

Universidade Federal de Goiás Instituto de Informática Ciência da Computação

Matriz Curricular: CICOMP-BI-2 - 2017.1

Plano de Disciplina

Ano Letivo: 2023 - 1º Semestre

Dados da Disciplina

	Cádina	Nome	Carga Horária	
	Código	Nome	Teórica	Prática
10000158 Introdução à Computabilidade e à Comp		Introdução à Computabilidade e à Complexidade Computacional	48	16

Prof(a): Daniel Lima Ventura

Turma:

Ementa

Noções de computabilidade efetiva. Modelos de computação. Tese de Church-Turing. Decidibilidade. Redutibilidade. Problemas indecidíveis. Complexidade de tempo. Complexidade de Espaço. Teoremas de incompletude de Gödel.

Objetivo Geral

Desenvolver no aluno habilidades para identificar modelos de computação e as dificuldades inerentes à resolução de problemas.

Objetivos Específicos

Introduzir o conceito de máquina de Turing como modelo computacional e definição formal de algoritmos. Utilizar o modelo computacional apresentado para identificar limitações em computabilidade. Determinar formalmente classes de problemas, definidos como linguagens. Desenvolver a capacidade analítica para identificação de problemas e possíveis soluções algorítmicas, justificadas de maneira formal.

Relação com Outras Disciplinas

Pré-requisitos: Análise de Algoritmos e Linguagens Formais e Autômatos.

Importante ter cursado: Matemática Discreta, Lógica Matemática, Teoria dos Grafos.

Programa

Máquinas de Turing e a Tese Church-Turing

Decidibilidade

Redutibilidade

Complexidade de Tempo

Complexidade de Espaço

Tópicos em Computabilidade e Teoria de Complexidade.

Procedimentos Didáticos

Legenda	Descrição	Objetivo
AEX	Aula teórica	Transmitir conhecimento utilizando quadro ou slides.
AP	Aula prática	Proporcionar ao aluno a aplicação prática do conteúdo ministrado em aula teórica.
ED	Estudo dirigido	Desenvolver a capacidade analítica, capacidade de síntese, de avaliação crítica e de análise.
OTR	Outros	Transmitir conhecimento utilizando quadro ou slides.
RE	Aula teórica com resolução de exercícios	Desenvolver o raciocínio lógico, criatividade e capacidade de abstração e a capacidade de identificar, analisar e projetar soluções de problemas.
SE	Seminários	Desenvolver o raciocínio lógico, criatividade, capacidade de abstração, capacidade para identificar, analisar, projetar soluções de problemas, a capacidade de comunicação oral e a capacidade de trabalhar em grupo.
TG	Trabalho em grupo	Desenvolver a capacidade de comunicação oral e escrita. Capacidade de trabalhar em grupo.

Conteúdo Programático / Cronograma

Inicio	Proc. Didático	Tópico	# Aul.
18/04/23	OTR, ED	Introdução; apresentação da disciplina e plano de ensino; exposição dos critérios de avaliação. Motivação.	2
20/04/23	AEX, RE	Máquinas de Turing	4
27/04/23	AEX, RE	Decidibilidade.	10
16/05/23	OTR	Prova 1	2
18/05/23	AEX, RE, ED	Redutibilidade.	22
29/06/23	OTR	Prova 2	2
04/07/23	AEX, RE, ED	Complexidade de Tempo.	12
27/07/23	AEX, RE, ED	Complexidade de Espaço	
15/08/23	OTR	Prova 3	2
		Total	64

Critério de Avaliação

Serão realizados:

- 3 provas individuais (P1, P2 e P3)
- 3 atividades em grupo de até 3 pessoas, cada uma correspondendo aos tópicos abordados na respectivas prova, que serão entregues via SIGAA até a data da realização da mesma (atividades supervisionadas).

Para cada atividade entregue será calculada a nota máxima correspondendo a 20% do valor da prova correspondente, somado ao valor da mesma. A nota NU máxima de cada unidade é 10,0.

A nota final (NF) será obtida pela fórmula: NF = (NU1 + 2*NU2 + 3*NU3)/6

onde NUi representa a nota da i-ésima unidade; i=1, 2, 3.

Horário de atendimento: quintas das 14.00 às 15.00 (INF 106) (ATIVIDADES SUPERVISIONADAS)

Observações:

- Será atribuída a nota 0,0 (zero) a qualquer atividade ou trabalho não realizado ou não entregue na data estipulada. O pedido de segunda chamada deverá seguir as normas estipuladas pelo RGCG.
- O aluno que comparecer a pelo menos 75% das aulas estará aprovado por frequência.
- O aluno que obtiver média final maior ou igual a 6,0 (seis) estará aprovado por média.
- Os alunos que se envolverem em plágio (desvios de conduta, seja como facilitador ou como beneficiário) receberão nota 0 (zero) para a atividade correspondente. O caso poderá ser levado ao conhecimento da coordenação do curso, do Núcleo Docente Estruturante e do Conselho Diretor do Instituto de Informática para as providências cabíveis e
- O pedido de segunda chamada deverá ser protocolado conforme condições estipuladas na Resolução CONSUNI específica (RGCG) em vigor.

 As atividades supervisionadas indicadas no cronograma referem-se às atividades práticas e devem ser desenvolvidas segundo o Art. 16 do RGCG, o qual considera que os cursos presenciais possuem cada hora-aula de 60 (sessenta) minutos, sendo 50 (cinquenta) minutos de aulas teóricas e práticas e 10 minutos de atividades acadêmicas supervisionadas.

Data da Realização das Provas

Prova 1: 16/05/2023. Prova 2: 29/06/2023. Prova 3: 15/08/2023.

Local de Divulgação dos Resultados das Avaliações

SIGAA e sala de aula.

Bibliografia Básica

- (1) SIPSER, M. Introduction to the theory of computation. USA: Cengage Learning, 2013.
- (2) HOPCROFT, J. E.; MOTWANI, R.; ULLMAN, J. D. Introdução à teoria de autômatos, linguagens e computação. Campus, 2002.
- (3) LEWIS, H. R.; PAPADIMITRIOU, C. H. Elementos de teoria da computação 2. ed. Porto Alegre: Bookman, 2000.

Bibliografia Complementar

- (1) GAREY, M.; JOHNSON, D. Computers and intractability: a guide to the theory of NP- completeness. W. H. Freeman and Company, 1979.
- (2) KOZEN, D. Theory of computation. London: Springer, 2006.
- (3) KOZEN, D. Automata and computability. Springer-Verlag, 1997.
- (4) CARNIELLI, W. A.; EPSTEIN, R. L. Computabilidade: funções computáveis, lógica e os fundamentos da matemática. 2. ed. Unesp, 2009.
- (5) BALCAZAR, J.; DIAZ, J.; GABARRO, J. Structural complexity I. 2nd ed. Springer, 1994.(In Text in Theoretical Computer Science EATCS Series).

Bibliografia Sugerida

- (1) SIPSER, M.; Introdução à Teoria da Computação. 2a edição, São Paulo: Thomson, 2007.
- (2) KOZEN, D. C.. Automata and Computability. Springer, 1997.
- (3) HOPCROFT, J. E.; ULLMAN, J. D. Introduction to Automata Theory, Language and Computation. Addison-Wesley, 1979.
- (4) FERNANDEZ, M.. Models of Computation: An Introduction to Computability Theory. Springer, 2009
- (5) HOMER, S.; SELMAN, A. L.. Computability and Complexity Theory. Springer, 2001.
- (6) ARORA, S.; BARAK, B.. Computational Complexity: A modern approach. CUP, 2009.
- (7) BALCAZAR, J. L.; DIAZ, J.; GABARRO, J.. Structural Complexity I. 2 ed. Springer, 1994.
- (8) SIPSER, M. Introduction to the theory of computation. 3rd ed.: Cengage Learning, 2013.

Termo de Entrega	Termo de Aprovação				
Apresentado à Coordenação no dia	Aprovado em Reunião de CD no dia				
Prof(a) Daniel Lima Ventura Professor	Prof. Dr. Eliomar Araújo de Lima Diretor do Instituto de Informática				
Termo de Homologação					
Data de Expedição: Goiânia, d	e				