Homework 3

- Textbook p426: 10
- Textbook p431: 6
- ●1. Let *S*={1, 2, 3}

$$p_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad p_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad p_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
$$p_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad p_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \qquad p_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

- (1) Determine all the left cosets of $H = \{p_1, p_4, p_5\}$ in S_3 .
- (2) Determine all the left cosets of $H = \{p_1\}$ in S_3 .

Homework 3

- ullet 2. Let $\langle A, +, \cdot \rangle$ be a algebraic system, A are the following sets:
- (1) $A = \{x \mid x = 2n, n \in \mathbf{Z}\}$
- (2) $A = \{x \mid x = 2n + 1, n \in \mathbf{Z}\}$
- (3) $A = \{x \mid x = a + b\sqrt{5}, a, b \in \mathbf{Q}\}$

Is $\langle A, +, \cdot \rangle$ a ring? Is $\langle A, +, \cdot \rangle$ a field?

- ■3. Let $\langle A, +, \cdot \rangle$ be a ring, show that if $a, b \in A$, then $(a + b)^2 = a^2 + a \cdot b + b \cdot a + b^2$, where $x^2 = x \cdot x$.
- ●4. Let $\langle A, +, \cdot \rangle$ be a ring, and for $\forall a \in A, a \cdot a = a$. Show that:
- (1) For $\forall a \in A$, a + a = e, where e is the identity of $\langle A, + \rangle$.
- (2) $\langle A, +, \cdot \rangle$ is a communitive ring.
- ●5. Let $\langle A, +, \cdot \rangle$ be a field, $B_1 \subseteq A$, $B_2 \subseteq A$. Show that $\langle B_1 \cap B_2, +, \cdot \rangle$ is also a field.

