**Computational Physics** 

Problem 1(20 points)

Consider the initial-value problem y' = y, y(0) = 1

- (a) Write the iterative expressions for the following three methods: (1) the Euler method, (2) the trapezoidal method, and (3) the predictor-corrector using the Euler and trapezoidal as the predictor and corrector, respectively.
- (b) For h=0.1, list in a table the calculated results using these three methods for the first four steps, as well as the error at each point.

(a) (1) 
$$y(i+1)=y(i)+hy(i)$$

(2) 
$$y(i+1)=y(i)+\frac{h}{2}(y(i)+y(i+1)) \rightarrow y(i+1)=\frac{2+h}{2-h}y(i)$$

(3) predictor: y(i+1)=y(i)+hy(i); corrector:  $y(i+1)=y(i)+\frac{h}{2}(y(i)+y(i+1))$ .

(b)

|        |           | Euler method |        | Trapezoidal |        | predictor- |        |
|--------|-----------|--------------|--------|-------------|--------|------------|--------|
|        |           |              |        | method      |        | corrector  |        |
| Method | $y = e^x$ | result       | error  | result      | error  | result     | error  |
|        |           |              |        |             | 1.0e-  |            | 1.0e-  |
|        |           |              |        |             | 03     |            | 03     |
| Step 1 | 1.1052    | 1.1          | -      | 1.1053      | 0.0922 | 1.1050     | -      |
|        |           |              | 0.0052 |             |        |            | 0.1709 |
| Step 2 | 1.2214    | 1.21         | -      | 1.2216      | 0.2039 | 1.2210     | -      |
|        |           |              | 0.0114 |             |        |            | 0.3778 |
| Step 3 | 1.3499    | 1.331        | -      | 1.3502      | 0.3380 | 1.3492     | -      |
|        |           |              | 0.0189 |             |        |            | 0.6262 |
| Step 4 | 1.4918    | 1.4641       | -      | 1.4923      | 0.4981 | 1.4909     | -      |
|        |           |              | 0.0277 |             |        |            | 0.9226 |

Problem 2 (80 points)

Consider the example problem of a driven pendulum under damping in the textbook. Change the driving force to a square wave with  $f_d(t) = f_0$  for  $0 < T < T_0/2$  and  $f_d(t) = -f_0$  for  $T_0/2 < T < T_0$ , where  $T_0$  is the period of the driving force that repeats periodically.

- (a) Write a computer program to solve the equation of motion by using the fourth-order Runge-Kutta method.
- (2) Plot two figures (similar to Fig. 4.4 and Fig. 4.5 in the book), one for regular motion and one for chaotic motion, with different choices of the parameters. Note:

For problem 2, please hand in a printed copy of your source code and output file along with two figures, and also send a copy of your source code to mailbox ruc\_phys\_guo@163.com

```
(a)
%computional-physics homework-1 (b)
%function:theta''=fd-q*thelta'-sin(theta)
fd=f0 when 0< t< T0/2
fd=-f0 when T0/2 < t < T0
%q=k/m*sqrt(l/g);w0=dimensionless parameter
%-----
%depart it to two one-oder ODE
%y(1)=theta
%y(2)=theta'
%dy(1)/dt=y(2)
dy(2)/dt=fd-qy(2)-sin(theta)
clc, clear
t0=0; t1=500; step=0.5;
n=(t1-t0)/step;
t=linspace(t0,t1,n);
y1=zeros(1,length(t));
y2=zeros(1, length(t));
y1(1)=0; %theta=0
y2(1)=1.4; %theta'=2
%2ÎÊý%q,T0,f0
q=0.5;
T0=100;
f0=2.55;
for i=1:length(t)-1
```

```
k11=y2(i);
k12=y2(i)+step/2*k11;
k13=y2(i)+step/2*k12;
k14=y2(i)+step*k13;
y1(i+1)=y1(i)+step/6*(k11+2*k12+2*k13+k14);
 if mod(i*step,T0)<T0/2</pre>
     fd=f0;
 else
     fd=-f0;
 end
 k21=fd-q*y2(i)-sin(y1(i));
 if mod(i*step,T0)+step/2<T0/2</pre>
     fd=f0;
 else
     fd=-f0;
 end
 k22=fd-q*(y2(i)+0.5*step*k21)-sin(y1(i)+0.5*step*k11);
 k23=fd-q*(y2(i)+0.5*step*k22)-sin(y1(i)+0.5*step*k12);
 if mod(i*step,T0)+step<T0/2</pre>
     fd=f0;
 else
     fd=-f0;
 end
 k24=fd-q*(y2(i)+step*k23)-sin(y1(i)+step*k13);
 y2(i+1)=y2(i)+step/6*(k21+2*k22+2*k23+k24);
 if y1(i+1)>0
     if mod(y1(i+1),2*pi)<pi</pre>
        y1(i+1) = mod(y1(i+1), 2*pi);
       y1(i+1) = mod(y1(i+1), 2*pi) - 2*pi;
     end
 else
     if (-mod(-y1(i+1),2*pi))>-pi
        y1(i+1) = -mod(-y1(i+1), 2*pi);
     else
        y1(i+1) = -mod(-y1(i+1), 2*pi) + 2*pi;
```

```
end
end
```

°-----

## end

plot(y1, y2, '\*')
set(gca, 'XTick', [-2\*pi:pi:2\*pi])

(b)

## One for regular motion

选取参数 q=0.5,t1=500, T0=100,f0=0.9, step=0.5



## One for chaotic motion,

选取参数 q=0.5,t1=500, T0=100, f0=2.55, step=0.5

