```
Zheng Yin
V00915261
CSC349a
Assignment 1
Question 1:
(a)
function Euler(m,c,g,t0,v0,tn,n)
fprintf('values of t approximations v(t) \n')
fprintf('%8.3f',t0),fprintf('%19.4f\n',v0)
h=(tn-t0)/n;
t=t0;
v=v0;
for i=1:n
   v=v+(g-c/m*v)*h;
   t=t+h;
   fprintf('%8.3f',t),fprintf('%19.4f\n',v)
end
(b)
>> Euler (86.2, 12.5, 9.81, 0, 0, 12, 15)
values of t approximations v(t)
   0.000
                    0.0000
   0.800
                    7.8480
   1.600
                   14.7856
   2.400
                   20.9183
   3.200
                   26.3396
   4.000
                   31.1319
   4.800
                   35.3684
   5.600
                   39.1133
   6.400
                   42.4238
   7.200
                   45.3502
   8.000
                   47.9372
   8.800
                   50.2240
   9.600
                   52.2456
  10.400
                   54.0326
  11.200
                   55.6123
  12.000
                   57.0088
>>
```

```
(c)
>> Euler (86.2, 3.71, 9.81, 0, 0, 12, 15)
values of t approximations v(t)
   0.000
                    0.0000
   0.800
                    7.8480
   1.600
                   15, 4258
   2.400
                   22.7426
   3.200
                   29.8076
   4.000
                   36.6293
   4.800
                   43.2161
   5.600
                   49.5761
   6.400
                   55.7171
   7.200
                   61.6467
   8.000
                   67.3721
   8.800
                   72.9003
   9.600
                   78.2383
  10.400
                   83.3924
  11.200
                   88.3691
  12.000
                   93.1744
>>
(d)
function relativeError(m,c,g,t0, v0, tn, n)
fprintf('values of t RelativeError(V1 as VE) RelativeError(V2 as
VE) \n')
fprintf('%8.3f',t0),fprintf('%19.4f',v0),fprintf('%30.5f\n',v0)
h = (tn-t0)/n;
t = t0;
v1 = v0;
v2 = v0;
for i=1:n
   v1 = g*m/c*(1-exp(-(c*(t+h)/m)));
   v2 = v2 + (g-c/m*v2)*h;
   RE1 = abs((v1-v2)/v2);
   RE2 = abs((v2-v1)/v1);
   t = t+h;
fprintf('%8.3f',t),fprintf('%19.4f%%',RE1*100),fprintf('%30.5f%%\n',R
E2)
end
```

```
>> relativeError(86.2,12.5,9.81,0,0,12,15)
values of t RelativeError(V1 as VE) RelativeError(V2 as VE)
0.000 0.0000 0.00000
```

0.800	5.5825%	0.05913%
1.600	5.2580%	0.05550%
2.400	4.9460%	0.05203%
3.200	4.6468%	0.04873%
4.000	4.3602%	0.04559%
4.800	4.0862%	0.04260%
5.600	3.8248%	0.03977%
6.400	3.5757%	0.03708%
7.200	3.3388%	0.03454%
8.000	3.1139%	0.03214%
8.800	2.9008%	0.02987%
9.600	2.6991%	0.02774%
10.400	2.5086%	0.02573%
11.200	2.3289%	0.02384%
12.000	2.1598%	0.02207%

Question 2

```
(a)
function Euler(m,k,g,t0,v0,tn,n)
% print headings and initial conditions
fprintf('values of t approximations v(t)
                                                 dv/dt\n
fprintf('%8.3f',t0),fprintf('%19.4f',v0), fprintf('%30.5f\n',v0)
% compute step size h
h=(tn-t0)/n;
% set t,v to the initial values
t=t0;
v=v0;
% compute v(t) over n time steps using Euler; s method
for i=1:n
   dv = g-k/m*v^2;
   v=v+dv*h;
   t=t+h;
   fprintf('%8.3f',t),fprintf('%19.4f',v),fprintf('%30.5f\n',dv )
end
(b)
>> Euler2(73.5,0.234,9.81, 0,0,18,72)
                approximations v(t)
                                                       dv/dt
values of t
   0.000
                      0.0000
                                                     0.00000
   0.250
                      2.4525
                                                     9.81000
   0.500
                      4.9002
                                                     9.79085
   0.750
                      7.3336
                                                     9.73355
   1.000
                      9.7433
                                                     9.63878
   1.250
                     12.1202
                                                     9.50777
                                                     9.34232
   1.500
                     14.4558
   1.750
                     16.7420
                                                     9.14471
   2.000
                     18.9714
                                                     8.91763
   2.250
                     21.1374
                                                     8.66415
   2.500
                     23.2343
                                                     8.38756
   2.750
                     25.2572
                                                     8.09134
   3.000
                     27.2019
                                                     7.77906
   3.250
                     29.0655
                                                     7.45426
   3.500
                     30.8456
                                                     7.12042
   3.750
                     32.5408
                                                     6.78089
   4.000
                     34.1505
                                                     6.43879
   4.250
                     35.6748
                                                     6.09702
   4.500
                     37.1143
                                                     5.75817
   4.750
                     38.4705
                                                     5.42458
   5.000
                     39.7450
                                                     5.09824
```

5.250	40.9402	4.78086
5.500	42.0587	4.47384
5.750	43.1033	4.17829
6.000	44.0770	3.89508
6.250	44.9832	3.62481
6.500	45.8252	3.36786
6.750	46.6063	3.12445
7.000	47.3300	2.89459
7.250	47.9995	2.67817
7.500	48.6182	2.47497
7.750	49.1894	2.28464
8.000	49.7161	2.10679
8.250	50.2013	1.94094
8.500	50.6480	1.78659
8.750	51.0588	1.64318
9.000	51.4363	1.51017
9.250	51.7831	1.38697
9.500	52.1013	1.27302
9.750	52.3933	1.16777
10.000	52.6609	1.07064
10.250	52.9062	0.98112
10.500	53.1309	0.89869
10.750	53.3366	0.82284
11.000	53.5249	0.75311
11.250	53.6971	0.68906
11.500	53.8547	0.63025
11.750	53.9988	0.57630
12.000	54.1305	0.52683
12.250	54.2509	0.48149
12.500	54.3608	0.43996
12.750	54.4613	0.40192
13.000	54.5531	0.36711
13.250	54.6369	0.33526
13.500	54.7134	0.30612
13.750	54.7833	0.27948
14.000	54.8471	0.25512
14.250	54.9053	0.23286
14.500	54.9584	0.21252
14.750	55.0069	0.19394
15.000	55.0512	0.17696
15.250	55.0915	0.16146
15.500	55.1284	0.14731
15.750	55.1620	0.13438
16.000	55.1926	0.12259

16.250	55.2206	0.11182
16.500	55.2461	0.10199
16.750	55.2693	0.09303
17.000	55.2905	0.08484
17.250	55.3099	0.07738
17.500	55.3275	0.07057
17.750	55.3436	0.06435
18.000	55.3583	0.05868

(c) When t = 18, the relative error is about 0.0717% by $dv/dt = g-k m*v^2$ function. The relative error is about 0.00072% by exact (c) function.

Question 3

```
function MLseries(x,t)
fprintf('terms
                first function second function
RE by 1st fun RE by 2nd fun\n')
FFun = 0;
SFun0 = 0;
trueValue = 0.135335;
for i=0:t
   FFun = FFun+ (-x)^i/factorial(i);
   SFun0 = SFun0 + x^i/factorial(i);
   SFun = 1/SFun0;
   RE1 = abs((trueValue-FFun)/FFun)*100;
   RE2 = abs((trueValue-SFun)/SFun)*100;
fprintf('%8.3f',i),fprintf('%19.4f',FFun),fprintf('%25.5f',SFun),fpri
ntf('%20.5f%%',RE1),fprintf('%20.5f%%\n',RE2)
end
```

erms	first function	second function	RE by 1st fun	RE by 2nd fu
0.000	1.0000	1.00000	86.46650%	86.46650%
1.000	-1.0000	0.33333	113.53350%	59.39950%
2.000	1.0000	0.20000	86.46650%	32.33250%
3.000	-0.3333	0.15789	140.60050%	14.28783%
4.000	0.3333	0.14286	59.39950%	5. 26550%
5.000	0.0667	0.13761	103.00250%	1.65657%
6.000	0.1556	0.13595	12.99893%	0.45359%
7.000	0.1302	0.13548	3.97689%	0.10988%