Éxilo

1 1								RIMERO			
CONF	16UR	ar la	ENTRA	DA #10	EN EN	LA IDT	CON DA	_=3 YP	aue o	ZUERE	MOS
distr	rar	CA IN	JTE RR	nbeign	NETD	E NIVEL	USUAR	0.			
AGRE	GAM	os En	idt_in	i+()::							
I	DT_E	NTRY	3(100)								
ESTA	MAC	Ro c	onfigu	RA LA	IDT	entry	CON BA	SE = N	RECCIO	ÍN DÉ	-
SIMB	5020	_15710	00.								
LAC	ONVE	NCIÓN	I PARA	PASAR	LOS	3 PARÁT	1ETROS	AL SEI	RVICIO	ES M	edian-
REGI	STR	OS, Y	QUE	se pre	TERV	AN AL C	MBIAR	DE PR	IVILEGI	10.	
EAX	= V	IRT	ECX	= PHY	ED	× = TAS	K-SEL				
FIFI	1010	1	14 11/0	ACIONI	NITA	F 1 11 45	1 2				
L 1C 1			MIVOL		11/2 (1)				1 1 1	1	
		DE	10000	1000	Der	E NIVE	4 5:				
M	ain:		MAAA	1000	Dest	DE NIVE	U \$ 51				
	ain:				Dest	SE NIVE					
	ain:	eax,	KYIR	T>	Dest	E OIVE	.u. S.1				
	ain:		KYIR	T>	Dest	E NIVE					
	oin: mov mov	eax,	<\/i>\<\	T>		SE OIVE					
	oin: mov mov	eax,	<\/i>\<\	T>	> /	E OIVE					
	oin: mov mov	eax,	<\/i>\<\	T>		E OIVE					
	mov mov	eax, ecx,	<\/i>\<\	T>	> /	E OIVE					
	mov mov	eax, ecx,	<\/i>\<\	T>	> /	E OIVE					
	mov mov	eax, ecx,	<\/i>\<\	T>	> /	E OIVE					
	mov mov	eax, ecx,	<\/i>\<\	T>	> /	E OIVE					
	mov mov	eax, ecx,	<\/i>\<\	T>	> /	E OIVE					
	mov mov	eax, ecx,	<\/i>\<\	T>	> /	E OIVE					
	mov mov	eax, ecx,	<\/i>\<\	T>	> /	E OIVE					
	mov mov	eax, ecx,	<\/i>\<\	T>	> /	E OIVE					
	mov mov	eax, ecx,	<\/i>\<\	T>	> /	E OIVE					
	mov mov	eax, ecx,	<\/i>\<\	T>	> /	E OIVE					
	mov mov	eax, ecx,	<\/i>\<\	T>	> /	E OIVE					

UNA VEZ REALIZADA LA INT 100 Y ESTANDO EN NIVEL O, CONTINUA LA ELECUCIÓN EN EL HANDLER DE LA INTERRUPCIÓN, DESDE ACA SIMPLEMENTE LLAMAMOS A UNA FUNCIÓN C FOWARDEANDO LOS 3 PARAMETROS UTILIZANDO LA CONVENCIÓN C. extern force-execute isr100: Al hacer el CALL y por todo lo que pasa adentro de force_execute el ESP ya no estaba donde yo push edx quería (para calcular bien los offsets). Para no tener que cambiar mucho lo que había push ecx escrito, agregué a último momento pasar el ESP a la función force_execute, con el valor que push eax tiene justo antes del CALL (y encima debería bush esp + haberlo pusheado primero porque se pushean los argumentos de derecha a izquierda). call force execute Quizás era más fácil tocar el EIP y ESP (de nivel 3) de la tarea actual directamente acá en add esp, 16 assembler, justo antes del IRET. iret LA FUNCION VA A TUCAR LA PILA DE NIVEL O PARA QUE AL HACER ITET, VAYAMOS A LA DIRECCIÓN DESEADA CON LA PILA DE NIVEL 2 RESETEADA. LE PASAMOS EL ESP (NIVEL O) A LA FUNCIÓN C PARA PODER CALCULAR LOS OFFSETS DEJDE UN ETTADO CONSCIDO.


```
IMPLEMENTACIÓN DEL SERVICIO.
void Force execute (uint3z+ virt, uint3z+ phy, uint16+ task-sel,
                                                     uint32+ espo) }
 tss_t*current_task_tss = 8+ss_tasks[current_task]i
                        ESTE ARRAY CONTIENE LAS TISS DE TODAS LAS TAREAS
                        Y CUTTENT AUSK ES LA TAREA ACTIVA SEGUN EL
                        SCHEDULER
  tss_t * other_task_tss = get_task_tss(task_sel);
  UINA32 + attrs = MMU_P MMU_U MMU_W;
                                              ES CODIGO, NO PUEDE
           ATRIBUTOS PARA EL MAPETO DE LAS PAGINAS. PRESENTES DE USER
           Y READWRITE ASUMIENDO QUE EL CÓDIGO AHÍ ESCRIBE.
  mmu_map_page(current_tusk_tss+cr3, virt, phy, attrs);
  mmu_map_page (other_task_tss > cr3, virt, pny, attrs);
  MAPEAMOS LA PAGINA EN EL DIRECTORY (CR3) DE CADA TAREA. EL
  ENUNCIADO NO PIDE DESTAPEARLAS.
  other tasktss > eip = virt; / = ; No Frito ALCO?
  other_task_tss-esp = TASK_STACK_BASE; == ; QUÉ PLA ES ESTA?
  other_task_tss - esp0 = TASK_KERNEL_STACK_BASE;
  TOCAMOS DIRECTAMENTE LA 1755 DE LA OTRA TAREA. CUANDO RESUMA
  SU EDECUCIÓN 40 HARÁ DESDE LA DIRECCIÓN VIDT Y CON LAS PILAS
  REJETEADAS.
  TASK STACK BASE = 0x08003000 DEFINIDO EN EL TALLER
  TASK-KERNEL-STACK_BASE = 0x02005000 DEFINIDO POR MI.
  AL INICIAR EL ESQUEMA DE PAGINACIÓN DE LAS TAREAS, SE PIDE
  UNA PAGINA DE KERNEL PARA LA PILA NIVEL O Y SE MAPEA A LA
  DIR VIRTUAL TASK-KERNEL ISTACKLEASE + PAGELSIZE.
Faltó resetear los selectores de segmento de la otra tarea:
other_task_tss->cs = GDT_CODE_3_SEL;
other_task_tss->ds = GDT_DATA_3_SEL;
En vez de los defines (que no gustó mucho aunque era válido), se pueden resetear las
pilas así (por enunciado la pila tiene 1 página disponible):
// Obtenemos un puntero al esp3 guardado en la pila de nivel 0.
// Para calcular el offset, recordar que en el handler del timer se hace un pushad.
uint32_t* other_task_esp3 = other_task_tss->esp0 + 44; // + 44 bytes
other_task_tss->esp = (*other_task_esp3 & 0xFFFFF000) + 0x1000;
// Para la pila de nivel 0 podemos hacerlo directamente en la TSS.
other_task_tss->esp0 = (other_task_tss->esp0 & 0xFFFFF000) + 0x1000;
```

