

Test report No. Page

: 1 of 49 : April 4, 2012

: 32CE0103-HO-01-R1

Issued date Revised date FCC ID

: April 5, 2012 : WWGZ2210

RADIO TEST REPORT

Test Report No.: 32CE0103-HO-01-R1

Applicant

SUMITOMO PRECISION PRODUCTS CO., LTD.

Type of Equipment

2.4GHz/10mW TRANSCEIVER MODULE

Model No.

: WM-Z2210

FCC ID

: WWGZ2210

Test regulation

FCC Part 15 Subpart C: 2012

Test Result

Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 6. This report is a revised version of 32CE0103-HO-01. 32CE0103-HO-01 is replaced with this report.

Date of test:

March 13 to 23, 2012

Representative test engineer:

Katsunori Okai Engineer of WiSE Japan, UL Verification Service

Approved by:

Masanori Nishiyama Leader of WiSE Japan, UL Verification Service

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://www.ul.com/japan/jpn/pages/services/emc/about/mark1/index.jsp#nvlap

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone

: +81 596 24 8116

Facsimile

: +81 596 24 8124

Page : 2 of 49
Issued date : April 4, 2012
Revised date : April 5, 2012
FCC ID : WWGZ2210

CONTENTS	PAGE
SECTION 1: Customer information	3
SECTION 2: Equipment under test (E.U.T.)	
SECTION 3: Test specification, procedures & results	
SECTION 4: Operation of E.U.T. during testing	7
SECTION 5: Conducted Emission	9
SECTION 6: Radiated Spurious Emission	10
SECTION 7: Antenna Terminal Conducted Tests	11
APPENDIX 1: Data of EMI test	11
Conducted Emission	12
6dB Bandwidth	18
Maximum Peak Output Power	20
Radiated Spurious Emission	21
Duty Cycle	
Conducted Spurious Emission	32
Conducted Emission Band Edge compliance	38
Power Density	39
99%Occupied Bandwidth	
APPENDIX 2: Test instruments	42
APPENDIX 3: Duty cycle specification	44
APPENDIX 4: Photographs of test setup	
Conducted Emission	
Radiated Spurious Emission	46

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 3 of 49
Issued date : April 4, 2012
Revised date : April 5, 2012
FCC ID : WWGZ2210

SECTION 1: Customer information

Company Name : SUMITOMO PRECISION PRODUCTS CO., LTD.

Address : 1-10, FUSO-CHO, AMAGASAKI, HYOGO, 660-0891 JAPAN

Telephone Number : +81-6-6489-8264 Facsimile Number : +81-6-6489-5910 Contact Person : Junya Tada

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : 2.4GHz/10mW TRANSCEIVER MODULE

Model No. : WM-Z2210

Serial No. : Refer to Section 4, Clause 4.2

Receipt Date of Sample : March 12, 2012

Country of Mass-production : Japan

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

General Specification

Clock frequency(ies) in the system : 14.7456MHz

Radio Specification

Radio Type : Transceiver
Frequency of Operation : 2405-2475MHz
Modulation : Offset QPSK
Power Supply : DC 2.7-3.6V

Type of Antenna : Dipole antenna Option (External type): Antenna2 to 6

PCB trace antenna (Inverted F type): Antenna1

Antenna Information

	Antenna1	Antenna2	Antenna3	Antenna4	Antenna5	Antenna6
Model No.	-	ANTB18-	ANTB18-	W1049B	W1049B030	W1030W
		187A0	135A0			
Frequency	2400~2500	2400~2500	2400~2500	2400~2500	2400~2500	2400~2500
Range						
Impedance	50Ω	50Ω	50Ω	50Ω	50Ω	50Ω
Antenna	Inverted F	1/2λDipole	1/2λDipole	1/4λDipole	1/4λDipole	1/4λDipole
Type						
Antenna	2.0dBi(Max)	2.0dBi (Max)	1.0dBi (Min)	2.0dBi	2.0dBi	2.0dBi
Gain				(nominal)	(MAX)	(nominal)
Size	25.0mmx7.5mm	φ7.8x82.8mm	φ7.8x82.8mm	φ7.8x82.5mm	φ7.8x82.5mm	φ9x82.5mm

^{*}Test was performed with Antenna1, Antenna2, and Antenna6 as representative.

Antenna2 was chosen as a representative $1/2\lambda$ Dipole antenna, because it has the higher antenna gain than Antenna3. Antenna6 was chosen as a representavie $1/4\lambda$ Dipole antenna, because Antenna6 has the worst data as the result of preliminary check of carrier and noise among Antenna4 to 6.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 4 of 49
Issued date : April 4, 2012
Revised date : April 5, 2012
FCC ID : WWGZ2210

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C: 2012, final revised on February 1, 2012

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928MHz,

2400-2483.5MHz, and 5725-5850MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.4:2003 7. AC powerline Conducted Emission measurements IC: RSS-Gen 7.2.4	FCC: Section 15.207 IC: RSS-Gen 7.2.4	QP 24.4dB, 7.66352MHz, N (Ant6) AV 20.3dB, 7.66352MHz, N (Ant6)	Complied	-
6dB Bandwidth	FCC: "Guidance on Measurement of Digital Transmission Systems Operating under Section15.247" IC: RSS-Gen 4.6.2	FCC: Section 15.247(a)(2) IC: RSS-210 A8.2(a)		Complied	Conducted
Maximum Peak Output Power	FCC: "Guidance on Measurement of Digital Transmission Systems Operating under Section15.247"	FCC: Section 15.247(b)(3)	See data.	Complied	Conducted
1	IC: RSS-Gen 4.8	IC: RSS-210 A8.4(4)			
Power Density	FCC: "Guidance on Measurement of Digital Transmission Systems Operating under Section15.247"	FCC: Section 15.247 (e)		Complied	Conducted
	IC: -	IC: RSS-210 A8.2(b)			
Spurious Emission Restricted Band Edges	Digital Transmission Systems Operating under Section 15 247"	FCC: Section15.247(d)	1.6dB 2484.811MHz, PK, Hori.	Complied	Conducted/
	IC: RSS-Gen 4.9	IC: RSS-210 A8.5 RSS-Gen 7.2.3			Radiated

^{*}In case any questions arise about test procedure, ANSI C63.4: 2003 is also referred.

FCC 15.31 (e)

The Sumitomo Precision Products Co., Ltd. product provides the voltage (DC2.7 to 3.6V) constantly to the EUT and regulated voltages (DC2.1V, 1.8V) are provided with the RF part.

Therefore, the EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

For Antenna1:

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT.

For Antenna2 to Antenna6:

The EUT has a unique coupling/antenna connector (U.FL).

Therefore, the equipment complies with the antenna requirement of Section 15.203/212.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 5 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied	IC: RSS-Gen	IC: RSS-Gen 4.6.1	N/A	-	Conducted
Bandwidth	4.6.1				

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test room	Conducted emission
(semi-	(<u>+</u> dB)
anechoic	150kHz-30MHz
chamber)	
No.1	3.5dB
No.2	3.6dB
No.3	3.6dB
No.4	3.6dB

Test room	Radiated emission						
(semi-		$(3m^*)(+dB)$)(<u>+</u> dB)	$(0.5\text{m}^*)(\underline{+}\text{dB})$
anechoic	9kHz	30MHz	300MHz	1GHz	10GHz	18GHz	26.5GHz
chamber)	-30MHz	-300MHz	-1GHz	-10GHz	-18GHz	-26.5GHz	-40GHz
No.1	4.2dB	5.0dB	5.1dB	4.7dB	5.7dB	4.4dB	4.3dB
No.2	4.1dB	5.2dB	5.1dB	4.8dB	5.6dB	4.3dB	4.2dB
No.3	4.5dB	5.0dB	5.2dB	4.8dB	5.6dB	4.5dB	4.2dB
No.4	4.7dB	5.2dB	5.2dB	4.8dB	5.6dB	5.1dB	4.2dB

^{*3}m/1m/0.5m = Measurement distance

Power meter (<u>+</u> dB)					
Below 1GHz Above 1GHz					
1.0dB	1.0dB				

Antenna terminal conducted emission			Antenna terminal	Channel power	
and	Power density (-	<u>+</u> dB)	(<u>+</u> dB)		(<u>+</u> dB)
Below 1GHz	1GHz-3GHz	3GHz-18GHz	18GHz-26.5GHz	26.5GHz-40GHz	
1.0dB	1.1 d B	2.7dB	3.2dB	3.3dB	1.5dB

Conducted Emission test

The data listed in this test report has enough margin, more than the site margin.

Radiated emission test(3m)

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

UL Japan, Inc.

Head Office EMC Lab.

 $4383\text{-}326 \ Asama\text{-}cho, Ise\text{-}shi, Mie\text{-}ken \ 516\text{-}0021 \ JAPAN$

Page : 6 of 49
Issued date : April 4, 2012
Revised date : April 5, 2012
FCC ID : WWGZ2210

3.5 Test Location

UL Japan, Inc. Head Office EMC Lab. *NVLAP Lab. code: 200572-0 $\,$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

	FCC	IC Registration	Width x Depth x	Size of	Other
	Registration Number	Number	Height (m)	reference ground plane (m) / horizontal conducting plane	rooms
No.1 semi-anechoic chamber	313583	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power source room
No.2 semi-anechoic chamber	655103	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
No.3 semi-anechoic chamber	148738	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3 Preparation room
No.3 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic chamber	134570	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4 Preparation room
No.4 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic chamber	-	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
No.6 shielded room	-	-	4.0 x 4.5 x 2.7m	4.75 x 5.4 m	-
No.6 measurement room	-	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
No.7 shielded room	-	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement room	-	-	3.1 x 5.0 x 2.7m	N/A	-
No.9 measurement room	-	-	8.0 x 4.5 x 2.8m	2.0 x 2.0m	-
No.10 measurement room	-	-	2.6 x 2.8 x 2.5m	2.4 x 2.4m	-
No.11 measurement room	-	-	3.1 x 3.4 x 3.0m	2.4 x 3.4m	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Data of EMI, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 7 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Mode(s)

Mode	Tested Frequency				
Transmitting mode (Tx mode)	2405MHz				
	2440MHz				
2475MHz					
*Power of the EUT was set by the software as follows;					
Power settings: C					
Software: Performance test application (ATmega128RFA1), Ver.B017 (14MHz)					
*This setting of software is the worst case.					
Any conditions under the normal use do not exceed the condition of setting.					
In addition, end users cannot change the settings of	f the output power of the product.				

4.2 Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT

Descr	iption of EUT				
No.	Item	Model number	Serial number	Manufacturer	Remarks
	2.4GHz/10mW	WM-Z2210	1112500008 *1)	SUMITOMO PRECISION	EUT
Α	TRANSCEIVER		1112500014 *2)	PRODUCTS	
	MODULE				
В	PCB trace antenna	-	=	SUMITOMO PRECISION	EUT
Ь	(Antenna1)			PRODUCTS	
С	Dipole antenna	ANTB18-187A0	=	Sansei Electric Co., Ltd.	EUT
	(Antenna2)				
D	Dipole antenna	W1030W	=	Pulse Electronics	EUT
D	(Antenna6)				
Е	Jig	TWM-01-JIGU2	-	SUMITOMO PRECISION	-
E				PRODUCTS	
F	Laptop PC	Compaq nx6120	CNU5460S6P	HP	-
G	AC Adaptor	DC359A	F3-05120749620A	HP	=

^{*1)} Used for all tests other than Duty cycle

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Used for Duty cycle test

Page : 8 of 49
Issued date : April 4, 2012
Revised date : April 5, 2012
FCC ID : WWGZ2210

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	Antenna Cable (for Antenna2)	0.035	Shielded	Shielded	-
2	Antenna Cable (for Antenna6)	0.07	Shielded	Shielded	
3	DC Cable	1.5	Unshielded	Unshielded	
4	USB Cable	1.5	shielded	shielded	
5	DC Cable	1.7	Unshielded	Unshielded	
6	AC Cable	1.7	Unshielded	Unshielded	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 32CE0103-HO-01-R1 Test report No.

Page : 9 of 49 **Issued date** : April 4, 2012 Revised date : April 5, 2012 FCC ID : WWGZ2210

SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 0.5m by 1.0m, raised 0.8m above the conducting ground

The rear of tabletop was located 40cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80cm from a Line Impedance Stabilization Network (LISN)/ Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30cm to 40cm long and were hanged at a 40cm height to the ground plane. All unused 50ohm connectors of the LISN(AMN) were resistivity terminated in 500hm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.

The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and AV Measurement range : 0.15-30MHz Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 10 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "2. Radiated emission test" of "Guidance on Measurement of Digital Transmission Systems Operating under Section15.247".

EUT was placed on a urethane platform of nominal size, 0.5m by 1.0m, raised 0.8m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

The height of the measuring antenna varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below:

Frequency	Below 30MHz	30MHz to 300MHz	300MHz to 1GHz	Above 1GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

In any 100kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20dBc was applied to the frequency over the limit of FCC 15.209 / Table 5 of RSS-Gen 7.2.5(IC) and outside the restricted band of FCC15.205 / Table 3 of RSS-Gen 7.2.2 (IC).

	3 0 1 0 1 0 0 7 1 1 1 1 1 1 1 1 1 1 1 1 1										
Frequency	Below 1GHz	Above 1GHz		20dBc							
Instrument used	Test Receiver	Spectrum Analyzer	Spectrum Analyzer								
Detector	QP	PK	AV	PK							
IF Bandwidth	BW 120kHz(T/R)	RBW: 1MHz VBW: 3MHz	*1),*2)	RBW: 100kHz VBW: 300kHz (S/A)							
Test Distance	3m	3m (below 10GHz), 1m*3) (above 10GHz	z)	3m (below 10GHz), 1m*3) (above 10GHz)							

^{*1)} For the band edge of the carrier and the harmonics: The Average value was calculated by reducing Duty factor from Peak (Peak value – Duty factor).

For Duty factor, please refer to Page 30.

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT and of X(0 and 90), Y(0 and 90) and Z(0 and 90) axes of antenna to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30M-26.5GHz
Test data : APPENDIX
Test result : Pass

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} For other than the band edge of the carrier and the harmonics: Average Detector (RBW: 1MHz, VBW: 10Hz)

^{*3)} Distance Factor: $20 \times \log (3.0 \text{m}/1.0 \text{m}) = 9.5 \text{dB}$

 Page
 : 11 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
6dB Bandwidth	10MHz	100kHz	300kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth	Enough width to display 20dB Bandwidth	1 to 3% of Span	Three times of RBW	Auto	Sample	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak	-	Power Meter (Sensor: 50MHz BW)
Peak Power Density	3MHz	3kHz	10kHz	1ks	Peak	Max Hold	Spectrum Analyzer *1)
Conducted Spurious	9kHz to 150kHz	200Hz	620Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *2)	150kHz to 30MHz	9.1kHz	27kHz				
	30MHz to 25GHz (Less or equal to 5GHz)	100kHz	300kHz				

^{*1)} PSD Option 1 of "Guidance on Measurement of Digital Transmission Systems Operating under Section15.247 ".

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

Head Office EMC Lab.

 $4383\text{-}326 \ Asama\text{-}cho, Ise\text{-}shi, Mie\text{-}ken \ 516\text{-}0021 \ JAPAN$

^{*2)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.(9kHz-150kHz:RBW=200Hz, 150kHz-30MHz:RBW=9.1kHz)

: 32CE0103-HO-01-R1 Test report No.

Page : 12 of 49 **Issued date** : April 4, 2012 : April 5, 2012 Revised date FCC ID : WWGZ2210

APPENDIX 1: Data of EMI test

Conducted Emission

Antenna1

DATA OF CONDUCTED EMISSION TEST

No. 4 Semi Anechoic Chamber Date : 2012/03/19

Report No. : 32CE0103-H0-01 Temp./Humi. Engineer : 20deg. C / 40% RH : Keisuke Kawamura

Mode / Remarks : Ant-1 Tx 2440MHz

LIMIT : FCC15. 207 QP FCC15. 207 AV

Frequency	Reading		Corr.	Resi		Lin			gin		
rrequency	QP	AV	Factor	QP	AV	QP	AV	QP	AV	Phase	Comment
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
0. 15056	21. 3	-1.6	13. 3	34. 6	11.7	66.0	56.0	31. 4	44. 3	N	
0. 19205	14. 9	-6. 2	13. 3	28. 2	7. 1	63. 9	53. 9	35. 7	46.8	N	
5. 16106	11.5	6. 2	13.8	25. 3	20.0	60.0	50.0	34. 7	30.0	N	
7. 77404	21.3	15. 2	14.0	35. 3	29. 2	60.0	50.0	24. 7	20.8	N	
9. 83838	16.8	10.8	14. 1	30. 9	24. 9	60.0	50.0	29. 1	25. 1	N	
24. 00045	9. 1	6.7	15.0	24. 1	21.7	60.0	50.0	35. 9	28. 3	N	
0. 15290	21.5	0.8	13. 3	34. 8	14. 1	65. 8	55. 8	31.0	41.7	L	
0. 19205	15. 1	-2. 2	13. 3	28. 4	11.1	63. 9	53. 9	35. 5	42. 8	L	
5. 22779	11. 2	5.4	13.8	25. 0	19. 2	60.0	50.0	35. 0	30.8	L	
7. 90345	19.3	12. 9	14. 0	33. 3	26. 9	60.0	50.0	26. 7	23. 1	L	
9. 83838	17. 2	11.3	14. 1	31. 3	25. 4	60.0	50.0	28. 7	24. 6	L	
24. 00145	9. 8	7. 3	15. 0	24. 8	22. 3	60.0	50.0	35. 2	27. 7	L	

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 13 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Conducted Emission

Test place Head Office EMC Lab. No.4 Semi Anechoic Chamber

Report No. 32CE0103-HO-01 Date 03/19/2012

Temperature/ Humidity
Engineer
Mode

20 deg. C / 40% RH
Keisuke Kawamura
Antenna1 Tx

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 14 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Conducted Emission

Antenna2

Report No.

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No. 4 Semi Anechoic Chamber Date : 2012/03/19

: 32CE0103-H0-01

Temp./Humi. : 20deg. C / 40% RH Engineer : Keisuke Kawamura

Mode / Remarks : Ant-2 Tx 2440MHz

LIMIT : FCC15. 207 QP FCC15. 207 AV

_	Reading	Level	Corr.	Resi	ılts	Lin	iit	Mar	gin		
Frequency	QP	AV	Factor	QP	AV	QP	AV	QP	AV	Phase	Comment
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
0. 15413	19. 7	-2.8	13. 3	33.0	10.5	65.8	55. 8		45.3	N	
0. 20365	12. 4	-8. 0	13. 3	25. 7	5.3	63. 5	53. 5		48. 2	N	
5. 10162	11.1	5.6	13. 8	24. 9	19.4	60.0	50.0		30.6	N	
7. 58603	21. 4	15.3	13. 9	35. 3	29. 2	60.0	50.0	24. 7	20.8	N	
9. 93713	20. 4	14. 3	14. 1	34. 5	28. 4	60.0	50.0	25. 5	21.6	N	
24. 00000	7. 6	5.3	15.0	22. 6	20.3	60.0	50.0		29. 7	N	
0. 15036	20. 4	-3.4	13. 3	33. 7	9.9	66.0	56.0		46. 1	L	
0. 20075	12. 7	-7.0	13. 3	26. 0		63. 6	53.6		47. 3	L	
0. 60240	-7. 1	-11.0	13. 3	6. 2	2.3	56.0	46.0	49.8	43. 7	L	
7. 58527	21. 2	15. 2	13. 9	35. 1	29. 1	60.0	50.0		20. 9	L	
9. 93753	20. 4	14. 4	14. 1	34. 5	28. 5	60.0	50.0		21.5	L	
24. 00000	8. 7	6. 2	15.0	23. 7	21.2	60.0	50.0	36. 3	28. 8	L	

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 15 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Conducted Emission

Test place Head Office EMC Lab. No.4 Semi Anechoic Chamber

Report No. 32CE0103-HO-01 Date 03/19/2012

Temperature/ Humidity
Engineer
Mode

20 deg. C / 40% RH
Keisuke Kawamura
Antenna2 Tx

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 32CE0103-HO-01-R1 Test report No.

Page : 16 of 49 : April 4, 2012 **Issued date** : April 5, 2012 Revised date FCC ID : WWGZ2210

Conducted Emission

Antenna6

DATA OF CONDUCTED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 4 Semi Anechoic Chamber Date: 2012/03/19

Report No. : 32CE0103-H0-01 Temp./Humi. Engineer : 20deg. C / 40% RH : Keisuke Kawamura

Mode / Remarks : Ant-6 Tx 2440MHz

LIMIT : FCC15. 207 QP FCC15. 207 AV

F	Reading	Level	Corr.	Resi	ılts	Lin	nit	Mar	gin		
Frequency	QP	A۷	Factor	QP	AV	QP	AV	QΡ	AV	Phase	Comment
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
0. 15054	21.0	-1.8	13. 3	34. 3	11.5	66.0	56.0	31. 7	44. 5	N	
0. 20655	12. 7	-7. 3	13. 3	26. 0	6.0	63. 3	53. 3	37. 3	47. 3	N	
5. 11079	11.1	5. 1	13. 8	24. 9	18.9	60.0	50.0	35. 1	31.1	N	
7. 66352	21.7	15.8	13. 9	35. 6	29.7	60.0	50.0	24. 4	20. 3	N	
9. 74788	20. 1	14. 3	14. 1	34. 2	28. 4	60.0	50.0	25. 8	21.6	N	
24. 00003	7. 9	5.4	15.0	22. 9	20.4	60.0	50.0	37. 1	29. 6	N	
0. 15026	21.0	-2.4	13. 3	34. 3	10.9	66.0	56.0	31. 7	45. 1	L	
0. 20655	12. 7	-7. 2	13. 3	26. 0	6.1	63.3	53. 3	37. 3	47. 2	L	
5. 10811	12.6	6.7	13. 8	26. 4	20. 5	60.0	50.0	33. 6	29. 5	L	
7. 59322	20.6	14.8	13. 9	34. 5	28. 7	60.0	50.0	25. 5	21.3	L	
9. 74678	20. 3	14. 6	14. 1	34. 4	28. 7	60.0	50.0	25. 6	21.3	L	
24. 00003	8.8	6.3	15.0	23. 8	21.3	60.0	50.0	36. 2	28. 7	L	

UL Japan, Inc.

Head Office EMC Lab.

 $4383\text{-}326 \ Asama\text{-}cho, Ise\text{-}shi, Mie\text{-}ken \ 516\text{-}0021 \ JAPAN$

 Page
 : 17 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Conducted Emission

Test place Head Office EMC Lab. No.4 Semi Anechoic Chamber

Report No. 32CE0103-HO-01 Date 03/19/2012

Temperature/ Humidity
Engineer
Mode

20 deg. C / 40% RH
Keisuke Kawamura
Antenna6 Tx

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 18 of 49
Issued date : April 4, 2012
Revised date : April 5, 2012
FCC ID : WWGZ2210

6dB Bandwidth

Test place Head Office EMC Lab. No.11 Measurement Room

Report No. 32CE0103-HO-01

Date 03/13/2012 03/14/2012

Temperature/ Humidity 23 deg. C / 25% RH 22 deg. C / 32% RH Engineer Takumi Shimada Katsunori Okai

Mode Tx

Frequency	6dB Bandwidth	Limit
[MHz]	[MHz]	[kHz]
2405	1.585	>500
2440	1.805	>500
2475	1.666	>500

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 19 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

6dB Bandwidth

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 20 of 49
Issued date : April 4, 2012
Revised date : April 5, 2012
FCC ID : WWGZ2210

Maximum Peak Output Power

Test place Head Office EMC Lab. No.11 Measurement Room

Report No. 32CE0103-HO-01

Date 03/13/2012 03/14/2012

Temperature/ Humidity 23 deg. C / 25% RH 22 deg. C / 32% RH Engineer Takumi Shimada Katsunori Okai

Mode Tx

Freq.	Reading	Cable	Atten.	Result		Liı	Margin	
		Loss						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2405	-2.86	2.10	10.01	9.25	8.41	30.00	1000	20.75
2440	-3.41	2.11	10.01	8.71	7.43	30.00	1000	21.29
2475	-3.68	2.13	10.01	8.46	7.01	30.00	1000	21.54

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 21 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Radiated Spurious Emission

Antenna1

Test place Head Office EMC Lab. No.2 and 3 Semi Anechoic Chamber

Report No. 32CE0103-HO-01

Date 03/13/2012 03/22/2012 03/23/2012

Temperature/ Humidity
Engineer

23 deg. C / 33% RH
Engineer

22 deg. C / 36% RH
Hiroshi Kukita
Takumi Shimada
(1-10GHz)
(10-26.5GHz)
(30-1000Hz)

Mode Tx 2405MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
,	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	70.850	QP	26.4	6.6	7.8	32.2	8.6	40.0	31.4	
Hori	141.300	QP	25.6	14.5	8.6	32.3	16.4	43.5	27.1	
Hori	168.970	QP	28.8	15.7	8.9	32.2	21.2	43.5	22.3	
Hori	250.000	QP	29.4	17.4	9.6	32.1	24.3	46.0	21.7	
Hori	334.217	QP	35.1	15.6	10.2	32.1	28.8	46.0	17.2	
Hori	719.983	QP	28.4	20.9	12.6	31.9	30.0	46.0	16.0	
Hori	2390.000	PK	59.6	27.4	2.2	34.8	54.4	73.9	19.5	
Hori	2400.000	PK	74.8	27.5	2.2	34.8	69.7	-	-	See 20dBc Data Sheet
Hori	4810.000	PK	47.4	31.2	3.9	34.0	48.5	73.9	25.4	
Hori	7215.000	PK	44.0	35.9	4.5	34.2	50.2	73.9	23.7	
Hori	9620.000	PK	43.7	38.8	5.3	34.7	53.1	73.9	20.8	
Hori	24050.000	PK	44.5	38.6	-1.8	31.6	49.7	73.9	24.2	
Vert	47.283	QP	37.4	12.0	7.4	32.2	24.6	40.0	15.4	
Vert	61.450	QP	40.8	7.8	7.6	32.2	24.0	40.0	16.0	
Vert	70.067	QP	38.8	6.6	7.8	32.2	21.0	40.0	19.0	
Vert	81.920	QP	41.1	6.8	7.9	32.2	23.6	40.0	16.4	
Vert	110.570	QP	38.4	11.6	8.3	32.3	26.0	43.5	17.5	
Vert	143.100	QP	36.7	14.5	8.6	32.3	27.5	43.5	16.0	
Vert	166.870	QP	43.8	15.6	8.9	32.2	36.1	43.5	7.4	
Vert	240.005	QP	34.3	17.3	9.5	32.1	29.0	46.0	17.0	
Vert	333.817	QP	30.7	15.5	10.2	32.1	24.3	46.0	21.7	
Vert	527.993	QP	30.0	18.6	11.5	32.0	28.1	46.0	17.9	
Vert	624.007	QP	28.3	19.7	12.0	32.0	28.0	46.0	18.0	
Vert	719.977	QP	30.2	20.9	12.6	31.9	31.8	46.0	14.2	
Vert	2390.000		60.0	27.4	2.2	34.8	54.8	73.9	19.1	
Vert	2400.000	PK	75.7	27.5	2.2	34.8	70.6	-	-	See 20dBc Data Sheet
Vert	4810.000	PK	48.3	31.2	3.9	34.0	49.4	73.9	24.5	
Vert	7215.000	PK	48.5	35.9	4.5	34.2	54.7	73.9	19.2	
Vert	9620.000	PK	43.2	38.8	5.3	34.7	52.6	73.9	21.3	
Vert	24050.000	PK	44.4	38.6	-1.8	31.6	49.6	73.9	24.3	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2405.000	PK	110.6	27.5	2.2	34.8	105.5	-	-	Carrier
Hori	2400.000	PK	70.9	27.5	2.2	34.8	65.8	85.5	19.7	
Vert	2405.000	PK	108.6	27.5	2.2	34.8	103.5	-	-	Carrier
Vert	2400.000	PK	68.7	27.5	2.2	34.8	63.6	83.5	19.9	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

PK with Duty factor

Frequency	Detector	Reading		Ant	Loss	Gain	Duty	Result		Limit	Margin	
requency	Detector	[dBuV]		Factor	2033	Guin	Factor		[dBuV/m]		[dB]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver
2390.000	PK	59.6	60.0	27.4	2.2	34.8	-13.3	41.1	41.5	53.9	12.8	12.4
4810.000	PK	47.4	48.3	31.2	3.9	34.0	-13.3	35.2	36.1	53.9	18.7	17.8
7215.000	PK	44.0	48.5	35.9	4.5	34.2	-13.3	36.9	41.4	53.9	17.0	12.5
9620.000	PK	43.7	43.2	38.8	5.3	34.7	-13.3	39.8	39.3	53.9	14.1	14.6
24050.000	PK	44.5	44.4	38.6	-1.8	31.6	-13.3	36.4	36.3	53.9	17.5	17.6

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor \ (Refer \ to \ Duty \ factor \ data \ sheet)$

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*}The 10th harmonic was not seen so the result was its base noise level. Distance factor: 10 GHz - 26.5 GHz - 20 log(3.0 m/1.0 m) = 9.5 dB

 Page
 : 22 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Radiated Spurious Emission

Antenna1

Test place Head Office EMC Lab. No. 2 and 3 Semi Anechoic Chamber

Report No. 32CE0103-HO-01

Date 03/16/2012 03/22/2012 03/23/2012

 Temperature/ Humidity
 20 deg. C / 30% RH
 22 deg. C / 36% RH
 22 deg. C / 38% RH

 Engineer
 Katsunori Okai
 Hiroshi Kukita
 Takumi Shimada

 (1-10GHz)
 (10-26.5GHz)
 (30-1000Hz)

Mode Tx 2440MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
-	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	72.017	QP	33.5	6.6	7.8	32.2	15.7	40.0	24.3	
Hori	107.640	QP	24.8	11.2	8.2	32.3	11.9	43.5	31.6	
Hori	167.220	QP	39.4	15.7	8.9	32.2	31.8	43.5	11.7	
Hori	196.750	QP	26.8	16.8	9.1	32.2	20.5	43.5	23.0	
Hori	331.770	QP	34.4	15.5	10.2	32.1	28.0	46.0	18.0	
Hori	719.992	QP	32.3	20.9	12.6	31.9	33.9	46.0	12.1	
Hori	4880.000	PK	51.5	31.4	3.8	34.0	52.7	73.9	21.2	
Hori	7320.000	PK	48.8	36.0	4.6	34.2	55.2	73.9	18.7	
Hori	9760.000	PK	41.0	38.9	5.3	34.7	50.5	73.9	23.4	
Hori	24400.000	PK	44.5	38.8	-1.7	31.4	50.2	73.9	23.7	
Vert	48.007	QP	42.9	11.8	7.4	32.2	29.9	40.0	10.1	
Vert	61.450	QP	41.4	7.8	7.6	32.2	24.6	40.0	15.4	
Vert	71.867	QP	41.9	6.6	7.8	32.2	24.1	40.0	15.9	
Vert	82.420	QP	40.5	6.9	7.9	32.2	23.1	40.0	16.9	
Vert	166.700	QP	47.8	15.6	8.9	32.2	40.1	43.5	3.4	
Vert	183.883	QP	33.5	16.3	9.0	32.2	26.6	43.5	16.9	
Vert	250.039	QP	31.2	17.4	9.6	32.1	26.1	46.0	19.9	
Vert	335.017	QP	32.7	15.6	10.2	32.1	26.4	46.0	19.6	
Vert	400.927	QP	28.6	17.7	10.7	32.1	24.9	46.0	21.1	
Vert	497.900	QP	30.1	18.3	11.3	32.0	27.7	46.0	18.3	
Vert	720.003	QP	33.1	20.9	12.6	31.9	34.7	46.0	11.3	
Vert	4880.000	PK	51.9	31.4	3.8	34.0	53.1	73.9	20.8	
Vert	7320.000	PK	47.2	36.0	4.6	34.2	53.6	73.9	20.3	
Vert	9760.000	PK	42.7	38.9	5.3	34.7	52.2	73.9	21.7	
Vert	24400.000	PK	44.5	38.8	-1.7	31.4	50.2	73.9	23.7	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Result		Limit	Ma	rgin
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver
4880.000	PK	51.5	51.9	31.4	3.8	34.0	-13.3	39.4	39.8	53.9	14.5	14.1
7320.000	PK	48.8	47.2	36.0	4.6	34.2	-13.3	41.9	40.3	53.9	12.0	13.6
9760.000	PK	41.0	42.7	38.9	5.3	34.7	-13.3	37.2	38.9	53.9	16.7	15.0
24400.000	PK	44.5	44.5	38.8	-1.7	31.4	-13.3	36.9	36.9	53.9	17.0	17.0

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier) + Duty factor (Refer to Duty factor data sheet)

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*}The 10th harmonic was not seen so the result was its base noise level. Distance factor: $10 GHz - 26.5 GHz \quad 20 log(3.0m/1.0m) = \ 9.5 dB$

 Page
 : 23 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Radiated Spurious Emission

Antenna1

Test place Head Office EMC Lab. No.2 and 3 Semi Anechoic Chamber

Report No. 32CE0103-HO-01

Date 03/16/2012 03/22/2012 03/23/2012

 Temperature/ Humidity
 20 deg. C / 30% RH
 22 deg. C / 36% RH
 22 deg. C / 38% RH

 Engineer
 Katsunori Okai
 Hiroshi Kukita
 Takumi Shimada

 (1-10GHz)
 (10-26.5GHz)
 (30-1000Hz)

Mode Tx 2475MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	46.433	QP	28.6	12.4	7.4	32.2	16.2	40.0	23.8	
Hori	50.450	QP	29.3	10.9	7.5	32.2	15.5	40.0	24.5	
Hori	72.003	QP	36.9	6.6	7.8	32.2	19.1	40.0	20.9	
Hori	167.100	QP	33.0	15.7	8.9	32.2	25.4	43.5	18.1	
Hori	432.133	QP	27.6	17.9	10.9	32.0	24.4	46.0	21.6	
Hori	720.002	QP	29.6	20.9	12.6	31.9	31.2	46.0	14.8	
Hori	2483.500	PK	70.3	27.5	2.3	34.8	65.3	73.9	8.6	
Hori	2484.811	PK	70.6	27.5	2.3	34.8	65.6	73.9	8.1	
Hori	4950.000	PK	53.9	31.6	3.9	34.0	55.4	73.9	18.5	
Hori	7425.000	PK	48.9	36.2	4.6	34.3	55.4	73.9	18.5	
Hori	9900.000	PK	42.9	39.1	5.4	34.7	52.7	73.9	21.2	
Hori	24750.000	PK	45.7	39.0	-1.7	31.2	51.8	73.9	22.1	
Vert	47.080	QP	45.3	12.1	7.4	32.2	32.6	40.0	7.4	
Vert	62.500	QP	45.8	7.7	7.7	32.2	29.0	40.0	11.0	
Vert	69.950	QP	43.2	6.6	7.8	32.2	25.4	40.0	14.6	
Vert	83.420	QP	45.0	7.1	7.9	32.2	27.8	40.0	12.2	
Vert	96.017	QP	41.6	9.4	8.1	32.3	26.8	43.5	16.7	
Vert	166.470	QP	41.6	15.6	8.9	32.2	33.9	43.5	9.6	
Vert	192.000	QP	33.2	16.7	9.1	32.2	26.8	43.5	16.7	
Vert	432.000	QP	31.6	17.9	10.9	32.0	28.4	46.0	17.6	
Vert	719.983	QP	30.9	20.9	12.6	31.9	32.5	46.0	13.5	
Vert	2483.500	PK	67.2	27.5	2.3	34.8	62.2	73.9	11.7	
Vert	2484.823	PK	65.2	27.5	2.3	34.8	60.2	73.9	13.7	
Vert	4950.000	PK	51.6	31.6	3.9	34.0	53.1	73.9	20.8	
Vert	7425.000	PK	46.2	36.2	4.6	34.3	52.7	73.9	21.2	
Vert	9900.000	PK	42.5	39.1	5.4	34.7	52.3	73.9	21.6	
Vert	24750.000	PK	45.7	39.0	-1.7	31.2	51.8	73.9	22.1	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

*The 10th harmonic was not seen so the result was its base noise level. Distance factor: 10 GHz - 26.5 GHz - 20 log (3.0 m/1.0 m) = 9.5 dB

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Mai	gin
		[dB	uV]	Factor			Factor	[dBuV/m]			[dB]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver
2483.500	PK	70.3	67.2	27.5	2.3	34.8	-13.3	52.0	48.9	53.9	1.9	5.0
2484.811	PK	70.6	65.2	27.5	2.3	34.8	-13.3	52.3	46.9	53.9	1.6	7.0
4950.000	PK	53.9	51.6	31.6	3.9	34.0	-13.3	42.1	39.8	53.9	11.8	14.1
7425.000	PK	48.9	46.2	36.2	4.6	34.3	-13.3	42.1	39.4	53.9	11.8	14.5
9900.000	PK	42.9	42.5	39.1	5.4	34.7	-13.3	39.4	39.0	53.9	14.5	14.9
24750.000	PK	45.7	45.7	39.0	-1.7	31.2	-13.3	38.5	38.5	53.9	15.4	15.4

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier) + Duty factor (Refer to Duty factor data sheet)

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

 Page
 : 24 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Radiated Spurious Emission

Antenna2

Test place Head Office EMC Lab. No.2 and 3 Semi Anechoic Chamber

Report No. 32CE0103-HO-01

Date 03/16/2012 03/22/2012 03/22/2012

Temperature/ Humidity 20 deg. C / 30% RH 22 deg. C / 36% RH Engineer Euroshi Kukita 22 deg. C / 36% RH Hiroshi Kukita 22 deg. C / 36% RH

(1-10GHz) (10-26.5GHz) (30-1000MHz)

Mode Tx 2405MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	57.342	QP	27.7	8.8	7.6	32.2	11.9	40.0	28.1	
Hori	61.437	QP	26.6	7.8	7.6	32.2	9.8	40.0	30.2	
Hori	81.917	QP	31.0	6.8	7.9	32.2	13.5	40.0	26.5	
Hori	458.174	QP	33.2	18.1	11.0	32.0	30.3	46.0	15.7	
Hori	500.000	QP	31.7	18.4	11.3	32.0	29.4	46.0	16.6	
Hori	623.987	QP	32.5	19.7	12.0	32.0	32.2	46.0	13.8	
Hori	2390.000	PK	56.3	27.4	2.2	34.8	51.1	73.9	22.9	
Hori	2400.000	PK	73.0	27.5	2.2	34.8	67.9	-	-	See 20dBc Data Sheet
Hori	4810.000	PK	47.2	31.2	3.9	34.0	48.3	73.9	25.7	
Hori	7215.000	PK	44.7	35.9	4.5	34.2	50.9	73.9	23.1	
Hori	9620.000	PK	42.0	38.8	5.3	34.7	51.4	73.9	22.5	
Hori	24050.000	PK	44.4	38.6	-1.8	31.6	49.6	73.9	24.3	
Vert	57.341	QP	44.0	8.8	7.6	32.2	28.2	40.0	11.8	
Vert	61.437	QP	43.6	7.8	7.6	32.2	26.8	40.0	13.2	
Vert	81.918	QP	49.3	6.8	7.9	32.2	31.8	40.0	8.2	
Vert	458.176	QP	34.0	18.1	11.0	32.0	31.1	46.0	14.9	
Vert	500.162	QP	36.4	18.4	11.3	32.0	34.1	46.0	11.9	
Vert	623.989	QP	34.1	19.7	12.0	32.0	33.8	46.0	12.2	
Vert	2390.000	PK	60.0	27.4	2.2	34.8	54.8	73.9	19.1	
Vert	2400.000	PK	75.5	27.5	2.2	34.8	70.4	-	-	See 20dBc Data Sheet
Vert	4810.000	PK	49.5	31.2	3.9	34.0	50.6	73.9	23.3	
Vert	7215.000	PK	45.8	35.9	4.5	34.2	52.0	73.9	21.9	
Vert	9620.000	PK	42.2	38.8	5.3	34.7	51.6	73.9	22.3	
Vert	24050.000	PK	44.5	38.6	-1.8	31.6	49.7	73.9	24.2	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2405.000	PK	109.3	27.5	2.2	34.8	104.2	-	-	Carrier
Hori	2400.000	PK	69.0	27.5	2.2	34.8	63.9	84.2	20.3	
Vert	2405.000	PK	110.9	27.5	2.2	34.8	105.8	-	-	Carrier
Vert	2400.000	PK	71.6	27.5	2.2	34.8	66.5	85.8	19.3	

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter - Distance \ factor (above \ 10 GHz)) - Gain (Amprifier)$

Frequency	Detector	Rea	Reading		Loss	Gain	Duty	Result		Limit	Mai	rgin
		[dB	uV]	Factor	F		Factor	[dBuV/m]			[d	B]
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver
2390.000	PK	56.3	60.0	27.4	2.2	34.8	-13.3	37.8	41.5	53.9	16.1	12.4
4810.000	PK	47.2	49.5	31.2	3.9	34.0	-13.3	35.0	37.3	53.9	18.9	16.6
7215.000	PK	44.7	45.8	35.9	4.5	34.2	-13.3	37.6	38.7	53.9	16.3	15.2
9620.000	PK	42.0	42.2	38.8	5.3	34.7	-13.3	38.1	38.3	53.9	15.8	15.6
24050.000	PK	44.4	44.5	38.6	-1.8	31.6	-13.3	36.3	36.4	53.9	17.6	17.5

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier) + Duty factor (Refer to Duty factor data sheet)

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

 Page
 : 25 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Radiated Spurious Emission

Antenna2

Test place Head Office EMC Lab. No.2 and 3 Semi Anechoic Chamber

Report No. 32CE0103-HO-01

Date 03/16/2012 03/22/2012 03/22/2012

Temperature/ Humidity
Engineer

20 deg. C / 30% RH
Keisuke Kawamura
(1-10GHz)

22 deg. C / 36% RH
Hiroshi Kukita
Hiroshi Kukita
(10-26.5GHz)

(30-1000MHz)

Mode Tx 2440MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
-	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	57.342	QP	27.1	8.8	7.6	32.2	11.3	40.0	28.7	
Hori	61.438	QP	28.0	7.8	7.6	32.2	11.2	40.0	28.8	
Hori	81.918	QP	31.0	6.8	7.9	32.2	13.5	40.0	26.5	
Hori	458.175	QP	32.5	18.1	11.0	32.0	29.6	46.0	16.4	
Hori	500.001	QP	32.2	18.4	11.3	32.0	29.9	46.0	16.1	
Hori	623.988	QP	31.0	19.7	12.0	32.0	30.7	46.0	15.3	
Hori	4880.000	PK	47.6	31.4	3.8	34.0	48.8	73.9	25.1	
Hori	7320.000	PK	46.0	36.0	4.6	34.2	52.4	73.9	21.6	
Hori	9760.000	PK	41.4	38.9	5.3	34.7	50.9	73.9	23.0	
Hori	24400.000	PK	44.5	38.8	-1.7	31.4	50.2	73.9	23.7	
Vert	57.341	QP	42.4	8.8	7.6	32.2	26.6	40.0	13.4	
Vert	61.436	QP	42.2	7.8	7.6	32.2	25.4	40.0	14.6	
Vert	81.916	QP	48.0	6.8	7.9	32.2	30.5	40.0	9.5	
Vert	458.174	QP	34.0	18.1	11.0	32.0	31.1	46.0	14.9	
Vert	500.160	QP	35.5	18.4	11.3	32.0	33.2	46.0	12.8	
Vert	623.988	QP	34.0	19.7	12.0	32.0	33.7	46.0	12.3	
Vert	4880.000	PK	50.0	31.4	3.8	34.0	51.2	73.9	22.7	
Vert	7320.000	PK	46.1	36.0	4.6	34.2	52.5	73.9	21.4	
Vert	9760.000	PK	41.4	38.9	5.3	34.7	50.9	73.9	23.0	
Vert	24400.000	PK	44.4	38.8	-1.7	31.4	50.1	73.9	23.8	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

*The 10th harmonic was not seen so the result was its base noise level. Distance factor: $\begin{array}{ccc} 10GHz-26.5GHz & 20log(3.0m/1.0m)= 9.5dB \\ 26.5GHz-40GHz & 20log(3.0m/0.5m)=15.6dB \end{array}$

PK with Duty factor

Frequency	Detector	Rea	Reading		Loss	Gain	Duty	Result		Limit	Ma	rgin
		[dB	uV]	Factor		Factor		[dBu	V/m]		[d	B]
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver
4880.000	PK	47.6	50.0	31.4	3.8	34.0	-13.3	35.5	37.9	53.9	18.4	16.0
7320.000	PK	46.0	46.1	36.0	4.6	34.2	-13.3	39.1	39.2	53.9	14.8	14.7
9760.000	PK	41.4	41.4	38.9	5.3	34.7	-13.3	37.6	37.6	53.9	16.3	16.3
24400.000	PK	44.5	44.4	38.8	-1.7	31.4	-13.3	36.9	36.8	53.9	17.0	17.1

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier) + Duty factor (Refer to Duty factor data sheet)

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 26 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Radiated Spurious Emission

Antenna2

Test place Head Office EMC Lab. No.2 and 3 Semi Anechoic Chamber

Report No. 32CE0103-HO-01

Date 03/16/2012 03/22/2012 03/22/2012

Temperature/ Humidity 20 deg. C / 30% RH 22 deg. C / 36% RH Engineer 22 deg. C / 36% RH Hiroshi Kukita 22 deg. C / 36% RH

(1-10GHz) (10-26.5GHz) (30-1000MHz)

Mode Tx 2475MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	57.342	QP	27.0	8.8	7.6	32.2	11.2	40.0	28.8	
Hori	61.437	QP	27.2	7.8	7.6	32.2	10.4	40.0	29.6	
Hori	81.918	QP	29.8	6.8	7.9	32.2	12.3	40.0	27.7	
Hori	458.174	QP	33.3	18.1	11.0	32.0	30.4	46.0	15.6	
Hori	500.001	QP	31.8	18.4	11.3	32.0	29.5	46.0	16.5	
Hori	623.988	QP	32.0	19.7	12.0	32.0	31.7	46.0	14.3	
Hori	2483.500	PK	67.8	27.5	2.3	34.8	62.8	73.9	11.1	
Hori	4950.000	PK	50.7	31.6	3.9	34.0	52.2	73.9	21.7	
Hori	7425.000	PK	44.7	36.2	4.6	34.3	51.2	73.9	22.7	
Hori	9900.000	PK	42.5	39.1	5.4	34.7	52.3	73.9	21.6	
Hori	24750.000	PK	45.7	39.0	-1.7	31.2	51.8	73.9	22.1	
Vert	57.341	QP	43.3	8.8	7.6	32.2	27.5	40.0	12.5	
Vert	61.437	QP	42.1	7.8	7.6	32.2	25.3	40.0	14.7	
Vert	81.918	QP	48.4	6.8	7.9	32.2	30.9	40.0	9.1	
Vert	458.174	QP	32.6	18.1	11.0	32.0	29.7	46.0	16.3	
Vert	500.160	QP	35.5	18.4	11.3	32.0	33.2	46.0	12.8	
Vert	623.988	QP	34.0	19.7	12.0	32.0	33.7	46.0	12.3	
Vert	2483.500	PK	67.8	27.5	2.3	34.8	62.8	73.9	11.2	·
Vert	4950.000	PK	50.2	31.6	3.9	34.0	51.7	73.9	22.2	
Vert	7425.000	PK	46.4	36.2	4.6	34.3	52.9	73.9	21.0	
Vert	9900.000	PK	42.8	39.1	5.4	34.7	52.6	73.9	21.3	
Vert	24750.000	PK	45.7	39.0	-1.7	31.2	51.8	73.9	22.1	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

PK with Duty factor

Frequency	Detector	Rea	Reading		Loss	Gain	Duty	Result		Limit	Mai	rgin
		[dB	uV]	Factor	actor		Factor	[dBuV/m]			[dB]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver
2483.500	PK	67.8	67.8	27.5	2.3	34.8	-13.3	49.5	49.5	53.9	4.4	4.4
4950.000	PK	50.7	50.2	31.6	3.9	34.0	-13.3	38.9	38.4	53.9	15.0	15.5
7425.000	PK	44.7	46.4	36.2	4.6	34.3	-13.3	37.9	39.6	53.9	16.0	14.3
9900.000	PK	42.5	42.8	39.1	5.4	34.7	-13.3	39.0	39.3	53.9	14.9	14.6
24750.000	PK	45.7	45.7	39.0	-1.7	31.2	-13.3	38.5	38.5	53.9	15.4	15.4

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier) + Duty factor (Refer to Duty factor data sheet)

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*}The 10th harmonic was not seen so the result was its base noise level. Distance factor: $10 \text{GHz-}26.5 \text{GHz} \quad 20 \log(3.0 \text{m/}1.0 \text{m}) = 9.5 \text{dB} \\ 26.5 \text{GHz-}40 \text{GHz} \quad 20 \log(3.0 \text{m/}0.5 \text{m}) = 15.6 \text{dB}$

 Page
 : 27 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Radiated Spurious Emission

Antenna6

Test place Head Office EMC Lab. No.2 and 3 Semi Anechoic Chamber

Report No. 32CE0103-HO-01

Date 03/16/2012 03/22/2012 03/22/2012

Temperature/ Humidity
Engineer

20 deg. C / 30% RH
Engineer

22 deg. C / 36% RH
Hiroshi Kukita
(1-10GHz)

22 deg. C / 36% RH
Hiroshi Kukita
(10-26.5GHz)

(30-1000MHz)

Mode Tx 2405MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	57.342	QP	26.6	8.8	7.6	32.2	10.8	40.0	29.2	
Hori	61.436	QP	26.9	7.8	7.6	32.2	10.1	40.0	29.9	
Hori	81.917	QP	31.0	6.8	7.9	32.2	13.5	40.0	26.5	
Hori	458.173	QP	31.4	18.1	11.0	32.0	28.5	46.0	17.5	
Hori	500.002	QP	31.3	18.4	11.3	32.0	29.0	46.0	17.0	
Hori	623.986	QP	31.0	19.7	12.0	32.0	30.7	46.0	15.3	
Hori	2390.000	PK	67.3	27.4	2.2	34.8	62.1	73.9	11.8	
Hori	2400.000	PK	77.0	27.5	2.2	34.8	71.9	-	-	See 20dBc Data Sheet
Hori	4810.000	PK	48.1	31.2	3.9	34.0	49.2	73.9	24.7	
Hori	7215.000	PK	46.1	35.9	4.5	34.2	52.3	73.9	21.6	
Hori	9620.000	PK	42.2	38.8	5.3	34.7	51.6	73.9	22.3	
Hori	24050.000	PK	44.4	38.6	-1.8	31.6	49.6	73.9	24.3	
Vert	57.341	QP	44.4	8.8	7.6	32.2	28.6	40.0	11.4	
Vert	61.432	QP	42.2	7.8	7.6	32.2	25.4	40.0	14.6	
Vert	81.918	QP	47.9	6.8	7.9	32.2	30.4	40.0	9.6	
Vert	458.174	QP	34.2	18.1	11.0	32.0	31.3	46.0	14.7	
Vert	500.161	QP	35.0	18.4	11.3	32.0	32.7	46.0	13.3	
Vert	623.989	QP	33.9	19.7	12.0	32.0	33.6	46.0	12.4	
Vert	2390.000	PK	59.0	27.4	2.2	34.8	53.8	73.9	20.1	
Vert	2400.000	PK	75.2	27.5	2.2	34.8	70.1	-	-	See 20dBc Data Sheet
Vert	4810.000	PK	49.4	31.2	3.9	34.0	50.5	73.9	23.4	
Vert	7215.000	PK	46.4	35.9	4.5	34.2	52.6	73.9	21.3	
Vert	9620.000	PK	41.9	38.8	5.3	34.7	51.3	73.9	22.6	
Vert	24050.000	PK	44.4	38.6	-1.8	31.6	49.6	73.9	24.3	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter-Distance\ factor (above\ 10GHz)) - Gain (Amplifier)$

20dBc Data Sheet

zoube bu	tu blicci									
Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2405.000	PK	111.1	27.5	2.2	34.8	106.0	-	-	Carrier
Hori	2400.000	PK	71.5	27.5	2.2	34.8	66.4	86.0	19.6	
Vert	2405.000	PK	110.0	27.5	2.2	34.8	104.9	-	-	Carrier
Vert	2400.000	PK	70.8	27.5	2.2	34.8	65.7	84.9	19.2	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Ma	rgin
		[dBuV]		Factor			Factor	[dBuV/m]			[dB]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver
2390.000	PK	67.3	59.0	27.4	2.2	34.8	-13.3	48.8	40.5	53.9	5.1	13.4
4810.000	PK	48.1	49.4	31.2	3.9	34.0	-13.3	35.9	37.2	53.9	18.0	16.7
7215.000	PK	46.1	46.4	35.9	4.5	34.2	-13.3	39.0	39.3	53.9	14.9	14.6
9620.000	PK	42.2	41.9	38.8	5.3	34.7	-13.3	38.3	38.0	53.9	15.6	15.9
24050.000	PK	44.4	44.4	38.6	-1.8	31.6	-13.3	36.3	36.3	53.9	17.6	17.6

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor \ (Refer \ to \ Duty \ factor \ data \ sheet)$

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

 Page
 : 28 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Radiated Spurious Emission

Antenna6

Test place Head Office EMC Lab. No.2 and 3Semi Anechoic Chamber

Report No. 32CE0103-HO-01

Date 03/16/2012 03/22/2012 03/22/2012

Temperature/ Humidity 20 deg. C / 30% RH 22 deg. C / 36% RH 22 deg. C / 36% RH Engineer Katsunori Okai Hiroshi Kukita Hiroshi Kukita (1-10GHz) (10-26.5GHz) (30-1000MHz)

Mode Tx 2440MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	57.342	QP	27.2	8.8	7.6	32.2	11.4	40.0	28.6	
Hori	61.437	QP	27.1	7.8	7.6	32.2	10.3	40.0	29.7	
Hori	81.915	QP	29.7	6.8	7.9	32.2	12.2	40.0	27.8	
Hori	458.175	QP	31.3	18.1	11.0	32.0	28.4	46.0	17.6	
Hori	500.002	QP	33.0	18.4	11.3	32.0	30.7	46.0	15.3	
Hori	623.986	QP	32.6	19.7	12.0	32.0	32.3	46.0	13.7	
Hori	4880.000	PK	48.1	31.4	3.8	34.0	49.3	73.9	24.6	
Hori	7320.000	PK	45.4	36.0	4.6	34.2	51.8	73.9	22.1	
Hori	9760.000	PK	43.8	38.9	5.3	34.7	53.3	73.9	20.6	
Hori	24400.000	PK	44.4	38.8	-1.7	31.4	50.1	73.9	23.8	
Vert	57.341	QP	44.2	8.8	7.6	32.2	28.4	40.0	11.6	
Vert	61.437	QP	43.5	7.8	7.6	32.2	26.7	40.0	13.3	
Vert	81.917	QP	47.8	6.8	7.9	32.2	30.3	40.0	9.7	
Vert	458.174	QP	34.4	18.1	11.0	32.0	31.5	46.0	14.5	
Vert	500.162	QP	35.9	18.4	11.3	32.0	33.6	46.0	12.4	
Vert	623.990	QP	33.2	19.7	12.0	32.0	32.9	46.0	13.1	
Vert	4880.000	PK	51.1	31.4	3.8	34.0	52.3	73.9	21.6	
Vert	7320.000	PK	44.6	36.0	4.6	34.2	51.0	73.9	22.9	
Vert	9760.000	PK	41.6	38.9	5.3	34.7	51.1	73.9	22.8	
Vert	24400.000	PK	44.5	38.8	-1.7	31.4	50.2	73.9	23.7	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB 26.5GHz-40GHz 20log(3.0m/0.5m)=15.6dB

PK with Duty factor

I II WITH Du												
Frequency	Detector	Reading		Ant	Loss	Gain	Duty	Result		Limit	Margin	
		[dBuV]		Factor			Factor	[dBuV/m]			[dB]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver
4880.000	PK	48.1	51.1	31.4	3.8	34.0	-13.3	36.0	39.0	53.9	17.9	14.9
7320.000	PK	45.4	44.6	36.0	4.6	34.2	-13.3	38.5	37.7	53.9	15.4	16.2
9760.000	PK	43.8	41.6	38.9	5.3	34.7	-13.3	40.0	37.8	53.9	13.9	16.1
24400.000	PK	44.4	44.5	38.8	-1.7	31.4	-13.3	36.8	36.9	53.9	17.1	17.0

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter) - Gain(Amprifier) + Duty\ factor\ (Refer\ to\ Duty\ factor\ data\ sheet)$

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*}The 10th harmonic was not seen so the result was its base noise level.

 Page
 : 29 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Radiated Spurious Emission

Antenna6

Test place Head Office EMC Lab. No.2 and 3 Semi Anechoic Chamber

Report No. 32CE0103-HO-01

Date 03/16/2012 03/22/2012 03/22/2012

Temperature/ Humidity 20 deg. C / 30% RH 22 deg. C / 36% RH 22 deg. C / 36% RH Engineer Katsunori Okai Hiroshi Kukita Hiroshi Kukita (1-10GHz) (10-26.5GHz) (30-1000MHz)

Mode Tx 2475MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	57.341	QP	27.6	8.8	7.6	32.2	11.8	40.0	28.2	
Hori	61.438	QP	27.1	7.8	7.6	32.2	10.3	40.0	29.7	
Hori	81.918	QP	30.6	6.8	7.9	32.2	13.1	40.0	26.9	
Hori	458.174	QP	32.9	18.1	11.0	32.0	30.0	46.0	16.0	
Hori	500.000	QP	32.8	18.4	11.3	32.0	30.5	46.0	15.5	
Hori	623.988	QP	31.2	19.7	12.0	32.0	30.9	46.0	15.1	
Hori	2483.500	PK	66.5	27.5	2.3	34.8	61.5	73.9	12.4	
Hori	2485.008	PK	65.4	27.5	2.3	34.8	60.4	73.9	13.5	
Hori	4950.000	PK	48.0	30.6	3.9	31.9	50.6	73.9	23.3	
Hori	7425.000	PK	45.7	35.2	4.6	32.4	53.1	73.9	20.8	
Hori	9900.000	PK	42.5	38.5	5.6	32.9	53.7	73.9	20.2	
Hori	24750.000	PK	45.7	39.0	-1.7	31.2	51.8	73.9	22.1	
Vert	57.343	QP	43.6	8.8	7.6	32.2	27.8	40.0	12.2	
Vert	61.438	QP	43.1	7.8	7.6	32.2	26.3	40.0	13.7	
Vert	81.918	QP	49.0	6.8	7.9	32.2	31.5	40.0	8.5	
Vert	458.174	QP	33.8	18.1	11.0	32.0	30.9	46.0	15.1	
Vert	500.160	QP	36.0	18.4	11.3	32.0	33.7	46.0	12.3	
Vert	623.989	QP	34.5	19.7	12.0	32.0	34.2	46.0	11.8	
Vert	2483.500	PK	67.1	27.5	2.3	34.8	62.1	73.9	11.8	
Vert	2484.522	PK	65.3	27.5	2.3	34.8	60.3	73.9	13.6	
Vert	4950.000	PK	47.6	30.6	3.9	31.9	50.2	73.9	23.7	
Vert	7425.000	PK	44.3	35.2	4.6	32.4	51.7	73.9	22.2	
Vert	9900.000	PK	42.6	38.5	5.6	32.9	53.8	73.9	20.1	
Vert	24750.000	PK	45.8	39.0	-1.7	31.2	51.9	73.9	22.0	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amprifier)

*The 10th harmonic was not seen so the result was its base noise level. Distance factor: $\begin{array}{ccc} 10GHz\text{-}26.5GHz & 20\log(3.0\text{m}/1.0\text{m}) = 9.5\text{dB} \\ 26.5GHz\text{-}40GHz & 20\log(3.0\text{m}/0.5\text{m}) = 15.6\text{dB} \\ \end{array}$

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Mai	rgin
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver
2483.500	PK	66.5	67.1	27.5	2.3	34.8	-13.3	48.2	48.8	53.9	5.7	5.1
2485.008	PK	65.4	65.3	27.5	2.3	34.8	-13.3	47.1	47.0	53.9	6.8	6.9
4950.000	PK	48.0	47.6	30.6	3.9	31.9	-13.3	37.3	36.9	53.9	16.6	17.0
7425.000	PK	45.7	44.3	35.2	4.6	32.4	-13.3	39.8	38.4	53.9	14.1	15.5
9900.000	PK	42.5	42.6	38.5	5.6	32.9	-13.3	40.4	40.5	53.9	13.5	13.4
24750.000	PK	45.7	45.8	39.0	-1.7	31.2	-13.3	38.5	38.6	53.9	15.4	15.3

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor \ (Refer \ to \ Duty \ factor \ data \ sheet)$

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Page : 30 of 49
Issued date : April 4, 2012
Revised date : April 5, 2012
FCC ID : WWGZ2210

Duty Cycle

Test place Head Office EMC Lab. No.3 Semi Anechoic Chamber

Report No. 32CE0103-HO
Date 03/22/2012
Temperature/ Humidity 22 deg. C./ 36%
Engineer Hiroshi Kukita

Mode T:

	ON time(One pulse)	ON time(in 100ms)
Times	[ms]	[ms]
5	4 33	21 6650

^{*1)}ON time(in 100ms) = Times * ON time(One pulse)

(Total)

ON time	Cycle	Duty	Duty
[ms]	[ms]	(On time/Cycle)	[dB]
21.67	100.00	0.217	-13.3

^{*2)}Duty = 20log10(ON time/Cycle)

Below is the calculation for Duty cycle specification (Appendix 3).

^{*}The value of the theoretical worst duty condition for signal pattern in the specification is as follows.

ON time	Cycle	Duty	Duty
[ms]	[ms]	(On time/Cycle)	[dB]
21.50	100.00	0.215	-13.4

Duty = 20log10(ON time/Cycle)

Duty "-13.3dB" which was the measurement value was applied since the average value was more strict for limit when it was calculated by duty factor of the measurement value.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Blank(a) is intentional OFF time.

^{*}Duty factor was calculated based on the assumption of the worst condition in 100m sec.

 Page
 : 31 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Duty Cycle

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 32 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Conducted Spurious Emission

Tx 2405MHz

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 33 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Conducted Spurious Emission

Tx 2405MHz

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 34 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Conducted Spurious Emission

Tx 2440MHz

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 35 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Conducted Spurious Emission

Tx 2440MHz

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 36 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Conducted Spurious Emission

Tx 2475MHz

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 37 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Conducted Spurious Emission

Tx 2475MHz

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 38 of 49
Issued date : April 4, 2012
Revised date : April 5, 2012
FCC ID : WWGZ2210

Conducted Emission Band Edge compliance

Head Office EMC Lab.

 $4383\text{-}326 \; Asama\text{-}cho, Ise\text{-}shi, Mie\text{-}ken \; 516\text{-}0021 \; JAPAN$

Page : 39 of 49
Issued date : April 4, 2012
Revised date : April 5, 2012
FCC ID : WWGZ2210

Power Density

Test place Head Office EMC Lab. No.11 Measurement Room

Report No. 32CE0103-HO-01

Date03/13/201203/14/2012Temperature/ Humidity23 deg.C / 25% RH22 deg.C / 32% RHEngineerTakumi ShimadaKatsunori Okai

Mode Tx

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss				
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2405.00	-20.68	2.10	10.01	-8.57	8.00	16.57
2440.00	-19.27	2.11	10.01	-7.15	8.00	15.15
2475.00	-21.29	2.13	10.01	-9.15	8.00	17.15

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 40 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

Power Density

Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 41 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

99%Occupied Bandwidth

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 42 of 49 Issued date : April 4, 2012 Revised date : April 5, 2012 FCC ID : WWGZ2210

APPENDIX 2: Test instruments

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MRENT-95	Spectrum Analyzer	Agilent	E4440A	MY46185823	AT	2011/06/30 * 12
MCC-35	Microwave Cable	Hirose Electric	U.FL-2LP-066-A- (200)	-	AT	2011/09/30 * 12
MCC-137	Microwave cable	HUBER+SUHNER	SUCOFLEX 102	37954/2	AT	2011/10/28 * 12
MAT-25	Attenuator(10dB)(above1GHz)	Agilent	8493C	71642	AT	2011/06/23 * 12
MPM-08	Power Meter	Anritsu	ML2495A	6K00003338	AT	2011/09/13 * 12
MPSE-11	Power sensor	Anritsu	MA2411B	011737	AT	2011/09/13 * 12
MOS-19	Thermo-Hygrometer	Custom	CTH-201	0001	AT	2011/12/09 * 12
MAEC-02	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	RE	2011/06/21 * 12
MOS-22	Thermo-Hygrometer	Custom	CTH-201	0003	RE	2012/02/06 * 12
MJM-14	Measure	KOMELON	KMC-36	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE/CE	-
MSA-04	Spectrum Analyzer	Agilent	E4448A	US44300523	RE	2011/04/08 * 12
MTR-03	Test Receiver	Rohde & Schwarz	ESCI	100300	RE	2011/04/15 * 12
MBA-02	Biconical Antenna	Schwarzbeck	BBA9106	VHA9103200 8	RE	2011/10/23 * 12
MLA-02	Logperiodic Antenna	Schwarzbeck	USLP9143	201	RE	2011/10/23 * 12
MCC-12	Coaxial Cable	Fujikura/Agilent	-	-	RE	2012/02/16 * 12
MAT-07	Attenuator(6dB)	Weinschel Corp	2	BK7970	RE	2011/11/02 * 12
MPA-09	Pre Amplifier	Agilent	8447D	2944A10845	RE	2011/09/26 * 12
MHA-06	Horn Antenna 1- 18GHz	Schwarzbeck	BBHA9120D	254	RE	2012/02/22 * 12
MPA-10	Pre Amplifier	Agilent	8449B	3008A02142	RE	2012/01/25 * 12
MHF-06	High Pass Filter 3.5- 24GHz	TOKIMEC	TF323DCA	601	RE	2011/05/16 * 12
MCC-132	Microwave Cable	HUBER+SUHNER	SUCOFLEX104	336161/4(1m) / 340639(5m)	RE	2011/09/06 * 12
MSA-03	Spectrum Analyzer	Agilent	E4448A	MY44020357	AT/RE	2011/11/23 * 12
MAEC-04	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	CE	2012/02/29 * 12
MOS-15	Thermo-Hygrometer	Custom	CTH-180	-	CE	2012/02/06 * 12
MJM-09	Measure	KDS	E19-55	-	CE	-
MSA-10	Spectrum Analyzer	Agilent	E4448A	MY46180655	CE / RE	2012/02/03 * 12
APRCV05	Test Receiver	Rohde & Schwarz	ESS	840456/008	CE	2012/01/16 * 12
MLS-06	LISN(AMN)	Schwarzbeck	NSLK8127	8127363	CE(EUT)	2012/02/06 * 12
MLS-10	LISN	Kyoritsu	KNW-407	8-1851-1	CE(AE)	2011/12/12 * 12
MTA-30	Terminator	TME	CT-01	-	CE	2012/01/11 * 12
MAT-67	Attenuator(13dB)	JFW Industries, Inc.	50FP-013H2 N	-	CE	2012/01/28 * 12
MCC-113	Coaxial cable	Fujikura/Suhner/TSJ	5D- 2W(10m)/SFM14 1(5m)/421- 010(1m)/sucofor m141- PE(1m)/RFM- E121(Switcher)	-/04178	CE	2011/07/04 * 12
MAEC-03	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2012/02/24 * 12
MOS-13	Thermo-Hygrometer	Custom	CTH-180	-	RE	2012/02/06 * 12
MJM-06	Measure	PROMART	SEN1955	_	RE	

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8116 : +81 596 24 8124 Facsimile

 Page
 : 43 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

EMI test equipment (2/2)

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MTR-08	Test Receiver	Rohde & Schwarz	ESCI	100767	RE	2011/08/11 * 12
MBA-03	Biconical Antenna	Schwarzbeck	BBA9106	1915	RE	2011/10/15 * 12
MLA-03	Logperiodic Antenna	Schwarzbeck	USLP9143	174	RE	2011/10/15 * 12
MCC-51	Coaxial cable	UL Japan	-	-	RE	2011/07/15 * 12
MAT-09	Attenuator(6dB)	Weinschel Corp	2	BK7973	RE	2011/11/02 * 12
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	260834	RE	2012/03/16 * 12
MHA-20	Horn Antenna 1- 18GHz	Schwarzbeck	BBHA9120D	258	RE	2011/05/23 * 12
MCC-133	Microwave Cable	HUBER+SUHNER	SUCOFLEX104	336164/4(1m) / 340640(5m)	RE	2011/09/07 * 12
MPA-11	MicroWave System Amplifier	Agilent	83017A	MY39500779	RE	2011/03/10 * 12
MHA-16	Horn Antenna 15- 40GHz	Schwarzbeck	BBHA9170	BBHA917030 6	RE	2011/05/23 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item: CE: Conducted Emission

RE: Radiated Emission

AT: Antenna Terminal Conducted test

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 44 of 49

 Issued date
 : April 4, 2012

 Revised date
 : April 5, 2012

 FCC ID
 : WWGZ2210

APPENDIX 3: Duty cycle specification

Duty cycle (Burst mode)

DataRate:250kbits/sec Max Length:127bytes

Maxmum TX Time (PKT): 0. 004256sec

Burst period:20ms Duty cycle:21.5%

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN