第4讲 并行计算模型及性能评估

- 1. 并行计算机模型有哪些,分别阐述优缺点
- 2. 使用 40MHZ 主频的标量处理器执行一个典型测试程序,其所执行的指令数及所需的周期数如表所示。试计算执行该程序的有效 CPI、MIPS 速率及总的 CPU 执行时间。

指令类型	指令数	时钟周期数
整数算术	45,000	1
数据传送	32,000	2
浮点	15,000	2
控制转移	8,000	2

- 3. 根据表所给出的数据:
 - ①分别计算 Berkeley Now、Intel Paragon 和 Cray C90 的性能/价格比;
 - ②你能由此得出什么结论吗?

三种机器求解某应用常微分方程时的运行一览表

机器系统	处理器数	计算时间	通信时间	I/O 时间	总时间	价格
		(s)	(s)	(s)	(s)	(s)
Cray C90	16	7	4	16	27	30
Intel Paragon	256	12	24	10	46	10
Now +Ethernet	256(RS6000)	4	23340	4030	27340	4
NOW+ATM+PIO+AM	256(RS6000)	4	8	10	21	5

- 4. 一个 p 个处理器上的并行程序的加速比是 p-1,根据 Amdahl 定律,串行分量为多少?
- 5. 在 Amdahl 定律的假设条件下,对于一个固定问题,随着使用的处理器数目 p 的增加,是否可以达到常数效率?为什么?
- 6. 若对于一个固定问题,随着使用的处理器数目 p 增加,效率为常数,根据 Amdahl 定律 串行分量 s (可以表示成 p 的函数) 为多少?
- 7. 什么是加速比(speed up)、并行效率(efficiency)和可扩展性(scalability)?如何描述在不同约束下的加速比?
- 8. 对于一个在给定并行体系结构上解决给定问题的并行算法,若下面的条件变化时,并行效率是增加还是减少?若其他的独立参数是固定的。

处理器数目增加

问题规模增加

通讯带宽增加

通讯延迟增加

处理器的计算速度增加

通讯步之间的计算量增加

通讯端口增加,每个处理器可以同时通讯

- 9. 若对于一个时间受限的问题,随着使用的处理器数目 p 增加,效率为常数 E,根据 Gustafson 定律串行分量 f (可以表示成 p 的函数) 为多少?
 - A. (1-E)/(E(p-1))
 - B. p(1-E)/(p-1)

- C. (p-1)/E
- D. 1/(1+E(p-1))
- 10. 比较并行计算模型 PRAM、BSP 和 logP。评述它们的差别、相对优点以及在模型化真实并行计算机和应用时的局限性。