Swin Transformer

Mengxue

1 Transformer

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit*
Google Research
usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Neural Information Processing Systems (NIPS 2017)

Tips

- Self-attention
- Multihead Self-attention
- Position encoding
- Masked Multi-Head Attention
- Cross Attention

Seq2seq Model

Transformer→

2 VIT—AN IMAGE IS WORTH 16×16 WORDS

Patch Embedding+Positional Encoding

标准的接受token的一维嵌入向量作为输入。为了处理二维数据,要进行reshape。 原始图像输入: (H,W) 是图片分辨率, C是通道数

$$\mathbf{x} \in \mathbb{R}^{H \times W \times C}$$

reshape (分割patch): P是patch的大小, N是patch的个数

$$\mathbf{x} \in \mathbb{R}^{N imes \left(P^2 \cdot C\right)}$$
, $N = HW/P^2$ $ightarrow$ 分块

flatten(拍平,映射成Transformer接受的固定大小D,映射E是可学习的):

$$\mathbf{z}_0 = \left[\mathbf{x}_{class}; \mathbf{x}_p^1 \mathbf{E}; \mathbf{x}_p^2 \mathbf{E}; \cdots; \mathbf{x}_p^N \mathbf{E}
ight] + \mathbf{E}_{pos} \;,\; \mathbf{E} \in \mathbb{R}^{\left(P^2 \cdot C
ight) imes D}, \; \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) imes D}$$

映射后的结果称为 patch embeddings。

在patch前面添加一个可学习的xclass,代表着图片的标签信息(全局信息)

3 Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ze Liu^{†*} Yutong Lin^{†*} Yue Cao^{*} Han Hu^{*‡} Yixuan Wei[†] Zheng Zhang Stephen Lin Baining Guo Microsoft Research Asia

{v-zeliu1, v-yutlin, yuecao, hanhu, v-yixwe, zhez, stevelin, bainguo}@microsoft.com

CVPR 2021

Motivation:

Tokens are all of a fixed scale, which is unsuitable for vision applications

Higher resolution of pixels in images compared to words in passages of text.

Overall Architecture

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

Hierarchical feature maps → **Patch Merging**

patch size: $4 \times 4 \times 48(48=4 \times 4 \times 3)$

patch num: H/4 × W/4

W-MSA and SW-MSA

Figure 2. An illustration of the *shifted window* approach for computing self-attention in the proposed Swin Transformer architecture. In layer l (left), a regular window partitioning scheme is adopted, and self-attention is computed within each window. In the next layer l+1 (right), the window partitioning is shifted, resulting in new windows. The self-attention computation in the new windows crosses the boundaries of the previous windows in layer l, providing connections among them.

W-MSA and SW-MSA

Window contains $M \times M$ patches If M=4, feature map= 8×8 ,

Figure 2. An illustration of the *shifted window* approach for computing self-attention in the proposed Swin Transformer architecture. In layer l (left), a regular window partitioning scheme is adopted, and self-attention is computed within each window. In the next layer l+1 (right), the window partitioning is shifted, resulting in new windows. The self-attention computation in the new windows crosses the boundaries of the previous windows in layer l, providing connections among them.

Swin Transformer Block

- •W-MSA (Window-Multihead Self Attention)
- •SW-MSA (Shifted Window-Multihead Self Attention)

Transformer Decoder

Efficient batch computation for shifted configuration

Figure 4. Illustration of an efficient batch computation approach for self-attention in shifted window partitioning.

Efficient batch computation for shifted configuration

	method	MSA in a stage					h. (F	PS)
	method	S1	S2	S 3	S 4	T	S	В
	sliding window (naive)	122.5	38.3	12.1	7.6	183	109	77
	sliding window (kernel)	7.6	4.7	2.7	1.8	488	283	187
	Performer [13]	4.8	2.8	1.8	1.5	638	370	241
	window (w/o shifting)	2.8	1.7	1.2	0.9	770	444	280
	shifted window (padding)	3.3	2.3	1.9	2.2	670	371	236
	shifted window (cyclic)	3.0	1.9	1.3	1.0	755	437	278
_							_	

Table 5. Real speed of different self-attention computation methods and implementations on a V100 GPU.

				CC		ADE20k
	Backbone	top-1	top-5	APbox	AP^{mask}	mIoU
sliding window	Swin-T	81.4	95.6	50.2	43.5	45.8
Performer [13]	Swin-T	79.0	94.2	-	-	-
shifted window	Swin-T	81.3	95.6	50.5	43.7	46.1

Table 6. Accuracy of Swin Transformer using different methods for self-attention computation on three benchmarks.

Relative position bias

 $Attention(Q, K, V) = SoftMax(QK^T/\sqrt{d} + B)V$

	Imag	geNet		CO	ADE20k	
	top-1 top-5		APbox	AP ^{mask}	mIoU	
w/o shifting	80.2	95.1	47.7	41.5	43.3	
shifted windows	81.3	95.6	50.5	43.7	46.1	
no pos.	80.1	94.9	49.2	42.6	43.8	
abs. pos.	80.5	95.2	49.0	42.4	43.2	
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0	
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1	
rel. pos.	81.3	95.6	50.5	43.7	46.1	

Table 4. Ablation study on the *shifted windows* approach and different position embedding methods on three benchmarks, using the Swin-T architecture. w/o shifting: all self-attention modules adopt regular window partitioning, without *shifting*; abs. pos.: absolute position embedding term of ViT; rel. pos.: the default settings with an additional relative position bias term (see Eq. (4)); app.: the first scaled dot-product term in Eq. (4).

Architecture Variants

- Swin-T: C = 96, layer numbers = $\{2, 2, 6, 2\}$
- Swin-S: C = 96, layer numbers = $\{2, 2, 18, 2\}$
- Swin-B: C = 128, layer numbers = $\{2, 2, 18, 2\}$
- Swin-L: C = 192, layer numbers = $\{2, 2, 18, 2\}$

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

Experiments

(a) Regular ImageNet-1K trained models										
method	image	#param.	EL ODe	throughput	ImageNet					
method	size	#param.	FLOPS	(image / s)	top-1 acc.					
RegNetY-4G [47]	224^{2}	21M	4.0G	1156.7	80.0					
RegNetY-8G [47]	224^{2}	39M	8.0G	591.6	81.7					
RegNetY-16G [47]	224^{2}	84M	16.0G	334.7	82.9					
EffNet-B3 [57]	300^{2}	12M	1.8G	732.1	81.6					
EffNet-B4 [57]	380^{2}	19M	4.2G	349.4	82.9					
EffNet-B5 [57]	456^{2}	30M	9.9G	169.1	83.6					
EffNet-B6 [57]	528^{2}	43M	19.0G	96.9	84.0					
EffNet-B7 [57]	600^{2}	66M	37.0G	55.1	84.3					
ViT-B/16 [19]	384^{2}	86M	55.4G	85.9	77.9					
ViT-L/16 [19]	384^{2}	307M	190.7G	27.3	76.5					
DeiT-S [60]	224^{2}	22M	4.6G	940.4	79.8					
DeiT-B [60]	224^{2}	86M	17.5G	292.3	81.8					
DeiT-B [60]	384^{2}	86M	55.4G	85.9	83.1					
Swin-T	224^{2}	29M	4.5G	755.2	81.3					
Swin-S	224^{2}	50M	8.7G	436.9	83.0					
Swin-B	224^{2}	88M	15.4G	278.1	83.3					
Swin-B	384^{2}	88M	47.0G	84.7	84.2					
(b) Ima	ageNet	-22K pr	e-traine	d models						
method	image	#param.	FI OPe	throughput	_					
metrod	size "param.		TLOIS	(image / s)	top-1 acc.					
R-101x3 [37]	384^{2}	388M	204.6G	-	84.4					
R-152x4 [37]	480^{2}	937M	840.5G	-	85.4					
ViT-B/16 [19]	384^{2}	86M	55.4G	85.9	84.0					
ViT-L/16 [19]	384^{2}	307M	190.7G	27.3	85.2					
Swin-B	224^{2}	88M	15.4G	278.1	85.2					
Swin-B	384^{2}	88M	47.0G	84.7	86.0					
Swin-L	384^{2}	197M	103.9G	42.1	86.4					

Table 1. Comparison of different backbones on ImageNet-1K classification. Throughput is measured using the GitHub repository of [65] and a V100 GPU, following [60].

(a) Various frameworks												
Metho	od	Backb	one A	AP ^{box}	AP_{50}^{box}	x AP	box 75	#pai	ram.]	FLO	Ps	FPS
Casca	de	R-50	0	46.3	64.3	50	.5	82	2M	739	G	18.0
Mask R-	CNN	Swin	-T	50.5	69.3	54	.9	86	M	745	G	15.3
ATS	S	R-50	_	43.5	61.9			32M		205		28.3
		Swin-	_	47.2	66.5				οM			22.3
RepPoin	tsV2	R-50		46.5	64.6		- 1		² M	274	_	13.6
		Swin		50.0	68.5		_		M	283		12.0
Spars		R-50		44.5	63.4				6M	166		21.0
R-CN		Swin		47.9	67.3				0 M	172	G	18.4
		us bac										
	AP ^{box}	$^{4}AP_{50}^{box}$	AP_{75}^{box}	AP ^m	ask AP	mask 50	AP ₇₅	ask p	aram			
DeiT-S [†]	48.0		51.7	41.		1.2	44.	- 1	80M			10.4
R50	46.3	64.3	50.5	40.		1.7	43.		82M			18.0
Swin-T	50.5		54.9	43.		5.6	47.	_	86M			15.3
X101-32	48.1	66.5	52.4	41.		3.9	45.		01M			
Swin-S	51.8		56.3	44.		7.9	48.	_	107M			
X101-64		66.4	52.3	41.		4.0	45.		40M			
Swin-B	51.9		56.5			3.4	48.		45M	982	2G	11.6
		(c)			vel C	_						
M	ethod			ini-va		test-dev AP ^{box} AP				ıram. FI		.OPs
			AP	X AP			AP	P ^{mask} "Part				
RepPoir			-			52.1		-	-	•		-
	Net* [_	51.8	3 44		52.3	45	5.4	-	•	10	41G
Relation			-			52.7		-	10	43. £	1.0	-
SpineN			52.6			52.8	47	- 7.1	104	4M	18	85G
ResNeS			52.5 54.4			53.3 55.1	4	/.1	77	M	41	- 10G
EfficientDet-D7 [58] DetectoRS* [45]		34.4	+		55.7	45	18.5		IVI	4.	100	
YOLO						55.8	40	5.5				-
Copy-			55.9) 4		56.0	4	- 7.4	184	5M	14	- 40G
X101-6			52.3		5.0	-		-		5M		33G
Swin-E			56.4		9.1	_		_	160			43G
Swin-L			57.1			57.7	50	0.2	284			70G
Swin-L			58.0			58 . 7		1.1	284		•	-
	\ <u>-</u>	/	0.00									

Table 2. Results on COCO object detection and instance segmentation. †denotes that additional decovolution layers are used to produce hierarchical feature maps. * indicates multi-scale testing.

ADE	20K	val	test	#param.	FI OPe	FPS
Method	Backbone	mIoU	score	πparam.	TLOIS	115
DANet [22]	ResNet-101	45.2	-	69M	1119G	15.2
DLab.v3+ [10]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [23]	ResNet-101	45.9	38.5	-		
DNL [68]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [70]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [66]	ResNet-101	44.9	-	86M	1029G	20.1
OCRNet [70]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+ [10]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [10]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [78]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
UperNet	Swin-T	46.1	-	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	Swin-B [‡]	51.6	-	121M	1841G	8.7
UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2

Table 3. Results of semantic segmentation on the ADE20K val and test set. † indicates additional deconvolution layers are used to produce hierarchical feature maps. ‡ indicates that the model is pre-trained on ImageNet-22K.

Thank you