Sujet 1.

- * (Cours) Exercice 1. Soient $a, b \in \mathbb{R}$ et $n \in \mathbb{N}$. Démontrer que $e^{ia} e^{ib} = e^{i(a+b)}$.
- * Exercice 2. On considère les nombres complexes suivants : $z_1 = 1 + i\sqrt{3}$, $z_2 = 1 + i$ et $z_3 = \frac{z_1}{z_2}$
 - 1. Écrire z_3 sous forme algébrique.
 - 2. Écrire z_3 sous forme trigonométrique.
 - 3. En déduire les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$
- * Exercice 3. Résoudre l'équation différentielle (E) : $y''(x) + y'(x) + y(x) = \cos(x)$.

Sujet 2.

 \star (Cours) Exercice 1. Soit z un nombre complexe. Démontrer que

$$\mathfrak{Re}(z) = \frac{z + \overline{z}}{2}$$
 et $\mathfrak{Im}(z) = \frac{z - \overline{z}}{2i}$

- **Exercice 2.** On cherche à résoudre l'équation (E) : $z^3 + (1+i)z^2 + (i-1)z i = 0$.
 - 1. Rechercher une solution imaginaire pure ai de (E).
 - 2. Déterminer $b, c \in \mathbb{R}$ tels que $z^3 + (1+i)z^2 + (i-1)z i = (z-ai)(z^2 + bz + c)$.
 - 3. En déduire les solutions de l'équation.
- * Exercice 3. Résoudre l'équation différentielle suivante sans appliquer la variation de la constante :

(E):
$$y'(x) + y(x) = xe^{-x}$$

Sujet 3.

* Exercice 1.

1. (Cours) Démonter la formule d'Euler : pour tout $x \in \mathbb{R}$, on a

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$
 et $\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$

- 2. Linéariser l'expression suivante : $\cos^2(x)\sin^3(x)$.
- \bigstar Exercice 2. Soit $z \in \mathbb{C} \setminus \{1\}$.
 - 1. Supposons que |z| = 1. Démontrer que $\frac{1+z}{1-z}$ est un imaginaire pur.
 - 2. Supposons que $\frac{1+z}{1-z} \in i\mathbb{R}$. Démontrer que z est de module 1. Qu'a-t-on alors démontré ?
- * Exercice 3. Résoudre sur \mathbb{R} l'équation différentielle (E) : $y'(x) 2xy(x) = -(2x-1)e^x$.