Table 1: Endogenous

Variable	ĿŒX	Description
W	W	Salario
R_K	R^K	Renta del capital
MC	MC	Costos marginales
L	L	Labor
K	K	Capital
Y	Y	Production
I	I	Investment
С	C	Consumption
A	A	Productivity

Table 2: Exogenous

Variable	₽TEX	Description
eps_A	ϵ^A	Productivity shock

Table 3: Parameters

Variable	₽TEX	Description
sigma	σ	Inverse of intertemporal subs elasticity
beta	β	Discount factor
delta	δ	Capital depreciation
alpha	α	Capital share
${\tt psi_l}$	ϕ^L	psi L
eta	η	Frish elasticity
rho	$ ho_A$	Productivity persisitence
Ass	A	Productivity steady state

Table 4: Parameter Values

Parameter	Value	Description
σ	2.000	Inverse of intertemporal subs elasticity
β	0.950	Discount factor
δ	0.100	Capital depreciation
α	0.333	Capital share
ϕ^L	1.000	psi L
η	2.000	Frish elasticity
$ ho_A$	0.750	Productivity persisitence
A	2.000	Productivity steady state

[name= 'Función de producción']

$$Y_t = A_t K_{t-1}^{\alpha} L_t^{1-\alpha} \tag{1}$$

[name= 'Demanda de capital']

$$R^{K}_{t} = \alpha M C_{t} \frac{Y_{t}}{K_{t-1}} \tag{2}$$

[name= 'Demanda de trabajo']

$$W_t = (1 - \alpha) MC_t \frac{Y_t}{L_t} \tag{3}$$

[name= 'Costos marginales']

$$MC_t = \frac{1}{A_t} \left(\frac{R^K_t}{\alpha}\right)^{\alpha} \left(\frac{W_t}{1-\alpha}\right)^{1-\alpha} \tag{4}$$

[name= 'Ley de acumulación de capital']

$$K_t = K_{t-1} (1 - \delta) + I_t \tag{5}$$

[name= 'Oferta de trabajo']

$$\phi^L L_t^{\eta} C_t^{\sigma} = W_t \tag{6}$$

[name= 'Ecuación de Euler']

$$C_t^{(-\sigma)} = \beta C_{t+1}^{(-\sigma)} \left(1 - \delta + \frac{\alpha Y_{t+1}}{K_t} \right)$$
 (7)

[name= 'Productividad']

$$A_t = A_{t-1}^{\rho_A} A^{1-\rho_A} \left(1 + \epsilon^A_{\ t} \right) \tag{8}$$

[name= 'Demanda agregada']

$$Y_t = I_t + C_t \tag{9}$$