What is claimed is:

1	1. A method of fabricating a semiconductor memory
2	device comprising:
3	providing a substrate;
4	sequentially forming a first conductive layer, a
5	first type doped semiconductor layer, a first
6	dielectric layer, a second type doped
7	semiconductor layer on the substrate;
8	patterning the second type doped semiconductor
9	layer, the first dielectric layer, the first
10	type doped semiconductor layer, and the
11	conductive layer along the first direction,
12	thereby turning the conductive layer into a
13	first conductive line;
14	patterning the second type doped semiconductor
15	layer, the first dielectric layer, and the
16	first type doped semiconductor layer into a
17	memory cell;

Client's ref.: TSMC 2003-0253

26

File: 0503-10015F/Jamn Gwo/Steve

- 18 depositing a second dielectric layer overlying the 19 substrate, wherein oxygen plasma sputtering is 20 employed to clean the substrate 21 deposition; 22 planarizing the second dielectric layer to expose 23 the memory cell; and 24 forming a second conductive line overlying the 25 second dielectric layer, running generally
 - 2. The method according to claim 1, wherein the first type doped semiconductor layer is a p^+ -type doped silicon layer.

orthogonal to the first conductive line.

- 3. The method according to claim 1, wherein the first conductive layer comprises a stack of $TiN/TiSi_2/p^+$ type doped silicon layers.
- 1 4. The method according to claim 1, wherein the 2 first conductive line is a word line.

- 5. The method according to claim 1, wherein formation of the first dielectric layer comprises rapid thermal oxidation of silicon.
- 1 6. The method according to claim 1, wherein the 2 second type doped silicon layer is n-type doped silicon 3 layer.
- 7. The method according to claim 1, wherein the memory cell comprises a stack of p⁺-type doped silicon/first dielectric/n-type doped silicon layers.
- 1 8. The method according to claim 1, wherein the
 2 step of oxygen plasma sputtering is performed using
 3 oxygen gas with a flow rate between about 300 and
 4 400sccm.
- 9. The method according to claim 8, wherein the step of oxygen plasma sputtering is performed using argon gas at with a flow rate between about 200 and 250sccm.

- 1 10. The method according to claim 8, wherein the 2 step of oxygen plasma sputtering is performed at a 3 temperature within a range of about 225 to 275°C.
- 1 11. The method according to claim 7, wherein the 2 step of oxygen plasma pre-sputtering is performed at a 2 power within a range of about 1000 to 1500W.
- 1 12. The method according to claim 1, wherein the second conductive layer comprises a stack of n^+ -type doped silicon/TiN/TiSi₂/ n^+ -type doped silicon/n-type doped silicon layers.
- 1 13. The method according to claim 1, wherein the 2 second conductive line is a bit line.

Client's ref.: TSMC 2003-0253

File: 0503-10015F/Jamn Gwo/Steve

1	14. A method of fabricating one time programmable
2	read only memory (OPTROM) device, comprising:
3	providing a substrate;
4	sequentially forming a stack of p^+ -doped silicon
5	layer/titanium silicide/titanium nitride/p ⁺ -
6	doped silicon layer/first dielectric/n-type
7	doped silicon layers on the substrate;
8	patterning the stack of p^+ -doped silicon
9	layer/titanium silicide/titanium nitride/p ⁺ -
10	doped silicon layer/first dielectric/n-type
11	doped silicon layers along the first direction,
12	thereby turning the stack of p^+ -doped silicon
13	layer/titanium silicide/titanium nitride layers
14	into a word line;
15	patterning the stack of p^+ -doped silicon layer/first
16	dielectric/n-type doped silicon layers into a
17	memory cell;
18	depositing a second dielectric layer overlying the
19	substrate, wherein oxygen plasma sputtering is

Client's ref.: TSMC 2003-0253

File: 0503-10015F/Jamn Gwo/Steve

- employed to clean the substrate before deposition;
- planarizing the second dielectric layer to expose
 the memory cell; and
- forming a stack of n⁺-type doped silicon/ titanium

 nitride/ titanium silicide /n⁺-type doped

 silicon/n-type doped silicon layers over the

 second dielectric layer and patterning the same

 into a bit line, running generally

 perpendicular to the word line.
 - 1 15. The method according to claim 14, wherein
 2 formation of the first dielectric layer comprises rapid
 3 thermal oxidation of silicon oxide.
 - 1 16. The method according to claim 14, wherein the
 2 step of oxygen plasma sputtering is performed using
 3 oxygen gas with a flow rate between about 300 and
 4 400sccm.

- 1 17. The method according to claim 14, wherein the 2 step of oxygen plasma sputtering is performed using argon 3 gas with a flow rate between about 200 and 250sccm.
- 1 18. The method according to claim 14, wherein the 2 step of oxygen plasma sputtering is performed at a 3 temperature within a range of about 225 to 275°C.
- 1 19. The method according to claim 14, wherein the 2 step of oxygen plasma pre-sputtering is performed at a 2 power within a range of about 1000 to 1500W.

1 20. A semiconductor memory device comprising: 2 a first conductive line disposed on a semiconductor 3 substrate, the surface of the first conductive 4 line being substantially silicon residue free; 5 second conductive line running generally a 6 perpendicular to the first conductive line; 7 a memory cell between the first line and the second line; and 8 9 a dielectric layer, surrounding the memory cell; 10 wherein the surface of the first conductive line is 11 oxygen plasma sputtered for preventing 12 accumulation of silicon residue. 21. The semiconductor memory device according to 1 2 claim 20, wherein the first conductive line is word line 3 and the second conductive line is bit line. 1 22. The semiconductor memory device according to 2 claim 20, wherein the first conductive line comprises a stack of $TiN/TiSi_2/p^+$ -type doped silicon layers. 3

- 1 23. The semiconductor memory device according to claim 20, wherein the memory cell comprises a stack of p^+ 3 doped silicon layer/first dielectric/n-type doped silicon layers.
- 1 24. The semiconductor memory device according to claim 20, wherein formation of the first dielectric layer comprises rapid thermal oxidation of silicon oxide.
- 1 25. The semiconductor memory device according to claim 20, wherein the second conductive layer comprises a stack of n^+ -type doped silicon/TiN/TiSi₂/ n^+ -type doped silicon/n-type doped silicon layers.