Esame di Ricerca Operativa del 14/06/16

Fsorgizio	,	ognome)	o soguente tabel	(Nome) la considerando il problema	di progra	`	rso di laurea	,
LSCICIZIO	1. Com	picoare re	seguente tabel	$\begin{cases} \max & 8 \ x_1 - 9 \ x_2 \\ -2 \ x_1 - x_2 \le 4 \\ -x_1 - x_2 \le 6 \\ -x_1 + 2 \ x_2 \le -13 \\ 2 \ x_1 - x_2 \le 15 \\ 2 \ x_1 + x_2 \le 1 \\ x_1 + 3 \ x_2 \le -12 \end{cases}$	ur progra	mmazione inic	arc.	
	Base	Soluzion	ne di base			Ammissibile (si/no)	Degenere (si/no)	
	{1, 2} {5, 6}	x = $y =$						
Esercizio	2. Effet	tuare du	e iterazioni dell	'algoritmo del simplesso prin	nale per il	problema del	l'esercizio 1.	
		Base	x	y	Indice uscente		pporti	Indice
1° iterazio	one	${3,5}$						
2° iterazio	one							
tenendo in	consider	razione c	he il numero to	perai 8 15 4 4 obot 4 10 2 3				
modello:								
c=				COMANDI DI MATLAB				
A=				b=				
Aeq=				beq=				

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(1,4)$ $(2,5)$				
(3,5) $(4,6)$ $(6,7)$	(2,3)	x =		
(1,2) (2,5) (3,7)				
(4,3) $(5,7)$ $(6,7)$	(1,4)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,4) (2,5) (3,5) (3,7) (4,6)	
Archi di U	(5,7)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s =$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 13 \ x_1 + 5 \ x_2 \\ 18 \ x_1 + 9 \ x_2 \le 53 \\ 13 \ x_1 + 18 \ x_2 \le 63 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

 $N_t =$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_I(P) =$

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 503 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	18	7	6	23	14	5	17
Volumi	125	194	151	74	68	36	403

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile = $v_I(P) =$	
-------------------------------	--

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 1 \le 0, \quad x_1^2 + x_2^2 - 2x_1x_2 - 1 \le 0\}.$$

Soluzioni del	Soluzioni del sistema LKT				Mini	Sella	
x	λ	μ	globale	locale	globale	locale	
(-1,0)							
(0,1)							
(0,-1)							
(1,0)							

Esercizio 10. Si consideri il seguente problema:

$$\left\{ \begin{array}{l} \max \ -2 \ x_1^2 + 10 \ x_1 \, x_2 + x_1 + x_2 \\ x \in P \end{array} \right.$$

e i vertici di P sono (0,4) , (-5,0) , (-4,-1) e (2,3). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
$\left(-2,\frac{1}{3}\right)$						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max 8 x_1 - 9 x_2 \\ -2 x_1 - x_2 \le 4 \\ -x_1 - x_2 \le 6 \\ -x_1 + 2 x_2 \le -13 \\ 2 x_1 - x_2 \le 15 \\ 2 x_1 + x_2 \le 1 \\ x_1 + 3 x_2 \le -12 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (2, -8)	SI	NO
{5, 6}	$y = \left(0, \ 0, \ 0, \ 0, \ \frac{33}{5}, \ -\frac{26}{5}\right)$	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice uscente	Rapporti	Indice entrante
1° iterazione	{3, 5}	(3, -5)	$\left(0,\ 0,\ -\frac{26}{5},\ 0,\ \frac{7}{5},\ 0\right)$	3	20, 5	4
2° iterazione	$\{4, 5\}$	(4, -7)	$\left(0,\ 0,\ 0,\ \frac{13}{2},\ -\frac{5}{2},\ 0\right)$	5	5, 4	2

Esercizio 3.

COMANDI DI MATLAB

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base		Degenere
			(si/no)	(si/no)
(1,3) $(1,4)$ $(2,5)$				
(3,5) $(4,6)$ $(6,7)$	(2,3)	x = (0, -8, 15, 5, 0, 3, 0, 0, 13, 0, 10)	NO	SI
(1,2) (2,5) (3,7)				
(4,3) (5,7) (6,7)	(1,4)	$\pi = (0, 10, 23, 17, 19, 18, 28)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione			
Archi di T	(1,2) $(1,4)$ $(2,5)$ $(3,5)$ $(3,7)$ $(4,6)$	(1,3) (1,4) (2,5) (3,5) (3,7) (4,6)			
Archi di U	(5,7)	(5,7)			
x	(2, 0, 5, 0, 7, 2, 4, 0, 3, 6, 0)	(0, 2, 5, 0, 5, 4, 4, 0, 3, 6, 0)			
π	(0, 10, 13, 8, 19, 17, 18)	(0, 7, 10, 8, 16, 17, 15)			
Arco entrante	(1,3)	(5,7)			
ϑ^+,ϑ^-	$2\;,2$	2, 4			
Arco uscente	(1,2)	(3,7)			

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		iter	2	iter	. 3	iter	4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		4		3		2		(5	Ę	<u>,</u>	7	7
nodo 2	14	1	14	1	14	1	14	1	14	1	14	1	14	1
nodo 3	13	1	13	1	13	1	13	1	13	1	13	1	13	1
nodo 4	4	1	4	1	4	1	4	1	4	1	4	1	4	1
nodo 5	$+\infty$	-1	$+\infty$	-1	30	3	30	3	22	6	22	6	22	6
nodo 6	$+\infty$	-1	19	4	19	4	19	4	19	4	19	4	19	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	35	6	31	5	31	5
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	2, 3	, 6	2, 5	, 6	5,	6	5,	7	7	7	Q	Ď

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 5 - 7	6	(0, 6, 0, 0, 6, 0, 0, 6, 0, 0)	6
1 - 4 - 6 - 7	5	(0, 6, 5, 0, 6, 0, 5, 0, 6, 0, 5)	11
1 - 2 - 4 - 6 - 7	7	(7, 6, 5, 7, 6, 0, 12, 0, 6, 0, 12)	18

Taglio di capacità minima: $N_s = \{1,3\}$ $N_t = \{2,4,5,6,7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 13 x_1 + 5 x_2 \\ 18 x_1 + 9 x_2 \le 53 \\ 13 x_1 + 18 x_2 \le 63 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{53}{18}, 0\right)$$
 $v_S(P) = 38$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(2,0)$$

c) Calcolare un taglio di Gomory.

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 503 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	18	7	6	23	14	5	17
Volumi	125	194	151	74	68	36	403

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =
$$(1, 0, 1, 1, 1, 1, 0)$$
 $v_I(P) = 66$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(1,0,0,1,1,1,\frac{200}{403}\right)$$
 $v_S(P)=68$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

soluzione ottima = (1, 1, 0, 1, 1, 1, 0)**Esercizio 9.** Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 1 \le 0, \quad x_1^2 + x_2^2 - 2x_1x_2 - 1 \le 0\}.$$

valore ottimo = 67

Soluzioni del s	Mass	simo	Mini	mo	Sella		
x	λ	μ	globale	locale	globale	locale	
$(-1, \ 0)$	$\left(\frac{1}{2},0\right)$		NO	NO	SI	SI	NO
(0, 1)	$\left(-\frac{1}{2},\frac{1}{2}\right)$		NO	NO	NO	NO	SI
(0, -1)	$\left(\frac{1}{2}, -\frac{1}{2}\right)$		NO	NO	NO	NO	SI
(1, 0)	$\left(-\frac{1}{2},0\right)$		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \max -2 x_1^2 + 10 x_1 x_2 + x_1 + x_2 \\ x \in P \end{cases}$$

 $\mathrm{dove}\,P\,\,\grave{\mathrm{e}}\,\,\mathrm{il}\,\,\mathrm{poliedro}\,\,\mathrm{di}\,\,\mathrm{vertici}\,\,(0,4)\,\,,\,(-5,0)\,\,,\,(-4,-1)\,\,\mathrm{e}\,\,(2,3).\,\,\mathrm{Fare}\,\,\mathrm{una}\,\,\mathrm{iterazione}\,\,\mathrm{del}\,\,\mathrm{metodo}\,\,\mathrm{del}\,\,\mathrm{gradiente}\,\,\mathrm{proiettato}.$

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(-2, \frac{1}{3}\right)$	(2, -3)	$\begin{pmatrix} 9/13 & 6/13 \\ 6/13 & 4/13 \end{pmatrix}$	$\left(-\frac{3}{13}, -\frac{2}{13}\right)$	$\frac{26}{3}$	$\frac{26}{3}$	(-4, -1)