

Ça fait quoi si j'appuie là?

Retour d'expérience de tests d'intrusion sur systèmes industriels

Claire Vacherot @ SSTIC 2025

whoami

Claire Vacherot

Pentester & researcher @ Orange Cyberdefense

- ► Tests d'intrusion, spécialité systèmes industriels
- ► Recherche sécurité des réseaux et systèmes industriels
- ➤ Speaker @ GreHack, Defcon, Pass The Salt, Hack.lu, et maintenant au SSTIC!

Sommaire

Retour d'expérience de tests d'intrusion sur systèmes industriels*

- **▶** Présentation
- ► Méthodologie
- **▶** Techniques
- **▶** Observations

* Anonymisé

Aucun exemple ou image montré n'est issu d'un de nos audits. Mais tous sont inspirés de ce qu'on y a vu.

Régis sur son lieu de travai

Systèmes industriels

Composants matériels et logiciels permettant de contrôler des procédés physiques et mécaniques

Exemples de systèmes industriels

▶ Diversité des environnements = pas de schéma « type » possible

► OT = Operational Technology

Capteurs et actionneurs

Automates programmables (PLC)

IHM, RTU et autres...

Opérations industrielles (MES, Historian, ...), gestion de parc, etc.

Réseau(x) d'un système industriel (OT)

Lien IT / OT

Réseau(x) d'un système industriel (OT)

Réseau IP OT filaire et/ou sans fil

Réseau(x) d'un système industriel (OT)

Réseau terrain OT filaire et/ou sans fil et IoT

Purdue model

Cybersécurité

Peut-on tout faire péter?

Normalement non.

- ► Safety Instrumented Systems (SIS)
- ► Autres équipements / mesures de **sûreté**

Mais...

- ► Mesures pas infaillibles
- D'autres moyens de causer des dégâts

Menaces ciblant les systèmes industriels

Large panel d'enjeux techniques et métiers = pas de généralisation possible

Conditions de test

- NARON NG
- ► Tests d'intrusion industriels normalement en environnement de test Souvent inexistant ou pas représentatif
- La majorité de nos tests sont en production*

 Malgré nous...
- ► Impact sur la portée et la méthodologie On ne peut pas faire « comme d'habitude »

* « La production » : Environnement en fonctionnement

Tests d'intrusion OT

(en production)

Passage de l'IT à l'OT

Et parfois...

Points de passage fréquents

« Pivot » DMZ? Tunnel SSH / outils de pivot • • • • • •

Vous êtes ici ITIOT DMZ? **VLAN** utilisateurs **VLAN Serveurs** •••

Déroulement des tests d'intrusion

► Phase de découverte

► Recherche de vulnérabilités

► Synthèse et scénarios

► Restitution des résultats

PRODUC

Précautions

- ► Obtention d'informations
 Schéma d'architecture, plan d'adressage, etc.
- ► Exclusion des composants critiques Genre ça →

Phase de découverte

Phase de découverte

Phase de découverte

- ► Cycle de vie des composants
- Equipements très spécialisés
- ► Fonctionnement et sûreté des procédés
- ► Validation et homologation

Scans réseaux?

PRODUC

Techniques de découverte « légère »

▶ Plein de choses à faire

Ex: interroger les équipements réseau

▶ Broadcast

Choix historique, architecture réseau Dissecteurs Wireshark <3

► Multicast

Supporté par plein de protocoles OT

	Time	Source	Destination	Protocol	Length Info
	9 217.305942997				76 MA/00:30:11:80:03:80 IN/Port 1 120
		HMSIndus_80:03:84	LLDP_Multicast	LLDP	129 MA/00:30:11:80:03:83 LA/port-001 20 RTCla
		HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	
		HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	
		HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	
		HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	
		HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	
		HMSIndus_80:03:84	LLDP_Multicast	LLDP	129 MA/00:30:11:80:03:83 LA/port-001 20 RTCla
		HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	
203	0 230.015014817	HMSIndus_80:03:84	LLDP_Multicast	LLDP	129 MA/00:30:11:80:03:83 LA/port-001 20 RTCla
		HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	60 DelayReq , Seq=2896, Delay=
		HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	
		HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	
		HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	
20	1 235.064971646	HMSIndus_80:03:84	LLDP_Multicast	LLDP	129 MA/00:30:11:80:03:83 LA/port-001 20 RTCla
210	2 238.984965094	HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	60 DelayReq , Seq=2900, Delay=
216	9 239.184871138	HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	60 DelayReq , Seq=2901, Delay=
		HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	
218	3 239.584898417	HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	60 DelayReq , Seq=2903, Delay=
218	6 239.784906715	HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	60 DelayReq , Seq=2904, Delay=
22:	6 240.114777013	HMSIndus_80:03:84	LLDP_Multicast	LLDP	129 MA/00:30:11:80:03:83 LA/port-001 20 RTCla
359	2 243.852635684	192.168.1.19	255.255.255.255	HICP	54 Request message, Command: Module scan
359	3 243.852638319	192.168.1.19	255.255.255.255	HICP	54 Request message, Command: Module scan
		HMSIndus_80:03:84	LLDP_Multicast	LLDP	129 MA/00:30:11:80:03:83 LA/port-001 20 RTCla
		HMSIndus_80:03:80	LLDP_Multicast	LLDP	76 MA/00:30:11:80:03:80 IN/Port 1 120
		HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	
		HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	60 DelayReq , Seq=2906, Delay=
		HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	60 DelayReq , Seq=2907, Delay=
		HMSIndus_80:03:84	LLDP_Multicast	PN-PTCP	60 DelayReq , Seq=2908, Delay=
		HMSIndus 80:03:84	LLDP Multicast	PN-PTCP	60 DelayReg , Seg=2909, Delay=

Multicast avec KNXnet/IP

Multicast 224.0.12.23

Search Request

KNX gateway floor 1 192.168.1.2 0.1.1

KNX gateway elevator 192.168.1.11 0.0.10

Internet Protocol Version 4, Src: 192.168.1.23, Dst: 192.168.1.17
User Datagram Protocol, Src Port: 3671, Dst Port: 60894
KIX/IP Search Response, Control @ 192.168.1.23:3671, 15.15.255 "IP-Interface Secure"
- KNX/IP Header: Search Response
Header Length: 6 bytes
Protocol Version: 1.0

Header Lengur: 6 bytes Protocol Version: 1.0 Service Identifier: Search Response (0x0202) Service Family: Core (0x02) Service Type: Search Response (0x0202) Total Length: 78 bytes

Total Length: 78 bytes

HPAI Control Endpoint: 192.168.1.23:3671 UDP

Structure Length: 8 bytes

Host Protocol: TPV4 UDP (0x01)

IP Address: 192.168.1.23

Port Number: 3671

DIB DevInfo: 15.15.255 "IP-Interface Secure"
 DIB SuppSvc: Tunneling, Remote Diag And Config

IP-Interface Secure 192.168.1.23 15.15.255

Protocoles réseaux industriels

- ► Surveiller, contrôler, configurer
- ► Il y en a BEAUCOUP

 Selon constructeurs, secteurs, usage...
- ► Liste incomplète ici :

SIEMENS

Peut-on utiliser ces protocoles en pentest?

Risques d'effets de bord élevés

Usage maîtrisé ou hors production seulement

L'un des composants principaux des systèmes industriels

Ce serait dommage de passer à côté...

Quelques techniques

Outils et modules existants

Open source, scripts nmap internes et externes

► Développement de scripts

Layers Scapy pour certains protocoles

► A valider en environnement de test

Exemple: Découverte ciblée Ethernet/IP

- ► Nmap : enip-discover
- ► Scapy : enipTCP.py, requête List Identity


```
s = socket()
s.connect((argv[1], 44818))
ss = StreamSocket(s, Raw)
# Creation de la requete
pkt = ENIPTCP()
pkt.commandId = 0x63
# Envoi de la requete, reception de la reponse
resp = ss.sr1(pkt)
resp = ENIPTCP(raw(resp))
resp.show2()
```


Exemple: Découverte ciblée Ethernet/IP

Ok merci


```
python enip discovery.py 192.168.1.241
Begin emission:
Finished sending 1 packets.
Received 1 packets, got 1 answers, remaining 0 packets
###[ ENIPTCP 1###
  commandId = ListIdentity
  length
           = 59
  session = 0x0
  status
           = success
  senderContext= 0
  options = 0
###[ ENIPListIdentity ]###
    itemCount = 256
     \items
      |###[ ENIPListIdentityReplyItem ]###
        itemTypeCode= CIP Identity
        itemLength= 53
        protocolVersion= 1
        sinFamily = 2
        sinPort = 44818
        sinAddress= 192.168.1.241
        sinZero = 0
        vendorId = 90
        deviceType= Communications Adapter
         productCode= 93
        revisionMajor= 1
        revisionMinor= 8
                  = 48
         status
         serialNumber= 0xa06f262f
         productNameLength= 19
         productName= 'Anybus Communicator'
         state
                  = 255
```


Après la phase de découverte...

Attention : Schéma simplifié, pas vraiment représentatif d'un dispositif réel

Recherche de vulnérabilités

- ► Ne pas rendre instable les systèmes
- ► Ne pas altérer le fonctionnement

Comment faire?

Régis sur son lieu de travai

Première idée

TESTER HORS PRODUCTION

Deuxième idée

FAIRE ATTENTION*

- ▶ Privilégier les cibles secondaires / moins sensibles
- Connaître les conséquences possibles de ses techniques d'exploitation

^{*} Et demander l'accord avec le client

Troisième idée

UNE INCROYABLE CAPACITÉ DE DÉDUCTION

Un firmware de 2009 concerné par 24 CVE ?

Un protocole sans authentification pour contrôler le procédé?

Un serveur SSH sans mot de passe pour root?

(on peut aussi demander au client)

Architecture et cloisonnement réseau

Architecture et cloisonnement réseau

▶ Obsolescence

- Architecture et cloisonnement réseau
- **▶** Obsolescence

► Services non sécurisés

Architecture et cloisonnement réseau

▶ Obsolescence

Services non sécurisés

► Défauts de configuration

Valeurs par défaut

Pratiques et habitudes des utilisateurs

Et finalement...

Attention : Schéma simplifié, pas vraiment représentatif d'un dispositif réel

Bilan

Un début d'explication

- Cycle de vie, exigences de production, etc.
- Sûreté de fonctionnement Sécurité des personnes
- ► Sensibilisation des constructeurs, intégrateurs et utilisateurs finaux

Protéger les systèmes industriels

▶ Durcissement des configurations
 A adapter selon contraintes opérationnelles / de sûreté

➤ Solutions et procédures de sécurité

Contrôle d'accès, gestion d'identité, détection, etc.

Architecture et cloisonnement réseau

Référentiels

ANSSI

- ► La cybersécurité des systèmes industriels, 2014-2025 ?
- ▶ Recommandations relatives à l'administration sécurisée des SI, 2021
- ➤ Référentiel d'exigences de sécurité pour les prestataires d'intégration et de maintenance de systèmes industriels, 2016
- ▶ Guide pour une formation sur la cybersécurité des systèmes industriels., 2015

NIST

► NIST SP 800-82 Rev. 3 : Guide to Operational Technology (OT) Security

...et plein d'autres!

Conclusion

Tout n'est pas perdu

Plus d'infos dans les actes

Tester un SI industriel n'est pas anodin!

Sensibilisation nécessaire

SVP faites attention

Merci!

@non_curat_lex

github/claire-lex