Resources with queue

07/08/08

outline

- M/M/1, derivation of performance indices
- case study: router performance
- case study: packet loss
- case study: wireless channel
- M/M/2, M/M/n
- case study: load balancing schemes
- M/M/1/k
- case study: finite buffer capacity
- M/G/1
- case study: impact of variance on the performance

M/M/1 arr.Markov/serv.Markov/1server

resource with queue

M/M/1 birth-death model

balance equations $\mu_1 p_1 = \lambda_0 p_0$

$$\mu_1 p_1 = \lambda_0 p_0 \qquad n = 0$$

$$\lambda_{n-1} p_{n-1} + \mu_{n+1} p_{n+1} = \lambda_n p_n + \mu_n p_n \quad \forall n \ge 1$$
in n out from n

$$\lambda_0 p_0 = \mu_1 p_1 \qquad p_1 = \frac{\lambda_0}{\mu_1} p_0$$

$$p_2 = \frac{\lambda_1}{\mu_2} p_1 = \frac{\lambda_0 \lambda_1}{\mu_1 \mu_2} p_0$$

$$\sum_{i=0}^{\infty} p_i = 1$$

$$p_n = \frac{\lambda_0 \lambda_1 \dots \lambda_{n-1}}{\mu_1 \mu_2 \dots \mu_n} p_0$$

limiting probabilities

$$\sum_{i=0}^{\infty} p_i = 1$$

$$\lambda_0 = \lambda_1 = \dots \lambda_n = \lambda$$
 $\mu_0 = \mu_1 = \dots \mu_n = \mu$

$$p_0 = \frac{1}{1 + \sum_{k=1}^{\infty} \left(\frac{\lambda}{\mu} \right)^k}$$

$$p_{0} = \frac{1}{1 + \sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^{k}} \qquad \sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^{k} \text{ geom series} \rightarrow \frac{1}{1 - \frac{\lambda}{\mu}} \text{ if } \left|\frac{\lambda}{\mu}\right| < 1$$

Utilization = $\lambda / \mu < 1$

$$p_0 = 1 - \frac{\lambda}{\mu} = 1 - U$$

$$p_n = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^n = \left(1 - U\right) U^n$$

scheduling algorithms independence

- the queue length distribution p_n is independent of the scheduling algorithm (FIFO, LIFO, PS); the balance equations are the same
- as a consequence, also the mean response time R (mean time spent in system) is independent of the scheduling algorithm (remember the Little law N=XR)
- the distribution of R depends on the scheduling algorithm

tail probability

probability that there are at least *n* jobs in the system (queue + service)

$$P[N \ge n] = \sum_{k=n}^{\infty} p_k = \sum_{k=n}^{\infty} (1 - U) U^k = (1 - U) \sum_{k=n}^{\infty} U^k = (1 - U) U^n \frac{1}{1 - U} = U^n$$

N: number of customers in the system

$$N = \sum_{n=0}^{\infty} n p_n = \sum_{n=0}^{\infty} n (1 - U) U^n = (1 - U) \sum_{n=0}^{\infty} n U^n$$
$$= (1 - U) \left(\sum_{n=0}^{\infty} (n+1) U^n - \sum_{n=0}^{\infty} U^n \right)$$

$$\sum_{n=0}^{\infty} U^n = \frac{1}{1-U} \qquad \frac{d}{dU} \left(\sum_{n=0}^{\infty} U^n \right) = \frac{d}{dU} \left(\frac{1}{1-U} \right)$$

$$\sum_{n=0}^{\infty} nU^{n-1} = \frac{1}{(1-U)^2} then$$

$$\mathbf{N} = (1 - U) \left(\frac{1}{(1 - U)^2} - \frac{1}{1 - U} \right) = \frac{1}{1 - U} - 1 = \frac{\mathbf{U}}{\mathbf{1} - \mathbf{U}}$$

response time R

$$R = S$$
 (service time required by the job) + (N-U) S (service time required by the jobs enqueued ahead) + U (k S) (service time remaining) = S + NS - U(1-k)S

response time R, mean time spent in the system

$$R_n = S + (n-1)S + S = (n+1)S$$
 memoryless

$$\mathbf{R} = \sum_{n=0}^{\infty} (n+1)S \ p_n = \sum_{n=0}^{\infty} (n+1)S(1-U)U^n = S(1-U)\sum_{n=0}^{\infty} (n+1)U^n$$

$$=S(1-U)\frac{1}{(1-U)^2} = \frac{S}{1-U}$$

R has exp distribution

$$f_R(t) = (\mu - \lambda)e^{-(\mu - \lambda)t} = [\mu(1 - U)]e^{-[\mu(1 - U)]t} = R^{-1}e^{-R^{-1}t}$$

response time R, intuitive derivation

N number of jobs in the system (in queue and in execution)

$$U = 1 - idle fraction = 1 - \frac{1}{N+1} = 1 - \frac{S}{(N+1)S} = 1 - \frac{S}{R}$$

$$UR = R - S$$
 $S = R(1 - U)$ \Rightarrow $R = \frac{S}{1 - U}$

performance indices

• U utilization [%]

- N number of jobs [j]
- S average service time [s]
- λ arrival rate [j/s]
- V visits to a resource
- X throughput (departure rate) [j/s]
- R response time [s]

$$U_i = \lambda_i S_i \qquad D_i = V_i S_i$$

Little's result
$$N_i = X_i R_i$$

$$R_i = \frac{S_i}{1 - U_i}$$

$$X_i = XV_i$$

$$N_i = \frac{U_i}{1 - U_i}$$

R - normalized response time

R – normalized rate of increase

influence of distributions

deterministic arrival and service times

$$U = 0.8$$
 $N = 0.8$

$$N = 0.8$$

exponentially distributed arrival and service times

$$U = 0.8$$
 $N = \frac{U}{1 - U} = \frac{0.8}{0.2} = 4$

system power Φ

$$\Phi = \frac{\text{throughput}}{\text{response time}} = \frac{\lambda}{R} = \frac{\lambda (1 - \lambda S)}{S}$$

$$\max \Phi \Rightarrow \Phi' = 0 = \frac{1}{S} [1 - 2\lambda S] \Rightarrow \lambda^{opt} = \frac{1}{2S}$$

$$U^{opt} = \lambda^{opt} S = \frac{1}{2}$$

$$N^{opt} = \frac{U^{opt}}{1 - U^{opt}} = 1$$

$$\frac{1}{2}$$
 queue $\frac{1}{2}$ in service

power

$$\Phi = \frac{\text{throughput}}{\text{response time}} = \frac{\lambda}{R} = \frac{\lambda(1 - \lambda S)}{S}$$
norm.power = Φ S² = U(1-U)
$$\Phi' = 0 \quad \lambda^{\text{opt}} = 1/2S \quad \text{LI=0.5 N}$$

norm.power =
$$\phi$$
 S² = U(1-U)
 ϕ '=0 λ^{opt} = 1/2S U=0.5 N=1

case study: wireless communication channel (1)

traffic from several devices to be sent on a wireless communication channel

- total volume of traffic multiplexed on the channel 390,000 characters per minute (cpm)
- capacity of the wireless comm. channel:57.6 Kbps

average transmission time per character?

case study: wireless communication channel (2)

- channel transmit 8-bit characters, so the maximum capacity is:
 - μ = transm.rate/charc.length = 57600/8=7200 cps
- traffic arrival rate: $\lambda = 390,000/60 = 6500$ cps
- channel utilization $U = \lambda/\mu = 6500/7200 = 0.9027 (~90\%)$
- avg. no. N of characters waiting to be transmitted and in transmission:

$$N = U / (1-U) = 9.277$$
 char.

avg. no. N_q of char. in queue

$$N_q = N-U = U^2 / (1-U) = 8.374$$
 char.

- avg. transmission time $R = N/\lambda = S/(1-U) = 1.427$ ms
- 90 percentile $\Pi(90) \cong 2.3 \text{ R} = 3.282 \text{ ms}$

case study: router (1)

variable length packets arriving from several links are time multiplexed over a single digital link

- arrival rate: $\lambda = 4$ pkt/sec (240 pkt/min)
- link transmission rate: 6.4 Kb/sec, 0.8 KB/sec
- avg pkt length: 176 Bytes
- infinite buffer capacity
- performance indices ?
- probability that N≥10 packets are waiting for transmission?

case study: router (2)

- packet transmission time S:
 - S = pkt.length/transm.rate = 176/800 = 0.22 sec
- line utiliz. $U = \lambda S = 4 \times 0.22 = 0.88 (88\%)$
- avg. no. N of packets in the router:

$$N = U / (1-U) = 7.33 \text{ pkt}$$

avg. no. Nq of pkt in queue

$$N_q = U / (1-U) = 6.45 \text{ pkt}$$

- response time R = S/(21-U) = 1.83 sec
- 90 percentile $\Pi(90) \cong 2.3 \text{ R} = 4.209 \text{ sec}$

case study: router (3)

■ 10 or more packets are in queue if and only if 11 or more packets are in the router:

$$P[N \ge 11] = \sum_{k=11}^{\infty} p_k = \sum_{k=11}^{\infty} (1 - U) U^k = U^{11} = 0.245$$

case study: packet loss in the router buffers (1)

- p_n : prob. that the queue length is > n, it represents the prob. of packet loss with a buffer of n dimensions
- packet loss should be < ε

$$p_n[N \ge n] = U^n \qquad \qquad U^n \le \varepsilon$$

$$n \log U \le \log \varepsilon \qquad n \ge \frac{\log \varepsilon}{\log U} = \frac{-\log \varepsilon}{-\log U} = \cot \log \frac{1}{\varepsilon}$$

• to limit the packet loss ($< \varepsilon$) it is required that the buffer size n should be greater than the value given by a logarithmic function of $1/\varepsilon$ (usually $\varepsilon=10^{-6}$, U=0.8)

case study: packet loss in the router buffers (2)

M/M/2 M/M/n

M/M/2 arr.Markov/serv.Markov/2 servers

- arrival rate λ
- 2 servers, each with a service rate μ, share a common queue
- a request is sent to the free server

M/M/2 birth-death model

$$\lambda p_0 = \mu p_1 \qquad p_1 = \frac{\lambda}{\mu} p_0$$

$$\lambda p_1 = 2\mu p_2 \qquad p_2 = \frac{\lambda}{2\mu} p_1 = \frac{\lambda}{2\mu} \frac{\lambda}{\mu} p_0$$

$$p_3 = \frac{\lambda}{2\mu} p_2 = \left(\frac{\lambda}{2\mu}\right)^2 \frac{\lambda}{\mu} p_0$$

• • • • • • • • • • • •

$$p_n = \frac{\lambda}{2\mu} p_{n-1} = \left(\frac{\lambda}{2\mu}\right)^{n-1} \frac{\lambda}{\mu} p_0$$

utilization of each server $U = \frac{\lambda}{2\mu} < 1$

where is the intelligence of the scheduler?

$$\sum_{i=0}^{\infty} p_i = 1$$

$$p_0 + \sum_{i=1}^{\infty} \left(\frac{\lambda}{2\mu}\right)^{i-1} \frac{\lambda}{\mu} p_0 = 1$$

M/M/2

$$p_{0} = \frac{1}{1 + \frac{\lambda}{\mu} \sum_{i=0}^{\infty} \left(\frac{\lambda}{2\mu}\right)^{i}} = \frac{1}{1 + \frac{\lambda}{\mu} \frac{1}{1 - \frac{\lambda}{2\mu}}} = \frac{1}{1 + \frac{\lambda}{\mu} \frac{2\mu}{2\mu - \lambda}} = \frac{2\mu - \lambda}{2\mu + \lambda} = \frac{2\mu - \lambda}{2\mu + \lambda}$$

$$= \frac{1 - \frac{\lambda}{2\mu}}{1 + \frac{\lambda}{2\mu}} = \frac{1 - U}{1 + U}$$

$$N = \sum_{k \ge 0} k \ p_k = 2U + \frac{U(2U)^2}{2!} \frac{p_0}{(1-U)^2} = \frac{2U}{1-U^2}$$

$$R = \frac{N}{\lambda} = \frac{2U}{1 - U^2} \frac{1}{\lambda} = \frac{S}{1 - U^2}$$

M/M/2 vs 2 M/M/1

 common queue organization is better than separate queue organization

case study: load balancing schemes

- same workload λ =0-200 req/s
- same processors capacity S=0.010 s

case study: load balancing

- U=0.99 each server (λ =99x2=198 req/s, λ /2 each server)
- $R_{M/M/2} = 0.5025s$ $R_{2 M/M/1} = 1s$ (+100%)

M/M/n arr.Markov/serv.Markov/n servers

$$p_{1} = \frac{\lambda}{\mu} p_{0}$$

$$U = \frac{\lambda}{n\mu} < 1$$

$$p_{2} = \frac{\lambda}{2\mu} p_{1} = \frac{\lambda}{2\mu} \frac{\lambda}{\mu} p_{0}$$

$$p_{n} = \frac{\lambda}{n\mu} p_{n-1} = \left(\frac{\lambda}{\mu}\right)^{n} \frac{1}{n!} p_{0}$$

$$p_{3} = \frac{\lambda}{3\mu} p_{2} = \frac{\lambda}{2\mu} \frac{\lambda}{3\mu} \frac{\lambda}{\mu} p_{0}$$

$$p_{n+1} = \frac{\lambda}{n\mu} p_{n-1} = \left(\frac{\lambda}{\mu}\right)^{n+1} \frac{1}{n!n} p_{0}$$

$$3\mu^{12}$$
 2μ 3μ μ

•

$$p_{n-1} = \frac{\lambda}{n\mu} p_{n-1} = \left(\frac{\lambda}{\mu}\right)^{n-1} \frac{1}{(n-1)!} p_0$$

$$p_{n+k} = \frac{\lambda}{n\mu} p_{n+k-1} = \left(\frac{\lambda}{\mu}\right)^{n+k} \frac{1}{n!n^k} p_0$$

M/M/n

$$\sum_{i=0}^{\infty} p_i = 1$$

$$\sum_{i=0}^{\infty} p_i = 1 \qquad \qquad \sum_{i=0}^{n} p_i + \sum_{i=n+1}^{\infty} p_i = 1$$

$$\sum_{i=0}^{n} \left(\frac{\lambda}{\mu}\right)^{i} \frac{1}{i!} p_0 + \sum_{i=n+1}^{\infty} \left(\frac{\lambda}{\mu}\right)^{i} \frac{1}{n! n^{i-n}} p_0 = 1$$

$$p_0 = \frac{1}{\sum_{i=0}^{n} \left(\frac{\lambda}{\mu}\right)^i \frac{1}{i!} + \sum_{i=1}^{\infty} \left(\frac{\lambda}{\mu}\right)^{n+i} \frac{1}{n!n^i}}$$

$$= \frac{1}{\sum_{i=0}^{n} \left(\frac{\lambda}{\mu}\right)^{i} \frac{1}{i!} + \left(\frac{\lambda}{\mu}\right)^{n} \frac{1}{n!} \sum_{i=1}^{\infty} \left(\frac{\lambda}{n\mu}\right)^{i}}$$

$$U = \frac{\lambda}{n\mu} < 1$$

$$= \frac{1}{\sum_{i=0}^{n} \left(\frac{\lambda}{\mu}\right)^{i} \frac{1}{i!} + \left(\frac{\lambda}{\mu}\right)^{n} \frac{1}{n!} \frac{\lambda}{n\mu} \frac{1}{1 - \frac{\lambda}{n\mu}}$$

$$= \frac{1}{\sum_{i=0}^{n} \left(\frac{\lambda}{\mu}\right)^{i} \frac{1}{i!} + \left(\frac{\lambda}{\mu}\right)^{n} \frac{1}{n!} \frac{\lambda}{n\mu - \lambda}}$$

$$= \frac{1}{\sum_{i=0}^{n-1} \frac{(nU)^{i}}{i!} + \frac{(nU)^{n}}{n!} \frac{1}{1-U}}$$

M/M/1/k

finite capacity queue

- the number of buffer positions is limited to k
- requests arriving when N=k are lost

M/M/1/k Markov/Markov/1 server/k users

K max number of customers in the system

$$p_0 = \frac{1 - U}{1 - U^{k+l}}$$
 $p_n = \frac{1 - U}{1 - U^{k+l}} U^n$

$$N = \frac{U}{1-U} - \frac{(k+1)U^{k+1}}{1-U^{k+1}}$$
 p_k loss probability

memory hierarchy

case study: finite buffer capacity (1)

consider the same system (router and workload) of case study 1 but with a limited buffer positions

- identify the number of buffer positions k such that the probability that all are full is < 0.5% (0.005)
- compute the performance indices

case study: finite buffer capacity (2)

```
• line utiliz. U = \lambda S = 4 \times 0.22 = 0.88 (88\%)
```

• pk prob. that all k buffers are full $P[N \ge 20] = 0.009989 \approx 1\%$ (19 buffers full) $P[N \ge 25] = 0.005095$ (24 buffers full) $P[N \ge 26] = 0.004464 < 0.5\%$ (25 buffers full)

- $N = 6.449 \text{ pkt} [7.33 \infty]$
- R = N/[λ (1-p₂₆)] = 1.62 sec [1.83 ∞]
- $X = \lambda(1-p_{26}) = 238.88 \text{ pkt/min } [240 \infty]$
- $p_{26} = 0.0044 (0.446\% \text{ of pkts is lost!})$

case study: prob. of packet loss (3)

M/G/1

M/G/1 arr.Markov/serv.General/1server

- single server queueing system
- arrival process: Poisson, avg. arrival rate λ
- general service distribution, S avg., (the first two moments E[S] and E[S²] exist and are finite)
- scheduling discipline: FCFS
- the average number of jobs N in the system depends only on the first two moments of the service time distribution

 Pollaczek-Khinchin

$$E[N]=N=U+\frac{U^{2}(1+c^{2})}{2(1-U)}$$

mean value formula

response time R

$$R = S$$
 (service time required by the job) + (N-U) S (service time required by the jobs enqueued ahead) + U (k S) (service time remaining) = S + NS - U(1-k)S

response time R

$$R = S + SN - S(1-k)U by Little law$$

$$= S + S XR - S(1-k)U$$

$$= \frac{S}{1-U} \left[1 - (1-k)U\right] k: fraction of residual service time$$

$$k = \frac{1}{2}(1+c^2)$$

$$R = S + \frac{US(1+c^{2})}{2(1-U)}$$
 Pollaczek – Khinchine

residual service time

(queue not empty)

residual execution time

- the interval of time in which the new request of service arrive at a busy server is not the average service time
- a long interval is more likely to be selected at random than a short one
- [N(t),Rec(t)] state of the system
- N(t): number of jobs in the system, discrete, numerable
- Rec(t): amount of service time received, continuous

residual execution time

- S: avg service time (interval lenght)
- f(s): density function
- f(s)ds: probability that an interval of length included in [s, s+ds] is present in the observation period T
- f(s)ds T/S : avg. number of intervals with this lenght in the observation period T
- the probability that an interval of lenght s will be selected is proportional to s f(s) ds
- $P[s < X \le s + ds] = k s f(s)ds$ $f_S(s) = k s f(s)ds$

$$\int_{0}^{\infty} f_{S}(s) ds = \int_{0}^{\infty} ks f(s) ds \qquad 1 = k \int_{0}^{\infty} s f(s) ds \qquad k = \frac{1}{S}$$

density of the selected interval $f_S(s) = \frac{s f(s)}{S}$

residual execution time

the average lenght of the selected interval is

$$S \text{ selected} = \int_{0}^{\infty} s f_{S}(s) ds = \int_{0}^{\infty} s \frac{s f(s)}{S} ds = \frac{m_{S}^{2}}{m_{S}^{1}} = \frac{m_{S}^{2}}{S} = \frac{\sigma^{2} + S^{2}}{S}$$

the average residual time r is half of this interval lenght

$$ravg.residualtime = \frac{1}{2}Selected = \frac{1}{2}\frac{m_S^2}{S} = \frac{\sigma^2 + S^2}{2S} = \frac{S}{2}(c^2 + 1)$$

K completion coefficient

k:completion coefficient

kS (residual exec. time) =
$$\frac{m_2}{2S} = \frac{\sigma^2 + S^2}{2S} = \frac{S}{2}(1+c^2)$$

$$k = \frac{1}{2}(1+c^2)$$
 for $c = 0$ no variance $k = \frac{1}{2}$

for c > 1 k > 1 hyperexp for c < 1 k < 1 hypoexp

for
$$c=1 \implies \exp R = S \left[1 + \frac{2U}{2(1-U)} \right] = \frac{S}{1-U}$$

N: number of jobs in the system

• the number of jobs in the system can be derived from R applying Little law $N=\lambda R$

$$N = \lambda R = \lambda S \left[1 + \frac{U(1+c^2)}{2(1-U)} \right]$$
$$= U \left[1 + \frac{U(1+c^2)}{2(1-U)} \right]$$
$$for c = 1 \qquad N = \frac{U}{1-U}$$

case study: influence of variability

- consider a web site with average service time S=2.4 sec. utilized at 80%
- compute the average response time R for different service time distributions:
 - a) Pareto
 - b) Two-stage hyperexponential
 - c) Exponential
 - d) Three-stage Erlang (hypoexponential)
 - e) Constant

case study: S=2.4s

	Service time distribution	Coeff. Variation	Response time (s)	Queueing time (s)
а	Pareto α=2.1	2.18	30.05	27.65
b	Two-stage hyperexponential	1.526	18.40	16.00
С	Exponential	1	12.00	9.60
d	Three-stage Erlang	0.577	8.80	6.40
е	Constant	0	7.20	4.80