Министерство образования и науки Российской Федерации

КАЗАНСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени А.Н.ТУПОЛЕВА

Кафедра радиоэлектроники и информационно-измерительной техники

Л.М.Урманчеев.

ЭЛЕКТРОНИКА

Учебное пособие к практическим занятиям

УДК 621.38

Электроника. Учебное пособие к практическим занятиям / Л.М. Урманчеев: Казан. нац. исслед. техн. ун-т. Казань, 2013. с.

Приведены теоретические сведения и расчетные соотношения, необходимые для решения задач, примеры решения задач, даны наборы индивидуальных заданий. Дан справочный технический материал.

Предназначено для студентов направления 210300 — радиотехника по специальности 210302 — радиотехника, а также направления 210400 — телекоммуникация по специальности 210404 — многоканальные телекоммуникационные системы.

Табл: 7, Ил: 34, Библиогр: 8 назв.

ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

<u>Занятие</u> <u>1</u>. Вольтамперные характеристики и дифференциальные параметры диодов.

Краткие сведения из теории.

Диод — полупроводниковый прибор с двумя выводами, содержащий выпрямляющий электрический переход. Таким переходом может быть p-n-переход или выпрямляющий контакт металл-полупроводник - контакт Шоттки (диод Шоттки).

Вольтамперная характеристика (ВАХ) идеализированного p-n-перехода и контакта Шоттки описывается формулой:

$$I = I_0[\exp(U/\phi_T) - 1], \tag{1.1}$$

где I_0 — тепловой ток, U — напряжение, ϕ_T — температурный потенциал (ϕ_T =0,026B при T=298K).

Реальные ВАХ диода отличаются от ВАХ идеализированного p-n-перехода, поскольку при выводе теоретической формулы не учитывались процессы генерации и рекомбинации в p-n-переходе, сопротивление объема полупроводника, пробой p-n-перехода.

В частности, на прямой ветви ВАХ сказываться падение напряжения на сопротивлении базы r_{δ} и только часть приложенного напряжения падает на p-n-переходе. С учетом этого, при $I >> I_0$

$$I = I_0 \exp\left(\frac{U - I \cdot r_{\acute{a}}}{\varphi_T}\right)$$
, или $U = \varphi_T \ln\left(\frac{I}{I_0}\right) + I \cdot r_{\acute{a}}$ (1.2)

Ток диода при обратном смещении больше теплового тока, т.к. к нему добавляются токи термогенерации и утечки. Когда обратное напряжение превышает некоторое критическое значение, называемое напряжением пробоя, ток диода резко возрастает — возникает пробой диода. Различают электрический пробой и тепловой. Электрический пробой бывает двух видов — лавинный и туннельный, имеющие разные механизмы. Электрический пробой является обратимым и используется для стабилизации напряжения в

полупроводниковых стабилитронах. Тепловой пробой, как правило, необратим, он приводит к разрушению p-n-перехода.

Дифференциальные параметры диода.

Дифференциальные параметры — величины, связывающие малые изменения переменных, это частные производные зависимых переменных по независимым в данной рабочей точке. Ток диода является функцией напряжения и температуры:

$$I=I(U,T)$$

Для малых приращений (линейного режима) можно записать

$$\Delta I = S \cdot \Delta U + S_{I(T)} \Delta T$$
,

где коэффициенты являются частными производными функции I(U,T): $S = \left(\frac{\partial I}{\partial U}\right)_T - \text{крутизна}, \quad S_{I(T)} = \left(\frac{\partial I}{\partial T}\right)_U - \text{дифференциальная} \quad \text{температурная}$ чувствительность тока.

Кроме этих параметров часто используются также дифференциальное сопротивление $R_{\ddot{a}}=1/S=\left(\frac{\partial U}{\partial I}\right)_T$ и дифференциальная температурная чувствительность напряжения $S_{U(T)}=\left(\frac{\partial U}{\partial T}\right)_T$

Эти параметры связаны соотношением

$$S_{U(T)} = -S_{I(T)} / S$$

Дифференциальные параметры зависят от выбранной рабочей точки (U^0,I^0) . В этой точке диод характеризуется также статическим сопротивлением $R_{cm}=U^0/I^0$.

Для идеализированного p-n-перехода при $I>>I^0$

$$R_{\partial} = \varphi_T / I^{\theta}, \tag{1.3}$$

$$S_{U(T)} = \frac{U - \Delta W/e}{T},\tag{1.4}$$

где ΔW — ширина запрещенной зоны, e — заряд электрона, $\Delta W/e$ равно 1,11B для кремния и 0,67 B для германия при T=298K.

Аудиторные задачи.

Задача 1. По приведенным вольтамперным характеристикам (ВАХ) диода определить статическое R_{cm} и дифференциальное R_{∂} сопротивления при приведенных температурах при заданном прямом токе I_{np} и при заданном обратном напряжении $U_{oбp}$.

Определить среднюю температурную чувствительность прямого напряжения в приведенном интервале температур. Вычислить теоретическое значение дифференциального сопротивления и дифференциальной температурной чувствительности напряжения идеализированного p-n-перехода при прямом токе I_{np} при температуре 298 K и сравнить со значениями, найденными из графиков.

<u>Решение</u>. На рис.1.1 приведены прямые ветви ВАХ кремниевого сплавного диода Д207 при трех значениях температуры. Рабочие точки A заданы значением прямого тока I_{np} =50 MA. Напряжения в этих точках равны 0,67, 0,77 и 0,83 В при температурах 393, 298 и 213К, соответственно. Отсюда:

$$R_{cm}$$
=0,67/ 0,05=13,4 Ом при Т=393 K ;

$$R_{cm}$$
=0,77/ 0,05=15,4 Ом при Т=298 K ;

$$R_{cm}$$
=0,83/ 0,05=16,6 Ом при T=213 K .

Рис.1.1.

Дифференциальные сопротивления находятся как отношения катетов заштрихованных треугольников $R_{o} = \Delta U / \Delta I$:

 R_{∂} =0,05/(2·10⁻²)=2,5 Ом при Т=393К;

 R_{∂} =0,03/(2·10⁻²)=1,5 Ом при Т=298К;

 R_{θ} =0,02/(2·10⁻²)=1,0 Ом при T=213К.

Среднюю температурную чувствительность прямого напряжения находим по графику по приращениям напряжения при изменении температуры при постоянном токе I_{np} =50 мА:

 $S_{U(T)}$ =0,11/(298-393)= -0,0012 В/К в интервале 298-393K и

 $S_{U(T)}$ =0,08/(213-298)= -0,0009 В/К в интервале 213-298K

Для идеализированного p-n-перехода при температуре 298K дифференциальное сопротивление в рабочей точке находится по формуле (1.3):

$$R_{\partial}$$
= 0,026 /0,05=0,52 Om,

что в 3 раза меньше значения, найденного по графику, т.е. сказывается $r_6 \approx 1$ Ом.

Значение дифференциальной температурной чувствительности напряжения в находится по формуле (1.4):

$$S_{U(T)} = \frac{0.77 - 1.11}{298} = -1.14 \cdot 10^{-3} \,\hat{A}/\hat{E}$$

Это значение практически совпадает со значениями, найденными по характеристикам. Следует, однако, заметить, что при значительном сопротивлении базы формула (1.4) неприменима к реальному диоду. В частности, падение напряжения на диоде может оказаться больше, чем $\Delta W/e$, что приведет к ошибочному значению не только величины, но и знака $S_{U(T)}$.

Обратные ветви ВАХ диода приведены на рис. 1.2. Следует обратить внимание на то, что масштаб по оси тока – логарифмический.

Статические сопротивления при заданном значении $U_{oбp}$ =125 В равны

$$R_{cm}$$
=125/ (27·10⁻⁶)=4,6 МОм при Т=393 К;

$$R_{cm}$$
=125/ (5·10⁻⁶)=25 МОм при Т=298 К;

$$R_{cm}$$
=125/ (0,48·10⁻⁶)=260 МОм при T=213 К.

Дифференциальные сопротивления определяются как отношения катетов заштрихованных треугольников после перевода их в абсолютные величины:

$$R_{\ddot{a}} = 50/[(42-11)\cdot 10^{-6}] = 1,6$$
Ì̂і при Т=393К;

$$R_{\ddot{a}} = 50/\left[(6,5-2,3) \cdot 10^{-6} \right] = 12 \mathring{\mathbf{I}} \mathring{\mathbf{I}} \mathring{\mathbf{I}}$$
 при T=298K;
 $R_{\ddot{a}} = 50/\left[(0,49-0,36) \cdot 10^{-6} \right] = 385 \ \mathring{\mathbf{I}} \mathring{\mathbf{I}} \mathring{\mathbf{I}}$ при T=213K.

Задача 2. Соединить диод с сопротивлением R последовательно. На одном графике построить прямую ветвь ВАХ диода при T=298K (из справочника), ВАХ сопротивления R и суммарную ВАХ этой цепи. Найти значение тока, протекающего в цепи при заданном напряжении E, и падение напряжения на диоде $U_{\rm I}$ при найденном значении тока

Построить нагрузочную линию из точки E. Убедиться в совпадении $U_{\rm Д}$ в точке пересечения нагрузочной линии с BAX диода со значением, найденном с использованием BAX диода и суммарной BAX.

Дано: Диод Д207, R=10 Ом, E=1,5 В.

Решение.

На рис. 1.1 штриховой линией приведена ВАХ сопротивления и жирной линией — ВАХ цепи, состоящей из диода и сопротивления, включенных последовательно. (Суммарная ВАХ получена добавлением к падению напряжения на диоде при T=298 K падения напряжения на сопротивлении при заданных значениях тока). Нагрузочная линия строится из точки E=1,5 B с наклоном $\Delta U/\Delta I$ =-R.

Ток в последовательной цепи определяется точкой B, падение напряжения на диоде при этом токе соответствует точке C, которая является точкой пересечения нагрузочной прямой с BAX диода.

Варианты индивидуальных заданий к задачам 1, 2 приведены в Таблице1.

Таблица 1.

N_0N_0	диод	I_{np} , MA	$U_{oбp}$,В	<i>R</i> , Ом	<i>E</i> , B
1	2Д102А	50	100	30	2
2	2Д103А	50	50	30	2
3	2Д104А	15	250	120	2
4	КД105Б	200	300	7,5	1,5

5	2Д106А	1500	50	1,0	2
6	ГД107А	12	15	150	2
7	2Д115А-1	50	60	20	2
8	2Д116А	5000	40	0,3	2
9	2Д117А	2000 25		1,0	3
10	2Д119А	5000	10	0,2	1,5
11	Д18	10	10	100	1,5
12	Д20	20	10	50	1,5
13	Д220	30	50	50	2.5
14	Д310	300	20	5	2
15	Д311	40	30	30	2
16	Д312	30	40	50	2
17	2Д502В	40	50	20	2
18	2ДМ502-М	50	15	20	2
19	2Д509А	40	60	20	2
20	2Д510А	100	50	10	2,5

Примечания.

При построении графиков нужно учесть следующее:

- Прямые ветви ВАХ нужно строить от нуля напряжения (они могут быть приведены в справочнике от некоторого положительного значения).
- Масштаб U_{np} нужно выбирать с учетом того, что на этом же графике нужно будет привести график ВАХ цепи, состоящей из диода и резистора, включенных последовательно.
- Масштаб $U_{oбp}$ может быть приведен в относительных единицах от $U_{oбp\;max}$, нужно перевести в вольты.
- Масштаб $I_{oбp}$ может быть логарифмическим, для удобства расчета на оси токов нужно привести значения $\lg I$.

Занятие 2. Полупроводниковые стабилитроны.

Краткие сведения из теории.

Полупроводниковый стабилитрон кремниевый диод, предназначенный ДЛЯ стабилизации напряжения. Стабилитроны работают в режиме электрического пробоя р-nперехода. стабилизации Для напряжения применяются также диоды при прямом

включении, в этом случае они называются стабисторами.

Схема включения стабилитрона с нагрузкой приведена на рис.2.1, где E – нестабилизированный источник питания, R_0 – ограничительное (балластное) сопротивление, R_H – нагрузка.

Основными параметрами стабилитрона являются напряжение стабилизации U_{cm} , минимальный I_{min} и максимальный I_{max} ток, дифференциальное сопротивление r_{o} , температурный коэффициент напряжения ТКН. Дифференциальное сопротивление зависит от тока стабилитрона.

Стабилизатор напряжения характеризуется также коэффициентом стабилизации, который показывает во сколько раз относительная нестабильность выходного напряжения меньше нестабильности входного напряжения:

$$K_{\tilde{n}\tilde{o}} = \frac{\Delta E/E_0}{\Delta U_{\tilde{n}\tilde{o}}/U_{\tilde{n}\tilde{o}}} = \frac{U_{\tilde{n}\tilde{o}}}{E_0} \cdot \frac{\Delta E}{\Delta U_{\tilde{n}\tilde{o}}} \approx \frac{U_{\tilde{n}\tilde{o}}}{E_0} \cdot \frac{R_0}{r_{\ddot{a}}}$$
(2.1)

Рис.2.2

На рис. 2.2 приведена ВАХ стабилитрона, показан диапазон рабочих токов $I_{min} \div I_{max}$ и показана рабочая точка для режима холостого хода ($R_H = \infty$), в которой ток I_0 определяется соотношением:

$$I_0 = (E_0 - U_{cm})/R_0,$$
 (2.2)

На рис.2.2 построена также линия

нагрузки и приведен график кусочно-линейной аппроксимации ВАХ (тонкими линиями), который строится, проводя через рабочую точку (U_{cm} , I_0) прямую с наклоном $\Delta U/\Delta I = r_0$ в интервале от I_{max} до I_{min} и далее соединяя точку этой прямой, соответствующую I_{min} , с началом координат.

Когда сопротивление нагрузки становится меньше минимально допустимого значения R_{Hmin} стабилитрон выходит за пределы рабочего режима, при $R_{H}=R_{Hmin}$ ток стабилитрона равен I_{min} ,ток нагрузки $I_{H}=I_{0}$ $-I_{min}$. Таким образом,

$$R_{Hmin} = U_{cm} / (I_0 - I_{min}) \tag{2.3}$$

Если ток стабилитрона превысит максимально допустимое значение электрический пробой перейдет в тепловой и стабилитрон выйдет из строя. При заданном значении R_0 максимально допустимое напряжение питания E_{max} равно

$$E_{max} = R_0 I_{max} + U_{cm} \tag{2.4}$$

Аудиторная задача.

Для заданного стабилитрона выбрать рабочую точку посередине рабочего участка ВАХ и найти дифференциальное сопротивление r_{∂} в рабочей точке при T=298 K по приведенным графикам.

Построить график кусочно-линейной аппроксимации ВАХ, используя найденное значение r_{∂} .

Найти сопротивление балластного резистора R_0 и построить линию нагрузки при напряжении источника питания E_0 , равном удвоенному напряжению стабилизации.

Найти коэффициент стабилизации K_{cm} .

Определить минимально допустимое сопротивление нагрузки R_{Hmin} и максимально допустимое напряжение питания E_{max} при найденном R_{θ} .

Дано: стабилитрон 2С147Б.

Решение.

Из справочника находим: U_{cm} =4,7 В, I_{min} =3 мА, I_{max} =21 мА,

Ток стабилитрона I_0 в рабочей точке определяется из условия

$$I_0 = (I_{max} + I_{min})/2 = (21+3)/2 = 12 \text{ MA}$$

Дифференциальное сопротивление r_{∂} в рабочей точке при T=298К находится по графику рис.2.3, приведенному в справочнике: r_{∂} =20 Ом при I_{∂} =12 мА.

По найденному значению r_{∂} строится график кусочно-линейной аппроксимации ВАХ, как указано выше.

Сопротивление балластного резистора R_0 находится по формуле (2.2):

$$R_0$$
=(E_0 — U_{cm})/ I_0 =4,7/($12\cdot 10^{-3}$)=390 *Ом* (в данном случае R_0 = U_{cm} / I_0).

Коэффициент стабилизации K_{cm} определяется по формуле (2.1):

$$K_{\tilde{n}\hat{o}} = \frac{1}{2} \cdot \frac{390}{20} = 19,5 \approx 20$$

Минимально допустимое сопротивление нагрузки R_{Hmin} и

максимально допустимое напряжение питания E_{max} находятся по формулам (2.3) и (2,4):

$$R_{Hmin}$$
=4,7 / [(12 - 3)·10⁻³]=522 Om,
 E_{max} =390·21·10⁻³+4,7=12,9 B .

Варианты индивидуальных заданий приведены в Таблице 2.

Таблица 2.

No	1	2	3	4	5	6	7	8	9	10
диод	814A	814Б	814B	814Γ	814Д	808	809	810	811	813
No	11	12	13	14	15	16	17	18	19	20
диод	815A	815Б	815B	816A	816Б	816B	817A	817Γ	2C133A	2C168A

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ.

<u>Занятие</u> 3. Дифференциальные параметры и коэффициенты усиления биполярного транзистора.

Краткие сведения из теории.

Транзисторами называют полупроводниковые приборы, которые способны усиливать электрическую мощность. В основе работы биполярных транзисторов лежит инжекция неосновных носителей заряда. Биполярный транзистор содержит два встречно включенных взаимодействующих *p-п*-переходов. Взаимодействие их обеспечивается тем, что они расположены близко друг к другу — значительно меньше диффузионной длины носителей заряда. Транзисторы бывают двух типов: *n-p-n* и *p-n-p* в зависимости от порядка чередования слоев с разным типом проводимости.

Одна из крайних областей называется эмиттером, другая – коллектором, промежуточную область называют базой. Эмиттер предназначен для инжекции носителей в базу, это наиболее сильно легированная область. Назначение коллектора — экстракция инжектированных носителей из базы. Вследствие малой ширины (толщины) базы инжектированные носители практически полностью доходят до коллектора.

Возможны три режима работы биполярного транзистора:

- 1. Активный режим, когда один из переходов смещен в прямом направлении, а другой в обратном. При нормальном включении на эмиттерный переход подается прямое смещение, на коллекторный обратное. В этом режиме транзистор используется для усиления электрических сигналов.
- 2. Режим насыщения (двойной инжекции) когда оба перехода смещены в прямом направлении. При этом и эмиттер и коллектор инжектируют носители в базу навстречу друг другу и одновременно каждый из них собирает носители, дошедшие от другого.
- 3. Режим отсечки когда оба перехода смещены в обратном направлении, транзистор заперт.

Режимы насыщения и отсечки характерны для ключевого режима работы. Схемы включения.

В зависимости от того, какой электрод соединен с общей шиной, возможны три способа включения транзистора – с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

Задавать прямое напряжение на p-n переходе сложно, поэтому, как правило, задается входной ток. При включения ОБ задается ток эмиттера I_{\Im} . Выходным током является ток коллектора I_K , который связан с входным током соотношением:

$$I_K = \alpha I_{\mathcal{H}} + I_{KEO} \tag{3.1}$$

где α ~1 – коэффициент передачи тока эмиттера.

Для схемы ОЭ характерна заданная величина тока базы. Выходной ток пропорционален входному

$$I_K = \beta I_K + I_{K \ni O} \tag{3.2}$$

где eta – статический коэффициент передачи тока базы, $I_{K\! \supset\! 0}$ – обратный ток коллектора при разомкнутой базе. Коэффициенты lpha, eta и токи $I_{K\! \supset\! 0}$, $I_{K\! D\! 0}$ связаны соотношениями

$$\beta = \frac{\alpha}{1 - \alpha} \tag{3.3}$$

$$I_{\hat{E}\acute{Y}0} = (\beta + 1)I_{\hat{E}\acute{A}0}$$
 (3.4)

В схеме с общим коллектором (ОК) выходным током является ток эмиттера.

$$I_{\acute{Y}} = (\beta + 1)I_{\acute{A}} + I_{\acute{E}\acute{Y}0}$$
 (3.5)

Дифференциальные параметры.

Дифференциальными параметрами называются величины, связывающие малые приращения токов и напряжений. Критерием малости изменений токов и напряжений является линейность связи между ними, следовательно, дифференциальные параметры зависят не otамплитуды переменных составляющих токов и напряжений.

Транзистор можно представить в виде четырехполюсника, на входе которого действуют ток \dot{I}_{1} и напряжение \dot{U}_{1} , а на выходе ток \dot{I}_{2} и напряжение \dot{U}_{2} . Для малых приращений переменных этот четырехполюсник является линейным.

Из четырех переменных, характеризующих четырехполюсник, только две являются независимыми. В зависимости от того, какие из них приняты за независимые, получаются различные системы дифференциальных параметров. На практике наиболее часто используются три системы параметров: Y, Z, H. конкретной системы определяется удобством измерения. биполярных транзисторов в области низких частот, когда пренебрежимо малы емкостные составляющие токов, наиболее удобной является система Нпараметров, в которой за независимые переменные приняты I_1 и U_2 , а I_2 и U_1 являются функциями этих переменных. Необходимые для измерения hпараметров режимы короткого замыкания выхода и холостого хода входа для переменной составляющей тока могут быть осуществлены на низких частотах сравнительно просто вследствие малого входного и большого выходного сопротивления транзистора. Поэтому в технических условиях и справочниках по транзисторам низкочастотные параметры (которые обозначаются строчной буквой h) приводятся в этой системе.

Система h-параметров.

Принимая за независимые переменные входной ток I_1 и выходное напряжение U_2 , можно записать для малых приращений зависимых переменных

$$\Delta U_1 = h_{11} \Delta I_1 + h_{12} \Delta U_2, \tag{3.6a}$$

$$\Delta I_2 = h_{21} \Delta I_1 + h_{22} \Delta U_2, \tag{3.66}$$

где коэффициенты являются частными производными зависимых переменных по соответствующим независимым в выбранной рабочей точке:

$$h_{\!\scriptscriptstyle 11} = \! \left(rac{\partial U_{\scriptscriptstyle 1}}{\partial I_{\scriptscriptstyle 1}}
ight)_{\!\scriptscriptstyle U_{\scriptscriptstyle 2}} \,$$
 — входное сопротивление транзистора при коротком

замыкании на выходе для переменной составляющей тока;

$$h_{12} = \left(rac{\partial U_1}{\partial U_2}
ight)_{I_1}$$
 — коэффициент обратной связи по напряжению при

холостом ходе на входе для переменной составляющей тока;

$$h_{21} = \left(\frac{\partial I_2}{\partial I_1}\right)_{U_2}$$
 — коэффициент передачи по току при коротком замыкании

на выходе по переменной составляющей;

$$h_{22} = \left(\frac{\partial I_2}{\partial U_2}\right)_{I_1}$$
 — выходная проводимость транзистора при холостом ходе

на входе для переменной составляющей тока.

Величина параметров транзистора зависит от способа его включения, поэтому в обозначении параметров вводится третий индекс («Б», «Э», «К»), определяющий схему включения.

Низкочастотные значения h-параметров можно найти с помощью входных и выходных характеристик. Для этого берутся отношения малых приращений соответствующих переменных около заданной рабочей точки $(I^0_{\ I}, U^0_{\ 2})$ с соблюдением условий линейности и постоянства другой независимой

переменной:
$$h_{11} = (\Delta U_1 / \Delta I_1)_{U_2 = U_2^0}, h_{12} = (\Delta U_1 / \Delta U_2)_{I_1 = I_1^0}$$

$$h_{21} = (\Delta I_2 / \Delta I_1)_{U_2 = U_2^0}, h_{22} = (\Delta I_2 / \Delta U_2)_{I_1 = I_1^0}$$
 (3.7)

Рис.3.1

На рис. 3.1 приведена формальная схема замещения транзистора в системе h-параметров. Эта схема отображает систему уравнений (3.6) и не содержит ничего сверх этого. На высоких частотах начинает сказываться инерционность транзистора и H-параметры становятся частотно зависимыми.

Транзистор в режиме усиления малого сигнала.

При использовании транзистора в качестве усилителя в его выходную цепь включается нагрузка, сопротивление которой будем для простоты считать чисто активным. Транзистор может быть включен в любой из трех возможных схем.

Схема ОБ обладает низким входным сопротивлением и не обеспечивает усиление по току, т.к. $I_K \approx I_{\mathcal{I}}$. Выходное сопротивление в этой схеме велико и можно получить большое усиление по напряжению и мощности.

Схема с ОК обеспечивает усиление по току и не усиливает по напряжению. Достоинством является большое входное сопротивление.

Схема ОЭ обеспечивает усиление тока, напряжения, мощности. Входное сопротивление больше входного сопротивления схемы ОБ. Схема ОЭ находит наиболее широкое применение. В справочниках характеристики транзистора приводятся обычно для этой схемы.

Основным параметрами, характеризующими режим усиления, является следующие:

- 1) коэффициент усиления по току $K_I = I_{eblx}/I_{ex}$,
- 2) коэффициент усиления по напряжению $K_U=U_{eblx}/U_{ex}$,
- 3) коэффициент усиления по мощности $K_P = P_{eblx}/P_{ex} = K_I \cdot K_U$,
- 4) входное сопротивление $R_{ex}=U_{ex}/I_{ex}$,
- 5) выходное сопротивление $R_{ebix} = U_{ebix}/I_{ebix}$ при $U_{ex} = 0$, $R_H = \infty$.

В области низких частот эти параметры можно определить по статическим входным и выходным ВАХ транзистора, построив на них нагрузочные характеристики.

На рис. 3.2 приведена упрощенная схема усилительного каскада на БТ при включении ОЭ, в котором нагрузка R_K включена последовательно в цепь коллектора. Рабочая точка задается напряжением источников питания E_K , E_E и сопротивлением R_K .

Входную нагрузочную характеристику можно построить, если семейство статических входных есть характеристик для ряда напряжений U_K . Однако в справочниках приводится, как правило, только одна входная характеристика для активного режима $h_{123} < 10^{-3}$), (поскольку, которая И принимается в качестве нагрузочной. Ток

 $I_{\mathcal{B}}^{\ 0}$ в рабочей точке определяется по этой характеристике по заданному значению $E_{\mathcal{B}}$.

Выходная нагрузочная характеристика описывается уравнением:

$$I_{\rm K} = (E_{\rm K} - U_{\rm K}) / R_{\rm K}$$
 (3.8)

Эта характеристика (нагрузочная прямая) строится на семействе выходных ВАХ транзистора по точкам, в которых она пересекает оси координат: $I_K = E_K / R_K$ при $U_K = 0$ и $U_K = E_K$ при $I_K = 0$. Точка пересечения этой прямой со статической характеристикой, соответствующей току базы $I_B^{\ 0}$, определяет рабочую точку на выходных характеристиках.

По точкам пересечения нагрузочной прямой со статическими характеристиками, соответствующим I_6 и I_6 , определяется $K_I = \Delta I_{\rm K} / (I_6$ I_6 и приращение $\Delta U_{\rm K}$. Разность входных напряжений $\Delta U_{\rm E}$ между этими точками находится по входной характеристике и отсюда определяется коэффициент усиления по напряжению $K_U = \Delta U_{\rm K} / \Delta U_{\rm E}$

Связь коэффициентов усиления с h-параметрами.

В усилительном режиме обычно выполняются условия

$$h_{22} << 1/R_{\rm K},$$
 (3.7)

$$h_{11}/R_K >> h_{12}h_{21},$$
 (3.8)

тогда

$$K_1 \approx h_{21}$$
 (3.9a)

$$K_{II} \approx h_{21} R_{\text{K}} / h_{11} \tag{3.96}$$

$$K_P \approx h_{21}^2 R_{\rm K} / h_{11}$$
 (3.9e)

$$R_{\text{RX}} = h_{11}$$
 (3.10)

$$R_{\text{вых}} = R_{\text{K}} | (1/h_{229}) \approx R_{\text{K}}$$
, поскольку, обычно $R_{\text{K}} << 1/h_{229}$ (3.11)

На рис.3.2 для задания рабочего режима входной и выходной цепей используется два источника питания. На практике обычно применяется один источник питания — $E_{\rm K}$, а режим по постоянному току входной цепи осуществляется схемным путем.

На рис.3.3 приведена схема каскада, в котором резистор $R_{\rm B}$ и источник питания $E_{\rm K}$ задают постоянную составляющую тока базы $I_{\rm B}^{\ 0}$, а нагрузка подключена параллельно транзистору. Как правило, напряжение $E_{\rm K}$ велико по сравнению с прямым напряжением на эмиттерном переходе и $I_{\rm B}^{\ 0} \approx E_{\rm K}/R_{\rm B}$. Усиливаемый сигнал $U_{\rm ex}$ подается на базу через конденсатор большой емкости,

сопротивление которого для переменного напряжения пренебрежимо мало. Выходной сигнал $U_{\rm вых}$ снимается с коллектора через конденсатор большой емкости и поступает на нагрузку $R_{\rm H}$.

Для переменных составляющих сопротивления $R_{\rm K}$ и $R_{\rm H}$ соединены параллельно, поэтому через рабочую точку проводится другая нагрузочная

прямая с наклоном, соответствующем $R^*=R_{\rm K}$ $\mid R_{\rm H}=R_{\rm K}\cdot R_{\rm H}$ / $(R_{\rm K}+R_{\rm H})$, по точкам пересечения которой со статическими характеристиками, соответствующим I_6 и I_6 , определяется приращение тока и напряжения коллектора $\Delta I_{\rm K}$ и $\Delta U_{\rm K}$. Разность входных напряжений $\Delta U_{\rm E3}$ между этими точками находится по входной нагрузочной характеристике и отсюда определяется коэффициент усиления по напряжению $K_U=\Delta U_{\rm K}$ / $\Delta U_{\rm E3}$. Ток $\Delta I_{\rm H}$, поступающий в нагрузку, составляет только часть тока коллектора $\Delta I_{\rm K}$: $\Delta I_{\rm H}=\Delta I_{\rm K}\cdot R_{\rm K}$ / $(R_{\rm K}+R_{\rm H})$ — и коэффициент усиления по току $K_I=K_U/R_{\rm H}$.

Через h-параметры коэффициент усиления по напряжению определяется аналогично (3.9 δ):

$$K_U \approx h_{21} R^* / h_{11}$$
 (3.92)

Коэффициенты усиления по току и мощности, соответственно

$$K_I \approx K_U / R_H = h_{21} R^* / (h_{11} R_H) = h_{21} R_K / [h_{11} (R_K + R_H)]$$
 (3.9*d*)

$$K_P \approx h_{21}^2 R * R_K / [h_{11}(R_K + R_H)]_I$$
 (3.9e)

Аудиторные задачи.

Задача 3.1. Для усилительного каскада, приведенного на рис.3.2 для данного транзистора и заданных значениях $I_{\rm B}{}^0$, $R_{\rm K}$ и $E_{\rm K}$, построить нагрузочную характеристику, найти рабочую точку ($I_{\rm K}{}^0$, $U_{\rm K}{}^0$) и определить h-параметры в этой точке. Нарисовать формальную схему замещения в системе h-параметров в области низких частот.

Найти по характеристикам коэффициенты усиления K_{l} , K_{U} , K_{P} .

Вычислить коэффициенты усиления по найденным значениям hпараметров и сопротивлению нагрузки R_K и сравнить со значениями,
полученными по характеристикам.

Задача 3.2. Для усилительного каскада, приведенного на рис.3.3, для тех же заданных условий, что в задаче 3.1, определить сопротивление $R_{\rm b}$.

Для двух значений сопротивления нагрузки: $R_{\rm H1} = R_{\rm K}$ и $R_{\rm H2} = h_{11}$ - найти по характеристикам коэффициенты усиления K_U и K_P и сравнить их с рассчитанными по формулам (3.9 ε ,e).

<u>Дано:</u> транзистор КТ819, $I_{\rm E}^{0}$ =100 мА, $R_{\rm K}$ =1 Ом, $E_{\rm K}$ =10 В.

Решение задачи 1. Построив нагрузочную линию на семействе выходных характеристик, находим рабочую точку: $I_{\rm K}{}^0=5$ A, $U_{\rm K}{}^0=5$ B (рис. 3.46). Взяв приращения около рабочей точки при $U_{\rm K}{}^0=5$ В (точки d,e) и при $I_{\rm b}{}^0=100$ мА (точки b,c) находим параметры h_{21} и h_{22} :

$$h_{21} = (6,2-3,8)/(0,15-0,06) = 27,$$
 $h_{22} = (5,1-4,8)/(7-3) = 0,085 \text{ Cm}.$

На рис.3.4a приведена только одна входная характеристика для активного режима, поэтому можно найти только h_{11} . Задавая приращения около рабочей точки A (точки f,g), находим:

$$h_{11}=(0.825-0.775)/(0.150-0.060)=0.56$$
 Om.

Полагая h_{12} =0, можно представить формальную схему замещения в системе h-параметров в области низких частот в виде, приведенном на рис. 3.5.

Коэффициенты усиления K_I , K_U находятся по точкам пересечения нагрузочной прямой со статическими выходными характеристиками (точки F,G) и соответствующим им точкам на

входной характеристике (точки f,g):

$$K_I$$
=(6,3 – 3,9)/(0,150 – 0,060)=27, K_U =(3,7 – 6,1)/(0,825 – 0,775)= – 48. Отсюда, K_P = K_I , K_U ≈1300.

Рассчитанные значения:

 $K_1 \approx h_{21} = 27$, $K_U \approx -h_{21}R_K/h_{11} = -27 \cdot 1/0,56 = 48$, $K_P = h_{21}^2 R_K/h_{11} = 27 \cdot 48 = 1300$ – совпадают с найденными по характеристикам.

<u>Решение задачи 2.</u> По заданным значениям и $I_{\rm B}^{\ 0}$, и $E_{\rm K_}$ определяется $R_{\rm B}$: $R_{\rm B}$ = $(E_{\rm K^-}U_{\rm B^-}^0)/I_{\rm B}^{\ 0}$ =(10-0,8)/0,1=92 Ом

Сопротивления нагрузки для переменной составляющей равны, соответственно

$$R_1 = R_K | R_K = 0.5 \text{ OM},$$
 $R_2 = R_K | h_{11} = 1.0,56/(1+0.56) = 0.36 \text{ OM}.$

Построив нагрузочные линии с соответствующими наклонами, проходящие через рабочую точку (штриховые линии 1 и 2 на рис.3.46) находим 20

приращения выходного напряжения для тех же приращений тока базы, что в задаче 3.1, и коэффициенты усиления по напряжению:

$$K_{UI}$$
=(4,3 - 5,6)/(0,825 - 0,775)= - 26, K_{U2} =(4,5 - 5,4)/(0,825 - 0,775)= - 18.

Коэффициенты усиления по мощности находятся по формуле (3.9*e*):

$$K_{PI} = 27^2 \cdot 1.0, 5/[0,56 \cdot (1+1)] = 325,$$

$$K_{P2}=27^2\cdot 1\cdot 0.36/[0.56\cdot (1+0.56)]=300.$$

Варианты индивидуальных заданий приведены в Таблице 3.

Таблица 3

№	транзистор	$I_{\mathcal{B}}^{\ \ 0},$	R_K ,	E_K ,
№		мА	Ом	В
1	KT301A	0,050	3000	24
2	KT301A	0,075	2400	24
3	KT301A	0,100	2000	24
4	KT301A	0,050	1800	24
5	KT301A	0,075	1500	24
6	КТ301Ж	0,02	4000	24
7	КТ301Ж	0,03	3000	24
8	КТ301Ж	0,04	2400	24
9	КТ301Ж	0,02	2000	20
10	КТ301Ж	0,03	1800	20
11	КТ340	0,1	400	10
12	КТ340	0,15	330	10
13	КТ340	0,20	220	10
14	КТ340	0,25	200	10
15	KT340	0,30	180	10
16	KT602	500	2,0	50
17	KT602	600	1,7	50
18	KT602	700	1,0	50
19	KT602	800	0,8	40
20	KT602	400	2,5	50

<u>Занятие</u> <u>4.</u> Частотные свойства биполярного транзистора, схемы замещения на высоких частотах.

Краткие сведения из теории.

На высоких частотах начинает сказываться инерционность транзистора, обусловленная конечным временем пролета инжектированных носителей и заряжением емкостей p-n-переходов. Время задержки передачи сигнала от эмиттера к коллектору τ_{α} имеет следующие составляющие

$$\tau_{\alpha} = \tau_{\text{\tiny 2\Pi}} + t_{\text{\tiny \Pi}\text{\tiny D}} + t_{\text{\tiny K\Pi}} , \qquad (4.1)$$

где $\tau_{\text{эп}}$ – время заряжения эмиттерного перехода, $t_{\text{пр}}$ – время пролета базы, $t_{\text{кп}}$ – время задержки в коллекторном переходе. Последним слагаемым обычно можно пренебречь. С учетом задержки коэффициент передачи α становится зависящим от времени или частоты. Переходные характеристики обычно аппроксимируют экспоненциальными функциями:

$$\alpha(t) = \alpha_0 (1 - e^{-t/\tau_\alpha})$$

где α_0 – статический коэффициент передачи. Соответственно, частотная зависимость $\alpha(j\omega)$ определяется выражением

$$\alpha(j\omega) = \frac{\alpha_0}{1 + j\frac{\omega}{\omega_{\alpha}}},\tag{4.2}$$

где ω_{α} =1/ τ_{α} – граничная частота коэффициента передачи α . На этой частоте $|\alpha|=\alpha_0$ / $\sqrt{2}$.

Т-образную эквивалентную схему транзистора для схемы ОБ можно получить из модели Эберса-Молла, исключив генератор тока α_II_2 и заменив

диоды их дифференциальными сопротивлениями и емкостями, учитывая дополнительно сопротивление базы. Эта схема приведена на рис.4.1, где r_3 r_{κ} — дифференциальные

сопротивления эмиттерного и коллекторного переходов, $C_{\ni}=C_{\ni 6ap}+C_{\ni д\varphi}$, $C_{K}=C_{K6ap}$, r'_{6} – распределенное омическое сопротивление базы, генератор тока управляется током $I_{\ni r}$ протекающим по r_{\ni} с коэффициентом α_{0} . Таким образом, часть тока эмиттера расходуется на заряжение емкости C_{\ni} , задержка сигнала определяется постоянной времени $r_{\ni}C_{\ni}=\tau_{\alpha}$.

Параметры r_{\Im} , $C_{\Im d\varphi}$ и заряд, накопленный в базе $Q_{\Bbb b}$, зависят от постоянной составляющей тока эмиттера $I_{\Im}^{\ 0}$ в рабочей точке:

$$r_{3} = \varphi_{T}/I_{3}^{0}, \qquad C_{3\pi\phi} = dQ_{6}/dU_{3b} = I_{3}^{0}t_{\pi\rho}/\varphi_{T}, \qquad Q_{b} = I_{3}^{0}t_{\pi\rho}$$
 (4.3)

Таким образом, эта эквивалентная схема учитывает два первых слагаемых в формуле (4.1). Сопротивления r_{\Im} , r_{K} , r_{\Im} можно рассчитать по статическим h-параметрам, измеренным в рабочей точке:

$$r_{\acute{Y}} = h_{11\acute{A}} - \frac{h_{12\acute{A}}}{h_{22\acute{A}}} (1 + h_{21\acute{A}}); \quad \alpha = -h_{21\acute{A}}; \quad r_{\acute{a}}' = \frac{h_{12\acute{A}}}{h_{22\acute{A}}}; \quad r_{\acute{E}} = \frac{1 - h_{12\acute{A}}}{h_{22\acute{A}}}.$$
 (4.4*a*)

Приведенную схему можно пересчитать на Т-образную эквивалентную схему для включения с ОЭ (рис.4.2).

Здесь $r_{\rm B}$, $r_{\rm B}'$ имеют те же значения, однако, коэффициент передачи $\dot{\beta}$ становится частотно зависимым, а дифференциальное сопротивление $r_{\rm K}^{\ *}$, u емкость коллектора $C_{\rm K}^{\ *}$ имеют другие значения:

$$r_{\rm K}^* = r_{\rm K}/(\beta_0 + 1), \qquad C_{\rm K}^* = (\beta_0 + 1)C_{\rm K}$$
 (4.5)

Эти соотношения получаются из требования эквивалентности этих двух схем. Емкость C_{\Im} исключена из эквивалентной схемы, поскольку она учтена в частотной зависимости β . Параметры r_{\Im} , r'_{\eth} и r_{κ}^{*} выражаются через параметры схемы ОЭ соотношениями, аналогичными (4.4*a*):

$$r'_{A} = h_{11\acute{Y}} - \frac{h_{12\acute{Y}}}{h_{22\acute{Y}}} (1 + h_{21\acute{Y}}); \quad \beta_0 = h_{21\acute{Y}}; \quad r'_{\acute{Y}} = \frac{h_{12\acute{Y}}}{h_{22\acute{Y}}}; \quad r^*_{\grave{E}} = \frac{1 - h_{12\acute{Y}}}{h_{22\acute{Y}}}.$$
 (4.46)

Частотную зависимость коэффициента β можно получить, подставив выражение (4.2) в (3.3):

$$\beta(j\omega) = \frac{\beta_0}{1 + j(\omega/\omega_{\beta})}, \qquad |\beta| = \frac{\beta_0}{\sqrt{1 + (\omega/\omega_{\beta})^2}}$$
(4.6)

где $\omega_{\beta} = 1/\tau_{\beta}$ — граничная частота коэффициента передачи β . На этой частоте $|\beta| = \beta_0 / \sqrt{2}$.Постоянная времени τ_{β} совпадает с временем жизни неравновесных носителей в базе τ и в $\beta+1$ раз больше, чем τ_{α} :

$$\tau_{\beta} \equiv \tau = (\beta_0 + 1)\tau_{\alpha}$$

Соответственно, $\omega_{\beta} = \omega_{\alpha}/(\beta_0 + 1)$.

При $\omega > 3\omega_{\beta}$ в выражении (4.5) можно пренебречь единицей в знаменателе модуля, тогда

 $\beta(\omega) \approx \beta_0 \omega_\beta / \omega$, или $\omega \beta(\omega) \approx \beta_0 \omega_\beta = const$

Предельной частотой коэффициента усиления тока транзистора $\omega_{\rm пр}$ или $f_{\rm пр} = \omega_{\rm пр}/(2\pi)$ называют частоту, при которой $|\beta| = 1$. Ее можно определить, измерив β на любой частоте $f > 3f_{\rm B}$:

$$f_{\text{IID}} = \beta_0 f_{\text{B}} = \beta(f) f \tag{4.7}$$

Предельная частота практически совпадает с граничной частотой коэффициента α:

$$f_{\alpha} = f_{\pi p}(\beta_0 + 1)/\beta_0 \approx f_{\pi p}$$

Постоянную времени τ_{α} . можно найти по значению f_{np} :

$$\tau_{\alpha} = \frac{\beta_0 / (\beta_0 + 1)}{2\pi f_{i\delta}} \tag{4.8}$$

Роль коллекторной емкости.

При изменении напряжения на коллекторном переходе внешний ток I_K на высоких частотах меньше, чем αI_{\Im} или $\beta I_{\Bbb B}$, т.к. часть тока генераторов расходуется на заряжение емкостей $C_{\Bbb K}$ или ${C_{\Bbb K}}^*$. В схеме ОБ при коротком замыкании на выходе сопротивление $r'_{\Bbb B}$ окажется соединенным параллельно с емкостью $C_{\Bbb K}$. Постоянную времени такой цепочки называют постоянной

времени базы τ_6 , а также постоянной времени цепи обратной связи τ_{oc} :

$$\tau_{6} \equiv \tau_{oc} = r'_{b}C_{K} \tag{4.9}$$

Если положить τ_{α} =0, эта постоянная времени будет определять предельное быстродействие транзистора. Если в цепь коллектора включено сопротивление $R_{\rm K}$, оно складывается с $r_{\rm B}'$. Обычно $R_{\rm K}$ >> $r_{\rm B}'$ поэтому инерционность распределения тока в коллекторной цепи будет определяться постоянной времени $R_{\rm K}C_{\rm K}$. Инерционность транзистора при наличии нагрузки характеризуется в схеме ОБ эквивалентной постоянной времени $\tau_{\rm coe}$:

$$\tau_{\alpha oe} = \tau_{\alpha} + R_{K}C_{K} \tag{4.10}$$

Аналогично, для схемы ОЭ вводится эквивалентная постоянная времени τ_{oe} :

$$\tau_{\text{oe}} = \tau + R_{\text{K}} C_{\text{K}}^* = \tau + (\beta + 1) R_{\text{K}} C_{\text{K}}$$
 (4.11)

Схема замещения на рис.4.2 не раскрывает суть физических процессов, определяющих частотную зависимость В. Для расчета частотных характеристик

Рис.4.3

в схеме ОЭ часто применяется физическая эквивалентная схема, приведенная на рис.4.3. Ее называют также гибридной и П-образной.

В этой схеме генератор тока в выходной цепи управляется напряжением на эмиттерном переходе, которому соответствует некоторая условная точка \mathcal{S}' внутри транзистора. Частотно независимый параметр \mathcal{S}' имеет смысл внутренней крутизны.

$$S' = dI_{K} / dU_{G'9} = \alpha_{0} / r_{9} = I^{0}_{K} / \phi_{T},$$
 (4.12)

где $I_{\rm K}^0$ – постоянная составляющая тока коллектора в рабочей точке.

Параметры $r'_{\rm b}$, $r_{\rm K}$, $C_{\rm K}$, $C_{\rm 3}$, — те же, что и на рис.4.1, остальные определяются соотношениями

$$r_{K\Im} = r_{K}^{*}, \qquad C_{K\Im} = C_{K}^{*}, \qquad r_{\Xi'\Im} = r_{\Im}(\beta + 1)$$
 (4.13)

Распределенное сопротивление базы r'_{E} зависит от I^{0}_{K}

$$r'_{A}(I^{0}_{E1}) = r'_{A}(I^{0}_{E2}) \sqrt{\frac{I^{0}_{E2}}{I^{0}_{E1}}}$$
 (4.14)

Частотная зависимость тока выходного генератора определяется частотной зависимостью напряжения на емкости C_{\Im} , которая заряжается током базы с постоянной времени $r_{\Xi'\Im} C_{\Im} = (\beta + 1) r_{\Im} C_{\Im} = \tau_{\beta} = \tau$.

Аудиторная задача 4.1.

По значениям *h*-параметров, полученным при решении задачи 3.1, и справочным данным высокочастотных параметров биполярного транзистора (Приложение 2) рассчитать для заданной рабочей точки параметры физической эквивалентной схемы прибора на высокой частоте для схем ОБ и ОЭ. Построить эти схемы для данной рабочей точки.

Решение.

Дано: Транзистор КТ602, рабочая точка: $I_{\mathcal{B}}$ =0,65 мA, $I_{\mathcal{K}}$ =18 мA, $U_{\mathcal{K}}$ =20 В. Найдено: $h_{II\mathcal{G}}$ =1,75 кОм, $h_{2I\mathcal{G}}$ =40, $h_{22\mathcal{G}}$ =0,08 мСм. Данный транзистор имеет следующие ВЧ параметры:

$$C_K$$
=4 пФ, τ_{oc} =300 пс при I_K^* =10 мА, $|\beta|$ =1,5 при f =100 МГц, C_{26ap} =25 пФ.

Найдем коэффициент α_0 по формуле (3.3) с учетом того, что $\beta_0 = h_{213}$: $\alpha_0 = \beta_0/(\beta_0 + 1) = 40/41 = 0.976$.

Сопротивление r'_{E} вычисляется следующим образом. Сначала находим r^*_{E} по табличному значению τ_{oc} для заданного значения I^*_{K} по формуле (4.9), затем вычисляем r'_{E} для значения I^0_{K} в нашей рабочей точке по формуле (4.14):

$$r_{B}^{*} = 0.3 \cdot 10^{-9} / (4 \cdot 10^{-12}) = 75 \text{ Om}$$
 $r_{A}' = 75 \cdot \sqrt{10/18} = 56 \text{ Om}$

Дифференциальное сопротивление эмиттерного перехода находится по формуле (4.3):

$$r_9 = \varphi_T / I_9^0 = \alpha \varphi_T / I_K^0 = 0.976 \cdot 0.025 / 0.018 = 1.4 \text{ Ом.}$$

Из формул (4.4 δ) можно найти h_{123} :

$$h_{123} = r_3 \cdot h_{223} = 1,4 \cdot 0,08 \cdot 10^{-3} = 1,1 \cdot 10^{-4}.$$

Очевидно, что этой величиной можно пренебречь по сравнению с единицей и из (4.46) и (4.5) следует

$$r_{K}^{*}=1/h_{229}=r_{K9}=12,5$$
 кОм, $r_{K}=(\beta_{0}+1)$ $r_{K}^{*}=41\cdot12,5=512$ кОм

Постоянная времени τ_{α} находится по формуле (4.8) с учетом (4.7):

$$\tau_{\alpha} = \frac{40/41}{2 \cdot 3.14 \cdot 1.5 \cdot 10^8} = 10^{-9} \,\mathrm{c}$$

Отсюда находим полную емкость эмиттера:

$$C_{3} = \tau_{\alpha}/r_{3} = 10^{-9}/1,4 = 7 \cdot 10^{-10} \Phi = 0,7 \text{ H}\Phi.$$

Таким образом, все элементы эквивалентной схемы на рис.4.1 определены и ее можно начертить, указав соответствующие значения параметров.

В схеме рис.4.3 крутизна S определяется формулой (4.11):

$$S' = \alpha_0 / r_{\ni} = I^0_K / \phi_T = 0.018 / 0.025 = 0.72 \text{ Cm}.$$

Остальные недостающие параметры находятся из соотношений (4.5), (4.13):

$$r_{K}=12,5$$
 кОм,

$$C_{K\ni} = C_{K}^* = (\beta_0 + 1)C_K = 41.4 = 164 \text{ m}\Phi,$$

$$r_{\beta'\beta} = r_{\beta} (\beta + 1) = 1, 4.41 = 57 \text{ Om.}$$

Теперь можно построить схему рис.(4.3), указав номиналы.

Занятие 5. Ключевой режим работы биполярного транзистора <u>Краткие сведения из теории.</u>

Ключевой режим работы большой амплитудой характеризуется переключающего импульса, когда переходит транзистор ИЗ состояния большим внутренним сопротивлением (ключ разомкнут) В состояние c малым сопротивлением (ключ замкнут) и обратно.

Схема простейшего ключа на n-p-nтранзисторе приведена на рис.5.1. На рис.5.2a показаны выходные статические

характеристики, нагрузочная характеристика и расположение рабочих точек A и B. На рис.5.2 δ показано расположение рабочих точек A и B на входных характеристиках.

 ${
m B}$ точке ${
m \it A}$ транзистор находится в режиме отсечки, на базу подано запирающее напряжение

 $-E_{B}^{-}$, напряжение на электродах практически совпадают с э.д.с. источников:

Рис.5.2

В точке B транзистор находится в режиме насыщения, на базу подано отпирающее напряжение $+E^{+}_{B}$, токи электродов определяются внешними цепями:

$$I_{E}^{\dagger} \approx (E_{E}^{\dagger} - U^{*}) / R_{E}, \qquad I_{E} \approx E_{E} / R_{E}$$

Для перевода в режим насыщения необходимо выполнить условие

$$I_{\mathcal{B}}^{+} > I_{\mathcal{B}H}$$
, или, что то же, В $I_{\mathcal{B}}^{+} > I_{\mathcal{K}H}$,

где I_{EH} – ток базы, соответствующий границе режима насыщения, $B=I_{KH}/I_{EH}$ – коэффициент усиления тока базы в режиме большого сигнала. Силу этого неравенства характеризуют особым параметром – степенью насыщения S:

$$S = I_{B}^{+} / I_{EH} = B I_{B}^{+} / I_{KH}$$
 (5.1)

Статическими параметрами ключа являются остаточное напряжение U_{KH} во включенном состоянии (точка B) и остаточный ток I_{ocm} в выключенном состоянии (точка A). В ключевых схемах транзистор находится в активном режиме лишь в переходном состоянии.

Остаточное напряжение складывается из напряжения $U_{K\Im}$ и падения напряжения на омическом сопротивлении коллектора r_{KK} :

$$U_{KH} = U_{K\Theta} + r_{KK} \cdot I_{KH}$$

Первое слагаемое определяется формулой:

$$U_{\hat{E}\hat{Y}} = \varphi_T \ln \frac{\mathbf{B} + (\mathbf{B}_i + 1)S}{\mathbf{B}_i (S - 1)},$$
(5.2)

где B_i – инверсный коэффициент передачи тока базы.

Быстродействие ключа характеризуется динамическими параметрами – временем включения $t_{\kappa\kappa\eta}$ и временем выключения $t_{\kappa\kappa\eta}$.

Переходные процессы

Рассмотрим переходные процессы при переключении ключа из состояния "выключено" в состояние "включено" и обратно. На рис.5.3 приведены временные диаграммы напряжений, токов и накопленного заряда при включении и выключении транзисторного ключа.

В исходном состоянии на базу транзистора подано запирающее напряжение $-E^-_B$. Процесс отпирания транзистора при подаче отпирающего напряжения $+E^+_B$ можно разделить на три этапа: задержки фронта, формирования фронта и накопления заряда. Этап задержки фронта обусловлен заряжением входной емкости запертого транзистора от значения $-E^-_B$ до

напряжения отпирания эмиттерного перехода U^* (для кремниевого транзистора $U^* \approx 0,6~B$ для германиевого $U^* \approx 0,2~B$). Этот процесс протекает с постоянной времени τ_c

$$\tau_c = R_B C_{ex} \tag{5.3}$$

Входную емкость C_{sx} обычно принимают равной сумме барьерных емкостей эмиттерного и коллекторного переходов

$$C_{ex} = C_{\Im \delta ap} + C_{K\delta ap} \tag{5.4}$$

Время задержки фронта определяется формулой

$$t_{\hat{c}\hat{o}} = \tau_{\tilde{n}} \ln \frac{E_{\hat{A}}^{+} + E_{\hat{A}}^{-}}{E_{\hat{A}}^{+} - U^{\bullet}}$$
 (5.5)

Ток заряжения входной емкости показан на рис.21 штриховой линией. В

Рис.5.3

момент t_1 открывается эмиттерный переход и начинается инжекция носителей в базу, транзистор переходит в активный режим. На этом этапе коллекторный ток возрастает до значения I_{KH} . Процесс формирования фронта характеризуется эквивалентной постоянной времени τ_{oe}

$$\tau_{oe} = \tau + (B+1)R_{\hat{E}}\overline{C}_{\hat{E}},$$
 (5.6)

где τ — время жизни неосновных носителей в базе, \overline{C}_K — усредненная емкость коллекторного перехода. Обычно принимают \overline{C}_K =1,6 C_K для сплавных и \overline{C}_K =1,4 C_K для дрейфовых транзисторов, где C_K — емкость коллекторного перехода запертого транзистора. Длительность

фронта $t_{\phi} = t_2 - t_1$ определяется формулой

$$t_{\hat{o}} = \tau_{oe} \ln \left(\frac{BI_{\hat{A}}^{+}}{BI_{\hat{A}}^{+} - I_{\hat{E}\hat{I}}} \right) = \tau_{oe} \ln \left(\frac{S}{S - 1} \right)$$
 (5.7)

При S >> 1 формула упрощается:

$$t_{\phi} = \tau_{oe} / S \tag{5.7a}$$

В конце этапа формирования фронта в базе транзистора накапливается заряд Q_{2p} , а напряжение на коллекторном переходе падает до нуля. После того как транзистор начал работать в режиме насыщения внешних изменений в схеме ключа не происходит. Однако продолжается накопление заряда, причем на данном этапе заряд накапливается не только в базовом, но и в коллекторном, слое. В конце этапа накапливается стационарный заряд Q_{cman}

$$Q_{\tilde{n}\hat{o}\hat{\alpha}\hat{\sigma}} = I_{\hat{A}}^{+} \bar{\tau}, \tag{5.8}$$

где $\bar{\tau}$ - среднее время жизни в базовом и коллекторном слоях. Длительность этого процесса составляет примерно $3\bar{\tau}$. Если длительность входного импульса меньше, чем $3\bar{\tau}$, накопленный заряд будет меньше стационарного значения.

Процесс выключения начинается в момент t_3 , когда на базу подается запирающее напряжение. В момент переключения на обоих переходах сохраняется прямое смещение, близкое к U^* . При этом коллекторный ток остается равным I_{KH} . Базовый ток принимает значение:

$$-I_{\acute{A}}^{-} = -(E_{\acute{A}}^{-} + U^{*})/R_{\acute{A}}$$
 (5.9)

На первом этапе процесса выключения происходит рассасывание накопленного заряда за счет экстракции p-n-переходами током $I_{\scriptscriptstyle B}^{\;\;}$ и за счет рекомбинации. Скорость изменения заряда

$$\frac{dQ}{dt} = -I_{\hat{A}}^{-} - \frac{Q}{\bar{\tau}} \tag{5.10}$$

Окончание этапа рассасывания характеризуется тем, что концентрация избыточных зарядов на коллекторной границе базы падает до нуля и на коллекторном переходе восстанавливается обратное напряжение. Только после этого может начаться уменьшение коллекторного тока и формирование среза импульса. Длительность этого процесса называется временем рассасывания t_p или временем задержки среза t_{scp} . В конце этого этапа в базе остается некоторый остаточный заряд Q_{ocm} . Время рассасывания определяется

интегрированием выражения (5.10) в пределах от $Q_{\tilde{n}\hat{o}\hat{a}\ddot{o}} = I_{\acute{A}}^{\ +} \bar{\tau}$ до Q_{ocm} :

$$t_{\tilde{\partial}} = \overline{\tau} \ln \frac{I_{\tilde{A}}^{+} + I_{\tilde{A}}^{-}}{I_{\tilde{A}}^{-} + Q_{\tilde{n}\tilde{o}} / \overline{\tau}}$$

$$(5.10)$$

Обычно Q_{ocm} значительно меньше Q_{zp} , а Q_{zp} << Q_{cmau} , поэтому в первом приближении можно пренебречь остаточным зарядом. Тогда

$$t_{\tilde{\partial}} = \overline{\tau} \ln \left(1 + \frac{I_{\tilde{A}}^{+}}{I_{\tilde{A}}^{-}} \right) \tag{5.10a}$$

По окончании процесса рассасывания начинается последний этап переходного процесса — запирание транзистора. Длительность запирания обычно определяется процессом заряжения коллекторной емкости, протекающей с постоянной времени $\tau_{\kappa} = R_K \overline{C}_K$, длительность среза по уровню $I_K = 0,1 \ I_{KH}$ равна

$$t_{cp}=2,3 R_K \overline{C}_K \tag{5.11}$$

Время включения $t_{\mathit{вкл}}$ и время выключения $t_{\mathit{выкл}}$. равны

$$t_{6\kappa\eta} = t_{3\phi} + t_{\phi}, \qquad t_{6b\kappa\eta} = t_p + t_c \tag{5.12}$$

При практическом определении времен $t_{3\phi}$, t_{ϕ} , t_{p} , t_{c} обычно используются уровни 0,1 I_{KH} и 0,9 I_{KH}

Аудиторная задача 5.1.

По заданным статическим характеристикам биполярного транзистора и заданным значениям $E_K^{\ 0}$, R_K , $E_B^{\ +}$, $E_B^{\ -}$ и S провести следующие расчеты:

- 1. Найти значение тока базы $I_{\it EH}$, соответствующей границе режима насыщения, коэффициент усиления тока базы В для большого сигнала, отпирающий ток базы $I_{\it E}^+$, сопротивление в цепи базы $R_{\it E}$, ток $I_{\it KH}$ и остаточное напряжение $U_{\it KH}$ открытого ключа.
- 2. Рассчитать напряжение, $U_{K \ni hac}$ считая инверсный коэффициент передачи тока базы $B_i=1$, и сравнить его со значением, найденным по характеристике, определить омическое сопротивление коллектора $r_{\kappa\kappa}$.
 - 3. Определить мощность, потребляемую входной цепью P_{ex} , мощность P_K ,

рассеиваемую в коллекторе, и сопротивление открытого ключа $R_{вкл}$.

- 4. Используя значение высокочастотных параметров транзистора, оценить время включения и выключения ключа, полагая $\overline{N}_{\hat{E}}=1,5\cdot \tilde{N}_{\hat{E}}$, $\overline{\tau}=\tau$, где $\overline{N}_{\hat{E}}$ усредненная барьерная емкости коллектора, C_K табличное значение, $\overline{\tau}$ время жизни неравновесных носителей в режиме насыщения, τ время жизни неравновесных носителей в базе в активном режиме.
- 5. Начертить временную диаграмму изменения напряжения коллектора при отпирании и запирании ключа, показать на графике характерные времена (считая длительность отпирающего импульса больше времени накопления заряда).

Задано: Транзистор КТ602, $E_K^{\ 0}$ =50 B, R_K =3,3кОм, $E_B^{\ +}$ =5 B, $E_B^{\ -}$ = -5 B, S=5. C_K =4 пФ, τ_{oc} =300 пс при I_K^* =10 мА, $|\beta|$ =1,5 при f=100 МГц, C_{96ap} =25 пФ.

Решение.

Нахождение статических параметров.

Перерисовав статические характеристики биполярного транзистора, на

семействе выходных характеристик строится нагрузочная прямая по точкам, в которых она пересекает оси координат согласно уравнению нагрузочной прямой (Рис.5.4). Ток $I_{\kappa H}$ и остаточное напряжение $U_{\kappa H}$ открытого ключа находятся непосредственно по графику как координаты точке пересечения нагрузочной прямой с крутым начальным участком ВАХ:

$$I_{KH}$$
=15 mA, U_{KH} =1 B

По графику находятся также граничное значение тока базы: I_{EH} =0,6 мA, и вычисляется коэффициент усиления тока базы В для большого сигнала:

$$B = I_{KH}/I_{EH} = 15/0,6 = 25$$

По заданной степени насыщения определяется отпирающий ток базы I_B^+ и сопротивление в цепи базы: R_B :

$$I_{B}^{+} = I_{BH}S = 0.6.5 = 3 \text{ MA}$$

$$R_{\rm B} = E_{\rm B}^{+} / I_{\rm B}^{+} = 50/3 = 1,67$$
 кОм.

Напряжение $U_{K\ni_{hac}}$ рассчитывается по формуле (5.2), полагая B_i =1:

$$U_{\hat{E}\hat{Y}\hat{t}\hat{a}\tilde{n}} = 0.026 \cdot \ln \frac{25 + 2 \cdot 5}{4} = 0.026 \cdot 2.17 = 0.056 \text{ B.}$$

Разность напряжений U_{KH} и $U_{K \ni hac}$ дает падение напряжения на омическом сопротивлении коллектора r_{KK} . Отсюда

$$r_{KK}$$
=(1,0 - 0,056)/0,015=63 Om.

По графику входной характеристики при $U_{K\Im}=0$ для найденного отпирающего тока базы $I^+_{\it B}$ находим $U_{\it E\Im_{\it Hac}}$:

$$U_{БЭнас} = 1,8 \text{ B}$$

Мощность P_{ex} , потребляемая входной цепью ключа в состоянии «включено»:

$$P_{ex} = I_{E}^{+} \cdot U_{E3\mu ac} = 0,003 \cdot 1,8 \text{ BT} = 5,4 \text{ MBT}$$

Мощность, рассеиваемая на коллекторе транзистора равна

$$P_{K_{BKJ}} = I_{\kappa H} \cdot U_{\kappa H} = 0,015 \cdot 1 = 15 \text{ мВт.}$$

Сопротивление транзистора в состоянии «включено», равно

$$R_{GKJ} = U_{KH} / I_{KH} = 1/0,015 = 67 \text{ Om.}$$

Расчет переходных процессов.

По формулам (5.4), (5.3) и (5.5) найдем входную емкость и постоянную времени τ_c и время задержки фронта:

$$C_{ex}$$
= $C_{\supset 6ap}$ + C_{K6ap} =25+4=29 пФ

$$\tau_c = R_B C_{ex} = 1,67 \cdot 10^3 \cdot 29 \cdot 10^{-12} = 4,8 \cdot 10^{-8} \ c = 48 \ \text{нc.}$$

$$t_{3\phi}$$
=48·ln[(5+5)/(5 – 0,7)]=40 нс.

Длительность фронта вычисляется по формуле (5.7), для этого нужно сначала найти время жизни неосновных носителей в базе τ и эквивалентную постоянную времени τ_{oe} . Значение τ вычисляется по значению β , измеренному на частоте f, приравняв β_0 найденному значению β , τ_{oe} вычисляется по формуле (5,6):

$$\begin{split} \tau &= 1/(2\pi f_{\beta}) = \beta_0/(2\pi\beta f) = 25/(6,28\cdot 1,5\cdot 10^8) = 2,7\cdot 10^{-8}\ c = 27\ \text{ Hc}. \\ \tau_{oe} &= \tau + (\mathrm{B} + 1)R_{\hat{E}}\overline{C}_{\hat{E}} = 2,7\cdot 10^{-8} + 26\cdot 3,3\cdot 10^3\cdot 1,5\cdot 4\cdot 10^{-12} = 5,4\cdot 10^{-7}\ \mathrm{c} = 540\ \mathrm{Hc}. \\ t_{\phi} &= \tau_{oe}\cdot \ln[S/(S-1)] = 540\cdot \ln(5/4) = 120\ \mathrm{Hc}. \end{split}$$

Накопленный стационарный заряд равен согласно (5.8)

$$Q_{\tilde{n}\partial\grave{a}\ddot{o}}=I_{\ddot{U}}^{\phantom{\dot{U}}}\bar{\tau}=3\cdot10^{-3}\cdot27\cdot10^{-9}=81\cdot10^{-12}\,\mathrm{K}$$
л=81 пКл.

Запирающий ток базы находим по формуле (5.9)

$$-I_{\text{A}}^{-} = -(5+0.7)/1670 = -3.4 \text{ mA}$$

Время рассасывания находим по формуле (5.10*a*) с учетом условия $\overline{\tau} = \tau$: $t_p = 27 \cdot \ln(1 + 3/3, 4) = 17$ нс.

Длительность среза по уровню I_K =0,1 · I_{KH} равна

$$t_{cp}=2,3\cdot R_{\kappa}\overline{C}_{\kappa}=2,3\cdot 3,3\cdot 10^3\cdot 1,5\cdot 4\cdot 10^{-12}=45 \text{ Hc.}$$

Время включения $t_{вкл}$ и время выключения $t_{выкл}$. равны $t_{вкл} = t_{3\phi} + t_{\phi} = 40 + 120 = 160$ нс $t_{выкл} = t_p + t_{cp} = 17 + 45 = 62$ нс.

По найденным значениям длительностей этапов переходных процессов можно начертить временную диаграмму изменения напряжения коллектора при подаче прямоугольного импульса отпирающего

напряжения (рис.5.5).

Варианты индивидуальных заданий приведены в Таблице 5.

Таблица 4.

N_0N_0	транзистор	$E_K^{\ 0}$,	R_{K} ,	$E_{\mathcal{B}}^{+}$,	$E_{\mathcal{B}}$,	S
		В	кОм	В	В	
1	KT301A	24	12	5	-5	3
2	KT301A	24	10	5	-5	3
3	KT301A	24	8	5	-4	3
4	KT301A	20	5	5	-4	3
5	KT301A	20	4	5	-3	4
6	КТ301Ж	24	12	4	-4	4
7	КТ301Ж	24	10	4	-4	4
8	КТ301Ж	20	8	4	-4	3
9	КТ301Ж	20	6	4	-3	3
10	КТ301Ж	20	5	4	-3	3
11	KT340	10	1,0	5	-5	3
12	KT340	10	0,8	5	-5	3
13	KT340	10	0,7	5	-4	3
14	KT340	10	0,6	5	-4	3
15	KT340	10	0,5	5	-3	4
16	KT340	8	0,4	4	-4	4
17	KT340	8	0,5	4	-4	4
18	KT340	8	0,6	4	-4	3
19	KT340	8	0,8	4	-3	3
20	KT340	8	1,0	4	-3	3

Примечание: E_{δ}^{+} , и E_{δ} , - отпирающее и запирающее напряжения, подаваемые на базу, S - степень насыщения.

Вольтамперные характеристики этих транзисторов приведены в Приложении 1.

ПОЛЕВЫЕ ТРАНЗИСТОРЫ

<u>Занятие 6.</u> Вольтамперные характеристики и дифференциальные параметры полевых транзисторов. Частотные свойства.

Краткие сведения из теории.

Полевой транзистор (ПТ) — полупроводниковый прибор, в котором выходной ток управляется входным напряжением. Входное напряжение создает электрическое поле, влияющее на выходной ток, поэтому транзистор называется полевым.

В полевых транзисторах ток создается основным видом носителей, а неосновные носители не играют существенной роли. Поэтому полевые транзисторы называют униполярными, в отличии от обычных, биполярных транзисторов. Процессы инжекции и диффузии отсутствуют, основным видом движения является дрейф в электрическом поле.

Управление током осуществляется с помощью электрического поля, поперечного к направлению дрейфа носителей. Управляющий электрод, создающий это поле, называется затвором.

Проводящий слой, по которому проходит рабочий ток, называется каналом. Существуют p-канальные и n-канальные транзисторы. Область, откуда носители поступают в канал, называется истоком, область, куда они выходят из канала, - стоком. Исток и сток в принципе обратимы.

Каналы могут быть приповерхностными — МДП транзисторы (транзисторы с изолированным затвором), и объемными —ПТ с управляющим p-n-переходом и ПТ с барьером Шоттки.

Входное сопротивление полевых транзисторов для постоянного тока и низкой частоты переменного тока может быть очень большим: 10^8 - 10^{15} Ом.

Принцип действия ПТ с управляющим p-n-переходом основан на изменении сечения проводящего канала и, следовательно, его проводимости при подаче на затвор обратного смещения относительно истока. При этом p-n-переход затвор-канал расширяется в сторону канала и уменьшается высота

канала. При обратном напряжении $U_{3U}=U_{OTC}$, канал полностью перекрывается и проводимость обращается в нуль. Изменение проводимости канала приводит к изменению тока стока I_C , протекающего по каналу под действием напряжения U_{CU} , приложенного между истоком и стоком.

Транзисторы с металло-полупроводниковым затвором (затвором Шоттки) имеют такой же принцип действия, как и транзисторы с p-n-затвором, отличие состоит лишь в том, что обедненный слой располагается непосредственно у поверхности полупроводника.

В МДП-транзисторах затвор отделен от полупроводника тонким слоем диэлектрика (0,1-0,2 мкм), в качестве которого чаще всего используется диоксид кремния (МОП-транзисторы). Аббревиатуры МДП и МОП показывают чередование слоев затвора: металл – диэлектрик – полупроводник и металл – оксид – полупроводник. В этих транзисторах канал представляет собой тонкий приповерхностный слой полупроводника с инверсной проводимостью, отделенный от подложки обедненным слоем. Канал может существовать в исходном состоянии транзисторы co встроенным каналом, ИЛИ образовываться лишь при напряжениях превышающих некоторое пороговое транзисторы индуцированным значение каналом. Напряжение, приложенное к затвору, управляет проводимостью канала и, соответственно, выходным током.

Вольтамперные характеристики полевых транзисторов как с p-n-переходом, так и МДП, имеют много общих черт.

Выходные характеристики $I_C = f(U_{CH})\big|_{U_{3H}=const}$. имеют крутой начальный участок в области от 0 до U_{HAC} , которые описываются формулой и пологий при $U_{CH}>U_{HAC}$, где. ток стока I_C остается практически постоянным, этот участок ВАХ называется участком насыщения. Он обусловлен перекрытием канала на выходе в область стока. Незначительное увеличение тока стока I_C в режиме насыщения при повышении U_{CH} объясняется некоторым увеличением длины перекрытого участка и соответствующим уменьшением длины канала и падения напряжения на канале. Поэтому выходная дифференциальная

проводимость в режиме насыщения имеет конечное значение.

При дальнейшем увеличение U_{CU} наступает пробой p-n-перехода и I_C лавинообразно возрастает. Пробой возникает на перекрытом участке канала в области стока, где напряженность поля максимальна.

Теоретически ВАХ ПТ с p-n-переходом при $U_{CU} \leq U_{HAC}$ описывается формулой

$$I_{C} = \frac{1}{R_{\hat{E}0}} \left[U_{\tilde{N}\dot{E}} + \frac{2}{3U_{\hat{I}\dot{O}\tilde{N}}^{1/2}} U_{\hat{C}\dot{E}}^{3/2} - \frac{2}{3U_{\hat{I}\dot{O}\tilde{N}}^{1/2}} (U_{\hat{C}\dot{E}} + U_{\tilde{N}\dot{E}})^{3/2} \right], \quad (6.1)$$

$$I_C = I_{C \max} \left[1 - 3 \frac{U_{\vec{CE}}}{U_{\hat{I} \hat{O} \tilde{N}}} + 2 \left(\frac{U_{\vec{CE}}}{U_{\hat{I} \hat{O} \tilde{N}}} \right)^{3/2} \right]$$
при $U_{CM} > U_{HAC}$ (6.2)

Здесь I_{Cmax} — максимальный ток при $U_{3\emph{U}}$ =0: $I_{C\max}=U_{\hat{I}\hat{O}\tilde{N}}$ /(3 R_{K0}), R_{K0} — минимальное сопротивление канала:

$$R_{\hat{E}\,0} = \frac{\rho L}{W y_0} \approx \frac{\rho L}{h W},\tag{6.3}$$

где ρ – удельное сопротивление, L – длина, W – ширина канала.

$$I_{\tilde{N}\max} = \frac{U_{\hat{I}\hat{O}\tilde{N}}}{3R_{\hat{F}0}} = \frac{U_{\hat{I}\hat{O}\tilde{N}}hW}{3\rho L}$$
(6.4)

Напряжение насыщения зависит от напряжения U_{3M} :

$$U_{HAC} = U_{OTC} - U_{3H}$$

Формула (6.2) представляет передаточную (стоко-затворную) характеристику в области насыщения. На практике, однако, чаще используют более удобную аппроксимацию:

$$I_C = I_{C \max} \left(1 - \frac{U_{C\dot{E}}}{U_{\hat{I}O\tilde{N}}} \right)^2, \tag{6.5}$$

которую обычно записывают в виде

$$I_C = \frac{b}{2} (U_{\hat{I}\hat{O}\tilde{N}} - U_{\hat{C}\hat{E}})^2, \qquad b = \frac{2I_{C\max}}{U_{\hat{I}\hat{O}\tilde{N}}^2} = \frac{2}{3R_{K0}U_{\hat{I}\hat{O}\tilde{N}}},$$
 (6.5a)

где коэффициент b называется удельная крутизна.

Входные характеристики представляют собой обратную ветвь

вольтамперной характеристики p-n-перехода затвора. Ток затвора составляет единицы – десятки нA, входное сопротивление – $10^8 \div 10^9$ Ом.

Теоретически ВАХ МДП транзистора описывается формулой

$$I_{\tilde{N}} = b \left[(U_{\tilde{CE}} - U_{\tilde{I}\tilde{I}D}) U_{\tilde{N}\tilde{E}} - \frac{U_{\tilde{N}\tilde{E}}^2}{2} \right], \quad (U_{CU} \leq U_{HAC}), \tag{6.6}$$

где U_{HAC} = U_{3H} – $U_{\Pi OP}$, b – удельная крутизна.

При U_{CU} << U_{3U} – $U_{\Pi OP}$ можно пренебречь квадратичным членом в выражении (6.7) и получить линейную зависимость:

$$I_C = b(U_{3H} - U_{\Pi OP})U_{CH}$$
 (6.8)

Коэффициент при $U_{C\!U}$ называется проводимостью канала, а обратная величина – сопротивлением канала:

$$r_K' = \frac{1}{b(U_{C\dot{E}} - U_{\ddot{I}\hat{I}D})} \tag{6.9}$$

При $U_{CM} \ge U_{HAC}$, подставляя $U_{HAC} = U_{3M} - U_{\Pi OP}$, получаем

$$I_C = \frac{b}{2} (U_{\vec{C}E} - U_{\vec{I}B})^2 , (U_{CM} \ge U_{HAC})$$
 (6.10)

На рис.6.1a показано типичное семейство выходных характеристик $I_C = f(U_{\tilde{N}\tilde{E}})\big|_{U_{\tilde{C}\tilde{E}}=const}$. МДП транзисторов с индуцированным и встроенным каналом, различающихся лишь значением порогового напряжения (1 В и -3 В), характеристики передачи которых приведены на рис. 6.1δ .

Штриховая линия на рис.6.1а отделяет крутую область от пологой.

Значения U_{3M} , приведенные в скобках, соответствуют транзистору со встроенным каналом. Из начала координат характеристики выходят с разным наклоном, тангенс угла наклона в соответствии с формулой (6.8) пропорционален U_{3M} – $U_{\Pi OP}$.

Дифференциальные параметры полевых транзисторов.

Ток стока в полевом транзисторе является функцией двух переменных – $I_{C}=f(U_{C\dot{E}},U_{\tilde{N}\dot{E}})$. Малые приращения тока связаны линейной зависимостью:

$$\Delta I_C = S \Delta U_{3H} + G_i \Delta U_{CH}, \tag{6.11}$$

где S – крутизна, G_i – выходная проводимость полевого транзистора. Величина, обратная выходной проводимости $R_i = G_i^{-1}$ называется выходным (иногда внутренним) сопротивлением Дифференциальные параметры S, G_i являются частными производными функции $I_C = f(U_{3H}, U_{CH})$ в выбранной рабочей точке

$$S = \left(\frac{\partial I_{\tilde{N}}}{\partial U_{\tilde{C}E}}\right)_{U_{\tilde{N}E}}, \qquad G_i = \left(\frac{\partial I_{\tilde{N}}}{\partial U_{\tilde{N}E}}\right)_{U_{\tilde{C}E}}$$
(6.12)

Отношение приращений напряжений стока и затвора при постоянном токе стока называется статическим коэффициентом усиления µ:

$$\mu = -\left(\frac{\partial U_{\tilde{N}\tilde{E}}}{\partial U_{\tilde{C}\tilde{E}}}\right)_{I_{\tilde{N}}} \tag{6.13}$$

Из соотношения (6.11) следует:

$$\mu = \frac{S}{G_i} = S \cdot R_i \tag{6.14}$$

Из выражений (6.10) и (6.9) следует

$$S = 1/r_K' \tag{6.15}$$

Это соотношение выполняется также для ΠT с управляющим p-n-переходом.

Дифференциальные параметры можно найти как по выходным, так и по передаточным, характеристикам, взяв отношения приращения переменных около рабочей точки с соблюдением условия линейности и постоянства другой независимой переменной.

Частотные свойства полевых транзисторов.

На высоких частотах упрощенную малосигнальную эквивалентную схему как ПТ с p-n-затвором, так и МДП транзистора, можно представить в виде, показанном на рис.6.2. Упрощение заключается в том, что здесь пренебрегается омическими сопротивлениями высоколегированных областей стока и истока и обратным током p-n-переходов.

Рис.6.2

В этой схеме C_{3K} – емкость между затвором и каналом, на заряжении которого основан сам принцип действия транзисторов, r_K' - распределенное сопротивление канала. Остальные емкости в схеме - емкость между затвором и истоком C_{3H} , между затвором и стоком C_{3C} ; стоком и подложкой C_{CH} . – являются паразитными. В ПТ емкости C_{3H} , C_{3C} обусловлены боковой поверхностью затвора, в МДП транзисторах — частичным перекрытием затвором областей стока и истока, в ПТ с затвором Шоттки эти емкости отсутствуют. R_i - выходное дифференциальное сопротивление.

Генератор тока в выходной цепи управляется напряжением \dot{U}_{3H} с крутизной \dot{S} , зависящей от частоты. Сопротивление канала и ток стока не могут измениться, пока не зарядится емкость C_{3K} . Можно считать также, что генератор управляется напряжением \dot{U}_{3K} на этой емкости с коэффициентом S_0 , не зависящим от частоты. В этом случае эквивалентную схему называют физической, ее элементы не зависят от частоты. Емкость C_{3K} заряжается с постоянной времени τ_{S} , которая и является постоянной времени крутизны:

$$\tau_S = r_K' C_{3K} \tag{6.16}$$

Соответственно, частотная зависимость крутизны определяется выражением

$$S(j\omega) = \frac{S_0}{1 + j\omega/\omega_S},\tag{6.17}$$

где S_0 — статическая крутизна, $\omega_S=1/\tau_S$, - граничная частота крутизны, на которой $|S|=S_0/\sqrt{2}$. Постоянная времени крутизны квадратично зависит от длины канала L и не зависит от его ширины.

Для ПТ с
$$p$$
- n -затвором $au_S = \frac{2L^2}{\mu U_{\hat{I}\hat{O}\tilde{N}}}$, для МДП $- au_S = \frac{L^2}{\mu_S(U_{C\hat{E}} - U_{\hat{I}\hat{I}\hat{D}})}$.

Аудиторная задача 6.1.

По заданным статическим характеристикам полевого транзистора и табличным значениям высокочастотных параметров (Таблица 6) выполнить следующие расчеты в заданной рабочей точке:

- 1. Рассчитать низкочастотные дифференциальные параметры,
- 2. Рассчитать параметры физической эквивалентной схемы прибора на высокой частоте и построить ее для этой же рабочей точки,
- 3. Найти граничную частоту крутизны и рассчитать активную и реактивную части входной проводимости.

Дано: транзистор КП303, рабочая точка: U_C^0 =11 В, I_C^0 =12 мА.

<u>Решение.</u> Дифференциальные параметры находим по приращениям $\Delta I'_{\rm C}$, ΔU_{3U} и $\Delta I''_{\rm C}$, ΔU_{CU} , взятым около рабочей точки с соблюдением необходимых условий (рис.6.3*a*):

$$S = \frac{\Delta I_{\tilde{N}}'}{\Delta U_{C\hat{E}}} \Big|_{U_{\tilde{N}\hat{E}} = const} = \frac{2.8 \cdot 10^{-3}}{0 - (-1)} = 2.8 \,\text{i}\,\text{Å} / \text{Å}$$

$$R_i = \frac{\Delta U_{\tilde{N}\dot{E}}}{\Delta I_{\tilde{N}}''}\Big|_{U_{\tilde{C}\dot{E}} = const} = \frac{11 - 5}{0.3 \cdot 10^{-3}} = 20\hat{e}\hat{I}i$$

В данном случае нельзя найти μ непосредственно по выходным характеристикам, т.к. точки пересечения с двух характеристик при заданном I_C выходят за пределы линейной области. Этот параметр вычисляется по формуле (6.14):

$$\mu = 2,8.20 = 56$$

Все три параметра можно найти непосредственно по передаточным характеристикам.

При расчете элементов физической эквивалентной схемы полевого транзистора следует учесть, что в справочниках приводятся значения емкостей C_{ex} или $\tilde{N}_{\dot{C}\dot{E}}$, $C_{npox} = C_{3C}$ и $C_{sbix} = C_{CII}$. Приведенные значения $\tilde{N}_{\dot{C}\dot{E}}$, которая обозначается как емкость затвор-исток, фактически, включают емкость затвор-канал C_{3K} и паразитную емкость затвор-исток C_{3H} :

$$\tilde{N}_{C\dot{E}} = C_{3K} + C_{3H}$$

Входная емкость C_{ex} имеет, согласно (6.19), три составляющие:

$$C_{ex} = C_{3K} + C_{3M} + C_{3C}$$

При расчетах положим $C_{3N} = C_{3C}$, поскольку причина их появления одна и та же.

Для этого транзистора C_{ex} =6 пФ, C_{npox} =1 пФ, $C_{eыx}$ = C_{CH} =2 пФ. Отсюда находим:

$$C_{3N} = C_{3C} = 1$$
 пФ, $C_{3K} = 4$ пФ,

Сопротивление канала r_K' определяется по найденному значению крутизны по формуле (6.15):

$$r_K'=1/S_0=1/0,0028=357$$
OM.

По найденным параметрам строится эквивалентная схема:

По этой схеме можно выполнить расчеты любых параметров на любой частоте. Частотная зависимость крутизны дается выражением (6.17), входная проводимость согласно эквивалентной схеме равна

$$Y_{\hat{a}\tilde{o}} = \frac{1}{r'_{C\hat{E}}} \cdot \frac{k^2}{1+k^2} + j\omega \left(C_{C\hat{E}} + \frac{C_{C\hat{E}}}{1+k^2}\right),$$

где $k=\omega \tau_S=\omega/\omega_S$, ω — рабочая частота, $\tau_S=r_K'C_{3K}$ и $\omega_S=1/\tau_S$ - постоянная времени и граничная частота крутизны.

Находим постоянную времени и граничную частота крутизны:

$$\tau_S = r_K' C_{3K} = 357 \cdot 4 \cdot 10^{-12} = 1,4 \mu c,$$
 $\omega_S = 1/\tau_S = 7 \cdot 10^8 c^{-1}, \quad f_S = 1/(2\pi \tau_S) = 110 \text{ М} \Gamma \text{ц}$

На граничной частоте (k=0,5) активная часть входной проводимости равна

$$ReY_{ex} = 0.5(r'_{K})^{-1} = 1.4 \text{ MCM}$$

Реактивная часть входной проводимости на этой частоте равна

$$\operatorname{Im} Y_{\hat{a}\tilde{o}} = \omega \left(C_{\hat{C}\hat{E}} + \frac{C_{\hat{C}\hat{E}}}{1 + k^2} \right) = 7 \cdot 10^8 (1 \cdot 10^{-12} + 0.5 \cdot 4 \cdot 10^{-12}) = 2.1 \tilde{N} \tilde{i}$$

Варианты индивидуальных заданий приведены в Таблице 5.

Таблица 5.

N_0N_0	Тип ПТ	$U_c^{\ 0}$,	$I_c^{\ 0}$,	E_c ,
		В	мА	В
1	КП302А	4	3	12
2	КП302А	4	4	12
3	КП302А	4	5	12
4	КП302А	5	6	12
5	КП302А	5	7	12
6	КП302А	5	8	10
7	КП302А	6	2	10
8	КП302А	6	4	10
9	КП302А	7	4	10
10	КП302А	7	5	10
11	КП313А	4	2	10
12	КП313А	4	3	10
13	КП313А	4	4	10
14	КП313А	5	3	10
15	КП313А	5	4	10
16	КП313А	5	5	10
17	КП313А	6	4	10
18	КП313А	6	5	10
19	КП313А	7	2	10
20	КП313А	7	3	10

Занятие 7. Усилительный режим полевых транзисторов.

Краткие сведения из теории.

Так же, как в случае БТ, возможны три схемы включения полевых транзисторов в качестве усилителей. Наиболее широко применяется схема с общим истоком (ОИ), упрощенная схема которого приведена на рис.7.1.

цепь затвора подается постоянное напряжение E_3 усиливаемого напряжение U_{ex} . сигнала Выходное напряжение складывается ИЗ постоянной составляющей И переменного напряжения U_{eblx} .

На рис.7.2а приведено семейство выходных характеристик транзистора и

Рис.7.2.

проведена нагрузочная прямая в соответствии с уравнением $U_{CH} = E_C - R_C I_C$ $(E_C = 10 \text{ B}, R = 4 \text{ кОм})$. Рабочая точка A при $U_{ex} = 0$ соответствует $E_3 = 3 \text{ B}$. Если на входе действует гармонический сигнал низкой частоты с амплитудой $U_{m, ex}$, рабочая точка движется вдоль нагрузочной прямой. Крайние точки B и Cпересечением нагрузочной статическими определяются линии co $U''_{3N} = U^0_{3N} + U_{max}$ характеристиками, соответствующими напряжениям

 $U'_{3\mathit{U}} = U^0_{3\mathit{U}} - U_{\mathit{mex}}$. Точки В и С определяют амплитуды выходного тока и выходного напряжения. На рис.7.2 δ показаны соответствующие точки на характеристиках передачи.

Из графика рис. 7.2 находится коэффициент усиления по напряжению. Поскольку амплитуды положительных и отрицательных полуволн $U_{\text{вых}}$ несколько отличаются (есть некоторые нелинейные искажения), нужно брать отношение разностей максимального и минимального напряжений (коэффициент усиления по первой гармонике):

$$K_U = -\frac{U_{\hat{a}\hat{u}\tilde{o}\max} - U_{\hat{a}\hat{u}\tilde{o}\min}}{U_{\hat{a}\tilde{o}\max} - U_{\hat{a}\tilde{o}\min}} = -\frac{7 - 2.6}{3.5 - 2.5} = -4.4$$

В нагруженном режиме к уравнению (6.11), связывающему приращение тока с приращениями напряжений, добавляется еще одно:

$$\Delta U_{CM} = -R_C \cdot \Delta I_C$$

Из этих двух уравнений находится связь коэффициента усиления со статическими параметрами:

$$K_U = \frac{S \cdot R_C}{1 + R_C / R_i} = \frac{\mu}{1 + R_i / R_C}$$
 (7.1)

Отсюда видно, что чем больше сопротивление R_C , тем больше коэффициент усиления. Однако с увеличением R_C (при E_C =const) рабочая точка смещается в сторону малых напряжений U^0_{CU} (см. штриховую линию на рис.7.2a, соответствующую R_C =10 кОм) и может попасть в крутую область выходных характеристик. Тогда крутизна, и следовательно, и коэффициент усиления снижаются. Поэтому при увеличении R_C надо одновременно повышать напряжение E_C . Максимальное значение E_C ограничено допустимой рассеиваемой мощностью и пробоем стокового перехода.

Поскольку входное сопротивление полевых транзисторов очень велико сопротивление источника сигнала обычно не влияет на статический коэффициент усиления.

Частотная зависимость коэффициента усиления.

Постоянная времени крутизны τ_{S} (6.16) определяет предельное

быстродействие транзистора. В реальных схемах быстродействие часто ограничивается паразитными емкостями, которые определяют входную τ_{ex} и выходную τ_{eblx} постоянные времени:

$$\tau_{ex} = R_c \cdot C_{ex}, \qquad \tau_{ebix} = (R_C || R_i) \cdot C_{ebix}, \qquad (7.2)$$

где R_{ε} — сопротивление источника входного сигнала, $C_{\varepsilon x}$ и $C_{\varepsilon bix}$ — входная и выходная емкость, $C_{\varepsilon bix} = C_{CII} + C_H$, C_H — емкость нагрузки, $R_C || R_i$ — параллельное соединение сопротивлений R_C и R_i .

Проходная емкость C_{3C} сильно влияет на частотные свойства, образуя цепь обратной связи. Эта емкость дает вклад во входную емкость с коэффициентом $1+|K_U|$ (эффект Миллера):

$$C_{ex} = C_{3K} + C_{3M} + (1 + |K_U|)C_{3C}$$
(7.3)

Ток, протекающий через емкость C_{3C} , создает на сопротивлении $R_{ucm.c}$ дополнительное напряжение $\dot{U}'_{\hat{a}\tilde{o}}$, пропорциональное выходному напряжению. При определенном характере нагрузки оно совпадает по фазе с входным напряжением, что может привести к самовозбуждению усилителя.

Постоянной времени коэффициента передачи определяется суммой:

$$\tau_{\kappa} = \tau_{ex} + \tau_{ebix} + \tau_{S} \tag{7.4}$$

Слагаемым τ_S обычно можно пренебречь. Частотная зависимость коэффициента усиления определяется выражением

$$K(j\omega) = \frac{K_0}{1 + jf / f_K},\tag{7.5}$$

где K_0 – статическая коэффициент усиления, f_K - граничная частота:

$$f_K=1/(2\pi\tau_K) \tag{7.6}$$

Аудиторная задача.

По статическим характеристикам полевого транзистора и заданным значениям сопротивления нагрузки R_C и сопротивления источника входного сигнала R_ε выполнить следующие расчеты в рабочей точке, заданной в предыдущей задаче:

1. Построить нагрузочную характеристику, проходящую через данную

рабочую точку. Найти по характеристикам коэффициент усиления K_U для малого сигнала.

- 2. Вычислить коэффициент усиления по значениям дифференциальных параметров, найденным в предыдущей задаче, и заданному сопротивлению нагрузки и сравнить со значениями, полученными по характеристикам.
- 3. Полагая, что нагрузкой данного каскада является аналогичный каскад, найти значения постоянных времени τ_{ex} , τ_{ebx} и τ_{κ} и граничную частоту коэффициента усиления.

Дано: транзистор КП303, рабочая точка: U_C^0 =11 В, I_C^0 =12 мА, R_C =1,5 кОм, R_c =10 кОм.

В данной рабочей точке найдено: S=2,8 мА, $R_i=20$ кОм, $\mu=56$.

Для этого транзистора C_{ex} =6 пФ, C_{npox} =1 пФ, $C_{eыx}$ = C_{CII} =2 пФ. Найдено:

$$C_{3N}$$
= C_{3C} =1 пФ, C_{3K} =4 пФ, τ_{S} = = 1,4 нс.

Решение:

На графике выходных характеристик проводим через рабочую точку линию нагрузки с наклоном $\Delta U/\Delta I = -R_C = -1,5 \cdot \text{B/MA}$ (рис. 6.3). По точкам пересечения этой прямой с ближайшими статическими характеристиками (отмечены крестиками на рис.6.3) находим

$$K_U = \Delta U_C / \Delta U_{3M} = (7,7-12)/1 = 4,3.$$

Рассчитанное значение
$$K_U = \frac{S \cdot R_C}{1 + R_C / R_i} = \frac{2,8 \cdot 1,5}{1 + 20/1,5} = 3,9$$

Расхождение объясняется несколько большим наклоном статической характеристики при $U_{3N}=0$.

Вычислим входную емкость:

$$C_{ex} = C_{3K} + C_{3M} + (1 + |K_U|)C_{3C} = 4 + 1 + (1 + 4,3) \cdot 1 = 10,3 \text{ } \Pi\Phi,$$

$$C_{\text{вых}} = C_{\text{СП}} + C_{\text{H}} = C_{\text{СП}} + C_{\text{ex}} = 2 + 10,3 = 12,3 \text{ п}\Phi.$$

Найдем входную τ_{ex} и выходную τ_{ebx} постоянные времени:

$$\tau_{ex} = R_{c} \cdot C_{ex} = 10^{4} \cdot 10, 3 \cdot 10^{-12} = 1,03 \cdot 10^{-7} c = 103 \text{ нс},$$

$$\tau_{\text{вых}} = (R_C || R_i) \cdot C_{\text{вых}} = 1,4 \cdot 10^3 \cdot 12,3 \cdot 10^{-12} = 1,7 \cdot 10^{-8} \ c = 17 \ \text{нс.}$$

Обе эти величины значительно больше, чем au_S и последней можно

пренебречь. Тогда

$$\tau_{\kappa} = \tau_{ex} + \tau_{ebix} + \tau_{S} = 103 + 17 = 120 \text{ нc},$$

$$f_{\kappa} = 1/(2\pi\tau_{\kappa}) = 1/(6.28 \cdot 1.2 \cdot 10^{-7}) = 1.3 \cdot 10^{6} \text{ Ги} = 1.3 \text{ МГи}.$$

Таким образом, граничная частота коэффициента усиления получилась на два порядка ниже граничной частоты крутизны.

Занятие8. Ключевой режим работы полевых транзисторов.

Краткие сведения из теории.

Ключевой режим работы полевых транзисторов широко используется в цифровых устройствах. Наиболее широко применяются транзисторы с индуцированным каналом, которые являются основным элементом МДП транзисторных интегральных схем. На рис.8.1 показана схема ключа на транзисторе с индуцированным п-каналом и расположение рабочих точек на

выходной характеристике.

На схеме рис.8.1a показана также емкость C_H , на которую нагружена выходная цепь транзистора, которая определяет быстродействие ключа. В эту емкость кроме емкости нагрузки входит также емкость C_{CH} самого транзистора.

В точке A транзистор заперт, на затвор подано напряжение $E_3^- < U_{\Pi OP}$, остаточный ток есть обратный ток стокового p-n-перехода при обратном смещении близком к E_C ток I_{ocm} составляет не более $10^{-8}-10^{-10}A$, поэтому

падением напряжения $I_{C}R_{C}$ можно пренебречь и считать напряжение в этой точке равным E_{C}

Для отпирания ключа на затвор подается напряжение $E_3^+ > U_{\Pi OP}$. Это напряжение должно быть достаточно большим, чтобы остаточное напряжение было как можно меньше. Тогда рабочий ток открытого ключа (ток насыщения) определяется, как и у биполярного транзистора, внешними элементами схемы:

$$I_{CH} = (E_C - U_{ocm})/R_C \approx E_C/R_C \tag{8.1}$$

Рабочая точка B лежит на начальном, квазилинейном участке характеристики МДП-транзистора. Поэтому U_{ocm} можно найти, умножая ток насыщения (8.1) на сопротивление канала (6.9):

$$U_{\hat{n}\hat{n}\hat{o}} = r_K \cdot E_C / R_C = \frac{E_C}{b(E_C^+ - U_{\hat{I}\hat{I}D}) R_C}$$
(8.2)

Переходные процессы.

Инерционность МДП-транзисторных ключей обусловлена главным образом перезарядом емкостей, входящих в состав комплексной нагрузки. Инерционность канала, характеризующейся постоянной времени τ_{S} (6.16),

Рис.8.2

можно при необходимости учесть, складывая τ_S с постоянной времени перезаряда емкостей.

Переходные процессы в МДП-транзисторном ключе показаны на рис.8.2.

Пусть в исходном состоянии транзистор открыт и

на нем падает небольшое остаточное напряжение. При поступлении запирающего напряжения E_3^- ток в транзисторе уменьшается до нуля с весьма малой постоянной времени τ_S — практически мгновенно. После запирания транзистора емкость C_H заряжается от источника питания E_C через резистор R_C

с постоянной времени $au_C = R_C C_H$. Процесс заряда описывается простейшей экспоненциальной функцией: $U_C(t) = E_C(1-e^{-t/ au_C})$

Длительность фронта выходного напряжения на уровне $0.9 E_C$ составляет

$$t_{\phi} = 2.3 \ R_C C_H \tag{8.3}$$

Заменив сопротивление R_C отношением E_C // I_{CH} , можно записать (8.3) в более общем виде:

$$t_{\phi} = 2.3 (E_C C_H / I_{CH})$$
 (8.3a)

Отпирание ключа и формирование среза импульса напряжения протекает несколько сложнее. После подачи отпирающего сигнала E_3^+ ток I_C практически мгновенно (с постоянной времени τ_S) достигает значения, определяемого формулой (6.10):

$$I_C(0) = \frac{b}{2} (E_C^+ - U_{\hat{I}\hat{I}\hat{D}})^2$$

Этим током начинает разряжаться емкость C_H . По мере разряда емкости напряжение на стоке U_C уменьшается. До тех пор, пока оно остается больше напряжения насыщения $U_{HAC} = E_3^+ - U_{\Pi OP}$, транзистор работает на пологом участке характеристики и ток сохраняет значение $I_C(0)$. Когда напряжение U_C становится меньше U_{HAC} , ток I_C начинает падать, стремясь в пределе к значению I_{CH} .

Начальный заряд емкости $Q=E_{C}C_{H}$ и при разряде постоянным током, как показано штриховой линией I на рис.32, емкость разрядилась бы за время

$$t_1=E_CC_H/I_C(0)$$
.

Это время меньше длительности среза t_c .

Если принять, что ток падает линейно с напряжением: $I_C = U_C / R_{cp}$, где R_{cp} ,= $E_C / I_C(0)$ (штриховая линия 2 на рис.8.16), разряд носил бы обычный экспоненциальный характер с постоянной времени $\tau = C_H R_{cp}$: $U_C(t) = E_C e^{-t/\tau}$

Длительность среза на уровне $0,1E_C$ составила бы

$$t_2$$
=2,3 τ =2,3[$E_CC_H/I_C(0)$]

Это значение явно больше длительности среза t_c . Для расчетов можно

принять промежуточное из двух полученных значений:

$$t_c = 1.5[E_C C_H / I_C(0)]$$
 (8.4)

Длительность среза положительного импульса оказывается значительно меньше длительности фронта.

Аудиторная задача.

По статическим характеристикам полевого транзистора и заданным значениям сопротивления нагрузки R_C и напряжения питания E_C выполнить следующие расчеты для электронного ключа:

- 1. Найти по характеристике и рассчитать остаточное напряжение открытого ключа, сравнить найденные значения.
- 2. Определить мощность, потребляемую нагрузкой замкнутого ключа P_0 , и мощность P_{mn} , рассеиваемую в насыщенном транзисторе;
- 3. Определить длительность фронта и среза выходного импульса при емкости нагрузки C_H =5 $\pi\Phi$.

Рассмотрим транзистор, характеристики которого приведены на рис.7.2, при заданных значениях E_C =10B, R_C =10кОм, E_3^+ =3,5B, C_H =5п Φ .

Перерисовав статические характеристики полевого транзистора, на семействе выходных характеристик строится нагрузочная прямая по точкам, в которых она пересекает оси координат согласно уравнению $E_C = U_{CH} + I_C R_C$, показанная штриховой линией на рис.7.2. Остаточное напряжение открытого транзистора определяется сопротивлением канала r_K' и током насыщения I_{CH} (8.1). Сопротивление канала согласно (6.15) является обратной величиной крутизны S_0^+ на пологом участке ВАХ при $U_{3H} = E_3^+$, где E_3^+ – заданное отпирающее напряжение. Таким образом, формулу (8.2) можно записать в виде:

$$U_{ocm} = \frac{E_C}{S_0^+ \cdot R_C}.$$

Крутизна S_0^+ находится по семейству ВАХ транзистора.

Остаточное напряжение найденное графически $U_{\mathit{ocm, граф}}$ может не

совпадать с рассчитанным значением. Оно может быть больше рассчитанного, если область стока имеет заметное омическое сопротивление r_c '. Однако чаще расхождение объясняется неточностью математической модели.

По характеристикам находим при $U_C = E_C$:

$$I_C|_{U_{C\dot{E}}=3,5\hat{A}}=2,2\hat{i}\hat{A}$$
, $I_C|_{U_{C\dot{E}}=3\hat{A}}=1,5\hat{i}\hat{A}$

$$S_0^+ = (2,2-1,5)/0,5=1,4$$
 MCM

$$U_{ocm.znad}$$
=0,5B,

$$U_{\hat{n}\hat{n}\hat{o} .\delta\hat{a}\hat{n} \div} = \frac{E_C}{S_0^+ \cdot R_C} = \frac{10}{1,4 \cdot 10} = 0.7 \hat{A}$$

Найденные значения довольно близки, расхождение объясняется, повидимому, неточностью модели.

Мощность P_0 , потребляемая нагрузкой замкнутого ключа и мощность P_{mp} , рассеиваемая в насыщенном транзисторе вычисляются по формулам:

$$P_0 = E_C I_{CH} = 10.10^{-3} = 10 \text{MBT}$$

$$P_{mp} = U_{ocm}I_{CH} = 0.5 \cdot 10^{-3} = 0.5 \text{ MBT}.$$

Начальный ток $I_C(0)$ в момент подачи отпирающего импульса находится по выходным характеристикам:

$$I_C(0)=2,2MA.$$

Длительности фронта и среза импульса, соответственно:

$$t_{\phi} = 2.3 R_{C}C_{H} = 2.3 \cdot 10^{4} \cdot 5 \cdot 10^{-12} = 11.5 \cdot 10^{-8} c \approx 0.1 \text{mKC},$$

$$t_c = 1.5[E_C C_H / I_C(0)] = 1.5 \cdot 10 \cdot 5 \cdot 10^{-12} / 0.0022 = 3.4 \cdot 10^{-8} c = 34$$
HC.

Длительности среза в данном случае примерно в три раза меньше длительности фронта.

ПРИЛОЖЕНИЕ 1. СТАТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТРАНЗИСТОРОВ

Рис. 1.П. Входные характеристики транзисторов КТ301 - КТ301Ж.

Рис. 2.П. Выходные характеристики транзисторов КТ301А и КТ301Ж.

Рис. 3.П. Входные (a) и выходные (δ) характеристики биполярного транзистора КТ340 (n-p-n).

Рис. 4.П. Входная характеристика для активного режима (a) и выходные характеристики (δ) мощного транзистора КТ819 (n-p-n).

Рис. 5.П. Входная характеристика для активного режима (a) и выходные характеристики (δ) p-n-p-транзистора КТ842.

Рис. 6.П. Входные (a) и выходные (b) характеристики биполярного транзистора КТ602 (n-p-n).

Рис. 7.П. Характеристика передачи и выходные характеристики полевого транзистора с управляющим p-n-переходом (n-канал).

Рис. 8.П. Передаточные (a) и выходные (b) характеристики МДП транзистора со встроенным n-каналом.

Рис. 9.П. Выходные характеристики в режиме обогащения МОП транзистора с двумя изолированными затворами и встроенным каналом n-типа.

ПРИЛОЖЕНИЕ 2.

ВЫСОКОЧАСТОТНЫЕ ПАРАМЕТРЫ БИПОЛЯРНЫХ И ПОЛЕВЫХ ТРАНЗИСТОРОВ

Таблица 1. Высокочастотные параметры биполярных транзисторов.

Тип	β	f, МГц	C_K , $n\Phi$	$C_{\mathfrak{I}},$ $n\Phi$	τ _{oc} , нс	<i>I</i> * _К , мА
KT301A	1,5	20	10	80	2	2
КТ301Ж	3	20	10	80	2	2
KT340	3	100	4	14	0,15	3
Кт602	1,5	100	4	25	0,3	10

Таблица 2. Высокочастотные параметры полевых транзисторов

Тип	C_{ex} , $n\Phi$	С _{3С} , пФ	C_{CII} , $n\Phi$	<i>U_{си},</i> В
КП313	7	1	4,5	10
КП302	20	8	1	7
КП303	6	1	0,5	10

СПИСОК ЛИТЕРАТУРЫ.

- 1. Батушев В.А. Электронные приборы: Учебник для вузов. 2-е изд., перераб. и доп. М.: Высш. школа, 1980.
- 2. Аваев А. А., Шишкин Г.Г. Электронные приборы: Учебник для вузов/ Под ред. проф. Г.Г. Шишкина. М.: Из-во МАИ, 1996
- 3. Урманчеев Л.М., Нургалиев М.И. Электроника: Учебное пособие по выполнению контрольных работ. Казань: Изд-во Казан. гос. техн. ун-та, 2003.
- 4. Бурбаева Н.В., Днепровская Т.С. Сборник задач по полупроводниковой электронике М., МАИК, 2004.
- 5. Полупроводниковые приборы: Диоды, тиристоры, оптоэлектронные приборы. Справочник / А.В. Баюков, А.Б. Гитцевич, А.А. Зайцев и др.; Под общ. ред. Н.Н. Горюнова. М.: Энергоатомиздат, 1983.
- 6. Полупроводниковые приборы: Диоды высокочастотные, диоды импульсные, оптоэлектронные приборы. Справочник. Под ред. А.В. Голомедова— М.: Радио и связь, 1988.
- 7. Полупроводниковые приборы: Транзисторы. Справочник. Под общ. ред. Н.Н. Горюнова. М.: Энергоатомиздат, 1985.
- 8. Транзисторы для аппаратуры широкого применения: Справочник. / Коллектив авторов; под ред. Б.Л. Перельмана./ Репринтное воспроизведение издания 1981г. М.: ЭКОЛИТ, 2011.