Outer measures: $M^* : P(X) \longrightarrow (0, \infty)$

 $0 \in CF \Rightarrow \mathring{\mathcal{M}}(F) \leq \mathring{\mathcal{M}}(F)$

(1) pu* (UE,) < \(\mathbb{E}_n\)

Pop: if $\mathcal{E} \subset P(X)$ and $p: \mathcal{E} \longrightarrow (0, \infty)$, $p(\emptyset) = 0$,

no $u^*(E) = \inf \left\{ \sum p(E_n) \mid E \in \mathcal{E} \right\}$ is an extension of the property of the

on P(x)
outer measure put today
today

today

friday

premersue us

A = MX and MX | A = Mo

(+ aniqueness)

use truis to construct (elseague-Stieltjes menoures on R.

Page 1

given an outer measure Mt

Def:
$$M^* = \left\{ E \subset X \mid \mu^*(E \cap F) + \mu^*(E \cap F) = \mu^*(F) \right\}$$

These are the Mx-measurable sets.

Prop: Mt is a o-algebra. Essue for letter

① all
$$\mu^*$$
-null sets are in \mathcal{M}^* .

 $f \in F(X)$, $\mu^*(F(N)) + \mu^*(F(N))$ (if N is μ^* -null).

 $\mu^*(F)$

Lerma: Suppose GCX and E, FEM*.

Define
$$G_{00} = G_{1}(E_{1}F)$$

$$G_{10} = G_{1}(E_{1}F)$$

$$G_{01} = G_{1}(F_{1}F)$$

$$G_{11} = G_{1}F_{1}F$$

Then
$$\left[u^{*}(G) = u^{*}(G_{00}) + \mu^{*}(G_{01}) + \mu^{*}(G_{10}) + \mu^{*}(G_{11})\right]$$
 (*)

If Since
$$E \in M^*$$
, $\mu^*(G) = \mu^*(G \cap E) + \mu^*(G \cap E')$

$$G_{10} + G_{11} \qquad G_{01} + G_{02}$$

Since FEM*,

$$M^{*}(G_{1} \perp G_{10}) = M^{*}((G_{1}, \perp G_{10}) \cap F) + M^{*}((G_{1}, \perp G_{10}) \cap F^{c})$$

t

the other on i's similar.

$$E \in M^+ \iff \forall F \subset X, \quad \mu^*(F) = \mu^*(E \cap F) + \mu^*(E \cap F).$$
 Corretion

Thus (Covatho dory):

1) mt is a o-algebra from renork, mt contains @ u* m+ is a complete measur

If Step 1: Show mx 15 an algebra

Ø ∈ M* since it is ut-null.

D If
$$E_{i} = \epsilon m^{*}$$
, then $\forall G \in X$, we have $(*)$

$$\mu^{*}((E \cup F) \cap G) = \mu^{*}(G_{10} \cup G_{01} \cup G_{01})$$

$$= \mu^{*}(G_{10}) + \mu^{*}(G_{01}) + \mu^{*}(G_{01})$$

Page 3

So
$$\mu^*((E \cup F) \cap G) + \mu^*((f \cup F)^c \cap G) = \mu^*(G).$$

So $E \cup F \cap M^*$. Induct.

② observe the conthibodory criterion is symutric in E4FC.

Step 2: m* is a o-algebra.

(an algebra is a o-algebra iff it's closed under otale disjoint unions).

If Suppose (f_n) is a sequence of disjoint subsets, set $E := \coprod E_n$. by Step 1, $\forall N \in \mathbb{N}$, $\coprod_{i} E_n \in \mathbb{M}^*$.

Let FCX and set G:= Fn HGn.

Since Ex & mx,

$$\mu^{*}(F \cap H_{G_{n}}) = \mu^{*}(G)$$

$$= \mu^{*}(E_{n} \cap G) + \mu^{*}(E_{n} \cap G)$$

$$= \mu^{*}(F \cap H_{E_{n}}) + \mu^{*}(F \cap E_{n}).$$

by induction, $\mu^*(F \cap H_n) = \sum_{i} \mu^*(F \cap E_n)$.

Then $\forall N \in \mathbb{N}$, $\mu^*(f) = \mu^*(f \cap H_n) + \mu^*(F \cap H_n)$ $\geq \sum_{i} \mu^*(F \cap H_n) + \mu^*(F \cap H_n)$

taking N -> 00.

$$u^*(\pm)$$
 $\xrightarrow{\infty}$ $u^*(\pm \cdot \pm)$ \cdot \cdot \cdot \cdot \cdot

$$\mu^{*}(\pm) \geq \sum_{n} \mu^{*}(\pm n \pm n) + \mu^{*}(\pm n \pm n) + \mu^{*}(\pm n \pm n)$$

$$= \mu^{*}(\pm n \pm n) + \mu^{*}(\pm n \pm n)$$

$$= \mu^{*}(\pm n \pm n) + \mu^{*}(\pm n \pm n)$$

$$= \mu^{*}(\pm n \pm n) + \mu^{*}(\pm n \pm n)$$

So EEM*.

Step 3 nt | mx is a measur.

El suppose (En) c mt is digioins.

take F= F in (**) above.

then $\mu^*(E) \ge \sum_{\mu^*} \mu^*(E_n) = \mu^*(E_n) = \mu^*(E).$

So equality holds.

Pet: let ACP(X) he an algebora.

Afr no : A - [0,00] is called a premeasure if

M_o (
 Ø) = 0

O I sequence $(E_n) \subset A$ of disjoint sets S.L. $\coprod E_n \in A$, $M_o(\coprod E_n) = \sum M_o(E_n)$.

Romarks: premerances are finitely additive.

Starting by a premise on A when P(x) via $M^{*}(E) = \inf \left\{ \sum_{n} A_{n}(E_{n}) \mid E \in U \in A_{n}, E_{n} \in A_{n} \right\}$.

Lemma: $M^*|_{A} = M_{\circ}$.

If Suppose $E \in A$ my $E \subset UE_n$ m/ $\sum \mu \cdot (E_n) \leq \mu^{\dagger}(E) + E$ Let $E_n := E_n(E_n \setminus U \in E_n)$.

Then Fn E & Yn and IIFn = E E A.

So $\mu_{o}(E) = \sum \mu_{o}(F_{n}) \leq \sum \mu_{o}(E_{n}) \leq \mu^{*}(E) + E.$ $F_{n} \subset E_{n}$

Es o was arbitrary, so $\mu_0(E) \leq \mu^*(E)$.

Converely, ECUGn where $G_1 = E$, $G_n = \emptyset$ $\forall n > 1$. So $\mathcal{M}^*(E) \leq \mathbb{Z}\mathcal{M}_{\circ}(G_n) = \mathcal{M}_{\circ}(E)$.