Задача А. Флойд

 Имя входного файла:
 floyd.in

 Имя выходного файла:
 floyd.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Полный ориентированный взвешенный граф задан матрицей смежности. Постройте матрицу кратчайших путей между его вершинами.

Гарантируется, что в графе нет циклов отрицательного веса.

Формат входных данных

В первой строке вводится единственное число N ($1 \le N \le 100$) — количество вершин графа. В следующих N строках по N чисел задается матрица смежности графа (j-ое число в i-ой строке — вес ребра из вершины i в вершину j). Все числа по модулю не превышают 100. На главной диагонали матрицы — всегда нули.

Формат выходных данных

Выведите N строк по N чисел — матрицу расстояний между парами вершин, где j-ое число в i-ой строке равно весу кратчайшего пути из вершины i в j.

Примеры

•	•	
	floyd.in	floyd.out
	4	0 5 7 13
	0 5 9 100	12 0 2 8
	100 0 2 8	11 16 0 7
	100 100 0 7	4 9 11 0
	4 100 100 0	

Задача В. Расстояние между вершинами

 Имя входного файла:
 distance.in

 Имя выходного файла:
 distance.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Дан неориентированный взвешенный граф.

Найти вес минимального пути между двумя вершинами.

Формат входных данных

Первая строка входного файла содержит натуральные числа N, M, вторая строка числа S и $F(N\leqslant 5\,000,\, M\leqslant 100\,000,\, 1\leqslant S,\, F\leqslant N,\, S\neq F)$ — количество вершин и ребер графа а также номера вершин, длину пути между которыми требуется найти. Следующие M строк по три натуральных числа $b_i,\, e_i$ и w_i — номера концов i-ого ребра и его вес соответственно $(1\leqslant b_i,e_i\leqslant n,\, 0\leqslant w_i\leqslant 100\,000)$.

Формат выходных данных

Первая строка должна содержать одно натуральное число — вес минимального пути

между вершинами S и F. Во второй строке через пробел выведите вершины на кратчайшем пути из S в F в порядке обхода. Если путь из S в F не существует, выведите -1.

Примеры

distance.in	distance.out
4 4	3
1 3	1 2 3
1 2 1	
2 3 2	
3 4 5	
4 1 4	

Задача С. Кратчайшие пути

 Имя входного файла:
 path. in

 Имя выходного файла:
 path. out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Вам дан взвешенный ориентированный граф и вершина s в нём. Для каждой вершины графа u выведите длину кратчайшего пути от вершины s до вершины u.

Формат входных данных

Первая строка входного файла содержит три целых числа n, m, s — количество вершин и ребёр в графе и номер начальной вершины соответственно ($2 \le n \le 2000, 1 \le m \le 5000$).

Следующие m строчек описывают рёбра графа. Каждое ребро задаётся тремя числами — начальной вершиной, конечной вершиной и весом ребра соответственно. Вес ребра — целое число, не превосходящее 10^{15} по абсолютной величине. В графе могут быть кратные рёбра и петли.

Формат выходных данных

Выведите n строчек — для каждой вершины u выведите длину кратчайшего пути из s в u. Если не существует пути между s и u, выведите «*». Если не существует кратчайшего пути между s и u, выведите «-».

Примеры

path.in	path.out
6 7 1	0
1 2 10	10
2 3 5	-
1 3 100	-
3 5 7	-
5 4 10	*
4 3 -18	
6 1 -1	

ЛКШ.2014.Август.С.срр.День11 Берендеевы Поляны, Судиславль, 11 августа 2014

Задача D. Цикл отрицательного веса

 Имя входного файла:
 negcycle.in

 Имя выходного файла:
 negcycle.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Дан ориентированный граф. Определите, есть ли в нем цикл отрицательного веса, и если да, то выведите его.

Формат входных данных

Во входном файле в первой строке число N ($1 \le N \le 100$) — количество вершин графа. В следующих N строках находится по N чисел — матрица смежности графа. Все веса ребер не превышают по модулю $10\,000$. Если ребра нет, то соответствующее число равно $100\,000$.

Формат выходных данных

В первой строке выходного файла выведите «YES», если цикл существует или «NO» в противном случае. При его наличии выведите во второй строке количество вершин в искомом цикле и в третьей строке — вершинывходящие в этот цикл в порядке обхода.

Примеры

negcycle.in	negcycle.out
2	YES
0 -1	2
-1 0	2 1