1. Tipos de Rede Geodésica

- a) Actualmente, as redes geodésicas são concebidas para <u>dar</u> resposta a diferentes problemas;
- b) A Geodesia <u>já não se limita unicamente à concepção de</u> redes de apoio à cartografia e à topografia para a elaboração de mapas e cartas;
- c) Hoje em dia constroem-se:
 - redes de apoio;
 - redes permanentes de apoio;
 - redes de monitorização de estruturas;
 - redes de monitorização geodinâmica;
 - redes dinâmicas globais, etc.

Geodesia & Aplicações - Aula 11

FCUL-EG

Optimização de redes

1. Tipos de Rede Geodésica

- d) Em função dos objectivos de uma rede, são feitos <u>estudos</u> <u>prévios de optimização</u>, por forma a <u>garantir a qualidade</u> <u>desejada dos resultados</u>;
- e) Apresentam-se-nos <u>diferentes problemas de optimização</u>, que permitem classificar as redes geodésicas em <u>várias</u> ordens de optimização e concepção;
- f) No modelo matemático de ajustamento, existem diferentes parâmetros que podem ser optimizados: a geometria (A); a precisão das observações (P); a precisão da rede (Q_x) ; etc.
- g) Embora não muito comum entre nós, existe adicionalmente um <u>parâmetro externo que deve ser considerado</u> <u>o custo</u>, para não inviabilizar a realização e os resultados da rede.

Geodesia & Aplicações - Aula 11

2. Concepção e Optimização de Redes

- a) Quando se estabelece uma rede, em termos genéricos, há que decidir sobre vários aspectos:
 - Na <u>fase de concepção</u> há que decidir sobre:
 - ✓ Configuração geométrica da rede (A.∆X=W)
 - ✓ Precisão das observações ($P=\sigma^2_0\Sigma^{-1}=Q_{\parallel}^{-1}$)
 - ✓ Custo de construção, observação e manutenção (C=K_{ô·}φ+K_{w·}ψ)
 - Na fase <u>de ajustamento</u> há que decidir sobre:
 - ✓ Rede Fixa (1 ou 2 ptos fixos) $dX_k=0$; $dY_k=0$; $dZ_k=0$
 - ✓ Rede livre (constr. min.)
 - $dX_k = \delta$; $dY_k = \delta$; $dZ_k = \delta$
 - ✓ Selecção do melhor conjunto de observações
 - ✓ Melhor critério de pesos
 - √ Validação com auxílio de testes de hipótese

Geodesia & Aplicações - Aula 11

FCUL-EG

Optimização de redes

2.1 Problemas Optimização de Redes

- a) Estão definidos 4 ordens de problemas de optimização:
 - 1- Problema de <u>Ordem Zero</u> POZ ✓ *Optimização do datum* (referencial)
 - 2- Problema de <u>Primeira Ordem</u> PPO
 ✓ Optimização da configuração geométrica
 - 3- Problema de <u>Segunda Ordem</u> PSO
 ✓ *Optimização dos pesos das observações*
 - 4- Problema de <u>Terceira Ordem</u> PTO

 ✓ Optimização de melhoria da configuração

Geodesia & Aplicações - Aula 11

2.1 Problemas Optimização de Redes

- a) Estão definidos 4 ordens de problemas de optimização:
 - 1- Problema de **Ordem Zero** POZ
 - ✓ Optimização do datum (referencial)

Parâmetros Fixos: A - matriz de configuração geométrica; P – matriz peso

<u>Variáveis</u>: X – coordenadas, parâmetros do sistema; $\Sigma_{\rm v}$ – variâncias das coordenadas

∴ Definição adequada das coordenadas da rede (referencial) e da respectiva precisão

Geodesia & Aplicações - Aula 11

FCUL-EG

Optimização de redes

- 2.1 Problemas Optimização de Redes
 - 2- Problema de Primeira Ordem PPO
 - ✓ Optimização da configuração geométrica

Parâmetros Fixos: P – matriz peso; Σ_x – variâncias das coordenadas;

Variáveis: A - matriz de configuração geométrica;

... Definição adequada da geometria da rede (localização e observações) por forma a garantir a precisão desejada

Geodesia & Aplicações - Aula 11

2.1 Problemas Optimização de Redes

3- Problema de **Segunda Ordem** - PSO

✓ Optimização dos pesos das observações

Variáveis: P – matriz peso;

∴ Definição adequada dos pesos e sua inter-relação por forma a garantir a precisão desejada

Geodesia & Aplicações - Aula 11

FCUL-EG

Optimização de redes

- 2.1 Problemas Optimização de Redes
 - 4- Problema de Terceira Ordem PTO
 - ✓ Optimização de melhoria da configuração

Parâmetros Fixos: Σ_x – variâncias das coordenadas;

<u>Variáveis</u>: A - matriz de configuração geométrica; P – matriz peso

∴ Melhoria de redes existentes pela introdução de vértices ou de observações adicionais

Geodesia & Aplicações - Aula 11

2.1 Problemas Optimização de Redes

- 5- Podemos ainda definir outros problemas adicionais de optimização de uma rede geodésica, como por exemplo:
 - ✓ Optimização do intervalo de tempo entre épocas de observação de redes de monitorização de deformações

<u>Variável</u>: $\Delta X = X_{t2}-X_{t1}$ – vector deslocamento

∴ Adequado intervalo de tempo entre observações em função da taxa de deformação sem aumentar significativamente os custos

Geodesia & Aplicações - Aula 11

FCUL-EG

Optimização de redes

2.1 Problemas Optimização de Redes

6- A minimização de custos pode ser interpretada como um problema de transformação aplicada aos resultados de PPO e PSO:

✓ Optimização do custo

Parâmetros Fixos: Σ_X – variância das coordenadas; Variável: A - configuração geométrica; P – matriz peso

$$C(A, \Sigma_{II}) = K_{\phi} \cdot \phi(n, m) + K_{\nu\nu} \cdot \psi(\Sigma_{II})$$

... Procurar o melhor compromisso entre a precisão desejada e um custo adequado, em função da configuração geométrica e da precisão das observações

Geodesia & Aplicações - Aula 11

2.1 Problemas Optimização de Redes

- a) Função custo Exemplo 1
- Observação de uma rede de triangulação por dois Teodolitos de precisão diferente (3 e 10 segundo centesimais)

$\sigma_{\alpha} = 3^{cc}, K_{\phi} = K_{\psi} = 1$				
n	10	40	80	
ф	440	1640	3240	
Ψ	110	444	888	
C (€)	550	2084	4128	

$\sigma_{\alpha} = 10^{cc}, K_{\phi} = K_{\psi} = 1$				
n	10	40	80	
ф	440	1640	3240	
Ψ	10	44	88	
C(€)	450	1684	3328	

Geodesia & Aplicações - Aula 11

FCUL-EG

Optimização de redes

2.1 Problemas Optimização de Redes

- b) Função custo Exemplo 2
- Observação de uma rede GPS regional

$$σ_x$$
= 2mm, $K_ψ$ =1.3

n/m | 10/15 | 20/40 | 40/60

 $K_φ$ | 1.5 | 1.4 | 1.3

 $φ$ | 640 | 1240 | 2440

 $ψ$ | 410 | 820 | 1640

 $C(ε)$ | 1493 | 2802 | 5304

$$σ_x = 2 cm, K_ψ = 1.2$$
 n/m
 $10/15$
 $20/40$
 $40/60$
 $K_φ$
 1.5
 1.4
 1.2
 $φ$
 640
 1240
 2440
 $ψ$
 110
 220
 440
 $C(€)$
 1092
 2000
 3456

Geodesia & Aplicações - Aula 11

2.2 Robustez e Fiabilidade

- a) <u>Robustez</u> é a propriedade que caracteriza a resistência de uma rede ao efeito de erros sistemáticos;
- b) É a resistência ou a imunidade da rede à contaminação de observações erradas;
- c) <u>Fiabilidade</u> é caracterizada pela capacidade de detecção de <u>observações</u> erradas, por intermédio de testes de hipóteses;
- d) Uma, confere à rede a insensibilidade à contaminação dos erros sistemáticos, a outra, permite a detecção de observações contaminadas;
- e) Ambas as propriedades estão intimamente relacionadas e são uma consequência dos Números de Redundância Local (NRL);

Geodesia & Aplicações – Aula 11

Optimização de redes

2.2 Robustez e Fiabilidade

- f) A Robustez está relacionada com o modo como, no ajustamento, os erros são projectados para os resíduos (ν) ou para as correcções às coordenadas (ΔX);
- g) Essa projecção é quantificada pelos parâmetros: NRL Números de Redundância Local e NAL Números de Absorção Local;
- h) Os NAL são dados pelos elementos da diagonal da matriz:

$$U = AQ_x A^T P$$

i) Enquanto que os NRL correspondem aos elementos da diagonal da matriz $\left(I-U\right)$

Geodesia & Aplicações - Aula 11

FCUL-EG

2.2 Robustez e Fiabilidade

- j) Os NRL e NAL são valores reais entre 0 e 1, e a sua soma é igual a 1;
- I) Para que a rede seja robusta os NRL devem ser homogéneos e elevados (ex.: 0,7);
- m) Se houver alguns NAL com valores mais elevados que os restantes, os resíduos correspondentes tendem a acumular os erros, mesmo tendo sido cometidos noutras observações;
- f) A optimização da Robustez e da Fiabilidade de uma rede geodésica é a tarefa do PPO, onde a configuração é escolhida por forma a obter um mútuo controlo, da qualidade das observações e da precisão da rede;

Geodesia & Aplicações - Aula 11

FCUL-EG

Optimização de redes

2.3 Determinação de Outliers

2.3.1- Teste de Barda (Data Snooping)

$$Q_{\upsilon\upsilon} = Q_l - AQ_xA^T$$
 Resíduos normalizados: $\overline{v}_i = \frac{v_i}{\sigma_0\sqrt{q_u}}$
 $H_0: \overline{v}_i \in N(0,1)$ vs $H_1: \overline{v}_i \in N(\Delta\upsilon,1)$

2.3.2- Método de Pope (Método de Tau - τ)

$$\overline{\upsilon_i} = \frac{|\upsilon_i|}{s_0 \sqrt{q_{ii}}} \in \tau$$
 Distribuição TAU Conversão de distribuição - τ em t-Student
$$t_{(f-1)} = \sqrt{\frac{(f-1)\tau^2}{f-\tau^2}}$$

:. Rejeitar H₀ para 1- α se: $T_k = \sqrt{\frac{(f-1)\overline{v}^2}{f-\overline{v}^2}} > t_{1-\alpha}$

Geodesia & Aplicações - Aula 11

2.4 Erros do Tipo I e Tipo II

Quando se rejeita ou aceita uma hipótese usando um teste estatístico baseado numa probabilidade, dois erros podem acontecer:

- 2.4.1- Erro do Tipo I (falso positivo)
 - Rejeitar a Hipótese Nula H₀ e esta ser VERDADEIRA
 - α (significância) é a probabilidade de cometer o erro
- 2.4.2- Erro do Tipo II (falso negativo)
 - Não rejeitar a Hipótese Nula H₀ e esta ser FALSA
 - β é a probabilidade de cometer o erro

Ao contrário do erro do tipo I, não é possível determinar à partida a probabilidade de ocorrência dum erro do tipo II, β.

Geodesia & Aplicações – Aula 11 FCUL-EG

Optimização de redes

2.4 Erros do Tipo I e Tipo II

Síntese de erros possíveis associado aos testes de Hipótese:

Situação	Conclusão do teste	
Real	Rejeitar H ₀	Aceitar H ₀
H ₀ VERDADEIRA	Erro Tipo I	Decisão Acertada
H ₀ FALSA	Decisão Acertada	Erro Tipo II

Geodesia & Aplicações - Aula 11

2.4 Erros do Tipo I e Tipo II

2.4.2 - Exemplo, baseado num processo com μ =1200 e σ =30: Hipótese H $_0$: μ =1200 vs Hipótese H $_1$: μ >1200 com α = 5% (probabilidade de rejeitar H $_0$, sendo ela verdadeira)

tem-se a azul, a faixa da gama de valores possíveis em que H_0 é rejeitada.

Geodesia & Aplicações - Aula 11

FCUL-EC

Optimização de redes

2.4 Erros do Tipo I e Tipo II

2.4.2 - Exemplo, baseado num processo com μ =1200 e σ =30:

Se a média observada Xmed cair dentro da área de rejeição, existe um erro suficientemente grande entre a amostra e a hipótese ${\rm H}_{\rm 0}.$

Caso Xmed cair fora da área de rejeição a hipótese H_0 é válida e não há lugar ao Erro Tipo I

Geodesia & Aplicações - Aula 11

2.4 Erros do Tipo I e Tipo II

2.4.2 - Exemplo, baseado num processo com μ =1200 e σ =30:

O valor crítico Xmed crítico = 1249 para este teste é calculado a partir da área α =5% da curva normal

Uma forma de "ajuizar" a ocorrência de uma média superior a 1249 é:

- a) H₀ é verdadeira, mas tivemos um tal azar que recolhemos uma amostra muito pouco provável.
- b) Ou, ${\rm H_0}$ não é verdadeira, daí não ser surpresa o valor alto obtido para a média

Geodesia & Aplicações - Aula 11

Geodesia & Aplicações - Aula 11

FCUL-EG

Optimização de redes

2.4 Erros do Tipo I e Tipo II

2.4.2 - Exemplo, baseado num processo com μ =1200 e σ =30:

Suponhamos que a hipótese H_0 é falsa (H1 é verdadeira), no caso de Xmed se distribuir em torno de μ =1240 (em vez de 1200)

A decisão correcta seria rejeitar a falsa hipótese nula H_0 .

Aceitando H₀ quando esta é falsa é chamado de Erro Tipo II

2.4 Erros do Tipo I e Tipo II

2.4.2 - Exemplo, baseado num processo com μ =1200 e σ =30:

Na realidade desconhece-se qual a situação verdadeira. Se se tiver de tomar a decisão de aceitar ou não H₀, na presença da incerteza, temos de aceitar correr riscos de um tipo ou de outro

Ilustra-se aqui as probabilidades de cada um dos tipos de erro, α se H0 é verdadeira, e β se H0 é falsa

FCUL

Optimização de redes

2.4 Erros do Tipo I e Tipo II

2.4.2 - Exemplo, baseado num processo com μ =1200 e σ =30:

A redução de α (deslocando o ponto crítico para a direita, por ex. 1270), aumenta ao mesmo tempo β , mas reduz a probabilidade do erro Tipo I.

Geodesia & Aplicações - Aula 11

2.4 Erros do Tipo I e Tipo II

2.4.2 - Exemplo, baseado num processo com μ =1200 e σ =30:

Uma forma de minimizar a possibilidade do erro II é aumentar a dimensão da amostra, diminuindo assim o desvio padrão e possibilitando que β se reduza sem aumentar α

Devemos trabalhar sempre com redundância elevada (amostra grandes) e com elevadas precisões.

Geodesia & Aplicações - Aula 11

FCUL-EG

Optimização de redes

3. Conclusão

- A realização de testes de hipótese, permitindo eliminar observações erradas, garantem resultados fiáveis e de confiança;
- ➤ Trabalhar com elevada redundância e uma boa geometria, garantindo elevada precisão, minimizará a probabilidade de se cometerem erros do Tipo I e do Tipo II.

Geodesia & Aplicações - Aula 11

3. Conclusão

- A ideia básica da optimização de redes geodésicas é a possibilidade de se garantir com qualidade a estimativa de uma rede antes de ser construída ou observada;
- ➤ A optimização de uma rede geodésica prende-se com o estudo da sua <u>precisão</u>, da sua <u>fiabilidade</u> e do seu <u>custo</u>.

Geodesia & Aplicações – Aula 11 FCUL-EG