Lecture 16 Recommender Systems (some slides inspired by Luis von Ahn)

- you'll like

 Movies
- Books
- Music
- Video games
- Friends

Recommendation Background

- Amazon wants you to buy nice stuff
 - Partially makes up for difficult browsing
- Netflix wants you to like old movies
 - Netflix needs to have at least one copy of many titles, to keep selection up
 - If everyone wants new releases, Netflix needs to buy a lot of copies of one title
 - Much nicer for Netflix if you rent something no one else wants
 - Offered Netflix Prize; more later

- Recommendation is common, but surprisingly hard
 - Lots of recommendations to make
 - 10,000s of products
 - Users have very little tolerance for adding preference data; system knows almost nothing about you
 - Everyone is different (right?)

1

Algorithms

- How to predict what movies you like?
 - Features?
- One approach: do it like Web pages
 - Collect data on my movie likes

The Godfather	4
Ernest Goes to Camp	3
Casablanca	2
36 Hours	5
Love and Death	4

- Collect features: genre, length, year, etc
- Build score-predictor; recommend high-scorers
- Problems?

Collaborative Filtering

- Unfortunately, film-qualities may not be easily extractable
- How to recommend movies without knowing anything about movies?
 - Recommend movies enjoyed by people who are similar to you

Demo

	W.	Xanadu	Youngblood	Zorro
Alice	4	2	4	4
Bob	?	2	5	1
Chris	4	2	4	?
Donna	3	?	5	1
				•

How can we estimate scores?

Approach #1: average for film

10

Demo

	W.	Xanadu	Youngblood	Zorro
Alice	4	2	4	4
Bob	3.66	2	5	1
Chris	4	2	4	2
Donna	3	2	5	1

How can we estimate scores?

- Approach #1: average for film
 - Approach #2: use rating of closest user
 - One way to find user-closeness is with an approach similar to tf-idf
 - Consider u and v's vectors of ratings
 - Each movie is a dimension
 - Each score is a weight
 - Compute cosine(u, v), just as with tf-idf info-retrieval doc-ranking
 - What is the equivalent of "inverse doc frequency"?

12

User similarity cont'd

- Another method is Pearson correlation
 - S = set of movies
 - R_{u,i} = rating of user u on movie i
 - $S_{uv} = \{i \in S \mid both \ u \& b \text{ saw } i\}$
 - $S_u = \{i \in S \mid if \ u \text{ saw } i\}$

$$r_u = \sum_{i \in S} r_{u,i} / |S_u|$$

$$T_{u} = \sum_{i \in S_{u}} r_{u,i} |S_{u}|$$

$$\sum_{i \in S_{uv}} (r_{u,i} - r_{u})(r_{v,i} - r_{v})$$

$$\sqrt{\sum_{i \in S_{uv}} (r_{u,i} - r_{u})^{2} \sum_{i \in S_{uv}} (r_{v,i} - r_{v})^{2}}$$

Demo

	W.	Xanadu	Youngblood	Zorro
Alice	4	2	4	4
Bob	?	2	5	1
Chris	4	2	4	?
Donna	3	?	5	1

Demo

• Chris' closest match is Alice, so...

	W.	Xanadu	Youngblood	Zorro
Alice	4	2	4	4
Bob	?	2	5	1
Chris	4	2	4	?
Donna	3	?	5	1
				•

Demo

• Chris' closest match is Alice, so...

	W.	Xanadu	Youngblood	Zorro
Alice	4	2	4	4
Bob	?	2	5	1
Chris	4	2	4	4
Donna	3	?	5	1
			•	

Can't Pick Just One

Can also weight by similarity

$$r_{u,i} = k \sum_{v \in Top-Sim(u)} sim(u,v) r_{v,i}$$

- Where Top-Sim(u) is the n most-similar user neighbors to u
- k is a normalizer

$$k = 1/\sum_{v \in Top - Sim(u)} |sim(u, v)|$$

Can't Pick Just One

Can also re-add user average scores

$$r_{u,i} = r_u + k \sum_{v \in Top-Sim(u)} sim(u,v) r_{v,i} + (r_{v,i} - r_v)$$

Miscellaneous

- We've seen a collaborative filtering algorithm that is:
 - User-based (instead of item-base)
 - Neighborhood-based (top-N neighbors)
- What is the time-complexity of finding nearest-neighbor?
 - With locality-sensitive hashing, linear
 - Remember efficient shingling? The algorithm we saw is example of locality-sensitive hashing
- Many analogies between doc IR and collab. filtering
 - What would doc d say about term t, even though it is silent on t now?

.9

Other Algorithms

- Problems so far?
 - What if data is sparse, I.e., a user can only rate a tiny number of products?
 - What if the # of users and products is millions each? Computationally difficult
- One solution: item-based filtering
 - Avoid nearest-neighbor operations on users
 - Recommend products similar to ones the user has liked in the past

20

Item-Based Filtering

- For test item i, find k most-similar items the user has rated previously
 - i's score is a weighted combination of user's ratings on those k items
- How can we compute item similarity?
 - Can use cosine or correlation, as before
 - The vector for item i is the set of user-reviews associated with I
 - Previously, a user's profile was a vector of item scores
 - Why is this faster? Item-similarity is more static, can be precomputed. Also....

1

Model-Based Efficiency

- We can also skimp on the item-item model. New algorithm:
 - For each item j, compute k nearestitems, where k << n
 - When predicting u's opinion of i, retrieve the k nearest-items for i.
 Predict score based on the subset of k that i has rated
 - Tradeoff between quality and model size!

22

2

Netflix Prize!

- Announced October 2, 2006
- 1M\$ to whoever could improve NF's own recommender by 10%
- Data from Netflix in the form:
 - <user, movie, date, grade>
 - Where grade is 1..5
 - That's it

24

4

<u>5</u>