

T-MAE: Temporal Masked Autoencoders for Point Cloud Representation Learning

Weijie Wei, Fatemeh Karimi Nejadasl, Theo Gevers, Martin R. Oswald

Introduction

Motivation

- In autonomous driving, LiDAR points are dynamic temporal sequence.
- It is essential to integrate historical observation for present decision-making.

Existing Self-Supervised Learning (SSL)

BYOL, DINO, MAE
One frame, ignoring temporal info!

Temporal contrastive learning
Use multiple frames as data augmentations, disregarding temporal correspondence.

Results

ONCE Detection Dataset

Methods	Pt.	mAP	Vehicle			Pedestrian				Cyclist				
			Overall	$0\text{-}30\mathrm{m}$	$30\text{-}50\mathrm{m}$	50m-Inf	Overall	$0\text{-}30\mathrm{m}$	$30\text{-}50\mathrm{m}$	50m-Inf	Overall	$0\text{-}30\mathrm{m}$	$30\text{-}50\mathrm{m}$	50m-Inf
PV-RCNN [48]	X	53.55	77.77	89.39	72.55	58.64	23.50	25.61	22.84	17.27	59.37	71.66	52.58	36.17
IA-SSD [73]	X	57.43	70.30	83.01	62.84	47.01	39.82	47.45	32.75	18.99	62.17	73.78	56.31	39.53
CenterPoint-Pillar [68]	X	59.07	74.10	85.23	69.22	53.14	40.94	48.43	34.72	20.09	62.17	73.70	56.05	40.19
CenterPoint-Voxel [68]	X	60.05	66.79	80.10	59.55	43.39	49.90	56.24	42.61	26.27	63.45	74.28	57.94	41.48
SECOND [63]	X	51.89	71.19	84.04	63.02	47.25	26.44	29.33	24.05	18.05	58.04	69.96	52.43	34.61
w/ BYOL [20]	\checkmark	51.63	71.32	83.59	64.89	50.27	25.02	27.06	22.96	17.04	58.56	70.18	52.74	36.32
w/ PointContrast [59]	\checkmark	$53.59^{\uparrow 1.70}$	71.87	86.93	62.85	48.65	28.03	33.07	25.91	14.44	60.88	71.12	55.77	36.78
w/ DeepCluster [52]	\checkmark	$53.72^{1.83}$	72.89	83.52	67.09	50.38	30.32	34.76	26.43	18.33	57.94	69.18	52.42	34.36
SPT [64] w/ GD-MAE [64]	X	62.62	75.64	87.21	70.10	53.21	45.92	54.78	37.84	22.56	66.30	78.12	60.52	42.05
	\checkmark	$64.92^{\uparrow 2.30}$	76.79	88.01	71.70	55.60	48.84	58.70	37.30	25.72	69.14	80.29	64.58	45.14
SiamWCA (Ours) w/ T-MAE (Ours)	X	63.71	76.47	87.63	71.59	55.16	47.27	57.57	36.99	21.79	67.40	78.39	62.78	43.90
	√	$67.00^{\uparrow 3.29}$	78.35	88.45	73.05	57.16	52.57	62.66	44.18	25.29	70.09	81.14	65.33	46.48

* Green box: ground-truth. Red box: prediction.

Methodology

Our Solution

Integrate historical observation for current prediction.

- Impact of moving objects
- Fusion in latent space.
- Sparse Windowed Cross-Attention (WCA).
- No enough annotated data
- Self-supervised learning.
- Pretext task: Reconstruct the current frame by observing one previous frame.
- Inherit the pretrained weights of both the backbone and WCA.
- Random temporal gap improves robustness.

t $t-3\sim t$ t $t-3\sim t$

(a) A stationary vehicle.

(b) A moving vehicle.

Issue of integrating multiple frame. Integrating consecutive frames enhances stationary objects but introduces spurious points and deface moving objects.

T-MAE

Results

Waymo Detection Dataset

- SOTA performance at all data level
- Significant boost when annotation is limited
- Notable improvement for Pedestrian class

110	able improve			icsii i	arr Gr	a 33			
Data Amount	Initialization	Ove	Vel	nicle	Pede	strian	Cyclist		
		mAP	mAPH	mAP	mAPH	mAP	mAPH	mAP	mAPH
	Random	43.68	40.29	54.05	53.50	53.45	44.76	23.54	22.61
	PointContrast [59]	45.32	41.30	52.12	51.61	53.68	43.22	30.16	29.09
	ProposalContrast [67]	46.62	42.58	52.67	52.19	54.31	43.82	32.87	31.72
5%	MV-JAR [60]	50.52	46.68	56.47	56.01	57.65	47.69	37.44	36.33
	GD-MAE [64]*	48.23	44.56	56.34	55.76	55.62	46.22	32.72	31.69
	$ ext{T-MAE}^\dagger$	50.89	47.22	57.06	56.05	58.95	52.62	36.64	32.99
	T-MAE (Ours)	$51.47^{\uparrow 7.79}$	$49.46^{\uparrow 9.17}$	57.13	56.63	59.69	55.28	37.61	36.48
	Random	56.05	53.13	59.78	59.27	60.08	53.04	48.28	47.08
	PointContrast [59]	53.69	49.94	54.76	54.30	59.75	50.12	46.57	45.39
	ProposalContrast [67]	53.89	50.13	55.18	54.71	60.01	50.39	46.48	45.28
10%	MV-JAR [60]	57.44	54.06	58.43	58.00	63.28	54.66	50.63	49.52
	GD-MAE [64]*	57.67	54.31	59.72	59.19	60.43	52.21	52.85	51.52
	$ ext{T-MAE}^\dagger$	58.52	55.59	60.26	59.75	62.89	55.85	52.43	51.16
	T-MAE (Ours)	$59.93^{\uparrow 3.88}$	$57.99^{\uparrow 4.86}$	60.27	59.77	65.23	61.10	54.29	53.09
	Random	60.21	57.61	61.58	61.08	64.63	58.41	54.42	53.33
	PointContrast [59]	59.35	55.78	58.64	58.18	64.39	55.43	55.02	53.73
	ProposalContrast [67]	59.52	55.91	58.69	58.22	64.53	55.45	55.36	54.07
20%	MV-JAR [60]	62.28	59.15	61.88	61.45	66.98	59.02	57.98	57.00
	GD-MAE [64]*	62.32	59.09	62.27	61.79	66.12	58.06	58.57	57.42
	$ ext{T-MAE}^\dagger$	62.37	60.17	62.19	61.72	67.18	62.18	57.74	56.59
	T-MAE (Ours)	$63.52^{\uparrow 3.31}$	$61.80^{\uparrow 4.19}$	63.10	$\boldsymbol{62.59}$	68.23	64.66	59.23	58.15
	Random	71.30	69.13	69.05	68.62	73.77	68.80	71.09	69.97
	GCC-3D [32]	65.29	62.79	63.97	63.47	64.23	58.47	67.88	66.44
	BEV-MAE [33]	66.92	64.45	64.78	64.29	66.25	60.53	69.73	68.52
	PointContrast [59]	68.06	64.84	64.24	63.82	71.92	63.81	68.03	66.89
100%	ProposalContrast [67]	68.17	65.01	64.42	64.00	71.94	63.94	68.16	67.10
	MV-JAR [60]	69.16	66.20	65.52	65.12	72.77	65.28	69.19	68.20
	GD-MAE [64]**	70.62	67.64	68.72	68.29	72.84	65.47	70.30	69.16
	$ ext{T-MAE}^{\dagger}$	71.56	69.00	69.39	68.95	74.42	68.43	70.86	69.61
	T-MAE (Ours)	$72.30^{\uparrow 1.00}$	$70.52^{\uparrow 1.39}$	69.34	68.89	75.79	72.01	71.78	70.65
			_		_			_	_

Each block indicates finetuning with x% of annotated data. *Random* denotes training from scratch. Best results are highlighted as **first**, **second**, and **third**. Differences between T-MAE pre-training and random initialization are highlighted in red.

* Green box: ground-truth. Red box: prediction.

Ablation Study

 Pretrained weights of both the Siamese encoder and WCA boost the performance.

Initialization	Pre-trained		Overall		Vehicle		Pedestrian		Cyclist	
	SE	WCA	mAP	mAPH	mAP	mAPH	mAP	mAPH	mAP	mAPH
Random	X	X	43.68	40.29	54.05	53.50	53.45	44.76	23.54	22.61
Partially random	√	X	$48.19^{\uparrow 4.51}$	$45.16^{\uparrow 4.87}$	55.91	55.38	56.29	48.74	32.38	31.36
T-MAE (ours)	√	\checkmark	$51.47^{\uparrow 7.79}$	$49.46^{\uparrow 9.17}$	57.13	56.63	59.69	55.28	37.61	36.48
									•	