

Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych

Automatyczna kategoryzacja tematyczna tekstów przy użyciu metryk w przestrzeni ciągów znaków

Natalia Potocka *Warszawa*, 25.01.2016

CEL PRACY

Celem pracy jest zbadanie wpływu doboru odległości na przestrzeni napisów na jakość automatycznej kategoryzacji tematycznej tekstów.

Cel pracy

Celem pracy jest zbadanie wpływu doboru odległości na przestrzeni napisów na jakość automatycznej kategoryzacji tematycznej tekstów. Problemy:

- duże wymiary danych (1 075 568×2 806 765),
- dane bardzo rzadkie (ponad 99,99%),
- duża złożoność obliczeniowa i pamięciowa.

Cel pracy

Celem pracy jest zbadanie wpływu doboru odległości na przestrzeni napisów na jakość automatycznej kategoryzacji tematycznej tekstów. Problemy:

- duże wymiary danych (1 075 568×2 806 765),
- dane bardzo rzadkie (ponad 99,99%),
- duża złożoność obliczeniowa i pamięciowa.

Grupujemy słowa przy użyciu stemmingu oraz odległości na przestrzeni ciągów znaków.

Stemming

TABLICA: Przykładowe skupienia uzyskane przy pomocy stemmingu.

działalność	niemiecki	م ما ادین داد د	- leura	n a ata á
		odkryty	okres	postać
działalność	niemiecki	odkryta	okres	postaci
działalności	niemieckiej	odkryte	okresu	postacie
działalnością	niemieckiego	odkryty	okresach	postać
działalnościach	niemieckich	odkrytych	okresem	postacią
działalnościami	niemieckim	odkrytym	okresy	postaciami
	niemiecką	odkrytą	okresów	postaciach
	niemiecka	odkrytego	okresami	postaciom
	niemieccy	odkrytej	okresom	postał
	niemieckimi	odkrytymi		postała
	niemiecku	nieodkrytych		postania
	niemieckiemu	nieodkryte		postało
	nieniemieckich	odkrytemu		postały
	nieniemieckiej	odkryci		postaniu

DEFINICJA

Odległością Levenshteina [2] nazywamy:

$$d_{lv}(s,t) = \left\{ \begin{array}{ll} 0, & \text{gdy } s = t = \varepsilon, \\ \min \{ & d_{lv}(s,t_{1:|t|-1}), \\ d_{lv}(s_{1:|s|-1},t), & \\ d_{lv}(s_{1:|s|-1},t_{1:|t|-1}) + \\ & \delta(s_{|s|},t_{|t|}) \\ \end{pmatrix}, & \text{w przeciwnym przypadku}, \\ \text{gdzie } s,t \text{ to napisy, a } \delta(s_i,t_j) = 0, \text{ gdy } s_i = t_j \text{ i } 1 \text{ w przeciwnym} \end{array} \right.$$

gdzie s,t to napisy, a $\delta(s_i,t_i)=0$, gdy $s_i=t_i$ i 1 w przeciwnym przypadku.

UTWORZENIE SKUPIEŃ SŁÓW

Zaproponowano trzy algorytmy opierające się na wybranych odległościach:

- 1 dołączenie do skupień słów jeszcze niepogrupowanych,
- dołączenie do skupień zawierających pięć i więcej elementów, podzbiorów o mniejszej liczności,
- 3 zastosowanie najpierw punktu 1, a następnie punktu 2.

UTWORZENIE SKUPIEŃ SŁÓW

Zaproponowano trzy algorytmy opierające się na wybranych odległościach:

- 1 dołączenie do skupień słów jeszcze niepogrupowanych,
- dołączenie do skupień zawierających pięć i więcej elementów, podzbiorów o mniejszej liczności,
- 3 zastosowanie najpierw punktu 1, a następnie punktu 2.

W ten sposób otrzymano 16 różnych reprezentacji tekstów.

ALGORYTM k-ŚREDNICH

ALGORYTM k-ŚREDNICH

W metodzie k-średnich minimalizujemy

$$\sum_{i} d(\mathbf{x}_{i}, \mathbf{m}_{C(i)}),$$

gdzie \mathbf{x}_i to wektor cech, $C(i) \in \{1,\ldots,k\}$ to identyfikator skupienia, $\mathbf{m}_1,\ldots,\mathbf{m}_k$ to środek skupienia ($\mathbf{m}_l = \frac{1}{n_l}\sum_{C(i)=l}\mathbf{x}_i$, gdzie n_l to liczność l-tego skupienia), a d to odległość Euklidesowa.

Algorytm k-Średnich

ALGORYTM k-ŚREDNICH

W metodzie k-średnich minimalizujemy

$$\sum_{i} d(\mathbf{x}_{i}, \mathbf{m}_{C(i)}),$$

gdzie \mathbf{x}_i to wektor cech, $C(i) \in \{1,\ldots,k\}$ to identyfikator skupienia, $\mathbf{m}_1,\ldots,\mathbf{m}_k$ to środek skupienia ($\mathbf{m}_l = \frac{1}{n_l}\sum_{C(i)=l}\mathbf{x}_i$, gdzie n_l to liczność l-tego skupienia), a d to odległość Euklidesowa.

W metodach najszybszego spadku [1]

$$\mathbf{m}_l^{(t+1)} = \mathbf{m}_l^{(t)} + \begin{cases} \frac{1}{n_l} (\mathbf{x}_i - \mathbf{m}_l^{(t)}), & \text{gdy } l = C(i), \\ 0, & \text{wpp.} \end{cases}$$
(1)

Wnioski

- Użycie odległości na przestrzeni ciągów znaków ma pozytywny wpływ na kategoryzację tematyczną tekstów.
- Dla dwóch odległości zaobserwowano lepsze wyniki niż w przypadku pozostałych.
- Najlepsze rezultaty zostały otrzymane przy użyciu algorytmu 3.

Bibliografia

- Léon Bottou and Yoshua Bengio. Convergence properties of the k-means algorithms. In Advances in Neural Information Processing Systems 7, pages 585–592. MIT Press, 1995.
- [2] Vladimir Levenshtein. Binary codes capable of correcting spurious insertions and deletions of ones. *Problems of Information Transmission*, 1:8–17, 1965.