PROBLÈME II : inspiré de MINES PC-PSI 2007

I. Préliminaires.

- $\begin{aligned} \mathbf{1.} \ \, \text{Pour} \ \, 1 \leqslant i \leqslant n \, : \sum_{j=1}^m |MN(i,j)| &= \sum_{j=1}^m \left| \sum_{k=1}^r M(i,k)N(k,j) \right| \leqslant \sum_{j=1}^m \sum_{k=1}^r |M(i,k)||N(k,j)| = \\ \sum_{k=1}^r |M(i,k)| \sum_{j=1}^m |N(k,j)| \leqslant \sum_{k=1}^r |M(i,k)| \times ||N|| \leqslant ||M|| \times ||N||. \ \, \text{On a donc } ||MN|| \leqslant ||M|| \times ||N||. \end{aligned}$
- **2.** $\sum_{j=1}^{n} |P(i,j)| = \sum_{j=1}^{n} P(i,j) = 1$ puisque P est positive et $PJ_n = J_n$. On a donc ||P|| = 1.
- 3. On montre la propriété par récurrence. Elle est vraie pour k=1 puisque P est stochastique. Supposons la vraie pour k. $P^{k+1}=P^k\times P$ est à coefficients positifs puisque P^k et P le sont. De plus, $P^{k+1}J_n=P^k\times PJ_n=P^k\times J_n=J_n$. P^{k+1} est donc bien stochastique.

II. Pseudo-inverse

- **4.** D'une part on a l'inclusion habituelle $\operatorname{Im}(a^2) \subset \operatorname{Im}(a)$; d'autre part $a = aa'a = a^2a'$ entraine que $\operatorname{Im}(a) \subset \operatorname{Im}(a^2)$. On a donc $\operatorname{Im}(a^2) = \operatorname{Im}(a)$ d'où $\operatorname{rang}(a) = \operatorname{rang}(a^2)$.
- **5.** Puisque $\operatorname{Im}(a^2) \subset \operatorname{Im}(a)$ et $\operatorname{rang}(a) = \operatorname{rang}(a^2)$ on déduit que $\operatorname{Im}(a^2) = \operatorname{Im}(a)$. Soit $x \in \mathbb{R}^n$: $ax \in \operatorname{Im}(a)$ entraine qu'il existe y tel que $ax = a^2y$; en posant z = x ay on obtient que $z \in \operatorname{Ker}(a)$ d'où $x = ay + z \in \operatorname{Im}(a) + \operatorname{Ker}(a)$. Ainsi $\mathbb{R}^n = \operatorname{Im}(a) + \operatorname{Ker}(a)$ et le théorème du rang entraine alors que $\mathbb{R}^n = \operatorname{Im}(a) \oplus \operatorname{Ker}(a)$.

[Autre solution : on a aussi Ker $a = \text{Ker } a^2$ à l'aide du théorème du rang, et il est alors facile d'en déduire Ker $a \cap \text{Im } a = \{0\}$.]

- 6. Soit \mathcal{B}' une base adaptée à la somme directe $\mathbb{R}^n = \operatorname{Im}(a) \oplus \operatorname{Ker}(a)$; la matrice de $a \neq 0$ dans cette base s'écrit par blocs : $\begin{bmatrix} B & 0 \\ 0 & 0 \end{bmatrix}$ puisque $\operatorname{Im}(a)$ est stable par a. La matrice B est inversible puisque la restriction de a à $\operatorname{Im}(a)$, supplémentaire de $\operatorname{Ker}(a)$, est un isomorphisme de $\operatorname{Im}(a)$ sur $\operatorname{Im}(a)$. Si W est la matrice de passage de la base canonique à \mathcal{B}' on a bien $A = W \begin{bmatrix} B & 0 \\ 0 & 0 \end{bmatrix} W^{-1}$.
- 7. Définissons $A' = W \begin{bmatrix} B^{-1} & 0 \\ 0 & 0 \end{bmatrix} W^{-1}$. On vérifie que $AA' = A'A = W \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} W^{-1}$, puis que AA'A = A et A'AA' = A': A' est un pseudo-inverse de A.
- 8. Puisque a' commute avec a, $\operatorname{Ker}(a)$ et $\operatorname{Im}(a)$ sont stables par a'. La matrice de a' dans la base \mathcal{B}' s'écrit donc : $\begin{bmatrix} D & 0 \\ 0 & E \end{bmatrix}$, d'où $A' = W \begin{bmatrix} D & 0 \\ 0 & E \end{bmatrix} W^{-1}$. De A' = A'AA' on déduit par des produits par blocs : D = DBD et $E = E \times 0 \times E = 0$.
- 9. $(aa')^2 = a \times a'aa' = a \times a'$ donc aa' = a'a est bien un projecteur. $\operatorname{Ker}(a) \subset \operatorname{Ker}(a'a)$ et $\operatorname{Ker}(a'a) \subset \operatorname{Ker}(aa'a) = \operatorname{Ker}(a)$ donc $\operatorname{Ker}(aa') = \operatorname{Ker}(a)$. $\operatorname{Im}(aa') \subset \operatorname{Im}(a)$ et $\operatorname{Im}(a) = \operatorname{Im}(aa'a) \subset \operatorname{Im}(aa')$ donc $\operatorname{Im}(aa') = \operatorname{Im}(a)$. La matrice du projecteur aa' dans la base \mathcal{B}' adaptée à $\mathbb{R}^n = \operatorname{Im}(aa') \oplus \operatorname{Ker}(aa')$ est donc $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ égale aussi à $W^{-1}AA'W$.
- **10.** $W^{-1}AA'W = \begin{bmatrix} B & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ entraine $BD = I_r$ d'où $D = B^{-1}$; il y a bien unicité du pseudo-inverse.

III. Détermination des vecteurs invariants par ^tP

11. Soit $X \neq 0$ tel que AX = 0 soit PX = X; soit k tel que $|x_k| = N_{\infty}(X)$; quitte à changer X en -X on peut supposer $x_k > 0$.

$$x_k = \sum_{j=1}^n p_{k,j} x_j \leqslant \sum_{j=1}^n p_{k,j} x_k = x_k \text{ d'où } \sum_{j=1}^n p_{k,j} (x_k - x_j) = 0 \text{ avec } p_{k,j} > 0 \text{ et } x_k - x_j \geqslant 0. \text{ On en déduit pour tout } j, \ x_j = x_k \text{ et donc } X = x_1 J_n : \text{Ker}(A) \text{ est une droite engendrée par } J_n.$$

12. Soit $X \in \text{Ker}(A) \cap \text{Im}(A)$: PX = X et il existe Y tel que X = Y - PY.

En multipliant par P^{k-1} on obtient, pour tout $k \ge 1$, $P^{k-1}X = X = P^{k-1}Y - P^kY$ d'où en ajoutant de 1 à $k : kX = Y - P^kY$.

On a
$$N_{\infty}(PY) \leqslant N_{\infty}(Y)$$
 puisque pour tout i , $\left| \sum_{j=1}^{n} p_{i,j} y_j \right| \leqslant \sum_{j=1}^{n} p_{i,j} |y_j| \leqslant \sum_{j=1}^{n} p_{i,j} N_{\infty}(Y) = N_{\infty}(Y)$.

Par suite, $N_{\infty}(X) \leq \frac{1}{k}(N_{\infty}(Y) + N_{\infty}(P^{k}Y)) \leq \frac{2}{k}N_{\infty}(Y)$ d'où en faisant tendre k vers $+\infty: X = 0$. On a donc $\operatorname{Ker}(A) \cap \operatorname{Im}(A) = \{0\}$ d'où $\mathbb{R}^{n} = \operatorname{Ker}(A) \oplus \operatorname{Im}(A)$.

- **13.** De $\mathbb{R}^n = \operatorname{Im}(a) \oplus \operatorname{Ker}(a)$, on déduit que $\operatorname{Im}(a) = a(\mathbb{R}^n) = a(\operatorname{Im}(a) + \operatorname{Ker}(a)) = a^2(\mathbb{R}^n) = \operatorname{Im}(a^2)$.
- 14. On fait une démonstration par récurrence.

C'est immédiat pour k = 1 : $I_n = (I_n - (I_n - C))C^{-1}$.

Supposons l'égalité vraie pour k; on obtient pour k+1:

$$\sum_{i=0}^{k} (I_n - C)^j = (I_n - (I_n - C)^k)C^{-1} + (I_n - C)^k = (I_n - (I_n - C)^k + (I_n - C)^k)C^{-1} = (I_n - (I_n - C)^k)C^{-1} = (I$$

L'égalité est donc vraie pour k+1.

15. On fait une démonstration par récurrence.

C'est immédiat pour k = 1: $I_n = (I_n - P)A' + (I_n - AA')$ puisque $I_n - P = A$.

Supposons l'égalité vraie pour k; on obtient pour k+1:

$$\sum_{j=0}^{k} P^{j} - (I_{n} - P^{k+1})A' - (k+1)(I_{n} - AA') = P^{k} + (I_{n} - P^{k})A' - (I_{n} - P^{k+1})A' - (I_{n} - AA')$$

$$= P^{k} + (P^{k+1} - P^{k})A' - (I_{n} - AA') = P^{k}(I_{n} - AA') - (I_{n} - AA')$$

$$= (P^{k} - I_{n})(I_{n} - AA') = (P^{k-1} + \dots + I_{n})(P - I_{n})(I_{n} - AA')$$

$$= (P^{k-1} + \dots + I_{n})(-A + A^{2}A') = 0.$$

L'égalité est donc vraie pour k+1.

Une autre méthode utilise la question 14 en prenant C=B pour $A=W\begin{bmatrix} B&0\\0&0\end{bmatrix}W^{-1}$ d'où

$$P = W \begin{bmatrix} I_r - B & 0 \\ 0 & I_{n-r} \end{bmatrix} W^{-1} \, .$$

$$\sum_{j=0}^{k-1} P^j = W \begin{bmatrix} \sum_{j=0}^{k-1} (I_r - B)^j & 0 \\ 0 & kI_{n-r} \end{bmatrix} W^{-1} = W \begin{bmatrix} (I_r - (I_r - B)^k)B^{-1} & 0 \\ 0 & kI_{n-r} \end{bmatrix} W^{-1}.$$

Cette matrice est bien égale à $(I_n - P^k)A' + k(I_n - AA') = W\begin{bmatrix} (I_r - (I_r - B)^k)B^{-1} & 0 \\ 0 & 0 \end{bmatrix}W^{-1} + kW\begin{bmatrix} 0 & 0 \\ 0 & I_{n-r} \end{bmatrix}W^{-1}$.

16. $||(I_n - P^k)A'|| \leq (||I_n|| + ||P||^k)||A'||$ puisque ||...|| est une norme et en utilisant la question 1.

Avec la question 2 on obtient $||(I_n - P^k)A'|| \leqslant 2||A'||$ d'où $\lim_{k \to \infty} \frac{1}{k}(I_n - P^k)A' = 0$. On en déduit

$$\lim_{k \to \infty} \frac{1}{k} \sum_{j=0}^{k-1} P^j = I_n - AA'.$$

17. D'une part, $\frac{1}{k} \sum_{j=0}^{k-1} P^j$ a ses coefficients positifs (question 3); la matrice limite $I_n - AA'$ a donc également

ses coefficients positifs. D'autre part $(I_n - AA')J_n = J_n - A'AJ_n = J_n$ puisque $AJ_n = J_n - PJ_n = 0$. $I_n - AA'$ est bien stochastique.

 $(I_n - AA')A = A - AA'A = 0$ puisque A' est le pseudo-inverse de A.

18. D'après la question précédente, $(I_n - AA')P = I_n - AA'$, ce qui se traduit par $L_iP = L_i$ pour toutes les lignes de $I_n - AA'$.

2/2

D'après la partie II, AA' est la matrice de la projection sur Im(A) de direction Ker(A). $I_n - AA'$ est donc la matrice de la projection sur Ker(A) de direction Im(A). Elle est donc de rang 1. En particulier, toutes les lignes de $I_n - AA'$ sont colinéaires. Comme $I_n - AA'$ est stochastique, le coefficient de proportionalité entre les lignes vaut 1 et toutes les lignes de $I_n - AA'$ sont égales et égale à un élément L qui vérifiera bien LP = L.