

Notes of

REAL AND FUNCTIONAL ANALYSIS

for the Master in Mathematical Engineering held by Prof. G. Verzini a.a. 2023/2024

Edited by Teo Bonfa

Contents

Ι	Introduction	1
0	Course structure	3
1	Set Theory 1.1 Equipotent, finite/infinite, countable/uncountable sets, cardinality of continuoum 1.2 Families of subsets 1.3 Sequences of sets 1.4 Charateristic functions 1.5 Relations, Equivalence relations	5 5 6 7 8
ΙΙ	Real Analysis	9
2	Measure Theory2.1 Measure spaces2.2 Borel sets2.3 Measures	11 11 12 12
3		13
4		15
5		17
6		19
7		21
8		23
9		2 5
10		27
II	I Functional Analysis	29
11		31
12		33
13		35
14	Į.	37
15		39
16		41

17	43
18	45
IV Esercitazioni	47
19 Exercise session $18/09$ 19.1 Recall on \mathbb{R}^n	49 49
20	51
21	53
22	5 5
23	57
24	59
25	61
26	63
27	65
28	67

Part I Introduction

Course structure

This course is splitted in two parts:

- 1. Real Analysis \rightarrow measure and integration theory, in particular:
 - Collections and sequences of sets
 - Measurable space, measure, outer measure
 - Generation of an outer measure
 - Carathéodory's condition, measure induced by an outer measure
 - Lebesgue's measure on \mathbb{R}^n
 - Measurable functions
 - The Lebesgue integral
 - Abstract integration
 - Monotone convergence theorem, Fatou's Lemma, Lebesgue's dominated convergence theorem
 - Comparison between the Lebesgue and Riemann integrals
 - Different types of convergence
 - Derivative of a measure and the Radon-Nikodym theorem
 - Product measures and the Fubini-Tonelli theorem
 - Functions of bounded variation and absolutely continuous functions
- 2. Functional Analysis \sim infinte dimensional linear algebra, in particular:
 - Metric spaces, completeness, separability, compactness
 - Normed spaces and Banach spaces
 - Spaces of integrable functions
 - Linear operators
 - Uniform boundedness theorem, open mapping theorem, closed graph theorem
 - Dual spaces and the Hahn-Banach theorem
 - Reflexivity
 - Weak and weak* convergences
 - Banach-Alaoglu theorem
 - Compact operators
 - \bullet Hilbert spaces
 - Projection theorem, Riesz representation theorem
 - Orthonormal basis, abstract Fourier series
 - Spectral theorem for compact symmetric operators

• Fredholm alternativ

The foundation of this theory is the $Set\ Theory$, that is going to be explained in the next chapter. Enjoy!

 ${f NB}$: this page will be updated with more details and maybe the list of proofs.

Set Theory

1.1 Equipotent, finite/infinite, countable/uncountable sets, cardinality of continuoum

Let X, Y be sets.

Def — Equipotent sets.

X,Y are equipotent if there exists a bijection $f:X\to Y$ (1-1 injective + onto surjective).

If X, Y are equipotent, then they have the same cardinality. On the other hand, X has cardinality \geq than Y if there exists $f: X \to Y$ onto. For example, for

$$X = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad Y = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

exists $f: X \to Y$ s.t. $\forall y \in Y \exists x \in X$ s.t. f(x) = y (f takes all the elements of the codomain), but doesn't exist $g: Y \to X$ s.t. $\forall x \in X \exists y \in Y$ s.t. g(y) = x (g doesn't take all the elements of the codomain).

Def — Finite/infinite sets.

X is finite if it is equipotent to $Y = \{1, 2, ..., k\}$ for some $k \in \mathbb{N}$. X is infinite otherwise.

Prop. X is infinite iff it is equipotent to a proper subset, i.e. if exists a bijection between X and one of his subsets.

For example, between the integers set $\mathbb{Z} = \{0, \pm 1, \pm 2, ...\}$ and the even integers set $\{0, \pm 2, \pm 4, ...\}$ there exists f s.t. f(z) = 2z which is a bijection.

Def — Countable/uncountable (infinite) sets.

X inifinite is countable if it is equipotent to \mathbb{N} . It is uncountable otherwise, in which case is more than countable (countable sets are the "smallest" among infinite sets).

Def — Cardinality of continuoum.

X has the cardinality of continuoum if it is equipotent to \mathbb{R} . Any such set is uncountable.

For example:

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are countable
- $\mathbb{R}, \mathbb{R}^N, (0,1), (0,1)^N$ have the cardinality of continuoum
- countable unions of countable sets are countable

1.2 Families of subsets

Let X be a set.

Def — Power set.

The power set of X, i.e. the set of all subsets of X, is

$$\mathcal{P}(X) = \{Y : Y \subset X\}$$

It is sometimes denoted as 2^X .

The power set has cardinality strictly bigger than X. For example, $\mathcal{P}(\mathbb{N})$ has the cardinality of continuoum.

Def — Family of subsets.

A family, or collection, of subsets of X is just $\mathcal{C} \subset \mathcal{P}(X)$. Tipically, a family of subsets (induced by $I \subset \mathbb{R}$ set of indexes) is $\mathcal{C} = \{E_i\}_{i \in I}$ where $E_i \subset X \ \forall i \in I$.

For example, $\{E_1, E_2, E_3\}$ is a family of subsets.

Def — Union and intersection.

Given a family of sets $\{E_i\}_{i\in I}\subset \mathcal{P}(X)$, will often be considered

$$\bigcup_{i \in I} E_i = \{x \in X : \exists i \in I \text{ s.t. } x \in E_i\}$$
$$\bigcap_{i \in I} E_i = \{x \in X : x \in E_i \ \forall i \in I\}$$

 ${E_i}$ is said to be (pairwise) disjoint if $E_i \cap E_j = \emptyset \ \forall i \neq j$.

Ex — Standard topology of \mathbb{R} .

Given $X = \mathbb{R}$ (or \mathbb{R}^N), the standard/euclidian topology of \mathbb{R} (or \mathbb{R}^N) is $\mathcal{T} = \{E \subset X : E \text{ is open}\}$, i.e. it is the family of all open subsets of X.

More generally, this can be defined in metric spaces (X, d) where X is a set and d a distance between $x, y \in X$. Some properties of \mathcal{T} :

- $\varnothing, X \in \mathcal{T}$
- finite intersection of open sets is open [*]
- any (finite/infinite, countable/uncountable, ...) union of open sets is open [⊚]

Def — Covering and subcovering.

 $\{E_i\}_{i\in I}$ is a covering of X if $X=\bigcup_{i\in I}E_i$. Any subfamily $\{E_i\}_{i\in J,J\subset I}$ is a subcovering if it is a covering.

1.3 Sequences of sets

A sequence is just a family of subsets where $I \equiv \mathbb{N}$, e.g. $\{E_n\}_{n \in \mathbb{N}}$.

Def — Monotone sequences.

 $\{E_n\}$ is increasing (not decreasing), $\{E_n\} \nearrow$, if $E_n \subset E_{n+1} \ \forall n \in \mathbb{N}$. On the other hand, $\{E_n\}$ is decreasing (not increasing), $\{E_n\} \searrow$, if $E_{n+1} \subset E_n \ \forall n \in \mathbb{N}$. If $\{E_n\}$ is increasing/decreasing then it is monotone.

For example, given $X = \mathbb{R}$ and $E_n = \left(-\frac{1}{n}, 1 + \frac{1}{n}\right)$ for $n \ge 1$, we can say that E_n is a monotone decreasing sequence:

$$\begin{array}{c|cccc}
 & & & & \\
\hline
-\frac{1}{n} & & & & \\
\hline
0 & & & & \\
\end{array}$$
1 + $\frac{1}{n}$

But what is $\bigcap_{n=1}^{\infty} E_n$? We know that

$$\bigcap_{n=1}^{\infty} E_n = [0,1]$$

and this is an infinite intersection of open sets (this does not disagree with the prop \circledast). This type of intersection is called "G δ -set": a countable intersection of open sets.

Similarly, $E_n = \left[a + \frac{1}{n}, b - \frac{1}{n} \right]$, a<b, is increasing and

$$\bigcup_{n=1}^{\infty} E_n = (a, b)$$

is called "F σ -set": a countable union of closed sets (doesn't disagree with \odot).

Def — lim sup and lim infa

Let $\{E_n\}_{n\in\mathbb{N}}\subset\mathcal{P}$. We define

$$\limsup_n E_n := \bigcap_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} E_k \right) \qquad \liminf_n E_n := \bigcup_{n=1}^{\infty} \left(\bigcap_{k=n}^{\infty} E_k \right)$$

If these two sets are equal

$$\limsup_{n} E_n = \liminf_{n} E_n = \lim_{n} E_n = F$$

then F is the limit of the succession.

Take note that $\{E_n\} \nearrow (\text{resp. } \searrow) \Longrightarrow \exists \lim_n E_n = \bigcup_n E_n (\text{resp. } \bigcap_n E_n).$

EXER. Looking at the previous definition of lim sup, we can easily proof that

$$x \in \limsup_{n} E_n \iff x \in \bigcup_{n=k}^{\infty} E_n \ \forall k \iff x \in E_n \text{ for } \infty\text{-ly many } n$$

A property that is true for infinitely many n is said to be true *frequently*. Similarly:

$$x \in \liminf_{n} E_n \iff x \in \bigcap_{n=k}^{\infty} E_n \text{ for at least one } \overline{k} \iff x \in E_n \ \forall n \geq \overline{k}$$

A property that is only true after n large enough is said to be true eventually.

1.4 Charateristic functions

Let X be a set.

Def — Charateristic function.

Given $E \subset X$, we define the characteristic (or indicator) function

$$\chi_E: X \to \mathbb{R} \quad \text{s.t.} \quad \chi_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases} \text{ (or } x \in E^c = X \setminus E)$$

(another notation: $\mathbb{1}_E(x)$)

Prop.

- $\bullet \ \chi_{E_1 \cap E_2} = \chi_{E_1} \cdot \chi_{E_2}$
- $\bullet \ \chi_{E_1 \bigcup E_2} = \chi_{E_1} + \chi_{E_2} \chi_{E_1} \cdot \chi_{E_2}$
- $\chi_{\limsup_n E_n} = \limsup_n \chi_{E_n}$ and likewise $\chi_{\liminf_n E_n} = \liminf_n \chi_{E_n}$

Take note that the first lim sup/inf refers to sets, the second one to (real) numbers.

1.5 Relations, Equivalence relations

Def — Cartesian product and Relations.

If X and Y are sets, their Cartesian product $X \times Y$ is the set of all ordered pairs (x, y) such that $x \in X$ and $y \in Y$. A relation from X to Y is a subset of $X \times Y$. If R is a relation from X to Y, we shall sometimes write xRy to mean that $(x, y) \in R$.

If Y = X, we speak of a relation on X. For example, $xRy \iff y = x^2$.

The most important types of relations are the following:

Def — Equivalence relations.

An equivalence relation is a relation R s.t.

- i) $xRx \ \forall x \in X$ (reflexive)
- ii) $xRy \iff yRx \ \forall x,y$ (symmetric)
- iii) xRy, $yRz \Longrightarrow xRz \ \forall x, y, z$ (transitive)

Equivalence relations allow us to introduce the following constructs which will be useful later on:

- Equivalence class of an element x: $E_x = \{y \in X : yRx\}$
- Quotient set: $X/R = \{E_x : x \in X\}$

For example, to define $\mathbb Q$ in a precise way we take the following relation R

$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \dots$$

i.e. the pairs $(1,2),(2,4),(3,6),... \in \mathbb{Z} \times \mathbb{Z}_0$ (without zero), therefore $\mathbb{Q} = \mathbb{Z} \times \mathbb{Z}_0/R$.

Part II Real Analysis

Measure Theory

2.1 Measure spaces

Let X be a set.

Def — σ -algebras.

A family $\mathcal{M} \subset \mathcal{P}(x)$ is called a σ -algebra if

- i) $\varnothing \in \mathcal{M}$
- ii) $E \subset \mathcal{M} \implies E^c = X \setminus E \in \mathcal{M}$
- iii) $\{E_n\}_{n\in\mathbb{N}}\subset\mathcal{M}\Longrightarrow\bigcup_{n=1}^\infty E_n\in\mathcal{M}$ (infinite countable union)

If (iii) is replaced by " $E_1, E_2 \in \mathcal{M} \Longrightarrow E_1 \bigcup E_2 \in \mathcal{M}$ " then \mathcal{M} is just an algebra (finite union).

Trivial examples: $\mathcal{M} = \mathcal{P}(X)$ is the biggest σ -algebra, $\mathcal{M} = \{\emptyset, X\}$ is the smallest σ -algebra.

We say that

- \mathcal{M} σ -algebra $\rightsquigarrow (X, \mathcal{M})$ is a measurable space
- $E \in \mathcal{M}$ are measurable sets

Basic properties of \mathcal{M} :

- 1. $X = \varnothing^c \in \mathcal{M} \text{ (by (i)+(ii))}$
- 2. \mathcal{M} is an algebra (σ -alg. \Longrightarrow alg. but not the viceversa)

To prove this you can take a finite union (e.g. $E_1 \cup E_2$) and then make infinite unions with \emptyset to have an infinite union that still belongs to \mathcal{M} :

$$E_1 \cup E_2 = E_1 \cup E_2 \underbrace{\cup \varnothing \cup \ldots \cup \varnothing \cup \ldots}_{\in \mathcal{M} \text{ by (ii)}}$$

- 3. ${E_n}_n \subset \mathcal{M} \Longrightarrow \bigcap_{n \in \mathbb{N}} E_n \in \mathcal{M}$
- 4. $E, F \in \mathcal{M} \Longrightarrow E \setminus F \in \mathcal{M}$

Now, we want to understand how to generate a σ -algebra.

TH 2.1. Take $S \subset \mathcal{P}(X)$ any family. Then it is well defined $\sigma_0(S)$, the σ -algebra generated by S (the smallest σ -algebra containing S):

- i) $\sigma_0(\mathcal{S})$ is a σ -algebra
- ii) $\mathcal{S} \subset \sigma_0(\mathcal{S})$
- iii) if \mathcal{M} is a σ -alg. and $\mathcal{S} \subset \mathcal{M}$ then $\sigma_0(\mathcal{S}) \subset \mathcal{M}$

PROOF (Sketch).

We introduce a collection of collection of sets (we should be more strict)

$$\mathcal{V} = \{ \mathcal{M} \subset \mathcal{P}(X) : \mathcal{M} \text{ is a } \sigma\text{-alg. and } \mathcal{S} \subset \mathcal{M} \}$$

(notice that $\mathcal V$ is not empty since $\mathcal P(X) \in \mathcal V$)

Then $\sigma_0(\mathcal{S}) = \bigcap \{ \mathcal{M} : \mathcal{M} \in \mathcal{V} \}$ (to generate the smallest take the intersection of all).

2.2 Borel sets

2.3 Measures

Part III Functional Analysis

Part IV Esercitazioni

Exercise session 18/09

Today's **aim**: we want to get the essence of the notion of "being closed" in order to deal with continuity (so this lesson will be a little more theoretical than the following ones).

19.1 Recall on \mathbb{R}^n

Given $x, y \in \mathbb{R}$ a possible distance between x and y is

$$d(x,y) := |x - y|$$

(we will analyze its properties in a moment)

Given $x, y \in \mathbb{R}^2$ a possible distance between $x = (x_1, x_2)$ and $y = (y_1, y_2)$ is

$$d_E(x,y) := \sqrt{\sum_{i=1}^{2} |x_i - y_i|}$$

the Euclidian/canonical distance. For \mathbb{R}^n is just the same.

Given $f,g\in\mathcal{C}^0\left([a,b]\right),$ i.e. $f,g:[a,b]\to\mathbb{R}$ continuous, the distance

$$d(f,g) := \min_{x \in [a,b]} |f(x) - g(x)|$$

cannot be a proper distance because $d=0 \implies f=g$ (see the definition of distance in the next page).

