

R: Eksploracja danych i regresja liniowa

2018-04-13 JDSZ1 Monika Kucal

Plan analizy

- Eksploracja zbioru mtcars
- Wizualizacja danych
 - Poszukiwanie zależności wykresy i korelacje
 - Rozkłady zmiennych skośność
- Estymacja modeli regresji liniowej
 - Modele z jedną zmienną objaśniającą
 - Modele z dwiema zmiennymi objaśniającymi
 - Wybór modeli na podstawie istotności zmiennych objaśniających i współczynnika determinacji R²
 - Prezentacja graficzna i interpretacja
 - Zastosowanie metody gradientu prostego
- Analiza wykonana w R z wykorzystaniem bibliotek: tidyverse, corrplot, e1071, plot3D

Eksploracja zbioru mtcars

- 11 zmiennych:
 - mpg Spalanie paliwa
 - cyl Liczba cylindrów
 - disp Objętość skokowa cylindra
 - hp Liczba koni mechanicznych
 - drat Przełożenie osi tylnej
 - wt Masa
 - gsec Czas przejazdu ¼ mili
 - vs Typ silnika V/S
 - am Automatyczna/Manualna skrzynia biegów
 - gear Liczba biegów
 - carb Liczba gaźników
- Zmienne objaśniające, które mogą zależeć od pozostałych parametrów
 - mtg Spalanie samochodu,
 - qsec Czas przejazdu ¼ mili

```
mpg
                      cv1
                                       disp
       :10.40
                 Min.
                         :4.000
                                  Min.
                                          : 71.1
1st Ou.:15.43
                 1st Qu.:4.000
                                  1st Ou.:120.8
Median :19.20
                 Median :6.000
                                  Median :196.3
       :20.09
                        :6.188
                                          :230.7
Mean
                 Mean
                                  Mean
3rd Ou.: 22.80
                 3rd ou.:8.000
                                  3rd Ou.: 326.0
       :33.90
                        :8.000
                                          :472.0
Max.
                 Max.
                                  Max.
      hp
                      drat
                                         wt
       : 52.0
                 Min.
                        :2.760
                                  Min.
                                          :1.513
Min.
1st Qu.: 96.5
                 1st Qu.:3.080
                                  1st Qu.: 2.581
Median :123.0
                 Median :3.695
                                  Median :3.325
                                          :3.217
Mean
       :146.7
                 Mean
                        :3.597
                                  Mean
3rd Qu.:180.0
                 3rd Qu.:3.920
                                  3rd Qu.: 3.610
       :335.0
Max.
                 Max.
                        :4.930
                                  Max.
                                          :5.424
     qsec
                       VS
                                          am
Min.
       :14.50
                 Min.
                         :0.0000
                                   Min.
                                           :0.0000
1st Qu.:16.89
                 1st Qu.: 0.0000
                                   1st Qu.: 0.0000
Median :17.71
                 Median :0.0000
                                   Median :0.0000
       :17.85
                        :0.4375
                                           :0.4062
Mean
                 Mean
                                   Mean
3rd Qu.:18.90
                 3rd Qu.: 1.0000
                                   3rd Qu.: 1.0000
       :22.90
                        :1.0000
                                           :1.0000
                 Max.
                                   Max.
Max.
                      carb
     gear
Min.
       :3.000
                 Min.
                        :1.000
1st ou.:3.000
                 1st Qu.:2.000
Median:4.000
                 Median :2.000
       :3.688
                        :2.812
                 Mean
3rd ou.:4.000
                 3rd Qu.:4.000
       :5.000
                        :8.000
                 Max.
Max.
```


Wizualizacja zmiennych - MPG vs. zmienne objaśniające

disp, drat, hp, wt, carb, cyl

Wartosc

10 -

Wizualizacja zmiennych - QSEC vs. zmienne objaśniające

Wartosc

disp, drat, hp, mpg, wt, carb, cyl

150-

Wizualizacja zmiennych - Korelacje

- Korelacje ze zmienną objaśnianą mpg:
 - silna korelacja ujemna: wt, cyl, disp, hp
 - silna korelacja dodatnia: drat, vs
- Korelacje ze zmienną objaśnianą qsec:
 - silna korelacja ujemna: hp, carb
 - silna korelacja dodatnia: vs
 - W przypadku modelu z wieloma zmiennymi objaśniającymi silnie skorelowane zmienne nie powinny być wybierane jednocześnie jako zmienne objaśniające.

Korelacja ujemna - wraz ze wzrostem wartości zmiennej objaśniającej maleje wartość zmiennej objaśnianej.

Korelacja dodatnia - wraz ze wzrostem wartości zmiennej objaśniającej rośnie wartość zmiennej objaśnianej.

Wizualizacja zmiennych - Rozkłady

Interpretacja

Rozkłady obu zmiennych są prawoskośne (Skośność>0).

Modele regresji liniowej - jedna zmienna objaśniająca

Zaprezentowano modele, których współczynnik determinacji R² jest najwyższy - model wyjaśnił najwięcej zmienności oraz zmienne objaśniające są istotne.

Interpretacja

Wzrost masy samochodu WT, wzrost liczby cylindrów CYL, wzrost objętości skokowej cylindra DISP powodują spadek spalania MPG.

Wzrost liczby koni mechanicznych HP powoduje spadek czasu przejazdu ¼ mili QSEC.

Predykcja

Jeśli masa samochodu WT=2.5, to spalanie MPG=23.92.

Jeśli liczba cylindrów CYL=8, to spalanie MPG=14.88.

Jeśli objętość skokowa cylindra DISP=350, to spalanie MPG=15.17.

Jeśli liczba koni mechanicznych HP=300, to czas przejazdu ¼ mili QSEC=15.02.

Modele regresji liniowej - dwie zmienne objaśniające

Zaprezentowano modele, których współczynnik determinacji R^2 jest najwyższy - model wyjaśnił najwięcej zmienności oraz wszystkie zmienne są istotne.

Interpretacja

Im większa masa samochodu WT i liczba cylindrów CYL tym mniejsze spalanie MPG. Im większa liczba gaźników CARB i typ silnika V, tym mniejszy czas przejazdu ¼ mili QSEC.

Predykcja

Jeśli masa samochodu WT=2.5 i liczba cylindrów CYL=8, to spalanie MPG=19.65. Jeśli liczba gaźników CARB=2 i typ silnika V, to czas przejazdu ¼ mili QSEC=17.31.

Modele regresji liniowej - metoda gradientu prostego

Zaprezentowano zastosowanie metody gradientu prostego dla wybranego modelu regresji liniowej MPG ~ WT.

- Na podstawie funkcji kosztu dla 2000 iteracji z krokiem 0.01 stwierdzono, że otrzymana funkcja liniowa
 nie jest optymalna, ponieważ wykres funkcji kosztu nie wypłaszczył się całkowicie. W kolejnych etapach
 należy zwiększyć liczbę iteracji lub/i zwiększyć krok.
- Następnie analizowano wykresy funkcji kosztu dla zmieniających się parametrów (liczba iteracji i krok).
- Ostatecznie dla 1000 iteracji z krokiem 0.1 otrzymano zadowalający kształt funkcji kosztu i dobre dopasowanie funkcji regresji do danych.