

Name_

MATHEMATICS SPECIALIST 3,4 TEST 2 SECTION ONE 2016

NON Calculator Section

Time: 35 minutes

Chapters 3 and 4

		Total: 35 marks	
	stion 1		(7 marks)
Two	functions are defined as $f(x) = \sqrt{x-1}$ and $g(x) = \frac{1}{x-1}$		
(a)	Evaluate $gf\left(\frac{13}{9}\right)$		(2 marks)
(b)	Find in simplified form $gg(x)$.		(2 marks)
(c)	Determine the domain of $f(g(x))$		(3 marks)
(~)			(o mano)

Question 2 (6 marks)

(a) Determine the domain and range of
$$f(g(x))$$
 given that $f(x) = \frac{12}{x+1}$ and $g(x) = \sqrt{x+1}$ (3)

(b) Given that
$$f(x)=2x+3$$
 and $g(f(x))=4x^2+12x+11$, find $g(x)$. (3)

Question 3 (6 marks)

The graph of function $f(x) = \frac{1}{x^4 + 1}$ for the domain 0 < x < 2 is shown below.

(a) Determine the exact value for
$$_{x\rightarrow 2^{+}}$$
 (2)

(b) On the axes given above, sketch the graph of the inverse function,
$$y = f^{-1}(x)$$
 (2)

(c) Obtain the rule for
$$f^{-1}(x)$$
. (2)

Question 4 (5 marks)

A rational function R(x) is sketched below. Function R(x) has the following properties:

- Only one pole or a discontinuity at x=4
- Two horizontal intercepts at x=2 and x=-2
- A horizontal asymptote at y=-2

(a) If
$$R(x) = \frac{k(x^2 - a)}{(x - b)(x - c)}$$
 explain why $k = -2$, $a = 4$, $b = 4$ and $c = 4$

Determine $\lim_{x\to 4} R(x)$. (b)

(1)

(7 marks) Question 5

Solve the following. (a)
$$\frac{\int \left| \int_{\mathbb{R}^{N}} \left| \int_{\mathbb{R}^{N}$$

(2) (c) $\frac{\|3\chi'+4'\|2'\|5\chi'+2'\|}{2}$

(2)

(d) $\frac{\|\|'\|_{\chi'-'} \|'\|_{\chi'+'}}{\|\zeta'\|_{\chi'+'}}$

(2)

MATHEMATICS SPECIALIST 3,4 TEST 2 SECTION TWO 2016

Calculator Section

Chapters 3 and 4

Name_____ Time: 20 minutes
Total: 20 marks

Question 1 (5 marks)

The function f, defined for all real x by f(x)=|x-a|+|x+b|, where a and b are positive integers, has the following graph.

(a) Find the values of a and b.

(b) Express f(x) as a piecewise function.

Question 2 (5 marks)

At 10.00am, two bumper cars at the royal show, G and T, have position vectors, \mathbf{r} m, and velocity vectors, \mathbf{v} m/s, as shown below:

$$r_G = 3i + 9 j v_G = -i - j$$

 $r_T = 9 i v_T = -5 i + 5 j$

Prove that the bumper cars will collide if they continue with these velocities and find the time and location of the collision.

Question 3 (5 marks)

 $y = \frac{x^3}{(x+4)(2x-3)}.$ Sketch the graph $x \to \pm \infty.$ Give the equations for the vertical and other asymptotes.

Question 4 (5 marks)

Find the Cartesian equation of the line perpendicular to the vector $^{7\underline{i}$ +5 \underline{j} and passing through the point $^{\left(-1\,,\,3\right)}$