

Title: A Filtering Algorithm for Constraints of Difference in CSPs

Author: J.-Ch. Régin Proc.: AAAI 1994

Pages: 362–367

 \vdash

Foundations of Constraint Processing CSCE421/821, Spring 2008

www.cse.unl.edu/~choueiry/S08-421-821/

Berthe Y. Choueiry (Shu-we-ri)
Avery Hall, Room 123B
choueiry@cse.unl.edu, Tel: (402)472-5444

Images scanned from paper by Nimit Mehta

ХЗ

April 9, 2008

B.Y. Choueiry

2

April 9, 2008

Constraint: CVariables: $X_C = \{x_1, \dots, x_n\}$

All-diffs constraint

 $X_C = \{x_1, x_2, \dots, x_6\}$ $x_1 \quad \{1, 2\} \quad \{3, 4, 5, 6\}$ $x_2 \quad \{2, 3\} \quad \neq \quad \underbrace{x_6}_{\{6, 7\}}$

B.Y. Choueiry

Context: finite CSPs

Goal: efficiency of arc consistency

Focus: All-diff constraints

ಲು

Result: efficient algorithm $\begin{cases} \text{Space}: \mathcal{O}(pd) \\ \text{Time}: \mathcal{O}(p^2d^2) \\ p: \ \# \text{vars}, \ d: \ \text{max domain size} \end{cases}$

Application: used in RESYN for subgraph isomorphism (plan synthesis in organic chemistry)

April 9, 2008

2008

B.Y. Choueiry

Contributions

- An algorithm to establish arc consistency in an all-diff constraint
 - \rightarrow efficient
 - → powerful pruning
- An algorithm to propagate deletions among several all-diff constraints
- \bullet Illustration on the zebra problem

\mathbf{Why} ?

- GAC4 handles *n*-ary constraints
 - \rightarrow good pruning power
 - \rightarrow quite expensive:

depends on size and number of all admissible tuples $=\frac{d!}{(d-p)!}$ p: #vars, d: max domain size

- Replace *n*-ary by a set of binary constraints, then use AC-3 or AC-4
 - \rightarrow cheap
 - \rightarrow bad pruning

5

Example

• *n*-ary constraint

GAC4: rules out a, b for x_3

• Set of binary constraints

AC-3/4 ends with no filtering

Notations

CSP: $\mathcal{P} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$

 $C \in \mathcal{C}$ defined on $X_C = \{x_{i_1}, x_{i_2}, \dots, x_{i_j}\} \subseteq \mathcal{X}$

p: arity of C, $p = |X_C|$

 $d: \max |D_{x_i}|$

• A value $\underline{a_i \text{ for } x_i \text{ is consistent for } C}$, if \exists values for other all variables in X_C such that these values and a_i simultaneously satisfy C

- A constraint C is consistent, if all values for all variables X_C are consistent for C
- A <u>CSP is arc-consistent</u>, if all constraints (whatever their arity) are consistent
- A <u>CSP</u> is <u>diff-arc-consistent</u> iff all its all-diffs constraints are arc-consistent

April 9, 2008

B.Y. Choueiry

 ∞

Space complexity? Draw GV of the 3-node coloring example

Value Graph

the $\overline{\text{value Graph}}$ of C is a bipartite graph Given C, an all-diff constraint,

$$\mathrm{GV}(C) = (X_C, D(X_C), E)$$

Vertices:
$$X_C = \{x_{i_1}, x_{i_2}, \dots, x_{i_j}\}$$

Vertices: $D(X_C) = \cup_{x \in X_C} (D_x)$
Edges: (x_i, a) iff $a \in D_x$

Vertices: X_C

B.Y. Choueiry

Definitions: matching

9

Matching: a subset of edges in G with no vertex in common

Max. matching biggest possible

Matching covers a set X: every vertex in X is an endpoint for an edge in matching

- Left: M that covers X_C is a max matching

- If every edge in $\mathrm{GV}(C)$ is in a matching that covers $X_C,\,C$ is consistent

April 9, 2008

B.Y. Choueiry

Theorem 1

CSP: $\mathcal{P} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ is diff-arc-consistent iff

for every all-diff $C \in \mathcal{C}$

every edge GV(C) belongs to a matching that covers X_C in GV(C)

10

Task:

Repeat for each all-diff constraint,

- Build G (\equiv GV) of all-diff constraint C
- Remove edges that do not belong to any matching covering X_C

Algorithm 1:

- Compute one M(G), maximal matching in G
- If M(G) does not cover X_C , then stop
- Using M(G), remove edges that do not belong...

Algorithm 1: DIFF-INITIALIZATION(C)
% returns false if there is no solution, otherwise true
% the function COMPUTEMAXIMUMMATCHING(G) computes a maximum matching in the graph Gbegin

Build $G = (X_C, D(X_C), E)$ $M(G) \leftarrow \text{ComputeMaximumMatching}(G)$ if $|M(G)| < |X_C|$ then return false

RemoveEdgesFromG(G, M(G))return true

end

 \longrightarrow Hopcroft & Karp: Efficient procedure for computing $\underline{\mathbf{a}}$ matching covering X_C

→ Or, maximal flow in bipartite graph (less efficient)

April 9, 2008

B.Y. Choueiry

Our problem becomes

Given:

- an all-diff constraint C
- its value graph G = (X, Y, E)
- one maximum covering M(G)

Remove edges that belong to \underline{no} matching covering X

April 9, 2008

12

Definitions

Given a matching M:

matching edge: an edge in M free edge: an edge not in M

matched vertex: incident to a matching edge

free vertex: otherwise

alternating path (cycle): a path (cycle) whose

edges are alternatively matching and free $\,$

length of a path: number of edges in path

vital edge: belongs to every maximum matching

Questions

Indicate:

- matching edges
- free edges
- matched vertices
- a free vertex
- an alternating path, length?
- an alternating cycle, length?
- a vital edge

An edge belongs to some of but not all maximum matchings, iff for an arbitrary maximum matching M, it belongs to either:

- an even alternating cycle, or
- an even alternating path that begins at a free vertex

15

x1 x2 x3 x4 x4 x5 x6 6

April 9, 2008

B.Y. Choueiry

Thus:

The edges to remove should not be in:

- all matchings (vital)
- an even alternating path starting at a free vertex
- an even alternating cycle

16

Given:

GIVELL:
$$G = (X, Y)$$

- a matching M(G) covering X
- Build G_O , by orienting the edges

every directed cycle in G_O corresponds to an even alternating cycle of G, and conversely

corresponds to an even alternating path of G starting at a free G_O , starting at a free vertex every directed simple path in conversely an

Task:

Given G, and M(G), remove edges that do not belong to any matching covering X_C

Algorithm 2

- Build G_O
- Mark all edges of G_O as unused
- Identify all directed edges that belong to a directed simple path starting at a free vertex by a breadth-first search, mark them as used
- Compute strongly connected components in G_O . Mark "used" any directed edge between two vertices in the same strongly connected component, as any such edge belongs to a directed cycle and conversely
- All remaining unused edges, if they are in M(G), mark them as vital else put them in RE and remove them from G

Algorithm 2

```
Algorithm 2: RemoveEdgesFromG(G,M(G))
\% RE is the set of edges removed from G.
% M(G) is a matching of G which covers X
\% The function returns RE
begin
   Mark all directed edges in Go as "unused".
   Set RE to 0.
  Look for all directed edges that belong to
   a directed simple path which begins at a free
   vertex by a breadth-first search starting from
   free vertices, and mark them as "used".
   Compute the strongly connected components of G_O.
   Mark as "used" any directed edge that joins two
   vertices in the same strongly connected component.
   for each directed edge de marked as "unused" do
      set e to the corresponding edge of de
      if e \in M(G) then mark e as "vital"
      else
         RE \leftarrow RE \cup \{e\}
         remove e from G
  return RE
end
```


Algorithm 2

- ...
- Identify all edges starting at a free vertex by a breadth-first search, mark them as used
- Compute strongly connected components in G_O . Mark "used" any directed edge between two vertices in the same strongly connected component, as any such edge belongs to a directed cycle and conversely
- All remaining unused edges, if they are in M(G), mark them as vital else put them in RE and remove them from G

20

Algorithm 2

• ...

B.Y. Chousiry

- Identify all edges starting at a free vertex by a breadth-first search, mark them as used
- Compute strongly connected components in G_O . Mark "used" any directed edge between two vertices in the same strongly connected component, as any such edge belongs to a directed cycle and conversely
- All remaining unused edges, if they are in M(G), mark them as vital else put them in RE and remove them from G

21

April 9, 2008

Given C, remove edges that are not consistent for C

.. but

and X_{C_j} , with C_i and C_j two all-diff A variable x may be in more than one all-diff constraints, How to propagate the effect of filtering of C_i on C_j ? start from scratch? i.e. x may be in X_{C_i} constraints

was known in GV(0

a matching covering X_{C_i}

use the fact that before deletion due to C_i ,

propagate deletions more intelligently

B.Y. Choueiry 22 April 9, 2008

23

Assume we have C_i , C_j , and C_k involving a given variable

Compute
$$\begin{cases} & \text{RE}(C_i), \, \text{RE}(C_j), \, \text{RE}(C_k), \\ & \text{G=GV}(C_i), \, \text{M}(G), \, \text{etc.} \end{cases}$$

Idea

Consider C_i

First remove from G deletions due to C_j , C_k

if computeMatching then

if \neg MATCHINGCOVERINGX(G,M(G),M') then

return false

remove e from G

else $computeMatching \leftarrow true$

if e is marked as "vital" then return false

Second, try to extend the remaining edges in $\mathcal{M}(\mathcal{G})$ into a matching that covers X_{C_i}

Finally, apply ${\bf Algorithm~2}$

... iterate

April 9, 2008

Consider C_i , $G = GV(C_i)$, M(G)Set $RE \leftarrow RE(C_i)$ $ER \leftarrow RE(C_i)$ $ER \leftarrow RE(C_j) \cup RE(C_k)$ Algorithm 3: Diff-Propagation(G,M(G),ER,RE) % the function returns false if there is no solution % G is a value graph % M(G) is a matching which covers X_C % ER is the set of edges to remove from G% RE is the set of edges that will be deleted by the filtering begin $Compute Matching \leftarrow false$ for each $e \in ER$ do

3 $\overrightarrow{RE} \leftarrow \text{RemoveEdgesFromG}(G, M(G))$ return true end

B.Y. Choueiry

24

Example: the Zebra problem

5 houses of different colors5 inhabitants, different nationalities, different pets, different drinks, different cigarettes

Consider the following facts:

- 1. The Englishman lives in the red house
- 2. The Spaniard has a dog
- 3. Coffee is drunk in the green house
- 4. The Ukrainian drinks tea
- 5. The green house is immediately to the right of the ivory house
- 6. The snail owner smokes Old-Gold
- 7. *etc.*

Query: who drinks water? who owns a zebra?

Zebra: formulation

 $\begin{cases} 5 \text{ house-color } C_1, C_2, \dots, C_5 \\ 5 \text{ nationalities } N_1, N_2, \dots, N_5 \\ 5 \text{ drinks } B_1, B_2, \dots, B_5 \\ 5 \text{ cigarettes } T_1, T_2, \dots, T_5 \\ 5 \text{ pets } A_1, A_2, \dots, A_5 \end{cases}$

Domain of each variable = $\{1, 2, 3, 4, 5\}$ ($\equiv \{h1, h2, h3, h4, h5\}$) Constraints 2–15?

Formulating Constraint 1

- Binary constraint between any pair in each cluster: binary
- 2. Five 5-ary all-diff constraints: non-binary CSP
- The 5-ary constraints are replaced with their GV. Space?

Results (I)

Formulation 1 solved with AC

Formulation 2 solved with GAC-4

Formulation 3 solved with the new technique. Same results as 2.

Results (II)

a: # of binary constraints

p: size of a cluster

c: # of clusters

d: # of values in a domain

 $\mathcal{O}(ad^2)$: complexity of AC on binary

Formulation 1 solved with AC

- number of binary constraint added is $\mathcal{O}(cp^2)$
- filtering complexity is $\mathcal{O}((a+cp^2)d^2)$

Formulation 2 solved with GAC-4

- filtering complexity is $\mathcal{O}(\frac{d!}{(d-p)!}p)$

Formulation 3 solved with the new technique

- arc-consistency is $\mathcal{O}(ad^2)$
- all-diff filtering is $\mathcal{O}(cp^2d^2)$
- total filtering is $\mathcal{O}(ad^2 + cp^2d^2)$

Extension

Improved bounds by J.-F. Puget (AAAI 99) for ordered domains (e.g., time in scheduling)

Lesson

We can improve the performance of search by:

- identifying special structures in the constraint graph $(e.g., \, {
 m tree}, \, {
 m biconnected} \, {
 m components}, \, {
 m DAG})$
- $(e.g., \, \text{functional}, \, \text{anti-functional}, \, \text{monotonic}, \, \text{all-diffs})$ identifying special types of constraints

B.Y. Choueiry 29 April 9, 2008

B.Y. Choueiry 30 April 9, 2008

Improved arc-consistency

Van Hentenryck et al. AIJ 92

Functional

A constraint C is functional with respect to a domain D iff for all $v \in D$ (respectively $w \in D$) there exists at most one $w \in D$ (respectively $v \in D$) such that C(v, w).

Anti-functional

A constraint C is anti-functional with respect to a domain D iff $\neg C$ is functional with respect to D.

Monotonic

A constraint C is monotonic with respect to a domain D iff there exists a total ordering on D such that, for all values v and $w \in D$, C(v, w) holds implies C(v', w') holds for all values v' and $w' \in D$ such that $v' \leq v$ and $w' \leq w$.