# FEDERAL STATE AUTONOMOUS EDUCATIONAL INSTITUTION OF HIGHER EDUCATION ITMO UNIVERSITY

#### Report

on the practical task No. 3

Algorithms for unconstrained nonlinear optimization. First- and secondorder methods

Performed by Carlos Andres Daza Rachen

Academic group
Accepted by
Dr Petr Chunaev

#### Goal

The use of first- and second-order methods (Gradient Descent, Non-linear Conjugate gradient Descent, Newton's method and Levenberg-Marquardt algorithm) in the tasks of unconstrained nonlinear optimization

## Formulation of the problem

Compare first and second order methods

## Brief theoretical part [1]

**First-order methods** rely on gradient information to help direct the search for a minimum:

- Gradcient descent: Use the direction of steepest descent. Following the
  direction of steepest descent is guaranteed to lead to improvement, provided
  that the objective function is smooth, the step size is sufficiently small, and we
  are not already at a point where the gradient is zero. The direction of
  steepest descent is the direction opposite the gradient ∇f, hence the name
  gradient descent.
- Conjugate gradient: Gradient descent can perform poorly in narrow valleys.
   The conjugate gradient method overcomes this issue by borrowing inspiration from methods for optimizing quadratic functions:

$$\underset{\mathbf{x}}{\text{minimize}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{x} + c$$

where A is symmetric and positive definite, and thus f has a unique local minimum

**Leveraging second-order** approximations use the second derivative in univariate optimization or the Hessian in multivariate optimization to direct the search:

- Newton's Method: Second-order information, allows us to make a quadratic approximation of the objective function and approximate the right step size to reach a local minimum as shown. we can analytically obtain the location where a quadratic approximation has a zero gradient. We can then use that location as the next iteration to approach a local minimum.
  - The update rule in Newton's method involves dividing by the second derivative. The update is undefined if the second derivative is zero, which occurs when the quadratic approximation is a horizontal line.
- Levenberg-Marquardt algorithm: was developed in the early 1960's to solve nonlinear least squares problems. Least squares problems arise in the context of fitting a parameterized mathematical model to a set of data points by minimizing an objective expressed as the sum of the squares of the errors between the model function and a set of data points.

### Results

#### 1. Linear function

|                   | Iteratio<br>ns | Calls | а        | b        | value   |
|-------------------|----------------|-------|----------|----------|---------|
| Gradient descent  | 41             | 41    | 0.395249 | 0.812475 | 105.379 |
| Conjugate GD      | 9              | 45    | 0.392559 | 0.814389 | 86.3369 |
| Newton            | 3              | 15    | 0.392530 | 0.814405 | 86.3369 |
| Levenberg         | 6              | 6     | 0.392530 | 0.814405 | 43.1684 |
| Exhaustive Search | 119            | 119   | 0.682614 | 0.627814 | 104.511 |
| Gauss Search      | 3              | 101   | 0.682587 | 0.627814 | 104.511 |
| Nelder-Mead       | 20             | 38    | 0.682244 | 0.628022 | 104.511 |

### 2. Rational function

|                   | Iterations | Calls | а        | b         | value   |
|-------------------|------------|-------|----------|-----------|---------|
| Gradient descent  | 170        | 170   | 0.694740 | -0.510737 | 104.159 |
| Conjugate GD      | 10         | 84    | 0.681259 | -0.527889 | 104.149 |
| Newton            | 10         | 57    | 0.681260 | -0.527889 | 104.149 |
| Levenberg         | 20         | 20    | 0.681259 | -0.52789  | 52.0745 |
| Exhaustive Search | 119        | 119   | 0.681247 | -0.527907 | 104.149 |
| Gauss Search      | 4          | 98    | 0.692410 | -0.523534 | 104.17  |
| Nelder-Mead       | 35         | 68    | 0.681014 | -0.528354 | 104.149 |

# 3. Plot

## 3.1 Linear





### 3.2 Rational





## Conclusions

- Gauss search is the speedest in accordance to the less number of iterations that it needs and also have decent results.
- Gradient descent for rational function even took more time than exahustive, it's the most demanding in number of iterations.
- The linear approximations had a result closer to the true dependence. The methods of task 2 have a similar behavior and those of task 3 also mark the same graph.

# Bibliography

- [1] Kochenderfer, Algorithms for optimization
- [2] Henri P. Gavin, The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems, 2020