SEQUENCE LISTING

<110>	Shie, Jue-Lon Li, Jian Laham, Roger J.		AP20 Recid	RTARO	07	APR	2006
<120>	Methods and Compositions Abnormal Angiogenesis	For Treating	Conditions	Involving			
<130>	01948/101002						
	PCT/US04/33735 2004-10-12						
	US 60/510,437 2003-10-10						
<160>	7						
<170>	PatentIn version 3.3						
<211> <212>							
<220> <223>	synthesis						
	1 tttt tt					12	
<210><211><211><212><213>	25						
<220> <223>	synthetic						
<400> gctgag	2 gete geétgteece geece					25	
<210><211><211><212><213>	3 25 DNA Artificial Sequence						
<220> <223>	synthesis						
<400>	3 ccaq caccqaqcqc cctqq					25	

```
<210> 4
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic
<400> 4
tgtccccgcc ccccggggcg ggccgggggc ggggtcccgg cggggcggag
                                                                     50
<210> 5
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic
<400> 5
agcgccgggt gggagtgaga gagcgagc
                                                                      28
<210> 6
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic
<400> 6
                                                                      30
gtgggactag cgccgggtgg gagtgagaga
<210> 7
<211> 434
<212> PRT
<213> Artificial Sequence
<220>
<223> synthetic
<400> 7
Met Glu Gly Thr Ala Gly Thr Ile Thr Ser Asn Glu Trp Ser Ser Pro
               5
Thr Ser Pro Glu Gly Ser Thr Ala Ser Gly Gly Ser Gln Ala Leu Asp
           20
                                                    30
Lys Pro Ile Asp Asn Asp Gly Glu Gly Val Trp Ser Pro Asp Ile Glu
       35
                            40
                                                45
```

Gln	Ser 50	Phe	Gln	Glu	Ala	Leu 55	Ala	Ile	Tyr	Pro	Pro 60	Cys	Gly	Arg	Arg
Lys 65	Ile	Ile	Leu	Ser	Asp 70	Glu	Gly	Lys	Met	Tyr 75	Gly	Arg	Asn	Glu	Leu 80
Ile	Ala	Arg	Tyr	Ile 85	Lys	Leu	Arg	Thr	Gly 90	Lys	Thr	Arg	Thr	Arg 95	Lys
Gln	Val	Ser	Ser 100	His	Ile	Gln	Val	Leu 105	Ala	Arg	Arg	Lys	Ala 110	Arg	Glu
Ile	Gln	Ala 115	Lys	Leu	Lys	Asp	Gln 120	Ala	Ala	Lys	Asp	Lys 125	Ala	Leu	Gln
Ser	Met 130	Ala	Ala	Met	Ser	Ser 135	Ala	Gln	Ile	Ile	Ser 140	Ala	Thr	Ala	Phe
His 145	Ser	Ser	Met	Arg	Leu 150	Ala	Arg	Gly	Pro	Gly 155	Arg	Pro	Ala	Val	Ser 160
Gly	Phe	Trp	Gln	Gly 165	Ala	Leu	Pro	Gly	Gln 170	Ala	Glu	Thr	Ser	His 175	Asp
Val	Lys	Pro	Phe 180	Ser	Gln	Gln	Thr	Tyr 185	Ala	Val	Gln	Pro	Pro 190	Leu	Pro
Leu	Pro	Gly 195	Phe	Glu	Ser	Pro	Ala 200	Gly	Pro	Ala	Pro	Ser 205	Pro	Ser	Ala
Pro	Pro 210	Ala	Pro	Pro	Trp	Gln 215	Gly	Arg	Arg	Arg	Gly 220	Ser	Ser	Lys	Leu
Trp 225	Met	Leu	Glu	Phe	Ser 230	Ala	Phe	Leu	Glu	Gln 235	Gln	Gln	Asp	Pro	Asp 240
Thr	Tyr	Asn	Lys	His 245	Leu	Phe	Val	His	Ile 250	Gly	Gln	Ser	Ser	Pro 255	Ser
Tyr	Leu	Arg	Pro 260	Tyr	Leu	Glu	Ala	Val 265	Asp	Ile	Arg	Gln	Ile 270	Tyr	Asp

Lys Phe Pro Glu Lys Lys Gly Gly Leu Lys Asp Leu Phe Glu Arg Gly 275 280 285

Pro Ser Asn Ala Phe Phe Leu Val Lys Phe Trp Ala Asp Leu Asn Thr

290 295 300

Asn Ile Glu Asp Glu Gly Ser Ser Phe Tyr Gly Val Ser Ser Gln Tyr 305 310 315 320

Glu Ser Pro Glu Asn Met Ile Ile Thr Cys Ser Thr Lys Val Cys Ser 325 330 335

Phe Gly Lys Gln Val Val Glu Lys Val Glu Thr Glu Tyr Ala Arg Tyr 340 345 350

Glu Asn Gly His Tyr Ser Tyr Arg Ile His Arg Ser Pro Leu Cys Glu 355 360 365

Tyr Met Ile Asn Phe Ile His Lys Leu Lys His Leu Pro Glu Lys Tyr 370 375 380

Met Met Asn Ser Val Leu Glu Asn Phe Thr Ile Leu Gln Val Val Thr 385 390 395 400

Asn Arg Asp Thr Gln Glu Thr Leu Leu Cys Ile Ala Tyr Val Phe Glu 405 · 410 415

Val Ser Ala Ser Glu His Gly Ala Gln His His Ile Tyr Arg Leu Val 420 425 430 .

Lys Glu