Inferring macro-ecological patterns from local presence/absence data

Quantitative Life Science exam

Sartore Marika 5th April 2022

- 1 Introduction
- 2 Model
- 3 In-silico forests
- 4 Real dataset application
- 5 Conclusion
- 6 Appendix

- 1 Introduction
- 2 Model
- 3 In-silico forests
- 4 Real dataset application
- 5 Conclusion
- 6 Appendix

Introduction

Problem: Biodiversity changes across spatial scales.

Aim: Translate local information on biodiversity into global ones.

Literature: Many proposed methods use species abundance data.

Data: Most datasets are composed of presence/absence data.

Solution: The method presented in [1].

- 1 Introduction
- 2 Model
- 3 In-silico forests
- 4 Real dataset application
- 5 Conclusion
- 6 Appendix

Model

The method proposed in [1]:

- is based on the form-invariance property of the Negative Binomial distribution;
- uses only presence/absence data;
- can infer species richness at larger scale and other relevant biodiversity patterns (SAC,RSA,RSO);
- has been developed for forest but it can be generalized to other ecological systems.

Model - Theory

From global to local:

Relative Species Abundance at scale 1:

$$P(n|1) \propto NB(n|r,\xi) = \binom{n+r-1}{n} \xi^n (1-\xi)^r$$

+ well mixed hypothesis:

$$P_{binom}(k|n,p) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0,..,n$$

 \rightarrow RSA at scale p is a negative binomial [2]:

$$P(k|p) \propto NB(k|r,\xi_p), \quad \text{with} \quad \xi_p = \frac{p\xi}{1-\xi(1-p)}$$

Model - Theory

From local to global:

If we have information about a portion p^* of the whole forest, we can infer these quantities for the entire forest:

RSA:

$$NB(n|r,\xi)$$
 with $\xi = \frac{\xi_{p^*}}{p^* + \xi_{p^*}(1-p^*)}$

nr. of species:

$$S = S^* \frac{1 - (1 - \xi)^r}{1 - (1 - \xi_{p^*})^r}$$

RSO:

$$Q(v|M,1) = \sum_{n=v}^{\infty} Q_{occ}(v|n,M,1)P(n|1) \propto v^{r-1}$$

Model - Implementation

Data at the local scale p^* :

(a) Presence/absence of S^* species in M^* plots, no abundances information. (b) For each subset of plots from 1 to M^* cells, it is computed the nr. of species observed in that portion of cells. The procedure is repeated 100 times and the green dots are the empirical averages. The fitting is done through $SAC_{th} = S \frac{1-(1-\xi_p)^r}{1-(1-\xi)^r}$.

Model - Implementation

Prediction at the global scale (p=1):

Using best-fit parameters found and the upscaling equations it is possible to predict the species richness S of the whole forest, the SAC, the RSA and the RSO.

- 1 Introduction
- 2 Model
- 3 In-silico forests
- 4 Real dataset application
- 5 Conclusion
- 6 Appendix

In-silico forests

Generate in-silico forests according to two RSA distributions:

Negative Binomial:

$$S = 4981$$
, $r = 0.8$, $\xi = 0.999$

Log Normal:

$$S = 5000$$
, $\mu = 5$, $\sigma = 1$

Individuals are randomly distributed over 98x98 cells.

In-silico forests - results

Sample the $p^* = 0.05$ of the forest and infer species richness S at the whole scale:

Log Normal:

	S_{true}	S_{pred}	avg perc diff
NB	4981	$4929\ \pm 1$	-1.04 ± 0.02
LN	5000	5204 ±6	4 ±0.1

In-silico forests - results

Negative Binomial:

RSA - Negative Binomial 0.0025 0.0020 0.0020 0.0000 0.00

Log Normal:

- 1 Introduction
- 2 Model
- 3 In-silico forests
- 4 Real dataset application
- 5 Conclusion
- 6 Appendix

Barro Colorado Island forest

- Real dataset from the BCI forest.
- Tot species = 302
- Tot cells = 800

French birds species

- Real dataset of French bird species
- Tot species = 246
- Tot cells = 1067

Model testing

- Sample each fraction $p^* = 0.1, ..., 0.9$ of the P/A matrix and infer the nr. of species present at global scale.
- Relative percentage error = $\frac{S_{pred} S_{true}}{S_{true}}$ 100.
- Compare with CHAO estimator [3]:

$$S_{chao} = S^* + \frac{Q_1^2}{\frac{2Q_2M^*}{M^* - 1} + \frac{Q_1p^*}{1 - p^*}}$$

 $M^*=$ total nr. of sampled cells, $S^*=$ total nr. of found species, $Q_i=$ nr. of species detected in i plot at scale p^*

Results

BCI results

Using the $p^* = 0.1$ of the P/A matrix, infer SAC,RSA,RSO for the entire surveyed territory:

Parameters found:

r	ξ
0.37 ± 0.01	0.998 ± 0.004

BIRD results

Using the $p^* = 0.1$ of the P/A matrix, infer SAC,RSA,RSO for the entire surveyed territory:

Parameters found:

r	ξ
0.11 ± 0.01	0.999 ± 0.004

Results

Infer species richness for the real entire territory.

BCI. This dataset represents the p = 0.032 of the whole BCI forest:

cell area [km²]	р	S_{est}
25×25	0.032	337.0 ± 0.2

BIRD. For this dataset we do not know which is the corresponding fraction of the French territory surveyed:

cell area [km²]	р	S_{est}
5x5	0.05	312.0 ± 0.6
10×10	0.2	284.0 ±0.3
15×15	0.44	266.0 ± 0.2

- 1 Introduction
- 2 Model
- 3 In-silico forests
- 4 Real dataset application
- 5 Conclusion
- 6 Appendix

Conclusion

- The larger the sampled area the smaller the relative error.
- The more complete the dataset the more accurate the results.
- Results are compatible with real values.
- The method proposed in [1] is versatile.

Thanks for the attention!

- 1 Introduction
- 2 Model
- 3 In-silico forests
- 4 Real dataset application
- 5 Conclusion
- 6 Appendix

Appendix¹


```
1 # function to compute empSAR and its std
   def computeSAR(initial_data,tot_plot,tot_species,nr_iter):
       empSAR = np.zeros(tot plot)
       sdSAR = np.zeros(tot plot)
       empSAR[0] = np.mean(np.sum(initial data,axis=1)) #1st elem is the mean nr of species present in ONE cell
8
10
       for i in tqdm(range(2,tot plot+1)):
           sar = np.zeros(nr iter)
14
           for j in range(nr iter):
               ind = random.randint(0,tot plot,i)
               sample matrix = initial data[ind,]
16
               presentSpecies = np.sum(sample matrix.axis=0) #(0 -> column sum)
               sar[j] = len(presentSpecies[presentSpecies != 0])
18
           empSAR[i-1] = np.mean(sar)
20
                                                              #the result is a mean over the iterations
           sdSAR[i-1] = np.std(sar)
       return empSAR.sdSAR
```

Appendix¹


```
1 #function to take submatrices with a fraction f of the entire cells
 2 #they're stored in a list, which is returned
    def subsampled mat(entire matrix):
        # total nr of cells
        tot plot = entire matrix.shape[0]
 6
        \#p = np.linspace(0.1, 0.9, 9)
 8
        p = np.linspace(0.1,1,10)
                                          #it predicts also the scale 1
 9
       frac = p*tot plot
10
       list of mat = []
11
       for f in frac:
            #sample f indices
            ind = random.choice(np.arange(0,tot plot),size=int(f),replace=False)
14
            #take the submatrix with those indices
15
16
            reduced matrix = entire matrix[ind,]
            list of mat.append(reduced matrix)
        return list of mat
18
```

References

- [1] Anna Tovo et al. "Inferring macro-ecological patterns from local presence/absence data". In: Oikos 128.11 (2019), pp. 1641—1652. DOI: https://doi.org/10.1111/oik.06754. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/oik.06754.
- [2] Anna Tovo et al. "Upscaling species richness and abundances in tropical forests". In: Science Advances 3.10 (2017), e1701438. DOI: 10.1126/sciadv.1701438. URL: https: //www.science.org/doi/abs/10.1126/sciadv.1701438.
- [3] Anne Chao and Chun-Huo Chiu. "Species Richness: Estimation and Comparison". In: Aug. 2016, pp. 1–26. ISBN: 9781118445112. DOI: 10.1002/9781118445112.stat03432.pub2.