基于 REST 服务的最小物联网系统设计

目录

物联网毕业设计	3
绪论	 3
选题背景	 3
设计内容	 3
设计的目的及其意义	 4
国内外发展现状和趋势	 4
系统总体设计方案	4
网络服务设计	 5
硬件方案选择	 5
单片机选择	 5
软件方案选择	 6
数据通讯方式选择	 6
数据通信格式选择	 6
网络服务方案选择	 7
语言选择	 7
其它	 8
数据通讯设备	 8
辅助语言选择	 8
串口通信模块	 9
网页通信	 9
数据可视化框架选择	 9

本地系统设计 1	0
硬件设计 1	ιo
Raspberry Pi	10
Arduino	10
软件设计 1	10
Arduino 程序设计 1	10
Raspberry Pi 程序设计	12
获取数据 1	12
串口通讯 1	13
python 串口通讯	13
网络系统设计 1	۱ 4
网络服务程序设计 1	14
网站前台设计	15
Aiax	15

物联网毕业设计

绪论

选题背景

随着科技的发展,计算机电子技术迅猛发展,已经成为生活中不可缺少的部分。目前人们绝大多数都是采用 PC 进行网络数据传送,但由于成本高,限制了应用的范围。而嵌入式系统却越来越受到人们的青睐。它采用嵌入式的微处理器,支持 TCP/IP 协议,它已成为网络发展新阶段的标志:

物联网是新一代信息技术的重要组成部分。其英文名称是``The Internet of things"。顾名思义,物联网的意思就是物物相连的互联网。这有两层意思:第一,物联网是建立在互联网之上的,是互联网的拓展和延伸;第二,其用户端扩展和延伸到了物品与物品之间,进行信息通信和交换。物联网有如下特征:

首先,广泛应用了各种感知技术。在物联网中部署了大量的多种传感器,每个传感器都能从外界采集信息,不同类的传感器捕获的信息不同。而且获得的数据具有实时性,按照一定的规律来采集数据,不断更新数据。

其次,它是建立在互联网上的网络。物联网技术的核心和基础仍是互联网,通过各种无线和有线网络与互联网结合起来,将物体的信息准确实时地传递出去,数据传输过程中必须适应各种网络协议。

还有,物联网本身也具有一种智能处理的能力,能够智能控制物体。物联网从传感器中获得数据,然后进行分析,处理处有意义的数据,来适应不同用户的需求。

设计内容

设计主要是关于基于 RESTful 服务的网络服务构建,可采用有线网络、无线网络、 手机 GSM 网络等与 Internet 相关,通过手机、电脑、移动设备等登录到网页可实现控 制家电的上的,并可实时查看诸如温度等一些信息的基本内容。

硬件设计时,采用 Arduino 单片机系统,作为一个基于 Atmega328 芯片的最小系统,Arduino 可以系统代码。Arduino 主要用于展示 LED 灯的控制,通过与 Raspberry PI 开发板相连来获取实时状态。Raspberry PI 作为一个 ARM 开发板,由于其运行的是 Linux 系统,在软件方面有着相对于其他开发板较好的支持,在这里是作为数据传输设备以用来进行模块分离。

软件设计时,由于一个物联网系统其核心是以网络为基础的,需要优先考虑网络方面的优化,学需要考虑数据库等的问题。

用户界面设计时,随着近来来平板、手机等移动设备的流行,在设计时不能再以桌面程序为核心,需要考虑不用设备之间的兼容性等问题,这里便以网页为核心作为显示。 而,随着云计算技术的流行,未来的物联网系统必然也会基于云计算技术构建。作为一个可视化的网页来说,实时的状态显示等是较为重要,同时我们需要考虑的是用户体验。

设计的目的及其意义

设计以简化物联网系统为主,简化一个可扩展的最小的物联网系统,以简化系统的逻辑为起点,为广大的用户提供一个良好的了解物联网系统方面知识的框架。

国内外发展现状和趋势

物联网是建立在互联网技术之上的。目前,我国物联网发展与全球同处于起步阶段,初步具备了一定的技术、产业和应用基础,呈现出良好的发展态势。把单片机应用系统和 Internet 连接也已经是一种趋势。

目前无线通信网络已经覆盖各地,是实现``物联网"必不可少的设施,可以将安置在每个物品上的电子介质产生的数字信号通过无线网络传输出去。``云计算"技术的运用,使数以亿计的各类物品的实时动态管理变得可能。

物联网技术的推广已经取得一定的成效。在多方面已经开始应用,如远程抄表,电力行业,视频监控等等。以及在物流领域和医疗领域也都日趋成熟,如物品存储及运输监测,远程医疗,个人的健康监护等。除此之外在环境监控,楼宇节能,食品等方面也开展了广泛应用。

尽管在这些领域已经取得一些进展,但应认识到,物联网发展技术还存在一系列制约和瓶颈。有几个方面可以表现出来:核心技术与国外差距较大,集成服务能力不够,缺乏骨干企业,应用水平不高,信息安全存在隐患。我们国家在 PC 架构领域还没有主动权,软件产品很少。目前,计算环境正在向以网络为中心发展,有很多产品不必也windows 兼容,因此,研究单片机系统接入网络,前途宽广。

系统总体设计方案

Arduino+Raspberry Pi+Laravel+JSON+RESTful+Ajax+Python+HighCharts

Arduino 与 Raspberry Pi 通过串口通信的方式实现通信,相互传输所需要的数据,Raspberry Pi 将资源传于互联网上对应的接口,接口可以在互联网上被访问。Laravel 框架构架于服务器之上,将 Raspbery Pi 获取过来的数据存储于 MySQL 数据,再以 REST 服务的方式共享数据,互联网上的其他设备便可以通过网络来访问这些设备。Ajax 用于将后台的数据以不需要刷新的方式传递到网站前台,通过 HighCharts 框架显示给终端

图 1: 系统框架图

用户。

网络服务设计

物联网的核心也就是网络服务,而网络服务在某种意义上来说,就是需要打造一个多平台的通信协议,在使机器、家电、设备等连上计算机网络。基本的物联网系统,不仅能控制设备,还可以在远程查看状态。而复杂的物联网系统可以让互联网上的设备之间实现互联与通信,也就是物联网的最终目标所在-----使物体与物体之间的交互成为可能,不需要人为去干预。

设备在现实世界就是一种资源,在互联网上也应该是一种资源,互联网上的网页就相当于是一种资源。

硬件方案选择

单片机选择

Arduino Arduino,是一个开放源代码的单芯片微电脑,它使用了 Atmel AVR 单片机,采用了基于开放源代码的软硬件平台,构建于开放源代码 simple I/O 接口板,并且具有使用类似 Java, C 语言的 Processing/Wiring 开发环境。

Arduino 开发板封装了常用的库到开发环境中,可以让用户在开发产品时,将主要

软件方案选择 系统总体设计方案

注意力放置于所需要实现的功能上,而不是开发的过程中。在为 Arduino 写串口程序时,我们只需要用 Serial.begin(9600)以 9600的速率初始化串口,而在往串口发送数据时,可以用 Serial.write(`1')的方式向串口发送字串'1'。

51 单片机¹,又称微控制器,是把中央处理器、存储器、定时/计数器(Timer/Counter)、各种输入输出接口等都集成在一块集成电路芯片上的微型计算机。与应用在个人计算机中的通用型微处理器相比,它更强调自供应(不用外接硬件)和节约成本。它的最大优点是体积小,可放在仪表内部,但存储量小,输入输出接口简单,功能较低。

51 单片机相较于 Arduino 开发板,不仅代码复杂,由于系统比较古老而不方便于快速开发。

软件方案选择

数据通讯方式选择

REST REST² 从资源的角度来观察整个网络,分布在各处的资源由 URI 确定,而客户端的应用通过 URI 来获取资源的表征。获得这些表征致使这些应用程序转变了其状态。随着不断获取资源的表征,客户端应用不断地在转变着其状态,所谓表征状态转移。

SOAP 简单对象访问协议是交换数据的一种协议规范,使用在计算机网络 Web 服务中,交换带结构信息。SOAP 为了简化网页服务器从 XML 数据库中提取数据时,节省去格式化页面时间,以及不同应用程序之间按照 HTTP 通信协议,遵从 XML 格式执行资料互换,使其抽象于语言实现、平台和硬件。

数据通信格式选择

JSON JSON³是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。它基于 JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999 的一个子集。JSON 采用完全独立于语言的文本格式,但是也使用了类似于 C 语言家族的习惯⁴。这些特性使 JSON 成为理想的数据交换语言。JSON 相对于 XML 来说可以减少文件的大小,同时我们可以用于网站前端的数据通讯。

¹全称单片微型计算机(英语: Single-Chip Microcomputer)

²Representational State Transfer

³JavaScript Object Notation

⁴ (包括 C, C++, C#, Java, JavaScript, Perl, Python 等)

网络服务方案选择 系统总体设计方案

XML 可扩展标记语言⁵,是一种标记语言。标记指计算机所能理解的信息符号,通过此种标记,计算机之间可以处理包含各种信息的文章等。如何定义这些标记,既可以选择国际通用的标记语言,比如 HTML,也可以使用像 XML 这样由相关人士自由决定的标记语言,这就是语言的可扩展性。XML 是从标准通用标记语言(SGML)中简化修改出来的。它主要用到的有可扩展标记语言、可扩展样式语言(XSL)、XBRL 和 XPath 等。

XML 具有良好的可读性,有着较好的库支持,从 Java 语言到其他语言,如 Linux 系统上 libxml 等对 XML 的支持比较好。

网络服务方案选择

语言选择

PHP Laravel

PHP⁶是一种开源的通用计算机脚本语言,尤其适用于网络开发并可嵌入 HTML 中使用。PHP 的语法借鉴吸收了 C 语言、Java 和 Perl 等流行计算机语言的特点,易于一般程序员学习。PHP 的主要目标是允许网络开发人员快速编写动态页面,但 PHP 也被用于其他很多领域。

Laravel

Laravel 是一套简洁、优雅的 PHP Web 开发框架。它可以让你从面条一样杂乱的代码中解脱出来;它可以帮你构建一个完美的网络 APP,而且每行代码都可以简洁、富于表达力。

Java Spring

Java

Java 是一种可以撰写跨平台应用软件的面向对象的程序设计语言,是由 Sun Microsystems 公司于 1995 年 5 月推出的 Java 程序设计语言。Java 技术具有卓越的通用性、高效性、平台移植性和安全性,广泛应用于个人 PC、数据中心、游戏控制台、科学超级计算机、移动电话和互联网,同时拥有全球最大的开发者专业社群。在全球云计算和移动互联网的产业环境下,Java 更具备了显著优势和广阔前景。

Spring

Spring 也表示是一个开源框架,是为了解决企业应用程序开发复杂性由 Rod Johnson 创建的。框架的主要优势之一就是其分层架构,分层架构允许使用者选择使用哪一个组件,同时为 J2EE 应用程序开发提供集成的框架。Spring 使用基本的 JavaBean

⁵eXtensible Markup Language,简称: XML

⁶PHP: Hypertext Preprocessor, 即 ``PHP: 超文本预处理器"

其它 系统总体设计方案

来完成以前只可能由 EJB 完成的事情。然而,Spring 的用途不仅限于服务器端的开发。 从简单性、可测试性和松耦合的角度而言,任何 Java 应用都可以从 Spring 中受益。

其它

数据通讯设备

Raspeberry PI

Raspberry Pi 是一款针对电脑业余爱好者、教师、小学生以及小型企业等用户的迷你电脑,预装 Linux 系统,体积仅信用卡大小,搭载 ARM 架构处理器,运算性能和智能手机相仿。在接口方面,Raspberry Pi 提供了可供键鼠使用的 USB 接口,此外还有千兆以太网接口、SD 卡扩展接口以及 1 个 HDMI 高清视频输出接口,可与显示器或者 TV相连。

Debian

广义的 Debian 是指一个致力于创建自由操作系统的合作组织及其作品,由于 Debian 项目众多内核分支中以 Linux 宏内核为主,而且 Debian 开发者所创建的操作系统中绝大部分基础工具来自于 GNU 工程,因此 ``Debian'' 常指 Debian GNU/Linux。

Linux

Linux 是一套免费使用和自由传播的类 Unix 操作系统,是一个基于 POSIX 和 UNIX 的多用户、多任务、支持多线程和多 CPU 的操作系统。它能运行主要的 UNIX 工具软件、应用程序和网络协议。它支持 32 位和 64 位硬件。Linux 继承了 Unix 以网络为核心的设计思想,是一个性能稳定的多用户网络操作系统。

辅助语言选择

Python Python, 是一种面向对象、直译式计算机程序设计语言,由 Guido van Rossum 于 1989 年底发明,第一个公开发行版发行于 1991 年。Python 语法简洁而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是 C/C++)轻松地联结在一起。常见的一种应用情形是,使用python 快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如 3D 游戏中的图形渲染模块,速度要求非常高,就可以用 C++ 重写。

Ruby

Ruby,一种为简单快捷的面向对象编程(面向对象程序设计)而创的脚本语言,在 20世纪90年代由日本人松本行弘(まつもとゆきひろ/Yukihiro Matsumoto)开发,遵 串口通信模块 系统总体设计方案

守 GPL 协议和 Ruby License。它的灵感与特性来自于 Perl、Smalltalk、Eiffel、Ada 以及 Lisp 语言。由 Ruby 语言本身还发展出了 JRuby(Java 平台)、IronRuby(.NET 平台)等其他平台的 Ruby 语言替代品。Ruby 的作者于 1993 年 2 月 24 日开始编写 Ruby,直至 1995 年 12 月才正式公开发布于 fj(新闻组)。因为 Perl 发音与 6 月诞生石 pearl(珍珠)相同,因此 Ruby 以 7 月诞生石 ruby(红宝石)命名。

Python 相对于 Ruby 有着更好的跨平台能力,同时有理好的可读性,加之 Ruby 语言没有对串口通讯及 Windows 系统更好的支持。

串口通信模块

Pyserial

封装了串口通讯模块,支持 Linux、Windows、BSD(可能支持所有支持 POSIX 的操作系统),支持 Jython(Java) 和 IconPython(.NET and Mono).

在使用 PySerial 之后, 我们只需要

```
ser=serial.Serial("/dev/ttyACM0",9600)
ser.write("1")
```

就可以向串口发送一个字符 1。

网页通信

Ajax AJAX[^ajax] 是由 Jesse James Gaiiett 创造的名词,是指一种创建交互式网页应用的网页开发技术。系统主要用 Ajax 来实现实时温度显示,通过直接访问 JSON 数据的情况下,可以在不需要刷新页面的情况下直接读取数据。[^ajax]: ``Asynchronous JavaScript and XML'' (异步 JavaScript 和 XML)

数据可视化框架选择

HighCharts Highcharts 是一个用纯 JavaScript 编写的一个图表库,能够很简单 便捷的在 web 网站或是 web 应用程序添加有交互性的图表,并且免费提供给个人学习、个人网站和非商业用途使用。HighCharts 支持的图表类型有曲线图、区域图、柱状图、饼状图、散状点图和综合图表。**D3.js**

本地系统设计

硬件设计

Raspberry Pi

Raspberry Pi 开发板与 Arduino 开发板,通过 USB 方口线连接。Raspberry Pi 可以直接运行 Debian GNU/Linux 系统,通过网线上网,并从服务器中读取数据,同时借由 Python 语言收发串口数据。

Arduino

软件设计

Arduino 程序设计

Arduino 部分硬件程序如下所示,主要负责从串口中读入数据,并用 LED 显示。程序流程图如下所示

系统主要的功能在于接收和传递数据。

代码如下所示

```
void setup() {
   Serial.begin(9600);
   pinMode(13,OUTPUT);
   pinMode(12,OUTPUT);
}

int serialData;
void loop() {
   String inString = "";
   while (Serial.available()> 0)
   {
    int inChar = Serial.read();
    if (isDigit(inChar)) {
       inString += (char)inChar;
    }
}
```

Arduino 程序设计 本地系统设计

图 2: Arduino 程序流程图

```
serialData=inString.toInt();
Serial.print(serialData);

if(serialData==1) {
    digitalWrite(12,LOW);
    digitalWrite(13,HIGH);
}else{
    digitalWrite(13,LOW);
    digitalWrite(12,HIGH);
}
```

Raspberry Pi 程序设计

图 3: Python 程序流程图

获取数据

Raspberry Pi 端的主要功能便是将数据从 http://www.xianuniversity.com/athome/ 1 [^domain] 下载下来并解析数据,再将数据用串口通讯的方式传递给 Arduino。

在 Debian 系统中,自带了 python 语言, python 有良好的动态特性,同时有强大的自建库功能。在 python 语言中可以用自带的 urllib2 库打开并下载网页的内容,将上述 网址中的 JSON 数据下载到本地。

数据采用的是 JSON 格式,具有良好的可读性,同时方便于解析,相比于 XML 格式又可以减少文件大小,

```
[
    "id": 1,
    "temperature": 10,
    "sensors1": 22,
    "sensors2": 11,
    "led1": 0
}
```

将上述中的数据取出来后,通过 python 中的 json 库,将 json 数据转换为数组,将取出数据中的第一个结果中的 id 的值。

串口通讯

由于 python 中没有用于串口通讯的库,需要寻找并安装这样一个库,这里就用到了 pip 这样的包管理工具 -----用于管理 python 的库。

安装 **pyserial** pip 常用命令有 install、uninstall 以及 search, install 顾名思义就是安装,安装 pip 库如下所示⁷,如后代码如下所示,\$⁸开头:

```
$pip install pyserial
```

python 串口通讯

import json

在 Linux 内核的系统⁹中虚拟串口用的节点是 ttyACM, 位于/dev 目录下。

```
serial.Serial("/dev/ttyACM0",9600)
```

便是打开这个设备,以9600的速率传输数据。

```
import urllib2
import serial
import time

url="http://www.xianuniversity.com/athome/1"

while 1:
    try:
        date=urllib2.urlopen(url)
        result=json.load(date)
        status=result[0]["led1"]
        ser=serial.Serial("/dev/ttyACMO",9600)
        if status==1 :
```

⁷在 Windows 系统中需要先安装 pip,再安装 pyserial。

⁸指在*nix系统的终端中执行的命令。

⁹在 Windows 系统上,只需要将/dev/ttyACMo 改为对应的 com 口。

```
ser.write("1")
elif status==0:
    ser.write("0")
time.sleep(1)
except urllib2.URLError:
    print "Bad URL or timeout"
```

网络系统设计

网络服务程序设计

对于物联网系统网络的核心是构建一个 RESTful 服务,而这构建 RESTful 的核心便是基础的 HTPP 协议。基础的 HTTP 协议便是:GET、POST、PUT、DELETE。它们分别对应四种基本操作: GET 用来获取资源,POST 用来新建资源(也可以用于更新资源),PUT 用来更新资源,DELETE 用来删除资源。

简要的来说,一个 GET 动作便是在我们打开一个网页的时候,我们看到的内容,便是我们 GET 到的资源。而在我们获取到网页的内容之前,我们会有一个 POST 动作到我们所要打开的网站的服务器,下面这是一个简化了的 HTTP POST 动作:

POST / HTTP/1.1

Host: example.com

User-Agent: Go 1.1 package http

Content-Length: 45

Authorization: 123456
Accept-Encoding: gzip

source=12345678&text=http%3A%2F%2Fexample.com

一个 PUT 动作但是我们更新资源,就好比是我们创建一个日志或者一个说说一样。 DELETE 动作,便是删除动作了,而这也是一个物联网系统服务所需要的。

而我们构建一个 REST 服务也就相当于是诸如我们 get 一个 URL 下的某个数据

\$curl http://www.xianuniversity.com/athome/1

网站前台设计

在对网站前台设计的时候,在考虑不同移动设备的兼容的同时,也需要保持一个良好可用的结构。而系统在前台的主要功能是在于控制物体的状态、显示一些数值的变化,控制物体状态的关键在于如何将数据由前台 POST 到后台,在网页端可以用 POST,而在移动端则可以用 JSON API。

Ajax

- AJAX: Asynchronous JavaScript and XML (异步的 JavaScript 和 XML)。
- AJAX 不是新的编程语言,而是一种使用现有标准的新方法。
- AJAX 是与服务器交换数据并更新部分网页的艺术,在不重新加载整个页面的情况下。

剥离后的 Ajax 部分代码如下所示,主要用的是 jQuery 框架的 getJSON 来实现的

```
var dataLength = [];

function drawTemp() {
   var zero = [];
   $.getJSON('/athome/', function(json) {
      var items = [];
      dataLength.push(json.length);
      $.each(json, function(key, val) {
         zero.push(val.temperature);
      });
};
```

实际上,我们做的只是从 /athome/ 下面获取数据,再将数据堆到数组里面,再把这部分放到图形中。