TERCER PARCIAL. MECÁNICA DE LOS FLUIDOS

NOMBRE Y APELLIDO (todas las hojas):

LEGAJO:

FECHA:

CARRERA:

Una bomba centrífuga en que no se consideran las pérdidas tiene las dimensiones especificadas abajo. El fluido es agua. La entrada en los álabes es radial.

Calcular:

Caudal

Altura de la bomba

Potencia de accionamiento en CV para rendimiento 1

Datos:

	D1 =	90	mm	r1=	0.045 m
	D2 =	250	mm	r2=	0.125 m
b1	=b2 =	50	mm	b=	0.050 m
	b 1 =	45	0.785	tg b 1 =	1.00
	b 2 =	60	1.047	tg b 2 =	1.73
	n =	350	rpm	h =	1
g	agua	1000	Kgf/m ³	radial	

Para la instalación esquematizada, calcular:

- a) Plantear curva característica de la instalación (sistema) y calcular la altura para el caudal dado.
- b) Altura máxima entre el tanque de aspiración y la brida de aspiración para que no se produzca cavitación en la bomba.

Datos

Caudal deseado:	18	m3/h			
Delta z=	12.5	m			
Fluido: agua a 20°C					
Cañería de acero comerci	al				
Diámetro =	2.1	in			
Longitud de aspiración	60	m			
Longitud de impulsión =	125	m			
Longitudes equivalentes para los accesorios:					
Válvula de pie =	34	m			
Codo 90° =	5	m			
Junta de dilatación (1asp.	5	² .5 y 2.5 m			
Asumir f cte =	0.021				
P vapor Agua a 20° C=	0.238	m			
NPSHr = ANPAr (fabricant	1.2	m			
n agua =	1.007E-06	m ² /s (20°C)			

En una tobera convergente se puede superar el Nº de Mach en la garganta?

En cuántas veces L/C se reinicia el ciclo del golpe de ariete?

Si en el Teorema de Buckingham un parámetro es igual a la división de otros dos, es válido considerarlo?

Es necesario que en los parámetros repetitivos elegidos estén representadas todas las dimensiones primarias del problema?