Статистические свойства некоторых процедур сжатия данных

Бзикадзе Андрей Важевич, гр. 15.М03-мм

Санкт-Петербургский государственный университет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н. Некруткин В.В. Рецензент: исследователь Советкин Е.А.

Санкт-Петербург 06 июня 2017

«Book Stack»-преобразование

Одна из рассматриваемых в ВКР процедур сжатия данных.

- ullet $\mathbb{S}\stackrel{\mathrm{def}}{=}\{1,2,\ldots,S\}$ множество книг.
- Стопка книг.
- Начальный порядок Ξ_0 .
- Из стопки случайная книга перекладывается наверх.

«Book Stack»-преобразование

Одна из рассматриваемых в ВКР процедур сжатия данных.

- ullet $\mathbb{S}\stackrel{\mathrm{def}}{=}\{1,2,\ldots,S\}$ множество книг.
- Стопка книг.
- Начальный порядок Ξ_0 .
- Из стопки случайная книга перекладывается наверх.

Итеративная процедура.

- ullet $\{\eta_i\}_{i=1}^{\infty}$ последовательность **названий** случайных книг.
- $\{\Xi_i\}_{i=0}^{\infty}$ последовательность состояний **стопки** случайных книг.
- ullet $\{\xi_i\}_{i=1}^{\infty}$ последовательность **положений** случайных книг.

«Book Stack»-преобразование

Одна из рассматриваемых в ВКР процедур сжатия данных.

- ullet $\mathbb{S}\stackrel{\mathrm{def}}{=}\{1,2,\ldots,S\}$ множество книг.
- Стопка книг.
- Начальный порядок Ξ_0 .
- Из стопки случайная книга перекладывается наверх.

Итеративная процедура.

- ullet $\{\eta_i\}_{i=1}^{\infty}$ последовательность **названий** случайных книг.
- $\{\Xi_i\}_{i=0}^{\infty}$ последовательность состояний **стопки** случайных книг.
- ullet $\{\xi_i\}_{i=1}^{\infty}$ последовательность **положений** случайных книг.

$$\eta_i = \Xi_{i-1}[\xi_i].$$

Пример. S=5

3
4
1
5
2

 Ξ_0

Пример. S=5

$$\eta_1 = 4 \\
\xi_1 = 2$$

3
4
1
5
2

$$\Xi_0$$

Пример. S = 5

Пример. S=5

$$\eta_1 = 4
\xi_1 = 2$$
 $\eta_2 = 4
\xi_2 = 1$
 $\eta_3 = 2
\xi_3 = 5$
 $\frac{3}{4}$
 $\frac{4}{3}$
 $\frac{1}{5}$
 $\frac{5}{2}$
 $\frac{5}{2}$
 $\frac{1}{2}$
 $\frac{1}{5}$
 $\frac{1}{5}$

Обзор литературы

Применение «Book Stack»-преобразования:

- Рябко Б.Я. (1980): алгоритм **сжатия** данных под названием «метод стопки книг».
- Bentley J.L. et al. (1986): тот же алгоритм под названием
 «Move To Front».
- Рябко Б.Я. et al. (2003–2004): тест для проверки свойств генераторов псевдослучайных чисел под названием «Book Stack».

«Book Stack»-тест

Равносильны:

- ullet $\mathbb{H}_0:\eta_i$ независимы и равномерно распределены на $\mathbb{S}.$
- ullet $\mathbb{H}_0^*: \xi_i$ независимы и равномерно распределены на $\mathbb{S}.$

Два критерия для проверки \mathbb{H}_0 : при применении к «исходной» и к «преобразованной» выборке.

Выбор альтернативной гипотезы

Альтернатива в (Бзикадзе А.В., Некруткин В.В, 2016) и бакалаврской ВКР:

 $\mathbb{H}_1:\{\eta_i\}_{i\geqslant 1}$ — н.о.р. с **неравномерным** распределением.

При больших n:

- Критерий χ^2 к $\{\eta_i\}_{i=1}^n$ (как правило) мощнее, чем к $\{\xi_i\}_{i\geqslant 1}.$
- ullet Критерий отношения правдоподобия к $\{\eta_i\}_{i=1}^n$ мощнее, чем к $\{\xi_i\}_{i\geqslant 1}.$

Выбор альтернативной гипотезы

Альтернатива в (Бзикадзе А.В., Некруткин В.В, 2016) и бакалаврской ВКР:

 $\mathbb{H}_1:\{\eta_i\}_{i\geqslant 1}$ — н.о.р. с **неравномерным** распределением.

При больших n:

- ullet Критерий χ^2 к $\{\eta_i\}_{i=1}^n$ (как правило) мощнее, чем к $\{\xi_i\}_{i\geqslant 1}.$
- ullet Критерий отношения правдоподобия к $\{\eta_i\}_{i=1}^n$ мощнее, чем к $\{\xi_i\}_{i\geqslant 1}.$

В магистерской ВКР:

 $\mathbb{H}_1: \{\eta_i\}_{i\geqslant 1}$ — эргодическая однородная марковская цепь (ЭОМЦ) со стационарным равномерным на \mathbb{S} распределением и переходной матрицей $\mathbf{P}^{(\eta)}$: $\operatorname{tr}\left(\mathbf{P}^{(\eta)}\right) \neq 1$.

Марковское свойство Ξ_i

Пусть входная последовательность $\{\eta_i\}_{i\geqslant 1}$ — ОМЦ с матрицей переходов $\mathbf{P}^{(\eta)}=(p_{ij}).$

Предложение

- **①** Последовательность $\{\Xi_n\}_{n\geqslant 1}$ образует ОМЦ.
- ② Если входная ОМЦ $\{\eta_n\}_{n\geqslant 1}$ эргодическая, то последовательность $\{\Xi_n\}_{n\geqslant 1}$ имеет ровно один непериодический эргодический класс и, быть может, несколько несущественных состояний.
- **③** Если же $p_{ij} > 0$ при всех i, j, то несущественных состояний нет, т.е. $\{\Xi_n\}_{n\geqslant 1}$ эргодическая.

Марковское свойство Ξ_i . Пример

Рассмотрим графическое изображение ОМЦ $\{\Xi_i\}_{i\geqslant 1}$. Входная ОМЦ $\{\eta_i\}_{i\geqslant 1}$ — эргодическая с матрицей $\mathbf{P}^{(\eta)}=(p_{ij})$. $S=3,\ p_{ij}>0$ для всех i,j.

Марковское свойство Ξ_i . Пример

Рассмотрим графическое изображение ОМЦ $\{\Xi_i\}_{i\geqslant 1}$. Входная ОМЦ $\{\eta_i\}_{i\geqslant 1}$ — эргодическая с матрицей $\mathbf{P}^{(\eta)}=(p_{ij})$. $S=3,\ p_{23}=0,\ p_{33}=0$ и остальные $p_{ij}>0$.

Марковское свойство Ξ_i . Пример

Рассмотрим графическое изображение ОМЦ $\{\Xi_i\}_{i\geq 1}$. Входная ОМЦ $\{\eta_i\}_{i\geqslant 1}$ — эргодическая с матрицей $\mathbf{P}^{(\eta)}=(p_{ij}).$ S=3, $p_{23}=0$, $p_{33}=0$ и остальные $p_{ij}>0$. $(3,2,1)^{\mathrm{T}}$ — несущественное состояние ОМЦ $\{\Xi_i\}_{i\geq 1}$.

Предельное поведение ξ_i . Закон Больших Чисел

Пусть $\{\eta_i\}_{i\geqslant 1}$ — ЭОМЦ с м.п. $\mathbf{P}^{(\eta)}=(p_{ij}).$ Обозначим $(\pi_\alpha,\alpha\in\mathfrak{S}_S)$ — стационарное распределение Ξ_i , $\tau_k=\tau_k(n)=\mathbb{I}_k(\xi_1)+\ldots+\mathbb{I}_k(\xi_n)$ для $1\leqslant k\leqslant S$ и положим

$$s_k \stackrel{\text{def}}{=} \sum_{j=1}^S \sum_{\substack{\alpha \in \mathfrak{S}_S \\ \alpha_k = j}} \pi_{\alpha} p_{\alpha[1]j}.$$

Теорема

Для всех $k \in 1: S$ при $n \to \infty$

- $\mathbb{P}(\xi_n = k) \to s_k$.
- $\mathbb{E}(\tau_k/n s_k)^2 = \mathrm{O}(1/n)$.

Распределение с вероятностями s_j будем обозначать \mathcal{R} .

Предельное поведение ξ_i . ЦПТ

Обозначим
$$\mathbf{s} = (s_1, \dots, s_S)^\mathrm{T}$$
 и

$$a_{k,\ell} = \begin{cases} s_k(1-s_k), & \text{ при } k=\ell, \\ -s_ks_\ell, & \text{ при } k \neq \ell. \end{cases}$$

Теорема

$$\mathcal{L}\left(\sqrt{n}\left(\tau_{n}^{(\xi)}/n-\mathbf{s}\right)\right) \Rightarrow \mathcal{N}\left(0,\Sigma_{\xi}\right),$$

где матрица $\Sigma_{\mathcal{E}}$ размеров $S \times S$ имеет компоненты

$$(\Sigma_{\xi})_{k,\ell} = a_{k,\ell} + C_{k,\ell},$$

а $C_{k,\ell}$ некоторые константы, зависящие только от $\mathbf{P}^{(\eta)}$.

Сравнение предельных распределений η_i и ξ_i

Теорема

Пусть $\{\eta_i\}_{i\geqslant 1}$ образуют ЭОМЦ со стационарным равномерным распределением и матрицей переходных вероятностей $\mathbf{P}^{(\eta)}$: $\operatorname{tr}\left(\mathbf{P}^{(\eta)}\right)\neq 1$. Тогда предельное распределение $\mathcal R$ не совпадает с равномерным.

Без предположения, что $\operatorname{tr}\left(\mathbf{P}^{(\eta)}\right) \neq 1$, утверждение Теоремы, вообще говоря, неверно.

Сравнение критериев χ^2 при применении к η_i и ξ_i

Альтернатива:

 $\mathbb{H}_1:\{\eta_i\}_{i\geqslant 1}$ — эргодическая однородная марковская цепь со стационарным равномерным распределением и переходной матрицей $\mathbf{P}^{(\eta)}$: $\mathrm{tr}\left(\mathbf{P}^{(\eta)}\right) \neq 1$.

Теорема

Критерий χ^2 против альтернативы \mathbb{H}_1

- При применении к «входным» $\{\eta_i\}_{i\geqslant 1}$ несостоятельный.
- При применении к «выходным» $\{\xi_i\}_{i\geqslant 1}$ состоятельный.

Пример. Модель

Модель марковской цепи:

- Задано: $0 < \delta < 1$.
- Матрица переходных вероятностей: ${f P}=(p_{ij})$, где $p_{ii}=\delta$ и $p_{ij}=(1-\delta)/(S-1)$ при $i\neq j.$

Моделирование:

- Вихрь Мерсенна.
- ullet n размер выборки, m количество выборок.
- Критерий χ^2 с S-1 степенью свободы: m штук P-значений.

Цель:

• Сравнение мощности критерия χ^2 «до» и «после» преобразования «Book Stack».

Пример. Моделирование

Параметры: S=3, $n=10^4$, $\delta=1/S+0.01$, m=100.

Рис.: Мощности критериев χ^2 до/после «Book Stack». Для χ^2 «до» P-значение критерия Колмогорова-Смирнова равно 0.48, «после» — меньше $2.2\cdot 10^{-16}$.

Итоги

- Получено обобщение теоретико вероятностных результатов бакалаврской ВКР на случай, когда $\{\eta_i\}_{i\geqslant 1}$ образуют ЭОМЦ.
- При альтернативной гипотезе, что $\{\eta_i\}_{i\geqslant 1}$ ЭОМЦ с матрицей переходов $\mathbf{P}^{(\eta)}$: $\operatorname{tr}\left(\mathbf{P}^{(\eta)}\right)\neq 1$, критерий χ^2 «до» преобразования несостоятельный, а такой же критерий «после» состоятельный.

Также получены следующие результаты

- Рассмотрено обобщение «Book Stack»-преобразования, при котором сохраняются многие теоретико вероятностые результаты.
- Рассмотрен другой тест «Order» для проверки той же гипотезы \mathbb{H}_0 и теоретически обоснована **бесперспективность** его применения.