

MONASH BUSINESS SCHOOL

Forecasting: principles and practice

Rob J Hyndman

2.4 Non-seasonal ARIMA models

Outline

- 1 Autoregressive models
- 2 Moving average models
- 3 Non-seasonal ARIMA models
- 4 Partial autocorrelations
- 5 Estimation and order selection
- 6 ARIMA modelling in R
- 7 Forecasting
- 8 Lab session 11

Autoregressive models

Autoregressive (AR) models:

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t-p} + e_t,$$

where e_t is white noise. This is a multiple regression with **lagged values** of y_t as predictors.

AR(1) model

$$y_t = 2 - 0.8y_{t-1} + e_t$$

$$e_t \sim N(0, 1), \quad T = 100.$$
 AR(1)

AR(1) model

$$\mathbf{y}_t = \mathbf{c} + \phi_1 \mathbf{y}_{t-1} + \mathbf{e}_t$$

- When ϕ_1 = 0, y_t is **equivalent to WN**
- When ϕ_1 = 1 and c = 0, y_t is **equivalent to a RW**
- When ϕ_1 = 1 and $c \neq 0$, y_t is **equivalent to a RW with** drift
- When ϕ_1 < 0, y_t tends to oscillate between positive and negative values.

AR(2) model

$$y_t = 8 + 1.3y_{t-1} - 0.7y_{t-2} + e_t$$

$$e_t \sim N(0, 1), \qquad T = 100.$$
 AR(2)

Stationarity conditions

We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.

General condition for stationarity

Complex roots of $1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$ lie outside the unit circle on the complex plane.

- For p = 1: $-1 < \phi_1 < 1$.
- For p = 2:

$$-1 < \phi_2 < 1$$
 $\phi_2 + \phi_1 < 1$ $\phi_2 - \phi_1 < 1$.

- More complicated conditions hold for $p \ge 3$.
- Estimation software takes care of this.

Stationarity conditions

We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.

General condition for stationarity

Complex roots of $1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$ lie outside the unit circle on the complex plane.

- For $p = 1: -1 < \phi_1 < 1$.
- For p = 2:

$$-1 < \phi_2 < 1$$
 $\phi_2 + \phi_1 < 1$ $\phi_2 - \phi_1 < 1$.

- More complicated conditions hold for $p \ge 3$.
- Estimation software takes care of this.

Outline

- 1 Autoregressive models
- 2 Moving average models
- 3 Non-seasonal ARIMA models
- 4 Partial autocorrelations
- 5 Estimation and order selection
- 6 ARIMA modelling in R
- 7 Forecasting
- 8 Lab session 11

Moving Average (MA) models

Moving Average (MA) models:

$$y_t = c + e_t + \theta_1 e_{t-1} + \theta_2 e_{t-2} + \cdots + \theta_q e_{t-q},$$

where e_t is white noise. This is a multiple regression with **past errors** as predictors. Don't confuse this with moving average smoothing!

MA(1) model

$$y_t = 20 + e_t + 0.8e_{t-1}$$

$$e_t \sim N(0, 1), T = 100.$$
 MA(1)

MA(2) model

$$y_t = e_t - e_{t-1} + 0.8e_{t-2}$$

$$e_t \sim N(0, 1), \quad T = 100.$$
 MA(2)

Invertibility

- Any MA(q) process can be written as an AR(∞) process if we impose some constraints on the MA parameters.
- Then the MA model is called "invertible".
- Invertible models have some mathematical properties that make them easier to use in practice.
- Invertibility of an ARIMA model is equivalent to forecastability of an ETS model.

Invertibility

General condition for invertibility

Complex roots of $1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$ lie outside the unit circle on the complex plane.

- For q = 1: $-1 < \theta_1 < 1$.
- For q = 2:

$$-1 < \theta_2 < 1$$
 $\theta_2 + \theta_1 > -1$ $\theta_1 - \theta_2 < 1$.

- More complicated conditions hold for $\{q \ge 3.\}$
- Estimation software takes care of this.

Invertibility

General condition for invertibility

Complex roots of $1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_n z^q$ lie outside the unit circle on the complex plane.

- For q = 1: $-1 < \theta_1 < 1$.
- For q = 2:

$$-1 < \theta_2 < 1$$

$$-1 < \theta_2 < 1$$
 $\theta_2 + \theta_1 > -1$ $\theta_1 - \theta_2 < 1$.

$$\theta_1 - \theta_2 < 1$$
.

- More complicated conditions hold for $\{q > 3.\}$
- Estimation software takes care of this.

Outline

- 1 Autoregressive models
- 2 Moving average models
- 3 Non-seasonal ARIMA models
- 4 Partial autocorrelations
- 5 Estimation and order selection
- 6 ARIMA modelling in R
- 7 Forecasting
- 8 Lab session 11

Autoregressive Moving Average models:

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q} + e_t.$$

- Predictors include both lagged values of y_t and lagged errors.
- Conditions on coefficients ensure stationarity.
- Conditions on coefficients ensure invertibility.

Autoregressive Integrated Moving Average models

- Combine ARMA model with **differencing**.
- \blacksquare $(1-B)^d y_t$ follows an ARMA model.

Autoregressive Moving Average models:

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q} + e_t.$$

- Predictors include both lagged values of y_t and lagged errors.
- Conditions on coefficients ensure stationarity.
- Conditions on coefficients ensure invertibility.

Autoregressive Integrated Moving Average models

- Combine ARMA model with differencing.
- $(1-B)^d y_t$ follows an ARMA model.

Autoregressive Moving Average models:

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q} + e_t.$$

- Predictors include both lagged values of y_t and lagged errors.
- Conditions on coefficients ensure stationarity.
- Conditions on coefficients ensure invertibility.

Autoregressive Integrated Moving Average models

- Combine ARMA model with differencing.
- \blacksquare $(1 B)^d y_t$ follows an ARMA model.

Autoregressive Integrated Moving Average models

ARIMA(p, d, q) model

AR: p = order of the autoregressive part

I: d =degree of first differencing involved

MA: q =order of the moving average part.

- White noise model: ARIMA(0,0,0)
- Random walk: ARIMA(0,1,0) with no constant
- Random walk with drift: ARIMA(0,1,0) with const.
- \blacksquare AR(p): ARIMA(p,0,0)
- \blacksquare MA(q): ARIMA(0,0,q)

Backshift notation for ARIMA

ARMA model:

$$y_t = c + \phi_1 B y_t + \dots + \phi_p B^p y_t + e_t + \theta_1 B e_t + \dots + \theta_q B^q e_t$$

or $(1 - \phi_1 B - \dots - \phi_p B^p) y_t = c + (1 + \theta_1 B + \dots + \theta_q B^q) e_t$

ARIMA(1,1,1) model:

Written out:

$$y_t = c + y_{t-1} + \phi_1 y_{t-1} - \phi_1 y_{t-2} + \theta_1 e_{t-1} + e_t$$

Backshift notation for ARIMA

ARMA model:

$$y_t = c + \phi_1 B y_t + \dots + \phi_p B^p y_t + e_t + \theta_1 B e_t + \dots + \theta_q B^q e_t$$

or $(1 - \phi_1 B - \dots - \phi_p B^p) y_t = c + (1 + \theta_1 B + \dots + \theta_q B^q) e_t$

ARIMA(1,1,1) model:

$$(1 - \phi_1 B)$$
 $(1 - B)y_t = c + (1 + \theta_1 B)e_t$
 \uparrow \uparrow \uparrow \uparrow
AR(1) First MA(1)
difference

Written out:

$$y_t = c + y_{t-1} + \phi_1 y_{t-1} - \phi_1 y_{t-2} + \theta_1 e_{t-1} + e_t$$


```
(fit <- auto.arima(uschange[, "Consumption"],</pre>
   seasonal=FALSE))
## Series: uschange[, "Consumption"]
## ARIMA(2,0,2)
             with non-zero mean
##
## Coefficients:
## ar1 ar2 ma1 ma2 mean
## 1.3908 -0.5813 -1.1800 0.5584 0.7463
## s.e. 0.2553 0.2078 0.2381 0.1403 0.0845
##
## sigma^2 estimated as 0.3511: log likelihood=-165.14
## ATC=342.28 ATCc=342.75 BTC=361.67
```

```
ARIMA(0,0,3) or MA(3) model
```

 $y_t = 0.756 + e_t + 0.254e_{t-1} + 0.226e_{t-2} + 0.269e_{t-3}$, where e_t is white noise with standard deviation $0.59 = \sqrt{0.3511}$.

```
(fit <- auto.arima(uschange[, "Consumption"],</pre>
   seasonal=FALSE))
## Series: uschange[, "Consumption"]
## ARIMA(2,0,2)
             with non-zero mean
##
## Coefficients:
## ar1 ar2 ma1 ma2 mean
## 1.3908 -0.5813 -1.1800 0.5584 0.7463
## s.e. 0.2553 0.2078 0.2381 0.1403 0.0845
##
## sigma^2 estimated as 0.3511: log likelihood=-165.14
## ATC=342.28 ATCc=342.75 BTC=361.67
```

ARIMA(0,0,3) or MA(3) model:

 $y_t = 0.756 + e_t + 0.254e_{t-1} + 0.226e_{t-2} + 0.269e_{t-3}$, where e_t is white noise with standard deviation 0.59 = $\sqrt{0.3511}$.

fit %>% forecast(h=10) %>% autoplot(include=80)

Understanding ARIMA models

- If c = 0 and d = 0, the long-term forecasts will go to zero.
- If c = 0 and d = 1, the long-term forecasts will go to a non-zero constant.
- If c = 0 and d = 2, the long-term forecasts will follow a straight line.
- If $c \neq 0$ and d = 0, the long-term forecasts will go to the mean of the data.
- If $c \neq 0$ and d = 1, the long-term forecasts will follow a straight line.
- If $c \neq 0$ and d = 2, the long-term forecasts will follow a quadratic trend.

Understanding ARIMA models

Forecast variance and d

- The higher the value of *d*, the more rapidly the prediction intervals increase in size.
- For d = 0, the long-term forecast standard deviation will go to the standard deviation of the historical data.

Cyclic behaviour

- For cyclic forecasts, p > 2 and some restrictions on coefficients are required.
- If p = 2, we need $\phi_1^2 + 4\phi_2 < 0$. Then average cycle of length

$$(2\pi)/\left[\arccos(-\phi_1(1-\phi_2)/(4\phi_2))\right]$$
.

Outline

- 1 Autoregressive models
- 2 Moving average models
- 3 Non-seasonal ARIMA models
- 4 Partial autocorrelations
- 5 Estimation and order selection
- 6 ARIMA modelling in R
- 7 Forecasting
- 8 Lab session 11

Partial autocorrelations

Partial autocorrelations measure relationship between y_t and y_{t-k} , when the effects of other time lags $-1, 2, 3, \ldots, k-1$ — are removed.

$$\alpha_k$$
 = kth partial autocorrelation coefficient
= equal to the estimate of b_k in regression:
 $y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_k y_{t-k}$.

- Varying number of terms on RHS gives α_k for different values of k.
- There are more efficient ways of calculating α_k .
- $\alpha_1 = \rho_1$
- same critical values of $\pm 1.96/\sqrt{T}$ as for ACF.

Partial autocorrelations

Partial autocorrelations measure relationship between y_t and y_{t-k} , when the effects of other time lags $-1, 2, 3, \ldots, k-1$ — are removed.

$$\alpha_k$$
 = k th partial autocorrelation coefficient
= equal to the estimate of b_k in regression:
 $y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_k y_{t-k}$.

- Varying number of terms on RHS gives α_k for different values of k.
- There are more efficient ways of calculating α_k .
- $\alpha_1 = \rho_1$
- **same** critical values of $\pm 1.96/\sqrt{T}$ as for ACF.

Partial autocorrelations

Partial autocorrelations measure relationship between y_t and y_{t-k} , when the effects of other time lags $-1, 2, 3, \ldots, k-1$ — are removed.

$$\alpha_k$$
 = k th partial autocorrelation coefficient
= equal to the estimate of b_k in regression:
 $y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_k y_{t-k}$.

- Varying number of terms on RHS gives α_k for different values of k.
- There are more efficient ways of calculating α_k .
- $\alpha_1 = \rho_1$
- same critical values of $\pm 1.96/\sqrt{T}$ as for ACF.

Example: US consumption

Example: US consumption

ACF and PACF interpretation

ARIMA(*p*,*d*,**0**) model if ACF and PACF plots of differenced data show:

- the ACF is exponentially decaying or sinusoidal;
- there is a significant spike at lag *p* in PACF, but none beyond lag *p*.

ARIMA(0,*d*,*q*) model if ACF and PACF plots of differenced data show:

- the PACF is exponentially decaying or sinusoidal;
- there is a significant spike at lag q in ACF, but none beyond lag q.

ACF and PACF interpretation

ARIMA(*p*,*d*,**0**) model if ACF and PACF plots of differenced data show:

- the ACF is exponentially decaying or sinusoidal;
- there is a significant spike at lag p in PACF, but none beyond lag p.

ARIMA(0,*d*,*q*) model if ACF and PACF plots of differenced data show:

- the PACF is exponentially decaying or sinusoidal;
- there is a significant spike at lag q in ACF, but none beyond lag q.

Example: Mink trapping

Example: Mink trapping

Outline

- 1 Autoregressive models
- 2 Moving average models
- 3 Non-seasonal ARIMA models
- 4 Partial autocorrelations
- 5 Estimation and order selection
- 6 ARIMA modelling in R
- 7 Forecasting
- 8 Lab session 11

Maximum likelihood estimation

Having identified the model order, we need to estimate the parameters c, ϕ_1, \ldots, ϕ_p , $\theta_1, \ldots, \theta_q$.

 MLE is very similar to least squares estimation obtained by minimizing

$$\sum_{t-1}^{T} e_t^2.$$

- The Arima() command allows CLS or MLE estimation.
- Non-linear optimization must be used in either case.
- Different software will give different estimates.

Maximum likelihood estimation

Having identified the model order, we need to estimate the parameters c, ϕ_1, \ldots, ϕ_p , $\theta_1, \ldots, \theta_q$.

 MLE is very similar to least squares estimation obtained by minimizing

$$\sum_{t-1}^{T} e_t^2.$$

- The Arima() command allows CLS or MLE estimation.
- Non-linear optimization must be used in either case.
- Different software will give different estimates.

Akaike's Information Criterion (AIC):

AIC =
$$-2 \log(L) + 2(p + q + k + 1)$$
,
where L is the likelihood of the data,
 $k = 1$ if $c \ne 0$ and $k = 0$ if $c = 0$.

Corrected AIC:

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

Bayesian Information Criterion:

$$BIC = AIC + \log(T)(p + q + k - 1).$$

Akaike's Information Criterion (AIC):

$$AIC = -2 \log(L) + 2(p + q + k + 1),$$

where *L* is the likelihood of the data, k = 1 if $c \ne 0$ and k = 0 if c = 0.

Corrected AIC:

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

Bayesian Information Criterion:

$$BIC = AIC + \log(T)(p + q + k - 1).$$

Akaike's Information Criterion (AIC):

$$AIC = -2\log(L) + 2(p + q + k + 1),$$

where L is the likelihood of the data,

$$k = 1 \text{ if } c \neq 0 \text{ and } k = 0 \text{ if } c = 0.$$

Corrected AIC:

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

Bayesian Information Criterion:

$$BIC = AIC + \log(T)(p + q + k - 1).$$

Akaike's Information Criterion (AIC):

$$AIC = -2 \log(L) + 2(p + q + k + 1),$$

where L is the likelihood of the data,

$$k = 1 \text{ if } c \neq 0 \text{ and } k = 0 \text{ if } c = 0.$$

Corrected AIC:

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

Bayesian Information Criterion:

$$BIC = AIC + \log(T)(p + q + k - 1).$$

Outline

- 1 Autoregressive models
- 2 Moving average models
- 3 Non-seasonal ARIMA models
- 4 Partial autocorrelations
- 5 Estimation and order selection
- 6 ARIMA modelling in R
- 7 Forecasting
- 8 Lab session 11

A non-seasonal ARIMA process

$$\phi(B)(1-B)^d y_t = c + \theta(B)\varepsilon_t$$

Need to select appropriate orders: p, q, d

Hyndman and Khandakar (JSS, 2008) algorithm:

- Select no. differences d and D via unit root tests.
- Select p, q by minimising AICc.
- Use stepwise search to traverse model space.

AICc =
$$-2 \log(L) + 2(p + q + k + 1) \left[1 + \frac{(p+q+k+2)}{T-p-q-k-2} \right]$$
. where *L* is the maximised likelihood fitted to the *differenced* data, $k = 1$ if $c \neq 0$ and $k = 0$ otherwise.

Step1: Select current model (with smallest AICc) from:

ARIMA(2, d, 2)

ARIMA(0, d, 0)

ARIMA(1, d, 0)

ARIMA(0, d, 1)

Step 2: Consider variations of current model:

- vary one of p, q, from current model by ± 1
- p, q both vary from current model by ± 1 ;
- Include/exclude *c* from current model.

Model with lowest AICc becomes current model

Repeat Step 2 until no lower AICc can be found

AICc =
$$-2 \log(L) + 2(p+q+k+1) \left[1 + \frac{(p+q+k+2)}{T-p-q-k-2}\right]$$
. where *L* is the maximised likelihood fitted to the *differenced* data, $k = 1$ if $c \neq 0$ and $k = 0$ otherwise.

Step1: Select current model (with smallest AICc) from:

ARIMA(2, d, 2)

ARIMA(0, d, 0)

ARIMA(1, d, 0)

ARIMA(0, d, 1)

Step 2: Consider variations of current model:

- vary one of p, q, from current model by ± 1 ;
- p, q both vary from current model by ± 1 ;
- Include/exclude *c* from current model.

Model with lowest AICc becomes current model

Repeat Step 2 until no lower AICc can be found.

AICc =
$$-2 \log(L) + 2(p+q+k+1) \left[1 + \frac{(p+q+k+2)}{T-p-q-k-2}\right]$$
. where *L* is the maximised likelihood fitted to the *differenced* data, $k = 1$ if $c \neq 0$ and $k = 0$ otherwise.

Step1: Select current model (with smallest AICc) from:

ARIMA(2, d, 2)

ARIMA(0, d, 0)

ARIMA(1, d, 0)

ARIMA(0, d, 1)

Step 2: Consider variations of current model:

- vary one of p, q, from current model by ± 1 ;
- p, q both vary from current model by ± 1 ;
- Include/exclude c from current model.

Model with lowest AICc becomes current model.

Repeat Step 2 until no lower AICc can be found.

ggtsdisplay(internet)


```
tseries::adf.test(internet)
##
##
    Augmented Dickey-Fuller Test
##
## data: internet
## Dickey-Fuller = -2.6421, Lag order = 4, p-value = 0.3107
## alternative hypothesis: stationary
tseries::kpss.test(internet)
##
##
   KPSS Test for Level Stationarity
##
## data: internet
## KPSS Level = 0.72197, Truncation lag parameter = 2, p-value =
## 0.01155
```

```
##
## KPSS Test for Level Stationarity
##
## data: diff(internet)
## KPSS Level = 0.26352, Truncation lag parameter = 2, p-value = 0.1
```

ggtsdisplay(diff(internet))


```
(fit <- Arima(internet, order=c(3,1,0)))
## Series: internet
## ARIMA(3,1,0)
##
## Coefficients:
##
                   ar2 ar3
           ar1
## 1.1513 -0.6612 0.3407
## s.e. 0.0950 0.1353 0.0941
##
  sigma<sup>2</sup> estimated as 9.656: log likelihood=-252
## ATC=511.99 ATCc=512.42 BTC=522.37
```

```
(fit2 <- auto.arima(internet))
## Series: internet
## ARIMA(1,1,1)
##
## Coefficients:
##
           ar1 ma1
## 0.6504 0.5256
## s.e. 0.0842 0.0896
##
## sigma^2 estimated as 9.995: log likelihood=-254.
## ATC=514.3 ATCc=514.55 BTC=522.08
```

ggtsdisplay(residuals(fit))


```
Box.test(residuals(fit), fitdf=3, lag=10,
    type="Ljung")
```

```
##
## Box-Ljung test
##
## data: residuals(fit)
## X-squared = 4.4913, df = 7, p-value = 0.7218
```

fit %>% forecast %>% autoplot

Modelling procedure with Arima

- Plot the data. Identify any unusual observations.
- If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance.
- If the data are non-stationary: take first differences of the data until the data are stationary.
- Examine the ACF/PACF: Is an AR(p) or MA(q) model appropriate?
- Try your chosen model(s), and use the AICc to search for a better model.
- Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals. If they do not look like white noise, try a modified model.
- Once the residuals look like white noise, calculate forecasts.

Modelling procedure with auto.arima

- Plot the data. Identify any unusual observations.
- If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance.

Use auto.arima to select a model.

- Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals. If they do not look like white noise, try a modified model.
- Once the residuals look like white noise, calculate forecasts.

Modelling procedure


```
eeadj <- seasadj(stl(elecequip, s.window="periodic")
autoplot(eeadj) + xlab("Year") +
  ylab("Seasonally adjusted new orders index")</pre>
```


- Time plot shows sudden changes, particularly big drop in 2008/2009 due to global economic environment. Otherwise nothing unusual and no need for data adjustments.
- No evidence of changing variance, so no Box-Cox transformation.
- Data are clearly non-stationary, so we take first differences.

equipment

ggtsdisplay(diff(eeadj), main="")

- PACF is suggestive of AR(3). So initial candidate model is ARIMA(3,1,0). No other obvious candidates.
- Fit ARIMA(3,1,0) model along with variations: ARIMA(4,1,0), ARIMA(2,1,0), ARIMA(3,1,1), etc. ARIMA(3,1,1) has smallest AICc value.

```
fit <- Arima(eeadj, order=c(3,1,1))</pre>
summary(fit)
## Series: eeadj
## ARIMA(3,1,1)
##
## Coefficients:
           ar1 ar2 ar3 ma1
##
## 0.0044 0.0916 0.3698 -0.3921
## s.e. 0.2201 0.0984 0.0669 0.2426
##
## sigma^2 estimated as 9.577: log likelihood=-492.69
## ATC=995.38 ATCc=995.7 BTC=1011.72
##
## Training set error measures:
##
                      MF.
                            RMSE MAE
                                                  MPF.
                                                          MAPE
## Training set 0.0328818 3.054718 2.357169 -0.006470086 2.481603 0
##
                      ACF1
## Training set 0.008980716
```

ACF plot of residuals from ARIMA(3,1,1) model look like white noise.

ggAcf(residuals(fit))


```
Box.test(residuals(fit), lag=24,
  fitdf=4, type="Ljung")
```

```
##
## Box-Ljung test
##
## data: residuals(fit)
## X-squared = 24.034, df = 20, p-value = 0.2409
```

fit %>% forecast %>% autoplot

Outline

- 1 Autoregressive models
- 2 Moving average models
- 3 Non-seasonal ARIMA models
- 4 Partial autocorrelations
- 5 Estimation and order selection
- 6 ARIMA modelling in R
- 7 Forecasting
- 8 Lab session 11

Point forecasts

- Rearrange ARIMA equation so y_t is on LHS.
- Rewrite equation by replacing t by T + h.
- On RHS, replace future observations by their forecasts, future errors by zero, and past errors by corresponding residuals.

Start with h = 1. Repeat for h = 2, 3, ...

95% Prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

- $\mathbf{v}_{T+1|T} = \hat{\sigma}^2$ for all ARIMA models regardless of parameters and orders.
- \blacksquare Multi-step prediction intervals for ARIMA(0,0,q):

$$y_t = e_t + \sum_{i=1}^{q} \theta_i e_{t-i}.$$

$$v_{T|T+h} = \hat{\sigma}^2 \left[1 + \sum_{i=1}^{h-1} \theta_i^2 \right], \quad \text{for } h = 2, 3, \dots.$$

95% Prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

- $v_{T+1|T} = \hat{\sigma}^2$ for all ARIMA models regardless of parameters and orders.
- Multi-step prediction intervals for ARIMA(0,0,q):

$$y_t = e_t + \sum_{i=1}^q \theta_i e_{t-i}.$$

$$v_{T|T+h} = \hat{\sigma}^2 \left[1 + \sum_{i=1}^{h-1} \theta_i^2 \right], \quad \text{for } h = 2, 3, \dots.$$

95% Prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

■ Multi-step prediction intervals for ARIMA(0,0,q):

$$\begin{aligned} y_t &= e_t + \sum_{i=1}^q \theta_i e_{t-i}. \\ v_{T|T+h} &= \hat{\sigma}^2 \left[1 + \sum_{i=1}^{h-1} \theta_i^2 \right], \qquad \text{for } h = 2, 3, \dots. \end{aligned}$$

- \blacksquare AR(1): Rewrite as MA(∞) and use above result.
- Other models beyond scope of this workshop.

95% Prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

■ Multi-step prediction intervals for ARIMA(0,0,q):

$$\begin{aligned} y_t &= e_t + \sum_{i=1}^q \theta_i e_{t-i}. \\ v_{T|T+h} &= \hat{\sigma}^2 \left[1 + \sum_{i=1}^{h-1} \theta_i^2 \right], \qquad \text{for } h = 2, 3, \dots. \end{aligned}$$

- AR(1): Rewrite as MA(∞) and use above result.
- Other models beyond scope of this workshop.

- Prediction intervals increase in size with forecast horizon.
- Prediction intervals can be difficult to calculate by hand
- Calculations assume residuals are uncorrelated and normally distributed.
- Prediction intervals tend to be too narrow.
 - the uncertainty in the parameter estimates has not been accounted for.
 - the ARIMA model assumes historical patterns will not change during the forecast period.
 - the ARIMA model assumes uncorrelated future errors

Outline

- 1 Autoregressive models
- 2 Moving average models
- 3 Non-seasonal ARIMA models
- 4 Partial autocorrelations
- 5 Estimation and order selection
- 6 ARIMA modelling in R
- 7 Forecasting
- 8 Lab session 11

Lab Session 11