Geoffrey Parker - grp352 HW 23: 4.18 - 4.23 M328K April 19th, 2012

4.18 Theorem. Let p be a prime and a be an integer. If $(a, p) = 1$, then $\operatorname{ord}_p(a)$ divides $p - 1$, that is, $\operatorname{ord}_p(a) p - 1$.
<i>Proof.</i> Let p be a prime and a be an integer with $(a,p)=1$. Let $k=ord_p(a)$. By Fermat's Little Theorem we know that $a^{p-1}\equiv 1\pmod p$, so by theorem 4.10 $k\mid p-1$.
4.19 Exercise. Compute each of the following without the aid of a calculator or computer.
1. $512^{372} \pmod{13}$.
$2. \ 3444^{3233} \ (\text{mod } 17).$
3. $123^{456} \pmod{23}$.
Solution.
1. We know that $13 - 1 = 12$ and $372 = 31 * 12$, so $ord_{13}(512) \mid 372$. Therefore $512^{372} \pmod{13} = 1$.
2. $3444^{3233} \pmod{17}$.
3. $123^{456} \pmod{23}$.
4.20 Exercise. Find the remainder upon division of 314^{159} by 31 .
Solution.

${f 4.21}$ Theorem. Let n and m be natural numbers that are relatively prime, and let a
be an integer. If $x \equiv a \pmod{n}$ and $x \equiv a \pmod{m}$, then $x \equiv a \pmod{nm}$.
<i>Proof.</i> Let n and m be natural numbers with $(n,m)=1$. Let a and x be integers
with $x \equiv a \pmod{n}$ and $x \equiv a \pmod{m}$. So $n \mid x - a$ and $m \mid x - a$. So by theorem
1.42 $nm \mid x - a$. Therefore $x \equiv a \pmod{nm}$.
4.22 Exercise. Find the remainder when 4^{72} is divided by 91 (= $7 \cdot 13$).
\Box
4.23 Exercise. Find the natural number $k < 117$ such that $2^{117} \equiv k \pmod{117}$.
(Notice that 117 is not prime.)
\Box