EA772 Circuitos Lógicos Prof. José Mario De Martino – Prova 02 – 1°. Semestre 2009

Nome:	RA:
-------	-----

1. (2,0 pts) Determine a tabela de estados mínima que seja equivalente à tabela abaixo:

	Entrada			
EA	x = 0	x = 1		
A	F, 0	B, 0		
В	D, 0	C, 0		
С	F, 0	E, 0		
D	G, 1	A, 0		
Е	D, 0	C, 0		
F	F, 1	B, 1		
G	G, 0	H, 1		
Н	G, 1	A, 0		
	PE, z			

2. (2,5 pts) Projete um contator síncrono módulo-7 utilizando flip-flops tipo D (NÃO utilizar a abordagem "um flip-flop por estado"). Desenhe o diagrama esquemático do circuito projetado. O referido contador tem a seguinte especificação de alto-nível:

Entrada: $x(t) \in \{0, 1\}$

Saída: $z(t) \in \{0, 1, 2, 3, 4, 5, 6\}$

Estado: $s(t) \in \{0, 1, 2, 3, 4, 5, 6\}$

Estado inicial: s(0) = 0

Função de transição de estado e função de saída:

$$s(t + 1) = [s(t) + x(t)] \mod 7$$
$$z(t) = s(t)$$

- 3. (3,0 pts) Projete um circuito sequêncial com uma entrada binária x(t) e uma saída binária z(t). A saída no instante t será igual a 1 sempre que x(t-3, t) = 0101 ou 0110. Utilizar flip-flops JK. (NÃO utilizar a abordagem "um flip-flop por estado". NÃO utilizar a abordagem baseada em registrador de deslocamento. NÃO transformar o flip-flop JK para outro tipo de flip-flop para fazer o projeto). Faça a minimização de estados e a minização da parte combinacional do circuito utilizando mapas de Karnaugh. Desenhe o diagrama esquemático do circuito projetado.
- 4. (2,5 pts) Calcule a frequência máxima de operação do circuito da Figura 1 em MHz. As Tabelas 1 e 2 apresentam as características dos componentes utilizados. Considere 5 cargas-padrão conectadas à saída z. Considere $t_{in} = 2,0$ ns e $t_{out} = 2,0$ ns; onde t_{in} é o atraso de propagação, em relação borda de acionamento do relógio, do circuito seqüencial conectado à entrada x e t_{out} é o tempo de *setup* do circuito sequencial ao qual a saída z está conectada.

Figura 1: Circuito da questão 4.

Characteristics of a family of CMOS gates

Gate	Fan-	Propagation delays		Load factor	Size
type	in	t_{pLH}	t_{pHL}		
		[ns]	[ns] [standard		[equiv.
				loads]	gates]
AND	2	0.15 + 0.037L	0.16 + 0.017L	1.0	2
AND	3	0.20 + 0.038L	0.18 + 0.018L	1.0	2
AND	4	0.28 + 0.039L	0.21 + 0.019L	1.0	3
OR	2	0.12 + 0.037L	0.20 + 0.019L	1.0	2
OR	3	0.12 + 0.038L	0.34 + 0.022L	1.0	2
OR	4	0.13 + 0.038L	0.45 + 0.025L	1.0	3
NOT	1	0.02 + 0.038L	0.05 + 0.017L	1.0	1
NAND	2	0.05 + 0.038L	0.08 + 0.027L	1.0	1
NAND	3	0.07 + 0.038L	0.09 + 0.039L	1.0	2
NAND	4	0.10 + 0.037L	0.12 + 0.051L	1.0	2
NAND	5	0.21 + 0.038L	0.34 + 0.019L	1.0	4
NAND	6	0.24 + 0.037L	0.36 + 0.019L	1.0	5
NAND	8	0.24 + 0.038L	0.42 + 0.019L	1.0	6
NOR	2	0.06 + 0.075L	0.07 + 0.016L	1.0	1
NOR	3	0.16 + 0.111L	0.08 + 0.017L	1.0	2
NOR	4	0.23 + 0.149L	0.08 + 0.017L	1.0	4
NOR	5	0.38 + 0.038L	0.23 + 0.018L	1.0	4
NOR	6	0.46 + 0.037L	0.24 + 0.018L	1.0	5
NOR	8	0.54 + 0.038L	0.23 + 0.018L	1.0	6
XOR	2*	0.30 + 0.036L	0.30 + 0.021L	1.1	3
		0.16 + 0.036L	0.15 + 0.020L	2.0	

Tabela 1: Características de portas lógicas CMOS.

Delays				Input	Size	
				factor		
t_{pLH}	t_{pHL}	t_{su}	t_h	t_w	[std.	[equiv.
[ns]	[ns]	[ns]	[ns]	[ns]	loads]	gates]
0.49 + 0.038L	0.54 + 0.019L	0.30	0.14	0.2	1	6

L: output load of the flip-flop

Tabela 2: Características do flip-flop JK CMOS.