

Apuntes de la clase del 17 de mayo del 2017

Apuntador: Ariel Montero Monestel Curso: IC5701 Compiladores e Intérpretes-G40 Profesor: Dr Francisco J. Torres-Rojas

Tecnológico de Costa Rica Escuela de Ingeniería en Computación Sede San José I Semestre, 2017

Quiz #9

Calcule el FIRST(x) de todos los No Terminales de las siguientes 3 gramáticas

Let's follow with the Follow(X)

En síntesis, el Follow(X) se define de la siguiente manera:

- Sea G una CFG
- La función Follow(X) regresa un conjunto de terminales y \$ que indica todas las "continuaciones" factibles del no terminal x y bajo la gramática G

Argumento del Follow(X)

- X únicamente puede ser un no terminal
- Además, Follow(X) es iterativo hasta que no hayan más cambios

Reglas del Follow(X)

- 1. Si X es el símbolo inicial, agregue \$ al Follow(X)
- 2. Si hay una regla con la forma $A \to \alpha X\beta$ agregue FIRST(β) {E} al Follow(X)
- 3. Si hay una regla $A \to \alpha X \beta$ y ε pertenece al Follow(β), agregue Follow(A) a Follow(X)

Observaciones

- Solo se calcula para no terminales
- Primero se calcula el First(X) de los no terminales
- Para efectos del Follow(X), se ignoran las reglas de la gramática que únicamente tengan terminales ó ε en su lado derecho, las demás se procesan repetidamente hasta que no se hagan cambios

Ejemplos de First(X) & Follow(X)

1.

Reglas		First(X)		Follow(X)					
1	S -> (S) S	s	{(, ٤}		Pasada 1	Pasada 2	Pasada 3		
2	S -> E			S	{\$,)}				

2.

Reglas		First(X)		Follow(X)						
1	E → TE'	Е	{ (, # }		Pasada 1	Pasada 2	Pasada 3			
	E' → OP T									
2	E'	E"	{+,-, E}	E	{\$,)}	{\$,)}	{\$,)}			
3	$E' \rightarrow E$	OP	{+,-}	E'	{\$}	{\$,)}	{\$,)}			
4	OP → +	T	{ (, # }	OP	{(,\$}	{(,\$}	{(,\$}			
5	OP → -	T"	{ *, E }	Т	{+, -, \$}	{+, -, \$,)}	{+, -, \$,)}			
6	T → F T'	M	{*}	T'	{+, -, \$}	{+, -, \$,)}	{+, -, \$,)}			
7	T' → M F T'	F	{ (,# }	М	{(,#}	{(,#}	{(,#}			
9	M → *			F	{*, +, -, \$}	{*, +, -, \$,)}	{*, +, -, \$,)}			
10	F → (E)									
11	F → #									

Predict(X)

La función Predict(X) se define de la siguiente manera:

- Sea G una CFG
- La función Predict(X) regresa un conjunto de terminales y posiblemente \$ que predicen cuándo se usa la regla X

Argumento del Predict(X)

El argumento X solo puede ser una regla de la gramática, la cual tendrá la forma $A \to \alpha$

Regla del Predict(X)

```
\begin{split} & \text{if ( FIRST}(\alpha) \text{ incluye a } \mathcal{E} \text{ )} \{ \\ & \qquad \text{PREDICT}(X) = ( \text{ FIRST}(\alpha) - \{\mathcal{E}\} \text{ ) U FOLLOW(A);} \\ & \qquad \text{else} \{ \\ & \qquad \text{PREDICT}(X) = \text{FIRST}(\alpha); \\ & \qquad \} \end{split}
```

Ejemplos de Predict(X)

1.

Reglas		No terminal	First(X)	Follow(X)	Regla	First(α)	Follow(A)	Predict(X)
1	S -> (S) S	s	{3,)}	{\$,)}	S -> (S) S	{)}	{\$,)}	{(}
2	s -> E				S -> E	{ 3}	{\$,)}	{\$,)}

2.

		No					
Reglas		Terminal	First(X)	Follow(X)	Regla	First(α)	Predict(X)
1	E → TE'	M	{*}	{(,#}	F → (E)	{(}	{(}
2	E' → OP T E'	F	{ (,# }	{*, +, -, \$,)}	F → #	{#}	{#}
3	$\textbf{E'} \rightarrow \textbf{E}$	OP	{+,-}	{(,\$}	M o *	{*}	{*}
4	OP → +	E	{ (, # }	{\$,)}	OP → +	{+}	{+}
5	OP → -	E"	{+,-,E}	{\$,)}	OP → -	{-}	{-}
6	T → F T'	Т	{ (, # }	{+, -, \$,)}	$T \rightarrow F T'$	{ (, # }	{ (, # }
7	T' → M F T'	T"	{ *, E}	{+, -, \$,)}	T' → M F T'	{*}	{*}
9	M → *				$\textbf{T'} \rightarrow \textbf{E}$	{3}	{+, -, \$,)}
10	F → (E)				E → TE'	{ (, # }	{ (, # }
					E' → OP T		
11	F → #				E'	{+,-}	{+,-}
					$\textbf{E'} \rightarrow \textbf{E}$	{3}	{\$,)}

Tabla de Parsing

- Tabla M
- Por cada no terminal, la tabla tendrá una fila (también se pueden agregar el símbolo de \$).
- Por cada terminal, se le agregará una columna a la tabla (también se pueden agregar el símbolo de \$).
- Se debe haber realizado previamente las funciones de First(X), Follow(X) y Predict(X)
- Para toda regla con la forma $A \rightarrow \alpha$:
 - \circ Para cada elemento **e** en Predict(A $\to \alpha$) se agregará la regla A $\to \alpha$ en M[A][a]

Ejemplo de Tabla de Parsing

		Reglas		First(X)	Predict(X)		
		1	E → TE'	{ (, # }	{ (, # }		
			E' → OP				
		2	T E'	{+,-}	{+,-}		
		3	E ' → E	{3}	{\$,)}		
		4	OP → +	{+}	{+}		
		5	OP → -	{-}	{-}		
		6	T → F T'	{ (, # }	{ (, # }		
			T' → M F				
		7	T'	{*}	{*}		
		8	$\textbf{T'} \rightarrow \textbf{E}$	{3}	{+, -, \$,)}		
		9	M → *	{*}	{*}		
		10	F → (E)	{(}	{(}		
		11	F → #	{#}	{#}		
	(#)	+	-	*	\$
F	10	11					
OP				4	5		
E	1	1					
E'			3	2	2		3
M						9	
Т	6	6					
T'			8	8	8	7	8