Lab 2: NUMERICAL METHODS PRACTICAL

FACULTY: BCT/BEI	FACULTY: BCE
YEAR:2079	YEAR:2080

1. Using the algorithm of **Secant Method**, write a program to find out the <u>root</u> and number of <u>iterations</u> for the following equations.

a.
$$x^2$$
- $4x$ – 10 = 0

b.
$$4\sin x = e^x$$

2. Using the algorithm of **Newton Rapshon Method**, write a program to find out the root and number of iterations of the following equations.

a. $x^2-4x-10=0$

3. Using the algorithm of Fixed- Point Method, write a program to find out the root and number of iterations of the following equations.

a.
$$x2 + x - 2 = 0$$

b. x2 - 5 = 0

ALGORITHMS:

Secant Method:

- 1. Take two initial points x0 and x1, and stopping criteria E.
- 2. Compute x2 = x1 ((x1-x0)/(f(x1)-f(x0)))*f(x1)

Set x0=x1

Set x1=x2

3. Test for accuracy of x2,

$$|E| \frac{x^2 - x^1}{x^2} > E, then$$

Display x2 as the root

Otherwise go to step 2.

4. Stop

Newton-Rapshon Method:

- 1. Assign an initial value to x, say x₀and stopping criteria, E
- 2. Evaluate(x_0) and $f'(x_0)$
- 3. Find the improved estimate of x_0

$$x1 = x0 - \frac{f(x0)}{f'(x0)}$$

- 4. Check for accuracy of the latest estimate.
 - Compare relative error to a predefined value E. if $\left| \frac{x1 x0}{x1} \right| > E$ and print root as x1 and stop
- 5. Otherwise, Replace x_0 by x_1 and repeat steps 3 and 4.

3. Fixed Point Method:

- 1. Decide the initial value of x0 and error E
- 2. Calculate x1 = g(x0)
- 3. If absolute value of (x1-x0) < = E

Solution obtained

goto 4

otherwise,

set,

x0 = x1

goto 2

- 4. Write the value of x1 i.e. root
- 5. Stop