Algorithm Analysis

IT5003: Data Structures and Algorithms (AY2019/20 Semester 1)

Lecture Outline

- What is an Algorithm?
- What is Analysis of Algorithms?
- How to analyze an algorithm
- Big-O notation
 - Big-Omega & Big-Theta
- Example Analyses

You are expected to know...

- Proof by induction
- Operations on logarithm function
- Arithmetic and geometric progressions
 - Their sums
- Linear, quadratic, cubic, polynomial functions
- Ceiling, floor, absolute value

Algorithm and Analysis

Algorithm

A step-by-step procedure for solving a problem

Analysis of Algorithm

- To evaluate rigorously the resources (time and space) needed by an algorithm and represent the result of the evaluation with a formula
- We focus more on time requirement in our analysis
- The time requirement of an algorithm is also called the time complexity of the algorithm

Measure Actual Running Time?

- We can measure the actual running time of a program
 - Use wall clock time or insert timing code into program
- However, running time is not meaningful when comparing two algorithms:
 - Coded in different languages
 - Using different data sets
 - c. Running on different computers

Counting Operations

- Instead, we count the number of operations
 - e.g. arithmetic, assignment, comparison, etc.
- Counting an algorithm's operations is a way to assess its efficiency
 - An algorithm's execution time is related to the number of operations it requires

Example: Counting Operations

Total Ops =
$$\mathbf{A} + \mathbf{B} = \sum_{i=1}^{n} 100 + \sum_{i=1}^{n} (\sum_{j=1}^{n} 2)$$

= $100n + \sum_{i=1}^{n} 2n = 100n + 2n^2 = 2n^2 + 100n$

Example: Counting Operations

- Knowing the number of operations required by the algorithm, we can state that
 - Algorithm X takes <u>2n² + 100n</u> operations to solve problem of size <u>n</u>
- If the time t needed for one operation is known, then we can state
 - □ Algorithm X takes $(2n^2 + 100n)t$ time units

Example: Counting Operations

- However, time t is directly dependent on the factors mentioned earlier
 - E.g. different languages, compilers and computers
- Instead of tying the analysis to actual time t, we can state
 - Algorithm X takes time that is proportional to 2n² + 100n for solving problem of size n

Approximation of Analysis Results

- Suppose the time complexity of
 - □ Algorithm **A** is $3n^2 + 2n + \log n + 30$
 - □ Algorithm **B** is $0.39n^3 + n$
- Intuitively, we know Algorithm A will outperform B
 - When solving larger problem, i.e. larger n
- The dominating term 3n² and 0.39n³ can tell us approximately how the algorithms perform
- The terms n² and n³ are even simpler and preferred
- These terms can be obtained through asymptotic analysis

Asymptotic Analysis

- An analysis of algorithms that focuses on
 - a. Analyzing problems of large input size
 - b. Consider only the leading term of the formula
 - c. Ignore the coefficient of the leading term

Why Choose Leading Term?

- Lower order terms contribute lesser to the overall cost as the input grows larger
- Example

```
f(n) = 2n^{2} + 100n
f(1000) = 2(1000)^{2} + 100(1000)
= 2,000,000 + 100,000
f(100000) = 2(100000)^{2} + 100(100000)
= 20,000,000,000 + 10,000,000
```

Hence, lower order terms can be ignored

Examples: Leading Terms

- $= a(n) = \frac{1}{2}n + 4$
 - Leading term: ½ n
- $b(n) = 240n + 0.001n^2$
 - Leading term: 0.001*n*²
- $c(n) = n \lg(n) + \lg(n) + n \lg(\lg(n))$
 - □ Leading term: *n* lg(*n*)
 - Note that $Ig(n) = Iog_2(n)$

[IT5003 - L1 - AY1920S1]

Why Ignore Coefficient of Leading Term?

- Suppose two algorithms have 2n² and 30n² as the leading terms, respectively
- Although actual time will be different due to the different constants, the growth rates of the running time are the same
- Compare with another algorithm with leading term of n³, the difference in growth rate is a much more dominating factor
- Hence, we can drop the coefficient of leading term when studying algorithm complexity

The Big-O Notation: Definition

Algorithm A is of O(f(n))if there exist a constant k, and a positive integer n_0 such that Algorithm A requires no more than k * f(n) time units to solve a problem of size $n \ge n_0$

The Big-O Notation

- When problem size is larger than n₀, Algorithm A is bounded from above by k * f(n)
- Observations
 - \mathbf{n}_0 and \mathbf{k} are **not unique**
 - There are many possible f(n)

Example: Finding n_0 and k

- Given complexity of Algorithm A is $2n^2 + 100n$
- Claim: Algorithm A is of $O(n^2)$

Solution:

- $2n^2 + 100n < 2n^2 + n^2 = 3n^2$ whenever n > 100
- □ Set the constants to be k = 3 and $n_0 = 101$
- \square By definition, we say **Algorithm A** is $O(n^2)$

Questio Time

- Can we
- Can we

Growth Terms

- By asymptotic analysis, it is clear that:
 - Coefficient of the f(n) can be absorbed into the constant k
 - \blacksquare E.g. **A** is **O** (3 n^2) with constant k_1
 - \rightarrow A is $O(n^2)$ with constant $k = k_1 * 3$
 - So, f(n) can be reduced to function with coefficient of 1 only
- Such a term is called a growth term
- Ordered list of the commonly seen growth terms:

$$O(1) < O(lg(n)) < O(n) < O(n lg(n)) < O(n^2) < O(n^3) < O(2^n)$$
"slowest"

- "lg" = log₂
- In big-O, log functions of different bases are all the same (why?)

Common Growth Rates

- O(1) constant time
 - Independent of n
- O(n) linear time
 - Grows as the same rate of n
 - E.g. double input size → double execution time
- $O(n^2)$ quadratic time
 - Increases rapidly w.r.t. n
 - E.g. double input size → quadruple execution time
- $O(n^3)$ cubic time
 - Increases even more rapidly w.r.t. n
 - E.g. double input size → 8 * execution time
- $O(2^n)$ exponential time
 - Increases very very rapidly w.r.t. n

Example: Exponential-Time Algorithm

- Algorithm A:
 - For an input of n items
 - Can be solved by going through 2ⁿ cases

- We use a supercomputer*, that analyses 200 million cases per second
 - Input with 15 items, 163 microseconds
 - Input with 30 items, 5.36 seconds
 - Input with 50 items, more than two months
 - Input with 80 items, 191 million years

Example: Quadratic-Time Algorithm

- Algorithm B:
 - input of n items need to go through 300n² cases
- Handheld PC, running at 33 MHz
 - Input with 15 items, 2 milliseconds
 - Input with 30 items, 8 milliseconds
 - Input with 50 items, 22 milliseconds
 - Input with 80 items, 58 milliseconds
- Don't depend on the raw power of a computer to speed up program!
- It is very important to use an efficient algorithm to solve a problem

Comparing Growth Rates

				n		
Function	10	100	1,000	10,000	100,000	1,000,000
1	1	1	1	1	1	1
log ₂ n	3	6	9	13	16	19
n	10	10 ²	103	104	105	10 ⁶
n ∗ log₂n	30	664	9,965	105	10 ⁶	107
n²	10 ²	104	106	108	1010	10 12
n³	10³	10 ⁶	10 ⁹	1012	1015	10 18
2 ⁿ	10³	1030	1030	1 103,01	10 30,	103 10 301,030

[IT5003 - L1 - AY1920S1]

Comparing Growth Rates

Big-Omega & Big-Theta

- Similar to Big-O notation:
 - Big-Omega: Establishes the lowerbound of the growth rate of the algorithm
 - Big-Theta: Establishes the tightbound of the growth rate of the algorithm
- We focus mainly on Big-O in this course

Example: Finding Complexity (1/2)

What is the complexity of the following code fragment?

```
i = 1
while i <= n:
    i = i*2
    #other simple operations</pre>
```

The loop executes:

$$i = 1, 2, 4, 8, ..., 2^k$$
 where $k = \lfloor \log_2 n \rfloor$

There are k + 1 iterations

So the complexity is O(k), i.e. $O(\log n)$

Example: Finding Complexity (2/2)

What is the complexity of the following code fragment?

```
for i in range(1, n+1):  #outer loop
  for j in range(1, n+1):  #inner loop
     print(str(i*j) + ' ', end='')
  print("\n")
```

- Each value of "i": the inner loop runs n times
- In total: n values of i: n * n = n²
- → Complexity is O(n²)

Analysis 1: Sequential Search

- Check whether an item target is in an unsorted array
 - a. If found, it returns **position (index)** of **target** in array
 - If not found, it returns -1

```
def seqSearch(array, target):
    for i in range(len(array)):
        if array[i] == target:
            return i
    return -1
```

[IT5003 - L1 - AY1920S1]

Analysis 1: Sequential Search

- Time spent in each iteration through the loop is at most some constant c₁
- Time spent outside the loop is at most some constant c₂
- Maximum number of iterations is n
- Hence, the asymptotic upper bound is $c_1n + c_2 = O(n)$
- Observation
 - In general, a loop of n iterations will lead to O(n) growth rate
 - This is an example of Worst Case Analysis

Analysis 2: Binary Search

- Important characteristics
 - Requires array to be sorted
 - Maintain sub-array where target might be located
 - Repeatedly compare target with m, the middle of current sub-array
 - If target = m, found it!
 - If target > m, eliminate m and positions before m
 - If target < m, eliminate m and positions after m</p>
- Iterative and recursive implementations

Binary Search (Iterative)

```
def binSearch(array, target):
    left = 0
    right = len(array)-1
    while left <= right:</pre>
        middle = (left + right) // 2
        if array[middle] < target:</pre>
             left = middle + 1
        elif array[middle] > target:
             right = middle - 1
        else:
             return middle
    return -1
```

[IT5003 - L1 - AY1920S1]

Binary Search (Recursive)

```
def binSearch(array, target):
    if array == []:
        return -1

middle = len(array) // 2
    if array[middle] < target:
        return binSearch(array[:middle], target)
    elif array[middle] > target:
        return binSearch(array[middle+1:], target)
    else: #found it!
    return middle
```

[IT5003 - L1 - AY1920S1]

Analysis 2: Binary Search (Iterative)

- Time spent outside the loop is at most c₁
- Time spent in each iteration of the loop is at most c₂
- For inputs of size n, if the program goes through at most f(n) iterations, then the complexity is $c_1 + c_2 f(n)$ or O(f(n))
- i.e. the complexity is decided by the number of iterations (loops)

Analysis 2: Finding f(n)

- At any point during binary search, part of array is "alive" (might contain x)
- Each iteration of loop eliminates at least half of previously "alive" elements
- At the beginning, all n elements are "alive", and after
 - One iteration, at most n/2 are left, or alive
 - □ Two iterations, at most $(n/2)/2 = n/4 = n/2^2$ are left
 - Three iterations, at most $(n/4)/2 = n/8 = n/2^3$ are left

 - □ k iterations, at most n/2k are left
 - At the final iteration, at most 1 element is left

Analysis 2: Finding f(n)

- In the worst case, we have to search all the way up to the last iteration k with only one element left
- We have

$$n/2^k = 1 \implies 2^k = n \implies k = \log_2(n) = \lg(n)$$

- Hence, the binary search algorithm takes O(f(n)), or $O(\lg(n))$ time
- Observation
 - In general, when the domain of interest is reduced by a fraction for each iteration of a loop, then it will lead to O(log n) growth rate

Analysis of Different Cases

- For an algorithm, three different cases of analysis
 - Worst-Case Analysis
 - Look at the worst possible scenario
 - Best-Case Analysis
 - Look at the ideal case
 - Usually not useful
 - Average-Case Analysis
 - Probability distribution should be known
 - Hardest/impossible to analyze
- Example: Sequential Search
 - Worst-Case: target item at the tail of array
 - Best-Case: target item at the head of array
 - Average-Case: target item can be anywhere

Space Complexity?

- The idea of "Time Complexity" can be applied to "Space Complexity":
 - Focus on the amount of memory usage w.r.t. n
- Memory usage comes from:
 - Variables
 - Data structures like array, list etc
 - Function calls*
 - Each function call create new set of local variables in most languages

Example: Space Complexity (1/2)

Relook at this example and focus on space complexity

```
for i in range(1, n+1):  #outer loop
  for j in range(1, n+1):  #inner loop
     print(str(i*j) + ' ', end='')
  print("\n")
```

- Only "i" and "j" variable are created / used, regardless of n
- → O(1) space complexity

- What it means:
 - Regardless of the n value, this program will use the same amount of memory

Example: Space Complexity (2/2)

Relook at this example and focus on space complexity

```
matrix = []
for i in range(0, n+1):
    matrix.append([]) #add a new empty row
    for j in range (0, n+1):
        matrix[i].append(i*j)
```

- In the end, there are n rows, each with n values, i.e. n² values stored in matrix
- → Space complexity of O(n²)

- What it means:
 - With larger n value, this program will use the much more memory!

Summary

- Algorithm Definition
- Algorithm Analysis
 - Counting operations
 - Asymptotic Analysis
 - Big-O notation (Upper-Bound)
- Three cases of analysis
 - Best-case
 - Worst-case
 - Average-case
- Space Complexity

END