Example 9.14: Design a non-sequential counter using J-K flip-flop; as per following state diagram.

Fig. 9.69

Solution : Excitation table

Pre	sent s	tate	N	ext sta	ite	Flip-flop inputs						
QA	QB	Qc	Qá	Q′B	Q′c	JA	KA	JB	KB	Jc	Kc	
0	0	0	0	1	0	0	х	1	х	0	х	
0	0	1	0	0	0	0	х	0	х	х	1	
0	1	0	0	1	1.	0	х	×	0	1	Х	
0	1	1	1	1	0	1	x	X	0	х	1	
1	0	0	×	X	X	x	x	x	×	x	Х	
1	0	1	х	X	X	х	×	х	X	x	X	
1	1	0	0	0	1	х	1	х	1	1	X	
1	1	1	X	х	Х	x	x	х	x	x	Х	

K-map simplification

Digital Principles and System Design

Fig. 9.70

Example 9.15: Design the circuit to generate the sequence:

$$0 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow 7 \rightarrow 3$$
.

Solution: Excitation table

Pr	esent st	ate	N	lext stat	te			inputs	s		
QA	QB	QC	Q _{A+1}	Q _{B+1}	Q _{C+1}	J_A	KA	JB	KB	Jc	Kc
0	0	0	0	1	0	0	Х	1	Х	0	X
0	0	1	X	Х	Х	Х	X	X	X	X	Х
0	1	0	1	0	1	1	Х	X	1	1	X
0	1	1	0	0	0	0	X	X	1	X	1
1	0	0	1	1	1	X	0	1	X	^	-
1	0	1	1	0	0	X	0				X
1	1	0	X	Х	X	X		0	Х	X	1
1	1	1	0	1	1		X	X	X	X	X
The second	To live the market the person and over	House, or a factory				X	1	X	0	X	0

K-map simplification

For K_B

Fig. 9.71

Logic diagram

Fig. 9.72

Example 9.16: Design sequence generator to generate sequence 1-9-2-7-3-6 using JK flip-flop.

Solution: Excitation table

Present state Next state							Flip - flop inputs								
QA	QB	Qc	QD	Q _{A+1}	Q B+1	Q C+1	Q D+1	JA	KA	JB	KB	Jc	Kc	JD	KD
0	0	0	0	×	×	×	×	×	×	×	×	×	×	×	×
0	0	0	1	1	0	0	1	1	×	0	×	0	×	×	0
0	0	1	0	0	1	1	1	0	×	1	×	X	0	1	х
0	0	1	1	0	4	1	0	0	×	1	×	Х	0	×	1
0	1	0	0	×	×	×	×	×	×	×	×	×	×	×	×
0	1	0	1	×	×	×	×	×	×	×	×	×	×	×	×
0	1	1	0	0	0	0	1	0	×	×	1	х	1	1	×

		-									
ication		F., 1							For	< _A	
	0	For J	A			(OC(\mathfrak{Q}_{D}			10
	Q _D	01	11	10		Q_AQ_B	/	00	01	11	10
Q _A Q _B	: X	1 }	0	0			- 3	Х	X	Х	X
01	X	X	0	0		O	11	Х	X	×	X
11	Х	×	Х	Х		1	1	Х	X	×	X
10	X	X.	Х	X		1	0	Х	1	Х	X.
			=		1				KA	= 1	
		J _A =	QC								
	,	For	J_{B}			-	o (Q _D	For	KB	
	Q_D	01	11	10		00	UC'	υυ ~D	01	11	10
Q _A Q _B	00	01	11	1							ALCOURS, I
00	X	0	1	1		(00	X	Х	X	X
01	Х	X	Х	X		()1	Х	Х	1	1
11	Χ	×	Х	X	2.0		11	Х	X	Х	X
10	X	0	X	X)			10	X	Χ	Х	X
		J _B =	Q _C						K _B =	1	d Metadoutellist
		7									
,QC	Q_{D}	For	JC			5 6 10	0-	QD	Fo	rKc	
QAQB	00	01	11	10		QAQ		00	01	11	10
00	X	0	Х	Х			00	X	X	0	0
01	×	X	X	X							
11	X	X					01	X	X	0	1
			X	X			11	X	X	X	X
10	X	1	X	X			10	X	Х	Х	Χ
	diam'r.	Jc = (2 _B					bacca sacrata			-
							N. Section	No.	c = (7 ^B G ^D	

