apprentissage profond - deep learning

partie 3 : l'apprentissage d'un réseau

Adrien CHAN-HON-TONG ONERA

rappel

MLP

- ► X l'espace de **points**
- ► *P*, *y*, *f*, *w*
- $e_t = \frac{1}{M} \sum_m \mathbf{1}_-(y(\chi_m) f(\chi_m, w)) \approx \int_X \mathbf{1}_-(y(x) f(x, w)) P(x) dx$
- l'erreur d'apprentissage $e_a = \frac{1}{N} \sum_n \mathbf{1}_{-} (y(x_n) f(x_n, w))$
- ▶ deep learning = choisir $f(x, w) = w_Q \times relu(w_{Q-1} \times relu(...(relu(w_1 \times x))))$ et optimiser w pour avoir notamment e_a faible

Rappel

ConvNet

- X l'espace des images
- ► *P*, *y*, *f*, *w*
- $e_t = \frac{1}{M} \sum_m \mathbf{1}_-(y(\chi_m) f(\chi_m, w)) \approx \int_X \mathbf{1}_-(y(x) f(x, w)) P(x) dx$
- l'erreur d'apprentissage $e_a = \frac{1}{N} \sum_n \mathbf{1}_{-} (y(x_n) f(x_n, w))$
- ▶ deep learning = choisir $f(x, w) = w_Q \times poolrelu(w_{Q-1} * poolrelu(...(poolrelu(w_1 * x))))$ ou plus généralement un truc qui mélange convolutions, pooling et relu et optimiser w pour avoir notamment e_a faible

Comment est ce qu'on optimise w tel que e_a soit petit?

$$f(x,w) = w_Q \times relu(w_{Q-1} \times relu(...(relu(w_1 \times x))))$$

$$e_a = \frac{1}{N} \sum_n \mathbf{1}_{-}(y(x_n)f(x_n,w))$$

$$x_1,...,x_N \text{ une base d'apprentissage}$$

La descente de gradient

F est une fonction dérivable de \mathbb{R}^D dans \mathbb{R} alors $\forall u,h \in \mathbb{R}^D$, $F(u+h) = F(u) + \nabla F_u | h + o(h)$ avec $ho(h) \underset{h \to 0}{\rightarrow} 0$ (notation petit o classique) Donc si $\nabla F_u \neq 0$ alors il existe $\lambda > 0$ tel que $F(u - \lambda \nabla F_u) < F(u)$

La descente de gradient

pseudo code

input : F, u_0

- 1. $u = u_0$
- 2. calculer ∇F_u
- 3. si $\nabla F_u \approx 0$ ou early stopping alors sortir
- 4. $\lambda = 1$
- 5. tant que $F(u \lambda \nabla F_u) \ge F(u)$ faire $\lambda = 0.5\lambda$
- 6. $u = u \lambda \nabla F_u$
- 7. go to 2

cet algorithme converge vers un point u^* tel que $\nabla F_u = 0$

La descente de gradient

pseudo code

input : F, u_0

- 1. $u = u_0$
- 2. calculer ∇F_u
- 3. si $\nabla F_u \approx 0$ ou early stopping alors sortir
- 4. $\lambda = 1$
- 5. tant que $F(u \lambda \nabla F_u) \ge F(u)$ faire $\lambda = 0.5\lambda$
- 6. $u = u \lambda \nabla F_u$
- 7. go to 2

La descente de gradient pour nous

u correspond à w les poids et $F = e_a$?

La descente de gradient pour nous

u correspond à *w* les poids et $F \approx e_a$ il nous faut une fonction lisse

F s'appelle la fonction de perte (loss), elle doit être minimale quand on a atteint le comportement espéré

on va donc lisser:

$$(x_1, y_1), ..., (x_N, y_N) \in \mathbb{R}^D \times \{-1, 1\}$$

loss
$$(w) = \sum_{n=1}^{N} \mathbf{1}_{-}(y(x_n)f(x_n, w))$$

La descente de gradient en pour nous

u correspond à *w* les poids et $F \approx e_a$ il nous faut une fonction lisse

F s'appelle la fonction de perte (loss), elle doit être minimale quand on a atteint le comportement espéré

on peut par exemple prendre

$$(x_1, y_1), ..., (x_N, y_N) \in \mathbb{R}^D \times \{-1, 1\}$$

$$loss(w) = \sum_{n} relu(1 - y_n f(x_n, w))$$

c'est la hinge loss - elle est conceptuellement simple et historiquement c'est la loss des SVM - aujourd'hui on utilise plutôt la binary cross entropy

SGD

oui mais...

$$loss(w) = \sum_{n} relu(1 - y_n f(x_n, w))$$

Si N=1000000 ça veut dire que pour calculer loss(w) je dois appliquer f (plusieurs couches) à 1000000 points! Pire, j'ai besoin de $\nabla_w loss$

Descente de gradient stochastique

loss est une fonction dérivable de \mathbb{R}^D dans \mathbb{R} et que loss $(u) = \sum\limits_{i=1}^{n} q_i(u)$

alors dans le cas convexe, en faisant comme une descente de gradient mais en prenant une sous sommes des q_i tirée aléatoirement et cela même avec une politique $\lambda(t)$ fixée a priori (qui doit quand même vérifier certaines conditions).

Descente de gradient stochastique

pseudo code

input:
$$x_1, y_1, ..., x_n, y_n, w_0$$

- 1. $w = w_0$
- 2, iter = 0
- 3. tirer n au hasard dans 1,...,N
- 4. $partial_loss = relu(1 y_n f(x_n, w))$
- 5. calculer ∇_w partial _loss
- 6. $\theta = \theta \lambda_{iter} \nabla_w partial_loss$
- 7. iter = iter + 1
- 8. si condition d'arrêt alors sortir
- 9. go to 3

Descente de gradient stochastique

Mais ça suppose qu'on sache calculer le gradient!!!!

définitions

```
\begin{split} &\text{input}: (x \textit{in}_i)_i \\ &\text{variables}: (w_{t,i,j})_{t,i,j} \\ &\text{convention}: x_{0,i} = x \textit{in}_i, x_{t,0} = 1 \\ &\text{règles du forward}: \end{split}
```

- $ightharpoonup x_{t+1,i} = relu(\alpha_{t+1,i})$
- ightharpoonup loss(w) peut se calculer à partir de la dernière couche

```
\begin{array}{l} \mbox{for ward} \\ \mbox{for } t \\ \mbox{for } i \\ \mbox{for } j \\ \mbox{A[t][i]} += \mbox{relu(A[t-1][j])*w[t-1][i][j]} \end{array}
```

forward

$$x_{t+1,i} = relu\left(\alpha_{t+1,i}\right)$$

$$\alpha_{t+1,i} = \sum_{i} x_{t,i} w_{t,i,j}$$

loss(w) se calcule à partir de la dernière couche

objectif

On chercher à calculer $\frac{\partial loss}{\partial w_{t,i,i}}$

Pas trivial

$$\begin{array}{l} \text{R\'eduction } w - \alpha \\ \frac{\partial loss}{\partial w_{t,i,j}} = \frac{\partial loss}{\partial \alpha_{t,i,j}} \frac{\partial \alpha_{t,i}}{\partial w_{t,i,j}} = \frac{\partial loss}{\partial \alpha_{t,i}} x_{t,j} \end{array}$$

Réduction α - α

$$\frac{\partial loss}{\partial \alpha_{t,j}} = \sum_{i} \frac{\partial loss}{\partial \alpha_{t+1,i}} \frac{\partial \alpha_{t+1,i}}{\partial \alpha_{t,j}} = \sum_{i} \frac{\partial loss}{\partial \alpha_{t+1,i}} w_{t,i,j} relu'\left(\alpha_{t,j}\right)$$

relu est une fonction linéaire par morçeau, sa *dérivé* est donc une constante par morçeau

Attention

La somme dans $\frac{\partial loss}{\partial \alpha_{t,j}} = \sum_i \frac{\partial loss}{\partial \alpha_{t+1,i}} \frac{\partial \alpha_{t+1,i}}{\partial \alpha_{t,j}}$ ne vient **pas** de la somme dans $\alpha_{t+1,i} = \sum_i x_{t,j} w_{t,i,j}$.

Elle vient de
$$f(u) = a(b(u), c(u))$$
 implique $\frac{\partial f}{\partial u} = \frac{\partial a}{\partial b} \frac{\partial b}{\partial u} + \frac{\partial a}{\partial c} \frac{\partial c}{\partial u}$. Lui même vient de $f(u+h) = f(u) + f'(u)h$

forward

$$x_{t+1,i} = relu\left(\alpha_{t+1,i}\right)$$

$$\alpha_{t+1,i} = \sum_{i} x_{t,i} w_{t,i,j}$$

loss(w) se calcule à partir de la dernière couche

backward

$$\begin{split} \frac{\partial I}{\partial w_{t,i,j}} &= \frac{\partial I}{\partial \alpha_{t+1,i}} \frac{\partial \alpha_{t+1,i}}{\partial w_{t,i,j}} = \frac{\partial I}{\partial \alpha_{t+1,i}} x_{t,j} \\ \frac{\partial I}{\partial \alpha_{t,j}} &= \sum_{i} \frac{\partial I}{\partial \alpha_{t+1,i}} \frac{\partial \alpha_{t+1,i}}{\partial \alpha_{t,j}} = \sum_{i} \frac{\partial I}{\partial \alpha_{t+1,i}} w_{t,i,j} h'\left(\alpha_{t,j}\right) \end{split}$$

```
forward backward
for t
for i
for j
```

```
for i for j A[t][i] \mathrel{+}= relu(A[t-1][j])*w[t-1][i][j] \\ DA[z][1] = se calcule à partir de la dernière couche for t from z to 1 for j for i <math display="block">DA[t][j] \mathrel{+}= DA[t+1][i]*w[t][i]]*relu'(A[t][j])
```

Bilan

Deep learning

- ► X, P, y
- $e_t = \frac{1}{M} \sum_m \mathbf{1}_-(y(\chi_m) f(\chi_m, w)) \approx \int_X \mathbf{1}_-(y(x) f(x, w)) P(x) dx$
- ightharpoonup ce qui marche le mieux aujourd'hui pour avoir e_t petit c'est d'utiliser du deep learning :
- ▶ ⇒ de prendre f comme un réseau de neurones et de minimiser une approximation lisse de $e_a = \frac{1}{N} \sum_n \mathbf{1}_{-} (y(x_n) f(x_n, w))$ via une descente de gradient stochastique

Monteriez vous dans un avion ou taxi autonome sans pilote?

Pour le projet ATTOL (Autonomous Taxi, Take-Off and Landing), le 18 décembre dernier, une première mondiale a été accomplie : un décollage entièrement autonome basé vision, sans utilisation de l'ILS, ni du GPS, a été réalisé à plusieurs reprises sur l'aéroport de Toulouse-Blagnac. L'ONERA a contribué au développement et à la mise au point l'algorithme de fusion de données, qui élabore le signal de déviation à l'axe de piste, nécessaire au contrôle de l'avion, à partir des informations visuelles issues de la caméra et inertielles provenant des centrales à bord de l'appareil. Ainsi, contrairement aux systèmes actuels dont les signaux se trouvent hors de l'appareil, ceux-ci se trouvaient embarqués, d'où la qualification d'un système autonome.

https://www.onera.fr/fr/actualites/attol-des-pilotes-dans-lavion-mais-un-systeme-autonome

Bilan

- ► X, P, y
- $e_t = \frac{1}{M} \sum_m \mathbf{1}_-(y(\chi_m) f(\chi_m, w)) \approx \int_X \mathbf{1}_-(y(x) f(x, w)) P(x) dx$
- ce qui marche le mieux aujourd'hui pour avoir e_t petit c'est d'utiliser du deep learning :
- ▶ ⇒ de prendre f comme un réseau de neurones et de minimiser une approximation lisse de $e_a = \frac{1}{N} \sum_n \mathbf{1}_{-} (y(x_n) f(x_n, w))$ via une descente de gradient stochastique

Le plus important c'est de comprendre le formalisme global (mon problème se met-il sous la forme X, P, y) et de rester lucide sur ce qui peut marcher et comment on doit l'évaluer $(e_a \text{ vs } e_t \text{ vs } e_t \text{ ...})$