Introduction to Epidemiology Data Analysis with R

Introductions

• Dr. Elza Rechtman (Course co-director)

elza.rechtman@mssm.edu

• Dr. Joselyn Chávez-Fuentes (Course co-director)

joselyn.chavez-fuentes@mssm.edu

• Placidus Fernando (Teaching Assistant)

placidus.fernando@icahn.mssm.edu

Course details

- Course Blackboard: learn.mssm.edu
- Tuesdays 6:15 pm 8:45 pm
- 12 sessions
- Hybrid format
 - In Person: Annenberg 5 212
 - Zoom: https://mssm.zoom.us/j/94841240630

Course schedule (1)

Week 1	01/7/2025	Get up and running with R and RStudio	 The basic data analysis cycle Download and install R Download and install RStudio Install a set of R packages called the Tidyverse Understand the environment interface Where and how to get help Building scripts R studio project
Week 2	01/14/2025	Introduction to coding with R (I)	 Create and name a variable Create and name a vector Converting a vector from one class to another Access vector elements
Week 3	01/21/2025	Introduction to coding with R (II)	 Modify a vector Create and name matrices Operations with matrices
Week 4	01/28/2025	Introduction to coding with R (III)	 Create, name, and subset lists Create and name a data frame
Week 5	02/04/2025	Data transformation	 Tidyverse packages Tibbles Arrange, Filter, Select, Mutate Count, Summarise, Group The pipe
Week 6	02/11/2025	Data Wrangling using the Tidyverse (I)	 Combining multiple operations with the pipe Pivoting Seperating Other useful functions Joins

Course schedule (2)

Week 7	02/18/2025	Data Visualization (I)	 Geometries and mappings The layered grammar of graphics Create visualizations using the x, y, color, size, alpha, and shape properties.
Week 8	02/25/2025	Data Visualization (II)	FacetsStatistical transformationsPosition adjustments
Week 9	03/04/2025	Data Visualization (III)	 Coordinate systems Themes Arranging plots Jitter Other geometrics Limits
Week 10	03/11/2025	Modeling basics for Epidemiology research studies	 Introduction Linear regression, t-test, ANOVA Build simple linear regression models in R
Week 11	03/18/2025	Final Project Presentations and Course Wrap-up	Present and discuss the final student epidemiology project using R
Week 12	TBD	Creating reports with Rmarkdown	

Grading

- Pass/Fail Grading System
- To pass, you need to:
 - Attend 80% of classes
 - Submit 80% of the assignments
 - Present a final project

Questions

Week 1 Get up and running with R and RStudio

Getting started with R

What is R?

- R is an open-source language widely used as a statistical software and data analysis tool to:
 - Manage and clean data
 - Carry out statistical analyses
 - Produce high-quality figures for research communications

• Why R?

- Free & open source
- Great community
- 9000+ free packages

What is RStudio?

An integrated development environment (IDE) for R

https://rstudio-education.github.io/hopr/

https://r4ds.had.co.nz/

A typical data science project :

Downloading and installing R

- Download and install R: http://lib.stat.cmu.edu/R/CRAN/
 - Windows
 - Download R for Windows
 - Base
 - Download R 4.4.2 for Windows
 - Run this program and step through the installation wizard that appears.
 - The wizard will install R into your program files folders and place a shortcut in your Start menu.
 - Mac
 - Download R for MacOS
 - R-4.4.2.pkg
 - An installer will download to guide you through the installation process

Downloading and installing RStudio

- Download and install RStudio: https://www.rstudio.com/products/rstudio/
- Download Rstudio Desktop
 - Windows
 - Download RSTUDIO-2024.12.0-467.EXE
 - Install through the installation wizard
 - Mac
 - Download RSTUDIO-2024.12.0-467.DMG
 - An installer will download to guide you through the installation process

RStudio Desktop

- 1. Open Rstudio
- 2. Start a new script

RStudio settings you can adjust

- **Restore workspace:** By default, R saves your workspace, which is no longer considered best practice.
 - To change:
 - Tools > Global Options >
 - Uncheck "Restore .RData into Workspace on startup"
 - Set "Save .RData on exit" to Never
- Appearance: By default, RStudio comes with a white background and black text.
 - To change:
 - Tools > Global Options > Appearance > Editor theme

Your turn!

In the script pane, write and run:

- 5 + 2 =
- 6 X 3 =
- 7² =
- $\sqrt{9}$ =

Using variables

- Type in the console a <- 5
- Check your environment
- Type in the console a*2

- Type in the console b <- 1:30
- b²

Your turn!

- Choose any number
- Add 2 to it
- Multiply the result by 3
- Subtract 6 from the answer
- Divide what you get by 3

What did you get?

What if you would choose a different number and run the same steps? Can you think of a way to write a script for this process?

Writing a script

- A script is a sequence of commands stored in an .R file
- R execute scripts sequentially line-by-line
- Comments start with #

```
example.R x
      Run > Source - =
     # load packages
     library(tidyverse)
      library(janitor)
     # import data
      data <- read_csv("COVID_19_0421.csv")</pre>
     # Clean data
      data_clean = data %>%
 10
       filter(INFECTION_STATUS == "COVID-19") %>%
       select(ID, AGE, SEX, RACE, ETHNICITY, FACILITY, INFECTION_STATUS) %>%
 11
 12
       drop_na(c(ID:SEX)) %>%
 13
       slice(c(1:500)) %>%
       clean_names()
 14
 15
 16
     # Plot data
      p1 \leftarrow ggplot(data\_clean, aes(x = age, y = bmi)) +
 17
 18
       geom_point()
 19
     #Statistical test
     mod <- glm(bmi ~ age + sex, data = data_clean)</pre>
     summary(mod)
 23
      (Top Level) $
 24:1
                                                                                R Script $
```

Tips for writing a script

- Keyboard Shortcuts to run your script
 - Windows: Control + Enter
 - Mac: Command + Enter
- Don't spend time memorizing functions that can easily be looked up and copied (you will be mostly copy-pasting and adapting existing R code)
- Don't worry about making mistakes you can't do anything wrong!

Packages

- A Package is a collection of functions that are not included in the standard R installation (base-R)
- Install the tidyverse package using install.packages()
- Load the tidyverse package using library()

Getting help

- Error messages:
 - Google the error message.
 - copy-paste solutions into your R script and then modify it.
- RStudio's built in Help type ? and the command (for example ?read_csv).
- Help drop-down menu at the top of the RStudio window

RStudio Projects

- Keep data and scripts in the same folder
- Keep files from each project separated
- Set the working directory
- Scripts and output files will be automatically saved in your Rstudio project folder

Let's create an R project

- 2 Methods
 - New Directory
 - Existing Directory

Your turn!

- Create an R project called "Week_1"
- 2. Open the project
- 3. Open a script
- 4. Write a script in which you:
 - 1. Assign the number **81** to a variable called **a**
 - 2. Create a new variable **b** that equals the square root of **a**
 - Save the script under the name "week1_script.R"
- 5. Close the R project
- 6. Reopen the R project and run your script

Import data into R

- Download "Sinai_covid.csv" from Blackboard and save it in your R project folder.
- In your Script Pane type:

```
library(tidyverse)
```

```
Sinai_covid <- read_csv("Sinai_covid.csv")</pre>
```

```
View(Sinai_covid)
```

Assignment 1

- 1. Download R script "Assignment1.R"
- 2. Save the script in the R project folder we created ("Week 1")
- 3. Open R project "Week_1"
- 4. Open the script "Assignment1.R"
- 5. Complete all the questions
- 6. Save the script under a new name "Assignment1_FirstName_LastName.R"
 - For example, for me, it would be: "Assignment1_Elza_Rechtman.R"
- 7. Upload your assignment by next Monday, January 13th at 5 pm.