XAI to support prediction making in COVID-19 pandemic

Hubert Baniecki, Warsaw, 10.2020

Hi!

- Data Science student at Warsaw University of Technology
- Research Software Engineer
 at MI2 DataLab lead by Przemyslaw Biecek
- interested in XAI and model-human interaction
- creating & maintaining the DrWhy.Al universe
- member of DeCoviD project (grant: IDUB against COVID-19)
- MI2 DataLab in MOCOS group (MOdelling COronavirus Spread)

1.Prediction Making in COVID-19 literature review & critique

2.Real case study R & Python XAI tools

3.MI2 DataLab in MOCOS COVID-19 analysis for Poland

1.Prediction Making in COVID-19

literature review & critique

Literature

- diagnosis of COVID-19
- prognosis of patient mortality risk

- prediction of ilness severity, hospitalization risk, length of hospital stay
- tabular data (e.g. age, blood test) & image data (medical lung images)
- statistical models / ML models / DL models

```
Image & Signal Processing | Published: 01 July 2020
Detection of COVID-19 Infection from Routine Blood
Exams with Machine Learning: A Feasibility Study
Davide Brinati, Andrea Campagner, Davide Ferrari, Massimo Locatelli, Giuseppe Banfi & Federico Cabitza
Journal of Medical Systems 44, Article number: 135 (2020) | Cite this article
2609 Accesses 7 Altmetric Metrics
```

Predicting Mortality Due to SARS-CoV-2: A Mechanistic Score Relating Obesity and Diabetes to COVID-19 Outcomes in Mexico 🕮

Omar Yaxmehen Bello-Chavolla ™, Jessica Paola Bahena-López, Neftali Eduardo Antonio-Villa, Arsenio Vargas-Vázquez, Armando González-Díaz, Alejandro Márquez-Salinas, Carlos A Fermín-Martínez, J Jesús Naveja, Carlos A Aguilar-Salinas 💌

The Journal of Clinical Endocrinology & Metabolism, Volume 105, Issue 8, August 2020, Pages 2752-2761, https://doi.org/10.1210/clinem/dgaa346

Published: 31 May 2020 Article history ▼

Review

107 studies

91 diagnostic models 2/3 on medical images

50 prognostic models1/2 for mortality1/6 for ilness severity

mostly preprints

Critique

- all models biased and/or overfitted
- insufficiently validated
- only 1/3 with code!
- limited, poorly diversified data
- do not use these models in practice
- future: better validation for prediction making

Responsible AI, ML, Be Responsible!

- Explainable AI, nowadays Responsible AI
- data exploration & model explanation
- fair, unbiased models
- complete model documentation
- performance is not validation

2.Real case study R & Python XAI tools

Case study

February, Wuhan, China

COVID-19 infected patients 485 (375 + 110) external test dataset

predict mortality from clinical variables (e.g. blood test)

XGBoost (0.99 AUC) to assess variable importance

interpretable decision tree 3 variables – 0.96 AUC

nature machine intelligence

Explore our content > Journal information >

nature > nature machine intelligence > articles > article

Article Published: 14 May 2020

An interpretable mortality prediction model for COVID-19 patients

Li Yan, Hai-Tao Zhang, [...] Ye Yuan [™]

Nature Machine Intelligence 2, 283–288(2020) | Cite this article

112k Accesses | 26 Citations | 1085 Altmetric | Metrics

Wh-questions

- Why is the performance so good?
- Why 3 variables out of 50 are sufficient?
- Why was age not important?
- What are the continuous relationships between variables and the target in the XGBoost model?

•

EXPLANATORY MODEL ANALYSIS

Explore, Explain, and Examine Predictive Models

PRZEMYSŁAW BIECEK TOMASZ BURZYKOWSKI

https://pbiecek.github.io/ema

- Scilit learn
- tensorflow, keras
- xgboost, lightgbm
- ANY

DATA

- pandas
- numpy

pip install dalex

import dalex as dx

dx. Explainer

EXPLANATIONS

- result attribute (pandas)
- plot method (plotly)

predict/model + parts/profile/diagnostics /surrogate/performance

14/23

Data exploration

	Accuracy	Balanced Accuracy	ROC AUC	F1 Score	Time Taken
Model					
LGBMClassifier	1.00	1.00	1.00	1.00	0.03
XGBClassifier	1.00	1.00	1.00	1.00	0.03
RandomForestClassifier	1.00	1.00	1.00	1.00	0.16
ExtraTreesClassifier	0.99	0.99	0.99	0.99	0.15
svc	0.99	0.99	0.99	0.99	0.01
KNeighborsClassifier	0.99	0.99	0.99	0.99	0.03
GaussianNB	0.99	0.99	0.99	0.99	0.02
AdaBoostClassifier	0.99	0.99	0.99	0.99	0.09
QuadraticDiscriminantAnalysis	0.98	0.98	0.98	0.98	0.02
NuSVC	0.97	0.97	0.97	0.97	0.02
LinearSVC	0.97	0.97	0.97	0.97	0.01
LinearDiscriminantAnalysis	0.97	0.97	0.97	0.97	0.02
BaggingClassifier	0.97	0.97	0.97	0.97	0.04
LogisticRegression	0.97	0.97	0.97	0.97	0.02
CalibratedClassifierCV	0.97	0.97	0.97	0.97	0.13
RidgeClassifier	0.97	0.97	0.97	0.97	0.02
RidgeClassifierCV	0.97	0.97	0.97	0.97	0.01
DecisionTreeClassifier	0.96	0.96	0.96	0.96	0.04
Perceptron	0.96	0.96	0.96	0.96	0.02
SGDClassifier	0.96	0.96	0.96	0.96	0.01
NearestCentroid	0.96	0.96	0.96	0.96	0.02
LabelPropagation	0.95	0.94	0.94	0.95	0.02
LabelSpreading	0.95	0.94	0.94	0.95	0.02
BernoulliNB	0.95	0.94	0.94	0.95	0.02

DrWhy.Al blog: Responsible ML

https://medium.com/responsibleml

3.MI2 DataLab in MOCOS COVID-19 analysis for Poland

COVID-19 in Poland

- MI2 DataLab in MOCOS
- MOdelling COronavirus Spread group lead by Tyll Krüger
- specific data of 30k COVID-19 infected people in Poland
- reports to Ministry of Health
- data exploration, model
 development & <u>explanation</u>

Data exploration

AUC, ACC PREDICTION

Takeaways

Advance the prediction making (not only in COVID-19 pandemic):

- Be Responsible!
- Performance-based model validation is not enough
- Proper results need data exploration & model explanation
- DrWhy.AI: R & Python XAI tools, resources for Responsible ML

Contact me

@hbaniecki https://linkedin.com/in/hbaniecki

MI2 DataLab https://linkedin.com/company/mi2datalab

DrWhy.AI https://drwhy.ai

ResponsibleML https://medium.com/responsibleml