Kürzeste Wege I Algorithmen für verteilte Systeme

Sebastian Forster

Universität Salzburg

Dieses Werk ist unter einer Creative Commons Namensnennung 4.0 International Lizenz lizenziert.

Problemstellung

Single-Source Shortest Paths (SSSP)

Ziel: Berechne Distanz dist(s, v) für jeden Knoten v und gegebenen Startknoten s

- Jeder Knoten weiß initial, ob er der Startknoten ist oder nicht
- Am Ende kennt jeder Knoten v seine Distanz dist(s, v)

Problemstellung

Single-Source Shortest Paths (SSSP)

Ziel: Berechne Distanz dist(s, v) für jeden Knoten v und gegebenen Startknoten s

- Jeder Knoten weiß initial, ob er der Startknoten ist oder nicht
- Am Ende kennt jeder Knoten v seine Distanz dist(s, v)

All-Pairs Shortest Paths (APSP)

Ziel: Berechne Distanz dist(u, v) für jedes Paar von Knoten u und v

• Am Ende kennt jeder Knoten v für jeden anderen Knoten u die Distanz $\mathrm{dist}(u,v)$

Ungewichtete Graphen

Theorem

Im CONGEST Modell kann das SSSP Problem für ungewichtete Graphen in O(D) Runden gelöst werden.

All-Pairs Shortest Paths

Idee: Führe Breitensuche für jeden Knoten aus

All-Pairs Shortest Paths

Idee: Führe Breitensuche für jeden Knoten aus

Naive Umsetzung:

- Congestion Constraint verhindert parallele Ausführung
- O(nD) Runden

All-Pairs Shortest Paths

Idee: Führe Breitensuche für jeden Knoten aus

Naive Umsetzung:

- Congestion Constraint verhindert parallele Ausführung
- O(nD) Runden

Effizienterer Algorithmus: Parallelisierung durch Randomisierung

Ziel: Führe Breitensuche für k = |U| verschiedene Startknoten aus

Ziel: Führe Breitensuche für k = |U| verschiedene Startknoten aus

Idee: Nutze aus, dass in Breitensuche jeder Knoten höchstens einmal sendet

Ziel: Führe Breitensuche für k = |U| verschiedene Startknoten aus

Idee: Nutze aus, dass in Breitensuche jeder Knoten höchstens einmal sendet

Random Delay Algorithmus:

• Jeder Startknoten s_i wählt uniform zufälliges $\delta_i \in \{0, \dots, k-1\}$

Ziel: Führe Breitensuche für k = |U| verschiedene Startknoten aus

Idee: Nutze aus, dass in Breitensuche jeder Knoten höchstens einmal sendet

Random Delay Algorithmus:

- Jeder Startknoten s_i wählt uniform zufälliges $\delta_i \in \{0, \dots, k-1\}$
- ullet Knoten s_i startet Instanz des Algorithmus mit Verzögerung δ_i

Ziel: Führe Breitensuche für k = |U| verschiedene Startknoten aus

Idee: Nutze aus, dass in Breitensuche jeder Knoten höchstens einmal sendet

Random Delay Algorithmus:

- Jeder Startknoten s_i wählt uniform zufälliges $\delta_i \in \{0, \dots, k-1\}$
- Knoten s_i startet Instanz des Algorithmus mit Verzögerung δ_i

Lemma

Der Random Delay Algorithmus berechnet einen Breitensuchbaum für jeden Knoten in U in O(k+D) Runden und benötigt Bandbreite $O(\log^2 n)$ mit hoher Wahrscheinlichkeit.

Ziel: Führe Breitensuche für k = |U| verschiedene Startknoten aus

Idee: Nutze aus, dass in Breitensuche jeder Knoten höchstens einmal sendet

Random Delay Algorithmus:

- Jeder Startknoten s_i wählt uniform zufälliges $\delta_i \in \{0, \dots, k-1\}$
- Knoten s_i startet Instanz des Algorithmus mit Verzögerung δ_i

Lemma

Der Random Delay Algorithmus berechnet einen Breitensuchbaum für jeden Knoten in U in O(k+D) Runden und benötigt Bandbreite $O(\log^2 n)$ mit hoher Wahrscheinlichkeit.

Simulation mit Nachrichtengröße $O(\log n)$: $\Rightarrow O((k + D) \log n)$ Runden

Ziel: Führe Breitensuche für k = |U| verschiedene Startknoten aus

Idee: Nutze aus, dass in Breitensuche jeder Knoten höchstens einmal sendet

Random Delay Algorithmus:

- Jeder Startknoten s_i wählt uniform zufälliges $\delta_i \in \{0, \dots, k-1\}$
- Knoten s_i startet Instanz des Algorithmus mit Verzögerung δ_i

Lemma

Der Random Delay Algorithmus berechnet einen Breitensuchbaum für jeden Knoten in U in O(k+D) Runden und benötigt Bandbreite $O(\log^2 n)$ mit hoher Wahrscheinlichkeit.

Simulation mit Nachrichtengröße $O(\log n)$: $\Rightarrow O((k + D) \log n)$ Runden

Theorem

Im CONGEST Modell gibt es einen Monte-Carlo Algorithmus, der mit hoher Wahrscheinlichkeit das APSP Problem in $O(n \log n)$ Runden löst.

Lemma

In jeder Runde werden mit hoher Wahrscheinlichkeit für jeden Knoten nur Nachrichten aus $O(\log n)$ Instanzen gleichzeitig gesendet.

Lemma

In jeder Runde werden mit hoher Wahrscheinlichkeit für jeden Knoten nur Nachrichten aus $O(\log n)$ Instanzen gleichzeitig gesendet.

Beweis:

 $M_{v,i}$: von Knoten v in i-ter Instanz gesendete Nachricht (Bei Breitensuche gibt es nur eine solche Nachricht)

 $r_{v,i}$: Runde, in der $M_{v,i}$ ohne Delay gesendet werden würde

Lemma

In jeder Runde werden mit hoher Wahrscheinlichkeit für jeden Knoten nur Nachrichten aus $O(\log n)$ Instanzen gleichzeitig gesendet.

Beweis:

 $M_{v,i}$: von Knoten v in i-ter Instanz gesendete Nachricht (Bei Breitensuche gibt es nur eine solche Nachricht)

 $r_{v,i}$: Runde, in der $M_{v,i}$ ohne Delay gesendet werden würde

Fixiere Runde r, Knoten v, Instanz i:

Lemma

In jeder Runde werden mit hoher Wahrscheinlichkeit für jeden Knoten nur Nachrichten aus $O(\log n)$ Instanzen gleichzeitig gesendet.

Beweis:

 $M_{v,i}$: von Knoten v in i-ter Instanz gesendete Nachricht

(Bei Breitensuche gibt es nur eine solche Nachricht)

 $r_{v,i}$: Runde, in der $M_{v,i}$ ohne Delay gesendet werden würde

Fixiere Runde r, Knoten v, Instanz i:

 $\Pr[M_{v,i} \text{ in Runde } r \text{ von } v \text{ gesendet}] \le \frac{1}{k}$

(Enspricht Wahrscheinlichkeit, dass $r = \delta_i + r_{v,i}$; hierbei k Möglichkeiten für δ_i)

Lemma

In jeder Runde werden mit hoher Wahrscheinlichkeit für jeden Knoten nur Nachrichten aus $O(\log n)$ Instanzen gleichzeitig gesendet.

Beweis:

 $M_{v,i}$: von Knoten v in i-ter Instanz gesendete Nachricht

(Bei Breitensuche gibt es nur eine solche Nachricht)

 $r_{v,i}$: Runde, in der $M_{v,i}$ ohne Delay gesendet werden würde

Fixiere Runde r, Knoten v, Instanz i:

 $\Pr[M_{v,i} \text{ in Runde } r \text{ von } v \text{ gesendet}] \le \frac{1}{k}$

(Enspricht Wahrscheinlichkeit, dass $r = \delta_i + r_{v,i}$; hierbei k Möglichkeiten für δ_i)

Fixiere Runde r, Knoten v, Menge von Nachrichten $\mathcal{M} \subseteq \bigcup_{i=1}^k \{M_{v,i}\}$:

Lemma

In jeder Runde werden mit hoher Wahrscheinlichkeit für jeden Knoten nur Nachrichten aus $O(\log n)$ Instanzen gleichzeitig gesendet.

Beweis:

 $M_{v,i}$: von Knoten v in i-ter Instanz gesendete Nachricht

(Bei Breitensuche gibt es nur eine solche Nachricht)

 $r_{v,i}$: Runde, in der $M_{v,i}$ ohne Delay gesendet werden würde

Fixiere Runde r, Knoten v, Instanz i:

 $\Pr[M_{v,i} \text{ in Runde } r \text{ von } v \text{ gesendet}] \le \frac{1}{k}$

(Enspricht Wahrscheinlichkeit, dass $r = \delta_i + r_{v,i}$; hierbei k Möglichkeiten für δ_i)

Fixiere Runde r, Knoten v, Menge von Nachrichten $\mathcal{M} \subseteq \bigcup_{i=1}^k \{M_{v,i}\}$:

 $\Pr[\text{alle Nachrichten aus } \mathcal{M} \text{ in Runde } r \text{ von } v \text{ gesendet}] \leq \left(\frac{1}{k}\right)^{|\mathcal{M}|}$

(Unabhängigkeit der Ereignisse, da Delays unabhängig gewählt wurden)

#Nachrichtenmengen $\mathcal{M} \subseteq \bigcup_{i=1}^k \{M_{v,i}\}$ der Größe $\ell : \leq {k \choose \ell}$ (Eine Nachricht pro Instanz)

#Nachrichtenmengen $\mathcal{M} \subseteq \bigcup_{i=1}^k \{M_{v,i}\}$ der Größe $\ell : \leq \binom{k}{\ell}$ (Eine Nachricht pro Instanz)

$$\Pr\left[\exists \mathcal{M} \subseteq \bigcup_{i=1}^{k} \{M_{v,i}\} \text{ so dass } |\mathcal{M}| \ge \max\{(c+3)\log n, 2e\}\right]$$

und alle Nachrichten aus ${\cal M}$ in Runde r von v gesendet

#Nachrichtenmengen $\mathcal{M} \subseteq \bigcup_{i=1}^k \{M_{v,i}\}$ der Größe $\ell : \leq {k \choose \ell}$ (Eine Nachricht pro Instanz)

 $\Pr\left[\exists \mathcal{M} \subseteq \bigcup_{i=1}^{k} \{M_{v,i}\} \text{ so dass } |\mathcal{M}| \ge \max\{(c+3)\log n, 2e\}\right]$

und alle Nachrichten aus ${\cal M}$ in Runde r von v gesendet

$$\leq \sum_{\max\{(c+3)\log n, 2e\} \leq \ell \leq k} {k \choose \ell} \left(\frac{1}{k}\right)^{\ell}$$

#Nachrichtenmengen $\mathcal{M}\subseteq\bigcup_{i=1}^k\{M_{v,i}\}$ der Größe $\ell\colon\!\le\binom{k}{\ell}$

(Eine Nachricht pro Instanz)

$$\Pr\left[\exists \mathcal{M} \subseteq \bigcup_{i=1}^{k} \{M_{v,i}\} \text{ so dass } |\mathcal{M}| \ge \max\{(c+3)\log n, 2e\}\right]$$

und alle Nachrichten aus ${\mathcal M}$ in Runde r von v gesendet

$$\leq \sum_{\max\{(c+3)\log n, 2e\} \leq \ell \leq k} \binom{k}{\ell} \left(\frac{1}{k}\right)^{\ell}$$

Wegen
$$\binom{a}{b} \le \left(\frac{ea}{b}\right)^b$$
:

#Nachrichtenmengen $\mathcal{M} \subseteq \bigcup_{i=1}^k \{M_{v,i}\}$ der Größe $\ell : \leq \binom{k}{\ell}$ (Eine Nachricht pro Instanz)

$$\Pr\left[\exists \mathcal{M} \subseteq \bigcup_{i=1}^{k} \{M_{v,i}\} \text{ so dass } |\mathcal{M}| \ge \max\{(c+3)\log n, 2e\}\right]$$

und alle Nachrichten aus ${\cal M}$ in Runde r von v gesendet

$$\leq \sum_{\max\{(c+3)\log n, 2e\} \leq \ell \leq k} \binom{k}{\ell} \left(\frac{1}{k}\right)^{\ell}$$

Wegen
$$\binom{a}{b} \le \left(\frac{ea}{b}\right)^b$$
:

$$\Pr[\dots] \le \sum_{\max\{(c+3)\log n, 2e\} \le \ell \le k} \left(\frac{ek}{\ell}\right)^\ell \left(\frac{1}{k}\right)^\ell$$

#Nachrichtenmengen $\mathcal{M}\subseteq\bigcup_{i=1}^k\{M_{v,i}\}$ der Größe $\ell\colon\leq\binom{k}{\ell}$

(Eine Nachricht pro Instanz)

$$\Pr\left[\exists \mathcal{M} \subseteq \bigcup_{i=1}^{k} \{M_{v,i}\} \text{ so dass } |\mathcal{M}| \ge \max\{(c+3)\log n, 2e\}\right]$$

und alle Nachrichten aus ${\mathcal M}$ in Runde r von v gesendet

$$\leq \sum_{\max\{(c+3)\log n, 2e\} \leq \ell \leq k} \binom{k}{\ell} \left(\frac{1}{k}\right)^{\ell}$$

Wegen
$$\binom{a}{b} \le \left(\frac{ea}{b}\right)^b$$
:
$$\Pr[\dots] \le \sum_{\max\{(c+3)\log n, 2e\} \le \ell \le k} \left(\frac{ek}{\ell}\right)^{\ell} \left(\frac{1}{k}\right)^{\ell}$$

$$\le \sum_{\max\{(c+3)\log n, 2e\} \le \ell \le k} \left(\frac{e}{\ell}\right)^{\ell}$$

Fortsetzung des Beweises

#Nachrichtenmengen $\mathcal{M} \subseteq \bigcup_{i=1}^k \{M_{v,i}\}$ der Größe $\ell : \leq \binom{k}{\ell}$ (Eine Nachricht pro Instanz)

$$\Pr\left[\exists \mathcal{M} \subseteq \bigcup_{i=1}^{k} \{M_{v,i}\} \text{ so dass } |\mathcal{M}| \ge \max\{(c+3)\log n, 2e\}\right]$$

und alle Nachrichten aus ${\cal M}$ in Runde r von v gesendet

$$\leq \sum_{\max\{(c+3)\log n, 2e\} \leq \ell \leq k} \binom{k}{\ell} \left(\frac{1}{k}\right)^{\ell}$$

(Union Bound)

Wegen
$$\binom{a}{b} \le \left(\frac{ea}{b}\right)^b$$
:
$$\Pr[\dots] \le \sum_{\max\{(c+3)\log n, 2e\} \le \ell \le k} \left(\frac{ek}{\ell}\right)^\ell \left(\frac{1}{k}\right)^\ell$$

$$\le \sum_{\max\{(c+3)\log n, 2e\} \le \ell \le k} \left(\frac{e}{\ell}\right)^\ell \le k \left(\frac{1}{2}\right)^{(c+3)\log n}$$

Fortsetzung des Beweises

#Nachrichtenmengen $\mathcal{M} \subseteq \bigcup_{i=1}^k \{M_{v,i}\}$ der Größe $\ell : \leq \binom{k}{\ell}$

(Eine Nachricht pro Instanz)

$$\Pr\left[\exists \mathcal{M} \subseteq \bigcup_{i=1}^{k} \{M_{v,i}\} \text{ so dass } |\mathcal{M}| \ge \max\{(c+3)\log n, 2e\}\right]$$

und alle Nachrichten aus \mathcal{M} in Runde r von v gesendet

$$\leq \sum_{\max\{(c+3)\log n, 2e\} \leq \ell \leq k} \binom{k}{\ell} \left(\frac{1}{k}\right)^{\ell}$$

(Union Bound)

Wegen
$$\binom{a}{b} \le \left(\frac{ea}{b}\right)^b$$
:
$$\Pr[\dots] \le \sum_{\max\{(c+3)\log n, 2e\} \le \ell \le k} \left(\frac{ek}{\ell}\right)^\ell \left(\frac{1}{k}\right)^\ell$$

$$\le \sum_{\max\{(c+3)\log n, 2e\} \le \ell \le k} \left(\frac{e}{\ell}\right)^\ell \le k \left(\frac{1}{2}\right)^{(c+3)\log n} = k \cdot \frac{1}{n^{c+3}} \le \frac{1}{n^{c+2}}$$

Fortsetzung des Beweises

#Nachrichtenmengen $\mathcal{M}\subseteq\bigcup_{i=1}^k\{M_{v,i}\}$ der Größe $\ell\colon\leq\binom{k}{\ell}$

(Eine Nachricht pro Instanz)

$$\Pr\left[\exists \mathcal{M} \subseteq \bigcup_{i=1}^{k} \{M_{v,i}\} \text{ so dass } |\mathcal{M}| \ge \max\{(c+3)\log n, 2e\}\right]$$

und alle Nachrichten aus ${\cal M}$ in Runde r von v gesendet

$$\leq \sum_{\max\{(c+3)\log n, 2e\} \leq \ell \leq k} \binom{k}{\ell} \left(\frac{1}{k}\right)^{\ell}$$

(Union Bound)

Wegen
$$\binom{a}{b} \le \left(\frac{ea}{b}\right)^b$$
:
$$\Pr[\dots] \le \sum_{\max\{(c+3)\log n, 2e\} \le \ell \le k} \left(\frac{ek}{\ell}\right)^{\ell} \left(\frac{1}{k}\right)^{\ell}$$

$$\le \sum_{\max\{(c+3)\log n, 2e\} \le \ell \le k} \left(\frac{e}{\ell}\right)^{\ell} \le k \left(\frac{1}{2}\right)^{(c+3)\log n} = k \cdot \frac{1}{n^{c+3}} \le \frac{1}{n^{c+2}}$$

 \Rightarrow Obere Schranke für alle Knoten und Runden mit Wahrsch. 1 – $1/n^c$

Zusammenfassung Random Delay

Wir haben gezeigt:

Lemma

Im CONGEST Modell können $k \le n$ Instanzen der Breitensuche mit hoher Wahrscheinlichkeit in $O((k+D)\log n)$ Runden ausgeführt werden.

Zusammenfassung Random Delay

Wir haben gezeigt:

Lemma

Im CONGEST Modell können $k \le n$ Instanzen der Breitensuche mit hoher Wahrscheinlichkeit in $O((k+D)\log n)$ Runden ausgeführt werden.

Verallgemeinerung:

Lemma

Sei $\mathcal A$ ein Algorithmus im CONGEST Modell, der $R(n)=n^{O(1)}$ Runden benötigt und in dem jeder Knoten in insgesamt $M(n)=n^{O(1)}$ Runden Nachrichten sendet. Dann können $k=n^{O(1)}$ Instanzen von $\mathcal A$ mit hoher Wahrscheinlichkeit in $O((R(n)+kM(n))\log n)$ Runden ausgeführt werden.

Gewichtete Graphen

Annahmen:

- Jede Kante e = (u, v) hat ein Gewicht w(u, v), das u und v bekannt ist
- $\bullet\,$ Positive, ganzzahlige Kantengewichte von 1 bis W

Annahmen:

- Jede Kante e = (u, v) hat ein Gewicht w(u, v), das u und v bekannt ist
- ullet Positive, ganzzahlige Kantengewichte von 1 bis W
- Bandbreite $O(\log(nW)) = O(\log n + \log W)$
- Somit: Summe von bis zu *n* Kantengewichten kann in einer Nachricht gesendet werden

Annahmen:

- Jede Kante e = (u, v) hat ein Gewicht w(u, v), das u und v bekannt ist
- ullet Positive, ganzzahlige Kantengewichte von 1 bis W
- Bandbreite $O(\log(nW)) = O(\log n + \log W)$
- Somit: Summe von bis zu *n* Kantengewichten kann in einer Nachricht gesendet werden

Achtung

Kantengewichte repräsentieren Kosten, keine Delays. Direkte Kommunikation mit Nachbarn dauert nur eine Runde.

Annahmen:

- Jede Kante e = (u, v) hat ein Gewicht w(u, v), das u und v bekannt ist
- Positive, ganzzahlige Kantengewichte von 1 bis W
- Bandbreite $O(\log(nW)) = O(\log n + \log W)$
- Somit: Summe von bis zu *n* Kantengewichten kann in einer Nachricht gesendet werden

Achtung

Kantengewichte repräsentieren Kosten, keine Delays. Direkte Kommunikation mit Nachbarn dauert nur eine Runde.

Weiterhin bezeichnet *D* den Durchmesser des *ungewichteten* Netzwerks.

Annahmen:

- Jede Kante e = (u, v) hat ein Gewicht w(u, v), das u und v bekannt ist
- ullet Positive, ganzzahlige Kantengewichte von 1 bis W
- Bandbreite $O(\log(nW)) = O(\log n + \log W)$
- Somit: Summe von bis zu *n* Kantengewichten kann in einer Nachricht gesendet werden

Achtung

Kantengewichte repräsentieren Kosten, keine Delays. Direkte Kommunikation mit Nachbarn dauert nur eine Runde.

Weiterhin bezeichnet D den Durchmesser des ungewichteten Netzwerks.

Notation

 $\operatorname{dist}^h(s,v)=$ Länge des kürzesten Wegs von s nach v mit höchstens h Kanten

Initialisierung in Runde 1:

$$\delta_1(v) = \begin{cases} 0 & \text{falls } v = s \\ \infty & \text{andernfalls} \end{cases}$$

Initialisierung in Runde 1:

$$\delta_1(v) = \begin{cases} 0 & \text{falls } v = s \\ \infty & \text{andernfalls} \end{cases}$$

Update in Runde $r \ge 2$:

$$\delta_r(v) = \min_{(u,v) \in E} (\delta_{r-1}(u) + w(u,v))$$

Initialisierung in Runde 1:

$$\delta_1(v) = \begin{cases} 0 & \text{falls } v = s \\ \infty & \text{andernfalls} \end{cases}$$

Update in Runde $r \ge 2$:

$$\delta_r(v) = \min_{(u,v) \in E} (\delta_{r-1}(u) + w(u,v))$$

Invariante

Nach Runde r ist $\delta_r(v) = \operatorname{dist}^{r-1}(s,v)$ (entspricht also der Länge des kürzesten Wegs von s nach v mit höchstens r-1 Kanten).

Initialisierung in Runde 1:

$$\delta_1(v) = \begin{cases} 0 & \text{falls } v = s \\ \infty & \text{andernfalls} \end{cases}$$

Update in Runde $r \ge 2$:

$$\delta_r(v) = \min_{(u,v) \in E} (\delta_{r-1}(u) + w(u,v))$$

Invariante

Nach Runde r ist $\delta_r(v) = \mathrm{dist}^{r-1}(s,v)$ (entspricht also der Länge des kürzesten Wegs von s nach v mit höchstens r-1 Kanten).

Korrektheit: Absolut kürzester Weg hat höchstens n-1 Kanten

Initialisierung in Runde 1:

$$\delta_1(v) = \begin{cases} 0 & \text{falls } v = s \\ \infty & \text{andernfalls} \end{cases}$$

Update in Runde $r \ge 2$:

$$\delta_r(v) = \min_{(u,v) \in E} (\delta_{r-1}(u) + w(u,v))$$

Invariante

Nach Runde r ist $\delta_r(v) = \mathrm{dist}^{r-1}(s,v)$ (entspricht also der Länge des kürzesten Wegs von s nach v mit höchstens r-1 Kanten).

Korrektheit: Absolut kürzester Weg hat höchstens n-1 Kanten

Theorem

Im CONGEST Modell kann das SSSP Problem für gewichtete Graphen in O(n) Runden gelöst werden.

Idee: Führe SSSP-Algorithmus für jeden Knoten aus

Idee: Führe SSSP-Algorithmus für jeden Knoten aus

Umsetzung mit Random-Delay Technik:

• Im Bellman-Ford Algorithmus sendet jeder Knoten in jeder Runde

Idee: Führe SSSP-Algorithmus für jeden Knoten aus

Umsetzung mit Random-Delay Technik:

- Im Bellman-Ford Algorithmus sendet jeder Knoten in jeder Runde
- Somit: Laufzeit $O(n^2 \log n)$

Idee: Führe SSSP-Algorithmus für jeden Knoten aus

Umsetzung mit Random-Delay Technik:

- Im Bellman-Ford Algorithmus sendet jeder Knoten in jeder Runde
- Somit: Laufzeit $O(n^2 \log n)$
- Nicht besser als naive sequentielle Ausführung mit Laufzeit $O(n^2)$

Idee: Führe SSSP-Algorithmus für jeden Knoten aus

Umsetzung mit Random-Delay Technik:

- Im Bellman-Ford Algorithmus sendet jeder Knoten in jeder Runde
- Somit: Laufzeit $O(n^2 \log n)$
- Nicht besser als naive sequentielle Ausführung mit Laufzeit $O(n^2)$

Ziel: SSSP mit geringerer Anzahl an Nachrichten pro Knoten

Idee: Simuliere gewichteten Graph als ungewichteten Graph, indem jede Kante durch einen Pfad entsprechender Länge ersetzt wird

Idee: Simuliere gewichteten Graph als ungewichteten Graph, indem jede Kante durch einen Pfad entsprechender Länge ersetzt wird

Algorithmus: Sobald für Knoten $v \neq s$ die erste Nachricht mit Distanz δ empfangen wurde oder Knoten v = s mit Distanz 0 initialisiert wurde:

- Sei r die aktuelle Runde
- Für jeden Nachbarknoten v: Sende Nachricht mit Distanz $\delta + w(u, v)$ in Runde r + w(u, v) 1 (Empfang durch v in Runde r + w(u, v))

Idee: Simuliere gewichteten Graph als ungewichteten Graph, indem jede Kante durch einen Pfad entsprechender Länge ersetzt wird

Algorithmus: Sobald für Knoten $v \neq s$ die erste Nachricht mit Distanz δ empfangen wurde oder Knoten v = s mit Distanz 0 initialisiert wurde:

- Sei r die aktuelle Runde
- Für jeden Nachbarknoten v: Sende Nachricht mit Distanz $\delta + w(u, v)$ in Runde r + w(u, v) 1 (Empfang durch v in Runde r + w(u, v))

Invariante

Für jeden Knoten v gilt: Die erste Distanznachricht wird in Runde dist(s, v) + 1 empfangen; sie hat den Inhalt dist(s, v).

Idee: Simuliere gewichteten Graph als ungewichteten Graph, indem jede Kante durch einen Pfad entsprechender Länge ersetzt wird

Algorithmus: Sobald für Knoten $v \neq s$ die erste Nachricht mit Distanz δ empfangen wurde oder Knoten v = s mit Distanz 0 initialisiert wurde:

- Sei r die aktuelle Runde
- Für jeden Nachbarknoten v: Sende Nachricht mit Distanz $\delta + w(u, v)$ in Runde r + w(u, v) 1 (Empfang durch v in Runde r + w(u, v))

Invariante

Für jeden Knoten v gilt: Die erste Distanznachricht wird in Runde dist(s, v) + 1 empfangen; sie hat den Inhalt dist(s, v).

Lemma

In T + 1 Runden wird dist(s, v) für jeden Knoten v mit $dist(s, v) \le T$ berechnet, wobei jeder Knoten höchstens einmal Nachrichten sendet.

Idee: Simuliere gewichteten Graph als ungewichteten Graph, indem jede Kante durch einen Pfad entsprechender Länge ersetzt wird

Algorithmus: Sobald für Knoten $v \neq s$ die erste Nachricht mit Distanz δ empfangen wurde oder Knoten v = s mit Distanz 0 initialisiert wurde:

- Sei r die aktuelle Runde
- Für jeden Nachbarknoten v: Sende Nachricht mit Distanz $\delta + w(u, v)$ in Runde r + w(u, v) 1 (Empfang durch v in Runde r + w(u, v))

Invariante

Für jeden Knoten v gilt: Die erste Distanznachricht wird in Runde dist(s, v) + 1 empfangen; sie hat den Inhalt dist(s, v).

Lemma

In T+1 Runden wird $\operatorname{dist}(s,v)$ für jeden Knoten v mit $\operatorname{dist}(s,v) \leq T$ berechnet, wobei jeder Knoten höchstens einmal Nachrichten sendet.

Zur Berechnung von dist(s, v) sind O(nW) Runden ausreichend

Idee: Simuliere gewichteten Graph als ungewichteten Graph, indem jede Kante durch einen Pfad entsprechender Länge ersetzt wird

Algorithmus: Sobald für Knoten $v \neq s$ die erste Nachricht mit Distanz δ empfangen wurde oder Knoten v = s mit Distanz 0 initialisiert wurde:

- Sei r die aktuelle Runde
- Für jeden Nachbarknoten v: Sende Nachricht mit Distanz $\delta + w(u, v)$ in Runde r + w(u, v) 1 (Empfang durch v in Runde r + w(u, v))

Invariante

Für jeden Knoten v gilt: Die erste Distanznachricht wird in Runde dist(s, v) + 1 empfangen; sie hat den Inhalt dist(s, v).

Lemma

In T + 1 Runden wird dist(s, v) für jeden Knoten v mit $dist(s, v) \le T$ berechnet, wobei jeder Knoten höchstens einmal Nachrichten sendet.

Zur Berechnung von dist(s, v) sind O(nW) Runden ausreichend

→ "Pseudopolynomieller" Algorithmus

Mit gewichteter Breitensuche:

Lemma

Im CONGEST Modell kann das SSSP Problem für gewichtete Graphen in O(nW) Runden gelöst werden, wobei jeder Knoten höchstens einmal Nachrichten sendet.

Mit gewichteter Breitensuche:

Lemma

Im CONGEST Modell kann das SSSP Problem für gewichtete Graphen in O(nW) Runden gelöst werden, wobei jeder Knoten höchstens einmal Nachrichten sendet.

Erinnerung:

Lemma

Sei \mathcal{A} ein Algorithmus im CONGEST Modell, der $R(n) = n^{O(1)}$ Runden benötigt und in dem jeder Knoten in insgesamt $M(n) = n^{O(1)}$ Runden Nachrichten sendet. Dann können $k = n^{O(1)}$ Instanzen von \mathcal{A} mit hoher Wahrscheinlichkeit in $O((R(n) + kM(n)) \log n)$ Runden ausgeführt werden.

Mit gewichteter Breitensuche:

Lemma

Im CONGEST Modell kann das SSSP Problem für gewichtete Graphen in O(nW) Runden gelöst werden, wobei jeder Knoten höchstens einmal Nachrichten sendet.

Erinnerung:

Lemma

Sei \mathcal{A} ein Algorithmus im CONGEST Modell, der $R(n) = n^{O(1)}$ Runden benötigt und in dem jeder Knoten in insgesamt $M(n) = n^{O(1)}$ Runden Nachrichten sendet. Dann können $k = n^{O(1)}$ Instanzen von \mathcal{A} mit hoher Wahrscheinlichkeit in $O((R(n) + kM(n)) \log n)$ Runden ausgeführt werden.

Somit folgt:

Theorem

Im CONGEST Modell gibt es einen Monte-Carlo Algorithmus, der das APSP Problem für gewichtete Graphen mit hoher Wahrscheinlichkeit in $O(nW\log n)$

Zusammenfassung

- SSSP für ungewichtete Graphen: O(D) Runden Breitensuche
- APSP für ungewichtete Graphen: O(n log n) Runden
 Parallelisierung von Breitensuche mit Random Delay Technik
- SSSP für gewichtete Graphen: O(n) Runden Bellman-Ford Algorithmus
- APSP-Approximation für gewichtete Graphen: $O(nW \log n)$ Runden Parallelisierung von gewichteter Breitensuche mit Random Delay Technik

Quellen

Literatur:

- Danupon Nanongkai. "Distributed Approximation Algorithms for Weighted Shortest Paths". In: Proc. of the Symposium on Theory of Computing (STOC). 2014, S. 565–573
- Frank Thomson Leighton, Bruce M. Maggs, Satish Rao. "Packet Routing and Job-Shop Scheduling in O(Congestion + Dilation) Steps". *Combinatorica* 14(2): 167–186 (1994)