Low Voltage H-Bridge Software Driver

Generated by Doxygen 1.8.13

Contents

1	Mod	lule Inde	ex		1
	1.1	Module	es		. 1
2	Data	Struct	ure Index		3
	2.1	Data S	tructures		. 3
3	File	Index			5
	3.1	File Lis	st		. 5
4	Mod	lule Doo	umentatio	on	7
	4.1	Enum_	_group		. 7
		4.1.1	Detailed	Description	. 8
		4.1.2	Enumera	ation Type Documentation	. 8
			4.1.2.1	_lvhb_status	. 8
			4.1.2.2	lvhb_bridge_t	. 8
			4.1.2.3	lvhb_device_t	. 9
			4.1.2.4	lvhb_input_pins_t	. 9
			4.1.2.5	lvhb_micro_step_t	. 9
			4.1.2.6	lvhb_motor_status_t	. 10
			4.1.2.7	lvhb_motor_type_t	. 10
			4.1.2.8	lvhb_output_direction_t	. 10
			4.1.2.9	lvhb_output_state_t	. 10
			4.1.2.10	lvhb_ramp_state_t	. 11
			4.1.2.11	lvhb_recirculation_t	. 11
			4.1.2.12	lvhb_stepper_mode_t	. 11

ii CONTENTS

		4.1.2.13	lvhb_stepper_state_t	12
4.2	Struct_	_group		13
	4.2.1	Detailed [Description	13
4.3	Function	on_group .		14
	4.3.1	Detailed [Description	15
	4.3.2	Function I	Documentation	15
		4.3.2.1	LVHB_AlignRotor()	15
		4.3.2.2	LVHB_ConfigureGpio()	16
		4.3.2.3	LVHB_ConfigureTimer()	16
		4.3.2.4	LVHB_Deinit()	16
		4.3.2.5	LVHB_DisableMotor()	17
		4.3.2.6	LVHB_GetDefaultConfig()	17
		4.3.2.7	LVHB_GetFullStepPosition()	18
		4.3.2.8	LVHB_GetMicroStepPosition()	18
		4.3.2.9	LVHB_GetMotorStatus()	19
		4.3.2.10	LVHB_Init()	19
		4.3.2.11	LVHB_MoveContinual()	19
		4.3.2.12	LVHB_MoveMicroContinual()	20
		4.3.2.13	LVHB_MoveMicroSteps()	20
		4.3.2.14	LVHB_MoveSteps()	21
		4.3.2.15	LVHB_OnActionComplete()	22
		4.3.2.16	LVHB_OnCounterRestart()	22
		4.3.2.17	LVHB_ResetFullStepPosition()	22
		4.3.2.18	LVHB_RotateFull()	23
		4.3.2.19	LVHB_RotateProportional()	23
		4.3.2.20	LVHB_SetDirection()	24
		4.3.2.21	LVHB_SetFullStepAcceleration()	24
		4.3.2.22	LVHB_SetFullStepSpeed()	25
		4.3.2.23	LVHB_SetGateDriver()	25
		4.3.2.24	LVHB_SetMicroStepAcceleration()	26
		4.3.2.25	LVHB_SetMicroStepSize()	26
		4.3.2.26	LVHB_SetMicroStepSpeed()	27
		4.3.2.27	LVHB_SetMode()	27
		4.3.2.28	LVHB_SetRecirculation()	27
		4.3.2.29	LVHB_SetTriState()	28
		4.3.2.30	LVHB_StopContinualMovement()	28

CONTENTS

5	Data	Struct	ure Docur	mentation	31
	5.1	lvhb_b	rush_conf	ig_t Struct Reference	31
		5.1.1	Detailed	Description	31
		5.1.2	Field Do	cumentation	31
			5.1.2.1	outputDirection	31
			5.1.2.2	recirculation	31
	5.2	lvhb_d	evice_data	a_t Struct Reference	32
		5.2.1	Detailed	Description	32
		5.2.2	Field Do	cumentation	32
			5.2.2.1	activeMode	32
			5.2.2.2	brushConfig	32
			5.2.2.3	brushPwmFrequency	32
			5.2.2.4	device	33
			5.2.2.5	gateDriverOutputHigh	33
			5.2.2.6	motorType	33
			5.2.2.7	secondaryBridgeUsed	33
			5.2.2.8	stepperConfig	33
			5.2.2.9	stepperData	33
	5.3	lvhb_d	rv_config_	_t Struct Reference	33
		5.3.1	Detailed	Description	34
		5.3.2	Field Do	cumentation	34
			5.3.2.1	deviceConfig	34
			5.3.2.2	enPinIndex	34
			5.3.2.3	enPinInstance	34
			5.3.2.4	ginPinIndex	35
			5.3.2.5	ginPinInstance	35
			5.3.2.6	inputPins	35
			5.3.2.7	inxaPinIndex	35
			5.3.2.8	inxaPinInstance	35
			5.3.2.9	inxbPinIndex	35

iv CONTENTS

		5.3.2.10	inxbPinInstance	 	35
		5.3.2.11	tmrInstance	 	35
		5.3.2.12	tmrLvhbConfig	 	36
5.4	lvhb_st	tepper_cor	onfig_t Struct Reference	 	36
	5.4.1	Detailed	Description	 	36
	5.4.2	Field Doo	cumentation	 	36
		5.4.2.1	fullStepAcceleration	 	36
		5.4.2.2	fullStepSpeed	 	36
		5.4.2.3	microStepAcceleration	 	37
		5.4.2.4	microStepPerStep	 	37
		5.4.2.5	microStepPwmFrequency	 	37
		5.4.2.6	microStepSpeed	 	37
5.5	lvhb_st	tepper_dat	ata_t Struct Reference	 	37
	5.5.1	Detailed	Description	 	38
	5.5.2	Field Doo	ocumentation	 	38
		5.5.2.1	continual	 	38
		5.5.2.2	controlState	 	38
		5.5.2.3	currentDelay	 	39
		5.5.2.4	currentDelayRest	 	39
		5.5.2.5	currentFullSpeed	 	39
		5.5.2.6	decelStepCnt	 	39
		5.5.2.7	forward	 	39
		5.5.2.8	fullSpeed	 	39
		5.5.2.9	fullStepIdx	 	39
		5.5.2.10	fullStepsPerPeriod	 	39
		5.5.2.11	maxSpeedDelay	 	40
		5.5.2.12	microPosInFull	 	40
		5.5.2.13	microSpeed	 	40
		5.5.2.14	microStepOffset	 	40
		5.5.2.15	microWind1ldx	 	40

CONTENTS

			5.5.2.16	microWind2ldx	40
			5.5.2.17	motorStatus	40
			5.5.2.18	rampState	40
			5.5.2.19	stepCntr	41
			5.5.2.20	stepperMode	41
			5.5.2.21	stepPos	41
			5.5.2.22	steps	41
			5.5.2.23	timerOverflows	41
	5.6	tmr_lvh	nb_config_	t Struct Reference	41
		5.6.1	Detailed	Description	42
		5.6.2	Field Doo	cumentation	42
			5.6.2.1	counterWidth	42
			5.6.2.2	inxaChannelNumber	42
			5.6.2.3	inxbChannelNumber	42
			5.6.2.4	prescale	42
			5.6.2.5	srcClck_Hz	42
6	File	Docume	entation		43
	6.1			eference	43
		6.1.1		Description	44
	6.2	_		deference	44
	0.2	6.2.1		Description	50
		6.2.2		efinition Documentation	50
		0.2.2	6.2.2.1	LVHB_CHECK_BRIDGE	50
			6.2.2.2	LVHB_COMPUTE_REMAINDER	51
			6.2.2.3	LVHB_FULLSTEP_IN_FREQ	51
			6.2.2.4	LVHB_FULLSTEP_IN_FREQ_0676	
			6.2.2.5	LVHB GET FULL SPEED TICKS	
			6.2.2.6	LVHB_GET_MICRO_OFFSET	52
			6.2.2.7	LVHB GET MICRO SPEED	53
			6.2.2.8	LVHB_GET_MICRO_SPEED_OF	53
			6.2.2.9	LVHB_HAS_EN_PIN	53
				LVHB_HAS_GIN_PIN	55
			6.2.2.11	LVHB_HAS_GPIO_IN_PINS	55
				LVHB HAS PWM IN PINS	56
				LVHB_HAS_TWO_BRIDGES	56
				LVHB_IS_BRUSHED_MOTOR_SELECTED	56
				LVHB_IS_MPC1751x	57
				LVHB_IS_STEPPER_SELECTED	57
				LVHB_MICROSTEP_IN_FREQ	57
				LVHB_MICROSTEP_IN_FREQ_0676	58
				LVHB_MICROSTEP_PERIOD_TICKS	58
			6.2.2.20	LVHB_TIMER_VALUE_MAX	58

<i>-</i> i	CONTENTS
/1	CONTENTS

Index 61

Chapter 1

Module Index

1.1 Modules

Here is a list of all modules:

Enum_group			 																			7
Struct_group			 																			13
Function_group			 																			14

2 Module Index

Chapter 2

Data Structure Index

2.1 Data Structures

Here are the data structures with brief descriptions:

lvhb_brush_config_t	
Brushed motor configuration	31
lvhb_device_data_t	
Device configuration	32
lvhb_drv_config_t	
Driver configuration	33
lvhb_stepper_config_t	
Stepper motor configuration	36
lvhb_stepper_data_t	
Stepper motor control data structure	37
tmr_lvhb_config_t	
Driver specific Timer configuration	H

Data Structure Index

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

lvhb/lvhb.c .										 													4	43
lvhb/lvhb.h										 													4	44

6 File Index

Chapter 4

Module Documentation

StepperStateSlowStart = 2U }

4.1 Enum_group

Enumerations

```
enum lvhb status {
 kStatus LVHB TimerInit = MAKE STATUS(kStatusGroup LVHB, 0), kStatus LVHB InvalidDriverConfig
 = MAKE STATUS(kStatusGroup LVHB, 1), kStatus LVHB InvalidArgument = MAKE STATUS(kStatus↔
 Group_LVHB, 2), kStatus_LVHB_TimerFrequency = MAKE_STATUS(kStatusGroup_LVHB, 3),
 kStatus LVHB NotInContinualMovement = MAKE STATUS(kStatusGroup LVHB, 4), kStatus LVHB ←
 DeviceBusy = MAKE_STATUS(kStatusGroup_LVHB, 5) }
    Error codes.
• enum lvhb device t {
 lvhbDeviceMPC17510 = 0x0U, lvhbDeviceMPC17511 = 0x1U, lvhbDeviceMPC17529 = 0x2U, lvhbDevice↔
 MPC17531A = 0x3U,
 lvhbDeviceMPC17533 = 0x4U, lvhbDeviceMPC17C724 = 0x5U, lvhbDeviceMC34933 = 0x6U }
    H-bridge device.

    enum lvhb_bridge_t { lvhbBridge1 = 0x0U, lvhbBridge2 = 0x1U }

    Bridge of H-bridge.

    enum lvhb_motor_type_t { lvhbMotorStepper = 0x0U, lvhbMotorBrushed = 0x1U }

    enum lvhb output direction t { lvhbDirectionALowBHigh = 0x0U, lvhbDirectionAHighBLow = 0x1U }

    Bridge output direction.

    enum lvhb_recirculation_t { lvhbRecirculationLow = 0x0U, lvhbRecirculationHighImp = 0x1U }

    Recirculation side.
• enum lvhb_output_state_t { lvhbOutputOff = 0x0U, lvhbOutputOn = 0x1U }
    Output state.
PinsPwm = 0x3U }
    Bridge input pin types.

    enum lvhb_motor_status_t { lvhbStatusRunning = 0x0U, lvhbStatusStop = 0x1U }

    Motor status.
StepperModeDisabled = 2U }
    Stepper motor mode.

    enum lvhb_stepper_state_t { lvhbStepperStateSleepLoop = 0U, lvhbStepperStateInitCompleted = 1U, lvhb
```

Stepper motor control states.

enum lvhb_micro_step_t {

 $\label{localize} $$ \begin{tabular}{ll} $ \begin{tabular}{ll} $$

lvhbMicroStep32 = LVHB_MICROSTEP_CNT_MAX / 32U }

Number of micro-steps per one full-step.

• enum lvhb_ramp_state_t { lvhbRampOff = 0U, lvhbRampUpSpeed = 1U, lvhbRampDownSpeed = 2U, lvhb⇔ RampConstSpeed = 3U }

States of finite state machine which are used for acceleration ramp.

4.1.1 Detailed Description

4.1.2 Enumeration Type Documentation

4.1.2.1 _lvhb_status

enum _lvhb_status

Error codes.

Enumerator

kStatus_LVHB_TimerInit	Wrong parameter in tmr_lvhb_config_t or wrong Timer initialization.
kStatus_LVHB_InvalidDriverConfig	Invalid driver configuration.
kStatus_LVHB_InvalidArgument	Invalid function argument.
kStatus_LVHB_TimerFrequency	Frequency of timer can not be out of range for this application.
kStatus_LVHB_NotInContinualMovement	Motor is not running or in continual movement.
kStatus_LVHB_DeviceBusy	Motor is running.

4.1.2.2 lvhb_bridge_t

enum lvhb_bridge_t

Bridge of H-bridge.

Enumerator

lvhbBridge1	Bridge 1 - IN1A, IN1B (IN1 and IN2 by MPC1751x) pins.
lvhbBridge2	Bridge 2 - IN2A, IN2B pins.

4.1 Enum_group 9

4.1.2.3 lvhb_device_t

enum lvhb_device_t

H-bridge device.

Enumerator

lvhbDeviceMPC17510	MPC17510.
lvhbDeviceMPC17511	MPC17511.
lvhbDeviceMPC17529	MPC17529.
lvhbDeviceMPC17531A	MPC17531A.
lvhbDeviceMPC17533	MPC17533.
lvhbDeviceMPC17C724	MPC17C724.
lvhbDeviceMC34933	MC34933.

4.1.2.4 lvhb_input_pins_t

enum lvhb_input_pins_t

Bridge input pin types.

Enumerator

lvhbPinsGpio	Both INxA, INxB (IN1, IN2 by MPC1751x) GPIO - state control only.
lvhbPinsGpioPwm	INxA (IN1 by MPC1751x) GPIO, INxB (IN2 by MPC1751x) PWM.
lvhbPinsPwmGpio	INxA (IN1 by MPC1751x) PWM, INxB (IN2 by MPC1751x) GPIO.
lvhbPinsPwm	Both INxA, INxB (IN1, IN2 by MPC1751x) PWM.

4.1.2.5 lvhb_micro_step_t

enum lvhb_micro_step_t

Number of micro-steps per one full-step.

Enumerator

lvhbMicroStep2	Half-step mode. 2 micro-steps per one full-step.
lvhbMicroStep4	4 micro-steps per one full-step.
lvhbMicroStep8	8 micro-steps per one full-step.
lvhbMicroStep16	16 micro-steps per one full-step.
lvhbMicroStep32	32 micro-steps per one full-step.

4.1.2.6 lvhb_motor_status_t

enum lvhb_motor_status_t

Motor status.

Enumerator

IvhbStatusRunning	Motor is running.
lvhbStatusStop	Motor is not running.

4.1.2.7 lvhb_motor_type_t

enum lvhb_motor_type_t

Motor type.

Enumerator

lvhbMotorStepper	Stepper motor.
IvhbMotorBrushed	Brush motor.

4.1.2.8 lvhb_output_direction_t

enum lvhb_output_direction_t

Bridge output direction.

Enumerator

IvhbDirectionALowBHigh	INxA (IN1 by MPC1751x) is Low, INxB (IN2 by MPC1751x) is High.
IvhbDirectionAHighBLow	INxA (IN1 by MPC1751x) is High, INxB (IN2 by MPC1751x) is Low.

4.1.2.9 lvhb_output_state_t

enum lvhb_output_state_t

Output state.

4.1 Enum_group 11

Enumerator

lvhbOutputOff	Output turned off.
lvhbOutputOn	Output turned on.

4.1.2.10 lvhb_ramp_state_t

enum lvhb_ramp_state_t

States of finite state machine which are used for acceleration ramp.

Enumerator

1115 0"	
lvhbRampOff	Motor is not running.
lvhbRampUpSpeed	Acceleration phase.
- ' ' '	•
IvhbRampDownSpeed	Deceleration phase.
lvhbRampConstSpeed	Motor is running at constant speed.

4.1.2.11 lvhb_recirculation_t

enum lvhb_recirculation_t

Recirculation side.

Enumerator

IvhbRecirculationLow	Low-side recirculation.
IvhbRecirculationHighImp	High-impedance recirculation.

4.1.2.12 lvhb_stepper_mode_t

enum lvhb_stepper_mode_t

Stepper motor mode.

Enumerator

lvhbStepperModeMicrostep	Motor is in micro-stepping mode.
lvhbStepperModeFullstep	Motor is in full-stepping mode.
lvhbStepperModeDisabled	Motor is disabled (no signal generated on IN pins).

4.1.2.13 lvhb_stepper_state_t

enum lvhb_stepper_state_t

Stepper motor control states.

Enumerator

lvhbStepperStateSleepLoop	Nothing to do.
lvhbStepperStateInitCompleted	First part of full-step or micro-step initialization is completed.
lvhbStepperStateSlowStart	Second part of full-step or micro-step initialization is completed.

4.2 Struct_group 13

4.2 Struct_group

Data Structures

• struct tmr_lvhb_config_t

Driver specific Timer configuration.

• struct lvhb_brush_config_t

Brushed motor configuration.

• struct lvhb_stepper_config_t

Stepper motor configuration.

• struct lvhb_stepper_data_t

Stepper motor control data structure.

• struct lvhb_device_data_t

Device configuration.

• struct lvhb_drv_config_t

Driver configuration.

4.2.1 Detailed Description

4.3 Function_group

Functions

status t LVHB ConfigureGpio (lvhb drv config t *const drvConfig)

This function configures GPIO for usage with this driver.

 $\bullet \ \ status_t \ LVHB_Configure Timer \ (lvhb_drv_config_t \ *const \ drvConfig, tmr_sdk_config_t \ *const \ tmrSdkConfig)$

This function configures Timer for usage with this driver.

status_t LVHB_GetDefaultConfig (lvhb_drv_config_t *const drvConfig, lvhb_device_t device, lvhb_motor_
 type_t motorType)

This function gets a default configuration of the driver for specific device and motor type.

status_t LVHB_Init (lvhb_drv_config_t *const initConfig)

This function initializes driver data and output pin values.

status_t LVHB_Deinit (lvhb_drv_config_t *const initConfig)

This function deinitializes the driver.

status_t LVHB_SetMode (lvhb_drv_config_t *const drvConfig, bool active)

This method sets H-Bridge device mode using enable pin.

• status_t LVHB_SetGateDriver (lvhb_drv_config_t *const drvConfig, bool outputHigh)

This function controls Gate Driver Input (GIN) pin. It is available for MPC17510 and MPC17511 only.

status_t LVHB_RotateFull (lvhb_drv_config_t *const drvConfig, lvhb_output_state_t state, lvhb_bridge_←
t bridge)

This function spins the motor in desired direction at full speed.

status_t LVHB_RotateProportional (lvhb_drv_config_t *const drvConfig, uint8_t pwmDuty, lvhb_bridge_
 t bridge)

This function spins the motor in desired direction at PWM duty speed.

• status t LVHB SetTriState (lvhb drv config t *const drvConfig, lvhb bridge t bridge)

This function sets output of specified H-Bridge to tri-state (high impedance) using input control pins.

status_t LVHB_SetDirection (lvhb_drv_config_t *const drvConfig, lvhb_output_direction_t direction, lvhb_
 bridge_t bridge)

This function sets direction of brush motor at specified H-Bridge interface.

 status_t LVHB_SetRecirculation (lvhb_drv_config_t *const drvConfig, lvhb_recirculation_t side, lvhb_← bridge_t bridge)

This function sets low/high-impedance-side recirculation of the H-Bridge.

status_t LVHB_SetFullStepSpeed (lvhb_drv_config_t *const drvConfig, uint16_t stepsSec)

This function sets the speed of full-step mode.

• status_t LVHB_SetMicroStepSpeed (lvhb_drv_config_t *const drvConfig, uint16_t microStepsSec)

This function sets the speed of micro-step mode.

status_t LVHB_SetFullStepAcceleration (lvhb_drv_config_t *const drvConfig, uint32_t acceleration)

This function sets the acceleration ramp of full-step mode.

• status_t LVHB_SetMicroStepAcceleration (lvhb_drv_config_t *const drvConfig, uint32_t acceleration)

This function sets the acceleration ramp of micro-step mode.

status_t LVHB_MoveSteps (lvhb_drv_config_t *const drvConfig, bool forward, uint32_t steps)

This function moves motor by specified number of full-steps.

• status t LVHB MoveMicroSteps (lvhb drv config t *const drvConfig, bool forward, uint32 t microSteps)

This function moves motor by specified number of micro-steps.

status_t LVHB_MoveContinual (lvhb_drv_config_t *const drvConfig, bool forward)

This function moves motor continually in full-step mode.

status t LVHB MoveMicroContinual (lvhb drv config t *const drvConfig, bool forward)

This function moves motor continually in micro-step mode.

• status t LVHB StopContinualMovement (lvhb drv config t *const drvConfig)

This function is intended to stop continual movement of stepper motor.

• Ivhb_motor_status_t LVHB_GetMotorStatus (Ivhb_drv_config_t *const drvConfig)

This function returns status of stepper motor control.

status_t LVHB_AlignRotor (lvhb_drv_config_t *const drvConfig)

This function aligns rotor to the full-step position.

This function changes the size of micro-step.

int32 t LVHB GetFullStepPosition (lvhb drv config t *const drvConfig)

This function returns the current full-step position.

int32_t LVHB_GetMicroStepPosition (lvhb_drv_config_t *const drvConfig)

This function returns the current micro-step position.

status_t LVHB_ResetFullStepPosition (lvhb_drv_config_t *const drvConfig)

This function sets the counter of full-steps to zero.

status_t LVHB_DisableMotor (lvhb_drv_config_t *const drvConfig)

This function disables the stepper motor.

void LVHB_OnCounterRestart (lvhb_drv_config_t *const drvConfig)

Counter restart event handler. This function must be called from counter restart interrupt handler.

void LVHB OnActionComplete (lvhb drv config t *const drvConfig)

Declaration of function that can be used by user for handling the action complete event. This event occurs when "LV← HB_MoveSteps", "LVHB_MoveMicroSteps", "LVHB_StopContinualMovement" or "LVHB_AlignRotor" action is done.

4.3.1 Detailed Description

4.3.2 Function Documentation

4.3.2.1 LVHB_AlignRotor()

This function aligns rotor to the full-step position.

The method executes 4 full-steps forward (one electrical revolution) at minimum speed (see LVHB_FULLSTEP_← SPEED_MIN constant). These steps are not counted to the number of full-steps. The input timer frequency must be between LVHB_FULLSTEP_IN_FREQ_MIN and LVHB_FULLSTEP_IN_FREQ_MAX. Note that the motor must not run when this function is called and you must wait for completion of this action before you can run motor again (use method LVHB_GetMotorStatus or event LVHB_OnActionComplete).

This function may be used for the stepper motors control only.

Parameters

drvConfig	Pointer to driver instance configuration.
-----------	---

Returns

status_t Error code.

4.3.2.2 LVHB_ConfigureGpio()

This function configures GPIO for usage with this driver.

This function initializes all used GPIO pins. These pins are identified according to the selected device and INx pin types in the driver configuration.

Parameters

drvConfig	Pointer to driver instance configuration.
-----------	---

Returns

status_t Error code.

4.3.2.3 LVHB_ConfigureTimer()

This function configures Timer for usage with this driver.

This function initializes Timer device. There are two parameters. <a href="https://linear.com/linea

Parameters

drvConfig	Pointer to driver instance configuration.
tmrSdkConfig	SDK specific configuration. Use NULL pointer for default settings.

Returns

status_t Error code.

4.3.2.4 LVHB_Deinit()

This function deinitializes the driver.

Parameters

initConfig	Pointer to initial driver configuration.
------------	--

Returns

status_t Error code.

4.3.2.5 LVHB_DisableMotor()

This function disables the stepper motor.

This function disables timer interrupts and sets the INxA and INxB pins output value to LOW. It can be used to stop the stepper motor. Note that default behavior of the motor control is to hold position when a movement is completed.

This function may be used for the stepper motors control only.

Parameters

	drvConfig	Pointer to driver instance configuration.
--	-----------	---

Returns

status_t Error code.

4.3.2.6 LVHB_GetDefaultConfig()

This function gets a default configuration of the driver for specific device and motor type.

Default device configuration will be stored to the defaultConfig pointer.

drvConfig	Pointer to variable where the configuration will be stored.
device	LVHB device.
motorType	Motor type to control by this driver.

Returns

status_t Error code.

4.3.2.7 LVHB_GetFullStepPosition()

This function returns the current full-step position.

Position is set to zero by the LVHB driver initialization. It can be reset by LVHB_ResetFullStepPosition function.

This function may be used for the stepper motors control only.

Parameters

drvConfig	Pointer to driver instance configuration.
-----------	---

Returns

Current rotor position in number of full-steps from initial position.

4.3.2.8 LVHB_GetMicroStepPosition()

This function returns the current micro-step position.

Size of micro-step depends on current "Micro-steps per Step" setting. Position is set to zero by the LVHB driver initialization.

This function may be used for the stepper motors control with micro-stepping support only - ie. all IN pins are used as timer outputs.

Parameters

du Cartin	Pointer to driver instance configuration.
arvContig	Pointer to driver instance configuration.
3	_ _

Returns

Current rotor position in number of micro-steps from initial position.

4.3.2.9 LVHB_GetMotorStatus()

This function returns status of stepper motor control.

Possible returned values are defined in lvhb motor status t enumeration.

This function may be used for the stepper motors control only.

Parameters

Returns

lvhb_motor_status_t Motor status.

4.3.2.10 LVHB_Init()

This function initializes driver data and output pin values.

Initialization of all used peripherals and stepper control variables is performed. GIN and OE/EN/PSAVE pin values are set according to the driver configuration. INx signals are set to get LOW at OUTx pins of used H-Bridge.

Parameters

initConfig	Pointer to initial driver configuration.

Returns

status_t Error code.

4.3.2.11 LVHB_MoveContinual()

This function moves motor continually in full-step mode.

The motor can be stopped by LVHB_StopContinualMovement function. When the rotor is not at physical full-step position then the function sets nearest full-step without correction. The input timer frequency must be between L← VHB_FULLSTEP_IN_FREQ_MIN and LVHB_FULLSTEP_IN_FREQ_MAX. Note that the motor must not run when this function is called.

This function may be used only for the stepper motors control when the acceleration ramp is disabled (full-step acceleration equals 0).

Parameters

drvConfig	Pointer to driver instance configuration.
forward	Direction of movement.

Returns

status_t Error code.

4.3.2.12 LVHB_MoveMicroContinual()

This function moves motor continually in micro-step mode.

The motor can be stopped by LVHB_StopContinualMovement function. When the rotor is not at physical microstep position then the function sets nearest micro-step without correction. For example the size is initialized to 32 micro-steps per one full-step and the motor executed three micro-steps. Then user changes micro-step size to 2 micro-steps per one full-step and starts motor movement (previous three micro-steps are not visible). The input timer frequency must be between LVHB_MICROSTEP_IN_FREQ_MIN and LVHB_MICROSTEP_IN_FREQ_MAX. Note that the motor must not run when this function is called.

This function may be used only for the stepper motors control with micro-stepping support only (ie. all IN pins are used as timer outputs) when the acceleration ramp is disabled (micro-step acceleration equals 0).

Parameters

drvConfig	Pointer to driver instance configuration.
forward	Direction of movement.

Returns

status_t Error code.

4.3.2.13 LVHB_MoveMicroSteps()

```
bool forward,
uint32_t microSteps )
```

This function moves motor by specified number of micro-steps.

When the rotor is not at physical micro-step position then the function sets nearest micro-step without correction. For example the size is initialized to 32 micro-steps per one full-step and the motor executed three micro-steps. Then user changes micro-step size to 2 micro-steps per one full-step and starts motor movement (previous three micro-steps are not visible). The input timer frequency must be between LVHB_MICROSTEP_IN_FREQ_MIN and LVHB_MICROSTEP_IN_FREQ_MAX. Note that the motor must not run when this function is called and you must wait for completion of this action before you can run motor again (use method LVHB_GetMotorStatus or event LVHB OnActionComplete).

This function may be used for the stepper motors control with micro-stepping support only - ie. all IN pins are used as timer outputs.

Parameters

drvConfig	Pointer to driver instance configuration.
forward	Direction of movement.
microSteps	Number of micro-steps to move (equal or less than LVHB_STEPPER_MAX_STEPS).

Returns

status_t Error code.

4.3.2.14 LVHB_MoveSteps()

This function moves motor by specified number of full-steps.

When the rotor is not at physical micro-step position then the function sets nearest micro-step without correction. The input timer frequency must be between LVHB_FULLSTEP_IN_FREQ_MIN and LVHB_FULLSTEP_IN_FREQ_MAX. Note that number of steps returned by method LVHB_GetFullStepPosition are updated before they are executed. Note that the motor must not run when this function is called and you must wait for completion of this action before you can run motor again (use method LVHB_GetMotorStatus or event LVHB_OnActionComplete).

This function may be used for the stepper motors control only.

drvConfig	Pointer to driver instance configuration.
forward	Direction of movement.
steps	Number of steps to move (equal or less than LVHB_STEPPER_MAX_STEPS).

Returns

status_t Error code.

4.3.2.15 LVHB_OnActionComplete()

Declaration of function that can be used by user for handling the action complete event. This event occurs when "LVHB_MoveSteps", "LVHB_MoveMicroSteps", "LVHB_StopContinualMovement" or "LVHB_AlignRotor" action is done.

Parameters

drvConfig	Pointer to driver instance configuration.
-----------	---

4.3.2.16 LVHB_OnCounterRestart()

Counter restart event handler. This function must be called from counter restart interrupt handler.

This function may be used for the stepper motors control only.

Parameters

drvConfig	Pointer to driver instance configuration.

4.3.2.17 LVHB_ResetFullStepPosition()

This function sets the counter of full-steps to zero.

This function may be used for the stepper motors control only.

Returns

status_t Error code.

4.3.2.18 LVHB_RotateFull()

This function spins the motor in desired direction at full speed.

This function serves to output state control of brushed motors, it must not be used for stepper motor control.

Parameters

drvConfig	Pointer to driver instance configuration.	
state	State of outputs (turned on/off).	
bridge	H-Bridge of device the motor is connected to. Only lvhbBridge1 value is correct when single H-Bridge device is used.	

Returns

status_t Error code.

4.3.2.19 LVHB_RotateProportional()

This function spins the motor in desired direction at PWM duty speed.

This function serves to speed control of brushed motors. It may be used only for brushed motor control with one non-GPIO pin at least.

drvConfig	Pointer to driver instance configuration.	
pwmDuty	- PWM duty, Possible values: 0 - 100, where 0 is minimum and 100 is maximum.	
bridge	H-Bridge of device the motor is connected to. Only lvhbBridge1 value is correct when single H-Bridge device is used.	

Returns

```
status_t - Error code.
```

4.3.2.20 LVHB_SetDirection()

This function sets direction of brush motor at specified H-Bridge interface.

In IvhbDirectionAHighBLow direction the first IN pin is set to high (or PWM) and the second IN pin to low. In reverse direction the first IN is set to low and the second IN to high (or PWM). Change of the direction is applied when you start rotation (not when the motor is running). This function may be used in case of brushed motor control only.

Parameters

drvConfig	Pointer to driver instance configuration.	
direction	Desired motor direction from lvhb_output_direction_t enumeration.	
bridge	H-Bridge of device the motor is connected to. Only lvhbBridge1 value is correct when single H-Bridge device is used.	

Returns

status_t Error code.

4.3.2.21 LVHB_SetFullStepAcceleration()

This function sets the acceleration ramp of full-step mode.

Unit is full-steps per second². Put 0 value to disable ramp. Note that it is not allowed to change acceleration ramp while motor is running.

This function may be used for the stepper motors control only.

drvConfig	Pointer to driver instance configuration.
acceleration	Motor acceleration in number of full-steps per second ² . Maximal acceleration is
	LVHB_FULLSTEP_ACCEL_MAX.

Returns

status_t Error code.

4.3.2.22 LVHB_SetFullStepSpeed()

This function sets the speed of full-step mode.

Unit is number of full-steps per second. Note that it is not allowed to change speed while motor is running.

This function may be used for the stepper motors control only.

Parameters

drvConfig	Pointer to driver instance configuration.	
stepsSec	Motor speed in number of full-steps per second. Minimal and maximal speed is defined by	
	LVHB_FULLSTEP_SPEED_MIN and LVHB_FULLSTEP_SPEED_MAX.	

Returns

status_t Error code.

4.3.2.23 LVHB_SetGateDriver()

This function controls Gate Driver Input (GIN) pin. It is available for MPC17510 and MPC17511 only.

Parameters

drvConfig	Pointer to driver instance configuration.
outputHigh	TRUE to set GOUT pin to High, FALSE for Low.

Returns

status_t Error code.

4.3.2.24 LVHB_SetMicroStepAcceleration()

This function sets the acceleration ramp of micro-step mode.

Unit is micro-steps per second². Put 0 value to disable ramp. Note that it is not allowed to change acceleration ramp while motor is running.

This function may be used for the stepper motors control with micro-stepping support only - ie. all IN pins are used as timer outputs.

Parameters

drvConfig	Fointer to driver instance configuration.	
acceleration	Motor acceleration in number of micro-steps per second ² . Maximal acceleration is	
	LVHB_MICROSTEP_ACCEL_MAX.	

Returns

status_t Error code.

4.3.2.25 LVHB_SetMicroStepSize()

This function changes the size of micro-step.

Note that the motor must not run when this function is called.

This function may be used for the stepper motors control with micro-stepping support only - ie. all IN pins are used as timer outputs.

Parameters

drvConfig	Pointer to driver instance configuration.	
microStepsPerStep	New size from lvhb_micro_step_t enumeration.	

Returns

status_t Error code.

4.3.2.26 LVHB_SetMicroStepSpeed()

This function sets the speed of micro-step mode.

Unit is number of micro-steps per second. Size of micro-step depends on current driver setting. Note that it is not allowed to change speed while motor is running.

This function may be used for the stepper motors control with micro-stepping support only - ie. all IN pins are used as timer outputs.

Parameters

drvConfig	Pointer to driver instance configuration.
microStepsSec	Motor speed in number of micro-steps per second. Minimal and maximal speed is defined by
	LVHB_MICROSTEP_SPEED_MIN and LVHB_MICROSTEP_SPEED_MAX.

Returns

status_t Error code.

4.3.2.27 LVHB_SetMode()

This method sets H-Bridge device mode using enable pin.

This function may be used by devices with EN, OE or PSAVE pin only - ie. all supported devices except MC34933.

Parameters

drvConfig	Pointer to driver instance configuration.
active	H-Bridge mode. Put FALSE to set power save mode, TRUE for normal operational mode.

Returns

status_t Error code.

4.3.2.28 LVHB_SetRecirculation()

```
lvhb_recirculation_t side,
lvhb_bridge_t bridge )
```

This function sets low/high-impedance-side recirculation of the H-Bridge.

When Low-side recirculation (freewheeling) is held while a DC motor is spinning, the back-EMF of the motor will cause a recirculating current to flow that will rapidly brake the motor to a stop. This is known as dynamic braking.

Parameters

drvConfig	Pointer to driver instance configuration.
side	Low or High-impedance-side recirculation.
bridge	H-Bridge of device the motor is connected to. Only lvhbBridge1 value is correct when single H-Bridge device is used.

Returns

status_t Error code.

4.3.2.29 LVHB_SetTriState()

This function sets output of specified H-Bridge to tri-state (high impedance) using input control pins.

This function may be used in case of brushed motor control only.

Parameters

drvConfig	Pointer to driver instance configuration.
bridge	H-Bridge of device the motor is connected to. Only lvhbBridge1 value is correct when single H-Bridge device is used.

Returns

status_t Error code.

4.3.2.30 LVHB_StopContinualMovement()

This function is intended to stop continual movement of stepper motor.

4.3 Function_group 29

This function does not stop motor immediately, motor can execute several steps. In micro-step mode the motor does not have to stop at full-step position (can stop anywhere). Note that you must wait for completion of this action before you can run motor again (use method LVHB_GetMotorStatus or event LVHB_OnActionComplete).

This function may be used for the stepper motors control only.

30 Module Documentation

Parameters

drvConfig Pointer to driver instance configuration.

Returns

status_t Error code.

Chapter 5

Data Structure Documentation

5.1 lvhb_brush_config_t Struct Reference

Brushed motor configuration.

```
#include <lvhb.h>
```

Data Fields

- · lvhb recirculation t recirculation
- lvhb_output_direction_t outputDirection

5.1.1 Detailed Description

Brushed motor configuration.

5.1.2 Field Documentation

5.1.2.1 outputDirection

```
lvhb_output_direction_t lvhb_brush_config_t::outputDirection
```

Direction of rotation (state of outputs) of used bridges.

5.1.2.2 recirculation

```
lvhb_recirculation_t lvhb_brush_config_t::recirculation
```

Recirculation side (high-impedance, low) of used bridges.

The documentation for this struct was generated from the following file:

• lvhb/lvhb.h

5.2 lvhb_device_data_t Struct Reference

Device configuration.

```
#include <lvhb.h>
```

Data Fields

- · lvhb device t device
- lvhb_motor_type_t motorType
- lvhb_brush_config_t brushConfig [LVHB_BRIDGE_COUNT_MAX]
- uint32_t brushPwmFrequency
- lvhb_stepper_config_t stepperConfig
- lvhb_stepper_data_t stepperData
- bool secondaryBridgeUsed
- · bool activeMode
- bool gateDriverOutputHigh

5.2.1 Detailed Description

Device configuration.

This structure contains device configuration.

5.2.2 Field Documentation

5.2.2.1 activeMode

```
bool lvhb_device_data_t::activeMode
```

Mode of H-Bridge. Used by all H-Bridges except MC34933.

5.2.2.2 brushConfig

lvhb_brush_config_t lvhb_device_data_t::brushConfig[LVHB_BRIDGE_COUNT_MAX]

Brush motor configuration.

5.2.2.3 brushPwmFrequency

```
uint32_t lvhb_device_data_t::brushPwmFrequency
```

PWM frequency for speed control of brushed motors. Maximum value is 20 kHz.

5.2.2.4 device

lvhb_device_t lvhb_device_data_t::device

H-Bridge device.

5.2.2.5 gateDriverOutputHigh

bool lvhb_device_data_t::gateDriverOutputHigh

GIN pin value. Used by MPC17510 and MPC17511 only.

5.2.2.6 motorType

lvhb_motor_type_t lvhb_device_data_t::motorType

Motor type.

5.2.2.7 secondaryBridgeUsed

bool lvhb_device_data_t::secondaryBridgeUsed

Usage of second bridge in case of brush motor control. Not used by MPC17510 and MPC17511.

5.2.2.8 stepperConfig

lvhb_stepper_config_t lvhb_device_data_t::stepperConfig

Stepper motor configuration.

5.2.2.9 stepperData

```
lvhb_stepper_data_t lvhb_device_data_t::stepperData
```

Stepper motor data.

The documentation for this struct was generated from the following file:

• lvhb/lvhb.h

5.3 lvhb_drv_config_t Struct Reference

Driver configuration.

#include <lvhb.h>

Data Fields

- aml_instance_t enPinInstance
- uint8_t enPinIndex
- aml_instance_t ginPinInstance
- uint8_t ginPinIndex
- lvhb_input_pins_t inputPins [LVHB_BRIDGE_COUNT_MAX]
- aml_instance_t inxaPinInstance [LVHB_BRIDGE_COUNT_MAX]
- uint8_t inxaPinIndex [LVHB_BRIDGE_COUNT_MAX]
- aml_instance_t inxbPinInstance [LVHB_BRIDGE_COUNT_MAX]
- uint8_t inxbPinIndex [LVHB_BRIDGE_COUNT_MAX]
- aml_instance_t tmrInstance
- · tmr lvhb config t tmrLvhbConfig
- lvhb_device_data_t deviceConfig

5.3.1 Detailed Description

Driver configuration.

This structure contains all information needed for proper functionality of the driver, such as used peripherals configurations, control pins configuration and device configuration.

5.3.2 Field Documentation

5.3.2.1 deviceConfig

```
lvhb_device_data_t lvhb_drv_config_t::deviceConfig
```

Device configuration.

5.3.2.2 enPinIndex

```
uint8_t lvhb_drv_config_t::enPinIndex
```

 $EN \ (MPC17510, \ MPC17511) \ / \ OE \ (MPC17529, \ MPC17533) \ / \ PSAVE \ (MPC17C724, \ MPC17531A) \ pin \ index. \ Not used by \ MC34933.$

5.3.2.3 enPinInstance

```
aml_instance_t lvhb_drv_config_t::enPinInstance
```

EN (MPC17510, MPC17511) / OE (MPC17529, MPC17533) / PSAVE (MPC17C724, MPC17531A) port instance. Not used by MC34933.

5.3.2.4 ginPinIndex uint8_t lvhb_drv_config_t::ginPinIndex GIN pin index. Used by MPC17510 and MPC17511 only. 5.3.2.5 ginPinInstance $\verb|aml_instance_t| lvhb_drv_config_t::ginPinInstance|$ GIN pin port instance. Used by MPC17510 and MPC17511 only. 5.3.2.6 inputPins lvhb_input_pins_t lvhb_drv_config_t::inputPins[LVHB_BRIDGE_COUNT_MAX] GPIO, GPIO/PWM, PWM/GPIO, or PWM. 5.3.2.7 inxaPinIndex uint8_t lvhb_drv_config_t::inxaPinIndex[LVHB_BRIDGE_COUNT_MAX] IN1/IN1A (first bridge) & IN2A (second bridge) GPIO pin index. 5.3.2.8 inxaPinInstance $\verb|aml_instance_t| lvhb_drv_config_t:: inxaPinInstance[LVHB_BRIDGE_COUNT_MAX]|$ IN1/IN1A (first bridge) & IN2A (second bridge) GPIO pin port instance. 5.3.2.9 inxbPinIndex uint8_t lvhb_drv_config_t::inxbPinIndex[LVHB_BRIDGE_COUNT_MAX] IN2/IN1B (first bridge) & IN2B (second bridge) GPIO pin index. 5.3.2.10 inxbPinInstance aml_instance_t lvhb_drv_config_t::inxbPinInstance[LVHB_BRIDGE_COUNT_MAX] IN2/IN1B (first bridge) & IN2B (second bridge) GPIO pin port instance.

Timer instance - only if any PWM pin used.

aml_instance_t lvhb_drv_config_t::tmrInstance

5.3.2.11 tmrInstance

5.3.2.12 tmrLvhbConfig

```
tmr_lvhb_config_t lvhb_drv_config_t::tmrLvhbConfig
```

Device Timer configuration - only if any PWM pin used.

The documentation for this struct was generated from the following file:

lvhb/lvhb.h

5.4 lvhb_stepper_config_t Struct Reference

Stepper motor configuration.

```
#include <lvhb.h>
```

Data Fields

- uint32 t fullStepSpeed
- uint32_t fullStepAcceleration
- · uint32_t microStepSpeed
- uint32_t microStepAcceleration
- lvhb_micro_step_t microStepPerStep
- uint32_t microStepPwmFrequency

5.4.1 Detailed Description

Stepper motor configuration.

5.4.2 Field Documentation

5.4.2.1 fullStepAcceleration

```
uint32_t lvhb_stepper_config_t::fullStepAcceleration
```

Fluent acceleration to desired speed and decelaration to zero. Put 0 value to disable ramp. Unit is full-steps per $second^2$.

5.4.2.2 fullStepSpeed

```
uint32_t lvhb_stepper_config_t::fullStepSpeed
```

Motor speed in Full-step mode. Unit is number of full-steps per second. Admissible range is 1 to 5000.

5.4.2.3 microStepAcceleration

```
uint32_t lvhb_stepper_config_t::microStepAcceleration
```

Fluent acceleration to desired speed and decelaration to zero. Put 0 value to disable ramp. Unit is micro-steps per $second^2$ 2.

5.4.2.4 microStepPerStep

```
lvhb_micro_step_t lvhb_stepper_config_t::microStepPerStep
```

Number of micro-steps per one full-step.

5.4.2.5 microStepPwmFrequency

```
uint32_t lvhb_stepper_config_t::microStepPwmFrequency
```

Desired timer frequency for micro-stepping. Minimum value is 10 kHz and maximum value is 20 kHz.

5.4.2.6 microStepSpeed

```
uint32_t lvhb_stepper_config_t::microStepSpeed
```

Motor speed in Micro-step mode. Unit is number of micro-steps per second. Admissible range is 1 to 5000.

The documentation for this struct was generated from the following file:

• lvhb/lvhb.h

5.5 lvhb_stepper_data_t Struct Reference

Stepper motor control data structure.

```
#include <lvhb.h>
```

Data Fields

- bool forward
- · bool continual
- · uint32_t stepCntr
- uint32_t steps
- int32_t stepPos
- uint8_t fullStepIdx
- lvhb_stepper_mode_t stepperMode
- lvhb_motor_status_t motorStatus
- lvhb_stepper_state_t controlState
- uint32_t timerOverflows
- uint32_t fullSpeed
- uint8_t fullStepsPerPeriod
- uint32_t currentFullSpeed
- uint32_t microSpeed
- uint8_t microWind1ldx
- uint8_t microWind2ldx
- int8_t microPosInFull
- uint16_t microStepOffset [LVHB_MICROSTEP_CNT_MAX+1]
- lvhb_ramp_state_t rampState
- uint32_t maxSpeedDelay
- uint32_t currentDelay
- uint32_t currentDelayRest
- uint32_t decelStepCnt

5.5.1 Detailed Description

Stepper motor control data structure.

5.5.2 Field Documentation

5.5.2.1 continual

bool lvhb_stepper_data_t::continual

Continual movement.

5.5.2.2 controlState

lvhb_stepper_state_t lvhb_stepper_data_t::controlState

States for control generating steps.

5.5.2.3 currentDelay

uint32_t lvhb_stepper_data_t::currentDelay

Current timer delay.

5.5.2.4 currentDelayRest

uint32_t lvhb_stepper_data_t::currentDelayRest

Rest of the division in current timer delay computation.

5.5.2.5 currentFullSpeed

uint32_t lvhb_stepper_data_t::currentFullSpeed

Speed used in current movement.

5.5.2.6 decelStepCnt

uint32_t lvhb_stepper_data_t::decelStepCnt

Number of steps for deceleration.

5.5.2.7 forward

bool lvhb_stepper_data_t::forward

Current direction of motor movement.

5.5.2.8 fullSpeed

uint32_t lvhb_stepper_data_t::fullSpeed

Speed in full-step mode in number of timer clock source ticks (equal to timer period).

5.5.2.9 fullStepIdx

uint8_t lvhb_stepper_data_t::fullStepIdx

Index to the table with full-step sequence values (used in micro-step and full-step).

5.5.2.10 fullStepsPerPeriod

uint8_t lvhb_stepper_data_t::fullStepsPerPeriod

Number of full-steps executed until next timer restart event (counting of full-steps).

5.5.2.11 maxSpeedDelay

```
uint32_t lvhb_stepper_data_t::maxSpeedDelay
```

Timer delay when max speed is reached (Size of 1 full-step in seconds).

5.5.2.12 microPosInFull

```
int8_t lvhb_stepper_data_t::microPosInFull
```

No. of taken micro-steps from full-step position (it is zero at physic full-step position).

5.5.2.13 microSpeed

```
uint32_t lvhb_stepper_data_t::microSpeed
```

Speed of micro-stepping in number of timer overflows.

5.5.2.14 microStepOffset

```
uint16_t lvhb_stepper_data_t::microStepOffset[LVHB_MICROSTEP_CNT_MAX+1]
```

Table for tmrInstance offset values for 32 micro-steps per one full-step (in number of ticks).

5.5.2.15 microWind1ldx

```
uint8_t lvhb_stepper_data_t::microWind1Idx
```

Index to the table with micro-step offsets. Intended for first winding.

5.5.2.16 microWind2ldx

```
uint8_t lvhb_stepper_data_t::microWind2Idx
```

Index to the table with micro-step offsets. Intended for second winding.

5.5.2.17 motorStatus

```
lvhb_motor_status_t lvhb_stepper_data_t::motorStatus
```

Current motor state.

5.5.2.18 rampState

```
lvhb_ramp_state_t lvhb_stepper_data_t::rampState
```

State of the acceleration ramp.

5.5.2.19 stepCntr

uint32_t lvhb_stepper_data_t::stepCntr

Counter of steps.

5.5.2.20 stepperMode

```
lvhb_stepper_mode_t lvhb_stepper_data_t::stepperMode
```

Stepper motor mode (Full-stepping, micro-stepping or disabled).

5.5.2.21 stepPos

```
int32_t lvhb_stepper_data_t::stepPos
```

Actual position of motor in full-steps. Not used in algorithm, only for information. User have to check possible overflow and reset variable by provided function.

5.5.2.22 steps

```
uint32_t lvhb_stepper_data_t::steps
```

Number of steps executed in current movement.

5.5.2.23 timerOverflows

```
uint32_t lvhb_stepper_data_t::timerOverflows
```

Number of timer overflows in current step.

The documentation for this struct was generated from the following file:

lvhb/lvhb.h

5.6 tmr_lvhb_config_t Struct Reference

Driver specific Timer configuration.

```
#include <lvhb.h>
```

Data Fields

- · uint8_t counterWidth
- uint32 t srcClck Hz
- tmr_clk_prescale_t prescale
- uint8_t inxaChannelNumber [LVHB_BRIDGE_COUNT_MAX]
- uint8_t inxbChannelNumber [LVHB_BRIDGE_COUNT_MAX]

5.6.1 Detailed Description

Driver specific Timer configuration.

5.6.2 Field Documentation

5.6.2.1 counterWidth

```
uint8_t tmr_lvhb_config_t::counterWidth
```

Counter width in bits.

5.6.2.2 inxaChannelNumber

```
uint8_t tmr_lvhb_config_t::inxaChannelNumber[LVHB_BRIDGE_COUNT_MAX]
```

INxA/IN1 channel number - used for PWM/PWM and PWM/GPIO pin control only.

5.6.2.3 inxbChannelNumber

```
uint8_t tmr_lvhb_config_t::inxbChannelNumber[LVHB_BRIDGE_COUNT_MAX]
```

INxB/IN2 channel number - used for PWM/PWM and GPIO/PWM pin control only.

5.6.2.4 prescale

```
tmr_clk_prescale_t tmr_lvhb_config_t::prescale
```

Timer prescale value.

5.6.2.5 srcClck_Hz

```
uint32_t tmr_lvhb_config_t::srcClck_Hz
```

Timer source clock in Hz.

The documentation for this struct was generated from the following file:

• lvhb/lvhb.h

Chapter 6

File Documentation

6.1 lyhb/lyhb.c File Reference

```
#include "lvhb.h"
```

Functions

status_t LVHB_ConfigureGpio (lvhb_drv_config_t *drvConfig)

This function configures GPIO for usage with this driver.

- status_t LVHB_ConfigureTimer (lvhb_drv_config_t *const drvConfig, tmr_sdk_config_t *const tmrSdkConfig)

 This function configures Timer for usage with this driver.
- status_t LVHB_GetDefaultConfig (lvhb_drv_config_t *const defaultConfig, lvhb_device_t device, lvhb_
 motor_type_t motorType)

This function gets a default configuration of the driver for specific device and motor type.

status_t LVHB_Init (lvhb_drv_config_t *const initConfig)

This function initializes driver data and output pin values.

status_t LVHB_Deinit (lvhb_drv_config_t *const initConfig)

This function deinitializes the driver.

status_t LVHB_SetMode (lvhb_drv_config_t *const drvConfig, bool active)

This method sets H-Bridge device mode using enable pin.

status_t LVHB_SetGateDriver (lvhb_drv_config_t *const drvConfig, bool outputHigh)

This function controls Gate Driver Input (GIN) pin. It is available for MPC17510 and MPC17511 only.

status_t LVHB_RotateFull (lvhb_drv_config_t *const drvConfig, lvhb_output_state_t state, lvhb_bridge_
 t bridge)

This function spins the motor in desired direction at full speed.

status_t LVHB_RotateProportional (lvhb_drv_config_t *const drvConfig, uint8_t pwmDuty, lvhb_bridge_
 t bridge)

This function spins the motor in desired direction at PWM duty speed.

• status_t LVHB_SetTriState (lvhb_drv_config_t *const drvConfig, lvhb_bridge_t bridge)

This function sets output of specified H-Bridge to tri-state (high impedance) using input control pins.

status_t LVHB_SetDirection (lvhb_drv_config_t *const drvConfig, lvhb_output_direction_t direction, lvhb_
 bridge_t bridge)

This function sets direction of brush motor at specified H-Bridge interface.

status_t LVHB_SetRecirculation (lvhb_drv_config_t *const drvConfig, lvhb_recirculation_t side, lvhb_
 bridge_t bridge)

This function sets low/high-impedance-side recirculation of the H-Bridge.

status t LVHB SetFullStepSpeed (lvhb drv config t *const drvConfig, uint16 t stepsSec)

This function sets the speed of full-step mode.

status_t LVHB_SetMicroStepSpeed (lvhb_drv_config_t *const drvConfig, uint16_t microStepsSec)

This function sets the speed of micro-step mode.

status_t LVHB_SetFullStepAcceleration (lvhb_drv_config_t *const drvConfig, uint32_t acceleration)

This function sets the acceleration ramp of full-step mode.

status_t LVHB_SetMicroStepAcceleration (lvhb_drv_config_t *const drvConfig, uint32_t acceleration)

This function sets the acceleration ramp of micro-step mode.

• status_t LVHB_MoveSteps (lvhb_drv_config_t *const drvConfig, bool forward, uint32_t steps)

This function moves motor by specified number of full-steps.

• status_t LVHB_MoveMicroSteps (lvhb_drv_config_t *const drvConfig, bool forward, uint32_t microSteps)

This function moves motor by specified number of micro-steps.

status_t LVHB_MoveContinual (lvhb_drv_config_t *const drvConfig, bool forward)

This function moves motor continually in full-step mode.

• status_t LVHB_MoveMicroContinual (lvhb_drv_config_t *const drvConfig, bool forward)

This function moves motor continually in micro-step mode.

status t LVHB StopContinualMovement (lvhb drv config t *const drvConfig)

This function is intended to stop continual movement of stepper motor.

lvhb_motor_status_t LVHB_GetMotorStatus (lvhb_drv_config_t *const drvConfig)

This function returns status of stepper motor control.

status_t LVHB_AlignRotor (lvhb_drv_config_t *const drvConfig)

This function aligns rotor to the full-step position.

This function changes the size of micro-step.

int32_t LVHB_GetFullStepPosition (lvhb_drv_config_t *const drvConfig)

This function returns the current full-step position.

int32_t LVHB_GetMicroStepPosition (lvhb_drv_config_t *const drvConfig)

This function returns the current micro-step position.

status_t LVHB_ResetFullStepPosition (lvhb_drv_config_t *const drvConfig)

This function sets the counter of full-steps to zero.

status_t LVHB_DisableMotor (lvhb_drv_config_t *const drvConfig)

This function disables the stepper motor.

void LVHB OnCounterRestart (lvhb drv config t *const drvConfig)

Counter restart event handler. This function must be called from counter restart interrupt handler.

6.1.1 Detailed Description

Low voltage H-Bridge driver based on AML layer. Supports boards based on MPC17510, MPC17511, MPC17529, MPC17531A, MPC17533, MPC17C724 and MC34933.

This module is common for all supported models.

6.2 lvhb/lvhb.h File Reference

```
#include "stdbool.h"
#include "stdint.h"
#include "../aml/gpio_aml.h"
#include "../aml/tmr_aml/tmr_aml.h"
```

Data Structures

struct tmr_lvhb_config_t

Driver specific Timer configuration.

· struct lvhb brush config t

Brushed motor configuration.

· struct lvhb_stepper_config_t

Stepper motor configuration.

· struct lvhb_stepper_data_t

Stepper motor control data structure.

• struct lvhb_device_data_t

Device configuration.

struct lvhb_drv_config_t

Driver configuration.

Macros

#define LVHB BRIDGE COUNT MAX 2U

Maximal number of H-bridge interfaces in supported devices.

#define LVHB BRUSH PWM FREQ MAX 20000U

Maximal PWM frequency for speed control of brushed motors.

#define LVHB BRUSH PWM FREQ DEF 10000U

Speed control PWM frequency of brushed motors set in default configuration.

#define LVHB_BRUSH_DIR_DEF lvhbDirectionAHighBLow

Motor direction of brushed motors set in default configuration.

#define LVHB_BRUSH_REC_DEF lvhbRecirculationLow

Recirculation side of brushed motors set in default configuration.

#define LVHB_STEPPER_INIT_PWM_FREQ 1000U

Initial timer PWM frequency in timer configuration for stepper motors.

#define LVHB_STEPPER_MAX_STEPS 100000000U

Maximal number of steps that can be executed.

#define LVHB_FULLSTEP_IN_FREQ_MIN 131072UL

Minimal timer input frequency for full-stepping.

#define LVHB_FULLSTEP_IN_FREQ_MAX 10000000UL

Maximal timer input frequency for full-stepping.

#define LVHB_FULLSTEP_SPEED_MIN 1U

Minimal speed in full-step mode (full-steps per second).

#define LVHB_FULLSTEP_SPEED_MAX 5000U

Maximal speed in full-step mode (full-steps per second).

• #define LVHB_FULLSTEP_SPEED_DEF 100U

Speed in full-step mode set in default configuration.

#define LVHB_FULLSTEP_ACCEL_MAX 5000U

Maximal acceleration in full-step mode.

#define LVHB FULLSTEP ACCEL DEF 0U

Acceleration in full-step mode set in default configuration.

#define LVHB_FULLSTEP_CYCLE 4U

Number of full-steps per one electrical cycle.

#define LVHB FULLSTEP CNT CONT 1U

Number of full-steps to next timer restart interrupt in continual mode.

#define LVHB_FULLSTEP_CH_INACTIVE 0x00U

Output value of channel is Low.

#define LVHB_FULLSTEP_CH_IN1A 0x01U

Output value of channel IN1A is High.

#define LVHB FULLSTEP CH IN1B 0x02U

Output value of channel IN1B is High.

• #define LVHB_FULLSTEP_CH_IN2A 0x04U

Output value of channel IN2A is High.

#define LVHB FULLSTEP CH IN2B 0x08U

Output value of channel IN2B is High.

#define LVHB_MICROSTEP_IN_FREQ_MIN 1200000UL

Minimal timer input frequency for micro-stepping.

#define LVHB_MICROSTEP_IN_FREQ_MAX 10000000UL

Maximal timer input frequency for micro-stepping.

#define LVHB MICROSTEP PWM FREQ MIN 10000U

Minimal PWM frequency for micro-stepping.

#define LVHB MICROSTEP PWM FREQ MAX 20000U

Maximal PWM frequency for micro-stepping.

#define LVHB MICROSTEP PWM FREQ DEF 20000U

PWM frequency for micro-stepping set in default configuration..

#define LVHB_MICROSTEP_SPEED_MIN 1U

Minimal speed in micro-step mode (micro-steps per second).

#define LVHB_MICROSTEP_SPEED_MAX 5000U

Maximal speed in micro-step mode (micro-steps per second).

• #define LVHB_MICROSTEP_SPEED_DEF 100U

Speed in micro-step mode set in default configuration.

#define LVHB_MICROSTEP_ACCEL_MAX 5000U

Maximal acceleration in micro-step mode.

• #define LVHB MICROSTEP ACCEL DEF 0U

Acceleration in micro-step mode set in default configuration.

#define LVHB_MICROSTEP_CNT_MAX 32

Maximal number of micro-steps per full-step.

#define LVHB_MICROSTEP_PER_FS_DEF lvhbMicroStep2

Micro-steps per full-step set in default configuration.

#define LVHB_WIND1_IDX_INIT (LVHB_MICROSTEP_CNT_MAX / 2U)

Initial value of index for winding 1 that represents physical position of full-step no. 0.

 #define LVHB_WIND2_IDX_INIT (LVHB_MICROSTEP_CNT_MAX + (LVHB_MICROSTEP_CNT_MAX / 2↔ U))

Initial value of index for winding 2 that represents physical position of full-step no. 0.

#define LVHB_TIMER_VALUE_MAX(drvConfig) (1U << (drvConfig->tmrLvhbConfig.counterWidth))

Returns maximal value of counter.

#define LVHB_FULLSTEP_IN_FREQ(drvConfig) (drvConfig->tmrLvhbConfig.srcClck_Hz >> drvConfig->tmrLvhbConfig.prescale)

Returns timer input frequency for full-stepping.

#define LVHB_FULLSTEP_IN_FREQ_0676(drvConfig) ((uint32_t)(LVHB_FULLSTEP_IN_FREQ(drvConfig) * 0.676))

Returns factored frequency for full-step ramp.

#define LVHB_GET_FULL_SPEED_TICKS(drvConfig, stepsSec) (LVHB_FULLSTEP_IN_FREQ(drvConfig) / (stepsSec))

Returns number of timer ticks per timer period.

#define LVHB_MICROSTEP_IN_FREQ(drvConfig) (drvConfig->tmrLvhbConfig.srcClck_Hz >> drvConfig->tmrLvhbConfig.prescale)

Returns timer input frequency for micro-stepping.

#define LVHB_MICROSTEP_IN_FREQ_0676(drvConfig) ((uint32_t)(LVHB_MICROSTEP_IN_FREQ(drv Config) * 0.676))

Returns factored frequency for micro-step ramp.

 #define LVHB_MICROSTEP_PERIOD_TICKS(drvConfig) (LVHB_MICROSTEP_IN_FREQ(drvConfig) / drvConfig->deviceConfig.stepperConfig.microStepPwmFrequency)

Returns timer period in micro-step mode (ticks per period).

Returns number of micro-steps per second.

#define LVHB_GET_MICRO_SPEED_OF(drvConfig, microStepsSec) ((uint32_t)(drvConfig->device ← Config.stepperConfig.microStepPwmFrequency / (microStepsSec)));

Returns number of timer overflows according to desired speed.

#define LVHB_GET_MICRO_OFFSET(drvConfig, activeChannel, fullStepVal, tableIdx) ((((activeChannel) & (fullStepVal)) != LVHB_FULLSTEP_CH_INACTIVE) ? drvConfig->deviceConfig.stepperData.microStep
 — Offset[tableIdx] : 0U)

Returns offset for specified micro-step.

• #define LVHB_COMPUTE_REMAINDER(dividend, divisor, fraction) (((dividend) < (divisor)) ? (dividend) : (dividend) - ((divisor) * (fraction)))

Compute remainder after integer division.

#define LVHB_HAS_TWO_BRIDGES(device) ((device != lvhbDeviceMPC17510) && (device != lvhbDevice
 MPC17511))

Checks if the device has two H-Bridges.

#define LVHB_IS_MPC1751x(device) ((device == lvhbDeviceMPC17510) || (device == lvhbDeviceMP←
C17511))

Checks if the device is MPC17510 or MPC17511.

• #define LVHB CHECK BRIDGE(drvConfig, bridge)

Checks if the bridge can be selected in LVHB configuration.

#define LVHB_HAS_GIN_PIN(device) ((device == lvhbDeviceMPC17510) || (device == lvhbDeviceMP ← C17511))

Checks if the device has GIN pin.

#define LVHB_HAS_EN_PIN(device) (device != lvhbDeviceMC34933)

Checks if the device has EN/OE/PSAVE pin.

#define LVHB_HAS_GPIO_IN_PINS(drvConfig) ((drvConfig->inputPins[lvhbBridge1] == lvhbPinsGpio) && (drvConfig->inputPins[lvhbBridge2] == lvhbPinsGpio))

Checks if all four INxA and INxB pins are set as GPIO pins in the driver configuration.

#define LVHB_HAS_PWM_IN_PINS(drvConfig) ((drvConfig->inputPins[lvhbBridge1] == lvhbPinsPwm) && (drvConfig->inputPins[lvhbBridge2] == lvhbPinsPwm))

Checks if all four INxA and INxB pins are set as PWM outputs in the driver configuration.

Checks if stepper motor is selected in the driver configuration.

#define LVHB_IS_BRUSHED_MOTOR_SELECTED(drvConfig) (drvConfig->deviceConfig.motorType == lvhbMotorBrushed)

Checks if brushed motor is selected in the driver configuration.

Enumerations

enum_lvhb_status {
 kStatus_LVHB_TimerInit = MAKE_STATUS(kStatusGroup_LVHB, 0), kStatus_LVHB_InvalidDriverConfig
 = MAKE_STATUS(kStatusGroup_LVHB, 1), kStatus_LVHB_InvalidArgument = MAKE_STATUS(kStatus↔
 Group_LVHB, 2), kStatus_LVHB_TimerFrequency = MAKE_STATUS(kStatusGroup_LVHB, 3),
 kStatus_LVHB_NotInContinualMovement = MAKE_STATUS(kStatusGroup_LVHB, 4), kStatus_LVHB_↔
 DeviceBusy = MAKE_STATUS(kStatusGroup_LVHB, 5) }

Error codes.

enum lvhb_device_t {
 lvhbDeviceMPC17510 = 0x0U, lvhbDeviceMPC17511 = 0x1U, lvhbDeviceMPC17529 = 0x2U, lvhbDevice
 MPC17531A = 0x3U,
 lvhbDeviceMPC17533 = 0x4U, lvhbDeviceMPC17C724 = 0x5U, lvhbDeviceMC34933 = 0x6U }
 H-bridge device.

enum lvhb_bridge_t { lvhbBridge1 = 0x0U, lvhbBridge2 = 0x1U }

Bridge of H-bridge.

enum lvhb motor type t { lvhbMotorStepper = 0x0U, lvhbMotorBrushed = 0x1U }

Motor type

enum lvhb_output_direction_t { lvhbDirectionALowBHigh = 0x0U, lvhbDirectionAHighBLow = 0x1U }
 Bridge output direction.

enum lvhb_recirculation_t { lvhbRecirculationLow = 0x0U, lvhbRecirculationHighImp = 0x1U }

enum lvhb_output_state_t { lvhbOutputOff = 0x0U, lvhbOutputOn = 0x1U }

Output state.

Recirculation side.

 enum lvhb_input_pins_t { lvhbPinsGpio = 0x0U, lvhbPinsGpioPwm = 0x1U, lvhbPinsPwmGpio = 0x2U, lvhb← PinsPwm = 0x3U }

Bridge input pin types.

enum lvhb motor status t { lvhbStatusRunning = 0x0U, lvhbStatusStop = 0x1U }

Motor etatue

Stepper motor mode.

Stepper motor control states.

• enum lvhb micro step t {

lvhbMicroStep2 = LVHB_MICROSTEP_CNT_MAX / 2U, lvhbMicroStep4 = LVHB_MICROSTEP_CNT_MAX / 4U, lvhbMicroStep8 = LVHB_MICROSTEP_CNT_MAX / 8U, lvhbMicroStep16 = LVHB_MICROSTEP_C ← NT_MAX / 16U,

lvhbMicroStep32 = LVHB_MICROSTEP_CNT_MAX / 32U }

Number of micro-steps per one full-step.

enum lvhb_ramp_state_t { lvhbRampOff = 0U, lvhbRampUpSpeed = 1U, lvhbRampDownSpeed = 2U, lvhb
 RampConstSpeed = 3U }

States of finite state machine which are used for acceleration ramp.

Functions

status_t LVHB_ConfigureGpio (lvhb_drv_config_t *const drvConfig)

This function configures GPIO for usage with this driver.

- status_t LVHB_ConfigureTimer (lvhb_drv_config_t *const drvConfig, tmr_sdk_config_t *const tmrSdkConfig)
 This function configures Timer for usage with this driver.
- status_t LVHB_GetDefaultConfig (lvhb_drv_config_t *const drvConfig, lvhb_device_t device, lvhb_motor_
 type_t motorType)

This function gets a default configuration of the driver for specific device and motor type.

status_t LVHB_Init (lvhb_drv_config_t *const initConfig)

This function initializes driver data and output pin values.

status_t LVHB_Deinit (lvhb_drv_config_t *const initConfig)

This function deinitializes the driver.

status_t LVHB_SetMode (lvhb_drv_config_t *const drvConfig, bool active)

This method sets H-Bridge device mode using enable pin.

status_t LVHB_SetGateDriver (lvhb_drv_config_t *const drvConfig, bool outputHigh)

This function controls Gate Driver Input (GIN) pin. It is available for MPC17510 and MPC17511 only.

status_t LVHB_RotateFull (lvhb_drv_config_t *const drvConfig, lvhb_output_state_t state, lvhb_bridge_
 t bridge)

This function spins the motor in desired direction at full speed.

status_t LVHB_RotateProportional (lvhb_drv_config_t *const drvConfig, uint8_t pwmDuty, lvhb_bridge_
 t bridge)

This function spins the motor in desired direction at PWM duty speed.

status t LVHB SetTriState (lvhb drv config t *const drvConfig, lvhb bridge t bridge)

This function sets output of specified H-Bridge to tri-state (high impedance) using input control pins.

status_t LVHB_SetDirection (lvhb_drv_config_t *const drvConfig, lvhb_output_direction_t direction, lvhb_
 bridge_t bridge)

This function sets direction of brush motor at specified H-Bridge interface.

status_t LVHB_SetRecirculation (lvhb_drv_config_t *const drvConfig, lvhb_recirculation_t side, lvhb_
 bridge_t bridge)

This function sets low/high-impedance-side recirculation of the H-Bridge.

• status_t LVHB_SetFullStepSpeed (lvhb_drv_config_t *const drvConfig, uint16_t stepsSec)

This function sets the speed of full-step mode.

• status_t LVHB_SetMicroStepSpeed (lvhb_drv_config_t *const drvConfig, uint16_t microStepsSec)

This function sets the speed of micro-step mode.

• status_t LVHB_SetFullStepAcceleration (lvhb_drv_config_t *const drvConfig, uint32_t acceleration)

This function sets the acceleration ramp of full-step mode.

• status_t LVHB_SetMicroStepAcceleration (lvhb_drv_config_t *const drvConfig, uint32_t acceleration)

This function sets the acceleration ramp of micro-step mode.

status_t LVHB_MoveSteps (lvhb_drv_config_t *const drvConfig, bool forward, uint32_t steps)

This function moves motor by specified number of full-steps.

status_t LVHB_MoveMicroSteps (lvhb_drv_config_t *const drvConfig, bool forward, uint32_t microSteps)

This function moves motor by specified number of micro-steps.

status_t LVHB_MoveContinual (lvhb_drv_config_t *const drvConfig, bool forward)

This function moves motor continually in full-step mode.

status_t LVHB_MoveMicroContinual (lvhb_drv_config_t *const drvConfig, bool forward)

This function moves motor continually in micro-step mode.

status_t LVHB_StopContinualMovement (lvhb_drv_config_t *const drvConfig)

This function is intended to stop continual movement of stepper motor.

lvhb_motor_status_t LVHB_GetMotorStatus (lvhb_drv_config_t *const drvConfig)

This function returns status of stepper motor control.

status_t LVHB_AlignRotor (lvhb_drv_config_t *const drvConfig)

This function aligns rotor to the full-step position.

This function changes the size of micro-step.

• int32 t LVHB GetFullStepPosition (lvhb drv config t *const drvConfig)

This function returns the current full-step position.

int32_t LVHB_GetMicroStepPosition (lvhb_drv_config_t *const drvConfig)

This function returns the current micro-step position.

• status t LVHB ResetFullStepPosition (lvhb drv config t *const drvConfig)

This function sets the counter of full-steps to zero.

status_t LVHB_DisableMotor (lvhb_drv_config_t *const drvConfig)

This function disables the stepper motor.

void LVHB_OnCounterRestart (lvhb_drv_config_t *const drvConfig)

Counter restart event handler. This function must be called from counter restart interrupt handler.

void LVHB_OnActionComplete (lvhb_drv_config_t *const drvConfig)

Declaration of function that can be used by user for handling the action complete event. This event occurs when "LV\HB_MoveSteps", "LVHB_MoveMicroSteps", "LVHB_StopContinualMovement" or "LVHB_AlignRotor" action is done.

6.2.1 Detailed Description

Low voltage H-Bridge driver based on AML layer. Supports boards based on MPC17510, MPC17511, MPC17529, MPC17531A, MPC17533, MPC17C724 and MC34933.

This module is common for all supported models.

6.2.2 Macro Definition Documentation

6.2.2.1 LVHB_CHECK_BRIDGE

Value:

```
((bridge <= lvhbBridge2) && \
      ((bridge == lvhbBridge1) || \
            (LVHB_HAS_TWO_BRIDGES(drvConfig->deviceConfig.device) && (
            LVHB_IS_STEPPER_SELECTED(drvConfig) || drvConfig->deviceConfig.secondaryBridgeUsed)
            )))
```

Checks if the bridge can be selected in LVHB configuration.

Bridge can be selected from lvhb_bridge_t enumeration only. LvhbBridge1 can be selected everytime. LvhbBridge2 can be selected if device with two H-bridges is chosen and stepper motor or secondaryBridgeUsed variable is set in driver configuration.

Parameters

drvConfig	Pointer to the LVHB driver instance configuration.
bridge	Bridge from lvhb_bridge_t enumeration.

Returns

True if bridge can be selected.

6.2.2.2 LVHB_COMPUTE_REMAINDER

Compute remainder after integer division.

Remainder = dividend mod divisor = dividend - (divisor * (dividend / divisor)).

Parameters

dividend	Expression dividend.
divisor	Expression divisor.
fraction	Equal to dividend div divisor.

Returns

Remainder after integer division.

6.2.2.3 LVHB_FULLSTEP_IN_FREQ

Returns timer input frequency for full-stepping.

Parameters

drvConfig	Pointer to the LVHB driver instance configuration.
-----------	--

Returns

Timer input frequency for full-stepping.

6.2.2.4 LVHB_FULLSTEP_IN_FREQ_0676

Returns factored frequency for full-step ramp.

Parameters

driver instance configuration.	drvConfig
--------------------------------	-----------

Returns

Factored frequency for full-step ramp.

6.2.2.5 LVHB_GET_FULL_SPEED_TICKS

Returns number of timer ticks per timer period.

Parameters

drvConfig	Pointer to the LVHB driver instance configuration.
stepsSec	Number of steps per second.

Returns

Number of timer ticks.

6.2.2.6 LVHB_GET_MICRO_OFFSET

Returns offset for specified micro-step.

Parameters

drvConfig	Pointer to the LVHB driver instance configuration.
activeChannel	Channel output value (one of LVHB_FULLSTEP_CH_INxx constants).
fullStepVal	Active channels in current full-step. Value is logic OR of channels output values (LVHB_FULLSTEP_CH_INX constants).
tableldx	Index to the table with micro-step offsets.

Returns

Channel offset.

6.2.2.7 LVHB_GET_MICRO_SPEED

Returns number of micro-steps per second.

Parameters

drvConfig	Pointer to the LVHB driver instance configuration.
speedOverflows	Micro-step speed in number of timer overflows.

Returns

Number of micro-steps per second.

6.2.2.8 LVHB_GET_MICRO_SPEED_OF

Returns number of timer overflows according to desired speed.

Parameters

drvConfig	Pointer to the LVHB driver instance configuration.
microStepsSec	Micro-step speed in number of steps per second.

Returns

Number of overflows.

6.2.2.9 LVHB_HAS_EN_PIN

Checks if the device has EN/OE/PSAVE pin.

Parameters

device	Device from lvhb device t enumeration.	

Returns

True if device has EN/OE/PSAVE pin.

6.2.2.10 LVHB_HAS_GIN_PIN

Checks if the device has GIN pin.

Parameters

```
device Device from lvhb_device_t enumeration.
```

Returns

True if device has GIN pin.

6.2.2.11 LVHB_HAS_GPIO_IN_PINS

Checks if all four INxA and INxB pins are set as GPIO pins in the driver configuration.

Parameters

```
drvConfig Pointer to the LVHB driver instance configuration.
```

Returns

True if all four INxA and INxB pins are set as GPIO pins.

6.2.2.12 LVHB_HAS_PWM_IN_PINS

Checks if all four INxA and INxB pins are set as PWM outputs in the driver configuration.

Parameters

drvConfig	Pointer to the LVHB driver instance configuration.
-----------	--

Returns

True if all four INxA and INxB pins are set as PWM outputs.

6.2.2.13 LVHB_HAS_TWO_BRIDGES

Checks if the device has two H-Bridges.

Parameters

device Device from lyhb device t enu	umeration.
--------------------------------------	------------

Returns

True if supported device has two H-Bridges.

6.2.2.14 LVHB_IS_BRUSHED_MOTOR_SELECTED

Checks if brushed motor is selected in the driver configuration.

Parameters

drvConfig	Pointer to the LVHB driver instance configuration.
a	i cinto to the ziriz dinio metanes comigaration

Returns

True if brushed motor is selected.

6.2.2.15 LVHB_IS_MPC1751x

Checks if the device is MPC17510 or MPC17511.

Parameters

devic	á	Device from lvhb_device_t enumeration.
-------	---	--

Returns

True if device is MPC17510 or MPC17511.

6.2.2.16 LVHB_IS_STEPPER_SELECTED

Checks if stepper motor is selected in the driver configuration.

Parameters

drvConfig Pointer to the LVHB driver instance configuration.
--

Returns

True if stepper motor is selected.

6.2.2.17 LVHB_MICROSTEP_IN_FREQ

```
\label{localize} $$\#define LVHB\_MICROSTEP_IN\_FREQ($$ drvConfig->tmrLvhbConfig.srcClck\_Hz >> drvConfig->tmrLvhbConfig.$\longleftrightarrow $$ prescale)$
```

Returns timer input frequency for micro-stepping.

Parameters

drvConfig	Pointer to the LVHB driver instance configuration.
-----------	--

Returns

Timer input frequency for micro-stepping.

6.2.2.18 LVHB_MICROSTEP_IN_FREQ_0676

Returns factored frequency for micro-step ramp.

Parameters

Returns

Factored frequency for micro-step ramp.

6.2.2.19 LVHB_MICROSTEP_PERIOD_TICKS

Returns timer period in micro-step mode (ticks per period).

Parameters

drvConfig	Pointer to the LVHB driver instance configuration.

Returns

Timer period in micro-step mode (ticks per period).

6.2.2.20 LVHB_TIMER_VALUE_MAX

Returns maximal value of counter.

Parameters

Config Pointer to the LVHB driver instance configuration.

Returns

Maximal value of counter + 1.

Index

lubb atatua	lubb atopper data t 20
_lvhb_status Enum_group, 8	lvhb_stepper_data_t, 39 fullSpeed
Enam_group, 8	•
activeMode	lvhb_stepper_data_t, 39
lvhb_device_data_t, 32	fullStepAcceleration
	lvhb_stepper_config_t, 36
brushConfig	fullStepIdx
lvhb_device_data_t, 32	lvhb_stepper_data_t, 39 fullStepSpeed
brushPwmFrequency	lvhb stepper config t, 36
lvhb_device_data_t, 32	fullStepsPerPeriod
	lvhb_stepper_data_t, 39
continual	Function_group, 14
lvhb_stepper_data_t, 38	LVHB_AlignRotor, 15
controlState	LVHB_ConfigureGpio, 16
lvhb_stepper_data_t, 38	LVHB ConfigureTimer, 16
counterWidth	LVHB Deinit, 16
tmr_lvhb_config_t, 42	LVHB DisableMotor, 17
currentDelay	LVHB_GetDefaultConfig, 17
lvhb_stepper_data_t, 38	LVHB_GetFullStepPosition, 18
currentDelayRest	LVHB_GetMicroStepPosition, 18
lvhb_stepper_data_t, 39	LVHB GetMotorStatus, 18
currentFullSpeed	LVHB Init, 19
lvhb_stepper_data_t, 39	LVHB_MoveContinual, 19
decelStepCnt	LVHB_MoveMicroContinual, 20
lvhb_stepper_data_t, 39	LVHB MoveMicroSteps, 20
device	LVHB_MoveSteps, 21
lvhb_device_data_t, 32	LVHB_OnActionComplete, 22
deviceConfig	LVHB_OnCounterRestart, 22
lvhb_drv_config_t, 34	LVHB ResetFullStepPosition, 22
0_ /	LVHB_RotateFull, 23
enPinIndex	LVHB_RotateProportional, 23
lvhb_drv_config_t, 34	LVHB SetDirection, 24
enPinInstance	LVHB_SetFullStepAcceleration, 24
lvhb_drv_config_t, 34	LVHB SetFullStepSpeed, 25
Enum_group, 7	LVHB_SetGateDriver, 25
_lvhb_status, 8	LVHB SetMicroStepAcceleration, 25
lvhb_bridge_t, 8	LVHB_SetMicroStepSize, 26
lvhb_device_t, 8	LVHB SetMicroStepSpeed, 26
lvhb_input_pins_t, 9	LVHB_SetMode, 27
lvhb_micro_step_t, 9	LVHB_SetRecirculation, 27
lvhb_motor_status_t, 9	LVHB SetTriState, 28
lvhb_motor_type_t, 10	LVHB StopContinualMovement, 28
lvhb_output_direction_t, 10	_ '
lvhb_output_state_t, 10	gateDriverOutputHigh
lvhb_ramp_state_t, 11 lvhb_recirculation_t, 11	lyhb device data t, 33
— — — ·	ginPinIndex
lvhb_stepper_mode_t, 11	lvhb_drv_config_t, 34
lvhb_stepper_state_t, 12	ginPinInstance
forward	lvhb_drv_config_t, 35
-	

62 INDEX

inputPins	LVHB_IS_BRUSHED_MOTOR_SELECTED		
lvhb_drv_config_t, 35	lvhb.h, 56		
inxaChannelNumber	LVHB_IS_MPC1751x		
tmr_lvhb_config_t, 42	Ivhb.h, 57		
inxaPinIndex	LVHB_IS_STEPPER_SELECTED		
lvhb_drv_config_t, 35	lvhb.h, 57		
inxaPinInstance	LVHB Init		
lvhb_drv_config_t, 35	-		
inxbChannelNumber	Function_group, 19		
	LVHB_MICROSTEP_IN_FREQ_0676		
tmr_lvhb_config_t, 42 inxbPinIndex	lvhb.h, 58		
	LVHB_MICROSTEP_IN_FREQ		
lvhb_drv_config_t, 35	lvhb.h, 57		
inxbPinInstance	LVHB_MICROSTEP_PERIOD_TICKS		
lvhb_drv_config_t, 35	lvhb.h, 58		
LVHB_AlignRotor	LVHB_MoveContinual		
Function group, 15	Function_group, 19		
	LVHB_MoveMicroContinual		
LVHB_CHECK_BRIDGE	Function_group, 20		
lvhb.h, 50	LVHB_MoveMicroSteps		
LVHB_COMPUTE_REMAINDER	Function group, 20		
lvhb.h, 50	LVHB MoveSteps		
LVHB_ConfigureGpio	Function group, 21		
Function_group, 16	LVHB OnActionComplete		
LVHB_ConfigureTimer	-		
Function_group, 16	Function_group, 22		
LVHB_Deinit	LVHB_OnCounterRestart		
Function_group, 16	Function_group, 22		
LVHB_DisableMotor	LVHB_ResetFullStepPosition		
Function_group, 17	Function_group, 22		
LVHB_FULLSTEP_IN_FREQ_0676	LVHB_RotateFull		
lvhb.h, 51	Function_group, 23		
LVHB_FULLSTEP_IN_FREQ	LVHB_RotateProportional		
lyhb.h, 51	Function_group, 23		
LVHB_GET_FULL_SPEED_TICKS	LVHB_SetDirection		
	Function_group, 24		
IVID CET MICRO CEESET	LVHB_SetFullStepAcceleration		
LVHB_GET_MICRO_OFFSET	Function_group, 24		
lvhb.h, 52	LVHB_SetFullStepSpeed		
LVHB_GET_MICRO_SPEED_OF	Function_group, 25		
lvhb.h, 53	LVHB_SetGateDriver		
LVHB_GET_MICRO_SPEED			
lvhb.h, 53	Function_group, 25		
LVHB_GetDefaultConfig	LVHB_SetMicroStepAcceleration		
Function_group, 17	Function_group, 25		
LVHB_GetFullStepPosition	LVHB_SetMicroStepSize		
Function_group, 18	Function_group, 26		
LVHB_GetMicroStepPosition	LVHB_SetMicroStepSpeed		
Function_group, 18	Function_group, 26		
LVHB_GetMotorStatus	LVHB_SetMode		
Function_group, 18	Function_group, 27		
LVHB_HAS_EN_PIN	LVHB_SetRecirculation		
lvhb.h, 53	Function_group, 27		
LVHB_HAS_GIN_PIN	LVHB SetTriState		
lvhb.h, 55	Function_group, 28		
	LVHB_StopContinualMovement		
LVHB_HAS_GPIO_IN_PINS	_ ·		
IVID LIAS DWM IN DINS	Function_group, 28		
LVHB_HAS_PWM_IN_PINS	LVHB_TIMER_VALUE_MAX		
lvhb.h, 55	lvhb.h, 58		
LVHB_HAS_TWO_BRIDGES	lvhb.h		
lvhb.h, 56	LVHB_CHECK_BRIDGE, 50		

INDEX 63

	LVHB_COMPUTE_REMAINDER, 50		Enum_group, 10
	LVHB_FULLSTEP_IN_FREQ_0676, 51	lvhb	output direction t
	LVHB_FULLSTEP_IN_FREQ, 51	-	Enum_group, 10
	LVHB_GET_FULL_SPEED_TICKS, 52	lyhh	_output_state_t
	LVHB_GET_MICRO_OFFSET, 52		Enum_group, 10
		lybb	_ramp_state_t
	LVHB_GET_MICRO_SPEED_OF, 53	ַטוועו	
	LVHB_GET_MICRO_SPEED, 53		Enum_group, 11
	LVHB_HAS_EN_PIN, 53	ıvnb_	_recirculation_t
	LVHB_HAS_GIN_PIN, 55		Enum_group, 11
	LVHB_HAS_GPIO_IN_PINS, 55	lvhb_	_stepper_config_t, 36
	LVHB_HAS_PWM_IN_PINS, 55		fullStepAcceleration, 36
	LVHB_HAS_TWO_BRIDGES, 56		fullStepSpeed, 36
	LVHB_IS_BRUSHED_MOTOR_SELECTED, 56		microStepAcceleration, 36
	LVHB IS MPC1751x, 57		microStepPerStep, 37
	LVHB IS STEPPER SELECTED, 57		microStepPwmFrequency, 37
	LVHB_MICROSTEP_IN_FREQ_0676, 58		microStepSpeed, 37
	LVHB MICROSTEP IN FREQ, 57	lvhb	_stepper_data_t, 37
	LVHB_MICROSTEP_PERIOD_TICKS, 58	_	continual, 38
	LVHB TIMER VALUE MAX, 58		controlState, 38
ا جا جاء را			currentDelay, 38
	/lvhb.c, 43		currentDelayRest, 39
	/lvhb.h, 44		currentFullSpeed, 39
lvhb_	_bridge_t		decelStepCnt, 39
	Enum_group, 8		•
lvhb_	_brush_config_t, 31		forward, 39
	outputDirection, 31		fullSpeed, 39
	recirculation, 31		fullStepIdx, 39
lvhb	_device_data_t, 32		fullStepsPerPeriod, 39
	activeMode, 32		maxSpeedDelay, 39
	brushConfig, 32		microPosInFull, 40
	brushPwmFrequency, 32		microSpeed, 40
	device, 32		microStepOffset, 40
	gateDriverOutputHigh, 33		microWind1ldx, 40
	motorType, 33		microWind2ldx, 40
			motorStatus, 40
	secondaryBridgeUsed, 33		rampState, 40
	stepperConfig, 33		stepCntr, 40
	stepperData, 33		stepPos, 41
lvhb_	_device_t		stepperMode, 41
	Enum_group, 8		steps, 41
lvhb_	_drv_config_t, 33		timerOverflows, 41
	deviceConfig, 34	lybb	
	enPinIndex, 34	ַטוועו	_stepper_mode_t
	enPinInstance, 34	ما ما، را	Enum_group, 11
	ginPinIndex, 34	_dnvi	_stepper_state_t
	ginPinInstance, 35		Enum_group, 12
	inputPins, 35	may	SpeedDelay
	inxaPinIndex, 35	IIIax.	
	inxaPinInstance, 35		lvhb_stepper_data_t, 39
	inxbPinIndex, 35	micro	oPosInFull
			lvhb_stepper_data_t, 40
	inxbPinInstance, 35	micro	oSpeed
	tmrInstance, 35		lvhb_stepper_data_t, 40
	tmrLvhbConfig, 35	micr	oStepAcceleration
Ivhb_	_input_pins_t		lvhb_stepper_config_t, 36
	Enum_group, 9	micro	oStepOffset
lvhb_	_micro_step_t		lvhb_stepper_data_t, 40
	Enum_group, 9	micro	oStepPerStep
lvhb	_motor_status_t		lvhb_stepper_config_t, 37
_	Enum_group, 9	micro	oStepPwmFrequency
lvhb	motor type t		lyhb stepper config t. 37

64 INDEX

microStepSpeed
lvhb_stepper_config_t, 37
microWind1ldx
lvhb_stepper_data_t, 40 microWind2ldx
lvhb_stepper_data_t, 40
motorStatus
lvhb_stepper_data_t, 40
motorType
lvhb_device_data_t, 33
outputDirection
lvhb_brush_config_t, 31
prescale
tmr_lvhb_config_t, 42
rampState
lvhb_stepper_data_t, 40
recirculation
lvhb_brush_config_t, 31
secondaryBridgeUsed
lvhb_device_data_t, 33
srcClck_Hz
tmr_lvhb_config_t, 42
stepCntr
lvhb_stepper_data_t, 40 stepPos
lvhb_stepper_data_t, 41
stepperConfig
lvhb_device_data_t, 33
stepperData
lvhb_device_data_t, 33
stepperMode
lvhb_stepper_data_t, 41
steps
lvhb_stepper_data_t, 41
Struct_group, 13
timerOverflows
lvhb_stepper_data_t, 41
tmr_lvhb_config_t, 41
counterWidth, 42
inxaChannelNumber, 42
inxbChannelNumber, 42
prescale, 42
srcClck_Hz, 42 tmrInstance
lvhb_drv_config_t, 35
tmrLvhbConfig
lvhb_drv_config_t, 35