Prediction understanding

Mateusz Staniak

Outline

- 1. Intro
- 2. Predictions breakdown
- breakDown package
- Shapley values
- 3. Local approximations
- LIVE
- LIME
- 4. Summary

Introduction

Why explain a single prediction?

(Bird's-eye view)

- when important decision are made based on ML model, it needs to be trustworthy
- ullet trust comes from **understanding**
- the demand for interpretable algorithms is growing (see: Weapons of math destruction, Facebook feed controversies etc.)

(Worm-eye view)

- this demand is transfered into legal regulations (see: RODO)
- => more and more institutions have to explain model predictions (debt collection, loans ...)
 - understanding models helps improve them

Figure 1:

Which predictions need explanation?

- 1. Every prediction the client (or the boss) wants to understand
- 2. Predictions that seem suspicious
 - How to spot them?
 - How to explain them?
- => model performance
- => model diagnostics

Model diagnostics: example data

```
library(tidyverse)
library(randomForest)
load("./rda_files/houses.rda")
houses
## # A tibble: 5,851 x 7
     rooms_num area sqm_price year floor max_floor district
##
         <int> <dbl>
##
                         <int> <int> <int>
                                               <int> <fct>
             3 89.0
                          5270 2007
                                         2
##
   1
                                                   2 Krzyki
##
  2
             4 163.
                          6687 2002
                                         2
                                                   2 Psie Pole
                          6731 1930
## 3
             3 52.0
                                         1
                                                   2 Srodmiescie
             4 95.0
                          5525
##
  4
                                2016
                                         1
                                                   2 Krzyki
## 5
             4 88.0
                          5216
                                1930
                                         3
                                                   4 Srodmiescie
             2 50.0
##
  6
                          5600
                                1915
                                         3
                                                   4 Krzyki
##
  7
             2 48.0
                          9146
                                2010
                                         2
                                                   6 Fabryczna
             2 46.0
                          9761
                                2011
                                                   6 Stare Miasto
##
  8
                                         4
##
   9
             3 67.0
                          5209
                                1990
                                         1
                                                  10 Fabryczna
## 10
             2 45.8
                          6878
                                2000
                                         3
                                                   4 Krzyki
## # ... with 5,841 more rows
hrf <- randomForest(sqm_price ~., data = houses)</pre>
```

Model diagnostics: predicted vs observed values

- Points on the plot should be close to the y = x line,
- Questions:
 - is there a pattern? (For example: does the devation from true value grow as true value grows?)
 - are there any points especially far from the line (meaning: points with large residuals)?
- More diagnostic tools: auditor package

Model performance

```
library(DALEX)
rf_explainer <- explain(hrf, data = houses, y = houses$sqm_price)
rf_perf <- model_performance(rf_explainer)
plot(rf_perf, geom = "boxplot")</pre>
```


- shortly summarizes the distribution of the absolute value of residuals
- red dot is the root mean square error
- we can put boxplots for several models on the same plot (simply by passing the as arguments to plot) to compare models
- boxplots help discover outliers

Single prediction explanation

- Once we identified predictions we want to explain, we need tools that will help us!
- Methods:
 - LIME
 - Shapley values
 - Break Down
 - LIVE
- Two main ideas:
 - Attribute scores to explanatory variables according to their influence on the prediction (contributions)
 - Fit a model locally around an observation and investigate it
 - NOTE: both approaches lead to local feature importance

Figure 3:

• Contributions: Shapley values and Break Down

• Local models: LIME and LIVE

Prediction breakdown

Break Down

- General idea
- Another approach to finding additive feature contributions
- Contributions are assigned in a greedy manner
- Waterfall plots as a visual tool

=> more intuitive interpretation

Example

• Break Down for linear models

```
linear_model <- lm(sqm_price ~., data = houses)
lm_explainer <- DALEX::explain(linear_model, data = houses, y = houses$sqm_price)
breakdown_linear <- single_prediction(lm_explainer, houses[4036, -3])
plot(breakdown_linear)</pre>
```


- Contributions are scaled, so they do not depend on the scale of the data (insensitive to location/sca
- We can see actual contributions, not just the weights (as in LIME plots)
 - Model-agnostic Break Down

breakdown_explanation <- single_prediction(rf_explainer, houses[4036, -3])
plot(breakdown_explanation)</pre>

• We can see how important District and Year are in this random forest prediction

But isn't it enough to calculate feature importance?

```
global_feat_imp <- DALEX::variable_importance(rf_explainer)
plot(global_feat_imp)</pre>
```


• No. Particular instances can be influenced the most by different features, not necessarily the ones that are most important globally.

Shapley values

- General idea
 - The goal is a decomposition of prediction into a **sum** of scores related to (simplified) features.
 - The problem is solved using game theory: *Shapley values*. Variables are *players* who contribute to the outcome the prediction and we try to *pay* them accordingly to their contributions.
- This approach unifies several methods (including LIME).
- Some details
 - Exact methods exist for linear models and tree ensemble methods. In other cases, approximations
 are needed.
 - The classic way: sample permutations of variables, then average contributions.
 - The better way: approximation based on LIME and Shapley values for regression.
- This method has good theoretical properties, but will not produce sparse explanations

Example

```
library(shapleyr)
library(mlr)
house_task <- makeRegrTask(data = houses, target = "sqm_price")</pre>
house_rf_mlr <- train("regr.randomForest", house_task)</pre>
shapley_explanation <- shapley(4036,</pre>
                                 task = house_task,
                                 model = house_rf_mlr)
class(shapley_explanation) <- c("shapley.singleValue", "list")</pre>
gather(shapley_explanation$values, "feature", "shapley.score")
##
       feature shapley.score
## 1
           _{
m Id}
                         4036
## 2
        _Class
                         <NA>
## 3 rooms_num
                      -77.685
## 4
          area
                     -162.117
## 5
                      724.688
          year
## 6
                     -155.359
         floor
## 7 max floor
                     -262.602
## 8 district
                     -753.901
plot(shapley_explanation)
```


- ullet 0 is the mean of all predictions
- the **black dot** is the prediction we are explaining

- values and the plot describe how we move from the global mean of predictions to this particular predictions
- $\bullet\,$ most important features are the ones that help move the most

Time to practice!

First set of exercises goes here

Local approximations

LIVE (Local Interpretable Visual Explanations)

- General idea
 - Modification of LIME for tabular data and regression problems with emphasis on model visualization.
 - Similar observations for *fake* dataset are sampled from empirical distributions.
 - Variable selection is possible (LASSO, then explanation model is fitted to selected features).
- More details
 - Two methods of creating the new dataset are available: by permuting each variable and by changing one feature per observations
 - We can control which variables are allowed to vary through fixed variable argument to sample_locally (keeping date/factor/correlated variables unchanged)

Example

```
library(live)
library(mlr)
new_dataset <- sample_locally2(data = houses,</pre>
                               explained_instance = houses[4036, ],
                               explained_var = "sqm_price",
                               size = 1000)
with_predictions <- add_predictions2(new_dataset, hrf)</pre>
live explanation <- fit explanation2(with predictions, "regr.lm")
live_explanation
## Dataset:
## Observations: 1000
## Variables: 7
## Response variable: sqm_price
## Explanation model:
## Name: regr.lm
## Variable selection wasn't performed
## Weights present in the explanation model
## R-squared: 0.9874
```

Aktualnie standaryzacja zmiennych jest niepotrzebnie w sample_locally, jak to zmienię, forestplot będzie lepiej wyglądał, bo będzie po standaryzacji

- Default method of sampling is *live*, default explanation model is linear regression and distance is measured (weights are assigned) by gaussian kernel.
- Plot local model structure: forest plot

plot_explanation2(live_explanation, "forest")

Variable		N	Estimate		р
rooms_r	num ´	1000	ļ.	-176.10 (-193.07, -159.13)	<0.001
area	•	1000	+	-56.31 (-197.79, 85.18)	0.435
year	•	1000	Ė	78.46 (32.15, 124.77)	<0.001
floor	•	1000	#	-117.14 (-139.60, -94.69)	<0.001
max_floor 1000		i i	-178.65 (-198.23, -159.07)	<0.001	
district	Fabryczna	a 46	+	Reference	
	Krzyki	894	+	27.72 (3.44, 52.00)	0.025
	Psie Pole	15	.	-599.78 (-670.80, -528.76)	<0.001
	Srodmies	ci @ 4	Ė	1596.80 (1538.87, 1654.72)	<0.001
	Stare Mia	st@1		7120.43 (7059.13, 7181.72)	<0.001
(Intercept)				-144832.88 (-238821.00, -5	50 2.44.3 6

• Plot local variable contributions: waterfall plot (Break Down)

plot_explanation2(live_explanation, "waterfall")

LIME (Locally Interpretable Model-agnostic Explanations)

- General idea
- Some details:
 - Gaussian sampling for tabular, uniform sampling from interpretable inputs for image/text.
- Scores for new observation are weighted by the distance from original observation.
- Variable selection is usually based on ridge/lasso regression.
- Weights are assigned to interpretable inputs to decide if they vote for or against a given label.
- Note: method depends on many hyperparameters

Example

- weights from ridge regression are on the plot (NOT weights multiplied by actual feature values)
- positive weights are for, negative weights are against

Figure 4:

${\bf Acknowledgement}$

Podziekowanie dla UWr...

Time to practice!

Third set of exercises goes here