Criptografia Simétrica

Prof. Vilmar Abreu Junior vilmar.abreu@pucpr.br

Agenda

- Termos
- Conceitos básicos
- Elementos
- Tipo de ataques
- Algoritmos

Termos

- Cifração/Encriptação: Processo de transformar um texto às claras (original) utilizando um algoritmo em um texto codificado/embaralhado;
- Decifração/Decriptação: Processo de restaurar um texto cifrado em um texto às claras (original);
- Criptografia: Conjunto de técnicas de escrita de texto utilizando cifração.

Antes de mais nada, é bom saber:

- Nenhuma técnica de criptografia é completamente segura;
- Porém dois critérios são considerados:
 - O custo para quebrar a cifração excede o valor da informação;
 - O **tempo** para quebrar a cifração excede a vida útil da informação.

Criptografia Simétrica

- Também conhecida como: Criptografia de chave única ou criptografia convencional;
- Técnica elementar para prover confidencialidade para dados transmitidos ou armazenados;
- A cifração e decifração da informação é realizada utilizando a mesma chave.

Criptografia Simétrica (cont.)

- Único tipo de criptografia existente até o final da década de 70;
- Conceito existe desde a época de Júlio Cesar até os dias de hoje;
- Continua sendo amplamente a técnica mais utilizada.

Mas o que é uma chave?

- String que determina a saída de um algoritmo de cifração;
- Tamanho pode ser tão grande quanto a mensagem a ser cifrada;
- Chaves de tamanho a partir de 80 bits são consideradas apropriadas;
- Chave não é sinônimo de senha.

Elementos

- Texto às claras: Mensagem/dado original;
- Algoritmo de cifração: Executa substituições e transformações no texto às claras;
- Chave secreta: As substituições/transformações do algoritmo dependem da chave.

Elementos (cont.)

- Texto cifrado: Mensagem/dado embaralhado produzido pelo algoritmo de cifração, utilizando o texto às claras e a chave secreta;
- •Algoritmo de decifração: É, essencialmente, o algoritmo de criptografia executado ao contrário. Recebe o texto criptografado e a chave secreta, produzindo o texto as claras original.

Modelo Simplificado

Premissas

- Distribuição das chaves: Remetente e destinatário devem obter a chave de maneira segura e manter em segurança;
- Algoritmo de cifração robusto: Caso o oponente tenha acesso a um ou mais textos cifrados, ele não deve ser capaz de decifrar o texto ou descobrir a chave;
 - Idealmente, mesmo que o oponente tenha o texto cifrado e o texto às claras, ele é incapaz de descobrir a chave.

Como atacar?

- Há duas abordagens gerais para atacar um esquema de cifração simétrica:
 - Criptoanálise;
 - Ataque de força bruta.

Criptoanálise

- Descrição: Recorrem a natureza do algoritmo e amostras de textos cifrados e o texto às claras correspondente;
- Funcionamento: Explora as características do algoritmo para tentar deduzir o texto às claras ou a chave que está sendo usado;
- Caso tenha sucesso: Efeito catastrófico, todas as mensagens futuras e passadas cifradas com aquela chave são comprometidas.

Ataque de força bruta

- Descrição: Tentar todas as chaves possíveis em um texto cifrado até obter uma tradução inteligível; Isto é simples?
- Funcionamento: Em média, deve ser tentada metade de todas as chaves possíveis para obter sucesso;
- Caso tenha sucesso: Efeito catastrófico, todas as mensagens futuras e passadas cifradas com aquela chave são comprometidas.

E se o texto às claras for um arquivo ZIP?

Tempo médio requerido para busca exaustiva de chave

Tamanho da chave (bits)	Número de chaves possíveis	Tempo requerido para um PC	Tempo requerido para um super PC
32	2^{32}	35,8 minutos	2,15 milisegundos
56	2 ⁵⁶	1.142 anos	10,01 horas
128	2^{128}	5,4 x 10 ²⁴ anos	5,4 x 10 ¹⁸ anos
168	2^{168}	5,4 x 10 ³⁶ anos	5,4 x 10 ³⁰ anos

Observação: Considerando que cada decifração leva 1 µs para PC, e um super PC realiza 1 milhão de decifrações por µs.

O Algoritmo precisa ser secreto?

- •Não, a criptografia simétrica assume que é impraticável decifrar uma informação apenas com a informação cifrada e conhecimento do algoritmo!
- O que isso implica?
 - Não é necessário investimentos no desenvolvimento de algoritmos de criptografia, eles são consolidados e disponibilizados na literatura!

Tipos de Algoritmos

Algoritmos baseados em substituição:

 Cada elemento (letra, bit, etc) do texto às claras é mapeado em outro elemento;

Algoritmos baseados em transposição:

 Cada elemento do texto às claras é rearranjado;

Nenhuma informação é perdida!

Cifra de Cesar

- É o algoritmo mais simples e antigo conhecido de substituição;
- Cada letra é substituída pelo letra que está a X índices a direita;
- Texto às claras: Professor gente boa
- Texto cifrado: Surihvvru jhqwh erd
- Como realizar o ataque de força bruta?

Exercício 01

Implemente a Cifra de Cesar;

Exercício 2

Crie um algoritmo de força bruta para quebrar a chave da Cifra de Cesar.

Distribuição de chave simétrica

Prof. Vilmar Abreu Junior vilmar.abreu@pucpr.br

Distribuição de chaves

- Para a criptografia de chave simétrica funcionar, é preciso que as duas partes tenham a mesma chave e que a mantenham protegida;
- Além disso, é desejável que frequentemente exista troca de chaves para diminuir a possibilidade de comprometimento do sistema;
- A distribuição de chaves é uma técnica para entregar chaves para entidades que desejam conversar, sem que outras entidades vejam a chave.

Como Bob pode distribuir a chave para Alice?

- 1. Bob seleciona a chave e entrega fisicamente para Alice;
- 2. Uma terceira entidade seleciona a chave e entrega fisicamente para Bob e Alice;
- 3. Se Bob e Alice já possuem previamente uma chave, Bob pode transmitir a nova chave cifrando ela na chave antiga;
- 4. Se Bob e Alice tiverem uma conexão criptografada com uma terceira entidade, essa pode transmitir a chave cifrada.

Centro de Distribuição de Chaves (KDC)

- O KDC (Key Distribution Center) é uma entidade terceira responsável por distribuir chaves;
- Esquema de distribuição amplamente utilizado;
- Cada usuário/processo compartilha uma chave única com o KDC;
- Baseado no conceito de hierarquia de chaves.

Hierarquia de chaves

- A comunicação entre duas entidades é realizada utilizando uma chave temporária, chamada de chave de sessão;
 - Normalmente a duração/utilização dessa chave está relacionada a uma conexão, depois é descartada;
- •Cada chave de sessão é obtida no KDC através de uma conexão criptografada utilizando a chave mestre, que é compartilhada entre o KDC e o usuário/processo.

Hierarquia de chaves (cont.)

- Ou seja, cada usuário/processo compartilha uma chave única com o KDC;
- Como é realizado esse compartilhamento de chaves?
 - Normalmente de maneira física.

Cenário de Distribuição de chaves

- Premissas:
 - Bob deseja conversar com Alice utilizando criptografia simétrica;
 - Bob não compartilha uma chave simétrica com Alice
 - Bob compartilha uma chave simétrica com o KDC (K_{bob})
 - Alice compartilha uma chave simétrica com o KDC (K_{alice})

Passo a passo (1/5)

Bob requisita ao KDC uma **chave de sessão** ($K_{sessão}$) para conversar com Alice, esta mensagem contém:

- Identificador de Bob
- Identificador de Alice
- Nonce (Identificador único: normalmente um número aleatório ou timestamp, tem a finalidade de identificar a requisição)

Passo a passo (2/5)

KDC responde com uma mensagem cifrada utilizando K_{bob} , ou seja, apenas Bob consegue decifrar;

A mensagem contém duas informações direcionadas para Bob e duas para Alice.

Passo a passo (2/5) - (cont.)

Informações direcionadas para Bob:

- Chave de sessão ($K_{sessão}$), que será utilizada para comunicar com Alice;
- Requisição inicial (Passo 1), com o Nonce incluso;
 - Permite identificar e verificar a integridade da mensagem

Passo a passo (2/5) - (cont.)

Informações direcionadas para Alice cifradas utilizando a K_{alice} :

- Chave de sessão ($K_{sessão}$), que será utilizada para comunicar com Alice;
- Identificador de Bob (por exemplo, IP)

Bob não consegue ler as mensagens direcionadas para Alice!

Passo a passo (3/5)

- Bob armazena $K_{sess\~ao}$ para ser utilizada posteriormente e encaminha as informações que vieram do KDC para Alice ;
- Como a mensagem está cifrada utilizando a K_{alice} , Alice sabe que a mensagem foi originada em KDC;
- Dessa forma, Alice conhece o identificador de Bob e a chave de sessão.

Passo a passo (3/5)

- Nesse momento, Bob e Alice possuem a $K_{sess\~ao}$ e podem conversar utilizando criptografia simétrica;
- Entretanto, dois passos a mais são desejáveis.

Passo a passo

- Nesse momento, Bob e Alice possuem a $K_{sess\~ao}$ e podem conversar utilizando criptografia simétrica;
- Entretanto, dois passos a mais são desejáveis.

Passo a passo (4/5)

• Alice gera um nonce e encaminha para Bob, cifrando na $K_{sess\~ao}$.

Passo a passo (5/5)

- Bob responde Alice executando uma função sobre o nonce recebido, cifrando na $K_{sessão}$.
 - Essa função pode ser uma operação matemática, por exemplo: incrementar o nonce.
- Observação: Esses dois últimos passos garantem a autenticação!

Vida útil da chave de sessão

- Considerando que quanto mais trocas de chaves houver, maior será o nível de segurança, por que um possível atacante terá menos amostras de textos cifrados utilizando a mesma chave;
- Por outro lado, a distribuição de chaves atrasa o inicio da comunicação entre as entidades, além de consumir recursos;
- Qual a vida útil adequada?
 - Um bom administrador deve balancear esses fatores e considerar fatores externos, como o tipo de conexão.

Exercício 3

Implemente um KDC utilizando a cifra de cesar como algoritmo de cifração.

