Amendments to the Claims

Claim 1 (Currently Amended) A receiver—adapted to detect for detecting an approximate value of the power of a reception signal, the receiver comprising:

first operation means for adding a value obtained by multiplying a smaller one of a component I and a component Q of the reception signal by 1/8 and the a value of a larger one of these the components I and Q;

second operation means for adding a value obtained by multiplying the smaller one of the component I and the component Q of the reception signal by 1/2 and a value obtained by multiplying the larger one of these the components I and Q by 7/8; and

detection means for detecting the a value of a larger one of the an operation result of the said first operation means and the an operation result of the said second operation means as an the approximate value of the power of the reception signal.

- Claim 2 (Currently Amended) A receiver adapted to detect for detecting an approximate value of the power of a reception signal, the receiver comprising:
- a first comparator for comparing a component I and a component Q of a the reception signal with each other to determine which one of these the components I and Q is larger or smaller to thereby output a larger component as a first output value and output a smaller component as a second output value;
- a 3-bit shift register for multiplying the first output value from-the said first comparator by 1/8;
- a subtractor for subtracting an output value from the <u>said</u> 3-bit shift register from the first output value from the <u>said</u> first comparator;
- a 1-bit shift register for multiplying the second output value from—the said first comparator by 1/2;
- a 2-bit shift register for multiplying an output value from the said 1-bit shift register by 1/4;
- a first adder for adding the first output value from the said first comparator and the an output value from the said 2-bit shift register;

a second adder for adding an output value from-the said subtractor and an the output value from-the said 1-bit shift register; and

a second comparator for comparing an output value from the said first adder and an output value from the said second adder with each other to determine which one of these the output values is larger or smaller and output the a value of a larger one thereof as an the approximate value of the power of the reception signal.

Claim 3 (Currently Amended) A mobile-station device-adapted to detect for detecting an approximate value of the power of a signal radio-received from a base-station device, the mobile-station device including a receiver comprising:

first operation means for adding a value obtained by multiplying a smaller one of a component I and <u>a</u> component Q of the reception signal by 1/8 and the <u>a</u> value of a larger one <u>of the components I and Qthereof</u>;

second operation means for adding a value obtained by multiplying a the smaller

_____second operation means for adding a value obtained by multiplying-a_the smaller one of the component I and the component Q of the reception signal by 1/2 and a value obtained by multiplying a-the larger one-thereof of the components I and Q by 7/8; and ______detection means for detecting a value of a larger one of-the an operation result of the said first operation means and-the an operation result of-the said second operation means as-an the approximate value of the power of the reception signal.

Claim 4 (Currently Amended) A mobile-station device-adapted to detect for detecting an approximate value of the power of a signal radio-received from a base-station device, the mobile-station device including a receiver comprising:

____a first comparator for comparing a component I and a_component Q of a-the reception

signal with each other to determine which one of these the components I and Q is larger or smaller to thereby output a larger component as a first output value and output a smaller component as a second output value;

____a 3-bit shift register for multiplying the first output value from-the_said first comparator by 1/8;

a subtractor for subtracting an output value from-the_said 3-bit shift register from
the first output value from the said first comparator;
a 1-bit shift register for multiplying the second output value from the said first
comparator by 1/2;
a 2-bit shift register for multiplying an output value from-the said 1-bit shift
register by 1/4;
a first adder for adding the first output value from-the said first comparator and
the an output value from the said 2-bit shift register;
a second adder for adding an output value from-the_said subtractor and-an_the
output value from-the said 1-bit shift register; and
a second comparator for comparing an output value from-the said first adder and
an output value from-the said second adder with each other to determine which one of
these the output values is larger or smaller and output the a value of a larger one thereof
as an the approximate value of the power of the reception signal.
Claim 5 (Currently Amended) A detection method-adapted to-detect for
detecting an approximate value of the power of a signal received from a receiver, the
detection method comprising the steps of:
adding a value obtained by multiplying a smaller one of a component I and \underline{a}
component Q of the reception signal by 1/8 and <u>a value of</u> a larger one <u>of the components</u>
I and Q thereof to set the an addition result to be as a first operation result;
adding a value obtained by multiplying the smaller one of the component I and
the component Q of the reception signal by 1/2 and a value obtained by multiplying the
larger one-thereof of the components I and Q by 7/8 to set the an addition result-to-be as a
second operation result;; and
detecting a value of a larger one of the first operation result and the second
operation result as an the approximate value of the power of the reception signal.

Claim 6 (Currently Amended) A detection method adapted to detect for detecting an approximate value of the power of a signal received from a receiver, the detection method comprising the steps of:

\	
\bigwedge	

comparing a component I and a component Q of the reception signal with each
other to determine which one of these the components I and Q is larger or smaller
through the operation of a first comparator, to thereby output a larger component as a first
output value and output a smaller component as a second output value;
multiplying the first output value from the first comparator by 1/8 through-the
operation of a 3-bit shift register;
subtracting an output value from the 3-bit shift register from the first output value
from the first comparator through the operation of a subtractor;
multiplying the second output value from the first comparator by 1/2 through the
operation of a 1-bit shift register;
multiplying an output value from the 1-bit shift register by 1/4 through-the
operation of a 2-bit shift register;
adding the first output value from the first comparator and the an output value
from the 2-bit shift register through-the operation of a first adder;
adding an output value from the subtractor and an the output value from the 1-bit
shift register through-the operation of a second adder; and
comparing an output value from the first adder and an output value from the
second adder with each other through-the operation of a second comparator, to thereby
determine which one of-these the output values is larger or smaller and detect the a value
of a larger one thereof as-an_the approximate value of the power of the reception signal.
Claim 7 (Currently Amended) A receiver-adapted to detect for detecting and
outputting an approximate value of the power of a reception signal, the receiver operable
owherein:
operations are performed perform a plurality of operations using a plurality of
approximate equations that are different from each other to calculate from the same
eception signal, a plurality of candidates each becoming an for the approximate value of
he power of the reception signal-are calculated; and
an excellent one is detected detect an excellent candidate from among-a the
olurality of the candidates as an the approximate value of the power of the reception
signal to be outputted.

chiel

Claim 8 (Currently Amended) A mobile-station device-adapted to detect for detecting and outputting an approximate value of the power of a signal radio-received from a base-station device, the mobile-station device comprising a receiver-that performs operable to: perform a plurality of operations using a plurality of approximate equations, calculates that are different from each other to calculate from the same reception signal a plurality of candidates each becoming an for the approximate value of the power of the reception signal; and detects detect an excellent one candidate from among a the plurality of the candidates as—an the approximate value of the power of the reception signal to be outputted. Claim 9 (Currently Amended) A detection method adapted to detect for detecting and outputting an approximate value of the power of a signal received from a receiver, the detection method comprising the steps of: performing a plurality of operations using a plurality of approximate equations. ealculating that are different from each other and each include at least one bit shift operation, at least one add or subtract operation and at least one compare operation, to calculate from the same reception signal a plurality of candidates each becoming an for the approximate value of the power of the reception signal; and detecting an excellent-one candidate from among-a the plurality of-the candidates

as an the approximate value of the power of the reception signal to outputted.