LaTeX Tutorial 3: Brackets, Tables and Arrays

Joel M. Brigida: ADolbyB

April 23, 2023

1 Brackets:

The distributive property states that a(b+c)=ab+ac for all $a,b,c\in\mathbb{R}$.

The equivalence class of a is [a].

The set A is defined to be $\{1, 2, 3\}$.

The ticket costs \$15.45

This Looks Bad:

$$2(\frac{1}{x^2+1})$$

Scaling Parenthesis Larger For Proper Format:

$$2\left(\frac{1}{x^2+1}\right)$$

Other Examples:

Square Brackets:

$$2\left[\frac{1}{x^2+1}\right]$$

Curly Braces:

$$2\left\{\frac{1}{x^2+1}\right\}$$

Angle (Vector) Brackets:

$$2\left\langle \frac{1}{x^2+1}\right\rangle$$

Absolute Value:

$$2\left|\frac{1}{x^2+1}\right|$$

Evaluation:

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=1}^{x=5}$$

Complex Fractions:

$$\left(\frac{1}{1+\left(\frac{1}{1+x}\right)}\right)$$

2 Tables:

Notice this doesn't look right:

	x	1	2	3	4	5
f	f(x)	$\frac{1}{2}$	11	12	13	14

Table 1: Values For f(x)

20010 11		varaes rer j (a)			
x	1	2	3	4	5
f(x)	$\frac{1}{2}$	11	12	13	14

Table 2: Values For f(x)

f(x)	f'(x)	
x > 0	The Function $f(x)$ is increasing.	

Table 3: Description of f(x)

	J (1)			
f(x)	f'(x)			
x > 0 The Function $f(x)$ is increasing as long as the function of not cross the $y = 0$ boundary, in which case it become				
	undefined. This happens once at the value of $x = 3\pi$.			

Table 4: Example Derivatives

f(x)	f'(x)
x^2	2x
x^3	$3x^2$
x^4	$4x^3$
$x^5 + 4x^4$	$5x^4 + 16x^3$

3 Arrays:

$$5x^2 + 13x + 3$$
 Example text in math mode: place some text here. (1)

Here are aligned numbered equations:

$$5x^2 + 13x + 3 = 12x + 4 \tag{2}$$

$$5x^2 - 9 = x + 3 \tag{3}$$

$$15x^3 + 14x^2 - 3x + 3 = 8x^2 \tag{4}$$

Here are aligned non-numbered equations:

$$5x^{2} + 13x + 3 = 12x + 4$$
$$5x^{2} - 9 = x + 3$$
$$15x^{3} + 14x^{2} - 3x + 3 = 8x^{2}$$