Nome:

3,0 pts.

Matemática Discreta — 2025/01 — Turma B1 — Prof. José Koiller **Prova 2** (02/06/2025)

- É recomendável fazer a avaliação a lápis, mas escreva a caneta as suas respostas finais, bem como o número de cada questão e item.
- É proibido: consultar livros ou anotações; comunicar-se com colegas; usar calculadora, celular, ou qualquer dispositivo eletrônico.
- É necessário justificar as suas respostas. Exiba seus cálculos e/ou raciocínio. Respostas finais sem justificativa, ainda que corretas, não receberão crédito.
- Empregue a língua portuguesa e a notação matemática de maneira correta.

BOA PROVA!

0,5 pts. Q0. Capricho, organização, clareza e legibilidade nas demais questões.

Q1. (a) Obtenha a solução geral da relação de recorrência $a_{n+2} - 4a_{n+1} + 4a_n = 0$.

- (b) Obtenha a solução geral da relação de recorrência $a_{n+2} 4a_{n+1} + 4a_n = 2^n$.
- (c) Verifique que $a_n = 3n + 8$ é uma solução da relação de recorrência

$$a_{n+2} - 4a_{n+1} + 4a_n = 3n + 2.$$

(d) Obtenha a solução geral da relação de recorrência

$$a_{n+2} - 4a_{n+1} + 4a_n = 3 \cdot 2^n - (3n+2).$$

Dica: Use os itens anteriores.

1,5 pts. **Q2.** Para $n \in \mathbb{N}$, seja a_n o número de sequências binárias de comprimento n que **contém** três 0's consecutivos. (Sequências binárias são sequências de 0's e 1's.)

- (a) Encontre uma relação de recorrência para (a_n) . Justifique a sua resposta.
- (b) Quais são as condições iniciais pertinentes?

Q3. Considerando uma relação R em um conjunto A, dê a definição das seguintes propriedades:

(a) reflexividade; (b) simetria; (c) antissimetria; (d) transitividade.

1,5 pts. Q4. (Baseada nos exercícios 9.5.14 e 9.5.38 de Rosen, 8a Edição.)

Seja S o conjunto das sequências de "caracteres", em que cada caractere é uma letra maiúscula (A–Z) ou uma letra minúscula (a–z). Não admitimos letras com acentuação, cedilhas, nem algarismos numéricos. Assim, por exemplo, diScREtA $\in S$ e AbCdeF $\in S$, mas matemática $\not\in S$, Computação $\not\in S$ e abc123 $\not\in S$.

Defina a relação \sim em S da seguinte forma: para $x,y\in S$, temos $x\sim y$ se, e somente se, as sequências x e y têm o mesmo comprimento e, para cada caractere na sequência x, o caractere na posição correspondente em y representa a mesma letra, seja maiúscula ou seja minúscula. Assim, por exemplo, diScREtA \sim Discreta, mas lua $\not\sim$ ula e par $\not\sim$ pares.

- (a) Mostre que \sim é uma relação de equivalência.
- (b) Exiba explicitamente o conjunto [Lua], isto é, a classe de equivalência da sequência Lua com respeito à relação \sim .

3,0 pts.	Q5.	Considere o conjunto $A = \{a, b, c, d\}$. Para cada relação em S dada abaixo, trace o grafo direcionado que a representa. Em seguida, responda as perguntas.
		(a) $R_1 = \{(a, a), (a, c), (b, a), (b, b), (b, c), (c, c), (d, d)\}.$
		R_1 é reflexiva? R_1 é simétrica? R_1 é anti-simétrica? R_1 é transitiva? Sim Não Sim Sim Sim Não Sim
		(b) $R_2 = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c), (d, d)\}.$
		R_2 é reflexiva? R_2 é simétrica? R_2 é anti-simétrica? R_2 é transitiva? Sim Não Sim Sim Sim Não Sim
		(c) $R_3 = \{(a, b), (b, c), (c, a)\}.$
		R_3 é reflexiva? R_3 é simétrica? R_3 é anti-simétrica? R_3 é transitiva? Sim Não Sim Sim Não Sim Não Sim Não Sim Sim Não Sim Sim Não Sim Sim Não Sim Sim Sim Não Sim

Respostas:

- **Q1.** (a) $a_n^H = C_1 \cdot 2^n + C_2 \cdot n2^n, n \in \mathbb{N}.$
 - (b) $a_n = C_1 \cdot 2^n + C_2 \cdot n2^n + \frac{1}{8}n^2 2^n, n \in \mathbb{N}.$
 - (c) Substitua $a_n = 3n + 8$ no lado esquerdo da relação, e verifique que o resultado é igual ao lado direito (3n + 2), para todo $n \in \mathbb{N}$.
 - (d) Pelo "princípio de superposição", $a_n = C_1 \cdot 2^n + C_2 \cdot n2^n + \frac{3}{8}n^22^n (3n+8), n \in \mathbb{N}.$
- **Q2.** (a) $a_n = a_{n-1} + a_{n-2} + a_{n-3} + 2^{n-3}$, para $n \ge 4$.
 - (b) $a_1 = 0$, $a_2 = 0$, $a_3 = 1$. (Se preferir, considere as condições $a_0 = 0$, $a_1 = 0$, $a_2 = 0$. Neste caso, a recorrência acima vale para $n \ge 3$.)
- **Q3.** (a) $\forall x \in A, x R x$. (Lembre que 'x R x' é o mesmo que ' $(x, x) \in R$ '.)
 - (b) $\forall x, y \in A, x R y \implies y R x$. (Novamente, 'x R y' é o mesmo que ' $(x, y) \in R$ ').
 - (c) $\forall x, y \in A, (x R y e y R x) \implies x = y.$ (Equivalentemente, $\forall x, y \in A, (x R y e x \neq y) \implies y \not R x.$)
 - (d) $\forall x, y, z \in A$, $(x R y e y R z) \implies x R z$.
- $\mathbf{Q4.}$ (b) $[\mathsf{Lua}] = \{\mathsf{Iua}, \mathsf{IuA}, \mathsf{IUa}, \mathsf{IUA}, \mathsf{Lua}, \mathsf{LuA}, \mathsf{LUa}, \mathsf{LUA}\}.$
- Q5. Neste "gabarito", faltam os grafos direcionados...
 - (a) R_1 não é simétrica. Por exemplo, a R_1 c, mas c R_1 a.

 Obs.: R_1 é uma relação de ordem parcial: é reflexiva, anti-simétrica e transitiva.
 - (b) R_2 não é anti-simétrica. Por exemplo, a R_2 b e b R_2 a (onde a e b são elementos distintos de A).

Obs.: R_2 é uma relação de equivalência: é reflexiva, simétrica e transitiva.

(c) R_3 não é reflexiva. Por exemplo, $a \not R_3 a$.

 R_3 não é simétrica. Por exemplo, $a\ R_3\ b,$ mas $b\ R_3\ a.$

 R_3 não é simétrica. Por exemplo, a R_3 b e b R_3 c, mas a R_3 c.