# 阻尼振动与受迫振动 实验报告

#### Somebody

October 11, 2020

#### 实验目的 1

- 1. 观测阻尼振动, 学习测量振动系统基本参数的方法。
- 2. 研究受迫振动的幅频特性和相频特性,观察共振现象。
- 3. 观测不同阻尼对受迫振动的影响。

#### 实验原理 2

弹簧与摆轮组成一振动系统。设摆轮转动惯量为J;因转动产生的"粘滞阻尼"的力矩定义为 $\gamma \frac{d\theta}{dt}$ (其 中 $\gamma$ 为阻尼力矩系数);弹簧的反抗力矩为 $-k\theta$ 。

 $\omega_0 = \sqrt{k/J}$ : 无阻尼时自由振动的固有角频率  $\beta = \gamma/2J$ : 无阻尼时自由振动的固有角频率  $\zeta = \beta/\omega_0 = \frac{\gamma}{2\sqrt{kJ}}$ : 阻尼比

#### 有粘滯阻尼的阻尼振动运动方程 2.1

忽略弹簧的转动惯量,有运动方程:

$$J\frac{d^2\theta}{dt^2} + \gamma \frac{d\theta}{dt} + k\theta = 0 \tag{1}$$

小阻尼条件 
$$(\beta^2-\omega^2<0)$$
 时,  $(1)$  的解为: 
$$\theta(t)=\theta_0e^{-\beta t}cos(\sqrt{\omega^2-\beta^2}t+\phi_t) \eqno(2)$$

因此,阻尼振动的角频率、周期分别为:  $\omega_d=\sqrt{\omega_0^2-\beta^2}, T_d=2\pi/\sqrt{\omega_0^2-\beta^2}$ 

## 2.2 周期外力矩作用下的受迫振动

若施加一外力周期外力矩 $M\cos(\omega t)$ ,则(1)式右边的0需改为 $M\cos(\omega t)$ 。然后可解得:

$$\theta(t) = \theta_0 e^{-\beta t} \cos(\sqrt{\omega^2 - \beta^2} t + \phi_i) + \theta_m \cos(\omega t - \phi)$$
(3)

此解为阻尼振动与"频率同激励源频率的简谐振动"的叠加。

前者为暂态项,当 $t \to +\infty$ 时该项为0;于是最终的状态为后者,即"稳态解":

$$\theta(t) = \theta_m \cos(\omega t - \phi) \tag{4}$$

其中,

$$\theta_m = \frac{M/J}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2}}, \phi = \arctan \frac{2\beta\omega}{\omega_0^2 - \omega^2}$$
 (5)

在波耳共振仪中,电机以角速度 $\omega$ 匀速旋转时,由几何关系可得,其给予弹簧的支座的偏转角的一阶近似式为:

$$\alpha(t) = \alpha_m \cos(\omega t) \tag{6}$$

其中 $\alpha_m$ 为摇杆的摆幅。由此得到弹簧在这种情况下的总转角为 $\theta-\alpha(t)=\theta-\alpha_m cos(\omega t)$ 。基于此仿照(1)有运动方程 $J \frac{d^2\theta}{dt^2} + \gamma \frac{d\theta}{dt} + k(\theta-\alpha_m cos(\omega t)) = 0$ ,移项可化为周期外力矩作用下的运动方程:

$$J\frac{d^2\theta}{dt^2} + \gamma \frac{d\theta}{dt} + k\theta = \alpha_m \cos(\omega t) \tag{7}$$

同样可得到解(3),只不过其中的参数有所变化。此时,稳态解 $\theta(t)=\theta_m cos(\omega t-\phi)$ 的相位差与(5)相同,振幅变为 $\theta_m=\frac{\alpha_m\omega_0^2}{\sqrt{(\omega_0^2-\omega^2)^2+4\beta^2\omega^2}}$ 。 由其极大值条件 $\frac{\partial \theta_m}{\partial \omega}$ 0可得: 当外激励满足 $\omega=\sqrt{\omega_0^2-2\beta^2}$ 时,系统发生共振,振幅达到最大值 $\theta_m=\frac{\alpha_m\omega_0^2}{2\beta\sqrt{\omega^2-\omega^2}}$ 。

#### 2.3 小结

综合以上理论结果有:

阻尼振动下:振幅为 $\theta_m(t)=\theta_0e^{-\beta t}$ 。随着时间推移,通过测定一系列振幅的值 $\theta_i=\theta_0e^{-\beta(iT_d)}$ ,由于线性关系 $ln\theta_i=ln\theta_0+(-\beta T_d)$ i,即可借助计算机拟合直线 $ln\theta_i-i$ ,得到斜率 $b=(-\beta T_d)$ 。由(2)中得到的 $T_d$ ,可知 $-\beta T_d=-\frac{2\pi}{\sqrt{\zeta^{-2}-1}}$ ,进而求得 $\zeta$ 。之后再结合测定的振动周期 $T_d$ 可计算固有角频率 $\omega_0=\frac{2\pi}{T_d\sqrt{1-\zeta^2}}$ 。受迫振动下:振幅

$$\theta_m = \frac{\alpha_m}{\sqrt{(1 - (\frac{\omega}{\omega_0})^2)^2 + 4\zeta^2(\frac{\omega}{\omega_0})^2}}$$
(8)

相位差

$$\phi = \arctan \frac{2\zeta(\frac{\omega}{\omega_0})}{1 - (\frac{\omega}{\omega_0})^2} \tag{9}$$

在共振时为5%。

# 3 实验仪器

本实验使用如图所示的波耳共振仪。主要部件有摆轮、弹簧、阻尼线圈、电机、有机玻璃盘等。



# 4 实验步骤

#### 4.1 阻尼振动

#### 4.1.1 最小阻尼

强迫力开关置"摆轮"。拨动摆轮至150°-200°使之摆动。

从大到小依次读取振幅值 $\theta_i(i=1,2,\cdots,n)$ 。周期选择置于"10",启动测量,停止时读取数据并立即再次测量,记录每次读到的 $10\overline{T_d}$ 。连续测量5次 $10\overline{T_d}$ 。

#### 4.1.2 其它阻尼

周期选择置于"1",仿照上小节中的其余操作,在其它2-3种阻尼状态下测量振幅、每次振动的周期,从而求 $\zeta\pm\Delta_{\zeta}$ 。

### 4.2 受迫振动

选择2-3个不同的阻尼比(与之前的选择一致)做实验。开启电机,周期显示开关置"强迫力",周期选择置于"1"。调节强迫激励周期旋钮以改变电机运动角频率。

每次调节完,待系统稳定(摆轮和电机的周期相同)后,读取并记录:振幅,受迫周期,相差。测量相差是在系统稳定之后,开启闪光灯,读取并记录两次闪光灯亮时玻璃转盘上的读数。改变电机运动角频率,重复上述操作,得到至少12个数据点,其中需要包括共振点,即相位差为量的点。

## 5 数据处理

#### 5.1 阻尼振动

#### 5.1.1 最小阻尼

Table 1: 最小阻尼下的振幅与周期

|                            | 1     |       |                      |       | 1      |        |        |       | 1      |       |       | 1     | 1     |
|----------------------------|-------|-------|----------------------|-------|--------|--------|--------|-------|--------|-------|-------|-------|-------|
| 序号i                        | 1     | 2     | 3                    | 4     | 5      | 6      | 7      | 8     | 9      | 10    | 11    | 12    | 13    |
| $	heta_i/^\circ$           | 159   | 158   | 157                  | 155   | 154    | 153    | 152    | 151   | 149    | 148   | 147   | 146   | 145   |
| $\theta_{i+25}/^{\circ}$   | 130   | 129   | 128                  | 127   | 126    | 124    | 122    | 122   | 120    | 119   | 118   | 117   | 116   |
| $ln\theta_i/^\circ$        | 5.069 | 5.063 | 5.056                | 5.043 | 5.037  | 5.030  | 5.024  | 5.017 | 5.004  | 4.997 | 4.990 | 4.984 | 4.977 |
| $ln\theta_{i+25}/^{\circ}$ | 4.868 | 4.860 | 4.852                | 4.844 | 4.836  | 4.820  | 4.804  | 4.804 | 4.787  | 4.779 | 4.771 | 4.762 | 4.754 |
|                            |       |       |                      |       |        |        |        |       |        |       |       |       |       |
| 序号i                        | 14    | 15    | 16                   | 17    | 18     | 19     | 20     | 21    | 22     | 23    | 24    | 25    |       |
| $	heta_i/^\circ$           | 143   | 142   | 141                  | 141   | 140    | 138    | 138    | 136   | 135    | 134   | 132   | 132   |       |
| $\theta_{i+25}/^{\circ}$   | 115   | 114   | 113                  | 112   | 111    | 110    | 109    | 108   | 108    | 106   | 106   | 104   |       |
| $ln\theta_i/^{\circ}$      | 4.963 | 4.956 | 4.949                | 4.949 | 4.942  | 4.927  | 4.927  | 4.913 | 4.905  | 4.898 | 4.883 | 4.883 |       |
| $ln\theta_{i+25}/^{\circ}$ | 4.745 | 4.736 | 4.727                | 4.718 | 4.710  | 4.700  | 4.691  | 4.682 | 4.682  | 4.663 | 4.663 | 4.644 |       |
|                            |       |       | i                    | 1-10  | ) 11-  | 20 21  | 30     | 31-40 | 41-50  | •     | •     | •     |       |
|                            |       |       | $10\overline{T_d}/s$ | 15.33 | 3 15.3 | 356 15 | .379 1 | 5.400 | 15.420 |       |       |       |       |

借助Excel拟合得到 $\ln \theta_i - i$ 直线的表达式y = bx + a,其中b = -0.0087,d = 5.0877, $r^2 = 0.9975$ ,r = -0.0087,d = 5.0877,d = 5.0877 d = 5.0

0.9987, 从而求得:

$$\zeta = \frac{1}{\sqrt{1 + (\frac{2\pi}{b})^2}} = 1.3846 \times 10^{-3}$$

$$\Delta_b = t_p(\nu) S_b = t_p(n-2) |b| \sqrt{\frac{r^{-2} - 1}{n-2}} = 1.3 \times 10^{-4}$$

$$\Delta_\zeta = |\frac{d\zeta}{db}| \Delta_b = \frac{4\pi^2}{(4\pi^2 + b^2)^{\frac{3}{2}}} \Delta_b = 2.0 \times 10^{-5}$$

$$T_d = \frac{76.888s}{50} = 1.538s$$

周期的不确定度取其 10-5 倍加上其显示值末位变化"1"所对应的量值:

$$\begin{split} \Delta_{T_d} &= \frac{T_d}{10^5} + \frac{0.001}{10} = 1.2 \times 10^{-4} \quad \\ \omega_0 &= \frac{2\pi}{T_d \sqrt{1-\zeta^2}} = 4.08583 rad/s \\ & \pm \frac{\partial ln\omega_0}{\partial T_d} = -\frac{1}{T_d}, \frac{\partial ln\omega_0}{\partial \zeta} = -\frac{\zeta}{1-\zeta^2}, \quad \stackrel{\text{H}}{\rightleftharpoons} \\ & \frac{\Delta_{\omega_0}}{\omega_0} = \sqrt{(\frac{\partial ln\omega_0}{\partial T_d})^2 \Delta_{T_d}^2 + (\frac{\partial ln\omega_0}{\partial \zeta})^2 \Delta_{\zeta}^2} = \sqrt{(\frac{\Delta_{T_d}}{T_d})^2 + (\frac{\zeta \Delta_{\zeta}}{1-\zeta^2})^2} \\ & \Delta_{\omega_0} = \omega_0 \sqrt{(\frac{\Delta_{T_d}}{T_d})^2 + (\frac{\zeta \Delta_{\zeta}}{1-\zeta^2})^2} = 3.1 \times 10^{-4} \quad \text{for } \zeta \leq 1.5 \end{split}$$

整理最后需要的数据如下:

不能这么写 
$$\zeta = 1.385 \times 10^{-3} \pm 2.0 \times 10^{-5}$$
 
$$T_d = 1.53780 \pm 1.2 \times 10^{-4} s$$
 
$$\omega_0 = 4.08583 \pm 3.1 \times 10^{-4} rad/s$$
 同理,进行更改

#### 5.1.2 其它阻尼

Table 2: 阻尼为"1"下的振幅与周期

| 序号i                 | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $	heta_i/^\circ$    | 147   | 135   | 124   | 114   | 105   | 97    | 89    | 82    | 75    | 69    | 63    | 58    |
| $ln\theta_i/^\circ$ | 4.990 | 4.905 | 4.820 | 4.736 | 4.654 | 4.575 | 4.489 | 4.407 | 4.317 | 4.234 | 4.143 | 4.060 |
| $T_{d_i}$           | 1.534 | 1.536 | 1.538 | 1.54  | 1.541 | 1.544 | 1.545 | 1.546 | 1.548 | 1.548 | 1.549 | 1.549 |

借助Excel拟合得到 $ln\theta_i-i$ 直线的表达式 $y=bx+a,\ b=-0.0843, a=5.0757, r^2=0.9999, r=0.9999,$ 从而求得:

$$\zeta = \frac{1}{\sqrt{1 + (\frac{2\pi}{b})^2}} = 0.013416$$

$$\Delta_b = t_p(\nu)S_b = t_p(n-2)|b|\sqrt{\frac{n-2-1}{n-2}} = 5.9 \times 10^{-4}$$

$$\Delta_{\zeta} = \left| \frac{d\zeta}{db} \right| \Delta_b = \frac{4\pi^2}{(4\pi^2 + b^2)^{\frac{3}{2}}} \Delta_b = 9.5 \times 10^{-5}$$
$$T_d = \frac{18.518s}{12} = 1.5431s$$

周期的不确定度取其 10-5 倍加上其显示值末位变化"1"所对应的量值:

$$\Delta_{T_d} = \frac{T_d}{10^5} + 0.001 = 0.0010$$

$$\omega_0 = \frac{2\pi}{T_d \sqrt{1 - \zeta^2}} = 4.0720$$

由 
$$\frac{\partial ln\omega_0}{\partial T_d} = -\frac{1}{T_d}, \frac{\partial ln\omega_0}{\partial \zeta} = -\frac{\zeta}{1-\zeta^2},$$
 得

$$\frac{\Delta_{\omega_0}}{\omega_0} = \sqrt{\left(\frac{\partial ln\omega_0}{\partial T_d}\right)^2 \Delta_{T_d}^2 + \left(\frac{\partial ln\omega_0}{\partial \zeta}\right)^2 \Delta_{\zeta}^2} = \sqrt{\left(\frac{\Delta_{T_d}}{T_d}\right)^2 + \left(\frac{\zeta \Delta_{\zeta}}{1 - \zeta^2}\right)^2}$$

$$\Delta_{\omega_0} = \omega_0 \sqrt{\left(\frac{\Delta_{T_d}}{T_d}\right)^2 + \left(\frac{\zeta \Delta_{\zeta}}{1 - \zeta^2}\right)^2} = 0.0027$$

最终:

 $\zeta = 1.3416 \times 10^{-2} \pm 9.5 \times 10^{-5}$ 

| 序号i                 | 1     | 2     | 3     | 4     | 3: <u>阳</u> .尼。<br>5 | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|---------------------|-------|-------|-------|-------|----------------------|-------|-------|-------|-------|-------|-------|-------|
| $\theta_i/^\circ$   | 163   | 143   | 126   | 110   | 97                   | 85    | 74    | 65    | 57    | 50    | 44    | 38    |
| $ln\theta_i/^\circ$ | 5.094 | 4.963 | 4.836 | 4.700 | 4.575                | 4.443 | 4.304 | 4.174 | 4.043 | 3.912 | 3.784 | 3.638 |
| $T_{d_i}$           | 1.534 | 1.537 | 1.54  | 1.543 | 1.545                | 1.548 | 1.549 | 1.55  | 1.551 | 1.552 | 1.552 | 1.554 |

借助Excel拟合得到 $ln\theta_i-i$ 直线的表达式 $y=bx+a,\ b=-0.0843, a=5.0757, r^2=0.9999, r=0.9999,$ 从而求得:

$$\zeta = \frac{1}{\sqrt{1 + (\frac{2\pi}{b})^2}} = 0.020988$$

$$\Delta_b = t_p(\nu)S_b = t_p(n-2)|b|\sqrt{\frac{r^{-2} - 1}{n-2}} = 9.3 \times 10^{-4}$$

$$\Delta_\zeta = \left|\frac{d\zeta}{db}\right|\Delta_b = \frac{4\pi^2}{(4\pi^2 + b^2)^{\frac{3}{2}}}\Delta_b = 1.4 \times 10^{-4}$$

$$T_d = \frac{18.555s}{12} = 1.54625s$$

周期的不确定度取其 10-5 倍加上其显示值末位变化"1"所对应的量值:

$$\Delta_{T_d} = \frac{T_d}{10^5} + 0.001 = 0.0010$$

$$\omega_0 = \frac{2\pi}{T_d \sqrt{1 - \zeta^2}} = 4.0644$$

由 
$$\frac{\partial ln\omega_0}{\partial T_d} = -\frac{1}{T_d}, \frac{\partial ln\omega_0}{\partial \zeta} = -\frac{\zeta}{1-\zeta^2},$$
 得 
$$\frac{\Delta_{\omega_0}}{\omega_0} = \sqrt{(\frac{\partial ln\omega_0}{\partial T_d})^2 \Delta_{T_d}^2 + (\frac{\partial ln\omega_0}{\partial \zeta})^2 \Delta_{\zeta}^2} = \sqrt{(\frac{\Delta_{T_d}}{T_d})^2 + (\frac{\zeta \Delta_{\zeta}}{1-\zeta^2})^2}$$
 
$$\Delta_{\omega_0} = \omega_0 \sqrt{(\frac{\Delta_{T_d}}{T_d})^2 + (\frac{\zeta \Delta_{\zeta}}{1-\zeta^2})^2} = 0.0027$$
 最终: 
$$\zeta = 2.099 \times 10^{-2} \pm 1.4 \times 10^{-4}$$

Table 4: 阻尼为"3"下的振幅与周期

| 序号i                 | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $\theta_i/^\circ$   | 155   | 132   | 113   | 96    | 82    | 70    | 60    | 51/   | 44    | 37    | 31    | 26    |
| $ln\theta_i/^\circ$ | 5.043 | 4.883 | 4.727 | 4.564 | 4407  | 4.248 | 4.094 | 3.932 | 3.784 | 3.611 | 3.434 | 3.258 |
| $T_{d_i}$           | 1.533 | 1.537 | 1.542 | 1.545 | 1.548 | 1.551 | 1.552 | 1.554 | 1.555 | 1.557 | 1.547 | 1.554 |

借助Excel拟合得到 $ln\theta_i - i$ 直线的表达式y = bx + a, b = -0.0843, a = 5.0757,  $r^2 = 0.9999$ , r = 0.9999, 从而求得:

$$\zeta = \frac{1}{\sqrt{1 + (\frac{2\pi}{b})^2}} = 0.025568$$

$$\Delta_b = t_p(\nu)S_b = t_p(n-2)|b|\sqrt{\frac{r^{-2} - 1}{n-2}} = 2.3 \times 10^{-3}$$

$$\Delta_\zeta = \left|\frac{d\zeta}{db}\right|\Delta_b = \frac{4\pi^2}{(4\pi^2 + b^2)^{\frac{3}{2}}}\Delta_b = 3.6 \times 10^{-4}$$

$$T_d = \frac{18.575s}{12} = 1.5479s$$

周期的不确定度取其 10-5 倍加上其显示值末位变化"1"所对应的量值:

$$\Delta_{T_d} = \frac{T_d}{10^5} + 0.001 = 0.0010$$

$$\omega_0 = \frac{2\pi}{T_d \sqrt{1 - \zeta^2}} = 4.0605$$

$$\label{eq:delta_delta_delta_delta_delta_delta} \boxplus \frac{\partial ln\omega_0}{\partial T_d} = -\frac{1}{T_d}, \\ \frac{\partial ln\omega_0}{\partial \zeta} = -\frac{\zeta}{1-\zeta^2}, \quad \mbox{\ref{eq:delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_$$

$$\frac{\Delta_{\omega_0}}{\omega_0} = \sqrt{(\frac{\partial ln\omega_0}{\partial T_d})^2 \Delta_{T_d}^2 + (\frac{\partial ln\omega_0}{\partial \zeta})^2 \Delta_{\zeta}^2} = \sqrt{(\frac{\Delta_{T_d}}{T_d})^2 + (\frac{\zeta \Delta_{\zeta}}{1 - \zeta^2})^2}$$

$$\Delta_{\omega_0} = \omega_0 \sqrt{(\frac{\Delta_{T_d}}{T_d})^2 + (\frac{\zeta \Delta_{\zeta}}{1 - \zeta^2})^2} = 0.0029$$

最终:

$$\zeta = 2.557 \times 10^{-2} \pm 3.6 \times 10^{-4}$$

## 5.2 受迫振动

表中计算量需要用到:

$$\phi_{theory} = \arctan \frac{2\zeta(\frac{\omega}{\omega_0})}{1 - (\frac{\omega}{\omega_0})^2}$$

$$\omega/\omega_0 = \frac{2\pi}{T\omega_0}$$

Table 5: 阻尼为"1"下受迫振动的数据  $\omega_0=4.0722 rad/s$ 

| i  | 振幅 $\theta_m/^\circ$ | 受迫周期 T/s | $\phi_1$ | $\phi_2$ | φ      | $\omega/\omega_0$ | $\phi_{thoery}$ | $\frac{\phi - \phi_{thoery}}{\phi_{theory}}$ |
|----|----------------------|----------|----------|----------|--------|-------------------|-----------------|----------------------------------------------|
| 1  | 11                   | 1.335    | 176.5    | 166.5    | 171.5  | 1.1558            | 174.7220        | -1.84%                                       |
| 2  | 20                   | 1.416    | 172      | 166      | 169    | 1.0897            | 171.1270        | -1.24%                                       |
| 3  | 35                   | 1.470    | 168      | 165      | 166.5  | 1.0496            | 164.5180        | 1.20%                                        |
| 4  | 53                   | 1.497    | 162      | 160      | 161    | 1.0307            | 156.0658        | 3.16%                                        |
| 5  | 76                   | 1.511    | 154      | 153      | 153.5  | 1.0211            | 147.3246        | 4.19%                                        |
| 6  | 81                   | 1.513    | 153      | 151      | 152    | 1.0198            | 145.6015        | 4.39%                                        |
| 7  | 86                   | 1.514    | 150      | 149      | 149.5  | 1.0191            | 144.6799        | 3.33%                                        |
| 8  | 96                   | 1.517    | 147      | 146      | 146.5  | 1.0171            | 141.6460        | 3.43%                                        |
| 9  | 106                  | 1.519    | 143      | 144      | 143.5  | 1.0158            | 139.3723        | 2.96%                                        |
| 10 | 147                  | 1.524    | 119.5    | 119      | 119.25 | 1.0124            | 132.6352        | -10.09%                                      |
| 11 | 171                  | 1.528    | 109      | 109      | 109    | 1.0098            | 125.9551        | -13.46%                                      |
| 12 | 174                  | 1.531    | 91.5     | 91       | 91.25  | 1.0078            | 120.0787        | -24.01%                                      |
| 13 | 173                  | 1.530    | 97.5     | 97       | 97.25  | 1.0085            | 122.1235        | -20.37%                                      |
| 14 | 174                  | 1.533    | 84       | 85       | 84.5   | 1.0065            | 115.7295        | -26.98%                                      |
| 15 | 153                  | 1.545    | 62       | 63       | 62.5   | 0.9987            | 84.3391         | -25.89%                                      |
| 16 | 142                  | 1.551    | 55       | 55       | 55     | 0.9948            | 68.7964         | -20.05%                                      |
| 17 | 122                  | 1.561    | 44       | 45       | 44.5   | 0.9884            | 49.0794         | -9.33%                                       |
| 18 | 89                   | 1.582    | 30       | 32       | 31     | 0.9753            | 28.2280         | 9.82%                                        |
| 19 | 65                   | 1.604    | 21       | 22       | 21.5   | 0.9619            | 19.0717         | 12.73%                                       |
| 20 | 33                   | 1.669    | 11       | 14       | 12.5   | 0.9245            | 9.6877          | 29.03%                                       |

此法测出 $\omega_0=4.1040$ ,与之前结果4.0722相比相对偏差为0.78%。

Table 6: 阻尼为"2"下受迫振动的数据  $\omega_0=4.0644rad/s$ 

|    |                      |          |          |          | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 9 4.004           | , -             |                                              |
|----|----------------------|----------|----------|----------|-----------------------------------------|-------------------|-----------------|----------------------------------------------|
| i  | 振幅 $\theta_m/^\circ$ | 受迫周期 T/s | $\phi_1$ | $\phi_2$ | $\phi$                                  | $\omega/\omega_0$ | $\phi_{thoery}$ | $\frac{\phi - \phi_{thoery}}{\phi_{theory}}$ |
| 1  | 14                   | 1.346    | 165      | 174      | 169.5                                   | 1.1485            | 171.4077        | -1.11%                                       |
| 2  | 51                   | 1.497    | 150      | 153      | 151.5                                   | 1.0327            | 146.8631        | 3.16%                                        |
| 3  | 72                   | 1.516    | 147      | 148      | 147.5                                   | 1.0197            | 132.9465        | 10.95%                                       |
| 4  | 94                   | 1.530    | 111.5    | 112.5    | 112                                     | 1.0104            | 116.2330        | -3.64%                                       |
| 5  | 108                  | 1.540    | 107      | 108      | 107.5                                   | 1.0038            | 100.3370        | 7.14%                                        |
| 6  | 109                  | 1.544    | 88       | 89       | 88.5                                    | 1.0012            | 93.3659         | -5.21%                                       |
| 7  | 108                  | 1.548    | 81       | 82       | 81.5                                    | 0.9986            | 86.3123         | -5.58%                                       |
| 8  | 104                  | 1.554    | 72       | 73       | 72.5                                    | 0.9948            | 76.0310         | -4.64%                                       |
| 9  | 94                   | 1.564    | 60       | 62       | 61                                      | 0.9884            | 60.9979/        | 0.00%                                        |
| 10 | 82                   | 1.576    | 50       | 51       | 50.5                                    | 0.9809            | 47.4311         | 6.47%                                        |
| 11 | 72                   | 1.587    | 41       | 43       | 42                                      | 0.9741            | 38.6598         | 8.64%                                        |
| 12 | 46                   | 1.628    | 23       | 26       | 24.5                                    | 0.9496            | 22.0721         | 11.00%                                       |
| 13 | 39                   | 1.645    | 20       | 23       | 21.5                                    | 0.9398            | 18.6560         | 15.24%                                       |

此法测出 $\omega_0=4.0694$ ,与之前结果4.0644相比相对偏差为0.12%。

Table 7: 阻尼为"3"下受迫振动的数据  $\omega_0=4.0605 rad/s$ 

|    |                      | 10010 11 111/0 | ,,,      | 1 / ( )  | VK 74 F 429 | $\chi_{\rm JH} \omega_0 = 4.000$ | <i>σ. ααγ</i> σ |                                              |
|----|----------------------|----------------|----------|----------|-------------|----------------------------------|-----------------|----------------------------------------------|
| i  | 振幅 $\theta_m/^\circ$ | 受迫周期 $T/s$     | $\phi_1$ | $\phi_2$ | $\phi$      | $\omega/\omega_0$                | $\phi_{thoery}$ | $\frac{\phi - \phi_{thoery}}{\phi_{theory}}$ |
| 1  | 11                   | 1.340          | 172      | 163      | 167.5       | 1.154770166                      | 169.9581941     | -1.4464%                                     |
| 2  | 42                   | 1.492          | 148      | 150      | 149         | 1.03712602                       | 144.9585094     | 2.7880%                                      |
| 3  | 60                   | 1.516          | 134      | 135      | 134.5       | 1.020707139                      | 128.7159132     | 4.4937%                                      |
| 4  | 78                   | 1.533          | 110      | 112      | 111         | 1.009388143                      | 110.074687      | 0.8406%                                      |
| 5  | 83                   | 1.538          | 104      | 105      | 104.5       | 1.006106647                      | 103.392538      | 1.0711%                                      |
| 6  | 85                   | 1.544          | 96       | 97       | 96.5        | 1.002196906                      | 94.90528411     | 1.6803%                                      |
| 7  | 86                   | 1.549          | 89       | 90       | 89.5        | 0.998961925                      | 87.67401245     | 2.0827%                                      |
| 8  | 86                   | 1.553          | 84       | 84       | 84          | 0.996388939                      | 81.94732503     | 2.5049%                                      |
| 9  | 84                   | 1.558          | 75       | 76       | 75.5        | 0.993191285                      | 75.04058269     | 0.6122%                                      |
| 10 | 74                   | 1.573          | 59.5     | 60.5     | 60          | 0.983720294                      | 57.30195943     | 4.7085%                                      |
| 11 | 64                   | 1.588          | 45       | 47       | 46          | 0.974428226                      | 44.62456664     | 3.0822%                                      |
| 12 | 47                   | 1.616          | 33       | 35       | 34          | 0.957544568                      | 30.5072881      | 11.4488%                                     |
| 13 | 34                   | 1.650          | 23       | 26       | 24.5        | 0.937813347                      | 21.70187272     | 12.8935%                                     |

此法测出 $\omega_0=4.0563$ ,与之前结果4.0605相比相对偏差为-0.10%。最后可绘制出三种阻尼状态下的幅频曲线与相频曲线如下图。





## 6 思考题

1. 如何判断受迫振动已处于稳定状态?

由受迫振动时的运动表达式,即式(3):  $\theta(t) = \theta_0 e^{-\beta t} cos(\sqrt{\omega^2 - \beta^2} t + \phi_i) + \theta_m cos(\omega t - \phi)$ ,受迫振动已处于稳定状态意味着前面的暂态项趋于0,运动可仅由稳态解 $\theta(t) = \theta_m cos(\omega t - \phi)$ 表述。比较稳态解与(3),可知稳态相比非稳态的特征为振幅、周期均是稳定的两个受t影响。因此:

当强迫力(电机)周期与摆轮周期相等或基本一致(相差? 杪以内),或振幅持续1min以上无变化时,可认为受迫振动达到稳定状态。因此在实际操作中,可以观察振幅示数是否变化,或者拨动周期显示开关,看摆轮周期与强迫力周期是否相等或很接近来判断。

2. 从幅频曲线的相对振幅比为1/2的点,也可求出 $\beta$ 值。试用你作出的幅频特性曲线进行计算,把结果与练习2的结果相比较。

由受迫振动下的振幅表达式(8),选取阻尼为1的幅频曲线上振幅为最大振幅1/2的两个点,在横轴上读取两个 $\omega/\omega_0=0.976,1.018$ ,乘上对应的 $\omega_0=4.072 rad/s$ ,可得到 $\omega_1=3.974?,\omega_2=4.145$ 。将两个点带入(8)联立求解,将 $\zeta$ 代换为 $\beta$ ,得到:

$$\beta = \frac{1}{2} \sqrt{2\omega_0^2 - \omega_1^2 - \omega_2^2} = 0.215$$
 图像拟合误差、仪器误差 $(10)$ 还有误差的叠加影响等等。可以多思

用5.1.2中的数据, $\beta = \omega_0 \zeta = 0.0546$ 。

二者相差较大。虽然在点数还不够多的幅频曲线上取点时的误差较大,但经过微调 $\omega/\omega_0$ 的读数后前者离后者仍然保持较大差距。遗憾的是对计算进行反复检查后依然如此,还没有找到原因。

3. 实验中如何判断达到共振? 共振频率是多少?

由2.3中的结论,共振时相位差 $\phi=\frac{\pi}{2}$ 。因此在实验中当观察到相位差为90°,即闪光灯亮时有机玻璃盘上的读数为90°时,可认为系统达到了共振。当然,在现实操作中,在共振点附近调节时系统状态变化较大,很难刚好调出相位<u>差为90</u>°,因此可以在共振点附近多测几个点,画出相频曲线,最后在曲线上寻找相位差为90°对应的 $\omega/\omega_0$ ,从而求出共振频率。

共振频率与固有频率近似相等,为 $\frac{1}{T}$ ,T为各条件下 $\phi = \frac{\pi}{2}$ 时的受迫周期。

代入数据计算均约为0.65Hz。

共振的时候实际上只能说接近90度,因为根据频率公式,实际上是在小于w0处幅度最大,从而共振。只是在弱阻尼的状态下,会非常接近w0

# 7 实验小结与其它问题

本次实验中,关于直线(y=bx+a)拟合后求直线斜率的标准差( $S_b$ )的问题(5.1.1)困扰了我。这个问题的求解本人看到了三种计算方法。

一是用逐差法中的量计算:

$$S_b = \sqrt{\frac{\Sigma (D_i - \overline{D})^2}{25 - 1}} = 0.0113$$

二是用逐差法中的量计算:

这个也是二乘法的数据的标准差计算,请问数据用的是50个吗?

$$S_b = \frac{S_y}{\sqrt{\Sigma(x_i - x)^2}} = 0.00123$$

 $(S_y$ 可用Excel中的STDEVP函数求。)

三 差用参考文献[1] 中的式子,也是课程讲义中给过的式子计算:

这说明用直线拟合的标准差更小, 求出来的b更为精准。

$$S_b = b\sqrt{\frac{r^{-2} - 1}{n - 2}} = -0.000126$$

(标准差应该是非负数,因此这里的式子至少应该给可能是负数的斜率6加上绝对值。) 三种方法计算得到的结果均不相等,但由于本人统计学知识所限最后也没有找出原因。

> 你线性回归用了几个数据?25个还是50个? 25个的标准差要大于50个的。

很仔细,具体的系级需要再跟老师和助教们沟通。非常谢谢你

# References

[1] 钱钟泰. 用相关系数表示线性回归系数的标准差. 计量学报, (01):71-72, 1993.

# 原始数据

| 序号i                        | 1   | 2                | 3      | 4    | 5      | 6   | 7    | 8     | 9    | 10  | / 11 | 12  | 13  |
|----------------------------|-----|------------------|--------|------|--------|-----|------|-------|------|-----|------|-----|-----|
| $\theta_i/^{\circ}$        | 159 | 158              | 157    | 155  | 154    | 153 | 152  | 151   | 149  | 148 | 147  | 146 | 145 |
| $\theta_{i+25}/^{\circ}$   | 130 | 129              | 128    | 127  | 126    | 124 | 122  | 122   | 120  | 119 | 118  | 117 | 116 |
| $ln\theta_i/^{\circ}$      |     |                  |        |      |        |     |      |       |      |     |      |     |     |
| $ln\theta_{i+25}/^{\circ}$ |     | -                |        |      | 114    | -   | 14   | V.    | y ** |     |      |     |     |
| 序号i                        | 14  | 15               | 16     | 17   | 18     | 19  | 20 / | / 21  | 22   | 23  | 24   | 25  |     |
| $\theta_i/^{\circ}$        | 143 | 142              | 14)    | 14)  | 140    | 138 | 138  | 136   | 135  | 134 | 132  | 132 |     |
| $\theta_{i+25}/^{\circ}$   | 115 | 114              | 113    | 112  | 1//    | 110 | 109  | 108   | 108  | 100 | 106  | 104 | _   |
| $ln\theta_i/^\circ$        |     |                  |        |      |        |     |      | r 2 x |      |     |      |     |     |
| $ln\theta_{i+25}/^{\circ}$ |     |                  |        |      |        |     |      |       |      |     |      |     |     |
|                            |     | i                | 1      | -10  | 11-20  | 21- | 30   | 31-40 | 41-5 | 0   |      |     |     |
| •                          |     | $10\overline{7}$ | als 19 | :333 | 15-356 | 15. | 79 6 | 5.400 | 15.0 | 420 | ,    |     |     |

#### 3.2.1 其它阻尼

| 序号 $i$              | 1     | 2     | 3    | 4     | 5    | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|---------------------|-------|-------|------|-------|------|-------|-------|-------|-------|-------|-------|-------|
| $\theta_i/^\circ$   | 14    | 7 135 | 12   | 114   | 105  | 97    | 89    | 82    | 75    | 69    | 63    | 2-8   |
| $ln\theta_i/^\circ$ |       |       |      |       |      |       |       | -     |       |       |       | 1     |
| i                   | 1     | 2     | 3    | 4     | 5    | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
| $T_d$ /s            | 1.534 | 1.536 | 1038 | 1.540 | 1.54 | 1.744 | 1.545 | 1.546 | 1.548 | 1.548 | 1,549 | 1,549 |

# 阻尼为"3" F的振幅多周期

**考える** 1 2 3 4 5 6 7 8 9 10 11 12 東で Tdils 1.333 133 1342 1345 1.548 134 1.352 1.354 1.357 1.547 1.354 10-7. Oilo 155 132 113 96 82 70 60 57 44 37 31 26

CS Scanned with CamScanner

| 序号i                 | 1     | 2     | 3     | 4    | 5     | 为" <u>2</u> " | 7     | ¥ <u>M</u> = 7 /n<br>8 | 9     | 10    | 11    | 12    |
|---------------------|-------|-------|-------|------|-------|---------------|-------|------------------------|-------|-------|-------|-------|
| $\theta_i/^\circ$   | 163   | 147   | 126   | 110  | 47    | 81            | 74    | 65                     | r7    | 50    | 44    | 38    |
| $ln\theta_i/^\circ$ |       |       |       |      |       | 1             | ,     | 0,                     |       | 100   | 1./   |       |
| i                   | 1     | 2     | 3     | 4    | 5     | 6             | 7     | 8                      | 9     | 10    | 11    | 12    |
| $T_d$ /5            | 1,534 | 1.537 | 1.540 | 1543 | 1.545 | 1.54          | 1.549 | .510                   | /cts/ | 1.112 | 1.552 | 1.554 |

| _r  |                      | Table 4: 阻尼为" | "下受迫振动        | 边的数据 α            | $v_0 =$           |                      | 7 /-  |  |
|-----|----------------------|---------------|---------------|-------------------|-------------------|----------------------|-------|--|
|     | 振幅 $\theta_m/^\circ$ | 受迫周期 T/s      | 相位差φ          | $\omega/\omega_0$ | \$\phi_{thoery}\$ | φ-φιλοσην<br>Φιλοσην | 4,    |  |
|     | 13                   | 1.335         |               |                   |                   | ***                  | 176.5 |  |
|     | 20                   | 1.416         |               |                   |                   |                      | 172   |  |
|     | 35                   | 1.470         |               |                   |                   |                      | 168   |  |
| 1   | 543                  | 1.497         |               |                   |                   |                      | 162   |  |
|     | 76                   | 1.511         | P. P.         | 14                |                   |                      | 154   |  |
| 6   | 8                    | 1,513         |               |                   |                   |                      | 153   |  |
| 7   | 86                   | 1514          |               |                   |                   |                      | 150   |  |
| 8   | 96                   | 1.517         |               |                   |                   |                      | 147   |  |
| 9   | 106                  | 1.519         |               |                   |                   |                      | 143   |  |
| 10  | 147                  | 1.524         |               |                   |                   |                      | 119.5 |  |
| 1   | 171                  | 1.528         | 1 .           | 1 11              |                   |                      | 109   |  |
| 12  | 174                  | 1.53 1        |               |                   |                   |                      | 91.5  |  |
| .3  | 173                  | 1:530         |               |                   |                   |                      | 97.5  |  |
| 4   | 174                  | 1.533         | ** ( * 15 1 5 | * 1,              |                   | *1                   | 84    |  |
| 5   | 15}                  | 1.545         | g * 3         |                   |                   |                      | 62    |  |
| 6   | 142                  | 1.55          |               | ***               |                   |                      | 55    |  |
| 7   | 122                  | 1.56          |               |                   |                   | The .                | 44    |  |
| 3 , | 89                   | 1.582         |               |                   |                   |                      | 30    |  |
| 9   | 65                   | 1.604         | · Accessor    | or and the        | , E1 157 A        |                      | 2     |  |
| ) , | 33                   | 1-669         | . 1           | 114               |                   |                      | 11    |  |

μ· (09.

CS Scanned with CamScanner

此法测出 $\omega_0$  =?,与之前结果?相比相对偏差为?。

|    |                      | Table 5: 阻尼为"2 | 2"下受迫振动 | 力的数据 ω            | n =?    |                      |                | 10                       |
|----|----------------------|----------------|---------|-------------------|---------|----------------------|----------------|--------------------------|
| i  | 振幅 $\theta_m/^\circ$ | 受迫周期 T/s       | 相位差φ    | $\omega/\omega_0$ | Pthocry | φ-φιλοεγν<br>Φιλεογν | $\varphi_1$    | Y2.                      |
| 1  | 14                   | 1.346          |         |                   |         |                      | 165            | 1/4.                     |
| 2  | 5                    | 1.497          |         |                   |         |                      | 120            | 42<br>174.<br>153<br>148 |
| 3  | 12                   | 1.016          |         |                   |         |                      | 147            | 140                      |
| 4  | 94                   | (LED)          |         |                   |         |                      | 111-2          | 112.5                    |
| 5  | 108                  | 1.140          |         |                   |         |                      | 107            | 108                      |
| 6  | 109                  | 1.544          |         |                   |         |                      | 88             | 8 (                      |
| 7  | 108                  | 1.548          |         |                   | 0       |                      | 81             | 82                       |
| 8  | 104                  | 1.54           |         |                   |         |                      | 72             | 73                       |
| 9  | 44                   | 1.564          |         |                   |         |                      | 60             | 62                       |
| 10 | 82                   | 1.576          |         |                   |         |                      | 50             | 51                       |
| 11 | 72                   | 1.587          |         |                   |         |                      | 41<br>23<br>20 | 51<br>43<br>26<br>23     |
| 12 | 46                   | 1.628          | -       |                   |         |                      | 23             | 26                       |
| 13 | 39                   | 1.645          |         |                   |         |                      | 20             | 23                       |
| 14 |                      |                |         |                   |         |                      |                |                          |
| 15 |                      |                |         |                   |         |                      |                |                          |
| 16 |                      |                |         |                   |         |                      |                |                          |
| 17 |                      |                |         |                   |         |                      |                |                          |
| 18 |                      |                |         |                   |         |                      |                |                          |
| 19 |                      |                |         |                   |         |                      |                |                          |
| 20 |                      |                |         |                   |         |                      | $\neg$         |                          |

此法测出 $\omega_0$  =?,与之前结果?相比相对偏差为?。

宋·20.9



5

 $\omega_0 = ?时$ :

|    |                     | Table M 阻尼为 | "乙"下受迫 | 振动的数据             | E.                    |                      |                  |   |
|----|---------------------|-------------|--------|-------------------|-----------------------|----------------------|------------------|---|
| i  | 振幅θ <sub>m</sub> /° | 受迫周期 T/s    | 相位差φ   | $\omega/\omega_0$ | <b><i>фthoery</i></b> | φ-φιλοστη<br>φιλοστη | $\mathcal{C}_1$  |   |
| 1  | 11                  | 1.340       |        |                   |                       |                      | 172              | ě |
| 2  | 42                  | 1.492       |        |                   |                       |                      | 148              |   |
| 3  | 60                  | 1.516       |        |                   |                       |                      | 134              |   |
| 4  | 78                  | 1.533       |        |                   |                       |                      | 110              |   |
| 5  | 83                  | 1.538       |        |                   |                       |                      | 104<br>96<br>89  |   |
| 6  | 85                  | 1.544       |        |                   |                       |                      | 96               |   |
| 7  | 86                  | 1.549       |        |                   |                       |                      | 89               |   |
| 8  | 86                  | 1.553       |        |                   |                       |                      | 84               |   |
| 9  | 84                  | 1.558       |        |                   |                       |                      | 75               |   |
| 10 | 74                  | 1.573       |        |                   |                       |                      | 59.5             |   |
| 11 | 64                  | 1.588       |        |                   |                       |                      | 84<br>75<br>59,5 |   |
| 12 | 47                  | 1.616       |        |                   |                       |                      | 33               |   |
| 13 | 34                  | 1.650       |        |                   |                       |                      | 23               |   |
| 14 |                     |             |        |                   |                       |                      | in the second    |   |
| 15 |                     |             |        |                   |                       |                      |                  |   |
| 16 |                     |             |        |                   |                       |                      |                  |   |
| 17 |                     |             |        |                   |                       |                      |                  |   |
| 18 |                     |             |        |                   |                       |                      |                  |   |
| 19 |                     |             |        |                   |                       |                      |                  |   |
| 20 |                     |             |        |                   |                       |                      |                  |   |

此法测出 $\omega_0$  =?,与之前结果?相比相对偏差为?。

宋地

8