Exercice 1: Équation à paramètre

Déterminer, suivant la valeur du paramètre m, le nombre de solutions de l'équation $-m\;x-x^2+2\;m+3\;x+1=0.$

Écrivons l'équation sous la forme $ax^2 + bx + c = 0$:

$$-x^2 + (-m+3) x + 2 m + 1 = 0$$

On a donc
$$a=-1$$
, $b=-m+3$ et $c=2\ m+1$

Le discriminant vaut
$$\Delta = b^2 - 4 \times a \times c = (-m+3)^2 + 4(2m+1)$$

Ou encore, sous forme développée : $\Delta = m^2 + 2 \; m + 13$

Cherchons les valeurs de m qui annulent cette expression du second degré :

Le discriminant Δ' vaut : $\Delta' = -48$

Celui-ci étant strictement négatif, l'équation n'a pas de solution et Δ ne change pas de signe.

Comme le coefficient devant m^2 est positif, $\Delta > 0$.

<u>Conclusion</u>: L'équation du départ admet toujours 2 solutions.