2019

Calculus II Integrals of the form $\int \arctan(mx) dx$

Todor Miley

2019

Integration by parts:
$$\int u dv = uv - \int v du$$
.

Example

Set
$$w = 1 + x^2$$
.

$$\int_0^1 \arctan x dx = \left[(\arctan x) x \right]_{x=0}^{x=1} - \int_0^1 x d \left(\arctan x \right) \\
= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x \frac{1}{1+x^2} dx \\
= \frac{\pi}{4} - \int_{x=0}^{x=1} \frac{1}{1+x^2} d \left(\frac{x^2}{2} \right) \\
= \frac{\pi}{4} - \frac{1}{2} \int_{x=0}^{x=1} \frac{1}{1+x^2} d(1+x^2) \\
= \frac{\pi}{4} - \frac{1}{2} \int_{x=0}^{x=1} \frac{1}{w} dw = \frac{\pi}{4} - \frac{1}{2} \left[\ln |w| \right]_{x=0}^{x=1} \\
= \frac{\pi}{4} - \frac{1}{2} \left[\ln \left(1 + x^2 \right) \right]_{x=0}^{x=1} \\
= \frac{\pi}{4} - \frac{1}{2} (\ln 2 - \ln 1) = \frac{\pi}{4} - \frac{1}{2} \ln 2 .$$