

edgeR: a Bioconductor package for differential expression analysis of digital gene expression data

Robinson MD, McCarthy DJ and Smyth GK (2010). "edgeR: a Bioconductor package for differential expression analysis of digital gene expression data." *Bioinformatics*, 26, pp. -1.

http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf

Factors Affecting Differential Expression Analysis

- Sequencing depth
- Replication number
 - Biological variation
 - -Technical variation (library preparation, sequencing)
 - At least 3 biological replicates (still quite small for statistical testing)

Software tools for differential expression analysis

- DeSeq, DeSeq2, edgeR, tweeDESeq, Limma, SAMSeq, NOISeq, CuffDiff, BitSeq, efSeq
- The right software choice depends on objectives of your experiment and data set.

(type of experimental design, number of replicates, genes or isoforms)

edgeR can identify more true positive

General pipeline for differential expression analysis

(edgeR uses negative binomial distribution)

- Filtering
- Normalization
- Dispersion estimation
- Hypothesis testing
 - Datasets immature fruit (2 biological replicates)
 SRR404331
 SRR404333
 - breaker fruit (2 biological replicates) SRR404334 SRR404336

edgeR

Input

A table of integer read counts:

Rows: genes

Columns: independent libraries.

bioinfo@biodebian:~\$ cd Desktop/Slch04_demo/bioinfo@biodebian:~/Desktop/Slch04_demo\$ ls - gene_count_matrix.csv

bioinfo@biodebian:~/Desktop/Slch04_demo\$ less gene_count_matrix.csv

,SRR404331_ch4.sort,SRR404333_ch4.sort,SRR404334_ch4.sort,SRR404336_ch4.sort

gene:Solyc02g032840.1,0,0,0,0

gene:Solyc04g050480.3,59,57,38,69

gene:Solyc04g080270.3,1050,1388,869,1138

gene:Solyc04g071590.3,0,27,0,7

gene:Solyc04g079110.1,1,2,1,1

gene:Solyc04g081870.3,12,10,0,211

gene:Solyc04g074080.3,0,107,29,17

gene:Solyc04g071260.3,0,0,8,14

Rstudio

- edgeR_bioinfo.R
- Loading edgeR: library("edgeR")
- Setting working directory: setwd("/home/bioinfo/Desktop/Slch04_demo")
- Importing data into R: x <- read.csv("gene_count_matrix.csv", row.names=1, header=TRUE)
- Grouping: group <- (c(1,1,2,2))

edgeR stores RNA-seq data as a DGEList object (data structure = list)

Putting data into a DGEList object:

y <- DGEList(counts=x, group=group)</pre>

Checking the DGEList

У

\$counts: gene names, gene counts for each library

\$samples: library names, groups, lib.size, norm.factors

> **y**

An object of class "DGEList" \$counts

SRR40433	1_ch4.sort SF	RR404333_ch4.sort	SRR404334_ch4.sort	SRR404336_ch4.sort
gene:Solyc10g054820.2	0	0	0	0
gene:Solyc12g098195.1	0	0	0	0
gene:Solyc10g046810.1	0	0	0	0
gene:Solyc02g062000.3	0	0	0	0
gene:Solyc07g019650.3	0	0	0	0
34874 more rows				

\$samples

	group	lib.size	norm.factors
SRR404331_ch4.sort	1	468307	1
SRR404333_ch4.sort	1	398150	1
SRR404334_ch4.sort	2	304826	1
SRR404336 ch4.sort	2	494570	1

head(y\$counts)

	SRR404331_ch4.sort	SRR404333_ch4.sort	SRR404334_ch4.sort	SRR404336_ch4.sort
gene:Solyc10g054820.2	0	0	0	0
gene:Solyc12g098195.1	0	0	0	0
gene:Solyc10g046810.1	0	0	0	0
gene:Solyc02g062000.3	0	0	0	0
gene:Solyc07g019650.3	0	0	0	0
gene:Solvc01g013760.1	0	0	0	0

dim(y\$counts)

34879 4

y\$samples

	group	lib.size	norm.factors
SRR404331_ch4.sort	1	468307	1
SRR404333_ch4.sort	1	398150	1
SRR404334_ch4.sort	2	304826	1
SRR404336_ch4.sort	2	494570	1

Data processing

- Saving a copy of raw data before data processing y.rawdata <-y
- Filtering to remove very low counts:

```
If you want to keep genes with more than 1 CPM, in at least 2 samples keep <- rowSums(cpm(y)>1) >= 2 (TRUE=1, FALSE=0)
```

(Question: Is 1 count per million suitable for our data?)

Checking filtering step table(keep)
 FALSE TRUE
 33286 1593

- Modifying DGEList
 y <- y[keep, , keep.lib.sizes=FALSE]
- Checking filtered data set dim(y)1593 4

head(y\$counts)

	SRR404331	_ch4.sort	SRR404333_ch4.sort	SRR404334_ch4.sort	SRR404336_ch4.sort
gene:Solyc04g0504	80.3	59	57	38	69
gene:Solyc04g0802	270.3	1050	1388	869	1138
gene:Solyc04g0083	310.2	480	256	111	179
gene:Solyc04g0742	240.3	657	526	373	570
gene:Solyc04g0715	90.3	0	27	0	7
gene:Solvc04g0548	40.1	3	0	1	1

y\$samples

	group	lib.size	norm.factors	
SRR404331_ch4.sort	: 1	468168	1	(468307)
SRR404333_ch4.sort	: 1	398023	1	(398150)
SRR404334_ch4.sort	2	304799	1	(304826)
SRR404336_ch4.sort	2	494176	1	(494570)

Normalization

- edgeR
 - uses TMM (Trimmed mean of M-value) method to eliminate RNA composition effect
 - automatically adjusts for difference in library size caused by sequencing depth
 - doesn't adjust for gene length

Normalization

- y <- calcNormFactors(y)
- y\$samples

	group	lib.size	norm.factors
SRR404331_ch4.sort	1	468168	0.8929376
SRR404333_ch4.sort	1	398023	1.0082953
SRR404334_ch4.sort	2	304799	1.0647144
SRR404336 ch4.sort	2	494176	1.0431769

Data Exploration

Multi-dimensional (MDS) plot: plotMDS (y)

Data Exploration Mean-different (MD) plot: plotMD (y)

General pipeline

- Filtering
- Normalization
- Dispersion estimation
- Hypothesis testing

edgeR package

- Classic edgeR: testing single factor
 - -Exact test
- Generalized linear models (glms): testing multiple factors
 - -Likelihood ratio test
 - -Quasi-likelihood method

Pairwise comparison (classic edgeR)

Dispersion estimation

```
y <- estimateDisp(y)</pre>
```

y <- estimateCommonDisp(y)</pre>

y <- estimateTagwiseDisp(y)</pre>

y\$tagwise.dispersion

[1] 0.05521917 0.03610428 0.04111724 0.02817601 1.00101862 0.57733575 [7] 0.33174515 0.02705387 0.02491446 0.04149004 0.68987488 0.02988139**1593**

plotBCV(y)

Differential expression analysis

- Hypothesis testing de <- exactTest(y)
- To display the most significant tags topTags(de, n=10)

Comparison of groups: 2-1

	logFC	logCPM	PValue	FDR
gene:Solyc04g074840.3	10.674057	11.661710	5.008535e-101	7.978595e-98
gene:Solyc04g079960.1	4.780808	9.749903	1.003905e-52	7.996107e-50
gene:Solyc04g078460.3	3.010089	9.361145	4.374771e-27	2.323003e-24
gene:Solyc04g076780.3	-3.572084	9.164866	7.345144e-27	2.925203e-24
gene:Solyc04g009960.3	3.129447	10.605411	1.079804e-25	3.440257e-23
gene:Solyc04g071615.1	-2.843780	11.217141	9.526994e-25	2.529417e-22
gene:Solyc04g071650.3	-3.425306	10.313879	2.530218e-24	5.758053e-22
gene:Solyc04g081300.3	-3.222494	10.382392	4.571451e-24	9.102901e-22
gene:Solyc04g079900.3	-2.638129	9.831421	1.733762-23	3.068758e-21
gene:Solyc04g079560.3	-3.836033	8.269721	7.778344e-23	1.239090e-20

Selecting differentially expressed genes at a FDR of 5%

```
de_05 <- decideTestsDGE(de)</pre>
de_05
 TestResults matrix
 0 0 - 1 0 0
 1588 more rows ...
summary(de_05)
 -1 142 (down-regulated)
  0 1331
     120 (up-regulated)
```


Generating a dataframe containing DE genes at a FDR at 5%

```
isDE <- as.logical(de_05)

de_05name <-rownames(y)[isDE]

de_05.table <- de[de_05name, ]</pre>
```

Exporting data

```
write.csv(de_05.table$table, file="de_05")
write.csv(de$table, file="de")
```


Smear Plot

The blue lines indicate 2 fold-changes

Exercise

- How does parameter setting affect the number of differentially expressed genes
 - Keeping genes with at least 20 CPM during filtering step.