Лекция по математическому анализу №8.

Чудинов Никита (группа 145)

2 октября 2015

Мотивация: вычисление объёма.

Пусть в xOy задана фигура $G. z = f(x,y) \geqslant 0 \ \forall (x,y) \in G; f$ — непрерывна над G.

Теорема.

$$G = \bigcup_{i=1}^{n} G_i; \ G_i \cap G_j = \emptyset \ \forall i \neq j;$$

$$V \approx \sum_{i=1}^{n} f(\xi_i) \underbrace{m(G_i)}_{n \text{now, ado}};$$

$$V = \lim_{n \to \infty} \sum_{i=1}^{n} f(\xi_i) m(G_i); \ \max d(G_i) \to 0.$$

Определение 1 (Диаметр множества).

$$d(G_i) = \sup_{\vec{x}, \vec{y} \in G_i} d(\vec{x}, \vec{y}).$$

Мера Жордана

Пусть G — ограниченное множество в \mathbb{R}^n .

Определение 2. Клеткой Π в \mathbb{R}^n называется структура вида

$$\Pi = \{(x_1 \dots x_n) : a_i \leqslant x_i < b_i \ \forall i = 1 \dots n\}.$$

Определение 3. Мера клетки П равна

$$m(\Pi) = (b_1 - a_1)(b_2 - a_2) \dots (b_n - a_n).$$

Cвойство. $\Pi_1 \cap \Pi_2$ — клетка.

Определение 4. Множество A называется *клеточным*, если его можно представить в виде объединения конечного числа клеток.

Свойство.

$$m(A) = \sum_{i=1}^{n} m(\Pi_i).$$

Теорема. Мера клеточной фигуры не зависит от способа разбиения на клетки.

Доказательство. Пусть
$$T_1: G = \bigcup_{i=1}^n \Pi_i; \ T_2: G = \bigcup_{j=1}^m \Pi'_j$$

$$\Pi_{ij} = \Pi_i \cap \Pi'_j \Rightarrow G = \bigcup_{i=1}^n \bigcup_{j=1}^m \Pi_{ij};$$

$$m(G) = \sum_{i=1}^n m(\Pi_i) = \sum_{i=1}^n \sum_{j=1}^m m(\Pi_{ij}) = \sum_{j=1}^m \left(\sum_{i=1}^n \Pi_{ij}\right) = \sum_{j=1}^m m(\Pi'_j)$$

Свойства клеточных множеств:

- 1. Если A, B клеточные множества, то $A \cap B, A \cup B, A \setminus B$ тоже клеточные множества (то есть множество всех клеточных множеств образует кольцо над \cup и \cap);
- $2. m(A) \geqslant 0 \forall A;$

3. Конечная аддитивность:
$$m\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n m(A_i)$$
 при $A_i \cap A_j = \emptyset \ \forall i \neq j;$

4. Монотонность: если $A \subseteq B$, то $m(A) \leqslant m(B)$;

Доказательство.
$$m(B) = m(\underbrace{A \cup (B \backslash A)}_{\text{не пересекаются}}) = m(A) + m(B \backslash A) > A;$$

5.
$$m\left(\bigcup_{i=1}^{n} A_i\right) \leqslant \sum_{i=1}^{n} m(A_i)$$
.

Определение 5. Множество G называется измеримым (по Жордану), если $\forall \varepsilon > 0 \; \exists$ клеточные множества $A_{\varepsilon}, B_{\varepsilon} : A_{\varepsilon} \subset G \subset B_{\varepsilon}; \; m(B_{\varepsilon}) - m(A_{\varepsilon}) < \varepsilon.$

Определение 6. Если G — измеримое множество, то его мера $m(A) < m(G) < m(B) \forall$ клеточных множеств $A, B : A \subset G \subset B$.

Теорема. Если G — измеримо, то его m(G) существует, единственно u:

$$m(G) = \sup_{A \subset G} m(A) = \inf_{G \subset B} m(B).$$

Доказательство. Так как \forall клеточных множеств $A, B: A \subseteq G \subseteq B; \ m(A) \leqslant m(B),$ то по теореме об отделимости числовых рядов $\Rightarrow \gamma: m(A) \leqslant \gamma \leqslant m(B) \Rightarrow m(G) = \gamma$ для любых клеточных множеств $A \subseteq G \subseteq B$.

 $E\partial uнственность$ от противного:

Пусть
$$\exists \alpha < \beta : m(A) \leqslant \alpha < \beta \leqslant m(B) \ (\forall A, B : A \subseteq G \subseteq B)$$
. Так как G — измеримое, то $\forall \varepsilon : (\beta - \alpha) < \varepsilon : \lim_{\varepsilon \to 0} (\beta - \alpha) = 0 \Rightarrow \alpha = \beta$.

 Π ример. $G = \mathbb{Q} \cap (0,1)$ — не измеримо по Жордану.

Определение 7. Множество G называется *множеством меры ноль*, если $\forall \varepsilon > 0 \exists$ клеточное множество $B: G \subseteq B; \ m(B) < \varepsilon$.

Свойство.

- 1. Любое конечное объединение множеств меры ноль тоже множество меры ноль;
- 2. Подмножество множества меры ноль тоже множество меры ноль.

Теорема. Множество
$$G$$
 измеримо \Leftrightarrow $\underbrace{\partial G}_{\text{граница }G}$ — множество меры $\theta.$

Свойства измеримых множеств:

1. Если A, B — измеримые множества, то $A \cap B, A \cup B, A \setminus B$ — измеримые множества;

Доказательство. Пусть
$$A, B$$
 — измеримы $\Rightarrow m(\partial A) = 0 = m(\partial B); \ \partial (A \cup B) \subseteq \partial A \cup \partial B \Rightarrow m(\partial (A \cup B)) \leqslant m(\partial A \cup \partial B) \leqslant m(\partial A) + m(\partial B) = 0.$

- 2. Если A, B измеримые множества, $A \cap B = \emptyset$, то $m(A \cup B) = m(A) + m(B)$;
- 3. (a) $m(A \cup B) \leq m(A) + m(B)$;

Доказательство.
$$m(A_1 \cup A_2) \leqslant m(A_1) + m(A_2);$$

 \exists клеточные множества $B_1, B_2 : A_i \subseteq B_i; i \in \{1, 2\}; m(B_i) - m(A_i) \leqslant \frac{\varepsilon}{2} \Rightarrow m(A_1 \cup A_2) \leqslant m(B_1 \cup B_2) \leqslant m(B_1) + m(B_2) \leqslant m(A_1) + m(A_2);$

(b)
$$m\left(\bigcup_{i=1}^{n} A_i\right) \leqslant \sum_{i=1}^{n} m(A_i).$$

4. G — измеримое множество в \mathbb{R}^n ,

$$G_h = \{(x_1, \dots, x_n, x_{n+1}) : (x_1, \dots x_n) \in G, 0 \leqslant x_{n+1} \leqslant h\}$$

 G_h — цилиндрическое множество. G_h — измеримое множество и $m(G_h) = h \cdot m(G)$.

Доказательство. Из того, что G — цилиндрическое множество $\Rightarrow \exists A, B$ — клеточные множества $A \subseteq G \subseteq B, m(B) - m(A) < \varepsilon$. Пусть A_h, B_h — цилиндрические множества над A и B соответственно.

$$A_h \subseteq G_h \subseteq B_h;$$

$$m(A_h) = h \cdot m(A);$$

$$m(B_h) = h \cdot m(B);$$

$$m(B_h) - m(A_h) = h \cdot (m(B) - m(A)) \leqslant \varepsilon h \to 0.$$