Examples for kinetic evaluations using mkin

Johannes Ranke

Eurofins Regulatory AG Weidenweg 15, CH–4310 Rheinfelden, Switzerland

and

University of Bremen

April 14, 2013

Contents

1	Kinetic evaluations for parent compounds	1
	1.1 Laboratory Data L1	1
	1.2 Laboratory Data L2	7
	1.3 Laboratory Data L3	16
	1.4 Laboratory Data L4	22
2	Kinetic evaluations for parent and metabolites 2.1 Laboratory Data for example compound Z	26 26
V.	ov words: Vinctics FOCUS nonlinear entimisation	

Key words: Kinetics, FOCUS, nonlinear optimisation

Kinetic evaluations for parent compounds 1

These examples are also evaluated in a parallel vignette of the **kinfit** package (Ranke, 2012). The datasets are from Appendix 3, of the FOCUS kinetics report (FOCUS Work Group on Degradation Kinetics, 2006, 2011).

1.1 Laboratory Data L1

The following code defines example dataset L1 from the FOCUS kinetics report, p. 284

```
R> library("mkin")
R> FOCUS_2006_L1 = data.frame(
   t = rep(c(0, 1, 2, 3, 5, 7, 14, 21, 30), each = 2),
   parent = c(88.3, 91.4, 85.6, 84.5, 78.9, 77.6,
               72.0, 71.9, 50.3, 59.4, 47.0, 45.1,
               27.7, 27.3, 10.0, 10.4, 2.9, 4.0))
R> FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)
```

The next step is to set up the models used for the kinetic analysis. Note that the model definitions contain the names of the observed variables in the data. In this case, there is only one variable called parent.

```
R> SFO <- mkinmod(parent = list(type = "SFO"))
R> FOMC <- mkinmod(parent = list(type = "FOMC"))</pre>
R> DFOP <- mkinmod(parent = list(type = "DFOP"))</pre>
```

The three models cover the first assumption of simple first order (SFO), the case of declining rate constant over time (FOMC) and the case of two different phases of the kinetics (DFOP). For a more detailed discussion of the models, please see the FOCUS kinetics report.

The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.

R> m.L1.SF0 <- mkinfit(SF0, F0CUS_2006_L1_mkin, quiet=TRUE) R> summary(m.L1.SF0)

mkin version: 0.9.19
R version: 2.15.3

Date of fit: Sun Apr 14 14:06:10 2013
Date of summary: Sun Apr 14 14:06:10 2013

Equations:

[1] d_parent = - k_parent_sink * parent

Method used for solution of differential equation system: analytical

Starting values for optimised parameters:

initial type transformed parent_0 100.0 state 100.000000 k_parent_sink 0.1 deparm -2.302585

Fixed parameter values: None

Optimised, transformed parameters:

Estimate Std. Error Lower Upper parent_0 92.470 1.36800 89.570 95.370 k_parent_sink -2.347 0.04057 -2.433 -2.261

Backtransformed parameters:

Estimate Lower Upper parent_0 92.47000 89.57000 95.3700 k_parent_sink 0.09561 0.08773 0.1042

Residual standard error: 2.948 on 16 degrees of freedom

Chi2 error levels in percent:

err.min n.optim df All data 3.424 2 7 parent 3.424 2 7

Estimated disappearance times:

DT50 DT90 parent 7.249 24.08

```
Estimated formation fractions:
            ff
parent_sink
Parameter correlation:
             parent_0 k_parent_sink
parent_0
              1.0000 0.6248
k_parent_sink
               0.6248
                             1.0000
Data:
 time variable observed predicted residual
    0
       parent
                 88.3
                         92.471
                                 -4.1710
                  91.4
                          92.471
       parent
                                  -1.0710
    0
    1
      parent
                  85.6
                          84.039
                                   1.5610
                  84.5
                          84.039
                                   0.4610
    1
      parent
      parent
                  78.9
                         76.376
                                   2.5241
    2
                  77.6
                         76.376
                                   1.2241
    2
       parent
    3
                  72.0
                          69.412
                                   2.5884
       parent
    3
                 71.9
                         69.412
                                   2.4884
       parent
    5
                  50.3
                          57.330
                                  -7.0301
       parent
                          57.330
                                   2.0699
    5
                  59.4
       parent
    7
       parent
                  47.0
                          47.352
                                  -0.3515
    7
                          47.352
                                  -2.2515
                  45.1
       parent
   14
                  27.7
                         24.247
                                  3.4527
       parent
   14
       parent
                  27.3
                          24.247
                                   3.0527
   21
       parent
                  10.0
                          12.416
                                  -2.4163
   21
                  10.4
                          12.416
                                  -2.0163
       parent
   30
       parent
                  2.9
                           5.251
                                  -2.3513
                   4.0
                           5.251
                                  -1.2513
   30
       parent
```

A plot of the fit is obtained with the plot function for mkinfit objects.

R> plot(m.L1.SF0)

The residual plot can be easily obtained by

R> mkinresplot(m.L1.SFO, ylab = "Observed", xlab = "Time")

For comparison, the FOMC model is fitted as well, and the χ^2 error level is checked.

R> m.L1.FOMC <- mkinfit(FOMC, FOCUS_2006_L1_mkin, quiet=TRUE) R> summary(m.L1.FOMC)

mkin version: 0.9.19
R version: 2.15.3

Date of fit: Sun Apr 14 14:06:10 2013 Date of summary: Sun Apr 14 14:06:10 2013

Equations:

[1] $d_{parent} = - (alpha/beta) * ((time/beta) + 1)^{-1} * parent$

Method used for solution of differential equation system: analytical

Starting values for optimised parameters:

initial type transformed parent_0 100 state 100.000000 alpha 1 deparm 0.000000 beta 10 deparm 2.302585

Fixed parameter values:

None

Optimised, transformed parameters:

Estimate Std. Error Lower Upper

parent_0	92.47	NA	NA	NA
alpha	25.63	NA	NA	NA
beta	27.98	NA	NA	NA

Backtransformed parameters:

Estimate Lower Upper

Residual standard error: 3.045 on 15 degrees of freedom

Chi2 error levels in percent:

err.min n.optim df

All data 3.619 3 6 parent 3.619 3 6

Estimated disappearance times:

DT50 DT90

parent 7.249 24.08

Estimated formation fractions:

ff

parent_sink 1

Parameter correlation:

Could not estimate covariance matrix; singular system:

Data:

aca.				
time	variable	observed	predicted	residual
0	parent	88.3	92.471	-4.1711
0	parent	91.4	92.471	-1.0711
1	parent	85.6	84.038	1.5618
1	parent	84.5	84.038	0.4618
2	parent	78.9	76.377	2.5233
2	parent	77.6	76.377	1.2233
3	parent	72.0	69.412	2.5884
3	parent	71.9	69.412	2.4884
5	parent	50.3	57.331	-7.0306
5	parent	59.4	57.331	2.0694
7	parent	47.0	47.351	-0.3510
7	parent	45.1	47.351	-2.2510
14	parent	27.7	24.247	3.4526
14	parent	27.3	24.247	3.0526
21	parent	10.0	12.416	-2.4162
21	parent	10.4	12.416	-2.0162
30	parent	2.9	5.251	-2.3513
30	parent	4.0	5.251	-1.2513

Due to the higher number of parameters, and the lower number of degrees of freedom of the fit, the χ^2 error level is actually higher for the FOMC model (3.6%) than for the SFO model (3.4%). Additionally, the covariance matrix can not be obtained, indicating overparameterisation of the model.

The χ^2 error levels reported in Appendix 3 and Appendix 7 to the FOCUS kinetics report are rounded to integer percentages and partly deviate by one percentage point from the results calculated by mkin. The reason for this is not known. However, mkin gives the same χ^2 error levels as the kinfit package. Furthermore, the calculation routines of the kinfit package have been extensively compared to the results obtained by the KinGUI software, as documented in the kinfit package vignette. KinGUI is a widely used standard package in this field. Therefore, the reason for the difference was not investigated further.

1.2 Laboratory Data L2

The following code defines example dataset L2 from the FOCUS kinetics report, p. 287

```
R> FOCUS_2006_L2 = data.frame(
    t = rep(c(0, 1, 3, 7, 14, 28), each = 2),
    parent = c(96.1, 91.8, 41.4, 38.7,
               19.3, 22.3, 4.6, 4.6,
+
               2.6, 1.2, 0.3, 0.6)
R> FOCUS_2006_L2_mkin <- mkin_wide_to_long(FOCUS_2006_L2)
Again, the SFO model is fitted and a summary is obtained.
R> m.L2.SFO <- mkinfit(SFO, FOCUS_2006_L2_mkin, quiet=TRUE)
R> summary(m.L2.SF0)
mkin version:
                0.9.19
                2.15.3
R version:
Date of fit: Sun Apr 14 14:06:11 2013
Date of summary: Sun Apr 14 14:06:11 2013
Equations:
[1] d_parent = - k_parent_sink * parent
Method used for solution of differential equation system:
analytical
Starting values for optimised parameters:
             initial type transformed
parent_0
           100.0 state 100.000000
k_parent_sink
                0.1 deparm -2.302585
Fixed parameter values:
```

None

```
Optimised, transformed parameters:
             Estimate Std. Error
                                  Lower
                                          Upper
parent_0
              91.4700
                      3.8070 82.9800 99.9500
k_{parent\_sink} -0.4112
                         0.1074 -0.6505 -0.1719
Backtransformed parameters:
             Estimate
                        Lower
             91.4700 82.9800 99.9500
parent_0
k_parent_sink 0.6629 0.5218 0.8421
Residual standard error: 5.51 on 10 degrees of freedom
Chi2 error levels in percent:
        err.min n.optim df
All data
         14.38
                  2 4
          14.38
parent
Estimated disappearance times:
       DT50 DT90
parent 1.046 3.474
Estimated formation fractions:
           ff
parent_sink 1
Parameter correlation:
             parent_0 k_parent_sink
              1.0000 0.4295
parent_0
k_parent_sink 0.4295
                            1.0000
Data:
 time variable observed predicted residual
      parent 96.1 9.147e+01 4.6344
   0
                 91.8 9.147e+01
                                  0.3344
    0
      parent
                 41.4 4.714e+01 -5.7395
    1
      parent
                 38.7 4.714e+01
                                -8.4395
    1
       parent
    3
       parent
                  19.3 1.252e+01
                                 6.7790
   3
      parent
                 22.3 1.252e+01
                                 9.7790
    7
      parent
                  4.6 8.834e-01
                                 3.7166
    7
                 4.6 8.834e-01
                                  3.7166
      parent
                 2.6 8.532e-03
   14
       parent
                                  2.5915
   14
                  1.2 8.532e-03
                                  1.1915
       parent
   28
       parent
                   0.3 7.958e-07
                                  0.3000
   28
       parent
                   0.6 7.958e-07
                                  0.6000
```

The χ^2 error level of 14% suggests that the model does not fit very well. This is also obvious from the plots of the fit and the residuals.

R > par(mfrow = c(2, 1))

R> plot(m.L2.SF0)
R> mkinresplot(m.L2.SF0)

In the FOCUS kinetics report, it is stated that there is no apparent systematic error observed from the residual plot up to the measured DT90 (approximately at day 5), and

there is an underestimation beyond that point.

We may add that it is difficult to judge the random nature of the residuals just from the three samplings at days 0, 1 and 3. Also, it is not clear *a priori* why a consistent underestimation after the approximate DT90 should be irrelevant. However, this can be rationalised by the fact that the FOCUS fate models generally only implement SFO kinetics.

For comparison, the FOMC model is fitted as well, and the χ^2 error level is checked.

```
R> m.L2.FOMC <- mkinfit(FOMC, FOCUS_2006_L2_mkin, quiet = TRUE)</pre>
R > par(mfrow = c(2, 1))
R> plot(m.L2.FOMC)
R> mkinresplot(m.L2.FOMC)
R> summary(m.L2.FOMC, data = FALSE)
mkin version:
               0.9.19
R version:
                2.15.3
Date of fit:
              Sun Apr 14 14:06:11 2013
Date of summary: Sun Apr 14 14:06:11 2013
Equations:
[1] d_parent = -(alpha/beta) * ((time/beta) + 1)^{-1} * parent
Method used for solution of differential equation system:
analytical
Starting values for optimised parameters:
       initial type transformed
parent_0 100 state 100.000000
alpha
             1 deparm 0.000000
            10 deparm 2.302585
beta
Fixed parameter values:
None
Optimised, transformed parameters:
       Estimate Std. Error Lower Upper
parent_0 93.7700 1.8560 89.5700 97.9700
alpha 0.3180
                   0.1867 -0.1044 0.7405
beta
         0.2102
                   0.2943 -0.4556 0.8759
Backtransformed parameters:
        Estimate Lower Upper
parent_0 93.770 89.5700 97.970
        1.374 0.9009 2.097
alpha
           1.234 0.6341 2.401
beta
```

Chi2 error levels in percent:

err.min n.optim df

All data 6.204 3 3 parent 6.204 3 3

Estimated disappearance times:

DT50 DT90

parent 0.8092 5.356

Estimated formation fractions:

ff

parent_sink 1

Parameter correlation:

parent_0alphabetaparent_01.00000-0.09553-0.1863alpha-0.095531.000000.9757beta-0.186280.975681.0000

The error level at which the χ^2 test passes is much lower in this case. Therefore, the FOMC model provides a better description of the data, as less experimental error has to

be assumed in order to explain the data.

Fitting the four parameter DFOP model further reduces the χ^2 error level.

Here, the default starting parameters for the DFOP model obviously do not lead to a reasonable solution. Therefore the fit is repeated with different starting parameters.

Equations:

[1] $d_{parent} = -((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * time)) / (g * exp(-k2 * time$

Method used for solution of differential equation system:

analytical

Starting values for optimised parameters:

initial type transformed
parent_0 1e+02 state 100.0000000

k1 1e+00 deparm 0.0000000 k2 1e-02 deparm -4.6051702 g 8e-01 deparm 0.9802581

Fixed parameter values:

None

g

Optimised, transformed parameters:

Backtransformed parameters:

-0.2821

Estimate Lower Upper

 parent_0
 93.9500
 NA
 NA

 k1
 142.4000
 NA
 NA

 k2
 0.3369
 NA
 NA

 q
 0.4016
 NA
 NA

Residual standard error: 1.732 on 8 degrees of freedom

NA NA

Chi2 error levels in percent:

err.min n.optim df

All data 2.529 4 2 parent 2.529 4 2

Estimated disappearance times:

DT50 DT90

parent NA NA

Estimated formation fractions:

ff

parent_sink 1

Parameter correlation:

Could not estimate covariance matrix; singular system:

Here, the DFOP model is clearly the best-fit model for dataset L2 based on the χ^2 error level criterion. However, the failure to calculate the covariance matrix indicates that the parameter estimates correlate excessively. Therefore, the FOMC model may be preferred for this dataset.

1.3 Laboratory Data L3

The following code defines example dataset L3 from the FOCUS kinetics report, p. 290.

Date of summary: Sun Apr 14 14:06:12 2013

Equations:

[1] d_parent = - k_parent_sink * parent

Method used for solution of differential equation system: analytical

Starting values for optimised parameters:

initial type transformed

Fixed parameter values:

None

Optimised, transformed parameters:

Estimate Std. Error Lower Upper

parent_0 74.870 8.4580 54.180 95.57 k_parent_sink -3.678 0.3261 -4.476 -2.88

Backtransformed parameters:

Estimate Lower Upper

parent_0 74.87000 54.18000 95.57000

k_parent_sink 0.02527 0.01138 0.05612

Residual standard error: 12.91 on 6 degrees of freedom

Chi2 error levels in percent:

err.min n.optim df

All data 21.24 2 6

parent 21.24 2 6

Estimated disappearance times:

DT50 DT90

parent 27.43 91.12

Estimated formation fractions:

ff

parent_sink 1

Parameter correlation:

parent_0 k_parent_sink

parent_0 1.0000 0.5484 k_parent_sink 0.5484 1.0000

Data:

time variable observed predicted residual 0 parent 97.8 74.873 22.92734

```
3
      parent
                  60.0
                           69.407 -9.40654
  7
                           62.734 -11.73403
      parent
                  51.0
14
                  43.0
                           52.563
                                    -9.56336
      parent
 30
                  35.0
                           35.083
                                    -0.08281
      parent
 60
      parent
                  22.0
                           16.439
                                     5.56137
 91
                  15.0
                            7.510
                                     7.48961
      parent
120
                  12.0
                            3.609
                                     8.39083
      parent
```


The χ^2 error level of 22% as well as the plot suggest that the model does not fit very well. The FOMC model performs better:

```
R> m.L3.FOMC <- mkinfit(FOMC, FOCUS_2006_L3_mkin, quiet = TRUE)
R> plot(m.L3.FOMC)
```

R> summary(m.L3.FOMC, data = FALSE)

mkin version: 0.9.19 R version: 2.15.3

Date of fit: Sun Apr 14 14:06:12 2013
Date of summary: Sun Apr 14 14:06:12 2013

Equations:

[1] $d_{parent} = - (alpha/beta) * ((time/beta) + 1)^{-1} * parent$

Method used for solution of differential equation system: analytical

Starting values for optimised parameters:

initial type transformed parent_0 100 state 100.000000 alpha 1 deparm 0.000000 beta 10 deparm 2.302585

Fixed parameter values:

None

Optimised, transformed parameters:

 parent_0
 Estimate
 Std. Error
 Lower
 Upper

 parent_0
 96.9700
 4.5500
 85.2800
 108.7000

 alpha
 -0.8619
 0.1704
 -1.3000
 -0.4237

 beta
 0.6193
 0.4744
 -0.6003
 1.8390

Backtransformed parameters:

Estimate Lower Upper parent_0 96.9700 85.2800 108.7000 alpha 0.4224 0.2725 0.6546 beta 1.8580 0.5487 6.2890

Residual standard error: 4.572 on 5 degrees of freedom

Chi2 error levels in percent:

err.min n.optim df
All data 7.322 3 5
parent 7.322 3 5

Estimated disappearance times:

DT50 DT90 parent 7.729 431.2

Estimated formation fractions:

ff
parent_sink 1

Parameter correlation:

parent_0 alpha beta parent_0 1.0000 -0.1512 -0.4271 alpha -0.1512 1.0000 0.9110 beta -0.4271 0.9110 1.0000

The error level at which the χ^2 test passes is 7% in this case.

Fitting the four parameter DFOP model further reduces the χ^2 error level considerably:

```
R> m.L3.DFOP <- mkinfit(DFOP, FOCUS_2006_L3_mkin, quiet = TRUE)
R> plot(m.L3.DFOP)
```

R> summary(m.L3.DFOP, data = FALSE)

mkin version: 0.9.19
R version: 2.15.3

Date of fit: Sun Apr 14 14:06:12 2013 Date of summary: Sun Apr 14 14:06:12 2013

Equations:

```
[1] d_{parent} = -((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * time)) / (g * exp(-k2 * time
```

 $\begin{tabular}{ll} \it Method used for solution of differential equation system: \\ \it analytical \\ \end{tabular}$

Starting values for optimised parameters:

Fixed parameter values: None

Optimised, transformed parameters:

	Estimate	Std. Error	Lower	Upper
parent_0	97.7500	1.43800	93.7500	101.70000
k1	-0.6612	0.13340	-1.0310	-0.29100
k2	-4.2860	0.05902	-4.4500	-4.12200
g	-0.1229	0.05121	-0.2651	0.01925

Backtransformed parameters:

	Estimate	Lower	Upper
parent_0	97.75000	93.75000	101.70000
k1	0.51620	0.35650	0.74750
k2	0.01376	0.01168	0.01621
g	0.45660	0.40730	0.50680

Residual standard error: 1.439 on 4 degrees of freedom

Chi2 error levels in percent:

err.min n.optim df

All data 2.224 4 4 parent 2.224 4 4

Estimated disappearance times:

DT50 DT90

parent 7.464 123

Estimated formation fractions:

ff

parent_sink 1

Parameter correlation:

 parent_0
 k1
 k2
 g

 parent_0
 1.00000
 0.1640
 0.01315
 0.4253

 k1
 0.16399
 1.0000
 0.46477
 -0.5526

 k2
 0.01315
 0.4648
 1.00000
 -0.6631

 g
 0.42526
 -0.5526
 -0.66310
 1.0000

Here, a look to the model plot, the confidence intervals of the parameters and the correlation matrix suggest that the parameter estimates are reliable, and the DFOP model can be used as the best-fit model based on the χ^2 error level criterion for laboratory data L3.

1.4 Laboratory Data L4

The following code defines example dataset L4 from the FOCUS kinetics report, p. 293

```
R> F0CUS_2006_L4 = data.frame(
+ t = c(0, 3, 7, 14, 30, 60, 91, 120),
+ parent = c(96.6, 96.3, 94.3, 88.8, 74.9, 59.9, 53.5, 49.0))
R> F0CUS_2006_L4_mkin <- mkin_wide_to_long(F0CUS_2006_L4)

SFO model, summary and plot:
R> m.L4.SF0 <- mkinfit(SF0, F0CUS_2006_L4_mkin, quiet = TRUE)
R> plot(m.L4.SF0)
```

mkin version: 0.9.19 R version: 2.15.3

Date of fit: Sun Apr 14 14:06:12 2013
Date of summary: Sun Apr 14 14:06:12 2013

R> summary(m.L4.SFO, data = FALSE)

Equations:

[1] d_parent = - k_parent_sink * parent

Method used for solution of differential equation system: analytical

Starting values for optimised parameters:

initial type transformed

Fixed parameter values:

None

Optimised, transformed parameters:

Estimate Std. Error Lower Upper

parent_0 96.44 1.94900 91.670 101.200 k_parent_sink -5.03 0.07999 -5.225 -4.834

Backtransformed parameters:

Estimate Lower Upper

parent_0 96.440000 91.670000 1.012e+02

k_parent_sink 0.006541 0.005378 7.955e-03

Residual standard error: 3.651 on 6 degrees of freedom

Chi2 error levels in percent:

err.min n.optim df

All data 3.288 2 6 parent 3.288 2 6

Estimated disappearance times:

DT50 DT90

parent 106 352

Estimated formation fractions:

ff

parent_sink 1

Parameter correlation:

parent_0 k_parent_sink

The χ^2 error level of 3.3% as well as the plot suggest that the model fits very well.

The FOMC model for comparison

R> m.L4.FOMC <- mkinfit(FOMC, FOCUS_2006_L4_mkin, quiet = TRUE)
R> plot(m.L4.FOMC)

R> summary(m.L4.FOMC, data = FALSE)

mkin version: 0.9.19
R version: 2.15.3

Date of fit: Sun Apr 14 14:06:13 2013 Date of summary: Sun Apr 14 14:06:13 2013

Equations:

[1] $d_{parent} = - (alpha/beta) * ((time/beta) + 1)^{-1} * parent$

 $\begin{tabular}{ll} \it Method used for solution of differential equation system: \\ \it analytical \\ \end{tabular}$

Starting values for optimised parameters:

initial type transformed parent_0 100 state 100.000000 alpha 1 deparm 0.000000 beta 10 deparm 2.302585

Fixed parameter values:

None

Optimised, transformed parameters:

Estimate Std. Error Lower Upper parent_0 99.1400 1.6800 94.820 103.5000 alpha -0.3506 0.3725 -1.308 0.6068 beta 4.1740 0.5635 2.725 5.6230

Backtransformed parameters:

Estimate Lower Upper parent_0 99.1400 94.8200 103.500 alpha 0.7042 0.2703 1.835 64.9800 15.2600 276.600 beta

Residual standard error: 2.315 on 5 degrees of freedom

Chi2 error levels in percent:

err.min n.optim df All data 2.028 3 5 parent 2.028 3 5

Estimated disappearance times:

DT50 DT90

parent 108.9 1644

Estimated formation fractions:

ff

parent_sink 1

Parameter correlation:

parent_0 alpha beta parent_0 1.0000 -0.5365 -0.6083 alpha -0.5365 1.0000 0.9913 beta -0.6083 0.9913 1.0000

The error level at which the χ^2 test passes is slightly lower for the FOMC model. However, the difference appears negligible.

2 Kinetic evaluations for parent and metabolites

2.1 Laboratory Data for example compound Z

The following code defines the example dataset from Appendix 7 to the FOCUS kinetics report, p.350

```
+ Z3 = c(0, NA, NA, NA, NA, 0.5 * LOD, 9.2, 13.1, 22.3, 28.4, 32.5,

+ 25.2, 17.2, 4.8, 4.5, 2.8, 4.4))

R> FOCUS_2006_Z_mkin <- mkin_wide_to_long(FOCUS_2006_Z)
```

The next step is to set up the models used for the kinetic analysis. As the simultaneous fit of parent and the first metabolite is usually straightforward, Step 1 (SFO for parent only) is skipped here. We start with the model 2a, with formation and decline of metabolite Z1 and the pathway from parent directly to sink included (default in mkin).

mkin version: 0.9.19 R version: 2.15.3

Date of fit: Sun Apr 14 14:06:14 2013 Date of summary: Sun Apr 14 14:06:14 2013

Equations:

[1]
$$d_20 = -k_20_{sink} * 20 - k_20_{21} * 20$$

[2] $d_21 = +k_20_{21} * 20 - k_21_{sink} * 21$

Method used for solution of differential equation system: eigen

Starting values for optimised parameters:

Fixed parameter values:

```
value type
Z1 0 state
```

Optimised, transformed parameters:

	Estimate	Std.	Error	Lower	Upper
Z0_0	97.0100		NA	NA	NA
k_Z0_sink	-36.2900		NA	NA	NA
k_Z0_Z1	0.8047		NA	NA	NA
k_Z1_sink	-0.7296		NA	NA	NA

Backtransformed parameters:

```
Estimate Lower Upper ZO_0 9.701e+01 NA NA
```

k_Z0_sink 1.733e-16 NA NA k_Z0_Z1 2.236e+00 NA NA k_Z1_sink 4.821e-01 NA NA

Residual standard error: 5.064 on 27 degrees of freedom

Chi2 error levels in percent:

err.min n.optim df All data 18.20 4 27 Z0 18.04 3 14 Z1 15.75 1 13

Estimated disappearance times:

DT50 DT90 Z0 0.310 1.030 Z1 1.438 4.776

Estimated formation fractions:

ff Z0_sink 7.75e-17 Z0_Z1 1.00e+00

Z1_sink 1.00e+00

Parameter correlation:

Could not estimate covariance matrix; singular system:

As obvious from the summary, the kinetic rate constant from parent compound Z to sink is negligible. Accordingly, the exact magnitude of the fitted parameter log k_Z_sink is ill-defined and the covariance matrix is not returned. This suggests, in agreement with the analysis in the FOCUS kinetics report, to simplify the model by removing the pathway to sink.

A similar result can be obtained when formation fractions are used in the model formulation:

```
R > Z.2a.ff <- mkinmod(ZO = list(type = "SFO", to = "Z1"),
                 Z1 = list(type = "SFO"), use_of_ff = "max")
R> m.Z.2a.ff <- mkinfit(Z.2a.ff, FOCUS_2006_Z_mkin, quiet = TRUE)
R> plot(m.Z.2a.ff)
R> summary(m.Z.2a.ff, data = FALSE)
mkin version:
               0.9.19
               2.15.3
R version:
Date of fit: Sun Apr 14 14:06:14 2013
Date of summary: Sun Apr 14 14:06:14 2013
Equations:
[1] d Z0 = -k Z0 * Z0
[2] d_Z1 = + f_Z0_to_Z1 * k_Z0 * Z0 - k_Z1 * Z1
Method used for solution of differential equation system:
eigen
Starting values for optimised parameters:
         initial type transformed
          100.0 state 100.0000000
ZO 0
k Z0
             0.1 deparm -2.3025851
f_Z0_to_Z1
             0.2 deparm -0.9802581
             0.1 deparm -2.3025851
Fixed parameter values:
  value type
   0 state
Optimised, transformed parameters:
           Estimate Std. Error Lower Upper
Z0_0
          9.701e+01 NA NA NA
          8.047e-01
k Z0
                          NA
                                 NA
                                       NA
f_Z0_to_Z1 8.862e+06
                          NA NA
                                       NA
         -7.296e-01
                          NA NA
k_{2}1
                                       NA
Backtransformed parameters:
         Estimate Lower Upper
Z0_0
          97.0100 NA NA
```

```
k_Z0 2.2360 NA NA
f_Z0_to_Z1 1.0000 NA NA
k_Z1 0.4821 NA NA
```

Residual standard error: 5.064 on 27 degrees of freedom

Chi2 error levels in percent:

		err.min	n.optim	df
All	data	18.20	4	27
Z0		17.56	2	15
Z1		16.25	2	12

Estimated disappearance times:

DT50 DT90 Z0 0.310 1.030 Z1 1.438 4.776

Parameter correlation:

Could not estimate covariance matrix; singular system:

Here, the ilr transformed formation fraction fitted in the model takes a very large value, and the backtransformed formation fraction from parent Z to Z1 is practically unity. Again, the covariance matrix is not returned as the model is overparameterised.

The simplified model is obtained by setting the list component sink to FALSE. This model definition is not supported when formation fractions are used.

```
R > Z.3 \leftarrow mkinmod(Z0 = list(type = "SFO", to = "Z1", sink = FALSE),
                Z1 = list(type = "SFO"))
R > m.Z.3 < -mkinfit(Z.3, FOCUS_2006_Z_mkin, parms.ini = c(k_Z0_Z1 = 0.5),
                 quiet = TRUE)
R> #m.Z.3 <- mkinfit(Z.3, FOCUS_2006_Z_mkin, solution_type = "deSolve")
R > plot(m.Z.3)
R> summary(m.Z.3, data = FALSE)
mkin version:
               0.9.19
               2.15.3
R version:
Date of fit: Sun Apr 14 14:06:15 2013
Date of summary: Sun Apr 14 14:06:15 2013
Equations:
[1] d_Z0 = -0 - k_Z0_Z1 * Z0
[2] d_Z1 = + k_Z0_Z1 * Z0 - k_Z1_sink * Z1
Method used for solution of differential equation system:
eigen
Starting values for optimised parameters:
        initial type transformed
          100.0 state 100.0000000
          0.5 deparm -0.6931472
k_Z0_Z1
k_Z1_sink
           0.1 deparm -2.3025851
Fixed parameter values:
  value type
     0 state
Optimised, transformed parameters:
        Estimate Std. Error Lower Upper
Z0 0
         97.0100 2.68200 91.5200 102.5000
          0.8047
                   0.06568 0.6702 0.9392
k_Z0_Z1
k_{Z1}sink -0.7296
                  0.08854 -0.9109 -0.5482
Backtransformed parameters:
        Estimate Lower Upper
         97.0100 91.5200 102.500
Z0 0
k_Z0_Z1
         2.2360 1.9550 2.558
k_Z1_sink 0.4821 0.4022
                          0.578
Residual standard error: 4.973 on 28 degrees of freedom
```

Chi2 error levels in percent:

```
err.min n.optim df
All data 17.93 3 28
Z0 17.56 2 15
Z1 15.75 1 13
```

Estimated disappearance times:

DT50 DT90 Z0 0.310 1.030

Z1 1.438 4.776

Estimated formation fractions:

ff
Z0_sink 1
Z0_Z1 1
Z1_sink 1

Parameter correlation:

	Z0_0	k_Z0_Z1	k_Z1_sink
Z0_0	1.0000	0.10629	0.41038
k_Z0_Z1	0.1063	1.00000	0.04345
k Z1 sink	0.4104	0.04345	1.00000

The first attempt to fit the model failed, as the default solution type chosen by mkinfit is based on eigenvalues, and the system defined by the starting parameters is identified as being singular to the solver. This is caused by the fact that the rate constants for

both state variables are the same using the default starting paramters. Setting a different starting value for one of the parameters overcomes this. Alternatively, the **deSolve** based model solution can be chosen, at the cost of a bit more computing time.

```
R > Z.4a <- mkinmod(ZO = list(type = "SFO", to = "Z1", sink = FALSE),
                  Z1 = list(type = "SFO", to = "Z2"),
+
                  Z2 = list(type = "SFO"))
R > m.Z.4a < -mkinfit(Z.4a, FOCUS_2006_Z_mkin, parms.ini = c(k_Z0_Z1 = 0.5),
                    quiet = TRUE)
R> plot(m.Z.4a)
R> summary(m.Z.4a, data = FALSE)
mkin version:
                0.9.19
R version:
                2.15.3
Date of fit:
                Sun Apr 14 14:06:16 2013
Date of summary: Sun Apr 14 14:06:16 2013
Equations:
[1] d_{Z0} = -0 - k_{Z0}Z1 * Z0
[2] d_Z1 = + k_Z0_Z1 * Z0 - k_Z1_sink * Z1 - k_Z1_Z2 * Z1
[3] d_Z2 = + k_Z1_Z2 * Z1 - k_Z2_sink * Z2
Method used for solution of differential equation system:
eigen
Starting values for optimised parameters:
         initial type transformed
Z0 0
          100.0 state 100.0000000
k_Z0_Z1
             0.5 deparm -0.6931472
k_Z1_sink
             0.1 deparm -2.3025851
             0.1 deparm -2.3025851
k_Z1_Z2
k_Z2_sink
            0.1 deparm -2.3025851
Fixed parameter values:
  value type
Z1
     0 state
      0 state
Optimised, transformed parameters:
        Estimate Std. Error Lower
                                       Upper
Z0 0
         96.9600 2.44700 92.0100 101.9000
k_Z0_Z1
          0.7970
                   0.05974
                             0.6762
                                      0.9179
k_{Z1}sink -4.1040
                     4.84700 -13.9100
                                       5.7000
         -0.7667
                     0.14630 -1.0630 -0.4707
k_Z1_Z2
k_{Z2}sink -0.8410
                     0.22860 -1.3030 -0.3787
Backtransformed parameters:
```

Upper

Estimate Lower

Residual standard error: 4.54 on 39 degrees of freedom

Chi2 error levels in percent:

		err.min	n.optim	df
A11	data	19.78	5	39
ZO		17.47	2	15
Z1		16.37	2	12
Z2		20.47	1	12

Estimated disappearance times:

DT50 DT90

Z0 0.3124 1.038

Z1 1.4410 4.787

Z2 1.6072 5.339

Estimated formation fractions:

ff

Z0_sink 1.0000

Z0_Z1 1.0000

Z1_sink 0.0343

*Z*1_*Z*2 0.9657

Z2_sink 1.0000

Parameter correlation:

	ZO_0	k_Z0_Z1	k_Z1_sink	k_Z1_Z2	k_Z2_sink
Z0_0	1.0000	0.1064	0.3492	-0.1769	-0.1534
k_Z0_Z1	0.1064	1.0000	0.1479	-0.1501	-0.1226
k_Z1_sink	0.3492	0.1479	1.0000	-0.8745	-0.8656
k_Z1_Z2	-0.1769	-0.1501	-0.8745	1.0000	0.8190
k_Z2_sink	-0.1534	-0.1226	-0.8656	0.8190	1.0000

As suggested in the FOCUS report, the pathway to sink was removed for metabolite Z1 as well in the next step. While this step appears questionable on the basis of the above results, it is followed here for the purpose of comparison. Also, in the FOCUS report, it is assumed that there is additional empirical evidence that Z1 quickly and exclusively hydrolyses to Z2. Again, in order to avoid a singular system when using default starting parameters, the starting parameter for the pathway without sink term has to be adapted.

```
R > Z.5 \leftarrow mkinmod(ZO = list(type = "SFO", to = "Z1", sink = FALSE),
                   Z1 = list(type = "SFO", to = "Z2", sink = FALSE),
+
                   Z2 = list(type = "SFO"))
R> m.Z.5 <- mkinfit(Z.5, FOCUS_2006_Z_mkin,
                     parms.ini = c(k_{Z0}Z1 = 0.5, k_{Z1}Z2 = 0.2), quiet = TRUE)
R> plot(m.Z.5)
R> summary(m.Z.5, data = FALSE)
mkin version:
                 0.9.19
                 2.15.3
R version:
Date of fit:
                 Sun Apr 14 14:06:17 2013
Date of summary: Sun Apr 14 14:06:17 2013
Equations:
[1] d_Z0 = -0 - k_Z0_Z1 * Z0
[2] d_Z1 = + k_Z0_Z1 * Z0 - 0 - k_Z1_Z2 * Z1
[3] d_Z2 = + k_Z1_Z2 * Z1 - k_Z2_sink * Z2
```

Method used for solution of differential equation system: eigen

Starting values for optimised parameters:

Fixed parameter values:

value type
Z1 0 state
Z2 0 state

Optimised, transformed parameters:

Backtransformed parameters:

Estimate Lower Upper Z0_0 96.7700 92.1900 101.3000 k_Z0_Z1 2.2140 1.9670 2.4920 k_Z1_Z2 0.4766 0.4152 0.5471 k_Z2_sink 0.4481 0.3581 0.5607

Residual standard error: 4.486 on 40 degrees of freedom

Chi2 error levels in percent:

err.min n.optim df
All data 19.58 4 40
Z0 17.43 2 15
Z1 15.94 1 13
Z2 20.51 1 12

Estimated disappearance times:

DT50 DT90 Z0 0.3131 1.040 Z1 1.4543 4.831 Z2 1.5468 5.138

Estimated formation fractions:

ff Z0_sink 1 Z0_Z1 1

```
Z1_sink 1
Z1_Z2 1
Z2_sink 1
```

Parameter correlation:

```
Z0_0 k_Z0_Z1 k_Z1_Z2 k_Z2_sink
Z0_0
          1.00000 0.05781
                                       0.31786
                            0.28747
k_Z0_Z1
          0.05781
                   1.00000 -0.04361
                                       0.01212
k_Z1_Z2
          0.28747 -0.04361
                            1.00000
                                       0.24018
k_Z2_sink 0.31786 0.01212
                            0.24018
                                       1.00000
```


Finally, metabolite Z3 is added to the model.

```
mkin version: 0.9.19
```

R version: 2.15.3
Date of fit: Sun Apr 14 14:06:18 2013 Date of summary: Sun Apr 14 14:06:18 2013

Equations:

- $[1] d_{20} = -0 k_{20}Z1 * Z0$
- [2] $d_Z1 = + k_Z0_Z1 * Z0 0 k_Z1_Z2 * Z1$
- [3] $d_Z2 = + k_Z1_Z2 * Z1 k_Z2_sink * Z2 k_Z2_Z3 * Z2$
- $[4] d_Z3 = + k_Z2_Z3 * Z2 k_Z3_sink * Z3$

Method used for solution of differential equation system: eigen

Starting values for optimised parameters:

	initial	type	transformed
Z0_0	100.0	state	100.0000000
k_Z0_Z1	0.5	deparm	-0.6931472
k_Z1_Z2	0.2	deparm	-1.6094379
k_Z2_Z3	0.3	deparm	-1.2039728
k_Z2_sink	0.1	deparm	-2.3025851
k_Z3_sink	0.1	deparm	-2.3025851

Fixed parameter values:

value type

0 state Z1

0 state Z2

Z30 state

Optimised, transformed parameters:

_		_		
	Estimate	Std. Error	Lower	Upper
Z0_0	96.8400	2.05900	92.7100	101.0000
k_Z0_Z1	0.7954	0.05332	0.6884	0.9025
k_Z1_Z2	-0.7375	0.06123	-0.8604	-0.6146
k_Z2_Z3	-1.5470	0.12250	-1.7930	-1.3010
k_Z2_sink	-1.4330	0.17160	-1.7770	-1.0880
k_Z3_sink	-2.8350	0.24360	-3.3240	-2.3470

Backtransformed parameters:

	Estimate	Lower	Upper
Z0_0	96.84000	92.71000	101.0000
k_Z0_Z1	2.21500	1.99100	2.4660
k_Z1_Z2	0.47830	0.42300	0.5409
k_Z2_Z3	0.21290	0.16650	0.2723
k_Z2_sink	0.23870	0.16910	0.3368
k Z3 sink	0.05869	0.03599	0.0957

Residual standard error: 4.1 on 51 degrees of freedom

Chi2 error levels in percent:

		err.min	n.optim	df
All	data	19.78	6	51
Z0		17.45	2	15
Z1		15.92	1	13
Z2		21.24	2	11
Z3		12.46	1	12

Estimated disappearance times:

DT50 DT90

Z0 0.3129 1.039

Z1 1.4492 4.814

Z2 1.5348 5.099

Z3 11.8100 39.232

Estimated formation fractions:

ff

Z0_sink 1.0000 Z0_Z1 1.0000 Z1_sink 1.0000 Z1_Z2 1.0000 Z2_sink 0.5285 Z2_Z3 0.4715

Z3_sink 1.0000

Parameter correlation:

	Z0_0	k_Z0_Z1	k_Z1_Z2	k_Z2_Z3	k_Z2_sink	k_Z3_sink
Z0_0	1.00000	0.05387	0.2727	-0.07295	0.37006	-0.11348
k_Z0_Z1	0.05387	1.00000	-0.0521	-0.03581	0.02442	-0.02521
k_Z1_Z2	0.27275	-0.05210	1.0000	-0.12132	0.29384	-0.19144
k_Z2_Z3	-0.07295	-0.03581	-0.1213	1.00000	-0.18887	0.55154
k_Z2_sink	0.37006	0.02442	0.2938	-0.18887	1.00000	-0.64293
k_Z3_sink	-0.11348	-0.02521	-0.1914	0.55154	-0.64293	1.00000

This is the fit corresponding to the final result chosen in Appendix 7 of the FOCUS report. The residual plots can be obtained by

```
R> par(mfrow = c(2, 2))
R> mkinresplot(m.Z.FOCUS, "ZO", lpos = "bottomright")
R> mkinresplot(m.Z.FOCUS, "Z1", lpos = "bottomright")
R> mkinresplot(m.Z.FOCUS, "Z2", lpos = "bottomright")
R> mkinresplot(m.Z.FOCUS, "Z3", lpos = "bottomright")
```


As the FOCUS report states, there is a certain tailing of the time course of metabolite Z3. Also, the time course of the parent compound is not fitted very well using the SFO model, as residues at a certain low level remain.

Therefore, an additional model is offered here, using the single first-order reversible binding (SFORB) model for metabolite Z3. As expected, the χ^2 error level is lower for metabolite Z3 using this model and the graphical fit for Z3 is improved. However, the covariance matrix is not returned.

```
R> m.Z.mkin.1 <- mkinfit(Z.mkin.1, FOCUS_2006_Z_mkin,</pre>
                                                                 parms.ini = c(k_Z0_Z1 = 0.5, k_Z1_Z2 = 0.3),
+
                                                                 quiet = TRUE)
R> plot(m.Z.mkin.1)
R> summary(m.Z.mkin.1, data = FALSE)
mkin version:
                                                      0.9.19
R version:
                                                     2.15.3
Date of fit:
                                                    Sun Apr 14 14:06:23 2013
Date of summary: Sun Apr 14 14:06:23 2013
Equations:
[1] d_Z0 = -0 - k_Z0_Z1 * Z0
[2] d_Z1 = + k_Z0_Z1 * Z0 - 0 - k_Z1_Z2 * Z1
[3] d_22 = + k_21_22 * Z1 - k_22_sink * Z2 - k_22_Z3_free * Z2
[4] \ d\_Z3\_free = + \ k\_Z2\_Z3\_free * Z2 - k\_Z3\_free\_sink * Z3\_free - k\_Z3\_free\_bound * Z3\_free\_sink * Z3\_free\_bound * Z3\_free\_sink * Z3\_free\_bound * Z3\_free\_sink * Z3\_free\_bound * Z3\_free\_sink * Z3\_f
[5] d_Z3_bound = + k_Z3_free_bound * Z3_free - k_Z3_bound_free * Z3_bound
Method used for solution of differential equation system:
eigen
Starting values for optimised parameters:
                                                  initial type transformed
Z0 0
                                                       1e+02 state 100.0000000
k Z0 Z1
                                                        5e-01 deparm -0.6931472
k_Z1_Z2
                                                        3e-01 deparm -1.2039728
k_Z2_sink
                                                        1e-01 deparm -2.3025851
                                                    1e-01 deparm -2.3025851
k_Z2_Z3_free
k_Z3_free_sink
                                                      1e-01 deparm -2.3025851
k_Z3_free_bound 1e-01 deparm -2.3025851
k_Z3_bound_free 2e-02 deparm -3.9120230
```

Fixed parameter values:

 $\begin{array}{cccc} & value & type \\ Z1 & 0 & state \\ Z2 & 0 & state \\ Z3_free & 0 & state \\ Z3_bound & 0 & state \\ \end{array}$

Optimised, transformed parameters:

	Estimate	Std.	Error	Lower	Upper
ZO_0	96.7400		NA	NA	NA
k_Z0_Z1	0.7947		NA	NA	NA
k_Z1_Z2	-0.7426		NA	NA	NA
k_Z2_sink	-1.4950		NA	NA	NA
k_Z2_Z3_free	-1.5040		NA	NA	NA
k_Z3_free_sink	-2.6540		NA	NA	NA
k_Z3_free_bound	-5.2440		NA	NA	NA

```
k\_Z3\_bound\_free -21.1000 NA NA NA
```

Backtransformed parameters:

	Estimate	Lower	Upper
ZO_0	9.674e+01	NA	NA
k_Z0_Z1	2.214e+00	NA	NA
k_Z1_Z2	4.759e-01	NA	NA
k_Z2_sink	2.243e-01	NA	NA
k_Z2_Z3_free	2.222e-01	NA	NA
k_Z3_free_sink	7.034e-02	NA	NA
$k_Z3_free_bound$	5.279e-03	NA	NA
k 73 bound free	6.894e-10	NA	NA

Residual standard error: 4.107 on 49 degrees of freedom

Chi2 error levels in percent:

		$\mathit{err.min}$	n.optim	df
All	data	19.755	8	49
ZO		17.429	2	15
Z1		15.949	1	13
Z2		21.190	2	11
<i>Z3</i>		8.561	3	10

Estimated disappearance times:

DT50 DT90 Z0 0.3131 1.040 Z1 1.4566 4.839 Z2 1.5523 5.157

Z3 10.1978 45.329

Estimated formation fractions:

ff
Z0_sink 1.0000
Z0_Z1 1.0000
Z1_sink 1.0000
Z1_Z2 1.0000
Z2_sink 0.5024
Z2_Z3_free 0.4976
Z3_free_sink 1.0000

Estimated Eigenvalues of SFORB model(s):

Z3_b1 Z3_b2 7.562e-02 6.413e-10

Parameter correlation:

Could not estimate covariance matrix; singular system:

Therefore, a further stepwise model building is performed starting from the stage of parent and one metabolite, starting from the assumption that the model fit for the parent compound can be improved by using the SFORB model.

```
R> Z.mkin.2 <- mkinmod(ZO = list(type = "SFORB", to = "Z1", sink = FALSE),
                  Z1 = list(type = "SFO"))
R> m.Z.mkin.2 <- mkinfit(Z.mkin.2, FOCUS_2006_Z_mkin, quiet = TRUE)
R> plot(m.Z.mkin.2)
R> summary(m.Z.mkin.2, data = FALSE)
mkin version:
                 0.9.19
                 2.15.3
R version:
Date of fit:
                 Sun Apr 14 14:06:24 2013
Date of summary: Sun Apr 14 14:06:24 2013
Equations:
```

```
[1] d_20_free = -0 - k_20_free_bound * 20_free + k_20_bound_free * 20_bound - k_20_free_bound + k_20
 [2] d_Z0_bound = + k_Z0_free_bound * Z0_free - k_Z0_bound_free * Z0_bound
```

[3] $d_Z1 = + k_Z0_free_Z1 * Z0_free - k_Z1_sink * Z1$

Method used for solution of differential equation system: eigen

Starting values for optimised parameters: initial type transformed Fixed parameter values:

value type

Optimised, transformed parameters:

Backtransformed parameters:

Residual standard error: 4.438 on 26 degrees of freedom

Chi2 error levels in percent:

err.min n.optim df

All data 15.89 5 26 ZO 14.74 4 13 Z1 14.94 1 13

Estimated disappearance times:

DT50 DT90

Z0 0.302 1.190

Z1 1.532 5.091

Estimated formation fractions:

ff

Z0_free_sink 1
Z0_free_Z1 1
Z1_sink 1

Estimated Eigenvalues of SFORB model(s):

zo b1 zo b2

2.476313 0.008461

Parameter correlation:

```
Z0_free_0 k_Z0_free_bound k_Z0_bound_free k_Z0_free_Z1
Z0_free_0
                  1.000000
                                   0.006494
                                                     0.03324
                                                                   0.11182
k_Z0_free_bound
                 0.006494
                                   1.000000
                                                     0.54646
                                                                   0.41393
k_Z0_bound_free
                 0.033238
                                   0.546465
                                                     1.00000
                                                                   0.15837
k_Z0_free_Z1
                  0.111819
                                   0.413926
                                                     0.15837
                                                                   1.00000
k\_Z1\_sink
                  0.391553
                                  -0.291912
                                                    -0.12597
                                                                  -0.04188
                 k_Z1_sink
Z0_free_0
                   0.39155
k_Z0_free_bound
                  -0.29191
k\_Z0\_bound\_free
                  -0.12597
k_Z0_free_Z1
                  -0.04188
k_Z1_sink
                   1.00000
```


When metabolite Z2 is added, the additional sink for Z1 is turned off again, for the same reasons as in the original analysis.

mkin version: 0.9.19
R version: 2.15.3

Date of fit: Sun Apr 14 14:06:27 2013
Date of summary: Sun Apr 14 14:06:27 2013

Equations:

- [1] $d_Z0_free = -0 k_Z0_free_bound * Z0_free + k_Z0_bound_free * Z0_bound k_Z0_free_bound + k_Z0$
- [2] $d_Z0_bound = + k_Z0_free_bound * Z0_free k_Z0_bound_free * Z0_bound$
- [3] $d_Z1 = + k_Z0_free_Z1 * Z0_free k_Z1_sink * Z1 k_Z1_Z2 * Z1$
- [4] $d_Z2 = + k_Z1_Z2 * Z1 k_Z2_sink * Z2$

Method used for solution of differential equation system: eigen

Starting values for optimised parameters:

	initial	type	transformed
Z0_free_0	1e+02	state	100.000000
$k_Z0_free_bound$	1e-01	deparm	-2.302585
$k_Z0_bound_free$	2e-02	deparm	-3.912023
k_Z0_free_Z1	1e-01	deparm	-2.302585
k_Z1_sink	1e-01	deparm	-2.302585
k_Z1_Z2	1e-01	deparm	-2.302585
k_Z2_sink	1e-01	deparm	-2.302585

Fixed parameter values:

Optimised, transformed parameters:

	Estimate	Std. Error	Lower	Upper
Z0_free_0	97.4400	2.124e+00	9.313e+01	1.017e+02
$k_Z0_free_bound$	-2.1490	4.121e-01	-2.984e+00	-1.314e+00
$k_Z0_bound_free$	-4.8380	1.636e+00	-8.153e+00	-1.524e+00
k_Z0_free_Z1	0.8457	5.911e-02	7.259e-01	9.655e-01
k_Z1_sink	-19.3800	1.751e+06	-3.547e+06	3.547e+06
k_Z1_Z2	-0.7812	8.755e-02	-9.586e-01	-6.038e-01
k_Z2_sink	-0.8606	1.439e-01	-1.152e+00	-5.691e-01

Backtransformed parameters:

	Estimate	Lower	Upper
Z0_free_0	9.744e+01	93.130000	101.7000
$k_Z0_free_bound$	1.166e-01	0.050600	0.2688
$k_Z0_bound_free$	7.920e-03	0.000288	0.2178
k_Z0_free_Z1	2.330e+00	2.067000	2.6260
k_Z1_sink	3.834e-09	0.000000	Inf
k_Z1_Z2	4.579e-01	0.383400	0.5467
k_Z2_sink	4.229e-01	0.316000	0.5660

Residual standard error: 4.136 on 37 degrees of freedom

Chi2 error levels in percent:

		err.min	n.optim	df
All	data	17.95	7	37
Z0		14.67	4	13
Z1		15.52	2	12
Z2		21.27	1	12

Estimated disappearance times:

DT50 DT90 Z0 0.3043 1.185

*Z*1 1.5138 5.029

Z2 1.6391 5.445

Estimated formation fractions:

Z0_free_sink 1.000e+00 Z0_free_Z1 1.000e+00 Z1_sink 8.373e-09 Z1_Z2 1.000e+00 Z2_sink 1.000e+00

Estimated Eigenvalues of SFORB model(s):

*Z*0_*b*1 *Z*0_*b*2 2.446638 0.007542

Parameter correlation:

	<i>Z0_free_0</i>	k_Z0_free_bound	l k_Z0_bound_free	<i>k_Z0_free_Z1</i>
Z0_free_0	1.00000	0.05615	0.06063	0.09324
k_Z0_free_bound	0.05615	1.00000	0.54490	0.41896
k_Z0_bound_free	0.06063	0.54490	1.00000	0.16141
k_Z0_free_Z1	0.09324	0.41896	0.16141	1.00000
k_Z1_sink	0.15262	-0.11467	-0.06038	0.02314
k_Z1_Z2	0.08997	-0.09395	-0.02475	-0.09097
k_Z2_sink	0.11068	-0.07920	-0.01859	-0.05193
	k_Z1_sink	k_Z1_Z2 k_Z2_s	ink	
Z0_free_0	0.15262	0.08997 0.11	068	
k_Z0_free_bound	-0.11467	-0.09395 -0.07	920	
k_Z0_bound_free	-0.06038	-0.02475 -0.01	859	
k_Z0_free_Z1	0.02314	-0.09097 -0.05	193	
k_Z1_sink	1.00000	-0.66065 -0.66	738	
k_Z1_Z2	-0.66065	1.00000 0.59	341	
k_Z2_sink	-0.66738	0.59341 1.00	1000	

This results in a much better representation of the behaviour of the parent compound Z0.

Finally, Z3 is added as well. This model appears overparameterised (no covariance matrix returned) if the sink for Z1 is left in the model.

```
R> Z.mkin.4 <- mkinmod(ZO = list(type = "SFORB", to = "Z1", sink = FALSE),
                                                                    Z1 = list(type = "SFO", to = "Z2", sink = FALSE),
                                                                    Z2 = list(type = "SFO", to = "Z3"),
                                                                    Z3 = list(type = "SFO"))
R> m.Z.mkin.4 <- mkinfit(Z.mkin.4, FOCUS_2006_Z_mkin,
              parms.ini = c(k_Z1_Z2 = 0.05), quiet = TRUE)
R> plot(m.Z.mkin.4)
R> summary(m.Z.mkin.4, data = FALSE)
                                                               0.9.19
mkin version:
R version:
                                                               2.15.3
                                                              Sun Apr 14 14:06:31 2013
Date of summary: Sun Apr 14 14:06:31 2013
Equations:
[1] d_20_free = -0 - k_20_free_bound * 20_free + k_20_bound_free * 20_bound - k_20_free_bound + k_20
[2] d_Z0_bound = + k_Z0_free_bound * Z0_free - k_Z0_bound_free * Z0_bound
[3] d_Z1 = + k_Z0_free_Z1 * Z0_free - 0 - k_Z1_Z2 * Z1
[4] d_Z2 = + k_Z1_Z2 * Z1 - k_Z2_sink * Z2 - k_Z2_Z3 * Z2
```

```
[5] d_Z3 = + k_Z2_Z3 * Z2 - k_Z3_sink * Z3
```

Method used for solution of differential equation system: eigen

Starting values for optimised parameters:

	initial	type	transformed
Z0_free_0	1e+02	state	100.000000
k_Z1_Z2	5e-02	deparm	-2.995732
k_Z0_free_bound	1e-01	deparm	-2.302585
k_Z0_bound_free	2e-02	deparm	-3.912023
k_Z0_free_Z1	1e-01	deparm	-2.302585
k_Z2_sink	1e-01	deparm	-2.302585
k_Z2_Z3	1e-01	deparm	-2.302585
k_Z3_sink	1e-01	deparm	-2.302585

Fixed parameter values:

	value	type
Z0_bound	0	state
<i>Z</i> 1	0	state
<i>Z2</i>	0	state
<i>Z3</i>	0	state

Optimised, transformed parameters:

_	Estimate	Std. Error	Lower	Upper
Z0_free_0	97.5300	1.88700	93.7400	101.3000
k_Z1_Z2	-0.7769	0.05834	-0.8942	-0.6597
$k_Z0_free_bound$	-2.1360	0.36810	-2.8760	-1.3960
$k_Z0_bound_free$	-4.7650	1.41700	-7.6130	-1.9170
k_Z0_free_Z1	0.8470	0.05339	0.7398	0.9543
k_Z2_sink	-1.5610	0.18260	-1.9280	-1.1940
k_Z2_Z3	-1.5280	0.11350	-1.7560	-1.2990
k_Z3_sink	-2.7690	0.22460	-3.2200	-2.3180

Backtransformed parameters:

	-		
	Estimate	Lower	Upper
Z0_free_0	97.53000	9.374e+01	101.3000
k_Z1_Z2	0.45980	4.089e-01	0.5170
$k_Z0_free_bound$	0.11810	5.636e-02	0.2475
$k_Z0_bound_free$	0.00852	4.938e-04	0.1470
k_Z0_free_Z1	2.33300	2.095e+00	2.5970
k_Z2_sink	0.20990	1.455e-01	0.3030
k_Z2_Z3	0.21700	1.728e-01	0.2727
k_Z3_sink	0.06272	3.994e-02	0.0985

Residual standard error: 3.737 on 49 degrees of freedom

Chi2 error levels in percent: err.min n.optim df

```
All data 17.98 8 49

Z0 14.69 4 13

Z1 15.03 1 13

Z2 21.99 2 11

Z3 12.32 1 12
```

Estimated disappearance times:

DT50 DT90

Z0 0.304 1.186

Z1 1.507 5.008

Z2 1.623 5.393

Z3 11.051 36.712

Estimated formation fractions:

ff
Z0_free_sink 1.0000
Z0_free_Z1 1.0000
Z1_sink 1.0000
Z1_Z2 1.0000
Z2_sink 0.4917
Z2_Z3 0.5083
Z3_sink 1.0000

Estimated Eigenvalues of SFORB model(s):

Z0_b1 Z0_b2 2.451259 0.008108

Parameter correlation:

rarameter correr	Lacion.				
	Z0_free_0	k_Z1_Z2	$k_Z0_free_bound$	$k_Z0_bound_free$	k_Z0_free_Z1
Z0_free_0	1.00000	0.24238	0.07823	0.06921	0.08883
k_Z1_Z2	0.24238	1.00000	-0.22742	-0.08934	-0.10841
k_Z0_free_bound	0.07823	-0.22742	1.00000	0.53976	0.42766
k_Z0_bound_free	0.06921	-0.08934	0.53976	1.00000	0.16281
k_Z0_free_Z1	0.08883	-0.10841	0.42766	0.16281	1.00000
k_Z2_sink	0.32993	0.34052	-0.26331	-0.12743	-0.05310
k_Z2_Z3	-0.07494	-0.14885	0.06698	0.06082	-0.01281
k_Z3_sink	-0.10456	-0.22486	0.13845	0.12526	0.01858
	k_Z2_sink	k_Z2_Z3	k_Z3_sink		
Z0_free_0	0.3299	-0.07494	-0.10456		
k_Z1_Z2	0.3405	-0.14885	-0.22486		
k_Z0_free_bound	-0.2633	0.06698	0.13845		
k_Z0_bound_free	-0.1274	0.06082	0.12526		
k_Z0_free_Z1	-0.0531	-0.01281	0.01858		
k_Z2_sink	1.0000	-0.25473	-0.68320		
k_Z2_Z3	-0.2547	1.00000	0.56390		
k_Z3_sink	-0.6832	0.56390	1.00000		

The error level of the fit, but especially of metabolite Z3, can be improved if the SFORB model is chosen for this metabolite, as this model is capable of representing the tailing of the metabolite decline phase.

Using the SFORB additionally for Z1 or Z2 did not further improve the result.

```
R> Z.mkin.5 <- mkinmod(ZO = list(type = "SFORB", to = "Z1", sink = FALSE),
                                                                       Z1 = list(type = "SFO", to = "Z2", sink = FALSE),
+
                                                                       Z2 = list(type = "SFO", to = "Z3"),
+
                                                                       Z3 = list(type = "SFORB"))
R> m.Z.mkin.5 <- mkinfit(Z.mkin.5, FOCUS_2006_Z_mkin,
               parms.ini = c(k_Z1_Z2 = 0.2), quiet = TRUE)
R> plot(m.Z.mkin.5)
R> summary(m.Z.mkin.5, data = FALSE)
mkin version:
                                                                 0.9.19
R version:
                                                                 2.15.3
Date of fit:
                                                                 Sun Apr 14 14:06:44 2013
Date of summary: Sun Apr 14 14:06:44 2013
Equations:
[1] d_20_free = -0 - k_20_free_bound * Z0_free + k_20_bound_free * Z0_bound - k_20_free_bound + k_20
[2] d_Z0_bound = + k_Z0_free_bound * Z0_free - k_Z0_bound_free * Z0_bound
[3] d_Z1 = + k_Z0_free_Z1 * Z0_free - 0 - k_Z1_Z2 * Z1
```

```
[4] d_Z2 = + k_Z1_Z2 * Z1 - k_Z2_sink * Z2 - k_Z2_Z3_free * Z2
```

[5] $d_Z3_free = + k_Z2_Z3_free * Z2 - k_Z3_free_sink * Z3_free - k_Z3_free_bound * Z3_free_sink * Z3_free_bound * Z3_free_sink * Z3_free_bound * Z3_free_sink * Z3_free_bound * Z3_free_sink * Z3_free_bound * Z3_free_b$

[6] $d_Z3_bound = + k_Z3_free_bound * Z3_free - k_Z3_bound_free * Z3_bound$

Method used for solution of differential equation system: eigen

Starting values for optimised parameters:

	initial	type	transformed
Z0_free_0	1e+02	state	100.000000
k_Z1_Z2	2e-01	deparm	-1.609438
$k_Z0_free_bound$	1e-01	deparm	-2.302585
$k_Z0_bound_free$	2e-02	deparm	-3.912023
k_Z0_free_Z1	1e-01	deparm	-2.302585
k_Z2_sink	1e-01	deparm	-2.302585
k_Z2_Z3_free	1e-01	deparm	-2.302585
k_Z3_free_sink	1e-01	deparm	-2.302585
$k_Z3_free_bound$	1e-01	deparm	-2.302585
k_Z3_bound_free	2e-02	deparm	-3.912023

Fixed parameter values:

	value	type
Z0_bound	0	state
<i>Z</i> 1	0	state
<i>Z2</i>	0	state
<i>Z3_free</i>	0	state
Z3 bound	0	state

Optimised, transformed parameters:

-	-			
	Estimate	Std. Error	Lower	Upper
Z0_free_0	97.4300	1.88700	93.6400	101.2000
k_Z1_Z2	-0.7813	0.05861	-0.8992	-0.6634
k_Z0_free_bound	-2.1470	0.36930	-2.8900	-1.4040
$k_Z0_bound_free$	-4.8230	1.46300	-7.7650	-1.8800
k_Z0_free_Z1	0.8459	0.05334	0.7386	0.9532
k_Z2_sink	-1.6300	0.22080	-2.0740	-1.1850
k_Z2_Z3_free	-1.4850	0.19600	-1.8800	-1.0910
k_Z3_free_sink	-2.5950	0.38470	-3.3690	-1.8220
k_Z3_free_bound	-5.2570	1.37200	-8.0160	-2.4970
k_Z3_bound_free	-13.4400	282.00000	-580.8000	553.9000

${\it Backtrans formed parameters:}$

	Estimate	Lower	Upper
Z0_free_0	9.743e+01	9.364e+01	1.012e+02
k_Z1_Z2	4.578e-01	4.069e-01	5.151e-01
k_Z0_free_bound	1.169e-01	5.559e-02	2.457e-01
k_Z0_bound_free	8.044e-03	4.242e-04	1.525e-01
k_Z0_free_Z1	2.330e+00	2.093e+00	2.594e+00
k_Z2_sink	1.960e-01	1.257e-01	3.056e-01

Residual standard error: 3.73 on 47 degrees of freedom

Chi2 error levels in percent:

		err.min	n.optim	df
All	data	17.890	10	47
ZO		14.666	4	13
Z1		15.049	1	13
Z2		21.991	2	11
Z3		8.433	3	10

Estimated disappearance times:

DT50 DT90

zo 0.3043 1.185

Z1 1.5141 5.030

z2 1.6409 5.451

Z3 9.5901 41.258

Estimated formation fractions:

ff

Z0_free_sink 1.000

Z0_free_Z1 1.000

Z1_sink 1.000

Z1_Z2 1.000

Z2_sink 0.464

Z2_Z3_free 0.536

Z3_free_sink 1.000

Estimated Eigenvalues of SFORB model (s):

Z0_b1 Z0_b2 Z3_b1 Z3_b2 2.447e+00 7.658e-03 7.983e-02 1.363e-06

Parameter correlation:

	<i>Z0_free_0</i>	k_Z1_Z2	k_Z0_free_bound k	_Z0_bound_free .	k_Z0_free_Z1
Z0_free_0	1.00000	0.24874	0.079292	0.073662	0.09072
k_Z1_Z2	0.24874	1.00000	-0.223885	-0.082769	-0.10368
k_Z0_free_bound	0.07929	-0.22389	1.000000	0.542876	0.42696
k_Z0_bound_free	0.07366	-0.08277	0.542876	1.000000	0.16540
k_Z0_free_Z1	0.09072	-0.10368	0.426958	0.165399	1.00000
k_Z2_sink	0.31619	0.36741	-0.287122	-0.168222	-0.08266
k_Z2_Z3_free	-0.03185	-0.05441	0.008287	0.013478	-0.01908
k_Z3_free_sink	-0.12037	-0.22367	0.070584	0.024242	-0.01842
k_Z3_free_bound	0.01629	0.01906	0.009670	0.031837	0.03607
k_Z3_bound_free	0.03781	0.08868	-0.055136	-0.008975	-0.06574
	k_Z2_sink	k_Z2_Z3_f	Free k_Z3_free_sin	k k_Z3_free_bou	nd

```
Z0 free 0
                   0.31619
                               -0.031847
                                                 -0.12037
                                                                   0.01629
k_Z1_Z2
                                                                   0.01906
                   0.36741
                               -0.054405
                                                 -0.22367
k_Z0_free_bound
                  -0.28712
                                0.008287
                                                  0.07058
                                                                   0.00967
                                                  0.02424
k_{Z0}bound_free
                  -0.16822
                                0.013478
                                                                   0.03184
k_Z0_free_Z1
                  -0.08266
                               -0.019083
                                                 -0.01842
                                                                   0.03607
                   1.00000
                               -0.069361
                                                 -0.66596
                                                                   0.02603
k_Z2_sink
k_Z2_Z3_free
                  -0.06936
                                1.000000
                                                 -0.26493
                                                                   0.73477
k_Z3_free_sink
                  -0.66596
                               -0.264933
                                                  1.00000
                                                                  -0.36064
k_Z3_free_bound
                                0.734774
                   0.02603
                                                 -0.36064
                                                                   1.00000
k_Z3_bound_free
                   0.23931
                                0.774434
                                                 -0.71123
                                                                   0.81143
                 k_Z3_bound_free
Z0_free_0
                         0.037814
k_Z1_Z2
                         0.088677
k_Z0_free_bound
                        -0.055136
k_{Z0}bound_free
                       -0.008975
k_Z0_free_Z1
                        -0.065741
k\_Z2\_sink
                         0.239308
                         0.774434
k_Z2_Z3_free
                        -0.711226
k\_Z3\_free\_sink
k_Z3_free_bound
                         0.811433
k_Z3_bound_free
                         1.000000
```


Looking at the confidence intervals of the SFORB model parameters of Z3, it is clear that nothing can be said about the degradation rate of Z3 towards the end of the experiment. However, this appears to be a feature of the data.

```
R> par(mfrow = c(2, 2))
R> mkinresplot(m.Z.mkin.5, "Z0", lpos = "bottomright")
R> mkinresplot(m.Z.mkin.5, "Z1", lpos = "bottomright")
R> mkinresplot(m.Z.mkin.5, "Z2", lpos = "bottomright")
R> mkinresplot(m.Z.mkin.5, "Z3", lpos = "bottomright")
```


As expected, the residual plots are much more random than in the case of the all SFO model for which they were shown above. In conclusion, the model Z.mkin.5 is proposed as the best-fit model for the dataset from Appendix 7 of the FOCUS report.

References

FOCUS Work Group on Degradation Kinetics. Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration. Report of the FOCUS Work Group on Degradation Kinetics, 2006. URL http://focus.jrc.ec.europa.eu/dk. EC Document Reference Sanco/10058/2005 version 2.0.

FOCUS Work Group on Degradation Kinetics. Generic guidance for estimating persistence and degradation kinetics from environmental fate studies on pesticides in EU registration, 1.0 edition, November 2011. URL http://focus.jrc.ec.europa.eu/dk.

Johannes Ranke. kinfit: Routines for fitting simple kinetic models to chemical degradation data, 2012. URL http://CRAN.R-project.org.