AD Canaries: Un canari sorti du chapeau

Détournement des DACL backdoors (Specter Ops 2017) pour permettre une détection efficace de l'énumération Active Directory

Quentin ARNOULD – Analyste SOC

`whoami`?

- Quentin Arnould
- SOC Analyst @ Airbus Protect

Ce qui me passionne:

- Analyse d'attaques et la conception de techniques detection
- Sécurité Active Directory
- Analyse d'incidents sur capteurs EDR
- Faire des memes de qualité non contrôlée

Agenda

☐ Enumération Active Directory

AD Canaries : mécanisme de détection & résultats en laboratoire

Opportunités & problématiques de détection

- ☐ AD Canaries : RETEX déploiement en production
- ☐ DACL Backdoors An ACE Up the Sleeve, SpecterOps (2017)

Enumération Active Directory

Etablir un inventaire (exhaustif) des objets Active Directory, présents dans l'environnement

- Chemin de compromission (relations de contrôle)
- Faiblesses de configuration
- Ressources critiques
- Elévation de privilèges
- Latéralisation
- ...

Enumération Active Directory

https://github.com/infosecn1nja/AD-Attack-Defense

Enumération Active Directory

1k€

Opportunités & problématiques de détection

Opportunités & problématiques de détection

Environnement de production ~650 endpoints

Event 4662 – Directory Service Object Access

Event 5136 – Directory Service Object Modification

Contribuent tous deux à la stratégie de supervision Active Directory

→ Coût volumétrique pour un apport "similaire" à la supervision AD

~15 fois plus d'événements 4662 ! (40 000 events/j)

DACL Backdoors – An ACE Up the Sleeve, SpecterOps (2017)

DACL Backdoor → Active Directory malwareless (privileged) persistence

Backdoor primitives

An ACE Up the Sleeve:

Designing Active Directory DACL Backdoors

Will Schroeder

Andy Robbins

Lee Christensen

DACL Backdoors – An ACE Up the Sleeve, SpecterOps (2017)

Discretionary Access Control List - DACL:

https://learn.microsoft.com/en-us/windows/win32/secauthz/dacls-and-aces

Will Schroeder

An ACE Up the Sleeve:

Designing Active Directory DACL Backdoors

DACL Backdoors – An ACE Up the Sleeve, SpecterOps (2017)

Domain\Administrator

Stealth Primitives [dissimulation]

Ordre d'évaluation des DACL :

- 2. Explicit ALLOW
- 3. Inherit DENY
- 4. Inherit ALLOW

Déployer des objets AD qui lorsqu'ils seront accédés (« écrasés ») témoigneront d'une énumération dans Active Directory

- Détournement de la « stealth primitive » des DACL backdoors
- → Déployer des objets qui n'ont aucune réalité dans l'environnement
- → « Cacher » le canari dans l'environnement (Stealth Primitive)
- → Auditer les tentatives d'accès échoués aux canaris

Démonstration :


```
SecurityEvent
    where EventID == 4662 and ObjectServer == "DS" and Computer contains "CORIIN"
    extend Object = tostring(split(split(ObjectName, "{")[1], "}")[0]),
                      AccessedProperties = extract_all(@"\{([a-fA-F\d]{8}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-fA-F\d]{4}-[a-
F\d]{12})\}", Properties)
// ADCanaries.csv generated when deploying via the aforementioned script
     lookup kind=inner GetWatchlist("ADCanaries") on $left.Object==$right.SearchKey
    mv-expand AccessedProperties
    extend Prop = tostring(AccessedProperties)
// PropertiesGUIDs.csv generated when deploying via the aforementioned script
    lookup kind=leftouter GetWatchlist("SchemaIDGuids") on $left.Prop==$right.SearchKey
// Simple DIY lookup table using MS documentation for event 4662
     lookup kind=leftouter GetWatchlist("AccessTypes") on $left.AccessMask==$right.SearchKey
    join kind = leftouter (
         SecurityEvent
              where EventID == 4624 and LogonType == 3
) on $left.Computer==$right.Computer and $left.SubjectLogonId==$right.TargetLogonId and
$left.SubjectUserName==$right.TargetUserName
// Some aggregation here, not optimal
    summarize Count=count(), AccessedProps=makeset(ldapDisplayName), LogonIds=makeset(SubjectLogonId),
Accesses=makeset(Access), IPs=makeset(IpAddress1), Devices=makeset(WorkstationName1)
by bin(TimeGenerated, 1m), SubjectUserName, SubjectDomainName, CanaryName, Object
```


Net.exe

Rubeus.exe

ADFind.exe

Results Chart									
TimeGenerated [UTC]	SubjectUserName	Subject Domain Name	CanaryName	Object	Count	AccessedProps	LogonIds	Accesses	IPs
> 3/29/2023, 3:19:00.000 PM	Administrator	SYLVESTER	CanaryGroup	b1a40f13-b00e-4	120	["", "objectGUID", "name", "objectClass"]	["0x6c625"]	["Read Property"]	["10.0.2.12"]
> 3/29/2023, 3:19:00.000 PM	Administrator	SYLVESTER	CanaryComputer	1a85c65e-7154-4	120	["","objectGUID","name","objectClass"]	["0x6c625"]	["Read Property"]	["10.0.2.12"]
> 3/29/2023, 3:19:00.000 PM	Administrator	SYLVESTER	CanaryUser	cf03c42f-eb82-4	120	["","objectGUID","name","objectClass"]	["0x6c625"]	["Read Property"]	["10.0.2.12"]
> 3/29/2023, 3:20:00.000 PM	net-enum	SYLVESTER	CanaryGroup	b1a40f13-b00e-4	3	["","sAMAccountType"]	["0xb5c745"]	["Read Property"]	["10.0.2.151"]
> 3/29/2023, 3:20:00.000 PM	net-enum	SYLVESTER	CanaryComputer	1a85c65e-7154-4	3	["","sAMAccountType"]	["0xb5c745"]	["Read Property"]	["10.0.2.151"]
> 3/29/2023, 3:20:00.000 PM	net-enum	SYLVESTER	CanaryUser	cf03c42f-eb82-4	3	["","sAMAccountType"]	["0xb5c745"]	["Read Property"]	["10.0.2.151"]
> 3/29/2023, 3:20:00.000 PM	rubeus	SYLVESTER	CanaryUser	cf03c42f-eb82-4	13	["", "userAccountControl", "sAMAccountType", "servicePrinci	["0xb5c81b","0xb5c86c"]	["Read Property"]	["10.0.2.151"]
> 3/29/2023, 3:20:00.000 PM	adfind-enum	SYLVESTER	CanaryUser	cf03c42f-eb82-4	3	["","objectCategory"]	["0xb5d56e"]	["Read Property"]	["10.0.2.151"]
> 3/29/2023, 3:20:00.000 PM	adfind-enum	SYLVESTER	CanaryComputer	1a85c65e-7154-4	3	["","objectCategory"]	["0xb5d65a"]	["Read Property"]	["10.0.2.151"]

Avantages de cette primitive de détection

- Volumétrie négligeable (cf RETEX)
- Détecte le mécanisme d'énumération AD

- Canaris invisibles pour l'adversaire
 - → l'adversaire ne sait pas qu'il est détecté
 - → n'impacte pas une posture IR élevée (PRIS)

AD Canaries : RETEX déploiement en production

Environnement de production ~1000 endpoints

60 jours après le déploiement:

TUNING – 10j : ~15 exclusions → User + Propriétés accédées + Canari

PRE-RUN + RUN : ~8 incidents (dont un test initié par le client)

Impact volumétrique : ~100 events/j

(contre 40 000 events/j précédemment sur un parc d'une taille inférieure!)

AD Canaries : RETEX déploiement en production

Détecter, c'est bien. Qualifier, c'est mieux :

Qui a initié l'énumération ?

→ événement source : 4662

Qu'est ce qui a été énuméré ?

→ enrichissement lookups GUID

Depuis quel poste asset est initiée l'énumération ?

→ pivot événement Logon : 4624

Quel est le comportement à l'origine de l'énumération?

- → pivot sur la télémétrie de l'asset identifié
 - → Exécutions de processus
 - → Connexions réseau
 - $\rightarrow \dots$

L'énumération coïncide-t-elle avec d'autres techniques d'attaques AD ?

- → pivot activité Kerberos du compte : 4768, 4769
- → pivot télémétrie réseau liée à l'asset identifié

AD Canaries : RETEX déploiement en production

Echelle <u>subjective</u> des niveaux de difficultés / coûts associés au déploiement et au monitoring des canaris AD :

Task	Effort Level	Observations
Déploiement de la primitive de détection	1,5 / 5	 Objets isolés Pas d'impact sur la surface d'attaque AD Vérification politique audit / SACL Equipe admin IT
Gestion des exclusions	2/5	 Très dépendant de l'environnement. Identification des comportements relativement facile. Nécessite un maintien des exclusions.
Impact sur la volumétrie	0/5	 La quantité d'événements générée est négligeable. Pas de vérification du maintien des SACL.
Efforts d'investigations	3/5	 Dépends fortement de la télémétrie (endpoint, réseau) disponible. Les pivots présentés permettent une qualification efficace dans la plupart des cas.
Alert fatigue	0/5	 Après tuning, la quantité d'incidents générés est extrêmement faible. Maîtrise facile de la quantité d'incidents générés.

Merci pour votre attention, des questions?

Blog Airbus Protect: https://www.protect.airbus.com/insights/blog/

- 3 articles dédiés au sujet
- Publication du script de déploiement ->

Twitter: @_Ar4h_

