Linear regression

Hung-Hsuan Chen

Parametric supervised learning

Notation

Features **Targets** Predictions \hat{y} Learning algorithm Parameters θ (to be learned) Change θ Program ("Learner") Improve performance Characterized by some "parameters" **Training data** (examples) Procedure (using θ) **Features** that outputs a prediction Feedback / **Target values Score performance**

("cost function")

Linear regression

"Predictor":

$$\hat{y} = \theta_0 + \theta_1 x$$

- Define the form of the function f(x) explicitly
 - i.e., $\hat{y} = \theta_0 + \theta_1 x$ in this case
 - If you believe that x and y have a non-linear relationship, you should assume a non-linear f(x)
- Find a good f(x) within that family
 - _ i.e. find good θ_0 and θ_1 such that $\hat{y} \approx y$ in this case

Quiz: which one should be an error measurement?

Measuring error

Simple linear regression

- For now, assume just one (input) independent variable x, and one (output) dependent variable y
 - Multiple linear regression assumes an input vector x
- We will "fit" the points with a line
 - In a high dimensional space, we will fit the points with a hyper-plane
- Which line should we use?
 - Choose an objective function
 - Typically, we choose sum squared error (SSE) (or its variants)

$$\frac{1}{n}\sum_{i} \left(\hat{y}_{i} - y_{i}\right)^{2} = \frac{1}{n}\sum_{i} \left(\text{residual}_{i}\right)^{2}$$

- Choices with the same result: $\frac{1}{2n}\sum \left(\hat{y}_i y_i\right)^2$ or $\frac{1}{2}\sum \left(\hat{y}_i y_i\right)^2$
- You may choose other objective functions
 - More to come in future lectures

How to "learn" the parameters?

 For the 2-d problem there are coefficients for the bias and the independent variable (y-intercept and slope)

$$-\hat{y} = \theta_0 + \theta_1 x$$

 The value of the coefficients which minimize the objective function:

$$\theta_{1} = \frac{n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}}{n \sum x_{i}^{2} - \left(\sum x_{i}\right)^{2}}$$
$$\theta_{0} = \frac{\sum y_{i} - \theta_{1} \sum x_{i}}{n}$$

n: number of training instances

Visualzing θ_0 and θ_1

How to derive the value of the coefficients?

$$J(\theta_0, \theta_1) = \frac{1}{2n} \sum_{i=1}^{n} \left(\hat{y}_i - y_i \right)^2$$
$$= \frac{1}{2n} \sum_{i=1}^{n} \left((\theta_0 + \theta_1 x_i) - y_i \right)^2,$$

Set

$$-\frac{\partial \boldsymbol{J}(\boldsymbol{\theta}_0,\ \boldsymbol{\theta}_1)}{\partial \boldsymbol{\theta}_0} = 0 \text{ and }$$

$$-\frac{\partial \boldsymbol{J}(\boldsymbol{\theta}_0,\ \boldsymbol{\theta}_1)}{\partial \boldsymbol{\theta}_1} = 0$$

to solve θ_0 and θ_1

More dimensions?

$$\hat{\mathbf{y}}(\mathbf{x}_i) = \theta_0 + \theta_1 x_{i,1} + \theta_2 x_{i,2} + \dots + \theta_d x_{i,d} = \mathbf{\theta}^T \mathbf{x}_i, \text{ where }$$

$$\mathbf{x}_i = \begin{bmatrix} 1, x_{i,1}, x_{i,2}, & \dots, & x_{i,d} \end{bmatrix}^T$$

$$\mathbf{\theta} = \begin{bmatrix} \theta_0, & \theta_1, \theta_2, & \dots, & \theta_d \end{bmatrix}^T$$

d: # of features, $x_{i,j}$: the *i*th training instance's *j*th feature

Multiple linear regression

- n: the number of training instances
- d: the number of features
- Training instances:

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & \dots & x_{1,d} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \dots & x_{n,d} \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

- (We assume no coefficient parameter here)

Find
$$\theta = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_d \end{bmatrix}$$
 such that $(\mathbf{\hat{y}} - \mathbf{y})^T (\mathbf{\hat{y}} - \mathbf{y})$ is minimized,

where

$$- \hat{y} = X\theta$$

• The solution is $\boldsymbol{\theta} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$

How to derive the value of the coefficient vector?

$$J(\theta) = \frac{1}{2} (\hat{\mathbf{y}} - \mathbf{y})^T (\hat{\mathbf{y}} - \mathbf{y})$$
$$= \frac{1}{2} (\mathbf{X}\theta - \mathbf{y})^T (\mathbf{X}\theta - \mathbf{y})$$

- Set
- $-\nabla J(\theta) = \mathbf{0}$

to solve **0**

Another way to find $oldsymbol{ heta}$ for the linear regression problem

• Goal: find θ_0 and θ_1 to minimize

$$J(\theta_0, \theta_1) = \frac{1}{2n} \sum_{i=1}^{n} \left(\hat{y}_i - y_i \right)^2$$
$$= \frac{1}{2n} \sum_{i=1}^{n} \left((\theta_0 + \theta_1 x_i) - y_i \right)^2$$

- Procedure
 - 1. Start with $\theta_0 = r_0$ (a random number) and $\theta_1 = r_1$ (another random number)
 - 2. Slightly move θ_0 and θ_1 to reduce $J(\theta_0, \theta_1)$
 - Keep doing step 2 until converged
- Question: how to move θ_0 and θ_1 ?

Plotting the objective function (3D and contour plots)

Keep moving "downward" to reach the minimum

Finding good parameters

- Want to find parameters which minimize our error...
- Think of a cost "surface": error residual for that θ...

$$\theta_{0}^{(k)} = 5 \qquad \hat{y} = \theta_{0} + \theta_{1} \times 1$$
Gradient descent
$$\theta_{1}^{(k)} = 4 \qquad \hat{J} = (\hat{y} - (\theta_{0} + \theta_{1} \times 1))^{2}$$

- **Procedure**
- ocedure

 Start with random values $\boldsymbol{\theta} = \boldsymbol{\theta}(0) = (\theta_0(0), \ \theta_1(0), \ \dots, \ \theta_d(0))$ $\boldsymbol{\theta} = \boldsymbol{\theta}(0) = (\theta_0(0), \ \theta_1(0), \ \dots, \ \theta_d(0))$ 1. Start with random values

 - 2. Slightly move $\theta_0, \dots \theta_d$ to reduce $J(\boldsymbol{\theta})$

$$\theta_i^{(k+1)} = \theta_i^{(k)} - \alpha \frac{\partial J(\theta)}{\partial \theta_i} \bigg|_{\theta = \theta^{(k)}} \text{ α is a small positive number}$$

- k = k + 1
- * $\kappa = \kappa + 1$ 3. Keep doing step 2 until con $\frac{\partial}{\partial \theta_i} J(\theta) = \frac{1}{n} \sum_j \left(\hat{y}_j y_j \right) x_{ji}$, $\frac{1}{n}$ is usually ignored

Why gradient descent work?

Gradient descent (one feature and two features)

Overly large learning rate may not lead to converge

$$\theta_i^{(k+1)} := \theta_i^{(k)} - \alpha \frac{\partial}{\partial \theta_i} J(\theta^{(k)})$$

- α: learning rate
- Often *α* ∈ [0.001, 1]
- Shrink α as k becomes larger

We now have two tools to solve linear regression problem

- Close form solution
 - $-\boldsymbol{\theta} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$

Gradient descent

```
Repeat until converge { for (i=1,2, ..., d) { \theta_i = \theta_i - \alpha \sum_j \left( \mathring{y}_j - y_j \right) x_{ji}  }
```

Which one should we use?

Consider using close form solution

- $\boldsymbol{\theta} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$
- Required space:
 - Even if X is sparse, $(X^TX)^{-1}$ may not be sparse
 - If n=1M, d=100K, $(X^TX)^{-1}$'s dimension is $(100k)^2 = 10^{10}$
 - If 8 bytes per entry, storing $(X^TX)^{-1}$ requires 80GB \rightarrow typically infeasible on a single machine n: number of
- Computation time:
 - Computing matrix multiplication X^TX takes O(nd²)
 - Let $(X^T X) = P$, computing P-1 takes $O(d^{2.373})$ to $O(d^3)$
 - Depending on the inversion algorithm
 - Let $(X^TX)^{-1} = Q$, computing QX^T takes $Q(nd^2)$
 - Let $(X^T X)^{-1} X^T = R$, computing Ry takes O(nd)
 - Total: $O(nd^2+d^{2.373}+nd^2)$
- If d is small, close form solution is probably acceptable

d: number of Features

Consider using Gradient Descent

```
Repeat until converge { for (j=1, 2, ..., n) { z_j = \left(\mathbf{\theta}^T \mathbf{x}_j - y_j\right) } for (i=1, 2, ..., d) { \theta_i = \theta_i - \alpha \sum_j z_j x_{ji} }
```

- Required space:
 - **X** = $[x_{ij}]$, y, θ , and z
 - If n=1M, d=100K, and X is sparse
 - If 8 bytes per entry, we need: (nnz(X) +1M+100K+1M)*8bytes
 - Much more efficient than 80GB
- Computation time:

$$z_j = \left(\mathbf{\theta}^T \mathbf{x}_j - y_j\right) \text{ for all } j:$$
O(nd)

$$\theta_i := \theta_i - \alpha \sum_j z_j x_{ji} \text{ for all } i:$$
O(nd)

- Outer loop: Assume *T* iterations
- Total: O(Tnd)
 - Usually more efficient than O(nd²+d^{2.373}+nd²)

Close form vs gradient descent

- If the number of features is small, close form solution is probably acceptable
- However, if the number of features is large, using gradient descent is more efficient in both memory usage and computing time
- Moreover, gradient descent is capable of solving more complex optimization problem

In many cases,
$$\frac{\partial J(\mathbf{\theta})}{\partial \mathbf{\theta}} = \mathbf{0}$$
 has no closed–form solution

- But we can still apply gradient descent 69
- More to come in future lectures

Quiz

- If the features are all categorical
 - Can you apply linear regression?
 - Can you apply decision tree?
 - Can you apply knn?
- If all features are numerical, which one runs faster during "test" phase?
 - Linear regression? Decision tree? KNN?

Lg

Sitele forces than

DE

When to stop updating?

- Possible stopping criteria:
 - Improvement drops (e.g., < 0)</p>
 - Reached small error
 - Achieved predefined # of iterations
 - No time to train anymore

Fitting non-linear data to linear model

- $\hat{y}(\mathbf{x_i}) = \theta_0 + \theta_1 x_{i,1} + \theta_2 x_{i,2} + \dots + \theta_d x_{i,d}$
 - Linear model
- We may generate the higher degree terms as the new features
 - $$\begin{split} & \mathring{y} \big(\mathbf{x_i} \big) = \big(\theta_0 + \theta_1 x_{i,1} + \theta_2 x_{i,2} + \ldots + \theta_d x_{i,d} \big) + \\ & \quad \big(\theta_{1,2} x_{i,1} x_{i,2} + \theta_{1,3} x_{i,1} x_{i,3} + \ldots + \theta_{d-1,d} \; x_{i,d-1} x_{i,d} \; \big) + \\ & \quad \big(\theta_{1,1} x_{i,1}^2 + \theta_{2,2} x_{i,2}^2 + \ldots + \theta_{d,d} x_{i,d}^2 \big) \end{split}$$

Overfitting

- Overfitting occurs when a model captures idiosyncrasies of the input data, rather than generalizing
 - Too many parameters relative to the amount of training data
- For example, an order-N polynomial can perfectly fit to N+1 data points

Target: $\sin(2\pi x)$ + noise

Target: $sin(2\pi x) + noise$ (overfitting)

Observation

 In the linear regression model, overfitting is characterized by large parameters

d = 0	d = 1	d = 3	d = 9
0.19	0.82	0.31	0.35
	-1.27	7.99	232.37
		-25.43	-5321.83
		17.37	48568.31
			231639.30
			640042.26
			-1061800.52
			1042400.18
			-557682.99
			125201.43

Regularization to avoid overfitting

- Introduce a penalty term for the size of the weights
- Un-regularized regression (the original objective function)

$$J(\mathbf{\theta}) = \frac{1}{2} \sum_{\mathbf{\theta}} \left(\hat{\mathbf{y}}_i - \mathbf{y}_i \right)^2 = \frac{1}{2} \sum_{\mathbf{\theta}} \left(\mathbf{\theta}^T \mathbf{x}_i - \mathbf{y}_i \right)^2$$
$$\mathbf{\theta} := \underset{\mathbf{\theta}}{\operatorname{argmin}} \frac{1}{2} \sum_{\mathbf{\theta}} \left(\hat{\mathbf{y}}_i - \mathbf{y}_i \right)^2$$

• Regularized regression (enforce the solution to have low L2-norm of $oldsymbol{ heta}$)

$$\theta := \underset{\theta}{\operatorname{argmin}} \frac{1}{2} \sum_{i} \left(\hat{y}_{i} - y_{i} \right)^{2} \text{ such that } \left\| \theta \right\|^{2} \leq K$$

$$\theta := \underset{\theta}{\operatorname{argmin}} \frac{1}{2} \sum_{i} \left(\hat{y}_{i} - y_{i} \right)^{2} \text{ such that } \left\| \theta \right\|^{2} \leq K$$

Regularization to avoid overfitting

Original objective function: minimizing the training error

$$J(\mathbf{\theta}) = \frac{1}{2} \sum_{i} \left(\hat{\mathbf{y}}_{i} - \mathbf{y}_{i} \right)^{2} = \frac{1}{2} \sum_{i} \left(\mathbf{\theta}^{T} \mathbf{x}_{i} - \mathbf{y}_{i} \right)^{2}$$

New target

$$\theta := \operatorname{argmin} \frac{1}{2} \sum_{\alpha} \left(\hat{y}_i - y_i \right)^2 \text{ such that } \left\| \theta \right\|^2 \le K$$

• This is equivalent to the following problem with some λ

$$\theta := \underset{\theta}{\operatorname{argmin}} \left[\frac{1}{2} \sum_{i} \left(\hat{y}_{i} - y_{i} \right)^{2} + \underbrace{\lambda \|\theta\|^{2}}_{2} \right]$$
 hyperporove for

- New objective function: minimizing training error and the L2-norm of θ simultaneously \star \star \star \star \star
 - Solution: $\mathbf{\theta} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$

得到的日子

Regularized linear regression

Regularized linear regression

$$\underline{\quad \boldsymbol{\theta} \coloneqq \operatorname{argmin}_{\boldsymbol{\theta}} \left[\frac{1}{2} \sum_{i} \left(\hat{\boldsymbol{y}}_{i} - \boldsymbol{y}_{i} \right)^{2} + R(\boldsymbol{\theta}) \right]}$$

- $-R(\theta)$: regularization
- L2-regularization (Ridge regression)

$$\underline{\boldsymbol{\theta}} := \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[\frac{1}{2} \sum_{i} \left(\hat{\boldsymbol{y}}_{i} - \boldsymbol{y}_{i} \right)^{2} + \lambda \|\boldsymbol{\theta}\|^{2} \right]$$

L1-regularization (Lasso)

Combining Ridge and Lasso

Elastic net regularization

$$\underline{\quad \boldsymbol{\theta} \coloneqq \operatorname{argmin}_{\boldsymbol{\theta}} \left[\sum_{i} \left(\hat{\boldsymbol{y}}_{i} - \boldsymbol{y}_{i} \right)^{2} + \lambda_{1} \|\boldsymbol{\theta}\|_{1} + \lambda_{2} \|\boldsymbol{\theta}\|^{2} \right]}$$

- − When $\lambda_1 = 0$ and $\lambda_2 > 0$ → Ridge regression
- When $\lambda_1 > 0$ and $\lambda_2 = 0$ → Lasso

How to select λ ?

- Split the data into training and test datasets
 - Based on the training data, train the models by different λ 's
 - Based on the test data, calculate the test performance of all the models (of different λ 's)
 - Select the λ with the best test performance
- Cross validation
 - More to come in future lectures

Properties of Ridge and Lasso

- Ridge
- 每 I feature 皆存 effect Good if many features have small/medium sized effects
- Lasso
- large effect

Geometry of Ridge, Lasso, and Elastic net

Elastic net: $\lambda_1 = \lambda_2 = 0.5$

ex; (θ10,01 + 10210,01 ≤ k

Why Lasso zeros coefficients

Why Lasso zeros coefficients? – a numerical explanation

Ridge

$$\theta := \underset{\theta}{\operatorname{argmin}} \left[\frac{1}{2} \sum_{i} \left(\hat{y}_{i} - y_{i} \right)^{2} + \lambda \|\theta\|^{2} \right]$$

- Changing θ_i from 2 to 1 reduces the cost by $\lambda(22-12)=3\lambda$
- Changing θ_i from 1 to 0 reduces the cost by $\lambda(12-02)=\lambda$

Lasso

$$\mathbf{\theta} := \underset{\mathbf{\theta}}{\operatorname{argmin}} \left[\frac{1}{2} \sum_{i} \left(\hat{y}_{i} - y_{i} \right)^{2} + \lambda \|\mathbf{\theta}\|_{1} \right]$$

- Changing θ_i from from 2 to 1 reduces the cost by $\lambda(2-1)=\lambda$
- Changing θ_i from from 1 to 0 reduces the cost by $\lambda(1-0)=\lambda$
- → Ridge tends to shrink large coefficients to smaller ones, but not to shrink small coefficients to zero

Generalize the regularization term

$$q=4$$

$$q = 0.5$$

$$\boldsymbol{\theta} \coloneqq \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[\frac{1}{2} \sum_{i} \left(\hat{y}_{i} - y_{i} \right)^{2} + \lambda \|\boldsymbol{\theta}\|^{q} \right]$$

$$q \ge 0$$

- *q*=1: Lasso
- q=2: Ridge regression
- A smaller q tends to shrink the coefficients

Gradient descent for ridge regression

Gradient descent (GD)

$$-\mathbf{\theta}^{(k+1)} \coloneqq \mathbf{\theta}^{(k)} - \alpha \nabla J(\mathbf{\theta}^{(k)})^T$$

Ridge regression

$$J(\mathbf{\theta}) = \frac{1}{2} (\mathbf{\hat{y}} - \mathbf{y})^{T} (\mathbf{\hat{y}} - \mathbf{y}) + \frac{\lambda}{2} ||\mathbf{\theta}||^{2}$$
$$= \frac{1}{2} (\mathbf{X}\mathbf{\theta} - \mathbf{y})^{T} (\mathbf{X}\mathbf{\theta} - \mathbf{y}) + \frac{\lambda}{2} \mathbf{\theta}^{T} \mathbf{\theta}$$

$$-\nabla_{\mathbf{\Theta}}J(\mathbf{\theta}) = (\mathbf{X}\mathbf{\theta} - \mathbf{y})^T\mathbf{X} + \lambda\mathbf{\theta}^T$$

$$-\nabla_{\!\!\boldsymbol{\theta}} J(\boldsymbol{\theta})^T = \mathbf{X}^T (\mathbf{X}\boldsymbol{\theta} - \mathbf{y}) + \lambda \boldsymbol{\theta}$$

Gradient descent for ridge regression (pseudo code)

$$1 k := 0$$

Initialize
$$oldsymbol{ heta}^{(k)}$$

3 while not converge:
4
$$\mathbf{g} \coloneqq \mathbf{X}^T (\mathbf{X} \mathbf{\theta}^{(k)} - \mathbf{y}) + \lambda \mathbf{\theta}^{(k)}$$

$$\mathbf{\theta}^{(k+1)} \coloneqq \mathbf{\theta}^{(k)} - \alpha \mathbf{g}$$

6
$$k := k+1$$

Convex function

- Convex function
 - Local minimum is global minimum
- The least-square linear regression objective and the Ridge regression objective are both convex functions
 - Gradient descent will find the unique minimum (or very close, depending on the step size α

Effect of the step size α

- Small α : Long computation time
- Large α : may not reach the minimum

- A common practice
 - Gradually shrink the value of the step size

Stochastic gradient descent (SGD) – motivation

- In GD, the gradient is computed by
 - $g := \mathbf{X}^T (\mathbf{X} \mathbf{\theta}^{(k)} \mathbf{y}) + \lambda \mathbf{\theta}^{(k)}$
 - The entire training set is examined at each step
 - Very slow when the # of training instances is large!
 - $1 \quad k := 0$
 - 2 Initialize $oldsymbol{ heta}^{(k)}$
 - 3 while not converge:
 - 4 $\mathbf{g} \coloneqq \mathbf{X}^T (\mathbf{X} \mathbf{\theta}^{(k)} \mathbf{y}) + \lambda \mathbf{\theta}^{(k)}$
 - 5 $\boldsymbol{\theta}^{(k+1)} \coloneqq \boldsymbol{\theta}^{(k)} \alpha \boldsymbol{g}$
 - 6 k := k+1

Stochastic gradient descent

Optimize <u>one example</u> at a time

1
$$k := 0$$
2 Initialize $\theta^{(k)}$ Only one training instance is examined at each step

3 while not converge:
4 $g := \mathbf{x}_i (\mathbf{x}_i^T \theta^{(k)} - \mathbf{y}_i) + \lambda \theta^{(k)}$

5 $\theta^{(k+1)} := \theta^{(k)} - \alpha g$

6 $k := k+1$

7 Get next data instance i

Why does SGD work?

$$\underline{E}(\nabla J_i(\mathbf{\theta})) = \frac{1}{n} \sum \nabla J_i(\mathbf{\theta}) = \nabla J(\mathbf{\theta})$$

Gradient descent (GD) vs stochastic gradient descent (SGD)

- # steps
 - GD: fewer steps
 - SGD: more steps
- Computation of each step
 - GD: look through <u>all</u> the training instances
 - SGD: look only <u>one</u> training instance

Pros and cons of SGD

- Pros
 - When the training data is large with some (near) redundant instances, SGD is usually much faster to converge than GD
 - Supports online learning
- Cons
 - Tends to bouncing around the minimum

Mini-batch gradient descent

Optimize <u>few examples</u> at a time

```
k := 0
                                                         Training instances (i, i+1, ..., j)
                                                         are examined
       Initialize \mathbf{\theta}^{(k)}
3
       while not converge:
            \mathbf{g} := \mathbf{x}_{i:j}^{T} \left( \mathbf{x}_{i:j} \mathbf{\theta}^{(k)} - \mathbf{y}_{i:j} \right) + \lambda \mathbf{\theta}^{(k)}
             \mathbf{\theta}^{(k+1)} \coloneqq \mathbf{\theta}^{(k)} - \alpha \mathbf{g}
5
6
         k := k+1
             Get next batch (i, i+1, ..., j)
```

Gradient descent/stochastic gradient descent/mini-batch gradient descent

- All of them iteratively update the parameters such that the target function gradually becomes smaller
- If we have n training instances
 - (Batch) gradient descent: every parameter update requires seeing <u>all</u> training instances once
 - Stochastic gradient descent: every parameter update requires seeing <u>one</u> of *n* training instances
 - Mini-batch: every parameter update requires
 seeing <u>b</u> training instances (if batch size = b)

Locally weighted linear regression

- Linear regression
 - Method
 - Assume $\hat{y} = \theta_0 + \theta_1 x$
 - Find θ_0 and θ_1 to minimize $\sum_i \left(y_i \hat{y}_i \right)^{z}$
 - Given a new instance x^* , we predict the corresponding y^* as $\theta_0 + \theta_1 x^*$
 - Once training finished, we get θ_0 and θ_1 , and training data can be removed
 - However, can only model linear relationship
- Locally weighted linear regression
 - Model the "nonlinear" data by weighting errors differently

Locally weighted linear regression

- Method
 - Given a new instance x^* , we define the weight of each training error by

$$w_i = \exp\left(\frac{\left(x_i - x^*\right)^2}{2\sigma^2}\right)$$

- $-\sigma$ is a hyperparameter; we set to 1 for simplicity
- If $x_i \approx x^*$, $w_i \approx 1$
- If x_i and x^* is far, $w_i \approx 0$
- Find θ_0 and θ_1 to minimize

$$\sum_{i} w_{i} \left(y_{i} - \hat{y}_{i} \right)^{2}, \text{ where } \hat{y}_{i} = \theta_{0} + \theta_{1} x_{i}$$

- Adv: can fit nonlinear curve
- Disadv: need to "train" the model for every prediction

LR vs locally weighted LR

Newton's method for optimization (1/2)

Let
$$\mathcal{E}(\theta) = \sum_{i} \left(y_i - \hat{y}_i \right)^2$$
, we want to

find θ to minimize $\ell(\theta)$

- The same as find θ such that $\ell'(\theta) = 0$

Newton's method for optimization (2/2)

- Initial guess: $\theta^{(0)}$
- The slope of the tangent line at $(\theta^{(0)}, \ \ell'(\theta^{(0)})$ is $\ell''(\theta^{(0)})$

Le.,
$$\mathcal{E}''(\theta^{(0)}) = \frac{a}{b} = \frac{\mathcal{E}'(\theta^{(0)})}{\theta^{(0)} - \theta^{(1)}}$$

So,
$$\theta^{(1)} = \theta^{(0)} - \frac{\ell'(\theta^{(0)})}{\ell''(\theta^{(0)})}$$

Newton's mthod vs SGD

- Newton's method usually requires fewer steps
- However, the cost of each step is usually large
 - If θ is a scalar, using Newton's method requires to compute $f''(\theta)$
 - If θ is a vector, using Newton's method requires to compute the Hessian matrix

Evaluation (regression)

Evaluating regression models

Mean Square Error (MSE)

$$MSE(\mathbf{y}, \, \hat{\mathbf{y}}) = \frac{\sum \left(y_i - \hat{y}_i\right)^2}{n}$$

- Similar metric: Root Mean Squared Error (RMSE)
- Criticism:
 - Can only be compared between models whose errors are measured in the same unit
 - Tend to be influenced by extreme values
- Mean Absolute Error (MAE)

$$MAE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{\sum |y_i - \hat{y}_i|}{n}$$

- Usually smaller than MSE
- Criticism:
 - Can only be compared between models whose errors are measured in the same unit

Evaluating regression models

- Median Absolute Error (MedAE)
 - $MedAE(\mathbf{y}, \hat{\mathbf{y}}) = median(|y_1 \hat{y}_1|, |y_2 \hat{y}_2|, ..., |y_n \hat{y}_n|)$
 - Robust to the extreme values
 - Criticism:
 - Can only be compared between models whose errors are measured in the same unit
- R² score (coefficient of determination)

$$R^{2}(\mathbf{y}, \, \hat{\mathbf{y}}) = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

- The scale of the model is more intuitive
 - Best result: 1
 - Can be arbitrarily worse (very negative)

A closer look of R^2 score (coefficient of determination)

- Mean model
 - A naı̈ve regression function a constant function that always outputs \bar{y} the mean of the target variable in the training dataset

$$R^{2}\left(\mathbf{y}, \, \hat{\mathbf{y}}\right) = 1 - \frac{\frac{1}{n} \sum \left(y_{i} - \hat{y}_{i}\right)^{2}}{\frac{1}{n} \sum \left(y_{i} - \bar{y}\right)^{2}} = 1 - \frac{\sum \left(y_{i} - \hat{y}_{i}\right)^{2}}{\sum \left(y_{i} - \bar{y}\right)^{2}}$$

- $\sum (y_i \hat{y}_i)^2$: sum of square error (SSE)
- $-\sum_{i} (y_i \bar{y})^2$: sum of square total (SST)
 - i.e., SSE of the mean model
- Max value: 1
 - When SSE=0 (all predictions are correct)
- Min value: -∞
 - SSE can be arbitrarily worse

•
$$R^2(\mathbf{y}, \, \hat{\mathbf{y}}) = 0$$

The performance of the prediction is the same as the mean model

 ${\it R}$ (correlation coefficient) vs ${\it R}^2$ (coefficient of determination)

$$\left[R\left(\mathbf{y},\ \hat{\mathbf{y}}\right)\right]^{2}$$
 equals $R^{2}\left(\mathbf{y},\ \hat{\mathbf{y}}\right)$ when

- Applying the linear regression model, i.e., $\hat{y} = X\theta$, where $\theta = (X^TX)^{-1}X^Ty$, and
- _ Evaluating $R\!\left(\mathbf{y},\ \mathbf{\hat{y}}\right)$ and $R^2\!\left(\mathbf{y},\ \mathbf{\hat{y}}\right)$ on the training data
- In this case, $0 \le R^2(\mathbf{y}, \hat{\mathbf{y}}) \le 1$

Conclusion (1/3)

- Linear regression
 - $\hat{y}_i = \theta_0 + \theta_1 x_{i,1} + \theta_2 x_{i,2} + \dots + \theta_d x_{i,d}$
 - _ Find good $\theta_0, \, \theta_1, \, ..., \, \theta_d$ such that $\hat{y}_i \approx y_i \, \, \forall i$
 - Commonly used distance between \hat{y}_i and y_i : RSS
- Linear regression with constraints on θ
 - Prevent overfitting
 - Limiting **θ** by L2-norm: Ridge regression
 - Limiting **0** by L1-norm: Lasso
 - Feature selection
 - Limiting θ by both L1-norm and L2-norm: Elastic net

Conclusion (2/3)

- Convex function
 - Local minimum equals global minimum
 - Iteratively adjust $oldsymbol{ heta}$ to reduce $J(oldsymbol{ heta})$
 - $\mathbf{\theta}^{(k+1)} \coloneqq \mathbf{\theta}^{(k)} \alpha \mathbf{g}$
- For ridge regression
 - Gradient descent

•
$$\mathbf{g} := \mathbf{X}^T (\mathbf{X} \mathbf{\theta}^{(k)} - \mathbf{y}) + \lambda \mathbf{\theta}^{(k)}$$

- Stochastic gradient descent
 - $\mathbf{g} := \mathbf{x}_i (\mathbf{x}_i^T \mathbf{\theta}^{(k)} \mathbf{y}_i) + \lambda \mathbf{\theta}^{(k)}$
- Mini-batch gradient descent

•
$$\mathbf{g} := \mathbf{x}_{i:j}^T \left(\mathbf{x}_{i:j} \mathbf{\theta}^{(k)} - \mathbf{y}_{i:j} \right) + \lambda \mathbf{\theta}^{(k)}$$

Conclusion (3/3)

- Common metrics to evaluate regression models
 - Mean square error
 - R² score

Quiz

- If the training data contain millions of features, should we use gradient descent or closed form solution for training?
- Can gradient descent get stuck in a local minimum (which is not a global minimum) when training a linear regression model?
- Why would one use Ridge regression instead of plain linear regression?
- If the R² score on test data is negative, what does this mean?
- If the R² score on training data is negative, what does this mean?