Transistores – "substitutos" das válvulas termoiônicas

Transistores

- Dispositivos formados por junções PN
- •Atuam como chaves ou elementos de amplificação
- •Corrente no terminal de base controla o fluxo de corrente na junção emissor-coletor

Polarização Direta

Na polarização direta: **VBE** = 0,7 V

VCB > 0,7 V

Polarização Reversa

Na polarização reversa: as junções se comportam como diodos comuns sofrendo uma alargamento da largura das camadas de depleções.

Polarização Direta-Reversa

- •Pequena corrente de **E** para **B**
- •Forte corrente de emissor para coletor fontes **VBE e VCB** ligadas em série, forçando assim a circulação de corrente de **E** para **C**.
- •Cerca de 95% da corrente injetada no emissor fluem em direção ao coletor, e apenas 5% da corrente de emissor flui em direção à base. A relação entre a corrente de coletor e a corrente de emissor é conhecida por **αcc**.

Cálculo de acc

Qcc = Ic / Ie

Exemplo:

Um transistor tem uma corrente de coletor (IC) de 4,1 mA e uma corrente de emissor (IE) de 5mA. Pede-se determinar qual sua α CC. Quanto mais próximo o α CC for próximo de "1",mais fina será a região de base.

$$\alpha_{CC} = \frac{I_C}{I_E} = \frac{4,59 \text{ mA}}{5 \text{ mA}} = 0,98$$

Cálculo de Scc

- •BETA CC (βCC): relação entre a corrente de coletor e a corrente de base
- •Muito utilizado nos cálculos de polarização em todas as regiões de operação.
- •Um exemplo claro da utilidade do βCC é a determinação da corrente de base de um transistor, quando pelo coletor flui uma determinada corrente.

$$\beta_{CC} = \frac{I_C}{I_B}$$

Exemplo:

Se em um transistor se mede uma corrente de coletor de 5 mA qual deverá ser sua corrente de base se seu $\beta CC = 100$.

$$I_{B} = \frac{I_{C}}{\beta_{CC}} = \frac{5 \text{ mA}}{100} = 50 \text{ }\mu\text{A}$$

Simbologias

Observações:

- 1) le = lc + lb
- 2) le é aproximadamente igual à lc
- 3) lb <<< le ou lb

Corte e saturação...

Observações:

- 1) le = lc + lb
- 2) le é aproximadamente igual à lc
- 3) lb <<< le ou lb

Atuação como chave...

$$V_{CC} = 30 \text{ V}$$

A equação de malha de base é :

$$I_{LED} = 20 \text{ mA}$$

$$V_{CEsat} = 0 V$$

$$V_{BB} = 7 V$$

$$V_{BE} = 0.7 V$$

$$V_{BB} = V_{RB} + V_{BE}$$

$$V_{BB} = 7 V$$
 $V_{BE} = 0.7 V$
 $R_{B} = \frac{V_{BB} - V_{BE}}{I_{B}}$

$$I_C = 10.I_B$$

$$R_B = \frac{7 - 0.7}{2 \text{ mA}} = 3150 \ \Omega \cong 3K3 \text{ (valor comercial)}$$

Então $I_B = 2,0 \text{ mA}$.

$$V_{CC} = V_{RC} + V_{LED} + V_{CEsat}$$

$$V_{CC} = R_C \cdot I_C + 2.0 \text{ V} + 0 \text{ V}$$

$$R_c = \frac{30-2}{20 \text{ mA}} = 1400 \ \Omega \cong 1 \text{K5} \text{ (valor comercial)}$$

Emissor Comum

Os circuitos emissor comum são utilizados para amplificar sinais de baixa voltagem, como os sinais de rádios fracos captados por uma antena, para amplificação de um sinal de áudio ou vídeo

- •Médias impedâncias de entrada e de saída (entre $10K\Omega$ e $100K\Omega$)
- •Aplificação de corrente varia de 10 a 100 vezes
- •Amplificação de tensão varia de 100 a 1000 vezes
- •Defasagem de 180 graus entre as tensões de entrada e de saída

Coletor Comum

Exemplo de uso: circuitos de saída de amplificadores

Características de um amplificador com transístor em colector comum:

- IMPEDÂNCIA DE ENTRADA: de 100KΩ a 1MΩ .
- IMPEDÂNCIA DE SAÍDA: de 50Ω a 5000Ω .
- AMPLIFICAÇÃO DE CORRENTE: de 10 a 100 vezes.
- AMPLIFICAÇÃO DE TENSÃO: é menor do que 1. Neste tipo de amplificador não há amplificação de tensão.
- AMPLIFICAÇÃO DE POTÊNCIA: de 10 a 100 vezes.
- RELAÇÃO DE FASE: não há desfasamento entre a tensão do sinal de saída e a tensão do sinal de entrada.

Base Comum

Exemplo de uso: préamplificadores de microfones, amplificadores de VHF e UHF...

- •Características de um amplificador com transístor em base comum:
 - IMPEDÂNCIA DE ENTRADA: entre 10Ω e 100Ω .
 - IMPEDÂNCIA DE SAÍDA: entre 100 K Ω e 1M Ω .
 - AMPLIFICAÇÃO DE CORRENTE: é um pouco inferior à unidade (entre 0,95 e 0,99).Portanto, neste tipo de circuito não há amplificação de corrente.
 - AMPLIFICAÇÃO DE TENSÃO: entre 500 e 5.000 vezes.
 - AMPLIFICAÇÃO DE POTÊNCIA: entre 100 e 1.000 vezes.
 - RELAÇÃO DE FASE: não há desfasamento entre a tensão do sinal de saída e a tensão do sinal de entrada.

Encapsulamentos...

Encapsulamentos...

Exemplo de circuitos 1

Exemplo de circuitos 2

Exemplo de circuitos 3

