Transformer Examples

- 1. A Transformer operating at no-load draws an exciting current of 6 A when the primary is connected to a 110 V, 50 Hz source. From a Wattmeter test it is known that the iron losses are 167 W. Calculate
 - a. The reactive power absorbed by the core
 - b. The impedance corresponding to the iron losses
 - c. The magnetizing reactance
 - d. The magnetization current
- 2. A resistive load of 1.6Ω is connected across the secondary terminals of a 10kV/400V transformer. If Rc = $50K\Omega$, Xm = $10K\Omega$, R1eq = 50Ω and X1eq = 80Ω calculate:
 - i) The turns ratio
 - ii) The output current (Is)
 - iii) The output voltage under load (Vs)
 - iv) The iron and copper loss
 - v) The magnetising current (I_m)
 - vi) The Input Current (I_P)
- 3. Open-circuit and short-circuit tests were conducted on a 230/110V 5KVA single phase transformer and the following results were obtained:

Open-circuit Test:

V1 = 230V V2 = 110V I1 = 2A Pin = 30W

Short-circuit Test:

V1 = 40V I1 = 22A Pin = 200W

Calculate the parameters for the approximate equivalent circuit.