IT303

Software Engineering

Syllabus

- Week 1: Introduction, Software Process
- Week 2,3,4,5: Requirements Analysis, System
 Architecture and Design, OOAD, Design Patterns,
- Week 6,7,8,9,10: Version Control, Testing,
 DevOps, Reliability, Performance of Computer
 Systems,
- Week 11,12,13,14: Research paper's implementation outcomes, Project submissions, Case Studies.

Evaluation Pattern

- 15% for Mid Sem
- 25% for End Sem
- 60% for Project, Assignments, Quizzes

Software?

- The product that software professionals build and then support over the long term.
- Software encompasses: (1) instructions (computer programs) that when executed provide desired features, function, and performance; (2) data structures that enable the programs to adequately store and manipulate information and (3) documentation that describes the operation and use of the programs.

Types Software Products

Generic products

- Stand-alone systems that are marketed and sold to any customer who wishes to buy them.
- Examples PC software such as editing, graphics programs, project management tools; CAD software; software for specific markets such as appointments systems for dentists.

Customized products

- Software that is commissioned by a specific customer to meet their own needs.
- Examples embedded control systems, air traffic control software, traffic monitoring systems.

Software Costs

- Software costs often dominate computer system costs. The costs of software on a PC are often greater than the hardware cost.
- Software costs more to maintain than it does to develop. For systems with a long life, maintenance costs may be several times development costs.
- Software engineering is concerned with costeffective software development.

Software Engineering

- The IEEE definition:
 - Software Engineering: (1) The application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software; that is, the application of engineering to software. (2) The study of approaches as in (1).

Importance of Software Engineering

- More and more, individuals and society rely on advanced software systems. We need to be able to produce reliable and trustworthy systems economically and quickly.
- It is usually cheaper, in the long run, to use software engineering methods and techniques for software systems rather than just write the programs as if it was a personal programming project. For most types of system, the majority of costs are the costs of changing the software after it has gone into use.

FAQ about software engineering

Question	Answer
What is software?	Computer programs, data structures and associated documentation. Software products may be developed for a particular customer or may be developed for a general market.
What are the attributes of good software?	Good software should deliver the required functionality and performance to the user and should be maintainable, dependable and usable.
What is software engineering?	Software engineering is an engineering discipline that is concerned with all aspects of software production.
What is the difference between software engineering and computer science?	Computer science focuses on theory and fundamentals; software engineering is concerned with the practicalities of developing and delivering useful software.
What is the difference between software engineering and system engineering?	System engineering is concerned with all aspects of computer-based systems development including hardware, software and process engineering. Software engineering is part of this more general process.

Essential attributes of good software

Product characteristic	Description
Maintainability	Software should be written in such a way so that it can evolve to meet the changing needs of customers. This is a critical attribute because software change is an inevitable requirement of a changing business environment.
Dependability and security	Software dependability includes a range of characteristics including reliability, security and safety. Dependable software should not cause physical or economic damage in the event of system failure. Malicious users should not be able to access or damage the system.
Efficiency	Software should not make wasteful use of system resources such as memory and processor cycles. Efficiency therefore includes responsiveness, processing time, memory utilisation, etc.
Acceptability	Software must be acceptable to the type of users for which it is designed. This means that it must be understandable, usable and compatible with other systems that they use.

Software Engineering

A Layered Technology

- Any engineering approach must rest on organizational commitment to quality which fosters a continuous process improvement culture.
- Process layer as the foundation defines a framework with activities for effective delivery of software engineering technology. Establish the context where products (model, data, report, and forms) are produced, milestone are established, quality is ensured and change is managed.
- Method provides technical how-to's for building software. It encompasses many tasks including communication, requirement analysis, design modeling, program construction, testing and support.
- Tools provide automated or semi-automated support for the process and methods.

Software Process

- A process is a collection of activities, actions and tasks that are performed when some work product is to be created. It is not a rigid prescription for how to build computer software. Rather, it is an adaptable approach that enables the people doing the work to pick and choose the appropriate set of work actions and tasks.
- Purpose of process is to deliver software in a timely manner and with sufficient quality to satisfy those who have sponsored its creation and those who will use it.

- Communication: communicate with customer to understand objectives and gather requirements
- Planning: creates a "map" defines the work by describing the tasks, risks and resources, work products and work schedule.
- Modeling: Create a "sketch", what it looks like architecturally, how the constituent parts fit together and other characteristics.
- Construction: code generation and the testing.
- Deployment: Delivered to the customer who evaluates the products and provides feedback based on the evaluation.
- These five framework activities can be used to all software development regardless of the application domain, size of the project, complexity of the efforts etc, though the details will be different in each case.
- For many software projects, these framework activities are applied iteratively
 as a project progresses. Each iteration produces a software increment that
 provides a subset of overall software features and functionality.

Five Activities of a Generic Process framework

Umbrella Activities

Complement the five process framework activities and help team manage and control progress, quality, change, and risk.

- Software project tracking and control: assess progress against the plan and take actions to maintain the schedule.
- Risk management: assesses risks that may affect the outcome and quality.
- Software quality assurance: defines and conduct activities to ensure quality.
- Technical reviews: assesses work products to uncover and remove errors before going to the next activity.
- Measurement: define and collects process, project, and product measures to ensure stakeholder's needs are met.
- Software configuration management: manage the effects of change throughout the software process.
- Reusability management: defines criteria for work product reuse and establishes mechanism to achieve reusable components.
- Work product preparation and production: create work products such as models, documents, logs, forms and lists.

Understand the Problem

- Who has a stake in the solution to the problem? That is, who are the stakeholders?
- What are the unknowns? What data, functions, and features are required to properly solve the problem?
- Can the problem be compartmentalized? Is it possible to represent smaller problems that may be easier to understand?
- Can the problem be represented graphically? Can an analysis model be created?

Carry Out the Plan

- *Does the solutions conform to the plan?* Is source code traceable to the design model?
- Is each component part of the solution provably correct? Has the design and code been reviewed, or better, have correctness proofs been applied to algorithm?

Examine the Result

- Is it possible to test each component part of the solution? Has a reasonable testing strategy been implemented?
- Does the solution produce results that conform to the data, functions, and features that are required? Has the software been validated against all stakeholder requirements?

Software Myths

Erroneous beliefs about software and the process that is used to build it.

- Affect managers, customers (and other nontechnical stakeholders) and practitioners
- Are believable because they often have elements of truth,

but ...

- •Invariably lead to bad decisions, therefore ...
- Insist on reality as you navigate your way through software engineering

Software Myths Examples

- Myth 1: Once we write the program and get it to work, our job is done.
- Reality: the sooner you begin writing code, the longer it will take you to get done. 60% to 80%
 of all efforts are spent after software is delivered to the customer for the first time.
- Myth 2: Until I get the program running, I have no way of assessing its quality.
- Reality: technical review are a quality filter that can be used to find certain classes of software defects from the inception of a project.
- Myth 3: software engineering will make us create voluminous and unnecessary documentation and will invariably slow us down.
- Reality: it is not about creating documents. It is about creating a quality product. Better quality leads to a reduced rework. Reduced work results in faster delivery times.
- Many people recognize the fallacy of the myths. Regrettably, habitual attitudes and methods foster poor management and technical practices, even when reality dictates a better approach.

Software Engineering: A Practitioner's Approach, 7/e by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

Software Engineering 9/e

By Ian Sommerville