Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2115 - Programación como herramienta para la ingeniería

Modelos predictivos con Machine Learning

Profesor: Hans Löbel

¿Qué es el análisis de datos (en Python)?

- Desde un punto de vista práctico, consiste principalmente en utilizar herramientas para:
 - Limpiar y transformar los datos
 - Explorar distintas dimensiones de los datos
 - o Calcular estadísticas de los datos
 - Visualizar los datos
 - Construir modelos predictivos
- Para todo esto (y más), está Pandas y scikit-learn

En esta segunda parte nos centraremos en scikit-learn

- Implementa gran cantidad de algoritmos predictivos y de procesamiento de datos.
- Permite una fácil integración con Pandas y numpy.

Antes de revisar *scikit-learn*, necesitamos una breve introducción al Aprendizaje de Máquina (Machine Learning)

¿Qué es Machine Learning (ML)?

- En simple, se trata de algoritmos que procesan datos para realizar una tarea (predicción, clasificación, clustering, etc.)
- Más especificamente, se centra en el estudio de algoritmos que mejoran su rendimiento en una tarea, a través de la experiencia (aprendizaje desde los datos).
- Buscan resolver la tarea con la mayor precisión posible, más que entender el fenómeno subyacente.

(casi) Todas las técnicas de ML usan el mismo esquema de procesamiento

Técnicas de ML trabajan sobre datos multidimensionales

- Cada dato esta caracterizado por una serie de características = mediciones = atributos = variables.
- La cantidad de características define la dimensionalidad del dato.
- El espacio donde viven los datos se conoce como espacio de características (feature space).

Distance from the eye	Wind speed at site	Pressure deficit	Forward speed of the	Storm surge
of the storm (km)	(m/s)	at site (hPa)	eye of the storm (km/h)	(cm)
96.0	20.7	20.6	27.6	47.4
108.5	15.4	11.0	58.9	24.5
181.2	8.1	1.7	40.1	7.9
245.3	5.7	6.4	29.6	5.5
117.5	23.3	22.0	46.6	61.7
231.4	13.3	11.5	38.1	20.8
293.6	4.0	7.2	35.4	5.6
0.6	8.5	7.0	32.2	8.7
227.6	10.0	10.4	19.3	16.0
257.3	11.5	15.0	44.1	10.8

Cada dato puede verse como un vector/punto en el espacio de características

Distance from the eye	Wind speed at site	Pressure deficit	Forward speed of the	Storm surge
of the storm (km)	(m/s)	at site (hPa)	eye of the storm (km/h)	(cm)
96.0	20.7	20.6	27.6	47.4
108.5	15.4	11.0	58.9	24.5
181.2	8.1	1.7	40.1	7.9
245.3	5.7	6.4	29.6	5.5
117.5	23.3	22.0	46.6	61.7
231.4	13.3	11.5	38.1	20.8
293.6	4.0	7.2	35.4	5.6
0.6	8.5	7.0	32.2	8.7
227.6	10.0	10.4	19.3	16.0
257.3	11.5	15.0	44.1	10.8

Cada dato puede verse como un vector/punto en el espacio de características

Para entrenar = ajustar = calibrar un modelo, se utiliza un set de entrenamiento

		Response vector			
	Distance from the eye	Wind speed at site	Pressure deficit	Forward speed of the	Storm surge
_	of the storm (km)	(m/s)	at site (hPa)	eye of the storm (km/h)	(cm)
Entrenamiento	96.0	20.7	20.6	27.6	47.4
	108.5	15.4	11.0	58.9	24.5
	181.2	8.1	1.7	40.1	7.9
	245.3	5.7	6.4	29.6	5.5
	117.5	23.3	22.0	46.6	61.7
	231.4	13.3	11.5	38.1	20.8
	293.6	4.0	7.2	35.4	5.6
	0.6	8.5	7.0	32.2	8.7
	227.6	10.0	10.4	19.3	16.0
	257.3	11.5	15.0	44.1	10.8
Test	290.6	9.5	13.6	46.9	
	245.3	10.6	14.2	77.6	
	227.0	4.4	7.9	20.8	
	279.1	4.4	7.8	29.5	
	266.3	8.7	8.8	32.9	
	165.6	19.2	16.4	45.6	
	136.5	10.7	12.2	4.6	
	207.9	4.4	8.0	14.1	

Set de test es útil para evaluar la capacidad de generalización del modelo

Una forma clara de ver esto es con conjuntos de datos disjuntos

En este curso usaremos scikit-learn

- scikit-learn es el módulo para ML más conocido y utilizado en Python.
- Su principal atractivo es una interfaz limpia, uniforme y simple, que facilita la exploración y permite la integración con otro paquetes, como Pandas.
- Posee además de una completa documentación en línea (https://scikit-learn.org/).

Esquema de datos es similar a Pandas

- Datos son representados por una matriz de features y un vector objetivo.
- Las características de los ejemplos se almacenan en una matriz de *features* (X), de tamaño [n_samples, n_features] (esta matriz puede ser un DataFrame).
- El vector objetivo (y) contiene el valor a predecir para cada ejemplo y tiene tamaño [n_samples, 1] (este vector puede ser una Series).
- Y eso es todo...

Esquema de datos es similar a Pandas

Interfaz para usar modelos/algoritmos

- La interfaz de scikit-learn se basa en los siguientes conceptos principales:
 - Consistente: todos los modelos comparten una interfaz con unas pocas funciones.
 - Sucinta: solo usa clases propias para los algoritmos. Para todo el resto utiliza formatos estándares (datos en DataFrame por ejemplo).
 - Útil: los parámetros por defecto son útiles para estimar adecuadamente los modelos.
- En resumen, requiere muy poco esfuerzo utilizarla y obtener resultados rápidamente.

Regresión lineal y logística

- Se encuentran en el módulo sklearn.linear_model
- Para instanciarlas, utilizamos los siguientes comandos:

```
model = linear_model.LinearRegression()
```

model = linear_model.LogisticRegression()

Interfaz para usar modelos

- En general, un caso de uso típico en Scikit-learn es como el siguiente:
 - 1. Elegir el modelo adecuado, importando la clase correspondiente desde *sklearn*.
 - 2. Obtener o generar matriz X y vector y.
 - 3. Entrenar el modelo llamando al fit(X, y).
 - 4. Aplicar el modelo al set de test, usando el método predict().
- Al igual que para los datos, se requiere muy poco esfuerzo para obtener resultados rápidamente.

Podrán utilizar múltiples modelos/algoritmos en este capítulo

- k-NN
- Regresiones (lineal, logística, polinomial)
- SVM
- Árboles de decisión
- Ensambles
- Redes neuronales
- y más...

¿Cómo elegimos el mejor modelo para cada tarea?

- El primer paso consiste en analizar y explorar los datos.
- En base a esto, se eligen algunos modelos candidatos y se evalúa su rendimiento.
- scikit-Learn entrega una gran cantidad de métricas de rendimiento para distintos tipos de problema.
- Se encuentran en el módulo sklearn, metrics
- En la práctica, las más usadas son accuracy, precision, recall, error cuadrático medio y matriz de confusión.

A pesar de ser clave, el set de entrenamiento no lo es todo

- En general, los algoritmos de aprendizaje viven y mueren por el set de entrenamiento.
- Lamentablemente, tener un buen set de entrenamiento, no asegura tener buena generalización.
- La complejidad del modelo (cuánto puede aprender) pasa a ser un tema central.

Subentrenamiento (o subajuste, o underfitting)

Sobreentrenamiento (o sobrebajuste, u overfitting)

Complejidad correcta del modelo

Cómo podemos controlar esto

- Un mecanismo típico es utilizar un set de validación para evaluar el rendimiento.
- El set de validación es una pequeña parte del set de entrenamiento, que no se usa para entrenar inicialmente.

Una forma clara de ver esto es con conjuntos de datos disjuntos

Cómo podemos controlar esto

- Un mecanismo típico es utilizar un set de validación para evaluar el rendimiento.
- El set de validación es una pequeña parte del set de entrenamiento, que no se usa para entrenar inicialmente.
- Se entrenan distintos modelos en el nuevo set de entrenamiento y se evalúan en el de validación.
- El set con mejor rendimiento en validación es el elegido, y se usa para entrenar el modelo con todos los datos (entrenamiento + validación).

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2115 - Programación como herramienta para la ingeniería

Modelos predictivos con Machine Learning

Profesor: Hans Löbel