ESTIMATION ADAPTATIVE PAR NOYAUX DÉFORMÉS.

Gaëlle Chagny

Laboratoire Map5, UMR CNRS 8145, Université Paris Descartes

Séminaire TEST, Télécom ParisTech, 18 octobre 2012.

Cadra gápáral

Estimateurs à noyaux

Estimateur avec fenêtre

tixee

Estimateur

Adantativitá

Sélection de la fenêtre

Cas Fy inconnue

IIIUSIIAIIOIIS

Consura nar in

Conclusion

Plan

Introduction

Cadre général

Estimateurs à noyaux

Estimateur avec fenêtre fixée

Déformation

Estimateur

Risque

Adaptativité

Sélection de la fenêtre

Résultat principal

Cas F_X inconnue

Illustrations

Régression

Censure par intervalle

Conclusion

Références

ntroduction

Cadre général

Estimateur avec fenêtre

Déformation

Estimateur

Adaptativité

Résultat principa

Cas F_X inconnu

Régression

Censure par int

Officialion

Cadre statistique

Estimation non paramétrique

Modèle : (X, Y) couple de variables aléatoires réelles, de support A × B ⊂ R².

► X variable de support $A \subset \mathbb{R}$ densité : f_X fonction de répartition : F_X .

- Objectif: Reconstruire une fonction s, liée aux variables (X, Y) avec un estimateur à noyau.
- ▶ Observations : $(X_i, Y_i)_{i \in \{1,...,n\}}$ $(n \in \mathbb{N} \setminus \{0\})$, i.i.d de même loi que (X, Y).

Introduc

Cadre général

fixée

Estimateur

Adaptativité

Sélection de la fenêtre

Cas F_X inconnue

Régression

Censure par intervalle

0011010101011

Exemples étudiés

Exemples	(X,Y)	s	Hypothèses		
Ex1 Régression additive	$Y = s(X) + \varepsilon$	s	$arepsilon \in L^2(\mathbb{P}), \mathbb{E}[arepsilon] = 0$ $arepsilon \coprod X$		
Ex2 Régression multiplicative	$Y = \sigma(X)\varepsilon$	σ^2	$arepsilon \in L^4(\mathbb{P}), \mathbb{E}[arepsilon] = 0 \ \mathbb{E}[arepsilon^2] = 1, arepsilon \perp X$		
Ex3 Censure par intervalle	$(X,Y=1_{Z\leq X})$	F _Z	$Z, X \ge 0$ $Z \perp\!\!\!\perp X$		
Ex4 Censure droite	$(X = Z \wedge C, Y = 1_{Z \leq C})$	<u>f_Z</u> 1–F _Z	$Z, C \ge 0$ $F_Z < 1, Z \perp \!\!\!\perp C$		

Méthode : Estimateurs à noyaux

- ▶ **Noyau :** $K : \mathbb{R} \to \mathbb{R}$, fonction intégrable, tq $\int_{\mathbb{R}} K(x) dx = 1$.
- Approximation de l'unité :
 - $\mathcal{H} \subset \mathbb{R}_+^*$ (fenêtres), et

$$\forall h \in \mathcal{H}, \ K_h : x \mapsto \frac{1}{h} K\left(\frac{x}{h}\right)$$

Propriété : si s est suffisamment régulière,

$$K_h \star s = \int_{\mathbb{R}} K_h(.-x)s(x)dx \xrightarrow[h\to 0]{} s$$
 en un certain sens.

- Principe de l'estimation d'une fonction s avec des noyaux :
 - ► Trouver ψ telle que, pour tout $h \in \mathcal{H}$, $\mathbb{E} \left[\psi((X, Y), K_h) \right] = K_h \star s$.
 - Proposer un estimateur de type "moment" pour s :

$$\hat{\mathbf{s}}_h = \frac{1}{n} \sum_{i=1}^n \psi((X_i, Y_i), K_h)$$

• Choisir une "bonne" fenêtre $\hat{h} \in \mathcal{H}$ sur la base des observations

Introduction

Cadre général

Estimateurs à noyaux

Estimateur ave

Déformation Estimateur

Adaptativité

Sélection de la fenêtre Résultat principal

Cas F_X inconnu

Régression

onclusion

ÁfÁranasa

Un exemple classique

- **Ex1**: Régression additive, $Y = s(X) + \varepsilon$
- Estimateur de Nadaraya-Watson (1964)

$$\mathbb{E}[YK_h(x-X)] = K_h \star (sf_X)(x) \text{ et } \mathbb{E}[K_h(x-X)] = K_h \star f_X(x).$$

► Idée :
$$s = \frac{sf_X}{f_X} \approx \frac{K_h \star (sf_X)}{K_h \star f_X}$$
.

Estimateur :

$$\hat{s}^{NW}(x) = \frac{\frac{1}{n} \sum_{i=1}^{n} Y_i K_h(x - X_i)}{\frac{1}{n} \sum_{i=1}^{n} K_h(x - X_i)}$$

... problème : quotient.

• ... de même dans les autres exemples étudiés : on ne peut pas trouver ψ telle que $\mathbb{E}\left[\psi((X,Y),K_h)\right]=K_h\star s$.

Cadro général

Estimateurs à noyaux

Estimateur ave

Déformation

Estimateur

Adaptativité

élection de la fenêtre

Cas F_v inconnue

- A

Régression

'analysian

Estimateur pour une fenêtre fixée

Méthode de déformation

▶ **Point clé** : Il existe une fonction $\phi_X : A \to \phi_X(A)$ bijective, telle que

$$\mathbb{E}\left[\theta(Y)K_h(u-\phi_X(X))\right]=K_h\star(s\circ\phi_X^{-1})(u),$$

avec
$$\theta(Y) = \begin{cases} Y \text{ (Ex1,3,4)} \\ Y^2 \text{ (Ex2)} \end{cases}$$

- **Déformation** ϕ_X :
 - φ_X = F_X, fonction de répartition de X pour Ex1, Ex2 (régression) et Ex3 (censure par intervalle) bijective si f_X > 0 sur A.
 - ▶ $\phi_X = \phi : x \mapsto \int_0^x (1 F_X(t)) dt$, dans l'Ex4 (censure à droite) bijective si $F_X(x) < 1$ pour tout $x \in \mathbb{R}_+$.
- Méthode :
 - 1. Estimer $g = s \circ \phi_X^{-1}$ par un estimateur à noyau \hat{g} .
 - 2. Poser

$$\hat{\mathbf{s}} = \begin{cases} \hat{g} \circ \phi_X \text{ si } \phi_X \text{ est connue,} \\ \hat{g} \circ \hat{\phi}_X \text{ sinon.} \end{cases}$$

► **Références :** Yang (1981), Stute (1984,1986), Kerkyacharian et Picard (2004)

ntroduction

Estimateurs à nova

Estimateur avec fenêtre

Déformation

Risque

Sélection de la fenêtre

Cas F_X inconnue

Illustrati

Censure par intervalle

Conclusio

Estimateur pour une fenêtre fixée

Soit $h \in \mathcal{H}$ fenêtre fixée.

1. Estimateur pour $g = s \circ \phi_X^{-1} : \phi_X(A) \to \mathbb{R}$

$$\forall u \in \phi_X(A), \ \hat{g}_h(u) = \frac{1}{n} \sum_{i=1}^n \theta(Y_i) K_h \left(u - \phi_X(X_i) \right).$$

2. Estimateur pour $s: A \to \mathbb{R}$

$$\forall x \in A, \ \hat{s}_h(x) = \hat{g}_h \circ \phi_X(x) = \frac{1}{n} \sum_{i=1}^n \theta(Y_i) K_h \left(\phi_X(x) - \phi_X(X_i) \right).$$

→ estimateur simple (moyenne empirique), sans quotient.

Introduction

Estimatours à novai

Estimateur avec fenêtre

Déformation

Estimateur

Adaptativitá

Sélection de la fenêtre Résultat principal

Cas F_X inconnue

Régression

Jensure par interval

2///

ightharpoonup Risque quadratique intégré pondéré par ϕ_X' :

$$\mathbb{E}\left[\|\hat{\mathbf{s}}_{h} - \mathbf{s}\|_{\phi'_{X}}^{2}\right] = \int_{A} \left(\hat{\mathbf{s}}_{h}(x) - \mathbf{s}(x)\right)^{2} \phi'_{X}(x) dx = \mathbb{E}\left[\|\hat{g}_{h} - g\|^{2}\right].$$

Décomposition biais-variance

$$\mathbb{E}\left[\|\hat{s}_h - s\|_{\phi_X'}^2\right] = \underbrace{\mathbb{E}\left[\|\hat{g}_h - K_h \star g\|^2\right]}_{\text{Variance}} + \underbrace{\|K_h \star g - g\|^2}_{\text{Biais}}.$$

Introduction

Cadre general

Estimateur avec fenêtre

Déformation Estimateur

Risque

laptativité

Sélection de la fenêtre

 $\mathsf{Cas}\; F_X\;\mathsf{inconnue}$

Régression

Conclusion

Estimateur pour une fenêtre fixée

Risque 2/2

1. Biais.

Si g a pour indice de régularité α ($g \in \mathcal{H}(\alpha, L)$ ou $g \in \mathcal{N}_2(\alpha, L)$), et si K est d'ordre $I = [\alpha]$,

$$||K_h \star g - g||^2 \leq C(\alpha, L)h^{2\alpha}.$$

2. Variance. Si $K \in L^2(\mathbb{R})$,

$$\mathbb{E}\left[\|\hat{g}_h - K_h \star g\|^2\right] \leq \mathbb{E}\left[\theta^2(Y_1)\right] \|K\|_{L^2(\mathbb{R})}^2 \frac{1}{nh},$$

avec

$$\theta(Y_1) = \begin{cases} Y_1 \text{ (Ex1,,3,4)} \\ Y_1^2 \text{ (Ex2).} \end{cases}$$

→ Compromis biais-variance

Introduction

Caure general

Estimateu

Déformation

Estimateur Risque

Adantativité

Sélection de la fe

Resultat princip

llustrations

Régression
Consure par intervall

onclusion

Sélection de la fenêtre

Compromis biais-variance

Exemple (Ex1) : $Y = s(X) + \varepsilon$, estimation de la fonction de régression s

►
$$s: x \mapsto x(x-1)(x-0.6)$$
,

- design X uniforme,
- bruit ε gaussien.

Introduction

Estimateurs à nova

Estimateur avec fenêtr

Déformation

Estimateur

Adaptativité

Sélection de la fenêtre

Résultat principal Cas F_X inconnue

Régression

Conclusion

Sélection de la fenêtre

Compromis biais-variance

Exemple (Ex1) : $Y = s(X) + \varepsilon$, estimation de la fonction de régression s

- ► $s: x \mapsto x(x-1)(x-0.6)$,
- ▶ design X uniforme,
- bruit ε gaussien.

Evaluation du risque en fonction de la fenêtre h

Introduction

Estimatoure à noua

Estimateur avec fenêtre

Déformation

Estimateur

Adantativité

Sélection de la fenêtre

Résultat principa Cas F_X inconnue

Régression

Censure par inte

Conclusion

Si la régularité α de g est connue :

$$\mathbb{E}\left[\|\hat{\mathbf{s}}_h - \mathbf{s}\|_{\phi_X'}^2\right] \leq \frac{\mathbb{E}[\theta^2(Y_1)]\|K\|^2}{nh} + \|K_h \star g - g\|^2 \leq \frac{\mathbb{E}[\theta^2(Y_1)]\|K\|^2}{nh} + Ch^{2\alpha},$$

Choix de la fenêtre h:

Choix de la fenetre
$$h$$
:
$$h^* = \arg\min_{h \in \mathcal{H}} \left\{ \frac{\mathbb{E}[\theta^2(\mathsf{Y}_1)] ||K||^2}{nh} + Ch^{2\alpha} \right\}$$

→ Vitesse de convergence du risque

$$\mathbb{E}\left[\|\hat{s}_{h^*}-s\|_{\phi_x'}^2\right] \leq n^{-\frac{2\alpha}{2\alpha+1}}.$$

Question : Comment sélectionner h quand α est inconnu ?

Sélection automatique de la fenêtre

Méthode de Goldenshluger-Lepski (2011)

1. Approximation du terme de variance

$$\forall h \in \mathcal{H}, \ V(h) = \delta(1 + \|K\|_{L^{1}(\mathbb{R})}^{2}) \mathbb{E}[\theta^{2}(Y_{1})] \frac{\|K\|_{L^{2}(\mathbb{R})}^{2}}{nh}.$$

2. Approximation du terme de biais

$$\forall h \in \mathcal{H}, \ A(h, \phi_X) = \max_{h' \in \mathcal{H}} \left\{ \left\| \hat{g}_{h'} - \hat{g}_{h,h'} \right\|^2 - V(h') \right\}_+.$$

avec
$$\hat{g}_{h,h'} = K_{h'} \star \hat{g}_h$$
.

- ▶ Règle de sélection : \hat{h} ∈ argmin_{$h \in \mathcal{H}$} { $A(h, \phi_X) + V(h)$ }
- Estimateur :
 - ▶ pour $g: \hat{g}_{\hat{h}}$
 - pour s :

$$\hat{m{s}}_{\hat{h}} = \hat{m{g}}_{\hat{h}} \circ \phi_{m{X}}$$

Introduction

Caure general

Estimateur avec fenêtre

Dáformal

Estimateur

Adaptativité

Sélection de la fenêtre

Cas F_X inconnue

Régression

Censure par inte

Hypothèses

- $s \in L^{\infty}(A)$.
- ▶ Collection ℋ pas trop "grosse"

$$\mathcal{H} = \{k^{-1}, \ k = 1, \dots, [\sqrt{n}]\},$$

$$\mathcal{H} = \{2^{-k}, \ k = 1, \dots, [\log_2(n)]\}.$$

- hypothèse d'existence de moments pour le bruit ε dans les Ex1 et Ex2 (régression)
- Théorème

Il existe c_i , i = 1, 2 et C des constantes, telles que

$$\mathbb{E}\left[\|\hat{\mathbf{s}}_{\hat{h}} - \mathbf{s}\|_{\phi_X'}^2\right] \leq \min_{h \in \mathcal{H}} \left\{c_1 \mathbb{E}[\theta^2(Y_1)] \|K\|_{L^2(\mathbb{R})}^2 \frac{1}{nh} + c_2 \|K_h \star g - g\|^2\right\} + \frac{C}{n} \bullet$$

ightarrow pour g d'indice de régularité lpha, et K d'ordre suffisant, vitesse de convergence du risque $n^{-\frac{2a}{2a+1}}$.

Introduction

Estimatours à nova

Estimateur avec fenêtre

Déformatio

Estimateur

Adaptativité

Sélection de la fenêtre

Résultat principal

...

Régression

Cerisure par intervali

Conclusion

References

Cas général F_X inconnue

Méthode de plug-in

- ▶ Remplacer ϕ_X par un estimateur, partout où elle intervient.
- ▶ Version empirique de ϕ_X
 - Observations supplémentaires : (X_{-i})_{i∈[1,...,n]}, indépendantes des (X_i)_i et de même loi.
 - Estimateur $\hat{\phi}_X$ de F_X ou de ϕ :

$$\hat{F}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{]-\infty;X_{-i}]}, \qquad \hat{\phi}_n(x) = \int_0^x (1 - \hat{F}_n(t)) dt = \frac{1}{n} \sum_{i=1}^n X_{-i} \wedge x.$$

Estimateur pour g et pour s :

$$\hat{g}_{\hat{h}}^{\hat{\phi}}(u) = \frac{1}{n} \sum_{i=1}^{n} \theta(Y_i) K_{\hat{h}} \left(u - \hat{\phi}_n(X_i) \right) \qquad \hat{s}_{\hat{h}}(x) = \hat{g}_{\hat{h}}^{\hat{\phi}} \circ \hat{\phi}_n(u).$$

 \longrightarrow Mêmes résultats théoriques, avec un peu plus d'hypothèses (contrainte sur \mathcal{H} , et hypothèse $s \in C^1(A)$).

Cadre général

Estimateur avec fenêtre

Déformation Estimateur

Risque

daptativité

Résultat principal

Cas F_X inconnue

Régression

Conclusion

Simulations

1. Objectifs

- Illustrer la méthode.
- Comparer des estimateurs de type 'noyaux déformés' aux estimateurs de type 'moindres carrés' (en base trigonométrique, ou fondée sur des polynômes par morceaux)
 toolbox Matlab FY3P de Y. Rozenholc)

2. Fenêtres et noyaux

- ► Fenêtres : $\mathcal{H}_n = \{k^{-1}, k = 1, ..., [\sqrt{n}]\},$

3. Exemples:

- en régression additive (Baraud (2002))
- en censure par intervalle (Brunel et Comte (2009)).

ntroduction

Ectimatoure à nova

Estimateur avec fenêtr

Déformation

Estimateur Rismus

daptativité

Sélection de la fenêtre Résultat principal

Cas F_X inconnu

Illustrations

Censure par interval

Conclusion

Simulations: Ex1 Régression additive

$$(X, Y)$$
 tels que $Y = s(X) + \varepsilon$, $s(X) = x(X - 1)(X - 0.6)$.

Observations : $X \sim \mathcal{U}_{[0;1]}$, $\varepsilon \sim \mathcal{N}(0, 0.006)$, n = 1000.

Comparaison des risques (×10³)

n=60	200	500	2000	Méthode	
0.3719	0.1341	0.0604	0.0324	ND	_
0.5222	0.447	0.5846	0.6469	MCT	
0.3772	0.1283	0.0802	0.0666	MCP1	
0.3892	0.1293	0.0681	0.0446	MCP2	4 □ > 4 ∰ > 4 ≅ > 4 ≅ > □

Introduction

Cadre général

Estimateur avec fenêtre

Déformation Estimateur

Adantativitá

Résultat principal

luotrationa

Régression

Consulo par intervant

Simulations: Ex1 Régression additive

$$(X, Y)$$
 tels que $Y = s(X) + \varepsilon$, $s(X) = \cos(4\pi X) + \exp(-X^2)$.

Observations : $X \sim \gamma(4, 0.8), \, \varepsilon \sim \mathcal{N}(0, 0.194), \, n = 1000.$

Introduction

Estimateurs à noyaux

Estimateur avec fenêtre

Déformation Estimateur

daptativité

Résultat principal

Régression

Censure par interva

Conclusion

Références

Comparaison des risques (×10³)

n=60	200	500 2000		Méthode
19.615	6.283	3.869	3.309	ND
14.177	13.374	13.579	13.149	MCT
41.261	13.34	4.808	3.727	MCP1
23.213	5.549	2.059	0.86	MCP2

Simulations: Ex1 Régression additive

$$(X, Y)$$
 tels que $Y = s(X) + \varepsilon$,
 $s(x) = -\exp(-200(x - 0.1)^2) - \exp(-200(x - 0.9)^2) + 1$.

Observations: $X \sim 0.5 \mathcal{N}(0.05, 0.01) + 0.5 \mathcal{N}(0.05, 0.95)$, $\varepsilon \sim \mathcal{N}(0, 0.032)$, n = 1000.

Comparaison des risques (>103)

Comparaison des risques (x 10)										
	n=60	200	500	2000	Méthode					
	12.052		1.698			_				
	9.701	12.174	31.112	78.242	MCT					
	61.715	26.986	15.08	8.284	MCP1					
	52.668	11.009	5.817	1.215	MCP2	4 D > 4 🗗)	4 ≣ →	4 ∌ →	=	200

Régression

Simulations : Ex4 Censure par intervalle, Cas I

 $(X, Y = \mathbf{1}_{Z \leq X})$, estimation de F_Z

Observations : $X \sim \mathcal{E}(0.1), Z \sim \gamma(4,3), n = 1000.$

Introduction

Estimateurs à noyaux

Estimateur avec fenêtre

Déformation Estimateur

Adantativitá

Résultat principal

Illustration

Censure par intervalle

Conclusion

Références

Comparaison des risques (×10²)

n=60	200	500	2000	Méthode
15.125	4.432	2.428	1.544	ND
25.383	21.553	2.536	1.733	MCT
28.452	14.315	8.815	7.158	MCP1
19.825	11.797	9.738	5.898	MCP2

Conclusion

→ Noyaux déformés, sélection de la fenêtre par méthode de Goldenshluger-Lepski :

Avantages de la méthode

- résolution de problèmes variés d'estimation non paramétrique (régression, estimation pour des données censurées),
- extension à l'estimation de fonctions de 2 variables : densité conditionnelle d'un couple (X, Y),
- estimateurs ayant une expression simple, sans quotient donc facilement implémentables, avec une seule fenêtre à sélectionner.
- estimateurs à noyaux adaptatifs, satisfaisants des bornes de risque non asymptotique.

Inconvénients

- hypothèse de régularité portant sur la fonction auxiliaire g et non sur la fonction cible s pour la majoration du biais.
- substitution de $\hat{\phi}_n$ à ϕ_X naturelle, mais nécessitant des calculs techniques.

Cadre général

Estimateurs à noyaux

Estimateur avec fer

Déformatio

Risque

aptativité

Selection de la fenetre Résultat principal

Cas F_X inconnue

lustrations Régression

Censure par intervalle

Conclusion

Références

- Baraud, Y. Model selection for regression on a random design.
 ESAIM Probab. Statist. 6 (2002), 127–146.
- Brunel, E.; Comte, F. Cumulative distribution function estimation under interval censoring case 1. Electron. J. Stat. 3 (2009), 1–24.
- Goldenshluger, A.; Lepski, O. Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality. Ann. Statist., 39 (2011), no. 3, 1608-1632.
- Kerkyacharian, G.; Picard, D. Regression in random design and warped wavelets. *Bernoulli* 10 (2004), no. 6, 1053–1105.
- Stute, W. Asymptotic normality of nearest neighbor regression function estimates. Ann. Statist., 12 (1984), no. 3, 917–926.
- Rozenholc, Y., Toolbox Matlab FY3P : Penalized Piecewise Polynomials for Regression (v002).

MERCI!

Cadre général

Estimateur avec fenêtr

Déformation

Estimateur

daptativité

Résultat principal

Cas F_X inconnue

Régression

Censure par intervalle

Conclusio