18: Linear Genetic Programming 2

- Fitness, initialization, mutation, and crossover
- Evolution of programs
- Reference book chapters 3, 5
- Reference book: Linear Genetic Programming,
 Brameier and Banzhaf, Springer

An example linear genetic program

 r_{1} , r_{2} take input variables x_{1} , x_{2}

 r_0 , r_3 are calculation registers, and r_0 is the output register, initialized as I

1:
$$r_0 = r_2 + 5$$

2:
$$r_3 = r_1 \times 3$$

3: if
$$r_0 > r_3$$
:

3:
$$r_3 = r_3 - 1$$

4:
$$r_0 = r_3 \times r_0$$

LGP fundamentals - Fitness

- Error-based functions on training samples
 - sum of absolute errors (SE)
 - sum of squared errors (SSE)
 - mean squared errors (MSE):

$$MSE(gp) = \frac{1}{n} \sum_{k=1}^{n} (gp(\vec{i_k}) - o_k)^2$$

- classification errors (CE):

$$CE(gp) = \sum_{k=1}^{n} \{1 \mid class(gp(\vec{i_k})) \neq o_k\}$$

Data partition: training, validation, testing
 Stochastic sampling of the training dataset

LGP fundamentals - Initialization

Random generation of programs

- Program size upper bound
- Program size lower bound (minimum length one instruction)
- Initial program length uniformly random within the lower/upper bounds

How to choose program size upper bound

- Too long reduce program variability during evolution
- Too short insufficient diversity of initial genetic material

LGP fundamentals - Variation

Crossover

- Swap segments from two parents
- Instruction is the smallest unit for variation

Mutation

- Randomly replace registers, constants, operations by equivalents from predefined sets or valid ranges
- Selection of variation points
 - Tree GP, bias choosing leaf nodes (variables or constants)
 - Linear GP, each instruction is selected with the same probability

LGP fundamentals - Crossover

- Two-point crossover
 - Parameters: minimum and maximum program length
 maximum segment length
 maximum distance of crossover points
 maximum difference in segment length

LGP fundamentals - Crossover

One-point crossover

- Programs are swapped at one point only
- Parameters: minimum and maximum program length maximum distance of crossover points

One-segment recombination

- For parent I, delete a segment or insert a segment from parent 2, and apply the same to parent 2.
- Parameters: insertion rate, deletion rate (sum to 1)
 - can adjust growth/shrink bias minimum and maximum program length maximum segment length

LGP fundamentals - Mutation

Micro mutation

- Modify elements of an instruction

Macro mutation

- Instruction mutation: Insert or delete a single instruction
- One-segment mutation: Insert a randomly created subsequence
- Two-segment mutation: Replace an existing segment with a randomly created subsequence

Effective mutation

LGP fundamentals - Evolution

- I. Initialize the population with random programs and calculate their fitness values
- 2. Randomly **select** $2*n_{ts}$ individuals from the population without replacement
- 3. Perform two fitness **tournaments** of size n_{ts}
- 4. Use copies of the two winners to **produce** two offspring by variation operators with certain probabilities
- 5. **Evaluate** the fitness of the two offspring
- 6. If any of the offspring is fitter than the current best-fit individual (saved), **validate** the new best program using validation data
- 7. **Replace** the two tournament losers with two offspring
- 8. Repeat steps 2 to 8 until the **termination** criteria is met
- 9. The program with the best validation accuracy is the **output** of the algorithm
- 10. **Test** the output program using a testing dataset and report the testing accuracy

LGP applications

Symbolic regression

Ricker wavelet function

$$\left(1 - \frac{x^2}{4} - \frac{y^2}{4}\right) \times e^{\left(-\frac{x^2}{8} - \frac{y^2}{8}\right)}$$

LGP applications

ClassificationSpiral problem

LGP applications

• LGP configuration and parameter setting

Problem	mexican hat	spiral
Problem type	regression	classification
Input range	[-4.0, 4.0]	$[-2\pi,2\pi]$
Output range	[-1, 1]	$\{0, 1\}$
Number of inputs	2	2
Number of outputs	1	1
Number of output classes	_	2
Number of examples	400	194
Number of registers	2 + 4	2 + 4
Fitness function	SSE	CE
Instruction set	$\{+,-, imes,/,x^y\}$	$\{+,-,\times,/,sin,cos,if>\}$
Constants	$\{1,,9\}$	{1,,9}

Parameter	Setting
Number of generations	1,000
Population size	1,000
Tournament size	2
Maximum program length	200
Initial program length	5-15
Macro variation rate	75%
Micro mutation rate	25%
Reproduction rate	100%