Portfolio Al/Machine Learning/Big Data

Oliver Zeigermann, http://zeigermann.eu/, OliverZeigermann@gmail.com

Diplom Informatiker (German M. Sc.) Uni Hamburg / Software Engineer / Architect / Data Scientist / Machine Learning Expert

TensorFlow / TensorFlow.js / Scikit-Learn / Pandas / Matplotlib / Elasticsearch

Consulting / Coaching / Workshops / Projects

Classic Supervised Machine Learning

Objective: Predict a category/value from tabular input data

Requirements: You have tabular data, and sample solutions

Example: Classify perspective car insurance customers into risk groups based on top-speed, age, and

mileage

Technology: Python, Pandas, Matplotib, Scitkit-Learn, Random Forest

References: (Colab Notebook)

https://colab.research.google.com/github/djcordhose/ai/blob/master/notebooks/sklearn/dt-intro.ipynb

https://colab.research.google.com/github/djcordhose/ai/blob/master/notebooks/sklearn/overview.ipynb

Deep Supervised Machine Learning

Objective: Predict a category/value from all kinds of input data

Requirements: You have a lot of data/image data/time series data, and sample solutions

Example: Predict what the user is going to click next and make the button more accessible based on a

sequence mouse positions and directions

Technology: TensorFlow.js, GRU Recurrent Networks

References: (Github Project): https://github.com/DJCordhose/ux-by-tfjs

Unsupervised Machine Learning

Objective: Find similarities or outliers in any kind of data

Requirements: structured, unstructured or text data, but no sample solution

Example: Find similar airlines and outliers, embed airlines into a 1-d embedding

Technology: TensorFlow, Embeddings, GRU Recurrent Networks

References: (Poster): https://djcordhose.github.io/ai/poster-sf.png

Reinforcement Learning

Objective: Find near optimal solutions when having no training data

Requirements: no static data required, but a simulated environment that an agent can make experiments

Example: How to deploy consultants to customers when size of problem does not allow for deterministic solution

Technology: TensorFlow, OpenAI Platform and Baselines

References: (Colab Notebook):

https://colab.research.google.com/github/DJCordhose/ai/blob/master/notebooks/rl/berater-v11.ipynb

Classic AI / Search

Objective: Find deterministic solutions for a problem that can be stated clearly

Requirements: no data required, problem must be translatable to search on a graph

Example: Search for an ideal move in a chess or go game

Technology: Python, Classic Program Code

References: (Slides): http://bit.ly/mlconf-search

Data Science

Domectic US flights September 2001 (total number of flights 391374)

Objective: Insights rather than predictions

Requirements: any kind of structured, tabular data

Example: Exploration – what insights can we gain on domestic American flights

Technology: Pandas, Elasticsearch, D3

References: (Slides): http://bit.ly/data-exploration-odsc

Database Systems

Objective: Make large amounts of data searchable

Requirements: any kind of semi-structured or tabular data

Example: Store large amounts of text data and it searchable in full text

Technology: Elasticsearch

References: (Slides): http://djcordhose.github.io/introduction-to-elasticsearch/2016_devcon.html