Matière: Chimie

Unité: Sens d'évolution d'un

système chimique Niveau : 2BAC-SM-pc

Établissement : $Lyc\acute{e}e$ SKHOR qualifiant

 ${\bf Professeur}: Zakaria\ Haouzan$

Heure: 6H

Leçon $N^{\circ}10$: Transformations forcées - L'électrolyse Durée 2h00

Fiche Pédagogique

I Objectifs Pédagogiques

- Différencier les transformations spontanées et forcées.
- Identifier les rôles de l'anode et de la cathode dans l'électrolyse.
- Analyser les réactions d'oxydo-réduction lors de l'électrolyse.
- Explorer les applications industrielles de l'électrolyse.

II Situation Problématique Initiale

Contexte : Vous êtes un chimiste chargé de récupérer du cuivre à partir d'une solution usée contenant des ions Cu^{2+} et Br^- . Spontanément, le cuivre métallique réagit avec le dibrome (Br_2) pour former Cu^{2+} et Br^- . Comment inverser ce processus pour déposer du cuivre sur un objet et régénérer le dibrome ? Quelle source d'énergie utiliser ?

Rôle de l'enseignant :

- Poser des questions :
 - Que se passe-t-il spontanément entre Cu et Br_2 ?
 - Comment obliger la réaction inverse à se produire ?
- Encourager le rappel des constantes d'équilibre.

Rôle des élèves:

- Discuter : Pourquoi Cu + Br₂ est-il spontané ? Que signifie $K = 1.2 \times 10^{25}$?
- Proposer : Peut-on utiliser l'électricité pour inverser la réaction ?

III Déroulement de la Leçon

III.1 Phase 1 : Transformations Spontanées (1h)

Activités de l'enseignant :

- Réviser : $Cu_{(s)} + Br_{2(aq)} \rightleftharpoons Cu_{(aq)}^{2+} + 2Br_{(aq)}^{-}$.
- Questionner : Pourquoi cette réaction est-elle spontanée ? Que signifie $Q_{r,i}$; K ?
- Démontrer (ou décrire) : Mélange de tournure de cuivre et solution de Br₂.

Activités des élèves :

- Répondre : K élevé indique une réaction totale dans le sens direct.
- Observer : Décoloration de Br₂, bleu des ions Cu²⁺.
- Demander : La réaction inverse est-elle possible spontanément ?

Matériel : Tournure de cuivre, solution de Br_2 (10^{-2} mol/L), tube à essai.

III.2 Phase 2: Introduction aux Transformations Forcées (1h)

Activités de l'enseignant :

- Définir : Une transformation forcée va à l'encontre de l'évolution spontanée, nécessitant une énergie externe.
- \bullet Questionner : Comment forcer Cu²+ + 2Br^ à former Cu et Br² ?
- Introduire l'électrolyse comme solution.

Activités des élèves :

- Hypothèse : Quel montage pour fournir de l'énergie électrique ?
- Demander : Que deviennent les ions pendant l'électrolyse ?

III.3 Phase 3 : Expérience - Électrolyse de CuBr₂ (2h)

Activités de l'enseignant :

- Préparer un tube en U avec CuBr₂ et électrodes en graphite.
- Questionner : Que se passe-t-il pour U ¿ 1,2 V ?
- Expliquer :
 - Anode : $2Br^- \rightleftharpoons Br_2 + 2e^-$
 - Cathode : $Cu^{2+} + 2e^{-} \rightleftharpoons Cu$

Activités des élèves :

- \bullet Observer : Cu se dépose à la cathode, Br_2 (orange) près de l'anode.
- $\bullet\,$ Demander : Pourquoi Cu à la cathode et Br₂ à l'anode ?
- Écrire : $Cu^{2+} + 2Br^{-} \rightleftharpoons Cu + Br_{2}$.

Matériel : Tube en U, solution de CuBr₂, électrodes graphite, alimentation DC (¿1,2 V), fils, lunettes de sécurité.

Étapes:

- 1. Remplir le tube avec CuBr₂.
- 2. Placer les électrodes dans chaque bras.
- 3. Connecter l'anode (+) et la cathode (-).
- 4. Appliquer U ¿ 1,2 V pendant 15 min.
- 5. Noter les observations.

III.4 Phase 4 : Électrolyse de NaCl (1h)

Activités de l'enseignant :

- Réaliser l'électrolyse de NaCl.
- Questionner : Quels gaz ou produits attendre?
- Analyser:
 - Anode : $2Cl^ \rightleftharpoons$ $Cl_2 + 2e^-$
 - Cathode: $2H_2O + 2e^- \rightleftharpoons H_2 + 2OH^-$

Activités des élèves :

- Prédire : Le sodium métallique se forme-t-il ?
- Observer : Cl₂ (jaune-vert) à l'anode, H₂ et OH⁻ à la cathode.
- Écrire : $2H_2O + 2Cl^- \longrightarrow Cl_2 + H_2 + 2OH^-$.

Matériel: Solution NaCl, tube en U, électrodes graphite, alimentation DC, indicateur pH.

III.5 Phase 5: Anode Soluble et Applications (1h)

Activités de l'enseignant :

- Démontrer : Électrolyse avec anode Cu et cathode Fe.
- Expliquer : Transfert Cu \rightarrow Cu²⁺ (anode) puis Cu²⁺ \rightarrow Cu (cathode).
- Lister les applications (purification, placage).

Activités des élèves :

- Observer : Cu disparaît de l'anode et se dépose sur la cathode.
- Demander : Pourquoi la couleur de la solution reste-t-elle constante ?
- Citer 3 applications industrielles.

 ${\bf Mat\'eriel}$: Anode Cu, cathode Fe (clé), solution CuSO₄, alimentation DC.

IV Évaluation

Questions de l'enseignant :

- Quelle est la différence entre transformations spontanées et forcées ?
- Quels facteurs déterminent les réactions dans l'électrolyse?

Tâches des élèves :

- Résoudre : Prédire les produits de l'électrolyse de ZnCl₂.
- Réfléchir : Impact de l'électrolyse dans la vie quotidienne.

V Consignes de Sécurité

- Manipuler Br₂ et Cl₂ sous ventilation.
- Porter des lunettes et gants.
- Éliminer les déchets chimiques correctement.