HW3

Yilun Zhang

October 16, 2015

Exercise 1

Because *Toms566* package can't be called on my windows machine, I use matlab instead. https://people.sc.fsu.edu/~jburkardt/m_src/test_opt/test_opt.html gives the function, gradient and hessian same as Toms566. But the start value and number of variable (length(x0)) varies.

0.1 ALgorithm

- 1. input a start value x0, the tolerance ε , max of iteration I, and the F(x), gradient G(x), hessian matrix H(x), wether use BFGS. Let i = 1, H_0 be the inverse.
- 2. while $||G(x_k)|| > \varepsilon ||G(x_0)|| \& i < I$ (a)

$$p_i = -H_i G(x_i)$$

- (b) Let $x_{i+1} = x_i + \alpha_i p_i$, where α_i is loosely computed to meet Armijo condition.
- (c) update $F(x_i)$, $G(x_i)$ to $F(x_{i+1})$, $G(x_{i+1})$, let H_{i+1} either be the inverse of $H(x_{i+1})$ or computed as (6.17) as in ("Numerical Optimization", 2006).
- (d) i=i+1
- 3. output number of iteration j, the solution x_j and the optimal $f^* = f(x_j)$

prob ID	f^*	number of iter
1	4.46500818473627	20001
2	0.242677406804875	412
3	1.12793276962393e-08	4
4	0.0032230846252832	20001
5	3.97089247824700e-14	6
6	6.37118858804940e-12	45
7	0.00228767657879530	3076
8	2.49997654797500e-06	59
9	0.489395214700814	16
10	25364766502.5965	20001
11	85822.2019034065	251
12	8.39437213309053e-20	13
13	8.42718143579277e-16	13
14	4.93038065763132e-32	2
15	1.63898347747199e-06	14859
16	1.81352665939531e-08	20001
17	7.79452679362206	20001
18	5.93799296903267e-14	13

Table 1: result of Newton method

0.2 Result

The result is shown at Table 1. The link above also gives the true optimal solution which is 0 $2.55185717631309e-32\ 0.56422337000000e-10\ 1.45525929500097e-13\ 0\ 0\ 0.00228767006976995$ $0.06251000000000000\ 1.0400000000000\ 0\ 85822.3541521934\ 9.49342027102616e-31\ 0\ 0\ 0\ 0$ 2.55317533551634e-14.

The problem 1, 4, 10, 16, 17 reach the max iteration number. But 4, 16 is very close to the true minimizer. 2, 8 are trapped to the local minimizer. Therefore, 1, 2, 8, 10, 17 can't be solved.

Exercise 2

Call the function above with

$$f_{\theta}(x,y) = -\sum_{i=1}^{n} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log(1 - h_{\theta}(x_i))]$$

where

$$h_{\theta}(x_i) = \frac{e^{\theta^T x}}{1 + e^{\theta^T x}}$$
$$G_{\theta}(x, y) = \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i) x_i$$

$$H(x,y) = \sum_{i=1}^{n} [h_{\theta}(x_i)(1 - h_{\theta}(x_i))x_i^T x_i]$$

theta = (a, b, c), this three functions above are neloglik.m, gradient.m, hessian.m in files. then got the optimal $\hat{\theta} = (-4.949378063, 0.002690684, 0.754686856)$