자료구조응용 chapter 01-2

```
1. 다음 프로그램의 func1, func2, func3을 정의한 후 실행되도록 구현하라.
int main(void)
{

    int *pNum;
    pNum = func1(); // int 크기만큼 동적할당 받아 10을 지정후 정수형 포인터 리턴 printf("%d\n", *pNum);

    func2(pNum);// pNum이 가리키는 것을 100으로 수정 printf("%d\n", *pNum);

    func3(&pNum); // pNum이 가리키는 것을 200으로 수정 printf("%d\n", *pNum);

    free(pNum);
    return 0;
}
```


2. 다음 <u>Program 1.24</u>를 사용하여 선택정렬(Selection Sort)에 대한 성능측정을 하라. 그리고 프로그램의 실행결과를 이용하여 그래프를 작성하라.

```
cf) 파일 처리: out.txt 파일에 결과 값을 출력
- file open
fopen을 스트림을 직접 대입, fopen_s는 전달 인자로 FILE 포인터의 주소를 받아 스트림을 생성
 FILE *fp = fopen("out.txt", "w");

FILE *fp;
fopen_s(&fp, "out.txt", "w");
- formatted print in file
fprintf(fp, "%6d %f\n", n, duration);
- file close
fclose(fp);
```

[프로그램 설명]

- "selectionSort.h"는 Program 1.4의 SWAP 정의문, sort 함수를 참고하여 작성하기
- 화면출력 및 파일출력(out.txt)을 동시에 하도록 소스를 수정하기
- <u>n을 2000까지 증가</u>시켜 데이터를 생성하도록 소스를 수정하기

```
#include <stdio.h>
#include <time.h>
#include "selectionSort.h"
#define MAX_SIZE 1001
void main(void)
   int i, n, step = 10;
  int a[MAX_SIZE];
   double duration;
   clock_t start;
   /* times for n = 0, 10, ..., 100, 200, ..., 1000 */
   printf(" n time\n");
for (n = 0; n <= 1000; n += step)</pre>
  printf("
   {/* get time for size n */
      /* initialize with worst-case data */
      for (i = 0; i < n; i++)
         a[i] = n - i;
      start = clock();
      sort(a, n);
      duration = ((double) (clock() - start))
                             / CLOCKS_PER_SEC;
      printf("%6d %f\n", n, duration);
      if (n == 100) step = 100;
}
```

Program 1.24: First timing program for selection sort

[실행결과(out.txt)에 대한 그래프작성 예]

3. 다음 <u>Program 1.25</u>를 사용하여 선택정렬(Selection Sort)에 대한 성능측정을 하라. 그리고 프로그램의 실행결과를 이용하여 그래프를 작성하라. 또한, 문제 2의 결과와 같이 하나의 그래프로 작성해서 비교해 보라.

[프로그램 설명]

- 위 1번과 같음

```
#include <stdio.h>
#include <time.h>
#include "selectionSort.h"
#define MAX_SIZE 1001
void main (void)
  int i, n, step = 10;
int a[MAX_SIZE];
  double duration;
   /* times for n = 0, 10, ..., 100, 200, ..., 1000 */ printf(" n repetitions time\n");
  printf("
   for (n = 0; n <= 1000; n += step)
      /* get time for size n */
      long repetitions = 0;
      clock_t start = clock();
         repetitions++;
          /* initialize with worst-case data */
         for (i = 0; i < n; i++)
             a[i] = n - i;
          sort(a, n);
      } while (clock() - start < 1000);</pre>
            /* repeat until enough time has elapsed */
      duration = ((double) (clock() - start))
                                / CLOCKS_PER_SEC;
      duration /= repetitions;
printf("%6d %9d %f\n", n, repetitions, duration);
      if (n == 100) step = 100;
```

Program 1.25: More accurate timing program for selection sort

[실행결과(out.txt)에 대한 그래프작성 예]

4. 3번 소스에 대해 데이터 생성부분을 일부 수정하여 다음 세 가지 경우에 대해 성능측정을 하여 비교하라. 그리고 selection sort 알고리즘의 경우 worst-case, best-case, average-case data의 구분이 있는지 기술하라.

- (1) 입력데이터가 내림차순 정렬이 이미 되어 있는 경우(3번 결과 사용)
- (2) 입력데이터가 오름차순 정렬이 이미 되어 있는 경우 [프로젝트명: 4-2]
- (3) 입력데이터를 난수생성으로 만들어 사용하는 경우 [프로젝트명:4-3]

[실행결과에 대한 그래프작성 예]

■ 참고 : 실행결과 파일로부터 표와 그래프 만들기

① 엑셀의 파일>열기로 출력파일(out.txt)을 연다.

(주의: 엑셀 실행 후 출력파일(out.txt)을 마우스 drag&drop 으로 오픈하면 안 됨)

(※ 경우에 따라 "너비가 일정함"으로 진행되는 경우도 있음)

	텍스트	마법사 - :	3단계 중	§ 2단계		?	×
데이터의 구분 기호를 실 구분 기호 ☑ 탭(I) ☑ 세미콜론(M)	설정합니다. 미리 보기 : ☑ 연속된 구분 기호	22. BENNING SE		트를 볼 수 있습	LIEI.		
□ 실표(<u>C</u>) ☑공백(S)] □ 기타(<u>O</u>):	텍스트 한정자(<u>Q</u>):	н	v				
데이터 미리 보기(만)							
n time 0 0.000000 10 0.000000 20 0.000000							•
15)			취소	〈뒤로(<u>B</u>)	다음(<u>N</u>) >	마침	(E)

② 파일 > 다른이름으로 저장을 실행 후, Excel 통합문서 형식로 저장한다.

④ 아래와 같이 블록을 지정한 후 "삽입 > 분산형 > 곡선이 있는 분산형" 아이콘을 선택하기

⑤ 그래프 생성 결과

※ 그래프를 겹쳐서 그리기

■ 제출 형식

- 공학인증 시스템(ABEEK)에 과제를 올릴 때 제목:
- 1차 제출: 학번_이름_DS_02(1), 2차 제출: 학번_이름_DS_02(2)
- 솔루션 이름 : DS_02
- 프로젝트 이름 : 1, 2, 3, 4
- 실행화면을 캡쳐하여 한글파일에 추가 후 솔루션 폴더에 포함.
- 한글 파일명 : 학번_이름.hwp
- 솔루션 폴더를 압축하여 제출할 것.
- 솔루션 압축 파일 명:

1차 제출: 학번_이름_DS_02(1).zip, 2차 제출: 학번_이름_DS_02(2).zip

- 제출은 2회걸쳐 가능(수정 시간 기준으로 처리)