Homework 2 Solutions

Math 318, Spring 2016

Problem 1.

Part (a)

Proposition. If m and n are positive integers, then $gcd(2^m - 1, 2^n - 1) = 2^{gcd(m,n)} - 1$.

Proof. We proceed by induction on m + n. The base case is m + n = 2, in which case m = n = 1 and the given statement clearly holds. For m + n > 2, we can assume without loss of generality that $m \le n$. Then

$$\gcd(2^{m}-1,2^{n}-1) = \gcd(2^{m}-1,(2^{n}-1)-(2^{m}-1)) = \gcd(2^{m}-1,2^{n}-2^{m})$$
$$= \gcd(2^{m}-1,2^{m}(2^{n-m}-1)) = \gcd(2^{m}-1,2^{n-m}-1),$$

where the equality follows from the fact that $2^m - 1$ and 2^m are relatively prime. Since m + (n - m) < m + n, our induction hypothesis tells us that

$$\gcd(2^m - 1, 2^{n-m} - 1) = 2^{\gcd(m, n-m)} - 1 = 2^{\gcd(m, n)} - 1$$

and hence $\gcd(2^m - 1, 2^n - 1) = 2^{\gcd(m,n)} - 1$.

Part (b)

Proposition. If n is composite then $2^n - 1$ is composite.

Proof. Suppose n is composite, and let d be a positive divisor of n other than 1 or n. Then

$$\gcd(2^d - 1, 2^n - 1) = 2^{\gcd(d,n)} - 1 = 2^d - 1.$$

Thus 2^d-1 divides 2^n-1 , and since $1<2^d-1<2^n-1$ is follows that 2^n-1 is composite. \square

Problem 2.

The **Fibonacci sequence** F_1, F_2, F_3, \ldots is defined by $F_1 = 1, F_2 = 1$, and

$$F_n = F_{n-1} + F_{n-2}$$

for all n > 3.

Part (a)

Proposition. If $n \geq 2$ then F_{n-1} and F_n are relatively prime.

Proof. We proceed by induction on n. For n = 2, we have $F_{n-1} = F_n = 1$, so F_{n-1} and F_n are relatively prime. For n > 2, we have

$$\gcd(F_{n-1}, F_n) = \gcd(F_{n-1}, F_{n-1} + F_{n-2}) = \gcd(F_{n-1}, F_{n-2}).$$

By our induction hypothesis, F_{n-1} and F_{n-2} are relatively prime, so F_{n-1} and F_n must be relatively prime as well.

Part (b)

Proposition. We have $F_{m+n} = F_m F_{n+1} + F_{m-1} F_n$ for all $m \ge 2$ and $n \ge 1$.

Proof. We proceed by induction on n. For n=1, the given equation is simply

$$F_{m+1} = F_m + F_{m-1},$$

which is the recurrence relation for the Fibonacci numbers. For n > 1, we change m + n to (m + 1) + (n - 1) and apply our induction hypothesis:

$$F_{m+n} = F_{(m+1)+(n-1)} = F_{m+1}F_n + F_mF_{n-1}$$

$$= (F_m + F_{m-1})F_n + F_mF_{n-1} = F_m(F_n + F_{n-1}) + F_{m-1}F_n$$

$$= F_mF_{n+1} + F_{m-1}F_n. \quad \Box$$

Part (c)

Proposition. If $m, n \geq 1$, then $gcd(F_m, F_n) = F_{gcd(m,n)}$.

Proof. We proceed by induction on m+n. The base case is m+n=2, for which m=n=1 and the given statement clearly holds. For m+n>2, we can assume without loss of generality that $m \leq n$. If m=1 or m=n then clearly the statement holds, so we may assume that $m \geq 2$ and $n-m \geq 1$. Then it follows from part (b) that

$$F_n = F_{m+(n-m)} = F_m F_{n-m+1} + F_{m-1} F_{n-m}$$

SO

$$\gcd(F_m, F_n) = \gcd(F_m, F_m F_{n-m+1} + F_{m-1} F_{n-m})$$
$$= \gcd(F_m, F_{m-1} F_{n-m}) = \gcd(F_m, F_{n-m}),$$

where the last equality follows from the fact that F_m and F_{m-1} are relatively prime. Since m + (n - m) < m + n, our induction hypothesis tells us that

$$\gcd(F_m, F_{n-m}) = F_{\gcd(m, n-m)} = F_{\gcd(m, n)}$$

and hence $gcd(F_m, F_n) = F_{gcd(m,n)}$.