

Computação Gráfica

Fundamentos de Imagens Digitais

Professor: Luciano Ferreira Silva, Dr.

Computação Gráfica

de Imagens

Aplicações

- Computação Gráfica (Vídeo, Efeitos Especiais, etc.)
- Sensoriamento Remoto;
- Microscopia;
- Medicina;
- Manutenção de obras de arte;
- Fotografia;
- Outros.

Função Contínua

- Contínua: "sem interrupções no tempo e no espaço".
- Intuitivamente: gráfico sem interrupções;
- $f: \mathbb{R} \to \mathbb{R}$, onde $x \to f(x)$.

Função Contínua

Matematicamente:

- 1. Existe f(a);
- 2. Existe $\lim_{x\to a} f(x)$;
- 3. $\lim_{x\to a} f(x) = f(a);$
- Para todo a do domínio de f

A f no computador

Problema:

- ✓ O domínio de f é real;
- ✓ O computador só é capaz de armazenar bits, um valor que pode ser 0 ou 1;
- ✓ Números inteiros e em quantidade finita;
- ✓ O computador não trabalha com números reais, mas sim com uma aproximação deles chamada pontos flutuantes;
- ✓ Não é possível representar uma função contínua no computador. Podemos apenas simulá-la

A f no computador

- O processo para trazer uma f contínua para o computador é chamado de discretização ou digitalização;
 - ✓ Toma-se valores pontuais ao longo de x e guardando o valor de f(x) correspondente;
 - ✓ O eixo f(x) também é contínuo precisa ser discretizado;
 - ✓ O sinal digital também deve ser limitado a um intervalo do domínio

A f no computador

O processo de discretização do:

 \checkmark eixo x (o domínio) é chamado de Amostragem;

✓ eixo f(x) (o contradomínio) é chamado de Quantização.

Amostragem

Amostragem: Uniforme x Adaptativa;

Considera:

- ✓ Valor máximo e o valor mínimo da função;
- ✓ Número de bits definido para armazenar uma amostra
 - $K = 2^n \rightarrow n$: número de bits; K: número de níveis.

Imagem digital

 É o resultado da discretização de uma imagem contínua;

Função contínua da imagem

■ Dada por $I: U \subset \mathbb{R}^2 \rightarrow C$,

$$I(x, y) = Cor no ponto(x, y)$$

Onde C é chamado espaço de cor da imagem;

$$\checkmark$$
 C = \Re^n com:

- n = 3 para representações de cor tricromáticas;
- n = 1 para representações monocromáticas;
- I(U)

 C é chamado de conjunto de cores da imagem ou gamute de cores da imagem.

Função contínua da imagem

Sem perda de generalidade:

$$U = [0, X] \times [0, Y]$$

= \{(x, y) \in \Pi^2 / 0 \le x \le X e 0 \le y \le Y\}

Onde X é largura da imagem e Y a sua altura.

Amostragem da função imagem

Discretizar o retângulo *U*;

- \checkmark Com m amostras em x e n em y;
- ✓ Reticulado P_{Λ} com $m \times n$ células.

$$x_j = j. \Delta x$$
, $com j = 0$, 1, ..., $m - 1$ e $\Delta x = X/m$;

$$y_k = k. \Delta y$$
, com $k = 0, 1, ..., n - 1$ e $\Delta y = X/n$;

Amostragem da função imagem

 Logo o reticulado P_∆ é formado pelo conjunto de células:

$$c_{jk} = [x_j, x_{j+1}] \times [y_k, y_{k+1}]$$
$$= [j.\Delta x, (j+1).\Delta x] \times [k.\Delta y, (k+1).\Delta y]$$

- Cada uma das células c_{jk} é chamada de *pixel* da imagem.
- Observação: perceba que ∆x e ∆y se referem ao tamanho do pixel.

Amostragem da função imagem

- Representar a função imagem / se reduz agora em obter um valor de cor a_{jk} para / em cada células c_{jk}.
- Métodos para obter a representação na célula:
 - ✓ amostragem pontual: escolhemos um ponto (x_c, y_c) da células c_{ik} e representamos I pelo valor de $I(x_c, y_c)$ nesse ponto.
 - ✓ amostragem de área, em que representamos a função na célula c_{ik} pelo seu valor médio de I.

Representação Matricial

Exemplos (matrizes sem quantização):

Observações:

- ✓O número de linhas m da matriz A é chamado de $resolução\ vertical$ da imagem;
- ✓O número de colunas n é chamado de resolução horizontal;
- ✓É comum chamarmos de *resolução da imagem* o a descrição *n*×*m*. Ex.: 600 x 800, 1280 x 800 etc.

Resolução espacial

- Perceba que m e n são valores adimensionais;
 - \checkmark A matriz A lhe passa uma apenas uma ordenação bidimensional das cores;
- Sem os valores de Δx e Δy não conseguimos reconstruir a imagem;
- Precisamos de uma referência a dimensão do pixel;
- Tal referência é a Resolução Espacial;

Resolução espacial

- A Resolução Espacial fornece o número de pixels por unidade linear de medida;
 - ✓ pixels por polegada, ppi ("pixels per inch");
 - ✓ pontos por polegada de *dpi* ("dots per inch");
 - ✓ pontos por centímetro dpc ("dots per centimeter").

Resolução espacial

Captura:

- ✓ n (ou m) = Resolução Espacial x tamanho real.
 - Ex.: Figura 20 x 10 cm;
 - Resolução espacial de 60 dpc;
 - Captura de n = 1200 e m = 600.

Visualização:

- ✓ Tamanho real horizontal (ou vetical) = n (ou m) / resolução espacial;
 - Ex.: Imagem digital 1500 x 1000;
 - Resolução espacial de 50 dpc;
 - Figura impressa 30x20 cm.

Visualização

- Muito próximo perceberemos artefatos da digitalização,
- Muito distante estaremos subutilizando o dispositivos de visualização
- Resolução Ótima para Visualização:

Re
$$solução \cong 1 / Tan(\frac{1}{60}) \cdot Distância$$

Visualização

 Resoluções Ótimas Aproximadas para Distâncias Comuns

Distância	Resolução	Pixels	Exemplo
30cm	300DPI	A4 – 6300x8100	Papel
60cm	150DPI	15" – 1600x1280	Laptop
90cm	100DPI	17" - 1280x1024	Monitor
3m	30DPI	19" – 720x486	Tv
7m	15DPI	100" – 1024x768	Projetor

Efeito da Vizinhança na Percepção

Reconstrução

Exemplos de técnicas:

- ✓ Vizinho mais próximo: tomar o seu valor como valor desta posição;
- ✓ Interpolação: ^y
 - Linear;
 - · Cúbica.

Reconstrução

 Zoom: problema da re-amostragem, isto é, reconstruir e amostrar novamente com outra resolução ou com outra grade

Como ocorre a quantização em imagens?

- Seria discretizarmos o espaço de cor C, que é representado em \Re^n .
 - \checkmark n = 1 para cores monocromáticas;
 - ✓ n = 3 para cores tricromáticas.
- Portanto o problema de representação de cor é o problema de representação de números reais.
- A pergunta aqui será: quantos bits devemos utilizar para representar uma cor?
- Esse número de bits é chamado de resolução de cor da imagem.

 Usar aritmética de ponto flutuante com 32 ou 64 bits?

 Para cores não é tão simples, pois devemos levar em consideração aspectos perceptuais.

- Quando codificamos uma cor é muito comum usarmos 1 byte (8 bits) para cada componente.
- Um byte permite 2⁸ = 256 possibilidades;
- O que leva, convencionalmente, a componente de cor assumir valores de 0 a 255.

Escala cinza

Na escala de cinza:

✓ Teríamos 256 possibilidades de intensidades da cor cinza;

✓ Porém nossos olhos não conseguem distinguir todos estes níveis.

Escala cinza

Redução dos tons de cinza: 256, 128, 64, 32, 16, 8, 4 e 2

Variações da Matriz da Imagem

Escala cinza

Preto e branco

Cores RGB

- Na representação de cores por 3 componentes adotaríamos 3 bytes → 24 bits → 2²⁴ = 16.777.216 de possibilidades;
- Alguns experimentos mostram que somos capazes de reconhecer aproximadamente 400 mil cores diferentes;
- 400.000 < 2¹⁹ = 524.288 → 24 bits estão mais do que suficiente levando em conta os diversos metamerismos.

- O número de bytes por componente geralmente é 1, mas pode ter quaisquer valor dependendo a precisão desejada;
- A partir da versão 4.0 o sistema Photoshop, por exemplo, passou a tratar imagens com 16 bits por componente.
- Em sistemas de processamento de imagens científicas é muito comum tratar imagens com 32 bits.

Diferentes Resoluções e Número de Cores

Importância do problema de quantizar:

✓ Exibição de imagens:

- O número de cores da imagem não pode ser maior do que número de cores disponíveis no espaço físico de cor do equipamento.
- Neste caso, o espaço de quantização está diretamente ligado ao espaço de cor do dispositivo gráfico de exibição.

✓ Compressão de imagens:

- A quantização de uma imagem permite uma redução do número de bits utilizados para armazenar o seu gamute de cores.
- Reduzimos desse modo o espaço necessário para o armazenamento da imagem;
- Transmissão da imagem através de algum canal de comunicação.

Filtragem

Ruído

Original

Filtro