Reading for pda & cfg

· Sipser: Chapter 2

• Hopcroft et al.: 5.1, 6.1-3

Assignment 1: Moodle 5 pm

Seek help from the tutor, if necessary.

Languages

Let L be a language over a certain alphabet.

- L is said to be a context free language if L = L(G) for some context free grammar G (or equivalently, L = L(A) for some pda A).
- L is said to be a regular language if L = L(G) for some right linear grammar G (or equivalently, L = L(M) for some dfa/nfa M).

Pumping Lemma for regular languages

Theorem Let L be a regular language. There exists a constant n such that for any string $w \in L$ of length at least n, w can be divided into three pieces, w = xyz such that

- |y| > 0,
- $|xy| \le n$, and
- for all $i \ge 0$, xy^iz is in L.

Pumping Lemma for context free languages (cfl)

Theorem. Let L be a cfl. Then there exists a constant n such that for all $w \in L$ and $|w| \ge n$, w can be divided into five pieces uxyzv such that

- $|xz| \ge 1$,
- $|xyz| \le n$, and
- $ux^iyz^iv \in L$ for all $i \ge 0$.

Application of pumping lemma

Lemma L = $\{a^ib^ic^i \mid i \ge 0\}$ is not a cfl.

Proof Suppose, for the sake of contradiction, that L is a cfl.

Let n be constant generated by the Pumping Lemma.

Consider $w = a^n b^n c^n$

By Pumping Lemma, w = uxyzv with $|xz| \ge 1$, $|xyz| \le n$, $ux^iyz^iv \in L$ for all $i \ge 0$.

Since $|xyz| \le n$, xyz can't contain both a's and c's.

Suppose xyz contain no c's (the other case of containing no a's is symmetric).

By Pumping Lemma, uyv is in L.

Since $|xz| \ge 1$, the number of a's and b's in uyv < 2n

Therefore, uyv does not have the same number of a's, b's, and c's.

A contradiction occurs. Thus, L is not a cfl.

Proof of Pumping Lemma

Let L be a cfl, and let $G = (V, \Sigma, R, S)$ be a context free grammar such that L(G) = L.

Without loss of generality, we can assume that every rule in R is in the form*

- $A \rightarrow BC$; or
- $A \rightarrow a$

Let |V| be the number of non-terminals, and let $n = 2^{|V|}$.

• Consider any $w \in L$ with length at least n.

$$A \rightarrow BA_1, A_1 \rightarrow A_2A_3, A_2 \rightarrow d, A_3 \rightarrow CF.$$

^{*} Such a grammar is said to be in Chomsky Normal Form. For example, if there is a rule $A \rightarrow BdCF$, we can convert it to 4 rules:

Parse tree of w

- · Let T be a parse tree of w.
- S is the root. Every internal node is a variable in V, and each leaf is a terminal in Σ .

$$S \rightarrow DA$$

 $A \rightarrow AB$
 $A \rightarrow x$

Recall that $|w| \ge n = 2^{|V|}$.

- T has exactly |w| leaves.
- T is binary, i.e, every internal node has <u>either</u> two children labeled with variables (non-terminals), <u>or</u> one child labeled with a terminal.

Height of T

 Define Height(T) = the number of internal nodes on a longest path from the root to a leaf.

Recall that $|w| \ge n = 2^{|V|}$.

- In the above example, Height(T) = 4; Number of leaves = $6 \le 2^{4-1} = 8$;
- Number of leaves in $T = |w| \le 2^{Height(T)-1}$; thus, $Height(T) \ge \log_2 |w| + 1 \ge \log_2 n + 1 = |V| + 1$.

Consider the longest path in T, which contains at least |V|
 +1 internal nodes.

There are two internal nodes labeled the same variable.
 Let A be the first duplicate variable encountered when we walk up the path.

Consider the longest path in T, which contains at least |V|
 +1 internal nodes.

- There are two internal nodes labeled the same variable.
 Let A be the first duplicate variable encountered when we walk up the path.
 - Let T" be the subtree rooted at the <u>lowest</u> occurrence of A;
 - let T' be the subtree rooted at 2^{nd} lowest occurrence of A.
- Height(T') $\leq |V|+1$. Why?

- $A \stackrel{*}{\Rightarrow} x A z$; and $A \stackrel{*}{\Rightarrow} y$
- $S \stackrel{*}{\Rightarrow} u A v \stackrel{*}{\Rightarrow} ux A zv \stackrel{*}{\Rightarrow} uxyzv$
- By induction on i, $S \Rightarrow ux^iyz^iv$
- x and z can't be both null strings. Why?
- Height(T') \leq |V|+1. Thus, T's has \leq $2^{|V|}$ leaves. Thus $|xyz| \leq 2^{|V|} = n$.

Context free languages are not closed under complementation

- Define L = $\{x \in \Sigma^* \mid x \notin L\}$.
- If L is regular, then L can be accepted by a dfa, and so does L. I.e., L is also regular. (dfa-based argument)
- · Question: If L is a cfl, is L is a cfl?

No.

Counter example: $L = \{ a^i b^j c^k \mid i \neq j \text{ or } j \neq k \}.$

- · L is context free.
- But $\overline{L} = \{a^ib^ic^i \mid i \ge 0\}$ is not context free.

Union, intersection

- Question: If L_1 and L_2 are cfl, is $L = L_1 \cup L_2 = \{w \mid w \text{ in } L_1 \text{ or } w \text{ in } L_2\}$ a cfl?
 - Yes (proof); No (counter example)

- Question: If L_1 and L_2 are cfl, is $L = L_1 \cap L_2 = \{w \mid w \text{ in } L_1 \text{ and } w \text{ in } L_2\}$ a cfl?
 - Yes (proof); No (counter example)

Deterministic pushdown automata

A dpda is a pda such that for any state q, input symbol a, and stack symbol s,

- $|f(q, a, s)| \le 1$; and
- if $f(q, \epsilon, s) \neq \emptyset$, then $f(q, \alpha, s) = \emptyset$.

That is, at any time, the next move of a dpda is uniquely defined.

A language L is said to be a deterministic context free language (dcfl) if L can be accepted by a deterministic dpda.

dpda versus pda

Recall that dfa and nfa have the same power.

Yet, dpda are not as powerful as pda. There exist languages L such that L can be accepted by some pda but not by any dpda.

Example:

- $\{a^nb^n \mid n \ge 1\} \cup \{a^nb^{2n} \mid n \ge 1\}$ is a cfl but not dcfl.
- $\{ ww^T \mid w \text{ in } \{0,1\}^* \}$

In fact, dpda is closed under complementation.