$$J_{j} = \begin{pmatrix} \lambda_{j} & 1 & & 0 \\ & \lambda_{j} & 1 & \\ & & \ddots & \ddots \\ & & & \lambda_{j} & 1 \\ 0 & & & \lambda_{j} \end{pmatrix} \in \mathbb{C}^{s_{j} \times s_{j}}.$$

Álgebra Linear II

XLIX Escola de Verão en Matemática da UnB

Aulas do professor Alex Carrazedo Dantas*

Última modificação: 9 de Janeiro de 2021 às 22:24:18.

https://carlosal1015.github.io/Algebra-linear-II/main.pdf

Sumário

Referências bibliográficas

	-			
		O	r	
		u		a

- 1. Corpos e Sistemas Lineares (06/01/2021)
- **2. Sistemas lineares** (07/01/2021)
- **3. Matrizes** (08/01/2021)
- **4. Aula de reposição** (09/01/2021)

II. Prática

- 5. Exercícios de Fixação (08/01/2021)
- III. Tutorial
- 6. LinearAlgebra from Julia

Índice

5

9

11 14

16

17

21

22

23

Introdução ao curso (04/01/2021)

O professor Alex Carrazedo Dantas é especialista no *Teoria dos grupos*. Em um curso presencial você pode discutir mais, enquanto em um curso remoto, cada aula tem um pdf Moodle MAT e uma gravação da sessão. Se você tiver dúvidas sobre o moodle, peça ajuda a Carol Lafetá¹.

Ementa

- 1. Sistemas lineares e matrizes.
- 2. Espaços vetoriais e transformações lineares.
- 3. Polinômios e determinantes

- 4. Decomposições primárias e formas racionais e de Jordan.
- 5. Produto interno e teorema espectral.
- 6. Formas multilineares.

Critério de avaliação

Menção em disciplina	Equivalência numérica			
Superior (SS)	9 - 10			
Média Superior (MS)	7 - 8.9			
Média (MM)	5 - 6.9			

Serão aplicadas 2 provas, de acordo com o cronograma abaixo, as quais serão atribuídas as notas x e y.

$$MF = \frac{x + 3y}{4}.$$

O aluno deverá obter média final igual ou superior a 5 pontos e 75% de frequência para ser aprovado.

Tutores

• Sara Raissa Silva Rodrigues.

• Geraldo Herbert Beltrão de Souza.

• Mattheus Pereira da Silva Aguiar.

Referências bibliográficas

- [1] Flávio Ulhoa Coelho e Mary Lilian Lourenço. *Curso de Álgebra Linear, Um Edusp.* EDUSP, 2005. url: https://www.edusp.com.br/livros/curso-de-algebra-linear.
- P. R. Halmos. *Finite-Dimensional Vector Spaces*. Undergraduate Texts in Mathematics. New York: Springer-Verlag, 1958. ISBN: 978-0-387-90093-3. DOI: 10. 1007/978-1-4612-6387-6. URL: https://www.springer.com/gp/book/9780387900933.
- [3] Kenneth Hoffman e Ray Kunze. *Linear algebra*. Englewood Cliffs, New Jersey: Prentice Hall, Inc.
- [4] Serge Lang. *Linear Algebra*. 3ª ed. Undergraduate Texts in Mathematics. New York: Springer-Verlag, 1987. ISBN: 978-0-387-96412-6. DOI: 10.1007/978-1-4757-1949-9. URL: https://www.springer.com/gp/book/9780387964126.
- Ph D. Seymour Lipschutz e Ph D. Marc Lars Lipson. *Schaum's Outline of Linear Algebra, Sixth Edition*. McGraw-Hill Education, 2018. ISBN: 978-1-260-01144-9. URL: https://www.accessengineeringlibrary.com/content/book/9781260011449.

Parte I.

Teoria

1. Corpos e Sistemas Lineares (06/01/2021)

Definição 1.1 (Corpo). Um *corpo* é um conjunto não vazio F munido de duas operações: adição mais e multiplicação.

$$+: \mathbb{F} \times \mathbb{F} \longrightarrow \mathbb{F} \qquad \cdot: \mathbb{F} \times \mathbb{F} \longrightarrow \mathbb{F}$$

 $(x,y) \longmapsto x+y \qquad (x,y) \longmapsto x \cdot y$

e tais que en $(\mathbb{F}, +)$

- A1. (Asociatividade na adição) (x + y) + z = x + (y + z), $\forall x, y, z \in \mathbb{F}$;
- A2. (Existênza de neutro aditivo) $\exists 0 \in \mathbb{F}$ tal que x + 0 = 0 + x = x, $\forall x \in \mathbb{F}$;
- A3. (Existênza de elemento oposto o inverso aditivo) Dado $x \in \mathbb{F}$, existe $-x \in \mathbb{F}$ tal que x + (-x) = (-x) + x = 0.
- A4. (Conmutatividade na adição) x + y = y + x, $\forall x, y \in \mathbb{F}$;
- A5. (Associatividade na multiplicação) $(x \cdot y) z = x \cdot (y \cdot z)$, $\forall x, y, z \in \mathbb{F}$;

$$e(\mathbb{F}\setminus\{0\},\cdot)$$

- M1. (Existênza do elemento neutro na multiplicação) $\exists 1 \in \mathbb{F}$ tal que $x \cdot 1 = 1 \cdot x = x$, $\forall x \in \mathbb{F}$;
- M2. (Existênza inverso multiplicativo) Dado $x \in \mathbb{F} \setminus \{0\}$, existe $x^{-1} \in \mathbb{F}$ tal que $x \cdot x^{-1} = x^{-1} \cdot x = 1$;
- M3. (Conmutatividade na multiplicação) $x \cdot y = y \cdot x$, $\forall x, y \in \mathbb{F}$.
- M4. (Distributiva) $x \cdot (y+z) = xy + xz$, $\forall x, y, z \in \mathbb{F}$.

Proposição 1.1. $x \cdot 0 = 0, \forall x \in \mathbb{F}.$

Demonstração. $x \cdot 0 \stackrel{A2}{=} x \cdot (0+0) \stackrel{D}{=} x \cdot 0 + x \cdot 0$. Assim

$$x \cdot 0 + \underbrace{x \cdot 0 + (-x \cdot 0)}_{=0} = \underbrace{x \cdot 0 + (-x \cdot 0)}_{=0}$$
$$x \cdot 0 + 0 \stackrel{A3}{=} 0$$
$$x \cdot 0 \stackrel{A2}{=} 0.$$

Exemplo 1.1.

1. $(\mathbb{Z}, +, \cdot)$ não é um corpo. De fato não existe o inverso multiplicativo de 2 em \mathbb{Z} , ou seja, a equação $2 \cdot x = 1$ não se resolue em \mathbb{Z} .

2. $(\mathbb{Q}, +, \cdot)$ é um corpo, onde $\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \right\}$ e $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$ e $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.

3. $(\mathbb{R}, +, \cdot)$ é um corpo (conjunto dos números reais);

4. $(\mathbb{C}, +, \cdot)$ é um corpo, onde $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}, \text{ e } i^2 = 1\},$

+: (a+bi) + (c+di) = (a+c) + (b+d)i.

 $\therefore (a+bi)\cdot (c+di) = (ac-bd) + (ad+bc)i.$

$$(a + bi) (c + di) = ac + adi + bci + bdi^{2} =$$

= $ac + (-1)bd + (ad + bc)i =$
= $(ac - bd) + (ad + bc)i$

 \mathbb{C} é chamado del conjunto nos números complexos. Tome $a+bi \in \mathbb{C} \setminus \{0\}$ (0=0+0i). Assim

$$(a + bi) (a - bi) = a^2 + b^2 + (ab - ba) i =$$

= $a^2 + b^2 \neq 0$

$$(a + bi) (a - bi) (a^2 + b^2)^{-1} = 1$$

Logo

$$(a+bi)^{-1} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$$

5. $(\mathbb{Z}/p\mathbb{Z},+,\cdot)$ é um corpo, onde $\mathbb{Z}/p\mathbb{Z}=\{\overline{a}\mid \overline{a}\in\mathbb{Z}\}.$

$$\mathbb{Z}/p\mathbb{Z} = \{\overline{a}/a \in \mathbb{Z}\}\,\overline{a} = \{a + pu/u \in \mathbb{Z}\} \neq 0 \le a \le p - 1$$

Defina:

$$F = \left\{ \overline{a} + \overline{b}i \mid \overline{a}, \overline{b} \in \mathbb{Z}/3\mathbb{Z} \text{ e } i^2 = \overline{2} \right\}. + : \left(\overline{a} + \overline{b}i \right) + \left(\overline{c} + \overline{d}i \right) = \left(\overline{a} + \overline{c} \right) + \left(\overline{b} + \overline{d} \right) i. : \left(\overline{a} + \overline{b}i \right) \left(\overline{c} + \overline{d}i \right) = \left(\overline{a} \cdot \overline{c} + \overline{2}\overline{b}d \right) + \left(\overline{a}\overline{d} + \overline{b}\overline{c} \right) i.$$

$$\begin{cases} 2x + 3y = 1 \\ x + 4y = 2. \\ + \begin{cases} 2x + 3y = 1 \\ -2x - 8y = -4 \end{cases} \Rightarrow \begin{cases} 2x + 3y = 1 \\ -5y = -3 \Rightarrow y = \frac{3}{5} \end{cases} \\ 2x + 3 \cdot \frac{3}{5} = 1 \\ 2x + \frac{9}{5} = 1 \Rightarrow 2x = -\frac{4}{5} \Rightarrow x = -\frac{2}{5} \end{cases}$$

$$\begin{cases} \overline{2}x + \overline{2}y = \overline{1} \\ \overline{2}x + y = \overline{0} \end{cases}$$

$$\begin{cases} \overline{2}x + \overline{2}y = \overline{1} \\ r_y = \overline{I} \end{cases}$$

$$\overline{2}x + \overline{2} \cdot I = 1 \Rightarrow 2x = \overline{1} - \overline{2}$$

$$\overline{2}x = -\overline{1}$$

$$\overline{2}x = \overline{2}$$

$$x = \overline{1}$$

2. Sistemas lineares (07/01/2021)

Definição 2.1 (Sistema linear). Um corpo é.

efinição 2.1 (Sistema linear). Um corpo é.
$$\begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = y_2 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = y_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = y_m \end{pmatrix}$$

$$c_1 \left(a_nx_2 + \dots + a_{1n}x_n \right) + \dots + c_m \left(a_mx_2 + \dots + a_{mn}x_n \right) = c_1y_2 + \dots + c_my_m$$

$$\left(c_2a_{11} + \dots + c_ma_{m1} \right) x_1 + \dots + \left(c_1a_{1n} + \dots + c_ma_{wn} \right) x_n = c_1y_2 + \dots + c_my_m$$

$$\left\{ \begin{aligned} 2x + 3y - z + w &= 5 \\ x - y + 2z - 2w &= 1 \\ 2x + y + z + w &= 3 \end{aligned} \right.$$

$$\left\{ \begin{aligned} x - y + 2z - 2w &= 1 \\ 2x + 3y - z + w &= 5 \\ 2x + y + z + w &= 3 \end{aligned} \right.$$

$$\left\{ \begin{aligned} x - y + 2z - 2w &= 1 \\ 5y - 5z + 5w &= 3 \\ 3y - 3z + 5w &= 1 \end{aligned} \right.$$

$$\left\{ \begin{aligned} x - y + 2z - 2w &= 1 \\ 5y - 5z + 5w &= 3 \\ 3y - 3z + 5w &= 1 \end{aligned} \right.$$

$$\left\{ \begin{aligned} x - y + 2z - 2w &= 1 \\ y - z + w &= 3/5 \\ y - z + 5/3w &= 1/3 \end{aligned} \right.$$

$$\left\{ \begin{aligned} x + z - w &= 8/5 \\ y - z + \omega &= 3/5 \end{aligned} \right.$$

$$\left\{ \begin{aligned} x - y + 2z - 2w &= 1 \\ 5y - 5z + 5w &= 3 \\ 3y - 3z + 5w &= 1 \end{aligned} \right.$$

$$\left\{ \begin{aligned} x - y + 2z - 2w &= 1 \\ y - z + w &= 3/5 \\ y - z + \omega &= 3/5 \end{aligned} \right.$$

$$\left\{ \begin{aligned} x - y + 2z - 2w &= 1 \\ y - z + w &= 3/5 \\ y - z + \omega &= 3/5 \end{aligned} \right.$$

$$\left\{ \begin{aligned} x - y + 2z - 2w &= 1 \\ 3z - 3 - 5 - \frac{5}{10} &= -\frac{4}{10} \end{aligned} \right.$$

$$\left\{ \begin{aligned} x - y + 2z - 2w &= 1 \\ - z - \frac{1}{3} - \frac{3}{10} - \frac{3}{10}$$

$$\begin{cases} x+y=2 \\ x-y=0 \end{cases} \begin{cases} x+2y=5 \\ x-y=-1 \end{cases}$$

$$f: \{1, \ldots, m\} \times \{1, \ldots, n\} \to F = f(i, j) = a_{ij}.$$

$$\begin{pmatrix} f(1,1) & f(1,2) & \cdots & f(1,n) \\ f(2,1) & f(2,2) & \cdots & f(2,n) \\ \vdots & & \ddots & \vdots \\ f(x,1) & f(w,2) & \cdots & f(w,n) \end{pmatrix} \qquad \begin{pmatrix} a_n & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{m2} & \cdots & a_{wn} \end{pmatrix}$$

3. Matrizes (08/01/2021)

Podemos denotar uma matriz A sobre um corpo $\mathbb F$ de ordem $m \times n$ por $A = (a_{ij})_{m \times n}$. Sejam $A = (a_{ij})_{m \times n}$ e $B = (b_{jl})_{n \times p}$ duas matrizes sobre um corpo $\mathbb F$. Definimos o producto de A por B como a matriz $C = (c_{il})_{m \times p}$ dada por

$$c_{il} = \sum_{j=1}^{n} a_{ij}b_{jl} = a_{i1}b_{il} + \dots + a_{in}b_{nl}$$

Ilustração

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & \cdots & b_{1p} \\ \vdots & \vdots & \vdots \\ b_{n1} & \cdots & b_{np} \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & c_{1p} \\ \vdots & \vdots & \vdots \\ c_{m1} & \cdots & c_{mp} \end{pmatrix}.$$

Exemplo 3.1. Temos que

$$\begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}_{2 \times 2} \begin{pmatrix} 1 & 0 & 4 \\ 3 & 2 & 5 \end{pmatrix}_{2 \times 3} = \begin{pmatrix} 7 & 4 & 14 \\ -1 & -2 & 3 \end{pmatrix}_{2 \times 3}.$$

Proposição 3.1. Sejam matrices $A=(a_{ij})_{m\times n}$, $B=(a_{jl})_{n\times p}$ e $C=(a_{lk})_{p\times q}$ matrizes sobre um corpo \mathbb{F} . Então (AB) C=A (BC).

Demonstração. Veja que (AB) $C = (\alpha_{ik})_{m \times q'}$ $AB = (d_{il})_{m \times p}$ onde

$$d_{il} = \sum_{l=1}^{n} a_{ij} b_{jl}$$

$$\alpha_{ik} = \sum_{l=1}^{p} d_{il}c_{lk} = \sum_{l=1}^{p} \left(\sum_{j=1}^{n} a_{ij}b_{jl}\right)c_{lk} =$$

$$= \sum_{l=1}^{p} \left(\sum_{j=1}^{n} a_{ij}b_{jl}c_{lk}\right) =$$

$$= \sum_{j=1}^{n} a_{ij} \left(\sum_{l=1}^{p} b_{jl}c_{lk}\right) = \beta_{ik}$$

 $\operatorname{com} A(BC) = (\beta_{ik})_{m \times q}$

Chamaremos a matriz quadrada $I_m = (\delta_{ij})_{m \times m}$ definida por

$$\delta_{ij} = \begin{cases} 1 & , \text{se } i = j, \\ 0 & , \text{se } i \neq j, \end{cases}$$

de matriz identidade de ordem $m \times m$.

Note que se $A=(a_{jl})_{m\times n}$, então $I_mA=A$, e se $B=(b_{li})_{n\times m}$, então $BI_m=B$. $I_mA=(c_{il})_{m\times m}$ é tal que $c_{il}=\sum_{j=1}^m \delta_{ij}a_{jl}=a_{il}$ con $1\leq i\leq m$, e $I_mA=A$.

Exemplo 3.2. Se m=3, então

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dizemos que uma matriz quadrada $A = (a_{ij})_{m \times m}$ tem inversa se existe uma matriz $B = (b_{ij})_{m \times m}$ tal que $AB = BA = I_m$. Denotaremos a matriz B por A^{-1} .

Definição 3.1. Seja $c \in \mathbb{F} \setminus \{0\}$. Uma matriz quadrada de ordem $m \times m$ E é dita elementar se E é de uma das formas

1. $E_1 = (e_{ij})_{m \times m'}$, onde

$$e_{ij} = \begin{cases} \delta_{ij}, & \text{se } i \neq k \\ \delta_{ij}, & \text{se } i = k \end{cases}$$

$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

con k um inteiro fixo entre 1 e m;

2. $E_2 = (e_{ij})_{m \times m}$, onde

$$e_{ij} = \begin{cases} \delta_{ij}, & \text{se } i \neq l \text{ e } i \neq k \\ \delta_{lj}, & \text{se } i = k \\ \delta_{kj}, & \text{se } i = l \end{cases}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

con k < l inteiros fixos entre 1 e m;

3. $E_3 = (e_{ij})_{m \times m'}$ onde

$$e_{ij} = \begin{cases} \delta_{ij}, & i \neq k \\ \delta_{kj} + c \cdot \delta_{lj}, & i = k \end{cases}$$

$$\begin{pmatrix} m = 3, k = 2, l = 3 \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$$

Exemplo 3.3. Calcule

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & -1 \\ 2 & 2 & 1 & 1 \\ 1 & 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & -14 & 4 & -1 & 51 & 1 & -1 & 2 \end{pmatrix}$$

Dada uma matriz $A = (a_{ij})_{m \times m}$ o efeito de multiplicar uma matriz elementar E por A pode ser colocado como:

- 1. E_1A : multiplica uma linha k de A por um escalar c;
- 2. E_2A : troca duas linhas l e k de posições (k < l);
- 3. E_3A : soma uma linha k com outra linha l multiplicada por um escalar $c \in \mathbb{F}$.

$$E_1 = (e_{ij})_{m \times m} \equiv A = (a_{j\ell})_{m \times n}$$

$$E_1 A = (c_{i\ell})_{m \times n} \text{ com}$$

4. Aula de reposição (09/01/2021)

Definição 4.1 (Matriz reducida por linhas). Uma matriz $A = (a_{ij})_{m \times n}$ sobre \mathbb{F} é deja reduzida por linhas se

- 1. O primeiro elemento não nulo de cada linha não nula é igual 1;
- 2. cada columna que possui o primeiro elemento não nulo de
- 3. uma linha não possui todos os outros elementos iguais a 0;

Sea além disso, esa matriz A satisfaz

- 1. Todas linhas nulas ocorrem abaixo das linhas não nulas;
- 2. Se $1, \ldots, r$ $(r \le m)$ são as linhas não nulas de A com os primeiros elementos não nunos ocurrendo nas colunas k_1, k_2, k_r , respectivamente, então $k_1 < k_2 < \cdots < k_r$, dizemos que A está na forma escada reduzida.

Exemplo 4.1. 1. As seguintes matrizes estão na forma reduzida:

a)
$$\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$
,.

b)
$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
,

c)
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
,

$$d) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

2. As seguientes matrizes estão na forma escada reducida

a)
$$\begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

b)
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$
.
c) $\begin{pmatrix} 1 & 2 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$.

Observação 4.1. .

Definição 4.2. .

Parte II.

Prática

5. Exercícios de Fixação (08/01/2021)

- 1. Seja F um corpo. Dizemos que um subconjunto K de F é um subcorpo de F se K munido das operações de adição e multiplicação de F é um corpo. Mostre que os seguintes subconjuntos são subcorpos de \mathbb{C} .
 - (a) $\mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3} \mid a, b \in \mathbb{Q}\};$

- (b) $\mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q} \text{ e } i^2 = -1\};$ (c) $\mathbb{Q}(i\sqrt{2}) = \{a + bi\sqrt{2} \mid a, b \in \mathbb{Q} \text{ e } i^2 = -1\}.$

Solução

- (a) .
- (b) .
- (c) .
- 2. Mostre que:
 - (a) Todo subcorpo de \mathbb{C} tem \mathbb{Q} como subcorpo;
 - (b) Todo corpo de característica 0 tem uma cópia de Q;
 - (c) Se \mathbb{K} contém propriamente \mathbb{R} e é um subcorpo de \mathbb{C} , então $\mathbb{K} = \mathbb{C}$.

Solução

- (a) .
- (b) .
- (c).
- 3. Considere o corpo finito com 5 elementos $\mathbb{Z}/5\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}.$
 - (a) Mostre que

$$\mathbb{F} = \left\{ a + bi \mid a, b \in \mathbb{Z}/5\mathbb{Z} \text{ e } i^2 = \overline{3} \right\}$$

munido das operações

$$\overline{+} \colon \mathbb{F} \times \mathbb{F} \longrightarrow \mathbb{F}$$

$$((a+bi), (c+di)) \longmapsto (a+c) + (b+d)i \quad ((a+bi), (c+di)) \longmapsto (ac+\overline{3}bd) + (ad+bc)i$$

é um corpo com 25 elementos;

(b) Mostre que $\mathbb{Z}/5\mathbb{Z}$ é um subcorpo de \mathbb{F} . Qual é a característica de F?

Solução

- (a) .
- (b) .
- 4. Determine o conjunto solução de cada sistema linear dado.

(a)
$$\begin{cases} x - 2y + z + w = 1 \\ 2x + y - z = 3 \\ 2x + y - 5z + w = 4 \end{cases}$$
 em \mathbb{R} ,

(b)
$$\begin{cases} x - \sqrt{3}y + z + w = 1 + \sqrt{3} \\ (2 + \sqrt{3}) x + y - z = 3 \\ 2x + y - (1 - \sqrt{3}) z + w = 4 \end{cases} \quad \text{em } \mathbb{Q} \left(\sqrt{3} \right),$$
(c)
$$\begin{cases} x - 2iy + 2z - w = 0 \\ (2 + i) x + z + w = 0 \\ 2ix + y - 5z + (1 + i) w = 0 \end{cases} \quad \text{em } \mathbb{C},$$

(c)
$$\begin{cases} x - 2iy + 2z - w = 0 \\ (2+i)x + z + w = 0 \\ 2ix + y - 5z + (1+i)w = 0 \end{cases}$$
 em \mathbb{C} ,

(d)
$$\begin{cases} x - \overline{2}y + \overline{2}z - w = \overline{0} \\ \overline{2}x + z + w = \overline{0} \\ \overline{2}x + y - \overline{3}z + w = \overline{0} \end{cases} \text{ em } \mathbb{Z}/5\mathbb{Z},$$

(e)
$$\begin{cases} x - \overline{2}iy + \overline{2}z - w = \overline{0} \\ (\overline{2} + i)x + z + w = \overline{0} \\ \overline{2}ix + y - \overline{3}z + (\overline{1} + i)w = \overline{0} \end{cases}$$
 em \mathbb{F} de (a) da Questão 3.

Solução

- (a) .
- (b) .
- (c).
- (d).
- (e) .

5. Mostre que se do	ois sistemas lineares 2	× 2 possuem o mesmo	o conjunto solução	, então eles são	equivalentes.	Determine,	se existir,	dois sistemas	lineares
2×3 com mesm	o conjunto solução ma	s não equivalentes.							

Solução

6. Considere o sistema linear sobre $\mathbb{Q}\begin{cases} x-2y+z+2w=1\\ x+y-z+w=2\\ x+7y-5z-w=3 \end{cases}$

Mostre que esse sistema não tem solução.

Solução

7. Determine todos $a, b, c, d \in \mathbb{R}$ tais que o sistema linear

$$\begin{bmatrix} 3 & -6 & 2 & 1 \\ -2 & 4 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 1 & -2 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

tem solução.

Solução

8. Encontre duas matrizes A e B de ordens iguais a 3×3 tais que AB é uma matriz nula mas BA não é.

Solução

9. Mostre que toda matriz elementar é inversível e calcule a inversa de cada tipo.

Solução

10. Determine a matriz inversa da matriz

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

Solução

11. Considere a matriz

$$A = \begin{bmatrix} \overline{1} & \overline{2} & \overline{3} & \overline{4} \\ \overline{0} & \overline{2} & \overline{3} & \overline{4} \\ \overline{0} & \overline{0} & \overline{3} & \overline{4} \\ \overline{0} & \overline{0} & \overline{0} & \overline{4} \end{bmatrix}$$

com entradas no corpo com cinco elementos $\mathbb{Z}/5\mathbb{Z}=\left\{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4}\right\}$. Calcule sua inversa.

Solução

12. Considere a matriz

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ -1 & 0 & 3 & 5 \\ 1 & -2 & 1 & 1 \end{bmatrix}$$

Encontre uma matriz na forma e uma matriz invertível P tal que R=PA.

Solução

Parte III.

Tutorial

6. LinearAlgebra from Julia

```
f(x) = x.^2 + \pi
const \otimes = kron
const \Sigma = sum \# Although `sum` may be just as good in the code.
\# Calculate \Sigma_{j=1}^5 j^2
\Sigma([j^2 for j \in 1:5])
```

Listing 6.1: Programa exercise3_1.c.

Índice

corpo, 6