AMENDMENTS TO THE CLAIMS

The listing of claims below will replace all prior versions and listings of claims in the present application.

Claim Listing

1 1. (Currently Amended) A source synchronous clocking system, comprising: 2 a source clock domain in a first network protocol layer, comprising: 3 a register having a first input for receiving a data signal, a second input for 4 receiving a clock signal, and an output; and 5 a buffer having an input for receiving the clock signal and an output, said buffer generating a delay that is substantially equivalent to a delay 6 7 through said register; and 8 a destination clock domain in a second network protocol layer, comprising: 9 a register having a first input and a second input, the first input of said 10 register of said destination clock domain being coupled to the 11 output of said register in the source clock domain. 1 2. (Currently Amended) The source synchronous clocking system of Claim 1 2 wherein said source clock domain comprises a first transmit clock domain in the first 3 network protocol layer for transmitting the data and clock signals to the said destination 4 clock domain that comprises a transmit clock domain in the second network protocol 5 layer, said first network protocol layer comprising a link layer, said second network 6 protocol layer comprising a PHY layer. 1 3. (Currently Amended) The source synchronous clocking system of Claim 1 2 wherein said source clock domain comprises a first receive domain said the first network 3 protocol layer for transmitting data and clock signals to said destination clock that

- 2 -

comprises a receive clock domain in said second <u>network protocol</u> layer, said first layer

including a PHY layer, said second network protocol layer including a link layer.

4

5

1	4. (Original) The source synchronous clocking system of Claim 1 further
2	comprising a delay circuit, coupled between said source clock domain and said
3	destination clock domain, for introducing additional delay to the clock signal.
1	5. (Original) The source synchronous clocking system of Claim 1 further
2	comprising a second buffer having an input coupled to the output of said delay circuit and
3	an output coupled to said register in said destination clock domain.
1	6. (Original) The source synchronous clocking system of Claim 1 further
2	comprising a serial termination circuit for absorbing a reflection generated by the data
3	signal.
1	
1	7. (Original) The source synchronous clocking system of Claim 1 further
2	comprising a parallel termination circuit for absorbing a reflection generated by the data
3	signal.
1	8. (Original) The source synchronous clocking system of Claim 5 wherein the
2	clock signal generated from the output of the second buffer being connected to a clock
3	input of in said destination clock domain.
_	
1	9. (Previously Presented) A method for operating a source synchronous clocking
2	system between a first layer and a second layer from a source clock, comprising:
3	receiving an input clock signal in a first clock domain in a first layer;
4	receiving an input data signal in the first clock domain in the first layer;
5	latching the input data signal by triggering the input data signal by the input clock
6	signal;
7	delaying the input clock signal by an amount that is equal to the delay in the
8	latching; and
9	generating an output clock signal and an output data signal in the second clock
10	domain in the second layer, the output clock signal and the output data

signal being synchronized to each other.

11

1	10. (Original) The method of Claim 9 wherein the first layer comprises a link
2	layer and the second layer comprises a PHY layer, the input clock and data signal being
3	transferred from the link layer to the link layer.
1	11. (Original) The method of Claim 9 wherein the first layer comprises a PHY
2	layer and the second layer comprises a link layer, the input clock and data signal being
3	transferred from the PHY layer to the link layer.
	12. (Cancelled)
	13. (Cancelled)
1	14. (Previously Presented) A method for providing a clock input and a data inpu
2	synchronously between a link layer and a PHY layer, the link layer including a transmit
3	clock domain and a receive clock domain, the PHY layer including a transmit clock
4	domain and a receive clock domain, comprising the steps of:
5	receiving the clock input;
6	receiving the data input;
7	transmitting the clock input to a latching device for triggering the data input;
8	sending the clock input through a buffer, the buffer having a delay which is equal
9	to the delay through the latching device; and
10	generating an output data from the latching device that synchronizes with an
11	output clock from the buffer.
1	15. (Original) The method of Claim 14 wherein the transmitting step comprises
2	transmitting the clock input from a link layer to a PHY layer.
1	16. (Original) The method of Claim 14 wherein the transmitting step comprises
2	transmitting the clock input from a PHV layer to a link layer

- 4 -

Serial No.: 09/450,802

1	17. (Original) The method of Claim 14 further comprising the step of merging
2	the clock signal at eh PHY layer to a clock input at the PHY layer.

- 1 18. (Original) The method of Claim 14 further comprising the step of absorbing 2 the reflection generated from the data input by serial termination.
- 1 19. (Original) The method of Claim 14 further comprising the step of absorbing 2 the reflection generated from the data input by parallel termination.
- 20. (Original) The method of Claim 14 further comprising generating control signals of the data input, the control signals being multiplexed with the data input.