Universidad Nacional de Ingeniería

Facultad de Ciencias

Ciclo: 2014-2

[Cod: CM 132 Curso: Calculo Diferencial]

[Tema: Lógica proposicional, Métodos de demostración.]

Practica dirigida Nº 1

- Sean A, B y C tres conjuntos. Demostrar que
 - a) $A \subset B \Leftrightarrow A \cup B = B$.
 - b) $A \setminus B \subset C \leftrightarrow A \setminus C \subset B$.
 - c) $A \subset B \leftrightarrow \forall D(D \subset A \Rightarrow D \subset B)$.
- 2. Considere A = 1, 2, 3, 4. Hallar por extensión los siguientes conjuntos
 - a) $A_2 = \{x \in A : \forall y \in A, x^2 + y \ge 8\}$
 - b) $A_3 = \{x \in A : \exists ! y \in A, x^2 + y \ge 8\}.$
- Utilizando las leyes de la lógica proposicional, simplificar la siguiente proposición compuesta

$$[(p \lor q) \land (p \to q)] \lor [\sim (p \lor q) \land \sim (p \to q)] \equiv \mathbb{Q}$$

4. hallar el valor de verdad

$$orall a \in \mathbb{R}, \exists n_0 \in \mathbb{N} / \qquad n > n_0 o n > a$$
 $orall r \in \mathbb{R}, \exists n \in \mathbb{Z} / \qquad n \leq r \land r < x o n + 1$

- 5. Utilizando tablas de verdad verificar, si es contingencia, tautología o contradicción:
 - a) $(p \wedge q) \rightarrow r$ WENTER
 b) $\sim (p \wedge q) \vee r$ where

- c) $q \leftrightarrow (\sim p \land q)$ contains
- d) $p \to \to \sim (q \land r)$ comp
- $e) \ ((p \to q) \to r) \leftrightarrow ((p \land q) \to r)$
- 6. Sea A y B dos conjuntos y A^c y B^c sus complementos.

Probar que $(A \cap B)^c = A^c \cup B^c$.

7. Determine el valor de verdad de las siguientes proposiciones

$$p(x) \equiv x ext{ es par}$$
 which is $q(x) \equiv x ext{ divide a 4}$

- $a) \exists, p(x) \land q(x) \lor$
- b) $\forall x, p(x) \rightarrow q(x)$ and $\forall y(x) \in \mathbb{R}$
- c) $\exists x, p(x) \lor q(x)$
- 8. Considerando $\overline{A} = A^c$ como el complemento del conjunto A.

Demostrar

$$A \cup (A \cap B) = A.$$

$$A \cap (A \cup B) = A.$$

$$A \setminus B = A \cap \overline{B}.$$

$$A \setminus B = A \cap \overline{B}.$$

$$A \setminus B = A \cap \overline{B}.$$

9. Considere la proposición siguiente:

$$p: (\forall \epsilon > 0)(\exists m \in \mathbb{N})(\frac{1}{m} \leq \epsilon \rightarrow \frac{1}{m} + 1 < \epsilon)$$

$$(\exists \epsilon > 0)(\forall h \in \mathbb{N})(\frac{1}{m} \leq \epsilon \rightarrow \frac{1}{m} + 1 < \epsilon)$$

- a) Negar la proposición p.
- b) Determine si la proposición p es verdadera o falsa.
- 10. Negar las proposiciones siguientes
 - a) $\forall x, \forall y, \exists z, (x+y) = z$
 - b) $\forall x, y(xy \leq 2) \exists x / \forall (x \neq 2)$
 - c) $\forall x, \forall y, \forall z, x + z < y$
 - d) $\exists x, \exists y/xy < 2$
- 11. Construir la tabla de verdad para la siguiente proposición

$$\underbrace{[p \land (p \lor q)]}_{\mathcal{D}} \leftrightarrow \underbrace{p}_{=} \bigvee$$

- 12. ¿Es cierto o falso que $\sim (p \land q) \leftrightarrow [p \lor \sim q]$ es equivalente a $\sim p \lor \sim q$.
- 13. Pruebe que $\sim (p \leftrightarrow q) \leftrightarrow (\sim p \leftrightarrow \sim q)$ es contradicción.
- 14. Si $A = \{1, 2, 3, ..., 10\}, B = \{x \in A : x < 3 \leftrightarrow x \ge 6\}$. Determine el valor de verdad de las siguientes proposiciones:
 - a) $\forall x \in A, \exists y \in B \text{ tal que } x + y \leq 7.$
 - b) $\forall x \in A, \exists y \in B \text{ de modo que } x + y \in B$.
 - c) $\exists x \in A, \forall y \in B, x + y \in A.$
- Sean p y q dos proposiciones lógicas. Sabiendo que
 - a) $\sim p \wedge q$ es contradicción.
 - b) $p \wedge q \equiv p$.

 ${
m P}_{
m ruebe}$ que $p\equiv q_{m \cdot}$.

16. p_{ara} una proposición cualquiera p se $d_{\text{effne}}:V(p) = egin{cases} 1, & \text{si p es verdadera.} \\ 0, & \text{si p es falsa.} \end{cases}$

- a) Pruebe que
 - V(-p) = 1 V(p).
 - $V(p \lor q) = V(p) + V(q) V(p)V(q).$
- b) Encuentre la formula de $V(p \to q)$.
- 17. Dados $A, B \subset E$. Pruebe que $A \subset B \Leftrightarrow A \cap B^c = \emptyset$.
- 18. Sean A, B subconjuntos de U. Demostrar que
 - a) $A \subset B \Leftrightarrow A \cup B = B$.
 - b) $A \subset B \Leftrightarrow A \cap B = A$.
 - c) $A \cap B = A y A \cup B = A \Leftrightarrow A = B$.
- 19. Probar que $A \cap (B-C) = (A \cap B) (A \cap C)$.
- 20. Sea $A = \{1, 2, ..., 20\}, B = \{x \in A : x < 5 \leftrightarrow x \geq 7\}$. Indagar el valor de verdad de las siguientes proposiciones:
 - a) $\forall X \subset A \to B \cap X = \emptyset$.
 - b) $\exists X \subset \exists A \land Y \subset B \text{ tal que } X \cap Y = \emptyset.$
 - c) $\exists D \subset A \text{ tal que } B \cup D = A.$
 - d) $\exists X \in A, \forall y \in B, x < y$.
 - e) $\forall x \in A, \exists y \in A \text{ tal que } x y \in B.$
- 21. Demostrar que si n^2 es múltiplo de 5, entonces n es múltiplo de 5.
- 22. Analice el valor de verdad de las proposiciones siguientes:
 - a) $\exists x \in \mathbb{R}$ tal que $\forall y \in \mathbb{R}, x^2 + y^2 = (x+y)^2$.
 - b) $\exists x \in \mathbb{R}$ de modo que 2x-4=4x-2.
- 23. Dados los conjuntos A y B. Sea X un conjunto con las siguientes característica

- a) $A \subset X, B \subset X$.
- b) si $A \subset Y, B \subset Y$, entonces $X \subset Y$.

Probar que $X = A \cup B$.

- 24. Sean $A, B \subset E$. Pruebe que $A \cap B = \emptyset \Leftrightarrow A \subset B^c$, donde B^c es el complemento del conjunto B respecto a E.
- 25. Demostrar que $A \cup B = E \Leftrightarrow A^c \subset B$, siendo $A, B \subset E$.
- 26. Sean $A, X \subset E$ son conjuntos tales que $A \cap X = \emptyset$ y $A \cup X = E$. Pruebe que $X = A^c$.
- 27. Sean $A \ y \ B$ dos conjuntos. Demostrar que $A \cup B \neq \emptyset$, entonces $A \neq \emptyset$ o $B \neq \emptyset$.
- 28. Sabiendo que $n \in \mathbb{Z}$. Probar que si n^2 es múltiplo de 3, entonces n es múltiplo de 3.
- 29. Probar que para todo $n \in \mathbb{N}, n^3 n$ siempre es múltiplo de tres.
- 30. Sea n un número impar. Probar que n^2 es de la forma 8k + 1 para algún k > 1.
- 31. Determine el valor de verdad de las siguientes proposiciones:
 - a) $\forall n \in \mathbb{Z}, n^2 \geq n$.
 - b) $\exists n \in \mathbb{Z}, n^2 = 2$
 - c) $\forall n \in \mathbb{Z} \exists m \in \mathbb{Z}, n^2 < m$.
 - d) $\exists n \in \mathbb{Z} \exists m \in \mathbb{Z}, n^2 + m^2 = 6.$
 - $e) \exists n \in \mathbb{Z} \forall m \in \mathbb{Z}, nm = m.$
- 32. Si n es impar entonces n^2 es impar.
- 33. Si 3n + 2 es impar entonces n es impar.

H. El entero n es impar si y solo si n^2 es impar.

Si n es un entero y $n^3 + 5$ es impar entonces n es par.

36. Si 3n-1 es par, probar que n es impar.

Demostrar que si 3n-1 es par, entonces n es impar.

- 38. Probar que $\sqrt{2}$ es un número irracional.
- 39. Alguien mencionó la siguiente conjetura:Si n es un entero positivo, entonces

$$n^2 - n + 11$$

es un número primo. Indique su valor de verdad.

- 40. Demostrar: Considere a, b, c número naturales.
 Si a|b y a|(b² c), entonces a|c.
- 41. Probar: Sabiendo que n es un entero positivo, entonces

$$4|n^2 \vee 4|(n^2-1)$$

42. Demostrar que si *n* es un entero, entonces

$$4 r (n^2 + 2)$$

43. Demostrar que si n es impar, entonces $8|(n^2-1)$.

Demostrar que se cumple $p \lor \sim s$

$$\sim r \rightarrow s$$

$$\sim p \to r$$

46. Demostrar que se cumple con $\sim N,$ utilizando las premisas siguientes

$$s \rightarrow \sim r$$

T

$$\sim s \rightarrow q$$

$$q \rightarrow \sim N$$

- 47. Determine cuales de los siguientes razonamientos son válidos
 - a) Considere

$$p \wedge q$$

$$\therefore r \wedge q$$

b) Considere la estructura siguiente $p \lor$

q

$$p \rightarrow r$$

 $r \lor q$

c) Considere $p \to q$

 $p \rightarrow r$

$$r \rightarrow q$$

d) Demostrar

 $q \lor p$

$$\sim (p \vee \sim r)$$

 $r \rightarrow s$

$$r \rightarrow s$$

$$(q \wedge s) \rightarrow (t \wedge s)$$

 $\therefore t$

Lunes 01 de setiembre del 2014¹

 $^{^2\}mathrm{Hecho}$ en \LaTeX