Aufgabe 2:

(a) i. $E \leq Q$

Seien v, u Kodierungen für zwei Turingmaschinen.

Definition von $M_{u,v}$

- 1: **input** $x \in \{0,1\}^*$
- 2: Simuliere M_u auf Eingabe x
- 3: Simuliere M_v auf Eingabe x
- 4: Falls beide akzeptieren: reject
- 5: Falls beide nicht akzeptieren: reject
- 6: Sonst: accept

Definiere $f: \{0,1\}^* \to \{0,1\}^* \# \{0,1\}^*$ mittels f(w) := v # w

Zu zeigen: $w \in E \iff f(w) \in Q$ für $w \in \{0,1\}^*$

Zu \Rightarrow : Sei $w \in E$. Dann hält M_w auf keiner Eingabe. Also hält $M_{u,v}$ auf keinem $x \in \{0,1\}^*$. Dann halten M_u und M_v entweder beide auf jedem x oder beide halten auf keinem. Also gilt $x \in T(M_u) \cap T(M_v)$ oder $x \notin T(M_u) \cap T(M_v)$ für jedes $x \in \{0,1\}^*$. Es ist somit $T(M_u) = T(M_v)$, also $f(w) \in Q$ für jedes $x \in \{0,1\}^*$.

Zu \Leftarrow : Sei $w \notin E$. Dann hält M_w auf mindestens einer Eingabe. Also $M_{u,w}$ für alle Eingaben. Dann akzeptiert jeweils nur eine der Turingmaschinen M_u und M_v für die Eingabe x. Es gilt also entweder $x \in T(M_u)$ und $x \notin T(M_v)$ oder anders herum. Also $T(M_u) \neq T(M_v)$ und somit $f(w) \notin Q$.

ii. $H_0 \leq U$ Sei f(w) die Kodierung einer Turingmaschine $M_{f(w)}$.

Definition von $M_{f(w)}$

- 1: **input** $x \in \{0, 1\}^*$
- 2: Simuliere M_w auf leerer Eingabe.
- 3: accept

Definiere $f: \{0,1\}^* \to \{0,1\}^*$ mittels f(w) := w'?

Zu zeigen: $w \in H_0 \iff f(w) \in U$ für $w \in \{0,1\}^*$

Zu \Rightarrow : Sei $w \in H_0$. Dann hält M_w auf leerer Eingabe. Also hält $M_{f(w)}$ auf jedem $x \in \{0,1\}^*$. Somit ist $T(M_{f(w)}) = \Sigma^*$, also $f(w) \in U$

Zu \Leftarrow : Sei $w \notin H_0$. Dann hält M_w nicht auf leerer Eingabe. Also hält $M_{f(w)}$ auf keinem $x \in \{0,1\}^*$. Somit ist $T(M_{f(w)}) = \emptyset$, also $f(w) \notin U$

iii. U < Q

Seien v, u Kodierungen für zwei Turingmaschinen.

Definition von $M_{u,v}$

- 1: **input** $x \in \{0, 1\}^*$
- 2: Simuliere M_u auf Eingabe x
- 3: Simuliere M_v auf Eingabe x
- 4: Falls beide akzeptieren: accept
- 5: Falls beide nicht akzeptieren: accept
- 6: Sonst: reject

Definiere $f: \{0,1\}^* \to \{0,1\}^* \# \{0,1\}^* \text{ mittels } f(w) := v \# w$

Zu zeigen: $w \in U \iff f(w) \in Q$ für $w \in \{0,1\}^*$

Zu \Rightarrow : Sei $w \in E$. Dann hält M_w auf jeder Eingabe. Also hält $M_{u,v}$ auf jedem $x \in \{0,1\}^*$. Dann halten M_u und M_v entweder beide auf jedem x oder beide halten auf keinem. Also gilt $x \in T(M_u) \cap T(M_v)$ oder $x \notin T(M_u) \cap T(M_v)$ für jedes $x \in \{0,1\}^*$. Es ist somit $T(M_u) = T(M_v)$, also $f(w) \in Q$ für jedes $x \in \{0,1\}^*$.

Zu \Leftarrow : Sei $w \notin E$. Dann hält M_w auf mindestens einer Eingabe nicht. Also $M_{u,w}$ für mindestens eine Eingabe nicht (?). Dann akzeptiert jeweils nur eine der Turingmaschinen M_u und M_v für die Eingabe x. Es gilt also entweder $x \in T(M_u)$ und $x \notin T(M_v)$ oder anders herum. Also $T(M_u) \neq T(M_v)$ und somit $f(w) \notin Q$.

iv. $I \leq U$

Sei f(w) die Kodierung einer Turingmaschine $M_{f(w)}$.

Definition von $M_{f(w)}$

- 1: **input** $x \in \{0,1\}^*$
- 2: Simuliere M_w auf Eingabe x.
- 3: accept

Definiere $f: \{0,1\}^* \to \{0,1\}^*, x \longmapsto f(w)$

Zu zeigen: $w \in H_0 \iff f(w) \in U$ für $w \in \{0,1\}^*$

Zu \Rightarrow : Sei $w \in I$. Dann hält M_w auf unendlich vielen Eingabe. Also hält $M_{f(w)}$ auf jedem $x \in \{0,1\}^*$. Somit ist $T(M_{f(w)}) = \Sigma^*$, also $f(w) \in U$

Zu \Leftarrow : Sei $w \notin I$. Dann hält M_w nicht auf leerer Eingabe. Also hält $M_{f(w)}$ auf keinem $x \in \{0,1\}^*$. Somit ist $T(M_{f(w)}) = \emptyset$, also $f(w) \notin U$

(b) H_0 ist semi-entscheidbar, aber nicht co-semi-entscheidbar. E ist co-semi-entscheidbar, aber nicht semientscheidbar. wegen i) ist Q somit auch nicht semientscheidbar. Dadurch ist auch I nicht semientscheidbar.

Aufgabe 4:

(a) Sei
$$F := (\exists w(1+w=m)) \wedge (\exists w^{'}(m+w^{'}+1=n)) \wedge (\forall v(\exists k(v*k=m) \wedge \exists k(v*k=n)) \rightarrow v \leq 1)$$

Für $m,n\in\mathbb{N}$ wird

$$F(m,n) \Longleftrightarrow m \text{ liegt zwischen 1 und } n-1 \text{ und jede Zahl, die } m \text{ und } n \text{ teilt, ist maximal 1}$$

$$\iff 1 \leq m < n \land ggT(m,n) = 1$$

$$\iff f(n) = m$$

(b)