FET Threshold Voltages

nFET

Pass Characteristics nFET

Threshold Voltage Loss

nFET can pass Weak logic 1 and strong logic 0

$$V_1 = V_{DD} - V_{Tn}$$

pFET

pFET can pass Weak logic 0 and strong logic 1 $\,$

CMOS circuits are designed to account for the transmission levels.

The following rules are the basis for our design

- 1. Use pFETs to pass logic 1 voltages of VDD
- 2. Use nFETs to pass logic 0 voltages of VSS=0V

CMOS NOR Gate

$$g(x,y) = \overline{x} + y \qquad g(x,y) = \overline{x} \cdot \overline{y} \cdot 1 + \overline{x} \cdot y \cdot 0 + x \cdot \overline{y} \cdot 0 + x \cdot y \cdot 0$$

(a) Logic symbol

(b) Voltage network

NOR2 Operation

$$g(x,y) = \bar{x} \cdot \bar{y} \cdot 1 + x \cdot 0 + y \cdot 0$$

9-25.1+20+40

x y	Mpx	Мру	Mnx	Mny	8
0 0	on	on	off	off	1
0 1	on	off	off	on	0
1 0	off	on	on	off	0
1 1	off	off	on	on	0

