Grupos nilpotentes

Sésar

1. Definición

Los grupos nilpotentes son una generalización de los p-grupos. Muchas de las propiedades que cumplen los p-grupos también se cumplen para los grupos nilpotentes. Por ejemplo, todo subgrupo propio está estrictamente contenido en su normalizador. Además, todo subgrupo maximal es normal.

Definition 1. Un grupo G es **nilpotente** si posee una **serie central**, es decir, una serie normal finita

$$\{e\} = G_0 \unlhd G_1 \unlhd \ldots \unlhd G_n = G,$$

tal que $G_{i+1}/G_i \leq Z(G/G_i)$ para todo $i = 0, \dots, n-1$.

Lemma 1. Sea $\{e\} = G_0 \leq G_1 \leq \ldots \leq G_n = G$ una serie normal finita. Para todo $i = 1, \ldots, n-1$ son equivalentes:

- 1. $G_{i+1}/G_i \leq Z(G/G_i)$.
- 2. $[G_{i+1}, G] \leq G_i$.

Demostración. Supongamos primero que $G_{i+1}/G_i \leq Z(G/G_i)$. Sean $g \in G_{i+1}$ y $x \in G$. Entonces $gG_i \in G_{i+1}/G_i \leq Z(G/G_i)$. Por lo que $(gG_i)(xG_i) = (xG_i)(gG_i)$, lo que implica que $gxg^{-1}x^{-1} \in G_i$. Como es cierto para todo $g \in G_{i+1}$ y $x \in G$, entonces $[G_{i+1}, G] \leq G_i$.

Por otro lado, supongamos que $[G_{i+1}, G] \leq G_i$ y tomemos $g \in G_{i+1}$. Tomando un $x \in G$ arbitrario obtenemos que $gxg^{-1}x^{-1} \in [G_{i+1}, G] \leq G_i$, lo que quiere decir que $(gxg^{-1}x^{-1})G_i = eG_i$, es decir, $(gG_i)(xG_i) = (xG_i)(gG_i)$. Como se cumple para todo $x \in G$, entonces $gG_i \in Z(G/G_i)$.

Definition 2. Sea G un grupo nilpotente. Llamamos clase de nilpotencia c(G) a la mínima longitud de la serie central.

Por convención, el grupo trivial es nilpotente de clase de nilpotencia 0. Por otro lado, si $G \neq \{e\}$ es nilpotente, entonces $Z(G) \neq \{e\}$. Esto es porque, por un lado, como G no es trivial, entonces $c(G) \leq 1$ y podemos suponer que $G_1 \neq \{e\}$. Por otro lado, $G_1/G_0 \leq Z(G/G - 0)$, es decir, $\{e\} \neq G_1 \leq Z(G)$.

Proposition 1. Un grupo G es no trivial y abeliano si y solo si G es nilpotente y c(G) = 1.

Demostración. Supongamos que es $G \neq 1$ es abeliano. Entonces pordemos formar la serie normal $\{e\} \leq G$ y además, por ser abeliano, $G = G/\{e\} \leq Z(G) = Z(G/\{e\})$. Por tanto, $c(G) \leq 1$. Como además no es trivial, c(G) = 1.

Por otro lado, el hecho de que c(G) = 1 > 0 indica que $G \neq 1$. Y como es nilpotente, tenemos la serie central $\{e\} \leq G$ donde $G \leq Z(G)$, es decir, G = Z(G), luego G es abeliano. \square

Proposition 2. Todo grupo nilpotente es resoluble.

Demostración. Si G es un grupo nilpotente, existe una cadena central $\{e\} = G_0 \unlhd G_1 \unlhd \ldots \unlhd G_n = G$ tal que $G_{i+1}/G_i \subseteq Z(G/G_i)$. En particular, $G_{i+1}/G_i \subseteq Z(G_{i+1}/G_i)$, por lo que G_{i+1}/G_i es abeliano y por definición, G es resoluble.

Theorem 1. Sean G y K grupos.

- 1. Si G nilpotente y $H \leq G$, entonces H es nilpotente con $c(H) \leq c(G)$.
- 2. Si G nilpotente y $f: G \to K$, entonces f(G) nilpotente con $c(f(G)) \leq c(G)$.
- 3. Si G nilpotente y $N \subseteq G$, entonces G/N nilpotente con $c(G/N) \subseteq c(G)$.
- 4. Si G y K nilpotentes, entonces $G \times K$ es nilpotente con $c(G \times K) = \max\{c(G), c(K)\}$.

Demostración. Como G es nilpotente, supondremos para todos los apartados de la demostración que existe una serie central $\{e\} = G_0 \subseteq G_1 \subseteq \ldots \subseteq G_n = G$.

- 1. Se puede demostrar fácilmente que se da la siguiente serie normal $\{e\} = H_0 \leq H_1 \leq \ldots \leq H_n = H$ donde $H_i = G_i \cap H$. Por otro lado, como $[G_{i+1}, G] \leq G_i$, tenemos que $[H_{i+1}, H] = [G_{i+1} \cap H, G \cap H] \leq [G_{i+1}, G] \cap H \leq G_i \cap H = H_i$.
- 2. Tenemos que $\{e\} = F_0 \subseteq F_1 \subseteq ... \subseteq F_n = f(G) \text{ donde } F_i = f(G_i). \text{ Además, } [F_{i+1}, F] = [f(G_{i+1}), f(G)] = f([G_{i+1}, G]) \subseteq f(G_i) = F_i.$
- 3. Podemos aplicar el apartado anterior con el homomorfismo natural $\pi: G \to G/N$.
- 4. Sea $\{e\} = K_0 \unlhd \ldots \unlhd K_m = K$ una serie central de K y supongamos $c(G) \subseteq c(K)$. Entonces $\{e\} = G_0 \times K_0 \unlhd G_1 \times K_1 \unlhd \ldots \unlhd G_n \times K_n = G \times K_n \unlhd G \times K_{n+1} \unlhd \ldots \unlhd G \times K_m = G \times K$ es una serie central de $G \times K$, por lo que $c(G \times K) \subseteq c(K)$. En el supuesto de que $c(K) \subseteq c(K) = \max\{c(G), c(H)\}$, tomando una serie central análoga llegaríamos a la conclusión de que $c(G \times K) \subseteq c(G) = \max\{c(G), c(H)\}$. Habiendo demostrado que el producto directo es nilpotente y sabiendo que $G, K \subseteq G \times K$, entonces por el apartado anterior $c(G), c(K) \subseteq c(G \times K)$, es decir, $\max\{c(G), c(H)\} \subseteq c(G \times K)$.

Lemma 2. Si G/Z(G) es nilpotente, entonces G es nilpotente.

Demostración. Supongamos que $\{e\} = Z_0 \subseteq Z_i \subseteq \ldots \subseteq Z_n = G/Z(g)$ es una serie central. Como $Z_i \subseteq G/Z(G)$, entonces $Z_i = G_i/Z(G)$ donde $Z(G) \subseteq G_i \subseteq G$. De este modo, podemos considerar la siguiente serie normal $\{e\} \subseteq Z(G) \subseteq G_1 \subseteq \ldots \subseteq G_n = G$. Por último, por el tercer teorema de isomorfía, tenemos que $G_{i+1}/G_i = Z_{i+1}/Z_i \subseteq Z(Z_n/Z_i) = Z(G/G_i)$.

Hay que destacar que, en contraste con los grupos resolubles, los grupos nilpotentes con satisfacen la propiedad extensiva: en general si $N \subseteq G$ y N y G/N son nilpotentes, G no tiene porqué ser nilpotente.

Theorem 2. Todo *p*-grupo finito es nilpotente.

Demostración. Sea G un p-grupo finito. Realizaremos inducción fuerte en la potencia del orden del grupo. El caso $G = \{e\}$ es trivial. Si $|G| = p^1$, entonces $G \cong C_p$ y por ser abeliano es nilpotente. Supongamos que se cumple para todo grupo con potencia p^k con $k \leq n$ y sea G un p-grupo con $|G| = p^{n+1}$. Como G es un p-grupo, entonces $Z(G) \neq \{e\}$, por lo que |G/Z(G)| < |G|. Por lo tanto, $|G/Z(G)| = p^{k_0}$ para un cierto $k_0 \leq n$. Por hipótesis de inducción, G/Z(G) es nilpotente y por tanto, G es nilpotente.

2. Caracterizaciones de nilpotencia

Definition 3. Sea G un grupo. La serie central superior es la serie normal

$$\{e\} = Z_0 \unlhd Z_1 \unlhd \ldots \unlhd Z_i \unlhd \ldots$$

tal que $Z_1 = Z(G)$ y $Z_{i+1}/Z_i = Z(G/Z_i)$.

Definition 4. Sea G un grupo. La serie central inferior es la serie normal

$$G = G_0 \triangleright G_1 \triangleright \ldots \triangleright G_i \triangleright \ldots$$

tal que $[G_i, G] = G_{i+1}$.

Theorem 3 (Finitud de series centrales). Sea G un grupo. Son equivalentes:

- 1. G es nilpotente.
- 2. G tiene una serie central superior y $\exists c \in \mathbb{N}$ tal que $Z_c = G$.
- 3. G tiene una serie central inferior y $\exists k \in \mathbb{N}$ tal que $G_k = G$.

En este supuesto, la longitud de la serie central superior e inferior coinciden con c(G).

Demostración. Demostremos las implicaciones en el orden establecido.

 $(1\Rightarrow 2)$ Supongamos que $\{e\}=G_0 \unlhd G_1 \unlhd \ldots \unlhd G_n=G$ es una serie central. Si demostramos que $G_i \subseteq Z_i$ para todo $i \in \mathbb{N}$, entonces $G=G_n=Z_n \subseteq G$, por lo quer $Z_n=G$. Demostremos entonces que $G_i \subseteq Z_i$ por inducción. Sabemos que $G_i \subseteq Z(G)$, luego es cierto para i=1. Supongamos que $G_i \subseteq Z_i$ para un cierto i. En este caso, podemos definir un homomorfismo sobreyectivo $p_i: G/G_i \to G/Z_i$ tal que $p(gG_i)=gZ_i$. Como la imagen del centro del grupo está contenido en el centro de la imagen, entonces $p_i(G_{i+1}/G_i) \subseteq p_i(Z(G/G_i)) \subseteq Z(G/Z_i) = Z_{i+1}/Z_i$, por lo que $G_{i+1} \subseteq Z_{i+1}$.

 $(2\Rightarrow 3)$ La misma serie central superior, visto en el orden inverso, es una serie central inferior finita.

(3⇒1) Es directo por la definición de nilpotencia

En el caso de la finitud de las series, sus longitudes coinciden, por lo que ambas son c(G). \square

Theorem 4. Sea G grupo finito. Son equivalentes:

- 1. G es nilpotente.
- 2. $H < G \Rightarrow H < N_G(H)$.
- 3. Si $M \leq G$ es maximal, entonces $M \leq G$.
- 4. Todo subgrupo de Sylow de G es normal en G.
- 5. G es el producto directo de sus subgrupos de Sylow.

Demostración. Demostraremos cada implicación en el orden establecido.

 $(1\Rightarrow 2)$ Si G es abeliano, entonces $N_G(H)=G$. Supongamos que G no es abeliano. Si $Z(G)\nsubseteq H$, entonces $H\lhd HZ(G)\subseteq G$. De este modo, supongamos ahora que $Z(G)\subseteq H$ y usemos inducción en el orden del grupo. Entonces $H/Z(G)\lhd G/Z(G)$ y este último grupo es nilpotente. De este modo, $H/Z(G)\lhd N_{G/Z(G)}(H/Z(G))$. De este modo, tomando las antiimágenes en el homomorfismo canónico, tenemos que $H\lhd N_G(H)$.

 $(2\Rightarrow 3)$ Como M es maximal, entonces M < G, por lo que $M \triangleleft N_G(M) \leq G$ y por el mismo motivo, $N_G(M) = G$.

 $(3\Rightarrow 4)$ Sea $P\in \mathrm{Syl}_p(G)$ para un cierto p primo. Supongamos que $N_G(P)< G$. Entonces existe un subgrupo maximal M tal que $N_G(P)\leq M< G$. Como M es maximal, por hipótesis, $M\lhd G$. En particular, $P\in \mathrm{Syl}_p(M)$, por lo que por el argumento de Frattini, $G=MN_G(P)=M$, lo cual es una contradicción y viene de suponer que $N_G(P)$ es un subgrupo propio de G. Por lo tanto, $P \leq N_G(P) = G$.

 $(4\Rightarrow 5)$ Hagamos inducción en el número de productos directos. Sean $P_1,\dots P_n$ los grupos de Sylow para cada p_i —como son normales, equivalentemente son los únicos subgrupos de Sylow para cada primo—. Como $P_i \leq G$, entonces $P_1 \dots P_n \leq G$. Sea $H = P_1 \dots P_{n-1}$. Entonces por inducción, $H \cong P_1 \times \dots \times P_{n-1}$. Por otro lado, luego $HP_n = G$. Por otro lado, $\operatorname{mcd}(|P_n|, |H|) = 1$, luego $P_n \cap H = \{e\}$. Por lo que $G \cong H \times P_n \cong P_1 \times \dots \times P_n$.

(5⇒1) Todo subgrupo de Sylow es un p-grupo, luego es nilpotente y el producto directo de nilpotentes es nilpotente.

3. Subgrupos de Fitting y Frattini

Definition 5. Sea G un grupo y p||G|. Definimos

$$O_p(G) := \bigcap_{P \in \operatorname{Syl}_p(G)} P.$$

Remark 1. Como todos los *p*-subgrupos de Sylow son conjugados entre sí, tenemos que si $P \in \operatorname{Syl}_p(G)$, entonces $O_p(G) = \bigcap_{Q \in \operatorname{Syl}_p(G)} Q = \bigcap_{g \in G} gPg^{-1} = \operatorname{core}_G(P)$.

Proposition 3. $O_p(G)$ es el mayor p-subgrupo normal de G para todo p||G|.

Demostración. Por definición, es claro ver que $O_p(G)$ es un p-subgrupo. Por otro lado, como $O_p(G)$ es un core, entonces es el mayor subgrupo normal contenido en todo p-subgrupo de Sylow, luego es el mayor p-subgrupo normal.

Lemma 3. $O_p(G)$ car G.

Demostración. Sea φ : Aut(G) y sea $P \in \operatorname{Syl}_p(G)$. Entonces $|\varphi(P)| = |P|$, por lo que $\varphi(P) \in \operatorname{Syl}_p(G)$. Por otro lado, si $\varphi(P_1) = \varphi(P_2)$, por ser una aplicación biyectiva tenemos que $P_1 = P_2$. Por tanto, $\operatorname{Syl}_p(G)$ queda completamente definido por los subgrupos $\varphi(P)$. Entonces $\varphi(O_p(G)) = \varphi(\bigcap_{P \in \operatorname{Syl}_p(G)} P) = \bigcap_{P \in \operatorname{Syl}_p(G)} \varphi(P) = \bigcap_{P \in \operatorname{Syl}_p(G)} P = O_p(G)$.

Definition 6. Sea G un grupo. El subgrupo de Fitting de G es

$$F(G) := \prod_{p||G|} O_p(G).$$

Lemma 4. Sea G grupo.

- 1. $O_p(G) \in \operatorname{Syl}_p(F(G))$ para todo p||G|.
- 2. F(G) car G.

Demostración. Demostraremos cada apriado en el orden establecido.

- 1. De la definición, podemos deducir que $O_p(G)$ es un p-grupo. Además, $O_p(G) \leq F(G)$. Finalmente, por cómo se define el subgrupo de Fitting, el orden de $O_p(G)$ tiene potencia máxima en F(G), luego es de Sylow.
- 2. Viene del hecho de que $O_p(G)$ car G y que el producto de subgrupos característicos es característico.

Theorem 5. F(G) es el mayor subgrupo normal y nilpotente de G.

Demostración. En primer lugar, como cada $O_p(G)$ es un subgrupo de Sylow de F(G), en particular F(G) es producto directo de subgrupos de Sylow y por el teorema de caracterización, F(G) es nilpotente. Además, como es un subgrupo característico, es en particular un grupo normal. Demostremos entonces que es el más grande. Sea $N \subseteq G$ nilpotente. Como N es nilpotente, entonces es producto de sus subgrupos de Sylow $N = P_1 \dots P_n$. Además, $P_i \subseteq N$ por ser N nilpotente, por lo que P_i car $N \subseteq G$, lo que implica que $P_i \subseteq G$. Por la caracterización de $O_{p_i}(G)$, $P_i \subseteq O_{p_i}(G)$. De ahí, se deduce que $N \subseteq F(G)$.

Corollary 1. Un grupo G es nilpotente si y solo si F(G) = G.

Demostración. Si G es nilpotente, entonces $G \subseteq G$ es nilpotente y por la propiedad del subgrupo de Fitting, $G \subseteq F(G) \subseteq G$, luego F(G) = G. Por otro lado, si F(G) = G, como F(G) es nilpotente, entonces G también lo es.

Definition 7. Sea G un grupo. El **subgrupo de Frattini** $\Phi(G)$ es tal que si $G = \{e\}$, entonces $\phi(G) = \{e\}$ y en caso contrario:

$$\Phi(G) := \bigcap_{M \in \operatorname{Max}(G)} M$$

Proposition 4. $\Phi(G)$ car G.

Demostración. Sea M < G un subgrupo maximal. Es claro ver que para todo $\varphi \in \operatorname{Aut}(G), \varphi(M)$ es también maximal en G por ser φ biyectiva. Con esto, deducimos que $\varphi(\Phi(G)) = \varphi(\cap M) = \bigcap (\varphi(M)) = \bigcap M = \Phi(G)$.

Definition 8. Sea G grupo. Decimos que $x \in G$ es un **no-generador** si para todo $S \subseteq G$, $\langle S, x \rangle = G \Rightarrow \langle S \rangle = G$.

Proposition 5. $\Phi(G)$ es el conjunto de todos los no-generadores de G.

Demostración. Sea $x \in \Phi(G)$ y Sea $S \subseteq G$ tal que $\langle S, x \rangle = G$. Supongamos que $\langle S \rangle \neq G$. Entonces por el lemma de Zorn, existe un subconjunto maximal M < G supeditado a que $\langle S \rangle \leq M$ y $x \notin M$. Si $M < H \leq G$, entonces $x \in H$ y por tanto $G = \langle S, x \rangle \leq \langle H, x \rangle = H$, es decir, G = H. Esto demuestra que M es un subgrupo maximal y como $x \notin M$, entonces $x \notin \Phi(G)$, lo cual es una contradicción.

Por otro lado, supongamos que $x \in G$ es no-generador. Tomemos M < G maximal. Entonces $M \le \langle M, x \rangle \le G$. Si suponemos que $\langle M, x \rangle = G$, entonces por ser x no-generador, $M = \langle M \rangle = G$, lo que contradice la maximalidad de M. Por tanto, $\langle M, x \rangle = M$ y $x \in M$. Como esto es cierto para todo maximal M, x pertenece a todos los subgrupos maximales de G, es decir, $x \in \Phi(G)$. \square

Proposition 6. Sea G grupo y $N \subseteq G$. Entonces

- 1. $\Phi(N) \leq \Phi(G)$.
- 2. $\Phi(G)N/N \leq \Phi(G/N)$.
- 3. Si $N \leq \Phi(G)$, entonces $\Phi(G)/N = \Phi(G/N)$.

Demostración. Demostremos en el orden establecido.

1. Sea $g \in \Phi(N)$, entonces $g \in M$ tal que $M \in \text{Max}(N)$.