DEPARTMENT OF COMPUTER TECHNOLOGY ANNA UNIVERSITY, MIT CAMPUS

Creative and Innovative Project (CS6811), Jan 2025 – May 2025

Review I Report

Team ID: B23

Optimized CNN-Based Hybrid Model for Multi-Label Classification of Cardiovascular Diseases in 12-Lead ECG Images

Submitted by,

YUVAPRIYA S – 2022503552

POOJAS - 2022503024

ATHITHRAJA R - 2022503702

Under the guidance of

Dr. T. Sudhakar

Assistant Professor

Department of Computer Technology

Anna University, MIT Campus

<u>**Title:**</u> Optimized CNN-Based Hybrid Model for Multi-Label Classification of Cardiovascular Diseases in 12-Lead ECG Images

<u>Domain:</u> Machine Learning, Deep Learning, Cardiovascular Disease Detection, Biomedical Signal Processing

Introduction:

Cardiovascular diseases (CVDs), including stroke, arrhythmias, and myocardial infarction (MI), cause 17.9 million deaths annually, comprising 32% of global mortality. Early detection improves outcomes, but manual ECG interpretation is time-consuming and variable. Machine learning and deep learning enhance automation, reducing errors and improving efficiency.

This research proposes an optimized CNN-based hybrid model for 12-lead ECG image analysis, combining deep learning for feature extraction with machine learning for classification. A multi-label approach identifies multiple CVDs, integrating adaptive preprocessing and optimization (Adam, RMSprop) to enhance performance, reduce complexity, and improve generalization.

Problem Statement:

Cardiovascular diseases (CVDs) are major causes of morbidity and mortality. Traditional ECG diagnosis is manual, time-consuming, and variable, while existing deep learning models often overlook multiple CVDs. Feature extraction from 12-lead ECG images remains challenging.

This research proposes an optimized CNN-based hybrid model for efficient multi-label classification of stroke, arrhythmias, and MI. It integrates adaptive preprocessing and optimization techniques (Adam, RMSprop) to enhance performance and accuracy.

Objectives:

- Compare and optimize training performance using Adam and RMSprop for better accuracy and faster convergence.
- Optimize preprocessing techniques such as image resizing (800KB to 300KB), adaptive enhancement, and efficient labeling using LabelImg.
- Implement a CNN-based model for multi-label classification of cardiovascular diseases from ECG images.
- Evaluate the model using standard ECG datasets and benchmark its performance against existing approaches.

Literature Survey:

S.No.	Title	Publications & Year	Methodology	Limitations
1.	Comparison of Machine Learning and Deep Learning Methods for Heart Disease Prediction	Bharti et al., IEEE Access, 2022	 Used UCI heart disease dataset. Applied DL (three fully connected layers) and ML models (RF, LR, K-NN, SVM, DT, XGBoost). DL model used ReLU activation and dropout for regularization. ML models applied feature selection and outlier detection 	 ML models achieved lower accuracy than DL. Class imbalance was not addressed, leading to potential biases. Limited generalization due to dataset constraints. Hyperparamete r tuning for ML models was not extensively explored.

2.	Extended Heterogeneous Oscillator Model for 12-Lead ECG Waveform Generation	Mario et al., Computers in Biology and Medicine, 2023	 Used modified van der Pol and FitzHugh-Nagumo equations to model the cardiac conduction system. Generated realistic ECG waveforms. Incorporated statistical heart rate variability and noise to simulate real-world Does not consider pathological ECG variations. Limited applicability for diagnosing specific cardiovascular diseases. Requires high computational power for real-time applications. Model validation lacks large-scale clinical
3.	Deep Learning Approach for Cardiac Disorder Classification Using 12-Lead ECG Images	Ali Haider Khan et al., Scientific Reports, 2023	 Used SSD MobileNet v2-based CNN. Classified MI, abnormal heartbeat, past MI, and normal class. Trained on 11,148 ECG images using data augmentation and transfer learning. Does not consider co-occurrence of multiple cardiovascular diseases. Lacks interpretability, making it difficult for medical professionals to trust the model. Dataset may not be diverse enough for generalization

4.	ECG Heartbeat Classification Using CNN- BiLSTM and SMOTE	Neenu Sharma et al., Biomedical Signal Processing and Control, 2023	 Combined CNN-BiLSTM with SMOTE to handle class imbalance. Used the MIT- BIH arrhythmia dataset. CNN extracts spatial features, while BiLSTM captures temporal dependencies. • 	 May not generalize well to other datasets. Prone to overfitting to specific characteristics of MIT-BIH data. High computational requirements due to combined CNN-BiLSTM model. SMOTE-based synthetic data generation might introduce unrealistic ECG patterns.
5.	1D Self- Operational Neural Networks (Self-ONNs) for ECG Classification	Junaid Malik et al., Neural Computing and Applications, 2023	 Used Self-ONNs with generative neurons for patient-specific ECG classification. Model dynamically adjusts kernel functions for better feature learning. Focused on arrhythmia detection. 	 Higher computational complexity compared to traditional CNNs. Challenging for real-time deployment on edge devices. Requires large datasets for effective training.

6.	ECGMatch: Semi- Supervised Learning for Multi-Label Cardiovascular Disease Prediction	Rushuang Zhou et al., IEEE Transactions on Biomedical Engineering, 2022	 Used the ECGMatch framework. Applied data augmentation, pseudo-label learning, and label correlation alignment. Incorporated both labeled and unlabeled data for improved generalization. 	 Performance on real-world unseen data needs further validation. Model might be biased towards its training dataset. Semisupervised learning approach may struggle with high intra-class variations. Computationall y expensive training process.
7.	CNN-Based Heart Abnormality Classification with Transfer Learning	Mohammed B. Abubaker et al., Sensors, 2023	 Used CNN with transfer learning. Applied Naïve Bayes (NB) algorithm. Achieved 99.79% accuracy on ECG images. Used pre-trained feature extraction layers for faster convergence. 	 Limited generalizability due to reliance on a specific dataset. May not capture diverse ECG variations. Transfer learning might not be optimal for ECG data compared to specialized architectures. Requires finetuning of pretrained layers for different datasets.

8.	BayeSlope: Adaptive R-Peak Detection for Wearable ECG Sensors	Elisabetta De Giovanni et al., IEEE Journal of Biomedical and Health Informatics, 2023	 Combined Bayesian filtering, unsupervised learning, and non-linear normalization for ECG peak detection. Adaptive design adjusts computational complexity based on real- time error estimation. 	 Performance during extreme motion artifacts needs improvement. Excessive movement can introduce significant noise. Adaptive complexity control might lead to performance fluctuations. Requires hardware optimization for wearable applications.
9.	CNN-Based Automatic ECG Diagnosis	Roberta Avanzato et al., Medical & Biological Engineering & Computing, 2022	 Used CNN to classify normal beats, atrial premature beats, and premature ventricular contractions. Trained on a dataset of 4,000 ECG instances. 	 Limited dataset size (4,000 ECG instances), reducing model robustness. Potential overfitting due to small dataset size. No crossvalidation with other largescale ECG datasets. Lacks interpretability for clinicians.

Block Diagram:

New Contributions:

- Optimized Training Performance: Comparison and fine-tuning of Adam and RMSprop optimizers to achieve better accuracy and faster convergence.
- Advanced Preprocessing Techniques: Implementation of adaptive image resizing (reducing size from 800KB to 300KB), enhancement, and efficient labeling using LabelImg.
- **Multi-Label ECG Classification**: Development of a CNN-based model for identifying multiple cardiovascular diseases from ECG images.
- Performance Benchmarking: Evaluation of the proposed model using standard ECG datasets and comparison against existing approaches to establish improvements in classification accuracy and computational efficiency.

Module Design:

1. Input: 12-Lead ECG Image Dataset

- The system begins with an ECG dataset consisting of 12-lead ECG images.
- These images are used as input for further processing.

2. Data Preprocessing

- **Data Denoising (OpenCV, Img2GDL):** Techniques such as filtering and noise reduction are applied to enhance ECG signals/images.
- **Data Labeling (CVAT, LabelIMG):** Images are labeled with corresponding conditions to prepare for supervised learning.

3. Feature Extraction

- **Optimized CNN (38 Layers):** A deep convolutional neural network with 38 layers is used to extract critical ECG features.
- **Adam** | **RMSprop:** These are optimization algorithms used to fine-tune the CNN's performance.

4. Classification Models

- Traditional machine learning models (SVM, Naïve Bayes, Decision Tree, Random Forest) are used for classification.
- Advanced boosting models (XGBoost, LightGBM) are also considered for improved performance.

5. Heartbeat Classification

 The extracted features are passed to the classification models to predict the heartbeat type.

6. Output: Final Classification

- The system classifies the heartbeat into one of six categories:
 - Normal person, Abnormal Heartbeat (HB), Stroke, Myocardial Infarction (MI), MI History, Arrhythmia

Evaluation Metrics:

Metric	Purpose	Formula
Accuracy	Measures the proportion of correctly classified ECG signals.	Accuracy = (TP + TN) / (TP + TN + FP + FN)
Precision	Indicates how many of the predicted positive cases are actual positives.	Precision = TP / (TP + FP)
Recall (Sensitivity)	Measures the model's ability to correctly detect positive cases.	Recall = TP / (TP + FN)
F1-score	Harmonic mean of precision and recall, balancing false positives and false negatives.	F1-score = 2 * (Precision * Recall) / (Precision + Recall)
AUC-ROC Curve	Evaluates the trade-off between true positive rate (TPR) and false positive rate (FPR) across different thresholds.	-
Confusion Matrix	Provides a detailed breakdown of classification results, showing TP (True Positive), TN (True Negative), FP (False Positive), and FN (False Negative) values.	-

Test Cases:

To ensure robustness and reliability, the following test cases are designed:

Test Case ID	Component	Test Case	Expected Outcome	Remarks
TC-001	Data Preprocessing - Denoising	Input noisy ECG images and apply OpenCV, Img2GDL filters	Noise should be significantly reduced while preserving signal features	Check for over- smoothing or loss of important features

TC-002	Data Preprocessing - Labeling	Verify manually labeled ECG images using CVAT, LabelIMG	Labels should be correctly assigned to ECG signals	Ensure inter- annotator agreement for consistency
TC-003	Feature Extraction - CNN	Pass ECG images through the optimized CNN (38 layers)	Features should be extracted correctly without distortion	Validate using sample input-output pairs
TC-004	Feature Extraction - Optimizer	Compare Adam vs RMSprop for training	Model should converge with optimal learning performance	Track loss function behavior for both optimizers
TC-005	Classification - ML Models	Train and test SVM, NB, DT, RF	Models should classify ECG data accurately	Compare accuracy, precision, recall for each model
TC-006	Classification - Boosting Models	Train and test XGBoost, LightGBM	Expected improvement in classification accuracy compared to other models	Hyperparameter tuning required
TC-007	Heartbeat Classification	Test model with ECG images of different heart conditions	Model should correctly classify each condition	Measure performance using confusion matrix
TC-008	Output Validation	Verify classification results for different cases (Normal, Abnormal HB, Stroke, MI, MI History, Arrhythmia)	Correct classification with high confidence score	Cross-check with clinical diagnosis

TC-009	System Performance	Test execution time for each step	Model should complete classification within an acceptable time	Optimize computations if needed
TC-010	Edge Cases	Input ECG images with extreme variations, artifacts, or missing segments	Model should handle such cases gracefully without crashes	Consider fallback mechanisms

References:

- [1] K. Vayadande *et al.*, "Heart Disease Prediction using Machine Learning and Deep Learning Algorithms," *2022 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES)*, Greater Noida, India, 2022, pp. 393-401, doi: 10.1109/CISES54857.2022.9844406.
- [2] M. A. Quiroz-Juárez, O. Jiménez-Ramírez, R. Vázquez-Medina, E. Ryzhii, M. Ryzhii and J. L. Aragón, "Cardiac Conduction Model for Generating 12 Lead ECG Signals With Realistic Heart Rate Dynamics," in *IEEE Transactions on NanoBioscience*, vol. 17, no. 4, pp. 525-532, Oct. 2018, doi: 10.1109/TNB.2018.2870331.
- [3] M. B. Abubaker and B. Babayiğit, "Detection of Cardiovascular Diseases in ECG Images Using Machine Learning and Deep Learning Methods," in *IEEE Transactions on Artificial Intelligence*, vol. 4, no. 2, pp. 373-382, April 2023, doi: 10.1109/TAI.2022.3159505.
- [4] V. Venkatesh, P. Rai, K. A. Reddy, S. Praba and R. Anushiadevi, "An intelligent framework for heart disease prediction deep learning-based ensemble Method," *2022 International Conference on Computer, Power and Communications (ICCPC)*, Chennai, India, 2022, pp. 274-280, doi: 10.1109/ICCPC55978.2022.10072285.
- [5] J. Moreno-Sáenz, Y. -J. Chen, K. Tanaka, J. L. Aragón and M. A. Quiroz-Juárez, "A Takagi-Sugeno Fuzzy-Model-Based Tracking Framework to Regulate Heart Rhythm Dynamics," in *IEEE Access*, vol. 11, pp. 47223-47235, 2023, doi: 10.1109/ACCESS.2023.3274809.
- [6] A. A. Almazroi, E. A. Aldhahri, S. Bashir and S. Ashfaq, "A Clinical Decision Support System for Heart Disease Prediction Using Deep Learning," in *IEEE Access*, vol. 11, pp. 61646-61659, 2023, doi: 10.1109/ACCESS.2023.3285247.
- [7] F. Bozyigit, F. Erdemir, M. Sahin and D. Kilinc, "Classification of electrocardiogram (ECG) data using deep learning methods," 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 2020, pp. 1-5, doi: 10.1109/ISMSIT50672.2020.9255000.

- [8] S. Hussain, S. K. Nanda, S. Barigidad, S. Akhtar, M. Suaib and N. K. Ray, "Novel Deep Learning Architecture for Predicting Heart Disease using CNN," *2021 19th OITS International Conference on Information Technology (OCIT)*, Bhubaneswar, India, 2021, pp. 353-357, doi: 10.1109/OCIT53463.2021.00076.
- **[9]** G. Paterniani *et al.*, "Radar-Based Monitoring of Vital Signs: A Tutorial Overview," in *Proceedings of the IEEE*, vol. 111, no. 3, pp. 277-317, March 2023, doi: 10.1109/JPROC.2023.3244362.
- [10] G. Sunilkumar and P. Kumaresan, "Deep Learning and Transfer Learning in Cardiology: A Review of Cardiovascular Disease Prediction Models," in *IEEE Access*, vol. 12, pp. 193365-193386, 2024, doi: 10.1109/ACCESS.2024.3514093.