3. *G*-Computable Functions

Computability theory is the study of computable functions. In our approach, the notion of *computability* is relative to the programming language \mathcal{G} . For this to be an interesting concept, we must

- (1) show it is stable, i.e., not dependent on slight changes in the definition of \mathcal{G} ; and
- (2) link this with more traditional characterisations of computability.

These will both be done later in the course.

3.1 *G*-computability

We formalise the fundamental notion: a \mathcal{G} -program \mathcal{P} computes an n-ary function f.

• For any n > 0 and any n numbers x_1, \ldots, x_n , consider a **computation** s_1, s_2, \ldots for \mathcal{P} with **initial snapshot** $s_1 = (1, \sigma_1)$, where $\sigma_1 : \mathbf{var}(\mathcal{P}) \to \mathbb{N}$ is defined by

$$\sigma_1(X_i) = x_i$$
 for $i = 1, ..., n$
 $\sigma_1(X_i) = 0$ for $i > n$
 $\sigma_1(Z_j) = 0$ for all $Z_j \in \mathbf{var}(\mathcal{P})$
 $\sigma_1(Y) = 0$.

- Case 1: This computation is finite, with terminal snapshot $s_k = (\ell + 1, \sigma_k)$ (where $\ell = |\mathcal{P}|$), and $\sigma_k(Y) = y$. Then $f(x_1, \dots, x_n) \downarrow y$.
- Case 2: This computation is *infinite*. Then $f(x_1, \ldots, x_n) \uparrow$.

• If \mathcal{P} computes the *n*-ary function f, then we write $f = \psi_{\mathcal{P}}^{(n)}$ (and often drop the superscript '(n)' when n = 1). Note that \mathcal{P} is not required to have exactly n input variables, and a particular \mathcal{P} can compute different n-ary functions for different values of n. For example, the program given for the sum function on p. 2-4 yields the following:

$$\psi_{\mathcal{P}}^{(2)}(x_1, x_2) = x_1 + x_2$$
$$\psi_{\mathcal{P}}^{(1)}(x_1) = x_1$$
$$\psi_{\mathcal{P}}^{(3)}(x_1, x_2, x_3) = x_1 + x_2$$

- For any \mathcal{P} and n, the function $\psi_{\mathcal{P}}^{(n)}$ is **computable** by \mathcal{P} .
- An *n*-ary function f is \mathcal{G} -computable if $f = \psi_{\mathcal{P}}^{(n)}$ for some \mathcal{G} -program \mathcal{P} .
- f is $total \mathcal{G}$ -computable if f is \mathcal{G} -computable and total.
- A *G-computable n-ary predicate* is a total *G-*computable function

$$P:\mathbb{N}^n\to 2.$$

From the \mathcal{G} -programs in §2.2 and §2.3 it follows that the functions $\lambda x \cdot 0$, $\lambda x \cdot x$, $\lambda x \cdot \uparrow$, λx , $y \cdot (x+y)$, λx , $y \cdot (x*y)$, and λx , $y \cdot (x - y)$ are \mathcal{G} -computable.

- $FN^{(n)}$ is the class of *n*-ary (partial) functions, and $FN = \bigcup_n FN^{(n)}$.
- TFN⁽ⁿ⁾ is the class of n-ary **total** functions, and TFN = $\bigcup_n \text{TFN}^{(n)}$.
- \mathcal{G} -COMP⁽ⁿ⁾ is the class of \mathcal{G} -computable n-ary (partial) functions, and \mathcal{G} -COMP = $\bigcup_n \mathcal{G}$ -COMP⁽ⁿ⁾.
- \mathcal{G} -TCOMP⁽ⁿ⁾ is the class of n-ary total \mathcal{G} -computable functions, and \mathcal{G} -TCOMP = $\bigcup_n \mathcal{G}$ -TCOMP⁽ⁿ⁾.

Clearly, the following inclusions hold:

$$\mathcal{G} ext{-COMP} \subseteq FN$$
 \cup
 \cup
 $\mathcal{G} ext{-TCOMP} \subseteq TFN$

The questions as to whether the above " \subseteq " inclusions are proper, i.e., whether *all* functions (or all total functions) are computable, must still be answered.

Note. For historical reasons, total \mathcal{G} -computable functions are also called **recursive** functions, and \mathcal{G} -computable functions are also called **partial recursive** functions.

3.2 Macros for \mathcal{G} -computable functions

Once we have a \mathcal{G} -program \mathcal{P} which computes an n-ary function f, we can augment our language \mathcal{G} with a macro $W \leftarrow f(V_1, V_2, \dots, V_n)$ for f derived from \mathcal{P} as follows:

1. Assume

- $var(\mathcal{P}) \subseteq \{X_1, \ldots, X_n, Z_1, \ldots, Z_k, Y\},\$
- $lab(\mathcal{P}) \subseteq \{E, A_1, \dots, A_l\},\$
- for instructions of the form 'if $V \neq 0$ goto A_i ' in \mathcal{P} , there is an instruction in \mathcal{P} labelled A_i , and E is the only exit label.

Clearly, \mathcal{P} can easily be modified to meet these requirements. So put

$$\mathcal{P} \equiv \mathcal{P}(Y, X_1, \dots, X_n, Z_1, \dots, Z_k, E, A_1, \dots, A_l)$$

2. Now *choose* m sufficiently large so that all variables and labels in the main program have indices less than m, and let

$$\mathcal{P}_m \equiv \mathcal{P}(Z_m, Z_{m+1}, \dots, Z_{m+n}, Z_{m+n+1}, \dots, Z_{m+n+k}, E_m, A_{m+1}, \dots, A_{m+l}).$$

3. Then let the macro $W \leftarrow f(V_1, \dots, V_n)$ have the expansion

$$Z_{m} \leftarrow 0$$

$$Z_{m+1} \leftarrow V_{1}$$

$$\vdots$$

$$Z_{m+n} \leftarrow V_{n}$$

$$Z_{m+n+1} \leftarrow 0$$

$$\vdots$$

$$Z_{m+n+k} \leftarrow 0$$

$$\mathcal{P}_{m}$$

$$[E_{m}] \quad W \leftarrow Z_{m}$$

Observe that

- we may have $W \equiv V_i$ for some $i \in \{1, ..., n\}$, and
- if $f(v_1, \ldots, v_n) \uparrow$, then the macro for f will not terminate if it is entered in state σ such that $\sigma(V_i) = v_i$, $i = 1, \ldots, n$. (Therefore the whole program will not terminate.)

A useful extension of the language \mathcal{G} is a generalisation of the conditional branch statement by means of the macro

if
$$P(V_1,\ldots,V_n)$$
 goto L

where P is any computable predicate. The appropriate macro expansion is

$$Z \leftarrow P(V_1, \dots, V_n)$$
 if $Z \neq 0$ goto L

Example. If we want to use the statement if V = 0 goto L, we have to verify that the following predicate

$$P(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x \neq 0 \end{cases}$$

is computable. Indeed, the appropriate \mathcal{G} -program is

$$\begin{array}{c} \text{if } X \neq 0 \text{ goto } E \\ Y + + \end{array}$$

3.3 Relative \mathcal{G} -computability

We extend the language \mathcal{G} to include **oracle statements**, and **relativise** the concept of \mathcal{G} -program with respect to such statements.

Let $\vec{g} = g_1, \ldots, g_k$ be functions of arity r_1, \ldots, r_k . An oracle statement for g_i has the form

$$V \leftarrow g_i(U_1, \dots, U_{r_i})$$

For the semantics of such a statement, think of an *oracle* or "black box" for g_i , which, when given input values $\vec{u} = u_1, \ldots, u_{r_i}$ for U_1, \ldots, U_{r_i} either produces the output value $g_i(\vec{u})$ for V (if $g_i(\vec{u}) \downarrow$) or "ticks over" indefinitely (if $g_i(\vec{u}) \uparrow$).

In this way, the notion of \mathcal{G} -computability and the function classes \mathcal{G} -COMP and \mathcal{G} -TCOMP can be **relativised** to obtain the notion \mathcal{G} -computable in \vec{g} , and the function classes \mathcal{G} -COMP(\vec{g}) and \mathcal{G} -TCOMP(\vec{g}).

If a function is **total** \mathcal{G} -**computable** in \vec{g} , then it is also said to be **recursive** in \vec{g} . A relativised version of the diagram on p. 3-3 is

$$\mathcal{G} ext{-COMP}(\vec{g}) \subseteq \mathrm{FN}$$
 \cup
 \cup
 $\mathcal{G} ext{-TCOMP}(\vec{g}) \subseteq \mathrm{TFN}$

Once again, the questions as to the properness of the " \subseteq " inclusions must still be answered.

Lemma 3.1.

- (a) \mathcal{G} -COMP $\subseteq \mathcal{G}$ -COMP(\vec{g})
- (b) $\mathcal{G}\text{-COMP} = \mathcal{G}\text{-COMP}(\langle \rangle)$
- (c) If $\vec{g} \subseteq \vec{h}$, then $\mathcal{G}\text{-COMP}(\vec{g}) \subseteq \mathcal{G}\text{-COMP}(\vec{h})$.

Proof: Clear from the definition. \Box

Theorem 3.2 (Transitivity).

- (a) If $f \in \mathcal{G}\text{-COMP}(\vec{g})$ and $g_1, \ldots, g_k \in \mathcal{G}\text{-COMP}$, then $f \in \mathcal{G}\text{-COMP}$. More generally:
- (b) If $f \in \mathcal{G}\text{-}\mathrm{COMP}(\vec{g})$ and $\vec{g} \in \mathcal{G}\text{-}\mathrm{COMP}(\vec{h})$, then $f \in \mathcal{G}\text{-}\mathrm{COMP}(\vec{h})$,
- (c) If $f \in \mathcal{G}\text{-}\mathrm{COMP}(\vec{g}, \vec{h})$ and $\vec{g} \in \mathcal{G}\text{-}\mathrm{COMP}(\vec{h})$, then $f \in \mathcal{G}\text{-}\mathrm{COMP}(\vec{h})$.

Proof: (a) Replace the oracle statement for g_i by the macro expansion for g_i (i = 1, ..., k) in the (relative) \mathcal{G} -program for f. (b), (c): Similarly. \square

3.4 Construction of \mathcal{G} -computable functions

We are now going to take a different approach to computability. Namely, we will take a set of computable *initial functions*, together with general methods for *constructing new computable functions from old*. Initial functions will be introduced in $\S4.1$, while this section, building on our theory of relative computability, contains two methods for forming new computable functions from old:

(a) Composition

Given a k-ary function g and n-ary functions h_1, \ldots, h_k we define the **composition** of g and h_1, \ldots, h_k as the n-ary function

$$f(\vec{x}) \simeq g(h_1(\vec{x}), \dots, h_k(\vec{x})) \tag{1}$$

where $\vec{x} \equiv x_1, \dots, x_n$, and " \simeq " means that the lhs of (1) is defined iff the rhs of (1) is, in which case they are equal. So $f(\vec{x}) \downarrow y$ (say) \iff

$$\exists z_1, \ldots, z_k \ [h_1(\vec{x}) \downarrow z_1 \land \cdots \land h_k(\vec{x}) \downarrow z_k \land g(\vec{z}) \downarrow y].$$

Lemma 3.3. In (1), if g and \vec{h} are total, then so is f.

Proof: Similar to Lemma 1.2(a).

Lemma 3.4. In (1), f is \mathcal{G} -computable in g and \vec{h} . Hence if g, h_1, \ldots, h_k are \mathcal{G} -computable, then so is f.

Proof: Using oracles for g, h_1, \ldots, h_k , we can construct a (relative) \mathcal{G} -program for f:

$$Z_1 \leftarrow h_1(X_1, \dots, X_n)$$

$$\vdots$$

$$Z_k \leftarrow h_k(X_1, \dots, X_n)$$

$$Y \leftarrow g(Z_1, \dots, Z_k)$$

The second part of the statement follows from Theorem 3.2(a). \square

(b) Primitive Recursion

A unary function f, defined by

$$\begin{cases} f(0) = k \\ f(t+1) = h(t, f(t)) \end{cases}$$
 (2)

with k fixed, and h a binary function, is said to be defined by **primitive** recursion (without parameters).

Lemma 3.5. For any $k \in \mathbb{N}$, the constant function $\lambda \vec{x} \cdot k$ is \mathcal{G} -computable.

$$\begin{cases} Y++\\ \vdots\\ Y++ \end{cases}$$
 (k times)

These programs can form the basis of the macro $Y \leftarrow k$.

Lemma 3.6. In (2), if h is total then so is f.

Proof: Exercise.

Lemma 3.7. In (2), f is \mathcal{G} -computable in h. Hence if h is \mathcal{G} -computable, then so is f.

Proof: Using an oracle for h we can construct a relative \mathcal{G} -program for f:

As before, the second part of the statement follows from Thm 3.2(a). \square

This is actually a special case of the more general concept of definition by $primitive\ recursion\ with\ parameters$. An (n+1)-ary function f, defined by

$$\begin{cases}
f(\vec{x},0) \simeq g(\vec{x}) \\
f(\vec{x},t+1) \simeq h(\vec{x},t,f(\vec{x},t))
\end{cases}$$
(3)

with parameters $\vec{x} \equiv x_1, \dots, x_n$ (where g and h have arities n and n+2 respectively), is said to be **defined from** g **and** h **by primitive recursion** (with parameters).

Lemma 3.8. In (3), if g and h are total, then so is f.

Proof: Exercise.

Lemma 3.9. In (3), f is \mathcal{G} -computable in g, h. Hence if g, h are \mathcal{G} -computable, then so is f.

Proof: Using oracles for g and h, the following (relative) \mathcal{G} -program computes f:

$$\begin{array}{c} Y \leftarrow g(X_1,\ldots,X_n) \\ [A] \quad \text{if } X_{n+1} = 0 \text{ goto } E \\ Y \leftarrow h(X_1,\ldots,X_n,Z,Y) \\ Z + + \\ X_{n+1} - - \\ \text{goto } A \end{array}$$

3.5 Effective calculability

A (partial) function is *effective* or *effectively calculable* or *algorithmic* iff there is a algorithm to compute it. This is an *intuitive*, not a mathematical notion, since it depends on the intuitive notion of *algorithm*. The classes of *effective functions* and *total effective functions* are denoted by EFF and TEFF respectively.

Clearly,

A function f is **effective** in \vec{g} iff there is an **algorithm** for f which uses an "oracle" or "black box" for \vec{g} . EFF(\vec{g}) and TEFF(\vec{g}) denote the classes of **functions effective** in \vec{g} and **total functions effective** in \vec{g} respectively. The relativised version of the above diagram is

$$\begin{array}{cccc} \mathcal{G}\text{-}\mathrm{COMP}(\vec{g}) & \subseteq & \mathrm{EFF}(\vec{g}) & \subseteq & \mathrm{FN} \\ & \cup & & \cup & \cup \\ \\ \mathcal{G}\text{-}\mathrm{TCOMP}(\vec{g}) & \subseteq & \mathrm{TEFF}(\vec{g}) & \subseteq & \mathrm{TFN} \end{array}$$

As before, the question as to the properness of the above " \subseteq " inclusions must be answered.