

Projet Diapason

Objectif de base:

Concevoir un diapason résonnant à une fréquence donnée (~12/20)

- Soient $\beta_1, ..., \beta_n$ des paramètres matériels,
 - Longueur / largeur des branches, espacement entre les branches, matériau, ...
- et $f_{\rm target}$ une fréquence imposée,
- trouver les paramètres tels que $f(\beta_1, ..., \beta_n) = f_{\text{target}}$

Idée d'amélioration:

Contrainte de taille (~8/20)

- Trouver le diapason
 - le plus petit,
 - le plus léger,
 - le moins encombrant,
 - •

```
min f(\beta)
s.t. f(\beta) = f_{target}
```

Idée d'amélioration:

Harmoniques

- Concevoir un diapason produisant des harmoniques (= multiples de la fréquence fondamentale)
- La note sera plus jolie :-)

Idée d'amélioration : à vous de jouer!

Visualisation (animation des modes propres)

Rapidité de vos algorithmes

Simulation temporelle

•

Attention: 2 types de modes!

Modes symétriques : Fondamentale + « Clang »

Modes asymétriques : Inaudibles !!

Modalités pratiques

• Groupes de 2

• Deadline : vendredi 19 mai (début du blocus)

Courte défense orale pendant l'examen

 Les 10 premiers groupes ayant une géométrie valide avant le 1er mai pourront « imprimer » leur diapason au MakiLab!