Herbst 24 Themennummer 3 Aufgabe 4 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Es sei $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ die offene Einheitskreisscheibe in der komplexen Ebene.

a) Bestimmen Sie so explizit wie möglich alle holomorphen Funktionen $f: \mathbb{D} \to \mathbb{C}$, die

$$f^{(n)}(0) = \frac{n!}{2^n}, \quad n \in \{2, 3, 4, \dots\},$$

erfüllen. Für n = 0 und n = 1 wird keine Forderung gestellt. Sollte es keine solche Funktion geben, zeigen Sie, dass sie nicht existiert.

b) Bestimmen Sie alle holomorphen Funktionen $f: \mathbb{D} \to \mathbb{C}$, die

$$f\left(\frac{1}{2} - \frac{1}{n}\right) = \log\left(2 - \frac{1}{n}\right), \quad n \in \{2, 3, 4, \dots\},$$

erfüllen. Für n=0 und n=1 wird keine Forderung gestellt. Sollte es keine solche Funktion geben, zeigen Sie, dass sie nicht existiert. Hierbei bezeichnet $\log:(0,\infty)\to\mathbb{R}$ den natürlichen reellen Logarithmus.

Lösungsvorschlag:

- a) Jede Funktion mit obigen Eigenschaften muss von der Form $f(z) = f(0) + f'(0)z + \sum_{n=2}^{\infty} \frac{1}{2^n} z^n$ für alle $z \in \mathbb{D}$ sein, weil jede holomorphe Funktion mit ihrer Taylorreihe übereinstimmt. Diese Reihe konvergiert, wegen $|z| < 1 \implies |\frac{z}{2}| < 1$ gegen die harmonische Reihe und es gilt $f(z) = \frac{1}{1-\frac{z}{2}} + (f(0)-1) + (f'(0)-1)z$. D. h. die gesuchten holomorphen Funktionen sind genau von der Form $\frac{1}{1-\frac{z}{2}} + a + bz$ mit beliebigen $a, b \in \mathbb{C}$, wobei dann a = f(0) 1, b = f'(0) 1 gilt.
- b) \mathbb{D} ist ein Gebiet und die Menge $\{\frac{1}{2} \frac{1}{n} : n \in \mathbb{N}_{>1}\}$ häuft sich in $\frac{1}{2} \in \mathbb{D}$. Wenn eine solche Funktion existiert, ist sie also eindeutig bestimmt.

Wir betrachten die offene Menge $M := \mathbb{C} \setminus (-\infty, 0]$ und auf M die Funktion

$$L: M \to \mathbb{C} \backslash \{0\}, \quad L(re^{i\phi}) \coloneqq \log(r) + i\phi,$$

wobei $re^{i\phi}$ die Polardarstellung komplexer Zahlen in M mit $r \in (0,1)$ und $\phi \in (-\frac{\pi}{2}, \frac{\pi}{2})$ bezeichnet. Diese Funktion ist stetig und erfüllt $\exp(L(z)) = z$ für alle $z \in M$. Weil $\exp'(z) \neq 0$ für alle $z \in \mathbb{C}$ gilt, ist L nach dem Satz über implizite Funktionen holomorph.

Wir betrachten jetzt g mit $g(z) = L(\frac{3}{2} + z)$ für $z \in \mathbb{D}$. Wegen $x = xe^{i \cdot 0}$ für alle $x \in \mathbb{R}$, erfüllt g die obige Eigenschaft, d.h.

$$g\left(\frac{1}{2} - \frac{1}{n}\right) = \log\left(2 - \frac{1}{n}\right), \quad n \in \{2, 3, 4, \dots\}$$

und sie ist eine holomorphe Funktion auf \mathbb{D} . Dabei folgt die Wohldefiniertheit, wegen $\Re(\frac{3}{2}+z) > \frac{1}{2}$ für alle $z \in \mathbb{D}$. Die einzige Funktion mit den obigen Eigenschaften ist daher g.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$