第三部分 代数结构

第十章 群与环

- □ 主要内容
 - 10.1群的定义与性质
 - 10.2子群与群的陪集分解
 - 10.3循环群与置换群
 - 10.4环与域

10.1 群的定义与性质

- □ 半群、独异点与群的定义
- □群中的术语
- □ 群的基本性质

半群、独异点与群的定义

口 定义10.1

- (1) 设V=<S, \circ >是代数系统, \circ 为二元运算,如果 \circ 运算是可结合的,则称V为半群.
- (2) 设 $V = \langle S, \circ \rangle$ 是半群,若 $e \in S$ 是关于。运算的单位元,则称V 是含幺半群,也叫做独异点. 有时也将独异点V 记作 $V = \langle S, \circ, e \rangle$.
- (3) 设 $V=<S,\circ>$ 是独异点, $e\in S$ 关于。运算的单位元,若 $\forall a\in S$, $a^{-1}\in S$,则称V是群. 通常将群记作G.

判断下列代数系统是否为半群、独异点、群?

- □ <Z+,+>, <N,+>, <Z,+>,<Q,+>,<R,+>, +是普通加法.
 - 都是半群。
 - 除<Z+,+>外都是独异点。
 - <Z,+>,<Q,+>,<R,+>是群。

实例(续)

⊕	Ø	<i>{a}</i>	{ <i>b</i> }	$\{a,b\}$
Ø	Ø	<i>{a}</i>	{ <i>b</i> }	$\{a,b\}$
{a}	{a}	Ø	$\{a.b\}$	{ <i>b</i> }
{ b }	{ b }	$\{a,b\}$	Ø	{ <i>a</i> }
{a,b}	{a,b	} {b}	{ <i>a</i> }	Ø

- \square <P(B), \oplus >,其中 \oplus 为集合对称差运算
 - 是半群。
 - 是独异点, 单位元为Ø。
 - ■是群。

实例(续)

\oplus_4	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

- $\square < \mathbb{Z}_n, \oplus >$,其中 $\mathbb{Z}_n = \{0,1,...,n-1\}$, \oplus 为模n 加法。
 - 是半群。
 - 是独异点, 单位元为0。
 - ■是群。

实例(续)

0	f_1	$f_{\scriptscriptstyle 2}$	f_3	f_4
f_1	f_1	f_2	f_3	f_4
f_2	$f_{\scriptscriptstyle 2}$	f_2	f_3	f_3
f_3	f_3	f_2	f_3	$f_{\scriptscriptstyle 2}$
f_4	f_4	f_2 f_2 f_2	f_3	f_1

- $\square < A^A, \circ >$,其中 \circ 为 函数的复合运算。
 - 是半群。
 - 是独异点, 单位元为f₁

- 口 设 $R = \{0^{\circ}, 60^{\circ}, 120^{\circ}, 180^{\circ}, 240^{\circ}, 300^{\circ}\}$, *是 R 上的二元运算,a * b表示平面图形连续旋转 a 和 b 得到的总旋转角度。并规定旋转 360° 等于原来的状态。
- □ 试验证 $\langle R, * \rangle$ 是一个群。

解:由题意,运算*的运算表如下:

*	0	60	120	180	240	300
0	0	60	120	180	240	300
60	60	120	180	240	300	0
120	120	180	240	300	0	60
180	180	240	300	0	60	120
240	240	300	0	60	120	180
300	300	0	60	120	180	240

*是封闭的,满足结合律, 幺元是0,

60,120,180的逆元分别

是300,240,180

Klein四元群

- □ 设 $G=\{e,a,b,c\}$,G上的运算由下表给出,称为Klein 四元群。
 - 1. 满足交换律。
 - 2. 每个元素都是自己的逆元。
 - 3. a, b, c中任何两个 元素运算结果都等于 剩下的第三个元素。

*	e	a	b	c
e	e	a	b	c
a	a	e	C	b
b	b	C	e	a
c	C	b	a	e

有关群的术语

口 定义10.2

- (1) 若群G是有穷集,则称G是有限群,否则称为无限群. 群G 的基数称为群 G 的阶,有限群G的阶记作|G|.
- (2) 只含单位元的群称为平凡群.
- (3) 若群G中的二元运算是可交换的,则称G为交换群或阿贝尔 (Abel) 群.

- □ $\langle Z, + \rangle$ 和 $\langle R, + \rangle$ 是无限群, $\langle Z_n, \oplus \rangle$ 是有限群, 也是 n 阶群.
- □ Klein四元群是4阶群.
- □ <{0},+>是平凡群.
- □ 上述群都是交换群, n阶(n≥2)实可逆矩阵集合 关于矩阵乘法构成的群是非交换群.

挪威青年数学家——阿贝尔

挪威 阿贝尔 N.H.Abel 1802-1829

- □ 主要成就: 五次方程无解 证明、阿贝尔分、阿贝尔 尔函数、阿贝尔积分方程、 阿贝尔群、阿贝尔级数、阿贝尔 阿贝尔部分和公式、阿贝尔 阿贝尔部是本定理、阿贝尔阿根 定理、阿贝尔可和性等。
- 口 为了纪念挪威天才数学家阿贝尔诞辰200周年,挪威阿贝尔诞辰2003年设立了一项数学奖——阿贝尔奖。

群中元素的幂

定义10.3 设G是群, $a \in G$, $n \in Z$,则a 的 n次幂.

$$a^{n} = \begin{cases} e & n = 0 \\ a^{n-1}a & n > 0 \\ (a^{-1})^{m} & n < 0, n = -m \end{cases}$$

只有群中元素可以定义负整数次幂.

实例

在<Z₃, \oplus >中 $2^{-3} = (2^{-1})^3$ $= 1^3 = 1 \oplus 1 \oplus 1$

$$\frac{2}{0}$$
 = 0

在<Z,+>中

$$(2)^{-3} = (2^{-1})^3$$

$$=(-2)^3=(-2)+(-2)+(-2)$$

元素的阶

- 口 定义10.4 设*G*是群, $a \in G$,使得等式 $a^k=e$ 成立的最小正整数k 称为a 的阶,记作|a|=k,称 a 为 k 阶元. 若不存在这样的正整数 k,则称 a 为无限阶元.
- □ 例如: 在<Z,+>中,0是1阶元,其它整数都是无限阶元。

\oplus	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

- 口 在<**Z**₆, \oplus >中,
 - 0是1阶元,
 - 1和5是6阶元,
 - 2和4是3阶元,
 - 3是2阶元。

群的性质: 幂运算规则

- \square 定理10.1 设G 为群,则G中的幂运算满足:
 - (1) $\forall a \in G, (a^{-1})^{-1} = a$
 - (2) $\forall a,b \in G$, $(ab)^{-1}=b^{-1}a^{-1}$
 - (3) $\forall a \in G$, $a^n a^m = a^{n+m}$, $n, m \in \mathbb{Z}$
 - (4) $\forall a \in G$, $(a^n)^m = a^{nm}$, $n, m \in \mathbb{Z}$
 - (5) 若G为交换群,则 $(ab)^n = a^n b^n$.

证明

□ (1) 求证: $\forall a \in G$, $(a^{-1})^{-1} = a$

证明: $(a^{-1})^{-1}$ 是 a^{-1} 的逆元,a也是 a^{-1} 的逆元. 根据逆元唯一性,等式得证.

□ (2) 求证: $\forall a,b \in G$, $(ab)^{-1}=b^{-1}a^{-1}$

证明: $(b^{-1}a^{-1})(ab)$

$$(ab)(b^{-1}a^{-1})$$

$$=b^{-1}(a^{-1}a)b=b^{-1}b$$

$$= a(bb^{-1})a^{-1} = aa^{-1}$$

$$=e$$

$$=e$$

故 $b^{-1}a^{-1}$ 是ab的逆元.

根据逆元的唯一性,等式得证.

群的性质:元素的阶

- □ 定理10.2 G为群, $a \in G$ 且 |a| = r. 设k是整数, 则
 - $(1) a^k = e$ 当且仅当 $r \mid k$ // $r \mid k$ 表示r整除k

- $(2)|a^{-1}| = |a|$
- □ 证明: (1) 充分性. //已知 $|a| = r (a^r = e), r | k$

由于 $r \mid k$,必存在整数m使得k = mr,所以有

$$= a^{mr} = (a^r)^m = e^m \qquad // a^r = e$$

$$= e$$

证明

定理10.2 *G*为群, $a \in G$ 且 |a| = r. 设k是整数,则

- (1) $a^k = e$ 当且仅当 $r \mid k$ // $r \mid k$ 表示r整除k (2) $|a^{-1}| = |a|$
- □ (1) 必要性. //已知 $a^k = e$, |a| = r 根据除法,存在整数 m 和 i 使得 k = mr + i, $0 \le i \le r 1$ 从而有 $e = a^k = a^{mr + i} = (a^r)^m a^i = ea^i = a^i$ 因为|a| = r,必有i = 0. 这就证明了 $r \mid k$.

证明

定理10.2 *G*为群, $a \in G$ 且 |a| = r. 设k是整数,则

- (1) $a^k = e$ 当且仅当 $r \mid k$ // $r \mid k$ 表示r整除k
- $(2)|a^{-1}| = |a|$
- □ (2) 由 $(a^{-1})^r = (a^r)^{-1} = e^{-1} = e$ // $a^r = e$ 可知 a^{-1} 的阶存在.

 $|| \phi || a^{-1} || = t$,根据上面的证明有t || r.

 $a又是a^{-1}$ 的逆元,所以 $r \mid t$.

从而证明了r = t,即 $|a^{-1}| = |a|$

- □ 设G是群,a,b∈G是有限阶元.
 - 证明: $|b^{-1}ab| = |a|$
- □ 证: 设 |a| = r, $|b^{-1}ab| = t$, 则有

$$(b^{-1}ab)^{r} = (b^{-1}ab)(b^{-1}ab)...(b^{-1}ab)$$

$$= b^{-1}a^{r}b = b^{-1}eb = e$$

从而有t|r.

实例 (续)

□ 另一方面,|a|=r,由于 $a=b(b^{-1}ab)b^{-1}$

$$(b(b^{-1}ab)b^{-1})^{t} = (b(b^{-1}ab)b^{-1})(b(b^{-1}ab)b^{-1})...(b(b^{-1}ab)b^{-1})$$

$$= b(b^{-1}ab)^{t}b^{-1} = beb^{-1} = e$$

可知 $r \mid t$.

□综上所述,可知 $|b^{-1}ab| = |a|$.

群的性质:消去律

- □ 定理10.3 G为群,则G中适合消去律,即对任意a,b,c∈G有
 - (1) 若 ab = ac,则 b = c.
 - (2) 若 ba = ca, 则 b = c.
- □证明略

口 设 $G = \{a_1, a_2, ..., a_n\}$ 是n阶群,令 $a_iG = \{a_ia_j | j=1,2,...,n\}$ 证明: $a_iG = G$.

□ 证: 由群中运算的封闭性有 $a_iG\subseteq G$. 假设 $a_iG\subset G$,即 $|a_iG|< n$. 必有 $a_j,a_k\in G$ 使得

 $a_i a_j = a_i a_k \quad (j \neq k)$ 由消去律得 $a_j = a_k$, 与 |G| = n矛盾.

群G的运算表中的每一行(列)

都是G中元素的一个排列(置换)

*	e	a	b	c
e	e	a	b	c
a	a	e	c	\boldsymbol{b}
\boldsymbol{b}	b	C	e	a
C	c	\boldsymbol{b}	a	e

- \Box 设群G为有限群,则G中阶大于2的元素有偶数个。
- □ 证:对于任意元素 $a \in G$,根据消去律有

$$a^2 = e \Leftrightarrow a^{-1}a^2 = a^{-1}e$$

$$\Leftrightarrow a=a^{-1}$$

因此G中阶大于2的元素必有 $a\neq a^{-1}$.

\oplus	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

*	e	a	b	c
e	e	а	b	c
a	a	e	c	b
b	b	C	e	a
c	c	b	a	e

又由于 $|a|=|a^{-1}|$,所以G中阶大于2的元素一定成对出现。 所以,如果G中有阶大于2的元素,一定是偶数个, 如果G中没有阶大于2的元素,0也是偶数。故结论成立。

判断: 有限群G的阶数是偶数,则在 G 中阶等于 2 的元素的个数一定是奇数

□ 设G是群,a,b∈G是有限阶元. 证明: |ab| = |ba|□ 证: 设 |ab|=r, |ba|=t, 则有 $(ab)^{t+1} = (ab)(ab)...(ab)$ <u>t+1</u>个 = a(ba)(ba)...(ba)b $=a(ba)^{t}b=aeb=ab$ 由消去律得 $(ab)^t = e$,从而可知, $r \mid t$. 同理可证 $t \mid r$. 因此 |ab| = |ba|.

群的性质:方程存在惟一解(补充)

□ 定理10.4 设G为群, $\forall a,b \in G$,方程ax=b和 ya=b在G中有解且仅有惟一解.

证明 $a^{-1}b$ 代入方程左边的x 得 $a(a^{-1}b) = (aa^{-1})b = eb = b$ 所以 $a^{-1}b$ 是该方程的解.

下面证明惟一性:

假设c是方程ax=b的解,必有ac=b,

从而有 $c = ec = (a^{-1}a)c = a^{-1}(ac) = a^{-1}b$

同理可证 ba^{-1} 是方程 ya=b的惟一解.

□ 设群 $G=<P(\{a,b\}),\oplus>$,其中 \oplus 为对称差.

解下列群方程:

$$\{a\} \oplus X = \emptyset$$
, $Y \oplus \{a,b\} = \{b\}$

□解:

$$X=\{a\}^{-1}\oplus\emptyset$$

$$=\{a\}\oplus\emptyset$$

$$=\{a\}$$

$$Y = \{b\} \oplus \{a,b\}^{-1}$$

$$=\{b\}\oplus\{a,b\}$$

$$=\{a\}$$

群的性质——无零元(补充)

□ 试证明: 群 < G, *>中不可能有零元。

证明

当群的阶为1时,它的唯一元素视为单位元。

假设: 当|G|>1且群< G, *>中有零元 θ ,

则对任何 $x \in G$, 都有 $x * \theta = \theta * x = \theta \neq e$.

所以 θ 不存在逆元。

这与<G,*>是群矛盾。

定理9.3 设 $^{\circ}$ 为S上的二元运算, e和 θ 分别为 $^{\circ}$ 运算的单位元和零元。如果 $|S|>1,则 <math>e\neq\theta$ 。

10.1 群的定义与性质(回顾)

第十章 群与环

- □ 主要内容
 - 10.1群的定义与性质
 - 10.2子群与群的陪集分解
 - 10.3循环群与置换群
 - 10.4环与域

10.2 子群与群的陪集分解

- \Box 定义10.5 设G是群,H是G的非空子集,
 - (1) 如果H关于G中的运算构成群,则称H是G的子群,记作 $H \le G$.
 - (2) 若H是G的子群,且HCG,则称H是G的 真子群,记作H<G.
- □ 例如 nZ (n是自然数) 是整数加群<Z,+> 的子群. 当 $n \neq 1$ 时,nZ是Z的真子群.
- \square 对任何群G都存在子群. G和 $\{e\}$ 都是G的子群, 称为G的平凡子群.

子群判定定理1

- □ 定理10.5 (判定定理一) 设G为群,H是G的非空子集,则 H是G的子群 当且仅当 (1) $\forall a,b \in H$ 有 $ab \in H$ (封闭) (2) $\forall a \in H$ 有 $a^{-1} \in H$ (逆元)
- □ 证 必要性是显然的.

为证明充分性,只需证明 $e \in H$. 因为H非空,存在 $a \in H$. 由条件(2) 知 $a^{-1} \in H$, 根据条件(1) $aa^{-1} \in H$, 即 $e \in H$.

群的幺元是子群的幺元

子群判定定理2

- 口 定理10.6 (判定定理二) 设G为群,H是G的非空子集. H是G的子群 当且仅当 $\forall a,b \in H$ 有 $ab^{-1} \in H$.
- □ 证 必要性显然.

只证充分性(已知条件是: $\forall a,b \in H fab^{-1} \in H$)因为H非空,必存在 $a \in H$. 根据给定条件得 $aa^{-1} \in H$,即 $e \in H$. /*找到单位元*/任取 $a \in H$,由 $e,a \in H$ 得 $ea^{-1} \in H$,即 $a^{-1} \in H$. /*逆元*/任取 $a,b \in H$,知 $b^{-1} \in H$. 再利用给定条件得 $a(b^{-1})^{-1} \in H$,即 $ab \in H$. /*封闭*/综合上述,可知H是G的子群.

子群判定定理3

- □ 定理10.7 (判定定理三) 设G为群,H是G的非空有穷子集,则 H是G的子群 当且仅当 $\forall a,b \in H$ 有 $ab \in H$. (封闭)
- □ 证: 必要性显然. 只证充分性 (已知条件是: $\forall a,b \in H$ 有 $ab \in H$) /*根据子群判定定理1,

只需证明【H的任何元素都有逆元】*/

(1)任取 $a \in H$,因为有 $\forall a,b \in H$ 有 $ab \in H$ 故: $a^2 = aa$, $a^3 = a^2a$,…,都在H中。由于H是有穷集,所以必存在正整数i和j,设j > i,使得 $a^i = a^j$,即 $a^i = a^i * a^{j-i}$,即 a^{j-i} 是G的单位元且在H中。

/*找到单位元,进而由单位元找任意元素a的逆元*/

子群判定定理3(续)

□ (2) /* 因为 $a^{j-i} = e$ 已经得到证明 */

对于任意 $a \in H$ 如果j-i=1,则 a 是单位元, 而单位元是以其自身为逆元的,故a有逆元。

如果j-i>1,则由 $a^{j-i-1}a = a^{j-i} = e \text{ 和 } aa^{j-i-1} = a^{j-i} = e$ 可知 a^{j-i-1} 是 a 的逆元且在 H 中。

故,H的任何元素都有逆元

子群判定定理3的应用实例

□ 设<G,*>是一个有限群, $a \in G$,令 $H = \{a^i | i \in Z\}$,证明<H,*>是<G,*>的子群。

证明

由于<G,*>是一个有限群,显然 $H=\{a^i|i\in Z\}$ 是有限集。 任取 a^i , $a^j\in H$, 有 $a^i*a^j=a^{i+j}\in H$, 所以运算*在H上是封闭的。 从而<H,*>是<G,*>的子群。

上例的进一步解释

□ 设<G,*>是一个有限群, $a \in G$,令 $H = \{a^i | i \in Z\}$, 证明:

<H,*>是<G,*>的子群。

□ 实例: 一个有限群<G,*>, $G=\{0^{\circ},60^{\circ},120^{\circ},180^{\circ},240^{\circ},300^{\circ}\}$, *是 G上的二元运算, a*b表示平面图形连续旋转 a 和 b 得到的总旋转角度。并规定旋转 360° 等于原来的状态。运算表如下:

*	0	60	120	180	240	300
0	0	60	120	180	240	300
60	60	120	180	240	300	0
120	120	180	240	300	0	60
180	180	240	300	0	60	120
240	240	300	0	60	120	180
300	300	0	60	120	180	240

上例的进一步解释

- □ 设<G,*>是一个有限群, $a \in G$,令 $H = \{a^i | i \in Z\}$, 证明:

 <H,*>是<G,*>的子群。
- □ 一个有限群<G,*>的运算表如下:

*	0	60	120	180	240	300
0	0	60	120	180	240	300
60	60	120	180	240	300	0
120	120	180	240	300	0	60
180	180	240	300	0	60	120
240	240	300	0	60	120	180
300	300	0	60	120	180	240

- ●a∈G,(设a=120)
- $H=\{a^i|i\in Z\}=\{0, 120, 240\}\subseteq G$

典型子群的实例:生成子群

- 口 定义10.6 设*G*为群, $a \in G$,令 $H = \{a^k | k \in Z\}$,则 $H \neq G$ 的子群,称为由 a 生成的子群,记作<a>.
- □ 证: /*利用子群判定定理二*/
 - 首先由 $a \in \langle a \rangle$ 知道 $\langle a \rangle \neq \emptyset$.
 - 任取 $a^{m}, a^{l} \in \langle a \rangle$,则 $a^{m}(a^{l})^{-1} = a^{m}a^{-l} = a^{m-l} \in \langle a \rangle$

根据判定定理二可知 $< a > \le G$.

- □ 整数加群,由2生成的子群是 $<2>=\{2^k | k \in \mathbb{Z}\}=2\mathbb{Z}$
- $\Box < Z_6, \oplus > 中,由2生成的子群<2>={0,2,4}$
- □ Klein四元群 $G = \{e,a,b,c\}$ 的所有生成子群是:

*	e	a	b	C
e	e	a	\boldsymbol{b}	c
a	a	e	C	\boldsymbol{b}
b	\boldsymbol{b}	C	e	a
c	C	b	a	e

典型子群的实例:中心C

- □ 定义10.7 设G为群,令
 - $C=\{a\mid a\in G\wedge\forall x\in G(ax=xa)\},$

则C是G的子群,称为G的中心.

- □ 证: /*利用子群判定定理二*/
 - 对于 $\forall x \in G$,有ex=xe,所以 $e \in C$,故:C是G的非空子集.
 - 任取 $a,b \in C$,

只需证明 ab^{-1} 与G中所有的元素都可交换.

$$\forall x$$
 ∈ G , f

$$(ab^{-1})x = ab^{-1}x = ab^{-1}(x^{-1})^{-1}$$

$$=a(x^{-1}b)^{-1}=a(bx^{-1})^{-1}=a(xb^{-1})$$

$$= (ax)b^{-1} = (xa)b^{-1} = x(ab^{-1})$$

由判定定理二可知 $C \leq G$.

说明

- \square 对于阿贝尔群G,因为G中所有的元素互相都可交换,G的中心就等于G.
- □ 但是,对某些非交换群G,它的中心是 $\{e\}$.

典型子群的实例:子群的交和并

- \square 设G是群,H,K是G的子群.证明
 - (1) $H\cap K$ 也是G的子群
 - (2) $H \cup K$ 是G的子群当且仅当 $H \subseteq K$ 或 $K \subseteq H$
- □ 证明: (1) /*利用子群判定定理二*/ 由 $e \in H \cap K$ 知 $H \cap K$ 非空. 任取 $a, b \in H \cap K$, 则 $a \in H, b \in H, a \in K, b \in K$. 由于H和K是G的子群,所以 必有 $ab^{-1} \in H$ 和 $ab^{-1} \in K$,从而 $ab^{-1} \in H \cap K$. 因此 $H \cap K \leq G$.

典型子群的实例:子群的交和并

- \square (2) 充分性显然,只证必要性. 即证明: 如果 $H \cup K$ 是G的子群,则 $H \subseteq K$ 或 $K \subseteq H$ 。
- □ 用反证法./*考查是否具有封闭性*/

假设 $H \nsubseteq K$ 且 $K \nsubseteq H$,那么 $\exists h, k \in H \cup K$ 使 $h \in H \land h \notin K$, $k \in K \land k \notin H$

 $k=ek=(h^{-1}h)k=h^{-1}(hk)$

因为 $h^{-1} \in H$,若 $hk \in H$,

则 $k=h^{-1}(hk) \in H$ 与假设矛盾.

故推出 hk ∉H.

同理可证 $hk \notin K$. 从而得到 $hk \notin H \cup K$.

与 $H \cup K$ 是子群矛盾.

子群格

□ 定义10.8 设G为群, 令

$$L(G) = \{H \mid H 是 G 的 子 群\}$$

则偏序集<L(G), \subseteq >称为G的子群格。

□例: Klein四元群

$$G = \{e, a, b, c\}$$

的所有生成子群是:

$$< e > = \{e\}, < a > = \{e, a\},$$

$$< b>=\{e,b\}, < c>=\{e,c\}.$$

陪集定义

□ 定义10.9 设H是G的子群,a \in G.

令 $Ha=\{ha\mid h\in H\}$ 称Ha是子群H在G中的右陪集. 称a为Ha的代表元素.

□ 令 $aH = \{ah \mid h \in H\}$ 称 aH 是子群H 在G 中的左陪集. 称 a 为aH 的代表元素.

陪集定义

- □ 设G=R×R,R为实数集,二元运算+定义为: $< x_1, y_1 > + < x_2, y_2 > = < x_1 + x_2, y_1 + y_2 >$
- □ 显然,<*G*, +>是一个具有单位元<0, 0>的阿贝尔群。

设 $H = \{\langle x, y \rangle | y = 2x \}$ 对 $\langle x_0, y_0 \rangle \in G$,右陪集 $H \langle x_0, y_0 \rangle$ 的几何意义:

 \square (1)设 $G=\{e,a,b,c\}$ 是Klein 四元群,

$$H=\langle a\rangle=\{e,a\}$$
是G的子群.

H所有的右陪集是:

$$He = \{e,a\}, Ha = \{a,e\},$$

$$Hb=\{b,c\}, Hc=\{c,b\}$$

- □ 不同的右陪集只有两个:
 - \blacksquare $He=Ha=\{a,e\}=H$
 - \blacksquare $Hb=Hc=\{c,b\}$

*	e	a	b	c
e	e	a	b	c
a	a	e	C	b
b	b	c	e	a
c	c	b	a	e

\oplus	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

□ (2)已知*G*=<Z₄,⊕>,子群*H*={0,2}则*H*的所有右陪集是:

- $\blacksquare H0 = \{0,2\}$
- \blacksquare *H*1={1,3}
- \blacksquare *H*2={2,0}
- \blacksquare *H*3={3,1}
- □ 不同的右陪集只有两个:
 - \blacksquare $H0=H2=\{0,2\}=H$
 - \blacksquare *H*1= *H*3={1,3}

(3)设 $A=\{1,2,3\}$, $f_1,f_2,...,f_6$ 是A上的双射函数. 其中:

$$f_1$$
={<1,1>,<2,2>,<3,3>}, f_2 ={<1,2>,<2,1>,<3,3>} f_3 ={<1,3>,<2,2>,<3,1>}, f_4 ={<1,1>,<2,3>,<3,2>} f_5 ={<1,2>,<2,3>,<3,1>}, f_6 ={<1,3>,<2,1>,<3,2>} 令 G = { f_1 , f_2 ,..., f_6 },则 G 关于函数的复合运算构成群.考虑 G 的子群 H ={ f_1 , f_2 }.做出 H 的全体右陪集。

实例 (续)

0	f_1	f_2	f_3	f_4	f_5	$ f_6 $
f_1	f_1					
f_2	f_2	f_1	f_5	f_6	f_3	f_4
f_3	f_3	f_6	f_1	f_5	$ f_4 $	$ f_2 $
f_4	f_4	f_5	f_6	f_1	$ f_2 $	f_3
	$ f_5 $					
f_6						

口 $H=\{f_1,f_2\}$ 是G 的子群: $Hf_1=\{f_1^{\circ}f_1,f_2^{\circ}f_1\}=H$, $Hf_2=\{f_1^{\circ}f_2,f_2^{\circ}f_2\}=H$ $Hf_3=\{f_1^{\circ}f_3,f_2^{\circ}f_3\}=\{f_3,f_5\}$ $Hf_4=\{f_1^{\circ}f_4,f_2^{\circ}f_4\}=\{f_4,f_6\}$ $Hf_5=\{f_1^{\circ}f_5,f_2^{\circ}f_5\}=\{f_5,f_3\}$ $Hf_6=\{f_1^{\circ}f_6,f_2^{\circ}f_6\}=\{f_6,f_4\}$

- □ 结论:
 - $\blacksquare Hf_1 = Hf_2 = \{f_1, f_2\} = H$
 - \blacksquare $Hf_3 = Hf_5 = \{f_3, f_5\}$
 - $\blacksquare Hf_4 = Hf_6 = \{f_4, f_6\}$

陪集的基本性质

- \Box 定理10.8 设H是群G的子群,则
 - (1) He = H
 - (2) $\forall a \in G$ 有 $a \in Ha$
- □ 证 (1) $He = \{ he \mid h \in H \} = \{ h \mid h \in H \} = H$ (2) 任取 $a \in G$,
 - 由 a = ea 和 $ea \in Ha$ 得 $a \in Ha$

陪集的基本性质

- □ 定理10.9 设H是群G的子群,则 $\forall a,b \in G$ 有 $a \in Hb \Leftrightarrow ab^{-1} \in H \Leftrightarrow Ha = Hb$
- □ 证 先证 $a \in Hb \Leftrightarrow ab^{-1} \in H$ $a \in Hb \Leftrightarrow \exists h(h \in H \land a = hb)$ $\Leftrightarrow \exists h(h \in H \land ab^{-1} = h) \Leftrightarrow ab^{-1} \in H$

定义10.9 设H是G的子群, $a \in G$.
令 $Ha = \{ha \mid h \in H\}$ 称Ha是子群H在G中的右陪集.
称a为Ha的代表元素.

定理10.9 设*H*是群*G*的子群,则 $\forall a,b \in G$ 有 $a \in Hb \Leftrightarrow ab^{-1} \in H \Leftrightarrow Ha=Hb$

证明(续)

再证 $a \in Hb \Leftrightarrow Ha=Hb$.

- □ 充分性. 若Ha=Hb, 由 $a \in Ha$ 可知必有 $a \in Hb$.

由 $a \in Hb$ 可知 $\exists h \in H$ 使得 a = hb,从而 $b = h^{-1}a$

任取 $h_1a \in Ha$,

则有 $h_1a = h_1(hb) = (h_1h)b \in Hb$, 从而得到

 $Ha \subseteq Hb$

再,任取 $h_1b \in Hb$,

则有 $h_1b = h_1(h^{-1}a) = (h_1h^{-1})a \in Ha$,从而得到

 $Hb \subset Ha$

综合上述,Ha=Hb 得证.

陪集的基本性质

定理10.6 (判定定理二) 设G为群,H是G的非空子集. H是G的子群 当且仅当 $\forall a,b \in H$ 有 $ab^{-1} \in H$.

□ 定理10.10 设H是群G的子群,在G上定义二元 关系R: $\forall a,b \in G$,

$$\langle a,b \rangle \in R \Leftrightarrow ab^{-1} \in H$$

则 R 是 G 上的等价关系,且 $[a]_R = Ha$.

 \Box 证 先证: R为G上的等价关系.

自反性: 任取 $a \in G$, $aa^{-1} = e \in H \Leftrightarrow \langle a,a \rangle \in R$

对称性: 任取 $a,b \in G$, 则

$$\langle a,b\rangle \in R$$

$$\Rightarrow ab^{-1} \in H \Rightarrow (ab^{-1})^{-1} \in H \Rightarrow ba^{-1} \in H$$

$$\Rightarrow < b,a > \in R$$

证明 (续)

```
传递性: 任取a,b,c \in G,则
   \langle a,b\rangle \in R \land \langle b,c\rangle \in R
    \Rightarrow ab^{-1} \in H \land bc^{-1} \in H
    \Rightarrow ac^{-1} \in H
    \Rightarrow \langle a,c \rangle \in R
□ 再证: \forall a \in G, [a]_R = Ha.
      任取b \in G,
      b \in [a]_R
      \Leftrightarrow \langle a,b \rangle \in R
      \Leftrightarrow ab^{-1} \in H

    ⇔ Ha=Hb (定理10.9)

                            定理10.9 设H是群G的子群,则\forall a,b \in G有
      \Leftrightarrow b \in Ha
                             a \in Hb \Leftrightarrow ab^{-1} \in H \Leftrightarrow Ha = Hb
```


推论

- \Box 推论 设H是群G的子群,则
 - (1) $\forall a,b \in G$, Ha = Hb 或 $Ha \cap Hb = \emptyset$
 - $(2) \cup \{Ha \mid a \in G\} = G$
- □ 证明: 由等价类性质可得.

重要结果:给定群G的一个子群H,H的所有右陪集的集合{Hala∈G}恰好构成G的一个划分。

推论

□ 定理10.11 设H是群G的子群,则 $\forall a \in G$, $H \approx Ha$

证明: 令f:H→Ha, f(x)=xa。 任取ha∈Ha, ∃h∈H, 使得 f(h)=ha, 因而f是满射的。 假设 f(h₁)=f(h₂), 那么有 h₁a=h₂a。 根据消去律得 $h_1 = h_2$, 因而f是单射的。 因此,H≈Ha。

左陪集的定义及性质

- □ 关于左陪集有下述性质:
 - (1) eH = H
 - $(2) \forall a \in G, a \in aH$
 - (3) $\forall a,b \in G$, $a \in bH \Leftrightarrow b^{-1}a \in H \Leftrightarrow aH=bH$
 - (4) 若在G上定义二元关系R, $\forall a,b \in G$, $\langle a,b \rangle \in R \Leftrightarrow b^{-1}a \in H$ 则R是G上的等价关系,且 $[a]_R = aH$.
 - (5) $\forall a \in G, H \approx aH$
- □ 正规子群: $\forall a \in G$, Ha=aH, 则H称为正规子群, 也称为不变子群。

Lagrange定理

拉格朗日(法) 1735~1813 数学家、物理学家

 \square 定理10.12 (Lagrange)设G是有限群,H是G的子群,则

 $|G| = |H| \cdot [G:H]$

其中,[G:H] 是H在G中的不同右陪集(或左陪集)数,称为H在G中的指数.

子群的阶是群阶的因子

证明

定理10.12 (Lagrange)设G是有限群,H是G的子群,则 $|G| = |H| \cdot [G:H]$

设
$$[G:H]=r$$
,

 $a_1,a_2,...,a_r$ 分别是H的r个右陪集的代表元素, $G = Ha_1 \cup Ha_2 \cup ... \cup Ha_r$ 因为 $Ha_i \cap Ha_j = \emptyset$ $|G| = |Ha_1| + |Ha_2| + ... + |Ha_r|$ 由 $|Ha_i| = |H|$,i = 1,2,...,r,得 $|G| = |H| \cdot r = |H| \cdot [G:H]$

Lagrange定理的推论1

- □ 推论1 设G是n阶群,则 $\forall a \in G$,|a|是n的因子,且有 $a^n = e$.
- □ 证 任取 $a \in G$, $\langle a \rangle$ 是G的子群, $\langle a \rangle$ 的阶是n的因子. (根据拉格朗日定理)

 $\langle a \rangle$ 是由a生成的子群,若|a|=r,则

 $\langle a \rangle = \{a^0 = e, a^1, a^2, ..., a^{r-1}\}$

即<a>的阶与|a|相等,所以|a|是n的因子.

从而 $a^n = e$.

群中元素的阶是群阶的因子

Lagrange定理的推论2

- □ 推论2 对阶为素数的群G,必存在 $a \in G$ 使得 $G = \langle a \rangle$.
- □ 证 设|G| = p,p是素数.

由 $p \ge 2$ 知G中必存在非单位元.

任取 $a \in G$, $a \neq e$, 则< a >是G的子群.

根据拉格朗日定理,

<a>的阶是p的因子,即<a>的阶是p或1.

显然< a >的阶不是1,

这就推出 $G = \langle a \rangle$.

Lagrange定理的应用

- \square 命题:如果群G 只含1 阶和2 阶元,则 G 是Abel群.
- 口 证 设a为G中任意元素,有 $a^{-1}=a$.

任取
$$x,y \in G$$
,则
$$xy$$
$$= (xy)^{-1}$$
$$= y^{-1}x^{-1}$$
$$= yx$$

*	e	a	b	c
e	e	a	\boldsymbol{b}	c
a	a	e	C	\boldsymbol{b}
b	\boldsymbol{b}	C	e	a
c	C	b	a	e

因此G是Abel群.

Lagrange定理的应用

- □ 证明:6阶群中必含有3阶元.
- 口证设G是6阶群,则G中元素只能是1阶、2阶、3阶或6阶。

若G中含有6 阶元,设为a,则 a^2 是3 阶元. 若G中不含6 阶元,下面证明G中必含有3阶元.

如若不然, G中只含1阶和2阶元(反证法)

即 $\forall a \in G$,有 $a^2=e$,由命题知G是Abel群.

取G中2阶元a和b, $a \neq b$, 令 $H = \{e, a, b, ab\}$, 易知H是G的子群,

	е	a	b	ab
е	е	а	b	ab
a	а	е	ab	b
b	b	ab	е	а
ab	ab	b	a	е

但 |H| = 4, |G| = 6,与拉格朗日定理矛盾.

10.2子群与群的陪集分解(回顾)

 H≤G (H是G的非空子集)

 子群判定定理 ⊕

 生成子群 < a > ○ ={a^k| k ∈ Z}

典型的子群

群的中心C $= \{a \mid a \in G \land \forall x \in G(ax=xa)\}$ (1) $H \cap K$ 也是G的子群

子群的交和并 (2)

(2) $H \cup K$ 是G的子群当且仅当H $\subset K$ 或K $\subset H$

偏序集< L(G), $\subseteq >$ 称为G的子群格

 $Ha=\{ha\mid h\in H\}$

 $[a]_R = Ha$

H≈ Ha

陪集

Lagrange定理 子群的阶是群阶的因子

Lagrange定理的推论1: 群中元素的阶是群阶的因子

Lagrange定理的推论2: 素数阶群一定是循环群

命题:如果群 G 只含1阶和2 阶元, G 是Abel群

应用: 6 阶群中必含有 3 阶元

10.2子群H与群G的陪集分解

第十章 群与环

- □ 主要内容
 - 10.1群的定义与性质
 - 10.2子群与群的陪集分解
 - 10.3循环群与置换群
 - 10.4环与域