(Figure 8.4)? If H_0 is true, then the sampling distribution of \overline{X} is normal with mean μ_0 and

known at the α significance level. What is the power if the alternative is $\mu = \mu_1$

More generally, suppose we test H_0 : $\mu = \mu_0$ versus H_A : $\mu > \mu_0$ where σ is

standard error σ/\sqrt{n} . Let q denote the $1-\alpha$ quantile for the standard normal.

The corresponding critical value C for the sampling distribution of \overline{X} is found by

 $\frac{C - \mu_0}{\sigma / \sqrt{n}} = q,$

 $C = \mu_0 + q \frac{\sigma}{\sqrt{n}}.$