

[12]发明专利申请公开说明书

[21]申请号 94105927.8

[43]公开日 1995年12月27日

[51]Int.Cl⁶

B01J 23/72

[22]申请日 94.6.4

[71]申请人 中国石油化工总公司

地址 100029北京市朝阳区惠新东街甲6号

共同申请人 中国石油化工总公司石油化工科学
研究院

[72]发明人 章立山 李向伟 王海京

[74]专利代理机构 石油化工科学研究院专利事务所
代理人 屈定秀

B01J 23/80 B01J 23/85

B01J 21/06

说明书页数: 附图页数:

[54]发明名称 制备1,4-丁二醇和/或γ-丁内酯的催化
剂

[57]摘要

一种气相氢化制备1,4-丁二醇和/或γ-丁内酯的催化剂，具有如下通式： $Cu_aZnCr_bM_cO_x$ ，其中a=0.1—10，b=0.1—5，c=0.1—5，分别表示Cu、Cr、M的原子数，X是为满足其它元素化合价要求所需要的氧原子数，M是选自IVB族中的一种元素，最好是Zr元素。该催化剂是用常规沉淀法制得，具有高的活性，选择性和稳定性。

(BJ)第1456号

权利要求书

1. 一种气相氢化制备1,4-丁二醇和/或γ-丁内酯的催化剂，其特征在于，该催化剂具有如下通式： $Cu_aZnCr_bM_cO_x$ ，其中 $a=0.1-10$ 、 $b=0.1-5$ 、 $c=0.1-5$ ，分别表示Cu、Cr、M的原子数，M是选自IVB族中的一种元素，X是为满足其它元素化合价要求所需要的氧原子数。

2. 根据权利要求1所说的催化剂，其特征在于M是Zr元素。
3. 根据权利要求1所说的催化剂，其特征在于 $a=0.1-5$ 。
4. 根据权利要求1所说的催化剂，其特征在于该催化剂是用常规沉淀法制得的，其制备步骤是：

(1) 将Cu、Zn、Zr盐以及铬酸酐按照该催化剂的组成比例溶解在脱离子水中，制成混合物浓度为20-50m%的溶液，在搅拌下与碱混合，发生共沉淀作用，控制溶液的pH值=5-7，然后，经过滤、洗涤、干燥、焙烧成型制得催化剂母体；
(2) 将催化剂母体在氢气或用惰性气体稀释的氢气中，在0.1-2.0MPa压力下，于150-300℃还原5-40小时。
5. 根据权利要求4所说的催化剂，其特征在于(1)中所说的碱为氨水。

说 明 书

制备1,4-丁二醇和/或γ-丁内酯的催化剂

本发明涉及一种制备1,4-丁二醇和/或γ-丁内酯的催化剂，具体地说是一种气相氢化制备1,4-丁二醇和/或γ-丁内酯的催化剂。

1,4-丁二醇是一种重要的有机化工原料，主要用于生产聚对苯二甲酸二丁酯(PBT)、聚氨酯、γ-丁内酯和四氢呋喃。

γ-内酯是一种优良的高沸点溶剂和重要的精细化工和有机化工原料。

关于1,4-丁二醇和γ-丁内酯的制备方法报导较多，但从顺丁烯二酸酐和/或顺丁烯二酸和/或丁二酸酐和/或丁二酸和/或它们的烷基酯，通过气相氢化的方法制1,4-丁二醇和/或γ-丁内酯，被认为是诸多制备方法中最具有竞争力的方法之一，与该方法配套使用的非贵金属催化剂也有大量报导。如BP1168220报导了用Cu-Zn催化剂由顺丁烯二酸二丁酯通过气相催化氢化制备γ-丁内酯，以顺丁烯二酸烷基酯为原料制备γ-丁内酯的催化剂还有Cu-Zn-Cr催化剂(CS171623)、Cu-Zn-Cr-Al催化剂(SU1022969)；EP143634报导了用Cu-Cr基催化剂，由顺丁烯二酸二乙酯通过气相催化氢化制备1,4-丁二醇的方法；CN1058400报导了以顺丁烯二酸酐为原料，以Cu-Zn-Al混合氧化物为催化剂，制备γ-丁内酯的方法，平2-25434、平2-233632分别报导了以Cu-Zn混合氧化物和Cu-Mn混合氧化物为催化剂制备1,4-丁二醇的方法。但是上述催化剂用于顺丁烯二酸酐或丁二酸酐或它们的烷基酯时，反应原料进料空速均不高，例如以1,4-丁二醇为目的产物时，顺丁烯二酸酐液体体积进料空速(LHSV)均小于0.06小时⁻¹。

据WO9116132报导，使用Cu-Zn-Al催化剂，由顺丁烯二酸酐气相

催化氢化制备 γ -丁内酯，可获得较高的产率，但是使用该催化剂时，经常需要在400-525℃高温条件下活化，从而增加了工业化的难度。

本发明的目的是提供一种新的气相氢化制备1,4-丁二醇和/或 γ -丁内酯的非贵金属催化剂，使用它可以提高由顺丁烯二酸酐和/或顺丁烯二酸和/或丁二酸和/或丁二酸酐和/或它们的烷基酯制备1,4-丁二醇和/或 γ -丁内酯的催化活性、选择性和稳定性。

本发明所述催化剂具有如下通式：

其中，M是选自IVB族中的一种元素，最好是Zr元素，a、b、c分别表示Cu、Cr、M的原子数，其控制范围为：

$$a=0.1-10, \text{最好} 0.1-5;$$

$$b=0.1-5;$$

$$c=0.1-5;$$

X是为满足其它元素化合价要求所需要的氧原子数。

本发明所述催化剂的制备方法是常规共沉淀法，该方法包括下列步骤：

(1) 将Cu、Zn、Zr盐，最好是Cu、Zn、Zr硝酸盐或碳酸盐以及铬酸酐，按照该催化剂的组成比例溶解在脱离子水中，制成混合物浓度为20-50m%的溶液，在搅拌下与碱混合，最好是与氨水混合，发生共沉淀作用，控制溶液pH值=5-7，洗涤后，于100-120℃干燥10-15小时，在350-500℃焙烧20-30小时，其后，经成型制得催化剂母体；

(2) 将催化剂母体在氢气或用惰性气体稀释的氢气中，在0.1-2.0MPa压力下，于150-300℃还原5-40小时。

本发明催化剂显著特点之一是具有较高的活性。例如，以顺丁

烯二酸酐为原料，使用本发明催化剂，在液体体积进料空速(LHSV)为0.1小时⁻¹，反应压力为6MPa的条件下，其转化率达100%，1,4-丁二醇的选择性达90摩尔%以上，而使用已有技术所述催化剂，在其它条件都相同的情况下，要达到同样的效果，LHSV均不大于0.06小时⁻¹。

本发明催化剂的另一特点是，在反应原料近乎完全转化的情况下，可以通过调节反应条件，使反应产物的选择性朝着所希望的方向转移。例如以顺丁烯二酸二乙酯为原料，使用本发明催化剂，在LHSV为0.8小时⁻¹，反应压力为7MPa条件下，1,4-丁二醇的选择性达70摩尔%以上，其余为γ-丁内酯和四氢呋喃，如果将反应压力降至1.0MPa，其它条件不变，则γ-丁内酯的选择性达85摩尔%以上，其余主要为1,4-丁二醇和四氢呋喃。如果以顺丁烯二酸酐为原料，调节反应条件，1,4-丁二醇和γ-丁内酯的选择性分别都能达到90摩尔%以上。

本发明催化剂的第三个特点是具有较好的稳定性，即较长的连续运转时间。例如，在由顺丁烯二酸二丁酯制备γ-丁内酯的过程中，使用本发明催化剂，在不必采用任何再生技术，而且基本上没有提温的情况下，累计进料1000小时以上，γ-丁内酯的选择性仍保持在90摩尔%以上不变，如图1所示(图1中，GBL表示γ-丁内酯)。

此外，本发明催化剂还可以使用反应回收的原料。

总之，采用本发明催化剂进行气相氢化反应制备γ-丁内酯和1,4-丁二醇时，由于催化剂性能优良，既可以提高产品收率，降低生产成本，还可以随市场需求的变化，方便地调节主产品方向。

图1描绘了以顺丁烯二酸二丁酯为原料，使用本发明例1所述催化剂，制备γ-丁内酯1000小时稳定性试验曲线图。①表示γ-丁内酯的选择性(GBL表示γ-丁内酯)；②表示反应温度；③表示顺丁烯二

酸二丁酯的转化率。

下面的实施例将对本发明作进一步说明。

实例 1

将261克硝酸铜(化学纯, 北京化工厂), 298克硝酸锌(化学纯, 北京化工厂), 116克铬酸酐(化学纯, 北京化工厂)和134克硝酸锆(化学纯, 北京化工厂), 溶于1000毫升脱离子水中(Zn、Cu、Cr、Zr原子比为1:1.08:1.16:0.6), 然后, 在搅拌下与氨水混合, 发生共沉淀作用, 控制溶液pH=6±1, 过滤、洗涤于110℃±10℃干燥12小时, 然后在400±50℃焙烧24小时, 制成催化剂母体。取62.5毫升, 粒度为2.5毫米×2毫米, 压碎强度100±50牛顿/厘米的该催化剂母体装填到内径为Φ23毫米, 长度为1000毫米的不锈钢管式反应器中, 用氮气吹扫反应系统, 并将反应系统充压到0.3MPa, 通入用氮气稀释的氢气, 氢气浓度由2V01%逐渐提高到100V01%, 同时, 将反应器由室温缓慢地升到280℃, 总还原时间约为36小时, 最后将反应器温度降到反应温度, 以顺丁烯二酸二丁酯为反应原料(工业纯, 浙江建德有机化工厂), 在液体体积进料空速为0.4小时⁻¹, 氢/酯摩尔比为122:1, 反应温度222℃, 反应压力0.3MPa条件下, 连续运转1000小时, 取样进行色谱分析, 结果见图1, 由图1可以看出: 顺丁烯二酸二丁酯单程转化率和γ-丁内酯的选择性均保持在95摩尔%以上, 说明催化剂具有高活性, 选择性和稳定性。

实例 2

除了以从实例1的反应产物中蒸出γ-丁内酯后的釜底馏分(色谱组成为: 丁二酸二丁酯84m%, γ-丁内酯9m%, 1,4-丁二醇4m%, 正丁醇1m%, 其它2m%)代替顺丁烯二酸二丁酯作为反应原料, 以用过

的催化剂代替新鲜催化剂，反应温度为235℃，反应压力为1MPa连续反应两天外，其余条件同实例1，试验结果是：丁二酸二丁酯单程转化率95摩尔%，γ-丁内酯选择性93摩尔%，由此可以看出：本发明催化剂还可以使用反应回收的原料，即未转化的反应物循环使用，对反应转化率和选择性均无影响。

实例3

取粒度为40-80目按实例1方法制备的催化剂母体2毫升，装入内径为5毫米，长度为150毫米的不锈钢管式反应器中，用氮气吹扫反应系统，并将反应系统充压到1MPa，然后以35立升/小时流量向反应器中通入氢气，同时以平均升温速度为110℃/小时的速度将反应器由室温升到300℃，并在300℃保持2小时。将反应器降温，向反应器中通入顺丁烯二酸二乙酯和氢气，在反应温度为210-220℃，反应压力为7.0MPa，液体体积进料空速为0.6小时⁻¹，H₂/酯摩尔比为224:1的条件下，连续反应700小时，色谱分析结果：反应单程转化率保持在90摩尔%以上，1,4-丁二醇选择性保持在70摩尔%以上，γ-丁内酯的选择性为20摩尔%左右，其余主要为四氢呋喃。

实例4

除了反应压力为1MPa，连续反应150小时以外，其它条件同实例3，反应结果：顺丁烯二酸二乙酯单程转化率保持在90摩尔%以上，γ-丁内酯选择性保持在85摩尔%以上，其余主要为四氢呋喃和1,4-丁二醇。

比较例3和例4，可以看出：通过调节反应压力，可以使反应产物的选择性朝着所希望的方向转移。

实例 6-9

在实例 3 所述装置上, 评价表 1 中所列催化剂。除了催化剂组成, 反应温度和连续反应时间外, 其余同实例 3, 试验结果见表 1。

表 1

实例 编号	催化剂组成(原子比)				反应 温度 ℃	转化率 (摩尔%)	选择性(摩尔%)		
	Zn	Cu	Cr	Zr			1,4-丁 二醇	γ-丁 内酯	四氢呋 喃
5	1	1.60	1.16	1.50	210	99.4	78.4	18.3	3.3
6	1	1.08	1.16	1.00	220	99.5	72.5	25.1	2.4
7	1	0.74	0.47	1.50	220	95.2	71.3	23.8	4.9
8	1	2.12	1.16	0.50	230	99.1	57.8	29.2	13.0
9	1	1.43	1.85	0.60	250	98.3	27.0	49.0	24

实例 10

取粒度为 26-50 目按实例 1 方法制备的催化剂母体 2.7 毫升, 装入内径为 10 毫米、长度为 500 毫米的不锈钢管式反应器中, 用氮气吹扫反应系统, 并充压到 2MPa, 然后以 30 立升 / 小时流量向反应器通入

氢气，同时以平均升温速度为 $50^{\circ}\text{C}/\text{小时}$ 的速度将反应器由室温升到 280°C ，并在 280°C 保持2小时，将反应器降温，向反应器中通入顺丁烯二酸酐和 γ -丁内酯的混合物（顺丁烯二酸酐与 γ -丁内酯的摩尔比为 $1:1$ ），在反应温度为 230°C ，反应压力为 6MPa ，顺丁烯二酸酐液体进料空速为 0.1小时^{-1} ， $\text{H}_2/\text{酐}$ 摩尔比为 $410:1$ 条件下进行反应，取样进行色谱分析，反应结果见表2。

表2

连续运转 时间 (小时)	转化率 (摩尔%)	选择性(摩尔%)			
		四氯呋喃	正丁醇	1,4-丁二醇	γ-丁内酯
14	100	16	4	80	
16	100	14	3	83	
22	100	12	3	85	
28	100	12	3	85	
36	100	11	3	86	
42	100	10	2	88	
48	100	11	2	87	
56	100	8	2	90	
60	100	8	2	90	
69	100	7	2	91	
93	100	7	2	91	
106	100	7	2	91	
115	100	7	2	91	
124	100	7	2	91	
139	100	7	2	91	
161	100	8	2	90	
163	100	7	1	92	
172	100	7	1	92	
174	100	6	1	93	
176	100	6	1	78	15

对比例

除了催化剂中不含Zr, 反应温度为223℃以外, 其它条件同实例10, 反应结果见表3。

由表2、3可以看出:本发明催化剂与对比例所述催化剂比较, 具有较好稳定性。

表3

连续运转 时间 (小时)	转化率 (摩尔%)	选择性(摩尔%)			
		四氢呋喃	正丁醇	1,4-丁二醇	γ-丁内醇
10	100	19	4	77	
13	100	9	4	87	
16	100	9	3	88	
22	100	6	2	92	
28	100	7	2	91	
36	100	7	1	92	
42	100	6	1	93	
45	100	7	1	84	8
48	100	7	1	81	11

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.