

A rational mechanics course where everything is made with Python code

Bettachini, Víctor A.; Real, Mariano A.; Palazzo, Edgardo

New Media Pedagogy 23

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

Classroom and practice: an excercise on transcription

ullet Professor: lessons $\xrightarrow{by\ heart}$ blackboard/slides

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

- Professor: lessons $\xrightarrow{by \ heart}$ blackboard/slides
- Student: blackboard/slides \xrightarrow{copies} notebooks

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

- Professor: lessons $\xrightarrow{by \ heart}$ blackboard/slides
- Student: blackboard/slides \xrightarrow{copies} notebooks
- Práctice reiterate diagrames, calculations, etc.

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

- Professor: lessons $\xrightarrow{by \ heart}$ blackboard/slides
- Student: blackboard/slides \xrightarrow{copies} notebooks
- Práctice reiterate diagrames, calculations, etc.
- Boredom $\Longrightarrow \downarrow$ concentration on the subject

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

- Professor: lessons $\xrightarrow{by \ heart}$ blackboard/slides
- Student: blackboard/slides \xrightarrow{copies} notebooks
- Práctice reiterate diagrames, calculations, etc.
- Boredom $\Longrightarrow \downarrow$ concentration on the subject

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

Classroom and practice: an excercise on transcription

- Professor: lessons $\xrightarrow{by heart}$ blackboard/slides
- Student: blackboard/slides \xrightarrow{copies} notebooks
- Práctice reiterate diagrames, calculations, etc.
- Boredom $\Longrightarrow \downarrow$ concentration on the subject

ullet Professor: ideas o new code/notes in repository

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

- Professor: lessons $\xrightarrow{by \ heart}$ blackboard/slides
- Student: blackboard/slides \xrightarrow{copies} notebooks
- Práctice reiterate diagrames, calculations, etc.
- Boredom $\Longrightarrow \downarrow$ concentration on the subject

- ullet Professor: ideas o new code/notes in repository
- ullet Student: course repository o its own modifiable one

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

- Professor: lessons $\xrightarrow{by \ heart}$ blackboard/slides
- Student: blackboard/slides \xrightarrow{copies} notebooks
- Práctice reiterate diagrames, calculations, etc.
- Boredom $\Longrightarrow \downarrow$ concentration on the subject

- ullet Professor: ideas o new code/notes in repository
- ullet Student: course repository o its own modifiable one
- Use code to solve problems = **recycle** professor's code

Licklider (1957): 85 % of "thinking" are actually mundane task (calculations, drawing, etc.)

- Professor: lessons $\xrightarrow{by \ heart}$ blackboard/slides
- Student: blackboard/slides \xrightarrow{copies} notebooks
- Práctice reiterate diagrames, calculations, etc.
- Boredom $\Longrightarrow \downarrow$ concentration on the subject

- ullet Professor: ideas o new code/notes in repository
- ullet Student: course repository o its own modifiable one
- Use code to solve problems = **recycle** professor's code
- Modifiying it solves different problems

• Currently they use a pocket calculator after they learnt learning arithmetics at school

- Currently they use a pocket calculator after they learnt learning arithmetics at school
- They'll employ computational algebra after they learnt algebra and calculus

- Currently they use a pocket calculator after they learnt learning arithmetics at school
- They'll employ computational algebra after they learnt algebra and calculus
 - Focus on new skills, not in automatable calculations

- Currently they use a pocket calculator after they learnt learning arithmetics at school
- They'll employ computational algebra after they learnt algebra and calculus
 - Focus on new skills, not in automatable calculations
 - Employing numerical calculus they solve what is impossible in a blackboard/paper

- Currently they use a pocket calculator after they learnt learning arithmetics at school
- They'll employ computational algebra after they learnt algebra and calculus
 - Focus on new skills, not in automatable calculations
 - Employing numerical calculus they solve what is impossible in a blackboard/paper

- Currently they use a pocket calculator after they learnt learning arithmetics at school
- They'll employ computational algebra after they learnt algebra and calculus
 - Focus on new skills, not in automatable calculations
 - Employing numerical calculus they solve what is impossible in a blackboard/paper

Papert (1980) "...the best learning takes place when the learner takes charge"

• An expample problem is solved by the professor provided code

- Currently they use a pocket calculator after they learnt learning arithmetics at school
- They'll employ computational algebra after they learnt algebra and calculus
 - Focus on new skills, not in automatable calculations
 - Employing numerical calculus they solve what is impossible in a blackboard/paper

Papert (1980) "...the best learning takes place when the learner takes charge"

- An expample problem is solved by the professor provided code
- The student modifies it to solve other related problems

- Currently they use a pocket calculator after they learnt learning arithmetics at school
- They'll employ computational algebra after they learnt algebra and calculus
 - Focus on new skills, not in automatable calculations
 - Employing numerical calculus they solve what is impossible in a blackboard/paper

Papert (1980) "...the best learning takes place when the learner takes charge"

- An expample problem is solved by the professor provided code
- The student modifies it to solve other related problems
- Gradually he becomes autonomous by reusing not the provided but his own code

All course material can be edited on-line

All course material can be edited on-line

On-line programmable notebook: text + equations + code

New theory alongisde its worked examples in programmable notebooks

• On-line 24/7 asynchronical consultations that are public for others to see

Before Read and apply Start them During Consultations Complete them Additional consultations TA's corrections	Synchronical	Theory	Assignments
After Additional TA's corrections	Before	Read and apply	Start them
After IA's corrections	During	Consultations	Complete them
	After		TA's corrections

New theory alongisde its worked examples in programmable notebooks

- On-line 24/7 asynchronical consultations that are public for others to see
- Remote collaboration on multi-user notebooks

Synchronical	Theory	Assignments
Before	Read and apply	Start them
During	Consultations	Complete them
After	Additional consultations	TA's corrections

New theory alongisde its worked examples in programmable notebooks

- On-line 24/7 asynchronical consultations that are public for others to see
- Remote collaboration on multi-user notebooks
- Weekly meetings to synchronically unfinished assignments with TA's assistance

Synchronical	Theory	Assignments
Before	Read and apply	Start them
During	Consultations	Complete them
After	Additional consultations	TA's corrections

New theory alongisde its worked examples in programmable notebooks

- On-line 24/7 asynchronical consultations that are public for others to see
- Remote collaboration on multi-user notebooks
- Weekly meetings to synchronically unfinished assignments with TA's assistance
- On a weekly basis these must be turned-in for scoring

Synchronical	Theory	Assignments
Before	Read and apply	Start them
During	Consultations	Complete them
After	Additional consultations	TA's corrections

Asynchronical corrections and remote assistance

Student's work can be commented and edited in Google Colaboratory

Individualized student follow-up at Microsoft Teams

A course centred on code

• Theory: text + equations + executable cod in digital notebooks.

A course centred on code

- Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.

A course centred on code

- Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.
- assignments: professor's code recycling.

A course centred on code

- Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.
- assignments: professor's code recycling.
- On-line:

A course centred on code

- Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.
- assignments: professor's code recycling.
- On-line:
 - Remote collaboration and correction

A course centred on code

- Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.
- assignments: professor's code recycling.
- On-line:
 - Remote collaboration and correction
 - Doesn't require powerful nor at campus computers

A course centred on code

- Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.
- assignments: professor's code recycling.
- On-line:
 - Remote collaboration and correction
 - Doesn't require powerful nor at campus computers
 - A dated record of each student's work

A course centred on code

- Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.
- assignments: professor's code recycling.
- On-line:
 - Remote collaboration and correction
 - Doesn't require powerful nor at campus computers
 - A dated record of each student's work

Inverted classroom

Theory: emphasis on student's autonomus reading

A course centred on code

- Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.
- assignments: professor's code recycling.
- On-line:
 - Remote collaboration and correction
 - Doesn't require powerful nor at campus computers
 - A dated record of each student's work

- Theory: emphasis on student's autonomus reading
- Consultations: mostly on-line asynchronical and of public access

A course centred on code

- Theory: text + equations + executable cod in digital notebooks.
- Reinforced by: suggested bibliography and short professor's videos.
- assignments: professor's code recycling.
- On-line:
 - Remote collaboration and correction
 - Doesn't require powerful nor at campus computers
 - A dated record of each student's work

- Theory: emphasis on student's autonomus reading
- Consultations: mostly on-line asynchronical and of public access
- TA personal assisantace when completing assignments in synchronical meetings

2023 Students feedback improved:

• Theory notes and code at repository

- Theory notes and code at repository
- ullet Grading of assignments methodology Evaluating each one of them o higher student's performance

- Theory notes and code at repository
- ullet Grading of assignments methodology Evaluating each one of them o higher student's performance

- Theory notes and code at repository
- ullet Grading of assignments methodology Evaluating each one of them o higher student's performance
- A course on optics and waves will incorporate part of the methodology

```
| The state of the
```


- Theory notes and code at repository
- \bullet Grading of assignments methodology Evaluating each one of them \to higher student's performance
- 2024
- A course on optics and waves will incorporate part of the methodology
- Al assistance in code generation employing GitHub Copilot

