CPSC 320 Handouts: The Master Theorem

For a recurrence like $T(n) = aT(\frac{n}{b}) + f(n)$, where $a \ge 1$ and b > 1, the Master Theorem states three cases:

- 1. If $f(n) \in O(n^c)$ where $c < \log_b a$ then $T(n) \in \Theta(n^{\log_b a})$.
- 2. If for some constant $k \geq 0$, $f(n) \in \Theta(n^c(\log n)^k)$ where $c = \log_b a$, then $T(n) \in \Theta(n^c(\log n)^{k+1})$.
- 3. If $f(n) \in \Omega(n^c)$ where $c > \log_b a$ and $af(\frac{n}{b}) \le kf(n)$ for some constant k < 1 and sufficiently large n, then $T(n) \in \Theta(f(n))$.

Master Theorem Corollary. Suppose that $T: \mathbb{N} \to \mathbb{R}_{\geq 0}$ satisfies

$$T(n) = \begin{cases} c, & \text{for } n < n_0, \\ aT(n/b) + cn^k, & \text{for } n \ge n_0, \end{cases}$$

where $a>0,\,b>1,\,c>0,$ and $k\geq0$ are constants.

- If $a > b^k$, then $T(n) = \Theta(n^{\log_b a})$.
- If $a = b^k$, then $T(n) = \Theta(n^k \log n)$.
- If $a < b^k$, then $T(n) = \Theta(n^k)$.