

ChatloT: Zero-code Generation of Trigger-action Based IoT Programs

Yi Gao, Kaijie Xiao, Fu Li, Weifeng Xu, Jiaming Huang, **Wei Dong**College of Computer Science and Technology

Light Technology

Light Dong

Technology

Light Dong

Technology

Proc. of IMWUT/UbiComp 2024

Presented by Lili Pan

Authors Team

Research Interests

- 智慧物联网AloT
- 边缘计算和边缘 AI
- 无线网络和物联网安全

Recent Projects

- 物联网的机密传感计算
- AI 赋能的 IoT

(如何为资源受限的 loT 和边缘设备定制复杂的 AI 模型)

- 低功耗无线
- 低代码 IoT 编程 (如何采用 LLM 进行物联网开发)
- 新颖的物联网系统和应用程序

Wei Dong' s homepage (emnets.cn)

Outline

Background Related work 3 Design **Experiments Conclusion**

Background

If trigger, then action. 简称TAP

```
rule "Tests for type1 machine"
salience 100
when
    machine : Machine( type == "Type1" )
then
    Test test1 = testDAO.findByKey(Test.TEST1);
    Test test2 = testDAO.findByKey(Test.TEST2);
    Test test5 = testDAO.findByKey(Test.TEST5);
    machine.getTests().add(test1);
    machine.getTests().add(test2);
    machine.getTests().add(test5);
    insert( test1 );
    insert( test2 );
    insert( test5 );
end
```


Background

Fig. 1. ChatloT usage.

Input

user request--> natural language

user request+home information-->cloud Chatlot+LLM(MLLM)-->TAP generation

Output

direct TAP rules

Outline

Background Related work 3 Design **Experiments Conclusion**

Prompting Schemes

Prompting Schemes

THOUGHT Reason about the next action to take **ACTION OBSERVATION** Decide on a action to take 🦾 Execute action and feedback observation 33

ReACT

科罗拉多造山带东部区域延伸到的区域的海拔范围是多少? 我需要搜索科罗拉多造山带、找到科罗拉多造山带东段延伸的区域、然后找到 该区域的海拔范围。 搜索 [科罗拉多造山带] 科罗拉多造山带是科罗拉多及其周边地区造山运动的一段。 它没有提到东部地区。所以我需要查一下东部地区。 动作2 查找 [东部地区] 东部区域延伸至高平原, 称为中原造山带。 科罗拉多造山运动的东部区域延伸到高平原。所以我需要搜索高平原、找到它 的海拔范围。 搜索[高平原] 高平原指的是两个截然不同的陆地区域之一

Home Automation Approaches

Table 1. Difference between existing home automation approaches and ChatloT

Method	User learning cost	Ser interaction	Mødel customization
In-situ programming [40, 43, 48] Trace-driven programming [19, 39, 60] ChatIoT (Ours)	High Low Zero	×	×××

In-situ programming: Allow users *Interact directly* with intelligent devices or systems in a specific physical environment

Trace-driven programming: Synthesize TAP rules from **traces** or records of historical operations and events

Edge Model Deployment Schemes

What Edge Model Deployment?

Install the machine learning model on the device, deploying a model to a device

Why Edge Model Deployment?

Real-time response、Privacy protection、Cost effectiveness

Challenges?

Resource Constraints, Model size

Solutions

Model quantification, Model pruning, Knowledge Distillation

Model merging

Multiple models synthesized into a more compact model

Chatlot's DRL-based model customization!

Outline

Background Related work 3 Design **Experiments Conclusion**

Fig. 2. Workflow of TAP generation.

Input

User request + Contexts
(the sensors and actuators in the home)

Algorithm 1: Compress context

Input: TAP generation request Q, Device list $D = [d_1, d_2, d_3, ...]$ in context **Output:** Compressed device list $D_{\text{compressed}}$

Compress context

Input: request Q + device D

Output: D_{compressed}

ChatloT TAP {"trigger":"2.motion-sensor.motion-state == true", "conditions":"", "actions":"1.light.on = true"}

Output

IF <triggers> THEN <actions>

Ask LLM to generate TAPs from the user request and the context

```
(zero-shot prompting) ×
```

Reasons?

- Too many devices, increasing the token cost significantly
- Such complex information leads to low TAP generation accuracy
- Lack of information , e.g. the exact room temperature

Solution

Extract key information
 Lamp in a bathroom --> "area: bathroom, type: light, service: light, fan"

#KOIE

You are the preprocessor of a smart assistant, find the properties in the context that are related to the user request. Make sure you dont miss any properties that are related to the user request.

Input

1. User request.
2. Context: it contains information about all devices, including their id, area, type, and services. Each device may contain multiple services. Each service may contain multiple properties.

Workflow

Solve this task with interleaving Thought, Action, Observation steps. Your response will be a json {"Thought": <Thought>, "Action": <Action>}. Action can be two types: (1) CreateService: Only camera can be added a new service. Parameter is a json include "service" field which is also a json include "camera_id", "service_name", "description", "question" fields. You must remember that camera now does not have any service.

(2) Finish: you return the property list and finish the task. Parameter is json include "property list" field. "property_list" is a list of properties involved. Make sure the properties are expressed in the correct format "id.service.property".

Output

Your response will be a json {"Thought": <Thought>, "Action": <Action>}.

Preprocessing

```
ChatloT: TAP generation request: When a person appear
at the door, turn on the light. Context:[{"id":1, "area": "doorway", "type": "camera",
"services":{"dog detect":{"state":{}}}},
{"id":2,"area":"doorway", "type": "light", "services":
{"light":{"on":{},"brightness":{}}, "light-extension":
{"brightness-delta":{}}}...]
LLM: Thought 1: Identify the trigger, conditions, and the
actions from the user description. Trigger is "when a
person appear at the door", Action is "turn on the light".
Find device and service. For trigger, I can use camera (id:1)
to detect person, but there is no service about person
detect in it. For action, turn on the light (id:2) at door by
the property "on" of service "light".
Action 1: CreateService [{"id":1, "service": "person_
detect", "description": "detect person", "question": "Is
there person"}]
ChatloT: Observation 1: UPDATE CONTEXT {"id":1,
"area":"doorway", "type":"camera", "services":
{"dog_detect":{"state":{}},"person_detect":{"state":{}}}} 🥄
LLM: Thought 2: so I can use camera (id:1) to detect
person by property "state" of service "person detect".
Action 2: Finish[["1.person_detect.state", "2.light.on"]]
```

Creating Service

```
ChatloT: Service request : {"id":1, "service":
 person_detect", "description": "detect person",
 'question":"Is there person"}
 Context :[{"id":1, "area": "doorway", "type": "camera", "services":
 {"dog detect": {"state": {"description": "detect dog",
 "model id":1, "format": "bool", "access": ["read"]}}}}]
model zoo: [{"model id":1,"description":"dog detect"}]
LLM: Thought 1: The User want to add "person detect" service to
 the camera (id:1). Since there is no model for person detect in
 model zoo, I need to request a new model for this service.
 Action 1:RequestModel["Is there person"]
                                                      Model
ChatloT: Observation 1: UPDATE CONTEXT {
                                                    Controller
 model zoo: [{"model id":1,"description":"dog detect"},
{"model id": 2, "description": "person detect"}}}
LLM: Thought 2: add "person_detect" service based on
person detect model(model_id:2)
 Action 2: AddService[{"id":1,"service":"person_detect",
 "question":"Is there person", "model id": 2}]
ChatloT: Observation 2: UPDATE CONTEXT {new context}
LLM: Thought 3: Service request done.
Action 3: Finish[UPDATE CONTEXT {"id":1, "area": "doorway",
 "type": "camera", "services":{"dog detect":
 {"state":{...},"person_detect":{"state":{...}}}}]
```

Generating TAP

```
ChatloT: Properties in TAP: ["1.person_detect.state",
"2.light.on"]
TAP generation request: When a person appear at the
door, turn on the light.
Context:[{"id":1, "area": "doorway", "type":"camera",
"services":{"person_detect":{"state":{"description":
"detect person", "model_id":2, "format": "bool",
"access":["read"]}}}},
{"id":2,"area":"doorway","type":"light","services":
{"light":{"on":{"description": "Switch Status", "format":
"bool", "access":["read", "write", "notify"]}}}]
LLM: Thought 1: Complete the TAP. trigger is "1.person_
detect.state == true", action is "2.light.on = true"
Action 1: Finish[{"trigger": "1.person_detect.state ==
true", "conditions": "", "actions": "2.light.on = true"}]
```

Evaluating TAP

```
ChatloT: TAP generation request: When a person appear at the door, turn on the light.

Context:[{"id":1,"area":"doorway","type":"camera", "services": {"person_detect": {"state":{"description": "detect person", "model_id":2, "format": "bool", "access":["read"]}}}, {"id":2, "area":"doorway", "type": "light", "services": {"light":{"on":{"description": "Switch Status", "format": "bool", "access":["read", "write", "notify"]}}}]

TAP: {"trigger": "1.person_detect.state == true", "conditions": "", "actions": "2.light.on = true"}

LLM: Thought 1: The trigger and actions are correctly identified based on TAP generation request and the context. The value setting are in correct format. No correction to TAP is required. Action 1: Finish[{"trigger": "1.person_detect.state == true", "conditions": "", "actions": "2.light.on = true"}]
```

2. DRL-based On-demand Model Customization

2. DRL-based On-demand Model Customization

基于ddpg的模型部署

深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)算法

Outline

Background Related work 3 Design **Experiments Conclusion**

Experiments

使用python-miio库生成65个设备用于评估 使用Docker部署了四个Home Assistant实例来模拟拥有不同设备数量的家庭 使用gpt-3.5 turbo模型的帮助下为每个家庭生成了一组分类请求

Home	Bathroom	Bedroom	Living room	Kitchen
Home 1	light, motion_sensor	light, air_conditioner	illumination_sensor	None
Home 2	light, motion_sensor,	light, air_conditioner,	light, motion_sensor,	None
	illumination_sensor	illumination_sensor,	illumination_sensor	
		temperature_humidity_sensor		
Home 3	light, motion_sensor,	light0, air_conditioner,	light0, motion_sensor,	light, range_hood,
	illumination_sensor	illumination_sensor,	illumination_sensor, light1,	motion_sensor
		temperature_humidity_sensor, light1,	light2, air_purifier,	
		curtain, humidifier	air_conditioner	
Home 4	light, motion_sensor,	Bedroom 1: light0, air_conditioner,	light0, motion_sensor,	light, range_hood,
	illumination_sensor,	illumination_sensor,	illumination_sensor, light1,	motion_sensor,
	water_heater	temperature_humidity_sensor, light1,	light2, air_purifier,	ceiling_fan
		curtain, humidifier, dehumidifier	air_conditioner	
		Bedroom 2: light0, air_conditioner,		
		illumination_sensor,		
		temperature_humidity_sensor, light1,		
		curtain, humidifier		

Evaluation

Home	Context	Zero-shot		СоТ		ReAct		ChatIoTLite		ChatIoT	
		Acc. (%)	Token	Acc. (%)	Token	Acc. (%)	Token	Acc. (%)	Token	Acc. (%)	Token
home1	1118	0	1466.14	0	2685.48	80	9634.12	100	5109.3	100.0	4580.68
home2	1799	0	2155.64	0	3383.54	96	12353.62	98	5737.18	100.0	4888.06
home3	7098	0	7452.36	0	8675.08	68	28132.60	90	9073.28	92.0	5368.58
home4	11144	0	11500.7	0	12718.42	64	40438.04	78	11518.16	86.0	6067.10

Case Study

Outline

Background Related work 3 Design **Experiments Conclusion**

Conclusion

Conclusion

- 提出了一种新的上下文感知压缩提示方法
- · 提出了一种基于DRL的模型定制方法,在多模态LLM的帮助下,在边缘设备上生成和部署AI模型。

Inspiration

- 场景拓展:智能家居、智能教室、智能商场...
- 问题泛化: 所有人机交互设备都能用TAP吗? (自助打印机、无人驾驶车辆...)
- 安全问题?保证对设备的操控在安全范围内进行,遇到冲突时的处理?
- 与实际生活的轨迹trace相结合,作为备用数据参考。
- 讲述之前研究limitation的时候,可以说"如果将大模型xxx技术和传统的xxx技术相结合的话,可以将xxx领域推向一个新的level~"

Q&A

2024.11.10