Physics 2250: Problem Set II

Jeremy Favro

September 20, 2024

Problem 1. ...

Solution 1.

a) By simplifying to equivalent resistance and using Ohm's law in the loop containing $\epsilon_{\rm a}$ and $\epsilon_{\rm b}$ (without $R_{\rm meter}$) $I_{\rm tot} = \frac{V}{R} = \frac{12 {\rm V}}{4 \Omega} = 3 {\rm A}$ so by the current divider rule and KCL the current through R_4 is the same as the current through points $\epsilon_{\rm a}$ and $\epsilon_{\rm b}$, $I_{\rm ab} = 3 {\rm A} \frac{6 \Omega}{6 \Omega + 3 \Omega} = 2 {\rm A}$

b) This is effectively the same until the "second" (really the first one calculated) current divider $\frac{6\Omega}{6\Omega+3\Omega}$ because the branch we are calculating current for now contains the extra resistance of the meter and thus draws very slightly less current. The new current through this branch therefore becomes $3A\frac{6\Omega}{6\Omega+3.001\Omega}=\frac{1.99978A}{1.99978A}$

Problem 2. The figure below displays a periodic current and potential delivered to some load (resistor). Note, the maximum values for v and i are 16V and 5A, respectively.

Solution 2.

a)
$$\bar{v}(t) = \frac{1}{T} \int_0^T v(t) dt = \frac{1}{Z} \frac{1}{2} Z \cdot 16V = 8V$$

$$\bar{i}(t) = \frac{1}{T} \int_0^T i(t) dt = \frac{1}{Z} \frac{1}{2} Z \cdot 5A = 2.5A$$

b) Voltage here can be expressed as a linear function $v(t) = \frac{16}{T}t$ for one period so

$$v_{rms} = \sqrt{\frac{1}{T} \int_0^T v^2(t) dt} = \sqrt{\frac{1}{T} \frac{16^2}{T^2} \cdot \frac{T^3}{3}} = \frac{16\sqrt{3}}{3} \approx 9.238$$
 The same almost works for current $i(t)$ but it has to

be made piecewise to account for the downward slope from $\frac{T}{2}$ to T, not that the sign really matters when doing the integration

$$i(t) = \begin{cases} \frac{5}{T}t & 0 \le t \le \frac{T}{2} \\ -\frac{5}{T}t & \frac{T}{2} \le t \le T \end{cases}$$

which integrates as
$$i_{rms} = \sqrt{\frac{1}{T} \left[\int_0^{\frac{T}{2}} i^2(t) \, dt + \int_{\frac{T}{2}}^T i^2(t) \, dt \right]} = \sqrt{\frac{1}{T} \frac{25}{T^2} \left[\frac{T^3}{6} + \frac{T^3}{3} - \frac{T^3}{24} \right]} = \sqrt{\frac{25}{\mathcal{P}^8}} \frac{8\mathcal{P}^8}{24} = \frac{5\sqrt{3}}{3} \approx \frac{1}{24}$$

2.887A

c)
$$P_{avg} = v_{rms} i_{rms} = 26.67 \text{W}$$

Problem 3. Consider the following network of capacitors

Solution 3.

$$C_1 = 1\mu F$$
 $C_3 = 3\mu F$ $C_{eq} = 8.57 \cdot 10^{-7} F$

$$C_{eq} = 8.57 \cdot 10^{-7} F$$

$$C_2 = 4\mu F$$

$$C_3 = 3\mu F$$

$$C_4 = 6\mu F$$

$$C_4 = 6\mu F$$

$$C_5 = 7V$$

a) Capacitor C_{eq} must have a voltage drop of 7V to satisfy KVL therefore $Q_{tot} = C_{eq}V = 6\mu$ C. Re-complicating the circuit and using Q_{tot} we can find that the voltage drop across C_1 is $V_{C1} = \frac{Q_{tot}}{C_1} = 6$ V. By KVL this means that the rest of the circuit must contribute a potential drop of 1V which means that C_2 will experience a charge of $Q_{C2} = 1\text{V}4\mu\text{F} = 4\mu\text{C}$ therefore because charge is conserved the C_3 - C_4 branch experiences the rest of Q_{tot} or $Q_{C3C4} = Q_{tot} - Q_{C2} = 2\mu\text{C}$. Therefore the voltages across C_3 & C_4 are $0.\overline{6}\text{V}$ & $0.\overline{3}\text{V}$ respectively.

Capacitor	Charge	Voltage
C_1	$6\mu C$	6V
C_2	$4\mu C$	1V
C_3	$2\mu C$	$0.\overline{6}\mathrm{V}$
C_4	$2\mu C$	$0.\bar{3}\mathrm{V}$

b) Once at equilibrium we would see a voltage drop across C_1 of 7V (so $Q = C_1V = 7\mu$ C) and no drop or charge across any other component because C_1 , when fully charged, will act as a break in the circuit and not permit current to flow.