Handout 1

Ian Chen

January 18, 2024

1 Problem 1

Theorem 1. Prove that for any tree, the number of edges is one less than the number of nodes, i.e., $n - m = 1$.
<i>Proof.</i> Default tree: 1 node, 0 edges. Adding a node requires adding an edge, so the number of edges always equals the number of nodes minus 1. \Box
2 Problem 2
Theorem 2. Prove that such an algorithm cannot possibly exist.
<i>Proof.</i> Assume there is, then we can recursively apply it and get smaller files. $\hfill\Box$

3 Problem 3

Theorem 3. Prove that a bishop placed on that square can go to any black colored square on the chessboard.

Proof. Bishop can move diagonally, so it can move to any black square, which are placed in diagonal patterns. \Box

4 Problem 4

Theorem 4. Prove that this new board cannot be tiled with dominoes that is, any attempt to cover the chessboard with dominoes must always have either an uncovered square or a domino hanging off the edge.

Proof. Removed 2 black squares, and since dominoes cover 1 black and 1 white square, it is impossible. \Box