

Digitális technika 2. BMEVIIIAA02

elődás 2020/21 tavaszi félév

Neumann modell, sín, processzor

Neumann modell

Neumann János (1945) First Draft of a Report on EDVAC (Electronic Discrete Variable Automatic Computer)

Neumann modell

Neumann modell

Alapelvek

- belső programtárolás és programvezérlés
- utasítás és adat azonos közegben és formában tárolva
 - az értelmezés dönti el, hogy egy memóriatartalom utasítás vagy adat
 - utasítások programmal módosíthatók
 - adattípusok műveletekhez rendeltek
 - szekvenciális utasítás végrehajtás
 - egydimenziós, lineáris címzésű memória
 - bináris adatábrázolás

ALU + vezérlő egység ⇒ processzor (CPU) Külső kapcsolatok ⇒ perifériák

CPU – Central Processing Unit

CPU

Sín (Busz)

Adatok továbbítására szolgáló vezeték halmaz A műveletben résztvevő egység azonosítása A művelet adata

A végrehajtás ütemezése

Cím Adat Vezérlés

Sín jelek

Cím - a forrás/cél azonosítása

Adat - a továbbítani kívánt információ

Vezérlés - az adatátvitel ütemezése

Az adatátvitel szereplői

MASTER - feladata az adatátvitel vezérlése (cím, ütemezés)
 SLAVE - feladata az adatátvitel végrehajtása

1 MASTER – n SLAVE

FORRÁS - az adatot szolgáltató eszköz

CÉL - az adatot eltároló eszköz

1 FORRÁS – n CÉL

é s

Sín paraméterek

- Adatszélesség (1,8,16, ... 128, ...)
- Címtartomány (16, 20, 24, ...)
- Adatátvitel sebessége

Idő-osztásos sín használat

Fizikai megvalósítás

- Three-state
- Nyitott kollektor

Clk cím művelet adat

Ütemezés megvalósítása

- Szinkron az adatátvitel ideje meghatározott, órajel ütemezi
- Aszinkron az adatátvitel ütemezése handshake jelekkel történik

Sín: több modul csatlakozhat rá

Igény: 1 modul - 1 terhelési egység, 20 meghajtási egység

→ a sín jeleket le kell választani (meghajtó áramkörök)

	Cím	Vezérlés
	Jelek meghajtása	Jelek meghajtása
Master	egyirányú erősítő	egyirányú erősítő
	KI	KI
	Jelek leválasztása	Jelek leválasztása
Slave	egyirányú erősítő	egyirányú erősítő
	BE	BE

	Adat
	Jelek meghajtása
Forrás	egyirányú erősítő
	KI
	Jelek leválasztása
Cél	egyirányú erősítő
	BE

ha a modul forrás és cél is lehet: **kétirányú erősítő**

Egyirányú erősítő: pl. 74LS244

Kétirányú erősítő: pl. 74LS245

Е	DIR	Kimenet
L	L	$B \rightarrow A$
L	Η	$A \rightarrow B$
Н	Х	HiZ

Sín illesztés – MASTER modul (CPU)

Sín illesztés – SLAVE modul (Memória, I/O)

CPU felépítése

CPU funkcionális felépítése

Sín interfész: kapcsolat a külvilággal

cím: a műveletben résztvevő egység azonosítása

adat: a művelet adata

vezérlő jelek: a művelet végrehajtásának ütemezése

CPU felépítése

CPU funkcionális felépítése

ALU: aritmetikai logikai egység

- aritmetikai műveletek
 - összeadás/kivonás (kettes komplemens)
 - fixpontos szorzás/osztás
 - lebegőpontos műveletek
- Léptetések
- Logikai műveletek AND, OR, XOR, NOT

Regiszterek: belső tároló elemek

- általános célú regiszterek
- speciális célú regiszterek

címregiszterek

- általános célú címregiszter
- program számláló (PC)
- verem mutató (SP)

adatregiszterek

- akkumulátor (A)
- általános adatregiszter

állapot regiszter (flagek)

CY – Carry, Z – Zero, S – Sign, P - Parity

Vezérlő egység

- Huzalozott logika gyors, de bonyolult
- Sorrendi hálózat fázisregiszter mikroprogramozott vezérlő egység

Utasítások felépítése

Gépi utasítás felépítése

műveleti kód	operandusok	Hany cim kell	
<opkód> <op1></op1></opkód>	<op2><eredmény><következő utasítás=""></következő></eredmény></op2>	négycímű	
<opkód> <op1></op1></opkód>	· <op2><eredmény></eredmény></op2>	háromcímű	
<opkód> <op1></op1></opkód>	\sim	kettőcímű	
<opkód> <op1></op1></opkód>	akkumulátor (A) A =	A + X egycímű	

Adattípusok

bit

Byte

word

Long word

lebegőpontos

Közvetlen címzés – az utasítás tartalmazza az operandust

műveleti kód operandus

Direkt címzés

memória direkt – az utasítás tartalmazza az operandus memóriacímét

regiszter direkt – az operandus egy regiszter

Indirekt címzés

• regiszter indirekt – az operandus címét egy címregiszter tartalmazza

Regiszter indirekt címzés

Pre-dekremens címzés – a művelet elvégzése előtt a címregiszter tartalma csökken

Post-inkremens címzés – a művelet elvégzése után a címregiszter tartalma nő

Regiszter indirekt címzés

Eltolt címzés – az operandus címe egy bázisregiszter és egy konstans eltolás összegéből képződik

Regiszter indirekt címzés

indexelt címzés – az operandus címe egy bázisregiszter és egy operandusmérettel megszorzott indexregiszter összegéből képződik

Regiszter indirekt címzés

Indexelt címzés eltolással – az operandus címe egy bázisregiszter, egy operandusmérettel megszorzott indexregiszter és egy konstans eltolás összegéből képződik

Indirekt címzés

 memória indirekt – az utasítás tartalmazza az operandus memóriacímét tartalmazó memóriarekesz címét

Processzorok fejlődése

Intel processzorok fejlődése

Év	Tranzisztorok száma	Processzor	Jellemzők
1971	~2300	I4004	4 adatbit, 12 címbit
1972	~3500	18008	8 adatbit, 14 címbit
1974	~4500	I8080	8 adatbit, 16 címbit
1975	~6500	18085	8080 javított változat
1976	~8500	Z80	8080 javított változat
1978	~30000	I8086	16 adatbit, 20 címbit
1982	~120000	I80286	virtuális memória, védett üzemmód
1985	~275000	I80386	IA-32 architektúra
1989	~1.2M	I80486	aritmetikai processzor
1993	~3M	Pentium	64 bites adatbusz, belső cache
1997	~7.5M	Pentium II	L1, L2 cache, MMX
1999	~9.5M	Pentium III	SSE utasítások
2000	~42M	Pentium IV	Hyper Pipeline
2006	~300M	Dual core	2 mag, L3 cache
2008	~730M	Quad core	4 mag
2010	~2.3G	Xeon Nehalem-EX	8 mag 64 bit
2012	~5G	Xeon Phi	61 mag 32 bit
2016	~8G	Xeon Phi	72 mag 64 bit

8085 CPU

3.072MHz

8085 CPU

