1

Regression Analysis 2023 Fall HW1

Tuorui Peng¹

Problem 1

The problem is solved with the following algorithm:

Algorithm Solve Rx = b with R being upper-triangular

Given: $R = \{r_{ij}\}_{0 \le i \le j \le n} \in \mathbb{R}^{n \times n}$ upper-triangular as stated, $b \in \mathbb{R}^n$

Initialize $x_{n:(n+1)} = []$, for i = n:1

- 1. We already got $\vec{x}_{n:(i+1)}$
- 2. Focus on $R_{i,:}$, we have

$$\sum_{j=i}^{n} r_{ij} x_j = b_i \Rightarrow x_i = \frac{b_i - \sum_{j=i+1}^{n} r_{ij} x_j}{r_{ii}}$$

3. Solve x_i from $x_{n:(i+1)}$, and now we have $x_{n:i}$

Return: $x_{n:1} = x$

Problem 2

Question 2.(a)

Since we have m < n and A has full row rank, we have its right inverse matrix

$$A_r := A^T (AA^T)^{-1} \in \mathbb{R}^{n \times m}$$

in this way S could be represented as

$$S = \{x | x = A^T (AA^T)^{-1}b + \xi, \xi \in \text{Null}(A)\} \subset \mathbb{R}^n$$

and now the optimization problem is formulated as

$$\pi_{\mathcal{S}}(y) := \underset{x \in \mathcal{S}}{\arg\min} \|y - x\|^{2}$$
$$= \underset{\xi \in \text{Null}(A)}{\arg\min} \|y - A^{T} (AA^{T})^{-1} b - \xi\|^{2}$$

 $^{^1}$ TuoruiPeng2028@u.northwestern.edu

into a constraint optimization problem, and the Lagrangian function is

$$\mathcal{L}(\xi,\lambda) = \|y - A^T (AA^T)^{-1}b - \xi\|^2 + \lambda^T A \xi, \quad \lambda \in \mathbb{R}^m$$

$$\Rightarrow \begin{cases} y - A^T (AA^T)^{-1}b - \xi = A^T \lambda \\ A \xi = 0 \end{cases}$$

$$\Rightarrow Ay - b = AA^T \lambda \Rightarrow \lambda = (AA^T)^{-1} (Ay - b)$$

$$\Rightarrow \xi = (I - A^T (AA^T)^{-1} A) y$$

$$\Rightarrow \pi_{\mathcal{S}}(y) = A^T (AA^T)^{-1} b + (I - A^T (AA^T)^{-1} A) y$$

Question 2.(b)

图 1: Illustration of $\pi_{\mathcal{S}}(y)$

Problem 3

Question 3.(a)

Verify directly:

$$H'_u = (I - 2uu')' = I - 2uu' = H_u$$

 $H'_u H_u = (I - 2uu')(I - 2uu') = I - 4uu' + 4uu'u'u = I$

Question 3.(b)

图 2: Illustration of the reflection process

Question 3.(c)

So here e_1 is the 'direction of subspace' we want to reflect onto. We can see that here v is just the angular bisector of $\langle x, e_1 \rangle$. Denote $e_x = x/\|x\|$, the unit vector in x direction. Then we have

$$H_{v}x = \left(I - 2\frac{(e_{x} + e_{1})(e_{x} + e_{1})'}{\|e_{x} + e_{1}\|^{2}}\right)x$$

$$= \frac{\|x\|}{\|e_{x} + e_{1}\|^{2}} \left(\|e_{x} + e_{1}\|^{2} e_{x} - 2(e_{x} + e_{1})(e_{x} + e_{1})'e_{x}\right)$$

$$= \frac{\|x\|}{\|e_{x} + e_{1}\|^{2}} \left((2 + 2e_{x} \cdot e_{1})e_{x} - 2(1 + e_{x} \cdot e_{1})(e_{x} + e_{1})\right)$$

$$= \frac{\|x\|}{2 + 2e_{x} \cdot e_{1}} \times -2(1 + e_{x} \cdot e_{1})e_{1}$$

$$= -\|x\| e_{1}$$

Question 3.(d)

i.e. to prove that operator H is norm-preserving. We have

$$||Hx||_{2}^{2} = x'H'Hx$$

$$= x'H'_{u_{k}}H'_{u_{k-1}} \cdots H'_{u_{1}}H_{u_{1}} \dots H_{u_{k-1}}H_{u_{k}}x$$

$$= x'x = ||x||_{2}^{2}$$

Question 3.(e)

as definition

$$u = \frac{a_1/\|a_1\| + e_1}{\|a_1/\|a_1\| + e_1\|}, \qquad H_u = I - 2uu'$$

Question 3.(f)

Notation: the l^{th} unit vector in \mathbb{R}^m is denoted $e_{m,l}$. We have

$$u_{k+1} = \frac{b_1/\|b_1\| + e_{k+1,1}}{\|b_1/\|b_1\| + e_{k+1,1}\|}, \quad F = I - 2uu'$$

Reflection:
$$S = \begin{bmatrix} I & 0\\ (n-k-1)\times(n-k-1) & \\ 0 & F\\ (k+1)\times(k+1) \end{bmatrix}$$

Question 3.(g)

Use the process in the previous subproblem, say it could reflect the i^{th} column, denoted by S_i . Then we could use

$$\Xi = S_{n-1}S_{n-2}\dots S_1$$

to reflect all n columns. i.e.

$$\Xi A = S_{n-1}S_{n-2}\dots S_1A = \text{upper triangular}$$

we can write down the Q and R

$$A = QR$$
, $Q = S_1 S_2 \dots S_{n-1}$, $R = S_{n-1} S_{n-2} \dots S_1 A$

Problem 4

Notation: in this section I use v_i in place of s_i , i.e. the eigenvector of A. And further I use the convention that we have S is orthonormal (which can always be valid with some transform to Λ).

Question 4.(a)

To $\operatorname{sgn}(v_1'x^0)\lambda_1v_1$, i.e. $\pm\lambda_1v_1$.

Question 4.(b)

Note that in each step $\frac{1}{\|x^k\|}$ just acts as a scalar. So doing n iteration with each step a scalar multiplication IS EQUIVALENT TO doing n iteration with only the last step a scalar (to unitary). So we could express a n+1 steps iteration as

$$x^{n} = \xi A^{n} x^{0}, \quad x^{n+1} = \frac{1}{\|x^{n}\|} A x^{n}, \quad \xi \in \mathbb{R}$$

in which we denote the 'un-scaled' $A^n x^0$ as \tilde{x}^n , i.e. $x^n = \xi \tilde{x}^n$. Then

$$\tilde{x}^n = A^n x^0 = (S\Lambda S^{-1})^n x^0 = S\Lambda^n S^{-1} x^0, \quad \forall n$$

5

Then we have

$$x^{n+1} = \frac{1}{\|S\Lambda^n S^{-1} x^0\|} S\Lambda^{n+1} S^{-1} x^0$$

in which spectrum of $\frac{1}{\|S\Lambda^nS^{-1}x^0\|}S\Lambda^{n+1}S^{-1}$ is simply

$$\frac{1}{\|S\Lambda^n S^{-1} x^0\|} S\Lambda^{n+1} S \stackrel{(i)}{\sim} = \frac{1}{\|\Lambda^n\|} S\Lambda^{n+1} S = S \operatorname{diag}\{\lambda_1, \lambda_2 \left(\frac{\lambda_2}{\lambda_1}\right)^n, \dots, \lambda_n \left(\frac{\lambda_n}{\lambda_1}\right)^n\} S^{-1}$$

$$\to S \operatorname{diag}\{\lambda_1, 0, \dots, 0\} S^{-1} = \lambda_1 v_1 v_1'$$

in which (i) means only up to a constant $\sim O(1)$

And finally

$$x^{n+1} \to \propto \lambda_1 v_1 v_1' x^0 \propto v_1 \operatorname{sgn}(v_1' x^0)$$
$$x^{n+2} \to A \frac{x^{n+1}}{\|x^{n+1}\|} = A v_1 \operatorname{sgn}(v_1' x^0) = \operatorname{sgn}(v_1' x^0) \lambda_1 v_1$$

Problem 5

Question 5.(a)

$$\begin{cases} x = (A - BD^{-1}C)^{-1}(a - BD^{-1}b) \\ y = (D - CA^{-1}B)^{-1}(b - CA^{-1}a) \end{cases}$$

Question 5.(b)

Using the above fomula, we have

$$y = (C^{-1} + V'A^{-1}U)^{-1}V'A^{-1}z \Rightarrow x = A^{-1}(z - Uy) = (A^{-1} - A^{-1}U(C^{-1} + V'A^{-1}U)^{-1}V'A^{-1})z$$
$$\Rightarrow (A + UCV')^{-1} = A^{-1} - A^{-1}U(C^{-1} + V'A^{-1}U)^{-1}V'A^{-1}$$

Problem 6

Question 6.(a)

Prove it directly

L.H.S. =
$$(a_2 + (a_1 - a_2))b_1 + (a_1 - (a_1 - a_2))b_2 = a_2b_1 + a_1b_2 + (a_1 - a_2)(b_1 - b_2) \ge a_2b_1 + a_1b_2 = R.H.S.$$

Question 6.(b)

Denote $P_{\text{swap}(i,j)}$ as the operator to swap the i^{th} and j^{th} element.

1. Since $P_{\text{swap}(i,j)}$ keep all other n-2 elements unchanged, we can make use of the above 2-dimensional inequality, we have the following statement:

If $P_{\text{swap}(i,j)}$ is moving the larger element to a higher larger index, then the inequality is preserved. Say swapping $v_n@n \leftrightarrow v_{n-1}@n-1$ then the inequality perserve, while $v_n@n-1 \leftrightarrow v_{n-1}@n$ does not.

i.e.

$$u'\tilde{v} \ge u'P_{\text{swap}(i,j)}\tilde{v} \Leftrightarrow \tilde{v}_i \ge \tilde{v}_j \& i > j$$

2. Then we prove that: any permutation matrix $P \in \mathcal{P}_n$ could be represented as products of $P_{\text{swap}(i,j)}$ s, in which each $P_{\text{swap}(i,j)}$ is moving the larger element to a higher larger index for the declared u, \tilde{v} .

We do it by the following iteration process:

Algorithm Decomposition $Pv = \prod P_{\text{swap}(i,j)}v$ which perserce inequality

For i = n : 1:

• Move v_k to the desired position as in Pv by repeatedly swap it with 'the first element on its left with subscript smaller than itself'. e.g. to move v_{n-1} which is now at position n to position n-3, with v_n already at position n-2, i.e.

$$\ldots, v_{n-3}, v_n, v_{n-2}, v_{n-1}$$

we do by following:

$$\dots, v_{n-3}, v_n, v_{n-1}, v_{n-2}$$
 swap v_{n-1} with v_{n-2} $\dots, v_{n-1}, v_n, v_{n-3}, v_{n-2}$ v_n is skipped, then swap v_{n-1} with v_{n-3}

Repeat the above operation, which preserve the inquality, until $v_{n:1}$ are all at the right position to become P_{v}

Now we have $u'v \ge u'Pv$

Question 6.(c)

According to the above algorithm, we know that $u'v \ge u'Pv$, $\forall P \in \mathcal{P}_n$. Then we have

$$u'v = u'(\sum_{l=1}^{k} \lambda_l)v \ge u'\sum_{l=1}^{k} \lambda_l P_l, \quad w.r.t.\lambda_l \ge 0, \sum_{l=1}^{k} \lambda_l = 1$$
$$= u'Sv, \quad \forall S \in \mathcal{S}_n$$

And also $I \in \mathcal{S}$, thus

$$u'v = \max_{S \in \mathcal{S}_n} u'Sv$$

Problem 7

Question 7.(a)

Say we denote the SVD of A as $A = \tilde{U}\tilde{\Sigma}\tilde{V}$, then we have

L.H.S. =
$$tr(AB) = tr(\tilde{U}\tilde{\Sigma}\tilde{V}) = tr(\tilde{\Sigma}\tilde{V}B\tilde{U})$$

and here we can define $\tilde{B} \leftarrow \tilde{V}B\tilde{U}$. And on the other hand, singular values of a matrix preserve under unitary transformation, thus

$$\sigma(\tilde{B}) = \sigma(\tilde{V}B\tilde{U}) = \sigma(B)$$

so vNti is now

$$tr(\tilde{\Sigma}\tilde{B}) \le \sum_{i=1}^{n} \sigma_i(\tilde{\Sigma})\sigma_i(\tilde{B}) =$$

Now we can re-define $B \leftarrow \tilde{B}$, and $A \leftarrow \tilde{\Sigma}$. So its equivalent to prove

$$tr(AB) \leq \sum_{i=1}^{n} \sigma_i(A)\sigma_i(B)$$
, with A being diagonal

Question 7.(b)

$$tr(AB) = tr(AU\Sigma V') = tr(V'AU\Sigma) = \sum_{i=1}^{n} \sigma_i v'_i A u_i = \sum_{i,j \le n} \sigma_i v_{ij} a_j u_{ij}$$

Question 7.(c)

Using $xy \leq \frac{1}{2}(x^2 + y^2)$, we have

$$tr(AB) = \sum_{i,j \le n} \sigma_i v_{ij} a_j u_{ij} \le \frac{1}{2} \sum_{i,j \le n} \sigma_i a_j (v_{ij}^2 + u_{ij}^2)$$

Question 7.(d)

Since U and V are both orthonormal bases, we have

$$\sum_{j=1}^{n} v_{ij} v_{kj} = \delta_{ik}, \quad \sum_{j=1}^{n} u_{ij} u_{kj} = \delta_{ik}$$

so matrix $\{v_{ij}^2\}_{i,j=1}^n$ has row sum 1 & column sum 1 (similar for $\{u_{ij}^2\}_{i,j=1}^n$). Then using notation in the previous problem, in which S_n is the doubly stochastic matrices, we have

$$\{v_{ij}^2\}_{i,j=1}^n, \{u_{ij}^2\}_{i,j=1}^n \in \mathcal{S}_n \Rightarrow \{\frac{1}{2}(v_{ij}^2 + u_{ij}^2)\} \in \mathcal{S}_n$$

then using the inequality $\tilde{u}'\tilde{v} = \max_{S \in \mathcal{S}_n} \tilde{u}'S\tilde{v}$, we can place $\sigma_i(A), \sigma_i(B)$ as the \tilde{u}, \tilde{v} , respectively, and then we have

$$tr(AB) \le \sum_{i,j \le n} \sigma_i \frac{1}{2} (v_{ij}^2 + u_{ij}^2) a_j$$
$$\le \sum_{i=1}^n \sigma_i(B) \sigma_i(A)$$

$$\underline{\sum_{i=1}^{n}}$$

 $\frac{\pi}{6}$

 $\frac{\pi}{6}$