Zadanie: ODT

Odtwarzanie grafu

Warsztaty ILO, grupa olimpijska, dzień 4. Dostępna pamięć: 128 MB.

Dla pewnego ważonego, nieskierowanego grafu (z dodatnimi wagami) obliczono macierz najkrótszych ścieżek, tzn. wartość w i-tym wierszu i j-tej kolumnie tej macierzy była równa długości najkrótszej ścieżki między wierzchołkami i i j.

Niestety graf został stracony i Twoim zadaniem jest go odtworzyć. O grafie wiadomo, że między każdą parą wierzchołków istniała ścieżka. Jeżeli istnieje wiele takich grafów, należy znaleźć taki, który minimalizuje sumę wag krawędzi. Może sie okazać, że macierz zawiera błąd i taki graf nie istnieje.

Na wyjściu nie trzeba wypisać całego grafu, a jedynie sumę wag krawędzi tego grafu.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba n ($1 \le n \le 400$), oznaczająca liczbę wierzchołków grafu. W kolejnych n wierszach znajduje się macierz najkrótszych ścieżek, i-ty z nich zawiera n liczb $A_{i,1}, A_{i,2}, \cdots, A_{i,n}$ ($0 \le A_{i,j} = A_{j,i} \le 10^9$), oznaczające odległości od wierzchołka i do kolejnych wierzchołków. Możesz założyć, że $A_{i,i} = 0$, a jeśli $i \ne j$, to $A_{i,j} > 0$.

Wyjście

Na wyjściu należy wypisać jedną liczbę całkowitą, oznaczająca sumę wag krawędzi grafu, spełniającego podaną na wejściu macierz najkrótszych ścieżek. Jeżeli taki graf nie istnieje, należy wypisać -1.

Przykład

-

0 1 3

1 0 1

3 1 0

Ocenianie

Podzadanie	Ograniczenia	Punkty
1	$n \le 100$	30
2	brak dodatkowych założeń	70