Zusatztutorium Mathe A WS19/20

Anton Hanke, Maximillian Kohnen, Felix Schnabel
Fragestunde: 27/11/19

Mathematische Logik

Aussagen

Implikationen
Quantoren
Beweise
Mengen und algebraische Struckturen
Mengen sind Zusammenfassungen bestimmter, wohlunterscheidbarer Objekte. Für jedes Objekt ist eine klare zuordnung zur Menge erkentlich
Mengen sind keine Aussagen!!

sonder mengen & Mengen Relationen

- $\emptyset \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$
- $A \subset B$! Aussage!
- $A \cap B$
- $A \cup B$
- $A \setminus B \wedge B \setminus A$
- $A \times B = \{(a, b) : a \in A, b \in B\}$

Abbildungen

$$f: A \to B$$

- A = Definitionsmenge, von hier bilden wir ab.
- \bullet B = Zielmenge, hierdrauf wird abgebildet.
- Bildmenge: $\subset B$ welche sich aus f(A) ergibt.
- 1. Injektive Abbildung: $\forall i \in B | \#(a \in A) \leq 1 : f(a) \rightarrow i$
- 2. Surjektive Abbildung: $\forall i \in B | \#(a \in A) \ge 1 : f(a) \to i$
- 3. Bijektive Abbildung: $\forall i \in B \mid \#(a \in A) = 1 : f(a) \to i$ (1. \land 2.)

Gruppen (G, \oplus)

• Abgeschlossenheit

$$a \in G, b \in G : a \oplus b \in G$$

• Assoziativität

$$(b \oplus a) \oplus c = a \oplus (b \oplus c)$$

• Neutrales Element D_0

$$\exists e \in G, \forall a \in G : a \oplus e = a$$

• Inverses Element

$$\forall a \in G, \exists \bar{a} \in G : a \oplus \bar{a} = e$$

• Kommultativität (abelsche Gruppe):

$$\forall a \in G, \forall b \in G : a \oplus b = b \oplus a$$

Ringe (M, \oplus, \otimes)

- 1. (M, \oplus) ablesche Gruppe
- 2. $a \otimes (b \otimes c) = (a \otimes b) \otimes c$ assoziativität gegeben.
- 3. Distributiv: $\forall a, b, c \in M : a \otimes (b \oplus c) = a \otimes b \oplus a \otimes c$.
- Kommutativ wenn: $a \otimes b = b \otimes a$
- unitär wenn: $\exists 1 \in M : a \otimes 1 = 1 \otimes a = a$.

Körper (K, \oplus, \otimes)

- 1. (K, \oplus) is abelsche Gruppe mit $D_0 = 0$.
- 2. $(K \setminus \{0\}, \otimes)$ abelsche Gruppe mit $D_0 = 1$.
- 3. Distributivgesetz gilt.
- Unterschied zu Ringen: (M, \otimes) keine abelsche Gruppe, kein Inverses!

Vektorrechnung

Vektoren sind tupel mit n elementen $(n = \dim V)$.

Sie erfüllen alle bedingungen eines Körpers und lassen sich nicht mit sich selbst multiplizieren.

• Linearkombination:

$$\vec{z} = \sum_{i=1}^{k} \mu_i \vec{x}_i \in V$$

Hierbei sind μ skalare ($\mu \in \mathbb{R}$)

• Skalarprodukt: "Vektor multiplikation".

$$\mathbb{R}^n\mathbb{R}^n=\mathbb{R}$$

Relevant ist, das beide Vektoren gleiche Dimension haben.

$$\vec{v} \cdot \vec{w} = \sum_{i=1}^{n} v_i w_i \in \mathbb{R}$$

Vektor betrag:

$$\begin{aligned} |\vec{v}|^2 &= \vec{v} \cdot \vec{v} \\ \Rightarrow |\vec{v}| &= \sqrt{\sum_{i=1}^{n} v_i^2} \end{aligned}$$

Ein Vektor lässt sich normieren mit: $\vec{e}_v = \frac{\vec{v}}{|\vec{v}|}$. In \mathbb{R}^2 gilt: $\vec{e} = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$

• Winkel zwischen Vektoren: Sind vektoren ortogonal ($\alpha = 90^{circ}$) gilt: $\vec{u} \cdot \vec{v} = 0 \Leftrightarrow \vec{u} \perp \vec{v}$ Allgemein berechnet sich der Winkel mit:

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$

Basis eines Vektorraums

Die Basis eines Vektorraums ist die Menge an vektoren, mit welchen sich über Linearkombination jeder Vektor im Vektorraum berechnen lässt, sie wird der span des Raums gennant:

$$\forall \vec{v} \in V : \exists \lambda_1, \dots, \lambda_k \in \mathbb{R} : \vec{v} = \sum_{i=1}^n \lambda_i \vec{e_i}$$

Die Vektoren dieser Basis spannen den Vektorraum auf und werden als spanV bezeichent, wobei $V:\Leftrightarrow$ $\{\vec{v}_i,\ldots,\vec{v}_k\}\in\mathbb{R}$

Drei relevante Basen sind:

- 1. Kanonische Basis: $\mathbb{R}^n \left\{ \vec{e}_1 = (1, \dots, 0), \vec{e}_i = (0, \dots, 1, \dots, 0), \vec{e}_n = (0, \dots, 1) \right\}$ $i = 1, \dots, n$ 2. normierte Basis: $\left\{ \vec{v}_i \in X \right\} : |\vec{v}_i| = 1 \quad \forall i = 1, \dots, n$
- 3. orthogonale Basis: $\{\vec{v}_i \in X\}: \vec{v}_i \cdot \vec{v}_j = 0 \ \forall i, j = 1, \dots, n$

Alle Vektoren der Basis des Vektorraums müssen linear unabhängig voneinander sein:

$$\sum_{i=1}^{r} \lambda_1 \vec{v}_1 + \ldots_i + \lambda_r \vec{v}_r^2 = \vec{O} \Leftrightarrow \lambda_i = 0 \quad i = 1, \ldots, r$$

Lineare Abbhängigkeit ist gegeben, wenn $\exists \lambda \neq 0$ sodass $\lambda \vec{v}_1 \cdot \lambda \vec{v}_2 = \vec{0}$.

Die Dimension des (aufgespannten) Vektorraums entspricht der Anzahl an Basis oder Span Vektoren.

$$\dim V = \operatorname{span}(V)$$

Komplexe Zahlen und trignometrische Funktionen

Darstellungen Komplexer Zahlen

Kartesische Darstellung

Polarkoordinaten Darstellung

Euler Darstellung

Rechenoperationen Komplexer Zahlen

Trigonometrische Funktione

Geometrische Interpretation

Eigenschaften und wichtige Gleichungen

Wichtige Werte

Lineare Gleichungssysteme

Matrixrechung

Matrix inverse

Matrix determinanten

Spalten und Nullraum

Eliminationsverfahren

Gauß Verfahren

Matrixform

Lösbarkeit