河南农业大学 2020-2021 学年第二学期 《高等数学 A(II)》期末考试试卷(A卷)

题号	 =	=	四	五.	总分
分数					

得分	评卷人

判断题(每小题2分,共计10分)

-) 1. $\alpha \times \beta$ 同时垂直 $\alpha 与 \beta$.
- () 2. 在空间直角坐标系中,方程 $\frac{x^2}{2} + \frac{y^2}{3} = 1$ 表示一个椭圆.
- () 3. 若函数 z = f(x,y) 在点 (x_0,y_0) 处可微,则在该点必有极限.
- () 4. 向量场 $A = \{(x + y)^2, yz, xz\}$ 在点(1,1,1) 处的散度为 7.
- () 5. 级数 $\sum_{n=1}^{\infty} \ln(1 + \frac{1}{\sqrt{n}})$ 收敛.

得分	评卷人

二、选择题(每小题2分,共计20分)

- 1. 两平面x-y+2z=6与2x+y+z=5的夹角为_

- (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{6}$

2.
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{1 - \cos(x + y)}{x + y} = \underline{\hspace{1cm}}$$

- (A) 0 (B) 1 (C) $\frac{1}{2}$ (D) $-\frac{1}{2}$

3.	函数 $z = x^2$	$y^2 - y^2 + 2x$ 在月	点(1,2)处的梯	度为	_
	(A) 0	(B) (1,-1)	(C) (4,-	(D) $(2x - 4)$	+ 2, -2 y)
4.	设 D _k 是[圆域 $D = \{(x, y)\}$	$y)\left x^2+y^2\le 1\right\}$	位于第 k 象 『	艮的部分, 记
$I_{_k}$	$= \iint\limits_{D_k} (y-x)dx$	dxdy (k = 1, 2, 3,	4),则		
	$(A) I_{_{1}} > 0$	(B)	$I_{2} > 0$	(C) $I_3 > 0$	(D) $I_4 > 0$
5.	设 <i>D:x</i> ² +.	$y^2 \le 9 , \iint_{\mathcal{D}} \left(x^5 \epsilon \right)$	$e^y + e^x \sin y - 1$	$d\sigma =$	
	(A) 9	(B) 9π	(C) 0	(D) -9π	
6.	若 $(x+ay)$	dx + (2x + y)dy	为某函数的金	≥微分,则 <i>a</i> =	·
	(A) 1	(B) -2	(C) 2	(D) $\sqrt{2}$	
7.	曲面 $z^2 = z$	xy-1在点(0,1,	-1) 处的切平	面方程为	·
		z + 2 = 0 $2z + 2 = 0$			
	$\oint_{L} (x+y)$ 的边界.	ds =	,其中 <i>L</i> 是	O(0,0), A(1,1), B(-1)	,1) 为项点的三角
	(A) 2	(B) 0	(C) $\sqrt{2}$	(D) $2 + \sqrt{2}$	
9.	下列命题正	E确的是	·		
(A) 若 $\sum_{n=1}^{\infty} u_n$	收敛,则 $\sum_{n=1}^{\infty} u_n$	+100 收敛		
(B)若 <u>lim</u> <i>u</i>	$u_n = 0$, $\iiint \sum_{n=1}^{\infty} u_n$, 收敛		
(C) 若 $\sum_{n=1}^{\infty} (u_2)$	$u_{2n-1} + u_{2n}$)收敛,	则 $\sum_{n=1}^{\infty} u_n$ 收敛		
(D) 若 $\sum_{n=1}^{\infty} (u_n)$, + v _n)收敛,则	$\int \sum_{n=1}^{\infty} u_n \text{All} \sum_{n=1}^{\infty} v_n$	都收敛	

10.
$$\sum_{n=1}^{\infty} \frac{1}{n!} = \underline{\hspace{1cm}}$$

(A) e (B) e-1 (C) e+1 (D) e^2

得分	评卷人

三、填空题(每小题2分,共计10分)

1. 过点 (1,0,-2) 且垂直于平面 2x+3y-z+4=0 的直线方程

2. 设
$$e^z - xyz = 0$$
,则 $\frac{\partial z}{\partial x} =$ ______.

3. 交换二重积分 $\int_0^1 dy \int_y^{\sqrt{y}} f(x,y) dx$ 的次序为______.

4. $\Sigma = x + y + z = 1$ 在第一卦限的部分,则 $\iint_{\Sigma} xzdS = \underline{\qquad}$

得分	评卷人

四、计算题(每题10分,共计50分)

1. 设函数 $z = f(x^2 + y^2, xy)$ 具有二阶连续的偏导数,求 $\frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial x^2}$.

2. 计算 $\iint_{\Omega} z dx dy dz$, 其中 Ω 是由锥面 $z = \sqrt{x^2 + y^2}$ 与平面 z = 2 所围成的闭 区域.

3. 利用格林公式计算
$$\int_L \frac{y^2}{2\sqrt{a^2+x^2}} dx + y[xy+\ln(x+\sqrt{a^2+x^2})]dy$$
,其中 L 是由 $O(0,0)$ 到 $A(2a,0)$ 沿 $x^2+y^2=2ax$ 的上半圆周的一段弧.

- 4. 计算 $\iint_{\Sigma} x dy dz 3y dz dx + z dx dy$,其中 Σ 是平面 3x + 4y + 12z = 12 位于第一卦限部分的上侧.
- 5. 求幂级数 $\sum_{n=0}^{\infty} \frac{1}{n+1} x^n$ 的和函数,并由此计算级数 $\sum_{n=0}^{\infty} \frac{1}{(n+1)2^n}$ 的和.

得分	评卷人

五、应用题(共计10分)

求二元函数 $f(x,y) = x^2(2+y^2) + y \ln y$ 的极值.