MST-based Dependency Parsing

Pawan Goyal

CSE, IIT Kharagpur

Week 6, Lecture 4

Maximum Spanning Tree Based

Maximum Spanning Tree Based

Basic Idea

Starting from all possible connections, find the maximum spanning tree.

Maximum Spanning Tree Based

Basic Idea

Starting from all possible connections, find the maximum spanning tree.

Some Graph Theory Reminders

- A graph G = (V,A) is a set of vertices V and arcs $(i,j) \in A$ where $i,j \in V$.
- Undirected graphs: $(i,j) \in A \Leftrightarrow (j,i) \in A$
- Directed graphs (digraphs) : $(i,j) \in A \Rightarrow (j,i) \in A$

Multi-Digraphs

- A multi-digraph is a digraph where multiple arcs between vertices are possible
- $(i,j,k) \in A$ represents the k^{th} arc from vertex i to vertex j.

Directed Spanning Trees

- A directed spanning tree of a (multi-)digraph G=(V,A) is a subgraph G'=(V',A') such that:
 - V' = V
 - $A' \subseteq A$, and |A'| = |V'| 1
 - ▶ G' is a tree (acyclic)

Directed Spanning Trees

- A directed spanning tree of a (multi-)digraph G=(V,A) is a subgraph G'=(V',A') such that:
 - V' = V
 - $A' \subseteq A$, and |A'| = |V'| 1
 - ► *G'* is a tree (acyclic)
- A spanning tree of the following (multi-)digraphs

Weighted Directed Spanning Trees

- Assume we have a weight function for each arc in a multi-digraph G = (V, A).
- Define $w_{ij}^k \ge 0$ to be the weight of $(i,j,k) \in A$ for a multi-digraph
- Define the weight of directed spanning tree G' of graph G as

$$w(G') = \sum_{(i,j,k)\in G'} w_{ij}^{k}$$

Maximum Spanning Trees (MST)

Let T(G) be the set of all spanning trees for graph G

Maximum Spanning Trees (MST)

Let T(G) be the set of all spanning trees for graph G

The MST problem

Find the spanning tree G' of the graph G that has the highest weight

$$G' = \underset{G' \in T(G)}{\operatorname{arg max}} w(G') = \underset{G' \in T(G)}{\operatorname{arg max}} \sum_{(i,j,k) \in G'} w_{ij}^{k}$$

Finding MST

Directed Graph

For each sentence x, define the directed graph $G_x = (V_x, E_x)$ given by

$$V_x = \{x_0 = root, x_1, \dots, x_n\}$$

$$E_x = \{(i,j) : i \neq j, (i,j) \in [0:n] \times [1:n]\}$$

Finding MST

Directed Graph

For each sentence x, define the directed graph $G_x = (V_x, E_x)$ given by

$$V_x = \{x_0 = root, x_1, \dots, x_n\}$$

$$E_x = \{(i,j) : i \neq j, (i,j) \in [0:n] \times [1:n]\}$$

G_x is a graph with

- the sentence words and the dummy root symbol as vertices and
- a directed edge between every pair of distinct words and
- a directed edge from the root symbol to every word

Chu-Liu-Edmonds Algorithm

- Each vertex in the graph greedily selects the incoming edge with the highest weight.
- If a tree results, it must be a maximum spanning tree.
- If not, there must be a cycle.
 - Identify the cycle and contract it into a single vertex.
 - Recalculate edge weights going into and out of the cycle.

x = John saw Mary

Build the directed graph

Find the highest scoring incoming arc for each vertex

If this is a tree, then we have found MST.

- If not a tree, identify cycle and contract
- Recalculate arc weights into and out-of cycle

Outgoing arc weights

- Equal to the max of outgoing arc over all vertices in cycle
- e.g., John \rightarrow Mary is 3 and saw \rightarrow Mary is 30.

Incoming arc weights

- Equal to the weight of best spanning tree that includes head of incoming arc and all nodes in cycle
- root \rightarrow saw \rightarrow John is 40
- root \rightarrow John \rightarrow saw is 29

Calling the algorithm again on the contracted graph:

- This is a tree and the MST for the contracted graph
- Go back up the recursive call and reconstruct final graph

$$root$$
 10
 30
 saw
 30
 $Mary$

- The edge from w_{is} to Mary was from saw
- The edge from *root* to w_{js} represented a tree from *root* to saw to John.