AADT Prediction Model using PyTorch

This notebook demonstrates how to use PyTorch to predict Annual Average Daily Traffic (AADT) using winter-related features.

```
In [22]:
         import pandas as pd
          import torch
          import torch.nn as nn
          import torch.optim as optim
          from sklearn.model selection import train test split
          from sklearn.preprocessing import StandardScaler
          import matplotlib.pyplot as plt
          import statsmodels.api as sm
          import seaborn as sns
          # 1. Load dataset
          use_cols = ["AADT", "snow_depth", "SpeedLimit", "SHAPE_Leng"]
          df = pd.read excel("AADT with snow.xlsx", usecols=use cols)
          df = df.dropna()
In [24]: # Step 1: Define snowfall category (0-5, 5-10, ..., 30-35 inches)
          def snow category(inches):
              if inches < 0: return "baseline"</pre>
              elif inches <= 5: return "CC1"</pre>
              elif inches <= 10: return "CC2"</pre>
              elif inches <= 15: return "CC3"</pre>
              elif inches <= 20: return "CC4"</pre>
              elif inches <= 25: return "CC5"</pre>
              elif inches <= 30: return "CC6"</pre>
              else: return "CC7"
          # Assign snow categories
          df["SnowCat"] = df["snow_depth"].apply(snow_category)
          # Create dummy variables (CC1—CC7)
          dummies = pd.get dummies(df["SnowCat"])
```

```
# Replace 'baseline' with Speed_Limit in the design matrix
X = pd.concat([dummies.drop(columns=["baseline"], errors='ignore').astype(float), df[["SpeedLimit", "SHAPE]
X = sm.add constant(X)
y = df["AADT"].astype(float)
# Fit OLS regression
model = sm.OLS(y, X).fit()
print(model.summary())
# // Visualize coefficients
plt.figure(figsize=(10, 6))
sns.barplot(x=model.params.index[1:], y=model.params.values[1:])
plt.axhline(0, color='gray', linestyle='--')
plt.ylabel("Effect on AADT")
plt.title("Estimated Impact of Snowfall Categories on AADT")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```

OLS Regression Results

Dep. Variable:		AADT		R-sq	R-squared:		0.104
Model:		0LS		Adj.	Adj. R-squared:		0.104
Method:		Least Squares		F-statistic:			255.3
Date: M		lon, 05 May 2025		<pre>Prob (F-statistic):</pre>			0.00
Time:		01:24:32		Log-Likelihood:			-1.9746e+05
No. Observations:		19740		AIC:			3.949e+05
Df Residuals:		19730		BIC:			3.950e+05
Df Model:		9					
Covariance Type:		nonro	bust				
	coef	std err		t	P> t	[0.025	0.975]
const	-3.497e+04	995.210	-35	5.137	0.000	-3.69e+04	-3.3e+04
CC1	-889.4267	492.127	-2	1.807	0.071	-1854.037	75.183
CC2	-3024.0298	505.265	-[5.985	0.000	-4014.392	-2033.668
CC3	-2740.9609	537.720	-5	5.097	0.000	-3794.938	-1686.984
CC4	-2884.1054	623.050	-4	4.629	0.000	-4105.336	-1662.875
CC5	-3153.8856	1052.245	-2	2.997	0.003	-5216.375	-1091.396
CC6	-3186.9728	1265.871	-2	2.518	0.012	-5668.186	-705.759
CC7	-3348.2282		-2	1.071	0.284	-9476.337	2779.881
SpeedLimit				5.049	0.000	678.919	740.686
SHAPE_Leng	-0.1078	0.011	_ <u>(</u>	9.555	0.000	-0.130	-0.086
Omnibus:		======================================		Durh	======================================		1.187
Prob(Omnibus):		0.000		Jarque-Bera (JB):		2280616.626	
Skew:		5.518			Prob(JB):		0.00
Kurtosis:			488		. No.		4.20e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.2e+05. This might indicate that there are strong multicollinearity or other numerical problems.


```
In [26]: # Select feature matrix and label
    torch_X = X.drop(columns="const").values # drop intercept
    scaler_X = StandardScaler()
    scaler_y = StandardScaler()
    X_scaled = scaler_X.fit_transform(torch_X)
    y_scaled = scaler_y.fit_transform(y.values.reshape(-1, 1))

X_tensor = torch.tensor(X_scaled, dtype=torch.float32)
    y_tensor = torch.tensor(y_scaled, dtype=torch.float32)
# 5. Train/test split
```

```
X_train, X_test, y_train, y_test = train_test_split(X_tensor, y_tensor, test_size=0.2, random_state=42)
# 6. Define model
class AADTModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(X_tensor.shape[1], 64),
            nn.ReLU(),
            nn.Linear(64, 32),
            nn.ReLU(),
            nn.Linear(32, 1)
    def forward(self, x):
        return self.net(x)
model = AADTModel()
criterion = nn.SmoothL1Loss() # Huber Loss
optimizer = optim.Adam(model.parameters(), lr=0.01)
# === Training ===
loss values = []
for epoch in range(100):
    model.train()
    optimizer.zero grad()
    outputs = model(X train)
    loss = criterion(outputs, y_train)
    loss.backward()
    optimizer.step()
    loss_values.append(loss.item())
    if (epoch + 1) % 10 == 0:
        print(f"Epoch {epoch+1}/100, Loss: {loss.item():.4f}")
# Plot loss curve
plt.figure()
plt.plot(loss_values)
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.title("Training Loss Curve")
plt.grid(True)
plt.show()
```

```
# Final test evaluation
 model.eval()
 with torch.no_grad():
     y_pred_test = model(X_test)
     test_loss = criterion(y_pred_test, y_test)
     print(f"Final Test Loss: {test_loss.item():.4f}")
Epoch 10/100, Loss: 0.2084
Epoch 20/100, Loss: 0.2055
Epoch 30/100, Loss: 0.2012
Epoch 40/100, Loss: 0.1951
Epoch 50/100, Loss: 0.1931
Epoch 60/100, Loss: 0.1925
Epoch 70/100, Loss: 0.1920
Epoch 80/100, Loss: 0.1917
Epoch 90/100, Loss: 0.1915
Epoch 100/100, Loss: 0.1914
```


Final Test Loss: 0.2116

In []: