Debugging a learning algorithm

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{m} \theta_j^2 \right]$$

- · Debugging a learning algorithm
- · Get more training examples
- · Try smaller sets of features
- · Try getting additional features
- · Try adding polynomial features
- · Try decreasing/increasing regularization para.

Machine Learning Diagnostic

A test that you can run to gain insight what is/ isn't working with a learning algorithm, and gain guidance as to how best to improve its performance.

Evaluating your hypothesis

size

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Fails to generalize to new examples not in training set.

Size	Price	
2104	400	
1600	330	
2400	369	
1416	232	
3000	540	
1985	300 _{Train}	ning data
1534	315	
1427	199	
1380	212 lest	data
1494	243	

Compute test set error

Test set error in Linear Regression

Test set error in Logistic Regression

Model Selection

· Different model choices

1.
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

2.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

3.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$

10.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$$

- · Choose model with lower test er
- Problem: likely to be an optimist generalization error. I.e. our extensity to be an optimist fit to test set.

312C	THEC	
2104	400	
1600	330	
2400	369	
1416	232	
3000	Training data	
1985	300	
1534 Cross-validation data		
1427	199	
1380	Testing data	
1494	243	

Price

Size

Underfit

Just Right

Overfile

Bias vs. Variance

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^{2}$$

Linear Regression with Regularization

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

1. Try
$$\lambda = 0$$

2. Try
$$\lambda = 0.01$$

3. Try
$$\lambda = 0.02$$

4. Try
$$\lambda = 0.04$$

5. Try
$$\lambda = 0.08$$

12. Try
$$\lambda = 10$$

bias vs. variance as a function of the regularization parameter?