corrigé exercice 19 (colle S7)

On se donne une matrice $M=(m_{i,j})\in M_n(\mathbb{R})$, avec, pour tout $j, \sum_{k=1}^n m_{i,j}=1$, et, pour tout $(i,j), 0 \leq m_{i,j} \leq 1$.

1. Montrer que 1 est valeur propre de M, puis montrer que toutes les valeurs propres complexes de M vérifient $|\lambda| \leq 1$

Pour montrer que 1 est valeur propre, il suffit de considérer $X = {}^{T}(1 \ 1 \ \dots \ 1)$.

Soit $X = (x_i)$ un vecteur propre associé à la valeur propre λ . On note i_0 tel que $|x_{i_0}| = \max |x_i|$. (On note que $X \neq 0$ donc $x_{i_0} \neq 0$.)

On considère la i_0 -ième ligne de MX:

$$\lambda x_{i_0} = \sum_{j=1}^n m_{i_0,j} x_j$$

Ainsi, par inégalité triangulaire:

$$|\lambda| |x_{i_0}| \leqslant \sum_{j=1}^n m_{i_0,j} |x_j| \leqslant \sum_{j=1}^n m_{i_0,j} |x_{i_0}| = |x_{i_0}|$$

Dès lors, $\lambda \leq 1$.

2. Montrer que, si λ est valeur propre de module 1, alors $\lambda = 1$.

On reprend les notations de la question précédente.

Ainsi, les inégalités sont alors des égalités.

On a alors, pour tout j, $m_{i_0,j}x_j=m_{i_0,j}x_{i_0}$ (positivement colinéaires d'après l'inégalité triangulaire, de module constant par passage à la borne supérieure). Dès lors, $\lambda x_{i_0}=\sum_{j=1}^n m_{i_0,j}x_{i_0}$, d'où $\lambda=1$.

3. Montrer que $ker(M - I_n) = ker(M - I_n)^2$

L'inclusion directe est immédiate.

lemme: On considère la matrice définie par bloc $M = \begin{pmatrix} A & B \\ (0) & C \end{pmatrix}$, avec C in-

versible. On a $\dim \ker M = \dim \ker A$

démonstration: on prend $X = {}^{T}(X_1 X_2)$ (avec les tailles qui fonctionnent bien).

$$X \in \ker M \iff \begin{cases} 0 = AX_1 + BX_2 \\ 0 = CX_2 \end{cases}$$

La seconde égalité nous donne $X_2=0,$ d'où $X_1\in\ker A.$ On vérifie aisément la réciproque.

On trigonalise dans
$$\mathbb{C}$$
: on note $N = \begin{pmatrix} N_{1,1} & * \\ (0) & N_{2,2} \end{pmatrix} \sim M$, avec:
$$N_{1,1} = \begin{pmatrix} 1 & * \\ & \ddots & \\ (0) & 1 \end{pmatrix}, \text{ et } N_{2,2} = \begin{pmatrix} \lambda_{i+1} & * \\ & \ddots & \\ (0) & \lambda_n \end{pmatrix}, \text{ avec } \lambda_j \neq 1, \text{ pour } j > i$$

Ainsi, $N_{2,2} - I_{n-i}$ est inversible. On a donc dim $\ker(N - I_n) = \dim \ker(N_{1,1}) = i$, et de même dim $\ker(N - I_n)^2 = i$.

D'où l'égalité. (Bon, il faut dire que les polynômes passent à la similitude, mais vous avez l'idée.)