

planetmath.org

Math for the people, by the people.

Garden of Eden

Canonical name GardenOfEden

Date of creation 2013-03-22 19:22:01

Last modified on Owner Ziosilvio (18733)

Last modified by Ziosilvio (18733)

Numerical id 6

Author Ziosilvio (18733)

Entry type Definition Classification msc 37B15 Classification msc 68Q80

Defines orphan pattern (cellular automaton)

Defines orphan pattern principle

A Garden of Eden (briefly, GoE) for a cellular automaton $\mathcal{A} = \langle Q, \mathcal{N}, f \rangle$ on a group G is a configuration $c \in Q^G$ which is not in the image of the global function $F_{\mathcal{A}}$ of \mathcal{A} .

In other words, a Garden of Eden is a global situation which can be started from, but never returned to.

The finitary counterpart of a GoE configuration is an *orphan pattern*: a pattern which cannot be obtained by synchronous application of the local function f.

Of course, any cellular automaton with an orphan pattern also has a GoE configuration.

Lemma 1 (Orphan pattern principle) If a cellular automaton with finite set of states Q has a GoE configuration, then it also has an orphan pattern.

Proof. First, suppose that G is countable. Let $\mathcal{A} = \langle Q, \mathcal{N}, f \rangle$ be a cellular automaton with no orphan pattern. Let $c: G \to Q$ be a configuration: we will prove that there is some $e: G \to Q$ such that $F_{\mathcal{A}}(e) = c$.

Let $G = \{g_n\}_{n\geq 0}$ be an enumeration of G: put $E_n = \{g_i \mid i \leq n\}$ and let $p_n : E_n \to Q$ be defined as $p_n = c|_{E_n}$. By hypothesis, none of the p_n 's is an orphan, so there is a sequence of configurations $c_n : G \to Q$ satisfying $F_{\mathcal{A}}(c_n)|_{E_n} = p_n = c|_{E_n}$. It is easy to see that $\lim_{k\to\infty} F_{\mathcal{A}}(c_{n_k}) = c$. But if Q is finite, then Q^G is compact by Tychonoff's theorem, so there exists a subsequence $\{c_{n_k}\}_{k\geq 0}$ and a configuration $e: G \to Q$ satisfying $\lim_{k\to\infty} c_{n_k} = e$: Since $F_{\mathcal{A}}$ is continuous in the product topology, F(e) = c.

Let now G be arbitrary. Let H be the subgroup generated by the neighborhood index \mathcal{N} : since \mathcal{N} is finite, H is countable. Let J be a set of representatives of the left cosets of H in G, so that $G = \bigsqcup_{j \in J} jH$. (Observe that we do not require that H is normal in G.) Call \mathcal{A}_H the cellular automaton on H that has the same local description (set of states, neighborhood index, local function) as \mathcal{A} . Let $c: G \to Q$ be a Garden of Eden configuration for \mathcal{A} : then at least one of the configurations $c_j(h) = c(jh)$ must be a Garden of Eden for \mathcal{A}_H . By the discussion above, \mathcal{A}_H must have an orphan pattern, which is also an orphan pattern for \mathcal{A} .