Project On Heart Failure Prediction Using SAS Enterprise Miner

Table of Contents

ABSTRACT	3
Introduction:	4
Workspace:	4
SAS Models:	
Objective:	5
Data Source:	5
Procedure:	5
Exploring the Data:	e
Data Partitioning:	8
Decision Trees	9
Conclusion:	13
Regressions:	14
Regression Models:	16
Full Regression:	17
Forward Inclusion:	18
Backward Exclusion:	19
Stepwise Regression:	21
Neural Networks:	22
Model Comparison:	35
Conclusion:	37
Recommendations:	38
Resources:	39

ABSTRACT

Cardiovascular diseases are the number one cause of death globally, taking an average of 17.9 million lives each year, accounting for 31% of all deaths worldwide The purpose of our analysis was to determine key factors that are most closely indicative of a heart disease diagnosis using 11 variables provided by the dataset. Various decision trees, regression models, and neural networks were run for this analysis and a model comparison was conducted to determine which model was most predictive of the target. Using ASE scores and Roc Index values, we determined that the best model was the Backward Exclusion Regression Model. The output of this model revealed that Asymptomatic Chest Pain, raised Oldpeak levels, and age are factors that are most indicative of heart disease. From this analysis, we recommend that the best course of action to avoid heart disease is maintaining a healthy diet, regular exercise, and routine assessment if you have pre-existing risk factors.

Introduction:

Cardiovascular disease (CVD) is a term used to refer to the range of diseases affecting the heart and blood vessels. These include hypertension (high blood pressure), coronary heart disease (heart attack), cerebrovascular disease (stroke), and heart failure. CVDs are the number one cause of death globally, taking an average of 17.9 million lives each year, accounting for 31% of all deaths worldwide. While these conditions are expected in older populations, one-third of CVD deaths occur prematurely in people under 70 years of age. Heart failure is a common event caused by CVDs and this dataset contains 11 features that can be used to predict a possible heart disease.

Workspace:

SAS Enterprise Miner is an advanced analytical data mining tool designed to quickly develop descriptive and predictive models by streamlining the data mining process. It assists analysts in identifying key relationships, recognizing patterns, and comparing data models.

SAS Models:

1. Decision Trees:

- Maximal Tree
- Decision Tree using Misclassification Rate Assessment
- Decision Tree using Average Square Error Assessment

2. Regression Models:

- Full Regression
- Forward Regression
- Backward Regression
- Stepwise Regression

3. Neural Networks:

• Neural Network with 3 hidden units and 100 iterations

- Neural Network with 3 hidden units and 50 iterations
- Neural Network with set upper and lower limits
- Neural Network with 4 hidden units
- Neural Network using variables selected by backward regression

Objective:

People with cardiovascular disease or who are at high cardiovascular risk need early detection and treatment to increase their chances of survival. The purpose of this analysis is to identify the key features of cardiovascular disease so that patients will receive immediate diagnosis and assistance.

Data Source:

The data we will be using for this analysis is an excel file. Therefore, we must first import the file into our SAS Miner workspace.

Procedure:

- 1. Create an empty diagram called **Heart Failure**.
- 2. Select and drag the **File Import** node into the diagram from the sample tab.
- 3. Rename the node **Heart Failure**.
- 4. Select the **Heart Failure** node and click on Imported Data in the properties panel.
- 5. Locate and upload the data file.

Exploring the Data:

Name	Role	Level	Report	Order	Drop	Lower Limit	Upper Limit
Age	Input	Interval	No		No		
ChestPainTy	Input	Nominal	No		No		
Cholesterol	Input	Interval	No		No		
ExerciseAng	Input	Nominal	No		No		
FastingBS	Input	Binary	No		No		
HeartDisease	Target	Binary	No		No		
MaxHR	Input	Interval	No		No		
Oldpeak	Input	Interval	No		No		
RestingBP	Input	Interval	No		No		
RestingECG	Input	Nominal	No		No		
Sex	Input	Nominal	No		No		
ST Slope	Rejected	Nominal	No		No		

Target Variable: Heart Disease. This is a binary variable, with a positive diagnosis represented by 1 and a negative diagnosis represented by 0.

Rejected Variables: ST Slope. This measures the ST segment shift relative to increments in heart rate due to exercise. It is considered a more accurate ECG criterion for diagnosing heart disease. However, this variable is redundant, as ST Slope tests are conducted after CVDs are already detected. Therefore, it has been rejected from the dataset.

Accepted Variables:

- 1. **Age:** The age of studied patients in years, ranging from 28-77.
- 2. **Chest Pain Type:** Typical Angina (TA), Atypical Angina (ATA), Non-Anginal Pain (NAP), Asymptomatic (ASY).
- 3. **Cholesterol:** Measures of serum cholesterol.
- 4. **Exercise Angina:** Chest pain induced by exercise.
- 5. **Fasting BS:** Fasting blood sugar levels. 0 indicates low levels and 1 indicates high levels.
- 6. **Max HR:** Maximum heart rate achieved.
- 7. **Oldpeak:** flat sections of an ECG. Elevation indicates a severe heart attack.
- 8. **Resting BP:** Resting blood pressure.
- 9. **Resting ECG:** Resting electrocardiogram results.
- 10. **Sex:** Male (M) or Female (F).

To explore the data in greater detail we selected the **StatExplore** node from the explore tab and connected it to the **Heart Failure** node.

Select **StatExplore** and run the node. Open the results.

Chi-square testing is a statistical hypothesis testing method to observe the quality of fit between observed values and theoretically expected values. According to this Chi-Square Plot, the variables of ChestPainType, ExerciseAngina, Sex, FastingBS, and RestingEGC will be most significant in our analysis.

Missing Values:

Select View > Summary Statistics > Interval Variables from the results tab.

Variable Va	Missing riable	Non Missing
Oldpeak Oldpeak	0	508
Cholesterol Cholesterol	0	508
MaxHR MaxHR	0	508
Age	0	508
RestingBP RestingBP	0	410 508

As indicated by this chart, there are no missing variables in our data that require replacement or imputation. Note that later in our analysis we will be replacing extreme values as Missing and giving them a new value using imputation.

Data Partitioning:

Splitting data, or data partitioning, is a standard procedure for honest model performance assessment when running predictive models. We will split our data into two parts: Training data (50%) which is used for fitting the data and Validation data (50%) which is used for monitoring and modifying the data to create better generalizations. Overfitting would be decreased by a larger dataset. If we are limited to the data in our existing dataset and unable to collect any more, we can use data augmentation to fictitiously enhance the size of our dataset. ***

Procedure:

 Drag the **Data Partition** node from the sample tab into the diagram and connect it to your dataset.

2. Allocate 50% to Training and 50% to Validation in the properties tab. Set Test to 0%.

. Property	Value
General	
Node ID	Part
Imported Data	
Exported Data	
Notes	
Train	
Variables	
Output Type	Data
Partitioning Meth	
Random Seed	12345
■Data Set Allocation	
Training	50.0
Validation	50.0
^{L.} Test	0.0

3. Run the node.

Partition	Summary	
Туре	Data Set	Number of Observations
DATA TRAIN VALIDATE	EMWS1.FIMPORT_train EMWS1.Part_TRAIN EMWS1.Part_VALIDATE	918 459 459

Decision Trees

Decision trees are one of the best predictive modeling tools used. Input selection is conducted by a split search algorithm that rejects any variables with a log worth below 0.7. The complexity of decision trees is reduced by pruning so that the resulting tree only includes variables above the p-value threshold. The initial split is the Root Node, and the final splits are the Leaf Nodes. For all of our decision trees we will be using a two-branch mode as the majority of are variables are either binary or their values are split above and below a threshold.

Under this project, we have created three types of decision trees:

- Maximal Tree
- Misclassification Tree
- ASE Tree

Maximal Tree:

A maximal decision tree is one that has the maximal number of splits.

Procedure:

1. Drag the **Decision Tree** node from the Model tab. Drag it into the diagram and connect it to the **Data Partition** node.

- 2. Do not make any changes to the properties.
- 3. Select Interactive in the properties panel and open the decision tree.
- 4. Right click on the root node and select Train Node. This will create the maximal tree.

The maximal tree for our data has 10 leaf nodes. The initial split for this decision tree is ChestPainType, dividing between Asymptomatic pain (ASY) with 79% predictiveness of heart disease and Typical Angina (TA), Atypical Angina (ATA), and Non-Anginal Pain (NAP) with only 27% predictiveness. The ASY pain was then divided by Exercise Angina, with "Yes" responses (90% predictiveness) then being split by Sex, with males having higher risk of heart disease.

- 5. Save the maximal tree and exit Interactive.
- 6. Freeze the maximal tree in the properties panel.

7. Run the node and open Fit Statistics in Results.

Fit Statistics	Statistics Label	Train	Validation
NOBS	Sum of Freq	459	
MISC	Misclassific	0.183007	0.228758
MAX	Maximum A	0.981982	
SSE	Sum of Squ	109.3794	139.9026
ASE	Average Sq	0.11915	0.152399
RASE	Root Averag	0.345181	0.390384
DIV	Divisor for A	918	918
DFT	Total Degre	459	

The maximal tree has a Misclassification Rate of 0.228758 and an ASE of 0.152399.

Average Squared Error Tree and Misclassification Tree:

This is an optimal decision tree created by selecting the Average squared error (ASE) and Misclassification rate as assessment measures, respectively.

Procedure:

1. Drag the **Decision Tree** node into the diagram and connect it to the **Data Partition** node.

2. Select the assessment measures to ASE for the Average Squared Error decision tree and Misclassification rate for the Misclassification tree.

- 3. Run the nodes
- 4. Save both trees then freeze them in the properties panel.

Misclassification tree:

Misclassification Tree has a Misclassification Rate of 0.228758 and an ASE of 0.152399.

Average Squared Error Tree:

ASE Tree has a Misclassification Rate of 0.228758 and an ASE of 0.152399.

This is the leaf statistics for all three of our decision trees. Statistics remain the same throughout each decision tree.

Conclusion:

On the basis of Average Squared Error and Misclassification Rate, we can conclude that all of our trees have an equal level of predictiveness, as they all have the same Misclassification Rate and ASE. Both the ASE tree and the Misclassification tree have the same division of splits as the Maximal tree as well. Additionally, all of our trees have the same leaf statistics. This is an understandable result, considering we are working with such a small amount of data. What these

trees seem to indicate is that the type of chest pain you are experiencing is most indicative of heart disease and that Males are at increase risk than Females.

Regressions:

A linear regression model will be used, only, if our target has an interval variable. However, if our target has a binary value then our model of interest will be logistic regression. The logistic regression model uses the following prediction formula.

Logistic Regression Prediction Formula

$$\log\left(\frac{\hat{p}}{1-\hat{p}}\right) = \hat{w}_0 + \hat{w}_1 \cdot x_1 + \hat{w}_2 \cdot x_2 \quad logit scores$$

Logistic regression measures the relationship between the categorical dependent variable and one or more independent variables by estimating probabilities using a logistic function, which is the cumulative distribution function of logistic distribution.

Skewness and Transformations:

Before we create our regression models, we must check for any extreme outliers in our data that could skew the models and reduce their performance. Any outliers must be transformed logarithmically. To check for skewness, we took a closer look at the Interval Variables of our **Replacement** node.

Variable	2	Skewness
REP OCCREP MREP AREP AREP REP REP AREP REP REP REP REP REP REP REP REP REP	Idpeak Idpeak Holesterol Holesterol Holesterol HaxHR HaxHR Haqe Haqe HastingBP HastingBP HastingBP	0.668103 0.071082 -0.7275 -0.32529 -0.14843 -0.00434 -0.25523 -0.45338 0.485755 0.343564

From this table we can see that there are no extreme outliers that would skew our data. Therefore, we do not need to run any transformations and can continue on to our regression models.

Extreme Values:

When examining our dataset we noticed some extreme values in Cholesterol, MaxHR, and Resting BP. To control for this we used a **Replacement** node to set a cap and floor for these variable values. Values outside of these cutoffs will be labeled as Missing. We will then impute these missing values to replace them with an estimated value based on the mean of other variable values.

Procedure:

1. Drag the **Replacement** node from the Modify tab into the diagram and connect to the **Data Partition** node.

2. Set the Default Limits Method to User Specified Limits and Replacement Value to Missing.

3. Click on the Replacement Editor and make the following changes.

Name	Use	Limit Method	Replacement Lower Limit	Replacement Upper Limit
Age	Default	Default		
Cholesterol	Default	Default	125	240
4axHR	Default	Default	130	195
Oldpeak	Default	Default		
RestingBP	Default	Default	50	210

4. Connect a **StatExplore** node from the Sample tab to the **Replacement** node.

5. Run **StatExplore** and select View > Summary Statistics > Interval Variables.

6. Drag the **Impute** node from the Modify tab and connect it to the **Replacement** node.

7. Set **Type** to **Unique.** This will ensure that missing values are replaced with unique values that will allow us to determine if these missing values are important for our analysis.

Regression Models:

We have done the following four types of regression in this project:

- Full Regression
- Forward Inclusion
- Backward Exclusion
- Stepwise Regression

Full Regression:

1. Drag the **Regression** node and connect it to the **Impute** node.

2. Run the node.

Fit Statistics	Statistics Label	Train	Validation
AIC ASE	Akaike's Info	407.5601 0.133253	0.127374
AVERR	Average Sq Average Err	0.135253	0.401409
DFE	Degrees of	446	
DFM DFT	Model Degr Total Degre	13 459	
DIV'	Divisor for A	918	918
ERR	Error Function	381.5601	368.4934
FPE MAX	Final Predict Maximum A	0.141021 0.988234	0.951666
MSE	Mean Squar	0.137137	0.127374
NOBS NW	Sum of Freq Number of E	459 13	459
RASE	Root Averag	0.365038	0.356895
RFPE	Root Final P	0.375527	
RMSE SBC	Root Mean Schwarz's B	0.37032 461.2377	0.356895
SSE	Sum of Squ	122.326	116.9291
SUMW	Sum of Cas	918	918
MISC	Misclassific	0.196078	0.187364

ASE is 0.127374.

3. Open the Output and scroll to Odds Ration Estimate.

Odds	Ratio Estimates	
		Point
Effect		Estimate
Age		1.021
ChestPainType	ASY vs TA	5.060
ChestPainType	ATA vs TA	0.669
ChestPainType	NAP vs TA	0.907
ExerciseAngina	N vs Y	0.262
FastingBS	0 vs 1	0.255
IMP_REP_MaxHR		1.002
IMP_REP_RestingBP		1.009
01dpeak		1.556
RestingECG	LVH vs ST	1.608
RestingECG	Normal vs ST	1.408
Sex	F vs M	0.226

ASY ChestPainType is 5.06 times more indicative of heart disease than TA ChestPainType. For Resting ECG, Left Ventricular Hypertrophy (LVH) is 1.608 times more indicative of heart disease than ST segmentation (ST).

Procedure for Forward Inclusion, Backward Exclusion, Stepwise Regression:

For all these regressions models we will repeat step one of the Full Regression procedure. However, in step two we will be proceeding as follows:

Forward Inclusion:

2. In the properties panel, select model as Forward and set Selection Criterion to Validation Error.

3. Run the node.

Fit Statistics	Statistics Label	Train	Validation
AIC	Akaike's Info	402.989	
ASE	Average Sq	0.134896	0.126915
AVERR	Average Err	0.421557	0.401454
DFE	Degrees of	451	
DEM	Model Degr	8	
DFT	Total Degre	459	040
DIV	Divisor for A	918	918
ERR FPE	Error Function Final Predict	386.989 0.139681	368.535
MAX	Maximum A	0.139661	0.955353
MSE	Mean Squar	0.137289	0.126915
NOBS	Sum of Frea	459	459
NW	Number of E	8	400
RASE	Root Averag	0.367282	0.356251
RFPE	Root Final P	0.37374	
RMSE	Root Mean	0.370525	0.356251
SBC	Schwarz's B	436.0214	
SSE	Sum of Squ	123.8343	116.5077
SUMW	Sum of Cas	918	918
MISC	Misclassific	0.200436	0.196078

ASE is 0.126915, better than the Full Regression model.

4. Open the Output and scroll to Odds Ratio Estimate.

Odd	s Ratio Estimates	
Effect		Point Estimate
ChestPainType	ASY vs TA	4.477
ChestPainType	ATA vs TA	0.614
ChestPainType	NAP vs TA	0.824
ExerciseAngina	N vs Y	0.249
FastingBS	0 vs 1	0.260
01dpeak		1.603
Sex	F vs M	0.240

ASY ChestPainType is 4.477 times more indicative of heart disease than TA ChestPainType. TA ChestPainType is 1.63x (1/0.614) more indicative of heart disease than ATA ChestPainType.

Backward Exclusion:

2. In the model selection properties select model as Backward and Selection Criterion as Validation Error as shown in the picture below.

3. Run the node.

Fit Statistics	Statistics Label	Train	Validation
AIC_	Akaike's Info	402.2349	
ASE AVERR	Average Sq	0.133912 0.418557	0.124372 0.394116
DFE	Average Err Degrees of	450	0.394116
DFM	Model Dear	9	
DFT	Total Degre	459	
DIV	Divisor for A	918	
ERR	Error Function	384.2349	361.7986
FPE	Final Predict	0.139268	
MAX	Maximum A	0.984128	0.942012
MSE	Mean Squar	0.13659	
NOBS	Sum of Freg	459	459
NW_	Number of E	9	
RASE	Root Averag	0.36594	0.352664
RFPE	Root Final P	0.373187	
RMSE	Root Mean	0.369581	0.352664
SBC	Schwarz's B	439.3963	
SSE	Sum of Squ	122.931	114.1734
SUMW	Sum of Cas	918	
MISC	Misclassific	0.211329	0.167756

ASE is 0.124372. This is a better model than Full Regression and Forward Regression.

4. Open the Output and scroll to Odds Ratio Estimate.

Odds	Ratio Estimates	
Effect		Point Estimate
Effect		Escimace
Age		1.024
ChestPainType	ASY vs TA	4.550
ChestPainType	ATA vs TA	0.642
ChestPainType	NAP vs TA	0.835
ExerciseAngina	N vs Y	0.264
FastingBS	0 vs 1	0.277
Oldpeak		1.575
Sex	F vs M	0.237

ASY ChestPainType is 4.550 times more indicative of heart disease than TA ChestPainType. ExerciseAngina indicates that you are 3.8x (1/0.264) more likely to have heart disease. Females are less prone to have heart disease than Males by 76%.

Stepwise Regression:

2. In the model selection properties select model as Stepwise and Selection Criterion as Validation Error.

3. Run the node.

Fit Statistics	Statistics Label	Train	Validation
AIC_	Akaike's Info	402.989	
ASE	Average Sq	0.134896	0.126915
AVERR DFE	Average Err Degrees of	0.421557 451	0.401454
DFM	Model Dear	8	
DFT	Total Degre	459	
DIV	Divisor for A	918	918
ERR	Error Function	386.989	368.535
FPE	Final Predict	0.139681	
MAX	Maximum A	0.976754	0.955353
MSE	Mean Squar	0.137289	0.126915
NOBS	Sum of Freg	459	459
NW_	Number of E	8	
RASE	Root Averag	0.367282	0.356251
RFPE	Root Final P	0.37374	0.050054
RMSE	Root Mean	0.370525	0.356251
SBC	Schwarz's B	436.0214	440 5077
SSE	Sum of Squ	123.8343	116.5077
SUMW	Sum of Cas	918	
MISC	Misclassific	0.200436	0.196078

ASE is 0.126915, not as good as the Backwards Regression model.

4. Open the Output and scroll to Odds Ratio Estimate.

Odds	Ratio Estimates	
Effect		Point Estimate
ChestPainType	ASY vs TA	4.477
ChestPainType	ATA vs TA	0.614
ChestPainType	NAP vs TA	0.824
ExerciseAngina	N vs Y	0.249
FastingBS	0 vs 1	0.260
Oldpeak		1.603
Sex	F vs M	0.240

ASY ChestPainType is 4.477 times more indicative of heart disease than TA ChestPainType. For every elevation in Oldpeak levels, you are 1.603x more likely to experience heart disease. Males are more prone to heart disease than females.

Conclusion:

Based on average squared error (ASE) we can conclude that Backward Exclusion is the best regression model among all the regression models as it has the lowest average squared error among all the regression models. Therefore, this is the model we will be using to optimize two of our neural network models. Asymptomatic ChestPainType is highly predictive of heart disease, as well as gender and Oldpeak levels which indicate previous heart attacks.

Neural Networks:

A neural network is a set of connected input/output variables where each connection has a given weight that determines the outcome. Neural networks take non-linear functions of linear combinations of input variables. This is a powerful and very general approach for regression and classification and has been shown to be the best machine learning method on many problems.

Problems in Neural Networks:

- Extreme or unusual values also present a problem for neural networks. The problem is mitigated somewhat by the hyperbolic tangent activation functions in the hidden units
- It cannot select its input; however, this can be reduced by the complexity optimization algorithm called "stopped running" which minimized the chance of overfitting.
- It is not possible to interpret the input variable of Neural Network.

Neural Network Models:

- Neural Network with 3 hidden units and 100 iterations (with and without replacement)
- Neural Network with 3 hidden units and 100 iterations (with and without replacement)
- Neural network with 4 hidden units and 50 iterations
- Neural Network with 3 hidden units and preliminary training
- 3 Hidden unit Neural Network connected to Backwards Regression (100 iterations)
- 3 Hidden unit Neural Network connected to Backwards Regression (50 iterations)

3 Hidden Unit Neural Network (100 iterations, no Replacement):

Procedure:

 Drag a Neural Network node into the diagram from the Model tab and connect to the Data Partition.

2. Select **Optimization**, from the properties panel and disable preliminary training. Set maximum iterations to 100. Close Optimization.

3. Select **Network** from the properties panel and set hidden units to 3.

4. Select Average Error as the Model Selection Criterion.

5. Run the Neural Network node and view the results.

Fit Statistics	Statistics Label	Train	Validation
DFT	Total Degrees of	459	
DFE	Degrees of Freed	413	
DFM	Model Degrees o	46 46	
NW	Number of Estim		
AIC	Akaike's Informati	428.5048	
SBC	Schwarz's Bayesi	618.4411	
ASE	Average Squared	0.116379	0.11797
MAX	Maximum Absolut	0.963924	0.971898
DIV	Divisor for ASE	918	918
NOBS	Sum of Frequenc	459	
RASE	Root Average Sq	0.341144	0.343468
SSE	Sum of Squared	106.836	
SUMW	Sum of Case Wei	918	918
FPE	Final Prediction	0.142304	
MSE	Mean Squared E	0.129341	0.11797
RFPE	Root Final Predic	0.377232	
RMSE	Root Mean Squa	0.359641	0.343468
AVERR	Average Error Fu	0.366563	
ERR	Error Function	336.5048	
MISC	Misclassification	0.169935	
WRONG	Number of Wron	78	74

The ASE for this model is 0.11797.

This model converges at 5 iterations.

Note: For the rest of our models, Model Selection Criterion will always be set to Average Error.

3 Hidden Unit Neural Network (50 iterations, no Replacement):

Procedure:

1. Repeat step one of the 100 Iteration network.

2. Select **Optimization**, from the properties panel and set maximum iterations to 50.

3. Run the Neural Network node and view the results:

Fit Statistics	Statistics Label	Train	Validation
DFT	Total Degrees of	459	i i
DFÉ	Degrees of Freed		
DFM	Model Degrees o	46	
NW	Number of Estim	46	
AIC	Akaike's Informati	428.5048	
SBC	Schwarz's Bavesi	618.4411	
ASE	Average Squared	0.116379	0.11797
MAX	Maximum Absolut	0.963924	0.971898
DIV	Divisor for ASE	918	918
NOBS	Sum of Frequenc	459	
RASE	Root Average Sq	0.341144	0.343468
SSE	Sum of Squared	106.836	108.2967
SUMW	Sum of Case Wei	918	918
FPE	Final Prediction	0.142304	
MSE	Mean Squared E	0.129341	0.11797
RFPE	Root Final Predic	0.377232	
RMSE	Root Mean Squa	0.359641	0.343468
AVERR	Average Error Fu	0.366563	
ERR	Error Function	336.5048	347.7896
MISC	Misclassification	0.169935	0.16122
WRONG	Number of Wron	78	74

The ASE for this model is the same as the previous 100 iteration model.

This model converges at 5 iterations.

Replaced Neural Network (3 hidden units, 100 iterations):

Procedure:

1. Drag a **Neural Network** node into the diagram and connect it to the **Impute** node.

2. Following the same procedure, select 3 hidden units and 100 iterations. Run the results:

Fit Statistics	Statistics Label	Train	Validation
DFT	Total Degrees of Freedom	459	
DFE	Degrees of Freedom for Err	416	
DFM	Model Degrees of Freedom	43 43	
NVV	Number of Estimated Weig Akaike's Information Criterion	450.1568	
SRC	Schwarz's Bavesian Criterion	627.706	•
NW AIC SBC ASE	Average Squared Error	0.127667	0.128504
MAX	Maximum Absolute Error	0.965864	0.983884
DIV	Divisor for ASE	918	918
NOBS	Sum of Frequencies	459	459
RASE SSE	Root Average Squared Error	0.357305	0.358475
SUMW	Sum of Squared Errors	117.1979	117.9671 918
FPE	Sum of Case Weights Time Final Prediction Error	918 0.154059	918
MSE	Mean Squared Error	0.134039	0.128504
RFPE	Root Final Prediction Error	0.392504	0.120004
RMSE	Root Mean Squared Error	0.375317	0.358475
AVERR	Average Error Function	0.396685	0.412162
ERR	Error Function	364.1568	378.3644
MISC	Misclassification Rate	0.176471	0.185185
WRONG	Number of Wrong Classific	81	85

The ASE for this model is 0.128504, which is greater than the ASEs for the previous two models.

This model converges at 4 iterations.

Replaced Neural Network (3 hidden units, 50 iterations):

Procedure:

1. Drag a **Neural Network** node into the diagram and connect it to the **Impute** node:

2. Select 3 hidden units and 50 iterations. Run the results:

Fit Statistics	Statistics Label	Train	Validation
DFT	Total Degrees of Freedom	459	i i
DFE	Degrees of Freedom for Err	416	
DFM	Model Degrees of Freedom	43	
NW	Number of Estimated Weig	43	
AIC	Akaike's Information Criterion	450.1568	
SBC	Schwarz's Bavesian Criterion	627.706	
ĀŠĒ	Average Squared Error	0.127667	0.128504
MAX	Maximum Absolute Error	0.965864	
DIV	Divisor for ASE	918	
NOBS	Sum of Frequencies	459	
RASE	Root Average Squared Error	0.357305	
SSE	Sum of Squared Errors	117.1979	
SUMW	Sum of Case Weights Time	918	
FPE	Final Prediction Error	0.154059	
MSE	Mean Squared Error	0.140863	
RFPE	Root Final Prediction Error	0.392504	
RMSE	Root Mean Squared Error	0.375317	
AVERR	Average Error Function	0.396685	
ERR	Error Function	364.1568	
MISC	Misclassification Rate	0.176471	
WRONG	Number of Wrong Classific	81	85

The ASE for this model is the same as the previous model of 100 iterations.

This model converges at 4 iterations.

Replaced Neural Network (4 hidden units, 50 iterations):

Procedure:

1. Drag a Neural Network tool into the diagram and connect it to the Impute node.

2. Go into the network and set hidden units to 4.

M Network			
. Property	Value		
Architecture	Multilayer Perceptron		
Direct Connection	No		
Number of Hidden Units	4		
Randomization Distribution	Normal		
Randomization Center	0.0		
Randomization Scale	0.1		
Input Standardization	Standard Deviation		

3. Run the node:

Fit Statistics	Statistics Label	Train	Validation
DFT	Total Degrees of Freedom	459	
DFE	Degrees of Freedom for Err	402 57 57	
DFM	Model Degrees of Freedom	57	
NW	Number of Estimated Weig	57	
AIC	Akaike's Information Criterion	495.7919	
SBC	Schwarz's Bayesian Criterion	731.1477	
ĀŠĒ	Average Squared Error	0.130473	0.128782
MAX	Maximum Absolute Error	0.974333	0.947504
DIV_	Divisor for ASE	918	918
NOBS	Sum of Frequencies	459	459
RASE	Root Average Squared Error	0.36121	0.358863
SSE	Sum of Squared Errors	119.7739	118.2223
SUMW	Sum of Case Weights Time	918	918
FPE MSE	Final Prediction Error	0.167472	
MSE_	Mean Squared Error	0.148973	0.128782
RFPE	Root Final Prediction Error	0.409234	
RMSE	Root Mean Squared Error	0.38597	0.358863
AVERR	Average Error Function	0.415895	0.40558
ERR	Error Function	381.7919	372.3228
MISC	Misclassification Rate	0.191721	0.183007
WRONG	Number of Wrong Classific	88	84

The ASE for the 4 hidden unit model is 0.128782. This is larger than the ASE for the 3 hidden unit neural network models. Therefore, we will not be running any models with more than 4 hidden units, as the ASE is only likely to become greater with more hidden units.

This model converges at 3 iterations.

Neural Network with Preliminary Training:

Procedure:

1. Drag a **Neural Network** node into the diagram and connect it to the **Impute** node:

2. Enable Preliminary Training. Set number of iterations to 50.

	· · ·	0
Training Technique	Default	
Maximum Iterations	50	
Maximum Time	30 Minutes	
Nonlinear Options		
Use Defaults	Yes	
Absolute	-1.34078E154	
Absolute Function	0	
Absolute Function Times	1	
Absolute Gradient	1.0E-5	
Absolute Gradient Times	1	
Absolute Parameter	1.0E-8	
Absolute Parameter Times	1	
Relative Function	0.0	
Relative Function Times	1	
Relative Gradient	1.0E-6	
Relative Gradient Times	1	
Propagation Options		
Accelerate	1.2	
Decelerate	0.5	
Learn	0.1	
Maximum Learning	50.0	
Minimum Learning	1.0E-5	
Momentum	0.0	
Maximum Momentum	1.75	
Tilt	0.0	
Preliminary Training		
Enable	Yes	
Number of Runs	5	
Maximum Iterations	10	
Maximum Time	1 Hour	

4. Run the results:

Fit Statistics	Statistics Label	Train	Validation
DFT	Total Degrees of Freedom	459	
DFÉ	Degrees of Freedom for Err	416	
DFM	Model Degrees of Freedom	43	
NW	Number of Estimated Weig	43	
AIC	Akaike's Information Criterion	403.8618	
AIC SBC	Schwarz's Bayesian Criterion	581.4109	
ASE	Average Squared Error	0.105768	
MAX	Maximum Absolute Error	0.979488	
DIV	Divisor for ASE	918	
NOBS	Sum of Frequencies	459	459
RASE	Root Average Squared Error	0.32522	
SSE	Sum of Squared Errors	97.0951	
SUMW	Sum of Case Weights Time	918	
FPE	Final Prediction Error	0.127634	
FPE MSE RFPE	Mean Squared Error	0.116701	0.149504
RFPE	Root Final Prediction Error	0.357258	
RMSE	Root Mean Squared Error	0.341615	
AVERR	Average Error Function	0.346255	
ERR	Error Function	317.8618	
MISC	Misclassification Rate	0.145969	
WRONG	Number of Wrong Classific	67	96

The ASE for this model is 0.149504, the worst ASE out of all of our models thus far.

There is no convergence in this model.

Neural Network with Backwards Regression (100 iterations):

Procedure:

1. Drag a **Neural Network** node into the diagram and connect it to the **Backward Exclusion** node.

2. Select 3 Hidden Units and 100 iterations. Run the results:

Fit Statistics	Statistics Label	Train	Validation
DFT	Total Degrees of Freedom	459	
DFE	Degrees of Freedom for Err	428	
DFM	Model Degrees of Freedom	31	
NW	Number of Estimated Weig	31	
AIC	Akaike's Information Criterion	411.9055	
SBC ASE	Schwarz's Bayesian Criterion	539.9061	
ASE	Average Squared Error	0.119251	0.13074
MAX	Maximum Absolute Error	0.961424	0.967781
DIV	Divisor for ASE	918	918
NOBS	Sum of Frequencies	459	459
RASE	Root Average Squared Error	0.345327	0.361579
SSE	Sum of Squared Errors	109.4725	120.0189
SUMW	Sum of Case Weights Time	918	918
FPE	Final Prediction Error	0.136526	
MSE	Mean Squared Error	0.127888	0.13074
RFPE	Root Final Prediction Error	0.369494	
RMSE	Root Mean Squared Error	0.357615	0.361579
AVERR	Average Error Function	0.381161	0.40869
ERR	Error Function	349.9055	375.1777
MISC	Misclassification Rate	0.165577	0.200436
WRONG	Number of Wrong Classific	76	92

The ASE for this model is 0.13074.

This model converges at 3 iterations.

Neural Network with Backwards Regression (50 iterations):

Procedure:

1. Drag a **Neural Network** node into the diagram and connect it to the **Backward Exclusion** node:

3. Select 3 Hidden Units and 50 iterations. Run the results:

Fit Statistics	Statistics Label	Train	Validation
DFT	Total Degrees of Freedom	459	
DFE	Degrees of Freedom for Err	428	
DFM	Model Degrees of Freedom	31 31	
NW	Number of Estimated Weig	31	
AIC	Akaike's Information Criterion	411.9055	
SBC	Schwarz's Bayesian Criterion	539.9061	
ASE	Average Squared Error	0.119251	0.13074
MAX	Maximum Absolute Error	0.961424	
DIV	Divisor for ASE	918	918
NOBS	Sum of Frequencies	459	
RASE	Root Average Squared Error	0.345327	
SSE	Sum of Squared Errors	109.4725	
SUMW	Sum of Case Weights Time	918	918
FPE	Final Prediction Error	0.136526	
MSE	Mean Squared Error	0.127888	0.13074
RFPE	Root Final Prediction Error	0.369494	
RMSE	Root Mean Squared Error	0.357615	
AVERR	Average Error Function	0.381161	0.40869
ERR	Error Function	349.9055	
MISC	Misclassification Rate	0.165577	
WRONG	Number of Wrong Classific	76	92

This model has the same ASE as the 100 iteration model.

The model converges at 4 iterations.

Conclusion:

Using ASE as our Model Selection method we can see that both of the Neural Network with 3 hidden units models are the best of our neural networks, as they have the lowest ASE.

Model Comparison:

To determine which of our models has the best performance we ran a model comparison, using Validation ASE as the selection criterion.

1. Drag the **Model Comparison** node from the Assess tab into the diagram and connect all the models to the node.

2. Set Selection Statistic to Average Squared Error and Selection Table to Validation.

3. Run the node and open Fit Statistics. Drag the Roc Index next to the Selection Criterion.

Model Description Model Description	Valid: Average Squared Error	Valid: Roc Index
NN 3U 100lterations NN 3U 50lterations Backward Exclusion Forward Inclusion Stepwise Regression Full Regression Replaced NN 3U 50lterations Replaced NN 3U 100lterations NN 4U BE-NN 3U 100lterations BE-NN 3U 50lterations NN Preliminary Training Maximal Tree Misclassification Tree ASE Tree	0.11797 0.11797 0.11797 0.126915 0.126915 0.127374 0.128504 0.128504 0.13074 0.13074 0.13074 0.152399 0.152399	0.913 0.913 0.903 0.902 0.902 0.902 0.90 0.899 0.897 0.897 0.871 0.865 0.865

Based on our Validation Criterion, the Replaced Neural Networks with 3 hidden units have the lowest Average Squared Error and the highest Roc Index, regardless of the number of iterations. However, these models have not been modified to exclude suspect values through replacement and imputation and are not reliable for this fact. Therefore, the best model is the Backward Exclusion Regression model. Further analysis will have to be conducted to determine why the models have better ASE and Roc Index scores when including erroneous values.

4. Expand the ROC Chart.

These models also have the highest Roc Curves.

Outcome:

Based on our Model Comparison the best model for analyzing our data is the Backward Exclusion Regression Model. Of our reliable models, this model has the lowest ASE of 0.124372 and the highest Roc Index of 0.908.

Conclusion:

Now that we know our Backward Exclusion Regression is the best model, we can examine its results to determine which factors are most predictive of heart disease. To do this we will analyse the Odds Ratio Estimates and Effects Plot for the regression model.

The variables that are the strongest predictors of heart disease are as follows (descending order):

Odds	Ratio Estimates	
Effect		Point Estimate
Age ChestPainType ChestPainType ChestPainType ExerciseAngina FastingBS Oldpeak Sex	ASY vs TA ATA vs TA NAP vs TA N vs Y 0 vs 1 F vs M	1.024 4.550 0.642 0.835 0.264 0.277 1.575 0.237

- 1. Asymptomatic chest pain is 4.550 times more likely to be indicative of heart disease than Typical Angina chest pain.
- 2. For every unit higher of Oldpeak you are 1.57x more likely to experience heart disease.
- 3. For every year that you age your risk of contracting heart disease increases by 1.024x.
- 4. Typical Angina chest pain is 1.2x more indicative of heart disease than NAP chest pain.

- 5. Typical Angina chest pain is 1.6x more indicative of heart disease than Atypical Angina chest pain.
- 6. If your FastingBS levels are high, then you are 3.61x (1/0.277) more likely to suffer from heart disease.
- 7. Experiencing chest pain while exercising indicates that you are 3.8x (1/0.264) more likely to experience heart disease.
- 8. Males are 4.2x (1/0.237) more likely to suffer from heart disease than females.

Recommendations:

From our previous analysis, we have found that Asymptomatic chest pain is the most predictive variable for heart disease. Because the individual does not experience the regular symptoms that are indicators of heart disease (eg. chest pain, dizziness, nausea) the condition remains unidentified until it is too late, and the individual suffers from a "silent" heart attack or seizure that can result in their death. Our recommendations are therefore based on constant vigilance of one's health, regardless of symptoms.

- 1. Individuals should get regularly tested for heart disease, from the age of 28. Even if you are not currently experiencing symptoms this does not mean you are not at risk. Tests for heart disease should be administered during annual checkups.
- 2. Doctors should stress the importance of healthy diet and exercise to balance cholesterol and blood sugar levels. People should avoid excessive consumption of alcohol and the use of cigarettes, as these factors increase the likelihood of heart disease.
- 3. If you have suffered from a heart attack in the past your risk of contracting further heart disease is significantly higher. Individuals who have experienced a heart attack in the past should get routinely screened for any abnormalities that indicate heart disease.

Resources:

Fedesoriano. (2021, September 10). *Heart failure prediction dataset*. Kaggle. Retrieved December 17, 2021, from https://www.kaggle.com/fedesoriano/heart-failure-prediction