Matemática Discreta 1

Santiago Sierra

17 de octubre de 2022

${\bf \acute{I}ndice}$

1.	Rela	aciones	2
	1.1.	Definición de Relaciones	2
	1.2.	Tipos de relaciones	3
	1.3.	Producto, unión e intersección de relaciones	3
	1.4.	Representación matricial y dígrafos	4
		1.4.1. Representación matricial	4
		1.4.2. Dígrafos de relaciones	ŗ

1. Relaciones

1.1. Definición de Relaciones

Definición 1.1. Para los conjuntos $A, B \subseteq U$, el producto cartesiano de A y B se denota por $A \times B$, y

$$A \times B = \{(a, b) / a \in A \land b \in B\}$$

Corolario 1.0.1. Notamos como |A| al cardinal de un conjunto, que representa la cantidad de elementos en A.

Corolario 1.0.2. Si los conjuntos A, B son finitos, se sigue de la regla del producto que $|A \times B| = |A| \cdot |B|$. Aunque generalmente no ocurre que $A \times B = B \times A$, tenemos que $|A \times B| = |B \times A|$.

Definición 1.2. Para los conjuntos $A, B \subseteq U$, cualquier subconjunto de $A \times B$ es una relación de A en B. A los subconjuntos de $A \times A$ se les llama relaciones sobre A.

Definición 1.3. Relación binaria

Una relación binaria es un conjunto de pares ordenados pertenecientes al producto cartesiano de dos conjuntos que cumple una propiedad P(a,b) en particular, es decir:

$$R = \{(a, b) \in A \times B / P(a, b)\}\$$

Notaremos como aRb para indicar que $(a,b) \in R$ y aRb para expresar que $(a,b) \notin R$

Corolario 1.0.3. En general, para conjuntos finitos A, B, existen $2^{|A \times B|} = 2^{|A||B|}$ relaciones de A en B, incluyendo la relación vacía y la propia relación $A \times B$.

Definición 1.4. Relación inversa Si R es una relación sobre A, entonces R^{-1} es una relación sobre A definida por $xRy \Leftrightarrow yR^{-1}x, \ \forall x,y \in A$. Es decir. da vuelta el par ordenado.

Corolario 1.0.4. $(R^{-1})^{-1} = R$.

Corolario 1.0.5. $R \subseteq S \Rightarrow R^{-1} \subseteq S^{-1}$.

Definición 1.5. $\overline{R} = R^C = A \times A - R = \{(a,b) \in A \times A : (a,b) \notin R\}.$

$$a\overline{R}b \Leftrightarrow a\cancel{R}b$$

1.2. Tipos de relaciones

Definición 1.6. Sea R una relación en un conjunto A:

 \blacksquare La relación R es reflexiva si:

$$\forall a \in A, \ aRa$$

 \blacksquare La relación R es irreflexiva si:

$$\forall a \in A, \ a \not R a$$

 \blacksquare La relación R es simétrica si:

$$\forall a, b \in A, aRb \Leftrightarrow bRa$$

lacktriangle La relación R es anti-simétrica si:

$$\frac{aRb}{bRa} \right\} \Rightarrow a = b$$

 \blacksquare La relación R es asimétrica si:

$$aRb \Rightarrow b\cancel{R}a$$

Una relación asimétrica no puede ser reflexiva ni simétrica, e implica la anti-simétrica.

lacktriangle La relación R es transitiva si:

$$\left. \begin{array}{c} aRb \\ bRc \end{array} \right\} \Rightarrow aRc$$

Corolario 1.0.6. R es simétrica $\Leftrightarrow R = R^{-1}$.

Corolario 1.0.7. Si R es reflexiva, simétrica, etc, R^{-1} es del mismo tipo.

Definición 1.7. Una relación R sobre un conjunto A es un orden parcial, o una relación de orden parcial, si R es reflexiva, anti-simétrica y transitiva.

Definición 1.8. Una relación de equivalencia R sobre un conjunto A es una relación que es reflexiva, simétrica y transitiva.

1.3. Producto, unión e intersección de relaciones

Definición 1.9. Si A, B, C son conjuntos y $R \subseteq A \times B$ y $S \subseteq B \times C$, entonces la relación compuesta RS es una relación de A en C definida como $RS = \{(x, z)/x \in A \land z \in C \land \exists y \in B/(x, y) \in R \land (y, z) \in S\}.$

Teorema 1.1. Sean A, B, C, D conjuntos y $R_1 \subseteq A \times B$, $R_2 \subseteq B \times C$, $R_3 \subseteq C \times D$. Entonces $R_1(R_2R_3) = (R_1R_2)R_3$.

Definición 1.10. Dado un conjunto A y una relación R sobre A, definimos las potencias de R en forma recursiva como:

- $R^1 = R$.
- Para $n \in \mathbb{Z}^+$, $R^{n+1} = R R^n$.

Ejemplo 1.1. Si $A = \{1, 2, 3, 4\}$ y $R = \{(1, 2), (1, 3), (2, 4), (3, 2)\}$, entonces $R^2 = \{(1, 4), (1, 2), (3, 4)\}$, $R^3 = \{(1, 4)\}$ y para n > 4, $R^n = \emptyset$.

1.4. Representación matricial y dígrafos

1.4.1. Representación matricial

Definición 1.11. Una matriz cero-uno $m \times n$, $E = (e_{ij})_{m \times n}$ es una disposición rectangular de números en m filas y n columnas, donde cada e_{ij} para $1 \le i \le m$, y $1 \le j \le n$, denota la entrada de la i-esima columna de E y cada una de dichas entradas es 0 o 1.

Definición 1.12. Si R es una relación entre A y B, entonces R puede ser representado por la matriz M cuyos indices de fila y columna indexan los elementos de a y b, respectivamente, de manera que las entradas de M quedan definidas por:

$$m_{ij} = \begin{cases} 1 & aRb \\ 0 & aRb \end{cases}$$

Corolario 1.1.1. Sea A un conjunto y R una relación sobre A, si M(R) es la matriz de la relación, entonces:

- M(R) = 0, la matriz con todos los elementos iguales a 0, si y sólo si $R = \emptyset$.
- M(R) = 1, la matriz con todos los elementos iguales a 1, si y sólo si $R = A \times A$.
- $M(R^m) = [M(R)]^m, \ m \in \mathbb{Z}.$

Corolario 1.1.2. Sean R y S relaciones, y M(R), M(S) sus matrices respectivamente, entonces $M(R) \cdot M(S) = M(RS)$, pero ningún termino excede el 1.

Definición 1.13. Sean E y F dos matrices cero-uno $m \times n$. Decimos que E es menor que F y escribimos $E \leq F$, si $e_{ij} \leq f_{ij}$, para todos $1 \leq i \leq m$, $1 \leq j \leq n$.

En caso que exista al menos un elemento que no cumpla esto, las matrices no son comparables

Ejemplo 1.2.

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \le \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \not \le \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \not \le \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

Definición 1.14. Intersección o producto coordenada a coordenada Si $M, N \in \mathcal{M}_{r \times s} \Rightarrow M \cap N \in \mathcal{M}_{r \times s}/(M \cap N) = M_{ij} \cdot N_{ij}$.

Teorema 1.2. Dado un conjunto A con y una relación R sobre A, sea M la matriz de relación para R, entonces:

- R es reflexiva $\Leftrightarrow Id_{|A|} \leq M$. En el caso contrario, es irreflexiva.
- $\blacksquare R$ es simétrica $\Leftrightarrow M = M^t$.
- R es transitiva $\Leftrightarrow MM = M^2 \leq M$.
- R es anti-simétrica $\Leftrightarrow M \cap M^t \leq Id_{|A|}$. Recordar, esta matriz se forma operando los elementos correspondientes de M y M^t con las reglas $0 \cap 0 = 0 \cap 1 = 1 \cap 0 = 0$ y $1 \cap 1 = 1$ (lo mismo que multiplicación coordenada a coordenada).

Corolario 1.2.1. Sean las relaciones R, S, y M(R), M(S) las matrices de las relaciones, entonces:

- $M(R)^t = M(R^{-1}).$
- $M(R) + M(S) = M(R \cup S).$
- $M(R) \cap M(S) = M(R \cap S).$

Corolario 1.2.2. Conteo de Relaciones

Sea |A| = n:

- Cantidad de relaciones reflexivas: 2^{n^2-n} Tenemos 2 posibilidades, 0 o 1, en la diagonal siempre tiene que haber 1, y la matriz va a tener un total de n^2 entradas, y les restamos n que son las entradas que ya están ocupadas por la diagonal.
- Cantidad de relaciones simétricas: $2^{\frac{n^2+n}{2}}$ Devuelta, 2 posibilidades, la diagonal no importan las entradas si son 0 o 1, solo que sea simétrica, por lo que podemos elegir las entradas de la triangular superior y se determinan las del otro lado, que son $\frac{n^2-n}{2}$, pero les sumamos n de la diagonal, $\frac{n^2-n}{2}+n=\frac{n^2+n}{2}$.
- Cantidad de relaciones anti-simétricas: $2^n 3^{\frac{n^2-n}{2}}$ Las posibilidades de la diagonal son 2^n , y fuera de la diagonal, los elementos m_{ij} y m_{ji} , pueden ser ambos 0, o uno 0 y el otro 1, por lo que son 3 posibilidades, y determinando la triangular superior ya se determina el otro lado, y son $\frac{n^2-n}{2}$ entradas.

1.4.2. Dígrafos de relaciones

Definición 1.15. Sea A un conjunto finito no vació, un grafo dirigido o dígrafo G sobre A esta formado por los elementos de A, llamados vértices o nodo de G, y un subconjunto E de $A \times A$, conocido como las aristas o arcos de G. Si $a, b \in V$ y $(a, b) \in E$, entonces existe una arista de a a b.

El vértice a es el origen o fuente de la arista, y b es el termino, o vértice terminal, y decimos que b es adyacente desde a, y que a es adyacente hacia b. Ademas, si $a \neq b$, entonces $(a,b) \neq (b,a)$. Una arista de la forma (a,a) es una lazo en a.