Appendixes

APPENDIX 1. THE ANALOG INTERFACE

The data in a microprocessor is in digital form. This differs from the outside world where data is in analog (continuous) form. To get digital data, we need to use an *analog-to-digital (A/D) converter*; it will convert analog voltage or current into an equivalent digital word.

Conversely, after a CPU has processed data, it is often necessary to convert the digital answer into an analog voltage or current. This conversion requires a *digital-to-analog* (D/A) converter.

The analog interface is the boundary where digital and analog meet, where the microcomputer connects to the outside world. At this interface, we find either an A/D converter (input side) or a D/A converter (output side). This chapter discusses some of the hardware and software found at the analog interface.

A1-1 OP-AMP BASICS

Let us briefly review the *operational amplifier* (op amp) because this device is used with D/A and A/D converters. We will zero in on the key features that make the op amp useful at the analog interface.

Fig. A1-1 Operational amplifier.

Virtual Ground

Figure A1-1 shows the symbol for an op amp. $V_{\rm OUT}$ is the output voltage with respect to ground. A is the open-loop voltage gain of the op amp, often more than 100,000. When connected as an inverter, the noninverting input (+ input) is grounded. The inverting input (- input) receives the signal voltage.

Because the voltage gain of an op amp is so large, the input voltage is in microvolts. To a first approximation, the

input voltage may be treated as 0 V. Furthermore, the input impedance of the inverting input approaches infinity (sometimes FETs are used for the input stage, as in BIFET op amps). These key features, zero input voltage and infinite input impedance, make the inverting input a *virtual ground point*.

How is a virtual ground different from an ordinary ground? An ordinary ground has zero voltage while sinking any amount of current. A virtual ground, however, is a ground for voltage but not for current; it has zero voltage but can sink no current. In the discussion that follows, we will approximate the inverting input of an op amp as a virtual ground point: this means zero voltage and zero current.

Fig. A1-2 Output current equals input current.

Output Voltage and Current

Figure A1-2a shows an inverting op amp with input and output resistors. $V_{\rm IN}$ is the input voltage with respect to ground, and $V_{\rm OUT}$ is the output voltage with respect to ground. Because of the high gain and input impedance, we

can approximate the inverting input as a virtual ground point. Therefore, all the input voltage appears across the input resistor, which means that the input current is

$$I = \frac{V_{\rm IN}}{R_{\rm IN}} \tag{A1-1}$$

Since none of the input current can enter the virtual ground point, it must pass through the output resistor. In other words, the output current equals the input current. And the output voltage is

$$V_{\rm OUT} = -IR_{\rm OUT} \tag{A1-2}$$

The minus sign indicates phase inversion. If the input voltage is positive, the output voltage is negative.

As an example of calculating input current and output voltage, look at Fig. A1-2b. The input current is

$$I = \frac{5 \text{ V}}{2.5 \text{ k}\Omega} = 2 \text{ mA}$$

The output voltage is

$$V_{\rm OUT} = -2 \text{ mA} \times 1 \text{ k}\Omega = -2 \text{ V}$$

Fig. A1-3 Output current equals sum of input currents.

Summing Circuit

Figure A1-3 is an op-amp circuit whose output current is the *sum* of the input currents. Here is the proof. Because of the virtual ground point, each input voltage appears across its resistor. This means that the input currents are

$$I_3 = \frac{V_3}{R_3}$$
 $I_2 = \frac{V_2}{R_2}$ $I_1 = \frac{V_1}{R_1}$ $I_0 = \frac{V_0}{R_0}$

Kirchhoff's current law gives a total input current of

$$I = I_3 + I_2 + I_1 + I_0$$

Again, the virtual ground guarantees that all this input current goes through the output resistor. As before,

$$V_{\rm OUT} = -IR_{\rm OUT}$$

A1-2 A BASIC D/A CONVERTER

The op-amp summing circuit can be used to build a D/A converter by selecting input resistors that are weighted in binary progression. Figure A1-4 gives you the idea. $V_{\rm REF}$ is an accurate reference voltage, and the resistors are precision resistors to get accurate input currents. The switches can be open or closed. When all switches are open, all input currents are zero and the output current is zero.

All Bits High

When all switches are closed, the input currents are

$$I_3 = \frac{V_{\text{REF}}}{R}$$
 $I_2 = \frac{V_{\text{REF}}}{2R}$ $I_1 = \frac{V_{\text{REF}}}{4R}$ $I_0 = \frac{V_{\text{REF}}}{8R}$

Fig. A1-4 D/A conversion with binary-weighted resistors.

The output current with all switches closed is the sum of all input currents and equals

$$I = \frac{V_{\text{REF}}}{R} (1 + 0.5 + 0.25 + 0.125)$$

$$I = 1.875 \frac{V_{\text{REF}}}{R}$$
(A1-3)

By opening and closing switches we can produce 16 different output currents from 0 to $1.875V_{REF}/R$.

Any Digital Input

If 0 stands for an open switch and 1 for a closed switch, we can rewrite Eq. A1-3 as

$$I = \frac{V_{\text{REF}}}{R}(D_3 + 0.5D_2 + 0.25D_1 + 0.125D_0) \quad (A1-4)$$

In powers of 2,

$$I = \frac{V_{\text{REF}}}{R}(D_3 + 2^{-1}D_2 + 2^{-2}D_1 + 2^{-3}D_0) \quad (A1-5)$$

This says that the output current is the sum of binary-weighted input currents. In other words, we have a D/A converter. For instance, suppose $V_{\rm REF}=5$ V and R=5 k Ω . Then the total output current varies from 0 to 1.875 mA, as shown in Table A1-1.

Current Switches

Figure A1-5 shows how we can transistorize the switching. Data bits D_3 through D_0 drive the bases of the transistors through the current-limiting resistors. When a bit is high, it produces enough base current to saturate its transistor. When a bit is low, the transistor is cut off. Since each transistor is saturated or cut off, it acts like a closed or

TABLE A1-1. WEIGHTED D/A CONVERTER

D_3	D_2	D_1	D_0	Output current, mA	Fraction of maximum
0	0	0	0	0	0
0	0	0	1	0.125	$\frac{1}{15}$
0	0	1	0	0.25	$\frac{2}{15}$
0	0	1	1	0.375	$\frac{3}{15}$
0	1	0	0	0.5	$\frac{4}{15}$
0	1	0	1	0.625	$\frac{5}{15}$
0	1	1	0	0.75	$\frac{6}{15}$
0	1	1	1	0.875	$\frac{7}{15}$
1	0	0	0	1	$\frac{8}{15}$
1	0	0	1	1.125	$\frac{9}{15}$
1	0	1	0	1.25	$\frac{10}{15}$
1	0	1	1	1.375	$\frac{11}{15}$
1	1	0	0	1.5	$\frac{12}{15}$
1	1	0	1	1.625	$\frac{13}{15}$
1	1	1	0	1.75	$\frac{14}{15}$
l	1	1	1	1.875	$\frac{15}{15}$

open switch. (Base resistance is not critical; it need only be less than collector resistance multiplied by β_{dc} .)

If the lower 4 bits of an output port are connected to D_3 to D_0 , the circuit of Fig. A1-5 will convert digital data to analog current. For instance, assume port 22H has been programmed as an output port in a minimum system. If the lower 4 bits of port 22H are connected to D_3 to D_0 , this program segment will operate the D/A converter:

Label	Mnemonic	Comment
LOOP:	MVI A,FFH INR A	;Initialize accumulator ;Count up
LOOI.	OUT 22H	;Output nibble
	JMP LOOP	;Get next nibble

Fig. A1-5 Transistor switches for D/A converter.

Fig. A1-6 (a) Staircase output current; (b) each step equals an LSB increment.

The first INR A produces accumulator contents of 00H. Subsequent INR executions produce 01H, 02H, . . . , 0FH, 10H, 11H, . . . , 1FH, 20H, 21H, . . . , FFH. As far as D_3 to D_0 are concerned, they see a nibble stream of 0000, 0001, 0010, 0011, . . . , 1111, 0000, 0001, and so on.

Figure A1-6a illustrates how the output current of the D/A converter appears. As each input nibble is latched into port 22H, the output current moves one step higher until reaching the maximum current. Then the cycle repeats. If all resistors are exact and all transistors matched, all steps are identical in size.

Resolution

In the perfect staircase of Fig. A1-6b a step is called an *LSB increment* because it is produced by a change in the LSB. One way to measure the quality of a D/A converter is its *resolution*, the ratio of the LSB increment to the maximum output. As a formula,

Resolution =
$$\frac{1}{2^n - 1}$$
 (A1-6)

For instance, a 4-bit D/A converter has a resolution of

Resolution =
$$\frac{1}{2^4 - 1} = \frac{1}{15}$$

This is sometimes read as 1 part in 15.

The number of different steps an n-bit converter produces is

Steps =
$$2^n - 1$$
 (A1-6a)

Therefore, an alternative way to think of resolution is

Resolution =
$$\frac{1}{\text{steps}}$$
 (A1-6b)

Percent resolution is given by

Percent resolution = resolution
$$\times$$
 100% (A1-7)

If the resolution is 1 part in 15, then

Percent resolution =
$$\frac{1}{15} \times 100\% = 6.67\%$$

The greater the number of bits, the better the resolution. With Eqs. A1-6 and A1-7 we can calculate the resolution and percent resolution for more bits. Table A1-2 is a summary of the resolution for converters with 4 to 18 bits.

Because the number of bits determines the resolution in Eq. A1-6, an indirect way to specify resolution is by stating the number of bits. For instance, an 8-bit converter has 8-bit resolution, a 10-bit converter has 10-bit resolution, and so on. This is a quick and easy way to pin down the resolution. When necessary, Eqs. A1-6, A1-6a, and A1-7 can give additional information.

Accuracy

In a D/A converter, absolute accuracy refers to how close each output current is to its ideal value. In Fig. A1-5 absolute accuracy depends on the reference voltage, resistor tolerance, transistor mismatch, and so forth. In a typical application, a trimmer adjustment is included to set the full-scale output at a preassigned value.

Relative accuracy refers to how close each output level is to its ideal fraction of full-scale output. With a 4-bit

TABLE A1-2. RESOLUTION

Bits	Resolution	Percent
4	1 part in 15	6.67
6	1 part in 63	1.59
8	1 part in 255	0.392
10	1 part in 1,023	0.0978
12	1 part in 4,095	0.0244
14	1 part in 16,383	0.0061
16	1 part in 65,535	0.00153
18	1 part in 262,143	0.000381

converter, the ideal output levels as a fraction of full-scale should be $0, \frac{1}{15}, \frac{2}{15}, \frac{3}{15}$, and so on. Because data sheets specify relative accuracy rather than absolute accuracy, our subsequent discussions will emphasize relative accuracy.

Relative accuracy depends mainly on the tolerance of the weighted resistors in Fig. A1-5. If they are exactly R, 2R, 4R, and 8R, all steps equal 1 LSB increment in Fig. A1-6a. When the resistors depart from ideal values, the steps may be larger or smaller than 1 LSB increment.

Fig. A1-7 Error specified in LSB increments.

Errors are specified in terms of LSB increments. For instance, Fig. A1-7a shows an error of 1 LSB; the actual output (solid line) differs from the ideal output (dashed line) by 1 LSB increment. If a negative error follows a positive error, the staircase can fall as shown in Fig. A1-7b. Here you see an error of +1 LSB followed by an error of -1 LSB.

Monotonicity

A monotonic D/A converter is one that produces an increase in output current for each successive digital input. The staircases of Fig. A1-7a and b are not monotonic because they do not produce an increase for each digital input. Figure A1-7a is almost monotonic, but Fig. A1-7b is far from monotonic. Monotonicity is the least we can expect from a D/A converter because it only makes sense; the output should increase when the input does.

For a D/A converter to be monotonic the error must be less than $\pm \frac{1}{2}$ LSB at each output level. Why? Because in

Fig. A1-8 Critical level for monotonicity.

the worst case, a $+\frac{1}{2}$ -LSB error followed by a $-\frac{1}{2}$ -LSB error produces the critical level where monotonicity is about to be lost. Figure A1-8 illustrates this critical case, an error of $+\frac{1}{2}$ LSB followed by an error of $-\frac{1}{2}$ LSB. If the error of a converter is less than $\pm\frac{1}{2}$ LSB for each output level, we are guaranteed a rising current for each successive digital input. Almost all commercially available D/A converters are monotonic because they have an accuracy of better than $\pm\frac{1}{2}$ LSB at each output level.

Settling Time

After you apply a digital input, it takes a D/A converter anywhere from nanoseconds to microseconds to produce the correct output. *Settling time* is defined as the time it takes for the converter output to stabilize to within $\frac{1}{2}$ LSB of its final value. This time depends on the stray capacitance, saturation delay time, and other factors. Settling time is important because it places a limit on how fast you can change the digital inputs.

Disadvantages of Weighted Resistors

For a weighted-resistor circuit to be monotonic the tolerance of the resistors must be less than the percent resolution. For instance, if the resolution is $\frac{1}{15}$ (6.67 percent), resistors with a tolerance of less than ± 6.67 percent will produce a monotonic staircase. If the resolution is $\frac{1}{255}$ (about 0.4 percent), the resistors need a tolerance of better than ± 0.4 percent for a monotonic output. As you see, 4 bits are no problem, but 8 bits are.

Another difficulty arises with weighted resistors. As the number of bits increases, the range of resistance values gets awkward. For 8 bits, we need resistances of R, 2R, 4R, . . . , 128R. The largest resistance is 128 times the smallest. For a 12-bit converter, the largest resistance needs to be 2,048 times the smallest. Because of the tolerance and range problems, mass production of weighted-resistor D/A converters is impractical.

Fig. A1-9 R-2R ladder.

A1-3 THE LADDER METHOD

One way to get around the problems of a binary-weighted resistors is to use a *ladder* circuit. Figure A1-9a is an example of the R-2R ladder commonly used in integrated D/A converters. Only two resistance values are needed; this eliminates the range problem. Furthermore, since the resistors are on the same chip, they have almost identical characteristics; this minimizes the tolerance problem. In other words, as the number of bits increases, an integrated ladder can divide the current much more accurately than a binary-weighted circuit.

Ladder Properties

An R-2R ladder does something interesting to the impedance at different points in the circuit. To begin with, the two resistors at node D in Fig. A1-9a are in parallel and may be reduced to an equivalent resistance R, shown in Fig. A1-9b. Now, to the right of node C we have R in series with R, a total of 2R. Since node C has 2R is in parallel with 2R, the circuit reduces to Fig. A1-9c.

Looking into the left side of node B (Fig. A1-9e), we see 2R in parallel with 2R. Therefore, the circuit reduces to Fig. A1-9e. Again, 2R is in parallel with 2R, so the circuit reduces to the single R shown in Fig. A1-9e.

Figure A1-10 summarizes ladder impedances. Do you see the point? Looking into the left side of a node, we always see an equivalent resistance of R. Just to the right of each node, we always see a resistance of 2R. This impedance phenomenon is the key to analyzing modern D/A converters because they use the ladders instead of weighted resistors.

Binary Division of Current

Figure A1-11 shows how a ladder can divide the current into binary levels. The typical D/A converter has a reference current set by the user. In this example, the reference current is 2 mA. The bottom of each 2R resistor is grounded in either switch position. When a switch is to the right, the current through a 2R resistor flows to the upper ground. When a switch is to the left, the lower ground sinks the current. With all the switches to the right, as shown in Fig. A1-11, $I_{\rm OUT}$ is zero.

Here is how the ladder divides the 2 mA of reference current. Just to the right of node A we see an equivalent resistance of 2R. Therefore, the 2 mA of input current divides equally at node A. Similarly, at node B we see 2R in parallel with 2R; again, the current divides equally into 0.5-mA branch currents. This process continues through the ladder, so that we wind up with the upper grounds sinking 1, 0.5, 0.25, and 0.125 mA.

Other Switch Positions

When we move the switches, we do not change the way the current divides at the nodes. It still divides equally at each node. But when a switch is to the left, it steers the

Fig. A1-10 Ladder impedances.

Fig. A1-11 D/A conversion with R-2R ladder.

current into the lower ground. Bits D_3 to D_0 control the transistorized switches. From previous discussions, we can see that

$$I_{\text{OUT}} = (D_3 + 2^{-1}D_2 + 2^{-2}D_1 + 2^{-3}D_0)\frac{I_{\text{REF}}}{2}$$
 (A1-8)

Therefore, the output current of a 4-bit ladder is from 0 to $\frac{15}{16}I_{REF}$.

More Bits

A similar analysis applies to longer ladders. The output current is

$$I_{\text{OUT}} = (D_{n-1} + 2^{-1}D_{n-2} + \dots + 2^{1-n}D_0)\frac{I_{\text{REF}}}{2}$$
 (A1-9)

For instance, an 8-bit ladder produces a maximum output current of $\frac{255}{256}I_{REF}$. The LSB increment is $\frac{1}{255}I_{REF}$.

Why Steer Current

Current steering may seem more complicated than necessary, but there is good reason for it. The currents throughout

the ladder remain constant; all that changes are the ground points. Constant current implies constant voltage, which means that stray capacitance in the ladder has little effect. In other words, we do not get the usual exponential charge and discharge associated with a change in voltage. This reduces the settling time. For this reason, IC converters often use the current-steering approach shown in Fig. A1-11.

A1-4 THE COUNTER METHOD OF A/D CONVERSION

Figure A1-12 shows the simplest but least used method of A/D conversion. $V_{\rm IN}$ is the analog input voltage. D_7 to D_0 are the digital output. The digital output drives a D/A converter, which produces an analog output $V_{\rm OUT}$. When COUNT is high, the counter counts upward. When COUNT is low, the counter stops. For convenience, an 8-bit D/A converter and 8-bit counter are used, but the idea applies to any number of bits.

Operation

The A/D conversion takes place as follows. First, the START pulse goes low, clearing the counter. When the

Fig. A1-12 A/D conversion with counter.

START pulse returns high, the counter is ready to go. Initially, $V_{\rm OUT}$ is zero; therefore, the op amp has a high output and COUNT is high. The counter starts counting upward from zero. Since the output of the counter drives a D/A converter, the converter output is a positive voltage staircase. As long as $V_{\rm IN}$ is greater than $V_{\rm OUT}$, the op amp has a positive output, COUNT remains high, and the staircase voltage keeps rising.

At some point along the staircase, the next step makes $V_{\rm OUT}$ greater than $V_{\rm IN}$. This forces COUNT to go low, and the counter stops. Now, the digital output D_7 to D_0 is the digital equivalent of the analog input. The negative-going edge of the COUNT signal is used as an *end-of-conversion* signal; this tells other circuits that the A/D conversion is finished.

If the analog input V_{1N} is changed, external circuits must send another *START* pulse to *start the conversion*. This clears the count and a new cycle begins. When the digital data is ready, the end-of-conversion signal has a falling edge.

Disadvantage

The main disadvantage of the *counter method* is its slow speed. In the worst case (maximum analog input) the counter has to reach the maximum count before the staircase voltage is greater than the analog input. For an 8-bit converter, this means a conversion time of 255 clock periods. For a 12-bit converter, the conversion time is 4,095 clock periods.

A1-5 SUCCESSIVE APPROXIMATION

The most widely used approach in A/D conversion is the successive-approximation method (see Fig. A1-13). As

before, the output of a D/A converter drives the inverting input of an op-amp comparator. The difference, however, is in how the SAR register converges on the digital equivalent. (SAR stands for *successive-approximation register*.) When the conversion is finished, the digital equivalent is transferred to the output buffer register.

MSB First

When the start-of-conversion signal goes low, the SAR register is cleared and $V_{\rm OUT}$ drops to zero. When the start-of-conversion signal goes high, the conversion begins. Instead of counting up 1 bit at a time, the successive-approximation method starts by setting the MSB. In other words, during the first clock pulse the control circuit loads a high MSB into the SAR register, whose output then equals

1000 0000

As soon as this digital output appears, $V_{\rm OUT}$ jumps to $\frac{128}{255}$ times full-scale. If this is more than $V_{\rm IN}$, the negative output of the comparator signals the control circuit to reset the MSB. On the other hand, if $V_{\rm OUT}$ is less than $V_{\rm IN}$, the positive output of the comparator indicates that the MSB is to remain set. In some designs, setting and testing the MSB take place during the first clock pulse following the start of conversion. In other designs, several clock pulses may be needed to set the MSB, test it, and reset it if necessary.

Remaining Bits

Let us assume that the MSB was not reset. The SAR register contents are now 1000 0000. The next clock pulse will set

Fig. A1-13 A/D conversion by successive approximation.

 D_6 , giving a digital output of

1100 0000

 $V_{\rm OUT}$ now steps to $\frac{192}{255}$ times full-scale. If $V_{\rm OUT}$ is greater than $V_{\rm IN}$, the negative op-amp output causes D_6 to reset. If $V_{\rm OUT}$ is less than $V_{\rm IN}$, D_6 remains set.

During the remaining clock pulses, successive bits are set and tested. Whenever a bit causes $V_{\rm OUT}$ to exceed $V_{\rm IN}$, the bit is reset. In this way, all bits are set, tested, and reset if necessary. With the fastest circuits, the conversion is finished after eight clock pulses, and the D/A output is the analog equivalent of the register contents. Slower designs take longer because more clock pulses are needed to set, test, and possibly reset each bit.

Output Buffer

When the conversion is finished, the control circuit sends out a low end-of-conversion signal. The falling edge of this signal loads the digital equivalent into the buffer register. In this way, the digital output will remain even though we start a new conversion cycle.

Advantage

The main advantage of the successive-approximation method is speed. At best, it takes only *n* clock pulses to produce *n*-bit resolution of the analog signal. This is a big improvement over the counter method. Even with slower designs, the successive-approximation method is still considerably better than the counter method.

APPENDIX 2. BINARY-HEXADECIMAL-DECIMAL EQUIVALENTS

Binary	Hexadecimal	UB Decimal	LB Decimal	Binary	Hexadecimal	UB Decimal	LB Decimal
0000 0000	00	0	0	0011 0000	30	12,288	48
0000 0001	01	256	1	0011 0001	31	12,544	49
0000 0010	02	512	2	0011 0010	32	12,800	50
0000 0011	03	768	3	0011 0011	22	12.056	<i>5</i> 1
0000 0100	04	1,024	4	0011 0011	33	13,056	51
0000 0101	05	1,280	5	0011 0100	34	13,312	52
0000 0110	06	1,536	6	0011 0101	35	13,568	53
0000 0111	07	1,792	7	0011 0110	36	13,824	54
0000 1000	08	2,048	8	0011 0111	37	14,080	55
0000 1001	09	2,304	9	0011 1000	38	14,336	56
0000 1010	0A	2,560	10	0011 1001	39	14,592	57
		·		0011 1010	3A	14,848	58
		• 0.16		0011 1011	3B	15,104	59
0000 1011	ОВ	2,816	11	0011 1100	3C	15,360	60
0000 1100	0C	3,072	12	0011 1101	3D	15,616	61
0000 1101	0D	3,328	13	0011 1101	3E	15,872	62
0000 1110	0E	3,584	14	0011 1110	3E 3F	15,872	63
0000 1111	0F	3,840	15	0100 0000	40	16,384	64
0001 0000	10	4,096	16	0100 0000	40	16,584	65
0001 0001	11	4,352	17	0100 0001			66
0001 0010	12	4,608	18		42	16,896	
0001 0011	13	4,864	19	0100 0011	43	17,152	67
0001 0100	14	5,120	20	0100 0100	44	17,408	68
0001 0101	15	5,376	21	0100 0101	45	17,664	69 - 3
0001 0101	16	5,632	22	0100 0110	46	17,920	70
0001 0110	17	5,888	23	0100 0111	47	18,176	71
0001 0111	18	5,000 6,144	24	0100 1000	48	18,432	72
	19	6,400	25 25	0100 1001	49	18,688	73
0001 1001		6,656	25 26	0100 1010	4A	18,944	74
0001 1010	1A		20 27	0100 1011	4B	19,200	75
0001 1011	1B	6,912		0100 1100	4C	19,456	76
0001 1100	IC	7,168	28	0100 1100	4D	19,712	77
0001 1101	ID	7,424	29	0100 1101	4E	19,712	78
0001 1110	1E	7,680	30	0100 1110	4F	20,224	78 79
0001 1111	1F	7,936	31	0100 1111	50	20,224	80
0010 0000	20	8,192	32	0101 0000	30	20,400	60
0010 0001	21	8,448	33	0101 0001	51	20,736	81
0010 0010	22	8,704	34	0101 0010	52	20,992	82
0010 0011	23.	8,960	35	0101 0011	53	21,248	83
0010 0100	24	9,216	36	0101 0100	54	21,504	84
0010 0101	25	9,472	37	0101 0101	55	21,760	85
0010 0110	26	9,728	38	0101 0110	56	22,016	86
0010 0111	27	9,984	39	0101 0111	57	22,272	87
0010 0111	28	10,240	40	0101 1000	58	22,528	88
				0101 1001	59	22,784	89
0010 1001	29	10,496	41	0101 1010	5A	23,040	90
0010 1010	2A	10,752	42		J/1	25,010	,0
0010 1011	2B	11,008	43	0101 1011	5B	23,296	91
0010 1100	2C	11,264	44	0101 1100	5C	23,552	92
0010 1101	2D	11,520	45	0101 1101	5D	23,808	93
0010 1110	2E	11,776	46	0101 1110	5E	24,064	94
0010 1111	2F	12,032	47	0101 1111	5F	24,320	95

Binary	Hexadecimal	UB Decimal	LB Decimal	Binary	Hexadecimal	UB Decimal	LB Decimal
0110 0000	60	24,576	96	1001 0010	92	37,376	146
0110 0001	61	24,832	97	1001 0011	93	37,632	147
0110 0010	62	25,088	98	1001 0100	94	37,888	148
0110 0011	63	25,344	99	1001 0101	95	38,144	149
0110 0100	64	25,600	100	1001 0110	96	38,400	150
0110 0101	65	25,856	101	1001 0111	97	38,656	151
0110 0110	66	26,112	102	1001 1000	98	38,912	152
0110 0111	67	26,368	103	1001 1001	99	39,168	153
0110 1000	68	26,624	104	1001 1010	9A	39,424	154
0110 1001	69	26,880	105	1001 1011	9B	39,680	155
0110 1010	6A	27,136	106	1001 1100	9C	39,936	156
0110 1011	6B	27,392	107	1001 1101	9D	40,192	157
0110 1100	6C	27,648	108	1001 1110	9E	40,448	158
0110 1101	6D	27,904	109	1001 1111	9F	40,704	159
0110 1110	6E	28,160	110	1010 0000	A0	40,960	160
0110 1111	6F	28,416	111	1010 0001	Al	41,216	161
0111 0000	70	28,672	112	1010 0010	A2	41,472	162
0111 0001	71	28,928	113	1010 0011	A3	41,728	163
0111 0010	72	29,184	114	1010 0100	A4	41,984	164
0111 0011	73	29,440	115	1010 0101	A5	42,240	165
0111 0100	74	29,696	116	1010 0110	A6	42,496	166
0111 0101	75	29,952	117	1010 0111	A7	42,752	167
0111 0110	76	30,208	118	1010 1000	A8	43,008	168
0111 0111	77	30,464	119	1010 1001	A9	43,264	169
0111 1000	78	30,720	120	1010 1010	AA	43,520	170
0111 1001	79	30,976	121	1010 1011	AB	43,776	171
0111 1010	7A	31,232	122	1010 1100	AC	44,032	172
0111 1011	7B	31,488	123	1010 1101	AD	44,288	173
0111 1100	7C	31,744	124	1010 1110	AE	44,544	174
0111 1101	7D	32,000	125	1010 1111	AF	44,800	175
0111 1110	7E	32,256	126	1011 0000	B0	45,056	176
0111 1111	7 F	32,512	127	1011 0001	B1	45,312	177
1000 0000	80	32,768	128	1011 0010	B2	45,568	178
1000 0001	81	33,024	129	1011 0011	B3	45,824	179
1000 0010	82	33,280	130	1011 0100	B4	46,080	180
1000 0011	83	33,536	131	1011 0101	В5	46,336	181
1000 0100	84	33,792	132	1011 0110	В6	46,592	182
1000 0101	85	34,048	133	1011 0111	В7	46,848	183
1000 0110	86	34,304	134	1011 1000	B8	47,104	184
1000 0111	87	34,560	135	1011 1001	В9	47,360	185
1000 1000	88	34,816	136	1011 1010	BA	47,616	186
1000 1001	89	35,072	137	1011 1011	ВВ	47,872	187
1000 1010	8A	35,328	138	1011 1100	BC	48,128	188
1000 1011	8B	35,584	139	1011 1101	BD	48,384	189
1000 1100	8C	35,840	140	1011 1110	BE	48,640	190
1000 1101	8D	36,096	141	1011 1111	BF	48,896	191
1000 1110	8E	36,352	142	1100 0000	C0	49,152	192
1000 1111	8F	36,608	143	1100 0001	C1	49,408	193
1001 0000	90	36,864	144	1100 0010	C2	49,664	194
1001 0001	91	37,120	145	1100 0011	C3	49,920	195

APPENDIX 2. BINARY-HEXADECIMAL-DECIMAL EQUIVALENTS (Continued)

Binary	Hexadecimal	UB Decimal	LB Decimal	Binary	Hexadecimal	UB Decimal	LB Decimal
1100 0100	C4	50,176	196	1110 0010	E2	57,856	226
1100 0101	C5	50,432	197	1110 0011	E3	58,112	227
1100 0110	C6	50,688	198	1110 0100	E4	58,368	228
1100 0111	C7	50,944	199	1110 0101	E5	58,624	229
1100 1000	C8	51,200	200	1110 0110	E6	58,880	230
1100 1001	C9	51,456	201	1110 0111	E7	59,136	231
1100 1010	CA	51,712	202	1110 1000	E8	59,392	232
1100 1011	CB	51,968	203	1110 1001	E9	59,648	233
1100 1100	CC	52,224	204	1110 1010	EA	59,904	234
1100 1101	CD	52,480	205	1110 1011	EB	60,160	235
1100 1110	CE	52,736	206	1110 1100	EC	60,416	236
1100 1111	CF	52,992	207	1110 1101	ED	60,672	237
1101 0000	D0	53,248	208	1110 1110	EE	60,928	238
1101 0001	D1	53,504	209	1110 1111	EF	61,184	239
1101 0010	D2	53,760	210	1111 0000	F0	61,440	240
1101 0011	D3	54,016	211	1111 0001	F1	61,696	241
1101 0100	D4	54,272	212	1111 0010	F2	61,952	242
1101 0101	D5	54,528	213	1111 0011	F3	62,208	243
1101 0110	D6	54,784	214	1111 0100	F4	62,464	244
1101 0111	D7	55,040	215	1111 0101	F5	62,720	245
1101 1000	D8	55,296	216	1111 0110	F6	62,976	246
1101 1001	D9	55,552	217	1111 0111	F7	63,232	247
1101 1010	DA	55,808	218	1111 1000	F8	63,488	248
1101 1011	DB	56,064	219	1111 1001	F9	63,744	249
1101 1100	DC	56,320	220	1111 1010	FA	64,000	250
1101 1101	DD	56,576	221	1111 1011	FB	64,256	251
1101 1110	DE	56,832	222	1111 1100	FC	64,512	252
1101 1111	DF	57,088	223	1111 1101	FD	64,768	253
1110 0000	E0	57,344	224	1111 1110	FE	65,024	254
1110 0001	E1	57,600	225	1111 1111	FF	65,280	255

APPENDIX 3. 7400 SERIES TTL

Number	Function	Number	Function
7400	Quad 2-input NAND gates	7455	Expandable 4-input 2-wide AND-OR-INVERT
7401	Quad 2-input NAND gates (open collector)	, 133	gates
7402	Quad 2-input NOR gates	7459	Dual 2-3 input 2-wide AND-OR-INVERT gates
7403	Quad 2-input NOR gates (open collector)	7460	Dual 4-input expanders
7404	Hex inverters	7461	Triple 3-input expanders
7405	Hex inverters (open collector)	7462	2-2-3-3 input 4-wide expanders
7406	Hex inverter buffer-driver	7464	2-2-3-4 input 4-wide AND-OR-INVERT gates
7407	Hex buffer-drivers	7465	4-wide AND-OR-INVERT gates
7408	Quad 2-input AND gates	, , , ,	(open collector)
7409	Quad 2-input AND gates (open collector)	7470	Edge-triggered JK flip-flop
7410	Triple 3-input NAND gates	7472	JK master-slave flip-flop
7411	Triple 3-input AND gates	7473	Dual JK master-slave flip-flop
7412	Triple 3-input NAND gates (open collector)	7474	Dual D flip-flop
7413	Dual Schmitt triggers	7475	Quad latch
7414	Hex Schmitt triggers	7476	Dual JK master-slave flip-flop
7416	Hex inverter buffer-drivers	7480	Gates full adder
7417	Hex buffer-drivers	7482	2-bit binary full adder
7420	Dual 4-input NAND gates	7483	4-bit binary full adder
7421	Dual 4-input AND gates	7485	4-bit magnitude comparator
7422	Dual 4-input NAND gates (open collector)	7486	Quad EXCLUSIVE-OR gate
7423	Expandable dual 4-input NOR gates	7489	64-bit random-access read-write memory
7425	Dual 4-input NOR gates	7490	Decade counter
7226	Quad 2-input TTL-MOS interface NAND	7491	8-bit shift register
	gates	7492	Divide-by-12 counter
7427	Triple 3-input NOR gates	7493	4-bit binary counter
7428	Quad 2-input NOR buffer	7494	4-bit shift register
7430	8-input NAND gate	7495	4-bit right-shift—left-shift register
7432	Quad 2-input OR gates	7496	5-bit parallel-in-parallel-out shift register
7437	Quad 2-input NAND buffers	74100	4-bit bistable latch
7438	Quad 2-input NAND buffers (open collector)	74104	JK master-slave flip-flop
7439	Quad 2-input NAND buffers (open collector)	74105	JK master-slave flip-flop
7440	Dual 4-input NAND buffers	74107	Dual JK master-slave flip-flop
7441	BCD-to-decimal decoder-Nixie driver	74109	Dual JK positive-edge-triggered flip-flop
7442	BCD-to-decimal decoder	74116	Dual 4-bit latches with clear
7443	Excess 3-to-decimal decoder	74121	Monostable multivibrator
7444	Excess Gray-to-decimal	74122	Monostable multivibrator with clear
7445	BCD-to-decimal decoder-driver	74123	Monostable multivibrator
7446	BCD-to-seven segment decoder-drivers	74125	Three-state quad bus buffer
	(30-V output)	74126	Three-state quad bus buffer
7447	BCD-to-seven segment decoder-drivers	74132	Quad Schmitt trigger
	(15-V output)	74136	Quad 2-input EXCLUSIVE-OR gate
7448	BCD-to-seven segment decoder-drivers	74141	BCD-to-decimal decoder-driver
7450	Expandable dual 2-input 2-wide AND-OR-	74142	BCD counter-latch-driver
	INVERT gates	74145	BCD-to-decimal decoder-driver
7451	Dual 2-input 2-wide AND-OR-INVERT gates	74147	10/4 priority encoder
7452	Expandable 2-input 4-wide AND-OR gates	74148	Priority encoder
7453	Expandable 2-input 4-wide AND-OR-INVERT	74150	16-line-to-1-line multiplexer
	gates	74151	8-channel digital multiplexer
7454	2-input 4-wide AND-OR-INVERT gates	74152	8-channel data selector-multiplexer

APPENDIX 3. 7400 SERIES TTL (Continued)

Number	Function	Number	Function
74153	Dual 4/1 multiplexer	74190	Up-down decade counter
74154	4-line-to-16-line decoder-demultiplexer	74191	Synchronous binary up-down counter
74155	Dual 2/4 demultiplexer	74192	Binary up-down counter
74156	Dual 2/4 demultiplexer	74193	Binary up-down counter
74157	Quad 2/1 data selector	74194	4-bit directional shift register
74160	Decade counter with asynchronous clear	74195	4-bit parallel-access shift register
74161	Synchronous 4-bit counter	74196	Presettable decade counter
74162	Synchronous 4-bit counter	74197	Presettable binary counter
74163	Synchronous 4-bit counter	74198	8-bit shift register
74164	8-bit serial shift register	74199	8-bit shift register
74165	Parallel-load 8-bit serial shift register	74221	Dual one-shot Schmitt trigger
74166	8-bit shift register	74251	Three-state 8-channel multiplexer
74173	4-bit three-state register	74259	8-bit addressable latch
74174	Hex F flip-flop with clear	74276	Quad JK flip-flop
74175	Quad D flip-flop with clear	74279	Quad debouncer
74176	35-MHz presettable decade counter	74283	4-bit binary full adder with fast carry
74177	35-MHz presettable binary counter	74284	Three-state 4-bit multiplexer
74179	4-bit parallel-access shift register	74285	Three-state 4-bit multiplexer
74180	8-bit odd-even parity generator-checker	74365	Three-state hex buffers
74181	Arithmetic-logic unit	74366	Three-state hex buffers
74182	Look-ahead carry generator	74367	Three-state hex buffers
74184	BCD-to-binary converter	74368	Three-state hex buffers
74185	Binary-to-BCD converter	74390	Individual clocks with flip-flops
74189	Three-state 64-bit random-access memory	74393	Dual 4-bit binary counter

APPENDIX 4. PINOUTS AND FUNCTION TABLES

74LS83

The 74LS83 is a 4-bit full adder; the binary output is

$$S = A + B$$

Fig. A4-1

 A_1 , A_0); pins 16, 4, 7, and 11 are the **B** input $(B_3, B_2, B_1, B_2, B_2, B_3, B_4, B_4, B_5)$ B_0); and pins 15, 2, 6, and 9 are the S output $(S_3, S_2, S_1, S_2, S_1, S_2, S_2, S_2, S_2, S_3, S_4, S_4, S_5)$ S_0). Pin 13 is the CARRY IN, and pin 14 is the CARRY OUT.

74LS157

This chip is a word multiplexer. Two words of 4 bits each are the inputs; one word of 4 bits is the output. The two input words are designated L (left) and R (right); the output word is Y. In Fig. A4-2, pin 1 (SELECT) and pin 15 (STROBE) are control inputs. The L word goes to pins 14, 11, 5, 2 (L_3, L_2, L_1, L_0) , and the **R** word goes to pins 13, 10, 6, and 3 (R_3, R_2, R_1, R_0) .

	74LS157	_
$\begin{array}{c c} SELECT & 1 \\ L_0 & 2 \\ R_0 & 3 \\ Y_0 & 4 \\ L_1 & 5 \\ R_1 & 6 \\ Y_1 & 7 \\ GND & 8 \end{array}$	16 15 14 13 12 11 10	$ \begin{array}{c} \square \ V_{CC} \\ \square \ STROBE \\ \square \ L_3 \\ \square \ R_3 \\ \square \ Y_3 \\ \square \ L_2 \\ \square \ R_2 \\ \square \ Y_2 \end{array} $

Fig. A4-2

TABLE A4-1. FUNCTION TABLE

STROBE	SELECT	Y	Comment
1	X	0	Output goes low
0	0	L	Output equals left word
0	1	R	Output equals right word

As indicated in Table A4-1, a high STROBE input produces a low output, no matter what the input words. When STROBE is low, the SELECT input controls the operation. A low SELECT will send the L word to the output; a high SELECT sends the R word to the output.

		74LS173	_
M	1 2 3 4 5 6	74LS173 16 15 14 13 12	V_{CC} D_{CLR} D_{D_3} D_{D_1} D_{D_0}
CLK □ GND □	7 8	10 9	G_2
			ł

Fig. A4-3

74LS173

The 74LS173 is a 4-bit buffer register with three-state outputs. In Fig. A4-3, pins 14, 13, 12, and 11 are the data inputs (D_3, D_2, D_1, D_0) . Pins 3, 4, 5, and 6 are the data outputs (Q_3, Q_2, Q_1, Q_0) . Pins 9 and 10 $(G_1 \text{ and } G_2)$ are the input control. Pins 1 and 2 (M and N) are the output control.

As shown in Table A4-2, both M and N must be low to get a Q output. If either M or N (or both) is high, the output is three-stated (floating or high impedance).

When M and N are both low, Table A4-3 applies. As indicated, a high CLEAR will clear all Q bits to 0. When CLEAR is low, G_1 and G_2 control input loading. If either G_1 or G_2 (or both) are high, no change takes place in the Q bits. When both G_1 and G_2 are low, the next positive clock edge loads the input data.

TABLE A4-2. OUTPUT CONTROL

M	N	Output
0	0	Connected
0	1	Hi-Z
1	0	Hi-Z
1	1	Hi-Z

TABLE A4-3. FUNCTION TABLE FOR M = 0 AND N = 0

CLEAR	CLOCK	G_1	G_2	D_n	Q_n	Comment
1	X	X	X	X	0	Clear output
0	0	X	X	X	NC	No change
0	↑	1	X	X	NC	No change
0	↑	X	1	X	NC	No change
0	↑	0	0	0	0	Reset bit n
0	1	0	0	1	1	Set bit <i>n</i>

Fig. A4-4

74189

The 74189 is a 64-bit RAM organized as 16 words of 4 bits each. In Fig. A4-4 pins 1, 15, 14, and 13 are the address inputs (A_3, A_2, A_1, A_0) . Pins 4, 6, 10, and 12 are the data inputs (D_3, D_2, D_1, D_0) . Pins 5, 7, 9, and 11 are the data outputs (Q_3, Q_2, Q_1, Q_0) .

TABLE A4-4. FUNCTION TABLE

<u>CE</u>	WE	Output	Comment
1	X	Hi-Z	Do nothing
0	0	Hi-Z	Write complement
0	1	Stored word	Read

Table A4-4 summarizes the operation of this read-write memory. When \overline{CE} is high, the output is three-stated (high impedance). When \overline{CE} is low and \overline{WE} is low, the complement of the input data word is stored at the addressed memory location; during this write operation, the output is three-stated. When \overline{CE} is low and \overline{WE} is high, the stored word appears at the output.

APPENDIX 5. SAP-1 PARTS LIST	C39: 74LS00		
	C40: 74LS00 C41: 74LS00		
Chips	C41: 74LS00 C42: 74LS00		
C1: 74LS107, dual JK master-slave flip-flop	C43: 74LS00		
C2: 74LS107	C44: 74LS20		
C3: 74LS126, quad three-state normally open switches	C45: 74LS10		
C4: 74LS173, buffer register, three-state outputs, 4 bits	C46: 74LS00		
C5: 74LS157, 2-to-1 nibble multiplexer	C47: 74LS04		
C6: 74189, 64-bit (16 \times 4) static RAM, three-state	C48: 74LS04		
outputs	Diodes		
C7: 74189			
C8: 74LS173	D1: 1N4001, rectifier diod	e, 50 PIV, 1 A	
C9: 74LS173	D2: 1N4001		
C10: 74LS173	D3: 1N4001		
C11: 74LS173	D4: 1N4001		
C12: 74LS126	Switches		
C13: 74LS126			
C15: 74LS86, quad 2-input EXCLUSIVE-OR gates	S1: SPST DIP switch, 4 b	its	
C15: 74LS86	S2: DPST on-off		
C16: 74LS83, quad full adders C17: 74LS83	S3: SPST DIP, 8 bits		
C17. 74L363 C18: 74LS126	S4: SPST push button, momentary, normally open S5: SPDT push button, momentary		
C19: 74LS126	S6: SPDT push button, mo		
C20: 74LS173	S7: SPDT on-on switch	Sinemary	
C21: 74LS173			
C22: 74LS173	Miscellaneous		
C23: 74LS173	Resistors: eight 1-k Ω , four	rteen 10-k Ω , one 18-k Ω , one	
C24: 7400, quad 2-input NAND gates	36-kΩ		
C25: 74LS10, triple 3-input NAND gates	Capacitors: 0.01-µF, 0.1-µ	μF, 1000-μF (50 V)	
C26: 74LS00		5 V primary, 12.6 V secondary	
C27: 7404, hex inverter	CT, 1.5 A		
C28: NE555, timer	Fuse: $\frac{3}{8}$ -A slow blow		
C29: 74LS107	Totals		
C30: LM340T-5, voltage regulator, 5 V	lotais		
C31: 74LS04, hex inverter	1N4001-4	74LS20-4	
C32: 74LS20, dual 4-input NAND gates	LM340T-5-1	74LS83–2	
C33: 74LS20	NE555-1	74LS86–2	
C34: 74LS20	7400–1	74LS107–6	
C35: 74LS04	74LS00–7	74LS126–5	
C36: 74LS107	7404–1	74LS157-1	
C37: 74LS107	74LS04-4	74LS173–9	
C38: 74LS107	74LS10-2	74189–2	

APPENDIX 6. 8085 INSTRUCTIONS

nstruction	Op Code	T states	Flags	Main Effect
ACI byte	CE	7	All	$A \leftarrow A + CY + byte$
ADC A	8F	4	All	$A \leftarrow A + A + CY$
ADC B	88	4	All	$A \leftarrow A + B + CY$
ADC C	89	4	All	$A \leftarrow A + C + CY$
ADC D	8A	4	All	$A \leftarrow A + D + CY$
ADC E	8B	4	All	$A \leftarrow A + E + CY$
ADC H	8C	4	All	$A \leftarrow A + H + CY$
ADC L	8D	4	All	$A \leftarrow A + L + CY$
ADC M	8E	7	All	$A \leftarrow A + M_{HL} + CY$
ADD A	87	4	All	$A \leftarrow A + A$
ADD B	80	4	All	$A \leftarrow A + B$
ADD C	81	4	All	$A \leftarrow A + C$
ADD D	82	4	All	$A \leftarrow A + D$
ADD E	83	4	All	$A \leftarrow A + E$
DD H	84	4	All	$A \leftarrow A + H$
DD L	85	4	All	$A \leftarrow A + L$
ADD M	86	7	All	$A \leftarrow A + M_{HI}$
DI byte	C6	7	All	$A \leftarrow A + byte$
NA Á	A7	4	All	$A \leftarrow A \text{ AND } A$
NA B	A0	4	All	$A \leftarrow A \text{ and } B$
NA C	A1	4	All	$A \leftarrow A \text{ and } C$
NA D	A2	4	All	$A \leftarrow A \text{ and } D$
NA E	A3	4	All	$A \leftarrow A \text{ and } E$
NA H	A 4	4	All	$A \leftarrow A \text{ and } H$
NA L	A5	4	All	$A \leftarrow A \text{ and } L$
NA M	A6	7	All	$A \leftarrow A \text{ and } M_{HI}$
NI byte	E6	7	All	$A \leftarrow A$ and byte
CALL address	CD	18	None	PC ← address
C address	DC	18/9	None	$PC \leftarrow address if CY = 1$
M address	FC	18/9	None	$PC \leftarrow address \text{ if } S = 1$
CMA	2F	4	None	$A \leftarrow \overline{A}$
CMC	3F	4	CY	$CY \leftarrow \overline{CY}$
CMP A	BF	4	All	$Z \leftarrow 1 \text{ if } A = A$
CMP B	В8	4	All	$Z \leftarrow 1 \text{ if } A = B$
CMP C	В9	4	All	$Z \leftarrow 1 \text{ if } A = C$
CMP D	BA	4	All	$Z \leftarrow 1 \text{ if } A = D$
CMP E	ВВ	4	All	$Z \leftarrow 1 \text{ if } A = E$
CMP H	BC	4	All	$Z \leftarrow 1 \text{ if } A = H$
CMP L	BD	4	All	$Z \leftarrow 1 \text{ if } A = L$
CMP M	BE	7	All	$Z \leftarrow 1 \text{ if } A = M_{HI}$
CNC address	D4	18/9	None	$PC \leftarrow address \text{ if } CY = 0$
NZ address	C4	18/9	None	$PC \leftarrow address \text{ if } Z = 0$
P address	F4	18/9	None	$PC \leftarrow address \text{ if } S = 0$
CPE address	EC	18/9	None	$PC \leftarrow address \text{ if } P = 1$
CPI byte	FE	7	All	$Z \leftarrow 1$ if $A = $ byte
CPO address	E4	18/9	None	$PC \leftarrow \text{address if } P = 0$
ZZ address	CC	18/9	None	$PC \leftarrow \text{address if } Z = 1$
OAA	27	4	All	$A \leftarrow BCD \text{ number}$
OAD B	09	10	CY	$A \leftarrow BCD$ number $HL \leftarrow HL + BC$
OAD D	19	10	CY	$HL \leftarrow HL + DE$
1AD D				

Instruction	Op Code	T states	Flags	Main Effect
DAD SP	39	10	CY	HL ← HL + SP
DCR A	3D	4	All but CY	$A \leftarrow A - 1$
DCR B	05	4	All but CY	$B \leftarrow B - 1$
DCR C	0D	4	All but CY	$C \leftarrow C - 1$
DCR D	15	4	All but CY	$D \leftarrow D - 1$
DCR E	1D	4	All but CY	$E \leftarrow E - 1$
DCR H	25	4	All but CY	$H \leftarrow H - 1$
DCR L	2D	4	All but CY	$L \leftarrow L - 1$
DCR M	35	10	All but CY	$M_{HL} \leftarrow M_{HL} - 1$
DCX B	OB	6	None	$BC \leftarrow BC - 1$
DCX D	1B	6	None	$DE \leftarrow DE - 1$
DCX H	2B	6	None	$HL \leftarrow HL - 1$
DCX SP	3B	6	None	$SP \leftarrow SP - 1$
DI	F3	4	None	Disable interrupts
EI	FB	4	None	Enable interrupts
HLT	76	5	None	Stop processing
IN byte	DB	10	None	$A \leftarrow byte$
INR A	3C	4	All but CY	$A \leftarrow A + 1$
INR B	04	4	All but CY	$B \leftarrow B + 1$
INR C	0C	4	All but CY	$C \leftarrow C + 1$
INR D	14	4	All but CY	$D \leftarrow D + 1$
INR E	IC	4	All but CY	$E \leftarrow E + 1$
INR H	24	4	All but CY	$H \leftarrow H + 1$
INR L	2C	4	All but CY	$L \leftarrow L + 1$
INR M	34	10	All but CY	$M_{HL} \leftarrow M_{HL} + 1$
INX B	03	6	None	$BC \leftarrow BC + 1$
INX D	13	6	None	$DE \leftarrow DE + 1$
INX H	23	6	None	$HL \leftarrow HL + 1$
INX SP	33	6	None	$SP \leftarrow SP + 1$
JC address	DA	10/7	None	$PC \leftarrow \text{address if } CY = 1$
JM address	FA	10/7	None	$PC \leftarrow \text{address if } S = 1$
JMP address	C3	10	None	PC ← address
JNC address	D2	10/7	None	$PC \leftarrow address \text{ if } CY = 0$
JNZ address	C2	10/7	None	$PC \leftarrow \text{address if } Z = 0$
JP address	F2	10/7	None	$PC \leftarrow \text{address if } S = 0$
JPE address	EA	10/7	None	$PC \leftarrow \text{address if } P = 1$
JPO address	E2	10/7	None	$PC \leftarrow \text{address if } P = 1$ $PC \leftarrow \text{address if } P = 0$
JZ address	CA	10/7	None	$PC \leftarrow \text{address if } Z = 1$
LDA address	3A	13	None	$A \leftarrow M_{adr}$
LDAX B	0A	7	None	$A \leftarrow M_{BC}$
LDAX D	1A	7	None	$A \leftarrow M_{DE}$
LHLD address	2A	16	None	$H \leftarrow M_{adr}$
LXI B, dble	01	10	None	$BC \leftarrow dble$
LXI D, dble	11	10	None	DE ← dble
LXI H, dble	21	10	None	HL ← dble
LXI SP, dble	31	10	None	SP ← dble
MOV A,A	7F	4	None	$A \leftarrow A$
MOV A,B	78	4	None	$A \leftarrow B$
MOV A,C	79	4	None	$A \leftarrow B$ $A \leftarrow C$
MOV A,C MOV A,D	7A	4	None	$A \leftarrow C$ $A \leftarrow D$
MOV A,E	7B	4	None	$A \leftarrow B$ $A \leftarrow E$
MOV A,E MOV A,H	7E 7C	4	None	$A \leftarrow H$
2		•		• • • • • • • • • • • • • • • • • • • •

APPENDIX 6. 8085 INSTRUCTIONS (Continued)

Instruction	Op Code	T states	Flags	Main Effect	
MOV A,L	7D	4	None	$A \leftarrow L$	
MOV A,M	7E	7	None	$A \leftarrow M_{HL}$	
MOV B,A	47	4	None	$B \leftarrow A$	
MOV B,B	40	4	None	$B \leftarrow B$	
MOV B,C	41	4	None	$B \leftarrow C$	
MOV B,D	42	4	None	$B \leftarrow D$	
MOV B,E	43	4	None	$B \leftarrow E$	
MOV B,H	44	4	None	$B \leftarrow H$	
MOV B,L	45	4	None	$B \leftarrow L$	
MOV B,M	46	7	None	$B \leftarrow M_{HL}$	
MOV C,A	4F	4	None	$C \leftarrow A$	
MOV C,B	48	4	None	$C \leftarrow B$	
MOV C,C	49	4	None	$C \leftarrow C$	
MOV C,D	4A	4	None	$C \leftarrow D$	
MOV C,E	4B	4	None	$C \leftarrow E$	
MOV C,H	4C	4	None	$C \leftarrow H$	
MOV C,L	4D	4	None	C ← L	
MOV C,M	4E	7	None	$C \leftarrow M_{HL}$	
MOV D,A	57	4	None	$D \leftarrow A$	
MOV D,B	50	4	None	D ← B	
MOV D,C	51	4	None	$D \leftarrow C$	
MOV D,D	52	4	None	$D \leftarrow D$	
MOV D,E	53	4	None	$D \leftarrow E$	
MOV D,H	54	4	None	$D \leftarrow H$	
MOV D,L	55	4	None	$D \leftarrow L$	
MOV D,M	56	7	None	$D \leftarrow M_{HL}$	
MOV E,A	5F	4	None	$E \leftarrow A$	
MOV E,A MOV E,B	58	4	None	$E \leftarrow A$ $E \leftarrow B$	
MOV E,C	59	4	None	E ← C	
MOV E,C MOV E,D	5A	4	None	$E \leftarrow D$	
MOV E,E	5B	4	None	E ← E	
MOV E,E MOV E,H	5C	4	None	Ε ← H	
MOV E,H MOV E,L	5D				
MOV E,L MOV E,M	5E	4 7	None	$E \leftarrow L$	
			None	$E \leftarrow M_{HL}$	
MOV II B	67	4	None	$H \leftarrow A$	
MOV H,B	60	4	None	$H \leftarrow B$	
MOV H.C	61	4	None	$H \leftarrow C$	
MOV H.F	62	4	None	H ← D	
MOV H,E	63	4	None	H ← E	
MOV H.H	64	4	None	$H \leftarrow H$	
MOV H,L	65	4	None	H ← L	
MOV I. A	66 (F	7	None	$H \leftarrow M_{HL}$	
MOV L.A	6F	4	None	$L \leftarrow A$	
MOV L.G	68	4	None	$L \leftarrow B$	
MOV L,C	69	4	None	$\Gamma \leftarrow C$	
MOV L,D	6A	4	None	$L \leftarrow D$	
MOV L,E	6B	4	None	L ← E	
MOV L,H	6C	4	None	L ← H	
MOV L,L	6D	4	None	$L \leftarrow L$	
MOV L,M	6E	7	None	$L \leftarrow M_{HL}$	
MOV M,A	77	7	None	$M_{HL} \leftarrow A$	

Instruction	Op Code	T states	Flags	Main Effect
MOV M,B	70	7	None	$M_{HL} \leftarrow B$
MOV M,C	71	7	None	$M_{HL} \leftarrow C$
MOV M,D	72	7	None	$M_{HL} \leftarrow D$
MOV M,E	73	7	None	$M_{HL} \leftarrow E$
MOV M,H	74	7	None	$M_{HL} \leftarrow H$
MOV M,L	75	7	None	$M_{HL} \leftarrow L$
MVI A,byte	3E	7	None	A ← byte
MVI B,byte	06	7	None	B ← byte
MVI C,byte	0E	7	None	C ← byte
MVI D,byte	16	7	None	D ← byte
MVI E,byte	1E	7	None	E ← byte
MVI H,byte	26	7	None	H ← byte
MVI L,byte	2E	7	None	L ← byte
MVI M,byte	36	10	None	$M_{HL} \leftarrow byte$
NOP	00	4	None	Delay
ORA A	B7	4	All	$A \leftarrow A \text{ OR } A$
ORA B	B0	4	All	$A \leftarrow A \text{ or } B$
ORA C	B1	4	All	$A \leftarrow A \text{ or } C$
ORA D	B2	4	All	$A \leftarrow A \text{ OR } D$
ORA E	B3	4	All	$A \leftarrow A \text{ or } E$
ORA H	B4	4	All	$A \leftarrow A \text{ or } H$
ORA L	B5	4	All	$A \leftarrow A \text{ or } L$
ORA M	B6	7	All	$A \leftarrow A \text{ or } M_{HL}$
ORI byte	F6	7	All	$A \leftarrow A \text{ or byte}$
OUT byte	D3	10	None	Port byte \leftarrow A
PCHL	E9	6	None	PC ← HL
POP B	C1	10	None	$B \leftarrow M_{stk}$
POP D	D1	10	None	$D \leftarrow M_{stk}$
POP H	E1	10	None	$H \leftarrow M_{stk}$
POP PSW	F1	10	None	$F \leftarrow M_{stk}, A \leftarrow M_{stk} - 1$
PUSH B	C5	12	None	$M_{stk} - 1 \leftarrow B, M_{stk} - 2 \leftarrow C$
PUSH D	D5	12	None	M_{stk} 1 \leftarrow D, M_{stk} 2 \leftarrow E
PUSH H	E5	12	None	M_{stk} $1 \leftarrow D$, $M_{\text{stk}} = 2 \leftarrow E$ $M_{\text{stk}} - 1 \leftarrow H$, $M_{\text{stk}} = 2 \leftarrow L$
PUSH PSW	F5	12	None	M_{stk} 1 \leftarrow 11, M_{stk} 2 \leftarrow L M_{stk} - 1 \leftarrow A, M_{stk} - 2 \leftarrow F
RAL	17	4	CY	
RAR	1 <i>7</i> 1F	4	CY	Rotate all right
RC	D8	12/6	None	Rotate all right $PC \leftarrow return address if CY = 1$
RET	C9	10	None	$PC \leftarrow \text{return address if } CT = T$
RIM	20	4	None	$A \leftarrow I$
RLC	07	4	CY	Rotate left with carry
RM	F8	12/6	None	PC \leftarrow return address if $S = 1$
RNC	D0	12/6	None	PC \leftarrow return address if $S = 1$
RNZ	C0	12/6	None	PC \leftarrow return address if $Z = 0$
RP	F0	12/6	None	PC \leftarrow return address if $S = 0$
RPE	E8	12/6	None	PC \leftarrow return address if $S = 0$
RPO	E0	12/6	None	$PC \leftarrow \text{return address if } P = 1$ $PC \leftarrow \text{return address if } P = 0$
RRC	0F	4	CY	
RST 0	0F C7		None	Rotate right with carry
RST U	CF	12 12	None	PC ← 0000H
				PC ← 0008H
RST 2	D7	12	None	PC ← 0010H
RST 3	DF	12	None	PC ← 0018H
RST 4	E7	12	None	PC ← 0020H
RST 5	EF	12	None	PC ← 0028H

APPENDIX 6. 8085 INSTRUCTIONS (Continued)

Instruction	Op Code	T states	Flags	Main Effect
RST 6	F7	12	None	PC ← 0030H
RST 7	FF	12	None	$PC \leftarrow 0038H$
RZ	C8	12/6	None	$PC \leftarrow return address if Z = 1$
SBB A	9F	4	All	$A \leftarrow A - A - CY$
SBB B	98	4	All	$A \leftarrow A - B - CY$
SBB C	99	4	All	$A \leftarrow A - C - CY$
SBB D	9A	4	All	$A \leftarrow A - D - CY$
SBB E	9B	4	All	$A \leftarrow A - E - CY$
SBB H	9C	4	All	$A \leftarrow A - H - CY$
SBB L	9D	4	All	$A \leftarrow A - L - CY$
SBB M	9E	7	All	$A \leftarrow A - M - CY$
SBI byte	DE	7	All	$A \leftarrow A - byte - CY$
SHLD address	22	16	None	$M_{adr+1} \leftarrow H, M_{adr} \leftarrow L$
SIM	30	4	None	$I \leftarrow A$
SPHL	F9	6	None	$SP \leftarrow HL$
STA address	32	13	None	$M_{adr} \leftarrow A$
STAX B	02	7	None	$M_{BC} \leftarrow A$
STAX D	12	7	None	$M_{DE} \leftarrow A$
STC	37	4	CY	$CY \leftarrow 1$
SUB A	97	4	All	$A \leftarrow A - A$
SUB B	90	4	All	$A \leftarrow A - B$
SUB C	91	4	All	$A \leftarrow A - C$
SUB D	92	4	All	$A \leftarrow A - D$
SUB E	93	4	All	$A \leftarrow A - E$
SUB H	94	4	All	$A \leftarrow A - H$
SUB L	95	4	All	$A \leftarrow A - L$
SUB M	96	7	All	$A \leftarrow A - M$
SUI byte	D6	7	All	$A \leftarrow A - byte$
XCHĠ	EB	4	None	$HL \leftrightarrow DE$
XRA A	AF	4	All	$A \leftarrow A \text{ xor } A$
XRA B	A8	4	All	$A \leftarrow A \text{ xor } B$
XRA C	A9	4	All	$A \leftarrow A \text{ xor } C$
XRA D	AA	4	All	$A \leftarrow A \text{ xor } D$
XRA E	AB	4	All	$A \leftarrow A \text{ XOR } E$
XRA H	AC	4	All	$A \leftarrow A \text{ XOR } H$
XRA L	AD	4	All	$A \leftarrow A \text{ xor } L$
XRA M	AE	7	All	$A \leftarrow A \text{ XOR } M$
XRI byte	EE	7	All	$A \leftarrow A \text{ xor byte}$
XTHL	E3	16	None	HL ↔ stack

APPENDIX 7. MEMORY LOCATIONS: POWERS OF 2

Address Bits	Hexadecimal	Decimal	Power of 2
0000 0000 0000 0001	0001H	1	0
0000 0000 0000 0010	0002H	2	1
0000 0000 0000 0100	0004H	4	2
0000 0000 0000 1000	H8000	8	3
0000 0000 0001 0000	0010H	16	4
0000 0000 0010 0000	0020H	32	5
0000 0000 0100 0000	0040H	64	6
0000 0000 1000 0000	0080H	128	7
0000 0001 0000 0000	0100H	256	8
0000 0010 0000 0000	0200H	512	9
0000 0100 0000 0000	0400H	1,024	10
0000 1000 0000 0000	0800H	2,048	11
0001 0000 0000 0000	1000H	4,096	12
0010 0000 0000 0000	2000H	8,192	13
0100 0000 0000 0000	4000H	16,384	14
1000 0000 0000 0000	8000H	32,768	15

APPENDIX 8. MEMORY LOCATIONS: 16K AND 8K INTERVALS

Address Bits	Hexadecimal	Decimal	Zone
Zon	e bits = $A_{15}A_{14}$		
0000 0000 0000 0000	0000Н	0	0
0011 1111 1111 1111	3FFFН	16,383	
0100 0000 0000 0000	4000Н	16,384	1
0111 1111 1111 1111	7FFFН	32,767	
1000 0000 0000 0000	8000H	32,768	2
1011 1111 1111 1111	BFFFH	49,151	
1100 0000 0000 0000	C000H	49,152	3
1111 1111 1111 1111	FFFFH	65,535	
Zone	bits = $A_{15}A_{14}A_1$	13	
0000 0000 0000 0000	0000H	0	0
0001 1111 1111 1111	1FFFH	8,191	
0010 0000 0000 0000	2000H	8,192	1
0011 1111 1111 1111	3FFFH	16,383	
0100 0000 0000 0000	4000H	16,384	2
0101 1111 1111 1111	5FFFH	24,575	
0110 0000 0000 0000	6000Н	24,576	3
0111 1111 1111 1111	7FFFН	32,767	
1000 0000 0000 0000	8000H	32,768	4
1001 1111 1111 1111	9FFFH	40,959	

1010 0000 0000 0000	A000H	40,960	5
1011 1111 1111 1111	BFFFH	49,151	
1100 0000 0000 0000	C000H	49,152	6
1101 1111 1111 1111	DFFFH	57,343	
1110 0000 0000 0000	E000H	57,344	7
1111 1111 1111 1111	FFFFH	65,535	

APPENDIX 9. MEMORY LOCATIONS: 4K INTERVALS

Address Bits	Hexadecimal	Decimal	Zone
Zone b	its = $A_{15}A_{14}A_{13}$	A ₁₂	
0000 0000 0000 0000	0000Н	0	0
0000 1111 1111 1111	0FFFН	4,095	
0001 0000 0000 0000	1000Н	4,096	1
0001 1111 1111 1111	1FFFН	8,191	
0010 0000 0000 0000	2000Н	8,192	2
0010 1111 1111 1111	2FFFН	12,287	
0011 0000 0000 0000	3000H	12,288	3
0011 1111 1111 1111	3FFFH	16,383	
0100 0000 0000 0000	4000H	16,384	4
0100 1111 1111 1111	4FFFH	20,479	
0101 0000 0000 0000	5000Н	20,480	5
0101 1111 1111 1111	5FFFН	24,575	
0110 0000 0000 0000	6000Н	24,576	6
0110 1111 1111 1111	6FFFН	28,671	
0111 0000 0000 0000	7000H	28,672	7
0111 1111 1111 1111	7FFFH	32,767	
1000 0000 0000 0000	8000H	32,768	8
1000 1111 1111 1111	8FFFH	36,863	
1001 0000 0000 0000	9000H	36,864	9
1001 1111 1111 1111	9FFFH	40,959	
1010 0000 0000 0000	A000H	40,960	10
1010 1111 1111 1111	AFFFH	45,055	
1011 0000 0000 0000	B000H	45,056	11
1011 1111 1111 1111	BFFFH	49,151	
1100 0000 0000 0000	C000H	49,152	12
1100 1111 1111 1111	CFFFH	53,247	
1101 0000 0000 0000	D000H	53,248	13
1101 1111 1111 1111	DFFFH	57,343	
1110 0000 0000 0000	E000H	57,344	14
1110 1111 1111 1111	EFFFH	61,439	
1111 0000 0000 0000	F000H	61,440	15
1111 1111 1111 1111	FFFFH	65,535	

APPENDIX 10. MEMORY LOCATIONS: 2K INTERVALS

Address Bits	Hexadecimal	Decimal	Zone	Address Bits	Hexadecimal	Decimal	Zone	
Zone bits = $A_{15}A_{14}A_{13}A_{12}A_{11}$								
0000 0000 0000 0000 0000 0111 1111 1111	0000Н 07FFН	0 2,047	0	1000 0000 0000 0000 1000 0111 1111 1111	8000H 87FFH	32,768 34,815	16	
0000 1000 0000 0000 0000 1111 1111 1111	0800H 0FFFH	2,048 4,095	1	1000 1000 0000 0000 1000 1111 1111 1111	8800H 8FFFH	34,816 36,863	17	
0001 0000 0000 0000 0001 0111 1111 1111	1000Н 17FFН	4,096 6,143	2	1001 0000 0000 0000 1001 0111 1111 1111	9000Н 97FFН	36,864 38,911	18	
0001 1000 0000 0000 0001 1111 1111 1111	1800H 1FFFH	6,144 8,191	3	1001 1000 0000 0000 1001 1111 1111 1111	9800H 9FFFH	38,912 40,959	19	
0010 0000 0000 0000 0010 0111 1111 1111	2000H 27FFH	8,192 10,239	4	1010 0000 0000 0000 1010 0111 1111 1111	A000H A7FFH	40,960 43,007	20	
0010 1000 0000 0000 0010 1111 1111 1111	2800H 2FFFH	10,240 12,287	5	1010 1000 0000 0000 1010 1111 1111 1111	A800H AFFFH	43,008 45,055	21	
0011 0000 0000 0000 0011 0111 1111 1111	3000H 37FFH	12,288 14,335	6	1011 0000 0000 0000 1011 0111 1111 1111	В000Н В7FFН	45,056 47,103	22	
0011 1000 0000 0000 0011 1111 1111 1111	3800H 3FFFH	14,336 16,383	7	1011 1000 0000 0000 1011 1111 1111 1111	B800H BFFFH	47,104 49,151	23	
0100 0000 0000 0000 0100 0111 1111 1111	4000H 47FFH	16,384 18,431	8	1100 0000 0000 0000 1100 0111 1111 1111	С000Н С7FFН	49,152 51,199	24	
0100 1000 0000 0000 0100 1111 1111 1111	4800H 4FFFH	18,432 20,479	9	1100 1000 0000 0000 1100 1111 1111 1111	C800H CFFFH	51,200 53,247	25	
0101 0000 0000 0000 0101 0111 1111 1111	5000H 57FFH	20,480 22,527	10	1101 0000 0000 0000 1101 0111 1111 1111	D000H D7FFH	53,248 55,295	26	
0101 1000 0000 0000 0101 1111 1111 1111	5800H 5FFFH	22,538 24,575	11	1101 1000 0000 0000 1101 1111 1111 1111	D800H DFFFH	55,296 57,343	27	
0110 0000 0000 0000 0110 0111 1111 1111	6000Н 67FFН	24,576 26,623	12	1110 0000 0000 0000 1110 0111 1111 1111	E000H E7FFH	57,344 59,391	28	
0110 1000 0000 0000 0110 1111 1111 1111	6800H 6FFFH	26,624 28,671	13	1110 1000 0000 0000 1110 1111 1111 1111	E800H EFFFH	59,392 61,439	29	
0111 0000 0000 0000 0111 0111 1111 1111	7000H 77FFH	28,672 30,719	14	1111 0000 0000 0000 1111 0111 1111 1111	F000H F7FFH	61,440 63,487	30	
0111 1000 0000 0000 0111 1111 1111 1111	7800H 7FFFH	30,720 32,767	15	1111 1000 0000 0000 1111 1111 1111 1111	F800H FFFFH	63,488 65,535	31	

APPENDIX 11. MEMORY LOCATIONS: 1K INTERVALS

Address Bits	Hexadecimal	Decimal	Zone	Address Bits	Hexadecimal	Decimal	Zone
	- 20	Zone b	oits = A ₁₅	$_{5}A_{14}A_{13}A_{12}A_{11}A_{10}$			
0000 0000 0000 0000 0000 0011 1111 1111	0000Н 03FFH	0 1,023	0	0101 0000 0000 0000 0101 0011 1111 1111	5000H 53FFH	20,480 21,503	20
0000 0100 0000 0000 0000 0111 1111 1111	0400H 07FFH	1,024 2,047	1	0101 0100 0000 0000 0101 0111 1111 1111	5400H 57FFH	21,504 22,527	21
0000 1000 0000 0000 0000 1011 1111 1111	0800H 0BFFH	2,048 3,071	2	0101 1000 0000 0000 0101 1011 1111 1111	5800Н 5ВFFН	22,528 23,551	22
0000 1100 0000 0000 0000 1111 1111 1111	0С00Н 0FFFH	3,072 4,095	3	0101 1100 0000 0000 0101 1111 1111 1111	5C00H 5FFFH	23,552 24,575	23
0001 0000 0000 0000 0001 0011 1111 1111	1000H 13FFH	4,096 5,119	4	0110 0000 0000 0000 0110 0011 1111 1111	6000H 63FFH	24,576 25,599	24
0001 0100 0000 0000 0000 0001 0111 1111 1111	1400H 17FFH	5,120 6,143	5	0110 0100 0000 0000 0110 0111 1111 1111	6400H 67FFH	25,600 26,623	25
0001 1000 0000 0000 0001 1011 1111 1111	1800H 1BFFH	6,144 7,167	6	0110 1000 0000 0000 0110 1011 1111 1111	6800H 6BFFH	26,624 27,647	26
0001 1100 0000 0000 0001 1111 1111 1111	1C00H 1FFFH	7,168 8,191	7	0110 1100 0000 0000 0110 1111 1111 1111	6С00Н 6FFFH	27,648 28,671	27
0010 0000 0000 0000 0010 0011 1111 1111	2000H 23FFH	8,192 9,215	8	0111 0000 0000 0000 0111 0011 1111 1111	7000H 73FFH	28,672 29,695	28
0010 0100 0000 0000 0010 0111 1111 1111	2400H 27FFH	9,216 10,239	9	0111 0100 0000 0000 0111 0111 1111 1111	7400H 77FFH	29,696 30,719	29
0010 1000 0000 0000 0010 1011 1111 1111	2800H 2BFFH	10,240 11,263	10	0111 1000 0000 0000 0111 1011 1111 1111	7800H 7BFFH	30,720 31,743	30
0010 1100 0000 0000 0010 1111 1111 1111	2C00H 2FFFH	11,264 12,287	11	0111 1100 0000 0000 0111 1111 1111 1111	7С00Н 7FFFН	31,744 32,767	31
0011 0000 0000 0000 0011 0011 1111 1111	3000H 33FFH	12,288 13,311	12	1000 0000 0000 0000 1000 0011 1111 1111	8000H 83FFH	32,768 33,791	32
0011 0100 0000 0000 0000 0011 0111 1111 1111	3400H 37FFH	13,312 14,335	13	1000 0100 0000 0000 1000 0111 1111 1111	8400H 87FFH	33,792 34,815	33
0011 1000 0000 0000 0011 1011 1111 1111	3800H 3BFFH	14,336 15,359	14	1000 1000 0000 0000 1000 1011 1111 1111	8800H 8BFFH	34,816 35,839	34
0011 1100 0000 0000 0011 1111 1111 1111	3C00H 3FFFH	15,360 16,383	15	1000 1100 0000 0000 1000 1111 1111 1111	8C00H 8FFFH	35,840 36,863	35
0100 0000 0000 0000 0100 0011 1111 1111	4000H 43FFH	16,384 17,407	16	1001 0000 0000 0000 1001 0011 1111 1111	9000Н 93FFН	36,864 37,887	36
0100 0100 0000 0000 0100 0111 1111 1111	4400H 47FFH	17,408 18,431	17	1001 0100 0000 0000 1001 0111 1111 1111	9400H 97FFH	37,888 38,911	37
0100 1000 0000 0000 0100 1011 1111 1111	4800H 4BFFH	18,432 19,455	18	1001 1000 0000 0000 1001 1011 1111 1111	9800H 9BFFH	38,912 39,935	38
0100 1100 0000 0000 0100 1111 1111 1111	4C00H 4FFFH	19,456 20,479	19	1001 1100 0000 0000 1001 1111 1111 1111	9С00Н 9 FFF Н	39,936 40,959	39

APPENDIX 11. MEMORY LOCATIONS: 1K INTERVALS (Continued)

Address Bits	Hexadecimal	Decimal	Zone	Address Bits	Hexadecimal	Decimal	Zone
Zone bits = $A_{15}A_{14}A_{13}A_{12}A_{11}A_{10}$							
1010 0000 0000 0000 1010 0011 1111 1111	A000H A3FFH	40,960 41,983	40	1101 0000 0000 0000 1101 0011 1111 1111	D000H D3FFH	53,248 54,271	52
1010 0100 0000 0000 1010 0111 1111 1111	A400H A7FFH	41,984 43,007	41	1101 0100 0000 0000 1101 0111 1111 1111	D400H D7FFH	54,272 55,295	53
1010 1000 0000 0000 1010 1011 1111 1111	A800H ABFFH	43,008 44,031	42	1101 1000 0000 0000 1101 1011 1111 1111	D800H DBFFH	55,296 56,319	54
1010 1100 0000 0000 1010 1111 1111 1111	AC00H AFFFH	44,032 45,055	43	1101 1100 0000 0000 1101 1111 1111 1111	DC00H DFFFH	56,320 57,343	55
1011 0000 0000 0000 1011 0011 1111 1111	B000H B3FFH	45,056 46,079	44	1110 0000 0000 0000 1110 0011 1111 1111	E000H E3FFH	57,344 58,367	56
1011 0100 0000 0000 1011 0111 1111 1111	B400H B7FFH	46,080 47,103	45	1110 0100 0000 0000 1110 0111 1111 1111	E400H E7FFH	58,368 59,391	57
1011 1000 0000 0000 1011 1011 1111 1111	B800H BBFFH	47,104 48,127	46	1110 1000 0000 0000 1110 1011 1111 1111	E800H EBFFH	59,392 60,415	58
1011 1100 0000 0000 1011 1111 1111 1111	BC00H BFFFH	48,128 49,151	47	1110 1100 0000 0000 1110 1111 1111 1111	EC00H EFFFH	60,416 61,439	59
1100 0000 0000 0000 1100 0011 1111 1111	C000H C3FFH	49,152 50,175	48	1111 0000 0000 0000 1111 0011 1111 1111	F000H F3FFH	61,440 62,463	60
1100 0100 0000 0000 1100 0111 1111 1111	C400H C7FFH	50,176 51,199	49	1111 0100 0000 0000 1111 0111 1111 1111	F400H F7FFH	62,464 63,487	61
1100 1000 0000 0000 1100 1011 1111 1111	C800H CBFFH	51,200 52,223	50	1111 1000 0000 0000 1111 1011 1111 1111	F800H FBFFH	63,488 64,511	62
1100 1100 0000 0000 1100 1111 1111 1111	CC00H CFFFH	52,224 53,247	51	1111 1100 0000 0000 1111 1111 1111 1111	FC00H FFFFH	64,512 65,535	63

APPENDIX 12. PROGRAMMING MODELS

Fig. A12-1 6502 programming model.

Fig. A12-2 6800/6808 programming model.

		Memory	<u></u>
	0000	hh	Accumulator hh
	0001	hh	
A d	0002	hh	Register B Register C
d	0003	hh	Register D Register E hh hh
r	0004	hh	Register H Register L
e s	0005	hh	hh hh
s e	0006	hh	SP _H —Stack pointer—SP∟ hh hh
s	0007	hh	PC _H —Program counter—PC _L
	0008	hh	hh hh
	0009	hh	Status register SZ-A-P-C
	000A	hh	b b — b — b — b h h

Fig. A12-3 8085/Z80 (8085/8080 subset) programming model.

		Memory	Accumulator AX
	0100	hh	AH AL
	0101	hh	hh Base BX — hh
	0102	hh	BH BL hh Count CX
	0103	hh	CH CL
	0104	hh	hh Data DX hh
	0105	hh	DH DL hh
	0106	hh	Source index
	0107	hh	hhhh
	0108	hh	Destination index hhhh
A م	0109	hh	···
d d	010A	hh	Stack pointer hhhh
r	010B	hh	Base pointer
е	010C	hh	nnnn
s s	010D	hh	Code segment
e	010E	hh	, , , , , , , , , , , , , , , , , , , ,
s	010F	hh	Data segment hhhh
	0110	hh	Extra segment hhhh
	0111	hh	Stack segment
	0112	hh	hhhh
	0113	hh	Instruction pointer
	0114	hh	hhhh
	0115	hh	new Flags 8085-like
	0116	hh	
	0117	hh	h h h h

Fig. A12-4 8088/8086 programming model.

		J	

Answers to Odd-Numbered Problems

CHAP. 1. 1-1. a. 1 b. 2 c. 2½ 1-3. a. 10 b. 2 c. 5 d. 16 1-5. 1,024, 4,096, 8K 1-7. 1010 1100, 172 1-9. 201 1-11. 1100 0111, 199 1-13. 111000 1-15. 1001 0110 1-17. F52B, F52C, F52D, F52E, F52F, F530 1-19. a. 1111 1111 b. 1010 1011 1100 c. 1100 1101 0100 0010 d. 1111 0011 0010 1001 1-21. 0011 1110, 0000 1110, 1101 0011, 0010 0000, 0111 0110 1-23. a. 4,095 b. 16,383 c. 32,740 d. 46,040 1-25. 16,384, 16K 1-27. 0000, FFFF 1-29. a. EE b. 1D7B c. 3BFF d. B8B5 1-31. a. 87 b. 9,043 c. 597,266 1-33. 100 1100, 100 1001, Ĩ01 00Tī, 101 0100

CHAP. 2. 2-1. One or more, one 2-3. Noninverter 2-5. 64, 000000 2-7. 3, 9, C, F 2-9. 128, 1111111 2-11. 0, 59 2-13. $Y = \overline{A} + \overline{B}$, low 2-15. 8 2-17. 0, $Y = \overline{A} + \overline{B} + \overline{C}$, 000 to 110, 111 2-19. $Y = \overline{ABC}$, 0 2-21. $Y = \overline{AB} + \overline{CD}$, 16, 0000, 0001, 0010, 0100, 0101, 0110, 1000, 1001, 1010 2-23. a. 0000 b. 0001 c. *JIM* d. *OPR* 2-25. a. Positive b. Negative c. Positive d. Negative

CHAP. 3. 3-1. High; low; inverter 3-3. None, Z_5 , Z_6 3-5. Q is 1, \overline{Q} is 0 3-7. Change the output NOR gate of Fig. 3-28a to a bubbled AND gate; all bubbles cancel leaving the simplified circuit of Fig. 3-28b. 3-9. 0, 1 3-11. 512 3-13. 16; 0, 1, 1, 0 3-15. 1, 0, inverter 3-17. a. None b. Z_7 c. Z_2 d. X_2 and Y_2 3-19. 0, 1 3-21. 512 3-23. Low, high 3-25. a. 0 b. 1 c. 1 d. 1 3-27. a. 11010b. 01001 c. 11111 d. 10010 3-29. Remove the inverter 3-31. a. CARRY = 0, SUM = 0 b. 0, 1 c. 0, 1 d. 1, 0 3-33. a. 0011 1100 b. 0101 0000 1100 c. 0001 1110 0101

CHAP. 4. 4-1. 1.075 mA, 1.387 mA 4-3. 5 4-5. All; b, c, f, g

CHAP. 5. 5-1. $\overline{AB}C\overline{D}$, $AB\overline{C}D$, $ABC\overline{D}$

5-7.		ĒD		
Ā	3 0 3 1 3 1	0	0	0
Ā	3 0	0	0	0
A	3 1	1	1	1
Ai	3 1	1	1	1

5-13.

5-15.

CHAP. 6. 6-1. a. 0001 1000, 18H b. 0010 0100, 24H c. 0010 1010, 2AH d. 0110 0011, 63H 6-3. a. 7BH b. 78H c. A8H d. D1H 6-5. a. +30 b. -7 c. -28 d. +49 6-7. a. F9H b. 01H c. 03H d. 1FH 6-9. a. 1110 1101, EDH b. 1101 0000, D0H c. 0010 0101, 25H d. 1101 1111, DFH 6-11. 9BH, DDH

CHAP. 7. 7-1. a. C b. G 7-3. a. 0000 b. 1001 7-5. 3 MHz; the output frequency is half the input frequency 7-7. Q = 0, Y = 1; Q = 1, Y = CLK

CHAP. 8. 8-1. a. 0001 0111 b. 1000 1101 8-3. 385 Ω 8-5. 4 μ s 8-7. 6.4 μ s 8-9. 65,535 8-11. 1 μ s, 6 μ s 8-13. 1.6 μ s, 0.2 μ s 8-15. Two answers: 7490 (divide by 10) and 7492 (divide by 6), or 7490 (divide by 5) and 7492 (divide by 12) 8-17. 136 8-19. a. 0, 1 b. 1, 1 c. 0

CHAP. 9. 9-1. 16,384 9-3. 12

9-5.	Address	Data
	DDDD	UDDD UDDU
	DDDU	DUUU UUDD
	DDUD	DDUU DUUD
	DDUU	DDUD DDUU
	DUDD	DDDU DUUU
	DUDU	DUDU UUUU
	DUUD	UUUD UUDU
	DUUU	UUUU UDDD

9-7. 63 9-9. BFFFH; 49,151 9-11. a. 47, 212, 207, 110, 83, 122 b. 36,357

CHAP. 10.	10-1.	Address	Mnemonic
		0H 1H 2H 3H 4H DH EH FH	LDA DH ADD EH SUB FH OUT HLT 05H 04H 06H
10-3.		Address	Mnemonic
		0H 1H 2H 3H 4H 5H BH CH DH EH	LDA BH ADD CH SUB DH ADD EH SUB FH HLT 08H 04H 03H 05H
10-5.	ı	1 1	
E_{P} \bar{L}_{M} C_{P} \bar{E}_{I} \bar{E}_{I} \bar{E}_{U} \bar{L}_{A}			74 - 75 - 76 -
- ⊿			

SU

10-7. LDA: 1A3H or 0001 1010 0011, 2C3H or 0010 1100 0011, 3E3H or 0011 1110 0011; SUB: 1A3H or 0001 1010 0011, 2E1H or 0010 1110 0001, 3CFH or 0011 1100 1111 10-9. a. Negative edge; CLK is on its rising edge b. High c. Low d. High 10-11. a. Low b. Low c. High

CHAP. 11.	11-1.	Mnemonic
		MVI A,64H MVI B,96H MVI C,C8H HLT
11-3.		Mnemonic
		MVI A,32H STA 4000H MVI A,33H
		STA 4001H MVI A,34H STA 4002H
		HLT
11-5.		Mnemonic
		MVI A,44H MVI B,22H ADD B STA 5000H HLT
11-7. a. 120	b. 119 d	c. Change the f

11-7. a. 120 b. 119 c. Change the first instruction to MVIC,D2H

11-9.	Mnemonic
	MVI A,00H
	MVI B,19H
	MVI C,07H
	CALL F006H
	STA 2000H
	HLT

	1121	
11-11.	Label	Mnemonic
		IN 01H
		ANI 01H
		JNZ ODD
		MVI A,45H
		JMP DONE
	ODD:	MVI A,4FH
	DONE:	MVI C,08H
	AGAIN:	OUT 04H
		RAR
		DCR C
		JNZ AGAIN
		HLT

11-13.	Addr 2000			F08BH F08CH	3DH 32H
	2001			F08DH	93H
	2002			F08EH	F0H
	2003			F08FH	C2H
	2004			F090H	85H
	2005			F091H	F0H
	2006			F092H	С9Н
	2007	'H DBH	11-21.	Address	Contents
	2008			2000H	D3H
	2009			2001H	04H
	200A			2002H	0EH
	200E			2003H	42H
	2000			2004H	0DH
11-15.	Addr	ress Contents		2005H 2006H	C2H 04H
	2000			2007H	20H
	2001	1H 23H		2007H	2FH
	2002	2H 0DH		2009H	00H
	2003	3H C2H		200AH	C3H
	2004			200BH	00H
	2005			200CH	20H
	2006	бН С9Н		200011	2011
11-17.	Label	Mnemonic	CHAP. 12.	12-1. Mne	emonic
	LOOP:	MVI A,05H CALL F020H			A,00H
	Loor.	DCR A			B,01H
		JNZ LOOP			С,59Н
		RET			D,02H
					E,F1H
	Address	Contents		ADI ADI	
	E100H	3EH			V L,A
	E101H	05H			A,00H
	E102H	CDH		ADO	
	E103H	20H		ADI	
	E104H	F0H			V H,A
	E105H	3DH		HLT	
	E106H	C2H	A 10	1	
	E107H	02H	An alternative	e solution is	
	E108H E109H	E1H C9H		Mı	nemonic
11-19.	Address	Contents			/I A,F1H oI 59H
	F080H	3EH			OV L,A
	F081H	06H			/I A,02H
	F082H	32H			101H
	F083H	93H			OV H,A
	F084H	F0H		HL	
	F085H	CDH	10.0		
	F086H	60H	12-3.	Label	Mnemonic
	F087H	F0H			LXI H,4FFFH
	F088H	ЗАН		LOOP:	INX H
	F089H	93H		• •	MOV B,M
	F08AH	F0H			MOV A,H

		ADI 40H	12-9.	Label	Mnemonic	
		MOV H,A			LXI SP,E000H	
		MOV M,B			LXI H,4FFFH	
		SUI 40H		LOOP:	INX H	
		MOV H,A		LOOF.	MOV A,M	
		CPI 53H			MOV A,M MOV B,08H	
		JNZ LOOP		AGAIN:	OUT 22H	
		MOV A,L			CALL F010H	
		CPI FFH			RAR	
		JNZ LOOP			DCR B	
		HLT			JNZ AGAIN	
					MOV A,L	
12-5.	Label	Mnemonic			CPI FFH	
		LAZL OD DOGGIA			JNZ LOOP	
		LXI SP,E000H			HLT	
		MVI A,00H MVI B,FFH				
LOOD.	LOOP:	INR A		CHAP. 14. 14-1. How you would accomplish your tas		
LOOP:		OUT 22H		•	3. Branch. 14-5. The subroutine	

OUT 22H CALL F010H DCR B JNZ LOOP HLT

Label

12-7.

without a computer. 14-3. Branch. 14-5. The subroutine (part of the program) needs to be written only once but can then be used many times. 14-7. Formula translation. 14-9. Creating a language which would encourage programmers to write by using what are considered "correct" programming practices.

LXI SP,E000H
LXI H,5FFFH
LOOP: INX H
MOV A,M
OUT 22H
CALL F020H
MOV A,H
CPI 61H
JNZ LOOP
MOV A,L
CPI FFH

CHAP. 15. 15-1. By its address. 15-3. 1,048,576. 15-5. The accumulator. 15-7. Registers are faster. 15-9. The status register (or condition code register or flag register). 15-11. The carry flag. 15-13. No. 15-15. DE. 15-17. C581. 15-19. 8 bits. 15-21. 256 bytes. 15-23. 16 bits. 15-25. Nothing. They are always set. 15-27. None. 15-29. It is named AX and is 16 bits wide with an 8-bit upper half (called AH) and an 8-bit lower half (called AL). 15-31. The instruction pointer. 15-33. 65,536 bytes.

CHAP. 16. 16-1. Nothing. 16-3. The original number in the accumulator is still there. 16-5. 00. 16-7. It copies the contents of the Y register to the accumulator. 16-9. STY. 16-11. 01. 16-13. 16. 16-15. CleaR accumulator A.

16-17.

JNZ LOOP

HLT

Mnemonic

Addr	Obj	Assembler	Comment
0000	C6	LDAB #\$89	Load the number immediately following the LDAB
0001	89		op code (C6) into accumulator B (89)
0002	17	TBA	Transfer (copy) the contents of B to A
0003	3E	WAI	Stop

16-19. 76. 16-21. It copies the contents of register C to register B. 16-23. STA aaaa [LD (aaaa),A]. 16-25. DEBUG. 16-27. Register or memory. 16-29. DL. 16-31. The contents of memory location 4456₁₆. 16-33. It stands for assemble and it translates 8088/8086 mnemonics into machine code. 16-35. It executes one instruction and then displays the current values of all registers and stops.

```
16-37.
-a
9522:0100 mov BL,89
9522:0102 mov CL,BL
9522:0104
-u 100 103
9522:0100 B389 MOV BL,89
9522:0102 88D9 MOV CL,BL
-r
AX=0000 BX=0000 CX=0000 DX=0000 SP=ADDE BP=0000 SI=0000 DI=0000 DS=9522 ES=9522 SS=9522 CS=9522 IP=0100 NV UP EI PL NZ NA PO NC
                            MOV BL,89
9522:0100 B389
-t
AX=0000 BX=0089 CX=0000 DX=0000 SP=ADDE BP=0000 SI=0000 DI=0000
DS=9522 ES=9522 SS=9522 CS=9522 IP=0102 NV UP EI PL NZ NA PO NC
                            MOV CL, BL
9522:0102 88D9
AX=0000 BX=0089 CX=0089 DX=0000 SP=ADDE BP=0000 SI=0000 DI=0000 DS=9522 ES=9522 SS=9522 CS=9522 IP=0104 NV UP EI PL NZ NA PO NC
```

Note: Answers to Chapters 18 to 23 are in the teacher's manual.

Index

Note: For entries marked with (#), refer also to specific families listed under "Microprocessor families."

Absolute accuracy, 488	#Arithmetic instructions, 271–276	C language, 221
Absolute addressing, 265, 333–334	Arithmetic-logic unit, 7, 79, 175	C register, 175
Access time, 132–133	ASCII code, 14–15, 271	CALL instruction, 180, 182, 210-211
Accumulator, 142, 158, 174, 176, 184, 226,	Assembler, 181, 222, 354–355, 357, 358 (See	Carry flag, 196-197, 272, 274-277, 281, 312
230, 232, 233, 235 (<i>See also</i> ALU) Accumulator addressing, 264–268	also Machine language)	Cell, 134
Accuracy, 488–489	Assembly language, 145, 221–222, 337	Central processing unit (see CPU)
Active low state, 98	Associative law, 64	Chip, 4, 49
ADD instruction, 143, 148–150, 178, 197–198	Asynchronous operation, 142 (See also Clock-	Chip enable, 134
Adder-subtracter, 85–87, 142, 158	ing)	Chunking, 11
Addition, 79–87, 199, 271–272, 281–282,		Clear, 97
284–287, 290–292, 294, 298–300	B register, 142, 158, 175	Clear-start debouncer, 158–159 Clock, 93, 158
Addition-with-carry, 274, 276–277	Base, 6–7	Clock generator, 102–103
Address, 12, 131, 133, 135-137, 330 (See also	Base plus index addressing, 340	Clocking:
Addressing mode)	Base register, 340	edge-triggered, 96–100
Address bus, 225	Base relative plus index addressing, 340-341	level, 93–97, 102
Address field, 145	BASIC, 221	master-slave, 100–103
Address line, 131	BCD number, 13–14, 270–271	positive and negative, 94
Address mapping, 183	BCD-to-decimal conversion, 13-14	CMA instruction, 184
Address state, 147 (See also T state)	Bidirectional register, 173	CMOS, 48
#Addressing mode, 224–226	Binary adder, 82–83	COBOL, 221
absolute, 265, 333–334	Binary adder-subtracter, 85–87, 142, 158	Code, binary, 2–3
base plus index, 340 base relative plus index, 340–341	Binary addition, 79–87 (See also Addition)	Code segment register, 268
direct, 187, 264–268	Binary code, 2–3	Comment, 181–182
extended, 266	Binary number 2, 2, 6, 15, 270, 271, 274	Commutative law, 64
immediate, 187, 244, 247, 264–268	Binary number, 2–3, 6–15, 270, 271, 274 Binary odometer, 1–2, 84	#Compare and test instruction, 343
implied, 188, 264–267	Binary programming (see Machine language)	Compatibility, 51–52
indexed, 332–336	Binary subtraction, 80–81, 85–87 (See also	Complement, 19 Complement instruction, 311, 314
indexed indirect, 335	Subtraction)	Complementary MOSFETs, 48
indirect, 205, 331, 333, 336, 338-340	Binary weight, 6	Computer, 7
indirect indexed, 334-335	Binary word, 20	architecture, 224–226
paging, 263–264	Binary-coded-decimal number, 13-14, 270-271	bus-organized, 121, 122–125, 152
program direct, 268	Binary-to-decimal conversion, 3, 6–7	(See also Microprocessor)
program indirect, 340	Binary-to-decimal decoder, 27	CON (see Control unit)
program relative, 337–338	Binary-to-hexadecimal conversion, 10-11, 12	Condition code register, 227-228, 232-233
range, 225	Bipolar families, 48	#Conditional jump (branching), 179, 180, 187
register (accumulator), 188, 264–268	Bit, 4	342–343
register indirect, 336, 338–340	Bit comparison, 42	Contact bounce, 92-93
register relative, 337	BIT instruction, 309–310, 311	Content, 131, 224-225
relative, 330, 332–333, 335, 337–338 zero page, 333–334	Bit position, 271	Control input, 90
Alphanumerics, 14	Bit-serial form (see Serial data stream; Serial	Control matrix, 36–37, 161
ALU, 7, 79, 175	loading) Boldface notation, 42	Control ROM, 163
American Standard Code for Information Ex-	Boolean algebra, 19, 23–27, 64–70	Control routine, 148-152
change, 14–15, 271	Boolean function generator, 58–60	Control unit, 7, 146–152
ANA instruction, 184	Borrow, 196, 275–276, 281	Controlled buffer register, 106–107
Analog interface, 485	#Branch instruction, 179-180, 219, 342-343	Controlled inverter, 41–42
Analog-to-digital (A/D) converter, 485, 491–	Branch-back instruction (see Return instruction)	Controlled shift register, 108-110
493	Breakpoint, 294	Controller-sequencer, 141-142, 161, 174
AND gate, 22–23, 33–34, 49, 54	Broadside loading, 110	Conversion, 331
AND instruction, 305–306, 308–310, 312–314	Bubble memory, 135	analog-to-digital, 485, 491-493
AND operations, 65–66	Bubbled AND gate, 33–34	BCD-to-decimal, 13-14
AND OR out 55	Bubbled or gate, 36	binary-to-decimal, 6–7
AND OR INVENT coto 55 57	Buffer, 54 (See also Buffer register)	binary-to-hexadecimal, 10-11, 494-496
AND-OR-INVERT gate, 55–57 ANI instruction, 184	Buffer register, 54, 106–107, 110, 122	decimal-to-binary, 8
#Architecture, 224–226	Bus, 69, 122	decimal-to-hexadecimal, 13
of SAP-1, 140-142	Bus transient, 152	digital-to-analog, 485, 486, 489
of SAP-2, 173-176	Bus-organized computer, 121, 122–125, 152	hexadecimal-to-binary, 10–11, 270
of SAP-3, 195-196	Byte, 6, 189–193 defined, 345, 348, 351	hexadecimal-to-decimal, 11–13
-,	defined, 575, 570, 551	Core RAM, 133

Counter:	Duality theorem, 66-67	Factoring, 69, 70
down, 118	Dynamic RAM, 133–134	Fanout, 52–53
mod-10, 116-118	•	Fetch cycle, 148, 150, 151, 227
presettable, 118-120, 162	ECL, 48	Fetch microroutine, 152, 161
program, 113, 140, 147, 153, 173, 227,	Edge triggering, 96–100 Effective address, 330	Firmware, 243, 247, 251 First-in-last-out (FILO) structure, 228, 363
230–232, 234, 330	8080/8085/Z80 family, 214, 417–422, 502–506	#Flag instructions, 175, 175, 179, 180–181,
programmable modulus, 120 ring, 114–116, 146–147, 159–161	addressing, 266–267, 336, 409	187, 227–228, 272–276, 310
ripple, 110–113	architecture, 233–235, 329	Flip-flop, 90–103
software, 181	arithmetic instructions, 286–287, 292–	Floating TTL input, 50–51
synchronous, 113–114	293, 391–395, 411–412, 416	Flowchart, 217, 218–220
TTL, 120	conditional jump (branch) instructions, 351–352, 402, 413–414,	FORTH, 221 FORTRAN, 221
up-down, 118 Counter method of A/D conversion, 491–492	417	Full adder, 81–82
#CPU, 7, 213 (See also ALU; Control unit)	CPU control instructions, 381, 410, 415	Function tables, 499–500
CPU register, 195–196	data transfer instructions, 249-253, 381-	Fundamental product, 67
Current sink, 52	390, 410–411, 415–416	Cata
Current steering, 491	flag instructions, 287–292, 390–391, 408–409, 411, 416	Gate: AND, 22–23, 33–34, 49, 54
D flip-flop, 96–98	increment and decrement instructions,	AND-OR, 55
D latch, 95–96	398–400, 413, 416–417	AND-OR-INVERT, 55–57
DAD instruction, 204–205	input-output instructions, 408, 415, 417	expandable, 56–57
Data, 3	interrupt instructions, 407–408, 415, 417	NAND, 34–36, 49, 53–55, 118–120
Data bus, 225	logical instructions, 395–398, 412, 416	NOR, 32–34, 49, 53–54
Data processor, 3 Data segment, 338	programming, 511 rotate and shift instructions, 323–324,	NOT, 19–20 OR, 20–22, 36, 54
Data segment, 556 Data selector, 58–59	398, 412–413, 416	standard TTL, 49
Data settling (see Bus transient;	stack instructions, 406–407, 415, 417	XNOR, 42
Settling time)	subroutine instructions, 370–373, 402–	xor, 37–42, 49
#Data transfer instructions, 241–260	406, 414–415, 417 test and compare instructions, 352, 401,	General-purpose register, 227, 230, 232–236
Date pointer, 205 De Morgan's theorem, 33–37, 66	413, 417	Half-adder, 81
Debouncer, 92–93, 158–159	unconditional jump instructions, 350–351,	Half-carry flag, 272
DEBUG, 253, 255–260, 293–302, 337–340	400, 413, 417	Halt instruction, 143, 151, 185, 241
Decade counter, 118, 120	8086/8088 family, 214, 469–470	Hand-assembly, 178, 183, 244, 248, 251
Decimal addition, 284–285, 290–292, 298–300	addressing, 267–269, 336–341	Handshaking, 176, 186
Decimal adjust, 280, 284–285, 290, 298	architecture, 235–237, 329 arithmetic instructions, 293–294, 300–	Hardware, 3–4, 213
Decimal flag, 279–281 Decimal number, 84–85	302, 447–450, 466	Hardwired control, 161 Hex inverter, 20
Decimal odometer, 1	conditional jump (branch) instructions,	Hexadecimal address, 133, 136–137
Decimal weight, 6	357–358, 456–459, 467	Hexadecimal number, 9-13, 14, 270
Decimal-to-binary conversion, 8, 21–22	CPU control instructions, 445, 465	Hexadecimal-to-binary conversion, 10–11, 270
Decimal-to-hexadecimal conversion, 13	data transfer instructions, 253–260, 445–	Hexadecimal-to-decimal conversion, 11–13
Decision-making element, 25 Decoder:	446, 466 flag instructions, 294–299, 446–447, 466	Hex-dabble, 13 High-level language, 221
binary-to-decimal, 27	increment and decrement instructions,	High-speed TTL, 50
binary-to-hexadecimal, 54	455, 467	Hold time, 98
decimal-to-BCD, 54	input-output instructions, 462-463, 468	
instruction, 125, 158–159	interrupt instructions, 461–462, 468	Immediate addressing, 187, 244, 247, 264–268
seven-segment, 54 #Decrement instruction, 178, 180–181, 200,	logical instructions, 314–317, 450–451, 466 loop instructions, 464–465, 468	Immediate instruction, 176, 184, 201–202, 204, 206
205, 343	programming, 511	Implied addressing, 188, 264–267
Define byte, 345, 348, 351	rotate and shift instructions, 324–327,	IN instruction, 185
Delay, 189–190	451–455, 467	Inactive state, 90
Digit, 1	stack instructions, 460–461, 468	INCLUSIVE OR (see OR gate)
Digital-to-analog (D/A) converter, 485, 486–489	string instructions, 463–464, 468	#Increment instruction, 147, 178, 180–181, 199–200, 205, 343
Diode ROM, 130–131 Diode-transistor logic, 48	subroutine instructions, 373–377, 459–460, 468	Index register, 227, 231, 232, 234, 236, 332, 340
Direct addressing, 187, 264–268	test and compare instructions, 358, 456,467	Indexed addressing, 332, 333–336
Direct reset, 97	unconditional jump instructions, 355-357,	Indexed indirect addressing, 335
Direct set, 97	455, 467	Indirect addressing, 205, 331, 333, 336, 340
Disassembler, 222	Emitter-coupled logic, 48	Indirect indexed addressing, 334–335
Distributive law, 65 Division, 276, 302	ENABLE input, 23 Encoder, 21–22, 54	Indirect instruction, 205–207 Inherent addressing, 264–267
Don't care condition, 75–77, 95	End-of-conversion signal, 492	Input gate lead, 69
Do-nothing state (see NOP instruction)	Erasable PROM (EPROM), 132, 224	Input-output unit, 7
Double-byte addition, 199	Even parity, 39, 234	Input register, 173
Double-byte subtraction, 202	EXCLUSIVE-NOR gate, 42	Input unit, 7
Double-dabble, 8 Double inversion, 34, 66	EXCLUSIVE-OR gate, 37–42, 307–309	Instruction cycle, 151 (See also
Double inversion, 34, 66 Double-precision number, 274	Execution cycle, 148–152 Expandable gate, 56–57	Machine cycle) Instruction decoder, 125, 158–159
Down counter, 118	Expander gate, 56–57	Instruction field, 145
Driver, 54	Extended addressing, 266	Instruction pointer, 205, 236, 330
DTL, 48	Extended register, 204–205	Instruction register, 125, 141, 153, 174

Instruction set, 142–144, 240	Microcode (see Microprogram)	1's complement, 41–42, 312
Integrated circuit, 4, 48	Microcomputer, 7	Open-collector gate, 58
Interface circuit (see Analog interface)	Microcontroller, 161-164	Operand, 145, 176
Inversion:	Microinstruction, 152	Operation code, 144, 176–177, 241
bubble, 19–20	Microprocessor, 7, 213–216, 226–237, 270–	Operational amplifier (op amp), 485–486
double, 34, 66	271	OR gate, 20–22, 36, 54
sign, 19, 23–24	Microprocessor families (see 8080/8085/Z80	or instruction, 65, 66, 184, 306–307, 309,
symbol, 19–20 Inverter, 19–20, 41–42	family; 8086/8088 family; 6502 family: 6800/6808 family	310, 313, 314-315
I/O unit, 7	ily; 6800/6808 family) Microprogram, 152–153, 161–164	OR sign, 24 OUT instruction, 143, 150–151, 185
Italic notation, 25	Microroutine (see Microprogram)	Output buffer, 493
,	Mnemonic, 143, 221	Output register, 7, 106–107, 110, 142, 158,
JK flip-flop, 99–103	Modulus, 116–120	176
JK master-slave flip-flop, 100–103	Monitor, 174, 241	Overflow, 87, 196, 272-274, 279, 284, 288-
Jump flag, 187	assembly, 222	289, 296–297
#Jump instruction, 173, 179–180, 182, 183,	Monotonic D/A converter, 489	Overlapping, 74
202–204, 342–343	MOS families, 48	
K- (kilo-), 7	Move instruction, 177–178, 195–196, 199, 206	Paging, 263–264
K input, 99–100	MRI, 143–144, 176	Pair, 72
Karnaugh maps, 70–77	MSB (most significant bit), 200, 273, 274, 492 MSI, 48	Parallel loading, 110
	Multiplexer, 58–60, 153	Parameter passing, 183 Parity, 39, 234
Label, 181–182	Multiplication, 182, 183, 276, 300–302	Parity flag, 203, 288–289, 296
Ladder, 490-491	MVI, 189, 195–196, 199	Parity generator, 39–40
Large-scale integration, 48	, , , , , , , , , , , , , , , , , , , ,	Pascal, 221
Latch, 90–96	NAND gate, 34–36, 49, 53–55, 118–120	PC, 113, 140, 147, 153
LDA instruction, 142, 148, 149, 176	NAND latch, 92–95	p-channel MOSFETs, 48
LDA microroutine, 161–162	Natural modulus, 120	Phase (see T state)
LED display, 3 Level clocking, 93–97, 102	n-channel MOSFETs, 48	Pinouts, 499–500
Light-emitting diode, 3	NEG instruction, 308, 311–312, 316–317	PMOS, 48
Load the accumulator instruction, 142, 148,	Negative (sign) flag, 275, 277–278, 282–283	Pointer, 140, 205, 227
149, 176, 242–248, 252–253	Negative clocking, 94 Negative logic, 25	POP instruction, 209–210
Loading:	Negative toggle, 118	Port instruction, 185–186 Positional notation, 11–12
parallel, 110	Nesting, 343–344	Positive clocking, 94
serial, 108–110	loop, 343–344	Positive logic, 25
TTL device, 52–53	subroutine, 189–190, 364, 367, 369–371,	Positive toggle, 118
Logic circuit, 19, 68	373–374	Power dissipation, 49
#Logical instructions, 305–308	Nibble, 13–14	Power of 2, 7
Loop, 181, 218–219, 342–344 Loop counter, 181	NMOS, 48	Power supply, 158
Low-level language, 221	No operation instruction, 241, 242, 245, 249	Preset, 97
Low-power Schottky TTL, 50, 52–53	Noise margin, 52 Noninverter, 20	Presettable counter, 118–120, 162
Low-power TTL, 50	Nonsaturated circuit, 4–5	Prime memory (see Dynamic RAM; Static
LSB (least significant byte), 274, 488	Nonvolatile memory, 133	RAM) Program, 3, 216
LSI, 48	NOP instruction, 148, 185, 241, 242	Program counter, 113, 140, 147, 153, 173,
	NOR gate, 32–34, 49, 53–54	227, 230–232, 234, 330
Machine cycle:	NOR latch, 91, 92	Program direct addressing, 268
definition, 151	NOT gate, 19–20	Program indirect addressing, 340
fixed, 161–162, 163	NOT instruction, 308, 315–316	Program relative addressing, 337–338
variable, 163–164 Machine language, 145, 146, 220, 221, 337	Notation:	Program status word, 208
Machine phase (see T state)	boldface, 42	Programmable modulus, 120
Macroinstruction, 152–153	italic, 25 positional, 11–12	Programmad multiplication, 182, 182
Magnetic core, 5	roman, 25	Programmed multiplication, 182, 183 #Programming, 135–136, 216–222
Magnetic tape, 5	Number:	data transfer instructions, 241–260
Manual assembly, 221	binary, 2, 3, 6–15, 270, 271, 274	models, 511
Manual-auto debouncer, 158-159	binary-coded-decimal, 13–14, 270–271	PROM, 131–132, 224
Mapping (see Address mapping)	decimal, 1, 84-85	Propagation delay time, 49, 98
MAR, 140, 153, 174	hexadecimal, 9-13, 14, 270	Punched cards, 5
Mask, 131, 186, 306–308	(See also Conversion)	PUSH instruction, 208-209 (See also Stack)
Master-slave flip-flop, 100–103	Oliver 1 221	Pushing and popping registers, 366, 367-368,
Medium-scale integration, 48 Memory, 5–7, 130–137, 224, 268	Object code, 221	370, 371, 374
Memory address register, 140, 153, 174	Object program, 145 Octet, 72, 73	0 1 70 70
Memory data register, 174	Odd parity, 39, 234	Quad, 72–73
Memory element, 90–103	Odd-parity generator, 40	Page condition 01 04 05 100
Memory enable (see Chip enable; Write enable)	Odd-parity tester, 39	Race condition, 91, 94, 95, 100 Radix, 6–7
Memory-intensive architecture, 329	Odometer, 330	RAL instruction, 185, 200, 201
Memory location, 10-12, 331, 507-510	binary, 1–2, 84	Random-access memory (RAM), 133–137,
Memory-reference instruction, 143–144, 176–	decimal, 1	153, 224
177	hexadecimal, 9	RAR instruction, 185, 200, 201
Memory register (see Memory location)	Offset, 332	Read-only memory (ROM), 130-133, 161-
Memory state, 147	On-chip decoding, 131, 132	164 224

Redundant Karnaugh group, 74-75	6502 family (Cont.):	#Subroutine (Cont.):
Refresh, 133–134	flag instructions, 277-281, 472, 476-478,	return instruction, 180, 210-211, 364-366
Register, 4, 217	480	stack and stack pointer, 363-364, 366-
bidirectional, 173	increment and decrement instructions,	367, 369, 371, 373
buffer, 54, 106-107, 110, 122	473–474, 479, 481	Subtract instruction, 143, 150, 178, 198–199
controlled, 106–110	input-output instructions, 476, 480, 481	Subtraction, 80–81, 86–87, 202, 275, 285–286
CPU, 195–196	interrupt instructions, 476, 480, 481	292–293, 300
8-bit, 229–230	logical instructions, 308–310, 472–473,	Subtraction-with-carry (borrow), 196, 275–276
input, 173	478–479, 481	281 Successive-approximation method, 492–493
output, 7, 106–107, 110, 142, 158, 176	programming, 511 rotate and shift instructions, 321–322,	Sum-of-products circuit, 67–68
pair, 204	473, 479, 481	Switch, current, 487–488
shift, 108–110	stack instructions, 475–476, 480, 481	Switch debouncer, 92–93
shift-left, 108, 109 shift-right, 108, 109	subroutine instructions, 366–369, 475,	Synchronous counter, 113–114
16-bit, 230	480, 481	2 y · · · · · · · · · · · · · · · · · ·
three-state, 121–122	test and compare instructions, 346, 474,	T state, 146–151, 187
transfers, 122–123	479, 481	Temporary register, 175
width of, 229-230	unconditional jump instructions, 344, 474,	Three-state RAM, 134
(See also specific types of register)	479, 481	Three-state register, 121–122
Register addressing, 188, 264–268	6800/6808 family, 214, 434–437, 443, 444	Three-state switch, 121
Register indirect addressing, 336, 338–340	addressing, 265–266, 335–336, 433	Time delay, 189–190 Timing diagram, 91, 92, 94, 95
Register-intensive architecture, 329	architecture, 329, 632–633	Timing diagram, 51, 52, 54, 55 Timing signal, 36, 116
Register parameter passing, 183	arithmetic instructions, 281–282, 285–	Timing state, 146–151
Register relative addressing, 337	286, 424–425, 438, 441	Toggle, 99–100, 102, 118
Relative accuracy, 488–489	conditional jump (branch) instructions, 348–349, 429–431, 440,	Totem-pole output, 49
Relative addressing, 330, 332–333, 335, 337–338	442	Trace command, 293
Reset-and-carry, 1	CPU control instructions, 422, 437, 441	Traffic light, 190–191
Resolution, 488 Return instruction, 180, 210–211, 364–366	data transfer instructions, 245–249, 423,	Trainer, microprocessor, 215
Ring counter, 114–116, 146–147, 159–161	437, 441	Transistor, 4
Ripple counter, 110–113	flag instructions, 282-285, 423-424, 433,	inverter, 19
Rolling, Karnaugh map, 74	437–438, 441	latch, 90–91
ROM (see Read-only memory)	increment and decrement instructions,	register, 4
Roman notation, 25	428, 439, 442	Transistor-transistor logic, 48–63
#Rotate instruction, 185, 200, 319-321	input-output instructions, 432, 441, 442	Transparent latch, 95
RS latch, 90–94	interrupt instructions, 432, 441, 442	Triple-precision number, 274
	logical instructions, 310–314, 425–426,	Tristate switch, 111–112 Truth table, 20, 21
SAP-1, 140-164	438–439, 441–442	deriving logic circuit from, 68
counters, 106, 107, 113, 116, 117	programming, 511	JK master-slave, 102
parts list, 501	rotate and shift instructions, 322–323, 426–427, 439, 442	Karnaugh maps from, 70–77
RAM, 115–116	stack instructions, 431–432, 440–441, 442	transistor latch, 90–91, 94
SAP-2, 144, 151, 173-193	subroutine instructions, 369–370, 431,	TTL, 48-63, 120, 135-136, 497-498
SAP-3, 144, 195-212 Saturated circuit, 4	440, 442	2's complement, 83-87, 312, 331
Saturation delay time, 4, 50	test and compare instructions, 349, 428-	Two-state design, 4-6
Schmitt trigger, 54–55	429, 439, 442	"TT 122 1 170 100 242
Schottky TTL, 50, 52–53	unconditional jump instructions, 347-348,	#Unconditional jump, 179, 180, 342
Segment register, 236	428, 439, 442	Universal logic circuit, 60 Unsigned binary number, 272, 284, 289–290
Serial data stream, 191-193	Small-scale integration, 48	Up-down counter, 118
Serial loading, 108–110	Software, 3–4, 218	op down counter, 110
Settling time, 489	Software emulation program, 215	Virtual ground point, 485
Setup time, 98	Source, 52	Volatile RAM, 134
Seven-segment decoder, 54	Source code, 221	****
#Shift instruction, 319, 320	Source program, 145 SSI, 48	Weight:
Shift register, 108–110	#Stack, 195, 207–211, 228–229, 231, 233,	binary, 6
SHL control, 108–110	234, 236, 363–364	decimal, 6 hexadecimal, 11–12
Sign bit, 83 Sign flag, 175, 179, 180–181, 287, 294–296	Stack pointer, 195, 207–208, 228–229, 231,	Weighted resistors, 489
Signed binary number, 83, 272, 284, 289	233, 234, 236, 363–364, 366–367,	Word, 20, 208
Sign-magnitude number, 83	369, 371, 373	Word comparator, 42–43
Single-precision number, 274	Stack segment, 338	Word multiplexer, 60
Single-step debouncer, 158–159	Standard TTL, 49-52	Worksheet, 222
Sink, 52	State diagram, 117	Worst-case TTL characteristics, 50-51
6502 family, 214, 481–483	Static RAM, 133–134	Write enable, 134
addressing, 265, 332–335, 476, 477	Status register, 227–228, 231–234, 236	
architecture, 230–231, 329	Store the accumulator, 176	XNOR gate, 42
arithmetic instructions, 276–277, 472,	Straight-line program, 218	xor gate, 37–42, 49
478, 480–481	String, 1	XOR instruction, 313, 315
conditional jump (branch) instructions,	#Subroutine, 180, 219, 363–377	XRA instruction, 184
345–346, 475, 479–480, 481	branching vs., 364 nested, 189–190, 364, 367, 369–371,	XRI instruction, 184
CPU control instructions, 242, 471, 478, 480	373–374	Zero flag, 175, 179, 180–181, 275, 278–279,
data transfer instructions, 242–245, 471–	pushing and popping registers, 366, 367–	283–284, 287–289, 296, 332
472, 478, 480	368, 370, 371, 374	Zero page addressing, 333–334
• •		