<u>Térvektorok</u>

(1) Határozzuk meg az adott P ponton átmenő, adott ${\bf n}$ normálvektorú sík egyenletét, ha

P	\mathbf{n}
(2,1,4)	(3,2,-4)
(0,0,0)	(1, 2, 4)
(7,2,-2)	(2,0,3)
(0,0,0)	(0,0,1)

(2) Vizsgáljuk meg, hogy a három pont egy egyenesbe esik-e, ha nem, írjuk fel a pontokon átmenő sík egyenletét.

(0,1,-2)	(2, -1, 1)	(4,3,-2)
(1,0,0)	(0, 1, 0)	(0,0,1)
(-3,0,4)	(4, 1, 2)	(0,0,0)
(-2,3,1)	(0, 5, 1)	(-4,1,0)

- (3) Határozzuk meg a (2,4,6) ponton átmenő, x=7-3t, y=3+4t, z=5+2t egyenest tartalmazó sík egyenletét.
- (4) Határozzuk meg a megadott egyenes és sík közös pontját, illetve pontjait, ha vannak ilyenek:

-2x + 3y + 3z - 3 = 0	x = 3 - t, y = 2 - t, z = 3 - t
3x - y - 2z - 2 = 0	$\frac{x-1}{2} = 2y + 3 = z - 3$
x + 2y - z + 2 = 0	$x+2 = y-3 = \frac{z+1}{3}$
5x - y + 3z - 3 = 0	x = 1, y = 5 + 3t, z = 1 + t

- (5) Honnan látjuk "ránézésre", hogy egy egyenes és egy sík párhuzamos-e?
- (6) Számítsuk ki az (5, 12, -13) pont távolságát a 3x + 4y + 5z = 12 síktól.
- $\left(7\right) \,$ Számítsuk ki a szabályos tetraéder lapszögeit.
- (8) Számítsuk ki a szabályos tetraéder éleinek az alaplappal bezárt szögét.
- (9) Egy 30°-os hajlásszögű lejtőn lévő 60 kg-os testet a lejtő síkjával 45°-os szöget bezáró kötéllel tartunk egyensúlyban. Mekkora erővel kell húznunk a kötelet? Mekkora erővel nyomja a test a lejtőt? A súrlódási erőt hanyagoljuk el!

- (10) Egy 90 kg-os betörő járkál üveglapokból készült tetőnkön. Az üveglapok a síkjukra merőlegesen 400N erőt tudnak kifejteni, ennél nagyobb terhelésnél beszakadnak. Megtartja-e a betörőt a tető, ha a tető síkjának normálvektora
 - a) (1,1,1) b) (2,2,1) ?

Sorozatok

(1) Írjuk fel a következő sorozatok első három-négy tagját:

a)
$$\frac{(-1)^{n+1}}{2n-1}$$
; b) $2 + (-1)^n$; c) $a_1 = 1, a_{n+1} = \frac{a_n}{n+1}$.

(2) Írjuk fel a következő sorozatok "képletét":

a)
$$0, 2, 0, 2, \ldots$$
; b) $\frac{1}{2}, \frac{1}{5}, \frac{1}{8}, \frac{1}{11}, \ldots$; c) $1, -\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \ldots$

- (3) A Sloan Enciklopédiában (http://www.research.att.com/~njas/sequences/) rengeteg sorozat van. Ha valaki úgy véli, újat talált, küldje be. Nagy dicsőség bekerülni, de nem könnyű.
- (4) Egy újszülött nyúlpár 2 hónap elteltével lesz nemzőképes, és onnantól kezdve minden hónapban egy nyúlpárt fial, melyek megint 2 hónap alatt lesznek nemzőképesek stb. Ha a nulladik hónapban egyetlen újszülött nyúlpárral indulunk, jelöljük F_n -nel n hónap után az összes nyúlpárok számát. Írjunk fel rekurziót F_n -re. (Később nézzük meg, milyen gyorsan nő F_n .)
- (5) Az $x_1 = 1, x_{n+1} = x_n + \cos(x_n)$ sorozatra $x_n \to \frac{\pi}{2}$. A heurisztikus bizonyítás az ábráról leolvasható. Akinél van kalkulátor, megnézheti, milyen pontosan közelít x_5, x_{10} .

Figure 1: Segítség a bizonyításhoz