

S62457 What's New in Transformer Engine and FP8

Przemyslaw Tredak, NVIDIA | March 20th 2024

Agenda

- FP8 Training
- Transformer Engine
- What's new in TE?
- Future of TE

TensorCores and Mixed Precision

Motivation

- Starting with Volta, NVIDIA GPUs feature TensorCores
- They greatly speed up matrix multiplication and convolution
- To get the maximum performance, training in mixed precision is required

FP8
A little theory

	sign	ign exponent					FP32 mantissa										2 = 0.3952	
FP16	0	0	1	1	0	1	1	0	0	1	0	1	0	0	1	1	= 0.395264	More precision
BF16	0	0	1	1	1	1	1	0	1	1	0	0	1	0	1	0	= 0.394531	More range
FP8 E4M3	0	0	1	0	1	1	0	1									= 0.40625	More precision
FP8 E5M2	0	0	1	1	0	1	1	0									= 0.375	More range

The FP16 way

- Partition the DL network graph into safe and unsafe regions
 - Safe regions contain operations benefitting from reduced precision and whose outputs' dynamic ranges are similar to the inputs
- Use the scaling factor during the backward pass
 - Scaling factor is used to avoid over- and underflows in the value distribution of the tensors

The FP16 way

- Partition the DL network graph into safe and unsafe regions
 - Safe regions contain operations benefitting from reduced precision and whose outputs' dynamic ranges are similar to the inputs
- Use the scaling factor during the backward pass
 - Scaling factor is used to avoid over- and underflows in the value distribution of the tensors

The FP16 way

- Partition the DL network graph into safe and unsafe regions
 - Safe regions contain operations benefitting from reduced precision and whose outputs' dynamic ranges are similar to the inputs
- Use the scaling factor during the backward pass
 - Scaling factor is used to avoid over- and underflows in the value distribution of the tensors

Enter FP8

- Partition the DL network graph into safe and unsafe regions
 - Unsafe region does not necessarily need to be FP32, FP8 training recipe can be combined with FP16/BF16 recipe
 - Explicit casts are not enough FP8 operators need to use higher precision internally and be able to output higher precision output
- Use the per-tensor scaling factors
 - Scaling factors are needed in both passes
 - E4M3 for forward, E5M2 for backward
 - A single scaling factor is no longer enough

P8 HP FP8

Enter FP8

- Partition the DL network graph into safe and unsafe regions
 - Unsafe region does not necessarily need to be FP32, FP8 training recipe can be combined with FP16/BF16 recipe
 - Explicit casts are not enough FP8 operators need to use higher precision internally and be able to output higher precision output
- Use the per-tensor scaling factors
 - Scaling factors are needed in both passes
 - E4M3 for forward, E5M2 for backward
 - A single scaling factor is no longer enough

Enter FP8

- Partition the DL network graph into safe and unsafe regions
 - Unsafe region does not necessarily need to be FP32, FP8 training recipe can be combined with FP16/BF16 recipe
 - Explicit casts are not enough FP8 operators need to use higher precision internally and be able to output higher precision output
- Use the per-tensor scaling factors
 - Scaling factors are needed in both passes
 - E4M3 for forward, E5M2 for backward
 - A single scaling factor is no longer enough

Enter FP8

- Partition the DL network graph into safe and unsafe regions
 - Unsafe region does not necessarily need to be FP32, FP8 training recipe can be combined with FP16/BF16 recipe
 - Explicit casts are not enough FP8 operators need to use higher precision internally and be able to output higher precision output
- Use the per-tensor scaling factors
 - Scaling factors are needed in both passes
 - E4M3 for forward, E5M2 for backward
 - A single scaling factor is no longer enough

Choosing the scaling factor

Choosing the scaling factor for the FP8 output is simple conceptually, but hard in practice

Choosing the scaling factor

- Choosing the scaling factor for the FP8 output is simple conceptually, but hard in practice
- Impossible to keep the entire high precision output in the high speed memory to find the maximum and scale with it

Choosing the scaling factor

- Choosing the scaling factor for the FP8 output is simple conceptually, but hard in practice
- Impossible to keep the entire high precision output in the high speed memory to find the maximum and scale with it
- To overcome that we need to know the scaling factor before seeing the output

Choosing the scaling factor

Transformer Engine

The introduction

- An open-source library implementing the FP8 recipe for Transformer building blocks
- Optimized for FP8 and other datatypes

import torch

Set dimensions.

 $in_features = 768$

 $out_features = 3072$

Initialize model and inputs.

model = te.Linear(in_features,

 $hidden_size = 2048$

import transformer_engine.pytorch as te

from transformer_engine.common import recipe

out_features,

Transformer Engine

The API

Transformer Engine

FP8 autocast

- fp8_autocast context manager tells Transformer Engine's modules to use FP8 computation internally
- Enables specifying the details about the chosen FP8 recipe, like a different size of the history window or a different algorithm for calculating the scaling factors
- It does not change anything else in the model
 - For example, for a mixed FP16/FP8 training it needs to be combined with native framework's AMP or casting of the model!
- Backward pass inherits the settings of the forward pass and should be outside of the fp8_autocast region

Performance

Pretraining using H100 and FP8 with NeMo

New functionality

Since last GTC

Support FP8 on Ada GPUs

Multi-query attention

Grouped-query attention

$$y=rac{x}{RMS_arepsilon(x)}*\gamma$$
 where $RMS_arepsilon(x)=\sqrt{rac{1}{n}\sum_{i=0}^n x_i^2+arepsilon}$

RMSNorm
Including zero-centered gamma support

Sliding Window attention

New functionality

Since last GTC

X'₂ X₂ X'₁ X₁

GLU activationsReGLU, GeGLU, SwiGLU

Rotary Position Embeddings
Fast fused implementation

Parallel Transformer
Falcon architecture

CPU offloading of activations

Lazy weight initialization in PyTorch
Using "meta" device

Faster execution

Faster execution

Faster execution

More parallelism

Tensor parallelism and Sequence parallelism (TP4)

More parallelism

Tensor parallelism and Context parallelism (TP2CP2)

Saving memory

```
In [1]: | import transformer engine.pytorch as te
           # Create the model
           model = te.Linear(128, 128)
In [2]: M print(model.weight)
           Parameter containing:
           tensor([[ 2.5218e-02, -3.0896e-02, 3.0437e-03, ..., -5.0314e-02,
                     8.4104e-03, -5.4243e-03],
                   [ 1.2365e-02, -2.4354e-02, 5.6630e-03, ..., 6.4632e-03,
                     1.9270e-02, 8.8925e-03],
                    2.1083e-03, 6.1130e-05, -3.8648e-02, ..., -7.9366e-04,
                     1.1135e-02, 4.9120e-03],
                   [ 2.2397e-03, -2.5749e-02, 2.0430e-02, ..., -2.7015e-02,
                     8.1024e-03, -1.2790e-02],
                    [-1.8441e-02, 4.0443e-02, -5.9455e-03, ..., 3.2744e-02,
                     7.7802e-04, 4.5076e-02],
                    [-4.0411e-03, -1.4284e-03, 2.1492e-02, ..., 9.7799e-03,
                    -3.3097e-02, 5.5765e-03]], device='cuda:0', requires grad=True)
```

- By default, Transformer Engine's modules create their weights in high precision type (similarly to AMP)
- That is wasteful if the high precision copy is already stored in the optimizer or during inference

Saving memory

- fp8_model_init context manager tells Transformer Engine's modules to create their weights in FP8 only, without high precision copy
- Enables full memory savings from FP8

Saving memory

Blackwell

Blackwell

Blackwell

Blackwell

Quantization error

Beyond Transformers

- Focus on large context length makes regular attention a bottleneck, as it scales with a square of the sequence length.
- Many proposed techniques to overcome this sliding window attention, sparse attention, dilated attention...
- State space models (SSMs, e.g. Mamba) are an interesting new family of language models that aims to tackle this issue by replacing attention.
- On the TE side, we want to aid that exploration with optimized building blocks for SSMs.

And more...

- Full CUDA graphs support
- Full support for FSDP in pyTorch
- FP8 optimizer
- Support for FP8 in MoE
- Better communication overlap in JAX
- More modular API
- More performance optimizations

