```
Page 1 / 1
                          Dialog. emt
?S PN=JP 84002152
                       1 PN=JP 84002152
         S1
?T S1/3
  1/3/1
DIALOG(R) File 345: Inpadoc/Fam. & Legal Stat
 (c) 2001 EPO. All rts. reserv.
3987928
Basic Patent (No. Kind, Date): JP 57180886 A2 821108 (No. of Patents: 007)
Basic Patent (No.Kind.Date): JP 57180886 A2 821108 
SPARK PLUG FOR INTERNAL COMBUSTION ENGINE (English)
Patent Assignee: NIPPON DENSO CO
Author (Inventor): KONDOU RIYOUJI
IPC: *H01T-013/20;
Derwent WPI Acc No: *G 82-B0781J;
Language of Document: Japanese
Patent Family:
      Patent No
                           Kind Date
                                                    Applic No
                                                                       Kind Date
      JP 57180886
JP 57182990
                           A2 821108
                                                   JP 8166725
                                                                               810430
                                                                                            (BASIC)
                                                                        Α
                                   821111
                                                   JP 8168758
                                                                               810507
                             A2
                                   840117
871013
                                                   JP 8168758
                                                                               810507
840614
       JP 84002152
                            B4
      US 4699600
                                                   US 620484
                                                  US 712917
US 73713
      US 4893051
                                   900109
                                                                               850318
      US RE34778
                                   941108
                                                                               930609
                                                   US 73706
      US RE35429
                                   970121
                                                                               930609
Priority Data (No. Kind. Date):
JP 8166725 A 810430
JP 8168758 A 810507
       US 372148 A3 820427
      US 372148 B1 820427
US 73713 A 930609
US 372148 B3 820427
      US 3/2148 B3 820427
US 620484 A5 840614
US 73706 A 930609
US 712917 A5 850318
```

							,
							•
. •							
		-					
			·				
	, s.						
·							
	÷						
	·				·		
٠						,	
* .							

⑨ 日本国特許庁(JP) ⑩特許出願公告

報(B2) 昭59-2152 ⑫特 許 公

51)Int.Cl.3

識別記号

庁内整理番号

2444公告 昭和59年(1984)1月17日

H 01 T 21/0213/20 7337—5G 7337—5G

発明の数 1

(全4頁)

図内燃機関用点火プラグの製造方法

願 昭56-68758 ②特

願 昭56(1981) 5月7日 ②出

昭57—182990 65)公

④昭57(1982)11月11日

72)発 明 者 近藤 良治

> 刈谷市昭和町1丁目1番地 日本 電装株式会社内

人 日本電装株式会社 勿出 願

刈谷市昭和町1丁目1番地

人 弁理士 浅村 皓 外4名 79代 理

の特許請求の範囲

1 中心電極の先端部分は前記中心電極の胴部に 比し小径になつており且つその小径部の先端には 貴金属もしくはその合金からなるチツブが熱およ び圧力を加えることにより溶接されている点火プ ラグの製造方法において、

前記中心電極の前記小径部を前記チップが前記 中心電極の先端に容接された後に加工することを 特徴とする内燃機関用点火プラグの製造方法。

2 特許請求の範囲第1項に記載の製造方法にお いて、前記小径部を切削によつて加工する内燃機 関用点火プラグの製造方法。

発明の詳細な説明

本発明は火花放電部となる中心電極の先端に貴 金属チップを設けた内燃機関用点火プラグ(以下 単に点火プラグという)の製造方法に関する。

貴金属チップを火花放電部に設けた従来周知の 点火フラグの製造方法では、例えば特開昭51-66945号公報に見られるように、チンプ自体 に大径部と小径部を設け、且つ上記公報の方法で はその大径部を中心電極の先端に設けた穴ぐり部 に 挿入し、通電してジュール熱で加熱し且つ加圧 してかしめるものであり、または単に抵抗溶接に よつてチップを固定することが行なわれ、いずれ

の場合も貴金属チップに大径部と小径部が在るた め、非常に大きなチツブを必要とした。そのため、 耐消耗性および飛火、着火性という基本的性能に はすぐれているが、チップの体積が大きいことか ら高価格となり、例えば数百万/月という大量生 産向きではなく、そして火花消耗に不必要な部分 にまで貴金属が使用されているため過剰品質とな り、資源の無駄使いになる。さらに大径部と小径 部の存在により貴金属チツブの加工コストが高く 10 なる等の欠点があつた。

本発明は上記従来技術の欠点を克服するもので あつて、それ故本発明の目的は従来に比し着しく 小さい貴金属チツブを用いて、従来のものと同様 な性能が得られる点火プラグの製造方法を提供す 15 ることである。

上記目的を達成するため、本発明による点火プ ラグの製造方法の特徴は中心電極の先端に貴金属 チップを溶接した後に発火部となる中心電極の先 端の部分をその胴部より小径に加工することであ 20 り、これによつて中心電極先端へのチップの溶接 を好適な条件のもとで行なえるようにしたもので ある。

次に図面を参照のもとに本発明の実施例につい て説明する。第1図および第2図は本発明によつ て製造された点火プラグを示し、1は耐熱性、耐 蝕性および導道性のある卑金属、例えばNi-Cu等からなる中心電極であり、中心電極1の発 火部となる先端部分は絶縁碍子3に保持されてい る胴部 1 a より小径に形成されている。その小径 30 部1bの先端に、好ましくは白金チップである貴 金属チップ 2が 溶接されており、このチップ 2 は 例えば直径0.7㎜、厚さ0.3㎜の微小な円板から なつている。円錐部1cが胴部1aと小径部1b の間に設けられている。絶縁碍子3の軸穴3 a の 上部には炭素鋼からなる中軸4が挿通しており、 中軸4の頭部には黄銅等からなる端子5がねじ込 み固定されている。6は円筒状のハウジングであ

4

つて、耐熱性、耐蝕性および導電性のある金属で構成され、ハウジング6の内側にはリング状の気密パッキン 7 およびかしめリング 8 を介して絶縁碍子 3 が固定されている。なお、ハウジング 6 はエンジンプロツクに固定するためのねじ部 6 a を備えている。ハウジング 6 の下端面には接地電極 9 が溶接により固定され、この接地電極も耐熱性耐蝕性および導電性のある金属からなつている。10は絶縁碍子 3 の軸穴 3 a 内に封着された導電性グラスシール層であつて、銅粉末と低融点ガラスから構成されており、このシール層 10 で中軸 4 と中心電極 1 とを電気的に接続すると共に、両者を絶縁碍子 3 の軸穴 3 a に固定する役割を果している。

本発明による点火プラグの製造方法は中心電極 1の先端に対する貴金属チップ2の溶接に関し、 中心電極1の先端部分を小径に加工する前に、チ ップ2を中心電極1の先端に溶接することを特徴 としている。即ち、第3図はチツプ2を溶接する 前の中心電極1であつて、点火フラグに組付けら 20 れる前の単一部品の状態を示し、このような状態 で貴金属チップ2を中心電極1の先端に溶接して 第4図の状態にする。なお、その溶接は好ましく は抵抗溶接であるが、一般には溶接部を加熱し且 つ圧力を加えた状態で溶接が行なわれる。そのよ 25 うに貴金属チップ2を中心電極1の先端に溶接し た後に、着火性および飛火性を向上するため中心 電極1の先端の部分を、好ましくは旋削などの切 削により加工して胴部1aより小径にする。第5 図はそのように中心電極1の先端部分が小径にさ れた状態を示している。

本発明は上記のように貴金属チップ2を溶接した後に中心電極1の先端部分を小径にすることによって、チップ2の良好な溶接を実現したものである。もし、中心電極1を冷間鍜造などにより、第6図に示すように、チップの溶接の前に先細接したのでは充分に信頼性のある接合面積がとれず、使用中において高温および燃焼ガスという腐食により、高温酸化腐食により賃金属チップ2が剥離する現象を呈する。そのためたス中にさらされるので、高温酸化腐食により賃金属チップ2が剥離する現象を呈する。そのため充みに信頼性のある容接面積(合金層が形成されている面積)が必要とされるが、それを確保しようと容接による熱により先端の小径部が座屈

してしまい製品としての形状を保つことができない。

本発明によれば、充分な信頼性のある溶接面積 を確保することができ、そのため使用中に貴金属 チップ 2の脱落や剥離が生じることのない高品質 の点火プラグが得られる。第7図はチップが溶接 される中心電極先端の小径部の座屈を実験的に示 したもので、横軸は溶接電流を示し、縦軸は溶接 面積(接合面積)を多で示したもので、パラメー タとして電極先端の直径を用いている。なお、こ こで使用した貴金属は白金であり、直径 0.7 ㎜、 厚さ0.3㎜のものを用いた。この図からも明らか なように、小径部にチップを溶接すれば座屈する ことがわかる。第8図はそのような座屈について 更に詳しく実験し、その結果を小径部の直径Dと 長さ1との関係で示したものであつて、図中に斜 線を施した領域が接合面積100多をとれない領 域であつて、従つてその範囲内のものでは溶接後 に切削等により小径に加工する本発明の方法が極 めて有効なものとなる。

なお、貴金属チップ 2 としては白金のように貴金属単品でもよいが、P t - I r、P t - R h のように合金であつてもよいことは云うまでもない。また、中心電極 1 の先端の加工法は切削に限られるものではなく、絞り加工や冷間鍜造等でもよい。さらに本発明は中心電極先端と対向する接地電極に貴金属を接合した点火プラグの中心電極に適用することもできない。

従つて、本発明によれば、従来のものに比し著 30 しく小さい貴金属チップを中心電極の先端に好適 に溶接することができ、従来のものと同様な性能 が得られる点火プラグを極めて安価に提供し得る という著しい効果がある。

図面の簡単な説明

第1図は本発明によつて製造された点火プラグの部分断面側面図、第2図は第1図の点火プラグの要部拡大断面図、第3図は貴金属チップを溶接する前の中心電極の側面図、第4図はチップ溶接後の中心電極の側面図、第5図はチップ溶接後に先端部を加工した中心電極の側面図、第6図は一般的な中心電極の側面図、第7図は中心電極の先端にチップを溶接する際の座屈挙動を示すグラフ、そして第8図は中心電極の先端形状とチップの溶接面積の関係を示すグラフである。

図中、1…中心電極、1 a …中心電極の胴部、 1 b …小径部、2…貴金属チップ。

第7図

3

(D)

0.8 (g) 0.6 0.4 0.2

昭和56年特許願第68758号(特公昭59-2152号。昭59.1.17発行の特許公報7(1)-2[295]号掲載)については特許法第64条の規定による補正があったので下記のとおり掲載する。 3-5-8 7-35

Int. C1. 5 H 01 T 21/02 13/20 特許第 1 6 0 1 0 3 1 号 識別記号 庁内整理番号 7337-5 G 7337-5 G

記

1 「特許請求の範囲」の項を「1 中心電極の先端部分に前記中心電極の胴部に比し径の小なる小径部を有しており、この小径部の先端部分のみに貴金属もしくはその合金からなるチップが溶接されている内燃機関用点火プラグの製造方法において、

前記中心電極の先端に前記チップを熱および圧力を加える抵抗溶接法による溶接した後に、前記中心 電極の前記先端部分を前記胴部より小径に加工することにより、前記小径部を形成することを特徴とす る内燃機関用点火プラグの製造方法。

- 2 特許請求の範囲第1項に記載の製造方法において、前記小径部を切削によつて加工する内燃機関用 点火プラグの製造方法。」と補正する。
- 2 「**発明の詳細な説明**」の項を「本発明は火花放電部となる中心電極の先端に貴金属チップを設けた 内燃機関用点火プラグ(以下、単に点火プラグという)の製造方法に関する。

貴金属チップを火花放電部に設けた従来周知の点火プラグの製造方法では、例えば特開昭51-66945号公報に見られるように、チップ自体に大径部と小径部を設け、且つ上記公報の方法ではその大径部を中心電極の先端に設けた穴ぐり部に挿入し、通電してジュール熱で加熱し且つ加圧してかしめるものであり、または単に抵抗溶接によつてチップを固定することが行われ、いずれの場合も貴金属チップに大径部と小径部が在るため、非常に大きなチップを必要とした。そのため、耐消耗性および飛火・着火性という基本的性能にはすぐれているが、チップの体積が大きいことから高価格となり、例えば数百万/月という大量生産向きではなく、そして火花消耗に不必要な部分にまで貴金属が使用されているため過剰品質となり、資源の無駄使いになる。さらに大径部と小径部の存在により貴金属チップの加工工程が繁雑となり、加工コストが高くなる等の欠点があつた。

本発明は上記従来技術の欠点を克服するものであつて、それ故本発明の目的は従来に比し著しく小さい貴金属チップを用いて、従来のものと同様な性能が得られる点火プラグの製造方法を提供することである。

上記目的を達成するため、本発明による内燃機関用点火プラグの製造方法の特徴は、その中心電極の 先端部分に小径部を設け、その先端のみに貴金属チップを溶接する形式の点火プラグを得るにあたり、 中心電極の先端に予めチップを溶接した後に、中心電極の先端部分を胴部より小径に加工することによ って、小径部を形成することであり、これによって、中心電極先端へのチップの溶接を好適な条件のも とで行われるようにしたものである。

次に図面を参照のもとに本発明の実施例について説明する。第1図および第2図は本発明によつて製造された点火プラグを示し、1は耐熱性、耐蝕性および導電性のある貴金属、例えばNi-Cu等からなる中心電極であり、中心電極1の発火部となる先端部分は絶縁碍子3に保持されている胴部1aより小径に形成されている。その小径部1bの先端のみに、好ましくは白金チップである貴金属チップ2が溶接されており、このチップ2は例えば直径 $0.7\,\mathrm{mm}$ 、厚さ $0.3\,\mathrm{mm}$ の微小な円板からなつている。円錐部1cが胴部1aと小径部1bの間に設けられている。絶縁碍子3の軸穴3aの上部には炭素鋼からなる中軸4が挿通しており、中軸4の頭部には横銅等からなる端子5がねじ込み固定されている。6は円筒状のハウジングであつて、耐熱性、耐蝕性および導電性のある金属で構成され、コウジング6の内側にはリング状の気密パッキン7およびかしめリング8を介して絶縁碍子3が固定されている。なお、ハウ

本発明による点火プラグの製造方法は中心電極1の先端に対する貴金属チップ2の溶接に関し、中心電極1の先端部分を小径に加工する前に、チップ2を中心電極1の先端のみに溶接することを特徴としている。即ち、第3図はチップ2を溶接する前の中心電極1であつて、点火プラグに組付けられる前の単一部品の状態を示し、このような状態で貴金属チップ2を中心電極1の先端のみに溶接して第4図の状態にする。なお、その溶接は好ましくは抵抗溶接であるが、一般には溶接部を加熱し且つ圧力を加えた状態で溶接が行われる。そのように貴金属チップ2を中心電極1の先端に溶接した後に、着火性および飛火性を向上するため中心電極1の先端の部分を、好ましくは旋削などの切削により加工して銅部1 a より小径にする。第5図はそのように中心電極1の先端部分が小径にされた状態を示している。

本発明は上記のように貴金属チップ 2 を溶接した後に中心電極 1 の先端部分を小径にすることによって、チップ 2 の良好な溶接を実現したものである。

従来、小径部に貴金属を有する中心電極を得るためには、第6図に示すような小径部を有する中心電極1を冷間鍛造等により得た後、白金等のチップを小径部の先端に溶接していた。しかし、このような工程では、小径部の先端に白金を溶接するため、この溶接の熱により先端の小径部が変形する座屈という現象が生じてしまうため製品としての形状を保つことができなかつた。そこで従来では、白金を溶接する際の熱を低くしなくてはならなかつたが、溶接の熱を低くすると白金と中心電極の先端部との確実に接合する部分(白金と中心電極との間で合金層が形成される部分)の面積である接合面積が十分確保できず、不十分な接合のまま使用中になおいて高温および燃焼ガスという腐食ガス中にさらされるので、高温酸化腐食により貴金属チップが剝離するという現象を呈していた。

本発明によれば、充分な信頼性のある接合面積を確保することができ、そのため使用中に貴金属チツプ2の脱落や剝離が生じることのない高品質の点火プラグが得られる。

第7図はチップが溶接される中心電極先端の小径部の座屈を実験的に示したものである。横軸は溶接時に使用する電流を示し、縦軸は白金と中心電極との対向する面積に対する白金と中心電極との間に形成された合金層の面積(接合面積)の比を%で示したものである。この実験で用いた中心電極の形状は、一方の中心電極では電極先端の形状を直径 $2.5\,\mathrm{mm}$ ($\phi\,\mathrm{D}=\phi\,2.5\,\mathrm{mm}$) の径とし、他方の中心電極では電極先端の形状を直径 $1.5\,\mathrm{mm}$ 、長さ $0.4\,\mathrm{mm}$ ($\phi\,\mathrm{D}=\phi\,1.5\,\mathrm{mm}$) の小径部を形成した。なお、ここで使用した貴金属は白金であり、直径 $0.7\,\mathrm{mm}$ 、厚さ $0.3\,\mathrm{mm}$ のものを用いた。第7図より明らかなように、 $\phi\,\mathrm{D}=\phi\,1.5\,\mathrm{mm}$ の小径にチップを溶接しようとする場合には、 $1.0.0\,\mathrm{%}$ の接合面積を得る前に座屈が生じてしまい、最大で $8.0\,\mathrm{%}$ の接合面積しか得ることができないが、電極先端部が $\phi\,\mathrm{D}=2.5\,\mathrm{mm}$ においては、 $1.0.0\,\mathrm{%}$ の接合面積を得ることができ、かつ溶接電流の許容範囲もまた広くなることがわかる。

第8図は上述した座屈について更に詳しく実験したものであり、縦軸に小径部の長さ ℓ を示し、横軸を電極先端部の直径を ϕ Dで示してある。第8図の斜線を施した領域は前述した接合面積を100%とれない、いわゆる中心電極の先端にて白金か充分に中心電極に接合できない領域を示している。第8図より明らかなように、電極先端部分の直径 ϕ Dがおよそ ϕ 2.1 mm以上であれば、どのような小径部の長さであつても100%き接合面積を得ることができるのに対し、電極先端部分の直径 ϕ Dがおよそ ϕ 0.1 mm以下であると小径部の長さによつて接合面積が100%とれない領域が急激に増加してしまうことがわかる。つまり、この斜線領域の小径部の先端に白金チップを溶接した形状を得る場合には、中心電極先端部の径をおよそ ϕ 2.1 mm以上として白金チップを溶接し、この溶接後に切削等により小径に加工する本発明の方法がきわめて有効なものになる。

なお、貴金属チップ 2 としては白金のように貴金属単品でもよいが、Pt-Ir、Pt-Rh のように合金であつてもよいことは云うまでもない。また、中心電極 1 の先端の加工法は切削に限られるものではなく、絞り加工や冷間鍛造等でもよい。さらに本発明は中心電極先端と対向する接地電極に貴金属

を接合した点火プラグの中心電極に適用することもできる。

従って、本発明によれば、従来のものに比し著しく小さい貴金属チップを中心電極の先端に好適に溶接することができるという著しい効果がある。」と補正する。

3 「図面の簡単な説明」の項を「第1図は本発明によって製造された点火プラグの部分断面側面図、第2図は第1図の点火プラグの要部拡大断面図、第3図は貴金属チップを溶接する前の中心電極の側面図、第4図はチップ溶接後の中心電極の側面図、第5図はチップ溶接後に先端部を加工した中心電極の側面図、第6図は一般的な中心電極の側面図、第7図は中心電極の先端にチップを溶接する際の座屈挙動を示すグラフ、そして第8図は中心電極の先端形状とチップの溶接面積の関係を示すグラフである。

図中、1…中心電極、1 a …中心電極の銅部、1 b…小径部、2…貴金属チツプ。」と補正する。

4 第3頁「第5図」の次に「第6図~第8図」を加入する。

	•		
	. *		,
		· X	
: ·			
•			