Произведением топологических пространств (X,τ) и (Y,σ) называется декартово произведение носителей топологии, наделенную топологией произведения.

Пусть X и Y топологические пространства и $X \times Y$ их произведение, то X и Y называются **координатными пространствами.** Отображения $p_1: X \times Y \to X$ и $p_2: X \times Y \to Y$ действующие по закону $p_1(x,y) = x \in X$, $p_2(x,y) = y \in Y$ называются проектированиями на координатные пространства.

<u>Теорема.</u> Для произвольных топологических пространств отображения проектирования их произведения на координатные пространства непрерывны и открыты.

ightharpoonup Пусть $(X \times Y, \mu)$ произведение топологических пространств и $p_1: X \times Y \to X$ и $p_2: X \times Y \to Y$ отображения проектирования. Докажем, что при отображении p_1 прообраз открытого множества открыт. Множество $p_1^{-1}(u) = u \times Y$ является произведением двух открытых множеств и, следовательно, открыто в $X \times Y$. Таким образом отображение p_1 непрерывно.

Докажем открытость отображения p_1 . Найдем образ $p_1(u \times v)$, где $u \in \tau, v \in \delta$. По определению $p_1(u \times v) = u$ т.е. при непрерывном отображении образ открытого множества открыт, что означает открытость отображения p_1 .

<u>Теорема.</u> Для произвольных топологических пространств (X, τ) и (Y, σ) топология произведения является наименьшей среди тех топологий на декартовом
произведении $X \times Y$, относительно которых проектирования на координатные
пространства непрерывны.

Данное утверждение примем без доказательства.

<u>Теорема.</u> Произведение хаусдорфовых пространств есть хаудорфово пространство. Произведение регулярных пространств регулярно.

Докажем первое утверждение теоремы.

Пусть топологические пространства X и Y - хаусдорховы. Возьмем две различные точки $a=(x_1,y_1)$ и $b=(x_2,y_2)$. Если точки различные, то, по крайней мере, они отличаются одной из компонент. Пусть $x_1 \neq x_2$. Воспользуемся тем. что пространство X хаусдорфово. Тогда точки x_1 и x_2 этого пространства можно отделить непересекающимися окрестностями и и v. Рассмотрим множества $p_1^{-1}(u)$ и $p_1^{-1}(v)$. Эти множества являются окрестностями (т.к. при непрерывном отображении прообраз окрестности- окрестность), они не пересекаются (т.к. $p_1^{-1}(u) \cap p_1^{-1}(v) = \emptyset$). Кроме того $a \in p_1^{-1}(u)$ $b \in p_1^{-1}(v)$. Следовательно, и пространство $X \times Y$ хаусдорфово.

Замечание

Можно доказать, что

- произведение сепарабельных пространств сепарабельно;
- произведение пространств Рисса, является просранством Рисса;
- произведение связных пространств связно;

Однако произведение нормальных пространств не всегда нормально.

Пусть $f_1: X_1 \to Y_1, \ f_2: X_2 \to Y_2,$ где X_1, X_2, Y_1, Y_2 - топологические пространства. Отображение f произведения $X_1 \times X_2$ в произведение $Y_1 \times Y_2$, действующее по закону $f\!\left(\!\left(x_1, x_2\right)\!\right) = \!\left(f_1\!\left(x_1\right), f_2\!\left(x_2\right)\!\right)$ называется **произведением отображений** f_1 и f_2 . Обозначается $f = f_1 \times f_2$.

Фактор - топология

Известно, что при непрерывном отображении прообраз открытого множества открыт.

Поставим несколько иную задачу: пусть f отображает топологическое пространство (X, τ) в некоторое множество Y. Необходимо задать топологию на Y таким образом, что бы отображение f стало непрерывным. (Одно из решений вопроса - задание на Y тривиальной топологии). Имеет место следующая

<u>Лемма.</u> Если $f: X \to Y$ и τ - топология на X, то семейство μ подмножеств Y, прообразы которых при отображении f открыты в X образуют топологию на Y.

⊳ Покажем выполнение аксиом топологического пространства: $f^{-1}(\emptyset) = \emptyset$, $f^{-1}(Y) = X$, то \emptyset , $Y \in \mu$. Воспользуемся свойством прообразов:

пусть
$$u_{\alpha}\in\mu\Rightarrow f^{-1}\!\left(u_{\alpha}\right)\in\tau$$
 , тогда $f^{-1}\!\left(\bigcup_{\alpha}u_{\alpha}\right)=\bigcup_{\alpha}f^{-1}\!\left(u_{\alpha}\right)\in\tau$

это означает, что $\bigcup_{\alpha} u_{\alpha} \in \mu$. Аналогично доказывается выполнение третьей аксиомы топологического пространства. \triangleleft

<u>Замечание</u> Можно показать, что топология μ - наибольшая среди тех топологий на Y, относительно которых отображение f непрерывно.

<u>Определение</u> Семейство μ подмножеств Y, прообразы которых при отображении f топологического пространства X в множество Y открыты в X, называются фактор- топологией на Y, порожденной отображением f.

Определим на X, некоторым образом, отношение эквивалентности R. Рассмотрим фактор - множество X/R.

<u>Определение</u> Отображение $p: X \to X / R$, ставящее в соответствие каждому элементу $x \in X$ класс эквивалентности, которому он принадлежит, называется фактор - отображением или отображением отождествления.

<u>Определение</u> Пусть X некоторое топологическое пространство, R - отношение эквивалентности в X, p- фактор отображение X на фактор- множество X/R. Фактор- множество X/R, наделенное фактор- топологией относительно отображения p называется **фактор- пространством** пространства X по отношению эквивалентности R.

Примеры

1. Рассмотрим топологическое пространство $X = [0;2\pi]$ с естественной топологией и множество $Y = \{x,y \in R^2: x^2 + y^2 = 1\}$ точек единичной окружности с центром в начале координат. Отображение f можно определить формулой $f(t) = (\cos t, \sin t)$, где $t \in [0;2\pi]$.

Фактор- топология на Y, порождаемая отображением f, совпадает c естественной топологией. Например множество точек окружности, лежащих между точками (0;-1) и (0;1) принадлежит фактор - топологии μ , так как прообразом этого множества является множество $\left(\frac{3}{2}\pi;2\pi\right] \cup \left[0;\frac{\pi}{2}\right)$ является открытым множеством в X.

Определим отношение эквивалентности: $0 \sim 2\pi$ и для всех $t \in (0;2\pi)$ $t \sim t$. Получим один класс эквивалентности $\{0;2\pi\}$, состоящий из двух точек; остальные классы эквивалентности - одноточечные. Можно показать, что фактор пространство X/R гомеоморфно пространству Y. В этом случае говорят, что фактор пространство X/R получено из отрезка $[0;2\pi]$ путем отождествления его концов.

2. Аналогичный пример. Пусть X – прямоугольник

$$X = \{(x_1, x_2) \in \mathbb{R}^2, x_1 \in [0; 2\pi], x_2 \in [0; 1]\}$$

с топологией, индуцированной R^2 . Множество Y:

$$Y = \{(x_1, x_2, x_3) \in R^3 : x_1^2 + x_2^2 = 1, x_3 \in [0;1]\}$$

Т.е. поверхность цилиндра единичного радиуса и единичной высоты. Определим отображение:

$$f: X \to Y$$
 $f(x_1, x_2) = (\cos x_1, \cos x_2, x_3)$

Фактор топология совпадает с естественной топологией. Определим отношение эквивалентности

$$(0;x_2) \sim (2\pi;x_2)$$

Все остальные точки эквивалентны сами себе. В результате получим фактор пространство (поверхность цилиндра) из прямоугольника путем склеивания его двух противоположных сторон.

3. *Листом Мёбиуса* называют поверхность, полученную прямоугольника поворотом одного из концов на 180° и склеиванием его противоположных концов. Определим математический лист Мёбиуса в терминах топологии.

 $X = \{(x,y) \in R^2 : x \in [-l;l], y \in (-1;l)\}$. Это прямоугольник в пространстве R^2 с естественной топологией. Зададим на этом прямоугольнике отношение эквивалентности: $(l,y) \sim (-l,-y)$, если $y \in (-1;1)$ и $(x,y) \sim (x,y)$ для всех остальных точек. Таким образом мы получили фактор - пространство гомеоморфное листу Мёбиуса.

Топологическая сумма пространств. Склеивание пространств по непрерывному отображению.

Пусть (X_i, τ_i) набор топологических пространств (i=1,2,...n), носители топологии здесь не пересекаются. Обозначим $X = \bigcup_i^n X_i$ и τ семейство множеств из X, допускающих представление в виде $\bigcup_{i=1}^n u_i$, где $u_i \in \tau_i$. Тогда пара (X, τ) называется *топологической суммой пространств* (X_i, τ_i) .

Пусть (X_1, τ_1) и (X_2, τ_2) - топологические пространства, причем $X_1 \cap X_2 = \emptyset$ и непрерывное отображение $f: A_1 \to A_2$, где $A_1 \subset X_1$, $A_2 \subset X_2$. На множестве $X_1 \cup X_2$ введем отношение эквивалентности:

если точка $y \in A_2$ то $y \sim f^{-1}(y)$; если точка не участвует в отображении, то она эквивалентна сама себе. Обозначим фактор - пространство $(X_1 \cup X_2)/R = X_1 \bigcup_f X_2$. Про топологическое пространство $X_1 \bigcup_f X_2$ говорят, что оно получено *приклеиванием* топологического пространства X_1 к топологическому пространству X_2 по непрерывному отображению f.

Если $(X_1 \cup X_2)$ топологическая сумма пространств, $A_1 = \{x_1\}$, $A_2 = \{x_2\}$ Отображение $f: A_1 \to A_2$ в данном случае непрерывно. В этом случае пространство $X_1 \bigcup X_2$ называется *букетом* и обозначается $X_1 \vee X_2$.

