≡ Hide menu

Properties

Lesson 1: Matrices: Basic

Operations, Special

Lesson 2: Inverse of

7 min

10 min

3 min

10 min

20 min

and It's Properties

Matrices and LU

Factorization

Lesson 4: Elementary

Matrices and Properties

Video: Matrix Inverse

Reading: Slides (Module

2) on Matrix Inverse

Video: Properties of

Reading: Slides (Module

Practice Assignment:

Practice Problems 3

Lesson 3: Determinants

Invertible Matrices

2) on Properties of

Invertible Matrices

with Examples

Types of Matrices and

DA 105 | Linear Algebra > Week 2 > Slides (Module 2) on Properties of Invertible Matrices

Search in course

< Previous

Next >

Slides (Module 2) on Properties of Invertible Matrices

Properties of Invertible Matrices

<u>Theorem</u>: If A is an invertible matrix, A^{-1} is also invertible and

$$(A^{-1})^{-1} = A$$

Properties of Invertible Matrices

<u>Theorem</u>: If A is an invertible matrix, A^{-1} is also invertible and

$$(A^{-1})^{-1} = A$$

<u>Theorem</u>: If A is any invertible matrix and c is a nonzero scaler, then the matrix cA is also invertible and

$$(cA)^{-1} = \frac{1}{c}A^{-1}$$

Properties of Invertible Matrices

<u>Theorem</u>: If A, B are invertible matrices of same size, then AB is also invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$

The above theorem can be generalized for any number of matrices.

$$(A_1 A_2 \dots A_n)^{-1} = A_n^{-1} \dots A_2^{-1} A_1^{-1}$$

Properties of Invertible Matrices

<u>Theorem</u>: If A is an invertible matrix, A^T is also invertible and

$$(A^T)^{-1} = (A^{-1})^T$$

Properties of Invertible Matrices

<u>Theorem</u>: If A is an invertible matrix, A^T is also invertible and

$$(A^T)^{-1} = (A^{-1})^T$$

<u>Theorem</u>: If A is an invertible matrix, then A^n is also invertible for all non-negative integers n and

$$(A^n)^{-1} = (A^{-1})^n$$

Mark as completed