

Centro Universitario de los Valles

Maestría en Ingeniería de Software

Software Configuration Management Project

BaseLine Virtual Assistant for Recognizing Dangerous Roads.

Professor:

Dr. Omar Ali Zataraín Durán

Student:

Rodrigo Reséndiz Ávila

222977423

Master in software engineering Sept 22, 2023 Ameca, Jalisco

Contenido

. Introduction	3
2 Abstract	3
Project baseline description	3
3.1 General Objective:	3
3.2 Objective	3
3.3 Project Scope:	4
3.4 Requirements	4
3.4.1 Functional Requirements	4
3.4.2 Non-Functional Requirements	6
3.5 System Architecture:	7
3.5.1 Specification of Technologies and Tools:	8
3.6 Work Breakdown and Schedule	9
3.7 Risk management:	10
3.7.1 Mitigation Strategies and Contingency Plans:	11
3.8 Criteria of acceptance:	12
3.8.1 Quality Criteria and Tests:	13
3.9 Human resources	13
3.10 Budget	16

1. Introduction

In the field of technological innovation, the "Virtual Assistant for the Recognition of Dangerous Roads" project emerges as a visionary company with significant implications in improving road safety. This project aims to develop an advanced virtual assistant, capable of using pattern recognition and deep learning algorithms to detect and alert about dangerous conditions in real time on our roads.

Prior to the deployment of this initiative, it is imperative to establish a solid Baseline. This reference point will not only define the fundamental elements of the project, but will also act as the cornerstone for the management, evaluation and continued success of the development. From the technical specification of the modules to the rigorous definition of functional and non-functional requirements, this Baseline will be the compass that will guide each iteration of the project towards its completion.

2 Abstract

Any car owner will be able to access the assistant; all they need to do is activate it to begin its operation. This means that the assistant will be able to visualize the user's route in real-time, check for optimal speed, and monitor the time it takes for the journey. It will utilize artificial intelligence to analyze the type of route taken, road conditions, and incline. Additionally, it will have the capability to send alerts to other users as well as emergency services in the event of an accident, utilizing geolocation within at least a 10km radius.

To implement this, machine learning techniques will be employed along with speed sensors, gyroscopes, accelerometers, and cameras. These will be used to gather information, which will then be stored in a database for processing. This will enable the assistant to generate visual or auditory alerts, as well as provide alternate route recommendations.

3 Project baseline description

3.1 **General Objective**:

The overarching aim of this innovative project is to enhance road safety through the development and implementation of an advanced Virtual Assistant tailored for the recognition of hazardous conditions on roads. By leveraging cutting-edge technologies, including pattern recognition and artificial intelligence, the project seeks to create a robust system capable of identifying and alerting users to potential dangers in real-time.

3.2 Objective

 Develop a sophisticated algorithm for the real-time recognition of hazardous road conditions.

- Implement a user-friendly interface for seamless interaction with the Virtual Assistant.
- Integrate machine learning capabilities to enhance the system's ability to adapt and improve hazard recognition over time.
- Establish a scalable and modular architecture to accommodate future updates and expansions.

3.3 Project Scope:

The project's scope encompasses the following key modules and features:

- Data Acquisition
- Data Processing
- Alert generation
- Monitoring and maintenance
- Administration Interface
- Vehicle integration
- Notifications to authorities and emergency services
- Historical Data Analysis and Report Generation

The features are described in the following point.

3.4 Requirements

Functional and Non-Functional Requirements play an essential role in charting the path towards creating effective technological solutions. Functional Requirements outline the specific capabilities and functions that the software must meet, while Non-Functional Requirements define the characteristics that affect its performance, security, and user experience.

Having these requirements clearly defined from the beginning is like mapping out a journey before embarking on it. Functional Requirements act as specific targets to be achieved, setting expectations for what the software must achieve to satisfy the user's needs. On the other hand, Non-Functional Requirements are the conditions that guarantee that this trip is smooth, efficient and safe.

3.4.1 Functional Requirements

		RF-	The system must be capable of
		01	collecting data from multiple sources,
			such as traffic cameras, vehicle
			sensors, and real-time weather data.
Module	Data Acquisition	RF-	The system must efficiently store and
1		02	manage large volumes of data.
		RF-	It should be able to sync and merge
		03	data from various sources to gain a
			comprehensive view of road conditions.
Module		RF-	The system must apply computer vision
wodule	Data Processing	04	and machine learning algorithms to
2			identify dangerous roads.

		RF-	It should analyze traffic speed, weather	
	05		conditions, and other relevant factors.	
	RF-		It should generate alerts when	
		06	hazardous conditions are detected.	
		RF-	The system must send alerts to drivers	
		07	through a user-friendly interface.	
N4 . I I .		RF-	It should provide specific	
Module	Alert Generation	08	recommendations for safe driving.	
3		RF-	It should be able to communicate with	
		09	navigation systems and voice	
			assistants.	
		RF-	The system must monitor the	
Module	Monitoring and	10	operational status of key components	
4	Maintenance		like cameras and sensors.	
	Maintenance	RF-	It should generate performance and	
		11	preventive maintenance reports.	
		RF-	It should provide an administration	
		12	interface for configuring and	
Module	Administration Interface		customizing the system	
5		RF-	It should allow access to historical data	
O		13	and trend analysis.	
		RF-	It must be secure and require	
		14	authentication for access.	
		RF-	The system must integrate with vehicle	
		15	information and entertainment systems.	
Module		RF-	It should provide real-time feedback to	
6	Vehicle Integration	16	drivers through the vehicle's interface	
		RF-	It must allow bidirectional	
		17	communication to receive vehicle	
		DE	telemetry data.	
		RF-	The system must be capable of	
	Notifications to	18	sending automatic notifications to traffic	
Madula	Notifications to		authorities and emergency services	
Module	Authorities and		when extremely hazardous conditions are detected.	
7	Emergency Services	RF-	It should include detailed information	
	Services	19	about the location and nature of the	
		13	danger	
	Historical Data	RF-	The system must be capable of storing	
Module	Analysis and	20	and analyzing historical data regarding	
8	Report Generation	25	hazardous road conditions.	
	Roport Concidion		Hazardou roud conditions.	

RF 21	 It should generate periodic reports and trend analysis to enhance long- term road safety.
----------	---

3.4.2 Non-Functional Requirements

RNF-01	The system must ensure the security and privacy of collected data.
RNF-02	System performance must be scalable to handle increases in data volume.
RNF-03	Data processing latency must be low to enable real-time responses
RNF-04	Detection accuracy of dangerous roads must be high.
RNF-05	The system should be adaptable to various weather and lighting conditions.
RNF-06	Alerts must be clear and understandable.
RNF-07	The system should have redundancy to ensure critical alerts are delivered.
RNF-08	The speed of alert delivery must be minimal.
RNF-09	The system must be capable of performing remote software updates.
RNF-10	The administration interface should be intuitive and user-friendly.
RNF-11	It should be compatible with multiple browsers and devices.
RNF-12	Vehicle integration should be compatible with a variety of makes and models.
RNF-13	Latency in communication with the vehicle should be
	minimal for a real-time driving experience
RNF-14	Notifications to authorities must be reliable and delivered in real-time
RNF-15	The system must comply with regulations and standards for communication with authorities and emergency services.
RNF-16	The system must be efficient in processing historical data
RNF-17	Report generation should be configurable and customizable to meet user needs.
RNF-18	It must ensure the security and privacy of historical data

3.5 System Architecture:

The architecture of the Virtual Assistant for Hazardous Road Recognition is designed to be robust, scalable, and adaptable to various environments. The system is divided into key components that seamlessly work together to ensure efficient hazard detection and user interaction.

Image Recognition Module	Utilizes advanced image processing algorithms to analyze real-time data from road-facing cameras. Employs computer vision techniques to identify and categorize potential hazards, such as potholes, construction zones, and adverse weather conditions.
Sensor Integration:	Integrates data from a variety of sensors, including GPS for location tracking and weather sensors for real-time weather conditions. Enables the system to correlate sensor data, providing a comprehensive view of the road environment.
Machine Learning Engine:	Implements machine learning models to continuously improve hazard recognition accuracy. Adapts and refines hazard detection based on historical data, user feedback, and evolving road conditions.
User Interface (UI):	Offers an intuitive and responsive UI accessible via both mobile applications and in-vehicle displays. Provides real-time hazard alerts with visual indicators and audible warnings. Includes features for user feedback on hazard accuracy and system performance.

	Establishes a robust backend
	infrastructure to handle data
Packand Infrastructura	processing, storage, and retrieval.
Backend Infrastructure:	Implements cloud-based solutions for
	scalability, ensuring optimal
	performance during peak usage.

3.5.1 Specification of Technologies and Tools:

Programming Languages:	Python for backend development and algorithm implementation. JavaScript and HTML/CSS for front-	
	end development.	
	OpenCV for computer vision and image processing.	
Frameworks and Libraries	TensorFlow or PyTorch for machine learning model development.	
	Flask or Django for backend web framework.	
Database	MongoDB or PostgreSQL for efficient data storage and retrieval.	
Cloud Services	Integration with cloud services such as AWS or Azure for scalable infrastructure.	
User Interface Development	ReactJS or Angular for building responsive and interactive user interfaces.	
Communication Protocols	RESTful APIs for seamless communication between frontend and backend components.	
Version Control	Git for version control, ensuring collaborative and organized development.	

3.6 Work Breakdown and Schedule

Name	Time	Start Time	Finish Time
Collect process information.	30 days	18/08/2023	19/09/2023
Specification of requirements.	60 days	18/08/2023	19/10/2023
Technology selection	30 days	18/08/2023	19/09/2023
Development of the workspace	60 days	18/08/2023	19/10/2023
Vehicle Integration	90 days	08/10/2023	08/01/2024
Create interface	90 days	09/09/2023	09/12/2023
Create alert	60 days	09/09/2023	09/11/2023
Create database	90 days	09/10/2023	09/01/2024
Create intercommunication	90 days	09/09/2023	09/12/2023
Development notification and alert	90 days	09/09/2023	09/12/2023
Development processing data	90 days	01/01/2024	01/04/2024
Generate Manuals and maintenance	60 days	01/04/2024	01/06/2024
Report result	30 days	01/06/2024	01/07/2024
Error corrections	60 days	01/07/2024	01/09/2024

3.7 Risk management:

• Identification of Potential Risks:

Name	Risk	Mitigation	Contingency plan
		Strategy	
Algorithmic Accuracy Data Security and Privacy	Inaccuracies in hazard detection algorithms may lead to false positives or negatives. Potential breaches of data security and	Conduct rigorous testing with diverse datasets and road conditions to enhance algorithm accuracy. Implement robust encryption protocols and	Implement a user feedback mechanism to quickly identify and correct algorithmic errors. Establish a response plan for immediate action in
Tivaoy	privacy concerns related to user information.	comply with data protection regulations.	case of a security incident, including user notification and system updates.
Integration Challenges	Difficulties in integrating the Virtual Assistant with various vehicle systems and platforms.	Collaborate closely with automotive manufacturers and ensure compatibility during development.	Develop adaptors or APIs for seamless integration with different vehicle models, minimizing potential disruptions.
User Adoption	Users may be resistant to adopting the Virtual Assistant, impacting its effectiveness.	Implement an extensive user education and onboarding process, highlighting the benefits and ease of use.	Gather user feedback continuously and adjust the user interface or educational materials based on user insights.
Regulatory Compliance	Changes in road safety regulations may impact the legality of the Virtual Assistant's operation.	Stay informed about and proactively adhere to regulatory requirements throughout development.	Establish a legal team to monitor and address changes in regulations, ensuring ongoing compliance

3.7.1 Mitigation Strategies and Contingency Plans:

Name	Mitigation strategy	Contingency plan
Continuous Testing and Validation	Implement an extensive testing protocol, including simulated and real-world scenarios, to identify and rectify algorithmic inaccuracies.	Establish a rapid-response team to address emerging issues promptly, providing over-the-air updates to users.
Security Measures:	Employ encryption technologies, secure data transmission protocols, and regular security audits.	Activate a response team to isolate and address security breaches, inform affected users, and implement corrective measures.
Adaptive Integration Framework	Develop a flexible integration framework to accommodate varying vehicle systems and platforms.	Maintain an ongoing collaboration with manufacturers, ensuring swift adaptations to changes in vehicle technology.
User Engagement and Education	Implement a comprehensive user engagement plan, including tutorials, FAQs, and responsive customer support.	Monitor user adoption rates and feedback, adjusting educational materials and support systems as needed.
Regulatory Monitoring	Establish a dedicated team to monitor and interpret changes in road safety regulations.	Develop a rapid-response plan to adapt the Virtual Assistant to meet new legal requirements and maintain its legal operation.

3.8 Criteria of acceptance:

Conditions that Must be Met for the Project to be Considered Successful:

Name	Condition	Rationale
Hazard Detection Accuracy:	The Virtual Assistant must achieve a minimum accuracy rate of 95% in identifying and alerting users to hazardous road conditions.	Ensuring a high level of accuracy is critical for the reliability and effectiveness of the system.
Real-time Responsiveness	The system must provide real-time hazard alerts with a latency of no more than two seconds from the detection of a hazard.	Timely alerts are crucial for enabling users to react promptly to potential dangers.
User Adoption Rate	The Virtual Assistant must achieve a user adoption rate of at least 80% within the first six months of deployment	User adoption is indicative of the system's perceived value and ease of use.
Compliance with Data Privacy Regulations	The system must adhere to all relevant data privacy regulations and standards, ensuring the secure handling of user data.	Protecting user privacy is a fundamental aspect of the project's success and ethical considerations.
Integration with Vehicle Systems:	The Virtual Assistant must seamlessly integrate with a minimum of 90% of commonly used vehicle systems and platforms.	Compatibility with diverse vehicle models enhances the system's applicability and market reach.

3.8.1 Quality Criteria and Tests:

- Algorithmic Precision and Recall:
 - Test: Conduct precision and recall tests using diverse datasets to evaluate the algorithm's accuracy in identifying hazards without generating false positives.
- Latency Testing:
 - Test: Simulate various road conditions and scenarios to assess the system's real-time responsiveness, ensuring it meets the specified latency criteria.
- Usability Testing:
 - Test: Engage a representative sample of users in usability testing to evaluate the clarity, intuitiveness, and overall user experience of the interface.
- Security Audits:
 - Test: Conduct regular security audits to identify and address potential vulnerabilities, ensuring the system complies with data privacy and security regulations.
- Integration Compatibility Testing:
 - Test: Verify the Virtual Assistant's compatibility with a range of vehicle systems through integration tests, ensuring seamless communication and functionality.
- User Feedback Analysis:
 - Test: Analyze user feedback regarding hazard accuracy and system performance to identify areas for improvement and refinement.
- Regulatory Compliance Checks:
 - Test: Regularly review and update the system to ensure compliance with evolving road safety regulations and legal requirements.

3.9 Human resources

List of Roles and Responsibilities:

Rol		Responsibilities	
	Project Manager	Oversee the overall planning, execution, and delivery of the Virtual	
		Assistant project.	
		Define project scope, goals, and	
		deliverables	
		Coordinate with stakeholders,	
		ensuring alignment with project	
		objectives.	
		Monitor and report project progress,	
		risks, and resource utilization.	

Lead Developer:	Lead the software development team in implementing algorithms and system functionalities. Oversee code quality, ensuring adherence to coding standards and best practices. Collaborate with other teams to integrate software components seamlessly.
User Interface (UI) Designer:	Design intuitive and visually appealing user interfaces for both mobile and in-vehicle applications. Ensure the UI enhances user experience and aligns with usability principles. Collaborate with developers to implement UI designs effectively.
Machine Learning Engineer:	Develop and implement machine learning models for hazard detection and system adaptation. Continuously improve algorithms based on user feedback and evolving road conditions. Collaborate with the development team to integrate machine learning components.
Backend Developer	Design and implement the backend infrastructure for data processing, storage, and retrieval Develop APIs for seamless communication between frontend and backend components. Ensure the scalability and efficiency of the backend architecture.
Data Security Specialist	Implement and maintain robust data security measures to protect user information. Conduct regular security audits and address potential vulnerabilities. Ensure compliance with data privacy regulations.

User Engagement Specialist:	Develop and execute user
	engagement strategies, including
	tutorials and onboarding materials
	Gather user feedback and insights to
	enhance user experience.
	Provide responsive customer support
	to address user queries and
	concerns.

Name	Rol	Cost
Rodrigo Resendiz	Project manager	\$4000
Kevin Alvarez	Lead Developer	\$3000
Omar Bravo	UI Designer	\$2500
Peter Anguila	Backend Developer	\$1200
Benny Urdaneta	Backend Developer	\$1200
Matew Ramirez	Machine Learning	\$2000
	Engineer	
Jaime Resses	User Engagement	\$2000
	specialist	
Andres Lopez	Data Security specialist	\$2000
Claudia Galvez	UI Designer	\$2000
Andrea Doriga	Backend Developer	\$2000

3.10 Budget

Detail of Estimated Costs:

Scales	Rol	Cost
Sr	Project manager	\$4000
	Lead Developer	\$3000
	UI Designer	\$2500
	Backend Developer	\$2000
Jr	Backend Developer	\$1200
Sr	Machine Learning Engineer	\$2000
	User Engagement specialist	\$2000
	Data Security specialist	\$2000
Development Too	\$1000	
Testing Team Salaries		\$4000
Testing Tools	\$1000	
Simulation and Te	\$2000	
Infrastructure and Cloud	Backend Infrastructure	\$3000
Services:	Cloud Services	\$1500
	(AWS/Azure):	
Personnel Training and	Training Programs	\$1500
Development:	Skill Enhancement	\$500
	Workshops	
Regulatory Compliance and	Legal Consultation for	\$1500
Certification:	Compliance	
	Certification Fees	\$800
User Engagement and	User Feedback Analysis	\$1200
Support	Tools	
	Customer Support Platform	\$1200
Contingency and	Contingency Fund (10% of	10% of total
Unforeseen Expenses	Total Budget)	budget