Testing for homogeneity of a Poisson process

Jonas Meyran - Cassandra Mussard - Lucas Zuliani

5ModIA

December 15, 2023

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES

Theoretical part
 Diving into mathematics
 Construction of three tests
 Theoretical simulation

Simulation using the Danish dataset Results

The situation is getting worse

Figure 1 – Slight increase over the last few years

An increasing trend: costs are becoming higher

Figure 2 - A rising trend: costs over time

Changing climate [1]

Fires and the Climate Feedback Loop

Figure 3 – How global warming impacts forest fires occurencies

Paving the way

Figure 4 – Telling a clear story

Diving into mathematics

Objective: Are forest fires constant over time?

Characteristics of a forest fire

- Random, infrequent
- Temporal independence of fires
- Constant or varies over time

→ Poisson process

- Theoretical part
 Diving into mathematics
 Construction of three tests
 Theoretical simulation
- Simulation using the Danish dataset

Linear and non linear intensity function

2 types of Poisson process

- Homogeneous (λ constant over time)
- Inhomogeneous (λ varies over time)

Figure 5 – Linear intensity function of a homogeneous Poisson process

Figure 6 – Non linear intensity function of a inhomogeneous Poisson process

Modeling the occurrence of forest fires

Objective of the project

 $H_0: \lambda$ constant against $H_1: \lambda$ varies over time

Laplace test [2]

Central limit theorem

This theorem establishes that for i.i.d. random variables, the sampling distribution tends towards the normal distribution.

Figure 7 – Illustration of the central limit theorem

Laplace test [3]

Intensity function and hypothesis

Intensity function : $\lambda(t) = \exp(\beta t)$ for $\beta \ge 0$

Test:

$$H_0: \beta = 0$$
 against $H_1: \beta > 0$

Test statistics and rejection zone

Test statistics :

$$L := \sum_{i=1}^{n} \left(\frac{T_i}{T^*} \right) \tag{1}$$

with T_i s the first arrival times, T^* the time period over which we observe the Poisson process.

Rejection zone :

$$R_{\alpha} = \left\{ L \ge \sqrt{\frac{n}{12}} \cdot z_{1-\alpha} + \frac{n}{2} \right\} \tag{2}$$

Weibull test [4]

Intensity function and hypothesis

Intensity function : $\lambda(t) = \beta \cdot t^{\beta-1}$ for $\beta > 0$

Test:

$$H_0: \beta = 1$$
 against $H_1: \beta > 1$

Test statistics and rejection zone

Test statistics :

$$Z = 2\sum_{i=1}^{n} \log\left(\frac{T^*}{T_i}\right) \sim \chi^2(2n)$$
 (3)

Rejection zone :

$$R_{\alpha} = \{ Z \le s_{\alpha} \} = \alpha \tag{4}$$

with s_{α} the α -quantile of a $\chi^{2}(2n)$

Barlow test [5]

Barlow test

· The test stastics is:

$$F = \frac{(n-d)T_d}{d(T_n - T_d)} \tag{5}$$

Theoretical simulation [6]

Use of the exponential intensity : $\lambda(t) = \exp(\beta t)$ for $\beta \ge 0$

Table 1 – Theoretical simulation on Laplace and Weibull test for different values of T^* and n with the exponential intensity

Test with exponential intensity					
<i>T</i> *	1	2	4		
n	1.71	6.38	53.59		
L (Laplace)	0.2467	0.3877	1		
Z (Weibull)	0.2643	0.3703	1		

The Laplace test is better with the exponential intensity.

Theoretical simulation [6]

Use of the logarithmic intensity : $\theta * log(t + 1)$

Table 2 – Theoretical simulation on Laplace and Weibull test for different values of T^* and n with the logarithmic intensity

Test with logarithmic intensity				
<i>T</i> *	10	15	25	
n	15.37	28.36	58.71	
L (Laplace)	0.4061	0.5478	0.7543	
Z (Weibull)	0.4791	0.674	0.8812	

The Weibull test is better with the logarithmic intensity

Theoretical simulation [6]

Use of the weibull intensity: $\theta * t^{(\theta-1)}$

Table 3 – Theoretical simulation on Laplace and Weibull test for different values of θ and n with the Weibull intensity

Test with Weibull intensity					
θ	1	2	4		
n	2	4	16		
L (Laplace)	0.175	0.2912	0.9991		
Z (Weibull)	0.177	0.3048	0.9992		

The Weibull test is better with the weibull intensity.

- Theoretical part
- 2 Simulation using the Danish dataset Results

- Dataset: Costs of forest fires between 1980 and 1990.
- Goal: Determine if the frequency of forest fire remains the same over time or not.

Figure 8 – Variation of the cost of forest fires annually and monthly

Linear variation of the number of forest fire

Figure 9 - Cumulative number of forest fire from 1980-01-03 to 1990-12-31

Rejection of H₀

Table 4 – Estimated p-value of Laplace and Weibull tests on the Danish dataset with $T^*=11+\frac{3}{365}$, n=2197

	Laplace test	Weibull test	Barlow test
p-value	$9.35 * 10^{-9}$	$4.30*10^{-7}$	$3.97 * 10^{-11}$

p-value < 0.05 => **we reject** H_0 (homogeneous Poisson process) at a 5% risk level.

Limitations and future work

- Consider a longer timeframe, and explore forest fire occurrences across Europe.
- When interpreting graphs, it is crucial to pay attention to details and consider the context for accurate understanding.

References

[1] Tyukavina, A., Potapov, P., Hansen, M. C., Pickens, A. H., Stehman, S. V., Turubanova, S., ... Harris, N. (2022). Global trends of forest loss due to fire from 2001 to 2019. Frontiers in Remote Sensing, 3, 825190. doi:10.3389/frsen.2022.825190

[2] Théorème central limite. (January 19, 2023) In Wikipedia. https://fr.wikipedia.org/wiki/Th

[3] Ascher, H. E., and Feingold, H. (1978), "Application of Laplace's Test to Repairable System Reliability", in *Proceedings of the International Conference on Reliability and Maintainability* (Societe Pour la Diffusion des Sciences et des Arts, France), 219-225.

References

- [4] Crow, L. H. (1974), "Reliability and Analysis for Complex Repairable Systems," in *Reliability and Biometry, eds. F. Proschan and R. J. Serfling, Philadelphia*: Society for Industrial and Applied Mathematics, pp. 379-410.
- [5] Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Brunk, H. D. (1972), Statistical Inferences Under Order Restrictions, New York: John Wiley.
- [6] Bain, L. J., Engelhardt, M. and Wright F. T. (1985), "Tests for an Increasing Trend in the Intensity of a Poisson Process: A Power Study," in *Journal of the American Statistical Association, Vol. 80, No. 390,* pp. 419-422

Contacts

- Jonas Meyran: meyran@insa-toulouse.fr
- Cassandra Mussard: mussard@insa-toulouse.fr
- Lucas Zuliani: Izuliani@insa-toulouse.fr

Diving into mathematics

Homogeneous Poisson process

A Poisson process is homogeneous if the intensity $\lambda > 0$ (average number of events) is constant and satisfies :

- $N_0 = 0$
- Independant increments
- Stationary increments
- $\forall t > 0, \forall s > 0$

$$N_{s+t} - N_t \sim \mathcal{P}(\lambda t)$$

Inhomogeneous Poisson process

Inhomogeneous Poisson Process

A Poisson process is inhomogeneous if the intensity $\lambda \in \mathbf{R}_+$ varies over time :

- $N_0 = 0$
- Independant increments
- Stationary increments
- $\forall t > 0$,

$$N_t \sim \mathcal{P}(\int_0^t \lambda(u) \, du)$$