

Vavuniya Campus of the University of Jaffna

First Examination in Information and Communication Technology - 2014

Second Semester - February/March 2016

ICT1233 Operating Systems

Answer Five Questions Only

Allowed Time: Three hours

		-m			
l.	(a) Compare and contrast Application softwares and System softwares.				
	(b) Briefly describe any four major functions of Operating Systems (OS).	[20%			
	(c) Briefly describe what is meant by Kernel in OS.	[20%			
	(d) Discuss the differences between Linux and Windows OS.	[20%]			
	(e) State the difference between $32\text{-}bit$ and $64\text{-}bit$ OS.	[20%]			
2.	(a) Differentiate Program and Process.	[20%]			
	(b) Briefly describe the reasons for each of the state transitions of processes	es. [20%]			
	(c) List down four ways to terminate the processes.	[20%]			
	(d) Identify the differences between User Processes and System Processes.	[20%]			
	(e) Clearly state the use of Process Control Block (PCB).	[20%]			

- 3. (a) What do you understand by Race Condition in Operating Systems.
 - (b) Briefly describe what do you understand by Critical Section.
 - (c) Briefly explain how Mutual Exclusion and Critical Section are used for avoiding race condition.

[30%]

[20%]

[20%]

[30%]

[20%]

[20%]

- (d) Briefly describe the Producer Consumer Problem, and state the solution for it.
- 4. (a) Differentiate CPU bounded and I/O bounded processes.
 - (b) Define each of the following in process scheduling: "burst time", "waiting time", "turnaround time", and "throughput".
 - (c) The table below shows the arrival time and burst time of four processes: A, B, C and D. Process switching overhead is 1 s.

Process	Arrival time (s)	Burst time (s)
A	0	10
В	l.	25
С	2	35
D	3	20

For each of the following scheduling algorithms, draw the grant chart by considering process switching overhead, and determine the mean process turnaround time.

- Round Robin with Quantum = 10 s
- ii. Round Robin with Quantum 20 s
- iii. First In First Served

	[30%]		5.	(a)	The following Bitmap representation shows the memory allocation for a set of	
	[20%]				processes:	
ding		1			1111 0001 1000 0011 1100 1000 0J11 1000	
	[20%]	l			The memory allocation unit size is 1KB.	[05%]
it.	[30%]				1. Which is this size of the memory in 122.	
	,,	l			ii. What is the total size of the free space available in the memory?	[05%]
	[OADer				iii. Represent the memory allocation using Linked list.	[10%]
١	[20%]				iv. Show the Bitmap representations of the memory allocation after placing a	
ne",	.				4KB process using each of the following memory allocation methods:	
	[20%]				A. first fit	[10%]
3, Ç					B. best fit	[10%]
		ĺ			C. worst fit	[10%]
				(h)	State the use of Base and Limit registers.	[20%]
				(c)	Briefly explain the use of Translation Lookaside Buffer (TLB) in memory man-	
					agement.	[20%]
	·			(d)	Briefly discuss why Optimal Page Replacement algorithm is not feasible.	[10%]
sid-						[200(2)]
ınd	ļ		6.		State the ways to prevent Deadlock.	[20%]
				(b)	Consider a system with seven processes A, B, C, D, E, F and G, and five resources	
	[20%]				R, S, T, U and V. The state of resource allocation and request at a particular	
l	[20%]				time is as follows:	
I	[20%]				 Process A holds R and wants S and V. 	
					• Process B holds S and wants T.	
					• Process C holds nothing but wants R.	
					• Process D holds U and wants S and R.	
					• Process E holds T and wants V.	

 \bullet Process F holds nothing but wants S.

- Process G holds V and wants U.
- i. Draw a Resource Allocation Graph for the above given scenario.
- ii. Find whether this system is in deadlock, if so, which processes are involved?
- (c) You are given the existence vector E, available resource vector A, current allocation matrix C, and request matrix R, as follows:

$$E = \begin{pmatrix} 5, & 8, & 6, & 7, & 8 \end{pmatrix}$$

$$A = \begin{pmatrix} 2, & 1, & 1, & 3, & 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 2, & 2, & 1, & 2, & 2 \\ 0, & 3, & 2, & 1, & 3 \\ 1, & 2, & 2, & 1, & 2 \end{pmatrix}$$

$$R = \begin{pmatrix} 2, & 1, & 2, & 0, & 2 \\ 1, & 3, & 2, & 1, & 1 \\ 1, & 3, & 2, & 1, & 2 \end{pmatrix}$$

Apply Bankers algorithm and find whether the state is safe or unsafe.