Lecture 10: MOSFET, transconductance

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Summary

- When $V_G < V_{TH}$,
 - No drain current!

$$I_D = 0$$

- When $V_G > V_{TH}$,
 - Triode mode $(V_{DS} < V_G V_{TH})$

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_G - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

- Saturation mode $(V_{DS} > V_G - V_{TH})$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_G - V_{TH})^2$$

- For a short channel device, I_D increases slightly as V_{DS} increases.

Example 6.6 (Razavi)

- Assume the saturation region.
 - Then, the saturation current becomes 200 μ A.

V_{out} versus V_{in}

A table

V_{in} (V)	V _{out} (V)
0.0	1.8
<0.4	1.8
0.7	1.55
1.0	0.8
X	X - 0.4
1.8	Y

– What are the values of X and Y?

MOS transconductance

- "conductance" of a simple resistor
 - It means $\frac{I}{V}$.
- "trans" + "conductance"
 - Between different terminals

$$g_m = \frac{\partial I_D}{\partial V_{GS}} \tag{6.44}$$

For the saturation region,

$$g_{m} = \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$

$$g_{m} = \sqrt{2\mu_{n} C_{ox} \frac{W}{L} I_{D}}$$

$$g_{m} = \frac{2I_{D}}{V_{GS} - V_{TH}}$$

Channel length modulation

Channel length modulation

Output resistance?

$$r_O = \frac{\Delta V_{DS}}{\Delta I_D}$$