asp Ala His 1435 Gln Gln 1450 Leu Glu Gln Ile Ser Glu Ala Gln 1515	Arg L Ser S Ser A 1420 Arg A Ala S Glu A Arg G Leu L 1500 Ala L Gly S Gly S	hr Lys 1390 er Ala 405 la Lys rg Ala er Gln la Glu 1470 lu Ser 485 eu Ala eu Asn er Pro	Asp Ser 1375 Gln Ala Lys Lys Leu Ala Ser Arg 1440 Gln Val 1455 Arg Val Arg Ile Arg Leu Glu Thr 1520 Gly Ser	
Phe Pro Arg Pro Val Ser Asp Arg	Lys Asp 1365 Leu Leu O Gly Asn Ala Glu Arg Glu 143 Thr Gln 1445 Ala Arg Ser Glu Asp Ile Thr His 151 Glu Arg 1525 Leu Ser	Gln Al Ala As Ala Al 14 Val Le 1415 Arg Ly O Ala Th Arg Gl Met Gl Glu Th 1495 Gln Al O Leu Ar	p Thr 2 1385 a Pro 1 00 u Ala 1 1 5 Gln 2 1 1 4 6 5 u Gln 6 8 0 r Leu 5 a Pro 2 4 g Leu 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Leu Gln 1370 Arg Lys Leu Ser Lys Asp Ala His 1435 Gln Gln 1450 Leu Glu Gln Ile Ser Glu Ala Gln 1515	Arg L Ser S Ser A 1420 Arg A Ala S Glu A Arg G Leu L 1500 Ala L Gly S Gly S	hr Lys 1390 er Ala 405 la Lys rg Ala er Gln 1470 lu Ser 485 eu Ala eu Asn er Pro	Asp Ser 1375 Gln Ala Lys Lys Leu Ala Ser Arg 1440 Gln Val 1455 Arg Val Arg Ile Arg Leu Glu Thr 1520 Gly Ser	
Phe Pro Arg Pro Val Ser Asp Arg 138 Glu Arg Met Leu 1395 Lys Gly Arg Glu 1410 Lys Ala Leu Leu 1425 Leu Thr Ser Gln Leu Ala Ser Glu 1466 Gly Ala Gly Leu 1475 Ser Leu Glu Lys 1490 Gly Ser Leu Asp 1505 Gln Trp Ala Leu	Lys Asp 1365 Leu Leu O Gly Asn Ala Glu Arg Glu 143 Thr Gln 1445 Ala Arg Ser Glu Asp Ile Thr His 151 Glu Arg 1525 Leu Ser	Gln Al Ala As Ala Al 14 Val Le 1415 Arg Ly 0 Ala Th Arg Gl Met Gl 14 Glu Th 1495 Gln Al 0 Leu Ar	p Thr 2 1385 a Pro 1 00 u Ala 1 r Leu (Leu Gln 1370 Arg Lys Leu Ser Lys Asp Ala His 1435 Gln Gln 1450 Leu Glu Gln Ile Ser Glu Ala Gln 1515 Gln Leu 1530 Gln Glu	Arg L Lys T Ser S Ser A 1420 Arg A Ala S Glu A Arg G 1 Leu L 1500 Ala L Gly S Ser G	hr Lys 1390 er Ala 405 la Lys rg Ala er Gln 1470 lu Ser 485 eu Ala eu Asn er Pro ln Gln 1550	Asp Ser 1375 Gln Ala Lys Lys Leu Ala Ser Arg 1440 Gln Val 1455 Arg Val Arg Ile Arg Leu Glu Thr 1520 Gly Ser 1535 Gln Glu	

```
1560
                                                 1565
        1555
Lys Gln Asn Leu Glu Ala Ile Leu His Ser Leu Pro Glu Asn Cys Ala
                       1575
                                            1580
Ser Trp Gln
1585
<210> 1363
<211> 392
<212> DNA
<213> Homo sapiens
<400> 1363
tcatgactgt ggccatgctc tgcgtcgtgc gtcgtcaggg atacaggcgc cattgaagac
gaaqqcqcca ccgaagacaa ggacqtagag gaaaqccqcq ctgtqctcga aggcqcaqca
ggaatctgcg aaaccgacaa agatgcggct gtttgagtgg atgtgaagga agatgcaggt
gtotcatcgg cggggccacc atgaacaacc cttcttgatg ccccgtaggt gacgcgctca
cacacgacat gcacaacaaa taaatcgcaa agcacagagg gacaatcgaa tacaccttga
cccatgcact tgcgtgcctg gaggcatggc taccaggcaa tcccctcatt tccagaatga
gcctgttttt gaaagcgact agggaagttc ag
392
<210> 1364
<211> 104
<212> PRT
<213> Homo sapiens
<400> 1364
Met Arg Gly Leu Pro Gly Ser His Ala Ser Arg His Ala Ser Ala Trp
Val Lys Val Tyr Ser Ile Val Pro Leu Cys Phe Ala Ile Tyr Leu Leu
            20
                                25
Cys Met Ser Cys Val Ser Ala Ser Pro Thr Gly His Gln Glu Gly Leu
                            40
Phe Met Val Ala Pro Pro Met Arg His Leu His Leu Pro Ser His Pro
                                            60
                        5.5
Leu Lys Gln Pro His Leu Cys Arg Phe Arg Arg Phe Leu Leu Arg Leu
Arg Ala Gln Arg Gly Phe Pro Leu Arg Pro Cys Leu Arg Trp Arg Leu
                                    90
                85
Arg Leu Gln Trp Arg Leu Tyr Pro
            100
<210> 1365
<211> 451
<212> DNA
<213> Homo sapiens
<400> 1365
```

```
nnacgcgtga gggagaagat ggatgacacc agcctctata atacgccctg tgtcctggac
ctacageggg ceetggttca ggategeeaa gaggegeeet ggaatgaggt ggatgaggte
tggcccaatg tcttcatagc tgagaagagt gtggctgtga acaaggggag gctgaagagg
ctqqqaatca cccacattct gaatgctgcg catggcaccg gcgtttacac tggccccgaa
240
ttctacactg gcctggagat ccagtacctg ggtgtagagg tggatgactt tcctgaggtg
qacatttccc agcatttccg gaaggcgtct gagttcctgg atgaggcgct gctgacttac
agagggaaag tootggtoag cagogaaatg ggcatcagco ggtoagcagt gotggtggto
gectacetga tgatetteca caacatggee a
451
<210> 1366
<211> 150
<212> PRT
<213> Homo sapiens
<400> 1366
Xaa Arg Val Arg Glu Lys Met Asp Asp Thr Ser Leu Tyr Asn Thr Pro
                 5
Cys Val Leu Asp Leu Gln Arg Ala Leu Val Gln Asp Arg Gln Glu Ala
                                                     30
                                25
Pro Trp Asn Glu Val Asp Glu Val Trp Pro Asn Val Phe Ile Ala Glu
        35
Lys Ser Val Ala Val Asn Lys Gly Arg Leu Lys Arg Leu Gly Ile Thr
                        55
His Ile Leu Asn Ala Ala His Gly Thr Gly Val Tyr Thr Gly Pro Glu
                    70
                                        75
Phe Tyr Thr Gly Leu Glu Ile Gln Tyr Leu Gly Val Glu Val Asp Asp
                                    90
                85
Phe Pro Glu Val Asp Ile Ser Gln His Phe Arg Lys Ala Ser Glu Phe
                                                    110
                                105
Leu Asp Glu Ala Leu Leu Thr Tyr Arg Gly Lys Val Leu Val Ser Ser
                            120
        115
Glu Met Gly Ile Ser Arg Ser Ala Val Leu Val Val Ala Tyr Leu Met
                                            140
                        135
Ile Phe His Asn Met Ala
145
                    150
<210> 1367
<211> 330
<212> DNA
<213> Homo sapiens
<400> 1367
gtgcacgcgc cccggacaaa aaaatgagca gcaccccaga cgtcatcgct acacccatgg
cgccgatacg cgccaacgcc gtagaccgcg aacgctggct caccggcgcc gctgtactgc
```

```
tegtegtege attgetgetg gteategteg eactgeeegt eagegeacte gteggeeaga
180
gettettega eegegaagge geettegteg geetegeeaa ettegetege taeetegaea
240
accoegect ggtccagtcc gccttcaaca gcctctggct ggccgcgatc agcgccgtca
tetgeacege categoetae gtetaegegt
330
<210> 1368
<211> 82
<212> PRT
<213> Homo sapiens
<400> 1368
Thr Ala Asn Ala Gly Ser Pro Ala Pro Leu Tyr Cys Ser Ser Ser His
Cys Cys Trp Ser Ser Ser His Cys Pro Ser Ala His Ser Ser Ala Arg
            20
                                25
Ala Ser Ser Thr Ala Lys Ala Pro Ser Ser Ala Ser Pro Thr Ser Leu
Ala Thr Ser Thr Thr Pro Pro Trp Ser Ser Pro Pro Ser Thr Ala Ser
                        55
Gly Trp Pro Arg Ser Ala Pro Ser Ser Ala Pro Pro Ser Pro Thr Ser
65
                    70
                                         75
Thr Arg
<210> 1369
<211> 356
<212> DNA
<213> Homo sapiens
<400> 1369
cgccagttca tctataagaa catcatccac agtgcagcac caatgggcga cgagatggct
catcacctgt acgtactgca ggctctcatg ctggggctgc tggagccgcg catgcggacg
120
cccctggacc cctacagcca ggagcagcgg gagcagctgc aggtcctacg ccaggctgcc
ttcgaggtgg agggggagtc ctcgggtgcc gggctaagtg ctgaccgtcg ccgttccctc
240
tgtgcccgag agttccgcaa actgggcttt tctaacagca acccagcaca ggacctggag
egegtgeece eeggtetget ggeeetggae aacatgttgt actteteeag aaacge
356
<210> 1370
<211> 104
<212> PRT
<213> Homo sapiens
<400> 1370
Met Gly Asp Glu Met Ala His His Leu Tyr Val Leu Gln Ala Leu Met
```

10 1 Leu Gly Leu Leu Glu Pro Arg Met Arg Thr Pro Leu Asp Pro Tyr Ser 20 25 Gln Glu Gln Arg Glu Gln Leu Gln Val Leu Arg Gln Ala Ala Phe Glu Val Glu Gly Glu Ser Ser Gly Ala Gly Leu Ser Ala Asp Arg Arg Ser Leu Cys Ala Arg Glu Phe Arg Lys Leu Gly Phe Ser Asn Ser Asn 70 Pro Ala Gln Asp Leu Glu Arg Val Pro Pro Gly Leu Leu Ala Leu Asp 85 90 Asn Met Leu Tyr Phe Ser Arg Asn 100 <210> 1371 <211> 648 <212> DNA <213> Homo sapiens <400> 1371 tegegageae acteeageet etgggetgee ttttteaggt tttgcaaact ggctatgaat tgttcagcgg ttggattagc cagttctgca gactggctca cacccagacc atctggaccg 120 cttatagaga agacatgttc caagtaccct ctttcctttg tctgcttttc tcatgggtac 180 tttgccctct aagaagccta ctttcctctt ttcctctcct cctctcccta tttctctttg ttgagagagc agtcagatta acccaacaac tcttggagtg ccttggtcac ctgagagcat qqaaaqtcca tgccctcacc agagtaatga ctaccatttc tccaaaaactc tcctcatgcc atcogatagg cagtattgat cagaagggga aatctagtgt gttaaaattg ataaaccagc ttaagttata cctacaataa aagacccagc cttagcccat ggctgaatgt tgaatactgt tqcatqqaaa tttgggattt ctagttagag gctttataaa ggtagaatca tgcagacaca tatacctqqa aatattcqqa acattctatt aqcaqaaatg caatgtagga agcttattgg ttctagaaga atgtgtcatt gtcagtaatt ggaattactg acagatct 648 <210> 1372 <211> 101 <212> PRT <213> Homo sapiens <400> 1372 Met Phe Gln Val Pro Ser Phe Leu Cys Leu Leu Phe Ser Trp Val Leu Cys Pro Leu Arg Ser Leu Leu Ser Ser Phe Pro Leu Leu Leu Ser Leu 25 20 Phe Leu Phe Val Glu Arg Ala Val Arg Leu Thr Gln Gln Leu Leu Glu

```
35
                            40
Cys Leu Gly His Leu Arg Ala Trp Lys Val His Ala Leu Thr Arg Val
Met Thr Thr Ile Ser Pro Lys Leu Ser Ser Cys His Pro Ile Gly Ser
                                         75
Ile Asp Gln Lys Gly Lys Ser Ser Val Leu Lys Leu Ile Asn Gln Leu
                                    90
Lys Leu Tyr Leu Gln
            100
<210> 1373
<211> 369
<212> DNA
<213> Homo sapiens
<400> 1373
caattggttt teeccaactt tetaettgea aageaactte ttagaeetgg ggteetetet
tgcaggcgcc ctgcatggca gagaactttt tccaccacaa ccttcgtgta acaggcagtt
acatgggttt catgggtcga catgggttcc gtgtcctgct tgccgggcct gagctgtttg
180
teaggtgtae aacegagaae ettgeagaee agaateeaag aeteegeage atgtgtgtge
240
cggggcggga cacgagctgt tggaggagaa agccatcagt gtatttagag gcaaagggct
tectaaateg aggetgtgea ggeeteetga aagteettae eeaagettee gaggtaaate
360
ctctccgca
369
<210> 1374
<211> 98
<212> PRT
<213> Homo sapiens
<400> 1374
Met Ala Glu Asn Phe Phe His His Asn Leu Arg Val Thr Gly Ser Tyr
Met Gly Phe Met Gly Arg His Gly Phe Arg Val Leu Leu Ala Gly Pro
Glu Leu Phe Val Arg Cys Thr Thr Glu Asn Leu Ala Asp Gln Asn Pro
                            40
Arg Leu Arg Ser Met Cys Val Pro Gly Arg Asp Thr Ser Cys Trp Arg
                        55
                                            60
Arg Lys Pro Ser Val Tyr Leu Glu Ala Lys Gly Phe Leu Asn Arg Gly
                                        75
                    70
Cys Ala Gly Leu Leu Lys Val Leu Thr Gln Ala Ser Glu Val Asn Pro
                                    90
                85
Leu Arg
<210> 1375
<211> 282
```

```
<212> DNA
<213> Homo sapiens
<400> 1375
nacqcgttcg accgcgccac gcgcgggcac gttatcgact acatcgactt tcacctgcac
ggctggcact ggcccgcctt caacatcgct gacatggcca tcgtgggcgg ggcgatcgcg
ctggtggccc agtcgttcat gagcgtggag aacccggccg ccacaaagga gtcccagtga
cattgggacg atccggaaat tcgcaatgca cacggtgcag gacaccaatc tgaagagaac
ggcccccagc atgagcggcc gcggcttggc cctcatgcta gc
282
<210> 1376
<211> 59
<212> PRT
<213> Homo sapiens
<400> 1376
Xaa Ala Phe Asp Arq Ala Thr Arq Gly His Val Ile Asp Tyr Ile Asp
                 5
 1
Phe His Leu His Gly Trp His Trp Pro Ala Phe Asn Ile Ala Asp Met
                                25
Ala Ile Val Gly Gly Ala Ile Ala Leu Val Ala Gln Ser Phe Met Ser
Val Glu Asn Pro Ala Ala Thr Lys Glu Ser Gln
                        55
    50
<210> 1377
<211> 6306
<212> DNA
<213> Homo sapiens
<400> 1377
tagtaagaca ggtgccttca gttcactctc agtaaggggc tggttgcctg catgagtgtg
tgctctgtgt cactgtggat tggagttgaa aaagcttgac tggcgtcatt caggagctgg
atggcgtggg acatgtgcaa ccaggactct gagtctgtat ggagtgacat cgagtgtgct
getetggttg gtgaagacca geetetttge ecagatette etgaacttga tetttetgaa
ctagatgtga acgacttgga tacagacagc tttctgggtg gactcaagtg gtgcagtgac
caatcagaaa taatatccaa tcagtacaac aatgagcctt caaacatatt tgagaagata
gatgaagaga atgaggcaaa cttgctagca gtcctcacag agacactaga cagtctccct
gtggatgaag acggattgcc ctcatttgat gcgctgacag atggagacgt gaccactgac
aatgaggeta gteetteete catgeetgae ggeacceete caccecagga ggeagaagag
540
```

ccgtctctac 600	ttaagaagct	cttactggca	ccagccaaca	ctcagctaag	ttataatgaa
660			aatcacaatc		
720			aataaagcga		
780			ctcaaatatc		
840			agcagcagag		
900			ttacaagcca		
960			aagggttccc		
1020			actgcaggcc		
1080			agggettete		
1140			cccaggtaca		
1200			caatccgagt		
1260			aggaagacca		
1320			aattccaaaa		
1380			gaaaataaag		
1440			cagtgctacc		
1500			aaacagctcc		
1560			caagetgttt		
1620			aatgaacaat		
1680			tttgatgaca		
1740			tattcattgt		
1800			gtgtcaccac		
1860			tcettttete		
1920			ccaggcagta		
1980			cgcacgcacc		
2040			cggcccaggt		
2100			cgcagagagt		
agggccaagc 2160	aaagggagag	gcagaggcag	aaggcaattg	aayaycyccg	cycyactiat

gtcggtaaaa 2220	tcagacctga	cacaacacgg	acagaactga	gggaccgttt	tgaagttttt
ggtgaaattg 2280	aggagtgcac	agtaaatetg	cgggatgatg	gagacagcta	tggtttcatt
acctaccgtt 2340	atacctgtga	tgcttttgct	gctcttgaaa	atggatacac	tttgcgcagg
tcaaacgaaa 2400	ctgactttga	gctgtacttt	tgtggacgca	agcaattttt	caagtctaac
tatgcagacc 2460	tagattcaaa	ctcagatgac	tttgaccctg	cttccaccaa	gagcaagtat
gactctctgg 2520	attttgatag	tttactgaaa	gaagctcaga	gaagettgeg	caggtaacat
gttccctagc 2580	tgaggatgac	agagggatgg	cgaatacctc	atgggacagc	gcgtccttcc
ctaaagacta 2640	ttgcaagtca	tacttaggaa	tttctcctac	tttacactct	ctgtacaaaa
acaaaacaaa 2700	acaacaacaa	tacaacaaga	acaacaacaa	caataacaac	aatggtttac
atgaacacag 2760	ctgctgaaga	ggcaagagac	agaatgatat	ccagtaagca	catgtttatt
catgggtgtc 2820	agetttgett	ttcctggagt	ctcttggtga	tggagtgtgc	gtgtgtgcat
gtatgtgtgt 2880	gtgtatgtat	gtgtgtggtg	tgtgtgcttg	gtttagggga	agtatgtgtg
ggtacatgtg 2940	aggactgggg	gcacctgacc	agaatgcgca	agggcaaacc	atttcaaatg
gcagcagttc 3000	catgaagaca	cacttaaaac	ctagaacttc	aaaatgttcg	tattctattc
aaaaggaaaa 3060	atatatatat	atatatatat	atataaatta	aaaaggaaag	aaaactaaca
accaaccaac 3120	caaccaacca	accacaaacc	accctaaaat	gacagccgct	gatgtctggg
catcagcctt 3180	tgtactctgt	ttttttaaga	aagtgcagaa	tcaacttgaa	gcaagctttc
tctcataacg 3240	taatgattat	atgacaatcc	tgaagaaacc	acaggttcca	tagaactaat
atcctgtctc 3300	tctctctc	tetetete	tcttttttt	ttcttttcc	ttttgccatg
gaatctgggt 3360	gggagaggat	actgcgggca	ccagaatgct	aaagtttcct	aacattttga
agtttctgta 3420	gttcatcctt	aatcctgaca	cccatgtaaa	tgtccaaaat	gttgatcttc
cactgcaaat 3480	ttcaaaagcc	ttgtcaatgg	tcaagcgtgc	agcttgttca	gcggttcttt
ctgaggagcg 3540	gacaccgggt	tacattacta	acgagagttg	ggtagaactc	tctgagatgt
gttcagatag 3600	tgtaattgct	acattetetg	atgtagttaa	gtatttacag	atgttaaatg
3660			aacaatgttc		
3720			taaatttttc		
gtaattatga 3780	ggtgaaacaa	ttattgtaca	ctaacatatt	tagaagetga	acttactgct

tatatatatt 3840	tgattgtaca	aacaaaaaga	cagtgtgtgt	gtctgttgag	tgcaacaaga
gcaaaatgat 3900	gettteegea	catccatece	ttaggtgagc	ttcaatctaa	gcatcttgtc
aagaaatatc 3960	ctagtcccct	aaaggtatta	accacttctg	cgatatttt	ccacattttc
ttgtcgcttg 4020	tttttctttg	aagttttata	cactggattt	gttaggggaa	tgaaattttc
tcatctaaaa 4080	tttttctaga	agatatcatg	attttatgta	aagtctctca	atgggtaacc
attaagaaat 4140	gtttttattt	tctctatcaa	cagtagtttt	gaaactagaa	gtcaaaaatc
4200	gctgttttgt				
4260	agtatgattt				-
4320	ttcccttggc				
4380	ataaatactg				
4440	gcctatttat				
4500	taggatgcat				
4560	tgcagaagca ttgatgacat	- 4	-		
4620	tcaggatttc				
4680	attcaagttt				
4740	atgatacacc				
4800	atggatttca		_		
4860	catattgtgt				
4920	cttcttattt				
4980	acaggttctg				
5040	ggttaaatgc	_	_		
5100	tgaattttga				
5160	tattttaaga				
5220	ctattttgcc				
5280	ttgttgacat		-		
5340	atatcatatt				
5400		3 33			~

```
ttqttaccat qaaqataqtt ttcctcaatg gacttcaaat tgcatctaga attagtggag
cttttgtatc ttctgcagac actgtgggta gcccatcaaa atgtaagctg tgctcctctc
5520
atttttattt ttatttttt gggagagaat atttcaaatg aacacgtgca ccccatcatc
5580
actggaggca aatttcggca tagatctgta ggatttttag aagaccgtgg gccattgcct
5640
teatqeeqtq qtaaqtacca catetacaat tttggtaacc gaactggtgc tttagtaatg
5700
tqqatttttt tctttttaa aaqaqatgta gcaaaataat tcttccagtg caacaaaatc
5760
aattttttgc taaacqactc caagaacaac agttgggctg tcaacattca aagcagcaga
gagggaactt tgcactattg gggtatgatg tttgggtcag ttgataaaag gaaacctttt
5880
catgccttta gatgtgagct tccagtaggt aatgattatg tgtcctttct tgatggctgt
aatqaqaact tcaatcactq taqtctaaga cctgatctat agatgaccta gaatagccat
qtactataat qtqatqattc taaatttgta cctatgtgac agacattttc aataatgtga
actgctgatt tgatggagct actttaagat ttgtaggtga aagtgtaata ctgttggttg
6120
aactatgctg aagagggaaa gtgagcgatt agttgagccc ttgccgggcc ttttttccac
6180
ctqccaattc tacatqtatt gttgtggttt tattcattgt atgaaaattc ctgtgatttt
ttttaaatgt gcagtacaca tcagcctcac tgagctaata aagggaaacg aatgtttcaa
6300
atctaa
6306
<210> 1378
<211> 798
<212> PRT
<213> Homo sapiens
<400> 1378
Met Ala Trp Asp Met Cys Asn Gln Asp Ser Glu Ser Val Trp Ser Asp
                                    10
Ile Glu Cys Ala Ala Leu Val Gly Glu Asp Gln Pro Leu Cys Pro Asp
                                25
Leu Pro Glu Leu Asp Leu Ser Glu Leu Asp Val Asn Asp Leu Asp Thr
Asp Ser Phe Leu Gly Gly Leu Lys Trp Cys Ser Asp Gln Ser Glu Ile
                        55
Ile Ser Asn Gln Tyr Asn Asn Glu Pro Ser Asn Ile Phe Glu Lys Ile
                    70
                                        75
Asp Glu Glu Asn Glu Ala Asn Leu Leu Ala Val Leu Thr Glu Thr Leu
                                    90
Asp Ser Leu Pro Val Asp Glu Asp Gly Leu Pro Ser Phe Asp Ala Leu
            100
                                105
Thr Asp Gly Asp Val Thr Thr Asp Asn Glu Ala Ser Pro Ser Ser Met
```

		115					120					125			
Pro	Asp 130	Gly	Thr	Pro	Pro	Pro 135	Gln	Glu	Ala	Glu	Glu 140	Pro	Ser	Leu	Leu
Lys 145	Lys	Leu	Leu	Leu	Ala 150	Pro	Ala	Asn	Thr	Gln 155	Leu	Ser	Tyr	Asn	Glu 160
Cys	Ser	Gly	Leu	Ser 165	Thr	Gln	Asn	His	Ala 170	Asn	His	Asn	His	Arg 175	Ile
Arg	Thr	Asn	Pro 180	Ala	Ile	Val	Lys	Thr 185	Glu	Asn	Ser	Trp	Ser 190	Asn	Lys
Ala	Lys	Ser 195	Ile	Cys	Gln	Gln	Gln 200	Lys	Pro	Gln	Arg	Arg 205	Pro	Cys	Ser
	210			_		Thr 215					220				
225					230	Ser				235					240
				245		Gln			250					255	
			260			Thr		265					270		
		275				Thr	280					285			
	290			_		Thr 295					300				
305					310	Arg				315					320
-				325		Pro		_	330		_	_		3 3 5	
			340	_		Asn		345	_				350		
		355				Ser	360					365	_		
	370					Arg 375					380				
385	-	-			390	Asn		_		395					400
				405		Ser			410			_		415	
	_	_	420	_		Ile	-	425			-		430		
_		435				Glu	440					445			
	450	_				Asp 455					460				
465					470	Gln				475					480
				485	_	Ser			490					495	
			500			Ser		505					510		
_		515	_			Asp	520			_		525			
	530					Asn 535					540				
Ser	Pro	Cys	Arg	Asp	Ser	Val	Ser	Pro	Pro	Lys	Ser	Leu	Phe	Ser	Gln

```
555
545
                    550
Arg Pro Gln Arg Met Arg Ser Arg Ser Arg Ser Phe Ser Arg His Arg
                                    570
                565
Ser Cys Ser Arg Ser Pro Tyr Ser Arg Ser Arg Ser Arg Ser Pro Gly
                                                     590
            580
                                585
Ser Arg Ser Ser Ser Arg Ser Cys Tyr Tyr Glu Ser Ser His Tyr
        595
                            600
Arg His Arg Thr His Arg Asn Ser Pro Leu Tyr Val Arg Ser Arg Ser
                                             620
                        615
Arg Ser Pro Tyr Ser Arg Arg Pro Arg Tyr Asp Ser Tyr Glu Glu Tyr
                    630
                                        635
Gln His Glu Arg Leu Lys Arg Glu Glu Tyr Arg Arg Glu Tyr Glu Lys
                645
                                    650
Arg Glu Ser Glu Arg Ala Lys Gln Arg Glu Arg Gln Arg Gln Lys Ala
            660
                                665
Ile Glu Glu Arg Arg Val Ile Tyr Val Gly Lys Ile Arg Pro Asp Thr
                                                 685
                            680
        675
Thr Arg Thr Glu Leu Arg Asp Arg Phe Glu Val Phe Gly Glu Ile Glu
                        695
                                            700
Glu Cys Thr Val Asn Leu Arg Asp Asp Gly Asp Ser Tyr Gly Phe Ile
                                        715
705
                    710
Thr Tyr Arg Tyr Thr Cys Asp Ala Phe Ala Ala Leu Glu Asn Gly Tyr
                                                         735
                725
                                    730
Thr Leu Arg Arg Ser Asn Glu Thr Asp Phe Glu Leu Tyr Phe Cys Gly
                                745
            740
Arg Lys Gln Phe Phe Lys Ser Asn Tyr Ala Asp Leu Asp Ser Asn Ser
                                                 765
                            760
Asp Asp Phe Asp Pro Ala Ser Thr Lys Ser Lys Tyr Asp Ser Leu Asp
                        775
Phe Asp Ser Leu Leu Lys Glu Ala Gln Arg Ser Leu Arg Arg
785
                    790
                                        795
<210> 1379
<211> 590
<212> DNA
<213> Homo sapiens
<400> 1379
nnacqcqtcc ctgcccaacc tggctcagtt cagctggaga cagggccgac ccgcttgttg
gagtegteae gaggaetgag gtgegteetg agatgeetge ttgeeaggtg ttagtgtegg
120
tttgctgggg ccgcggtgac agagtgccat agaccaggca gctgaaacag agttcaattt
cttttaaagc ccgggggccg aaaaccccta aacaagggtt tgtgggggct cgttccttgg
gaggacgtga gggcaatctg gtgtccctgc cgtgtggccg cgtcacccat ctctgccctc
300
ggtgtccctg ccctgtggcc gcgtcaccca tctctgccct cggagtccct gccgtgtggc
egeqtenace catetetgee eteggagtee etgeegtgtg geegtgtena eccacetetg
cceteggtgt ccetgccgtg tggccgagte nacccacete tgccctcggt gtccctgccg
480
```

```
tqtqqccqcq tcnacccacc tctqccctcq qtqtccccqc cqtgtqqccq cqtcnaccca
tototgoott eggtgtoocc geogtgtgge egegteaccc atototgeag
590
<210> 1380
<211> 141
<212> PRT
<213> Homo sapiens
<400> 1380
Asn Arg Val Gln Phe Leu Leu Lys Pro Gly Gly Arg Lys Pro Leu Asn
Lys Gly Leu Trp Gly Leu Val Pro Trp Glu Asp Val Arg Ala Ile Trp
                                25
            20
Cys Pro Cys Arg Val Ala Ala Ser Pro Ile Ser Ala Leu Gly Val Pro
                            40
                                                 45
Ala Leu Trp Pro Arg His Pro Ser Leu Pro Ser Glu Ser Leu Pro Cys
                        55
Gly Arg Val Xaa Pro Ser Leu Pro Ser Glu Ser Leu Pro Cys Gly Arg
                                        75
                                                             80
                    70
65
Val Xaa Pro Pro Leu Pro Ser Val Ser Leu Pro Cys Gly Arg Val Xaa
Pro Pro Leu Pro Ser Val Ser Leu Pro Cys Gly Arg Val Xaa Pro Pro
                                                     110
            100
                                105
Leu Pro Ser Val Ser Pro Pro Cys Gly Arg Val Xaa Pro Ser Leu Pro
                            120
Ser Val Ser Pro Pro Cys Gly Arg Val Thr His Leu Cys
                        135
    130
<210> 1381
<211> 433
<212> DNA
<213> Homo sapiens
<400> 1381
ctgaccacct tagctaagca ttccctttct ggctgtagcc agatatgatg tgtgagtctg
cagatcatge tggccccctt gacgaagcat gcactttctg gcctaggccg gatacgatgt
120
gtgaggcac ggagagtcca ggccggagca cactgaccgc cttggctaag cattcatttc
180
cgtgtcctgg ctgccatcag agaggaggca ggtcccacag atctgctctt gtttctgctg
240
gtctgaagtg gggtttcagt ttctgtgtgg aacaattcat taggggtttg atctcaaagc
ccaggcattg gccctgtacc tgttcctcac ggaagccgaa ctcctgctta tgggccccag
cctacaggca gccaaatggg ctagccccag ccaagggget gtttggcgac ctctgaacca
cagctctcca tgg
433
<210> 1382
```

<211> 123 <212> PRT <213> Homo sapiens <400> 1382 Met Met Cys Glu Ser Ala Asp His Ala Gly Pro Leu Asp Glu Ala Cys Thr Phe Trp Pro Arg Pro Asp Thr Met Cys Glu Ala Thr Glu Ser Pro 20 25 Gly Arg Ser Thr Leu Thr Ala Leu Ala Lys His Ser Phe Pro Cys Pro Gly Cys His Gln Arg Gly Gly Arg Ser His Arg Ser Ala Leu Val Ser 55 Ala Gly Leu Lys Trp Gly Phe Ser Phe Cys Val Glu Gln Phe Ile Arg Gly Leu Ile Ser Lys Pro Arg His Trp Pro Cys Thr Cys Ser Ser Arg 90 85 Lys Pro Asn Ser Cys Leu Trp Ala Pro Ala Tyr Arg Gln Pro Asn Gly Leu Ala Pro Ala Lys Gly Leu Phe Gly Asp Leu 120 115 <210> 1383 <211> 906 <212> DNA <213> Homo sapiens <400> 1383 nnaccqqtqt tttctqtatc aactgagaga accacatgtc aaggcagcaa agtgaccacg caccacaqca cacctgcctc tggcttgcag gccaagatgg cccctatgtc aaccagggtt totgoagetq qtoctqqqaq accoacqqcc toctotoc tqcccctgac caatacacca caaacqcctc acatgaqctc acccacaccc ccaagaqcca tggtgctcac aaagcaaaga ccaaqccaga ctcaatcctg tggccccagg gtcagccgca gagcagacaa ctagaacctc acaagaaget gaacacagge tgggtcacet ataaacaggg aggccateet gaagggagga agcacccaac cagaggtgaa ctcaccttgg accattcgac aatgcagtcc aggcagaagt aatqqqcaca gttctnccqq cqtccccacq gcctqqtctc tgaatqcqtt qaqacaqatt gggcagctct ctgcatcatc atcagaattg aaagagccag cggcttccag tttcccctga gtacccgcta cotccagcaa tgtctccccg tcgtcttcag aatcctcgga accagatctg tettecaggt ettectecte agaegeeeee tegtettete egtetgtgee atetecatge tegetgteac tgtegteece agagteecea etgetgeeca egetgettte tteaaagtea cctgccgggt ccgcagggcc gacctgtggg tgtccatccg gccctgggct ccgggccaca 780

```
ageteateca ggetgtegte atceattget geacattgag etcagetecg gaaacetegt
840
gtcccgcagg cgctcgcgag cgctcgccgc cgctgcacga ccgagagtcg ctcctaggcc
900
cggccg
906
<210> 1384
<211> 97
<212> PRT
<213> Homo sapiens
<400> 1384
Xaa Pro Val Phe Ser Val Ser Thr Glu Arg Thr Thr Cys Gln Gly Ser
                                     1.0
                 5
Lys Val Thr Thr His His Ser Thr Pro Ala Ser Gly Leu Gln Ala Lys
                                 25
Met Ala Pro Met Ser Thr Arg Val Ser Ala Ala Gly Pro Gly Arg Pro
                                                 45
        35
                             40
Thr Ala Ser Ser Leu Leu Pro Leu Thr Asn Thr Pro Gln Thr Pro His
Met Ser Ser Pro Thr Pro Pro Arq Ala Met Val Leu Thr Lys Gln Arq
                    70
                                         75
Pro Ser Gln Thr Gln Ser Cys Gly Pro Arg Val Ser Arg Arg Ala Asp
                85
                                     90
Asn
<210> 1385
<211> 210
<212> DNA
<213> Homo sapiens
<400> 1385
acgcgtgcac tgggtgtatg catggtaacg tacacgtgtg cactgtgtgt ggtgtgcatg
ncatggtgtg tgcacgtgtg cnactgtgta tgcatggtaa tgtgcacgtg tgcactgtgt
gtggcgtgta tgcatggtgt gtgcacgtgt gcactgtgtg tggggtgtat gncatggtgg
gtgcacatat gcactggggg gtgtgtatgc
210
<210> 1386
<211> 70
<212> PRT
<213> Homo sapiens
<400> 1386
Thr Arg Ala Leu Gly Val Cys Met Val Thr Tyr Thr Cys Ala Leu Cys
                                     10
Val Val Cys Met Xaa Trp Cys Val His Val Cys Xaa Cys Val Cys Met
                                25
Val Met Cys Thr Cys Ala Leu Cys Val Ala Cys Met His Gly Val Cys
```

```
35
                             40
                                                 4.5
  r Cys Ala Leu Cys Val Gly Cys Met Xaa Trp Trp Val His Ile Cys
                        55
Thr Gly Gly Cys Val Cys
                     70
<210> 1387
<211> 521
<212> DNA
<213> Homo sapiens
<400> 1387
ggccgcaact ccaccagcga aggcgatgtg cgggcccatg aagggaccaa aggccaggta
gtccaagccg aaggtgtttc cggttgcggc aaacactccc caggaggcca gcacacaqaa
gccggtgagg acgaaggcgt agttgccgcc gatggcagct ccgacagcac cgccggcgat
ggcggcaagg agtccgaaga cgaagactcc gatagaggtg gtgaacatcg gtgttccttt
gtgagggegg ggtatecege gatetgteat eegeaegeag egaegggtge ggeattttet
ggacatecet aggegttgae ceaggggtgg ggtggtteag aegtgtgeeg gegeaegtet
360
gaaccacccg gtatcagcag gtgccagggg cggattcccc agcacctgac tcatatgcgt
cgatgagatc gatgttggcc ttggagtggg aactcgggtc gaaggtgtac ccqatqaact
cgtgggctaa gcgacgggcg agttcgcgac cgatgacgcg t
521
<210> 1388
<211> 103
<212> PRT
<213> Homo sapiens
<400> 1388
Gly Arg Asn Ser Thr Ser Glu Gly Asp Val Arg Ala His Glu Gly Thr
                                    10
Lys Gly Gln Val Val Gln Ala Glu Gly Val Ser Gly Cys Gly Lys His
Ser Pro Gly Gly Gln His Thr Glu Ala Gly Glu Asp Glu Gly Val Val
Ala Ala Asp Gly Ser Ser Asp Ser Thr Ala Gly Asp Gly Lys Glu
                        55
Ser Glu Asp Glu Asp Ser Asp Arg Gly Glu His Arg Cys Ser Phe
                                        75
Val Arg Ala Gly Tyr Pro Ala Ile Cys His Pro His Ala Ala Thr Gly
                                    90
                85
Ala Ala Phe Ser Gly His Pro
            100
<210> 1389
<211> 4013
```

<212> DNA <213> Homo sapiens <400> 1389 cctctgaaga tggaaacatc aggaatgaca acaccqtcac tgaaqacaqa cqqtqqqaqa cgcacagcca catcaccacc ccccacaacc tcccagacca tcatttccac cattcccagc actgccatgc acaccegete cacagetgce eccatececa teetgeetga qaqaqqaqtt tecetettee eetatgggge agaegeeggg gaeetggagt tegteaggag gaeegtggae tteacetece cactetteaa geeggegaet ggetteeece ttggeteete teteegtgat tecetetaet teacagacaa tggecagate atetteecag agteagaeta ecagatttte tectacecca acceaetece aacaggette acaggeeggg accetgtgge cetggtgget ccgttctggg acgatgctga cttctccact ggtcggggga ccacatttta tcaggaatac gagacgttct atggtgaaca cagcctgcta gtccagcagg ccgagtcttg gattagaaag atcacaaaca acgggggcta caaggccagg tgggccctaa aggtcacgtg ggtcaatgcc caegoctate etgeceagtg gacceteggg ageaacacet accaagecat cetetecaeg gacgggagca ggtcctatgc cctgtttctc taccagagcg gtgggatgca gtgggacgtg geccageget caggeaacce ggtgeteatg ggetteteta gtggagatgg etatttegaa 780 aacagcccac tgatgtccca gccagtgtgg gagaggtatc gccctgatag attcctgaat tccaactcag gcctccaagg gctgcagttc tacaggctac accgggaaga aaggcccaac taccgtctcg agtgcctgca gtggctgaag agccagcctc ggtggcccag ctggggctgg aaccaggtct cctgcccttg ttcctggcag cagggacgac gggacttacg attccaaccc gtcagcatag gtcgctgggg cctcggcagt aggcagctgt gcagcttcac ctcttggcga ggaggcgtgt gctgcagcta cgggccctgg ggagagtttc gtgaaggctg gcacgtgcag cgtccttggc agttggccca ggaactggag ccacagagct ggtgctgccg ctggaatgac 1200 aagccetace tetgtgccet gtaccagcag aggeggeeec aegtgggetg tgetacatae aggececcae agecegeetg gatgtteggg gacececaea teaceaeett ggatggtgte 1320 agttacacct tcaatgggct gggggacttc ctgctggtcg gggcccaaga cgggaactcc 1380 tectteetge tteagggeeg cacegeecag actggeteag eccaggeeac caactteate 1440 gcctttgcgg ctcagtaccg ctccagcagc ctgggccccg tcacggtcca atggctcctt 1500

gageeteaeg 1560	acgcaatccg	tgtcctgctg	gataaccaga	ctgtgacatt	tcagcctgac
catgaagacg 1620	gcggaggcca	ggagacgttc	aacgccaccg	gagtcctcct	gagccgcaac
ggctctgagg 1680	tctcggccag	cttcgacggc	tgggccaccg	tctcggtgat	cgcgctctcc
aacatcctcc 1740	acgcctccgc	cageeteeeg	cccgagtacc	agaaccgcac	ggaggggctc
ctgggggtct 1800	ggaataacaa	tccagaggac	gacttcagga	tgcccaatgg	ctccaccatt
ccccaggga 1860	gccctgagga	gatgcttttc	cactttggaa	tgacctggca	gatcaacggg
acaggeetee 1920	ttggcaagag	gaatgaccag	ctgccttcca	acttcacccc	tgttttctac
tcacaactgc 1980	aaaaaaacag	ctcctgggct	gaacatttga	tctccaactg	tgacggagat
agctcatgca 2040	tctatgacac	cctggccctg	cgcaacgcaa	gcatcggact	tcacacgagg
gaagtcagta 2100	aaaactacga	gcaggcgaac	gccaccctca	atcagtaccc	gecetecate
aatggtggtc 2160	gtgtgattga	agcctacaag	gggcagacca	cgctgattca	gtacaccage
aatgctgagg 2220	atgccaactt	cacgctcaga	gacagetgea	ccgacttgga	gctctttgag
aatgggacgt 2280	tgctgtggac	acccaagtcg	ctggagccat	tcactctgga	gattctagca
agaagtgcca 2340	agattggctt	ggcatctgca	ctccagccca	ggactgtggt	ctgccattgc
aatgcagaga 2400	gccagtgttt	gtacaatcag	accagcaggg	tgggcaactc	ctccctggag
gtggctggct 2460	gcaagtgtga	cgggggcacc	ttcggccgct	actgcgaggg	ctccgaggat
gcctgtgagg 2520	agccgtgctt	cccgagtgtc	cactgcgttc	ctgggaaggg	ctgcgaggcc
tgccctccaa 2580	acctgactgg	ggatgggcgg	cactgtgcgg	ctctggggag	ctctttcctg
tgtcagaacc 2640	agtectgeee	tgtgaattac	tgctacaatc	aaggccactg	ctacatetee
cagactctgg 2700	gctgtcagcc	catgtgcacc	tgcccccag	ccttcactga	cagccgctgc
tteetggetg 2760	ggaacaactt	cagtccaact	gtcaacctag	aacttccctt	aagagtcatc
cagctcttgc 2820	tcagtgaaga	ggaaaatgcc	tccatggcag	aggtcaacgc	ctcggtggca
tacagactgg 2880	ggaccctgga	catgcgggcc	tttctccgca	acagccaagt	ggaacgaatc
gattctgcag 2940	caccggcctc	gggaagcccc	atccaacact	ggatggtcat	ctcggagttc
cagtaccgcc 3000	ctcggggccc	ggtcattgac	tteetgaaca	accagctgct	ggccgcggtg
gtggaggcgt 3060	tcttatacca	cgttccacgg	aggagtgagg	agcccaggaa	cgacgtggtc
ttccagccca 3120	teteegggga	agacgtgcgc	gatgtgacag `	ccctgaacgt	gagcacgctg

```
aaggettaet teagatgega tggetaeaag ggetaegaee tggtetaeag eecceagage
ggetteacet gegtgteece gtgeagtagg ggetactgtg accatggagg ecagtgeeag
cacctgccca gtgggccccg ctgcagctgt gtgtccttct ccatctacac ggcctggggc
gagcactgtg agcacctgag catgaaactc gacgcgttct tcggcatctt ctttggggcc
3360
ctgggcggcc tcttgctgct gggggtcggg acgttcgtgg tcctgcgctt ctggggttgc
3420
teeggggeea ggtteteeta ttteetgaae teagetgagg cettgeettg aaggggeage
tgtggcctag gctacctcaa gactcacctc atccttaccg cacatttaag gcgccattgc
ttttgggaga ctggaaaagg gaaggtgact gaaggctgtc aggattettc aaggagaatg
aatactggga atcaagacaa gactatacct tatccatagg cgcaggtgca cagggggagg
ccataaagat caaacatgca tggatgggtc ctcacgcaga cacacccaca gaaggacact
agectgtgca egegegegtg cacacacaca cacacacaca egagttcata atgtggtgat
qqccctaaqt taagcaaaat gcttctgcac acaaaactct ctggtttact tcaaattaac
3840
totatttaaa taaagtotot otgacttttt gtgtotocaa aaccaggaat tocattootg
3900
attttcttct ggtggccgaa gggctggaca cagacttctc ccaaccatca gagggcacag
agtgtggagg ttaagtgctg ggcagcagtg gagcattagg ggcagctgga tcc
4013
<210> 1390
<211> 1156
<212> PRT
<213> Homo sapiens
<400> 1390
Pro Leu Lys Met Glu Thr Ser Gly Met Thr Thr Pro Ser Leu Lys Thr
                                    10
Asp Gly Gly Arg Arg Thr Ala Thr Ser Pro Pro Pro Thr Thr Ser Gln
                                                     30
            20
                                25
Thr Ile Ile Ser Thr Ile Pro Ser Thr Ala Met His Thr Arg Ser Thr
                                                 45
                            40
Ala Ala Pro Ile Pro Ile Leu Pro Glu Arg Gly Val Ser Leu Phe Pro
Tyr Gly Ala Asp Ala Gly Asp Leu Glu Phe Val Arg Arg Thr Val Asp
                                         75
                    70
Phe Thr Ser Pro Leu Phe Lys Pro Ala Thr Gly Phe Pro Leu Gly Ser
                                    90
Ser Leu Arg Asp Ser Leu Tyr Phe Thr Asp Asn Gly Gln Ile Ile Phe
                                105
                                                     110
            100
Pro Glu Ser Asp Tyr Gln Ile Phe Ser Tyr Pro Asn Pro Leu Pro Thr
        115
                            120
                                                 125
Gly Phe Thr Gly Arg Asp Pro Val Ala Leu Val Ala Pro Phe Trp Asp
```

	130					135					140				
Asp		Asp	Phe	Ser	Thr		Arg	Gly	Thr	Thr		Tyr	Gln	Glu	Tyr
145					150					155					160
Glu	Thr	Phe	Tyr		Glu	His	Ser	Leu		Val	Gln	Gln	Ala		Ser
_	~ 1	•	-	165	m1	3	3	~1	170		T	77-	D	175	77.
Trp	IIe	Arg	Lys 180	lie	Thr	Asn	Asn	185	GIY	Tyr	гÀг	Ата	190	Trp	ALA
Leu	Lys	Val 195	Thr	Trp	Val	Asn	Ala 200	His	Ala	Tyr	Pro	Ala 205	Gln	Trp	Thr
Leu	Gly 210		Asn	Thr	Tyr	Gln 215		Ile	Leu	Ser	Thr 220	Asp	Gly	Ser	Arg
Ser		Δla	Leu	Phe	Leu		Gln	Ser	Glv	Glv		Gln	Tro	Asp	Val
225	- / -				230	-1-			1	235			_	-	240
Ala	Gln	Arg	Ser	Gly	Asn	Pro	Val	Leu	Met	Gly	Phe	Ser	Ser	Gly	Asp
				245					250					255	
Gly	Tyr	Phe	Glu	Asn	Ser	Pro	Leu		Ser	Gln	Pro	Val		Glu	Arg
_	_	_	260	_	5 1 .	. .		265	•	0	~ 1	+	270	0 3	T
Tyr	Arg	275	Asp	Arg	Phe	Leu	280	ser	ASN	ser	GIY	285	GIN	GIY	Leu
Gln	Phe		Arg	Leu	His	Ara		Glu	Ara	Pro	Asn		Ara	Leu	Glu
0111	290	- 1 -	**** 9	2Cu		295	-	014	9		300	-7-	9		
Cys	Leu	Gln	Trp	Leu	Lys	Ser	Gln	Pro	Arg	Trp	Pro	Ser	Trp	Gly	Trp
305					310					315					320
Asn	Gln	Val	Ser		Pro	Cys	Ser	Trp		Gln	Gly	Arg	Arg		Leu
				325	_				330		_		_	335	a. 3
Arg	Phe	Gln	Pro 340	Val	Ser	Ile	Gly	Arg 345	Trp	GIY	Leu	GIÀ	350	Arg	GIN
Leu	Cys	Ser	Phe	Thr	Ser	Trp	Arg	Gly	Gly	Val	Cys	Cys	Ser	Tyr	Gly
		355					360			_	_	365			_
Pro	_	Gly	Glu	Phe	Arg		Gly	Trp	His	Val		Arg	Pro	Trp	Gln
Lau	370	Gl n	Glu	T.611	Glu	375 Pro	Gln	Ser	Trn	Cvs	380 Cvs	Ara	Trn	Asn	Asn
385	AIA	GIII	Giu	пец	390	FIO	0111	Jei	111	395	СуБ	9	125	71511	400
	Pro	Tyr	Leu	Cys		Leu	Tyr	Gln	Gln		Arg	Pro	His	Val	
•		-		405			_		410					415	
Cys	Ala	Thr	Tyr	Arg	Pro	Pro	Gln	Pro	Ala	Trp	Met	Phe	Gly	Asp	Pro
			420					425	_			_	430	_	
His	Ile		Thr	Leu	Asp	GIY		Ser	Tyr	Thr	Phe	Asn 445	GLY	Leu	GIY
A cr	Dho	435	Leu	Val	Glv	בות	440	Nen	Gly	Δen	Sor		Dhe	T.em	T.e.11
АБР	450	пец	Leu	vai	GIY	455	GIII	лэр	GLY	ASII	460	561	rnc	ncu.	1100
Gln		Arq	Thr	Ala	Gln		Gly	Ser	Ala	Gln		Thr	Asn	Phe	Ile
465	-	_			470		-			475					480
Ala	Phe	Ala	Ala	Gln	Tyr	Arg	Ser	Ser	Ser	Leu	Gly	Pro	Val	Thr	Val
				485					490					495	
Gln	Trp	Leu	Leu	Glu	Pro	His	Asp		Ile	Arg	Val	Leu		Asp	Asn
01 -	C la	11- 1	500	Db -	G1	D	.	505	~ 1	3	a 1	a 1	510	~1 ~	C1.,
GIN	inr	Val 515	Thr	rne	Gin	Pro	Asp 520	nıs	GIU	ASP	GIÀ	525	GTÀ	GIII	GIU
Thr	Phe		Ala	Thr	Glv	Val		Len	Ser	Ara	Asn		Ser	Glu	Val
	530				1	535				5	540	1			
Ser		Ser	Phe	Asp	Gly		Ala	Thr	Val	Ser	Val	Ile	Ala	Leu	Ser
545					550					555					560
Asn	Ile	Leu	His	Ala	Ser	Ala	Ser	Leu	Pro	Pro	Glu	Tyr	Gln	Asn	Arg

				565					570					575	
Thr	Glu	Gly	Leu 580	Leu	Gly	Val	Trp	Asn 585	Asn	Asn	Pro	Glu	Asp 590	Asp	Phe
		595			Ser		600					605			
	610				Met	615					620				
625	_	_			Gln 630					635					640
				645	Asn				650					655	
			660		Ser			665					670		
		675			His		680					685			
	690				Asn	695					700				
705					Lys 710					715					720
				725	Asn				730					735	
			740		Gly	•		745					750		
		755			Ile		760					765			
	770				Arg	775					780				
785					Gln 790					795					800
				805	Cys				810					815	
			820		Cys			825					830		
		835			Cys		840					845			
_	850		_		Ala	855					860				
865	-				Tyr 870					875					880
				885	Gln				890					895	
			900		Leu			905					910		
		915					920					925			Glu
	930				Glu	935					940				
945					Ala 950					955					960
				965	Ala				970					975	
			980					985					990		Leu
Asn	Asn	Gln	Leu	Leu	Ala	Ala	Val	Val	Glu	Ala	Phe	Leu	Tyr	His	Val

```
1005
        995
                            1000
Pro Arg Arg Ser Glu Glu Pro Arg Asn Asp Val Val Phe Gln Pro Ile
                        1015
                                            1020
Ser Gly Glu Asp Val Arg Asp Val Thr Ala Leu Asn Val Ser Thr Leu
                    1030
                                        1035
Lys Ala Tyr Phe Arg Cys Asp Gly Tyr Lys Gly Tyr Asp Leu Val Tyr
                1045
                                     1050
Ser Pro Gln Ser Gly Phe Thr Cys Val Ser Pro Cys Ser Arg Gly Tyr
                                1065
            1060
                                                    1070
Cys Asp His Gly Gln Cys Gln His Leu Pro Ser Gly Pro Arg Cys
        1075
                            1080
                                                1085
Ser Cys Val Ser Phe Ser Ile Tyr Thr Ala Trp Gly Glu His Cys Glu
                        1095
                                            1100
His Leu Ser Met Lys Leu Asp Ala Phe Phe Gly Ile Phe Phe Gly Ala
                    1110
                                        1115
Leu Gly Gly Leu Leu Leu Gly Val Gly Thr Phe Val Val Leu Arg
                1125
                                    1130
Phe Trp Gly Cys Ser Gly Ala Arg Phe Ser Tyr Phe Leu Asn Ser Ala
            1140
                                1145
                                                    1150
Glu Ala Leu Pro
        1155
<210> 1391
<211> 481
<212> DNA
<213> Homo sapiens
<400> 1391
gtegacggca tcgaggtcca tgacaaggca accgacctca accgcctgcg ccagaagatc
ggcattgtgt tccagcagtg gaacgccttc ccgcacctca ccgtgctgga aaacgtgatg
ctggcgccgc gcaaggtgct cggtaaaagc aagcagaagg ccgaggagct ggcggtccgg
caactgaccc acgtgggcct gagcgacaag ctcaagacct ttcccgcana qctttccggc
ggccagcaac agcgcatggc gattgcccgg gccctggcca tgtcgccgga ctacatgctg
ttcqacqaaq ccacctcqqc ccttqatccq caqttqqtqq qcqaqqtqct qqacaccatq
cgcatgctcg ccgaagacgg catgaccatg gtcctggtga cccatqaaat ccqctttqcc
cgcgatgtgt ccgatcgcgt ggcgttcttt cgcaacggcc tggtqcacga gatcqqcqcq
480
C
481
<210> 1392
<211> 160
<212> PRT
<213> Homo sapiens
<400> 1392
Val Asp Gly Ile Glu Val His Asp Lys Ala Thr Asp Leu Asn Arg Leu
```

```
10
 1
Arg Gln Lys Ile Gly Ile Val Phe Gln Gln Trp Asn Ala Phe Pro His
                                25
Leu Thr Val Leu Glu Asn Val Met Leu Ala Pro Arg Lys Val Leu Gly
                            40
Lys Ser Lys Gln Lys Ala Glu Glu Leu Ala Val Arg Gln Leu Thr His
Val Gly Leu Ser Asp Lys Leu Lys Thr Phe Pro Ala Xaa Leu Ser Gly
                    70
                                        75
Gly Gln Gln Arg Met Ala Ile Ala Arg Ala Leu Ala Met Ser Pro
Asp Tyr Met Leu Phe Asp Glu Ala Thr Ser Ala Leu Asp Pro Gln Leu
                                105
            100
Val Gly Glu Val Leu Asp Thr Met Arg Met Leu Ala Glu Asp Gly Met
                            120
Thr Met Val Leu Val Thr His Glu Ile Arg Phe Ala Arg Asp Val Ser
                        135
                                            140
Asp Arg Val Ala Phe Phe Arg Asn Gly Leu Val His Glu Ile Gly Ala
                    150
                                        155
<210> 1393
<211> 309
<212> DNA
<213> Homo sapiens
<400> 1393
eggeegecat eggegegge ettgtgggat atggecatta etgaggtget ggeeggetae
tacgaacccg acgaacacgg acaccgcaag cccgagtcgt tgtacggcgc ggtcaagatg
tgggcccttc tgcgccgtca gggcatcagg tggcccgctg cancggtgga gcgcctcatg
cqqqacaacc qqtqqcqtgg gqtgacccqc cgtaagaagg ttncgcacca ccatcgctga
cccqqctqcc gggcgagccc cggatctggt ggaccgccag ttccgcgtcg aggcgcccaa
300
caagttgct
309
<210> 1394
<211> 79
<212> PRT
<213> Homo sapiens
<400> 1394
Arg Pro Pro Ser Ala Arg Ala Leu Trp Asp Met Ala Ile Thr Glu Val
Leu Ala Gly Tyr Tyr Glu Pro Asp Glu His Gly His Arg Lys Pro Glu
                                25
Ser Leu Tyr Gly Ala Val Lys Met Trp Ala Leu Leu Arg Arg Gln Gly
                            40
Ile Arg Trp Pro Ala Ala Xaa Val Glu Arg Leu Met Arg Asp Asn Arg
                        55
Trp Arg Gly Val Thr Arg Arg Lys Lys Val Xaa His His His Arg
```

65 70 75 <210> 1395 <211> 347 <212> DNA <213> Homo sapiens <400> 1395 accqqtqqqq ttcqtqqtqq cctqgttact ttttqgcgcg agcggtgtgg tgtgggccgt tatgacggta gtcgtgggcg aaacggtgct tgtcgttgtg cgccgtcaac gtcgaagagc ccagattett aaaggeggte gegatgttge cegggegaca agggeettgg etggaegggt gtcggtgggg gagatcccct cagttgcact agagcacgtg gccgatgacg tggaggtatt ggetcagget aggegggetc atgeagtggg eggaagegtt teegaegeee teattgeeae 300 ctcccggcaa ccagggatgg ctggtctggt gccactagcc cacgcgt 347 <210> 1396 <211> 95 <212> PRT <213> Homo sapiens <400> 1396 Met Thr Val Val Val Gly Glu Thr Val Leu Val Val Arg Arg Gln 10 15 ٦ Arg Arg Arg Ala Gln Ile Leu Lys Gly Gly Arg Asp Val Ala Arg Ala 25 Thr Arg Ala Leu Ala Gly Arg Val Ser Val Gly Glu Ile Pro Ser Val Ala Leu Glu His Val Ala Asp Asp Val Glu Val Leu Ala Gln Ala Arg Arg Ala His Ala Val Gly Gly Ser Val Ser Asp Ala Leu Ile Ala Thr 75 Ser Arg Gln Pro Gly Met Ala Gly Leu Val Pro Leu Ala His Ala 85 90 95 <210> 1397 <211> 308 <212> DNA <213> Homo sapiens <400> 1397 caattgcgcg ggttactgca ggcgaagatg cagatgatgt cggacaccaa tttcctcgac ctggcccgcg tcgcgattgc cqccactatc cattctccgg aacgcgcgca agacatggtc aaccgcttga gcaaacgcga agaaggcttc acgcaatggg tacgtgccgc acaggacgat ggtcgactgt cctgcagcga cccggcgttc gctgcccacc agatacaaag cctgctcaag 240

```
qcqttcqcct tttggccgca aatcaccctg qqccaqccgg tgctqqatgc cgccagccag
300
gccaacgt
308
<210> 1398
<211> 93
<212> PRT
<213> Homo sapiens
<400> 1398
Met Gln Met Met Ser Asp Thr Asn Phe Leu Asp Leu Ala Arg Val Ala
                                    10
Ile Ala Ala Thr Ile His Ser Pro Glu Arg Ala Gln Asp Met Val Asn
                                25
Arg Leu Ser Lys Arg Glu Glu Gly Phe Thr Gln Trp Val Arg Ala Ala
Gln Asp Asp Gly Arg Leu Ser Cys Ser Asp Pro Ala Phe Ala Ala His
Gln Ile Gln Ser Leu Lys Ala Phe Ala Phe Trp Pro Gln Ile Thr
                    70
                                        75
Leu Gly Gln Pro Val Leu Asp Ala Ala Ser Gln Ala Asn
<210> 1399
<211> 539
<212> DNA
<213> Homo sapiens
<400> 1399
gctagctaac atttattttt gtttttatta ttgttatcta gtggtaaaaa tttcttaagc
aatgaactga agtctagatt tttgagatgt agtcctttac tgattataaa gcaaatgcct
ttagatattt taacttcatc agtactatct gtagtaggag gctgatttta ctaaaattag
ataattatat acatctgttc ctattccttt ggtaggacct ttaagaaagt catgctgaat
ctgagaatgc caggacattt cacgtggtat gaatgtagga tattcattta cacatcgctg
cacagacage ctctatataa cccaecctgt tggggtattg aattttttct tttcccgccc
tacttttaaa tottgtcatg taatttcaac acataatttg tggcacttta gtttttttac
cctttataqt ttaataactt atacatqtac atqcttaaaa tqtcaaacaa tacaaatqqq
aacaaagaaa attgcttcac catctgtgaa cccctccttt tgtagtcccc ttcacgcgt
539
<210> 1400
<211> 90
<212> PRT
<213> Homo sapiens
```

<400> 1400 Met Asn Val Gly Tyr Ser Phe Thr His Arg Cys Thr Asp Ser Leu Tyr 5 1.0 Ile Thr His Pro Val Gly Val Leu Asn Phe Phe Phe Ser Arg Pro Thr 25 Phe Lys Ser Cys His Val Ile Ser Thr His Asn Leu Trp His Phe Ser Phe Phe Thr Leu Tyr Ser Leu Ile Thr Tyr Thr Cys Thr Cys Leu Lys Cys Gln Thr Ile Gln Met Gly Thr Lys Lys Ile Ala Ser Pro Ser Val 70 75 Asn Pro Ser Phe Cys Ser Pro Leu His Ala 85 <210> 1401 <211> 653 <212> DNA <213> Homo sapiens <400> 1401 ttcgaggggt cacttggact caagcttcgc gaagtccggg acctcggacg accgattttt cggctgtgca ccgtcaccgc aaggctggcg tgggttnnct catcaccggc gcggcgatgg neattggggt ttgatggeeg egttteeetg etgetgggeg egateeteat egteaeegge ccaacggtga ttaacccgat cctgcgtcag ttgcgtccta cccggcgagt gagtgctctg ttgaggtggg aaggaatcgt cgtcgatccg ctcggcgcca tcctggcatt actggtgtat 300 caggecataa ecageatega eegatettee ateggacaag gegtettgaa tetggggete accetattgg tegggetget ettegetgge eccategggt ggategteac egegatgatg aaacggcacc tcatcccgga cttcctacaa ggcgtgattt tcgttggggt cgccgttgga acgtgtgttg gcgctaacgt cattcgggag gaatcgggcc tggtcgccgt tacgatgctc ggcatctacc tggcgaacca gcgcaacctc gagcttgagc ccgtcatcga gttcaaggaa cacctgcagg tgctcctcgt tggcgtccta ttcatcatgc ttgcaggacg cgt 653 <210> 1402 <211> 217 <212> PRT <213> Homo sapiens <400> 1402 Phe Glu Gly Ser Leu Gly Leu Lys Leu Arg Glu Val Arg Asp Leu Gly Arg Pro Ile Phe Arg Leu Cys Thr Val Thr Ala Arg Leu Ala Trp Val Xaa Ser Ser Pro Ala Arg Arg Trp Xaa Leu Gly Phe Asp Gly Arg Val

```
40
Ser Leu Leu Gly Ala Ile Leu Ile Val Thr Gly Pro Thr Val Ile
                        55
                                            60
Asn Pro Ile Leu Arg Gln Leu Arg Pro Thr Arg Arg Val Ser Ala Leu
Leu Arg Trp Glu Gly Ile Val Val Asp Pro Leu Gly Ala Ile Leu Ala
                                    90
                85
Leu Leu Val Tyr Gln Ala Ile Thr Ser Ile Asp Arg Ser Ser Ile Gly
                               105
Gln Gly Val Leu Asn Leu Gly Leu Thr Leu Leu Val Gly Leu Leu Phe
                                                125
                           120
Ala Gly Pro Ile Gly Trp Ile Val Thr Ala Met Met Lys Arg His Leu
                        135
                                            140
Ile Pro Asp Phe Leu Gln Gly Val Ile Phe Val Gly Val Ala Val Gly
                                        155
                    150
Thr Cys Val Gly Ala Asn Val Ile Arg Glu Glu Ser Gly Leu Val Ala
                165
                                    170
Val Thr Met Leu Gly Ile Tyr Leu Ala Asn Gln Arg Asn Leu Glu Leu
                                185
Glu Pro Val Ile Glu Phe Lys Glu His Leu Gln Val Leu Leu Val Gly
                            200
Val Leu Phe Ile Met Leu Ala Gly Arg
<210> 1403
<211> 393
<212> DNA
<213> Homo sapiens
<400> 1403
aagetttgca gtttettggt atccaaatce aggegttett ggtettttte cacaacagtg
tgtgccacat gaaatggaac acgggcaaac atatctgatc caggaaacat tagccaagta
tgttccttgg ggtcatgatc tccacaagtt gggcatatct cctttatcag ctgcttgcca
gagetteett ecatetett cattatgace teaaagggag atggeaeget agtettggae
qtcctaqctt qtttccqaag ggctgtcaga gcctccctgt taccatttct tatcttatca
ttttccacca actgatgtct agccagaaga actttttctg catcagtctc aatatcaacc
agageetett gaagetgett catgttggga tee
393
<210> 1404
<211> 127
<212> PRT
<213> Homo sapiens
<400> 1404
Met Lys Gln Leu Gln Glu Ala Leu Val Asp Ile Glu Thr Asp Ala Glu
                                    10
Lys Val Leu Leu Ala Arg His Gln Leu Val Glu Asn Asp Lys Ile Arg
```

```
20
                                25
Asn Gly Asn Arg Glu Ala Leu Thr Ala Leu Arg Lys Gln Ala Arg Thr
Ser Lys Thr Ser Val Pro Ser Pro Phe Glu Val Ile Met Lys Glu Met
Glu Gly Ser Ser Gly Lys Gln Leu Ile Lys Glu Ile Cys Pro Thr Cys
                    70
                                        75
Gly Asp His Asp Pro Lys Glu His Thr Trp Leu Met Phe Pro Gly Ser
Asp Met Phe Ala Arg Val Pro Phe His Val Ala His Thr Val Val Glu
                                105
                                                    110
Lys Asp Gln Glu Arg Leu Asp Leu Asp Thr Lys Lys Leu Gln Ser
        115
                            120
<210> 1405
<211> 421
<212> DNA
<213> Homo sapiens
<400> 1405
nnccgactgc acaaggccct gggcatcgaa ctgcccggcg cactgcaggt catcgtcaaa
ggcgaaacca gcctgcaatg gctcggcccg gacgaatggc tgctgatcgt gcccagcggt
qaaqagtteg eegeegagea aaacetgegt geegeeetgg gegagttgea tateeaggte
gtcaacgtca gcggtggcca gcagatcctc gaactcagcg gcccgaacgt gcgcgacgtg
ctgatgaaat ccaccagcta cgacgtacac cccaacaact tcccggtggg caaggcggtg
qqcacqqtqt teqccaaqte qcaactgqtq atecqccata ccqccqaaqa cacctqqqaa
ctgctgatcc gtcgcagctt ctcggattac tggtggctgt ggttgcagga cgcggctgca
420
t
421
<210> 1406
<211> 140
<212> PRT
<213> Homo sapiens
<400> 1406
Xaa Arg Leu His Lys Ala Leu Gly Ile Glu Leu Pro Gly Ala Leu Gln
                                    10
Val Ile Val Lys Gly Glu Thr Ser Leu Gln Trp Leu Gly Pro Asp Glu
Trp Leu Leu Ile Val Pro Ser Gly Glu Phe Ala Ala Glu Gln Asn
                            40
Leu Arg Ala Ala Leu Gly Glu Leu His Ile Gln Val Val Asn Val Ser
                        55
                                            60
Gly Gln Gln Ile Leu Glu Leu Ser Gly Pro Asn Val Arg Asp Val
                                        75
Leu Met Lys Ser Thr Ser Tyr Asp Val His Pro Asn Asn Phe Pro Val
```

```
85
                                     90
                                                         95
Gly Lys Ala Val Gly Thr Val Phe Ala Lys Ser Gln Leu Val Ile Arg
            100
                                105
His Thr Ala Glu Asp Thr Trp Glu Leu Leu Ile Arg Arg Ser Phe Ser
Asp Tyr Trp Trp Leu Trp Leu Gln Asp Ala Ala Ala
                        135
                                             140
    130
<210> 1407
<211> 1006
<212> DNA
<213> Homo sapiens
<400> 1407
nneggeeggg agaagetgga getegteetg tetaacetge aggeagaegt eetggagttg
ctgctggagt ttgtctacac gggctccctg gtcatcgact cggccaacgc caagacactg
ctqqaqqcqq ccaqcaaqtt ccaqttccac accttctgca aagtctgcgt gtcctttctt
180
gaqaaqcaqc tgacqqccaq caactgcctg ggcgttgctg ccatggccga ggccatgcag
tqcaqcqaqc tctaccacat nqccaaqqcc ttcqcqctqc aqatcttccc cgaggtggcc
300
geocaggagg agatecteag catetecaag gacgaettea tegeetaegt etceaacgae
360
agectcaaca ccaaggetga ggagetggtg tacgagacag tcatcaagtg gatcaagaag
gacceegega caegeacaca gtaegegget gageteetgg cegtggteeg ceteccette
atecacecca getacetget caatgtggtt gacaatgaag agetgateaa gteateagaa
gcctgccggg acctggtgaa cgaggccaaa cgctaccata tgctgcccca cgcccgccag
gagatgcaga cgccccgaac ccggccgcgc ctctctgcag gtgtggctga ggtcatcgtc
ttggttgggg gccgtcagat ggtggggatg acccagcgct cgctggtggc cgtcacctgc
tggaacccgc agaacaacaa gtggtacccc ttggcctcgg tgcccttttt aggcccggga
ttetteagtg tagtgagtge aggggeeaac atetacetet caggtgggat ggaateaggg
840
gtgccgctgg ctgatgtctg gtgctacatg tccctgcttg ataactggaa cctcgtctcc
900
agaatgccag tecceegetg teggeeceat ageetegtet aegatgggaa gatttacace
ctcgggggac ttggcgtggc aggcaacgtg gaccacgtgg agagga
1006
<210> 1408
<211> 335
<212> PRT
<213> Homo sapiens
```

<400> 1408

```
Xaa Gly Arg Glu Lys Leu Glu Leu Val Leu Ser Asn Leu Gln Ala Asp
                                  10
Val Leu Glu Leu Leu Glu Phe Val Tyr Thr Gly Ser Leu Val Ile
Asp Ser Ala Asn Ala Lys Thr Leu Leu Glu Ala Ala Ser Lys Phe Gln
                           40
Phe His Thr Phe Cys Lys Val Cys Val Ser Phe Leu Glu Lys Gln Leu
                      55
Thr Ala Ser Asn Cys Leu Gly Val Ala Ala Met Ala Glu Ala Met Gln
                   70
                                      75
Cys Ser Glu Leu Tyr His Xaa Ala Lys Ala Phe Ala Leu Gln Ile Phe
               85
                                  90
Pro Glu Val Ala Ala Gln Glu Glu Ile Leu Ser Ile Ser Lys Asp Asp
                              105
Phe Ile Ala Tyr Val Ser Asn Asp Ser Leu Asn Thr Lys Ala Glu Glu
                         120
Leu Val Tyr Glu Thr Val Ile Lys Trp Ile Lys Lys Asp Pro Ala Thr
                      135
Arg Thr Gln Tyr Ala Ala Glu Leu Leu Ala Val Val Arg Leu Pro Phe
                  150
                                      155
Ile His Pro Ser Tyr Leu Leu Asn Val Val Asp Asn Glu Glu Leu Ile
                                  170
Lys Ser Ser Glu Ala Cys Arg Asp Leu Val Asn Glu Ala Lys Arg Tyr
                              185
His Met Leu Pro His Ala Arg Gln Glu Met Gln Thr Pro Arg Thr Arg
                          200
Pro Arg Leu Ser Ala Gly Val Ala Glu Val Ile Val Leu Val Gly Gly
                      215
Arg Gln Met Val Gly Met Thr Gln Arg Ser Leu Val Ala Val Thr Cys
                   230
                                      235
Trp Asn Pro Gln Asn Asn Lys Trp Tyr Pro Leu Ala Ser Val Pro Phe
               245
                                  250
Leu Gly Pro Gly Phe Phe Ser Val Val Ser Ala Gly Ala Asm Ile Tyr
                              265
           260
Leu Ser Gly Gly Met Glu Ser Gly Val Pro Leu Ala Asp Val Trp Cys
                          280
Tyr Met Ser Leu Leu Asp Asn Trp Asn Leu Val Ser Arg Met Pro Val
                                          300
                      295
Pro Arg Cys Arg Pro His Ser Leu Val Tyr Asp Gly Lys Ile Tyr Thr
                  310
                                      315
Leu Gly Gly Leu Gly Val Ala Gly Asn Val Asp His Val Glu Arg
               325
<210> 1409
<211> 279
<212> DNA
<213> Homo sapiens
<400> 1409
nnnatgaagt tottggtttt ttcagaaaaa cgcgcttttt gctatgctgg ccgcccgcg
gcacgagata gcaccatgca actgatcgat atcggcgtca acctgaccaa cagcagtttc
```

```
cacqaccaac aggccqcaat cgtcgagcgc gcgctggagg ccggcgttac gcaaatgctg
180
ctgacaggca ccagcctggc ggtcagcgaa caagccctgg aactgtgcca tcaactggat
gcaageggeg eccacetgtt egecaeggee ggegtgeae
279
<210> 1410
<211> 93
<212> PRT
<213> Homo sapiens
<400> 1410
Xaa Met Lys Phe Leu Val Phe Ser Glu Lys Arg Ala Phe Cys Tyr Ala
                                     10
Gly Arg Pro Ala Ala Arg Asp Ser Thr Met Gln Leu Ile Asp Ile Gly
                                25
                                                     30
Val Asn Leu Thr Asn Ser Ser Phe His Asp Gln Gln Ala Ala Ile Val
        35
                            40
Glu Arq Ala Leu Glu Ala Gly Val Thr Gln Met Leu Leu Thr Gly Thr
                        55
Ser Leu Ala Val Ser Glu Gln Ala Leu Glu Leu Cys His Gln Leu Asp
                    70
65
Ala Ser Gly Ala His Leu Phe Ala Thr Ala Gly Val His
                85
<210> 1411
<211> 321
<212> DNA
<213> Homo sapiens
<400> 1411
nnncgtattt caggaatgaa gaacgaacct gaatggatgc ttgaatggcg cttgagtgca
tttcqtgaat ggttagaaat ggaagagcct agctgggctc atgtcgatta ccctaaaatt
gattttcaat ctatttctta ctattccgcg ccaaaaagca tgaaggataa gcctaagtcg
180
ttagacgaag tcgatcctga attgttacgt acttatgaaa aactgggcat tcctctcata
gaacagcaaa tgcttgctgg tatcgccgta gatgctgtct ttgactcagt gtctgtcgtt
300
actacttttc gtcaaaagct t
321
<210> 1412
<211> 107
<212> PRT
<213> Homo sapiens
<400> 1412
Xaa Arg Ile Ser Gly Met Lys Asn Glu Pro Glu Trp Met Leu Glu Trp
                 5
                                    10
Arg Leu Ser Ala Phe Arg Glu Trp Leu Glu Met Glu Glu Pro Ser Trp
```

```
20
                                25
Ala His Val Asp Tyr Pro Lys Ile Asp Phe Gln Ser Ile Ser Tyr Tyr
                            40
Ser Ala Pro Lys Ser Met Lys Asp Lys Pro Lys Ser Leu Asp Glu Val
Asp Pro Glu Leu Leu Arg Thr Tyr Glu Lys Leu Gly Ile Pro Leu Ile
                    70
Glu Gln Gln Met Leu Ala Gly Ile Ala Val Asp Ala Val Phe Asp Ser
                                     90
Val Ser Val Val Thr Thr Phe Arg Gln Lys Leu
                                105
            100
<210> 1413
<211> 385
<212> DNA
<213> Homo sapiens
<400> 1413
atgacccatg acgtcagcga agccgtggcg attgccgacc gggtgatcct gatcgaagac
ggcgaaatcg gcctcgacct gatcatcgac ctgccacgtc cgcgtgcccg tggttcacac
cgcctggccg cgttggaagc cgaagtgata aaccgtgtgc tgtcataacc cngcacgaag
coqqaacccq aacatqttaa accgctgcct acgaaattgc gttgggctca ataactcata
qaggaacacc atcatgacta taaaagccat caacgtgcgt aaccagttaa aaggcaccat
caaggaaatc gtagtcggca acgtgctctc ggaaatcgac gtgcagaccg cctccgggat
cqtcacttct gtgatcacta cgcgt
385
<210> 1414
<211> 55
<212> PRT
<213> Homo sapiens
<400> 1414
Met Thr His Asp Val Ser Glu Ala Val Ala Ile Ala Asp Arg Val Ile
Leu Ile Glu Asp Gly Glu Ile Gly Leu Asp Leu Ile Ile Asp Leu Pro
                                25
Arg Pro Arg Ala Arg Gly Ser His Arg Leu Ala Ala Leu Glu Ala Glu
Val Ile Asn Arg Val Leu Ser
    50
                        55
<210> 1415
<211> 420
<212> DNA
<213> Homo sapiens
<400> 1415
```

```
acqcqtqcaq qcaaacatta atatgagtta acaccacaca ggatgagact gtttgtacct
60
gtaactgtcc ttgtcatctg tcttgcagat ttagaagagg aatcagaaag ctgggacaac
120
totgaggotg aagaggagga gaaagcccct gtgttgccag agagtacaga agggegggag
ctgacccagg gcccggcaga gtcctcctct ctctcaggct gtgggagctg gcagcccgg
aagetgecag tetteaagte ceteeggeac atgaggeagg teetgggtge ecettettte
cgcatgctgg cctggcacgt tctcatgggg aaccaggtga tctggaaaag cagagacgtg
gacctcgtcc agtcagcttt tgaagtactt cgggtgagaa catcttttcc ttaggtgtgc
420
<210> 1416
<211> 123
<212> PRT
<213> Homo sapiens
<400> 1416
Met Arg Leu Phe Val Pro Val Thr Val Leu Val Ile Cys Leu Ala Asp
                                    10
1
                 5
Leu Glu Glu Glu Ser Glu Ser Trp Asp Asn Ser Glu Ala Glu Glu Glu
                                25
Glu Lys Ala Pro Val Leu Pro Glu Ser Thr Glu Gly Arg Glu Leu Thr
                            40
Gln Gly Pro Ala Glu Ser Ser Leu Ser Gly Cys Gly Ser Trp Gln
                        55
Pro Arg Lys Leu Pro Val Phe Lys Ser Leu Arg His Met Arg Gln Val
                    70
Leu Gly Ala Pro Ser Phe Arg Met Leu Ala Trp His Val Leu Met Gly
                85
                                    90
Asn Gln Val Ile Trp Lys Ser Arg Asp Val Asp Leu Val Gln Ser Ala
                                105
Phe Glu Val Leu Arg Val Arg Thr Ser Phe Pro
        115
                            120
<210> 1417
<211> 5058
<212> DNA
<213> Homo sapiens
<400> 1417
nngtacagec ccaaggtege teeetetggg ccetttette eccattette ccageagece
aaagctctgg tgggacaggg gcagccctg gggagggagg agaggaccca ggaacccggc
taggagggtg gcccacccat ttccagtgtg acctgttccc attcccccat gtctcctccc
atocctcccg ccactcagct caggetgatg agaagcagag caacgggtgt atcggtgttt
tctttcctgg tggggtagtg gggtggggct gaggagagaa aagggtgatt agcgtggggc
300
```

cccgccctct 360	tttgtcctct	tcccaggttc	cctggcccct	teggagaaac	gcacttggtt
cgggccagcc 420	gcctgagggg	acgggctcac	gtctgctcct	cacactgcag	ctgctgggcc
gtggagcttc 480	cccagggagc	cagggggact	tttgccgcag	ccatgaaggg	ggcacgctgg
aggagggtcc 540	cctgggtgtc	cctgagctgc	ctgtgtctct	gcctccttcc	gcatgtggtc
ccaggaacca 600	cagaggacac	attaataact	ggaagtaaaa	ctcctgcccc	agtcacctca
acaggctcaa 660	caacagcgac	actagaggga	caatcaactg	cagettette	aaggacctct
720	_	atctcagaac	_		
aaagctcaaa 780	ccgacaccct	cacgcagatg	atgacatcaa	ctctttttc	ttccccaagt
840		tgttacgcag			
tcatttccct 900	ccagtgtcac	caacacactc	atgatgacat	caaagactat	aacaatgaca
acctccacag 960	actccactct	tggaaacaca	gaagagacat	caacagcagg	aactgaaagt
tctaccccag 1020	tgacctcagc	agtctcaata	acagctggac	aggaaggaca	atcacgaaaa
1080		ccaagacaca			
1140		atctcaaacc			
1200		acacaatgtg			
1260		atccctctgt			
1320		ctccacaggc			
1380		tcttatgcca			
1440		aactttctca			
1500		gagcgtggag			
1560		aacatcaact			
1620		gacattccct			
1680		ggtaacatca			
1740		ggagacatca			
1800		atggtggtca			
1860		cacagettte			
acaggacggc 1920	ctcatgagag	gageteatte	tctccaggtg	tgtctcaaga	aatatttact