Tentative

IPS Alpha Technology, Ltd.

TECHNICAL DATA

AX080F068G

CONTENTS

No.	Item		Sheet 1	No.	Page
-	COVER	ATD1121	2601	AX080F068G	1-1/1
-	RECORD OF REVISION	ATD1121	2602	AX080F068G	2-1/1
-	DESCRIPTION	ATD1121	2603	AX080F068G	3-1/1
1	ABSOLUTE MAXIMUM RATINGS	ATD1121	2604	AX080F068G	4-1/1
2	ELECTRICAL CHARACTERISTICS	ATD1121	2605	AX080F068G	5-1/1
3	BLOCK DIAGRAM	ATD1121	2606	AX080F068G	6-1/1
4	INTERFACE PIN ASSIGNMENT	ATD1121	2607	AX080F068G	$7-1/1 \sim 1/7$
5	INTERFACE TIMING	ATD1121	2608	AX080F068G	8-1/3~3/3
6	DIMENSIONAL OUT LINE	ATD1121	2609	AX080F068G	9-1/3~3/3
7					
8			•		

RECORD OF REVISION

Date	The upper section : Bef The lower section : Af	ter revision	Summary
Date	Sheet No.	Page	Summary
		+ +	

IPS Alpha Technology, Ltd.	Date	Jan. 30, 2009	Sheet No.	ATD1227 2602	32FHD	Page	2-1/1
----------------------------	------	---------------	-----------	--------------	-------	------	-------

DESCRIPTION

The following specifications are applied to the following TFT module. Note: Inverter for back light unit is built in this module.

Product Name: 32FHD

General Specifications

Effective Display Area : (H) $698.4 \times (V) 392.85$ (mm)

Number of Pixels : $(H)1,920\times(V)1,080$ (pixels)

Pixel Pitch : (H) $0.3638 \times (V) 0.3638$ (mm)

Color Pixel Arrangement : R+G+B Vertical Stripe

Display Mode : Transmissive Mode

Normally Black Mode

Top Polarizer Type : Semi-Glare

Number of Colors : 1,073,741,824 (colors)

Viewing Angle Range : Super wide version

(Horizontal & Vertical : 170° at $\varphi=0^{\circ},90^{\circ}$, $180^{\circ},270^{\circ}$, $CR \ge 10$)

Input Signal : 1-channel LVDS (LVDS:Low Voltage Differential Signaling)

Back Light : 8pcs. of CCFL

External Dimensions : (H)760.0 x (V)450.0 x (t)48.0Max (mm)

Weight :TBD (g)

1. ABSOLUTE MAXIMUM RATINGS

1.1 Environmental Absolute Maximum Ratings

ITEM	Operating		Sto	orage		Note
I I EWI	Min.	Max.	Min.	Max.	Unit	Note
Temperature	0	50	-20	60	$^{\circ}\!\mathbb{C}$	1),5)
Humidity	2)		2)		%RH	1)
Vibration	-	4.9(0.5G)	-	TBD	m/s2	3)
Shock	1	29.4(3G)	-	TBD	m/s2	4)
Corrosive Gas	Not Ac	ceptable	Not Ac	ceptable	-	

Note 1) Temperature and Humidity should be applied to the glass surface of a TFT module, not to the system installed with a module.

The temperature at the center of rear surface should be less than 70° C on the condition of operating. The brightness of a CCFL tends to drop at low temperature. Besides, the life-time becomes shorter at low temperature.

- 2) Ta \leq 40 °C · · · · · Relative humidity should be less than 85%RH max. Dew is prohibited. Ta \geq 40 °C · · · · · · Relative humidity should be lower than the moisture of the 85%RH at 40°C.
- 3) Frequency of the vibration is between 15Hz and 100Hz. (Remove the resonance point)
- 4) Pulse width of the shock is 10 ms.
- 5) Long operation under low temperature may cause some portion of display area to be reddish for several minutes after turning on the product.

However, it does not affect the characteristics and reliability of the product.

1.2 Electrical Absolute Maximum Ratings

(1)TFT Module Vss = 0 V

,					
ITEM	SYMBOL	Min.	Max.	Unit	Note
Power Supply Voltage	VDD	0	13.2	V	
Input Voltage for logic	V1	-0.3	4.0	V	1)
Electrostatic Durability	VESD0	±1	.00	V	2),3)
Electrostatic Durability	VESD1	±20		kV	2),4)

Note 1)It is applied to pixel data signal and clock signal.

2)Discharge Coefficient: 200pF-250Ω, Environmental: 25°C-70%RH

3)It is applied to I/F connector pins.

4)It is applied to the surface of a metallic bezel and a LCD panel.

(2) Back-light Inverter

V	22	=	0	V
v	22		v	v

ITEM	SYMBOL	Min.	Max.	Unit	Note
Input Voltage	Vin	0	26.4	V	
ON/OFF Control Input Voltage	ON/OFF	0	6.0	V	
Brightness Control Voltage	PWM	0	3.3	V	

IPS Alpha Technology, Ltd.	Date	Jan. 30, 2009	Sheet No.	ATD1227 2604	32FHD	Page	4-1/1
----------------------------	------	---------------	-----------	--------------	-------	------	-------

2. ELECTRICAL CHARACTERISTICS

2.1 TFT-LCD Module

Ta=25°C、Vss=0V

ITEM		SYSTEM	Min.	Тур	Max	単位	備考
Power supply Voltage		Vdd	11.4	12.0	12.6	V	
Power supply Current		I dd	1	(0.8)	TBD	А	1),2)
Ripple voltage of pov	ver Supply	Vddr	-	-	350	mV	
LVDS select	High	LVDSsel	2.2	3.1	3.6	V	
L v D3 select	Low	LVDSSEL	0	0	0.6	V	

Note 1)fV=60.0Hz, fCLK=82MHz, VDD=12.0V, and Display pattern is white.

2) Current fuse is built in a module. Current capacity of power supply for VDD should be larger than 4A, so that the fuse can be opened at the trouble of electrical circuit of module.

2.2 Back Light

ITEM	Symbol	Min.	Тур.	Max.	Unit	Notes	
Input Voltag	VBL	21.6	24.0	26.4	V		
Input Current		IBL	-	3.2	-	A	VBL=24V, PWM on Duty100%
ON/OFF	ON	ON/OFF	2.0	-	5.0	V	
Control Voltage	OFF	ON/OFF	0	-	0.8	V	
Brigthness Control	Min. Brightness	PWM	-	0	-	V	
Input Voltage	Max. Brightness		-	-	3.3	V	
PWM Duty	Min. Brightness	on-Duty	-	(20)	-	%	
r w w Duty	Max. Brightness	on-Duty	-	-	100	1/0	

Note 3)This characteristics should be applied putting on the lamp about 60 minutes later with ambient temperature. (Ta=25 $^{\circ}$ C±2 $^{\circ}$ C)

IPS Alpha Technology, Ltd.	Date	Jan. 30, 2009	Sheet No.	ATD1227 2605	32FHD	Page	5-1/1	
----------------------------	------	---------------	-----------	--------------	-------	------	-------	--

(2) Back light unit

IPS Alpha Technology, Ltd. Date Jan. 30, 2009 Sheet No. ATD1227 2606 32FHD Page 6-1/1

4. INTERFACE PIN ASSIGNMENT

4. 1 TFT-LCD module

CN3:JAE FI-R51S-HF

(Matching connector : JAE FI-R51-HL)

PIN			
No.	SYMBOL	DESCRIPTION	NOTE
1	Vss	GND(0V)	2)
2	Test		4)
3	IC		
4	IC	Internally Connected,	
5	IC	Keep Open	
6	IC		
7	LVDSsel	Select LVDS Data Format	5)
8	IC	Internally Connected, Keep Open	
9	NC	No Connection	
10	NC	No Connection	
11	Vss	GND(0V)	2)
12	RxA0-	ODD Pixel Data	3)
13	RxA0+	ODD Tixel Data	3)
14	RxA1-	ODD Pixel Data	3)
15	RxA1+	ODD T IXCI Data	3)
16	RxA2-	ODD Pixel Data	3)
17	RxA2+	ODD T IXCI Data	Í
18	Vss	GND(0V)	2)
19	CLKA-	ODD Pixel Clock	3)
20	CLKA+	ODD TIXEI CIOCK	3)
21	Vss	GND(0V)	2)
22	RxA3-	ODD Pixel Data	3)
23	RxA3+	ODD T IXCI Data	3)
24	NC	No Connection	
25	NC	140 Connection	
26	Vss	GND(0V)	2)
27	Vss	51.5(01)	2)

PIN	SYMBOL	DESCRIPTION	NOTE
No.	STWIDOL	DESCRIPTION	NOIL
28	RxB0-	EVEN Pixel Data	3)
29	RxB0+	EVENTIACI Data	3)
30	RxB1-	EVEN Pixel Data	3)
31	RxB1+	EVEN FIXEI Data	3)
32	RxB2-	EVEN Pixel Data	3)
33	RxB2+	EVEN FIXEI Data	3)
34	Vss	GND(0V)	2)
35	CLKB-	EVEN Pixel Clock	3)
36	CLKB+	EVEN FIXEI CIOCK	3)
37	Vss	GND(0V)	2)
38	RxB3-	EVEN Pixel Data	3)
39	RxB3+	EVENTIACI Data	3)
40	NC	No Connection	
41	NC	No Connection	
42	Vss		
43	Vss		
44	Vss	GND(0V)	2)
45	Vss		
46	Vss		
47	NC	No Connection	
48	Vdd		
49	Vdd	Dorron Cumpler (term + 1237)	1)
50	Vdd	Power Supply (typ.+12V)	1)
51	Vdd		

Note 1) All VDD pins shall be connected to +12.0V(Typ.).

- 2) All Vss pins shall be grounded. Metal bezel is internally connected to Vss.
- 3) Rx n+ and Rx n- (n=0,1,2,3) should be wired by twist-pairs or side-by-side FPC patterns, respectively.
- 4) Open: Normal mode. GND: Test mode.
- 5) See page 8-3/6 & 8-4/6

IPS Alpha Technology, Ltd.	Date	Jan. 30, 2009	Sheet No.	ATD1227 2607	32FHD	Page	7-1/7
1 237		,					

4. 2 Back light unit

Inverter pin assignment

JST S14B-PHA-SM-TB(LF)(SN)

(Matching connector: JST PHR-14)

PIN No.	SYMBOL	DESCRIPTION	NOTE
1	Vin		
2	Vin		
3	Vin	Power supply (Typ. +24.0V)	1)
4	Vin]	
5	Vin]	
6	Vss		
7	Vss]	
8	Vss	GND (0V)	2)
9	Vss	1	
10	Vss]	
11	FAIL	Status output (Normal:GND abnormal:open)	
12	ON/OFF	High: LAMP ON(3.3V) Low: LAMP OFF	
13	PWM	14pin low:0-3.3V pulse (120-240Hz ON duty 20-100%)	
14	SELECT	Low:external pwm dimming	_

Note 1) All Vin pins shall be connected to +24.0V(Typ.).

2) All Vss pins shall be grounded. Metal bezel is internally connected to Vss.

IPS Alpha Technology, Ltd. Date	Jan. 30, 2009 Sheet	: No. ATD1227 2607 32	FHD Page 7-2/7
---------------------------------	---------------------	-----------------------	----------------

4. 3 Block diagram of interface

 $RA0 \sim RA7, RB0 \sim RB7 : Pixel R Data (7; MSB, 0; LSB) \\ GA0 \sim GA7, GB0 \sim GB7 : Pixel G Data (7; MSB, 0; LSB) \\ BA0 \sim BA7, BB0 \sim BB7 : Pixel B Data (7; MSB, 0; LSB)$

DE : Data Enable

Note 1) The system must have the transmitter to drive the module.

2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

4. 4 LVDS interface

The LVDSSEL signal of CN3 pin No.7 specification is "L" or open. [LVDSSEL = L or open]

		TRA	NSMITTER	INTEDEACE	CONNECTOR	DI	ECEIVER	TFT
	SIGNAL	THC6	3LVDM83A	INTERFACE	CONNECTOR	KI	CEIVEK	CONTROL
		PIN	INPUT	TV Set	TFT-LCD	PIN	OUTPUT	INPUT
	RA0/RB0	51	Tx IN0			27	Rx OUT0	RA0/RB0
	RA1/RB1	52	Tx IN1			29	Rx OUT1	RA1/RB1
	RA2/RB2	54	Tx IN2	TA OUT0+	RxA/B 0+	30	Rx OUT2	RA2/RB2
	RA3/RB3	55	Tx IN3			32	Rx OUT3	RA3/RB3
	RA4/RB4	56	Tx IN4			33	Rx OUT4	RA4/RB4
	RA5/RB5	3	Tx IN6	TA OUT0-	RxA/B 0-	35	Rx OUT6	RA5/RB5
	GA0/GB0	4	Tx IN7			37	Rx OUT7	GA0/GB0
	GA1/GB1	6	Tx IN8			38	Rx OUT8	GA1/GB1
	GA2/GB2	7	Tx IN9			39	Rx OUT9	GA2/GB2
	GA3/GB3	11	Tx IN12	TA OUT1+	RxA/B 1+	43	Rx OUT12	GA3/GB3
	GA4/GB4	12	Tx IN13			45	Rx OUT13	GA4/GB4
	GA5/GB5	14	Tx IN14			46	Rx OUT14	GA5/GB5
	BA0/BB0	15	Tx IN15	TA OUT1-	RxA/B 1-	47	Rx OUT15	BA0/BB0
2.41.14	BA1/BB1	19	Tx IN18			51	Rx OUT18	BA1/BB1
24bit	BA2/BB2	20	Tx IN19			53	Rx OUT19	BA2/BB2
	BA3/BB3	22	Tx IN20			54	Rx OUT20	BA3/BB3
	BA4/BB4	23	Tx IN21	TA OUT2+	RxA/B 2+	55	Rx OUT21	BA4/BB4
	BA5/BB5	24	Tx IN22			1	Rx OUT22	BA5/BB5
	HSYNC or RSVD1)	27	Tx IN24			3	Rx OUT24	HSYNC or RSVD1)
	VSYNC or RSVD1)	28	Tx IN25	TA OUT2-	RxA/B 2-	5	Rx OUT25	VSYNC or RSVD1)
	DE/DE	30	Tx IN26			6	Rx OUT26	DE/DE
	RA6/RB6	50	Tx IN27			7	Rx OUT27	RA6/RB6
	RA7/RB7	2	Tx IN5			34	Rx OUT5	RA7/RB7
	GA6/GB6	8	Tx IN10	TA OUT3+	RxA/B 3+	41	Rx OUT10	GA6/GB6
	GA7/GB7	10	Tx IN11			42	Rx OUT11	GA7/GB7
	BA6/BB6	16	Tx IN16			49	Rx OUT16	BA6/BB6
	BA7/BB7		Tx IN17	TA OUT3-	RxA/B 3-	50	Rx OUT17	BA7/BB7
	RSVD 1) 25		Tx IN23			2	Rx OUT23	RSVD 1)
	DCLK	31	TxCLK IN	TxCLK OUT+ TxCLK OUT-	RxCLKA/B IN+ RxCLKA/B IN-	26	RxCLK OUT	DCLK

 $RA0 \sim RA7, RB0 \sim RB7 \qquad : Pixel \ R \ Data \qquad (7; MSB, 0; LSB) \\ GA0 \sim GA7, GB0 \sim GB7 \qquad : Pixel \ G \ Data \qquad (7; MSB, 0; LSB) \\ BA0 \sim BA7, BB0 \sim BB7 \qquad : Pixel \ B \ Data \qquad (7; MSB, 0; LSB) \\$

DE : Data Enable

Note 1) RSVD(reserved) pins on the transmitter shall be tied to "H" or "L".

IPS Alpha Technology, Ltd.	Date	Jan. 30, 2009	Sheet No.	ATD1227 2607	32FHD	Page	7-4/7
----------------------------	------	---------------	-----------	--------------	-------	------	-------

The LVDSSEL signal of CN3 pin No.7 specification is "H". [LVDSSEL = H]

		TRA	NSMITTER	INTEDEACE	CONNECTOR	DI	ECEIVER	TFT
	SIGNAL	THC6	3LVDM83A	INTERFACE	CONNECTOR	KI	CEIVER	CONTROL
		PIN	INPUT	TV Set	TFT-LCD	PIN	OUTPUT	INPUT
	RA2/RB2	51	Tx IN0			27	Rx OUT0	RA2/RB2
	RA3/RB3	52	Tx IN1			29	Rx OUT1	RA3/RB3
	RA4/RB4	54	Tx IN2	TA OUT0+	RxA/B 0+	30	Rx OUT2	RA4/RB4
	RA5/RB5	55	Tx IN3			32	Rx OUT3	RA5/RB5
	RA6/RB6	56	Tx IN4			33	Rx OUT4	RA6/RB6
	RA7/RB7	3	Tx IN6	TA OUT0-	RxA/B 0-	35	Rx OUT6	RA7/RB7
	GA2/GB2	4	Tx IN7			37	Rx OUT7	GA2/GB2
	GA3/GB3	6	Tx IN8			38	Rx OUT8	GA3/GB3
	GA4/GB4	7	Tx IN9			39	Rx OUT9	GA4/GB4
	GA5/GB5	11	Tx IN12	TA OUT1+	RxA/B 1+	43	Rx OUT12	GA5/GB5
	GA6/GB6	12	Tx IN13			45	Rx OUT13	GA6/GB6
	GA7/GB7	14	Tx IN14			46	Rx OUT14	GA7/GB7
	BA2/BB2	15	Tx IN15	TA OUT1-	RxA/B 1-	47	Rx OUT15	BA2/BB2
24bit	BA3/BB3	19	Tx IN18			51	Rx OUT18	BA3/BB3
240II	BA4/BB4	20	Tx IN19			53	Rx OUT19	BA4/BB4
	BA5/BB5	22	Tx IN20			54	Rx OUT20	BA5/BB5
	BA6/BB6	23	Tx IN21	TA OUT2+	RxA/B 2+	55	Rx OUT21	BA6/BB6
	BA7/BB7	24	Tx IN22			1	Rx OUT22	BA7/BB7
	HSYNC or RSVD1)	27	Tx IN24			3	Rx OUT24	HSYNC or RSVD1
	VSYNC or RSVD1)	28	Tx IN25	TA OUT2-	RxA/B 2-	5	Rx OUT25	VSYNC or RSVD1
	DE/DE	30	Tx IN26			6	Rx OUT26	DE/DE
	RA0/RB0	50	Tx IN27			7	Rx OUT27	RA0/RB0
	RA1/RB1	2	Tx IN5			34	Rx OUT5	RA1/RB1
	GA0/GB0	8	Tx IN10	TA OUT3+	RxA/B 3+	41	Rx OUT10	GA0/GB0
	GA1/GB1	10	Tx IN11			42	Rx OUT11	GA1/GB1
	BA0/BB0	16	Tx IN16			49	Rx OUT16	BA0/BB0
	BA1/BB1	18	Tx IN17	TA OUT3-	RxA/B 3-	50	Rx OUT17	BA1/BB1
	RSVD 1)	25	Tx IN23			2	Rx OUT23	RSVD 1)
	DCLK	31	TxCLK IN	TxCLK OUT+ TxCLK OUT-	RxCLKA/B IN+ RxCLKA/B IN-	26	RxCLK OUT	DCLK

 $RA0 \sim RA7, RB0 \sim RB7 \qquad : Pixel \ R \ Data \qquad (7; MSB, 0; LSB) \\ GA0 \sim GA7, GB0 \sim GB7 \qquad : Pixel \ G \ Data \qquad (7; MSB, 0; LSB) \\ BA0 \sim BA7, BB0 \sim BB7 \qquad : Pixel \ B \ Data \qquad (7; MSB, 0; LSB)$

DE : Data Enable

Note 1) RSVD(reserved) pins on the transmitter shall be tied to "H" or "L".

IPS Alpha Technology, Ltd.	Date	Jan. 30, 2009	Sheet No.	ATD1227 2607	32FHD	Page	7-5/7
----------------------------	------	---------------	-----------	--------------	-------	------	-------

4. 6 Relationship between display colors and input signals

					F	Red	Dat	a							G	reen	Da	ta							I	Blue	Dat	a			
	Input	R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	Gl	G0	В9	В8	В7	В6	B5	В4	В3	B2	B1	В0
Color		MS	SB							I	SB	MS	В							I	SB	MS	SB							I	SВ
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue(1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	:		:	:	:	:	:	:	:	:	:	••	:	:	:	:	:	:	:	:	:		:	:	:	:		:	:	:	:
	:	••	:	:	:	:	:	:	:	:	:	••	:	:	:	:	:	:	:	:	:	••	:	:	:	:		:	:	:	:
	Red(1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Green(1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	Green(1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue	:	••	:	:	:	:	:	:	:	:	:	••	:	:	:	:	:	:	:	:	:	••	:	:	:	:		:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	••	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Note 1) Definition of gray scale:

 $\label{eq:color} Color(n) \mbox{ } \cdot \mbox$

2) Data: 1: High, 0: Low

	ITEM	SYMBOL	Mın.	Typ.	Max.	UNIT	NOTE
CLK	Frequency	DCLK	64.0	67.5	72.5	MHz	=1/tclk
CLK	CLK Skew	tSC	- 4.0	0	+ 4.0	ns	
	0 data position	tRP0	1/7tCLK - 0.4	1/7tCLK	1/7tCLK + 0.4		
75 dia	1st data position	tRP1	- 0.4	0	+ 0.4		
Rx*0 Rx*1	2nd data position	tRP2	6/7tCLK - 0.4	6/7tCLK	6/7tCLK + 0.4		
Rx*1	3rd data position	tRP3	5/7tCLK - 0.4	5/7tCLK	5/7tCLK + 0.4	ns	
Rx*3	4th data position	tRP4	4/7tCLK - 0.4	4/7tCLK	4/7tCLK + 0.4		
	5th data position	tRP5	3/7tCLK - 0.4	3/7tCLK	3/7tCLK + 0.4		
	6th data position	tRP6	2/7tCLK - 0.4	2/7tCLK	2/7tCLK + 0.4		

IPS Alpha Technology, Ltd.	Date	Jan. 30, 2009	Sheet No.	ATD1227 2608	32FHD	Page	8-1/3
----------------------------	------	---------------	-----------	--------------	-------	------	-------

Note 1) Reference level for each timing signal is 1.2 V unless it is stated on the chart, high level voltage(VIH) and low level voltage(VIL) are defined as follows:

$$VIH \ge 2.0 V$$
 $VIL \le 0.8 V$

2) The timing of DCLK to other signals conforms to the specifications of LVDS transmitter.

I)50Hz 2pxl/clk **ITEM SYMBOL** Min. Max. UNIT **NOTE** Typ. Vertical Frequency fV 46 50 52 Hz Vertical Period tV1265 1435 1338 tΗ Vertical Valid tVD 1080 tΗ

DE fΗ kHz Horizontal Frequency 65.1 66 69 1035 Horizontal Period tH 990 1009 tCLK Horizontal Valid tCLK tHD 960

II)60Hz 2pxl/clk SYMBOL NOTE **ITEM** Min. UNIT Тур. Max. Vertical Frequency 58 HzfV 60 62 Vertical Period tV1090 1116 1150 tHtVD 1080 tΗ Vertical Valid DE Horizontal Frequency fH 65.1 69 kHz 66 Horizontal Period tH 990 1009 1035 tCLK Horizontal Valid tHD 960 tCLK

IPS Alpha Technology, Ltd. Date Jan. 30, 2009 Sheet No. ATD1227 2608 32FHD Page 8-3/3

6. DIMENSIONAL OUT LINE (I)FRONT VIEW \emptyset 5 <u>TENTATIVE</u> 760±1(OUT LINE) 368±0.5 368±0.5 704.7±1(BEZEL OPENING) | 4 698.4±0.1(ACTIVE AREA) 256±0.5 256±0.5 4-Ø9 96±0.5 96±0.5.1 SECTION Y2-Y2 DETAIL A -DETAIL A (|:|) $-\Phi$ **- ⊕ -- ⊕** - $-\Phi$ - 6 m 3.2±1 450±1(OUT LINE) 22 DETAIL B-27.5 32.5 —ACTIVE AREA CENTER DETAIL B SECTION XC-XC $(\mid : \mid)$ 2-Ø5 144 ± 0.5 144 ± 0.5 25 2-M4BR SECTION YI-YI 210 210 Note 1) The dimension in a parenthesis is a reference value. 2) Unspecified tolerance to be ± 0.8 Sh. IPS Alpha Technology, Ltd. Date Jan.30,2009 ATD1227 2609 32FHD Page 9-1/3 No.

(2)BACK VIFW I TENTATIVE M4BR Note3) USER HOLE $(27)_{-}$ 22 2 DP:MAX.3.5 2 100±0.5 18±0.5 . 0 22.0 39.5±0.5 45.5±0.5 55±0.5 (18)_I 150.5±0 39.5±0. 225.5±0 210.5±0 190±0.5 190年06 310±0. DETAIL D-23-M3BR DETAIL F -DETAIL E M4BR Note3) 166.5 ± 0.5 DETAIL D USER HOLE 000000 000000 000000 (1:2) 134 ± 0.5 DP:MAX.3.5 125.2 ± 0.5 C 00000 100 ± 0.5 00000 2-M4BR 69.5±0.5 00000 30±0.5 5±0.5 000000 $\left(\right)$ 000000 (a)**6**00000 20±0.5 35±0.5 000000 0 000000 40 ± 0.5 00000 69.5±0.5 0000°L DETAIL E 00000 00000 (1:2)d d | 20±0.5 | 26±0.5 | 50±0.5 | 65±0.5 00000 $(\emptyset 23)$ M4BR 166.5 ± 0.5 6 180±0.5 184.5±0.5 $(\emptyset | 4)$ • • DETAIL F USER MOUNT (1:2)(a,b,c,d) DETAIL G-77) 5 72) 77) 2330 23 30 30 9 36 ALL **O** 0 5-M4BR DETAIL G Note I) The dimension in a parenthesis is a reference value. (1:2)2) Unspecified tolerance to be ± 0.8 3) Torque MAX. I.47N·m(I5kgf·cm) Sh. Page 9-2/3 ATD1227 2609 32FHD Date IPS Alpha Technology, Ltd. Jan.30,2009 No.

(3)BACK VIEW 2 <u>TENTATIVE</u>

Note 1) The dimension in a parenthesis is a reference value. 2) Unspecified tolerance to be ± 0.8

Sh. Page 9-3/3 ATD1227 2609 32FHD IPS Alpha Technology, Ltd. Date Jan.30,2009 No.