Formalisms Every Computer Scientist Should Know: Homework Solutions

1 Homework 1

Theorem 1.1. If there is a one-to-one function on a set A to a subset of a set B and there is also a one-to-one function on B to a subset of A, then A and B are equipollent.

Proof. We need to show that there exists a bijection between A and B.

Assume such two functions exist. Fix the two functions $\widehat{f}:A\to B$ and $\widehat{g}:B\to A$ be one-to-one functions.

Then there exist bijections $\widehat{f}^{-1}:\widehat{f}(A)\to A$ and $\widehat{g}^{-1}:g(B)\to B$.

Define $A_C \subseteq A$ as the set of such elements $a \in A$ that $(\widehat{g} \circ \widehat{f})^n a = a$ for some integer $n \in \mathbb{N}$ (zero is not in \mathbb{N}).

In the same way, define $B_C = \{b \in B \mid \exists n \in \mathbb{N} : (\widehat{f} \circ \widehat{g})^n b = b\}.$

For a given element $a \in A$, define a sequence of ancestors $X(a) = (a, \widehat{g}^{-1}(a), \widehat{f}^{-1}(\widehat{g}^{-1}(a)), \ldots)$. The sequence is finite if the last element is in $A \setminus \widehat{g}(B)$ or in $B \setminus \widehat{f}(A)$, and infinite otherwise. In the same way, for $b \in B$, define $X(b) = (b, \widehat{f}^{-1}(b), g^{-1}(\widehat{f}^{-1}(b)), \ldots)$.

otherwise. In the same way, for $b \in B$, define $X(b) = (b, \hat{f}^{-1}(b), g^{-1}(\hat{f}^{-1}(b)), \ldots)$. Define $A_I = \{a \in A \mid X(a) \text{ is infinite}\}$, $A_E = \{a \in A \mid |X(a)| \text{ is even}\}$, $A_O = \{a \in A \mid |X(a)| \text{ is odd}\}$. Observe that A_I, A_E, A_O are disjoint and cover A. Similarly, define B_I, B_E, B_O .

Notice that $A_C \subseteq A_I$, since for any $a \in A_C$, X(a) is periodic and infinite.

I claim that \widehat{f} maps A_I bijectively onto B_I . To see this, we need to show that for any $b \in B_I$, there exists a preimage $a \in A_I$ such that $\widehat{f}(a) = b$. Such a is the second element of X(b), $a = \widehat{f}^{-1}(b)$. Then $\widehat{f}(a) = b$. a is indeed in A_I , because $X(a) = (a = \widehat{f}^{-1}(b), \widehat{g}^{-1}(\widehat{f}^{-1}(b)), \ldots)$ is also infinite.

Next, show that f maps A_E bijectively onto B_O . To see this, we need to show that for any $b \in B_O$, there exists a preimage $a \in A_E$ such that $\widehat{f}(a) = b$. Such a is the second element of X(b), $a = \widehat{f}^{-1}(b)$. Then $\widehat{f}(a) = b$. a is indeed in A_E , because $X(a) = (a = \widehat{f}^{-1}(b), \widehat{g}^{-1}(\widehat{f}^{-1}(b)), \ldots)$. Then |X(a)| = |X(b)| - 1 is even.

In the same way, g maps B_E bijectively onto A_O . Therefore, g^{-1} maps A_O bijectively onto B_E .

Define a map $h: A \to B$:

$$h(a) = \begin{cases} \widehat{f}(a), & a \in A_I \\ \widehat{f}(a), & a \in A_E \end{cases},$$

$$\widehat{g}^{-1}(a), & a \in A_O$$

$$(1)$$

which is the desired bijection between A and B.

2 Homework 2

Theorem 2.1 (Knaster-Tarski). Let (A, \sqsubseteq) be a complete lattice and let F be a monotone function on A. Further, let $\hat{y} = \bigsqcup \{x \mid x \sqsubseteq F(x)\}$ and $\hat{z} = \bigcap \{x \mid F(x) \sqsubseteq x\}$. It holds, that:

- 1. \hat{y} and \hat{z} are fixpoints of F,
- 2. for all fixpoints x of F, $\hat{z} \sqsubseteq x \sqsubseteq \hat{y}$

Proof. Suppose (A, \sqsubseteq) is a complete lattice and let F be a monotone function on A. Let U be the set of elements $x \in A$ for which $x \sqsubseteq F(x)$ and let D be the set of elements $x \in A$ for which $x \sqsupseteq F(x)$. Then as described in the lecture let us denote the join and meet of these two sets respectively as $\hat{y} = \bigsqcup U$ and $\hat{z} = \prod D$ (this meet and join exist because the considered lattice is complete). We shall prove:

- 1. \hat{y} and \hat{z} are fixpoints of F.
- 2. For all fixpoints x of F the following holds $\hat{z} \sqsubseteq x \sqsubseteq \hat{y}$.
- 1. Let us first prove that \hat{y} is a fixpoint of F. Let us pick an arbitrary element $u \in U$, then by definition of \hat{y} we have $u \sqsubseteq \hat{y}$. Because F is monotone this implies $F(u) \sqsubseteq F(\hat{y})$. And because u was picked arbitrarily from U this means that $F(\hat{y})$ is an upper bound on U. But \hat{y} is the least upper bound of U and thus $\hat{y} \sqsubseteq f(\hat{y})$. Again by applying the monotonicity of F we get $F(\hat{y}) \sqsubseteq F(F(\hat{y}))$ and we can conclude $F(\hat{y}) \in U$. But because \hat{y} is the join of U and $F(\hat{y})$ is an element of U it follows $F(\hat{y}) \sqsubseteq \hat{y}$. Together with the inequality $\hat{y} \sqsubseteq F(\hat{y})$ this gives us $F(\hat{y}) = \hat{y}$, hence \hat{y} is a fixpoint of F. The proof that \hat{z} is a fixpoint of F can be done along the same lines by considering \sqsubseteq instead of \sqsubseteq and the set D instead of U.
- **2.** Suppose \hat{x} is a fixpoint of F. Then clearly $\hat{x} \in U$ and hence $\hat{x} \sqsubseteq \hat{y}$ as \hat{y} is the join of U. Similarly $\hat{x} \in D$ and hence $\hat{x} \supseteq \hat{z}$ as \hat{z} is the meet of D. So it follows that $\hat{z} \sqsubseteq \hat{x} \sqsubseteq \hat{y}$ and the proof is done.

3 Homework 4

3.1 Sorting

Definition 3.1 (ordered). A function ordered: $\Sigma^* \to \{true, false\}$ is defined as follows. ordered(ε) = true, ordered(a) = true

Lemma 3.1. sorted(ms(x)) = true.

Proof. We will use induction on the length of x. Obviously, $\mathtt{sorted}(\mathtt{ms}(\varepsilon)) = \mathtt{sorted}(\mathtt{ms}(a)) = true$.

Recall that ms(x) = merge(ms(odd(x)), ms(even(x))). By the induction assumption, we know that ms(odd(x)), ms(even(x)) are sorted, since their length is less than the length of x. Now it is enough to show that sorted(merge(y, z)) = true if y and z are sorted. Consider sorted(merge(ay, bz)). Without loss of generality, let $a \le b$, so sorted(merge(ay, bz)) = sorted(amerge(y, bz)) = true, since a is less or equal to both b and the next element of y, and sorted(merge(y, bz)) = true holds by induction.

Definition 3.2 (permutation). For all natural n, the function permutation: $\Sigma^n \times \Sigma^n \to \{true, false\}$ is defined as follows. permutation $(\varepsilon, \varepsilon) = true$, permutation(a,b) = (a == b), permutation(ax,yaz) = permutation(x,yz), and if $a \notin y$ then permutation(ax,y) = false, where $a,b \in \Sigma$, $x,y,z \in \Sigma^*$.

Lemma 3.2. permutation(x, ms(x)) = true.

Proof. We will use induction on the length of x. Obviously, $permutation(\varepsilon, ms(\varepsilon)) = permutation(a, ms(a)) = true$.

First, let's show that merge(x, y) is a permutation of xy. Indeed, if, for instance, $a \le b$, then permutation(merge(ax, by), axby) = permutation(merge(x, by), xby) = true by induction.

Finally, ms(x) = merge(ms(odd(x)), ms(even(x))). By the induction assumption, we know that ms(odd(x)), ms(even(x)) are permutations of odd(x), even(x) respectively, since their length is less than the length of x. Moreover, as we have already shown above, merge(ms(odd(x)), ms(even(x))) is a permutation of ms(odd(x))ms(even(x)), which is a permutation of odd(x)even(x). Finally, it is sufficient to prove that odd(x)even(x) is a permutation of x. Using induction, permutation(odd(ax)even(ax), ax) = permutation(aeven(x)odd(x), ax) = permutation(aeven(x)odd(x), ax) = permutation(aeven(x)odd(x), ax) = true. Here, we used the induction hypothesis and the fact that ax is a permutation of ax (also straightforwardly proved with induction, if needed).

3.2 The human and monkeys theorem

Let's have a relation <, defined as follows: x < y if parent(x, y) or there exists z such that x < z and parent(z, y). We will assume that this relation is well-founded. Also, for all x, either human(x) or monkey(x).

Theorem 3.3. If x < y, and $\operatorname{human}(y)$, and $\operatorname{monkey}(x)$, then there exist z_1, z_2 such that $\operatorname{parent}(z_1, z_2)$, and $\operatorname{human}(z_2)$, and $\operatorname{monkey}(z_1)$.

Proof. Define a sequence w_1, w_2, \ldots inductively like this: $w_1 = y$, w_{n+1} is such that $\mathsf{parent}(w_{n+1}, w_n)$, and $x < w_{n+1}$. If $w_n = x$, then terminate the sequence. Obviously, $w_1 > w_2 > \ldots$ Since < is well-founded, the sequence has to be finite: $y = w_1 > w_2 > \ldots > w_k = x$.

For the sake of contradiction, suppose, there is no such i, that $parent(w_{i+1}, w_i)$, and $human(w_i)$, and $monkey(w_{i+1})$. Then, by induction, all w_i are humans. This contradicts the fact that w_k is a monkey. Therefore, the desired z_1, z_2 exist among some w_{i+1}, w_i , as requested.