Sistemas de Recuperação de Informação https://github.com/fccoelho/curso-IRI

IRI 6: Scores, Ponderação de Termos e Modelos de Espaço Vetorial

Flávio Codeço Coelho

Escola de Matemática Aplicada, Fundação Getúlio Vargas

Sumário da Aula

- Recapitulação
- 2 Porquê Recuperação Rankeada?
- 3 Frequência do Termo
- Ponderação tf-idf
- 5 O Modelo de Espaço Vetorial

Índice invertido

Para cada termo t, armazenamos uma lista de documentos que contém t.

:

dicionário

"postings"

os

Brutus
$$\longrightarrow$$
 1 \longrightarrow 2 \longrightarrow 4 \longrightarrow 11 \longrightarrow 31 \longrightarrow 45 \longrightarrow 173 \longrightarrow 174

Calpurnia \longrightarrow 2 \longrightarrow 31 \longrightarrow 54 \longrightarrow 101

Interseção \Longrightarrow

Brutus
$$\longrightarrow$$
 1 \longrightarrow 2 \longrightarrow 45 \longrightarrow 174 Calpurnia \longrightarrow 2 \longrightarrow 31 \longrightarrow 54 \longrightarrow 101 Interseção \Longrightarrow

Brutus
$$\longrightarrow$$
 1 \longrightarrow 2 \longrightarrow 45 \longrightarrow 173 \longrightarrow 174

Calpurnia \longrightarrow 2 \longrightarrow 31 \longrightarrow 54 \longrightarrow 101

Interseção \Longrightarrow

Brutus
$$\longrightarrow$$
 1 \longrightarrow 2 \longrightarrow 4 \longrightarrow 11 \longrightarrow 31 \longrightarrow 45 \longrightarrow 174 \bigcirc Calpurnia \longrightarrow 2 \longrightarrow 31 \longrightarrow 54 \longrightarrow 101 \bigcirc Interseção \Longrightarrow 2

Brutus
$$\longrightarrow$$
 $1 \longrightarrow 2 \longrightarrow 4 \longrightarrow 11 \longrightarrow 31 \longrightarrow 45 \longrightarrow 173 \longrightarrow 174$

Calpurnia \longrightarrow $2 \longrightarrow 31 \longrightarrow 54 \longrightarrow 101$

Interseção \Longrightarrow 2

Brutus
$$\longrightarrow$$
 1 \longrightarrow 2 \longrightarrow 4 \longrightarrow 11 \longrightarrow 31 \longrightarrow 45 \longrightarrow 173 \longrightarrow 174

Calpurnia \longrightarrow 2 \longrightarrow 31 \longrightarrow 54 \longrightarrow 101

Interseção \Longrightarrow 2

Brutus
$$\longrightarrow$$
 1 \longrightarrow 2 \longrightarrow 4 \longrightarrow 11 \longrightarrow 31 \longrightarrow 45 \longrightarrow 173 \longrightarrow 174

Calpurnia \longrightarrow 2 \longrightarrow 31 \longrightarrow 54 \longrightarrow 101

Interseção \Longrightarrow 2

Brutus
$$\longrightarrow$$
 1 \longrightarrow 2 \longrightarrow 4 \longrightarrow 11 \longrightarrow 31 \longrightarrow 45 \longrightarrow 173 \longrightarrow 174

Calpurnia \longrightarrow 2 \longrightarrow 31 \longrightarrow 54 \longrightarrow 101

Interseção \Longrightarrow 2 \longrightarrow 31

Brutus
$$\longrightarrow$$
 1 \longrightarrow 2 \longrightarrow 4 \longrightarrow 11 \longrightarrow 31 \longrightarrow 45 \longrightarrow 173 \longrightarrow 174

Calpurnia \longrightarrow 2 \longrightarrow 31 \longrightarrow 54 \longrightarrow 101

Interseção \Longrightarrow 2 \longrightarrow 31

Brutus
$$\longrightarrow$$
 1 \longrightarrow 2 \longrightarrow 4 \longrightarrow 11 \longrightarrow 31 \longrightarrow 45 \longrightarrow 173 \longrightarrow 174

Calpurnia \longrightarrow 2 \longrightarrow 31

Interseção \Longrightarrow 2 \longrightarrow 31

Brutus
$$\longrightarrow$$
 1 \longrightarrow 2 \longrightarrow 4 \longrightarrow 11 \longrightarrow 31 \longrightarrow 45 \longrightarrow 173 \longrightarrow 174

Calpurnia \longrightarrow 2 \longrightarrow 31

Interseção \Longrightarrow 2 \longrightarrow 31

Construindo um índice invertido: Ordenando postings

termo	docID		term	docID
1	1		ambitio	us 2
did	1		be	2
enact	1		brutus	1
julius	1		brutus	2
caesar	1		capitol	1
1	1		caesar	1
was	1		caesar	2
killed	1		caesar	2 1
i'	1		did	
the	1		enact	1
capitol	1		hath	1
brutus	1		1	1
killed	1		1	1
me	1	\Longrightarrow	i'	1
so	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		it	2
let	2		julius	1
it	2		killed	1
be	2		killed	1
with	2		let	2
caesar	2		me	1
the	2		noble	2
noble	2		SO	2
brutus	2		the	1
hath	2		the	2
told	2		told	2
you	2		you	2
caesar	2		was	1
was			was	2
ambitio	us 2		with	2

O Google usa o modelo Booleano?

- No Google, a interpretação default de uma consulta [w₁ w₂ ... w_n] é w₁ AND w₂ AND ... AND w_n
- Casos onde há "hits" mas não contêm um dos w_i:
 - Texto âncora
 - Página contém variante de w_i (morfologia, correção ortográfica, sinônimo)
 - Consultas longas (n grande)
 - Expressão booleana gera poucos "hits"
- Recuperação Booleana simples vs. Rankeamento dos resultados
 - Recuperação Booleana simples retorna os documentos sem um ordenamento significativo.
 - O Google (e a maioria das máquinas booleanas bem projetadas) rankeiam os resultados – os melhores "hits" hits (de acordo com alguma estatísticade relevância) aparecem mais altos do que os "hits" piores.

Distinção entre Tipos e Tokens

- Token Instância de palavra ou termo ocorrendo em um documento
- Tipo Uma classe de equivalência de tokens
- In June, the dog likes to chase the cat in the barn.
- 12 tokens, 9 tipos

Problemas com Tokenização

- Quais são os delimitadores? espaço? apóstrofe? hífen?
- Para cada um destes: às vezes eles delimitam, às vezes não.
- Muitas líguas não possuem espaços! (por ex., Chinês)
- Não há espaços e palavras compostas em Holandês, Alemão e Sueco (Lebensversicherungsgesellschaftsangestellter)

Problemas com Classes de Equivalência

- Um termo é uma classe de equivalencia de tokens.
- Como definimos classes de equivalência?
- Numeros (3/20/91 vs. 20/3/91)
- Capitalização
- "Stemming", Porter stemmer
- Análise morfológica : infleccional vs. derivacional
- Classes de equivalência para múltiplas línguas?
 - Morfologias mais complexas:
 - Finlandês: um único verbo pode ter 12,000 formas diferentes!!
 - Acentos, etc.

Índices Posicionais

- Listas de "postings" em um índice não posicional: cada "posting" é apenas um docID
- Listas de "postings" em um índice posicional: cada "posting" é um docID e uma lista de posições
- Exemplo: "to₁ be₂ or₃ not₄ to₅ be₆"

```
TO, 993427:

$\langle 1: \langle 7, 18, 33, 72, 86, 231 \rangle;
2: \langle 1, 17, 74, 222, 255 \rangle;
4: \langle 8, 16, 190, 429, 433 \rangle;
5: \langle 363, 367 \rangle;
7: \langle 13, 23, 191 \rangle; \ldots \rangle$

BE, 178239:

$\langle 1: \langle 17, 25 \rangle;
4: \langle 17, 191, 291, 430, 434 \rangle;
5: \langle 14, 19, 101 \rangle; \ldots \rangle$
```

Documento 4 não é um resultado!

Índices Posicionais

- Com um índice posicional, podemos responder
 - Consultas por frases
 - Consultas por proximidade

 Rankeamento dos resultados da busca: por que é importante (em comparação com apresentar um conjunto desordenado de resultados Booleanos)

- Rankeamento dos resultados da busca: por que é importante (em comparação com apresentar um conjunto desordenado de resultados Booleanos)
- Frequência do termo: Ingrediente chave do ranqueamento

- Rankeamento dos resultados da busca: por que é importante (em comparação com apresentar um conjunto desordenado de resultados Booleanos)
- Frequência do termo: Ingrediente chave do ranqueamento
- Rankeamento por Tf-idf: Melhor rankeamento tradicional.

- Rankeamento dos resultados da busca: por que é importante (em comparação com apresentar um conjunto desordenado de resultados Booleanos)
- Frequência do termo: Ingrediente chave do ranqueamento
- Rankeamento por Tf-idf: Melhor rankeamento tradicional.
- Modelo de espaço vetorial: Um dos mais importantes modelos para recuperação de informação, juntamente com o modelo Booleano e o probabiliístico

• Até agora, nossas consultas têm sido Booleanas.

- Até agora, nossas consultas têm sido Booleanas.
 - Documentos possuem ou n\u00e3o os termos.

- Até agora, nossas consultas têm sido Booleanas.
 - Documentos possuem ou n\u00e3o os termos.
- Bom para usuários especialistas com um conhecimento preciso de suas necessidades e da coleção.

- Até agora, nossas consultas têm sido Booleanas.
 - Documentos possuem ou n\u00e3o os termos.
- Bom para usuários especialistas com um conhecimento preciso de suas necessidades e da coleção.
- Também é bom para aplicações: Aplicações podem consumir milhares de resultados.

- Até agora, nossas consultas têm sido Booleanas.
 - Documentos possuem ou n\u00e3o os termos.
- Bom para usuários especialistas com um conhecimento preciso de suas necessidades e da coleção.
- Também é bom para aplicações: Aplicações podem consumir milhares de resultados.
- Não é bom para a maioria dos usuários

- Até agora, nossas consultas têm sido Booleanas.
 - Documentos possuem ou n\u00e3o os termos.
- Bom para usuários especialistas com um conhecimento preciso de suas necessidades e da coleção.
- Também é bom para aplicações: Aplicações podem consumir milhares de resultados.
- Não é bom para a maioria dos usuários
- A maioria dos usuários não é capaz de escrever consultas booleanas...

- Até agora, nossas consultas têm sido Booleanas.
 - Documentos possuem ou n\u00e3o os termos.
- Bom para usuários especialistas com um conhecimento preciso de suas necessidades e da coleção.
- Também é bom para aplicações: Aplicações podem consumir milhares de resultados.
- Não é bom para a maioria dos usuários
- A maioria dos usuários não é capaz de escrever consultas booleanas...
 - ...ou até são, mas acham que dá muito trabalho.

- Até agora, nossas consultas têm sido Booleanas.
 - Documentos possuem ou n\u00e3o os termos.
- Bom para usuários especialistas com um conhecimento preciso de suas necessidades e da coleção.
- Também é bom para aplicações: Aplicações podem consumir milhares de resultados.
- Não é bom para a maioria dos usuários
- A maioria dos usuários não é capaz de escrever consultas booleanas...
 - ...ou até são, mas acham que dá muito trabalho.
- A maioria dos usuários não quer inspecionar milhares de resultados.

- Até agora, nossas consultas têm sido Booleanas.
 - Documentos possuem ou n\u00e3o os termos.
- Bom para usuários especialistas com um conhecimento preciso de suas necessidades e da coleção.
- Também é bom para aplicações: Aplicações podem consumir milhares de resultados.
- Não é bom para a maioria dos usuários
- A maioria dos usuários não é capaz de escrever consultas booleanas...
 - ...ou até são, mas acham que dá muito trabalho.
- A maioria dos usuários não quer inspecionar milhares de resultados.
- Isto é particularmente verdadeiro para buscas na Web.

Problema com a busca Booleana: Banquete ou fome

Problema com a busca Booleana: Banquete ou fome

 Consultas Booleanas frequentemente resultam em demasiados ou muito poucos resultados.

Problema com a busca Booleana: Banquete ou fome

- Consultas Booleanas frequentemente resultam em demasiados ou muito poucos resultados.
- Com Consultas Booleanas, é preciso muita habilidade para produzir uma consulta que retorne um número razoável de "hits".

 Com ranqueamento, grandes conjuntos de resultados não são um problema.

- Com ranqueamento, grandes conjuntos de resultados não são um problema.
- Basta mostrar os 10 melhores

- Com ranqueamento, grandes conjuntos de resultados não são um problema.
- Basta mostrar os 10 melhores
- Não sobrecarrega os usuários

- Com ranqueamento, grandes conjuntos de resultados não são um problema.
- Basta mostrar os 10 melhores
- Não sobrecarrega os usuários
- Premissa: O rankeamento funciona: Resultados mais relevantes são posicionados acima de menos relevantes.

 Queremos rankear documentos mais relevamtes acima de documentos menos relevantes.

- Queremos rankear documentos mais relevamtes acima de documentos menos relevantes.
- Como fazer isso para uma dada consulta?

- Queremos rankear documentos mais relevamtes acima de documentos menos relevantes.
- Como fazer isso para uma dada consulta?
- Dê um escore a cada para consulta-documento, no intervalo [0, 1].

- Queremos rankear documentos mais relevamtes acima de documentos menos relevantes.
- Como fazer isso para uma dada consulta?
- Dê um escore a cada para consulta-documento, no intervalo [0, 1].
- Este escore mede a qualidade da correspondência consulta-documento.

• Como computar o escore de um par consulta-documento?

- Como computar o escore de um par consulta-documento?
- Vamos começar com uma consulta de um termo.

- Como computar o escore de um par consulta-documento?
- Vamos começar com uma consulta de um termo.
- Se o termo da consulta n\u00e3o ocorre no documento: Escore deve ser 0.

- Como computar o escore de um par consulta-documento?
- Vamos começar com uma consulta de um termo.
- Se o termo da consulta n\u00e3o ocorre no documento: Escore deve ser 0.
- Quanto mais frequente o termo de consulta ocorre no documento, maior deve ser o escore.

- Como computar o escore de um par consulta-documento?
- Vamos começar com uma consulta de um termo.
- Se o termo da consulta n\u00e3o ocorre no documento: Escore deve ser 0.
- Quanto mais frequente o termo de consulta ocorre no documento, maior deve ser o escore.
- Como fazer isso?

 Uma medida comumente utilizada para medir interseção de conjuntos

- Uma medida comumente utilizada para medir interseção de conjuntos
- Sejam A e B dois conjuntos

- Uma medida comumente utilizada para medir interseção de conjuntos
- Sejam A e B dois conjuntos
- Coeficiente de Jaccard:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

$$(A \neq \emptyset \text{ or } B \neq \emptyset)$$

- Uma medida comumente utilizada para medir interseção de conjuntos
- Sejam A e B dois conjuntos
- Coeficiente de Jaccard:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

$$(A \neq \emptyset \text{ or } B \neq \emptyset)$$

• JACCARD(A, A) = 1

- Uma medida comumente utilizada para medir interseção de conjuntos
- Sejam A e B dois conjuntos
- Coeficiente de Jaccard:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

$$(A \neq \emptyset \text{ or } B \neq \emptyset)$$

- JACCARD(A, A) = 1
- JACCARD(A, B) = 0 se $A \cap B = 0$

- Uma medida comumente utilizada para medir interseção de conjuntos
- Sejam A e B dois conjuntos
- Coeficiente de Jaccard:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

$$(A \neq \emptyset \text{ or } B \neq \emptyset)$$

- JACCARD(A, A) = 1
- JACCARD(A, B) = 0 se $A \cap B = 0$
- A e B não têm que ter o mesmo tamanho.

- Uma medida comumente utilizada para medir interseção de conjuntos
- Sejam A e B dois conjuntos
- Coeficiente de Jaccard:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

$$(A \neq \emptyset \text{ or } B \neq \emptyset)$$

- JACCARD(A, A) = 1
- JACCARD(A, B) = 0 se $A \cap B = 0$
- A e B não têm que ter o mesmo tamanho.
- Sempre assume valores entre 0 e 1.

 Qual o escorede correspondência consulta-documento dado pelo coef. de Jaccard para:

- Qual o escorede correspondência consulta-documento dado pelo coef. de Jaccard para:
 - Consulta: "ides of March"

- Qual o escorede correspondência consulta-documento dado pelo coef. de Jaccard para:
 - Consulta: "ides of March"
 - Documento "Caesar died in March"

- Qual o escorede correspondência consulta-documento dado pelo coef. de Jaccard para:
 - Consulta: "ides of March"
 - Documento "Caesar died in March"
 - JACCARD(q, d) = 1/6

• Não considera a frequência do termo

- Não considera a frequência do termo
- Termos raros geralmente são mais informativos que termos frequentes. Jaccard não considera esta informação.

- Não considera a frequência do termo
- Termos raros geralmente são mais informativos que termos frequentes. Jaccard não considera esta informação.
- Precisamos de uma maneira mais sofisticada de normalizar pelo comprimento do documento.

- Não considera a frequência do termo
- Termos raros geralmente são mais informativos que termos frequentes. Jaccard não considera esta informação.
- Precisamos de uma maneira mais sofisticada de normalizar pelo comprimento do documento.
- Mais tarde usaremos $|A \cap B|/\sqrt{|A \cup B|}$ (cosseno) . . .

O que há de errado com Jaccard?

- Não considera a frequência do termo
- Termos raros geralmente são mais informativos que termos frequentes. Jaccard não considera esta informação.
- Precisamos de uma maneira mais sofisticada de normalizar pelo comprimento do documento.
- Mais tarde usaremos $|A \cap B|/\sqrt{|A \cup B|}$ (cosseno) . . .
- ... ao invés de $|A \cap B|/|A \cup B|$ (Jaccard) para normalização de comprimento.

Matriz de Incidência Binária

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
CLEOPATRA	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

. . .

Cada documento é representado como um vetor binário $\in \{0,1\}^{|V|}.$

Matriz de Incidência Binária

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
CLEOPATRA	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

. . .

Cada documento é representado como um vetor binário $\in \{0,1\}^{|V|}$.

Matriz de Contagem

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Anthony	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
Caesar	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
CLEOPATRA	57	0	0	0	0	0	
MERCY	2	0	3	8	5	8	
WORSER	2	0	1	1	1	5	

. . .

Cada Documento é agora representado como um vetor de contagem $\in \mathbb{N}^{|V|}$.

Matriz de Contagem

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Anthony	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
Caesar	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
CLEOPATRA	57	0	0	0	0	0	
MERCY	2	0	3	8	5	8	
WORSER	2	0	1	1	1	5	

. . .

Cada Documento é agora representado como um vetor de contagem $\in \mathbb{N}^{|V|}$.

• Não consideramos a ordem das palavras em um documento.

- Não consideramos a ordem das palavras em um documento.
- John is quicker than Mary e Mary is quicker than John são representados da mesma forma.

- Não consideramos a ordem das palavras em um documento.
- John is quicker than Mary e Mary is quicker than John são representados da mesma forma.
- Isto se chama um modelo de saco de palavras.

- Não consideramos a ordem das palavras em um documento.
- John is quicker than Mary e Mary is quicker than John são representados da mesma forma.
- Isto se chama um modelo de saco de palavras.
- De certa maneira é um passo atrás: O índice positional era capaz de distinguir estes dois documentos.

- Não consideramos a ordem das palavras em um documento.
- John is quicker than Mary e Mary is quicker than John são representados da mesma forma.
- Isto se chama um modelo de saco de palavras.
- De certa maneira é um passo atrás: O índice positional era capaz de distinguir estes dois documentos.
- Vamos ver como "recuperar" a informação positional mais tarde.

- Não consideramos a ordem das palavras em um documento.
- John is quicker than Mary e Mary is quicker than John são representados da mesma forma.
- Isto se chama um modelo de saco de palavras.
- De certa maneira é um passo atrás: O índice positional era capaz de distinguir estes dois documentos.
- Vamos ver como "recuperar" a informação positional mais tarde.
- Por agora: Modelo do saco de palavras

• TA frequência $tf_{t,d}$ do termo t no documento d é definida como o número de vezes que t ocorre em d.

- TA frequência tf_{t,d} do termo t no documento d é definida como o número de vezes que t ocorre em d.
- Queremos usar tf ao comput escores de correspondência consulta-documento.

- TA frequência tf_{t,d} do termo t no documento d é definida como o número de vezes que t ocorre em d.
- Queremos usar tf ao comput escores de correspondência consulta-documento.
- Mas como?

- TA frequência $tf_{t,d}$ do termo t no documento d é definida como o número de vezes que t ocorre em d.
- Queremos usar tf ao comput escores de correspondência consulta-documento.
- Mas como?
- Frequência absoluta dos tesmos não é o que queremos pois:

- TA frequência tf_{t,d} do termo t no documento d é definida como o número de vezes que t ocorre em d.
- Queremos usar tf ao comput escores de correspondência consulta-documento.
- Mas como?
- Frequência absoluta dos tesmos não é o que queremos pois:
- Um documento com tf = 10 ocorrências do termo é mais relevante do que um documento com tf = 1 ocorrência do termo.

- TA frequência tf_{t,d} do termo t no documento d é definida como o número de vezes que t ocorre em d.
- Queremos usar tf ao comput escores de correspondência consulta-documento.
- Mas como?
- Frequência absoluta dos tesmos não é o que queremos pois:
- Um documento com tf = 10 ocorrências do termo é mais relevante do que um documento com tf = 1 ocorrência do termo.
- Mas não 10 vezes mais relevante.

- TA frequência tf_{t,d} do termo t no documento d é definida como o número de vezes que t ocorre em d.
- Queremos usar tf ao comput escores de correspondência consulta-documento.
- Mas como?
- Frequência absoluta dos tesmos não é o que queremos pois:
- Um documento com tf = 10 ocorrências do termo é mais relevante do que um documento com tf = 1 ocorrência do termo.
- Mas não 10 vezes mais relevante.
- A Relevância não aumenta em proporção com a frequência do termo.

- TA frequência tf_{t,d} do termo t no documento d é definida como o número de vezes que t ocorre em d.
- Queremos usar tf ao comput escores de correspondência consulta-documento.
- Mas como?
- Frequência absoluta dos tesmos não é o que queremos pois:
- Um documento com tf = 10 ocorrências do termo é mais relevante do que um documento com tf = 1 ocorrência do termo.
- Mas não 10 vezes mais relevante.
- A Relevância não aumenta em proporção com a frequência do termo.

- TA frequência tf_{t,d} do termo t no documento d é definida como o número de vezes que t ocorre em d.
- Queremos usar tf ao comput escores de correspondência consulta-documento.
- Mas como?
- Frequência absoluta dos tesmos não é o que queremos pois:
- Um documento com tf = 10 ocorrências do termo é mais relevante do que um documento com tf = 1 ocorrência do termo.
- Mas não 10 vezes mais relevante.
- A Relevância não aumenta em proporção com a frequência do termo.

• O peso *log* da frequência do termo *t* em *d* é definido como

$$\mathbf{w}_{t,d} = \left\{ egin{array}{ll} 1 + \log_{10} \mathrm{tf}_{t,d} & \mathrm{se} \ \mathrm{tf}_{t,d} > 0 \ 0 & \mathrm{caso} \ \mathrm{contrário} \end{array}
ight.$$

• O peso *log* da frequência do termo *t* em *d* é definido como

$$\mathbf{w}_{t,d} = \left\{ \begin{array}{ll} 1 + \log_{10} \mathsf{tf}_{t,d} & \mathsf{se} \ \mathsf{tf}_{t,d} > 0 \\ 0 & \mathsf{caso} \ \mathsf{contrário} \end{array} \right.$$

• $\mathsf{tf}_{t,d} o \mathsf{w}_{t,d}$: $0 o 0, \ 1 o 1, \ 2 o 1.3, \ 10 o 2, \ 1000 o 4, \ \mathsf{etc.}$

• O peso *log* da frequência do termo *t* em *d* é definido como

$$\mathbf{w}_{t,d} = \left\{ egin{array}{ll} 1 + \log_{10} \mathrm{tf}_{t,d} & \mathrm{se} \ \mathrm{tf}_{t,d} > 0 \ 0 & \mathrm{caso} \ \mathrm{contrário} \end{array}
ight.$$

- $\mathsf{tf}_{t,d} \to \mathsf{w}_{t,d}$: $0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4, \text{ etc.}$
- Escore de um par consulta-documento: Soma sobre os termos t em q e d: escore $tf(q,d) = \sum_{t \in q \cap d} (1 + \log tf_{t,d})$

• O peso *log* da frequência do termo *t* em *d* é definido como

$$\mathbf{w}_{t,d} = \left\{ egin{array}{ll} 1 + \log_{10} \mathrm{tf}_{t,d} & \mathrm{se} \ \mathrm{tf}_{t,d} > 0 \ 0 & \mathrm{caso} \ \mathrm{contrário} \end{array}
ight.$$

- $\mathsf{tf}_{t,d} \to \mathsf{w}_{t,d}$: $0 \to 0, \ 1 \to 1, \ 2 \to 1.3, \ 10 \to 2, \ 1000 \to 4, \ \mathsf{etc.}$
- Escore de um par consulta-documento: Soma sobre os termos t em q e d: escore $tf(q,d) = \sum_{t \in q \cap d} (1 + \log tf_{t,d})$
- O escore é 0 se nenhum dos termos de consulta está presente no documento.

Exercício

- Compute o escore de correspondência de Jaccard e o peso de correspondência tf para os seguintes pares consulta-documento.
- q: [informação sobre carros] d: "Tudo que você sempre quis saber sobre carros"
- q: [informação sobre carros] d: "Informação sobre caminhões, informação sobre aviões, informação sobre trens"
- q: [carros vermelhos e caminhões vermelhos] d: "Policiais param carros vermelhos com mais frequência"

Frequência no documento vs. frequência na coleção

Frequência no documento vs. frequência na coleção

Além da frequência do termo (sua frequência no documento)
 ...

Frequência no documento vs. frequência na coleção

- Além da frequência do termo (sua frequência no documento)
 ...
- ...também queremos usar a frequência do termo na coleção Para rankear e ponderar.

• Termos raros são mais informativos do que termos frequentes.

- Termos raros são mais informativos do que termos frequentes.
- Considere um termo em uma consulta que é raro na coleção (p.ex., ARACNOCÊNTRICO).

- Termos raros são mais informativos do que termos frequentes.
- Considere um termo em uma consulta que é raro na coleção (p.ex., ARACNOCÊNTRICO).
- Um documento contendo este termo tem grandes chances de ser relevante.

- Termos raros são mais informativos do que termos frequentes.
- Considere um termo em uma consulta que é raro na coleção (p.ex., ARACNOCÊNTRICO).
- Um documento contendo este termo tem grandes chances de ser relevante.
- → Queremos Pesos altos para termos raros como ARACNOCÊNTRICO.

Peso desejado para termos frequentes

 Termos frequentes s\u00e3o menos informativos do que termos raros.

- Termos frequentes s\u00e3o menos informativos do que termos raros.
- Considere um termo na consulta, que é frequente na coleção (p.ex., BOM, AUMENTA, LINHA).

- Termos frequentes s\(\tilde{a}\)o menos informativos do que termos raros.
- Considere um termo na consulta, que é frequente na coleção (p.ex., BOM, AUMENTA, LINHA).
- Um documento contendo estes termos tem mais chances de ser relevante do que um documento que não os contenha...

- Termos frequentes s\(\tilde{a}\)o menos informativos do que termos raros.
- Considere um termo na consulta, que é frequente na coleção (p.ex., BOM, AUMENTA, LINHA).
- Um documento contendo estes termos tem mais chances de ser relevante do que um documento que não os contenha...
- ... mas palavras como BOM, AUMENTA e LINHA Não são indicadores garantidos de relevância.

- Termos frequentes s\(\tilde{a}\)o menos informativos do que termos raros.
- Considere um termo na consulta, que é frequente na coleção (p.ex., BOM, AUMENTA, LINHA).
- Um documento contendo estes termos tem mais chances de ser relevante do que um documento que não os contenha...
- ... mas palavras como BOM, AUMENTA e LINHA Não são indicadores garantidos de relevância.
- ullet \to Para termos frequentes como BOM, AUMENTA, and LINHA, queremos pesos positivos . . .

- Termos frequentes s\(\tilde{a}\)o menos informativos do que termos raros.
- Considere um termo na consulta, que é frequente na coleção (p.ex., BOM, AUMENTA, LINHA).
- Um documento contendo estes termos tem mais chances de ser relevante do que um documento que não os contenha...
- ... mas palavras como BOM, AUMENTA e LINHA Não são indicadores garantidos de relevância.
- → Para termos frequentes como BOM, AUMENTA, and LINHA, queremos pesos positivos . . .
- ... mas pesos mais baixos que os de termos raros.

Frequência de Documento

- Queremos pesos altos para termos raros como ARACNOCÊNTRICO.
- Queremos baixos pesos positivos para termos frequentes como BOM, AUMENTA, and LINHA.

Frequência de Documento

- Queremos pesos altos para termos raros como ARACNOCÊNTRICO.
- Queremos baixos pesos positivos para termos frequentes como BOM, AUMENTA, and LINHA.
- Usaremos a frequência de documento para incluir isto no cálculo do escore de correspondência.

Frequência de Documento

- Queremos pesos altos para termos raros como ARACNOCÊNTRICO.
- Queremos baixos pesos positivos para termos frequentes como BOM, AUMENTA, and LINHA.
- Usaremos a frequência de documento para incluir isto no cálculo do escore de correspondência.
- TA frequência de documento é o número de documentos na coleção em que o termo ocorre.

• df_t é a frequência de documento, o número de documentos em que t ocorre.

- df_t é a frequência de documento, o número de documentos em que t ocorre.
- \bullet df_t é uma medida inversa da informatividade do termo t.

- df_t é a frequência de documento, o número de documentos em que t ocorre.
- df_t é uma medida inversa da informatividade do termo t.
- Definimos idf de um termo t da seguinte maneira:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

(N é o número de documentos na coleção.)

- df_t é a frequência de documento, o número de documentos em que t ocorre.
- \bullet df_t é uma medida inversa da informatividade do termo t.
- Definimos idf de um termo t da seguinte maneira:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

(N é o número de documentos na coleção.)

 \bullet idf_t é uma medida da informatividade do termo.

- df_t é a frequência de documento, o número de documentos em que t ocorre.
- \bullet df_t é uma medida inversa da informatividade do termo t.
- Definimos idf de um termo t da seguinte maneira:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

(N é o número de documentos na coleção.)

- idf_t é uma medida da informatividade do termo.
- $[\log N/\mathrm{df}_t]$ ao invés de $[N/\mathrm{df}_t]$ para "atenuar" o efeito de idf

- df_t é a frequência de documento, o número de documentos em que t ocorre.
- \bullet df_t é uma medida inversa da informatividade do termo t.
- Definimos idf de um termo t da seguinte maneira:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

(N é o número de documentos na coleção.)

- \bullet idf_t é uma medida da informatividade do termo.
- $[\log N/\mathrm{df}_t]$ ao invés de $[N/\mathrm{df}_t]$ para "atenuar" o efeito de idf
- Note que usamos a transformação log para ambas as frequências: termo e documento.

Calcule idf_t usando a fórmula the formula: $\mathrm{idf}_t = \log_{10} \frac{1,000,000}{\mathrm{df}_t}$

term	df _t	idf _t
calpurnia	1	
animal	100	
sunday	1000	
fly	10,000	
under	100,000	
the	1,000,000	

Calcule idf_t usando a fórmula the formula: $\mathrm{idf}_t = \log_{10} \frac{1,000,000}{\mathrm{df}_t}$

term	df _t	idf _t
calpurnia	1	
animal	100	
sunday	1000	
fly	10,000	
under	100,000	
the	1,000,000	

Calcule idf_t usando a fórmula the formula: $\mathrm{idf}_t = \log_{10} \frac{1,000,000}{\mathrm{df}_t}$

term	df _t	idf_t
calpurnia	1	6
animal	100	4
sunday	1000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

• idf afeta o rankeamento de documentos para consultas com pelo menos dois termos.

- idf afeta o rankeamento de documentos para consultas com pelo menos dois termos.
- Por exemplo, na consulta "aracnocêntric linha", a ponderação por idf aumenta o peso relativo de ARACNOCÊNTRICO e diminui o peso relativo de LINHA.

- idf afeta o rankeamento de documentos para consultas com pelo menos dois termos.
- Por exemplo, na consulta "aracnocêntric linha", a ponderação por idf aumenta o peso relativo de ARACNOCÊNTRICO e diminui o peso relativo de LINHA.
- idf tem pouco efeito no rankeamento consultas de um único termo.

palavra	frequência na coleção	frequência de documentos
SEGURO	10440	3997
TENTAR	10422	8760

- Frequência na coleção de t: número de tokens t na coleção
- frequência de documentos de t: números de documentos em que t ocorre

palavra	frequência na coleção	frequência de documentos
SEGURO	10440	3997
TENTAR	10422	8760

- Frequência na coleção de t: número de tokens t na coleção
- frequência de documentos de t: números de documentos em que t ocorre
- Porque estes números?

palavra	frequência na coleção	frequência de documentos
SEGURO	10440	3997
TENTAR	10422	8760

- Frequência na coleção de t: número de tokens t na coleção
- frequência de documentos de t: números de documentos em que t ocorre
- Porque estes números?
- Qual palavra é um melhor termo de busca (e deveria receber o maior peso)?

palavra	frequência na coleção	frequência de documentos
SEGURO	10440	3997
TENTAR	10422	8760

- Frequência na coleção de t: número de tokens t na coleção
- frequência de documentos de t: números de documentos em que t ocorre
- Porque estes números?
- Qual palavra é um melhor termo de busca (e deveria receber o maior peso)?
- Este exemplo sugere que df (e idf) são melhores para ponderação do que cf (e "icf").

 A ponderação por tf-idf de um termo é o produto de seu tf e seu idf.

 A ponderação por tf-idf de um termo é o produto de seu tf e seu idf.

•

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

 A ponderação por tf-idf de um termo é o produto de seu tf e seu idf.

•

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

tf

 A ponderação por tf-idf de um termo é o produto de seu tf e seu idf.

•

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

idf

 A ponderação por tf-idf de um termo é o produto de seu tf e seu idf.

•

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

 Melhor esquema conhecido de ponderação em recuperação de informação

 A ponderação por tf-idf de um termo é o produto de seu tf e seu idf.

•

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

- Melhor esquema conhecido de ponderação em recuperação de informação
- Note: O "-" em tf-idf is a hyphen, não um sinal de subtração!

 A ponderação por tf-idf de um termo é o produto de seu tf e seu idf.

•

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

- Melhor esquema conhecido de ponderação em recuperação de informação
- Note: O "-" em tf-idf is a hyphen, não um sinal de subtração!
- Outros nomes: tf.idf, tf x idf

• Atribuir um peso tf-idf para cada termo t em cada documento d: $w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$

- Atribuir um peso tf-idf para cada termo t em cada documento d: $w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$
- O peso tf-idf ...

- Atribuir um peso tf-idf para cada termo t em cada documento d: $w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_{t}}$
- O peso tf-idf ...
 - ... Aumenta com o número de ocorrências dentro de um documento. (frequência do termo)

- Atribuir um peso tf-idf para cada termo t em cada documento d: $w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$
- O peso tf-idf ...
 - ... Aumenta com o número de ocorrências dentro de um documento. (frequência do termo)
 - ... Aumenta com a raridade do termo na coleção. (frequência inversa de documentos)

Exercício: Frequência de Termo, Coleção and Documento

Grandeza	Símbolo	Definição
frequência do termo	$tf_{t,d}$	número de ocorrências de t in
		d
frequência de documentos	df_t	número de documentos na
		coleção em que t ocorre
frequência na coleção	cf_t	número total de ocorrências de
		t na coleção

- Relação entre df e cf?
- Relação entre tf e cf?
- Relação entre tf e df?

Matriz de Incidência Binária

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

. . .

Cada documento é representado como um vetor binário $\in \{0,1\}^{|V|}$.

Matriz de Contagem

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Anthony	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
Caesar	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
CLEOPATRA	57	0	0	0	0	0	
MERCY	2	0	3	8	5	8	
WORSER	2	0	1	1	1	5	

. . .

Cada Documento é agora representado como um vetor de contagem $\in \mathbb{N}^{|V|}$.

$\mathsf{Matriz}\ \mathsf{Bin\'{a}ria} \to \mathsf{Contagem} \to \mathsf{Pesos}$

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
Anthony	5.25	3.18	0.0	0.0	0.0	0.35	
Brutus	1.21	6.10	0.0	1.0	0.0	0.0	
Caesar	8.59	2.54	0.0	1.51	0.25	0.0	
Calpurnia	0.0	1.54	0.0	0.0	0.0	0.0	
CLEOPATRA	2.85	0.0	0.0	0.0	0.0	0.0	
MERCY	1.51	0.0	1.90	0.12	5.25	0.88	
WORSER	1.37	0.0	0.11	4.15	0.25	1.95	

. . .

Cada documento agora é representado como um vetor real de pesos tf-idf $\in \mathbb{R}^{|V|}$.

$\mathsf{Matriz}\ \mathsf{Bin\acute{a}ria} \to \mathsf{Contagem} \to \mathsf{Pesos}$

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Anthony	5.25	3.18	0.0	0.0	0.0	0.35	
Brutus	1.21	6.10	0.0	1.0	0.0	0.0	
Caesar	8.59	2.54	0.0	1.51	0.25	0.0	
Calpurnia	0.0	1.54	0.0	0.0	0.0	0.0	
CLEOPATRA	2.85	0.0	0.0	0.0	0.0	0.0	
MERCY	1.51	0.0	1.90	0.12	5.25	0.88	
WORSER	1.37	0.0	0.11	4.15	0.25	1.95	

. . .

Cada documento agora é representado como um vetor real de pesos tf-idf $\in \mathbb{R}^{|V|}$.

• Cada documento é agora representado como um vetor real de pesos tf-idf $\in \mathbb{R}^{|V|}$.

- Cada documento é agora representado como um vetor real de pesos tf-idf $\in \mathbb{R}^{|V|}$.
- Então agora temos um espaço vetorial |V|-dimensional.

- Cada documento é agora representado como um vetor real de pesos tf-idf $\in \mathbb{R}^{|V|}$.
- ullet Então agora temos um espaço vetorial |V|-dimensional.
- Os termos são os eixos do espaço.

- Cada documento é agora representado como um vetor real de pesos tf-idf $\in \mathbb{R}^{|V|}$.
- ullet Então agora temos um espaço vetorial |V|-dimensional.
- Os termos são os eixos do espaço.
- os documentos são pontos ou vetores neste espaço.

- Cada documento é agora representado como um vetor real de pesos tf-idf $\in \mathbb{R}^{|V|}$.
- ullet Então agora temos um espaço vetorial |V|-dimensional.
- Os termos são os eixos do espaço.
- os documentos são pontos ou vetores neste espaço.
- Dimensionalidade muito alta: dezenas de milhões de dimensões quando aplica-se isto a máquinas de busca para a web

- Cada documento é agora representado como um vetor real de pesos tf-idf $\in \mathbb{R}^{|V|}$.
- Então agora temos um espaço vetorial |V|-dimensional.
- Os termos são os eixos do espaço.
- os documentos são pontos ou vetores neste espaço.
- Dimensionalidade muito alta: dezenas de milhões de dimensões quando aplica-se isto a máquinas de busca para a web
- Cada vetor é extremamente esparso a maioria dos valores são zero.

• Idéia chave 1: faça os mesmo para as consultas: represente-as como vetores neste espaço multi-dimensional

- Idéia chave 1: faça os mesmo para as consultas: represente-as como vetores neste espaço multi-dimensional
- Idéia chave 2: Rankeie os documentos de acordo com sua proximidade à consulta.

- Idéia chave 1: faça os mesmo para as consultas: represente-as como vetores neste espaço multi-dimensional
- Idéia chave 2: Rankeie os documentos de acordo com sua proximidade à consulta.
- proximidade= similaridade

- Idéia chave 1: faça os mesmo para as consultas: represente-as como vetores neste espaço multi-dimensional
- Idéia chave 2: Rankeie os documentos de acordo com sua proximidade à consulta.
- proximidade= similaridade
- proximidade ≈ distância negativa

- Idéia chave 1: faça os mesmo para as consultas: represente-as como vetores neste espaço multi-dimensional
- Idéia chave 2: Rankeie os documentos de acordo com sua proximidade à consulta.
- proximidade= similaridade
- ullet proximidade pprox distância negativa
- Lembre-se: fazemos isso para nos afastar do tudo-ou-nada do modelo Booleano.

• Primeira tentativa: distância (negativa) entre dois pontos

- Primeira tentativa: distância (negativa) entre dois pontos
- (= distância entre as extremidades de dois vetores)

- Primeira tentativa: distância (negativa) entre dois pontos
- (= distância entre as extremidades de dois vetores)
- Distância Euclidiana?

- Primeira tentativa: distância (negativa) entre dois pontos
- (= distância entre as extremidades de dois vetores)
- Distância Euclidiana?
- Distância Euclidiana é uma má ideia . . .

- Primeira tentativa: distância (negativa) entre dois pontos
- (= distância entre as extremidades de dois vetores)
- Distância Euclidiana?
- Distância Euclidiana é uma má ideia . . .
- ... pois a distância Euclidiana é grande for vetores de comprimentos diferentes.

Porquê distância é uma má idéia

Porquê distância é uma má idéia

q: [rich poor]

d2: Rich poor gap grows ROOMs: Rooksdobaseballngaparies inv2010

A distância Euclidiana de \vec{q} e \vec{d}_2 é grande ainda que a distribuição de termos na consulta q e a distribuição de termos no documento d_2 sejam muito similares.

 Rankear documentos de acordo com o ângulo formado com a consulta

- Rankear documentos de acordo com o ângulo formado com a consulta
- Imagine: pegue um documento d e adicione-o ao final dele mesmo. chame este novo documento d'. d' é duas vezes mais longo que d.

- Rankear documentos de acordo com o ângulo formado com a consulta
- Imagine: pegue um documento d e adicione-o ao final dele mesmo. chame este novo documento d'. d' é duas vezes mais longo que d.
- "Semanticamente" d e d' têm o mesmo conteúdo.

- Rankear documentos de acordo com o ângulo formado com a consulta
- Imagine: pegue um documento d e adicione-o ao final dele mesmo. chame este novo documento d'. d' é duas vezes mais longo que d.
- "Semanticamente" d e d' têm o mesmo conteúdo.
- O ângulo entre os dois documentos é 0, correspondendo a máxima similaridade...

Usar ângulos ao invés de distâncias

- Rankear documentos de acordo com o ângulo formado com a consulta
- Imagine: pegue um documento d e adicione-o ao final dele mesmo. chame este novo documento d'. d' é duas vezes mais longo que d.
- "Semanticamente" d e d' têm o mesmo conteúdo.
- O ângulo entre os dois documentos é 0, correspondendo a máxima similaridade...
- ... Mas sua distância Euclidiana é bem grande.

• O dois conceitos a seguir são equivalentes.

- O dois conceitos a seguir são equivalentes.
 - Rankear documentos de acordo com o ângulo entre consulta e documento em ordem decrescente

- O dois conceitos a seguir são equivalentes.
 - Rankear documentos de acordo com o ângulo entre consulta e documento em ordem decrescente
 - Rankear documentos de acordo com o cosseno(query,document) em ordem crescente

- O dois conceitos a seguir são equivalentes.
 - Rankear documentos de acordo com o ângulo entre consulta e documento em ordem decrescente
 - Rankear documentos de acordo com o cosseno(query,document) em ordem crescente
- O cosseno é uma função monotonicamente decrescente do ângulo no intervalo [0°, 180°]

Como calculamos o cosseno?

- Como calculamos o cosseno?
- Um vetor poder ser normalizado com respeito ao seu comprimento, por meio da divisão de cada um de seus componentes por seu comprimento aqui usamos a norma L_2 norm: $||x||_2 = \sqrt{\sum_i x_i^2}$

- Como calculamos o cosseno?
- Um vetor poder ser normalizado com respeito ao seu comprimento, por meio da divisão de cada um de seus componentes por seu comprimento aqui usamos a norma L_2 norm: $||x||_2 = \sqrt{\sum_i x_i^2}$
- Isto mapeia os vetores na esfera unitária . . .

- Como calculamos o cosseno?
- Um vetor poder ser normalizado com respeito ao seu comprimento, por meio da divisão de cada um de seus componentes por seu comprimento aqui usamos a norma L_2 norm: $||x||_2 = \sqrt{\sum_i x_i^2}$
- Isto mapeia os vetores na esfera unitária . . .
- ullet . . . uma vez que após a normalização: $||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$

- Como calculamos o cosseno?
- Um vetor poder ser normalizado com respeito ao seu comprimento, por meio da divisão de cada um de seus componentes por seu comprimento aqui usamos a norma L_2 norm: $||x||_2 = \sqrt{\sum_i x_i^2}$
- Isto mapeia os vetores na esfera unitária . . .
- ullet . . . uma vez que após a normalização: $||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$
- Por conseguinte, documentos longos e curto têm pesos com a mesma ordem de magnitude.

- Como calculamos o cosseno?
- Um vetor poder ser normalizado com respeito ao seu comprimento, por meio da divisão de cada um de seus componentes por seu comprimento aqui usamos a norma L_2 norm: $||x||_2 = \sqrt{\sum_i x_i^2}$
- Isto mapeia os vetores na esfera unitária . . .
- ullet . . . uma vez que após a normalização: $||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$
- Por conseguinte, documentos longos e curto têm pesos com a mesma ordem de magnitude.
- Efeito nos documentos d and d' (d somado a si mesmo) do slide anterior: eles têm vetores idênticos após normalização do comprimento.

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

• q_i é o peso tf-idf do termo i na consulta.

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i é o peso tf-idf do termo i na consulta.
- d_i é o peso tf-idf do termo i no documento.

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i é o peso tf-idf do termo i na consulta.
- d_i é o peso tf-idf do termo i no documento.
- $|\vec{q}|$ e $|\vec{d}|$ são os comprimentos de \vec{q} and \vec{d} .

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i é o peso tf-idf do termo i na consulta.
- d_i é o peso tf-idf do termo i no documento.
- $|\vec{q}|$ e $|\vec{d}|$ são os comprimentos de \vec{q} and \vec{d} .
- Isto é a similaridade por cosseno entre \vec{q} e \vec{d} ou, o cosseno do ângulo entre \vec{q} e \vec{d} .

Cosseno para vetores normalizados

- Para vetores normalizados, o cosseno é equivalente ao produto interno ou produto escalar.
- $\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_i q_i \cdot d_i$
 - (se \vec{q} e \vec{d} normalizados no comprimento).

Similaridade por Cosseno Ilustrada

Similaridade por Cosseno Ilustrada

Quão similares são estas novelas?

SaS: Sense and

Sensibility

PaP: Pride and

Prejudice

WH: Wuthering

Heights

Quão similares são estas novelas?

SaS: Sense and Sensibility

PaP: Pride and

Prejudice

WH: Wuthering

Heights

frequências de termos (contagens)

termo	SaS	PaP	WH
AFFECTION	115	58	20
JEALOUS	10	7	11
GOSSIP	2	0	6
WUTHERING	0	0	38

frequências de termos (contagens)

term	SaS	PaP	WH
AFFECTION	115	58	20
JEALOUS	10	7	11
GOSSIP	2	0	6
WUTHERING	0	0	38

frequências de termos (contagens)

log da frequência

term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	115	58	20	AFFECTION	3.06	2.76	2.30
JEALOUS	10	7	11	JEALOUS	2.0	1.85	2.04
GOSSIP	2	0	6	GOSSIP	1.30	0	1.78
WUTHERING	0	0	38	WUTHERING	0	0	2.58

frequências de termos (contagens)

log da frequência

term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	115	58	20	AFFECTION	3.06	2.76	2.30
JEALOUS	10	7	11	JEALOUS	2.0	1.85	2.04
GOSSIP	2	0	6	GOSSIP	1.30	0	1.78
WUTHERING	0	0	38	WUTHERING	0	0	2.58

(Para simplificar este exemplo, não faremos ponderação por idf .)

log da frequência

term	SaS	PaP	WH
AFFECTION	3.06	2.76	2.30
JEALOUS	2.0	1.85	2.04
GOSSIP	1.30	0	1.78
WUTHERING	0	0	2.58

log da	frequê	ncia		log da frequência			
				& normal	ização p	or cosse	no
term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	3.06	2.76	2.30	AFFECTION	0.789	0.832	0.524
JEALOUS	2.0	1.85	2.04	JEALOUS	0.515	0.555	0.465
GOSSIP	1.30	0	1.78	GOSSIP	0.335	0.0	0.405
WUTHERING	0	0	2.58	WUTHERING	0.0	0.0	0.588

log da frequência	I	og da frequ	ıência	
	& nori	malização p	or cosse	no
C-C D-D WILL		C-C	D ₂ D	۱۸/

					, ,		
term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	3.06	2.76	2.30	AFFECTION	0.789	0.832	0.524
JEALOUS	2.0	1.85	2.04	JEALOUS	0.515	0.555	0.465
GOSSIP	1.30	0	1.78	GOSSIP	0.335	0.0	0.405
WUTHERING	0	0	2.58	WUTHERING	0.0	0.0	0.588

• $cos(SaS,PaP) \approx 0.789 * 0.832 + 0.515 * 0.555 + 0.335 * 0.0 + 0.0 * 0.0 \approx 0.94$.

		_	^	
log	da	frequ	Jen	cıa
. ~ 6		• 9		٠.٠

log da frequência & normalização por cosseno

term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	3.06	2.76	2.30	AFFECTION	0.789	0.832	0.524
JEALOUS	2.0	1.85	2.04	JEALOUS	0.515	0.555	0.465
GOSSIP	1.30	0	1.78	GOSSIP	0.335	0.0	0.405
WUTHERING	0	0	2.58	WUTHERING	0.0	0.0	0.588

- $cos(SaS,PaP) \approx 0.789 * 0.832 + 0.515 * 0.555 + 0.335 * 0.0 + 0.0 * 0.0 \approx 0.94$.
- $cos(SaS,WH) \approx 0.79$

		^	
IΩσ	da	frequêi	าตล
106	uu	11 cquci	icia

log da frequência & normalização por cosseno

term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	3.06	2.76	2.30	AFFECTION	0.789	0.832	0.524
JEALOUS	2.0	1.85	2.04	JEALOUS	0.515	0.555	0.465
GOSSIP	1.30	0	1.78	GOSSIP	0.335	0.0	0.405
WUTHERING	0	0	2.58	WUTHERING	0.0	0.0	0.588

- $cos(SaS,PaP) \approx 0.789 * 0.832 + 0.515 * 0.555 + 0.335 * 0.0 + 0.0 * 0.0 \approx 0.94$.
- $cos(SaS,WH) \approx 0.79$
- $cos(PaP,WH) \approx 0.69$

		_	^	
log	da	freq	uen	cıa
. ~ 6		• ٩	٠.٠.	

log da frequência & normalização por cosseno

					, ,		
term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	3.06	2.76	2.30	AFFECTION	0.789	0.832	0.524
JEALOUS	2.0	1.85	2.04	JEALOUS	0.515	0.555	0.465
GOSSIP	1.30	0	1.78	GOSSIP	0.335	0.0	0.405
WUTHERING	0	0	2.58	WUTHERING	0.0	0.0	0.588

- $cos(SaS,PaP) \approx 0.789 * 0.832 + 0.515 * 0.555 + 0.335 * 0.0 + 0.0 * 0.0 \approx 0.94$.
- $cos(SaS,WH) \approx 0.79$
- $cos(PaP,WH) \approx 0.69$
- Porquê temos cos(SaS,PaP) > cos(SAS,WH)?

Calculando o escore cosseno

Calculando o escore cosseno

```
ESCORECOSSENO(q)
     float Escores [N] = 0
     float Comprimento[N]
     for each termo de busca t
     do calcule w_{t,a} e recupere a lista de postings para t
         for each par(d, tf_{t,d}) na lista de
 5
         do Escores [d] + = w_{t,d} \times w_{t,a}
 6
     Leia o Comprimentoda matriz
 8 for each d
     do Escores[d] = Escores[d] / Comprimento[d]
     return Top K componentes de Escores[]
10
```

Componentes da ponderação tf-idf

Frequência do termo		Frequência de documentos		Normalização		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log\tfrac{Nt}{t}\}$	u (pivoted unique)	1/u	
b (boolean)	$\begin{cases} 1 & \text{if } _{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$	
L (log ave)	$\frac{1+\log(_{t,d})}{1+\log(_{t\in d}(_{t,d}))}$					

Componentes da ponderação tf-idf

Frequência do termo		Frequência de documentos		Normalização		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_r}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \tfrac{Nt}{t}\}$	u (pivoted unique)	1/u	
b (boolean)	$\begin{cases} 1 & \text{if } t, d > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$	
L (log ave)	$\frac{1+\log(t,d)}{1+\log(t\in d(t,d))}$					

Melhor combinação conhecida de opções de ponderação

Componentes da ponderação tf-idf

Frequênci	a do termo	Frequência	de documentos	Nor	malização
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_r}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \tfrac{Nt}{t}\}$	u (pivoted unique)	1/u
b (boolean)	$\begin{cases} 1 & \text{if } t, d > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$
L (log ave)	$\frac{1+\log(t,d)}{1+\log(t\in d(t,d))}$				

Default: sem ponderação

 Frequentemente usamos ponderações diferentes para consultas e documentos.

- Frequentemente usamos ponderações diferentes para consultas e documentos.
- Notação: ddd.qqq

 Frequentemente usamos ponderações diferentes para consultas e documentos.

Notação: ddd.qqq

• Exemplo: Inc.ltn

- Frequentemente usamos ponderações diferentes para consultas e documentos.
- Notação: ddd.qqq
- Exemplo: Inc.ltn
- documento: tf logarítmica, sem ponderação por df, normalização por cosseno

- Frequentemente usamos ponderações diferentes para consultas e documentos.
- Notação: ddd.qqq
- Exemplo: Inc.ltn
- documento: tf logarítmica, sem ponderação por df, normalização por cosseno
- consulta: tf logarítmica, idf, sem normalização

- Frequentemente usamos ponderações diferentes para consultas e documentos.
- Notação: ddd.qqq
- Exemplo: Inc.ltn
- documento: tf logarítmica, sem ponderação por df, normalização por cosseno
- consulta: tf logarítmica, idf, sem normalização
- É ruim não ponderar por idf o documento?

- Frequentemente usamos ponderações diferentes para consultas e documentos.
- Notação: ddd.qqq
- Exemplo: Inc.ltn
- documento: tf logarítmica, sem ponderação por df, normalização por cosseno
- consulta: tf logarítmica, idf, sem normalização
- É ruim não ponderar por idf o documento?
- Consulta: "best car insurance"

- Frequentemente usamos ponderações diferentes para consultas e documentos.
- Notação: ddd.qqq
- Exemplo: Inc.ltn
- documento: tf logarítmica, sem ponderação por df, normalização por cosseno
- consulta: tf logarítmica, idf, sem normalização
- É ruim não ponderar por idf o documento?
- Consulta: "best car insurance"
- Documento: "car insurance auto insurance"

Query: "best car insurance". Document: "car insurance auto insurance".

palavra		(consulta				docur	nento		produto
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto										
best										
car										
insurance										

Query: "best car insurance". Document: "car insurance auto insurance".

palavra		(consulta	a			docur	nento		produto
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0									
best	1									
car	1									
insurance	1									

Query: "best car insurance". Document: "car insurance auto insurance".

palavra		(consulta	a			docur	nento		produto
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0					1				
best	1					0				
car	1					1				
insurance	1					2				

Query: "best car insurance". Document: "car insurance auto insurance".

palavra		c	onsulta				docur	nento		produto
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0				1				
best	1	1				0				
car	1	1				1				
insurance	1	1				2				

Query: "best car insurance". Document: "car insurance auto insurance".

palavra		C	onsulta				docur	mento		produto
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0				1	1			
best	1	1				0	0			
car	1	1				1	1			
insurance	1	1				2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

р	alavra		c	onsulta					produto		
		tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
a	uto	0	0	5000			1	1			
b	est	1	1	50000			0	0			
C	ar	1	1	10000			1	1			
ii	nsurance	1	1	1000			2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

palavra		c	onsulta				docur	nento		produto
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3		1	1			
best	1	1	50000	1.3		0	0			
car	1	1	10000	2.0		1	1			
insurance	1	1	1000	3.0		2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

pala	avra		c	consulta				docur	nento		produto
		tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
aut	0	0	0	5000	2.3	0	1	1			
bes	t	1	1	50000	1.3	1.3	0	0			
car		1	1	10000	2.0	2.0	1	1			
insı	ırance	1	1	1000	3.0	3.0	2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

pala	avra		c	consulta				docur	nento		produto
		tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
aut	0	0	0	5000	2.3	0	1	1			
bes	t	1	1	50000	1.3	1.3	0	0			
car		1	1	10000	2.0	2.0	1	1			
insı	ırance	1	1	1000	3.0	3.0	2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

palavra		(consulta				docur	mento		produto
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1		
best	1	1	50000	1.3	1.3	0	0	0		
car	1	1	10000	2.0	2.0	1	1	1		
insurance	1	1	1000	3.0	3.0	2	1.3	1.3		

Query: "best car insurance". Document: "car insurance auto insurance".

palavra		c	onsulta				docur	nento		produto
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	
best	1	1	50000	1.3	1.3	0	0	0	0	
car	1	1	10000	2.0	2.0	1	1	1	0.52	
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	

$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

1/1.92 \approx 0.52
1.3/1.92 \approx 0.68

Query: "best car insurance". Document: "car insurance auto insurance".

palavra	consulta					documento				produto
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

Query: "best car insurance". Document: "car insurance auto insurance".

palavra	consulta					documento				produto
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

Chave para as colunas: tf-raw: frequência absoluta do termo, sem ponderação, tf-wght: tf ponderada logaritmicamente, df: frequência de documentos, idf: frequência inversa de documentos, weight: O peso final do termo na consulta ou documento, n'lized: Peso de documentos após normalização por cosseno, product: O produto da ponderação final de consulta e documento

Escore final de similaridade entre consulta e documento:

$$\sum_{i} w_{ai} \cdot w_{di} = 0 + 0 + 1.04 + 2.04 = 3.08$$

Query: "best car insurance". Document: "car insurance auto insurance".

palavra	consulta					documento				produto
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

Chave para as colunas: tf-raw: frequência absoluta do termo, sem ponderação, tf-wght: tf ponderada logaritmicamente, df: frequência de documentos, idf: frequência inversa de documentos, weight: O peso final do termo na consulta ou documento, n'lized: Peso de documentos após normalização por cosseno, product: O produto da ponderação final de consulta e documento

Escore final de similaridade entre consulta e documento:

$$\sum_{i} w_{qi} \cdot w_{di} = 0 + 0 + 1.04 + 2.04 = 3.08$$

Perguntas?

• Represente a consulta como um vetor ponderado de tf-idf

- Represente a consulta como um vetor ponderado de tf-idf
- Represente cada documento como um vetor ponderado de tf-idf

- Represente a consulta como um vetor ponderado de tf-idf
- Represente cada documento como um vetor ponderado de tf-idf
- Calcule a similaridade por cosseno entre o vetor da consulta e os vetores de cada documento

- Represente a consulta como um vetor ponderado de tf-idf
- Represente cada documento como um vetor ponderado de tf-idf
- Calcule a similaridade por cosseno entre o vetor da consulta e os vetores de cada documento
- Rankeie os documentos com respeito à consulta

- Represente a consulta como um vetor ponderado de tf-idf
- Represente cada documento como um vetor ponderado de tf-idf
- Calcule a similaridade por cosseno entre o vetor da consulta e os vetores de cada documento
- Rankeie os documentos com respeito à consulta
- ullet Retorne os top K (p.ex., K=10) ao usuário

Moral da estória de hoje

- Rankeamento dos resultados da busca: por que é importante (em comparação com apresentar um conjunto desordenado de resultados Booleanos)
- Frequência do termo: Ingrediente chave do ranqueamento
- Rankeamento por Tf-idf: Melhor rankeamento tradicional.
- Modelo de espaço vetorial: Um dos mais importantes modelos para recuperação de informação, juntamente com o modelo Booleano e o probabiliístico

Material

- Capítulos 6 and 7 do livro
- Mais materiais em http://ifnlp.org/ir
 - Vector space for dummies
 - Exploring the similarity space (Moffat and Zobel, 2005)
 - Okapi BM25 (a state-of-the-art weighting method, 11.4.3 of IIR)