Tutorato 27-03

March 2023

1 Esercizio 1

Un'automobile di massa 2 tonnellate ha un serbatoio di 50 L di benzina, che sprigiona 3.5 10^8 $\frac{J}{L}$. Sapendo che il piano su cui l'atombile si muove ha un coefficiente di attrito dinamico pari a $\mu_d = 0.4$, calcolare quanta strada può percorrere l'automobile. (Ricordare che le automobili hanno 4 ruote).

2 Esercizio 2

Un frigorifero di massa m=40~kg viene spinto lungo un piano inclinato di 25°, con coefficiente di attrito dinamico $\mu_d=0.3$. La rampa è lunga l=25~m. Calcolare:

- La forza minima da applicare al frigorifero per riuscire a spostarlo.
- $\bullet\,$ La forza da applicare al frigorifero, supponendo di spendere una quantità di lavoro pari a $W=10^4~J$

3 Esercizio 3

Un tir carico di massa totale pari $m=18\ tons$ viaggia in autostrada con velocità $v=110\ \frac{km}{h}$. Calcolare l'energia cinetica del tir.

4 Esercizio 4

Un pendolo di lunghezza l=10~cm, con attaccato un orologio da taschino di massa m=70~g, viene lasciato cadere da un angolo pari a $\theta=10^\circ$. Calcola il lavoro compiuto dalla forza peso nel tratto tra il punto in cui viene rilasciato ed il punto di minimo, e nel tratto inverso.

5 Esercizio 5

Un tiratore a piattello vuole colpire un obbiettivo, posto a terra a 2.5 km da lui, sparando dal tetto di una casa di altezza h=30~m. Il proiettile, la cui massa è m=5~g, viene sparato con un'inclinazione rispetto al piano orizzontale pari a $\theta=-15^{\circ}$. Calcolare il modulo della velocità con cui deve essere sparato il proiettile per colpire l'obbiettivo, e calcolare l'energia cinetica quando arriva a destinazione.

6 Esercizo 6

Sapendo che una palla di cannone di pietra di massa m=50~kg è in grado di trasferire il 70% della sua energia cinetica al muro che colpisce, calcola con quale velocità la palla deve essere sparata, sapendo che il cannone ha un inclinazione pari a $\theta=\frac{\pi}{4}$, per sfondare un muro posto a 3 m di altezza, che è in grado di sopportare fino a $10^5~J$. Trascurare l'attrito dell'aria.

7 Esercizio 7

Un orologio a pendolo ha una massa m=200~g. Inizialmente il pendolo si trova ad un'inclinazione $\theta=5^{\circ}$. Sapendo che il periodo del pendolo è pari a T=1~s, calcolare l'energia cinetica dopo $\frac{T}{4},\,\frac{T}{3},\,\frac{T}{2}$.