Infrared-Emitter (850 nm) and Si-Phototransistor

IR-Emitter (850 nm) und Si-Fototransistor

Version 1.1

SFH 7250

Features:

- · Available on tape and reel
- SMT package with IR emitter (850 nm) and Si-phototransistor
- · Suitable for SMT assembly
- Emitter und detector can be controlled separately

Applications

- · Data transmission
- Lock bar
- Infrared interface

Besondere Merkmale:

- · Gegurtet lieferbar
- SMT Gehäuse mit IR-Sender (850 nm) and Si-Fototransistor
- · Geeignet für SMT-Bestückung
- · Sender und Empfänger getrennt ansteuerbar

Anwendungen

- Datenübertragung
- Wegfahrsperre
- Infrarotschnittstelle

Ordering Information Bestellinformation

Type:	Package:	Ordering Code
Typ:	Gehäuse:	Bestellnummer
SFH 7250	SMT Multi TOPLED®	Q65111A3188

Maximum Ratings Grenzwerte

Parameter	Symbol	Values	Unit
Bezeichnung	Symbol	Werte	Einheit
Operating and storage temperature range Betriebs- und Lagertemperatur	$T_{op};T_{stg}$	-40 100	°C
Junction temperature Sperrschichttemperatur	T _j	(max) 100	°C

IRED

Forward current	I _F	70	mA
Durchlassstrom			
Surge current	I _{FSM}	0.7	Α
Stoßstrom			
$(t_p \le 10 \ \mu s, D = 0)$			
Reverse voltage	V _R	5	V
Sperrspannung			
Total power dissipation	P _{tot}	140	mW
Verlustleistung			
Thermal resistance junction - ambient 1) page 15	R _{thJA}	500	K/W
Wärmewiderstand Sperrschicht - Umgebung 1) Seite 15			
Thermal resistance junction - solder point	R _{thJS}	400	K/W
Wärmewiderstand Sperrschicht - Lötpad	1133		
ESD withstand voltage	V _{ESD}	2	kV
ESD Festigkeit			

Phototransistor Fototransistor

Collector current Kollektorstrom	I _C	15	mA
Surge current Stoßstrom $(t_p \le 10 \ \mu s, D = 0)$	I _{FSM}	0.075	A
Collector-emitter voltage Kollektor-Emitter-Spannung	V _{CE}	35	V

Parameter	Symbol	Values	Unit
Bezeichnung	Symbol	Werte	Einheit
Total power dissipation Verlustleistung	P _{tot}	165	mW
Thermal resistance ^{1) page 15} Wärmewiderstand ^{1) Seite 15}	R _{thJA}	450	K/W
ESD withstand voltage ESD Festigkeit	V _{ESD}	2	kV

Note: The stated maximum ratings refer to one chip.

Anm: Die angegebenen Grenzdaten gelten für einen Chip.

Characteristics

Kennwerte

Parameter	Symbol	Values	Unit
Bezeichnung	Symbol	Werte	Einheit

IRED

(Γ.	=	25	°C	١

(1A - 23 0)				
Peak wavelength Emissionswellenlänge (I _F = 70 mA, t _p = 20 ms)	(typ)	λ_{peak}	860	nm
Spectral bandwidth at 50% of I_{max} Spektrale Bandbreite bei 50% von I_{max} ($I_F = 70 \text{ mA}, t_p = 20 \text{ ms}$)	(typ)	Δλ	30	nm
Half angle Halbwinkel	(typ)	φ	± 60	0
Active chip area Aktive Chipfläche	(typ)	Α	0.04	mm ²
Dimensions of active chip area Abmessungen der aktiven Chipfläche	(typ)	LxW	0.2 x 0.2	mm x mm
Rise and fall time of I_e (10% and 90% of $I_{e max}$) Schaltzeit von I_e (10% und 90% von $I_{e max}$) ($I_F = 70 \text{ mA}, R_L = 50 \Omega$)	(typ)	t _r , t _f	12	ns
Forward voltage Durchlassspannung (I _F = 70 mA, t _p = 20 ms)	(typ (max))	V _F	1.6 (≤ 2)	V

Parameter		Symbol	Values	Unit
Bezeichnung		Symbol	Werte	Einheit
Forward voltage Durchlassspannung ($I_F = 500 \text{ mA}, t_p = 100 \mu \text{s}$)	(typ (max))	V _F	2.4 (≤ 3)	V
Reverse current Sperrstrom (V _R = 5 V)	(typ (max))	I _R	not designed for reverse operation	μΑ
Total radiant flux Gesamtstrahlungsfluss $(I_F = 70 \text{ mA}, t_p = 20 \text{ ms})$	(typ)	Фе	40	mW
Min Radiant Intensity Min Strahlstärke $(I_F = 70 \text{ mA}, t_p = 20 \text{ ms})$		I _{e, min}	6.3	mW/sr
Radiant intensity Strahlstärke $(I_F = 70 \text{ mA}, t_p = 20 \text{ ms})$		I _{e, typ}	10	mW/sr
Typ Radiant Intensity Typ Strahlstärke $(I_F = 500 \text{ mA}, I_p = 100 \mu \text{s})$		I _{e, typ}	60	mW/sr
Temperature coefficient of I_e or Φ_e Temperaturkoeffizient von I_e bzw. Φ_e $(I_F = 70 \text{ mA}, t_p = 20 \text{ ms})$	(typ)	TCı	-0.5	% / K
Temperature coefficient of V_F Temperaturkoeffizient von V_F ($I_F = 70 \text{ mA}, t_p = 20 \text{ ms}$)	(typ)	TC _v	-0.7	mV / K
Temperature coefficient of wavelength Temperaturkoeffizient der Wellenlänge $(I_F = 70 \text{ mA}, t_p = 20 \text{ ms})$	(typ)	TC_{λ}	0.3	nm / K

Phototransistor

Fototransistor

 $(T_A = 25 \, ^{\circ}C, \, \lambda = 880 \, \text{nm})$

Wavelength of max. sensitivity Wellenlänge der max. Fotoempfindlichkeit	(typ)	λ _{S max}	990	nm
Spectral range of sensitivity	(typ)	λ	440 1150	nm
Spektraler Bereich der Fotoempfindlichkeit				
$(S = 10\% \text{ of } S_{max})$				

Parameter		Symbol	Values	Unit
Bezeichnung		Symbol	Werte	Einheit
Radiant sensitive area Bestrahlungsempfindliche Fläche (Ø = 240 µm)	(typ)	A	0.038	mm ²
Dimensions of chip area Abmessung der Chipfläche	(typ)	LxW	(typ) 0.45 x 0.45	mm x mm
Distance chip front to case surface Abstand Chipoberfläche bis Gehäusevorderseite	(typ)	Н	(typ) 0.5 0.7	mm
Half angle Halbwinkel	(typ)	φ	± 60	0
Capacitance Kapazität (V _{CE} = 0 V, f = 1 MHz, E = 0)	(typ)	C _{CE}	5	pF
Dark current Dunkelstrom (V _{CE} = 25 V, E = 0)	(typ (max))	I _{CE0}	1 (≤ 200)	nA
Photocurrent Fotostrom ($\lambda = 880$ nm, $E_e = 0.1$ mW/cm ² , $V_{CE} = 5$ V)		I _{PCE}	≥ 16	μΑ
Rise and fall time Anstiegs- und Abfallzeit ($I_C = 1 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 1 \text{ k}\Omega$)	(typ)	t _r , t _f	7	μs
Collector-emitter saturation voltage Kollektor-Emitter Sättigungsspannung ($I_C = 5 \mu A$, $E_e = 0.1 \text{ mW/cm}^2$)	(typ)	V _{CEsat}	150	mV

Grouping ($T_A = 25 \, ^{\circ}C$) Gruppierung

Group	Min Radiant Intensity	Max Radiant Intensity	Typ Radiant Intensity
Gruppe	Min Strahlstärke	Max Strahlstärke	Typ Strahlstärke
	I _F = 70 mA, t _o = 20 ms	I _F = 70 mA, t _p = 20 ms	$I_F = 500 \text{ mA}, t_p = 100 \text{ µs}$
	I _{e, min}	I _{e. max}	I _{e, typ}
SFH 7250-Q	6.3	12.5	55

Note: Measured at a solid angle of $\Omega = 0.01$ sr.

Anm.: Gemessen bei einem Raumwinkel von $\Omega = 0.01$ sr.

Forward Current ^{2) page 15} Durchlassstrom ^{2) Seite 15}

 $I_F = f(V_F), T_A = 25 °C$

Permissible Pulse Handling Capability Zulässige Pulsbelastbarkeit

 $I_F = f(t_p)$, $T_A = 25$ °C, duty cycle D = parameter

Radiant Intensity ^{2) page 15} Strahlstärke ^{2) Seite 15}

 $I_e / I_e (70 \text{ mA}) = f(I_e)$, single pulse, $t_p = 25 \mu s$

Relative Spectral Emission ^{2) page 15} Relative spektrale Emission ^{2) Seite 15}

(typ) $I_{rel} = f(\lambda)$, $T_A = 25^{\circ}C$

Max. Permissible Forward Current Max. zulässiger Durchlassstrom

 $I_{F, max} = f(T_A)$

Diagrams

Diagramme

Relative Spectral Sensitivity $^{2)\,page\ 15}$ Relative spektrale Empfindlichkeit $^{2)\,Seite\ 15}$ $S_{rel}=f(\lambda),\,T_A=25^{\circ}C$

Phototransistor

Fototransistor

Photocurrent 2) page 15

Fotostrom ^{2) Seite 15}

$$I_{PCE} = f(E_e), \ V_{CE} = 5 \text{ V}, \ T_A = 25^{\circ}\text{C}$$

Photocurrent ^{2) page 15} Fotostrom ^{2) Seite 15}

$$I_{PCE} = f(V_{CE}), E_e = Parameter, T_A = 25^{\circ}C$$

Dark Current 2) page 15 Dunkelstrom 2) Seite 15

$$I_{CEO} = f(V_{CE}), E = 0, T_A = 25^{\circ}C$$

Photocurrent ^{2) page 15} Fotostrom ^{2) Seite 15}

$$I_{PCE} / I_{PCE} (25^{\circ}C) = f(T_{A}), V_{CE} = 5 \text{ V}$$

Dark Current 2) page 15 Dunkelstrom 2) Seite 15

$$I_{CEO} = f(T_A), V_{CE} = 5 \text{ V}, E = 0$$

Collector-Emitter Capacitance 2) page 15 Kollektor-Emitter Kapazität 2) Seite 15

$$C_{CE} = f(V_{CE})$$
, f = 1 MHz, E = 0, $T_A = 25$ °C

Total Power Dissipation Verlustleistung

$$P_{tot} = f(T_A)$$

IRED Radiation Characteristics / Phototransistor Directional Characteristics $^{2)\,page\ 15}$ IRED Abstrahlcharakteristik / Phototransistor Winkeldiagramm $^{2)\,Seite\ 15}$

$$I_{rel} = f(\phi) / S_{rel} = f(\phi)$$

Package Outline Maßzeichnung

C63062-A4174-A1-02

Dimensions in mm (inch). | Maße in mm (inch).

Pinning

Anschlussbelegung

Pin	Description		
Anschluss	Beschreibung		
1	Anode IRED/ Anode IRED		
2	Cathode IRED/ Kathode IRED		
3	Collector Phototransistor/ Kollektor Fototransistor		
4	Emitter Phototransistor/ Emitter Fototransistor		

Package SMT Multi TOPLED

Gehäuse SMT Multi TOPLED

Taping Gurtung

Dimensions in mm (inch). | Maße in mm (inch).

Recommended Solder Pad Empfohlenes Lötpaddesign

E062.3010.148 -01

Version 1.1

Reflow Soldering Profile Reflow-Lötprofil

Product complies to MSL Level 2 acc. to JEDEC J-STD-020D.01

OHA0461						
Profile Feature Profil-Charakteristik	Symbol Symbol	Pb-Free (SnAgCu) Assembly			Unit	
		Minimum	Recommendation	Maximum	Einheit	
Ramp-up rate to preheat*) 25 °C to 150 °C			2	3	K/s	
Time t _s T _{Smin} to T _{Smax}	t _S	60	100	120	s	
Ramp-up rate to peak*) T _{Smax} to T _P			2	3	K/s	
Liquidus temperature	T _L	217			°C	
Time above liquidus temperature	t _L		80	100	s	
Peak temperature	T _P		245	260	°C	
Time within 5 °C of the specified peak temperature T _P - 5 K	t _P	10	20	30	s	
Ramp-down rate* T _P to 100 °C			3	6	K/s	
Time 25 °C to T _P				480	S	

All temperatures refer to the center of the package, measured on the top of the component

^{*} slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range

Version 1.1

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version in the Internet.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office.

By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components* may only be used in life-support devices** or systems with the express written approval of OSRAM OS.

- *) A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
- **) Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.

Disclaimer

Bitte beachten!

Lieferbedingungen und Änderungen im Design vorbehalten. Aufgrund technischer Anforderungen können die Bauteile Gefahrstoffe enthalten. Für weitere Informationen zu gewünschten Bauteilen, wenden Sie sich bitte an unseren Vertrieb. Falls Sie dieses Datenblatt ausgedruckt oder heruntergeladen haben, finden Sie die aktuellste Version im Internet.

Verpackung

Benutzen Sie bitte die Ihnen bekannten Recyclingwege. Wenn diese nicht bekannt sein sollten, wenden Sie sich bitte an das nächstgelegene Vertriebsbüro. Wir nehmen das Verpackungsmaterial zurück, falls dies vereinbart wurde und das Material sortiert ist. Sie tragen die Transportkosten. Für Verpackungsmaterial, das unsortiert an uns zurückgeschickt wird oder das wir nicht annehmen müssen, stellen wir Ihnen die anfallenden Kosten in Rechnung.

Bauteile, die in lebenserhaltenden Apparaten und Systemen eingesetzt werden, müssen für diese Zwecke ausdrücklich zugelassen sein!

Kritische Bauteile* dürfen in lebenserhaltenden Apparaten und Systemen** nur dann eingesetzt werden, wenn ein schriftliches Einverständnis von OSRAM OS vorliegt.

- *) Ein kritisches Bauteil ist ein Bauteil, das in lebenserhaltenden Apparaten oder Systemen eingesetzt wird und dessen Defekt voraussichtlich zu einer Fehlfunktion dieses lebenserhaltenden Apparates oder Systems führen wird oder die Sicherheit oder Effektivität dieses Apparates oder Systems beeinträchtigt.
- **) Lebenserhaltende Apparate oder Systeme sind für
- (a) die Implantierung in den menschlichen Körper oder
- (b) für die Lebenserhaltung bestimmt. Falls Sie versagen, kann davon ausgegangen werden, dass die Gesundheit und das Leben des Patienten in Gefahr ist.

Glossary

- Thermal resistance: junction -ambient, mounted on PC-board (FR4), padsize 16 mm² each
- Typical Values: Due to the special conditions of the manufacturing processes of LED, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.

Glossar

- Wärmewiderstand: Sperrschicht -Umgebung, bei Montage auf FR4 Platine, Padgröße je 16 mm²
- Typische Werte: Wegen der besonderen Prozessbedingungen bei der Herstellung von LED können typische oder abgeleitete technische Parameter nur aufgrund statistischer Werte wiedergegeben werden. Diese stimmen nicht notwendigerweise mit den Werten jedes einzelnen Produktes überein, dessen Werte sich von typischen und abgeleiteten Werten oder typischen Kennlinien unterscheiden können. Falls erforderlich, z.B. aufgrund technischer Verbesserungen, werden diese typischen Werte ohne weitere Ankündigung geändert.

Published by OSRAM Opto Semiconductors GmbH Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved.

EU RoHS and China RoHS compliant product

此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Osram Opto Semiconductor: SFH 7250