ШАД. Хэндбук поступающего

Автор: Даниил Скороходов @neuralspeedster

30.10.2025

Содержание

A.	Алгебра				
	A.1.	Перестановки		5	
		A.1.1.	Умножение перестановок	5	
		A.1.2.	Циклы и транспозиции	6	
		A.1.3.	Чётность Перестановки	7	
	A.2.	Компл	ексные числа	8	
		A.2.1.	Геометрическая интерпретация	8	
		A.2.2.	Формы записи	10	
		A.2.3.	Об умножении комплексных чисел	11	
		A.2.4.	Извлечение корней	12	
		A.2.5.	Корни из единицы	13	
	A.3.	Систе	мы линейных уравнений	14	
	A.4.	Линей	ная зависимость и ранг	15	
B.	Мат	Математический анализ			
	B.1.	Число	вые последовательности	16	
		B.1.1.	Предел последовательности	16	
		B.1.2.	Ограниченность	17	
		B.1.3.	Единственность предела	17	
		B.1.4.	Свойства пределов, связанные с неравенствами	18	
		B.1.5.	Бесконечно малые последовательности	19	
		B.1.6.	Арифметические свойства пределов	20	
		B.1.7.	Монотонные последовательности	22	
			В.1.7.1. Теорема Вейерштрасса	22	
		B.1.8.	Кто растёт быстрее?	23	
		B.1.9.	Число <i>e</i>	25	
			В.1.9.1. Первое доказательство существования e	25	
			В.1.9.2. Второе доказательство существования e	26	
		B.1.10.		27	
	B.2.	Кратные интегралы		28	
		B.2.1.	Двойные интегралы	28	
			В.2.1.1. Определение двойного интеграла	28	
			В.2.1.2. Суммы Дарбу	28	
			В.2.1.3. Свойства двойного интеграла	29	
	B.3.	3. Гамма-функция и бета-функция			

		B.3.1.	Гамма-функция	31	
			В.3.1.1. Свойства гамма-функции	31	
		B.3.2.	Бета-функция	34	
			В.3.2.1. Свойства бета-функции	34	
		B.3.3.	Связь гамма-функции и бета-функции	35	
	B.4.	Число	вые ряды	37	
		B.4.1.	Необходимый признак сходимости ряда	38	
		B.4.2.	Признаки сходимости положительных рядов	38	
			В.4.2.1. Теоремы сравнения	38	
			В.4.2.2. Радикальный признак Коши	40	
			В.4.2.3. Признак Даламбера	41	
			В.4.2.4. Признак Раабе	42	
			В.4.2.5. Интегральный признак Маклорена-Коши	43	
		B.4.3.	Сходимость произвольных рядов	45	
			В.4.3.1. Абсолютная сходимость	45	
			В.4.3.2. Знакопеременные ряды и признак Лейбница	46	
C.	Комбинаторика				
С.1. Основные правила комбинаторики					
		C.1.1.	Првила суммы и произведения	47	
		C.1.2.	Принцип Дирихле	48	
		C.1.3.	Примеры	49	
	C.2.	Множ	ества	50	
		C.2.1.	Операции на множествах	50	
		C.2.2.	Свойства бинарных операций над множествами	50	
		C.2.3.	Кортеж	50	
		C.2.4.	Декартово произведение	51	
		C.2.5.	Мощность множества	51	
		C.2.6.	Круги Эйлера	52	
		C.2.7.	Формула включений и исключений	52	
	C.3.	Перест	гановки, сочетания и размещения	53	
		C.3.1.	Выбор без повторений	53	
		C.3.2.	Выбор с повторениями	54	
	C.4.	Произ	водящие функции	55	
D.	Teop	оия вер	оятностей	56	
	D 1	Octrop	ULIE HOUGTING	56	

		D.1.1.	Операции над событиями	
		D.1.2.	Аксиомы вероятности	
		D.1.3.	Следствия из Аксиом	
D.2. Случайная величина				
		D.2.1.	Свойства функции распределения случайной величины 59	
E.	Алг	оритмь	и и структуры данных && программирование	
	E.1.	Основ	ные понятия	
		E.1.1.	Анализ сложности и эффективности алгоритмов	
	E.2.	Асимп	тотические оценки функций61	
		E.2.1.	Свойства сравнений функций	
	E.3.	Бинар	ный поиск	
		E.3.1.	Вариант с поиском границ	
Е.4. Динамическое программи		Динам	ическое программирование	
		E.4.1.	Простые примеры ДП	
			Е.4.1.1. Ступеньки	
			E.4.1.2. Ступеньки с сертификатом	
			Е.4.1.3. Наибольшая возрастающая подпоследовательность 65	
			Е.4.1.4. Покупка билетов	
			Е.4.1.5. Представление числа минимальной последовательностью	
			операций66	
		E.4.2.	Двумерное динамическое программирование	
			Е.4.2.1. Наибольшая общая подпоследовательность	
			E.4.2.2. Расстояние Левенштейна	
F.	Ана	нализ данных		

А. Алгебра

Здесь много базы!

А.1. Перестановки

Пусть Ω - конечное множество из n элементов. Удобно считать, что $\Omega = \{1, 2, ..., n\}$. Зададим множество всех биективных преобразований $\Omega \to \Omega$:

$$S = S_n(\Omega) = \{ \sigma : \Omega \to \Omega \mid \sigma - \text{биективно} \}$$
 (1)

Элементы множества S называются nepecmanoвками(или nepecmanoвками) множества Ω .

Развёрнутая запись Перестановки $\pi: i \to \pi(i) \ \forall i = 1, 2, ..., n$ имеет вид:

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix} \tag{2}$$

Перестановка $e=e_{\Omega}=\left(egin{smallmatrix}1&2&\dots&n\\1&2&\dots&n\end{smallmatrix}\right)$ называется единичной Перестановкой.

А.1.1. Умножение перестановок

Пусть $\pi, \sigma \in S$. Тогда их произведение $\pi \sigma$ находится из общего определения композиции преобразований:

$$(\pi\sigma)(i) = \pi(\sigma(i)) \tag{3}$$

Пусть, например, $\pi=\begin{pmatrix}1&2&3&4\\2&3&4&1\end{pmatrix}$ и $\sigma=\begin{pmatrix}1&2&3&4\\4&3&2&1\end{pmatrix}$. Тогда:

$$(\pi\sigma)(1) = \pi(\sigma(1)) = \pi(4) = 1$$
 (4)

$$(\pi\sigma)(2) = \pi(\sigma(2)) = \pi(3) = 4 \tag{5}$$

$$(\pi\sigma)(3) = \pi(\sigma(3)) = \pi(2) = 3$$
 (6)

$$(\pi\sigma)(4) = \pi(\sigma(4)) = \pi(1) = 2 \tag{7}$$

Таким образом, $\pi\sigma=\begin{pmatrix}1&2&3&4\\1&4&3&2\end{pmatrix}$. Заметим, что вообще говоря, $\pi\sigma\neq\sigma\pi$. Имеем:

5

Свойства произведения перестановок:

- 1. Ассоциативность: $\forall \alpha, \beta, \gamma \in S_n : \alpha(\beta\gamma) = (\alpha\beta)\gamma.$
- 2. Единичный элемент: $\exists e \in S_n : \forall \alpha \in S_n \alpha e = e \alpha.$
- 3. Обратная Перестановка: $\forall \alpha \in S_n \exists \alpha^{-1} \in S_n : \alpha \alpha^{-1} = \alpha^{-1} \alpha = e.$

Порядок группы перестановок или же попросту мощность множества перестановок равна факториалу количества элементов Ω . Действительно, для каждого из n элементов множества Ω можно выбрать одно из n мест, затем для оставшихся n-1 элементов — одно из n-1 мест и так далее. В итоге получаем:

Card
$$S_n = n(n-1)(n-2)...1 = n!$$
 (9)

А.1.2. Циклы и транспозиции

 $_i$ Ииклом длины $m \leq n$ множества Ω называется такая Перестановка $\sigma \in S_n$, что $\sigma(i) = (i+1) \ \forall i=1,2,...,(m-1)$ и $\sigma(m)=1$, а все элементы Ω , не указанные перечислением, остаются на своих местах. Т. е. $\forall k \notin \{1,...,m\}: \sigma(k)=k$.

Примечание: элементы цикла приведены условно как $\{1,...,m\}$.

Транспозицией называется цикл длины 2. Записывается как $au=(i\ j)$, где $i\ u\ j-$ элементы, которые меняются местами.

Исходя из общего определения цикла, очевидно, что транспозиция оставляет неподвижными все элементы, кроме двух указанных.

Th. 1 (О разложении перестановок). Любая Перестановка $\pi \in S_n \setminus \{e\}$ может быть представлена в виде произведения циклов.

Доказательство: Пусть $\pi = \begin{pmatrix} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix}$. Разобьём множество Ω на непересекающиеся циклы. Для этого будем рассматривать последовательности элементов, которые переходят друг в друга под действием Перестановки π .

Следствие 1. Любая Перестановка может быть разложена в произведение транспозиций.

Доказательство: Разложим Перестановку $\pi=\pi_1\pi_2...\pi_k$, где $\pi_1,\pi_2,...,\pi_k$ — циклы. Каждый цикл π_j можно представить в виде произведения транспозиций, например, так: $\begin{pmatrix} 1 & 2 & ... & m \end{pmatrix} = \begin{pmatrix} 1 & l \end{pmatrix} \begin{pmatrix} 1 & l-1 \end{pmatrix} ... \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix}$.

Индуктивное определение степени Перестановки. Пусть $\pi \in S_n$. Тогда:

$$\pi^{s} = \begin{cases} \pi(\pi^{s-1}), & \text{если } s > 0 \\ e, & \text{если } s = 0 \\ \pi^{-1}\left(\left(\pi^{-1}\right)^{-s-1}\right), & \text{если } s < 0 \end{cases}$$
 (10)

Вернёмся к примеру $\pi=\begin{pmatrix}1&2&3&4\\2&3&4&1\end{pmatrix}$ и $\sigma=\begin{pmatrix}1&2&3&4\\4&3&2&1\end{pmatrix}$. Здесь $\pi-$ цикл длины 4, а σ раскладывается в произведение двух транспозиций: $\sigma=\begin{pmatrix}1&4\\2&3\end{pmatrix}$.

$$\sigma^2 = (1 \ 3)(2 \ 4), \sigma^4 = (\sigma^2)^2 = e, \pi^2 = e$$

А.1.3. Чётность Перестановки

Пусть Перестановка $\pi \in S_n$ раскладывается на множители $\pi = \tau_1 \tau_2 ... \tau_k$, где τ_j транспозиции.

Знаком(или чётностью) Перестановки называется число

$$\varepsilon_{\pi} = (-1)^k \tag{11}$$

Тh. 2: Чётность Перестановки не зависит от выбора разложения на транспозиции.

Th. 2.1 (О знаке произведения):

$$\varepsilon_{\alpha\beta} = \varepsilon_{\alpha}\varepsilon_{\beta} \tag{12}$$

Th. 3: Количество чётных перестановок равно количеству нечётных и равно $\frac{n!}{2}$.

А.2. Комплексные числа

Комплексным числом называется пара действительных чисел (a, b).

$$\mathbb{C} = \{ (a, b) \mid a, b \in \mathbb{R} \} \tag{13}$$

Если z=(a,b), то

$$a = \Re(z) \tag{14}$$

$$b = \Im(z) \tag{15}$$

a называется действительной частью комплексного числа z, b — мнимой частью.

Для комплексных чисел операции сложения и умножения определяются так:

1.
$$(a,b) + (c,d) = (a+c,b+d)$$

2.
$$(a,b)(c,d) = (ac - bd, ad + bc)$$

Заметим, что $(a,0)=a \ \forall a\in\mathbb{R}$. Так что $\mathbb{R}\subset\mathbb{C}$.

Мнимая единица. $(0,1)^2=(0,1)(0,1)=(0\cdot 0-1\cdot 1,0\cdot 1+1\cdot 0)=(-1,0)=-1.$ Число (0,1) принято обозначать i и называть мнимой единицей. Итак,

$$i^2 = -1 \tag{16}$$

Стандартное обозначение для комплексного числа z = (a, b):

$$z = a + bi (17)$$

Для произвольных комплексных чисел нельзя корректно ввести бинарное отношение порядка(<).

А.2.1. Геометрическая интерпретация

Комплексному числу можно сопоставить точку в двумерном пространстве с декартовыми координатами (a,b). По оси абсцисс откладывается действительная часть, по оси ординат — мнимая.

Рис. 1 - комплексная плоскость

Операция сопряжения. Число $\overline{z}=a-bi$ называется сопряжённым числу z=a+bi. Операция сопряжения соотвествует симметрии $S_{\mathfrak{R}}$ относительно действительной оси.

Заметим, что $\mathfrak{I}(z\overline{z})=0\Leftrightarrow z\overline{z}\in\mathbb{R}$

Модуль комплексного числа. Величина $|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$ называется модулем z.

Аргумент комплексного числа. Величина $\arg(z)=\varphi$, где $\varphi\in(-\pi;\pi]$ — ориентированный угол между радиус-вектором z и положительным направлением оси абсцисс называется *аргументом комплексного числа*. Аргумент числа (0,0) не определён.

Неравенство треугольника в комплексных числах. $\forall z_1, z_2 \in \mathbb{C}:$

$$|z_1 + z_2| \le |z_1| + |z_2| \tag{18}$$

(Доказывается алгебраическими преобразованиями или использованием неравенства Коши-Буняковского-Шварца)

Переход в полярные координаты. Пусть z = x + yi Сделаем замену:

$$\begin{cases} r = |z| = \sqrt{x^2 + x^2} \\ \theta = \arg(z) \end{cases}$$
 (19)

Главными называются значения аргумента из полуинтервала $(-\pi;\pi]$.

Явное выражение для главного значения аргумента.

$$Arg(z) = 2 \arctan\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right) \tag{20}$$

Доказательство: Пусть комплексное число (x,y) имеет аргумент θ . Вписанный угол, опирающийся на дугу меры θ , равен половине центрального угла θ . Тогда из прямоугольного треугольника(см. рисунок).

$$\operatorname{tg}\left(\frac{\theta}{2}\right) = \frac{y}{x+r} \tag{21}$$

Это и эквивалентно $\theta = 2 \arctan\left(\frac{y}{x+r}\right)$. \blacksquare

А.2.2. Формы записи

1. Алгебраическая:

$$z = x + yi \tag{22}$$

2. Тригонометрическая:

$$z = r(\cos\varphi + i\sin\varphi) \tag{23}$$

3. Показательная:

$$z = re^{i\varphi} \tag{24}$$

Показательная форма есть просто следствие формулы Эйлера:

Aлгебра 10

$$e^{i\varphi} = \cos\varphi + i\sin\varphi \tag{25}$$

Доказательство самой формулы Эйлера вытекает из следующих трёх разложений. $\forall z \in \mathbb{C}$

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$
 (26)

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$
 (27)

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
 (28)

Подставим в разложение экспоненты $z=i\varphi$, где $\varphi\in\mathbb{R}$ и учтем следующие тождества: $i^2=-1,\ i^3=-i,\ i^4=1,\ i^5=i.$ Вообще говоря, $i^n=i^{n-4}.$ Отсюда и следует требуемое. \blacksquare

А.2.3. Об умножении комплексных чисел

Алгебраическое умножение комплексных чисел не столь удобно, особенно при возведении в степень.

Пусть даны два комплексных числа $z_1=r_1(\cos\varphi_1+i\sin\varphi_1)$ и $z_2=r_2(\cos\varphi_2+i\sin\varphi_2)$. Тогда их произведение можно записать в виде:

$$\begin{split} z_1 z_2 &= r_1 r_2 (\cos \varphi_1 + i \sin \varphi_1) (\cos \varphi_2 + i \sin \varphi_2) = \\ &= r_1 r_2 (\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 + i (\sin \varphi_1 \cos \varphi_2 + \cos \varphi_1 \sin \varphi_2)) = \\ &= r_1 r_2 (\cos (\varphi_1 + \varphi_2) + i \sin (\varphi_1 + \varphi_2)) \end{split} \tag{29}$$

Итак,

$$\begin{cases} |z_1 z_2| = |z_1| |z_2| \\ \arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \end{cases}$$
 (30)

Исходя из этого, можно быстро возводить комплексные числа в произвольную натуральную степень.

Формула Муавра. $\forall z = r(\cos \varphi + i \sin \varphi) \in \mathbb{C}, n \in \mathbb{N}$:

$$z^{n} = r^{n}(\cos(n\varphi) + i\sin(n\varphi)) \tag{31}$$

Доказательство: докажем по индукции.

- 1. База: n=1. Тогда $z^1=z=r(\cos\varphi+i\sin\varphi)$. Это уже получено. Для уверенности можем проверить случай n=2. Легко видеть, что это следствие (30) для $z=z_1=z_2$.
- 2. Предположение индукции. Пусть верно для $n\in\mathbb{N}$: $z^n=r^n(\cos(n\varphi)+i\sin(n\varphi))$
- 3. Шаг индукции. Докажем для n+1. Тогда

$$z^{n+1} = z^n z = r^n r(\cos(n\varphi + \varphi) + i\sin(n\varphi + \varphi)) =$$

$$= r^{n+1}(\cos((n+1)\varphi) + i\sin((n+1)\varphi))$$
(32)

Здесь мы снова использовали (30). Таким образом, формула верна для $n+1\Rightarrow$ она верна $\forall n\in\mathbb{N}.$

Дополнительно. Легко видеть, что умножение $z_1=r_1(\cos\varphi_1+i\sin\varphi_1)$ на $z_2=r_2(\cos\varphi_2+i\sin\varphi_2)$ задаёт композицию поворота $R_o^{\varphi_2}$ и гомотетии $H_O^{r_2}$ точки z_1 на плоскости $\mathbb C$. Полученное преобразование $\mathbb R^2\to\mathbb R^2$ называется поворотной гомотетиней: $H_O^{r_2,\varphi_2}=H_O^{r_2}\!\circ\! R_O^{\varphi_2}$.

А.2.4. Извлечение корней

Алгебраическим корнем степени n>1 числа $z\in\mathbb{C}$ называется множество $\Omega=\{w\mid w^n=z\mid w\in\mathbb{C}, n\in\mathbb{N}\}$ и обозначается $\sqrt[n]{z}$.

$$\forall z \in \mathbb{C} : \operatorname{Card}(\sqrt[n]{z}) = n.$$

Выведем формулу для корней из комплексного числа $z=r(\cos\varphi+i\sin\varphi)$.

Пусть
$$\sqrt[n]{z} = \{w_k \mid w_k^n = z \mid k = 0, 1, ..., n-1\}.$$

- 1. Очевидно, что $|w_k|=\sqrt{r}$, где $\sqrt{r}-$ арифметический квадратный корень из действительного числа r. И правда, по формуле Муавра $|z|=|w_k|^n$.
- 2. Пусть $\, \varphi_k = \arg(w_k) .$ Тогда по формуле Муавра: $n \varphi_k = \varphi + 2\pi k .$ Для всех $k \in \{k_0+i \mid i=0,1,...(n-1)\}$ будут получаться все n корней. Поэтому для удобства полагают $k_0=0.$

Итак, доказана формула корней числа $z=r(\cos\varphi+i\sin\varphi)\ \forall k\in\{0,1,...,n-1\}$:

$$w_k = \sqrt{r} \left(\cos \left(\frac{\varphi}{n} + 2\pi \frac{k}{n} \right) + i \sin \left(\frac{\varphi}{n} + 2\pi \frac{k}{n} \right) \right) \tag{33}$$

Все корни из числа z лежат на вершинах правильного n-угольника, вписанного в окружность с центром в начале координат и радиусом \sqrt{r} .

Это легко видеть, исходя из того, что у всех корней одинаковый модуль, и каждый следующий получается из предыдущего поворотом на один и тот же угол $\frac{2\pi}{n}$.

Рис. 2 — корни 5 степени из z=4+4i

А.2.5. Корни из единицы

Положим z=1. Тогда корни степени n выражаются так:

$$\sqrt[n]{1} = \varepsilon_k = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right) \tag{34}$$

$$\forall k \in \{0, 1, ..., n-1\}.$$

Все корни есть вершины правильного n-угольника, вписанного в окружность единичного радиуса. Её уравнение $z\overline{z}=1$.

А.3. Системы линейных уравнений

А.4. Линейная зависимость и ранг

В. Математический анализ

В.1. Числовые последовательности

Отображение $\mathbb{N} \to \mathbb{R}$ называется числовой последовательностью. Последовательность можно записать как $a_1,a_2,...a_n,...$, где $\forall n \in \mathbb{N}: a_n \in \mathbb{R}$ или же

$$\left\{a_n\right\}_{n=1}^{\infty} \tag{35}$$

Членом последовательности с номером n называется пара (n, a_n) .

В.1.1. Предел последовательности

Число $a \in \mathbb{R}$ называется пределом последовательности $\{a_n\}$, если

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N : |a_n - a| < \varepsilon \tag{36}$$

Если a — предел последовательности $\{a_n\}$, то пишут

$$\lim_{n \to \infty} a_n = a. \tag{37}$$

Можно дать более общее определение, если ввести следующие обозначения.

- 1. $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$
- 2. $\hat{\mathbb{R}} = \overline{\mathbb{R}} \cup \{\infty\}$
- 3. Понятие эпсилон-окрестности элемента $a \in \hat{\mathbb{R}}$.
 - 3.1. Если $a \in \mathbb{R}$, то

$$u_{\varepsilon}(a) \stackrel{=}{\underset{\text{def}}{=}} (a - \varepsilon, a + \varepsilon)$$
 (38)

3.1. Если $a = -\infty$, то

$$u_{\varepsilon}(a) \stackrel{=}{=} \left(-\infty, -\frac{1}{\varepsilon}\right) \tag{39}$$

3.2. Если $a = +\infty$, то

$$u_{\varepsilon}(a) \stackrel{=}{=} \left(\frac{1}{\varepsilon}, +\infty\right) \tag{40}$$

3.3. Если $a = \infty$, то

$$u_{\varepsilon}(a) \stackrel{=}{=} \left(-\infty, -\frac{1}{\varepsilon}\right) \cup \left(\frac{1}{\varepsilon}, +\infty\right) \tag{41}$$

Тогда $a \in \hat{\mathbb{R}}$ называется пределом последовательности $\{a_n\}$, если

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N : a_n \in u_{\varepsilon}(a) \tag{42}$$

В.1.2. Ограниченность

Последовательность $\{a_n\}$ называется ограниченной сверху, если $\exists M \in \mathbb{R}: \forall n \in \mathbb{N}: a_n \leq M.$

Последовательность $\{a_n\}$ называется *ограниченной снизу*, если $\exists m \in \mathbb{R}: \forall n \in \mathbb{N}: a_n \geq m.$

Последовательность $\{a_n\}$ называется *ограниченной*, если она ограничена сверху и снизу.

 $\it Teopema$. Если последовательность $\{a_n\}$ сходится, то она ограничена.

Доказательство. \square Пусть $a_n \to a$. По определению сходимости $\forall \varepsilon>0$ $\exists N\in\mathbb{N}:$ $\forall n>N: |a_n-a|<\varepsilon.$ В частности, для $\varepsilon=1:$

$$\exists N \in \mathbb{N} : \forall n > N : |a_n - a| < 1. \tag{43}$$

Тогда вне 1-окрестности числа a лежит конечное число членов a_n , поэтому мы можем явно предъявить ограничивающие сверху и снизу константы M и m соответственно:

$$M = \max(\{a_n \mid n \le N\} \cup \{a+1\}) \tag{44}$$

$$m = \min(\{a_n \mid n \le N\} \cup \{a - 1\}) \tag{45}$$

Поэтому последовательность ограничена сверху и снизу, и поэтому она ограничена.

Контрпример для обратного утверждения(ограничена \Rightarrow сходится?): последовательность $a_n = (-1)^n$ не сходится, но ограничена.

В.1.3. Единственность предела

 \mathcal{L} Лемма. Если $a,b\in\overline{\mathbb{R}}$ и $a\neq b$, то

$$\exists \varepsilon > 0 : u_{\varepsilon}(a) \cap u_{\varepsilon}(b) = \emptyset \tag{46}$$

Доказательство: \square Не умаляя общности рассуждений, предположим, что a < b.

1. Пусть $a,b\in\mathbb{R}$. Возьмём $\varepsilon=\frac{b-a}{3}\Rightarrow \forall x\in u_{\varepsilon}(a),y\in u_{\varepsilon}(b)$:

$$x < a + \varepsilon < b - \varepsilon < y \tag{47}$$

2. $a = -\infty, b \in \mathbb{R}$.

$$b - \varepsilon > -\frac{1}{\varepsilon} \Leftrightarrow b > -\varepsilon^2 + b\varepsilon > -1 \tag{48}$$

$$\varepsilon^2 - b\varepsilon - 1 < 0 \tag{49}$$

Это неравенство всегда имеет *положительное* решение относительно ε , поскольку дискриминант квадратного трёхчлена в левой части всегда положителен, а по теореме Виета, произведение корней отрицательно, а значит больший корень положителен.

3. $b = +\infty, a \in \mathbb{R}$.

$$a + \varepsilon < \frac{1}{\varepsilon} \Leftrightarrow a < \varepsilon^2 + a\varepsilon < 1$$
 (50)

$$\varepsilon^2 + a\varepsilon - 1 > 0 \tag{51}$$

Это неравенство всегда имеет *положительное* решение относительно ε .

4. $a=-\infty,\,b=+\infty.$ В этом случае $\forall \varepsilon>0$

$$-\frac{1}{\varepsilon} < 0 < \frac{1}{\varepsilon} \tag{52}$$

Поэтому $\forall x \in u_{\varepsilon}(a), y \in u_{\varepsilon}(b) : x < 0 < y.$

В случаях 2 и 3 показано, что для любого действительного числа существует подходящее значение ε , при котором любое число из его окрестности заведомо больше или меньше соответственно любого числа из окрестности $-\infty$ или $+\infty$.

Из вышедоказанной леммы можно получить такую теорему.

Теорема. У любой последовательности $\{a_n\}$, сходящейся в $\overline{\mathbb{R}}$ может быть только один предел.

В.1.4. Свойства пределов, связанные с неравенствами

Выведем некоторые свойства пределов.

1. Пусть $a, b \in \mathbb{R}$. Тогда верно следующее(знак < можно заменить на >).

$$\lim_{n \to \infty} a_n = a < b \Rightarrow \exists N \in \mathbb{N} : \forall n > N : a_n < b. \tag{53}$$

 \mathcal{A} оказательство. \square Пусть $\lim a_n=a < b$. По определению предела $\forall \varepsilon>0$ $\exists N\in\mathbb{N}: \forall n>N: |a_n-a|<\varepsilon$. В частности, для $\varepsilon=\frac{b-a}{2}$:

$$\exists N \in \mathbb{N} : \forall n > N : |a_n - a| < \varepsilon. \tag{54}$$

Следовательно, $\forall n > N: a_n < a + \varepsilon = a + \frac{b-a}{2} = \frac{a+b}{2} < b.$ \blacksquare

2. Пусть $\lim a_n = a$.

$$\exists N \in \mathbb{N} : \forall n > N : a_n \le b \Rightarrow a \le b. \tag{55}$$

Доказательство.

Предположим, что

$$[\exists N \in \mathbb{N} : \forall n > N : a_n \le b] \land \neg (a \le b) \tag{56}$$

Поскольку тогда a>b, то по свойству 1, начиная с некоторого номера, $a_n>b$, но по предположению $a_n\le b$. Это противоречие. \blacksquare

3. Теорема о трёх последовательностях
(о двух милиционерах). Пусть даны три последовательности
 a_n, b_n, c_n , такие что $\exists N \in \mathbb{N} : \forall n > N : a_n \leq b_n \leq c_n$. Тогда

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=a\in\overline{\mathbb{R}}\Rightarrow\lim_{n\to\infty}b_n=a \tag{57}$$

Доказательство. \square Пусть $\lim a_n=a, \lim c_n=a.$ Тогда по определению предела

$$\forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} : \forall n > N_1 : a_n \in u_{\varepsilon}(a) \tag{58}$$

$$\forall \varepsilon > 0 \ \exists N_2 \in \mathbb{N} : \forall n > N_2 : c_n \in u_{\varepsilon}(a). \tag{59}$$

Тогда $\exists N_3 = \max\{N_1,N_2,N\}$ (N из условия теоремы, то есть тот номер, начиная с которого верно неравенство). Имеем $\forall n>N_3$:

$$u_{\varepsilon}(a) \ni a_n \le b_n \le c_n \in u_{\varepsilon}(a) \tag{60}$$

Поэтому $\forall n>N_3:b_n\in u_{\varepsilon}(a)$, а это и есть определение предела $\lim b_n=a$. \blacksquare

В.1.5. Бесконечно малые последовательности

 $Onpe \ensuremath{\textit{де}}$. Последовательность α_n называется бесконечно малой(БМ), если

$$\lim_{n \to \infty} \alpha_n = 0 \tag{61}$$

Свойства бесконечно малых последовательностей:

1. Если α_n и β_n - бесконечно малые последовательности, то $\alpha_n+\beta_n$ - бесконечно малая последовательность. Доказательство. \square Пусть $\lim \alpha_n=0$, $\lim \beta_n=0$. Тогда по определению предела

$$\forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} : \forall n > N_1 : |\alpha_n| < \varepsilon \tag{62}$$

$$\forall \varepsilon > 0 \ \exists N_2 \in \mathbb{N} : \forall n > N_2 : |\beta_n| < \varepsilon. \tag{63}$$

Обозначим $N=\max\{N_1,N_2\}$. Тогда $\,\,\,\forall n>N: |\alpha_n+\beta_n|\leq |\alpha_n|+|\beta_n|<2\varepsilon,$ что и означает, что $\lim(\alpha_n+\beta_n)=0.$

2. Если α_n - бесконечно малая последовательность, а a_n - ограничена, то $\alpha_n \cdot a_n$ — бесконечно малая последовательность. Доказательство. \square Пусть $\lim \alpha_n = 0$, a_n ограничена, то есть $\exists M>0: \forall n\in\mathbb{N}: |a_n|< M$. Тогда для последовательности $\beta_n=\alpha_n\cdot a_n$ имеем

$$|\beta_n| = |\alpha_n| \cdot |a_n| \underset{(n > N)}{<} \varepsilon \cdot M. \tag{64}$$

Тогда b_n - бесконечно малая последовательность. \blacksquare

 $\mathit{Утверждение}.$ Если α_n — бесконечно малая последовательность, то

$$\lim_{n\to\infty}a_n=a\Leftrightarrow \exists \alpha_n=a_n-a \tag{65}$$

Доказательство.

1. ⇒. По определению предела

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N : |a_n - a| < \varepsilon. \tag{66}$$

Обозначим $\alpha_n=a_n-a$. Тогда $\forall n>N: |\alpha_n|<arepsilon$, следовательно, $\lim \alpha_n=0$.

2. ←. По определению бесконечно малой последовательности,

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n > N : |\alpha_n| < \varepsilon. \tag{67}$$

Подставляя сюда $\alpha_n=a_n-a$, получаем, что $a_n o a$.

В.1.6. Арифметические свойства пределов

Сначала докажем лемму о сохранении знака.

Лемма о сохранении знака. Пусть $\lim b_n = b \neq 0.$ Тогда $\exists N \in \mathbb{N}: \forall n > N:$

$$\left\lceil |b_n| > \frac{|b|}{2} \right\rceil \wedge \left[\operatorname{sign}(b_n) = \operatorname{sign}(b) \right] \tag{68}$$

 \mathcal{A} оказательство. \square В определении предела для b_n мы возьмём $\varepsilon=\frac{|b|}{2}$. Для b>0 получим $\exists N\in\mathbb{N}: \forall n>N: |b_n-b|<\frac{b}{2}$, что эквивалентно

$$-\frac{b}{2} < b_n - b < \frac{b}{2} \Rightarrow b_n > \frac{b}{2} > 0 \tag{69}$$

Отсюда следует требуемое. Если b<0, то аналогично получаем $b_n<-\frac{b}{2}<0$. \blacksquare

После доказательства леммы о сохранении знака можно перейти к теореме об арифметических свойствах пределов.

 $\mathit{Teopema}.$ Пусть $\lim a_n = a, \lim b_n = b,$ тогда

$$\exists \lim_{n \to \infty} (a_n + b_n) = a + b \tag{70}$$

$$\exists \lim_{n \to \infty} (a_n - b_n) = a - b \tag{71}$$

$$\exists \lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b \tag{72}$$

4. Если $b \neq 0$ и $\forall n \in \mathbb{N} : b_n \neq 0$, то

$$\exists \lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{a}{b} \tag{73}$$

Доказательство. \square Докажем последовательно все 4 утверждения. Общий план состоит в том, чтобы доказывать, что разность последовательности и её предполагаемого предела — бесконечно малая последовательность. Обозначим $\alpha_n=a_n-a$, а также $\beta_n=b_n-b$.

- 1. $a_n+b_n-(a+b)=(a_n-a)+(b_n-b)=\alpha_n+\beta_n$ это сумма двух бесконечно малых последовательностей, следовательно, такая последовательность сама БМ, следовательно $\lim(a_n+b_n)=a+b.$
- 2. $a_n-b_n-(a-b)=(a_n-a)-(b_n-b)=\alpha_n-\beta_n$. Разность двух БМ также бесконечно малая: легко установить, что если b_n бесконечно малая последовательность, то $(-b_n)$ тоже БМ. Итак, мы получили разность двух бесконечно малых последовательностей, следовательно, такая последовательность сама БМ, следовательно $\lim(a_n-b_n)=a-b$.
- 3. $a_n \cdot b_n a \cdot b = a_n \cdot b_n (a \cdot b) \underbrace{+a_n \cdot b a_n \cdot b}_{\text{добавили 0}} = b \cdot (a_n a) + a_n \cdot (b_n b) = b \cdot \alpha_n + a_n \cdot \beta_n$. Получили сумму двух бесконечно малых, поскольку каждое слагаемое это произведение ограниченной на бесконечно малую (a_n) ограничена, так как сходится!). Значит $a_n \cdot b_n a \cdot b$ бесконечно малая последовательность, следовательно $\lim (a_n \cdot b_n) = a \cdot b$.
- 4. Для частного оценим модуль разности последовательности и значения предела.

$$\left| \frac{a_n}{b_n} - \frac{a}{b} \right| = \left| \frac{a_n \cdot b - a \cdot b_n}{b_n \cdot b} \right| = \left| \frac{a_n \cdot b - a \cdot b + a \cdot b - a \cdot b_n}{b_n \cdot b} \right| =$$

$$= \left| \frac{b \cdot \alpha_n - a \cdot \beta_n}{b_n \cdot b} \right| < \frac{|b \cdot \alpha_n - a \cdot \beta_n|}{\frac{|b|^2}{2}}$$
(74)

Для наглядности напишем полученное выражение и посмотрим, что вышло:

$$\left|\frac{a_n}{b_n} - \frac{a}{b}\right| < \underbrace{\frac{2}{b^2}}_{\text{огр.}} \cdot \underbrace{(b \cdot \alpha_n - a \cdot \beta_n)}_{\text{бесконечно малая}} \tag{75}$$

Последовательность, которая по модулю асимптотически меньше бесконечно малой, сама является бесконечно малой, следовательно $\lim \left(\frac{a_n}{b_n}\right) = \frac{a}{b}$.

Таким образом, теорема доказана. ■

В.1.7. Монотонные последовательности

Последовательность $\{a_n\}$ называется возрастающей, если $\forall \in \mathbb{N}: a_{n+1} \geq a_n$.

Последовательность $\{a_n\}$ называется строго возрастающей, если $\forall \in \mathbb{N}: a_{n+1} > a_n.$

Последовательность $\{a_n\}$ называется убывающей, если $\forall \in \mathbb{N}: a_{n+1} \leq a_n.$

Последовательность $\{a_n\}$ называется *строго убывающей*, если $\forall \in \mathbb{N}: a_{n+1} < a_n$.

Для обозначеняя возрастания последовательности $\{a_n\}$ будем писать $a_n\uparrow$, а для убывания $a_n\downarrow$.

В.1.7.1. Теорема Вейерштрасса

Tеорема. Если последовательность возрастает, то у неё есть предел в $\overline{\mathbb{R}}$, а точнее

- 1. Если последовательность возрастает и ограничена сверху, то у неё есть предел $\mathbb R$.
- 2. Если последовательность возрастает и не ограничена сверху, то она сходится к $+\infty$.

Доказательство. \square Рассмотрим последовательность $x_n\uparrow$ и положим $a=\sup(x_n).$ Тогда мы можем записать, что

$$\forall n \in \mathbb{N} : x_n \le a \tag{76}$$

(по определению точной верхней грани). А также

$$\forall \varepsilon > 0 \ \exists n_\varepsilon : x_{n_\varepsilon} \in u_\varepsilon(a) \tag{77}$$

Теперь по определению возрастающей последовательности $\forall \varepsilon>0 \ \exists n_\varepsilon \in \mathbb{N}:$

$$\forall n > n_{\varepsilon} : x_n \ge x_{n_{\varepsilon}} \tag{78}$$

Получили двойное неравенство $\forall n>n_{\varepsilon}$:

$$x_{n_{\varepsilon}} \le x_n \le a \tag{79}$$

Значит, начиная с некоторого номера, все x_n лежат в ε -окрестности a. Что и требовалось доказать. \blacksquare

Абсолютно аналогично можно доказать, что если последовательность убывает и ограничена снизу, то у неё есть предел.

В.1.8. Кто растёт быстрее?

Пусть $k \in \mathbb{N}$ и q > 1. Расмотрим 4 последовательности:

$$n^k, q^n, n! n^n \tag{80}$$

1. Сравнение степенной и показательной последовательности. Рассмотрим последовательность

$$x_n = \frac{n^k}{q^n} \tag{81}$$

$$x_{n+1} = \frac{(n+1)^k}{q^{n+1}} \tag{82}$$

Рассмотрим отношение соседних членов:

$$\frac{x_{n+1}}{x_n} = \frac{\left(\frac{n+1}{n}\right)^k}{q} \tag{83}$$

Поскольку $\left(\frac{n+1}{n}\right)^k \to 1 < q$, то начиная с некоторого номера $N, \, \forall n > N:$ $\left(\frac{n+1}{n}\right)^k < q$, поэтому начиная с этого номера $\frac{x_{n+1}}{x_n} < 1$, а значит последовательность $\{x_n\}$ убывает, начиная с этого номера.

Кроме того, последовательность $\{x_n\}$ ограничена снизу нулём: $x_n>0 \ \forall n\in \mathbb{N}.$ По теореме Вейерштрасса, последовательность x_n имеет предел.

Пусть $\lim x_n = a$. Тогда $\lim x_{n+1} = a$. Предположим, что $a \neq 0$. Тогда

$$\lim_{n \to \infty} \left(\frac{x_{n+1}}{x_n} \right) = \frac{a}{a} = 1 \tag{84}$$

Но с другой стороны

$$\lim_{n \to \infty} \left(\frac{x_{n+1}}{x_n} \right) = \lim_{n \to \infty} = \frac{\left(\frac{n+1}{n} \right)^k}{q} = \frac{1}{q} \neq 1 \tag{85}$$

Получили противоречие $\Rightarrow a = 0$. Итак,

$$\lim_{n\to\infty}\frac{n^k}{q^n}=0$$

2. Сравним n! и q^n . Рассмотрим последовательность $x_n = \frac{q^n}{n!}$. Тогда следующий член равен

$$x_{n+1} = \frac{q^{n+1}}{(n+1)!} \tag{86}$$

$$\frac{x_{n+1}}{x_n} = \frac{q}{n+1} \underset{\substack{\text{c } \text{ thekotoporo} \\ \text{HOMEDA}}}{\uparrow} 1 \tag{87}$$

Поэтому последовательность x_n , начиная с некоторого номера, убывает. Кроме того, она ограничена снизу нулём. Поэтому пусть $a=\lim x_n=\lim x_{n+1}$. Предположим, что $a\neq 0$. Тогда $\lim\left(\frac{x_{n+1}}{x_n}\right)=1$, но это противоречит тому, что

$$\lim_{n \to \infty} \left(\frac{x_{n+1}}{x_n} \right) = \lim_{n \to \infty} \left(\frac{q}{n+1} \right) = 0. \tag{88}$$

В силу противоречия, a=0, поэтому доказано, что

$$\lim_{n \to \infty} \frac{q^n}{n!} = 0$$

3. Сравним n! и n^n . Рассмотрим последовательность $x_n=\frac{n!}{n^n}$. Найдем отношение соседних членов:

$$x_{n+1} = \frac{(n+1)!}{(n+1)^{n+1}} \tag{89}$$

$$\frac{x_{n+1}}{x_n} = \frac{n+1}{\frac{(n+1)^{n+1}}{n^n}} = \frac{1}{\left(1 + \frac{1}{n}\right)^n} \le 1 \tag{90}$$

Значит последовательность x_n убывает и ограничена снизу нулём. Пусть $a=\lim x_n=\lim x_{n+1}$. Предположив, что $a\neq 0$ получим

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = 1 \tag{91}$$

С другой стороны,

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e} < 1.$$
 (92)

В силу противоречия получаем a=0 и доказываем

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0$$

Получили «иерархию роста»: $x^k \to q^n \to n! \to n^n$. В последнем утверждении было использовано число e.

В.1.9. Число е

Oпределение. Числом e называеся следующий предел последовательности

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{93}$$

В.1.9.1. Первое доказательство существования e

 \Box Рассмотрим последовательность $x_n = \left(1 + \frac{1}{n}\right)^{n+1}$. Согласно неравенству Бернулли:

$$x_n = \left(1 + \frac{1}{n}\right)^{n+1} \ge 1 + \frac{n+1}{n} > 2 \tag{94}$$

То есть последовательность \boldsymbol{x}_n ограничена снизу. Теперь посмотрим на отношение соседних членов:

$$\frac{x_{n+1}}{x_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+2}}{\left(1 + \frac{1}{n}\right)^{n+1}} = \frac{\left(\frac{n+2}{n+1}\right)^{n+2}}{\left(\frac{n+1}{n}\right)^{n+1}} = \frac{n+2}{n+1} \cdot \left(\frac{n^2 + 2n}{(n+1)^2}\right)^{n+1} \tag{95}$$

Оценим величину, обратную ко второму множителю по неравенству Бернулли:

$$\left(\frac{n^2 + 2n + 1}{n^2 + 2n}\right)^{n+1} = \left(1 + \frac{1}{n^2 + 2n}\right)^{n+1} \ge 1 + \frac{n+1}{n^2 + 2n} \tag{96}$$

То есть

$$\left(\frac{n^2 + 2n + 1}{n^2 + 2n}\right)^{n+1} \ge \frac{n^2 + 3n + 1}{n^2 + 2n} \tag{97}$$

Перевернём это неравенство:

$$\left(\frac{n^2 + 2n}{n^2 + 2n + 1}\right)^{n+1} \le \frac{n^2 + 2n}{n^2 + 3n + 1}$$
(98)

Получаем оценку для отношения соседних членов:

$$\frac{x_{n+1}}{x_n} \le \frac{n+2}{n+1} \cdot \frac{n^2+2n}{n^2+3n+1} = \frac{n^3+4n^2+4n}{n^3+4n^2+4n+1} < 1 \tag{99}$$

Итак, мы доказали, что последовательность x_n убывает и ограничена снизу числом 2, поэтому по теореме Вейерштрасса у неё есть предел

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{100}$$

И в силу последнего равенства, этот же предел есть у исходной последовательности из определения числа e.

В.1.9.2. Второе доказательство существования e

 \Box Будем исследовать последовательность $a_n = \left(1 + \frac{1}{n}\right)^n$ напрямую. Согласно биному Ньютона:

$$a_n = \sum_{k=0}^n C_n^k \left(\frac{1}{n}\right)^k = 1 + C_n^1 \cdot \frac{1}{n} + \dots + C_n^n \cdot \frac{1}{n^n}$$
 (101)

$$a_{n+1} = \sum_{k=0}^{n+1} C_{n+1}^k \left(\frac{1}{n+1}\right)^k = 1 + C_{n+1}^1 \cdot \frac{1}{n+1} + \dots + C_{n+1}^{n+1} \cdot \frac{1}{(n+1)^{n+1}} \quad (102)$$

Сравним k- е слагаемые в этих двух суммах, имея в виду, что

$$C_n^k = \frac{n!}{k!(n-k)!} = \frac{(n-k+1)\cdot \dots \cdot n}{k!}.$$
 (103)

$$C_{n}^{k} \cdot \frac{1}{n^{k}} = \frac{1}{k!} \cdot \frac{n-k+1}{n} \cdot \frac{n-k+2}{n} \cdot \dots \cdot \frac{n}{n} \leq$$

$$\leq \frac{1}{k!} \cdot \frac{n-k+2}{n+1} \cdot \frac{n-k+3}{n+1} \cdot \dots \cdot \frac{n+1}{n+1} = C_{n+1}^{k} \cdot \frac{1}{(n+1)^{k}}$$
(104)

Следовательно, $a_{n+1} \geq a_n$, так как каждое слагаемое в a_{n+1} не меньше соответствующего слагаемого в a_n . Таким образом, последовательность a_n возрастает. Теперь докажем, что она ограничена сверху:

$$\begin{split} a_n &= \sum_{k=0}^n C_n^k \cdot \frac{1}{n^k} = 1 + 1 + \frac{n(n-1)}{2} \cdot \frac{1}{n^2} + \frac{n(n-1)(n-2)}{6} \cdot \frac{1}{n^3} + \dots \\ &+ \frac{1}{n^n} \leq 2 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{n!} \leq 2 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}} \end{split} \tag{105}$$

Мы смогли оценить a_n сверху суммой двойки и геометрической прогрессии, которая точно меньше 1. Поэтому получаем:

$$a_n < 3 \tag{106}$$

По теореме Вейерштрасса, возрастающая ограниченная сверху последовательность имеет предел. Обозначим его e. \blacksquare

Из этих двух доказательств мы установили, что

$$2 < e < 3 \tag{107}$$

B.1.10.

В.2. Кратные интегралы

В.2.1. Двойные интегралы

В.2.1.1. Определение двойного интеграла

Пусть тело (V) в \mathbb{R}^3 ограничено сверху поверхностью z=f(x,y). С боков ограничено цилиндрической поверхностью с образующей, параллельной оси z, а снизу плоской фигурой D на плоскости z=0. Требуется найти объём тела V.

Разобьём D на малые фигуры $(\sigma_i),\ i=1,...n$. Внутри каждой фигуры рассмотрим точку $(\xi_i,\eta_i)\in\sigma_i$. Тогда объём i-того столбика равен

$$|V_i| = f(\xi_i, \eta_i) \cdot |\sigma_i| \tag{108}$$

Приближённо можно написать, что

$$|V| \approx S_n = \sum_{i=1}^n f(\xi_i, \eta_i) \cdot |\sigma_i| \tag{109}$$

Полученная сумма называется интегральной. Будем неограниченно увеличивать мощность разбиения: $n \to \infty$. При стремлении макисмального диаметра фигуры σ_i к нулю:

$$\lambda = \max_{i=1,\dots n} d(\sigma_i) \tag{110}$$

получим, что объём |V| равен пределу

$$|V| = \lim_{\substack{n \to \infty \\ \lambda \to 0}} \left[\sum_{i=1}^{n} f(\xi_i, \eta_i) \cdot |\sigma_i| \right]$$
 (111)

Oпределение. Число I называется двойным интегралом функции f(x,y) по области D,если $\forall \varepsilon>0 \; \exists \delta>0: \; \forall$ разбиений D, таких, что максимальный диаметр фигур σ_i меньше $\delta,$ выполняется $|I-S_n|<\varepsilon,$ где S_n - интегральная сумма. Обозначается

$$I = \iint\limits_{D} f(x, y) dx dy \tag{112}$$

 $\it Условие \, существования \, \it двойного \, интеграла.$ Если функция f непрерывна на ограниченной замкнутой области $\it D$, то она интегрируема на $\it D$.

В.2.1.2. Суммы Дарбу

Пусть область D разбита на конечное число подмножеств $\sigma_i,\ i=1,...,n.$ Обозначим

$$M_i = \sup_{\sigma_i} f(x, y) \tag{113}$$

$$m_i = \inf_{\sigma_i} f(x, y) \tag{114}$$

1. Верхняя сумма Дарбу:

$$S = \sum_{i=1}^{n} M_i \cdot |\sigma_i| \tag{115}$$

2. Нижняя сумма Дарбу:

$$s = \sum_{i=1}^{n} m_i \cdot |\sigma_i| \tag{116}$$

Для любого разбиения справедливо, что

$$s \le S_n \le S \tag{117}$$

Свойства сумм Дарбу:

- 1. При добавлении новых фигур σ_i и линий в разбиение D нижняя сумма Дарбу не убывает, а верхняя не возрастает.
- 2. Любая нижняя сумма Дарбу не превосходит любой верхней суммы Дарбу, даже для разных разбиений.

Oпределение. Колебанием функции f(x,y) на области D называется число

$$S - s = \sum_{i=1}^{n} (M_i - m_i) \cdot |\sigma_i| \tag{118}$$

Критерий интегрируемости Римана. Для того, чтобы ограниченная функция f была интегрируема по области D необходимо и достаточно, чтобы

$$\lim_{\lambda \to 0} S - s = 0 \tag{119}$$

В.2.1.3. Свойства двойного интеграла

Пусть функции f(x,y) и g(x,y) интегрируемы в D.

1. Линейность. $\forall \alpha, \beta \in \mathbb{R}$:

$$\iint\limits_{D} (\alpha f(x,y) + \beta g(x,y)) d\sigma = \alpha \iint\limits_{D} f(x,y) d\sigma + \beta \iint\limits_{D} g(x,y) d\sigma \qquad (120)$$

2. Аддитивнось по области. $\forall D_1, D_2: (D_1 \cup D_2 = D) \wedge (\operatorname{int}(D_1) \cap \operatorname{int}(D_2) = \varnothing):$

$$\iint\limits_{D} f(x,y)d\sigma = \iint\limits_{D_1} f(x,y)d\sigma + \iint\limits_{D_2} f(x,y)d\sigma \tag{121}$$

3. Интегрирование неравенств. Если $f(x,y) \leq g(x,y)$, то

$$\iint\limits_{D} f(x,y)d\sigma \le \iint\limits_{D} g(x,y)d\sigma \tag{122}$$

3.1. Следствие. Если $m \le f(x,y) \le M$, то

$$m \cdot |D| \le \iint\limits_{D} f(x, y) d\sigma \le M \cdot |D|$$
 (123)

3.1. Следствие.

$$\left| \iint\limits_{D} f(x,y) d\sigma \right| \le \iint\limits_{D} |f(x,y)| d\sigma \tag{124}$$

4. Теорема о среднем. Если функция f(x,y) непрерывна в замкнутой связной области D, то $\exists (\xi,\eta) \in D$:

$$f(\xi, \eta) = \frac{1}{|D|} \iint_{D} f(x, y) d\sigma \tag{125}$$

Доказательство. По теореме Вейерштрасса, на связной замнкутой области D функция f ограничена, поэтому $\exists m, M \in \mathbb{R}: \ \forall (x,y) \in D: \ m \leq f(x,y) \leq M.$ Используя следствие (3.1), можно написать, что

$$m \le \frac{1}{|D|} \iint\limits_{D} f(x, y) d\sigma \le M \tag{126}$$

По теореме Больцано-Коши (о промежуточном значении), непрерывная функция f принимает на D все значения между m и M, в частности $\exists (\xi,\eta) \in D$, для которой выполнено требуемое.

5. Интеграл от единицы.

$$\iint\limits_{D} dx dy = |D| \tag{127}$$

В.3. Гамма-функция и бета-функция

В.3.1. Гамма-функция

Определение. Гамма-функция $\Gamma(x)$ определяется для всех положительных вещественных чисел x>0 интегралом

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt \tag{128}$$

В.3.1.1. Свойства гамма-функции

1. Основное свойство гамма-функции.

$$\Gamma(x+1) = x\Gamma(x) \tag{129}$$

Доказательство. \square Подставим (x+1) в гамма-функцию:

$$\Gamma(x+1) = \int_{0}^{\infty} t^x e^{-t} dt \tag{130}$$

Интегрируем по частям:

$$u = t^x \Rightarrow du = xt^{x-1}dt \tag{131}$$

$$dv = e^{-t}dt \Rightarrow v = -e^{-t} \tag{132}$$

$$\int_{0}^{\infty} t^{x} e^{-t} dt = -t^{x} e^{-t} \mid_{0}^{\infty} + x \int_{0}^{\infty} t^{x-1} e^{-t} dt =$$

$$= -\lim_{t \to \infty} t^{x} e^{-t} + x \int_{0}^{\infty} t^{x-1} e^{-t} dt = 0 + x \Gamma(x) = x \Gamma(x)$$
(133)

2. Значение гамма-функции в натуральных числах. $\forall n \in \mathbb{N}$

$$\Gamma(n) = (n-1)! \tag{134}$$

Доказательство. \square Сначала найдём $\Gamma(1)$:

$$\Gamma(1) = \int_{0}^{\infty} t^{1-1} e^{-t} dt = \int_{0}^{\infty} e^{-t} dt = -e^{-t} \mid_{0}^{\infty} = 1$$
 (135)

Используя основное свойство гаммма-функции, находим:

$$\Gamma(2) = 1 \cdot \Gamma(1) = 1 = 1!$$
 (136)

$$\Gamma(3) = 2 \cdot \Gamma(2) = 2 = 2! \tag{137}$$

Теперь строго обобщим по индукции: пусть верно, что $\Gamma(n)=(n-1)!$. Докажем, что верно $\Gamma(n+1)=n!$. По основному свойству гамма-функции: $\Gamma(n+1)=n\Gamma(n)=n(n-1)!=n!$. Поскольку база индукции проверена, то требуемое доказано. \blacksquare

3. Ещё одно интегральное представление.

$$\Gamma(x) = \int_{0}^{\infty} 2t^{2x-1}e^{-t^2}dt \tag{138}$$

Доказательство. \square Сделаем в интеграле $\int_0^\infty t^{x-1}e^{-t}dt$ замену:

$$u = \sqrt{t} \Rightarrow \begin{cases} t \to 0 \Rightarrow u \to 0 \\ t \to \infty \Rightarrow u \to \infty \end{cases}$$
 (139)

$$t = u^2 \Rightarrow dt = 2udu \tag{140}$$

$$\int_{0}^{\infty} t^{x-1}e^{-t}dt = \int_{0}^{\infty} (u^{2})^{x-1}e^{-u^{2}} \cdot 2udu = \int_{0}^{\infty} 2u^{2x-1}e^{-u^{2}}du$$
 (141)

Поскольку $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$, то требуемое доказано. \blacksquare

4. Значения в положительных полуцелых аргументах. $\forall n \in \mathbb{N}_0$:

$$\Gamma\left(n + \frac{1}{2}\right) = \frac{(2n)!}{4^n n!} \sqrt{\pi} \tag{142}$$

Доказательство. \square Используем факт (170) о том, что $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. Теперь, используя основное свойство гамма-функции, найдём значение в произвольной полуцелой точке:

$$\Gamma\left(n+\frac{1}{2}\right) = \frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2} \cdot \Gamma\left(\frac{1}{2}\right) =$$

$$= \frac{1 \cdot 3 \cdot \dots \cdot (2n-1)}{2^n} \cdot \sqrt{\pi} = \frac{(2n-1)!!}{2^n} \sqrt{\pi} = \frac{(2n)!}{4^n n!} \sqrt{\pi}. \quad \blacksquare$$

$$(143)$$

5. Свойство дополнения. $\forall x \in (0, 1)$:

$$\Gamma(x) \cdot \Gamma(1-x) = \frac{\pi}{\sin(\pi x)} \tag{144}$$

6. Логарифмическая выпуклость гамма-функции. $\forall x_1,...,x_n>0, \forall \alpha_1,...,\alpha_n\in [0,1], \ \sum \alpha_i=1$:

$$\Gamma\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) \leq \prod_{i=1}^{n} \left[\Gamma(x_{i})\right]^{\alpha_{i}} \tag{145}$$

Доказательство. 🗆

$$\ln(\Gamma(x)) = \ln\left(\int_{0}^{\infty} t^{x-1}e^{-t}dt\right) = \ln\left(\int_{0}^{\infty} f(t;x)dt\right)$$
 (146)

$$\frac{d\ln(\Gamma(x))}{dx} = \frac{\Gamma'(x)}{\Gamma(x)} \tag{147}$$

$$\frac{d^2\ln(\Gamma(x))}{dx^2} = \frac{\Gamma''(x)\cdot\Gamma(x) - [\Gamma'(x)]^2}{(\Gamma(x))^2} \tag{148} \label{eq:148}$$

Сейчас мы будем доказывать, что числитель этого выражения положителен для всех x>0.

$$\Gamma'(x) = \int_{0}^{\infty} t^{x-1} e^{-t} (\ln t) dt \tag{149}$$

$$\Gamma''(x) = \int_{0}^{\infty} t^{x-1} e^{-t} (\ln t)^{2} dt$$
 (150)

Введём линейно независимые функции f и g на $(0, \infty)$:

$$f(t) = t^{\frac{x-1}{2}} e^{-\frac{t}{2}} \tag{151}$$

$$g(t) = t^{\frac{x-1}{2}} e^{-\frac{t}{2}} \ln t \tag{152}$$

Запишем неравенство Коши-Буняковского для интегралов:

$$\left[\int_{0}^{\infty} f(t)g(t)dt\right]^{2} \le \left(\int_{0}^{\infty} f(t)^{2}dt\right) \cdot \left(\int_{0}^{\infty} g(t)^{2}dt\right) \tag{153}$$

$$\left[\int\limits_0^\infty t^{x-1}e^{-t}(\ln t)dt\right]^2\leq \left(\int\limits_0^\infty t^{x-1}e^{-t}dt\right)\cdot \left(\int\limits_0^\infty t^{x-1}e^{-t}(\ln t)^2dt\right) \quad (154)$$

Остаётся заметить, что слева стоит квадрат производной гамма-функции, а справа произведение гамма-функции и её второй производной. Итак, верно неравенство

$$\Gamma''(x) \cdot \Gamma(x) - [\Gamma'(x)]^2 > 0 \tag{155}$$

Следовательно, вторая производная логарифма гамма-функции положительна, значит логарифм гамма-функции выпуклая функция, а значит для неё верно неравенство Йенсена. $\forall x_1,...,x_n>0, \forall \alpha_1,...,\alpha_n\in[0,1],\ \sum\alpha_i=1$:

$$\ln \left(\Gamma \left(\sum_{i=1}^{n} \alpha_i x_i \right) \right) \leq \sum_{i=1}^{n} \alpha_i \ln(\Gamma(x_i)) \tag{156}$$

Пользуясь монотонностью экспоненты, получаем исходное неравенство, потенцируя обе части.

$$\Gamma\left(\sum_{i=1}^{n} \alpha_i x_i\right) \le \prod_{i=1}^{n} \left[\Gamma(x_i)\right]^{\alpha_i} \tag{157}$$

Что и требовалось доказать. ■

В.3.2. Бета-функция

Определение. Бета-функция ${\bf B}(x,y)$ определяется для всех положительных вещественных чисел $x>0,\,y>0$ интегралом

$$B(x,y) = \int_{0}^{1} t^{x-1} (1-t)^{y-1} dt$$
 (158)

В.3.2.1. Свойства бета-функции

Альтернативное интегральное представление можно получить, если сделать замену $t=\sin^2 u$. Тогда $(1-t)=\cos^2 u$ и $dt=2\sin u\cos u$. При $t=0\Rightarrow u=0$ и $t=1\Rightarrow u=\frac{\pi}{2}$.

Итак,

$$B(x,y) = \int_{0}^{\frac{\pi}{2}} 2 \cdot (\sin u)^{2x-1} (\cos u)^{2y-1} du$$
 (159)

Ясно, что бета-функция обладает симметричностью относительно перестановки аргументов, поскольку на [0,1] графики функций t и (1-t) симметричны относительно $t=\frac{1}{2}$, и значит при траснпозиции аргументов значение интеграла не меняется. Ана-

логичный вывод можно получить при анализе тригонометрической интегральной формы.

$$B(x,y) = B(y,x) \tag{160}$$

Найдем значение $B(\frac{1}{2}, \frac{1}{2})$:

$$B\left(\frac{1}{2}, \frac{1}{2}\right) = \int_{0}^{\frac{\pi}{2}} 2 \cdot (\sin t)^{2 \cdot \frac{1}{2} - 1} (\cos t)^{2 \cdot \frac{1}{2} - 1} dt = \int_{0}^{\frac{\pi}{2}} 2dt = \pi$$
 (161)

В.3.3. Связь гамма-функции и бета-функции

Tеорема. Для любых a,b>0 справедливо

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$
(162)

Доказательство. 🗆

$$\Gamma(a) = \int_{0}^{\infty} 2x^{2a-1}e^{-x^{2}}dx \tag{163}$$

$$\Gamma(b) = \int_{0}^{\infty} 2y^{2b-1}e^{-y^{2}}dy \tag{164}$$

$$\Gamma(a) \cdot \Gamma(b) = \int_{0}^{\infty} y^{b-1} e^{-y} dy \int_{0}^{\infty} x^{a-1} e^{-x} dx$$
 (165)

Произведение этих интегралов можно воспринимать как повторный, поэтому запишем теперь его как двойной по области $D=\{(x,y)\mid x,y\geq 0\}.$

$$\Gamma(a) \cdot \Gamma(b) = \iint_D 4x^{2a-1}y^{2b-1}e^{-x^2-y^2}dxdy$$
 (166)

Перейдём в полярные координаты:

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \\ dxdy = rdrd\varphi \end{cases}$$
 (167)

$$\Gamma(a) \cdot \Gamma(b) = \iint_{D} 4r^{2a+2b-1} (\cos \varphi)^{2a-1} (\sin \varphi)^{2b-1} e^{-r^{2}} dr d\varphi =$$

$$= \int_{0}^{\frac{\pi}{2}} 2(\cos \varphi)^{2a-1} (\sin \varphi)^{2b-1} d\varphi \int_{0}^{\infty} 2r^{2(a+b)-1} e^{-r^{2}} dr$$
(168)

Поскольку границы внутреннего интеграла не зависят от φ , то можно считать данную запись произведением двух отдельных интегралов! Но интеграл по φ , согласно (159), есть бета-функция, а интеграл по r — гамма-функция. Окончательно имеем:

$$\Gamma(a) \cdot \Gamma(b) = B(b, a) \cdot \Gamma(a + b) \Rightarrow B(b, a) = \frac{\Gamma(a) \cdot \Gamma(b)}{\Gamma(a + b)}$$
 (169)

Следствие 1. Из этого соотношения так же видно, что ${\rm B}(a,b)={\rm B}(b,a).$

Cледствие 2. Гамма-функция в $\frac{1}{2}$ и интеграл Эйлера-Пуассона.

$$\Gamma\left(\frac{1}{2}\right) = \int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$$
 (170)

Доказательство. □ Запишем, используя связь (162):

$$B\left(\frac{1}{2}, \frac{1}{2}\right) = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} + \frac{1}{2}\right)} \tag{171}$$

Учитывая, что $\mathrm{B}\big(\frac{1}{2},\frac{1}{2}\big)=\pi$ и $\Gamma(1)=1$, получим:

$$\left[\Gamma\left(\frac{1}{2}\right)\right]^2 = \pi \tag{172}$$

Следовательно, $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}.$ Но с другой стороны,

$$\Gamma\left(\frac{1}{2}\right) = 2\int_{0}^{\infty} e^{-x^2} dx = \int_{-\infty}^{\infty} e^{-x^2} dx \tag{173}$$

Математический анализ

В.4. Числовые ряды

Определение. Выражение $a_1 + a_2 + \ldots + a_n + \ldots$ называют **рядом** с общим членом a_n и обозначают

$$\sum_{n=1}^{\infty} a_n \tag{174}$$

Определение. Элементы последовательности $\{a_n\}$ называются членами ряда.

Oпределение. n-ой частичной суммой ряда с общим членом $\{a_i\}$ называется сумма

$$s_n = \sum_{i=1}^n a_i \tag{175}$$

Определение. Если последовательность частичных сумм $\{s_n\}$ для ряда с общим членом $\{a_n\}$ имеет предел, то ряд называется сходящимся. Если последовательность частичных сумм предела не имеет, то ряд называется расходящимся.

Определение. Суммой ряда называется предел последовательности его частичных сумм.

$$s = \lim_{n \to \infty} s_n \tag{176}$$

Если ряд сходится, то найдя его сумму, пишут

$$\sum_{n=1}^{\infty} a_n = s \tag{177}$$

Остатком ряда называется разность между n-й частичной суммой и суммой ряда.

$$r_n = s - s_n \tag{178}$$

Свойства рядов:

- 1. Отбрасывание конечного количества членов ряда не влияет на его сходимость.
- 2. Для сходящегося ряда остаток стремится к нулю при $n \to \infty$.
- 3. Если все члены сходящегося ряда умножить на константу $c \in \mathbb{R} \setminus \{0\}$, то ряд из умноженных членов так же сходится, а его сумма равна $c \cdot s$.
- 4. Если ряды $A=(a_1+a_2+...)$ и $B=(b_1+b_2+...)$ сходятся, то ряд, для которого $c_n=a_n+b_n$

$$C = c_1 + c_2 + \dots (179)$$

тоже сходится, причём C = A + B.

В.4.1. Необходимый признак сходимости ряда

Teopema(нeoбxoдимый признак сходимости ряда). Если ряд сходится, то его общий член стремится к нулю при неограниченном возрастании n.

$$\sum_{n=1}^{\infty} a_n \, \operatorname{сходится} \Rightarrow \lim_{n \to \infty} a_n = 0 \tag{180}$$

Доказательство.

Пусть для сходящегося ряда

$$\sum_{n=1}^{\infty} a_n \tag{181}$$

определена последовательность частичных сумм $\{s_n\}$. Пусть

$$s = \lim_{n \to \infty} s_n \tag{182}$$

Заметим, что $a_n=s_n-s_{n-1}$. Тогда

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}(s_n-s_{n-1})=s-s=0 \tag{183}$$

Что и требовалось доказать. ■

В.4.2. Признаки сходимости положительных рядов

Пусть, начиная с некоторого номера $N,\, \forall n\geq N: a_n\geq 0.$ Тогда ряд $\sum_{n=1}^\infty a_n$ назовём положительным.

Основная теорема сходимости. Положительный ряд всегда имеет сумму. Если последовательность частичных сумм ограничена сверху, то ряд сходится, иначе расходится.

Доказательство. □ Поскольку $a_n \geq 0$ начиная с некоторого номера N, то $\forall n \geq N$: $s_{n+1} = s_n + a_{n+1} \geq s_n$. Следовательно последовательность $\{s_n\}$ мотонно не убывает. Так как по условию теоремы $\{s_n\}$ ограничена сверху, то у неё есть предел \Rightarrow ряд из членов $\{a_n\}$ сходится. Если же последовательность $\{s_n\}$ не ограничена сверху, то у неё нет предела и ряд расходится. \blacksquare

В.4.2.1. Теоремы сравнения

Теорема 1. Пусть даны два положительных ряда

$$\sum_{n=1}^{\infty} a_n \tag{184}$$

И

$$\sum_{n=1}^{\infty} b_n \tag{185}$$

Если $\forall n \geq N : a_n \leq b_n$, то

- Из сходимости ряда $\{b_n\}$ следует сходимость ряда $\{a_n\}$.
- Из расходимости ряда $\{a_n\}$ следует расходимость ряда $\{b_n\}$.

Доказательство. \square Не умаляя общности рассуждений считаем $0 \le a_n \le b_n \ \forall n \in \mathbb{N}$, так как конечное число слагаемых ряда можно отбросить. Пусть A_n, B_n - частичные суммы рядов $\{a_n\}$ и $\{b_n\}$. Если ряд $\{b_n\}$ сходится, то по основной теореме о сходимости существует такая константа L, что

$$B_n \le L \tag{186}$$

учитывая, что $A_n \leq B_n$, получаем $A_n \leq L$. Это и означает что ряд $\{a_n\}$ сходится. \blacksquare *Теорема 2.* Если существует предел $\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = K$ и при этом $(0 \leq K \leq +\infty)$, то

- 1. Если $K<+\infty$, то из сходимости $\{b_n\}$ следует сходимость $\{a_n\}$
- 2. Если K>0, то из расходимости $\{b_n\}$ следует расходимость $\{a_n\}$
- 3. Если $0 < K < +\infty$, то ряды $\{a_n\}$ и $\{b_n\}$ сходятся и расходятся одновременно.

Доказательство. 🗆

1. Пусть $\sum b_n$ сходится и $K<+\infty$. Тогда по определению предела последовательности, для всех достаточно больших n $\exists \varepsilon>0$, такой, что

$$\frac{a_n}{b_n} - K < \varepsilon \tag{187}$$

Следовательно, $a_n < (K+\varepsilon)b_n$. По первой теореме сравнения, из сходимости b_n следует сходимость a_n .

2. Пусть $\sum b_n$ расходится и K>0. Тогда $\lim \frac{b_n}{a_n}$ обязательно конечен. Предположим, что ряд $\sum a_n$ сходится, тогда по только что доказанному п. 1 ряд $\sum b_n$ должен сходиться. Получили противоречие, и значит при расходимости $\sum b_n$ ряд $\sum a_n$ расходится.

Пересекая оба случая, получаем истинность пункта 3.

Теорема 3. Если для положиетльных рядов, начиная с некоторого номера, верно, что

$$\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n} \tag{188}$$

,

то их сходимости $\sum b_n$ следует сходимость $\sum a_n$, а из расходимости $\sum a_n$ следует расходимость b_n .

 \mathcal{A} оказательство. \square Не умаляя общности можно сказать, что неравенство из условия теоремы верно для всех $n\in\mathbb{N}$. Тогда

$$\frac{a_2}{a_1} \le \frac{b_2}{b_1}; \frac{a_3}{a_2} \le \frac{b_3}{b_2}; \dots \frac{a_n}{a_{n-1}} \le \frac{b_n}{b_{n-1}}. \tag{189}$$

Перемножим все эти неравенства и получим

$$\frac{a_n}{a_1} \le \frac{b_n}{b_1} \Leftrightarrow a_n \le \left(\frac{a_1}{b_1}\right) b_n \tag{190}$$

.

Это означает по первой теореме, что из сходимости b_n следует сходимость a_n , а из расходимости a_n следует расходимость b_n .

В.4.2.2. Радикальный признак Коши

Радикальный признак Коши. Пусть 0 < q < 1. Составим для ряда $\sum a_n$ выражение

$$b_n = \sqrt[n]{a_n} \tag{191}$$

Если для достаточно больших n выполянется $b_n < q$, где постоянная q < 1, то ряд $\sum a_n$ сходится. Если же $b_n \geq 1$, то ряд расходится.

Доказательство. \square геометрическая прогрессия $\sum q^n$ сходится при q<1. Сравним ряд $\sum a_n$ с геометрической прогрессией. Если $\sqrt[n]{a_n} < q$ для достаточно больших n, то

$$a_n < q^n \tag{192}$$

По первой теореме сравнения, ряд $\sum a_n$ сходится. Если же, начиная с некоторого номера, $a_n \geq 1$, то либо из сравнения с расходящимся рядом $(1+1+1+\dots)$, либо из нарушения необходимого признака сходимости, получаем, что ряд $\sum a_n$ расходится.

Радикальный признак Коши в предельной форме. Пусть для положительного ряда $\sum a_n$

$$\lim_{n \to \infty} \sqrt[n]{a_n} = l \tag{193}$$

- 1. Если l < 1, то ряд $\sum a_n$ сходится.
- 2. Если l>1, то ряд $\sum a_n$ расходится.
- 3. Если l=1, то ряд может как сходиться, так и расходиться.

Доказательство. 🗆

1. Пусть l < 1. Возьмём такое $\varepsilon > 0$, что $l + \varepsilon < 1$. Тогда по определению предела, для достаточно больших n будет верно, что

$$\sqrt[n]{a_n} < l + \varepsilon < 1 \tag{194}$$

По радикальному признаку Коши ряд $\sum a_n$ сходится.

2. Пусть теперь l>1. Тогда существует такое q, что 1 < q < l. По определению предела, для достаточно больших n будет верно, что

$$\sqrt[n]{a_n} \ge q \ge 1 \tag{195}$$

По радикальному признаку Коши ряд $\sum a_n$ расходится.

В.4.2.3. Признак Даламбера

 Π ризнак Даламбера. Для положительного ряда $\sum a_n$ определим величину

$$D_n = \frac{a_{n+1}}{a_n} \tag{196}$$

Если для достаточно больших n выполнено $D_n \leq q < 1$, где q - постоянное число, то ряд сходится. Если же $D_n \geq 1$, то ряд расходится.

Доказательство. 🗆

1. Пусть $D_n \leq q < 1$ для достаточно больших n. Рассмотрим геометрическую прогрессию $\sum q^n$. Она сходится при q < 1. Сравним ряд $\sum a_n$ с ней, имея в виду, что $\frac{q^{n+1}}{q^n} = q.$

$$\frac{a_{n+1}}{a_n} \le q = \frac{q^{n+1}}{q^n} \tag{197}$$

По третьей теореме сравнения, из сходимости ряда $\sum q^n$ следует сходимость ряда $\sum a_n$.

2. Пусть теперь $D_n \geq 1$ для достаточно больших n. Тогда либо из сравнения с расходящимся рядом (1+1+1+...), либо из нарушения необходимого признака сходимости, получаем, что ряд $\sum a_n$ расходится.

Признак Даламбера в предельной форме. Пусть для положительного ряда $\sum a_n$

$$\lim_{n \to \infty} \left(\frac{a_{n+1}}{a_n} \right) = D \tag{198}$$

.

- 1. Если D < 1, то ряд $\sum a_n$ сходится.
- 2. Если D>1, то ряд $\sum a_n$ расходится.
- 3. Если D=1, то ряд может как сходиться, так и расходиться.

Доказательство. 🗆

1. Пусть D<1. Возьмём такое $\varepsilon>0$, что $D+\varepsilon<1$. Тогда по определению предела, для достаточно больших n будет верно, что

$$\frac{a_{n+1}}{a_n} < D + \varepsilon < 1 \tag{199}$$

По признаку Даламбера ряд $\sum a_n$ сходится.

2. Пусть теперь D>1. Тогда существует такое q, что 1< q< D. По определению предела, для достаточно больших n будет верно, что

$$\frac{a_{n+1}}{a_n} \ge q \ge 1 \tag{200}$$

По признаку Даламбера ряд $\sum a_n$ расходится.

В.4.2.4. Признак Раабе

 Π ризнак Раабе. Для положительного ряда $\sum a_n$ определим величину

$$R_n = n \left(1 - \frac{a_{n+1}}{a_n} \right) \tag{201}$$

Если для достаточно больших n выполнено $R_n \geq r > 1$, где r - постоянное число, то ряд сходится. Если же $R_n \leq 1$, то ряд расходится.

Доказательство. 🗆

1. Пусть $R_n \geq r > 1$ для достаточно больших n. Это эквивалетно тому, что

$$\frac{a_{n+1}}{a_n} \le 1 - \frac{r}{n} \tag{202}$$

Используем лемму:

$$\lim_{n \to \infty} \frac{\left(1 - \frac{1}{n}\right)^s - 1}{-\frac{1}{n}} = s \tag{203}$$

Мозьмём такое число s, что 1 < s < r. Тогда для достаточно больших n будет верно, что

$$\frac{\left(1 - \frac{1}{n}\right)^s - 1}{-\frac{1}{n}} < r \Leftrightarrow 1 - \frac{r}{n} < \left(1 - \frac{1}{n}\right)^s \tag{204}$$

Полученное неравенство эквивалентно такому:

$$\frac{a_{n+1}}{a_n} < \left(\frac{n-1}{n}\right)^s = \frac{\frac{1}{n^s}}{\frac{1}{(n-1)^s}} \tag{205}$$

Справа стоит отношение следующего члена $\mathit{cxodsumerocs}$ обобщённого гармонического ряда $H_s(s>1)$, поэтому по третьей теореме сравнения из сходимости ряда H_s следует сходимость ряда $\sum a_n$.

2. Пусть теперь $R_n \leq 1$ для достаточно больших n. Имеем:

$$n\left(1 - \frac{a_{n+1}}{a_n}\right) \le 1 \Leftrightarrow \frac{a_{n+1}}{a_n} \ge \frac{1}{1 + \frac{1}{n}} = \frac{n}{n+1} = \frac{\frac{1}{n+1}}{\frac{1}{n}} \tag{206}$$

Справа стоит отношение следующего члена расходящегося гармонического ряда H_1 . Поэтому по третьей теореме сравнения из расходимости ряда H_1 следует расходимость ряда $\sum a_n$.

Признак Раабе в предельной форме. Пусть для положительного ряда $\sum a_n$

$$\lim_{n\to\infty} n \bigg(1 - \frac{a_{n+1}}{a_n}\bigg) = R \tag{207}$$

- 1. Если R>1, то ряд $\sum a_n$ сходится.
- 2. Если R < 1, то ряд $\sum a_n$ расходится.
- 3. Если R=1, то ряд может как сходиться, так и расходиться.

Признак Раабе существенно сильнее признака Даламбера.

В.4.2.5. Интегральный признак Маклорена-Коши

Интегральный признак Маклорена-Коши. Пусть ряд можно представить в виде

$$\sum_{n=1}^{\infty} a_n \equiv \sum_{n=1}^{\infty} f(n) \tag{208}$$

где f(n) — значение при x=n непрерывной положительной монотонно убывающей функции f(x) на полуинтервале $[1,+\infty)$.

Тогда ряд $\sum a_n$ сходится тогда и только тогда, когда сходится интеграл

$$\int\limits_{1}^{\infty}f(x)dx \, \operatorname{сходится} \Leftrightarrow \sum\limits_{n=1}^{\infty}a_{n} \, \operatorname{сходится} \tag{209}$$

Доказательство. \square Рассмотрим произвольную первообразную функцию F(x) для f(x) на полуинтервале $[1,+\infty)$:

$$F(x) = \int_{1}^{x} f(t)dt \tag{210}$$

Ясно, что 0 < f(x) = F'(x), поэтому $F(x) \nearrow$. Поскольку f(x) монотонно убывает, то для $x: n \le x \le n+1$:

$$a_{n+1} = f(n+1) \le f(x) \le f(n) = a_n \tag{211}$$

$$a_{n+1} \le \int_{n}^{n+1} f(t)dt \le a_n \tag{212}$$

Мы получиили оценку для общего члена такого ряда:

$$\sum_{n=1}^{\infty} \int_{n}^{n+1} f(t)dt \tag{213}$$

Его n-я частичная сумма равна

$$s_n = \int_{1}^{n+1} f(t)dt = F(n+1) - F(1) \underset{\text{еход.}}{\sim} F(n+1)$$
 (214)

Итак, проанализируем предел

$$L = \lim_{x \to \infty} F(x) \tag{215}$$

- Если $L<\infty$, то ряд $\sum a_{n+1}$ сходится по первой теореме сравнения как меньший либо равный сходящемуся ряду. И из сходимости $\sum a_{n+1}$ следует сходимость $\sum a_n$.
- Если $L=\infty$, то ряд $\sum a_n$ расходится по первой теореме сравнения как больший либо равный расходящемуся ряду.

Таким образом, ряд $\sum a_n$ сходится тогда и только тогда, когда сходится интеграл $\int_1^\infty f(x)dx.$ \blacksquare

В.4.3. Сходимость произвольных рядов

Пусть задан ряд $\sum a_n$, где члены a_n имеют произвольные знаки. Вопрос его сходимости сводится к сходимости последовательности частичных сумм $\{s_n\}_{n=1}^{\infty}$:

$$s_1, s_2, \dots s_n, s_{n+1}, \dots s_{n+m}, \dots$$
 (216)

Ряд $\sum a_n$ сходится тогда и только тогда, когда последовательность $\{s_n\}$ фундаментальна, то есть

$$\forall \varepsilon > 0 \ \exists N : \forall n > N, \forall m \in \mathbb{N} : \left| s_{n+m} - s_n \right| < \varepsilon \tag{217}$$

В.4.3.1. Абсолютная сходимость

Aбсолютная сходимость. Ряд $\sum a_n$ называется абсолютно сходящимся, если сходится ряд $\sum |a_n|.$

 $\mathit{Teopema}$ Коши. Если ряд $\sum a_n$ сходится абсолютно, то он сходится.

Доказательство. \square Из абсолютной сходимости мы знаем, что начиная с некоторого номера и для всех $m \in \mathbb{N}$:

$$\forall \varepsilon > 0: \left| \sum_{i=0}^{m} \left| a_{n+i} \right| \right| < \varepsilon \tag{218}$$

Поскольку подмодульное выражение неотрицательно, то отбрасываем модуль:

$$\sum_{i=0}^{m} \left| a_{n+i} \right| < \varepsilon \tag{219}$$

Но с другой стороны, используем неравенство треугольника:

$$\left| \sum_{i=0}^{m} a_{n+i} \right| \le \sum_{i=0}^{m} \left| a_{n+i} \right| < \varepsilon \tag{220}$$

Значит, ряд $\sum a_n$ сходится. \blacksquare

Кроме того, если ряд $\sum a_n$ сходится абсолютно, то ряды

$$\sum_{k=1}^{\infty} b_k \quad \text{if } \sum_{m=1}^{\infty} c_m, \tag{221}$$

где b_k - положительные члены ряда $\sum a_n$ в порядке следования, а c_m - модули отрицательных членов ряда $\sum a_n$ в порядке следования, *сходятся*. И имеет место

$$\sum_{n=1}^{\infty} a_n = \sum_{k=1}^{\infty} b_k - \sum_{m=1}^{\infty} c_m \tag{222}$$

В.4.3.2. Знакопеременные ряды и признак Лейбница

Ряд $\sum a_n$ называется знакопеременным, если $\forall n \in \mathbb{N}: \ a_n \cdot a_{n+1} < 0.$

Не умаляя общности, можно давать такое определение для всех $n \in \mathbb{N}$, так как конечное число членов ряда можно отбросить и перенумеровать оставшиеся с сохранением сходимости.

То же самое можно написать и так:

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^n c_n, \tag{223}$$

где $c_n > 0$.

Доказательство. \square Пусть $c_n=|a_n|$, и S_{2m} - частичная сумма чётного порядка:

$$S_{2m} = c_1 - c_2 + c_3 - \dots + c_{2m-1} - c_{2m}$$
 (224)

$$S_{2m} = (c_1 - c_2) + (c_3 - c_4) + \dots + (c_{2m-1} - c_{2m})$$
 (225)

Поскольку $c_i>c_{i+1}$, то S_{2m} с ростом m возрастает.

$$S_{2m} = c_1 - (c_2 - c_3) - \ldots - (c_{2m-2} - c_{2m-1}) - c_{2m} \tag{226} \label{eq:226}$$

Выходит, что S_{2m} ограничена сверху c_1 . Тогда последовательность S_{2m} сходится как возрастающая и ограниченная сверху.

$$\lim_{m \to \infty} S_{2m} = S \tag{227}$$

Для суммы нечётного порядка имеем $S_{2m-1} = S_{2m} + c_{2m}$.

Поэтому, используя, что $c_{2m} \rightarrow 0$:

$$\lim_{m \to \infty} S_{2m-1} = S \tag{228}$$

Последовательности как чётных, так и нечётных сумм данного ряда сходятся к одному числу, следовательно, ряд сходится. ■

С. Комбинаторика

В этом разделе рассматриваются основные понятия и тождества комбинаторики, а так же основы теории множеств и теории графов.

С.1. Основные правила комбинаторики

С.1.1. Првила суммы и произведения

Правило суммы. Если элемент множества A можно выбрать m способами, а элемент множества B n способами, то выбор «либо A, либо B» может быть сделан m+n способами, при условии, что множества A и B не пересекаются.

Доказательство: Количество способов выбрать «либо A, либо B» равно мощности множества $A \cup B$. По условию $A \cap B = \emptyset$, поэтому надо доказать лемму:

$$A \cap B = \bigotimes \Rightarrow |A \cup B| = |A| + |B| \tag{229}$$

Доказательство леммы: пусть $A=\{a_1,...,a_m\}$ и $B=\{b_1,...,b_n\}$ Тогда

$$A \cup B = \{a_1, ..., a_m, b_1, ..., b_n\} \tag{230}$$

Здесь существенно использовано то, что $A\cap B=\emptyset$, так как тогда $\forall a\in A,\ \forall b\in B:\ a\neq b.$ Следовательно, $|A\cup B|=m+n.$

По лемме, $|A \cup B| = |A| + |B|$, что и требовалось доказать. \blacksquare

Правило произведения. Если объект A можно выбрать m способами и для каждого выбора A объект B можно выбрать n способами, то количество способов выбрать n упорядоченные пары n0 равно n1.

Доказательство: Переформулируем доказываемое утверждение так: пусть $|A|=m,\ |B|=n.$ Тогда надо доказать, что мощность декартова произведения множеств равна произвдению мощностей сомножителей:

$$|A \times B| = m \cdot n \tag{231}$$

. Перед доказательством сформулируем важную лемму, которая доказана в разделе, связанном с теорией множеств. Лемма о дистрибутивности декартова произведения относительно объединения множеств:

$$A \times (B \cup C) = (A \times B) \cup (A \times C) \tag{232}$$

- . Докажем исходное утверждение индукцией по мощности второго сомножителя:
- 1. База индукции.

1.1.
$$n=0:A\times B=A\times \boxtimes=\boxtimes$$
. Но $|\boxtimes|=0=m\cdot n$.
1.2. $n=1:A\times B=A\times \{b_1\}=\{(a_1,b_1),...,(a_m,b_1)\}$. Легко видеть, что

$$|\{(a_1, b_1), ..., (a_m, b_1)\}| = m = m \cdot 1.$$

- 2. Предположение индукции. Пусть верно для некоторого $n\in\mathbb{N}$, что $\forall A,B:\ |A imes B|=m\cdot n.$
- 3. Шаг. Докажем для n+1 на основе предположения индукции. Пусть множество $B_{n+1} = B_n \cup \{b_{n+1}\} \ \ \text{и} \ \ |B_n| = n.$

$$A\times B_{n+1}=A\times \left(B_n\cup \left\{b_{n+1}\right\}\right)=A\times B_n\cup A\times \left\{b_{n+1}\right\} \tag{233}$$

Тогда

$$|A \times B_{n+1}| = |A \times B_n| + |A \times \{b_{n+1}\}| = m \cdot n + m \cdot 1 = m \cdot (n+1)$$
 (234)

Шаг индукции верен, поэтому утверждение доказано. ■

Обобщённые правила суммы и произведения:

- 1. Обобщённое правило суммы. Пусть даны попарно непересекающиеся множества $A_1,A_2,...A_n$. Число способов сделать выбор « A_1 или A_2 ...или A_n » равно $\sum_{i=1}^n |A_i|$. Доказывается по индукции.
- 2. Обобщённное правило произведения. Пусть даны множества $A_1,A_2,...A_n$. Число способов выбрать упорядоченный кортеж $(a_1,...,a_n)\mid a_i\in A_i$ из n элементов равно $\prod_{i=1}^n |A_i|$. Доказывается по индукции.

Пример использования обобщённого правила произведения. Докажем, что порядок группы перестановок $S_n=S(\Omega)$ равен n!, где $n=|\Omega|$. Для первой позиции образа мы можем выбрать любой из n прообразов. Далее для второй позиции уже (n-1) прообраз и т. д. На последнюю позицию можно выбрать единственный элемент множества Ω . Имеем: $P_n=n\cdot (n-1)\cdot \ldots \cdot 1$

С.1.2. Принцип Дирихле

Обозначим
$$\lceil x \rceil = \min\{a \mid a \geq x, \ a \in \mathbb{Z}\}$$

Принцип Дирихле. Если n объектов разместить в m ящиках и n>m, то существует хотя бы один ящик, в котором находится не менее $\left\lceil \frac{n}{m} \right\rceil$ объектов.

Доказательство. Обозначим $k = \left\lceil \frac{n}{m} \right\rceil$ и предположим противное: во всех ящиках лежит меньше k объектов. Тогда для любого ящика, в нем находится не более k-1 объектов. Общее число объектов тогда не превосходит $m \cdot (k-1)$, т. е. имеет место

неравенство $n \leq m \cdot (k-1)$. Но по свойству округления вверх: $k-1 = \left \lceil \frac{n}{m} \right \rceil - 1 < \frac{n}{m}$. Имеем:

$$\begin{cases} n \leq m \cdot (k-1) \\ n > m \cdot (k-1) \end{cases} \tag{235}$$

Получили противоречие, значит противное неверно и исходное утверждение доказано. \blacksquare

С.1.3. Примеры

С.2. Множества

«Элемент a принадлежит множеству A» обозначают $a \in A$. Отрицание этого утверждения обозначается $a \notin A$.

Множество B называется подмножеством A, если $\forall x \in B: \ x \in A$. Обозначают $B \subset A$.

Множества A и B называаются равными, если $A\subset B\wedge B\subset A$. Обозначают A=B.

Пустым множеством называется множество, не содержащее ни одного элемента. Оно является подмножеством любого множества. Обозначается \varnothing . $\forall A: \varnothing \subset A$

С.2.1. Операции на множествах

Основные бинарные операции над множествами определены так:

- 1. Объединение. $A \cup B = \{x \mid x \in A \lor x \in B\}$
- 2. Пересечение. $A \cap B = \{x \mid x \in A \land x \in B\}$
- 3. Разность. $A \setminus B = \{x \mid x \in A \land x \notin B\}$
- 4. Симметрическая разность. $A \triangle B = (A \setminus B) \cup (B \setminus A)$

С.2.2. Свойства бинарных операций над множествами

- 1. Коммутативность объедиения и пересечения:
 - $A \cup B = B \cup A$
 - $A \cap B = B \cap A$.
- 2. Ассоциативность объедиения и пересечения:
 - $(A \cup B) \cup C = A \cup (B \cup C)$
 - $(A \cap B) \cap C = A \cap (B \cap C)$.
- 3. Дистрибутивность объедиения и пересечения:
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

С.2.3. Кортеж

Кортежем называется упорядоченная п-ка элементов. Обозначается как

$$(a_1,a_2,...,a_n) \text{ или } \langle a_1,a_2,...,a_n \rangle \tag{236}$$

Более строго, можно индуктивно сопоставить кортежи множествам:

Комбинаторика 50

.

- $\varnothing \leftrightarrow \langle \rangle$
- $\{a_1\} \leftrightarrow \langle a_1 \rangle$
- $\{a_1, \{a_1, a_2\}\} \leftrightarrow \langle a_1, a_2 \rangle$

Тогда:

 $\bullet \ \{a_1,a_2,...,a_n\} \leftrightarrow \langle a_1,a_2,...,a_n\rangle \underset{\mathrm{def}}{=} \langle \langle a_1,a_2,...,a_{n-1}\rangle,a_n\rangle$

Альтернативно, можно дать такое определение:

$$\langle a_1, a_2, ..., a_n \rangle = f: [n] \to \{a_1, a_2, ..., a_n\} \tag{237}$$

С.2.4. Декартово произведение

Декартовым произведением двух множеств A и B называется множество всех упорядоеченных пар элементов из A и B.

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$
 (238)

Свойства декартова произведения:

- 1. Некоммутативность. Вообще говоря, $A \times B \neq B \times A$, если $A \neq B$
- 2. Ассоциативность. $A \times (B \times C) = (A \times B) \times C$
- 3. Дистрибутивность относительно объедиения и пересечения (по левому и по правому множителю):
 - $A \times (B \cup C) = A \times B \cup A \times C$
 - $A \times (B \cap C) = A \times B \cap A \times C$
 - $(B \cup C) \times A = B \times A \cup C \times A$
 - $(B \cap C) \times A = B \times A \cap C \times A$

С.2.5. Мощность множества

Мощностью конечного множества $A=\{a_1,a_2,...,a_n\}$ называется количество элементов в нём: |A|=n.

Утверждение 1. $A \cap B = \emptyset \Rightarrow |A \cup B| = |A| + |B|$

(Уже доказано, см. 229)

Утверждение 2. $|A \times B| = |A| \cdot |B|$

(Уже доказано, см. 231)

С.2.6. Круги Эйлера

Отношения между множествами можно визуально представить с помощью кругов Эйлера.

С.2.7. Формула включений и исключений

Пусть $A_1, A_2, ..., A_n$ - конечные множества. Тогда

$$\begin{split} \left| \bigcup_{i=1}^n A_i \right| &= \sum_i |A_i| - \sum_{i < j} \left| A_i \cap A_j \right| + \\ &+ \ldots + (-1)^{n-1} |A_1 \cap A_2 \cap \ldots \cap A_n| \end{split} \tag{239}$$

С.3. Перестановки, сочетания и размещения

Существуют две схемы выбора элементов из множества Ω мощности n: с повторениями и без повторений.

В первой схеме выбранный элемент не возвращается в множество, а во второй схеме на каждом шаге элемент должен быть возвращён в множество.

С.3.1. Выбор без повторений

Перестановка. Определение перестановкибыло дано в разделе А.1.

Teopema. Число всех перестановок без повторений длины n равно

$$P_n = n! (240)$$

Доказательство приведено здесь.

Размещением из n элементов по m называют кортеж, содержащий m различных элементов Ω .

Tеорема. Число всех размещений из n по m равно

$$A_n^m = \frac{n!}{(n-m)!} (241)$$

 ${\it Доказательство}$: Постоим размещение: для первоой позиции элемента можно выбрать любой из n элементов исходного множества, для второго любой из n-1 оставшихся, ... для m-ой позиции (n-m+1) из оставшихся. По правилу произведения на m позиций имеем:

$$A_n^m = n \cdot (n-1) \cdot \dots \cdot (n-m+1) = \frac{n!}{(n-m)!}$$
 (242)

Что и требовалось доказать ■.

Сочетанием из n элементов по m называется подмножество мощности m множества Ω .

Tеорема. Число сочетаний из n по m равно

$$C_n^m = \frac{n!}{(n-m)! \cdot m!}$$
 (243)

 \mathcal{A} оказательство. Заметим, что подмножеств мощности m ровно в m! раз меньше, чем кортежей длины m из элементов исходного множества. Действительно, каждому подмножеству мощности m соответсвует m! кортежей(как перестановок элементов данного подмножества). Поэтому искомое число сочетаний равно

$$C_n^m = \frac{A_n^m}{P_m} = \frac{n!}{(n-m)! \cdot m!}$$
 (244)

что и требовалось доказать \blacksquare .

С.3.2. Выбор с повторениями

С.4. Производящие функции

D. Теория вероятностей

D.1. Основные понятия

Случайное событие — событие, про которое нельзя точно сказать, произойдёт оно или нет. Обозначают буквами латинского алфавита: A, B, C...

Достоверным называется событие, которое происходит всегда. Обозначается Ω .

Невозможным называется событие, которое не может произойти. Обозначается ⊗.

Вероятность случайного события это численная мера объективной возможности наступления данного события. Обозначение: P(A) — вероятность события A.

D.1.1. Операции над событиями

 \overline{A} — событие, противоположное А. Заключается в том, что событие A не произошло.

 $A \cap B$ — произведение событий. Это событие, которое заключается в совместном происхождении событий A, B.

Если $A \cap B = \emptyset$, то события A, B называются несовместными.

Вместо $A \cap B$ иногда пишут AB.

 $A \cup B$ — объединение или сумма событий. Заключается в том, что хотя бы одно из $\{A,B\}$ верно.

Закон де Моргана в терминах событий:

$$\overline{A \cup B} = \overline{A} \cap \overline{B} \tag{245}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \tag{246}$$

Диаграммы Венна

Свойства противоположного события:

1.
$$\overline{\overline{A}} = A$$

$$2. \ A \cap \overline{A} = \bigotimes$$

3.
$$A \cup \overline{A} = \Omega$$

Свойства бинарных операций над событиями.

- 1. Коммутативность:
 - $A \cap B = B \cap A$;
 - $A \cup B = B \cup A$.
- 2. Ассоциативность:

- $A \cap (B \cap C) = (A \cap B) \cap C$;
- $A \cup (B \cup C) = (A \cup B) \cup C$.
- 3. Дистрибутивность.
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap B)$;
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Операция включения

 $A \subset B$ — событие, которое заключается в том, что происхождение B влечёт A.

Разность и симметрическая разность.

Разность событий A и B определяется как:

$$A \setminus B = A \cap \overline{B} \tag{247}$$

Симметрической разностью называется бинарная операция над событиями, такая, что

$$A \triangle B = (A \cup B) \cap \left(\overline{A} \cup \overline{B}\right) \tag{248}$$

Отрицание симметрической разности:

$$\overline{A \triangle B} = \overline{A} \triangle B = A \triangle \overline{B} = \overline{A} \triangle \overline{B} \tag{249}$$

Поглощение.

- 1. $A \cup (A \cap B) = A$
- $2. \ A \cap (A \cup B) = A$
- 3. $\overline{A} \cup (A \cap B) = \overline{A} \cup B$
- 4. $\overline{A} \cap (A \cup B) = \overline{A} \cap B$

Декомпозиция бинарных операций.

- 1. $A \cup B = A \triangle B \triangle AB$
- 2. $A \setminus B = A \setminus (AB)$

D.1.2. Аксиомы вероятности

- 1. $\forall A \ P(A) \ge 0$ (неотрицательность);
- 2. $P(\Omega) = 1$ (Вероятность достоверного события);
- 3. $\forall A, B: A \cap B = \emptyset: P(A \cup B) = P(A) + P(B)$. (Аддитивное свойство вероятности).

D.1.3. Следствия из Аксиом

Теорема о вероятности противоположных событий.

$$P(A) + P(\overline{A}) = 1 \tag{250}$$

.

Доказательство: так как

$$\begin{cases} A \cup \overline{A} = \Omega \\ A \cap \overline{A} = \emptyset \end{cases} \tag{251}$$

то из аксиом 2 и 3: $P\!\left(A\cup\overline{A}\right)=P(\Omega)=1.$ \blacksquare

Следствие из теоремы.

Вероятность объединения n попарно независимых событий.

$$\begin{split} \forall A_1,A_2,...A_n: \forall i,j: \ i\neq j: A_i\cap A_j &= \varnothing: \\ P\bigg(\bigcup_{1\leq i\leq n}A_i\bigg) &= \sum_{i=1}^n P(A_i) \end{split} \tag{252}$$

Доказательство: по индукции. n=2: это аксиома 3.

Пусть верно для $n\in\mathbb{N}.$ Тогда $P\Bigl(\bigcup_{1\leq i\leq n}A_i\Bigr)=\sum_{i=1}^nP(A_i)$ Докажем для n+1:

$$\begin{split} P\bigg(\bigcup_{1\leq i\leq n+1}A_i\bigg) &= P\bigg(\left[\bigcup_{1\leq i\leq n}A_i\right]\cup A_{n+1}\bigg) = P\bigg(\bigcup_{1\leq i\leq n}A_i\bigg) + \\ &+ P(A_{n+1}) = \sum_{i=1}^n P(A_i) + P(A_{n+1}) = \sum_{i=1}^{n+1} P(A_i) \ \blacksquare \end{split} \tag{253}$$

D.2. Случайная величина

Будем обозначать случайные величины прописными греческими буквами $(\xi, \eta, ..)$.

- 1. Для дискретных случайных величин множество значений или конечно, или бесконечно, но счётно.
- 2. Для непрерывных случайных величин множество значений равномощно \mathbb{R} .

Универсальным законом распределения и непрерывных, и дискретных случайных величин явлется *функция распределения*(ф. р.).

По определению, функция распределения F_{ξ} для случайной величины ξ определяется как вероятность события $\{\xi < x\}$.

$$F_{\xi} := P(\xi < x) \tag{254}$$

D.2.1. Свойства функции распределения случайной величины

Пусть ξ - случайная величина.

- 1. $0 \le F_{\varepsilon}(x) \le 1, \ \forall x \in \mathbb{R},$
- 2. $F_{\varepsilon}(-\infty) = F_{\varepsilon}(\xi < -\infty) = 0$,
- 3. $F_{\varepsilon}(+\infty) = F_{\varepsilon}(\xi < \infty) = 1$,
- 4. $F_{\xi} \nearrow$ (функция распределения монотонно не убывает на всей области определения).

 \square Пусть $x_1 < x_2$ и x_1, x_2 входят в область значений случайной величины ξ . Тогда $F_\xi(x_2) = P(\xi < x_2) = P(\{\xi < x_1\} \cup \{x_1 \le \xi < x_2\}) = P(\xi < x_1) + P(x_1 \le \xi < x_2) \ge P(\xi < x_1) = F_\xi(x_1)$

Е. Алгоритмы и структуры данных && программирование

Е.1. Основные понятия

Алгоритм — точное или формализованное описание вычислительного процесса, ведущее от входных данных к искомому результату.

Структуры данных — множество элементов данных и связи между ними.

Физические данные существуют в памяти машины, а теоретические нет.

Элементарные данные не могут быть разделены на более мелкие части. Если же данные могут быть разделены на логически более мелкие части, то они называются сложными

Е.1.1. Анализ сложности и эффективности алгоритмов

Должны быть некие критерии хорошего алгоритма.

Два основных критерия, используемых на практике:

- 1. Быстродействие;
- 2. Объём потребляемой памяти.

Прямое измерение времени работы программной реализации измеряет далеко не только быстродействие алгоритма. На время выполнения влияют так же способ реализации, умения программиста, среда разработки и мощность компъютера.

Измеренеия скорости и памяти носят теоретический характер.

- T(n) функция теоретического времени работы алгоритма.
- V(n) функция теоретической пространственной сложности алгоритма.

Получить точную формулу нельзя, можно только получить скорость и порядок скорости изменения времени выполнения.

Е.2. Асимптотические оценки функций

Далее при анализе алгоритмов будем полагать, что все функции асимптотически положительны.

1. Функция f(n) принадлежит О-большому от функции g(n), если существуют такие положительные константы C и N, что для всех n>N функция f(n) ограничена сверху функцией g(n), умноженной на константу C.

$$f(n) = O(g(n)) \Leftrightarrow \exists N, C > 0 : \forall n > N : f(n) \le C \cdot (g(n)) \tag{255}$$

2. Функция f(n) принадлежит Омега-большому от функции g(n), если существуют такие положительные константы C и N, что для всех n>N функция f(n) ограничена снизу функцией g(n), умноженной на константу C.

$$f(n) = \Omega(g(n)) \Leftrightarrow \exists N, C > 0 : \forall n > N : f(n) \ge C \cdot g(n) \tag{256}$$

3. Функция f(n) принадллежит тетта-большому от функции g(n), если существуют такие положительные константы C_1 , C_2 и N, что для всех n>N функция f(n) ограничена сверху и снизу функцией g(n), умноженной на константы C_1 и C_2 соответственно.

$$f(n) = \Theta(g(n)) \Leftrightarrow \exists N, C_1, C_2 > 0 : \forall n > N :$$

$$C_1 \cdot g(n) \leq f(n) \leq C_2 \cdot g(n)$$

$$(257)$$

4. Функция f(n) принадлежит о-малому от функции g(n), если предел отношения f и g равен нулю при неограниченном возрастании n.

$$f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$
 (258)

5. Функция f(n) принадлежит омега-малому от функции g(n), если предел отношения g и f равен нулю при неограниченном возрастании n.

$$f(n) = \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$$
 (259)

Е.2.1. Свойства сравнений функций

1. Транзитивность.

• из
$$f(n) = \Theta(g(n))$$
 и $g(n) = \Theta(h(n))$ следует $f(n) = \Theta(h(n))$

• из
$$f(n) = O(g(n))$$
 и $g(n) = O(h(n))$ следует $f(n) = O(h(n))$

• из
$$f(n) = \Omega(g(n))$$
 и $g(n) = \Omega(h(n))$ следует $f(n) = \Omega(h(n))$

• из
$$f(n) = o(g(n))$$
 и $g(n) = o(h(n))$ следует $f(n) = o(h(n))$

• из
$$f(n) = \omega(g(n))$$
 и $g(n) = \omega(h(n))$ следует $f(n) = \omega(h(n))$

2. Рефлексивность.

•
$$f(n) = \Theta(f(n))$$

•
$$f(n) = O(f(n))$$

•
$$f(n) = \Omega(f(n))$$

3. Симметричность.

•
$$f(n) = \Theta(g(n)) \Rightarrow g(n) = \Theta(f(n))$$

4. Перестановочная симметрия.

•
$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

•
$$f(n) = o(g(n)) \Leftrightarrow g(n) = \omega(f(n))$$

Е.3. Бинарный поиск

Классический бинарный поиск это алгоритм поиска на отсортированном массиве со значениями в диапазоне [a;b]. Ниже приведён псевдокод для этого алгоритма.

```
fun binary_search(array, x):
    n = array.len()
    l, r = 0, n-1
    while l <= r:
        mid = (l + r) / 2
        if arr[mid] == x:
        return mid
        if array[mid] < x:
        l = mid + 1
        else:
        r = mid - 1
    return -1</pre>
```

Временная сложность данного алгоритма равна $O(\log n)$.

Е.З.1. Вариант с поиском границ

1. Если требуется найти **левую** границу, когда требуемое условие выполняется, то можно использовать такой алгоритм.

```
fun left_binary_search(l, r, check, checkparams):
    while l < r:
        mid = (l + r)/2
        if check(mid, checkparams):
        r = mid
        else:
        l = mid + 1
    return l</pre>
```

2. Если требуется найти **правую** границу, когда требуемое условие выполняется, то можно использовать такой алгоритм.

```
fun right_binary_search(l, r, check, checkparams):
    while l < r:
        mid = (l + r + 1)/2
        if check(mid, checkparams):
            l = mid
        else:
            r = mid - 1
    return l</pre>
```

На практике, лучше проверять реализацию бинпоиска на 2-х числах!

Е.4. Динамическое программирование

Динамическое программирование(ДП) позволяет решать задачи, комбинируя решения вспомогательных задач.

Два варианта задач для решения методом динамического программирования:

- подсчёт количества способов;
- оптимизация(максимум или минимум).

Этапы решения задачи методом ДП.

- 1. Описание структуры оптимального решения;
- 2. Реккурентное соотношение для значения, соответствующего оптимальному решению (включая базу динамики);
- 3. Вычисление значения, соответствующего оптимальному решению методом восходящего анализа.
- 4. Составление оптимального решения, полученного на предыдущих этапах.

Е.4.1. Простые примеры ДП

Е.4.1.1. Ступеньки

За один шаг можно подняться на одну или две ступеньки. За посещение каждой из ступенек дают a_i рублей. Необходимо найти максимальную сумму за подъём на вершину лестницы из n ступенек.

Peшение: Пусть dp[i] - максимальная сумма за подъём на i-ю ступеньку. Тогда

$$dp[i] = a[i] + \max(dp[i-1], dp[i-2])$$
(260)

База динамики. dp[0] = 0, dp[1] = a[1]. Ответ: $dp[n] \blacksquare$.

Полученное решение имеет временную и пространственную сложность $\Theta(n)$. Пример таблицы для данной задачи(0 добавлен в качестве нулевого элемента).

a[i]	0	10	-5	-20	-10	20	30	-10	10
dp[i]	0	10	5	-10	-5	15	45	35	55

Е.4.1.2. Ступеньки с сертификатом

За один шаг можно подняться на одну или две ступеньки. За посещение каждой из ступенек дают a_i рублей. Необходимо найти максимальную сумму за подъём на вершину лестницы из n ступенек. Вывести номера ступенек, по которым мы шагали.

Peшение: Пусть dp[i] - максимальная сумма за подъём на i-ю ступеньку. Выделим массив prev[n], в i-том элементе которого будем хранить номер ступепньки, с которой мы попали на i-ю ступеньку. Тогда

$$dp[i] = a[i] + \max(dp[i-1], dp[i-2])$$
(261)

$$prev[i] = \operatorname*{argmax}_{i}(dp[i-1], dp[i-2]) \tag{262}$$

База динамики. $dp[0] = 0, \ dp[1] = a[1]$ и теперь добавляется prev[1] = 0. Ответ: dp[n] \blacksquare .

Пример таблицы для данной задачи:

a[i]	0	10	-5	-20	-10	20	30	-10	10
dp[i]	0	10	5	-10	-5	15	45	35	55
prev[i]	0	0	1	1	2	4	5	6	6

Е.4.1.3. Наибольшая возрастающая подпоследовательность

Задача: найти длину наибольшей возрастающей подпоследовательности в массиве a.

- *подпоследовательность* подпоследовательность, полученная вычёркиванием некоторых элементов из исходной(необязательно подряд идущих);
- возрастающая $\forall i \in \overline{1..n} : a_{i+1} > a_i$.
- *наибольшая* максимальная по длине среди всех подходящих подпоследовательностей.

Решение. Пусть dp[i] - длина наибольшей возрастающей подпоследовательности, заканчивающейся на i-ом элементе. Будем для очереднего элемента a[i] запускать внутренний цикл на отрезке от 0 до i-1 и проверять, можно ли продлить возрастающую подпоследовательность элементом a[i]. Если да, то берём максимум из всех подходящих dp[j] (j < i). Если нет, то записываем prev[i] = -1 и a[i] = 1. Ответ на задачу: $\max(dp[i])$.

К сожалению, временная сложность этого решения $\Theta(n^2)$. Пример таблицы ниже. Жёлтым выделены индексы НВП, зелёным максимум динамики(ответ), а красным те элементы, у которых нет предшественников.

индекс	0	1	2	3	4	5	6
a[i]	4	10	15	12	3	24	7
dp[i]	1	2	2	3	1	4	3
prev[i]	-1	0	0	1	-1	3	2

Приведём решение за $O(n \log n)$.

Е.4.1.4. Покупка билетов

В очереди за билетами стоит n людей. i — й человек может купить себе билет за A_i секунд. Себе и следующему за B_i секунд. Себе, следующему и ещё одному за ним за C_i секунд. Найти минимальное время, за которое все люди будут с билетами.

Peшение. Пусть dp[i] - минимальное время обилечивания первых i людей. Тогда реккурентное соотношение будет иметь вид:

$$dp[i] = \max(dp[i-1] + A_i,$$

$$dp[i-2] + B_i,$$

$$dp[i-3] + C_i)$$
 (263)

В качестве базы динамики запишем 3 виртуальных человека с бесконечным временем покупки, чтобы начинать использовать реккуренту с n=1 и определим для них динамику, равную 0. Сложность решения по времени равна $\Theta(n)$.

Пример таблицы для этой задачи ниже.

No	A_{i}	B_i	C_{i}	dp[i]
-2	∞	∞	8	0
-1	8	∞	8	0
0	∞	∞	∞	0
1	5	10	15	5
2	2	10	15	7
3	5	5	5	12
4	20	20	1	12
5	20	1	1	12

Е.4.1.5. Представление числа минимальной последовательностью операций

Дано целое число $N \leq 10^4$. Представить его в виде арифметического выражения миинимальной длины, в котором используются только операции сложения, умножения и скобки, а все числа не превосходят K.

Peшение. Пусть dp[i] - минимальная длина арифметического выражения для числа i.

Е.4.2. Двумерное динамическое программирование

Е.4.2.1. Наибольшая общая подпоследовательность

Наибольшая общая подпоследовательность (НОП) двух последовательностей - это максимальная по длине подпоследовательность, которую можно получить вычеркиванием некоторых элеменнтов из первой и из второй последовательности.

 $\it 3adaua.$ Даны две последовательности $\it a$ и $\it b.$ Найти НОП для этих последовательностей.

Решение. Пусть dp[i][j] - длина НОП для первых i элементов последовательности a и первых j элементов последовательности b. Обозначим $n=|a|,\ m=|b|.$

- 1. Если a[i] = b[j], то dp[i][j] = dp[i-1][j-1] + 1 (если элементы совпали, то мы берём данный элемент в НОП).
- 2. Иначе, как минимум один из элементов a[i] или b[j] не входит в НОП. Тогда $dp[i][j] = \max(dp[i-1][j], dp[i][j-1]).$

Итак,

$$dp[i][j] = \begin{cases} 0, \text{ если } i \cdot j = 0 \\ dp[i-1][j-1] + 1, & \text{ если } a[i] = b[j] \\ \max(dp[i-1][j], dp[i][j-1]), & \text{ если } a[i] \neq b[j] \end{cases} \tag{264}$$

Длина НОП равна dp[n-1][m-1]. Для восстановления ответа поднимаемся по таблице dp в обратном порядке по следующему алгоритму:

- 1. Если a[i] = b[j], то добавляем этот элемент в НОП и переходим к dp[i-1][j-1].
- 2. Иначе, переходим к dp[i-1][j] или dp[i][j-1], а точнее к тому из них, который имеет большее значение.

Сложность нахождения длины НОП по времени равна $\Theta(n\cdot m)$. Для восстановления ответа потребуется ещё O(n+m) времени.

Е.4.2.2. Расстояние Левенштейна

Расстояние Левенштейна(редакционное расстояние) между двумя строками - это минимальное количество операций (вставка, удаление, замена), необходимых для преобразования одной строки в другую.

 $\it Задача.$ Даны две строки $\it s$ и $\it t.$ Найти расстояние Левенштейна между ними.

Решение. Пусть dp[i][j] - расстояние Левенштейна между первыми i символами строки s и первыми j символами строки t. Обозначим $n=|s|,\ m=|t|.$

- 1. Если s[i] = t[j], то dp[i][j] = dp[i-1][j-1].
- 2. Иначе, $dp[i][j] = \min(dp[i-1][j]+1, dp[i][j-1]+1, dp[i-1][j-1]+1).$

Итак, расстояние Левенштейна между строками s и t равно dp[n-1][m-1]. Этот алгоритм работает за $\Theta(n\cdot m).$

F. Анализ данных

Анализ данных 68