Math 215B Supplementary Material

Thursday, February 7, 2013

Let X be a topological space and $\mathcal{U} = \{U_i\}$ a collection of subsets whose interiors cover X. The singular chain complex $C_*(X)$ has a natural subcomplex of \mathcal{U} -small chains

$$(1) C_*^{\mathcal{U}}(X)$$

generated by singular simplices whose image lies in at least one of the U_i . In these notes, we will finish the proof of the following key proposition:

Proposition 1 (Subdivision). The natural inclusion

(2)
$$\iota: C_*^{\mathfrak{U}}(X) \longrightarrow C_*(X)$$

is a chain homotopy equivalence, i.e. there is a natural map $\rho: C_*(X) \to C_*^{\mathfrak{U}}(X)$ such that both $\rho \circ \iota$ and $\iota \circ \rho$ are chain homotopic to the identity map.

Recall that two maps of chain complexes $f, g: A_* \to B_*$ are **chain homotopic** if there is a **chain homotopy** between them, i.e. a map $H: A_* \to B_{*1}$ satisfying $\partial_B \circ H + H \circ \partial_A = g - f$. As a simple consequence of this, f and g are the same map on homology. In particular,

COROLLARY 1. The map

$$(3) \iota_*: H^{\mathfrak{U}}_*(X) \longrightarrow H_*(X)$$

is an isomorphism.

Formal structure of construction. Let us recall how we began. First, call a chain $\alpha \in C_*(X)$ small if it's a part of the subcomplex $C_*^{\mathfrak{U}}(X)$. The proof will proceed by constructing two natural maps: a chain map

(4)
$$b_{(n)}^X: C_n(X) \longrightarrow C_n(X) \text{ for all } X, n$$

and a chain homotopy

(5)
$$R_{(n)}^X: C_n(X) \longrightarrow C_{n+1}(X) \text{ for all } X, n$$

between b^X and id, so $\partial R^X + R^X \partial = b^X - id$. The letter b stands for **barycentric subdivision**, and intuitively is the operation of taking a singular simplex, and subdividing it into a sum of smaller simplices. It will follow from the construction that

PROPERTY 1. For any singular simplex $\sigma \in C_*(X)$, there exists a $K_{\sigma} \in \mathbb{N}$ such that $(b^X)^{K_{\sigma}}(\sigma)$ is small.

EXERCISE 1. Show that if R^X is a chain homotopy between b^X and id, then $\sum_{i=0}^{K-1} R^X(b^X)^i$ is a chain homotopy between $(b^X)^K$ and id.

Thus, this will allow us to define the homotopy inverse

(6)
$$\rho: C_*^{\mathfrak{U}}(X) \longrightarrow C_*(X)$$

on generators as

(7)
$$\sigma \longmapsto (b^X)^{K_{\sigma}}(\sigma)$$
 for some choice of K_{σ} as in Property 1.

The chain homotopy between $\iota \circ \rho$ and $id_{C^{\mathfrak{U}}(X)}$ is

(8)
$$\bar{R}: C_n^{\mathfrak{U}}(X) \longrightarrow C_{n+1}^{\mathfrak{U}}(X)$$
$$\sigma \longmapsto \sum_{i=0}^{K_{\sigma}-1} R^X(b^X)^i \sigma, \ K_{\sigma} \text{ as before.}$$

Since R^X and b^X both send small chains to small chains,

(9)
$$\bar{R}: C_n^{\mathcal{U}}(X) \longrightarrow C_{n+1}^{\mathcal{U}}(X)$$

also gives a chain homotopy between $\rho \circ \iota$ and $id_{C_*(X)}$.

A preliminary construction. Recall that $\Delta_k = \{\sum_{i=0}^k t_i e_i | \sum_{i=0}^k t_i = 1\} \subset \mathbb{R}^{k+1}$. Thus, points on a simplex can be thought of as coordinates (t_0, \ldots, t_k) with entries summing to one.

Now, let V be a convex set in \mathbb{R}^d , and $p \in V$ a point. For a singular n-simplex $\alpha : \Delta_n \to V$, define a singular n+1 simplex

(10)
$$\operatorname{Cone}_{p}(\alpha): \Delta_{n+1} \longrightarrow V$$

as

(11)

$$\operatorname{Cone}_{p}(\alpha)(t_{0},\ldots,t_{n+1}) = \begin{cases} t_{0}p + (1-t_{0})\alpha(\frac{t_{1}}{1-t_{0}},\ldots,\frac{t_{n+1}}{1-t_{0}}) & t_{0} < 1\\ p & t_{0} = 1 \text{ (and thus all other } t_{i} = 0). \end{cases}$$

One should think of this singular simplex geometrically as the convex hull of the vertex p and the singular n simplex opposite it, α . Linearly extend this construction to obtain a map on singular chains

(12)
$$\operatorname{Cone}_p: C_n(V) \longrightarrow C_{n+1}(V).$$

As a map on chains, the cone satisfies the following property.

LEMMA 1 (Cone formula).

$$\partial \operatorname{Cone}_p(\sigma) = \sigma - \operatorname{Cone}_p(\partial \alpha).$$

This is clear from looking at a picture of the cone over a simplex—in words, the boundary of the cone of a simplex is the original simplex plus the cones over the boundary of the original simplex.

Constructing the maps b^X from the simplex via naturality. Our desire for a natural construction means that the following squares should commute, whenever we have a map $f: X \to Y$:

$$C_n(X) \xrightarrow{b^X} C_n(X)$$

$$\downarrow^{f_{\sharp}} \qquad \downarrow^{f_{\sharp}}$$

$$C_n(Y) \xrightarrow{b^Y} C_n(Y)$$

$$C_n(X) \xrightarrow{R^X} C_{n+1}(X)$$

$$\downarrow^{f_{\sharp}} \qquad \downarrow^{f_{\sharp}}$$

$$C_n(Y) \xrightarrow{R^Y} C_{n+1}(Y).$$

This plus our desire for the maps to be linear, means that b^X and R^X are completely determined by their effect on the identity singular simplex

$$\eta_n = \Delta_n \xrightarrow{id} \Delta_n$$

How are they determined? Suppose we've defined $b^{\Delta_n}(\eta_n)$ and $R^{\Delta_n}(\eta_n)$. Given a generator

(13)
$$\sigma: \Delta_n \longrightarrow X$$

of $C_*(X)$, define

(14)
$$b^{X}(\sigma) := \sigma_{\sharp}(b_{n}^{\Delta}(\eta_{n})),$$

and similarly

(15)
$$R^X(\sigma) := \sigma_{\sharp}(R_n^{\Delta}(\eta_n)),$$

where $\sigma_{\sharp}: C_*(\Delta_n) \to C_*(X)$ is the map on chains induced by the generator σ . Constructing b^X . Let's define b_n^X by induction on n. First, for n=0, set $b^{\Delta_0}(\eta_0)=\eta_0$, which by (14) gives a construction of b_0^X for all X. Now, say b_{n-1}^X has been defined. Inductively define

(16)
$$b_n^{\Delta_n}(\eta_n) := \operatorname{Cone}_z(b_{n-1}^{\Delta_n}(\partial \eta_n))$$

where $z = z_n$ is the so-called **barycenter** (or "center of mass") of the simplex Δ_{n+1} , the point $\sum_{k=0}^{n+1} \frac{1}{n+1} e_i$. It's illustrative to draw what is happening in low dimensions. In dimension $0, b_n$ does nothing, and in dimension 1, this operation takes the identity 1 simplex, an interval, takes its boundary, the two endpoints, and takes the cone on this boundary from the barycenter, a point in the middle of the simplex. The result is a pair of simplices "subdividing" the interval. In dimension 2, one first subdivides the faces of the 2 simplex into halves, takes the barycenter of the 2 simplex, and takes the cone from this barycenter to all the subdivided simplices on the boundary (so the result is a sum of smaller simplices) — see the picture at the top of Hatcher, p. 120 for a picture.

Finally, one defines b_n^X using (14).

LEMMA 2.
$$b_n^X: C_n(X) \longrightarrow C_n(X)$$
 is a chain map.

PROOF. By induction—the case n=0 is clear. Now suppose it's true for all X for n-1 chains. Then on a generator $\sigma: \Delta_n \longrightarrow X$,

$$\partial_{n}b_{n}^{X}(\sigma) = \partial_{n}\sigma_{\sharp}b_{n}^{\Delta_{n}}(\eta_{n})$$

$$= \sigma_{\sharp}\partial_{n}b_{n}^{\Delta_{n}}(\eta_{n}) \ (\sigma_{\sharp} \text{ is a chain map})$$

$$= \sigma_{\sharp}\operatorname{Cone}_{z}^{\Delta_{n}}(b_{n-1}^{\Delta_{n}}(\partial\eta_{n}))$$

$$= \sigma_{\sharp}(b_{n-1}^{\Delta_{n}}(\partial\eta_{n}) - \operatorname{Cone}_{z}(\partial b_{n-1}^{\Delta_{n}}(\partial\eta_{n})) \ (\text{cone formula})$$

$$= \sigma_{\sharp}(b_{n-1}^{\Delta_{n}}(\partial\eta_{n}) - \operatorname{Cone}_{z}(b_{n-1}^{\Delta_{n}}(\partial\circ\partial\eta_{n})) \ (\text{induction hypothesis})$$

$$= \sigma_{\sharp}(b_{n-1}^{\Delta_{n}}(\partial\eta_{n})) \ (\partial^{2} = 0)$$

$$= b_{n-1}^{X}\partial\sigma.$$

Constructing R^X . Once more, we proceed by induction. We now have two base cases: Define $R_{-1}^X = 0$, and $R_0^{\Delta_0}(\eta_0)$ to be the unique singular simplex $\Delta_1 \longrightarrow \Delta_0$ in $C_1(\Delta_0)$ (this gives a definition for all X using (15). Inductively, assume R_{n-1}^X and R_{n-2}^X have been defined such that

$$\partial R_{n-1}^X - R_{n-2}^X \circ \partial = b^X - id.$$

Let us define $R^{\Delta_n}(\eta_n)$ and extend to all of X via (15). We would like $R^{\Delta_n}(\eta_n) \in C_{n+1}(\Delta_n)$ to be an element β satisfying the chain homotopy relation

(18)
$$\partial \beta + R_{n-1}^{\Delta_n}(\partial \eta_n) = b^{\Delta_n}(\eta_n) - \eta_n,$$

i.e.

(19)
$$\partial \beta = -R_{n-1}^{\Delta_n}(\partial \eta_n) + b_{n-1}^{\Delta_n}(\eta_n) - \eta_n.$$

But

(20)
$$\alpha := -R_{n-1}^{\Delta_n}(\partial \eta_n) + b_{n-1}^{\Delta_n}(\eta_n) - \eta_n \in C_n(\Delta_n)$$

so if we can show that

$$\partial \alpha = 0,$$

it will follow from the fact that $H_n(\Delta_n) = 0$ that there exists such a β with $\partial \beta = \alpha$. Let us compute:

(22)
$$\partial \alpha = \partial (b_{n-1}^{\Delta_n}(\eta_n) - \eta_n - R_{n-1}^{\Delta_n}(\partial \eta_n))$$

$$= b_{n-1}^{\Delta_n}(\partial \eta_n) - \partial \eta_n - \partial (R_{n-1}^{\Delta_n}(\partial \eta_n))$$
 (b^X is a chain map)
$$= b_{n-1}^{\Delta_n}(\partial \eta_n) - \partial \eta_n - (b_{n-1}^{\Delta_n}\partial \eta_n - \partial \eta_n - R_{n-1}^{\Delta_n}(\partial \circ \partial \eta_n))$$
 (inductive hypothesis)
$$= 0.$$

So we can pick a β with $\partial \beta = \alpha$ and give a definition of R_n^X using (15).

Lemma 3. R_n^X is a chain homotopy from b^X to id.

PROOF. We've established this on the simplex η_n , so the rest is an exercise in naturality. Namely, given a generator $\sigma \in C_n(X)$,

(23)
$$\partial R_n^X(\sigma) + R_{n-1}^X \circ \partial(\sigma) = \partial \sigma_{\sharp}(R_n^{\Delta_n}(\eta_n)) + (R_{n-1}^X(\sigma_{\sharp}\partial\eta_n))$$
$$= \sigma_{\sharp}\partial(R_n^{\Delta_n}(\eta_n)) + (\sigma_{\sharp}R_{n-1}^{\Delta_{n-1}}(\partial\eta_n))$$
$$= \sigma_{\sharp}(b^{\Delta_n}(\eta_n) - \eta_n)$$
$$= b^X(\sigma) - \sigma.$$

The key observation about b^X that allows us to conclude is:

Observation 1. $b^{\Delta_n}(\eta_n)$ is a collection of simplices with diameter less than n/(n+1) of the original diameter of η_n .

This is an explicit induction on n, which is obvious for n=0 and 1, and uses the definition of the barycenter in the cone construction. Thus, iterating b^{Δ_n} on η_n , we can obtain a collection of simplicies with arbitrarily small diameter.

Finally, given an arbitrary singular simplex $\sigma : \Delta_n \to X$, note that there is an induced open cover $\mathcal{U}_{\sigma} := \{\sigma^{-1}(U_i)|U_i \in \mathcal{U}\}$ of the compact metric space \mathcal{U} . This cover has an associated non-negative **Lebesgue number**, the largest ϵ , such that any ϵ ball in Δ_n is contained in one of the elements of \mathcal{U}_{σ} , i.e. any ϵ ball is sent by σ to one of the U_i . (This follows from the **Lebesgue covering lemma** in metric topology: any open cover over a compact metric space possesses such a number, which can be seen by arguing by contradiction (**exercise**)).

Finally, we can iterate subdivision b^X on σ a finite number of times so that each new simplex within Δ_n now has diameter less than ϵ ; this ensures that the result will be \mathcal{U} -small.