

CS1238 数据手册

24-bit Sigma-Delta ADC

1. 产品概述

1.1. 功能特点

- 内置晶振
- 集成温度传感器
- 带 Power down 功能
- 2线 SPI 接口,最快速率为 1.1MHz
- ADC 功能特性
 - 一 24 位无失码
 - PGA 放大倍数可选: 1、2、64、128
 - 集成 2 通道 24 位无失码的差分输入,在 PGA=128 时 ENOB 为 20.7 位 (工作在 5V)\20.2 位(工作在 3.3V)
 - P-P 噪声: PGA=128、10Hz: 150nV
 - INL 小于 0.0015%

- 输出速率可选: 10Hz、40Hz、640Hz、1.28kHz
- 一 带内短功能

● 应用场合

- 一 工业过程控制
- 一 电子秤
- 一 液体/气体化学分析
- 一 血液计
- 一 智能变换器
- 一 便携式设备

● 封装

- SOP14
- QFN16

1.2. 产品说明

CS1238 是一款高精度、低功耗模数转换芯片,两路差分输入通道,内置温度传感器和高精度振荡器。 CS1238 的 PGA 可选: 1、2、64、128,默认为 128。

CS1238 的 ADC 数据输出速率可选: 10Hz、40Hz、640Hz、1.28kHz, 默认为 10Hz。

MCU 可以通过 2 线的 SPI 接口 SCLK、 $\overline{DRDY}/DOUT$ 与 CS1238 进行通信,对其进行配置,例如通道选择、PGA 选择、输出速率选择等。

1.3. 器件一览

表 1 器件一览

<u> </u>						
产品型号	封装	封装尺寸(长×宽×高)				
CS1238-SO SOP14		8.661mm×5.994mm×1.625mm				
CS1238-QFN16	QFN16	3.000mm×3.000mm×0.750mm				

注:要获得最新的产品、封装和订购信息,请参见本手册第9章节"订货信息",或者访问芯海科技网站www.chipsea.com。

1.4. 功能框图

图 1 CS1238

1 / 15

www.chipsea.com

芯海科技(深圳)股份有限公司

目 录

1.	产品概述	1
	1.1. 功能特点 1.2. 产品说明 1.3. 器件一览 1.4. 功能框图	1 1 1
版	〔本历史	3
2.	引脚描述	4
	2.1. SOP14	4 4
3.	基本结构功能描述	5
4.	绝对最大极限值	5
5.	数字逻辑特性	5
	电气特性	
	7.1. 模拟输入前端	
8.	封装信息	13
	8.1. SOP14	13
	7. 化合自	15

版本历史

版本	修改内容	时间
V1.0	初始版本	2014-03-26
V1.1	1、更换格式 2、修改差分输入阻抗参数 3、修改 P-P 噪声参数 4、修改共模输入范围参数	2014-10-17
V1.2	DIP14 封装退市, 删除相关信息	2019-09-29
V1.3	增加 QFN16 封装相关信息	2019-11-08
V1.4	添加出货信息	2021-11-10
V1.5	按最新模板调整	2022-02-13

2. 引脚描述

2.1. SOP14

图 2 CS1238_SOP14 芯片引脚图

2.2. QFN16

图 3 CS1238_QFN16 芯片引脚图

2.3. 引脚定义

表 2 CS1238 引脚定义

引脚名称	CS1238-SOP14 管脚序号	CS1238-QFN16 管脚序号	输入/输出	说明
VDD	1	1	P	电源
REFOUT	2	2	AO	基准源输出
REFIN	3	3	AI	基准源输入
GND	4	4	P	芯片地
NC	5	5		空脚
AINP1	6	7	AI	通道1正输入
AINN1	7	6	AI	通道1负输入
AINP2	8	10	AI	通道2正输入
AINN2	9	11	AI	通道2负输入
NC	10	8		空脚
GND	11	12	P	芯片地
NC	12	9		空脚
SCLK	13	13	DI	SPI 输入接口
\overline{DRDY} / $DOUT$	14	14	DI/DO	SPI 数据输入/输出接口
NC		15		空脚
NC		16		空脚

3. 基本结构功能描述

CS1238 是一款高精度、低功耗 Sigma-Delta 模数转换芯片,内置一路 Sigma-Delta ADC,两路差分输入通道和一路温度传感器,ADC 采用两阶 sigma delta 调制器,通过低噪声仪用放大器结构实现 PGA 放大,放大倍数可选: 1、2、64、128。在 PGA=128 时,有效分辨率可达 20.7 位(工作在 5V)。

CS1238 内置 RC 振荡器, 无需外置晶振。

CS1238 可以通过 $\overline{DRDY}/DOUT$ 和 SCLK 进行多种功能模式的配置, 例如用作温度检测、PGA 选择、ADC 数据输出速率选择等等。

CS1238 具有 Power down 模式。

4. 绝对最大极限值

表 3 CS1238 极限值

X 5 001200 (X)K (E					
名称	符号	最小	最大	单位	
电源电压	VDD	-0.3	6	V	
电源瞬间电流			100	mA	
电源恒定电流			10	mA	
数字管脚输入电压		-0.3	DVDD+0.3	V	
输出管脚电压		-0.3	DVDD+0.3	V	
节温			150	$^{\circ}$	
工作温度		-40	85	\mathbb{C}	
储存温度		-60	150	$^{\circ}\mathbb{C}$	
芯片管脚焊接温度			240	\mathbb{C}	

5. 数字逻辑特性

表 4 CS1238 极限值

N. See Level 1981						
参数	最小	典型	最大	单位	条件说明	
VIH	$0.7 \times DVDD$		DVDD+0.1	V		
VIL	DGND		$0.3 \times DVDD$	V		
VOH	DVDD-0.4	/	DVDD	V	Ioh=1mA	
VOL	DGND		$0.2 \times DVDD$	V	IoL=1mA	
IIH			10	μА	VI=DVDD	
IIL	-10			μА	VI=DGND	
串口时钟 SCLK 工作频率			1.1	MHz		

6. 电气特性

所有的参数测试在环境温度-40~85℃、内置基准的条件下测试,除非有其它注明。

表 5 CS1238 电气特性 (VDD = 5V、3.3V)

参数	条件	最小值	典型值	最大值	单位		
模拟输入							
满幅输入电压 (AINP-AINN)			±0.5VREF/PGA		V		
共模输入电压	PGA=1, 2	AGND-0.1		AVDD+0.1	V		
大快制八电压 	PGA=64, 128	AGND+0.75		AVDD-0.75	V		
差分输入阻抗	PGA=1, 2		210		МΩ		
左刀 制八阻九	PGA=64、128		29		МΩ		
系统性能	系统性能						
分辨率	无失码		24		Bits		
AD 速率		10 1280 Hz			Hz		
建立时间	全建立	3: ADC 输出速率为 10\40Hz、 转换周期					

		4: ADC 输出速率为 640\1280Hz			
P-P 噪声	PGA=128、 10Hz		150		nv
有效精度	PGA=128、10Hz		20.7 (5V) 20.2 (3.3V)		Bit
积分线性度	PGA=128		±15		ppm
失调误差	PGA=128		±1.4		μV
失调误差漂移	PGA=128		20		nv/℃
增益误差	PGA=128		± 0.5		%
增益误差漂移	PGA=128		8		ppm/°C
参考电压输入					
参考电压输入	REFIN	1.5	VDD	VDD+0.1	V
参考电压输出					
参考电压输出	REFOUT		VDD		V
时钟					
内部振荡器频率			5.2		MHz
内置时钟温漂			250		ppm/°C
温度传感器					
温度测量误差	TempError		±3		\mathbb{C}

表 6 CS1238 电源电气特性 (VDD = 5V)

77 300 117						
参数	条件		最小值	典型值	最大值	单位
电源电压	VDD		4.5	5	5.5	V
	工类棋子	PGA=1、2		1.57		mA
工作电流	正常模式	PGA=64、128		2.34		mA
	Power down			0.1	0.1	μА

表 7 CS1238 电源电气特性 (VDD = 3.3V)

参数	条件		最小值	典型值	最大值	单位
电源电压	VDD		3	3.3	3.6	V
	正常模式	PGA=1、2		1.26		mA
工作电流	上 市 侯 八	PGA=64, 128		2.11		mA
	Power down			0.1		μА

7. 功能模块描述

7.1. 模拟输入前端

CS1238中有1路ADC,集成了2通道差分输入,信号输入可以是差分输入信号AINP1、AINN1或 AINP2、AINN2,也可以是温度传感器的输出信号,输入信号的切换由寄存器(ch_sel[1:0])控制,其基本结 构如下图所示:

Temp sensor AINP1 2nd sigma delta ADC PGA Input Mux AINN1 AINN2 AINP2

图 4 模拟输入结构图

www.chipsea.com

6 / 15

芯海科技 (深圳) 股份有限公司

CS1238 的 PGA 可配: 1、2、64、128, 由寄存器(pga sel[1:0])控制;

基准电压可以由外部输入也可是内部输出,如果要使用外部基准电压,要先关闭内部基准,内部基准控制由寄存器(refo off)控制。

7.2. 温度传感器

芯片内部提供温度测量功能。当 ch_sel[1:0]=2'b10 时,ADC 模拟信号输入接到内部温度传感器,其它的模拟输入信号无效。ADC 通过测量内部温度传感器输出的电压差来推导出实际的温度值。当 ch sel[1:0]=2'b10 时,ADC 只支持 PGA=1。

温度传感器需要进行单点校正。

校正方法: 在某个温度点 A 下,使用温度传感器进行测量得到码值 Ya, 那么其他温度点 B 对应的温度= Yb*(273.15+A)/Ya-273.15

A温度单位是摄氏度,Ya是A点对应温度码值,Yb是B点对应温度码值。

7.3. 低噪声 PGA 放大器

CS1238 提供了一个低噪声,低漂移的 PGA 放大器与桥式传感器差分输出连接,其基本结构图如下图 所示,前置抗 EMI 滤波器电路 $R=450\,\Omega$,C=18pF 实现 20M 高频滤波。低噪声 PGA 放大器通过 RF1,R1,RF2 实现 64 倍放大,并和后级开关电容 PGA 组成 64 和 128 的 PGA 放大。通过 $pga_sel[1:0]$ 来配置 1、2、64、128 等不同的 PGA。当使用 PGA=1,2 时,64 倍低噪声 PGA 放大器会被关断以节省功耗。当使用低噪声 PGA 放大器时,输入范围在 PGA=10、PGA=10 。

图 5 PGA 结构图

CS1238 内置 Buffer, 当 PGA=1,2 时,CS1238 使用 Buffer 来减少由于 ADC 差分输入阻抗低带来的问题,例如建立时间不足,增益误差偏大等等,当 PGA=64,128 时,CS1238 也使用 Buffer 来减少由于低噪声 PGA 经过 RINT=2K,CINT=0.1 μ F 的低通滤波后带来的建立误差,增益误差以及内码漂移的现象。

7.4. 时钟信号源

CS1238 使用内置晶振来提供系统所需要的时钟频率,典型值为 5.2MHz。

7.5. 复位和断电

当芯片上电时,内置上电复位电路会产生复位信号,使芯片自动复位。

当 SCLK 从低电平变高电平并保持在高电平超过 100μs, CS1238 即进入 PowerDwon 模式,此时功耗低于 0.1 μ A。当 SCLK 重新回到低电平时,芯片会重新进入正常工作状态。

当系统由 Power down 重新进入正常工作模式时,此时所有功能配置为 PowerDown 之前的状态,不需要进行功能配置。

7.6. SPI 通讯

CS1238 中采用 2 线 SPI 串行通信,通过 SCLK 和 $\overline{DRDY}/DOUT$ 可以实现数据的接收以及功能配置。

7.6.1. 建立时间

在 ADC 数据输出速率为 10Hz 或 40Hz 时,数字部分需要有 3 个数据转换周期满足模拟输入信号的建立和滤波器的建立时间要求;ADC 数据输出速率为 640Hz 或 1280Hz 时,数字部分需要有 4 个数据转换周期满足模拟输入信号的建立和滤波器的建立时间要求。CS1238 整个建立过程如下图所示:

图 6 CS1238 数据建立过程 1

表 8 SPI 串口通讯建立时间

参 数	描述(1)		最小值	典型值	最大值	单位
t1	电源上电\PowerDown 恢复\通道切换之后模拟所需的建立时间			2		ms
t3	PGA 切换\速率切换之后模拟所需的建立时间			0.8		μs
t2	DDDV / DOUT	10\40Hz		300\75		ms
12	建立时间(DRDY/DOUT 保持高电平)	640\1280Hz		6.25\3.125		ms

本资料为芯海科技专有财产,非经许可,不得复制、翻印或转变其他形式使用。

7.6.2. ADC 数据输出速率

CS1238 数据输出速率可以通过寄存器 speed sel[1:0]配置。

表 9 输出速率设置

SPEED_SEL[1:0]	ADC 输出速率(Hz)
00	10
01	40
10	640
11	1280

7.6.3. 数据格式

CS1238 输出的数据为 24 位的 2 进制补码,最高位(MSB)最先输出。最小有效位(LSB)为 (0.5VREF/Gain)/(223-1)。正值满幅输出码为 7FFFFFH,负值满幅输出码为 800000H。下表为不同模拟输入信号对应的理想输出码。

表 10 理想输出码和输入信号(1)

输入信号 VIN (AINP-AINN)	理想输出
≥+0.5VREF/Gain	7FFFFFH
(+0.5VREF/Gain)/(223-1)	000001H
0	000000H
(-0.5VREF/Gain)/(223-1)	FFFFFH
≤+0.5VREF/Gain	800000H

⁽¹⁾不考虑噪声、INL、失调误差和增益误差的影响

7.6.4. 数据准备/数据输入输出($\overline{DRDY}/DOUT$)

DRDY/DOUT 引脚有 4 个用途。第一,当输出为低时,表示新的数据已经转换完成;第二,作为数据输出引脚,当数据准备好后,在第 1 个 SCLK 的上升沿后, $\overline{DRDY}/DOUT$ 输出转换数据的最高位(MSB)。在每一个 SCLK 的上升沿,数据会 $\overline{DRDY}/DOUT$ 自动移 1 位。在 24 个 SCLK 后将所有的 24 位数据读出,如果这时暂停 SCLK 的发送,会保持着最后一位的数据,直到下一个数据准备好之前拉高,此后当 $\overline{DRDY}/DOUT$ 被再次拉低,表示新的数据已经转换完成,可进行下一个数据读取;第三,在第 25、26 个 SCLK 时,输出寄存器状态更新标志;第四,作为寄存器数据写入或读出引脚,当需要配置寄存器或读取寄存器值时,SPI 需要发送 46 个 SCLK,根据 $\overline{DRDY}/DOUT$ 输入的命令字,判断是写寄存器操作还是读寄存器操作。

7.6.5. 串行时钟输入(SCLK)

串行时钟输入 SCLK 是一个数字引脚。这个信号应保证是一个干净的信号,毛刺或慢速的上升沿都会可能导致读取错误数据或误入错误状态。因此,应保证 SCLK 的上升和下降时间都小于 50ns。

7.6.6. 数据发送

CS1238 可以持续的转换模拟输入信号,当将 DRDY/DOUT 拉低后,表明数据已经准备好接受,输入的第一个 SCLK 来就可以将输出的最高位读出,在 24 个 SCLK 后将所有的 24 位数据读出,如果这时暂停 SCLK 的发送, $\overline{DRDY}/DOUT$ 会保持着最后一位的数据,直到其被拉高,第 25 和 26 个 SCLK 输出配置寄存器是否有写操作标志,第 25 个 SCLK 对应的 $\overline{DRDY}/DOUT$ 为 1 时表明配置寄存器 Config 被写入了新的值,第 26 个 SCLK 对应的 $\overline{DRDY}/DOUT$ 为芯片扩展保留位,目前输出一直为 0,通过第 27 个 SCLK 可以将 $\overline{DRDY}/DOUT$ 拉高,此后当 $\overline{DRDY}/DOUT$ 被再次拉低,表示新的数据已经准备好接受,

进行下一个数据的转换。其基本时序如下图所示:

图 8 CS1238 读取数据时序图 1

图 9 CS1238 读取数据时序图 2

表 11 读取数据时序表

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS	
t4	DRDY / DOUT 变低后到第一个 So	0			ns	
t5	SCLK 高电平或低电平脉宽	455			ns	
t6	SCLK 上升沿到新数据位有效(传输延迟)		455			ns
t7	SCLK 上升沿到旧数据位有效(保持时间)		227.5		455	ns
t8	数据更新, 不允许读之前的数据			26.13		μs
	1/77	10Hz		100		ms
t9	转换时间 (1/data rate)	40Hz		25		ms
		640Hz		1.5625		ms
	1280Hz			0.78125		ms

7.6.7. 功能配置

 $\overline{CS1238}$ 可以通过 \overline{SCLK} 和 $\overline{DRDY}/DOUT$ 可以进行不同功能的配置,功能配置时序图如下图所示: 图 10 功能配置时序图

功能配置过程简述,在DRDY/DOUT由高变低之后:

- 1、第1个到第24个 SCLK, 读取 ADC 数据。如果不需要配置寄存器或者读取寄存器,可以省略下面的步骤。
 - 2、第25个到第26个SCLK,读取寄存器写操作状态。
 - 3、第 27 个 SCLK, 把 $\overline{DRDY}/DOUT$ 输出拉高。
 - 4、第 28 个到第 29 个 SCLK, 切换 $\overline{DRDY}/DOUT$ 为输入。
 - 5、第30个到第36个SCLK,输入寄存器写或读命令字数据(高位先输入)。
- 6、第 37 个 SCLK, 切换 $\overline{DRDY}/DOUT$ 的方向(如果是写寄存器, $\overline{DRDY}/DOUT$ 为输入; 如果是读寄存器, $\overline{DRDY}/DOUT$ 为输出)。
 - 7、第38个到第45个SCLK,输入寄存器配置数据或输出寄存器配置数据(高位先输入/输出)。
- 8、第 46 个 SCLK, 切换 $\overline{DRDY}/DOUT$ 为输出, 并把 $\overline{DRDY}/DOUT$ 拉高。update 1/ update 2 被置位或清零。

7.6.7.1. SPI 命令字

CS1238 有 2 个命令字,命令字的长度为 7bits,命令字描述如下:

表 12 CS1238 命令字说明表

命令名称	命令字节	描述
写配置寄存器	0x65	写配置寄存器 Config
读配置寄存器	0x56	读配置寄存器 Config

7.6.7.2. SPI 寄存器

CS1238 有一组寄存器 Config。

表 13 Config 寄存器

寄存器	R/W	描述	复位值
描述	保留位	配置寄存器	0x0C

配置位	B7	В6	B5	B4
描述	保留位	REF 输出开关	ADC 输出速率选择	
配置位	В3	B2	B1	В0
描述	PGA 选择		通道选择	

表	14	Config	寄存器	说明表
1	17	Coming	H1 11 11	りし ソコイヘ

Bits	描述					
[7]	-	芯片保留使用位。默认为 0, 写入时写 0, 不要写 1				
[6]	REFO_OFF	REF 输出开关:默认 REF 输出开启 1=关闭 REF 输出。 0=REF 正常输出。				
[5:4]	SPEED_SEL	ADC 输出速率选择: 默认为 10Hz SPEED_SEL[1:0] 描述 00 ADC 输出速率为 10Hz 01 ADC 输出速率为 40Hz 10 ADC 输出速率为 640Hz 11 ADC 输出速率为 1280Hz				
[3:2]	PGA_SEL	PGA 选择: 默认 PGA 为 128, 在测温模式下 PGA_SEL=00 PGA_SEL[1:0] 描述 00				
[1:0]	CH_SEL[1:0]	通道选择: 默认通道为通道 A CH_SEL[1:0] 描述 00 通道 A 01 通道 B 10 温度 11 内短				

7.6.8. Power down 模式

当 SCLK 从低电平变高电平并保持在高电平超过 $100\mu s$,CS1238 即进入 PowerDwon 模式,这时会关掉芯片所有电路,功耗接近 0。当 SCLK 重新回到低电平时,芯片会重新进入正常工作状态。

图 11 CS1238 PowerDown 模式示意图

symbol	描述	最小值	典型值	最大值
t10	SCLK 高电平保持时间	100 μ s		
t11	SCLK 下降之后低电平保持时间	10 μ s		

8. 封装信息

CS1238 采用 SOP14、QFN16 封装。

8.1. SOP14

图 12 SOP14 封装轮廓图

图 13 SOP14 封装尺寸信息

SYMBOLS	MIN	NOR	MAX				
SIMBOLS		mm					
A	1.473	1.625	1.727				
A1	0.101	-	0.254				
В	0.330	0.406	0.508				
C	0.190	0.203	0.249				
D	8.534	8.661	8.737				
Е	3.810	3.911	3.987				
e	-	1.270	-				
Н	5.791	5.994	6.197				
L	L 0.381		1.270				
θ °	0°	-	8°				

8.2. QFN16

图 14 QFN16 封装轮廓图

BOTTOM VIEW

图 15 QFN16 封装尺寸信息

国10 新加克瓦利 11 日本						
SYMBOLS	MIN NOR		MAX			
STMBOLS		mm				
A	0.70	0.75	0.80			
A1	0	0.02	0.05			
ь	0.18	0.25	0.30			
b1		0.18REF				
c						
D	2.90	3.00	3.10			
D2	1.60	1.70	1.80			
e		0.50BSC				
Ne		1.50BSC				
Nd		1.50BSC				
Е	2.90	3.00	3.10			
E2	1.60	1.70	1.80			
L	0.25	0.30	0.35			
h	0.30	0.35	0.40			

9. 订货信息

产品型号	引脚	封装类型	包装	包装数量	工作温度 (°C)	MSL	丝印
CS1238-SO	14	SOP	Tube	5000 (50pcs/管,100 管/盒)	- 40 ∼85	3	CS1238-SO
231230 50	1.	501	Tape Reel	3000pcs/盘	10 02	,	231230 50
CS1238-QFN16	16	QFN	Tray	4900 (490pcs/盘,10 盘/盒)	-40 ~85	3	1238QN16

注:相同芯片封装不同的包装方式,目前没有固定的编码加以区别,需客户下单时备注包装方式。

CHIPSEA

股票代码:688595

免责声明和版权公告

本文档中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

本文档可能引用了第三方的信息,所有引用的信息均为"按现状"提供,芯海科技不对信息的准确性、真实性做任何保证。

芯海科技不对本文档的内容做任何保证,包括内容的适销性、是否适用于特定用途,也不提供 任何其他芯海科技提案、规格书或样品在他处提到的任何保证。

芯海科技不对本文档是否侵犯第三方权利做任何保证,也不对使用本文档内信息导致的任何侵犯知识产权的行为负责。本文档在此未以禁止反言或其他方式授予任何知识产权许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文档中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归 © 2021 芯海科技 (深圳) 股份有限公司。保留所有权利。

www.chipsea.com

芯海科技(深圳)股份有限公司