Un capteur de pression P est constitué d'un tube (cylindre creux) d'épaisseur e et de diamètre interne D très petit devant sa longueur. Ce corps d'épreuve en alliage d'acier, de module de Young Y et de coefficient de Poisson ν , est équipé de 4 jauges d'extensomètrie identiques de facteur de jauge K et de résistance au repos R_0 (P=0).

Comme l'indique la figure 1, deux jauges R_L mesurent la déformation longitudinale ϵ (parallèle à l'axe du cylindre) et deux jauges R_T mesurent la déformation tangentielle ϵ ' (perpendiculaire à l'axe du cylindre). Les déformations ϵ et ϵ ' sont liées à la pression P par :

$$\varepsilon = \frac{(1 - 2.\nu).D}{4.Y.e}.P = \frac{R_L - R_0}{K.R_0}$$
 $\varepsilon' = \frac{(2 - \nu).D}{4.Y.e}.P = \frac{R_T - R_0}{K.R_0}$

Les capteurs piézorésistifs R_L et R_T sont montés en pont de Wheatstone comme l'indique la figure 2. Alimenté par une source de courant I_0 , le pont délivre une tension de mesure V_m . On prendra pour les applications numériques D/e=80; K=2; $R_0=5$ $K\Omega$; $\nu=0,2$; Y=2 10^{11} N/m^2 ; $I_0=2$ mA;

- 1. Etablir l'expression de la tension de mesure V_m en fonction des résistances R_L et R_T . Exprimer les résistances R_L et R_T en fonction de la pression P et donner la fonction V(P). En déduire les valeurs de la pression et des déformations longitudinale et tangentielle correspondant à une mesure $V_m = 24 \text{ mV}$.
- 2. Le tube est réalisé dans un matériau pour lequel la déformation maximale autorisée en tout point est $\epsilon_M = 0.36$ % (limite du domaine élastique). En déduire la valeur de la pression maximale P_M correspondant à l'étendue de mesure possible. Exprimer la sensibilité propre du capteur définie par $S = (1/R_0.I_0)$. $(\delta V_m/\delta P)$ en fonction de P_M et ϵ_M . En donner la valeur en $\mu V/V/bar$. Discuter le produit $S.P_M$.
- 3. Un étalonnage à deux températures T_1 et T_2 du montage alimenté en courant (fig. 2) a donné les mesures suivantes de la tension à vide $V_m(0)$: $T_1 = 25 \, ^{\circ}\text{C}: \quad V_m(0) = 2,25 \, \text{mV}; \qquad \qquad T2 = 100 \, ^{\circ}\text{C}: V_m(0) = 2,5 \, \text{mV}$ Quelle est l'imperfection du pont de Wheatstone révélée par cet étalonnage ? Donner l'emplacement d'une résistance parallèle R_p compensation. Exprimer R_p en fonction de $V_m(0)$. En déduire sa valeur de référence et son coefficient thermique.
- **4.** Déterminer une nouvelle valeur du courant I_0 permettant d'obtenir une sortie en lecture directe ($V_m = 10^n$. P) sachant que la puissance maximale admissible dans chaque jauge (au repos) est limitée à 10 mW.
- 5. Le montage est alimenté par une tension $E = R.I_0$. Etablir V_m (P) et comparer au montage alimenté en courant.

Figure 1

Figure 2