Overview of Privacy Implications of IP Addresses

Fernando Gont

PEARG Interim Meeting January 19th, 2021

IPv6 Address Configuration Background

Background

- 128-bit long addresses: /64 subnets, 64-bit Interface-IDs
- Address configuration mechanisms:
 - Manual configuration
 - SLAAC (mandatory)
 - DHCPv6 (optional)
- Mechanism to be used specified in Router Advertisements (RAs):
 - PIOs with A ("autonomous addr conf") bit set → SLAAC
 - M ("Managed addr conf") bit set → DHCPv6
 - PIO(A=1) + M=1 → unspecified, but typically both SLAAC + DHCPv6

Interface-ID Generation

SLAAC:

- Legacy [RFC4291]: MAC address embedded in Interface-ID
- Stable-privacy [RFC7217]: F(Prefix, secret)
- Temporary [RFC4941]: randomized & regenerated over time

DHCPv6:

- Mostly unspecified, and hence implementation-specific
- Typically: Linear sequence from small address pool

Privacy Implications of IPv6 Addresses

Privacy Implications of IPv6 Addresses

- Stability → network activity correlation
 - Network activity correlation possible for as long as the same IID is used
- IID patterns → Address scans
 - Address-based scanning attacks become feasible
- Overloaded semantics → unintended information disclosure
 - e.g. vendor information if a MAC address is embedded in the IID

Network Activity Correlation: Passive Attack

2001:2b8:1::1111:22ff:fe33:4444

2001:2b8:2:1111:22ff:fe33:4444

Network Activity Correlation: Active Attack

Address Scans

- IPv6 address scans originally considered unfeasible
 - search space considered huge (264 addresses per subnet)
- Patterns in IIDs help reduce the search space
- Examples:
 - DHCPv6 server leases addresses from, say, PREFIX/112
 - Site manually sets IPv6 IIDs to the IPv4 address of the same network interface
- Tools exist to leverage IPv6 address patterns for address scans
 - See https://www.si6networks.com/tools/ipv6toolkit

Device-specific Attacks

- Legacy IIDs (RFC4291) disclose the underlying MAC address
- This could be leveraged to launch device-specific attacks

Privacy Implications of IPv6 Addresses

	Host-tracking	Correlation within subnet	Address-scans	Device-specific attacks
RFC4291	Yes	Yes	Yes	Yes
RFC7217	No	Yes	No	No
RFC4941	No	Moderate	No	No
MS Windows	Yes	Yes	No	No
DHCPv6 (*)	No	Yes	Yes	No

(*) Typical implementations

Caveats

- Must consider all address configuration mechanisms
 - e.g., both SLAAC and DHCPv6
- Must consider the implications of all addresses in use!
 - i.e., both stable and temporary
- Must consider stable prefixes in low host-density subnets
- Must consider MAC-address randomization

Privacy Implications of IPv4 Addresses

Properties of IPv4 Addresses

- NATed scenario:
 - IIDs not globally unique
 - Stable address shared among multiple nodes
- Non-NATed scenario:
 - IIDs not globally unique
 - Stable addresses

Privacy Implications of IPv4 Addresses

	Host-tracking	Correlation within subnet	Address-scans	Device-specific attacks
NATed	No	Subnet- granularity	Tricky	No
Non-NATed	No	Yes	Yes	No

Questions?

References

- "Security and Privacy Considerations for IPv6 Address Generation Mechanisms". RFC7721.
- "Network Reconnaissance in IPv6 Networks", RFC7707.