IT시스템설계 HW3

이훈종 김인제 안지수

1. 실험 목적

L1, L2 규제(Regulation)에 의한 학습 곡선과 가중치가 어떻게 바뀌는지 알아보고 Underfitting, Overfitting 현상에 대해 학습한다.

2. 배경 이론

모델이 새로운 데이터에 대해 적응하지 못할 때, 즉 모델이 일반화되지 않을 때 규제를 사용하여 가중치를 제한함으로써 일반화 성능을 높일 수 있다. 대표적으로 L1 규제와 L2 규제가 존재한다.

L1 규제

$$||w||_1 = \sum_{i=1}^n |w_i|$$
 를 사용한다.

이를 우리가 사용하는 Logistic 손실 함수에 적용하면 아래와 같이 나타난다.

$$L = -(ylog(a) + (1-y)\log(1-a)) + a\sum_{i=1}^{n} \left| w_i \right|$$

이때 알파는 L1 규제를 조절하는 파라미터이다.

경사하강법을 적용하기 위해 L1 규제를 미분하면 아래와 같다.

$$\frac{\Delta}{\Delta w}L = -(y-a)x + a*sign(w)$$

이를 w_gradient의 업데이트를 위한 파이썬 코드로 나타내면 다음과 같다.

w_grad += alpha * np.sign(w)

L2 규제

$$||w||_2 = \sqrt{\sum_{i=1}^n |w_i|^2}$$
로 나타나며

Logistic 손실 함수에 적용하면 아래와 같다. 미분의 편의성을 위해 교과서에서는 1/2을 추가하였다.

$$L \! = \! - (ylog(a) + (1 \! - \! y) log(1 \! - \! a)) + \frac{1}{2} a \sum_{i=1}^{n} \big| w_i \big|^2$$

L1과 마찬가지로 경사하강법을 적용하기 위해 L2 규제를 미분하면

$$\frac{\Delta}{\Delta w}L = -(y-a)x + a^*w$$
로 나타나며 이때 가중치 w만 남게된다.

이를 파이썬 코드로 나타내면

w_grad += alpha * w

로 나타난다.

3. 결과

1)L1 규제 변화의 따른 학습 곡선과 가중치 변화 11_list = [0.0, 0.01, 0.001, 0.0001, 0.1]

그래프가 표현되지 않는 경우를 방지하기 위해 plt.ylim(0, 0.3)은 제외하였다.

L1이 0.01에서 Underfitting 현상이 나타나기 시작하며 L1의 값이 커질수록 가중치 값은 0에 가까워지는 것을 볼 수 있다.

L1이 0.1 이상인 경우부터는 알파값이 너무 큰 나머지 전체적인 Loss가 증가하며 Underfitting 값이 심해진다.

1)L2 규제 변화의 따른 학습 곡선과 가중치 변화 l2_list = [0.0, 0.01, 0.001, 0.0001, 0.1] 그래프가 표현되지 않는 경우를 방지하기 위해 plt.ylim(0, 0.3)은 제외하였다.

L2의 값이 0.01 이하일때까지는 Underfitting 현상이 보이지 않았지만 0.1 이후로 커질수록 심한 Underfitting 현상이 나타나며 가중치값은 점점 0으로 수렴하게 된다.