Efficient Shuffle Management for DAG Computing Frameworks Based on the FRQ Model

Abstract—In industrial large-scale data-parallel analytics, shuffle, or the cross-network read and the aggregation of partitioned data between tasks with data dependencies, usually bring in large overhead. Due to the dependency constraints, execution of those descendant tasks could be delayed by long shuffles. To reduce shuffle overhead, we present SCache, an open source plug-in system that particularly focuses on shuffle optimization. By extracting and analyzing shuffle dependencies prior to the actual task execution, SCache can adopt heuristic pre-scheduling combining with shuffle size prediction to pre-fetch shuffle data and balance load on each node. Meanwhile, SCache takes full advantage of the system memory to accelerate the shuffle process. We also propose a new performance model called Framework Resources Quantification (FRQ) model to analyze DAG frameworks and evaluate the SCache shuffle optimization. The FRQ model quantifies the utilization of resources and predicts the execution time of each phase of computing jobs. We have implemented SCache on both Apache Spark and Apache Hadoop MapReduce. The performance of SCache has been evaluated with both simulations and testbed experiments on a 50node Amazon EC2 cluster. Those evaluations have demonstrated that, by incorporating SCache, the shuffle overhead of Spark can be reduced by nearly 89%, and the overall completion time of TPC-DS queries improves 40% on average. On Apache Hadoop MapReduce, SCache optimizes end-to-end Terasort completion time by 15%.

Index Terms—Distributed DAG frameworks, Shuffle, Optimization, Performance model

I. INTRODUCTION

E are in an era of data explosion — 2.5 quintillion bytes of data are created every day according to IBM's report¹. In *industry 4.0*, an increasing number of IoT sensors are embedded in the industrial production line [1]. During the manufacturing process, the information about the assembly lines, stations, and machines is continuously generated and collected. Using distributed computing frameworks to analyze industrial big-data is an inevitable trend [2]. Several sophisticated frameworks are used in industrial big-data analysis such as Hadoop MapReduce², Spark [3], and Storm³. Industrial big-data is more structured, correlated, and ready for analytics than traditional big-data, because industrial big-data is generated by automated equipment [4], [5].

According to a cross-industry study [6], both industrial and traditional big-data share a characteristic during analytical processing — a small fraction of the daily workload uses well over 90% of the cluster's resources, and these workloads often contain a huge shuffle size. According to another MapReduce trace analysis from Facebook, the shuffle phase accounts for 33% of the job completion time on average, and up to 70%

Fig. 1: Workflow Comparison between Legacy DAG Computing Frameworks and Frameworks with SCache

in shuffle-heavy jobs [7]. The shuffle phase is crucial and heavily affecting the end-to-end application performance. Most of the popular frameworks define jobs as directed acyclic graphs (DAGs), such as map-reduce pipeline in Hadoop MapReduce, lineage of resilient distributed datasets (RDDs) in Spark, vertices and edges in Dryad [8] and Tez [9], etc. Despite the differences among data-intensive frameworks, the shuffle phase is always essential as communication between successive computation stages.

Although continuous efforts of performance optimization have been made among a variety of computing frameworks [10]–[19], the shuffle phase is often poorly optimized in practice. In particular, we observe that one major deficiency lies in the coupled scheduling among different system resources. As Figure 1 shows, the *shuffle write* is responsible for writing intermediate results to disk, which is attached to the tasks in ancestor stages (i.e., map task). And the *shuffle read* fetches intermediate results from remote disks through network, which is commonly integrated as part of the tasks in descendant stages (i.e., reduce task). Once scheduled, a fixed bundle of resources (i.e., CPU, memory, disk, and network) named *slot* is assigned to a task, and the resources are released only after the task finishes. Such task aggregation together with the coupled scheduling effectively simplifies task management.

However, since a cluster has a limited number of slots, attaching the I/O intensive shuffle phase to the CPU/memory intensive computation phase results in a poor multiplexing between computational and I/O resources.

Moreover, the shuffle read phase introduces all-to-all communication pattern across the network, and such network I/O procedure is also poorly coordinated. Note that the shuffle read phase starts fetching data only after the corresponding reduce task starts. Meanwhile, the reduce tasks belonging to the same

¹http://www-01.ibm.com/software/data/bigdata/

²http://hadoop.apache.com/

³http://storm.apache.com/

execution phase are scheduled at the same time by default. As a result, all the corresponding reduce tasks start fetching shuffle data almost simultaneously. Such synchronized network communication causes a burst demand for network I/O, which in turn greatly enlarges the shuffle read completion time. To desynchronize the network communication, an intuitive way is to launch some tasks in the descendent stage earlier, such as "slow-start" from Hadoop MapReduce. However, such early-start has several deficiencies. First, the early-start always introduces an extra early allocation of the slot leading to a slow execution of the current stage. Second, the early-start can not fully overlap the shuffle phases and the descendent stage. Due to the shuffle phases are coupled with the reduce phases and the size of slots is limited, only parts of reduce tasks can be early-start. Last but not least, it is hard to find the optimal time to begin the early-start. If too early, the descendent stages are not ready to output enough intermediate data for the shuffle. If too late, the idle network resource is wasted.

We note that the above deficiencies generally exist in most of the DAG computing frameworks. As a result, even though we can effectively resolve the above deficiencies by modifying one framework, updating one application at a time is impractical given the sheer number of computing frameworks available today.

Can we efficiently optimize the data shuffling without significantly changing DAG frameworks? In this paper, we answer this question in the affirmative with S(huffle)Cache, an open source⁴ plug-in system which provides a shufflespecific optimization for different DAG computing frameworks. Specifically, SCache takes over the whole shuffle phase from the underlying framework by providing a crossframework API for both shuffle write and read. SCache's effectiveness lies in the following two key ideas. First, SCache decouples the shuffle write and read from both map and reduce tasks. Such decoupling effectively enables more flexible resource management and better multiplexing between the computational and I/O resources. In addition, SCache preschedules the reduce tasks without launching them and prefetches the shuffle data. Such pre-scheduling and pre-fetching effectively overlap the network transfer time, desynchronize the network communication, and avoid the extra early allocation of slots.

The workflow of a DAG framework with SCache is presented in Figure 1. SCache replaces the disk operations of shuffle write by the memory copy in map tasks. The slot is released after the memory copy. The shuffle data is stored in the reserved memory of SCache until all reduce tasks are pre-scheduled. Then the shuffle data is pre-fetched according to the pre-scheduling results. The application-context-aware memory management caches the shuffle data in memory before launching the reduce task. By applying these optimizations, SCache can help the DAG framework achieve a significant performance gain.

The main challenge to achieve this optimization is *pre-scheduling reduce tasks without launching*. First, the complexity of DAG can amplify the defects of naïve scheduling

⁴https://github.com/frankfzw/SCache

schemes. In particular, randomly assigning reduce tasks might result in a collision of two heavy tasks on one node. This collision can aggravate data skew, thus hurting the performance. Second, pre-scheduling without launching violates the design of most frameworks that launch a task after scheduling. To address the challenges, we propose a heuristic task prescheduling scheme with shuffle data prediction and a task coscheduler (Section III).

Another challenge is the *in-memory data management*. To prevent shuffle data touching the disk, SCache leverages extra memory to store the shuffle data. To minimize the reserved memory while maximizing the performance gain, we propose two constraints: all-or-nothing and context-aware (Section IV).

We also propose a new performance model called *Framework Resources Quantification* (FRQ) model. The FRQ model quantifies computing and I/O resources and visualizes the resources scheduling strategies of DAG frameworks in the time dimension. We use the FRQ model to assist in analyzing the deficiencies of resources scheduling and optimize it. In the industrial production, the FRQ model can discover the irrationality of resource scheduling in big-data analysis by revealing the relationships between the various phases (Section V).

We have implemented SCache on both Apache Spark [20] and Hadoop MapReduce. The performance of SCache is evaluated with both simulations and testbed experiments on a 50-node Amazon EC2 cluster on both Apache Spark and Apache Hadoop. On Apache Spark, we conduct a basic test - *GroupByTest*. We also evaluate the system with Terasort⁵ benchmark and standard workloads like TPC-DS⁶ for multitenant modeling. On Apache Hadoop, we focus on Terasort benchmark. In a nutshell, SCache can eliminate explicit shuffle time by at most 89% in varied applications. More impressively, SCache reduces 40% of overall completion time of TPC-DS queries on average on Apache Spark. On Apache Hadoop, SCache optimizes end-to-end Terasort completion time by 15%.

II. BACKGROUND AND OBSERVATIONS

In this section, we first study the typical shuffle characteristics (II-A), and then spot the opportunities to achieve shuffle optimization (II-B).

A. Characteristic of Shuffle

In large scale data parallel computing, shuffle is designed to achieve an all-to-all data transfer among nodes. For a clear illustration, we use *map tasks* to define the tasks that produce shuffle data and use *reduce tasks* to define the tasks that consume shuffle data.

1) Overview of shuffle process: Each map task partitions the result data (key, value pair) into several buckets according to the partition function (e.g., hash). The total number of buckets equals the number of reduce tasks in the successive step. The shuffle process can be further split into two parts:

⁵https://github.com/ehiggs/spark-terasort

⁶http://www.tpc.org/tpcds/

shuffle write and shuffle read. Shuffle write starts at the end of a map task and writes the partitioned map output data to local persistent storage. Shuffle read starts at the beginning of a reduce task and fetches the partitioned data from remote as its input.

2) Impact of shuffle process: Shuffle is I/O intensive, which might introduce a significant latency to the application. Reports show that 60% of MapReduce jobs at Yahoo! and 20% at Facebook are shuffle-heavy workloads [21]. For those shuffle-heavy jobs, the shuffle latency may even dominate Job Completion Time (JCT). For instance, a MapReduce trace analysis from Facebook shows that shuffle accounts for 33% JCT on average, up to 70% in shuffle-heavy jobs [7].

B. Observations

Can we mitigate or even remove the overhead of shuffle? To find the answers, we ran some typical Spark applications on a 5-node m4.xlarge EC2 cluster and analyzed the design and implementation of shuffle in some DAG frameworks. Here we present the hardware utilization trace of one node running Spark's *GroupByTest* in Figure 2 as an example. This job has 2 rounds of tasks for each node. The *Map Execution* is marked from the launch time of the first map task to the execution end time of the last one. The *Shuffle Write* is marked from the beginning of the first shuffle write in the map stage. The *Shuffle Read and Reduce Execution* is marked from the launch time of the first reduce task.

- 1) Coarse Granularity Resource Allocation: When a slot is assigned to a task, it will not be released until the task completes (i.e., the end of shuffle write in Figure 2). On the reduce side, the network transfer of shuffle data introduces an explicit I/O delay during shuffle read (i.e., the beginning of shuffle read and execution in Figure 2). Meanwhile, both shuffle write and shuffle read occupy the slot without significantly involving CPU as presented in Figure 2. The current coarse slot-task mapping results in an imbalance between task's resource demand and slot allocation thus decreasing the resource utilization. Unfortunately this defect exists not only in Spark [20] but also Hadoop MapReduce and Apache Tez [9]. A finer granularity resource allocation scheme should be provided to reduce these delays.
- 2) Synchronized Shuffle Read: Almost all reduce tasks start shuffle read simultaneously. The synchronized shuffle read requests cause a burst of network traffic. As shown in Figure 2, the data transfer causes a high demand of network bandwidth, which may result in network congestion and further slow down the network transfer. It also happens in other frameworks that follow Bulk Synchronous Parallel (BSP) paradigm, such as Hadoop MapReduce, Dryad [8], etc.
- 3) Inefficient Persistent Storage Operation: At first, both shuffle write and read are tightly coupled with task execution, which results in a blocking I/O operation. This blocking I/O operation along with synchronized shuffle read may introduce significant latency, especially in an I/O performance bounded cluster. Besides, the legacy of storing shuffle data on disk is inefficient in modern clusters with large memory. Compared to input dataset, the size of shuffle data is relatively small. For

Fig. 2: CPU Utilization and I/O Throughput of a Node During a Spark Single Shuffle Application

example, the shuffle size of Spark Terasort is less than 25% of input data. The data reported in [22] also show that the amount of data shuffled is less than the input data by as much as 10% - 20%. On the other hand, memory based distributed storage systems have been proposed [14], [23], [24] to move data back to memory, but most of the DAG frameworks still store shuffle data on disks (e.g., Spark [20], Hadoop MapReduce, Dryad [8], etc). We argue that the memory capacity is large enough to store the short-living shuffle data with cautious management.

4) Multi-round Tasks Execution: Both experience and DAG framework manuals (e.g., Hadoop⁷ and Spark⁸) recommend that multi-round execution of each stage will benefit the performance of applications. For a cluster with n slots, the number of tasks should be $n \times k$ ($k \ge 1$). Since the shuffle data becomes available as soon as the end of a task's execution, and the network is idle during the map stage ("Network TX" during map stage in Figure 2), the property of multi-round tasks can be leveraged to hide the cost by starting shuffle data transfer at the end rounds of map tasks.

To mitigate the shuffle overhead, we propose an optimization that starts shuffle read ahead of reduce stage to overlap the I/O operations in multi-round map tasks, and uses memory to store the shuffle data. To achieve this optimization:

- Shuffle process should be decoupled from task execution to achieve a fine granularity scheduling scheme.
- Reduce tasks should be pre-scheduled without launching to achieve shuffle data pre-fetching.
- Shuffle process should be taken over and managed outside DAG frameworks to achieve a cross-framework optimization.

III. SHUFFLE OPTIMIZATION

This section presents the detailed methodologies to achieve the three design goals. The out-of-framework shuffle data management is used to decouple shuffle from execution and provide a cross-framework optimization. Two heuristic algorithms (Algorithm 1, 2) and a co-scheduler is used to achieve shuffle data pre-fetching without launching tasks.

A. Decouple Shuffle from Execution

To achieve the decoupling of map tasks and reduce tasks, the original shuffle write and read implementation in the current frameworks should be modified to apply the API of SCache.

 $^{^{7}} http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html$

⁸http://spark.apache.org/docs/1.6.2/configuration.html

Fig. 3: Stage Completion Time Improvement of OpenCloud Trace

Fig. 4: Shuffle Data Prediction

To prevent the release of a slot being blocked by shuffle write, SCache provides a disk-write-like API named putBlock to handle the storage of partitioned shuffle data blocks produced by a map task. Inside the putBlock, SCache uses memory copy to move the shuffle data blocks out of map tasks and store them in the reserved memory. After the memory copy, the slot will be released immediately.

From the perspective of reduce task, SCache provides an API named getBlock to replace the original implementation of shuffle read. With the precondition of shuffle data pre-fetching, the getBlock leverages the memory copy to fetch the shuffle data from the local memory of SCache.

B. Pre-scheduling with Application Context

The pre-scheduling and pre-fetching are the most critical aspects of the optimization. The task-node mapping is not determined until tasks are scheduled by the scheduler of DAG framework. Once the tasks are scheduled, the slots will be occupied to launch them. On the other hand, the shuffle data cannot be pre-fetched without the awareness of task-node mapping. We propose a co-scheduling scheme with two heuristic algorithms (Algorithm 1, 2). That is, the task-node mapping is established a priori, and then it is enforced by the co-scheduler when the DAG framework starts task scheduling.

1) Problem of Random Mapping: The simplest way of prescheduling is mapping tasks to nodes randomly and evenly. In order to evaluate the effectiveness of random mapping, we use traces from OpenCloud 9 for the simulation. The average shuffle read time is 3.2% of total reduce completion time.

As shown in Figure 3, the baseline (i.e., red dotted line) is the stage completion time with Spark FIFO scheduling algorithm. We then remove the shuffle read time of each task and run the simulation under three scheduling schemes: random mapping, Spark FIFO, and our heuristic MinHeap. Random mapping works well when there is only one round of tasks, but the performance drops as the round number grows. This is because that data skew commonly exists in data-parallel computing [25]–[27]. Several heavy tasks may be assigned to the same node, thus slowing down the whole stage. In addition, randomly assigned tasks also ignore the data locality between shuffle map output and reduce input, which may introduce extra network traffic in cluster.

2) Shuffle Output Prediction: The problem of random mapping is obviously caused by application context (e.g., shuffle data size) ignorance. Note that a balanced schedule decision can be made under the consideration of the size of each reduce task, and the size of a reduce task produced by one shuffle $reduceSize_i = \sum_{j=0}^m BlockSize_{ji}$, where the m is the number of map tasks that can be easily extracted from DAG information; $BlockSize_{ji}$ represents the size of block which is produced by map $task_j$ for reduce $task_i$ (e.g., block '1-1' in Figure 4). The final sizes of reduce tasks can be calculated by aggregating $reduceSize_i$ by reduce ID among all shuffle dependencies. So the pre-scheduling can be made if the "prediction" of size of shuffle block is practical.

For the most DAG applications with random large scale input, the $BlockSize_{ji}$ in a particular shuffle can be predicted accurately by liner regression model (i.e., equation 1) based on observation that the ratio of map output size and input size are invariant given the same job configuration [28], [29]:

$$BlockSize_{ii} = a \times inputSize_i + b$$
 (1)

The $inputSize_j$ is the input size of jth map task. The a and b can be determined using the observed $inputSize_j$ and $BlockSize_{ji}$.

Though the linear regression is stable in most scenarios, it can fail in some uncertainties introduced by sophisticated frameworks like Spark [20]. For instance, the customized partitioner may result in large inconsistency between observed map output blocks distribution and the final reduce input distribution. We present two particular examples with 20 tasks respectively in Figure 5a and Figure 5b. The data in are normalized to 0-1 because the prediction of SCache only produces the data distribution instead of the real size. The observed map outputs are randomly picked. With a random input and a hash partitioner in Figure 5a, the distribution of observed map output is close to the final reduce input distribution. The prediction results also fit them well. However, the data partitioned by Spark RangePartitioner [20] in Figure 5b results in a deviation from the linear regression model, because the RangePartitioner might introduce an extreme high data locality skew. That is, for one reduce task, almost all of the input data are produced by a particular map task (e.g., the

⁹http://ftp.pdl.cmu.edu/pub/datasets/hla/dataset.html

Fig. 5: Reduction Distribution Prediction

observed map tasks only produce data for reduce task 0-5 in Figure 5b). The data locality skew results in a missing of other reduce tasks' data in the observed map outputs.

Algorithm 1 Heuristic MinHeap Scheduling for Single Shuffle

```
1: procedure SCHEDULE(m, host_ids, p_reduces)
 2:
        m \leftarrow partition number of map tasks
        R \leftarrow \text{sort } p\_reduces \text{ by size in non-increasing order}
 3:
        M \leftarrow \text{min-heap } \{ host\_id \rightarrow ([reduces], size) \}
 4:
 5:
        idx \leftarrow 0
 6:
        while idx < len R do
 7:
            M[0].size += R[idx].size
            M[0].reduces.append (R[idx])
 8:
 9.
            R[idx].assigned\_id \leftarrow M[0].host\_id
            Sift down M[0] by size
10:
            idx \leftarrow idx + 1
11:
12:
        max \leftarrow \text{maximum size in } M
13:
        for all reduce in R do
                                          ▶ Heuristic locality swap
            if reduce.assigned\_id \neq reduce.host\_id then
14:
15:
                p \leftarrow reduce.prob
16:
                norm \leftarrow (p - 1/m) / (1 - 1/m) / 10
                upper\_bound \leftarrow (1 + norm) \times max
17:
                SWAP\_TASKS(M, reduce, upper\_bound)
18:
        return M
19: procedure SWAP\_TASKS(M, reduce, upper\_bound)
20:
        Swap tasks between node host_id and node assigned_id
        of reduce without exceeding the upper_bound
21:
22:
        of both nodes.
        Return if it is impossible.
23:
```

To handle this corner case, we introduce another methodology, named weighted reservoir sampling, as a substitution of linear regression. Note that linear regression will be replaced only when a RangePartitioner or a customized non-hash partitioner occurs. For each map task, we use classic reservoir sampling to randomly pick $s \times p$ of samples, where p is the number of reduce tasks and s is a tunable number. After that, the map function is called locally to process the sampled data (Sampling in Figure 4). Finally, the partitioned outputs are collected with the $InputSize_j$ as the weight of the samples. Note that sampling does not consume the input data of map tasks. The $BlockSize_{ji}$ can be calculated by:

$$BlockSize_{ji} = InputSize_{j} \times \frac{sample_{i}}{s \times p}$$

$$sample_{i} = \text{number of samples for } reduce_{i}$$
 (2)

Figure 5c proves that the sampling prediction can provide

much more accurate result than the linear regression. We will show the overhead evaluation of sampling in Section VI.

During both of the predictions, the composition of each reduce partition is calculated as well. We define $prob_i$ as

$$prob_{i} = \max_{0 \le j \le m} \frac{BlockSize_{kji}}{reduceSize_{i}}$$

$$m = \text{number of map tasks}$$
(3)

This parameter is used to achieve a better data locality while performing shuffle pre-scheduling.

3) Heuristic MinHeap Scheduling: As long as the input sizes of reduce tasks are available, the pre-scheduling is a classic scheduling problem without considering the data locality. But ignoring the data locality can introduce extra network transfer. In order to balance load while minimizing the network traffic, we present the Heuristic MinHeap Scheduling algorithm (Algorithm 1).

For the pre-scheduling itself (i.e., the first while in Algorithm 1), the algorithm maintains a min-heap to simulate the load of each node and applies the longest processing time rule (LPT) [30] to achieve 4/3-approximation optimum. Since the sizes of tasks are considered while scheduling. Heuristic MinHeap can achieve a shorter makespan than Spark FIFO which is a 2-approximation optimum. Simulation of OpenCloud trace in Figure 3 also shows that Heuristic MinHeap has a better improvement (average 5.7%) than the Spark FIFO (average 2.7%). After pre-scheduling, the tasknode mapping will be adjusted according to the locality. The SWAP_TASKS will be triggered when the host_id of a task does not equal the assigned_id. Based on the prob, the normalized probability norm is calculated as a bound of performance degradation. Inside the SWAP_TASKS, tasks will be selected and swapped without exceeding the $upper_bound.$

4) Cope with Multiple Shuffle Dependencies: A reduce stage can have more than one shuffle dependency in the current DAG computing frameworks. The technique mentioned in Section III-B2 can only handle an ongoing shuffle. For those pending shuffles, it is impossible to predict their sizes. This problem can be solved by having all map tasks of pending shuffles launched simultaneously. But doing this introduces large overhead such as extra task serialization. To avoid violating the optimization from framework, we present the

Accumulated Heuristic Scheduling algorithm to cope with multiple shuffle dependencies.

As illustrated in Algorithm 2, the sizes of previous *shuffles* scheduled by Heuristic MinHeap are counted. When a new shuffle starts, the predicted *size*, *prob*, and *host_id* in *p_reduces* are accumulated with previous *shuffles*. After scheduling, if the new *assigned_id* of a reduce task did not equal the original one, a re-shuffle will be triggered to transfer data to the new host. This re-shuffle is rare since the previous shuffle data contributes a huge composition (i.e., high *prob*) after the accumulation, which leads to a higher probability of tasks swap in *SWAP_TASKS*.

Algorithm 2 Accumulated Heuristic Scheduling for Multi-Shuffles

```
1: procedure M_SCHEDULE(m, host\_id, p\_reduces, shuffles)
2:
        m \leftarrow partition number of map tasks \triangleright shuffles are the
    previous schedule result
3:
        for all r in p\_reduces do
             r.size += shuffles [r.rid].size
 4:
 5:
            new\_prob \leftarrow shuffles [r.rid] .size/r.size
            if new\_prob > r.prob then
 6:
 7:
                r.prob \leftarrow new prob
                r.host\_id \leftarrow shuffles [r.rid] .assigned\_host
 8:
        M \leftarrow SCHEDULE\left(m, host\_id, p\_reduces\right)
 9:
        for all host\_id in M do
10:
                                                          ▶ Re-shuffle
            for all r in M [host_id] .reduces do
11:
                if host \neq shuffles [r.rid] .assigned_host then
12:
13:
                    Re-shuffle data to host
14:
                     shuffles [r.rid] .assigned host \leftarrow host
        \mathbf{return}\ M
```

IV. IMPLEMENTATION

This section presents an overview of the implementation of SCache. We first present the system overview and the detail of sampling in Subsection IV-A. The following IV-B subsection focuses on two constraints on memory management. In Subsection IV-C, we evaluate the cross-framework capability of SCache. At last, we discuss the cost of adapting SCache and fault tolerance.

A. System Overview

SCache consists of three components: a distributed shuffle data management system, a DAG co-scheduler, and a worker daemon. As a plug-in system, SCache needs to rely on a DAG framework. As shown in Figure 6, SCache employs the legacy master-slaves architecture like GFS [31] for the shuffle data management system. The master node of SCache coordinates the shuffle blocks globally with application context. The worker node reserves memory to store blocks. The coordination provides two guarantees: (a) data is stored in memory before tasks start and (b) data is scheduled on-off memory with all-or-nothing and context-aware constraints. The daemon bridges the communication between DAG framework and SCache. The co-scheduler is dedicated to pre-schedule reduce tasks with DAG information and enforce the scheduling results to the original scheduler in framework.

When a DAG job is submitted, the DAG information is generated in framework task scheduler. Before the computing tasks begin, the shuffle dependencies are determined based on DAG. For each shuffle dependency, the shuffle ID, the type of partitioner, the number of map tasks, and the number of reduce tasks are included. If there is a specialized partitioner, such as range partitioner, in the shuffle dependencies, the daemon will insert a sampling application before the computing job. We will elaborate the sampling procedure in the Section IV-A1.

When a map task finishes computing, the shuffle write implementation of the DAG framework is modified to call the SCache API and move all the blocks out of framework worker through memory copy. After that, the slot will be released (without being blocked on disk operations). When a block of the map output (i.e., "map output" in Figure 4) is received, the SCache worker will send the block ID and the size to the master. If the collected map output data reach the observation threshold, the DAG co-scheduler will run the scheduling Algorithm 1 or 2 to pre-schedule the reduce tasks and then broadcast the scheduling result to start pre-fetching on each worker. SCache worker will filter the reduce tasks' IDs that are scheduled on itself and start pre-fetching shuffle data from the remote. In order to force the DAG framework to run according to the SCache pre-scheduled results, we insert some lines of codes in framework scheduler. After modification, the DAG scheduler consults SCache co-scheduler to get the preferred location for each task.

1) Reservoir Sampling: If the submitted shuffle dependencies contained a RangePartitioner or a customized non-hash partitioner, the SCache master will send a sampling request to the framework master. The sampling job uses a reservoir sampling algorithm [32] on each partition. For the sample number, it can be tuned to balance the overhead and accuracy. The sampling job randomly selects some items and performs a local shuffle with the partitioner (see Figure 7). At the same time, the items number is counted as the weight. These sampling data will be aggregated by reduce task ID on SCache master to predict the reduce partition size. After the prediction, SCache master will call Algorithm 1 or 2 to do the prescheduling.

B. Memory Management

As mentioned in Section II-B, though the shuffle size is relatively small, memory management should still be cautious enough to limit the effect of performance of DAG framework. When the size of cached blocks reaches the limit of reserved memory, SCache flushes some of them to the disk temporarily, and re-fetches them when some cached shuffle blocks are consumed or pre-fetched. To achieve the maximum overall improvement, SCache leverages two constraints to manage the in-memory data-all-or-nothing and context-aware-priority.

1) All-or-Nothing Constraint: This acceleration of inmemory cache of a single task is necessary but insufficient for a shorter stage completion time. Based on the observation in Section II-B4, in most cases one single stage contains multi-rounds of tasks. If one task missed a memory cache and exceeded the original bottleneck of this round, that task might become the new bottleneck and then slow down the whole stage. PACMan [33] has also proved that for multiround stage/job, the completion time improves in steps when

Fig. 6: SCache Architecture

Fig. 7: Reservoir Sampling of One Partition

 $n \times number$ of tasks in one round of tasks have data cached simultaneously. Therefore, the cached shuffle blocks need to match the demand of all tasks in one running round at least. We refer to this as the all-or-nothing constraint.

According to all-or-nothing constraint, SCache master leverages the pre-scheduled results to determine the bound of each round, and sets blocks of one round as the minimum unit of storage management. For those incomplete units, SCache marks them as the lowest priority.

2) Context-Aware-Priority Constraint: Unlike the traditional cache replacement schemes such as MIN [34], the cached shuffle data will only be used once (without failure), but the legacy cache managements are designed to improve the hit rate. SCache leverages application context to select victim storage units when the reserved memory is full.

At first, SCache flushes blocks of the incomplete units to disk cluster-widely. If all the units are completed, SCache selects victims based on two factors — *inter-shuffle* and *intra-shuffle*.

- Inter-shuffle: SCache master follows the scheduling scheme of Spark to determine the inter-shuffle priority.
 For example, Spark FIFO scheduler schedules the tasks of different stages according to the submission order. So SCache sets the priorities according to the submission time of each shuffle.
- Intra-shuffle: The intra-shuffle priorities are determined according to the task scheduling inside a stage. For example Spark schedules tasks with smaller ID at first. Based on this, SCache can assign the lower priority to storage units with a larger task ID.

C. Analysis of cross-framework capability

Shuffle optimization of SCache inevitably requires the modification on the DAG frameworks. SCache provides APIs through RPC, such as *putBlock* (*blockId*), *getBlock* (*blockId*), and *getScheduleResult* (*shuffleId*). In order to use SCache, we mainly need to modify two parts of the frameworks: (a) The DAG scheduler should provide the DAG information and follow the pre-scheduled result of SCache; (b) The shuffle data should be transferred to SCache Storage Management.

To prove the cross-framework capability of SCache, we adapt SCache on Hadoop MapReduce and Spark respectively. In Hadoop MapReduce, we modify codes in ResourceManager, MapTask, and ReduceTask to call SCache APIs through RPC. It takes about 380 lines of code. In Spark, we mainly modify DAGScheduler and the corresponding data fetcher. It only takes about 500 lines of code. Such hundreds of lines of code modification are very small compared to the hundreds of thousands of lines of code in DAG framework. We believe that the costs of enabling SCache on other DAG computing frameworks, such as Tez [9], are also low.

D. Discussion of Fault Tolerance

Due to the characteristic of shuffle data (e.g., short-lived, write-once, read-once), we believe fault tolerance is not a crucial goal of SCache at present. We plan to implement SCache master with Apache ZooKeeper [35] to provide constantly service. If a failure happens inside the SCache worker, SCache daemon can block the shuffle write/read operations until the worker process restarts without violating the correctness of the DAG computing. A possible way to handle this failure is selecting some backup nodes to store replications. But the replications can introduce a significant network overhead [36]. Currently, we leave the sever faults (e.g., the failure of a node) to the DAG frameworks. We believe it is a more promising way because most DAG frameworks have more advanced fast recovery schemes on the application layer, such as paralleled recovery of Spark. Meanwhile, SCache can still provide shuffle optimization during the recovery.

V. Framework Resources Quantification Model

In this section, we introduce *Framework Resources Quantification* (FRQ) model to describe the performance of DAG frameworks. The FRQ model quantifies computing and I/O resources and visualizes them in the time dimension. In the industrial production, the FRQ model is able to predict the execution time required by the application under any circumstances, including different DAG frameworks, hardware environments, etc. The FRQ model assist us in analyzing the resource scheduling of DAG framework and evaluate their performance. We will first introduce the FRQ model in Subsection V-A. In the following Subsection V-B, we will use the FRQ model to describe three different computation jobs and analyze their performance. In the last Subsection V-C, we will use the actual experimental results to evaluate the FRQ model.

Fig. 8: Framework Resources Quantification (FRQ) Model with Full Parallel MapReduce

A. The FRQ Model

The current distributed computing frameworks mostly use DAGs to describe the computation logic. A shuffle phase is required between each adjacent DAG computation phases. To better analyze the relationship between the computation phase and the shuffle phase, we propose the FRQ model. After quantifying computing and I/O resources, the FRQ model can describe different resource scheduling strategies. For convenience, we introduce the FRQ model by taking a simple MapReduce job as an example in this section.

Figure 8 shows how the FRQ model describes a MapReduce task. The FRQ model has five input parameters:

- Input Data Size (D): The data size of the computation phase.
- Data Conversion Rate (R): The conversion rate of the input data to the shuffle data during a computation phase. This rate depends on the algorithm used in the computation phase.
- Computation Round Number (N): The number of rounds needed to complete the computation phase. These rounds depend on the current computation resources and the configuration of the framework. Take Hadoop MapReduce as an example. Suppose we have a cluster with 50 CPUs and enough memory, the map phase consists of 200 map tasks, and each map requires 1 CPU. Then we need 4 rounds of computation to complete the map phase.
- Computation Speed (V_i) : The computation speed for each computation phase. This speed depends on the algorithm used in the computation phase.
- Shuffle Speed $(V_{Shuffle})$: Transmission speed in the shuffle phase. This speed depends on network and storage device bandwidth.

The FRQ model calculates the execution time of each phase of the job with these five parameters. As shown in Figure 8, the total execution time of a job is the sum of the map phase time and reduce phase time:

$$T_{Job} = T_{Map} + T_{Reduce} (4)$$

Map phase time depends on input data size and map

computation speed:

$$T_{Map} = \frac{D}{V_{Map}} \tag{5}$$

The reduce phase time formula is as follows:

$$T_{Reduce} = \frac{D \times R}{V_{Reduce}} + K \times T_{P_Shuffle}$$
 (6)

 $\frac{D\times R}{V_{Reduce}}$ represents the ideal computation time of a reduce phase, and $(K\times T_{P_Shuffle})$ represents the computing overhead. We use $T_{P_Shuffle}$ to represent the overlap time between the shuffle phase and the reduce phase. $T_{Shuffle}$ represents the total time of the shuffle phase. The relationship between $T_{P_Shuffle}$ and $T_{Shuffle}$ is determined by the resources scheduling strategy of DAG frameworks. This relationship will be shown in the following Subsection V-B. K is an empirical value. Because the computation of the reduce phase relies on the data transfer results of the shuffle phase, a portion of the computation in the reduce phase needs to wait for the transfer results. This waiting causes the overhead. The FRO model uses K to indicate the extent of the waiting.

The shuffle phase time formula is as follows:

$$T_{Shuffle} = \frac{D}{V_{Shuffle}} \tag{7}$$

According to Equation 4&6, we can optimize the job completion time by reducing $T_{P_Shuffle}$. Improving I/O speed is an effective way to reduce shuffle time. Another optimization method is to use the idle I/O resources in the map phase for pre-fetching (see Figure 8). Both of the above methods can effectively reduce $T_{P_Shuffle}$. By using the FRQ model to describe a MapReduce job, the users can analyze the resource scheduling strategy of the computation framework.

B. Model Analysis

The FRQ model can describe a variety of resource scheduling strategies. First, we analyze a simple scheduling strategy which used by Apache Spark by default. As shown in Figure 9a, the FRQ model describes a MapReduce job that is entirely serially executed. The overlap time between the shuffle phase and the reduce phase is 0, in which case $T_{P_Shuffle}$ is 0.

Fig. 9: Framework Resources Quantification (FRQ) Model with Different Scheduling Strategies

Fig. 10: Framework Resources Quantification (FRQ) Model with Full Parallel MapReduce in Different Environments

Therefore, the overhead of the reduce phase is 0. The total execution time of a job is also different from the above:

$$T_{Job} = T_{Map} + T_{Shuffle} + T_{Reduce} \tag{8}$$

Due to serialization, the I/O resource is idle during the reduce phase and map phase. This scheduling strategy is simple and has much room for optimization.

Figure 9b shows a more efficient scheduling strategy which is used by Hadoop MapReduce. In this scheduling strategy, shuffle phase and reduce phase start at the same time. In this case, $T_{P_Shuffle}$ is equal to $T_{Shuffle}$. Due to the increase in $T_{P_Shuffle}$, the time of reduce phase increases (according to Equation 6). Because the shuffle phase and the computation phase are executed in parallel, the total execution time of a job is the sum of T_{Map} and T_{Reduce} (see Equation 4). The execution time of the shuffle phase is hidden in the reduce phase. However, we also found that the I/O resource in the map phase is still idle. This scheduling strategy can still be optimized.

Hadoop MapReduce overlaps shuffle phase with reduce phase and utilizes idle resources. We intuitively think that we can also overlap the shuffle phase and the map phases. We implemented this idea with SCache. Figure 10 shows the scheduling strategy for Hadoop MapReduce with SCache (Suppose N is 4). SCache starts pre-fetching and pre-scheduling in the map phase. This scheduling strategy can make better use of resources and avoid the I/O resource being idle in the map phase. According to the design of SCache pre-fetching, we found that using the FRQ model to describe the scheduling strategy of SCache needs to distinguish two situations:

1) $V_{Map} \times R \ge V_{Shuffle}$ (Figure 10a) The meaning of the inequality is that the speed of generating shuffle data $(V_{Map} \times R)$ is greater than or equal to the shuffle speed $(V_{Shuffle})$. In this situation, the shuffle phase is uninterrupted. The I/O resource will be fully utilized during the whole shuffle phase. As a result, the formula of $T_{P_Shuffle}$ is as followed:

$$T_{P_Shuffle} = T_{Shuffle} - \frac{(N-1) \times T_{Map}}{N}$$
 (9)

2) $V_{Map} \times R < V_{Shuffle}$ (Figure 10b)

When the shuffle speed $(V_{Shuffle})$ is faster, SCache needs to wait for shuffle data to be generated. As Figure 10b shown, the shuffle phase will be interrupted in each round. In this case, the formula of $T_{P_Shuffle}$ is as followed:

$$T_{P_Shuffle} = T_{Shuffle} \times \frac{1}{N}$$
 (10)

Compared to the original Hadoop MapReduce resource scheduling strategy, Hadoop MapReduce with SCache shortens $T_{P_Shuffle}$ and thus shortens T_{Reduce} . This is how prefetching optimizes the total execution time of a job.

C. Model evaluation

To evaluate the FRQ model, we run experiments on two environments: (a) 50 Amazon EC2 m4.xlarge nodes cluster as shown in Subsection VI-A; (b) 4 in-house nodes cluster with 128GB memory and 32 cores per node. To simplify the calculation of the FRQ model, we run the Terasort as an experimental application on a Hadoop MapReduce framework. We deployed Hadoop with SCache and without SCache in both environments.

Table I shows the calculational results of the FRQ model in the in-house environment. The workload is from 16 GB to 64 GB. D and N are set according to the application parameters. $R, V_{Map}, V_{Shuffle}$, and V_{Reduce} are calculated based on experimental results. K is the empirical value, we set K to

	D	R	N	V_{Map}	V_{Reduce}	$V_{Shuffle}$	K	T_{Map}	$T_{Shuffle}$	$T_{P_Shuffle}$	T_{Reduce}	T_{Job}	$ExpT_{Job}$	Error
	16	1	2	0.65	1	0.47	0.5	24.62	34.04	21.73	26.87	51.48	55	6.39%
SCache	32	1	4	0.65	1	0.47	0.5	49.23	68.09	31.16	47.58	96.81	104	6.91%
	48	1	6	0.65	1	0.47	0.5	73.85	102.13	40.59	68.29	142.14	151	5.87%
	64	1	8	0.65	1	0.47	0.5	98.46	136.17	50.02	89.01	187.47	193	2.87%
	16	1	2	0.65	1	0.47	0.6	24.62	34.04	34.04	36.43	61.04	73	16.38%
Legacy	32	1	4	0.65	1	0.47	0.6	49.23	68.09	68.09	72.85	122.08	135	9.57%
	48	1	6	0.65	1	0.47	0.6	73.85	102.13	102.13	109.28	183.12	188	2.59%
	64	1	8	0.65	1	0.47	0.6	98.46	136.17	136.17	145.70	244.16	249	1.94%
D : GB, V_i : GB/s, T_i : s														

TABLE I: Hadoop MapReduce on 4 nodes cluster in the FRQ model

	D	R	N	V_{Map}	V_{Reduce}	$V_{Shuffle}$	K	T_{Map}	$T_{Shuffle}$	$T_{P_Shuffle}$	T_{Reduce}	T_{Job}	$ExpT_{Job}$	Error
SCache	128	1	5	1.15	1.46	1.4	0.5	111.30	91.43	18.29	96.81	208.12	232	10.29%
	256	1	5	1.15	1.46	1.4	0.5	222.61	182.86	36.57	193.63	416.24	432	3.65%
	384	1	5	1.15	1.46	1.4	0.5	333.91	274.29	54.86	290.44	624.36	685	8.85%
Legacy	128	1	5	1.15	1.46	1.4	0.6	111.30	91.43	91.43	142.53	253.83	266	4.57%
	256	1	5	1.15	1.46	1.4	0.6	222.61	182.86	182.86	285.06	507.67	524	3.12%
	384	1	5	1.15	1.46	1.4	0.6	333.91	274.29	274.29	427.59	761.50	776	1.87%
D : GB, V_i : GB/s, T_i : s														

TABLE II: Hadoop MapReduce on 50 AWS m4.xlarge nodes cluster in the FRQ model

Fig. 11: Network utilization on Hadoop MapReduce with SCache

0.5 and 0.6, which reflects that $T_{P_Shuffle}$ has less impact on the reduce phase in the case of SCache. In the Hadoop with SCache, Terasort satisfies the situation in Figure 10a $(V_{Map} \times R \geq V_{Shuffle})$. In the original Hadoop, since prefetching is not used, $T_{P_Shuffle}$ is equal to $T_{Shuffle}$ (see Equation 7). $ExpT_{Job}$ represents the actual experiment data, we calculate Error according to T_{Job} and $ExpT_{Job}$.

Table II shows the calculational results of the FRQ model in Amazon EC2 environment. $V_{Map}, V_{Shufffle}$, and V_{Reduce} are modified because of the different hardware devices. We also set K to the same empirical value. The formulas in the table are all the same except $T_{P_Shuffle}$. In this environment, Terasort on Hadoop MapReduce satisfies the situation in Figure 10b ($V_{Map} \times R < V_{Shuffle}$), thus the formula of $T_{P_Shuffle}$ is Equation 10.

In order to evaluate the two cases as mentioned above when using SCache, we monitor the network utilization as Figure 11. Figure 11a shows that, in the in-house environment, the network utilization remains high until the shuffle phase is completed. On the other hand, Figure 11b shows that the network utilization has 5 regular peaks in Amazon EC2 environment. Both these two situations are consistent with the FRQ model in Figure 10.

Regarding accuracy, the experimental values are all larger than the calculated values. This is because the application has some extra overhead at runtime, such as network warm-up, the overhead of allocating slots, and so on. This overhead will be amplified when the input data is small or the total execution

Fig. 12: CPU utilization and I/O throughput of a node during a Spark single shuffle application with SCache

time is short. Overall, the error between T_{Job} and $ExpT_{Job}$ is mainly below 10%, such errors are acceptable. Therefore, we believe that the FRQ model can accurately describe DAG frameworks.

VI. EVALUATION

This section reveals the evaluation of SCache with comprehensive workloads and benchmarks which include common operations in the industrial big-data analysis. We implement and evaluate SCache on Spark and Hadoop MapReduce, since they are the two most distributed computing frameworks using in industrial big-data analysis. First, we evaluate the Spark with SCache in 3 different benchmarks. We run a Spark job with single shuffle to analyze hardware utilization and see the impacts of different components from the scope of a task to a job. Then we use a recognized shuffle intensive benchmark — Terasort to evaluate SCache with different data

Fig. 13: Stage Completion Time of Single Shuffle Test

Fig. 14: Median Task Completion Time of Single Shuffle Test

Fig. 15: Terasort Evaluation

partition schemes. To prove the performance gain of SCache with a industrial production workload, we also evaluate Spark TPC-DS¹⁰ and present the overall performance improvement. Second, due to the simple DAG computing in Hadoop MapReduce, we only use Terasort as a shuffle-heavy benchmark to evaluate the performance of Hadoop MapReduce with SCache. Finally, we measure the overhead of weighted reservoir sampling.

In summary, SCache can decrease 89% time of Spark shuffle without introducing extra network transfer. More impressively, the overall completion time of TPC-DS can be improved 40% on average by applying the optimization from SCache. Meanwhile, Hadoop MapReduce with SCache optimizes job completion time by up to 15% and an average of 13%

A. Setup

We modified Spark to enable shuffle optimization of SCache as a representative. The shuffle configuration of Spark is set to the default¹¹. We run the experiments on a 50-node m4.xlarge cluster on Amazon EC2¹². Each node has 16GB memory and 4 CPUs. The network bandwidth provided by Amazon is insufficient. Our evaluations reveal the bandwidth is only about 300 Mbps (see Figure 2).

B. Spark with SCache

1) Simple DAG Analysis: We first run the same single shuffle test shown in Figure 2. For each stage, we run 5 rounds of tasks with different input size. As shown in Figure 12, the hardware utilization is captured from one node during the job. Note that since the completion time of whole job is

about 50% less than Spark without SCache, the duration of Figure 12 is cut in half as well. An overlap among CPU, disk, and network can be easily observed in Figure 12. It is because the decoupling of shuffle prevents the computing resource from being blocked by I/O operations. On the one hand, the decoupling of shuffle write helps free the slot earlier, so that it can be re-scheduled to a new map task. On the other hand, with the help of shuffle pre-fetching, the decoupling of shuffle read significantly decreases the CPU idle time at the beginning of a reduce task. At the same time, SCache manages the hardware resources to store and transfer shuffle data without interrupting the computing process. As a result, the utilization and multiplexing of hardware resource are increased, thus improving the performance of Spark. The performance evaluation in Figure 14 shows the consistent results with our observation of hardware utilization. For each stage, we pick the task that has median completion time. In the map task, the disk operations are replaced by the memory copies to decouple the shuffle write. It helps eliminate 40% of shuffle write time (Figure 14a), which leads to a 10\% improvement of map stage completion time in Figure 13a. Note that the shuffle write time can be observed even with the optimization of SCache. The reason is that before moving data out of Spark's JVM, the serialization is inevitable and CPU intensive [22].

In the reduce task, most of the shuffle overhead is introduced by network transfer delay. By doing shuffle data pre-fetching based on the pre-scheduling results, the explicit network transfer is perfectly overlapped in the map stage. With the help of the co-scheduling scheme, SCache guarantees that each reduce task has the benefit of shuffle pre-fetching. The in-memory cache of shuffle data further reduces the shuffle read time. As a result, the combination of these optimizations decreases 100% overhead of the shuffle read in a reduce task (Figure 14b). In addition, the heuristic algorithm can achieve a balanced pre-scheduling result, thus providing 80%

¹⁰https://github.com/databricks/spark-sql-perf

¹¹ http://spark.apache.org/docs/1.6.2/configuration.html

¹²http://aws.amazon.com/ec2/

Fig. 16: TPC-DS Benchmark Evaluation

improvement in reduce stage completion time (Figure 13b).

Overall, SCache can help Spark decrease by 89% overhead of the whole shuffle process.

2) Terasort: We also evaluate Terasort [37] — a recognized shuffle intensive benchmark for distributed system analysis. Terasort consists of two consecutive shuffles. The first shuffle reads the input data and uses a hash partition function for repartitioning. As shown in Figure 15a, Spark with SCache runs $2 \times$ faster during the reduce stage of the first shuffle, which is consistent with the results in Section VI-B1. It further proves the effectiveness of SCache's optimization.

The second shuffle of Terasort partitions the data through a Spark RangePartitioner. In the second shuffle, almost 93% of input data of a reduce task is produced by one particular map task. So we take the second shuffle as an extreme case to evaluate the heuristic locality swap of SCache. In this shuffle, Spark schedules a reduce task to the node that produces most input data. By doing this, Spark minimizes the shuffle data through network. At the same time, Figure 15b reveals that SCache produces exactly same network traffic as Spark. It implies that the heuristic locality swap of SCache can obtain the best locality while balancing the load.

3) Industrial Production Workload: We also evaluate some queries from TPC-DS¹³. TPC-DS benchmark is designed for modeling multiple users submitting varied queries (e.g. adhoc, interactive OLAP, data mining, etc.). TPC-DS contains 99 queries and is considered as the standardized industry benchmark for testing big data systems. As shown in Figure 16, the horizontal axis is query name and the vertical axis is query completion time. Note that we skip some queries due to the compatible issues. Spark with SCache outperforms the original Spark in almost all tested queries. Furthermore, in many queries, Spark with SCache outperforms original Spark by an order of magnitude. It is because that those queries contain shuffle-heavy operations such as groupby, union, etc. The overall reduction portion of query time that SCache achieved is 40% on average. Since this evaluation presents the overall job completion time of queries, we believe that our shuffle optimization is promising.

C. Hadoop MapReduce with SCache

To prove SCache compatibility as a cross-framework plugin, we also implemented SCache on Hadoop MapReduce. Although the simple DAG computing alleviates the effect of *pre-scheduling*, the shuffle-heavy jobs can still be optimized by the SCache shuffle data management.

As Figure 17 shows, Hadoop MapReduce with SCache brings 15\% of total time optimization with 384GB input data size. As shown in Figure 17b, Hadoop MapReduce without SCache writes intermediate data locally in the map phase. The shuffle phase and the reduce phase start simultaneously. Because a large amount of shuffle data reaches the network bottleneck, the beginning part of reduce phase needs to wait for network transfer. This causes the CPU resources to be idle. On the other hand, in Figure 17a, Hadoop MapReduce with SCache starts pre-fetching in the map phase. This avoids the reduce phase waiting for the shuffle data. Furthermore, prefetching utilizes the idle I/O throughput in the map phase. As shown in Figure 18, after better fine-grained utilization of hardware resources, Hadoop MapReduce with SCache optimizes Terasort overall completion time by up to 15%and an average of 13% with input data sizes from 128GB to 512GB.

D. Overhead of Sampling

We evaluate the overhead of sampling with different input sizes and numbers of nodes. In Figure 19, the overhead of sampling only grows with the increase of input size on each node, but remains relatively stable when the cluster size scales up. Since the shuffle data is short-lived, write-once, and read-once, the central controller of SCache does not have to collect and manage complex metadata. Meanwhile, most of the optimizations such as fetching and storing shuffle data are finished by workers independently. So the cost of prescheduling algorithm and memory management are unlikely to make the master become the bottleneck of the scalability. Combined with the sampling overhead evaluation, we believe that SCache is scalable.

VII. RELATED WORK

Modeling Most representative DAG computing frameworks use similar *Bulk Synchronize Parallel* (BSP) [38] model to control data synchronization in each computing phase. Khan et al. [39] proposed the HP model which extends the ARIA model. The HP model adds scaling factors and uses a simple linear regression to estimate the job execution time on larger

¹³ http://www.tpc.org/tpcds/

Fig. 17: CPU utilization and I/O throughput of a node during a Hadoop MapReduce Terasort job

Fig. 18: Hadoop MapReduce Terasort Completion Time

Fig. 19: Sampling Overhead

datasets. Farshid Farhat et al. [40] proposed a closed-form queuing model which focus on stragglers and try to optimize them. However, the above models are not able to accurately describe the overhead caused by the shuffle process under different scheduling strategies. The FRQ model focuses on describing the overhead caused by the shuffle process in different scheduling strategies, which satisfies our demand.

Industrial big-data In the *Industry 4.0* which leading by the German Government, industrial big-data refers to a huge amount of time-series data which generated by industrial equipment in smart factories. More than 1000 Exabytes industrial data is annually generated by smart factories and the data is expected to increase 20-fold in the next ten years [41]. Nowadays, the real challenge of big-data is not how to collect it, but how to manage it logically and efficiently [5]. Several

distributed computing frameworks become efficient tools in industrial big-data analysis [1], [42], [43].

Pre-scheduling Slow-start from Apache Hadoop MapReduce is a classic approach to handle shuffle overhead. iShuffle [28] decouples shuffle from reducers and designs a centralized shuffle controller. But it can neither handle multiple shuffles nor schedule multiple rounds of reduce tasks. iHadoop [44] aggressively pre-schedules tasks in multiple successive stages to start fetching shuffle. But we have proved that randomly assign tasks may hurt the overall performance in Section III-B1. Different from these works, SCache pre-schedules multiple shuffles without breaking load balancing.

Network layer optimization BASS [45] combines SDN (Software-defined networking) with Hadoop and provides a bandwidth-aware task scheduling to optimize shuffle phases. Hybrid SDN [46] can also be seen as a solution to improve the performance. Though the efforts above are limited throughout whole shuffle process, they can be easily applied on SCache to further improve the performance.

VIII. CONCLUSION

In this paper, we present SCache, a cross-framework shuffle optimization for DAG computing frameworks. SCache decouples the shuffle from computing tasks and leverages memory to store shuffle data. By task pre-scheduling and shuffle data pre-fetching with application context, SCache significantly mitigates the shuffle overhead. The benchmark using in evaluations covers the most situations of industrial big-data analysis. The evaluations show that SCache can provide a promising speedup in both traditional and industrial big-data workloads. Furthermore, we propose *Framework Resources Quantification* (FRQ) model to assist in analyzing shuffle process of DAG computing frameworks. At last, we evaluate the SCache shuffle optimization by the FRQ model.

REFERENCES

- P. Lade, R. Ghosh, and S. Srinivasan, "Manufacturing analytics and industrial internet of things," *IEEE Intelligent Systems*, vol. 32, no. 3, pp. 74–79, 2017.
- [2] J. Lee, H.-A. Kao, and S. Yang, "Service innovation and smart analytics for industry 4.0 and big data environment," *Procedia Cirp*, vol. 16, pp. 3–8, 2014.
- [3] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica, "Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing," in Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation. USENIX Association, 2012, pp. 2–2.

- [4] P. Basanta-Val, "An efficient industrial big-data engine," *IEEE Transactions on Industrial Informatics*, vol. 14, no. 4, pp. 1361–1369, 2018.
- [5] Z. Lv, H. Song, P. Basanta-Val, A. Steed, and M. Jo, "Next-generation big data analytics: State of the art, challenges, and future research topics," *IEEE Transactions on Industrial Informatics*, vol. 13, no. 4, pp. 1891–1899, 2017.
- [6] Y. Chen, S. Alspaugh, and R. Katz, "Interactive analytical processing in big data systems: A cross-industry study of mapreduce workloads," *Proceedings of the VLDB Endowment*, vol. 5, no. 12, pp. 1802–1813, 2012
- [7] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, "Managing data transfers in computer clusters with orchestra," in ACM SIGCOMM Computer Communication Review, vol. 41, no. 4. ACM, 2011, pp. 98–109.
- [8] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, "Dryad: distributed data-parallel programs from sequential building blocks," in ACM SIGOPS operating systems review, vol. 41, no. 3. ACM, 2007, pp. 59–72.
- [9] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino, "Apache tez: A unifying framework for modeling and building data processing applications," in *Proceedings of the 2015 ACM SIGMOD* international conference on Management of Data. ACM, 2015, pp. 1357–1369.
- [10] J. Chen, K. Li, Z. Tang, K. Bilal, S. Yu, C. Weng, and K. Li, "A parallel random forest algorithm for big data in a spark cloud computing environment," *IEEE Transactions on Parallel and Distributed Systems*, vol. 28, no. 4, pp. 919–933, 2017.
- [11] M. Duan, K. Li, Z. Tang, G. Xiao, and K. Li, "Selection and replacement algorithms for memory performance improvement in spark," *Concur*rency and Computation: Practice and Experience, vol. 28, no. 8, pp. 2473–2486, 2016.
- [12] Z. Tang, X. Zhang, K. Li, and K. Li, "An intermediate data placement algorithm for load balancing in spark computing environment," *Future Generation Computer Systems*, vol. 78, pp. 287–301, 2018.
- [13] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen, "Sync or async: Time to fuse for distributed graph-parallel computation," in Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ser. PPoPP 2015. New York, NY, USA: ACM, 2015, pp. 194–204. [Online]. Available: http://doi.acm.org/10.1145/2688500.2688508
- [14] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, "Tachyon: Reliable, memory speed storage for cluster computing frameworks," in Proceedings of the ACM Symposium on Cloud Computing. ACM, 2014, pp. 1–15.
- [15] B. Heintz, A. Chandra, R. K. Sitaraman, and J. Weissman, "End-to-end optimization for geo-distributed mapreduce," *IEEE Transactions on Cloud Computing*, vol. 4, no. 3, pp. 293–306, 2016.
- [16] Q. Zhang, M. F. Zhani, Y. Yang, R. Boutaba, and B. Wong, "Prism: fine-grained resource-aware scheduling for mapreduce," *IEEE Transactions on Cloud Computing*, no. 1, pp. 1–1, 2015.
- [17] D. Cheng, J. Rao, Y. Guo, C. Jiang, and X. Zhou, "Improving performance of heterogeneous mapreduce clusters with adaptive task tuning," *IEEE Transactions on Parallel and Distributed Systems*, vol. 28, no. 3, pp. 774–786, 2017.
- [18] C.-T. Chen, L.-J. Hung, S.-Y. Hsieh, R. Buyya, and A. Y. Zomaya, "Heterogeneous job allocation scheduler for hadoop mapreduce using dynamic grouping integrated neighboring search," *IEEE Transactions* on Cloud Computing, 2017.
- [19] M. Wasi-ur Rahman, N. S. Islam, X. Lu, and D. K. D. Panda, "A comprehensive study of mapreduce over lustre for intermediate data placement and shuffle strategies on hpc clusters," *IEEE Transactions* on Parallel and Distributed Systems, vol. 28, no. 3, pp. 633–646, 2017.
- [20] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica, "Apache spark: A unified engine for big data processing," *Commun. ACM*, vol. 59, no. 11, pp. 56–65, Oct. 2016. [Online]. Available: http://doi.acm.org/10.1145/2934664
- [21] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar, "Shufflewatcher: Shuffle-aware scheduling in multi-tenant mapreduce clusters." in *USENIX Annual Technical Conference*, 2014, pp. 1–12.
- [22] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.-G. Chun, and V. ICSI, "Making sense of performance in data analytics frameworks." in NSDI, vol. 15, 2015, pp. 293–307.
- [23] B. Fitzpatrick, "Distributed caching with memcached," *Linux J.*, vol. 2004, no. 124, pp. 5–, Aug. 2004. [Online]. Available: http://dl.acm.org/citation.cfm?id=1012889.1012894

- [24] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosenblum, "Fast crash recovery in ramcloud," in *Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles*. ACM, 2011, pp. 29–41.
- [25] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, "Skewtune: mitigating skew in mapreduce applications," in *Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data*. ACM, 2012, pp. 25–36.
- [26] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu, B. Saha, and E. Harris, "Reining in the outliers in map-reduce clusters using mantri." in OSDI, vol. 10, no. 1, 2010, p. 24.
- [27] B. Gufler, N. Augsten, A. Reiser, and A. Kemper, "Load balancing in mapreduce based on scalable cardinality estimates," in *Data Engineering* (ICDE), 2012 IEEE 28th International Conference on. IEEE, 2012, pp. 522–533.
- [28] Y. Guo, J. Rao, D. Cheng, and X. Zhou, "ishuffle: Improving hadoop performance with shuffle-on-write," *IEEE Transactions on Parallel and Distributed Systems*, vol. 28, no. 6, pp. 1649–1662, 2017.
- [29] A. Verma, L. Cherkasova, and R. H. Campbell, "Resource provisioning framework for mapreduce jobs with performance goals," in ACM/IFIP/USENIX International Conference on Distributed Systems Platforms and Open Distributed Processing. Springer, 2011, pp. 165–186.
- [30] D. P. Williamson and D. B. Shmoys, "The design of approximation algorithms. 2010," preprint http://www. designofapproxalgs. com, 2010.
- [31] S. Ghemawat, H. Gobioff, and S.-T. Leung, "The google file system," in ACM SIGOPS operating systems review, vol. 37, no. 5. ACM, 2003, pp. 29–43.
- [32] J. S. Vitter, "Random sampling with a reservoir," ACM Transactions on Mathematical Software (TOMS), vol. 11, no. 1, pp. 37–57, 1985.
- [33] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula, S. Shenker, and I. Stoica, "Pacman: Coordinated memory caching for parallel jobs," in *Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation*. USENIX Association, 2012, pp. 20–20.
- [34] L. A. Belady, "A study of replacement algorithms for a virtual-storage computer," *IBM Systems journal*, vol. 5, no. 2, pp. 78–101, 1966.
- [35] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, "Zookeeper: Wait-free coordination for internet-scale systems." in *USENIX annual technical* conference, vol. 8, 2010, p. 9.
- [36] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta, "On availability of intermediate data in cloud computations." in *HotOS*, 2009.
- [37] O. O'Malley, "Terabyte sort on apache hadoop," Yahoo, available online at: http://sortbenchmark. org/Yahoo-Hadoop. pdf, (May), pp. 1–3, 2008.
- [38] L. G. Valiant, "A bridging model for parallel computation," Communications of the ACM, vol. 33, no. 8, pp. 103–111, 1990.
- [39] M. Khan, Y. Jin, M. Li, Y. Xiang, and C. Jiang, "Hadoop performance modeling for job estimation and resource provisioning," *IEEE Transac*tions on Parallel & Distributed Systems, no. 2, pp. 441–454, 2016.
- [40] F. Farhat, D. Tootaghaj, Y. He, A. Sivasubramaniam, M. Kandemir, and C. Das, "Stochastic modeling and optimization of stragglers," *IEEE Transactions on Cloud Computing*, 2016.
- [41] S. Yin and O. Kaynak, "Big data for modern industry: challenges and trends [point of view]," *Proceedings of the IEEE*, vol. 103, no. 2, pp. 143–146, 2015.
- [42] X. Li, J. Song, and B. Huang, "A scientific workflow management system architecture and its scheduling based on cloud service platform for manufacturing big data analytics," *The International Journal of Advanced Manufacturing Technology*, vol. 84, no. 1-4, pp. 119–131, 2016
- [43] M. H. ur Rehman, E. Ahmed, I. Yaqoob, I. A. T. Hashem, M. Imran, and S. Ahmad, "Big data analytics in industrial iot using a concentric computing model," *IEEE Communications Magazine*, vol. 56, no. 2, pp. 37–43, 2018.
- [44] E. Elnikety, T. Elsayed, and H. E. Ramadan, "ihadoop: asynchronous iterations for mapreduce," in *Cloud Computing Technology and Science* (CloudCom), 2011 IEEE Third International Conference on. IEEE, 2011, pp. 81–90.
- [45] P. Qin, B. Dai, B. Huang, and G. Xu, "Bandwidth-aware scheduling with sdn in hadoop: A new trend for big data," *IEEE Systems Journal*, vol. 11, no. 4, pp. 2337–2344, 2017.
- [46] X. Huang, S. Cheng, K. Cao, P. Cong, T. Wei, and S. Hu, "A survey of deployment solutions and optimization strategies for hybrid sdn networks," *IEEE Communications Surveys & Tutorials*, 2018.