Первое задание по квантовой механике

Драчов Ярослав Факультет общей и прикладной физики МФТИ

24 декабря 2020 г.

Задача 1. Найти уровни энергии и волновые функции стационарных состояний частицы в потенциальном ящике

$$U(x) = \begin{cases} 0, & 0 < x < a, \\ +\infty, & x < 0 \cup x > a. \end{cases}$$

Вычислить средние и дисперсии координаты и импульса: $\langle x \rangle$, $\langle p \rangle$, $(\Delta x)^2$ и $(\Delta p)^2$ для n-того стационарного состояния. В пределе $n \to \infty$ провести сравнение с классическими значениями этих величин. Найти фазовый объём на одно квантовое состояние.

Решение. В данной потенциальной яме возможен только невырожденный спектр энергии частицы. Волновая функция частицы удовлетворяет уравнению

$$\psi^{2} + \frac{2m}{\hbar^{2}}(E - U(x))\psi(x) = 0,$$

должна быть непрерывна в точках 0 и а и нормирована на единицу.

При $x \leqslant 0$ и $x \geqslant a$ должно выполняться $\psi(x) = 0$, а при 0 < x < a справедливо уравнение

$$\psi'' + k^2 \psi(x) = 0, \quad k^2 = \frac{2mE}{\hbar^2},$$

т. е.

$$\psi(x) = c_1 e^{ikx} + c_2 e^{-ikx}.$$

Из условий непрерывности $\psi(x)$ получаем $\psi(0)=c_1+c_2=0$, т. е. $\psi(x)=c\sin kx$, а также $\psi(a)=c\sin kx=0$, поэтому

$$ka = n\pi$$
, $E_n = \frac{\hbar^2 k^2}{2m} = \frac{\pi^2 \hbar^2}{2ma^2} n^2$,

$$\psi_n(x) = \begin{cases} \sqrt{\frac{2}{a}} \sin \frac{\pi n}{a} x, & 0 < x < a, \\ 0, & x \le 0, x \ge a, \end{cases}$$

где $n=1,2,3\dots$ Таким образом, состояние определяется одним квантовым числом

Дальнейший расчёт удобно вести в естественной (для данной задачи) системе единиц: $\hbar=1,\,m=1,\,a=1,\,$ тогда

$$E_n = \frac{\pi^2 n^2}{2}, \quad \psi_n(x) = \begin{cases} \sqrt{2} \sin \pi n x, & 0 < x < a, \\ 0, & x \le 0, x \ge a. \end{cases}$$

Таким образом,

$$\langle n|\widehat{\mathbf{x}}|n\rangle = \int_{0}^{1} x\psi_{n}^{2}(x) dx = \frac{1}{2} - \frac{\partial}{\partial \alpha} \int_{0}^{1} \sin \alpha x dx \bigg|_{\alpha=2\pi n} = \frac{1}{2},$$

т. е. в обычных единицах $\langle n | \, \hat{\mathbf{x}} \, | n \rangle = (1/2)a,$ а также

$$\langle n | (\Delta \widehat{\mathbf{x}})^2 | n \rangle = \langle n | \widehat{\mathbf{x}}^2 | n \rangle - \langle n | \widehat{\mathbf{x}} | n \rangle^2 = \int_0^1 x^2 \psi_n(x) \, dx - \frac{1}{4} =$$

$$= \frac{1}{3} + \frac{\partial^2}{\partial \alpha^2} \int_0^1 \cos \alpha x \, dx \bigg|_{\alpha = 2\pi n} - \frac{1}{4} = \frac{1}{12} - \frac{1}{2(\pi n)^2},$$

и в обычных единицах $\langle n|\left(\Delta\widehat{\mathbf{x}}\right)^2|n\rangle = \left[\frac{1}{12} - \frac{1}{2(\pi n)^2}\right]a^2.$

Классическая плотность вероятности найти частицу в интервале (x, x + dx) есть $\rho(x) = 1/a$ (скорость частицы в ящике постоянна). То есть в классическом пределе

$$\overline{x} = \int_{0}^{a} x \rho(x) = \frac{a}{2}, \quad \overline{(\Delta \widehat{\mathbf{x}})^2} = \frac{a^2}{12},$$

что совпадает с квантовым результатом при $n \gg 1$.

Волновая функция частицы в импульсном представлении:

$$\psi_n(p) \equiv \langle p|n \rangle = \int_0^1 \langle p|x \rangle \, \langle x|n \rangle \, dx = \int_0^1 \frac{1}{\sqrt{2\pi}} e^{-ipx} \sqrt{2} \sin n\pi x \, dx =$$

$$= -2i\sqrt{\pi} e^{-i\frac{p-n\pi}{2}} \frac{n \sin\left(\frac{p-n\pi}{2}\right)}{p^2 - (n\pi)^2}.$$

В квазиклассическом приближении $(n\gg 1)$ распределение по импульсам вблизи $p=\pm n\pi$ имеет вид

$$|\psi_n(p)|^2 \simeq \frac{\sin^2(\varepsilon/2)}{\pi\varepsilon^2}, \quad \int\limits_{-\infty}^{\infty} \frac{\sin^2(\varepsilon/2)}{\pi\varepsilon^2} d\varepsilon = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} \frac{\sin^x}{x^2} dx = \frac{1}{2},$$

где $\varepsilon=p\pm n\pi,$ что соответствует классической плотности вероятности распределения по импульсам

$$\rho(p) = \frac{1}{2}\delta(p - p_n) + \frac{1}{2}\delta(p + p_n), \quad p_n = \sqrt{2E_n} = \pi n.$$

Фазовая плоскость, как и траектория частицы на ней, — понятие классическое, поэтому рассмотрим эту часть задачи в квазиклассическом приближении: $\hbar \to 0, \, n \to \infty$ при конечном $\hbar n$. Фазовые объёмы для состояний с энергией $E \leqslant E_n$ и $E \leqslant E_{n+1}$ имеют вид

$$\Gamma_n = 2p_n a = 2\pi\hbar n \quad \left(p_n = \sqrt{2mE_n} = \frac{\pi\hbar}{a}n\right)$$

$$\Gamma_{n+1} = 2p_{n+1}a = 2\pi\hbar(n+1).$$

Следовательно, объём, приходящийся на одно квантовое состояние,

$$\Delta\Gamma_n = \Gamma_{n+1} - \Gamma_n = 2\pi\hbar.$$

Задача 2. Найти уровни энергии и волновые функции стационарных состояний в потенциальной яме

a)
$$U(x) = \begin{cases} -U_0, & |x| < a, U_0 > 0, \\ 0, & |x| > a, \end{cases}$$

b)
$$U(x) = \begin{cases} +\infty, & x < 0, \\ -U_0, & 0 < x < a, U_0 > 0, \\ 0, & x > a. \end{cases}$$

Решение. a) Используем оператор инверсии Î. Поскольку в координатном представлении

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + U(x), \quad \text{a также} \quad U(x) = U(-x),$$

получаем $[\hat{I}, \widehat{H}] = 0$.

Таким образом, волновые функции невырожденного дискретного спектра данной задачи (E < 0) обладают определённой чётностью

$$\begin{cases} \widehat{H}\psi_E(x) = E\psi_E(x), \\ \widehat{I}\psi_E(x) = \pm \psi_E(x), \end{cases}$$

и данная система уравнений будет заведомо совместна. Обозначая

$$\kappa^2 = \frac{2m}{\hbar^2} |E|, \quad k^2 = k_0^2 - \kappa^2, \quad k_0^2 = \frac{2mU_0}{\hbar^2},$$

получим уравнения для определения $\psi_E(x)$ при |x| < a

$$\psi_E''(x) + k^2 \psi_E(x) = 0$$

и при |x| > a

$$\psi_E''(x) - \varkappa^2 \psi(x) = 0.$$

Таким образом, для чётных состояний получаем $\psi_E^{(+)} = A\cos kx$ при |x| < a и $\psi^{(+)}(x)$ при |x| > a. Вследствие явного учёта чётности функции граничное условие достаточно поставить в одной из точек $x=\pm a$. Из условия непрерывности логарифмической производной для функции $\psi_E(x)$ при x=a получим

$$\frac{\psi_E'(a+0)}{\psi_E(a+0)} = \frac{\psi_E'(a-0)}{\psi_E(a-0)}.$$

т. е.

$$k \operatorname{tg} k a = \varkappa, \quad k^2 = k_0^2 - \varkappa^2, \quad$$
или $\left(\frac{k_0}{k}\right)^2 = 1 + \operatorname{tg}^2 k a.$ (1)

На основании этого имеем

$$|\cos ka| = \frac{ka}{k_0 a}$$

При обязательном дополнительном условии tg ka>0, которое следует из (1). Уровни энергии определяются формулой $E_n=-\hbar^2\varkappa_n^2/(2m)$, где $n=0,1,2,\ldots$ (рис. 1)

Рис. 1: Определение уровней энергии для чётных состояний

Рис. 2: Определение уровней энергии для нечётных состояний

Чётное состояние существует при малой глубине U_0 ямы $(k_0a>0)$. N чётных состояний существует при $k_0a\geqslant (N-1)\pi$. Из условия непрерывности функции

$$\psi(a-0) = \psi(a+0)$$

получаем

$$B = Ae^{\varkappa a}\cos ka.$$

Условие нормировки даёт

$$1 = 2|A|^2 \left(\int_0^a \cos^2 kx \, dx + \int_a^\infty \cos^2 kae^{-2\varkappa(x-a)} \, dx \right),$$

откуда в результате несложных вычислений имеем

$$A = \frac{1}{\sqrt{2}} \left(1 + \frac{\sin 2ka}{2ka} + \frac{\cos^2 ka}{\varkappa a} \right)^{-1/2}, \quad B = Ae^{\varkappa a} \cos ka.$$

Для нечётных состояний волновая функция должна иметь вид

$$\psi_E^{(-)}(x) = \begin{cases} A \sin kx, & |x| < a, \\ B \operatorname{sign}(x) e^{-\varkappa |x|}, & |x| > a, \end{cases}$$

где

$$\operatorname{sign}(x) = \begin{cases} 1, & x > 0, \\ -1, & x < 0. \end{cases}$$

Уровни энергии для нечётных состояний определяются из уравнения

$$k \operatorname{ctg} ka = -\varkappa, \quad k^2 = k_0^2 - \varkappa^2, \quad \text{r. e.} \quad \left(\frac{k_0}{k}\right)^2 = 1 + \operatorname{ctg}^2 ka$$

или

$$|\sin ka| = \frac{ka}{k_0 a} \quad \text{при} \quad \text{tg } ka < 0.$$

Как видно из рис. 2, нечётные дискретные состояния существуют при условии $k_0 a \geqslant \pi/2$, $(ka/(k_0 a) = 1$, когда $k_0 a = \pi/2$), т. е.

$$U_0 \geqslant \frac{\pi^2}{8} \frac{\hbar^2}{ma^2}.$$

Это и есть условие существования хотя бы одного нечётного состояния в такой яме. N нечётных состояний существует при $k_0a \ge \pi N/2$.

Из непрерывности функции $\psi(a+0) = \psi(a-0)$ следует

$$B = Ae^{\varkappa a}\sin ka$$
.

Учитываем условие нормировки нашей функции

$$1 = 2|A|^2 \left(\int_0^a \sin^2 kx \, dx + \sin^2 ka \int_a^\infty e^{-2\varkappa(x-a)} \, dx \right)$$

и получаем итоговый результат

$$A = \frac{1}{\sqrt{a}} \left(1 - \frac{\sin 2ka}{2ka} + \frac{\sin^2 ka}{\varkappa a} \right)^{-1/2}, \quad B = Ae^{\varkappa a} \sin ka.$$

b) Получим решение задачи о состояниях дискретного спектра в данной потенциальной яме на основании анализа нечётных решений $\psi_E^{(-)}(x)$ пункта a данной задачи.

Граничные условия, накладываемые на волновую функцию в точке x=0 и на ψ и ψ' в точке x=a. Совпадают с соответствующими граничными условиями для $\psi_E^{(-)}(x)$. Однако область, где волновая функция отлична от нуля уменьшается вдвое. Поэтому $\psi_E^{(-)}(x)$ нужно умножить на $\sqrt{2}$. В итоге получим волновые функции в виде

$$\psi_E(x) = \begin{cases} \sqrt{2}\psi_E^{(-)}(x), & x > 0, \\ 0, & x \le 0. \end{cases}$$

Задача 3. а) Найти энергию и волновую функцию связанного состояния частицы в поле

$$U(x) = -\frac{\hbar^2 \varkappa_0}{m} \delta(x).$$

Вычислить средние и дисперсии координаты и импульса в связанном состоянии.

- б) Найти коэффициенты прохождения и отражения.
- в) Вычислить вероятность «ионизации» связанного состояния при мгновенном изменения параметра глубины ямы с \varkappa_0 до \varkappa_1 .

Peшenue. а) Полагая E < 0 и вводя обозначение

$$\varkappa^2 = \frac{2m|E|}{\hbar^2},$$

получаем уравнение, которому удовлетворяет волновая функция дискретного невырожденного спектра частицы в виде

$$\psi''(x) - (\varkappa^2 - 2\varkappa_0 \delta(x)) \psi(x) = 0. \tag{1}$$

В точке разрыва потенциала x=0 потребуем непрерывности $\psi(x)$:

$$\psi(+0) = \psi(-0).$$

При этом производная $\psi'(x)$ терпит разрыв, величину которого находим из уравнения (1), интегрируя его в пределах от $-\varepsilon$ до ε при $\varepsilon \to 0$:

$$\psi'(+0) - \psi'(-0) = -2\varkappa_0\psi(0). \tag{2}$$

При этом, как и должно быть, выполняется условие непрерывности плотности потока вероятности: j(+0)=j(-0), где

$$j(x) = \frac{i\hbar}{2m} \left(\psi(x)\psi'(x)^* - \psi^*(x)\psi'(x) \right).$$

Нормированное решение ищем в виде

$$\psi(x) = \begin{cases} C_1 e^{-\varkappa x}, & x > 0, \\ C_2 e^{\varkappa x}, & x < 0. \end{cases}$$

Из непрерывности ψ при x=0, получаем $C_1=C_2=C$. Тогда условие (2) даёт $\varkappa=\varkappa_0$, т. е. при E<0 имеем всего один дискретный уровень с энергией

$$E_0 = -\frac{\hbar^2 \varkappa_0^2}{2m}$$

и волновой функцией

$$\psi_0(x) = \sqrt{\varkappa_0} e^{-\varkappa_0|x|} \equiv \langle x|0\rangle,$$

нормированной на единицу.

В импульсном представлении волновая функция найденного дискретного уровня будет иметь вид

$$\psi_0(p) \equiv \langle p|0\rangle = \int_{-\infty}^{\infty} dx \, \langle p|x\rangle \, \langle x|0\rangle =$$

$$= \frac{\sqrt{\varkappa_0}}{(2\pi\hbar)^{1/2}} \int_{-\infty}^{\infty} e^{-\varkappa_0|x| - \frac{ipx}{\hbar}} dx = \sqrt{\frac{2}{\pi}} \frac{(x_0\hbar)^3/2}{(\varkappa_0\hbar)^2 + p^2}.$$

Легко найти $\langle 0|\, \widehat{x}\, |0\rangle = 0,\, \langle 0|\, \widehat{p}\, |0\rangle = 0,\,$ а также

$$\begin{split} \langle 0 | \, \widehat{\mathbf{x}}^2 \, | 0 \rangle &= \int\limits_{-\infty}^{\infty} \, \varkappa e^{-2 \varkappa_0 |x|} \widehat{\mathbf{x}}^2 dx = \alpha \int\limits_{0}^{\infty} e^{-\alpha x} x^2 dx = \\ &= \alpha \frac{d^2}{d\alpha^2} \int\limits_{0}^{\infty} e^{-\alpha x} dx = \left. \frac{2}{\alpha^2} \right|_{\alpha = 2 \varkappa_0} = \frac{1}{\varkappa_0^2}, \end{split}$$

и, кроме того,

$$\langle 0|\,\widehat{\mathbf{p}}^2\,|0\rangle = \int\limits_{-\infty}^{\infty} dp\,p^2 \frac{2}{\pi} \frac{(\varkappa_0 \hbar)^3}{((\hbar \varkappa_0)^2 + p^2)^2} = \frac{2}{\pi} (\varkappa_0 \hbar)^3 \left(-\frac{d}{d\alpha^2}\right) \int\limits_{-\infty}^{\infty} \frac{p^2 dp}{\alpha^2 + p^2} =$$

$$= \frac{2}{\pi} (\varkappa_0 \hbar)^3 \left(-\frac{d}{d\alpha^2}\right) \frac{2\pi i (i\alpha)^2}{2i\alpha} \bigg|_{\alpha = \varkappa \hbar} = (\varkappa_0 \hbar)^2.$$

Откуда находим дисперсии

$$(\Delta \widehat{\mathbf{x}})^2 = \langle 0 | \widehat{\mathbf{x}}^2 | 0 \rangle - \langle 0 | \widehat{\mathbf{x}} | 0 \rangle^2 = \frac{1}{\varkappa_0^2},$$

$$(\Delta \widehat{\mathbf{p}})^2 = \langle 0 | \widehat{\mathbf{p}}^2 | 0 \rangle - \langle 0 | \widehat{\mathbf{p}} | 0 \rangle^2 = (\varkappa_0 \hbar)^2.$$

б) Волновая функция частицы массы m, свободно двигавшейся вдоль оси x с энергией E>0 и попавшей в область действия δ -потенциала будет иметь вид

$$\psi(x) = \begin{cases} e^{i\varkappa x} + Ae^{-i\varkappa x}, & x < 0, \\ Be^{i\varkappa x}, & x > 0 \end{cases},$$

где, как и ранее,

$$\varkappa^2 = \frac{2mE}{\hbar^2}.$$

Запишем уравнение Шрёдингера

$$\psi''(x) + (\varkappa^2 + 2\varkappa_0 \delta(x)) \psi(x) = 0.$$
 (3)

Как и в предыдущем пункте в точке разрыва потенциала x=0 потребуем непрерывности $\psi(x)$:

$$\psi(+0) = \psi(-0).$$

При этом производная $\psi'(x)$ терпит разрыв, величину которого находим из уравнения (3), интегрируя его в пределах от $-\varepsilon$ до ε при $\varepsilon \to 0$:

$$\psi'(+0) - \psi'(-0) = -2\varkappa_0\psi(0). \tag{4}$$

При этом, как и ранее, выполняется условие непрерывности плотности потока вероятности j(+0) = j(-0), где

$$j(x) = \frac{i\hbar}{2m} \left(\psi(x)\psi'(x)^* - \psi^*(x)\psi'(x) \right).$$

Из непрерывности при x=0 получаем 1+A=B. Тогда условие (4) даёт

$$A = \frac{-\varkappa_0}{i\varkappa + \varkappa_0}$$

Откуда

$$R = \frac{|j_{\text{orp}}|}{|j_{\text{man}}|} = |A|^2 = \frac{\varkappa_0^2}{\varkappa^2 + \varkappa_0^2}, \quad D = \frac{|j_{\text{mpom}}|}{|j_{\text{man}}|} = |B|^2 = \frac{\varkappa^2}{\varkappa^2 + \varkappa_0^2}.$$

Очевидно, что выполняется равенство D + R = 1.

в) Изначально

$$\psi(x) = \sqrt{\varkappa_0} e^{-\varkappa_0|x|},$$

после резкого изменения параметра \varkappa связанное состояние частицы описывается функцией

$$\varphi(x) = \sqrt{\varkappa_1} e^{-\varkappa_1 |x|}.$$

Вероятность оказаться в состоянии φ

$$W_{\text{ост}} = |\left\langle \varphi | \psi \right\rangle|^2 = \left(\sqrt{\varkappa_0 \varkappa_1} \cdot_2 \int_0^\infty e^{-(\varkappa_0 + \varkappa_1) x} dx \right)^2 = \frac{4\varkappa_0^2 \varkappa_1^2}{(\varkappa_0 + \varkappa_1)^2}.$$

Вероятность вылететь из ямы («ионизации»):

$$W_i = 1 - \frac{4\varkappa_0^2 \varkappa_1^2}{(\varkappa_0 + \varkappa_1)^2} = \frac{(\varkappa_0 - \varkappa_1)^2}{(\varkappa_0 + \varkappa_1)^2}.$$

Задача 4. Найти коэффициенты прохождения и отражения частицы

- а) на прямоугольном потенциальном барьере,
- б) на прямоугольной потенциальной яме.

Решение. При рассмотрении задачи о нахождении коэффициентов отражения и прохождения мы будем исходить из потенциала

$$U(x) = \begin{cases} -U_0, & |x| < a/2, \\ 0, & |x| > a/2. \end{cases}$$

Волновая функция частицы будет иметь вид

$$\psi(x) = \begin{cases} e^{ikx} + Ae^{-ikx}, & x < a/2, \\ Ce^{ik_1x} + De^{-ik_1x}, & |x| < a/2, \\ Be^{ikx}, & x > a/2, \end{cases}$$

где

$$k^2 = \frac{2mE}{\hbar^2} > 0, \quad k_1^2 = \frac{2m(E+U_0)}{\hbar^2}.$$

Учёт условий непрерывности волновой функции ψ и её производной ψ' в точках $x=\pm a/2$ даёт систему из четырёх уравнений. В результате решения этой системы имеем

$$A = \frac{ie^{-ika} (k_1^2 - k^2) \sin k_1 a}{2kk_1 \cos k_1 a - i (k_1^2 + k^2) \sin k_1 a},$$

$$B = \frac{2kk_1e^{-ik_1a}}{2kk_1\cos k_1a - i(k_1^2 + k^2)\sin k_1a}.$$

Таким образом, для коэффициента отражения получаем

$$R = \frac{|j_x^{\text{orp}}|}{|j_x^{\text{mad}}|} = |A|^2 = \frac{\left(k_1^2 - k^2\right)\sin^2 k_1 a}{4k_1^2 k^2 \cos^2 k_1 a + \left(k_1^2 + k^2\right)^2 \sin^2 k_1 a} = \frac{\left(k_1^2 - k^2\right)\sin^2 k_1 a}{4k_1^2 k^2 + \left(k_1^2 - k^2\right)^2 \sin^2 k_1 a}.$$

Величина R обращается в ноль при $k_1a=\frac{a}{\hbar}\sqrt{2m(E+U_0)}=n\pi,\, n=1,2,\ldots,$ а также, естественно, при $k=k_1,\,(U_0=0).$

Коэффициент прохождения имеет вид

$$\begin{split} D &= \frac{|j_x^{\text{прош}}|}{|j_x^{\text{пад}}|} = |B|^2 = \frac{4k_1^2k^2}{4k_1^2k^2\cos^2k_1a + \left(k_1^2 + k^2\right)^2\sin^2k_1a} = \\ &= \frac{4k_1^2k^2}{4k_1^2k^2 + \left(k_1^2 - k^2\right)^2\sin^2k_1a}. \end{split}$$

Очевидно, что выполняется равенство D + R = 1.

Полученные результаты для коэффициентов прохождения и отражения будут справедливы и в случае потенциального барьера (рис. 3) если в фор-

Рис. 3: Коэффициент прохождения для потенциального барьера

муле $k_1^2 = \frac{2m}{\hbar^2} (E + U_0)$ осуществить замену $U_0 \to -U_0$.

При $0 < E < U_0$ нужно дополнительно положить $k_1 = i\varkappa$, где $\varkappa_1^2 = \frac{2m}{\hbar^2}(U_0 - E)$. В результате получаем

$$R = \frac{(\varkappa^2 + k^2) \operatorname{sh}^2 \varkappa_1 a}{4\varkappa_1^2 k^2 + (\varkappa_1^2 + k^2)^2 \operatorname{sh}^2 \varkappa_1 a},$$

$$D = \frac{4\varkappa_1^2 k^2}{4\varkappa_1^2 k^2 + (\varkappa_1^2 + k^2)^2 \operatorname{sh}^2 \varkappa_1 a}$$

Из рис. З видно, что коэффициент прохождения D в квантовом случае достигает максимального значения D=1 (классический предел) лишь при $k_1a=\pi n,\ n=1,2,\ldots$ Между этими максимумами находятся минимумы, причём значение D в этих точках растёт с ростом величины E/U_0 . Данные отличия в поведении квантового коэффициента прохождения от классического связаны с проявлением волновых свойств частиц.

Задача 5. Найти уровни энергии и волновые функции связанных состояний частицы в поле

$$U(x) = -\frac{\hbar^2 \varkappa_0}{m} \left\{ \delta(x+a) + \delta(x-a) \right\}.$$

Рассмотреть предел $\varkappa_0 a \gg 1$ и эволюцию начального состояния, отвечающего волновой функции частицы, связанной в одной яме при x=-a, определить вероятность обнаружить частицу в той же яме в момент времени t и частоту осцилляций.

Peшение. Очевидно, что данный потенциал представляет собой чётную функцию U(-x)=U(x), поэтому гамильтониан коммутирует с оператором инверсии

$$[\hat{H}, \hat{I}] = 0.$$

и можно искать решение уравнения Шрёдингера, как общие собственные функции операторов \hat{H} и \hat{I} , т. е. в виде чётных и нечётных функций. Запишем общий вид чётного и нечётного решения на всей числовой прямой, исключая сами δ -функции ($E<0,\,\varkappa^2=2m|E|/\hbar^2$)

$$\psi^{(+)}(x) = \begin{cases} Be^{\varkappa x}, & x < -a, \\ A\operatorname{ch} \varkappa x, & -a < x < a, \\ Be^{-\varkappa x}, & x > a, \end{cases}$$

$$\psi^{(-)}(x) = \begin{cases} Be^{\varkappa x}, & x < -a \\ A \operatorname{sh} \varkappa x, & -a < x < a, \\ -Be^{-\varkappa x}, & x > a. \end{cases}$$

Учитываем условия «сшивания» решений: непрерывность функции при x=a

$$\psi(a+0) = \psi(a-0) \tag{1}$$

и конечный разрыв производной (как и в задаче 3)

$$\psi'(a+0) - \psi'(a-0) = -2\varkappa_0 \psi(a). \tag{2}$$

Условие совместности уравнений (1) и (2) с учётом явного вида $\psi^{(+)}(x)$ и $\psi^{(-)}(x)$ даёт трансцендентное уравнение для нахождения уровней энергии

$$\frac{\varkappa a}{\varkappa_0 a} = 1 \pm e^{-2\varkappa a},\tag{3}$$

где верхний знак отвечает чётному, а нижний— нечётному уровню энергии. Анализ уравнения (3) показывает (рис. 4), что в данном потенциале

Рис. 4: Графический анализ уравнения (3)

в общем случае существуют два дискретных уровня энергии — чётный и нечётный. Чётный уровень лежит ниже и присутствует всегда, нечётный лежит выше и существует только при $\varkappa_0 a \geqslant 1/2$. Таким образом, при малых расстояниях между ямами остаётся только чётный уровень.

Если $\varkappa a\ll 1$, то $\varkappa\simeq 2\varkappa_0$ и энергия чётного состояния

$$E^{(+)} = -4\frac{\hbar^2 \varkappa_0^2}{2m},$$

т. е. при малом расстоянии две δ -ямы действуют, как одна, но с удвоенным значением \varkappa_0 . Если же ямы далеки друг от друга (при $\varkappa_0 a \gg 1$), то уровни энергии экспоненциально мало отличаются друг от друга и в конце концов сливаются. В результате мы получаем задачу о двух δ -ямах, независимых друг от друга.

Находим нормировочные коэффициенты для чётной и нечётной волновых функций

$$A^{(+)} = \frac{1}{\sqrt{a}} \left(1 + \frac{\sinh 2\varkappa a}{2\varkappa a} + \frac{\cosh^2 \varkappa a}{\varkappa a} \right)^{-1/2}, \quad B^{(+)} = A^{(+)} e^{\varkappa a} \operatorname{ch} \varkappa a,$$

$$A^{(-)} = \frac{1}{\sqrt{a}} \left(-1 + \frac{\sinh 2\varkappa a}{2\varkappa a} + \frac{\sinh^2 \varkappa a}{\varkappa a} \right)^{-1/2}, \quad B^{(-)} = A^{(-)} e^{\varkappa a} \operatorname{sh} \varkappa a.$$

При исследовании задачи эволюции начального состояния, отвечающего волновой функции частицы, связанной в одной яме при x=-a, используем следующие предположения

а) δ -ямы находятся достаточно далеко друг от друга, т. е. в системе ям имеется два дискретных уровня энергии, отвечающих связанным состояниям. Однако ямы не бесконечно далеки, следовательно, $E^{(+)} \neq E^{(-)}$.

 б) Система, рассматриваемая нами, — приближенно двухуровневая, т. е. отброшен весь непрерывный спектр — считается, что частица не выходит из ям.

Как это следует из рис. $\frac{5}{5}$, в любом из cmayuonaphux состояний $\psi^{(+)}(x)$ или

Рис. 5: Стационарные состояния для системы двух δ -ям

 $\psi^{(-)}(x)$ выполняется

$$\left|\psi^{(\pm)}(-x)\right|^2 = \left|\psi^{(\pm)}(x)\right|^2,$$

поэтому вероятность обнаружения частицы вблизи левой и правой ямы одинакова — частица не локализована вблизи ни одной из ям.

С целью построить состояние, в котором частица (хотя бы в начальный момент времени) была бы локализована в окрестности одной из ям, воспользуемся линейной комбинацией функций

$$\Psi(x,t) = C_1 e^{-\frac{iE(+)_t}{\hbar}} \psi^{(+)}(x) + C_2 e^{-\frac{iE(-)_t}{\hbar}} \psi^{(-)}(x). \tag{4}$$

Очевидно, что в начальный момент времени

$$\Psi(x,0) = C_1 \psi^{(+)}(x) + C_2 \psi^{(-)}(x).$$

Если положить $C_1=C_2$, то мы получим состояние (рис. 5), в котором частица локализована вблизи правой δ -ямы. Обозначим это состояние $\Psi(x,0)=\psi_a(x)$. По аналогии можно построить состояние $\psi_{-a}(x)$ с локализацией частицы вблизи левой δ -ямы. Окончательно

$$\begin{cases} \psi_a(x) = \frac{1}{\sqrt{2}} \left(\psi^{(+)}(x) + \psi^{(-)}(x) \right), \\ \psi_{-a}(x) = \frac{1}{\sqrt{2}} \left(\psi^{(+)}(x) - \psi^{(-)}(x) \right), \end{cases}$$

и обратно

$$\begin{cases} \psi^{(+)}(x) = \frac{1}{\sqrt{2}} (\psi_a(x) + \psi_{-a}(x)), \\ \psi^{(-)}(x) = \frac{1}{\sqrt{2}} (\psi_a(x) - \psi_{-a}(x)) \end{cases}.$$

Итак, волновая функция (4), в котором частица в начальный момент времени локализована вблизи правой δ -ямы, имеет вид

$$\begin{split} \Psi(x,t) &= \frac{1}{\sqrt{2}} \left\{ e^{-\frac{iE^{(+)}t}{\hbar}} \psi^{(+)}(x) + e^{-\frac{iE^{(-)}t}{\hbar}} \psi^{(-)}(x) \right\} = \\ &= \frac{1}{2} \left\{ \psi_a(x) \left[e^{-\frac{iE^{(+)}t}{\hbar}} + e^{-\frac{iE^{(-)}t}{\hbar}} \right] + \psi_{-a}(x) \left[e^{-\frac{iE^{(+)}t}{\hbar}} - e^{-\frac{ie^{(-)}t}{\hbar}} \right] \right\}. \end{split}$$

В соответствии со статистической интерпретацией, вероятность обнаружить частицу локализованной вблизи левой ямы, если в начальный момент она была локализована в правой, равна

$$W_{-a} = \frac{1}{4} \left| e^{-\frac{iE^{(+)}t}{\hbar}} - e^{-\frac{iE^{(-)}t}{\hbar}} \right|^2 = \frac{1}{2} \left[1 - \cos \left(\frac{E^{(+)} - E^{(-)}}{\hbar} t \right) \right] = \\ = \sin^2 \left[\frac{E^{(+)} - E^{(-)}}{2\hbar} t \right].$$

Задача 6. Найти волновую функцию, минимизирующую соотношение неопределённостей для координаты и импульса:

$$\Delta x \cdot \Delta p = \frac{\hbar}{2}.$$

Peшение. Как известно, коммутатор $[\widehat{p},\widehat{x}]=i\hbar \widehat{\mathbb{R}}$ Пусть

$$\begin{cases} \langle \widehat{\mathbf{p}} \rangle = \langle \psi | \, \widehat{\mathbf{p}} \, | \psi \rangle \,, \\ \langle \widehat{\mathbf{x}} \rangle = \langle \psi | \, \widehat{\mathbf{x}} \, | \psi \rangle \,, \end{cases} \quad \text{и тогда} \quad \begin{cases} \Delta \widehat{\mathbf{p}} = \widehat{\mathbf{p}} - \langle \widehat{\mathbf{p}} \rangle \widehat{\mathbb{F}}, \\ \Delta \widehat{\mathbf{x}} = \widehat{\mathbf{x}} - \langle \widehat{\mathbf{x}} \rangle \widehat{\mathbb{F}}, \end{cases}$$

при этом, очевидно $[\Delta \widehat{\mathbf{p}}, \Delta \widehat{\mathbf{x}}] = i\hbar \widehat{\mathbb{F}}$. Введём в рассмотрение вектор $|\varphi\rangle$ такой,

$$|\varphi\rangle = (\Delta \widehat{\mathbf{p}} - i\gamma \Delta \widehat{\mathbf{x}}) |\psi\rangle$$
, тогда $\langle \varphi| = \langle \psi| (\Delta \widehat{\mathbf{p}} + i\gamma \Delta \widehat{\mathbf{x}})$.

Здесь мы учли эрмитовость операторов, действительность средних значений, а также $\gamma^*=\gamma$ по определению. Построим следующую конструкцию:

$$\begin{split} \langle \varphi | \varphi \rangle &= \| \, | \varphi \rangle \, \|^2 = \langle \psi | \, (\Delta \widehat{\mathbf{p}} + i \gamma \Delta \widehat{\mathbf{x}}) (\Delta \widehat{\mathbf{p}} - i \gamma \Delta \widehat{\mathbf{x}}) \, | \psi \rangle = \\ &= \langle (\Delta \widehat{\mathbf{p}})^2 \rangle + \gamma^2 \, \langle (\Delta \widehat{\mathbf{x}})^2 \rangle + \gamma \hbar \geqslant 0, \end{split}$$

ибо квадрат нормы вектора положительно определён. По определению дисперсии

$$(\Delta p)^2 = \langle (\Delta \widehat{\mathbf{p}})^2 \rangle,$$
$$(\Delta x)^2 = \langle (\Delta \widehat{\mathbf{x}})^2 \rangle,$$

Мы получили квадратный трёхчлен относительно γ . Для того, чтобы это выражение было положительным, нужно, чтобы его дискриминант $D\leqslant 0$, т.е.

$$\hbar^2 - 4(\Delta p)^2 (\Delta x)^2 \leqslant 0.$$

Мы получили соотношение неопределённостей

$$\Delta x \cdot \Delta p \geqslant \frac{\hbar}{2}.$$

Очевидно, что оно минимизируется если детерминант равен нулю и существует единственный вещественный корень для параметра $\gamma = \zeta \in \mathbb{R}$. При этом значении параметра составленный нами вектор состояния $|\varphi\rangle$ имеет нулевую норму, а значит, и сам он равен нулю, $|\varphi\rangle = 0$, т. е.

$$(\Delta \widehat{\mathbf{p}} - i\zeta \Delta \widehat{\mathbf{x}}) |\psi\rangle = 0 \Leftrightarrow (\widehat{\mathbf{p}} - \langle \widehat{\mathbf{p}} \rangle) |\psi\rangle = i\zeta(\widehat{\mathbf{x}} - \langle \widehat{\mathbf{x}} \rangle) |\psi\rangle, \quad \zeta \in \mathbb{R}.$$

Равенство нулю детерминанта определяет значение ζ , так как уравнение принимает вид

$$\hbar^2 \gamma^2 + 4(\Delta p)^2 \gamma \hbar + 4(\Delta p)^4 = 0$$

с единственным корнем

$$\zeta = -2 \frac{(\Delta p)^2}{\hbar} \implies |\zeta| = \frac{\Delta p}{\Delta x}.$$

В координатном представлении получаем

$$(x - \langle \widehat{\mathbf{x}} \rangle) \psi(x) = i\zeta \left(-i\hbar \frac{d}{dx} - \langle \widehat{\mathbf{p}} \rangle \right) \psi(x).$$

Мы можем переписать это как

$$\zeta \frac{d}{dx} \psi(x) - x \psi(x) + (\langle \widehat{\mathbf{x}} \rangle - i \zeta \langle \widehat{\mathbf{p}} \rangle) \psi(x).$$

Далее упростим:

$$\zeta \hbar \frac{d}{dx} \psi = \psi \left(x - \langle \widehat{\mathbf{x}} \rangle + i \zeta \langle \widehat{\mathbf{p}} \rangle \right),$$

проинтегрируем

$$\int \frac{d\psi}{\psi} = \int \frac{x + i\zeta \langle \widehat{\mathbf{p}} \rangle - \langle \widehat{\mathbf{x}} \rangle}{\zeta \hbar} dx,$$

получим

$$\ln \psi = \frac{x^2}{2\zeta\hbar} + \frac{i\langle\widehat{\mathbf{p}}\rangle x}{\hbar} - \frac{\langle\widehat{\mathbf{x}}\rangle x}{\zeta\hbar} + C = \frac{x^2 - 2\langle\widehat{\mathbf{x}}\rangle x + \langle\widehat{\mathbf{x}}\rangle^2 - \langle\widehat{\mathbf{x}}\rangle^2}{2\zeta\hbar} + i\frac{\langle\widehat{\mathbf{p}}\rangle x}{\hbar} + C,$$

откуда

$$\psi(x) = A \exp \left[\frac{\left(x - \langle \widehat{\mathbf{x}} \rangle \right)^2}{2\zeta \hbar} + \frac{i \left\langle \widehat{\mathbf{x}} \right\rangle x}{\hbar} - \frac{\left\langle \widehat{\mathbf{x}} \right\rangle^2}{2\zeta \hbar} \right].$$

Нормализуем полученную волновую функцию

$$|A|^2 \int_{-\infty}^{\infty} e^{\left(\frac{(x-\langle \hat{\mathbf{x}}\rangle)^2}{\zeta \hbar} - \frac{\langle \hat{\mathbf{x}}\rangle^2}{\zeta \hbar}\right)} dx = 1,$$

$$A = e^{\frac{\langle \widehat{\mathbf{x}} \rangle^2}{2\zeta\hbar}} \frac{1}{\sqrt[4]{\pi|\zeta|\hbar}}.$$

Откуда

$$\psi(x) = \frac{1}{\sqrt[4]{\pi|\zeta|}\hbar} e^{-\frac{(x-\langle \hat{\mathbf{x}} \rangle)^2}{2|\zeta|^{\hbar}} + \frac{i\langle \hat{\mathbf{p}} \rangle x}{\hbar}}.$$

Задача 7. Найти разрешённые зоны энергии частицы, движущейся в потенциальном поле

$$U(x) = -\frac{\hbar^2 \varkappa_0}{m} \sum_{n=-\infty}^{\infty} \delta(x - na).$$

Рассмотреть предельные случаи:

- а) $\varkappa_0 a \gg 1$ (сильная связь),
- б) $\varkappa_0 a \ll 1$ (слабая связь),

и закон дисперсии для первой зоны: вычислить эффективную массу частицы при малых значениях квазиимпульса.

Решение. Прежде всего необходимо заметить, что вследствие инвариантности потенциала относительно трансляций на величину a (период одномерной кристаллической решётки), т. е. U(x+a)=U(x), гамильтониан нашей задачи будет коммутировать с оператором трансляции $\hat{\mathbf{T}}_a$

$$[\widehat{\mathbf{H}}, \widehat{\mathbf{T}}_a] = 0.$$

Поэтому мы можем искать решение в виде общих собственных функций операторов $\widehat{\mathbf{H}}$ и $\widehat{\mathbf{T}}_a$

$$\begin{cases} \widehat{H}\psi(x) = E\psi(x), \\ \widehat{T}_a\psi(x) = \lambda(a)\psi(x), \end{cases}$$
 (1)

где $\lambda(a)$ (собственное значение оператора трансляции) имеет вид $\lambda(a)=e^{\pm iKa}$, а ${\rm Im}\,K=0$ (квазиимпульс). Собственные функции оператора трансляции согласно теореме Блоха должны удовлетворять условию, которое следует из (1)

$$\psi(x+a) = e^{iKa}\psi(x). \tag{2}$$

Запишем общий вид решения уравнения Шрёдингера (1) в двух смежных областях

$$0 < x < a$$
 (область 1): $\psi(x) = c_1 e^{ikx} + d_1 e^{-ikx},$ $a < x < 2a$ (область 2): $\psi(x) = c_2 e^{ik(x-a)} + d_2 e^{-ik(x-a)},$

причём $E=rac{\hbar^2 k^2}{2m}>0.$ Условия сшивания в точке x=a

$$\psi(a+0) = \psi(a-0),$$

$$\psi'(a+0) - \psi'(a-0) = -2\varkappa_0\psi(0)$$

после элементарных вычислений дают связь между коэффициентами $c_1,\,d_1,\,c_2,\,d_2,$ которую можно записать в матричном виде:

$$\begin{pmatrix} c_2 \\ d_2 \end{pmatrix} = A \begin{pmatrix} c_1 \\ d_1 \end{pmatrix}, \tag{3}$$

где матрица A имеет вид

$$A = \begin{pmatrix} e^{ika} \left(1 - \frac{\varkappa_0}{ik}\right) & -e^{-ika} \frac{\varkappa_0}{ik} \\ e^{ika} \frac{\varkappa_0}{ik} & e^{-ika} \left(1 + \frac{\varkappa_0}{ik}\right) \end{pmatrix}.$$

Рис. 6: Разрешённые зоны энергии (между штриховыми линиями) для различных \varkappa_0

Нетрудно заметить, что $\det A = 1$.

Далее мы применим формулу (2) и получим

$$\psi(x+a) = c_2 e^{ik(x+a-a)} + d_2 e^{-ik(x+a-a)} = c_2 e^{ikx} + d_2 e^{-ikx} = e^{iKa} \psi(x).$$

Таким образом, имеем

$$\begin{pmatrix} c_2 \\ d_2 \end{pmatrix} = e^{iKa} \begin{pmatrix} c_1 \\ d_1 \end{pmatrix}, \tag{4}$$

и, сравнивая (2) и (3), видим, что задача свелась к проблеме диагонализации матрицы A (матрица сдвига), а $e^{iKa}=\lambda(a)$ — играет роль собственного значения этой матрицы. В результате получаем уравнение на собственные значения

$$\lambda^2(a) - 2\rho\lambda(a) + 1 = 0,$$

где $2\rho = \operatorname{tr} A$ — след матрицы A. Решение уравнения даёт

$$\lambda_{1,2}(a) = e^{\pm iKa} = \rho \pm i\sqrt{1-\rho^2},$$

откуда следует, что $\cos Ka = \rho$ или, конкретнее:

$$\cos Ka = \cos ka - \frac{\varkappa_0}{k} \sin ka. \tag{5}$$

Это и есть так называемое дисперсионное соотношение.

Анализ соотношения (5) показывает, что энергетический спектр в таком поле имеет зонную структуру. В самом деле, задавшись некоторым значением энергии E, мы находим $k = \sqrt{2mE}/\hbar$ и затем из уравнения (5) можем найти значение Ka(puc. 6).

• Случай 1. Энергия E такова, что $|\rho| = |\cos Ka| \leqslant 1$. При этом K является вещественным числом, что и требуется для функции Блоха, а сама функция — распространяющаяся модулированная волна. Эти области значений E называются разрешёнными зонами энергии.

• Случай 2. Энергия E такова, что $|\rho| = |\cos Ka| > 1$. При этом величина K — комплексная, и частицы с такими K не могут распространяться внутри большого кристалла. Эти области значений энергии — запрещённые зоны.

Разрешённые зоны чередуются с запрещёнными, не перекрываясь между собой. Ширина разрешённых зон увеличивается с ростом |ka|. Условие $\varkappa_0 a \ll 1$ (слабая связь) описывает случай, близкий к свободному. Это значит, что $K \simeq k + 2\pi n/a$, и поэтому зависимость E(K) параболическая. В противоположном предельном случае $\varkappa_0 a \gg 1$ (сильная связь) интервалы разрешённых значений энергии фактически превращаются в отдельные дискретные уровни $ka \approx \pi n$.

Далее рассмотрим случай E < 0. Для этого сделаем замену $k \mapsto i \varkappa$ $(k = \sqrt{2mE}/\hbar, E < 0)$. Получим дисперсионное соотношение:

$$\cos Ka = \operatorname{ch} \varkappa a - \frac{\varkappa_0}{\varkappa} \sin \varkappa a.$$

Графически правая часть данного уравнения изображена на рис. 7. В дан-

Рис. 7: Разрешённые зоны энергии (между штриховыми линиями) для различных \varkappa_0

ном случае имеем лишь одну разрешённую зону для любых \varkappa_0 . При $\varkappa_0 a \ll 1$ это будет зона $\varkappa a \approx 0$, а при $\varkappa_0 a \gg 1$ получаем зону $\varkappa_0 \approx \varkappa$.

Задача 8. Рассмотреть вопрос о существовании связанного сферически симметричного состояния частицы в сферически симметричной потенциальной яме в пространстве одного, двух (качественно в импульсном представлении для мелкой ямы) и трёх измерений.

Решение. Рассмотрим сферически-симметричный локализованный потенциал U(x) — мелкую яму, которая может быть охарактеризована двумя масштабами: глубиной U_0 и шириной a, удовлетворяющие соотношению $U_0 \ll \hbar^2/ma^2$. Далее будем обсуждать сразу случай произвольной пространственной размерности d=1,2,3. Также положим $\hbar=1$.

Чтобы записать уравнение Шрёдингера в импульсном представлении, необходимо его спроецировать на бра-вектор $\langle \mathbf{p}|$, то есть рассмотреть $\langle \mathbf{p}|\,\widehat{\mathbf{H}}\,|\psi\rangle=E\,\langle\mathbf{p}|\psi\rangle$. Кинетическая энергия в таком случае запишется тривиально — этот оператор диагонален в импульсном представлении:

$$\langle \mathbf{p} | \frac{\hat{\mathbf{p}}^2}{2m} | \psi \rangle = \frac{\mathbf{p}^2}{2m} \psi(\mathbf{p}).$$

Потенциальная энергия не является диагональным оператором; поэтому нам пригодятся её матричные элементы в этом базисе.

$$\begin{split} \left\langle \mathbf{p} \right| U(\widehat{\mathbf{x}}) \left| \mathbf{p}' \right\rangle &= \left\langle \mathbf{p} \right| U\left(\widehat{\mathbf{x}}\right) \underbrace{\int d\mathbf{x} \left| \mathbf{x} \right\rangle \left\langle \mathbf{x} \right| \left| \mathbf{p}' \right\rangle}_{\widehat{\mathbb{I}}} = \int d\mathbf{x} U(\mathbf{x}) \left\langle \mathbf{p} \middle| \mathbf{x} \right\rangle \left\langle \mathbf{x} \middle| \mathbf{p}' \right\rangle &= \\ &= \int d\mathbf{x} U(\mathbf{x}) e^{-i(\mathbf{p} - \mathbf{p}')x} = U_{\mathbf{p} - \mathbf{p}'}, \end{split}$$

из чего мы заключаем, что эти матричные элементы тождественно совпадают с преобразованием Фурье от потенциала. В таком случае, потенциальная энергия записывается в импульсном представлении в следующем виде:

$$\langle \mathbf{p} | U(\widehat{\mathbf{x}}) | \psi \rangle = \langle \mathbf{p} | U(\widehat{\mathbf{x}}) \underbrace{\int (d\mathbf{p}') |\mathbf{p}'\rangle \langle \mathbf{p}'|}_{\hat{\mathbf{I}}} | \psi \rangle = \int (d\mathbf{p}') U_{\mathbf{p}-\mathbf{p}'} \psi(\mathbf{p}'),$$

где введено удобное обозначение $(d\mathbf{p}) \equiv d^d\mathbf{p}/(2\pi)^d$. Таким образом, уравнение Шрёдингера в импульсном представлении записывается в следующем виде:

$$\frac{\mathbf{p}^2}{2m}\psi(\mathbf{p}) + \int (d\mathbf{p}')\psi(\mathbf{p}')U_{\mathbf{p}-\mathbf{p}'} = E\psi(\mathbf{p}).$$

Обсудим сперва некоторые общие свойства связанных состояний в яме (предполагая, что они имеются). Для конкретности можно говорить об основном состоянии.

Первое, что приходит в голову — это то, что частица, находясь в связанном состоянии, находится большей частью в яме и масштаб пространственного изменения её волновой функции равен её ширине a. В этом случае из соотношения неопределённостей следует, что типичное значение её импульса — это $p \sim \hbar/a$, и типичное значение кинетической энергии, связанной просто с пространственной локализацией частицы в яме, равно $\left\langle \widehat{\mathbf{T}} \right\rangle \sim \hbar^2/ma^2$.

В случае мелкой ямы $U_0\ll\hbar^2/ma^2$. Откуда полная энергия частицы $E=\left\langle \widehat{\mathbf{U}}\right\rangle +\left\langle \widehat{\mathbf{T}}\right\rangle \sim -U_0+\hbar^2/ma^2>0$ и частица просто «вылетит» из ямы в состоянии непрерывного спектра. Единственное разрешение полученного парадокса — это предположить, что типичный масштаб волновой функции связанного состояния в мелкой яме $l\gg a$ (так, чтобы выполнялось во всяком случае нестрогое неравенство $U_0\geqslant\hbar^2/ml^2$). Но это означает, что большая часть волновой функции частицы располагается вне ямы. В таком случае, масштаб l волновой функции определяется уравнением Шрёдингера вне ямы, где волновая функция экспоненциально затухает $\psi(x)\simeq e^{-\varkappa|x|}$, и $\varkappa=l^{-1}$ непосредственно связан с энергией связанного состояния $|E|=\hbar^2\varkappa^2/2m$. Полученное соотношение масштабов волновой

функции и ямы в действительности означает, что внутри ямы волновая функция практически не меняется — а значит, связанное состояние (если оно имеется) нечувствительно к деталям потенциала.

Итак, масштаб волновой функции в координатно представлении — большой масштаб $\varkappa^{-1}\gg a$ — что из соотношения неопределённостей означает, что в импульсном представлении, напротив, волновая функция $\psi(p)$ является локализованной вблизи нуля на малом масштабе $\sim \varkappa$. С другой стороны, масштаб $U(\mathbf{x})$ — это $a\ll \varkappa^{-1}$; в свою очередь, масштаб $U_{\mathbf{p}-\mathbf{p}'}$ — это большой масштаб a^{-1} . Благодаря большой разнице в масштабах, в свёртке $\int (d\mathbf{p}')\psi(\mathbf{p}')U_{\mathbf{p}-\mathbf{p}'}$ основной вклад в интеграл приходит с $|\mathbf{p}'|\leqslant \varkappa$, на котором функция $U_{\mathbf{p}-\mathbf{p}'}$ меняется слабо — поэтому её можно вынести за интеграл как «медленную огибающую», положив в ней \mathbf{p}' нулём. Это приводит нас к следующему приближённому уравнению:

$$\frac{p^2}{2m}\psi(\mathbf{p}) + U_p \int (d\mathbf{p}')\psi(\mathbf{p}') = E\psi(\mathbf{p}) \implies \psi(\mathbf{p}) = -\frac{U_\mathbf{p}}{-E + \frac{p^2}{2m}} \int (d\mathbf{p}')\psi(\mathbf{p}')$$

(отметим, что поскольку мы имеем дело с ямой, то потенциал U(x)<0; и поскольку мы имеем дело со связанным состоянием, то E=-|E|<0). Данное уравнение — алгебраическое, ведь в правой части стоит интеграл от волновой функции, который является константой. Последнее упрощение можно сделать, заметив, что в произведении перед интегралом, опять-таки, $U_{\bf p}$ является медленной огибающей, а $(|E|+p^2/2m)^{-1}$ — относительно быстрозатухающей функцией, посему можно вообще положить p=0. Наконец, проинтегрировав получившееся уравнение по $(d{\bf p})$ и сократив на интеграл от волновой функции, мы получаем следующее уравнение самосогласования — которое является уравнением на допустимые уровни энергии:

$$|U_{\mathbf{p}=0}| \int \frac{(d\mathbf{p})}{|E| + \frac{\mathbf{p}^2}{2m}} = 1.$$

1. Случай одномерной ямы.

При буквально нулевой энергии, этот интеграл расходится степенным образом на малых импульсах, и сходится на больших — поэтому ожидается степенная зависимость от энергии. Подбирая достаточно маленькую энергию, можно прийти к тому, что знак равенства будет иметь место. В действительности же, этот интеграл, разумеется, считается точно:

$$|U_{\mathbf{p}=0}|\sqrt{\frac{m}{2|E|}} = 1 \implies |E| = \frac{m}{2\hbar^2} \left| \int_{-\infty}^{\infty} U(x) dx \right|^2.$$

2. Случай двумерной ямы.

Интеграл расходится логарифмически на малых и на больших импульсах. На больших импульсах очевидным образом интеграл нужно обрезать на масштабах 1/a, поскольку это уравнение было выведено именно в таком предположении (это позволило нам заменить $U_{\mathbf{p}}$ на $U_{\mathbf{p}=0}$; и поскольку интеграл логарифмический, то он нечувствителен к этой обрезке — она меняет лишь константу под логарифмом), а на

маленьких — масштабом $\sqrt{2mE}$; сингулярность на малых энергиях оказывается слабой, логарифмической. Поэтому чтобы сделать левую часть порядка единицы, уровень энергии требуется сделать ну очень маленьким. Приступим теперь к непосредственному вычислению:

$$\int \frac{d^2 \mathbf{p}}{(2\pi)^2} \frac{1}{|E| + \frac{p^2}{2m}} = \int \frac{2\pi p \, dp}{4\pi^2} \frac{1}{|E| + \frac{p^2}{2m}} \approx \frac{m}{\pi} \int_{-\infty\sqrt{mE}}^{1/a} \frac{dp}{p} = \frac{m}{2\pi} \ln \frac{\#}{ma^2 |E|}.$$

Точность этого выражения следующая: число перд логарифмом определено точно, а в силу неточности при обрезании, число под логарифмом (#) неизвестно. Для его нахождения нужно решать уравнение Шрёдингера точно; это число уже определяется явным видом потенциала. Тем самым, решая уравнение самосогласования, мы получаем (восстанавливая опять \hbar по размерности):

$$|E| = \# \frac{\hbar^2}{ma^2} \exp\left(-\frac{2\pi\hbar^2}{m} \left| \int U(\mathbf{r}) d^2 \mathbf{r} \right|^{-1}\right).$$

Таким образом, мы определили уровень энергии в мелкой двумерной яме с экспоненциальной точностью; и этот уровень оказывается действительно экспоненциально мелким. Ведущая асимптотика даётся этой самой экспонентой, которая может быть оценена как $\exp\left(-\frac{\hbar^2/ma^2}{U_0}\right) \ll 1$. Число же в предэкспоненте таким способом определить нельзя.

3. Случай трёхмерной ямы.

Исследуемый интеграл вообще не расходится на малых импульсах, поэтому он практически не зависит от энергии. На больших импульсах он может быть обрезан на масштабе $\sim 1/a$; тем самым, весь интеграл оценивается как

$$\int \frac{(d\mathbf{p})}{|E| + \frac{p^2}{2m}} \sim ma^{-1}.$$

С другой стороны, $U_{p=0} \sim U_0 a^3$; тем самым вся комбинация имеет порядок $\frac{U_0}{\hbar^2/ma^2} \ll 1$. Из-за слабой чувствительности интеграла к изменению энергии, сделать это выражение порядка единицы изменяя энергию, невозможно и уравнение самосогласования не имеет решений. Из чего мы заключаем, что в трёхмерии в мелкой яме нет связанных состояний.

Задача 9. Найти уровни энергии трёхмерного изотропного гармонического осциллятора и кратности их вырождения, разделяя переменные в декартовых координатах. Обсудить связь задачи с моделью ядерных оболочек и получить значения магических чисел 2, 8, 20.

Решение. Потенциальная энергия трёхмерного изотропного гармонического осциллятора даётся формулой

$$V(r) = \frac{1}{2}m\omega^2 r^2,$$

где ω — это угловая частота, равная $\sqrt{k/m}$. Т. к. пространство состояний такой частицы — это тензорное произведение пространств состояний, связанных с отдельными одномерными волновыми функциями, то стационарное уравнение Шрёдингера для такой системы будет задаваться как

$$-\frac{\hbar^2}{2m}\left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}\right) + \frac{1}{2}m\omega^2(x^2 + y^2 + z^2)\psi = E\psi.$$

Разделяя переменные, получаем

$$E_{n_x, n_y, n_z} = (n_x + n_y + n_z + 3/2)\hbar\omega,$$

или $E_n=(n+3/2)\hbar\omega$, где n — неотрицательное целое число. Итак, энергетические уровни вырождены и кратность вырождения равна числу различных наборов n_x , n_y , n_z , удовлетворяющих условию

$$n_x + n_y + n_z = n,$$

а именно

$$\sum_{n_x=0}^{n} (n - n_x + 1) = \frac{(n+1)(n+2)}{2}.$$

Аналогично электронам, протоны внешней оболочки будут относительно слабо притягиваться к ядру, если на данной оболочке будет мало протонов, т. к. они находятся дальше всех от ядра. Поэтому, ядра с полностью заполненной внешней оболочкой будут иметь самую сильную энергию связи в сравнении с другими ядрами с таким же полным числом протонов. Все утверждения, сформулированные выше, также справедливы и для нейтронов.

Это означает, что магические числа (по определению — числа нуклонов, характеризующие наиболее устойчивые ядра) следует ожидать в атомах с полностью заполненной внешней оболочкой.

Из-за спина, кратность вырождения уровней энергии трёхмерного гармонического осциллятора удваивается, после чего становится равной (n+1)(n+2). Откуда получаем выражение для нахождения магических чисел

$$\sum_{n=0}^{k} (n+1)(n+2) = \frac{(k+1)(k+2)(k+3)}{3}.$$

Для k=1 получаем магическое число 2, для 2-8, для 3-20.

Задача 10. Рассмотреть когерентные состояния одномерного гармонического осциллятора. Вычислить распределение по числу квантов в когерентном состоянии.

Решение. Собственные векторы оператора уничтожения $\hat{\bf a}\,|z\rangle=z\,|z\rangle$ образуют систему так называемых когерентных состояний гармонического осциллятора, причём z — любое комплексное число. Вектор $|z\rangle$ можно представить в виде разложения по системе собственных векторов гамильтониана

$$\widehat{\mathbf{H}} = \frac{\widehat{\mathbf{p}}^2}{2m} + \frac{m\omega^2 \widehat{\mathbf{x}}^2}{2} = \hbar\omega \left(\widehat{\mathbf{a}}^+ \widehat{\mathbf{a}} + \frac{1}{2}\right),$$

где

$$\widehat{\mathbf{a}} = \frac{1}{\sqrt{2}} \left(\widehat{\mathbf{Q}} + i \widehat{\mathbf{P}} \right), \quad \widehat{\mathbf{a}}^+ = \frac{1}{\sqrt{2}} \left(\widehat{\mathbf{Q}} - i \widehat{\mathbf{P}} \right),$$

и $\widehat{\mathbf{Q}}=\widehat{\mathbf{x}}/x_0,\,\widehat{\mathbf{P}}=\widehat{\mathbf{p}}/p_0,\,\mathrm{ т.\,e.}$

$$|z\rangle = \sum_{n} C_n(z) |n\rangle.$$

И с учётом уравнения на собственные значения

$$C_n(z) = \langle n|z\rangle = \frac{1}{z} \langle n|\widehat{a}z\rangle = \frac{1}{z} \langle \widehat{a}^+ n|z\rangle,$$

где мы воспользовались также определением эрмитово сопряжённого оператора. По построению

$$\widehat{\mathbf{a}}^+ | n \rangle = \sqrt{n+1} | n+1 \rangle$$

так что получаем рекуррентное соотношение

$$zC_n(z) = \sqrt{n+1}C_{n+1}(z),$$

которое можно разрешить в явном виде

$$C_n(z) = \frac{z^n}{\sqrt{n!}}C_0(z).$$

Разложение принимает вид

$$|z\rangle = C_0(z) \sum_n \frac{z^n}{\sqrt{n!}} |n\rangle = C_0(z) \sum_n \frac{(z\hat{a}^+)^n}{n!} |0\rangle = C_0(z) e^{z\hat{a}^+} |0\rangle,$$

где мы использовали соотношение

$$|n\rangle = \frac{(\widehat{\mathbf{a}}^+)^n}{\sqrt{n!}} |0\rangle.$$

Коэффициент $C_0(z)$ можно определить из условия единичной нормировки состояния

$$\langle z|z\rangle = |C_0(z)|^2 \langle 0| e^{z^* \widehat{\mathbf{a}}} e^{z \widehat{\mathbf{a}}^+} |0\rangle = |C_0(z)|^2 \sum_n \frac{(z^* z)^n}{n!} = 1,$$

где мы учли ортогональность стационарных состояний. Отсюда

$$|C_0(z)|^2 e^{|z|^2} = 1 \implies C_0(z) = e^{-\frac{|z|^2}{2}}.$$

Окончательно

$$|z\rangle = e^{-\frac{|z|^2}{2}}e^{z\hat{\mathbf{a}}^+} |0\rangle = e^{-\frac{|z|^2}{2}} \sum_n \frac{z^n}{\sqrt{n!}} |n\rangle.$$

Очевидно, что в данном состоянии нет определённого значения энергии. Вероятность обнаружить значении энергии E_n

$$w_n = |\langle n|z\rangle|^2 = e^{-|z|^2} \frac{|z|^n}{n!}$$

определяется распределением Пуассона.