Sys-Verilog Questions Review

Some Solutions to questions from ChipIO-Dev

Counter

Counter

Router

Connect (wire)

Recursion or calling the same hardware segment repeatedly

Log2(**5**)

Minimum number of bits represent 5?

$$Min = 2$$

$$5 > 2^2$$
 (increment) ____ ___

Log2(**4**)

Minimum number of bits represent 5?

$$Min = 2$$

$$4 \not< 2^2$$
 (perfect)

Log2 : Debug Results

Second Largest

Count	0	1	2	3	4	
Data_In	DO	D1 D2		D3	D4	
2nd Largest	0	0	2	2	2	3

-, **2** 3, **2** 3, **2** 3, **2** 7, **3**

Rounded Division

Generate Logic Blocks

Gray code

Vertical Delay:) $2^3 = 8cycle$ $2^2 = 4cycle$ $2^1 = 2cycle$ $2^0 = 1cycle$

$$2^3 = 8cycle$$

$$2^2 = 4cycle$$

$$2^1 = 2cycle$$

$$2^0 = 1$$
cycle

0	0	0	O		
O	O	O	1		
O	O	1	1		
O	O	1	O		
O	1	1	O		

Parralel In -Serial Out

Serial to Parallel

Serial to Parallel (Simulation Concept)

Fibonacci

Count Ones

Architecture Similar to Linked List Gen Din_0 adderz $wire_0$ equal_width Gen Din_1 Din adderz data_width $wire_1$ equal_width $wire_{15}$ Dout (i.e. Count) adderz equal_width equal_width = log2(data_width)

Count Ones

```
[2025-10-21 23:50:16 UTC] iverilog '-Wall' '-g2012' design.sv testbench.sv && unbuffer vvp a.out index - 0 input - 3 n_ones - 2 index - 1 input - 5 n_ones - 2 index - 2 input - 8 n_ones - 1 testbench.sv:44: $finish called at 9 (1s)

Done
```

Gray Code to Binary (Width = 3)

Trailing Ones

StopWatch Timer


```
[2025-10-23 19:15:00 UTC] iverilog '-Wall' '-g2012' design.sv testbench.sv && unbuffer vvp a.out
prev_button
              0] Button Press: reset[0] start[0] stop[0]
                                                           return -
prev_button Event
              1] Button Press: reset[0] start[0] stop[0]
                                                           return -
              2] Button Press: reset[0] start[1] stop[0]
                                                           return -
                 Button Press: reset[0] start[0] stop[0]
                                                           return -
              4] Button Press: reset[1] start[0] stop[0]
                                                           return -
              5] Button Press: reset[0] start[0] stop[0]
                                                           return -
              6] Button Press: reset[0] start[0] stop[0]
                                                           return -
              7] Button Press: reset[0] start[1] stop[1]
                                                           return -
              8] Button Press: reset[0] start[0] stop[0]
                                                           return -
              9] Button Press: reset[0] start[0] stop[0]
                                                           return -
           [ 10] Button Press: reset[0] start[1] stop[0]
                                                           return -
           [ 11] Button Press: reset[0] start[0] stop[0]
                                                           return -
           [ 12] Button Press: reset[1] start[1] stop[1]
                                                           return -
           [ 13] Button Press: reset[0] start[0] stop[0]
                                                           return -
           [ 14] Button Press: reset[0] start[1] stop[0]
                                                           return -
           [ 15] Button Press: reset[0] start[0] stop[1]
                                                           return -
           [ 16] Button Press: reset[0] start[0] stop[0]
                                                           return -
           [ 17] Button Press: reset[0] start[0] stop[0]
                                                           return -
           [ 18] Button Press: reset[0] start[0] stop[1]
                                                           return -
           [ 19] Button Press: reset[0] start[0] stop[0]
                                                           return -
           [ 20] Button Press: reset[0] start[1] stop[0]
                                                           return -
           [ 21] Button Press: reset[0] start[0] stop[0] return -
           [ 22] Button Press: reset[0] start[0] stop[0] return -
           [ 23] Button Press: reset[0] start[0] stop[0] return -
           testbench.sv:136: $finish called at 114000 (1ps)
           Done
```


Circuit from OLD grad school slides:). Might as well build it in SV

Sequence Detector

Sequence Detector

FIFO FULL

Evaluations of sequence are valid

Histo Amazon

Send Mechanism

Histo Amazon

Receive Mechanism (Test Address)

Divisible By Three

Palindrome

Odd Data Width

== DataIn[mid:0]

Half_Size_Floored = 2

Even Data Width

RotateRight by mid → NOT →

Multiply by ones vector
Size = Half_Size_Floored

== DataIn[mid:0]

Divide-By-Events DIV2 (8 ns) period DIV4 (16ns) period 4ns period DIV6 (32 ns) period

Divide-By-Events Timing

Testbench ResetN										
ResetN TestBench										
ResetN DUT										
DUT Div2		0	1	0	1	0	1			
DUT Div4	Deassert Reset, Next Cycle Deassert Go	0	1	1	0	1	1			
DUT Div6		0	1	1	1	0	0	0		
Go Testbench										
Go_z Testbench										
Go_zz Testbench				Capti	ure valid clo	ck data on v	alid_z and v	valid_zz		
Go_zzz Testbench										
Valid										
Valid_z										
Valid_zz										
Valid_zzz										

Testbench Log

```
TARGETS [11011] [11110]
Input 00001 Response 0
Input 00010 Response 0
Input 01011 Response 0
Input 01011 Response 0
Input 10111 Response 0
Input 11111 Response 0
Input 11111 Response 0
Input 11111 Response 0
Input 11110 Response 1
Input 11101 Response 0
Input 11011 Response 0
Input 11012 Response 0
Input 11013 Response 0
Input 11014 Response 0
Input 11015 Response 0
Input 11016 Response 0
Input 11017 Response 0
Input 11018 Response 0
Input 11019 Response 0
```

FizzBuzz

12	11	10	9	8	7	6	5	4	3	2	1	O	Tick
2	1	O	4 —	_ 3	2	1	0	0 —	4	2	1	0 —	Fizz
0 —	2	1	0 —	_ 2	1	0 —	_ 2	1	0 -	2	1	0 —	Buzz