

B4- Mathematics

B-MAT-400

208dowels

Quality control, calibration and χ

Dowels mass-production

Quality control, calibration and χ

binary name: 208dowels

repository name: 208dowels_\$ACADEMICYEAR

repository rights: ramassage-tek

language: C, C++, perl 5, python 3 (≥ 3.5), ruby 2 (≥ 2.2), php 5.6, bash 4

group size: 1-2

compilation: via Makefile, including re, clean and fclean rules

- Your repository must contain the totality of your source files, but no useless files (binary, temp files, obj files,...).
- All the bonus files (including a potential specific Makefile) should be in a directory named bonus.
- Error messages have to be written on the error output, and the program should then exit with the 84 error code (0 if there is no error).

A power hammer mass produces dowels. Sometimes, some pieces are defective, and the whole process requires quality control: 100 samples of 100 pieces are randomly taken, and defective pieces are numbered. We get what we call an observed serial. Then, a statistical fit is done using the binomial distribution, and validated thanks to the χ^2 test.

This may remind you of something...

Let's note x the number of defective pieces, O_x the size of the observed sample, and T_x the theoretical size. Moreover, only statistical classes of over 10 elements will be taken into consideration, so that the fit is consistant (which means x values can be joined to obtain sizes bigger than 10); extreme x values will be aggregated first.

Finally, with the number of constraints for the fit being 2, the v parameter of the freedom degrees is equal to the number of classes minus 2.

Your program will take 9 integers as inputs, representing respectively O_0 , O_1 ,... O_{8+} . It will output :

- 1. an array showing observed and theoretical sizes for each statistical class (with totals)
- 2. the chosen probability distribution for the fit,
- 3. the sum of the square differences,
- 4. the ν value,
- 5. the value range in which the probability falls if the fit is valid.

Your program output has to be strictly identical to the one below.

Terminal /B-MAT-400> ./208dowels 6 4 10 18 20 19 11 5 7 0-1 2 3 4 6 total 10 20 100 0x13.8 16.3 8.0 19.2 19.9 11.1 100 distribution: B(100, 0.041) sum of the square 2.029 differences: freedom degrees: 80%<P<90% fit validity:

Terminal /B-MAT-400> ./208dowels 6 4 10 8 20 19 11 5 17 6-7 0-12-3 8+ 4 total 0x18 20 19 16 100 5.2 26.7 19.1 17.7 22.2 9.0 100 Txdistribution: B(100, 0.046) 16.119 sum of the square differences: freedom degrees: 4 fit validity: P<1%

D/B-MAT-400> ./208dowels 4 5 13 19 20 16 12 7 4 0-2 4 5 6 7+ total 0x22 19 20 16 12 11 100 23.1 19.7 19.9 16.0 10.6 10.7 100 TxB(100, 0.0401) distribution: sum of the square 0.270 differences: freedom degrees: fit validity: P>99%

Terminal

χ^2 distribution table

ν	99%	90%	80%	70%	60%	50%	40%	30%	20%	10%	5%	2%	1%
1	0.00	0.02	0.06	0.15	0.27	0.45	0.71	1.07	1.64	2.71	3.84	5.41	6.63
2	0.02	0.21	0.45	0.71	1.02	1.39	1.83	2.41	3.22	4.61	5.99	7.82	9.21
3	0.11	0.58	1.01	1.42	1.87	2.37	2.95	3.66	4.64	6.25	7.81	9.84	11.35
4	0.30	1.06	1.65	2.19	2.75	3.36	4.04	4.88	5.99	7.78	9.49	11.67	13.28
5	0.55	1.61	2.34	3.00	3.66	4.35	5.13	6.06	7.29	9.24	11.07	13.33	15.01
6	0.70	2.20	3.07	3.83	4.57	5.35	6.21	7.23	8.56	10.64	12.59	15.03	16.81
7	1.24	2.83	3.82	4.67	5.49	6.35	7.28	8.38	9.80	12.02	14.07	16.62	18.48
8	1.65	3.49	4.59	5.53	6.42	7.34	8.35	9.52	11.03	13.36	15.51	18.17	20.09
9	2.09	4.17	5.38	6.39	7.36	8.34	9.41	10.66	12.24	14.68	16.92	19.63	21.67
10	2.56	4.87	6.18	7.27	8.30	9.34	10.47	11.78	13.44	15.99	18.31	21.16	23.21

