4-9 In-Class Exercise

- 1. In each part, use the information in the table to:
 - i. find the dimensions of the row space of A, column space of A, null space of A, and null space of A^T ;
 - ii. determine whether the linear system $A\mathbf{x} = \mathbf{b}$ is consistent;
 - iii. find the number of parameters in the general solution of each system in (ii) that is consistent.

	(a)	(b)	(c)	(d)	(e)	(f)	(g)
Size of A	3 × 3	3 × 3	3 × 3	5×9	5×9	4×4	6 × 2
Rank(A)	3	2	1	2	2	0	2
$Rank[A \mid \mathbf{b}]$	3	3	1	2	3	0	2

		(a)	(b)	(c)	(d)	(e)	(f)	(g)
	Size of A:	3×3	3×3	3×3	5×9	5×9	4×4	6×2
	$\operatorname{rank}(A)$	3	2	1	2	2	0	2
	$\operatorname{rank}(A \mid \mathbf{b})$	3	3	1	2	3	0	2
(i)	dimension of the row space of A							
	dimension of the column space of A							
	dimension of the null space of A							
	dimension of the null space of A^T							
(ii)	is the system $A\mathbf{x} = \mathbf{b}$ consistent?							ļ
(iii)	number of parameters in the general solution of $A\mathbf{x} = \mathbf{b}$							

			(a)	(b)	(c)	(d)	(e)	(f)	(g)
	Size of A:	$m \times n$	3×3	3×3	3×3	5×9	5×9	4×4	6×2
	rank(A)	=r	3	2	1	2	2	0	2
	$rank(A \mathbf{b})$	= s	3	3	1	2	3	0	2
(i)	dimension of the row space of A	=r	3	2	1	2	2	0	2
	dimension of the column space of A	=r	3	2	1	2	2	0	2
	dimension of the null space of A	= n - r	0	1	2	7	7	4	0
	dimension of the null space of A^{T}	= m - r	0	1	2	3	3	4	4
(ii)	is the system $A\mathbf{x} = \mathbf{b}$ consistent?	Is $r = s$?	Yes	No	Yes	Yes	No	Yes	Yes
(iii)	number of parameters in the general solution of $A\mathbf{x} = \mathbf{b}$	= n - r if consistent	0	-	2	7	-	4	0

2. Find the dimensions and bases for the four fundamental spaces of the matrix.

$$A = \begin{bmatrix} 0 & -1 & -4 \\ -1 & 0 & -4 \\ -2 & 3 & 4 \end{bmatrix}$$

2.
$$\begin{bmatrix}
A & | I & I \\
0 & -1 & -4 & | 0 & 0 \\
-1 & 0 & -4 & | 0 & 1 & 0 \\
-2 & 3 & 4 & | 0 & 0 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
+1 & 0 & +4 & | 0 & -1 & 0 \\
-2 & 3 & 4 & | 0 & 0 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
1 & 0 & 4 & | 0 & -1 & 0 \\
0 & 3 & 12 & | 0 & -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
1 & 0 & 4 & | 0 & -1 & 0 \\
0 & 3 & 12 & | 0 & -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
1 & 0 & 4 & | 0 & -1 & 0 \\
0 & 1 & 4 & | -1 & 0 & 0 \\
0 & 3 & 12 & | 0 & -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 & 4 & | 0 & -1 & 0 \\
0 & 3 & 12 & | 0 & -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 & 4 & | 0 & -1 & 0 \\
0 & 3 & 12 & | 0 & -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 & 4 & | 0 & -1 & 0 \\
0 & 3 & 12 & | 0 & -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 & 4 & | 0 & -1 & 0 \\
0 & 3 & | 2 & | 0 & -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 & 4 & | 0 & -1 & 0 \\
0 & 3 & | -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 & 4 & | 0 & -1 & 0 \\
0 & 0 & 3 & -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 & 4 & | 0 & -1 & 0 \\
0 & 0 & 3 & -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 & 4 & | 0 & -1 & 0 \\
0 & 0 & 3 & -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 & 4 & | 0 & -1 & 0 \\
0 & 0 & 3 & -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 & 4 & | 0 & -1 & 0 \\
0 & 0 & 3 & -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 & 4 & | 0 & -1 & 0 \\
0 & 0 & 3 & -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 & 4 & | 0 & -1 & 0 \\
0 & 0 & 3 & -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 & 4 & | 0 & -1 & 0 \\
0 & 0 & 3 & -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 & 4 & | 0 & -1 & 0 \\
0 & 0 & 3 & -2 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
0 & 4 & | 0 & -1 & 0 \\
0 & 0 & 3 & -2 & 1
\end{bmatrix}$$

$$now(A) = \left\{ \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$
 or
$$\left\{ \begin{bmatrix} 0 \\ -1 \\ -4 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ -4 \end{bmatrix} \right\}$$

$$col(A) = \left\{ \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \end{bmatrix} \right\}$$

$$null(A) = \left\{ \begin{bmatrix} -4 \\ -4 \\ 1 \end{bmatrix} \right\}$$

$$left null(A) or null(AT) = \left\{ \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix} \right\}$$

4-9 Suggested Exercises

1. Find bases for the four fundamental spaces of the matrix.

$$A = \begin{bmatrix} 1 & 2 & 3 & 1 & 1 \\ 2 & 8 & 0 & 1 & 2 \\ 0 & 4 & -6 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

2. Discuss how the rank of A varies with t.

$$A = \begin{bmatrix} 1 & 1 & t \\ 1 & t & 1 \\ t & 1 & 1 \end{bmatrix}$$

Following Example 5, we find that the reduced row echelon form of the

Augmented matrix
$$\begin{bmatrix} 1 & 2 & 3 & 1 & 1 & 1 & 0 & 0 & 0 \\ 2 & 8 & 0 & 0 & 2 & 0 & 1 & 0 & 0 \\ 0 & 4 & -6 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \text{ is } \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & \frac{1}{4} & 0 & \frac{1}{8} & 0 & -\frac{1}{4} \\ 0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{12} & -\frac{1}{6} & -\frac{1}{6} \\ 0 & 0 & 0 & 1 & \frac{1}{2} & 1 & -\frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

Hence, a basis for

the column space basis is
$$\left\{\begin{bmatrix}1\\2\\0\\1\end{bmatrix},\begin{bmatrix}2\\8\\4\\0\end{bmatrix},\begin{bmatrix}3\\0\\-6\\0\end{bmatrix}\right\}$$
, the row space basis is $\left\{\begin{bmatrix}1\\2\\8\\3\\0\end{bmatrix},\begin{bmatrix}2\\8\\0\\0\end{bmatrix},\begin{bmatrix}-6\\0\\0\\1\end{bmatrix}\right\}$, the null

space basis is
$$\left\{ \begin{array}{c} 0 \\ -\frac{1}{4} \\ 0 \\ -\frac{1}{2} \\ 1 \end{array} \right\}$$
 , and the left null space contains only the zero vector.

The determinant of A is

2.

$$\begin{vmatrix} 1 & 1 & t \\ 1 & t & 1 \\ t & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & t \\ 0 & t-1 & 1-t \\ t-1 & 0 & 1-t \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1+t & t \\ 0 & 0 & 1-t \\ t-1 & 1-t & 1-t \end{vmatrix}$$
Last column was added to the second column.

second row and to the third row.

$$= -(1-t)((1-t)-(1+t)(t-1)) = -(1-t)^{2}(2+t)$$

From parts (g) and (n) of Theorem 4.9.8, rank (A) = 3 when $det(A) \neq 0$, i.e. for all t values other than 1 or -2.

If t=1, the matrix has the reduced row echelon form $\begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{vmatrix}$ so that its rank is 1.

If t=-2, the matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ so that its rank is 2.

- **a.** If A is a 3×5 matrix, then the rank of A is at most _____. Why?
- **b.** If A is a 3×5 matrix, then the nullity of A is at most _____. Why?
- **c.** If A is a 3×5 matrix, then the rank of A^T is at most _____. Why?
- **d.** If A is a 3×5 matrix, then the nullity of A^T is at most _____. Why?
- 4. Let A be a 5×7 matrix with rank 4.
 - **a.** What is the dimension of the solution space of Ax = 0?
 - **b.** Is $A\mathbf{x} = \mathbf{b}$ consistent for all vectors **b** in R^5 ? Explain.

- **3.**
- (a) 3; reduced row echelon form of A can contain at most 3 leading 1's when each of its rows is nonzero;
- **(b)** 5; if *A* is the zero matrix, then the general solution of $A\mathbf{x} = \mathbf{0}$ has five parameters;
- (c) 3; reduced row echelon form of A^T can contain at most 3 leading 1's when each of its columns has a leading 1;
- (d) 3; if A is the zero matrix, then the general solution of $A^T \mathbf{x} = \mathbf{0}$ has three parameters;

- (a) By Formula (4), nullity (A) = 7 4 = 3 thus the dimension of the solution space of $A\mathbf{x} = \mathbf{0}$ is 3.
- (b) No, the column space of A is a subspace of R^5 of dimension 4, therefore there exist vectors \mathbf{b} in R^5 that are outside this column space. For any such vector, the system $A\mathbf{x} = \mathbf{b}$ is inconsistent.