POWERED BY Dialog

Publication Number: 10-111189 (JP 10111189 A), April 28, 1998

Inventors:

- YOSHIDA TAKASHI
- MIYAZAKI SHUNICHI

Applicants

• YOKOGAWA ELECTRIC CORP (A Japanese Company or Corporation), JP (Japan)

Application Number: 08-268179 (JP 96268179), October 09, 1996

International Class (IPC Edition 6):

- G01L-001/10
- G01L-009/00
- H01L-029/84
- H03B-005/30
- H03H-003/02
- H03H-009/17

JAPIO Class:

- 46.1 (INSTRUMENTATION--- Measurement)
- 42.2 (ELECTRONICS--- Solid State Components)
- 42.4 (ELECTRONICS--- Basic Circuits)
- 44.1 (COMMUNICATION--- Transmission Circuits & Antennae)

JAPIO Keywords:

- R005 (PIEZOELECTRIC FERROELECTRIC SUBSTANCES)
- R100 (ELECTRONIC MATERIALS--- Ion Implantation)

Abstract:

PROBLEM TO BE SOLVED: To provide a vibrating transducer and its manufacturing method wherein flexure is prevented with sure even when a compression is applied to a vibration beam by applying an initial tension to the vibration beam of polysilicon.

SOLUTION: The transducer, by measuring a resonance frequency of a vibration beam 12 fixed to a substrate 11 by its both ends, measures a strain applied to the two ends of the vibration beam. In that case, the vibration beam 12 of polysilicon wherein a boron glass is film-formed for obtaining a specified initial tension by high-concentration doping with boron, and then is subjected to drive-in under heated nitrogen, and then the boron glass is removed, is provided.

JAPIO

http://toolkit.dialog.com/intranet/cgi/present?STYLE=1360084482&PRESENT=DB=347,AN=58280: 6/2/2005

© 2005 Japan Patent Information reganization. All rights reserved. Dialog® File Number 347 Acces in Number 5828089

拒絕引用S03P [76年1400

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平10-111189

(43)公開日 平成10年(1998)4月28日

(51) Int. Cl. ⁶	i	識別語	记号		FI			
G 0 1 L	1/10				G 0 1 L	1/10	Α	
	9/00					9/00	С	
H 0 1 L	29/84				H 0 1 L	29/84	С	
H03B	5/30				H 0 3 B	5/30		
H03H	3/02				H03H	3/02	В	
	審査請求	未請求	請求項の数4	OL			(全9頁)	最終頁に続く
(21)出願番号	特願平8-268179			(71)出願人	00000650	7		
						横河電機	株式会社	
(22) 出願日	平成8年(1996)10月9日					東京都武	蔵野市中町2丁	目9番32号
					(72)発明者	吉田 隆	司	
						長野県上	伊那郡宮田村20	61番地 横河電梯
						株式会社	内	
					(72)発明者	宮崎俊		
						長野県上	伊那郡宮田村20)61番地 横河電機
						株式会社	内	
					(74)代理人	、弁理士	渡辺 正康	
			-					

(54) 【発明の名称】振動式トランスデューサとその製造方法

(57)【要約】

【課題】 ポリシリコンよりなる振動梁に初期張力を付与し、振動梁に圧縮が加わった場合にも座屈を確実に防止し得る振動式トランスデューサとその製造方法を提供するにある。

【解決手段】 両端が基板に固定された振動梁の共振周波数を測定する事により該振動梁の両端に加えられた歪を測定する振動式トランスデューサにおいて、ボロンの高濃度ドープにより所定の初期張力が得られるようにボロンガラスが成膜された後加熱された窒素中でドライブインされた後前記ボロンガラスが除去されてなるポリシリコンよりなる振動梁を具備したことを特徴とする振動式トランスデューサである。

【特許請求の範囲】

【請求項1】 両端が基板に固定された振動梁の共振周波 数を測定する事により該振動梁の両端に加えられた歪を 測定する振動式トランスデューサにおいて、

ボロンの高濃度ドープにより所定の初期張力が得られる ようにボロンガラスが成膜された後加熱された窒素中で ドライブインされた後前記ボロンガラスが除去されてな るポリシリコンよりなる振動梁を具備したことを特徴と する振動式トランスデューサ。

【請求項2】前記ポリシリコンよりなる振動梁に初期張 10 力を制御するために加熱処理を加えたことを特徴とする 請求項1記載の振動式トランスデューサ。

【請求項3】両端が基板に固定された振動ゲートの共振 周波数を測定する事により該振動ゲートの両端に加えら れた歪を測定する振動式トランスデューサの製造方法に おいて、以下の工程を有することを特徴とする振動式ト ランスデューサの製造方法。

- (a) 第1の伝導形式を有する半導体の基板上に、犠牲 層酸化膜を形成する犠牲層酸化膜形成工程。
- る犠牲層酸化膜一部エッチング工程。
- (c) 前記犠牲層酸化膜と前記所定個所の前記半導体の 基板上にポリシリコン膜を成膜するポリシリコン膜形成
- (d) 該ポリシリコン膜上にボロンガラスを形成するボ ロンガラス形成工程。
- (e) 窒素中で熱処理を行うボロンドライブイン工程。
- (f) 前記ボロンガラスをエッチング除去するボロンガ ラス除去工程。
- (g) 前記犠牲層酸化膜をエッチング除去する犠牲層酸 30 化膜エッチング工程。

【請求項4】両端が基板に固定された振動ゲートの共振 周波数を測定する事により該振動ゲートの両端に加えら れた歪を測定する振動式トランスデューサの製造方法に おいて、以下の工程を有することを特徴とする振動式ト ランスデューサの製造方法。

- (a) 第1の伝導形式を有する半導体の基板上に、犠牲 層酸化膜を形成する犠牲層酸化膜形成工程。
- (b) 前記犠牲層酸化膜の所定個所をエッチング除去す る犠牲層酸化膜一部エッチング工程。
- (c) 前記犠牲層酸化膜と前記所定個所の前記半導体の 基板上にポリシリコン膜を成膜するポリシリコン膜形成
- (d) 該ポリシリコン膜上にボロンガラスを形成するボ ロンガラス形成工程。
- (e) 窒素中で熱処理を行うボロンドライブイン工程。
- (f) 前記ボロンガラスをエッチング除去するボロンガ ラス除去工程。
- (g) 前記犠牲層酸化膜をエッチング除去する犠牲層酸 化膜エッチング工程。

(h) 前記ポリシリコン膜の初期張力を制御するために 加熱する初期張力制御工程。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ポリシリコンより なる振動梁に初期張力を付与し、振動梁に圧縮が加わっ た場合にも座屈を確実に防止し得る振動式トランスデュ ーサとその製造方法に関するものである。

[0002]

【従来の技術】図27は、従来より一般に使用されてい る従来例の原理的構成説明図で、例えば、USP509 0254号に示されている。

【0003】図において、1は、シリコン半導体の基板 である。2は、シリコン半導体の基板1上に形成され、 通常の半導体プロセスにより形成されたポリシリコンよ りなる振動梁である。振動梁2の両端部分は、基板1に 固定されている。

【0004】以上の構成において、振動梁2の両端に加 えられた測定力Fが変化すると、振動梁2の共振周波数 (b) 前記犠牲層酸化膜の所定個所をエッチング除去す 20 は変化する。従って、逆に、振動梁2の共振周波数の変 化を測定すれば、振動梁2の両端に加えられた測定力F を測定する事が出来る。

> 【0005】このような装置は、図28~図29に示す 如く、以下の如くして製作する。

- (a) 図28に示す如く、シリコン半導体の基板101 上に、犠牲層酸化膜102を形成する。
- (b) 図29に示す如く、犠牲層酸化膜102の所定個 所103をエッチングする。

【0006】(c)図30に示す如く、犠牲層酸化膜1 02と所定個所103の半導体の基板101上にポリシ リコン膜104を成膜する。

(d) 図31に示す如く、犠牲層酸化膜102をエッチ ング除去する。

[0007]

【発明が解決しようとする課題】しかしながら、この様 な、一般的なサーフェスマイクロマシーニング技術を用 いて作製された振動式トランスデューサは、その振動梁 2部分をポリシリコンで作製されているが、通常の成膜 条件で作製されたポリシリコン膜には、かなり大きな残 40 留圧縮歪みが残っている。

【0008】この残留圧縮歪みを取り除くため、700 ℃以上の髙温でアニールを行っているが、アニール温度 により残留歪みの大きさが異なり、また、後工程でのプ ロセスで、高温の熱処理を制限されるという問題があ る。また、この方法では、振動梁2に、大きな残留引っ 張り歪みを、保持させることは全くできないことも問題 であった。

【0009】一方、振動式トランスデューサには、差圧 による歪みや、静圧による歪みや、温度による歪みなど 50 によって、圧縮歪みが加えられる場合があり、その場合

3

に、振動梁2が座屈してしまわないようにしておく必要がある。特に、高精度な差圧測定を行うためには、2つの振動梁2を、差圧を検知するダイアフラム上に設けて、差動演算を行う事が採用される。

【0010】この場合、一方の振動梁2には引っ張り歪みが、他方の振動梁2には圧縮歪みが印加されるようにダイアフラム上に配置される。このとき圧縮歪みが印加される側に配置された振動梁2には、ダイアフラムを通して圧縮歪みが印加される。この場合、この振動梁2が確実に座屈を生じない様にするためには、無負荷時に、あらかじめ、圧縮歪みに対抗する引っ張り歪みを持たせなければならない。

【0011】本発明は、この問題点を、解決するものである。本発明の目的は、ポリシリコンよりなる振動梁に初期張力を付与し、振動梁に圧縮が加わった場合にも座屈を確実に防止し得る振動式トランスデューサとその製造方法を提供するにある。

[0012]

【課題を解決するための手段】この目的を達成するため に、本発明は、

- (1) 両端が基板に固定された振動梁の共振周波数を測定する事により該振動梁の両端に加えられた歪を測定する振動式トランスデューサにおいて、ボロンの高濃度ドープにより所定の初期張力が得られるようにボロンガラスが成膜された後加熱された窒素中でドライブインされた後前記ボロンガラスが除去されてなるポリシリコンよりなる振動梁を具備したことを特徴とする振動式トランスデューサ。
- (2) 前記ポリシリコンよりなる振動梁に初期張力を制御するために加熱処理を加えたことを特徴とする請求項 30 1記載の振動式トランスデューサ。
- (3) 両端が基板に固定された振動ゲートの共振周波数を測定する事により該振動ゲートの両端に加えられた歪を測定する振動式トランスデューサの製造方法において、以下の工程を有することを特徴とする振動式トランスデューサの製造方法。
- (a) 第1の伝導形式を有する半導体の基板上に、犠牲 層酸化膜を形成する犠牲層酸化膜形成工程。
- (b) 前記犠牲層酸化膜の所定個所をエッチング除去する犠牲層酸化膜一部エッチング工程。
- (c) 前記犠牲層酸化膜と前記所定個所の前記半導体の 基板上にポリシリコン膜を成膜するポリシリコン膜形成 工程。
- (d) 該ポリシリコン膜上にボロンガラスを形成するボロンガラス形成工程。
- (e) 窒素中で熱処理を行うボロンドライブイン工程。
- (f) 前記ボロンガラスをエッチング除去するボロンガラス除去工程。
- (g)前記犠牲層酸化膜をエッチング除去する犠牲層酸 化膜エッチング工程。

- (4) 両端が基板に固定された振動ゲートの共振周波数を測定する事により該振動ゲートの両端に加えられた歪を測定する振動式トランスデューサの製造方法において、以下の工程を有することを特徴とする振動式トランスデューサの製造方法。
- (a) 第1の伝導形式を有する半導体の基板上に、犠牲 層酸化膜を形成する犠牲層酸化膜形成工程。
- (b) 前記犠牲層酸化膜の所定個所をエッチング除去する犠牲層酸化膜一部エッチング工程。
- (c) 前記犠牲層酸化膜と前記所定個所の前記半導体の 基板上にポリシリコン膜を成膜するポリシリコン膜形成 工程。
 - (d) 該ポリシリコン膜上にボロンガラスを形成するボロンガラス形成工程。
 - (e) 窒素中で熱処理を行うボロンドライブイン工程。
 - (f) 前記ボロンガラスをエッチング除去するボロンガラス除去工程。
- (g)前記犠牲層酸化膜をエッチング除去する犠牲層酸化膜エッチング工程。
- 20 (h) 前記ポリシリコン膜の初期張力を制御するために 加熱する初期張力制御工程。を採用したものである。

[0013]

【発明の実施の形態】図1は本発明の一実施例の要部構成説明図である。図において、11は、シリコン基板である。

【0014】12は、ボロンの高濃度ドープにより、所定の初期張力が得られるように、加熱下でボロンガラスが成膜され、加熱された窒素中でドライブインされた後、ボロンガラスが除去されてなるポリシリコンよりなる振動梁である。振動梁12の両端部分は、シリコン基板11に固定されている。

【0015】以上の構成において、振動梁12の両端に加えられた測定力Fが変化すると、振動梁12の共振周波数は変化する。従って、振動梁12の共振周波数の変化を測定すれば、振動梁12の両端に加えられた測定力Fを測定する事が出来る。

【0016】このような装置は、図2~図9に示す如く、以下の如くして製作する。

- (a) 図2に示す如く、シリコン半導体の基板201上 40 に、犠牲層酸化膜202を形成する。
 - (b) 図3に示す如く、犠牲層酸化膜202の所定個所203をエッチングする。

【0017】(c)図4に示す如く、犠牲層酸化膜20 2と所定個所203の半導体の基板201上にポリシリ コン膜204を成膜する。

(d) 図5に示す如く、850℃以下程度の温度で、ポリシリコン膜204上にボロンガラス205を形成する。

【0018】 (e) 図6に示す如く、1000℃以上の 50 髙温で、窒素中でドライブインする。

1

20

30

6

(f)図7に示す如く、ボロンガラス205をエッチング除去する。

(g) 図8に示す如く、ポリシリコン膜204を振動梁12の形状になる様に不要部分をエッチング除去する。

(h) 図9に示す如く、犠牲層酸化膜202をエッチング除去する。

【0019】本願の発明者の実験によれば、図27の従来例によれば、例えば、張力が -600μ 程度であり、本願発明では、張力が 2000μ 程度の値が得られた。なお、張力を下げて、所要の張力を得るために、700℃以上の熱工程を加えることにより、所要の張力を得る制御が可能である。

【0020】この結果、

(1) ボロンガラスを、ポリシリコンよりなる振動梁上に形成して、加熱下の窒素中でドライブインすることにより、ポリシリコンよりなる振動梁に、圧縮歪みに対抗出来るような初期張力が得られるようにしたので、圧縮歪みが印加されるような個所に、信頼性良く使用できるポリシリコンよりなる振動梁を有する振動式トランスデューサが得られる。

【0021】(2)通常の半導体プロセスでは、ポリシリコンに導電性を持たせるために、ボロンドープが使用されるが、その際には、酸素中でアニールされる。この条件下では、酸化シリコンが生じて張力を発生させる事ができない。

【0022】本願発明では、加熱下の窒素中でドライブインすることにより、シリコン結晶粒の粒界での増速酸化を抑えることが出来、ポリシリコンよりなる振動梁に、圧縮歪みに対抗出来るような初期張力が初めて得られるようにすることが出来た。

【0023】(3) 700℃以上の温度で、ポリシリコンが塑性変形する。この点に着目して本願発明では、700℃以上の熱工程を加えることにより、大きな値の張力が得られたポリシリコンよりなる振動梁から、所定の張力を有するポリシリコンよりなる振動梁を容易に得られるようにした。

【0024】図10は本発明の他の実施例の要部構成斜視図で、例えば、特開平7-30128に示されている、振動式トランスデューサを圧力センサとして用いた例に、本発明を適用したものである。図11は図10の 40中央部近傍の断面図である。ただし、振動ゲートを覆うシエル部分とダイアフラム部分については省略してある。図12は振動ゲートの中央部分における全体側断面図である。

【0025】図10、図11、図12において、シリコン基板21は、例えば伝導形式がn形に形成され、このシリコン基板21の上面には、p形の不純物が拡散されてソースSが形成され、ここにソースSの電位を取り出すためのアルミニウム製の電極22が、点線で示す配線部Wsを介して形成されている。また、このシリコン基

板21の下面には図示していないがダイアフラムが凹部 状に形成されここに測定すべき圧力Pmが印加される。

【0026】また、このソースSに対して所定間隔だけ離れて、同じくシリコン基板21の上面にp形の不純物が拡散されてドレインDが形成され、ここにドレインDの電位を取り出すためのアルミニウム製の電極23が点線で示す配線部 W_D を介して形成されている。

【0027】シリコン基板21の上方には、間隙 x₂だけ離れて固定端24、25が形成されている。而して、不純物が拡散されて導電性が付与され、且つ、ボロンの高濃度ドープにより所定の初期張力が得られるように、ボロンガラスが成膜された後、加熱された窒素中でドライブインされた後、ボロンガラスが除去されてなるポリシリコンの板状の振動ゲート26の両端が、これ等の固定端24、25に一体に固定されている。

【0028】振動ゲート26の梁の長さはLである。そして、この振動ゲート26はアルミニウム製の電極27と、点線で示す配線部分Woを介して接続されている。つまり、振動ゲート26とシリコン基板21とは、両端を除いて間隙 x₂だけ離れて配置され、この振動ゲート26に対応するシリコン基板21のドレインDとソースSとの間にチャネルCNN2が形成される。

【0029】シリコン基板21の上面に形成されたこれらのドレインD、チャネルCNN2およびソースSの上にはポリシリコン保護膜28と、酸化膜29とからなる2層構造膜31が形成されている。保護膜28は酸化膜29と同様な絶縁体である。

【0030】そして、この2層構造膜31と振動ゲート26との間は、振動ゲート26が固定端24、25を節として上下に振動できるように間隙が設けられている。このようにして振動ゲージ32が構成されている。33はシエル、34はダイアフラムである。

【0031】次に、このような振動式トランスデューサの構成要素としての振動ゲージ22を製造する製造方法について、図13から図26に示す製造工程図を用いて説明する。

【0032】(1)図13は、ゲート酸化膜形成工程を示す。n形のシリコン単結晶の基板301の上に、ゲート酸化膜302を、例えば500オングストローム程度の厚さに形成する。

【0033】(2)図14は、イオン注入工程を示す。 ここでは、p形不純物としてボロンを、ソース303、 ドレイン304やゲートのリード部分に対応する所定領 域に、イオン注入しする。

【0034】(3)図15は、また、必要に応じて、チャネル部305に、ボロンを浅い深さでイオン注入することで、ソース303ードレイン304間の抵抗値を制御することが可能である。

【0035】(4)図16は、ポリシリコン保護膜形成 50 工程を示す。この工程では、後工程で使用する弗化水素

酸(HF)に対して耐性が強く、ゲート酸化膜302の 保護膜の役目を果たし、かつ安定な膜であるポリシリコ ン保護膜306を、ほぼ5000オングストローム程度 の厚さでゲート酸化膜302の上に成膜する。

【0036】(5)図17は、第1犠牲層酸化膜形成工 程を示す。この工程は、先ず、最終的に振動ゲート26 の周囲に空隙を形成するための下側の犠牲層として、例 えばCVD (Chemical Vapor Deposition) 法により5 000オングストローム程度の厚さに、ポリシリコン保 護膜306の上に第1犠牲層酸化膜307を形成する。 【0037】(6)図18は、梁形成工程を示す。この 工程は最終的に振動ゲート26を形成するための前工程 である。先ず、第1犠牲層酸化膜307の上に、ポリシ リコン膜308 (図示せず) を、例えば1μm程度の厚 さで成膜する。この後、導電性を付与するためにボロン をドープする。

【0038】このボロンドープで振動ゲート26に導電 性を付与すると共に、初期張力を与える。ボロンドープ はボロンガラスを室温でスピンコートし、600℃で焼 成した後、温度を1000℃に上げ、窒素中でドライブ 20 術とRIEとを用いて開口して、コンタクトホール40 インする。その後、ボロンガラスを除去する。

【0039】次に、フオトリソグラフイ技術により、振 動ゲート26に対応する部分に、マスクをしてから、R IE (Reactive Ion Etching) により、ポリシリコン3 08 (図示せず) を所定の形状にエッチングして、最終 的に振動ゲート26となる板状の梁309を形成する。

【0040】(7)図19は、第2犠牲層酸化膜形成工 程を示す。この工程は、先ず、最終的に振動ゲート26 の周囲に空隙を形成するための、下側を除く部分の犠牲 層として、例えばCVD法により、5000オングスト 30 フラム24を形成する。 ローム程度の厚さに、第1犠牲層酸化膜307と梁30 9の上に、第2犠牲層酸化膜401を形成する。

【0041】(8)図20は、間隙対応部形成工程を示 す。先ず、フォトリソグラフィ技術により、振動ゲート 26の中央部では梁309の近傍をマスクしてから、こ れらの周囲の第1犠牲層酸化膜307と第2犠牲層酸化 膜401を、弗化水素酸でエッチングして、間隙対応部 402を形成する。

【0042】(9)図21は、ギャップ対応膜形成工程 を示す。この工程は、後工程で用いられる、エッチング 40 出来る振動式トランスデューサの製造方法を得ることが 液を導入するための犠牲層としてのギャップ対応酸化膜 403を、ほぼ500オングストローム程度の厚さで、 ポリシリコン保護膜306と間隙対応部402の上を含 んで全面にCVD法により形成する。

【0043】(10)図22は、シェル対応部形成工程 を示す。図10で形成されたギャップ対応酸化膜403 上に、1μm程度の厚さになるようにポリシリコン膜4 04 (図示せず)を成膜する。

【0044】この後、フォトリソグラフィ技術を用いて マスクし、RIEによりポリシリコン膜404をエッチ 50 ポリシリコンよりなる振動梁を有する振動式トランスデ

ングして、振動ゲート26を覆う大きさの範囲に、シェ ル対応部405を形成する。

【0045】(11)図23は、エッチングギャップ形 成工程を示す。この工程は、振動ゲート26とシェル対 応部405を形成するために、弗化水素酸を用いて、ギ ャップ対応酸化膜403をエッチングしながら、これを 除去して導入孔406を形成し、ついでこの導入孔40 6を介して間隙対応部402をも除去する。このように して、振動ゲート26及びシェル対応部405を形成す

【0046】(12)図24は、真空封止工程を示す。 この工程は、真空中でシェル対応部405、導入孔40 6、ポリシリコン保護膜306の上を、ポリシリコン膜 407でほぼ1μm程度の厚さで成膜して、シェル23 の内部を真空に保持する。

【0047】(13)図25は、電極を形成する工程を 示す。ソース部303とドレイン部304の上部にある ゲート酸化膜302、ポリシリコン保護膜306、及び ポリシリコン膜407の一部を、フォトリソグラフィ技 8,409を形成する。

【0048】この後、コンタクトホール408,409 に、アルミニウムをスパッタリング法によって成膜し、 フォトグラフィ技術を用いてパッド部分501、502 を形成する。金線でボンディングして配線を行なう。

【0049】(14)図26は、ダイアフラム形成工程 を示す。水酸化カリウム(KOH)液を用いて、中央部 が薄肉で周囲が厚肉となる薄肉部になるように、シリコ ン単結晶の基板301の底部をエッチングして、ダイア

【0050】以上が、振動式トランスデューサの振動ゲ ージ32を、シェル33で覆い、ダイアフラム34を形 成する製造方法である.

【0051】以上の様な本発明の製造方法によれば、ゲ ート絶縁膜が保護され、ドリフトが防止出来、振動ゲー トの付着を防止でき、且つ、ポリシリコンよりなる振動 梁に初期張力を付与し、振動梁に圧縮が加わった場合に も座屈を確実に防止し得る振動式トランスデューサを、 従来の半導体プロセスを利用して安価に且つ確実に製作 できる。

[0052]

【発明の効果】以上、実施例と共に詳細に説明したよう に、本発明の第1請求項によれば、

(1) ボロンガラスを、ポリシリコンよりなる振動梁上 に形成して、加熱下の窒素中でドライブインすることに より、ポリシリコンよりなる振動梁に、圧縮歪みに対抗 出来るような初期張力が得られるようにしたので、圧縮 歪みが印加されるような個所に、信頼性良く使用できる

ューサが得られる。

【0053】(2)通常の半導体プロセスでは、ポリシリコンに導電性を持たせるために、ボロンドープが使用されるが、その際には、酸素中でアニールされる。この条件下では、酸化シリコンが生じて張力を発生させる事ができない。

【0054】本願発明では、加熱下の窒素中でドライブインすることにより、シリコン結晶粒の粒界での増速酸化を抑えることが出来、ポリシリコンよりなる振動梁に、圧縮歪みに対抗出来るような初期張力が初めて得ら 10れるようにすることが出来る。

【0055】本発明の第2請求項によれば、700℃以上の温度で、ポリシリコンが塑性変形する。この点に着目して本願発明では、700℃以上の熱工程を加えることにより、大きな値の張力が得られたポリシリコンよりなる振動梁から、所定の張力を有するポリシリコンよりなる振動梁が容易に得られる。

【0056】本発明の第3請求項によれば、ポリシリコンよりなる振動梁に初期張力を付与し、振動梁に圧縮が加わった場合にも座屈を確実に防止し得る振動式トラン 20 スデューサを従来の半導体プロセスを利用して安価に且つ確実に製作出来る振動式トランスデューサの製造方法を得ることができる。

【0057】本発明の第4請求項によれば、ポリシリコンよりなる振動梁に所定の初期張力が付与できるように張力制御が容易にでき、振動梁に圧縮が加わった場合にも座屈を確実に防止し得る振動式トランスデューサを従来の半導体プロセスを利用して安価に且つ確実に製作出来る振動式トランスデューサの製造方法を得ることができる。

【0058】従って、本発明によれば、ポリシリコンよりなる振動梁に初期張力を付与し、振動梁に圧縮が加わった場合にも座屈を確実に防止し得る振動式トランスデューサとその製造方法を実現することが出来る。

【図面の簡単な説明】

- 【図1】本発明の1実施例の要部構成説明図である。
- 【図2】図1の犠牲層酸化膜形成工程説明図である。
- 【図3】図1の犠牲層酸化膜一部エッチング工程説明図である。
- 【図4】図1のポリシリコン膜形成工程説明図である。
- 【図5】図1のボロンガラス形成工程説明図である。
- 【図6】図1の窒素ドライブイン工程説明図である。
- 【図7】図1のボロンガラス除去工程説明図である。
- 【図8】図1の振動梁形成工程説明図である。
- 【図9】図1の犠牲層酸化膜エッチング工程説明図であ
- 【図10】本発明の他の実施例の要部構成斜視図である。
- 【図11】図10の中央部近傍の断面図である。
- 【図12】図10の振動ゲートの中央部分における全体 50

側断面図である。

- 【図13】図10のゲート酸化膜形成工程説明図である。
- 【図14】図10のイオン注入工程説明図である。
- 【図15】図10のイオン注入工程説明図である。
- 【図16】図10のポリシリコン保護膜形成工程説明図である。
- 【図17】図10の第1犠牲層酸化膜形成工程説明図である。
- 【図18】図10の梁形成工程説明図である。
 - 【図19】図10の第2犠牲層酸化膜形成工程説明図である。
 - 【図20】図10の間隙対応部形成工程説明図である。
 - 【図21】図10のギャップ対応膜形成工程説明図であ ろ.
 - 【図22】図10のシェル対応部形成工程説明図であ ろ
 - 【図23】図10のエッチングギャップ形成工程説明図である。
- 0 【図24】図10の真空封止工程説明図である。
 - 【図25】図10の電極形成工程説明図である。
 - 【図26】図10のダイアフラム形成工程説明図である。
 - 【図27】従来より一般に使用されている従来例の構成 説明図である。
 - 【図28】図27の犠牲層酸化膜形成工程説明図であ ろ
 - 【図29】図27の犠牲層酸化膜一部エッチング工程説明図である。
- 30 【図30】図27のポリシリコン膜形成工程説明図であ
 - 【図31】図27の犠牲層酸化膜除去工程説明図であ ス

【符号の説明】

- 11 シリコン基板
- 12 振動梁
- 21 シリコン基板
- 22 電極
- 23 電極
- 40 24 固定端
 - 25 固定端
 - 26 振動ゲート
 - 27 電極
 - 28 ポリシリコン保護膜
 - 29 ゲート酸化膜
 - 3 1 2 層構造膜
 - 32 振動ゲージ
 - 33 シェル
 - 34 ダイアフラム
 - 201 シリコン基板

