# Fasteners



### home > miscellaneous topics > fasteners









This page is under development.

#### Introduction

This webpage is unique in that it combines information on the many types of fasteners with information on how to determine their strengths. This extends to joint strengths as well since the parts being fastened together are often weaker than the fastener itself. This is especially true when the objects are relatively thin sheets of metal, a common occurance in aircraft.



http://macgyverisms.wonderhowto.com/how-to/make-macgyver-style-chess-set-using-just-nuts-bolts-0144591/

The page begins by reviewing the many fastener categories, focusing on those used in the American aircraft industry. It progresses to....., and concludes with fastener and joint strength analysis methods.



## The Difference Between a Bolt and a Screw

A bolt is designed to be inserted through a smooth hole and secured with a nut, while a screw is designed to be used in a threaded hole—sometimes along with a nut. To learn more, see the American Society of Mechanical Engineers (ASME) standard B18.2.1 (1996).

# Types of Fasteners



#### Wood Screws

Screws with a smooth shank and tapered point for use in wood. Abbreviated WS

### Sheet Metal Screws

Fully threaded screws Screws with threads with a point for use in sheet metal. Abbreviated SMS

#### Machine Screws

for use with a nut or tapped hole. Abbreviated MS

#### Hex Bolts

Bolts with a hexagonal head with threads for use with a nut or tapped hole. Abbreviated HHMB or **HXBT** 









### Carriage Bolts

Bolts with a smooth rounded head that has thread a small square section underneath.

#### Lag Bolts

Bolts with a wood and pointed tip. Abbreviated Lag

#### Eve Bolts

A bolt with a circular ring on the head end. Used for attaching rope or chain.

#### Eye Lags

Similar to an eye bolt but with wood threads instead of machine thread.



#### U-Bolts

Bolts in U shape for attaching to pipe or other round surfaces. Also available with a as an open eye bolt. square bend.



#### J-Bolts

J shaped bolts are used for tie-downs or

## Head Styles



Flat A countersunk head with a flat top. Abbreviated FH



0va1 A countersunk head with a rounded top. Abbreviated OH or OV



Pan A slightly rounded head with short vertical sides. Abbreviated PN



Truss An extra wide head with a rounded top.















Round A domed head. Abbreviated RH





Slotted Hex Washer in washer and a slot.







Socket Cap A small cylindrical head using a socket drive.

Button A low profile rounded head using a socket drive.

# Tension Bolt Markings and Strength

Blah, Blah, Blah...

| i, bian, bian |                                                               |                                                           |                                      |                        |                                              |                                      |
|---------------|---------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|------------------------|----------------------------------------------|--------------------------------------|
|               | Head Marking                                                  | Grade and<br>Material                                     | Nominal<br>Size<br>Range<br>(inches) | Mechanical Properties  |                                              |                                      |
|               |                                                               |                                                           |                                      | Proof<br>Load<br>(psi) | Min. Yield<br>Strength<br>(psi)              | Min.<br>Tensile<br>Strength<br>(psi) |
|               |                                                               | Grade 2                                                   | 1/4 thru<br>3/4                      | 55, 000                | 57, 000                                      | 74, 000                              |
|               | No Markings                                                   | Low or medium<br>carbon steel                             | >3/4 thru<br>1-1/2                   | 33, 000                | 36, 000                                      | 60, 000                              |
|               |                                                               |                                                           | 1/4 thru 1                           | 85, 000                | 92,000                                       | 120,000                              |
|               | 3 Radial Lines                                                | Grade 5  Medium Carbon Steel, Quenched and Tempered       | >1 thru 1-<br>1/2                    | 74, 000                | 81, 000                                      | 105, 000                             |
|               | 6 Radial Lines                                                | Grade 8  Medium Carbon Alloy Steel, Quenched and Tempered | 1/4 thru<br>1-1/2                    | 120, 000               | 130, 000                                     | 150, 000                             |
|               | C4.:l                                                         | 18-8 Stainless                                            | 1/4 thru<br>5/8                      |                        | 40,000 Min.<br>80,000 -<br>90,000<br>Typical | 100,000<br>-<br>125,000<br>Typical   |
| ,             | Stainless markings<br>vary. Most stainless<br>is non-magnetic | Steel alloy with 17-19% Chromium and                      | 3/4 thru 1                           |                        | 40,000 Min.<br>45,000 -                      | 100,000<br>Typical                   |
|               |                                                               | 8-13% Nickel                                              |                                      |                        | 70, 000                                      | 80,000 -                             |

Above 1 Typical 90,000 Typical

Proof Load: Tensile load which the bolt must withstand without any evidence of permanent set.

Yield Strength: Load at which the bolt exhibits a specific permanent deformation.

Tensile Strength: Maximum tensile load which the bolt can withstand before breaking or failing.

Reference: http://www.boltdepot.com/fastener-information/Materials-and-Grades/Bolt-Grade-Chart.aspx

$$R = rac{
ho \ L}{A}$$



### Theoretical Gauge Factor Values

It turns out that gauge factors can be estimated from the  $R=\rho L/A$  relationship by first determining dR/dL as follows

# Electrical Circuits - Wheatstone Bridge

## Acknowledgements

Many photographs and sketches shown here were taken from the internet and found via Google searches. Each such image has been referenced in order to give credit to its source. I especially want to acknowledge www.boltdepot.com as a primary source of information here.



Also, thanks very much to Chuck Boulware and Bill Dunmon for contributing to this page.



Strain Gauges