

Mentari Intercultural School Jakarta Mathematics: Applications and Interpretation Higher Level

SY 2023-2024

Answer the following problems involving periodic functions. Show your complete work.

Full marks are not necessarily awarded for incomplete working.

[24 marks]

1a. [2] The following diagram shows the curve $y = a \sin(b(x-c)) + d$, where a, b, c and d are all positive constants. The curve has a maximum point at (1, 3.5) and a minimum point at (2, 0.5).

Write down the value of a and the value of d.

1b. *[1]* Find the value of *b*.

1c. [1] Find the smallest possible value of c, given c > 0.

2a. [3] A function is defined by $f(x) = A\sin(Bx) + C, \quad -\pi \le x \le \pi$, where $A, \ B, \ C \in \mathbb{Z}$. The following diagram represents the graph of y = f(x).

Find the value of

- (i) A;
- (ii) B;
- (iii) C.

2b. [3] Solve f(x)=3 for $0\leq x\leq \pi$.

3. [3] The graph below shows $y = a\cos(bx) + c$.

Find the value of *a*, the value of *b* and the value of *c*.

4. The diagram below shows a curve with equation $y=1+k\sin x$, defined for $0\leqslant x\leqslant 3\pi$.

The point $\mathrm{A}\left(rac{\pi}{6},-2
ight)$ lies on the curve and $\mathrm{B}(a,\ b)$ is the maximum point.

- (a) [2] Show that k = -6.
- (b) [3] Hence, find the values of a and b.
- **5.** [6] The depth, h(t) metres, of water at the entrance to a harbour at t hours after midnight on a particular day is given by

$$h(t)=8+4\sin\!\left(rac{\pi t}{6}
ight),\ 0\leqslant t\leqslant 24.$$

- (a) Find the maximum depth and the minimum depth of the water.
- (b) Find the values of t for which $h(t) \geqslant 8$.