NASA CONTRACTOR REPORT

NASA CR-161431

STUDY OF ETCHANTS FOR CORROSION-RESISTANT METALS, SPACE SHUTTLE EXTERNAL TANK

By J. R. Simmons Martin-Marietta Aerospace Michoud Operations New Orleans, LA

(NASA-CR-161431) STUDY OF EICHANTS FOR CORROSION-RESISTANT METALS, SPACE SHUTTLE EXTERNAL TANK (Martin Marietta Aerospace) 26 p HC A03/MF A01 CSCL 11P

N80-25414

Unclas G3/26 22418

January 11, 1300

Prepared for

NASA-George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

NASA CR-161431

Study of Etchants for Corrosion-Resistant Metals, Space Shuttle External Tank

January 11, 1980

APPROVED:

J. M. Knadler, III Chief, NDE Branch

EH13

M. C. McIlwain

Chief, Metals Processes Branch

J.M. Frodding 49

EH42

MATERIALS ENGINEERING

TEST REPORT

NO. ETTR-52

Revision A

METAL ETCHANTS PRIOR TO PENETRANT INSPECTION

JANUARY 11, 1980

PREPARED BY:

Materials Engineering

APPROVED BY:

D. A. Bolstad, Chief Materials Engineering

MARTIN MARIETTA AEROSPACE MICHOUD OPERATIONS NEW ORLEANS, LA

TABLE OF CONTENTS

		<u>Page</u>
1.0	Introduction	1
2.0	Objectives	1
3.0	Conclusions	2
4.0	Recommendations	. 2
5.0	Materials	3
5.1	Specimens	3
5.2	Etchant Solutions	3
5.2.1	Standard HNO ₃ /HF	3
5.2.2	FeC1 ₃ /HN0 ₃ /H ₃ P0 ₄	3
5.2.3	HC1/HNO ₃ /NiCl ₂ /FeCl ₃ /CrO ₃	4
5.2.4	HC1/H ₂ 0 ₂	4
5.2.5	Low HNO ₃ /HF No.1	4
5.2.6	Low HNO ₃ /HF No. 2	5
5.2.7	Pasa-Jell 101	5
6.0	Test Procedures	5
7.0	Discussion of Test Results and Conclusions	5
8 0	References	7

PRECEDING PAGE DEATH MOT FILMED

LIST OF TABLES

Table		Page
I	Nitric/Hydrofluoric Solution A	8
11	Nitric/Hydrofluoric Solution B	9
III	Nitric/Hydrofluoric Solution C	10
IV	Nitric/Hydrofluoric Solution D	11
V	Pasa-Jell 101	12
VI	FeC13/HN03/H3P04	13
VII	HC1/HNO3/NiCl2/FeCl3/CrO3	14
VIII	Low HNO3/HF No. 1	15
IX	HC1/H2O2	16
X	Low HNO3/HF No. 2A	17
XI	Low HNO3/HF No. 2B	18
XII	Low HNO3/HF No. 2C	19
XIII	Low HNO3/HF No. 2D	20

PRECEDING PAUL WHERE THE PILMED

1.0 INTRODUCTION

All metal parts, materials, and welds which are mechanically disturbed and require penetrant inspection must be etched prior to that inspection step. Etching removes metal smears that might mask defects.

Metals used in the Space Shuttle External Tank(ET) which require etching prior to penetrant inspection are aluminum alloys, austenitic stainless steels, nickel base alloys, and titanium alloys (annealed). Etchants for austenitic stainless steels, nickel base alloys, and titanium alloys were selected for evaluation in this study after a review of applicable MMC, Boeing, McDonnell Douglas and Rockwell International specifications (References 1-10).

2.0 OBJECTIVES

The objectives of this program were to study and formulate acceptable etchant concentrations and application and removal procedures for etching austenitic stainless steel, nickel base alloys and titanium alloys (annealed) employed on the ET.

The etchant solutions were to be capable of removing a minimum of 0.4 mils of surface material in less than one hour, at a rate such that control could be exercised.

3.0 CONCLUSIONS

3.1 There was no intergranular attack of 6AL-4V titanium, 21-6-9, A-286, or Inconel 718 by the solutions tested, given the respective processing conditions.

3.2. 6AL-4V:

The standard HNO₃/HF solution, paragraph 5.2.1, can be effectively utilized to remove 0.4 mils surface material in less than one hour; see tables I thru IV for etchant solution, technique, and rate.

3.3. Inconel 718:

Two solutions, $HC1/HNO_3/NiCl_2/FeCl_3/CrO_3$, paragraph 5.2.3, and $HC1/H_2O_2$, paragraph 5.2.4, can be effectively utilized to remove 0.4 mils surface material in less than one hour; see tables VII and IX for respective etchant solution, technique, and rate.

3.4. A-286 and 21-6-9:

Three solutions $\text{FeCl}_3/\text{HNO}_3/\text{H}_3\text{PO}_4$, paragraph 5.2.2, HCl/ $\text{HNO}_3/\text{NiCl}_2/\text{FeCl}_3/\text{CrO}_3$, paragraph 5.2.3, and $\text{HCl/H}_2\text{O}_2$, paragraph 5.2.4, can be effectively utilized to remove 0.4 mils surface material in less than one hour; see tables VI, VII, and IX for respective etchant solution, technique, and rate.

3.5. Cab-O-Sil was a satisfactory thickener for solutions FeCl₃/HNO₃/H₃PO₄, paragraph 5.2.2, and HCl/HNO₃/NiCl₂/FeCl₃/CrO₃, paragraph 5.2.3, reducing etch rate.

4.0 RECOMMENDATIONS

The MMC specification governing etching of studied materials should be appropriately revised per the study conclusions.

5.0 MATERIALS

- 5.1 Specimens Metal specimens, $1\frac{1}{2}$ " x 3" were made from 0.25" 6AL-4V titanium, 0.25" 718 Inconel, 0.063 A-286 CRES and 0.040" 21-6-9 CRES. Specimens were alkaline cleaned prior to etchant tests.
- 5.2 Etchant Solutions Etchant solutions were made up from technical and reagent grade chemicals to obtain the given make-up for each solutions except Pasa-Jell 101 which is a proprietary solution. These solutions are described as follows.

5.2.1 Standard HNO3/HF

5.2.1.1 Solution Make-Up

<u>Chemical</u>	A	В	C	D
HNO ₃ (42°Bè),fl oz/gal	40	60	40	60
HF (70%), fl oz/gal	2.7	2.7	6.4	6.4
Water, DM		Bala	nce	
Temperature, ^O F		75/	140	

5.2.1.2 Portions of solutions B and C were also thickened with Cab-O-Sil to brush consistency and used at 75°F.

5.2.2 FeCl₃/HNO₃/H₃PO₄

5.2.2.1	Solution Make-Up Chemical	Amount
	Fe Cl ₃ , fl oz/gal	57.5
	HNO ₃ , fl oz/gal	19.3
	H3P04, fl oz/gal	9.6
	Water, DM	Balance
	Temperature, ^O F	75/140

5.2.2.2 A portion of the above solution was also thickened with Cab-O-Sil and used at $75^{\circ}F$.

5.2.3 HC1/HN03/NiCl2/FeCl3/CrC3

5.2.3.1	Solution Make-Up Chemical	Amount
	HC1, fl oz/gal	75
	HNO3, fl oz/gal	10.3
	NiCl2 6H2O, oz/gal	1.28
	FeCl3, fl oz/gal	46
	CrO3, oz/gal	51
	Water, DM	Balance
	Temperature, OF	75/140

5.2.3.2 A portion of the above solution was also thickened with Cab-O-Sil and used at $75^{\circ}F$.

5.2.4 HC1/H2O2

Solution Make-Up: 50% HCl (200Be') and 50% H2O2 (30% Stabilized).

5.2.5 Low HNO₃/HF No. 1

5.2.5.1	Solution Make-Up Chemical	Amount
	HNO3, fl oz/gal	12.8
	HF, fl oz/gal	3.8
	Water, DM	Balance
	Dissolved Ti, oz/gal	.3
	Temperature, OF	75/140

5.2.5.2 A portion of the above solution was thickened with Cab-9-Sil and used at $75^{\rm OF}.$

5.2.6 Low HN03/HF No. 2

5.2.6.1	Solution Make-Up Chemical	A	В	С	D
	HNO ₃ (42ºBè), fl oz/gal	20	20	20	20
	HF (70%), fl oz/gal	5	5	2.6	2.6
	Iron (Fe), oz/gal		3.4	1.0	3.4
	Wetting Agent, Dynes/cm (See 5.2.7.3)		31-32	31-32	
	Water, DM		Bala	nce	
	Temperature, OF		75	OF.	

- 5.2.6.2 A portion of solution B was thickened with Cab-O-Sil and used at 750F.
- 5.2.7.3 The surface tension of two portions of solutions B and C were reduced with Ultrawet K (Atlantic-Richfield) to 31-32 dynes/cm and the solutions used at 75°F.
- 5.2.7 Pasa-Jell 101 This is a proprietary blend of mineral acids, activators and inhibitors. It is of brush consistency and used at 750F. (Products Research and Chemical Corporation)

6.0 TEST PROCEDURES

Duplicate specimens of each metal were weighed prior to and after etching in each solution at different temperatures and times. The etch rates were then determined by weight difference. Results are recorded in Table I through Table XIII. The absence of intergranular attack was determined by direct observation and 10X magnification.

7.0 DISCUSSION OF RESULTS AND CONCLUSIONS

- 7.1 Intergranular Attack There was no intergranular attack of any metal surfaces tested by the solutions and respective processing conditions.
- 7.2 <u>Thickening Agents</u> Two thickening agents were tried; barium sulfate and Cab-O-Sil.
- 7.2.1 Barium sulfate was quickly discounted after the first use. A large amount is required to provide a thickened version which remains thickened after application. The resultant mixture is very unreactive. Reducing the amount of barium sulfate to achieve reasonable etch rates results in a mixture that separates too easily for practical use.

- 7.2.2 Cab-0-Sil was found satisfactory for solutions 5.2.2, 5.2.3, 5.2.5 and 5.2.6 (Tables VI, VII, VIII and XI). It appears that for solutions 5.2.1 (Tables II and III) where the HF/HN03 ratio is greater than 1 to 7, too much of the HF is neutralized by (ab-0-Sil (silica). All solutions were thickened at the time of use and not stored.
- 7.3 Etchant Effects The criterion for selected etchants was that each should be capable of removing .4 mil/side in less than one hour.
- 7.3.1 Standard Nitric/Hydrofluoric Acids Solutions (See Tables I through IV).
 - a) The criterion was met for 6AL-4V titanium.
 - b) The criterion was not met for A-286 and Inconel 718, except for A-286 at 140°F (Table IV conditions). No test was performed on 21-6-9, which is expected to behave like A-286.
- 7.3.2 Pasa-Jell 101 (Table V). This solution was totally ineffective on 6A1-4V titanium, A-286, 21-6-9 and Incone? 718.
- 7.3.3 FeCl₃/HNO₃/H₃PO₄ (Table VI).
 - a) The criterion was met for A-286, 21-6-9, by both immersion and brush application (non-thickened and thickened with Cab-0-Sil), although the etch rate of the thickened version was considerably reduced.
 - b) This solution was totally ineffective on 6AL-4V and Inconel 718.
- 7.3.4 HC1/HNO₃/NiCl₂/FeCl₃/CrO₃ (Table VII)
 - a) The criterion was met for A-286, 21-6-9, and Inconel 718 by both immersion and brush application (non-thickened and thickened with Cab-O-Sil). The etch rate of the thickened version was also reduced.
 - b) An activation step (depassivation) is required in HC1 solution (30-50 oz/gal) prior to etching.
 - c) This solution was ineffective on 6AL-4V titanium.
- 7.3.5 Low HNO₃/HF (Table VIII)
 - a) This solution greatly exceeded the criteria for 6AL-4V titanium by immersion and should not be considered safe for use on titanium.
 - b) The thickened version (Cab-O-Sil) was satisfactory for 6AL-4V titanium.
 - c) The criterion is not met for A-286 at 75°F or Inconel 718 at 75°F or 140°F.
 - d) The solution could be heated for use on A-286.
- 7.3.6 Low HNO₃/HF (Tables X through XIII)
 - a) The criterion was met for 6AL-4V titanium. The etch rate varied considerably, and for the solution with low HF and high Fe build-up (Table XIII) it was reduced below the criterion.

- b) Brush application of the non-thickened version was satisfactory but the thickened version was ineffective (Table XI).
- c) Reducing the surface tension reduced the etch rate (Table XI).

7.3.7 HC1/H₂O₂ (Table IX)

- a) The criterion is met in less than two minutes immersion for A-286, 21-6-9 and Inconel 718.
- b) This is a rather unstable solution but can be used effectively by immersion or brush application.

8.0 REFERENCES

- 1. Martin Marietta Aerospace STP 5007, Cleaning, Descaling, and Passivation of Corrosion and Heat Resistant Steels and Nickel Alloys.
- 2. Boeing BAC 5751, Cleaning, Descaling and Surface Preparation of Various Alloys.
- 3. Boeing BAC 5753, Cleaning, Descaling and Surface Preparation of Titanium and Titanium Alloys.
- 4. Boeing BAC 5758, Cleaning, Descaling and Surface Preparation of Nickel and Cobalt Base Alloys.
- 5. Boeing BAC 5759, Chemical Milling of Steel.
- 6. Boeing BAC 5792, Chemical Milling of Nickel and Cobalt Alloys.
- 7. McDonnell Douglas DPS 41003, Surface Treatment of Corrosion Resistant Steels.
- 8. McDonnell Douglas DPS 41013, Surface Treatment of Heat and Corrosion Resistant Nickel Base Alloys.
- 9. McDonnell Douglas DPS 41450, Cleaning and Etching Titanium.
- 10. Rockwell International MPPRA 1103-003-50, Etching of Machined Metal Surfaces for Penetrant Inspection.
- 11. Martin Marietta Aerospace STP 5015, Cleaning Titanium Alloys.

TABLE I: NITRIC/HYDROFLUORIC ACID SOLUTION A

Make-up: 40 fl oz HNO3 (42°Be) and 2.7 fl oz HF (70%)/gal; balance: demineralized water.

Immersion Application

Metaï Etched	Temperature	15 minutes	30 minutes	45 minutes	60 m nutes	
Titanium 6Al-4V	75 ⁰ F	.45	.61	.76	.87	
	140 ⁰ F	.50	1.00	1.37	1.72	
A 286	75 ⁰ F	.007	.016	.024	.031	
	140°F	.042	.080	.114	.143	
Inconel 718	75 ⁰ F	.001	.002	.003	.004	
	140 ^o F	.005	.015	.023	.030	

TABLE II: NITRIC/HYDROFLUORIC ACID SOLUTION B

Make-up: $60 \text{ fl oz } \text{HNO}_3$ ($42^{\circ}\text{Be}'$) and 2.7 fl oz HF (70%)/gal; balance: demineralized water

<u></u>				tal removed, mils,	for stated time	
	Metal Etched	Temperature	15 minutes	30 minutes	45 minutes	60 minutes
	Titanium 6A1-4V	75°F 140°F	.17 .41	.35	.53 1.13	.70 1.48
ion	A-286	75°F	.008	.016	.026 .220	.033
Immersion	Inconel 718	75 ⁰ F	.003	.007	.009	.011
	Thickened with CAB-O-SIL	140 ⁰ F	.020	.039	. 046	.060
Brush	Titanium 6Al-4V	75 ⁰ F	.015	.025	.038	.050

TABLE III: NITRIC/HYDROFLUORIC ACID SOULUTION C

Make-up: 40 fī oz HNO_3 (420Be¹) and 6.4 fl oz HF (70%)/gal; balance demineralized water

	1		L	Metal removed, mil	s, for stated time	
•	Metal Etched	Temperature	15 minutes	30 minutes	45 minutes	60 minutes
	Titanium 6Al-4V	75 ⁰ F	1.09	1.72	2.26	2.76
1		140 ^o F	1.33			as es
<u> </u>	A-286	75 ⁰ F	. 027	.043	. 056	.070
rsic		140°F	.102	. 182	. 253	. 316
Immersion	Inconel 718	75 ⁰ F	.006	. 009	.012	.014
,		140°F	.036	. 064	.088	.111
h	Thickened with CAB-O-SIL					
Brush	Titanium 6Al-4V	75 ⁰ F	.016	. 040	.060	.082

TABLE IV: NITRIC/HYDROFLUORIC ACID SOLUTION D

Make-up: 60 fl oz HNO₃ (42°Be') and 6.4 fl oz HF (70%)/qal; balance: demineralized water

Immersion Application

	1			, for stated time	
Metal Etched	Temperature	15 minutes	30 minutes	45 minutes	60 minutes
Titanium 6Al-4V	75 ⁰ F 140 ⁰ F	.50 1.48	. 94	1.39	1.78
A-286	75°F 140°F	.024	. 046	.070 .500	. n90 . 654

TABLE V: PASA-JELL-.101
(as received)
Brush Application

			Metal removed, mils		
Metal Etched	Temperature	15 minutes	30 minutes	45 minutes	60 minutes
Titanium 6Al-4V	75 ⁰ F 90 ⁰ F	.001	.002	.002	.002
A-286	75°F 90°F	nil nil	ni1 .001	nil .002	nil .002
Inconel 718	75°F 90°F	nil	nil nil	nil nil	nil nil

TABLE VI: FeCl3/HNO3/H3PO4

Make-up: 57.5 fl oz FeCl3, 19.3 fl oz HNO3 (42°Be'), 9.6 fl oz H3PO4 (85%)/gal; balance demineralized water

ī			Metal remo	Metal removed, mils, for stated time		
-	Metal Etched	Temperature	5 minutes	10 minutes	15 minutes	
	Titanium 6Al-4V	75 ° F	n11	ni1	nil	
io E	A-296	75 ⁰ F	. 36	. 78	1.59	
Immersion	Inconel 718	75 0 F	nil	ni1	n11	
<u>=</u>	21-6-9	75°F	. 40	.75	1.45	
	A+286	75°F	.28	. 54	.78	
	21-6-9	75 ⁰ F	. 21	.44	.67	
Application	Thickened with CAB-0-SIL					
	A-286	75 ⁰ F	.18	. 35	.45	
Brush	21-6-9	75 ⁰ F	.19	. 35	.57	

TABLE VII: HC1/HN03/N1C12/FeC13/CrO3

Make-up: .6 gal HCl, .08 gal HNO3 (42°Be'), 1 lb N1Cl₂ · 6H₂O, 1.8 lb FeCl₃, .40 lb CrO₃/gal; balance:HCl

			Metal removed, mils, for stated time				
1	Metal Etched	Temperature	5 minutes	10 minutes	15 minutes		
	Titanium 6Al-4V	75 ⁰ F	.001	.001	.001		
rsio	A-286	75 ⁰ F	.26	.62	1.04		
Immersion	Inconel 718	75 ⁰ F	. 38	.72	1.05		
	21-6-9	75 ⁰ F	.28	.63	1.03		
	A-286	75 0 F	.11	.20	.30		
	Inconel 718	75 0 F	.17	. 32	.47		
_	21-6-9	75 ° F	.18	.33	.50		
Application	Thickened with CAB-O-SIL						
1 1	A-286	75 ⁰ F	.22	.48	.70		
Brush	Inconel 718	75 ⁰ F	.14	. 38	.55		
"	21-6-9	750F	.22	.47	.71		

TABLE VIII: LOW HNO3/HF NO. 1

Make-up: $12.8 \text{ fl oz } \text{HNO}_3$ ($42^{\circ}\text{Be}^{'}$), 3.8 fl oz HF (70%)/gal; balance: demineralized water

			Metal removed, mils, for stated time					
	Metal Etched	Temperature	15 minutes	30 minutes	45 minutes	60 minutes		
ion	Titanium 6Al-4V	75°F 140°F	1.03 3.55	1.76	2.31 	2.40		
Immersi	A-286	75 ⁰ F	.027	.040	.046	.055		
Ī		140 ^o F	. 224	. 370	. 500	, 654		
	Inconel 718	75°F 140°F	.002	.004	.005	.005		
		14004	.003	.003	.003	.003		
sh	Thickened with CAB-O-SIL							
Brush	Titanium 6Al-4V	75 ⁰ F	.10	.25	.40	. 61		

TABLE IX: HC1/H202

Make-up: 50% HC1 (20 0 Be 1), 50% H $_{2}^{0}$ $_{2}$ (30% Stabilized)

Immersion Application

		Metal removed, mils, for stated times				
Metal Etched	Temperature	1 minute	2 minutes	3 minutes		
A-286	75 ⁰ F	. 31	.63	1.39		
Inconel 718	75 ⁰ F	. 36	.45	1.56		
21-6-9	75 ⁰ F	. 41	.76	1.48		

TABLE X: LOW HNO3/HF NO. 2A

Make-up: 20 fl oz HNO_3 (42°Be'), 5 fl oz HF (70%)/gal; balance: demineralized water

Immersion Application

	T	Metal removed, mils, for stated time					
Metal Etched	Temperature	5 minutes	10 minutes	15 minutes	30 minutes		
Titanium 6A1-4V	75 ⁰ F	.44	.77	1.02	1.57		
A-286	75 ⁰ F	.008	.010	.015	.021		
Inconel 718	75 ⁰ F	.001	.001	.002	.002		
21-6-9	75°F	.006	, 006	.007	.011		

TABLE XI: <u>LOW HN03/HF NO. 2B</u>

Make-up: 20 fl oz HN0₃ (42^OBe'), 5 fl oz HF (70%), 3.4 oz Fe/gal; balance demineralized water

			Metal removed, mils, for stated time						
	Metal Etched	Temperature	5 minutes	10 minutes	15 minutes	30 minutes			
	Titanium 6A1-4V	75 ⁰ F	.24	.43	.59	1.05			
Immersion	A-286	75 ⁰ F	.001	.001	.002	.003			
	Inconel 718	75 ⁰ F	.001	.002	.003	.008			
E	21-6-9	75 ⁰ F	nil	ni!	nil	ni1			
ļ			ļ						
	Titanium 6A1-4V	75 ⁰ F	. 30	.60	. 85	1.22			
cation	Thickened with CAB-O-SIL								
App 1 ic	Titanium 6Al-4V	75 ⁰ F	nil	nil	nil	nil			
Brush	31-32 Dynes/cm		15 minutes	30 minutes	45 minutes	60 minutes			
8	Titanium 6A1-4V	75 ⁰ F	.12	.21	.30	.37			

TABLE XII: LOW HNO3/HF NO. 2C

Make-up: 20 fl oz HNO3 (42° Be'), 2.6 fl oz HF (70%), l oz Fe/gal; balance demineralized water Immersion Application

			Metal removed, mils, for stated time				
Metal Etched	Temperature	5 minutes	10 minutes	15 minutes	30 minutes		
Titanium 6A1-4V	75 ⁰ F	.45	.78	1.12	1.96		
A-286	75 ⁰ F	.001	.008	.012	.016		
Inconel 718	75 ⁰ F	.001	.001	.002	.003		
21-6-9	75 ⁰ F	ni1	.001	.001	.003		
31-32 Dynes/cm							
Titanium 6A1-4V	75 ⁰ F			. 984			

TABLE XIII: LOW HN03/HF NO. 2D

Make-up: 20 fl oz HNO_3 (42°Be'), 2.6 fl oz HF (70%), 3.4 oz Fe/gal; balance demineralized water Immersion Application

	1	Metal removed, mils, for stated time				
Metal Etched	Temperature	5 minutes	10 minutes	15 minutes	30 minutes	
Titanium 6Al-4V	75°F	.011	.023	.032		
A-286	75 ⁰ F	nil	nil	nil		
Inconel 718	75 ⁰ F	nil	nil	nil		
21-6-9	75°F	nil	nil	nil		