Tema 1 (II): Anells de polinomis

Problemes de classe

- **1.42.** Sigui \mathbb{A} un anell íntegre i sigui K el seu cos de fraccions.
 - a) Demostreu que per a tot parell de polinomis $f,g\in \mathbb{A}[X]$ tals que el coeficient dominant de g (el coeficient de X^n amb $n=\deg g$) és una unitat de \mathbb{A} , existeixen polinomis únics $q,r\in \mathbb{A}[X]$ tals que f=gq+r i r=0 o bé $\deg r<\deg g$.
 - b) Concloeu que K[X] és un anell euclidià.
 - c) Deduïu que si g(X) divideix f(X) a l'anell $\mathbb{K}[X]$, aleshores el quocient entre tots dos polinomis és un element de $\mathbb{A}[X]$.
- **1.43.** Sigui $f(X) = a_0 + a_1 X + \dots + a_n X^n$ un polinomi amb coeficients en un anell qualsevol A. Demostreu que:
 - a) $f(X) \in A[X]^*$ si, i només si, $a_0 \in A^*$ i a_1, \ldots, a_n són nilpotents.
 - b) f(X) és nilpotent si tots els seus coeficients ho són.
 - c) f(X) és divisor de zero si, i només si, tots els seus coeficients ho són.
- **1.44.** Siguin $f(X), g(X) \in \mathbb{K}[X]$ polinomis amb $\gcd(f,g) = 1$. Demostreu que per a cada polinomi $h(X) \in \mathbb{K}[X]$ de grau $\deg h < \deg f + \deg g$ existeixen polinomis $u(X), v(X) \in \mathbb{K}[X]$ de graus $\deg u < \deg g$ i $\deg v < \deg f$ tals que

$$f(X)u(X) + g(X)v(X) = h(X),$$

i que aquests polinomis són únics.

- 1.45. Calculeu identitats de Bézout per a les parelles de polinomis següents: següents:
 - 1. $f(X) = X^3 2X + 1$ i $g(X) = 2X^4 + 2X^2 1$ a l'anell $\mathbb{Q}[X]$.
 - 2. $f(X) = X^2 + 2X + (1+2i)$ i $g(X) = X^4 + (2-i)X^3 2iX^2 (1+4i)X + (2-i)$ a l'anell $\mathbb{C}[X]$.
 - 3. $f(X) = X^5 + X^4 + X^2 + 1$ i $g(X) = X^5 + X^4 + X^3 + X^2$ a l'anell $\mathbb{Z}/2\mathbb{Z}[X]$.
- **1.46.** Demostreu que, per a tot cos \mathbb{K} , l'anell $\mathbb{K}[X]$ conté infinits primers no associats.

1.47. Sigui $\mathbb A$ un anell íntegre. Demostreu que si $\mathbb A[X]$ és un domini d'ideals principals, llavors $\mathbb A$ és un cos.

Observació: El resultat no és cert si A no és un anell íntegre. En el cas general tenim:

$$A[x]$$
 principal \iff $A \simeq K_1 \cdots K_r$, amb els K_i cossos.

Podeu trobar una demostració d'aquest fet a https://math.stackexchange.com/a/361403

1.48. Sigui \mathbb{A} el subconjunt de $\mathbb{K}(X,Y)$ següent:

$$\mathbb{A} = \left\{ \frac{X^n f(X,Y) + Y g(X,Y)}{X^n} \in \mathbb{K}(X,Y) : f,g \in \mathbb{K}[X,Y], n \ge 0 \right\}.$$

- 1. Comproveu que \mathbb{A} és un subanell de $\mathbb{K}(X,Y)$ que conté $\mathbb{K}[X,Y]$.
- 2. Demostreu que el producte de dos elements de $\mathbb{A} \setminus \mathbb{K}[X,Y]$ és de $\mathbb{A} \setminus \mathbb{K}[X,Y]$.
- 3. Trobeu \mathbb{A}^* .
- 4. Trobeu totes les descomposicions de Y en producte de dos elements de \mathbb{A} .
- 5. Demostreu que Y no descompon en producte d'irreductibles a \mathbb{A} .
- **1.49.** Factoritzeu el polinomi $330X^4 + 715X^3 + 550X^2 + 220X 165$ a $\mathbb{Z}[X]$.
- **1.50.** Demostreu que el polinomi $X^7 + 6X^5 + 15X^4 9X^3 + 27X^2 + 75X + 21$ és irreductible a $\mathbb{Q}[X]$.
- 1.51. Demostreu que cap nombre primer té cap arrel racional.
- **1.52.** Demostreu que el polinomi $X^3 + X^2 + 1$ és irreductible a $\mathbb{Q}[X]$, reduint-lo mòdul 5.
- **1.53.** Factoritzeu el polinomi $X^3 X + 5$ en els anells de polinomis $\mathbb{F}_p[X]$ per als primers p = 2, 3, 5, 7, 11 i 13.
- **1.54.** Sigui $f(X) \in \mathbb{Z}[X]$ un polinomi de grau 2 amb dues arrels enteres i discriminant Δ . Sigui $p \in \mathbb{Z}$ un nombre primer. Demostreu que el polinomi reduït $\overline{f}(X) \in \mathbb{F}_p[X]$ té una arrel doble si, i només, si, $p \mid \Delta$.

Observació: El resultat és cert encara que f(X) no tingui arrels enteres ni racionals. Utilitzeu-ho per determinar en quins cossos finits té arrels dobles el polinomi $x^2 + x + 1$.

- **1.55.** Demostreu que els polinomis següents són irreductibles:
 - 1. $X^5 + X^2 + 1 \in \mathbb{F}_2[X]$;
 - 2. $12345X^5 1234X^4 + 12345678X^3 1234567X^2 + 123456X 123 \in \mathbb{Q}[X];$
 - 3. $1 + X + \frac{1}{2!}X^2 + \frac{1}{3!}X^3 + \dots + \frac{1}{p!}X^p \in \mathbb{Q}[X]$ amb p un nombre primer.

Problemes complementaris

1.56. Sigui $\phi(x) \in \mathbb{Z}[X]$ un polinomi mònic no constant qualsevol. Demostreu que qualsevol polinomi $f(x) \in \mathbb{Z}[X]$ admet un desenvolupament ϕ -àdic, és a dir, una expressió:

$$f(x) = \sum_{i=1}^{n} a_i(x)\phi(x)^i,$$

amb els coeficients $a_i(x) \in \mathbb{Z}[X]$ de grau menor que el grau de $\phi(x)$.

- 1.57. Generalitzeu el problema anterior per veure que, fixat un element b un anell euclidià qualsevol, tot element de l'anell admet un desenvolupament en base b.
- **1.58.** Doneu un algorisme que permeti factoritzar qualsevol polinomi de $\mathbb{Q}[X]$ en un nombre finit de passos observant que si $f(X) \in \mathbb{Z}[X]$ descompon com f(X) = g(X)h(X) aleshores per a cada enter $a \in \mathbb{Z}$ es té $g(a) \mid f(a)$. Discutiu per què a la pràctica l'algoritme és totalment ineficient.
- **1.59.** Trobeu tots els primers de $\mathbb{F}_2[X]$ de grau ≤ 4 .