Praxis Midterm Exam

10/02/2020

1) Let G be a group and $\emptyset \neq M \subseteq G$ a finite subset, such that we have $M \cdot M = M$, where

 $M \cdot M := \left\{ m_1 \cdot m_2 \, | \, m_1, m_2 \in M \right\}.$

Show that M is a subgroup. Is this also true if M is not a finite subset?

- 2) Let F be a field and $n \geq 1$ an integer. Determine the centre of $GL_n(F)$
- 3) Is \mathbb{Q} a finitely generated group?
- 4) Let G be a finite group of order $r \geq 1$. Show that there are precisely r different homomorphisms of groups $\mathbb{Z} \longrightarrow G$, but only one homomorphism of groups $G \longrightarrow \mathbb{Z}$.
- 5) Let G be a non abelian group of order 8 with at least two elements of order 2. Show that there is a non trivial homomorphism $\alpha: \mathbb{Z}/2 \longrightarrow \operatorname{Aut}(\mathbb{Z}/4)$, such that G is isomorphic to $\mathbb{Z}/4 \rtimes_{\alpha} \mathbb{Z}/2$.
- 6) Let p_1, \ldots, p_l be l different prime numbers and G an abelian group of order $\prod_{i=1}^{l} p_i$. Show that G is cyclic.
- 7) Let e_1, \ldots, e_n be the standard basis of \mathbb{R}^n , and denote by <-,-> the usual scalar product on \mathbb{R}^n . Prove:
 - (i) For $0 \neq v \in \mathbb{R}^n$ the map

$$s_v : \mathbb{R}^n \longrightarrow \mathbb{R}^n, \ x \longmapsto x - \frac{2 < v, x >}{< v, v >} \cdot v$$

is in $GL_n(\mathbb{R})$.

- (ii) The subgroup H of $GL_n(\mathbb{R})$ generated by all $s_{e_i-e_j}$, $1 \leq i \neq j \leq n$, is finite.
- 8) Let G be a finite group, and $S = \{g_1, \ldots, g_l\} \subseteq G$ a subset which generates G, and which has the property that no proper subset of S generates G (i.e. S is a minimal set of generators for G). Show that G has at least 2^l elements.

ALL ANSWERS HAVE TO BE JUSTIFIED.