Příklad

Jev D "narozený v dlouhém měsíci" a jev R "nerozený v měsící obsahující písmeno r"

- $D = \{1, 3, 5, 7, 8, 10, 12\}$
- Arr $R = \{2-\text{Únor}, 6-\text{Červen}, 7-\text{Červenec}, 8-\text{Srpen}, 12-\text{Prosinec}\}$
- ▶ $P(D) = \frac{7}{12}$ a $P(R) = \frac{5}{12}$

Víme, že osoba se narodila v dlouhém měsíci a chceme vědět zda se narodila v měsíci obsahujícím písmeno r.

Řešení

Podmíněná pravděpodobnost R za předpokladu D je $P(R|D) = \frac{3}{7}$. $P(D \cap R) = \frac{3}{12} = \frac{1}{4}$

CVIČENÍ R3.1

Nechť $N=R^c$ je jev "narozený v měsíci bez písmena r". Jaká je podmíněná pravděpodobnost P(N|D).

PODMÍNĚNÁ PRAVDĚPODOBNOST

Příklad

Jev D "narozený v dlouhém měsíci" a jev R "nerozený v měsící obsahující písmeno r"

- $D = \{1, 3, 5, 7, 8, 10, 12\}$
- Arr $R = \{2-\text{Únor}, 6-\text{Červen}, 7-\text{Červenec}, 8-\text{Srpen}, 12-\text{Prosinec}\}$
- $P(D) = \frac{7}{12} \text{ a } P(R) = \frac{5}{12}$

Víme, že osoba se narodila v dlouhém měsíci a chceme vědět zda se narodila v měsíci obsahujícím písmeno r.

Řešení

Podmíněná pravděpodobnost R za předpokladu D je $P(R|D)=\frac{3}{7}$. $P(D\cap R)=\frac{3}{12}=\frac{1}{4}$

CVIČENÍ R3.1

Nechť $N=R^c$ je jev "narozený v měsíci bez písmena r". Jaká je podmíněná pravděpodobnost P(N|D).

Příklad

Jev D "narozený v dlouhém měsíci" a jev R "nerozený v měsící obsahující písmeno r"

- $D = \{1, 3, 5, 7, 8, 10, 12\}$
- Arr $R = \{2-\text{Únor}, 6-\text{Červen}, 7-\text{Červenec}, 8-\text{Srpen}, 12-\text{Prosinec}\}$
- $P(D) = \frac{7}{12} \text{ a } P(R) = \frac{5}{12}$

Víme, že osoba se narodila v dlouhém měsíci a chceme vědět zda se narodila v měsíci obsahujícím písmeno r.

Řešení

Podmíněná pravděpodobnost R za předpokladu D je $P(R|D)=\frac{3}{7}$. $P(D\cap R)=\frac{3}{12}=\frac{1}{4}$

CVIČENÍ R3.1

Nechť $N=R^c$ je jev "narozený v měsíci bez písmena r". Jaká je podmíněná pravděpodobnost P(N|D).

OBÁLKOVÝ PŘÍKLAD

Před dveřmi leží 3 obálky. Jev A "obálka 1 je uprostřed", jev B "obálka 2 je uprostřed", jev C "Obálky nejsou uspořádány" - $C = \{123, 321\}^c$. Určete:

- ► *P*(*A*)
- ► *P*(*B*)
- \triangleright P(A|C), P(B|C)
- $P(C|A), P(C^c|A \cup B)$

DEFINICE

Podmíněná pravděpodobnost A za předpokladu C je dána

$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$

za předpokladu, že P(C) > 0.

Obálkový příklad

Před dveřmi leží 3 obálky. Jev A "obálka 1 je uprostřed", jev B "obálka 2 je uprostřed", jev C "Obálky nejsou uspořádány" - $C = \{123, 321\}^c$. Určete:

- ► *P*(*A*)
- ▶ *P*(*B*)
- \triangleright P(A|C), P(B|C)
- ▶ P(C|A), $P(C^c|A \cup B)$

DEFINICE

Podmíněná pravděpodobnost A za předpokladu C je dána:

$$P(A|C) = \frac{P(A \cap C)}{P(C)},$$

za předpokladu, že P(C) > 0.

Vlastnosti podmíněné pravděpodobnosti

CVIČENÍ R3.3
Dokažte, že
$$P(A|C) + P(A^c|C) = 1$$

LEMMA Nechť Q(A)=P(A|C) pro všechná $A\subset \Omega$. Pak Q je pravděpodobnostní funkce.

Vlastnosti podmíněné pravděpodobnosti

CVIČENÍ R3.3 Dokažte, že $P(A|C) + P(A^c|C) = 1$

LEMMA

Nechť Q(A) = P(A|C) pro všechná $A \subset \Omega$. Pak Q je pravděpodobnostní funkce.

Pravidlo násobení

Pravidlo násobení Pro libovolné dva náhodné jevy A a C platí:

$$P(A \cap C) = P(A|C) \cdot P(C).$$

PRAVDĚPODOBNOST STEJNÝCH NAROZENIN Potkáte dva náhodné lidi. Jaká je pravděpodobnost, že jejich narozeniny jsou v jiný den? Jaká bude situace, když potkáte tři lidi? A N lidí?

Pravidlo násobení

Pravidlo násobení Pro libovolné dva náhodné jevy A a C platí:

$$P(A \cap C) = P(A|C) \cdot P(C).$$

PRAVDĚPODOBNOST STEJNÝCH NAROZENIN Potkáte dva náhodné lidi. Jaká je pravděpodobnost, že jejich narozeniny jsou v jiný den? Jaká bude situace, když potkáte tři lidi? A N lidí?

$P(B_2) = 1 - \frac{1}{365}$ - dva lidé mají odlišné narozeniny

 A_3 třetí osoba má v jiný den narozeniny než dva předchozí $P(B_3) = P(A_3 \cap B_2) = P(A_3|B_2)P(B_2)$ $P(A_3|B_2) = 1 - \frac{2}{365}$ $P(B_3) = P(A_3|B_2)P(B_2) = \left(1 - \frac{2}{365}\right) \cdot \left(1 - \frac{1}{365}\right) = 0.9918$ $P(B_n) = P(A_n|B_{n-1}) \cdot P(B_{n-1}) = \left(1 - \frac{n-1}{365}\right) \cdot P(B_{n-1})$

$$P(B_n) = \left(1 - \frac{n-1}{365}\right) \cdot P(A_{n-1}|B_{n-2}) \cdot P(B_{n-2})$$

$$= \left(1 - \frac{n-1}{365}\right) \cdot \left(1 - \frac{n-2}{365}\right) \cdot P(B_{n-2})$$

$$\vdots$$

 $P(B_2) = 1 - \frac{1}{365}$ - dva lidé mají odlišné narozeniny A_3 třetí osoba má v jiný den narozeniny než dva předchozí $P(B_3) = P(A_3 \cap B_2) = P(A_3 | B_2) P(B_2)$

$$P(B_3) = P(A_3 \cap B_2) = P(A_3|B_2)P(B_2)$$

$$P(A_3|B_2) = 1 - \frac{2}{365}$$

$$P(B_3) = P(A_3|B_2)P(B_2) = \left(1 - \frac{2}{365}\right) \cdot \left(1 - \frac{1}{365}\right) = 0.9918$$

$$P(B_n) = P(A_n|B_{n-1}) \cdot P(B_{n-1}) = \left(1 - \frac{n-1}{365}\right) \cdot P(B_{n-1})$$

$$P(B_n) = \left(1 - \frac{n-1}{365}\right) \cdot P(A_{n-1}|B_{n-2}) \cdot P(B_{n-2})$$

$$= \left(1 - \frac{n-1}{365}\right) \cdot \left(1 - \frac{n-2}{365}\right) \cdot P(B_{n-2})$$

$$\vdots$$

 $P(B_2)=1-rac{1}{365}$ - dva lidé mají odlišné narozeniny A_3 třetí osoba má v jiný den narozeniny než dva předchozí $P(B_3)=P(A_3\cap B_2)=P(A_3|B_2)P(B_2)$

$$P(A_3|B_2) = 1 - \frac{2}{365}$$

$$P(B_3) = P(A_3|B_2)P(B_2) = \left(1 - \frac{2}{365}\right) \cdot \left(1 - \frac{1}{365}\right) = 0.9918$$

$$P(B_n) = P(A_n|B_{n-1}) \cdot P(B_{n-1}) = \left(1 - \frac{n-1}{365}\right) \cdot P(B_{n-1})$$

$$P(B_n) = \left(1 - \frac{n-1}{365}\right) \cdot P(A_{n-1}|B_{n-2}) \cdot P(B_{n-2})$$

$$= \left(1 - \frac{n-1}{365}\right) \cdot \left(1 - \frac{n-2}{365}\right) \cdot P(B_{n-2})$$

$$\vdots$$

 $P(B_2) = 1 - \frac{1}{365}$ - dva lidé mají odlišné narozeniny A_3 třetí osoba má v jiný den narozeniny než dva předchozí $P(B_3) = P(A_3 \cap B_2) = P(A_3|B_2)P(B_2)$ $P(A_3|B_2) = 1 - \frac{2}{365}$ $P(B_3) = P(A_3|B_2)P(B_2) = (1 - \frac{2}{365}) \cdot (1 - \frac{1}{365}) = 0.9918$ $P(B_3) = P(A_3|B_{2-1}) \cdot P(B_{2-1}) = (1 - \frac{n-1}{n-1}) \cdot P(B_{2-1})$

$$P(B_n) = \left(1 - \frac{n-1}{365}\right) \cdot P(A_{n-1}|B_{n-2}) \cdot P(B_{n-2})$$

$$= \left(1 - \frac{n-1}{365}\right) \cdot \left(1 - \frac{n-2}{365}\right) \cdot P(B_{n-2})$$

$$\vdots$$

$$\begin{split} &P(B_2) = 1 - \frac{1}{365} \text{ - dva lid\'e maj\'i odlišn\'e narozeniny} \\ &A_3 \text{ třet\'i osoba m\'a v jin\'y den narozeniny než dva předchoz\'i} \\ &P(B_3) = P(A_3 \cap B_2) = P(A_3|B_2)P(B_2) \\ &P(A_3|B_2) = 1 - \frac{2}{365} \\ &P(B_3) = P(A_3|B_2)P(B_2) = \left(1 - \frac{2}{365}\right) \cdot \left(1 - \frac{1}{365}\right) = 0.9918 \\ &P(B_n) = P(A_n|B_{n-1}) \cdot P(B_{n-1}) = \left(1 - \frac{n-1}{365}\right) \cdot P(B_{n-1}) \end{split}$$

$$P(B_n) = \left(1 - \frac{n-1}{365}\right) \cdot P(A_{n-1}|B_{n-2}) \cdot P(B_{n-2})$$

$$= \left(1 - \frac{n-1}{365}\right) \cdot \left(1 - \frac{n-2}{365}\right) \cdot P(B_{n-2})$$

$$\vdots$$

$$= \left(1 - \frac{n-1}{365}\right) \cdots \left(1 - \frac{2}{365}\right) \cdot \left(1 - \frac{1}{365}\right)$$

$$\begin{split} &P(B_2) = 1 - \frac{1}{365} \text{ - dva lid\'e maj\'i odlišn\'e narozeniny} \\ &A_3 \text{ třet\'i osoba m\'a v jin\'i den narozeniny než dva předchoz\'i} \\ &P(B_3) = P(A_3 \cap B_2) = P(A_3|B_2)P(B_2) \\ &P(A_3|B_2) = 1 - \frac{2}{365} \\ &P(B_3) = P(A_3|B_2)P(B_2) = \left(1 - \frac{2}{365}\right) \cdot \left(1 - \frac{1}{365}\right) = 0.9918 \\ &P(B_n) = P(A_n|B_{n-1}) \cdot P(B_{n-1}) = \left(1 - \frac{n-1}{365}\right) \cdot P(B_{n-1}) \end{split}$$

$$P(B_n) = \left(1 - \frac{n-1}{365}\right) \cdot P(A_{n-1}|B_{n-2}) \cdot P(B_{n-2})$$

$$= \left(1 - \frac{n-1}{365}\right) \cdot \left(1 - \frac{n-2}{365}\right) \cdot P(B_{n-2})$$
.

$$= \left(1 - \frac{n-1}{365}\right) \cdots \left(1 - \frac{2}{365}\right) \cdot \left(1 - \frac{1}{365}\right)$$

$$\begin{split} &P(B_2) = 1 - \frac{1}{365} \text{ - dva lid\'e maj\'e odlišn\'e narozeniny} \\ &A_3 \text{ třet\'e osoba m\'a v jin\'e den narozeniny než dva předchoz\'e} \\ &P(B_3) = P(A_3 \cap B_2) = P(A_3|B_2)P(B_2) \\ &P(A_3|B_2) = 1 - \frac{2}{365} \\ &P(B_3) = P(A_3|B_2)P(B_2) = \left(1 - \frac{2}{365}\right) \cdot \left(1 - \frac{1}{365}\right) = 0.9918 \\ &P(B_n) = P(A_n|B_{n-1}) \cdot P(B_{n-1}) = \left(1 - \frac{n-1}{365}\right) \cdot P(B_{n-1}) \end{split}$$

$$P(B_n) = \left(1 - \frac{n-1}{365}\right) \cdot P(A_{n-1}|B_{n-2}) \cdot P(B_{n-2})$$

$$= \left(1 - \frac{n-1}{365}\right) \cdot \left(1 - \frac{n-2}{365}\right) \cdot P(B_{n-2})$$

$$\vdots$$

$$= \left(1 - \frac{n-1}{365}\right) \cdots \left(1 - \frac{2}{365}\right) \cdot \left(1 - \frac{1}{365}\right)$$

NAROZENINY GRAF

CVIČENÍ R3.5 Vypočítejte pravděpodobnost, že tři náhodně vybraní lidé se narodili v různých měsících. Dokažete napsat vzorec pro *n* lidí?

NAROZENINY GRAF

CVIČENÍ R3.5 Vypočítejte pravděpodobnost, že tři náhodně vybraní lidé se narodili v různých měsících. Dokažete napsat vzorec pro n lidí?

ZÁLEŽÍ NA TOM, ČÍM PODMIŇUJEME

Dva alternativní způsoby

$$P(A \cap C) = P(A|C) \cdot P(C);$$

$$P(A \cap C) = P(C|A) \cdot P(A).$$

Oba způsoby jsou správné, ale často je jeden srozumitelný a druhý ne.

Narozeninový příklad

$$P(B_3) = P(A_3 \cap B_2) = P(B_2|A_3)P(A_3)$$

Pravděpodobnost, že první dva lidé se narodili v jiný den za předpokladu, že třetí osoba se narodila v jiný den než první dvě osoby?

ZÁLEŽÍ NA TOM, ČÍM PODMIŇUJEME

Dva alternativní způsoby

$$P(A \cap C) = P(A|C) \cdot P(C);$$

$$P(A \cap C) = P(C|A) \cdot P(A).$$

Oba způsoby jsou správné, ale často je jeden srozumitelný a druhý ne.

NAROZENINOVÝ PŘÍKLAD

$$P(B_3) = P(A_3 \cap B_2) = P(B_2|A_3)P(A_3)$$

Pravděpodobnost, že první dva lidé se narodili v jiný den za předpokladu, že třetí osoba se narodila v jiný den než první dvě osoby?

Příklad

- problémy testu: falešně pozitivní, falešně negativní
- B "kráva má nemoc šílených krav", T "test je pozitivní"

$$P(T|B) = 0.70,$$

 $P(T|B^{C}) = 0.10.$

Jaká je pravděpodobnost P(T)?

$$T = (T \cap B) \cup (T \cap B^c),$$

 $P(T) = P(T \cap B) + P(T \cap B^c)$
 $P(T \cap B) = P(T|B) \cdot P(B)$
 $P(T \cap B^c) = P(T|B^c) \cdot P(B^c)$
celkem máme: $P(T) = P(T|B) \cdot P(B) + P(T|B^c) \cdot P(B^c)$
Za předpokladu $P(B) = 0.02$
je $P(T) = 0.7 \cdot 0.02 + 0.1 \cdot 0.98 = 0.112.$

Cvičení R3.6

Vypočítejte P(T) za předpokladu, že P(T|B) = 0.99 a $P(T|B^c) = 0.05$.

Příklad

- problémy testu: falešně pozitivní, falešně negativní
- B "kráva má nemoc šílených krav", T "test je pozitivní"

$$P(T|B) = 0.70,$$

 $P(T|B^{C}) = 0.10.$

Jaká je pravděpodobnost P(T)?

$$T = (T \cap B) \cup (T \cap B^c),$$

 $P(T) = P(T \cap B) + P(T \cap B^c)$
 $P(T \cap B) = P(T|B) \cdot P(B)$
 $P(T \cap B^c) = P(T|B^c) \cdot P(B^c)$
celkem máme: $P(T) = P(T|B) \cdot P(B) + P(T|B^c) \cdot P(B^c)$
Za předpokladu $P(B) = 0.02$
je $P(T) = 0.7 \cdot 0.02 + 0.1 \cdot 0.98 = 0.112.$

Cvičení R3.6

Vypočítejte P(T) za předpokladu, že P(T|B) = 0.99 a $P(T|B^c) = 0.05$.

Příklad

- problémy testu: falešně pozitivní, falešně negativní
- B "kráva má nemoc šílených krav", T "test je pozitivní"

$$P(T|B) = 0.70,$$

 $P(T|B^{C}) = 0.10.$

Jaká je pravděpodobnost P(T)?

$$T = (T \cap B) \cup (T \cap B^c),$$

 $P(T) = P(T \cap B) + P(T \cap B^c)$
 $P(T \cap B) = P(T|B) \cdot P(B)$
 $P(T \cap B^c) = P(T|B^c) \cdot P(B^c)$
celkem máme: $P(T) = P(T|B) \cdot P(B) + P(T|B^c) \cdot P(B^c)$
Za předpokladu $P(B) = 0.02$
je $P(T) = 0.7 \cdot 0.02 + 0.1 \cdot 0.98 = 0.112.$

Cvičení R3.6

Vypočítejte P(T) za předpokladu, že P(T|B)=0.99 a $P(T|B^c)=0.05.$

Příklad

- problémy testu: falešně pozitivní, falešně negativní
- B "kráva má nemoc šílených krav", T "test je pozitivní"

$$P(T|B) = 0.70,$$

 $P(T|B^{C}) = 0.10.$

Jaká je pravděpodobnost P(T)?

$$T = (T \cap B) \cup (T \cap B^c),$$

 $P(T) = P(T \cap B) + P(T \cap B^c)$
 $P(T \cap B) = P(T|B) \cdot P(B)$
 $P(T \cap B^c) = P(T|B^c) \cdot P(B^c)$
celkem máme: $P(T) = P(T|B) \cdot P(B) + P(T|B^c) \cdot P(B^c)$
Za předpokladu $P(B) = 0.02$
je $P(T) = 0.7 \cdot 0.02 + 0.1 \cdot 0.98 = 0.112.$

Cvičení R3.6

Vypočítejte P(T) za předpokladu, že P(T|B)=0.99 a $P(T|B^c)=0.05.$

Příklad

- problémy testu: falešně pozitivní, falešně negativní
- B "kráva má nemoc šílených krav", T "test je pozitivní"

$$P(T|B) = 0.70,$$

 $P(T|B^{C}) = 0.10.$

Jaká je pravděpodobnost P(T)?

$$T = (T \cap B) \cup (T \cap B^c),$$

 $P(T) = P(T \cap B) + P(T \cap B^c)$
 $P(T \cap B) = P(T|B) \cdot P(B)$
 $P(T \cap B^c) = P(T|B^c) \cdot P(B^c)$
celkem máme: $P(T) = P(T|B) \cdot P(B) + P(T|B^c) \cdot P(B^c)$
Za předpokladu $P(B) = 0.02$
je $P(T) = 0.7 \cdot 0.02 + 0.1 \cdot 0.98 = 0.112.$

Cvičení R3.6

Vypočítejte P(T) za předpokladu, že P(T|B)=0.99 a $P(T|B^c)=0.05.$

Příklad

- problémy testu: falešně pozitivní, falešně negativní
- B "kráva má nemoc šílených krav", T "test je pozitivní"

$$P(T|B) = 0.70,$$

 $P(T|B^{C}) = 0.10.$

Jaká je pravděpodobnost P(T)?

$$T = (T \cap B) \cup (T \cap B^c),$$

 $P(T) = P(T \cap B) + P(T \cap B^c)$
 $P(T \cap B) = P(T|B) \cdot P(B)$
 $P(T \cap B^c) = P(T|B^c) \cdot P(B^c)$
celkem máme: $P(T) = P(T|B) \cdot P(B) + P(T|B^c) \cdot P(B^c).$
Za předpokladu $P(B) = 0.02$
je $P(T) = 0.7 \cdot 0.02 + 0.1 \cdot 0.98 = 0.112.$

Cvičení R3.6

Vypočítejte P(T) za předpokladu, že P(T|B) = 0.99 a $P(T|B^c) = 0.05$

Příklad

- problémy testu: falešně pozitivní, falešně negativní
- B "kráva má nemoc šílených krav", T "test je pozitivní"

$$P(T|B) = 0.70,$$

 $P(T|B^C) = 0.10.$

Jaká je pravděpodobnost P(T)?

$$T = (T \cap B) \cup (T \cap B^c),$$

 $P(T) = P(T \cap B) + P(T \cap B^c)$
 $P(T \cap B) = P(T|B) \cdot P(B)$
 $P(T \cap B^c) = P(T|B^c) \cdot P(B^c)$
celkem máme: $P(T) = P(T|B) \cdot P(B) + P(T|B^c) \cdot P(B^c).$
Za předpokladu $P(B) = 0.02$
je $P(T) = 0.7 \cdot 0.02 + 0.1 \cdot 0.98 = 0.112.$

CVIČENÍ R3.6 Vypočítejte P(T) za předpokladu, že P(T|B) = 0.99 a $P(T|B^c) = 0.05$.

Příklad

- problémy testu: falešně pozitivní, falešně negativní
- B "kráva má nemoc šílených krav", T "test je pozitivní"

$$P(T|B) = 0.70,$$

 $P(T|B^C) = 0.10.$

Jaká je pravděpodobnost P(T)?

$$T = (T \cap B) \cup (T \cap B^c),$$

$$P(T) = P(T \cap B) + P(T \cap B^c)$$

$$P(T \cap B) = P(T|B) \cdot P(B)$$

$$P(T \cap B^c) = P(T|B^c) \cdot P(B^c)$$
celkem máme:
$$P(T) = P(T|B) \cdot P(B) + P(T|B^c) \cdot P(B^c).$$
Za předpokladu
$$P(B) = 0.02$$
je
$$P(T) = 0.7 \cdot 0.02 + 0.1 \cdot 0.98 = 0.112.$$

CVIČENÍ R3.6 Vypočítejte P(T) za předpokladu, že P(T|B)=0.99 a $P(T|B^c)=0.05$.

Příklad

- problémy testu: falešně pozitivní, falešně negativní
- B "kráva má nemoc šílených krav", T "test je pozitivní"

$$P(T|B) = 0.70,$$

 $P(T|B^{C}) = 0.10.$

Jaká je pravděpodobnost P(T)?

$$T = (T \cap B) \cup (T \cap B^c),$$

$$P(T) = P(T \cap B) + P(T \cap B^c)$$

$$P(T \cap B) = P(T|B) \cdot P(B)$$

$$P(T \cap B^c) = P(T|B^c) \cdot P(B^c)$$
celkem máme:
$$P(T) = P(T|B) \cdot P(B) + P(T|B^c) \cdot P(B^c).$$
Za předpokladu
$$P(B) = 0.02$$
je
$$P(T) = 0.7 \cdot 0.02 + 0.1 \cdot 0.98 = 0.112.$$

Cvičení R3.6

Vypočítejte P(T) za předpokladu, že P(T|B) = 0.99 a $P(T|B^c) = 0.05$.

ZÁKON ÚPLNÉ PRAVDĚPODOBNOSTI

Věta

Předpokládejme, že C_1, C_2, \ldots, C_m jsou disjunktní náhodné jevy, a že $C_1 \cup C_2 \cup \cdots \cup C_m = \Omega$. Pravděpodobnost libovolného náhodného jevu A lze pak vyjádřit jako:

$$P(A) = P(A|C_1)P(C_1) + P(A|C_2)P(C_2) + \cdots + P(A|C_m)P(C_m).$$

Grafické znázornění pro m=5

ZÁKON ÚPLNÉ PRAVDĚPODOBNOSTI

Věta

Předpokládejme, že C_1, C_2, \ldots, C_m jsou disjunktní náhodné jevy, a že $C_1 \cup C_2 \cup \cdots \cup C_m = \Omega$. Pravděpodobnost libovolného náhodného jevu A lze pak vyjádřit jako:

$$P(A) = P(A|C_1)P(C_1) + P(A|C_2)P(C_2) + \cdots + P(A|C_m)P(C_m).$$

Grafické znázornění pro m=5

Příklad

Předpokládejme, že moje kráva má pozitivní test. Jaká je pravděpodobnost, že skutečně má nemoc šílených krav?

$$P(B|T) = \frac{P(T \cap B)}{P(T)} = \frac{P(T|B) \cdot P(B)}{P(T|B) \cdot P(B) + P(T|B^c) \cdot P(B^c)}.$$

Za předpokladu P(B) = 0.02 máme

$$P(B|T) = \frac{0.70 \cdot 0.02}{0.70 \cdot 0.02 + 0.10 \cdot (1 - 0.02)} = 0.125$$

a analogicky $P(B|T^c) = 0.0068$.

DOKONALÝ TEST
$$P(B|T) = 1$$
 a $P(B|T^c) = 0$

Příklad

Předpokládejme, že moje kráva má pozitivní test. Jaká je pravděpodobnost, že skutečně má nemoc šílených krav?

$$P(B|T) = \frac{P(T \cap B)}{P(T)} = \frac{P(T|B) \cdot P(B)}{P(T|B) \cdot P(B) + P(T|B^c) \cdot P(B^c)}.$$

Za předpokladu P(B) = 0.02 máme

$$P(B|T) = \frac{0.70 \cdot 0.02}{0.70 \cdot 0.02 + 0.10 \cdot (1 - 0.02)} = 0.125$$

a analogicky $P(B|T^c) = 0.0068$.

DOKONALÝ TEST
$$P(B|T) = 1$$
 a $P(B|T^c) = 0$

Příklad

Předpokládejme, že moje kráva má pozitivní test. Jaká je pravděpodobnost, že skutečně má nemoc šílených krav?

$$P(B|T) = \frac{P(T \cap B)}{P(T)} = \frac{P(T|B) \cdot P(B)}{P(T|B) \cdot P(B) + P(T|B^c) \cdot P(B^c)}.$$

Za předpokladu P(B) = 0.02 máme

$$P(B|T) = \frac{0.70 \cdot 0.02}{0.70 \cdot 0.02 + 0.10 \cdot (1 - 0.02)} = 0.125$$

a analogicky $P(B|T^c) = 0.0068$.

DOKONALÝ TEST P(B|T) = 1 a $P(B|T^c) = 0$

Příklad

Předpokládejme, že moje kráva má pozitivní test. Jaká je pravděpodobnost, že skutečně má nemoc šílených krav?

$$P(B|T) = \frac{P(T \cap B)}{P(T)} = \frac{P(T|B) \cdot P(B)}{P(T|B) \cdot P(B) + P(T|B^c) \cdot P(B^c)}.$$

Za předpokladu P(B) = 0.02 máme

$$P(B|T) = \frac{0.70 \cdot 0.02}{0.70 \cdot 0.02 + 0.10 \cdot (1 - 0.02)} = 0.125$$

a analogicky $P(B|T^c) = 0.0068$.

DOKONALÝ TEST P(B|T) = 1 a $P(B|T^c) = 0$

Bayesova Věta

Věta

Předpokládejme, že náhodné jevy C_1, C_2, \ldots, C_m jsou disjunktní a $C_1 \cup C_2 \cup \cdots \cup C_m = \Omega$. Podmíněnou pravděpodobnost C_i za předpokladu libovolného jevu A lze vyjádřit jako:

$$P(C_i|A) = \frac{P(A|C_i) \cdot P(C_i)}{P(A|C_1) + P(A|C_2)P(C_2) + \cdots + P(A|C_m)P(C_m)}$$

Tradiční Bayesův vzorec:
$$P(C_i|A) = \frac{P(A|C_i) \cdot P(C_i)}{P(A)}$$

CVIČENÍ R3.7 Vypočítejte P(B|T) a $P(B|T^c)$ když P(T|B)=0.99 a $P(T|B^c)=0.05$.

Bayesova Věta

Věta

Předpokládejme, že náhodné jevy C_1, C_2, \ldots, C_m jsou disjunktní a $C_1 \cup C_2 \cup \cdots \cup C_m = \Omega$. Podmíněnou pravděpodobnost C_i za předpokladu libovolného jevu A lze vyjádřit jako:

$$P(C_i|A) = \frac{P(A|C_i) \cdot P(C_i)}{P(A|C_1)P(C_1) + P(A|C_2)P(C_2) + \dots + P(A|C_m)P(C_m)}$$

Tradiční Bayesův vzorec:
$$P(C_i|A) = \frac{P(A|C_i) \cdot P(C_i)}{P(A)}$$

CVIČENÍ R3.7

Vypočítejte
$$P(B|T)$$
 a $P(B|T^c)$ když $P(T|B) = 0.99$ a $P(T|B^c) = 0.05$.

