MLOps pour R

DevOps et MLOps

Plan

- DevOps et MLOps
- R langage de programmation pour l'analyse de données et le ML
- Processus MLOps sur Azure ML
- Processus MLOps avec Vetiver

DevOps

ML

MLOps

DEVOPS	MLOPS
Gestion de code	Gestion de code Gestion des fichiers de données, des notebooks, des documents Rmd
Gestion d'infrastructure	Gestion d'infrastructure Gestion d'environnement
Contrôle de code sources	Contrôle de code sources Suivi des résultats des expérimentations (des modèles) Gestion des jeux de données
Compilation pour obtenir des fichiers exécutables Ressources standards pour la compilation	Entraînement des modèles CPU/GPU pour les entraînements
Gestion des versions des builds	Gestions des versions des modèles
Tests (déterministes) Débogage des erreurs dans le code	Tests (probabilistes) Débogage des erreurs dans le code du modèle et/ou des erreurs dans les jeux de données Perte de performances, ré-entraînements

R en tant que langage de programmation pour l'analyse de données et le Machine Learning

R

- Créé par Rosh Ihaka et Robert Gentleman
- Paquets (packages)
- CRAN (<u>https://cran.r-project.org/</u>)
- Visualisation de données: ggplot2
- Machine Learning:
 - o tidymodels
 - caret
 - xgboost
 - randomForest
 - torch
 - tensorflow for R

Ressources sur R

R for Data Science (https://r4ds.hadley.nz/)

An Introduction to Statistical Learning with Applications in R

(https://www.statlearning.com/)

Processus MLOps avec R sur Azure ML

Azure ML SDK pour R

- Paquet R sur CRAN pour la gestion des services Azure ML: azuremlsdk (https://cran.r-project.org/web/packages/azuremlsdk/index.html)
- Création d'espaces de travail, Compute, Modèle et autres outils avec le langage R
- Entraînement, monitoring et déploiement de modèles ML
- Déploiement de modèles en tant que webs services
- Exécution des routines d'entraînements et de déploiements automatiques

Workflow

- Données sur les accidents de voitures aux USA de 1997 à 2002 (https://rdrr.io/cran/DAAG/man/nassCDS.html)
- importation des données et traitements
- Création des clusters d'entraînements.
- Choix d'un modèle et déploiement en tant que container
- Application Shiny et appel de fonction R par REST endpoint

Préparation et partage des données

```
ws <- load_workspace_from_config()</pre>
nassCDS <- read.csv("nassCDS.csv")</pre>
# Lots of cleaning code
saveRDS(accidents,
        file="accidents.Rd")
ds <- get_default_datastore(ws)</pre>
target_path <- "accidentdata"
upload_files_to_datastore(ds.
          list("./accidents.Rd"),
          target_path = target_path,
          overwrite = TRUE)
```

library(azuremlsdk)

chargement de azuremlsdk chargement de l'espace de travail avec les clés d'authentification pré-installées dans l'espace

lecture du fichier csv du jeu de données code omis enregistrements des données sous formats Rd pour données R

chargement de azuremIsdk chargement de l'espace de travail avec les clés d'authentification pré-installées dans l'espace

Création d'un cluster d'entraînement à deux noeuds

chargement de l'espace de travail

la taille augmente au fur et à mesure que les jobs sont ajoutées à la queue

Entraînement des modèles et choix d'un modèle

Enregistrement du modèle

```
enregistrement du modèle en tant que R model
Object
Option de versionning
```

Paquets R (CRAN, Github) nécessaires à l'exécution

Script R qui reçoit un modèle et des données sous format JSON pour les prédictions

Déploiement

```
aci_config <-
    aci_webservice_deployment_config(
    cpu_cores = 1, memory_gb = 0.5)

aci_service <- deploy_model(ws,
    'accident-pred-caret',
    list(model),
    inference_config,
    aci_config)

accident.endpoint <- get_webservice(
    ws, "accident-pred-caret")$scoring_uri</pre>
```

aci = Azure Container Instance

obtention du REST endpoint pour l'utilisation de l'app

Intégration du modèle dans une application Shiny

Accident Fatality Probability Estimator

Processus MLOps pour R avec Vetiver

Vetiver et MLOps

https://vetiver.rstudio.com/

- tidymodels ou caret, etc,...
- plumber
- pins

PlumbeR

```
# Generated by the vetiver package; edit with care
library(pins)
library(plumber)
library(rapidoc)
library(vetiver)
# Packages needed to generate model predictions
if (FALSE) {
    library(caret)
b <- board folder path = "pins-r")
v <- vetiver pin read(b, "accident model")</pre>
#* @plumber
function(pr) {
    pr %>% vetiver api(v)
}
```

PlumbeR

```
# Generated by the vetiver package; edit with care
library(pins)
library(plumber)
library(rapidoc)
library(vetiver)
# Packages needed to generate model predictions
if (FALSE) {
    library(caret)
pin_loc <- pins:::github_raw("DimbyTa/r-mlops-vetiver-huggingFace/main/pins-r/_pins.yaml")</pre>
b <- board url(pin loc)
v <- vetiver_pin_read(b, "accident model")</pre>
#* @plumber
function(pr) {
    pr %>% vetiver api v
```

Dockerfile

```
# Generated by the vetiver package: edit with care
FROM rocker/r-ver:4.0.5
ENV RENV_CONFIG_REPOS_OVERRIDE https://packagemanager.rstudio.com/cran/latest
WORKDIR SHOME
RUN apt-get update -qq && apt-get install -y --no-install-recommends \
  libcurl4-openssl-dev \
  libicu-dev \
  libsodium-dev \
  libssl-dev \
  make \
  zlib1g-dev \
  && apt-get clean
COPY vetiver renv.lock renv.lock
RUN Rscript -e "install.packages('renv')"
RUN Rscript -e "renv::restore()"
COPY plumber.R /opt/ml/plumber.R
EXPOSE 8000
ENTRYPOINT "R", "-e", "pr <- plumber::plumb('/opt/ml/plumber.R'); pr$run(host = '0.0.0.0', port = 8000)"
```

Dockerfile

```
# Generated by the vetiver package; edit with care
FROM rocker/r-ver:4.0.5
# Create a non-root user to run the application
RUN useradd -m -u 1000 appuser
USER appuser
ENV RENV CONFIG REPOS OVERRIDE https://packagemanager.rstudio.com/cran/latest
ENV HOME=/home/appuser
WORKDIR SHOME
USER root
RUN apt-get update -qq && apt-get install -y --no-install-recommends \
  libcurl4-openssl-dev \
 libicu-dev \
 libsodium-dev \
 libssl-dev \
 make \
 zlib1g-dev \
  && apt-get clean
USER appuser
COPY vetiver renv.lock renv.lock
# Create the .cache directory and give appuser permission to write to it
RUN mkdir -p /home/appuser/.cache && chown -R appuser:appuser /home/appuser/.cache
# Create the .cache/pins/url directory and give appuser permission to write to it
RUN mkdir -p /home/appuser/.cache/pins/url && chown -R appuser:appuser /home/appuser/.cache/pins/url
USER root
RUN Rscript -e "install.packages('renv')"
#USER appuser
RUN Rscript -e "renv::restore()"
USER appuser
COPY plumber.R /opt/ml/plumber.R
EXPOSE 7860
ENTRYPOINT ["R", "-e", "pr <- plumber::plumb('/opt/ml/plumber.R'); pr$run(host = '0.0.0.0', port = 7860)"]
```

- Dockerfile
- plumber.R
- vetiver_renv.lock
- https://github.com/DimbyTa/r-mlops-vetiver-huggingFace

Merci de votre attention