

Process for the preparation of imidazopyridines

Patent Number: US4794185

Publication date: 1988-12-27

Inventor(s): LONG DAVID (BE); ROSSEY GUY (BE)

Applicant(s): SYNTHELABO (FR)

Requested Patent: EP0251859, A3, B1

Application Number: US19870066530 19870626

Priority Number (s): FR19860009330 19860627

IPC Classification: C07D471/04

EC Classification: C07D471/04

Equivalents: AU7477287, CA1324138, DE3766300D, DK169505B, DK328187, FI872850,
 FR2600650, HU44547, IE60467, IL82982, JP1929376C, JP6053740B,
 JP63008384, KR9406594, NO167392B, NO167392C, NO872682, NZ220853,
 PT85188, ZA8704643

Abstract

A process for the preparation of an imidazopyridine which is a compound of formula (I) (I) in which: Y denotes hydrogen, a halogen or a C1-4 alkyl group; X1 and X2 denote, independently of each other, hydrogen, a halogen or a C1-4 alkoxy, C1-6 alkyl, CF₃, CH₃S or NO₂ group; and R1 and R2 denote, independently of each other, hydrogen or a C1-5 alkyl group, with the proviso that R1 and R2 do not both denote hydrogen, or a salt thereof; which process comprises reacting a compound of formula

(V) (V) wherein Y, X1, X2, R1 and R2 are as defined above, with a reducing agent and if desired converting the resulting compound of formula (I) into a salt, together with intermediates of formulae:

 (III) (IV) (V) The final products have useful pharmacological properties, e.g. as anxiolytics.

Data supplied from the esp@cenet database - I2

⑯ Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Numéro de publication:

0 251 859
A2

⑫

DEMANDE DE BREVET EUROPEEN

㉑ Numéro de dépôt: 87401353.5

㉒ Date de dépôt: 17.06.87

㉓ Int. Cl.⁴: C 07 D 471/04

C 07 C 103/34

//(C07D471/04,235:00,221:00)

㉔ Priorité: 27.06.86 FR 8609930

㉕ Date de publication de la demande:
07.01.88 Bulletin 88/01

㉖ Etats contractants désignés:
AT BE CH DE ES FR GB GR IT LI LU NL SE

㉗ Demandeur: SYNTHELABO
58 rue de la Glacière
F-75013 Paris (FR)

㉘ Inventeur: Rossey, Guy
8, Square Lebrun Voisins-le-Bretonneux
F-78180 Montigny le Bretonneux (FR)

Long, David
Résidence les Prés 9, Allée des Romarins
F-78180 Montigny le Bretonneux (FR)

㉙ Mandataire: Thouret-Lemaître, Elisabeth et al
Service Brevets - SYNTHELABO 58, rue de la Glacière
F-75621 Paris Cedex 13 (FR)

㉚ Procédé de préparation d'imidazopyridines.

㉛ Procédé de préparation de phényl-2 imidazopyridine-acétamides selon lequel on fait réagir une imidazopyridine avec un composé dialcoxyacétal, puis on fait réagir le composé ainsi obtenu avec du chlorure de thionyle, puis on réduit le composé chloré.

EP 0 251 859 A2

Description**PROCEDE DE PREPARATION D'IMIDAZOPYRIDINES ET COMPOSES INTERMEDIAIRES**

La présente invention a pour objet un procédé de préparation d'imidazopyridines qui répondent à la formule (I) donnée en annexe dans laquelle

Y représente un atome d'hydrogène ou d'halogène ou un radical (C₁₋₄)alkyle,
 X₁ et X₂ sont chacun, indépendamment l'un de l'autre, un atome d'hydrogène ou d'halogène, un radical (C₁₋₄)alcoxy, un radical (C₁₋₆)alkyle, le groupe CF₃, CH₃S, CH₃SO₂ ou NO₂ et
 R₁ et R₂ représentent chacun indépendamment l'un de l'autre soit un atome d'hydrogène, soit un radical (C₁₋₅)alkyle droit ou ramifié, R₁ et R₂ ne pouvant être tous deux des atomes d'hydrogène.

10 Ces composés sont décrits dans le brevet européen n° 0050563 de la demanderesse.

Le procédé de l'invention, décrit en annexe, consiste à faire réagir une imidazopyridine de formule (II) avec un composé (III) à une température de 20 à 100°C, soit dans un solvant en présence d'un acide, par exemple un solvant chloré tel que le dichloroéthane, ou le dichlorométhane, soit dans un acide tel que l'acide formique, acétique préférentiellement, propionique ou butyrique puis à faire réagir le composé obtenu (IV) avec du chlorure de thionyle, du chlorure de phosphoryle, du phosgène ou du chlorure d'oxalyle, dans un solvant tel que le dichlorométhane, le dichloroéthane ou tout solvant chloré et enfin à faire réagir le composé (V) avec un agent réducteur, tel que NaBH₄, Zn(BH₄)₂, KBH₄, LiBH₄, dithionite ou leurs dérivés, Zn/HCl de manière à obtenir le composé (I) que l'on peut transformer en sel.

15 Le procédé de l'invention permet d'obtenir les composés (I) avec un excellent rendement allant de 50 à 95 % et dans des conditions excellentes de pureté.

Les composés de départ (III) et intermédiaires de formules (IV) et (V) données en annexe sont nouveaux et font partie de l'invention.

20 Les composés de départ (II) sont décrits dans la littérature. Les composés de départ (III) dans lesquels R₁ et R₂ représentent chacun indépendamment l'un de l'autre soit un atome d'hydrogène, soit un radical (C₁₋₅)alkyle droit ou ramifié, R₁ et R₂ ne pouvant être tous deux des atomes d'hydrogène, et R₃ représente un radical (C₁₋₄)alkyle, sont nouveaux et peuvent être préparés à partir des composés correspondants de formule

dans laquelle R₁ et R₂ ont les mêmes significations que ci-dessus, par réaction avec un alcanolate de sodium et/ou un alkanol dans de l'acétonitrile.

25 Les composés intermédiaires (IV) et (V) sont obtenus selon le procédé dont le schéma est donné dans l'annexe.

Exemple 1. Préparation du composé de départ (III) : N,N-diméthyl-diméthoxy-2,2 acétamide.

30 1.1 N,N-diméthyl dichloro-2,2 acétamide

Dans un réacteur à double enveloppe on introduit 550 ml (5 moles), de diméthylamine à 40 % dans de l'eau, puis on refroidit la double enveloppe à environ -10°C. On ajoute ensuite, goutte à goutte, en 4 h, 192,4 ml (2 moles) du chlorure de l'acide dichloro-2,2 acétique. On contrôle la température de la réaction entre -10 et 0°C. Lorsque la réaction est terminée on laisse décanter, dans le réacteur, le produit qui est plus dense que l'eau. On récupère ce produit et extrait la phase aqueuse au dichlorométhane. On mélange les phases organiques. On les lave pour éliminer l'acide.
 Eb : 109°C sous 15 mmHg.

35 1.2 N,N-diméthyl diméthoxy-2,2 acétamide.

Dans un ballon de 500 ml on introduit 73,6 g du composé obtenu précédemment puis on ajoute 150 ml d'acétonitrile (CH₃CN). On ajoute ensuite assez rapidement 180 ml (2 équivalents) de méthylate de sodium à 29 % dans du méthanol. On chauffe à la température de reflux pendant 3 h. On laisse refroidir. On filtre le chlorure de sodium, on évapore les solvants puis reprend (3 fois) avec 50 ml de t-butyl-méthyl-éther (TBME) pour éliminer le chlorure de sodium restant. On reprend le mélange avec 100 ml d'eau et laisse décanter. La phase aqueuse est évaporée à sec puis reprise avec du TBME, le chlorure de sodium est filtré. On groupe les phases organiques puis on évapore les solvants. On obtient alors le produit.
 Eb = 101°C (15 mmHg).

Exemple 2. N,N-di-n-propyl diméthoxy-2,2 acétamide.

2.1. N,N-di-n-propyl dichloro-2,2 acétamide.

Dans un erlenmeyer de 500 ml on fait réagir 60 g de dipropylamine avec 40,4 g de chlorure de dichloracétyle à 0°C dans 100 ml de dichlorométhane. La solution jaune est lavée par 200 ml d'eau, séchée et concentrée. On obtient une huile qui cristallise.

F = 53°C.

5

2.2. N,N-di-n-propyl diméthoxy-2,2 acétamide.

On fait réagir 160 g de méthylate de sodium avec 66,4 g du composé obtenu ci-dessus dans 300 ml d'acétonitrile, à 80°C, pendant 50 minutes. On refroidit et acidifie le mélange réactionnel par HCl, filtre les sels, concentre, reprend le résidu par 300 ml de dichlorométhane. La phase organique est lavée à l'eau, séchée et concentrée. On obtient une huile.

Eb = 140°C (15 mmHg).

10

Exemple 3. Méthyl-6 N,N-diméthyl (méthyl-4 phényl)-2 imidazo [1,2-a]pyridine-3-acétamide.

15

3.1. Méthyl-6 N,N-diméthyl (méthyl-4 phényl)-2 α-hydroxy imidazo[1,2-a]pyridine-3-acétamide (composé IV).

Dans un réacteur de 2 litres, équipé pour la distillation azéotropique, on introduit 93 g de composé (III) dans lequel R₁, R₂ et R₃ représentent chacun le radical méthyle, 15,8 ml d'eau, 64,8 ml d'acide acétique concentré et 15,8 ml d'acide chlorhydrique à 37 %. On chauffe le mélange vers 43-46°C pendant 50 mn. On ajuste alors le pH à 4-5 par 17 g d'acétate de sodium et ajoute 850 ml de dichloro-1,2 éthane et 100 g de méthyl-6 (méthyl-4 phényl)-2 imidazo[1,2-a]pyridine.

20

On porte alors le mélange à reflux pendant 2 heures. Pendant ce temps, on élimine environ 20 ml d'eau par azétope (température de l'azéotropie : 78°C).

25

On ramène la température à 73°C et on ajoute, goutte à goutte, 250 ml d'une solution saturée de bicarbonate de sodium, puis 35 ml de lessive de soude de façon à ajuster le pH à 7.

On élimine alors le solvant par distillation, puis refroidit à 55°C et élimine sous vide les dernières traces de dichloro-1,2 éthane.

28

On ajoute 55 ml d'eau, 250 ml d'isopropanol et de lessive de soude pour atteindre pH 10, ce qui entraîne la cristallisation du produit sous forme d'un solide blanc.

30

Le produit est essoré, lavé à l'eau et séché sous vide en présence de P₂O₅ pendant 6 h.

Le rendement est de 89 %.

F = 174-176°C.

32

3.2. Chlorhydrate de méthyl-6 N,N-diméthyl (méthyl-4 phényl)-2 α-chloro imidazo[1,2-a]pyridine-3-acétamide (composé V).

35

Dans un réacteur de 0,5 l, on introduit 40 g du composé (IV) obtenu précédemment et 180 ml de dichloro-1,2 éthane.

40

On chauffe le mélange à 50°C et introduit, goutte à goutte, une solution de 11,2 ml de chlorure de thionyle dans 30 ml de dichloro-1,2 éthane en 1 h.

La température s'élève à 60°C.

42

On chauffe alors à reflux pendant 1 h 30, refroidit vers 40-50°C et évapore sous vide une partie du dichloro-1,2 éthane pour chasser l'excès de SOCl₂.

45

On ajoute alors 200 ml d'éther isopropylique et refroidit à 10°C puis agite pendant 1 h 30.

On rince le solide par 100 ml d'éther isopropylique et le séche sous vide, en étuve, à 50-60°C pendant 6 h. Le rendement est de 97,6 %.

F = 186°C (dec.).

48

3.3. Méthyl-6 N,N-diméthyl (méthyl-4 phényl)-2 imidazo[1,2-a]pyridine-3-acétamide et son hémitartrate (composé I).

50

3.3.1. Dans un réacteur de 1 litre, on dissout 50 g du chlorhydrate obtenu sous 2 dans 250 ml de méthanol. On ajoute alors rapidement en 2-3 mn, une solution de 20 g de borohydrure de sodium dans 150 ml d'eau. On maintient l'agitation pendant 1 h 30.

55

On ajoute alors 150 ml de solution saturée de carbonate de sodium et 250 ml d'eau pour achever la précipitation.

Le précipité brun-clair est essoré, lavé abondamment à l'eau et séché en étuve pendant 18 h. Le rendement est de 62 %. F = 194-196°C.

60

3.3.2. On dissout 25 g du composé (I) dans 180 ml de méthanol.

On ajoute une solution de 6,1 g d'acide L (+) tartrique dans 60 ml de méthanol.

On laisse cristalliser.

Le rendement est de 94 %. F = 197°C.

65

Exemple 4. N,N-di-n-propyl chloro-6 (chloro-4 phényl)-2 imidazo[1,2-a]pyridine-3-acétamide.4.1. N,N-di-n-propyl chloro-6 (chloro-4 phényl)-2 α -hydroxy imidazo[1,2-a]pyridine-3-acétamide.

On agite un mélange de 56,5 ml (0,226 mole) de composé (III) dans lequel R₁ et R₂ sont des radicaux n-propyle et R₃ est le radical méthyle, 67 ml d'eau, 28 ml d'acide acétique, 67 ml d'acide chlorhydrique concentré (12N), à 50°C, pendant 20 mn.

On ajoute alors 83,3 g (1 mole) d'acétate de sodium et agite 30 mn. On ajoute alors 50 g (0,19 mole) de chloro-6 (chloro-4 phényl)-2 imidazo[1,2-a]pyridine et on agite le mélange réactionnel à 90°C pendant 2 h.

Après refroidissement à 20°C, on fait précipiter le produit à pH 10 par addition d'environ 100 ml de lessive de soude 10N, après 16 h d'agitation à la température ambiante. Le précipité est filtré, lavé 4 fois par 100 ml d'eau et séché en étuve à vide (70°C, 20 mbar). Le rendement est de 93,8 %. F = 133°C.

4.2. Chlorhydrate de chloro-6 N,N-di-n-propyl (chloro-4 phényl)-2 α -chloroimidazo[1,2-a]pyridine-3-acétamide.

A une solution de 21,6 ml (0,3 mole) de chlorure de thionyle dans 100 ml de dichloro-1,2 éthane on ajoute une suspension de 100 g (0,237 mole) du composé précédemment obtenu dans 340 ml de dichloro-1,2 éthane. On agite le mélange pendant 16 h à la température ambiante. On le chauffe alors et on maintient à la température de 70°C pendant 1 h jusqu'à ce que le dégagement gazeux cesse. On élimine alors 140 ml de solvant sous pression réduite.

En refroidissant à 10°C, on ajoute 340 ml d'éther diisopropylique pour parfaire la précipitation. Après une heure d'agitation à cette température, le précipité est filtré, lavé deux fois par 100 ml d'éther diisopropylique et séché sous vide (60°C, 10 mbar) pendant 8 h. Le rendement est de 95 %. F = 190°C (dec).

4.3. N,N-di-n-propyl chloro-6 (chloro-4 phényl)-2 imidazo[1,2-a]pyridine-3-acétamide.

On ajoute à une suspension de 50 g (0,105 mole) du composé obtenu précédemment dans 300 ml d'isopropanol, en 22 mn, une solution de 17 g (0,37 mole) de borohydrure de sodium (NaBH₄) dans 400 ml d'eau en maintenant la température voisine de 20°C, par circulation de glycol à -5°C dans la double enveloppe du réacteur. Après 1 h d'agitation, on ajoute 300 ml d'eau, on agite de nouveau 1 h et on filtre le solide qui est lavé 8 fois par 150 ml d'eau et 3 fois par 70 ml d'éther diisopropylique et séché en étuve pendant 8 h (60°C, 10 mbar). Le rendement est de 50 %. F = 138-139°C. (polymorphe B).

D'autres composés (I) peuvent être préparés selon le même schéma réactionnel.

Les composés (III), (IV) et (V) préparés à titre d'exemples, sont représentés dans les tableaux suivants :

40

45

50

55

60

65

Tableau (I)

Composé	R_1	R_2	R_3	Eb ($^{\circ}\text{C}$)
1	CH_3	CH_3	CH_3	101 (15 mmHg)
2	$n\text{-C}_3\text{H}_7$	$n\text{-C}_3\text{H}_7$	CH_3	140 (15 mmHg)
3	CH_3	CH_3	C_2H_5	105 (14 mmHg)
4	$n\text{-C}_3\text{H}_7$	$n\text{-C}_3\text{H}_7$	C_2H_5	135 (13 mmHg)

20

25

30

35

40

45

50

55

60

65

0 251 859

Tableau (II)

Composé	Y	X ₁	X ₂	R ₁	R ₂	F (°C)
1	6-CH ₃	4-Cl	H	CH ₃	CH ₃	234
2	6-Cl	4-Cl	H	n-C ₃ H ₇	n-C ₃ H ₇	130-132
3	8-CH ₃	4-Cl	H	CH ₃	CH ₃	191-192
4	6-CH ₃	4-CH ₃	H	CH ₃	CH ₃	174-175
5	6-CH ₃	3-CH ₃	H	CH ₃	CH ₃	191-192

Tableau (III)

Composé	Y	X ₁	X ₂	R ₁	R ₂	F (°C)
1	6-CH ₃	4-CH ₃	H	CH ₃	CH ₃	186 (dec)
2	6-Cl	4-Cl	H	n-C ₃ H ₇	n-C ₃ H ₇	190 (dec)

ANNEXE

Schéma réactionnel

Revendications

5

1. Procédé de préparation d'imidazopyridines répondant à la formule (I)

dans laquelle

Y représente un atome d'hydrogène ou d'halogène ou un radical (C₁₋₄)alkyle,

X₁ et X₂ sont chacun, indépendamment l'un de l'autre, un atome d'hydrogène ou d'halogène, un radical

(C₁₋₄)alcoxy, un radical (C₁₋₆)alkyle, le groupe CF₃, CH₃S, CH₃SO₂ ou NO₂ et

R₁ et R₂ représentent chacun indépendamment l'un de l'autre, soit un atome d'hydrogène, soit un radical

(C₁₋₅)alkyle droit ou ramifié, R₁ et R₂ ne pouvant être tous deux des atomes d'hydrogène,

procédé caractérisé en ce que l'on fait réagir une imidazopyridine de formule (II)

avec un composé de formule (III)-

50

dans lequel R₃ est un radical (C₁₋₄)alkyle, les autres radicaux Y, X₁, X₂, R₁ et R₂ ayant les significations données ci-dessus, à une température de 20 à 100°C, dans un solvant ou dans un acide, puis on fait réagir le composé de formule (IV)

55

60

65

avec un composé libérant du chlore, dans un solvant chloré, et enfin on fait réagir le composé de formule (V)

avec un agent réducteur pour obtenir le composé (I) que l'on peut transformer en sel.

2. Procédé selon la revendication 1, caractérisé par le fait que l'agent réducteur est NaBH₄, LiBH₄, Zn(BH₄)₂, un dithionite ou leurs dérivés ou le mélange Zn/HCl.

3. Procédé selon la revendication 1, caractérisé par le fait que le composé libérant du chlore est le chlorure de thionyle, le chlorure de phosphoryle, le phosgène ou le chlorure d'oxalyle.

4. Composés répondant à la formule III

dans laquelle

R₁ et R₂ représentent chacun indépendamment l'un de l'autre soit un atome d'hydrogène, soit un radical (C₁₋₅)alkyle droit ou ramifié, R₁ et R₂ ne pouvant être tous deux des atomes d'hydrogène et R₃ représente un radical (C₁₋₄)alkyle.

5. Composés répondant à la formule (IV)

50

60

65

dans laquelle

Y représente un atome d'hydrogène ou d'halogène ou un radical (C_{1-4})alkyle,
 X_1 et X_2 sont chacun, indépendamment l'un de l'autre, un atome d'hydrogène ou d'halogène, un radical (C_{1-4})alkyle, un groupe CF_3 , $CH_2=CH-SO_2-$ ou NO_2- et

20 (C₁₋₄)alcoxy, un radical (C₁₋₆)alkyle, le groupe CF₃, CH₃S, CH₃SO₂ ou NO₂ et R₁ et R₂ représentent chacun, indépendamment l'un de l'autre, soit un atome d'hydrogène, soit un radical (C₁₋₅)alkyle droit ou ramifié, R₁ et R₂ ne pouvant être tous deux des atomes d'hydrogène.

6. Composés répondant à la formule (V)

dans laquelle

Y représente un atome d'hydrogène ou d'halogène ou un radical (C₁₋₄)alkyle,

40 X₁ et X₂ sont chacun, indépendamment l'un de l'autre, un atome d'hydrogène ou d'halogène, un radical (C₁₋₄)alcoxy, un radical (C₁₋₆)alkyle, le groupe CF₃, CH₃S, CH₃SO₂ ou NO₂ et R₁ et R₂ représentent chacun, indépendamment l'un de l'autre, soit un atome d'hydrogène, soit un radical (C₁₋₅)alkyle droit ou ramifié, R₁ et R₂ ne pouvant être tous deux des atomes d'hydrogène.

7. Procédé de préparation des composés de formule III, procédé caractérisé en ce que l'on fait réagir un composé répondant à la formule

dans laquelle R₁ et R₂ représentent chacun indépendamment l'un de l'autre soit un atome d'hydrogène, soit un radical (C₁₋₅)alkyle droit ou ramifié, R₁ et R₂ ne pouvant être tous deux des atomes d'hydrogène avec un alcanolate de sodium et/ou un alcanol dans de l'acétonitrile.

Revendications pour les Etats contractants suivants: AT, ES, GR.

dans laquelle

Y représente un atome d'hydrogène ou d'halogène ou un radical (C₁₋₄)alkyle,
 X₁ et X₂ sont chacun, indépendamment l'un de l'autre, un atome d'hydrogène ou d'halogène, un radical (C₁₋₄)alcoxy, un radical (C₁₋₆)alkyle, le groupe CF₃, CH₃S, CH₃SO₂ ou NO₂ et
 R₁ et R₂ représentent chacun, indépendamment l'un de l'autre, soit un atome d'hydrogène, soit un radical (C₁₋₅)alkyle droit ou ramifié, R₁ et R₂ ne pouvant être tous deux des atomes d'hydrogène,
 procédé caractérisé en ce que l'on fait réagir une imidazopyridine de formule (II)

avec un composé de formule (III)

dans lequel R₃ est un radical (C₁₋₄)alkyle, les autres radicaux Y, X₁, X₂, R₁ et R₂ ayant les significations données ci-dessus, à une température de 20 à 100°C, dans un solvant ou dans un acide, puis on fait réagir le composé de formule (IV)

avec un composé libérant du chlore, dans un solvant chloré, et enfin on fait réagir le composé de formule (V)

avec un agent réducteur pour obtenir le composé (I) que l'on peut transformer en sel.

2. Procédé selon la revendication 1, caractérisé par le fait que l'agent réducteur est NaBH₄, LiBH₄, Zn(BH₄)₂, un dithionite ou leurs dérivés ou le mélange Zn/HCl.

3. Procédé selon la revendication 1, caractérisé par le fait que le composé libérant du chlore est le chlorure de thionyle, le chlorure de phosphoryle, le phosgène ou le chlorure d'oxalyle.

4. Procédé de préparation des composés de formule III, procédé caractérisé en ce que l'on fait réagir un composé répondant à la formule

35 dans laquelle R₁ et R₂ représentent chacun indépendamment l'un de l'autre soit un atome d'hydrogène, soit un radical (C₁₋₅)alkyle droit ou ramifié, R₁ et R₂ ne pouvant être tous deux des atomes d'hydrogène, avec un alcanolate de sodium et/ou un alcool dans de l'acétonitrile.

40

45

50

55

60

65

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Numéro de publication:

0 251 859
A3

(12)

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt: 87401353.5

(22) Date de dépôt: 17.06.87

(51) Int. Cl.4: C07D 471/04 , C07C 103/34 ,
//(C07D471/04,235:00,221:00)

(30) Priorité: 27.06.86 FR 8609330

(40) Date de publication de la demande:
07.01.88 Bulletin 88/01

(44) Etats contractants désignés:
AT BE CH DE ES FR GB GR IT LI LU NL SE

(46) Date de publication différé e du rapport de recherche: 19.07.89 Bulletin 89/29

(71) Demandeur: SYNTHELABO
58 rue de la Glacière

F-75013 Paris(FR)

(72) Inventeur: Rossey, Guy
8, Square Lebrun Voisins-le-Bretonneux
F-78180 Montigny le Bretonneux(FR)
Inventeur: Long, David
Résidence les Prés 9, Allée des Romarins
F-78180 Montigny le Bretonneux(FR)

(73) Mandataire: Thouret-Lemaitre, Elisabeth et al
Service Brevets - SYNTHELABO 58, rue de la
Glacière
F-75621 Paris Cédex 13(FR)

(54) Procédé de préparation d'imidazopyridines.

(57) Procédé de préparation d'imidazopyridines répondant à la formule (I)

dans laquelle

Y représente un atome d'hydrogène ou d'halogène ou un radical alkyle,

X₁ et X₂ sont chacun, hydrogène, halogène, alcoxy, alkyle, le groupe CF₃, CH₃S, CH₃SO₂ ou NO₂ et R₁ et R₂ représentent chacun, soit un hydrogène, soit un radical alkyle selon lequel on fait réagir une imidazopyridine avec un composé dialcoxyacétal, puis on fait réagir le composé ainsi obtenu avec du chlorure de thionyle, puis on réduit le composé chloré.

EP 0 251 859 A3

EP 87 40 1353

DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl.4)
X	BULLETIN DES SOCIETES CHIMIQUES BELGES, vol. 86, no. 11, 1977, pages 879-885, Bruxelles, BE; R. VERHE et al.: "Reactions of N-1-(2,2,2-trichloroethylidene) t. butylamine with nucleophilic reagents" * Pages 883-884, composé 8b *	4	C 07 D 471/04 C 07 C 103/34 // (C 07 D 471/04 C 07 D 235:00 C 07 D 221:00)
X	CHEMISCHE BERICHTE, vol. 104, 1971, pages 3475-3485, Weinheim, DE; H. BREDERECK et al.: "Darstellung und Reaktionen substituierter Amidacetale" * Page 3476, composé 1c *	4	
X	CHEMISCHE BERICHTE, vol. 100, 1967, pages 2292-2295, Weinheim, DE; K. SCHANK: "Sekundäre Dialkoxy-acetamide aus Diketen" * Page 2292, composés 5cq', 5cb' et schéma *	4,7	
X	CHEMICAL ABSTRACTS, vol. 91, page 606, 1979, résumé no. 55805a, Columbus, Ohio, US; M. MEYER ZUR HEYDE: "New applications of trichloroacetyl isocyanate in proton NMR spectroscopy", & FRESENIUS' Z. ANAL. CHEM. 1979, 295(2-3), 125-42 * Résumé *	4	DOMAINES TECHNIQUES RECHERCHES (Int. Cl.4) C 07 D 471/00 C 07 C 103/00
X	EP-A-0 022 626 (ROHM & HAAS) * Page 18, exemple 14 *	4	
D,A	EP-A-0 050 563 (SYNTHELABO) * Revendications 1,8 *	1	

Le présent rapport a été établi pour toutes les revendications

Lieu de la recherche	Date d'achèvement de la recherche	Examinateur
LA HAYE	12-04-1989	ALFARO I.
CATEGORIE DES DOCUMENTS CITES		
X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : arrière-plan technologique O : divulgation non-écrite P : document intercalaire		
T : théorie ou principe à la base de l'invention E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date D : cité dans la demande L : cité pour d'autres raisons & : membre de la même famille, document correspondant		