PCT/US03/03120 WO 03/076567 1/48

SEQUENCE LISTING

<110> Beals, John

Kuchibhotla, Uma

<120> HETEROLOGOUS G-CSF FUSION PROTEINS

<130> P-15648

<160> 66

<170> PatentIn version 3.1

<210> 1

<211> 174

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic construct

<220>

<221> MISC_FEATURE

<222> (17)..(17)

<223> Xaa at position 17 is Cys, Ala, Leu, Ser, or Glu;

<220>

<221> MISC_FEATURE

<222> (37)..(37)

<223> Xaa at position 37 is Ala or Asn;

PCT/US03/03120 WO 03/076567 2/48

```
<220>
<221> MISC_FEATURE
<222> (38)..(38)
<223> Xaa at position 38 is Thr, or any other amino acid exept Pro;
<220>
                  <221> MISC_FEATURE
<222> (39)..(39)
<223> Xaa at position 39 is Tyr, Thr, or Ser;
<220>
<221> MISC_FEATURE
<222> (57)..(57)
<223> Xaa at position 57 is Pro or Val;
<220>
<221> MISC_FEATURE
<222> (58)..(58)
<223> Xaa at position 58 is Trp or Asn;
<220>
<221> MISC_FEATURE
<222> (59)..(59)
<223> Xaa at position 59 is Ala or any other amino acid except Pro;
<220>
<221> MISC_FEATURE
<222> (60)..(60)
```

```
<223> Xaa at position 60 is Pro, Thr, Asn, or Ser;
<220>
<221> MISC_FEATURE
<222> (61)..(61)
<223> Xaa at position 61 is Leu, or any other amino acid except Pro;
<220>
<221> MISC_FEATURE
<222> (62)..(62)
<223> Xaa at position 62 is Ser or Thr;
<220>
<221> MISC_FEATURE
<222> (63)..(63)
<223> Xaa at position 63 Ser or Asn;
<220>
<221> MISC_FEATURE
<222> (64)..(64)
<223> Xaa at position 64 is Cys or any other amino acid except Pro;
<220>
<221> MISC_FEATURE
<222> (65)..(65)
<223> Xaa at position 65 is Pro, Ser, or Thr;
<220>
<221> MISC_FEATURE
```

```
<222> (66)..(66)
<223> Xaa at position 66 is Ser or Thr;
<220>
<221> MISC_FEATURE
<222> (67)..(67)
<223> Xaa at position 67 is Gln or Asn;
<220>
<221> MISC_FEATURE
<222> (68)..(68)
<223> Xaa at position 68 is Ala or any other amino acid except Pro;
<220>
<221> MISC_FEATURE
<222> (69)..(69)
<223> Xaa at position 69 is Leu, Thr, or Ser;
<220>
<221> MISC_FEATURE
<222> (93)..(93)
<223> Xaa at position 93 is Glu or Asn;
<220>
<221> MISC_FEATURE
<222> (94)..(94)
<223> Xaa at position 94 is Gly or any other amino acid except Pro;
```

<220>

```
<221> MISC_FEATURE
<222> (95)..(95)
<223> Xaa at position 95 is Ile, Asn, Ser, or Thr;
<220>
<221> MISC_FEATURE
<222> (97)..(97)
<223> Xaa at position 97 is Pro, Ser, Thr, or Asn;
<220>
<221> MISC_FEATURE
<222> (133)..(133)
<223> Xaa at position 133 is Thr or Asn;
<220>
<221> MISC FEATURE
<222> (134)..(134)
<223> Xaa at position 134 is Gln or any other amino acid except Pro;
<220>
<221> MISC_FEATURE
<222> (135)..(135)
<223> Xaa at position 135 is Gly, Ser, or Thr;
<220>
<221> MISC_FEATURE
<222> (141)..(141)
<223> Xaa at position 141 is Ala or Asn;
```

<220>

<221> MISC_FEATURE

<222> (142)..(142)

<223> Xaa at position 142 is Ser or any other amino acid except Pro;

<220>

<221> MISC FEATURE

<222> (143)..(143)

<223> Xaa at position 143 is Ala, Ser, or Thr.

<400> 1

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys

1 10 15

Xaa Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln 20 25 30

Glu Lys Leu Cys Xaa Xaa Xaa Lys Leu Cys His Pro Glu Glu Leu Val 35 40 45

Leu Leu Gly His Ser Leu Gly Ile Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 50 55 60

Xaa Xaa Xaa Xaa Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser 65 70 75 80

Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Xaa Xaa Ser 85 90 95

Xaa Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp 100 105 110

Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro 115 120 125

Ala Leu Gln Pro Xaa Xaa Xaa Ala Met Pro Ala Phe Xaa Xaa Xaa Phe 130 135 140

//40

Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe 145 150 155 160

Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 165 170

<210> 2

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

cagaattccg tggaacgggt cggg

<400> accecetgg geeetgecag etecetgece cagagettee tgeteaagtg gggggaceeg 60 ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaagatc 120 cagggegatg gegeageget ceageggaat etegtteact cettetaggt eeegetaceg 180 cgtcgcgagg tcgagaagct gtgtgccacc tacaagctgt gccaccccga ggagctggtg 240 ctcttcgaca cacggtggat gttcgacacg gtggggctcc tcgaccacct gctcggacac 300 tetetgggca teccetgggc teccetgage agetgegaeg ageetgtgae agaceegtag 360 gggacccgag gggactcgtc gacgcccagc caggccctgc agctggcagg ctgcttgagc 420 caactccata gcgggtcggt ccgggacgtc gaccgtccga cgaactcggt tgaggtatcg 480 ggccttttcc tctaccaggg gctcctgcag gccctggaag ggatctcccc ggaaaaggag 540 atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc caccttggac 600 acactgcage tggacgtcgc cgacgggctc aacccagggt ggaacctgtg tgacgtcgac 660 ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg aatggcccct 720 aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 780 aaccagaccg ccatgccggc cttcgcctct gctttccggg acgtcgggtt ggtctggcgg 840 900 tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt tgcctcccat ctgcagagct tcgtcgcggc ccgtcctccc caggaccaac ggagggtaga cgtctcgaag 960 ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg 1020

1044

WO 03/076567 PCT/US03/03120 8/48

<210> 3

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 3 60 accecctgg gccctgccag ctccctgccc cagagettec tgctcaagtg gggggacccg ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaagatc 120 180 caqqqcqatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgctaccg 240 cqtcqcqaqq tcqaqaagct gtgtgccacc tacaagctgt gccaccccga ggagctggtg ctcttcgaca cacggtggat gttcgacacg gtggggctcc tcgaccacct gctcggacac 300 tetetgggca teceetggge teceetgage agetgegaeg ageetgtgae agaceegtag 360 qqqacccqaq qqqactcqtc qacqcccaqc caqqccctqc agctqqcaqq ctqcttqaqc 420 caactccata gcgggtcggt ccgggacgtc gaccgtccga cgaactcggt tgaggtatcg 480 ggccttttcc tctaccaggg gctcctgcag gccctggaag ggatctcccc ggaaaaggag 540 600 atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc caccttggac 660 acactgcage tggacgtege egacgggete aacceagggt ggaacetgtg tgacgtegae ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg aatggcccct 720 aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 780 840 acccagggtg ccatgccggc cttcaactct accttccggg acgtcgggtg ggtcccacgg tacggccgga agttgagatg gaagcagcgc cgggcaggag gggtcctggt tgcctcccat 900 960 ctgcagagct tcgtcgcggc ccgtcctccc caggaccaac ggagggtaga cgtctcgaag 1020 ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg 1044 cagaattccg tggaacgggt cggg

<210> 4

<211> 1044

WO 03/076567 PCT/US03/03120 9/48

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 4 accecetgg geoctgecag etecetgece cagagettee tgeteaagtg gggggaceeg 60 ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaagatc 120 cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgctaccg 180 cgtcgcgagg tcgagaagct gtgtaacacc accaagctgt gccaccccga ggagctggtg 240 300 ctcttcgaca cattgtggtg gttcgacacg gtggggctcc tcgaccacct gctcggacac 360 tetetgggea teccetggge teccetgage agetgegaeg ageetgtgae agaccegtag 420 gggacccgag gggactcgtc gacgcccagc caggccctgc agctggcagg ctgcttgagc caactccata gegggteggt cegggaegte gacegteega egaacteggt tgaggtateg 480 540 ggccttttcc tctaccaggg gctcctgcag gccctggaag ggatctcccc ggaaaaggag 600 atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc caccttggac 660 acactgcage tggacgtege egacgggete aacecagggt ggaacetgtg tgacgtegae ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg aatggcccct 720 780 aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc acceagggtg ccatgeegge ettegeetet gettteeggg acgtegggtg ggteecaegg 840 tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt tgcctcccat 900 960 ctgcagaget tegtegegge cegteeteee caggaceaac ggagggtaga egtetegaag ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg 1020 1044 cagaattccg tggaacgggt cggg

<210> 5

<211> 1044

<212> DNA

<213> Artificial Sequence

10

<220>

<223> synthetic construct

<400> 5 accecetgg geeetgeeag etecetgeee cagagettee tgeteaagtg gggggaeeeg 60 ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaagatc 120 cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgctaccg 180 cgtcgcgagg tcgagaagct gtgtgccacc tacaagctgt gccaccccga ggagctggtg 240 ctcttcgaca cacggtggat gttcgacacg gtggggctcc tcgaccacct gctcggacac 300 tctctgggca tcccctgggc taacactagc agctgcgacg agcctgtgac agacccgtag 360 420 gggacccgat tggactcctc gacgcccagc caggccctgc agctggcagg ctgcttgagc caactccata gcgggtcggt ccgggacgtc gaccgtccga cgaactcggt tgaggtatcg 480 540 ggccttttcc tctaccaggg gctcctgcag gccctggaag ggatctcccc ggaaaaggag 600 atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc caccttggac 660 acactgcagc tggacgtcgc cgacgggctc aacccagggt ggaacctgtg tgacgtcgac 720 ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg aatggcccct aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 780 accoagggtg coatgoogge ettegeetet gettteeggg acgtegggtg ggteecacgg 840 900 tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt tgcctcccat ctgcagagct tcgtcgcggc ccgtcctccc caggaccaac ggagggtaga cgtctcgaag 960 1020 ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg cagaattccg tggaacgggt cggg 1044

<210> 6

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 6

accccctgg gccctgccag ctccctgccc cagagettec tgctcaagtg gggggacccg

60

11/48

					•	
ggacggtcga	gggacggggt	ctcgaaggac	gagttcgcct	tagagcaagt	gaggaagatc	120
cagggcgatg	gcgcagcgct	ccagcggaat	ctcgttcact	ccttctaggt	cccgctaccg	180
cgtcgcgagg	tcgagaagct	gtgtgccacc	tacaagctgt	gccaccccga	ggagctggtg	240
ctcttcgaca	cacggtggat	gttcgacacg	gtggggctcc	tcgaccacct	gctcggacac	300
tctctgggca	tcccctgggc	tcccctgagc	aattgcgacg	agcctgtgac	agacccgtag	360
gggacccgag	gggactcgtt	aacgaccagc	caggccctgc	agctggcagg	ctgcttgagc	420
caactccata	gctggtcggt	ccgggacgtc	gaccgtccga	cgaactcggt	tgaggtatcg	480
ggccttttcc	tctaccaggg	gctcctgcag	gccctggaag	ggateteece	ggaaaaggag	540
atggtccccg	aggacgtccg	ggaccttccc	tagaggcccg	agttgggtcc	caccttggac	600
acactgcagc	tggacgtcgc	cgacgggctc	aacccagggt	ggaacctgtg	tgacgtcgac	660
ctgcagcggc	tgtttgccac	caccatctgg	cagcagatgg	aagaactggg	aatggcccct	720
aaacggtggt	ggtagaccgt	cgtctacctt	cttgaccctt	accggggagc	cctgcagccc	780
acccagggtg	ccatgccggc	cttcgcctct	gctttccggg	acgtcgggtg	ggtcccacgg	840
tacggccgga	agcggagacg	aaagcagcgc	cgggcaggag	gggtcctggt	tgcctcccat	900
ctgcagagct	tcgtcgcggc	ccgtcctccc	caggaccaac	ggagggtaga	cgtctcgaag	960
ctggaggtgt	cgtaccgcgt	cttaaggcac	cttgcccagc	ccgacctcca	cagcatggcg	1020
cagaattccg	tggaacgggt	cggg				1044

<210> 7

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 7 60 accccctgg gccctgccag ctccctgccc cagagettcc tgctcaagtg gggggacccg 120 ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaagatc cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgctaccg 180 cgtcgcgagg tcgagaagct gtgtgccacc tacaagctgt gccaccccga ggagctggtg 240

ctcttcgaca	cacggtggat	gttcgacacg	gtggggctcc	tcgaccacct	gctcggacac	300
tctctgggca	tcgttaacgc	taccctgagc	agctgcgacg	agcctgtgac	agacccgtag	360
caattgcgat	gggactcgtc	gacgcccagc	caggccctgc	agctggcagg	ctgcttgagc	420
caactccata	gcgggtcggt	ccgggacgtc	gaccgtccga	cgaactcggt	tgaggtatcg	480
ggccttttcc	tctaccaggg	gctcctgcag	gccctggaag	ggatctcccc	ggaaaaggag	540
atggtccccg	aggacgtccg	ggaccttccc	tagaggcccg	agttgggtcc	caccttggac	600
acactgcagc	tggacgtcgc	cgacgggctc	aacccagggt	ggaacctgtg	tgacgtcgac	
ctgcagcggc	tgtttgccac	caccatctgg	cagcagatgg	aagaactggg	aatggcccct	720
aaacggtggt	ggtagaccgt	cgtctacctt	cttgaccctt	accggggagc	cctgcagccc	780
acccagggtg	ccatgccggc	cttcgcctct	gctttccggg	acgtcgggtg	ggtcccacgg	840
tacggccgga	agcggagacg	aaagcagcgc	cgggcaggag	gggtcctggt	tgcctcccat	900
ctgcagagct	tcgtcgcggc	ccgtcctccc	caggaccaac	ggagggtaga	cgtctcgaag	960
ctggaggtgt	cgtaccgcgt	cttaaggcac	cttgcccagc	ccgacctcca	cagcatggcg	1020
cagaattccg	tggaacgggt	cggg				1044

<210> 8

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 8 60 accecctgg gccctgccag ctccctgccc cagagettec tgctcaagtg gggggacccg 120 ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaagatc cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgctaccg 180 cgtcgcgagg tcgagaagct gtgtgccacc tacaagctgt gccaccccga ggagctggtg 240 ctcttcgaca cacggtggat gttcgacacg gtggggctcc tcgaccacct gctcggacac 300 360 tetetgggea teccetggge teccetgage agetgegaeg agectgtgae agaccegtag 420 gggacccgag gggactcgtc gacgcccagc aacgccaccc agctggcagg ctgcttgagc

caactccata	gcgggtcgtt	gcggtgggtc	gaccgtccga	cgaactcggt	tgaggtatcg	480
ggccttttcc	tctaccaggg	gctcctgcag	gccctggaag	ggatctcccc	ggaaaaggag	540
atggtccccg	aggacgtccg	ggaccttccc	tagaggcccg	agttgggtcc	caccttggac	600
acactgcagc	tggacgtcgc	cgacgggctc	aacccagggt	ggaacctgtg	tgacgtcgac	660
ctgcagcggc	tgtttgccac	caccatctgg	cagcagatgg	aagaactggg	aatggcccct	720
aaacggtggt.	ggtagaccgt	cgtctacctt	cttgaccctt	accggggagc	cctgcagccc	780
acccagggtg	ccatgccggc	cttcgcctct	gctttccggg	acgtcgggtg	ggtcccacgg	840
tacggccgga	agcggagacg	aaagcagcgc	cgggcaggag	gggtcctggt	tgcctcccat	900
ctgcagagct	tegtegegge	ccgtcctccc	caggaccaac	ggagggtaga	cgtctcgaag	960
ctggaggtgt	cgtaccgcgt	cttaaggcac	cttgcccagc	ccgacctcca	cagcatggcg	1020
cagaattccg	tggaacgggt	cggg				1044

<210> 9

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 9 accecctgg gccctgccag ctccctgccc cagagettec tgctcaagtg gggggacccg 60 120 ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaagatc cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgctaccg 180 240 cgtcgcgagg tcgagaagct gtgtgccacc tacaagctgt gccaccccga ggagctggtg 300 ctcttcgaca cacggtggat gttcgacacg gtggggctcc tcgaccacct gctcggacac 360 tetetgggea teccetgage teccetgage agetgegaeg ageetgtgae agaceegtag 420 gggacccgag gggactcgtc gacgcccagc caggccctgc agctggcagg ctgcttgagc caactccata gcgggtcggt ccgggacgtc gaccgtccga cgaactcggt tgaggtatcg . 480 540 ggccttttcc tctaccaggg gctcctgcag gccctgaacg ggacctcccc ggaaaaggag 600 atggtccccg aggacgtccg ggacttgccc tggaggcccg agttgggtcc caccttggac

acactgcagc tggacgtcgc cgacgggctc aacccagggt ggaacctgtg tgacgtcgac 660 ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg aatggcccct 720 780 aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 840 acccagggtg ccatgccggc cttcgcctct gctttccggg acgtcgggtg ggtcccacgg tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt tgcctcccat 900 960 ctgcagagct tcgtcgcggc ccgtcctccc caggaccaac ggagggtaga cgtctcgaag ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg 1020 1044 cagaattccg tggaacgggt cggg

<210> 10

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 10 60 accccctgg gccctgccag ctccctgccc cagagettec tgctcaagtg gggggacccg ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaagatc 120 cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgctaccg 180 cgtcgcgagg tcgagaagct gtgtaacacc accaagctgt gccaccccga ggagctggtg 240 ctcttcgaca cattgtggtg gttcgacacg gtggggctcc tcgaccacct gctcggacac 300 360 tctctgggca tcccctgggc tcccctgagc agctgcgacg agcctgtgac agacccgtag gggacccgag gggactcgtc gacgcccagc caggccctgc agctggcagg ctgcttgagc 420 480 caactccata gcgggtcggt ccgggacgtc gaccgtccga cgaactcggt tgaggtatcg ggccttttcc tctaccaggg gctcctgcag gccctggaag ggatctcccc ggaaaaggag 540 atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc caccttggac 600 660 acactgcagc tggacgtcgc cgacgggctc aacccagggt ggaacctgtg tgacgtcgac 720 ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg aatggcccct aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 780 aaccagaccg ccatgccggc cttcgcctct gctttccggg acgtcgggtt ggtctggcgg 840
tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt tgcctccat 900
ctgcagagct tcgtcgcggc ccgtcctccc caggaccaac ggagggtaga cgtctcgaag 960
ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg 1020
cagaattccg tggaacgggt cggg

<210> 11

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> accecetgg geeetgeeag etecetgeee cagagettee tgeteaagtg gggggaeeeg 60 ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaagatc 120 cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgctaccg 180 cgtcgcgagg tcgagaagct gtgtaacacc accaagctgt gccaccccga ggagctggtg 240 ctcttcgaca cattgtggtg gttcgacacg gtggggctcc tcgaccacct gctcggacac 300 tetetgggca teccetggge teccetgage agetgegaeg ageetgtgae agaecegtag 360 gggaccegag gggactegte gaegeeeage caggeeetge agetggeagg etgettgage 420 caactccata gegggteggt cegggaegte gaeegteega egaacteggt tgaggtateg 480 540 ggccttttcc tctaccaggg gctcctgcag gccctggaag ggatctcccc ggaaaaggag 600 atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc caccttggac acactgcage tggacgtege cgacgggete aacceagggt ggaacetgtg tgacgtegae 660 ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg aatggcccct 720 780 aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc accoagggtg coatgoogge officaactet accttooggg acgtogggtg ggtoccacgg 840 tacggccgga agttgagatg gaagcagcgc cgggcaggag gggtcctggt tgcctcccat 900 ctgcagaget tegtegegge cegteeteec caggaceaac ggagggtaga egtetegaag 960

cagaattccg tggaacgggt cggg

ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg 1020 1044 cagaattccg tggaacgggt cggg <210> 12 <211> 1044 <212> DNA <213> Artificial Sequence <220> <223> synthetic construct <400> 12 60 accccctgg gccctgccag ctccctgccc cagagettcc tgctcaagtg gggggacccg ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaagatc 120 180 cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgctaccg cgtcgcgagg tcgagaagct gtgtaacacc accaagctgt gccaccccga ggagctggtg 240 300 ctcttcgaca cattgtggtg gttcgacacg gtggggctcc tcgaccacct gctcggacac 360 tototgggca togttaacgc taccotgagc agotgcgacg agootgtgac agacocgtag 420 caattgcgat gggactcgtc gacgcccagc caggccctgc agctggcagg ctgcttgagc 480 caactccata gcgggtcggt ccgggacgtc gaccgtccga cgaactcggt tgaggtatcg 540 ggccttttcc tctaccaggg gctcctgcag gccctggaag ggatctcccc ggaaaaggag 600 atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc caccttggac 660 acactgcagc tggacgtcgc cgacgggctc aacccagggt ggaacctgtg tgacgtcgac 720 ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg aatggcccct 780 aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 840 acccagggtg ccatgccggc cttcgcctct gctttccggg acgtcgggtg ggtcccacgg 900 tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt tgcctcccat ctgcagagct tcgtcgcggc ccgtcctccc caggaccaac ggagggtaga cgtctcgaag 960 1020 ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg

1044

<210> 13

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 13 accecetgg geeetgeeag etecetgeee cagagettee tgeteaagtg gggggaeeeg 60 ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaagatc 120 cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgctaccg 180 cgtcgcgagg tcgagaagct gtgtaacacc accaagctgt gccaccccga ggagctggtg 240 300 ctcttcgaca cattgtggtg gttcgacacg gtggggctcc tcgaccacct gctcggacac 360 tctctgggca tcccctgggc tcccctgagc agctgcgacg agcctgtgac agacccgtag 420 gggacccgag gggactcgtc gacgcccagc aacgccaccc agctggcagg ctgcttgagc 480 caactccata gcgggtcgtt gcggtgggtc gaccgtccga cgaactcggt tgaggtatcg ggccttttcc tctaccaggg gctcctgcag gccctggaag ggatctcccc ggaaaaggag 540 600 atggtccccg aggacgtccg ggaccttccc tagaggcccg agttgggtcc caccttggac acactgcagc tggacgtcgc cgacgggctc aacccagggt ggaacctgtg tgacgtcgac 660 720 ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg aatggcccct 780 aaacqqtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 840 acceagggtg ccatgeegge ettegeetet gettteeggg aegtegggtg ggteeeaegg 900 tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt tgcctcccat 960 ctgcagaget tegtegegge cegteeteec caggaceaac ggagggtaga egtetegaag 1020 ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg cagaattccg tggaacgggt cggg 1044

<210> 14

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> accccctgg gccctgccag ctccctgccc cagagettec tgctcaagtg gggggacccg 60 ggacggtcga gggacggggt ctcgaaggac gagttcgcct tagagcaagt gaggaagatc 120 cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgctaccg 180 cgtcgcgagg tcgagaagct gtgtaacacc accaagctgt gccaccccga ggagctggtg 240 ctcttcgaca cattgtggtg gttcgacacg gtggggctcc tcgaccacct gctcggacac 300 tetetgggca teccetggge teccetgage agetgegaeg ageetgtgae agaccegtag 360 420 gggacccgag gggactcgtc gacgcccagc caggccctgc agctggcagg ctgcttgagc 480 caactccata gegggteggt eegggaegte gacegteega egaacteggt tgaggtateg 540 ggccttttcc tctaccaggg gctcctgcag gccctggaag ggatctcccc ggaaaaggag atggtccccg aggacgtccg ggaccttccc tagaggaacg gtaccggtcc caccttggac 600 acactgcagc tggacgtcgc cgacttgcca tggccagggt ggaacctgtg tgacgtcgac 660 ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg aatggcccct 720 780 aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc acceagggtg ceatgeegge ettegeetet gettteeggg acgtegggtg ggteecacgg 840 900 tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt tgcctcccat 960 ctgcagaget tegtegegge cegteeteee caggaceaac ggagggtaga egtetegaag ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgaectcca cagcatggcg 1020 1044 cagaattccg tggaacgggt cggg

<210> 15

<211> 1044

<212> DNA

<213> Artificial Sequence

19/48

<223> synthetic construct

<400> 15						
	gccctgccag	ctccctgccc	cagagettee	tgctcaagtg	gggggacccg	60
ggacggtcga	gggacggggt	ctcgaaggac	gagttcgcct	tagagcaagt	gaggaagatc	120
cagggcgatg	gcgcagcgct	ccagcggaat	ctcgttcact	ccttctaggt	cccgctaccg	180
cgtcgcgagg	tcgagaagct	gtgtaacacc	accaagctgt	gccaccccga	ggagctggtg	240
ctcttcgaca	cattgtggtg	gttcgacacg	gtggggctcc	tcgaccacct	gctcggacac	300
tctctgggca	tcgttaacgc	taccctgagc	agctgcgacg	agcctgtgac	agacccgtag	360
caattgcgat	gggactcgtc	gacgcccagc	aacgccaccc	agctggcagg	ctgcttgagc	420
caactccata	gcgggtcgtt	gcggtgggtc	gaccgtccga	cgaactcggt	tgaggtatcg	480
ggccttttcc	tctaccaggg	gctcctgcag	gccctggaag	ggatctcccc	ggaaaaggag	540
atggtccccg	aggacgtccg	ggaccttccc	tagaggcccg	agttgggtcc	caccttggac	600
acactgcagc	tggacgtcgc	cgacgggctc	aacccagggt	ggaacctgtg	tgacgtcgac	660
ctgcagcggc	tgtttgccac	caccatctgg	cagcagatgg	aagaactggg	aatggcccct	720
aaacggtggt	ggtagaccgt	cgtctacctt	cttgaccctt	accggggagc	cctgcagccc	780
acccagggtg	ccatgccggc	cttcgcctct	gctttccggg	acgtcgggtg	ggtcccacgg	840
tacggccgga	agcggagacg	aaagcagcgc	cgggcaggag	gggtcctggt	tgcctcccat	900
ctgcagagct	tcgtcgcggc	ccgtcctccc	caggaccaac	ggagggtaga	cgtctcgaag	960
ctggaggtgt	cgtaccgcgt	cttaaggcac	cttgcccagc	ccgacctcca	cagcatggcg	1020
cagaattccg	tggaacgggt	cggg				1044

<210> 16

<211> 1044

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 16

accccctgg gcctgccag ctccctgccc cagagettcc tgctcaagtg gggggacccg 60
ggacggtcga gggacgggt ctcgaaggac gagttcgcct tagagcaagt gaggaagatc 120

cagggcgatg gcgcagcgct ccagcggaat ctcgttcact ccttctaggt cccgctaccg 180 cgtcgcgagg tcgagaagct gtgtaacacc accaagctgt gccaccccga ggagctggtg 240 ctcttcgaca cattgtggtg gttcgacacg gtggggctcc tcgaccacct gctcggacac 300 tetetgggca teccetggge teccetgage aattgegaeg ageetgtgae agaecegtag 360 gggaccegag gggactegtt aacgaccage caggecetge agetggeagg etgettgage 420 caactccata gctggtcggt ccgggacgtc gaccgtccga cgaactcggt tgaggtatcg 480 ggccttttcc tctaccaggg gctcctgcag gccctgaacg ggacctcccc ggaaaaggag 540 atggtccccg aggacgtccg ggacttgccc tggaggcccg agttgggtcc caccttggac 600 acactgcagc tggacgtcgc cgacgggctc aacccagggt ggaacctgtg tgacgtcgac 660 ctgcagcggc tgtttgccac caccatctgg cagcagatgg aagaactggg aatggcccct 720 780 aaacggtggt ggtagaccgt cgtctacctt cttgaccctt accggggagc cctgcagccc 840 acceagggtg ceatgeegge ettegeetet gettteeggg aegtegggtg ggteeeaegg 900 tacggccgga agcggagacg aaagcagcgc cgggcaggag gggtcctggt tgcctcccat 960 ctgcagaget tegtegegge cegteeteec caggaceaac ggagggtaga egtetegaag ctggaggtgt cgtaccgcgt cttaaggcac cttgcccagc ccgacctcca cagcatggcg 1020 cagaattccg tggaacgggt cggg 1044

<210> 17

<211> 1762

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 17
gatgcgcaca agagtgaggt tgctcatcgg tttaaagatt tgggagaaga aaatttcaaa 60
gccttggtgt tgattgcctt tgctcagtat cttcagcagt gtccatttga agatcatgta 120
aaattagtga atgaagtaac tgaatttgca aaaacatgtg ttgctgatga gtcagctgaa 180
aattgtgaca aatcacttca tacccttttt ggagacaaat tatgcacagt tgcaactctt 240
cgtgaaacct atggtgaaat ggctgactgc tgtgcaaaac aagaacctga gagaaatgaa 300

tgcttcttgc	aacacaaaga	tgacaaccca	aacctccccc	gattggtgag	accagaggtt	360
gatgtgatgt	gcactgcttt	tcatgacaat	gaagagacat	ttttgaaaaa	atacttatat	420
gaaattgcca	gaagacatcc	ttacttttat	gccccggaac	tccttttctt	tgctaaaagg	480
tataaagctg	cttttacaga	atgttgccaa	gctgctgata	aagctgcctg	cctgttgcca	540
aagctcgatg	aacttcggga	tgaagggaag	gcttcgtctg	ccaaacagag	actcaagtgt	600
gccagtctcc	aaaaatttgg	agaaagagct	ttcaaagcat	gggcagtagc	tcgcctgagc	66.0
cagagatttc	ccaaagctga	gtttgcagaa	gtttccaagt	tagtgacaga	tcttaccaaa	720
gtccacacgg	aatgctgcca	tggagatctg	cttgaatgtg	ctgatgacag	ggcggacctt	780
gccaagtata	tctgtgaaaa	tcaagattcg	atctccagta	aactgaagga	atgctgtgaa	840
aaacctctgt	tggaaaaatc	ccactgcatt	gccgaagtgg	aaaatgatga	gatgcctgct	900
gacttgcctt	cattagctgc	tgattttgtt	gaaagtaagg	atgtttgcaa	aaactatgct	960
gaggcaaagg	atgtcttcct	gggcatgttt	ttgtatgaat	atgcaagaag	gcatcctgat	1020
tactctgtcg	tgctgctgct	gagacttgcc	aagacatatg	aaaccactct	agagaagtgc	1080
tgtgccgctg	cagatcctca	tgaatgctat	gccaaagtgt	tcgatgaatt	taaacctctt	1140
gtggaagagc	ctcagaattt	aatcaaacaa	aattgtgagc	tttttgagca	gcttggagag	1200
tacaaattcc	agaatgcgct	attagttcgt	tacaccaaga	aagtacccca	agtgtcaact	1260
ccaactcttg	tagaggtctc	aagaaaccta	ggaaaagtgg	gcagcaaatg	ttgtaaacat	1320
cctgaagcaa	aaagaatgcc	ctgtgcagaa	gactatctat	ccgtggtcct	gaaccagtta	1380
tgtgtgttgc	atgagaaaac	gccagtaagt	gacagagtca	ccaaatgctg	cacagaatcc	1440
ttggtgaaca	ggcgaccatg	cttttcagct	ctggaagtcg	atgaaacata	cgttcccaaa	1500
gagtttaatg	ctgaaacatt	caccttccat	gcagatatat	gcacactttc	tgagaaggag	1560
agacaaatca	agaaacaaac	tgcacttgtt	gagctcgtga	aacacaagcc	caaggcaaca	1620
aaagagcaac	tgaaagctgt	tatggatgat	ttcgcagctt	ttgtagagaa	gtgctgcaag	1680
gctgacgata	aggagacctg	ctttgccgag	gagggtaaaa		tgcaagtcaa	1740
gctgccttag	gcttataatg	ac		r		1762

<210> 18

<211> 232

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 18

Ala Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro 1 5 10 15

Ala Pro Glu Lys Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro 20 25 30

Lys Asp Thr Lys Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 35 40 45

Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 65 70 75 80

Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln
85 90 95

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala 100 105 110

Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro 115 120 125

Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr

Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 145 150 155 160

Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 165 170 175

Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
' 180 185 190

Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe 195 200 205

Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 210 215 220

Ser Leu Ser Leu Ser Pro Gly Lys 225 230

<210> 19

<211> 229

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic contruct

<400> 19

Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe 1 5 10 15

Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 20 25 30

Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 35 40 45

Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val 50 55 60

Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser 65 70 75 80

Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 85 90 95

Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser 100 105 110

Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 115 120 125

Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln 135 130

Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 155

Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr

Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu

Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser

Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 215

Leu Ser Leu Gly Lys 225

<210> 20

<211> 585

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 20

Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu

Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln 25 30 20

Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu 40

Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys 50 55 60

Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu 65 70 75 80

Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro 85 90 95

Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu 100 105 110

Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His 115 120 125

Asp Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg 130 135 140

Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg 145 150 155 160

Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala 165 170 175

Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser 180 185 190

Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu 195 200 205

Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro 210 215 220

Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys 225 230 235 240

Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp 245 250 255

Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser 260 265 270

Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His 275 280 285

Cys	Ile 290	Ala	Glu	Val	Glu	Asn 295	Asp	Glu	Met	Pro	Ala 300	Asp	Leu	Pro	Ser
Leu 305	Ala	Ala	Asp	Phe	Val 310	Glu	Ser	Lys	Asp	Val 315	Cys	Lys	Asn	Tyr	Ala 320
Glu	Ala	Lys	Asp	Val 325	Phe	Leu	Gly	Met	Phe 330	Leu	Tyr	Glu	Tyr	Ala 335	Arg
Arg	His	Pro	Asp 340	туr	Šer	Val	Val	Leu 345	Leu	Leu	Arg	Leu	Ala 350	Lys	Thr
Tyr	Glu	Thr 355	Thr	Leu	Glu	Lys	Cys 360	Cys	Ala	Ala	Ala	Asp 365	Pro	His	Glu
Cys	Tyr 370	Ala	Lys	Val	Phe	Asp 375	Glu	Phe	Lys	Pro	Leu 380	Val	Glu	Glu	Pro
Gln 385	Asn	Leu	Ile	Lys	Gln 390	Asn	Cys	Glu	Leu	Phe 395	Glu	Asn	Leu	Gly	Glu 400
Tyr	Lys	Phe	Gln	Asn 405	Ala	Leu	Leu	Val	Arg 410	Tyr	Thr	Lys	Lys	Val 415	Pro
Gln	Val	Ser	Thr 420	Pro	Thr	Leu	Val	Glu 425		Ser	Arg	Asn	Leu 430	Gly	Lys
Val	Gly	Ser 435	Lys	Cys	Cys	Lys	His 440		Glu	Ala	Lys	Arg 445		Pro	Cys
Ala	Glu 450	Asp	Tyr	Leu	Ser	Val 455	Val	Leu	Asn	Gln	Leu 460		Val	Leu	His
Glu 465	_	Thr	Pro	Val	Ser 470		Arg	Val	Thr	Lys 475		Cys	Thr	Glu	Ser 480
Leu	Val	Asn	Arg	Arg 485	Pro	Cys	Phe	Ser	Ala 490		Glu	Val	Asp	Glu 495	

Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp 500 505 510

Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala 515

Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu 530 535

Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys Lys 545 550 555

Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val 5.6.5 570

Ala Ala Ser Gln Ala Ala Leu Gly Leu 580

<210> 21

<211> 703

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 21 gagcccaaat cttgtgacaa aactcacaca tgcccaccgt gcccagcacc tgaactcctg 60 gggggaccgt cagtetteet etteececca aaacccaagg acacceteat gateteecgg 120 acccctgagg tcacatgcgt ggtggtggac gtgagccacg aagaccctga ggtcaagttc 180 aactggtacg tggacggcgt ggaggtgcat aatgccaaga caaagccgcg ggaggagcag 240 tacaacagca cgtaccgtgt ggtcagcgtc ctcaccgtcc tgcaccagga ctggctgaat 300 360 ggcaaggagt acaagtgcaa ggtctccaac aaagccctcc cagcccccat cgagaaaacc atotocaaag ccaaagggca geeecgagaa ccacaggtgt acaccetgee cecateeegg 420 gaggagatga ccaagaacca ggtcagcctg acctgcctgg tcaaaggctt ctatcccagc 480 gacatcgccg tggagtggga gagcaatggg cagccggaga acaactacaa gaccacgcct 540 600 cccqtqctgg actccgacgg ctccttcttc ctctatagca agctcaccgt ggacaagagc 660 aggtggcagc aggggaacgt cttctcatgc tccgtgatgc atgaggctct gcacaaccac

tacacgcaga agagcctctc cctgtctccg ggtaaatgat agt

703

PCT/US03/03120 WO 03/076567

<210> 22

<211> 981

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 22 tccaccaagg gcccatcggt cttcccgcta gcgccctgct ccaggagcac ctccgagagc 60 acagoogooc tgggctgcct ggtcaaggac tacttccccg aaccggtgac ggtgtcgtgg 120 aactcaggeg ccctgaccag cggcgtgcac accttcccgg ctgtcctaca gtcctcagga 180 ctctactccc tcagcagcgt ggtgaccgtg ccctccagca gcttgggcac gaagacctac 240 acctgcaacg tagatcacaa gcccagcaac accaaggtgg acaagagagt tgagtccaaa 300 tatggtcccc catgcccacc ctgcccagca cctgagttcc tggggggacc atcagtcttc 360 ctgttccccc caaaacccaa ggacactctc atgatctccc ggacccctga ggtcacgtgc 420 gtggtggtgg acgtgagcca ggaagacccc gaggtccagt tcaactggta cgtggatggc 480 540 gtggaggtgc ataatgccaa gacaaagccg cgggaggagc agttcaacag cacgtaccgt 600 gtggtcagcg tcctcaccgt cctgcaccag gactggctga acggcaagga gtacaagtgc aaggteteca acaaaggeet eccepteetee ategagaaaa ecateteeaa ageeaaaggg 660 720 cageceegag agecacaggt gtacaceetg eccecateee aggaggagat gaccaagaae 780 caggicagec tgacetgeet ggicaaagge tictacecca gegacatege egiggagigg gagagcaatg ggcagccgga gaacaactac aagaccacgc ctcccgtgct ggactccgac 840 ggctccttct tcctctacag caggctaacc gtggacaaga gcaggtggca ggaggggaat 900 gtcttctcat gctccgtgat gcatgaggct ctgcacaacc actacacaca gaagagcctc 960 981 tccctgtctc tgggtaaatg a

<210> 23

<211> 406

<212> PRT

PCT/US03/03120 WO 03/076567 29/48

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 23

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys

Ala Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln 20 25

Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val

Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys

Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser

Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser 85

Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp 105 100

Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro 115 120

Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe 130 135

Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe 150 155 145

Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Glu Pro 170 165

Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu 185 180

Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 195 200 205

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp 210 215 220

Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly 225 230 235 240

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 245 250 255

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp 260 265 270

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro 275 280 285

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu 290 295 300

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn 305 310 315 320

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile 325 330 335

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr 340 345 350

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys 355 360 365

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys 370 375 380

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu 385 390 395 400

Ser Leu Ser Pro Gly Lys 405

<211> 403

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 24

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys
1 5 10 15

Ala Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln 20 25 30

Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val 35 40 45

Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys 50 55 60

Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser 65 70 75 80

Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser 85 90 95

Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp
100 105 110

Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro 115 120 125

Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe 130 135 140

Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe 145 150 155 160

Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Glu Ser 165 170 175

PCT/US03/03120 WO 03/076567 32/48

Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro Ala Pro Glu Phe Leu Gly 185

Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met 200

Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Asp Val Ser Gln 215

Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val 235 230 225

His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr 245 250

Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 260 265

Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile 280

Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 290 295

Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser 315 · 305 310

Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 325 330

Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 340 345

Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val 365

Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met 370 375

His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 395 385 390

Leu Gly Lys

<210> 25

<211> 500

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic construct

<400> 25

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys
1 5 10 15

Ala Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln 20 25 30

Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val 35 40 45

Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys 50 55 60

Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser 65 70 75 80

Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser 85 90 95

Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp
100 105 110

Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro 115 120 125

Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe 130 135 140

Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe 145 150 155 160

PCT/US03/03120

Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asp Ala His

Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu Asn Phe

Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln Gln Cys Pro

Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu Phe Ala Lys

Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys Ser Leu His

Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu Arg Glu Thr

Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro Glu Arg Asn

Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu Pro Arg Leu

Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His Asp Asn Glu

Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg Arg His Pro

Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg Tyr Lys Ala

Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala Cys Leu Leu

Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser Ser Ala Lys

Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu Arg Ala Phe

Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro Lys Ala Glu 405 Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys Val His Thr 420 425 Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp Arg Ala Asp 440 435 Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser Ser Lys Leu 450 455 Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His Cys Ile Ala 470 475 Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser Leu Ala Ala 490 485 Asp Phe Val Glu 500 <210> 26 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> synthetic construct <400> 26 gtaagettge gtegaegeta geggegegee gecatggeeg gaeetgeeae eeagageeee 69 atgaagctg <210> 27

<211> 61

<212> DNA

<213> Artificial Sequence

36/48

<220>		
<223>	synthetic construct	
<400> ggggcag		60
g		61
<210>	28	
<211>	The second secon	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400>		
ggacagt	tgca ggaagccact ccactgggcc cagccagctc cctgccccag agcttcctg	59
<210>	29	
<211>	72 .	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400>	29 cgag gatcctcatt agggctgggc aaggtgcctt aagacgcggt acgacacctc	60
	gete tg	7:
55		
<210>	30	
<211>	69	
<212>	DNA .	
<213>	Artificial Sequence	

<220>		
<223>	synthetic construct	
<400>	30	
gtaagct	ttgc gtcgacgcta gcggcgcgc gccatggccg gacctgccac ccagagcccc	60
atgaago	etg	69
<210>	31	
<211>	57	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400> gctcta	31 aggc cttgagcagg aagctctggg gcagggagct cgctgggccc agtggag	57
<210>	32	
<211>	53	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400> gggccc	32 agcg agctccctgc cccagagctt cctgctcaag gccttagagc aag	53
<210>	33	
<211>	72	
<212>	DNA	
<213>	Artificial Sequence	

38/48

<220>		
<223>	synthetic construct	
<400>		
gaaccto	egag gateeteatt agggetggge aaggtgeett aagaegeggt aegaeaeete	60
caggaag	gete tg	72
<210>	34	
<211>	69	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
-2235	synthetic construct	
<400> gtaagc	34 ttgc gtcgacgcta gcggcgcgcc gccatggccg gacctgccac ccagagcccc	60
atgaag	ctg .	69
<210>	35	
<211>	61	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400>		
gtccga	gcag cactagttcc teggggtggc acagettggt ggtgttacac agettetect	60
g		61
<210>	36	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	

<220>		
<223>	synthetic construct	
<400> ggcgcag	36 gege tecaggagaa getgtgtaac accaccaage tgtgccacce egaggaacta	60
gtgctg		66
<210>	37	- 0
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400>		
	cgag gatcctcatt agggctgggc aaggtgcctt aagacgcggt acgacacctc	60
caggaa	gete tg	72
<210>	38	
<211>	69	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400>	38	
	ttgc gtcgacgcta gcggcgcgcc gccatggccg gacctgccac ccagagcccc	60
atgaag	ctg	69
<210>	39	
<211>	61	
<212>	DNA	

<213> Artificial Sequence <220> <223> synthetic construct <400> 39 gcccggcgct ggaaagcgct ggcgaaggcc ggcatggcgg tctggttggg ctgcagggca 60 61 <210> 40 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> synthetic construct <400> 40 ggcccctgcc ctgcagccca accagaccgc catgccggcc ttcgccagcg ctttccagcg 60 <210> 41 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> synthetic construct <400> 41 gaacctcgag gatcctcatt agggctgggc aaggtgcctt aagacgcggt acgacacctc. 60 caggaagctc tg 72 <210> 42 <211> 69 <212> DNA

<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400> gtaagci	42 ttgc gtcgacgcta gcggcgccc gccatggccg gacctgccac ccagagcccc	60
atgaag	ctg	69
<210>	43	
<211>	68	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
	43 cgct ggaaggtaga gttgaaggcc ggcatggcac cctgggtggg ctgaagagca	60
ggggcc	at	68
<210>	44	
<211>	74	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400> gggaat	44 ggcc cetgetette ageceaceea gggtgecatg ceggeettea actetacett	60
ccagcg	ecegg gcag	74
-210-	A.E.	
<210>	45	
<211>	72	

<212>	DNA			
<213>	Artificial Sequence			
<220>				
<223>	synthetic construct			
	45 gag gateeteatt agggetggge aaggtgeett aagaegeggt aegaeaeete	60		
caggaag	gete tg	72.		
<210>	46			
<211>	20			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<223>	synthetic construct			
<400> 46 gctagcggcg cgccaccatg 20				
<i>J J</i> .				
<210>	47			
<211>	33			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<223>	synthetic construct			
<400> gctcag	47 ggta gcgttaacga tgcccagaga gtg	33		
•••				
<210>	48			
<211>	30			
<212>	DNA			

<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
	48 cgtt aacgctaccc tgagcagctg	30
<210>	49	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
	49 agga teeteattag ggetggg	27
gucceg	uggu coccucug ggccggg	
<210>	50	
<211>	38	
<212>	DNA ·	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400>	50 ggcg cgccaccatg gccggacctg ccacccag	38
500050		
<210>	51	
<211>	45	
<212>	DNA	
-010-	Partificial Company	

<220>		
<223>	synthetic construct	
<400> caagcag	51 gecg gecagetggg tggegttget ggggeagetg etcag	45
<210>	52	
<211>	37	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400> gcccca	52 gcaa cgccacccag ctggccggct gcttgag	37
<210>	53	
<211>	47	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400> gactcg	53 yagga teeteattag ggetgggeaa ggtgeettaa gaegegg	47
<210>	54	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	

45/48

	54 ggcg cgccaccatg	20
<210>	55	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400> ggggcaa	55 acta gtcaggttag cccaggg	27
<210>	56	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400> gctaac	56 ctga ctagttgccc cagccag	27
<210>	57	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400>	57	27

<210>	58				
<211>	20				
<212>	DNA				
<213> ,	Artificial Sequence				
<220>					
<223>	synthetic construct				 _
<400>	58	103			
	ggcg cgccaccatg				20
<210>	59				
<211>	25				
<212>	DNA				
<213>	Artificial Sequence				
<220>					
<223>	synthetic construct				
<400>	59				25
ggtgcaattg ctcaggggag cccag 25					
<210>	60				
<211>	23				
<212>	DNA				
<213>	Artificial Sequence				
<220>					
<223>	synthetic construct				
<400>	60				
	gcac cagccaggcc ctg				23
-210-					
<210>	61				

<211> 27

.).

<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400> gactcga	-55m	27
<210>	62	
<211>	38	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400>	62 ggcg cgccaccatg gccggacctg ccacccag	38
JJ-		
<210>	63	
<211>	37	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400> ccggac	63 tggt cccgttcagg gcctgcagga gcccctg	37
<210>	64	
<211>	35	
<212>	DNA	
<213>	Artificial Sequence	

48/48

<220>		
<223>	synthetic construct	
<400> gaacgg	64 gacc agtccggagt tgggtcccac cttgg	35
<210>	65	
<211>	47	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic construct	
<400> gactcg	65 agga teeteattag ggetgggeaa ggtgeettaa gaegegg	47
<210>	66	
<211>	36	
<212>	DNA	
<213>	Artificial Sequence	
<220>	•	
<223>	synthetic construct	
<400> gtcgac	66 geta geggegege accatggeeg gacetg	36