

Universidade de Brasília Departamento de Engenharia Elétrica Tópicos em Engenharia: Fundamentos de Modelagem e Simulação do Canal de Comunicações Sem Fio – ENE0332 Trabalho 1

Professor: Higo Thaian Pereira da Silva Aluno: Artur Padovesi Piratelli Matrícula: 211038208 28 de abril de 2025

1 Introdução

O objetivo deste projeto é implementar modelos simplificados, especificados em [3], para simulação dos canais UMi e UMa advindos de [1]. É também utilizar o simulador para analisar o cenário UMi NLoS.

A implementação foi feita em código Python e disponibilizada no link github.com/artistrea/3gpp-alike-sim.

2 Simulador

O simulador deve permitir obter um sinal recebido a partir de informações sobre o cenário e de um sinal transmitido. Conforme a equação (14) de [2] a envoltória complexa ou representação banda base do sinal recebido pode ser dada em termos da equação

$$\tilde{r}(t) = \sum_{n=1}^{N} \alpha_n e^{-j2\pi[(f_c + \nu_n)\tau_n - \nu_n t]} \cdot \tilde{s}(t - \tau_n), \qquad (1)$$

onde:

N é a quantidade de componentes multipercurso

 $\tilde{s}(t)$ é a envoltória do sinal transmitido

 α_n é a intensidade da componente n

 ν_n é o desvio Doppler da componente n

 τ_n é o atraso temporal da componente n

Portanto, para simular o sinal recebido, é necessário gerar ou calcular os valores de α_n , ν_n e τ_n para cada uma das N componentes multipercurso. Foi então desenvolvido um simulador com o fluxograma da Figura 1.

Figura 1: Fluxograma do Simulador

2.1 Modelagem do Canal

O canal é modelado usando o seguinte algoritmo:

- 1. Para gerar os atrasos τ_n :
 - (a) Gera-se um espalhamento de atraso aleatório $\sigma_{\tau} = 10^{\sigma_{\tau;log}}$ [s], onde $\sigma_{\tau;log} \sim \mathcal{N}(\mu_{\sigma_{\tau;log}}, \sigma^2_{\sigma_{\tau;log}})$, sendo $\mu_{\sigma_{\tau;log}}$ e $\sigma_{\sigma_{\tau;log}}$ dependentes do cenário de acordo com a Tabela 1.
 - (b) Gera-se um valor inicial para os atrasos com $\tau'_n \sim \operatorname{Exp}(r_\tau \sigma_\tau) \mid 1 < n \leq N$, sendo r_τ parâmetro do cenário conforme a Tabela 2;
 - (c) que são normalizados e ordenados com $\tau = \text{sort}(\{\tau \min(\tau)\});$
- 2. Para gerar as potências α_n^2 :
 - (a) Gera-se sombreamentos aleatórios $\xi_n \sim \mathcal{N}(0, \sigma_{\xi}^2)$, com σ_{ξ} dependentes do cenário de acordo com a Tabela 3.
 - (b) A potência inicialmente é calculada por

$$\hat{\alpha}_n^2 = \exp\left(-\tau_n \frac{r_\tau - 1}{r_\tau \sigma_\tau}\right) \cdot 10^{-\xi_n/10} \,. \tag{2}$$

- (c) No caso LoS, o Fator de Rice $K_{R;dB} \sim \mathcal{N}(\mu_{K_{R;dB}}, \sigma_{K_{R;dB}})$ deve ser gerado, com desvio padrão e média respeitando a Tabela 4, e depois transformado para linear com $K_R = 10^{0.1K_{R;dB}}$. No caso NLoS, $K_R = 0$;
- (d) Normaliza-se as potências com a componente LoS $\alpha_1^2 = \frac{K_R}{K_R+1}$ e as outras componentes $2 < n \le N$ sendo $\alpha_n^2 = \frac{1}{K_R+1} \frac{\hat{\alpha}_n^2}{\hat{\Omega}_c}$, onde $\hat{\Omega}_c = \sum_{n=2}^N \hat{\alpha}_n^2$ é a potência total dispersa;
- 3. Para gerar os efeitos Doppler ν_n^2 :
 - (a) Gera-se os espalhamentos angulares azimutal $\sigma_{\theta;log} \sim \mathcal{N}(\mu,\sigma)$ considerando a Tabela 5 e em elevação $\sigma_{\phi;log} \sim \mathcal{N}(\mu,\sigma)$ considerando a Tabela 6. Converte-se log em linear (graus) e graus em radianos com $\sigma_{\phi} = 10^{\sigma_{\phi;log}} \cdot \pi/180$ e $\sigma_{\theta} = 10^{\sigma_{\theta;log}} \cdot \pi/180$.
 - (b) Obtém-se o ângulo azimutal de chegada $\theta_n = U_n \theta_n' + Y_n$, onde $U_n \sim U-1,1, Y_n \sim \mathcal{N}(0,\sigma_\theta/7)$ e $\theta_n' = 1.42\sigma_\theta \sqrt{-\ln\left(\frac{\alpha_n^2}{\max(\alpha^2)}\right)}$. Caso haja LoS no cenário, o ajuste $\theta_n = \theta_n \theta_1$ é feito;

- (c) Obtém-se o ângulo em elevação de chegada $\phi_n = U_n \phi'_n + Y_n$, onde $U_n \sim U-1, 1, Y_n \sim \mathcal{N}(0, \sigma_\phi/7)$ e $\phi'_n = -\sigma_\phi \ln\left(\frac{\alpha_n^2}{\max(\alpha^2)}\right)$. Caso haja LoS no cenário, o ajuste $\phi_n = \phi_n \phi_1 + \overline{\phi}$ é feito, com $\overline{\phi}$ um ângulo arbitrário que representa a elevação da antena receptora em relação à transmissora;
- (d) Os vetores r_n de chegada são construídos:

$$r_n = \begin{bmatrix} \cos(\theta_n)\sin(\phi_n) \\ \sin(\theta_n)\sin(\phi_n) \\ \cos(\phi_n) \end{bmatrix}$$

- (e) Os desvios Doppler podem ser calculados calculados utilizando o produto interno entre a velocidade do receptor e o vetor de chegada ponderados pelo comprimento de onda: $\nu_n = \frac{1}{\lambda} r_n \cdot v_{rx}$.
- 4. Por fim, o envoltório complexo do sinal recebido pode ser calculado substituindo os termos da Equação 1 pelos calculados anteriormente.

Ambiente de Propagação		Estatísticas de $\sigma_{\tau;log}$	
		Média	Des. Padrão
UMi	LoS	$-0.24\log_{10}(1+f_c) - 7.14$	0.38
	NLoS	$-0.24\log_{10}(1+f_c) - 6.83$	$-0.16\log_{10}(1+f_c) + 0.28$
UMa	LoS	$-0.0963\log_{10}(1+f_c) - 6.955$	0.66
	NLoS	$-0.204\log_{10}(1+f_c) - 6.28$	0.39

Tabela 1: Estatísticas de espalhamento de atraso - Retirada da Tabela 1 de [3]

Ambie	ente de Propagação	Fator de Proporcionalidade r_{τ}
UMi	LoS	3
	NLoS	2.1
UMa	LoS	2.5
	NLoS	2.3

Tabela 2: Fator de Proporcionalidade - Retirado da Tabela 2 de [3]

Ambie	ente de Propagação	Desvio Padrão do Sombreamento σ_{ξ} (dB)	
UMi	LoS	4	
	NLoS	7.82	
UMa	LoS	4	
	NLoS	6	

Tabela 3: Estatísticas do sombreamento - Retirada da Tabela 3 de [3]

Ambiente de Propagação		Estatísticas de K_R (dB)	
		Média	Desv. Padrão
UMi	LoS	9	5
	NLoS	_	_
UMa	LoS	9	3.5
	NLoS	_	_

Tabela 4: Estatísticas do fator de Rice K_R - Retirada da Tabela 4 de [3]

Ambiente de Propagação		Estatísticas de σ_ϕ	
		Média	Desv. Padrão
UMi	LoS	$-0.1\log_{10}(1+f_c)+0.73$	$-0.04\log_{10}(1+f_c)+0.34$
	NLoS	$-0.04\log_{10}(1+f_c)+0.92$	$-0.07\log_{10}(1+f_c)+0.41$
UMa	LoS	0.95	0.16
	NLoS	$-0.3236\log_{10}(f_c) + 1.512$	0.16

Tabela 6: Estatísticas do espalhamento angular em elevação σ_ϕ - Retirada da Tabela 6 de [3]

Ambiente de Propagação		Estatísticas de σ_{θ}	
		Média	Desv. Padrão
UMi	LoS	$-0.08\log_{10}(1+f_c)+1.73$	$0.014\log_{10}(1+f_c) + 0.28$
	NLoS	$-0.08\log_{10}(1+f_c)+1.81$	$0.05\log_{10}(1+f_c)+0.3$
UMa	LoS	1.81	0.2
	NLoS	$-0.27\log_{10}(f_c) + 2.08$	0.11

Tabela 5: Estatísticas do espalhamento angular azimutal σ_{θ} - Retirada da Tabela 5 de [3]

2.2 Análise da Modelagem e Implementação

Para ambos modelos (UMi e UMa) o espalhamento de atraso possui distribuição Gaussiana, a distribuição que geralmente se aplica para o espalhamento de atraso. Pode ser observado nas figuras 2 e 3 o comportamento das estatísticas do espalhamento no atraso em função da frequência. Quanto maior a frequência, menor tende a ser o espalhamento de atraso. O espalhamento de atraso é definido pela equação 3

$$\sigma_{\tau} = \sqrt{\frac{1}{\Omega_c} \sum_{n=1}^{N} \alpha_n^2 \cdot (\tau_n - \overline{\tau})^2},$$
(3)

onde Ω_c é o ganho do canal e $\overline{\tau}$ é o atraso médio, determinado por

$$\overline{\tau} = \frac{1}{\Omega_c} \sum_{n=1}^{N} \tau_n \alpha_n^2 .$$

Pela definição, é possível observar que o espalhamento de atraso é uma medida de autocorrelação entre os atrasos, ponderada pela potência. Quanto maior a frequência, mais evidente é, geralmente, o efeito de absorções por obstáculos e pela atmosfera. Essa atenuação é suficiente para perceptivelmente diminuir os valores de espalhamento de atraso quanto maior a frequência.

Figura 2: Gráfico da Média de σ_{τ} em função da frequência.

Figura 3: Gráfico do Desvio Padrão de σ_{τ} em função da frequência.

Frequentemente as componentes de atraso são geradas com base em uma

distribuição exponencial. No caso dessa modelagem uma exponencial de média $r_{\tau}\sigma_{\tau}$ foi utilizada.

O modelo correlaciona as componentes de potência com seu atraso pela equação 2, que permite visualizar que a potência de uma componente decai exponencialmente com o atraso. A mesma equação, quando observada junto da Tabela 3, permite notar que o sombreamento fornece um termo que escala linearmente o impacto do atraso na potência da componente. Ou seja, ele é um parâmetro que significa como o caminho da componente afetou sua potência. Cenários NLoS tendem a possuir maior sombreamento pois seus caminhos desde o transmissor até o receptor possuem mais obstáculos.

O fator de Rice determina a razão da potência LoS para a potência NLoS de acordo com a equação 4:

$$K_R = \frac{\alpha_1^2}{\sum_{n=2}^N \alpha_n^2} \,, \tag{4}$$

e portanto estabelece uma relação entre a potência da componente de visada direta e as outras. Na modelagem K_R é amostrado de uma distribuição Gaussiana em dB (lognormal em linear).

Os espalhamentos angulares σ_{θ} e σ_{ϕ} significam o quão próximos em ângulo as componentes multipercurso tendem a chegar de uma componente central. Suas estatísticas em função da frequência podem ser observados nas Figuras 4, 5, 6 e 7.

Figura 4: Gráfico da Média de σ_{θ}

Figura 5: Gráfico do Desvio Padrão de σ_{θ}

Figura 6: Gráfico da Média de σ_{ϕ}

Figura 7: Gráfico do Desvio Padrão de σ_ϕ

3 Resultados

Por brevidade, o cenário simulado foi UMi NLoS, utilizando N=100 componentes multipercurso e frequência central da portadora $f_c=3$ GHz.

O primeiro trecho da modelagem resulta em componentes de potência e de atraso que podem ser visualizadas na forma $P_{hh}(\tau) = \sum_{n=1}^N \alpha_n^2 \delta(\tau - \tau_n)$ conforme a Figura 8. O fator de Rice para o caso NLoS é igual a 0, e portanto não existe uma componente com potência muito maior do que as outras. Mais especificamente, a componente $\alpha_1^2 = 0$, estando de acordo com a Equação 4.

Figura 8: Power Delay Profile

Com os atrasos e potências podemos recalcular o espalhamento de atraso de acordo com a sua definição em 3. Enquanto o valor gerado foi 1.0909258716469582e-07 s, o valor recalculado foi 1.819505532670519e-07, apresentando diferença considerável. Isso é uma diferença considerável, mas pode ser explicada pela diferença do modelo simplificado implementado, onde a potência da componente de atraso zero é mantida diferente de zero e Ω_c inclui a primeira componente. Uma análise rápida dos casos LoS mostrou que a diferença entre o valor gerado e recalculado para esses cenários aparente ser menor.

O próximo passo da simulação é gerar os ângulos de chegada, gerando as Figuras 9, 10 e 11. As direções de chegada estão bem dispersas pois o cenário é

NLoS.

Figura 9: Dispersão de Potência em Azimute

Figura 10: Dispersão de Potência em Azimute

Vetores direção das componentes multipercurso

Figura 11: Dispersão da potência nas direções de chegada

Utiliza-se os vetores de chegada com vetores velocidade ao longo do eixo x e de magnitude v=5 m/s e v=50 m/s para chegar aos desvios Doppler. A dispersão de potência no domínio de desvio Doppler pode ser observada na Figura 12. Como o desvio doppler é dado por um produto interno entre vetor velocidade e vetor de chegada, seu valor depende linearmente da magnitude da velocidade. Isso significa que uma velocidade 10 vezes maior causa um desvio Doppler 10 vezes maior, que é o que se observa nas figuras.

Figura 12: Desvios Doppler

Por fim, foram gerados 3 pulsos unitários de largura $\sigma t \in \{10^{-7}, 10^{-5}, 10^{-3}\}$ para serem os envoltórios complexos $\tilde{s}(t)$ de acordo com a equação 1. Então, basta aplicar os outros termos conforme gerados para obter os envoltórios complexos dos sinais recebidos, permitindo criar as figuras 13, 14 e 15. Pelas figuras fica claro o comportamento do canal de filtragem. Para um intervalo de transmissão pequeno o suficiente, o canal espalha o sinal enviado no tempo, como um filtro.

Figura 13: Sinal recebido com $\delta t = 10^{-3}$

Figura 14: Sinal recebido com $\delta t = 10^{-5}$

Figura 15: Sinal recebido com $\delta t = 10^{-7}$

Por fim, podemos analisar a autocorrelação do canal $\rho_{TT}(\kappa,\sigma)$

$$\rho_{TT}(\kappa,\sigma) = \sum_{n=1}^{N} \alpha_n^2 e^{-j2\pi\tau_n \kappa} e^{j2\pi\nu_n \sigma}, \qquad (5)$$

sendo κ um desvio no domínio da frequência absoluta e σ um desvio no domínio do tempo absoluto. Aplicando essa equação para os resultados gera as Figuras 16, 17 e 18. Enquanto a banda de coerência é a mesma para o cenário onde v=5 e v=50 m/s, o tempo de coerência mostra uma diminuição de 10 vezes ao aumentar a velocidade em 10 vezes. Isso ocorre pois o desvio no tempo multiplica ν_n , que é proporcional à magnitude da velocidade. O gráfico de 18 em função de σ se "move" 10 vezes mais rápido quando a velocidade é 10 vezes mais rápido, como o esperado.

Figura 16: Visualização da banda de coerência do canal

Figura 17: Visualização do tempo de coerência do canal (v = 5 m/s)

Figura 18: Visualização do tempo de coerência do canal (v = 50 m/s)

4 Conclusão

O simulador implementado possibilita simulação de todos os 4 cenários descritos (UMi, UMa x LoS, NLoS). Mais especificamente, foi possível realizar uma análise mais profunda dos resultados do simulador para o cenário UMi NLoS.

Foi notada a diferença entre valores gerados e efetivos ao recalcular o espalhamento de atraso. É incerto se a modelagem original de [1] possui a diferença significativa observada pois o modelo simplificado possui alterações consideráveis

no cálculo de potência de α_1^2 . Todos os outros gráficos e valores obtidos estão de acordo com o esperado.

Sendo assim, os objetivos deste projeto foram concluídos com sucesso, tendo um simulador funcional e uma análise do cenário UMi NLoS como resultados.

Referências

- [1] 3GPP. Study on channel model for frequencies from 0.5 to 100 GHz. Rel. técn. TR 38.901 V18.0.0. 2024.
- [2] Higo Thaian P. Da Silva. *Tópicos em Engenharia Notas de Aula 1-8*. 2025.
- [3] Higo Thaian P. Da Silva. *Tópicos em Engenharia Slides de Simulação do Canal Seletivo em Frequência*. 2025.