

Фильтрация изображений и выделение краев

Андрей Савченко

Профессор НИУ ВШЭ-Нижний Новгород

Опрос

https://forms.gle/E97DHTgfapd1sh4P7

packgroun text-shadow: opx filter: dropshadowcom color:#777: header main-navigation of box-shadow: moz-box-shadow: ad-color:#F9F Геометрические

*· hour

Геометрические преобразования

Простейшая модель оптической системы

Pinhole camera (камера-обскура)

Геометрическая модель

Упрощенная модель (камера находится в начале глобальной системы координат)

$$x = \frac{\phi_x u + \gamma v}{w} + \delta_y$$
 $y = \frac{\phi_y v}{w} + \delta_y$.

Prince «Computer vision: models, learning and inference»

Однородные (homogeneous) координаты

$$\begin{array}{cccc}
2D \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

$$\tilde{\mathbf{w}} = \lambda egin{bmatrix} u \\ v \\ w \\ 1 \end{bmatrix}$$

3D

Модель камеры-обскура

$$\lambda egin{bmatrix} x \ y \ 1 \end{bmatrix} = egin{bmatrix} \phi_x & \gamma & \delta_x & 0 \ 0 & \phi_y & \delta_y & 0 \ 0 & 0 & 1 & 0 \end{bmatrix} egin{bmatrix} u \ v \ w \ 1 \end{bmatrix}$$

Основные преобразования

 $g(\boldsymbol{x}) = f(\boldsymbol{h}(\boldsymbol{x}))$

Forward warping

Inverse warping

Преобразование Евклида: перенос и поворот

$$oldsymbol{x}' = \left[egin{array}{cc} oldsymbol{R} & oldsymbol{t} \end{array}
ight]ar{oldsymbol{x}}$$

$$m{R} = \left[egin{array}{ccc} \cos heta & -\sin heta \ \sin heta & \cos heta \end{array}
ight]$$

Однородные координаты

$$\lambda \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \omega_{11} & \omega_{12} & \tau_x \\ \omega_{21} & \omega_{22} & \tau_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} \omega_{11} & \omega_{12} \\ \omega_{21} & \omega_{22} \end{bmatrix} = \begin{bmatrix} \cos[\theta] & \sin[\theta] \\ -\sin[\theta] & \cos[\theta] \end{bmatrix}$$

Преобразование подобия (similarity transform)

$$m{x}' = \left[egin{array}{cccc} sm{R} & m{t} \end{array}
ight] m{ar{x}} = \left[egin{array}{cccc} a & -b & t_x \ b & a & t_y \end{array}
ight] m{ar{x}},$$

Однородные координаты

$$\lambda egin{bmatrix} x' \ y' \ 1 \end{bmatrix} &= egin{bmatrix}
ho\omega_{11} &
ho\omega_{12} & au_x \
ho\omega_{21} &
ho\omega_{22} & au_y \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} u \ v \ 1 \end{bmatrix}$$

$$\begin{bmatrix} \omega_{11} & \omega_{12} \\ \omega_{21} & \omega_{22} \end{bmatrix} = \begin{bmatrix} \cos[\theta] & \sin[\theta] \\ -\sin[\theta] & \cos[\theta] \end{bmatrix}$$

Параллельные линии остаются параллельными

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} + \begin{bmatrix} \tau_x \\ \tau_y \end{bmatrix}$$

Проективное (перспективное) преобразование

Однородные координаты

$$\lambda \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

$$x = \frac{\phi_{11}u + \phi_{12}v + \phi_{13}}{\phi_{31}u + \phi_{32}v + \phi_{33}}$$
$$y = \frac{\phi_{21}u + \phi_{22}v + \phi_{23}}{\phi_{31}u + \phi_{32}v + \phi_{33}},$$

Prince «Computer vision: models, learning and inference» Szeliski «Computer Vision»

Искажения перспективной проекции. Радиальная дисторсия

inverse radial distortion model

 $x' = x(1 + \beta_1 r^2 + \beta_2 r^4)$ $y' = y(1 + \beta_1 r^2 + \beta_2 r^4)$

"Fisheye"

Геометрические преобразования (итог)

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} oldsymbol{I} & oldsymbol{t} \end{array}\right]_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & oldsymbol{t} \end{array} ight]_{2 imes 3}$	3	lengths	\Diamond
similarity	$\left[\begin{array}{c c} s \boldsymbol{R} & \boldsymbol{t} \end{array}\right]_{2 \times 3}$	4	angles	\Diamond
affine	$\left[\begin{array}{c} {m A} \end{array} ight]_{2 imes 3}$	6	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

text snauow. filter: dropshadowc color:#777: Theader #main-navigation will box-shadow: moz-box-ehadow: ad-color:#F9F

Нелинейная фильтрация

wind:#

Медианный фильтр (1)

$$\{5, 7, 3, 4, 5, 19, 6, 4, 9\} \xrightarrow{\text{sort}} \{3, 4, 4, 5, 5, 6, 7, 9, 19\}$$

 1 1 1					L
123	125	126	130	140	
122	124	126	127	135	
118	120	150	125	134	
119	115	119	123	133	
 111	116	110	120	130	
 1					r

Neighbourhood values:

115, 119, 120, 123, 124, 125, 126, 127, 150

Median value: 124

Медиана нелинейна:

$$med(\{1,2,3\} + \{5,4,6\}) = med(\{6,6,9\}) = 6$$

 $med(\{1,2,3\}) + med(\{5,4,6\}) = 2 + 5$

https://homepages.inf.ed.ac.uk/rbf/HIPR2/median.htm

Медианный фильтр (2). Шум «Salt-and-pepper»

Plots of a row of the image

Билатеральный фильтр (1)

Фильтр Гаусса сглаживает не только шум, но и границы объектов

$$w(i, j, k, l) = \exp\left(-\frac{(i - k)^2 + (j - l)^2}{2\sigma_d^2} - \frac{\|f(i, j) - f(k, l)\|^2}{2\sigma_r^2}\right)$$

Domain kernel Range kernel

 $g(i,j) = rac{\sum_{k,l} f(k,l) w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)}.$

OpenCV: bilateralFilter()

Билатеральный фильтр (2)

Noisy input

Bilateral filter 7x7 window

http://www.robots.ox.ac.uk/~az/lectures/ia/lect4.pdf

Математическая морфология (1)

Структурные элементы

1	1	1
1	(1)	1
1	1	1

	1		
1	(1)	1	
	1		

		1	1	1		
	1	1	1	1	1	
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
	1	1	1	1	1	
		1	1	1		

1	1	
1	(0)	
1		0

1	1	1
1	٩	1
1	1	1

OpenCV: getStructuringElement()

Математическая морфология (2)

Сужение (Erosion)

Пиксель=1, только если все пиксели, соответствующие структурному элементу, равны 1

Расширение (Dilation)

Пиксель=1, если хотя бы один пиксель, соответствующий структурному элементу, равен 1

Структурный элемент – квадрат 5х5

OpenCV:

- erode(),
- dilate()

Математическая морфология (3)

Открытие (Opening)

erosion followed by dilation – очистка фона от шума

OpenCV: morphologyEx() //MORPH_OPEN, MORPH_CLOSE Параметр iterations — число сужений и расширений Ex. 2 для morph_open: erode -> erode -> dilate -> dilate

Закрытие (Closing)

Dilation followed by Erosion – закрываются «дыры» на объекте

Структурный элемент – квадрат 5х5

https://docs.opencv.org/master/d9/d61/tutorial_py_morphological_ops.html

packaron text-shadow: opx filter, dropshadowcou color:#777: header main-navigation of box-shadow: moz-box-shadow: ad-color:#F9F

Выделение краев (edge detection)

.und:#

Информационная теория зрительного восприятия (David Marr)

Вычисление первых производных (1). Фильтры Превитт

$$\mathbf{F}_x = egin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}, \qquad \mathbf{F}_y = egin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

Original image

Prewitt (vertical)

Prewitt (horizontal)

Prince «Computer vision: models, learning and inference»

Вычисление первых производных (2). Фильтры Собеля

$$G_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} * I \qquad G_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & +2 & +1 \end{bmatrix} * I$$

Модуль градиента

$$G = \sqrt{G_x^2 + G_y^2} \qquad G = |G_x| + |G_y|$$

$$G = |G_x| + |G_y|$$

Оператор Шарра

$$G_x = \begin{bmatrix} -3 & 0 & +3 \\ -10 & 0 & +10 \\ -3 & 0 & +3 \end{bmatrix}$$

$$G_{y} = \begin{bmatrix} -3 & -10 & -3 \\ 0 & 0 & 0 \\ +3 & +10 & +3 \end{bmatrix}$$

OpenCV:

- Sobel(),
- Sharr()

Вторые производные. Фильтр Лапласа.

Original image

Laplacian

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Laplacian of Gaussian

$$LoG(x;\sigma) = (\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2})G(x;\sigma)$$

Difference of Gaussians

OpenCV:

- Laplacian()
- filter2D

Фильтры Габора

$$f_{mn} = \frac{1}{2\pi\sigma^2} \exp\left[-\frac{m^2 + n^2}{2\sigma^2}\right] \sin\left[\frac{2\pi(\cos[\omega]m + \sin[\omega]n)}{\lambda} + \phi\right]$$

Оператор Кэнни

- b)Вертикальный фильтр Превитт
- с) Горизонтальный фильтр Превитт
- d) Квантование ориентации

$$\theta_{ij} = \arctan[v_{ij}/h_{ij}]$$

- е) Амплитуда градиента $a_{ij} = \sqrt{h_{ij}^2 + v_{ij}^2}$
- f) Non-maximal suppression: угол квантуется ({0°, 45°, 90°, 135°}), амплитуда:=0, если меньше хотя бы 1 из 2 пикселей перпендикулярных градиенту
- g) Два порога:

белые пиксели выше максимального порога,

красные - больше минимального

h) Hysteresis thresholding – все белые пиксели и связанные с ними красные

OpenCV: canny()

text-snauow. filter: dropshadowc color:#777: header #main-navigation ull box-shadow: 007707 moz-box-shadow: ad-color:#FgFg

: hour

Преобразование Хафа

Поиск прямых

Для каждой точки

1) найдем направление градиента

$$\theta = \arctan\left(\frac{g_y}{g_x}\right)$$

2) оценим ρ и добавим 1 в аккумуляторный массив (ρ,θ) В аккумуляторе квантуются значения угла θ и расстояния (от 0 до длины диагонали)

Выберем пары (ρ, θ) , для которых счетчик превышает порог

Progressive Probabilistic Hough Transform: выбирается часть (до 20%) точек

OpenCV:

- HoughLines()
- HoughLinesP()

Davies «Computer vision»

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_houghlines/py_houghlines.html https://core.ac.uk/download/pdf/47168821.pdf

Поиск окружностей. Hough gradient method

Уравнение окружности $(x-x_c)^2+(y-y_c)^2=R^2$

Edge detector (Canny)

Увеличивается аккумулятор для θ

Три параметра – нужен трехмерный аккумулятор

Находятся центры
– голосование

Для центра определяется радиус (максимум точек контура)

OpenCV: HoughCircles()

Обобщенное преобразование Хафа

Произвольные кривые

Нужна опорная точка и функции (от нормали) расстояния $R(\theta)$ и угла $\varphi(\theta)$ до нее от любой граничной точки

Центр ищется голосованием на основе всех точек краев

Перейдем к примерам

https://github.com/HSE-asavchenko/MADE-mobile-image-processing/tree/master/lesson3/src