1 Courbes paramétrées

1.1 Notions de base

Une courbe paramétrée plane est une application

$$f: D \subset \mathbb{R} \to \mathbb{R}^2$$

$$t \mapsto f(t)$$

d'un sous-ensemble D de \mathbb{R} dans \mathbb{R}^2 . On note aussi $f(t) = M(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$.

Réduction du domaine d'étude

On utilise des transformations pour réduire le domaine d'étude d'une courbe paramétrée. Voici l'effet des transformations usuelles sur le point M(x,y) (dans un repère orthonormé $(O,\overrightarrow{i},\overrightarrow{j})$).

- Translation de vecteur $\overrightarrow{u}(a,b)$: $t_{\overrightarrow{u}}(M) = (x+a,y+b)$.
- Réflexion d'axe (Ox): $s_{(Ox)}(M) = (x, -y)$.
- Réflexion d'axe (Oy): $s_{(Oy)}(M) = (-x, y)$.
- Symétrie centrale de centre $O: s_O(M) = (-x, -y)$.
- Symétrie centrale de centre $I(a,b): s_I(M) = (2a-x,2b-y)$.
- Réflexion d'axe la droite (D) d'équation $y = x : s_D(M) = (y, x)$.
- Réflexion d'axe la droite (D') d'équation $y = -x : s_{D'}(M) = (-y x)$.
- Rotation d'angle $\frac{\pi}{2}$ autour de O: $rot_{O,\pi/2}(M) = (-y,x)$.
- Rotation d'angle $-\frac{\pi}{2}$ autour de $O: \operatorname{rot}_{O, -\pi/2}(M) = (y, -x)$.

Points simples, points multiples

La *multiplicité* du point *A* par rapport à la courbe f est le nombre de réels t pour lesquels M(t) = A.

On dit aussi *point simple* (multiplicité 1), *point double* (multiplicité 2)... Une *courbe paramétrée simple* est une courbe dont tous les points sont de multiplicité 1, c'est-à-dire $t \mapsto M(t)$ est injective.

Pour trouver les points multiples d'une courbe, on cherche les couples $(t,u) \in D^2$ tels que t > u et M(t) = M(u).

1.2 Tangente à une courbe paramétrée

- Une courbe admet une *tangente* en $M(t_0)$ si la droite $(M(t_0)M(t))$ admet une position limite quand t tend vers t_0 .
- Une courbe paramétrée $t \mapsto M(t) = (x(t), y(t))$ est *dérivable* si les fonctions x et y le sont. Le *vecteur dérivé* de la courbe en t_0 est \overrightarrow{dM} $(x'(t_0))$
- $\frac{\overrightarrow{dM}}{dt}(t_0) = \begin{pmatrix} x'(t_0) \\ y'(t_0) \end{pmatrix}.$ Si $\frac{\overrightarrow{dM}}{dt}(t_0) \neq \overrightarrow{0}$, le point $M(t_0)$ est dit régulier.
- Si $\frac{dM}{dt}(t_0) = \overrightarrow{0}$, le point $M(t_0)$ est dit singulier.

Théorème. En tout point régulier d'une courbe dérivable, cette courbe admet une tangente. La tangente en un point régulier est dirigée par le vecteur dérivé en ce point.

1.3 Points singuliers - Branches infinies

Tangente en un point singulier

En un point singulier le vecteur dérivé est nul, il n'est d'aucune utilité pour la recherche d'une tangente.

En un point $M(t_0)$ singulier, on étudie $\lim_{t\to t_0} \frac{y(t)-y(t_0)}{x(t)-x(t_0)}$. Si cette limite

est un réel ℓ , la tangente en $M(t_0)$ existe et a pour coefficient directeur ℓ . Si cette limite existe mais est infinie, la tangente en $M(t_0)$ existe et est verticale.

Position d'une courbe par rapport à sa tangente

Quand la courbe arrive en $M(t_0)$, le long de sa tangente, on a plusieurs possibilités :

- la courbe continue dans le même sens, sans traverser la tangente :
 c'est un point d'allure ordinaire,
- la courbe continue dans le même sens, en traversant la tangente : c'est un point d'inflexion,
- la courbe rebrousse chemin le long de cette tangente en la traversant, c'est un point de rebroussement de première espèce,
- la courbe rebrousse chemin le long de cette tangente sans la traverser, c'est un point de rebroussement de seconde espèce.

Pour déterminer la position de la courbe par rapport à sa tangente en un point singulier $M(t_0)$, on effectue un DL des coordonnées de M(t) = (x(t), y(t)) au voisinage de $t = t_0$. Supposons $t_0 = 0$ et

$$M(t) = M(0) + t^p \overrightarrow{v} + t^q \overrightarrow{w} + t^q \overrightarrow{\varepsilon}(t)$$

où:

- -p < q sont des entiers,
- $-\overrightarrow{v}$ et \overrightarrow{w} sont des vecteurs non colinéaires,
- $\overrightarrow{\varepsilon}(t)$ est un vecteur, tel que $\|\overrightarrow{\varepsilon}(t)\| \to 0$ lorsque $t \to t_0$.

En un tel point M(0), la courbe $\mathscr C$ admet une tangente, dont un vecteur directeur est \overrightarrow{v} . La position de la courbe $\mathscr C$ par rapport à cette tangente est donnée par la parité de p et q:

rebroussement de première espèce

rebroussement de seconde espèce

Branches infinies

Dans ce paragraphe, la courbe $f:t\mapsto M(t)$ est définie sur un intervalle I de $\mathbb R$ et t_0 désigne l'une des bornes de I et n'est pas dans I (t_0 est soit un réel, soit $-\infty$, soit $+\infty$).

Il y a *branche infinie* en t_0 dès que l'une au moins des deux fonctions |x| ou |y| tend vers l'infini quand t tend vers t_0 . Il revient au même de dire que $\lim_{t\to t_0} \|f(t)\| = +\infty$.

La droite d'équation y = ax + b est asymptote à $\mathscr C$ si $y(t) - (ax(t) + b) \to 0$, lorsque $t \to t_0$.

- Si, quand t tend vers t₀, x(t) tend vers +∞ (ou -∞) et y(t) tend vers un réel ℓ, la droite d'équation y = ℓ est asymptote horizontale à ℰ.
- 2. Si, quand t tend vers t_0 , y(t) tend vers $+\infty$ (ou $-\infty$) et x(t) tend vers un réel ℓ , la droite d'équation $x=\ell$ est *asymptote verticale* à
- 3. La droite d'équation y = ax + b est asymptote oblique à la courbe (x(t), y(t)) si :
 - (a) $\frac{y(t)}{r(t)}$ tend vers un réel non nul a,
 - (b) y(t) ax(t) tend vers un réel b (nul ou pas).

Attention! Une branche infinie peut ne pas admettre de droite asymptote, comme dans le cas d'une parabole.

1.4 Plan d'étude d'une courbe paramétrée

- 1. Domaine de définition de la courbe.
- 2 Vecteur dérivé
- 3. Tableau de variations conjointes.
- 4. Étude des points singuliers.
- 5. Étude des branches infinies.
- 6. Construction méticuleuse de la courbe.
- 7. Points multiples.

1.5 Courbes en polaires : théorie

Coordonnées polaires

Le plan est rapporté à un repère orthonormé $(0, \overrightarrow{i}, \overrightarrow{j})$. Pour θ réel, on pose

$$\overrightarrow{u_{\theta}} = \cos \theta \overrightarrow{i} + \sin \theta \overrightarrow{j}$$
 et $\overrightarrow{v_{\theta}} = -\sin \theta \overrightarrow{i} + \cos \theta \overrightarrow{j} = \overrightarrow{u_{\theta + \pi/2}}$.

$$M = [r:\theta] \iff \overrightarrow{OM} = r\overrightarrow{u_{\theta}} \iff M = O + r\overrightarrow{u_{\theta}}.$$

La courbe d'équation polaire $r = f(\theta)$ est l'application suivante, où les coordonnées des points sont données en coordonnées polaires :

$$\begin{array}{cccc} F: & D & \to & \mathbb{R}^2 \\ & \theta & \mapsto & M(\theta) = \left[r(\theta) : \theta \right] = O + r(\theta) \overrightarrow{u}_{\theta} \end{array}$$

Exemple. Spirale d'équation polaire $r = \sqrt{\theta}$, pour $\theta \in [0, +\infty[$.

Calcul de la vitesse en polaires

$$\frac{\mathrm{d}\overrightarrow{u_{\theta}}}{\mathrm{d}\theta} = \overrightarrow{v_{\theta}} \qquad \frac{\mathrm{d}\overrightarrow{v_{\theta}}}{\mathrm{d}\theta} = -\overrightarrow{u_{\theta}}$$

Théorème (Tangente en un point distinct de l'origine).

- 1. Tout point de & distinct de l'origine O est un point régulier.
- Si $M(\theta) \neq O$, la tangente en $M(\theta)$ est dirigée par le vecteur

$$\frac{\overrightarrow{\mathrm{d}M}}{\mathrm{d}\theta}(\theta) = r'(\theta)\overrightarrow{u_{\theta}} + r(\theta)\overrightarrow{v_{\theta}}$$

3. L'angle β entre le vecteur $\overrightarrow{u_{\theta}}$ et la tangente en $M(\theta)$ vérifie $tan(\beta) = \frac{r}{r'}$ si $r' \neq 0$, et $\beta = \frac{\pi}{2}$ (mod π) sinon.

Théorème (Tangente à l'origine). Si $M(\theta_0) = O$, la tangente en $M(\theta_0)$ est la droite d'angle polaire θ_0 .

1.6 Courbes en polaires : exemples

Réduction du domaine d'étude

Le plan est rapporté à un repère orthonormé direct, M étant le point de coordonnées polaires $[r:\theta]$.

- Réflexion d'axe (Ox). $s_{(Ox)}: [r:\theta] \mapsto [r:-\theta]$.
- Réflexion d'axe (Oy). $s_{(Oy)}: [r:\theta] \rightarrow [r:\pi-\theta]$. Symétrie centrale de centre O. $s_O: [r:\theta] \rightarrow [r:\theta+\pi] = [-r:\theta]$.
- Réflexion d'axe la droite D d'équation (y = x). $s_D(M) : [r : \theta] \rightarrow$ $[r:\frac{\pi}{2}-\theta].$ Réflexion d'axe la droite D' d'équation $(y=-x).s_{D'}(M):[r:\theta]\mapsto$
- $[-r: \frac{\pi}{2} \theta] = [r: -\frac{\pi}{2} \theta].$
- Rotation d'angle $\frac{\pi}{2}$ autour de $O. r_{O,\pi/2}: [r:\theta] \mapsto [r:\theta+\frac{\pi}{2}].$
- Rotation d'angle φ autour de O. $r_{O,\varphi}: [r:\theta] \mapsto [r:\theta+\varphi]$.

Plan d'étude

- 1. Domaine de définition.
- 2. Passages par l'origine.
- 3. Variations de r.
- 4. Tangentes parallèles aux axes.
- 5. Étude des branches infinies.
- 6. Construction de la courbe.
 - Si r est positif et croît, on tourne dans le sens direct en s'écartant de l'origine.
 - Si r est négatif et décroît, on tourne dans le sens direct en s'écartant de l'origine.
 - Si r est positif et décroît, on tourne dans le sens direct en se rapprochant de l'origine.
 - Si r est négatif et croît, on tourne dans le sens direct en se rapprochant de l'origine.
- 7. Points multiples.