# Valuations on the Character Variety Newton Polytopes and Residual Poisson bracket

Christopher-Lloyd Simon (in collaboration with Julien Marché)

Laboratoire Paul Painlevé, Université de Lille

17/05/2022





The  $\mathsf{SL}_2(\mathbb{C})$ -character variety of a finitely generated group  $\pi$ 

### Definition: Character variety $X(\pi)$ of a finitely generated group $\pi$

- Representation variety  $\operatorname{Hom}(\pi,\operatorname{SL}_2(\mathbb{C}))$ , it admits an algebraic action  $\operatorname{SL}_2(\mathbb{C})$  by conjugacy at the target.
- Character variety  $X(\pi) = \text{Hom}(\pi, \text{SL}_2(\mathbb{C})) // \text{SL}_2(\mathbb{C})$  is the the algebraic quotient = Spec(Invariant Functions)
- For  $\alpha \in \pi$ , invariant function:  $t_{\alpha} : \rho \mapsto \text{Tr}(\rho(\alpha))$

### Theorem [CP17]: Presentation of the algebra $\mathbb{C}[X(\pi)]$ of characters

The algebra  $\mathbb{C}[X(\pi)]$  of invariant functions has

- generators the  $t_{\alpha} : [\rho] \mapsto \mathsf{Tr}(\rho(\alpha))$  for  $\alpha \in \pi$ 
  - ideal of relations generated by  $t_1-2$  and  $t_{\alpha}t_{\beta}-t_{\alpha\beta}-t_{\alpha\beta-1}$

### For $\pi$ the fundamental group of a closed oriented surface $\Sigma$

For loop  $\gamma$  with s self-intersections, apply trace relations to decompose :



$$(-t_{\alpha})(-t_{\beta})+(-t_{\alpha\beta})+(-t_{\alpha\beta-1})=0$$



$$-t_{\gamma} = (-1)^s \sum_{2^s \, {
m states \, circles}} \prod_{t \mu_j} -t_{\mu_j}$$

### Theorem [PS00]: Linear basis for the algebra $\mathbb{C}[X(\Sigma)]$

- Multicurve  $\mu\subset \Sigma$ : disjoint union of simples curves  $\mu_j$  and  $t_\mu=\prod t_{\mu_j}.$
- The  $t_{\mu}$  for  $\mu \in \mathrm{MC}$  form a linear basis of the algebra  $\mathbb{C}[X(\Sigma)]$ .

# Question: what does the decomposition of $t_{\gamma}$ look like ?

### Example (Tchebychev): inside an immersed annulus $\Sigma_0^2$

 $\bullet$  Fundamental group  $\pi=\mathbb{Z}$  is free on one generator  $\alpha$ 

$$\mathbb{C}[X(\Sigma_0^2)] = \mathbb{C}[x]$$

•  $Tr(\alpha^n) = 2T_n(x/2)$  Tchecbychev polynomial of the first kind.

# Example (Fricke): inside an embedded three holed sphere $\Sigma_0^3$

ullet Fundamental group  $\pi=\langle a,b,c\mid abc=1
angle$  is free on two generators,

$$\mathbb{C}[X(\Sigma_0^3)] = \mathbb{C}[t_a, t_b, t_c] = \mathbb{C}[x, y, z]$$

• Diagram computation:  $Tr([a, b]) = x^2 + y^2 + z^2 - xyz - 2$ 

### Theorem [MS22]: Trace functions of multiloops are unitary

For all  $\alpha_i \in \pi_1(\Sigma)$ , the polynomial  $\prod t_{\alpha_i} \in \bigoplus_{M \in \mathbb{Z}} t_{\mu}$  is unitary.

### Valuations and simple valuations

Strategy to study decomposition of functions in the linear basis

- Define "monomial" valuations with respect to the linear basis MC
- Define the Newton set of f as the "extremal points" in its support

### Definition [MS21]: Valuations on $\mathbb{C}[X(\Sigma)]$ centred at infinity

A valuation is  $v \colon \mathbb{C}[X] \to \{-\infty\} \cup \mathbb{R}_+$  satisfying for all f, g:

$$v(f) = -\infty \iff f = 0$$

$$v(fg) = v(f) + v(g)$$
  
$$v(f+g) \le \max\{v(f), v(g)\}$$

Weak topology: pointwize convergence of the v(f) for  $f \in \mathbb{C}[X]$ .

Definition [MS21]: Simple valuation ("monomial" w.r.t. linear basis)

A valuation  $v: \mathbb{C}[X(\Sigma)] \to \{-\infty\} \cup \mathbb{R}_+$  is *simple* when for all  $f = \sum m_\mu t_\mu$ :

$$v(f) = \max\{v(t_\mu) \mid m_\mu \neq 0\}$$

### Simple valuations are measured laminations

Proposition [MS21]: Simple valuations are the completion of QMC

For  $\lambda \in \mathrm{MC}$ , there exists a unique simple valuation  $v_{\lambda}$  such that

$$\forall \alpha \in \pi_1(\Sigma)$$
:  $v_{\lambda}(t_{\alpha}) = i(\lambda, \alpha)$ 

The set of simple valuations  $\operatorname{ML}$  is equal to the completion of  $\operatorname{\mathbb{Q}MC}$ .

• Well defined by D. Thurston intersection formula:

$$i(\lambda, \alpha) = \bigvee_{\mu} \sum_{\mu_j} i(\lambda, \mu_j) = \max\{i(\lambda, \mu) \mid \text{states } \mu\} = v_{\lambda}(t_{\alpha})$$

$$= \max \qquad \qquad \text{and} \qquad \text{a$$

• Morphism v(fg) = v(f) + v(g) deduced from integrality of  $\bigoplus_{n \in \mathbb{N}} F_n/F_{n-1}$  where  $F_n = \operatorname{Span}\{t_\alpha \mid \alpha \in \pi_1(\Sigma), i(\lambda, \alpha) \leq n\}$ .

### Most simple valuations are strict

#### Thurston-Masur volume on the space ML

The topological space  $\operatorname{ML}$  admits (a PL-structure of dim 6g-6 and) a unique  $\operatorname{Mod}(\Sigma)$ -invariant Borelian measure up to scaling.

Defined on open subsets 
$$U \subset \mathrm{ML}$$
 by:  $\mathrm{Vol}(U) = \lim_{r \to \infty} \frac{\mathrm{Card}(r \cdot U \cap \mathrm{MC})}{r^{6g-6}}$ 

### Definition [MS21]: Strict valuations (implies simple and positive)

A valuation  $v \colon \mathbb{C}[X(\Sigma)] \to \{-\infty\} \cup \mathbb{R}_+$  is *strict* when for all  $\mu, \nu \in \mathrm{MC}$ :

$$\mu \neq \nu \implies v(t_{\mu}) \neq v(t_{\nu})$$

This implies in particular that it is simple, and that  $v(t_{\mu}) > 0$  for all  $\mu \neq \emptyset$ .

### Proposition [MS21]: Most simple valuations are strict.

The set of strict valuations has full measure in ML.

#### Newton set of a function

#### Definitions: Support, Extremal multicurve, Newton Set

The *support* of  $f = \sum m_{\mu} t_{\mu} \in \mathbb{C}[X(\Sigma)]$  is  $Supp(f) = \{\mu \in MC, m_{\mu} \neq 0\}.$ 

- A multicurve  $\mu \in \operatorname{Supp}(f)$  is *extremal* in f if there exists a multicurve  $\lambda$  such that  $i(\lambda, \mu) > i(\lambda, \nu)$  for all  $\nu \in \operatorname{Supp}(f)$  distinct from  $\mu$ . Equivalently, there exists a strict  $v \in \operatorname{ML}$  such that  $v(t_{\mu}) = v(f)$ .
- The Newton set  $\Delta(f)$  of f is the set of extremal multicurves in f.

### Theorem [MS22]: Trace functions of multiloops are unitary

For all  $\alpha_j \in \pi_1(\Sigma)$ , the polynomial  $f = \prod t_{\alpha_j} \in \mathbb{C}[X(\Sigma)]$  is unitary:

$$\forall \mu \in \Delta(f)$$
:  $m_{\mu} = \pm 1$ 

(Proof: Show that for strict valuation v and multiloop  $\alpha$  with smoothings  $\alpha_-, \alpha_+$  at an intersection we show  $v(t_{\alpha_-}) \neq v(t_{\alpha_+})$ .)

### Residual value of a function at a strict valuation

Extend  $v \in \mathrm{ML}$  to  $v : \mathbb{C}(X) \to \{-\infty\} \cup \mathbb{R}$  by v(f/g) = v(f) - v(g).

- Group of values  $\Lambda_v = v(\mathbb{C}(X))$ , and rational rank dim  $\mathbb{Q} \otimes \Lambda_v$ .
- $\bullet$  The transcendence degree of its residue field  $k_v = \mathcal{O}_v/\mathcal{M}_v.$

Abhyankar inequality:  $\operatorname{rat.rk}(v) + \operatorname{tr.deg}(k_v) \leq \dim(X) = 6g - 6$ 

Proposition [MS22]: strict 
$$\iff$$
 tr. deg = 0  $\iff$  rat. rk = 6g - 6

For a simple valuation  $v \in \mathrm{ML}$  the following properties are equivalent: strict, that is  $\forall \mu, \nu \in \mathrm{MC}: \mu \neq \nu \implies v(t_{\mu}) \neq v(t_{\nu})$ 

minimal transcendence degree:  $\operatorname{tr.deg}(k_{\nu}) = 0$ , or  $k_{\nu} = \mathbb{C}$ .

maximal rational rank:  $\operatorname{rat.rk}(v) = 6g - 6 = \dim(X) = \dim(ML)$ .

Definition: residual value at a strict valuation  $v \in \mathrm{ML}$  of  $f \in \mathcal{O}_v$ . The residual value  $f_v \in \mathbb{C}$  is defined as  $(f \mod \mathcal{M}_v) \in k_v$ .

It equals the coefficient  $m_{\mu}$  of  $t_{\mu}$  for  $\mu \in \Delta(f)$  such that  $v(f) = v(t_{\mu})$ .

### Quest: study the structure constants for multiplication

The linear basis of MC is not monomial:  $i(\mu, \nu) \neq 0 \implies t_{\mu}t_{\nu} \neq t_{\xi}$ . What are the structure constants  $c_{\mu\nu}^{\xi}$  for multiplication ?

$$\mathbb{C}[\mathsf{X}(\mathsf{\Sigma})] = igoplus_{\mu \in \mathrm{MC}} \mathbb{C} \cdot t_{\mu} \qquad t_{\mu} t_{
u} = \sum_{\xi \in \mathrm{MC}} c_{\mu 
u}^{\xi} t_{\xi}$$

#### Example [FG00]: In the torus $\Sigma_1$ with the bracelet basis

- Fundamental group  $\pi = \langle a, b \mid [a, b] = 1 \rangle \simeq \mathbb{Z}^2$  is abelian.
- Characters  $\simeq$  representations  $a \mapsto \begin{pmatrix} x & 0 \\ 0 & 1/x \end{pmatrix}$  and  $b \mapsto \begin{pmatrix} y & 0 \\ 0 & 1/y \end{pmatrix}$ .
- Triangular change of basis from multicurves to bracelets  $T_{p,q}=\operatorname{Tr}(a^pb^q)$  for  $p\wedge q=1$  and  $T_{np,nq}=Tcheb_n(T_{p,q})$ :

$$\mathbb{C}[X(\Sigma_1)] = \mathbb{C}\left[x^{\pm 1}, y^{\pm 1}\right]^{\sigma} = \bigoplus_{\mathbb{Z}^2 / + 1} \mathbb{C} \cdot T_{p,q}$$

• Product to sum:  $T_{p,q} \cdot T_{r,s} = T_{p+r,q+s} + T_{p-r,q-s}$ 

#### The Luo products are extremal multicurves

#### Definition [Luo10]: Luo product of multicurves

For  $\mu, \nu \in \mathrm{MC}$ , define  $L_{\mu}(\nu)$  from  $\mu \cup \nu$  by smoothing intersections with left turns as we travel along segments of  $\mu$  which meet segments of  $\nu$ .



### Proposition [MS22]: Luo products are extremal multicurves of $t_{\mu}t_{\nu}$

For all  $\mu, \nu \in \mathrm{MC}$  such that  $i(\mu, \nu) > 0$ , the Luo products  $L_{\mu}(\nu)$  and  $L_{\nu}(\mu)$  are distinct, and both belong to  $\Delta(t_{\mu}t_{\nu})$ , with coefficients  $(-1)^{i(\mu,\nu)}$ .

# Poisson algebra structure on $\mathbb{C}[X(\Sigma)]$

#### Theorem [Gol86]: Poisson bracket on $\mathbb{C}[X(\Sigma)]$

The Atiyah-Bott-Weil-Petersson-Goldman symplectic structure on X defines a Poisson bracket on  $\mathbb{C}[X(\Sigma)]$ . For  $\alpha, \beta \in \pi_1(S)$  it is given by

$$\{t_{\alpha}, t_{\beta}\} = \sum_{p \in \alpha \cap \beta} \epsilon_p \left(t_{\alpha_p \beta_p} - t_{\alpha_p \beta_p^{-1}}\right)$$

where the sum ranges over all intersection points p between transverse representatives for  $\alpha \cup \beta$  and  $\epsilon_p$  is the sign of such an intersection, while  $\alpha_p, \beta_p$  denote the homotopy classes of  $\alpha, \beta$  based at p.

$$\{t_{\alpha},t_{\beta}\}=\sum_{\xi}w_{\xi}t_{\xi}=\sum_{\xi}\left(\sum_{\sigma_{\xi}}\prod_{p}\sigma_{\xi}(p)
ight)t_{\xi}$$
 (PB-state-sum)

where  $w_{\xi} = \sum_{\sigma_{\xi}} \prod_{p} \sigma_{\xi}(p)$  is the sum over the smoothings  $\sigma_{\xi} \colon \alpha \cap \beta \to \{\pm 1\}$  of  $\alpha \cup \beta$  yielding the multiloop  $\xi$ .

#### Newton set of the Poisson bracket

#### Corollary [MS22]: " $\Delta(\{f,g\}) \subset \Delta(fg)$ "

For  $f, g \in \mathbb{C}[X]$ , we have  $v(\{f, g\}) \leq v(fg)$  for all  $v \in ML$ .

This property amounts to the inverse inclusion of the dual polytopes:

$$\Delta^*(\{f,g\})\supset \Delta^*(fg)$$

Hence the Goldman Poisson bracket induces a residual Poisson bracket at any strict valuation  $\nu$ . (This endows  $T_{\nu}\mathrm{ML}$  with a symplectic structure...)

Proof: Apply unitarity of  $t_{\alpha}t_{\beta}$  and (PB-state-sum) formula for  $\{t_{\alpha}, t_{\beta}\}$ .

### Corollary [MS22]: Luo products are extremal multicurves of $\{t_{\mu},t_{\nu}\}$

For all  $\mu, \nu \in MC$  such that  $i(\mu, \nu) > 0$ , the Luo products  $L_{\mu}(\nu)$  and  $L_{\nu}(\mu)$  are distinct, and both belong to  $\Delta(\{t_{\mu}, t_{\nu}\})$ , with coefficients  $\pm i(\mu, \nu)$ .

Proof: The (PB-state-sum) formula implies  $L_{\mu}(\nu), L_{\nu}(\mu) \in \Delta(\{t_{\mu}, t_{\nu}\})$ .

### Poisson algebra structure on $\mathbb{C}[X(\Sigma_0^4)]$

Example: Product and Poisson bracket of  $\alpha, \beta \subset \Sigma_0^4$  with  $i(\alpha, \beta) = 2$ 



The Luo product are  $L_{\alpha}(\beta) = \delta$  and  $L_{\beta}(\alpha) = \gamma$  and

$$t_{\alpha}t_{\beta} = t_{c_1}t_{c_3} + t_{c_2}t_{c_4} - t_{\gamma} - t_{\delta}$$
  $\{t_{\alpha}, t_{\beta}\} = 2t_{\delta} - 2t_{\gamma}$   
 $\Delta(t_{\alpha}t_{\beta}) = \{c_1 \cup c_3, c_2 \cup c_4, \gamma, \delta\}$   $\Delta(\{t_{\alpha}, t_{\beta}\}) = \{\gamma, \delta\}$ 

The Newton set of  $t_{\alpha}t_{\beta}$  decomposes  $\mathrm{ML}$  into 4 domains where  $i(\lambda,\alpha\cup\beta)$  equals the intersection of  $\lambda$  with  $c_1\cup c_3$  or  $c_2\cup c_4$  or  $\gamma$  or  $\delta$  respectively. In the interior of these domains  $\{t_{\alpha},t_{\beta}\}$  has residual values 0,0,-2,2.

# Mirzakhani asymptotics as volumes of Newton Polytopes\*

### Topological interpretation of Vol $\Delta^*(t_\alpha)$ .

For a multiloop  $\alpha$ , can we give a topological interpretation for the Thurston-Masur volume Vol  $\Delta^*(t_{\alpha})$ ?

It vanishes unless  $\alpha$  is  $\mathit{filling}$ , meaning it intersects every simple curve, in which case for every other filling multiloop  $\beta$  we have:

$$\lim_{r\to\infty}\frac{\operatorname{Card}\{\varphi\in\operatorname{\mathsf{Mod}}(S)\mid i(\lambda,\varphi(\alpha))\leq r\}}{r^{6g-6}}=\frac{\operatorname{\mathsf{Vol}}\Delta^*(t_\beta)\operatorname{\mathsf{Vol}}\Delta^*(t_\alpha)}{m_g}$$

## Computation in terms of elementary cones in $\operatorname{ML}$ indexed by $\Delta(f)$

Identification between measured laminations and simple valuations implies

$$orall f \in \mathbb{C}[X(\Sigma)]\colon \quad \Delta^*(f) = igcap_{\mu \in \mathsf{Supp}(f)} \Delta^*(t_\mu) = igcap_{\mu \in \Delta(f)} \Delta^*(t_\mu)$$

The  $\Delta^*(t_\mu)$  are described by explicit sets of linear inequalities in any PL chart of ML, and the volume of their intersection is computable.

#### **Bibliography**



C. De Concini and C. Procesi.

The invariant theory of matrices, volume 69. AMS, 2017.



C Frohman and R Gelca

Trans. AMS. 352:4877-4888, 2000.

Skein modules and the noncommutative torus.



W. Goldman.

Invariant functions on Lie groups and Hamiltonian flows of surface group representations.

Inventiones Mathematicae, 85(2):263-302, 1986.



F Luo

Simple loops on surfaces and their intersection numbers.

J. Differential Geometry, 85:73-115, 2010.



Julien Marché and Christopher-Lloyd Simon.

Automorphisms of character varieties.

Annales Henri Lebesgue, 4:591-603, 2021.



I Marché and C - I Simon

Valuations on the character variety: Newton polytopes and Residual Poisson Bracket, 2022.

Submitted for publication.



J. Przytycki and A. Sikora.

On skein algebras and SL2(C)-character varieties.

Topology, 39(1):115-148, 2000.

#### Thank you for your attention and feel free to ask (m)any questions!

### Teichmüller space embeds in real locus of character variety

- $\textbf{ 0} \ \, \text{ The Teichmüller space of } \Sigma \text{ is the space of complex structures on } \Sigma.$
- 2 By the uniformisation theorem, every complex structure on  $\Sigma$  is conformal to a unique hyperbolic structure.
- **③** A hyperbolic structure on  $\Sigma$  is uniquely determined by its holonomy representation  $\rho \colon \pi_1(\Sigma) \to \mathsf{PSL}_2(\mathbb{R})$ , well defined up to conjugacy.
- These correspond to the Fuchsian representations, or by Milnor-Wood inequalities to those with extremal euler class ±χ = ±(2 2g).
  If ρ: π₁(Σ) → PSL₂(ℝ) has even euler class then it lifts to SL₂(ℝ), so
- there are  $2 \times 2^{2g}$  copies of Teichmüller space in  $X(\Sigma)$ .
- Teichmüller space of  $\Sigma$  is Zariski dense in the character variety  $X(\Sigma)$  (as Fuchsian representations form open subset of  $\operatorname{Hom}(\pi,\operatorname{SL}_2(\mathbb{R}))$ , which quotient to open subset of  $X(\pi,\operatorname{SL}_2(\mathbb{R}))$ .)
- $oldsymbol{0}$  Trace function of loop  $\leftrightarrow$  length of the unique geodesic:

$$t_{\alpha}([\rho]) = 2 \cosh(I_{\alpha}(m)/2)$$