

Agent-Based Modelling

Classification and Case Studies

Lecture Goal

- Get some idea about, how an agent-based model may "look like"
- Get some idea about, how diverse agent-based modelling is
- Classifications of ABMs clean-up this mess...
- Tips and Tricks

Dynamics: Predator eats Prey
Predator / Prey births, deaths

Environment: isolated

Measurement: Predator Population

5 Years = 60 months, quarterly

Problem: When is a reasonable time to use chemical pesticides to reduce number of predators?

Isolated environment

Choice -

2 variables = 2 states

Separation -

Isolated environment (~ rectangular grid)

Choice -

 $Y(t) = \#\{y_i(t)\}\$ prey agents

 $X(t) = \#\{x_i(t)\}\$ predator agents

Initialisation:

 $Y(0) = Y_0$ prey agents and $X(0) = X_0$ predator agents distributed uniformly on a rectangular grid with $M \cdot N > Y_0 + X_0$ cells

Time Step Dynamics:

A time step is split into two phases:

- Movement
- 2. Population Dynamics

Time Step Dynamics:

A time step is split into two phases:

- Movement
- 2. Population Dynamics

- Prey
- Predator

 Every agent moves in a randomly picked neighbour cell (Moore neighbourhood)

Time Step Dynamics:

A time step is split into two phases:

- Movement
- 2. Population Dynamics

- Prey
- Predator

- Every agent moves in a randomly picked neighbour cell (Moore neighbourhood)
- Iterate in random order, periodic boundary conditions

Time Step Dynamics:

A time step is split into two phases:

- Movement
- 2. Population Dynamics

- Prey
- Predator

- Every agent moves in a randomly picked neighbour cell (Moore neighbourhood)
- Iterate in random order, periodic boundary conditions

- Time Step Dynamics:
 A time step is split into two phases:
 - Movement
 - 2. Population Dynamics

- Prey
- Predator

Every time-step agents are iterated in random order:

Predator:

- Every predator dies with probability α
- If prey is around (Moore), the predator successfully catches one of it with probability β and "replaces" it by one offspring

Prey:

 If possible, every prey produces an offspring in one randomly picked neighbour cell with probability γ

Compare ABM model results with SD model results

- Fuzzy (randomness)
- Dying out
- Scale

- Fuzzy (randomness)
- Dying out
- Scale

Case Study 1: Lessons Learned

Lesson 1: Be careful, in which sequence/order agents are addressed to perform actions. Don't unintentially favour some!

Case Study 1: Lessons Learned

Lesson 1: Be careful, in which sequence/order agents are addressed to perform actions. Don't unintentially favour some!

Lesson 2: Be careful, when implementing movement on a grid. Don't occupy spots twice!

Case Study 1: Lessons Learned

Lesson 1: Be careful, in which sequence/order agents are addressed to perform actions. Don't unintentially favour some!

Lesson 2: Be careful, when implementing movement on a grid. Don't occupy spots twice!

Lesson 3: Never judge only based on only one simulation result, if randomness is involved!

- Model for simulation of (bird) flocking behaviour
- Craig Reynolds in 1986

 Three simple rules on individual level lead to complex behaviour of the crowd

https://www.youtube.com/watch?v=QOGCSBh3kmM

Each agent tends towards the centre of its neighbours

Swim in the same direction as your neighbours

- a_k current position of agent k
- v_k current velocity of agent k

- a_k current position of agent k
- v_k current velocity of agent k

Each agent tends towards the centre of its neighbours

Let a_k be the position of agent k and let

$$I \coloneqq \{k \neq i : ||a_k - a_i|| < Or\}$$
 for and observation radius Or .

Then:

$$d_1^k = \frac{1}{|I|} \sum_{i \in I} a_i - a_k$$

Swim in the same direction as your neighbours

Let v_k be the velocity of agent k and let

$$I := \{k \neq i : ||a_k - a_i|| < Or\}$$
 for and observation radius Or .

Then:

$$d_2^k = \frac{1}{|I|} \sum_{i \in I} v_i$$

Keep a distance that is neither too far nor too small

Let a_k be the position of agent k and let

$$J \coloneqq \{k \neq i : \big| |a_k - a_i| \big| < Cr\}$$
 for and collision radius Cr . Then:

$$\int d_3^k = a_k - \frac{1}{|J|} \sum_{i \in J} a_i$$

Update velocity

$$\tilde{v}_i = \alpha_0 v_i + \alpha_1 d_1^i + \alpha_2 d_2^i + \alpha_3 d_3^i$$

Update position

$$\tilde{x}_i = x_i + \tilde{v}_i$$

- Boids model is the most picturesque example for emergence in ABMs
- It is a good test case for agent-based simulators (high computation performance required)

Case Study 2: Lessons Learned

Lesson 4: ABMs are often computationally expensive! Think about, how to optimize your code performance

Case Study 2: Lessons Learned

Lesson 4: ABMs are often computationally expensive! Think about, how to optimize your code performance

Lesson 5: A fully <u>reproducible</u> model description is difficult and can be long and cconfusing. Think about using a standartised protocol for it.

Case Study 2: Lessons Learned

- Example: ODD
 Protocol by Volker
 Grimm et.al.
- Standartised documentation of agent-based models

	Purpose	
Overview	State variables and scales	
	Process overview and scheduling	
Design concepts	Design concepts	
Details	Initialization	
	Input	
	Submodels	

Fig. 1 – The seven elements of the ODD protocol, which can be grouped into the three blocks: Overview, Design concepts, and Details.

Grimm, Volker, Uta Berger, Finn Bastiansen, Sigrunn Eliassen, Vincent Ginot, Jarl Giske, John Goss-Custard, u. a. "A Standard Protocol for Describing Individual-Based and Agent-Based Models". *Ecological Modelling* 198, Nr. 1–2 (September 2006): 115–26. https://doi.org/10.1016/j.ecolmodel.2006.04.023.

Classification of ABMs (1)

Differences?

VS.

Classification of ABMs (1)

Classification 1

with respect to **modelling purpose** (i.e. the research question)

ABMs for <u>qualitative</u> investigation

- (On purpose) very abstract
- Usually very complex model behaviour
- Hardly any parameters identified with real data

ABMs for <u>quantitative</u> investigation

- Rather simple agent interactions
- A lot of data involved for model parametrisation and validation
- Usually less famous

Classification of ABMs (2)

abstract environment

Classification 2

with respect to agent environment

spatial environment

	<u>lattice</u>	<u>continuous</u>	<u>network</u>	
•	Sometimes equivalent to a CA Different forms of grids 1D – 3D	 Often uses distance-metrics for agent interaction Surprisingly, often easier to handle than lattice models 	 Contacts between agents modelled as edges of a network 	

- Each car in a one-lane road is represented by an agent
- Each agent i has a certain length L_i , position $x_i(t)$ and velocity $v_i(t)$
- Velocity update is based on a differential equation that includes the distance to and velocity of the car in front

- Each car in a one-lane road is represented by an agent
- Each agent i has a certain length L_i , position $x_i(t)$ and velocity $v_i(t)$
- Velocity update is based on a differential equation that includes the distance to and velocity of the car in front

$$\dot{v}_{i+1}(t+\tau) = A \cdot \frac{v_i(t) - v_{i+1}(t)}{x_i(t) - x_{i+1}(t) - L_i}$$

A ... acceleration constant τ ... reaction time

- Each car in a one-lane road is represented by an agent
- Each agent i has a certain length L_i , position $x_i(t)$ and velocity $v_i(t)$
- Velocity update is based on a differential equation that includes the distance to and velocity of the car in front

$$\dot{v}_{i+1}(t+\tau) = A \cdot \frac{v_i(t) - v_{i+1}(t)}{x_i(t) - x_{i+1}(t) - L_i}$$

A ... acceleration constant τ ... reaction time

Some additional parameters:

lingering, maximum velocity, maximum acceleration, maximum break force, length of the road

- Gipps model poses the base for most modern models for traffic flow
- Alternative approaches: Nagel-Schreckenberg Model, Burgers equation
- Extensions to: multiple lanes, junctions, traffic lights, ...

Case Study 3: Gipps 's Car Following Model

Differences?

Classification of ABMs (3)

Classification 3

with respect to time update

time contin	time discrete		
differential equation	event-based	time steps	
 Usually used for systems with physical laws 	 Often used for scheduling problems 	 Most common update strategy. Needs special care with events happening at the same time 	

- 1992, Kai Nagel and Michael Schreckenberg
- Same Purpose as Gipps Model
- Discrete 1D Grid insread of continuous road
- One car per grid point

- Agents enter the model from the left (at the leftmost cell)
- Each agent has a certain velocity (natural number)
- Model is updated with equidistant time-steps

Each time-step, each agent...

- Updates its velocity according to the car in front (if any)
- Drives that many cells to the right

Each time-step, each agent...

- Updates its velocity according to the car in front (if any)
 - 1. Increases its velocity v by one: $v \leftarrow v + 1$
 - 2. Checks how many cells to the right are empty (say q)
 - 3. If v > q, then $v \leftarrow q$
 - 4. With a certain probability: $v \leftarrow \max(v 1,0)$

Each time-step, each agent...

- Updates its velocity according to the car in front (if any)
- Drives that many cells to the right
 - 1. agent advances v cells

3			5

Increases its velocity v by one:

$$v \leftarrow v + 1$$

Increases its velocity v by one:

$$v \leftarrow v + 1$$

Checks how many cells to the right are empty (say q)

Increases its velocity v by one:

$$v \leftarrow v + 1$$

Checks how many cells to the right are empty (say q)

If v > q, then $v \leftarrow q$

If v > q, then $v \leftarrow q$

With a certain probability: $v \leftarrow \max(v - 1,0)$

If v > q, then $v \leftarrow q$

With a certain probability: $v \leftarrow \max(v - 1,0)$

agent advances v cells

- Model usually described as a cellular automaton
- Model extendable to multiple lanes
- Either torodorial boundary conditions or new generation of cars every time-step

Differences? (apart from known)

VS.

Differences?

Classification of ABMs (4)

Classification 4

with respect to agent population

population static

agents only generated at the beginning of the simulation

 system variables only change due to change of agent states

population dynamic

- agents are (can be) generated on run-time
- system variables can also change due to change of number of agents
- usually more difficult to deal with due to space allocation of vectors

Case Study 4: Lessons Learned

Lesson 6: Careful when implementing population dynamic agent based models: Removal and adding of elements to a list is usually expensive.

Consider, recreating the list every time instead of adding and removal!

Case Study 4: Lessons Learned

Lesson 6: Careful when implementing population dynamic agent based models: Removal and adding of elements to a list is usually expensive.

Consider, recreating the list every time instead of adding and removal!

Lesson 7: Be aware, that agents need to be updated simultaneously when using models with time-steps!

- Specific model from Guillaume Deffuant 2000 (basic concepts much older)
- Simple model that depicts spread and development of different opinions

- N agents are initialised
- Every agent is assigned an opinion $x \in [-1,1]$
- Every time step,
 - Split the population into two random but equivalent halves
 - pick N/2 random partners from both, say with opinions x and y.
 - If $|x y| < \tau$, the two start discussing and

$$x \leftarrow x + \mu(y - x)$$
$$y \leftarrow y - \mu(y - x)$$

Otherwise

$$\begin{array}{l}
 x \leftarrow x \\
 y \leftarrow y
 \end{array}$$

$$\tau \in [0,2]$$

$$\mu \in \left[0, \frac{1}{2}\right]$$

x

 Picturesque model to show, how communities with different opinions develop (e.g. Political parties,...)

any new differences?

Classification of ABMs (5)

Classification 5

with respect to randomness (stochasticity)

stochas	deterministic	
<u>initial-value</u> <u>stochastic</u>	<u>update</u> stochastic	
 Initial setting (of agents) is determined using random numbers 	 Update rules user random numbers 	 The outcome of the model is uniquely defined by its initial condition

Summary

When developing an agent-based model particularly care for ...

- ... order of actions / simultaneous events
- ... correct movement of agents if using a gridded environment
- ... correct result interpretation (randomness, quantitative/qualitative, ...)
- ... code performance
- ... reproducible documentation