ECE 592-005 IOT Analytics

Project 2: Regression Task 3

Sreeraj Rajendran Email: srajend2@ncsu.edu ID: 200210462

Task 3. Linear Multivariable Regression

3.1 Carry out a multivariable regression on all the independent variables, and determine the values for all the coefficients, and σ_2 .

		OLS F	Regress	sion R	esults		
========	======		======	=====	========	=======	=======
Dep. Variabl	.e:		Y	R-sq	uared:		0.981
Model:			OLS	Adj.	R-squared:		0.981
Method:		Least Squ	ares	F-statistic:			2897.
Date:		Sun, 28 Oct	2018	Prob (F-statistic): 1.69e		1.69e-235	
Time:		21:0	9:58	Log-	Likelihood:		-1461.5
No. Observat	ions:		281	AIC:			2935.
Df Residuals	:		275	BIC:			2957.
Df Model:			5				
Covariance T	ype:	nonro	bust				
========					========	=======	========
	coet	f std err		t	P> t	[0.025	0.975]
const	120.026	60.820	1	 L.973	0.049	0.296	239.758
X1	13.9293	0.154	90	572	0.000	13.627	14.232
X2	2.7302	0.155	17	7.651	0.000	2.426	3.035
х3	5.772	0.156	37	7.052	0.000	5.465	6.079
X4	7.9383	0.160	49	9.695	0.000	7.624	8.253
x5	8.4949	0.146	58	3.170	0.000	8.207	8.782
=======	======	-=====			==========	======	=======================================
Omnibus:		103	3.583	Durb	in-Watson:		2.274
Prob (Omnibus	:):	C	.000	Jarq	ue-Bera (JB):		258.471
Skew: 1.77		.774	Prob	(JB):		7.48e-57	
			080	Cland	. No.		8.87e+03

R squared = 0.981, F value= 2897, p values=0 for X1 through X5, coefficients are listed in table variance =1928.5843098079024

Comments: R squared value is closer to one and F value is high indicating that the model is good. The p values are 0 for all X variables, but high for constant (>0.01). Hence the model seems to be good.

Task 3.2: Based on the p-values, R_2 , F value, and correlation matrix, identify which independent variables need to be removed (if any) and go back to step 3.1.

Covariance Matrix:

```
X1 X2 X3 X4 X5 Y

X1 1.000000 -0.021343 -0.000240 -0.120413 0.015228 0.705355

X2 -0.021343 1.000000 -0.015942 0.028434 -0.023076 0.125173

X3 -0.000240 -0.015942 1.000000 0.076431 -0.073155 0.300592

X4 -0.120413 0.028434 0.076431 1.000000 -0.073015 0.316279

X5 0.015228 -0.023076 -0.073155 -0.073015 1.000000 0.436696

Y 0.705355 0.125173 0.300592 0.316279 0.436696 1.000000
```

Considering covariance matrix, X2 has least influence on Y. Removing X2 gives following result:

	ols	Regres	sion Re	esults		
Dep. Variable:		У	R-sqı	ared:		0.960
Model:		ols	Adj.	R-squared:		0.960
Method:	Least S			atistic:		1668.
Date:			Prob	(F-statistic):	6.46e-192
Time:	21	:14:27	Log-1	Likelihood:		-1568.0
No. Observations:		281	AIC:			3146.
Df Residuals:		276	BIC:			3164.
Df Model:		4				
Covariance Type:	non	robust				
=======================================		======	=====		=======	=======
С	oef std er	r	t	P> t	[0.025	0.975]
const 461.4	648 84.05	 9	5.490	0.000	295.987	626.943
X1 13.8			1.924	0.000		
x3 5.7			5.185	0.000	5.271	
X4 8.0			4.413	0.000	7.553	8.469
X5 8.4			9.643	0.000	8.019	8.857
=======================================	=========	======	======	=========	========	=======
Omnibus:		10.159	Durb:	in-Watson:		2.050
Prob(Omnibus):		0.006	Jarqı	ue-Bera (JB):		10.221
Skew:		0.435	Prob	(JB):		0.00603
Kurtosis:		3.343	Cond	. No.		7.99e+03
=======================================					=======	=======

p-value is zero for all and R-squared and F-values are good too. Variance= 4113.514794117363 Hence, this model obtained by removing independent variable X2, is finalized.

3.3 Do a residuals analysis:

a. Do a Q-Q plot of the pdf of the residuals against $N(0, s_2)$. In addition, draw the residuals histogram and carry out a χ_2 test that it follows the normal distribution $N(0, s_2)$.

For 99percentile, z value should be greater than 2.58.

Critical Chi squared values for different degrees of freedom are shown below. Obtained Chi squared value needs to be lower than critical value.

Degrees of Freedom (df)							
Probability (p)	1	2	3	4	5		
0.05	3.84	5.99	7.82	9.49	11.1		
0.01	6.64	9.21	11.3	13.2	15.1		
0.001	10.8	13.8	16.3	18.5	20.5		

Q-Q plot should not be diverging from reference line for good fit.

It was decided from previous test that X2 will be omitted. But the Q_Q plot without any omition is shown here for reference. Huge deviations can be seen at lower and higher ranges indicating really bad fit.

X2 omitted

Q_Q plot and histogram indicates a good fit.

Z value 10.159203976565179 > 2.58 hence feasible chi squared probability for the hypothesis test 0.006222385105335757 < 9.21 hence feasible

If X2 and X3 omitted

Z value 2.733425987611487 > 2.58 hence feasible. chi squared probability for the hypothesis test 0.25494358494600877 < 11.3 Hence feasible

If, X2,X3,X4 are omitted

Q_Q plot is better compared to X2 omission and relatable to X2+X3 omission.

Z value 0.017769466080486202 < 2.58 . **Hence not feasible** chi squared probability for the hypothesis test 0.9911546195683092 < chi critical

It can be concluded that best results are obtained on omitting X2 and X3 independent variables.

b. Do a scatter plot of the residuals to see if there are any trends.

For X2 and X3 independent variables omitted:

Y axis: Residuals

X Axis: predicted Y value

No trends of positive or negative correlation can be seen. Hence The model is good.

Final Result:

Y=const + a1*X1+a4*X4+a5*X5 + residual

Variance of residual = 13567.097185288696

		OLS Re	gressi	on Re	esults		
							0.869
Dep. Varia	able:				nared:		0.869
					R-squared:		612.2
Method:		Least Squa					
Date:	Su	n, 28 Oct 2			(F-statistic)		7.23e-122
Time:		22:02			Likelihood:		-1735.6
No. Obser				AIC:			3479.
Df Residu				BIC:			3494.
Df Model:							
Covarianc	e Type:						
	coef	std err			P> t	[0.025	0.975]
const	1233.5196	141.888			0.000	954.203	1512.836
	13.9348	0.406		293			
X1							
X4	8.4336	0.421		037			9.262
x5 	8.0730 	0.385		972	0.000	7.315	8.831
Omnibus:			 733		in-Watson:		2.137
Prob(Omni	bus):		255	Jarq	ue-Bera (JB):		
Skew:			235	Prob	(JB):		0.273
Kurtosis:			022	Cond	. No.		6.94e+03

Z value 2.733425987611487 > 2.58 hence feasible. chi squared probability for the hypothesis test 0.25494358494600877 < 11.3 Hence feasible

