

BEST AVAILABLE COPY

PCT/EP2004/008738

BUNDESREPUBLIK DEUTSCHLAND

03.12.04

REC'D 22 DEC 2004

WIPO

PCT

**Prioritätsbescheinigung über die Einreichung
einer Gebrauchsmusteranmeldung**

Aktenzeichen: 203 12 066.3

Anmeldetag: 5. August 2003

Anmelder/Inhaber: Hueck Folien GmbH & Co KG, 92712 Pirk/DE

Bezeichnung: Bedruckte bahnförmige Materialien, insbesondere für
Abdeckungen von Behältern

IPC: B 65 D, C 09 J, B 32 B

**Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-
sprünglichen Unterlagen dieser Gebrauchsmusteranmeldung.**

München, den 29. November 2004
Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

Hoiß

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Bedruckte bahnförmige Materialien, insbesondere für Abdeckungen von Behältern

Die Erfindung betrifft bedruckte bahnförmige Materialien, insbesondere für Abdeckungen von Behältern.

Abdeckungsmaterialien von Behältern bestehen im allgemeinen aus Folienverbünden, die Metall- und/oder Kunststofffolien und/oder Papier enthalten oder Aluminiumfolien und weisen im allgemeinen einen Aufdruck auf. Dieser Aufdruck kann sowohl auf der Außenseite als auch auf der dem Füllgut zugewandten Seite angebracht sein.

Sofern mit solchen an der dem verpackten Füllgut zugewandten Seite mit einem Aufdruck versehenen Abdeckungen Behälter, in denen sensible Güter, beispielsweise Lebensmittel, Kindernahrung, Tierfutter, pharmazeutische oder kosmetische Präparate verpackt werden sollen, sind gesetzliche Vorgaben zu berücksichtigen. Die verwendeten Druckfarben müssen bei Kontakt mit den verpackten Gütern unbedenklich sein. Allerdings erfüllen nur wenige Druckfarben diese Anforderungen, sodass auch die Farbpalette sehr eingeschränkt ist.

Wird die Druckfarbe jedoch durch eine Sperrschicht vom verpackten Gut abgegrenzt, können sehr viele bekannte Druckfarben verwendet werden. Eine derartige Sperrschicht kann beispielsweise ein Heißsiegelkäck sein, der bei im Tief- Flexo- oder Siebdruckverfahren hergestellten Aufdrucken direkt auf den Druck aufgebracht werden kann.

Bei einem Aufdruck an der dem Füllgut abgewandten Seite hingegen ist zwar die Unbedenklichkeit der Druckfarben nicht unbedingt von entscheidender Bedeutung. Selbstverständlich dürfen die Druckfarben nicht toxisch oder gesundheitsschädlich sein. Allerdings ist hier die Temperaturbeständigkeit der Druckfarben der kritische Punkt.

Bei der Siegelung der Abdeckung werden Temperaturen von etwa 120 bis 300°C angewendet. Druckfarben, insbesondere im Digitaldruck verwendbare Druckfarben sind im Allgemeinen nur bis zu Temperaturen von 100°C beständig.

Aus der EP 1 258 859 A1 ist ein bedrucktes bahnförmiges Material für Behälterabdeckungen bekannt, das eine im Digitaldruck hergestellte Bedruckung aufweist und hitzebeständig ausgerüstet ist, wobei auf einer Trägerbahn auf einen darauf aufgebrachten Haftvermittler der Aufdruck aufgebracht ist, der anschließend mit einem Lack, der einen Härter enthält oder einem gesondert aufgebrachten Härter überlackiert wird und so gegenüber Temperatureinwirkung stabilisiert wird, sodass anschließend mit Hilfe eines entsprechenden Heißsiegellacks gesiegt werden kann.

Dadurch wird die Bedruckung über die gesamte Fläche stabilisiert.

Allerdings ist es nur schwer oder gar nicht möglich, anschließend an den Siegel- oder Verpackungsvorgang eine weitere Bedruckung auf dem gemäß EP 1 258 859 A bedruckten und vollflächig stabilisiertem Material anzubringen, da die Oberfläche nach der Aufbringung des stabilisierenden Lacks nur mehr schwer mit zusätzlichen Informationen bedruckbar ist und die Druckfarbe auf dem stabilisierten Material nur schwer oder gar nicht haftet.

Aufgabe der Erfindung ist es daher ein bedrucktes bahnförmiges Material bereitzustellen, das eine Bedruckung aufweist, die im Digitaldruck hergestellt wurde, wobei das bedruckte Material heißsiegelfähig ist und anschließend an den Verpackungsvorgang bzw. Heißsiegelvorgang weiterhin bedruckbar bleibt.

Gegenstand der Erfindung ist daher ein bedrucktes bahnförmiges Material für Behälterabdeckungen, dadurch gekennzeichnet, dass auf eine Trägerbahn auf der Außenseite ein thermoplastischer Haftvermittler aufgebracht wird, anschließend der entsprechende Aufdruck aufgebracht ist, worauf der Aufdruck in jenen Bereichen, in denen ein Hitzeschutz erforderlich ist, mittels eines

registergesteuerten Verfahrens ein Lack ähnlicher Zusammensetzung aufgebracht wird, wobei ein Teil des im Lack vorhandenen bzw. gesondert aufgebrachten Härters in die Druckfarbe bzw. den Haftvermittler migriert und zu einer Vernetzung führt und/oder auf der dem Füllgut zugewandten Seite ein Haftvermittler, darauf ein Aufdruck aufgebracht wird, worauf auf die Druckfarbe ein Haftvermittler und in den oben definierten Bereichen ein Heißsiegellack aufgebracht wird.

In einer Ausführungsform wird der Haftvermittler vollflächig auf das Trägersubstrat aufgebracht. In einer weiteren Ausführungsform ist jedoch der Haftvermittler nur in jenen Bereichen aufgebracht, in denen die Bedruckung im Digitaldruck erfolgen soll. Diese partielle Aufbringung erfolgt ebenfalls durch ein registergesteuertes Verfahren.

Als Trägersubstrat kommen beispielsweise Trägerfolien vorzugsweise flexible Kunststofffolien, beispielsweise aus PI, PPS, PEEK, PEK, PEI, PSU, PAEK, LCP, PEN, PET, PA, PC, COC, in Frage. Die Trägerfolien weisen vorzugsweise eine Dicke von 5 - 700 µm, bevorzugt 5 – 200 µm, besonders bevorzugt 5 – 90 µm auf.

Ferner können als Trägersubstrat Metallfolien, insbesondere Al- Folien mit einer Dicke von 5 – 200 µm, vorzugsweise 10 bis 110 µm, besonders bevorzugt 20 – 90 µm dienen. Die Folien können auch oberflächenbehandelt, beschichtet oder kaschiert beispielsweise mit Kunststoffen, oder lackiert sein.

Ferner können als Trägersubstrate auch Papier oder Verbunde mit Papier, beispielsweise Verbunde mit Kunststoffen mit einem Flächengewicht von 20 – 500 g/m², vorzugsweise 40 – 200 g/m². verwendet werden.

Ebenso können entsprechende Kunststoff-Metall- oder Papier-Metall-Verbunde, sowie auch mehrschichtige Verbund als Trägermaterial verwendet werden. Bevorzugt werden Aluminiumfolien oder metallisierte Polyesterfolien verwendet.

Auf die Stoßzeile wird auf die Trägerbahn ein thermoplastischer Haftvermittler aufgebracht.

Der thermoplastische Haftvermittler ist vorzugsweise eine Ethylen-Acrylat Copolymer-Dispersion mit einem mittleren Molekulargewicht von etwa 22 000 – 150 000 oder eine Mischung dieser Dispersion mit einem Polyester, Polyvinylacetat, Polyacrylat oder Polyamid.

Das Mischungsverhältnis kann dabei 9 : 1 bis 1 : 1 bezogen auf das Ethylen-Acrylat Copolymer betragen.

Der thermoplastische Haftvermittler weist im allgemeinen einen Erweichungspunkt von etwa 80 - 100 °C auf.

Vorzugsweise kann der thermoplastische Haftvermittler pigmentiert sein. Vorteilhafterweise ist der thermoplastische Haftvermittler weiß pigmentiert, wobei alle bekannten derartigen Pigmente verwendet werden können.

Gegebenenfalls kann durch die Pigmentierung eine vollflächige Überdruckung unterbleiben.

Anschließend wird in einem konventionellen Druckverfahren und/oder in einem Digitaldruckverfahren, vorzugsweise im Indigo-Verfahren, der entsprechende Aufdruck aufgebracht, wobei gleichzeitig Register- und Steuermarken aufgebracht werden.

Diese Schicht wird anschließend mit einem Überlack versehen, wobei der Überlack eine, dem thermoplastischen Haftvermittler ähnliche oder gleiche Zusammensetzung aufweist.

Der Überlack kann bereits 0,5 % - 10% eines Härters, beispielsweise ein polyfunktionelles Azyridin oder ein Melaminharz enthalten enthalten. Enthält dieser Überlack noch keinen Härter, so kann der Härter nach Aufbringung des Überlacks getrennt aufgebracht werden

Der Härter migriert in die Druckfarbe und in den auf die Trägerbahn aufgebrachten thermoplastischen Primer und vernetzt.

Dadurch wird das thermoplastische System, das eine relativ niedrige Erweichungstemperatur aufweist, hitzebeständig.

Im allgemeinen wird eine Hitzebeständigkeit von mindestens 250°C, vorzugsweise etwa 280°C und höher erreicht

Die Migration und Vernetzung ist zeitabhängig und kann bei Raumtemperatur etwa 24 bis 96 Stunden betragen. Durch Tempen ist auch eine Beschleunigung des Härtungsvorgangs möglich.

Die Aufbringung des Überlacks erfolgt register- und passengenau zur im Digitaldruck aufgebrachten Bedruckung.

Dabei kann eine flexible, in Längs- und/oder Querrichtung veränderbare und mit der definierten Bedruckung mit Registermarken und Steuerlinien versehene Materialbahn über eine vorgelagerte Messeinrichtung zwischen zwei oder mehreren Registermarken der Länge nach vermessen und zwischen zwei oder mehreren angesteuerten Zuggruppen auf die notwendige Registerlänge eingestellt.

Anschließend wird die Materialbahn von einem Regelkreis, insbesondere einen Registerregler über eine Registerwalze vor dem ersten Druckwerk registergenau eingesteuert wobei das Seitenregister über eine Bahnsteuerung vorgesteuert und über einen Schwenkrahmen eingesteuert wird, worauf die Materialbahn mit einer oder mehreren funktionellen oder dekorativen Schichten passen- und registergenau zur gegebenenfalls bereits vorhandenen Beschichtung auf der Materialbahn bedruckt wird.

Die bereits bedruckte Materialbahn weist Registermarken und Steuerlinien auf, die inline zur Feststellung der genauen Registerabstände mittels optischer Sensoren vermessen werden.

Ist der Abstand zwischen den Registermarken größer als die erforderliche Registerlänge, so wird beispielsweise durch Erwärmen mittels eines IR-Trockners, einer Heizwalze oder eines Konvektionstrockners die bedruckte Materialbahn auf die erforderliche Länge vorgeschrumpft, ist der Abstand zwischen den Registermarken kleiner als die erforderliche Registerlänge, wird die bedruckte Materialbahn geeigneterweise zwischen zwei Zuggruppen oder mehrfach hintereinander mit mehreren Zuggruppen auf die entsprechende Länge vorgedehnt.

Vor dem ersten Druckwerk wird anschließend die so auf die entsprechende Länge eingestellte Materialbahn über eine Registerwalze eingesteuert. Im Seitenregister erfolgt die korrekte Einstellung über eine Bahnsteuerung bzw. über einen Schwenkrahmen, sowie über einen verschiebbaren Zylinder. Anschließend wird der Druckvorgang mit Längs- und Seitenregisterregelung durchgeführt.

Durch dieses Verfahren ist es möglich mehrere Schichten registergenau, sowohl im Längs- als auch im Seitenregister und sowohl auf der Vorder- als auch auf der Rückseite gegebenenfalls unter Verwendung einer Wendestation innerhalb geringster Toleranzen aufzubringen.

Aufgrund der nun erreichten Hitzebeständigkeit in den definierten Bereichen können anschließend übliche Heißseiegellacke verwendet werden um mit den erfindungsgemäßen Materialbahnen, gegebenenfalls nach Konfektionierung Behälter dicht zu verschließen. Vorzugswise wird der Heißseiegellack nicht vollflächig aufgebracht sondern nur in jenen Bereichen in denen die Siegelung bzw. Verpackung erfolgt. Dies kann ebenfalls durch das oben beschriebene Verfahren erfolgen.

Die nicht mit dem Überlack versehenen Bereiche sind im Gegensatz zu den hitzestabilisierten Bereichen auch nach dem Heißseigelvorgang noch

bedruckbar. Derartige Bedruckungen bei oder nach dem Verpackungsvorgang dienen im allgemeinen der Identifizierbarkeit des Abpackdatums, der Charge, und auch der Haltbarkeit des verpackten Produkts

Der thermoplastische Haftvermittler, der Überlack und gegebenenfalls der Härtet kann in jedem geeigneten Beschichtungsverfahren, wie Druckverfahren, beispielsweise Siebdruck-, Tiefdruck- oder Flexodruckverfahren, Walzenauftragsverfahren und dergleichen aufgebracht werden.

Der Aufdruck kann in jedem bekannten Druckverfahren, wie Siebdruck-, Tiefdruck- Digital- Offset- oder Flexodruckverfahren, vorzugsweise im Digitaldruckverfahren, beispielsweise im Indigoverfahren aufgebracht werden.

Auf die Rückseite der Trägerbahn wird ein Haftvermittler aufgebracht. Der Haftvermittler ist vorzugsweise eine Ethylen-Acrylat Copolymer-Dispersion mit einem mittleren Molekulargewicht von etwa 22 000 bis 150 000 oder eine Mischung dieser Dispersion mit einem Polyester, Polyvinylacetat, Ethylvinylalkohol, Polyacrylat oder Polyamid.

Das Mischungsverhältnis kann dabei 9 : 1 bis 1 : 1 bezogen auf das Ethylen-Acrylat Copolymer betragen.

Der thermoplastische Haftvermittler weist im allgemeinen einen Erweichungspunkt von etwa 60 - 100 °C auf.

Anschließend wird der gewünschte Aufdruck in einem bekannten Druckverfahren, wie Siebdruck-, Tiefdruck- Digital- Offset- Inkjet- Thermotransfer-, Sublimations- oder Flexodruckverfahren, vorzugsweise im Digitaldruckverfahren, beispielsweise im Indigoverfahren aufgebracht.

Anschließend wird auf den Aufdruck ein Heißsiegellack aufgebracht. Geeignet sind bekannte Heißsiegellacke mit unterschiedlichen Siegeleigenschaften, die beispielsweise gegen Kunststoffe, wie PS, PP, PE, PET siegelfähig sind.

Zur Verbesserung der Haftung des Heißsiegellichs auf der bedruckten Trägerfolie kann gegebenenfalls vor Auflösung des Heißsiegellichs ein Haftvermittler aufgebracht werden. Dies ist insbesondere vorteilhaft, wenn zur Herstellung des Aufdrucks das Indigo-Verfahren verwendet wurde.

Vorzugsweise wird als Haftvermittler eine Polyester- Melaminharz- Mischung auf Lösemittelbasis verwendet, wobei das Verhältnis Polyesteranteil : Melaminharzanteil etwa 2:1 bis 3:1 betragen kann.

Die erfindungsgemäßen bedruckten bahnförmigen Materialien werden insbesondere für Behälterabdeckungen verwendet, insbesondere für Behälter für Nahrungsmittel, wie Milchprodukte, Obst- und Gemüsesäfte, Tiermahrungs- und Tierpflegemittel, pharmazeutische und/oder kosmetische Produkte, Reinigungsmittel, Chemikalien und dergleichen.

Dazu werden die bahnförmigen Materialien auf bekannte Weise zur Verbesserung der Vereinzelungsfähigkeit geprägt werden und in die entsprechenden Formate konfektioniert beispielsweise geschnitten, gestanzt und dergleichen, werden.

Beispiele:**Beispiel 1:**

Zur Herstellung einer heißsiegelfähigen Behälterabdeckung wird auf eine metallisierte Polyesterfolie einer Stärke von 23 µm als Haftvermittler eine Ethylen-Acrylat Copolymer(MG 50.000)/Polyester-Dispersion (2 : 1) aufgebracht. Anschließend wird im Indigo-Verfahren der Aufdruck aufgebracht, der registergenau mit einem hitzebeständigen Überlack bestehend aus einer Ethylen-Acrylat Copolymer(MG 50.000)/Polyester-Dispersion (2 : 1) mit 0,5 % polyfunktionellem Azyridin aufgebracht.

Beispiel 2:

Die gemäß Beispiel 1 hergestellte einseitig bedruckte Folie wird nach vollständiger Aushärtung des hitzebeständigen Überlacks auf der Rückseite mit dem Haftvermittler beschichtet, anschließend wird der Aufdruck im Digitaldruckverfahren aufgebracht, worauf wiederum ein Haftvermittler und anschließend ein Heißsiegellack aufgebracht wird.

Patentansprüche:

- 1) Bedrucktes bahnförmiges Material für Behälterabdeckungen, dadurch gekennzeichnet, dass auf eine Trägerbahn auf der Außenseite ein thermoplastischer Haftvermittler aufgebracht wird, anschließend der entsprechende Aufdruck aufgebracht ist, worauf der Aufdruck in jenen Bereichen, in denen ein Hitzeschutz erforderlich ist, mittels eines registergesteuerten Verfahrens ein Lack ähnlicher Zusammensetzung aufgebracht wird, wobei ein Teil des im Lack vorhandenen bzw. gesondert aufgebrachten Härters in die Druckfarbe bzw. den Haftvermittler migriert und zu einer Vernetzung führt und/oder auf der dem Füllgut zugewandten Seite ein Haftvermittler, darauf ein Aufdruck aufgebracht wird, worauf auf die Druckfarbe ein Haftvermittler und in den oben definierten Bereichen ein Heißsiegellack aufgebracht wird..**
- 2) Bahnförmiges Material nach Anspruch 1, dadurch gekennzeichnet, dass der Aufdruck jeweils im Digitaldruckverfahren aufgebracht wird.**
- 3) Bahnförmiges Material nach Anspruch 2, dadurch gekennzeichnet, dass der Aufdruck im Indigo-Verfahren aufgebracht wird.**
- 4) Bahnförmiges Material nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das bahnförmige Material gleichzeitig mit dem Aufdruck mit Register- und Steuerlinien bedruckt wird.**
- 5) Bahnförmiges Material nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Material bereits vor dem Aufbringen des Haftvermittlers mit Register- und Steuerlinien bedruckt wird.**

- 6) Bahnförmiges Material nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Haftvermittler register- und passgenau in jenen Bereichen aufgebracht wird, in denen später der Aufdruck erfolgt.
- 7) Bahnförmiges Material nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Überlack hitzebeständig ist.
- 8) Bahnförmiges Material nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Überlack aus einer Ethylen-Acrylat Copolymer-Dispersion mit einem mittleren Molekulargewicht von etwa 22 000 – 150 000 oder eine Mischung dieser Dispersion mit einem Polyester, Polyvinylacetat, Polyacrylat oder Polyamid im Mischungsverhältnis 9 : 1 bis 1 : 1 bezogen auf das Ethylen-Acrylat Copolymer besteht.
- 9) Bahnförmiges Material nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Überlack 0,5 – 10 % eines Härters enthält.
- 10) Bahnförmiges Material nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Härter nach Aufbringen des Überlacks aufgebracht wird.
- 11) Bahnförmiges Material nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Härter ein polyfunktionelles Azyridin oder ein Melaminharz ist.
- 12) Bahnförmiges Material nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Überlack und gegebenenfalls der Härter register- und passgenau zum vorhandenen Aufdruck aufgebracht werden.

- 13) Bahnförmiges Material nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der thermoplastische Haftvermittler pigmentiert ist.
- 14) Bahnförmiges Material nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass es in Anschluss an den Heißsiegelvorgang oder den Verpackungsvorgang bedruckbar ist.
- 15) Verwendung des bahnförmigen Materials nach einem der Ansprüche 1 bis 14 gegebenenfalls nach Konfektionierung und/oder Prägung als Behälterabdeckung für Lebens- und Nahrungsmittel, pharmazeutische und/oder kosmetische Produkte, Reinigungsmittel, Chemikalien und dergleichen.

Zusammenfassung:

Die Erfindung betrifft bedruckte bahnförmige Materialien, insbesonders für Abdeckungen von Behältern, wobei etwaige Aufdrücke auf der dem Füllgut abgewandten und/oder der dem Füllgut zugewandten Seite im Digitaldruck aufgebracht werden.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.