姓名: <u>王远浩</u> 学号: <u>2023311I13</u> 班级: <u>18 班</u> 学期: <u>大二</u>

实验项目: <u>计数器实验</u> 上课地点: <u>T2612</u> 实验完成时间: <u>8h</u>

实验内容

仿真波形图

Name	Value	0 ns	 5 ns .	10 րs .	լ15 րs	20 ns	լ25 րs ,	30 ns .	35 րs ,	 40 ր դ	լ45 րդ ,	50 րs
™ clk	0											
¼ rst	1											
¼ button	0											
> W freq1:0	0						0					
¼ dir_set	0											
> W led[7:0]	01						01					
₩ clk	0											

流水灯仿真分析

仿真测试步骤及预期结果

- 1. 复位 (Reset)
 - 操作: 仿真开始时,将 rst 信号保持在高电平 20ns,确保被测模块 flowing_light 复位清零。
 - 预期结果: 此时 led 的输出应为 0. 表示模块内状态已初始化。
- 2. 启动 (Start)
 - 操作:将 rst 信号拉低,并通过将 button 置高、再拉低的脉冲触发流水灯启动。
 - 预期结果:启动后,led 应该开始以100MHz 频率(freq_set = 2'b00)向左移动的灯光效果。
- 3. 暂停 (Pause)
 - 操作: 在流水灯启动后, 模拟按下并释放按钮 (button 信号置高后再置低). 暂停流水灯。
 - 预期结果: led 状态保持不变,流水灯效果暂停。
- 4. 再次启动 (Restart)
 - 操作: 再次按下并释放按钮来重新启动流水灯。
 - 预期结果: led 从当前位置继续按相同频率向左移动。
- 5. 间隔切换 (Frequency Change)
 - 操作: 更改 freq set 为 2'b01, 对应较低频率(如 10Hz)。

- 预期结果: led 的移动速度应显著变慢, 以此频率展示效果。
- 6. 方向切换 (Direction Change)
 - 操作:将 dir_set 信号置为 1,改变流水灯方向。
 - 预期结果: led 灯光将从右向左移动, 验证方向切换功能。
- 7. 同时切换间隔和方向 (Combined Frequency and Direction Change)
 - •操作:频率和方向切换完成后,再观察一段时间,确保切换效果。
 - 预期结果: 流水灯以新频率和新方向持续运行。

RTL Analysis

计算其最大值计算: 公式: $n = \frac{T}{T_{\text{clk}}}$ -1 n 为计数器最大值, T 间隔时间, T_{clk} 为时钟周期所以:

T=0.01s,n=100000-1=99999

T=0.1s, n=1000000-1=999999

T=0.25s, n=2500000-1=2499999

T=0,5s,n=5000000-1=4999999

课后作业

对比一 非阻塞赋值 仿真图:

RTL 分析图:

Synthesis 分析图:

阻塞赋值

仿真图:

RTL 分析图:

Synthesis 分析图:

一个时钟后, cnt 为 6 两个时钟后, cnt 为 6

对比二

非阻塞赋值

RTL 分析图:

Synthesis 分析图:

阻塞赋值

71	Name	Value	O ns	5 ns	10 ns , , ,	15 ns	20 ns	₂₅ ns	
7	¼ clk	1							
¥	¼ A	0							
	₽F	0							
	₽F	0							
	₩A	0							
	₩F	0							
	₩ B	0							

RTL 分析图:

Synthesis 分析图:

阻塞赋值和非阻塞赋值的主要区别如下:

- 1. 阻塞赋值存储的是前一个时钟周期的值,而非阻塞赋值存储的是前两个时钟周期的值。
- 2. RTL 分析图: 阻塞赋值只有一个寄存器, 非阻塞赋值有两个 级联的寄存器。

3. 电路图: 阻塞赋值只有一个寄存器,非阻塞赋值有两个级联的寄存器。

