ゼミレポート

kiyoshi ohashi

2023年4月7日

次に,正の整数が素数であるかを判定する最古のアルゴリズムである**エラトステネスのふるい**について確認 しよう.

Prop. 1.4.9 n > 1 が合成数ならば、 \sqrt{n} 以下の素数の約数を持つ

 $Proof.\ n$ が合成数と仮定すると、 $\exists l \in \mathbb{Z} \text{ s.t. } l \mid n$ である。ただし,n>1 の合成数より, $l \neq 1, n$. ここで,m=n/l とおくと, $l,m \neq 1, n$,n=lm である。(合成数の定義から l>0).もし, $l,m>\sqrt{n}$ であるとき,lm>n となり矛盾する.よって, $l\leq \sqrt{n}$ または $m\leq \sqrt{n}$ となるため,n は \sqrt{n} 以下の約数 l を持つ.

Prop 1.4.8 より、l は素数の約数を持ち、それを p と置くと $p \mid l$ であり、**Prop 1.4.7** より、推移律から $p \mid n$ となる.

したがって, $p \le l \le \sqrt{n}$ であるから, n は \sqrt{n} 以下の素数の約数を持つ.

この命題の対偶を取れば,次のような表現となる

Prop. 1.4.9' \sqrt{n} 以下の素数の約数を持たないならば、n は素数である.

「割り切れる(割り算)」の概念を規定するのは $\operatorname{Prop}\ 1.4.15$ とまだ先であるが,その概念を用いて説明するならば,本命題が主張することは ある正の整数 n が与えられた時, \sqrt{n} 以下の素数全てで n を割り切れない時,n が素数であることを主張する.すなわち,n が素数であることを調べる際に,n 回ではなく \sqrt{n} 回のステップのみで充分であることを意味する.

また、次の補題についても確認しよう.

Lem. 1.4.10 $m, n \in \mathbb{Z}$ のとき、 $n \mid m, n \neq \pm 1 \implies n \nmid m+1$

Proof. 仮定より $\exists a \in \mathbb{Z}$ s.t. m = na である. もし, $n \mid m+1$ ならば, $\exists b \in \mathbb{Z}$ s.t. m+1 = nb であり,1 = (m+1) - m = n(b-a) である. \mathbf{Cor} 1.4.3 より, $n = \pm 1$ であるが,これは矛盾

今回のゼミにおいて,個人的に疑問に思ったのは $n\mid m$ によって $n\neq \pm 1 \implies n\nmid m+1$ を束縛しているのではないか,という点である.この事については,束縛させても仮定に用いても,帰結されるものに変わりはない.むしろ,今回の場合には $n\mid m+1$ を仮定した際に, $n\nmid m$ または $n=\pm 1$ を考え,それぞれの命題変数の成立の可否をを調べることが,考察の手立てとなる.