Laborator 5 Teste pentru date afectate de erori grosiere

1. Notiuni teoretice

Erorile grosiere sunt acelea ale caror valori conduc la denaturari ale rezultatelor, acestea fiind apreciabil diferite de cele obtinute prin masurari similare. Determinarile afectate de erori grosiere nu participa la procesul de prelucrare, de aceea se procedeaza la depistarea si inlaturarea acestora.

Exista două categorii de teste pentru depistarea erorilor grosiere:

- ✓ teste pentru selectii de volum ridicat:
 - ▲ Chauvenet
 - ▲ 3σ
- ✓ teste pentru selectii de volum scazut:
 - ▲ Grubbs-Smirnov.

Testul 3\sigma consta în verificarea încadrarii datelor experimentale într-un interval de încredere [m_v - 3 σ ; m_v + 3 σ] în care sunt admise erorile aleatorii (s-a presupus ca erorile sistematice au fost eliminate). Testul presupune urmatoarele etape (pasi):

- **P1.** ordonarea datelor V_1 , V_2 , ..., V_n în sens crescator (seria variationala), având ca extreme V_{min} si V_{max} ;
- **P2.** calculul valorii medii m_v si a estimatiei erorii standard $\hat{\sigma}$;
- P3. calculul intervalului de valori în care trebuie sa se încadreze datele:

 $[m_v - 3\sigma; m_v + 3\sigma]$

- **P4.** toate datele care sunt în afara intervalului dat de relatia de la pasul 3 se elimina fiind considerate ca afectate de erori grosiere;
- **P5.** se reia testul cu noile date ramase de la pasul 2, pâna când nici un rezultat experimental nu iese în afara intervalului dat de relatia de la pasul 3.

Testul Grubbs - Smirnov consta în verificarea încadrarii valorilor extreme ale datelor experimentale si presupune urmatoarele etape:

- **P1.** ordonarea datelor V_1 , V_2 , ..., V_n în sens crescator (seria variationala), având ca extreme V_{min} si V_{max} ;
- **P2.** calculul valorii medii m_v si a estimatiei erorii standard $\hat{\sigma}$;
- **P3.** daca valoarea suspectata de a fi afectata de erori grosiere este V_{max} (V_{min}) atunci se calculeaza:

$$v = \frac{V_{\text{max}} - m_V}{\hat{\sigma}}$$
; sau $v = \frac{m_V - V_{\text{min}}}{\hat{\sigma}}$

P4. se compara v cu valoarea $v_{n,\alpha}$ din tabelul Grubbs-Smirnov, în care n este volumul selectiei de date, iar α reprezinta **riscul ales** (la masurarile uzuale riscul $\alpha = 0.05$ sau $\alpha = 0.01$ pentru masurarile de foarte mare precizie $\alpha = 0.005$ sau $\alpha = 0.001$)

daca $v \ge v_{n,\alpha}$ atunci V_{max} (V_{min}) este afectata de o eroare grosiera si se elimina din sirul de determinari, în caz contrar se mentine în sirul de rezultate;

P5. se reia testul cu noile date ramase de la pasul 2, pâna când $v < v_{n-i,\alpha}$.

2. Aplicarea testului 3σ pentru un set de date

Exemplul 1. Se consideră un set de date care constituie notele obținute de studenti la un examen. Aceste date se gasesc in fisierul "Note_Stud.xls". Realizați **histograma** aferenta acestui set de date, utilizând instrucțiunea "hist" și salvati-o în figura "Hist_note_init.fig".

Verificați existența erorilor grosiere cu ajutorul testului 3σ. Salvați datele afectate de erori grosiere într-un vector y. Realizați noua histograma după eliminarea erorilor grosiere în figura "Hist note final.fig".

Indicații:

```
%citire date
[date, text] = xlsread('Note stud.xls')
%extragere date =note studenti
x=date';
med aritm=mean(x) %calcul valoare medie
estimatia=std(x) %estimatia=deviatia standard
%creare histograma
figure(1); hist(x)
title('Histograma cu datele initiale')
%testul 3sigma
y=[]; xx=[];
dimensiune=length(x)
for i=1:dimensiune
    if x(i) > med aritm + 3 * estimatia
         y=[y x(i)];
    elseif x(i) < med aritm-3*estimatia
         y=[y x(i)];
    else
    xx = [xx x(i)];
    dimensiunex=length(xx);
    end
end
%calcul medie aritmetica noua si estimatia/deviatia standard noua
```

%verificarea se repeta pana toate valorile sunt in intervalul ±3σ

3. Exercitii propuse

- 3.1. Se consideră setul de date "Date temp.xls". Să se determine dacă datele sunt afectate de erori grosiere. Daca astfel de date eronate exista, aceste valori vor fi extrase întrvector *z.*1. Sa construiasca o histograma pentru datele initiale ("Histograma_41_initial.fig" și să se ridice noua histogramă pentru datele corecte rămase cu numele "Histograma_41_dat_corecte.fig". Care este valoarea medie a datelor corectate? Dar **estimatia** pentru acestea?
- 3.2. Prin măsurarea repetată a tensiunii unei surse s-au obținut valorile: 304,5; 305,2; 303,3; 304,9; 304,8; 305,0; 304,6; 305,1; 304,7; 304,9 [mV]. Să se verifice dacă valorile obținute prin măsurări sunt sau nu afectate de erori grosiere, cu ajutorul testului Grubbs Smirnov. Din tabel (Anexa 1), adoptând un risc $\alpha = 0.05$, initial rezultă $v_{n,\alpha} = v_{10.0.05} = 2.176$ cu care se vor compara valorile extreme. Valorile afectate de erori grosiere vor fi extrase in vectorul z2, iar noile valori de selectie dupa excluderea datelor eronate se vor calcula: valoarea medie mv2 si estimatia sig2.

Anexa 1. Valorile parametrului $v_{n,\alpha}$ pentru testul Grubbs – Smirnov

Valorile parametrului ν_{n,α} pentru aplicarea testului Grubbs - Smirnov

n	α			
	0,005	0,01	0,05	0,1
3	1,155	1,155	1,153	1,148
4.	1,496	1,492	1,463	1,425
5	1,764	1,749	1,672	1,602
6	1,973	1,944	1,822	1,729
7	2,139	2,097	1,938	1,828
8	2,274	2,221	2,032	1,909
9	2,387	2,323	2,110	1,977
10	2,482	2,410	2,176	2,036
11	2,561	2,485	2,234	2,088
12	2,636	2,550	2,285	2,134
13	2,699	2,607	2,331	2,175
14	2,755	2,659	2,371	2,213
15	2,806	2,705	2,409	2,247
16	2,852	2,747	2,443	2,279
17	2,894	2,785	2,475	2,309
18	2,932	2,821	2,504	2,335
19	2,968	2,854	2,532	2,361
20	3,001	2,884	2,557	2,385
30	3,236	3,103	2,745	2,563
40	3,381	3,240	2,866	2,682
50	3,483	3,336	2,956	2,768
100	3,754	3,600	3,207	3,011