SDCA for Regularized Loss Minimization

Shai and Tong

2013年6月5日

Xinkai

Main Contribbution

Main Contritbution

Proving the convergence rate of duality gap for SDCA.

Main Contribution

Proving the convergence rate of duality gap for SDCA.

Unfortunately

Main Contribution

Proving the convergence rate of duality gap for SDCA.

Unfortunately

We'll skip the proofs.

Recall SGD

$$\omega := \omega - c \nabla P_i(\omega),$$

where our problem is: $\min P(\omega)$

Recall SGD

$$\omega := \omega - c \bigtriangledown P_i(\omega),$$

where our problem is: $\min P(\omega)$

Recall SGD

$$\omega := \omega - c \bigtriangledown P_i(\omega),$$

where our problem is: $\min P(\omega)$

Recall SGD

$$\omega := \omega - c \bigtriangledown P_i(\omega),$$

where our problem is: $\min P(\omega)$

Go from " $\min P(\omega)$ " to " $\max D(\alpha)$ "

Go from " $\min P(\omega)$ " to " $\max D(\alpha)$ "

Instead of d primal variables $(\omega_1, \dots, \omega_d)$, we have n dual variables $(\alpha_1, \dots, \alpha_n)$,

Go from " $\min P(\omega)$ " to " $\max D(\alpha)$ "

Instead of d primal variables $(\omega_1, \cdots, \omega_d)$, we have n dual variables $(\alpha_1, \cdots, \alpha_n)$, where d is the number of features and n is the number of entries.

Go from " $\min P(\omega)$ " to " $\max D(\alpha)$ "

Instead of d primal variables $(\omega_1, \dots, \omega_d)$, we have n dual variables $(\alpha_1, \dots, \alpha_n)$, where d is the number of features and n is the number of entries.

Maximize dual in coordinate direction

Go from " $\min P(\omega)$ " to " $\max D(\alpha)$ "

Instead of d primal variables $(\omega_1, \cdots, \omega_d)$, we have n dual variables $(\alpha_1, \cdots, \alpha_n)$, where d is the number of features and n is the number of entries.

Maximize dual in coordinate direction

For direction α_i , we find $\Delta\alpha_i$ that maximizes $D_i(\alpha_i^{t-1} + \Delta\alpha_i)$, where $D(\alpha) = \sum_i D_i(\alpha)$, and t is the loop index.

Go from "min $P(\omega)$ " to "max $D(\alpha)$ "

Instead of d primal variables $(\omega_1, \cdots, \omega_d)$, we have n dual variables $(\alpha_1, \cdots, \alpha_n)$, where d is the number of features and n is the number of entries.

Maximize dual in coordinate direction

For direction α_i , we find $\Delta\alpha_i$ that maximizes $D_i(\alpha_i^{t-1} + \Delta\alpha_i)$, where $D(\alpha) = \sum_i D_i(\alpha)$, and t is the loop index. So $\lfloor \frac{t}{n} \rfloor$ is the number of epoch.

Random without Repetition (permutation)

Random with Repetition

Cyclic

Random without Repetition (permutation)

Random with Repetition

Cyclic

That's all

Random without Repetition (permutation)

Random with Repetition

Cyclic

That's all for the idea.

Random without Repetition (permutation)

Random with Repetition

Cyclic

That's all for the idea.

Questions?

Exp.0: Effect of different "S"

Figure: R w Rep

Figure: Perm

Figure: Cyclic

Exp.1: Convergence Rate of non-smooth Hinge

Result

For non-smooth hinge loss (we saw in class), the duality gap of SDCA should converge sub-linearly $(O(n + \frac{1}{\lambda_{\epsilon}}))$.

Exp.1: Convergence Rate of non-smooth Hinge

Result

For non-smooth hinge loss (we saw in class), the duality gap of SDCA should converge sub-linearly $(O(n + \frac{1}{\lambda \epsilon}))$.

Experiment

Fix n and ϵ , vary $\lambda \in \{10^{-2}, 10^{-3}, 10^{-4}\}.$

Exp.1: Convergence Rate of non-smooth Hinge

Result

For non-smooth hinge loss (we saw in class), the duality gap of SDCA should converge sub-linearly $(O(n + \frac{1}{\lambda \epsilon}))$.

Experiment

Fix n and ϵ , vary $\lambda \in \{10^{-2}, 10^{-3}, 10^{-4}\}.$

We would expect · · ·

Conti Exp.1: Convergence Rate of non-smooth Hinge

Figure: $\lambda = 10^{-2}$

Figure:
$$\lambda = 10^{-3}$$

Conti Exp.1: Convergence Rate of non-smooth Hinge

Figure: $\lambda = 10^{-4}$

Conti Exp.1: Convergence Rate of non-smooth Hinge

Figure: Dual Sol

Figure: Primal Sol

Result

For smooth hinge loss, the duality gap of SDCA should converge linearly.

Have a look at code.

Result

For smooth hinge loss, the duality gap of SDCA should converge linearly.

Duality Gap for Smooth Hinge.

Have a look at code

Result

For smooth hinge loss, the duality gap of SDCA should converge linearly.

Duality Gap for Smooth Hinge. Have a look at code.

Result

For smooth hinge loss, the duality gap of SDCA should converge linearly.

Duality Gap for Smooth Hinge. Have a look at code.

Exp.3: Convergence Rate of squared loss

Exp.3: Convergence Rate of squared loss

Duality Gap for Squared Loss

Conti Exp.3: Convergence Rate of squared loss

Telescoping the last 200 epoches

Conti Exp.3: Convergence Rate of squared loss, Dual Sol

Conti Exp.3: Convergence Rate of squared loss, Primal Sol

