Tarea Examen 1 Física computacional

Resuelva los siguientes ejercicios, explicando claramente su razonamiento.

- 1. Se tiene un oscilador armónico en dos dimensiones (xy) el que la fuerza está dada por $\vec{F} = -k\vec{r}$ y se tiene una fricción $\vec{f}_{fric} = -\gamma \vec{v}$ si $|\vec{v}| < 1$, pero cuando $|\vec{v}| > 1$ la fricción es $\vec{f}_{fric} = -\mu v^{3/2} \hat{v}$. Si m = 1, $\gamma = 0.1$ y $\mu = 0.2$, resuelva las siguientes ejercicios:
 - (a) Encuentre las ecuaciones de movimiento en coordenadas cartesianas y polares.
 - (b) Utilice el método de Runge-Kutta de 4to orden para encontrar la solución a las ecuaciones de movimiento en el inciso anterior con condiciones iniciales $\vec{r}_0 = (0,1)$ y $\vec{r}_0 = (cos\theta, sin\theta)$, donde $\theta = \frac{n\pi}{6}$ con n = 0, 1, 2, 3, ..., 10, 11.
 - (c) La energía para las distintas condiciones iniciales y detenga la simulación cuando ésta sea menor al 1 % de su valor inicial.
 - (d) Dibuje las gráficas del momento angular para los casos anteirores.
 - (e) Tome de manera arbitraria alguna condición inicial y dibuje el espacio fase (p_x, x) y (p_{θ}, ρ)
- 2. Suponga que se tiene el sistema como en el problema anterior, pero ahora la partícula tiene carga q > 0 y en el origen también se encuentra una partícula de carga q > 0.
 - (a) Sin considerar la fricción, ¿El sistema puede tener órbitas cerradas?. De ser así, encuentre algunas de estas órbitas o muestre que el sistema no puede tener este tipo de órbitas. (Apoye sus argumentos con alguna simulación).
 - (b) Considerando fricción, ¿El sistema puede tener órbitas cerradas?. De ser así, encuentre algunas de estas órbitas o muestre que el sistema no puede tener este tipo de órbitas. (Apoye sus argumentos con alguna simulación).
- 3. Se tiene una partícula de masa m=1 en un campo gravitacional $\vec{g}=-9.8\hat{j}$ en una caja como se muestra en la Figura 1 con L=10 m y d=3 m. Realice los ejercicios con valores de $\alpha=\pi/6$ y $\alpha=\pi/10$

Figure 1: Caja con piso en forma de v a un ángulo α .

- (a) Realice una simulación con condición inicial tal que la posición inicial es sobre la rampa a un tercio de la distancia de la pared vertical izquierda y el vértice inferior de la caja, y se dispara con velocidad $|\vec{v}| = 1$ hacia la derecha con ángulos sobre la horizontal α , 2α y 3α . (Para que la simulación sea válida, la partícula debe rebotar al menos 20 con alguna parte de la caja)
- (b) Introduzca algún modelo de fricción y compare las trayectorias con el inciso anterior.
- (c) Dibuje el espacio fase p_x , x y p_y , y cuando no hay fricción y la partícula es lanzada hacia la derecha a un ángulo α y vertical hacia arriba. Tome en cuenta el número necesario de rebotes para que la simulación pueda barrer el espacio fase de manera representativa.

4. Se tiene una partícula de masa m=1 en una caja circular como se muestra en la Figura 2. Los radios de a y b son tales que b=2a.

Figure 2: Caja con piso en forma de v a un ángulo α .

- (a) Realice una simulación en donde la partícula realiza varios rebotes en las paredes de la caja. Suponga condiciones iniciales arbitrarias que le permitan hacer lo anterior.
- (b) ¿Existen condiciones iniciales que hagan que la partícula quede encasillada en sólo un sector de la caja?. De ser así muestre cales son tales condiciones o demuestre porque no se pueden obtener dicha situación.
- (c) Si ahora se tiene un campo gravitacional uniforme $\vec{g} = 10\hat{n}$. Que condiciones iniciales se tendrían que cumplir para que la partícula sólo pueda ocupar la mitad de la dona.