

Jul 25, 2022

Purification of the PE2 nCas9-RT protein

Donald Rio¹

¹University of California, Berkeley

1 Works for me

dx.doi.org/10.17504/protocols.io.b4yxqxxn

DISCLAIMER

DISCLAIMER - FOR INFORMATIONAL PURPOSES ONLY: USE AT YOUR OWN RISK

The protocol content here is for informational purposes only and does not constitute legal, medical, clinical, or safety advice, or otherwise; content added to protocols.io is not peer reviewed and may not have undergone a formal approval of any kind. Information presented in this protocol should not substitute for independent professional judgment, advice, diagnosis, or treatment. Any action you take or refrain from taking using or relying upon the information presented here is strictly at your own risk. You agree that neither the Company nor any of the authors, contributors, administrators, or anyone else associated with protocols.io, can be held responsible for your use of the information contained in or linked to this protocol or any of our Sites/Apps and Services.

ABSTRACT

This protocol describes the process of expressing and purifying the nicking Cas9-MMLV RT fusion protein for prime editing.

Protocol overview

- A. Heat-shock Transformation
- B. Protein Expression
- C. Protein Purification

DOI

dx.doi.org/10.17504/protocols.io.b4yxqxxn

PROTOCOL CITATION

Donald Rio 2022. Purification of the PE2 nCas9-RT protein. **protocols.io** https://dx.doi.org/10.17504/protocols.io.b4yxqxxn

FUNDERS ACKNOWLEDGEMENT

Aligning Science Across Parkinson's

Grant ID: ASAP-000486

KEYWORDS

ASAPCRN

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Feb 12, 2022

LAST MODIFIED

Jul 25, 2022

PROTOCOL INTEGER ID

58103

MATERIALS TEXT

Item	Vendor	Catalog #
Tryptone	U.S. Biotech Sources, LLC	T01PD-500
Yeast extract	BD Bacto	288620 212750
NaCl	Fisher Scientific	S271
KCI	Macron Fine Chemicals	6858-06
MgCl2	Fisher Scientific	BP214
MgSO4	Fisher Scientific	M63
Glucose	Sigma	G8270
Kanamycin	Goldbio	K-120-SL25
Chloramphenicol	Goldbio	C-105-5
IPTG	Goldbio	I2481C
HEPES	Omnipur	5320
Imidazole	Sigma	12399
DTT	Goldbio	DTT100
PMSF	Sigma	P7626
Ni-NTA Superflow	QIAGEN	30410
HiTrap heparin HP	GE Healthcare	17040601
Spin-X UF 20 50 kDa MWCO	Corning	431488
DMSO	Fisher Scientific	BP231-100
Leupeptin	Millipore	634987
Pepstatin	Sigma	P5318
Chymostatin	Sigma	C7268
Aprotinin	Sigma	A6279
Antipain	Millipore	6C0417

DISCLAIMER:

DISCLAIMER - FOR INFORMATIONAL PURPOSES ONLY; USE AT YOUR OWN RISK

The protocol content here is for informational purposes only and does not constitute legal, medical, clinical, or safety advice, or otherwise; content added to protocols.io is not peer reviewed and may not have undergone a formal approval of any kind. Information presented in this protocol should not substitute for independent professional judgment, advice, diagnosis, or treatment. Any action you take or refrain from taking using or relying upon the information presented here is strictly at your own risk. You agree that neither the Company nor any of the authors, contributors, administrators, or anyone else associated with protocols.io, can be held responsible for your use of the information contained in or linked to this protocol or any of our Sites/Apps and Services.

A. Heat-shock Transformation

2h 34m 45s

- 1 Thaw frozen competent cells § On ice until just thawed.
- 2 Gently mix the thawed competent cells (Rosetta 2 (pLysS)) by flicking the tube.
- 3 Transfer 100 µl competent cells to a chilled culture tube.
- 4 Add 1 ng DNA plasmid to the cells.
- 5 Immediately return the tubes & On ice for © 00:30:00

30m

45s

6 Heat-shock the cells at § 42 °C for © 00:00:45.

2m

- 7 Immediately place the tube § On ice for © 00:02:00.
- 8 Add 900 µl of cold SOC medium to the tube and incubate for © 01:00:00 at 8 37 °C with shaking \$\alpha 175 rpm
 - 8.1 SOC medium

Α	В
Tryptone	2%
Yeast extract	0.5 %
NaCl	10 mM
KCI	2.5 mM
MgCl2	10 mM
MgS04	10 mM
Glucose	20 mM

9 Pellet the cells by centrifugation at **12000 x g, 00:02:00**

2m

- 10 Remove the supernatant and plate onto agar plates containing 50 μ g/ml kanamycin and 34 μ g/ml chloramphenicol.
- 11 Incubate the plate at § 37 °C for © Overnight

1h

B. Protein Expression 16h 10m

12 Inoculate one colony into 50 ml LB containing 50 μ g/ml kanamycin and 34 μ g/ml chloramphenicol. Incubate \odot **Overnight** on shaker \triangleq **175 rpm** at & **37 °C**.

16h

12.1 LB

Α	В
Tryptone	2 %
Yeast extract	0.5 %
NaCl	10 mM

- 13 Transfer the overnight culture into 1 liter LB containing 50 μ g/ml kanamycin and 34 μ g/ml chloramphenicol to reach OD₆₀₀ of 0.1.
- 14 Incubate at & 37 °C with shaking \triangleq 175 rpm to reach OD₆₀₀ of 0.6.

m protocols.io

Add IPTG to a final concentration of 0.5 mM and grow for **©16:00:00** at **8 18 °C**.

10m

16h

- Harvest the cells by centrifugation at \$\circ{1000}{3000}\$ x g, 4°C, 00:10:00
- 17 Re-suspend the cell pellet with PBS, spin down and snap-freeze in liquid nitrogen for later purification.

C. Protein Purification 35m

- 18 Assemble a table column and fill the column with Ni-NTA resin to create a bed volume of 5 ml
- 19 Wash the column with 100 ml H20.
- 20 Equilibrate the column with 5 CVs Ni-NTA loading buffer.

20 1 Ni-NTA loading buffer

Α	В
HEPES-KOH pH 7.6	25 mM
KCI	150 mM
Imidazole	20 mM
DTT	1 mM
PMSF	1 mM

- 21 Thaw the cell pellet & On ice until just thawed.
- 22 Re-suspend cell pellet (from 1 liter) with 35 mL lysis buffer

22.1 Lysis buffer

Α	В
HEPES-KOH pH 7.6	25 mM
KCI	1 M
Imidazole	20 mM
DTT	1 mM
PMSF	1 mM
Protease Inhibitor Cocktail	×1

Protease Inhibitor Cocktail (in 70% DMSO; 1000x)

Α	В
Leupeptin	0.5 mg/ml
Pepstatin	0.5 mg/ml
Chymostatin	0.5 mg/ml
Aprotinin	0.5 mg/ml
Antipain	0.5 mg/ml

Sonicate for © 00:05:00 (20 seconds on/off) and clarify by centrifugation at © 25000 x g, 00:30:00

35m

- 24~ Filter the supernatant through a 0.22 μm syringe filter.
- $25\,$ $\,$ Pour the supernatant into the table column in a single, continuous motion.
- 26 Wash the resin with 100 ml Ni-NTA loading buffer followed by 50 ml Ni-NTA wash buffer.

26.1 Ni-NTA wash buffer

Α	В
HEPES-KOH pH 7.6	25 mM
KCI	150 mM
Imidazole	40 mM
DTT	1 mM
PMSF	1 mM

27 Elute the protein in batch six times with 5 ml Ni-NTA elution buffer.

27.1 Ni-NTA elution buffer

Α	В
HEPES-KOH pH 7.6	25 mM
KCI	150 mM
Imidazole	500 mM
DTT	1 mM
PMSF	1 mM

- Analyze fractions by 7.5% SDS-PAGE and coomassie staining.
- Collect relevant elution fractions, dilute into a low-salt buffer and filter through a 0.22 μm syringe filter

29.1 Low salt buffer

Α	В
HEPES-KOH pH 7.6	25 mM
KCI	100 mM
DTT	1 mM
PMSF	1 mM

30 Load onto a 1 ml HiTrap heparin HP column pre-equilibrated in low-salt buffer.

31	Elute the protein with a linear gradient of 100 mM to 1M KCl over 40 CVs.
32	Analyze fractions by 7.5% SDS-PAGE and coomassie staining.
33	Pool peak elution fractions and concentrate using a Spin-X UF 20 50 kDa MWCO to 8 mg/m (determine protein concentration by UV at wavelength of 280 nm).
34	Make 3 µl protein sample aliquot and snap-freeze in liquid nitrogen.
35	Store protein at -80 °C.