Лабораторная работа 3.4.2 Закон Кюри-Вейсса

Кагарманов Радмир Б01-106 27 сентября 2022 г. **Цель работы:** изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

В работе используется: катушка самоиндукции с образцом из гадолиния, термостат, частотомер, цифровой вольтметр, *LC*-автогенератор, термопара медь-константан.

Теория

Вещества с отличным от нуля атомными магнитными моментами обладают парамагнитными свойствами. При повышении температуры T возрастает дезориентирующее действие теплового движения частиц, и магнитная восприимчивость парамагнетиков убывает по **закону Кюри** - обратно пропорционально температуре:

$$\chi \propto \frac{1}{T} \tag{1}$$

Некоторые парамагнетики при понижении температуры испытывают фазовый переход в ферромагнитное состояние. Температуру перехода парамагнетик-ферромагнетик называют **температурой Кюри** Θ_{K} . Температурная зависимость магнитной восприимчивости у ферромагнетиков выше точки Кюри с удовлетворительной точностью описывается **законом Кюри-Вейсса**:

$$\chi \propto \frac{1}{T - \Theta_n},\tag{2}$$

где Θ_p - параметр с размерностью температуры, называемый иногда **парамагнитной точкой Кюри**. Величина Θ_p близка к $\Theta_{\rm K}$, но не совпадает с ней.

Экспериментальная установка

Схема установки представлена на рис. 1.

Рис. 1: Экспериментальная установка

Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками и образца. Кроме того, оно улучшает тепловой контакт между образцом и термостатируемой жидкостью 3 в термостате. Ртутный термометр 4 используется для приближённой оценки температуры.

При изменении температуры меняется магнитная восприимчивость образца χ , а следовательно, самоиндукция катушки и период колебаний τ автогенератора. Для измерения периода используется частотомер.

Закон Кюри-Вейсса справедлив, если выполнено соотношение

$$\frac{1}{\chi} \sim (T - \Theta_p) \sim \frac{1}{(\tau^2 - \tau_0^2)},\tag{3}$$

где au_0 - период колебаний в отсутствие образца.

Величина стабилизируемой температуры задаётся на дисплее 5 термостата. Температура исследуемого образца всегда несколько отличается от температуры дистилированной воды в сосуде. Разность температур контролируется с помощью медноконстантановой термопары 6 и цифрового вольтметра. Рекомендуется измерять период колебаний автогенератора в тот момент, когда указанная размерность температур становится $\leq 0,5^{\circ}C$. Чувствительность термопары $\kappa = 24$ град/мВ.

Ход работы и обработка результатов

1. Запишем данные установки: $\tau_0=8,252$ мкс, $\delta_{\Delta U}=0,0012$ мВ. Так как ΔT не должно превышать $0,5^{\circ}C$, то максимальное напряжение, при котором можно проводить измерения, равно:

$$U_{\rm max} = \frac{\Delta T}{\kappa} \approx 0,021 \text{ MB}$$

Температура образца вычисляется по формуле:

$$T_{\rm o} = T_{\rm t} + \Delta U \cdot \kappa,$$

где $T_{\scriptscriptstyle \mathrm{T}}$ - температура термостата.

Результаты занесём в таблицу 1.

$N_{\overline{0}}$	$T_{\text{\tiny T}}, {}^{\circ}C$	ΔU мкВ	$T_{\rm o}$, °C	τ , MKC	$ au^2 - au_0^2$, mkc ²	$\frac{1}{\tau^2 - \tau_0^2}$, MKC ⁻²
1	14	-13,0	13,7	10,07	33,35	0,03
2	16	-19,3	15,6	9,96	31,11	0,03
3	18	-20,0	17,5	9,77	27,30	0,04
4	20	-17,9	19,6	9,43	20,85	0,05
5	21	-17,6	20,6	9,23	17,17	0,06
6	22	-18,6	21,6	9,03	13,48	0,07
7	24	-18,6	23,6	8,75	8,43	0,12
8	26	-18,5	25,6	8,61	6,02	0,17
9	28	-18,5	27,6	8,53	4,73	0,21
10	30	-16,9	29,6	8,49	3,92	0,26
11	32	-18,4	31,6	8,45	3,37	0,30
12	34	-19,1	33,5	8,43	2,95	0,34
13	36	-18,8	35,5	8,41	2,63	0,38
14	38	-19,6	37,5	8,40	2,40	0,42
15	40	-19,0	39,5	8,38	2,20	0,46

Таблица 1: Результаты измерений

2. Построим графики $\frac{1}{\tau^2-\tau_0^2}=f(T)$. С помощью него мы сможем найти парамагнитную точку Кюри.

С помощью МНК проведём прямую через последние 11 точек и посмотрим, в какой точке она пересекает ось абсцисс. Так мы найдём парамагнитную точку Кюри.

Рис. 2:
$$\frac{1}{\tau^2 - \tau_0^2} = f(T)$$

Мы получили прямую $f=0,02131\cdot x-0,3799$. Коэффициент при x равен $0,02131\pm0,00016$. Найдём парамагнитную точку Кюри и учтём погрешность МНК.

$$T_{\text{it}} = 17,8 \pm 0,2 \, {}^{\circ}C$$

3. Построим график $\tau^2 - \tau_0^2 = f(T)$.

Рис. 3:
$$\tau^2 - \tau_0^2 = f(T)$$

В лабораторном практикуме табличное значение точки Кюри гадолиния равна $T_{\kappa}=20~^{\circ}C.$ На рис. 3 видно, что при $T>20^{\circ}C$ магнитная восприимчивость χ намного меньше.

Вывод: в ходе работы экспериментально была определена парамагнитная точка Кюри $T_{\rm nr}=17,8\pm0,2~^{\circ}C.$ Также мы изучили температурную зависимость магнитной воспри-имчивости ферромагнетика выше точки Кюри.