

OUTLINE

- 1. Bus architecture
- 2. Clock Distribution
 - 2.1. HSE High Speed External
 - 2.2. PLL Phase Locked Loop
 - 2.3. System Clock
 - 2.4. MCO uC Clock Output
- 3. Assignments

1. Bus architecture

No.	Bus	Description
1	I-bus	Instruction bus - Fetch instructions
2	D-bus	Data bus - Literal load and debug access
3	S-bus	System busAccess data located in a peripheral or in SRAM.Instructions may also be fetched on this bus.

No.	Comp.	Description								
1	BusMatrix	Manages the access arbitration between masters								
2	AHB/APB bridges Advanced High-performance Bus Advanced Peripheral Bus	Provide full synchronous connections between the AHB and the two APB buses, allowing flexible selection of the peripheral frequency. After each device reset, all peripheral clocks are disabled	,							

2. Clock Distribution

Clocking diagram

Input Clock Source:

No	Clock
1	HSI – High Speed Internal
2	HSE – High Speed External
3	PLL – Phase Locked Loop
4	LSI RC - Low Speed Internal
5	LSE – Low Speed External crysta

2. Clock Distribution

Clocking diagram

Output Clock Sources:

No.	Clock	Description
1	HCLK	Clock to AHB, core, memory
2	FCLK	Clock the Cortex
3	APBx_CLK	Clocks the chip peripherals

2.1. HSE - High Speed External

<u>Initialize HSE – High Speed External:</u>

RCC clock control register (RCC_CR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	erved	PLLSAI RDY	PLLSAI ON	PLLI2S RDY	PLLI2S ON	PLLRD Y	PLLON		Rese	erved		CSS ON	HSE BYP	HSE RDY	HSE ON
		r	rw	r	rw	r	rw					rw	rw	r	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	HSICAL[7:0]									SITRIM[4	:0]		Res.	HSI RDY	HSION
r	r	r	r	r	r	r	r	rw rw rw				rw		r	rw

Bit 18 **HSEBYP**: HSE clock bypass

Set and cleared by software to bypass the oscillator with an external clock. The external clock must be enabled with the HSEON bit, to be used by the device.

The HSEBYP bit can be written only if the HSE oscillator is disabled.

0: HSE oscillator not bypassed

1: HSE oscillator bypassed with an external clock

Bit 16 **HSEON**: HSE clock enable

Set and cleared by software.

Cleared by hardware to stop the HSE oscillator when entering Stop or Standby mode. This bit cannot be reset if the HSE oscillator is used directly or indirectly as the system clock.

0: HSE oscillator OFF

1: HSE oscillator ON

Bit 17 **HSERDY**: HSE clock ready flag

Set by hardware to indicate that the HSE oscillator is stable. After the HSEON bit is cleared, HSERDY goes low after 6 HSE oscillator clock cycles.

0: HSE oscillator not ready

1: HSE oscillator ready

3. Wait for HSE to stabilize

(RCC CR[**HSERDY**])

2.2. PLL - Phase Locked Loop


```
f(VCO\ clock) = f(PLL\ clock\ input) \times (PLLN\ /\ PLLM) f(PLL\ general\ clock\ output) = f(VCO\ clock)\ /\ PLLP f(USB\ OTG\ FS,\ SDIO,\ RNG\ clock\ output) = f(VCO\ clock)\ /\ PLLQ
```

2.2. PLL - Phase Locked Loop

Setting PLL - Phase Locked Loop:

RCC PLL configuration register (RCC_PLLCFGR)

RCC clock control register (RCC_CR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	erved	PLLSAI RDY	PLLSAI ON	PLLI2S RDY	PLLI2S ON	PLLRD Y	PLLON	Reserved CSS HSE ON BYP			HSE RDY	HSE ON			
		r	rw	r	rw	r	rw					rw	rw	r	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	HSICAL[7:0]									SITRIM[4	:0]		Res.	HSI RDY	HSION
r	r	r	r	r	r	r	r	rw	rw	rw	rw	rw		r	rw

2.3. System Clock

2.3. System Clock

Setting System Clock:

RCC clock configuration register (RCC_CFGR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
МС	02	МС	O2 PRE[2:0]	МС	MCO1 PRE[2:0]			MCO1		RTCPRE[4			4:0]		
rw		rw	rw	rw	rw	rw	rw	rw	rw		rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
P	PRE2[2:0	[0]	PPRE1[2:0]			Dd			HPRI	E[3:0]		SWS1	SWS0	SW1	SW0	
rw	rw	rw	rw	rw	rw	Reserved		rw	rw	rw	rw	r	r	rw	rw	
								•								

2.4. MCO – uC Clock Output

Setting MCOx:

RCC clock configuration register (RCC_CFGR)

Ę	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	MCO2 MCO2 PRE[2:0] MCO1 PRE[2:0]			I2SSC MCO1			RTCPRE[4:0]									
![rw		rw	rw	rw	rw	rw	rw	rw	rw		rw	rw	rw	rw	rw
Ī	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PPRE2[2:		0] PPRE1[2:0]			0]	Description			HPR	E[3:0]		SWS1	SWS0	SW1	SW0
	rw	rw	rw	rw	rw	rw	Reserved		rw	rw	rw	rw	r	r	rw	rw

3.1. Assignment 1

Setting clocks:

- Initialize HSE High Speed External
- Setting PLL:
 - + PLLCLK = 180MHz
 - + HSE oscillator clock selected as PLL
- Select PLLCLK as System clock source
- $AHBx_CLK = 180Mhz$
- $APB1_CLK = 22.5MHz$
- $APB2_CLK = 45MHz$

3.2. Assignment 2

Setting clocks:

- Initialize HSE High Speed External
- Select HSE as System clock source
- $AHBx_CLK = 8Mhz$
- $-APB1_CLK = 2MHz$
- $-APB2_CLK = 4MHz$

3.3. Assignment 3

Initialize MCO1 pin:

- MCO1 pin = 2MHz

3.4. Assignment 4

Initialize MCO1 pin:

- MCO1 pin = 1MHz

