Definition 1. During scheduling, the overload effect occurs in the current zone Z_s . A zone Z_d is called a **destination zone** if

(1) $\exists \tau_i \in \Gamma : R_{i,s} < C_i, L_{i,s} > ZWidth_s, J_{i,j} \text{ is the current job of } \tau_i, Z_d \in J_{i,j}$ and $alloc_{i,d} > 0$. or

(2) $Rem_d > 0$.

The element $alloc_{i,d}$ in scheduling matrix is called a **destination point**.

Lemma 1. When overload effect occurs in Z_k , there exist a destination zone Z_d , if $Rem_d = 0$, there exist a destination point $alloc_{i,d}$.

Proof. (1) $\exists i \in [0, k), Rem_i > 0, Z_i$ is a destination zone. (2) $\forall i \in [0, k), Rem_i = 0$. We assume that $\forall \tau_i \in \Gamma : alloc_{i,k} > 0$, then: for $\tau_i \in \Gamma$, $J_{i,j}$ is the current job. If $JEnd_{i,j} = ZEnd_k$, then

$$\frac{\sum_{t=k+1}^{znum-1} alloc_{i,t}}{\sum_{t=k+1}^{znum-1} ZWidth_t} = \frac{C_i}{T_i}$$

If $JEnd_{i,j} > ZEnd_k$, then

$$\frac{\sum\limits_{t=k+1}^{znum-1} alloc_{i,t}}{\sum\limits_{t=k+1}^{znum-1} ZWidth_t} = \frac{C_i \cdot rcj_i + JEnd_{i,j} - ZEnd_k}{T_i \cdot rcj_i + JEnd_{i,j} - ZEnd_k} > \frac{C_i}{T_i}$$

 (rcj_i) is the number of remaining complete job of τ_i). So the total remaining execution units needed in the zones after Z_k is

$$\sum_{i=0}^{n-1} \sum_{t=k+1}^{znum-1} alloc_{i,t} \geq \sum_{i=0}^{n-1} \frac{C_i}{T_i} \cdot \sum_{t=k+1}^{znum-1} ZWidth_t = m \cdot \sum_{t=k+1}^{znum-1} ZWidth_t$$

This contratict to

$$\sum_{i=0}^{n-1} \sum_{t=0}^{znum-1} alloc_{i,t} = m * \sum_{t=0}^{znum-1} ZWidth_t.$$

So $\exists \tau_i \in \Gamma : alloc_{i,k} = 0$, which means $L_{i,s} > ZWidth_s$. $\Gamma_e = \{\tau_i : \tau_i \in \Gamma, alloc_{i,k} = 0\}$.

We assume that $\forall \tau_i \in \Gamma_e, R_{i,k} = C_i$. For $\tau_i \in \Gamma_e$,

$$\frac{\sum\limits_{t=k+1}^{znum-1} alloc_{i,t}}{\sum\limits_{t=k+1}^{znum-1} ZWidth_{t}} = \frac{C_{i} + C_{i} \cdot rcj}{T_{i} - (ZEnd_{k} - JStart_{i,j_{i}}) + T_{i} \cdot rcj} \le \frac{C_{i}}{T_{i}}.$$

For $\tau_i \notin \Gamma_e$,

$$\frac{\sum\limits_{t=k+1}^{znum-1} alloc_{i,t}}{\sum\limits_{t=k+1}^{znum-1} ZWidth_t} = \frac{T_i - (ZEnd_k - JStart_{i,j_i} + C_i \cdot rcj}{T_i - (ZEnd_k - JStart_{i,j_i}) + T_i \cdot rcj} \le \frac{C_i}{T_i}.$$

So the total remaining execution units needed in the zones after \mathbb{Z}_k is

$$\sum_{i=0}^{n-1} \sum_{t=k+1}^{znum-1} alloc_{i,t} \ge \sum_{i=0}^{n-1} \frac{C_i}{T_i} \cdot \sum_{t=k+1}^{znum-1} ZWidth_t = m \cdot \sum_{t=k+1}^{znum-1} ZWidth_t$$

This contratict to

$$\sum_{i=0}^{n-1} \sum_{t=0}^{znum-1} alloc_{i,t} = m * \sum_{t=0}^{znum-1} ZWidth_t.$$

So $\exists \tau_i \in \Gamma_e : R_{i,k} < C_i$. In conclusion, $\exists \tau_i \in \Gamma : R_{i,k} < C_i, L_{i,s} > ZWidth_s$, there exist a destination zone.