ТРИДЦАТЬ ТРЕТИЙ ТУРНИР ГОРОДОВ

Весенний тур,

10 - 11 классы, сложный вариант, 18 марта 2012 г.

(Итог подводится по трём задачам, по которым достигнуты наилучшие результаты, баллы за пункты одной задачи суммируются.)

баллы задачи

4

1. В бригаде сторожей у каждого есть разряд (натуральное число). Сторож N-го разряда N суток дежурит, потом N суток спит, снова N суток дежурит, N — спит, и так далее. Известно, что разряды любых двух сторожей различаются хотя бы в три раза. Может ли такая бригада осуществлять ежедневное дежурство? (Приступить к дежурству сторожа могут не обязательно одновременно, в один день могут дежурить несколько сторожей.)

А. С. Бердников

2. Внутри круга отмечены 100 точек, никакие три из которых не лежат на одной прямой. Докажите, что их можно разбить на пары и провести прямую через каждую пару так, чтобы все точки пересечения прямых лежали в круге.

А. В. Шаповалов

- 3. Докажите, что для любого натурального n существуют такие целые числа a_1, a_2, \ldots, a_n , что при всех целых x число $(\ldots((x^2+a_1)^2+a_2)^2+\ldots+a_{n-1})^2+a_n$ делится на 2n-1. A. C. Бердников
- 4. Внутри каждой грани единичного куба выбрали по точке. Затем каждые две выбранные точки, лежащие на соседних гранях, соединили отрезком. Докажите, что сумма длин этих отрезков не меньше, чем $6\sqrt{2}$.

В. В. Произволов

5. Дан треугольник ABC и прямая l, касающаяся вписанной в него окружности. Обозначим через l_a, l_b, l_c прямые, симметричные l относительно биссектрис внешних углов треугольника. Докажите, что треугольник, образованный этими прямыми, равен треугольнику ABC. $A.\ A.\ 3ac$ лавский

6.

3

- а) В бесконечной последовательности бумажных прямоугольников площадь n-го прямоугольника равна n^2 (для $n=1,2,3,\ldots$). Обязательно ли можно покрыть ими плоскость? Наложения допускаются.
- б) Дана бесконечная последовательность бумажных квадратов. Обязательно ли можно покрыть ими плоскость (наложения допускаются), если известно, что для любого числа Nнайдутся квадраты суммарной площади больше N?

А. С. Бердников

- 7. У Кости была кучка из 100 камешков. Каждым ходом он делил какую-то из кучек на две меньших, пока у него в итоге не оказалось 100 кучек по одному камешку. Докажите, что
- 6 а) в какой-то момент в каких-то 30 кучках было в сумме ровно 60 камешков;
- 3 б) в какой-то момент в каких-то 20 кучках было в сумме ровно 60 камешков;
- в) Костя мог действовать так, чтобы ни в какой момент не нашлось 19 кучек, в которых в сумме ровно 60 камешков.

К. Кноп