Ironhack Delivery - Presentation

Aroa Chans Patricia Palomo Óscar Xu

1. KPIs

Market penetration rate:

- # Usuarios únicos en cierto barrio o distrito / Total de población de cierto barrio o distrito
- 1) Medir la cuota del mercado alcanzado en barrios utilizando códigos postales.
- 2) Combinar con fuentes externas oficiales de población en diferentes barrios
- 3) Con este KPI se puede medir en qué mercados se está alcanzando la cuota deseada

1. KPIs

Order cancellation rate:

- # Pedidos cancelados / Total de pedidos realizados
- 1) Medir de todos los pedidos realizados, cuantos son cancelados
- 2) De esta forma, poder entender si el negocio está funcionando correctamente o experimenta algún tipo de problema operacional

1. KPI:

OTIF: On Time in Full

Número total de pedidos completos y entregados en tiempo / número total de pedidos

Medir el grado de satisfacción de los clientes y nuestra capacidad y eficiencia operacional

- Que el pedido conste de los artículos solicitados.
- 2) Que el pedido cuente con la cantidad de producto demandada.
- 3) Que el pedido se entregue en el momento acordado.
- 4) Que el pedido se envíe a la ubicación idónea.

2. SQL

Resultado deseado:

order_id	first_courier_message_timestamp	first_customer_message_timestamp	courier_messages	customer_messages	first_message_sender	first_message_timestamp	time_elapsed_first_response	last_message_timestamp	order_stage
59528038	8/19/2019 7:59	NULL	1	0		8/19/2019 7:59	NULL	8/19/2019 7:59	ADDRESS_DELIVERY
59528555	8/19/2019 8:01	8/19/2019 8:00	1	2	NaN	8/19/2019 8:00	60	8/19/2019 8:03	PICKING_UP

- Order id no puede estar repetido, cada línea tiene un order_id único
- Cuando alguna parte no manda ningún mensaje, el timestamp debe ser nulo
- Cuando se ha mandado un mensaje pero no se ha obtenido respuesta, el tiempo hasta primera respuesta tiene que ser nula

2. SQL

Tablas temporales necesarias:

```
with elapsed time as
(select order_id as order_number, elapsed_seconds
from
(select order id.
message_sent_time,
lag(message_sent_time) over (partition by order_id order by message_sent_time asc) as previous_message_timestamp,
row_number () over (partition by order_id order by message_sent_time asc) as rn.
strftime('%s',message_sent_time) - strftime('%s',lag(message_sent_time) over (partition by order_id order by message_sent_time asc)) as
elapsed_seconds
from df_courier)
where rn=2).
last_order as
(select order_id2, order_stage
from
(select order id as order id2.
row_number() over (partition by order_id order by message_sent_time desc) as rn,
order_stage
from df_courier)
where rn = 1
```

2. SQL

Query final:

```
select order id.
(select min(message_sent_time)
from df_courier
where order_id = a.order_id and sender_app_type like 'Courier%') as first_courier_message_timestamp,
(select min(message_sent_time)
from df courier
where order_id = a.order_id and sender_app_type like 'Customer%') as first_customer_message_timestamp,
    (case when sender_app_type like '%Courier%' then 1
    else 0
    end)
as courier_messages,
    (case when sender_app_type like '%Customer%' then 1
    else 0
    end)
as customer_messages,
max
    (case when sender_app_type like '%Customer%' and chat_started_by = 't' then 1
    when sender_app_type like '%Courier%' and chat_started_by = 't' then 2
   else null
    end) as first_message_sender,
min(message_sent_time) as first_message_timestamp,
elapsed_seconds as time_elapsed_until_first_response,
max(message_sent_time) as last_message_timestamp,
c.order stage
from df courier a
left join elapsed_time b
on a.order_id = b.order_number
left join last_order c
on a.order_id = c.order_id2
group by order_id
```

3. Experimento

Medir el impacto de aumentar la tarifa de entrega de pedidos en una ciudad dada (sin considerar el valor de los productos)

Prueba A/B

(o prueba de control y tratamiento).

Dividir a los usuarios en dos grupos:

- Grupo control: tarifa actual de €1.9
- Grupo de tratamiento: nueva tarifa de €2.1

Suposiciones

Representatividad: Asegurar una asignación aleatoria de los usuarios a cada grupo.

Efecto uniforme: Se asume que el aumento de la tarifa afectará de manera similar a todos los usuarios.

Determinación de la duración del experimento

Para determinar la duración:

Volumen de pedidos: Estimar el número de pedidos diarios y determinar cuántos pedidos son necesarios para detectar una diferencia significativa en los KPIs clave.

Poder estadístico: Utilizar un cálculo de tamaño de muestra para asegurar que el experimento tenga suficiente poder estadístico para detectar diferencias significativas.

KPI

Tasa de conversión

Frecuencia de pedidos

Valor promedio del pedido

Retención de usuarios

Churn rate

Ingresos totales

Satisfacción del cliente/ reclamaciones/quejas(NPS)

Análisis de resultados

Comparación de KPIs

Análisis de varianza

Modelos de regresión

Test de significancia

Recomendaciones

- Impacto negativo: (p.ej., ↓ tasa de conversión, ↑ churn rate):
- Aumento menor de la tarifa o promociones para mitigar el impacto.
- Evaluar si el aumento de los ingresos por entrega compensa las pérdidas en otros KPIs.
- No tiene un impacto o tiene un impacto positivo (p.ej., ↑ los ingresos totales sin afectar la tasa de conversión):
 - Aumento de tarifa permanente.
- Explorar otras oportunidades para mejorar la rentabilidad sin afectar negativamente la experiencia del cliente.
- Segmentación de resultados:(p. ej., usuarios frecuentes vs. usuarios ocasionales)
- -Estrategias diferenciadas de precios o promociones para distintos segmentos.

Psicología de precios - efecto dígito izquierdo

Los precios que terminan en .9 se perciben como más atractivos o accesibles para los consumidores.

Tienden a enfocarse en la cifra de la izquierda (en este caso, **1** en lugar de **2**) y perciben una diferencia significativa en el precio.

57,59 % Subautorizados

45,41 % Autorizados

Incremento (+20%)

30,97 % Subautorizados

69,03 %

Autorizados

TOP 10 % under authorized orders per country

Necessary amount to cover all under_authorized per store

10264	9854	17327	10358
1.78K	0.75К	0.74K	0.66К
65896	17326	300	65895
0.91K	0.60K		
9855	28669		
0.91K	0.60K	0.5	7K 0.55K

Total	6497
65898	18
41131	18
62935	19
15711	19
50832	20
29451	20
10695	22
28671	23
28675	33
15144	33
store_address	Cancelled

Correlación entre Total Monto Necesario y Número de Pedidos Cancelados Coeficiente de correlación: 0.75

Coeficiente de correlación de Pearson: 0.75

GRACIAS POR VUESTRA ATENCIÓN

