## PHASE 3

PROJECT: Predicting House Prices Using Machine Learning

Importing dependencies:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import r2_score, mean_absolute_error,mean_squared_error
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR

%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
```

```
In [84]: dataset = pd.read_csv('C:/Users/sakthivel/Desktop/Sakthivel/USA_Housing.csv')
```

## In [91]: dataset

Out [91]:

|   |      | Avg. Area<br>Income | Avg.<br>Area<br>House<br>Age | Avg.<br>Area<br>Number<br>of<br>Rooms | Avg. Area<br>Number<br>of<br>Bedrooms | Area<br>Population | Price        | Address                                              |
|---|------|---------------------|------------------------------|---------------------------------------|---------------------------------------|--------------------|--------------|------------------------------------------------------|
|   | 0    | 79545.458574        | 5.682861                     | 7.009188                              | 4.09                                  | 23086.800503       | 1.059034e+06 | 208 Michael Ferry Apt.<br>674\nLaurabury, NE<br>3701 |
|   | 1    | 79248.642455        | 6.002900                     | 6.730821                              | 3.09                                  | 40173.072174       | 1.505891e+06 | 188 Johnson Views<br>Suite 079\nLake<br>Kathleen, CA |
|   | 2    | 61287.067179        | 5.865890                     | 8.512727                              | 5.13                                  | 36882.159400       | 1.058988e+06 | 9127 Elizabeth<br>Stravenue\nDanieltown,<br>WI 06482 |
|   | 3    | 63345.240046        | 7.188236                     | 5.586729                              | 3.26                                  | 34310.242831       | 1.260617e+06 | USS Barnett\nFPO AP<br>44820                         |
|   | 4    | 59982.197226        | 5.040555                     | 7.839388                              | 4.23                                  | 26354.109472       | 6.309435e+05 | USNS Raymond\nFPO<br>AE 09386                        |
|   | •••  |                     |                              |                                       |                                       |                    |              |                                                      |
| 4 | 1995 | 60567.944140        | 7.830362                     | 6.137356                              | 3.46                                  | 22837.361035       | 1.060194e+06 | USNS Williams\nFP0<br>AP 30153-7653                  |
| 4 | 1996 | 78491.275435        | 6.999135                     | 6.576763                              | 4.02                                  | 25616.115489       | 1.482618e+06 | PSC 9258, Box<br>8489\nAPO AA 42991-                 |

|  |         | Avg. Area<br>Income | Avg.<br>Area<br>House<br>Age | Avg.<br>Area<br>Number<br>of<br>Rooms | Avg. Area<br>Number<br>of<br>Bedrooms | Area<br>Population | Price        | Address                                              |
|--|---------|---------------------|------------------------------|---------------------------------------|---------------------------------------|--------------------|--------------|------------------------------------------------------|
|  |         |                     |                              |                                       |                                       |                    |              | 3352                                                 |
|  | 4997    | 63390.686886        | 7.250591                     | 4.805081                              | 2.13                                  | 33266.145490       | 1.030730e+06 | 4215 Tracy Garden<br>Suite 076\nJoshualand,<br>VA 01 |
|  | 4998    | 68001.331235        | 5.534388                     | 7.130144                              | 5.44                                  | 42625.620156       | 1.198657e+06 | USS Wallace\nFPO AE 73316                            |
|  | 4999    | 65510.581804        | 5.992305                     | 6.792336                              | 4.07                                  | 46501.283803       | 1.298950e+06 | 37778 George Ridges<br>Apt. 509\nEast Holly,<br>NV 2 |
|  | 5000 ro | ws x 7 columns      |                              |                                       |                                       |                    |              |                                                      |

## 5000 rows × 7 columns

In [13]: dataset.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 5000 entries, 0 to 4999 Data columns (total 7 columns):

# Column Non-Null Count Dtype Avg. Area Income Avg. Area House Age 0 5000 non-null float64 5000 non-null float64 Avg. Area Number of Rooms 5000 non-null float64 Avg. Area Number of Bedrooms 5000 non-null float64 Area Population 5000 non-null float64 5000 non-null Price float64 5000 non-null Address object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [14]: dataset.describe()

Out [14]:

|       | Avg. Area<br>Income | Avg. Area<br>House Age | Avg. Area<br>Number of<br>Rooms | Avg. Area<br>Number of<br>Bedrooms | Area<br>Population | Price        |
|-------|---------------------|------------------------|---------------------------------|------------------------------------|--------------------|--------------|
| count | 5000.000000         | 5000.000000            | 5000.000000                     | 5000.000000                        | 5000.000000        | 5.000000e+03 |
| mean  | 68583.108984        | 5.977222               | 6.987792                        | 3.981330                           | 36163.516039       | 1.232073e+06 |
| std   | 10657.991214        | 0.991456               | 1.005833                        | 1.234137                           | 9925.650114        | 3.531176e+05 |
| min   | 17796.631190        | 2.644304               | 3.236194                        | 2.000000                           | 172.610686         | 1.593866e+04 |
| 25%   | 61480.562388        | 5.322283               | 6.299250                        | 3.140000                           | 29403.928702       | 9.975771e+05 |
| 50%   | 68804.286404        | 5.970429               | 7.002902                        | 4.050000                           | 36199.406689       | 1.232669e+06 |
| 75%   | 75783.338666        | 6.650808               | 7.665871                        | 4.490000                           | 42861.290769       | 1.471210e+06 |
| max   | 107701.748378       | 9.519088               | 10.759588                       | 6.500000                           | 69621.713378       | 2.469066e+06 |

```
In [17]: dataset.columns
```

In [18]: sns.histplot(dataset, x='Price', bins=50, color='y')

Out [18]: <Axes: xlabel='Price', ylabel='Count'>



In [20]: sns.boxplot(dataset, x='Price', palette='Blues')





```
In [21]: sns.jointplot(dataset, x='Avg. Area House Age', y='Price', kind='hex')
```

Out [21]: <seaborn.axisgrid.JointGrid at 0x1570cc77690>



In [22]: sns.jointplot(dataset, x='Avg. Area Income', y='Price')

Out [22]: <seaborn.axisgrid.JointGrid at 0x1570dfa73d0>



```
In [32]: plt.figure(figsize=(12,8))
sns.pairplot(dataset)
```



```
In [33]: dataset.hist(figsize=(10,8))
```



In [34]: dataset.corr(numeric\_only=True)

| O + | $\Gamma \cap A \cap$ |   |
|-----|----------------------|---|
| Out | 1341                 | 1 |
|     |                      |   |

|                                    | Avg. Area<br>Income | Avg. Area<br>House Age | Avg. Area<br>Number of<br>Rooms | Avg. Area<br>Number of<br>Bedrooms | Area<br>Population | Price    |
|------------------------------------|---------------------|------------------------|---------------------------------|------------------------------------|--------------------|----------|
| Avg. Area<br>Income                | 1.000000            | -0.002007              | -0.011032                       | 0.019788                           | -0.016234          | 0.639734 |
| Avg. Area House<br>Age             | -0.002007           | 1.000000               | -0.009428                       | 0.006149                           | -0.018743          | 0.452543 |
| Avg. Area<br>Number of<br>Rooms    | -0.011032           | -0.009428              | 1.000000                        | 0.462695                           | 0.002040           | 0.335664 |
| Avg. Area<br>Number of<br>Bedrooms | 0.019788            | 0.006149               | 0.462695                        | 1.000000                           | -0.022168          | 0.171071 |
| Area Population                    | -0.016234           | -0.018743              | 0.002040                        | -0.022168                          | 1.000000           | 0.408556 |
| Price                              | 0.639734            | 0.452543               | 0.335664                        | 0.171071                           | 0.408556           | 1.000000 |

```
In [35]: plt.figure(figsize=(10,5))
    sns.heatmap(dataset.corr(numeric_only = True), annot=True)
```

Out [35]: <Axes: >



```
In [55]:
         sc = StandardScaler()
         X_train_scal = sc.fit_transform(X_train)
         X_test_scal = sc.fit_transform(X_test)
 In [49]:
         model_lr=LinearRegression()
In [57]: model_lr.fit(X_train_scal, Y_train)
Out [57]: LinearRegression
         LinearRegression()
In [92]:
         Prediction1 = model_lr.predict(X_test_scal)
In [63]:
         sns.histplot((Y_test-Prediction1), bins=50)
Out [63]: <Axes: xlabel='Price', ylabel='Count'>
            50
            40
            30
            20
            10
              -300000 -200000 -100000
                                             0
                                                   100000
                                                             200000
                                                                      300000
                                            Price
 In [64]:
         print(r2_score(Y_test, Prediction1))
         print(mean_absolute_error(Y_test, Prediction1))
         print(mean_squared_error(Y_test, Prediction1))
        0.918292817939292
        82295.49779231752
        10469084772.97595
In [65]: model_svr = SVR()
In [66]: model_svr.fit(X_train_scal, Y_train)
```

```
Out [66]: , SVR
         SVR()
In [67]:
         Prediction2 = model_svr.predict(X_test_scal)
In [69]:
         sns.histplot((Y_test-Prediction2), bins=50)
Out [69]: <Axes: xlabel='Price', ylabel='Count'>
            50
            40
            30
            20
            10
             0
                     -1.0
                                 -0.5
                                               0.0
                                                            0.5
                                                                            1e6
                                              Price
 In [70]:
         print(r2_score(Y_test, Prediction2))
         print(mean_absolute_error(Y_test, Prediction2))
         print(mean_squared_error(Y_test, Prediction2))
         -0.0006222175925689744
         286137.81086908665
         128209033251.4034
In [71]:
         model_lar = Lasso(alpha=1)
In [72]:
         model_lar.fit(X_train_scal,Y_train)
Out [72]:
             Lasso
         Lasso(alpha=1)
In [73]:
         Prediction3 = model_lar.predict(X_test_scal)
In [75]:
         sns.histplot((Y_test-Prediction3), bins=50)
Out [75]: <Axes: xlabel='Price', ylabel='Count'>
```



```
In [76]:
         print(r2_score(Y_test, Prediction2))
         print(mean_absolute_error(Y_test, Prediction2))
         print(mean_squared_error(Y_test, Prediction2))
         -0.0006222175925689744
         286137.81086908665
         128209033251.4034
In [77]:
         model_rf = RandomForestRegressor(n_estimators=50)
In [78]:
         model_rf.fit(X_train_scal, Y_train)
Out [78]: 🗸
                 {\tt RandomForestRegressor}
         RandomForestRegressor(n_estimators=50)
 In [81]:
         print(r2_score(Y_test, Prediction2))
```

-0.0006222175925689744 286137.81086908665 128209033251.4034

print(mean\_absolute\_error(Y\_test, Prediction2))
print(mean\_squared\_error(Y\_test, Prediction2))