Convex Team Logics

Aleksi Anttila & Søren Brinck Knudstorp

ILLC, University of Amsterdam

Workshop on the Occasion of Marco Degano's Doctoral Defense

Convexity

0000

- Convexity: What is it and why is it interesting?
- Team Logics: Connectives and notions of propositionhood.
- Results: Expressive completeness for convex team logics.

Convexity: the why and what

Convexity

0000

Degano, 2024: The underlying idea is that the meaning of expressions should denote a convex 'region' provided a suitable notion of meaning space. Convexity would be violated when gaps are present in the underlying 'region' that expressions denote.

Image from Gärdenfors, The Geometry of Meaning: Semantics Based on Conceptual Spaces, 2000

1. Generalized quantifiers:

Team semantics

Convexity

Barwise & Cooper, 1981: The simple NP's of any natural language express monotone quantifiers or conjunctions of monotone quantifiers.

Van Benthem, 1984: Monotonicity is a strong condition, whose validity for arbitrary logical constants is debatable. Nevertheless, one does expect a certain "smooth" behaviour of reasonable quantifiers; and, therefore, the following notion of continuity [ed: convexity] has a certain interest...

2. Concept formation:

Gärdenfors, 2000: A central feature of our cognitive mechanisms is that we assign properties to the objects that we observe [...] I primarily want to pin down the properties that are, in a sense, natural to our way of thinking [...] The third and most powerful criterion of a region is the following, which also relies on betweenness: A subset C of a conceptual space S is said to be convex if, for all points x and y in C, all points between x and y are also in C.

Convexity as Linguistic/Cognitive Universal

3. Indefinites:

Degano, 2024: We can then provide a more grounded explanation for the absence of indefinites that lexicalize only the SK and NS functions as a violation of the convexity constraint.

Definition (Convexity over Teams)

A set of teams \mathcal{P} is convex iff for all t, t', t'' such that $t \subseteq t' \subseteq t''$, if $t \in \mathcal{P}$ and $t'' \in \mathcal{P}$, then $t' \in \mathcal{P}$.

(Propositional) team logics: connectives

Team semantics

Traditionally (in, e.g., CPC), formulas φ are evaluated at single valuations $v: \mathbf{Prop} \to \{0, 1\}.$

$$\mathbf{v} \models \varphi$$
.

In team semantics, formulas φ are evaluated at sets ('teams') of valuations $t \subseteq \{v \mid v : \text{Prop} \to \{0, 1\}\}.$

$$t \models \varphi$$
.

Definition (some team-semantic clauses)

For $t \subseteq \{v \mid v : \mathbf{Prop} \to \{0, 1\}\}$, we define

$$\begin{array}{lll} t \vDash \rho & \text{iff} & \forall v \in t : v(p) = 1, \\ t \vDash \varphi \land \psi & \text{iff} & t \vDash \varphi \text{ and } t \vDash \psi, \\ t \vDash \varphi \lor \psi & \text{iff} & \text{there exist } t', t'' \text{ such that } t' \vDash \varphi; \\ & t'' \vDash \psi; \text{ and } t = t' \cup t'', \\ t \vDash \varphi \lor \psi & \text{iff} & t \vDash \varphi \text{ or } t \vDash \psi. \end{array}$$

On connectives:

- Fact 1: Team semantics for $\{\neg, \land, \lor\}$ gives us classical logic.
- Fact 2: In classical logic, $\{\neg, \land, \lor\}$ is famously functionally complete: all other connectives are definable by these.
- Fact 3: In team semantics, $\{\neg, \land, \lor\}$ can only capture a fraction of the expressible connectives. For example, \lor is not definable using $\{\neg, \land, \lor\}$.
- Consequence: We have a semantic framework for expressions beyond classical assertions, such as questions.

Take-away: Teams provide for ways to express meanings not readily expressible in single-valuation semantics; and thus for considering new connectives!

(Propositional) team logics: propositionhood

- Given any condition-based semantics, we obtain a notion of propositionhood defined as a set of conditions. Slogan: Proposition = a set of conditions.
- In team semantics, conditions are teams.
- So, propositions are sets of teams. Caveat: The standard terminology is not 'propositions' but 'properties'.

Since our meaning space now has structure (as powersets), we can consider natural restrictions on what a proposition is. Or what different kinds of propostions/meanings there are! For instance, assertions contra questions. (Note the analogy with generalized quantifiers.)

Notions of propositionhood (closure properties)

Team semantics

Take-away: Teams provide for ways to express meanings not readily expressible in single-valuation semantics; and thus for considering new notions of propositionhood!

Definition (some restrictions on propositionhood)

$$\phi$$
 is downward closed: $[s \models \phi \text{ and } t \subseteq s] \Longrightarrow t \models \phi$
 ϕ is union closed: $[s \models \phi \text{ for all } s \in S \neq \emptyset] \Longrightarrow \bigcup S \models \phi$

$$\phi$$
 has the *empty team property*: $\varnothing \models \phi$

$$\phi$$
 is flat: $s \models \phi \iff \{v\} \models \phi \text{ for all } v \in s$

$$\phi$$
 is *convex*: $[s \models \phi, u \models \phi \text{ and } s \subseteq t \subseteq u] \implies t \models \phi$

Convexity generalizes downward closure:

downward closed \improx convex

The choice of connectives and the corresponding notion of propositionhood are closely connected. Here are some examples:

- Classical formulas are flat (so union closed) [i.e., classical assertions are flat]
- Formulas with ⋈ might not be union closed. [i.e., questions are not union closed]
- Consider the *epistemic might* operator ◆, defined as

$$s \models \bullet \phi \iff \exists t \subseteq s : t \neq \phi \& t \models \phi.$$

Formulas with • are not downward closed [i.e., epistemic uncertainty is not persistent]

Convexity

Recall Degano, 2024: The underlying idea is that the meaning of expressions should denote a convex 'region' provided a suitable notion of meaning space

To summarize, we paraphrase: The underlying idea is that $\|\varphi\|$ should denote a convex 'region': if $s, u \in \|\varphi\|$ and $s \subseteq t \subseteq u$, then $t \in \|\varphi\|$

Expressive completeness

We answer an open question concerning the expressive power of a certain propositional team logic by showing it is capable of capturing the full range of convex and union-closed propositions (properties). We also find logics capable of expressing all convex propositions.

We say a logic L is expressively complete for a class of properties $\mathbb{P}(||L|| = \mathbb{P})$ if

- (i) $||L|| \subseteq \mathbb{P}$: each property $||\phi||$ (where $\phi \in L$) is in \mathbb{P}
- (ii) $\mathbb{P} \subseteq ||L||$: each property $\mathcal{P} \in \mathbb{P}$ can be expressed by a formula of L: $\mathcal{P} = ||\phi||$ where $\phi \in L$.

Example: Propositional dependence logic is expressively complete for the class of downward-closed (propositional) team properties

$$\mathbb{D} = \{ \mathcal{P} \mid [t \in \mathcal{P} \& s \subseteq t] \implies s \in \mathcal{P} \}$$

Propositional inquisitive logic is also expressively complete for \mathbb{D} .

We consider one propositional logic complete for the class of convex and union-closed (propositional) team properties

$$\mathbb{CU} = \{ \mathcal{P} \mid [[s, u \in \mathcal{P} \& s \subseteq t \subseteq u] \implies t \in \mathcal{P}] \& [s, u \in \mathcal{P} \implies s \cup u \in \mathcal{P}] \}.$$

This logic is the propositional fragment of Aloni's Bilateral State-based Modal Logic.

We also consider two logics complete for the class of convex (propositional) team properties

$$\mathbb{C} = \{ \mathcal{P} \mid [s, u \in \mathcal{P} \& s \subseteq t \subseteq u] \implies t \in \mathcal{P} \}.$$

These logics are (in a sense) convex variants of the downward-closed logics propositional dependence logic and propositional inquisitive logic.

 V_{pq}

A Logic for Convex Union-closed Properties

Syntax of classical propositional logic (with \lor) PL $_\lor$

$$\alpha := p \mid \bot \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha$$

We extend PL_{\vee} with the nonemptiness atom NE—syntax of $PL_{\vee}(NE)$:

$$\phi := p \mid \bot \mid \neg \alpha \mid \phi \land \phi \mid \phi \lor \phi \mid \text{NE}$$

where $\alpha \in \mathbf{PL}_{\vee}$.

$$\{v_q\} \models p \lor q; \{v_q\} \not\models (p \land NE) \lor (q \land NE)$$

$$t \vDash \text{NE} \iff t \neq \emptyset$$

Aloni's (2022) Bilateral State-based Modal Logic is a modal extension of $PL_{\vee}(NE)$ (and is similarly complete for convex union-closed modal team properties in the modal setting). Aloni uses NE to model a process of pragmatic enrichment which is then used to account for free choice inferences and other phenomena. E.g.,:

You may have coffee or tea \rightsquigarrow You may have coffee and you may have tea.

$$\diamondsuit((c \land \text{NE}) \lor (t \land \text{NE})) \vDash \diamondsuit c \land \diamondsuit t$$

To show $PL_{\vee}(NE) = \mathbb{CU}$, we show:

- (i) $||\mathbf{PL}_{\vee}(NE)|| \subseteq \mathbb{CU}$: by induction.
- (ii) $\mathbb{CU} \subseteq ||\mathbf{PL}_{\vee}(NE)||$: by constructing characteristic formulas for properties in \mathbb{CU} .

Characteristic formulas for valuations and teams:

$$\chi_{v} := \bigwedge \{ p \mid v \models p \} \land \bigwedge \{ \neg p \mid v \not\models p \}$$

$$\chi_{s} := \bigvee_{v \in s} \chi_{v}$$

$$t \models \chi_{s} \iff t \subseteq s$$

Characteristic formulas for flat (downward- and union-closed) properties:

$$t \vDash \bigvee_{s \in \mathcal{P}} \chi_s \iff t \subseteq \bigcup \mathcal{P}$$

Characteristic formulas for upward-closed properties:

$$t \models \bigwedge_{v_1 \in t_1, \ldots, v_n \in t_n} (((\chi_{v_1} \vee \ldots \vee \chi_{v_n}) \wedge \text{NE}) \vee \top) \iff \exists s \in \mathcal{P} = \{t_1, \ldots, t_n\} : s \subseteq t$$

Characteristic formulas for convex union-closed properties:

$$t \models \bigvee_{\mathsf{v} \in \mathsf{s}} \chi_{\mathsf{v}} \land \bigwedge_{\mathsf{v}_1 \in t_1, \dots, \mathsf{v}_n \in t_n} (((\chi_{\mathsf{v}_1} \lor \dots \lor \chi_{\mathsf{v}_n}) \land \mathtt{NE}) \lor \top) \iff \exists \mathsf{s} \in \mathcal{P} = \{t_1, \dots, t_n\} : \mathsf{s} \subseteq t \text{ and } t \subseteq \bigcup \mathcal{P} \iff t \in \mathcal{P} \text{ (if } \mathcal{P} \in \mathbb{CU})$$

Logics for Convex Properties

To get a characteristic formula for all convex properties, we can replace the characteristic formula for flat properties with a characteristic formula for downward-closed properties. Flat (downward- and union-closed) properties:

$$t \vDash \phi_{\mathcal{P}}^{\mathcal{F}} \iff t \subseteq \bigcup \mathcal{P}$$

Upward-closed properties:

$$t \models \phi_{\mathcal{P}}^{U} \iff \exists s \in \mathcal{P} : s \subseteq t$$

Downward-closed properties:

$$t \models \phi_{\mathcal{P}}^{D} \iff \exists s \in \mathcal{P} : t \subseteq s$$

Convex union-closed properties:

$$t \vDash \phi_{\mathcal{P}}^{\mathcal{F}} \land \phi_{\mathcal{P}}^{\mathcal{U}} \iff \exists s \in \mathcal{P} : s \subseteq t \text{ and } t \subseteq \bigcup_{\mathcal{P}}^{\mathcal{P}}$$
$$\iff t \in \mathcal{P} \text{ (if } \mathcal{P} \in \mathbb{CU})$$

Convex properties:

$$t \vDash \phi_{\mathcal{P}}^{D} \land \phi_{\mathcal{P}}^{U} \iff \exists s_{1} \in \mathcal{P} : s_{1} \subseteq t \text{ and } \exists s_{2} \in \mathcal{P} : t \subseteq s_{2}$$
$$\iff t \in \mathcal{P} \text{ (if } \mathcal{P} \in \mathbb{C})$$

Can we simply extend $\mathbf{PL}_{\vee}(\mathrm{NE})$ to get $\phi_{\mathcal{P}}^{D}$? No. It can be shown that if a logic L can define $\|\phi \vee \psi\|$ for all convex ϕ, ψ (notation: $\mathbb{C} \vee \mathbb{C} \subseteq \|L\|$), then $\|L\| \notin \mathbb{C}$ (the logic cannot be convex!)

For instance, let $\mathcal{P}_1 := \{\{v_1\}, \{v_2, v_3\}\}$ and $\mathcal{P}_2 := \{\{v_1\}\}$. Then $\mathcal{P}_1, \mathcal{P}_2 \in \mathbb{C}$, so $\mathcal{P}_1 = ||\phi_1||$ and $\mathcal{P}_2 = ||\phi_2||$ for $\phi_1, \phi_2 \in \mathcal{L}$. We have $||\phi_1 \vee \phi_2|| = \{\{v_1\}, \{v_1, v_2, v_3\}\} \notin \mathbb{C}$, so if $\mathbb{C} \vee \mathbb{C} \subseteq ||\mathcal{L}||$, then $||\mathcal{L}|| \not\subseteq \mathbb{C}$.

We had \vee in $\mathbf{PL}_{\vee}(\mathrm{NE})$, but $\mathbf{PL}_{\vee}(\mathrm{NE})$ can only define $\phi \vee \psi$ for all convex and union-closed ϕ, ψ ; this does not violate convexity. $\mathbb{CU} \vee \mathbb{CU} \subseteq ||L||$ need not imply $\mathbb{C} \vee \mathbb{C} \subseteq ||L||$.

We must either (1) modify \vee to force convexity, or (2) replace \vee with something else (that still allows us to capture all of classical propositional logic). Recall that propositional dependence logic and propositional inquisitive logic are complete for $\mathbb D$ and hence can express $\phi_{\mathcal P}^{\mathcal D}$. We employ strategy (1) to produce a convex extension of propositional dependence logic, and (2) to produce a convex logic similar to propositional inquisitive logic.

Convex Propositional Dependence Logic

Syntax of propositional dependence logic $PL_{\vee}(=(\cdot))$:

$$\phi := p \mid \bot \mid \neg \alpha \mid \phi \land \phi \mid \phi \lor \phi \mid = (p_1, \ldots, p_n, q)$$

where $\alpha \in \mathbf{PL}_{\vee}$, $\|\mathbf{PL}_{\vee}(=(\cdot))\| = \mathbb{D}$, so $\|\phi_{\mathcal{D}}^{\mathcal{D}}\| \in \|PL_{\vee}(=(\cdot))\|$.

We modify v to force downward closure, and hence convexity. We also replace NE with the epistemic might operator \bullet to still be able to express $\phi_{\mathcal{D}}^{\mathcal{U}}$.

Syntax of classical propositional logic (with v) PLv:

$$\alpha \coloneqq \boldsymbol{p} \mid \bot \mid \neg \alpha \mid \alpha \wedge \alpha \mid \alpha \vee \alpha$$

Syntax of convex propositional dependence logic $PL_{\forall}(=(\cdot), \bullet)$:

$$\phi ::= p \mid \bot \mid \neg \alpha \mid \phi \land \phi \mid \phi \lor \phi \mid = (p_1, \ldots, p_n, q) \mid \bullet \phi$$

where $\alpha \in \mathbf{PL}_{\vee}$.

$$t \vDash \phi \lor \psi \iff \exists s \supseteq t : s = s_1 \cup s_2 \& s_1 \vDash \phi \& s_2 \vDash \psi$$
$$t \vDash \bullet \phi \iff \exists s \subseteq t : s \neq \emptyset \& s \vDash \phi$$

For downward-closed $\phi, \psi: \phi \lor \psi \equiv \phi \lor \psi$, so $||\phi_{\mathcal{D}}^{\mathcal{D}}|| \in ||PL_{\mathbb{Y}}(=(\cdot), \bullet)||$. We can define χ_t using \forall , and define $\phi_{\mathcal{D}}^U$ for $\mathcal{P} = \{t_1, \dots, t_n\}$ by: $\phi_{\mathcal{D}}^U := \bigwedge_{v_1 \in t_1, \dots, v_n \in t_n} \bullet (\chi_{v_1} \vee \dots \vee \chi_{v_n}).$

A Convex Logic Similar to Propositional Inquisitive Logic

Syntax of classical propositional logic (with \rightarrow) **PL** \rightarrow :

$$\alpha := p \mid \bot \mid \alpha \land \alpha \mid \alpha \rightarrow \alpha$$

Syntax of propositional inquisitive logic $PL_{\rightarrow}(\vee)$:

$$\phi := p \mid \bot \mid \phi \land \phi \mid \phi \rightarrow \phi \mid \phi \lor \phi$$

$$t \vDash \phi \rightarrow \psi \iff \forall s \subseteq t : s \vDash \phi \text{ implies } s \vDash \psi$$

$$t \vDash \phi \vee \psi \iff t \vDash \phi \text{ or } t \vDash \psi$$

Like \mathbf{PL}_{\vee} , $\mathbf{PL}_{\rightarrow}$ is flat, and corresponds to standard classical propositional logic. We define $\neg_i \phi := \phi \rightarrow \bot$. $\phi \lor_i \psi := \neg_i (\neg_i \phi \land \neg_i \psi)$. Using these, we can construct χ_t as before. $||\mathbf{PL}_{\rightarrow}(\ \mathbb{V})|| = \mathbb{D}$, and ϕ_D^D is definable as

$$\phi_{\mathcal{P}}^{D} \coloneqq \bigvee_{t \in \mathcal{P}} \chi_{t}$$

We again add the epistemic modality \bullet to capture $\phi_{\mathcal{P}}^{\mathcal{U}}$:

$$\phi_{\mathcal{P}}^{U} := \bigwedge_{v_{1} \in t_{1}, \dots, v_{n} \in t_{n}} \bullet (\chi_{v_{1}} \vee_{i} \dots \vee_{i} \chi_{v_{n}}) \qquad (\mathcal{P} = \{t_{1}, \dots, t_{n}\})$$

Problem: with \bullet and \mathbb{V} , the logic is no longer convex. If $\mathbb{C} \mathbb{V} \mathbb{C} \subseteq ||L||$, then $||L|| \subseteq \mathbb{C}$. E.g., $\bullet p \mathbb{V} q$ is not convex.

Solution: We can have $\mathbb{F} \vee \mathbb{F} \subseteq ||L||$ (where \mathbb{F} is the class of flat properties) and hence $||\phi_{\mathcal{P}}^D|| = ||\bigvee_{t \in \mathcal{P}} \chi_t|| \in ||L||$ without having \vee in the syntax. In fact, \vee is already uniformly definable for flat ϕ, ψ using \to and \bullet .

Syntax of $PL_{\rightarrow}(\bullet)$:

$$\phi ::= p \mid \bot \mid \phi \land \phi \mid \phi \rightarrow \phi \mid \bullet \phi$$

For any $\{\alpha_k \mid k \in K\} \subseteq \mathbf{PL}_{\rightarrow}$,

$$\bigvee_{k \in K}^{-} \alpha_k := \bigwedge_{k \in K} \left(\left(\bigwedge_{j \in K \setminus \{k\}} \bullet_{\neg i} \alpha_j \right) \to \alpha_k \right).$$

Then $\bigvee_{k \in K} \alpha_k \equiv \bigvee_{k \in K} \alpha_k$. We can define $\phi_{\mathcal{P}}^U$ as before, and $\phi_{\mathcal{P}}^D$ as:

$$\phi_{\mathcal{P}}^{D} \coloneqq \bigvee_{t \in \mathcal{P}}^{-} \chi_{t}$$

Conclusion

- Importance of convexity.
- Notion of propositionhood in team logics.
- Results: PL_V(NE) is expressively complete for convex and union-closed properties.
 A modal analogue of the result shows that Aloni's BSML is expressively complete for modal convex and union-closed properties.
- Results: Two logics expressively complete for all convex properties. One is similar
 to propositional dependence logic, the other to propositional inquisitive logic.

Convexity

Thank you!