	CS 302-DAAA- 1-180428-HARIS_MANZOUS Ono.1 A) incleasing order is						
	lg.	n L n'	13 _	Jn Ln2	0 L @ 22h L	- (⁰)	$\frac{2}{2}$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Q)						
13)						
	tin)	1 Sec	1 min	no! of niminates represented	no. of nours replesented by last a		Nacess
	101	3	5	7.41 mili=25680000	digits 12.18		ontained no or miliseconds malor logm n= Toglo
	221	5	8	24.61	12.3		m=2h
	20 N	2		2.346	4:064		m2 n20 log m2 20log v n2 Antilog(log m
	ly n	2 1083	26.104	25680000	1540300000000000000000000000000000000000		m= logn n=Antilog(n)
	n!	7	9		,		
	2 2	4	4	Ÿ.	4		m=2 ² ^v 2 ⁿ = 101 ^m 1.32
			1			1	n= log()

CS-302-1180428- HARIS MANZUOR Ono. 2 A) T(n)= 37 (n)13) + log n, T(1)=1 level Mo. of times Tree func is const colled 12/2 logn logn's logn's logn's 3 Joyn 17 3 logina loginalogina 9 logn'r log 1/3k 3 le log n/3k 3/09/35 7(1) us suppose that k = h - 12) base ause: - 3k=n/3=) h= log(logn) => T(n) = 3" T(1) + 3" logn/13+ 31 logn/1314 + -- ... logn =) 3ⁿT(1) + \(\xi\) 3ⁱlogn'/3ⁱ

i=0 =) n+ (2) 1/2/logn

Qno.2 (B) 414000 T(N)= T(N/2) +T(N/4)+N2 time funcjs called COSA level 7(4/2) (4/4)2 (h)2 (h)2 $\left(\frac{5}{16}\right)^2 N^2$ $(2)^{3}$ $(\frac{h}{3})^{2}$ $(\frac{h}{1})^{2}$ (5)3n2 $(2) \left(\frac{n}{2^{k}}\right)^{2} \left(\frac{n}{16H}\right)^{2}$ 10 (5)/c n2 (K) /2 base case !- h = 2h h = log n =1 2" T(L)+ n2+ 5 n2+ -- (5)2n2 2) 2T(4) + & (5) n2

CS-302- DAAA- 130428- HARIS MANZOUP

H.Haw

Ono.3 You are provided with.

Algo X:-

$$T(n) = 8T(4/2) + c$$

using master method.

$$a=8$$
, $b=2$, $k=0$, $p=0$

1096a = 3

Algo Y:-

$$= 0 \text{ (n}^2)$$

Scanned with CamScanner

Part (+)

inorden topological would use An which I would conculute the Andegree of all vertices first visiting each node in degles vertices ! A B load the vertices having indegree stacle. BE GADCFH topoligical order.

now non B und oheck its neighbours ite Dand E. reduce the indegler and it if indegler become D, push it back in stack has A back in stack, now stack has A

C2-302-1180458= HARIS MANSOOK 17 HUM then get to the vertices! neighbourhood of E i-> G, decrease integree and push Ginto Stuck. now stucke hus A, G. pop or, check its heighbours i-e H donot puch this time because indeple is not o. now pop again, we get A, neighbours are c and n, push them as Both have 0 indeglee stack = c D stack= C bob D an. reduce = stack = empty pop c , reduce 1= now push F Stude 2 F , pop F stail = Empty reduce 1-1 a push H stucic = M more topological orders, wa , rop H charge the onelee of pushing to genorate have game indegled, for e-fush them alternatively DEGACOFH, BEGAGCOFH,

BEGACOFH,

BEGAGCOFH

CS.302: DAAA- 1180428- MARIS
MUNT
MOUNT

Provide all

starting from 8

8-3 3-3 7-30-1 42-39-14-36-32

again

again

3-3-0-3-1-3-1-39-34-35-16-32

again

CS-302 DAAA- 1180428_ HARIS_MAN2008 Ono.7 M.HOW

part a) You are running _ - ?

since the size of integers is fixed, we can use radin sort. as radin sort works best as we have given fixed length integers. we have given fixed length integers. Where complexity for radin sort is a (nk) time complexity for radin sort is a (nk) where m will be fixed everytime.

parts) You are organizing ---.?

since we have the best case, we very close to best case, we can use either insertion sort or bubble sort because both give the best case as I(n)

CS-302- DAHA-1180428.
HARIS MANZOOR // Haw

0 no. 8

a) optimal substructure property.

Af a city c lies between the shortest path from u to u then the shortest path from u to u to u is a combination of shortest path from u to and c to u.

6) subproblems: - - (111)

There can be a subplobling i-e we need to seath each city and by having puth from having the each city in - between and finding the minimum i-e min [wood)(u,v) or (u,c),(e,v) and each subploblem will need not time to complete - b

E) Recurrence : The Marie

A' [[][] = min { A'-1 [i][i] } A'-1 [i][i] }

GENOSI - AMACI -508 -()

Are where A = the matrix
between
of all the direct paths between
aities.

d) Pseudo code:
doi D[n7[m], po=w = weight of edger.

For K=1 ton

The state of the s