Endomorphisms of abelian varieties

Remarks on Section I.10 of Milne's Abelian Varieties

University of Freiburg

23th June 2020

Recall isogenies

Definition

- $\alpha \in \mathsf{Hom}(A,B)$ isogeny \Leftrightarrow surjective with finite kernel;
 - \Leftrightarrow surjective and dim $A = \dim B$;
 - \Leftrightarrow finite kernel and dim $A = \dim B$;
 - ⇔ finite and surjective (and flat).

Recall isogenies

Definition

- $\alpha \in \text{Hom}(A, B)$ isogeny \Leftrightarrow surjective with finite kernel;
 - \Leftrightarrow surjective and dim $A = \dim B$;
 - \Leftrightarrow finite kernel and dim $A = \dim B$;
 - \Leftrightarrow finite and surjective (and flat).

Examples

- $ightharpoonup \mathcal{L}$ ample $\Rightarrow \lambda_{\mathcal{L}} \colon A \to A^{\vee}$ isogeny [Mil08, Prop. 8.1].
- ▶ $a \mapsto na$ isogeny, étale in char. zero [Mil08, Thm. 7.2].

Recall isogenies

Definition

- $\alpha \in \mathsf{Hom}(A,B)$ isogeny \Leftrightarrow surjective with finite kernel;
 - \Leftrightarrow surjective and dim $A = \dim B$;
 - \Leftrightarrow finite kernel and dim $A = \dim B$;
 - ⇔ finite and surjective (and flat).

Examples

- $ightharpoonup \mathcal{L}$ ample $\Rightarrow \lambda_{\mathcal{L}} \colon A \to A^{\vee}$ isogeny [Mil08, Prop. 8.1].
- ▶ $a \mapsto na$ isogeny, étale in char. zero [Mil08, Thm. 7.2].

Last example $\Rightarrow A_n := \ker(a \mapsto na)$ is finite, and being isogenous is an equivalence relation [Mil08, Rem. 8.6].

References

James S. Milne.

Abelian Varieties (v2.00), 2008.

Available at jmilne.org/math.