50.042 FCS Summer 2024 Lecture 9 – Modular Arithmetic I

Felix LOH
Singapore University of Technology and Design

Modular arithmetic: rationale

- We have already discussed a bit of modular arithmetic, back in Lectures 1 and 2
 - We saw how the XOR operation is really addition modulo 2
 - We will see that XOR is also addition in the Galois field GF(2)
- In this and the next lecture, we will go into modular arithmetic concepts in depth
- This is necessary for us to better understand the Byte Substitution layer (S-boxes) and MixColumn sublayer of AES; both of these rely on modular arithmetic
- We will also discuss the Diffie-Hellman key exchange and RSA cryptosystems soon, this requires an understanding of modular arithmetic concepts as well

Modular arithmetic: rationale

- Modular arithmetic falls under the area of Number Theory
- We need to understand modular arithmetic, because computing devices calculate with finite resources
 - Integer and float are 32-bit or 64-bit datatypes
 - Long is a 64-bit datatype
 - Operations with these datatypes can lead to overflow/underflow
- Back in Lecture 2, we saw that Caesar's cipher operates on a set of 26
 alphabetical characters, and to encrypt, we shift the plaintext
 character by some constant value k
 - If we shift (add) the character 'z' by 3, we need to "constrain" or "limit" the shift operation to ensure that it operates within the set
 - This is an addition *modulo* 26 operation, as we saw in Lecture 2

Modular arithmetic (recap)

- Modular arithmetic is basically a way to perform arithmetic with a finite set of integers
- Example: Analog clocks
 - Keep adding 1 hour to the hours of the clock
 - 1 o'clock, 2 o'clock, 3 o'clock, ..., 11 o'clock, 12 o'clock, 1 o'clock, ...
 - We never leave the finite set of integers {1, 2, 3, ..., 10, 11, 12}

Modulo operation (formal definition, recap)

• Let $a, r, m \in \mathbb{Z}$ (i.e. a, r and m are members of \mathbb{Z} , the set of all integers), with m > 0

We write $a \equiv r \mod m$, if m divides a - rr is called the *remainder* and m is called the *modulus*

• Notes:

- Strictly speaking, the remainder is **not** unique, because mathematically, it's **not** required that $0 \le r < m$ (unlike Python)
- So there are infinitely many values of r for any given a and m
- E.g. $7 \equiv 7 \mod 4$, $7 \equiv 3 \mod 4$, $7 \equiv -1 \mod 4$, and so on
- However, by convention, we choose r such that $0 \le r < m$, so in the above example, we pick $7 \equiv 3 \mod 4$

Computation of the remainder (recap)

- It is always possible to express $a \in \mathbb{Z}$ in the form of $a = q \times m + r$, with $0 \le r < m$
- Since $a r = q \times m$, this means that m divides a r, so we can write $a \equiv r \mod m$
- E.g. Let a = 42, and m = 9. Then $42 = 4 \times 9 + 6$ and therefore, $42 = 6 \mod 9$

Algebraic structures and operations

• An *algebraic structure* is a set of elements, along with one or more operations which act on the elements of the set

• An *operation* (or *operator*) is a function which combines two input values (which are called operands) into a well-defined output value

Algebraic structures and related properties

- We will discuss the following properties related to algebraic structures:
 - Closure
 - Associativity
 - Identity
 - Invertibility
 - Commutativity and Distributivity
- We'll also discuss the following algebraic structures:
 - Groups
 - Rings
 - Fields
 - Finite fields (Galois fields)
 - Prime fields
 - Extension fields

Closure: definition

- An operation on elements of a set satisfies the **closure** property, if and only if for all possible input values (operands) from that set, the output value (result) of that operation is also an element of the set
- i.e. An operation for a set S satisfies closure, if and only if

```
a \circ b = c \in S \text{ for all } a, b \in S
2' + 2' + 2b \quad 29 + 2'0 
2' = 2 \text{ mod } 7 \quad 2^9 = 2 \text{ mod } 7 \quad 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{10} = 2^{
```

- The addition operator '+' for the set of all positive integers \mathbb{Z}^+ satisfies closure
- The subtraction operator '—' for the set of all positive integers \mathbb{Z}^+ does **not** satisfy closure
- The subtraction operator '-' for the set of all integers $\mathbb Z$ satisfies closure

Associativity: definition

- An operation on elements of a set satisfies the associativity property,
 if and only if in an expression containing multiple operations, the
 order of evaluation of the operations does not change the result of
 that expression
- i.e. An operation \circ for a set S satisfies associativity, if and only if $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in S$
- E.g.
 - The addition operator '+' for the set of all integers \mathbb{Z} satisfies associativity
 - The multiplication operator '·' (or '×') for the set of all integers $\mathbb Z$ satisfies associativity
 - The addition operator '+' for the set of all real numbers ${\mathbb R}$ satisfies associativity

Identity: definition

• An operation \circ on elements of a set S satisfies the **identity** property, if and only if there is an identity element $i \in S$ (with respect to the operation \circ), such that

$$i \circ a = a \circ i = a$$
 for all $a \in S$

- E.g.
 - The addition operator '+' for the set of all integers \mathbb{Z} satisfies the identity property, since 0 + a = a + 0 = a for all $a \in \mathbb{Z}$ (with additive identity element 0)
 - The multiplication operator '·' for the set of all integers \mathbb{Z} satisfies the identity property, since $1 \cdot a = a \cdot 1 = a$ for all $a \in \mathbb{Z}$ (with multiplicative identity element 1)

Invertibility: definition

• An operation \circ on elements of a set S satisfies the **invertibility** property, if and only if for each element $a \in S$, the inverse $a^{-1} \in S$ also exists, such that

 $a \circ a^{-1} = a^{-1} \circ a = i$, where $i \in S$ is the identity element with respect to the operation \circ

- E.g.
 - The addition operator '+' for \mathbb{Z} satisfies the invertibility property, since the additive inverse of a is -a, with a + (-a) = (-a) + a = 0 for all $a \in \mathbb{Z}$ (with additive identity element 0)
 - The multiplication operator \cdot for $\mathbb Z$ does **not** satisfy the invertibility property, since the multiplicative inverse does not exist for most elements of $\mathbb Z$

0-1 has no inverse.

Group: definition

- A group $G = (S, \circ)$ is a set of elements, S, together with an operation \circ which combines two elements of S. A group **must** have the following four properties:
- The group is **closed**, i.e. $a \circ b = c \in S$ for all $a, b \in S$
- The group operation is **associative**, i.e. $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in S$
- There is an **identity** element $i \in S$ with respect to the operation \circ , such that $i \circ a = a \circ i = a$ for all $a \in S$
- For each $a \in S$, there exists an **inverse** element $a^{-1} \in S$, such that $a \circ a^{-1} = a^{-1} \circ a = i$

Commutative group

• A group $G = (S, \circ)$ is considered to be **commutative** if, in addition to the aforementioned four required properties, the group possesses the following property:

 $a \circ b = b \circ a$ for all $a, b \in S$

Group: example

- The additive group (\mathbb{Z} , +) has all four required properties:
- Closure: $a + b = c \in \mathbb{Z}$ for all $a, b \in \mathbb{Z}$
- Associativity: a + (b + c) = (a + b) + c for all $a, b, c \in \mathbb{Z}$
- **Identity**: The additive identity element is 0, with 0 + a = a + 0 = a for all $a \in \mathbb{Z}$
- Invertibility: For all $a \in \mathbb{Z}$, the inverse element is $-a \in \mathbb{Z}$, with a + (-a) = (-a) + a = 0
- Furthermore, the additive group $(\mathbb{Z}, +)$ is **commutative**, since a + b = b + a for all $a, b \in \mathbb{Z}$

Group: other examples

- The set of integers $\mathbb{Z}_m = \{0, 1, ..., m-1\}$ and the operation addition modulo m form a group $(\mathbb{Z}_m, +)$ with the additive identity element 0.
 - This group possesses all four required properties; in particular, every element a has an inverse -a such that $a + (-a) \equiv 0 \mod m$

• $(\mathbb{R}, +)$ is a group as well

Group: counterexample

- (\mathbb{Z}, \cdot) is **not** a group, because it does **not meet** the requirement for the **invertibility** property
 - The multiplicative inverse does **not** exist for most elements in \mathbb{Z} , i.e. for most elements $a \in \mathbb{Z}$, the inverse multiplicative element a^{-1} does **not** exist, such that $a \cdot a^{-1} = 1$

• Similarly, the set \mathbb{Z}_m does **not** form a group with the operation multiplication modulo m, i.e. (\mathbb{Z}_m, \cdot) is **not** a group, because most elements of the set do not have an inverse such that $a \cdot a^{-1} \equiv 1 \mod m$ (where 1 is the multiplicative identity element)

Order of a finite group

- We have seen sets with an infinite number of elements, such as $\mathbb Z$ and $\mathbb R$
- In cryptography, we are generally more interested in sets with a finite number of elements (i.e. finite sets) such as the set \mathbb{Z}_m , which has m elements
- The order |G| of a finite group G is the number of elements in G

• E.g. the order of the group $G = (\mathbb{Z}_m, +)$ is $|G| = |\mathbb{Z}_m| = m$

Order of an element in a finite group

• The order ord(a) of an element $a \in S$ in a group $G = (S, \circ)$ is the smallest positive integer k, such that

$$a^k = a \circ a \circ a \dots a \circ a = i,$$

k times

where $i \in S$ is the identity element with respect to the operation \circ

- E.g.
 - The order of the element 1 in $G = (\mathbb{Z}_6, +) = (\{0, 1, 2, 3, 4, 5\}, +)$ is 6, since $1^6 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 0 \mod 6$, with element 0 being the identity element
 - The order of the identity element 0 in $G = (\mathbb{Z}_6, +)$ is 1, since $0^1 \equiv 0 \mod 6$
 - The order of the element 2 in $G = (\mathbb{Z}_6, +)$ is 3, since $2^3 = 2 + 2 + 2 \equiv 0 \mod 6$
 - The order of the element 1 in $G = (\mathbb{Z}_m, +)$ is m

Ring: definition

• A ring is a group $(S, \circ, *)$ that has a second operation *, with the following requirements on *:

- The operation * must be **closed**, i.e. $a * b = c \in S$ for all $a, b \in S$
- The operation * must be **associative**, i.e. a * (b * c) = (a * b) * c for all $a, b, c \in S$
- There must be an **identity** element $i' \in S$ with respect to the operation *, such that i' * a = a * i' = a for all $a \in S$
- The operation * must be **distributive** over the operation ○
- Note: there is no invertibility requirement on the operation *

Distributivity: definition

- Suppose there are two associative operations \circ and * that operate on elements of a set S. The operation * is **distributive** over the operation \circ , if and only if a^* ($b \circ c$) = (a^* b) \circ (a^* c) for all a, b, $c \in S$
- E.g.
 - For the set of all integers \mathbb{Z} , the multiplication operation '·' is distributive over the addition operation '+'
 - Conversely, for the set of all integers \mathbb{Z} , the addition operation '+' is **not** distributive over the multiplication operation '·'

Integer rings

The integer ring is an important example of a ring

- The integer ring $(\mathbb{Z}_m, +, \cdot)$ consists of:
- 1. The finite set $\mathbb{Z}_m = \{0, 1, 2, ..., m-1\}$
- 2. Two operations '+' and '·' for all $a, b \in \mathbb{Z}_m$ such that:

$$a + b \equiv c \mod m, (c \in \mathbb{Z}_m)$$

$$a \cdot b \equiv d \mod m, (d \in \mathbb{Z}_m)$$

Integer rings: properties

- The ring is said to be closed
 - i.e. We can add and multiply any two numbers of the ring and the result is always in the ring
- Addition and multiplication are associative, i.e. a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in \mathbb{Z}_m$
- The distributive law holds for a ring, i.e. $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ for all $a, b, c \in \mathbb{Z}_m$
- There is an identity element 0 with respect to <u>addition</u>, i.e. for every element $a \in \mathbb{Z}_m$, it holds that $a + 0 \equiv a \mod m$
- For every element a in the ring, there is always a negative element -a such that $a + (-a) \equiv 0 \mod m$; in other words, the additive inverse always exists

Integer rings: properties

- There is an identity element 1 with respect to <u>multiplication</u>, i.e. for every element $a \in \mathbb{Z}_m$, it holds that $a \cdot 1 \equiv a \mod m$
- The multiplicative inverse exist for some, but **not** all, elements in the ring. For $a \in \mathbb{Z}_m$, if the multiplicative inverse exists, then the inverse of a is defined as a^{-1} , such that $a \cdot a^{-1} \equiv 1 \mod m$
 - Also, if the multiplicative inverse of a exists, then we can divide some element $b \in \mathbb{Z}_m$ by a, since $b / a \equiv b \cdot a^{-1} \mod m$
 - The multiplicative inverse of $a \in \mathbb{Z}_m$ exists if and only if gcd(a, m) = 1, i.e. a and m are coprime
 - E.g. The multiplicative inverse of 15 exists in \mathbb{Z}_{26} , since gcd(15, 26) = 1; conversely, the multiplicative inverse of 12 does not exist in \mathbb{Z}_{26} because gcd(12, 26) = 2

Field: definition

• A field $F = (S, +, \cdot)$ is a ring with the following properties:

- All elements of S form an additive group with the group operation '+' and the identity element 0
- All elements of *S*, except the element 0, form a multiplicative group with the group operation '·' and the identity element 1
 - Particularly, each non-zero element has a multiplicative inverse
- When the two group operations are mixed, the operation '·' is distributive over the operation '+', i.e. $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ for all $a, b, c \in S$

$$G(D(4969, 2464))$$
 $7469 = 2464(3) + 77$
 $2464 = 77(36) + 0$
 $gcd = 77$

$$92d(5,126)$$

$$26 = (5(1)+11)$$

$$15 = 11(1)+4$$

$$11 = 4(2)+3$$

$$4 = 3(1)+1$$

$$3 = 1(3)+0$$

$$9(d=(1)-2(4))$$

$$1 = 4-(11-2(4))$$

Gred (2689, 4001)

$$4001 = 2689(1) + 1312$$

$$2689 = 1312(2) + 65$$

$$1312 = 65(20) + 12$$

$$65 = 12(5) + 5$$

$$12 = 5(2) + 2$$

$$5 = 2(2) + 1$$

$$2 = 1(2) + 0$$

$$3(d-1)$$

GCD (1109, 4999)

$$4999 = 1109(4) + 556$$
 $1109 = 562(1) + 546$
 $563 - 546(1) + 17$
 $546 = 17(32) + 2$
 $17 = 2(8) + 1$
 $2 = \frac{1}{5}(2) + 0$
 $316 = 1$

Field: example

- (\mathbb{R} , +, ·) is a field with the identity element 0 for the additive group and the identity element 1 for the multiplicative group
- Every real number a has an additive inverse -a, and every non-zero real number a has a multiplicative inverse 1/a

Rings vs. fields

- A ring is a generalization of a field (i.e. all fields are rings, but not all rings are fields)
- Stricter requirements are imposed on fields:
 - All non-zero elements of a field **must** have a **multiplicative inverse**; whereas for a ring, a non-zero element is not required to have a multiplicative inverse
 - The multiplication operation of a field **must** be **commutative**, but the multiplication operation of a ring does not need to be commutative

Finite fields (Galois fields)

- In cryptography, we are usually interested in fields with a finite number of elements
 - These fields are known as finite fields or Galois fields
- The number of elements in the field is called the *order* of the field (similar to the order of a finite group)

- The following theorem regarding finite fields is fundamental:
 - A field with order m only exists if m is a prime power, i.e. $m = p^n$ for some positive integer n and prime integer p. p is called the characteristic of the finite field.

Finite fields (Galois fields)

- The implication of the theorem is that there are finite fields with 5 elements, or with 49 elements (since $7^2 = 49$), or with 256 elements (since $2^8 = 256$)
- By contrast, there is no finite field with 36 elements, since 36 is not a prime power $(2^2 \cdot 3^2 = 36)$

Prime fields

- A prime field GF(p) is a Galois (finite) field of prime order (i.e. n=1)
- The two operations of the field are integer addition modulo p and integer multiplication modulo p
- The following important theorem defines a prime field:

Let p be a prime integer. The integer ring \mathbb{Z}_p is denoted as GF(p) and is referred to as a prime field, or as a Galois field with a prime number of elements. All non-zero elements of GF(p) have an inverse. Arithmetic in GF(p) is done modulo p.

Prime fields: examples

- Prime field *GF*(5):
 - The tables below show how to add or multiply (*modulo* 5) any two elements in *GF*(5), as well as the additive and multiplicative inverses

addition

+ 0 1 2 3 4	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

additive inverse

$$-0 = 0$$
 $-1 = 4$
 $-2 = 3$
 $-3 = 2$
 $-4 = 1$

multiplication

multiplicative inverse

$$0^{-1}$$
 does not exist
 $1^{-1} = 1$
 $2^{-1} = 3$
 $3^{-1} = 2$
 $4^{-1} = 4$

Prime fields: examples

- Prime field *GF*(2):
 - This is a very important prime field (the smallest possible finite field)
 - Addition and multiplication are calculated modulo 2, as shown in the tables below:

- Addition modulo 2 is the XOR operation (likewise for subtraction modulo 2)
 - i.e. XOR operation is addition or subtraction in the Galois field *GF*(2)
- Multiplication modulo 2 is the AND operation
 - i.e. AND operation is multiplication in the Galois field *GF*(2)

Integer addition *modulo p* computation

- How to compute $a + b \mod p$, which is addition in GF(p)
 - "Official" way: Add the two integers a and b, then do an integer divide by the modulus p (a prime number), and keep only the remainder
 - Practically, this means you first add the two integers a and b as you would for normal arithmetic, then subtract the closest integer multiple of p (that is less than or equal to the sum of a and b) from the result – this gives you the remainder
 - Note: " $a + b \mod p$ " is the same as " $(a + b) \mod p$ "
- E.g. addition in *GF*(5)
 - To compute 4 + 3 *mod* 5, add 4 and 3 to obtain 7, then subtract 5, which is the closest integer multiple of 5 that is less than or equal to 7 we obtain 2
 - Thus $4 + 3 \mod 5 = 2 \mod 5$
 - This result is consistent with the addition table for GF(5)

Integer multiplication *modulo p* computation

- How to compute $a \cdot b \mod p$, which is multiplication in GF(p)
 - "Official" way: Multiply the two integers a and b, then do an integer divide by the modulus p, and keep only the remainder
 - Practically, this means you first multiply the two integers a and b as you
 would for normal arithmetic, then subtract the closest integer multiple of p
 (that is less than or equal to the product of a and b) from the result this
 gives you the remainder
- E.g. multiplication in *GF*(5)
 - To compute $4 \cdot 3 \mod 5$, multiply 4 by 3 to obtain 12, then subtract 10, which is the closest integer multiple of 5 that is less than or equal to 12; we obtain 2
 - Thus $4 \cdot 3 \mod 5 = 2 \mod 5$
 - This result is consistent with the multiplication table for *GF*(5)

Extension fields

- An extension field is a Galois (finite) field $GF(p^n)$ with n > 1
- The order of an extension field is **not** prime (since $m = p^n$ is not prime)
 - This means that **if** we were to represent the elements of $GF(p^n)$ as **integers**, not all non-zero integers of $GF(p^n)$ will have an **inverse**
 - This consequently implies that we **cannot** perform **integer** addition and multiplication **modulo** p^n on the elements of an extension field
 - Rather, we need to represent the elements of an extension field using a different notation (i.e. not integers, but polynomials instead) and implement different rules for performing arithmetic on these elements

Extension fields

- We can roughly think of an extension field $GF(p^n)$ as an algebraic structure that contains n "instances" of a prime field GF(p)
- The elements of an extension field $GF(p^n)$ are not represented by integers
- Rather, the elements of $GF(p^n)$ are represented by polynomials of degree n-1 with coefficients in the prime field GF(p)
- Arithmetic in the extension field is achieved by performing a certain kind of *polynomial arithmetic*:
 - Addition and subtraction: bitwise XOR of the corresponding coefficients
 - Multiplication: polynomial multiplication and reduction by a fixed *irreducible* polynomial

Extension fields: example – $GF(2^8)$

- The extension field $GF(2^8)$ is used in the layers of AES (this field was chosen because each of the field elements can be represented by one byte)
- Each element in $GF(2^8)$ is represented by a polynomial of the form: $A(x) = a_7 x^7 + a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0, \ a_i \in GF(2) = \{0, 1\}$
- E.g. byte $0xC3 = 11000011_2$ can be represented as: $A(x) = x^7 + x^6 + x + 1$
- Note that the factors x^7 , x^6 , etc. are placeholders (and are not the variables to be evaluated); we do **not** need to store these factors since each polynomial A(x) can be stored in digital form as an 8-bit vector:

$$A = (a_7, a_6, a_5, a_4, a_3, a_2, a_1, a_0)$$

Extension fields: polynomial arithmetic

- We will discuss the following polynomial arithmetic operations for extension fields $GF(2^n)$ with p=2, particularly for $GF(2^8)$, in the next lecture:
 - Addition
 - Subtraction
 - Multiplication
 - Division
 - Inversion (multiplicative inverse)