```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
```

```
In [2]: df = pd.read_csv(r"C:\Users\PC1\Desktop\DS\DataSets\temperatures.csv")
```

In [3]: df

Out[3]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	JAN- FEB	MAR- MAY	JUN- SEP	OCT- DEC
0	1901	22.40	24.14	29.07	31.91	33.41	33.18	31.21	30.39	30.47	29.97	27.31	24.49	28.96	23.27	31.46	31.27	27.25
1	1902	24.93	26.58	29.77	31.78	33.73	32.91	30.92	30.73	29.80	29.12	26.31	24.04	29.22	25.75	31.76	31.09	26.49
2	1903	23.44	25.03	27.83	31.39	32.91	33.00	31.34	29.98	29.85	29.04	26.08	23.65	28.47	24.24	30.71	30.92	26.26
3	1904	22.50	24.73	28.21	32.02	32.64	32.07	30.36	30.09	30.04	29.20	26.36	23.63	28.49	23.62	30.95	30.66	26.40
4	1905	22.00	22.83	26.68	30.01	33.32	33.25	31.44	30.68	30.12	30.67	27.52	23.82	28.30	22.25	30.00	31.33	26.57
112	2013	24.56	26.59	30.62	32.66	34.46	32.44	31.07	30.76	31.04	30.27	27.83	25.37	29.81	25.58	32.58	31.33	27.83
113	2014	23.83	25.97	28.95	32.74	33.77	34.15	31.85	31.32	30.68	30.29	28.05	25.08	29.72	24.90	31.82	32.00	27.81
114	2015	24.58	26.89	29.07	31.87	34.09	32.48	31.88	31.52	31.55	31.04	28.10	25.67	29.90	25.74	31.68	31.87	28.27
115	2016	26.94	29.72	32.62	35.38	35.72	34.03	31.64	31.79	31.66	31.98	30.11	28.01	31.63	28.33	34.57	32.28	30.03
116	2017	26.45	29.46	31.60	34.95	35.84	33.82	31.88	31.72	32.22	32.29	29.60	27.18	31.42	27.95	34.13	32.41	29.69

117 rows × 18 columns

```
In [4]: #input variable for graph
x = df['YEAR']

#output variable for graph
y = df['ANNUAL']
```

```
In [5]: plt.figure(figsize=(16,9))
    plt.title('Avg. Temperature Plot of INDIA')
    plt.xlabel('Year')
    plt.ylabel('Avg. Annual')
    plt.errorbar(x,y)
    plt.scatter(x,y)
```

Out[5]: <matplotlib.collections.PathCollection at 0x21ec849cac0>


```
In [6]: plt.figure(figsize=(16,9))
    plt.title('Avg. Temperature Plot of INDIA')
    plt.xlabel('Year')
    plt.ylabel('Avg. Annual')
    plt.scatter(x,y)
```

Out[6]: <matplotlib.collections.PathCollection at 0x21ec85a7af0>


```
In [7]: x.shape
 Out[7]: (117,)
 In [8]: x
 Out[8]: 0
                1901
                1902
         1
         2
                1903
                1904
                1905
                . . .
         112
                2013
                2014
         113
         114
                2015
         115
                2016
         116
                2017
         Name: YEAR, Length: 117, dtype: int64
 In [9]: y.shape
 Out[9]: (117,)
In [10]: x = x.values
In [11]: x = x.reshape(117,1) #Requirement of python library
```

```
In [12]: x
Out[12]: array([[1901],
                 [1902],
                 [1903],
                 [1904],
                 [1905],
                 [1906],
                 [1907],
                 [1908],
                 [1909],
                 [1910],
                 [1911],
                 [1912],
                 [1913],
                 [1914],
                 [1915],
                 [1916],
                 [1917],
                 [1918],
                 [1919],
In [13]: from sklearn.linear_model import LinearRegression
In [14]: regressor = LinearRegression()
In [15]: regressor.fit(x,y) #Done y=mx+c
Out[15]:
          ▼ LinearRegression
          LinearRegression()
In [16]: regressor.coef_ #m
Out[16]: array([0.01312158])
```

```
In [17]: regressor.intercept #c
Out[17]: 3.4761897126187016
In [18]: regressor.predict([[2030]])
Out[18]: array([30.1129998])
In [19]: predicted = regressor.predict(x)
In [20]: predicted
Out[20]: array([28.4203158 , 28.43343739 , 28.44655897 , 28.45968055 , 28.47280213 ,
                28.48592371, 28.49904529, 28.51216687, 28.52528846, 28.53841004,
                28.55153162, 28.5646532, 28.57777478, 28.59089636, 28.60401794,
                28.61713952, 28.63026111, 28.64338269, 28.65650427, 28.66962585,
                28.68274743, 28.69586901, 28.70899059, 28.72211218, 28.73523376,
                28.74835534, 28.76147692, 28.7745985, 28.78772008, 28.80084166,
                28.81396324, 28.82708483, 28.84020641, 28.85332799, 28.86644957,
                28.87957115, 28.89269273, 28.90581431, 28.91893589, 28.93205748,
                28.94517906, 28.95830064, 28.97142222, 28.9845438, 28.99766538,
                29.01078696, 29.02390855, 29.03703013, 29.05015171, 29.06327329,
                29.07639487, 29.08951645, 29.10263803, 29.11575961, 29.1288812,
                29.14200278, 29.15512436, 29.16824594, 29.18136752, 29.1944891,
                29.20761068, 29.22073227, 29.23385385, 29.24697543, 29.26009701,
                29.27321859, 29.28634017, 29.29946175, 29.31258333, 29.32570492,
                29.3388265 , 29.35194808 , 29.36506966 , 29.37819124 , 29.39131282 ,
                29.4044344 , 29.41755599, 29.43067757, 29.44379915, 29.45692073,
                29.47004231, 29.48316389, 29.49628547, 29.50940705, 29.52252864,
                29.53565022, 29.5487718, 29.56189338, 29.57501496, 29.58813654,
                29.60125812, 29.6143797, 29.62750129, 29.64062287, 29.65374445,
                29.66686603, 29.67998761, 29.69310919, 29.70623077, 29.71935236,
                29.73247394, 29.74559552, 29.7587171 , 29.77183868, 29.78496026,
                29.79808184, 29.81120342, 29.82432501, 29.83744659, 29.85056817,
                29.86368975, 29.87681133, 29.88993291, 29.90305449, 29.91617608,
                29.92929766, 29.94241924])
```

```
In [21]: y
Out[21]: 0
                28.96
                29.22
                28.47
                28.49
                28.30
                . . .
         112
                29.81
                29.72
         113
                29.90
         114
         115
                31.63
                31.42
         116
         Name: ANNUAL, Length: 117, dtype: float64
In [22]: #Mean Absolute Error
         np.mean(abs(y - predicted))
Out[22]: 0.22535284978630413
In [23]: from sklearn.metrics import mean_absolute_error
         mean_absolute_error(y, predicted)
Out[23]: 0.22535284978630413
In [24]: #Mean Squared Error
         np.mean((y - predicted)**2)
Out[24]: 0.10960795229110352
In [25]: from sklearn.metrics import mean_squared_error
         mean_squared_error(y, predicted)
Out[25]: 0.10960795229110352
```

In [26]: from sklearn.metrics import r2_score
 r2_score(y, predicted)

Out[26]: 0.6418078912783682

In [27]: regressor.score(x,y)

Out[27]: 0.6418078912783682

```
In [28]: plt.figure(figsize=(16,9))
    plt.title('Avg. Temperature Plot of INDIA')
    plt.xlabel('Year')
    plt.ylabel('Avg. Annual')
    plt.scatter(x,y, label = 'actual', color = 'r', marker = '+')
    plt.errorbar(x, predicted, label = 'predicted', color = 'c')
    plt.legend() #To display which color denote what
```

Out[28]: <matplotlib.legend.Legend at 0x21ecbef0c10>


```
In [29]: plt.figure(figsize=(16,9))
    plt.title('Avg. Temperature Plot of INDIA')
    plt.xlabel('Year')
    plt.ylabel('Avg. Annual')
    plt.errorbar(x,y, label = 'actual', color = 'y')
    plt.plot(x, predicted, label = 'predicted', color = 'c')
    plt.legend() #To display which color denote what
```

Out[29]: <matplotlib.legend.Legend at 0x21ecbef06a0>


```
In [30]: import seaborn as sns
sns.regplot(x='YEAR', y='ANNUAL', data=df)
```

Out[30]: <Axes: xlabel='YEAR', ylabel='ANNUAL'>


```
In [31]: sns.regplot(x='YEAR', y='JAN', data=df)
```

Out[31]: <Axes: xlabel='YEAR', ylabel='JAN'>


```
In [32]: sns.regplot(x='YEAR', y='FEB', data=df)
```

Out[32]: <Axes: xlabel='YEAR', ylabel='FEB'>


```
In [33]: sns.regplot(x='YEAR', y='MAR', data=df)
```

Out[33]: <Axes: xlabel='YEAR', ylabel='MAR'>


```
In [34]: sns.regplot(x='YEAR', y='APR', data=df)
```

Out[34]: <Axes: xlabel='YEAR', ylabel='APR'>


```
In [35]: sns.regplot(x='YEAR', y='MAY', data=df)
```

Out[35]: <Axes: xlabel='YEAR', ylabel='MAY'>


```
In [36]: sns.regplot(x='YEAR', y='JUN', data=df)
```

Out[36]: <Axes: xlabel='YEAR', ylabel='JUN'>


```
In [37]: sns.regplot(x='YEAR', y='JUL', data=df)
```

Out[37]: <Axes: xlabel='YEAR', ylabel='JUL'>


```
In [38]: sns.regplot(x='YEAR', y='AUG', data=df)
```

Out[38]: <Axes: xlabel='YEAR', ylabel='AUG'>


```
In [39]: sns.regplot(x='YEAR', y='SEP', data=df)
```

Out[39]: <Axes: xlabel='YEAR', ylabel='SEP'>


```
In [40]: sns.regplot(x='YEAR', y='OCT', data=df)
```

Out[40]: <Axes: xlabel='YEAR', ylabel='OCT'>


```
In [41]: sns.regplot(x='YEAR', y='NOV', data=df)
```

Out[41]: <Axes: xlabel='YEAR', ylabel='NOV'>


```
In [42]: sns.regplot(x='YEAR', y='DEC', data=df)
```

Out[42]: <Axes: xlabel='YEAR', ylabel='DEC'>

