COMPARING MEASUREMENTS USING SCIENTIFIC NOTATION LEARNING GOAL

1. I can compare measurements using scientific notation.

ASSIGNMENT

Choose one thing that is very small and one thing that is very small, and compare the two sizes using scientific notation. Show all of the steps to receive credit!

Thing one: _____

Thing two: _____

DISTANCE SCALE

Mark approximately where the two things you chose fit on the scale. (**Note:** If your measurement is not a distance, use the scale on the next slide).

Atomic nucleus					Human					Galaxy	
10^{-15}	10^{-12}	10^{-9}	10^{-6}	10^{-3}	10^0	10^3	10^6	10^9	10^{12}	10^{15}	meters (m)

NON-DISTANCE SCALE

Use this scale if your measurements are not lengths.

Mark approximately where the two things you chose fit on the scale.

 10^{-15} 10^{-12} 10^{-9} 10^{-6} 10^{-3} 10^{0} 10^{3} 10^{6} 10^{9} 10^{12} 10^{15}

Use the table to lookup how to write measurements (like km, cm, mm, etc.) using scientific notation.

COMPARE THE SIZES

In the space below, calculate the ratio of the sizes, and write 1-3 sentences to interpret your ratio.

PRACTICE WRITING MEASUREMENTS USING SCIENTIFIC NOTATION

Convert each measurements into meters using scientific notation:

 $35,650\,\mathrm{km}$

 $124~\mathrm{mm}$

 $51\,\mathrm{cm}$

 $0.051\,\mathrm{mm}$