

TD N°1:

LOIS FONDAMENTALES DE L'ELECTRICITE

Exercice 1:

Soit le circuit suivant :

✓ Indiquer le nombre de nœuds, le nombre de branches et le nombre de mailles.

R_1 R_2 R_3 R_4 R_4 R_4

Exercice 2:

Soit le circuit suivant. On donne : $E_1=4$ V, $E_2=24$ V, $R_1=16$ $k\Omega$, $R_2=4$ $k\Omega$, $R_3=6$ $k\Omega$.

- ✓ Calculer l'intensité du courant dans la branche AB en appliquant :
- · Les lois de Kirchhoff
- Le théorème de Millman
- Le théorème de superposition

Exercice 3:

En utilisant le théorème de superposition, donner l'expression du courant I_1 .

Exercice 4:

Donner l'expression du courant passant dans la résistance R_5 du circuit suivant en appliquant :

- Le théorème de Thévenin
- · Le théorème de Norton

Exercice 5:

Pour les deux circuits suivants, donner le schéma de Thévenin équivalent entre les points A et B.

Exercice 6:

Donner l'expression du courant circulant dans la charge R_L du circuit suivant en utilisant le théorème de Thévenin.

QUADRIPOLES

Exercice 1:

Soit le quadripôle en T suivant. $R_1 = 5 \Omega$, $R_2 = 15 \Omega$, $R_3 = 10 \Omega$.

- 1. Déterminer les paramètres de la matrice impédance [Z] de ce quadripôle en utilisant :
 - ✓ Les définitions de ces paramètres.
 - ✓ La loi des mailles.
- 2. Connaissant la matrice [Z], déterminer la matrice [Y].

Dr DJINKWI WANDA

Exercice 2:

Soit le quadripôle en π suivant.

- 1. Déterminer les paramètres de la matrice admittance [Y].
- 2. Déterminer les paramètres de la matrice hybride [h].
- Déterminer les expressions du gain en courant et de la résistance d'entrée lorsque le quadripôle est fermé sur une résistance R_L.
- 4. Déterminer l'expression de la résistance de sortie lorsque le quadripôle est alimenté par un générateur de résistance interne R_q.

Exercice 3:

Soient les quadripôles Q1 et Q2 suivants :

- 1. Déterminer la matrice de transfert [T] de chaque quadripôle.
- 2. En déduire les matrices de transferts des quadripôles Q₃, Q₄ et Q₃:

Exercice 4:

- I. Soit une charge R_L connectée à un générateur sinusoïdal e(t) d'amplitude E et de résistance interne R_g .
- **I.1.** Déterminer l'expression de la puissance P fournie à la charge R_L par ce générateur en fonction de E, R_g et R_L .

- **I.2.** Pour quelle valeur de R_L , P est-elle maximale? Que vaut alors P_{max} ?
- II. Dans le cas étudié ici, R_L est très inférieur à R_g . Afin d'optimiser le transfert d'énergie entre le générateur et la charge, on intercale un quadripôle d'adaptation d'impédance constitué d'une capacité $(Z_C = \frac{1}{jC\omega} = jX_C)$ et d'une self $(Z_L = jL\omega = jX_L)$.

Dr DJINKWI WANDA

- II.1. Exprimer l'impédance d'entrée Z_e du quadripôle adaptateur chargé par la résistance R_L en fonction de X_C , X_L et R_L .
- II.2. A quoi doit être égale Z_e pour que la puissance transmise par le générateur au quadripôle chargé par R_L soit maximale?
- II.3. Donner finalement les expressions de X_C et X_L en fonction de R_g et R_L pour avoir une adaptation d'impédance.

Exercice 5:

Soit le filtre suivant :

- 1. Donner l'expression de la fonction de transfert $T(j\omega) = v_s/v_e$.
- **2.** Mettre $T(j\omega)$ sous la forme $\frac{T_0}{1+j\frac{\omega}{\omega_0}}$. Donner la valeur de T_0 et l'expression de ω_0 .

- 3. Quel est le type et l'ordre de ce filtre?
- **4.** Exprimer la fréquence de coupure f_c en fonction de R et C.
- 5. Tracer les courbes de gain et de phase dans le plan de Bode.

Exercice 6:

Soit le filtre suivant :

- 1. Donner l'expression de la fonction de transfert $H(j\omega) = v_s/v_e$.
- 2. Mettre $H(j\omega)$ sous la forme $\frac{H_0 j \frac{\omega}{\omega_0}}{1 + j \frac{\omega}{\omega_0}}$. Donner la valeur de H_0 et l'expression de ω_0 .

- 3. Quel est le type et l'ordre de ce filtre?
- **4.** Exprimer la fréquence de coupure f_c en fonction de R et C.
- 5. Tracer les courbes de gain et de phase dans le plan de Bode.