Subsetting Data in R

Data Wrangling in R

Overview

We showed different ways to read data into R using:

```
readr::read_csv()
readr::read_delim()
readxl::read_excel()
```

In this module, we will show you how select rows and columns of datasets.

Setup

We will be using the dplyr package in the tidyverse.

Here are several resources on how to use dplyr:

- https://dplyr.tidyverse.org/
- https://r4ds.had.co.nz/
- https:
 - //cran.rstudio.com/web/packages/dplyr/vignettes/dplyr.html
- https://stat545.com/dplyr-intro.html

The dplyr package also interfaces well with tibbles.

Dataset.

We will be using the diamonds dataset in the ggplot2 package as an example (so make sure you initiate the ggplot2 package if you are following along on your own).

head(diamonds)

```
# A tibble: 6 x 10
                color clarity depth table price
 carat cut
 <dbl> <ord>
                <ord> <ord>
                             <dbl> <dbl> <dbl> <dbl> <dl> <dl> <dbl> <dl
  0.23 Ideal E
                      ST2
                              61.5
                                      55
                                          326
                                               3.95
                                                   3
2 0.21 Premium E
                                      61
                                          326
                                               3.89 3
                      SI1
                              59.8
3 0.23 Good
              Ε
                      VS1
                              56.9
                                      65
                                          327
                                               4.05
                                                    4
  0.29 Premium I
                                      58
                                          334
                                               4.2
                                                     4
4
                      VS2
                              62.4
5 0.31 Good
                      SI2
                              63.3
                                      58
                                          335 4.34 4
6
  0.24 Very Good J
                      VVS2
                              62.8
                                      57
                                          336
                                               3.94
                                                     3
```

Selecting a single column of a data.frame:

To grab just the values from a single column, you would use the pull function. The output will be a vector (and not a tibble).

Since this is a long vector we will just show the first 6 values using the head function around the output of the pull function.

```
head(pull(diamonds,carat))
```

[1] 0.23 0.21 0.23 0.29 0.31 0.24

Using the pipe (comes with dplyr):

That was a lot of typing and nested functions, which can be confusing. Recently, the pipe %>% makes things such as this much more readable. It reads left side "pipes" into right side. RStudio CMD/Ctrl + Shift + M shortcut.

Using the pipe (comes with dplyr):

Pipe diamonds into select, then pipe that into pull, and then show the head:

```
diamonds %>% pull(carat) %>% head()
```

```
[1] 0.23 0.21 0.23 0.29 0.31 0.24
```

Selecting a single column of a data.frame:

The pull function is equivalent to using the \$ method (in base R).

Note that base R and tidyverse don't always play nice together.

head(pull(diamonds, carat))

[1] 0.23 0.21 0.23 0.29 0.31 0.24

head(diamonds\$carat)

[1] 0.23 0.21 0.23 0.29 0.31 0.24

Note this does *not* return a tibble (or data.frame) but rather a vector.

Selecting a single column of a data.frame:

The select function extracts one or more columns from a tibble or data.frame and returns a tibble (not a vector).

```
select(diamonds, carat)
```

```
# A tibble: 53,940 x 1
   carat
   <dbl>
   0.23
   0.21
 3
   0.23
   0.29
 5 0.31
   0.24
   0.24
8
   0.26
   0.22
10 0.23
# i 53,930 more rows
```

Selecting multiple columns of a data.frame:

The select command from dplyr is very flexible. You just need to list all columns you want to extract separated by commas. You can use this as a way to just keep the columns you want for example.

select(diamonds, carat, depth)

```
# A tibble: 53,940 x 2
   carat depth
   <dbl> <dbl>
 1 0.23 61.5
 2 0.21 59.8
 3
   0.23 56.9
 4
   0.29 62.4
 5
   0.31 63.3
 6
   0.24 62.8
   0.24 62.3
 8
   0.26 61.9
   0.22 65.1
   0.23
         59.4
10
```

See the Select "helpers"

Type tidyselect:: to see functions available.

Here are a few:

```
last_col()
ends_with()
starts_with()
contains() # search for a pattern
everything()
```

Tidyselect helpers

For example, we can take all columns that start with a "c":

```
diamonds %>% select(starts_with("c"))
```

```
# A tibble: 53,940 x 4
  carat cut color clarity
  <dbl> <ord> <ord> <ord> <ord>
1 0.23 Ideal E
                     ST2
2 0.21 Premium E
                     ST1
3 0.23 Good E VS1
4 0.29 Premium I VS2
5 0.31 Good
                J SI2
   0.24 Very Good J VVS2
6
   0.24 Very Good I
                    VVS1
8
   0.26 Very Good H
                     SI1
  0.22 Fair
                     VS2
10 0.23 Very Good H
                     VS1
   53,930 more rows
```

Tidyselect helpers

Or we can take all columns that end with an "e":

```
diamonds %>% select(ends_with("e"))
```

```
# A tibble: 53,940 x 2
  table price
  <dbl> <int>
     55
          326
     61
          326
 3
     65 327
     58 334
 5
     58
          335
 6
     57
          336
     57
          336
8
     55 337
     61
          337
10
     61
          338
   53,930 more rows
```

Tidyselect helpers

We are going to cover "fancier" ways of matching column names (and strings more generally) in the data cleaning lecture.

Subset rows of a data.frame:

0.22 Fair

0.3 Good

The command in dplyr for subsetting rows is filter. Try ?filter.

The easiest way to filter is by testing whether numeric observations

```
are greater than or less than some cutoff:
filter(diamonds, depth > 60)
```

#	A tibbl	e: 48,315	x 10					
	carat	cut	color	clarity	depth	table	price	x
	<dbl></dbl>	<ord></ord>	<ord></ord>	<ord></ord>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>

carat	cut	COLOL	clarity	aeptn	table	price	2
<dbl></dbl>	<ord></ord>	<ord></ord>	<ord></ord>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl:< td=""></dbl:<>
1 0.23	Ideal	E	SI2	61.5	55	326	3.99

			•	-		-	
<dbl></dbl>	<ord></ord>	<ord></ord>	<ord></ord>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>
1 0.23	Ideal	E	SI2	61.5	55	326	3.95

1	0.23 Ideal	E	SI2	61.5	55	326	3.95	
2	0.29 Premium	Ι	VS2	62.4	58	334	4.2	
3	0.31 Good	.J	ST2	63.3	58	335	4.34	

3	0.31	Good		J	SI2	63.3	58	335	4.34
4	0.24	Very	${\tt Good}$	J	VVS2	62.8	57	336	3.94
5	0.24	Very	${\tt Good}$	I	VVS1	62.3	57	336	3.95
6	0.26	Verv	Good	Н	ST1	61 9	55	337	4 07

VS2

SI1

65.1

64

61

55

337 3.87

4.25

339

	<dbl></dbl>	<ord></ord>	<ord></ord>	<ord></ord>	<dbl></dbl>	<dbl></dbl>	<int></int>	<
1	0.23	Ideal	E	SI2	61.5	55	326	
2	0.29	Premium	I	VS2	62.4	58	334	
3	0.31	Good	.T	ST2	63.3	58	335	

Subset rows of a data.frame:

You can also using piping here:

0.23 Ideal

0.22 Premium

10

```
diamonds %>% filter(depth > 60)
```

```
# A tibble: 48,315 x 10
               color clarity depth table price
  carat cut
                                            X
  <dbl> <ord>
               <ord> <ord>
                          <dbl> <dbl> <int> <dbl> <
                                  55
   0.23 Ideal E
                    SI2
                           61.5
                                      326 3.95
   0.29 Premium I
                   VS2
                           62.4
                                  58
                                      334 4.2
                           63.3 58 335 4.34
3
   0.31 Good
               J SI2
  0.24 Very Good J VVS2
                           62.8 57 336 3.94
5
   0.24 Very Good I VVS1
                           62.3 57
                                      336 3.95
   0.26 Very Good H
                           61.9
                                  55
                                          4.07
6
                    SI1
                                      337
   0.22 Fair
               Ε
                    VS2
                           65.1
                                  61
                                      337
                                          3.87
   0.3 Good
                    SI1
                           64
                                  55
                                      339
                                          4.25
```

VS1

SI1

56

61

62.8

60.4

340 3.93

3.88

342

i 48,305 more rows

Subset rows of a data frame:

9

10

0.71 Good

0.7 Premium

i 1,694 more rows

You can combine filtering on multiple columns by separating the filter arguments with commas:

```
diamonds %>% filter(depth > 60, table > 60, price > 2775)
```

```
# A tibble: 1,704 x 10
   carat cut
                   color clarity depth table price
                                                       X
   <dbl> <ord>
                   <ord> <ord> <dbl> <dbl> <int> <dbl> <</pre>
```

1 (0.72	Premium	F	SI1	61.8	61	2777	5.82
2 (0.72	Very Good	H	VS1	60.6	63	2782	5.83
3 (0.81	Good	G	SI2	61	61	2789	5.94

2	0.72	Very Good	H	VS1	60.6	63	2782	5.83	
3	0.81	Good	G	SI2	61	61	2789	5.94	
4	0.71	Premium	F	VS1	60.1	62	2790	5.77	

2	0.72	Very Good	Н	VS1	60.6	63	2782	5.83	
3	0.81	Good	G	SI2	61	61	2789	5.94	
4	0.71	Premium	F	VS1	60.1	62	2790	5.77	
_	0 71	Danaminam	C	VC1	60 1	61	2002	F 7	

_								
3	0.81	Good	G	SI2	61	61	2789	5.94
4	0.71	Premium	F	VS1	60.1	62	2790	5.77
5	0.71	Premium	G	VS1	62.4	61	2803	5.7

J	0.01	Good	u	DIZ	01	OI	2103	0.94
4	0.71	Premium	F	VS1	60.1	62	2790	5.77
5	0.71	Premium	G	VS1	62.4	61	2803	5.7
6	0.74	Fair	F	VS2	61.1	68	2805	5.82

4	0.71 Premi	um F	VS1	60.1	62	2790	5.77	
5	0.71 Premi	um G	VS1	62.4	61	2803	5.7	
6	0.74 Fair	F	VS2	61.1	68	2805	5.82	
_								

5	0.71	Premium	G	VS1	62.4	61	2803	5.7
6	0.74	Fair	F	VS2	61.1	68	2805	5.82
7	0.7	Good	F	VS1	62.8	61	2810	5.57

SI1

VS2

5.66 0.7 Very Good F VS2 60.9 61 2812

62.8

62.4

64 2817 5.6

2818

5.66

61

Subset rows of a data.frame:

1.05 Premium I

0.91 Premium I

1.06 Premium I

0.91 Premium I

Premium I

Premium I

Premium I

4 5

6

8

10

0.9

0.9

0.9

You can also filter character strings by a single value or category. Here we need quotes around character strings.

```
diamonds %>% filter(color == "I",
            clarity == "SI2", cut == "Premium")
```

# A tibble: 312 3	10					
carat cut	color	clarity	depth	table	price	x

# A tibb	le: 312 :	x 10						
carat	cut	color	clarity	depth	table	price	х	
<dbl></dbl>	<ord></ord>	<ord></ord>	<ord></ord>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<

					<u>F</u>		r		
	<dbl></dbl>	<ord></ord>	<ord></ord>	<ord></ord>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<
1	0.42	Premium	I	SI2	61.5	59	552	4.78	
2	1	Premium	I	SI2	58.2	60	2795	6.61	
3	0.9	Premium	Т	CTD	62.2	59	2826	6 11	

SI2

SI2

SI2

SI2

SI2

SI2

SI2

	Carac	Cut	COTOI	Clailty	debon	Cable	brice	^	
	<dbl></dbl>	<ord></ord>	<ord></ord>	<ord></ord>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<db< th=""></db<>
1	0.42	${\tt Premium}$	I	SI2	61.5	59	552	4.78	4.8
2	1	Premium	I	SI2	58.2	60	2795	6.61	6.

58.3

62.5

60.6

61.5

60.2

60.6

62

57

59

58

60

57

59

60

2911

2913

2948

2948

2968

2981

3001

6.0

6.6

6.3

6.

6.4 6.5

6.3

6.72

6.18

6.15

6.28

6.57

6.29

6.23

Subset rows of a data frame:

A tibble: 22,259 x 10

carat cut

Sometimes you want to be able to filter on matching several values or categories. The %in% operator is useful here:

```
diamonds %>% filter(clarity %in% c("SI1", "SI2"))
```

```
<dbl> <dbl> <int> <dbl> <
 <dbl> <ord>
                <ord> <ord>
  0.23 Ideal
                Ε
                      SI2
                              61.5
                                      55
                                           326
                                               3.95
  0.21 Premium
                Ε
                      SI1
                              59.8
                                      61
                                           326
                                               3.89
3
  0.31 Good
                      SI2
                              63.3
                                      58
                                           335
                                               4.34
  0.26 Very Good H
                      SI1
                              61.9
                                      55
                                           337
                                               4.07
5
  0.3
       Good
                      SI1
                              64
                                      55
                                           339
                                               4.25
                                               3.88
  0.22 Premium
                F
                      SI1
                              60.4
                                      61
                                           342
```

SI2

SI2

SI2

SI1

Ε

Ι

color clarity depth table price

62.2

60.2

63.4

62

54

62

54

54

344

345

348

351

4.35

3.79

4.31

4.23

0.3 Good # i 22,249 more rows

Premium

Ideal

0.31 Ideal

0.2

0.3

8

9

10

Subset rows of a data frame:

0.75 Premium D

1.02 Premium G

10

You can mix and match filtering on numeric and categorical/character columns in the same filter() command:

```
diamonds %>% filter(clarity %in% c("SI1", "SI2"),
                    cut == "Premium", price > 3000)
```

```
# A tibble: 3,976 x 10
                                                       X
```

	Carac	Cut	COTOI	Clailty	debrii	table	brice	A	
	<dbl></dbl>	<ord></ord>	<ord></ord>	<ord></ord>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<db< th=""></db<>
4	0 0	D	т	CTO	60 6	co	2001	C 02	6 6

	/UDI/	VOI U	\01u>	VOI U	\db1>	\db1>	\TII (>
1	0.9	${\tt Premium}$	I	SI2	60.6	60	3001

1	0.9	Premium	I	SI2	60.6	60	3001	6.2
2	0.81	Premium	F	SI1	61.9	58	3004	5.9

1	0.9	Premium	1	S12	60.6	60	3001	6.23	6
2	0.81	${\tt Premium}$	F	SI1	61.9	58	3004	5.99	5
3	0 00	Dromium	ת	CID	60.2	61	3004	6 30	6

_	0.0	I I Om I am	_	~	00.0	00	0001	0.20	_
2	0.81	${\tt Premium}$	F	SI1	61.9	58	3004	5.99	5
3	0.92	${\tt Premium}$	D	SI2	60.2	61	3004	6.32	6
			_	~					_

2	0.81	Premium	F	SI1	61.9	58	3004	5.99	5
3	0.92	Premium	D	SI2	60.2	61	3004	6.32	6
4	0.9	Premium	D	SI1	62.2	60	3013	6.08	6

3	0.92	Premium	ע	512	60.2	ρŢ	3004	0.32	О.
4	0.9	${\tt Premium}$	D	SI1	62.2	60	3013	6.08	6.
5	0.96	Premium	E	SI2	62.8	60	3016	6.3	6.
_		- .	~	a = 0			0040		_

_	0.01	I I Om I am	-	511	01.0	00	0001	0.00	_
3	0.92	${\tt Premium}$	D	SI2	60.2	61	3004	6.32	6
4	0.9	${\tt Premium}$	D	SI1	62.2	60	3013	6.08	6
5	0.96	Premium	E	SI2	62.8	60	3016	6.3	6

3	0.92	Premium	D	S12	60.2	61	3004	6.32	6
4	0.9	${\tt Premium}$	D	SI1	62.2	60	3013	6.08	6
5	0.96	${\tt Premium}$	E	SI2	62.8	60	3016	6.3	6
_	0 00	D	α	OTO	C1 1	г.с	2010	C 07	_

4	0.9	Premium	D	SI1	62.2	60	3013	6.08	6.0
5	0.96	${\tt Premium}$	E	SI2	62.8	60	3016	6.3	6.2
6	0.93	Premium	G	SI2	61.4	56	3019	6.27	6.2

6	0.93	${\tt Premium}$	G	SI2	61.4	56	3019	6.27	6.5
7	0.78	Premium	D	SI1	60.4	57	3019	6.02	5.9
8	0.75	Premium	E	SI1	61.7	60	3024	5.84	5.8

59.2

61.7

58

58

3024

3027

5.96

6.46

5.9

6.4

SI1

SI2

5	0.96 Premium	E S	312	62.8	60	3016	6.3
6	0.93 Premium	G S	312	61.4	56	3019	6.27

Note about quotes and numbers

R will interpret quotes around numbers as the characters themselves and not their numeric meaning. Thus it's generally best to avoid quotes around numeric unless it is not being treated as a numeric value - for example levels or grades.

```
diamonds %>% filter(price > 3001) #This works
diamonds %>% filter(price > "3001") # This does not

diamonds %>% filter(price == 3001) # This works
diamonds %>% filter(price == "3001") # this works
```

Subset rows of a data.frame:

Other useful logical tests:

&: AND

| : OR

<= : less than or equals

>= : greater than or equals

!=: not equals

Subset rows of a data frame:

Very Good F

0.71 Good

0.7 Premium

i 1,694 more rows

10

The AND operator (&) is the what is being performed "behind the scenes" when chaining together filter statements with commas:

```
diamonds %>% filter(depth > 60 & table > 60 & price > 2775)
# A tibble: 1.704 \times 10
```

 		,								
cara	t c	ut		color	clarity	depth	n table	price	х	
<dbl< th=""><th>.> <</th><th>ord></th><th>•</th><th><ord></ord></th><th><ord></ord></th><th><dbl></dbl></th><th>> <dbl></dbl></th><th><int></int></th><th><dbl></dbl></th><th><0</th></dbl<>	.> <	ord>	•	<ord></ord>	<ord></ord>	<dbl></dbl>	> <dbl></dbl>	<int></int>	<dbl></dbl>	<0
	, D			_	OT4	04.0		0777	- 00	

Carac	Cut	COTOI	Clailty	debrii	cable	brice	A	
<dbl></dbl>	<ord></ord>	<ord></ord>	<ord></ord>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<
1 0.72	Premium	F	SI1	61.8	61	2777	5.82	

	<dbl></dbl>	<ord></ord>	<ord></ord>	<ord></ord>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<
1	0.72	Premium	F	SI1	61.8	61	2777	5.82	
2	0.72	Very Good	H	VS1	60.6	63	2782	5.83	ļ

1	0.72	Premium	F	SI1	61.8	61	2777	5.82
2	0.72	Very Good	H	VS1	60.6	63	2782	5.83
3	0.81	Good	G	SI2	61	61	2789	5.94

2	0.72	Very Good	Н	VS1	60.6	63	2782	5.83
3	0.81	Good	G	SI2	61	61	2789	5.94
4	0.71	Premium	F	VS1	60.1	62	2790	5.77

2	0.72	very Good	п	ADI	00.0	63	2102	5.03
3	0.81	Good	G	SI2	61	61	2789	5.94
4	0.71	Premium	F	VS1	60.1	62	2790	5.77
5	0.71	Premium	G	VS1	62.4	61	2803	5.7

3	0.81	Good	G	S12	61	61	2789	5.94
4	0.71	Premium	F	VS1	60.1	62	2790	5.77
5	0.71	Premium	G	VS1	62.4	61	2803	5.7
6	0.74	Fair	F	VS2	61.1	68	2805	5.82

4	0.71	Premium	F	VS1	60.1	62	2790	5.77
5	0.71	Premium	G	VS1	62.4	61	2803	5.7
6	0.74	Fair	F	VS2	61.1	68	2805	5.82
_			_					

4	0.71 Premium	F	VS1	60.1	62	2790	5.77
5	0.71 Premium	G	VS1	62.4	61	2803	5.7
6	0.74 Fair	F	VS2	61.1	68	2805	5.82
7	0.7 Good	F	VS1	62.8	61	2810	5.57

VS2

SI1

VS2

60.9

62.8

62.4

61

64

61

2812

2817

2818

5.66

5.6

5.66

Subset rows of a data.frame:

The OR operator (1) is more permissive than the AND operator:

```
diamonds %>% filter(depth > 60 | table > 60 | price > 2775)
# A tibble: 52,198 x 10
               color clarity depth table price
  carat cut
                                              X
  <dbl> <ord>
                <ord> <ord>
                            <dbl> <dbl> <int> <dbl> <
                                   55
   0.23 Ideal E
                     SI2
                             61.5
                                        326 3.95
2 0.21 Premium E
                                   61
                                        326 3.89
                     SI1
                             59.8
3
  0.23 Good E
                    VS1
                             56.9 65 327 4.05
```

0.29 Premium I VS2 62.4 58 334 4.2 5 0.31 Good J SI2 63.3 58 335 4.34 VVS2 62.8 57 336 3.94 6 0.24 Very Good J

0.24 Very Good I VVS1 62.3 57

336 3.95 8 0.26 Very Good H SI1 61.9 55 337 4.07 VS2 61 0.22 Fair 65.1 337 3.87

59.4

61

10 0.23 Very Good H VS1 # i 52,188 more rows

338

4

Subset rows of a data.frame:

The OR operator (|) can be a substitute for %in% (although it might take more typing):

2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 diamonds %>% filter(clarity %in% c("SI1", "SI2")) %>% head

```
# A tibble: 2 x 10
carat cut color clarity depth table price x
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <int> <dbl> <3.95</td>
```

2 0.21 Premium E SI1 59.8 61 326 3.89 3.84

Combining filter and select:

You can combine filter and select to subset the rows and columns, respectively, of a data.frame:

```
diamonds %>%
  filter(clarity == "SI2") %>%
  select(starts_with("c"))
```

```
# A tibble: 9,194 x 4
  carat cut
              color clarity
  <dbl> <ord> <ord> <ord>
1 0.23 Ideal E
                   SI2
2 0.31 Good J
                   SI2
3 0.31 Ideal
               J SI2
  0.2 Premium E SI2
5 0.3 Ideal
                   SI2
6 0.3 Good
                   SI2
7 0.33 Ideal
                   SI2
  0.33 Ideal
                   SI2
   0.32 Good
                    SI2
```

Combining filter and select:

The order of these functions matters though, since you can remove columns that you might want to filter on.

```
diamonds %>%
  select(starts_with("c")) %>%
  filter(table > 60))
```

This will result in an error because the table column is now gone after the select() function!

Fancier filtering

Combining tidyselect helpers with regular selection

head(diamonds, 2)

A tibble: 2 x 10

```
carat cut color clarity depth table price x
 <dbl> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <
1 0.23 Ideal E SI2 61.5
                                55
                                    326 3.95 3.98
2 0.21 Premium E SI1
                         59.8 61 326 3.89 3.84
diamonds %>% select(price, starts with("c"))
# A tibble: 53,940 x 5
  price carat cut color clarity
  <int> <dbl> <ord> <ord> <ord> <
    326 0.23 Ideal E
                         SI2
    326 0.21 Premium E
                         SI1
3 327 0.23 Good E
                         VS1
4
  334 0.29 Premium I
                         VS2
5
  335 0.31 Good J
                         SI2
6
    336 0.24 Very Good J
                         VVS2
```

Multiple tidyselect functions

Follows OR logic.

```
diamonds %>% select(starts_with("c"), ends_with("e"))
```

```
# A tibble: 53,940 x 6
  carat cut
              color clarity table price
  <dbl> <ord> <ord> <ord> <int>
1 0.23 Ideal E
                   ST2
                           55
                               326
2 0.21 Premium E
                           61
                               326
                   SI1
3 0.23 Good E VS1
                           65
                               327
  0.29 Premium I VS2
                           58
                               334
5 0.31 Good
              J SI2
                           58
                               335
   0.24 Very Good J VVS2
6
                           57
                               336
                           57
   0.24 Very Good I
                  VVS1
                               336
8
   0.26 Very Good H
                   SI1
                           55
                               337
  0.22 Fair
                  VS2
                           61
                               337
10 0.23 Very Good H
                   VS1
                           61
                               338
   53,930 more rows
```

Multiple patterns with tidyselect

Need to combine the patterns with the c() function.

```
diamonds %>% select(starts_with(c("c", "p")))
```

```
# A tibble: 53,940 x 5
  carat cut color clarity price
  <dbl> <ord> <ord> <ord> <int>
1 0.23 Ideal E
                   SI2
                          326
2 0.21 Premium E
                   SI1
                          326
3 0.23 Good E VS1
                          327
4 0.29 Premium I VS2 334
5 0.31 Good
              J ST2
                          335
   0.24 Very Good J VVS2
                          336
6
7
   0.24 Very Good I
                          336
                  VVS1
   0.26 Very Good H
8
                   SI1
                          337
  0.22 Fair F.
                  VS2
                          337
10 0.23 Very Good H
                   VS1
                          338
# i 53,930 more rows
```

Common error for filter or select

If you try to filter or select for a column that does not exist it will not work:

- misspelled column name
- column that was already removed

Always good to check each step!

Did the filter work the way you expected? Did the dimensions change?

Source:

https://media.giphy.com/media/5b5OU7aUekfdSAER5I/giphy.gif

Summary

- pull() can help us see a vector version of our variables we can "pull" out the data from a dataframe
- ► The pipe (%>%) can help us to do sequential steps
- select() makes a smaller table of just selected variables
- tidyselect functions can help us select specific columns: contains(), ends_with(), starts_with()
- filter can remove rows based on conditions
- == is needed to filter for rows that are "exactly equal" to a value
- != does the opposite
- %in% enables us to do multiple == conditions such as %in%
 c(1,2,3)
- ▶ I is for or logic and & is for and logic when combining filter conditions together
- Always check that you filtered for what you think you did!

Lab

 ${\sf Link}\ {\sf to}\ {\sf Lab}$