PHYS4038/MLiS and ASI/MPAGS

Scientific Programming in

mpags-python.github.io

Steven Bamford

ASI/MPAGS

Course Introduction

Course prerequisites

- To make the most of this course, you should have:
 - Some programming experience (in any language)
 - Access to a computer with Python installed
 - Anaconda recommended see course webpage
- Ideally you should also have:
 - Some current or upcoming need of a scripting language
 - A piece of real or toy analysis on which you can try out using Python

Course aims

- To give you...
 - experience of using a modern scripting language
 - introduction to all essential Python syntax
 - practical advice about scientific programming
 - knowledge of the main scientific modules for Python
 - the ability to do basic data analysis tasks in Python (e.g. data manipulation, plotting, ...)
 - knowledge of some specific tools for scientific computing (e.g. signal processing, optimisation, ...)
 - an overview of Python's full capabilities
- Not to...
 - teach programming in general (but I will try to help!)
 - cover every aspect of Python

Course structure

- Ten weeks
- About one hour of recorded lecture videos each week
- Watch at your own pace, try out examples
- Work on exercises and coursework
- Synchronous online session via MS Teams Fridays at IOam
 - Ask any questions
 - Exercise solutions
 - Help with debugging
- Talk to me:
 - During synchronous Teams sessions (preferred)
 - Via Slack channel (you will receive an invitation)
 - Email: steven.bamford@nottingham.ac.uk

Outline

- **Session I**: Introduction to Python
 - Why Python is (mostly) awesome
 - Writing and running Python
 - Language basics
- **Session 2**: Introduction to Python, continued
 - More language basics
 - Good programming practice
- Session 3: Staying organised
 - Managing your environment with conda and pip
 - Version control with GitHub
- Session 4: Numerical Python and Plotting
 - Numpy
 - Using arrays wisely
 - Matplotlib (and others)
- **Session 5**: Scientific Python
 - Scipy and other tools
 - Filtering, interpolation, optimisation

Outline

- Session 6: Data handling
 - Efficiently storing and processing large amounts of data
 - PyTables, Pandas, Dask
 - Multiprocessing
- **Session 7**: Python for specialists
 - Python for astronomers
 - Astropy
 - Python for theorists
 - Symbolic algebra
- Session 8: MSc presentations (no lecture / no PhD students)
- **Session 9**: Bayesian inference and Deep Learning in Python
 - MCMC with emcee
 - ANNs with keras
- **Session 10**: Robust, fast & friendly code
 - Testing and timing
 - Wrapping external libraries and creating the fastest code
 - cython, numba, etc.
 - Web applications

Assessment

For those taking this module for MPAGS credits

- Assessed by development of a Python program relevant to your interests
 - put course material into practice
 - opportunity to become familiar with Python
 - get feedback on your coding
- Your code should...
 - be written as an executable module (.py file) or Jupyter notebook (.ipynb)
 - do something meaningful: analyse real data or perform a simulation
 - define at least two user functions (but typically more)
 - make use of appropriate specialist modules
 - produce at least one informative plot
 - comprise >~ 50 lines of actual code
 - excluding comments, imports and other 'boilerplate'
 - contain no more than 1000 lines in total
 - if you have written more, please isolate an individual element

Code development

- Three stages (first two optional for MPAGS students)
 - I. hand-in by **28th October** (optional for feedback)
 - README describing what you intend your code to do
 - Rough outline of the code (classes, functions, snippets, comments, pseudocode)
 - 2. hand-in by **18th November** (optional for feedback)
 - Rough version of your code, may be incomplete, have bugs, although try to make it reasonable and easy to understand!
 - 3. hand-in by **I6th December** (required for MPAGS credits)
 - Complete working version of your code

Deadlines are 3pm on Wednesdays.

That's it for today!

Next up:

- **Session I**: Introduction to Python
 - Why Python is (mostly) awesome
 - Writing and running Python
 - Language basics
- **Session 2**: Introduction to Python, continued
 - More language basics
 - Good programming practice