

Development of a Sky Condition Classifier Using All-Sky Images

Mingyu Jeon, Rizchel Masong, Yi-Chieh Chang

*meme explainer: the sky when there is a cool astronomical event.

A3N 2025 (18-22 Aug 2025) KIAS, Seoul, South Korea.

Higashi-Hiroshima Observatory

Photo: https://dive-hiroshima.com/en/explore/1685/

DESI

Our data

Higashi-Hiroshima Observatory

Photo: https://dive-hiroshima.com/en/explore/1685/

DESI

https://hasc.hiroshima-u.ac.jp/environ/skymon_summary.html

Environment Monitor at Higashi-Hiroshima Observatory

Current Time (This PC) 2025/08/21 (Thu) 12:27:28

Local Sidereal Time

				M	ETE	OR	ROGRA	M			
		Time	Temperature (degs C)		Hı	Humidity (%)		ıd :.	Wind Sp. (m/s)	Rain (mm/5min	
Outside 12		12:10	+28.1			77	SSE		2.2	0.0	
Dome Inside		12:05		+22.5		47		-			
RAINDI	ROP	SENS	OR (at 12	2:31:	04)	TELES	CO	ΡF	E Temp (at	12:24:00)
North			South				TopRingS		(CenSectS	PillMidE
Level 0 DRY		RY	Level 0 DR		RY	+25.2			+22.6	+23.6	
	TE	LESC	OPE	(at 1	12:16	5:02	()				
Control PC	Pos	ition	GRB mode G		RB	obs sta	tus				
OFF	100000	nuth - tude -	OFF			-					
		DOM	E			1		ni-c			
DomeSlit Mirror		rrorC	over Azimu		muth	1					
CLOSEI		CLOSI	OSED		0.0						

Link

- Meteogram of HHO
- Hiroshima Astrophysical Science Center
- Observatory monitoring camera
 [Rikubetsu(Ginganomori)] [Nayoro(Hokkaido Univ.)] [Gunma(GAO)] [Saitama Univ.]
 [Akeno(Tokyo-kogyo Univ.)] [Kyoto(KAO)] [Osaka(Osaka Kyoiku Univ.)]
 [Sayo(NHAO)] [Okayama(OAO)] [Bisei(JSGA)] [Iriki(Kagoshima Univ.)]
 [Sutherland(SuperWASP group)]

Method

- Data: 4,984 (Cloudy) + 3,822 (Fine) = 8,806 Images
- Binary Classification
- CNN

Photo: Bahram et al. (2017)

Method

- Data: 4,984 (Cloudy) + 3,822 (Fine) = 8,806 Images
- Binary Classification
- CNN = Feature Extractor + Classifier

Photo: Bahram et al. (2017)

Transfer Learning

Idea: Pre-trained CNN layers can extract useful features from (almost) any image

A PyTorch library for pre-trained vision models

pytorch image models

pre-trained vision models, collections and more!

- Aggregating Nested Transformers https://arxiv.org/abs/2105.12723
- BEiT https://arxiv.org/abs/2106.08254
- BEiT-V2 https://arxiv.org/abs/2208.06366
- BEiT3 https://arxiv.org/abs/2208.10442
- Big Transfer ResNetV2 (BiT) https://arxiv.org/abs/1912.11370
- Bottleneck Transformers https://arxiv.org/abs/2101.11605
- CaiT (Class-Attention in Image Transformers) https://arxiv.org/abs/2103.17239
- CoaT (Co-Scale Conv-Attentional Image Transformers) https://arxiv.org/abs/210
- CoAtNet (Convolution and Attention) https://arxiv.org/abs/2106.04803
- ConvNeXt https://arxiv.org/abs/2201.03545
- ConvNeXt-V2 http://arxiv.org/abs/2301.00808
- ConViT (Soft Convolutional Inductive Biases Vision Transformers) https://arxiv.or
- CspNet (Cross-Stage Partial Networks) https://arxiv.org/abs/1911.11929
- DeiT https://arxiv.org/abs/2012.12877
- DeiT-III https://arxiv.org/pdf/2204.07118.pdf
- DenseNet https://arxiv.org/abs/1608.06993
- DLA https://arxiv.org/abs/1707.06484
- DPN (Dual-Path Network) https://arxiv.org/abs/1707.01629
- EdgeNeXt https://arxiv.org/abs/2206.10589
- EfficientFormer https://arxiv.org/abs/2206.01191
- EfficientFormer-V2 https://arxiv.org/abs/2212.08059
- EfficientNet (MBConvNet Family)
 - EfficientNet NoisyStudent (B0-B7, L2) https://arxiv.org/abs/1911.04252
 - EfficientNet AdvProp (B0-B8) https://arxiv.org/abs/1911.09665
 - EfficientNet (B0-B7) https://arxiv.org/abs/1905.11946
 - EfficientNet-EdgeTPU (S, M, L) https://ai.googleblog.com/2019/08/efficient

We use 3 models with ~20M params

EfficientNet-B4	17.6M		
DenseNet-201	18.1M		
ResNet-34	21.3M		

※ params of only CNN layers

Similar #parameters!

Model Explanation: ResNet & DenseNet

: Element-wise addition

ResNet-34 = ResNet with 34 layers

DenseNet

©: Channel-wise concatenation

DenseNet-201 = DenseNet with 201 layers

Model Explanation: EfficientNet

- (1) Find a baseline architecture using Neural Architecture Search
- (2) Scale up the baseline architecture using Compound Scaling

EfficientNet-B4

= EfficientNet with compound scaling stage 4

depth:
$$d = \alpha^{\phi}$$

width:
$$w = \beta^{\phi}$$

resolution:
$$r = \gamma^{\phi}$$

s.t.
$$\alpha \cdot \beta^2 \cdot \gamma^2 \approx 2$$

$$\alpha \ge 1, \beta \ge 1, \gamma \ge 1$$

Results (1): Finetune > Scratch > Frozen

Scratch	Train the model from random initialization				
Frozen	Freeze feature extractor layers of a pre-trained model and only train the final classifier				
Finetune	Finetune Start with a pre-trained model and update all layers on the new dataset				

Results (1): Finetune > Scratch > Frozen Why 'Frozen' is worst?

- Train only a linear classifier (output = W * feature vector + b)
- Test if features extracted from pre-trained CNN are linearly separable for our data
- Perform worst since features extracted from pre-trained CNN are not necessarily linearly separable for our data

Results (2): EfficientNet > DenseNet > ResNet

Model (# params)	Test Accuracy (best epoch) best epoch = best validation accuracy			
	scratch	finetune	frozen	
EfficientNet-B4 (17.6M)	1.0000	0.9989	0.9524	
DenseNet-201 (18.1M)	0.9966	0.9977	0.9705	
ResNet-34 (21.3M)	0.9966	0.9977	0.9388	

Results (2): EfficientNet > DenseNet > ResNet

EfficientNet-B4	17.6M			
DenseNet-201	18.1M			
ResNet-34	21.3M			

☆ params of only CNN layers

Explainable AI: CAM-based methods

Advanced AI explainability for PyTorch

pip install grad-cam

Documentation with advanced tutorials: https://jacobgil.github.io/pytorch-gradcam-book

Class Activation Map (CAM)

Idea: If a CNN classifier works well, the last convolutional feature maps usually contain class-specific spatial information.

→ CAM-based methods (e.g., Grad-CAM, Eigen-CAM, etc.) visualize this information in various ways.

Method GradCAM HiResCAM GradCAMElementWise GradCAM++ XGradCAM AblationCAM ScoreCAM EigenCAM EigenGradCAM LayerCAM **FullGrad** Deep Feature Factorizations **KPCA-CAM**

Grad-CAM (Gradient-weighted Class Activation Map)

Grad-CAM for a class c

ReLU → only positive influence... pixels whose intensity is increased to increase score y^c

$$L_{ ext{Grad-CAM}}^c = ext{ReLU} \left(\sum_k lpha_k^c A^k
ight)$$

 α^{c}_{k} is the "importance" of feature map k, A^{k} , for the class c

$$lpha_k^c = \overbrace{rac{1}{Z}\sum_i\sum_j}^{ ext{global average pooling}} rac{\partial y^c}{\partial A_{ij}^k}$$

Red pixels = higher contribution to the model's prediction Blue pixels = lower contribution to the model's prediction

Actual / Prediction / Probability EfficientNet-B4 | cloudy / cloudy / 100%

cloudy **Grad-CAM**

Weakly-supervised semantic segmentation

Can an image classifier trained only with image-level labels produce pixel-level labels?

DenseNet-201

(finetune, last epoch)

Grad-CAM > threshold

Actual / Prediction / Probability DenseNet-201 | cloudy / cloudy / 100%

EfficientNet-B4

(finetune, last epoch)

For this image, EfficientNet-B4 detects more cloud regions (via Grad-CAM) than DenseNet-201.

Actual / Prediction / Probability EfficientNet-B4 | cloudy / cloudy / 100%

Grad-CAM

(Grad-CAM > thrs)*circle

ResNet-34

(finetune, last epoch)

ResNet-34 uses different regions than DenseNet-201 and EfficientNet-B4 to classify the sky as cloudy

Actual / Prediction / Probability ResNet-34 | cloudy / cloudy / 100%

Grad-CAM

(Grad-CAM > thrs)*circle

Summary and Future works

Summary

- CNN Architecture: EfficientNet > DenseNet > ResNet
- Training Strategy: Fine-Tuning > From-Scratch > Frozen
- Grad-CAM provides interpretability for CNN predictions
- Grad-CAM results can be used for weakly-supervised semantic segmentation

Future Works

- Image augmentation (rotation, brightness, contrast, etc.)
- Dataset expansion (different seasons, times of day)
- Multi-class classification (e.g., partly cloudy, rainy)
- Real-time processing (end-to-end pipeline)
- Robustness testing (e.g., moonlight conditions)
- Time-series prediction

Appendix

Binary Classification

Task: Data $x \to Two$ Discrete Labels $y \in \{0, 1\}$

1: cloudy 0: fine

sigmoid function

Assume the labels follow a Bernoulli distribution

$$p(y|\lambda) = (1 - \lambda)^{1-y} \lambda^y$$
; $\lambda = (probability that y=1)$

Train a model $f_{\theta}(x)$ to predict the distribution parameter λ

$$\lambda = \sigma(f_{\theta}(x))$$
; $\sigma = \text{sigmoid function from } \mathbb{R} \text{ to } [0, 1]$

The loss function (binary cross entropy) is the negative log-likelihood of the training set

$$egin{aligned} L(heta) &= -\sum_{i=1}^N \log p(y_i|\sigma(f_{ heta}(x_i))) \ &= -\sum_{i=1}^N (1-y_i) \log[(1-\sigma(f_{ heta}(x_i)))] + y_i \log[\sigma(f_{ heta}(x_i))] \end{aligned}$$

Detail

- Dataset
 - Total: 8,806 images (4,984 Cloudy + 3,822 Fine) 600x600 size
 - Split (8:1:1):
 - Cloudy: 3,987 / 498 / 499
 - Fine: 3,057 / 382 / 383
 - Total: 7,044 / 880 / 882 (Train / Val / Test)
 - Preprocessing: Resized and normalized using the pre-trained model's pipeline
- Training Setup
 - Epochs: 20
 - o Batch size: 64
 - Learning rate: 2e-4

Pre-trained Models: ResNet-34

Model card for resnet34.a1_in1k

A ResNet-B image classification model.

This model features:

- ReLU activations
- single layer 7x7 convolution with pooling
- 1x1 convolution shortcut downsample

Trained on ImageNet-1k in timm using recipe template described below.

Pre-trained Models: DenseNet-201

```
Compose(
    Resize(size=256, interpolation=bicubic, max_size=None, antialias=True)
    CenterCrop(size=(224, 224))
    MaybeToTensor()
    Normalize(mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250]))
)
```


Model card for densenet201.tv_in1k

A DenseNet image classification model. Trained on ImageNet-1k (original torchvision weights).

Pre-trained Models: EfficientNet-B4

```
Compose(
    Resize(size=365, interpolation=bicubic, max_size=None, antialias=True)
    CenterCrop(size=(320, 320))
    MaybeToTensor()
    Normalize(mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250]))
)
```


Model card for efficientnet_b4.ra2_in1k

A EfficientNet image classification model. Trained on ImageNet-1k in timm using recipe template described below.

Red pixels = higher contribution to the model's prediction Blue pixels = lower contribution to the model's prediction

Actual / Prediction / Probability EfficientNet-B4 | fine / fine / 100%

fine Grad-CAM

Wrong prediction (TODO)