CSC 212: Data Structures and Abstractions

Balanced trees (part 1)

Prof. Marco Alvarez

Department of Computer Science and Statistics University of Rhode Island

Spring 2025

From lab session

- Assume the dictionary has n keys, and the book has m words (tokens)
 - what is the computational cost of finding all words in the book that are not in the dictionary?
 - dictionary is represented as a BST and assume that $h = O(\log n)$

Balanced search trees

- <u>Balanced search trees</u> are a type of search trees that maintain a balanced structure to ensure that the height of the tree is <u>logarithmic</u> in the number of nodes
 - among the most useful data structures in computer science
 - many programming languages have built-in support: e.g. Java's TreeSet and TreeMap, C++'s std::set and std::map
- Examples of balanced trees:
 - ✓ AVL trees, **<u>Red-Black trees</u>**, B-trees, Splay trees, Treaps, etc.

Red-black trees

- Red-black trees are BSTs that maintain a balanced structure by enforcing the following properties on the nodes:
 - each node is colored either red or black
 - ✓ the root node is always **black**
 - red nodes cannot have red children (no two red nodes can be adjacent)
 - ✓ <u>null nodes</u> are considered **black**
 - every <u>root-to-null</u> path must have the same number of **black** nodes

Analysis

- A red-black tree on n nodes has $h = O(\log n)$
 - after performing an insertion or deletion the tree may become unbalanced
 - to restore balance, we efficiently modify the tree to satisfy the red-black tree properties
 - done by performing a sequence of $\underline{\textbf{rotations}}$ and $\underline{\textbf{recoloring}}$ nodes
- Equivalence to **B-trees**
 - ✓ red-black trees are equivalent to <u>B-trees of order 4</u>
 - it is <u>easier to understand</u> the complexity analysis and rebalancing operations of red-black trees by thinking of them as B-trees

B-Trees (interlude)

7

Multi-way search trees

- A <u>multi-way search tree</u> is a generalization of a BST that allows nodes to have more keys and more than two children
 - ✓ the keys in each node are **sorted** in increasing order
 - \checkmark the keys in the left subtree of a key k are less than k, and the keys in the right subtree are greater than k

note that null pointers are illustrated as external nodes

Image credit: Data Structures and Algorithms in C++ 2e

Search on a multi-way search tree

- Perform search for 12, 17, 24, and 50 on the following tree
 - note that null pointers are illustrated as external nodes

Assume *d* denotes the maximum number of keys of any node of T, and *h* denotes the height of T. What is the cost of search?

Image credit: Data Structures and Algorithms in C++ 2e

10

Balanced multi-way search trees

- Balanced multi-way search tree
 - cap the number of children to a fixed number and keep the leaf nodes at the same depth
 - ✓ the tree is always balanced
 - all leave nodes have the same depth
 - search, insertion, and deletion can be performed in $O(\log n)$ time
- B-tree: specific type of a balanced multi-way search tree
 - \checkmark on a B-tree of order m, each node, except the root, must have between $\lceil b/2 \rceil$ and b children
 - note there are differences in terminology (multiple "order" definitions)
 - heavily used in databases and file systems to store large amounts of data (common orders: 1024, 2048, 4096, ...)

2-3-4 tree

- A 2-3-4 tree (a.k.a. 2-4 tree) is a <u>B-tree of order 4</u>
 - ✓ each node can have 2, 3, or 4 children
 - · i.e. all nodes must have at least 1 key and at most 3 keys, except the root node that can have 0 keys when the tree is empty

- 1

Insertion (2-3-4 tree)

- Steps
 - start at the root and traverse down the tree to find the appropriate leaf node
 - if the leaf node has less than 3 keys, insert the new key in sorted order
 - if the leaf node has 3 keys, split it into two nodes and promote the middle key to the parent node
 - insert the new key in the appropriate child node
 - if the parent node also has 3 keys, repeat the splitting process up to the root
- Tree remains balanced after each insertion
 - ✓ all leaf nodes are at the same level

http://ysangkok.github.io/js-clrs-btree/btree.html

Practice

- Insert the following sequence into a 2-3-4 tree
- 15, 10, 25, 5, 1, 30, 45, 60, 100, 70, 80, 40, 35, 90

Practice

- What is the cost of search and insert on a 2-3-4 tree?
 - ✓ worst-case scenario

Practice

- What is the max h of a 2-3-4 tree with n nodes?
 - to maximize the height, we want to minimize the number of keys per node (instance of a worst-case)
 - ✓ draw an example tree and express h in terms of n

So far ...

- The cost of operations in a B-tree of order b is $O(b \log_b n)$
 - ✓ insert, search, remove
 - \checkmark small values of b make this cost optimal
- In practice ...
 - B-trees are widely used in databases and file systems to manage large amounts of data efficiently
 - ✓ useful for systems that read and write large blocks of data
 - B-trees can minimize the number of disk accesses required (much larger order values)

Red-black trees

17

Red-black trees <=> 2-3-4 trees A 2-node in a 2-3-4 tree corresponds to a black node in a red-black tree A 3-node corresponds to a black node with one red child A 4-node corresponds to a black node with two red children

Red-black trees <=> 2-3-4 trees

- Red-black trees are **isometric** to 2-3-4 trees
 - the <u>number of **black** nodes</u> on any *root-to-null* path corresponds to the <u>number of levels</u> of the 2-3-4 tree
- Every red-black tree can be transformed into an equivalent 2-3-4 tree and vice versa
 - ✓ the relationship between the trees is not bijective (1-1)

Practice

• Draw the red-black tree that corresponds to the following 2-3-4 tree

