

Data Structures & Algorithms 2 Tutorial 5

Hashing

Exercise 1

Given input $\{4371, 1323, 6173, 4199, 4344, 9679, 1989\}$ and a hash function $h(x) = x \pmod{(10)}$, show the resulting

- 1. separate chaining hash table
- 2. hash table using linear probing
- 3. hash table using quadratic probing
- 4. hash table with second hash function $h2(x) = 7 (x \mod 7)$

Exercise 2

Show the result of rehashing the hash tables in Exercise 1.

Exercise 3

What are the advantages and disadvantages of the various collision resolution Strategies ?

Exercise 4

Suppose you have a hash table and have inserted some elements. When you inspect it you see that the result looks as the figure below. You realize this is a problem.

- a) What is the problem here?
- b) Give an example of a hash function that could give rise to this behavior.
- c)What would be a better hash function?

Exercise 5

Suppose n keys are chosen randomly and the hash function distributes the keys uniformly at random over {0, 1, ..., m-1}.

- a. What is the probability that n=2 independently chosen keys have the same hash value i.e. what is the probability there is a collision among those two keys?
- b. What is the probability that there are no collisions among any of the n keys? Assume n <= m.

Exercise 6

Suppose you have the following keys:

ISB, LHR, KHI, MUX, MUR, PESH, QUE, FSB, BWP, SGD, RWP

You are given the following hash function:

(sum of first and second letter code) mod 13

(for example in ISB you just take the sum of letter code for I and letter code for S and then take the mod)

The letter codes are given in the following table. Note that multiple letters can have the same code. For example A, B and C all are assigned the code 1.

LETTER	CODE LETTER	LETTER	CODE LETTER
A,B,C	1	D,E,F	2

G,H,I	3	J,K,L	4
M,N,O	5	P,Q,R	6
S,T,U	7	V,W,X,Y,Z	8

- a. You have a hash table with 13 buckets. Show how this hash table will be filled using linear probing.
- b. You have a hash table with 13 buckets. Show how this hash table will be filled using quadratic probing.
- c. You have a hash table with 13 buckets. Show how this table will be filled when separate chaining is used.