

## Análise e Transformação de Dados

## Ficha Prática nº 2

Objetivo: Pretende-se adquirir competências para a análise de sinais de tempo contínuo e de tempo discreto e para o cálculo da sua energia.

Linguagem de Programação: MATLAB | Python.

## Exercícios:

- 1. Pretende-se analisar o sinal de tempo contínuo  $x_1(t) = A_1 \sin(\omega_a t) \cos(\omega_b t) + A_2 \cos(\omega_c t)^2$  em que:  $A_1 = 2(\bmod(PL\#,2)+1), \quad A_2 = 6(\bmod(PL\#,2)+1) \qquad , \text{ com } PL\# = \text{n}^{\text{o}} \text{ da turma PL}$   $\omega_a = \bmod(PL\#,5)+2, \quad \omega_b = \bmod(PL\#,7)+7, \quad \omega_c = \bmod(PL\#,9)+1$ 
  - 1.1. Obter a expressão do sinal de tempo discreto  $x_1[n]$  que resulta de  $x_1(t)$  usando  $t = nT_s$ , em que  $T_s$  representa o período de amostragem com que o sinal de tempo contínuo  $x_1(t)$  é amostrado.
  - 1.2. Representar no mesmo gráfico o sinal  $x_1(t)$  para  $t \in [-\pi, \pi]s$ , considerando t com 1000 elementos e um traçado com linha contínua, e o sinal  $x_1[n]$ , considerando um período de amostragem (passo)  $T_s = 0.1s$ , num intervalo para n correspondente a  $t \in [-\pi, \pi]s$  e a representação apenas das amostras.

- 2. Pretende-se calcular a energia de um sinal de tempo contínuo x(t) num intervalo  $t \in [t_i, t_f]s$ .
  - 2.1. Escrever funções em MATLAB (ou Python) que permitam o cálculo da energia de *x*(*t*) pelos métodos de integração numérica, regra dos trapézios e regra de Simpson (usando implementações próprias).
  - 2.2. Calcular os valores aproximados da energia do sinal  $x_1(t)$  para o intervalo  $[-\pi, \pi]$  e usando a regra dos trapézios e a regra de Simpson.
    - 2.2.1. Calcule o valor exato da energia obtida através do cálculo do integral simbólico para o mesmo intervalo.
    - 2.2.2. Verifique a influência do passo (h) no erro, isto é, na diferença entre energia obtida usando cálculo numérico e obtida usando o integral exato.
    - 2.2.3. Calcule o tempo de execução dos diferentes métodos.
  - 2.3. Calcular a energia de  $x_1[n]$  num intervalo para n correspondente a  $t \in [-\pi, \pi]s$ . Considere Ts=0.1s.