CSICI LECTURE 9: Defining (ompression Sephinber 12,2019
Friday noon- Monday 4pm weekly quiz	
Part	ravt 2
Finit lompuation	Unitorm computation
(bookan cirwis)	(Tunng machinus)
pav+3	
EFFC16U+	lompyanon
Part 4	↓
Randomiz	nd Computation
Part 5	
· · · · · · · · · · · · · · · · · · ·	ud topils
How: Formula / Algorithm / CIrcu	
$f: \{0,1\}^n \rightarrow \{0,1\}^m$	
lompin f: map x to f(x) vsi	ng a sequenu or basic operation
AND /OK: {0,132 > fo,1	3 and: and Iwedge
NOT: {0,13 -> {0,1}	or: avb \vee
4x: compute f: 50,133 -> 30,13 s.	t.
	` z /
	bo
(anb) V (anc)	
	Co
Boolean cirvit: DAG n/ vers	iles as inpun or gans (AND, DR,
or NOT)	
AON-CIRC program: Phas 18	ms of form for = AND (bar, black
·	nre X[0] X[n-1]
	are Y[0] Y[m-1]

```
Thrm 3 (3.8): For every F: 50,13" > 50,13" and SEN,
                  fil compressed wis gans set fis
              comprable by an AON-CIRC m/ Slines
ex: Write an ADN-CIRC magram that compins
        XOK: {0,1} => {0,1} where XOR (a,b)= a+b mod 2
     (aVb)\Lambda(a\Lambdab)
        fool = OK (X [O], X[I])
        F102 = AND(X[0], X[1])
        FOO3 = NOT (FOOZ)
        Y[0]: AND (fool, foo3)
 NAND Operation
 NAND(a,b) = \overline{a \wedge b} = \begin{cases} 0 \\ 1 \end{cases}
                            00601
                            OIW
exishow how to compute NOT, AND, OR using NAND
       NOT: NAND (a, 1)
       AND: NAND (NAND (a,b), NAND (a,b))
        OR: NAND (NAND (a,1), NAND (b,1))
                      = NAND (NOT (a), NOT (b))
 f computable by
                   -> f comprabe by _> f comprable
    S NANDS
                       EZS ANDIOX INOT
                                              by =65
                                   ADN-CIRC
  BOOMAN CIVLVIA
                                    Stranghiling programs
   NAND LINNIN
                                   NAWD - CIEC
                                   straightline programs
```

Y: WNN NAND-CIRC code For XOR TI = NAND(NAND (XCOT, X(IT), NAND (XCOT, X(IT))) NO+TI = NAND(TI, TI) T2 = NAND (NAND (XCOT, I), NAND (XCIT, I)) Y[0] = NAND(NAND (TOTTI, TZ), NAND (NOTTI, TZ))

N1xt: Theorem: For every function f: {0,13 → {0,13 m}

them 4xish a Bookan circuit to

comput f.

(ovollary: For every such f, there is an AON-CIRC program / NAND-CIRC program to compute f.