

Boosting and Additive Trees

Yuting Zhang

Sun Yat-sen University, School of Mathematics

Boosting Method

Forward Stagewise Additive Modeling

L2Boosting

AdaBoost

LogitBoost

Boosting Trees

Numerical Optimization

- Steepest Descent
- Gradient Boosting
- Regularization
- XGBoost

Boosting Model

Different between bagging and boosting:

- Bagging involves creating multiple copies of the original training data set using the bootstrap, fitting a separate decision tree to each copy, and then combining all of the trees in order to create a single predictive model.
- Boosting works in a similar way, except that the trees are grown sequentially: each tree is grown using information from previously grown trees.

Boosting Model

Boosting is a way of fitting an additive expansion in a set of elementary "basis" functions.

Generally, basis function expansions take the form

$$f(x) = \sum_{m=1}^{M} \beta_m b(x; \gamma_m),$$

where β_m , m = 1, ..., M are the expansion coefficients, and $b(x; \gamma) \in \mathbb{R}$ are usually simple functions of the multivariate argument x, characterized by a set of parameters γ .

Typically these models are fit by minimizing a loss function averaged over the training data,

$$\min_{\{\beta_m, \gamma_m\}_1^M} \sum_{i=1}^N L(y_i, \sum_{m=1}^M \beta_m b(x_i; \gamma_m))$$

Boosting Model

Forward Stagewise Additive Modeling

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m = 1 to M:
 - (a) Compute

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)).$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

L2Boosting

For squared-error loss

$$L(y, f(x)) = \frac{1}{2}(y - f(x))^{2},$$

one has

$$L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)) = \frac{1}{2} (y_i - f_{m-1}(x_i) - \beta b(x_i; \gamma))^2$$
$$= \frac{1}{2} (r_{im} - \beta b(x_i; \gamma))^2$$

AdaBoost

Consider a two-class problem, with the output variable coded as $Y \in \{-1, 1\}$. Given a vector of predictor variables X, a classifier G(X) produces a prediction taking one of the two values $\{-1, 1\}$. The error rate on the training sample is

$$\overline{\text{err}} = \frac{1}{N} \sum_{i=1}^{N} I(y_i \neq G(x_i)),$$

and the expected error rate on future predictions is $E_{XY}I(Y \neq G(X))$.

The purpose of boosting is to sequentially apply the weak classification algorithm to repeatedly modified versions of the data, thereby producing a sequence of weak classifiers $G_m(x)$, m = 1, 2, ..., M.

AdaBoost

The predictions from all of them are then combined through a weighted majority vote to produce the final prediction:

$$G(x) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m G_m(x)\right)$$

Here $\alpha_1, \alpha_2, ..., \alpha_M$ are computed by the boosting algorithm, and weight the contribution of each respective $G_m(x)$.

FINAL CLASSIFIER

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N$, i = 1, 2, ..., N.
- 2. For m = 1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N.$
- 3. Output $G(x) = \text{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$.

(a) 原始数据,蓝色+与红色-分别表示两类样本点

(b) 弱分类器1— h_1 , 针对分类正确的样本我们加大其权重, 错分类样本减小权重

(c) 弱分类器2——h2

(d) 弱分类器3——h3

(e) 总体Adaboost模型

Exponential loss

$$L(y, f(x)) = \exp(-yf(x))$$

Using the exponential loss function, one must solve

$$(\beta_m, G_m) = \underset{\beta, G}{\operatorname{argmin}} \sum_{i=1}^N \exp[-y_i(f_{m-1}(x_i) + \beta G(x_i))]$$

$$(\beta_m, G_m) = \underset{\beta, G}{\operatorname{argmin}} \sum_{i=1}^N w_i^{(m)} \exp(-\beta y_i G(x_i))$$

With $w_i^{(m)} = \exp(-y_i f_{m-1}(x))$.

$$(\beta_m, G_m) = \underset{\beta, G}{\operatorname{argmin}} \sum_{i=1}^N w_i^{(m)} \exp(-\beta y_i G(x_i))$$

For any value of $\beta > 0$, the solution for $G_m(x)$

$$G_m = \underset{G}{\operatorname{argmin}} \sum_{i=1}^{N} w_i^{(m)} I(y_i \neq G(x_i))$$

$$(\beta_m, G_m) = \underset{\beta, G}{\operatorname{argmin}} \sum_{i=1}^N w_i^{(m)} \exp(-\beta y_i G(x_i))$$

Plugging this Gm into the formula and solving for β one obtains

$$\beta_m = \frac{1}{2} \log \frac{1 - \operatorname{err}_m}{\operatorname{err}_m},$$

Where err_m is the minimized weighted error rate

$$\operatorname{err}_{m} = \frac{\sum_{i=1}^{N} w_{i}^{(m)} I(y_{i} \neq G_{m}(x_{i}))}{\sum_{i=1}^{N} w_{i}^{(m)}}.$$

The approximation is then updated

$$f_m(x) = f_{m-1}(x) + \beta_m G_m(x)$$

which causes the weights for the next iteration to be

$$w_i^{(m+1)} = w_i^{(m)} \cdot e^{-\beta_m y_i G_m(x_i)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$w_i^{(m+1)} = w_i^{(m)} \cdot e^{\alpha_m I(y_i \neq G_m(x_i))} \cdot e^{-\beta_m},$$

where $\alpha_m = 2\beta_m$.

Why Exponential Loss?

The additive expansion produced by AdaBoost is estimating one-half the log-odds of P(y = 1|x),

$$f^{*}(x) = \underset{f(x)}{\operatorname{argmin}} E_{Y|x}(e^{-Yf(x)}) = \frac{1}{2} \log \frac{P(y=1|x)}{P(y=-1|x)},$$

$$\Leftrightarrow P(y=1|x) = \frac{1}{1 + e^{-2f^{*}(x)}}.$$

This justifies using its sign as the classification rule in $G(x) = \text{sign}(\sum_{m=1}^{M} \alpha_m G_m(x))$.

LogitBoost

Binomial negative log-likelihood (deviance, or cross-entropy)

$$p(x) = P(y = 1|x) = \frac{e^{f(x)}}{e^{-f(x)} + e^{f(x)}} = \frac{1}{1 + e^{-2f(x)}}$$
$$l(p, y) = -(y \log p + (1 - y)\log(1 - p))$$
$$\Leftrightarrow l(y, f(x)) = -\log(1 + e^{-2yf(x)})$$

LogitBoost

Algorithm 16.3: LogitBoost, for binary classification with log-loss

```
1 w_i = 1/N, \pi_i = 1/2;

2 for m = 1: M do

3 Compute the working response z_i = \frac{y_i^* - \pi_i}{\pi_i(1 - \pi_i)};

4 Compute the weights w_i = \pi_i(1 - \pi_i);

5 \phi_m = \operatorname{argmin}_{\phi} \sum_{i=1}^N w_i(z_i - \phi(\mathbf{x}_i))^2;

6 Update f(\mathbf{x}) \leftarrow f(\mathbf{x}) + \frac{1}{2}\phi_m(\mathbf{x});

7 Compute \pi_i = 1/(1 + \exp(-2f(\mathbf{x}_i)));

8 Return f(\mathbf{x}) = \operatorname{sgn} \left[ \sum_{m=1}^M \phi_m(\mathbf{x}) \right];
```

Regression and classification trees partition the space of all joint predictor variable values into disjoint regions R_j , j = 1, 2, ..., J, as represented by the terminal nodes of the tree. A constant γ_j is assigned to each such region and the predictive rule is

$$x \in R_j \Rightarrow f(x) = \gamma_j$$
.

Thus a tree can be formally expressed as

$$T(x;\Theta) = \sum_{j=1}^{J} \gamma_j I(x \in R_j),$$

with parameters $\Theta = \{R_j, \gamma_j\}_1^J$. The parameters are found by minimizing the empirical risk

$$\widehat{\Theta} = \underset{\Theta}{\operatorname{argmin}} \sum_{j=1}^{J} \sum_{x_i \in R_j} L(y_i, \gamma_j).$$

Finding γ_i given R_i :

Given the R_j , estimating the γ_j is typically trivial, and often $\widehat{\gamma}_j = \overline{y}_j$, the mean of the y_i falling in region R_j . For misclassification loss, $\widehat{\gamma}_j$ is the modal class of the observations falling in region R_i .

Finding R_i :

This is the difficult part, for which approximate solutions are found. Note also that finding the R_j entails estimating the γ_j as well. A typical strategy is to use a greedy, top-down recursive partitioning algorithm to find the R_j .

A strategy for classification trees.

The Gini index replaced misclassification loss in the growing of the tree (identifying the R_i).

The boosted tree model is a sum of such trees,

$$f_M(x) = \sum_{m=1}^{M} T(x; \Theta_m)$$

At each step in the forward stagewise procedure one must solve

$$\widehat{\Theta}_m = \underset{\Theta_m}{\operatorname{argmin}} \sum_{i=1}^{N} L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

Given the regions R_{jm} , then

$$\hat{\gamma}_{jm} = \underset{\gamma_{jm}}{\operatorname{argmin}} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma_{jm})$$

In particular, if the trees $T(x; \Theta_m)$ are restricted to be scaled classification trees, then the solution of $\widehat{\Theta}_m$ is the tree that minimizes the weighted error rate

$$\sum_{i=1}^{N} w_i^{(m)} I(y_i \neq T(x_i; \Theta_m))$$

 $\sum_{i=1}^{N} w_i^{(m)} I(y_i \neq T(x_i; \Theta_m)),$ Where $w_i^{(m)} = e^{-y_i f_{m-1}(x_i)}$. By a scaled classification tree, we mean $\beta_m T(x; \Theta_m)$, with the restriction that $\gamma_{im} \in \{-1, 1\}$.

Without this restriction, $\widehat{\Theta}_m$ still simplifies for exponential loss to a weighted exponential criterion for the new tree:

$$\widehat{\Theta}_m = \underset{\Theta_m}{\operatorname{argmin}} \sum_{i=1}^N w_i^{(m)} \exp[-y_i T(x_i; \Theta_m)].$$

Given the regions R_{jm} , we can show that $\hat{\gamma}_{jm}$ is the weighted log-odds in each corresponding region

$$\hat{\gamma}_{jm} = \frac{1}{2} \log \frac{\sum_{x_i \in R_{jm}} w_i^{(m)} I(y_i = 1)}{\sum_{x_i \in R_{jm}} w_i^{(m)} I(y_i = -1)}$$

Numerical Optimization

$$\widehat{\Theta}_m = \underset{\Theta_m}{\operatorname{argmin}} \sum_{i=1}^{N} L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

The loss in using f(x) to predict y on the training data is

$$L(f) = \sum_{i=1}^{N} L(y_i, f(x_i))$$

It can be viewed as a numerical optimization

$$\hat{\mathbf{f}} = \underset{\mathbf{f}}{\operatorname{argmin}} L(\mathbf{f})$$

where $\mathbf{f} \in \mathbb{R}^N$ are the values of the approximating function $f(x_i)$ at each of the N data points x_i :

$$\mathbf{f} = \{f(x_1), f(x_2), ..., f(x_N)\}^T$$

Numerical Optimization

Numerical optimization:

$$\mathbf{f} = \sum_{m=1}^M \mathbf{h}_m$$
 , $\mathbf{h}_m \in \mathbb{R}^N$

where $\mathbf{f}_0 = \mathbf{h}_0$ is an initial guess, and each successive \mathbf{f}_m is induced based on the current parameter vector \mathbf{f}_{m-1} .

Numerical optimization methods differ in their prescriptions for computing each increment vector \mathbf{h}_m .

Steepest Descent

Steepest descent chooses $\mathbf{h}_m = -\rho_m \mathbf{g}_m$ where ρ_m is a scalar and $\mathbf{g}_m \in \mathbb{R}^N$ is the gradient of $L(\mathbf{f})$ evaluated at $\mathbf{f} = \mathbf{f}_{m-1}$. The components of the gradient \mathbf{g}_m are

$$g_{im} = \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x_i) = f_{m-1}(x_i)}$$

The step length ρ_m is the solution to

$$\rho_m = \operatorname*{argmin}_{\rho} L(\mathbf{f}_{m-1} - \rho \mathbf{g}_m)$$

The current solution is then updated

$$\mathbf{f}_m = \mathbf{f}_{m-1} - \rho \mathbf{g}_m$$

Gradient Boosting

Tree components:

$$\mathbf{t_m} = \{T(x_1; \Theta_m), \dots, T(x_N; \Theta_m)\}$$

Induce a tree $T(x; \Theta_m)$ at the *m*th iteration whose predictions tm are as close as possible to the negative gradient. Using squared error to measure closeness:

$$\widehat{\Theta}_m = \underset{\Theta_m}{\operatorname{argmin}} \sum_{i=1}^{N} (-g_{im} - T(x_i; \Theta))^2$$

Gradient Boosting

TABLE 10.2. Gradients for commonly used loss functions.

Setting	Loss Function	$-\partial L(y_i, f(x_i))/\partial f(x_i)$
Regression	$\frac{1}{2}[y_i - f(x_i)]^2$	$y_i - f(x_i)$
Regression	$ y_i - f(x_i) $	$sign[y_i - f(x_i)]$
Regression	Huber	$y_i - f(x_i)$ for $ y_i - f(x_i) \le \delta_m$ $\delta_m \text{sign}[y_i - f(x_i)]$ for $ y_i - f(x_i) > \delta_m$ where $\delta_m = \alpha \text{th-quantile}\{ y_i - f(x_i) \}$
Classification	Deviance	kth component: $I(y_i = \mathcal{G}_k) - p_k(x_i)$

Implementations of Gradient Boosting

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m = 1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

Right-Sized Trees for Boosting

Restrict all trees to be the same size, $J_m = J$, $\forall m$.

Regularization

The number of boosting iterations M

There is an optimal number M^* minimizing future risk that is application dependent. The value of M that minimizes this risk is taken to be an estimate of M^* .

Shrinkage

Scale the contribution of each tree by a factor 0 < v < 1 when it is added to the current approximation

$$f_m(x) = f_{m-1}(x) + \nu \cdot \sum_{j=1}^{J} \gamma_{jm} I(x \in R_{jm})$$

Regularization

Regularization

Subsampling

With stochastic gradient boosting, at each iteration we sample a fraction η of the training observations (without replacement), and grow the next tree using that subsample. A typical value for η can be $\frac{1}{2}$.

4-Node Trees

Objective

$$Obj = \sum_{i=1}^{N} \underbrace{L(y_i, F(x_i))}_{\text{Training loss}} + \sum_{m=1}^{M} \underbrace{\Omega(h_m)}_{\text{Complexity of the trees}}$$

where

$$\Omega(h) = \lambda_J J + \frac{1}{2} \lambda_\omega \|\omega\|^2$$

$$Obj^{(m)} = \sum_{i=1}^{N} L(y_i, F_{m-1}(x_i) + h_m(x_i)) + \Omega(h_m)$$

Taylor expansion

$$Obj^{(m)} \approx \sum_{i=1}^{N} \left[L(y_i, F_{m-1}(x_i)) + f_{i,m-1}h_m(x_i) + \frac{1}{2}g_{i,m-1}h_m^2(x_i) \right] + \Omega(h_m)$$

where

$$f_{i,m-1} = \frac{\partial L(y_i, F_{m-1}(x_i))}{\partial F_{m-1}(x_i)}, \qquad g_{i,m-1} = \frac{\partial^2 L(y_i, F_{m-1}(x_i))}{\partial F_{m-1}^2(x_i)}$$

For squared loss,

$$f_{i,m-1} = 2(F_{m-1}(x_i) - y_i), \qquad g_{i,m-1} = 2$$

$$\begin{split} \widetilde{Obj}^{(m)} &= \sum_{i=1}^{N} \left[f_{i,m-1} h_m(x_i) + \frac{1}{2} g_{i,m-1} h_m^2(x_i) \right] + \Omega(h_m) \\ &= \sum_{i=1}^{N} \left[f_{i,m-1} h_m(x_i) + \frac{1}{2} g_{i,m-1} h_m^2(x_i) \right] + \lambda_J J + \frac{1}{2} \lambda_\omega \|\omega\|^2 \\ &= \sum_{j=1}^{J} \left[\left(\sum_{i \in I_j} f_{i,m-1} \right) \omega_j + \frac{1}{2} \left(\sum_{i \in I_j} g_{i,m-1} + \lambda_\omega \right) \omega_j^2 \right] + \lambda_J J \\ \Rightarrow \omega_j^* &= -\frac{\sum_{i \in I_j} f_{i,m-1}}{\sum_{i \in I_j} g_{i,m-1} + \lambda_\omega} \end{split}$$

$$\widetilde{Obj}^{(m)} = -\frac{1}{2} \sum_{i=1}^{N} \frac{\left(\sum_{i \in I_{j}} f_{i,m-1}\right)^{2}}{\sum_{i \in I_{j}} g_{i,m-1} + \lambda_{\omega}} + \lambda_{J} J$$

Let $I_L = \{ \text{leaf of left subtree} \}$, $I_R = \{ \text{leaf of right subtree} \}$, $I = I_L \cup I_R$.

Define

$$Gain = \frac{1}{2} \sum_{i=1}^{N} \left[\frac{\left(\sum_{i \in I_L} f_i\right)^2}{\sum_{i \in I_L} g_i + \lambda_{\omega}} + \frac{\left(\sum_{i \in I_R} f_i\right)^2}{\sum_{i \in I_R} g_i + \lambda_{\omega}} + \frac{\left(\sum_{i \in I} f_i\right)^2}{\sum_{i \in I} g_i + \lambda_{\omega}} \right] - \lambda_J$$

Algorithm 1: Exact Greedy Algorithm for Split Finding

```
Input: I, instance set of current node

Input: d, feature dimension

gain \leftarrow 0

G \leftarrow \sum_{i \in I} g_i, H \leftarrow \sum_{i \in I} h_i

for k = 1 to m do

G_L \leftarrow 0, H_L \leftarrow 0

for j in sorted(I, by \mathbf{x}_{jk}) do

G_L \leftarrow G_L + g_j, H_L \leftarrow H_L + h_j
G_R \leftarrow G - G_L, H_R \leftarrow H - H_L
score \leftarrow \max(score, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda})
end
end
```

Output: Split with max score

Algorithm 2: Approximate Algorithm for Split Finding

for k = 1 to m do

Propose $S_k = \{s_{k1}, s_{k2}, \dots s_{kl}\}$ by percentiles on feature k.

Proposal can be done per tree (global), or per split(local).

end

for
$$k = 1$$
 to m do

$$G_{kv} \leftarrow = \sum_{j \in \{j \mid s_{k,v} \geq \mathbf{x}_{jk} > s_{k,v-1}\}} g_j$$

$$H_{kv} \leftarrow = \sum_{j \in \{j \mid s_{k,v} \geq \mathbf{x}_{jk} > s_{k,v-1}\}} h_j$$

end

Follow same step as in previous section to find max score only among proposed splits.

Thanks!