

Dynamique

Tige et plaque

Le repère R_0 ($0, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}$) est lié à la partie fixe

Le système en mouvement est constitué :

- d'une tige (T) de longueur 2L, de masse négligeable, en liaison pivot $(0, \overline{z_0})$ avec la partie fixe liée au repère R_1 $(0, \overline{x_1}, \overline{y_1}, \overline{z_1})$ avec $\overline{z_0} = \overline{z_1}$; $\overline{00_2} = L.\overline{x_1}$

La position de la tige (T) est repérée par l'angle $\psi(t) = (\overrightarrow{x_0}, \overrightarrow{x_1})$

- d'une plaque carrée (P) de masse m, de coté 2a, en liaison pivot $(O_2, \overline{x_1})$ avec la tige(T), de centre de gravité G La plaque (P) est liée au repère R_2 $(O_2, \overline{x_2}, \overline{y_2}, \overline{z_2})$ avec $\overline{x_1} = \overline{x_2}$; $\overline{O_2G} = a.\overline{y_2}$ La position de la plaque (P) est repérée par l'angle $\theta(t) = (\overline{y_1}, \overline{y_2})$

Questions

- 1) Représenter les figures de changement de repère faisant apparaître les angles ψ et θ
- 2) Déterminer les vecteurs rotation $\overrightarrow{arOmega_{T/R_0}}$ et $\overrightarrow{arOmega_{P/R_0}}$
- 3) Déterminer le vecteur vitesse du point G $\overline{V_{G/R_0}}$ par dérivation (à exprimer dans le repère R_2)
- 4) Déterminer le vecteur vitesse du point G $\overline{V_{G/R_0}}$ par changement de point avec O (à exprimer dans le repère R_2)
- 5) Déterminer le vecteur accélération du point G $\overrightarrow{\Gamma_{G/R_0}}$ par dérivation (à exprimer dans le repère R_2)
- 6) Justifier la forme de la matrice d'inertie de la plaque donnée dans l'énoncé
- 7) Déterminer les expressions de A et C en fonction de a et de m
- 8) Par application du théorème de Huygens, déterminer la matrice d'inertie de la plaque (P) en O₂
- 9) Déterminer l'expression du moment cinétique en G de la plaque (P) par rapport à R_0 $\overrightarrow{\sigma_{GP/R_0}}$
- 10) Déterminer l'expression du moment cinétique en O de la plaque (P) par rapport à R_0 $\overrightarrow{\sigma_{O_{P/R_0}}}$
- 11) Ecrire le torseur cinétique de (P) $\{\mathcal{C}_{P/R_0}\}$ en O
- 12) Déterminer l'expression du moment dynamique en G de la plaque (P) par rapport à R_0 $\overrightarrow{\delta_{G\;P/R_0}}$
- 13) Déterminer l'expression du moment dynamique en O de la plaque (P) par rapport à R_0 $\overline{\delta_{O_{P/R_0}}}$
- 14) Ecrire le torseur dynamique de (P) $\{\mathcal{D}_{P/R_0}\}$ en O
- 15) Calculer l'énergie cinétique de la plaque (P) T(P/R₀) dans son mouvement par rapport à R₀

Rappels:

Le torseur $\{\tau_{(2\to 1)}\}$ associé à l'action mécanique exercée en A, par un solide 2 sur un solide 1 sera noté :

$$\left\{\mathcal{T}_{(2\to1)}\right\} = A \left\{\frac{\overrightarrow{R_{2\to1}}}{\overrightarrow{M_{A_{2\to1}}}}\right\} = A \left\{\frac{\overrightarrow{R_{2\to1}}}{\overrightarrow{M_{A_{2\to1}}}} = X_A \cdot \overrightarrow{x} + Y_A \cdot \overrightarrow{y} + Z_A \cdot \overrightarrow{z}\right\}_{(x,y,z)} = A \left\{Y_A \cdot X_A \cdot$$

Le torseur cinématique $\{v_{2/1}\}$ du mouvement d'un solide S par rapport à un repère R exprimé au point A sera noté :

$$\left\{v_{(S/R)}\right\} = \left\{\overrightarrow{\Omega_{S/R}}\right\} = \left\{\overrightarrow{\Omega_{S/R}} = \omega_{x} \cdot \overrightarrow{x} + \omega_{y} \cdot \overrightarrow{y} + \omega_{z} \cdot \overrightarrow{z}\right\}_{(x,y,z)} = \left\{\overrightarrow{\omega_{x}} \quad v_{Ax}\right\}_{(x,y,z)} = \left$$

Le torseur cinétique $\{C_{S/R)}\}$ du mouvement d'un solide S par rapport à un repère R galiléen exprimé au point A sera noté :

$$\left\{C_{(S/R)}\right\} = \left\{\begin{array}{c} m \, \overrightarrow{V_{G_{S/R}}} \\ \overrightarrow{\sigma_{A_{S/R}}} \end{array}\right\} = \left\{\begin{array}{c} m \, \overrightarrow{V_{G_{S/R}}} \\ \overrightarrow{\sigma_{A_{S/R}}} = m \, \overrightarrow{AG} \wedge \overrightarrow{V_{A_{S/R}}} + \overrightarrow{J_A}(S, \overrightarrow{\Omega_{S/R}}) \end{array}\right\}_{(X,Y,Z)} \overrightarrow{J_A} = \text{opérateur d'inertie de S en A}$$

Le torseur dynamique $\{D_{S/R}\}$ du mouvement d'un solide S par rapport à un repère R galiléen exprimé au point A sera noté :

$$\left\{D_{(S/R)}\right\} = \left\{\begin{array}{c} m \ \overrightarrow{\Gamma_{G_{S/R}}} \\ \overrightarrow{\delta_{A_{S/R}}} \end{array}\right\} = \left\{\begin{array}{c} m \ \overrightarrow{\Gamma_{G_{S/R}}} \\ \overrightarrow{\delta_{A(S/R)}} = \left[\frac{d}{dt} \ \overrightarrow{\sigma_{A(S/R)}}\right]_{R} + \ \text{m.} \ \overrightarrow{V_{A_{S/R}}} \wedge \overrightarrow{V_{G_{S/R}}} \end{array}\right\}_{(x,y,z)}$$

L'énergie cinétique d'un solide S dans son mouvement par rapport à un repère R galiléen exprimé au point A sera noté :

$$T_{(S/R)} = \frac{1}{2} \left\{ C_{(S/R)} \right\} \otimes \left\{ v_{(S/R)} \right\} = \frac{1}{2} \left(m \overrightarrow{V_{G_{S/R}}} \cdot \overrightarrow{V_{A_{S/R}}} + \overrightarrow{\Omega_{S/R}} \cdot \overrightarrow{\sigma_{A_{S/R}}} \right)$$