Analyzing multiple omics levels

Bas Heijmans
Molecular Epidemiology
Leiden University Medical Center
The Netherlands
bas.heijmans@lumc.nl

Epigenome-wide Association Study

- 1. Data: methylation at 450 thousand CpGs + lipids levels in 2000 individuals
- 2. Test per CpG: DNAm ~ cholesterol + gender + age + cell counts + batches

What's next?

- Can we make conclusions stronger?
- What are the main limitations in observational epidemiology?

What's next?

- Causality
- Confounding

Alternative for experiment

- An experiment of nature using genetic variation as causal anchor
- 'Mendelian randomization': a natural trial with exposures to genetic variations randomized according to Mendel's law and with the exposed blinded towards exposure.
- Uses genetic variant(s) as 'instrumental variable' instead of measured variable itself.

Alternative for experiment

Mendelian randomization

- 1. Identify (sufficiently strong) genetic instrument.

 Here: SNP associated with cholesterol from GWAS

 (see wednesday practical)
- 2. Predict cholesterol level for every individual on basis of one's genotype.

 Will explain only small proportion of variation
- 3. Test whether predicted (genetic) level is associated with methylation.

 No confounding (unbiased effect estimate) & only one possible direction of causality

Two-step least squares model

- 1. Pred(Chol) = γ_0 + γ_1 x genotype + γ_2 x age + γ_3 x batch + ϵ_i (i=1,..., n)
- 2. DNAm = $\beta_0 + \beta_1 x$ pred(Chol) + $\beta_2 x$ age + $\beta_3 x$ batch + ϵ_i (i=1,..., n)

Integrative Genomics

Population Genomics

The human as 'model organism': Exploiting natural variation in large-scale population studies

- Genome biology
- Disease mechanisms
- Biomarkers

