

A Hybrid Quantum-Classical Algorithm for Robust Fitting

¹ The University of Adelaide ² Edith Cowan University

Michele Sasdelli 1 Anh-Dzung Doan ¹

David Suter ²

Tat-Jun Chin ¹

Robust fitting via consensus maximisation

Figure 1: Feature point matches containing outliers (red lines).

Least square is sensitive to outliers

Figure 2: Sensitivity of least squares to outliers.

Objective: make model fitting robust (insensitive) to outliers

Research gap in consensus maximisation

Theoretical results on classical computers [1]

Motivation

Contributions

1. Investigate a new type of computer — A hybrid quantum-classical algorithm

2. Address the random behaviour An error bound $|\mathcal{I}^*| - |\tilde{\mathcal{I}}| \le \rho$

Maximise consensus as minimise vertex cover

Maximum consensus set <

Minimum outlier set

Maximum independent set Minimum vertex cover

Hybrid quantum-classical robust fitting

Hypergraph vertex cover as 0-1 ILP $I(A) = \min_{\mathbf{z} \in \{0,1\}^N} ||\mathbf{z}||_1 \quad s.t \quad \mathbf{A}^T \mathbf{z} \ge 1_M,$ where $z_i = 1$ implies vertex $i \in \text{vertex cover}$ can be solved by quantum annealer

Hypergraph vertex cover as QUBO $Q_{\lambda}(A)$ $= \min_{\mathbf{v} \in \{0,1\}^{N+\delta'M}} [\mathbf{v}^T \quad 1] (\mathbf{J} + \lambda \mathbf{H}_A^T \mathbf{H}_A) [\mathbf{v}^T \quad 1]^T$ where, $\mathbf{v} = \begin{bmatrix} \mathbf{z}^T & \mathbf{t}_{(1)}^T & \dots & \mathbf{t}_{(M)}^T \end{bmatrix}$

Relaxation $LP(A) = \min_{\mathbf{z} \in [0,1]^N} \|\mathbf{z}\|_1 \quad s.t \quad \mathbf{A}^T \mathbf{z} \ge 1_M,$

Hybrid quantum-classical robust fitting

- 1. *A* ← Sample new hyperedge 2. Decay penalty λ
- 3. Solve $Q_{\lambda}(A)$ with quantum annealing
- 4. If $\mathcal{I} \leftarrow \mathcal{V} \setminus \mathcal{C}_{\mathbf{z}}$ is a consensus set
- If $\|\mathbf{z}\|_1 < \|\mathbf{z}_{\text{best}}\|_1$, then $\mathbf{z}_{\text{best}} \leftarrow \mathbf{z} \text{ and } \mathcal{I}_{\text{best}} \leftarrow \mathcal{I}$
- 7. Repeat step 1

Error bound

Experiments

Figure 5. Comparison between quantum annealing (on D-Wave Advantage) and simulated annealing (on classical computer)

Figure 5. Fundamental matrix estimation, where number of outliers $\|\mathbf{z}\|_1$ and lower bound LP(A)

Method		RS [36]	LRS [21]	FLRS [47]	EP [45]	IBCO [15]	QRF [20]	Alg. 1-E	Alg. 1-F
Castle	$ \mathcal{I} $ (Error bound)	74 (-)	74 (-)	74 (-)	70 (-)	76 (-)	73 (-)	72 (8.17)	76 (1.41)
N = 84	Time (s)	0.20	0.11	0.20	0.25	0.34	199.48	18.07	1998.87
Valbonne	$ \mathcal{I} $ (Error bound)	34 (-)	36 (-)	36 (-)	33 (-)	38 (-)	29 (-)	36 (6.00)	36 (4.00)
N = 45	Time (s)	0.21	0.20	0.31	0.34	0.44	110.30	6.71	1915.82
Zoom	$ \mathcal{I} $ (Error bound)	90 (-)	91 (-)	91 (-)	92 (-)	95 (-)	89 (-)	93 (9.91)	94 (3.64)
N = 108	Time (s)	0.31	0.29	0.14	0.21	0.35	257.03	92.35	2109.13
KITTI 104-108	$ \mathcal{I} $ (Error bound)	309 (-)	313 (-)	312 (-)	318 (-)	321 (-)	256 (-)	320 (9.91)	324 (2.30)
N = 337	Time (s)	0.04	0.04	0.07	0.28	0.39	799.33	137.26	2408.04
KITTI 198-201	$ \mathcal{I} $ (Error bound)	306 (-)	308 (-)	307 (-)	308 (-)	312 (-)	309 (-)	308 (10.00)	312 (1.89)
N = 322	Time (s)	0.05	0.13	0.07	0.23	0.42	774.06	36.15	2350.39
KITTI 738-742	$ \mathcal{I} $ (Error bound)	481 (-)	483 (-)	483 (-)	491 (-)	492 (-)	447 (-)	492 (5.88)	493 (1.39)
N = 501	Time (s)	0.05	0.18	0.23	0.53	0.61	1160.12	22.46	2506.04

Figure 5. Fundamental matrix estimation. Only our algorithm amongst all methods returns error bounds

Conclusions

- A hybrid quantum-classical algorithm for consensus maximisation
- The algorithm is terminated with an error bound

Paper

References

[1] Tat-Jun Chin, Zhipeng Cai, and Frank Neumann. "Robust fitting in computer vision: Easy or hard?." ECCV 2018.