Diskrete Wahrscheinlichkeitstheorie

Abgabetermin: 28. Mai 2014, 10 Uhr in die DWT Briefkästen

Hausaufgabe 1 (5 Punkte)

Aus einer Box B_X bzw. B_Y werden zufällig Lose mit Werten $X \in \{-1,0,1\}$ bzw. $Y \in \{2,3,4\}$ gezogen. Die Werte 1 und 2 sollen die Wahrscheinlichkeit $\frac{1}{2}$ haben, alle übrigen Werte die Wahrscheinlichkeit $\frac{1}{4}$. X und Y seien die entsprechenden unabhängigen Zufallsvariablen. Es sei S = X + Y.

Seien S_i die *i*-te Durchführung bzw. Wiederholung der Ziehung S und Z der Mittelwert aus n Wiederholungen von S, d.h.

$$Z = \frac{1}{n} \sum_{i=1}^{n} S_i.$$

- 1. Berechnen Sie $\mathbb{E}[Z]$ und Var[Z].
- 2. Zeigen Sie für alle n > 27: $\Pr[|Z \mathbb{E}[S]| < 0, 5] \ge 0, 8$.

Hausaufgabe 2 (5 Punkte)

Die Unfallhäufigkeit auf Autobahnen hängt u. a. von den gefahrenen Geschwindigkeiten ab. Wir betrachten für $10^4=10000$ Autos 2 Geschwindigkeitsklassen s und l mit |s|=1000 und |l|=9000 Autos. Die Unfallwahrscheinlichkeit in einem bestimmten Streckenabschnitt sei für die Autos der s-Klasse $\frac{11}{1000}$ bzw. der l-Klasse $\frac{1}{1000}$.

Ein Unfall werde für jedes der Autos der s- bzw. l-Klasse mit einer Zufallsvariablen X_i bzw. Y_j mit $i \in [1000]$ bzw. $j \in [9000]$ angezeigt. Die Anzahl der Unfälle insgesamt werde angezeigt durch die Zufallsvariable U.

Wir nehmen sämtliche Unfälle als unabhängig an.

- 1. Berechnen Sie den Erwartungswert $\mathbb{E}[U]$ und die Varianz $\mathrm{Var}[U]$ als Dezimalzahl ggf. auf 2 Nachkommastellen genau.
 - Begründen Sie die Gültigkeit Ihrer Berechnungsschritte!
- 2. Geben Sie mithilfe der Chebyshevschen Ungleichung eine möglichst kleine obere Schranke c für die Wahrscheinlichkeit $\Pr[U \geq 25]$ an, so dass also $\Pr[U \geq 25] \leq c$ gilt.
- 3. Geben Sie nun mithilfe der Abschätzung nach Chernoff eine obere Schranke c für $\Pr[U \geq 25]$ an. Stellen Sie c als arithmetischen Ausdruck inklusive Exponentialfunktion, aber ohne Variablen dar.

Hausaufgabe 3 (5 Punkte)

Zwei Spieler A und B werfen je 6 Mal eine faire Münze mit "Kopf" oder "Zahl". Wie groß ist die Wahrscheinlichkeit, dass Spieler A mindestens so oft "Kopf" wirft wie Spieler B?

Hausaufgabe 4 (5 Punkte)

Seien X, Y unabhängige, Poisson-verteilte Zufallsvariable X, Y \sim Po(λ) mit $\lambda > 0$.

- 1. Zeigen Sie, dass $(X+X) \sim \text{Po}(\lambda+\lambda)$ nicht gilt, wohl aber $(X+Y) \sim \text{Po}(\lambda+\lambda)$. Berechnen Sie zunächst die Dichtefunktion von Z=X+X.
- 2. Berechnen Sie $\mathbb{E}[2X+5]$.
- 3. Sei $n \in \mathbb{N}$. Berechnen Sie $\mathbb{E}[(X-n+1)^{\overline{n}}]$ für die steigende Potenz $(X-n+1)^{\overline{n}}$.

Hinweis: Die Vorbereitungsaufgaben bereiten die Tutoraufgaben vor und werden in der Zentralübung unterstützt. Tutoraufgaben werden in den Übungsgruppen bearbeitet. Hausaufgaben sollen selbstständig bearbeitet und zur Korrektur und Bewertung abgegeben werden.

Vorbereitung 1

Bestimmen Sie die erzeugende Funktion einer negativ binomialverteilten Zufallsvariablen.

Vorbereitung 2

Wir betrachten eine binomialverteilte Zufallsvariable X mit $W_X = \{0, 1, 2\}$ und der Dichtefunktion $f_X(i) = \binom{2}{i} (\frac{1}{3})^i (\frac{2}{3})^{2-i}$ für $i \in W_X$. Außerdem sei eine Zufallsvariable Y gegeben mit $W_Y = \{1, 2\}$ und $\Pr[Y = 1] = \frac{1}{2}$.

- 1. Bestimmen Sie die erzeugenden Funktionen $G_X(z)$ und $G_Y(z)$ für X bzw. Y!
- 2. Nun betrachten wir das folgende Zufallsexperiment: Zunächst wird Y getestet. Der Wert von Y bestimmt, ob die Zufallsvariable X nur ein erstes Mal getestet wird mit Wert X_1 , oder ob X auch ein zweites Mal getestet wird mit Wert X_2 beim zweiten Test. Je nachdem bestimmen wir dann $Z = X_1$ oder $Z = X_1 + X_2$.

Bestimmen Sie den Erwartungswert der Zufallsvariablen Z!

3. Bestimmen Sie die Dichtefunktion f_Z von Z!

Vorbereitung 3

Es sei Ω eine Ergebnismenge. Wir nehmen an, dass wir für eine Menge $\mathcal{E} \subseteq \mathcal{P}(\Omega)$ von Ereignissen Wahrscheinlichkeiten definieren wollen. Wir suchen dazu eine kleinste σ -Algebra über Ω , die \mathcal{E} enthält.

Sei

$$\sigma_{\Omega}(\mathcal{E}) := \bigcap \{ \mathcal{A} \, ; \, \mathcal{A} \text{ ist } \sigma\text{-Algebra "uber } \Omega \text{ mit } \mathcal{E} \subseteq \mathcal{A} \} \, .$$

1. Zeigen Sie, dass $\sigma_{\Omega}(\mathcal{E})$ eine σ -Algebra über Ω mit $\mathcal{E} \subseteq \sigma_{\Omega}(\mathcal{E})$ ist und dass für jede σ -Algebra \mathcal{A} über Ω mit $\mathcal{E} \subseteq \mathcal{A}$ die Relation $\sigma_{\Omega}(\mathcal{E}) \subseteq \mathcal{A}$ gilt.

2. Die Borelschen Mengen $\mathcal{B}(\mathbb{R}^2)$ über \mathbb{R}^2 sind definiert durch

$$\mathcal{B}(\mathbb{R}^2) := \sigma_{\mathbb{R}^2}(\mathcal{E}) \quad \text{mit} \quad \mathcal{E} = \{ [a, b] \times [c, d] ; a, b, c, d \in \mathbb{R} \}.$$

Zeigen Sie, dass die Menge $K = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ in $\mathcal{B}(\mathbb{R}^2)$ enthalten ist.

Tutoraufgabe 1

Sei X eine Zufallsvariable mit $X \sim \text{Bin}(200, \frac{1}{100})$.

- 1. Berechnen Sie $\Pr[X > 8]$ approximativ mit der Poisson-Verteilung. (Taschenrechner benutzen!)
- 2. Bestimmen Sie mit der Markov-Ungleichung ein möglichst kleines k, so dass $\Pr[X > k] \le 10^{-4}$.
- 3. Bestimmen Sie mit der Chernoff-Ungleichung ein möglichst kleines k, so dass $\Pr[X > k] \le 10^{-4}$.

Tutoraufgabe 2

Wir nehmen eine zufällige Auswahl P' eines Parameters $n \in \mathbb{N}$ mit Wahrscheinlichkeit $\Pr[n] = \frac{2}{3}(\frac{1}{3})^{n-1}$ an. Dann definieren wir einen Prozess P'' dadurch, dass zunächst P' aufgerufen wird und der ausgegebene Wert als Eingabeparameter n für den Aufruf von P_n verwendet wird. Dabei wählt P_n n-mal einen Buchstaben aus der Menge $\{a, b, c\}$ aus, und zwar ein a bzw. b bzw. c mit Wahrscheinlichkeit $\frac{1}{2}$ bzw. $\frac{1}{3}$ bzw. $\frac{1}{6}$.

Berechnen Sie die Wahrscheinlichkeit, dass der Prozess P'' ein Wort w ausgibt, das genau ein a enthält. Geben Sie insbesondere den zugrundeliegenden Wahrscheinlichkeitsraum an.

Tutoraufgabe 3

Gegeben sei eine Zufallsvariable X mit $W_X = \{0, 1, 2\}$. Für die Dichtefunktion f_X von X gelte $f_X(1) = \frac{1}{4}$ und $f_X(2) = \frac{1}{5}$. X_i sei die i-te Wiederholung von X. Wir bilden $Z = \sum_{i=1}^{N} X_i$ in Abhängigkeit des Wertes einer Poisson-verteilten Zufallsvariablen N, die den Wert 0 mit Wahrscheinlichkeit e^{-2} annehme.

- 1. Geben Sie die wahrscheinlichkeitserzeugende Funktion $G_X(s)$ der Zufallsvariablen X an.
- 2. Berechnen Sie den Erwartungswert von Z.
- 3. Berechnen Sie die Wahrscheinlichkeit, mit der Z den Wert 0 annimmt. Hinweis: Man beachte, dass Z auch dann den Wert 0 annimmt, wenn N=0 gilt.