ДМ, лекции

Последний семестр дискретной математики. Две больших темы: производящие функции (комбинаторика) и введение в теорию вычислимости.

1 Производящие фукнции

Рассмотрим последовательности $\{a_n\}_{n\in\mathbb{N}}, \{b_n\}_{n\in\mathbb{K}}\subset\mathbb{R}(\mathbb{C})$. Назовём эти последовательности A и B и будем почленную сумму обозначать кратко A+B. Это несколько неудобно и неестественно, об этих конвенциях нужно договариваться.

Вместо этого давайте рассмотрим формальный степенной ряд, у которого члены последовательности это коэффициенты ряда.

$$A(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n + \dots$$

Тогда почленная сумма последовательностей будет соотвествовать обычной сумме рядов A(t) + B(t).

Чтобы сдвинуть последовательность на 1 вправо, можно просто умножить степенной ряд на x.

Можем рассмотреть степенной ряд-композицию $A(t^2) = a_0 + 0t + a_1t^2 + \dots$ Это степенной ряд, соответвующий последовательности $a_0, 0, a_1, 0, a_2 \dots$

Таким образом, мы можем "оперировать" над последовательностью как единым целым, и это очень удобно.

Мы не рассматриваем степенные ряды с стороны, с которой на них смотрит мат. анализ: как способ приблизить фукнцию, с некоторым радиусом сходимости и т.д. У нас степенные ряды формальные и не всегда (всегда не) должны пониматься как функции, в которой в переменную можно подставить значение.

 $\mathbb{R}[x]$ — кольцо многочленов с коэффициентами из кольца R, состоящий из формальных многочленов. $\mathbb{R}[x]^+$ — множество формальных степенных рядов.

Определение 1. Формальный степенной ряд A(t) последовательности $\{a_n\}_{n\in\mathbb{N}}$ называется производящей функцией (generating function).

Название неудачное. Оно связано с другими корнями понятия производящей функции (они нужны не только в комбинаторике).

Определена сумма производящих функций и произведение

$$A(t)B(t) = C(t) \quad c_n = \sum_{i=0}^n a_i b_{n-i}$$

Несмотря на то, что мы работаем с бесконечным по размеру объектом, нам необходимо только конечное число элементов, чтобы посчитать каждый отдельыни его член. Этот раздел дискретной математики не любит предельных переходов.

Определено умножение на скаляр.

$$\lambda A(t) = C(t)$$
 $c_n = \lambda a_n$

Определено даже деление!

$$\frac{A(t)}{B(t)} = C(t); \ b_0 \neq 0 \quad c_n = \frac{a_n - \sum_{i=0}^{n-1} c_i b_{n-i}}{b_0}$$

Так можно посчитать, например, что

$$C(t) = \frac{1}{1-t} = 1 + t + t^2 + \dots + t^n + \dots; \quad a_n = 1$$

Мы записали короткой (конечной) производящей функцией бесконечную последовательность. Более того, мы можем эту запись взять и производить с ней операции (умножать и складывать с другими производящими функциями).

$$\frac{1}{1-2t} = 1 + 2t + 4t^2 + \dots + 2^n t^n; \quad c_n = 2^n$$

Обобщая мы видим, что

$$\frac{1}{1-bt} = \sum_{n=0}^{\infty} b^n t^n = C(bt)$$

Вообще говоря,

$$A(t) = \sum a_n t^n \quad A(bt) = \sum a_n b^n t^n$$

Замечание 1. Если $b_0=\pm 1,\ a_i,b_i\in\mathbb{Z},\$ тогда $C=\frac{A}{B}$ с целочисленными коэффициентами $c_i\in\mathbb{Z}.$

$$\frac{1}{1-t-t^2} = 1 + t + 2t^2 + \dots + F_n t^n + \dots$$

Мы одной дробью породили целую последовательность Фиббоначи!

А как быть, если мы хотим взять последовательность и найти представление для её производящей функции? Мы можем поступить так.

$$F_0 = 1, F_1 = 1, F_n = F_{n-1} + F_{n-2}$$

Отсюда $F(t) + F(t)t = \frac{F(t)-1}{t}$ (следует из операций над производящими функциями и рекурентным соотношением последовательности фиббоначи).

А что с дифференцированием? Обыкновенная операция взятия производной (формального) степенного ряда позволяет нам умножать член последовательности на его номер.

$$A(t) \to A(t)' \cdot t$$

Эту операцию можно производить многократно, получая последовательноть членов исходной п-ти в k степени.

Как найти представление производящей функции для последовательности $a_n = n$?

$$a_n = n * 1$$

Производящая функция для п-ти единиц это $\frac{1}{1-t}$. Тогда

$$A(t) = \left(\frac{1}{1-t}\right)' t = \frac{t}{(1-t^2)}$$

Формальное деление это подтверждает.

А что с интегрированием? С интегрированием всё не очень мило.

А что с композицией?

$$C(t) = A(B(t))$$

Здесь много проблем доставляет свободый коэффициент у B. Давайте его уберем — $b_0=0$. Теперь мы можем посчитать

$$c_n = \sum_{k=0}^{n} a_k \sum_{n=i_1+i_2+\dots i_k} b_{i_1} b_{i_2} \dots b_{i_k}$$

Пример с доминошками.

Пример с деревьями.

2 Линейные рекуррентые последовательности. Регулярные производящие функции

Определение 2 (Линейные рекуррентные последовательности). Пусть даны первые k членов последовательности a_0, a_1, \ldots, a_k . А все следующае члены определяются, как линейная комбинации k предыдущих.

$$a_n = a_{n-1} \cdot c_1 + a_{n-2} \cdot c_2 + \dots + a_{n-k} \cdot c_k.$$

Такаяя последовательность называется **линейной рекурентной последовательно- стью**.

Пример 1. Числа Фибоначч. $F_0=1,\ F_1=1, \forall\ n\geqslant 2\ :\ F_n=F_{n11}+F_{n-2}$

$$\frac{1}{1 - t - t^2} = \sum_{i=0}^{\infty} F_i t^i.$$

Обозначим
$$F(t) = \sum_{i=0}^{\infty} F_i t^i = F_0 t^0 + F_1 t^1 + \sum_{i=2}^{\infty} F_i t^i = 1 + t + \sum_{i=2}^{\infty} F_{i-1} t^i + \sum_{i=2}^{\infty} F_{i-2} t^i = 1 + t + t \cdot \sum_{i=1}^{\infty} F_i t^i + t^2 \sum_{i=0}^{\infty} F_i t^i = 1 + t + t \cdot (F(t) - 1) + t^2 \cdot F(t) \implies F = 1 + t \cdot F + t^2 F \implies F(t) = \frac{1}{1 - t - t^2}.$$

Теорема 1. Пусть есть линейная рекуррентная последовательность порядка k:

Даны
$$a_0, \dots, a_{k-1}, \ \forall n \geqslant k : \ a_n \sum_{i=1}^k a_{n-i} \cdot c_i.$$
 Тогда $A(t) = \sum_{i=0}^\infty a_i t^i = \frac{P(t)}{Q(t)}$ — рациональная функция, где $Q(t) = 1 - c_1 t - c_2 t^2 - \dots - c_k t^k, \ a \ P(t) = \dots$

Доказательство. Обозначим

$$A(t) = \sum_{i=0}^{\infty} a_i t^i = \sum_{i=0}^{k-1} a_i t^i + \sum_{n=k}^{\infty} a_i t^n.$$

Сразу заменим последнюю сумму предположеним из теоремы, получим

$$A(t) = \sum_{i=0}^{k-1} a_i t^i + \sum_{n=k}^{\infty} t^n \sum_{i=1}^k a_{n-i} \cdot c_i = S + \sum_{i=1}^k c_i \sum_{n=k}^{\infty} a_{n-i} t^n = S + \sum_{i=1}^k c_i \cdot t^i \cdot \sum_{n=k-1}^{\infty} a_n t^n = S + \sum_{i=1}^k c_i \cdot t^i \cdot (A(t) - A_{k-1}(t)) = X.$$

$$\sum_{k=1}^{k} c_i t^i A_{k-i}(t) \cdot Ak - i(t) = A(t) \% t^{k-i} = (C(t) \cdot A(t)) \% t^k \implies$$

$$A(t) = \sum_{i=0}^{k-1} a_i t^i + C(t) \cdot A(t) - (C(t) \cdot A(t)) \% t^k \implies A(t)(1 - C(t)) = ((1 - C(t)) \cdot A(t)) \% t^k$$

$$\implies A(t) = \frac{P(t)}{C(t)}, \quad \text{где} \quad Q(t) = 1 - C(t) = 1 - c_1 t - c_2 t^2 - \dots - c_k t^k,$$

$$P(t) = \left(\left(\sum_{i=0}^{k-1} a_i t^i \right) \cdot Q(t) \right) \mod t^k.$$

Пример 2. Для чисел фибоначчи: $a_0 = a_1 = 1, \ c_1 = c_2 = 1 \implies$

$$A(t) = \frac{(1+t)\cdot(1-t-t^2) \mod t^2}{1-t-t^2}.$$

$$a_0 = 6, \ a_1 = -3, \ c_1 = c_2 = 1 \implies A(t) = \frac{(6-3t)\cdot(1-t) \mod t^2}{1-t-t^2} = \frac{6-9t}{1-t-t^2}.$$

Доказательство в обратном направлении. Частный случай:

$$\frac{1}{1 - C(t)} = A(t), \ A(t) \cdot (1 - C(t)) = 1,$$

$$t^0 = a_0 = 1, \ t^1 : a_1 \cdot 1 - a_0 c_1 = 0, \ t^2 : a_2 \cdot 1 - a_1 \cdot c_1 - a_0 c_2 = 0.$$

Посмотрим на некоторую производящую функцию, например $\frac{1-3t+6t^3}{1-t-t^2-t^4}$. Понимаем, что $a_n=a_{n-1}+a_{n-2}+a_{n-4}$.

$$a_0 = 1$$
, $a_1 = 1 - 3 = -2$, $a_2 = 1 - 2 = -1$, $a_1 = -1 - 2 + 6 = 3$

$$A(t) \cdot Q(t) = P(t).$$
 $\sum_{i=0}^{n} q_i \cdot a_{n-i} = p_n$ $a_n = p_n - \sum_{i=1}^{k} q_i \cdot a_{n-i}.$

Пусть $a_0, a_1, \dots, a_{k-1}, \forall n \geqslant k : a_n \sum_{i=1}^k a_{n-i} \cdot c_i$.

Задача: посчитать a_n .

Можно явно за $\mathcal{O}(n \cdot k)$.

Можно через возведение матрицы в степень за $\mathcal{O}(k^3 \log_2 n)$.

Потом мы научимся делать это за $\mathcal{O}(k^2 \log_2 n)$.

На самом деле, для одной и той же числовой последовательности можно получить несколько производящих функций.

$$A(t) = \frac{P(t)}{Q(t)} \cdot \frac{Q(-t)}{Q(-t)} = \frac{P(t) \cdot Q(-t)}{Q(t) \cdot Q(-t)}.$$

Например, для чисел Фибоначчи

$$\frac{1}{1-t-t^2} \cdot \frac{1+t+t^2}{1+t+t^2} = \frac{1+t-t^2}{1-3t^2+t^4}. \quad F_n = F_{n-2} \cdot 3 - F_{n-4}.$$