

日本国特許庁 JAPAN PATENT OFFICE

13.06.03

REC'D 0 1 AUG 2003

WIDD POT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 6月14日

出願番号 Application Number: 特願2002-174304

[ST. 10/C]:

111/11

[JP2002-174304]

出 願 人 Applicant(s):

中国電力株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

CERTIFIED COPY OF PRIORITY DOCUMENT

特許庁長官 Commissioner, Japan Patent Office 2003年 7月11日

【書類名】

特許願

【整理番号】

L042002001

【あて先】

特許庁長官殿

【国際特許分類】

B01D 53/94

【発明者】

【住所又は居所】 広島県広島市中区小町4番33号 中国電力株式会社内

【氏名】

白倉 茂生

【発明者】

【住所又は居所】

広島県広島市中区小町4番33号 中国電力株式会社内

【氏名】

島田 裕

【発明者】

【住所又は居所】 広島県広島市中区小町4番33号 中国電力株式会社内

【氏名】

岡 洋祐

【特許出願人】

【識別番号】 000211307

【氏名又は名称】 中国電力株式会社

【代理人】

【識別番号】

100101236

【弁理士】

【氏名又は名称】 栗原 浩之

【手数料の表示】

【予納台帳番号】 042309

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 脱硝装置の脱硝触媒管理装置及び脱硝触媒管理方法 【特許請求の範囲】

【請求項1】 排煙脱硝装置の複数層の脱硝触媒の管理装置であって、各脱硝触媒の入口側及び出口側の NO_x 濃度を測定する NO_x 測定手段と、同様に各脱硝触媒の入口側及び出口側の NH_3 濃度を測定する NH_3 測定手段と、入口モル比=入口 NH_3 /入口 NO_x を考慮して脱硝率 η を測定する脱硝率測定手段とを具備することを特徴とする脱硝装置の脱硝触媒管理装置。

【請求項2】 請求項1において、前記脱硝率ηが、NH3濃度に基づいて 測定されることを特徴とする脱硝装置の脱硝触媒管理装置。

【請求項3】 請求項2において、前記脱硝率ηが、下記式に従って測定されることを特徴とする脱硝装置の脱硝触媒管理装置。

【数1】

【請求項4】 請求項1~3の何れかにおいて、前記NO_x測定手段及び前記NH₃測定手段の測定結果を前記脱硝率測定手段へ送信する送信手段を具備し、前記脱硝率測定手段は、複数の排煙脱硝装置の各脱硝触媒の脱硝率 η を測定することを特徴とする脱硝装置の脱硝触媒管理装置。

【請求項5】 排煙脱硝装置の複数層の脱硝触媒の管理方法であって、各脱硝触媒の入口側及び出口側の NO_x 濃度及び NH_3 濃度を測定すると共に、入口モル比=入口 NH_3 /入口 NO_x を考慮して脱硝率 η を測定し、該脱硝率 η に基づいて各脱硝触媒の性能評価を行うことを特徴とする脱硝装置の脱硝触媒管理方法。

【請求項6】 請求項5において、前記脱硝率ηを、NH3濃度に基づいて 測定することを特徴とする脱硝装置の脱硝触媒管理方法。

【請求項7】 請求項6において、前記脱硝率ηを、下記式に従って測定することを特徴とする脱硝装置の脱硝触媒管理方法。

【数2】

 $\eta = \frac{(\text{入口NH}_3 - \text{出口NH}_3)}{(\text{入口NH}_3 - \text{出口NH}_3 + \text{出口NO}_x)} \times 100 \times \frac{評価モル比}{\text{入口モル比}}$

【請求項8】 請求項5~7の何れかにおいて、前記各脱硝触媒の性能評価に基づいて性能が所定の範囲まで低下した脱硝触媒について性能回復処理を行うことを特徴とする脱硝装置の脱硝触媒管理方法。

【請求項9】 請求項8において、前記性能回復処理が、新しいものとの交換、再生処理したものとの交換、排ガスの送通方向が逆転するように逆向きにしたものとの交換、又は劣化部分を除去したものとの交換であることを特徴とする脱硝装置の脱硝触媒管理方法。

【請求項10】 請求項5~9の何れかにおいて、複数の排煙脱硝装置の各 脱硝触媒の脱硝率を測定し、複数の排煙脱硝装置の各脱硝触媒の性能評価を行う ことを特徴とする脱硝装置の脱硝触媒管理方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、火力発電所などの排煙脱硝装置の脱硝触媒の性能管理を行うための 脱硝装置の脱硝触媒管理装置及び脱硝触媒管理方法に関する。

[0002]

【従来の技術】

従来、石油、石炭、ガスなどを燃料とした火力発電所のボイラ及び各種大型ボイラ、その他の廃棄物焼却装置などには排煙脱硝装置が設けられており、排煙脱硝装置には、複数層の脱硝触媒が内蔵されている。

[0003]

脱硝触媒としては、ハニカムタイプや板状タイプが使用されているが、使用を続けていくと、触媒表面及び内部に触媒性能を劣化させる物質(以下、劣化物質という)が付着又は溶解することにより、触媒性能が低下して行くという問題がある。

[0004]

また、従来、脱硝触媒の性能は、入口と出口のNOx濃度及び未反応NH3濃度を測定することにより管理し、全体の性能が低下した場合には、使用年数の古いものから順次、新しいものや再生品と交換する作業が定期的に行われていた。

[0005]

さらに、脱硝触媒は非常に高価であるため、各脱硝触媒毎に性能を評価してできるだけ耐用年数を向上させようという提案がされている(特公平7-47108号公報)。

[0006]

【発明が解決しようとする課題】

しかしながら、上述した触媒管理方法では、各触媒層の NO_x 濃度及び未反応 NH_3 濃度を測定し、 NO_x 濃度から各触媒層の脱硝率及び負担率を算出することにより、性能の劣化したものから順次交換しているが、触媒性能を NO_x 濃度 に基づいて算出した負担率から判断した場合、本当に性能を劣化した触媒層を把握できないという問題があることがわかった。

[0007]

本発明はこのような事情に鑑み、実際に劣化している脱硝触媒を把握すると共に、これに基づいて脱硝触媒を効率的に交換することができる脱硝装置の脱硝触媒管理装置及び脱硝触媒管理方法を提供することを課題とする。

[0008]

【課題を解決するための手段】

前記課題を解決する本発明の第1の態様は、排煙脱硝装置の複数層の脱硝触媒の管理装置であって、各脱硝触媒の入口側及び出口側の NO_x 濃度を測定する NO_x 測定手段と、同様に各脱硝触媒の入口側及び出口側の NH_3 濃度を測定する NH_3 測定手段と、入口モル比=入口 NH_3 /入口 NO_x を考慮して脱硝率 η を 測定する脱硝率測定手段とを具備することを特徴とする脱硝装置の脱硝触媒管理 装置にある。

[0009]

かかる第1の態様では、各脱硝触媒の出入口での NO_x 濃度及び NH_3 濃度を測定して入口モル比を考慮して脱硝率 η を測定するので、モル比が上がるほど向

上する脱硝率を絶対的で且つ確実に評価することができる。

[0010]

本発明の第2の態様は、第1の態様において、前記脱硝率 η が、NH $_3$ 濃度に基づいて測定されることを特徴とする脱硝装置の脱硝触媒管理装置にある。

$\{0011\}$

かかる第2の態様では、各脱硝触媒毎の脱硝率 η をNO $_{\mathbf{x}}$ 濃度に基づいてではなくNH $_3$ 濃度に基づいて測定されるので、さらに安定して触媒性能を把握することができる。

[0012]

本発明の第3の態様は、第2の態様において、前記脱硝率 η が、下記式に従って測定されることを特徴とする脱硝装置の脱硝触媒管理装置にある。

[0013]

【数3】

$$\eta = \frac{(\text{入口NH}_3 - \text{出口NH}_3)}{(\text{入口NH}_3 - \text{出口NH}_3 + \text{出口NO}_x)} \times 100 \times \frac{評価モル比}{\text{入口モル比}}$$

[0014]

かかる第3の態様では、各脱硝触媒毎の脱硝率を安定して且つ確実に把握する ことができ、各脱硝触媒毎の管理を無駄なく且つ効率的に行うことができる。

[0015]

本発明の第4の態様は、第 $1\sim3$ の何れかの態様において、前記 NO_x 測定手段及び前記 NH_3 測定手段の測定結果を前記脱硝率測定手段へ送信する送信手段を具備し、前記脱硝率測定手段は、複数の排煙脱硝装置の各脱硝触媒の脱硝率 η を測定することを特徴とする脱硝装置の脱硝触媒管理装置にある。

[0016]

かかる第4の態様では、複数の排煙脱硝装置の脱硝触媒の管理を一括して行う ことができ、脱硝触媒の管理を効率的に行うことができる。

[0017]

本発明の第5の態様は、排煙脱硝装置の複数層の脱硝触媒の管理方法であって、各脱硝触媒の入口側及び出口側のNOx 濃度及びNH3 濃度を測定すると共に

、入口モル比=入口 NH_3 /入口 NO_x を考慮して脱硝率 η を測定し、該脱硝率 η に基づいて各脱硝触媒の性能評価を行うことを特徴とする脱硝装置の脱硝触媒管理方法にある。

[0018]

かかる第5の態様では、各脱硝触媒の出入口での NO_X 濃度及 VNH_3 濃度を測定して入口モル比を考慮して脱硝率 η を測定するので、モル比が上がるほど向上する脱硝率を絶対的で且つ確実に評価することができる。

[0019]

本発明の第6の態様は、第5の態様において、前記脱硝率 η を、NH $_3$ 濃度に基づいて測定することを特徴とする脱硝装置の脱硝触媒管理方法にある。

[0020]

かかる第6の態様では、各脱硝触媒毎の脱硝率 η を NO_x 濃度に基づいてではなく NH_3 濃度に基づいて測定されるので、さらに安定して触媒性能を把握することができる。

[0021]

本発明の第7の態様は、第6の態様において、前記脱硝率ηを、下記式に従って測定することを特徴とする脱硝装置の脱硝触媒管理方法にある。

[0022]

【数4】

[0023]

かかる第7の態様では、各脱硝触媒毎の脱硝率を安定して且つ確実に把握する ことができ、各脱硝触媒毎の管理を無駄なく且つ効率的に行うことができる。

[0024]

本発明の第8の態様は、第5~7の何れかの態様において、前記各脱硝触媒の性能評価に基づいて性能が所定の範囲まで低下した脱硝触媒について性能回復処理を行うことを特徴とする脱硝装置の脱硝触媒管理方法にある。

[0025]

かかる第8の態様では、各脱硝触媒毎の脱硝率を安定して且つ確実に把握し、 その結果に基づいて性能回復処理を行うので、各脱硝触媒を効率よく使用するこ とができる。

[0026]

本発明の第9の態様は、第8の態様において、前記性能回復処理が、新しいものとの交換、再生処理したものとの交換、排ガスの送通方向が逆転するように逆向きにしたものとの交換、又は劣化部分を除去したものとの交換であることを特徴とする脱硝装置の脱硝触媒管理方法にある。

[0027]

かかる第9の態様では、各処理により劣化した脱硝触媒の性能を回復することができる。

[0028]

本発明の第10の態様は、第5~9の何れかの態様において、複数の排煙脱硝 装置の各脱硝触媒の脱硝率を測定し、複数の排煙脱硝装置の各脱硝触媒の性能評 価を行うことを特徴とする脱硝装置の脱硝触媒管理方法にある。

[0029]

かかる第10の態様では、複数の排煙脱硝装置の脱硝触媒の管理を一括して行・ うことができ、脱硝触媒の管理を効率的に行うことができる。

[0030]

【発明の実施の形態】

以下、本発明を一実施形態に基づいて説明する。

[0031]

図1には、一実施形態に係る脱硝触媒管理装置を具備した排煙脱硝装置の概略 構成を示す。なお、この排煙脱硝装置は、火力発電所に設けられたものであるが 、本実施形態の脱硝触媒管理装置はこれに限定されるものではない。

[0032]

同図に示すように、排煙脱硝装置10は、装置本体11の上流側に接続されて 火力発電所のボイラ装置に連通する排気ダクト12と、下流側に接続される処理 ガスダクト13とを具備し、装置本体11内には、複数層、本実施形態では4層

の脱硝触媒14A~14Dが所定の間隔をおいて配置されている。各脱硝触媒1 4A~14Dは、排気ダクト12から導入された排ガスが順次通過するように設 けられており、通過した排ガスと接触して当該排ガス中に含まれる窒素酸化物($\mathrm{NO}_{\mathbf{X}}$)を低減するものである。なお、ボイラ装置に連通する排気ダクト12に は、ボイラ本体からの排ガス量に応じてNH3が注入されるようになっている。

[0033]

ここで、各脱硝触媒14A~14Dの種類、形状等は特に限定されないが、一 般的には、担体としてTiO2、活性成分としてV2O5が用いられ、ハニカム 状又は板状などのタイプがある。

[0034]

本実施形態では、ハニカムタイプを用い、柱状のハニカムタイプ触媒を複数個 並べて組み合わせることにより、各脱硝触媒14A~14Dが構成されている。

[0035]

本実施形態の脱硝触媒管理装置20は、各脱硝触媒14A~14Dの入口側及 び出口側にはガス採取手段15A~15Eが設けられており、ガス採取手段15 $A \sim 15$ E はそれぞれNO x 濃度測定手段 $16A \sim 16$ E と、NH 3 濃度測定手 段17A~17Eとに接続され、これらの測定結果は、各脱硝触媒14A~14 Dの脱硝率及び脱硝負担率を算出する脱硝率測定手段18へ集められるようにな っている。

[0036]

ここで、ガス採取手段15A~15Eは、所望のタイミングで所望の量のサン プリングガスをサンプリング管を介して採取し、採取したサンプリングガスをN Ox 濃度測定手段16A~16E及びNH3濃度測定手段17A~17Eへ供給 するものである。なお、サンプリング管等サンプリングガスと接触する部分は所 望の耐熱性を有すると共にガスに対して不活性な材質を用いる必要がある。なお 、本実施形態では、ガス採取手段15A~15Eは、採取したガスをそれぞれN Ox 濃度測定手段16A~16EとNH3濃度測定手段17A~17Eとに供給 するようになっているが、NO_x濃度測定手段16A~16E及びNH3濃度測 定手段17A~17Eそれぞれに独立してガス採取手段を設けてもよいことはい

うまでもない。

[0037]

ガス採取手段 $15A\sim15E$ によるサンプリングガスの採取時は特に限定されないが、発電所の通常運転時に行い、できればガス量が最大になる定格負荷時に行うのが好ましい。また、ガスサンプリングの間隔は最大6ヶ月程度としても脱硝触媒 $14A\sim14D$ の性能の管理には十分であるが、頻度を上げれば管理精度が向上するので、例えば、 $1\sim2$ ヶ月に1回ぐらいの頻度で行うのが好ましい。また、特に、下流側の触媒層では、 NH_3 濃度が低くなり変動幅が増加するので、管理評価を向上するためには、 NH_3 濃度の測定回数を増大して平均濃度から脱硝率を求めるようにするのが好ましい。

[0038]

NOx 濃度測定手段 $16A\sim16$ E及びNH3 濃度測定手段 $17A\sim17$ Eは、それぞれサンプリングガス中のNOx 濃度及びNH3 濃度を測定するものであれば特に限定されない。好ましくは自動測定装置が好ましいが人手を介しての分析手段であってもよい。勿論、サンプリングガスを取得することなく直接、NOx 濃度又はNH3 濃度を測定するようなセンサにより測定するようにしてもよい

[0039]

また、サンプリングガスについて、 NO_x 濃度及び NH_3 濃度を測定する点を 説明したが、必要に応じて、酸素、その他の成分を測定するようにしてもよい。

[0040]

なお、各脱硝触媒 $14A\sim14$ Dの入口側及び出口側のそれぞれの濃度を測定するために別の測定手段を設けたが、 NO_x 濃度測定手段及び NH_3 濃度測定手段をそれぞれ 1 つずつ設けて各脱硝触媒 $14A\sim14$ Dの入口側及び出口側の濃度を順次分析するようにしてもよい。また、この場合、サンプリングも測定に併せて順次サンプリングするようにしてもよい。サンプリング時間にタイムラグが生じるが、運転が安定していれば問題ないからである。但し、サンプリングは同時に行っておき、各サンプリングガスを測定手段へ順次供給して分析するようにするのが好ましい。

また、脱硝率測定手段18は、 NO_x 濃度測定手段 $16A\sim16$ E及 VNH_3 濃度測定手段 $17A\sim17$ Eからの測定結果を取得し、これらの測定結果から各脱硝触媒 $14A\sim14$ Dの脱硝率及V 脱硝負担率を算出するものである。脱硝率の算出方法は、各脱硝触媒 $14A\sim14$ Dの入口モル比=入口 NH_3 /入口 NO_x を考慮して算出するものであれば特に限定されない。

[0042]

このように入口モル比を考慮するのは、 NH_3 は脱硝触媒直前でガス量に比例して注入され、また、 NH_3 が触媒へ吸着することが脱硝反応自体の律速反応であるから、脱硝触媒 14A-14Dの入口側及び出口側のそれぞれの NH_3 濃度を把握して考慮することが脱硝触媒 14A-14Dの性能を管理する上で最も重要となるからである。

[0043]

入口モル比を考慮して算出するのであれば、脱硝率は、 NO_x を基準にして求めても、 NH_3 を基準にして求めてもよいが、 NH_3 を基準にして求めた方がより精度よく脱硝率を管理することができる。

[0044]

ここで、脱硝率を求める手順の例を示す。下記式は NO_X 濃度に基づいた脱硝率 η を求める式である。

[0045]

【数5】

 $\eta = \frac{(\Delta \Pi N O_x - \Pi \Pi N O_x)}{\Delta \Pi N O_x} \times 1 \ O \ O \times \frac{評価モル比}{\Delta \Pi \tau \nu L}$

[0046]

ここで、評価モル比とは、脱硝触媒を評価するために設定するモル比であり、 任意のモル比を設定することができるが、例えば、発電所の運用モル比程度、例 えば、0.8に設定すればよい。

[0047]

かかる式から求められる脱硝率 η は NO_X 濃度に基づいて算出されたものであ

るが、入口モル比を考慮してあるので、実際に即した脱硝率に基づいた触媒評価が可能となる。なお、一般的には、脱硝率は、 NH_3/NO_x が高いほど上昇するので、このようなモル比を考慮して脱硝率を評価しなければ実際に即した評価はできない。

[0048]

また、下記式は NH_3 濃度に基づいた脱硝率 η を求める式である。

[0049]

【数6】

$$\eta = \frac{(\text{入口NH}_3 - \text{出口NH}_3)}{(\text{入口NH}_3 - \text{出口NH}_3 + \text{出口NO}_x)} \times 100 \times \frac{評価モル比}{\text{入口モル比}}$$

[0050]

かかる式から求められる脱硝率 η はNH $_3$ 濃度に基づいて求められるもので、NO $_{\mathbf{x}}$ に基づいた脱硝率より安定した数値が得られるという利点があり、触媒評価をより安定して行うことができるという効果を奏する。

[0051]

本発明では、このように入口モル比を考慮した手法により各脱硝触媒 14A~ 14Dの脱硝率 $_{\eta}$ を求め、これの大小により各触媒の性能を管理する。すなわち、脱硝率が所定値より低下した場合、性能が低下した触媒について性能回復処理を行うようにする。これにより、最も劣化した又は所定値以上劣化した触媒についてのみ性能回復処理を行うので、無駄な回復処理を行うことなく、脱硝触媒を効率よく使用することができる。

[0052]

ここで、性能回復処理とは、一般的には、劣化した触媒を新しいものとの交換すること、又は劣化した触媒を洗浄して再生したものと交換すること、再生処理したものとの交換することである。また、特に、ハニカムタイプの触媒では、未再生処理のものもしくは再生処理したものを排ガスの送通方向を逆転するように逆向きに配置したり、又は劣化部分を除去したものと交換したりすることで、性能の回復を図ることができる。なお、このような処理は、排ガスの送通方向の上流側のみが脱硝反応に大きく関与しているという本出願人の新たな知見に基づく

ものである。

[0053]

なお、上述した実施形態では、1つの脱硝触媒管理装置により、1つの排煙脱硝装置の脱硝触媒を管理するようにしたが、1つの脱硝触媒管理装置で複数の排煙脱硝装置の脱硝触媒を管理するようにしてもよい。すなわち、脱硝率測定手段18が求めた脱硝率のデータを有線又は無線により集中管理システムに送信して管理するようにしてもよいし、NOx濃度測定手段16A~16E及びNH3濃度測定手段17A~17Eの濃度データを集中管理システムへ送信し、これにより脱硝率を求めて集中管理するようにしてもよい。何れにしても、複数の排煙脱硝装置を集中管理することにより、総合的な性能評価を行うことができ、これにより総合的な管理が可能となり、より効率的な性能管理が実現できる。

[0054]

(実施例)

実際の火力発電所の排煙脱硝装置(図1と同様に4層の脱硝触媒を具備する)の入口側及び出口側のNO_x 濃度及びNH₃ 濃度を測定した結果を表1に示す。測定は、第1回目(測定開始)から、約2ヶ月後(第2回目)、約5ヶ月後(第3回目)、約7ヶ月後(第4回目)、約12ヶ月後(第5回目)、約24ヶ月後(第6回目)、約30ヶ月後(第7回目)に行った。

[0055]

また、 NO_x 濃度及び NH_3 濃度の測定結果を使用し、上述したように NO_x 濃度に基づいて脱硝率を求めた結果を表 2 に示す。また、同様にして NH_3 濃度に基づいて脱硝率を求めた結果を表 3 に示す。

[0056]

なお、第2層の脱硝触媒の一部を再生触媒(水を使用して洗浄して再生したもの;性能試験では新品同様の性能を示した)に置換しておき、置換した部分の入口側及び出口側で同様に NO_x 濃度及び NH_3 濃度を測定した結果を併せて表1に示す。また、この NO_x 濃度及び NH_3 濃度の測定結果を使用して NO_x 濃度に基づいて脱硝率を求めた結果、及び NH_3 濃度に基づいて脱硝率を求めた結果をそれぞれ表2及び表3に示す。

[0057]

(比較例)

実施例で求めた入口側及び出口側の NO_x 濃度を用いて下記式に基づいて脱硝率及び負担率を求めた。結果を表 4 に示す。なお、この手法は、特公平 7-4 7 0 8 号公報に開示された方法に基づくものである。

[0058]

【数7】

$$\eta = \frac{(\text{λDNO}_x$-$\text{LLDNO}_x$)}{\text{$\lambda$DNO}_x}$$

[0059]

【表1】

	•							
		* 1 = 1	第2回	第3回	第4回	第5回	第6回	第7回
	測定回数	第1回	2ヶ月	5ヶ月	7ヶ月	12 7	24 ₇	30 ケ
		測定	後	後	後	月後	月後	月後
	第1層目入口	148.7	166.6	208.3	228.1	221.6	166.7	175.9
NO _x 濃度	:第2層目入口	65	72.3	85.7	111.4	94.4	78.8	78.9
	第3層目入口	44.6	46.4	44.7	51.8	48.6	47.6	44.0
(ppm)	第4層目入口	42.4	44.9	41.1	48.8	45.6	45.4	40.2
	第4層目出口	39.4	39.4	36.9	44.2	43.3	42.3	38.0
	第1層目入口	106.3	110.4	151.2	146.8	147.0	117.3	139.1
アンモニア濃度	第2層目入口	23.9	25.9	31.8	36.2	46.1	28.9	37.0
NH ₃	第3層目入口	3	4	2.8	2.9	6.9	4.0	5.0
(ppm)	第4層目入口	3.2	2.2	2.3	1.8	5.4	3.0	2.0
	第4層目出口	0.7	1.8	0.7	0.5	1.7	0.5	0.8
再生層	第2層目入口	66.2	72.1	75.9	92.8	85.9	81.3	75.2
(2層) NO _x 濃度	第2層目出口	46.4	47.7	50.3	. 58.0	55.2	56.9	46.8
アンモニア濃度								
NH ₃	第2層目入口	24.1	27.8	29.5	36.4	39.9	28.4	41.9
(ppm)	第2層目出口	6.8	9.2	9.1	11.2	16.1	10.4	10.5

[0060]

【表2】

			<i>m</i> o □	<i>Α</i> Υ΄ Ω □	ATT 4 [E]	شد ادا ا	第6回	第7回
		第1回	第2回	第3回	第4回	第5回	界 5 凹	界(四
	測定回数		2ヶ月	5ヶ月	7ヶ月	12ヶ月	24ヶ月	30ヶ月
		測定	後	後	後	後	後	後
	第1層目	63.0%	68.3%	64.9%	63.6%	69.2%	59.9%	55.8%
モル比換算	77 I /B	05.070	00.570	04.570	08.070	00.270	00,070	00.0.1
	第2層目	68.3%	80.0%	103.3%	131.8%	79.6%	86.5%	75.5%
0.8	4年9日	F0 70/	20.00/	101 69/	81.5%	34.9%	42.7%	60.2%
NO _x	第3層目	58.7%	30.0%	101.6%	81.5%	34.970	42.170	00.270
	第4層目	75.0%	200.0%	147.6%	201.2%	33.1%	82.7%	90.9%
再生層								
	NO _x	65.7%	70.4%	69.3%	76.5%	61.5%	68.9%	54.3%
第2層目		<u> </u>		L		<u> </u>	<u> </u>	<u>L</u>

[0061]

[0062]

【表3】

			第2回	第3回	第4回	第5回	第6回	第7回
	測定回数		2ヶ月	5ヶ月	7ヶ月	12 ヶ月	24 ヶ月	30 ヶ月
		測定	後	後	後	後	後	後
	第1層目	62.6%	65.1%	64.2%	61.9%	62.3%	60.1%	57.1%
モル比換算	第2層目	69.4%	71.6%	84.9%	96.3%	73.2%	75.1%	71.8%
0.8	第3層目	-5.6%	35.8%	15.7%	31.9%	18.1%	19.6%	49.7%
NH ₃	第4層目	63.2%	16.4%	60.9%	63.6%	53.6%	66.5%_	48.1%
再生層	$\mathrm{NH_3}$	59.6%	58.2%	59.4%	61.8%	51.9%	55.1%	57.7%
第2層目				<u> </u>			L	<u> </u>

[0063]

【表4】

						·		
	測定回数	第1回 第1回 測定回数 測定	第2回	第3回	第4回	第5回	第6回	第7回
			2ヶ月	5ヶ月	7ヶ月	12ヶ月	24 ヶ月	30 ヶ月
			後	後	後	後	後	後
総合脱硝率		73.5%	76.4%	82.3%	80.6%	80.4%	74.6%	78.4%
	第1層目	76.6%	74.1%	71.5%	63.4%	71.3%	70.7%	70.3%
	第2層目	18.7%	20.4%	23.9%	32.4%	25.7%	25.1%	25.3%
負担率	第3層目	2.0%	1,2%	2.1%	1.6%	1.7%	1.7%	2.7%
	第4層目	2.7%	4.3%	2.5%	2.5%	1.2%	2.5%	1.6%
	合 計	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

[0064]

(性能評価)

実施例の結果からすると、一番劣化をしている脱硝触媒は第3層目と推定される。第5回目測定時点での劣化進行具合は、第3層、再生第2層、第4層=第1層、第2層の順番であることがわかる。

[0065]

また、各脱硝触媒についての脱硝率の経時的な変化を観察すると、NH3濃度に基づいて求めた脱硝率の方が、NO $_{\rm X}$ 濃度に基づいて求めた脱硝率より安定していることが明らかである。

[0066]

一方、比較例の結果を評価すると、第1層の負担率が減少し、第2層目の負担率が増加して脱硝装置の性能を維持しているように見える。すなわち、第1層の 劣化が起こっていると結論づけられる。

[0067]

(試験例)

実施例で用いた脱硝触媒のそれぞれについて触媒をサンプリングし、各触媒を 以下に示す性能評価方法により性能評価を行った。

[0068]

触媒は、各触媒層の入口側の部位から、 $50\,\mathrm{mm}\times50\,\mathrm{mm}\times100\,\mathrm{mm}$ (長さ)に切り出し、性能試験装置にセットし、ガス条件を実機設計値にあわせて試験ガスを流し、出口側のNO $_{\mathrm{X}}$ 濃度及びNH $_{3}$ 濃度を測定して脱硝率を測定した。この結果を表 $_{5}$ に示す。

[0069]

この結果は触媒の劣化の状態を示しており、結果は、上述した劣化の評価とほ ほ一致していた。

[0070]

また、この結果より、実施例の脱硝触媒評価は実際の劣化の状態を評価しているが、比較例の評価は実際の性能評価と一致していないことがわかった。

[0071]

【表 5】

触媒層	第1層	第2層	第3層	第4層	第2層(再生)	
脱硝率	78. 5%	80. 2%	69.1%	79.4%	77.7%	
劣化の順番	3	5	1	4	2	

[0072]

【発明の効果】

以上説明したように、本発明によると、各脱硝触媒の入口側及び出口側のNO $_{x}$ 濃度を測定するNO $_{x}$ 測定手段と、同様に各脱硝触媒の入口側及び出口側のNH $_{3}$ 濃度を測定するNH $_{3}$ 測定手段と、入口モル比=入口NH $_{3}$ /入口NO $_{x}$ を考慮して脱硝率 $_{\eta}$ を測定する脱硝率測定手段とを具備する脱硝装置の脱硝触媒管理装置を用いることにより、実際に劣化している脱硝触媒を把握すると共に、これに基づいて脱硝触媒を効率的に交換することができるという効果を奏する。

[0073]

【図面の簡単な説明】

【図1】

一実施形態にかかる脱硝触媒管理装置を具備した排煙脱硝装置の概略構成を示す図である。

【符号の説明】

- 10 排煙脱硝装置
- 11 装置本体
- 12 排気ダクト
- 13 処理ガスダクト
- 1 4 A ~ 1 4 D 脱硝触媒
- 15A~15E ガス採取手段
- 16A~16E NOx 濃度測定手段
- 17A~17E NH3濃度測定手段
- 18 脱硝率測定手段
- 20 脱硝触媒管理装置

【書類名】

図面

図1]

【書類名】

要約書

【要約】

【課題】 実際に劣化している脱硝触媒を把握すると共に、これに基づいて脱硝 触媒を効率的に交換することができる脱硝装置の脱硝触媒管理装置及び脱硝触媒 管理方法を提供する。

【解決手段】 排煙脱硝装置の複数層の脱硝触媒の管理装置であって、各脱硝触媒 $14A\sim14D$ の入口側及び出口側の NO_X 濃度を測定する NO_X 測定手段 $16A\sim16E$ と、同様に各脱硝触媒の入口側及び出口側の NH_3 濃度を測定する NH_3 測定手段 $17A\sim17E$ と、入口モル比=入口 NH_3 /入口 NO_X を考慮して脱硝率 η を測定する脱硝率測定手段 18 とを具備する。

【選択図】

図 1

認定・付加情報

特許出願の番号

特願2002-174304

受付番号

50200868577

書類名

特許願

担当官

第六担当上席

0095

作成日

平成14年 6月17日

<認定情報・付加情報>

【提出日】

平成14年 6月14日

【書類名】

手続補正書

【整理番号】

L042002001

【あて先】

特許庁長官殿

【事件の表示】

【出願番号】

特願2002-174304

【補正をする者】

【識別番号】

000211307

【氏名又は名称】

中国電力株式会社

【代理人】

【識別番号】

100101236

【弁理士】

【氏名又は名称】

栗原 浩之

【手続補正 1】

【補正対象書類名】

特許願

【補正対象項目名】

発明者

【補正方法】

変更

【補正の内容】

【発明者】

【住所又は居所】

広島県広島市中区小町4番33号 中国電力株式会社内

【氏名】

白倉 茂生

【その他】

上記出願にかかる発明者は、「白倉 茂生」1名の記載

とすべきところ、出願人と代理人との連絡上の錯誤によ

り、単なる実験協力者にすぎない「島田 裕」および「

岡 洋祐」をも併せて記載してしまったものであります

手続補足書にて本願の発明者にかかる宣誓書を提出

致しますので、発明者の記載を「白倉 茂生」1名とし

て頂きたく上申致します。

【プルーフの要否】 要

ページ:

特許出願の番号 特願2002-174304

受付番号 50201285210

書類名 手続補正書

担当官 清野 貴明 7650

作成日 平成14年10月11日

<認定情報・付加情報>

【提出日】 平成14年 8月29日

次頁無

特願2002-174304

出 願 人 履 歴 情 報

識別番号

[000211307]

1. 変更年月日 [変更理由] 住 所 1990年 8月27日 新規登録 広島県広島市中区小町4番33号

氏 名 中国電力株式会社