A multi-resolution daily air temperature model for France from MODIS and Landsat thermal data

lan Hough

2019-02-15

Climate change, air pollution, and perinatal health

lan Hough

Dr. Johanna Lepeule

Institute for Advanced Biosciences

University Grenoble Alpes

Dr. Itai Kloog

Department of Geography and Environmental Development

Ben Gurion University of the Negev

Adverse birth outcomes

Preterm birth (<37 weeks gestation)

- 11% of all births and increasing (Harrison, et al., 2016)
- Leading cause of child mortality (Liu, et al., 2016)
- Sequalae in childhood and adulthood (McCormick, et al., 2011)
 - Asthma, cerebral palsy, behavioural problems, etc.

Term low birth weight (<2500 g)

• Increased morbidity and mortality in childhood & adulthood (Barker, 2004; Belbasis, et al., 2016)

Ambient temperature (T_a) and health

- Heat, cold, or variable T_a can increase risk (Zhang, et al., 2017)
- Response may depend on local population & climate
- Hard to synthesize findings

	Preterm birth	Birth weight	Term low birth weight
Exposure	Cold (<10th %ile)	IQR Ta increase	Heat (>95th %ile)
Window	Weeks 1–7	Last 30 days	Trimester 3
Statistic	Relative risk	Decrease	Odds ratio
Effect	1.09 [1.04-1.15]	16.6 g [5.9–27.4]	1.31 [1.15-1.49]
Reference	Ha, et al. (2017)	Kloog, et al. (2015)	Ha, et al. (2017)

How do we estimate T_a exposure?

Exposure error

- Sparse monitoring networks
- Coarse gridded meteorological data
- → May bias effect estimates towards null

Our Ta model

- Daily minimum, maximum, and mean T_a 2000 2016
- 1 x 1 km² for continental France
- 200 x 200 m² for large urban areas

Extension of (Kloog, et al., 2017) (daily 1 km mean T_a 2000 - 2011)

Model components

1. Spatiotemporal and spatial predictors

• Land Surface Temperature (LST), elevation, etc.

2. Linear mixed model

• T_a ~ LST with daily varying slope

3. Gapfilling

T_{pred} ~ T_a at nearby stations

4. Local interpolation of residuals

• High spatial resolution predictors + machine learning ensemble

Satellite data

MODIS (1 km)

- Land Surface Temperature (LST)
 - Terra: 10:30 / 22:30 (day / night)
 - Aqua: 13:30 / 01:30 (day / night)
- NDVI
 - Monthly composite

Landsat 5 / 7 / 8 (30 m)

- Top-of-atmosphere brightness temperature (T_B)
- NDVI
- ↑ composited by month across 2000 2016

Spatial predictors

- Elevation
- Land cover
- Population
- Climatic regions

↑ Aggregated to 1 km and 200 m grids

Stage 1: linear mixed model (1 km)

j = day r = climatic region e = error

Stage 2: Gapfilling

i = grid cell

p = two-month period

T_{IDW} = inverse distance weighted T_a

1 km model performance

Cross-validated 1 km predictions (calibration stage)

2000-2016	R2	RMSE	MAE	Spatial R2	Spatial RMSE	Temporal R2	Temporal RMSE
T _a min	0.92	1.9	1.4	0.89	1.1	0.94	1.6
T _a mean	0.97	1.3	0.9	0.95	0.8	0.97	1.2
T _a max	0.95	1.8	1.4	0.88	1.2	0.96	1.5

Previous model (Kloog, et al., 2017)

2000-2011	R2	RMSE	MAE	Spatial R2	Spatial RMSE	Temporal R2	Temporal RMSE
T _a mean	0.95	1.5	*	0.91	0.65	0.96	*

^{* =} not reported

Stage 3: Residual interpolation (200 m)

Contiguous urban areas with > 50,000 inhabitants

Random forest and XGBoost models

GAM ensemble

Weights vary by location and predicted residual

200 m model performance

Cross-validated 200 m ensemble predictions (residual scale)

2000-2016	R2	RMSE	MAE	Spatial R2	Spatial RMSE	Temporal R2	Temporal RMSE
R_{min}	0.79	0.6	0.4	1.0	0.05	0.66	0.6
R _{mean}	0.89	0.4	0.3	1.0	0.04	0.87	0.4
R _{max}	0.85	0.5	0.3	1.0	0.03	0.73	0.5

Next steps

Fine particulate matter models (PM₁₀ & PM_{2.5})

- Similar to T_a model
- MODIS aerosol optical depth (AOD)

Birth outcomes study

- EDEN, PELAGIE, SEPAGES
- Birth weight and preterm birth
- T_a, PM, and interaction

Thanks!

Ian Hough

ian.hough@univ-grenoble-alpes.fr

References

- Barker, D. J. P. (2004). "The Developmental Origins of Adult Disease". In: *Journal of the American College of Nutrition* 23.2004, pp. 588S-595S. DOI: 10.1080/07315724.2004.10719428.
- Belbasis, L, et al. (2016). "Birth weight in relation to health and disease in later life: An umbrella review of systematic reviews and meta-analyses". In: *BMC Medicine* 14. DOI: 10.1186/s12916-016-0692-5.
- Ha, S, et al. (2017). "Ambient temperature and early delivery of Singleton Pregnancies". In: *Environmental Health Perspectives* 125.3, pp. 453-459. DOI: 10.1289/EHP97.
- Ha, S, et al. (2017). "Ambient temperature and air quality in relation to small for gestational age and term low birthweight". In: *Environmental Research* 155, pp. 394-400. DOI: 10.1016/j.envres.2017.02.021.
- Harrison, M. S, et al. (2016). "Global burden of prematurity". In: *Seminars in Fetal and Neonatal Medicine* 21.2, pp. 74-79. DOI: 10.1016/j.siny.2015.12.007.
- Kloog, I, et al. (2014). "A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data". 95, pp. 581-590. DOI: 10.1016/j.atmosenv.2014.07.014.
- Kloog, I, et al. (2015). "Using Satellite-Based Spatiotemporal Resolved Air Temperature Exposure to Study the Association between Ambient Air Temperature and Birth Outcomes in Massachusetts". In: *Environmental Health Perspectives* 123.10, pp. 1053-1058. DOI: 10.1289/ehp.1308075.
- Kloog, I, et al. (2017). "Modelling spatio-temporally resolved air temperature across the complex geo-climate area of France using satellitederived land surface temperature data". In: *International Journal of Climatology* 37.1, pp. 296-304. DOI: 10.1002/joc.4705.
- Liu, L, et al. (2016). "Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals". In: *The Lancet* 388, pp. 3027-3035. DOI: 10.1016/S0140-6736(16)31593-8.
- McCormick, M. C, et al. (2011). "Prematurity: An Overview and Public Health Implications". In: *Annual Review of Public Health* 32, pp. 367-379. DOI: 10.1146/annurev-publhealth-090810-182459.
- Rosenfeld, A, et al. (2017). "Estimating daily minimum, maximum, and mean near surface air temperature using hybrid satellite models across Israel". In: *Environmental Research* 159, pp. 297-312. DOI: 10.1016/j.envres.2017.08.017.
- Shi, L, et al. (2016). "Estimating daily air temperature across the Southeastern United States using high-resolution satellite data: A statistical modeling study". In: *Environmental Research* 146, pp. 51-58. DOI: 10.1016/j.envres.2015.12.006.
- Zhang, Y, et al. (2017). "Temperature exposure during pregnancy and birth outcomes: An updated systematic review of epidemiological evidence". In: *Environmental Pollution* 225, pp. 700-712. DOI: 10.1016/j.envpol.2017.02.066.