

燕山大學

云辅助的车辆边缘网络功率 控制与任务卸载

讲述人: 魏建帅 专业: 控制科学与工程

导师: 刘志新教授 时间: 2023/12/4

/// 01 研究背景

☆ 02 知识准备

□ 03 研究内容

4 研究展望

▶ 研究背景与意义

目前以物联网、云计算、大数据等为核心的第三次技术浪潮,为中国智慧城市的建设与发展提供了千载难逢的机遇。由"物联网"衍生的"车联网",将成为未来智慧城市的重要标志。

交通系统的发展历程

马车

机械式交通

自动驾驶

自行车

车联网

现有的两种主流的车联网通信解决方案为:

- ◆ 基于802.11p规范的VANET系统
- ◆ 基于蜂窝网络的C-V2X车联网系统

	DSRC	C-V2X
标准	IEEE 802.11p: WAVE	C-V2X Rel. 14/15 (4G-LTE) 和 Rel. 16 (5G NR)
技术成熟性	标准化进程始于 2004,现 已完成,并已实地测试。	始于 2017年,正在进行时。
部署成本	成本低	成本相对较高
技术演技路线	尚不清楚	非常清晰,且后向兼容
最高车速限制	200km/h	250km/h
平均延时	低 (小于 50 ms)	高 (大于 50 ms)
	其混合异构模型可用	于任何蜂窝网络(4G/5G)非安全服务场景
蜂窝连接性	自组织	蜂窝运营商可选择性应用理论上的实时控制来 实现更高的网络利用率
通信技术	无线局域网	蜂窝技术(LTE/5G)

厚 德 · 博 学 · 求 是

面临的问题与解决方案

车联网业务的 高数据量

安全相关业务(传输实时的 地图数据)和非安全相关业 务(提供娱乐信息)对车联 网提出高吞吐量的需求

边缘计算 云计算

车联网移动环 境的高复杂性

多车分布状态受时空因素的影响,体现出复杂的时空变化规律,使信道呈现不确定性。

一阶马尔可夫 过程

道路上的车辆用户逐年增 多但是通信的频带资源有 限。通信资源宝贵。

复用技术

VEC 系统场景

上传时间
$$t_{i,up} = \frac{d_{i,up}}{R_i(P)}$$

处理时间
$$t_{i,exe} = \frac{c_{i,e}}{\bar{f} + f_i} + T_c$$

处理的效用
$$U_{i,exe} = \frac{t_{max} - t_{i,exe}}{t_{max}}$$

The transmission latency between RSU and cloud server is defined as T_{c} , usually it is set to a fix value.

 \bar{f} denote the RSU computing capability in terms of CPU cycles/s.

 f_i denote the Cloud computing capability allocates to MEC in terms of CPU cycles/s

$$max EE = max$$

$$\sum_{i=1}^{N} \frac{U_{i,exe}}{t_{i,up}}$$

C1
$$Pr\{SINR_n \leq SINR_{th}\} \geq 1 - \varepsilon_1$$

C2
$$Pr\left\{\frac{1}{\tau_i R_i - \lambda_i} + \frac{c_{i,e}}{\bar{f} + f_i} \le D_{max}\right\} \ge 1 - \varepsilon_2$$

$$C3 \sum_{i=1}^{N} f_i \leq f_{total}$$

$$C40 \le p \le p_{max}$$

贝恩斯坦近似

积分变换

C3
$$\sum_{i=1}^{N} f_i \leq f_{total}$$

C3
$$\sum_{i=1}^{N} f_i \le f_{total}$$

C4 $-\infty \le \tilde{p}_k \le \ln p_{k,max}$

$$\begin{cases} P1 & max EE(\tilde{P}) & C1 C2 C4 \\ P2 & max EE(f_i) \end{cases}$$

计算资源的收敛

系统总效用收敛

研究成果

Under Review		
已评审完成	1	
已接受评审邀请	1	
已发出评审邀请*	7 - 10	
*此为系统记录的邀请数,仅 数取决于期刊要求。	供参考。稿件在同行评审中所需的完成评审	
Manuscript Number	COMNET-D-23-01982	
期刊	Computer Networks	
通讯作者	*****	
第一作者	****	
提交日期	2023-09-05	

研究展望

1.考虑智能反射面在车联 网物理层安全上的应用, 寻找窃听者与车辆用户 之间的层级关系,构建 符合斯坦克尔伯格博弈 的模型。 2.引入深度学习处理大规模超密场景下的动态车联网,研究基于多智能体强化学习的下行车辆网络中的动态功率分配问题,其中每个基站和车用户之间的下行链路被建模为学习的智能体,以学习最优功率分配策略,最大化系统总速率。

敬请批评指正

讲述人: 魏建帅 2023年12月04日星期一