AMENDMENTS TO THE CLAIMS

- 1. (currently amended) A computer processor that executes instructions and that supports virtual machine monitor operation and implementation, the computer processor comprising:
- a virtualization-mode processor state for execution of non-virtual-machinemonitor instructions;
- a non-virtualization-mode processor state for execution of virtual machine monitor instructions; and
- a virtualization-mode-switch instruction that switches the state of the processor between virtualization-mode and non-virtualization-mode without incurring an interruption.
- 2. (original) The computer processor of claim 1 wherein, when executed by a process running in virtualization mode, the virtualization-mode-switch instruction checks to ensure that the page attributes of the virtual memory page containing the virtualization-mode-switch instruction are compatible with the virtualization-mode-switch instruction and that the current priority level is a most privileged virtualized priority level, before switching to non-virtualization mode.
- 3. (original) The computer processor of claim 1 wherein, when executed by a process running in non-virtualization mode, the virtualization-mode-switch instruction checks to ensure that the page attributes of the virtual memory page containing the virtualization-mode-switch instruction are compatible with the virtualization-mode-switch instruction and that the current priority level is a highest priority level, before switching to virtualization-mode.
- 4. (original) A computer processor that executes instructions and that supports virtual machine monitor operation and implementation, the computer processor including:
- a virtualization-mode processor state for execution of non-virtual-machinemonitor instructions;

- a non-virtualization-mode processor state for execution of virtual machine monitor instructions; and
- a virtualization fault invoked by the computer processor when a routine executing in virtualization mode at a highest privilege level attempts to execute an instruction needing virtualization.
- 5. (original) The computer processor of claim 4 wherein the virtualization fault has a lower priority than improper-instruction-related faults, so that an associated virtualization-fault handler in a computer system including the computer processor can avoid emulating improper-instruction-related faults.
- 6. (original) The computer processor of claim 4 wherein the processor is switched to non-virtualization mode when the virtualization fault is triggered by the enhanced computer processor.
- 7. (original) A computer processor that executes instructions and that supports virtual machine monitor operation and implementation, the computer processor including
- a virtualization-mode processor state for execution of non-virtual-machinemonitor instructions;
- a non-virtualization-mode processor state for execution of virtual machine monitor instructions; and
- a flexible highest-implemented-virtual-address bit that, in virtualization mode, is checked by the processor and reported by the virtual machine monitor to be less than the highest-implemented-virtual-address bit in non-virtualization mode, so that a high-order portion of virtual-address space is accessible only to a virtual machine monitor executing in non-virtualization mode.
- 8. (original) A method for enhancing a computer processor to support virtual-machine-monitor operation and implementation, the method comprising:

to a computer processor that executes instructions and that provides registers, adding

- a virtualization-mode processor state for execution of non-virtual-machine-monitor instructions;
- a non-virtualization-mode processor state for execution of virtual machine monitor instructions; and
- a virtualization-mode-switch instruction that switches the state the processor between virtualization-mode and non-virtualization-mode without incurring an interruption.
- 9. (original) The method of claim 8 further comprising, when the virtualization-modeswitch instruction is executed by a process running in virtualization mode:

checking to ensure that the page attributes of the virtual memory page containing the virtualization-mode-switch instruction are compatible with the virtualization-modeswitch instruction; and

checking that the current priority level is a most privileged virtualized priority level before switching to non-virtualization mode.

10. (original) The method of claim 9 further comprising, when the virtualization-modeswitch instruction is executed by a process running in non-virtualization mode:

checking to ensure that the page attributes of the virtual memory page containing the virtualization-mode-switch instruction are compatible with the virtualization-modeswitch instruction; and

checking that the current priority level is a highest priority level, before switching to virtualization mode.

11. (original) A method for enhancing a computer processor to support virtual-machine-monitor operation and implementation, the method comprising:

to a computer processor that executes instructions and that provides registers, adding

- a virtualization-mode processor state for execution of non-virtual-machine-monitor instructions;
- a non-virtualization-mode processor state for execution of virtual machine monitor instructions;
 - a virtualization fault; and
- a corresponding virtualization-fault handler that is invoked by the computer processor when a routine executing in virtualization mode at the highest privilege level attempts to execute an instruction that needs virtualization
- 12. (original) The method of claim 11 wherein the virtualization fault has a lower priority than improper-instruction-related faults, so that the virtualization-fault handler can avoid emulating improper-instruction-related faults.
- 13. (original) The method of claim 12 further comprising switching the processor to non-virtualization mode when the virtualization fault is triggered by the computer processor.
- 14. (original) A method for enhancing a computer processor to support virtual-machine-monitor operation and implementation, the method comprising:
- to a computer processor that executes instructions and that provides registers, adding
- a virtualization-mode processor state for execution of non-virtual-machine-monitor instructions;
- a non-virtualization-mode processor state for execution of virtual machine monitor instructions; and
- a flexible highest-implemented-virtual-address bit that, in virtualization mode, is checked by the processor and reported by the virtual machine monitor to be less than the highest-implemented-virtual-address bit in non-virtualization mode, so that a high-order portion of virtual-address space is accessible only to a virtual machine monitor executing in non-virtualization mode.

15. (original) A method for supporting multiple, concurrent guest operating systems in a computer system, the method comprising:

providing a virtual-mode bit flag in a processor;

providing a *vmsw* instruction in the processor that changes the state of the virtualization-mode bit flag to enable a guest operating system to directly enter virtual-machine-monitor mode without incurring an interruption;

providing a virtualization fault with an interruption vector, assigned to have a relatively low interruption priority, that is generated when a routine, executing at high priority in virtualization mode, attempts to execute a privileged instruction or an instruction that needs software virtualization assistance and that is associated with a virtualization fault handler; and

providing a virtual-machine monitor that executes privileged instructions on behalf of guest operating systems and provides to each guest operating system a virtual machine interface, the virtual-machine monitor invoked by *vmsw* instructions or a virtualization fault.

16. (original) The method of claim 15 wherein address space is reserved for exclusive use by the virtual-machine monitor.

17. (original) The method of claim 16 wherein the address space reserved for exclusive use by the virtual-machine monitor is addressed by addresses including a highest bit of implemented virtual address space, the virtual-machine monitor reporting a smaller implemented address space to guest operating systems addressed by addresses that do not include the highest bit of implemented virtual address space.

18. (original) Computer instructions stored in a computer-readable medium that implement the virtual-machine monitor of claim 15.

19. cancel