Business Intelligence and Decision Support Systems (9th Ed., Prentice Hall)

Chapter 6: Artificial Neural Networks for Data Mining

Learning Objectives

- Understand the concept and definitions of artificial neural networks (ANN)
- Know the similarities and differences between biological and artificial neural networks
- Learn the different types of neural network architectures
- Learn the advantages and limitations of ANN
- Understand how backpropagation learning works in feedforward neural networks

Learning Objectives

- Understand the step-by-step process of how to use neural networks
- Appreciate the wide variety of applications of neural networks; solving problem types of
 - Classification
 - Regression
 - Clustering
 - Association
 - Optimization

Opening Vignette:

"Predicting Gambling Referenda with Neural Networks"

- Decision situation
- Proposed solution
- Results
- Answer and discuss the case questions

Opening Vignette: Predicting Gambling Referenda...

Neural Network Concepts

- Neural networks (NN): a brain metaphor for information processing
- Neural computing
- Artificial neural network (ANN)
- Many uses for ANN for
 - pattern recognition, forecasting, prediction, and classification
- Many application areas
 - finance, marketing, manufacturing, operations, information systems, and so on

Biological Neural Networks

Two interconnected brain cells (neurons)

Processing Information in ANN

A single neuron (processing element – PE)
 with inputs and outputs

Biology Analogy

Biological	versus	Artificial NNs
Soma		Node
Dendrites		Input
Axon		Output
Synapse		Weight
Slow		Fast
Many neuron	(10^9)	Few neurons (~100s)

Elements of ANN

- Processing element (PE)
- Network architecture
 - Hidden layers
 - Parallel processing
- Network information processing
 - Inputs
 - Outputs
 - Connection weights
 - Summation function

Elements of ANN

Elements of ANN

(a) Single neuron

PE: Processing Element (or neuron)

Summation Function for a Single Neuron (a) and Several Neurons (b)

(b) Multiple neurons

$$Y_1 = X_1 W_{11} + X_2 W_{21}$$

 $Y_2 = X_1 W_{12} + X_2 W_{22}$
 $Y_3 = X_2 W_{23}$ (PE) Y_3

Neural Network Architectures

- Several ANN architectures exist
 - Feedforward
 - Recurrent
 - Associative memory
 - Probabilistic
 - Self-organizing feature maps
 - Hopfield networks
 - ... many more ...

Neural Network Architectures Recurrent Neural Networks

*H: indicates a "hidden" neuron without a target output

Neural Network Architectures

- Architecture of a neural network is driven by the task it is intended to address
 - Classification, regression, clustering, general optimization, association,
- Most popular architecture: Feedforward, multi-layered perceptron with backpropagation learning algorithm
 - Used for both classification and regression type problems

Learning in ANN

- A process by which a neural network learns the underlying relationship between input and outputs, or just among the inputs
- Supervised learning
 - For prediction type problems
 - E.g., backpropagation
- Unsupervised learning
 - For clustering type problems
 - Self-organizing
 - E.g., adaptive resonance theory

A Supervised Learning Process

Three-step process:

- 1. Compute temporary outputs
- 2. Compare outputs with desired targets
- 3. Adjust the weights and repeat the process

Backpropagation Learning

Backpropagation of Error for a Single Neuron

Backpropagation Learning

- The learning algorithm procedure:
 - Initialize weights with random values and set other network parameters
 - 2. Read in the inputs and the desired outputs
 - Compute the actual output (by working forward through the layers)
 - Compute the error (difference between the actual and desired output)
 - 5. Change the weights by working backward through the hidden layers
 - 6. Repeat steps 2-5 until weights stabilize

Development Process of an ANN

An MLP ANN Structure for the Box-Office Prediction Problem

Testing a Trained ANN Model

- Data is split into three parts
 - Training (~60%)
 - Validation (~20%)
 - Testing (~20%)

- k-fold cross validation
 - Less bias
 - Time consuming

Sensitivity Analysis on ANN Models

- A common criticism for ANN: The lack of expandability
- The black-box syndrome!
- Answer: sensitivity analysis
 - Conducted on a trained ANN
 - The inputs are perturbed while the relative change on the output is measured/recorded
 - Results illustrates the relative importance of input variables

Other Popular ANN Paradigms Self Organizing Maps (SOM)

- First introduced by the Finnish Professor Teuvo Kohonen
- Applies to clustering type problems

Other Popular ANN Paradigms Self Organizing Maps (SOM)

SOM Algorithm —

- 1. Initialize each node's weights
- Present a randomly selected input vector to the lattice
- 3. Determine most resembling (winning) node
- 4. Determine the neighboring nodes
- Adjusted the winning and neighboring nodes (make them more like the input vector)
- Repeat steps 2-5 for until a stopping criteria is reached

Other Popular ANN Paradigms Self Organizing Maps (SOM)

- Applications of SOM
 - Customer segmentation
 - Bibliographic classification
 - Image-browsing systems
 - Medical diagnosis
 - Interpretation of seismic activity
 - Speech recognition
 - Data compression
 - Environmental modeling, many more ...

Other Popular ANN Paradigms Hopfield Networks

- First introduced by John Hopfield
- Highly interconnected neurons
- Applies to solving complex computational problems (e.g., optimization problems)

Applications Types of ANN

- Classification
 - Feedforward networks (MLP), radial basis function, and probabilistic NN
- Regression
 - Feedforward networks (MLP), radial basis function
- Clustering
 - Adaptive Resonance Theory (ART) and SOM
- Association
 - Hopfield networks
- Provide examples for each type?

Advantages of ANN

- Able to deal with (identify/model) highly nonlinear relationships
- Not prone to restricting normality and/or independence assumptions
- Can handle variety of problem types
- Usually provides better results (prediction and/or clustering) compared to its statistical counterparts
- Handles both numerical and categorical variables (transformation needed!)

Disadvantages of ANN

- They are deemed to be black-box solutions, lacking expandability
- It is hard to find optimal values for large number of network parameters
 - Optimal design is still an art: requires expertise and extensive experimentation
- It is hard to handle large number of variables (especially the rich nominal attributes)
- Training may take a long time for large datasets; which may require case sampling

ANN Software

- Standalone ANN software tool
 - NeuroSolutions
 - BrainMaker
 - NeuralWare
 - NeuroShell, ... for more (see pcai.com) ...
- Part of a data mining software suit
 - PASW (formerly SPSS Clementine)
 - SAS Enterprise Miner
 - Statistica Data Miner, ... many more ...