Notes on Probability

1 Radon-Nikodym Theorem

1.1 Statement

Definition 1.1.

• Indefinite Integrals.

Let $(\Omega, \mathcal{F}, \mu)$ be a probability space. $p \in \mathcal{F}_+$. Define

$$\nu(A) = \int_A \mu(\mathrm{d}x) p(x).$$

 ν is a measure on (Ω, \mathcal{F}) , and is called the indefinite integral of p w.r.t μ .

• Absolutely continuous.

Let μ and ν be measures on (Ω, \mathcal{F}) . v is said to be absolutely continuous $w.r.t \ \mu$ if $\forall A \in \mathcal{F}$,

$$\mu(A) = 0 \implies \nu(A) = 0.$$

Remark.

- The indefinite integral gives us a convenient tool to construct new measures from the old.
- If ν is the indefinite integral of p w.r.t μ , for every $f \in \mathcal{F}_+$, we have

$$\int_{\Omega} \nu(\mathrm{d}x) f(x) = \int_{\Omega} \mu(\mathrm{d}x) p(x) f(x);$$

sometimes we write

$$v(\mathrm{d}x) = \mu(\mathrm{d}x)p(x).$$

• If ν is the indefinite integral of p w.r.t μ , ν is absolutely continuous w.r.t μ . (The Radon-Nikodym Theorem says the converse is true as well.)

Theorem 1.2 (Radon-Nikodym Theorem). Let μ be a σ -finite measure and ν be absolutely continuous w.r.t μ . Then there exists $p \in \mathcal{F}_+$ s.t.

$$\int_{\Omega} \nu(\mathrm{d}x) f(x) = \int_{\Omega} \mu(\mathrm{d}x) p(x) f(x), \quad f \in \mathcal{F}_{+}.$$

Moreover, p is unique for μ -almost every $\omega \in \Omega$.

Remark. p can be denoted by $d\nu/d\mu$, and be called the Radon-Nikodym derivative of ν w.r.t μ .

1.2 Application of Radon-Nikodym Theorem

Theorem 1.3 (Existence and Uniqueness of Conditional Expectation). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $X \in \mathcal{F}_+$, and $\mathcal{F}_1 \subset \mathcal{F}$ be a sub- σ -algebra.

 $\implies \mathbb{E}(X|\mathcal{F}_1)$ exists and is unique.

Proof. For each $A \in \mathcal{F}_1$, define $P(A) = \mathbb{P}(A)$, $Q(A) = \int_A \mathbb{P}(d\omega)X(\omega)$. (P is the restriction of \mathbb{P} to \mathcal{F}_1 ; Q is the indefinite integral of X w.r.t. P.)

Check conditions: P is a finite measure; Q is absolutely continuous w.r.t P.

By the Radon-Nikodym theorem, $\exists \bar{X} \in \mathcal{F}_+$ s.t.

$$\int_{\Omega} Q(\mathrm{d}\omega) V(\omega) = \int_{\Omega} P(\mathrm{d}\omega) \bar{X}(\omega) V(\omega)$$

for every $V \in \mathcal{F}_+$; i.e.

$$\mathbb{E}XV = \mathbb{E}\bar{X}V$$

for every $V \in \mathcal{F}_+$.

 $\implies \bar{X} = \mathbb{E}(X|\mathcal{F}_1)$, by the definition of conditional expectations.

2 Riesz Representation Theorem (RRT)

2.1 Setting the Stage

Theorem 2.1 (Riesz Representation Theorem). Every continuous linear functional $\phi: C(X) \to \mathbb{R}$ can be represented by a unique signed Baire measure μ on X via

$$\phi(f) = \int_X f \, \mathrm{d}\mu.$$

Remark.

- Fix a compact Hausdorff space X. For each μ , we can define a bounded linear functional $\phi_{\mu}: f \mapsto \int_{X} f d\mu$.
- $\mu \neq \mu' \implies \phi_{\mu} \neq \phi_{\mu'}$. That is, $\mu \mapsto \phi_{\mu}$ is injective.
- The Riesz representation theorem says that $\mu \mapsto \phi_{\mu}$ is also surjective.

Definition 2.2. We will use the following notations to re-state the RRT:

- Comp Compact Hausdorff spaces + continuous maps
- Ban Banach spaces + continuous linear operators
- \bullet C(X) all continuous real-valued functions on X
- $C(X)^*$ dual space of C(X)
- M(X) all Baire measures on X

Lemma 2.3. It is easy to check:

• C is a contravariant functor from Comp to Ban.

$$C: X \longmapsto C(X)$$

 $\alpha \longmapsto \alpha^{\sharp}$

where $\alpha^{\sharp}: g \mapsto g \circ \alpha$.

• M is a convariant functor form Comp to Ban.

$$M\colon X\longmapsto M(X)$$
$$\alpha\longmapsto\alpha^*$$

where $\alpha^*: \mu \mapsto \mu \circ \alpha^{-1}$.

• Define $\iota_X : M(X) \to C(X)^*$ by $\mu \mapsto \phi_{\mu}$ where $\phi_{\mu}(f) = \int_X f \ d\mu$. Then ι is a natural transformation from M to C^* .

Theorem 2.4 (Riesz Representation Theorem Revisited). ι is a natural equivalent from M to C^* .

2.2 Proof of RRT

Definition 2.5.

- A topological space is called extremally disconnected if each open set has an open closure.
- ullet $\mathscr C$ all clopen sets

Lemma 2.6. Let $X \in Comp$ be extremally disconnected. Then

- a) the Baire sets in X are generated by \mathscr{C} ;
- b) the simple functions based on \mathscr{C} are uniformly dense in C(X).

Lemma 2.7. The Stone-Čech compactification of a discrete space is extremally disconnected.

Lemma 2.8. For each object $Y \in Comp$, there is a morphism $\alpha : X \to Y$ such that X is extremally disconnected.

Proof of RRT. Let Y be an object in Comp, and $\alpha: X \to Y$ be the morphism starting at an extremally disconnected object X.

- α^{\sharp} is a norm isomorphism.
- By the Hahn-Banach Theorem, $\alpha^{\sharp\sharp}$ is also surjective.
- ι_X is surjective $\implies \iota_Y$ is surjective.

2.3 Application of RRT in the Moment Problem

Exsercise 2.3.1. Show that the moments completely determine the probability distribution if it is concentrated on a finite interval (that if, $\mathbb{P}(X_n \in [a,b]) = 1$, for all n).

Proof. The first proof is based on the Riesz representation theorem.

• Assume F, G are concentrated on [a, b] and

$$\int_a^b x^k \, \mathrm{d}F = \int_a^b x^k \, \mathrm{d}G \quad \forall k \in \mathbb{R}.$$

We want to prove F = G on [a, b].

• Let C[a,b] be the space of all continuous functions on [a,b] with the uniform norm. Define

$$T_F \colon C[a,b] \longrightarrow \mathbb{R}$$

$$h \longmapsto \int_{[a,b]} h \, dF$$

$$T_G \colon C[a,b] \longrightarrow \mathbb{R}$$

$$h \longmapsto \int_{[a,b]} h \, dG$$

It is easy to check that T_F and T_G are both continuous linear functionals.

• Obviously, for each polynomial $h(x) = \sum_{i=0}^{n} a_i x^i$, $T_F(h) = T_G(h)$. Thus, $T_F = T_G$ on C[a, b], since polynomials are a dense set of C[a, b] by the Stone-Weiestrass theorem.

3

• (Riesz representation theorem) Every continuous linear functional ψ over C[a,b] can be uniquely represented as

$$\psi(f) = \int_{[a,b]} f \, \mathrm{d}\mu$$

where μ is .

It suffices to check F and G are bounded variation functions.

3 Poisson Ramdom Measures

3.1 Characterization via Laplace functionals

Definition 3.1. A random measure N on (E, \mathcal{E}) is called <u>Poisson with mean ν </u> if

- a) for every $A \in \mathcal{E}$, $N(A) \sim \text{Poisson}(\nu A)$.
- b) for disjoint $A_1, \ldots, A_n \in \mathcal{E}$, $N(A_1), \ldots, N(A_n)$ are independent.

Remark.

• For every $f \in \mathcal{E}_+$, define

$$Nf(\omega) = \int_E N(\omega, \mathrm{d}x) f(x).$$

- $f \mapsto \mathbb{E}e^{-Nf}$ is called the Laplace functional of N.
- We say a sequence of RVs X taking values in (E,\mathcal{E}) forms a Poisson random measure on (E,\mathcal{E}) , if

$$Nf = \sum_{i \in I} f \circ X_i, \quad f \in \mathcal{E}_+$$

is Poisson with some mean meaure ν .

Theorem 3.2. Let N be a random measure on (E, \mathcal{E}) . It is Poisson with mean ν if and only if

$$\mathbb{E}e^{-Nf} = e^{-\nu(1-e^f)}, \quad f \in \mathcal{E}_+,$$

where $\nu f = \int_E \nu(\mathrm{d}x) f(x) = \int_E f \mathrm{d}\nu$.

Proof. \Rightarrow : It suffices to prove this result for all simple functions.

Assume $f = \sum a_i \mathbf{1}_{A_i}$. Then $Nf = \sum a_i N(A_i)$. By the definition, all A_i are independent, and the distribution of $N(A_i)$ is $Poisson(\nu A_i)$, so

$$\mathbb{E}e^{-Nf} = \mathbb{E}e^{-\sum a_i N(A_i)}$$

$$= \prod \mathbb{E}e^{-a_i N(A_i)}$$

$$= \prod \exp \left[\nu A_i \cdot (e^{-a_i} - 1)\right]$$

$$= \exp \left[-\sum \nu A_i \cdot (1 - e^{-a_i})\right] = e^{-\nu(1 - e^f)}$$

If $f \in \mathcal{E}_+$, we can use a sequence of simple functions in \mathcal{E}_+ increasing to f. Then use the continuity of Laplace functionals and the monotone convergence theorem.

 \Leftarrow : Note that $\{\mathbb{E}e^{-Nf}\}$ uniquely determines the probability law of N. And by the necessity part, it must be Poisson.