Raster analysis workflow in R.

Learning Objectives

After completing this tutorial, you will be able to:

• Effectively classify a raster dataset using classes determined by exploring a histogram of the data.

What you need

You will need a computer with internet access to complete this lesson and the data for week 4 of the course.

Download Week 4 Data (~500 MB){:data-proofer-ignore=" .btn }

We can break our data analysis workflow into several steps as follows:

- Data Processing: load and "clean" the data. This may include cropping, dealing with NA values, etc
- Data Exploration: understand the range and distribution of values in your data. This may involve plotting histograms scatter plots, etc
- More Data Processing & Analysis: This may include the final data processing steps that you determined based upon the data exploration phase.
- **Final Data Analysis:** The final steps of your analysis often performed using information gathered in the early data processing / exploration stages of your workflow.
- Presentation: Refining your results into a final plot or set of plots that are cleaned up, labeled, etc.

Please note - working with data is not a linear process. There are no defined steps. As you work with data more, you will develop your own workflow and approach.

```
# load libraries
library(raster)
library(rgdal)
library(ggplot2)

# set working directory
setwd("~/Documents/earth-analytics")
options(stringsAsFactors = F)
```

Note: try mapview() is a function that allows you to create interactive maps of spatial data using leaflet as a base.

https://cran.r-project.org/web/packages/mapview/index.html

```
# load data
pre_dtm <- raster("data/week3/BLDR_LeeHill/pre-flood/lidar/pre_DTM.tif")
pre_dsm <- raster("data/week3/BLDR_LeeHill/pre-flood/lidar/pre_DSM.tif")

post_dtm <- raster("data/week3/BLDR_LeeHill/post-flood/lidar/post_DTM.tif")
post_dsm <- raster("data/week3/BLDR_LeeHill/post-flood/lidar/post_DSM.tif")

# import crop extent
crop_ext <- readOGR("data/week3/BLDR_LeeHill", "clip-extent")
## OGR data source with driver: ESRI Shapefile
## Source: "data/week3/BLDR_LeeHill", layer: "clip-extent"
## with 1 features</pre>
```


Figure 1: difference between pre and post flood dtm.

```
## It has 1 fields
## Integer64 fields read as strings: id
Calculate the difference.
# calculate dtm difference
dtm_diff_uncropped <- post_dtm - pre_dtm</pre>
plot(dtm_diff_uncropped)
Next, crop the data.
# crop the data
dtm_diff <- crop(dtm_diff_uncropped, crop_ext)</pre>
plot(dtm_diff,
     main="cropped data")
# get a quick glimpse at some of the values for a particular "row"
# note there are a LOT of values in this raster so this won't print all values.
# below i used the head() function to limit the n umber of values returned to 6.
# that way a lot of numbers don't print out in my final knitr output.
head(getValues(dtm_diff, row = 5))
## [1] 0.04992676 -0.02001953 -0.10998535 -0.13000488 -0.02001953 -0.20996094
# view max data values
dtm_diff@data@max
## [1] 15.09998
dtm_diff@data@min
## [1] -10.53003
# plot histogram of data
hist(dtm_diff,
     main="Distribution of raster cell values in the DTM difference data",
     xlab="Height (m)", ylab="Number of Pixels",
```

cropped data

Figure 2: cropped data

```
col="springgreen")
hist(dtm_diff,
     xlim=c(-2,2),
     main="Histogram of pre-post flood DTM differences \nZoomed in to -2 to 2 on the x axis",
     col="brown")
# see how R is breaking up the data
histinfo <- hist(dtm_diff)</pre>
histinfo
## $breaks
  [1] -11 -10
                                                                             5
                 -9
                      -8
                              -6
                                  -5
                                      -4
                                          -3
                                              -2
                                                   -1
                                                        0
## [18]
                  8
                      9
                         10
                              11
                                 12
                                     13
##
## $counts
                                                              990
                                                                      2296
##
   [1]
             15
                      21
                              65
                                      85
                                              191
                                                      306
##
   [9]
           8934
                  39467 3380797 3522363
                                            18939
                                                     3131
                                                              883
                                                                       618
## [17]
            524
                    172
                              63
                                     111
                                               23
                                                        2
                                                                2
                                                                         1
## [25]
              0
                       0
                               1
##
## $density
   [1] 2.148997e-06 3.008596e-06 9.312321e-06 1.217765e-05 2.736390e-05
   [6] 4.383954e-05 1.418338e-04 3.289398e-04 1.279943e-03 5.654298e-03
## [11] 4.843549e-01 5.046365e-01 2.713324e-03 4.485673e-04 1.265043e-04
## [16] 8.853868e-05 7.507163e-05 2.464183e-05 9.025788e-06 1.590258e-05
## [21] 3.295129e-06 2.865330e-07 2.865330e-07 1.432665e-07 0.000000e+00
## [26] 0.000000e+00 1.432665e-07
##
```

Distribution of raster cell values in the DTM difference data

Figure 3: initial histogram

Histogram of pre-post flood DTM differences Zoomed in to -2 to 2 on the x axis

Figure 4: initial histogram w xlim to zoom in

0 1000000 2500000

0

-10

-5

layer

Figure 5: initial histogram w xlim to zoom in

٧

5

10

15

```
## $mids
   [1] -10.5
               -9.5
                    -8.5
                           -7.5
                                 -6.5
                                       -5.5
                                             -4.5
                                                    -3.5
                                                          -2.5
                                                                     -0.5
                                                                -1.5
                      2.5
                                               6.5
                                                     7.5
                                                           8.5
## [12]
          0.5
               1.5
                            3.5
                                  4.5
                                         5.5
                                                                 9.5 10.5
##
  [23]
         11.5
              12.5
                    13.5
                          14.5
                                 15.5
##
## $xname
## [1] "v"
##
## $equidist
## [1] TRUE
## attr(,"class")
## [1] "histogram"
# how many breaks does R use in the default histogram
length(histinfo$breaks)
## [1] 28
# summarize values in the data
summary(dtm_diff, na.rm=T)
##
                  layer
           -10.53002930
## Min.
## 1st Qu.
            -0.06994629
             0.01000977
## Median
## 3rd Qu.
             0.07995605
## Max.
            15.09997559
```

Histogram Zoomed in to -2-2 on the x axis w more breaks

Figure 6: initial histogram w xlim to zoom in and breaks

NA's 0.00000000

Breaks

Above, we saw that we can see how R breaks up our data to create a histogram. R, by default, creates 35 bins to plot a histogram of our raster data. We can increase the number of breaks or bins that the hist0gram uses with the argument:

breaks=number

In the example below, I used a very large number - 500 so we can see the bins.

Histogram with custom breaks

We can create custom breaks or bins in a histogram too. To do this, we pass the same breaks argument a vector of numbers that represent the range for each bin in our histogram.

Histogram with custom breaks

Figure 7: histogram w custom breaks

```
# We may want to explore breaks in our histogram before plotting our data
hist(dtm_diff,
    breaks=c(-20, -10, -3, -.3, .3, 3, 10, 50),
    main="Histogram with custom breaks",
    xlab="Height (m)" , ylab="Number of Pixels",
    col="springgreen")
```

Finally, let's plot the data using the breaks that we created for our histogram above. We know that there is a high number of cells with a value between -1 and 1. So let's consider that when we select the colors for our plot.

```
# plot dtm difference with breaks
plot(dtm_diff,
    breaks=c(-20, -10, -3, -.3, .3, 3, 10, 50),
    col=terrain.colors(7),
    main="DTM Difference \n Using manual breaks")
```

Custom plot colors

Next, let's adjust the colors that we use to plot our raster. to do that we will create a vector of colors, each or which will represent one of our numeric "bins" of raster values.

This mimics a classified map - we are still exploring our data!

```
# how many breaks do we have?
# NOTE: we will have one less break than the length of this vector
```

DTM Difference Using manual breaks

Figure 8: Plot difference dtm.

```
length(c(-20,-10,-3,-1, 1, 3, 10, 50))
## [1] 8
```

Set number of colors based upon how many breaks or bins we have in our data above we have 8 numbers in our breaks vector. this translates to 7 bins each or which requires a unique color.

```
# create a vector of colors - one for each "bin" of raster cells
diff_colors <- c("palevioletred4", "palevioletred2", "palevioletred1", "ivory1",
                "seagreen1", "seagreen2", "seagreen4")
plot(dtm diff,
     breaks=c(-20, -3, -.3, .3, 3, 50),
     col=diff_colors,
     legend=F,
     main="Plot of DTM differences\n custom colors & manual breaks")
# make sure legend plots outside of the plot area
par(xpd=T)
# add the legend to the plot
legend(x=dtm_diff@extent@xmax, y=dtm_diff@extent@ymax, # legend location
       legend=c("-20 to -3", "-3 to -.3",
                "-.3 to .3", ".3 to 3", "3 to 50"),
       fill=diff colors,
       bty="n",
       cex=.7)
```


Figure 9: Plot difference dtm with custom colors.

Crop and replot

We can zoom into a part of the raster manually - by first cropping the data using a manually created plot extent. Then plotting the newly cropped raster subset.

```
# new_extent <- drawExtent()</pre>
new_extent <- extent(473690, 474155.2, 4434849, 4435204)
new_extent
## class
                : Extent
## xmin
                : 473690
## xmax
                : 474155.2
## ymin
                : 4434849
## ymax
                : 4435204
# crop the raster to a smaller area
dtm_diff_crop <- crop(dtm_diff, new_extent)</pre>
# Plot the cropped raster
plot(dtm_diff_crop,
     breaks=c(-20, -3, -.3, .3, 3, 50),
     col=diff_colors,
     legend=F,
     main="Lidar DTM Difference \n cropped subset")
# grab the upper right hand corner coordinates to place the legend.
legendx <- dtm_diff_crop@extent@xmax</pre>
legendy <- dtm_diff_crop@extent@ymax</pre>
```

Lidar DTM Difference cropped subset

Figure 10: cropped dtm subset

Create a final classified dataset

When we have decided what break points work best for our data, then we may chose to classify the data.

Reclassified, Cropped Difference DTM difference in meters

Figure 11: final plot

```
reclass_matrix

## [,1] [,2] [,3]

## [1,] -20.0 -3.0 -2

## [2,] -3.0 -0.5 -1

## [3,] -0.5 0.5 0

## [4,] 0.5 3.0 1

## [5,] 3.0 50.0 2
```

Reclassify difference raster

Finally view the final histogram

Histogram of reclassified data

Figure 12: histogram of differences

```
hist(diff_dtm_rcl,
    main="Histogram of reclassified data",
    xlab="Height Class (meters)",
    ylab="Number of Pixels")
```

The above histogram looks odd. This is because we are trying to force our discrete data into bins. A barplot is a more appropriate plot.

```
barplot(diff_dtm_rcl,
    main="Barplot of reclassified data",
    xlab="Height Class (meters)",
    ylab="Frequency of Pixels",
    col=diff_colors)
## Warning in .local(height, ...): a sample of 14.3% of the raster cells were
## used to estimate frequencies
```

Now let's look at one last thing. What would the distribution look like if we set all values between -.5 to .5 to NA?

Barplot of reclassified data

Figure 13: histogram of differences

```
col=diff_colors)
## Warning in .local(height, \dots): a sample of 14.3% of the raster cells were
## used to estimate frequencies
# view summary of data
summary(diff_dtm_rcl_na)
             layer
                -2
## Min.
## 1st Qu.
                -1
## Median
                -1
## 3rd Qu.
                 1
## Max.
## NA's
           6761395
```


Figure 14: histogram of final cleaned data