TÀI LIỆU DÀNH CHO ĐỔI TƯỢNG HỌC SINH KHÁ – MỨC 7-8 ĐIỂM

Dạng 1. Xác định phương trình đường thắng

1. <u>Dang 1</u>. Viết phương trình đường thẳng d dạng tham số và dạng chính tắc (nếu có), biết d đi qua điểm $M(x_{\circ}; y_{\circ}; z_{\circ})$ và có vécto chỉ phương $\vec{u}_d = (a_1; a_2; a_3)$.

Phương pháp. Ta có:
$$d: \begin{cases} \bullet & Qua \ M(x_{\circ}; y_{\circ}; z_{\circ}) \\ \bullet & VTCP : \vec{u}_d = (a_1; a_2; a_3) \end{cases}$$

điểm
$$M(x_o; y_o; z_o)$$
 và có vécto chỉ phương $\vec{u}_d = (a_1; a_2; a_3)$.Phương pháp. Ta có: $d: \begin{cases} \bullet & Qua \ M(x_o; y_o; z_o) \\ \bullet & VTCP : \vec{u}_d = (a_1; a_2; a_3) \end{cases}$ Phương trình đường thẳng d dạng tham số $d: \begin{cases} x = x_o + a_1 t \\ y = y_o + a_2 t \\ z = z_o + a_3 t \end{cases}$, $(t \in \mathbb{R})$.

Phương trình đường thẳng d **dạng chính tắc**
$$a_1 : \frac{x - x_{\circ}}{a_1} = \frac{y - y_{\circ}}{a_2} = \frac{z - z_{\circ}}{a_3}, (a_1 a_2 a_3 \neq 0).$$

2. $\underline{\textit{Dang 2}}$. $Vi\acute{e}t$ phương trình tham số và chính tắc (nếu có) của đường thẳng d đi qua A và B.

Phương pháp. Đường thẳng
$$d: \begin{cases} \bullet \text{ Qua } A \text{ (hay } B) \\ \bullet \text{ VTCP} : \vec{u}_d = \overrightarrow{AB} \end{cases}$$
 (dạng 1)

3. <u>Dang 3</u>. Viết phương trình đường thẳng d dạng tham số và chính tắc (nếu có), biết d đi qua điểm M và song song với đường thẳng Δ .

4. Dang 4. Viết phương trình đường thẳng
$$d$$
 dạng tham số và chính tắc (nếu có), biết d đi qua điểm

Wiet phương trình đường tháng
$$d$$
 đạng tham số và chính tác (neu có), biết d đị quố M và vuông góc với mặt phẳng (P) : $ax + by + cz + d = 0$.

Phương pháp. Ta có d :
$$\begin{cases} \bullet & Qua \ M \\ \bullet & VTCP : \vec{u}_d = \vec{n}_{(P)} = (a;b;c) \end{cases}$$
(dạng 1)

5. Dang 5. Viết phương trình tham số và chính tắc của đường thẳng d là giao tuyến của hai mặt phång (P) và (Q) cho truớc.

$$\underline{Phwong\ pháp}.\ Ta\ có\ d: \begin{cases} \bullet \ Qua\ A = (P) \cap (Q) \\ \bullet \ VTCP: \vec{u}_d = [\vec{n}_{(P)}, \vec{n}_{(Q)}] \end{cases} \ \textit{(dang\ 1)}$$

6. Dang 6. Viết phương trình tham số và chính tắc (nếu có) của đường thẳng d đi qua điểm M và vuông góc với hai đường thẳng d_1 , d_2 cho trước.

7. <u>Dang 7.</u> Viết phương trình đường thẳng d qua M và song song với hai mặt phẳng (P), (Q).

Phương pháp. Ta có
$$d: \begin{cases} \bullet & Qua \ M \\ \bullet & VTCP : \vec{u}_d = [\vec{n}_P, \vec{n}_O] \end{cases}$$
 (dạng 1)

8. <u>Dang 8</u>. Viết phương trình đường thẳng d qua M, vuông góc đường d' và song song mặt (P).

Phương pháp. Ta có
$$d: \begin{cases} \bullet & Qua \ M \\ \bullet & VTCP : \vec{u}_d = [\vec{u}_{d'}, \vec{n}_P] \end{cases}$$
 (dạng 1)

NGUYỄN <mark>BẢO</mark> VƯƠNG - 0946798489

Phương pháp.

9. <u>Dang 9</u>. Viết phương trình đường thẳng d nằm trong mặt (P), song song mặt (Q) và qua M.

Phương pháp. Ta có
$$d: \begin{cases} \bullet & Qua \ M \\ \bullet & VTCP : \vec{u}_d = [\vec{n}_P, \vec{n}_Q] \end{cases}$$
 (dạng 1)

10. $\underline{Dang 10}$. Viết phương trình đường thẳng d đi qua điểm A, vuông góc và cắt đường thẳng d'.

Viết phương trình mặt phẳng (P) qua A, vuông góc d'.

Nghĩa là mặt phẳng (P): $\begin{cases} \bullet \text{ Qua } A \\ \bullet \text{ VTPT} : \vec{n}_P = \vec{u}_{d'} \end{cases}$

Tìm $B = d' \cap (P)$. Suy ra đường thẳng d qua A và B (dạng 1)

Luu ý: Trường hợp d' là các trục tọa độ thì d = AB, với B là hình chiếu của A lên trục.

11. <u>Dang 11</u>. Viết phương trình tham số và chính tắc (nếu có) của đường thẳng d đi qua điểm M và cắt đường thẳng d_1 và vuông góc d_2 cho trước.

$$\begin{array}{l} \underline{Phwong\ ph\acute{ap}}.\quad Gi\mathring{a}\ s\mathring{u}\ d\cap d_1=H,\ (H\in d_1,\ H\in d)\\ \Rightarrow H(x_1+a_1t;\ x_2+a_2t;\ x_3+a_2t)\in d_1.\\ Vi\ MH\perp d_2\Rightarrow \overline{MH}.\overline{u_{d_2}}=0\Rightarrow t\Rightarrow H.\\ Suy\ ra\ d\mathring{u}\grave{o}ng\ th\mathring{a}ng\ d: \begin{cases} \bullet\ Qua\ M\\ \bullet\ VTCP:\overrightarrow{u}_d=\overline{MH} \end{cases} \tag{dang\ 1} \end{array}$$

<u>Dang 12.</u> d đi qua điểm $M_0(x_0; y_0; z_0)$ và cắt hai đường thẳng d_1, d_2 :

- *Cách 1*: Gọi $M_1 \in d_1$, $M_2 \in d_2$ Từ điều kiện M_1 , M_2 thẳng hàng ta tìm được M_1 , M_2 . Từ đó suy ra phương trình đường thẳng d.
- Cách 2: Gọi $(P) = (M_0, d_1)$, $(Q) = (M_0, d_2)$. Khi đó $d = (P) \cap (Q)$, do đó, một VTCP của d có thể chọn là $\vec{a} = \lceil \vec{n}_P, \vec{n}_Q \rceil$.

<u>Dang 13.</u> d nằm trong mặt phẳng (P) và cắt cả hai đường thẳng d_1 , d_2 :

Tìm các giao điểm $A = d_1 \cap (P)$, $B = d_2 \cap (P)$. Khi đó d chính là đường thẳng AB.

<u>Dang 14.</u> d song song với Δ và cắt cả hai đường thẳng d_1 , d_2 :

Viết phương trình mặt phẳng (P) chứa Δ và $\mathbf{d_1}$, mặt phẳng (Q) chứa Δ và $\mathbf{d_2}$.

Khi đó $d = (P) \cap (Q)$.

 $\underline{\textit{Dang 15.}}\ d$ là đường vuông góc chung của hai đường thẳng $d_1,\ d_2$ chéo nhau:

 $\bullet \textit{ Cách 1} \text{: Gọi } \mathbf{M} \in \mathbf{d_1}, \ \mathbf{N} \in \mathbf{d_2}. \ \mathrm{Từ \, điều \, kiện} \ \begin{cases} MN \perp d_1 \\ MN \perp d_2 \end{cases}, \text{ ta tìm được } M,N \,. \end{cases}$

Khi đó, d là đường thẳng MN.

- Cách 2:
 - Vì $d \perp d_1$ và $d \perp d_2$ nên một VTCP của d có thể là: $\vec{a} = \left[\vec{a}_{d_1}, \vec{a}_{d_2}\right]$.
 - Lập phương trình mặt phẳng (P) chứa d và d_1 , bằng cách:
 - + Lấy một điểm A trên d_1 .
 - + Một VTPT của (P) có thể là: $\vec{n}_P = [\vec{a}, \vec{a}_{d_1}]$.
 - Tương tự lập phương trình mặt phẳng (Q) chứa d và d_1 .

Khi đó $d = (P) \cap (Q)$.

Dang 16. Viết phương trình đường thẳng d là hình chiếu vuông góc của đường thẳng Δ lên mặt (P).

Phương pháp: Xét vị trí tương đối của đường thẳng Δ và (P).

• Nếu $\Delta \parallel (P)$.

Chọn một điểm M trên Δ .

Tìm H là hình chiếu của M lên (P).

 $\begin{array}{c|c}
M & \Delta \\
\hline
d & H \\
\hline
httpt489/
\end{array}$

Trang 2 Fanpage Nguyễn Bảo Vương 🏲 https://www.facebook.com/tracnghiemto/anth/pt489/

Hình chiếu $d:\begin{cases} \operatorname{Qua} H \\ \operatorname{VTCP}: \vec{u}_d = \vec{u}_{\Delta} \end{cases}$.

• Nếu $\Delta \cap (P) = I$.

Chon một điểm $M \neq I$ trên Δ .

Tìm H là hình chiếu của M lên (P).

Hình chiếu vuông góc của Δ lên (P) là $d \equiv IH$.

Dạng 17. Viết đường thẳng d là đường thẳng đối xứng với đường thẳng Δ qua mặt phẳng (P).

Phương pháp: Xét vi trí tương đối của đường thẳng Δ và (P).

• Nếu $\Delta \parallel (P)$.

Chon một điểm M trên Δ .

Tìm H là hình chiếu của M lên (P).

Tìm M' đối xứng với M qua (P).

Đường thẳng đối xứng $d:\begin{cases} \operatorname{Qua} M' \\ \operatorname{VTCP}: \vec{u}_d = \vec{u}_{\Delta} \end{cases}$.

Chon một điểm M trên Δ .

Tìm H là hình chiếu của M lên (P).

Tìm M' đối xứng với M qua (P).

Đường thẳng đối xứng $d:\begin{cases} \operatorname{Qua} M' \\ \operatorname{VTCP} : \vec{u}_{A} = \overline{IM'} \end{cases}$

Dang 1.1 Xác định phương trình đường thẳng khi biết yếu tố vuông góc

(Mã 101 2018) Trong không gian Oxyz cho điểm A(1,2,3) và đường thẳng Câu 1. $d: \frac{x-3}{2} = \frac{y-1}{1} = \frac{z+7}{-2}$. Đường thẳng đi qua A, vuông góc với d và cắt trục Ox có phương trình

A.
$$\begin{cases} x = -1 + 2t \\ y = -2t \\ z = t \end{cases}$$
 B.
$$\begin{cases} x = 1 + t \\ y = 2 + 2t \\ z = 3 + 3t \end{cases}$$
 C.
$$\begin{cases} x = -1 + 2t \\ y = 2t \\ z = 3t \end{cases}$$
 D.
$$\begin{cases} x = 1 + t \\ y = 2 + 2t \\ z = 3 + 2t \end{cases}$$

B.
$$\begin{cases} x = 1 + t \\ y = 2 + 2t \\ z = 3 + 3t \end{cases}$$

$$\mathbf{C.} \begin{cases} x = -1 + \\ y = 2t \\ z = 3t \end{cases}$$

D.
$$\begin{cases} x = 1 + t \\ y = 2 + 2t \\ z = 3 + 2t \end{cases}$$

Lời giải

Chon C

Goi Δ là đường thẳng cần tìm.

Gọi $M = \Delta \cap Ox$. Suy ra M(a; 0; 0).

$$\overrightarrow{AM} = (a-1;-2;-3).$$

d có VTCP: $\overrightarrow{u}_{d} = (2;1;-2)$.

Vì $\Delta \perp d$ nên $\overrightarrow{AM} \cdot \overrightarrow{u}_d = 0 \Leftrightarrow 2a - 2 - 2 + 6 = 0 \Leftrightarrow a = -1$.

Vậy Δ qua M(-1;0;0) và có VTCP $\overrightarrow{AM} = (-2;-2;-3) = -(2;2;3)$ nên Δ có phương trình:

$$\begin{cases} x = -1 + 2t \\ y = 2t \\ z = 3t \end{cases}$$

Câu 2. (**Mã 102 - 2019**) Trong không gian Oxyz, cho các điểm A(1;0;2), B(1;2;1), C(3;2;0) và D(1;1;3). Đường thẳng đi qua A và vuông góc với mặt phẳng (BCD) có phương trình là

A.
$$\begin{cases} x = 1 - t \\ y = 4t \\ z = 2 + 2t \end{cases}$$
 B.
$$\begin{cases} x = 1 + t \\ y = 4 \\ z = 2 + 2t \end{cases}$$
 C.
$$\begin{cases} x = 2 + t \\ y = 4 + 4t \\ z = 4 + 2t \end{cases}$$
 D.
$$\begin{cases} x = 1 - t \\ y = 2 - 4t \\ z = 2 - 2t \end{cases}$$

Lời giải

Chọn C

Đường thẳng đi qua A và vuông góc với mặt phẳng (BCD) nhận vecto pháp tuyến của (BCD) là vecto chỉ phương

Ta có
$$\overrightarrow{BC} = (2;0;-1), \overrightarrow{BD} = (0;-1;2)$$

$$\Rightarrow \overrightarrow{u_d} = \overrightarrow{n_{BCD}} = \left[\overrightarrow{BC}; \overrightarrow{BD}\right] = (-1;-4;-2)$$

Khi đó ta loại đáp án A và B

Thay điểm A(1;0;2) vào phương trình ở phương án C ta có $\begin{cases} 1=2+t & \text{ } t=-1 \\ 0=4+4t \Leftrightarrow \begin{cases} t=-1 \\ t=-1 \end{cases} \end{cases}$

Suy ra đường thẳng có phương trình tham số ở phương án C đi qua điểm A nên C là phương án đúng

Câu 3. (Đề Tham Khảo 2018) Trong không gian Oxyz, cho hai đường thẳng $d_1: \frac{x-3}{-1} = \frac{y-3}{-2} = \frac{z+2}{1}$;

 $d_2: \frac{x-5}{-3} = \frac{y+1}{2} = \frac{z-2}{1}$ và mặt phẳng (P): x+2y+3z-5=0. Đường thẳng vuông góc với (P),

cắt d_1 và d_2 có phương trình là

A.
$$\frac{x-1}{3} = \frac{y+1}{2} = \frac{z}{1}$$
 B. $\frac{x-2}{1} = \frac{y-3}{2} = \frac{z-1}{3}$

C.
$$\frac{x-3}{1} = \frac{y-3}{2} = \frac{z+2}{3}$$
 D. $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z}{3}$

Lời giải

Chọn D

Phương trình
$$d_1: \begin{cases} x = 3 - t_1 \\ y = 3 - 2t_1 \text{ và } d_2: \begin{cases} x = 5 - 3t_2 \\ y = -1 + 2t_2 \end{cases} \\ z = 2 + t_1 \end{cases}$$

Gọi đường thẳng cần tìm là Δ .

Giả sử đường thẳng Δ cắt đường thẳng d_1 và d_2 lần lượt tại $A\,,\,B\,.$

Gọi
$$A(3-t_1;3-2t_1;-2+t_1)$$
, $B(5-3t_2;-1+2t_2;2+t_2)$.

$$\overrightarrow{AB} = (2-3t_2+t_1; -4+2t_2+2t_1; 4+t_2-t_1).$$

Vector pháp tuyến của (P) là $\vec{n} = (1,2,3)$.

Do
$$\overrightarrow{AB}$$
 và \overrightarrow{n} cùng phương nên $\frac{2-3t_2+t_1}{1} = \frac{-4+2t_2+2t_1}{2} = \frac{4+t_2-t_1}{3}$.

$$\Leftrightarrow \begin{cases} \frac{2-3t_2+t_1}{1} = \frac{-4+2t_2+2t_1}{2} \\ \frac{-4+2t_2+2t_1}{2} = \frac{4+t_2-t_1}{3} \end{cases} \Leftrightarrow \begin{cases} t_1 = 2 \\ t_2 = 1 \end{cases}. \text{ Do d\'o } A(1;-1;0), B(2;-1;3).$$

Phương trình đường thẳng Δ đi qua A(1;-1;0) và có vecto chỉ phương $\vec{n} = (1;2;3)$ là

$$\frac{x-1}{1} = \frac{y+1}{2} = \frac{z}{3}$$
.

101 - 2019) Trong không gian *Oxyz*, cho điểm Câu 4. các A(1;2;0), B(2;0;2), C(2;-1;3), D(1;1;3). Đường thẳng đi qua C và vuông góc với mặt phẳng (ABD) có phương trình là

A.
$$\begin{cases} x = -2 + 4t \\ y = -4 + 3t \\ z = 2 + t \end{cases}$$
 B.
$$\begin{cases} x = 4 + 2t \\ y = 3 - t \\ z = 1 + 3t \end{cases}$$
 C.
$$\begin{cases} x = -2 - 4t \\ y = -2 - 3t \\ z = 2 - t \end{cases}$$
 D.
$$\begin{cases} x = 2 + 4t \\ y = -1 + 3t \\ z = 3 - t \end{cases}$$

B.
$$\begin{cases} x = 4 + 2t \\ y = 3 - t \\ z = 1 + 3t \end{cases}$$

C.
$$\begin{cases} x = -2 - 4t \\ y = -2 - 3t \\ z = 2 - t \end{cases}$$

D.
$$\begin{cases} x = 2 + 4t \\ y = -1 + 3t \\ z = 3 - t \end{cases}$$

Chọn A

$$\overrightarrow{AB} = (1; -2; 2)$$

$$\overrightarrow{AD} = (0; -1; 3)$$

$$\overrightarrow{AB} \wedge \overrightarrow{AD} = (-4; -3; -1)$$

Đường thẳng qua C(2;-1;3) và vuông góc với mặt phẳng (ABD) có phương trình

$$\begin{cases} x = 2 - 4t \\ y = -1 - 3t \\ z = 3 - t \end{cases}$$

Điểm E(-2;-4;2) thuộc đường thẳng trên, suy ra đường thẳng cần tìm trùng với đường thẳng

có phương trình
$$\begin{cases} x = -2 + 4t \\ y = -4 + 3t \\ z = 2 + t \end{cases}$$

Chọn đáp án đúng là đáp án C

(Mã 104 - 2019) Trong không gian Oxyz, cho các điểm A(2;-1;0), B(1;2;1), C(3;-2;0), Câu 5. D(1;1;-3). Đường thẳng đi qua D và vuông góc với mặt phẳng (ABC) có phương trình là:

$$\mathbf{A.} \begin{cases} x = 1 + t \\ y = 1 + t \\ z = -2 - 3t \end{cases}$$

B.
$$\begin{cases} x = 1 + t \\ y = 1 + t \end{cases}$$
$$z = -3 + 2t$$

A.
$$\begin{cases} x = 1 + t \\ y = 1 + t \end{cases}$$

$$z = -2 - 3t$$
B.
$$\begin{cases} x = 1 + t \\ y = 1 + t \end{cases}$$

$$z = -3 + 2t$$
C.
$$\begin{cases} x = t \\ y = t \end{cases}$$

$$z = -1 - 2t$$
D.
$$\begin{cases} x = t \\ y = t \end{cases}$$

$$z = 1 - 2t$$

$$\mathbf{D.} \begin{cases} x = t \\ y = t \\ z = 1 - 2t \end{cases}$$

Chọn C

NGUYĒN BẢO VƯƠNG - 0946798489

Ta có
$$\overrightarrow{AB} = (-1;3;1); \overrightarrow{AC} = (1;-1;0); \overrightarrow{n}_{(ABC)} = [\overrightarrow{AB}, \overrightarrow{AC}] = (1;1;-2).$$

Đường thẳng đi qua D và vuông góc với mặt phẳng (ABC) nên có véc tơ chỉ phương

là
$$\vec{n}_{(ABC)} = (1;1;-2)$$
, phương trình tham số là:
$$\begin{cases} x = 1+t \\ y = 1+t \\ z = -3-2t \end{cases}$$

(Mã 102 2018) Trong không gian Oxyz, cho điểm A(2;1;3) và đường thẳng Câu 6. $d: \frac{x+1}{1} = \frac{y-1}{-2} = \frac{z-2}{2}$. Đường thẳng đi qua A, vuông góc với d và cắt trục Oy có phương

$$\mathbf{A.} \begin{cases} x = 2t \\ y = -3 + 4t \\ z = 3t \end{cases}$$

B.
$$\begin{cases} x = 2 + 2t \\ y = 1 + t \\ z = 3 + 3t \end{cases}$$

A.
$$\begin{cases} x = 2t \\ y = -3 + 4t \\ z = 3t \end{cases}$$
 B.
$$\begin{cases} x = 2 + 2t \\ y = 1 + t \\ z = 3 + 3t \end{cases}$$
 C.
$$\begin{cases} x = 2 + 2t \\ y = 1 + 3t \\ z = 3 + 2t \end{cases}$$
 D.
$$\begin{cases} x = 2t \\ y = -3 + 3t \\ z = 2t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 2t \\ y = -3 + 3t \\ z = 2t \end{cases}$$

Chọn A

Goi đường thẳng cần tìm là Δ

$$d: \frac{x+1}{1} = \frac{y-1}{-2} = \frac{z-2}{2}$$
 có VTCP $\vec{u} = (1; -2; 2)$.

Gọi
$$M(0; m; 0) \in Oy$$
, ta có $\overrightarrow{AM} = (-2; m-1; -3)$

Do
$$\Delta \perp d \iff \overrightarrow{AM}.\overrightarrow{u} = 0 \iff -2 - 2(m-1) - 6 = 0 \iff m = -3$$

Ta có Δ có VTCP
$$\overrightarrow{AM} = (-2; -4; -3)$$
 nên có phương trình
$$\begin{cases} x = 2t \\ y = -3 + 4t \\ z = 3t \end{cases}$$

(Mã 103 - 2019) Trong không gian Oxyz cho A(0;0;2), B(2;1;0), C(1;2;-1) và Câu 7. D(2;0;-2). Đường thẳng đi qua A và vuông góc với (BCD) có phương trình là

$$\mathbf{A.} \begin{cases} x = 3 \\ y = 2 \\ z = -1 + 2t \end{cases}$$

B.
$$\begin{cases} x = 3 + 3t \\ y = 2 + 2t \\ z = 1 - t \end{cases}$$

$$\mathbf{C.} \begin{cases} x = 3t \\ y = 2t \\ z = 2+t \end{cases}$$

A.
$$\begin{cases} x = 3 \\ y = 2 \\ z = -1 + 2t \end{cases}$$
B.
$$\begin{cases} x = 3 + 3t \\ y = 2 + 2t \\ z = 1 - t \end{cases}$$
C.
$$\begin{cases} x = 3t \\ y = 2t \\ z = 2 + t \end{cases}$$
D.
$$\begin{cases} x = 3 + 3t \\ y = -2 + 2t \\ z = 1 - t \end{cases}$$

Chon B

Gọi d là đường thẳng đi qua A và vuông góc với (BCD).

Ta có
$$\overrightarrow{BC} = (-1;1;-1); \overrightarrow{BD} = (0;-1;-2).$$

Mặt phẳng (BCD) có vec tơ pháp tuyến là $\vec{n}_{(BCD)} = \lceil \overrightarrow{BD}, \overrightarrow{BC} \rceil = (3;2;-1)$.

Gọi \vec{u}_d là vec tơ chỉ phương của đường thẳng d .

Vì
$$d \perp (BCD)$$
 nên $\overrightarrow{u_d} = \overrightarrow{n}_{(BCD)} = (3;2;-1)$.

Đáp **A** và **C** có VTCP $\overrightarrow{u_d} = (3;2;-1)$ nên loại **B** và

D.

Ta thấy điểm A(0;0;2) thuộc đáp án C nên loại A.

(Đề Minh Họa 2017) Trong không gian với hệ tọa độ Oxyz cho điểm A(1;0;2) và đường thẳng Câu 8. d có phương trình: $\frac{x-1}{1} = \frac{y}{1} = \frac{z+1}{2}$. Viết phương trình đường thẳng Δ đi qua A, vuông góc và cắt d.

A.
$$\frac{x-1}{2} = \frac{y}{2} = \frac{z-2}{1}$$

A.
$$\frac{x-1}{2} = \frac{y}{2} = \frac{z-2}{1}$$
 B. $\frac{x-1}{1} = \frac{y}{-3} = \frac{z-2}{1}$ **C.** $\frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{1}$ **D.** $\frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{-1}$

D.
$$\frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{-1}$$

Chon D

Cách 1:

Đường thẳng $d: \frac{x-1}{1} = \frac{y}{1} = \frac{z+1}{2}$ có véc tơ chỉ phương $\vec{u} = (1,1,2)$

Gọi (P) là mặt phẳng qua điểm A và vuông góc với đường thẳng d, nên nhận véc tơ chỉ phương của d là vecto pháp tuyến $(P):1(x-1)+y+2(z-2)=0 \Leftrightarrow x+y+2z-5=0$

Gọi B là giao điểm của mặt phẳng (P) và đường thẳng $d \Rightarrow B(1+t;t;-1+2t)$

Vì
$$B \in (P) \Leftrightarrow (1+t)+t+2(-1+2t)-5=0 \Leftrightarrow t=1 \Rightarrow B(2;1;1)$$

Ta có đường thẳng Δ đị qua A và nhân vecto $\overrightarrow{AB} = (1;1;-1)$ là véc tơ chỉ phương có

dạng
$$\Delta$$
: $\frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{-1}$.

Cách 2:

Gọi $d \cap \Delta = B \Rightarrow B(1+t;t;-1+2t)$

 $\overrightarrow{AB} = (t;t;-3+2t)$, Đường thẳng d có VTCP là $\overrightarrow{u_d} = (1;1;2)$

Vì
$$d \perp \Delta$$
 nên $\overrightarrow{AB} \perp \overrightarrow{u_d} \Leftrightarrow \overrightarrow{AB} \overrightarrow{u_d} = 0 \Leftrightarrow t + t + 2(-3 + 2t) = 0 \Leftrightarrow t = 1$

Suy ra $\overrightarrow{AB} = (1,1,-1)$. Ta có đường thẳng Δ đi qua A(1,0,2) và nhận véc to $\overrightarrow{AB} = (1,1,-1)$ là véc tơ chỉ phương có dạng Δ : $\frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{1}$.

(Đề Tham Khảo 2018) Trong không gian Oxyz, cho hai điểm $A(2;2;1), B(-\frac{8}{3};\frac{4}{3};\frac{8}{3})$. Đường Câu 9. thẳng qua tâm đường tròn nội tiếp tam giác OAB và vuông góc với mặt phẳng (OAB) có phương trình là:

A.
$$\frac{x+\frac{2}{9}}{1} = \frac{y-\frac{2}{9}}{-2} = \frac{z+\frac{5}{9}}{2}$$

B.
$$\frac{x+1}{1} = \frac{y-8}{-2} = \frac{z-4}{2}$$

C.
$$\frac{x+\frac{1}{3}}{1} = \frac{y-\frac{5}{3}}{-2} = \frac{z-\frac{11}{6}}{2}$$

D.
$$\frac{x+1}{1} = \frac{y-3}{-2} = \frac{z+1}{2}$$

Lời giải.

Chon D

Ta có: $\left[\overrightarrow{OA}; \overrightarrow{OB}\right] = (4; -8; 8)$

Gọi d là đường thẳng thỏa mãn khi đó d có VTCP $\vec{u} = (1; -2; 2)$

Ta có OA = 3, OB = 4, AB = 5. Gọi I(x; y; z) là tâm đường tròn nội tiếp tam giác OABÁp dung hệ thức $\overrightarrow{OB}.\overrightarrow{IA} + \overrightarrow{OA}.\overrightarrow{IB} + \overrightarrow{AB}.\overrightarrow{IO} = \overrightarrow{0}$

NGUYĒN BAO VƯƠNG - 0946798489

$$\Leftrightarrow 4.(\overrightarrow{OA} - \overrightarrow{OI}) + 3.(\overrightarrow{OB} - \overrightarrow{OI}) + 5.\overrightarrow{IO} = \overrightarrow{0} \Leftrightarrow \overrightarrow{OI} = \frac{1}{12} (4\overrightarrow{OA} + 3\overrightarrow{OB}) \Rightarrow I(0;1;1)$$

Suy ra
$$d:$$

$$\begin{cases} x = t \\ y = 1 - 2t \text{ cho } t = -1 \Rightarrow d \text{ di qua diểm } M(-1;3;-1) \\ z = 1 + 2t \end{cases}$$

Do đó d đi qua M(-1;3;-1) có VTCP $\vec{u}=(1;-2;2)$ nên đường thẳng có phương trình $\frac{x+1}{1} = \frac{y-3}{2} = \frac{z+1}{2}$

Câu 10. (**Mã 103 2018**) Trong không gian Oxyz, cho đường thẳng
$$d: \frac{x+1}{2} = \frac{y}{-1} = \frac{z+2}{2}$$
 và mặt phẳng $(P): x+y-z+1=0$. Đường thẳng nằm trong mặt phẳng (P) đồng thời cắt và vuông góc với d có phương trình là:

$$\mathbf{A.} \begin{cases} x = -1 + \\ y = -4t \\ z = -3t \end{cases}$$

A.
$$\begin{cases} x = -1 + t \\ y = -4t \\ z = -3t \end{cases}$$
 B.
$$\begin{cases} x = 3 + t \\ y = -2 + 4t \\ z = 2 + t \end{cases}$$
 C.
$$\begin{cases} x = 3 + t \\ y = -2 - 4t \\ z = 2 - 3t \end{cases}$$
 D.
$$\begin{cases} x = 3 + 2t \\ y = -2 + 6t \\ z = 2 + t \end{cases}$$

$$\mathbf{C.} \begin{cases} x = 3 + t \\ y = -2 - 4 \\ z = 2 - 3t \end{cases}$$

D.
$$\begin{cases} x = 3 + 2t \\ y = -2 + 6t \\ z = 2 + t \end{cases}$$

$$d: \begin{cases} x = -1 + 2t \\ y = -t \\ z = -2 + 2t \end{cases}$$

Gọi Δ là đường thẳng nằm trong (P) vuông góc với d.

$$\overrightarrow{u_{\Delta}} = \left[\overrightarrow{u_d}; \overrightarrow{n_P}\right] = (-1; 4; 3)$$

Gọi A là giao điểm của d và (P). Tọa độ A là nghiệm của phương trình:

$$(-1+2t)+(-t)-(-2+2t)+1=0 \Leftrightarrow t=2 \Rightarrow A(3;-2;2)$$

Phương trình \triangle qua A(3;-2;2) có vtcp $\overrightarrow{\mathbf{u}_{\triangle}} = (-1;4;3)$ có dạng: $\begin{cases} x = 3+t \\ y = -2-4t \\ z = 2-3t \end{cases}$

Câu 11. (**Mã** 123 2017) Trong không gian
$$Oxyz$$
 cho điểm $M(-1;1;3)$ và hai đường thẳng $\Delta: \frac{x-1}{3} = \frac{y+3}{2} = \frac{z-1}{1}$, $\Delta': \frac{x+1}{1} = \frac{y}{3} = \frac{z}{-2}$. Phương trình nào dưới đây là phương trình đường thẳng đi qua M và vuông góc với Δ và Δ' .

A.
$$\begin{cases} x = -1 - t \\ y = 1 + t \\ z = 1 + 3t \end{cases}$$
 B.
$$\begin{cases} x = -t \\ y = 1 + t \\ z = 3 + t \end{cases}$$
 C.
$$\begin{cases} x = -1 - t \\ y = 1 - t \\ z = 3 + t \end{cases}$$
 D.
$$\begin{cases} x = -1 - t \\ y = 1 + t \\ z = 3 + t \end{cases}$$

$$\mathbf{B.} \begin{cases} x = -t \\ y = 1+t \\ z = 3+t \end{cases}$$

C.
$$\begin{cases} x = -1 - t \\ y = 1 - t \\ z = 3 + t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = -1 - t \\ y = 1 + t \\ z = 3 + t \end{cases}$$

Chon D

- +) VTCP của Δ, Δ' lần lượt là $\vec{u} = (3;2;1)$ và $\vec{v} = (1;3;-2)$; $\lceil \vec{u}, \vec{v} \rceil = (-7;7;7)$
- +) Vì d vuông góc với Δ và Δ' nên $\vec{u}_d = (-1;1;1)$.

+)
$$d$$
 đi qua $M(-1;1;3)$ nên $d:\begin{cases} x=-1-t\\ y=1+t\\ z=3+t \end{cases}$

(Mã 104 2018) Trong không gian Oxyz cho đường thẳng $\Delta : \frac{x}{1} = \frac{y+1}{2} = \frac{z-1}{1}$ và mặt phẳng Câu 12. (P): x-2y-z+3=0. Đường thẳng nằm trong (P) đồng thời cắt và vuông góc với Δ có phương trình là:

A.
$$\begin{cases} x = 1 + 2t \\ y = 1 - t \\ z = 2 \end{cases}$$
 B.
$$\begin{cases} x = -3 \\ y = -t \\ z = 2t \end{cases}$$
 C.
$$\begin{cases} x = 1 + t \\ y = 1 - 2t \\ z = 2 + 3t \end{cases}$$
 D.
$$\begin{cases} x = 1 \\ y = 1 - t \\ z = 2 + 2t \end{cases}$$

$$\mathbf{B.} \begin{cases} x = -3 \\ y = -t \\ z = 2t \end{cases}$$

C.
$$\begin{cases} x = 1 + t \\ y = 1 - 2t \\ z = 2 + 3t \end{cases}$$

D.
$$\begin{cases} x = 1 \\ y = 1 - t \\ z = 2 + 2 \end{cases}$$

Chọn D

Ta có
$$\Delta: \frac{x}{1} = \frac{y+1}{2} = \frac{z-1}{1} \Rightarrow \Delta: \begin{cases} x = t \\ y = -1 + 2t \\ z = 1 + t \end{cases}$$

Gọi
$$M = \Delta \cap (P) \Rightarrow M \in \Delta \Rightarrow M(t; 2t-1; t+1)$$

$$M \in (P) \Rightarrow t - 2(2t - 1) - (t + 1) + 3 = 0 \Leftrightarrow 4 - 4t = 0 \Leftrightarrow t = 1 \Rightarrow M(1;1;2)$$

Véc to pháp tuyến của mặt phẳng (P) là $\vec{n} = (1, -2, -1)$

Véc tơ chỉ phương của đường thẳng Δ là u = (1, 2, 1)

Đường thẳng d nằm trong mặt phẳng (P) đồng thời cắt và vuông góc với Δ

- \Rightarrow Đường thẳng d nhận $\frac{1}{2} \left[\vec{n}, \vec{u} \right] = (0; -1; 2)$ làm véc tơ chỉ phương và $M(1; 1; 2) \in d$
- $\Rightarrow \text{ Phương trình đường thẳng } d: \begin{cases} x = 1 \\ y = 1 t \\ z = 2 + 2 \end{cases}$
- (Mã 123 2017) Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng $d_1:\begin{cases} x=1+3t\\ y=-2+t \end{cases}$, Câu 13.

 $d_2: \frac{x-1}{2} = \frac{y+2}{-1} = \frac{z}{2}$ và mặt phẳng (P): 2x+2y-3z=0. Phương trình nào dưới đây là phương

trình mặt phẳng đi qua giao điểm của d_1 và (P), đồng thời vuông góc với d_2 ?

A.
$$2x - y + 2z + 13 = 0$$
 B. $2x + y + 2z - 22 = 0$

C.
$$2x - y + 2z - 13 = 0$$
 D. $2x - y + 2z + 22 = 0$

Lời giải:

Chọn C

Tọa độ giao điểm của d_1 và (P) là A(4;-1;2)

Mặt phẳng cần tìm đi qua A và nhận $\vec{u}_2(2;-1;2)$ làm VTCP có phương trình 2x - y + 2z - 13 = 0.

NGUYĒN <mark>BẢO</mark> VƯƠNG - 0946798489

(Chuyên Lương Thế Vinh Đồng Nai -2019) Trong không gian với hệ tọa độ Oxyz cho A(1;-1;3) và hai đường thẳng $d_1: \frac{x-4}{1} = \frac{y+2}{4} = \frac{z-1}{-2}, d_2: \frac{x-2}{1} = \frac{y+1}{-1} = \frac{z-1}{1}$. Phương trình đường thẳng qua A, vuông góc với d_1 và cắt d_2 là

A.
$$\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-3}{3}$$
. **B.** $\frac{x-1}{4} = \frac{y+1}{1} = \frac{z-3}{4}$.

C.
$$\frac{x-1}{-1} = \frac{y+1}{2} = \frac{z-3}{3}$$
. $\underline{\mathbf{D}}$. $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{-1}$.

Gọi d là đường thẳng qua A và d cắt d_2 tại K. Khi đó K(2+t;-1-t;1+t)

Ta có
$$\overrightarrow{AK} = (1+t; -t; t-2)$$
.

Đường $AK \perp d_1 \Leftrightarrow \overrightarrow{AK}.\overrightarrow{u_1} = 0$, với $\overrightarrow{u_1} = (1; 4; -2)$ là một vecto chỉ phương của d_1 .

Do đó
$$1+t-4t-2t+4=0 \Leftrightarrow t=1$$
, suy ra $\overrightarrow{AK} = (2; -1; -1)$.

Vậy phương trình đường thẳng $d: \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{-1}$.

(Chuyên Lê Quý Đôn Điện Biên 2019) Trong không gian Oxyz, cho điểm M(1;0;1) và đường Câu 15. thẳng $d: \frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$. Đường thẳng đi qua M, vuông góc với d và cắt Oz có phương trình là

$$\underline{\mathbf{A}} \cdot \begin{cases} x = 1 - 3t \\ y = 0 \\ z = 1 + t \end{cases}$$

$$\mathbf{B.} \begin{cases} x = 1 - 3t \\ y = 0 \\ z = 1 - t \end{cases}.$$

$$\underline{\mathbf{A}} \cdot \begin{cases} x = 1 - 3t \\ y = 0 \\ z = 1 + t \end{cases}$$

$$\mathbf{B} \cdot \begin{cases} x = 1 - 3t \\ y = 0 \\ z = 1 - t \end{cases}$$

$$\mathbf{C} \cdot \begin{cases} x = 1 - 3t \\ y = t \\ z = 1 + t \end{cases}$$

$$\mathbf{D} \cdot \begin{cases} x = 1 + 3t \\ y = 0 \\ z = 1 + t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 1 + 3t \\ y = 0 \\ z = 1 + t \end{cases}$$

Đường thẳng d có một vecto chỉ phương là $\vec{u} = (1;2;3)$.

Gọi Δ là đường thẳng đi qua M, vuông góc với d và cắt Oz.

Gọi
$$N(0;0;t) = \Delta \cap Oz \implies \overrightarrow{MN} = (-1;0;t-1)$$
.

$$\Delta \perp d \Leftrightarrow \overrightarrow{MN}.\overrightarrow{u} = 0 \Leftrightarrow t = \frac{4}{3} \Rightarrow \overrightarrow{MN} = \left(-1;0;\frac{1}{3}\right)$$
. Khi đó \overrightarrow{MN} cùng phương với $\overrightarrow{u_1} = \left(-3;0;1\right)$

Đường thẳng Δ đi qua điểm M(1;0;1) và có một vecto chỉ phương (-3;0;1) nên có phương

(Kinh Môn - Hải Dương 2019) Trong không gian với hệ tọa độ Oxyz cho điểm A(1;-1;3) và Câu 16. hai đường thẳng $d_1: \frac{x-3}{3} = \frac{y+2}{3} = \frac{z-1}{1}$, $d_2: \frac{x-2}{1} = \frac{y+1}{1} = \frac{z-1}{1}$. Phương trình đường thẳng dđi qua A, vuông góc với đường thẳng d_1 và cắt thẳng d_2 .

A.
$$\frac{x-1}{5} = \frac{y+1}{-4} = \frac{z-3}{2}$$
. **B.** $\frac{x-1}{3} = \frac{y+1}{-2} = \frac{z-3}{3}$.

C.
$$\frac{x-1}{6} = \frac{y+1}{-5} = \frac{z-3}{3}$$
. **D**. $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{3}$.

Lời giải

Chon C

Gọi
$$M(2+t;-1-t;1+t) = d \cap d$$
, với $t \in \mathbb{R}$.

Ta có $\overrightarrow{AM} = (1+t; -t; -2+t)$ và $\overrightarrow{u_1} = (3;3; -1)$ là vecto chỉ phương của d_1

Mặt khác
$$\overrightarrow{AM}.\overrightarrow{u_1} = 0$$
 nên $3.(1+t) + 3.(-t) - 1.(-2+t) = 0 \iff t = 5$

$$\Rightarrow \overrightarrow{AM} = (6; -5; 3)$$
 là 1 vecto chỉ phương của d .

Vậy phương trình đường thẳng $d: \frac{x-1}{6} = \frac{y+1}{-5} = \frac{z-3}{3}$.

Câu 17. (Hội 8 trường chuyên 2019) Trong không gian Oxyz, cho điểm M(1;-1;2) và hai đường thẳng

$$d: \begin{cases} x = t \\ y = -1 - 4t, \quad d': \frac{x}{2} = \frac{y - 1}{1} = \frac{z + 2}{-5}. \text{ Phương trình nào dưới đây là phương trình đường thẳng đi} \\ z = 6 + 6t \end{cases}$$

qua M, vuông góc với d và d'?

A.
$$\frac{x-1}{17} = \frac{y+1}{14} = \frac{z-2}{9}$$
. **B.** $\frac{x-1}{14} = \frac{y+1}{17} = \frac{z+2}{9}$.

C.
$$\frac{x-1}{17} = \frac{y+1}{9} = \frac{z-2}{14}$$
. **D.** $\frac{x-1}{14} = \frac{y+1}{17} = \frac{z-2}{9}$.

Lời giải

Chọn D

Đường thẳng d có một vecto chỉ phương $\vec{u} = (1, -4, 6)$

Đường thẳng d' có một vecto chỉ phương $\overrightarrow{u'} = (2;1;-5)$

Gọi Δ là đường thẳng qua M, vuông góc với d và d' nên có một vecto chỉ phương là:

$$\vec{u}_{\Delta} = \left[\vec{u}, \vec{u'}\right] = (14;17;9).$$

Vậy phương trình đường thẳng Δ : $\frac{x-1}{14} = \frac{y+1}{17} = \frac{z-2}{9}$.

Câu 18. Cho hai đường thẳng (d_1) : $\begin{cases} x = 2 + t \\ y = 1 + t \\ z = 1 + t \end{cases}$ và (d_2) : $\frac{x}{1} = \frac{y - 7}{-3} = \frac{z}{-1}$. Đường thẳng (Δ) là đường vuông

góc chung của (d_1) và (d_2) . Phương trình nào sau đâu là phương trình của (Δ)

A.
$$\frac{x-2}{1} = \frac{y-1}{1} = \frac{z+2}{-2}$$
. **B.** $\frac{x-2}{1} = \frac{y-1}{1} = \frac{z-1}{-2}$.

C.
$$\frac{x-1}{1} = \frac{y-4}{1} = \frac{z+1}{-2}$$
. D. $\frac{x-3}{1} = \frac{y+2}{-1} = \frac{z+3}{-2}$.

Lời giải

Chọn A

Lấy điểm
$$M \in (d_1)$$
: $M(2+t_1;1+t_1;1+t_1)$

$$N \in (d_2): N(t_2; 7-3t_2; -t_2)$$

$$\overrightarrow{MN} = (t_2 - t_1 - 2; -3t_2 - t_1 + 6; -t_2 - t_1 - 1)$$

Đường thẳng
$$MN$$
 là đường vuông góc chung $\Leftrightarrow \begin{cases} \overrightarrow{MN}.\overrightarrow{u_1} = 0 \\ \overrightarrow{MN}.\overrightarrow{u_2} = 0 \end{cases} \Leftrightarrow \begin{cases} t_2 + t_1 = 1 \\ 11t_2 + 3t_1 = 19 \end{cases} \Leftrightarrow \begin{cases} t_2 = 2 \\ t_1 = -1 \end{cases}$

Suy ra
$$M(1;0;0), N(2;1;-2)$$
 và $\overrightarrow{MN}(1;1;-2)$

NGUYĒN BĀO VƯƠNG - 0946798489

Phương trình đường thẳng (Δ) đi qua M, N là: $\frac{x-2}{1} = \frac{y-1}{1} = \frac{z+2}{-2}$

Câu 19. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 3x + y + z = 0 và đường thẳng $d: \frac{x-1}{1} = \frac{y}{-2} = \frac{z+3}{2}$. Gọi Δ là đường thẳng nằm trong (P), cắt và vuông góc với d. Phương trình nào sau đây là phương trình tham số của Δ ?

A.
$$\begin{cases} x = -2 + 4 \\ y = 3 - 5t \\ z = 3 - 7t \end{cases}$$

$$\mathbf{\underline{B}} \cdot \begin{cases} x = -3 + 4t \\ y = 5 - 5t \\ z = 4 - 7t \end{cases}$$

A.
$$\begin{cases} x = -2 + 4t \\ y = 3 - 5t \\ z = 3 - 7t \end{cases}$$
B.
$$\begin{cases} x = -3 + 4t \\ y = 5 - 5t \\ z = 4 - 7t \end{cases}$$
C.
$$\begin{cases} x = 1 + 4t \\ y = 1 - 5t \\ z = -4 - 7t \end{cases}$$
D.
$$\begin{cases} x = -3 + 4t \\ y = 7 - 5t \\ z = 2 - 7t \end{cases}$$

D.
$$\begin{cases} x = -3 + 4t \\ y = 7 - 5t \\ z = 2 - 7t \end{cases}$$

Chon B

Do Δ nằm trong nằm trong (P) và vuông góc với d nên Δ có vécto chỉ phương là

$$\overrightarrow{u_{\Delta}} = \left[\overrightarrow{n_{(P)}}, \overrightarrow{u_{d}}\right] = \left(4; -5; -7\right)$$

Gọi $A = \Delta \cap d$ thì $A = (P) \cap d \Rightarrow A(1;0;-3)$

Vậy phương trình tham số của Δ là $\begin{cases} x = 1 + 4t \\ y = 0 - 5t \\ z = -3 - 7t \end{cases}$ $\begin{cases} x = -3 + 4t \\ y = 5 - 5t \\ z = 4 - 7t \end{cases}$

Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;-1;3) và hai đường thẳng: Câu 20.

 $d_1: \frac{x-4}{1} = \frac{y+2}{4} = \frac{z-1}{-2}, d_2: \frac{x-2}{1} = \frac{y+1}{-1} = \frac{z-1}{1}$. Viết phương trình đường thẳng d đi qua A,

vuông góc với đường thẳng d_1 và cắt đường thẳng d_2 .

A.
$$\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{-1}$$
. **B.** $\frac{x-1}{6} = \frac{y+1}{1} = \frac{z-3}{5}$.

B.
$$\frac{x-1}{6} = \frac{y+1}{1} = \frac{z-3}{5}$$

C.
$$\frac{x-1}{6} = \frac{y+1}{-4} = \frac{z-3}{-1}$$
. D. $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-3}{3}$.

D.
$$\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-3}{3}$$
.

Lời giải

Ta có: $\vec{u}_{d_1} = (1;4;-2)$

$$d_2: \frac{x-2}{1} = \frac{y+1}{-1} = \frac{z-1}{1} \text{ nên phương trình tham số của } d_2: \begin{cases} x=2+t \\ y=-1-t \ (t \in \mathbb{R}) \end{cases}$$

Gọi đường thẳng d cắt đường thẳng d_2 tại M(2+t;-1-t;1+t)

Ta có:
$$\overrightarrow{AM} = (1+t; -t; t-2)$$

Đường thẳng d đi qua A;M nên vecto chỉ phương $\vec{u}_d = (1+t;-t;t-2)$

Theo đề bài d vuông góc $d_1 \Rightarrow \vec{u}_d \perp \vec{u}_{d_1} \Leftrightarrow \vec{u}_d \vec{u}_{d_1} = 0 \Leftrightarrow 1.(1+t)+4(-t)-2(t-2)=0 \Leftrightarrow t=1$ $\Rightarrow \vec{u}_d = (2;-1;-1)$

Phương trình đường thẳng d đi qua A(1;-1;3) và có $\vec{u}_d = (2;-1;-1)$ có dạng:

$$\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{-1}$$
.

Trong không gian Oxyz, cho đường thẳng $d: \frac{x}{2} = \frac{y-3}{1} = \frac{z-2}{2}$ và mặt phẳng (P): x-y+2z-6=0. Đường thẳng nằm trong (P) cắt và vuông góc với d có phương trình

A.
$$\frac{x-2}{1} = \frac{y+2}{7} = \frac{z+5}{3}$$
.

B.
$$\frac{x+2}{1} = \frac{y-2}{7} = \frac{z-5}{3}$$
.

C.
$$\frac{x-2}{1} = \frac{y-4}{7} = \frac{z+1}{3}$$
.

D.
$$\frac{x+2}{1} = \frac{y+4}{7} = \frac{z-1}{3}$$
.

$$\overrightarrow{n_P} = (1;-1;2), \ \overrightarrow{u_d} = (2;1;-3), \text{ Goi } I = d \cap (P), \ I \in d \Rightarrow I(2t;3+t;2-3t)$$

$$I \in (P) \Rightarrow 2t - (3+t) + 2(2-3t) - 6 = 0 \Leftrightarrow t = -1 \Rightarrow I(-2;2;5)$$

Goi Δ là đường thẳng cần tìm.

Theo giả thiết
$$\left\{ \overrightarrow{u_{\Delta}} \perp \overrightarrow{u_{d}} \right\} \Rightarrow \overrightarrow{u_{\Delta}} = \left[\overrightarrow{n_{P}}, \overrightarrow{u_{d}} \right] = (1;7;3)$$

Và đường thẳng Δ đi qua điểm I. Vậy Δ : $\frac{x+2}{1} = \frac{y-2}{7} = \frac{z-5}{3}$.

Trong không gian Oxyz, cho mặt phẳng (P): x+2y+3z-7=0 và hai đường thẳng Câu 22. $d_1: \frac{x+3}{2} = \frac{y+2}{-1} = \frac{z+2}{-4}$; $d_2: \frac{x+1}{3} = \frac{y+1}{2} = \frac{z-2}{3}$. Đường thẳng vuông góc mặt phẳng (P) và cắt cả hai đường thẳng $d_1; d_2$ có phương trình là

A.
$$\frac{x+7}{1} = \frac{y}{2} = \frac{z-6}{3}$$

A.
$$\frac{x+7}{1} = \frac{y}{2} = \frac{z-6}{3}$$
 B. $\frac{x+5}{1} = \frac{y+1}{2} = \frac{z-2}{3}$

C.
$$\frac{x+4}{1} = \frac{y+3}{2} = \frac{z+1}{3}$$
 D. $\frac{x+3}{1} = \frac{y+2}{2} = \frac{z+2}{3}$

D.
$$\frac{x+3}{1} = \frac{y+2}{2} = \frac{z+2}{3}$$

Lời giải

Gọi Δ là đường thẳng cần tìm

$$\Delta \cap d_1 = M$$
 nên $M(-3+2t; -2-t; -2-4t)$

$$\Delta \cap d_2 = N$$
 nên $N(-1+3u; -1+2u; 2+3u)$

$$\overrightarrow{MN} = (2+3u-2t;1+2u+t;4+3u+4t)$$

Ta có \overrightarrow{MN} cùng phương với $\overrightarrow{n_{\scriptscriptstyle (P)}}$

Nên
$$\frac{2+3u-2t}{1} = \frac{1+2u+t}{2} = \frac{4+3u+4t}{3}$$
 ta giải hệ phương trình tìm được
$$\begin{cases} u = -2 \\ t = -1 \end{cases}$$

Khi đó tọa độ điểm
$$M(-5;-1;2)$$
 và VTCP $\overline{MN} = (-2;-4-6) = -2(1;2;3)$

Phương trình tham số
$$\Delta$$
 là $\frac{x+5}{1} = \frac{y+1}{2} = \frac{z-2}{3}$

Câu 23. Trong không gian
$$Oxyz$$
, cho hai đường thẳng $d_1: \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{1}$ và $d_2: \begin{cases} x = -1 + t \\ y = -1 \end{cases}$ và mặt $z = -t$

phẳng (P): x+y+z-1=0. Đường thẳng vuông góc với (P) cắt d_1 và d_2 có phương trình là

A.
$$\frac{x+\frac{13}{5}}{1} = \frac{y-\frac{9}{5}}{1} = \frac{z-\frac{4}{5}}{1}$$
.

B.
$$\frac{x-\frac{1}{5}}{1} = \frac{y+\frac{3}{5}}{1} = \frac{z+\frac{2}{5}}{1}$$
.

C.
$$\frac{x-\frac{7}{5}}{1} = \frac{y+1}{1} = \frac{z-\frac{2}{5}}{1}$$
.

D.
$$\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$$
.

Lời giải

Chọn B

Giả sử đường thẳng (d) vuông góc với (P) cắt d_1 và d_2 tai M, N

Ta có:
$$M(1+2a;-1-a;a), N(-1+t;-1;-t), \overrightarrow{NM} = (2a-t+2;-a;a+t).$$

Mặt phẳng (P) có vecto pháp tuyến là n(1;1;1)

Vì MN vuông góc với mặt phẳng (P) nên \overrightarrow{NM} cùng phương $\overrightarrow{n} \Leftrightarrow \frac{2a-t}{1} = \frac{-a}{1} = \frac{a+t}{1}$

$$\Leftrightarrow \begin{cases} a = -\frac{2}{5} \Rightarrow M\left(\frac{1}{5}; -\frac{3}{5}; -\frac{2}{5}\right) \\ t = \frac{4}{5} \end{cases}$$

Đường thẳng (d) qua điểm M nhận \vec{n} làm vec tơ chỉ phương

Phương trình
$$d: \frac{x-\frac{1}{5}}{1} = \frac{y+\frac{3}{5}}{1} = \frac{z+\frac{2}{5}}{1}$$
.

Câu 24. Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng (Δ) đi qua điểm M(0;1;1), vuông

góc với đường thẳng
$$(d_1)$$
:
$$\begin{cases} x = t \\ y = 1 - t (t \in \mathbb{R}) \text{ và cắt đường thẳng } (d_2) : \frac{x}{2} = \frac{y - 1}{1} = \frac{z}{1}. \text{ Phương trình } z = -1 \end{cases}$$

của (Δ) là?

A.
$$\begin{cases} x = 0 \\ y = t \\ z = 1 + t \end{cases}$$
B.
$$\begin{cases} x = 0 \\ y = 1 \\ z = 1 + t \end{cases}$$
C.
$$\begin{cases} x = 0 \\ y = 1 + t \\ z = 1 \end{cases}$$
D.
$$\begin{cases} x = 0 \\ y = 0 \\ z = 1 + t \end{cases}$$

$$\mathbf{\underline{B}.} \begin{cases} x = 0 \\ y = 1 \\ z = 1 + t \end{cases}$$

$$\mathbf{C.} \begin{cases} x = 0 \\ y = 1 + t \\ z = 1 \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 0 \\ y = 0 \\ z = 1 + t \end{cases}$$

Lời giải

Chọn B

Gọi $A(2t';1+t';t') \in (d_2)$ là giao điểm giữa đường thẳng (Δ) và đường thẳng (d_2)

Ta có vecto chỉ phương $\overrightarrow{u_{d_1}} = (1; -1; 0), \overrightarrow{MA} = (2t'; t'; t' - 1)$

Theo đề bài: $\overrightarrow{u_{d_1}}.\overrightarrow{MA} = 0 \Leftrightarrow 2t' - t' = 0 \Leftrightarrow t' = 0$

Suy ra A(0;1;0)

Khi đó vecto chỉ phương của đường thẳng (Δ) là $\overrightarrow{u_{\Delta}} = \overrightarrow{AM} = (0;0;1)$

Phương trình đường thẳng (Δ) qua M(0;1;1) có vecto chỉ phương $\overrightarrow{u_{\Lambda}} = (0;0;1)$ có dạng:

$$\begin{cases} x = 0 \\ y = 1 \\ z = 1 + t \end{cases}$$

Câu 25. Trong không gian với hệ tọa độ Oxyz cho điểm A(1,0,2) và đường thẳng d có phương trình:

 $\frac{x-1}{1} = \frac{y}{1} = \frac{z+1}{2}$. Viết phương trình đường thẳng Δ đi qua A, vuông góc và cắt d.

A.
$$\frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{1}$$

B.
$$\frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{-1}$$

C.
$$\frac{x-1}{2} = \frac{y}{2} = \frac{z-2}{1}$$

A.
$$\frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{1}$$
 B. $\frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{-1}$ **C.** $\frac{x-1}{2} = \frac{y}{2} = \frac{z-2}{1}$ **D.** $\frac{x-1}{1} = \frac{y}{-3} = \frac{z-2}{1}$

Lời giải

Chọn B

Đường thẳng $d: \frac{x-1}{1} = \frac{y}{1} = \frac{z+1}{2}$ có véc tơ chỉ phương $\vec{u} = (1;1;2)$

Gọi (P) là mặt phẳng qua điểm A và vuông góc với đường thẳng d, nên nhận véc tơ chỉ phương của d là vecto pháp tuyến $(P):1(x-1)+y+2(z-2)=0 \Leftrightarrow x+y+2z-5=0$

Gọi B là giao điểm của mặt phẳng (P) và đường thẳng $d \Rightarrow B(1+t;t;-1+2t)$

Vì
$$B \in (P) \Leftrightarrow (1+t)+t+2(-1+2t)-5=0 \Leftrightarrow t=1 \Rightarrow B(2;1;1)$$

Ta có đường thẳng Δ đi qua A và nhận vecto $\overrightarrow{AB} = (1;1;-1)$ là véc tơ chỉ phương có dạng $\Delta : \frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{1}$.

Câu 26. (Chuyên Lê Quý Đôn – Điện Biên 2019) Trong không gian Oxyz, cho điểm M(1;0;1) và đường thẳng $d: \frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$. Đường thẳng đi qua M, vuông góc với d và cắt Oz có phương trình là

$$\underline{\mathbf{A}}. \begin{cases} x = 1 - 3t \\ y = 0 \\ z = 1 + t \end{cases}$$

B.
$$\begin{cases} x = 1 - 3t \\ y = 0 \\ z = 1 - t \end{cases}$$

$$\underline{\mathbf{A}}. \begin{cases} x = 1 - 3t \\ y = 0 \\ z = 1 + t \end{cases} \qquad \mathbf{B}. \begin{cases} x = 1 - 3t \\ y = 0 \\ z = 1 - t \end{cases} \qquad \mathbf{C}. \begin{cases} x = 1 - 3t \\ y = t \\ z = 1 + t \end{cases} \qquad \mathbf{D}. \begin{cases} x = 1 + 3t \\ y = 0 \\ z = 1 + t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 1 + 3t \\ y = 0 \\ z = 1 + t \end{cases}$$

Lời giải

Chon A

Gọi Δ là đường thẳng cần tìm và $N = \Delta \cap Oz$.

Ta có N(0;0;c). Vì Δ qua M,N và $M \notin Oz$ nên $\overrightarrow{MN}(-1;0;c-1)$ là VTCP của Δ . d có 1 VTCP $\vec{u}(1;2;3)$ và $\Delta \perp d$ nên

$$\overrightarrow{MN} \cdot \overrightarrow{u} = 0 \Leftrightarrow -1 + 3(c - 1) = 0 \Leftrightarrow c = \frac{4}{3} \Rightarrow \overrightarrow{MN}(-1; 0; \frac{1}{3}).$$

Chọn $\vec{v}(-3;0;1)$ là 1 VTCP của Δ , phương trình tham số của đường thẳng Δ là

$$\begin{cases} x = 1 - 3t \\ y = 0 \\ z = 1 + t \end{cases}$$

NGUYĒN BAO VƯƠNG - 0946798489

Câu 27. Trong không gian với hệ trục Oxyz, đường vuông góc chung của hai đường thẳng chéo nhau

$$d_1: \frac{x-2}{2} = \frac{y-3}{3} = \frac{z+4}{-5}$$
 và $d_2: \frac{x+1}{3} = \frac{y-4}{-2} = \frac{z-4}{-1}$ có phương trình

A.
$$\frac{x-2}{2} = \frac{y+2}{3} = \frac{z-3}{4}$$
. **B.** $\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{-1}$.

C.
$$\frac{x-2}{2} = \frac{y+2}{2} = \frac{z-3}{2}$$
. $\underline{\mathbf{D}}$. $\frac{x}{1} = \frac{y}{1} = \frac{z-1}{1}$.

Lời giải

Chon D

Goi Δ là đường thẳng cần tìm.

Gọi
$$A = \Delta \cap d_1$$
; $B = \Delta \cap d_2 \Rightarrow A(2 + 2t; 3 + 3t; -4 - 5t), B(-1 + 3t'; 4 - 2t'; 4 - t')$

Ta có:
$$\overrightarrow{AB} = (3t' - 2t - 3; -2t' - 3t + 1; -t' + 5t + 8).$$

Gọi $\overrightarrow{u_{\Delta}}, \overrightarrow{u_{d_1}} = (2;3;-5), \overrightarrow{u_{d_2}} = (3;-2;-1)$ lần lượt là véc tơ chỉ phương của Δ, d_1, d_2 ta có:

$$\left\{ \overrightarrow{u_{\Delta}} \perp \overrightarrow{u_{d_1}} \right\} \cdot \text{Chọn } \overrightarrow{u_{\Delta}} = \left[\overrightarrow{u_{d_1}}, \overrightarrow{u_{d_2}} \right] = \left(-13; -13; -13 \right) = -13\left(1; 1; 1\right) = -13\overrightarrow{u}.$$

Vì \overrightarrow{AB} , \overrightarrow{u} đều là véc tơ chỉ phương của Δ nên ta có:

$$\overrightarrow{AB} = k\overrightarrow{u} \Leftrightarrow \begin{cases} 3t' - 2t - 3 = k \\ -2t' - 3t + 1 = k \Leftrightarrow \\ -t' + 5t + 8 = k \end{cases} \Leftrightarrow \begin{cases} 3t' - 2t - k = 3 \\ -2t' - 3t - k = -1 \Leftrightarrow \\ -t' + 5t - k = -8 \end{cases} \begin{cases} t' = 1 \\ t = -1 \Rightarrow A(0;0;1). \end{cases}$$

$$\Rightarrow \Delta : \frac{x}{1} = \frac{y}{1} = \frac{z-1}{1}$$
.

(Chuyên Nguyễn Huệ- 2019) Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng Câu 28. (P): 2x + y - 2z + 9 = 0 và đường thẳng $d : \frac{x-1}{-1} = \frac{y+3}{2} = \frac{z-3}{1}$. Phương trình tham số của đường thẳng Δ đi qua A(0;-1;4), vuông góc với d và nằm trong (P) là:

$$\mathbf{A.} \ \Delta : \begin{cases} x = 5t \\ y = -1 + t \\ z = 4 + 5t \end{cases}$$

B.
$$\Delta$$
:
$$\begin{cases} x = 2t \\ y = t \\ z = 4 - 2t \end{cases}$$

$$\underline{\mathbf{C}} \cdot \Delta : \begin{cases} x = t \\ y = -1 \\ z = 4 + t \end{cases}$$

$$\mathbf{A.} \ \Delta : \begin{cases} x = 5t \\ y = -1 + t \\ z = 4 + 5t \end{cases} \qquad \mathbf{B.} \ \Delta : \begin{cases} x = 2t \\ y = t \\ z = 4 - 2t \end{cases} \qquad \mathbf{C.} \ \Delta : \begin{cases} x = t \\ y = -1 \\ z = 4 + t \end{cases} \qquad \mathbf{D.} \ \Delta : \begin{cases} x = -t \\ y = -1 + 2t \\ z = 4 + t \end{cases}$$

Lời giải

$$\begin{cases} \Delta \perp d \\ \Delta \subset (P) \end{cases} \Rightarrow \begin{cases} \overrightarrow{u_{\Delta}} \perp \overrightarrow{u_{d}} \\ \overrightarrow{u_{\Delta}} \perp \overrightarrow{n_{(P)}} \end{cases}$$

 $[\overrightarrow{u_d}, \overrightarrow{n_{(P)}}] = (5;0;5)$. Do đó một vecto chỉ phương của đường thẳng Δ là $\overrightarrow{u_\Delta} = (1;0;1)$

$$\Rightarrow \Delta : \begin{cases} x = t \\ y = -1 \\ z = 4 + t \end{cases}$$

Câu 29. (Đại học Hồng Đức -Thanh Hóa 2019) Trong không gian Oxyz, cho mặt phẳng (P): x+2y+z-4=0 và đường thẳng $d: \frac{x+1}{2}=\frac{y}{1}=\frac{z+2}{3}$. Phương trình đường thẳng Δ nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d là

A.
$$\frac{x-1}{5} = \frac{y+1}{-1} = \frac{z-2}{2}$$
.

B.
$$\frac{x+1}{5} = \frac{y+3}{-1} = \frac{z-1}{3}$$
.

C.
$$\frac{x-1}{5} = \frac{y-1}{1} = \frac{z-1}{-3}$$
. $\underline{\mathbf{D}}$. $\frac{x-1}{5} = \frac{y-1}{-1} = \frac{z-1}{-3}$.

Chon D

Gọi
$$M = d \cap \Delta \Rightarrow M \in d$$
: $\frac{x+1}{2} = \frac{y}{1} = \frac{z+2}{3} \Rightarrow M(2t-1;t;3t-2)$.

$$M \in \Delta \subset (P) \Rightarrow M \in (P): x + 2y + z - 4 = 0 \Rightarrow 2t - 1 + 2t + 3t - 2 - 4 = 0 \Rightarrow t = 1 \Rightarrow M(1;1;1).$$

Vì
$$\Delta \perp d$$
 và $\Delta \subset (P) \Rightarrow \Delta$ có vecto chỉ phương $\vec{u} = \lceil \vec{n}; \vec{u}_d \rceil = (5; -1; -3)$.

Vậy phương trình
$$\Delta$$
 là $\Delta: \frac{x-1}{5} = \frac{y-1}{-1} = \frac{z-1}{-3}$.

(Sở Hà Nam - 2019) Trong không gian Oxyz, cho đường thẳng $d: \frac{x+3}{2} = \frac{y+1}{1} = \frac{z}{-1}$ và mặt Câu 30. phẳng (P): x+y-3z-2=0. Gọi d' là đường thẳng nằm trong mặt phẳng (P), cắt và vuông góc với d. Đường thẳng d' có phương trình là

A.
$$\frac{x+1}{-2} = \frac{y}{-5} = \frac{z+1}{1}$$
.

A.
$$\frac{x+1}{-2} = \frac{y}{-5} = \frac{z+1}{1}$$
. **B.** $\frac{x+1}{2} = \frac{y}{5} = \frac{z+1}{1}$. **C.** $\frac{x+1}{-2} = \frac{y}{5} = \frac{z+1}{1}$. **D.** $\frac{x+1}{-2} = \frac{y}{5} = \frac{z+1}{-1}$.

D.
$$\frac{x+1}{-2} = \frac{y}{5} = \frac{z+1}{-1}$$

Lời giải

Chon C

Phương trình tham số của $d:\begin{cases} x=-3+2t\\ y=-1+t \end{cases}$.

Tọa độ giao điểm của d và (P) là nghiệm của hệ:

$$\begin{cases} x = -3 + 2t \\ y = -1 + t \\ z = -t \\ x + y - 3z - 2 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -3 + 2t \\ y = -1 + t \\ z = -t \\ -3 + 2t - 1 + t + 3t - 2 = 0 \end{cases} \Rightarrow \begin{cases} t = 1 \\ x = -1 \\ y = 0 \\ z = -1 \end{cases} \Rightarrow d \cap (P) = M(-1; 0; -1).$$

Vì d' nằm trong mặt phẳng (P), cắt và vuông góc với d nên d' đi qua M và có véc tơ chỉ phương $\vec{u}_{d'} = \vec{n}_P \wedge \vec{u}_d = (2; -5; -1)$ hay d' nhận véc tơ $\vec{v} = (-2; 5; 1)$ làm véc tơ chỉ phương.

Phương trình của $d': \frac{x+1}{2} = \frac{y}{5} = \frac{z+1}{1}$.

NGUYĒN BẢO VƯƠNG - 0946798489

Câu 31. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng $\Delta_1: \frac{x+1}{2} = \frac{y+2}{1} = \frac{z-1}{1}$ và $\Delta_2: \frac{x+2}{-4} = \frac{y-1}{1} = \frac{z+2}{-1}$. Đường thẳng chứa đoạn vuông góc chung của Δ_1 và Δ_2 đi qua điểm nào sau đây?

A. M(0;-2;-5).

- **B.** N(1;-1;-4). **C.** P(2;0;1). **D.** Q(3;1;-4).

Gọi $A\left(-1+2t;-2+t;1+t\right)$ và $B\left(-2-4t';1+t';-2-t'\right)$ là hai điểm lần lượt thuộc Δ_1 và Δ_2 .

$$\overrightarrow{AB} = (-1 - 2t - 4t'; 3 - t + t'; -3 - t - t')$$
. Δ_1 có VTCP $\overrightarrow{u} = (2;1;1); \Delta_2$ có VTCP $\overrightarrow{u'} = (-4;1;-1)$.

$$\begin{split} & \overline{AB} = \left(-1 - 2t - 4t'; 3 - t + t'; -3 - t - t'\right). \ \Delta_1 \text{ c\'o VTCP } \vec{u} = \left(2; 1; 1\right); \ \Delta_2 \text{ c\'o VTCP } \vec{u'} = \left(-4; 1; -1\right). \\ & AB \text{ l\`a đoạn vuông g\'oc chung của } \Delta_1 \text{ v\`a } \Delta_2 \iff \begin{cases} \overrightarrow{AB}. \vec{u} = 0 \\ \overrightarrow{AB}. \vec{u'} = 0 \end{cases} \end{split}$$

$$\Leftrightarrow \begin{cases} 2\left(-1-2t-4t'\right)+\left(3-t+t'\right)+\left(-3-t-t'\right)=0 \\ -4\left(-1-2t-4t'\right)+\left(3-t+t'\right)-\left(-3-t-t'\right)=0 \end{cases} \Leftrightarrow \begin{cases} -6t-8t'=2 \\ 8t+18t'=-10 \end{cases} \Leftrightarrow \begin{cases} t=1 \\ t'=-1 \end{cases}$$

Suy ra A(1;-1;2) và $\overrightarrow{AB} = (1;1;-3)$

Phương trình đường thẳng chứa đoạn vuông góc chung của Δ_1 và Δ_2 là: $\begin{cases} y = -1 + t_1 \\ z = 2 - 3t. \end{cases}$

Chỉ có điểm O(3;1;-4) có tọa độ thỏa mãn phương trình.

Dạng 1.2 Xác định phương trình đường thẳng khi biết yếu tố song song

(Mã 110 2017) Trong không gian với hệ toạ độ Oxyz, cho điểm A(1,-2,3) và hai mặt phẳng Câu 32. (P): x+y+z+1=0, (Q): x-y+z-2=0. Phương trình nào dưới đây là phương trình đường

- **A.** $\begin{cases} x = 1 + t \\ y = -2 \\ z = 3 t \end{cases}$ **B.** $\begin{cases} x = -1 + t \\ y = 2 \\ z = -3 t \end{cases}$ **C.** $\begin{cases} x = 1 + 2t \\ y = -2 \\ z = 3 + 2t \end{cases}$ **D.** $\begin{cases} x = 1 \\ y = -2 \\ z = 3 2t \end{cases}$

Ta có $\begin{cases} \vec{n}_{(P)} = (1;1;1) \\ \vec{n}_{(P)} = (1;-1;1) \end{cases}$ và $\left[\vec{n}_{(P)}, \vec{n}_{(Q)}\right] = (2;0;-2)$. Vì đường thẳng d song song với hai mặt phẳng (P) và (Q), nên d có vécto chỉ phương $\vec{u} = (1;0;-1)$.

Đường thẳng d đi qua A(1;-2;3) nên có phương trình: $\begin{cases} x = 1 + t \\ y = -2 \end{cases}$

(Chuyên Nguyễn Tất Thành Yên Bái 2019) Trong không gian với hệ toạ độ Oxyz, cho điểm Câu 33. M(1;-3;4), đường thẳng d có phương trình: $\frac{x+2}{3} = \frac{y-5}{-5} = \frac{z-2}{-1}$ và mặt phẳng (P): 2x+z-2=0. Viết phương trình đường thẳng Δ qua M vuông góc với d và song song với (P).

A.
$$\Delta : \frac{x-1}{1} = \frac{y+3}{-1} = \frac{z-4}{-2}$$
.

B.
$$\Delta : \frac{x-1}{-1} = \frac{y+3}{-1} = \frac{z-4}{-2}$$
.

$$\underline{\mathbf{C}} \cdot \Delta : \frac{x-1}{1} = \frac{y+3}{1} = \frac{z-4}{-2}.$$

D.
$$\Delta : \frac{x-1}{1} = \frac{y+3}{-1} = \frac{z+4}{2}$$
.

Ta có $\vec{u}_{d} = (3; -5; -1)$ là véc tơ chỉ phương của d.

 $\vec{n}_{(P)} = (2;0;1)$ là véc tơ pháp tuyến của (P).

$$\left[\overrightarrow{u_d}, n_{(p)}\right] = \left(-5; -5; 10\right).$$

Do Δ vuông góc với d và song song với (P) nên $\vec{u} = (1;1;-2)$ là vécto chỉ phương của Δ .

Khi đó, phương trình của \triangle là $\frac{x-1}{1} = \frac{y+3}{1} = \frac{z-4}{2}$.

- **Câu 34.** Trong không gian Oxyz, cho mặt phẳng (P): 2x y + 2z + 3 = 0 và hai đường thẳng $d_1: \frac{x}{3} = \frac{y-1}{1} = \frac{z+1}{1}$; $d_2: \frac{x-2}{1} = \frac{y-1}{2} = \frac{z+3}{1}$. Xét các điểm A, B lần lượt di động trên d_1 và d_2 sao cho AB song song với mặt phẳng (P). Tập hợp trung điểm của đoạn thẳng AB là
 - **<u>A.</u>** Một đường thẳng có vecto chỉ phương $\vec{u} = (-9; 8; -5)$
 - **B.** Một đường thẳng có vecto chỉ phương $\vec{u} = (-5, 9, 8)$
 - C. Một đường thẳng có vecto chỉ phương $\vec{u} = (1, -2, -5)$
 - **D.** Một đường thẳng có vecto chỉ phương $\vec{u} = (1,5,-2)$

Chon A

$$A \in d_1 \Rightarrow A \left(3a; 1-a; -1+a\right) \; ; \; B \in d_2 \Rightarrow B \left(2+b; 1-2b; -3+b\right).$$

$$\overrightarrow{AB} = (2+b-3a; -2b+a; b-2-a) ; \overrightarrow{n}_P = (2; -1; 2).$$

Do
$$AB//(P)$$
 nên $\overrightarrow{AB}.\overrightarrow{n}_P = 0 \Leftrightarrow a = \frac{2}{3}b$.

Tọa độ trung điểm của đoạn thẳng AB là

$$I\left(\frac{3a+2+b}{2}; \frac{2-2b-a}{2}; \frac{-4+a+b}{2}\right)$$
 hay $I\left(1+\frac{3}{2}b; 1-\frac{8}{6}b; -2+\frac{5}{6}b\right)$

Suy ra tập hợp trung điểm của đoạn thẳng AB là một đường thẳng có vecto chỉ phương $\vec{u} = (-9; 8; -5).$

(THPT Lương Văn Can - 2018) Trong không gian Oxyz, cho điểm A(3;2;-4) và mặt phẳng Câu 35. (P): 3x-2y-3z-7=0, đường thẳng $d: \frac{x-2}{3} = \frac{y+4}{-2} = \frac{z-1}{2}$. Phương trình nào sau đây là phương trình đường thẳng Δ đi qua A, song song (P) và cắt đường thẳng d?

$$\underline{\mathbf{A}}. \begin{cases}
x = 3 + 11t \\
y = 2 - 54t \\
z = -4 + 47t
\end{cases}$$

B.
$$\begin{cases} x = 3 + 54t \\ y = 2 + 11t \\ z = -4 - 47t \end{cases}$$

A.
$$\begin{cases} x = 3 + 11t \\ y = 2 - 54t \\ z = -4 + 47t \end{cases}$$
B.
$$\begin{cases} x = 3 + 54t \\ y = 2 + 11t \\ z = -4 - 47t \end{cases}$$
C.
$$\begin{cases} x = 3 + 47t \\ y = 2 + 54t \\ z = -4 + 11t \end{cases}$$
D.
$$\begin{cases} x = 3 - 11t \\ y = 2 - 47t \\ z = -4 + 54t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 3 - 11t \\ y = 2 - 47t \\ z = -4 + 54t \end{cases}$$

Gọi $\overrightarrow{n_{(P)}} = (3; -2; -3)$ là vecto pháp tuyến của mặt phẳng (P).

NGUYĒN BAO VƯƠNG - 0946798489

Đường thẳng d đi qua điểm M(2; -4; 1) và có vecto chỉ phương $\overrightarrow{u_d} = (3; -2; 2)$.

Giả sử $\Delta \cap d = M$ nên M(2+3t; -4-2t; 1+2t) khi đó vecto chỉ phương của đường thẳng Δ là $\overrightarrow{u_{\Lambda}} = \overrightarrow{AM} = (3t-1; -2t-6; 2t+5).$

Ta có
$$\overrightarrow{AM} \perp \overrightarrow{n_{(P)}} \Leftrightarrow \overrightarrow{AM}.\overrightarrow{n_{(P)}} = 0$$
 nên $3(3t-1)-2(-2t-6)-3(2t+5)=0 \Leftrightarrow t=\frac{6}{7}$.

Suy ra
$$\overline{AM} = \left(\frac{11}{7}; -\frac{54}{7}; \frac{47}{7}\right)$$

Chọn vecto chỉ phương của đường thẳng Δ có tọa độ là (11; -54; 47) do đó phương trình đường

thẳng cần tìm là
$$\begin{cases} x = 3 + 11t \\ y = 2 - 54t \\ z = -4 + 47t \end{cases}$$

Trong không gian với hệ toạ độ Oxyz, cho điểm M(1; -3; 4), đường thẳng Câu 36.

> $d: \frac{x+2}{3} = \frac{y-5}{-5} = \frac{z-2}{-1}$ và mặt phẳng (P): 2x+z-2=0. Viết phương trình đường thẳng Δ qua M vuông góc với d và song song với (P).

A.
$$\Delta : \frac{x-1}{1} = \frac{y+3}{-1} = \frac{z-4}{-2}$$
.

B.
$$\Delta : \frac{x-1}{-1} = \frac{y+3}{-1} = \frac{z-4}{-2}$$
.

C.
$$\Delta : \frac{x-1}{1} = \frac{y+3}{1} = \frac{z-4}{-2}$$
.

D.
$$\Delta : \frac{x-1}{1} = \frac{y+3}{-1} = \frac{z+4}{2}$$
.

Lời giải

Chon C

Đường thẳng
$$d: \frac{x+2}{3} = \frac{y-5}{-5} = \frac{z-2}{-1}$$
 có vec tơ chỉ phương $\overrightarrow{u_d} = (3; -5; -1)$

Mặt phẳng (P): 2x+z-2=0 có vec tơ pháp tuyến $\overrightarrow{n_{(P)}}=(2;0;1)$

Đường thẳng Δ vuông góc với d nên vec tơ chỉ phương $\overrightarrow{u_{\Delta}} \perp \overrightarrow{u_{d}}$,

Đường thẳng Δ song song với (P) nên $\overrightarrow{u_{\Delta}} \perp \overrightarrow{n_{(P)}}$

Ta có
$$\vec{u_d} \wedge \vec{n}_{(P)} = (-5, -5, 10).$$

Chọn vec tơ chỉ phương $\overrightarrow{u_{\Delta}} = (1;1;-2)$

Vậy phương trình đường thẳng Δ qua M vuông góc với d và song song với (P) là

$$\frac{x-1}{1} = \frac{y+3}{1} = \frac{z-4}{-2}$$
.

 $\mathbf{C\hat{a}u}$ 37. Trong không gian với hệ toạ độ Oxyz, cho điểm A(1;-2;3) và hai mặt phẳng (P): x+y+z+1=0, (Q): x-y+z-2=0. Phương trình nào dưới đây là phương trình đường thẳng đi qua A, song song với (P) và (Q)?

$$\mathbf{A.} \begin{cases} x = 1 \\ y = -2 \\ z = 3 - 2 \end{cases}$$

B.
$$\begin{cases} x = -1 + t \\ y = 2 \\ z = -3 - t \end{cases}$$

A.
$$\begin{cases} x = 1 \\ y = -2 \\ z = 3 - 2t \end{cases}$$
 B.
$$\begin{cases} x = -1 + t \\ y = 2 \\ z = -3 - t \end{cases}$$
 C.
$$\begin{cases} x = 1 + 2t \\ y = -2 \\ z = 3 + 2t \end{cases}$$
 $\underbrace{\mathbf{D}}_{z = 3 - t}$

$$\mathbf{\underline{D}.} \begin{cases} x = 1 + t \\ y = -2 \\ z = 3 - t \end{cases}$$

Chon D

Ta có
$$\begin{cases} \vec{n}_{(P)} = (1;1;1) \\ \vec{n}_{(Q)} = (1;-1;1) \end{cases}$$
 và $\left[\vec{n}_{(P)}, \vec{n}_{(Q)} \right] = (2;0;-2) = 2(1;0;-1)$. Vì đường thẳng d song song với

hai mặt phẳng, nên nhận véc tơ (1;0;-1) làm véc tơ chỉ phương.

Câu 38. Trong không gian O_{XYZ} , cho điểm A(2;0;-1) và mặt phẳng (P):x+y-1=0. Đường thẳng đi qua A đồng thời song song với (P) và mặt phẳng (Oxy) có phương trình là

A.
$$\begin{cases} x = 3 + t \\ y = 2t \\ z = 1 - t \end{cases}$$
B.
$$\begin{cases} x = 2 + t \\ y = -t \\ z = -1 \end{cases}$$
C.
$$\begin{cases} x = 1 + 2t \\ y = -1 \\ z = -t \end{cases}$$
D.
$$\begin{cases} x = 3 + t \\ y = 1 + 2t \\ z = -t \end{cases}$$

$$\mathbf{\underline{B}} \cdot \begin{cases} x = 2 + t \\ y = -t \\ z = -1 \end{cases}$$

$$\mathbf{C.} \begin{cases} x = 1 + 2t \\ y = -1 \\ z = -t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 3 + t \\ y = 1 + 2t \\ z = -t \end{cases}$$

Chon B

Ta có:
$$\vec{n}_{(Oxy)} = (1;1;0), \ \vec{n}_{(Oxy)} = (0;0;1).$$

Gọi d là đường thẳng đi qua A đồng thời song song với (P) và mặt phẳng (Oxy). Khi đó:

$$\begin{cases} \vec{u}_d \perp \vec{n}_{(P)} \\ \vec{u}_d \perp \vec{n}_{(Oxy)} \end{cases} \Rightarrow \vec{u}_d = \begin{bmatrix} \vec{n}_{(P)}, \vec{n}_{(Oxy)} \end{bmatrix} = (1; -1; 0). \text{ Vây } d: \begin{cases} x = 2 + t \\ y = -t \end{cases}.$$

$$z = -1$$

(Chuyên Lê Quý Đôn Quảng Tri 2019) Trong không gian toa đô Oxyz, viết phương trình chính Câu 39. tắc của đường thẳng đi qua điểm A(3;-1;5) và cùng song với hai mặt phẳng (P): x-y+z-4=0, (Q): 2x+y+z+4=0.

A.
$$d: \frac{x-3}{2} = \frac{y+1}{1} = \frac{z-5}{-3}$$
. $\underline{\mathbf{B}} \cdot \frac{x-3}{2} = \frac{y+1}{-1} = \frac{z-5}{-3}$.

B.
$$\frac{x-3}{2} = \frac{y+1}{-1} = \frac{z-5}{-3}$$
.

C.
$$\frac{x+3}{2} = \frac{y-1}{1} = \frac{z+5}{-3}$$
. D. $\frac{x+3}{2} = \frac{y-1}{-1} = \frac{z+5}{-3}$.

Chon B

Mặt phẳng (P) có một vecto pháp tuyến là $\overrightarrow{n_P} = (1;-1;1)$; mặt phẳng (Q) có một vecto pháp tuyến là $\overrightarrow{n_o} = (2;1;1)$.

Nhận thấy $A \notin (P)$ và $A \notin (Q)$.

Gọi đường thẳng cần lập là d và \vec{u} là một vecto chỉ phương của nó.

Ta chọn
$$\vec{u} = \left[\overrightarrow{n_Q}, \overrightarrow{n_P}\right] = (2; -1; -3)$$
.

Mặt khác, d qua A(3;-1;5) nên có phương trình chính tắc là $\frac{x-3}{2} = \frac{y+1}{-1} = \frac{z-5}{-3}$.

(Chu Văn An - Hà Nội - 2019) Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng Câu 40. $(\alpha): x-2y+z-1=0$, $(\beta): 2x+y-z=0$ và điểm A(1;2;-1). Đường thẳng Δ đi qua điểm A và song song với cả hai mặt phẳng (α) , (β) có phương trình là

A.
$$\frac{x-1}{-2} = \frac{y-2}{4} = \frac{z+1}{-2}$$
. **B.** $\frac{x-1}{1} = \frac{y-2}{3} = \frac{z+1}{5}$.

NGUYĒN BĀO VƯƠNG - 0946798489

C.
$$\frac{x-1}{1} = \frac{y-2}{-2} = \frac{z+1}{-1}$$
. D. $\frac{x}{1} = \frac{y+2}{2} = \frac{z-3}{1}$.

Lời giải

Chọn B

 $\operatorname{mp}(\alpha)$ có véc tơ pháp tuyến là $\overrightarrow{n_1} = (1; -2; 1)$, $\operatorname{mp}(\beta)$ có véc tơ pháp tuyến là $\overrightarrow{n_2} = (2; 1; -1)$. Đường thẳng Δ có véc tơ chỉ phương là $\overrightarrow{u} = [\overrightarrow{n_1}; \overrightarrow{n_2}] = (1; 3; 5)$.

Phương trình của đường thẳng $\Delta : \frac{x-1}{1} = \frac{y-2}{3} = \frac{z+1}{5}$.

Câu 41. Trong không gian Oxyz, cho ba điểm A(1;0;0), B(0;2;0), C(0;0;3). Đường thẳng đi qua tâm đường tròn ngoại tiếp tam giác ABC, song song với mặt phẳng (Oxy) và vuông góc với AB.

$$\mathbf{A.} \begin{cases} x = \frac{13}{98} - t \\ y = -\frac{40}{49} + 2t \end{cases} \qquad \mathbf{B.} \begin{cases} x = \frac{13}{98} - 2t \\ y = \frac{40}{49} + t \end{cases} \qquad \mathbf{C.} \begin{cases} x = \frac{13}{98} + 2t \\ y = \frac{40}{49} + t \end{cases} \qquad \mathbf{D.} \begin{cases} x = -\frac{13}{98} - t \\ y = \frac{40}{49} + t \end{cases} \\ z = \frac{135}{98} \qquad z = \frac{135}{98} \end{cases}$$

Lời giải

Chọn C

Gọi I(x; y; z) là tâm đường tròn ngoại tiếp tam giác ABC, ta có:

$$\begin{cases} AI = BI \\ AI = CI \iff \begin{cases} (x-1)^2 + y^2 + z^2 = x^2 + (y-2)^2 + z^2 \\ (x-1)^2 + y^2 + z^2 = x^2 + y^2 + (z-3)^2 \end{cases} \\ \frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - 4y &= -3\\ 2x & -6z = -8 \Leftrightarrow \\ 6x + 3y + 2z = 6 \end{cases} \Rightarrow \begin{bmatrix} x = \frac{13}{98}\\ y = \frac{40}{49} \Rightarrow I\left(\frac{13}{98}; \frac{40}{49}; \frac{135}{98}\right).\\ z = \frac{135}{98} \end{cases}$$

Ta có: $\overrightarrow{AB} = (-1;2;0)$.

Mặt phẳng (Oxy) có 1 véc tơ pháp tuyến $\vec{k} = (0;0;1)$.

Theo giả thiết đường thẳng Δ cần tìm có 1 véc tơ chỉ phương là $\vec{u}_{\triangle} = \left[\overrightarrow{AB}, \vec{k} \right] = (2;1;0)$.

Phương trình tham số của đường thẳng Δ : $\begin{cases} x = \frac{13}{98} + 2t \\ y = \frac{40}{49} + t \\ z = \frac{135}{98} \end{cases}$

Câu 42. (**THPT Cẩm Bình 2019**) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng $(\alpha): x-2z-6=0$ và đường thẳng $d:\begin{cases} x=1+t\\ y=3+t \end{cases}$. Viết phương trình đường thẳng Δ nằm trong z=-1-t

mặt phẳng (α) cắt đồng thời vuông góc với d.

A.
$$\frac{x-2}{2} = \frac{y-4}{1} = \frac{z+2}{1}$$
.

B.
$$\frac{x-2}{2} = \frac{y-4}{-1} = \frac{z+2}{1}$$
.

C.
$$\frac{x-2}{2} = \frac{y-3}{-1} = \frac{z+2}{1}$$
. D. $\frac{x-2}{2} = \frac{y-4}{-1} = \frac{z-2}{1}$.

Lời giải

Chọn B

Giao điểm I của d và (α) là nghiệm của hệ $\begin{cases} x=1+t\\ y=3+t\\ z=-1-t\\ x-2z-6=0 \end{cases} \Rightarrow I(2;4;-2).$

Mặt phẳng (α) có một vecto pháp tuyến $\vec{n} = (1;0;-2)$; đường thẳng d có một vecto chỉ phương $\vec{u} = (1;1;-1)$.

Khi đó đường thẳng Δ có một vecto chỉ phương là $[\vec{n}, \vec{u}] = (2; -1; 1)$.

Đường thẳng Δ qua điểm I(2;4;-2) và có một vecto chỉ phương $\left[\vec{n},\vec{u}\right]=\left(2;-1;1\right)$ nên có phương trình chính tắc: $\frac{x-2}{2}=\frac{y-4}{-1}=\frac{z+2}{1}$.

Câu 43. Trong không gian O*xyz*, cho ba đường thẳng $d_1: \frac{x-3}{2} = \frac{y+1}{1} = \frac{z-2}{-2}; d_2: \frac{x+1}{3} = \frac{y}{-2} = \frac{z+4}{-1}$ và

 $d_3: \frac{x+3}{4} = \frac{y-2}{-1} = \frac{z}{6}$. Đường thẳng song song với d_3 , cắt d_1 và d_2 có phương trình là

A.
$$\frac{x-3}{4} = \frac{y+1}{1} = \frac{z-2}{6}$$
. **B.** $\frac{x-3}{-4} = \frac{y+1}{1} = \frac{z-2}{-6}$.

C.
$$\frac{x+1}{4} = \frac{y}{-1} = \frac{z-4}{6}$$
. D. $\frac{x-1}{4} = \frac{y}{-1} = \frac{z+4}{6}$.

Chọn B

$$\text{Tùr } d_1: \frac{x-3}{2} = \frac{y+1}{1} = \frac{z-2}{-2} \Rightarrow d_1: \begin{cases} x = 3+2t \\ y = -1+t; \text{ tùr } d_2: \frac{x+1}{3} = \frac{y}{-2} = \frac{z+4}{-1} \Rightarrow \begin{cases} \overrightarrow{u_2} = (3;-2;-1) \\ A(-1;0;-4) \end{cases};$$

Từ
$$d_3: \frac{x+3}{4} = \frac{y-2}{-1} = \frac{z}{6} \Rightarrow \overrightarrow{u_3} = (4; -1; 6)$$

Gọi (P) là mặt phẳng chứa d_2 và song song với d_3

$$\Rightarrow \begin{cases} \overrightarrow{n_P} = \begin{bmatrix} \overrightarrow{u_2}; \overrightarrow{u_3} \end{bmatrix} = \begin{pmatrix} \begin{vmatrix} -2 & -1 \\ -1 & 6 \end{vmatrix}; \begin{vmatrix} -1 & 3 \\ 6 & 4 \end{vmatrix}; \begin{vmatrix} 3 & -2 \\ 4 & -1 \end{vmatrix} \end{pmatrix} = (-13; -22; 5) \\ A(-1; 0; -4) \in (P) \end{cases}$$

$$\Rightarrow$$
 $(P):-13(x+1)-22y+5(z+4)=0 \Leftrightarrow (P):13x+22y-5z-7=0$

Gọi B là giao điểm của (P) và d_1 . Đường thẳng đi qua B và song song với d_3 chính là đường thẳng cần tìm.

Gọi
$$B(3+2t;-1+t;2-2t)$$
. Thay tọa độ B vào (P) : $13(3+2t)+22(-1+t)-5(2-2t)-7=0$ $\Rightarrow t=0 \Rightarrow B(3;-1;2)$

Vì đường thẳng cần tìm song song với (d_3) nên có các véc tơ chỉ phương là $n.\overline{u_3}$ $(n \neq 0; n \in \mathbb{Z})$ Như vậy chỉ có đáp án B là hợp lý.

Câu 44. (SGD Cần Thơ 2019) Trong không gian Oxyz, cho các đường thẳng

$$d_1: \frac{x-3}{2} = \frac{y+1}{1} = \frac{z-2}{-2}, \ d_2: \begin{cases} x = -1+3t \\ y = -2t \\ z = -4-t \end{cases}, \ d_3: \frac{x+3}{4} = \frac{y-2}{-1} = \frac{z}{6}$$
. Đường thẳng song song với d_3

và cắt đồng thời d_1 và d_2 có phương trình là:

A.
$$\frac{x+1}{4} = \frac{y}{-1} = \frac{z-4}{6}$$
. **B.** $\frac{x-1}{4} = \frac{y}{-1} = \frac{z+4}{6}$.

C.
$$\frac{x-3}{4} = \frac{y+1}{1} = \frac{z-2}{6}$$
. **D.** $\frac{x-3}{-4} = \frac{y+1}{1} = \frac{z-2}{-6}$.

Lời giải

Chọn D

Gọi Δ đường thẳng song song với d_3 và cắt d_1 và d_2 .

 \vec{u}_{Δ} ; \vec{u}_{3} lần lượt là vécto chỉ phương của Δ và d_{3} .

Ta có
$$\Delta \cap d_1 = A \Rightarrow A(2x+3;x-1;-2x+2); \ \Delta \cap d_2 = B \Rightarrow B(-1+3y;-2y;-4-y).$$

$$\overrightarrow{AB} = (3y-2x-4; -2y-x+1; -y+2x-6).$$

Vì
$$\Delta / / d_3 \Rightarrow \vec{u}_{\Delta} = \vec{ku}_3 \Rightarrow \frac{3y - 2x - 4}{4} = \frac{-2y - x + 1}{-1} = \frac{-y + 2x - 6}{6}$$
.

$$\Rightarrow \begin{cases} 2x - 3y + 4 = -8y - 4x + 4 \\ -12y - 6x + 6 = y - 2x + 6 \end{cases} \Leftrightarrow \begin{cases} 6x + 5y = 0 \\ -13y + 4x = 0 \end{cases} \Leftrightarrow x = y = 0.$$

Từ đó suy ra: $A(3;-1;2); B(-1;0;-4) \Rightarrow \overrightarrow{AB} = (-4;1;-6)$ là véctơ chỉ phương của Δ .

Phương trình
$$\Delta$$
 là: $\frac{x-3}{-4} = \frac{y+1}{1} = \frac{z-2}{-6}$.

Câu 45. Trong không gian với hệ tọa độ Oxyz, viết phương trình tham số của đường thẳng đi qua điểm M(1;3;-2), đồng thời song song với giao tuyến của hai mặt phẳng (P): x+y-3=0 và

A.
$$\begin{cases} x = 1 + 3t \\ y = 3 - t \end{cases}$$
 B. $\begin{cases} x = 1 - 3t \\ y = 3 + t \end{cases}$ $z = -2 + t$ C. $\begin{cases} x = 1 + t \\ y = 3 - t \end{cases}$ $z = -2 - 3t$ D. $\begin{cases} x = 1 + t \\ y = 3 + t \end{cases}$ $z = -2 - 3t$

B.
$$\begin{cases} x = 1 - 3t \\ y = 3 + t \\ z = -2 + t \end{cases}$$

$$\underline{\mathbf{C}} \cdot \begin{cases} x = 1 + t \\ y = 3 - t \\ z = -2 - 3t \end{cases}$$

D.
$$\begin{cases} x = 1 + t \\ y = 3 + t \\ z = -2 - 3t \end{cases}$$

Chon C

Hai mặt phẳng (P): x+y-3=0 và (Q): 2x-y+z-3=0 có vecto pháp tuyến lần lượt là: $\overrightarrow{n_P} = (1;1;0); \overrightarrow{n_Q} = (2;-1;1).$

Giao tuyến của hai mặt phẳng (P) và (Q) có vecto chỉ phương: $\vec{u} = \lceil \vec{n_P}; \vec{n_Q} \rceil = (1; -1; -3)$.

Đường thẳng đi qua điểm M(1;3;-2), đồng thời song song với giao tuyến của hai mặt phẳng

(P): x+y-3=0 và (Q): 2x-y+z-3=0 nhận vecto \vec{u} làm vecto chỉ phương có phương trình

tham số là: $\begin{cases} x = 1 + t \\ y = 3 - t \end{cases}$.

Câu 46. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x}{1} = \frac{y-1}{2} = \frac{z+2}{2}$, mặt phẳng (P):2x+y+2z-5=0 và điểm A(1;1;-2). Phương trình chính tắc của đường thẳng Δ đi qua điểm A song song với mặt phẳng (P) và vuông góc với d là:

A.
$$\Delta : \frac{x-1}{1} = \frac{y-1}{2} = \frac{z+2}{-2}$$
.

B.
$$\Delta : \frac{x-1}{2} = \frac{y-1}{1} = \frac{z+2}{-2}$$
.

C.
$$\Delta : \frac{x-1}{2} = \frac{y-1}{2} = \frac{z+2}{-3}$$
.

D.
$$\Delta : \frac{x-1}{1} = \frac{y-1}{2} = \frac{z+2}{2}$$
.

Lời giải

 $d: \frac{x}{1} = \frac{y-1}{2} = \frac{z+2}{2} \implies d$ có một vecto chỉ phương là $\vec{u}(1;2;2)$.

 $(P):2x+y+2z-5=0 \Rightarrow (P)$ có một vectơ pháp tuyến là $\vec{n}(2;1;2)$.

Đường thẳng Δ song song với mặt phẳng (P) và vuông góc với d

 \Rightarrow Δ có một vecto chỉ phương là $\vec{v} = \begin{bmatrix} \vec{u}, \vec{n} \end{bmatrix} = (2; 2; -3)$, và đường thẳng Δ đi qua điểm

 $A(1;1;-2) \Rightarrow$ Phương trình chính tắc của đường thẳng Δ là: $\frac{x-1}{2} = \frac{y-1}{2} = \frac{z+2}{-3}$.

(SP Đồng Nai - 2019) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng Câu 47. (P): x+y-z+9=0, đường thẳng $d:\frac{x-3}{1}=\frac{y-3}{3}=\frac{z}{2}$ và điểm A(1;2;-1). Viết phương trình đường thẳng Δ đi qua điểm A cắt d và song song với mặt phẳng (P).

A.
$$\frac{x-1}{-1} = \frac{y-2}{2} = \frac{z+1}{1}$$
. **B.** $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z+1}{-1}$.

NGUYĒN BẢO VƯƠNG - 0946798489

C.
$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z+1}{1}$$
. **D.** $\frac{x-1}{-1} = \frac{y-2}{2} = \frac{z+1}{-1}$.

Lời giải

Chọn A

Cách 1:

Ta có: (P) có vecto pháp tuyến là: $\vec{n} = (1;1;-1)$.

d có vecto chỉ phương là: $\vec{u} = (1,3,2)$ và $B(3,3,0) \in d$.

 Δ có vecto chỉ phương là: $\overrightarrow{u_{\Delta}} = (a;b;c)$ và $A(1;2;-1) \in \Delta$ (trong đó $a^2 + b^2 + c^2 > 0$).

$$\Rightarrow \overrightarrow{AB} = (2;1;1); d \parallel (P) \Leftrightarrow \overrightarrow{u_{\Delta}} \cdot \overrightarrow{n} = 0 \Leftrightarrow a+b-c = 0 \Leftrightarrow c = a+b \Rightarrow \overrightarrow{u_{\Delta}} = (a;b;a+b).$$

Do d cắt $\Delta \Leftrightarrow \left[\overrightarrow{AB}, \overrightarrow{u}\right] \overrightarrow{u_{\Delta}} = 0 \Leftrightarrow 2a + b = 0 \Leftrightarrow b = -2a$.

Chọn
$$a = -1 \Rightarrow b = 2 \Rightarrow c = 1 \Rightarrow \overrightarrow{u_{\Delta}} = (-1; 2; 1) \Rightarrow \Delta : \frac{x-1}{-1} = \frac{y-2}{2} = \frac{z+1}{1}.$$

Kết luận:
$$\Delta : \frac{x-1}{-1} = \frac{y-2}{2} = \frac{z+1}{1}$$
.

Cách 2:

Ta có: (P) có vecto pháp tuyến là: $\vec{n} = (1;1;-1)$.

 Δ có vecto chỉ phương là: $\overrightarrow{u_{\Delta}} = (a;b;c)$ và $A(1;2;-1) \in \Delta$ (trong đó $a^2 + b^2 + c^2 > 0$).

Do Δ song song với mặt phẳng $(P) \Rightarrow \overrightarrow{u_{\Delta}} \cdot \overrightarrow{n} = 0$.

Nhận xét đáp án A: $\overrightarrow{u_{\Delta}}.\overrightarrow{n} = 0$.

Nhận xét đáp án B: $\overrightarrow{u_{\Delta}}.\overrightarrow{n} = 4 \neq 0 \Rightarrow \text{loại đáp án}$ **B.**

đáp án C: $\overrightarrow{u_{\scriptscriptstyle \Delta}}.\overrightarrow{n}=2\neq 0 \Longrightarrow$ loại đáp án

đáp án D: $\overrightarrow{u}_{\wedge} \cdot \overrightarrow{n} = 2 \neq 0 \Rightarrow$ loại đáp án D.

Kết luận: Chọn đáp án

Câu 48. (THPT Thăng Long-Hà Nội- 2019) Trong không gian, cho mặt phẳng (P): x+y-z-4=0 và điểm A(2;-1;3). Gọi Δ là đường thẳng đi qua A và song song với (P), biết Δ có một vecto chỉ phương là $\vec{u} = (a;b;c)$, đồng thời Δ đồng phẳng và không song song với Oz. Tính $\frac{a}{c}$.

$$\underline{\mathbf{A}} \cdot \frac{a}{c} = 2$$
.

B.
$$\frac{a}{c} = -2$$

B.
$$\frac{a}{c} = -2$$
. **C.** $\frac{a}{c} = -\frac{1}{2}$. **D.** $\frac{a}{c} = \frac{1}{2}$.

D.
$$\frac{a}{c} = \frac{1}{2}$$
.

Lời giải

Chọn A

(P) có một vectơ pháp tuyến là n = (1;1;-1).

 Δ đi qua điểm A(2;-1;3) và có một vecto chỉ phương là $\vec{u} = (a;b;c)$.

Oz đi qua điểm O(0;0;0) và có một vecto chỉ phương là $\vec{k} = (0;0;1)$.

 Δ không song song với $Oz \Leftrightarrow a:b:c \neq 0:0:1$.

 Δ đồng phẳng với $Oz \Leftrightarrow Ba \text{ vecto } \vec{u}; \vec{k}; \overrightarrow{OA}$ đồng phẳng

$$\Leftrightarrow \left[\vec{k}, \overrightarrow{OA}\right] \vec{u} = 0 \Leftrightarrow a + 2b = 0 \Leftrightarrow a = -2b \; .$$

Do
$$\Delta / / (P) \Rightarrow \vec{u} \perp \vec{n} \iff \vec{u} \cdot \vec{n} = \vec{0} \iff a + b - c = 0 \implies c = -b$$
. Suy ra $\frac{a}{c} = 2$.

Dạng 1.3 Phương trình đường thẳng hình chiếu, đối xứng

(Đề Tham Khảo 2017) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Câu 49. $d: \frac{x-1}{2} = \frac{y+5}{-1} = \frac{z-3}{4}$. Phương trình nào dưới đây là phương trình hình chiếu vuông góc của d

$$\mathbf{A.} \begin{cases} x = -3 \\ y = -5 + 2t \\ z = 3 - t \end{cases}$$

B.
$$\begin{cases} x = -3 \\ y = -6 - 4 \\ z = 7 + 4t \end{cases}$$

A.
$$\begin{cases} x = -3 \\ y = -5 + 2t \\ z = 3 - t \end{cases}$$
B.
$$\begin{cases} x = -3 \\ y = -6 - t \\ z = 7 + 4t \end{cases}$$
C.
$$\begin{cases} x = -3 \\ y = -5 - t \\ z = -3 + 4t \end{cases}$$
D.
$$\begin{cases} x = -3 \\ y = -5 + t \\ z = 3 + 4t \end{cases}$$

D.
$$\begin{cases} x = -3 \\ y = -5 + t \\ z = 3 + 4t \end{cases}$$

Chon B

Cách 1: Đường thẳng d đi qua điểm $M_0(1,-5,3)$ và có VTCP $\vec{u}_d = (2,-1,4)$

Gọi (Q) là mặt phẳng chứa d và vuông góc với (P): x+3=0.

Suy ra mặt phẳng (Q) đi qua điểm $M_0(1;-5;3)$ và có VTPT là $[\vec{n}_P;\vec{u}_d]=(0;4;1)$

$$\Rightarrow$$
 $(Q): 4y+z+17=0$.

Phương trình hình chiếu vuông góc của d trên mặt phẳng (P) là

$$\begin{cases} 4y + z + 17 = 0 \\ x + 3 = 0 \end{cases} \text{ hay } \begin{cases} x = -3 \\ y = -6 - t \\ z = 7 + 4t \end{cases}$$

Cách 2: Ta có $M \in d \Rightarrow M(1+2t; -5-t; 3+4t)$. Gọi M' là hình chiếu của M trên

(P):
$$x+3=0$$
. Suy ra $M'(-3;-5-t;3+4t)$. Suy ra $d':\begin{cases} x=-3\\ y=-5-t\\ z=3+4t \end{cases}$

So sánh với các phương án, ta chọn D là đáp án đúng.

Câu 50. (Đề Tham Khảo 2019) Trong không gian Oxyz, cho mặt phẳng (P): x+y+z-3=0 và đường thẳng $d: \frac{x}{1} = \frac{y+1}{2} = \frac{z-2}{1}$. Hình chiếu vuông góc của d trên (P) có phương trình là

A.
$$\frac{x-1}{1} = \frac{y-1}{4} = \frac{z-1}{-5}$$
 B. $\frac{x-1}{1} = \frac{y-4}{1} = \frac{z+5}{1}$

B.
$$\frac{x-1}{1} = \frac{y-4}{1} = \frac{z+3}{1}$$

C.
$$\frac{x+1}{-1} = \frac{y+1}{-4} = \frac{z+1}{5}$$
 D. $\frac{x-1}{3} = \frac{y-1}{-2} = \frac{z-1}{-1}$

$$\mathbf{D.} \ \frac{x-1}{3} = \frac{y-1}{-2} = \frac{z-1}{-1}$$

Lời giải

Chọn A

Gọi M là giao điểm của d với (P).

Tọa độ của M là nghiệm của hệ: $\begin{cases} x+y+z-3=0 \\ \frac{x}{1} = \frac{y+1}{2} = \frac{z-2}{1} \end{cases} \Leftrightarrow \begin{cases} x+y+z=3 \\ 2x-y=1 \\ x+z=2 \end{cases} \Leftrightarrow \begin{cases} x=1 \\ y=1 \Rightarrow M(1;1;1) \end{cases}$

Lấy điểm $N(0;-1;2) \in d$.

NGUYỄN <mark>BẢO</mark> VƯƠNG - 0946798489

Một vec tơ pháp tuyến của mặt phẳng (P) là: $\vec{n} = (1;1;1)$.

Gọi Δ là đường thẳng đi qua N và nhận $\vec{n} = (1;1;1)$ làm vec tơ chỉ phương.

Phương trình đường thẳng $\Delta : \frac{x}{1} = \frac{y+1}{1} = \frac{z-2}{1}$

Gọi N' là giao điểm của Δ với (P).

Tọa độ của
$$N'$$
 là nghiệm của hệ:
$$\begin{cases} x+y+z-3=0 \\ \frac{x}{1}=\frac{y+1}{1}=\frac{z-2}{1} \Leftrightarrow \begin{cases} x+y+z=3 \\ x-y=1 \\ x-z=-2 \end{cases} \Leftrightarrow \begin{cases} x=\frac{2}{3} \\ y=-\frac{1}{3} & N'\left(\frac{2}{3};-\frac{1}{3};\frac{8}{3}\right) \\ z=\frac{8}{3} \end{cases}$$

$$\overrightarrow{MN'} = \left(-\frac{1}{3}; -\frac{4}{3}; \frac{5}{3}\right) = -\frac{1}{3}\overrightarrow{u}(1; 4; -5)$$

Đường thẳng cần tìm đi qua điểm M(1;1;1) và nhận $\vec{u} = (1;4;-5)$ làm vec tơ chỉ phương nên có phương trinh $\frac{x-1}{1} = \frac{y-1}{4} = \frac{z-1}{-5}$.

Câu 51. Trong không gian Oxyz, cho mặt phẳng $(\alpha): 2x + y + z - 3 = 0$ và đường thẳng

 $d: \frac{x+4}{3} = \frac{y-3}{-6} = \frac{z-2}{-1}$. Viết phương trình đường thẳng d' đối xứng với đường thẳng d qua

mặt phẳng (α) .

A.
$$\frac{x}{11} = \frac{y+5}{-17} = \frac{z-4}{-2}$$
. **B.** $\frac{x}{11} = \frac{y-5}{-17} = \frac{z+4}{-2}$.

C.
$$\frac{x}{11} = \frac{y-5}{-17} = \frac{z-4}{-2}$$
. D. $\frac{x}{11} = \frac{y-5}{-17} = \frac{z-4}{2}$.

Lời giải

Mặt phẳng (α) : 2x + y + z - 3 = 0 có vecto pháp tuyến $\vec{n}(2;1;1)$.

Gọi tọa độ giao điểm của d và (α) là I thì I(-22;39;8).

Lấy $A(-4;3;2) \in d$. Gọi Δ là đường thẳng đi qua A và vuông góc với (α) .

Suy ra phương trình đường thẳng
$$\Delta$$
 là
$$\begin{cases} x = -4 + 2t \\ y = 3 + t \\ z = 2 + t \end{cases}$$

Gọi H là hình chiếu của A lên (α) thì $H = \Delta \cap (\alpha) \Rightarrow H(-2;4;3)$.

A' đối xứng với A qua $(\alpha) \Leftrightarrow H$ là trung điểm $AA' \Rightarrow A'(0;5;4)$.

Đường thẳng d' đối xứng với đường thẳng d qua mặt phẳng $(\alpha) \Rightarrow d$ ' đi qua điểm I, A' có

vecto chỉ phương $\overrightarrow{A'I} = (22; -34; -4) = 2(11; -17; -2)$ có phương trình là: $\frac{x}{11} = \frac{y-5}{-17} = \frac{z-4}{-2}$.

Câu 52. (Chuyen Phan Bội Châu Nghệ An 2019) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z+1}{3}$ và mặt phẳng (P): x+y+z-3=0. Đường thẳng d' là hình chiếu

của d theo phương Ox lên (P), d' nhận $\vec{u} = (a;b;2019)$ là một vecto chỉ phương. Xác định tổng (a+b).

B.
$$-2019$$
.

D.
$$-2020$$
.

Chọn
$$A(1;2;-1) \in d; \vec{u}_d = (2;1;3); [\vec{u},\vec{i}] = (0;3;-1).$$

Ta thấy
$$\left[\vec{u}_d; \vec{i}\right] . \overrightarrow{OA} = 7 \neq 0 \Rightarrow d$$
 và Ox chéo nhau.

Gọi (Q) là mặt phẳng chứa d và song song với Ox.

Một vecto pháp tuyến của mặt phẳng (Q) là $\vec{n}_O = [\vec{u}_d; \vec{i}] = (0; 3; -1)$.

Hình chiếu d' của d trên mặt phẳng (P) là đường giao tuyến giữa hai mặt phẳng (P) và (Q).

d' có một vectơ chỉ phương là $\left[\vec{n}_{Q}; \vec{n}_{P}\right] = \left(-4; 1; 3\right) \Rightarrow \vec{u} = 673 \left[\vec{n}_{Q}; \vec{n}_{P}\right] = \left(-2692; 673; 2019\right)$ cũng là một vectơ chỉ phương.

Vậy
$$a + b = -2019$$
.

Câu 53. Trong không gian Oxyz, cho mặt phẳng $(\alpha): x+y-z+6=0$ và đường thẳng

 $d: \frac{x-1}{2} = \frac{y+4}{3} = \frac{z}{5}$. Hình chiếu vuông góc của d trên (α) có phương trình là

A.
$$\frac{x+1}{2} = \frac{y+4}{3} = \frac{z-1}{5}$$
.

B.
$$\frac{x}{2} = \frac{y+5}{3} = \frac{z-1}{5}$$
.

C.
$$\frac{x+5}{2} = \frac{y}{3} = \frac{z-1}{5}$$
. D. $\frac{x}{2} = \frac{y-5}{3} = \frac{z-1}{5}$.

Lời giải

Mặt phẳng (α) : x+y-z+1=0 có vecto pháp tuyến $\vec{n}(1;1;-1)$.

Đường thẳng $d: \frac{x-1}{2} = \frac{y+4}{3} = \frac{z}{5}$ có vecto chỉ phương $\vec{u}(2;3;5)$.

Vì
$$\vec{n} \cdot \vec{u} = 1.2 + 1.3 + (-1).5 = 0$$
 nên $d / / (\alpha)$.

Gọi d' là hình chiếu vuông góc của d trên $(\alpha) \Rightarrow d^{\prime\prime}/d$.

Lấy $A(1;-4;0) \in d$. Gọi Δ là đường thẳng đi qua A và vuông góc với (α) .

Suy ra phương trình đường thẳng Δ là $\begin{cases} x = 1 + t \\ y = -4 + t \end{cases}$. z = -t

Gọi A' là hình chiếu của A lên (α) thì $A' = \Delta \cap (\alpha) \Rightarrow A'(0; -5; 1)$.

Đường thẳng d' là đường thẳng đi qua A'(0;-5;1), có vecto chỉ phương $\vec{u}(2;3;5)$ có phương

trình là
$$\frac{x}{2} = \frac{y+5}{3} = \frac{z-1}{5}$$
.

NGUYĒN BẢO VƯƠNG - 0946798489

Câu 54. (KTNL GV Bắc Giang 2019) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+y-z-1=0 và đường thẳng $d: \frac{x+2}{2} = \frac{y-4}{-2} = \frac{z+1}{1}$. Viết phương trình đường thẳng d' là hình chiếu vuông góc của d trên (P).

A.
$$d': \frac{x+2}{7} = \frac{y}{-5} = \frac{z+1}{2}$$
.

B.
$$d': \frac{x-2}{7} = \frac{y}{-5} = \frac{z-1}{2}$$
.

C.
$$d': \frac{x+2}{7} = \frac{y}{5} = \frac{z+1}{2}$$
. **D.** $d': \frac{x-2}{7} = \frac{y}{5} = \frac{z-1}{2}$.

Lời giải

<u>Chọn</u> $\underline{\mathbf{B}}$.

+) Phương trình tham số của d: $\begin{cases} x=-2+2t\\ y=4-2t \end{cases}, t\in R \text{ . Gọi } M=\left(-2+2t;4-2t;-1+t\right) \text{ là giao điểm}\\ z=-1+t \end{cases}$

của d và $(P) \Rightarrow (-2+2t)+(4-2t)-(-1+t)-1=0 \Leftrightarrow t=2 \Rightarrow M=(2;0;1)$.

+) Mặt phẳng (P) có 1 vector pháp tuyến là $\overrightarrow{n_P} = (1;1;-1)$. Điểm $N = (0;2;0) \in d$.

Gọi Δ là đường thẳng qua N(0;2;0) và vuông góc với mặt phẳng $(P) \Rightarrow \Delta$ nhận vector

 $\overline{n_p} = (1;1;-1)$ làm vector chỉ phương. Suy ra phương trình của Δ là:

$$(\Delta): \frac{x-0}{1} = \frac{y-2}{1} = \frac{z-0}{-1} \Leftrightarrow (\Delta): \begin{cases} x=c \\ y=2+c \text{ , } c \in R \text{ . Goi } M' = \left(c; 2+c; -c\right) \text{ là giao điểm của } \Delta \\ z=-c \end{cases}$$

với mặt phẳng $(P) \Rightarrow c + (2+c) - (-c) - 1 = 0 \Leftrightarrow c = -\frac{1}{3} \Rightarrow M'\left(-\frac{1}{3}; \frac{5}{3}; \frac{1}{3}\right).$

+) $\overrightarrow{MM'} = \left(-\frac{7}{3}; \frac{5}{3}; -\frac{2}{3}\right)$, đường thẳng d' là hình chiếu vuông góc của d trên mặt phẳng (P) nên

d' chính là đường thẳng $\mathit{MM}^{\, \prime},$ suy ra d' đi qua $\mathit{M}\left(2;0;1\right)$ và nhận vector

 $\vec{u} = -3\vec{MM'} = (7, -5, 2)$ làm vector chỉ phương nên phương trình của d' là:

$$d': \frac{x-2}{7} = \frac{y}{-5} = \frac{z-1}{2}$$
.

Câu 55. (Chuyên Phan Bội Châu 2019) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z+1}{3}$ và mặt phẳng (P): x+y+z-3=0. Đường thẳng d' là hình chiếu của d

theo phương Ox lên (P); d' nhận $\vec{u}(a;b;2019)$ làm một vécto chỉ phương. Xác định tổng a+b.

A. 2019

B. −2019

C. 2018

D. -2020

Lời giải

• Mặt phẳng (P) có vécto pháp tuyến $\vec{n}_{(P)} = (1;1;1)$.

Đường thẳng d có vécto chỉ phương là $\vec{u}_d = (2;1;3)$, đường thẳng chứa trục Ox có có vécto chỉ phương $\vec{i} = (1;0;0)$.

• Gọi (Q) là mặt phẳng chứa đường thẳng d và song song (hoặc chứa) trục Ox.

Khi đó (Q) có vécto pháp tuyến $\vec{n}_{(Q)} = [\vec{u}_d, \vec{i}] = (0;3;-1)$.

• Đường thẳng d' chính là giao tuyến của (P) và (Q).

 \Rightarrow Vecto chỉ phương của d là $\vec{u}_1 = \left[\vec{n}_{(P)}, \vec{n}_{(Q)}\right] = \left(-4;1;3\right)$.

Suy ra: $\vec{u}(-2692;673;2019)$ cũng là chỉ phương của d'.

Ta có: a+b=-2692+673=-2019.

(THPT Đông Sơn 1 - Thanh Hóa 2019) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng Câu 56. (P): x+y+z-3=0 và đường thẳng $d: \frac{x}{1} = \frac{y+1}{2} = \frac{z-2}{-1}$. Hình chiếu của d trên (P) có phương trình là đường thẳng d'. Trong các điểm sau điểm nào thuộc đường thẳng d':

A.
$$M(2;5;-4)$$
.

B.
$$P(1;3;-1)$$
.

C.
$$N(1;-1;3)$$
.

C.
$$N(1;-1;3)$$
. **D.** $Q(2;7;-6)$.

Lời giải

Chon A

Gọi
$$A = d \cap (P)$$
. Vì $A \in d$:
$$\begin{cases} x = t \\ y = -1 + 2t \Rightarrow A(t; -1 + 2t; 2 - t) \\ z = 2 - t \end{cases}$$

Mặt khác $A \in (P) \Rightarrow t-1+2t+2-t-3=0 \Leftrightarrow t=1$. Vây A(1;1;1).

Lấy $B(0;-1;2) \in d$. Gọi Δ là đường thẳng qua B và vuông góc (P).

Thì
$$\Delta$$
:
$$\begin{cases} x = t' \\ y = -1 + t' \text{. Gọi } C \text{ là hình chiếu của } B \text{ lên } (P). \\ z = 2 + t' \end{cases}$$

NGUYĒN BẢO VƯƠNG - 0946798489

Suy ra $C \in \Delta \Rightarrow C(t'; -1+t'; 2+t')$.

Mặt khác
$$C \in (P) \Rightarrow t'-1+t'+2+t'-3=0 \Leftrightarrow t'=\frac{2}{3}$$
. Vậy $C\left(\frac{2}{3};\frac{-1}{3};\frac{8}{3}\right)$.

Lúc này d' qua A(1;1;1) và có một vecto chỉ phương là $\overrightarrow{AC} = \left(\frac{-1}{3}; \frac{-4}{3}; \frac{5}{3}\right)$. Hay d' nhận

 $\vec{u} = (1,4,-5)$ làm một vecto chỉ phương.

Suy ra
$$d'$$
:
$$\begin{cases} x = 1 + s \\ y = 1 + 4s \text{ . Vậy điểm thuộc đường thẳng } d' \text{ là } M\left(2;5;-4\right). \\ z = 1 - 5s \end{cases}$$

Câu 57. (THPT Phan Bội Châu - Nghệ An - 2019) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z+1}{3}$ và mặt phẳng (P): x+y+z-3=0. Đường thẳng d' là hình chiếu của d theo phương Ox lên (P), d' nhận $\vec{u} = (a;b;2019)$ là một vecto chỉ phương. Xác định

tổng (a+b).

A. 2019.

B. -2019.

C. 2018.

D. -2020.

Lời giải

Chon B

Chọn
$$A(1;2;-1) \in d; \vec{u}_d = (2;1;3); \lceil \vec{u}, \vec{i} \rceil = (0;3;-1).$$

Ta thấy $[\vec{u}_d; \vec{i}] . \overrightarrow{OA} = 7 \neq 0 \Rightarrow d$ và Ox chéo nhau.

Gọi (Q) là mặt phẳng chứa d và song song với Ox.

Một vecto pháp tuyến của mặt phẳng (Q) là $\vec{n}_Q = [\vec{u}_d; \vec{i}] = (0; 3; -1)$.

Hình chiếu d' của d trên mặt phẳng (P) là đường giao tuyến giữa hai mặt phẳng (P) và (Q). d' có một vecto chỉ phương là $\left[\vec{n}_Q; \vec{n}_P\right] = \left(-4; 1; 3\right) \Rightarrow \vec{u} = 673 \left[\vec{n}_Q; \vec{n}_P\right] = \left(-2692; 673; 2019\right)$ cũng là một vecto chỉ phương.

Vậy a+b = -2019...

Câu 58. (**SGD Bắc Ninh 2019**) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x-1}{1} = \frac{y-1}{2} = \frac{z-2}{-1}$ và mặt phẳng (P): 2x+y+2z-1=0. Gọi d' là hình chiếu của đường thẳng d lên mặt phẳng (P), véc tơ chỉ phương của đường thẳng d' là

A.
$$\overrightarrow{u_3} = (5; -6; -13)$$
. **B.** $\overrightarrow{u_2} = (5; -4; -3)$.

C.
$$\overrightarrow{u_4} = (5;16;13)$$
. $\underline{\mathbf{D}} \cdot \overrightarrow{u_1} = (5;16;-13)$.

Lời giải

Chon D

Đường thẳng d đi qua điểm A(1;1;2) và có 1 véc tơ chỉ phương $\overrightarrow{u_d} = (1;2;-1)$.

Mặt phẳng (P) có 1 véc tơ pháp tuyến $\overrightarrow{n_{(P)}} = (2;1;2)$.

Gọi $\overrightarrow{u_{d'}}$ là một véc tơ chỉ phương của đường thẳng d'.

Gọi (Q) là mặt phẳng chứa đường thẳng d và vuông góc với mặt phẳng (P). Khi đó (Q) đi qua điểm A(1;1;2) và có 1 véc tơ pháp tuyến $\overrightarrow{n_{(Q)}} = \left[\overrightarrow{u_d}, \overrightarrow{n_{(P)}}\right] = (5;-4;-3)$.

 $d' \text{ là hình chiếu của đường thẳng } d \text{ trên mặt phẳng } (P) \Leftrightarrow d' = (P) \cap (Q) \text{ nên } \begin{cases} \overrightarrow{u_{d'}} \perp \overrightarrow{n_{(P)}} \\ \overrightarrow{u_{d'}} \perp \overrightarrow{n_Q} \end{cases}. \text{ Véc tơ chỉ phương của đường thẳng } d' \text{ là } \overrightarrow{u_{d'}} = \left\lceil \overrightarrow{n_{(P)}}, \overrightarrow{n_{(Q)}} \right\rceil = (5;16;-13).$

Câu 59. Trong không gian Oxyz cho mặt phẳng (P): x + y + z - 3 = 0 và đường thẳng $d: \frac{x}{1} = \frac{y+1}{2} = \frac{z-2}{-1}$. Hình chiếu vuông góc của d trên (P) có phương trình là

A.
$$\frac{x+1}{-1} = \frac{y+1}{-4} = \frac{z+1}{5}$$
. **B.** $\frac{x-1}{3} = \frac{y-1}{-2} = \frac{z-1}{-1}$.

$$\underline{\mathbf{C}} \cdot \frac{x-1}{1} = \frac{y-1}{4} = \frac{z-1}{-5}$$
. $\mathbf{D} \cdot \frac{x-1}{1} = \frac{y+4}{1} = \frac{z+5}{1}$.

Lời giải

Chon C

Cách 1: Đường thẳng d đi qua điểm M(0;-1;2) và có một vecto chỉ phương là $\overrightarrow{u_d} = (1;2;-1)$.

Gọi (Q) là mặt phẳng chứa d và vuông góc với (P).

(Q) đi qua điểm
$$M(0;-1;2)$$
 và có một vecto pháp tuyến là $\overrightarrow{n_Q} = [\overrightarrow{u_d}, \overrightarrow{n_P}] = (3;-2;-1)$.

$$\Rightarrow (Q): 3x - 2y - z = 0.$$

Gọi Δ là hình chiếu vuông góc của d trên (P), khi đó tập hợp các điểm thuộc Δ là nghiệm của

hệ phương trình
$$\begin{cases} 3x - 2y - z = 0 \\ x + y + z - 3 = 0 \end{cases}$$
 (I).

Trong hệ (I) cho z=1, ta được x=1, y=1. Vậy điểm A(1;1;1) thuộc Δ .

 Δ là đường thẳng đi qua điểm A(1;1;1) và có một vecto chỉ phương $\vec{u}_{\Delta} = \left[\overrightarrow{n_P}, \overrightarrow{n_Q}\right] = (1;4;-5)$ nên có phương trình chính tắc là $\frac{x-1}{1} = \frac{y-1}{4} = \frac{z-1}{-5}$.

Cách 2: Gọi $A = d \cap (P)$.

$$A \in d \Rightarrow A(t; -1 + 2t; 2 - t)$$
.

$$A \in (P) \Rightarrow t + (-1 + 2t) + (2 - t) - 3 = 0 \Rightarrow 2t - 2 = 0 \Rightarrow t = 1 \Rightarrow A(1;1;1).$$

Lấy điểm $M(0;-1;2) \in d$. Gọi Δ là đường thẳng đi qua M và vuông góc với (P). Khi đó Δ có

phương trình tham số là
$$\begin{cases} x = t \\ y = -1 + t \\ z = 2 + t \end{cases}$$

Gọi
$$B = \Delta \cap (P)$$
.

$$B \in \Delta \Rightarrow B(t; -1+t; 2+t).$$

NGUYĒN BĀO VƯƠNG - 0946798489

$$B \in (P) \Rightarrow t + (-1 + t) + (2 + t) - 3 = 0 \Rightarrow 3t - 2 = 0 \Rightarrow t = \frac{2}{3} \Rightarrow B\left(\frac{2}{3}; \frac{-1}{3}; \frac{8}{3}\right).$$

Phương trình hình chiếu vuông góc của d trên mặt phẳng (P) là đường thẳng AB đi qua điểm A(1;1;1) và có một vector chỉ phương $\vec{u} = -3.\overrightarrow{AB} = -3.\left(\frac{-1}{3};\frac{-4}{3};\frac{5}{3}\right) = (1;4;-5)$ nên có phương trình chính tắc là $\frac{x-1}{1} = \frac{y-1}{4} = \frac{z-1}{-5}$.

Dạng 1.4 Xác định một số phương trình đường thắng đặc biệt (phân giác, trung tuyến, giao tuyến...)

Hai đường thẳng d_1, d_2 cắt nhau tại điểm $A(x_0; y_0; z_0)$ và có vécto chỉ phương lân lượt là $\overrightarrow{u_1}(a_1;b_1;c_1), \overrightarrow{u_2}(a_2;b_2;c_2)$

Đường thẳng phân giác của góc tạo bởi hai đường thẳng này có vécto chỉ phương được xác định theo công

$$\vec{u} = \frac{1}{|u_1|} \cdot \vec{u_1} \pm \frac{1}{|u_2|} \cdot \vec{u_2} = \frac{1}{\sqrt{a_1^2 + b_1^2 + c_1^2}} (a_1; b_1; c_1) \pm \frac{1}{\sqrt{a_2^2 + b_2^2 + c_2^2}} (a_2; b_2; c_2)$$

Nếu
$$\overrightarrow{u_1u_2} > 0 \Rightarrow \overrightarrow{u} = \frac{1}{|u_1|} \cdot \overrightarrow{u_1} + \frac{1}{|u_2|} \cdot \overrightarrow{u_2}$$
 là vécto chỉ phương của phân

giác tạo bởi góc nhọn giữa hai đường thẳng và $\vec{u} = \frac{1}{|u_1|} \cdot \vec{u_1} - \frac{1}{|u_2|} \cdot \vec{u_2}$ là vécto chỉ phương của phân giác tạo

bởi góc tù giữa hai đường thẳng

Nếu
$$\overrightarrow{u_1}\overrightarrow{u_2} > 0 \Rightarrow \overrightarrow{u} = \frac{1}{|u_1|} \cdot \overrightarrow{u_1} + \frac{1}{|u_2|} \cdot \overrightarrow{u_2}$$
 là vécto chỉ phương của phân

giác tạo bởi góc từ giữa hai đường thẳng và $\vec{u} = \frac{1}{|u_1|} \cdot \vec{u_1} - \frac{1}{|u_2|} \cdot \vec{u_2}$ là vécto chỉ phương của phân giác tạo bởi góc nhọn giữa hai đường thẳng.

(Mã 102 2018) Trong không gian Oxyz, cho đường thẳng $d:\begin{cases} x=1+3t\\ y=-3 \end{cases}$. Gọi Δ là đường thẳng z=5+4t

đi qua điểm A(1;-3;5) và có vecto chỉ phương $\vec{u}(1;2;-2)$. Đường phân giác của góc nhọn tạo bởi d và Δ có phương trình là

A.
$$\begin{cases} x = -1 + 2t \\ y = 2 - 5t \\ z = 6 + 11t \end{cases}$$
B.
$$\begin{cases} x = -1 + 2t \\ y = 2 - 5t \\ z = -6 + 11t \end{cases}$$
C.
$$\begin{cases} x = 1 + 7t \\ y = -3 + 5t \\ z = 5 + t \end{cases}$$
D.
$$\begin{cases} x = 1 - t \\ y = -3 \\ z = 5 + 7t \end{cases}$$

B.
$$\begin{cases} x = -1 + 2t \\ y = 2 - 5t \\ z = -6 + 11t \end{cases}$$

C.
$$\begin{cases} x = 1 + 7t \\ y = -3 + 5t \\ z = 5 + t \end{cases}$$

D.
$$\begin{cases} x = 1 - t \\ y = -3 \\ z = 5 + 7t \end{cases}$$

Lời giải

Chon B

Ta có điểm A(1;-3;5) thuộc đường thẳng d, nên A(1;-3;5) là giao điểm của d và Δ .

Một vecto chỉ phương của đường thẳng d là $\vec{v}(-3;0;-4)$. Ta xét:

$$\vec{u_1} = \frac{1}{|\vec{u}|} \cdot \vec{u} = \frac{1}{3} (1; 2; -2) = \left(\frac{1}{3}; \frac{2}{3}; -\frac{2}{3}\right);$$

$$\vec{v_1} = \frac{1}{|\vec{v}|} \cdot \vec{v} = \frac{1}{5} (-3; 0; -4) = \left(-\frac{3}{5}; 0; -\frac{4}{5} \right).$$

Nhận thấy $\overrightarrow{u_1}, \overrightarrow{v_1} > 0$, nên góc tạo bởi hai vecto $\overrightarrow{u_1}$, $\overrightarrow{v_1}$ là góc nhọn tạo bởi d và Δ .

Ta có $\vec{w} = \vec{u_1} + \vec{v_1} = \left(-\frac{4}{15}; \frac{10}{15}; -\frac{22}{15}\right) = -\frac{15}{2}(2; -5; 11)$ là vecto chỉ phương của đường phân giác

của góc nhọn tạo bởi d và Δ hay đường phân giác của góc nhọn tạo bởi d và Δ có vecto chỉ

phương là
$$\overrightarrow{w}_1 = (2; -5; 11)$$
. Do đó có phương trình:
$$\begin{cases} x = -1 + 2t \\ y = 2 - 5t \\ z = -6 + 11t \end{cases}$$

(Mã 101 2018) Trong không gian Oxyz, cho đường thẳng $d:\begin{cases} x=1+7t\\ y=1+4t \end{cases}$. Gọi Δ là đường thẳng

đi qua điểm A(1;1;1) và có vecto chỉ phương $\vec{u} = (1;-2;2)$. Đường phân giác của góc nhọn tạo bởi d và Δ có phương trình là.

A.
$$\begin{cases} x = -1 + 2t \\ y = -10 + 11t \\ z = -6 - 5t \end{cases}$$
B.
$$\begin{cases} x = -1 + 2t \\ y = -10 + 11t \\ z = 6 - 5t \end{cases}$$
C.
$$\begin{cases} x = -1 + 3t \\ y = 1 + 4t \\ z = 1 - 5t \end{cases}$$
D.
$$\begin{cases} x = 1 + 7t \\ y = 1 + t \\ z = 1 + 5t \end{cases}$$

B.
$$\begin{cases} x = -1 + 2t \\ y = -10 + 11t \\ z = 6 - 5t \end{cases}$$

C.
$$\begin{cases} x = -1 + 3 \\ y = 1 + 4t \\ z = 1 - 5t \end{cases}$$

D.
$$\begin{cases} x = 1 + 7t \\ y = 1 + t \\ z = 1 + 5t \end{cases}$$

Chon B

Phương trình
$$\Delta : \begin{cases} x = 1 + t' \\ y = 1 - 2t' \\ z = 1 + 2t' \end{cases}$$

Ta có $d \cap \Delta = A(1;1;1)$. Lấy $I(4;5;1) \in d \implies \overrightarrow{AI} = (3;4;0) \implies AI = 5$. Gọi $M(1+t';1-2t';1+2t') \in \Delta$ sao cho AM = AI.

Khi đó
$$3|t'| = 5 \Leftrightarrow \begin{bmatrix} t' = \frac{5}{3} \\ t' = -\frac{5}{3} \end{bmatrix}$$
.

NGUYĒN BAO VƯƠNG - 0946798489

Với
$$t' = \frac{5}{3} \Rightarrow M\left(\frac{8}{3}; -\frac{7}{3}; \frac{13}{3}\right) \Rightarrow \overrightarrow{AM} = \left(\frac{5}{3}; \frac{-10}{3}; \frac{10}{3}\right) \Rightarrow AM = \frac{15}{3}.$$

Khi đó $\cos \widehat{IAM} = -\frac{1}{3} \Rightarrow \widehat{IAM} > 90^{\circ} \Rightarrow \text{trong trường hợp này } (d;\Delta) > 90^{\circ} \text{ (loại)}$

Với
$$t' = -\frac{5}{3} \Rightarrow N\left(-\frac{2}{3}; \frac{13}{3}; \frac{-7}{3}\right) \Rightarrow \overrightarrow{AN} = \left(-\frac{5}{3}; \frac{10}{3}; -\frac{10}{3}\right) \Rightarrow AN = \frac{15}{3}.$$

Khi đó $\cos \widehat{IAN} = \frac{1}{3} \Rightarrow \widehat{IAM} < 90^{\circ} \Rightarrow \text{trong trường hợp này } (d; \Delta) < 90^{\circ} (\text{thỏa mãn})$

Gọi
$$H$$
 là trung điểm của $NI \Rightarrow H\left(\frac{5}{3}; \frac{14}{3}; \frac{-2}{3}\right) \Rightarrow \overrightarrow{AH} = \frac{1}{3}(2;11;-5)$.

Khi đó đường phân giác của góc nhọn tạo bởi d và Δ đi qua $H\left(\frac{5}{3};\frac{14}{3};\frac{-2}{3}\right)$ hoặc A(1;1;1)

và nhận làm $\vec{u} = (2;11;-5)$ VTCP \Rightarrow phương trình phân giác là $\begin{cases} x = -1 + 2t \\ y = -10 + 11t \\ z = 6 - 5t \end{cases}$

(Mã 104 2018) Trong không gian Oxyz, cho đường thẳng $d:\begin{cases} x=1+3t\\ y=1+4t \end{cases}$. Gọi Δ là đường thẳng

đi qua điểm A(1;1;1) và có vecto chỉ phương $\vec{u} = (-2;1;2)$. Đường phân giác của góc nhọn tạo bởi d và Δ có phương trình là.

$$\mathbf{A.} \begin{cases} x = 1 + 2x \\ y = 1 + t \\ z = 1 + t \end{cases}$$

B.
$$\begin{cases} x = -18 + 19 \\ y = -6 + 7t \\ z = 11 - 10t \end{cases}$$

A.
$$\begin{cases} x = 1 + 27t \\ y = 1 + t \\ z = 1 + t \end{cases}$$
 B.
$$\begin{cases} x = -18 + 19t \\ y = -6 + 7t \\ z = 11 - 10t \end{cases}$$
 C.
$$\begin{cases} x = -18 + 19t \\ y = -6 + 7t \\ z = -11 - 10t \end{cases}$$
 D.
$$\begin{cases} x = 1 - t \\ y = 1 + 17t \\ z = 1 + 10t \end{cases}$$

D.
$$\begin{cases} x = 1 - t \\ y = 1 + 17t \\ z = 1 + 10t \end{cases}$$

Lời giải

Chọn B

$$A = d \cap \Delta$$

Phương trình tham số của đường thẳng Δ : $\begin{cases} x = 1 - 2t \\ y = 1 + 1t \end{cases}$

Chọn điểm $B(-1,2,3) \in \Delta$, AB = 3.

Gọi
$$C \in d$$
 thỏa mãn $AC = AB \Rightarrow C\left(\frac{14}{5}; \frac{17}{5}; 1\right)$ hoặc $C\left(-\frac{4}{5}; -\frac{7}{5}; 1\right)$

Kiểm tra được điểm $C\left(-\frac{4}{5}; -\frac{7}{5}; 1\right)$ thỏa mãn BAC là góc nhọn.

Trung điểm của BC là $I\left(-\frac{9}{10};\frac{3}{10};2\right)$. Đường phân giác cần tìm là AI có vectơ chỉ phương là

$$\vec{u} = (19;7;-10)$$
 có phương trình là
$$\begin{cases} x = 1 + 19t \\ y = 1 + 7t \end{cases}$$
. Tọa độ điểm của đáp án B thuộc AI . $z = 1 - 10t$

$$\int x = 1 + t$$

(Mã 103 2018) Trong không gian Oxyz, cho đường thẳng $d: \{y=2+t\}$. Gọi Δ là đường thẳng

đi qua điểm A(1;2;3) và có vecto chỉ phương $\vec{u} = (0;-7;-1)$. Đường phân giác của góc nhọn tạo

$$\mathbf{A.} \begin{cases} x = 1 + 5t \\ y = 2 - 2t \\ z = 3 - t \end{cases}$$

B.
$$\begin{cases} x = 1 + 6t \\ y = 2 + 11t \\ z = 3 + 8t \end{cases}$$

C.
$$\begin{cases} x = -4 + 5t \\ y = -10 + 12t \\ z = 2 + t \end{cases}$$

A.
$$\begin{cases} x = 1 + 5t \\ y = 2 - 2t. \\ z = 3 - t \end{cases}$$
 B.
$$\begin{cases} x = 1 + 6t \\ y = 2 + 11t. \\ z = 3 + 8t \end{cases}$$
 C.
$$\begin{cases} x = -4 + 5t \\ y = -10 + 12t. \\ z = 2 + t \end{cases}$$
 D.
$$\begin{cases} x = -4 + 5t \\ y = -10 + 12t. \\ z = -2 + t \end{cases}$$

Chon C

Đường thẳng d đi qua A(1;2;3) và có VTCP $\vec{a} = (1;1;0)$.

Ta có $\vec{a}.\vec{u} = 1.0 + 1.(-7) + 0.(-1) = -7 < 0 \Rightarrow (\vec{a},\vec{u}) > 90^{\circ}$.

Đường phân giác của góc nhọn tạo bởi d và Δ $\vec{b} = -\frac{\vec{u}}{|\vec{u}|} + \frac{\vec{a}}{|\vec{a}|} = \frac{1}{5\sqrt{2}} \left(5;12;1\right) // \left(5;12;1\right).$ VTCP:

Phương trình đường thẳng cần tìm là $\begin{cases} x = -4 + 5t \\ y = -10 + 12t. \\ z = 2 + t \end{cases}$

(THPT An Lão Hải Phòng 2019) Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có Câu 64. A(-1,3,2), B(2,0,5), C(0,-2,1). Viết phương trình đường trung tuyến AM của tam giác ABC.

$$\underline{\mathbf{A}}$$
 $AM: \frac{x+1}{2} = \frac{y-3}{-4} = \frac{z-2}{1}$

B.
$$AM: \frac{x-1}{2} = \frac{y-3}{-4} = \frac{z+2}{1}$$

C.
$$AM: \frac{x-1}{2} = \frac{y+3}{4} = \frac{z+2}{-1}$$

D.
$$AM: \frac{x-2}{1} = \frac{y+4}{-1} = \frac{z+1}{3}$$

Lời giải

Chon A

Gọi M(x; y; z) là trung điểm BC. Khi đó M(1; -1; 3)

Ta có
$$\overrightarrow{AM} = vtcp\overrightarrow{u} = (2; -4; 1)$$

PTĐT
$$AM : \frac{x+1}{2} = \frac{y-3}{-4} = \frac{z-2}{1}$$

Câu 65. (THPT Yên Phong 1 Bắc Ninh 2019) Trong không gian Oxyz, cho A(2;0;0), đường thẳng dđi qua A cắt chiều âm trục Oy tại điểm B sao cho diện tích tam giác OAB bằng 1. Phương trình tham số đường thẳng d là

$$\mathbf{A.} \begin{cases} x = 1 - 2t \\ y = t \\ z = 0 \end{cases}$$

$$\mathbf{B.} \begin{cases} x = 2 + 2t \\ y = -t \\ z = 0 \end{cases}$$

A.
$$\begin{cases} x = 1 - 2t \\ y = t \\ z = 0 \end{cases}$$
 B.
$$\begin{cases} x = 2 + 2t \\ y = -t \\ z = 0 \end{cases}$$
 C.
$$\begin{cases} x = 2 - 2t \\ y = -t \\ z = 0 \end{cases}$$
 D.
$$\begin{cases} x = 2 - 2t \\ y = t \\ z = 1 \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 2 - 2t \\ y = t \\ z = 1 \end{cases}.$$

Gọi B(0;b;0) là giao điểm của d với trục Oy. (Điều kiện b < 0)

Ta có OA = 2 và tam giác OAB vuông tại O nên $S_{\triangle OAB} = \frac{1}{2}OA.OB = 1 \Rightarrow OB = 1$

Suy ra B(0;-1;0). Ta có $\overline{AB} = (-2;-1;0)$ là một vec tơ chỉ phương của d.

Và đường thẳng d đi qua điểm A(2;0;0) nên $\begin{cases} x = 2-2t \\ y = -t \\ z = 0 \end{cases}$

Trong không gian Oxyz cho hai điểm $A(2;2;1), B(\frac{-8}{3};\frac{4}{3};\frac{8}{3})$. Đường phân giác trong của tam giác OAB có phương trình là

$$\underline{\mathbf{A}}. \begin{cases} x = 0 \\ y = t \\ z = t \end{cases}$$

$$\mathbf{B.} \begin{cases} x = 4t \\ y = t \\ z = -t \end{cases}$$

$$\underline{\mathbf{A}}. \begin{cases} x = 0 \\ y = t \\ z = t \end{cases}$$

$$\mathbf{B}. \begin{cases} x = 4t \\ y = t \\ z = -t \end{cases}$$

$$\mathbf{C}. \begin{cases} x = 14t \\ y = 2t \\ z = -5t \end{cases}$$

$$\mathbf{D}. \begin{cases} x = 2t \\ y = 14t \\ z = 13t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 2t \\ y = 14t \\ z = 13t \end{cases}$$

Chọn A

$$\overrightarrow{EA} = -\frac{OA}{OB}.\overrightarrow{EB} = -\frac{\sqrt{4+4+1}}{\sqrt{\frac{64}{9} + \frac{16}{9} + \frac{64}{9}}}.\overrightarrow{EB} = -\frac{3}{4}.\overrightarrow{EB} = \frac{3}{4}.\overrightarrow{BE}$$

$$\Leftrightarrow \begin{cases} 2 - x = \frac{3}{4} \left(x + \frac{8}{3} \right) \\ 2 - y = \frac{3}{4} \left(y - \frac{4}{3} \right) \Leftrightarrow \begin{cases} x = 0 \\ y = \frac{12}{7} \end{cases} \\ 1 - z = \frac{3}{4} \left(z - \frac{8}{3} \right) \end{cases}$$

$$\overrightarrow{OE} = \left(0; \frac{12}{7}; \frac{12}{7}\right) \Rightarrow \overrightarrow{u} = (0;1;1)$$

$$\Delta : \begin{cases} qua \text{ O} \\ VTCP \text{ } \vec{u} \end{cases} \Rightarrow \Delta : \begin{cases} x = 0 \\ y = t \\ z = t \end{cases}$$

Câu 67. (Chuyên Hạ Long 2019) Trong không gian với hệ trục tọa độ Oxyz cho hai đường thẳng

$$d_1 \begin{cases} x = 4 + t \\ y = -4 - t \ ; d_2 \ : \frac{x - 5}{2} = \frac{y - 11}{4} = \frac{z - 5}{2} \ . \ \text{Dường thẳng} \ d \ \text{đi qua} \ A\big(5; -3; 5\big) \ \text{cắt} \ d_1; d_2 \ lần lượt ở } \\ z = 6 + 2t \end{cases}$$

B, C. Tính tỉ sô $\frac{AB}{4C}$.

A. 2.

B. 3.

 $\underline{\mathbf{C}} \cdot \frac{1}{2}$. $\mathbf{D} \cdot \frac{1}{3}$.

Lời giải

$$B\in d_1\Rightarrow B\left(4+t;-4-t;6+2t\right). \text{ PT tham số của } d_2:\begin{cases} x=5+2s\\ y=11+4s\\ z=5+2s \end{cases}$$

 $C \in d_2 \Rightarrow C(5+2s;11+4s;5+2s)$. Khi đó: $\overrightarrow{AB} = (1-t;-1-t;2t+1); \overrightarrow{AC} = (2s;4s+14;2s)$.

Do A,B,C thẳng hàng $\Leftrightarrow \overrightarrow{AB},\overrightarrow{AC}$ cùng phương $\Leftrightarrow \exists k \in \mathbb{R} : \overrightarrow{AB} = k \overrightarrow{AC}$

$$\Leftrightarrow \begin{cases} t - 1 = 2ks \\ -t - 1 = 4ks + 14k \Leftrightarrow \begin{cases} t = -2 \\ s = -3. \text{ Do d\'o: } \overrightarrow{AB} = \frac{1}{2} \overrightarrow{AC} \Rightarrow \frac{AB}{AC} = \frac{1}{2}. \end{cases}$$
$$k = \frac{1}{2}$$

(THPT Gang Thép Thái Nguyên -2019) Trong không gian với hệ trục tọa độ Oxyz, cho 2 điểm M(1;2;3), A(2;4;4) và hai mặt phẳng (P): x+y-2z+1=0, (Q): x-2y-z+4=0. Viết phương trình đường thẳng Δ đi qua M, cắt (P), (Q) lần lượt tại B, C sao cho tam giác ABC cân tại A và nhận AM làm đường trung tuyến.

A.
$$\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-3}{-1}$$
. **B.** $\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-3}{1}$.

$$\underline{\mathbf{C}}$$
. $\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-3}{1}$. $\underline{\mathbf{D}}$. $\frac{x-1}{-1} = \frac{y-2}{-1} = \frac{z-3}{1}$.

Lời giải

Điểm B thuộc mặt (P) nên B(2c-b-1;b;c) vì M(1;2;3) là trung điểm BC nên C(3-2c+b;4-b;6-c). Do C thuộc mặt (Q) nên $3c-c-7=0 \Leftrightarrow c=3b-7$. Khi đó B(5b-15;b;3b-7), C(-5b+17;4-b;13-3b). $\overrightarrow{BC}(-10b+32;-2b+4;-6b+20)$. ABC cân tai A nên $BC.AM = 0 \Leftrightarrow 20b - 60 = 0 \Leftrightarrow b = 3 \Rightarrow B(0,3,2)$. Đường thẳng Δ đi qua M(1,2,3) và B(0,3,2) có phương trình là $\frac{x-1}{1} = \frac{y-2}{1} = \frac{z-3}{1}$.

Câu 69. (Chuyên Bắc Giang 2019) Trong không gian với hệ tọa độ Oxyz cho tam giác ABC biết A(2;1;0), B(3;0;2), C(4;3;-4). Viết phương trình đường phân giác trong góc A.

A.
$$\begin{cases} x = 2 \\ y = 1 + t \\ z = 0 \end{cases}$$
 B.
$$\begin{cases} x = 2 \\ y = 1 \\ z = t \end{cases}$$
 C.
$$\begin{cases} x = 2 + t \\ y = 1 \\ z = 0 \end{cases}$$
 D.
$$\begin{cases} x = 2 + t \\ y = 1 \\ z = t \end{cases}$$

$$\mathbf{B.} \begin{cases} x = 2 \\ y = 1 \\ z = t \end{cases}$$

$$\mathbf{\underline{C}} \cdot \begin{cases} x = 2 + t \\ y = 1 \\ z = 0 \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 2 + t \\ y = 1 \\ z = t \end{cases}$$

Chọn C

Ta có
$$\overrightarrow{AB} = (1; -1; 2)$$
 và $\overrightarrow{AC} = (2; 2; -4)$.

Gọi M là trung điểm AC, ta có M(3; 2; -2), AM = (1; 1; -2).

Do đó $\triangle ABM$ cân tại A. Gọi K là điểm thỏa mãn AK = AM + AB = (2; 0; 0). Khi đó AK là tia phân giác trong góc BAC.

Vậy phương trình đường phân giác trong góc \widehat{BAC} là $\begin{cases} x = 2 + t \\ y = 1 \\ z = 0 \end{cases}$, $t \in \mathbb{R}$.

Câu 70. (Chuyên Nguyễn Tất Thành Yên Bái 2019) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x+1}{2} = \frac{y}{1} = \frac{z-2}{1}$, mặt phẳng (P): x+y-2z+5=0 và A(1;-1;2). Đường thẳng Δ cắt d và (P) lần lượt tại M và N sao cho A là trung điểm của đoạn thẳng MN. Một vecto chỉ phương của ∆ là

B.
$$\vec{u} = (2; 3; 2)$$
.

A.
$$\vec{u} = (4; 5; -13)$$
. **B.** $\vec{u} = (2; 3; 2)$. **C.** $\vec{u} = (1; -1; 2)$. **D.** $\vec{u} = (-3; 5; 1)$.

D.
$$\vec{u} = (-3; 5; 1)$$

Lời giải

Ta có
$$d: \frac{x+1}{2} = \frac{y}{1} = \frac{z-2}{1} \Rightarrow \begin{cases} x = -1+2t \\ y = t \\ z = 2+t \end{cases}$$
. Do đó $M \in d \Rightarrow M\left(-1+2t; t; 2+t\right)$.

Vì A(1;-1;2) là trung điểm $MN \Rightarrow N(3-2t;-2-t;2-t)$.

Mặt khác $N \in (P) \Rightarrow 3-2t-2-t-2(2-t)+5=0 \Leftrightarrow t=2 \Rightarrow M\left(3;2;4\right) \Rightarrow \overrightarrow{AM} = \left(2;3;2\right)$ là một vecto chỉ phương của Δ .

(THPT Phan Đình Phùng - Hà Tĩnh - 2018) Trong không gian với hệ tọa độ Oxyz, cho hình Câu 71. vuông ABCD biết A(1;0;1), B(1;0;-3) và điểm D có hoành độ âm. Mặt phẳng (ABCD) đi qua

gốc tọa độ O. Khi đó đường thẳng d là trục đường tròn ngoại tiếp hình vuông ABCD có phương trình

$$\underline{\mathbf{A}}. \ d: \begin{cases} x = -1 \\ y = t \\ z = -1 \end{cases} \qquad \underline{\mathbf{B}}. \ d: \begin{cases} x = 1 \\ y = t \\ z = -1 \end{cases} \qquad \underline{\mathbf{C}}. \ d: \begin{cases} x = -1 \\ y = t \\ z = 1 \end{cases} \qquad \underline{\mathbf{D}}. \ d: \begin{cases} x = t \\ y = 1 \\ z = t \end{cases}$$

$$\mathbf{B.} \ d: \begin{cases} x = 1 \\ y = t \\ z = -1 \end{cases}$$

$$\mathbf{C.} \ d: \begin{cases} x = -1 \\ y = t \\ z = 1 \end{cases}$$

$$\mathbf{D.} \ d: \begin{cases} x = t \\ y = 1 \\ z = t \end{cases}$$

Ta có $\overrightarrow{AB} = (0;0;-4) = -4(0;0;1)$. Hay AB có véc-to chỉ phương $\vec{k} = (0;0;1)$.

Mặt phẳng (ABCD) có một véc-tơ pháp tuyến: $\left[\overrightarrow{OA}; \overrightarrow{OB}\right] = (0;4;0) = 4(0;1;0)$, hay $\overrightarrow{j} = (0;1;0)$ là một véc-tơ pháp tuyến của mặt phẳng (ABCD).

$$\text{Vì } \begin{cases} AD \perp AB \\ AD \subset \left(ABCD\right) \end{cases} \text{ nên } \begin{cases} \overrightarrow{AD} \perp \overrightarrow{k} \\ \overrightarrow{AD} \perp \overrightarrow{j} \end{cases}. \text{ Dường thẳng } AD \text{ có véc-tơ chỉ phương là } \left[\overrightarrow{j}; \overrightarrow{k}\right] = \left(1; 0; 0\right).$$

Phương trình đường thẳng AD là: $\begin{cases} x = 1 + t \\ y = 0 \end{cases}$. z = 1

Do đó D(1+t;0;1).

Mặt khác
$$AD = AB \Leftrightarrow \sqrt{t^2 + 0^2 + (1 - 1)^2} = 4 \Leftrightarrow \begin{bmatrix} t = 4 \\ t = -4 \end{bmatrix}$$
.

Vì điểm D có hoành độ âm nên D(-3;0;1).

Vì tâm I của hình vuông ABCD là trung điểm BD, nên I = (-1,0,-1).

Đường thẳng d là trục đường tròn ngoại tiếp hình vuông ABCD có véc-tơ pháp tuyến là

$$\vec{j} = (0;1;0)$$
, nên phương trình đường thẳng d là: $d:\begin{cases} x = -1 \\ y = t \end{cases}$. $z = -1$

Câu 72. (THPT Nghen - Hà Tĩnh - 2018) Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng $\Delta_1: \frac{x+1}{1} = \frac{y-2}{2} = \frac{z+1}{3}$ và $\Delta_2: \frac{x+1}{1} = \frac{y-2}{2} = \frac{z+1}{3}$ cắt nhau và cùng nằm trong mặt phẳng (P).

Lập phương trình đường phân giác d của góc nhọn tạo bởi Δ_1 , Δ_2 và nằm trong mặt phẳng (P).

$$\underline{\mathbf{A}}. d: \begin{cases} x = -1 \\ y = 2 \\ z = -1 + t \end{cases}, (t \in \mathbb{R}).$$

$$\mathbf{C}. d: \begin{cases} x = -1 + t \\ y = 2 - 2t, (t \in \mathbb{R}). \\ z = -1 - t \end{cases}$$

B.
$$d : \begin{cases} x = -1 + t \\ y = 2 \\ z = -1 + 2t \end{cases}, (t \in \mathbb{R}).$$
D. $d : \begin{cases} x = -1 + t \\ y = 2 + 2t, (t \in \mathbb{R}) \\ z = -1 \end{cases}$

C.
$$d: \begin{cases} x = -1 + t \\ y = 2 - 2t, (t \in \mathbb{R}) \\ z = -1 - t \end{cases}$$

D.
$$d:\begin{cases} x = -1 + t \\ y = 2 + 2t, (t \in \mathbb{R}) \\ z = -1 \end{cases}$$

Lời giải

Nhận thấy A(-1;2;-1) là giao điểm của Δ_1 và Δ_2 .

$$\Delta_1$$
 có VTCP là $\overrightarrow{u_1} = (1;2;3)$

$$\Delta_2$$
 có VTCP là $\overrightarrow{u_2} = (1;2;-3)$.

$$[\overrightarrow{u_1}; \overrightarrow{u_2}] = (-12; 6; 0) = -6(2; -1; 0).$$

Phương trình mặt phẳng (P): 2x - y + 4 = 0.

Gọi $\vec{u} = (a;b;c)$ là VTCP của d cần tìm.

Ta có d nằm trong mặt phẳng (P) chứa hai đường thẳng Δ_1 , $\Delta_2 \Rightarrow \vec{u} \perp \lceil \vec{u_1}; \vec{u_2} \rceil$

$$\Rightarrow 2a - b = 0 \Rightarrow b = 2a$$

Lại có d là phân giác của Δ_1 , Δ_2

$$\Rightarrow \cos\left(d, \Delta_1\right) = \cos\left(d, \Delta_2\right) \Rightarrow \frac{\left|a + 2b + 3c\right|}{\sqrt{a^2 + b^2 + c^2} \cdot \sqrt{14}} = \frac{\left|a + 2b - 3c\right|}{\sqrt{a^2 + b^2 + c^2} \cdot \sqrt{14}}$$

$$\Rightarrow \begin{bmatrix} a+2b+3c=a+2b-3c \\ a+2b+3c=-a-2b+3c \end{bmatrix} \Leftrightarrow \begin{bmatrix} c=0 & (1) \\ a+2b=0 & (2) \end{bmatrix}.$$

Xét (1),
$$c = 0$$
, $b = 2a \Rightarrow \vec{u} = (a, 2a, 0) = (1; 2; 0)$. $\Rightarrow d : \begin{cases} x = -1 + t \\ y = 2 + 2t, t \in \mathbb{R} \\ z = -1 \end{cases}$

$$\cos\left(\Delta_1;d\right) = \frac{\left|1.1 + 2.2\right|}{\sqrt{14}.\sqrt{5}} = \frac{\sqrt{70}}{14} \Longrightarrow \left(\Delta_1;d\right) \approx 53^{\circ}18'.$$

$$X\acute{e}t (2): \begin{cases} a+2b=0 \\ b=2a \end{cases} \Rightarrow a=b=0 \Rightarrow \vec{u}=(0;0;c)=c(0;0;1) \Rightarrow d: \begin{cases} x=-1 \\ y=2 \\ z=-1+t \end{cases}, t \in \mathbb{R}.$$

$$\cos(\Delta_1, d) = \frac{\left|-3\right|}{\sqrt{14}.1} = \frac{3}{\sqrt{14}} \Longrightarrow (\Delta_1, d) \approx 36^{\circ}42'.$$

Do d là đường phân giác của góc nhọn nên $(\Delta_1, d) < 45^{\circ}$.

Vậy đường thẳng d cần tìm là $d: \begin{cases} x=-1 \\ y=2 \end{cases}, t \in \mathbb{R}$. z=-1+t

Nhận xét: Có thể làm đơn giản hơn bằng cách: ta thấy $\overrightarrow{u_1} = (1;2;3)$; $\overrightarrow{u_2} = (1;2;-3)$ là hai véc tơ có độ dài bằng nhau và $\overrightarrow{u_1}\overrightarrow{u_2} < 0 \Longrightarrow (\overrightarrow{u_1},\overrightarrow{u_2}) > 90^\circ$. Vậy $(\overrightarrow{u_1}-\overrightarrow{u_2})$ chính là véc tơ chỉ phương của d.

Câu 73. (**Quảng Xương - Thanh Hóa - 2018**) Trong không gian tọa độ Oxyz, cho tam giác ABC biết A(1;0;-1), B(2;3;-1), C(-2;1;1). Phương trình đường thẳng đi qua tâm đường tròn ngoại tiếp của tam giác ABC và vuông góc với mặt phẳng (ABC) là:

A.
$$\frac{x-3}{3} = \frac{y-1}{-1} = \frac{z-5}{5}$$
. **B.** $\frac{x}{3} = \frac{y-2}{1} = \frac{z}{5}$

C.
$$\frac{x-1}{1} = \frac{y}{-2} = \frac{z+1}{2}$$
. D. $\frac{x-3}{3} = \frac{y-2}{-1} = \frac{z-5}{5}$.

Lài giải

Ta có:
$$\overrightarrow{AB} = (1;3;0); \overrightarrow{BC} = (-4;-2;2), \overrightarrow{AC} = (-3;1;2)$$

$$\Rightarrow AB^2 = 10$$
, $BC^2 = 24$, $AC^2 = 14 \Rightarrow \triangle ABC$ vuông tại A .

Tâm I của đường tròn ngoại tiếp tam giác là trung điểm của $BC \Rightarrow I(0;2;0)$.

TÀI LIỆU ÔN THI THPTQG 2021

Đường thẳng d cần tìm đi qua I(0;2;0) và nhận vecto $\vec{u} = \frac{1}{2} \left[\overrightarrow{AB}, \overrightarrow{AC} \right] = (3;-1;5)$ làm véc tơ chỉ phương. Phương trình chính tắc của đường thẳng d là: $\frac{x-3}{3} = \frac{y-1}{-1} = \frac{z-5}{5}$.

Câu 74. (SGD Bắc Giang - 2018) Trong không gian Oxyz, cho tam giác nhọn ABC có H(2;2;1), $K\left(-\frac{8}{3};\frac{4}{3};\frac{8}{3}\right)$, O lần lượt là hình chiếu vuông góc của A, B, C trên các cạnh BC, AC, AB. Đường thẳng d qua A và vuông góc với mặt phẳng (ABC) có phương trình là

A.
$$d: \frac{x+4}{1} = \frac{y+1}{-2} = \frac{z-1}{2}$$
.

B.
$$d: \frac{x-\frac{8}{3}}{1} = \frac{y-\frac{2}{3}}{-2} = \frac{z+\frac{2}{3}}{2}$$
.

C.
$$d: \frac{x+\frac{4}{9}}{1} = \frac{y-\frac{17}{9}}{-2} = \frac{z-\frac{19}{9}}{2}$$
.

D.
$$d: \frac{x}{1} = \frac{y-6}{-2} = \frac{z-6}{2}$$
.

Lời giải

Ta có tứ giác BOKC là tứ giác nội tiếp đường tròn (vì có hai góc vuông K, O cùng nhìn BC dưới một góc vuông) suy ra $\widehat{OKB} = \widehat{OCB}$ (1)

Ta có tứ giác KDHC là tứ giác nội tiếp đường tròn (vì có hai góc vuông K, H cùng nhìn DC dưới một góc vuông) suy ra $\widehat{DKH} = \widehat{OCB}$ (2)

Từ (1) và (2) suy ra $\widehat{DKH} = \widehat{OKB}$ do đó BK là đường phân giác trong của góc \widehat{OKH} và AC là đường phân giác ngoài của góc \widehat{OKH} .

Tương tự ta chứng minh được OC là đường phân giác trong của góc \widehat{KOH} và AB là đường phân giác ngoài của góc \widehat{KOH} .

Ta có OK = 4; OH = 3; KH = 5.

Gọi I, J lần lượt là chân đường phân giác ngoài của góc \widehat{OKH} và \widehat{KOH} .

Ta có
$$I = AC \cap HO$$
 ta có $\frac{IO}{IH} = \frac{KO}{KH} = \frac{4}{5} \Rightarrow \overrightarrow{IO} = \frac{4}{5} \overrightarrow{IH} \Rightarrow I(-8; -8; -4)$.

Ta có
$$J = AB \cap KH$$
 ta có $\frac{JK}{JH} = \frac{OK}{OH} = \frac{4}{3} \Rightarrow \overrightarrow{JK} = \frac{4}{3} \overrightarrow{JH} \Rightarrow J(16;4;-4)$.

Đường thẳng IK qua I nhận $\overrightarrow{IK} = \left(\frac{16}{3}; \frac{28}{3}; \frac{20}{3}\right) = \frac{4}{3}(4;7;5)$ làm vec tơ chỉ phương có phương

trình (*IK*):
$$\begin{cases} x = -8 + 4t \\ y = -8 + 7t \\ z = -4 + 5t \end{cases}$$

Đường thẳng OJ qua O nhận $\overrightarrow{OJ} = (16;4;-4) = 4(4;1;-1)$ làm vec tơ chỉ phương có phương

trình
$$(OJ)$$
:
$$\begin{cases} x = 4t' \\ y = t' \\ z = -t' \end{cases}$$

Khi đó $\mathit{A} = \mathit{IK} \cap \mathit{OJ}$, giải hệ ta tìm được $\mathit{A} \left(-4; -1; 1 \right)$.

$$\text{Ta c\'o } \overrightarrow{\mathit{IA}} = \left(4;7;5\right) \text{ v\'a } \overrightarrow{\mathit{IJ}} = \left(24;12;0\right), \text{ ta t\'nh } \left\lceil \overrightarrow{\mathit{IA}}, \overrightarrow{\mathit{IJ}} \right\rceil = \left(-60;120;-120\right) = -60\left(1;-2;2\right).$$

Khi đó đường thẳng đi qua A và vuông góc với mặt phẳng (ABC) có véc tơ chỉ phương $\vec{u} = (1; -2; 2)$ nên có phương trình $\frac{x+4}{1} = \frac{y+1}{-2} = \frac{z-1}{2}$.

Nhận xét:

- \Box Mấu chốt của bài toán trên là chứng minh trực tâm D của tam giác ABC là tâm đường tròn nội tiếp tam giác OHK. Khi đó, ta tìm tọa độ điểm D dựa vào tính chất quen thuộc sau: "Cho tam giác ABC với I là tâm đường tròn nội tiếp, ta có $a.\overline{IA} + b.\overline{IB} + c.\overline{IC} = \vec{0}$, với a = BC, b = CA, c = AB". Sau khi tìm được D, ta tìm được A với chú ý rằng $A \in DH$ và $OA \perp DA$.
- \Box Ta cũng có thể tìm ngay tọa độ điểm A bằng cách chứng minh A là tâm đường tròn bàng tiếp góc H của tam giác OHK. Khi đó, ta tìm tọa độ điểm D dựa vào tính chất quen thuộc sau: "Cho tam giác ABC với J là tâm đường tròn bàng tiếp góc A, ta có $-a.\overrightarrow{JA} + b.\overrightarrow{JB} + c.\overrightarrow{JC} = \overrightarrow{0}$, với a = BC, b = CA, c = AB".
- **Câu 75.** (**Chuyên Vinh 2018**) Trong không gian Oxyz, cho tam giác ABC có A(2;3;3), phương trình đường trung tuyến kẻ từ B là $\frac{x-3}{-1} = \frac{y-3}{2} = \frac{z-2}{-1}$, phương trình đường phân giác trong của góc

C là
$$\frac{x-2}{2} = \frac{y-4}{-1} = \frac{z-2}{-1}$$
. Đường thẳng AB có một véc-tơ chỉ phương là

A.
$$\vec{u}_3 = (2;1;-1)$$
. **B.** $\vec{u}_2 = (1;-1;0)$. **C.** $\vec{u}_4 = (0;1;-1)$. **D.** $\vec{u}_1 = (1;2;1)$. **Lòi giải**

Phương trình tham số của đường phân giác trong góc C là CD: $\begin{cases} x = 2 + 2t \\ y = 4 - t \end{cases}$. z = 2 - t

Gọi C = (2+2t; 4-t; 2-t), suy ra tọa độ trung điểm M của AC là $M = \left(2+t; \frac{7-t}{2}; \frac{5-t}{2}\right)$. Vì

 $M \in BM$ nên:

$$\frac{(2+t)-3}{-1} = \frac{\left(\frac{7-t}{2}\right)-3}{2} = \frac{\left(\frac{5-t}{2}\right)-2}{-1} \Leftrightarrow \frac{t-1}{-1} = \frac{1-t}{4} = \frac{1-t}{-2} \Rightarrow t = 1.$$

Do đó C = (4;3;1).

Phương trình mặt phẳng (P) đi qua A và vuông góc CD là

$$2.(x-2)-1.(y-3)-1.(z-3)=0$$
 hay $2x-y-z+2=0$.

Tọa độ giao điểm H của (P) và CD là nghiệm (x; y; z) của hệ

$$\begin{cases} x = 2 + 2t \\ y = 4 - t \\ z = 2 - t \\ 2x - y - z + 2 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 2 + 2t \\ y = 4 - t \\ z = 2 - t \\ 2(2 + 2t) - (4 - t) - (2 - t) + 2 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 2 \\ y = 4 \\ z = 2 \end{cases} \Rightarrow H(2; 4; 2).$$

Gọi A' là điểm đối xứng với A qua đường phân giác CD, suy ra H là trung điểm AA', bởi vậy:

$$\begin{cases} x_{A'} = 2x_H - x_A = 2.2 - 2 = 2 \\ y_{A'} = 2y_H - y_A = 2.4 - 3 = 5 \implies A'(2;5;1). \\ x_{A'} = 2z_H - z_A = 2.2 - 3 = 1 \end{cases}$$

Do $A' \in BC$ nên đường thẳng BC có véc-tơ chỉ phương là $\overrightarrow{CA'} = (-2, 2, 0) = 2(-1, 1, 0)$, nên

phương trình đường thẳng BC là $\begin{cases} x = 4 - t \\ y = 3 + t \end{cases}$ z = 1

Vì $B = BM \cap BC$ nên tọa độ B là nghiệm (x; y; z) của hệ

$$\begin{cases} x = 4 - t \\ y = 3 + t \\ z = 1 \\ \frac{x - 3}{1} = \frac{y - 3}{2} = 1 \end{cases} \Leftrightarrow \begin{cases} x = 2 \\ y = 5 \\ z = 1 \\ t = 2 \end{cases} \Rightarrow B(2;5;1) \equiv A'.$$

Đường thẳng AB có một véc-tơ chỉ phương là $\overrightarrow{AB} = (0;2;-2) = 2(0;1;-1)$; hay $\overrightarrow{u}_4 = (0;1;-1)$ là một véc-tơ chỉ của phương đường thẳng AB.

Câu 76. (Chuyên Quang Trung- Bình Phước 2019) Trong không gian Oxyz, cho mặt phẳng (P): x+y+z-3=0 và đường thẳng $d: \frac{x}{1} = \frac{y+1}{2} = \frac{z-2}{-1}$. Đường thẳng d' đối xứng với d qua mặt phẳng (P) có phương trình là

$$\underline{\mathbf{A}} \cdot \frac{x-1}{1} = \frac{y-1}{-2} = \frac{z-1}{7}.$$

C.
$$\frac{x+1}{1} = \frac{y+1}{2} = \frac{z+1}{7}$$
.

B.
$$\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-1}{7}$$
.

D.
$$\frac{x+1}{1} = \frac{y+1}{-2} = \frac{z+1}{7}$$
.

Lời giải

Chon A

+ d không vuông góc với (P).

NGUYĒN <mark>BẢO</mark> VƯƠNG - 0946798489

Phương trình tham số của đường thẳng $d: \begin{cases} x=t \\ y=-1+2t \\ z=2-t \end{cases}$

Tọa độ giao điểm I của d và mặt phẳng (P) là nghiệm của hệ phương

trình
$$\begin{cases} x = t \\ y = -1 + 2t \\ z = 2 - t \\ x + y + z - 3 = 0 \end{cases} \Rightarrow \begin{cases} x = 1 \\ y = 1 \Rightarrow I(1;1;1) \\ z = 1 \end{cases}$$

+ Lấy điểm $M(0;-1;2) \in d$.

Đường thẳng Δ qua M và vuông góc với $\left(P\right)$ có phương trình $\begin{cases} x=t\\ y=-1+t \ .\\ z=2+t \end{cases}$

$$\Delta \cap (P) = H \Rightarrow H\left(\frac{2}{3}; -\frac{1}{3}; \frac{8}{3}\right).$$

M' đối xứng với M qua $(P) \Leftrightarrow H$ là trung điểm của $MM' \Rightarrow M' \left(\frac{4}{3}; \frac{1}{3}; \frac{10}{3}\right)$.

+ Đường thẳng d' đối xứng với d qua mặt phẳng (P)

 $\Rightarrow d' \text{ di qua } I(1;1;1) \text{ và } M'\left(\frac{4}{3};\frac{1}{3};\frac{10}{3}\right) \text{ có vector chỉ phương } \overrightarrow{IM'} = \left(\frac{1}{3};-\frac{2}{3};\frac{7}{3}\right) = \frac{1}{3}(1;-2;7),$ phương trình d' là $\frac{x-1}{1} = \frac{y-1}{-2} = \frac{z-1}{7}$.

Câu 77. Trong không gian Oxyz, cho đường thẳng $d:\begin{cases} x=1+3t\\ y=-3 \end{cases}$. Gọi Δ là đường thẳng đi qua điểm z=5+4t

A(1;-3;5) và có vecto chỉ phương $\vec{u}(1;2;-2)$. Đường phân giác của góc nhọn tạo bởi d và Δ có phương trình là

A.
$$\begin{cases} x = -1 + 2t \\ y = 2 - 5t \\ z = 6 + 11t \end{cases}$$
 B.
$$\begin{cases} x = -1 + 2t \\ y = 2 - 5t \\ z = -6 + 11t \end{cases}$$
 C.
$$\begin{cases} x = 1 + 7t \\ y = -3 + 5t \\ z = 5 + t \end{cases}$$
 D.
$$\begin{cases} x = 1 - t \\ y = -3 \\ z = 5 + 7t \end{cases}$$

Lời giải

Chon B

Ta có điểm A(1;-3;5) thuộc đường thẳng d, nên A(1;-3;5) là giao điểm của d và Δ .

Một vecto chỉ phương của đường thẳng d là $\vec{v}(-3;0;-4)$. Ta xét:

$$\vec{u}_1 = \frac{1}{|\vec{u}|} \cdot \vec{u} = \frac{1}{3} (1;2;-2) = \left(\frac{1}{3}; \frac{2}{3}; -\frac{2}{3}\right);$$

$$\vec{v_1} = \frac{1}{|\vec{v}|} \cdot \vec{v} = \frac{1}{5} (-3; 0; -4) = \left(-\frac{3}{5}; 0; -\frac{4}{5} \right).$$

Nhận thấy $\overrightarrow{u_1}.\overrightarrow{v_1} > 0$, nên góc tạo bởi hai vecto $\overrightarrow{u_1}$, $\overrightarrow{v_1}$ là góc nhọn tạo bởi d và Δ .

Ta có $\vec{w} = \vec{u_1} + \vec{v_1} = \left(-\frac{4}{15}; \frac{10}{15}; -\frac{22}{15}\right) = -\frac{15}{2}(2; -5; 11)$ là vecto chỉ phương của đường phân giác

của góc nhọn tạo bởi d và Δ hay đường phân giác của góc nhọn tạo bởi d và Δ có vecto chỉ

phương là
$$\overrightarrow{w}_1 = (2; -5; 11)$$
. Do đó có phương trình:
$$\begin{cases} x = -1 + 2t \\ y = 2 - 5t \\ z = -6 + 11t \end{cases}$$

Ninh Bình-Bac Liêu-2019) Trong không gian Oxyz, cho mặt phẳng Câu 78. (THPT

$$(P): 2x-y+z-10=0$$
, điểm $A(1;3;2)$ và đường thẳng $d: \begin{cases} x=-2+2t \\ y=1+t \end{cases}$. Tìm phương trình $z=1-t$

đường thẳng Δ cắt (P) và d lần lượt tại hai điểm M và N sao cho A là trung điểm của đoạn MN.

A.
$$\frac{x+6}{7} = \frac{y+1}{4} = \frac{z-3}{-1}$$
. **B.** $\frac{x-6}{7} = \frac{y-1}{4} = \frac{z+3}{-1}$.

C.
$$\frac{x-6}{7} = \frac{y-1}{-4} = \frac{z+3}{-1}$$
. D. $\frac{x+6}{7} = \frac{y+1}{-4} = \frac{z-3}{-1}$.

Lời giải

Chọn A

Theo giả thiết: $N \in d \Rightarrow N(2t-2;t+1;1-t)$.

Mà A là trung điểm $MN \Rightarrow M(4-2t;5-t;3+t)$.

Mặt khác,
$$M \in (P) \Leftrightarrow 2(4-2t)-(5-t)+(3+t)-10=0 \Leftrightarrow t=-2$$
.

$$\Rightarrow N(-6;-1;3) \Rightarrow \overrightarrow{NA} = (7;4;-1).$$

Đường thẳng Δ đi qua N(-6;-1;3) và có một VTCP là $\vec{u} = \overrightarrow{NA} = (7;4;-1)$ nên có phương trình chính tắc là: $\frac{x+6}{7} = \frac{y+1}{4} = \frac{z-3}{1}$.

Câu 79. (Chuyên Bắc Giang 2019) Trong không gian với hệ tọa độ Oxyz viết phương trình đường thẳng giao tuyến của hai mặt phẳng (α) : x+3y-z+1=0, (β) : 2x-y+z-7=0.

A.
$$\frac{x+2}{2} = \frac{y}{-3} = \frac{z+3}{-7}$$
 B. $\frac{x-2}{2} = \frac{y}{3} = \frac{z-3}{-7}$

B.
$$\frac{x-2}{2} = \frac{y}{3} = \frac{z-3}{-7}$$

C.
$$\frac{x}{-2} = \frac{y-3}{-3} = \frac{z-10}{7}$$
 D. $\frac{x-2}{-2} = \frac{y}{3} = \frac{z-3}{7}$

D.
$$\frac{x-2}{-2} = \frac{y}{3} = \frac{z-3}{7}$$

Lời giải

Tọa độ các điểm thuộc giao tuyến d của hai mặt phẳng thỏa mãn hệ phương trình:

$$\begin{cases} x + 3y - z + 1 = 0 \\ 2x - y + z - 7 = 0 \end{cases}$$

Với
$$y = 0 \Rightarrow \begin{cases} x - z = -1 \\ 2x + z = 7 \end{cases} \Leftrightarrow \begin{cases} x = 2 \\ z = 3 \end{cases} \Rightarrow A(2;0;3) \in d$$

Với
$$y = 3 \Rightarrow \begin{cases} x - z = -10 \\ 2x + z = 10 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ z = 10 \end{cases} \Rightarrow B(0;3;10) \in d$$
.

Vậy đường thẳng d đi qua A(2;0;3) và nhận $\overrightarrow{AB} = (-2;3;7)$ làm vecto chỉ phương có phương trình chính tắc là: $\frac{x-2}{2} = \frac{y}{2} = \frac{z-3}{7}$.

- Đường thẳng Δ là giao tuyến của 2 mặt phẳng: x+z-5=0 và x-2y-z+3=0 thì có phương Câu 80. trình là
 - **A.** $\frac{x+2}{1} = \frac{y+1}{3} = \frac{z}{1}$ **B.** $\frac{x+2}{1} = \frac{y+1}{2} = \frac{z}{1}$
- - <u>C</u>. $\frac{x-2}{1} = \frac{y-1}{1} = \frac{z-3}{1}$ D. $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z-3}{1}$

Lời giải

$$(P): x+z-5=0$$
 có 1 vtpt $\overrightarrow{n_1}=(1;0;1)$

$$(Q): x-2y-z+3=0$$
 có 1 vtpt $\overrightarrow{n_2} = (1;-2;-1)$

Gọi Δ là giao tuyến của 2 mặt phẳng thì Δ có 1 vtcp $\vec{u} = \left[\overrightarrow{n_1}, \overrightarrow{n_2} \right] = (2; 2; -2)$.

- (Chuyên KHTN 2019) Trong không gian với hệ tọa độ Oxyz, gọi (α) là mặt phẳng chứa đường Câu 81. thẳng $(d): \frac{x-2}{1} = \frac{y-3}{1} = \frac{z}{2}$ và vuông góc với mặt phẳng $(\beta): x+y-2z+1=0$. Hỏi giao tuyến của (α) và (β) đi qua điểm nào?
 - **A.** (0;1;3).
- **B**. (2;3;3).
- C.(5;6;8)
- **D.** (1;-2;0)

Lời giải

 $\overrightarrow{u_d}(1;1;2)$ là một VTCP của đường thẳng đ

$$\overrightarrow{n_{\beta}}(1;1;-2)$$
 là một VTPT của (β)

$$\Rightarrow \overrightarrow{n_{\alpha}} = \left[\overrightarrow{u_{d}}; \overrightarrow{n_{\beta}}\right] = (-4; 4; 0)$$

$$A(2;3;0) \in d \Rightarrow A \in (\alpha)$$

Phương trình mặt phẳng

$$(\alpha): -4(x-2)+4(y-3)+0(z-0)=0 \Leftrightarrow -4x+4y-4=0 \Leftrightarrow x-y+1=0$$

Giả sử
$$M(x; y; z) \in (\alpha) \cap (\beta)$$
. Khi đó tọa độ M thỏa mãn hệ
$$\begin{cases} x-y+1=0 \\ x+y-2z+1=0 \end{cases}$$

Thay các đáp án vào hệ trên ta thấy M(2;3;3) thỏa mãn. Chọn đáp án B

(Chuyên Nguyễn Trãi Hải Dương 2019) Đường thẳng Δ là giao của hai mặt phẳng Câu 82. x+z-5=0 và x-2y-z+3=0 thì có phương trình là

A.
$$\frac{x+2}{1} = \frac{y+1}{3} = \frac{z}{-1}$$
.

A.
$$\frac{x+2}{1} = \frac{y+1}{3} = \frac{z}{-1}$$
. **B.** $\frac{x+2}{1} = \frac{y+1}{2} = \frac{z}{-1}$.

$$\underline{\mathbf{C}} \cdot \frac{x-2}{1} = \frac{y-1}{1} = \frac{z-3}{-1} \cdot \mathbf{D} \cdot \frac{x-2}{1} = \frac{y-1}{2} = \frac{z-3}{-1} \cdot$$

$$(P)$$
: $x+z-5=0$ có vecto pháp tuyến $\overrightarrow{n_1} = (1;0;1)$.

(Q):
$$x-2y-z+3=0$$
 có vecto pháp tuyến $\overrightarrow{n_2}=(1;-2;-1)$.

Ta có:
$$[\vec{n}_1, \vec{n}_2] = (2; 2; -2).$$

Gọi \vec{u} là một vecto chỉ phương của Δ , thì $\vec{u} \perp \overrightarrow{n_1}$ và $\vec{u} \perp \overrightarrow{n_2}$.

Suy ra \vec{u} cùng phương với $[\vec{n}_1, \vec{n}_2]$. Chọn $\vec{u} = (1;1;-1)$.

Lấy M(2;1;3) thuộc mặt phẳng (P) và (Q).

Đường thẳng Δ đi qua M(2;1;3) có một vécto chỉ phương $\vec{u} = (1;1;-1)$.

Vậy phương trình Δ là: $\frac{x-2}{1} = \frac{y-1}{1} = \frac{z-3}{-1}$.

Câu 83. (**Mã 105 2017**) Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d: $\begin{cases} x = 2 + 3t \\ y = -3 + t \text{ và} \\ z = 4 - 2t \end{cases}$

 $d': \frac{x-4}{3} = \frac{y+1}{1} = \frac{z}{-2}$. Phương trình nào dưới đây là phương trình đường thẳng thuộc mặt phẳng chứa d và d', đồng thời cách đều hai đường thẳng đó.

A.
$$\frac{x-3}{3} = \frac{y+2}{1} = \frac{z-2}{-2}$$
 B. $\frac{x+3}{3} = \frac{y+2}{1} = \frac{z+2}{-2}$

C.
$$\frac{x-3}{3} = \frac{y-2}{1} = \frac{z-2}{-2}$$
 D. $\frac{x+3}{3} = \frac{y-2}{1} = \frac{z+2}{-2}$

Lời giải

Chọn D

Ta thấy hai đường thẳng d và d' có cùng vécto chỉ phương hay d//d'

Vậy đường thẳng cần tìm có véctơ chỉ phương là $\vec{u} = (3;1;-2)$ và đi qua trung điểm I(3;-2;2)

của
$$AB$$
 với $A(2;-3;4) \in d$ và $B(4;-1;0) \in d'$

Vậy phương trình đường thẳng cần tìm là $\frac{x-3}{3} = \frac{y+2}{1} = \frac{z-2}{-2}$.

Câu 84. (THPT Nghen - Hà Tĩnh - 2018) Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng

$$d: \begin{cases} x = 2 - t \\ y = 1 + 2t \text{ và } d': \frac{x - 4}{1} = \frac{y + 1}{-2} = \frac{z}{2}. \text{ Phương trình nào dưới đây là phương trình đường thẳng} \\ z = 4 - 2t \end{cases}$$

thuộc mặt phẳng chứa d và d' đồng thời cách đều hai đường thẳng đó.

A.
$$\frac{x-2}{3} = \frac{y-1}{1} = \frac{z-4}{-2}$$
. **B.** $\frac{x+3}{1} = \frac{y+2}{-2} = \frac{z+2}{2}$.

C.
$$\frac{x-3}{1} = \frac{y}{-2} = \frac{z-2}{2}$$
. **D.** $\frac{x+3}{-1} = \frac{y-2}{2} = \frac{z+2}{-2}$.

Lời giải

d đi qua A(2;1;4) và có véc tơ chỉ phương $\overrightarrow{u_1} = (-1;2;-2)$.

d' đi qua $B\left(4;-1;0\right)$ có véc tơ chỉ phương $\overrightarrow{u_2}=\left(1;-2;2\right)$.

Ta có
$$\vec{u_1} = -\vec{u_2}$$
 và $\frac{2-4}{1} \neq \frac{1+1}{-2} \neq \frac{4}{2}$ nên $d//d'$.

Đường thẳng Δ thuộc mặt phẳng chứa d và d' đồng thời cách đều hai đường thẳng đó khi và chỉ khi $\begin{cases} \Delta //d //d' \\ d\left(\Delta,d\right) = d\left(\Delta,d'\right) \end{cases}$ hay Δ qua trung điểm $I\left(3;0;2\right)$ và có một véc tơ chỉ phương là

$$\vec{u} = (1; -2; 2)$$
. Khi đó phương trình của $\Delta : \frac{x-3}{1} = \frac{y}{-2} = \frac{z-2}{2}$.

Câu 85. (**Toán Học Tuổi Trẻ 2019**) Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d và mặt phẳng (P) lần lượt có phương trình $\frac{x+1}{2} = \frac{y}{1} = \frac{z-2}{1}$ và x+y-2z+8=0, điểm A(2;-1;3). Phương trình đường thẳng Δ cắt d và (P) lần lượt tại M và N sao cho A là trung điểm của đoạn thẳng MN là:

A.
$$\frac{x+1}{3} = \frac{y+5}{4} = \frac{z-5}{2}$$

B.
$$\frac{x-2}{6} = \frac{y+1}{1} = \frac{z-3}{2}$$

C.
$$\frac{x-5}{6} = \frac{y-3}{1} = \frac{z-5}{2}$$

D.
$$\frac{x-5}{3} = \frac{y-3}{4} = \frac{z-5}{2}$$

Lời giải

Đường thẳng d có phương trình tham số: $\begin{cases} x = -1 + 2t \\ y = t \\ z = 2 + t \end{cases}$

Điểm M thuộc đường thẳng d nên M(-1+2t;t;2+t).

$$A(2;-1;3)$$

$$\begin{cases} x_N = 2x_A - x_M = 5 - 2t \\ y_N = 2y_A - y_M = -2 - t \Rightarrow N(5 - 2t; -2 - t; 4 - t) \\ z_N = 2z_A - z_M = 4 - t \end{cases}$$

Mặt khác điểm $N \in (P)$ nên: $5-2t-2-t-8+2t+8=0 \Leftrightarrow t=3$

Suy ra: M(5;3;5).

Đường thẳng Δ có véc tơ chỉ phương $\overline{AM}(3;4;2)$ và đi qua điểm M(5;3;5) nên có phương trình: $\frac{x-5}{3} = \frac{y-3}{4} = \frac{z-5}{2}$

BẠN HỌC THAM KHẢO THÊM DẠNG CÂU KHÁC TẠI

https://drive.google.com/drive/folders/15DX-hbY5paR0iUmcs4RU1DkA1-7QpKlG?usp=sharing

Theo dõi Fanpage: Nguyễn Bảo Vương Fhttps://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương 🎔 https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỆU TOÁN) * https://www.facebook.com/groups/703546230477890/

Ân sub kênh Youtube: Nguyễn Vương

* https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view_as=subscriber

Tải nhiều tài liệu hơn tại: http://diendangiaovientoan.vn/

ĐỂ NHẬN TÀI LIỆU SỚM NHẤT NHÉ!