Class07

Siyu Xie(A16438448)

Table of contents

clustering	
Principal Component Analysis (PCA) Data import	10
stacked barplot	1(

Today we will start our multi-part exploration of some key machine learning mehtods. We will begin with clustering - finding groupings in data, and then dimensionality reduction.

clustering

let's start with "k-means" clustering. The main function in base R for this kmeans().

```
# make up some data
hist( rnorm(10000, mean=3))
```

Histogram of rnorm(10000, mean = 3)


```
tmp <- c(rnorm(30,-3),rnorm(30,+3))
x<- cbind(x=tmp, y=rev(tmp))
plot(x)</pre>
```


now lets try out kmeans()

```
km <- kmeans(x,centers=2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

Clustering vector:

Within cluster sum of squares by cluster:

```
[1] 68.68854 68.68854
(between_SS / total_SS = 89.4 %)
```

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
```

[6] "betweenss" "size" "iter" "ifault"

attributes(km)

\$names

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

\$class

[1] "kmeans"

Q. How many points in each cluster?

km\$size

[1] 30 30

Q. What component of your result object details cluster assignment/membership?

km\$cluster

Q. what are centers/mean values of each cluster?

km\$centers

```
x y
1 3.161081 -3.067238
2 -3.067238 3.161081
```

Q. Make a plot of the data showing your clustering results (groupings/clusters and cluster centers).

```
plot(x, col=c("turquoise", "pink"))
```


Warning in c(1:5) + c(100, 1): longer object length is not a multiple of shorter object length

[1] 101 3 103 5 105

plot(x, col=c(1,2,3))

plot(x, col=km\$cluster)
points(km\$centers, col="cyan", pch=15, cex=3)

Q. Run kmeans() again and cluster in 4 groups and plot the results.

```
km4 <- kmeans(x, centers = 4 )
plot(x, col=km4$cluster)</pre>
```


Hierarchical clustering

This form of clustering aims to reveal the structure in your data by progressively grouping points into a ever smaller number of clusters.

The main function in base R for this called hclust(). This function does not take our input data directly, but wants a "distance matrix" that details how (dis)similar all our input points are to each other.

```
hc <- hclust(dist(x))
hc

Call:
hclust(d = dist(x))</pre>
```

Cluster method : complete

Distance : euclidean

Number of objects: 60

The print out above is not very useful (unlike that from kmeans) but there's a useful plot() method.

```
plot(hc)
abline(h=10, col="red")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

To get my main result (my cluster membership vector) I need to "cut" my tree using the function cutree()

```
grps <- cutree(hc, h=10)
grps</pre>
```

```
plot(x, col=grps)
```


plot(x, col=cutree(hc, h=6))

Principal Component Analysis (PCA)

The goal of PCA is to reduce the dimensionality of a dataset down to some smaller subset of new variables (called PCs) that are a useful bases for further analysis, like visualization, clustering, etc.

Data import

Read data about crazy eating trends in the UK and N. Ireland

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names=1)
x</pre>
```

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139
Fresh_potatoes	720	874	566	1033
Fresh_Veg	253	265	171	143
Other_Veg	488	570	418	355
Processed_potatoes	198	203	220	187
Processed_Veg	360	365	337	334
Fresh_fruit	1102	1137	957	674
Cereals	1472	1582	1462	1494
Beverages	57	73	53	47
Soft_drinks	1374	1256	1572	1506
Alcoholic_drinks	375	475	458	135
Confectionery	54	64	62	41

stacked barplot

```
barplot(as.matrix(x),beside=T, col=rainbow(nrow(x)))
```


The so-called "pairs" plot can be useful for small datasets:

```
rainbow(nrow(x))

[1] "#FF0000" "#FF5A00" "#FFB400" "#F0FF00" "#96FF00" "#3CFF00" "#00FF1E"
[8] "#00FF78" "#00FFD2" "#00D2FF" "#0078FF" "#001EFF" "#3C00FF" "#9600FF"
[15] "#F000FF" "#FF00B4" "#FF005A"

#pairs(x, col=rainbow(nrow(x)), )

#rainbow(nrow(x))
pairs(x, col=rainbow(nrow(x)), pch=16)
```


So the paris plot is useful for small datasets but it can be lots of work to interpret and gets intractable for larger datasets.

So PCA to the rescue..

The main function to do PCA in base R is called <code>prcomp()</code>. This function wants the transpose of our data in this case.

t(x)

	Cheese	Carcass	meat	Other_	meat	Fish	Fats_and	oils	Sugars
England	105		245		685	147		193	156
Wales	103		227		803	160		235	175
Scotland	103		242		750	122		184	147
${\tt N.Ireland}$	66		267		586	93		209	139
	Fresh_p	otatoes	Fresl	h_Veg	Other	_Veg	Processed	d_potat	toes
England		720)	253		488			198
Wales		874	ŀ	265		570			203
Scotland		566	3	171		418			220
N.Ireland		1033	3	143		355			187
	Process	sed_Veg	Fresh	_fruit	Cere	als	Beverages	Soft_d	drinks
England		360		1102	2 :	1472	57		1374
Wales		365		1137	7	1582	73		1256

```
Scotland
                      337
                                    957
                                            1462
                                                         53
                                                                     1572
N.Ireland
                      334
                                    674
                                            1494
                                                         47
                                                                     1506
          Alcoholic_drinks Confectionery
England
                         375
                                          54
Wales
                                          64
                         475
Scotland
                         458
                                          62
N.Ireland
                         135
                                          41
```

```
#prcomp()

pca <- prcomp(t(x))
summary (pca)</pre>
```

Importance of components:

PC1 PC2 PC3 PC4
Standard deviation 324.1502 212.7478 73.87622 2.921e-14
Proportion of Variance 0.6744 0.2905 0.03503 0.000e+00
Cumulative Proportion 0.6744 0.9650 1.00000 1.000e+00

```
attributes(pca)
```

\$names

[1] "sdev" "rotation" "center" "scale" "x"

\$class

[1] "prcomp"

pca\$x

	PC1	PC2	PC3	PC4
England	-144.99315	-2.532999	105.768945	-9.152022e-15
Wales	-240.52915	-224.646925	-56.475555	5.560040e-13
Scotland	-91.86934	286.081786	-44.415495	-6.638419e-13
N.Ireland	477.39164	-58.901862	-4.877895	1.329771e-13

A major PCA result viz is called a "PCA plot" (aka. a score plot, biplot, PC1 vs PC2 plot, ordination plot)

Another important output from PCA is called the "loadings" vector or the "rotation" component -this tells us how much the original variables (the foods in this case) contributes to the new PCs.

pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.409382587
Carcass_meat	0.047927628	0.013915823	0.06367111	0.729481922
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.331001134
Fish	-0.084414983	-0.050754947	0.03906481	0.022375878
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.034512161
Sugars	-0.037620983	-0.043021699	-0.03605745	0.024943337
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	0.021396007
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	0.001606882

```
Other_Veg
                -0.243593729 -0.225450923 -0.05332841 0.031153231
Processed_potatoes
               Processed_Veg
                -0.036488269 -0.045451802 0.05289191 0.021250980
Fresh_fruit
                -0.632640898 -0.177740743 0.40012865 0.227657348
Cereals
                -0.047702858 -0.212599678 -0.35884921 0.100043319
Beverages
                -0.026187756 -0.030560542 -0.04135860 -0.018382072
Soft_drinks
                0.232244140 0.555124311 -0.16942648 0.222319484
Alcoholic_drinks
                Confectionery
                -0.029650201 0.005949921 -0.05232164 0.001890737
```

PCA looks to be a super useful method for gaining some insight into high dimensional data that is difficult to examine in other ways.