Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 2008-09, 8ο Εξάμηνο

### Ρομποτική ΙΙ

#### Ευφυή και Επιδέξια Ρομποτικά Συστήματα

Κων/νος Τζαφέστας

Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ. Μηχ/κών & Μηχ/κών Υπολ., Ε.Μ.Π.

Τηλ.: 210 772-3687, (Κτήριο Ηλεκτρ., Γραφείο 21.36)

Email: ktzaf@softlab.ntua.gr

Web: http://www.softlab.ntua.gr/~ktzaf/



Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ. Μάθημα: Ρομποτική ΙΙ

.

### Περιεχόμενα Μαθήματος

- ΕΝΟΤΗΤΑ-1: Επιδέξιος Ρομποτικός Χειρισμός
  - Έλεγγος Ρομπότ με πλεονάζοντες β.ε. (redundant robots)
  - Έλεγχος Δύναμης / Μηχανικής Αντίστασης
  - Μοντελοποίηση και έλεγχος επιδέξιου χειρισμού (Συνεργαζόμενα ρομπότ, Ρομποτικά χέρια)
- ΕΝΟΤΗΤΑ-2: Κινούμενα Ρομπότ
  - Αρχιτεκτονικές Ελέγχου Κινούμενων Ρομπότ
  - Σχεδιασμός δρόμου Αποφυγή εμποδίων
  - Σύνθεση αισθητηρίων πληροφοριών
- Σύνθετοι ρομποτικοί χειριστές Εφαρμογές



Ε.Μ.Π., ΣΗΜΜΥ, Ακαδημαϊκό Έτος 2008-09, 8ο Εξάμηνο Μάθημα: Ρομποτική ΙΙ. Διδάσκων: Κ.Τζαφέστας

### ENOTHTA 1: Επιδέξιος Ρομποτικός Χειρισμός



Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ. Μάθημα: Ρομποτική ΙΙ

2

### Επιδέξια Ρομπότ - Εισαγωγή

- Επιδεξιότητα: η ικανότητα στον έλεγχο με «ακρίβεια» πολλών βαθμών ελευθερίας για την εκτέλεση «λεπτών» και «σύνθετων» εργασιών (συνήθως εργασιών χειρισμού)
- Επιδέξια Ρομποτικά Συστήματα (dextrous robots)
  - Ρομποτικοί Χειριστές με Πλεονάζοντες Βαθμούς Ελευθερίας (robot manipulators with kinematic and/or actuator redundancies)
  - Συνεργαζόμενοι ρομποτικοί χειριστές (cooperating manipulators)
  - Ρομποτικά χέρια (robot hands)
- Θέματα προς μελέτη:
  - **Κινηματική/Στατική** Ανάλυση *Μέτρα Δεξιότητας /* Ικανότητα χειρισμού
  - Σχεδιασμός δράσης (task planning)
  - Έλεγχος συμμόρφωσης (force/impedance compliance control)



#### Κινηματικός Έλεγχος Ρομπότ



# Ρομπότ με πλεονάζοντες βαθμούς ελευθερίας: Εισαγωγή

#### Βασικές αρχές

- 6 β.ε. για θέση/προσανατολισμό στο χώρο
- Πλεονάζοντες β.ε. εισάγουν τη δυνατότητα απειρίας εφικτών κινήσεων στις αρθρώσεις για δοσμένη επιθυμητή κίνηση στο τελικό στοιχείο δράσης
- → μηδενικός χώρος ρομποτικών αρθρώσεων (null space)
- → πλεονάζοντες β.ε. για ικανοποίηση επιπρόσθετων κινηματικών περιορισμών (βελτιστοίηση κριτηρίων για επιλογή κατάλληλης κίνησης στους πλεονάζοντες β.ε.)



Παράδειγμα ρομποτικού βραχίονα με πλεονάζοντες β.ε. (DLR lightweight 7dof robot)



# Ρομπότ με πλεονάζοντες βαθμούς ελευθερίας: Κινηματική (1)



Χώρος αρθρώσεων (joint space)

 $\stackrel{\mathbf{J}}{\Rightarrow} \begin{array}{c} X \acute{\omega} \rho o \varsigma \ \epsilon \rho \gamma \alpha \sigma \acute{\iota} \alpha \varsigma \\ \text{(task space)} \end{array}$ 

R(**J**): range space (σύνολο δυνατών ταχυτήτων στο χώρο εργασίας)

N(J): null space (μηδενικός χώρος)  $\dot{q} \in N(J) \implies J(\dot{q}) = 0$ 

Όταν n > m, και  $\mathrm{rank}(\mathbf{J}) = m$  (δηλαδή,  $\mathbf{J}$ : πλήρους τάξης)  $\rightarrow$  τότε έχουμε (n-m) πλεονάζοντες (redundant) βαθμούς ελευθερίας

$$\dim N(\mathbf{J}) = n - m$$
  $\dim N(\mathbf{J}) + \dim R(\mathbf{J}) = n$ 



Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ. Μάθημα: Ρομποτική ΙΙ

,

## Ρομπότ με πλεονάζοντες βαθμούς ελευθερίας: Κινηματική (2)

Βέλτιστη λύση της διαφορικής κινηματικής εξίσωσης για πλεονάζοντα ρομπότ (redundant robots)

Διαφορική κινηματική εξίσωση:  $\mathbf{J} \cdot \dot{\mathbf{q}} = \dot{\mathbf{p}}$   $\mathbf{J}$ :  $m \times n$ , rank( $\mathbf{J}$ ) =  $m \times n$  rank( $\mathbf{J}$ ) =

Μέθοδος Lagrange:  $F'(\dot{q}, \lambda) = (1/2)\dot{q}^T \cdot \dot{q} - \lambda^T \cdot (J\dot{q} - \dot{p}) \rightarrow \min$ 

$$\begin{array}{c} \nabla_{\dot{q}}F'(\dot{q},\lambda) = \mathbf{0} \\ \nabla_{\lambda}F'(\dot{q},\lambda) = \mathbf{0} \end{array} \right\} \Longrightarrow \left\{ \begin{array}{c} \dot{q} - J^T\lambda = \mathbf{0} \\ J\dot{q} - \dot{p} = \mathbf{0} \end{array} \right. \Longrightarrow \left\{ \begin{array}{c} \dot{q} = J^T\lambda \\ \dot{p} = J\dot{q} = \left(JJ^T\right)\lambda \end{array} \right.$$

 $\dot{q} = J^+ \cdot \dot{p}$ 

όπου  $J^+$  : ψευδοαντίστροφη της Ιακωβιανής

$$J^+ = J^T \cdot (J \cdot J^T)^{-1}$$
 (Moore-Penrose pseudoinverse)



# Ρομπότ με πλεονάζοντες βαθμούς ελευθερίας: Κινηματική (3)

Γενική βέλτιστη λύση της διαφορικής κινηματικής εξίσωσης για πλεονάζοντα ρομπότ (redundant robots)

Διαφορική κινηματική εξίσωση:  $\mathbf{J} \cdot \dot{\mathbf{q}} = \dot{\mathbf{p}}$   $\mathbf{J}$ :  $m \times n$ , rank( $\mathbf{J}$ ) = m

Ελαχιστοποίηση συνάρτησης κόστους:  $F(\dot{q}) = \left(\frac{1}{2}\right) \cdot \left(\dot{q} - k\right)^T \cdot \mathbf{Q} \cdot \left(\dot{q} - k\right)$  (  $\mathbf{Q}$ : symmetric, positive definite  $n \times n$ ,  $k \in \mathbb{R}^n$ )

Μέθοδος Lagrange:  $F'(\dot{q}, \lambda) = (\frac{1}{2}) \cdot (\dot{q} - k)^T \cdot \mathbf{Q} \cdot (\dot{q} - k) - \lambda^T \cdot (\mathbf{J}\dot{q} - \dot{p})$  → min

$$\begin{array}{c} \nabla_{\dot{q}}F'(\dot{q},\lambda)=0 \\ \nabla_{\lambda}F'(\dot{q},\lambda)=0 \end{array} \right\} \Longrightarrow \left\{ \begin{array}{c} Q(\dot{q}-k)-J^{T}\lambda=0 \\ J\dot{q}-\dot{p}=0 \end{array} \right.$$

$$\dot{q} = J_{Q}^{\#} \cdot \dot{p} + (I_{n} - J_{Q}^{\#} \cdot J) \cdot k$$
( $I_{n}$ : μοναδιαία μήτρα  $n \times n$ )  $\in N(J)$ 

όπου  $J_{\mathcal{Q}}^{\#}$  weighted pseudoinverse of the Jacobian matrix

$$\boldsymbol{J}_{O}^{\#} = \boldsymbol{Q}^{-1} \cdot \boldsymbol{J}^{T} \cdot (\boldsymbol{J} \cdot \boldsymbol{Q}^{-1} \cdot \boldsymbol{J}^{T})^{-1}$$



Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ. Μάθημα: Ρομποτική ΙΙ

٥

# Ρομπότ με πλεονάζοντες βαθμούς ελευθερίας: Κινηματική (4)

Γενική βέλτιστη λύση της διαφορικής κινηματικής εξίσωσης : Απόδειξη

$$\begin{array}{c}
\overrightarrow{q} = \underbrace{Q^{-1}J^{T}(JQ^{-1}J^{T})}_{J_{Q}^{\#}} \dot{p} + \left(I - \underbrace{Q^{-1}J^{T}(JQ^{-1}J^{T})}_{J_{Q}^{\#}}\right)^{-1}J\right)k
\end{array}$$



### Έλεγχος Πλεοναζόντων Ρομπότ

#### Μεθοδολογία Διάσπασης Ρομποτικής Εργασίας

- Διάσπαση σύνθετων ρομποτικών εργασιών σε υποεργασίες με σειρά προτεραιότητας (task-decomposition) (π.χ. έλεγχος θέσης ή δύναμης, αποφυγή εμποδίων ή ιδιομορφιών κλπ.)
- Περιγραφή ρομποτικών υποεργασιών με βάση:
  - επιθυμητή τροχιά του ρομπότ στο χώρο εργασίας (ή γενικότερα επιθυμητή «συμπεριφορά», π.χ. μηχανική αντίσταση, κλπ.)
  - κριτήρια στο χώρο διάταξης των αρθρώσεων (configuration space) → βελτιστοποίηση



Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ. Μάθημα: Ρομποτική ΙΙ

1

### Μεθοδολογία Διάσπασης Εργασίας Πλεοναζόντων Ρομπότ (1)

Βασικές Σχέσεις (διάσπαση σε δύο ρομποτικές υπο-εργασίες)

Έστω  $\mathbf{q} = [q_1, q_2, ..., q_n]$ : διάταξη των αρθρώσεων (configuration)

- <u>Πρώτη υπο-εργασία:</u>  $p_1 = f_1(q), p_1: m_1 \times 1$  διάνυσμα  $\rightarrow$  επιθυμητή τροχιά  $p_{1d}(t)$
- Δεύτερη υπο-εργασία:

<u>Περίπτωση − 1:</u>  $p_2 = f_2(q)$ ,  $p_2$ :  $m_2 \times 1$  διάνυσμα ⇒ επιθυμητή τροχιά  $p_{2d}(t)$ 

<u>Περίπτωση – 2:</u> Συνάρτηση κριτηρίου: c = V(q)  $\rightarrow$  μεγιστοποίηση

πρόβλημα βελτίστου ελέγχου



#### Μεθοδολογία Διάσπασης Εργασίας Πλεοναζόντων Ρομπότ (2)

$$\begin{array}{c|c} \dot{\boldsymbol{q}} = \boldsymbol{J}_{1}^{+} \dot{\boldsymbol{p}}_{1d} + \left(\boldsymbol{I}_{n} - \boldsymbol{J}_{1}^{+} \boldsymbol{J}_{1}\right) \boldsymbol{k}_{1} \\ & \in N(\boldsymbol{J}_{1}) \\ & \mu \eta \delta \epsilon \nu \iota \kappa \delta \varsigma \chi \acute{o} \rho o \varsigma \\ & (\text{«εσωτερικές κινήσεις»}) \\ \text{Εκτέλεση 1ης υποεργασίας} \\ & (\text{«εξωτερική κίνηση»}) \\ \end{array}$$



Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ. Μάθημα: Ρομποτική ΙΙ

#### Μεθοδολογία Διάσπασης Εργασίας Πλεοναζόντων Ρομπότ (3)

• Δεύτερη υπο-εργασία

- 1η Περίπτωση : 
$$\dot{p}_2 = \mathbf{J}_2 \cdot \dot{q}$$
 ( $p_2 = f_2(q) = [f_{21}(q) \ f_{22}(q) ... \ f_{2m_2}(q)]^T$ )

(T2a)  $\dot{p}_{2d}$  όπου:  $\mathbf{J}_2 = \partial f_2 / \partial q$  ( $m_2 \times n$ )

$$(1) \wedge (T2a) \Rightarrow \dot{\mathbf{p}}_{2d} - \mathbf{J}_2 \mathbf{J}_1^+ \dot{\mathbf{p}}_{1d} = \mathbf{J}_2 (\mathbf{I}_n - \mathbf{J}_1^+ \mathbf{J}_1) \mathbf{k}_1$$

Τελικά: 
$$\vec{q}_d = \vec{J}_1^+ \dot{p}_{1d} + \vec{J}_2^+ (\dot{p}_{2d} - \vec{J}_2 \vec{J}_1^+ \dot{p}_{1d}) + (\vec{I}_n - \vec{J}_1^+ \vec{J}_1 - \vec{J}_2^+ \vec{J}_2) k_2$$

$$1η υποεργασία 2η υποεργασία υπολείπονες πλεονάζοντες β.ε.$$

Σημείωση: χρησιμοποιήθηκε η σχέση  $(\mathbf{I}_n - \mathbf{J}_1^+ \mathbf{J}_1) \tilde{\mathbf{J}}_2^+ = \tilde{\mathbf{J}}_2^+$ 

Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ. Μάθημα: Ρομποτική ΙΙ —

# Μεθοδολογία Διάσπασης Εργασίας Πλεοναζόντων Ρομπότ (3β)

$$\tilde{\mathbf{J}}_{2} = \mathbf{J}_{2} \mathbf{N}_{1} (1) \quad \text{όπου} \quad \mathbf{N}_{1} = \left(\mathbf{I}_{n} - \mathbf{J}_{1}^{+} \mathbf{J}_{1}\right) \qquad \begin{array}{c} \text{Ισχύει} \quad \mathbf{N}_{1} \cdot \mathbf{N}_{1} = \mathbf{N}_{1} \quad (2\alpha) \\ \text{και} \quad \left(\mathbf{N}_{1}\right)^{\mathrm{T}} = \mathbf{N}_{1} \quad (2\beta) \end{array}$$

Πρόταση: Για τις παραπάνω μήτρες ισχύει:

$$\left(\mathbf{I}_n\!-\!\mathbf{J}_1^+\mathbf{J}_1\right)\!\tilde{\mathbf{J}}_2^+\!=\!\tilde{\mathbf{J}}_2^+\quad\text{dhadsh}:\quad\left[\!\tilde{\mathbf{J}}_2^+\!=\!\mathbf{N}_1\!\cdot\!\tilde{\mathbf{J}}_2^+\!\right]$$

$$\begin{cases} \frac{A\pi \acute{o}\delta\epsilon \imath \xi \eta :}{\tilde{\mathbf{J}}_{2}^{+}\tilde{\mathbf{J}}_{2}\tilde{\mathbf{J}}_{2}^{+} = \tilde{\mathbf{J}}_{2}^{+}} & \longleftarrow \left(\mathbf{N}_{1} \cdot \tilde{\mathbf{J}}_{2}^{+}\right) \tilde{\mathbf{J}}_{2} \left(\mathbf{N}_{1} \cdot \tilde{\mathbf{J}}_{2}^{+}\right) - \mathbf{N}_{1} \cdot \tilde{\mathbf{J}}_{2}^{+} \tilde{\mathbf{J}}_{2} \tilde{\mathbf{J}}_{2}^{+} = \mathbf{N}_{1} \cdot \tilde{\mathbf{J}}_{2}^{+} \\ \tilde{\mathbf{J}}_{2}\tilde{\mathbf{J}}_{2}^{+}\tilde{\mathbf{J}}_{2} = \tilde{\mathbf{J}}_{2} & \dots \\ \left(\tilde{\mathbf{J}}_{2}^{+}\tilde{\mathbf{J}}_{2}\right)^{\mathsf{T}} = \tilde{\mathbf{J}}_{2}^{+}\tilde{\mathbf{J}}_{2} \\ \left(\tilde{\mathbf{J}}_{2}\tilde{\mathbf{J}}_{2}^{+}\right)^{\mathsf{T}} = \tilde{\mathbf{J}}_{2}\tilde{\mathbf{J}}_{2}^{+} \end{cases}$$



Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ. Μάθημα: Ρομποτική ΙΙ

15

### Μεθοδολογία Διάσπασης Εργασίας Πλεοναζόντων Ρομπότ (4)

• Δεύτερη υπο-εργασία / 1η Περίπτωση (συνέχεια)

Απλοποιημένη περίπτωση (2η υποεργασία εκφρασμένη απ' ευθείας ως επιθυμητή κίνηση στο χώρο των ρομποτικών αρθρώσεων)

Εάν 
$$\boldsymbol{p_2} = \boldsymbol{q}$$
, δηλαδή  $\mathbf{J_2} = \mathbf{I}$ , τότε:  $\tilde{\mathbf{J}}_2 = (\mathbf{I}_n - \mathbf{J}_1^+ \mathbf{J}_1)$   
οπότε:  $\tilde{\mathbf{J}}_2^+ = (\mathbf{I}_n - \mathbf{J}_1^+ \mathbf{J}_1)^+ = (\mathbf{I}_n - \mathbf{J}_1^+ \mathbf{J}_1)$ 

Τελικά δηλαδή παίρνουμε: 
$$\frac{\dot{q}_d = \mathbf{J}_1^+ \dot{p}_{1d} + (\mathbf{I}_n - \mathbf{J}_1^+ \mathbf{J}_1) \dot{p}_{2d} }{1η υποεργασία}$$
 (4)

Αντί για  $\dot{P}_{2d}$  στις σχέσεις (3) και (4), χρησιμοποιείται συχνά η σχέση:

$$\dot{\pmb{p}}_{2d}^* = \dot{\pmb{p}}_{2d} + \mathbf{H}_2(\pmb{p}_{2d} - \pmb{p}_2)$$
 οπότε η (4) π.χ. γράφεται τελικά:

$$\dot{q}_d = \mathbf{J}_1^+ \dot{p}_{1d} + (\mathbf{I}_n - \mathbf{J}_1^+ \mathbf{J}_1) [\dot{p}_{2d} + \mathbf{H}_2 (\mathbf{p}_{2d} - \mathbf{p}_2)]$$
 (4)



### Μεθοδολογία Διάσπασης Εργασίας Πλεοναζόντων Ρομπότ (5)

• Δεύτερη υπο-εργασία

- 2η Περίπτωση : «Συνάρτηση κριτηρίου» c = V(q) → max **(T2b)** 

Έστω: 
$$\mathbf{k}_1 = k_c \cdot \mathbf{\xi}$$
 όπου:  $\mathbf{\xi} = \begin{bmatrix} \xi_1, \xi_2, ..., \xi_n \end{bmatrix}^T \left( \xi_j = \partial V / \partial q_j \right)$ 

$$k_c : \theta \text{ετική σταθερά}$$

 $\xi$ : διάνυσμα κλίσης της συνάρτησης κριτηρίου c=V(q) (gradient vector  $\nabla_q[V(q)]$ )

ορθογώνια προβολή του  $\mathbfilde{k}_1$  στο  $N(\mathbf{J}_1)$ 

(1) 
$$\Rightarrow \dot{q}_d = J_1^+ \dot{p}_{1d} + k_c (I_n - J_1^+ J_1) \cdot \xi$$

1η υποεργασία 2η υποεργασία

Ecoure:  $\dot{c} = \boldsymbol{\xi}^T \mathbf{J}_1^+ \dot{\boldsymbol{p}}_{1d} + \underline{\boldsymbol{\xi}^T \cdot \left(\mathbf{I}_n - \mathbf{J}_1^+ \mathbf{J}_1\right) \cdot \boldsymbol{\xi} \cdot k_c}} > 0 \Rightarrow c(\boldsymbol{q}) \uparrow$ 

1′



Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ. Μάθημα: Ρομποτική ΙΙ

### Έλεγχος Πλεοναζόντων Ρομπότ

### Εφαρμογές – Παραδείγματα:

- 1. Αποφυγή Εμποδίων (obstacle avoidance)
- 2. Αποφυγή Ιδιόμορφων Διατάξεων (avoiding singularities)

## Έλεγχος Πλεοναζόντων Ρομπότ – Εφαρμογές: Αποφυγή Εμποδίων (1)

Redundant Robot Manipulators: Avoiding Obstacles



- Υποεργασία 1: Εκτέλεση επιθυμητής τροχιάς  $p_{1d}(t): p_0(t=0) \Rightarrow p_{\rm f}(t={\rm t_f})$
- Υποεργασία 2: Αποφυγή εμποδίου  $\mathbf{p}_{2d}(t) = \mathbf{q}_{r}$



Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ. Μάθημα: Ρομποτική ΙΙ -

# Έλεγχος Πλεοναζόντων Ρομπότ – Εφαρμογές: Αποφυγή Εμποδίων (2)

- Υποεργασία 1η  $(p_{1d})$ : Εκτέλεση επιθυμητής τροχιάς  $p_0$   $(t=0) o p_{\rm f}$   $(t={\rm t_f})$ 

c1 =  $\cos(q_1)$ c12 =  $\cos(q_1 + q_2)$ c123 =  $\cos(q_1 + q_2 + q_3)$ 

 $\begin{array}{rcl} s1 & = sin(q_1) \\ s12 & = sin(q_1 + q_2) \\ s123 & = sin(q_1 + q_2 + q_3) \end{array}$ 

 $\begin{pmatrix} \dot{\mathbf{p}}_{1x} \\ \dot{\mathbf{p}}_{1y} \end{pmatrix} = \mathbf{J}_{1}(q_{1}, q_{2}, q_{3}) \cdot \begin{pmatrix} \dot{\mathbf{q}}_{1} \\ \dot{\mathbf{q}}_{2} \\ \dot{\mathbf{q}}_{3} \end{pmatrix}$ 

Έστω π.χ. επιθυμητή τροχιά (1η υποεργασία):

$$\boldsymbol{p}_{1d}(t) = \begin{bmatrix} \boldsymbol{x}_0 \\ \boldsymbol{y}_0 - (3 - 2t)t^2 \boldsymbol{y}_0 \end{bmatrix}, \ 0 \le t \le 1$$

- Υποεργασία 2η:  $p_2 = q$  και  $p_{2d} = q_r$  (διάταξη αναφοράς)



## Έλεγχος Πλεοναζόντων Ρομπότ – Εφαρμογές: Αποφυγή Εμποδίων (3)

► <u>Παράδειγμα προσομοίωσης</u> (3 β.ε. → τοποθέτηση στο επίπεδο) (εφαρμογή της παραπάνω σχέσης (4)')

$$\dot{\boldsymbol{q}}_{d} = \mathbf{J}_{1}^{+} \dot{\boldsymbol{p}}_{1d} + (\mathbf{I}_{n} - \mathbf{J}_{1}^{+} \mathbf{J}_{1}) \mathbf{H}_{2} (\boldsymbol{p}_{2d} - \boldsymbol{p}_{2})$$





Χωρίς τον έλεγχο πλεοναζόντων β.ε. (H<sub>2</sub>=0)

Με έλεγχο των πλεοναζόντων β.ε. ( $\mathbf{H}_2 = k_c \mathbf{I}$ )



Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ. Μάθημα: Ρομποτική ΙΙ

21

## Έλεγχος Πλεοναζόντων Ρομπότ – Εφαρμογές: Αποφυγή Ιδιομορφιών (1)

#### Redundant Robot Manipulators: Avoiding Singularities

- Υποεργασία 1η ( $p_{1d}$ ): Εκτέλεση επιθυμητής τροχιάς  $p_0$  (t=0)  $\rightarrow p_{\rm f}$  (t= $t_{\rm f}$ )

$$\mathbf{J}_{1} = \begin{pmatrix} -(l_{1}s_{1} + l_{2}s_{12} + l_{3}s_{123}) & -(l_{2}s_{12} + l_{3}s_{123}) & -l_{3}s_{123} \\ (l_{1}c_{1} + l_{2}c_{12} + l_{3}c_{123}) & (l_{2}c_{12} + l_{3}c_{123}) & l_{3} \cdot c_{123} \end{pmatrix} \quad \delta \eta \lambda.: \quad \mathbf{J}_{1} = \begin{pmatrix} \underline{J}_{11} \\ \underline{J}_{12} \end{pmatrix}$$

- Υποεργασία 2η: Μεγιστοποίηση συνάρτησης κριτηρίου c = V(q)

$$c = V(q) = \sqrt{\det\left(\mathbf{J}_{_{1}}\mathbf{J}_{_{1}}^{^{T}}\right)}$$
 : δείκτης ικανότητας χειρισμού (manipulability) (μέτρο «απόστασης» από ιδιόμορφες διατάξεις)

$$\mathbf{J}_1$$
: 2x3  $\Rightarrow$   $\mathbf{J}_1\mathbf{J}_1^T$ : 2x2 και  $\det\left(\mathbf{J}_1\mathbf{J}_1^T\right)=0$  στις ιδιόμορφες διατάξεις

### Έλεγχος Πλεοναζόντων Ρομπότ – Εφαρμογές: Αποφυγή Ιδιομορφιών (2)

Επίλυση του προβλήματος αποφυγής ιδιόμορφων διατάξεων με έλεγχο των πλεοναζόντων β.ε.

 $\triangleright$  Εφαρμογή της παραπάνω σχέσης (5):  $[\dot{\boldsymbol{q}}_d = \boldsymbol{\mathbf{J}}_1^+ \dot{\boldsymbol{p}}_{1d} + k_c (\boldsymbol{\mathbf{I}}_n - \boldsymbol{\mathbf{J}}_1^+ \boldsymbol{\mathbf{J}}_1) \cdot \boldsymbol{\boldsymbol{\xi}} ]$ 

όπου:  $k_c$ : θετική σταθερά, και  $\boldsymbol{\xi} = \! \left[ \boldsymbol{\xi}_1, \! \boldsymbol{\xi}_2, \! ..., \! \boldsymbol{\xi}_n \right]^T \left( \boldsymbol{\xi} = \! \partial V / \partial \boldsymbol{q} \right)$ 

Έχουμε:  $\xi_l = \partial V / \partial q_l = \partial \left( \sqrt{\det \left( \mathbf{J_1} \mathbf{J_1^T} \right)} \right) / \partial q_l = \frac{\sqrt{\det \left( \mathbf{J_1} \mathbf{J_1^T} \right)}}{2} \cdot \sum_{i,j=1}^2 \alpha_{ij} \left( \frac{\partial \left( \underline{J_{1i}} \right)}{\partial q_l} \underline{J_{1j}^T} + \frac{\partial \left( \underline{J_{1j}} \right)}{\partial q_l} \underline{J_{1i}^T} \right)$ 

όπου  $\alpha_{ij}$ : το (i,j) στοιχείο του inverse $\left[\mathbf{J}_1\mathbf{J}_1^T\right]$  και  $\mathbf{J}_{1i}$ : το i-διάνυσμα γραμμής του πίνακα  $\mathbf{J}_1$ 



Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ. Μάθημα: Ρομποτική ΙΙ

2:

## Έλεγχος Πλεοναζόντων Ρομπότ – Εφαρμογές: Αποφυγή Ιδιομορφιών (3)

Απόδειξη της παραπάνω σχέσης για το  $\xi_l$ 

Έστω:  $\mathbf{J} = \mathbf{J}_1$  και  $\mathbf{B} = \mathbf{J} \mathbf{J}^{\mathrm{T}} = [\beta_{ij}]$ , οπότε:  $\beta_{ij} = \underline{J}_i \cdot \underline{J}_j^T$ 

Eίναι:  $\Delta = \det(\mathbf{J} \mathbf{J}^{T}) = \det(\mathbf{B}) = \beta_{11}\beta_{22} - \beta_{12}\beta_{21}$ 

Kai:  $\frac{\partial \Delta}{\partial q_1} = \frac{\partial \beta_{11}}{\partial q_1} \beta_{22} + \beta_{11} \frac{\partial \beta_{22}}{\partial q_2} - \frac{\partial \beta_{12}}{\partial q_1} \beta_{21} - \beta_{12} \frac{\partial \beta_{21}}{\partial q_1}$ 

 $\text{\'opole} \quad \frac{\partial \beta_{ij}}{\partial q_i} = \frac{\partial \underline{J}_i}{\partial q_j} \underline{J}_j^T + \underline{J}_i \frac{\partial \underline{J}_j^T}{\partial q_j} = \frac{\partial \underline{J}_i}{\partial q_j} \underline{J}_j^T + \frac{\partial \underline{J}_j}{\partial q_j} \underline{J}_i^T$ 

Παίρνουμε τελικά:  $\xi_l = \partial V/\partial q_l = \partial (\sqrt{\Delta})/\partial q_l = \frac{1}{2\sqrt{\Delta}} \cdot \frac{\partial \Delta}{\partial q_l} = \frac{1}{2\sqrt{\Delta}} \cdot \sum_{i,j=1}^2 \alpha_{ij}' \left( \frac{\partial \underline{J}_i}{\partial q_l} \underline{J}_j^T + \frac{\partial \underline{J}_j^T}{\partial q_l} \underline{J}_i^T \right)$ όπου:  $\alpha_{11}' = \beta_{22}, \alpha_{22}' = \beta_{11}, \alpha_{12}' = -\beta_{12}, \alpha_{21}' = -\beta_{21}$ 

...



### Έλεγχος Πλεοναζόντων Ρομπότ – Εφαρμογές: Αποφυγή Ιδιομορφιών (4)

▶ Παράδειγμα προσομοίωσης (3 β.ε. → τοποθέτηση στο επίπεδο) (εφαρμογή της παραπάνω σχέσης (5))

$$\dot{\boldsymbol{q}}_d = \mathbf{J}_1^+ \dot{\boldsymbol{p}}_{1d} + k_c (\mathbf{I}_n - \mathbf{J}_1^+ \mathbf{J}_1) \cdot \boldsymbol{\xi}$$





- Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ. Μάθημα: Ρομποτική ΙΙ 🗕

### Έλεγχος Πλεοναζόντων Ρομπότ – Εφαρμογές - Παραδείγματα





Αποφυγή εμποδίων σε πραγματικό χρόνο με κινηματικό έλεγχο των πλεοναζόντων βαθμών ελευθερίας του ρομποτικού χειριστή



# Έλεγχος Πλεοναζόντων Ρομπότ – Συμπεράσματα

• <u>Πλεονάζοντες β.ε.</u> εισάγουν τη δυνατότητα «απειρίας εφικτών κινήσεων» στις αρθρώσεις για δοσμένη επιθυμητή κίνηση στο τελικό στοιχείο δράσης (μηδενικός χώρος ρομποτικών αρθρώσεων)

Πλεονάζοντες βαθμοί ελευθερίας  $\rightarrow$  «Απειρία» λύσεων για το ανάστροφο κινηματικό πρόβλημα  $\rightarrow$  Βελτιστοποίηση

• Κινηματικός έλεγχος πλεοναζόντων βαθμών ελευθερίας – Μεθοδολογία διάσπασης ρομποτικής εργασίας: Διάσπαση σύνθετων ρομποτικών εργασιών σε υπο-εργασίες με σειρά προτεραιότητας (task-decomposition)

Περιγραφή ρομποτικών υποεργασιών με βάση:

- επιθυμητή τροχιά ή γενικότερα επιθυμητή «συμπεριφορά» (π.χ. μηχανική αντίσταση) του ρομπότ στο χώρο εργασίας (task space)
- κριτήρια στο χώρο διάταξης των αρθρώσεων (configuration space) → βελτιστοποίηση



Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ. Μάθημα: Ρομποτική ΙΙ

27

Ε.Μ.Π., ΣΗΜΜΥ, Ακαδημαϊκό Έτος 2008-09, 8ο Εξάμηνο Μάθημα: Ρομποτική ΙΙ. Διδάσκων: Κ.Τζαφέστας

### Ρομποτική Ικανότητα Χειρισμού / Δείκτες Ρομποτικής Δεξιότητας

(Robotic manipulability – Dexterity measures)



Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ . Μάθημα: Ρομποτική ΙΙ.

### Ρομποτική ικανότητα χειρισμού (manipulability) - Εισαγωγή

Έστω ρομποτικός χειριστής με η β.ε.

$$p = f_p(q)$$
 (1)  $\Rightarrow$   $v = \dot{p} = J_p(q) \cdot \dot{q}$  (2)

Ρομποτική ικανότητα χειρισμού (robotic manipulability)

Το σύνολο: 
$$\mathcal{M} = \left\{ \mathbf{v} = \dot{\mathbf{p}} : \|\dot{\mathbf{q}}\| \le 1 \right\} \triangleq \text{«Ελλειψοειδές ικανότητας χειρισμού»}$$
 (ellipsoid in the *m*-dimensional Euclidean space) (3)

Δηλαδή, το σύνολο των δυνατών ταχυτήτων  $\emph{v}$  του τελικού στοιχείου δράσης που μπορούν να επιτευχθούν από ταχύτητες στις αρθρώσεις:  $\|\dot{\emph{q}}\| \leq 1$ 

Αποδεικνύεται ότι: 
$$\mathcal{M} = \left\{ \mathbf{v}: \mathbf{v}^T \cdot \left(\mathbf{J}^+\right)^T \cdot \mathbf{J}^+ \cdot \mathbf{v} \le 1 \right\}$$
 (4)

όπου:  $\mathbf{v} \in R(\mathbf{J})$  (range space of  $\mathbf{J}$ , δηλαδή το σύνολο των δυνατών ταχυτήτων στο χώρο δράσης)

kai:  $\mathbf{J}^+$  (ψευδοαντίστροφη της  $\mathbf{J}$ )



### Ελλειψοειδές ρομποτικής ικανότητας χειρισμού – Σχηματική Παράσταση





Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ . Μάθημα: Ρομποτική ΙΙ.

2

#### Ελλειψοειδές ρομποτικής ικανότητας χειρισμού – Απόδειξη

√ Απόδειξη της σχέσης (4)

Ισχύει: 
$$\dot{q} = \mathbf{J}^+ \cdot \mathbf{v} + (\mathbf{I} - \mathbf{J}^+ \mathbf{J}) \cdot \mathbf{k}$$

(3) 
$$\Rightarrow 1 \ge \|\dot{q}\|^2 = \dot{q}^T \dot{q} = v^T (\mathbf{J}^+)^T \mathbf{J}^+ v + k^T (\mathbf{I} - \mathbf{J}^+ \mathbf{J})^T (\mathbf{I} - \mathbf{J}^+ \mathbf{J}) k$$
  
  $+ 2k^T (\mathbf{I} - \mathbf{J}^+ \mathbf{J})^T \mathbf{J}^+ \cdot v$  (a)

Aλλά: 
$$(\mathbf{I} - \mathbf{J}^{+}\mathbf{J})^{T} \cdot \mathbf{J}^{+} = \mathbf{0}$$

Aρα, (α) 
$$\implies 1 \ge ||\dot{q}||^2 = v^T (\mathbf{J}^+)^T \mathbf{J}^+ v + \underbrace{k^T (\mathbf{I} - \mathbf{J}^+ \mathbf{J})^T (\mathbf{I} - \mathbf{J}^+ \mathbf{J}) k}_{\ge 0}$$

Δηλαδή, παίρνουμε τελικά: 
$$\|\dot{\boldsymbol{q}}\| \leq 1 \implies \boldsymbol{v}^T \cdot \left(\mathbf{J}^+\right)^T \cdot \mathbf{J}^+ \cdot \boldsymbol{v} \leq 1$$



### Ψευδο-αντίστροφες Μήτρες

**Ορισμός** (Moore-Penrose pseudoinverse)

Για κάθε μήτρα **A** (m x n) υπάρχει μια μοναδική n x m μήτρα **A**+ για την οποία:

$$\begin{cases} \mathbf{A} \cdot \mathbf{A}^{+} \cdot \mathbf{A} = \mathbf{A} \\ \mathbf{A}^{+} \cdot \mathbf{A} \cdot \mathbf{A}^{+} = \mathbf{A}^{+} \\ \left(\mathbf{A} \cdot \mathbf{A}^{+}\right)^{T} = \mathbf{A} \cdot \mathbf{A}^{+} \\ \left(\mathbf{A}^{+} \cdot \mathbf{A}\right)^{T} = \mathbf{A}^{+} \cdot \mathbf{A} \end{cases}$$

Η η x m μήτρα **A**<sup>+</sup> ονομάζεται ψευδοαντίστροφη της **A** 



Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ . Μάθημα: Ρομποτική ΙΙ.

### Ψευδο-αντίστροφες (συνέχεια)

**Ιδιότητες** (ψευδοαντίστροφης  $A^+$ , της  $(m \times n)$  μήτρας A):

(i) 
$$\left(\mathbf{A}^{+}\right)^{+} = \mathbf{A}$$

(i) 
$$\left(\mathbf{A}^{+}\right)^{+} = \mathbf{A}$$
  
(ii)  $\left(\mathbf{A}^{T}\right)^{+} = \left(\mathbf{A}^{+}\right)^{T}$   $\kappa \alpha i \left(\mathbf{A}\mathbf{A}^{T}\right)^{+} = \left(\mathbf{A}^{+}\right)^{T}\mathbf{A}^{+}$ 

(iii) Eav rank(
$$\mathbf{A}$$
)=m,  $\mathbf{A}^+ = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1}$  kat  $\mathbf{A} \mathbf{A}^+ = \mathbf{I}_{mxm}$ 

(iv) Eav rank(
$$\mathbf{A}$$
)=n,  $\mathbf{A}^+ = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$  kat  $\mathbf{A}^+ \mathbf{A} = \mathbf{I}_{nxn}$ 



### Ελλειψοειδές ρομποτικής ικανότητας χειρισμού – Διάσπαση Ιδιοτιμής (1)

√ Διάσπαση Ιδιοτιμής (singular value decomposition)

Μήτρα 
$$\mathbf{J}(m \times n)$$
  $\rightarrow$   $\mathbf{J} = \mathbf{U} \cdot \mathbf{\Sigma} \cdot \mathbf{V}^T$  Matlab function  $svd$ :  $[U,S,V] = svd(J)$ ;

 $\mathbf{U}$ :  $m \times m$  και  $\mathbf{V}$ :  $n \times n$  ορθοκανονικές μήτρες

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & \sigma_m \end{bmatrix} \quad \begin{array}{c} \Sigma: m \times n \text{ mhtra} \\ \sigma_1: i\delta i\delta \mu o \rho \phi \epsilon \varsigma \text{ times} \varsigma \text{ (singular values)} \\ (\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_m \ge 0) \end{array}$$

Ισχύει: 
$$\sigma_i = \sqrt{\lambda_i}$$
,  $i=1,2,\cdots,n$  όπου  $\lambda_i$   $(i=1,\ldots,m)$  οι  $m$  μεγαλύτερες ιδιοτιμές της μήτρας  $\mathbf{J}^{\mathrm{T}}\mathbf{J}$ 



Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ . Μάθημα: Ρομποτική ΙΙ. —

-

### Ελλειψοειδές ρομποτικής ικανότητας χειρισμού – Διάσπαση Ιδιοτιμής (2)

Η ορθοκανονική μήτρα  $\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_m \end{bmatrix}$  ορίζει ένα πλαίσιο αναφοράς του οποίου οι πρωτεύοντες άξονες καθορίζονται από τα μοναδιαία διανύσματα  $\mathbf{u}_1, \ldots, \mathbf{u}_m$ 



Μπορούμε να αποδείξουμε ότι τα  $\sigma_i \mathbf{u}_i$  (i=1,...,m) καθορίζουν τους πρωτεύοντες άξονες του ελλειψοειδούς ικανότητας χειρισμού

Ελλειψοειδές ικανότητας χειρισμού (σχέση (4)) : 
$$\|\dot{\boldsymbol{q}}\| \leq 1 \implies \boldsymbol{v}^T \cdot \left(\mathbf{J}^+\right)^T \cdot \mathbf{J}^+ \cdot \boldsymbol{v} \leq 1$$

Einai: 
$$\mathbf{J}^+ = \mathbf{V} \cdot \mathbf{\Sigma}^+ \cdot \mathbf{U}^{\mathrm{T}}$$
 ópou:  $\mathbf{\Sigma}^+ = \begin{bmatrix} \boldsymbol{\sigma}_1^{-1} & & 0 \\ & \ddots & \\ 0 & & \boldsymbol{\sigma}_m^{-1} \\ & & \mathbf{0}_{(n-m)\times m} \end{bmatrix}$ 



#### Ελλειψοειδές ρομποτικής ικανότητας γειρισμού – Διάσπαση Ιδιοτιμής (3)

Διάσπαση ιδιοτιμής της μήτρας **J** → καθορισμός πρωτευόντων αζόνων του ελλειψοειδούς ικανότητας χειρισμού

Έχουμε: 
$$\mathbf{J}^+ \mathbf{v} = \mathbf{V} \cdot \mathbf{\Sigma}^+ \cdot \mathbf{U}^T \mathbf{v}$$



Example: 
$$\mathbf{J} \cdot \mathbf{v} = \mathbf{V} \cdot \mathbf{L}^T \cdot \mathbf{v}$$

$$\mathbf{E}_{\sigma \tau \omega} : \quad \tilde{\mathbf{v}} = \mathbf{U}^T \mathbf{v} = \begin{bmatrix} \mathbf{u}_1^T \cdot \mathbf{v} \\ \mathbf{u}_2^T \cdot \mathbf{v} \\ \vdots \\ \mathbf{u}_m^T \cdot \mathbf{v} \end{bmatrix} = \operatorname{col} \left[ \tilde{\mathbf{v}}_i = \mathbf{u}_i^T \cdot \mathbf{v} \right]$$

$$\mathbf{u}_1 \quad \tilde{\mathbf{v}}_1 = \mathbf{u}_1^T \cdot \mathbf{v}$$

(δηλαδή:  $\tilde{v}$  το διάνυσμα συντεταγμένων του v στο πλαίσιο που ορίζει η U)  $(\tilde{\boldsymbol{v}} = \boldsymbol{v}^{(U)} = \mathbf{U}^T \boldsymbol{v}^{(0)} \quad \alpha \phi o v \quad \boldsymbol{v}^{(0)} = \mathbf{U} \quad \boldsymbol{v}^{(U)})$ 

Έχουμε επομένως:

$$\mathbf{v}^{T} \left( \mathbf{J}^{+} \right)^{T} \mathbf{J}^{+} \mathbf{v} = \mathbf{v}^{T} \mathbf{U} \left( \mathbf{\Sigma}^{+} \right)^{T} \mathbf{V}^{T} \mathbf{V} \mathbf{\Sigma}^{+} \mathbf{U}^{T} \mathbf{v} = \tilde{\mathbf{v}}^{T} \left[ (\mathbf{\Sigma}^{+})^{T} (\mathbf{\Sigma}^{+}) \right] \tilde{\mathbf{v}} \quad \Rightarrow$$

$$\sum_{i=1}^{m} \left( \frac{1}{\sigma_{i}^{2}} \cdot \tilde{\mathbf{v}}_{i}^{2} \right) \leq 1 \quad \Rightarrow \quad \frac{\pi \rho \omega \tau \varepsilon \acute{\nu} o v \tau \varepsilon \varsigma \, \acute{\alpha} \xi o v \varepsilon \varsigma \, \tau o v \, \varepsilon \lambda \lambda \varepsilon i \psi o \varepsilon i \delta o \acute{\nu} \varsigma \colon \left\{ \sigma_{1} \mathbf{u}_{1}, \, \sigma_{2} \mathbf{u}_{2}, \, ..., \, \sigma_{m} \mathbf{u}_{m} \right\}$$



Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ. Μάθημα: Ρομποτική ΙΙ.

#### Μέτρα (δείκτες) Ρομποτικής Ικανότητας Χειρισμού / Μέτρα Δεξιότητας

Μέτρο ικανότητας χειρισμού:

 $w = \sigma_1 \sigma_2 \dots \sigma_m$ : ανάλογο του όγκου του ελλειψοειδούς

Το μέτρο ικανότητας χειρισμού w έχει τις ακόλουθες ιδιότητες:

(i) 
$$w = \sqrt{\det(\mathbf{J}(q)\mathbf{J}^T(q))}$$

(ii) Otav 
$$m=n$$
,  $w = |\det(\mathbf{J}(q))|$ 

(iii) Γενικά  $w \ge 0$ , και w = 0 όταν rank(**J**)<m (singular configurations)

Δηλαδή, w=0 όταν ο ρομποτικής χειριστής βρίσκεται σε ιδιόμορφες διατάξεις, και το  $w \ge 0$  αποτελεί ένα μέτρο της «απόστασης» από τις ιδιόμορφες διατάξεις



#### Ελλειψοειδές Δύναμης Ρομποτικού Χειρισμού

Έστω ρομποτικός χειριστής με η β.ε.:

$$\mathbf{v} = \dot{\mathbf{p}} = \mathbf{J}(\mathbf{q}) \cdot \dot{\mathbf{q}}$$

(**J**: Ιακωβιανή μήτρα  $m \times n$ )

$$\boldsymbol{\tau} = \mathbf{J}^T(\boldsymbol{q}) \cdot \boldsymbol{F}$$

 $\tau = \mathbf{J}^T(q) \cdot \mathbf{F}$  (στατικό μοντέλο ρομποτικού χειριστή)

#### Ρομποτική ικανότητα άσκησης δύναμης χειρισμού

Το σύνολο:  $\mathcal{M}_F = \{ \boldsymbol{F} : \| \boldsymbol{\tau} \| \leq 1 \} \triangleq$  «Ελλειψοειδές δύναμης χειρισμού» **(3)** (ellipsoid in the *m*-dimensional Euclidean space)

Δηλαδή, το σύνολο των δυνάμεων F που μπορεί να ασκήσει το τελικό στοιχείο δράσης, μέσω ροπών  $\tau$  στις αρθρώσεις, για τις οποίες:  $\|\tau\| \le 1$ 

Ελλειψοειδές δύναμης χειρισμού:  $\mathbf{F}^T \cdot \left[ \mathbf{J}(\mathbf{q}) \cdot \mathbf{J}^T(\mathbf{q}) \right] \cdot \mathbf{F} \leq 1$ Πρωτεύοντες άξονες ελλειψοειδούς δύναμης χειρισμού:  $\mathbf{u}_1/\sigma_1$ ,  $\mathbf{u}_2/\sigma_2$ , ...,  $\mathbf{u}_m/\sigma_m$ 



Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ. Μάθημα: Ρομποτική ΙΙ.

#### Βέλτιστοι ρομποτικοί σχηματισμοί με βάση τα μέτρα ικανότητας χειρισμού

Βέλτιστες διατάξεις ρομποτικών γειριστών (με βάση το μέτρο w) (optimal configurations)

#### Α. Ρομπότ 2 συνδέσμων



$$\mathbf{J} = \begin{bmatrix} -l_1 s_1 - l_2 s_{12} & -l_2 s_{12} \\ l_1 c_1 + l_2 c_{12} & l_2 c_{12} \end{bmatrix}$$

Μέτρο ικανότητας χειρισμού:

$$w = \left| \det \left( \mathbf{J} \right) \right| = l_1 l_2 \left| s_2 \right|$$

$$w = 0$$
, ótan  $q_2 = 0$ ,  $\pm \pi$ 

$$w = \max$$
,  $\cot q_2 = \pm \pi/2$ 

Επιπλέον, εαν  $l_1+l_2$ =σταθ. τότε  $w = \max$ , όταν  $l_1=l_2$ 



### Ελλειψοειδές ικανότητας χειρισμού: Παράδειγμα ρομπότ 2 συνδέσμων

#### Παράδειγμα Α. Ρομπότ 2 συνδέσμων (συνέχεια)





Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή ΗΜ&ΜΥ . Μάθημα: Ρομποτική ΙΙ.

1

#### Άλλοι Δείκτες Ρομποτικής Ικανότητας Χειρισμού / Μέτρα Δεξιότητας

#### 1. Μέτρο ικανότητας χειρισμού:

 $w_1 = \sigma_1 \; \sigma_2 \ldots \sigma_{\rm m} \; : \;$  ανάλογο του όγκου του ελλειψοειδούς

2. Μέτρο τοπικής δεξιότητας (local dexterity measure):

 $w_2 = \sigma_{\rm m}/\sigma_1 \rightarrow 0$ : singularity, 1: isotropy (ελλειψοειδές  $\rightarrow$  σφαίρα)

3. Δείκτης  $w_3 = \sigma_{\rm m}$  (ελλάχιστη ακτίνα ελλειψοειδούς)

<u>4. Δείκτης</u>  $w_4 = (\sigma_1 \ \sigma_2 \ ... \ \sigma_m)^{1/m}$ 

ightarrow γεωμετρικός μέσος των ακτινών  $\sigma_1,\,\sigma_2,\,...,\,\sigma_m$  του ελλειψοειδούς (ακτίνα σφαίρας που έχει τον ίδιο όγκο με το ελλειψοειδές ικανότητας χειρισμού)

