St. Catherine's School

Trial DSC Examination

Mathematics Extension 2

2002

- 1. (a) Find $\int \sin^3 x \ dx$
- **(b)** Evaluate $\int_1^2 \frac{dx}{\sqrt{3+2x-x^2}}$
- (c) Find $\int x^2 \sin x \ dx$
- (d) Find $\int \frac{2x^2}{x^2-4} dx$
- (e) If $I_n = \int_0^{\frac{\pi}{4}} \tan^n x \ dx$, $n \ge 3$ show that $I_n + I_{n-2} = \frac{1}{n-1}$
- **2.** (a) z = x + iy is a complex number which satisfies the equation $z\overline{z} + 2iz = 9 + 2i$, find the possible values of z, where \overline{z} is the complex conjugate of z.
- **(b)** Given that $z_1 = \frac{1-i}{1+i}$ and $z_2 = \frac{\sqrt{2}}{1+i}$
- (i) Express z_1 and z_2 in the form a+ib and also find their modulus and argument.
- (ii) Plot z_1 and z_2 on an Argand Diagram and show that $z_1 + z_2$ on this diagram.
- (iii) Find the modulus and argument of $(z_1 + z_2)$
- (c) Point A represents the number 1 on an Argand diagram. O is the origin. Point P represents the complex number z such that $\arg(z-1)=2\arg(z)$.
- **3.** (a) (i) Show that the condition for the line y=mx+c be a tangent to the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is $c^2=a^2m^2+b^2$
- (ii) Hence show that the pair of tangents from the point (3,4) to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ are at right angles to each other.
- (b) Consider the rectangular hyperbola $xy = c^2$. Let $P(cp, \frac{c}{p})$ and $Q(cq, \frac{c}{q})$ be two points on this hyperbola. The tangent at Q passes through the foot of the ordinate at P (i.e., the tangent passes through the point (cp, 0))
- (i) Show that p = 2q.
- (ii) Show that the locus of the mid-pint M of the chord PQ is a hyperbola with the same asymptotes as the given hyperbola.
- (c) Find the locus of z such that $arg(2-z) = \frac{\pi}{4}$
- **4.** (a) The circle $x^2 + (y-3)^2 = 1$ is rotated about the line x = 5.
- (i) Use the method of cylindrical shells to show that the volume generated is given by $4\pi \int_{-1}^{1} (5-x)\sqrt{1-x^2} dx$
- (ii) Hence find the volume.

- (b) The base of a particular solid is the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. Find the volume of this solid if every cross section perpendicular to the major axis is an equilateral triangle with one side on the base of the solid.
- (c) The region between the curve $y = x^2 + 1$ and y = 3 x is rotated about the x-axis. By taking slices perpendicular to the x-axis, find the volume of the solid generated.
- 5. (a) $\sqrt{3} + i$ is a zero of the polynomial $x^4 + px^3 + q = 0$, where p and q are real numbers.
- (i) Show that $p = -\sqrt{3}$ and q = 8.
- (ii) Factorise $x^4 + px^3 + q$ into quadratic factors.
- (b) If $u_1 = 3$ and $u_2 = 21$ and if $u_n = 7u_{n-1} 10u_{n-2}$ show using Mathematical
- Induction that $u_n = 5^n 2^n$ for $n \ge 1$ (c) (i) Solve $\tan^{-1} 2x \tan^{-1} x = \tan^{-1} \frac{1}{3}$ for x.
- (ii) Show that $\frac{d}{dx}(\tan^{-1}x + \tan^{-1}\frac{1}{x}) = 0$ and sketch the function $f(x) = \tan^{-1} x + \tan^{-1} \frac{1}{x}$
- **6.** (a) The polynomial function $P(x) = x^4 4x^3 3x^2 + 50x 52$ has a zero at x = 3 - 2i Factorise P(x) over the field of
- (i) rationals
- (ii) reals
- (iii) complex numbers
- (b) The equation $2x^3 9x^2 + 7 = 0$ has roots α, β, γ . Find the equation with roots $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$.
- (c) (i) Show that the solution of the equation $z^3 = 1$ in the complex number system
- are $z = \cos \theta + i \sin \theta$ for $\theta = 0, \frac{2\pi}{3}, \frac{4\pi}{3}$ (ii) If $\omega = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$ show that $\omega^2 + \omega + 1 = 0$ and $\omega \omega^2 \omega 2 = 0$ (iii) Hence or otherwise solve the cubic equation $z^3 z^2 z 2 = 0$.
- 7. (a) A body of mass 4kg is whirled in a horizontal circle of radius 0.6 metres. If the tension in the string is 540 Newtons, find the angular velocity of the body.
- (b) An object of mass 20kg is dropped from rest through the atmosphere and there is air esistance of 2v Newtons at speed v m/s. Acceleration due to gravity is 10 m/s/s.
- (i) Show that the acceleration, a, is given by $a = \frac{100-v}{10}$
- (ii) Find an expression for velocity v m/s at any time t seconds.
- (iii) Find the terminal velocity.
- (iv) Show that the distance the object has travelled when the speed is v m/s is given by $x = 1000 \ln \frac{100}{100 - v} - 10v$
- (v) Hence find the distance the object has fallen before reaching half the terminalk velocity.
- (b) A particle is projected from a point O with an initial velocity of $\frac{150}{7}$ m/s and the angle of projection is α , where $\tan \alpha$ is $\frac{4}{3}$. One second later another particle is projected with an initial velocity of $\frac{225}{7}$ m/s at an angle of elevation of β , where

 $\tan \beta = \frac{3}{4}$ and in in the same vertical plane through O as the first particle. Show that the particles collide 2 seconds after the first particle is projected.

- **8.** (a) (i) The number 11 (eleven) can be written as $11 = 1 + 1 \times 10$. Show that the number $\underbrace{111\cdots 11}_{n \text{ ones}} = \frac{10^n 1}{9}$.
- (ii) Hence or using Mathematical Induction show that $1 + 11 + 111 + \cdots + \underbrace{111 \cdots 11}_{n \text{ ones}} = \frac{1}{81} (10^{n+1} 9n 10)$
- (b) xy = 4 is a rectangular hyperbola (note: $e = \sqrt{2}$). Find the coordinates of the
- foci and the equations of the directrices. (c) (i) Given that $I_{2n+1} = \int_0^1 x^{2n+1} e^{x^2} dx$ where n is a positive integer, show that $I_{2n+1} = \frac{e}{2} nI_{2n-1}$.
- (iii) Hence evaluate I_5 .