

Introduction to Simulation

Stochastic Petri Nets

Motivation

When performing simulation studies...

Real problems are very complex

Simulation program = conceptual model is a bad idea!

Program code is not intuitive or flexible enough

We need a clear, flexible conceptual modelling tool

- To obtain a basic understanding of the system
- As a basis for discussions

Stochastic Petri Nets (SPNs) are a good example

Uses of Stochastic Petri Nets

Stochastic Petri Nets are used as conceptual models in...

- Traffic and Logistics
- Reliability and Safety
- Manufacturing and Production
- Computers and Computer Networks

Advantages of SPNs

Stochastic Petri nets...

- are a graphical modelling tool
- are easy to understand
- are flexible and powerful
- can be easily extended
- can be automatically converted into a simulation model

Components of SPNs

Stochastic Petri nets consist of:

- Tokens
- Places
- Transitions
- Arcs (Input, Output and Inhibitor)
- Guard functions
- **(...)**

Example

A simple queueing system in a bank:

Example

A simple queueing system in a bank:

Tokens

Tokens...

- represent objects (entities) or state markers
- are drawn as dots
- are located in places
- are created and destroyed by the firing of transitions

The distribution of tokens in the places is called the marking

■ The marking in the above SPN is (2, 1)

Places

Places...

- represent locations or states
- are drawn as circles
- are used to store tokens

Timed Transitions

Timed transitions...

- represent activities and the events which end them
- are drawn as open rectangles
- are used to create and destroy tokens
- have an associated (usually random) firing time

Immediate Transitions

Immediate transitions...

- represent events (without activities)
- are drawn as bars
- are also used to create and destroy tokens
- fire immediately they become enabled
- can have an associated firing probability

Input Arcs

Input arcs...

- join places to transitions
- are drawn as arrows
- determine enabling of transitions
- determine # tokens destroyed by firing
- can have a multiplicity $\xrightarrow{\frac{1}{2}}$

Output Arcs

Output arcs...

- join transitions to places
- are drawn as arrows
- determine # tokens created by firing
- can have a multiplicity $\frac{}{2}$

Inhibitor Arcs

Inhibitor arcs...

- join places to transitions
- are drawn as arrows with circular heads
- disable transitions when enough tokens are in place
- can have a multiplicity

Variable Multiplicity Arcs

Arcs may also have variable multiplicities

* or |A| or #A means the number of tokens in place A

The multiplicity can thus also be marking-dependent

Guard Functions

Guard functions...

- are assigned to transitions
- map markings to Boolean values
- disable transitions when their value = FALSE
- allow general conditions for disabling

Firing Rules

A transition can *fire* if it is *enabled*, i.e. ...

- The number of tokens in every input place >= multiplicity of the corresponding input arc
- there are no inhibitor arcs currently active
- no guard functions return FALSE

Otherwise, the transition is *disabled*, and cannot fire

Enabling Examples

Some enabled transitions:

Disabling Examples

Some disabled transitions:

Effects of Firing

Effects of firing:

- The tokens that enable the transition are destroyed
- Tokens are created in output places according to the multiplicity of the output arcs

Firing Examples

Firing timing for an immediate transition:

- It fires as soon as it becomes enabled
- Simultaneously enabled immediate transitions compete, using probabilities

Firing Examples

Firing probabilities for an immediate transition:

 The probabilities are computed relative to all currently enabled transitions

$$p_{1}^{*} = 0$$

$$p_{2}^{*} = \frac{p_{2}}{p_{2} + p_{3}}$$

$$p_{3}^{*} = \frac{p_{3}}{p_{2} + p_{3}}$$

Firing Examples

Firing timing for a timed transition:

- It fires a certain time after becoming enabled (assuming it is not disabled during that time)
- The delay can be a random variable
- Simultaneously enabled timed transitions "race"

RN in the Simulation

Which transition fires first? (What is the result of the race?)

That depends on the random numbers that are sampled!

Age Policies

What happens when a timed transition becomes disabled before it fires?

There are two main alternatives:

- Race Enable: The elapsed enabling time is "forgotten"
- Race Age: The elapsed enabling time is "remembered"

When the transition is re-enabled...

- The Race Enable transition will sample a new firing time
- The Race Age transition will use up its remaining firing time

Race Age

Example for the Race Age memory policy:

- A CPU processes a user job
- The CPU can be interrupted

Race Enable

Example for the Race Enable memory policy:

- A networked computer receives message packets
- A timeout occurs if a packet is delayed for too long

Example: The Bank

A simple queueing system in a bank:

Example: The Bank

Petri net for two servers (Server 1 has priority):

Example: The Bank

Petri net for two servers (probabilistic choice):

Process Characteristics

Processes have several characteristic elements:

Competition: A "race" between two or more processes

Fork: A process splits into subprocesses

Join (synchronise): Two or more processes unite

Concurrency: Processes that happen in parallel

Limited resources: Different processes share a resource

Probabilistic choice: Choose at random

These elements can all be modelled easily with SPNs

Competition

Modelling of competing processes:

The simulator samples the Work and Fail distributions

The faster transition wins

Example: The Bar

Modelling of a limited resource:

Modelling of a fork process:

Modelling of concurrent processes:

Modelling of a join process (synchronisation):

Modelling an Automobile Factory

Modelling an Automobile Factory

Task of Q-Cells Project:

 Design a wafer transport strategy between machines and trolley capacity for a new Q-Cells facility in Malaysia

Schema of trolley based wafer transport in a certain loop involving three machines

Petri net representing that loop's logic

INFORMATIK

Crossroads in the center of Magdeburg

 Determine the effect of removing the traffic light considering different traffic conditions

OTTO VON GUERICKE UNIVERSITÄT MAGDEBURG

Crossroad in the center of Magdeburg

 Determine the effect of removing the traffic light considering different traffic conditions

The Sims - Almost Normal Family Life

Represent dad's employments with an SPN:

Places can represent:

Being employed, being unemployed ...

Timed transitions represent activities:

Duration of an employment, duration of unemployment...

Immediate transitions represent probabilities:

Get a job or stay unemployed ...

Star Trek - Enterprise in Danger

Represent the repair and medical treatment cycle with an SPN:

Places can represent treatment stages holding crew members:

Medical treatment stage 1, waiting for stage 2, repairing...

Timed transitions represent activities:

Duration of treatment stage 2, time available for repair...

Immediate transitions represent conditions:

Continue repair, if all crew members have been treated...

Learning Goals

Learning questions:

- Model scenario <...> using a Stochastic Petri Net
- What do Race Age and Race Enable mean?
- What rules govern the firing of a timed transition?
- What rules govern the firing of an immediate transition?
- How are concurrency, fork, join, racing and limited resources represented in a Stochastic Petri Net?