NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR DATATEKNIKK OG INFORMASJONSVITENSKAP

Faglig kontakt under eksamen: Jon Olav Hauglid, Tlf 93440 Institutt for datateknikk og informasjonsvitenskap, Gløshaugen

EKSAMEN I EMNE TDT4160 DATAMASKINER GRUNNKURS

17. AUGUST 2005 KL. 09.00 – 13.00

Hjelpemidler: D – Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

Sensuren faller 7. september 2005. Resultater gjøres kjent på http://studweb.ntnu.no/ og sensurtelefon 810 48 014.

Totalt antall sider: 9

Prosentsatser viser hvor mye hver oppgave teller innen settet.

Lykke til!

Oppgave 1 – Flervalgsoppgaver (30%)

Bruk svararket bakerst i oppgaveteksten for å svare på denne oppgaven. Du kan få nytt ark av eksamensvaktene dersom du trenger dette. Poengberegning per spørsmål: Riktig svar 2 poeng, galt svar gir -1 poeng, blankt svar gir 0 poeng. NB! Det er ikke mulig å gardere ved å krysse av flere alternativer. Dette gir i så fall 0 poeng. Kun ett alternativ er korrekt på hvert spørsmål.

- 1) Hvor mange assemblerinstruksjoner er det i en mikroinstruksjon?
 - a) Dette er avhengig av instruksjonssettarkitekturen (ISA)
 - b) Spørsmålet gir ikke mening fordi en assemblerinstruksjon består av flere mikroinstruksjoner
 - c) Tre, en for hver fase (load, execute, store)
 - d) Dette er avhengig av størrelse på hurtiglager (eng. cache)
- 2) Enkelte maskiner har noe som heter segmentregister, hva brukes det til?
 - a) Peker på register som skal leses i en registerfil
 - b) Brukes av hurtiglager for å vite hvor data skal ligge i hovedlager
 - c) Holder øverste bit i en adresse for å få større adresserom
 - d) Holder nederste bit i en adresse for å vite relasjon til hurtiglager
- 3) Hva er riktig om samlebånd (eng. pipelines)?
 - a) Samlebånd øker hastigheten for hver enkelt instruksjon isolert sett
 - b) Samlebånd i prosessorer benyttes ikke lengre, dette er gammel teknologi
 - c) Målet med et samlebånd er å utføre instruksjoner i parallell
 - d) Samlebånd gjør at prosessoren gjør ferdig flere instruksjoner per klokkesykel
- 4) Hva er FEIL om samlebånd?
 - a) Klokkefrekvensen til en prosessor med samlebånd er begrenset av summen av tiden samlebåndet bruker i de ulike trinnene
 - b) Klokkefrekvensen til en prosessor med samlebånd er begrenset av det tregeste trinnet
 - c) Ved å innføre samlebånd kan frekvensen skrus opp fordi hvert enkelt trinn blir enklere
 - d) En prosessor har samme klokkefrekvens for de ulike trinnene
- 5) Dersom du har et vanlig (in-order execution) samlebånd, hvilke dataavhengigheter vil skape problemer i følgende program (Dark-syntaks se oppgave 5)?

```
ADD $1, $2, $3
ADD $4, $2, $3
```

- a) Avhengigheten på grunn av register 2
- b) Avhengigheten på grunn av register 3
- c) Avhengigheten på grunn av register 1
- d) Det finnes ingen avhengighet

- 6) Hva skiller indirekte adresseringsmodus fra direkte adresseringsmodus (velg det alternativet som er mest riktig)?
 - a) Indirekte er enklere enn direkte adressering fordi indirekte adressering krever et ekstra oppslag
 - b) Indirekte adressering adresserer relativt til stakkregisteret, mens direkte adressering adresserer relativt til instruksjonsregisteret
 - c) Direkte adressering gir lengre kildekode, og moderne prosessorer benytter kun indirekte adressering
 - d) Ved indirekte adressering beregnes adressen som skal aksesseres ved kjøretid, mens ved direkte adressering er adressen gitt av assemblerkoden
- 7) Hvorfor snakker man om 1ers komplement og 2ers komplement?
 - a) De to måtene å kode tall på benyttes i forskjellige regneoperasjoner
 - b) Det er lettere for en datamaskin å addere to tall som er på 2ers komplement enn 1ers komplement
 - c) 1ers komplement har større tallområde enn 2ers komplement
 - d) 1ers komplement er tenkt til 1-tallssystemet, mens 2ers komplement er tenkt til 2-tallssystemet
- 8) Hvilken prosessortype har som oftest kortest instruksjonsord?
 - a) Akkumulatormaskin
 - b) Load/store-maskin
 - c) Stakkmaskin
- 9) Hva er et instruksjonsregister?
 - a) Mikroprosessoren leser instruksjonen som skal utføres til dette registret
 - b) Instruksjonen benytter dette registret til å lagre heltall
 - c) Instruksjonen benytter dette registret til å lagre både heltall og flyttall
 - d) Instruksjonsregisteret angir adressen til neste instruksjon som skal utføres.
- 10) Hvordan lagres data i hurtigminnet (SRAM) på en PC?
 - a) Hver bit ligger lagret som strøm i en transistor
 - b) Hver bit ligger lagret som ladning i en kondensator
 - c) Hver bit ligger lagret i to invertere som er koblet mot hverandre for å låse data
 - d) Data ligger lagret som strøm i magnetspoler
- 11) Hvis man har to ulike datamaskiner som utfører like mange instruksjoner per sekund, hva kan man si om de to maskinene?
 - a) Antall MIPS (millions of instructions per second) for de to maskinene er like
 - b) Ytelsen er lik
 - c) Maskinene er like
 - d) Den maskinen som er nyest er sannsynligvis raskest
- 12) Hvordan programmerer man en mikroprosessor med samlebånd?
 - a) Man må passe seg for "farer" (eng. hazards) i enkelte arkitekturer
 - b) Man må spesifisere rekkefølgen på de ulike trinnene for hver instruksjon
 - c) Til dette benyttes mikrokode
 - d) Det skjer alltid i et høynivå språk som Java eller C (++).

- 13) Hvilket av følgende utsagn er mest FEIL om harddisker?
 - a) Harddisker er mekaniske og tåler dårlig støt
 - b) Harddisker er basert på optiske plater som roterer relativt raskt (ca 7200 RPM).
 - c) Harddisker inneholder tosidige plater der data lagres
 - d) Harddisker har roterende plater, og man må vente til den har rotert til riktig plass før data kan leses
- 14) Hvordan henter en datamaskin vanligvis informasjon fra omgivelsene?
 - a) Dette skjer ved at DRAM brikken er koblet til eksterne linjer
 - b) Dette skjer ved at ALU enheten er koblet til eksterne linjer
 - c) Dette skjer ved at porter er koblet på adresse og data bussen
 - d) Statusregisteret blir oppdatert med eksterne verdier
- 15) Hva er ulempen til USB?
 - a) Man kan ikke ta utstyr fra en maskin og forvente at det fungerer på en annen maskin
 - b) Protokollen er ikke laget for overføring av store datamengder, her er *firewire* raskere
 - c) Det er lite datautstyr som støtter denne protokollen
 - d) USB kablene blir dyre fordi det er mange ledere i selve kabelen

Oppgave 2 – Direct memory access (DMA) (18%)

- a) Tegn en logisk skisse av en datamaskin (mikroprosessor, busser og dataminne) med en DMA-kontroller.
- b) Hvilke oppgave har DMA-kontrolleren?
- c) Beskriv de ulike trinnene i en typisk DMA-overføring. Hvilke signaler sendes mellom mikroprosessor og DMA-kontroller? Hvilke registre benyttes?

Oppgave 3 – Seriell overføring (12%)

a) Beskriv begrepene startbit, databit, paritetsbit og stoppbit (se figur under).

b) Når benyttes ofte seriell dataoverføring framfor parallell dataoverføring?

Oppgave 4 – Mikroarkitektur og assembler (20%)

DA, AA, BA		MB		FS			MD		RW	
Function	Code	Function	Code	Function	Code	e F	unction	Code	Function	Code
RO	000	Register	0	F = A	00000	F	unction	0	No Write	0
R1	001	Constant	1	F = A + 1	00001	D	ata In	1	Write	1
R2	010			$F = \mathbb{A} + \mathbb{B}$	00010)				
R3	011			F = A + B + 1	00011					
R4	100			$F = A + \sim B$	00100)				
R5	101			$F = A + \sim B + 1$	00101					
R6	110			F = A - 1	00110)				
R7	111			$F = \sim A$	00111					
				$F = A \land B$	01000)				
				$F = \mathbb{A} \vee \mathbb{B}$	01010)				
				F = A XORB	01100)				
				F = A	01110)				
				$F = \operatorname{sr} A$	10000)				
				F = sl A	10001					
16 15 14	13 12 1	1 10 0 9	7	6 5 4 3	2	1	0			
10 10 14	13 12 1	1 10 9 0	, ,	0 5 4 3	, 2		0			
DA	AA	BA	M B	FS		M D	R W			

Bruk tabellene gitt ovenfor, som beskriver styreordet til en prosessor, og figuren på forrige side, som skisserer en utførende enhet i denne prosessoren, til å besvare oppgavene under.

- 1. Hva blir styreordet for operasjonen R3 <- R6 + R5 + 1 der x skal beskrive ubrukte bits?
- 2. Hva blir konsekvensene av mikrooperasjonen med styreordet 111010xxxx0000100 der x beskriver ubrukte bits?

For en gitt CISC-prosessor kan MOV-instruksjonen i assembler være definert med flere adresseringsmodi slik:

Rn, #Imm ; Immediate MOV ; Direkte MOV Rn, Addr ; Indirekte MOV Rn, [Addr]

MOV Rn, Rm ; Register
MOV Rn, [Rm] ; Register indirekte
MOV Rn, Addr(Rm) ; Displacement PUSH Rn ; Stakk push POP ; Stakk pop Rn

Rn/Rm indikerer register nummer n/m. Addr og Imm kan være tallverdier eller variabler.

MOV fungerer slik: MOV til-operand, fra-operand

Gitt et lite utdrag av en datamaskins lager på et gitt stadium som skal benyttes for å besvare spørsmålene under:

Hove	edlager	Regist	tre	Definerte variabler		
Adresse	Verdi	Registernr	Verdi	Navn	Verdi	
0	71	R0	5	teller	64	
1	54	R1	15	i	3	
2	12	R2	8	antall	4	
3	86	R3	7	tab	3	
4	28	R4	8	х	7	
5	56	R5	55	retur	11	
6	3	R6	9			
7	8	R7	35			
8	13		'			
9	7					
10	45					
11	82					

- 3. Hva vil verdien til R1 være etter følgende instruksjon: MOV R1, #45?
- 4. Følgende instruksjoner skal utføres etter hverandre. Skriv ned hvilke registre hver enkelt instruksjon endrer og hva sluttverdiene til R4, R5, R6 og R7 vil være:

PUSH R4 MOV R5, #antall MOV R7, [R5] POP R5 MOV R6, 1(R5) MOV R7, 10

Oppgave 5 – Assemblerprogrammering (20%)

Skriv et assemblerprogram for Dark load/store maskin (se under) som gjør følgende jobb: for $(i=0; i \le n; i++)$ a [i]=b[i]+i

Anta at:

- \$3 inneholder adressen for a[0], første elementet av en tabell med n+1 ord
- \$4 inneholder verdien n.
- \$5 inneholder adressen for b[0], første elementet av en tabell med n+1 ord

Manual DARK load/store-arkitektur

```
Syntax
                                        Semantik
add REG, REG, REG NUM VAR
                                         reg \leftarrow reg + \{reg|NUM|VAR\}
                                         reg \leftarrow reg \land \{reg|NUM|VAR\}
and REG,REG, REG NUM VAR
band REG, REG, REG NUM VAR
                                         reg \leftarrow reg . \land \{reg|NUM|VAR\}
bnot REG,REG
                                         reg \leftarrow . \neg reg
bor REG,REG, REG NUM VAR
                                        reg \leftarrow reg . \lor \{reg|NUM|VAR\}
                                        reg \leftarrow reg . \oplus \{reg | NUM | VAR \}
bxor REG, REG, REG NUM VAR
call ETIKETT
                                         returstack \leftarrow pc
                                         pc \leftarrow etikett
dec REG
                                         reg \leftarrow reg - 1
div REG, REG | NUM | VAR |
                                         reg \leftarrow reg / \{reg|NUM|VAR\}
inc REG
                                         reg \leftarrow reg + 1
jeq REG,REG,ETIKETT
                                         \{|pc \leftarrow ETIKETT\}
jge REG,REG,ETIKETT
                                         \{|pc \leftarrow ETIKETT\}
jgt REG,REG,ETIKETT
                                         \{|pc \leftarrow ETIKETT\}
jle REG,REG,ETIKETT
                                         \{|pc \leftarrow ETIKETT\}
                                         \{|pc \leftarrow ETIKETT\}
jlt reg,reg,etikett
jmp ETIKETT
                                         pc \leftarrow etikett
jne REG,REG,ETIKETT
                                         \{|pc \leftarrow ETIKETT\}
load REG, {REG, NUM | NUM | VAR }
                                         reg \leftarrow \{mem[reg+NUM]|NUM|VAR\}
mod REG,REG, {REG|NUM|VAR}
                                         reg \leftarrow reg \setminus \{reg|NUM|VAR\}
mul REG, REG, REG NUM VAR
                                         reg \leftarrow reg * \{reg|NUM|VAR\}
{mv|mov} REG,REG
                                         reg \leftarrow reg
not REG,REG
                                         reg \leftarrow \neg reg
or REG,REG, REG NUM VAR
                                         reg \leftarrow reg \lor \{reg|NUM|VAR\}
                                         pc \leftarrow returstack
store REG, {REG, NUM | VAR }
                                         \{\text{mem}[\text{reg}+\text{NUM}]|\text{VAR}\}\leftarrow\text{reg}
sub REG, REG, REG NUM VAR
                                         reg \leftarrow reg - \{reg|NUM|VAR\}
                                         reg \leftarrow reg \oplus \{reg|NUM|VAR\}
xor REG,REG, {REG|NUM|VAR}
```

Svarark for oppgave 1

Studentnr:	
Fagnummer	
Eksamensda	ato:
Side	av

	a	b	c	d
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

NB! Ikke glem å levere dette arket! Bla igjennom den papirbunken du gir fra deg til slutt, for å sjekke at svar på avkrysningsoppgaven er med.