a)
$$P(V_{\text{blue}} + V_{\text{red}} = 3) = \frac{4}{36} = \frac{1}{5}$$

There are $6 \times 6 = 36$ equally probable combinations of a high

blue	red	Sum
4	5	9
5	Ц	9
6	3	9
3	6	٩
_		

The only anti-ution for P(Wolne + Wred = 12) is 6 on both dices. For every lower sum there is one event added.

$$P(W_{blue} + W_{red} = 3) = \frac{1}{36} + \frac{2}{36} + \frac{3}{36} + \frac{1}{36} = \frac{10}{36}$$

Sum equals to: \hat{c}_{12} \hat{c}_{11} \hat{c}_{10} \hat{c}_{3}

c) blue red 4 5 5 4

$$P(4 \text{ and } 5) = \frac{2}{36} = \frac{1}{18}$$

A) $P(W_{\text{blue}} = 5 \land W_{\text{red}} = 4) = \frac{1}{36}$

e) P(Wblue + Wred = 9 | W = 4) P(Wblue = 5) =
$$\frac{1}{6}$$

f)
$$P(W_{blue} = 5 \lor W_{blu} = 6) = \frac{7}{6} + \frac{7}{6} = \frac{1}{3}$$

