Como sortear pontos uniformemente no disco

Matheus de Moraes

Universidade Federal de Uberlândia Instituto de Matemática e Estatística matheus.neves1@ufu.br

Pedro Franklin Universidade Federal de Uberlândia Instituto de Matemática e Estatística pedrofranklin@ufu.br

Introdução

A motivação deste texto nasceu em sala: durante uma aula de *Probabilidade 3*, surgiu a pergunta "como sortear pontos de forma uniforme em um disco de raio R_0 ?". Aqui, "uniforme" significa que regiões com a mesma *área* devem, em média, receber o mesmo número de pontos; isto é, a densidade é constante sobre o disco.

Uma abordagem intuitiva é gerar coordenadas polares (R,Θ) com $R \sim \mathrm{Unif}(0,R_0)$ e $\Theta \sim \mathrm{Unif}(0,2\pi)$ e depois converter para coordenadas cartesianas considerando $X = R\cos\Theta$ e $Y = R\sin\Theta$. Contudo, isso não produz distribuição uniforme em área: como a área de um anel cresce linearmente com o raio, escolher R uniforme super-representa a região central e sub-representa a borda.

Neste trabalho apresentamos uma derivação elementar via mudança de variáveis, explicamos por que a escolha "R uniforme" falha, e discutimos implementações práticas que geram pontos uniformes no disco de forma simples e eficiente. Usaremos o disco unitário para ilustrar as ideias, mas as conclusões se estendem a discos de raio arbitrário.

Como não sortear pontos uniformemente no disco

Considere o disco unitário $D=\{(x,y): x^2+y^2\leq 1\}$. Defina o seguinte experimento: gere um valor de Θ uniforme em $[0,2\pi]$; em seguida, gere um valor de R uniforme em [0,1]; agora calcule $X=R\cos\Theta$ e $Y=R\sin\Theta$; repita o procedimento para obter muitas amostras (X,Y).

A razão para o fracasso deste método pode ser explicada pelo seguinte argumento geométrico: embora a variável \mathbf{R} seja uniforme, a **área** do disco não é uniformemente distribuída em relação a \mathbf{R} . Ao sortear \mathbf{R} de forma uniforme, o procedimento dá a mesma probabilidade para cada intervalo de \mathbf{R} de igual comprimento, independentemente de sua localização. Por exemplo, o intervalo de \mathbf{R} de [0,0.1] tem a mesma probabilidade de ser sorteado que o intervalo de [0.9,1.0]. No entanto, o primeiro corresponde a um anel minúsculo próximo ao centro, enquanto o segundo corresponde a um anel muito maior na borda do disco. O resultado é que o mesmo número de pontos é gerado em uma área pequena e em uma área grande, levando a uma alta densidade de pontos no centro e a uma baixa densidade na borda. A distribuição, portanto, não é uniforme.

A Figura 1 apresenta uma simulação computacional do experimento descrito anteriormente com $R_0=1$: foram gerados 1000 valores de (R,Θ) tais que $R\sim \mathrm{Unif}(0,1)$ e $\Theta\sim \mathrm{Unif}(0,2\pi)$. Nesta figura, é possível ver que o centro do disco apresenta uma alta concentração de pontos, enquanto as regiões mais próximas à borda estão visivelmente mais esparsas.

Uma Abordagem Correta

Se o vetor aleatório (X,Y) possui distribuição uniforme no disco de raio $R_0=1$, então a densidade $f_{X,Y}(x,y)$ deste vetor é

Figura 1: Amostragem $n\tilde{a}o$ uniforme no disco ao tomar $R \sim \mathrm{Unif}(0,1)$ e $\Theta \sim \mathrm{Unif}(0,2\pi)$. O centro concentra mais pontos, enquanto a borda fica sub-representada.

$$f_{X,Y}(x,y) = rac{\mathbb{1}_{\mathbb{D}}(x,y)}{ ext{área de D}} = rac{\mathbb{1}_{\mathbb{D}}(x,y)}{\pi R_0^2} = rac{\mathbb{1}_{\mathbb{D}}(x,y)}{\pi},$$

em que $\mathbb{1}_{\mathbb{D}}(x,y)$ é a indicadora da região D. Por outro lado, considerando que $X=R\cos\Theta$ e $Y=R\sin\Theta$, temos que o jacobiano desta transformação é:

$$J = egin{pmatrix} rac{\partial x}{\partial r} & rac{\partial x}{\partial heta} \ rac{\partial y}{\partial r} & rac{\partial y}{\partial heta} \end{pmatrix} = egin{pmatrix} \cos heta & -r \sin heta \ \sin heta & r \cos heta \end{pmatrix}$$

Logo, pelo método do jacobiano ([1]), segue que

$$f_{R,\Theta}(r, heta)=f_{X,Y}(x,y)|J|=rac{r}{\pi}, (x,y)\in D.$$

Agora, a partir das marginais, podemos obter as densidades de R e Θ . Vejamos:

$$f_R(r)=\int_0^{2\pi}f_{R,\Theta}(r, heta)d heta=2r,\ r\in(0,1)$$

e

$$f_{\Theta}(heta)=\int_0^1 f_{R,\Theta}(r, heta)dr=rac{1}{2\pi},\ heta\in(0,2\pi).$$

Particularmente, como a densidade de (R, Θ) pode ser escrita como o produto das densidades marginais, segue que R e Θ são variáveis independentes. Além disso, a partir da expressão da densidade de Θ , podemos afirmar que Θ segue uma distribuição uniforme em $[0, 2\pi]$.

Por fim, como temos a densidade de \mathbf{R} e Θ , podemos usar estas densidades para gerar valores dessas duas variáveis. A variável Θ tem distribuição uniforme e, por isso, é fácil gerar valores dela. Para simular valores de \mathbf{R} , recorreremos ao método da transformada inversa ([2]).

Teorema 1: Método da transformada inversa

Seja U uma variável aleatória uniforme em (0,1). Para qualquer função de distribuição contínua F, a variável aleatória X definida por

$$X = F^{-1}(U)$$

possui distribuição F.

Portanto, considerando o Teorema 1, se quisermos simularmos valores r de R, basta simularmos valores u de $U \sim U[0,1]$ e definirmos $r=F_R^{-1}(u)$. Logo, resta apenas determinar F_R :

$$F_R(x) = \int_0^x 2r dr = x^2, x \in (0,1).$$

Finalmente, um valor r de R poderá ser simulado tomando $r=\sqrt{u}$ em que u é um valor simulado de $U\sim[0,1]$. Usando o R e a função runif, gerou-se, de forma independente, dois mil valores de $\Theta\sim U[0,2\pi]$ e dois mil valores de $R\sim \sqrt{U}$. A Figura 2, apresenta os pontos sorteados uniformemente no disco D.

Figura 2: Amostragem uniforme no disco ao tomar $R \sim \sqrt{U}$, $U \sim U[0,1]$, e $\Theta \sim \mathrm{Unif}(0,2\pi)$.

Referências

- [1] Barry James, Probabilidade: um curso em nível intermidiário, IMPA, 1996.
- [2] Sheldon Ross, Simulation, Academic Press, 2010.