

AMERICAN INTERNATIONAL UNIVERSITY-BANGLADESH (AIUB) FACULTY OF SCIENCE & TECHNOLOGY DEPARTMENT OF PHYSICS PHYSICS 1 LAB

Spring 2021-2022

Section: B19, Group: 03

LAB REPORT ON

(a) Study of Ohm's law using unknown resistances.

(b) Determination of the equivalent resistances for series and parallel combinations of resistors.

Supervised By

Md. Saiful Islam

Submitted By

Name	ID	Contribution
1. Sha Sultan Sowhan	22-47014-1	
2. Mahmuda Khatun	22-47016-1	
3. Farjana Yesmin Opi	22-47018-1	Dhongi meye kaj korena ekdom
4. Md. Abu Towsif	22-47019-1	

Date of Submission: March 31, 2022

TABLE OF CONTENTS

TOPICS	Page no.
I. Title Page	1
II. Table of Content	2
1. Theory	3
2. Apparatus	4
3. Procedure	4
4. Experimental Data	5,6
5. Analysis and Calculation	7,8
6. Result	9
7. Discussion	9
8. References	9

1. Theory

Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across those two points. Introducing the constant of proportionality, the resistance, one arrives at the usual mathematical equation that describes this relationship:

$$V = IR$$

where I is the current and V is the potential difference across the resistance R

Figure 5.1: (a) Simple circuit to determine unknown resistance, R_X by using Ohm's law, ammeter (A) and voltmeter (V) are used to measure the current and potential drop in the circuit, variable resistor, R_h is used to change the current flow in the circuit (b) Slope of the V vs I graph gives the value of R.

When N number of resistors are connected in series and parallel connections their equivalent resistances R_S and R_D are calculated by the following two equations:

$$R_s = R_1 + R_2 + \cdots + R_N$$

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

Figure 5.2: Series and parallel connections are shown for two resistors R₁ and R₂ in (a) and (b), respectively

2. Apparatus

- 1.Power Supply
- 2. Variable resistor
- 3.Ammeter
- 4. Voltmeter
- 5. Unknown resistors
- 6.Connecting wires

3. Procedure

- 1. First of all, we constructed above with 2 unknown resistances ($R_1 \& R_2$).
- 2.By choosing R_h current not more than 1 A, we varied R_h to select 06 different currents through the circuit as measured by the ammeter A.
- 3. Then we measured the corresponding potential differences (V) in the voltmeter.

4. Experimental Data

Table 1: Voltage current records for $R_{\mbox{\scriptsize 1}}$ and $R_{\mbox{\scriptsize 2}}$

Resistors	Current	Voltage
R_1	I	V
	(A)	(V)
	0.05	0.1546
	0.10	0.3109
	0.15	0.470
	0.20	0.608
	0.25	0.772
	0.30	0.922
R_2	0.05	0.0478
	0.10	0.0967
	0.15	0.1429
	0.20	0.1923
	0.25	0.237
	0.30	0.2916

Table 2: Voltage current records for series and parallel connestions

Combination of R ₁ & R ₂	Current	Voltage
	I	V
	(A)	(v)
	0.05	0.2116
Series Combination	0.10	0.404
	0.15	0.613
	0.20	0.817
	0.25	0.999
	0.30	1.239
Parallel Combination	0.05	0.0365
	0.10	0.0733
	0.15	0.11
	0.20	0.1467
	0.25	0.1813
	0.30	0.2148

5. Analysis and Calculation

Calculating the values of R_s and R_p :

$$R_s = R_1 + R_2 = (3.0619 + 0.9653) \Omega$$

$$R_s \, = 4.0272 \; \Omega$$

$$\frac{1}{\text{Rp}} = \frac{1}{\text{R1}} + \frac{1}{\text{R2}} = (\frac{1}{3.0619} + \frac{1}{0.9653}) = 1.3625 \ \Omega$$

$$R_p = \frac{1}{1.3625} = 0.7339 \ \Omega$$

6. Result

Resistances fr	rom the graphs		Comments
Resistors	Values in Ohms	Calculated Values fo R _s	We got $R_s = 4.072 \Omega$ and $R_p = 0.7155 \Omega$ from the experiment.
R_1	3.0619	and R _p in ohms	Hand calculated values $R_s = 4.072$
R_1	0.9653		Ω and $R_p=0.7399~\Omega$. So we can
R _s	4.072	4.0272	say that the experiment is varified
R_p	0.7155	0.7339	

7. Discussion

- 1.We got our values of R_s and R_p very close. But if you have taken more reading then our values would have more accurate.
- 2.We were careful about making the graphs.
- 3. If there is a constant resistance in the circuit, the current is directly proportional to the voltage and will increase as the voltage increases.
- 4. We took every reading carefully as well as every calculation.

8. References

Fundamental of Physics (10th Edition): Ohm's Law (Chapter 26, page 756-759)