Principal Component Analysis

Data Set: pca3.xlsx

From which angle you can capture maximum information (Variation/Variance)

Is this a good angle/projection?

Is this a good angle/projection?

Is this a good angle/projection?

Look at this data and try to find right/proper/eigen projection

Can this be a good projection?

Can this be a good projection?

Can this be a good projection?

Out of these 2 projections, which one is good and why?

Dimensionality Reduction

Out of these 2 projections, which one is good and why?

Dimensionality Reduction

Out of these 2 projections, which one is good and why?

Procedure

Data

```
# Jesus is my Savior!
library(readxl)
pca3 <- read_excel("C:/Users/Dr Vinod/Desktop/DataSets1/pca3.xlsx")
#View(pca)
pca3 <- as.data.frame(pca3)
str(pca3)</pre>
```

4	Α	В	С	
1	v1	v2	v3	
2	7	4	3	
3	4	1	8	
4	6	3	5	
5	8	6	1	
6	8	5	7	
7	7	2	9	
8	5	3	3	
9	9	5	8	
10	7	4	5	
11	8	2	2	

> str(pca3)
'data.frame': 10 obs. of 3 variables:
 \$ v1: num 7 4 6 8 8 7 5 9 7 8
 \$ v2: num 4 1 3 6 5 2 3 5 4 2
 \$ v3: num 3 8 5 1 7 9 3 8 5 2

Mathematical Treatment

Step 1: Centering

Step 2: Covariance Matrix

Step 3: Use Characteristic

Equation det of $(A-\lambda I=0)$ for

setting up equation for unknown

λ (eigen values)

Step 4: Find eigen vectors

Step 5: Transform centered data

by Matrix Multiplication. [M1 =

centered data (10by3); M2 =

Eigen Vectors (3by3)

$$\det \left[A - \lambda I \right] = 0$$

$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} (\vartheta - \lambda) & -6 & 2 \\ -6 & (7 - \lambda) & -4 \\ 2 & -4 & (3 - \lambda) \end{bmatrix}$$

det. of above: (i) follow to-ot

(ii) start from Nw corner (or can go Jown (ii))

(iii) hide that row & column

Eigen Vectors

This is same as
$$\lambda I$$

For $\lambda = 0$

$$A = \lambda \left[A - \lambda \right] \left[x \right] = 0$$

$$\begin{bmatrix} (8-\lambda) & -6 & 2 \\ -6 & (7-\lambda) & -4 \\ 2 & -4 & 3-\lambda \end{bmatrix} \begin{bmatrix} \chi \\ \chi \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix} \begin{bmatrix} n \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$8x - 6y + 2 = 0 - 0$$

 $-6x + 7y - 4z = 0 - 2$

$$2x - 4y + 37 = 0$$
 -3

Let's solve (202) You can take any two (1) 2 - o + applicable)

$$\frac{7}{(-6)\times(-4)-(7+2)} = \frac{\cancel{2}}{8\times(-4)-(-6)\times2} = \frac{\cancel{2}}{8\times7-(-6)\times(-4)}$$

(iii) hide that row & column
$$\frac{2}{(-6)\times(-4)-(7+2)} \frac{2}{8\times7-[-6\times(-6)]}$$

$$= (-4\times-4)$$

$$\left[\lambda^3 - 18\lambda^2 + 45\lambda = 0\right]$$

$$\lambda = 0$$
, $\lambda = 3$, $\lambda = 15$

for
$$\lambda = 0$$

eigen vector $PC3$

$$\frac{2\ell}{24-14} - \frac{y}{-32-(-12)} + \frac{2}{56-36}$$

$$\frac{2\ell}{10} - \frac{y}{-32} + \frac{2}{20}$$

$$\frac{2}{10} - \frac{y}{-20} + \frac{z}{20}$$
Divide by 10
$$\frac{x}{1} + \frac{y}{2} + \frac{z}{2}$$

Matrix Multiplication

SUM	SUM \Rightarrow											
	F	G	Н	1	J	K	L	М	Ν	0	Р	Q
1		Centered I	Data 10by3	3	Eigen Vectors 3by3					a _{ij} (i=row in l	M1, j=col iı	n M2)
2						lambda1	lambda2	lambda3		1	2	3
3		v1c	v2c	v3c	eigen values	8.2761	3.6747	0.7493		PC1	PC2	PC3
4	1	0.1	0.5	-2.1	v1	-0.1369	0.6991	-0.7018	1	-2.15158	-0.17226	0.10581
5	2	-2.9	-2.5	2.9	v2	-0.2505	0.661	0.7073	2	3.80262	-2.88906	0.51231
6	3	-0.9	-0.5	-0.1	v3	0.9584	0.2727	0.0846	3	0.15262	-0.98696	0.26951
7	4	1.1	2.5	-4.1	> print(pca				4	-4.70628	=G7*\$L\$4-	0.64941
8	5	1.1	1.5	1.9	Standard de		(1,,	p=3):	5	1.29462	2.27864	0.44971
9	6	0.1	-1.5	3.9	[1] 2.87644	462 1.917	3235 0.86	59839	6	4.09982	0.14194	-0.80119
10	7	-1.9	-0.5	-2.1	Rotation (r	n x k) =	(3 x 3):		7	-1.62728	-2.23146	0.80211
11	8	2.1	1.5	2.9	Ì	PC1	PC2	PC3	8	2.11612	3.25044	-0.16749
12	9	0.1	0.5	-0.1	v1 -0.13757 v2 -0.25045			0172743 0745703	9	-0.23478	0.37314	0.27501
13	10	1.1	-1.5	-3.1		0.000		8416157	10	-2.74588	-1.06786	-2.09519
14		0	0	0						4.44089E-16	0	0
15		1.523884	1.581139	2.806738						2.876477926	1.91735	0.865965

Visualize Raw Data

Execute and see what is stored in output


```
> attributes(pca)
$`names`
[1] "sdev" "rotation" "center" "scale" "x"
$class
[1] "prcomp"
```

Standard Deviation of Transformed Data

> pca\$sdev # [1] 2.8764 1.9173 0.8659
[1] 2.8764462 1.9173235 0.8659839

4	Α	В	С	D	Е	
1	Transformed data 10by3					
2	eigen values =	8.2761	3.6747	0.7493		
3		PC1	PC2	PC3		
4	1	-2.15142	-0.17312	0.106816		
5	2	3.804183	-2.8875	0.510436		
6	3	0.153213	-0.98689	0.26941		
7	4	-4.70652	1.301536	0.65168		
8	5	1.293758	2.279126	0.449192		
9	6	4.099313	0.143581	-0.80313		
10	7	-1.62582	-2.23208	0.802814		
11	8	2.11449	3.251243	-0.16837		
12	9	-0.23482	0.37304	0.27514		
13	10	-2.74638	-1.06894	-2.09399		
14	avg=	1.78E-15	7.33E-16	0		
15	sd=	2.876446	1.917323	0.865984		
16						
17	eigen values	8.2761	3.6747	0.7493	12.7001	
18		0.651656	0.289344	0.059		
19			0.941	1		

Eigen Vectors extracted and Centers (averages of Raw Data)

```
> pca$rotation # PC1:PC3 as columns
PC1 PC2 PC3
v1 -0.1375708 0.6990371 -0.70172743
v2 -0.2504597 0.6608892 0.70745703
v3 0.9583028 0.2730799 0.08416157
```

```
> pca$center # 3 cntrs, Raw Averages
v1 v2 v3
6.9 3.5 5.1
```


	Α	В	С	D
1				
2		Raw Data		
3		v1	v2	v3
4	1	7	4	3
5	2	4	1	8
6	3	6	3	5
7	4	8	6	1
8	5	8	5	7
9	6	7	2	9
10	7	5	3	3
11	8	9	5	8
12	9	7	4	5
13	10	8	2	2
14	Avg =	6.9	3.5	5.1
15	sd =	1.523884	1.581139	2.8067379

You can have transformed data at desktop for further experiments!

tdata_cntr = as.data.frame(pca\$x)
write.csv(tdata_cntr, "C:/Users/Dr Vinod/Desktop/trn_cntr_pca3.csv")

	Α	В	С	D	Е
1	Transformed d	ata 10by3			
2	eigen values =	8.2761	3.6747	0.7493	
3		PC1	PC2	PC3	
4	1	-2.15142	-0.17312	0.106816	
5	2	3.804183	-2.8875	0.510436	
6	3	0.153213	-0.98689	0.26941	
7	4	-4.70652	1.301536	0.65168	
8	5	1.293758	2.279126	0.449192	
9	6	4.099313	0.143581	-0.80313	
10	7	-1.62582	-2.23208	0.802814	
11	8	2.11449	3.251243	-0.16837	
12	9	-0.23482	0.37304	0.27514	
13	10	-2.74638	-1.06894	-2.09399	
14	avg=	1.78E-15	7.33E-16	0	
15	sd=	2.876446	1.917323	0.865984	
16					
17	eigen values	8.2761	3.6747	0.7493	12.7001
18		0.651656	0.289344	0.059	
19			0.941	1	

SDs of Transformed Data & Eigen Vectors

	А	В	С	D	Е
1	Transformed data 10by3				
2	eigen values =	8.2761	3.6747	0.7493	
3		PC1	PC2	PC3	
4	1	-2.15142	-0.17312	0.106816	
5	2	3.804183	-2.8875	0.510436	
6	3	0.153213	-0.98689	0.26941	
7	4	-4.70652	1.301536	0.65168	
8	5	1.293758	2.279126	0.449192	
9	6	4.099313	0.143581	-0.80313	
10	7	-1.62582	-2.23208	0.802814	
11	8	2.11449	3.251243	-0.16837	
12	9	-0.23482	0.37304	0.27514	
13	10	-2.74638	-1.06894	-2.09399	
14	avg=	1.78E-15	7.33E-16	0	
15	sd=	2.876446	1.917323	0.865984	
16					
17	eigen values	8.2761	3.6747	0.7493	12.7001
18		0.651656	0.289344	0.059	
19			0.941	1	

Summary: PCA

library(factoextra)
res.pca<- prcomp(pca3, center = TRUE, scale = FALSE)
fviz_pca_biplot(res.pca)</pre>

4	Α	В	С	D	Е
1	Transformed d	ata 10by3			
2	eigen values =	8.2761	3.6747	0.7493	
3		PC1	PC2	PC3	
17	eigen values	8.2761	3.6747	0.7493	12.7001
18		0.651656	0.289344	0.059	
19			0.941	1	

Calculation: No Worries!

https://www.calculatorsoup.com/calculators/algebra/quadratic -formula-calculator.php, last accessed 10 November 2019

Dr Vinod on PCA Concepts 8971073111 vinodanalytics@gmail.com

