Задача №1

Расширить свойства аддитивности, строгой аддитивности и субаддитивности меры μ на конечный набор элементов N

Доказательство аддитивности:

- 1. Пусть $A_1, A_2, ..., A_N \in \Lambda$ попарно непересекаются множества.
- 2. Докажем по индукции.
- 3. База индукции аддитивность меры: $\mu\left(A_1 \sqcup A_2\right) = \mu\left(A_1\right) + \mu\left(A_2\right)$
- 4. Предположим $\mu(A_1 \sqcup A_2 \sqcup ... \sqcup A_{k-1}) = \sum_{i=1}^{N-1} \mu(A_i)$
- 5. Пусть $A_1 \sqcup A_2 \sqcup ... \sqcup A_{N-1} = B$. Тогда $\mu(A_1 \sqcup A_2 \sqcup ... \sqcup A_{N-1}) = \mu(B)$
- 6. Поскольку все элементы попарно непересекаются, следовательно $B \cap A_N = \emptyset$
- 7. Шаг индукции, используя (5): $\mu\left(B\sqcup A_{N}\right)=\mu\left(B\right)+\mu\left(A_{N}\right)=\sum_{i=1}^{N-1}\mu\left(A_{i}\right)+\mu\left(A_{N}\right)=\sum_{i=1}^{N}\mu\left(A_{i}\right)$
- 8. Поэтому $\mu\left(A_1\sqcup A_2\sqcup\ldots\sqcup A_N\right)=\sum_{i=1}^N\mu\left(A_i\right)$

Доказательство строгой аддитивности:

1. Пусто

Доказательство субаддитивности:

- 1. Пусть $A_1, A_2, ..., A_N \in \Lambda$ элементы сигма алгебры
- 2. Докажем субаддитивность по индукции
- 3. База индукции субаддитивность меры: $\mu\left(A_1 \cup A_2\right) \leq \mu\left(A_1\right) + \mu\left(A_2\right)$
- 4. Предположим $\mu\left(A_1\cup A_2\cup...\cup A_{N-1}\right)\leq \sum_{i=1}^{N-1}\mu\left(A_i\right)$
- 5. Пусть $A_1 \cup A_2 \cup \ldots \cup A_{N-1} = B$, тогда $\mu\left(A_1 \cup A_2 \cup \ldots \cup A_{N-1}\right) = \mu\left(B\right)$
- 6. Шаг индукции. Из субаддитивности понятно, что $\mu\left(B\cup A_N\right)\leq \mu\left(B\right)+\mu\left(A_N\right)=\sum_{i=1}^{N-1}\mu\left(A_i\right)+\mu\left(A_N\right)=\sum_{i=1}^{N}\mu\left(A_i\right)$
- 7. Ч.Т.Д.

Задача №2

Пусть (X,\mathcal{A}) - измеримо. Пусть $x\in A\in \mathcal{A}$ - произвольная точка из элемента сигма алгебры \mathcal{A}

$$ullet$$
 Доказать, что $\delta\left(A
ight):=\left\{egin{array}{ll} 1 & x\in A \\ 0 & x
otin A \end{array}
ight.$ - мера

Доказательство:

1. M_0 выполнено автоматически

- 2. Пусть $A = \emptyset$. Это значит, что не существует точки x, такой что $x \in \emptyset$.
 - (a) Поэтому $x \notin \emptyset$. Это в свою очередь означает, что $\delta(\emptyset) = 0$. Поэтому выполнено M_1 .
- 3. Пусть $(A_n)_{n\in\mathbb{N}}\in\mathcal{A}$ попарно непересекающиеся множества.
 - (a) Пусть $k \in \mathbb{N}$ произвольный. Пусть $x \in A_k$. Если $x \in A_k$, следовательно $x \in \bigsqcup_{n \in \mathbb{N}} A_n$. По определению δ это означает, что $\delta \left(\bigsqcup_{n \in \mathbb{N}} A_n\right) = 1$.
 - (b) Если $x \in A_k$ и множества $(A_n)_{n \in \mathbb{N}} \in \mathcal{A}$ попарно не пересекаются, то не существует другого множества в котором лежит x.
 - (c) Из (b) следует, что $\sum_{n\in\mathbb{N}}\delta\left(A_{n}\right)=1$
 - (d) Это означает, что выполнено M_2 .
- Доказать, что $\gamma\left(A\right):=\left\{ egin{array}{ll} 0 & A-{\it c}$ четно $1 & A-{\it hec}$ мера

Доказательство:

• Пусто

Доказательство:

- 1. M_0 выполнено автоматически.
- 2. Пусть $A=\varnothing$. Воспользуемся тем фактом, что $|\varnothing|=0$. Следовательно, выполнено M_1
- 3. Пусть $(A_n)_{n\in N}\in\mathcal{A}$ попарно непересекающиеся множества.
- 4. Пусть $\forall n \in N \ A_n$ конечны.
 - (a) Рассмотрим $A = \bigsqcup_{n \in N} A_n$
 - (b) По свойству мощности объединения: $|A| = \left| \bigsqcup_{n \in N} A_n \right| = \sum_{n \in N} |A_n|$. Это в точности, тоже самое что и M_2
- 5. Пусть $\exists k \in N$ такой, что $|A_k| = \infty$ и также $\forall n \neq k, n \in N, |A_k| < \infty$
 - (a) По свойству мощности объединения: $|A| = \left| \bigsqcup_{n \in N} A_n \right| = \sum_{n \in N} |A_n| = \infty$. Это в точности, тоже самое что и M_2
 - (b) Если рассмотреть два и более бесконечных по мощности множеств, то результат будет аналогичен (a)
- 6. Из (1) (2) и (5) верно, что|A| мера
- 7. Ч.Т.Д
- Пусть $\Omega = \{\omega_1, \omega_1, ...\}$ счетно, $(p_n)_{n \in N}$ последовательность множеств $p_n \in [0, 1]$, такая что $\sum_{n \in N} p_n = 1$. Показать, что на измеримом пространстве $(\Omega, \mathcal{P}(\Omega))$ ф-я множества $\mathbb{P}(A) = \sum_{n \in N} p_n \delta(A)$ мера

Доказательство:

- 1. Известен тот факт, что $\mathcal{P}\left(\Omega\right)$ сигма алгебра. Следовательно выполнено M_{0}
- 2. Пусть $A=\varnothing$. Поскольку $\delta\left(A\right)$ мера, следовательно $\delta\left(\varnothing\right)=0$. Таким образом $\mathbb{P}\left(\varnothing\right)=\sum_{n\in N}p_n\delta\left(\varnothing\right)=0$. Поэтому выполнено M_1
- 3. Пусть $(A_k)_{k\in\mathbb{N}}\subset\mathcal{P}\left(\Omega\right)$ последовательность попарно непересекающихся множеств.
 - (a) Поскольку $\delta(A)$ мера, отсюда следует, что $\delta\left(\bigsqcup_{n\in N}A_n\right)=\sum_{n\in N}\delta\left(A_n\right)$.
 - (b) Подставляя (a) в $\mathbb{P}(A)$ получим, что $\mathbb{P}\left(\bigsqcup_{k\in N}A_n\right)=\sum_{n\in N}\sum_{k\in N}p_n\delta\left(A_k\right)$
 - (c) Поскольку $\forall n \in \mathbb{N} \ p_n \geq 0$ по условию и $\forall k \in \mathbb{N} \ \delta\left(A_k\right) \geq 0$ по определению δ , то $\forall n, k \in \mathbb{N} \ p_n \delta\left(A_k\right) \geq 0$
 - (d) Тогда по теореме Фубини-Тонелли: $\mathbb{P}\left(\bigsqcup_{k\in N}A_n\right)=\sum_{n\in N}\sum_{k\in N}p_n\delta\left(A_k\right)\stackrel{def}{=}\sum_{k\in N}\sum_{n\in N}p_n\delta\left(A_k\right)$. А это в точности, тоже самое, что и M_2
- 4. Из (1) (2) и (3) $\mathbb{P}(A) = \sum_{n \in N} p_n \delta(A)$ мера
- 5. Ч.Т.Д.

Задача №3

Является ли функция из примера 4.5 мерой μ на измеримом пространстве (R, B(R)). Является ли такая функция мерой на $(Q, Q \cap B(R))$?

Доказательство 1

- 1. Нет, такая функция не является мерой.
- 2. Предположим дано измеримое пространство (R, B(R))
- 3. Поскольку Борелевская система множеств B(R) содержит в себе полуоткрытые интервалы, то в него включен интервал $A = (-\infty, a]$ с произвольным $a \in R$
- 4. Из \sum_{2} верно, что $A^{c}=\left(a,\infty\right) \in B\left(R\right)$
- 5. Рассмотрим свойство M_2 . $\mu(A \cup A^c) = \mu(R) = 1$. Однако $\mu(A) + \mu(A^c) = 1 + 1 = 2$
- 6. Поскольку $1 \neq 2$, то это контрпример

Доказательство 2

1. Пусто

Задача №6

Пусть (X, \mathcal{A}) - измеримо. Приведите пример сигма-финитной меры μ , которая сопоставляет каждому полуоткрытому интервалу [a,b) такому, что b-a>2 конечную массу.

Решение:

1. Мера Лебега на R σ -конечна. $R=\bigcup_{i\in\mathbb{N}}\left[-\left(i+1\right),i\right)$ - единица. $\forall i\in N\ \lambda\left[-\left(i+1\right),i\right)=2i+1$ - конечна. Также выполнено $\forall i\in\mathbb{N},\ 2i+1>2$

Задача №7

Пусть (X, A) - измеримо.

• Пусть μ и ν - меры на (X, \mathcal{A}) . Показать, что функция множеств $\rho(A) := a\mu(A) + b\nu(A), A \in \mathcal{A}$ для $a, b \geq 0$ является мерой

Доказательство:

- 1. Свойство M_0 выполняется автоматически, поскольку \mathcal{A} сигма-алгебра
- 2. Пусть $A=\varnothing$. Поскольку μ и ν меры, следовательно $\rho(\varnothing):=a\mu(\varnothing)+b\nu(\varnothing)=a\mu(\varnothing)+b\nu(\varnothing)=0$. Поэтому выполняется свойство M_2
- 3. Пусть $(A_n)_{n\in N}\subset \mathcal{A}$. Поскольку μ и ν меры, то $\rho\left(\bigsqcup_{i\in N}A_i\right)=a\mu\left(\bigsqcup_{i\in N}A_i\right)+b\nu\left(\bigsqcup_{i\in N}A_i\right)=a\sum_{i\in N}\mu\left(A_i\right)+b\sum_{i\in N}\nu\left(A_i\right)=\sum_{i\in N}\left[a\mu\left(A_i\right)+b\nu\left(A_i\right)\right]\stackrel{def}{=}\sum_{i\in N}\rho\left(A_i\right)$. Поэтому выполняется свойство M_2
- Пусть μ_1, μ_2, \dots счетно много мер на измеримом (X, \mathcal{A}) . Пусть $(\alpha_i)_{i \in N}$ последовательность положительных чисел. Показать, следующая ф-я множеств мера: $\mu(A) := \sum_{i=1}^{\infty} \alpha_i \mu_i(A) \ A \in \mathcal{A}$

Доказательство:

- 1. Пусть $\mu_1, \mu_2, ...$ счетно много мер на измеримом (X, A)
- 2. Пусть $(\alpha_i)_{i \in N}$ последовательность положительных чисел.
- 3. Мы покажем, что $\mu\left(A\right):=\sum_{i=1}^{\infty}\alpha_{i}\mu_{i}\left(A\right)\,A\in\mathcal{A}$ удовлетворяет свойствам $M_{0}-M_{2}$
- 4. μ -функция множества и $\mu_1, \mu_2, ...$ определены на одной и той же системе множеств. Поскольку $\mu_1, \mu_2, ...$ меры, а меры определены на сигма алгебре, следовательно μ также определена на сигма алгебре \mathcal{A} . Поэтому для μ выполнено M_0
- 5. Пусть $A=\varnothing$. Поскольку $\mu_1,\mu_2,...$ меры, следовательно $\mu(\varnothing):=\sum_{i=1}^\infty \alpha_i\mu_i(\varnothing)=0$. Поэтому для μ выполнено M_1
- 6. Докажем сигма-аддитивностьм меры.
 - (a) Поскольку $\forall i \in N, \mu_i(A) \geq 0$ и $\forall i \in N, \alpha_i > 0$ следовательно $\forall_i \alpha_i \mu_i(A) \geq 0$
 - (b) Рассмотрим $\bigcup_{n\in\mathbb{N}} A_n \subset \mathcal{A}$.
 - (c) Из (b) следует, что $\mu\left(\bigcup_{n\in N}A_n\right)=\sum_{i=1}^{\infty}\alpha_i\mu_i\left(\bigcup_{n\in N}A_n\right)=\sum_{i=1}^{\infty}\alpha_i\sum_{n=1}^{\infty}\mu_i\left(A_n\right)=\sum_{i=1}^{\infty}\sum_{n=1}^{\infty}\alpha_i\mu_i\left(A_n\right)$
 - (d) Поскольку выполнено (a), то по теореме Тонелли-Фубини следует, что $\mu\left(\bigcup_{n\in N}A_n\right)=\sum_{n=1}^{\infty}\sum_{i=1}^{\infty}\alpha_i\mu_i\left(A_n\right)=\sum_{n=1}^{\infty}\alpha_i\mu\left(A_n\right)$
 - (e) Следовательно выполнено M_2
- 7. Тогда из (4) (5) и (6.e) следует, что μ мера.
- 8. Ч.Т.Д.

Задача №8

Пусть (X,\mathcal{A}) - измеримо. Пусть $\mu:A\to [0,\infty]$ конечно аддитивная и субаддитивная ф-я множества. Показать, что μ сигма-аддитивна.

Доказательство:

- 1. Пусть (X, A) измеримо. Пусть $\mu: A \to [0, \infty]$ (конечно аддитивна и субаддитивна)
- 2. Пусть $(A_n)_{n\in N}\subset \mathcal{A}$ последовательность множеств, таких, что $A_1\subset A_2\subset ...\subset A_n$
- 3. Пусть $F_1=A_1, F_2=A_2-A_1,..., F_n=A_n-A_{n-1},$ поэтому $\bigsqcup_{i=1}^n F_i=\bigcup_{i=1}^n A_i.$
- 4. Докажем, что $\forall i, j \in N, j < i \ F_i \cap F_j = \emptyset$
 - (a) Можно заметить, что $F_i \stackrel{(3)}{=} (A_i A_{i-1}) = \left(A_i \cap \overline{A_{i-1}}\right) \stackrel{(2)}{=} \left(A_i \cap \overline{\bigcup_{n=1}^{i-1} A_n}\right)$
 - (b) Поскольку j < i, следовательно $A_j \subset \bigcup_{n=1}^{i-1} A_n$.
 - (c) Если $A \subset B$, то $\overline{A} \supset \overline{B}$. Тогда (b) имплицирует за собой: $\overline{A_j} \supset \overline{\bigcup_{n=1}^{i-1} A_n}$.
 - (d) Известно, что если $A \subset B$, то $A \cap B = A$. Тогда (c) имплицирует за собой: $\overline{A_j} \cap \overline{\bigcup_{n=1}^{i-1} A_n} = \overline{\bigcup_{n=1}^{i-1} A_n}$.
 - (e) Воспользовавшись свойством (d) можно изменить (a) так: $F_i = A_i \cap \overline{\bigcup_{n=1}^{i-1} A_n} \cap \overline{A_j}$
 - (f) Из определения (3) следует, что $F_i \cap F_j \subset F_i \cap A_j$
 - (g) Подставляя (e) в RHS (f) получим, что $F_i \cap A_j = A_i \cap \overline{\bigcup_{n=1}^{i-1} A_n} \cap \overline{A_j} \cap A_j = \emptyset$
 - (h) Поскольку $F_i\cap F_j\subset F_i\cap A_j$ и $F_i\cap A_j=\varnothing$, то $F_i\cap F_j=\varnothing$
- 5. Из предельного перехода в (3) можно утверждать, что: $\bigsqcup_{i=1}^{\infty} F_i = \bigcup_{i=1}^{\infty} A_i$.
- 6. Запишем LHS (5) по свойству субаддитивности: $\mu\left(\bigsqcup_{i\in N}F_i\right)\leq \sum_{i\in N}\mu\left(F_i\right)$
- 7. По индукции из аддитивности можно показать, что: $\mu\left(\bigsqcup_{i\in N}F_i\right)=\sum_{i=1}^n\mu\left(F_i\right)+\mu\left(\bigsqcup_{i=n+1}^\infty F_i\right)$
- 8. Тогда из (7) очевидно, что $\mu\left(\bigsqcup_{i\in N}F_i\right)\geq \sum_{i=1}^n\mu\left(F_i\right).$
- 9. Используя передельный переход можно представить, неравенство (8) как $\mu\left(\bigsqcup_{i\in N}F_i\right)\geq \lim_{n\to\infty}\sum_{i=1}^n\mu\left(F_i\right)=\sum_{i\in N}\mu\left(F_i\right)$.
- 10. Тогда из (6) и (9) $\mu\left(\bigsqcup_{i\in N} F_i\right) = \sum_{i\in N} \mu\left(F_i\right)$
- 11. Ч.Т.Д.

Задача №9

Пусть (X, \mathcal{A}, μ) - пространство с мерой. Пусть $F \in \mathcal{A}$. Показать, что $\mathcal{A} \ni A \mapsto \mu \, (A \cap F)$ тоже мера. Доказательство:

- 1. Пусть (X, \mathcal{A}, μ) пространство с мерой.
- 2. Пусть $F \in \mathcal{A}$.
- 3. Из (1) следует, что \mathcal{A} сигма алгебра. Поэтому выполнено M_0 .
- 4. Пусть $A = \emptyset$. Тогда $f(\emptyset) = \mu(\emptyset \cap F) = \mu(\emptyset) = 0$. Поэтому выполнено M_1 .

5. Пусть $(A_n)_{n\in N}$ - последовательность попарно непересекающихся множеств. Тогда $f\left(\bigsqcup_{n\in N}A_n\right)=\mu\left(\left(\bigsqcup_{n\in N}A_n\right)\cap F\right)$ $\mu\left(\bigsqcup_{n\in N}(A_n\cap F)\right)=\sum_{i\in N}\mu\left(A_n\cap F\right)=\sum_{i\in N}\mu\left(A_n\cap F\right)$ Поэтому выполнено M_2

Задача №10

Пусть $(X, \mathcal{A}, \mathbb{P})$ - вероятностное пространство. Пусть $(A_n)_{n \in N} \subset \mathcal{A}$ - последовательность множеств таких, что $\mathbb{P}(A_n) = 1$ для всех $n \in N$. Показать, что $\mathbb{P}\left(\bigcap_{n \in N} A_n\right) = 1$ Доказательство:

- 1. Пусть $(X, \mathcal{A}, \mathbb{P})$ вероятностное пространство.
- 2. Пусть $(A_n)_{n\in \mathbb{N}}\subset \mathcal{A}$ последовательность множеств таких, что $\mathbb{P}\left(A_n\right)=1$ для всех $n\in \mathbb{N}$
- 3. Из (2) следует, что $\forall n \in N, A_n = X$
- 4. Из (3) следует, что $\bigcap_{n \in N} A_n = X$
- 5. Из (4) следует, что $\mathbb{P}\left(\bigcap_{n\in N}A_{n}\right)=1$
- 6. Ч.Т.Д.

Задача №11

Пусть (X, \mathcal{A}, μ) - пространство с финитной мерой. Пусть $(A_n)_{n \in N}$, $(B_n)_{n \in N} \subset \mathcal{A}$ так, что $\forall n \in N \ A_n \supset B_n$. Показать, что $\mu\left(\bigcup_{i \in N} A_i\right) - \mu\left(\bigcup_{i \in N} B_i\right) \leq \sum_{n \in N} \left(\mu\left(A_n\right) - \mu\left(B_n\right)\right)$ Доказательство:

- 1. Пусть (X, \mathcal{A}, μ) пространство с финитной мерой
- 2. Пусть $(A_n)_{n\in\mathbb{N}}$, $(B_n)_{n\in\mathbb{N}}\subset\mathcal{A}$ так, что $\forall n\in\mathbb{N}$ $A_n\supset B_n$
- 3. Покажем, что $\bigcup_i A_i \bigcup_i B_i \subset \bigcup_i (A_i B_i)$
 - (a) Пусть $x\in\bigcup_i A_i-\bigcup_i B_i$. Это значит что существует $i\in N$ так, что $x\in A_i$ и для каждого $k\in N$ $x\notin B_k$
 - (b) Поскольку существует $i \in N$, обозначим его как i_0 . Тогда $x \in A_{i_0}$.
 - (c) Если $x \in A_{i_0}$ то понятно, что $x \in \bigcup_i A_i$.
 - (d) Поскольку не существует такого $k \in N$, что $x \in B_k$, то верно следующее: $x \in \bigcup_i (A_i B_k)$.
 - (e) Поэтому $\bigcup_i A_i \bigcup_i B_i \subset \bigcup_i (A_i B_i)$
- 4. Из монотонности меры $\mu \left[\bigcup_i A_i \bigcup_i B_i \right] \le \mu \left[\bigcup_i (A_i B_i) \right]$
- 5. Докажем, что если $\forall n \in N \ A_n \supset B_n$, то $\bigcup_n A_n \supset \bigcup_n B_n$
 - (a) Поскольку $\exists n \in N, x \in B_n$, то мы можем зафиксировать $n_0 \in N$, такой что $x \in B_{n_0}$
 - (b) Поскольку $x \in B_{n_0}$ и $\forall n \in N \ A_n \supset B_n$, следовательно $x \in A_{n_0}$. Поэтому $x \in \bigcup_n A_n$
 - (c) n_0 был произвольный. Поэтому $\bigcup_n A_n \supset \bigcup_n B_n$
- 6. Посольку мера μ финитна и $\bigcup_n A_n \supset \bigcup_n B_n$, следовательно $\mu \left[\bigcup_i A_i \bigcup_i B_i\right] = \mu \left[\bigcup_i A_i\right] \mu \left[\bigcup_i B_i\right] \le \mu \left[\bigcup_i \left(A_i B_i\right)\right]$

- 7. Из субаддитивности меры и (4.3-ііі), следует, что $\mu\left[\bigcup_{i}\left(A_{i}-B_{i}\right)\right]\leq\sum_{n\in N}\left(\mu\left(A_{n}\right)-\mu\left(B_{n}\right)\right)$
- 8. Комбинируя (6) и (7) получим $\mu\left(\bigcup_{i\in N}A_i\right)-\mu\left(\bigcup_{i\in N}B_i\right)\leq\sum_{n\in N}\left(\mu\left(A_n\right)-\mu\left(B_n\right)\right)$
- 9. Ч.Т.Д.

Задача №12

Пусть (X, \mathcal{A}, μ) - пространство с мерой. $N \in \mathcal{A}$ называют нуль-множеством, тогда и только тогда, когда $\mu(N) = 0$. Доказать, что семейство таких множеств \mathcal{N}_{μ} отвечает свойствам:

- 1. $\emptyset \in \mathcal{N}_{\mu}$
- 2. Если $N\in\mathcal{N}_{\mu},M\in\mathcal{A}$ и $M\subset N$, тогда $M\in\mathcal{N}_{\mu}$
- 3. Если $(N_n)_{n\in\mathbb{N}}\subset\mathcal{N}_{\mu}$, тогда $\bigcup_{n\in\mathbb{N}}N_n\subset\mathcal{N}_{\mu}$

Доказательство 1:

- 1. Пустое множество всегда нуль-множество по M_1
- 2. Ч.Т.Д.

Доказательство 2:

- 1. Пусть $N \in \mathcal{N}_{\mu}$, $M \in \mathcal{A}$ и $M \subset N$.
- 2. По определению, $\mu(N) = 0$
- 3. Из монотонности меры $M \subset N \implies \mu(M) \leq \mu(N) = 0$.
- 4. Поскольку мера нестрого положительна и верно (3), следовательно $\mu(M)=0$. Это в свою очередь означает, что $M\in\mathcal{N}_{\mu}$
- 5. Ч.Т.Д.

Доказательство 3:

- 1. Пусть $(N_n)_{n\in\mathbb{N}}\subset\mathcal{N}_{\mu}$
- 2. Воспользуемся свойством сигма-субаддитивности меры. Тогда $\mu\left(\bigcup_{n\in\mathbb{N}}N_n\right)\leq\sum_{n\in\mathbb{N}}\mu\left(N_n\right)$
- 3. Из (1) следует, что $\sum_{n\in\mathbb{N}}\mu\left(N_{n}\right)=0$
- 4. Поскольку мера положительна, то $\mu\left(\bigcup_{n\in\mathbb{N}}N_n\right)=0$. Это в свою очередь означает, что $\bigcup_{n\in\mathbb{N}}N_n\subset\mathcal{N}_\mu$
- 5. Ч.Т.Д.

Задача №13

• Пусть λ - одномерная мера Лебега. Показать, что для $x \in R$ множество $\{x\}$ - Борелевское множество, где $\lambda \, \{x\} = 0$

Доказательство:

- 1. Пусть $\mathcal{B}\left(\mathbb{R}\right)$ Борелевская сигма-алгебра.
- 2. Поскольку сигма алгебра замкнута относительно счетных пересечений, следовательно $\{x\} = \bigcap_{k \in N} \left[x \frac{1}{k}, x + \frac{1}{k} \right)$ тоже элемент $\mathcal{B}\left(\mathbb{R}\right)$
- 3. Рассмотрим последовательность интервалов $k \in \mathbb{N}\left[x \frac{1}{k}, x + \frac{1}{k}\right)$, покрывающих произвольный синглетон $\{x\}$ Такая последовательность множеств непрерывна снизу и конечна.
- 4. Тогда из (1), воспользовавшись (vii), следует $\lim_{k \to \infty} \lambda \left[x \frac{1}{k}, x + \frac{1}{k} \right] = \lim_{k \to \infty} \left[x + \frac{1}{k} x + \frac{1}{k} \right] = \lim_{k \to \infty} \frac{2}{k} = 0$
- Показать, что \mathbb{Q} Борелевское множество и $\lambda\left(\mathbb{Q}\right)=0$ (Используя тот, факт, что $\lambda\left\{x\right\}=0$)

Доказательство:

- 1. Можно представить рациональные числа как объединение синглетонов: $\mathbb{Q} = \bigcup_{n \in \mathbb{N}} \{q_n\}$.
- 2. Воспользуемся свойством сигма-аддитивности меры: $\lambda\left(\bigcup_{n\in\mathbb{N}}\left\{q_{n}\right\}\right)=\sum_{n\in\mathbb{N}}\lambda\left\{q_{n}\right\}$
- 3. Мы уже показали, что $\lambda\left\{x\right\}=0$. Поэтому $\sum_{n\in\mathbb{N}}\lambda\left\{q_n\right\}=0$
- 4. Ч.Т.Д.
- Показать, что $\lambda\left(\mathbb{Q}\right)=0$, используя $C\left(\epsilon\right)=\bigcup_{n\in\mathbb{N}}\left[q_{n}-\epsilon2^{-n},q_{n}+\epsilon2^{-n}\right)$, где q_{n} нумерация \mathbb{Q}

Доказательство:

- 1. Пусть $C(\epsilon) = \bigcup_{n \in \mathbb{N}} [q_n \epsilon 2^{-n}, q_n + \epsilon 2^{-n})$, где $(q_n)_{n \in \mathbb{N}}$ нумерация \mathbb{Q}
- 2. Можно увидеть, что $\lambda\left[C\left(\epsilon\right)\right]=\lambda\left[\bigcup_{n\in\mathbb{N}}\left[q_{n}-\epsilon2^{-n},q_{n}+\epsilon2^{-n}\right)\right]\overset{\sigma-add.}{=}2\sum_{n\in\mathbb{N}}\epsilon\frac{1}{2^{n}}$
- 3. Поскольку $\left|\frac{1}{2}\right| < 1$, то по сумме геометрической прогрессии: $2\sum_{n\in\mathbb{N}}\epsilon 2^{-n} = 2\epsilon \frac{\frac{1}{2}}{1-\frac{1}{2}}$
- 4. Тогда $\lim_{\epsilon \to 0} 2\epsilon \frac{\frac{1}{2}}{1 \frac{1}{2}} = 0$
- 5. Ч.Т.Д
- Показать, что несчетное объединение нуль множеств не является нуль множеством.

Доказательство:

- 1. Рассмотрим несчетное объединение синглетонов $A = \bigcup_{0 \le x \le 1} \{x\}$
- 2. Легко видеть, что $\bigcup_{0 < x < 1} \{x\} = [0, 1]$
- 3. Поэтому верно следующее: $\lambda\left(\bigcup_{0\leq x\leq 1}\left\{x\right\}\right)=\lambda\left[0,1\right]=1\neq0$
- 4. Поэтому $\bigcup_{0 \le x \le 1} \{x\} \notin \mathcal{N}_{\mu}$
- 5. Ч.Т.Д

Задача №14

1. Определить все нуль множества для меры $\delta_a + \delta_b, a, b \in \mathbb{R}$ на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$

Решение:

- 1. Пусть $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ измеримо
- 2. Пусть $a,b \in \mathbb{R}$ пара точек
- 3. Пусть $\delta_a + \delta_b$ мера определенная на $a,b \in \mathbb{R}$
- 4. Можно видеть, что мера определенная в (3) равна нуль, когда $x \notin \{a\} \land x \notin \{b\}$.
- 5. По аксиоме пары из (4) следует, что $x \in \{a, b\}$
- 6. Из (5) следует, что нуль множества для меры определенной в (3) это множества $\mathcal{N}_{\mu} = \{A \{a, b\} : A \in \mathcal{B}(\mathbb{R})\}$

Задача №15

• Показать, что $\overline{\mathcal{A}}:=\{A\cup N:A\in\mathcal{A},N\subset\mathcal{N}_{\mu}\}$ — сигма алгебра, такая, что $\mathcal{A}\subset\overline{\mathcal{A}}$

Доказательство:

- 1. Пусть $A=\varnothing\in\mathcal{A}$ и $N=\varnothing\in\mathcal{N}_{\mu}$. Поскольку $A\cup N\in\overline{\mathcal{A}}$ и $A\cup N=\varnothing\cup\varnothing=\varnothing$, следовательно $\varnothing\in\overline{\mathcal{A}}$. Поэтому выполнено \sum_{1}
- 2. Пусть $A \cup N \in \overline{\mathcal{A}}$. Рассмотрим дополнение $X (A \cup N)$
 - (a) Воспользуемся стандартным свойством $X (A \cup N) = X \cap (A \cup N)^c$
 - (b) По закону Де Моргана верно, что $X (A \cup N) = X \cap (A^c \cap N^c)$
 - (c) Можно представить (b) как $X \cap (A^c \cap N^c) = (X \cap A^c) \cap (X \cap N^c)$. Тогда $X (A \cup N) = (X A) \cap (X N)$
 - (d) Из (c) можно придти к тому, что $X (A \cup N) = (X A) \cap [(X F) \cup (F N)]$
 - (e) Тогда по дистрибутивности $X (A \cup N) = [(X A) \cap (X F)] \cup [(X A) \cap (F N)]$
 - (f) Сигма алгебра замкнута относительно пересечения и разности, следовательно $(X-A)\cap (X-F)\in \overline{A}$
 - (g) Поскольку $(X-A)\cap (F-N)\subset X\cap F$, следовательно $(X-A)\cap (F-N)\subset F\in\overline{\mathcal{A}}$
- 3. Пусть $(A_n)_{n\in\mathbb{N}}\in\mathcal{A}$. и $(M_n)_{n\in\mathbb{N}}\subset(N_n)_{n\in\mathbb{N}}\subset\mathcal{N}_{\mu}$
 - (a) Из дистрибутивности, следует, что $\bigcup_{n\in\mathbb{N}}\left(A_n\cup M_n\right)=\bigcup_{n\in\mathbb{N}}\left(A_n\right)\cup\bigcup_{n\in\mathbb{N}}\left(M_n\right)$
 - (b) По \sum_3 верно, что $\bigcup_{n\in\mathbb{N}} (A_n) \in \mathcal{A}$.
 - (c) Поскольку $\bigcup_{n\in\mathbb{N}} (M_n) \subset \bigcup_{n\in\mathbb{N}} (N_n)_{n\in\mathbb{N}}$, а $\mu\left(\bigcup_{n\in\mathbb{N}} (N_n)_{n\in\mathbb{N}}\right) = 0$. Из монотонности меры, следует, что $\bigcup_{n\in\mathbb{N}} (M_n) \in \mathcal{N}_{\mu}$
 - (d) Поэтому $\bigcup_{n\in\mathbb{N}} (A_n \cup M_n) \in \overline{\mathcal{A}}$
- 4. Тогда из (1) (2) и (3) следует, что $\overline{\mathcal{A}}$ сигма-алгебра.
- Показать, что $\overline{\mu}(A)$ мера на $\overline{\mathcal{A}}$ и $\overline{\mu}(A) = \mu(A)$ для всех $A \in \mathcal{A}$

Доказательство

1. Пусто