AXA-Challenge

machine learning project

Feature Engineering

feature engineering1.r

Input: databrute.csv (select DATE, DAY_WE_DS, ASS_ASSIGNMENT, CSPL_RECEIVED_CALLS from train_2011_2012_2013.csv)

Output: **rawdata** folder, containing seperate data for every ASS_ASSIGNMENT. For every file, we have format: mydate(Y-M-D), mymonth(1-12), myday(1-31), DAY_WE_DS(1-7), hour_index(1-48), CSPL_RECEIVED_CALLS

feature_engineering2.r

Input: rawdata folder

Output: data_v1, data_v2, data_v3 folder with training data.

pred_data_v1, pred_data_v2, pred_data_v3 folder with data that needs to be predicted.

 $v1: normalized \ features, with \ new \ features: {\bf same_hour_seven_days_ago}, \\ {\bf same_day_seven_days_ago}, \\ {\bf mean_value_last_week}.$

v2: based on v1, change all periodic features to its **sin** and **cos**.

v3: based on v1, change all periodic features to its x, x^2, x^3, x^4

SVR

svr.py + linearKernel.py

Input: data_v1/v2/v3

Output: too long to compute

Linear regresstion

training.py or training_parameter.py

Input: data_v1/v2/v3

Output: training_parameters_v1/v2/v3

predicting.py

Input: training_parameters_v1/v2/v3

Output: pred_result_v1/v2/v3

submission.r

Input: pred_result_v1/v2/v3

Output: submission.txt

Gradient boost tree

format_treeinput.r

transform data format of data_v1/v2/v3 to libSVM format

gradient_boost.py

Input: transformed data_v1/v2/v3

Output: pred_result_v1/v2/v3

submission.r

Input: pred_result_v1/v2/v3

Output: submission.txt