Certamen Recuperativo Informática Teórica

28 de noviembre de 2024

THE COUNTY FAIR FIRED ME FOR ADDING A BELT DRIVE TO THE FERRIS WHEELS.

https://www.xkcd.org/2973

La entrega es en hojas separadas por pregunta, cada una debidamente identificada (nombre, rol, certamen y ramo). Si no responde, entregue una pregunta en blanco.

1. Demuestre que el lenguaje $L = \{\langle M \rangle : M \text{ es un DFA y } \mathcal{L}(M) = \Sigma^* \}$ es decidible.

(20 puntos)

2. Demuestre que los lenguajes en P son cerrados respecto de (a) la unión y (b) la concatenación. Basta una explicación informal, pero clara.

Pista: Un lenguaje en $L \in P$ puede representarse mediante una función $f(\sigma)$ y un polinomio p(n) que dice si $\sigma \in L$ y se ejecuta en a lo más $p(|\sigma|)$ pasos.

(39 puntos)

3. En lo siguiente, considere problemas D_i decidibles, I_i no decidibles, E_i computacionalmente enumerables no decidibles. Indique cuáles de las siguientes reducciones son posibles. Justifique brevemente.

a)
$$\overline{E}_1 \le I_1$$

b)
$$E_2 \le D_2$$
 c) $E_3 \le I_3$

c)
$$E_3 \leq I_3$$

d)
$$D_2 \leq \overline{D}_3$$

(20 puntos)

4. En lo siguiente, considere problemas $P_i \in P$, $N_i \in NP$, C_i es NP-completo, y X_i es desconocido. Indique qué permiten concluir sobre X_i las siguientes reducciones, suponiendo que $P \neq NP$:

a)
$$X_1 \le_p N_1$$

b)
$$X_2 \le C_2$$

b)
$$X_2 \le C_2$$
 c) $X_3 \le_p P_3 \ y \ X_3 \le_p C_3$ d) $C_4 \le X_4 \ y \ X_4 \le_p C_4$

d)
$$C_4 \leq X_4 \vee X_4 \leq_n C_1$$

(20 puntos)

5. El problema Partition da un multiconjunto A de números naturales y pregunta si se puede dividir en dos multisubconjuntos que tienen la misma suma. Sabemos que Partition es NP-completo. El problema 3-Partition da un multiconjunto A y pregunta si se puede dividir en tres multisubconjuntos que tienen la misma suma. La siguiente es una demostración propuesta de que 3-Partition es NP-completo.

Demostración. Definamos:

$$S(\mathcal{A}) = \sum_{e \in \mathcal{A}} e$$

Llamemos $S(\mathcal{A}) = 3m$ en lo que sigue.

- *a*) Observe que si no hay $\mathscr{A}' \subset \mathscr{A}$ tal que $S(\mathscr{A}') = 2m/3$, entonces \mathscr{A} no puede particionarse en tres subconjuntos que suman m cada uno (ya que la premisa implica que tampoco hay un subconjunto de \mathscr{A} que suma m).
- b) Construya una instancia de Partition tomando un subconjunto \mathscr{A}' con $S(\mathscr{A}') = 2m/3$. Si es una instancia correcta de Partition puede particionarse en multisubconjuntos \mathscr{B} , \mathscr{C} que con $\mathscr{A} \setminus \mathscr{A}'$ resuelven 3-Partition.

Al revés (instancia correcta de Partition lleva a una instancia correcta de 3-Partition) es por un razonamiento igual de simple.

Quien publicó esta consulta pregunta:

a) ¿Esta reducción es polinomial? El multiconjunto A' es arbitrario, hallarlo es una instancia de SUBSET SUM (¿Hay un multisubconjunto de A con suma dada S?), que sabemos es NP-completo.

Preguntamos además:

- b) ¿Falta algo en la demostración propuesta?
- c) ¿Qué reducción pretende demostrar? ¿Es correcto esto?

(40 puntos)