

Машинное обучение

Лекция 6. Решающие деревья и ансамбли

Напоминание: часто используемые методы

- Линейные модели
- Ансамбли решающих деревьев
- Нейросети

1. Решающие деревья

План лекции

2. Ансамбли деревьев

3. Общие идеи построения ансамблей

1. Решающие деревья

План

- 1. Что такое решающие деревья
- 2. Решающие деревья в классификации и регрессии
- 3. Как строить решающие деревья
- 4. Дополнительные темы

Датасет

«Titanic Dataset» - список пассажиров Титаника, для которых даны возраст, пол, количество членов семьи на борту и другие признаки.

Целевые значения: выжил пассажир или нет (задача классификации)

Решающее дерево: классификация

Решающее дерево: классификация

Решающее дерево: классификация

Пример: 3 класса и 2 признака

Решающее дерево: регрессия

Строим разбиение выборки по значению одного из признаков

Строим разбиение выборки по значению одного из признаков

Фактически нужно только выбрать *j* и *t* наилучшим образом

Выборка делится по этому условию на две части

В каждой из них теперь тоже можно сделать разбиение

Выборка делится по этому условию на две части

Процесс можно продолжать в тех узлах, в которые попадает достаточно много объектов

H(R) - мера «неоднородности» множества R

H(R) — мера «неоднородности» множества R

Пусть мы решаем задачу классификации на 2 класса,

 p_0, p_1 — доли объектов классов 0 и 1 в R

- 1) Misclassification criteria: $H(R) = 1 \max\{p_0, p_1\}$
- 2) Entropy criteria: $H(R) = -p_0 \ln p_0 p_1 \ln p_1$
- 3) Gini criteria: $H(R) = 1 p_0^2 p_1^2 = 2p_0p_1$

H(R) — мера «неоднородности» множества R

Пусть мы решаем задачу классификации на К классов,

 $p_1, ..., p_K$ — доли объектов классов 1, ..., K в R

- 1) Misclassification criteria: $H(R) = 1 p_{max}$
- 2) Entropy criteria: $H(R) = -\sum_{k=1}^{K} p_k \ln p_k$
- 3) Gini criteria:

$$H(R) = \sum_{k=1}^{K} p_k (1 - p_k)$$

H(R) — мера «неоднородности» множества R

Чтобы решать задачу регрессии, достаточно взять среднеквадратичную ошибку в качестве H(R):

$$H(R) = \frac{1}{|R|} \sum_{x_i \in R} (y_i - \bar{y})^2$$

H(R) — мера «неоднородности» множества R

Чтобы решать задачу регрессии, достаточно взять среднеквадратичную ошибку в качестве H(R):

$$H(R) = \frac{1}{|R|} \sum_{x_i \in R} (y_i - \bar{y})^2$$

$$\bar{y} = \frac{1}{|R|} \sum_{x_i \in R} y_i$$

Prunning

Pre-prunning:

- Ограничиваем рост дерева до того как оно построено
- Если в какой-то момент информативность признаков в разбиении меньше порога не разбиваем вершину

Post-prunning:

• Упрощаем дерево после того как дерево построено

Post-prunning

Бинаризация

Вариации алгоритма построения

- •C4.5
- •C5.0
- CART

- 1. Что такое решающие деревья
- 2. Решающие деревья в классификации и регрессии
- 3. Как строить решающие деревья
- 4. Дополнительные темы

Итог

2. Ансамбли решающих деревьев

- 1. Random Forest
- 2. Идея Gradient Boosted Decision Trees (GBDT)
- 3. Библиотеки
- 4. Подробное обсуждение GBDT

План

Random Forest

1. Генерируем М выборок на основе имеющейся

Random Forest

- 1. Генерируем М выборок на основе имеющейся
- 2. Строим на них деревья с рандомизированными разбиениями в узлах: выбираем k случайных признаков и ищем наиболее информативное разбиение по ним

Random Forest

- 1. Генерируем М выборок на основе имеющейся
- 2. Строим на них деревья с рандомизированными разбиениями в узлах: выбираем k случайных признаков и ищем наиболее информативное разбиение по ним
- 3. При прогнозе усредняем ответ всех деревьев

Идея
Gradient
Boosted
Decision
Trees (GBDT)

$$h(x) = h_1(x) + \dots + h_n(x)$$

Идея
Gradient
Boosted
Decision
Trees (GBDT)

$$h(x) = h_1(x) + \dots + h_n(x)$$

Gradient Boosted Decision Trees

• Каждое новое дерево $h_k(x)$ обучаем на ответы $y_i - h_i$

 h_i - прогноз всей композиции на i-том объекте на предыдущей итерации

• Коэффициент α_k перед новым деревом подбираем с помощью численной оптимизации ошибки

GBDT и RF

Spam Data

Библиотеки

- Scikit-learn:
 - sklearn.ensemble.RandomForestClassifier
 - sklearn.ensemble.RandomForestRegressor
- XGBoost
- LightGBM

Идея Gradient Boosted Decision Trees

$$a_n(x) = h_1(x) + \dots + h_n(x)$$

Аналогия с численной оптимизацией

Нам нужно минимизировать ошибку:

$$Q(\hat{y}, y) = \sum_{i=1}^{l} (\hat{y}_i - y_i)^2 \to min \qquad \hat{y}_i = a(x_i)$$

Аналогия с численной оптимизацией

Нам нужно минимизировать ошибку:

$$Q(\hat{y}, y) = \sum_{i=1}^{l} (\hat{y}_i - y_i)^2 \to min \qquad \hat{y}_i = a(x_i)$$

Если бы мы подбирали ответы \hat{y} итеративно, можно было бы это делать градиентным спуском

Аналогия с численной оптимизацией

Нам нужно минимизировать ошибку:

$$Q(\hat{y}, y) = \sum_{i=1}^{l} (\hat{y}_i - y_i)^2 \to min \qquad \hat{y}_i = a(x_i)$$

Если бы мы подбирали ответы \hat{y} итеративно, можно было бы это делать градиентным спуском

Но нам нужно подобрать не ответы, а функцию a(x)

В бустинге
$$a(x) = \sum_{t=1}^{I} \beta_t h_t(x)$$

Градиентный бустинг и градиент

Идея: будем каждый следующий алгоритм выбирать так, чтобы он приближал антиградиент ошибки

$$h_t(x) \approx -\frac{\partial Q(\hat{y}, y)}{\partial \hat{y}}$$

Если
$$h_t(x) \approx -\frac{\partial Q(\hat{y}, y)}{\partial \hat{y}}$$
 и $Q(\hat{y}, y) = \sum_{i=1}^{l} (\hat{y}_i - y_i)^2$

Градиентный бустинг и градиент

$$h_t(x_i) \approx -\frac{\partial Q(\hat{y}_i, y_i)}{\partial \hat{y}_i} = -2(\hat{y}_i - y_i) \propto y_i - \hat{y}_i$$

GBM с квадратичными потерями

- 1. Обучаем первый базовый алгоритм h_1 , $\beta_1 = 1$
- 2. Повторяем в цикле по t от 2 до T:

обучаем h_t на ответы $y_i - a_{t-1}(x_i)$

выбираем β_t

GBM с квадратичными потерями

- 1. Обучаем первый базовый алгоритм h_1 , $\beta_1 = 1$
- 2. Повторяем в цикле по t от 2 до T:

обучаем h_t на ответы $y_i - a_{t-1}(x_i)$

выбираем β_t

Стратегии выбора β_t :

- всегда равен небольшой константе
- как в методе наискорейшего спуска
- \bullet уменьшая с ростом t

GBM с квадратичными потерями

- 1. Обучаем первый базовый алгоритм h_1 , $\beta_1 = 1$
- 2. Повторяем в цикле по t от 2 до T:

обучаем h_t на ответы $y_i - a_{t-1}(x_i)$

выбираем β_t

Стратегии выбора β_t :

- всегда равен небольшой константе
- как в методе наискорейшего спуска
- \bullet уменьшая с ростом t

GBM с произвольными потерями

1. Обучаем первый базовый алгоритм h_1 , $\beta_1 = 1$ 2. Повторяем в цикле по t от 2 до T:

обучаем
$$h_t$$
 на $-\frac{\partial Q(\hat{y}_i, y_i)}{\partial \hat{y}_i} = -\frac{\partial L(\hat{y}_i, y_i)}{\partial \hat{y}_i}$

выбираем β_t

Здесь
$$Q(\hat{y}, y) = \sum_{i=1}^{l} L(\hat{y}_i, y_i)$$
 $\hat{y}_i = a_{t-1}(x_i)$

GBM в наиболее общем виде

- 1. Обучаем первый базовый алгоритм h_1 , $\beta_1 = 1$
- 2. Повторяем в цикле по t от 2 до T:

$$h_t = \underset{h}{\operatorname{argmin}} \sum_{i=1}^{l} \tilde{L}\left(h(x_i), -\frac{\partial L(\hat{y}_i, y_i)}{\partial \hat{y}_i}\right)$$

выбираем β_t

Здесь
$$Q(\hat{y}, y) = \sum_{i=1}^{l} L(\hat{y}_i, y_i)$$
 $\hat{y}_i = a_{t-1}(x_i)$

Bagging, Random Forest, GBDT

Spam Data

GTBM и RF

California Housing Data

Параллельная реализация

Вопрос для обсуждения:

Какой из ансамблей деревьев больше подходит для распараллеливания? Как это делать в одном и в другом случае?

- 1. Random Forest
- 2. Gradient Boosted Decision Trees (GBDT)
- 3. Библиотеки

Итог

3. Общие идеи построения ансамблей

Bagging = Bootstrap aggregation

Bagging

Nº	X
1	3.4
2	2.9
3	3.7
N	3.1

Nº	X
1	3.4
2	2.9
2	3.7
N	3.1

$$\mathbb{E} X = 3.3 \pm ?$$

Выборка:

Nº	X		Nº	X
1	3.4		3	3.7
2	2.9		1	3.4
3	3.7		2	2.9
		r		
N	3.1		2	2.9

Генерируем новую (искусственную) выборку, отобрав в нее объекты из исходной выборки по схеме выбора с возвращением

$$\mathbb{E} X = 3.3 \pm ?$$

Выборка:

Nº	X		Nº	X	Nº	X
1	3.4		3	3.7	1	3.4
2	2.9		1	3.4	3	3.7
3	3.7		2	2.9	2	2.9
		,				
N	3.1		2	2.9	M	3.0

$$\mathbb{E} X = 3.3 \pm ?$$

Продолжаем генерировать такие выборки

Nº	X		No	X	Nº	X	Nº	X
1	3.4		3	3.7	1	3.4	3	3.7
2	2.9		1	3.4	3	3.7	2	2.9
3	3.7		2	2.9	2	2.9	 1	3.4
		,						
N	3.1		2	2.9	M	3.0	1	3.4

$$\mathbb{E} X = 3.3 \pm ?$$

Nº	X		Nº	X	Nº	X	Nº	X
1	3.4		3	3.7	1	3.4	3	3.7
2	2.9		1	3.4	3	3.7	2	2.9
3	3.7		2	2.9	2	2.9	 1	3.4
		,						
N	3.1		2	2.9	M	3.0	1	3.4

$$\mathbb{E} X = 3.3 \pm ?$$

$$\mathbb{E} X = 3.25$$
 $\mathbb{E} X = 3.27 \cdot \mathbb{E} X = 3.39$

Nº	X		Nº	X	Nº	X		Nº	X
1	3.4		3	3.7	1	3.4		3	3.7
2	2.9		1	3.4	3	3.7		2	2.9
3	3.7		2	2.9	2	2.9	• • •	1	3.4
		,							
N	3.1		2	2.9	M	3.0		1	3.4

$$\mathbb{E} X = 3.3 \pm ?$$

$$\mathbb{E} X = 3.25$$
 $\mathbb{E} X = 3.27 \cdot \cdot \cdot \mathbb{E} X = 3.39$

Bagging = Bootstrap aggregation

Bagging

По схеме выбора с возвращением, генерируем М обучающих выборок такого же размера, обучаем на них модели и усредняем

Bagging

Бэггинг в классификации

Bариации: Pasting, RSM

- RSM Random Subspace Method, выбираем не объекты, а признаки
- Pasting выбираем объекты без возвращения

Обучающая выборка:

Обучающая выборка:

Обучаем М базовых алгоритмов на выборке А

Смесь нескольких сильных классификаторов:

$$a(x) = \sum_{t=1}^{I} \alpha_t b_t(x)$$

+ веса неотрицательны и дают в сумме единицу

Blending

Blending

Смесь нескольких сильных классификаторов:

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

+ веса неотрицательны и дают в сумме единицу

Преимущества и недостатки:

• Очень прост идейно, хорошо работает, логичен

Blending

Смесь нескольких сильных классификаторов:

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

+ веса неотрицательны и дают в сумме единицу

Преимущества и недостатки:

- Очень прост идейно, хорошо работает, логичен
- Иногда надо перебирать веса или использовать дискретную оптимизацию

Blending

Смесь нескольких сильных классификаторов:

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

+ веса неотрицательны и дают в сумме единицу

Преимущества и недостатки:

- Очень прост идейно, хорошо работает, логичен
- Иногда надо перебирать веса или использовать дискретную оптимизацию
- Не всегда композиция в виде взвешенной суммы то, что надо. Иногда нужна более сложная композиция

Бустинг – жадное построение взвешенной суммы базовых алгоритмов $h_k(x)$

Boosting

Boosting

Бустинг – жадное построение взвешенной суммы базовых алгоритмов $h_k(x)$

Boosting

Бустинг – жадное построение взвешенной суммы базовых алгоритмов $h_k(x)$

Boosting

Бустинг – жадное построение взвешенной суммы базовых алгоритмов $h_k(x)$

$$a(x) = \sum_{t=1}^{T} \beta_t h_t(x)$$

«Слабые» алгоритмы

 $h_k(x)$ – как правило, решающие деревья небольшой глубины или линейные модели

Пример: бустинг над линейными моделями

Алгоритмы бустинга

- Основные алгоритмы:
 - Градиентный бустинг
 - Адаптивный бустинг (AdaBoost)
- Вариации AdaBoost:
 - AnyBoost (произвольная функция потерь)
 - BrownBoost
 - GentleBoost
 - LogitBoost
 -

Бэггинг и бустинг: переобучение

Преимущества и недостатки бустинга

- Позволяет очень точно приблизить восстанавливаемую функцию или разделяющую поверхность классов
- Плохо интерпретируем
- Композиции могут содержать десятки тысяч базовых моделей и долго обучаться
- Переобучение на выбросах при избыточном количестве классификаторов

1. Решающие деревья

План лекции

2. Ансамбли деревьев

3. Общие идеи построения ансамблей

https://arxiv.org/pdf/1603.02754.pdf

$$\sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b(x_i)) \to \min_{b}$$

$$s = \left(-\left.\frac{\partial L}{\partial z}\right|_{z=a_{N-1}(x_i)}\right)_{i=1}^{\ell} = -\nabla_s \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + s_i)$$

$$b_N(x) = \operatorname*{arg\,min}_{b \in \mathcal{A}} \sum_{i=1}^{\ell} (b(x_i) - s_i)^2$$

$$b_N(x) = \operatorname*{arg\,min}_{b \in \mathcal{A}} \sum_{i=1}^{\ell} \left(b(x_i) - \frac{s_i}{h_i} \right)^2 \qquad h_i = \left. \frac{\partial^2 L}{\partial z^2} \right|_{z = a_{N-1}(x_i)}$$

$$b_N(x) = \operatorname*{arg\,min}_{b \in \mathcal{A}} \sum_{i=1}^{\ell} \left(b(x_i) - \frac{s_i}{h_i} \right)^2$$

$$b(x) = \sum_{j=1}^{J} b_j [x \in R_j]$$

$$\sum_{i=1}^{\ell} \left(-s_i b(x_i) + \frac{1}{2} h_i b^2(x_i) \right) + \lambda J + \frac{\mu}{2} \sum_{j=1}^{J} b_j^2 \to \min_b$$

$$\sum_{j=1}^{J} \left\{ \left(-\sum_{i \in R_j} s_i \right) b_j + \frac{1}{2} \left(\mu + \sum_{i \in R_j} h_i \right) b_j^2 + \lambda \right\}$$

$$b_j = \frac{S_i}{H_j + \mu}$$

$$H(b) = \frac{1}{2} \sum_{j=1}^{J} \frac{S_j^2}{H_j + \mu} + \lambda J$$

$$H(b_l) + H(b_r) - H(b) - \lambda \rightarrow \max$$

LightGBM

https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree