

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15090075603

FCC REPORT (BLE)

Applicant: Infinity System, SL

Address of Applicant: A-2 KM 48.5 Pol. Ind de Cabanillas. Parcela 12B 19171

Guadalajara (SPAIN)

Equipment Under Test (EUT)

Product Name: Smartphone

Model No.: TM5HLM

FCC ID: 2AC99TM5HLM

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 24 Sep., 2015

Date of Test: 25 Sep., to 22 Oct., 2015

Date of report issued: 22 Oct., 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	22 Oct., 2015	Original

Tested by: Date: 22 Oct., 2015

Test Engineer

Reviewed by: Date: 22 Oct., 2015

Project Engineer

3 Contents

			Page					
1	COV	/ER PAGE	1					
2	VER	VERSION2						
3		ITENTS						
4	TES	T SUMMARY	4					
5	GEN	IERAL INFORMATION	5					
	5.1	CLIENT INFORMATION	5					
	5.2	GENERAL DESCRIPTION OF E.U.T.						
	5.3	TEST ENVIRONMENT AND MODE						
	5.4	DESCRIPTION OF SUPPORT UNITS	7					
	5.5	LABORATORY FACILITY	7					
	5.6	LABORATORY LOCATION						
	5.7	TEST INSTRUMENTS LIST	8					
6	TES	T RESULTS AND MEASUREMENT DATA	9					
	6.1	ANTENNA REQUIREMENT:	9					
	6.2	CONDUCTED EMISSION	10					
	6.3	CONDUCTED OUTPUT POWER	13					
	6.4	OCCUPY BANDWIDTH	15					
	6.5	POWER SPECTRAL DENSITY	18					
	6.6	BAND EDGE	20					
	6.6.1	Conducted Emission Method	20					
	6.6.2							
	6.7	Spurious Emission	27					
	6.7.1							
	6.7.2	Radiated Emission Method	30					
7	TES	T SETUP PHOTO	35					
8	FUT	CONSTRUCTIONAL DETAILS	36					

4 Test Summary

Test Item	Section in CFR 47	Uncertainty	Result
Antenna requirement	15.203/15.247 (c)	/	Pass
AC Power Line Conducted Emission	15.207	±3.28dB	Pass
Conducted Peak Output Power	15.247 (b)(3)	±1.50dB	Pass
6dB Emission Bandwidth	15.247 (a)(2)	±1.50dB	Pass
Power Spectral Density	15.247 (e)	±1.50dB	Pass
Band Edge	15.247(d)	±1.50dB	Pass
Spurious Emission	15.205/15.209	±4.88dB	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Infinity System, SL
Address of Applicant:	A-2 KM 48.5 Pol. Ind de Cabanillas. Parcela 12B 19171 Guadalajara (SPAIN)
Manufacturer:	Infinity System, SL
Address of Manufacturer:	A-2 KM 48.5 Pol. Ind de Cabanillas. Parcela 12B 19171 Guadalajara (SPAIN)

5.2 General Description of E.U.T.

Product Name:	Smartphone
Model No.:	TM5HLM
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-1.43 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2200mAh
AC adapter:	Model:T5HLMCH
	Input:100-240V AC,50/60Hz 0.15A
	Output:5V DC MAX 1000mA
Remark:	Model No.: TM5HLM were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being have two colours.

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCIS15090075603

5.7 Test Instruments list

Rad	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016			
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016			
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016			
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016			
7	Pre-amplifier (18-26GHz) Rohde & Schwarz		AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016			
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016			
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A			
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A			
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016			
12	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016			
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016			
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016			
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016			

Con	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016				
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -1.43 dBi.

6.2 Conducted Emission

Test Descripements	FCC Dark 45 C Caption 45 203	7						
Test Requirement:	FCC Part 15 C Section 15.207							
Test Method:	ANSI C63.4: 2009							
Test Frequency Range:	150 kHz to 30 MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9kHz, VBW=30kHz							
Limit:	Frequency range (MHz) Limit (dBuV) Quasi-peak Average							
	0.15-0.5							
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarithm	of the frequency.						
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 							
Test setup:	Refere	nce Plane						
	AUX Equipment E.U Test table/Insulation pla Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		er — AC power					
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Measurement Data

Neutral:

Trace: 15

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Smartphone : TM5HLM Model Test Mode : BLE mode

Power Rating: AC 120V/60Hz
Environment: Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: MT.liang

Remark

nomark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫₿uѶ	<u>dB</u>	₫B	dBu₹	dBu√	<u>dB</u>	
1	0.166	36.66	0.25	10.77	47.68	65.16	-17.48	QP
2	0.178	20.18	0.25	10.77	31.20	54.59	-23.39	Average
3	0.211	31.62	0.25	10.76	42.63	63.18	-20.55	QP
4	0.214	15.17	0.25	10.76	26.18	53.05	-26.87	Average
5	0.307	16.83	0.26	10.74	27.83	50.06	-22.23	Average
6	0.310	28.84	0.26	10.74	39.84	59.97	-20.13	QP
7	0.449	32.47	0.27	10.74	43.48	56.89	-13.41	QP
1 2 3 4 5 6 7 8 9	0.518	33.64	0.28	10.76	44.68	56.00	-11.32	QP
9	0.529	16.85	0.27	10.76	27.88	46.00	-18.12	Average
10	0.697	15.69	0.18	10.77	26.64	46.00	-19.36	Average
11	0.747	29.54	0.19	10.79	40.52	56.00	-15.48	QP
12	1.054	11.32	0.22	10.88	22.42	46.00	-23.58	Average

Line:

Trace: 13

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site

Condition : Smartphone EUT

Model TM5HLM Test Mode : BLE mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: MT.liang

vemark.	•							
	122	Read	LISN	Cable		Limit	Over	1000 ES
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∜	dB	₫B	dBu₹	dBu∀	<u>dB</u>	
1	0.174	24.91	0.27	10.77	35.95	54.77	-18.82	Average
2	0.178	38.03	0.28	10.77	49.08	64.59	-15.51	QP
1 2 3 4 5 6 7 8 9	0.219	20.36	0.28	10.76	31.40	52.88	-21.48	Average
4	0.222	32.72	0.27	10.75	43.74	62.74	-19.00	QP
5	0.307	31.14	0.26	10.74	42.14	60.06	-17.92	QP
6	0.307	18.12	0.26	10.74	29.12	50.06	-20.94	Average
7	0.437	16.47	0.28	10.74	27.49	47.11	-19.62	Average
8	0.518	32.81	0.28	10.76	43.85	56.00	-12.15	QP
9	0.521	19.98	0.28	10.76	31.02	46.00	-14.98	Average
10	0.686	28.57	0.22	10.77	39.56	56.00	-16.44	QP
11	0.686	15.49	0.22	10.77	26.48	46.00	-19.52	Average
12	0.904	28.08	0.24	10.84	39.16	56.00	-16.84	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-4.50		
Middle	-3.06	30.00	Pass
Highest	-3.88		

Test plot as follows:

Date: 14.0CT.2015 17:15:35 Lowest channel

Date: 14.00T.2015 17:15:09 Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.73		
Middle	0.73	>500	Pass
Highest	0.74		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.03		
Middle	1.03	N/A	N/A
Highest	1.03		

Test plot as follows:

6dB EBW

Lowest channel

Middle channel

Highest channel

99% OBW

Lowest channel

Middle channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2
Limit:	8 dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result	
Lowest	-8.35			
Middle	-7.52	8.00	Pass	
Highest	-8.43			

Test plots as follow:

Lowest channel

Middle channel

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Date: 29.SEP.2015 15:49:57

Lowest channel

Date: 29.SEP.2015 15:52:01

Highest channel

6.6.2 Radiated Emission Method

Above 1GHz	
Test Frequency Range: 2.3GHz to 2.5GHz Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Real Above 1GHz Peak Above 1GHz 1MHz 3MHz Peak Average	
Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Receiver setup: Above 1GHz Peak 1MHz 3MHz Peak RMS 1MHz 3MHz Average	
Receiver setup: Frequency Detector RBW VBW Receiver setup: Peak 1MHz 3MHz Peak 1MHz 3MHz Average RMS 1MHz 3MHz Average Av	
Above 1GHz	
Above 1GHz RMS 1MHz 3MHz Avera	mark
	Value
	mark
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ge Value
Peal	Value .
the ground at a 3 meter camber. The table was rotated 360 to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-recantenna, which was mounted on the top of a variable-height tower. 3. The antenna height is varied from one meter to four meters the ground to determine the maximum value of the field str Both horizontal and vertical polarizations of the antenna ar make the measurement. 4. For each suspected emission, the EUT was arranged to its case and then the antenna was tuned to heights from 1 memeters and the rota table was turned from 0 degrees to 36 to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lethe limit specified, then testing could be stopped and the pof the EUT would be reported. Otherwise the emissions the have 10 dB margin would be re-tested one by one using peak or average method as specified and then reported in sheet.	o degrees eiving nt antenna a above ength. e set to worst eter to 4 0 degrees and ower than eak values at did not eak, quasi-
Test setup: Horn Antenna Tower Ground Reference Plane Test Receiver Controller	
Test Instruments: Refer to section 5.7 for details	
Test mode: Refer to section 5.3 for details	
Test results: Passed	

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smartphone : TM5HLM EUT : IMBHLM
Test mode : BLE-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT.liang
REMARK :

1 2

 u. Fred	Antenna Factor				
			 	 	_
2390.000		0.00		The state of the s	

Test channel: Lowest

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Smartphone Condition

EUT : TM5HLM
Test mode : BLE-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT.liang
REMARK :

Freq		Antenna Factor						Remark	
MHz	dBu∜	$\overline{dB}/\overline{m}$	<u>dB</u>	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		-
2390.000 2390.000									

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smartphone : TM5HLM EUT Model Test mode : BLE-H mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: MT.liang REMARK :

Eller	n :								
	2		Ant enna				Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark
	MHz	dBu∜	dB/m	₫₿	₫B	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500	23.94	27.52	6.85	0.00	58.31	74.00	-15.69	Peak
2	2483.500	13.23	27.52	6.85	0.00	47.60	54.00	-6.40	Average

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Smartphone Condition

EUT Model : TM5HLM Test mode : BLE-H mode
Power Rating : AC 120V/60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT.liang

REMARK

		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∇		<u>dB</u>	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer						
	E.U.T						
	Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 30.SEP.2015 08:24:18

30MHz~25GHz

Middle channel

Date: 30.SEP.2015 08:25:49

30MHz~25GHz

Highest channel

Date: 30.SEP.2015 08:27:21

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:2009								
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement D	istance: 3m							
Receiver setup:	Frequency Detector RBW VBW Remark								
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above IGIIZ	RMS	1MHz	3MHz	Average Value				
Limit:	Frequency		Limit (dBuV/m	@3m)	Remark				
	30MHz-88MHz		40.0		Quasi-peak Value				
	88MHz-216MHz		43.5		Quasi-peak Value				
	216MHz-960MH	z	46.0		Quasi-peak Value				
	960MHz-1GHz		54.0		Quasi-peak Value				
	Above 1GHz		54.0		Average Value				
			74.0		Peak Value				
Test Procedure:	the ground to determin 2. The EUT antenna, we tower. 3. The antenre the ground Both horizon make the make the make the meters and to find the meters and the meters and to find the meters and the	at a 3 meter the the position was set 3 meter was set 3 meter was more to determine the anter the anter the anter the rota table maximum read the rota table the rota table maximum read the rota table the rota table maximum read the rota table the	camber. The nof the highest teters away funted on the training of the maximulatical polarization. The example of the maximulatical polarization was turned ding. The example of the maximum Hamilton of the extension of the extens	table was a st radiation. Tom the in op of a variance meter to um value or ions of the EUT was and to height from 0 degrate Deak Dold Mode. The stopped wise the end one by one	le 0.8 meters above rotated 360 degrees terference-receiving able-height antenna of four meters above of the field strength, antenna are set to tranged to its worst is from 1 meter to 4 rees to 360 degrees etect Function and as 10 dB lower than and the peak values missions that did not e using peak, quasing reported in a data				

Below 1GHz

Horizontal:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Smartphone Model : TM5HLM
Test mode : BLE mode
Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: MT.liang

REMARK

	Freq		Antenna Factor						Remark
-	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>	
1	48.843	38.79	13.32	0.60	29.83	22.88	40.00	-17.12	QP
1 2 3	84.405	48.63	10.16	0.88	29.60	30.07	40.00	-9.93	QP
3	166.068	50.00	8.85	1.34	29.08	31.11	43.50	-12.39	QP
4	214.514	46.63	11.03	1.46	28.74	30.38	43.50	-13.12	QP
5	276.124	42.61	12.55	1.70	28.49	28.37	46.00	-17.63	QP
6	463.970	36.26	15.71	2.30	28.89	25.38	46.00	-20.62	QP

Vertical:

Site Condition : 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL

EUT Smartphone Model TM5HLM Test mode : BLE mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55% Test Engineer: MT.liang REMARK:

	•	Read.	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
_	MHz	dBu∇	-dB/m	dB	<u>d</u> B	dBu√/m	dBuV/m	<u>dB</u>	
1	48.502	45.99	13.34	0.60	29.83	30.10	40.00	-9.90	QP
2	60.069	41.30	12.69	0.69	29.77	24.91	40.00	-15.09	QP
3	84.999	44.96	10.31			26.55			
2 3 4 5	187.753	45.20	10.32	1.37	28.92	27.97	43.50	-15.53	QP
5	220.617	44.83	11.20	1.49	28.70	28.82	46.00	-17.18	QP
6	463.970	38.41	15.71	2.30	28.89	27.53	46.00	-18.47	QP

Above 1GHz

Т	est channel	:	Lo	Lowest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	47.59	31.53	10.57	40.24	49.45	74.00	-24.55	Vertical
4804.00	45.99	31.53	10.57	40.24	47.85	74.00	-26.15	Horizontal
Т	est channel	•	Lowest		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	37.15	31.53	10.57	40.24	39.01	54.00	-14.99	Vertical
4804.00	36.69	31.53	10.57	40.24	38.55	54.00	-15.45	Horizontal

Т	est channel	:	Middle		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	46.24	31.58	10.66	40.15	49.04	74.00	-24.96	Vertical
4884.00	46.95	31.58	10.66	40.15	2.09	74.00	-71.91	Horizontal
Т	est channel	:	Middle		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	37.45	31.58	10.66	40.15	39.54	54.00	-14.46	Vertical
4884.00	37.01	31.58	10.66	40.15	39.10	54.00	-14.90	Horizontal

Т	est channel	:	Hiç	Highest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	44.58	31.69	10.73	40.03	46.97	74.00	-27.03	Vertical
4960.00	48.05	31.69	10.73	40.03	50.44	74.00	-23.56	Horizontal
Т	est channel	•	Highest		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	35.56	31.69	10.73	40.03	37.95	54.00	-16.05	Vertical
4960.00	39.41	31.69	10.73	40.03	41.80	54.00	-12.20	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366