If g,f are surjections then (g o f) is a surjection.

Let y be an element of C. Then, since g from B to C is a surjection, there exists $u \in B$ such that g(u) = y. Since f from A to B is a surjection and $u \in B$, there exists $v \in A$ such that f(v) = u. We would like to find $x \in A$ s.t. g(f(x)) = y.

If f is an injection then $f(A) \cap f(B) \subset f(A \cap B)$

Let x be an element of $f(A) \cap f(B)$. Then $x \in f(A)$ and $x \in f(B)$. That is, there exists $y \in A$ such that f(y) = x and there exists $z \in B$ such that f(z) = x. Since f is an injection, f(y) = x and f(z) = x, we have that y = z. We would like to find $u \in A \cap B$ s.t. f(u) = x. But $u \in A \cap B$ if and only if $u \in A$ and $u \in B$. Since y = z, we have that $y \in B$. Therefore, setting u = y, we are done.