MARTINGALES À TEMPS DISCRET (RAPPELS)

Cette annexe est un rappel de la partie du cours « proba++ » [1] consacrée aux martingales à temps discret. L'axe des temps est ici $T = \mathbb{N}$. Nous considérons un espace filtré $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \in \mathbb{N}}, \mathbb{P})$.

Processus arrêté.

Définition .1. Soit $X=(X_n)$ un processus adapté à \mathscr{F}_n et ν un \mathscr{F}_n -temps d'arrêt. Le processus arrêté X^{ν} est le processus $X_n^{\nu}=X_{\nu\wedge n}$.

Ne pas confondre le processus arrêté X^{ν} avec la variable aléatoire $X_{\nu} = X_{\nu(\omega)}(\omega)$.

Proposition .1. Si X est respectivement une martingale ou une sous-martingale ou une surmartingale, et si ν est un temps d'arrêt, alors X^{ν} est respectivement une martingale ou une sous-martingale ou une surmartingale.

Nombre de montées et convergence.

Définition .2. Soit f est une fonction de T dans \mathbb{R} , et soit a < b sont deux nombres réels. Le nombre de montées U(f, a, b, I) de la fonction f restreinte à l'ensemble $I \subset T$ est le nombre défini de la manière suivante : on pose $s_0 = -1$, puis par récurrence sur $k \in \mathbb{N}^*$:

$$t_k = \inf\{m \in I, m > s_{k-1}, f(m) \le a\}$$

 $s_k = \inf\{m \in I, m > t_k, f(m) \ge b\}.$

Alors

$$U(f, a, b, I) = \sup\{k : s_k < \infty\}.$$

FIGURE 1. Montées de f entre a et b le long de $I = \{0, \dots, 20\}$.

Proposition .2. Soit X est une sous-martingale et soit $I = \{0, 1, ..., n\}$. Alors pour tous réels a < b,

$$\mathbb{E}U(X, a, b, I) \le \frac{\mathbb{E}[(X_n - a)^+]}{b - a}.$$

Théorème .1 (Convergence 1). Si X est une sous-martingale telle que $\sup_n \mathbb{E}[X_n^+] < \infty$, alors il existe une variable aléatoire X_∞ telle que $\mathbb{E}|X_\infty| < \infty$ et $X_n \xrightarrow[n \to \infty]{a.s.} X_\infty$.

Souvent, la condition $\sup_n \mathbb{E}[X_n^+] < \infty$ est remplacée par la condition en apparence plus forte $\sup_n \mathbb{E}|X_n| < \infty$. En fait, comme $|X_n| = 2X_n^+ - X_n$ et comme X est une sous-martingale, $\mathbb{E}|X_n| = 2\mathbb{E}[X_n^+] - \mathbb{E}[X_n] \le 2\mathbb{E}[X_n^+] - \mathbb{E}X_0$ et les deux conditions sont équivalentes.

Démonstration. Pour démontrer que X_n converge p.s., l'idée est de démontrer que pour tous a < b, presque sûrement, il n'y aura plus de montée de a vers b à partir d'un certain moment.

Soit $I_n = \{0, \ldots, n\}$. Fixons a < b. Quand $n \to \infty$, $U(X, a, b, I_n) \uparrow U(X, a, b, \mathbb{N})$, le nombre total de montées de a vers b. Comme $(X_n - a)^+ \leq X_n^+ + |a|$ et comme $\sup_n \mathbb{E}[X_n^+] < \infty$, nous avons $\mathbb{E}U(X, a, b, \mathbb{N}) < \infty$ par le théorème de la convergence monotone, donc $U(X, a, b, \mathbb{N}) < \infty$ avec la probabilité un. Cela entraîne que

$$\forall a < b, \ \mathbb{P}\left[\liminf X_n < a < b < \limsup X_n\right] = 0.$$

Par conséquent,

$$\mathbb{P}\left[\bigcup_{a < b, a, b \in \mathbb{O}} \lim \inf X_n < a < b < \lim \sup X_n \right] = 0$$

ce qui entraı̂ne que $\liminf X_n = \limsup X_n$, et donc que $\lim X_n$ existe avec la probabilité un. Il nous reste à prouver que cette limite X_{∞} est dans \mathscr{L}^1 . Par le lemme de Fatou, $\mathbb{E}X_{\infty}^+ \leq \liminf \mathbb{E}X_n^+ < \infty$. En écrivant $x^- = (-x) \vee 0$ pour $x \in \mathbb{R}$ et en notant que $x = x^+ - x^-$, nous avons aussi $\mathbb{E}X_{\infty}^- \leq \liminf \mathbb{E}X_n^- = \liminf (\mathbb{E}X_n^+ - \mathbb{E}X_n)$ par Fatou. Comme X_n est une sous-martingale, $\mathbb{E}X_n \geq \mathbb{E}X_0$. Il en résulte que $\mathbb{E}X_{\infty}^- \leq \liminf \mathbb{E}X_n^+ - \mathbb{E}X_0 < \infty$, et comme $|X_{\infty}| = X_{\infty}^+ + X_{\infty}^-$, nous avons le résultat.

Décomposition de Doob d'une sous-martingale.

Définition .3. En processus $A = (A_n)_{n \in \mathbb{N}}$ est dit prévisible si pour tout $n \geq 1$, A_n est mesurable \mathscr{F}_{n-1} . On dit que A_n est un processus croissant prévisible s'il est prévisible, si $A_0 = 0$ et si $A_{n+1} \geq A_n$.

La stratégie d'un joueur est un exemple typique de processus prévisible.

Proposition .3 (Décomposition de Doob). Toute sous-martingale X_n s'écrit d'une manière unique $X_n = A_n + M_n$ où A_n est un processus croissant prévisible intégrable et où M_n est une martingale.

Démonstration. Indication : écrire
$$A_0 = 0$$
 et $A_n = A_{n-1} + \mathbb{E}[(X_n - X_{n-1}) \mid \mathscr{F}_{n-1}].$

Théorème d'arrêt.

Théorème .2. Soit X_n une sous-martingale et soit ν_1 et ν_2 deux temps d'arrêt bornés (i.e., il existe une constante $K \in \mathbb{N}$ telle que $\nu_1, \nu_2 \leq K$) et tels que $\nu_1 \leq \nu_2$. Alors $\mathbb{E}[X_{\nu_2} | \mathscr{F}_{\nu_1}] \geq X_{\nu_1}$ (= si X_n est une martingale).

Inégalités maximales.

Théorème .3. Soit X_n une sous-martingale. Alors pour tout a > 0,

$$\mathbb{P}\left[\max_{0 \le k \le n} X_k \ge a\right] \le \frac{\mathbb{E}|X_n|}{a}.$$

Théorème .4. Soit X_n une martingale ou une sous-martingale positive. On suppose que $X_n \in \mathcal{L}^p$ pour p > 1. Alors pour tout $n \in \mathbb{N}$,

$$\left\| \max_{0 \le k \le n} |X_k| \right\|_p \le \frac{p}{p-1} \|X_n\|_p, \quad \left\| \sup_n |X_n| \right\|_p \le \frac{p}{p-1} \sup_n \|X_n\|_p.$$

où nous rappelons que $||X||_p = (\mathbb{E}|X|^p)^{1/p}$.

Ainsi, si X_n est bornée dans \mathcal{L}^p pour p > 1, alors $\sup_n |X_n|$ est dans \mathcal{L}^p .

Théorème .5 (Convergence 2). Soit X_n une martingale bornée dans \mathcal{L}^p pour p > 1. Alors X_n converge p.s. et dans \mathcal{L}^p vers une variable aléatoire X_{∞} .

Démonstration. On sait par le théorème précédent que $\sup_n |X_n| \in \mathcal{L}^p$. Comme $|X_k|^p \leq \sup_n |X_n|^p \in \mathcal{L}^1$ pour tout $k \in \mathbb{N}$, la famille $|X_n|^p$ est uniformément intégrable (u.i.). Or, le théorème .1 nous dit qu'il existe X_∞ telle que $X_n \overset{\text{as}}{\to} X_\infty$. Nous savons par ailleurs que si une suite de variables aléatoires converge en probabilité, alors elle converge dans \mathcal{L}^1 si (et seulement si) elle est u.i. Il en résulte que $X_n \overset{\mathcal{L}^p}{\longrightarrow} X_\infty$.

Martingales dans \mathscr{L}^2 . On applique maintenant les résultats précédents au cas où p=2 en raison de son importance. Une martingale X_n est dite de carré intégrable (ou martingale \mathscr{L}^2) si $\mathbb{E}X_n^2 < \infty$ pour tout $n \in \mathbb{N}$. En écrivant $X_n = X_0 + \sum_{k=1}^n (X_k - X_{k-1})$ et en notant que

$$\mathbb{E}\left[(X_m - X_{m-1})(X_n - X_{n-1})\right]$$

$$= \mathbb{E}\left[(X_{m \vee n} - X_{m \vee n-1})(X_{m \wedge n} - X_{m \wedge n-1})\right]$$

$$= \mathbb{E}\left[(X_{m \wedge n} - X_{m \wedge n-1})\mathbb{E}\left[(X_{m \vee n} - X_{m \vee n-1}) \mid \mathscr{F}_{m \wedge n}\right]\right]$$

$$= 0$$

pour $m \neq n$, nous avons

$$\mathbb{E}X_n^2 = \mathbb{E}X_0^2 + \sum_{k=1}^n \mathbb{E}\left[(X_k - X_{k-1})^2 \right],$$

d'où:

Théorème .6. Soit X_n une martingale de carré intégrable. Si $\sum_{k=1}^{\infty} \mathbb{E}[(X_k - X_{k-1})^2] < \infty$, alors X_k converge p.s. et dans \mathcal{L}^2 vers une variable aléatoire X_{∞} .

Observons que si $X_n \in \mathcal{L}^2$, le processus X_n^2 est une sous-martingale à laquelle nous pouvons appliquer la décomposition de Doob.

Définition .4. Soit X_n une martingale dans \mathcal{L}^2 nulle en zéro. Le processus croissant prévisible A_n de la décomposition de Doob $X_n^2 = A_n + N_n$ de la sous-martingale X_n^2 est souvent noté $\langle X \rangle_n$ et est appelé le crochet de la martingale X_n .

Remarquons que $\langle X \rangle_0 = N_0 = 0$. Par le théorème de la convergence monotone, $\lim_n \mathbb{E}[\langle X \rangle_n] = \mathbb{E}[\langle X \rangle_\infty]$. Comme $\mathbb{E}[X_n^2] = \mathbb{E}[\langle X \rangle_n]$, la martingale X_n est bornée dans \mathcal{L}^2 si et seulement si $\mathbb{E}[\langle X \rangle_\infty] < \infty$, et dans ce cas elle converge p.s. et dans \mathcal{L}^2 . Nous pouvons aller plus loin :

Théorème .7 (Convergence 3). Soit X_n une martingale \mathcal{L}^2 . Alors $\lim_n X_n(\omega)$ existe pour tout ω pour lequel $\langle X \rangle_{\infty}(\omega) < \infty$.

La preuve constitue un très bon exemple d'utilisation des temps d'arrêt :

Démonstration. Pour tout $k \in \mathbb{N}$,

$$\nu_k = \inf\{n \in \mathbb{N}, \langle X \rangle_{n+1} > k\}$$

est un temps d'arrêt car pour tout n,

$$[\nu_k \le n] = [\nu_k > n]^c = [\forall m \in \{0, \dots, n\}, \langle X \rangle_{m+1} \le k]^c$$

est dans \mathscr{F}_n , le processus $\langle X \rangle_n$ étant prévisible. Le processus arrêté $\langle X \rangle^{\nu_k} = (\langle X \rangle_{\nu_k \wedge n})$ est aussi prévisible. En effet, $\forall B \in \mathscr{B}(\mathbb{R}), [\langle X \rangle_{\nu_k \wedge n} \in B] = F_1 \cup F_2$ où

$$F_1 \triangleq \bigcup_{r=0}^{n-1} [\nu_k = r, \langle X \rangle_r \in B] \in \mathscr{F}_{n-1}$$
$$F_2 \triangleq [\nu_k \le n-1]^c \cup [\langle X \rangle_n \in B] \in \mathscr{F}_{n-1}.$$

Comme $X^2 - \langle X \rangle$ est une martingale, le processus arrêté $(X^2 - \langle X \rangle)^{\nu_k} = (X^2)^{\nu_k} - \langle X \rangle^{\nu_k}$ est une martingale, et $\langle X \rangle^{\nu_k} = \langle X^{\nu_k} \rangle$. Comme le processus $\langle X^{\nu_k} \rangle$ est borné par k, la martingale X^{ν_k} est bornée dans \mathcal{L}^2 donc $\lim_n X_{\nu_k \wedge n}$ existe avec la probabilité un. On conclut en remarquant que

$$[\langle X \rangle_{\infty} < \infty] = \bigcup_{k=0}^{\infty} [\nu_k = \infty].$$

Martingales uniformément intégrables.

Théorème .8 (Convergence 4). Soit X_n une martingale. Les trois assertions suivantes sont équivalentes :

- (1) La famille (X_n) est u.i.,
- (2) La suite X_n converge dans \mathcal{L}^1 ,
- (3) Il existe une variable aléatoire $Z \in \mathcal{L}^1$ telle que $X_n = \mathbb{E}[Z \mid \mathscr{F}_n]$ p.s.

Et dans ce cas, X_n converge presque sûrement et dans \mathcal{L}^1 .

Références

[1] Eric Moulines and Pierre Priouret. Probabilités ++. Télécom ParisTech, 2007. (MDI 221).