Matrix Factorization and Collaborative Filtering

Hyewon Lim
4 Jan 2017

Outline

- Recommender System
- Matrix Factorization
- Reference

Recommender System

Recommender System Strategies

1. Content Filtering

Create a profile for each user or product to characterize its nature

Genres: Crime, Comedy, Action, Adventure

Directors: Matthew Vaughn

Cast: Taron Egerton, Colin Firth, Samuel L. Jackson, ...

Distributor: Fox

Box Office Popularity: ...

Gender Region

. . .

Answers provided on a suitable questionnaire

Recommender System Strategies

2. Collaborative filtering

- Rely only on past user behavior
- Everyday examples
 - Bestseller lists
 - Top 40 music lists
 - Unmarked but well-used paths thru the woods
 - The "recent returns" shelf at the library
- Common insight: personal tastes are correlated

Types of Collaborative Filtering

a. Neighborhood Methods

- Find neighbors based on similarity of movie preferences
- Recommend movies that those neighbors watched

#3 #2 Joe #1

Latent Factor Methods

- Characterize both items and users
- Recommend a movie based on its proximity to the user in the latent space

Outline

- Recommender System
- Matrix Factorization
- Reference

Netflix Prize

Assume latent factors in user preference

Assume latent factors in user preference

Singular Value Decomposition

```
[ 4. 2. 3. 5. 1.]
[ 0. 3. 0. 4. 2.]
[ 5. 4. 3. 3. 0.] =
[ 0. 0. 5. 5. 2.]
[ 5. 0. 0. 5. 0.]
```


We can drop less important information

Singular Value Decomposition

[-0.54	0.03	-0.021	0.099	-0.835]		[13.707	0.	0.	0.	0.]		[-0.503	-0.29	-0.381	-0.705	-0.143]
				0.07]				5.607		0.	0.]		[0.738	0.156	-0.489	-0.254	-0.357]
[-0.506	0.372	0.574	0.374	0.371]	X	[0.	0.	3.791	0.	0.]	X	[-0.169]	0.905	0.15	-0.35	0.087]
[-0.417	-0.79	-0.217	0.277	0.279]		[0.	0.	0.	0.	0.]	/\	[0.265	-0.227	0.769	-0.455	-0.282]
[-0.441	0.432	-0.685	-0.26	0.287]		[0.	0.	0.	0.	0.]		[-0.321	0.147	0.029	0.33	-0.875]

Matrices

- User vector
 - $(P_{u*})^T \in \mathbb{R}^f$
- Item vectors:
 - $(Q_{*i}) \in \mathbb{R}^f$
- Rating prediction
 - $R_{ui} = P_{u*}Q_{*i} = [PQ]_{ui}$

Vectors

- User vector
 - $p_u \in \mathbb{R}^r$
- Item vectors:
 - $q_i \in \mathbb{R}^r$
- Rating prediction
 - $\hat{r}_{ui} = q_i^T p_u$

- Set of non-zero entries
 - $\kappa = \{(u, i): r_{ui} \neq 0\}$
- Objective

Minimize the error between R and \hat{R}

$$\min_{q*,p*} \sum_{(u,i)\in\kappa} (r_{ui} - q_i^T p_u)^2$$

$$\min_{q^*, p^*} \sum_{(u, i) \in \kappa} (r_{ui} - q_i^T p_u)^2 + \lambda(\|q_i\|^2 + \|p_u\|^2)$$
Regularization factor

Regularization factor

- avoid overfitting
- make simple model

- How to deal with empty cells in matrix
 - With 0
 - With the average of the whole users
 - With the average of each user

	I_1	I_2	I_3	I_4
U_1		3	4	2
U_2	5			
U_3	3		2	

Consider user bias and item bias

$$b_{ui} = \mu + b_i + b_u$$

 μ : average of the whole users

 b_i , b_u : the observed deviations of u and i

$$\hat{r}_{ui} = \mu + b_i + b_u + q_i^T p_u$$

$$\min_{q*,p*,b*} \sum_{(u,i)\in\kappa} (r_{ui} - \mu - b_i - b_u - p_u^T q_i)^2 + \lambda(\|q_i\|^2 + \|p_u\|^2 + b_u^2 + b_i^2)$$

- Approaches to minimizing $\min_{q*,p*} \sum_{(u,i)\in\kappa} (r_{ui} q_i^T p_u)^2 + \lambda(\|q_i\|^2 + \|p_u\|^2)$
 - 1. Stochastic gradient descent

- Associated prediction error e_{ui}
 - $q_i \leftarrow q_i + \gamma (e_{ui} \cdot p_u \lambda \cdot q_i)$
 - $p_u \leftarrow p_u + \gamma (e_{ui} \cdot q_i \lambda \cdot p_u)$

- Approaches to minimizing $\min_{q*,p*} \sum_{(u,i)\in\kappa} (r_{ui} q_i^T p_u)^2 + \lambda(\|q_i\|^2 + \|p_u\|^2)$
 - 2. Alternating least squares
 - Rotate between fixing the q_i 's and fixing the p_u 's
 - When all p_u 's are fixed, the system recomputes the q_i 's by solving a least-squares problems, and vice versa
 - Stochastic gradient descent is easier and faster than ALS in general,
 ALS is favorable in at least two cases
 - When the system can use parallelization
 - For systems centered on implicit data

HOSVD [4]

SVD on each matrix

$$A_{1} = U^{(1)} \cdot S_{1} \cdot V_{1}^{T}$$

$$A_{2} = U^{(2)} \cdot S_{2} \cdot V_{2}^{T}$$

$$A_{3} = U^{(3)} \cdot S_{3} \cdot V_{3}^{T}$$

Construction of core tensor

$$S = A \times_1 U_{c_1}^{(1)^T} \times_2 U_{c_2}^{(2)^T} \times_3 U_{c_3}^{(3)^T}$$

• Construction of tensor $\hat{\mathcal{A}}$

$$\hat{\mathcal{A}} = \mathcal{S} \times_1 U_{c_1}^{(1)} \times_2 U_{c_2}^{(2)} \times_3 U_{c_3}^{(3)}$$

Example

MF in Python

```
1 #!/usr/bin/python
 3 import numpy as np
 5 np.set printoptions(precision = 3) # set decimal display
 7 # Matrix
 8 A = np.zeros((5, 5))
10 A[0, 4] = 1
11 A[0, 1] = A[1, 4] = A[3, 4] = 2
12 A[0, 2] = A[1, 1] = A[2, 2] = A[2, 3] = 3
13 A[0, 0] = A[1, 3] = A[2, 1] = 4
14 A[0, 3] = A[2, 0] = A[3, 2] = A[3, 3] = A[4, 0] = A[4, 3] = 5
15
16 # SVD
17 U, s, V = np.linalg.svd(A, full matrices = True)
18
                                                                                   2e+00
                                                                                                               1e+00]
                                                                                            3e+00
                                                                                                      5e+00
19 # Reconstruction
                                                                       -4e-16 3e+00 3e-15
5e+00 4e+00 3e+00
                                                                                                                2e+001
                                                                                                      4e+00
20 S = np.diag(s)
                                                                                                      3e+00
                                                                                                                7e-16]
21
                                                                                   4e-15 5e+00
                                                                                                               2e+00]
22 P = np.dot(U, np.dot(S, V))
                                                                                                      5e+00
23
                                                                                   1e-15 -2e-16
                                                                                                               -5e-16]
                                                                                                      5e+00
```


Example

MF in Python with r

```
1 #!/usr/bin/python
3 import rpy2.robjects as robjects
5 r = robjects.r
 7 r('''
                                                                                 [,1] [,2] [,3] [,4] [,5]
       rsvd <- function() {
            # MATRIX
                                                                           [2,] 0 3 0 4 2
[3,] 5 4 3 3 0
[4,] 0 0 5 5 2
           A \leftarrow matrix(c(4, 2, 3, 5, 1, 0, 3, 0, 4, 2, 5, 4, 3))
   , 3, 0, 0, 0, 5, 5, 2, 5, 0, 0, 5, 0), nrow = 5, ncol = 5,
   byrow = TRUE)
11
12
            # SVD
13
            result <- svd(A)
14
15
            # RECONSTRUCTION
                                                                                                     [,2]
16
            U <- result$u
                                                                            [1,] 4.000000e+00 2.000000e+00 3.000000e+00
                                                                                                                         5 1.000000e+00
17
            s <- result$d
                                                                           [2,] -1.955901e-16 3.000000e+00 5.999975e-16
                                                                                                                        4 2.000000e+00
18
            V <- result$v
                                                                           [3,] 5.000000e+00 4.000000e+00 3.000000e+00
                                                                                                                        3 -1.110223e-16
19
                                                                           [4,] -6.366435e-16 3.387048e-15 5.000000e+00
                                                                                                                        5 2.000000e+00
                                                                           [5,] 5.000000e+00 1.949829e-15 -6.570265e-16
                                                                                                                        5 1.408595e-15
            ApproxA <- U %*% diag(s) %*% t(V)
21
22
       111)
23
24 \text{ svd} = r['rsvd']
26 result = svd()
27
28 print result
29
```


Reference

- 1. Slides in "Matrix Factorization and Collaborative Filtering"
 - By Matt Gormley (Carnegie Mellon Univ.)
- 2. Slides in "Recommender Systems"
 - By Jee-Hyong Lee (Sungkyunkwan Univ.)
- 3. Y. Koren *et al.*, "Matrix Factorization Techniques for Recommender Systems," Journal Computer, 42(8), 2009
- 4. P. Symeonidis *et.al*, "Tag Recommendations based on Tensor Dimensionality Reduction," Recsys'08

