Model Free Control

Bias Maximization and Double Q-Learning

Marius Lindauer

Winter Term 2021

- ▶ Consider single-state MDP (|S| = 1) with 2 actions, and both actions have 0-mean random rewards: $(r \mid a = a_1) = (r \mid a = a_2) = 0$
 - ightharpoonup assume that reward is stochastic (e.g, $\mathcal{N}(0,1)$)
- $\blacktriangleright \ \ \text{Then} \ Q(s,a_1)=Q(s,a_2)=0=V(s)$
- \blacktriangleright Assume there are prior samples of taking action a_1 and a_2

- ▶ Consider single-state MDP (|S|=1) with 2 actions, and both actions have 0-mean random rewards: $(r \mid a=a_1)=(r \mid a=a_2)=0$
 - ightharpoonup assume that reward is stochastic (e.g, $\mathcal{N}(0,1)$)
- ▶ Then $Q(s, a_1) = Q(s, a_2) = 0 = V(s)$
- \blacktriangleright Assume there are prior samples of taking action a_1 and a_2
- Let $\hat{Q}(s,a_1)$, $\hat{Q}(s,a_2)$ be the finite sample estimate of \mathbf{Q}
- ▶ Use an unbiased estimator for Q, e.g., $\hat{Q}(s,a_1)=\frac{1}{N(s,a_1)}\sum_{i=1}^{N(s,a_1)}r_i(s,a_1)$

- ▶ Consider single-state MDP (|S|=1) with 2 actions, and both actions have 0-mean random rewards: $(r \mid a=a_1)=(r \mid a=a_2)=0$
 - lacktriangle assume that reward is stochastic (e.g, $\mathcal{N}(0,1)$)
- $\blacktriangleright \ \text{ Then } Q(s,a_1)=Q(s,a_2)=0=V(s)$
- \blacktriangleright Assume there are prior samples of taking action a_1 and a_2
- Let $\hat{Q}(s,a_1)$, $\hat{Q}(s,a_2)$ be the finite sample estimate of \mathbf{Q}
- \blacktriangleright Use an unbiased estimator for Q , e.g., $\hat{Q}(s,a_1)=\frac{1}{N(s,a_1)}\sum_{i=1}^{N(s,a_1)}r_i(s,a_1)$
- \blacktriangleright Let $\hat{\pi} \in \arg\max_{a} \hat{Q}(s,a)$ be the greedy policy wrt the estimated \hat{Q}

- ▶ Consider single-state MDP (|S|=1) with 2 actions, and both actions have 0-mean random rewards: $(r \mid a=a_1)=(r \mid a=a_2)=0$
 - assume that reward is stochastic (e.g. $\mathcal{N}(0,1)$)
- ▶ Then $Q(s, a_1) = Q(s, a_2) = 0 = V(s)$
- \blacktriangleright Assume there are prior samples of taking action a_1 and a_2
- Let $\hat{Q}(s,a_1)$, $\hat{Q}(s,a_2)$ be the finite sample estimate of ${\bf Q}$
- \blacktriangleright Use an unbiased estimator for Q, e.g., $\hat{Q}(s,a_1)=\frac{1}{N(s,a_1)}\sum_{i=1}^{N(s,a_1)}r_i(s,a_1)$
- $lackbox{ Let } \hat{\pi} \in rg \max_a \hat{Q}(s,a)$ be the greedy policy wrt the estimated \hat{Q}
- Even though each estimate of the state-action values is unbiased, the estimate of $\hat{\pi}$'s value $\hat{V}^{\hat{\pi}}$ can be biased:

$$\begin{split} \hat{V}^{\hat{\pi}}(s) &= & \mathbb{E}[\max \hat{Q}(s, a_1), \hat{Q}(s, a_2)] \\ &\geq & \max[\mathbb{E}[\hat{Q}(s, a_1)], \mathbb{E}[\hat{Q}(s, a_2)]] \\ &= & \max[0, 0] = V^{\pi} \end{split}$$

Double Q-Learning

- ► The greedy policy w.r.t. estimated Q values can yield a maximization bias during finite-sample learning
- Avoid using max of estimates as estimate of max of true values
- Instead split samples and use to create two independent unbiased estimates of $Q_1(s_1,a_i)$ and $Q_2(s_1,a_i). \forall a \in A$
 - Use one estimate to select max action: $a^* \in \arg \max_{a \in A} Q_1(s_1, a)$
 - Use other estimate to estimate value of a^* : $Q_2(s, a^*)$
 - lacktriangle Yields unbiased estimate: $\mathbb{E}(Q_2(s,a^*))=Q(s,a^*)$
- Unbiased estimate of the max state-action value because of independent samples to estimate the value

Double Q-Learning for Full MDP

- Initialization:
 - $\blacktriangleright \ Q_1(s,a) \ {\rm and} \ Q_2(s,a) \ \forall s \in S, a \in A$
 - t = 0
 - ightharpoonup initial state $s_t = s_0$
- ► Loop

- $\blacktriangleright \ \, \mathsf{Select} \ \, a_t \ \, \mathsf{using} \, \, \epsilon\mathsf{-greedy} \, \pi(s) \in \arg\max_{a \in A} Q_1(s_t,a) + Q_2(s_t,a)$
- ightharpoonup Observe (r_t, s_{t+1})
- ▶ With 50-50 probability either
 - 1. $Q_1(s_t,a_t) \leftarrow Q_1(s_t,a_t) + \alpha(r_t + \gamma \max_{a \in A} Q_2(s_{t+1},a) Q_1(s_t,a_t))$ or
 - $\textbf{2.} \ \ Q_2(s_t, a_t) \leftarrow Q_2(s_t, a_t) + \alpha(r_t + \gamma \max_{a \in A} Q_1(s_{t+1}, a) Q_2(s_t, a_t))$
- ▶ t = t + 1

Double Q-Learning for Full MDP

- Initialization:
 - $ightharpoonup Q_1(s,a) \ \forall s \in S, a \in A$
 - t = 0
 - ightharpoonup initial state $s_t = s_0$
- ► Loop

- $\blacktriangleright \ \, \mathsf{Select} \ a_t \ \mathsf{using} \ \epsilon\mathsf{-greedy} \ \pi(s) \in \arg\max\nolimits_{a \in A} Q_1(s_t,a) + Q_2(s_t,a)$
- ightharpoonup Observe (r_t, s_{t+1})
- ▶ With 50-50 probability either
 - 1. $Q_1(s_t,a_t) \leftarrow Q_1(s_t,a_t) + \alpha(r_t + \gamma \max_{a \in A} Q_2(s_{t+1},a) Q_1(s_t,a_t))$ or
 - $\textbf{2.} \ \ Q_2(s_t, a_t) \leftarrow Q_2(s_t, a_t) + \alpha(r_t + \gamma \max_{a \in A} Q_1(s_{t+1}, a) Q_2(s_t, a_t))$
- ▶ t = t + 1
- → Doubles the memory, same computation requirements, data requirements are subtle might reduce amount of exploration needed due to lower bias

Double Q-Learning [Sutton & Barto 2018]

