Algoritmos e Estrutura de Dados

Bruno Feres de Souza bferes@gmail.com

Universidade Federal do Maranhão Bacharelado em Ciência e Tecnologia

1° semestre de 2016

Na aula anterior...

Dados e Tipos de Dados

- Um dado é uma informação que um algoritmo recebe ou manipula
- Exemplos de dados são nomes, datas, valores (preços, notas, etc.) e condições (verdadeiro e falso)
- Todo dado é de um certo tipo que define sua natureza (p. ex., um nome é diferente de um valor), identificando seu uso, e define as operações que podem ser realizadas com o dado
- Por exemplo, podemos somar dois valores numéricos, mas não podemos somar um número e uma frase

Dados e Tipos de Dados

- Em Python:
 - Tipos de dados atômicos:
 - -int e float: +, -, *, /, %, **
 - -bool: and, or, not
 - Tipos de dados de coleção:
 - -Listas: criar, acessar, modificar, etc
 - -Tuplas: criar, acessar, etc
 - -String: criar, acessar, etc
 - Dicionários: criar, acessar, modificar, etc

Estrutura de Dados (ED)

- Definição: organização de dados e operações (algoritmos) que podem ser aplicados sobres esses dados como forma de apoio à solução de problemas. Podem ser uitlizadas para representar TADs em alguma linguagem de programação.
- Exemplos de EDs:
 - Pilhas
 - Filas
 - Listas lineares
 - Árvores
 - •

Árvores: introdução

- Listas não-lineares:
 - Estrutura em grafos
 - Estrutura em árvores
- Estrutura em árvore: organização dos dados de forma não-linear, mantendo um relacionamento hierárquico entre os elementos.

Árvores: exemplos

Árvore genealógica

Árvores: exemplos

Organização de um livro

```
1. Livro XYZ
1.1 Cap. 1
1.1.1 Seção 1
1.1.2 Seção 2
...
1.1.n Seção n
1.2 Cap. 2
...
1.m Cap. m
```


Árvores: exemplos

Organograma de um instituto acadêmico

Árvores: vantagens

- Conceitual: representa relacionamentos entre os dados
 - Indica como os dados estão associados
- Computacional: favorece a manipulação dos dados
 - Facilita a extração de informação na estrutura
 - Enfoque apenas nas regiões de interesse da estrutrura, ignorando as demais.

Árvores: Definição

- Uma **árvore enraizada T**, ou simplesmente árvore, é um conjunto finito de elementos denominados nós ou vértices tais que:
 - T = Ø, quando a árvore é dita vazia, ou
 - $T = \{r\} \cup \{T_1\} \cup \{T_2\} \cup \{T_3\} \cup ... \cup \{T_n\}, \text{ com } n > 0$
- Nesta definição
 - *r* é um nó especial chamado raiz
 - Os demais nós são um conjunto vazio ou são conjuntos disjuntos não vazios T₁, T₂, T₃,...,T_n, chamados de subárvores de r, cada qual uma árvore.
- Note a recursividade da definição.

- Textualmente, uma sequência aninhada de "{" e "}" pode ser utilizada para representar uma árvore.
 - As sequências de chaves representam as relações entre os nós da estutura; o rótulo de cada nó é inserido imediatamente à direita do "{" correspondente.

• Exemplos:

- $T_a = \{A\}$
- $T_h = \{B, \{A\}\}$
- $T_c = \{D,\{E,\{F\}\},\{G,\{H,\{I\}\},\{J,\{K\},\{L\}\},\{M\}\}\}\}$

- Graficamente, árvores podem ser representadas por:
 - Conjuntos aninhados
 - Identação
 - Grafos

- Conjuntos aninhados
 - $T_c = \{D,\{E,\{F\}\},\{G,\{H,\{I\}\},\{J,\{K\},\{L\}\},\{M\}\}\}\}$

Identação

•
$$T_c = \{D,\{E,\{F\}\},\{G,\{H,\{I\}\},\{J,\{K\},\{L\}\},\{M\}\}\}\}$$

D	
E	_
	F
G	
	Н
	I
	J
	K
	L

Grafos

• $T_c = \{D,\{E,\{F\}\},\{G,\{H,\{I\}\},\{J,\{K\},\{L\}\},\{M\}\}\}\}$

- Dada uma árvore T com raiz *r*, tem-se as seguintes relações genealógicas:
 - Os nós w₁, w₂,..., w_j das subárvores de r são chamados de filhos de r.
 - O nó r é chamado de **pai** de w_1 , w_2 ,..., w_j
 - Os nós $W_1, W_2, ..., W_i$ são ditos **irmãos**
 - Se o nó z é filho de w₁, então w₂ é tio de z e r é avô de z e z é
 neto de r.

ullet Considerando a árvore T_c anteriormente definida:

- Grau de saída, folha, descendente e ancestral
 - O número de filhos de um nó é chamado de grau desse nó
 - O grau de uma árvore é o máximo entre os graus de seus nós
 - Nós com grau zero são ditos folhas
 - Se o nó x pertence à subárvore do nó v, então x é descendente
 de v e v é ancestral de x

Considerando a árvore T_c anteriormente definida:

- Caminho e comprimento do caminho
 - Uma sequência de nós distintos w_1 , w_2 , ..., w_j , tal que existe sempre entre nós consecutivos a relação "é filho de" ou é "pai de", é denominada um **caminho** na árvore: diz-se que w_1 alcança w_i e que w_i é alcançado por w_1 .
 - Um caminho de k vértices é obtido pela sequência de k-1 pares;
 o valor k-1 é o comprimento do caminho

Considerando a árvore T_c anteriormente definida:

- Nível (ou profundidade) e altura de um nó e da árvore
 - O nível de um nó é o tamanho do caminho entre a raiz da árvore até esse nó
 - A raiz tem nivel 0
 - A altura de um nó é o tamanho do maior caminho entre este nó e uma folha descendente desse nó
 - As folhas tem altura 0
 - A altura da raiz equivale à altura da árvore

 \bullet Considerando a árvore $T_{\rm c}$ anteriormente definida:

Árvores: Exercícios

- Considere as seguintes árvores:
 - $T_1 = \{a,\{b,\{c,\{d\}\},\{e,\{f\},\{g\}\}\},\{h,\{i\}\}\}\}$
 - $T_2 = \{2,\{1\},\{3\}\}$
 - $T_3 = \{4,\{2,\{1\},\{3\}\},\{6,\{5\},\{7\}\}\}$
- Pede-se que:
 - Obtenha as representações por conjunto, identação e grafos das estruturas
 - Encontre grau, altura e profundidade de cada nó
 - Exercite os conceitos vistos na Seção Terminologia

Dúvidas?