SciPi:

Scientific Publication Analytics Prototype

Dylan Vassallo & Patrick Bezzina

ICS5114 Study Unit Assignment

Introduction

Goals

- Explore dense communities within the publications network
- Track dynamics in authorship patterns over time
- Discover and visualise associations between entities

Methodology

Datasets used:

- AMiner (38GB JSON)
- DBPL (~3GB XML)
- Different structure, sources and size
- Pushed to Kafka streams (two topics)

Methodology

Overview of the process flow

Cloud Setup (AWS)

- 3 nodes for Kafka with Zookeeper
- 1 node for Kafka web tools (monitoring)
- 4 nodes for Flink (on Yarn): 1 master node + 3
 slave nodes
- 3 nodes for Cassandra Database

Cloud Setup Architecture

High level Architecture

Implementation

Goal #1: Dense communities

- Construct graph for the publications network
- Algorithm to detect communities (CommunityDetection)
- Metric to gauge strength of the discovered communities
- Evaluate strength between multiple communities

Implementation (2)

Goal #2: Dense communities

- Evaluate whether joint authorship is common
- Show single and joint authorships how they vary over time (year-wise distribution and average paper per author)
- Find papers that go hyper with authorship (> 100 authorship)

Single vs joint authorships

Dynamics over time

Authorship goes hyper

Implementation (3)

Goal #3: Discover and visualise associations between entities

- Associations between keywords and authors (using the title)
- Graph clustering algorithm
- Recommend potential collaborations

Challenges

- Streaming data with different structure Kafka
- Setting up the Clusters on AWS
- Choosing the database
 - Initially opted for MongoDB (issues with data sink)
 - Choose Cassandra DB
 - Apache product and it integrates easily with Kafka and Flink
 - Query language (SQL like)
 - Data sink mechanism
- Creating Bipartite Graph with the normal graph structure in Gelly

Challenges

- Recommending potential collaborations
 - Used bipartite graphs
- Finding associations between authors and keywords
 - Used Cosine similarity provided
- Visualising large amounts of data as a graph network
 - Showed only samples when it comes to graph visualisation
 - Positioning vertices in graph visuals is not so easy

Future Improvements

- Gelly streaming (still an early project)
- Graph persistence (Neo4j)
- A better way to find associations between keywords and text (more complex similarity metrics)
- Process publications with different languages
- Real-time visualisations and something more suited for big data (Kibana + Elasticsearch)
- Better way to identify different entities as being the same entity

Demo

GitHub Page:

https://github.com/achmand/SciPi

Two part video

One for the streaming part and the other for the batch processing part