Near-optimal Quantum Algorithms for Multivariate Mean Estimation

arXiv:2111.09787

Arjan Cornelissen¹, Yassine Hamoudi², Sofiene Jerbi³

¹QuSoft, University of Amsterdam ²Simons Institute for the Theory of Computing, University of California, Berkeley ³Institute for Theoretical Physics, University of Innsbruck

June 20th, 2022

We have

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X : \Omega \to \mathbb{R}^d$.

We have

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X: \Omega \to \mathbb{R}^d$.

Properties:

Mean:

$$\mu = \mathbb{E}[X] = \sum_{\omega \in \Omega} \mathbb{P}(\omega)X(\omega) \in \mathbb{R}^d.$$

We have

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X: \Omega \to \mathbb{R}^d$.

Properties:

Mean:

$$\mu = \mathbb{E}[X] = \sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega) \in \mathbb{R}^d.$$

Covariance matrix:

$$\Sigma = \begin{bmatrix} \mathsf{Var}[X_1] & \mathsf{Cov}[X_1, X_2] & \cdots & \mathsf{Cov}[X_1, X_d] \\ \mathsf{Cov}[X_1, X_2] & \mathsf{Var}[X_2] & \cdots & \mathsf{Cov}[X_2, X_d] \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}[X_1, X_d] & \mathsf{Cov}[X_2, X_d] & \cdots & \mathsf{Var}[X_d] \end{bmatrix}$$

We have

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X : \Omega \to \mathbb{R}^d$.

Properties:

Mean:

$$\mu = \mathbb{E}[X] = \sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega) \in \mathbb{R}^d.$$

Covariance matrix:

$$\Sigma = \begin{bmatrix} \mathsf{Var}[X_1] & \mathsf{Cov}[X_1, X_2] & \cdots & \mathsf{Cov}[X_1, X_d] \\ \mathsf{Cov}[X_1, X_2] & \mathsf{Var}[X_2] & \cdots & \mathsf{Cov}[X_2, X_d] \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}[X_1, X_d] & \mathsf{Cov}[X_2, X_d] & \cdots & \mathsf{Var}[X_d] \end{bmatrix}$$

Multivariate mean estimation:

1 Goal: Approximate $\mu \in \mathbb{R}^d$.

We have

- A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X : \Omega \to \mathbb{R}^d$.

Properties:

Mean:

$$\mu = \mathbb{E}[X] = \sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega) \in \mathbb{R}^d.$$

Covariance matrix:

$$\Sigma = \begin{bmatrix} \mathsf{Var}[X_1] & \mathsf{Cov}[X_1, X_2] & \cdots & \mathsf{Cov}[X_1, X_d] \\ \mathsf{Cov}[X_1, X_2] & \mathsf{Var}[X_2] & \cdots & \mathsf{Cov}[X_2, X_d] \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}[X_1, X_d] & \mathsf{Cov}[X_2, X_d] & \cdots & \mathsf{Var}[X_d] \end{bmatrix}$$

Multivariate mean estimation:

- Goal: Approximate $\mu \in \mathbb{R}^d$.
- Assumption:

$$\mathsf{Tr}[\Sigma] = \sum_{j=1}^d \mathsf{Var}[X_j] < \infty.$$

We have

- A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X : \Omega \to \mathbb{R}^d$.

Properties:

Mean:

$$\mu = \mathbb{E}[X] = \sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega) \in \mathbb{R}^d.$$

Covariance matrix:

$$\Sigma = \begin{bmatrix} \mathsf{Var}[X_1] & \mathsf{Cov}[X_1, X_2] & \cdots & \mathsf{Cov}[X_1, X_d] \\ \mathsf{Cov}[X_1, X_2] & \mathsf{Var}[X_2] & \cdots & \mathsf{Cov}[X_2, X_d] \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}[X_1, X_d] & \mathsf{Cov}[X_2, X_d] & \cdots & \mathsf{Var}[X_d] \end{bmatrix}$$

Multivariate mean estimation:

- Goal: Approximate $\mu \in \mathbb{R}^d$.
- Assumption:

$$\mathsf{Tr}[\Sigma] = \sum_{j=1}^d \mathsf{Var}[X_j] < \infty.$$

Applications:

- Physics/chemistry simulations
- 2 Computer graphics
- Finance
- Shadow tomography

We have

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X: \Omega \to \mathbb{R}^d$.

We want to approximate μ .

We have

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X: \Omega \to \mathbb{R}^d$.

We want to approximate μ .

Classical access model:

- **1** Obtain outcome $\omega \sim \mathbb{P}$.
- **2** Function $\omega \mapsto X(\omega)$.

We have

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X: \Omega \to \mathbb{R}^d$.

We want to approximate μ .

Classical access model:

- **1** Obtain outcome $\omega \sim \mathbb{P}$.
- **2** Function $\omega \mapsto X(\omega)$.

Quantum access model:

Distribution oracle:

$$|0\rangle \mapsto \sum_{\omega \in \Omega} \sqrt{\mathbb{P}(\omega)} |\omega\rangle.$$

We have

- A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X : \Omega \to \mathbb{R}^d$.

We want to approximate μ .

Classical access model:

- **1** Obtain outcome $\omega \sim \mathbb{P}$.
- **2** Function $\omega \mapsto X(\omega)$.

Quantum access model:

Distribution oracle:

$$|0\rangle\mapsto \sum_{\omega\in\Omega}\sqrt{\mathbb{P}(\omega)}\,|\omega\rangle.$$

Random variable oracle:

$$|\omega\rangle |0\rangle \mapsto |\omega\rangle |X(\omega)\rangle.$$

We have

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X: \Omega \to \mathbb{R}^d$.

We want to approximate μ .

Classical access model:

- **1** Obtain outcome $\omega \sim \mathbb{P}$.
- **2** Function $\omega \mapsto X(\omega)$.

Quantum access model:

Distribution oracle:

$$|0
angle\mapsto\sum_{\omega\in\Omega}\sqrt{\mathbb{P}(\omega)}\,|\omega
angle.$$

Random variable oracle:

$$|\omega\rangle|0\rangle \mapsto |\omega\rangle|X(\omega)\rangle.$$

Think of

$$|X(\omega)\rangle = |X(\omega)_1\rangle \otimes |X(\omega)_2\rangle \otimes \cdots \otimes |X(\omega)_d\rangle$$

We have

- A probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- ② A random variable $X: \Omega \to \mathbb{R}^d$.

We want to approximate μ .

Classical access model:

- **1** Obtain outcome $\omega \sim \mathbb{P}$.
- **2** Function $\omega \mapsto X(\omega)$.

Quantum access model:

Distribution oracle:

$$|0
angle\mapsto\sum_{\omega\in\Omega}\sqrt{\mathbb{P}(\omega)}\,|\omega
angle.$$

Random variable oracle:

$$|\omega\rangle|0\rangle \mapsto |\omega\rangle|X(\omega)\rangle.$$

Think of

$$|X(\omega)\rangle = |X(\omega)_1\rangle \otimes |X(\omega)_2\rangle \otimes \cdots \otimes |X(\omega)_d\rangle$$

Calls to these routines are *samples*.

$$\mathbb{P}\left[\|\mu-\widetilde{\mu}\|_{2}\leq\varepsilon(n)\right]\geq\frac{2}{3}.$$

Goal: Construct estimator $\widetilde{\mu}$, using *n* samples, s.t.

$$\mathbb{P}\left[\left\|\mu-\widetilde{\mu}\right\|_{2}\leq\varepsilon(n)\right]\geq\frac{2}{3}$$

<u>-</u> 3
3

 $\varepsilon(n)$ Remarks Classically d = 1 $d \ge 1$ Quantumly d = 1 $d \geq 1$

$$\mathbb{P}\left[\left\|\mu-\widetilde{\mu}\right\|_{2}\leq\varepsilon(n)\right]\geq\frac{2}{3}.$$

		$\varepsilon(n)$	Remarks
Classically	d = 1	$\Theta\left(\sqrt{\frac{Var[X]}{n}}\right)$	Monte Carlo sampling
	$d \ge 1$	$\Theta\left(\sqrt{\frac{Tr[\Sigma]}{n}}\right)$	Monte Carlo sampling
Quantumly	d = 1		
	$d \ge 1$		

$$\mathbb{P}\left[\|\mu-\widetilde{\mu}\|_{2}\leq\varepsilon(n)\right]\geq\frac{2}{3}.$$

		$\varepsilon(n)$	Remarks
ically	$d=1$ $d\geq 1$	$\Theta\left(\sqrt{\frac{Var[X]}{n}}\right)$	Monte Carlo sampling
Class	$d \ge 1$	$\Theta\left(\sqrt{\frac{Tr[\Sigma]}{n}}\right)$	Monte Carlo sampling
tumly	$d=1$ $d\geq 1$	$\widetilde{\Theta}\left(\frac{\sqrt{Var[X]}}{n}\right)$	Known $Var[X]$ [Hei02;Mon15;HM19] Unknown $Var[X]$ [Ham21]
Quant	$d \geq 1$		

$$\mathbb{P}\left[\|\mu-\widetilde{\mu}\|_{2}\leq\varepsilon(n)\right]\geq\frac{2}{3}.$$

		$\varepsilon(n)$	Remarks
Classically	d = 1	$\Theta\left(\sqrt{\frac{Var[X]}{n}}\right)$	Monte Carlo sampling
Class	$d \ge 1$	$\Theta\left(\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}\right)$	Monte Carlo sampling
umly	d = 1	$\widetilde{\Theta}\left(\frac{\sqrt{\operatorname{Var}[X]}}{n}\right)$	Known $Var[X]$ [Hei02;Mon15;HM19] Unknown $Var[X]$ [Ham21]
Quant	$d \ge 1$	$ \widetilde{\Theta} \left(\frac{\sqrt{Var[X]}}{n} \right) $ $ \widetilde{\Theta} \left(\begin{cases} \frac{\sqrt{d Tr[\Sigma]}}{n}, \\ \sqrt{\frac{Tr[\Sigma]}{n}}, \end{cases} \right) $	$ \begin{array}{c} \text{if } n \geq d \\ \text{if } n < d \end{array} $

Goal: Construct estimator $\widetilde{\mu}$, using *n* samples, s.t.

$$\mathbb{P}\left[\left\|\mu-\widetilde{\mu}\right\|_{2}\leq\varepsilon(n)\right]\geq\frac{2}{3}.$$

Crucial observation: quantum speed-up only when $n \ge d$.

Goal: Construct estimator $\widetilde{\mu}$, using n samples, s.t.

$$\mathbb{P}\left[\left\|\mu - \widetilde{\mu}\right\|_{2} \le \varepsilon(n)\right] \ge \frac{2}{3}$$

	$\varepsilon(n)$	Remarks
Classically $d=1$ $d \geq 1$	$\Theta\left(\sqrt{\frac{\operatorname{Var}[X]}{n}}\right)$	Monte Carlo sampling
$\frac{\text{Gass}}{d}$ $d \geq 1$	$\Theta\left(\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}\right)$	Monte Carlo sampling
d = 1 $d > 1$	$\widetilde{\Theta}\left(\frac{\sqrt{\operatorname{Var}[X]}}{n}\right)$	Known $Var[X]$ [Hei02;Mon15;HM19 Unknown $Var[X]$ [Ham21]
$d \geq 1$	$\widetilde{\ominus} \left(\left\{ \frac{\sqrt{d \operatorname{Tr}[\Sigma]}}{n}, \frac{1}{\sqrt{\operatorname{Tr}[\Sigma]}}, \right\} \right)$	$ \begin{array}{c} \text{if } n \ge d \\ \text{if } n < d \end{array} $

Crucial observation: quantum speed-up only when $n \geq d$.

Goal: Estimate
$$\mu = \mathbb{E}[X] \in \mathbb{R}^d$$
.

Goal: Estimate $\mu = \mathbb{E}[X] \in \mathbb{R}^d$.

1 Get a crude estimate: $\overline{\mu}$ s.t.

$$\|\mu - \overline{\mu}\|_2 \le \sqrt{\mathsf{Tr}[\Sigma]}$$
,

using O(1) samples.

Goal: Estimate $\mu = \mathbb{E}[X] \in \mathbb{R}^d$.

1 Get a crude estimate: $\overline{\mu}$ s.t.

$$\|\mu - \overline{\mu}\|_2 \le \sqrt{\mathsf{Tr}[\Sigma]}$$
,

using O(1) samples.

Goal: Estimate $\mu = \mathbb{E}[X] \in \mathbb{R}^d$.

1 Get a crude estimate: $\overline{\mu}$ s.t.

$$\|\mu - \overline{\mu}\|_2 \le \sqrt{\mathsf{Tr}[\Sigma]}$$
,

using O(1) samples.

Goal: Estimate $\mu = \mathbb{E}[X] \in \mathbb{R}^d$.

1 Get a crude estimate: $\overline{\mu}$ s.t.

$$\|\mu - \overline{\mu}\|_2 \le \sqrt{\mathsf{Tr}[\Sigma]}$$
,

using O(1) samples.

Goal: Estimate $\mu = \mathbb{E}[X] \in \mathbb{R}^d$.

1 Get a crude estimate: $\overline{\mu}$ s.t.

$$\|\mu - \overline{\mu}\|_2 \le \sqrt{\mathsf{Tr}[\Sigma]}$$
,

using O(1) samples.

Goal: Estimate $\mu = \mathbb{E}[X] \in \mathbb{R}^d$.

1 Get a crude estimate: $\overline{\mu}$ s.t.

$$\|\mu - \overline{\mu}\|_2 \le \sqrt{\mathsf{Tr}[\Sigma]}$$
,

using O(1) samples.

2 Get an idea of the spread: Estimate quantiles a_{ℓ} s.t.

$$\mathbb{P}\left[\|X - \overline{\mu}\|_2 \ge a_\ell\right] \approx \frac{1}{2^\ell},$$
 for $\ell \in \{1, \dots, 2\log(n)\}.$

Goal: Estimate $\mu = \mathbb{E}[X] \in \mathbb{R}^d$.

1 Get a crude estimate: $\overline{\mu}$ s.t.

$$\|\mu - \overline{\mu}\|_2 \le \sqrt{\mathsf{Tr}[\Sigma]}$$
,

using O(1) samples.

② Get an idea of the spread: Estimate quantiles a_{ℓ} s.t.

$$\mathbb{P}\left[\left\|X-\overline{\mu}
ight\|_{2}\geq a_{\ell}
ight]pproxrac{1}{2^{\ell}}$$
 ,

for $\ell \in \{1, \ldots, 2 \log(n)\}$.

Stimate truncated mean on every ring:

$$\mathbb{E}[X] \approx \sum_{\ell=1}^k \mathbb{E}[X \cdot \mathbb{1}_{X \in R_\ell}].$$

We let
$$Y = \|X - \overline{\mu}\|_2$$
.

Want to find a_ℓ s.t. $\mathbb{P}[Y \geq a_\ell] \approx \frac{1}{2^\ell}$

We let
$$Y = \|X - \overline{\mu}\|_2$$
.

Want to find a_ℓ s.t. $\mathbb{P}[Y \geq a_\ell] \approx \frac{1}{2^\ell}$

We let
$$Y = \|X - \overline{\mu}\|_2$$
.

1. $\widetilde{O}(1)$ samples from Y

Want to find a_ℓ s.t. $\mathbb{P}[Y \geq a_\ell] pprox rac{1}{2^\ell}$

 $\hookrightarrow \quad \begin{array}{c} \text{Let } a_1 \text{ be the median} \\ \mathbb{P}[Y \geq a_1] \approx \frac{1}{2} \end{array}$

We let
$$Y = \|X - \overline{\mu}\|_2$$
.

1. $\widetilde{O}(1)$ samples from Y

Want to find a_ℓ s.t. $\mathbb{P}[Y \geq a_\ell] pprox rac{1}{2^\ell}$

 $\hookrightarrow \quad egin{array}{l} \mathsf{Let} \ a_1 \ \mathsf{be} \ \mathsf{the} \ \mathsf{median} \ & \mathbb{P}[Y \geq a_1] pprox rac{1}{2} \end{array}$

We let
$$Y = \|X - \overline{\mu}\|_2$$
.

1. $\widetilde{O}(1)$ samples from Y

Want to find a_ℓ s.t. $\mathbb{P}[Y \geq a_\ell] pprox rac{1}{2^\ell}$

 $\hookrightarrow \quad \begin{array}{c} \text{Let } a_1 \text{ be the median} \\ \mathbb{P}[Y \geq a_1] \approx \frac{1}{2} \end{array}$

We let
$$Y = \|X - \overline{\mu}\|_2$$
.

1. $\widetilde{O}(1)$ samples from Y

Want to find a_ℓ s.t. $\mathbb{P}[Y \geq a_\ell] pprox rac{1}{2^\ell}$

 $\hookrightarrow \quad \begin{array}{c} \text{Let } a_1 \text{ be the median} \\ \mathbb{P}[Y \geq a_1] \approx \frac{1}{2} \end{array}$

We let
$$Y = \|X - \overline{\mu}\|_2$$
.

1. $\widetilde{O}(1)$ samples from Y

Want to find a_ℓ s.t. $\mathbb{P}[Y \geq a_\ell] pprox rac{1}{2^\ell}$

 \hookrightarrow Let a_1 be the median $\mathbb{P}[Y \geq a_1] pprox rac{1}{2}$

We let
$$Y = \|X - \overline{\mu}\|_2$$
.

1. $\widetilde{O}(1)$ samples from Y

Want to find a_ℓ s.t. $\mathbb{P}[Y \geq a_\ell] pprox rac{1}{2^\ell}$

 \hookrightarrow Let a_1 be the median $\mathbb{P}[Y \geq a_1] \approx \frac{1}{2}$

We let
$$Y = ||X - \overline{\mu}||_2$$
.

- 1. $\widetilde{O}(1)$ samples from Y
- ℓ . $\widetilde{O}(1)$ samples from $Y|Y \geq a_{\ell-1}$ Requires $\widetilde{O}(\sqrt{2^{\ell-1}})$ samples from Yby amplitude amplification

Want to find a_ℓ s.t. $\mathbb{P}[Y \geq a_\ell] pprox rac{1}{2^\ell}$

- \hookrightarrow Let a_1 be the median $\mathbb{P}[Y \geq a_1] \approx \frac{1}{2}$
- : :
- \hookrightarrow Let a_ℓ be the median $\mathbb{P}[Y \geq a_\ell] pprox rac{1}{2^\ell}$

We consider $X^{(\ell)} = X \cdot \mathbb{1}_{X \in R_{\ell}} - \overline{\mu}$. Goal: Estimate $\mathbb{E}[X^{(\ell)}]$.

We consider $X^{(\ell)} = X \cdot \mathbb{1}_{X \in R_{\ell}} - \overline{\mu}$. Goal: Estimate $\mathbb{E}[X^{(\ell)}]$.

• Amplitude amplification on the ring: Requires $\widetilde{O}(\sqrt{2^{\ell}})$ samples.

We consider $X^{(\ell)} = X \cdot \mathbb{1}_{X \in R_{\ell}} - \overline{\mu}$. Goal: Estimate $\mathbb{E}[X^{(\ell)}]$.

• Amplitude amplification on the ring: Requires $\widetilde{O}(\sqrt{2^{\ell}})$ samples.

We consider $X^{(\ell)} = X \cdot \mathbb{1}_{X \in R_{\ell}} - \overline{\mu}$. Goal: Estimate $\mathbb{E}[X^{(\ell)}]$.

• Amplitude amplification on the ring: Requires $\widetilde{O}(\sqrt{2^{\ell}})$ samples.

We consider $X^{(\ell)} = X \cdot \mathbb{1}_{X \in R_{\ell}} - \overline{\mu}$. Goal: Estimate $\mathbb{E}[X^{(\ell)}]$.

- Amplitude amplification on the ring: Requires $\widetilde{O}(\sqrt{2^{\ell}})$ samples.
- ② Phase encoding techniques [GSLW18]: $|\mathbf{u}\rangle \mapsto e^{i2^{\ell}\cdot\mathbf{u}^{T}\mathbb{E}[X^{(\ell)}]}|\mathbf{u}\rangle$ Requires $\widetilde{O}(1)$ calls to ④.

We consider $X^{(\ell)} = X \cdot \mathbb{1}_{X \in R_{\ell}} - \overline{\mu}$. Goal: Estimate $\mathbb{E}[X^{(\ell)}]$.

- Amplitude amplification on the ring: Requires $\widetilde{O}(\sqrt{2^{\ell}})$ samples.
- ② Phase encoding techniques [GSLW18]: $|\mathbf{u}\rangle \mapsto e^{i2^{\ell} \cdot \mathbf{u}^T \mathbb{E}[X^{(\ell)}]} |\mathbf{u}\rangle$ Requires $\widetilde{O}(1)$ calls to ④.

We consider $X^{(\ell)} = X \cdot \mathbb{1}_{X \in R_{\ell}} - \overline{\mu}$. Goal: Estimate $\mathbb{E}[X^{(\ell)}]$.

- Amplitude amplification on the ring: Requires $\widetilde{O}(\sqrt{2^{\ell}})$ samples.
- ② Phase encoding techniques [GSLW18]: $|\mathbf{u}\rangle \mapsto e^{i2^{\ell} \cdot \mathbf{u}^{T} \mathbb{E}[X^{(\ell)}]} |\mathbf{u}\rangle$ Requires $\widetilde{O}(1)$ calls to ①.
- **Sernstein-Vazirani** over the reals [GAW18]: $\left\|\widetilde{\mu}^{(\ell)} \mathbb{E}[X^{(\ell)}]\right\|_{\infty} = \widetilde{O}(a_{\ell}/(n\sqrt{2^{\ell}})).$

Requires $\widetilde{O}(n/\sqrt{2^{\ell}})$ calls to ②.

We consider $X^{(\ell)} = X \cdot \mathbb{1}_{X \in R_{\ell}} - \overline{\mu}$. Goal: Estimate $\mathbb{E}[X^{(\ell)}]$.

- Amplitude amplification on the ring: Requires $\widetilde{O}(\sqrt{2^{\ell}})$ samples.
- ② Phase encoding techniques [GSLW18]: $|\mathbf{u}\rangle \mapsto e^{i2^{\ell} \cdot \mathbf{u}^{T} \mathbb{E}[X^{(\ell)}]} |\mathbf{u}\rangle$ Requires $\widetilde{O}(1)$ calls to ①.
- **3** Bernstein-Vazirani over the reals [GAW18]: $\|\widetilde{\mu}^{(\ell)} \mathbb{E}[X^{(\ell)}]\|_{\infty} = \widetilde{O}(a_{\ell}/(n\sqrt{2^{\ell}})).$ $= \widetilde{O}(\sqrt{\text{Tr}[\Sigma]/n}).$ Requires $\widetilde{O}(n/\sqrt{2^{\ell}})$ calls to **2**.

We consider $X^{(\ell)} = X \cdot \mathbb{1}_{X \in R_{\ell}} - \overline{\mu}$. Goal: Estimate $\mathbb{E}[X^{(\ell)}]$.

- Amplitude amplification on the ring: Requires $\widetilde{O}(\sqrt{2^{\ell}})$ samples.
- ② Phase encoding techniques [GSLW18]: $|\mathbf{u}\rangle \mapsto e^{i2^{\ell} \cdot \mathbf{u}^{T} \mathbb{E}[X^{(\ell)}]} |\mathbf{u}\rangle$ Requires $\widetilde{O}(1)$ calls to ④.
- ③ Bernstein-Vazirani over the reals [GAW18]: $\|\widetilde{\mu}^{(\ell)} \mathbb{E}[X^{(\ell)}]\|_{\infty} = \widetilde{O}(a_{\ell}/(n\sqrt{2^{\ell}})).$ $= \widetilde{O}(\sqrt{\text{Tr}[\Sigma]}/n).$ Requires $\widetilde{O}(n/\sqrt{2^{\ell}})$ calls to ②.
- **3** Conversion to ℓ_2 -norm (Hölder's inequality): $\|\widetilde{\mu}^{(\ell)} \mathbb{E}[X^{(\ell)}]\|_2 = \widetilde{O}(\sqrt{d \operatorname{Tr}[\Sigma]}/n).$

Main result:

Optimal estimator $\widetilde{\mu}$ with n samples, s.t.

$$\mathbb{P}\left[\|\mu-\widetilde{\mu}\|_{2}\geq\varepsilon(n)\right]\leq\frac{1}{3},$$

has precision

$$\varepsilon(n) = \widetilde{\Theta}\left(\begin{cases} \frac{\sqrt{d\operatorname{Tr}[\Sigma]}}{n}, & \text{if } n \geq d, \\ \sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}, & \text{if } n < d \end{cases}\right).$$

Open questions:

Main result:

Optimal estimator $\widetilde{\mu}$ with n samples, s.t.

$$\mathbb{P}\left[\|\mu-\widetilde{\mu}\|_{2}\geq\varepsilon(n)\right]\leq\frac{1}{3},$$

has precision

$$\varepsilon(n) = \widetilde{\Theta}\left(\begin{cases} \frac{\sqrt{d \operatorname{Tr}[\Sigma]}}{n}, & \text{if } n \geq d, \\ \sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}, & \text{if } n < d \end{cases}\right).$$

Main result:

Optimal estimator $\widetilde{\mu}$ with n samples, s.t.

$$\mathbb{P}\left[\|\mu-\widetilde{\mu}\|_{2}\geq\varepsilon(n)\right]\leq\frac{1}{3},$$

has precision

$$\varepsilon(n) = \widetilde{\Theta}\left(\left\{\frac{\frac{\sqrt{d\operatorname{Tr}[\Sigma]}}{n}}{\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}}, & \text{if } n \geq d, \\ \sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}, & \text{if } n < d\right.\right).$$

Open questions:

- Dependence on the failure probability δ ?
 - Classically: [LM19;Hop20]

$$\varepsilon(n) = O\left(\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}} + \sqrt{\frac{\|\Sigma\|\log\frac{1}{\delta}}{n}}\right)$$

Constant prefactors: [LV20;LV22].

Main result:

Optimal estimator $\widetilde{\mu}$ with n samples, s.t.

$$\mathbb{P}\left[\|\mu-\widetilde{\mu}\|_{2}\geq\varepsilon(n)\right]\leq\frac{1}{3},$$

has precision

$$\varepsilon(n) = \widetilde{\Theta}\left(\left\{\frac{\frac{\sqrt{d\operatorname{Tr}[\Sigma]}}{n}}{\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}}, & \text{if } n \geq d, \\ \sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}, & \text{if } n < d\right.\right).$$

Open questions:

- Dependence on the failure probability δ ?
 - Classically: [LM19;Hop20]

$$\varepsilon(n) = O\left(\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}} + \sqrt{\frac{\|\Sigma\|\log\frac{1}{\delta}}{n}}\right)$$

- Constant prefactors: [LV20;LV22].
- Optimality in different norms?

Main result:

Optimal estimator $\widetilde{\mu}$ with n samples, s.t.

$$\mathbb{P}\left[\|\mu-\widetilde{\mu}\|_{2}\geq\varepsilon(n)\right]\leq\frac{1}{3},$$

has precision

$$\varepsilon(n) = \widetilde{\Theta}\left(\left\{\frac{\frac{\sqrt{d\operatorname{Tr}[\Sigma]}}{n}}{\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}}, & \text{if } n \geq d, \\ \sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}, & \text{if } n < d\right.\right).$$

Open questions:

- Dependence on the failure probability δ ?
 - Classically: [LM19;Hop20]

$$\varepsilon(n) = O\left(\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}} + \sqrt{\frac{\|\Sigma\|\log\frac{1}{\delta}}{n}}\right)$$

- Constant prefactors: [LV20;LV22].
- Optimality in different norms?
- Different access models?

$$|\omega\rangle |0\rangle \mapsto |\omega\rangle |X(\omega)\rangle.$$

 $|\omega\rangle |j\rangle \mapsto e^{iX(\omega)_j} |\omega\rangle |j\rangle.$

Main result:

Optimal estimator $\widetilde{\mu}$ with n samples, s.t.

$$\mathbb{P}\left[\|\mu-\widetilde{\mu}\|_{2}\geq\varepsilon(n)\right]\leq\frac{1}{3},$$

has precision

$$\varepsilon(n) = \widetilde{\Theta}\left(\begin{cases} \frac{\sqrt{d\operatorname{Tr}[\Sigma]}}{n}, & \text{if } n \geq d, \\ \sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}, & \text{if } n < d \end{cases}\right).$$

Open questions:

- Dependence on the failure probability δ ?
 - Classically: [LM19;Hop20]

$$\varepsilon(n) = O\left(\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}} + \sqrt{\frac{\|\Sigma\| \log \frac{1}{\delta}}{n}}\right)$$

- Constant prefactors: [LV20;LV22].
- Optimality in different norms?
 - Different access models? $|\omega\rangle |0\rangle \mapsto |\omega\rangle |X(\omega)\rangle.$ $|\omega\rangle |j\rangle \mapsto e^{iX(\omega)_j} |\omega\rangle |j\rangle.$
- Can prior knowledge on Σ help?

Main result:

Optimal estimator $\widetilde{\mu}$ with n samples, s.t.

$$\mathbb{P}\left[\|\mu-\widetilde{\mu}\|_{2}\geq\varepsilon(n)\right]\leq\frac{1}{3},$$

has precision

$$\varepsilon(n) = \widetilde{\Theta}\left(\begin{cases} \frac{\sqrt{d\operatorname{Tr}[\Sigma]}}{n}, & \text{if } n \geq d, \\ \sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}}, & \text{if } n < d \end{cases}\right).$$

Open questions:

- Dependence on the failure probability δ ?
 - Classically: [LM19;Hop20]

$$\varepsilon(n) = O\left(\sqrt{\frac{\operatorname{Tr}[\Sigma]}{n}} + \sqrt{\frac{\|\Sigma\|\log\frac{1}{\delta}}{n}}\right)$$

- Constant prefactors: [LV20;LV22].
- Optimality in different norms?
- Different access models? $|\omega\rangle |0\rangle \mapsto |\omega\rangle |X(\omega)\rangle$. $|\omega\rangle |j\rangle \mapsto e^{iX(\omega)_j} |\omega\rangle |j\rangle$.
- ullet Can prior knowledge on Σ help?

Thanks for your attention! hamoudi@berkeley.edu

References

- [GAW18] A. Gilyén, S. Arunachalam, N. Wiebe. *Optimizing quantum optimization algorithms via faster quantum gradient computation.* arXiv:1711.00465.
- [GLSW18] A., Y. Su, G. H. Low, N. Wiebe. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. arXiv:1806.01838.
 - [Ham22] Y. Hamoudi. Quantum Sub-Gaussian Mean Estimator. arXiv:2108.12172.
 - [Hei02] S. Heinrich. Quantum Summation with an Application to Integration. arXiv:quant-ph/0105116.
 - [HM19] Y. Hamoudi, F. Magniez. Quantum Chebyshev's Inequality and Applications. arXiv:1807.06456.
 - [Hop20] S. B. Hopkins. Mean Estimation with Sub-Gaussian Rates in Polynomial Time. arXiv:1809.07425.
 - [LM19] G. Lugosi, S. Mendelson. Mean estimation and regression under heavy-tailed distributions – a survey. arXiv:1906.04280.
 - [LV20] J. C.H. Lee, P. Valiant. Optimal Sub-Gaussian Mean Estimation in \mathbb{R} . arXiv:2011.08384.
 - [LV22] J. C.H. Lee, P. Valiant. Optimal Sub-Gaussian Mean Estimation in Very High Dimensions. arXiv:2011.08384.
 - [Mon15] A. Montanaro. Quantum speedup of Monte Carlo methods. arXiv:1504.06987