4.2 Theory: POS Tagging Using CRF and HMM

1. Introduction

Part-of-Speech (POS) tagging is a crucial task in Natural Language Processing (NLP) that involves assigning grammatical labels (e.g., noun, verb, adjective) to words in a sentence. Two prominent methods for POS tagging are the **Hidden Markov Model (HMM)** and **Conditional Random Fields (CRF)**. These methods fall into different categories of statistical models: HMM is a **generative probabilistic model**, while CRF is a **discriminative model**.

2. Core Concepts of HMM and CRF

2.1 Hidden Markov Model (HMM)

The **HMM** is a **generative probabilistic model** that treats POS tagging as a sequential process. It assumes that:

- The sequence of POS tags follows a **Markov chain**, meaning each tag depends only on the previous tag (first-order HMM) or a limited history of tags.
- Each observed word is emitted by an underlying hidden POS tag according to an **emission probability**.

HMM is characterized by three key probabilities:

- 1. **Transition Probability**: P(ti | ti−1)P(t_i | t_{i-1}) the probability of moving from one tag to another.
- 2. **Emission Probability**: P(wi | ti)P(w_i | t_i) the likelihood of a word occurring given a particular tag.
- 3. **Initial Probability**: P(t1)P(t 1) the probability of starting a sentence with a specific tag.

2.2 Conditional Random Fields (CRF)

The **CRF** is a **discriminative model** that directly estimates the conditional probability $P(T \mid W)P(T \mid W)$, eliminating the need to model P(W)P(W). Unlike HMM, CRF does not assume conditional independence between words.

CRF allows for the integration of **rich feature representations**, including:

- Contextual information (neighboring words)
- Morphological properties (prefixes, suffixes)
- · Capitalization, punctuation, and other linguistic cues

The optimal tag sequence is typically determined using **Viterbi decoding**, similar to HMM.

3. HMM vs CRF: A Comparative Analysis

Feature	HMM (Generative)	CRF (Discriminative)
Model Type	Probabilistic	Log-linear
Assumptions	Assumes conditional independence of words	No independence assumptions
Learning Approach	Maximum Likelihood Estimation (MLE)	Maximum Conditional Likelihood
Feature Utilization	Limited to word-tag probabilities	Incorporates complex linguistic features (e.g., word context, morphology)
Performance	Effective for small datasets	Requires more data but offers higher accuracy
Computational Complexity	Lower (faster training)	Higher (more computationally expensive)
Handling of Unknown Words	Struggles with rare or unseen words	Generalizes better using contextual features

4. Strengths and Weaknesses

4.1 Advantages of HMM

- Simple, interpretable, and computationally efficient.
- Performs well with limited training data.
- Fast training and inference.

4.2 Limitations of HMM

- Assumes words are conditionally independent given their POS tags, which is often unrealistic.
- Poor at capturing complex linguistic dependencies.
- Struggles with handling unseen or out-of-vocabulary words due to reliance on emission probabilities.

4.3 Advantages of CRF

- Incorporates rich contextual features, improving accuracy.
- Does not require independence assumptions between observations.
- More robust in handling rare and unseen words.

4.4 Limitations of CRF

- Computationally intensive during training and inference.
- Requires a large dataset for effective model learning.

5. Key Observations on Performance

- **HMM is useful in low-resource settings** where labeled data is scarce due to its simpler probabilistic nature.
- **CRF generally outperforms HMM** in real-world POS tagging tasks by effectively capturing complex linguistic dependencies.
- HMM is limited in handling long-range dependencies, whereas CRF benefits from leveraging multiple word features.
- **HMM is computationally efficient**, making it a viable choice in scenarios where processing power is a constraint.

6. Conclusion

Both HMM and CRF offer distinct advantages for POS tagging. **HMM is efficient and works well with small datasets**, while **CRF is more accurate and flexible**, allowing for richer feature representation. In **practical NLP applications**, CRF is often preferred due to its ability to model dependencies beyond simple word-tag relationships, despite its higher computational cost.