Асимптотические обозначения

Асимпиотические обозначения позволяют оценить время время работы алгоритма, являясь наглядной характеристикой его эффективности. Также позволяют сравнить производительность различных алгоритмов. Например производительность алгоритма сортировки методом слияний со временем работы $O(\log_2 n)$ выше производительности алгоритма сортировки вставкой, время работы которого в наихудшем случае составляет $O(n^2)$.

О большое. Равенство f(n) = O(g(n)) означает, что найдется такая константа c > 0 и такое число n_0 , что $0 \le f(n) \le cg(n)$ для всех $n \ge n_0$. Указанное равенство означает, что отношение f(n) / g(n) остается ограниченным.

Пример. Доказать, что $2^{n+10} = O(2^n)$. Следует указать такие c, $n_0 > 0$, что $2^{n+10} \le c * 2^n$ выполняется для всех $n \ge n_0$. последнее неравенство эквивалентно $1024*2^n \le c * 2^n$, что выполняется, например при c = 1024, $n_0 = 1$.

Пример. Доказать, что $2^{10n} \neq O(2^n)$. Доказательство проведем от противного. Пусть существуют такие $c, n_0 > 0$, что $2^{10n} \leq c * 2^n$. Сокращаем неравенство на 2^n : $2^{9n} \leq c$, что неверно.

Пример. Пусть $f(n) = a_0 + a_1 n + a_2 n^2 + ... + a_k n^k$ – многочлен степени k. Тогда $f(n) = O(n^k)$.

Для каждого $n \ge 1$ имеем: $f(n) \le |a_0| + |a_1|n + |a_2|n^2 + \ldots + |a_k|n^k \le |a_0|n^k + |a_1|n^k + |a_2|n^k + \ldots + |a_k|n^k = c * n^k$, где $c = |a_0| + |a_1| + |a_2| + \ldots + |a_k|$.

Пример. Доказать, что для любого $k \ge 1$ $n^k \ne O(n^{k-1})$. Доказательство проведем от противного. Пусть существуют такие c, $n_0 > 0$, что $n^k \le c * n^{k-1}$ Сокращая неравенство на n^{k-1} , получим $n \le c$, что неверно для любого $n \ge n_0$.

Омега большая. Равенство $f(n) = \Omega(g(n))$ означает, что найдется такая константа c > 0 и такое число n_0 , что $0 \le c g(n) \le f(n)$ для всех $n \ge n_0$.

Для любых двух функций свойства f(n) = O(g(n)) и $g(n) = \Omega(f(n))$ равносильны.

Тема обозначение. Равенство $f(n) = \theta(g(n))$ означает, что найдутся такие c_1 , $c_2 > 0$ и такое число n_0 , что $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ для всех $n \ge n_0$.

Если $f(n) = \theta(g(n))$, то говорят что g(n) является *асимптотически точной оценкой* для f(n). Отношение θ симметрично, то есть если $f(n) = \theta(g(n))$, то $g(n) = \theta(f(n))$.

Пример. Докажем, что $\frac{1}{2}n^2-3n=\theta(n^2)$. Следует указать такие положительные константы c_1, c_2 и число n_0 , чтобы неравенство $c_1n^2 \leq \frac{1}{2}n^2-3n \leq c_2n^2$ выполнялось для всех $n \geq n_0$. Разделим неравенство на n^2 : $c_1 \leq \frac{1}{2}-\frac{3}{n} \leq c_2$. Для выполнения второго неравенства достаточно положить $c=\frac{1}{2}$, а в качестве n_0 можно выбрать любое натуральное число. Первое неравенство будет выполнено, если например взять $n_0=7$ и $c_1=1/114$.

Пример. Доказать, что $\max(f(n), g(n)) = \theta(f(n) + g(n))$. Для каждого натурального n имеет место: $\max(f(n), g(n)) \le f(n) + g(n)$, а также $2\max(f(n), g(n)) \ge f(n) + g(n)$. Из последнего неравенства следует, что $\max(f(n), g(n)) \ge (f(n) + g(n)) / 2$. Таким образом

$$(f(n) + g(n)) / 2 \le \max(f(n), g(n)) \le f(n) + g(n)$$
 для всех $n \ge 1$

Отсюда следует, что $\max(f(n), g(n)) = \theta(f(n) + g(n))$, где $n_0 = 1$, $c_1 = 1/2$, $c_2 = 1$.

о маленькое. Равенство f(n) = o(g(n)) означает, что для всякого положительного $\varepsilon > 0$ найдется такое n_0 , что $0 \le f(n) \le \varepsilon g(n)$ для всех $n \ge n_0$. Из определения следует, что

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

Пример. $2n = o(n^2)$, но $2n^2 \neq o(n^2)$.

Можно провести такую параллель: отношения между функциями f и g подобны отношениям между числами a и b:

- f(n) = O(g(n)) эквивалентно $a \le b$;
- f(n) = o(g(n)) эквивалентно a < b;

Эта параллель условна. Если для чисел всегда можно сказать выполняется ли $a \le b$ или $a \ge b$, то существуют функции, для которых не выполняется ни f(n) = O(g(n)), ни g(n) = O(f(n)). Например, для f(n) = n, $g(n) = n^{1+\sin(n)}$ (показатель степени g(n) постоянно меняется от 0 до 2).

Формула Стирлинга утверждает, что $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + O\left(\frac{1}{n}\right)\right)$.

Следствия:

- $n! = o(n^n), 2^n = o(n!).$
- $\lg(n!) = O(n \lg n), n \lg n = O(\lg(n!))$

Справедлива также следующая оценка:

$$\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \le n! \le \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{1/12n}$$

Асимптотика многочленов. Пусть $f(n) = a_0 + a_1 n + a_2 n^2 + ... + a_d n^d$ — многочлен степени d, причем $a_d > 0$. Тогда:

- $f(n) = O(n^k)$ при $k \ge d$;
- $f(n) = o(n^k)$ при k > d;

Основная теорема о рекуррентных оценках. Пусть $a \ge 1$ и b > 1 – константы, f(n) – функция, T(n) определено при неотрицательных n формулой

$$T(n) = aT(n/b) + f(n),$$

где под n/b понимается либо $\lfloor n/b \rfloor$, либо $\lfloor n/b \rfloor$. Тогда:

- 1. Если $\mathrm{f}(n) = \mathit{O}\!\left(n^{\log_b a \varepsilon}\right)$ для некоторого $\varepsilon > 0$, то $\mathrm{T}(n) = \mathit{O}\!\left(n^{\log_b a}\right)$
- 2. Если $f(n) = O(n^{\log_b a})$, то $T(n) = O(n^{\log_b a} \log_2 n)$
- 3. Если $f(n) = \Omega(n^{\log_b a + \varepsilon})$ для некоторого $\varepsilon > 0$ и если $af(n/b) \le cf(n)$ для некоторой константы c < 1 и достаточно больших n, то $T(n) = \theta(f(n))$.

Пример. Рассмотрим соотношение T(n) = 9T(n/3) + n. Имеем: a = 9, b = 3, f(n) = n, $n^{\log_b a} = n^{\log_3 9} = \theta(n^2)$. Поскольку $f(n) = O(n^{\log_3 9 - \epsilon})$ для $\epsilon = 1$, то из первого утверждения теоремы следует что $T(n) = O(n^2)$.

Пример. Рассмотрим соотношение T(n) = T(2n/3) + 1. Имеем: a = 1, b = 3/2, f(n) = 1, $n^{\log_b a} = n^{\log_{3/2} 1} = \theta(1)$. Поскольку $f(n) = O(n^{\log_{3/2} 1})$, то из второго утверждения теоремы следует что $T(n) = O(\log_2 n)$.

Пример. Рассмотрим соотношение $T(n) = 3T(n/4) + n\log_2 n$. Имеем: a = 3, b = 4, $f(n) = n\log_2 n$, $n^{\log_b a} = n^{\log_4 3} = \theta(n^{0.793})$. Зазор $\varepsilon \approx 0.2$ есть, остается проверить условие регулярности. Для достаточно большого n имеем: $af(n/b) = 3(n/4)\log_2(n/4) \le 3/4n\log_2 n = cf(n)$ для c = 3/4. По третьему утверждению теоремы $T(n) = \theta(n\log_2 n)$.