Statistical Modeling and Methods: Homework 1

Due by 5pm on Friday, March 13, online through Blackboard

Homework format: all homework must be written in latex. You must turn in both your tex and pdf files. Attach your code and computer output if there is any programming.

- 1. Let X be a $n \times p$ matrix of rank $r, r \leq p$. Denote $U_{\ell} = (u_1, \ldots, u_{\ell})$ and $V_{\ell} = (v_1, \ldots, v_{\ell})$ for any $\ell \leq r$, where $\{u_j, v_j\}$ is the jth pair of singular component vectors of X with the corresponding singular value $d_j, j = 1, \ldots, r$, i.e., $X = U_r D_r V'_r$, where $D_r = \text{diag}(d_1, \ldots, d_r)$. Show that $X_{\ell}^* = U_{\ell} D_{\ell} V'_{\ell}$ is the best low rank approximation to X that minimizes $\text{tr}\{(X Y)(X Y)'\}$ among all $N \times p$ matrices Y with $\text{rank}(Y) \leq \ell$.
- 2. Let A be $m \times n$ and A^- is a generalized inverse of A, denote the column space of A by C(A). Show the following facts:
 - (a) $\operatorname{rank}(A) \leq \operatorname{rank}(A^{-}), \operatorname{rank}(A) = \operatorname{rank}(AA^{-}) = \operatorname{rank}(A^{-}A);$
 - (b) C(A) = C(AA'), C(A') = C(A'A);
 - (c) $A'A(A'A)^-A' = A'$, $A(A'A)^-A'A = A$;
 - (d) The matrix $A(A'A)^-A$ does not depend on the choice of the generalized inverse of A'A.
- 3. (a) Consider an $N \times N$ invertible matrix A and a vector $a \in \mathbb{R}^N$, find explicit expressions for |A + aa'| and $(A + aa')^{-1}$, where |A| denotes the determinant of a square matrix A.
 - (b) For two non-singular $p \times p$ matrices A and B, find an equivalent expression of $(A+B)^{-1}$ that contains A^{-1} and B^{-1} .
- 4. Suppose symmetric matrices A and B are both $(J \times J)$. Denote eigenvalues of A and B as $\{\lambda_i(A)\}$ and $\{\lambda_i(B)\}$, respectively. Please show that:

$$\sum_{j=1}^{J} \{\lambda_j(A) - \lambda_j(B)\}^2 \le trace\{(A-B)(A-B)'\}$$

5. Consider matrix
$$X = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 2 & 1 \end{pmatrix}$$
,

- (a) Find the QR and singular value decomposition of X. What are the two corresponding bases for the column space C(X)?
- (b) Use the SVD of X to find the eigen-decomposition of X^TX . What are the eigenvalues and eigenvectors?
- (c) Find the best rank=1 and rank=2 approximations to X.
- 6. Consider a random sample X_1, \ldots, X_N that are uniformly distributed in a unit ball in \Re^p , i.e., $\{x \in \Re^p : ||x|| \le 1\}$.
 - (a) Derive the median distance M from the origin to the closest data point. What are the median distances for a sample of size 10^6 and $p = 1, \ldots, 15$, respectively.
 - (b) Derive the mean distance D from the origin to the closest data point. What are the mean distances for a sample of size 10^6 and $p=1,\ldots,15$, respectively.
- 7. Let $X \sim N_p(\mu, I_p)$, and A is a $p \times p$ symmetric matrix. Show the following:
 - (a) $X'AX \sim \chi_r^2(\lambda)$ with $\lambda = \mu'A\mu$ if and only if A is an idempotent matrix of rank r.
 - (b) BX and X'AX are independent if and only if BA=0, where B is a $q\times p$ matrix.
 - (c) X'AX and X'BX are independent if and only if AB = 0, where B is a $p \times p$ symmetric matrix.
- 8. Let $X \sim N_p(\mu, I_p)$, and Q, Q_1, Q_2 are quadratic forms in X such that $Q = Q_1 + Q_2$. Assume that $Q \sim \chi_r^2(\lambda)$, $Q_1 \sim \chi_{r_1}^2(\lambda_1)$ and $Q_2 \geq 0$. Show that $Q_2 \sim \chi_{r-r_1}^2(\lambda \lambda_1)$.