THEREFORE, WE CLAIM:

1. A compound represented by the structural formula (I):

$$Q^{1} \qquad Q^{2} \qquad Q^{3} \qquad Q^{3} \qquad Q^{4} \qquad Q^{5} \qquad Q^{5} \qquad Q^{4} \qquad Q^{4$$

or pharmaceutically acceptable isomers, salts, solvates or esters of the compound of Formula (I),

wherein in Formula (I) above:

5

10

20

25

X, Y and Z can be the same or different and each is independently selected from the group consisting of $-CH_2-$, -CH(alkyl)- and $-C(alkyl)_2-$;

 Q^1 and Q^2 can be the same or different and each is independently selected from the group consisting of H, -(C₀-C₃₀ alkylene)-G, -OR⁶, -OC(O)R⁶, -OC(O)OR⁹, -OC(O)NR⁶R⁷, and -L-M;

 Q^3 is 1 to 5 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, -(C_0 - C_{30} alkylene)-G, -(C_0 - C_{10} alkylene)-OR⁶,

-(C_0 - C_{10} alkylene)- $C(O)R^6$, -(C_0 - C_{10} alkylene)- $C(O)OR^6$, -(C_0 - C_{10} alkylene)- $OC(O)R^6$, -(C_0 - C_{10} alkylene)- $OC(O)OR^9$, -CH=CH- $C(O)R^6$, -CH=CH- $C(O)OR^6$,

-C \equiv C-C(O)OR⁶, -C \equiv C-C(O)R⁶, -O-(C₁-C₁₀ alkylene)-OR⁶,

-O-(C₁-C₁₀ alkylene)-C(O)R 6 , -O-(C₁-C₁₀ alkylene)-C(O)OR 6 , -CN,

 $-O-(C_1-C_{10} \text{ alkylene})-C(O) NR^6 R^7, -O-(C_0-C_{10} \text{ alkylene})-C(O) NR^6 NR^7 C(O) OR^6, -O-(C_0-C_{10} \text{ alkylene})-C(O) R^6 R^7 C(O) R^7 C(O)$

-O-(C₁-C₁₀ alkylene)-C(O)(aryl)-N-N=N⁻, -OC(O)-(C₁-C₁₀ alkylene)-C(O)OR⁶,

 $-(C_0-C_{10} \text{ alkylene})-C(O)NR^6R^7$, $-(C_0-C_{10} \text{ alkylene})-OC(O)NR^6R^7$, $-NO_2$,

 $-(C_0-C_{10} \text{ alkylene})-NR^6R^7$, $-O-(C_2-C_{10} \text{ alkylene})-NR^6R^7$, $-NR^6C(O)R^7$, $-NR^6C(O)OR^9$,

 $-NR^{6}C(O)NR^{7}R^{8}$, $-NR^{6}S(O)_{0-2}R^{9}$, $-N(S(O)_{0-2}R^{9})_{2}$, $-CHNOR^{6}$, $-C(O)NR^{6}R^{7}$,

 $-C(O)NR^6NR^6R^7$, $-S(O)_{0-2}NR^6R^7$, $-S(O)_{0-2}R^9$, $-O-C(O)-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7$,

-OC(O)-(C₁-C₁₀ alkylene)-NR⁶C(O)O-(alkylaryl), -P(O)(OR¹⁰)₂,

-(C₁-C₁₀ alkylene)-OSi(alkyl)₃, -CF₃, -OCF₃, halo, alkoxyalkoxy, alkoxyalkoxyalkoxy, alkoxyarylalkoxy, alkoxyiminoalkyl, alkyldioyl, allyloxy, aryl, arylalkyl, aryloxy, arylalkoxy, aroyloxy, aroyloxy, aroyloxy, arylalkoxycarbonyl, benzoylbenzoyloxy, heteroaryl, heteroarylalkyl, heteroarylalkoxy, dioxolanyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, heterocyclylcarbonylalkoxy and -L-M;

5

25

Q⁴ is 1 to 5 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, -(C₀-C₃₀ alkylene)-G, -(C₀-C₁₀ alkylene)-OR⁶, $-(C_0-C_{10} \text{ alkylene})-C(O)R^6$, $-(C_0-C_{10} \text{ alkylene})-C(O)OR^6$, $-(C_0-C_{10} \text{ alkylene})-OC(O)R^6$, $-(C_0-C_{10} \text{ alkylene})-OC(O)OR^9$, $-CH=CH-C(O)R^6$, $-CH=CH-C(O)OR^6$, 10 -C \equiv C-C(O)OR⁶. -C \equiv C-C(O)R⁶, -O-(C₁-C₁₀ alkylene)-OR⁶, $-O-(C_1-C_{10} \text{ alkylene})-C(O)R^6$, $-O-(C_1-C_{10} \text{ alkylene})-C(O)OR^6$, -CN, $-O-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7$, $-O-(C_0-C_{10} \text{ alkylene})-C(O)NR^6NR^7C(O)OR^6$, $-O-(C_1-C_{10} \text{ alkylene})-C(O)(\text{aryl})-N-N=N^-, \ -OC(O)-(C_1-C_{10} \text{ alkylene})-C(O)OR^6,$ -(C₀-C₁₀ alkylene)-C(O)NR⁶R⁷, -(C₀-C₁₀ alkylene)-OC(O)NR⁶R⁷, -NO₂, 15 $-(C_0-C_{10} \text{ alkylene})-NR^6R^7$, $-O-(C_2-C_{10} \text{ alkylene})-NR^6R^7$, $-NR^6C(O)R^7$, $-NR^6C(O)OR^9$, $-NR^6C(O)NR^7R^8$, $-NR^6S(O)_{0-2}R^9$, $-N(S(O)_{0-2}R^9)_2$, $-CHNOR^6$, $-C(O)NR^6R^7$, $-C(O)NR^6NR^6R^7$, $-S(O)_{0.2}NR^6R^7$, $-S(O)_{0.2}R^9$, $-O-C(O)-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7$, $-OC(O)-(C_1-C_{10} \text{ alkylene})-NR^6C(O)O-(\text{alkylaryl}), -P(O)(OR^{10})_2$, -(C₁-C₁₀ alkylene)-OSi(alkyl)₃ -CF₃, -OCF₃, halo, alkoxyalkoxy, alkoxyalkoxyalkoxy, 20

-(C₁-C₁₀ alkylene)-OSi(alkyl)₃, -CF₃, -OCF₃, halo, alkoxyalkoxy, alkoxyalkoxyalkoxy, alkoxyarbonylalkoxy, alkoxyarylalkoxy, alkoxyiminoalkyl, alkyldioyl, allyloxy, aryl, arylalkyl, aryloxy, arylalkoxy, aroyl, aroyloxy, aroylaroyloxy, arylalkoxycarbonyl, benzoylbenzoyloxy, heteroaryl, heteroarylalkyl, heteroarylalkoxy, dioxolanyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, heterocyclylcarbonylalkoxy and -L-M;

 Q^5 is 1 to 5 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, -(C₀-C₃₀ alkylene)-G, -(C₀-C₁₀ alkylene)-OR⁶, -(C₀-C₁₀ alkylene)-C(O)R⁶, -(C₀-C₁₀ alkylene)-OC(O)R⁶,

 $-(C_0-C_{10} \text{ alkylene})-OC(O)OR^9$, $-CH=CH-C(O)R^6$, $-CH=CH-C(O)OR^6$ $-C = C-C(O)OR^6$ $-C = C-C(O)R^6$ $-O-(C_1-C_{10} \text{ alkylene})-OR^6$ $-O-(C_1-C_{10} \text{ alkylene})-C(O)R^6$, $-O-(C_1-C_{10} \text{ alkylene})-C(O)OR^6$, -CN, $-O-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7$, $-O-(C_0-C_{10} \text{ alkylene})-C(O)NR^6NR^7C(O)OR^6$, -O-(C_1 - C_{10} alkylene)-C(O)(aryl)-N-N=N⁻, -OC(O)-(C_1 - C_{10} alkylene)-C(O)OR⁶, $-(C_0-C_{10} \text{ alkylene})-C(O)NR^6R^7$, $-(C_0-C_{10} \text{ alkylene})-OC(O)NR^6R^7$, $-NO_2$, $-(C_0-C_{10} \text{ alkylene})-NR^6R^7$, $-O-(C_2-C_{10} \text{ alkylene})-NR^6R^7$, $-NR^6C(O)R^7$, $-NR^6C(O)OR^9$, $-NR^{6}C(O)NR^{7}R^{8}$, $-NR^{6}S(O)_{0.2}R^{9}$, $-N(S(O)_{0.2}R^{9})_{2}$, $-CHNOR^{6}$, $-C(O)NR^{6}R^{7}$, $-C(O)NR^6NR^6R^7$, $-S(O)_{0.2}NR^6R^7$, $-S(O)_{0.2}R^9$, $-O-C(O)-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7$, $-OC(O)-(C_1-C_{10} \ alkylene)-NR^6C(O)O-(alkylaryl), \ -P(O)(OR^{10})_2,\\$ -(C₁-C₁₀ alkylene)-OSi(alkyl)₃, -CF₃, -OCF₃, halo, alkoxyalkoxy, alkoxyalkoxyalkoxy, alkoxycarbonylalkoxy, alkoxyarylalkoxy, alkoxyiminoalkyl, alkyldioyl, allyloxy, aryl, arylalkyl, aryloxy, arylalkoxy, aroyl, aroyloxy, aroylaroyloxy, arylalkoxycarbonyl, benzoylbenzoyloxy, heteroaryl, heteroarylalkyl, heteroarylalkoxy, dioxolanyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, heterocyclylcarbonylalkoxy and -L-M:

wherein optionally one or more carbon atoms of the $-(C_0-C_{30} \text{ alkylene})$ - radical of Q^1 , Q^2 , Q^3 , Q^4 and Q^5 is independently replaced by -O-, -C(O)-, -CH=CH-, -C=C-, -N(alkyl)-, -N(alkylaryl)- or -NH-;

G is selected from the group consisting of a sugar residue, disugar residue, trisugar residue, tetrasugar residue, sugar acid, amino sugar, amino acid residue, oligopeptide residue comprising 2 to 9 amino acids, trialkylammoniumalkyl radical and –S(O)₂-OH, wherein optionally the sugar residue, disugar residue, trisugar residue, tetrasugar residue, sugar acid, amino sugar, amino acid residue or oligopeptide residue of G is substituted with –L-M;

L is selected from the group consisting of

10

15

20

$$-\xi - O-C(O) - (O)C - \xi - \xi - O-C(O)-(CH_2)_{x1} - (O)C - \xi$$

$$\begin{array}{c} \cdot \xi \longrightarrow (CH_2)_{x2} \longrightarrow C(O) \longrightarrow \xi \quad \xi \longrightarrow (CH_2)_{x3} \longrightarrow (O)C \longrightarrow \xi \quad \xi \longrightarrow (CH_2)_{x4} \longrightarrow (CH_2)_{x4} \longrightarrow (CH_2)_{x4} \longrightarrow (CH_2)_{x4} \longrightarrow (CH_2)_{x4} \longrightarrow (CH_2)_{x4} \longrightarrow (CH_2)_{x5} \longrightarrow$$

5 wherein Me is methyl;

M is selected from the group of moieties consisting of

pharmaceutically acceptable salts of the moieties (M1) to (M9) and free acids of the moieties (M1) to (M9);

R² and R³ can be the same or different and each is independently selected from the group consisting of hydrogen, alkyl and aryl;

 R^6 , R^7 and R^8 can be the same or different and each is independently selected from the group consisting of hydrogen, alkyl, aryl and arylalkyl; and

each R^9 is independently alkyl, aryl or arylalkyl. each R^{10} is independently H or alkyl; q is 0 or 1;

5

r is 0 or 1;

m, n and p are independently selected from 0, 1, 2, 3 or 4; provided that at least one of q and r is 1, and the sum of m, n, p, q and r is 1, 2, 3, 4, 5 or 6; and provided that when p is 0 and r is 1, the sum of m, q and n is 1, 2, 3, 4 or 5;

x1 is 1 to 10;

5

10

15

25

x2 is 1 to 10;

x3 is 1 to 10;

x4 is 1 to 10;

x5 is 1 to 10;

x6 is 1 to 10;

x7 is 1 to 10;

x8 is 1 to 10;

x9 is 1 to 10:

x10 is 1 to 10; and

x11 is 1 to 10;

with the proviso that at least one of Q¹, Q², Q³, Q⁴ and Q⁵ is –L-M or the sugar residue, disugar residue, trisugar residue, tetrasugar residue, sugar acid, amino sugar, amino acid residue or oligopeptide residue of G is substituted with –L-M.

- 2. The compound according to claim 1, wherein m, n and r are each zero, q is 1, p is 2, and Z is -CH₂-.
 - 3. The compound according to claim 1, wherein m, n and r are each zero, q is 1, p is 2, and Z is $-CH_2$, Q^1 is $-OR^6$, wherein R^6 is hydrogen and Q^5 is fluorine.
 - 4. The compound according to claim 1, wherein R² and R³ are each preferably hydrogen.
- 5. The compound according to claim 1, wherein Q¹ and Q² are each independently selected from the group consisting of -OR⁶, -O(CO)R⁶, -O(CO)OR⁹ and -O(CO)NR⁶R⁷.

- 6. The compound according to claim 1, wherein Q⁴ is halo or -OR⁶.
- 7. The compound according to claim 1, wherein Q^1 is $-OR^6$ wherein R^6 is 5. H.
 - 8. The compound according to claim 1, wherein Q¹, Q², Q³, Q⁴ or Q⁵ is–L-M.
- 10 9. The compound according to claim 1, wherein Q^1 , Q^2 , Q^3 , Q^4 or Q^5 is -(C₀-C₃₀ alkylene)-G.
 - 10. The compound according to claim 1, wherein G is selected from the group consisting of:

$$R^{38}O$$
 OR^{48} $R^{38}O$ OR^{48} OR^{58} OR^{58} OR^{58} OR^{58} OR^{48} OR^{58} OR^{48} OR^{58} OR^{48} $OR^{$

15

20

wherein R, R^a and R^b can be the same or different and each is independently selected from the group consisting of H, -OH, halo, -NH₂, azido, alkoxyalkoxy or -W-R³⁰;

W is independently selected from the group consisting of -NH-C(O)-, -O-C(O)-, -O-C(O)-N(R 31)-, -NH-C(O)-N(R 31)- and -O-C(S)-N(R 31)-;

R^{2a} and R^{6a} can be the same or different and each is independently selected from the group consisting of H, alkyl, acetyl, aryl and arylalkyl;

 R^{3a} , R^{4a} , R^{5a} , R^{7a} , R^{3b} and R^{4b} can be the same or different and each is independently selected from the group consisting of H, alkyl, acetyl, arylalkyl, - C(O)alkyl and -C(O)aryl;

 R^{30} is independently selected from the group consisting of R^{32} -substituted T, R^{32} -substituted-T-alkyl, R^{32} -substituted-alkenyl, R^{32} -substituted-alkyl, R^{32} -substituted-cycloalkyl and R^{32} -substituted-cycloalkylalkyl;

5

10

15

20

 ${\sf R}^{31}$ is independently selected from the group consisting of H and alkyl;

T is independently selected from the group consisting of phenyl, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl and pyridyl;

R³² is 1 to 3 substituents which are each independently selected from the group consisting of H, halo, alkyl, -OH, phenoxy, -CF₃, -NO₂, alkoxy, methylenedioxy, oxo, alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, -N(CH₃)₂, -C(O)-NHalkyl, -C(O)-N(alkyl)₂, -C(O)-alkyl, -C(O)-alkoxy and pyrrolidinylcarbonyl; or R³² is a covalent bond and R³¹, the nitrogen to which it is attached and R³² form a pyrrolidinyl, piperidinyl, N-methyl-piperazinyl, indolinyl or morpholinyl group, or a alkoxycarbonyl-substituted pyrrolidinyl, piperidinyl, N-methylpiperazinyl, indolinyl or morpholinyl group.

11. The compound according to claim 10, wherein G is selected from:

5 wherein Ac is acetyl and Ph is phenyl.

10

15

12. The compound according to claim 1, wherein optionally one or more carbon atoms of the $-(C_0-C_{30} \text{ alkylene})$ - radical of Q^1 , Q^2 , Q^3 , Q^4 and Q^5 is independently replaced by -O -.

15. The compound according to claim 1, wherein M is

(M1) or pharmaceutically acceptable salts thereof.

16 The compound according to claim 1, wherein M is

(M2) or pharmaceutically acceptable salts thereof.

17. The compound according to claim 1, wherein M is

(M3) or pharmaceutically acceptable salts

thereof.

18. The compound according to claim 1, wherein M is

19. The compound according to claim 1, wherein M is

$$H_2C$$
 CH_2
 CH_3
 CH_3

5

10

(M7) or pharmaceutically acceptable salts thereof.

20. The compound according to claim 1, which is selected from the group consisting of

PAC

$$OAC$$
 OAC
 OA

21. A pharmaceutical composition for the treatment or prevention of a vascular condition, diabetes, obesity, stroke, lowering a concentration of a sterol or stanol in plasma of a mammal, preventing demyelination or treating Alzheimer's disease and/or regulating levels of amyloid β peptides in a subject comprising a therapeutically effective amount of a compound of claim 1 in a pharmaceutically acceptable carrier.

22. A pharmaceutical composition comprising a cholesterol-lowering effective amount of a compound of claim 1 in a pharmaceutically acceptable carrier.

23. A method of treating or preventing a vascular condition, diabetes, obesity, stroke, lowering a concentration of a sterol or stanol in plasma of a mammal, preventing demyelination or treating Alzheimer's disease or regulating a level of an amyloid β peptide in a subject comprising the step of administering to a subject in need of such treatment an effective amount of a compound of claim 1.

24. A method of lowering cholesterol level in plasma of a mammal in need of such treatment comprising administering a pharmaceutically effective amount of the compound of claim 1.

10

5

15