

39-93
S/346/61/323, S/117/323, S/117/3102

Analysis of multi-component ...

maximum at $x = 0.025$ ($a = (2.2-2.3) \cdot 10^4$ dyne/gauss \cdot cm 2 , no. 3), and K ($K = 0.3-0.32$) within the range of variation $0.025 \leq (x = x_{opt}) \leq 0.035$ (x_{opt} depends on the annealing temperature). The increase of K and a , obtained by the introduction of excessive Fe $^{2+}$ ions is accompanied by an increase of electromagnetic and mechanical losses. The former can be considerably reduced by synthesis of multi-component ferrites with CuFe $_{2-x}O_4$, when a and K remain unchanged or are increased but little. Thus the system $(Ni_{0.85}Cu_{0.15})_{1-x}Co_xFe_2O_4$ was obtained by substitution of Cu $^{2+}$ ions for part of the Ni ions in system A. A group of compositions, $Ni_{0.98-x}Co_{0.02}Cu_xFe_2O_4 \cdot (Fe_2O_3)_{0.025}$, was synthesized on the basis of no. 3. In this case, the composition no. 4 is very interesting with $x = 0.075$ ($a = 2.5 \cdot 10^4$, $K = 0.38$). A further improvement of the chemical composition of Ni-Cu-Co-ferrites was effected by the system $(Ni_{0.925}Cu_{0.075})_{1-x}Co_xFe_2O_4 \cdot (CoFe_2O_4)_x$. In this system, the ferrite with $x = 0.01$ (no. 5) possessed the maximum values of a and K ($a_{max} \approx 2.9 \cdot 10^4$,

Card 3/4

30083
S/048/61/025/011/029/031
B117/B102

Synthesis of multi-component ...

$K_{max} \approx 0.4$). Contrary to simple ferrite systems, different annealing temperatures corresponding to the maximum values of a and K are characteristic of a number of Ni-Zn-Cu-Co and Ni-Cu-Co ferrites. It is, therefore, possible to modify the properties of ferrites by changing this temperature. The optimum values of the annealing temperature are lowered on transition from pure to industrial raw materials. This is due to impurities contained which act as mineralizers. It was possible to produce new ferrites with higher values of K , a , and Λ than were formerly known. There are 4 figures and 8 references: 3 Soviet and 5 non-Soviet. The four references to English-language publications read as follows: Ref. 1: Van der Burgt C. M., Philips Res. Repts, 8, 91 (1953); Ditto, Philips Res. Repts, 12, 97 (1957); Ditto, Philips Techn. Rev., 18, no. 10, 285 (1956/57); Weil L., Compt. Rend., 234, 1351 (1952). X

Card 4/4

STRELETS, F.L.; SYRKIN, L.N.; TKACHENKO, M.G.

Synthesis of multicomponent ferrates with high values of dynamic
magnetostriiction parameters. Izv. AN SSSR. Ser. fiz. 25 no.11:
1426-1429 N '61. (MIRA 14:11)
(Ferrates--Magnetic properties)

TKACHENKO, M.K., inzh.; TESLENKO, G., inzh.

Mechanical gates in steel-smelting shops. Bezop.truda v
prom. 4 no.7:32 Jl '60. (MIRA 13:8)
(Dnepropetrovsk—Steelworks—Equipment and supplies)

TKACHENKO, M.K.

Lymphangioma of the root of the tongue. Stomatologija 42 no.4:
88 Jl-Ag'63 (MIR' 17:4)

1. Iz kliniki bolezney ukha, gorla i nosa (zav. - prof. I.M.
Sobol')Stavropol'skogo meditsinskogo instituta.

TKACHENKO, M.K., inzh.

Results of organizational work. Bezop.truda v prom.
4 no.8:29-30 Ag '60. (MIRA 13:8)

1. Dnepropetrovskiy zavod im.K.Libknekhta.
(Dnepropetrovsk---Steelworks--Safety measures)

ALC NR: AP7007074

SOURCE CODE: UR/0021/66/000/008/1000/1003

AUTHOR: Karpenko, G. V. (Corresponding member AN UkrSSR); Tkachenko, M. M.

ORG: Physics-Mechanics Institute, AN UkrSSR (Fizyko-mekhanichnyy
Instytut AN UkrSSR)

TITLE: Possibility of applying the law of similitude with respect to
the scale effect in physico-chemical mechanics

SOURCE: AN UkrSSR. Dopovidi, no. 8, 1966, 1000-1003

TOPIC TAGS: material fracture, brass, mercury, mechanical stress

SUB CODE: 20

ABSTRACT: It was established that by applying the theory of similitude it is possible to formulate equations for the purpose of calculation which enable one to simulate, under laboratory conditions, processes of fracture of samples of different diameters due to the effect of mechanical stress and an action exerted by a working medium. Geometrically similar brass samples of various diameters were subjected to an investigation in which mercury acted on the samples during mechanical testing. A criterion equation derived on the basis of dimension analysis made it possible to calculate the length of the time of action and the concentration of the medium at which equal mechanical characteristics were ob-

Card 1/2

ACC NR: AP7007074

tained for samples of different diameters. The calculated data were confirmed by experimental results. Orig. art. has: 1 figure and 2 formulas. [JPRS: 39,658]

Card 2/2

Agent

TKACHENKO, M. S.: Master Med Sci (diss) -- "Morphological changes in the skin and certain internal organs of poikilothermic organisms under the influence of higher temperatures (Experimental investigation)". Khar'kov, 1958. 14 pp (Khar'kov Med Inst), 200 copies (KL, No 2, 1959, 126)

Ученые работают в

USSR, Cultivated Plants. - Fruits. Berries

М.

Abs Jour Ref Zhur - Biol., No 10, 1958, 44317

Author : Tkachenko, M.V.

Inst : -

Title : Experiment in Building Nut Plantings.

Orig Pub : Lesh. Kh-vo, 1957, No 6, 77-78.

Abstract : About 100 hectares were planted with walnut by the means of sowing onto a permanent place in the Rostov forest farm. Cherry is used for filling in the rows and currant, hazelnut and smoke trees were planted in the species between the rows. Pre-winter hillling of the seedlings with soil in the first year after their seeding is carried out for their protection from freezing. The fruit bearing starts in the 8-10 year. -- A.Ch. Kelli

Card 1/1

- 158 -

"APPROVED FOR RELEASE: 07/16/2001

CIA-RDP86-00513R001755920007-5

APPROVED FOR RELEASE: 07/16/2001

CIA-RDP86-00513R001755920007-5"

PHASE I BOOK EXPLOITATION 819

Timofeyev, Valentin Leont'yevich and Tkachenko, Mikhail Kondrat'yevich

Proizvodstvo martenovskoy stali; uchebnik dlya shkol i kursov masterov (The Production of Open-hearth Steel; a Textbook for Schools and Courses for Foremen) Khar'kov, Metallurgizdat, 1957. 13,000 copies printed.

Resp. Ed.: Zaykov, S.T.; Ed. of Publishing House: Liberman, S.S.; Tech. Ed.: Andreyev, S.P.

PURPOSE: The book is a textbook for schools and for a special two and one half year training course for foremen employed in foundries using the open-hearth process in the production of steel. It may also be of use to engineering and technical personnel, and steel workers of open-hearth plants.

COVERAGE: In a systematic way the authors develop the underlying principles of the theory and practice of the basic and acid open-hearth processes of producing steel. They also discuss methods of pouring steel, the properties of castings, the construction and maintenance of open-hearth furnaces, furnace heating systems and their automatic control, general control of the steel-making process, and cost of production and ways of reducing it. There are 28 references, 25 of which are Soviet, 2 German and 1 English.

Card 1/6

The Production of Open-hearth Steel

819

TABLE OF CONTENTS:

Introduction	5
Ch. I. Fuels Used in Open-hearth Furnaces	6
1. Liquid fuels	6
2. Gaseous fuels	9
Ch. II. Refractories	13
1. Acid refractory materials	14
2. Basic refractories	
3. Aluminosilicate refractory products	19
4. Chamotte refractory products	19
5. Semiacid refractories	19
6. High-alumina products	20
7. Heat-insulation materials	20
8. Refractories and refractory mortars	21
9. Storage of refractories	21

Card 2/6

The Production of Open-hearth Steel	819
Ch. III. Raw Materials for the Open-hearth Process	23
1. Pig iron	23
2. Iron-steel scrap	25
3. Oxidizers	28
4. Fluxes	29
5. Reducing agents	31
Ch. IV. Designs of Open-hearth Furnaces	37
1. Hearth chambers	37
2. Open-hearth furnace ports	43
3. Slag pockets	49
4. Regenerators	52
5. Valves and flues	55
6. Draft	57
7. Waste-heat boilers	58
8. Evaporation cooling	58
Ch. V. Technology of Smelting Steel in Open-hearth Furnaces	61
1. Basic open-hearth process	61
2. Basic concepts from physical chemistry	81

Card 3/6

The Production of Open-hearth Steel	819
3. Oxidizing and reducing processes	94
4. Slag regime	99
5. Acid open-hearth process	101
6. Calculation of the charge	104
7. Intensifying the open-hearth process with oxygen	113
Ch. VI. Pouring of Steel	115
1. Auxiliary devices for pouring steel and preparing channels	116
2. Preparation of channels for pouring the heat	124
3. Pouring of steel	128
4. Crystallization of liquid steel and the structure of the ingot	132
5. Defects in steel ingots	135
6. Continuous casting of steel	140
7. Steel casting in vacuo	142
Ch. VII. Arrangement of Open-hearth Plants	143
1. Plants with charging (rail) buggies	143
2. Plants with charging-floor cranes	146
Ch. VIII. Thermal Processes in an Open-hearth Furnace	147
1. Principles of the mechanics of furnace gases and determination of losses	149

Card 4/6

The Production of Open-hearth Steel	819
2. Natural draft, or floatability of hot gases	149
3. Heat exchange in an open-hearth furnace	151
4. Heat regime of open-hearth furnaces	155
Ch. IX. Automation of the Heat Regime	159
1. Control and measuring instruments	159
2. Automatic regulation of the heat regime	169
Ch. X. Gas Producers	178
Ch. XI. Repairing Open-hearth Furnaces	180
1. Cold repair work on open-hearth furnaces	180
2. Sintering the furnace with refractory materials	191
3. Hot repair work on furnaces	193
4. Caring for the furnace	193
5. Troubles and breakdowns during furnace operation	196
Ch. XIII. Technical Control in Open-hearth Steel Production	199
1. Inspection of raw materials	199
2. Inspection of steel melting and casting processes	200

Card 5/6

The Production of Open-hearth Steel	819
3. Inspection of metal and slag composition	201
4. Inspection of ingots; detection of defects and their correction	204
Ch. XIII. Steel Production Cost and Ways of Reducing It	207
Bibliography	210
AVAILABLE: Library of Congress	
Card 6/6	

GO/fal
12/8/58

S/148/62/000/011/003/013
E079/E151

AUTHORS: Batalin, G.I., and Tkachenko, M.S.

TITLE: On the problem of nitriding of manganese

PERIODICAL: Izvestiya vysshikh uchebnykh zavedeniy, Chernaya
metallurgiya, no.11, 1962, 76-79.

TEXT: The effect of gas velocity, particle size, and
temperature on the nitriding of manganese in a stream of ammonia
was investigated. It was found that the velocity of the ammonia
stream had no influence on the nitriding process. The influence
of the particle size could be described by

$$Y = 10.4 - 0.59 n,$$

where Y = increase in weight (nitrogen content) and n = particle
size, mm. The velocity of the process was measured at 650 and
830 °C, and was found to increase twofold on increasing the
temperature from 650 to 830 °C. Metallographic investigation of
nitrided specimens showed good agreement with the phase diagram
of the system Mn-N₂.

Card 1/2

On the problem of nitriding of ...

S/148/62/000/011/003/013
E079/E151

There are 5 figures.

ASSOCIATION: Kiyevskiy gosudarstvennyy universitet
(Kiev State University)

SUBMITTED: March 14, 1961

✓

Card 2/2

BATALIN, G.I.; TKACHENKO, M.S.

Nitriding of manganese. Izv.vys.ucheb.zav.; chern.met. 5 no.11:
76-79 '62. (MIRA 15:12)

1. Kiyevskiy gosudarstvennyy universitet.
(Manganese) (Case hardening)

USSR / Forestry. Forest Crops.

K

Abs Jour : Ref Zhur - Biologiya, No 22, 1958, No. 100193
Author : Tkachenko, M. V.
Inst. : Not given
Title : A Green Belt Around Rostov-on-Don
Orig Pub : Lesn. zh-vo, 1958, No 5, 29-32

Abstract : No abstract given

Card 1/1

TKACHENKO, M.Ye.; BUCHATSKIY, M.A.; MIKHAYLOVA, N., redaktor; KHIGIROVICH, I.,
tekhnicheskiy redaktor

[The cultivation of foxtail millet and its use for farming purposes]
Kul'tura chumizy i ispol'zovanie ee dlia khoziaistvennykh tselsi,
Alma-Ata, Kazakhskoe gos. izd-vo, 1950. 14 p. (MLRA 10:1)
(Millet)

TKACHENKO, M. Ye., Ed.

Lesa Urala (Forests of the Ural) Sverdlovsk, Izd-vo Ural'skogo Filiala Akademii Nauk SSSR, 1948.

230 P. Illus., Maps, Tables.

At Head of Title: N. N. Glushkov, V. I. Vengerov, (i dr) Akademiya Nauk SSSR, Ural'skiy Filial.

SO: 7N/5

729.4

.T6

TKACHENKO M. Ye "The rationalization of forestry of the Urals and other areas of the USSR in forests of the third group" sbornik naych. trudov (Ural'skiy Lesotekhn int), Moscow- Leningrad 1948 -p. 5-11

SO: U- 3261 10 April 53, (Lepis 'Zhrual 'nykh Statey No 11 1949)

291.65

Stalinskij. Plan prveotrazuvaniya prirody styelyey. (Z. Postanovlyeniyu soveta.
Ministov SSSR I tsk vkp(R) "O planye polyezashchitnykh lyeson sashdnyiy. . .")
Trudy lyesotyekhn, Akad. Im. Kirova, No. 66, 1949 S. 7-39
2. Myekhanizatsiya I olyektrifikasi tsiya. Mts.

SO: LETOPIS No. 34

TKACHENKO, N. P.

Agriculture

Material on steppe forest propagation, Moskva, Goslesbumizdat, 1951.

Monthly List of Russian Accessions, Library of Congress, December 1952. UNCLASSIFIED

TKACHENKO, M. YE.

Tkachenko, M. Ye.

"General Forestry" (text-book,
2d edition)

Forestry Academy imeni S. M.
Kirov

TKACHENKO, N.

Electromagnetic flowmeter. Koks i khim. no.8:54 '62. (MIRA 17:2)

1. Gorlovskiy koksokhimicheskij zavod.

Tkachenko, N.

85-58-5-24/38

AUTHOR: Tkachenko, N., Master of Sports (Kiyev)

TITLE: Sportsmen's Suggestions (Sportsmeny predlagayut)

PERIODICAL: Kryl'ya rodiny, 1958, Nr 5, p 19 (USSR)

ABSTRACT: The author states that the improvements in jump techniques in recent years make necessary a remote-control device for opening the parachute pack without sacrificing form in order to pull the rip cord ring, and an automatic time register for recording the duration of the free fall/delayed drops. He describes a new automatic device developed by the Tsentral'nyy aeroklub Ukrainskogo (Ukrainian Central Aeroclub) and consisting of a housing, a timer, a system of levers, and 2 cables, which performs both functions. The designers used the housing and some parts of the PAS-1. The simplicity of the new device any aeroclub to produce it. Adoption of the device for training practice and industrial production is urged. There is one diagram.

ASSOCIATION: Tsentral'nyy aeroklub Ukrainskogo (Ukrainian Central Aeroclub)

AVAILABLE: Library of Congress

Card 1/1 1. Aviation - USSR 2. Parachute jumping - Techniques

KUSHNIR, M., inzhener; TKACHENKO, N., inzhener.

Group arrangement of grain dryers of the All-Union Scientific Research Institute of Agricultural Machine Building at grain procurement stations of Akmolinsk Province. Muk.-elev.prom. 22 no.1:9-11 Ja '56. (MLRA 9:5)
(Akmolinsk Province--Grain--Drying)

VOLYNSKIY, V.I.; TKACHENKO, N.A.

Ways of improving the balanced erection method of concreting
during the building of large-span bridges. Avt. ocr. 27
no.4:7-8 Ap '64. (MIRA 17:9)

VOROB'YEV, D.D.; DARIYENKO, V.I.; PILYASOV, F.L.; TKACHENKO, N.A.

Experience in cleaning unclassified coal in a jigging machine of new
design. Koks i khim. no.1:14-17 '60. (MIRA 13:6)

1. Gorlovskiy koksokhimicheskiy zavod.
(Coal preparation)

DAVIDKOVICH, A.S., inzh.; TKACHENKO, N.A., inzh.; GEYZENBLAZEN, B.Ye.,
inzh.; GONCHAROV, Yu.G.; AFANAS'YEV, V.D., inzh.; RUDOV, V.S.,
inzh.; KONOGRAY, B.Ya., inzh.

Investigating the electroacoustic method of controlling the loading
of ball mills. Gor. zhur. no. 5:30-51 My '65. (MIRA 18:5)

1. Trest po avtomatizatsii metallurgicheskikh predpriyatiy "Metallurgavtomatika", Dnepropetrovsk (for Davidkovich, Tkachenko, Gezenblazen, Goncharov). 2. Nauchno-issledovatel'skiy gornorudnyy institut (for Afanas'yev, Rudov, Konogray).

TKACHENKO, N.A.; SHKUROVSKIY, I.G.

Continuous processing of tar for hard pitch, Koks i khim. no.8:44
47 '56. (MIRA 10:1)

1. Gorlovskiy koksokhimicheskiy zavod.
(Pitch) (Coal tar)

TRACHENKO, N.A.; VELYNEKII, V.I.; ABRAMKIN, I., red.

[Design and construction of a bridge built by the
cantilever concrete placing method] Proektirovaniye i
stroitel'stvo mosta, scoruzhaemogo metodom navesnogo
betonirovaniya. Minsk, Belorusskoe respubl. pravlenie
NIO gor. khoz. i avtomobil'nogo transp., 1964. 155 p.
(MIRA 18:4)

TKACHENKO, N.A.; KHVOSTIKOV, V.V.

Bridges of reinforced concrete slabs. Avt.dor. 26 nc.9:26-27
S '63. (MIRA 16:10)

PHASE I BOOK EXPLOITATION

SOV/5510

Drozd, Yakov Ivanovich, Nikolay Alekseyevich Tkachenko, Il'ya Markovich Gel'fman,
Vladimir Iosifovich Volynskiy

Opyt proyektirovaniya i stroitel'stva zhelezobetonnykh predvaritel'no
napryazhennykh mostov v Belorussii (Experience in the Design and Construction
of Prestressed Reinforced Concrete Bridges in Belorussia) Minsk, Redizdat
otdel BPI im. I. V. Stalina, 1960. 281 p. Errata slip inserted. 2,500
copies printed.

Sponsoring Agency: Ministerstvo vysshego, srednego spetsial'nogo i profes-
sional'nogo obrazovaniya BSSR. Belorusskiy politekhnicheskiy institut
imeni I. V. Stalina.

Ed. (Title page): Ya. I. Drozd, Honored Scientist and Technologist BSSR;
Ed. of Publishing House: N.V. Kapranova; Tech. Ed.: P.T. Kuz'menok.

PURPOSE: This book is intended for designing engineers and manufacturers of
prestressed bridge components.

Card 1/8

Experience in the Design and Construction (Cont.)

SOV/5510

COVERAGE: The book provides a generalized discussion of experience gained in the production of prestressed bridge components and the assembly of prestressed bridges in Belorussia. Special attention is given to the production, preparation, and mounting of prestressed components. Chapters VI and VII were written by Ya. I. Drozd; Ch. III and the Appendixes by N.A. Tkachenko; Ch. II by I.M. Gel'fman; Chs. IV and V by V.I. Volynskiy. The authors thank Ya. D. Livshits, Doctor of Technical Sciences, Engineer I.I. Grigorovich, Head of the Gushosdor (Main Administration of Highways) of the Council of Ministers of the BSSR, and A.F. Krayukhin, Engineer. There are 37 references, all Soviet (including 2 translations).

TABLE OF CONTENTS:

Foreword

3

PART A. DESIGN SOLUTIONS

Ch. I. Purpose and Selection of the Design Layout of a Bridge

1. General considerations	5
2. Brief characteristic of the crossing site and the river regime	5
3. Geological conditions and the hydraulics of the crossing	6
4. Engineering norms and initial designing data	8

Card 2/8

TKACHENKO, N.A.

5/06/86/000/001/001/005

EGO/7415

AUTHORS: Litvinenko, M.S., Tyutynnikov, Yu.B., Vorob'yev, D.D. and Verbinina, S.V.; Darlyanko, V.I.; Tkachenko, N.A.

Title:

An Increase in the Yield of Coke-dew Oils in Coke Ovens by Products of the Pyrolysis of Heavy Petroleum Oils in Coke Ovens

Periodical:

Koks i Khimika, 1960, No.12, pp.6-10

Text:

The results of laboratory and plant experiments on the possible increase in the yield of coke described. Laboratory experiments with additions of fuel oil are described. The following indications: (no details given) give the following: 1) The bulk density of the fuel oil to coal increase the yield of coke; 2) The distribution of fuel oil charge; 3) The yield of gas; 4) The distribution of fuel oil from ordinary coal blends. 5) The quality of raw benzene oil is between coking products varies within wide limits. More oil is added and coking conditions to coal are small amount of fuel oil added and benzene when oil addition is transferred to gas and benzene when oil addition is transferred to gas and up to 10.7% into the free space temperatures are high. Under such conditions, up to 6.5% of oil is transferred into gas and up to 10.7% into Card 1/5

raw benzene, but the amount of tar formed decreases. The composition of gas obtained on addition of charges containing fuel oil is characterized by increased content of hydrogen and unsaturated compounds. The composition of gas depends mainly on the degree of pyrolysis of the fuel oil vapours. In all cases when addition of oil were made, the quality of raw benzene oil also depends on the degree of pyrolysis. If the oil vapour suffered a high and tar on coking blends containing fuel oil also depends on the conditions of pyrolysis. If the oil vapour suffered a high degree of pyrolysis, then in addition to an increase in the raw benzene fraction in the raw benzene was an increase in benzene, the content of benzene were only slightly higher benzene. A maximum (66.5%) and washbenzene losses were only slightly higher than normal coal blends (from 6.5 to 7.5%). At low temperatures of the free space and other conditions benzene decreased equal to the content of the benzene fraction in raw benzene increased to 10.7%. From 68.5% to 65.6% and washbenzene decreased by decreasing the A further decrease in the degree of pyrolysis by decreasing the Card 2/5

residence time of gases in the free space leads to a further increase in washbenzene losses up to 13.5% and a decrease in the content of benzene fraction in the raw benzene to 63.5%. 7) The tar produced from oil and coal has a somewhat lower specific gravity, increased content of free carbon and a somewhat greater aromaticity. The experimental carried out on decrease in the content phenols. Plant experiments carried out on coke resulting unchanged [NGB-16 (PVR-46) type]. The four batteries of ovens of ovens of ovens was comparatively low and temperature of the free space of ovens was 695 to 735°C. kept within the following limits: No.1 battery 690 to 735°C. No.2 725 to 770°C. No.3 680 to 707°C. and No.4 690 to 100°C. The coking time on No.1 and 2 batches was 15 hours 25 minutes and on No.3 and 4 15 hours 15 minutes. Temperature in the control coke side 1375°C; pusher side 1325°C. Addition of flue: No.1 and 2 coke side 1250°C, coke side 1235°C, coke side 1235°C, coke side 1235°C. Addition of flue: No.3 and 4 pusher side 1250°C, coke side 1235°C, coke side 1235°C. Mixing of 2N fuel oil (type 80 and 20) was effected by spraying the blend on the conveyor belt leading to the service bunkers. Mixing of Card 2/5

5/068/60/000/012/001/005
2071/2535

An Increase in the Yield of Coke-Oven By-Products by the Pyrolysis

or Heavy Petroleum Oils in Coke Ovens

The blend was done by 6 disc blenders placed under the conveyor. The composition and properties of the coal blend prior to and during the experimental periods are given in Table 1 (moisture 10%, volatile matter 26 to 27% - 3 mm fraction 89 to 90%). The increase in the bulk density of the charge (from 40 to 751 kg/m³) required higher flame temperatures. These were increased (by 10°C) insufficiently due to the poor state of the ovens. Mechanical proportioning of coke (Table 2) remained practically the same. There was some increase in the proportion of large fractions (above 60 mm) and in the volatile content of coke. The content of benzene in raw coal increased from 0.3 g/m³ to 0.1 g/m³ and with a uniform addition of oil of 2 to 3.5% to 48 to 50 g/m³. The composition of scrubbed gas remained practically the same (Table 3) but its daily output increased from 1232 to 1286 thousand m³ (4.4%). Specific gravity of tar decreased by 0.017 and the yield of the light fraction increased by 0.4%. The composition of tar from primary condensers somewhat changed: its specific gravity

Card 4/5

increased by 0.015 and the yield of light fractions decreased by 0.5%. Washing losses of benzene increased by 0.47%, its specific gravity decreased from 0.875 to 0.872; the content of the benzene fraction decreased from 58.33 to 67.35%; the content of solvent increased from 15.06 to 15.93%; 9.32% of the fuel oil added to coal was transferred into raw benzene, 37.7% into gas and 16.0% into tar. It is concluded that in order to increase the output of gas, benzene and tar additions of fuel oil to coal are recommended. The proportion of fuel oil which can be added should be established for each individual works. The following participated in the work: V.Ya. Tepukov, A.V. Shepel', P.A. Plyushev, L.A. Tashchanka, S.D. Brodskiy, G.S. Zarev, M.I. Zelvachev, Ya.D. Semenov, S.P. Nal'yanov, I.I. Michaylov, M.F. Petrenko, and A.Ya. Val'chikov. There are 3 tables and 1 Soviet reference.

ASSOCIATIONS: URBIN Litvinenko, N.S., Trutynnikov, Yu.B., Varshtine, S.V.;

Gorlebskiy koksokhimicheskiy zavod (Gorlebskikh Choking Works)

Dariyenko, V.I., Vorob'yev, D.O., Tkachenko, N.A.

Card 5/5

TKACHENKO, N.A.; VOLYNSKIY, V.I.

Placing concrete for the span of a large bridge from suspended
units. Avt.dor. 26 no.4:12-14 Ap '63. (MIRA 16:4)
(Bridge construction) (Bridges, Concrete) ,

LITVINENKO, M.S.; TYUTYUNNIKOV, Yu.B.; VERSHININA, S.V.; DARIYENKO, V.I.;
VOROB'YEV, D.D.; TKACHENKO, N.A.

Increase of the yield of coke-chemical products by the pyrolysis
of heavy petroleum oils in coke ovens. Koks i khim. no.12:8-10
'60. (MIRA 13:12)

1. Khar'kovskiy nauchno-issledovatel'skiy uglekhimicheskiy institut
(for Vershinina). 2. Gorlovskiy koksokhimicheskiy zavod (for Tkachenko).
(Coke industry--By-products)

TKACHENKO, N.A., inzh.

A prestressed concrete bridge has been tested. Avt. dor. 28
no.1:14-15, 19 Ja '65. (VIIA 18;3)

TKACHENKO, N.I.; TSALIKOVA, A.V.; IVANOVA, Z.T.

Waste water of hydrolytic plants processing cottonseed hulls.
Gidroliz. i lesokhim.prom. 19 no.5:11-13 '57. (PLB. 10-1)

1. Vsesoyuznyy nauchno-issledovatel'skiy institut gidrolyznoy i
sul'fitno-spirtovoy promyshlennosti.
(Water--Waste) (Hydrolysis)

TKACHENKO, N.I., elektromekhanik

Method for checking the output limitation of I GIO devices.
Avtom. telem. i sviaz' 8 no.2:34-35 F '64.

(MIRA 17:6)

1. Lozovskaya distantsiya signalizatsii i svyazi Yuzhnay
dorogi.

DRUBLYANETS, E.E., kand. biol. nauk; TKACHENKO, N.I., kand.biol. nauk; STAROSTINA, Z.I., nauchn. red.; SHENDAREVA, L.V., tekhn. red.

[Improvement of the biological system of purification of the waste waters of hydrolysis plants] Sovershenstvovanie rezhima biologicheskoi ochistki stochnykh vod gidroliznykh zavodov. Moskva, TSentr. in-t tekhn. informatsii i ekon. issledovanii po lesnoi, bumazhnoi i derevoobrabatyvaiushchei promyshl., 1963. 35 p. (MIRA 17:4)

TKACHENKO, N.I. (Leningrad) ; YUDINA, T.A. (Leningrad)

Survival rate of Escherichia coli in the waste waters of hydrolysis
plants. Vod. i san. tekhn. no. 4:31-32 Ap '61. (MIRA 14:4)
(Escherichia coli) (Sewage--Microbiology)

TKACHENKO, N. I., MINAEV, V. M., BIBOVA, N. T., STARODUBTSYI, G. I., ZEFIROVSKAYA, A. V., SHAMARINA, A. G., KOROVINA, A. G.

"A study of the natural foci of vernal encephalitis in the western Urals." Page 79

Desyatoye soveshchaniye po parazitologicheskim problemam i prirodnoochagovym boleznyam. 22-29 Oktyabrya 1959 g. (Tenth Conference on Parasitological Problems and Diseases with Natural Foci 22-29 October 1959), Moscow-Leningrad, 1959, Academy of Medical Sciences USSR and Academy of Sciences USSR, No. 1 254pp.

Perm' Inst. Of Vaccines and Sera and the Oblast Sanitary-Epidemiological Station

DRUBLYANETS, E.E.; TKACHENKO, N.I.; IVANOVA, Z.T.

Features of the fermentation of wood hydrolyzates by Schizosaccharomyces
Pombe. Trudy Inst. mikrobiol. no. 6:203-211 '59. (MIRA 13:10)

1. Vsesoyuznyy nauchno-issledovatel'skiy institut gidroliznoy i
sul'fitno-spirtovoy promyshlennosti.
(SCHIZOSACCHAROMYCES) (WOOD)

TKACHENKO, N.I.; DRUBLYANETS, E.E.

Sphaerotilus dichotomus, organism causing the "swellign" of activated sludge in aeration tanks. Mikrobiologija 28 no.5:763-767 S-O '59.
(MIRA 13:2)

1. Vsesoyuznyy nauchno-issledovatel'skiy institut gidroliznoy i sul'-fito-spirtovoy promyshlennosti, Leningrad.
(SPHAEROTILUS)
(SEWAGE)

STUKANOV, Leonid Aleksandrovich; TKACHENKO, N.I., redaktor; RODIONOVA, Z.A.
redaktor; DZHATIYEV, S.G., tekhnicheskly redaktor

[Teaching mechanical drawing in the secondary school; experience of
a teacher] Opyt prepodavaniia cherchaniiia v srednei shkole; iz opyta
raboty uchitelia. Pod red. N.I. Tkachenko. Moskva, Gos. uchebno-pe-
dagog. izd-vo M-va prosv. RSFSR, 1956. 66 p. (MLRA 10:4)
(Mechanical drawing-Study and teaching)

TKACHENKO, N.I.

CHERNYAYEV, S.I., redaktor; TKACHENKO, N.I., redaktor; RODIONOVA, Z.,
redaktor; RYBIN, I.V., tekhnicheskij redaktor

[Teaching mechanical drawing in the secondary school] Iz opyta
predavaniia cherchenii v srednei shkole; sbornik statei. Moskva,
Gos. uchebno-pedagog. izd-vo M-va prosv. RSFSR, 1956. 106 p.
(Mechanical drawing--Study and teaching) (MLRA 10:4)

TKACHENKO, N. I.

"Improvement in the biological Retting of Jute Based on
the Study of Its Microflora." Cand Biol Sci, Leningrad State U,
Leningrad, 1954. (RZhBiol, No 4, Feb 55)

SO: Sum. No. 631, 26 Aug 55-Survey of Scientific and Technical
Dissertations Defended at USSR Higher Educational Institu-
tions (14).

J. Kachenko, N. d.

Biological treatment of waste water from hydrolytic plants.
E. E. Drublyavets, I. K. Smirnov, N. I. Tkachenko, A. V. Tsalikova, and Z. T. Ivanova. *Gidroizdat Lesokhim. Prom.*, No. 7, 13-16(1955).—The results from the plant runs

carried out in 2 types of waste-treatment installations are reported. "Biofilters" (I) are shallow filter beds filled with coke, cinder, or gravel. These particles are surrounded by a membrane of microorganisms. In "aerotanks" (II), the microorganisms are sorbed to the "active slurry" (III). Waste water is partially neutralized, thoroughly aerated, and transferred to a tank where it is diluted with fresh river water and furnished with nutrient salts ($(NH_4)_2SO_4$ and a superphosphate). Thus pretreated waste water (pH 6-6.5, B.O.D. 300-400 mg. O₂/l., 7-9 mg. N/l., and 3-5 mg. P/l.) is carried to II over trays or is pumped to the middle of II, where it is intimately mixed with III. From II it flows into a settler, from which the settled slurry is returned to II. Artificial aeration is used in II but not in I. The capacity of II is greater than that of I, but the latter are more economical.

T. Jurecic

TKACHENKO, N.I.

Yeastlike organisms of biofilters purifying sewage in hydrolysis plants. Mikrobiologiya 32 no.3:526-528 My-Je'63 (MIRA 17:3)

1. Gosudarstvennyy nauchno-issledovatel'skiy institut gidro-liznay i sul'fitno-spirtovoy promyshlennosti, Leningrad.

TKACHENKO, N.I.

Distribution of micro-organisms in the biofilter cleaning the sewage
waters of a hydrolysis factory. Mikrobiologija 29 no.2:253-258 Mr-
Ap '60. (MJRA 14:7)

1. Vsesoyuznyy nauchno-issledovatel'skiy institut gidroliznoy i
sul'fitno-spirtovoy promyshlennosti (VNIIGS), Leningrad.
(INDUSTRIAL WASTES--MICROBIOLOGY)

TKACHENKO, N.I.; IVANOVA, Z.T.

Studying the composition of the wastes of yeast production.
Gidroliz. i lesokhim. prom. 18 no.5:13-14 '65. (MIRA 18:7)

l. Vsesoyuznyy nauchno-issledovatel'skiy institut gidrolyznoy
i sul'fitno-spirtovoy promyshlennosti.

VORONIN, P.S., inzh.; TKACHENKO, N.I., inzh.

Using twin guns for the spot welding of automobile fenders.
Avtom. svar. 17 no.11:78 N '64 (MIRA 18:1)

1. Zaporozhskiy avtomobil'nyy zavod.

RUDNYY, N.M., kand.tekhn.nauk; MASLOVSKIY, V.V., inzh.; TKACHENKO, N.K.,
inzh.

Device for measuring direct current in electrolysis networks.
Vest. elektroprom. 31 no.9:68-71 S '60. (MIRA 15:5)
(Electrolysis)

ZISLINA, N.N.; NOVIKOVA, L.A.; TKACHENKO, N.M.

Electrophysiological study of inhibitory and excitatory influences of the hippocampus. Fiziol. zhur. 49 no.1:5-15 Ja '63. (MIRA 17:2)

1. Elektrofiziologicheskaya laboratoriya Instituta defekto-
logii Akademii pedagogicheskikh nauk RSFSR, kafedry vysshey
nervnoy deyatel'nosti Gosudarstvennogo universiteta imeni
Lomonosova, Moskva.

5(1)

AUTHORS: Epshteyn, D. A., Tkachenko, N. M., SOV/20-122-5-35/56
Miniovich, M. A., Dobrovolskaya, N. V.

TITLE: A Two-Stage Catalyst for Oxidation of Ammonia
(Dvukhstupenchatyy katalizator okisleniya ammiaka)

PERIODICAL: Doklady Akademii nauk SSSR, 1958, Vol 122, Nr 5,
pp 874-877 (USSR)

ABSTRACT: Catalysts for the oxidation of ammonia to nitric oxide can be divided according to their chemical composition into platiniferous and non-platiniferous catalysts. The latter include iron, cobalt, chromium oxides and oxides of other metals. In industry platiniferous catalysts are used almost exclusively, although they are less accessible and more expensive than non-platiniferous ones and involve large irrecoverable losses. But they are stable and guarantee a high degree of transformation of ammonia to nitric oxide (97-98% yield of N₂O). Both groups of catalysts have a great power of selectivity. The question arises as to the conditions under which non-platiniferous catalysts retain their high selectivity without change for a period of time that would meet industrial requirements. The first and second author studied the oxidation

Card 1/3

A Two-Stage Catalyst for Oxidation of Ammonia

SOV/20-122-5-35/56

of ammonia with several non-platiniferous catalysts (Ref 1). Because of various difficulties it was decided to place a standard platinum grid in front of the non-platiniferous catalyst so that the latter contacts a partly reacted mixture. By means of a sight glass it was discovered that the non-platiniferous catalyst, which formerly would hardly glow, soon started to operate again under these conditions. The yield of nitric oxide rose to its original level (98%) and remained there for a long time without dropping; under all other optimum conditions the non-platiniferous catalyst reached stability. It was obvious that the drop of activity and selectivity of the non-platiniferous catalyst was due to a change in its frontal layer, that comes into contact with the new air-ammonia mixture. The great amount of heat created and the ever present poisonous components inactivate the frontal layer. If a platinum grid is used, comparatively little heat is created because of the reduced ammonia concentration and a part of the poison is neutralized by the platinum. The authors have conducted experiments under different conditions and with grids of different densities. The results are given in table 1. From this study the conclusion may be drawn that some non-platiniferous catalysts equal platiniferous catalysts with

Card 2/3

A Two-Stage Catalyst for Oxidation of Ammonia

SOV/20-122-5-35/56

respect to their selectivity. They possess a higher stability; when part of the ammonia was previously oxidized at a platiniferous catalyst. A possible mechanism of reaction had been discussed before (Ref 3). There are 1 table and 3 Soviet references.

ASSOCIATION: Gosudarstvennyy nauchno-issledovatel'skiy i proyektnyy institut azotnoy promyshlennosti (State Scientific and Planning Research Institute of Nitrogen Industry)

PRESENTED: June 9, 1958, by S. I. Vol'fkovich, Academician

SUBMITTED: June 6, 1958

Card 3/3

TKACHENKO, N.M., inzh.

Stimulating the students' interest for industrial chemistry
("Visual aids on industrial chemistry for secondary schools;
description of aids and methods for their use" by D.A.Epshtein.
Reviewed by N.M.Tkachenko). Khim.v shkole 14 no.4:84-85
Jl-Ag '59. (MIRA 12:11)
(Chemistry, Technical--Audio-visual aids)
(Epshtein, D.A.)

EPSHTEYN, D.A.; TKACHENKO, N.M.; MNIOVICH, M.A.; DOBROVIL'SKAYA, N.V.

Two-stage catalyst for the oxidation of ammonia. Dokl.AN SSSR 122
no.5:874-877 O '58.
(MIRA 11:11)

1. Gosudarstvennyy nauchno-issledovatel'skiy i proyektnyy institut
azotnoy promyshlennosti. Predstavлено академиком S.I. Vol'fkovichem.
(Ammonia) (Oxidation) (Catalysts)

TKACHENKO, N.N.

Experimental plant-breeding station in Krymsk is 25 years old. Kons.i
ov.prom. 16 no.4:35-36 Ap '61. (MIRA 14:3)

1. Opytno-seleksionnaya stantsiya Vsesoyuznogo instituta rasteniye-
vodstva v Krymske.
(Krymsk--Plant breeding)

REZNIKOV, Fedor Illarionovich; TKACHENKO, N.N., red.; BYKOVA, G.N.,
tekhn.red.

[History of Kholmogory cattle] Istoryia kholmogorskogo skoto-
vodstva. Arkhangel'sk, Arkhangel'skoe knizhnoe izd-vo, 1957.
271 p.

(Cattle breeds)

KOSTSOVA, A.G.; TKACHENKO, N.N.; YEVSEYEVA, I.I.

Alkanesulfonic acids. Part 24: Acetylation of some N-aryl amides
of alkanesulfonic acids in the presence of aluminum chloride.
Zhur.ob.khim. 31 no.7:2241-2246 Jl '61. (MIRA 14:7)

1. Voronezhskiy gosudarstvennyy universitet.
(Sulfonic acid) (Amides)

TKACHENKO, N.N.

Effect of spinal hemisection vasomotor reflexes of the hind legs
in dogs [with summary in English]. Fiziol.zhur. 44 no.4:356-364
(MIRA 11:4)
Ap '58.

1. Kafedra fiziologii 2-go Meditsinskogo instituta im. N.I.Pirogova,
Moskva.

(SPINAL CORD, physiology
eff. of hemisection on vasomotor reflexes of hind limbs
in dogs (Rus))

(EXTREMITIES, blood supply
vasomotor reflexes in hind limbs of dogs, eff. of
spinal cord hemisection (Rus))

TKACHENKO, N.N.

Use of similarity criteria in the physicochemical mechanics of
materials. Fiz.-khim. mekh. mat. 1 no.1:82-84 '65.
(MIRA 19:1)

1. Fiziko-mekhanicheskiy institut AN UkrSSR, L'vov.
Submitted August 10, 1964.

GUTMAN, E.M.; KARPENKO, I.V.; TKACHENKO, N.N.

Effect of the scale factor on the strength of metals in anodic dissolution, and the similarity condition. Fiz.-khim. mekh. mat.
(MIRA 19:1)
1 no.1:85-89 '65.

1. Fiziko-mekhanicheskiy institut AN UkrSSR, L'vov. Submitted
September 15, 1964.

TKACHENKO, N.N.; VASILENKO, I.I.; KARPEHEKO, G.V.

Modeling the corrosive effect of a working medium on the strength
of geometrically similar specimens. Fiz.-khim. mekh. mat. 1 no.5:
539-541 '65. (MIRA 19:1)

I. Fiziko-mekhanicheskiy institut AN UkrSSR, L'vov. Submitted
April 14, 1965.

PECHERKO, N.N.; BULATOVICH, A.V.; KAMENKO, G.V.

Effect of the type of loading on the corrosion-fatigue strength
of steel. Fiz.-khim. mekh. mat. 1 no. 5:620-621 '65.

(MIRA 19:1)

Iz. Fiziko-mekhanicheskly Institut AN UkrSSR, Lvov. Submitted
May 10, 1965.

VASTIENKO, I.I.; KARPENKO, G.V.; MIKITISHIN, S.I.; TKACHENKO, N.N.

Reversible and irreversible hydrogen brittleness. Fiz.-khim. mekh.
mat. 1 no.5:624-625 '65. (MIRA 19:1)

I. Fiziko-mekhanicheskiy institut AN UkrSSR L'vov. Submitted
June 16, 1965.

TKACHENKO, N.O.; LARIONOVA, Z.K.; MERKULOVA, Z.N.; GORDIYCHUK, M.R.
[Hordiichuk, M.I.]

Deresination of felt cones. Leh. prom. nc.2t 29-30 Ap-Je '64.
(MIRA 17c7)

TKACHENKO, N.S.

137-58-5-11110

Translation from: Referativnyy zhurnal, Metallurgiya, 1958, Nr 5, p 315 (USSR)

AUTHORS: Tkachenko, N.S., Sakunov, V.I.

TITLE: Determination of Arsenic in Iron Manganese Ores and Sinters
(Opredeleniye mysh'yaka v zheleznykh margantsevykh rudakh
i aglomeratakh)

PERIODICAL: Tr. Nauchno-tekhn. o-va chernoy metallurgii. Ukr. resp.
pravl., 1956, Vol 4, pp 125-126. Comments, pp 131-137

ABSTRACT: A weighed portion of ore is fused with Na_2CO_3 and ZnO and is then leached in H_2SO_4 (1:4) in the presence of $\text{H}_2\text{C}_2\text{O}_4$. KBr , HCl , and hydrazine sulfate or hydrazine chloride are added, and the As is driven off by distillation. After evaporating the distillate with HNO_3 and adding a molybdate-hydrazine mixture, the solution is heated to the boiling point, is allowed to cool, and is then analyzed by colorimetric methods.

P.K.

1. Arsenic--Determination
2. Ores--Test methods
3. Colorimetry--Applications

Card 1/1

KASHCHEYEV, V.N.; TKACHENKO, N.V.

Friction of bronze against bronze at different speeds and loads.
Izv. vys. ucheb. zav.; fiz. no.2:171-173 '58. (MIRA 11:6)

1. Sibirskiy fiziko-tekhnikheskiy institut pri Tomskom gosuniversitete
im. V.V. Kuybysheva.
(Bronze--Testing) (Friction)

TOMASHEVICH, F.V. (Novocherkassk)

Concept of the function in a school course. Mat. v shkole no. 4:25-32
Jl-Ag '54. (MIRA 7:?)
(Functions)

1. "Soviet Foreign Policy in the Middle East," by G. K. Tammam

2. "Russia and the Middle East: A Special Report," by G. K. Tammam
(MAY 1984)

3. "Russia and the Middle East: A Special Report," by G. K. Tammam
(MAY 1984)

TKACHENKO, N.M.

Prevent gas escape beyond casing strings. Bezop truda v prom. 7
no.4:11-14 Ap '63. (MIRA 16:4)

I. Glavnny geolog Gosudarstvennogo komiteta pri Sovete
Ministrov UkrSSR po nadzoru za bezopasnym vedeniyem rabot
v promyshlennosti i gornomu nadzoru.
(Gas well logging—Safety measures)

TKACHENKO, N. N., Cand Agr Sci -- (diss) "Agricultural engineering of the raising of early tomatoes on the open ground of the Left-Bank forest steppes of the UkrSSR." Khar'kov, 1958. 18 pp (Min of Agr USSR. Khar'kov Order of Labor Red Banner Agr Inst im V.V. Dokuchayev), 2.0 copies (EL, 41-58, 122)

- 30 -

TKACHEMKO, N.N.

Breeding work with sweet corn. Kons. i ev. prem. no. 7:25-27
Jl '63. (MIRA 16:9)

1. Opytno-seleksionnaya stantsiya Vsesoyuznogo instituta
rasteniyevodstva v Krymske.

TKACHENKO, N.N.; CHIZHOV, S.T.; MESHCHEROV, E.T.; TKACHEV, R.Ya.;
DANILOV, V.P.; KURZINA, I.A., red.; PROKOF'YEVA, L.M.,
tekhn. red.

[Cucumbers] Ogurtsy. [B]N.N.Tkachenko i dr. Moskva, Sel'-
khozizdat, 1963. 205 p. (MIRA 16:5)
(Cucumbers)

TKACHENKO, N.N.

Effect of loading frequency on the fatigue strength of steel.
Fiz.-khim. mekh. mat. 1 no.2:243 '65. (MIRA 18:6)

1. Fiziko-mekhanicheskiy institut AN UkrSSR, L'vov.

TKACHEVSKY, V. I.

Similitude criteria of the process of mercury action on brass.
Fiz.-khim. mekh. mat. 1 no.2:142-143 '65. (MIRA 18;6)

1. Fiziko-mekhanicheskiy institut AN UkrSSR, L'vov.

TKACHENKO, N.N.; VASILENKO, I.I.; KARPENKO, G.V.

Modeling the process of chemical dissolution of geometrically similar specimens. Fiz.-khim. mekh. mat. 1 no.2:144-146 '65.
(MIRA 18:6)
I. Fiziko-mekhanicheskiy institut AN UkrSSR, L'vov.

L 01123-66 EPA(s)-2/EWT(m)/EWP(u)/EPF(c)/EWA(d)/T/EWP(t)/EWP(z)/EWP(b)
IJP(c) JD/JW/JG/WB

ACCESSION NR: AP5019662

UR/0369/65/001/003/0355/0360

57

AUTHOR: Tkachenko, N. N.; Vasilenko, I. I.; Karpenko, G. V.

51

TITLE: Fracture of copper alloys during tests in mercury salt solutions

B

SOURCE: Fiziko-khimicheskaya mekhanika materialov, v. 1, no. 3, 1965, 355-360

TOPIC TAGS: copper alloy, brass fracture, bronze fracture, mercury nitrate solution, embrittlement, brittle fracture, anodic polarization, cathodic polarization

41

ABSTRACT: The fracture of brass under the action of mercury is usually attributed to its embrittlement owing to the penetration of atoms of mercury. The attendant decrease in strength and plasticity is due to a more or less pronounced decrease in the specific free energy of the new surfaces that develop in the process of plastic deformation, as a result of the adsorption of mercury ions thereon as well as of the formation of amalgams. During tests of brass in solution of mercury nitrate, the diffusion penetration of mercury into brass may be accompanied by the dissolution of anodic sectors, which usually contributes to crack formation. Considering, however, that cathodic polarization from an external current source was absent

Card 1/4

L 01123-66

ACCESSION NR: AP5019662

2

prior to fracture (although in many cases of corrosion cracking cathodic protection prolongs the time until fracture), it had been concluded (R. B. Mears, R. H. Brown, E. H. Dix, Symposium on Stress Corrosion Cracking of Metals, ASTM-AIME, 1944, 67-110) that the fracture of brass in solutions of mercury salts (in the absence of polarization) is due to the penetration of mercury into the metal. In this connection, to clarify the role of anodic processes, the authors investigated the effect of anodic and cathodic polarization, in the presence of different current densities, on the length of the period until the fracture of brass in mercury nitrate solutions. Cylindrical specimens of brass and aluminum bronze (7% Al, 2% Fe, 91% Cu) with uniformly pure surfaces were, after machining and 2 hr annealing in a vacuum ($1 \cdot 10^{-4}$ mm Hg) at 300°C , subjected to fracture tests and tensile tests in special machines while being immersed in a bath of 0.15% mercury nitrate solution. The time until fracture was determined from the instant the solution was poured into the tank. Control experiments without polarization from an external current source also were performed (the platinum electrode was removed from the bath). It was found that both anodic and cathodic polarization accelerated the embrittlement and fracture of the specimen, anodic polarization being particularly effective. In the case of brass this effect of mercury was more marked than in the

Card 2/4

L 01123-66

ACCESSION NR: AP5019662

case of bronze. This is primarily attributed to the presence of zinc in bronze. Under conditions of the experiment, anodic polarization only partly prevented the deposition of mercury ions on the brass surface. At the same time it led to an intense dissolution of anodic sectors of the metal and thereby to the facilitation of crack formation in the surface layers, which were already embrittled by the penetrated mercury. A major role in accelerating the formation and development of cracks in the presence of anodic polarization is played by the selective nature of penetration of mercury into the metal -- through the adsorptioinal migration over grain boundaries and over the outcropping surface dislocations and other structural defects. As a result of such a mercury penetration, the metal becomes strongly embrittled and, in addition, the heterogeneity of its structure is enhanced, thus apparently leading to an intensification of electrochemical processes. Thus, anodic polarization leads to a sharp decrease in strength and plasticity but only in the cases where the surface layers are embrittled by the mercury diffusing into them. Orig. art. has: 6 figures.

ASSOCIATION: Fiziko-mekhanicheskiy institut AN UkrSSR, L'vov (Physico-Mechanical Institute, AN UkrSSR)

44,55

Card 3/4

L 01123-66

ACCESSION NR: AP5019662

SUBMITTED: 26Feb65

ENCL: 00

SUB CODE: MM, GC

NO REF SOV: 006

OTHER: 002

Card 4/4 DP

MAKSIMOVICH, G.G.; YANCHISHIN, F.P.; TKACHENKO, N.N.; NAGIRNYY, S.V.;
BARANETSKYIY, V.S.

Effect of round hole type stress concentrators on the mechanical
characteristics of brass. Vlilian. rab. sred na svois. mat. no.2:
56-60 '63. (MIRA 17:10)

Hydrogen embrittlement of various materials has been studied by
several authors.

REED, R. A., Hydrogen embrittlement of metals, J. Amer. Inst. Min. Eng., 1952, 191, 101.

SCHAFER, F. I., Hydrogen embrittlement of metals, J. Amer. Inst. Min. Eng., 1952, 191, 101.

TOLSTYKHIMIKOSKAYA, Hydrogen embrittlement of metals, Sov. Inzh. Zem., 1954, No. 1.

TOPICS: steel embrittlement, stainless steel embrittlement, copper embrittlement, zinc embrittlement, aluminum embrittlement, brass embrittlement, nickel embrittlement, hydrogen embrittlement, metallography, metallurgy, metallurgical treatment.

ANISAKI: The effect of hydrogen embrittlement during electrochemical treatment on the ductility of several ferrous and nonferrous metals has been studied in copper, zinc, and aluminum. It was found that the effect of hydrogen embrittlement is maximum immediately following the electrolytic treatment. It is found that a certain potential can be determined which does not affect the mechanical properties. Hydrogen embrittlement is observed in all cases, although it is not observed in the case of copper. The effect of hydrogen embrittlement varies appreciably with the reaction time, the concentration of hydrogen, etc.

Card 1/2

L 64763-65

ACCESSION NR: AP501966^b

and aluminum was unchanged regardless of the current density even at a deformation rate as low as 0.007 mm/min. Thus, it can be concluded that standard size specimens of copper, zinc, and aluminum are not susceptible to hydrogen embrittlement.
Orig. art. has: 1 figure.

ASSOCIATION: Fiziko-mekhanicheskiy institut AN UkrSSR. Ukr. Physico-mechanical Institute, AN UkrSSR,

SUBMITTED: 26Feb65

ENCL: 00

SUB CCDE: MM,AS

NO REF SOV: 003

OTHER: 000

ATT'D PRESS: 4078

Card

S/239/62/048/olc/004/004
I015/I215

AUTHOR: Tkachenko, N.N.

TITLE: A technique for the insertion of multiple electrodes
into various cortical regions of a cat's brain

PERIODICAL: Fiziologicheskiy zhurnal SSSR im. I.M. Sechenova
v. 48, no. 10, 1962, 1279-1282

TEXT: In order to carry out chronic experiments it is
necessary to develop a safe and relatively simple technique of
inserting multiple electrodes into various cortical regions. The
technique described fits these requirements since it enables the
simultaneous insertion of 48 electrodes for chronic experiments
(5 months and more) without apparent disturbances of the animal's

Card 1/2

S/239/62/048/010/004/004

I015/I215

A technique for the

well-being. It was found at autopsy (the animal was sacrificed after 5 months) that the contact plate which was made of plastic was actually implanted into the cranial bone and a scar tissue was formed around it. Modifications of the technique are being elaborated at present, in order to make it suitable for investigations of deeper layers of the cortex and of the subcortex.

There are 4 figures.

ASSOCIATION: Kafedra fiziologii cheloveka i zhivotnykh Gosudarstvennogo universiteta, Rostov-na-Donu (Chair of Human and Animal Physiology. State University. Rostov-na-Donu)

SUBMITTED: August 26, 1961

Card 2/2

USSR/Zooparasitology. Ticks and Insects in Disease Vectors.
Mites.

G

Abs Jour: Ref Zhur-Biol., No 17, 1958, 77035.

Author : Gladkikh, S.G.; Shilova, S.A.; Tkachenko, N.N.;
Korovina, A.G.

Inst :

Title : Results of Work of Conducting Anti-Tick Prophylaxis
in the Localized Region of Spring-Summer Encephalitis.

Orig Pub: Tr. Tsentr. n.-i. dezinfekts. in-ta, 1957, vyp. 10,
226-233.

Abstract: No abstract.

Card : 1/1

"APPROVED FOR RELEASE: 07/16/2001

CIA-RDP86-00513R001755920007-5

TKACHENKO, N. N., Cand of Agric Sci -- (diss) "Obtention of cucumber hybrid seeds."
Moscow, 1957, 14 pp (Moscow Agricultural Academy im K. A. Timiryazev), 110 copies
(KL, 29-57, 92)

APPROVED FOR RELEASE: 07/16/2001

CIA-RDP86-00513R001755920007-5"

TKACHENKO, N.N.; GOVOROV, N.V.

Make wider use of hybrid cucumber seeds in commercial plantations.
Kons.i ov.prom. 14 no.2:32-34 F '59. (MIRA 12:3)

1. Opytno-seleksionnaya stantsiya v Krymske.
(Cucumbers)