HCAL Reconstruction: MC Correction Functions

Results

Edmund Berry

Thursday, April 17, 2014

Introduction

- Alexandre's talk describes a method for OOT PU corrections on data
- We would like to apply the same method for Monte Carlo
- Procedure:
 - Run Alexandre's ratio method on zero PU MC
 - Derive correction functions based on the pulse shape
 - Use the same definitions, fits, and methods as in data
 - Validate results on MC with OOT PU
- More details on the following slides

GEN-SIM datasets

Consider two GEN-SIM datasets (no PU) at T1_US_FNAL:

Dataset	Production release
/MinBias_TuneZ2star_13TeV-pythia6/Summer13-START53_V7C-v1/GEN-SIM	CMSSW_5_3_10_patch2
/QCD_Pt-1800_TuneZ2star_13TeV_pythia6/Fall13-POSTLS162_V1-v1/GEN-SIM	CMSSW_6_2_0_patch1

- QCD_Pt-1800 dataset:
 - DAS link
 - 93453 (\sim 100k) events, 95 files
 - HcalNoiseAnalyzer ntuples on FNAL EOS: /eos/uscms/store/user/eberry/QCD1800MC/
- MinBias dataset:
 - DAS link
 - 9999424 (~ 10M) events, 946 files
 - HcalNoiseAnalyzer ntuples on FNAL EOS: /eos/uscms/store/user/eberry/MinBiasMC/

DIGI, trigger and RECO processing

- Need to process these to get DIGI and RECO information
- Steps needed:
 - DIGI, L1, DIGI2RAW, HLT, RAW2DIGI, L1Reco, RECO
- Then run HcalNoiseAnalyzer (updated for 62X)
 - HcalNoiseAnalyzer git page, Maintained by noise group?
 - Updated .cc file for 62X, E. Berry
- Use CMSSW_5_3_9_patch3 to process MinBias dataset:
 - cmsDriver.py command
 - Final python cfg
- Use CMSSW_6_2_8 to process QCD_Pt-1800 dataset:
 - cmsDriver.py command
 - Final python cfg

Selecton

- Event selection:
 - No trigger requirement
 - No OfficialDecision requirement
 - NumberOfGoodPrimaryVertices > 0
- Channel selection:
 - Only HBHE considered
 - Rings: HB, HE: {17:20, 21:23, 24:25, 26:27, 28:28}
 - No channels in bad channels list
 - RecHit energy > 1 GeV
 - Charge > 5 fC
- Analyzer code:
 - Git page

N(vertex)

Number of primary vertices: QCD sample

Results

•000000000000000

- 92612 events passing event selection
- Confirms no pileup, as expected

Definitions

- The following plots show TProfile distributions
- One entry per HCAL digi in the ZS-collection
- x-axis corresponds to charge in TS4 [fC]
- y-axis corresponds to one of several charge ratios:
 - a 1: charge in TS3 [fC] / charge in TS4 [fC]
 - a1: charge in TS5 [fC] / charge in TS4 [fC]
 - a2: charge in TS6 [fC] / charge in TS4 [fC]
 - a3: charge in TS7 [fC] / charge in TS4 [fC]

a 1(TS4) in the MinBias sample

a 1(TS4), in HB: MinBias sample

- Clearly not enough statistics in tail
- Can't use MinBias dataset to measure pulse shape
- MinBias dataset still useful for DIY pileup (future)

a 1(TS4) in the QCD sample

■ Fit with exponential + polynomial:

a
$$1(TS4) = [0] + [1] \cdot TS4 + Exp([2] + [3] \cdot TS4)$$

a1(TS4) in the QCD sample

a1(TS4) in HE 17:20

- Fit with multiple polynomials (same shape as in data)
- Fit function describes the shape well
- Numeric results and data comparison next slide

a1(TS4) in the QCD sample: HB

Variable	Region	MC value (unc.	from fit)	Data value
a ₀		1.4	±	0.00028	0.73
a_1		-0.12	\pm	2e - 05	-0.031
a_2	TS4 < 28 fC	0.0083	\pm	7.5e - 07	0.0012
a_3		-0.00027	\pm	2.6e - 08	-1.3e - 05
a ₄		3.4e - 06	\pm	9.1e - 10	-5.5e - 08
b ₀		0.84	\pm	NA	0.42
b_1		-0.0078	\pm	2e - 05	0.0069
b_2	28 ≤ TS4 < 60 fC	3.7e — 05	\pm	2.3e - 07	-0.00033
b ₃		1.1e - 06	\pm	3.3e - 09	4.9e - 06
b_4		-1.1e - 08	\pm	5e - 11	-2.4e - 08
	60 ≤ TS4 < 190 fC	0.76	±	NA	0.47
c_1		-0.0042	\pm	5.2e - 06	-0.0015
c_2		2.4e - 05	\pm	2.2e - 08	4.3e - 06
c ₃		-5.5e - 08	\pm	1e - 10	-4.7e - 09
$-d_0$		0.77	±	NA	0.53
d_1	190 ≤ TS4 < 435 fC	-0.003	\pm	3.7e - 06	-0.0019
d_2		9.1e - 06	\pm	6.5e - 09	4.6e - 06
d_3		-9.7e - 09	\pm	1.2e - 11	-3.8e - 09
e ₀	435 ≤ TS4 < 1330 fC	0.43	±	NA	0.26
e_1		-0.0001	\pm	5.1e - 07	-1.9e - 05
$-f_0$	1330 fC ≤ TS4	0.43	\pm	NA	0.24
f_1	1330 1€ ≤ 134	5.5e — 05	\pm	5.9e — 06	-3.6e - 07

Results

a1(TS4) in the QCD sample: HE 17:20

Variable	Region	MC value (unc. from fit) Data value				
a ₀		1.5	\pm	0.00041	0.61	
a_1		-0.14	\pm	2e - 05	-0.0076	
a_2	TS4 < 23 fC	0.0091	\pm	9.1e - 07	-0.00081	
a ₃		-0.00024	\pm	4e - 08	5.7e - 05	
a ₄		1.7e — 06	\pm	1.7e - 09	-9.4e - 07	
b ₀		0.71	\pm	NA	0.4	
b_1		-0.0045	\pm	1.3e - 05	0.0068	
b_2	23 ≤ TS4 < 65 fC	-1.6e - 06	\pm	1.5e - 07	-0.00031	
<i>b</i> ₃		7.7e — 07	\pm	2.2e - 09	4.5e - 06	
b_4		-5.2e - 09	\pm	3.3e - 11	-2.2e - 08	
		0.76	±	NA	0.46	
c_1	65 < TS4 < 190 fC	-0.0056	\pm	5.5e - 06	-0.0015	
c_2	05 \(\) 134 < 190 IC	3.8e - 05	\pm	2.2e - 08	4.9e - 06	
c ₃		-9.4 <i>e</i> - 08	\pm	1.1e - 10	-6.4e - 09	
$-d_0$		0.47	±	NA	0.48	
d_1	190 ≤ TS4 < 850 fC	-0.00025	\pm	1.8e - 06	-0.0015	
d_2		2.8e - 09	\pm	1.8e - 09	3.3e - 06	
d_3		8.7e — 11	\pm	2.1e - 12	-2.5e - 09	
e ₀	850 ≤ TS4 < 1640 fC	0.41	\pm	NA	0.26	
e_1		-0.00011	\pm	3.3e - 06	-2.1e-05	
f_0	1640 fC ≤ TS4	0.41	±	NA	0.24	
f_1	1040 1€ ≤ 134	-830000.0	\pm	2.0	0.0	

Results

a1(TS4) Data vs QCD MC

a1(TS4) Data vs Monte Carlo in HB

- Blue points: MC
- Red line: MC fit
- Black line: data fit (from Alexandre)

a2(TS4) in the QCD sample

a2(TS4) in HB

a2(TS4) in HE 17:20

a2(TS4) in the QCD sample: HB

Variable	Region	MC value (unc.	from fit)	Data value
a ₀		0.48	±	0.00011	0.31
a_1		-0.03	\pm	7.6e - 06	-0.03
a_2	TS4 < 23 fC	0.00062	\pm	3.4e - 07	0.0017
a ₃		3.7e - 05	\pm	1.4e - 08	-4.5e - 05
<i>a</i> ₄		-1.3e - 06	\pm	6e - 10	4.4e — 07
- b ₀		0.26	\pm	NA	0.13
b_1		-0.0028	\pm	4.1e - 06	-0.001
b_2	23 ≤ TS4 < 68 fC	1.9e — 05	\pm	4.6e - 08	1.2e - 05
b ₃		2.1e - 07	\pm	6.2e - 10	-6.7e - 08
b_4		-2.7e - 09	\pm	8.6e - 12	3.8e - 10
	68 ≤ TS4 < 190 fC	0.23	\pm	NA	0.11
c_1		-0.0013	\pm	1.6e - 06	-5.3e - 05
c_2		7.1e — 06	\pm	6.6e - 09	-1.1e - 06
<i>c</i> ₃		-1.5e - 08	\pm	3e - 11	3.7e - 09
$-d_0$		0.19	±	NA	0.1
d_1	190 ≤ TS4 < 515 fC	-0.00049	\pm	7.9e - 07	-0.00011
d_2		1.1e - 06	\pm	1.2e - 09	1.4e - 07
d_3		-1e - 09	\pm	2e - 12	-7.2e - 11
e ₀	$515 \leq TS4 < 1240 \; fC$	0.11	\pm	NA	0.079
e_1		-2.8e - 05	\pm	1.8e - 07	-1.3e - 05
$-f_0$	1240 fC < TS4	0.11	±	NA	0.065
f_1	1240 1€ ≤ 134	-1.8e - 06	\pm	8.5e - 07	-3.8e - 06

Results

a2(TS4) in the QCD sample

a2(TS4) in the QCD sample: HE 17:20

Variable	Region	MC value (u	MC value (unc. from fit)			
a ₀		0.47	±	0.00052	0.31	
a_1		-0.035	\pm	4.5e - 05	-0.027	
a_2	TS4 < 23 fC	0.00077	\pm	2e - 06	0.0014	
a ₃		4.4e — 05	\pm	8.5e - 08	-3.2e - 05	
a ₄		-1.6e - 06	\pm	3.5e - 09	2.7e — 07	
<i>b</i> ₀		0.19	\pm	NA	0.15	
b_1		-0.0013	\pm	2.5e - 05	-0.0033	
b_2	$23 \le TS4 < 68 fC$	3.4e — 06	\pm	3e - 07	7.8e — 05	
b ₃		1.6e - 07	\pm	4e - 09	-9.3e - 07	
b_4		-1.3e - 09	\pm	5.4e - 11	4.5e — 09	
	68 < TS4 < 190 fC	0.19	±	NA	0.11	
c_1		-0.0013	\pm	1.1e - 05	-0.00025	
c_2	00 ≤ 134 < 190 IC	8.3e — 06	\pm	4.4e - 08	2.9e — 07	
c ₃		-2e - 08	\pm	2e - 10	7.7e — 10	
$-d_0$		0.13	±	NA	0.091	
d_1	190 ≤ TS4 < 1000 fC	-7.1e - 05	\pm	2.3e - 06	-0.0001	
d_2		2e - 08	\pm	2.6e - 09	1.3e - 07	
d_3		8e - 12	\pm	2.1e - 12	-5.7e - 11	
e_0	1000 ≤ TS4 < 1380 fC	0.1	\pm	NA	0.065	
e_1		-2.1e - 05	\pm	2.8e - 06	-8.5e - 06	
f_0	1380 fC ≤ TS4	0.1	\pm	NA	0.053	
f_1	1300 TC \(\sigma \) 134	-2.7e - 05	±	1.3e - 05	0.0	

a2(TS4) Data vs QCD MC

a2(TS4) Data vs Monte Carlo in HB

- Blue points: MC
- Red line: MC fit
- Black line: data fit (from Alexandre)

a3(TS4) in the QCD sample

a3(TS4) in HE 17:20

Results

00000000000000000

a3(TS4) in the QCD sample: HB

Variable	Region	MC value (Data value		
a ₀		0.48	±	0.00011	0.31
a_1		-0.03	\pm	7.6e - 06	-0.03
a_2	TS4 < 23 fC	0.00062	\pm	3.4e - 07	0.0017
a_3		3.7e - 05	\pm	1.4e - 08	-4.5e - 05
<i>a</i> ₄		-1.3e - 06	\pm	6e - 10	4.4e - 07
b ₀		0.26	\pm	NA	0.13
b_1		-0.0028	\pm	4.1e - 06	-0.001
b_2	23 ≤ TS4 < 68 fC	1.9e - 05	\pm	4.6e - 08	1.2e - 05
b_3		2.1e - 07	\pm	6.2e - 10	-6.7e - 08
b_4		-2.7e - 09	\pm	8.6e - 12	3.8e - 10
		0.23	\pm	NA	0.11
c_1	68 ≤ TS4 < 190 fC	-0.0013	\pm	1.6e - 06	-5.3e - 05
c_2		7.1e — 06	\pm	6.6e - 09	-1.1e - 06
<i>c</i> ₃		-1.5e - 08	\pm	3e - 11	3.7e - 09
$-d_0$		0.19	±	NA	0.1
d_1	190 ≤ TS4 < 515 fC	-0.00049	\pm	7.9e - 07	-0.00011
d_2		1.1e - 06	\pm	1.2e - 09	1.4e - 07
d_3		-1e - 09	\pm	2e - 12	-7.2e - 11
e ₀	515 < TS4 < 1240 fC	0.11	\pm	NA	0.079
e_1	313 ≤ 134 < 1240 IC	-2.8e - 05	\pm	1.8e - 07	-1.3e - 05
f_0	1240 fC ≤ TS4	0.11	±	NA	0.065
f_1	1240 1€ ≤ 134	-1.8e - 06	\pm	8.5e - 07	-3.8e - 06

Results

00000000000000000

a3(TS4) in the QCD sample: HE 17:20

Variable	Region	MC value (ı	MC value (unc. from fit)			
a ₀		0.47	±	0.00052	0.31	
a_1		-0.035	\pm	4.5e - 05	-0.027	
a_2	TS4 < 23 fC	0.00077	\pm	2e - 06	0.0014	
a ₃		4.4e — 05	\pm	8.5e - 08	-3.2e - 05	
a4		-1.6e - 06	\pm	3.5e - 09	2.7e - 07	
<i>b</i> ₀		0.19	\pm	NA	0.15	
b_1		-0.0013	\pm	2.5e - 05	-0.0033	
b_2	23 ≤ TS4 < 68 fC	3.4e — 06	\pm	3e - 07	7.8e - 05	
<i>b</i> ₃		1.6e - 07	\pm	4e - 09	-9.3e - 07	
b_4		-1.3e - 09	\pm	5.4e - 11	4.5e - 09	
	68 < TS4 < 190 fC	0.19	\pm	NA	0.11	
c_1		-0.0013	\pm	1.1e - 05	-0.00025	
c_2	00 ≤ 134 < 190 IC	8.3e — 06	\pm	4.4e - 08	2.9e - 07	
c ₃		-2e - 08	\pm	2e - 10	7.7e - 10	
$-d_0$		0.13	±	NA	0.091	
d_1	190 ≤ TS4 < 1000 fC	-7.1e - 05	\pm	2.3e - 06	-0.0001	
d_2		2e - 08	\pm	2.6e - 09	1.3e - 07	
d_3		8e - 12	\pm	2.1e - 12	-5.7e - 11	
e_0	1000 ≤ TS4 < 1380 fC	0.1	\pm	NA	0.065	
e_1		-2.1e - 05	\pm	2.8e - 06	-8.5e - 06	
f_0	1380 fC ≤ TS4	0.1	±	NA	0.053	
f_1	1300 1€ ≤ 134	-2.7e - 05	\pm	1.3e - 05	0.0	

a3(TS4) Data vs QCD MC

a3(TS4) Data vs Monte Carlo in HB

- Blue points: MC
- Red line: MC fit
- Black line: data fit (from Alexandre)

Conclusion

- Processed zero-pileup samples adequate for studies
- Preliminary results ready using Alexandre's method
 - Fit functions used for data model MC pulse shape well
 - Final fit parameters (i.e. pulse shapes) are significantly different between data and MC
- Working on validating results to put into CMSSW in time for 710

