Muestreo Estadístico: $\pi ext{-Estimador}^*$

García Prado, Sergio sergio@garciparedes.me

25 de septiembre de 2017

1. Demostración de insesgadez

Para una población población finita U formada por los individuos $\{1, ..., i, ..., N\}$ cuya variable de interés se denota por y, siendo y_k el valor que toma dicha variable en el individuo k. Se define el total poblacional como sigue:

$$t = \sum_{k \in U} y_k \tag{1}$$

Sea s una muestra extraida de la población U (por tanto $s \subset U$), se define la variable aleatoria I_k como se indica a continuación:

$$I_k = \begin{cases} 1 & \text{si } k \in s \\ 0 & \text{si } k \notin s \end{cases} \tag{2}$$

De esta manera, se puede utilizar el valor π_k para modelizar la probabilidad de que I_k tome el valor 1, es decir, de que el elemento k-ésimo esté en la muestra s. Por tanto, se puede afirmar que $I_k \sim B(\pi_k)$, una distribución de Bernoulli de parámetro π_k . A partir de dicha distribución se tiene que $E[I_K] = \pi_k$. Además, $pi_k > 0 \forall k \in U$ para que se cumpla la restricción de muestreo probabilístico.

Se define el π -estimador como:

$$\hat{t}_{\pi} = \sum_{k \in S} \frac{y_k}{\pi_k} = \sum_{k \in U} I_k \frac{y_k}{\pi_k} \tag{3}$$

La demostración acerca de la insesgadez de este estimador deriva de la esperanza de la variable I_k , que toma el valor π_k , tal y como se indicaba anteriormente, lo cual produce que se anule dicho valor pi_k con el pi_k del divisor del estimador. Además, la restricción de muestreo probabilístico $pi_k > 0 \forall k \in U$ hace que el valor \hat{t}_{π} exista siempre (no hay división entre 0). Por estas razones se puede decir que el estimador es insesgado. De manera matemática esto se describe a continuación:

$$E[t] = \sum_{k \in IJ} y_k \tag{4}$$

$$E[\hat{t}_{\pi}] = \sum_{k \in U} E[I_k] \frac{y_k}{\pi_k} = \sum_{k \in U} \pi_k \frac{y_k}{\pi_k} = \sum_{k \in U} y_k$$
 (5)

$$bias(t, \hat{t}_{\pi}) = |E[t] - E[\hat{t}_{\pi}]| = \left| \sum_{k \in U} y_k - \sum_{k \in U} y_k \right| = 0$$
 (6)

 $^{{}^*\}mathrm{URL}$: https://github.com/garciparedes/statistical-sampling-pi-estimator

2. Demostración del intervalo de confianza para la varianza $_{\rm [TODO\,]}$

Referencias

 $[\mathrm{TG}18]$ Jesús Alberto Tapia García. Muestreo Estadístico 1, 2017/18.