ETSI TS 138 104 V16.4.0 (2020-07)

5G;

NR;

Base Station (BS) radio transmission and reception (3GPP TS 38.104 version 16.4.0 Release 16)

Reference RTS/TSGR-0438104vG40 Keywords 5G

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from: http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommitteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020. All rights reserved.

DECT™, **PLUGTESTS™**, **UMTS™** and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP™** and **LTE™** are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

oneM2M[™] logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners.

GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Legal Notice

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities. These shall be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intell	ectual Property Rights	2
Legal	1 Notice	2
Moda	al verbs terminology	2
Forev	word	12
1	Scope	14
2	References	14
3	Definitions, symbols and abbreviations	15
3.1	Definitions	
3.2	Symbols	19
3.3	Abbreviations	21
4	General	
4.1	Relationship with other core specifications	
4.2	Relationship between minimum requirements and test requirements	
4.3	Conducted and radiated requirement reference points	
4.3.1	BS type 1-C	
4.3.2	BS type 1-H	
4.3.3	BS type 1-O and BS type 2-O	
4.4	Base station classes	
4.5	Regional requirements	
4.6	Applicability of requirements	
4.7	Requirements for contiguous and non-contiguous spectrum	
4.8	Requirements for BS capable of multi-band operation	
4.9	OTA co-location with other base stations	29
5	Operating bands and channel arrangement	20
5.1	General	
5.2	Operating bands	
5.3	BS channel bandwidth	
5.3.1	General	
5.3.2	Transmission bandwidth configuration	
5.3.3	Minimum guardband and transmission bandwidth configuration	
5.3.4	RB alignment	
5.3.5	BS channel bandwidth per operating band	
5.3A	BS channel bandwidth for CA	
5.3A.		38
5.3A.2	Z	
5.4	Channel arrangement	
5.4.1	Channel spacing	
5.4.1.		
5.4.1.2	1 0	
5.4.2	Channel raster	
5.4.2.		
5.4.2.	1 0	
5.4.2.2		
5.4.2.3	1 0	
5.4.3	Synchronization raster	
5.4.3.	, e	
5.4.3.3	3 Synchronization raster entries for each operating band	46
6	Conducted transmitter characteristics	48
6.1	General	48
6.2	Base station output power	48
6.2.1	General	
6.2.2	Minimum requirement for BS type 1-C	49

	MC	4.0
5.2.3	Minimum requirement for BS type 1-H	
5.2.4	Additional requirements (regional)	
5.3	Output power dynamics	
5.3.1	General	
5.3.2	RE power control dynamic range	49
5.3.2.1	General	49
5.3.2.2	Minimum requirement for BS type 1-C and BS type 1-H	
5.3.3	Total power dynamic range	
5.3.3.1	General	
5.3.3.2	Minimum requirement for BS type 1-C and BS type 1-H	
5.3.4	NB-IoT RB power dynamic range for NB-IoT operation in NR in-band	
5.3.4.1	General	
5.3.4.1	Minimum Requirement	
	•	
5.4	Transmit ON/OFF power	
5.4.1	Transmitter OFF power	
5.4.1.1	General	
5.4.1.2	Minimum requirement for BS type 1-C	
5.4.1.3	Minimum requirement for BS type 1-H	
5.4.2	Transmitter transient period	
5.4.2.1	General	
5.4.2.2	Minimum requirement for BS type 1-C and BS type 1-H 1-H	52
5.4.2.3	Void	52
5.5	Transmitted signal quality	52
5.5.1	Frequency error	52
5.5.1.1	General	52
5.5.1.2	Minimum requirement for BS type 1-C and BS type 1-H	
5.5.2	Modulation quality	
5.5.2.1	General	
5.5.2.2	Minimum Requirement for BS type 1-C and BS type 1-H	
5.5.2.3	EVM frame structure for measurement	
5.5.3	Time alignment error	
5.5.3.1	General	
5.5.3.2		
	Minimum requirement for BS type 1-C and BS type 1-H	
5.6		
5.6.1	General	
5.6.2	Occupied bandwidth	
5.6.2.1	General	
5.6.2.2	Minimum requirement for BS type 1-C and BS type 1-H	
5.6.3	Adjacent Channel Leakage Power Ratio	
5.6.3.1	General	
5.6.3.2	Limits and Basic limits	
5.6.3.3	Minimum requirement for BS type 1-C	
5.6.3.4	Minimum requirement for BS type 1-H	58
5.6.4	Operating band unwanted emissions	
5.6.4.1	General	59
5.6.4.2	Basic limits	61
5.6.4.2.1	Basic limits for Wide Area BS (Category A)	61
5.6.4.2.2	Basic limits for Wide Area BS (Category B)	
5.6.4.2.2.1		
5.6.4.2.2.2		
5.6.4.2.3	Basic limits for Medium Range BS (Category A and B)	
5.6.4.2.4	Basic limits for Local Area BS (Category A and B)	
5.6.4.2.5	Basic limits for additional requirements	
5.6.4.2.5.1	<u>•</u>	
5.6.4.2.5.1 5.6.4.2.5.2		
5.6.4.2.5.3		
5.6.4.2.5.4	1 0	
5.6.4.3	Minimum requirements for BS type 1-C	
5.6.4.4	Minimum requirements for BS type 1-H	
5.6.5	Transmitter spurious emissions	
5.6.5.1	General	
5652	Rasic limits	67

6.6.5.2.1	General transmitter spurious emissions requirements	
6.6.5.2.2	Protection of the BS receiver of own or different BS	
6.6.5.2.3	Additional spurious emissions requirements	
6.6.5.2.4	Co-location with other base stations	
6.6.5.3	Minimum requirements for BS type 1-C	
6.6.5.4	Minimum requirements for BS type 1-H	
6.7	Transmitter intermodulation	
6.7.1	General	
6.7.2	Minimum requirements for BS type 1-C	
6.7.2.1	Co-location minimum requirements	
6.7.2.2	Additional requirements	
6.7.3	Minimum requirements for BS type 1-H	
6.7.3.1	Co-location minimum requirements	
6.7.3.2	Intra-system minimum requirements	
6.7.3.3	Additional requirements	84
7 C	onducted receiver characteristics	85
7.1	General	
7.1	Reference sensitivity level	
7.2.1	General	
7.2.1	Minimum requirements for BS type 1-C and BS type 1-H	
7.2.2	Dynamic range	
7.3.1	General	
7.3.1	Minimum requirement for BS type 1-C and BS type 1-H	
7.3.2 7.4	In-band selectivity and blocking	
7. 4 7.4.1	Adjacent Channel Selectivity (ACS)	
7.4.1 7.4.1.1	General	
7.4.1.1	Minimum requirement for BS type 1-C and BS type 1-H	
7.4.1.2	Void	
7.4.1.3 7.4.1.4	Void	
7.4.1.4 7.4.2		
7.4.2.1	In-band blocking	
7.4.2.1	Minimum requirement for BS type 1-C and BS type 1-H	
7.4.2.2	VoidVoid	
7.4.2.3 7.4.2.4		
7.4.2.4 7.5	Void Out-of-band blocking	
	General	
7.5.1		
7.5.2	Minimum requirement for BS type 1-C and BS type 1-H	
7.5.3	Co-location minimum requirements for BS type 1-C and BS type 1-H Void	
7.5.4		
7.6	Receiver spurious emissions	
7.6.1	General	
7.6.2	Basic limits	
7.6.3	Minimum requirement for BS type 1-C	
7.6.4	Minimum requirement for BS type 1-H	
7.7	Receiver intermodulation	
7.7.1	General	
7.7.2	Minimum requirement for BS type 1-C and BS type 1-H	
7.8	In-channel selectivity	
7.8.1	General	
7.8.2	Minimum requirement for BS type 1-C and BS type 1-H	105
8 C	onducted performance requirements	109
8.1	General	
8.1.1	Scope and definitions	
8.1.2	Void	
8.2	Performance requirements for PUSCH	
8.2.1	Requirements for PUSCH with transform precoding disabled	
8.2.1.1	General	
8.2.1.2	Minimum requirements	
8.2.2	Requirements for PUSCH with transform precoding enabled	
8 2 2 1	General	118

8.2.2.2	Minimum requirements	
8.2.3	Requirements for UCI multiplexed on PUSCH	119
8.2.3.1	General	119
8.2.3.2	Minimum requirements	120
8.2.4	Requirements for PUSCH for high speed train	121
8.2.4.1	General	121
8.2.4.2	Minimum requirements	122
8.2.5	Requirements for UL timing adjustment	123
8.2.5.1	Minimum requirements	124
8.3	Performance requirements for PUCCH	125
8.3.1	DTX to ACK probability	125
8.3.1.1	General	125
8.3.1.2	Minimum requirement	125
8.3.2	Performance requirements for PUCCH format 0	125
8.3.2.1	General	125
8.3.2.2	Minimum requirements	126
8.3.3	Performance requirements for PUCCH format 1	126
8.3.3.1	NACK to ACK requirements	126
8.3.3.1.1	General	126
8.3.3.1.2	Minimum requirements	127
8.3.3.2	ACK missed detection requirements	127
8.3.3.2.1	General	127
8.3.3.2.2	Minimum requirements	128
8.3.4	Performance requirements for PUCCH format 2	128
8.3.4.1	ACK missed detection requirements	128
8.3.4.1.1	General	128
8.3.4.1.2	Minimum requirements	129
8.3.4.2	UCI BLER performance requirements	129
8.3.4.2.1	General	129
8.3.4.2.2	Minimum requirements	130
8.3.5	Performance requirements for PUCCH format 3	130
8.3.5.1	General	130
8.3.5.2	Minimum requirements	131
8.3.6	Performance requirements for PUCCH format 4	132
8.3.6.1	General	132
8.3.6.2	Minimum requirement	
8.3.7	Performance requirements for multi-slot PUCCH	
8.3.7.1	General	
8.3.7.2	Performance requirements for multi-slot PUCCH format 1	
8.3.7.2.1	NACK to ACK requirements	134
8.3.7.2.1.		
8.3.7.2.1.	1	
8.3.7.2.2	ACK missed detection requirements	135
8.3.7.2.2.		
8.3.7.2.2.2	1	
8.4	Performance requirements for PRACH	
8.4.1	PRACH False alarm probability	
8.4.1.1	General	
8.4.1.2	Minimum requirement	
8.4.2	PRACH detection requirements	
8.4.2.1	General	
8.4.2.2	Minimum requirements for Normal Mode	
8.4.2.3	Minimum requirements for high speed train	137
9 Ra	adiated transmitter characteristics	130
9.1	General	
9.2	Radiated transmit power	
9.2.1	General	
9.2.1	Minimum requirement for BS type 1-H and BS type 1-O	
9.2.2	Minimum requirement for BS type 2-0	
9.3	OTA base station output power	
9.3.1	General	

9.3.2	Minimum requirement for BS type 1-O	140
9.3.3	Minimum requirement for BS type 2-O	
9.3.4	Additional requirements (regional)	
	OTA output power dynamics	
9.4 9.4.1	General	
9.4.2	OTA RE power control dynamic range	
9.4.2 9.4.2.1	General	
9.4.2.1	Minimum requirement for BS type 1-O	
9.4.2.2 9.4.3	OTA total power dynamic range	
9.4.3 9.4.3.1	General	
9.4.3.1	Minimum requirement for BS type 1-O	
9.4.3.3	Minimum requirement for BS type 2-0	
	OTA transmit ON/OFF power	
9.5.1	General	
9.5.2	OTA transmitter OFF power	
9.5.2.1	General	
9.5.2.1	Minimum requirement for BS type 1-O	
9.5.2.3	Minimum requirement for BS type 2-0	
9.5.3	OTA transient period	
9.5.3.1	General	
9.5.3.2	Minimum requirement for BS type 1-O	
9.5.3.3	Minimum requirement for BS type 2-0	
	OTA transmitted signal quality	
9.6.1	OTA frequency error	
9.6.1.1	General	
9.6.1.2	Minimum requirement for BS type 1-0	
9.6.1.3	Minimum requirement for BS type 2-0	
9.6.2	OTA modulation quality	
9.6.2.1	General	
9.6.2.2	Minimum Requirement for BS type 1-O	
9.6.2.3	Minimum Requirement for BS type 2-0	
9.6.2.3.1	EVM frame structure for measurement	
9.6.3	OTA time alignment error	
9.6.3.1	General	
9.6.3.2	Minimum requirement for BS type 1-O	
9.6.3.3	Minimum requirement for BS type 2-O	
9.7	OTA unwanted emissions	
9.7.1	General	
9.7.2	OTA occupied bandwidth	146
9.7.2.1	General	146
9.7.2.2	Minimum requirement for BS type 1-O and BS type 2-O	146
9.7.3	OTA Adjacent Channel Leakage Power Ratio (ACLR)	146
9.7.3.1	General	146
9.7.3.2	Minimum requirement for BS type 1-O	146
9.7.3.3	Minimum requirement for BS type 2-O	146
9.7.4	OTA operating band unwanted emissions	148
9.7.4.1	General	
9.7.4.2	Minimum requirement for BS type 1-O	148
9.7.4.2.1	Additional requirements	
9.7.4.2.1.1		
9.7.4.2.1.2		
9.7.4.3	Minimum requirement for BS type 2-O	
9.7.4.3.1	General	
9.7.4.3.2	OTA operating band unwanted emission limits (Category A)	
9.7.4.3.3	OTA operating band unwanted emission limits (Category B)	
9.7.4.3.4	Additional OTA operating band unwanted emission requirements	
9.7.5	OTA transmitter spurious emissions	
9.7.5.1	General	
9.7.5.2	Minimum requirement for BS type 1-O	
9.7.5.2.1	General	
9.7.5.2.2	General OTA transmitter spurious emissions requirements	
9.7.5.2.3	Protection of the BS receiver of own or different BS	152

9.7.5.2.4	Additional spurious emissions requirements	152
9.7.5.2.5	Co-location with other base stations	153
9.7.5.3	Minimum requirement for BS type 2-O	153
9.7.5.3.1	General	153
9.7.5.3.2	General OTA transmitter spurious emissions requirements	153
9.7.5.3.2.	1 General	153
9.7.5.3.2.		
9.7.5.3.2.		
9.7.5.3.3	Additional OTA transmitter spurious emissions requirements	
9.7.5.3.3.		
9.8	OTA transmitter intermodulation	155
9.8.1	General	155
9.8.2	Minimum requirement for BS type 1-O	155
10 R:	adiated receiver characteristics	157
10.1	General	
10.1	OTA sensitivity	
10.2.1	BS type 1-H and BS type 1-O	
10.2.1	General	
10.2.1.1	Minimum requirement	
10.2.1.2	BS type 2-O	
10.2.2	OTA reference sensitivity level	
	·	
10.3.1 10.3.2	General Minimum requirement for BS top 1.0	
	Minimum requirement for BS type 1-0	
10.3.3	Minimum requirement for BS type 2-O	
10.4 10.4.1	OTA dynamic range	
	General	
10.4.2	Minimum requirement for BS type 1-O	
10.5	OTA in-band selectivity and blocking	
10.5.1	OTA adjacent channel selectivity	
10.5.1.1	General	
10.5.1.2	Minimum requirement for BS type 1-O	
10.5.1.3	Minimum requirement for BS type 2-O	
10.5.2	OTA in-band blocking	
10.5.2.1	General	
10.5.2.2	Minimum requirement for BS type 1-O	
10.5.2.3	Minimum requirement for BS type 2-O	
10.6	OTA out-of-band blocking	
10.6.1	General	
10.6.2	Minimum requirement for BS type 1-0	
10.6.2.1	General minimum requirement	
10.6.2.2	Co-location minimum requirement	
10.6.3	Minimum requirement for BS type 2-O	
10.6.3.1	General minimum requirement	
10.7	OTA receiver spurious emissions	
10.7.1	General	
10.7.2	Minimum requirement for BS type 1-0	
10.7.3	Minimum requirement for BS type 2-O	
10.8	OTA receiver intermodulation	
10.8.1	General	
10.8.2	Minimum requirement for BS type 1-0	
10.8.3	Minimum requirement for BS type 2-O	
10.9	OTA in-channel selectivity	
10.9.1	General	
10.9.2	Minimum requirement for BS type 1-0	
10.9.3	Minimum requirement for BS type 2-0	187
11 R	adiated performance requirements	189
11.1	General	
11.1.1	Scope and definitions	189
11.1.2	OTA demodulation branches	189
1113	Void	190

11.2	Performance requirements for PUSCH	190
11.2.1	Requirements for BS type 1-0	
11.2.1.1	Requirements for PUSCH with transform precoding disabled	
11.2.1.2	Requirements for PUSCH with transform precoding enabled	
11.2.1.3	Requirements for UCI multiplexed on PUSCH	
11.2.1.4	Requirements for PUSCH for high speed train	190
11.2.1.5	Requirements for UL timing adjustment	190
11.2.2	Requirements for BS type 2-0	190
11.2.2.1	Requirements for PUSCH with transform precoding disabled	190
11.2.2.1.1	General	190
11.2.2.1.2	Minimum requirements	
11.2.2.2	Requirements for PUSCH with transform precoding enabled	194
11.2.2.2.1	General	194
11.2.2.2.2	Minimum requirements	
11.2.2.3	Requirements for UCI multiplexed on PUSCH	195
11.2.2.3.1	General	195
11.2.2.3.2	Minimum requirements	196
11.3	Performance requirements for PUCCH	198
11.3.1	Requirements for BS type 1-0	198
11.3.1.1	DTX to ACK probability	198
11.3.1.2	Performance requirements for PUCCH format 0	198
11.3.1.3	Performance requirements for PUCCH format 1	198
11.3.1.4	Performance requirements for PUCCH format 2	
11.3.1.5 Pe	erformance requirements for PUCCH format 3	
	erformance requirements for PUCCH format 4	
11.3.2	Requirements for BS type 2-O	
11.3.2.1	DTX to ACK probability	
11.3.2.2	Performance requirements for PUCCH format 0	
11.3.2.2.1	General	
11.3.2.2.2	Minimum requirements	
11.3.2.3	Performance requirements for PUCCH format 1	
11.3.2.3.1	NACK to ACK requirements	
11.3.2.3.1.	•	
11.3.2.3.1.		
11.3.2.3.2	ACK missed detection requirements	
11.3.2.3.2.	*	
11.3.2.3.2.		
11.3.2.4	Performance requirements for PUCCH format 2	
11.3.2.4.1	ACK missed detection requirements	
11.3.2.4.1.		
11.3.2.4.1.		
11.3.2.4.2	UCI BLER performance requirements	
11.3.2.4.2.		
11.3.2.4.2.		
11.3.2.5	Performance requirements for PUCCH format 3	
11.3.2.5.1	General	
11.3.2.5.2	Minimum requirements	
11.3.2.6	Performance requirements for PUCCH format 4	
11.3.2.6.1	General	
11.3.2.6.2	Minimum requirements	
	Performance requirements for PRACH	
11.4.1	Requirements for BS type 1-0	
11.4.1.1	PRACH False alarm probability	
11.4.1.1	PRACH detection requirements	
11.4.1.2	Requirements for BS type 2-0	
11.4.2.1	PRACH False alarm probability	
11.4.2.1	General	
11.4.2.1.1	Minimum requirement	
11.4.2.1.2	PRACH detection requirements	
11.4.2.2.1	General Minimum requirements	
11.4.2.2.2	Minimum requirements	206

Anne	x A (normative):	Reference measurement channels	207
A.1		annels for reference sensitivity level, ACS, in-band blocking, out-of-band termodulation and in-channel selectivity (QPSK, R=1/3)	
A.2	Fixed Reference Channels for dynamic range (16QAM, R=2/3)		
A.3	Fixed Reference Cha	nnnels for performance requirements (QPSK, R=193/1024)	208
A.4	Fixed Reference Cha	nnnels for performance requirements (16QAM, R=658/1024)	214
A.5	Fixed Reference Cha	nnels for performance requirements (64QAM, R=567/1024)	218
A.6	PRACH Test preamb	oles	220
A.7	Fixed Reference Cha	nnels for performance requirements (16QAM, R=434/1024)	221
Anne	x B (normative):	Error Vector Magnitude (FR1)	222
B.1	Reference point for r	neasurement	222
B.2	Basic unit of measure	ement	222
B.3	Modified signal under	er test	223
B.4	Estimation of frequen	ncy offset	223
B.5		ffset	
B.5.1 B.5.2			
B.6		ain amplitude and frequency response parameters	
B.7			
Anne	x C (normative):	Error Vector Magnitude (FR2)	
C.1	· · ·	neasurement	
C.2	•	ement	
C.3	Modified signal unde	er test	229
C.4	· ·	ncy offset	
C.5 C.5.1		ffset	
C.5.2	Window length		230
C.6		ain amplitude and frequency response parameters	
C.7	Averaged EVM		232
Anne	x D (normative):	Characteristics of the interfering signals	234
Anne	x E:	Void	235
Anne	x F (normative):	Relationship between EIRP based regulatory requirements and 3GPP requirements	236
F.1	General		236
F.2	Relationship between	n EIRP based regulatory requirements and conducted requirements	236
F.3	Relationship between	n EIRP based regulatory requirements and OTA requirements	237
Anne	x G (Normative):	Propagation conditions	238
G.1	· · · · · · · · · · · · · · · · · · ·	ondition	
G.2	Multi-path fading pro	opagation conditions	

G.2.1.1		239
G.2.1.2		240
G.2.2	Combinations of channel model parameters	241
G.2.3	MIMO Channel Correlation Matrices	
G.2.3.1	MIMO Correlation Matrices using Uniform Linear Array (ULA)	242
G.2.3.1	Definition of MIMO Correlation Matrices	242
G.2.3.1	MIMO Correlation Matrices at High, Medium and Low Level	246
G.2.3.2	Multi-Antenna channel models using cross polarized antennas	248
G.2.3.2		
G.2.3.2		
G.2.3.2		
G.2.3.2	2.2.2 Spatial Correlation Matrices at gNB side	250
G.2.3.2		
G.3	High speed train condition	250
G.4	Moving propagation conditions	255
Annex	x H (informative): Change history	256
Histor	у	266

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

In the present document, modal verbs have the following meanings:

shall indicates a mandatory requirement to do somethingshall not indicates an interdiction (prohibition) to do something

The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.

The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.

should indicates a recommendation to do something

should not indicates a recommendation not to do something

may indicates permission to do something

need not indicates permission not to do something

The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.

can indicates that something is possiblecannot indicates that something is impossible

The constructions "can" and "cannot" are not substitutes for "may" and "need not".

will indicates that something is certain or expected to happen as a result of action taken by an agency

the behaviour of which is outside the scope of the present document

will not indicates that something is certain or expected not to happen as a result of action taken by an

agency the behaviour of which is outside the scope of the present document

might indicates a likelihood that something will happen as a result of action taken by some agency the

behaviour of which is outside the scope of the present document

might not indicates a likelihood that something will not happen as a result of action taken by some agency

the behaviour of which is outside the scope of the present document

In addition:

is (or any other verb in the indicative mood) indicates a statement of fact

is not (or any other negative verb in the indicative mood) indicates a statement of fact

The constructions "is" and "is not" do not indicate requirements.

1 Scope

[19]

The present document establishes the minimum RF characteristics and minimum performance requirements of NR and NB-IoT operation in NR in-band Base Station (BS).

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- 3GPP TR 21.905: "Vocabulary for 3GPP Specifications". [1] [2] ITU-R Recommendation SM.329: "Unwanted emissions in the spurious domain". Recommendation ITU-R SM.328: "Spectra and bandwidth of emissions". [3] [4] 3GPP TR 25.942: "RF system scenarios". [5] 3GPP TS 38.141-1: "NR; Base Station (BS) conformance testing; Part 1: Conducted conformance testing". [6] 3GPP TS 38.141-2: "NR; Base Station (BS) conformance testing; Part 2: Radiated conformance testing". [7] Recommendation ITU-R M.1545: "Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000". "Title 47 of the Code of Federal Regulations (CFR)", Federal Communications Commission. [8] [9] 3GPP TS 38.211: "NR; Physical channels and modulation". 3GPP TS 38.213: "NR; Physical layer procedures for control". [10] 3GPP TS 38.331: "NR; Radio Resource Control (RRC); Protocol specification". [11] ECC/DEC/(17)06: "The harmonised use of the frequency bands 1427-1452 MHz and 1492-1518 [12] MHz for Mobile/Fixed Communications Networks Supplemental Downlink (MFCN SDL)" 3GPP TS 36.104: "Evolved Universal Terrestrial Radio Access (E-UTRA): Base Station (BS) [13] radio transmission and reception". [14] 3GPP TS 37.105: "Active Antenna System (AAS) Base Station (BS) transmission and reception". 3GPP TS 38.212: "NR; Multiplexing and channel coding". [15] [16] 3GPP TR 38.901: "Study on channel model for frequencies from 0.5 to 100 GHz" 3GPP TS 38.101-1: "NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 [17] Standalone". 3GPP TS 38.101-2: "NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 [18] Standalone"

ERC Recommendation 74-01, "Unwanted emissions in the spurious domain".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

Aggregated BS Channel Bandwidth: The RF bandwidth in which a Base Station transmits and receives multiple contiguously aggregated carriers. The *aggregated BS channel bandwidth* is measured in MHz.

antenna connector: connector at the conducted interface of the BS type 1-C

active transmitter unit: transmitter unit which is ON, and has the ability to send modulated data streams that are parallel and distinct to those sent from other transmitter units to a *BS type 1-C antenna connector*, or to one or more *BS type 1-H TAB connectors* at the *transceiver array boundary*

Base Station RF Bandwidth: RF bandwidth in which a base station transmits and/or receives single or multiple carrier(s) within a supported *operating band*

NOTE: In single carrier operation, the Base Station RF Bandwidth is equal to the BS channel bandwidth.

Base Station RF Bandwidth edge: frequency of one of the edges of the Base Station RF Bandwidth.

basic limit: emissions limit relating to the power supplied by a single transmitter to a single antenna transmission line in ITU-R SM.329 [2] used for the formulation of unwanted emission requirements for FR1

beam: beam (of the antenna) is the main lobe of the radiation pattern of an antenna array

NOTE: For certain BS *antenna array*, there may be more than one beam.

beam centre direction: direction equal to the geometric centre of the half-power contour of the beam

beam direction pair: data set consisting of the beam centre direction and the related beam peak direction

beam peak direction: direction where the maximum EIRP is found

beamwidth: beam which has a half-power contour that is essentially elliptical, the half-power beamwidths in the two pattern cuts that respectively contain the major and minor axis of the ellipse

BS channel bandwidth: RF bandwidth supporting a single NR RF carrier with the *transmission bandwidth* configured in the uplink or downlink

- NOTE 1: The *BS channel bandwidth* is measured in MHz and is used as a reference for transmitter and receiver RF requirements.
- NOTE 2: It is possible for the BS to transmit to and/or receive from one or more UE bandwidth parts that are smaller than or equal to the BS transmission bandwidth configuration, in any part of the BS transmission bandwidth configuration.

BS transmission bandwidth configuration: set of resource blocks located within the *BS channel bandwidth* which may be used for transmitting or receiving by the BS

BS type 1-C: NR base station operating at FR1 with requirements set consisting only of conducted requirements defined at individual *antenna connectors*

BS type 1-H: NR base station operating at FR1 with a *requirement set* consisting of conducted requirements defined at individual *TAB connectors* and OTA requirements defined at RIB

BS type 1-O: NR base station operating at FR1 with a *requirement set* consisting only of OTA requirements defined at the RIB

BS type 2-O: NR base station operating at FR2 with a *requirement set* consisting only of OTA requirements defined at the RIB

Channel edge: lowest or highest frequency of the NR carrier, separated by the BS channel bandwidth.

Carrier aggregation: aggregation of two or more component carriers in order to support wider *transmission* bandwidths

Carrier aggregation configuration: a set of one or more *operating bands* across which the BS aggregates carriers with a specific set of technical requirements

co-location reference antenna: a passive antenna used as reference for base station to base station co-location requirements

Contiguous carriers: set of two or more carriers configured in a spectrum block where there are no RF requirements based on co-existence for un-coordinated operation within the spectrum block.

Contiguous spectrum: spectrum consisting of a contiguous block of spectrum with no *sub-block gap(s)*.

directional requirement: requirement which is applied in a specific direction within the *OTA coverage range* for the Tx and when the AoA of the incident wave of a received signal is within the *OTA REFSENS RoAoA* or the *minSENS RoAoA* as appropriate for the receiver

equivalent isotropic radiated power: equivalent power radiated from an isotropic directivity device producing the same field intensity at a point of observation as the field intensity radiated in the direction of the same point of observation by the discussed device

NOTE: Isotropic directivity is equal in all directions (i.e. 0 dBi).

equivalent isotropic sensitivity: sensitivity for an isotropic directivity device equivalent to the sensitivity of the discussed device exposed to an incoming wave from a defined AoA

NOTE 1: The sensitivity is the minimum received power level at which specific requirement is met.

NOTE 2: Isotropic directivity is equal in all directions (i.e. 0 dBi).

fractional bandwidth: fractional bandwidth FBW is defined as $FBW = 200 \cdot \frac{F_{FBWhigh} - F_{FBWlow}}{F_{FBWhigh} + F_{FBWlow}} \%$

Highest Carrier: The carrier with the highest carrier frequency transmitted/received in a specified frequency band.

Inter-band carrier aggregation: carrier aggregation of component carriers in different operating bands.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

Inter-band gap: The frequency gap between two supported consecutive *operating bands*.

Intra-band contiguous carrier aggregation: contiguous carriers aggregated in the same operating band.

Intra-band non-contiguous carrier aggregation: non-contiguous carriers aggregated in the same operating band.

Inter RF Bandwidth gap: frequency gap between two consecutive *Base Station RF Bandwidths* that are placed within two supported *operating bands*

Lowest Carrier: The carrier with the lowest carrier frequency transmitted/received in a specified frequency band.

Lower sub-block edge: frequency at the lower edge of one *sub-block*.

NOTE: It is used as a frequency reference point for both transmitter and receiver requirements.

maximum carrier output power: mean power level measured per carrier at the indicated interface, during the *transmitter ON period* in a specified reference condition

maximum carrier TRP output power: mean power level measured per RIB during the *transmitter ON period* for a specific carrier in a specified reference condition and corresponding to the declared *rated carrier TRP output* power $(P_{rated,c,TRP})$

maximum total output power: mean power level measured within the *operating band* at the indicated interface, during the *transmitter ON period* in a specified reference condition

maximum total TRP output power: mean power level measured per RIB during the *transmitter ON period* in a specified reference condition and corresponding to the declared *rated total TRP output* power (P_{rated,t,TRP})

measurement bandwidth: RF bandwidth in which an emission level is specified

minSENS: the lowest declared EIS value for the OSDD's declared for OTA sensitivity requirement.

minSENS RoAoA: The reference RoAoA associated with the OSDD with the lowest declared EIS

multi-band connector: Antenna Connector of BS type 1-C or TAB connector of BS type 1-H associated with a transmitter or receiver that is characterized by the ability to process two or more carriers in common active RF components simultaneously, where at least one carrier is configured at a different operating band than the other carrier(s) and where this different operating band is not a sub-band or superseding-band of another supported operating band

multi-band RIB: *operating band* specific RIB associated with a transmitter or receiver that is characterized by the ability to process two or more carriers in common active RF components simultaneously, where at least one carrier is configured at a different *operating band* than the other carrier(s) and where this different *operating band* is not a *sub-band* or *superseding-band* of another supported *operating band*

Multi-carrier transmission configuration: set of one or more contiguous or non-contiguous carriers that a NR BS is able to transmit simultaneously according to the manufacturer's specification.

NB-IoT operation in NR in-band: NB-IoT is operating in-band when it is located within a NR transmission bandwidth configuration plus 15 kHz at each edge but not within the NR minimum guard band GB_{Channel}.

NB-IoT operation in NR guard band: NB-IoT is operating in guard band when it is located within a NR BS channel bandwidth but is not NB-IoT operation in NR in-band.

Non-contiguous spectrum: spectrum consisting of two or more *sub-blocks* separated by *sub-block gap(s)*.

operating band: frequency range in which NR operates (paired or unpaired), that is defined with a specific set of technical requirements

NOTE: The *operating band*(s) for a BS is declared by the manufacturer according to the designations in tables 5.2-1 and 5.2-2.

OTA coverage range: a common range of directions within which TX OTA requirements that are neither specified in the *OTA peak directions sets* nor as *TRP requirement* are intended to be met

OTA peak directions set: set(s) of *beam peak directions* within which certain TX OTA requirements are intended to be met, where all *OTA peak directions set(s)* are subsets of the *OTA coverage range*

NOTE: The *beam peak directions* are related to a corresponding contiguous range or discrete list of *beam centre directions* by the *beam direction pairs* included in the set.

OTA REFSENS RoAoA: the RoAoA determined by the contour defined by the points at which the achieved EIS is 3dB higher than the achieved EIS in the reference direction assuming that for any AoA, the receiver gain is optimized for that AoA

NOTE: This contour will be related to the average element/sub-array radiation pattern 3dB beamwidth.

OTA sensitivity directions declaration: set of manufacturer declarations comprising at least one set of declared minimum EIS values (with *BS channel bandwidth*), and related directions over which the EIS applies

NOTE: All the directions apply to all the EIS values in an OSDD.

polarization match: condition that exists when a plane wave, incident upon an antenna from a given direction, has a polarization that is the same as the receiving polarization of the antenna in that direction

radiated interface boundary: operating band specific radiated requirements reference where the radiated requirements apply

NOTE: For requirements based on EIRP/EIS, the radiated interface boundary is associated to the far-field region

Radio Bandwidth: frequency difference between the upper edge of the highest used carrier and the lower edge of the lowest used carrier

rated beam EIRP: For a declared beam and *beam direction pair*, the *rated beam EIRP* level is the maximum power that the base station is declared to radiate at the associated *beam peak direction* during the *transmitter ON period*

rated carrier output power: mean power level associated with a particular carrier the manufacturer has declared to be available at the indicated interface, during the *transmitter ON period* in a specified reference condition

rated carrier TRP output power: mean power level declared by the manufacturer per carrier, for BS operating in single carrier, multi-carrier, or carrier aggregation configurations that the manufacturer has declared to be available at the RIB during the *transmitter ON period*

rated total output power: mean power level associated with a particular *operating band* the manufacturer has declared to be available at the indicated interface, during the *transmitter ON period* in a specified reference condition

rated total TRP output power: mean power level declared by the manufacturer, that the manufacturer has declared to be available at the RIB during the *transmitter ON period*

reference beam direction pair: declared *beam direction pair*, including reference *beam centre direction* and reference *beam peak direction* where the reference *beam peak direction* is the direction for the intended maximum EIRP within the *OTA peak directions set*

receiver target: AoA in which reception is performed by BS types 1-H or BS type 1-O

receiver target redirection range: union of all the *sensitivity RoAoA* achievable through redirecting the *receiver target* related to particular OSDD

receiver target reference direction: direction inside the *OTA sensitivity directions declaration* declared by the manufacturer for conformance testing. For an OSDD without *receiver target redirection range*, this is a direction inside the *sensitivity RoAoA*

reference RoAoA: the sensitivity RoAoA associated with the receiver target reference direction for each OSDD.

requirement set: one of the NR base station requirement's set as defined for BS type 1-C, BS type 1-H, BS type 1-O, and BS type 2-O

sensitivity RoAoA: RoAoA within the *OTA sensitivity directions declaration*, within which the declared EIS(s) of an OSDD is intended to be achieved at any instance of time for a specific BS direction setting

single-band connector: BS type 1-C antenna connector or BS type 1-H TAB connector supporting operation either in a single operating band only, or in multiple operating bands but does not meet the conditions for a multi-band connector.

single-band RIB: *operating band* specific RIB supporting operation either in a single *operating band* only, or in multiple *operating bands* but does not meet the conditions for a *multi-band RIB*.

sub-band: A *sub-band* of an operating band contains a part of the uplink and downlink frequency range of the operating band.

sub-block bandwidth: bandwidth of one sub-block.

sub-block: one contiguous allocated block of spectrum for transmission and reception by the same base station

NOTE: There may be multiple instances of *sub-blocks* within a *Base Station RF Bandwidth*.

sub-block gap: frequency gap between two consecutive sub-blocks within a *Base Station RF Bandwidth*, where the RF requirements in the gap are based on co-existence for un-coordinated operation

superseding-band: A *superseding-band* of an operating band includes the whole of the uplink and downlink frequency range of the operating band.

TAB connector: transceiver array boundary connector

TAB connector RX min cell group: *operating band* specific declared group of *TAB connectors* to which *BS type 1-H* conducted RX requirements are applied

NOTE: Within this definition, the group corresponds to the group of *TAB connectors* which are responsible for receiving a cell when the *BS type 1-H* setting corresponding to the declared minimum number of cells with reception on all *TAB connectors* supporting an *operating band*, but its existence is not limited to that condition

TAB connector TX min cell group: *operating band* specific declared group of *TAB connectors* to which *BS type 1-H* conducted TX requirements are applied.

NOTE: Within this definition, the group corresponds to the group of *TAB connectors* which are responsible for transmitting a cell when the *BS type 1-H* setting corresponding to the declared minimum number of cells with transmission on all *TAB connectors* supporting an *operating band*, but its existence is not limited to that condition

total radiated power: is the total power radiated by the antenna

NOTE: The *total radiated power* is the power radiating in all direction for two orthogonal polarizations. *Total radiated power* is defined in both the near-field region and the far-field region

transceiver array boundary: conducted interface between the transceiver unit array and the composite antenna

transmission bandwidth: RF Bandwidth of an instantaneous transmission from a UE or BS, measured in resource block units

transmitter OFF period: time period during which the BS transmitter is not allowed to transmit

transmitter ON period: time period during which the BS transmitter is transmitting data and/or reference symbols

transmitter transient period: time period during which the transmitter is changing from the OFF period to the ON period or vice versa

UE transmission bandwidth configuration: set of resource blocks located within the *UE channel bandwidth* which may be used for transmitting or receiving by the UE

upper sub-block edge: frequency at the upper edge of one sub-block.

NOTE: It is used as a frequency reference point for both transmitter and receiver requirements.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

β Percentage of the mean transmitted power emitted outside the occupied bandwidth on the assigned

channel

BeW_{θ ,REFSENS} Beamwidth equivalent to the OTA REFSENS RoAoA in the θ -axis in degrees. Applicable for FR1

only.

 $BeW_{\phi,REFSENS}$ Beamwidth equivalent to the OTA REFSENS RoAoA in the ϕ -axis in degrees. Applicable for FR1

only.

BW_{Channel} BS channel bandwidth

 $BW_{Channel_CA} \\ BW_{Channel,block} \\ BW_{Channel,block} \\ BW_{Channel,block} \\ BW_{Channel,block} \\ F_{edge,block,high} \\ F_{edge,block,low} \\ F_{edge,b$

BW_{Config} Transmission bandwidth configuration, where BW_{Config} = N_{RB} x SCS x 12

BW_{Contiguous} Contiguous transmission bandwidth, i.e. BS channel bandwidth for single carrier or Aggregated

BS channel bandwidth for contiguously aggregated carriers. For non-contiguous operation within a

band the term is applied per *sub-block*.

 $BW_{GB,low}$ The minimum guard band defined in clause 5.3.3 for lowest assigned component carrier $BW_{GB,high}$ The minimum guard band defined in clause 5.3.3 for highest assigned component carrier Separation between the *channel edge* frequency and the nominal -3 dB point of the measuring

filter closest to the carrier frequency

 ΔF_{Global} Global frequency raster granularity

 Δf_{max} f_offset_{max} minus half of the bandwidth of the measuring filter

 Δf_{OBUE} Maximum offset of the *operating band* unwanted emissions mask from the downlink *operating*

band edge

 Δf_{OOB} Maximum offset of the out-of-band boundary from the uplink operating band edge

 $\begin{array}{ll} \Delta_{FR2_REFSENS} & \text{Offset applied to the FR2 OTA REFSENS depending on the AoA} \\ \Delta_{minSENS} & \text{Difference between conducted reference sensitivity and minSENS} \\ \Delta_{OTAREFSENS} & \text{Difference between conducted reference sensitivity and OTA REFSENS} \end{array}$

 $\begin{array}{ll} \Delta F_{Raster} & Channel\ raster\ granularity \\ \Delta_{shift} & Channel\ raster\ offset\ for\ SUL \end{array}$

EIS_{minSENS} The EIS declared for the *minSENS RoAoA*

EIS_{REFSENS} OTA REFSENS EIS value

EIS_{REFSENS_50M} Declared OTA reference sensitivity basis level for FR2 based on a reference measurement channel

with 50MHz BS channel bandwidth

F_{FBWhigh} Highest supported frequency within supported operating band, for which fractional bandwidth

support was declared

F_{FBWlow} Lowest supported frequency within supported operating band, for which fractional bandwidth

support was declared

F_C RF reference frequency on the channel raster, given in table 5.4.2.2-1

 $F_{C,block,high}$ Fc of the highest transmitted/received carrier in a *sub-block*. Fc of the lowest transmitted/received carrier in a *sub-block*.

 $\begin{array}{ll} F_{C,low} & \text{The Fc of the } \textit{lowest carrier}, \, \text{expressed in MHz}. \\ F_{C,high} & \text{The Fc of the } \textit{highest carrier}, \, \text{expressed in MHz}. \\ F_{DL,low} & \text{The lowest frequency of the downlink } \textit{operating band} \\ F_{DL,high} & \text{The highest frequency of the downlink } \textit{operating band} \end{array}$

 $F_{edge,low} \qquad \qquad \text{The lower edge of } \textit{Aggregated BS Channel Bandwidth}, \ expressed \ in \ MHz. \ F_{edge,low} = F_{C,low} - F_{cdge,low} - F_{cdge,low$

Foffset, low.

 $F_{edge,high}$ The upper edge of Aggregated BS Channel Bandwidth, expressed in MHz. $F_{edge,high} = F_{C,high} +$

Foffset, high.

F_{filter} Filter centre frequency

Foffset,high Frequency offset from F_{C,high} to the upper Base Station RF Bandwidth edge, or from F_{C,block,high} to

the upper sub-block edge

 $F_{offset,low}$ Frequency offset from $F_{C,low}$ to the lower Base Station RF Bandwidth edge, or from $F_{C,block,low}$ to

the lower sub-block edge.

f_offset Separation between the *channel edge* frequency and the centre of the measuring

f_offset_{max} The offset to the frequency Δf_{OBUE} outside the downlink *operating band*

F_{REF} RF reference frequency

 $F_{REF-Offs}$ Offset used for calculating F_{REF}

 $F_{REF,shift} \hspace{1.5cm} RF \hspace{0.1cm} reference \hspace{0.1cm} frequency \hspace{0.1cm} for \hspace{0.1cm} Supplementary \hspace{0.1cm} Uplink \hspace{0.1cm} (SUL) \hspace{0.1cm} bands \hspace{0.1cm}$

 $F_{\text{step},X} \hspace{1.5cm} \text{Frequency steps for the OTA transmitter spurious emissions (Category B)} \\$

 $F_{UL,low}$ The lowest frequency of the uplink *operating band* $F_{UL,high}$ The highest frequency of the uplink *operating band* $GB_{Channel}$ Minimum guard band defined in clause 5.3.3

 N_{cells} The declared number corresponding to the minimum number of cells that can be transmitted by an

BS type 1-H in a particular operating band

 n_{PRB} Physical resource block number

N_{RB} Transmission bandwidth configuration, expressed in resource blocks

N_{RB,high} Transmission bandwidth configuration for the highest assigned component carrier within a sub-

block in CA

 $N_{RB,low}$ Transmission bandwidth configuration for the lowest assigned component carrier within a sub-

block in CA

N_{REF} NR Absolute Radio Frequency Channel Number (NR-ARFCN)

N_{REF-Offs} Offset used for calculating N_{REF}

N_{RXU,active} The number of active receiver units. The same as the number of *demodulation branches* to which

compliance is declared for chapter 8 performance requirements

N_{RXU,counted} The number of active receiver units that are taken into account for conducted Rx spurious emission

scaling, as calculated in clause 7.6.1

N_{RXU,countedpercell} The number of active receiver units that are taken into account for conducted RX spurious

emissions scaling per cell, as calculated in clause 7.6.1

N_{TXU,counted} The number of active transmitter units as calculated in clause 6.1, that are taken into account for

conducted TX output power limit in clause 6.2.1, and for unwanted TX emissions scaling

 $N_{TXU,countedpercell}$ The number of active transmitter units that are taken into account for conducted TX emissions

scaling per cell, as calculated in clause 6.1

 $P_{EM,n50/n75,ind}$ Declared emission level for Band n50/n75; ind = a, b

P_{EIRP.N} EIRP level for channel N

 $P_{max,c,AC}$ Maximum carrier output power measured per antenna connector

P_{max,c,cell} The maximum carrier output power per TAB connector TX min cell group

P_{max,c,TABC} The maximum carrier output power per TAB connector

P_{max,c,TRP} Maximum carrier TRP output power measured at the RIB(s), and corresponding to the declared

rated carrier TRP output power (Prated,c,TRP)

P_{max.c,EIRP} The maximum carrier EIRP when the NR BS is configured at the maximum rated carrier output

TRP (Prated,c,TRP)

P_{rated,c,AC} The rated carrier output power per antenna connector

P_{rated,c,cell} The rated carrier output power per TAB connector TX min cell group

Prated.c.FBWhigh The rated carrier EIRP for the higher supported frequency range within supported operating band,

for which fractional bandwidth support was declared

Prated.c.FBWlow The rated carrier EIRP for the lower supported frequency range within supported operating band,

for which fractional bandwidth support was declared

 $P_{\text{rated,c,sys}}$ The sum of $P_{\text{rated,c,TABC}}$ for all TAB connectors for a single carrier

 $\begin{array}{ll} P_{\text{rated,c,TABC}} & \quad \text{The } \textit{rated } \textit{carrier } \textit{output } \textit{power } \textit{per } \textit{TAB } \textit{connector} \\ P_{\text{rated,c,TRP}} & \quad \textit{Rated } \textit{carrier } \textit{TRP } \textit{output } \textit{power } \textit{declared } \textit{per } \textit{RIB} \end{array}$

 $\begin{array}{ll} P_{\text{rated,t,AC}} & \text{The } \textit{rated total output power} \ \text{declared at the } \textit{antenna connector} \\ P_{\text{rated.t,TABC}} & \text{The } \textit{rated total output power} \ \text{declared at } \textit{TAB connector} \end{array}$

P_{rated,t,TRP} Rated total TRP output power declared per RIB
P_{REFSENS} Conducted Reference Sensitivity power level

SCS_{low} Sub-Carrier Spacing for the lowest assigned component carrier within a *sub-block* in CA SCS_{high} Sub-Carrier Spacing for the highest assigned component carrier within a *sub-block* in CA

SS_{REF} SS block reference frequency position

W_{gap} Sub-block gap or Inter RF Bandwidth gap size

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

AA Antenna Array

AAS Active Antenna System

ACLR Adjacent Channel Leakage Ratio
ACS Adjacent Channel Selectivity

AoA Angle of Arrival

AWGN Additive White Gaussian Noise

BS Base Station
BW Bandwidth
CA Carrier Aggre

CA Carrier Aggregation
CACLR Cumulative ACLR
CPE Common Phase Error
CP-OFDM Cyclic Prefix-OFDM
CW Continuous Wave

DFT-s-OFDM Discrete Fourier Transform-spread-OFDM

DM-RS Demodulation Reference Signal
EIS Equivalent Isotropic Sensitivity
EIRP Effective Isotropic Radiated Power

E-UTRA Evolved UTRA

EVM Error Vector Magnitude
FBW Fractional Bandwidth
FR Frequency Range
FRC Fixed Reference Channel

GSCN Global Synchronization Channel Number GSM Global System for Mobile communications

ITU-R Radiocommunication Sector of the International Telecommunication Union

ICS In-Channel Selectivity

LA Local Area

LNA Low Noise Amplifier

MCS Modulation and Coding Scheme

MR Medium Range

NB-IoT Narrowband - Internet of Things

NR New Radio

NR Absolute Radio Frequency Channel Number NR-ARFCN

OBUE Operating Band Unwanted Emissions

Orthogonal Covering Code OCC

OOB Out-of-band

OSDD OTA Sensitivity Directions Declaration

OTA Over-The-Air

PRB Physical Resource Block

PT-RS Phase Tracking Reference Signal Quadrature Amplitude Modulation QAM

Resource Block RB

Radio Distribution Network **RDN**

Resource Element RE **REFSENS** Reference Sensitivity RF Radio Frequency

RIB Radiated Interface Boundary **RMS** Root Mean Square (value) Range of Angles of Arrival RoAoA

Quadrature Amplitude Modulation QAM

Resource Block RBRXReceiver

Sub-Carrier Spacing SCS Supplementary Downlink SDL SS Synchronization Symbol SSB Synchronization Signal Block **SUL** Supplementary Uplink TAB Transceiver Array Boundary TAE Time Alignment Error Tapped Delay Line TDL

Transmitter TX

Total Radiated Power TRP **Uplink Control Information** UCI **Unwanted Emissions Mask UEM** Universal Terrestrial Radio Access

UTRA

WA Wide Area ZF Zero Forcing

4 General

4.1 Relationship with other core specifications

The present document is a single-RAT specification for a BS, covering RF characteristics and minimum performance requirements. Conducted and radiated core requirements are defined for the BS architectures and BS types defined in clause 4.3.

The applicability of each requirement is described in clause 5.

4.2 Relationship between minimum requirements and test requirements

Conformance to the present specification is demonstrated by fulfilling the test requirements specified in the conformance specification TS 38.141-1 [5] and TS 38.141-2 [6].

The minimum requirements given in this specification make no allowance for measurement uncertainty. The test specifications TS 38.141-1 [5] and TS 38.141-2 [6] define test tolerances. These test tolerances are individually calculated for each test. The test tolerances are used to relax the minimum requirements in this specification to create test requirements. For some requirements, including regulatory requirements, the test tolerance is set to zero.

The measurement results returned by the test system are compared - without any modification - against the test requirements as defined by the shared risk principle.

The shared risk principle is defined in recommendation ITU-R M.1545 [7].

4.3 Conducted and radiated requirement reference points

4.3.1 BS type 1-C

For BS type 1-C, the requirements are applied at the BS antenna connector (port A) for a single transmitter or receiver with a full complement of transceivers for the configuration in normal operating conditions. If any external apparatus such as an amplifier, a filter or the combination of such devices is used, requirements apply at the far end antenna connector (port B).

Figure 4.3.1-1: BS type 1-C transmitter interface

Figure 4.3.1-2: BS type 1-C receiver interface

4.3.2 BS type 1-H

For BS type 1-H, the requirements are defined for two points of reference, signified by radiated requirements and conducted requirements.

Figure 4.3.2-1: Radiated and conducted reference points for BS type 1-H

Radiated characteristics are defined over the air (OTA), where the *operating band* specific radiated interface is referred to as the *Radiated Interface Boundary* (RIB). Radiated requirements are also referred to as OTA requirements. The (spatial) characteristics in which the OTA requirements apply are detailed for each requirement.

Conducted characteristics are defined at individual or groups of *TAB connectors* at the *transceiver array boundary*, which is the conducted interface between the transceiver unit array and the composite antenna.

The transceiver unit array is part of the composite transceiver functionality generating modulated transmit signal structures and performing receiver combining and demodulation.

The transceiver unit array contains an implementation specific number of transmitter units and an implementation specific number of receiver units. Transmitter units and receiver units may be combined into transceiver units. The transmitter/receiver units have the ability to transmit/receive parallel independent modulated symbol streams.

The composite antenna contains a radio distribution network (RDN) and an antenna array. The RDN is a linear passive network which distributes the RF power generated by the transceiver unit array to the antenna array, and/or distributes the radio signals collected by the antenna array to the transceiver unit array, in an implementation specific way.

How a conducted requirement is applied to the *transceiver array boundary* is detailed in the respective requirement clause.

4.3.3 BS type 1-0 and BS type 2-0

For BS type 1-O and BS type 2-O, the radiated characteristics are defined over the air (OTA), where the operating band specific radiated interface is referred to as the Radiated Interface Boundary (RIB). Radiated requirements are also referred to as OTA requirements. The (spatial) characteristics in which the OTA requirements apply are detailed for each requirement.

Figure 4.3.3-1: Radiated reference points for BS type 1-O and BS type 2-O

Co-location requirements are specified at the conducted interface of the *co-location reference antenna*, the *co-location reference antenna* does not form part of the BS under test but is a means to provide OTA power levels which are representative of a co-located system, further defined in clause 4.9.

For a *BS type 1-O* the transceiver unit array must contain at least 8 transmitter units and at least 8 receiver units. Transmitter units and receiver units may be combined into transceiver units. The transmitter/receiver units have the ability to transmit/receive parallel independent modulated symbol streams.

4.4 Base station classes

The requirements in this specification apply to Wide Area Base Stations, Medium Range Base Stations and Local Area Base Stations unless otherwise stated. The associated deployment scenarios for each class are exactly the same for BS with and without connectors.

For BS type 1-O and 2-O, BS classes are defined as indicated below:

- Wide Area Base Stations are characterised by requirements derived from Macro Cell scenarios with a BS to UE minimum distance along the ground equal to 35 m.
- Medium Range Base Stations are characterised by requirements derived from Micro Cell scenarios with a BS to UE minimum distance along the ground equal to 5 m.
- Local Area Base Stations are characterised by requirements derived from Pico Cell scenarios with a BS to UE minimum distance along the ground equal to 2 m.

For BS type 1-C and 1-H, BS classes are defined as indicated below:

- Wide Area Base Stations are characterised by requirements derived from Macro Cell scenarios with a BS to UE minimum coupling loss equal to 70 dB.
- Medium Range Base Stations are characterised by requirements derived from Micro Cell scenarios with a BS to UE minimum coupling loss equals to 53 dB.
- Local Area Base Stations are characterised by requirements derived from Pico Cell scenarios with a BS to UE minimum coupling loss equal to 45 dB.

4.5 Regional requirements

Some requirements in the present document may only apply in certain regions either as optional requirements, or as mandatory requirements set by local and regional regulation. It is normally not stated in the 3GPP specifications under what exact circumstances the regional requirements apply, since this is defined by local or regional regulation.

Table 4.5-1 lists all requirements in the present specification that may be applied differently in different regions.

Table 4.5-1: List of regional requirements

Clause number	Requirement	Comments
5.2	Operating bands	Some NR operating bands may be applied regionally.
6.2.4	Base station output power: Additional requirements	These requirements may be applied regionally as additional base station output power requirements.
6.6.2, 9.7.2	Occupied bandwidth, OTA occupied bandwidth	The requirement may be applied regionally. There may also be regional requirements to declare the occupied bandwidth according to the definition in present specification.
6.6.4.2, 9.7.4.2	Operating band unwanted emission, OTA operating band unwanted emissions	Category A or Category B operating band unwanted emissions limits may be applied regionally.
6.6.4.2.5.1, 9.7.4.2.1.2	Operating band unwanted emission, OTA operating band unwanted emissions: Limits in FCC Title 47	The BS may have to comply with the additional requirements, when deployed in regions where those limits are applied, and under the conditions declared by the manufacturer.
6.6.4.2.5.2, 9.7.4.2.1.1	Operating band unwanted emission, OTA operating band unwanted emissions Protection of DTT	The BS operating in Band n20 may have to comply with the additional requirements for protection of DTT, when deployed in certain regions.
6.6.5.2.1, 9.7.5.2	Tx spurious emissions, OTA Tx spurious emissions	Category A or Category B spurious emission limits, as defined in ITU-R Recommendation SM.329 [2], may apply regionally. The emission limits for BS type 1-H and BS type 1-O specified as the basic limit + X (dB) are applicable, unless stated differently in regional regulation.
6.6.5.2.3, 9.7.5.3.3	Tx spurious emissions: additional requirements, OTA Tx spurious emissions: additional requirements	These requirements may be applied for the protection of system operating in frequency ranges other than the BS <i>operating band</i> .
6.7.2.1.1, 6.7.3.1.1 9.8.2	Transmitter intermodulation, OTA transmitter intermodulation	Interfering signal positions that are partially or completely outside of any downlink <i>operating band</i> of the base station are not excluded from the requirement in Japan in Band n77, n78, n79.
7.6.4, 10.7.2 10.7.3	Rx spurious emissions, OTA Rx spurious emissions	The emission limits for BS type 1-H and BS type 1-O specified as the basic limit + X (dB) are applicable, unless stated differently in regional regulation. Additional limits for BS type 2-O may apply regionally.

4.6 Applicability of requirements

In table 4.6-1, the requirement applicability for each *requirement set* is defined. For each requirement, the applicable requirement clause in the specification is identified. Requirements not included in a *requirement set* is marked not applicable (NA).

Radiated performance

requirements

Requirement set Requirement BS type 1-0 BS type 2-0 BS type 1-C BS type 1-H BS output power 6.2 6.2 6.3 6.3 Output power dynamics Transmit ON/OFF power 6.4 6.4 Transmitted signal quality 6.5 6.5 Occupied bandwidth 6.6.2 6.6.2**ACLR** 6.6.3 6.6.3 Operating band unwanted 6.6.4 6.6.4 emissions 6.6.5 6.6.5 Transmitter spurious emissions NA NA Transmitter intermodulation 6.7 6.7 Reference sensitivity level 7.2 7.2 7.3 Dynamic range 7.3 In-band selectivity and blocking 7.4 7.4 Out-of-band blocking 7.5 7.5 Receiver spurious emissions 7.6 7.6 Receiver intermodulation 7.7 7.7 In-channel selectivity 7.8 7.8 Performance requirements 8 9.2 9.2 Radiated transmit power 9.2 9.3 OTA base station output power 9.3 9.4 9.4 OTA output power dynamics OTA transmit ON/OFF power 9.5 9.5 OTA transmitted signal quality 9.6 9.6 OTA occupied bandwidth 9.7.2 9.7.2 NA OTA ACLR 9.7.3 9.7.3 OTA out-of-band emission 9.7.4 9.7.4 OTA transmitter spurious emission 9.7.5 9.7.5 OTA transmitter intermodulation 9.8 NA OTA sensitivity 10.2 10.2 NA NA OTA reference sensitivity level 10.3 10.3 OTA dynamic range 10.4 NA OTA in-band selectivity and 10.5 10.5 blocking OTA out-of-band blocking 10.6 10.6 NA OTA receiver spurious emission 10.7 10.7 OTA receiver intermodulation 10.8 10.8 OTA in-channel selectivity 10.9 10.9

Table 4.6-1: Requirement set applicability

4.7 Requirements for contiguous and *non-contiguous spectrum*

11

11

A spectrum allocation where a BS operates can either be contiguous or non-contiguous. Unless otherwise stated, the requirements in the present specification apply for BS configured for both *contiguous spectrum* operation and *non-contiguous spectrum* operation.

For BS operation in *non-contiguous spectrum*, some requirements apply both at the *Base Station RF Bandwidth edges* and inside the *sub-block gaps*. For each such requirement, it is stated how the limits apply relative to the *Base Station RF Bandwidth edges* and the *sub-block* edges respectively.

4.8 Requirements for BS capable of multi-band operation

For *multi-band connector* or *multi-band RIB*, the RF requirements in clause 6, 7, 9 and 10 apply separately to each supported *operating band* unless otherwise stated. For some requirements, it is explicitly stated that specific additions or exclusions to the requirement apply at *multi-band connector(s)*, and *multi-band RIB(s)* as detailed in the requirement clause. For *BS* capable of multi-band operation, various structures in terms of combinations of different transmitter and receiver implementations (multi-band or single band) with mapping of transceivers to one or more *antenna connectors*

for BS type 1-C or TAB connectors for BS type 1-H in different ways are possible. For multi-band connector(s) the exclusions or provisions for multi-band apply. For single-band connector(s), the following applies:

- Single-band transmitter spurious emissions, operating band unwanted emissions, ACLR, transmitter
 intermodulation and receiver spurious emissions requirements apply to this connector that is mapped to singleband.
- If the BS is configured for single-band operation, single-band requirements shall apply to this *connector* configured for single-band operation and no exclusions or provisions for multi-band capable BS are applicable. Single-band requirements are tested separately at the *connector* configured for single-band operation, with all other *antenna connectors* terminated.

A BS type 1-H may be capable of supporting operation in multiple operating bands with one of the following implementations of TAB connectors in the transceiver array boundary:

- All TAB connectors are single-band connectors.
 - Different sets of *single-band connectors* support different *operating bands*, but each *TAB connector* supports only operation in one single *operating band*.
 - Sets of *single-band connectors* support operation in multiple *operating bands* with some *single-band connectors* supporting more than one *operating band*.
- All *TAB* connectors are multi-band connectors.
- A combination of single-band sets and multi-band sets of *TAB connectors* provides support of the type *BS type 1-H* capability of operation in multiple *operating bands*.

Unless otherwise stated all requirements specified for an *operating band* apply only to the set of *TAB connectors* supporting that *operating band*.

In the case of an *operating band* being supported only by *single-band connectors* in a *TAB connector TX min cell group* or a *TAB connector RX min cell group*, *single-band requirements* apply to that set of *TAB connectors*.

In the case of an *operating band* being supported only by *multi-band connectors* supporting the same *operating band* combination in a *TAB connector TX min cell group* or a *TAB connector RX min cell group*, *multi-band requirements* apply to that set of *TAB connectors*.

The case of an *operating band* being supported by both *multi-band connectors* and *single-band connectors* in a *TAB connector TX min cell group* or a *TAB connector RX min cell group* is not covered by the present release of this specification.

The case of an *operating band* being supported by *multi-band connectors* which are not all supporting the same *operating band* combination in a *TAB connector TX min cell group* or a *TAB connector RX min cell group* is not covered by the present release of this specification.

BS type 1-O may be capable of supporting operation in multiple operating bands with one of the following implementations at the radiated interface boundary:

- All RIBs are single-band RIBs.
- All RIBs are multi-band RIBs.
- A combination of single-band *RIBs* and *multi-band RIBs* provides support of the *BS type 1-O* capability of operation in multiple *operating bands*.

For *multi-band connectors* and *multi-band RIBs* supporting the bands for TDD, the RF requirements in the present specification assume no simultaneous uplink and downlink occur between the bands.

The RF requirements for *multi-band connectors* and *multi-band RIBs* supporting bands for both FDD and TDD are not covered by the present release of this specification.

4.9 OTA co-location with other base stations

Co-location requirements are requirements which are based on assuming the BS type 1-O is co-located with another BS of the same base station class, they ensure that both co-located systems can operate with minimal degradation to each other.

Unwanted emission and out of band blocking co-location requirements are optional requirements based on declaration. TX OFF and TX IMD are mandatory requirements and have the form of a co-location requirement as it represents the worst-case scenario of all the interference cases.

NOTE: Due to the low level of the unwanted emissions for the spurious emissions and TX OFF level co-location is the most suitable method to show conformance.

The *co-location reference antenna* shall be a single column passive antenna which has the same vertical radiating dimension (h), frequency range, polarization, as the composite antenna of the BS type 1-O and nominal 65° horizontal half-power beamwidth (suitable for 3-sector deployment) and is placed at a distance d from the edge of the BS type 1-O, as shown in figure 4.9-1.

Figure 4.9-1: Illustration of BS type 1-O enclosure and co-location reference antenna

Edge-to-edge separation d between the BS type 1-O and the co-location reference antenna shall be set to 0.1 m.

The BS type 1-O and the co-location reference antenna shall be aligned in a common plane perpendicular to the mechanical bore-sight direction, as shown in figure 4.9-1.

The co-location reference antenna and the BS type 1-O can have different width.

The vertical radiating regions of the *co-location reference antenna* and the *BS type 1-O* composite antenna shall be aligned.

For co-location requirements where the frequency range of the signal at the *co-location reference antenna* is different from the *BS type 1-O*, a *co-location reference antenna* suitable for the frequency stated in the requirement is assumed.

OTA co-location requirements are based on the power at the conducted interface of a *co-location reference antenna*, depending on the requirement this interface is either an input or an output. For *BS type 1-O* with dual polarization *the co-location reference antenna* has two conducted interfaces each representing one polarization.

5 Operating bands and channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the *operating bands* and *BS channel bandwidths* defined in the present release of specifications.

NOTE: Other *operating bands* and *BS channel bandwidths* may be considered in future releases.

Requirements throughout the RF specifications are in many cases defined separately for different frequency ranges (FR). The frequency ranges in which NR can operate according to the present version of the specification are identified as described in table 5.1-1.

Table 5.1-1: Definition of frequency ranges

Frequency range designation	Corresponding frequency range
FR1	410 MHz – 7125 MHz
FR2	24250 MHz – 52600 MHz

5.2 Operating bands

NR is designed to operate in the *operating bands* defined in table 5.2-1 and 5.2-2.

NB-IoT is designed to operate in the NR operating bands n1, n2, n3, n5, n7, n8, n12, n14, n18, n20, n25, n28, n41, n65, n66, n70, n71, n74, n90 which are defined in Table 5.2-1.

Table 5.2-1: NR operating bands in FR1

NR operating band	Uplink (UL) operating band BS receive / UE transmit FUL,low - FUL,high	Downlink (DL) operating band BS transmit / UE receive FDL,low - FDL,high	Duplex mode
n1	1920 MHz – 1980 MHz	2110 MHz – 2170 MHz	FDD
n2	1850 MHz – 1910 MHz	1930 MHz – 1990 MHz	FDD
n3	1710 MHz – 1785 MHz	1805 MHz – 1880 MHz	FDD
n5	824 MHz – 849 MHz	869 MHz – 894 MHz	FDD
n7	2500 MHz – 2570 MHz	2620 MHz – 2690 MHz	FDD
n8	880 MHz – 915 MHz	925 MHz – 960 MHz	FDD
n12	699 MHz – 716 MHz	729 MHz – 746 MHz	FDD
n14	788 MHz – 798 MHz	758 MHz – 768 MHz	FDD
	815 MHz – 830 MHz	860 MHz – 875 MHz	FDD
n18			
n20	832 MHz – 862 MHz	791 MHz – 821 MHz	FDD FDD
n25	1850 MHz – 1915 MHz	1930 MHz – 1995 MHz	
n26	814 MHz – 849 MHz	859 MHz – 894 MHz	FDD
n28	703 MHz – 748 MHz	758 MHz – 803 MHz	FDD
n29	N/A	717 MHz – 728 MHz	SDL
n30	2305 MHz – 2315 MHz	2350 MHz – 2360 MHz	FDD
n34	2010 MHz – 2025 MHz	2010 MHz – 2025 MHz	TDD
n38	2570 MHz – 2620 MHz	2570 MHz – 2620 MHz	TDD
n39	1880 MHz – 1920 MHz	1880 MHz – 1920 MHz	TDD
n40	2300 MHz – 2400 MHz	2300 MHz – 2400 MHz	TDD
n41	2496 MHz – 2690 MHz	2496 MHz – 2690 MHz	TDD
n48	3550 MHz – 3700 MHz	3550 MHz – 3700 MHz	TDD
n50	1432 MHz – 1517 MHz	1432 MHz – 1517 MHz	TDD
n51	1427 MHz – 1432 MHz	1427 MHz – 1432 MHz	TDD
n53	2483.5 MHz – 2495 MHz	2483.5 MHz – 2495 MHz	TDD
n65	1920 MHz – 2010 MHz	2110 MHz – 2200 MHz	FDD
n66	1710 MHz – 1780 MHz	2110 MHz – 2200 MHz	FDD
n70	1695 MHz – 1710 MHz	1995 MHz – 2020 MHz	FDD
n71	663 MHz – 698 MHz	617 MHz – 652 MHz	FDD
n74	1427 MHz – 1470 MHz	1475 MHz – 1518 MHz	FDD
n75	N/A	1432 MHz – 1517 MHz	SDL
n76	N/A	1427 MHz – 1432 MHz	SDL
n77	3300 MHz – 4200 MHz	3300 MHz – 4200 MHz	TDD
n78	3300 MHz – 3800 MHz	3300 MHz – 3800 MHz	TDD
n79	4400 MHz – 5000 MHz	4400 MHz – 5000 MHz	TDD
n80	1710 MHz – 1785 MHz	N/A	SUL
n81	880 MHz – 915 MHz	N/A	SUL
n82	832 MHz – 862 MHz	N/A	SUL
n83	703 MHz – 748 MHz	N/A	SUL
n84	1920 MHz – 1980 MHz	N/A	SUL
n86	1710 MHz – 1780 MHz	N/A	SUL
n89	824 MHz – 849 MHz	N/A	SUL
n90	2496 MHz – 2690 MHz	2496 MHz – 2690 MHz	TDD
n91	832 MHz – 862 MHz	1427 MHz – 1432 MHz	FDD ²
n92	832 MHz – 862 MHz	1432 MHz – 1517 MHz	FDD ²
n93	880 MHz – 915 MHz	1427 MHz – 1432 MHz	FDD ²
n94	880 MHz – 915 MHz	1432 MHz – 1517 MHz	FDD ²
n95 ¹	2010 MHz – 2025 MHz	N/A	SUL

NOTE 1: This band is applicable in China only.

NOTE 2: Variable duplex operation does not enable dynamic variable duplex configuration by the network, and is used such that DL and UL frequency ranges are supported independently in any valid frequency range for the band.

NR operating band	Uplink (UL) and Downlink (DL) operating band BS transmit/receive UE transmit/receive FUL,low - FUL,high FDL,low - FDL,high	Duplex mode		
n257	26500 MHz – 29500 MHz	TDD		
n258	24250 MHz – 27500 MHz	TDD		
n259	39500 MHz – 43500 MHz	TDD		
n260	37000 MHz – 40000 MHz	TDD		
n261	27500 MHz – 28350 MHz	TDD		

Table 5.2-2: NR operating bands in FR2

5.3 BS channel bandwidth

5.3.1 General

The BS channel bandwidth supports a single NR RF carrier in the uplink or downlink at the Base Station. Different UE channel bandwidths may be supported within the same spectrum for transmitting to and receiving from UEs connected to the BS. The placement of the UE channel bandwidth is flexible but can only be completely within the BS channel bandwidth. The BS shall be able to transmit to and/or receive from one or more UE bandwidth parts that are smaller than or equal to the number of carrier resource blocks on the RF carrier, in any part of the carrier resource blocks.

The relationship between the channel bandwidth, the guardband and the *transmission bandwidth configuration* is shown in figure 5.3.1-1.

Figure 5.3.1-1: Definition of channel bandwidth and *transmission bandwidth configuration* for one NR channel

5.3.2 Transmission bandwidth configuration

The transmission bandwidth configuration N_{RB} for each BS channel bandwidth and subcarrier spacing is specified in table 5.3.2-1 for FR1 and table 5.3.2-2 for FR2.

Table 5.3.2-1: Transmission bandwidth configuration N_{RB} for FR1

SCS	5	10	15	20	25	30	40	50	60 MHz	70	80 MHz	90	100
(kHz)	MHz		MHz		MHz	MHz							
	N _{RB}												

I	15	25	52	79	106	133	160	216	270	N/A	N/A	N/A	N/A	N/A
Ī	30	11	24	38	51	65	78	106	133	162	189	217	245	273
ſ	60	N/A	11	18	24	31	38	51	65	79	93	107	121	135

Table 5.3.2-2: Transmission bandwidth configuration N_{RB} for FR2

SCS (kHz)	50 MHz	100 MHz	200 MHz	400 MHz
	N _{RB}	N _{RB}	N _{RB}	N _{RB}
60	66	132	264	N/A
120	32	66	132	264

NOTE: All Tx and Rx requirements are defined based on *transmission bandwidth configuration* specified in table 5.3.2-1 for FR1 and table 5.3.2-2 for FR2.

The transmission bandwidth configuration for NB-IoT is specified in TS 36.104 [13] clause 5.6.

5.3.3 Minimum guardband and transmission bandwidth configuration

The minimum guardband for each *BS channel bandwidth* and SCS is specified in table 5.3.3-1 for FR1 and in table 5.3.3-2 for FR2.

Table 5.3.3-1: Minimum guardband (kHz) (FR1)

SCS (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
15	242.5	312.5	382.5	452.5	522.5	592.5	552.5	692.5	N/A	N/A	N/A	N/A	N/A
30	505	665	645	805	785	945	905	1045	825	965	925	885	845
60	N/A	1010	990	1330	1310	1290	1610	1570	1530	1490	1450	1410	1370

Table: 5.3.3-2: Minimum guardband (kHz) (FR2)

SCS (kHz)	50 MHz	100 MHz	200 MHz	400 MHz
60	1210	2450	4930	N/A
120	1900	2420	4900	9860

The minimum guardband of SCS 240 kHz SS/PBCH block for each BS channel bandwidth is specified in table 5.3.3-3 for FR2.

Table: 5.3.3-3: Minimum guardband (kHz) of SCS 240 kHz SS/PBCH block (FR2)

SCS (kHz)	100 MHz	200 MHz	400 MHz
240	3800	7720	15560

NOTE: The minimum guardband in Table 5.3.3-3 is applicable only when the SCS 240 kHz SS/PBCH block is placed adjacent to the edge of the *BS channel bandwidth* within which the SS/PBCH block is located.

The number of RBs configured in any BS channel bandwidth shall ensure that the minimum guardband specified in this clause is met.

Figure 5.3.3-1: BS PRB utilization

In the case that multiple numerologies are multiplexed in the same symbol, the minimum guardband on each side of the carrier is the guardband applied at the configured *BS channel bandwidth* for the numerology that is transmitted/received immediately adjacent to the guard band.

For FR1, if multiple numerologies are multiplexed in the same symbol and the *BS channel bandwidth* is >50 MHz, the guardband applied adjacent to 15 kHz SCS shall be the same as the guardband defined for 30 kHz SCS for the same *BS channel bandwidth*.

For FR2, if multiple numerologies are multiplexed in the same symbol and the *BS channel bandwidth* is >200 MHz, the guardband applied adjacent to 60 kHz SCS shall be the same as the guardband defined for 120 kHz SCS for the same *BS channel bandwidth*.

Figure 5.3.3-2: Guard band definition when transmitting multiple numerologies

NOTE: Figure 5.3.3-2 is not intended to imply the size of any guard between the two numerologies. Intenumerology guard band within the carrier is implementation dependent.

Figure 5.3.3-3: Void

Figure 5.3.3-4: Void

Figure 5.3.3-5: Void

5.3.4 RB alignment

For each BS channel bandwidth and each numerology, BS transmission bandwidth configuration must fulfil the minimum guardband requirement specified in clause 5.3.3.

For each numerology, its common resource blocks are specified in clause 4.4.4.3 in [9], and the starting point of its *transmission bandwidth configuration* on the common resource block grid for a given channel bandwidth is indicated by an offset to "Reference point A" in the unit of the numerology.

For each numerology, all *UE transmission bandwidth configurations* indicated to UEs served by the BS by higher layer parameter *carrierBandwidth* defined in TS 38.331 [11] shall fall within the *BS transmission bandwidth configuration*.

5.3.5 BS channel bandwidth per operating band

The requirements in this specification apply to the combination of *BS channel bandwidths*, SCS and *operating bands* shown in table 5.3.5-1 for FR1 and in table 5.3.5-2 for FR2. The *transmission bandwidth configuration* in table 5.3.2-1 and table 5.3.2-2 shall be supported for each of the *BS channel bandwidths* within the BS capability. The *BS channel bandwidths* are specified for both the Tx and Rx path.

Table 5.3.5-1: BS channel bandwidths and SCS per operating band in FR1

				NF	R band /	SCS /	BS chai	nnel bar	ndwidth	1				
NR	SCS	5	10	15	20	25	30	40	50	60	70	80	90	100
Band	kHz 15	MHz Yes	MHz	MHz	MHz	MHz	MHz							
n1	30	162	Yes											
n1	60		Yes											
	15	Yes			Yes	165	165	res	res					-
n0	30	168	Yes Yes	Yes										
n2	60			Yes Yes	Yes Yes									
	15	Yes	Yes			\/	\/	\/						
0		res	Yes	Yes	Yes	Yes	Yes	Yes						
n3	30		Yes	Yes	Yes	Yes	Yes	Yes						
	60	V	Yes	Yes	Yes	Yes	Yes	Yes						
_	15	Yes	Yes	Yes	Yes									
n5	30		Yes	Yes	Yes									
	60			.,	.,	.,	.,		.,					
_	15	Yes												
n7	30		Yes											
	60		Yes											
	15	Yes	Yes	Yes	Yes									
n8	30		Yes	Yes	Yes									
	60													
	15	Yes	Yes	Yes										
n12	30		Yes	Yes										
	60													
	15	Yes	Yes											
n14	30		Yes											
	60													
	15	Yes	Yes	Yes										
n18	30		Yes	Yes										
	60													
	15	Yes	Yes	Yes	Yes									
n20	30		Yes	Yes	Yes									
	60													
	15	Yes												
n25	30		Yes	Yes	Yes	Yes	Yes	Yes						
	60		Yes	Yes	Yes	Yes	Yes	Yes						
n06	15	Yes	Yes	Yes	Yes									
n26	30		Yes	Yes	Yes									

	15	Voc	Voc	Voc	Voc		Yes	Voc						
200	15	Yes	Yes Yes	Yes	Yes		Yes	Yes						
n28	30		168	Yes	Yes		165	Yes						
	60	Vaa	\/											
00	15	Yes	Yes											
n29	30		Yes											
	60	V												
00	15	Yes	Yes											
n30	30		Yes											
	60	V												
0.4	15	Yes	Yes	Yes										
n34	30		Yes	Yes										
	60		Yes	Yes		.,		.,						
	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
n38	30		Yes	Yes	Yes	Yes	Yes	Yes						
	60		Yes	Yes	Yes	Yes	Yes	Yes						
	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes						
n39	30		Yes	Yes	Yes	Yes	Yes	Yes						
	60		Yes	Yes	Yes	Yes	Yes	Yes						
	15	Yes ⁴	Yes	Yes	Yes	Yes	Yes	Yes	Yes					
n40	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes		Yes
	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes		Yes
	15		Yes	Yes	Yes		Yes	Yes	Yes					
n41	30		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	60		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	15	Yes ²	Yes	Yes	Yes			Yes	Yes ¹					
n48	30		Yes	Yes	Yes			Yes	Yes ¹	Yes ¹		Yes ¹	Yes ¹	Yes ¹
	60		Yes	Yes	Yes			Yes	Yes ¹	Yes ¹		Yes ¹	Yes ¹	Yes ¹
	15	Yes ²	Yes	Yes	Yes		Yes	Yes	Yes					
n50	30		Yes	Yes	Yes		Yes	Yes	Yes	Yes		Yes		
	60		Yes	Yes	Yes		Yes	Yes	Yes	Yes		Yes		
	15	Yes												
n51	30													
	60													
	15	Yes	Yes											
n53	30		Yes											
	60		Yes											

15		4.5	Vaa				I		1				I	I	I
Fig.	CF	15	Yes	Yes	Yes	Yes				Yes					
16	N65														
Nes			V							Yes					
R60	00		Yes												
15	noo														
NOTO 30								Yes	Yes						
15			Yes												
15	n70														
n71							Yes								
15			Yes												
15	n71			Yes	Yes	Yes									
n74															
Second S			Yes												
15	n74														
N75															
15			Yes						Yes						
15 Yes	n75														
N76				Yes											
15			Yes												
15	n76														
NTT															
R80															
15	n77														
NAB											Yes	Yes	Yes	Yes	Yes
R80		15		Yes											
15	n78	30		Yes		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
No. No.				Yes											
15 Yes Y		15							Yes	Yes					
15 Yes Y	n79	30							Yes	Yes	Yes		Yes		Yes
N80		60							Yes	Yes	Yes		Yes		Yes
R81 R82 R83 R84 R85 R85		15	Yes	Yes	Yes	Yes	Yes	Yes							
15 Yes Yes Yes Yes 30 Yes Yes Yes 60 15 Yes Yes Yes 15 Yes Yes Yes Yes 60 15 Yes Yes Yes 15 Yes Yes Yes Yes Yes 15 Yes Yes Yes Yes Yes Yes Yes	n80	30		Yes	Yes	Yes	Yes	Yes							
n81 30 Yes Yes Yes		60		Yes	Yes	Yes	Yes	Yes							
15 Yes Yes Yes Yes		15	Yes	Yes	Yes	Yes									
15 Yes Ye	n81	30		Yes	Yes	Yes									
n82 30 Yes Ye		60													
15		15	Yes	Yes	Yes	Yes									
n83 15 Yes Ye	n82	30		Yes	Yes	Yes									
n83 30 Yes Yes Yes		60													
15		15	Yes	Yes	Yes	Yes									
n84 15 Yes Yes Yes ————————————————————————————————————	n83	30		Yes	Yes	Yes									
n84 30 Yes Yes Yes <		60													
60 Yes Ye		15	Yes	Yes	Yes	Yes									
n86 15 Yes Ye	n84	30		Yes	Yes	Yes									
n86 15 Yes Ye		60		Yes	Yes	Yes									
n86 30 Yes Yes Yes Yes 98		15	Yes	Yes	Yes	Yes									
60 Yes Ye	n86	30		Yes	Yes				Yes						
n89 30 Yes Ye		60		Yes	Yes	Yes									
n90 60 7es 7es <td></td> <td>15</td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		15	Yes	Yes	Yes	Yes									
n90 60 7es 7es <td>n89</td> <td>30</td> <td></td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	n89	30		Yes	Yes	Yes									
n90 30 Yes		60													
60 Yes Yes <td></td> <td>15</td> <td></td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td></td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td></td> <td></td> <td></td> <td></td> <td></td>		15		Yes	Yes	Yes		Yes	Yes	Yes					
60 Yes Yes <td>n90</td> <td>30</td> <td></td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td></td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td>Yes</td>	n90	30		Yes	Yes	Yes		Yes							
n91				Yes				Yes	Yes		Yes	Yes	Yes	Yes	
n91 30			Yes												
60 15 Yes Yes Yes n92 30 Yes Yes Yes	n91														
n92															
n92 30 Yes Yes Yes			Yes	Yes	Yes	Yes									
	n92					Yes									

	15	Yes	Yes ³							
n93	30									
	60									
	15	Yes	Yes	Yes	Yes					
n94	30		Yes	Yes	Yes					
	60									
	15	Yes	Yes	Yes						
n95	30		Yes	Yes						
	60		Yes	Yes						

NOTE 1: For this bandwidth, the minimum requirements are restricted to operation when carrier is configured as an downlink SCell part of CA configuration

NOTE 2: For this bandwidth, the minimum requirements are restricted to operation when carrier is configured as an SCell part of DC or CA configuration

NOTE 3: For this bandwidth, it only applies for UL transmission.

NOTE 4: For this bandwidth, the minimum requirements are restricted to operation when carrier is configured as an SCell part of DC or CA configuration.

NOTE 5: Void.

Table 5.3.5-2: BS channel bandwidths and SCS per operating band in FR2

N	NR band / SCS / BS channel bandwidth							
NR Band	SCS kHz	50 MHz	100 MHz	200 MHz	400 MHz			
n2F7	60	Yes	Yes	Yes				
n257	120	Yes	Yes	Yes	Yes			
n258	60	Yes	Yes	Yes				
11230	120	Yes	Yes	Yes	Yes			
n259	60	Yes	Yes	Yes				
11259	120	Yes	Yes	Yes	Yes			
2000	60	Yes	Yes	Yes				
n260	120	Yes	Yes	Yes	Yes			
n261	60	Yes	Yes	Yes				
n261	120	Yes	Yes	Yes	Yes			

5.3A BS channel bandwidth for CA

5.3A.1 Transmission bandwidth configuration for CA

For *carrier aggregation*, the *transmission bandwidth configuration* is defined per component carrier and the requirement is specified in clause 5.3.2.

5.3A.2 Minimum guardband and *transmission bandwidth configuration* for CA

For intra-band contiguous *carrier aggregation*, *Aggregated BS Channel Bandwidth* and *Guard Bands* are defined as follows, see Figure 5.3A.2-1.

Figure 5.3A.2-1: Definition of Aggregated BS Channel Bandwidth for intra-band carrier aggregation

The aggregated BS Channel Bandwidth, BWChannel_CA, is defined as

$$BW_{Channel_CA} = F_{edge,high} - F_{edge,low} (MHz)$$

The lower bandwidth edge $F_{\text{edge, low}}$ and the upper bandwidth edge $F_{\text{edge,high}}$ of the *aggregated BS channel bandwidth* are used as frequency reference points for transmitter and receiver requirements and are defined by

$$F_{\text{edge,low}} = F_{\text{C,low}} - F_{\text{offset,low}}$$

$$F_{edge,high} = F_{C,high} + F_{offset,high}$$

The lower and upper frequency offsets depend on the *transmission bandwidth configurations* of the lowest and highest assigned edge component carrier and are defined as

$$F_{offset,low} = (N_{RB,low}*12 + 1)*SCS_{low}/2 + BW_{GB,low}(MHz)$$

$$F_{offset,high} = (N_{RB,high}*12 - 1)*SCS_{high}/2 + BW_{GB,high}(MHz)$$

 $BW_{GB, low}$ and $BW_{GB, high}$ are the minimum guard band defined in clause 5.3.3 for lowest and highest assigned component carrier, while $N_{RB,low}$ and $N_{RB,high}$ are the *transmission bandwidth configurations* according to Table 5.3.2-1 or Table 5.3.2-2 for the lowest and highest assigned component carrier, SCS_{low} and SCS_{high} are the sub-carrier spacing for the lowest and highest assigned component carrier respectively.

For *intra-band non-contiguous carrier aggregation sub-block bandwidth* and *sub-block edges* are defined as follows, see figure 5.3A.2-2.

Figure 5.3A.2-2: Definition of sub-block bandwidth for intra-band non-contiguous spectrum

The lower sub-block edge of the sub-block bandwidth (BW_{Channel,block}) is defined as follows:

$$F_{edge,block, low} = F_{C,block,low}$$
 - $F_{offset,low}$

The upper *sub-block* edge of the *sub-block bandwidth* is defined as follows:

$$F_{edge,block,high} = F_{C,block,high} + F_{offset,high}$$

The sub-block bandwidth, BW_{Channel,block}, is defined as follows:

$$BW_{Channel,block} = F_{edge,block,high} - F_{edge,block,low} \; (MHz)$$

The lower and upper frequency offsets $F_{\text{offset,block,low}}$ and $F_{\text{offset,block,high}}$ depend on the *transmission bandwidth* configurations of the lowest and highest assigned edge component carriers within a *sub-block* and are defined as

$$F_{offset,block,low} = (N_{RB,low}*12 + 1)*SCS_{low}/2 + BW_{GB,low} (MHz)$$

$$F_{offset,block,high} = (N_{RB,high}*12 - 1)*SCS_{high}/2 + BW_{GB,high} (MHz)$$

where $N_{RB,low}$ and $N_{RB,high}$ are the *transmission bandwidth configurations* according to Table 5.3.2-1 or Table 5.3.2-2 for the lowest and highest assigned component carrier within a *sub-block*, respectively. SCS_{low} and SCS_{high} are the sub-carrier spacing for the lowest and highest assigned component carrier within a *sub-block*, respectively. $BW_{GB,low}$ and $BW_{GB,high}$ are the minimum guard band defined in clause 5.3.3 for the lowest and highest assigned component carrier respectively.

The sub-block gap size between two consecutive sub-blocks Wgap is defined as follows:

$$W_{\text{gap}} = F_{\text{edge,block } n+1, \text{low}}$$
 - $F_{\text{edge,block } n, \text{high}}$ (MHz)

5.4 Channel arrangement

5.4.1 Channel spacing

5.4.1.1 Channel spacing for adjacent NR carriers

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the *BS channel bandwidths*. The nominal channel spacing between two adjacent NR carriers is defined as following:

- For NR FR1 operating bands with 100 kHz channel raster,
 - Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2$
- For NR FR1 *operating bands* with 15 kHz channel raster,
 - Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2 + \{-5 \text{ kHz}, 0 \text{ kHz}, 5 \text{ kHz}\}$ for ΔF_{Raster} equals to 15 kHz
 - Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2 + \{-10 \text{ kHz}, 0 \text{ kHz}, 10 \text{ kHz}\}$ for ΔF_{Raster} equals to 30 kHz
- For NR FR2 operating bands with 60 kHz channel raster,
 - Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2 + \{-20 \text{ kHz}, 0 \text{ kHz}, 20 \text{ kHz}\}$ for ΔF_{Raster} equals to 60 kHz
 - Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2 + \{-40 \text{ kHz}, 0 \text{ kHz}, 40 \text{ kHz}\}$ for ΔF_{Raster} equals to 120 kHz

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the *BS channel bandwidths* of the two respective NR carriers. The channel spacing can be adjusted depending on the channel raster to optimize performance in a particular deployment scenario.

5.4.1.2 Channel spacing for CA

For intra-band contiguously aggregated carriers, the channel spacing between adjacent component carriers shall be multiple of least common multiple of channel raster and sub-carrier spacing.

The nominal channel spacing between two adjacent aggregated NR carriers is defined as follows:

For NR operating bands with 100 kHz channel raster:

Nominal channel spacing =
$$\left[\frac{{}^{BW_{Channel(1)} + BW_{Channel(2)} - 2\left|GB_{Channel(1)} - GB_{Channel(2)}\right|}}{0.6} \right] 0.3 \text{ (MHz)}$$

For NR operating bands with 15 kHz channel raster:

Nominal channel spacing =
$$\left[\frac{{}^{BW_{Channel(1)}+BW_{Channel(2)}-2\left|G_{B_{Channel(1)}-G_{B_{Channel(2)}}\right|}}{0.015*2^{n+1}}\right]0.015*2^{n} \text{ (MHz)}$$

with

$$n = \mu_0$$

For NR operating bands with 60kHz channel raster:

Nominal channel spacing =
$$\left[\frac{\frac{BWChannel(1) + BWChannel(2) - 2|GBChannel(1) - GBChannel(2)|}{0.06*2^{n+1}} \right] 0.06*2^{n}$$
 (MHz)

with

$$n=\mu_0-2$$

where BW_{Channel(1)} and BW_{Channel(2)} are the *BS channel bandwidths* of the two respective NR component carriers according to Table 5.3.2-1 and 5.3.2-2 with values in MHz, μ_0 the largest μ value among the subcarrier spacing configurations supported in the operating band for both of the channel bandwidths according to Table 5.3.5-1 and Table 5.3.5-2 and $GB_{Channel(i)}$ the minimum guard band for channel bandwidth i according to Table 5.3.3-1 and Table 5.3.3-2 for the said μ value, with μ as defined in TS 38.211 [9]. In case there is no common μ value for both of the channel bandwidths, μ_0 =1 is selected for NR *operating bands* with 15 kHz channel raster and $GB_{Channel(i)}$ is the minimum guard band for channel bandwidth i according to Table 5.3.3-1 for μ =1 with μ as defined in TS 38.211[9].

The channel spacing for *intra-band contiguous carrier aggregation* can be adjusted to any multiple of least common multiple of channel raster and sub-carrier spacing less than the nominal channel spacing to optimize performance in a particular deployment scenario.

For *intra-band non-contiguous carrier aggregation*, the channel spacing between two NR component carriers in different *sub-blocks* shall be larger than the nominal channel spacing defined in this clause.

5.4.2 Channel raster

5.4.2.1 NR-ARFCN and channel raster

The global frequency raster defines a set of RF reference frequencies F_{REF} . The RF reference frequency is used in signalling to identify the position of RF channels, SS blocks and other elements. The global frequency raster is defined for all frequencies from 0 to 100 GHz. The granularity of the global frequency raster is ΔF_{Global} .

RF reference frequencies are designated by an NR Absolute Radio Frequency Channel Number (NR-ARFCN) in the range [0...3279165] on the global frequency raster. The relation between the NR-ARFCN and the RF reference frequency F_{REF} in MHz is given by the following equation, where $F_{REF-Offs}$ and $N_{Ref-Offs}$ are given in table 5.4.2.1-1 and N_{REF} is the NR-ARFCN.

$$F_{REF} = F_{REF-Offs} + \Delta F_{Global} (N_{REF} - N_{REF-Offs})$$

Table 5.4.2.1-1: NR-ARFCN parameters for the global frequency raster

Range of frequencies (MHz)	ΔF _{Global} (kHz)	F _{REF-Offs} (MHz)	N _{REF-Offs}	Range of N _{REF}
0 – 3000	5	0	0	0 – 599999
3000 – 24250	15	3000	600000	600000 - 2016666
24250 - 100000	60	24250.08	2016667	2016667 - 3279165

The *channel raster* defines a subset of *RF reference frequencies* that can be used to identify the RF channel position in the uplink and downlink. The *RF reference frequency* for an RF channel maps to a resource element on the carrier. For each *operating band*, a subset of frequencies from the global frequency raster are applicable for that band and forms a channel raster with a granularity ΔF_{Raster} , which may be equal to or larger than ΔF_{Global} .

For SUL bands, except n95 and for the uplink of all FDD bands defined in table 5.2-1 and for TDD band n90,

$$F_{REF,shift} = F_{REF} + \Delta_{shift}$$
, where $\Delta_{shift} = 0$ kHz or 7.5 kHz

where Δ_{shift} is signalled by the network in higher layer parameter frequencyShift7p5khz as defined in TS 38.331 [11].

The mapping between the *channel raster* and corresponding resource element is given in clause 5.4.2.2. The applicable entries for each *operating band* are defined in clause 5.4.2.3.

5.4.2.1A NB-IoT carrier frequency numbering

The NB-IoT carrier frequency numbering (EARFCN) is defined in clause 5.7 of TS 36.104 [4].

5.4.2.2 Channel raster to resource element mapping

The mapping between the *RF reference frequency* on the channel raster and the corresponding resource element is given in table 5.4.2.2-1 and can be used to identify the RF channel position. The mapping depends on the total number of RBs that are allocated in the channel and applies to both UL and DL. The mapping must apply to at least one numerology supported by the BS.

Table 5.4.2.2-1: Channel Raster to Resource Element Mapping

	$N_{\rm RB} mod 2 = 0$	$N_{\rm RB} mod 2 = 1$
Resource element index k	0	6
Physical resource block number n_{PRB}	$n_{\text{PRB}} = \left\lfloor \frac{N_{\text{RB}}}{2} \right\rfloor$	$n_{\text{PRB}} = \left\lfloor \frac{N_{\text{RB}}}{2} \right\rfloor$

k, n_{PRB} and N_{RB} are as defined in TS 38.211 [9].

5.4.2.3 Channel raster entries for each operating band

The RF channel positions on the channel raster in each NR *operating band* are given through the applicable NR-ARFCN in table 5.4.2.3-1 for FR1 and table 5.4.2.3-2 for FR2, using the channel raster to resource element mapping in clause 5.4.2.2.

- For NR operating bands with 100 kHz channel raster, $\Delta F_{Raster} = 20 \times \Delta F_{Global}$. In this case, every 20^{th} NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in table 5.4.2.3-1 is given as <20>.
- For NR *operating bands* with 15 kHz channel raster below 3 GHz, $\Delta F_{Raster} = I \times \Delta F_{Global}$, where $I \in \{3,6\}$. In this case, every I^{th} NR-ARFCN within the *operating band* are applicable for the channel raster within the *operating band* and the step size for the channel raster in table 5.4.2.3-1 is given as < I >.
- For NR *operating bands* with 15 kHz and 60 kHz channel raster above 3 GHz, $\Delta F_{Raster} = I \times \Delta F_{Global}$, where $I \in \{1, 2\}$. In this case, every I^{th} NR-ARFCN within the *operating band* are applicable for the channel raster within the *operating band* and the step size for the channel raster in table 5.4.2.3-1 and table 5.4.2.3-2 is given as < I>.
- For frequency bands with two ΔF_{Raster} in FR1, the higher ΔF_{Raster} applies to channels using only the SCS that is equal to or larger than the higher ΔF_{Raster} and SSB SCS is equal to the higher ΔF_{Raster} .
- For frequency bands with two ΔF_{Raster} in FR2, the higher ΔF_{Raster} applies to channels using only the SCS that is equal to the higher ΔF_{Raster} and the SSB SCS that is equal to or larger than the higher ΔF_{Raster} .

Table 5.4.2.3-1: Applicable NR-ARFCN per operating band in FR1

band	NR operating	ΔF _{Raster} (kHz)	Uplink range of N _{REF}	Downlink range of N _{REF}
n2 100 370000 - 220 - 382000 386000 - 220 - 398000 n3 100 342000 - 220 - 357000 361000 - 220 - 376000 n5 100 164800 - 220 - 514000 173800 - 220 - 178800 n7 100 500000 - 220 - 514000 524000 - 220 - 143200 n8 100 139800 - 220 - 143200 145800 - 220 - 149200 n12 100 139800 - 220 - 143200 145800 - 220 - 149200 n14 100 15600 - 220 - 159600 151600 - 220 - 175000 n18 100 163000 - 220 - 166000 172000 - 220 - 175000 n20 100 166400 - 220 - 172400 158200 - 220 - 175000 n25 100 37000 - 220 - 383000 386000 - 220 - 175800 n26 100 162800 - 220 - 169800 171800 - 220 - 178800 n28 100 140600 - 220 - 169800 171800 - 220 - 145600 n29 100 N/A 143400 - 220 - 145600 n30 100 461000 - 220 - 465000 470000 - 220 - 47200 n34 100 514000 - 220 - 524000 514000 - 220 - 34900<		, ,		
n2 100 370000 - 220 - 382000 386000 - 220 - 398000 n3 100 342000 - 220 - 357000 361000 - 220 - 178800 n5 100 164800 - 220 - 169800 173800 - 220 - 178800 n7 100 500000 - 220 - 514000 524000 - 220 - 149200 n8 100 176000 - 220 - 143200 145800 - 220 - 149200 n12 100 139800 - 220 - 143200 145800 - 220 - 149200 n14 100 15800 - 220 - 159600 151800 - 220 - 175000 n18 100 163000 - 220 - 169800 17200 - 220 - 175000 n20 100 166400 - 220 - 17240 158200 - 220 - 175000 n25 100 37000 - 220 - 383000 386000 - 220 - 178800 n26 100 162800 - 220 - 169800 171800 - 220 - 178800 n28 100 140600 - 220 - 169800 171800 - 220 - 145600 n29 100 N/A 143400 - 220 - 145600 n30 100 461000 - 220 - 463000 470000 - 220 - 47200 n34 100 420200 - 420 - 524000 514000 - 220 - 48000 <td>n1</td> <td>100</td> <td>384000 - <20> - 396000</td> <td>422000 - <20> - 434000</td>	n1	100	384000 - <20> - 396000	422000 - <20> - 434000
n5	n2	100		386000 - <20> - 398000
n7 100 500000 - 20> - 514000 524000 - 20> - 538000 n8 100 176000 - 20> - 183000 185000 - 20> - 192000 n12 100 139800 - 20> - 143200 145800 - 20> - 149200 n14 100 157600 - 20> - 159600 151600 - 20> - 153600 n18 100 185000 - 20> - 166000 175000 - 20> - 153600 n20 100 166400 - 20> - 172400 158200 - 20> - 164200 n25 100 370000 - 20> - 189800 171800 - 20> - 39900 n26 100 162800 - 20> - 169800 171800 - 20> - 39900 n28 100 140600 - 20> - 169800 171800 - 20> - 20> - 169600 n29 100 N/A 143400 - 20> - 169600 n30 100 461000 - 20> - 463000 470000 - 20> - 472000 n34 100 402000 - 20> - 445000 470000 - 20> - 472000 n38 100 514000 - 20> - 524000 376000 - 20> - 384000 n39 100 376000 - 20> - 480000 376000 - 20> - 384000 n40 15 499200 - 45> 537996 499200 - 45> 5	n3	100	342000 - <20> - 357000	361000 - <20> - 376000
n8	n5	100	164800 - <20> - 169800	173800 - <20> - 178800
n12 100 139800 - <20> - 143200 145800 - <20> - 149200 n14 100 157600 - <20> - 159600 151600 - <20> - 153600 n18 100 163000 - <20> - 166000 172000 - <20> - 175000 n20 100 166400 - <20> - 172400 158200 - <20> - 164200 n25 100 370000 - <20> - 383000 386000 - <20> - 178800 n26 100 162800 - <20> - 149600 151600 - <20> - 178800 n28 100 140600 - <20> - 149600 151600 - <20> - 16600 n29 100 N/A 143400 - <20> - 145600 n30 100 461000 - <20> - 463000 470000 - <20> - 472000 n34 100 462000 - <20> - 445000 470000 - <20> - 472000 n34 100 462000 - <20> - 480000 470000 - <20> - 480000 n38 100 514000 - <20> - 554000 376000 - <20> - 384000 n39 100 376000 - <20> - 384000 376000 - <20> - 384000 n40 100 466000 - <20> - 480000 460000 - <20> - 347999 n41 15 499200 - <5 - 537996	n7	100	500000 - <20> - 514000	524000 - <20> - 538000
n12 100 139800 - <20> - 143200 145800 - <20> - 149200 n14 100 157600 - <20> - 159600 151600 - <20> - 153600 n18 100 163000 - <20> - 166000 172000 - <20> - 175000 n20 100 166400 - <20> - 172400 158200 - <20> - 164200 n25 100 370000 - <20> - 383000 386000 - <20> - 178800 n26 100 162800 - <20> - 149600 151600 - <20> - 178800 n28 100 140600 - <20> - 149600 151600 - <20> - 16600 n29 100 N/A 143400 - <20> - 145600 n30 100 461000 - <20> - 463000 470000 - <20> - 472000 n34 100 462000 - <20> - 445000 470000 - <20> - 472000 n34 100 462000 - <20> - 480000 470000 - <20> - 480000 n38 100 514000 - <20> - 554000 376000 - <20> - 384000 n39 100 376000 - <20> - 384000 376000 - <20> - 384000 n40 100 466000 - <20> - 480000 460000 - <20> - 347999 n41 15 499200 - <5 - 537996	n8	100	176000 - <20> - 183000	185000 - <20> - 192000
n18	n12	100		
n20	n14	100	157600 - <20> -159600	151600 - <20> - 153600
n25	n18	100	163000 - <20> - 166000	172000 - <20> - 175000
N26	n20	100	166400 - <20> - 172400	158200 - <20> - 164200
n26 100 162800 - <20> - 149600 171800 - <20> - 178800 n29 100 N/A 143600 - <20> - 145600 n30 100 461000 - <20> - 463000 470000 - <20> - 472000 n30 100 461000 - <20> - 465000 470000 - <20> - 472000 n34 100 402000 - <20> - 524000 514000 - <20> - 524000 n38 100 514000 - <20> - 524000 514000 - <20> - 524000 n39 100 376000 - <20> - 384000 376000 - <20> - 384000 n40 100 460000 - <20> - 384000 460000 - <20> - 384000 n41 15 499200 - <3> - 537999 499200 - <3 - 537996	n25	100	370000 - <20> - 383000	386000 - <20> - 399000
N/A	n26	100		
n30 100 461000 - 20> - 463000 470000 - 20> - 472000 n34 100 402000 - 20> - 524000 402000 - 20> - 524000 n38 100 514000 - 20> - 524000 514000 - 20> - 524000 n39 100 376000 - 20> - 384000 376000 - 20> - 384000 n40 100 460000 - 20> - 480000 460000 - 20> - 480000 n41 15 499200 - 3> - 537999 499200 - 3> - 537996 n41 30 499200 - 6> - 537996 499200 - 3> - 537996 n48 15 636667 - 1> 646666 636668 - 2> - 646666 n50 100 286400 - 20> - 303400 286400 - 20> - 286406 n51 100 286400 - 20> - 303400 286400 - 20> - 286406 n53 100 286400 - 20> - 286400 285400 - 20> - 286400 n65 100 384000 - 20> - 349000 496700 - 20> - 286400 n65 100 384000 - 20> - 342000 422000 - 20> - 440000 n66 100 342000 - 20> - 342000 399000 - 20> - 440000 n70 100 339000 - 20> - 342000 399000	n28	100	140600 - <20> - 149600	151600 - <20> - 160600
n34 100 402000 - 20> - 405000 402000 - 20> - 405000 n38 100 514000 - 20> - 524000 514000 - 20> - 384000 n39 100 376000 - 20> - 384000 376000 - 20> - 384000 n40 100 460000 - 20> - 480000 460000 - 20> - 480000 n41 15 499200 - 3> - 537999 499200 - 3> - 537996 n41 30 499200 - 6> - 537996 499200 - 3> - 537996 n48 15 636667 - <1> - 646666 636667 - <1> - 646666 n50 100 286400 - 20> - 303400 286400 - <20> - 286406 n51 100 285400 - 20> - 303400 286400 - 20> - 286400 n53 100 496700 - 20> - 499000 496700 - 20> - 249900 n65 100 384000 - 20> - 342000 422000 - 20> - 449000 n66 100 342000 - 20> - 342000 399000 - 20> - 440000 n70 100 339000 - 20> - 342000 399000 - 20> - 404000 n71 100 132600 - 20> - 139600 123400 - 20> - 130400 n75 100 N/A 286400 - 20> - 20>	n29	100	N/A	143400 - <20> - 145600
n34 100 402000 - 20> - 405000 402000 - 20> - 405000 n38 100 514000 - 20> - 524000 514000 - 20> - 384000 n39 100 376000 - 20> - 384000 376000 - 20> - 384000 n40 100 460000 - 20> - 480000 460000 - 20> - 480000 n41 15 499200 - 3> - 537999 499200 - 3> - 537996 n41 30 499200 - 6> - 537996 499200 - 3> - 537996 n48 15 636667 - <1> - 646666 636667 - <1> - 646666 n50 100 286400 - 20> - 303400 286400 - <20> - 286406 n51 100 285400 - 20> - 303400 286400 - 20> - 286400 n53 100 496700 - 20> - 499000 496700 - 20> - 249900 n65 100 384000 - 20> - 342000 422000 - 20> - 449000 n66 100 342000 - 20> - 342000 399000 - 20> - 440000 n70 100 339000 - 20> - 342000 399000 - 20> - 404000 n71 100 132600 - 20> - 139600 123400 - 20> - 130400 n75 100 N/A 286400 - 20> - 20>	n30	100	461000 - <20> - 463000	470000 - <20> - 472000
n38 100 514000 - <20> - 524000 514000 - <20> - 524000 n39 100 376000 - <20> - 384000 376000 - <20> - 384000 n40 100 460000 - <20> - 480000 460000 - <20> - 480000 n41 15 499200 - <3> - 537999 499200 - <3> - 537999 n41 30 499200 - <6> - 537966 499200 - <5 - 537996		100		
n39 100 376000 - <20> - 384000 376000 - <20> - 384000 n40 100 460000 - <20> - 480000 460000 - <20> - 480000 n41 15 499200 - <3> - 537999 499200 - <3> - 537999 n41 30 499200 - <6> - 537996 499200 - <6> - 537996 n48 15 636667 - <1> - 646666 636667 - <1> - 646666 n50 100 286400 - <20> - 303400 286400 - <20 - 303400 n51 100 286400 - <20> - 286400 285400 - <20 - 20 303400 n51 100 285400 - <20> - 286400 285400 - <20 - 20 286400 n53 100 496700 - <20> - 290 499000 496700 - <20> - 499000 n65 100 384000 - <20 - 335600 422000 - <20 - 440000 n66 100 342000 - <20 - 342000 399000 - <20 - 440000 n70 100 339000 - <20 - 342000 399000 - <20 - 440000 n74 100 285400 - <20 - 294000 295000 - <20 - 303600 n74 100 285400 - <20 - 294000 295000 - <20 - 303600 n75	n38	100		
n40 100 460000 - <20> - 480000 460000 - <20> - 480000 n41 15 499200 - <3> - 537999 499200 - <3> - 537996 n48 15 636667 - <1> - 646666 636667 - <1> - 646666 n48 30 636668 - <2> - 646666 636667 - <1> - 646666 n50 100 286400 - <20> - 303400 286400 - <20> - 303400 n51 100 285400 - <20> - 286400 285400 - <20> - 240 n51 100 286400 - <20> - 286400 285400 - <20> - 29 n53 100 496700 - <20> - 49900 496700 - <20> - 249900 n65 100 384000 - <20> - 49200 422000 - <20> - 49900 n65 100 384000 - <20> - 356000 422000 - <20> - 440000 n70 100 339000 - <20> - 34200 39900 - <20> - 404000 n71 100 132600 - <20> - 139600 123400 - <20> - 404000 n74 100 285400 - <20> - 294000 295000 - <20> - 404000 n74 100 285400 - <20> - 294000 295000 - <20> - 333600 n75 100 N/A 286400		100		
n41 15 499200 - <3> - 537999 499200 - <3> - 537999 30 499200 - <6> - 537996 499200 - <6> - 537996 n48 15 636667 - <1> - 646666 636667 - <1> - 646666 30 636688 - <2> - 646666 636668 - <2> - 646666 n50 100 286400 - <20> - 303400 286400 - <20> - 303400 n51 100 285400 - <20> - 286400 285400 - <20> - 20 298000 n53 100 496700 - <20> - 49900 496700 - <20> - 49900 ness 4000 20 - 499000 n65 100 384000 - <20> - 40200 422000 - <20> - 440000 ness 4000	n40	100	460000 - <20> - 480000	460000 - <20> - 480000
N41				
15	n41	30		
N48				
n50 100 286400 - <20> - 303400 286400 - <20> - 303400 n51 100 285400 - <20> - 286400 285400 - <20> - 286400 n53 100 496700 - <20> - 499000 496700 - <20> - 499000 n65 100 384000 - <20> - 492000 422000 - <20> - 440000 n66 100 342000 - <20> - 356000 422000 - <20> - 440000 n70 100 339000 - <20> - 342000 399000 - <20> - 404000 n71 100 132600 - <20> - 139600 123400 - <20> - 130400 n74 100 285400 - <20> - 294000 295000 - <20> - 303400 n75 100 N/A 286400 - <20> - 303400 n76 100 N/A 286400 - <20> - 303400 n77 15 620000 - <1> - 680000 620000 - <2> - 286400 n77 15 620000 - <1> - 680000 620000 - <2> - 680000 n78 30 620000 - <1> - 653333 620000 - <2> - 680000 n79 15 693334 - <1> - 733333 693334 - <1> - 733333 n80 100 342000 - <20> - 357000 N/A <td>n48</td> <td></td> <td></td> <td></td>	n48			
n51 100 285400 - <20> - 286400 285400 - <20> - 286400 n53 100 496700 - <20> - 499000 496700 - <20> - 499000 n65 100 384000 - <20> - 492000 422000 - <20> - 440000 n66 100 342000 - <20> - 356000 422000 - <20> - 440000 n70 100 339000 - <20> - 342000 399000 - <20> - 404000 n71 100 132600 - <20> - 139600 123400 - <20> - 130400 n74 100 285400 - <20> - 294000 295000 - <20> - 303600 n75 100 N/A 286400 - <20> - 303400 n76 100 N/A 286400 - <20> - 286400 n76 100 N/A 286400 - <20> - 286400 n77 15 620000 - <1> - 680000 620000 - <1> - 680000 n78 15 620000 - <1> - 653333 620000 - <2> - 653332 n79 15 693334 - <1> - 733333 620000 - <2< - 653332	n50			
n53 100 496700 - <20> - 499000 496700 - <20> - 499000 n65 100 384000 - <20> - 402000 422000 - <20> - 440000 n66 100 342000 - <20> - 356000 422000 - <20> - 440000 n70 100 339000 - <20> - 342000 399000 - <20> - 404000 n71 100 132600 - <20> - 139600 123400 - <20> - 130400 n74 100 285400 - <20> - 294000 295000 - <20> - 303600 n75 100 N/A 286400 - <20> - 303400 n76 100 N/A 285400 - <20> - 286400 n77 15 620000 - <1> - 680000 620000 - <20 - 286400				
n65 100 384000 - <20> - 402000 422000 - <20> - 440000 n66 100 342000 - <20> - 356000 422000 - <20> - 440000 n70 100 339000 - <20> - 342000 399000 - <20> - 404000 n71 100 132600 - <20> - 139600 123400 - <20> - 130400 n74 100 285400 - <20> - 294000 295000 - <20> - 303600 n75 100 N/A 286400 - <20> - 303400 n76 100 N/A 285400 - <20> - 286400 n77 15 620000 - <1> - 680000 620000 - <1> - 680000 n78 15 620000 - <1> - 653333 620000 - <1> - 653332 n79 15 620000 - <1				
n66 100 342000 - <20> - 356000 422000 - <20> - 440000 n70 100 339000 - <20> - 342000 399000 - <20> - 404000 n71 100 132600 - <20> - 139600 123400 - <20> - 130400 n74 100 285400 - <20> - 294000 295000 - <20> - 303600 n75 100 N/A 286400 - <20> - 203400 n76 100 N/A 285400 - <20> - 286400 n77 15 620000 - <1> - 680000 620000 - <1> - 680000 n77 15 620000 - <1> - 653333 620000 - <2> - 680000 n78 15 620000 - <1> - 653333 620000 - <2> - 653332 n79 15 693334 - <1> - 733333 693334 - <1< - 733333				
n70 100 339000 - <20> - 342000 399000 - <20> - 404000 n71 100 132600 - <20> - 139600 123400 - <20> - 130400 n74 100 285400 - <20> - 294000 295000 - <20> - 303600 n75 100 N/A 286400 - <20> - 303400 n76 100 N/A 285400 - <20> - 286400 n77 15 620000 - <1> - 680000 620000 - <2> - 680000 n77 30 620000 - <2> - 680000 620000 - <1> - 653333 n8 15 620000 - <1> - 653333 620000 - <1> - 653332 n79 15 693334 - <1> - 733333 693334 - <1> - 733333 n80 100 342000 - <20> - 357000 N/A n81 100 176000 - <20> - 183000 N/A n82 100 166400 - <20> - 172400 N/A n83 100 140600 - <20> - 149600 N/A n84 100 384000 - <20 - 356000				
n71 100 132600 - <20> - 139600 123400 - <20> - 130400 n74 100 285400 - <20> - 294000 295000 - <20> - 303600 n75 100 N/A 286400 - <20> - 303400 n76 100 N/A 285400 - <20> - 286400 n77 15 620000 - <1> - 680000 620000 - <1> - 680000 n78 15 620000 - <1> - 6803333 620000 - <1> - 653333 30 620000 - <1> - 6533333 620000 - <1 - 653333				
n74 100 285400 - <20> - 294000 295000 - <20> - 303600 n75 100 N/A 286400 - <20> - 303400 n76 100 N/A 285400 - <20> - 286400 n77 15 620000 - <1> - 680000 620000 - <1> - 680000 30 620000 - <2> - 680000 620000 - <2> - 680000 n78 15 620000 - <1> - 653333 620000 - <2> - 653332 n79 15 693334 - <1> - 733333 693334 - <1 - 733333				
n75 100 N/A 286400 - <20 > - 303400 n76 100 N/A 285400 - <20 > - 286400 n77 15 620000 - <1 > - 680000 620000 - <1 > - 680000 30 620000 - <2 > - 680000 620000 - <2 > - 680000 n78 15 620000 - <1 > - 653333 620000 - <1 > - 653332 30 620000 - <2 > - 653332 620000 - <2 > - 653332 n79 15 693334 - <1 > - 733333 693334 - <1 > - 733333 n80 100 342000 - <20 > - 357000 N/A n81 100 176000 - <20 > - 183000 N/A n82 100 166400 - <20 > - 172400 N/A n83 100 140600 - <20 > - 149600 N/A n84 100 384000 - <20 > - 356000 N/A n86 100 342000 - <20 > - 356000 N/A n89 100 164800 - <20 > - 169800 N/A n89 100 164800 - <20 > - 169800 N/A n90 30 499200 - <3 > - 537996 499200 - <3 > - 537996				
n76 100 N/A 285400 - <20 > - 286400 n77 15 620000 - <1 > - 680000 620000 - <1 > - 680000 30 620000 - <2 > - 680000 620000 - <2 > - 680000 n78 15 620000 - <1 > - 653333 620000 - <2 > - 653332 n79 15 693334 - <1 > - 733333 693334 - <1 > - 733333 n80 100 342000 - <20 > - 357000 N/A n81 100 176000 - <20 > - 183000 N/A n82 100 166400 - <20 > - 172400 N/A n83 100 140600 - <20 > - 149600 N/A n84 100 384000 - <20 > - 396000 N/A n86 100 342000 - <20 > - 356000 N/A n89 100 164800 - <20 > - 169800 N/A n89 100 164800 - <20 > - 169800 N/A n90 30 499200 - <3 > - 537996 499200 - <3 > - 537996 100 499200 - <20 > - 538000 499200 - <5 > 538000 n91 100 166400 - <20 > - 172400 285400 - <20 > - 20 > 286400				
n77 15 620000 - <1> - 680000 620000 - <1> - 680000 n78 15 620000 - <2> - 680000 620000 - <2> - 680000 n78 15 620000 - <1> - 653333 620000 - <1> - 653333 30 620000 - <2> - 653332 620000 - <2> - 653332 n79 15 693334 - <1> - 733333 693334 - <1> - 733333 n80 100 342000 - <20> - 357000 N/A n81 100 176000 - <20> - 183000 N/A n82 100 166400 - <20> - 172400 N/A n83 100 140600 - <20> - 149600 N/A n84 100 384000 - <20> - 396000 N/A n86 100 342000 - <20> - 356000 N/A n89 100 164800 - <20> - 169800 N/A n90 30 499200 - <3> - 537996 499200 - <3 - 537996				
n77 30 620000 - <2> - 680000 620000 - <2> - 680000 n78 15 620000 - <1> - 653333 620000 - <1> - 653333 30 620000 - <2> - 653332 620000 - <2> - 653332 n79 15 693334 - <1> - 733333 693334 - <1> - 733333 n80 100 342000 - <20> - 357000 N/A n81 100 176000 - <20> - 183000 N/A n82 100 166400 - <20> - 172400 N/A n83 100 140600 - <20> - 149600 N/A n84 100 384000 - <20> - 396000 N/A n86 100 342000 - <20> - 356000 N/A n89 100 164800 - <20> - 169800 N/A n89 100 164800 - <20> - 169800 N/A n90 30 499200 - <3> - 537996 499200 - <3> - 537996 100 499200 - <5				
$\begin{array}{c} n78 \\ \hline n78 \\ \hline \end{array} \\ \hline \begin{array}{c} 15 \\ \hline 30 \\ \hline \end{array} \\ \hline \begin{array}{c} 620000 - <1> - 653333 \\ \hline \end{array} \\ \hline \begin{array}{c} 30 \\ \hline \end{array} \\ \hline \begin{array}{c} 620000 - <2> - 653332 \\ \hline \end{array} \\ \hline \begin{array}{c} 620000 - <2> - 653332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <1> - 733333 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <1> - 733333 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <1> - 733333 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \\ \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - <2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - 2> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - 22> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - 22> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - 22> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - 22> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - 22> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 69334 - 22> - 733332 \\ \hline \end{array} \\ \hline \begin{array}{c} 693334 - 2$	n77			
1176 30 620000 - <2> - 653332 620000 - <2> - 653332 n79 15 693334 - <1> - 733333 693334 - <1> - 733333 30 693334 - <2> - 733332 693334 - <2> - 733332 n80 100 342000 - <20> - 357000 N/A n81 100 176000 - <20> - 183000 N/A n82 100 166400 - <20> - 172400 N/A n83 100 140600 - <20> - 149600 N/A n84 100 384000 - <20> - 396000 N/A n86 100 342000 - <20> - 356000 N/A n89 100 164800 - <20> - 169800 N/A n90 30 499200 - <3> - 537999 499200 - <3> - 537996 100 499200 - <6> - 537996 499200 - <6> - 537996 100 499200 - <20> - 538000 499200 - <20> - 538000 n91 100 166400 - <20> - 172400 285400 - <20> - 286400 n92 100 166400 - <20> - 172400 286400 - <20> - 303400 n93 100 176000 - <20> - 183000 285400 - <20> - 20> - 286400				
n79 15 693334 - <1> - 733333 693334 - <1> - 733333 n80 100 342000 - <20> - 357000 N/A n81 100 176000 - <20> - 183000 N/A n82 100 166400 - <20> - 172400 N/A n83 100 140600 - <20> - 149600 N/A n84 100 384000 - <20> - 396000 N/A n86 100 342000 - <20> - 356000 N/A n89 100 164800 - <20> - 169800 N/A n90 30 499200 - <3> - 537999 499200 - <3> - 537996 100 499200 - <6> - 537996 499200 - <6> - 537996 100 499200 - <20> - 538000 499200 - <20> - 538000 n91 100 166400 - <20> - 172400 285400 - <20> - 286400 n92 100 166400 - <20> - 172400 286400 - <20> - 303400 n93 100 176000 - <20> - 183000 285400 - <20> - 286400 n94 100 176000 - <20> - 183000 286400 - <20> - 303400	n78			
n/9 30 693334 - <2> - 733332 693334 - <2> - 733332 n80 100 342000 - <20> - 357000 N/A n81 100 176000 - <20> - 183000 N/A n82 100 166400 - <20> - 172400 N/A n83 100 140600 - <20> - 149600 N/A n84 100 384000 - <20> - 396000 N/A n86 100 342000 - <20> - 356000 N/A n89 100 164800 - <20> - 169800 N/A n90 30 499200 - <3> - 537999 499200 - <3> - 537996 100 499200 - <6> - 537996 499200 - <6> - 537996 100 499200 - <20> - 538000 499200 - <20> - 538000 n91 100 166400 - <20> - 172400 285400 - <20> - 286400 n92 100 166400 - <20> - 172400 286400 - <20> - 303400 n93 100 176000 - <20> - 183000 285400 - <20> - 286400 n94 100 176000 - <20> - 183000 286400 - <20> - 303400				
n80 100 342000 - <20> - 357000 N/A n81 100 176000 - <20> - 183000 N/A n82 100 166400 - <20> - 172400 N/A n83 100 140600 - <20> - 149600 N/A n84 100 384000 - <20> - 396000 N/A n86 100 342000 - <20> - 356000 N/A n89 100 164800 - <20> - 169800 N/A n90 15 499200 - <3> - 537999 499200 - <3> - 537999 n90 30 499200 - <6> - 537996 499200 - <6> - 537996 100 499200 - <20> - 538000 499200 - <20> - 538000 n91 100 166400 - <20> - 172400 285400 - <20> - 286400 n92 100 166400 - <20> - 172400 286400 - <20> - 303400 n93 100 176000 - <20> - 183000 285400 - <20> - 286400 n94 100 176000 - <20> - 183000 286400 - <20> - 303400	n79			
n81 100 176000 - <20> - 183000 N/A n82 100 166400 - <20> - 172400 N/A n83 100 140600 - <20> - 149600 N/A n84 100 384000 - <20> - 396000 N/A n86 100 342000 - <20> - 356000 N/A n89 100 164800 - <20> - 169800 N/A n90 15 499200 - <3> - 537999 499200 - <3> - 537999 n90 30 499200 - <6> - 53796 499200 - <6> - 537996 100 499200 - <20> - 538000 499200 - <20> - 538000 n91 100 166400 - <20> - 172400 285400 - <20> - 286400 n92 100 166400 - <20> - 172400 286400 - <20> - 303400 n93 100 176000 - <20> - 183000 285400 - <20> - 286400 n94 100 176000 - <20> - 183000 286400 - <20> - 303400	n80			
n82 100 166400 - <20> - 172400 N/A n83 100 140600 - <20> - 149600 N/A n84 100 384000 - <20> - 396000 N/A n86 100 342000 - <20> - 356000 N/A n89 100 164800 - <20> - 169800 N/A n90 15 499200 - <3> - 537999 499200 - <3> - 537999 n90 30 499200 - <6> - 537996 499200 - <6> - 537996 100 499200 - <20> - 538000 499200 - <20> - 538000 n91 100 166400 - <20> - 172400 285400 - <20> - 286400 n92 100 166400 - <20> - 172400 286400 - <20> - 303400 n93 100 176000 - <20> - 183000 285400 - <20> - 286400 n94 100 176000 - <20> - 183000 286400 - <20> - 303400		100		
n83 100 140600 - <20> -149600 N/A n84 100 384000 - <20> - 396000 N/A n86 100 342000 - <20> - 356000 N/A n89 100 164800 - <20> - 169800 N/A 15 499200 - <3> - 537999 499200 - <3> - 537999 n90 30 499200 - <6> - 537996 499200 - <6> - 537996 100 499200 - <20> - 538000 499200 - <20> - 538000 n91 100 166400 - <20> - 172400 285400 - <20> - 286400 n92 100 166400 - <20> - 172400 286400 - <20> - 303400 n93 100 176000 - <20> - 183000 285400 - <20> - 286400 n94 100 176000 - <20> - 183000 286400 - <20> - 303400	-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
n86 100 342000 - <20> - 356000 N/A n89 100 164800 - <20> - 169800 N/A 15 499200 - <3> - 537999 499200 - <3> - 537999 n90 30 499200 - <6> - 537996 499200 - <6> - 537996 100 499200 - <20> - 538000 499200 - <20> - 538000 n91 100 166400 - <20> - 172400 285400 - <20> - 286400 n92 100 166400 - <20> - 172400 286400 - <20> - 303400 n93 100 176000 - <20> - 183000 285400 - <20> - 286400 n94 100 176000 - <20> - 183000 286400 - <20> - 303400				
n89 100 164800 - <20> - 169800 N/A 15 499200 - <3> - 537999 499200 - <3> - 537999 n90 30 499200 - <6> - 537996 499200 - <6> - 537996 100 499200 - <20> - 538000 499200 - <20> - 538000 n91 100 166400 - <20> - 172400 285400 - <20> - 286400 n92 100 166400 - <20> - 172400 286400 - <20> - 303400 n93 100 176000 - <20> - 183000 285400 - <20> - 286400 n94 100 176000 - <20> - 183000 286400 - <20> - 303400				
n90 15 499200 - <3> - 537999 499200 - <3> - 537999 30 499200 - <6> - 537996 499200 - <6> - 537996 100 499200 - <20> - 538000 499200 - <20> - 538000 n91 100 166400 - <20> - 172400 285400 - <20> - 286400 n92 100 166400 - <20> - 172400 286400 - <20> - 303400 n93 100 176000 - <20> - 183000 285400 - <20> - 286400 n94 100 176000 - <20> - 183000 286400 - <20> - 303400				
n90 30 499200 - <6> - 537996 499200 - <6> - 537996 100 499200 - <20> - 538000 499200 - <20> - 538000 n91 100 166400 - <20> - 172400 285400 - <20> - 286400 n92 100 166400 - <20> - 172400 286400 - <20> - 303400 n93 100 176000 - <20> - 183000 285400 - <20> - 286400 n94 100 176000 - <20> - 183000 286400 - <20> - 303400				-
100 499200 - <20> - 538000 499200 - <20> - 538000 n91 100 166400 - <20> - 172400 285400 - <20> - 286400 n92 100 166400 - <20> - 172400 286400 - <20> - 303400 n93 100 176000 - <20> - 183000 285400 - <20> - 286400 n94 100 176000 - <20> - 183000 286400 - <20> - 303400	n90			
n91 100 166400 - <20> - 172400 285400 - <20> - 286400 n92 100 166400 - <20> - 172400 286400 - <20> - 303400 n93 100 176000 - <20> - 183000 285400 - <20> - 286400 n94 100 176000 - <20> - 183000 286400 - <20> - 303400				
n92 100 166400 - <20> - 172400 286400 - <20> - 303400 n93 100 176000 - <20> - 183000 285400 - <20> - 286400 n94 100 176000 - <20> - 183000 286400 - <20> - 303400	n91			
n93 100 176000 - <20> - 183000 285400 - <20> - 286400 n94 100 176000 - <20> - 183000 286400 - <20> - 303400				
n94 100 176000 - <20> - 183000 286400 - <20> - 303400				1
N95 100 402000 - <20> - 405000 N/A	n95	100	402000 - <20> - 405000	N/A

Table 5.4.2.3-2: Applicable NR-ARFCN per operating band in FR2

NR operating	ΔF _{Raster} (kHz)	Uplink and Downlink range of N _{REF}		
band		(First – <step size=""> – Last)</step>		
n257	60	2054166 - <1> - 2104165		
11257	120	2054167 - <2> - 2104165		
n258	60	2016667 - <1> - 2070832		
11236	120	2016667 - <2> - 2070831		
n259	60	2270832 - <1> - 2337499		
11239	120	2270832- <2> - 2337499		
n260	60	2229166 - <1> - 2279165		
11200	120	2229167 - <2> - 2279165		
n261	60	2070833 - <1> - 2084999		
11201	120	2070833 - <2> - 2084999		

5.4.3 Synchronization raster

5.4.3.1 Synchronization raster and numbering

The synchronization raster indicates the frequency positions of the synchronization block that can be used by the UE for system acquisition when explicit signalling of the synchronization block position is not present.

A global synchronization raster is defined for all frequencies. The frequency position of the SS block is defined as SS_{REF} with corresponding number GSCN. The parameters defining the SS_{REF} and GSCN for all the frequency ranges are in table 5.4.3.1-1.

The resource element corresponding to the SS block reference frequency SS_{REF} is given in clause 5.4.3.2. The synchronization raster and the subcarrier spacing of the synchronization block is defined separately for each band.

Table 5.4.3.1-1: GSCN parameters for the global frequency raster

Range of frequencies (MHz)	SS block frequency position SS _{REF}	GSCN	Range of GSCN			
0 – 3000	N * 1200 kHz + M * 50 kHz, N = 1:2499, M ε {1,3,5} (Note)					
3000 – 24250	3000 MHz + N * 1.44 MHz, N = 0:14756	7499 + N	7499 – 22255			
24250 – 100000	24250.08 MHz + N * 17.28 MHz, N = 0:4383	22256 + N	22256 – 26639			
NOTE: The default value for <i>operating bands</i> which only support SCS spaced channel raster(s) is M=3.						

5.4.3.2 Synchronization raster to synchronization block resource element mapping

The mapping between the synchronization raster and the corresponding resource element of the SS block is given in table 5.4.3.2-1.

Table 5.4.3.2-1: Synchronization Raster to SS block Resource Element Mapping

Resource element index k	120

k is the subcarrier number of SS/PBCH block defined in TS 38.211 clause 7.4.3.1 [9].

5.4.3.3 Synchronization raster entries for each operating band

The synchronization raster for each band is give in table 5.4.3.3-1. The distance between applicable GSCN entries is given by the <Step size> indicated in table 5.4.3.3-1 for FR1 and table 5.4.3.3-2 for FR2.

Table 5.4.3.3-1: Applicable SS raster entries per operating band (FR1)

NR operating band	SS Block SCS	SS Block pattern	Range of GSCN
	45111	(note)	(First – <step size=""> – Last)</step>
n1	15 kHz	Case A	5279 - <1> - 5419
n2	15 kHz	Case A	4829 - <1> - 4969
n3	15 kHz	Case A	4517 - <1> - 4693
n5	15 kHz	Case A	2177 - <1> - 2230
	30 kHz	Case B	2183 – <1> – 2224
n7	15 kHz	Case A	6554 - <1> - 6718
n8	15 kHz	Case A	2318 - <1> - 2395
n12	15 kHz	Case A	1828 – <1> – 1858
n14	15 kHz	Case A	1901 – <1> – 1915
n18	15kHz	CaseA	2156 - <1> - 2182
n20	15 kHz	Case A	1982 - <1> - 2047
n25	15 kHz	Case A	4829 - <1> - 4981
n26	15 kHz	Case A	2153 - <1> - 2230
n28	15 kHz	Case A	1901 – <1> – 2002
n29	15 kHz	Case A	1798 – <1> – 1813
n30	15 kHz	Case A	5879 - <1> - 5893
n34	15 kHz	Case A	5030 - <1> - 5056
n38	15 kHz	Case A	NOTE 2
1130	30 kHz	Case C	6437 - <1> - 6538
n39	15 kHz	Case A	4706 - <1> - 4795
n40	30 kHz	Case C	5762 - <1> - 5989
44	15 kHz	Case A	6246 - <3> - 6717
n41	30 kHz	Case C	6252 - <3> - 6714
n48	30 kHz	Case C	7884 – <1> – 7982
n50	30 kHz	Case C	3590 - <1> - 3781
n51	15 kHz	Case A	3572 - <1> - 3574
n53	15 kHz	Case A	6215 - <1> - 6232
n65	15 kHz	Case A	5279 - <1> - 5494
00	15 kHz	Case A	5279 - <1> - 5494
n66	30 kHz	Case B	5285 - <1> - 5488
n70	15 kHz	Case A	4993 - <1> - 5044
n71	15 kHz	Case A	1547 – <1> – 1624
n74	15 kHz	Case A	3692 - <1> - 3790
n75	15 kHz	Case A	3584 - <1> - 3787
n76	15 kHz	Case A	3572 - <1> - 3574
n77	30 kHz	Case C	7711 – <1> – 8329
n78	30 kHz	Case C	7711 – <1> – 8051
n79	30 kHz	Case C	8480 - <16> - 8880
	15 kHz	Case A	6246 - <1> - 6717
n90	30 kHz	Case C	6252 - <1> - 6714
n91	15 kHz	Case A	3572 - <1> - 3574
n92	15 kHz	Case A	3584 - <1> - 3787
n93	15 kHz	Case A	3572 - <1> - 3574
n94	15 kHz	Case A	3584 - <1> - 3787
IIVT	I O IXI IZ	043071	300 1 12 0101

NOTE 1: SS Block pattern is defined in clause 4.1 in TS 38.213 [10].

NOTE 2: The applicable SS raster entries are GSCN = {6432, 6443, 6457, 6468, 6479, 6493, 6507, 6518, 6532, 6543}

Table 5.4.3.3-2: Applicable SS raster entries per operating band (FR2)

NR operating band	SS Block SCS	SS Block pattern	Range of GSCN			
		(note)	(First – <step size=""> – Last)</step>			
n257	120 kHz	Case D	22388 - <1> - 22558			
11237	240 kHz	Case E	22390 - <2> - 22556			
n258	120 kHz	Case D	22257 - <1> - 22443			
11230	240 kHz	Case E	22258 - <2> - 22442			
n259	120 kHz	Case D	23140 - <1> - 23369			
11259	240 kHz	Case E	23142 - <2> - 23368			
n260	120 kHz	Case D	22995 - <1> - 23166			
11260	240 kHz	Case E	22996 - <2> - 23164			
n261	120 kHz	Case D	22446 - <1> - 22492			
11201	240 kHz	Case E	22446 - <2> - 22490			
NOTE: SS Block pattern is defined in clause 4.1 in TS 38.213 [10].						

6 Conducted transmitter characteristics

6.1 General

Unless otherwise stated, the conducted transmitter characteristics are specified at the *antenna connector* for *BS type 1-C* and at the *TAB connector* for *BS type 1-H*, with a full complement of transceiver units for the configuration in normal operating conditions.

For *BS type 1-H* the manufacturer shall declare the minimum number of supported geographical cells (i.e. geographical areas covered by beams). The minimum number of supported geographical cells (N_{cells}) relates to the BS setting with the minimum amount of cell splitting supported with transmission on all *TAB connectors* supporting the *operating band*, or with minimum amount of transmitted beams.

For BS type 1-H manufacturer shall also declare TAB connector TX min cell groups. Every TAB connector of the BS type 1-H supporting transmission in an operating band shall map to one TAB connector TX min cell group supporting the same operating band, where mapping of TAB connectors to cells/beams is implementation dependent.

The number of *active transmitter units* that are considered when calculating the conducted TX emissions limits $(N_{TXU,counted})$ for *BS type 1-H* is calculated as follows:

$$N_{\text{TXU,counted}} = min(N_{TXU,active}, 8 \times N_{cells})$$

 $N_{TXU,countedpercell}$ is used for scaling of basic limits and is derived as $N_{TXU,countedpercell} = N_{TXU,counted} / N_{cells}$

NOTE: $N_{TXU,active}$ depends on the actual number of *active transmitter units* and is independent to the declaration of N_{Cells} .

6.2 Base station output power

6.2.1 General

The BS conducted output power requirement is at *antenna connector* for BS type 1-C, or at TAB connector for BS type 1-H.

The rated carrier output power of the BS type 1-C shall be as specified in table 6.2.1-1.

Table 6.2.1-1: BS type 1-C rated output power limits for BS classes

BS class	P _{rated,c,AC}
Wide Area BS	(Note)
Medium Range BS	≤ 38 dBm
Local Area BS	≤ 24 dBm
NOTE: There is no upper limit for the P _{rated,c,AC} rated output	power of the Wide Area Base Station.

The rated carrier output power of the BS type 1-H shall be as specified in table 6.2.1-2.

Table 6.2.1-2: BS type 1-H rated output power limits for BS classes

BS class	P _{rated,c,sys}	Prated,c,TABC
Wide Area BS	(Note)	(Note)
Medium Range BS	≤ 38 dBm +10log(N _{TXU,counted})	≤ 38 dBm
Local Area BS	≤ 24 dBm +10log(N _{TXU,counted})	≤ 24 dBm
NOTE: There is no upper I	imit for the Prated case or Prated a TABC of the Wide A	Area Base Station

6.2.2 Minimum requirement for BS type 1-C

In normal conditions, $P_{max,c,AC}$ shall remain within +2 dB and -2 dB of the *rated carrier output power* $P_{rated,c,AC}$, declared by the manufacturer.

In extreme conditions, $P_{max,c,AC}$ shall remain within +2.5 dB and -2.5 dB of the *rated carrier output power* $P_{rated,c,AC}$, declared by the manufacturer.

In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the range of conditions defined as normal.

NOTE: For NB-IoT operation in NR in-band, the NR carrier and NB-IoT carrier shall be seen as a single carrier occupied NR channel bandwidth, the output power over this carrier is shared between NR and NB-IoT. This note shall apply for $P_{max,c,AC}$ and $P_{rated,c,AC}$.

6.2.3 Minimum requirement for BS type 1-H

In normal conditions, $P_{max,c,TABC}$ shall remain within +2 dB and -2 dB of the *rated carrier output power* $P_{rated,c,TABC}$ for each *TAB connector* as declared by the manufacturer.

In extreme conditions, $P_{max,c,TABC}$ shall remain within +2.5 dB and -2.5 dB of the *rated carrier output power* $P_{rated,c,TABC}$ for each TAB connector as declared by the manufacturer.

In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the range of conditions defined as normal.

6.2.4 Additional requirements (regional)

In certain regions, additional regional requirements may apply.

6.3 Output power dynamics

6.3.1 General

The requirements in clause 6.3 apply during the *transmitter ON period*. Transmitted signal quality (as specified in clause 6.5) shall be maintained for the output power dynamics requirements of this clause.

Power control is used to limit the interference level.

6.3.2 RE power control dynamic range

6.3.2.1 General

The RE power control dynamic range is the difference between the power of an RE and the average RE power for a BS at maximum output power ($P_{max,c,AC}$ or $P_{max,c,TABC}$) for a specified reference condition.

For BS type 1-C this requirement shall apply at the antenna connector supporting transmission in the operating band.

For BS type 1-H this requirement shall apply at each TAB connector supporting transmission in the operating band.

6.3.2.2 Minimum requirement for BS type 1-C and BS type 1-H

RE power control dynamic range:

Table 6.3.2.2-1: RE power control dynamic range

Modulation scheme used on the RE	RE power control dynamic range (dB)		
	(down)	(up)	
QPSK (PDCCH)	-6	+4	
QPSK (PDSCH)	-6	+3	
16QAM (PDSCH)	-3	+3	
64QAM (PDSCH)	0	0	
256QAM (PDSCH)	0	0	
NOTE: The output power per carrier shall always be less or			
equal to the maximum output power of the base			
station.			

6.3.3 Total power dynamic range

6.3.3.1 General

The BS total power dynamic range is the difference between the maximum and the minimum transmit power of an OFDM symbol for a specified reference condition.

For BS type 1-C this requirement shall apply at the antenna connector supporting transmission in the operating band.

For BS type 1-H this requirement shall apply at each TAB connector supporting transmission in the operating band.

NOTE: The upper limit of the dynamic range is the OFDM symbol power for a BS when transmitting on all RBs at maximum output power. The lower limit of the total power dynamic range is the average power for single RB transmission. The OFDM symbol shall carry PDSCH and not contain RS or SSB.

6.3.3.2 Minimum requirement for BS type 1-C and BS type 1-H

The downlink (DL) total power dynamic range for each NR carrier shall be larger than or equal to the level in table 6.3.3.2-1.

Table 6.3.3.2-1: Total power dynamic range

BS channel bandwidth (MHz)	Total power dynamic range (dB)			
	15 kHz SCS	30 kHz SCS	60 kHz SCS	
5	13.9	10.4	N/A	
10	17.1	13.8	10.4	
15	18.9	15.7	12.5	
20	20.2	17	13.8	
25	21.2	18.1	14.9	
30	22	18.9	15.7	
40	23.3	20.2	17	
50	24.3	21.2	18.1	
60	N/A	22	18.9	
70	N/A	22.7	19.6	
80	N/A	23.3	20.2	
90	N/A	23.8	20.8	
100	N/A	24.3	21.3	

6.3.4 NB-IoT RB power dynamic range for NB-IoT operation in NR inband

6.3.4.1 General

The NB-IoT RB power dynamic range (or NB-IoT power boosting) is the difference between the average power of NB-IoT REs (which occupy certain REs within a NR transmission bandwidth configuration plus 15 kHz at each edge but

not within the NR minimum guard band GB_{Channel}) and the average power over all REs (from both NB-IoT and the NR carrier containing the NB-IoT REs).

6.3.4.2 Minimum Requirement

NB-IoT RB power dynamic range for NB-IoT operation in NR in-band shall be larger than or equal to the level specified in Table 6.3.4.2-1. This power dynamic range level is only required for one NB-IoT RB.

Table 6.3.4.2-1: NB-IoT RB power dynamic range for NB-IoT operation in NR in-band

BS channel bandwidth (MHz)	NB-IoT RB frequency position	NB-IoT RB power dynamic range (dB)
5, 10	Any	+6
15	Within center 77*180kHz+15kHz at each edge	+6
15	Other	+3
20	Within center 102*180kHz+15kHz at each edge	+6
20	Other	+3
25, 30, 40, 50, 60,	Within center 90% of BS channel bandwidth	+6
70, 80, 90, 100	Other	+3

6.4 Transmit ON/OFF power

6.4.1 Transmitter OFF power

6.4.1.1 General

Transmit OFF power requirements apply only to TDD operation of the BS.

Transmitter OFF power is defined as the mean power measured over 70/N us filtered with a square filter of bandwidth equal to the *transmission bandwidth configuration* of the BS (BW_{Config}) centred on the assigned channel frequency during the *transmitter OFF period*. N = SCS/15, where SCS is Sub Carrier Spacing in kHz.

For *multi-band connectors* and for *single band connectors* supporting transmission in multiple *operating bands*, the requirement is only applicable during the *transmitter OFF period* in all supported *operating bands*.

For BS supporting intra-band contiguous CA, the transmitter OFF power is defined as the mean power measured over 70/N us filtered with a square filter of bandwidth equal to the $Aggregated\ BS\ Channel\ Bandwidth\ BW_{Channel_CA}$ centred on $(F_{edge,high}+F_{edge,low})/2$ during the $transmitter\ OFF\ period$. N = SCS/15, where SCS is the smallest supported Sub Carrier Spacing in kHz in the $Aggregated\ BS\ Channel\ Bandwidth$.

6.4.1.2 Minimum requirement for BS type 1-C

For *BS type 1-C*, the requirements for transmitter OFF power spectral density shall be less than -85 dBm/MHz per *antenna connector*.

6.4.1.3 Minimum requirement for BS type 1-H

For *BS type 1-H*, the requirements for transmitter OFF power spectral density shall be less than -85 dBm/MHz per *TAB* connector.

6.4.2 Transmitter transient period

6.4.2.1 General

Transmitter transient period requirements apply only to TDD operation of the BS.

The *transmitter transient period* is the time period during which the transmitter is changing from the *transmitter OFF* period to the *transmitter ON period* or vice versa. The *transmitter transient period* is illustrated in figure 6.4.2.1-1.

Figure 6.4.2.1-1: Example of relations between transmitter ON period, transmitter OFF period and transmitter transient period

For BS type 1-C this requirement shall be applied at the antenna connector supporting transmission in the operating band.

For BS type 1-H this requirement shall be applied at each TAB connector supporting transmission in the operating band.

6.4.2.2 Minimum requirement for BS type 1-C and BS type 1-H1-H

For BS type 1-C and BS type 1-H, the transmitter transient period shall be shorter than the values listed in the minimum requirement table 6.4.2.2-1.

Table 6.4.2.2-1: Minimum requirement for the *transmitter transient period* for *BS type 1-C* and *BS type 1-H*

Transition	Transient period length (μs)
OFF to ON	10
ON to OFF	10

6.4.2.3 Void

6.5 Transmitted signal quality

6.5.1 Frequency error

6.5.1.1 General

The requirements in clause 6.5.1 apply to the transmitter ON period.

Frequency error is the measure of the difference between the actual BS transmit frequency and the assigned frequency. The same source shall be used for RF frequency and data clock generation.

For BS type 1-C this requirement shall be applied at the antenna connector supporting transmission in the operating band.

For BS type 1-H this requirement shall be applied at each TAB connector supporting transmission in the operating band.

6.5.1.2 Minimum requirement for BS type 1-C and BS type 1-H

For BS type 1-C and BS type 1-H, the modulated carrier frequency of each NR carrier configured by the BS shall be accurate to within the accuracy range given in table 6.5.1.2-1 observed over 1 ms.

The frequency error requirement for NB-IoT are specified in TS 36.104 [13] clause 6.5.1.

Table 6.5.1.2-1: Frequency error minimum requirement

BS class	Accuracy
Wide Area BS	±0.05 ppm
Medium Range BS	±0.1 ppm
Local Area BS	±0.1 ppm

6.5.2 Modulation quality

6.5.2.1 General

Modulation quality is defined by the difference between the measured carrier signal and an ideal signal. Modulation quality can e.g. be expressed as Error Vector Magnitude (EVM). The Error Vector Magnitude is a measure of the difference between the ideal symbols and the measured symbols after the equalization. This difference is called the error vector. Details about how the EVM is determined are specified in Annex B.

For BS type 1-C this requirement shall be applied at the antenna connector supporting transmission in the operating hand

For BS type 1-H this requirement shall be applied at each TAB connector supporting transmission in the operating band.

6.5.2.2 Minimum Requirement for BS type 1-C and BS type 1-H

For BS type 1-C and 1-H, the EVM levels of each NR carrier for different modulation schemes on PDSCH outlined in table 6.5.2.2-1 shall be met using the frame structure described in clause 6.5.2.3.

Table 6.5.2.2-1: EVM requirements for BS type 1-C and BS type 1-H carrier

Modulation scheme for PDSCH	Required EVM
QPSK	17.5 %
16QAM	12.5 %
64QAM	8 %
256QAM	3.5 %

The modulation quality requirements for NB-IoT are specified in TS 36.104 [13] clause 6.5.2.

6.5.2.3 EVM frame structure for measurement

EVM shall be evaluated for each NR carrier over all allocated resource blocks and downlink subframes. Different modulation schemes listed in table 6.5.2.2-1 shall be considered for rank 1.

For NR, for all bandwidths, the EVM measurement shall be performed for each NR carrier over all allocated resource blocks and downlink subframes within 10 ms measurement periods. The boundaries of the EVM measurement periods need not be aligned with radio frame boundaries.

6.5.3 Time alignment error

6.5.3.1 General

This requirement shall apply to frame timing in MIMO transmission, carrier aggregation and their combinations.

Frames of the NR signals present at the BS transmitter *antenna connectors* or *TAB connectors* are not perfectly aligned in time. The RF signals present at the BS transmitter *antenna connectors* or *transceiver array boundary* may experience certain timing differences in relation to each other.

The TAE is specified for a specific set of signals/transmitter configuration/transmission mode.

For BS type 1-C, the TAE is defined as the largest timing difference between any two signals belonging to different antenna connectors for a specific set of signals/transmitter configuration/transmission mode.

For BS type 1-H, the TAE is defined as the largest timing difference between any two signals belonging to TAB connectors belonging to different transmitter groups at the transceiver array boundary, where transmitter groups are associated with the TAB connectors in the transceiver unit array corresponding to MIMO transmission, carrier aggregation for a specific set of signals/transmitter configuration/transmission mode.

6.5.3.2 Minimum requirement for BS type 1-C and BS type 1-H

For MIMO transmission, at each carrier frequency, TAE shall not exceed 65 ns.

For intra-band contiguous carrier aggregation, with or without MIMO, TAE shall not exceed 260ns.

For intra-band non-contiguous carrier aggregation, with or without MIMO, TAE shall not exceed 3µs.

For inter-band carrier aggregation, with or without MIMO, TAE shall not exceed 3µs.

The time alignment error requirements for NB-IoT are specified in TS 36.104 [13] clause 6.5.3.

Table 6.5.3.2-1: Void

Table 6.5.3.2-2: Void

Table 6.5.3.2-3: Void

6.6 Unwanted emissions

6.6.1 General

Unwanted emissions consist of out-of-band emissions and spurious emissions according to ITU definitions [2]. In ITU terminology, out of band emissions are unwanted emissions immediately outside the *BS channel bandwidth* resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emission, intermodulation products and frequency conversion products, but exclude out of band emissions.

The out-of-band emissions requirement for the BS transmitter is specified both in terms of Adjacent Channel Leakage power Ratio (ACLR) and *operating band* unwanted emissions (OBUE).

The maximum offset of the *operating band* unwanted emissions mask from the *operating band* edge is Δf_{OBUE} . The Operating band unwanted emissions define all unwanted emissions in each supported downlink *operating band* plus the frequency ranges Δf_{OBUE} above and Δf_{OBUE} below each band. Unwanted emissions outside of this frequency range are limited by a spurious emissions requirement.

The values of Δf_{OBUE} are defined in table 6.6.1-1 for the NR *operating bands*.

Table 6.6.1-1: Maximum offset of OBUE outside the downlink operating band

BS type	Operating band characteristics	Δfobue (MHz)
DC 4 (20 1 1 1	$F_{DL,high} - F_{DL,low} < 100 \text{ MHz}$	10
BS type 1-H	$100 \text{ MHz} \le F_{DL,high} - F_{DL,low} \le 900 \text{ MHz}$	40
DC tupo 1 C	$F_{DL,high} - F_{DL,low} \le 200 \text{ MHz}$	10
BS type 1-C	$200 \text{ MHz} < F_{DL,high} - F_{DL,low} \le 900 \text{ MHz}$	40

For BS type 1-H the unwanted emission requirements are applied per the TAB connector TX min cell groups for all the configurations supported by the BS. The basic limits and corresponding emissions scaling are defined in each relevant clause.

There is in addition a requirement for occupied bandwidth.

6.6.2 Occupied bandwidth

6.6.2.1 General

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $\beta/2$ of the total mean transmitted power. See also Recommendation ITU-R SM.328 [3].

The value of $\beta/2$ shall be taken as 0.5%.

The occupied bandwidth requirement shall apply during the *transmitter ON period* for a single transmitted carrier. The minimum requirement below may be applied regionally. There may also be regional requirements to declare the occupied bandwidth according to the definition in the present clause.

For BS type 1-C this requirement shall be applied at the antenna connector supporting transmission in the operating band.

For BS type 1-H this requirement shall be applied at each TAB connector supporting transmission in the operating band.

6.6.2.2 Minimum requirement for BS type 1-C and BS type 1-H

The occupied bandwidth for each NR carrier shall be less than the *BS channel bandwidth*. For intra-band contiguous CA, the occupied bandwidth shall be less than or equal the *Aggregated BS Channel Bandwidth*.

For NB.IoT operation in NR in-band, the occupied bandwidth for each NR carrier with NB-IoT shall be less than than the BS channel bandwidth.

6.6.3 Adjacent Channel Leakage Power Ratio

6.6.3.1 General

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

The requirements shall apply outside the *Base Station RF Bandwidth* or *Radio Bandwidth* whatever the type of transmitter considered (single carrier or multi-carrier) and for all transmission modes foreseen by the manufacturer's specification.

The requirements shall also apply if the BS supports NB-IoT operation in NR in-band.

For a BS operating in *non-contiguous spectrum*, the ACLR requirement in clause 6.6.3.2 shall apply in *sub-block gaps* for the frequency ranges defined in table 6.6.3.2-2a, while the CACLR requirement in clause 6.6.3.2 shall apply in *sub-block gaps* for the frequency ranges defined in table 6.6.3.2-3.

For a *multi-band connector*, the ACLR requirement in clause 6.6.3.2 shall apply in *Inter RF Bandwidth gaps* for the frequency ranges defined in table 6.6.3.2-2a, while the CACLR requirement in clause 6.6.3.2 shall apply in *Inter RF Bandwidth gaps* for the frequency ranges defined in table 6.6.3.2-3.

The requirement shall apply during the transmitter ON period.

6.6.3.2 Limits and Basic limits

The ACLR is defined with a square filter of bandwidth equal to the transmission bandwidth configuration of the transmitted signal (BW_{Config}) centred on the assigned channel frequency and a filter centred on the adjacent channel frequency according to the tables below.

For operation in paired and unpaired spectrum, the ACLR shall be higher than the value specified in table 6.6.3.2-1.

Table 6.6.3.2-1: Base station ACLR limit

BS channel bandwidth of lowest/highest carrier transmitted BW _{Channel} (MHz)	BS adjacent channel centre frequency offset below the lowest or above the highest carrier centre frequency transmitted	Assumed adjacent channel carrier (informative)	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit
5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90,100	BW _{Channel}	NR of same BW (Note 2)	Square (BW _{Config})	45 dB
	2 x BW _{Channel}	NR of same BW (Note 2)	Square (BW _{Config})	45 dB
	BWchannel /2 + 2.5 MHz	5 MHz E-UTRA	Square (4.5 MHz)	45 dB (Note 3)
	BW _{Channel} /2 + 7.5 MHz	5 MHz E-UTRA	Square (4.5 MHz)	45 dB (Note 3)

NOTE 1: BW_{Channel} and BW_{Config} are the *BS channel bandwidth* and *transmission bandwidth configuration* of the *lowest/highest carrier* transmitted on the assigned channel frequency.

NOTE 2: With SCS that provides largest transmission bandwidth configuration (BW_{Config}).

NOTE 3: The requirements are applicable when the band is also defined for E-UTRA or UTRA.

The ACLR absolute *basic limit* is specified in table 6.6.3.2-2.

Table 6.6.3.2-2: Base station ACLR absolute basic limit

BS category / BS class	ACLR absolute basic limit
Category A Wide Area BS	-13 dBm/MHz
Category B Wide Area BS	-15 dBm/MHz
Medium Range BS	-25 dBm/MHz
Local Area BS	-32 dBm/MHz

For operation in non-contiguous spectrum or multiple bands, the ACLR shall be higher than the value specified in Table 6.6.3.2-2a.

Table 6.6.3.2-2a: Base Station ACLR limit in non-contiguous spectrum or multiple bands

BS channel bandwidth of lowest/highest carrier transmitted BW _{Channel} (MHz)	Sub-block or Inter RF Bandwidth gap size (W _{gap}) where the limit applies (MHz)	BS adjacent channel centre frequency offset below or above the sub-block or Base Station RF Bandwidth edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit
5, 10, 15, 20	$W_{gap} \ge 15$ (Note 3) $W_{gap} \ge 45$ (Note 4)	2.5 MHz	5 MHz NR (Note 2)	Square (BW _{Config})	45 dB
	$W_{gap} \ge 20$ (Note 3) $W_{gap} \ge 50$ (Note 4)	7.5 MHz	5 MHz NR (Note 2)	Square (BW _{Config})	45 dB
25, 30, 40, 50, 60, 70, 80, 90, 100	$W_{gap} \ge 60 \text{ (Note } 4)$ $W_{gap} \ge 30 \text{ (Note } 3)$	10 MHz	20 MHz NR (Note 2)	Square (BW _{Config})	45 dB
	$W_{gap} \ge 80 \text{ (Note } 4)$ $W_{gap} \ge 50 \text{ (Note } 3)$	30 MHz	20 MHz NR (Note 2)	Square (BW _{Config})	45 dB

NOTE 1: BW_{Config} is the transmission bandwidth configuration of the assumed adjacent channel carrier.

NOTE 2: With SCS that provides largest transmission bandwidth configuration (BW_{Config}).

NOTE 3: Applicable in case the BS channel bandwidth of the NR carrier transmitted at the other edge of the gap is 5, 10, 15, 20 MHz.

NOTE 4: Applicable in case the BS channel bandwidth of the NR carrier transmitted at the other edge of the gap is 25, 30, 40, 50, 60, 70, 80, 90, 100 MHz.

The Cumulative Adjacent Channel Leakage power Ratio (CACLR) in a sub-block gap or the Inter RF Bandwidth gap is the ratio of:

- a) the sum of the filtered mean power centred on the assigned channel frequencies for the two carriers adjacent to each side of the sub-block gap or the Inter RF Bandwidth gap, and
- b) the filtered mean power centred on a frequency channel adjacent to one of the respective *sub-block* edges or Base Station RF Bandwidth edges.

The assumed filter for the adjacent channel frequency is defined in table 6.6.3.2-3 and the filters on the assigned channels are defined in table 6.6.3.2-4.

For operation in non-contiguous spectrum or multiple bands, the CACLR for NR carriers located on either side of the sub-block gap or the Inter RF Bandwidth gap shall be higher than the value specified in table 6.6.3.2-3.

Table 6.6.3.2-3: Base Station CACLR limit

BS channel bandwidth of lowest/highest carrier transmitted BW _{Channel} (MHz)	Sub-block or Inter RF Bandwidth gap size (W _{gap}) where the limit applies (MHz)	BS adjacent channel centre frequency offset below or above the sub-block or Base Station RF Bandwidth edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	CACLR limit
5, 10, 15, 20	5 ≤W _{gap} < 15 (Note 3) 5 ≤W _{gap} < 45 (Note 4)	2.5 MHz	5 MHz NR (Note 2)	Square (BW _{Config})	45 dB
	10 < W _{gap} < 20 (Note 3) 10 ≤W _{gap} < 50 (Note 4)	7.5 MHz	5 MHz NR (Note 2)	Square (BW _{Config})	45 dB
25, 30, 40, 50, 60, 70, 80,90, 100	20 ≤W _{gap} < 60 (Note 4) 20 ≤W _{gap} < 30 (Note 3)	10 MHz	20 MHz NR (Note 2)	Square (BW _{Config})	45 dB
	40 < W _{gap} < 80 (Note 4) 40 ≤W _{gap} < 50 (Note 3)	30 MHz	20 MHz NR (Note 2)	Square (BW _{Config})	45 dB

NOTE 1: BW_{Config} is the transmission bandwidth configuration of the assumed adjacent channel carrier.

NOTE 2: With SCS that provides largest transmission bandwidth configuration (BW_{Config}).

NOTE 3: Applicable in case the BS channel bandwidth of the NR carrier transmitted at the other edge of the gap is 5,

10, 15, 20 MHz.

NOTE 4: Applicable in case the BS channel bandwidth of the NR carrier transmitted at the other edge of the gap is

25, 30, 40, 50, 60, 70, 80, 90, 100 MHz.

The CACLR absolute basic limit is specified in table 6.6.3.2-3a.

Table 6.6.3.2-3a: Base station CACLR absolute basic limit

BS category / BS class	CACLR absolute basic limit
Category A Wide Area BS	-13 dBm/MHz
Category B Wide Area BS	-15 dBm/MHz
Medium Range BS	-25 dBm/MHz
Local Area BS	-32 dBm/MHz

Table 6.6.3.2-4: Filter parameters for the assigned channel

RAT of the carrier adjacent to the sub-block or Inter RF Bandwidth gap	Filter on the assigned channel frequency and corresponding filter bandwidth
NR	NR of same BW with SCS that provides largest transmission bandwidth configuration

6.6.3.3 Minimum requirement for BS type 1-C

The ACLR (CACLR) absolute *basic limits* in table 6.6.3.2-2, 6.6.3.2-3a or the ACLR (CACLR) *limits* in table 6.6.3.2-1, 6.6.3.2-2a or 6.6.3.2-3, whichever is less stringent, shall apply for each *antenna connector*.

6.6.3.4 Minimum requirement for BS type 1-H

The ACLR (CACLR) absolute *basic limits* in table 6.6.3.2-2 + X, 6.6.3.2-3a + X (where $X = 10log_{10}(N_{TXU,countedpercell})$) or the ACLR (CACLR) *limits* in table 6.6.3.2-1, 6.6.3.2-2a or 6.6.3.2-3, whichever is less stringent, shall apply for each *TAB connector TX min cell group*.

NOTE: Conformance to the *BS type 1-H* ACLR requirement can be demonstrated by meeting at least one of the following criteria as determined by the manufacturer:

1) The ratio of the sum of the filtered mean power measured on each *TAB connector* in the *TAB connector TX min cell group* at the assigned channel frequency to the sum of the filtered mean power measured on each *TAB connector* in the *TAB connector TX min cell group* at the adjacent channel frequency shall be greater than or equal to the ACLR *basic limit* of the BS. This shall apply for each *TAB connector TX min cell group*.

Or

2) The ratio of the filtered mean power at the *TAB connector* centred on the assigned channel frequency to the filtered mean power at this *TAB connector* centred on the adjacent channel frequency shall be greater than or equal to the ACLR *basic limit* of the BS for every *TAB connector* in the *TAB connector TX min cell group*, for each *TAB connector TX min cell group*.

In case the ACLR (CACLR) absolute *basic limit* of *BS type 1-H* are applied, the conformance can be demonstrated by meeting at least one of the following criteria as determined by the manufacturer:

1) The sum of the filtered mean power measured on each *TAB connector* in the *TAB connector TX min cell group* at the adjacent channel frequency shall be less than or equal to the ACLR (CACLR) absolute basic limit + X of the BS. This shall apply to each *TAB* connector *TX min cell group*.

Or

2) The filtered mean power at each *TAB connector* centred on the adjacent channel frequency shall be less than or equal to the ACLR (CACLR) absolute *basic limit* of the BS scaled by X -10log₁₀(n) for every *TAB connector* in the *TAB connector TX min cell group*, for each *TAB connector TX min cell group*, where n is the number of *TAB connectors* in the *TAB connector TX min cell group*.

6.6.4 Operating band unwanted emissions

6.6.4.1 General

Unless otherwise stated, the operating band unwanted emission (OBUE) limits in FR1 are defined from Δf_{OBUE} below the lowest frequency of each supported downlink *operating band* up to Δf_{OBUE} above the highest frequency of each supported downlink *operating band*. The values of Δf_{OBUE} are defined in table 6.6.1-1 for the NR *operating bands*.

The requirements shall apply whatever the type of transmitter considered and for all transmission modes foreseen by the manufacturer's specification. In addition, for a BS operating in *non-contiguous spectrum*, the requirements apply inside any *sub-block gap*. In addition, for a BS operating in multiple bands, the requirements apply inside any *Inter RF Bandwidth gap*.

Basic limits are specified in the tables below, where:

- Δf is the separation between the *channel edge* frequency and the nominal -3dB point of the measuring filter closest to the carrier frequency.
- f_offset is the separation between the *channel edge* frequency and the centre of the measuring filter.
- f_{-} offset_{max} is the offset to the frequency Δf_{OBUE} outside the downlink *operating band*, where Δf_{OBUE} is defined in table 6.6.1-1.
- Δf_{max} is equal to f_{-} offset $_{max}$ minus half of the bandwidth of the measuring filter.

For a multi-band connector inside any Inter RF Bandwidth gaps with $W_{gap} < 2*\Delta f_{OBUE}$, a combined basic limit shall be applied which is the cumulative sum of the basic limits specified at the Base Station RF Bandwidth edges on each side of the Inter RF Bandwidth gap. The basic limit for Base Station RF Bandwidth edge is specified in clauses 6.6.4.2.1 to 6.6.4.2.4 below, where in this case:

- Δf is the separation between the *Base Station RF Bandwidth edge* frequency and the nominal -3 dB point of the measuring filter closest to the *Base Station RF Bandwidth edge*.

- f_offset is the separation between the *Base Station RF Bandwidth edge* frequency and the centre of the measuring filter.
- f_offset_{max} is equal to the *Inter RF Bandwidth gap* minus half of the bandwidth of the measuring filter.
- Δf_{max} is equal to $f_{offset_{max}}$ minus half of the bandwidth of the measuring filter.

For a *multi-band connector*, the operating band unwanted emission limits apply also in a supported *operating band* without any carrier transmitted, in the case where there are carrier(s) transmitted in another supported *operating band*. In this case, no cumulative *basic limit* is applied in the *inter-band gap* between a supported downlink *operating band* with carrier(s) transmitted and a supported downlink *operating band* without any carrier transmitted and

- In case the *inter-band gap* between a supported downlink *operating band* with carrier(s) transmitted and a supported downlink *operating band* without any carrier transmitted is less than $2*\Delta f_{OBUE}$, $f_{Loffset_{max}}$ shall be the offset to the frequency Δf_{OBUE} MHz outside the outermost edges of the two supported downlink *operating bands* and the operating band unwanted emission *basic limits* of the band where there are carriers transmitted, as defined in the tables of the present clause, shall apply across both downlink bands.
- In other cases, the operating band unwanted emission basic limits of the band where there are carriers transmitted, as defined in the tables of the present clause for the largest frequency offset (Δf_{max}), shall apply from Δf_{OBUE} MHz below the lowest frequency, up to Δf_{OBUE} MHz above the highest frequency of the supported downlink operating band without any carrier transmitted.

For a multicarrier *single-band connector* or a *single-band connector* configured for intra-band contiguous or non-contiguous *carrier aggregation* the definitions above apply to the lower edge of the carrier transmitted at the *lowest carrier* frequency and the upper edge of the carrier transmitted at the *highest carrier* frequency within a specified frequency band.

In addition inside any *sub-block gap* for a *single-band connector* operating in *non-contiguous spectrum*, a combined *basic* limit shall be applied which is the cumulative sum of the *basic limits* specified for the adjacent *sub-blocks* on each side of the *sub-block gap*. The *basic limit* for each *sub-block* is specified in clauses 6.6.4.2.1 to 6.6.4.2.4 below, where in this case:

- Δf is the separation between the *sub-block* edge frequency and the nominal -3 dB point of the measuring filter closest to the *sub-block* edge.
- f offset is the separation between the *sub-block* edge frequency and the centre of the measuring filter.
- f offset_{max} is equal to the *sub-block gap* bandwidth minus half of the bandwidth of the measuring filter.
- Δf_{max} is equal to $f_{offset_{max}}$ minus half of the bandwidth of the measuring filter.

For Wide Area BS, the requirements of either clause 6.6.4.2.1 (Category A limits) or clause 6.6.4.2.2 (Category B limits) shall apply.

For Medium Range BS, the requirements in clause 6.6.4.2.3 shall apply (Category A and B).

For Local Area BS, the requirements of clause 6.6.4.2.4 shall apply (Category A and B).

The requirements shall also apply if the BS supports NB-IoT operation in NR in-band.

The application of either Category A or Category B *basic limits* shall be the same as for Transmitter spurious emissions in clause 6.6.5.

6.6.4.2 Basic limits

6.6.4.2.1 Basic limits for Wide Area BS (Category A)

For BS operating in Bands n5, n8, n12, n14, n18, n26, n28, n29, n71, basic limits are specified in table 6.6.4.2.1-1.

Table 6.6.4.2.1-1: Wide Area BS operating band unwanted emission limits (NR bands below 1 GHz) for Category A

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
0 MHz ≤ Δf < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-7dBm - \frac{7}{5} \cdot \left(\frac{f - offset}{MHz} - 0.05\right)dB$	100 kHz
5 MHz $\leq \Delta f <$ min(10 MHz, Δf_{max})	5.05 MHz ≤ f_offset < min(10.05 MHz, f_offset _{max})	-14 dBm	100 kHz
$10 \text{ MHz} < \Lambda f < \Lambda f_{\text{max}}$	10.05 MHz < f_offset < f_offset _{max}	-13 dBm (Note 3)	100 kHz

- NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap. Exception is $\Delta f \ge 10 \text{MHz}$ from both adjacent sub-blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be -13 dBm/100 kHz.
- NOTE 2: For a *multi-band connector* with *Inter RF Bandwidth gap* < 2* Δf_{OBUE} the emission limits within the *Inter RF Bandwidth gaps* is calculated as a cumulative sum of contributions from adjacent *sub-blocks* or RF Bandwidth on each side of the *Inter RF Bandwidth gap*.
- NOTE 3: The requirement is not applicable when Δf_{max} < 10 MHz.

For BS operating in Bands n1, n2, n3, n7, n25, n30, n34, n38, n39, n40, n41, n48, n50, n65, n66, n70, n74, n75, n77, n78, n79, n90, n92, n94, basic limits are specified in table 6.6.4.2.1-2:

Table 6.6.4.2.1-2: Wide Area BS operating band unwanted emission limits (NR bands above 1 GHz) for Category A

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
0 MHz ≤ Δf < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-7dBm - \frac{7}{5} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$	100 kHz
5 MHz $\leq \Delta f < min(10 MHz, \Delta f_{max})$	$5.05 \text{ MHz} \le f_{\text{offset}} < $ min(10.05 MHz, f_offset _{max})	-14 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.5 MHz ≤ f_offset < f_offset _{max}	-13 dBm (Note 3)	1MHz

NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is ∆f ≥ 10MHz from both adjacent sub-blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be -13 dBm/1 MHz.

NOTE 2: For a multi-band connector with Inter RF Bandwidth gap < 2*\Delta fobbus the emission limits within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap, where the contribution from the far-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth.

NOTE 3: The requirement is not applicable when Δf_{max} < 10 MHz.

6.6.4.2.2 Basic limits for Wide Area BS (Category B)

For Category B Operating band unwanted emissions, there are two options for the *basic limits* that may be applied regionally. Either the *basic limits* in clause 6.6.4.2.2.1 or clause 6.6.4.2.2.2 shall be applied.

6.6.4.2.2.1 Category B requirements (Option 1)

For BS operating in Bands n5, n8, n12, n20, n26, n28, n29, n71, the basic limits are specified in table 6.6.4.2.2.1-1:

Table 6.6.4.2.2.1-1: Wide Area BS operating band unwanted emission limits (NR bands below 1 GHz) for Category B

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
0 MHz ≤ Δf < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-7dBm - \frac{7}{5} \cdot \left(\frac{f - offset}{MHz} - 0.05\right)dB$	100 kHz
5 MHz $\leq \Delta f <$ min(10 MHz, Δf_{max})	5.05 MHz ≤ f_offset < min(10.05 MHz, f_offset _{max})	-14 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.05 MHz ≤ f_offset < f_offset _{max}	-16 dBm (Note 3)	100 kHz

- NOTE 1: For a BS supporting *non-contiguous spectrum* operation within any *operating band*, the emission limits within *sub-block gaps* is calculated as a cumulative sum of contributions from adjacent *sub-blocks* on each side of the *sub-block gap*, where the contribution from the far-end *sub-block* shall be scaled according to the *measurement bandwidth* of the near-end *sub-block*. Exception is ∆f ≥ 10MHz from both adjacent *sub-blocks* on each side of the *sub-block gap*, where the emission limits within *sub-block gaps* shall be -16 dBm/100 kHz.
- NOTE 2: For a *multi-band connector* with *Inter RF Bandwidth gap* < 2*\Delta fobus the emission limits within the *Inter RF Bandwidth gaps* is calculated as a cumulative sum of contributions from adjacent *sub-blocks* or RF Bandwidth on each side of the *Inter RF Bandwidth gap*, where the contribution from the far-end *sub-block* or RF Bandwidth shall be scaled according to the *measurement bandwidth* of the near-end *sub-block* or RF Bandwidth.
- NOTE 3: The requirement is not applicable when Δf_{max} < 10 MHz.

For BS operating in Bands n1, n2, n3, n7, n25, n34, n38, n39, n40, n41, n48, n50, n65, n66, n70, n75, n77, n78, n79, n90, n92, n94, *basic limits* are specified in tables 6.6.4.2.2.1-2:

Table 6.6.4.2.2.1-2: Wide Area BS operating band unwanted emission limits (NR bands above 1 GHz) for Category B

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
0 MHz ≤ Δf < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-7dBm - \frac{7}{5} \cdot \left(\frac{f - offset}{MHz} - 0.05\right) dB$	100 kHz
5 MHz $\leq \Delta f < min(10 MHz, \Delta f_{max})$	$5.05 \text{ MHz} \le f_{\text{offset}} < $ min(10.05 MHz, f_offset _{max})	-14 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.5 MHz ≤ f_offset < f_offset _{max}	-15 dBm (Note 3)	1MHz

- NOTE 1: For a BS supporting *non-contiguous spectrum* operation within any *operating band*, the emission limits within *sub-block gaps* is calculated as a cumulative sum of contributions from adjacent *sub-blocks* on each side of the *sub-block gap*, where the contribution from the far-end *sub-block* shall be scaled according to the *measurement bandwidth* of the near-end *sub-block*. Exception is ∆f ≥ 10MHz from both adjacent *sub-blocks* on each side of the *sub-block gap*, where the emission limits within *sub-block gaps* shall be -15 dBm/1 MHz.
- NOTE 2: For a *multi-band connector* with *Inter RF Bandwidth gap* < 2*Δf_{OBUE} the emission limits within the *Inter RF Bandwidth gaps* is calculated as a cumulative sum of contributions from adjacent *sub-blocks* or RF Bandwidth on each side of the *Inter RF Bandwidth gap*, where the contribution from the far-end *sub-block* or RF Bandwidth shall be scaled according to the *measurement bandwidth* of the near-end *sub-block* or RF Bandwidth
- NOTE 3: The requirement is not applicable when $\Delta f_{max} < 10$ MHz.

6.6.4.2.2.2 Category B requirements (Option 2)

The limits in this clause are intended for Europe and may be applied regionally for BS operating in bands n1, n3, n7, n8, n38, n65.

For a BS operating in bands n1, n3, n8, n65 or BS type 1-C operating in bands n7 or n38, basic limits are specified in Table 6.6.4.2.2.2-1:

Table 6.6.4.2.2.2-1: Regional Wide Area BS operating band unwanted emission limits for Category B

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
$0 \text{ MHz} \le \Delta f < 0.2 \text{ MHz}$	0.015 MHz ≤ f_offset < 0.215 MHz	-14 dBm	30 kHz
0.2 MHz ≤ Δf < 1 MHz	0.215 MHz ≤ f_offset < 1.015 MHz	$-14dBm - 15 \cdot \left(\frac{f - offset}{MHz} - 0.215\right)dB$	30 kHz
(Note 4)	1.015 MHz ≤ f_offset < 1.5 MHz	-26 dBm	30 kHz
1 MHz $\leq \Delta f \leq$ min(10 MHz, Δf_{max})	1.5 MHz ≤ f_offset < min(10.5 MHz, f_offset _{max})	-13 dBm	1 MHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.5 MHz ≤ f_offset < f_offset _{max}	-15 dBm (Note 3)	1 MHz

- NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is ∆f ≥ 10MHz from both adjacent sub-blocks on each side of the sub-block gap, where the minimum requirement within sub-block gaps shall be -15dBm/1MHz.
- NOTE 2: For a *multi-band connector* with *Inter RF Bandwidth gap* < 2*\Delta fobus the minimum requirement within the *Inter RF Bandwidth gaps* is calculated as a cumulative sum of contributions from adjacent *sub-blocks* or RF Bandwidth on each side of the *Inter RF Bandwidth gap*, where the contribution from the far-end *sub-block* or RF Bandwidth shall be scaled according to the *measurement bandwidth* of the near-end *sub-block* or RF Bandwidth.
- NOTE 3: The requirement is not applicable when Δf_{max} < 10 MHz.
- NOTE 4: This frequency range ensures that the range of values of f_offset is continuous.

6.6.4.2.3 Basic limits for Medium Range BS (Category A and B)

For Medium Range BS, basic limits are specified in table 6.6.4.2.3-1 and table 6.6.4.2.3-2.

For the tables in this clause for BS type 1-C $P_{rated,x} = P_{rated,c,AC}$, and for BS type 1-H $P_{rated,x} = P_{rated,c,cell} - 10*log_{10}(N_{TXU,countedpercell})$, and for BS type 1-O $P_{rated,x} = P_{rated,c,TRP} - 9$ dB.

Table 6.6.4.2.3-1: Medium Range BS *operating band* unwanted emission limits, 31< P_{rated,x} ≤ 38 dBm

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
0 MHz ≤ Δf < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$P_{rated,x} - 53dB - \frac{7}{5} \left(\frac{f_{-}offset}{MHz} - 0.05 \right) dB$	100 kHz
5 MHz $\leq \Delta f < min(10$ MHz, Δf_{max})	$5.05 \text{ MHz} \le f_{\text{offset}} < \min(10.05 \text{ MHz}, f_{\text{offsetmax}})$	P _{rated,x} - 60dB	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.05 MHz ≤ f_offset < f_offset _{max}	Min(P _{rated,x} - 60dB, -25dBm) (Note 3)	100 kHz

NOTE 1: For a BS supporting *non-contiguous spectrum* operation within any *operating band* the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap. Exception is ∆f ≥ 10MHz from both adjacent sub-blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be Min(P_{rated,x} -60dB, -25dBm)/100kHz.

NOTE 2: For a *multi-band connector* with *Inter RF Bandwidth gap* < 2*Δf_{OBUE} the emission limits within the *Inter RF Bandwidth gaps* is calculated as a cumulative sum of contributions from adjacent *sub-blocks* or RF Bandwidth on each side of the *Inter RF Bandwidth gap*.

NOTE 3: The requirement is not applicable when Δf_{max} < 10 MHz.

Table 6.6.4.2.3-2: Medium Range BS operating band unwanted emission limits, P_{rated,x} ≤ 31 dBm

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
0 MHz ≤ Δf < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-22 \mathrm{dBm} - \frac{7}{5} \left(\frac{f - offset}{MHz} - 0.05 \right) dB$	100 kHz
5 MHz $\leq \Delta f < min(10$ MHz, Δf_{max})	5.05 MHz ≤ f_offset < min(10.05 MHz, f_offset _{max})	-29 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.05 MHz ≤ f_offset < f_offset _{max}	-29 dBm (Note 3)	100 kHz

- NOTE 1: For a BS supporting *non-contiguous spectrum* operation within any *operating band* the emission limits within *sub-block gaps* is calculated as a cumulative sum of contributions from adjacent *sub-blocks* on each side of the *sub-block gap*. Exception is $\Delta f \ge 10 MHz$ from both adjacent *sub-blocks* on each side of the *sub-block gap*, where the emission limits within *sub-block gaps* shall be -29dBm/100kHz.
- NOTE 2: For a *multi-band connector* with *Inter RF Bandwidth gap* < 2*Δfo_{BUE} the emission limits within the *Inter RF Bandwidth gaps* is calculated as a cumulative sum of contributions from adjacent *sub-blocks* or RF Bandwidth on each side of the *Inter RF Bandwidth gap*.
- NOTE 3: The requirement is not applicable when Δf_{max} < 10 MHz.

6.6.4.2.4 Basic limits for Local Area BS (Category A and B)

For Local Area BS, basic limits are specified in table 6.6.4.2.4-1.

Table 6.6.4.2.4-1: Local Area BS operating band unwanted emission limits

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Basic limits (Note 1, 2)	Measurement bandwidth
0 MHz ≤ Δf < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-30dBm - \frac{7}{5} \left(\frac{f_offset}{MHz} - 0.05 \right) dB$	100 kHz
5 MHz $\leq \Delta f < min(10$ MHz, Δf_{max})	5.05 MHz ≤ f_offset < min(10.05 MHz, f_offset _{max})	-37 dBm	100 kHz
$10 \text{ MHz} \le \Delta f \le \Delta f_{\text{max}}$	10.05 MHz ≤ f offset < f offset _{max}	-37 dBm (Note 10)	100 kHz

- NOTE 1: For a BS supporting *non-contiguous spectrum* operation within any *operating band* the emission limits within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap. Exception is ∆f ≥ 10MHz from both adjacent sub-blocks on each side of the sub-block gap, where the emission limits within sub-block gaps shall be -37dBm/100kHz.
- NOTE 2: For a *multi-band connector* with *Inter RF Bandwidth gap* < 2*Δf_{OBUE} the emission limits within the *Inter RF Bandwidth gaps* is calculated as a cumulative sum of contributions from adjacent *sub-blocks* or RF Bandwidth on each side of the *Inter RF Bandwidth gap*
- NOTE 3: The requirement is not applicable when $\Delta f_{max} < 10$ MHz.

6.6.4.2.5 Basic limits for additional requirements

6.6.4.2.5.1 Limits in FCC Title 47

In addition to the requirements in clauses 6.6.4.2.1, 6.6.4.2.2, 6.6.4.2.3 and 6.6.4.2.4, the BS may have to comply with the applicable emission limits established by FCC Title 47 [8], when deployed in regions where those limits are applied, and under the conditions declared by the manufacturer.

6.6.4.2.5.2 Protection of DTT

In certain regions the following requirement may apply for protection of DTT. For BS type 1-C or BS type 1-H operating in Band n20, the level of emissions in the band 470-790 MHz, measured in an 8 MHz filter bandwidth on centre frequencies F_{filter} according to table 6.6.4.2.5.2-1, a basic limits $P_{\text{EM,N}}$ is declared by the manufacturer. This requirement applies in the frequency range 470-790 MHz even though part of the range falls in the spurious domain.

Table 6.6.4.2.5.2-1: Declared emissions basic limit for protection of DTT

Filter centre frequency, Ffilter	Measurement bandwidth	Declared emission basic limit (dBm)
$F_{\text{filter}} = 8*N + 306 \text{ (MHz)};$ $21 \le N \le 60$	8 MHz	Рем, и

Note:

The regional requirement is defined in terms of EIRP (effective isotropic radiated power), which is dependent on both the BS emissions at the *antenna connector* and the deployment (including antenna gain and feeder loss). The requirement defined above provides the characteristics of the BS needed to verify compliance with the regional requirement. Compliance with the regional requirement can be determined using the method outlined in TS 36.104 [13], annex F.

6.6.4.2.5.3 Additional operating band unwanted emissions limits for Band n48

The following requirement may apply to BS operating in Band n48 in certain regions. Emissions shall not exceed the maximum levels specified in table 6.6.4.2.5.3-1.

Table 6.6.4.2.5.3-1: Additional operating band unwanted emission limits for Band n48

Channel bandwidth	Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement	Measurement bandwidth (Note)
All	0 MHz ≤ Δf < 10 MHz	0.5 MHz ≤ f_offset < 9.5 MHz	-13 dBm	1 MHz

NOTE: The resolution bandwidth of the measuring equipment should be equal to the *measurement bandwidth*. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the *measurement bandwidth*. When the resolution bandwidth is smaller than the *measurement bandwidth*, the result should be integrated over the *measurement bandwidth* in order to obtain the equivalent noise bandwidth of the *measurement bandwidth*.

6.6.4.2.5.4 Additional operating band unwanted emissions limits for Band n53

The following requirement may apply to BS operating in Band n53 in certain regions. Emissions shall not exceed the maximum levels specified in table 6.6.4.2.5.4-1.

Table 6.6.4.2.5.4-1: Additional operating band unwanted emission limits for Band n53

Channel Frequency bandwidth range [MHz]		Frequency offset of measurement	Frequency offset of measurement filter centre	Minimum requirement	Measurement bandwidth	
[MHz]		filter -3dB point, ∆f	frequency, f_offset		(Note)	
5	2400 - 2477.5	6 MHz ≤ Δf < 83.5 MHz	6.5 MHz ≤ f_offset < 83 MHz	-25 dBm	1 MHz	
10	2400 - 2473.5	10 MHz $\leq \Delta f < 83.5$ MHz	10.5 MHz ≤ f_offset < 83 MHz	-25 dBm	1 MHz	
5	2477.5 - 2478.5	$5 \text{ MHz} \leq \Delta f < 6 \text{ MHz}$	5.5 MHz	-13 dBm	1 MHz	
10	2473.5 - 2478.5	5 MHz ≤ Δf < 10 MHz	5.5 MHz ≤ f_offset < 9.5 MHz	-13 dBm	1 MHz	
All	2478.5 - 2483.5	$0 \text{ MHz} \leq \Delta f < 5 \text{ MHz}$	0.5 MHz ≤ f_offset < 4.5 MHz	-10 dBm	1 MHz	
5	2495 - 2501	$0 \text{ MHz} \leq \Delta f < 6 \text{ MHz}$	0.5 MHz ≤ f_offset < 5.5 MHz	-13 dBm	1 MHz	
10	2495 - 2505	$0 \text{ MHz} \leq \Delta f < 10 \text{ MHz}$	0.5 MHz ≤ f_offset < 9.5 MHz	-13 dBm	1 MHz	
5	2501 - 2690	6 MHz ≤ Δf < 195 MHz	6.5 MHz ≤ f_offset < 194.5 MHz	-25 dBm	1 MHz	
10	2505 - 2690	10 MHz ≤ Δf < 195 MHz	10.5 MHz ≤ f_offset < 194.5 MHz	-25 dBm	1 MHz	

NOTE: The resolution bandwidth of the measuring equipment should be equal to the *measurement bandwidth*. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the *measurement bandwidth*. When the resolution bandwidth is smaller than the *measurement bandwidth*, the result should be integrated over the *measurement bandwidth* in order to obtain the equivalent noise bandwidth of the *measurement bandwidth*.

6.6.4.3 Minimum requirements for BS type 1-C

The operating band unwanted emissions for *BS type 1-C* for each *antenna connector* shall be below the applicable *basic limits* defined in clause 6.6.4.2.

6.6.4.4 Minimum requirements for BS type 1-H

The operating band unwanted emissions requirements for BS type 1-H are that for each TAB connector TX min cell group and each applicable basic limit in clause 6.6.4.2, the power summation emissions at the TAB connectors of the TAB connector TX min cell group shall not exceed a BS limit specified as the basic limit + X, where $X = 10\log_{10}(N_{TXU,countedpercell})$.

NOTE: Conformance to the *BS type 1-H* spurious emission requirement can be demonstrated by meeting at least one of the following criteria as determined by the manufacturer:

1) The sum of the emissions power measured on each *TAB connector* in the *TAB connector TX min cell group* shall be less than or equal to the limit as defined in this clause for the respective frequency span.

Or

2) The unwanted emissions power at each *TAB connector* shall be less than or equal to the *BS type 1-H* limit as defined in this clause for the respective frequency span, scaled by -10log₁₀(n), where n is the number of *TAB connectors* in the *TAB connector TX min cell group*.

6.6.5 Transmitter spurious emissions

6.6.5.1 General

The transmitter spurious emission limits shall apply from 9 kHz to 12.75 GHz, excluding the frequency range from Δf_{OBUE} below the lowest frequency of each supported downlink *operating band*, up to Δf_{OBUE} above the highest frequency of each supported downlink *operating band*, where the Δf_{OBUE} is defined in table 6.6.1-1. For some *operating bands*, the upper limit is higher than 12.75 GHz in order to comply with the 5th harmonic limit of the downlink *operating band*, as specified in ITU-R recommendation SM.329 [2].

For a *multi-band connector*, for each supported *operating band* together with Δf_{OBUE} around the band is excluded from the transmitter spurious emissions requirement.

The requirements shall apply whatever the type of transmitter considered (single carrier or multi-carrier). It applies for all transmission modes foreseen by the manufacturer's specification.

The requirements shall also apply if the BS supports NB-IoT operation in NR in-band.

Unless otherwise stated, all requirements are measured as mean power (RMS).

6.6.5.2 Basic limits

6.6.5.2.1 General transmitter spurious emissions requirements

The *basic limits* of either table 6.6.5.2.1-1 (Category A limits) or table 6.6.5. 2.1-2 (Category B limits) shall apply. The application of either Category A or Category B limits shall be the same as for operating band unwanted emissions in clause 6.6.4.

Table 6.6.5.2.1-1: General BS transmitter spurious emission limits in FR1, Category A

Spurious frequency range	Basic limit	Measurement bandwidth	Notes
9 kHz – 150 kHz		1 kHz	Note 1, Note 4
150 kHz – 30 MHz		10 kHz	Note 1, Note 4
30 MHz – 1 GHz		100 kHz	Note 1
1 GHz 12.75 GHz	-13 dBm	1 MHz	Note 1, Note 2
12.75 GHz – 5 th harmonic of the		1 MHz	Note 1, Note 2, Note 3
upper frequency edge of the DL operating band in GHz			

NOTE 1: Measurement bandwidths as in ITU-R SM.329 [2], s4.1.

NOTE 2: Upper frequency as in ITU-R SM.329 [2], s2.5 table 1.

NOTE 3: This spurious frequency range applies only for *operating bands* for which the 5th harmonic of the upper frequency edge of the DL *operating band* is reaching beyond 12.75 GHz

NOTE 4: This spurious frequency range applies only to BS type 1-C and BS type 1-H.

Table 6.6.5.2.1-2: General BS transmitter spurious emission limits in FR1, Category B

Spurious frequency range	Basic limit	Measurement bandwidth	Notes
9 kHz – 150 kHz		1 kHz	Note 1, Note 4
150 kHz – 30 MHz	-36 dBm	10 kHz	Note 1, Note 4
30 MHz – 1 GHz		100 kHz	Note 1
1 GHz – 12.75 GHz		1 MHz	Note 1, Note 2
12.75 GHz – 5 th harmonic of the upper frequency edge of the DL operating band in GHz	-30 dBm	1 MHz	Note 1, Note 2, Note 3

NOTE 1: Measurement bandwidths as in ITU-R SM.329 [2], s4.1.

NOTE 2: Upper frequency as in ITU-R SM.329 [2], s2.5 table 1.

NOTE 3: This spurious frequency range applies only for *operating bands* for which the 5th harmonic of the upper frequency edge of the DL *operating band* is reaching beyond 12.75 GHz.

NOTE 4: This spurious frequency range applies only to BS type 1-C and BS type 1-H.

6.6.5.2.2 Protection of the BS receiver of own or different BS

This requirement shall be applied for NR FDD operation in order to prevent the receivers of the BSs being desensitised by emissions from a BS transmitter. It is measured at the transmit *antenna connector* for *BS type 1-C* or at the *TAB connector* for *BS type 1-H* for any type of BS which has common or separate Tx/Rx *antenna connectors* / *TAB connectors*.

The spurious emission basic limits are provided in table 6.6.5.2.2-1.

Table 6.6.5.2.2-1: BS spurious emissions basic limits for protection of the BS receiver

BS class	Frequency range	Basic limits	Measurement bandwidth	Note
Wide Area BS	Ful,low — Ful,high	-96 dBm	100 kHz	
Medium Range BS	F _{UL,low} - F _{UL,high}	-91 dBm	100 kHz	
Local Area BS	Ful.low — Ful.high	-88 dBm	100 kHz	

6.6.5.2.3 Additional spurious emissions requirements

These requirements may be applied for the protection of system operating in frequency ranges other than the BS downlink *operating band*. The limits may apply as an optional protection of such systems that are deployed in the same geographical area as the BS, or they may be set by local or regional regulation as a mandatory requirement for an NR *operating band*. It is in some cases not stated in the present document whether a requirement is mandatory or under what exact circumstances that a limit applies, since this is set by local or regional regulation. An overview of regional requirements in the present document is given in clause 4.5.

Some requirements may apply for the protection of specific equipment (UE, MS and/or BS) or equipment operating in specific systems (GSM, CDMA, UTRA, E-UTRA, NR, etc.) as listed below.

The spurious emission *basic limits* are provided in table 6.6.5.2.3 -1 for a BS where requirements for co-existence with the system listed in the first column apply. For a *multi-band connector*, the exclusions and conditions in the Note column of table 6.6.5.2.3 -1 apply for each supported *operating band*.

Table 6.6.5.2.3-1: BS spurious emissions *basic limits* for BS for co-existence with systems operating in other frequency bands

System type for NR to co- exist with	Frequency range for co-existence requirement	Basic limits	Measurement bandwidth	Note
GSM900	921 – 960 MHz	-57 dBm	100 kHz	This requirement does not apply to BS operating in band n8
	876 – 915 MHz	-61 dBm	100 kHz	For the frequency range 880-915 MHz, this requirement does not apply to BS operating in band n8, since it is already covered by the requirement in
DCS1800	1805 – 1880 MHz	-47 dBm	100 kHz	clause 6.6.5.2.2. This requirement does not apply to BS operating in
DC31600				band n3.
	1710 – 1785 MHz	-61 dBm	100 kHz	This requirement does not apply to BS operating in band n3, since it is already covered by the requirement in clause 6.6.5.2.2.
PCS1900	1930 – 1990 MHz	-47 dBm	100 kHz	This requirement does not apply to BS operating in band n2, n25 or band n70.
	1850 – 1910 MHz	-61 dBm	100 kHz	This requirement does not apply to BS operating in band n2 or n25 since it is already covered by the requirement in clause 6.6.5.2.2.
GSM850 or CDMA850	869 – 894 MHz	-57 dBm	100 kHz	This requirement does not apply to BS operating in band n5 or n26.
CDIVIAGOU	824 – 849 MHz	-61 dBm	100 kHz	This requirement does not apply to BS operating in band n5 or n26, since it is already covered by the
UTRA FDD Band I or	2110 – 2170 MHz	-52 dBm	1 MHz	requirement in clause 6.6.5.2.2. This requirement does not apply to BS operating in band n1 or n65
E-UTRA Band 1 or NR Band n1	1920 – 1980 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n1 or n65, since it is already covered by the requirement in clause 6.6.5.2.2.
UTRA FDD Band II or	1930 – 1990 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n2 or n70.
E-UTRA Band 2 or NR Band n2	1850 – 1910 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n2, since it is already covered by the requirement in clause 6.6.5.2.2.
UTRA FDD Band III or	1805 – 1880 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n3.
E-UTRA Band 3 or NR Band n3	1710 – 1785 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n3, since it is already covered by the requirement in clause 6.6.5.2.2.
UTRA FDD Band IV or	2110 – 2155 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n66
E-UTRA Band 4	1710 – 1755 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n66, since it is already covered by the requirement in clause 6.6.5.2.2.
UTRA FDD Band V or	869 – 894 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n5 or n26.
E-UTRA Band 5 or NR Band n5	824 – 849 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n5 or n26, since it is already covered by the requirement in clause 6.6.5.2.2.
UTRA FDD Band VI, XIX or	860 – 890 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n18.
E-UTRA Band 6, 18, 19 or NR Band n18	815 – 830 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n18, since it is already covered by the requirement in clause 6.6.5.2.2.
UTRA FDD Band VII or	830 – 845 MHz 2620 – 2690 MHz	-49 dBm -52 dBm	1 MHz 1 MHz	This requirement does not apply to BS operating in band n7.
E-UTRA Band 7 or NR Band n7	2500 – 2570 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n7, since it is already covered by the requirement in clause 6.6.5.2.2.
UTRA FDD Band VIII or	925 – 960 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n8.
E-UTRA Band 8 or NR Band n8	880 – 915 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n8, since it is already covered by the requirement in clause 6.6.5.2.2.
2	1844.9 – 1879.9 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n3.

LITO A EDD	17100 17010	40 15	4 8 40 1	TI: :
UTRA FDD	1749.9 – 1784.9	-49 dBm	1 MHz	This requirement does not apply to BS operating in
Band IX or	MHz			band n3, since it is already covered by the
E-UTRA Band				requirement in clause 6.6.5.2.2.
9	0440 0470 MIL	50 dD	4 MH I-	This was a increased the second combate DO an austinus in
UTRA FDD	2110 – 2170 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band X or	4740 4770 1411	40 15	4.841.1	band n66
E-UTRA Band	1710 – 1770 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in
10				band n66, since it is already covered by the
				requirement in clause 6.6.5.2.2.
UTRA FDD	1475.9 – 1510.9	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band XI or XXI	MHz			band n50, n74, n75, n92 or n94.
or	1427.9 – 1447.9	-49 dBm	1 MHz	This requirement does not apply to BS operating in
E-UTRA Band	MHz			band n50, n51, n74, n75, n76, n91, n92, n93 or n94.
11 or 21	1447.9 – 1462.9	-49 dBm	1 MHz	This requirement does not apply to BS operating in
	MHz			band n50, n74, n75, n92 or n94.
UTRA FDD	729 – 746 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band XII or				band n12.
E-UTRA Band	699 – 716 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in
12 or NR Band				band n12, since it is already covered by the
n12				requirement in clause 6.6.5.2.2.
				For NR BS operating in n29, it applies 1 MHz below
				the Band n29 downlink operating band (Note 5).
UTRA FDD	746 – 756 MHz	-52 dBm	1 MHz	
Band XIII or	777 – 787 MHz	-49 dBm	1 MHz	
E-UTRA Band				
13				
UTRA FDD	758 – 768 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band XIV or				band n14.
E-UTRA Band	788 – 798 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in
14 or NR band				band n14, since it is already covered by the
n14				requirement in clause 6.6.5.2.2.
E-UTRA Band	734 – 746 MHz	-52 dBm	1 MHz	
17	704 – 716 MHz	-49 dBm	1 MHz	For NR BS operating in n29, it applies 1 MHz below
				the Band n29 downlink operating band (Note 5).
UTRA FDD	791 – 821 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band XX or E-				band n20 or n28.
UTRA Band 20	832 – 862 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in
or NR Band				band n20, since it is already covered by the
n20				requirement in clause 6.6.5.2.2.
UTRA FDD	3510 – 3590 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band XXII or				band n48, n77 or n78.
E-UTRA Band	3410 – 3490 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in
22				band n77 or n78.
E-UTRA Band	1525 – 1559 MHz	-52 dBm	1 MHz	
24	1626.5 – 1660.5	-49 dBm	1 MHz	
LITOA COO	MHz	EC 15	4 8 41 1	This provides a set of the SO of the
UTRA FDD	1930 – 1995 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band XXV or	4050 4045 1411	40 -10	A 1 A 1 1	band n2, n25 or n70.
E-UTRA Band	1850 – 1915 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in
25 or NR band				band n25 since it is already covered by the
n25				requirement in clause 6.6.5.2.2. For BS operating in
				Band n2, it applies for 1910 MHz to 1915 MHz, while
LITDA COO	050 004 141	50 ID	4 8411	the rest is covered in clause 6.6.5.2.2.
UTRA FDD	859 – 894 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
Band XXVI or	044 040 1411	40 -ID	A 1 A 1 1	band n5 or n26.
E-UTRA Band	814 – 849 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in
26 or NR Band				band n26 since it is already covered by the
n26				requirement in clause 6.6.5.2.2. For BS operating in
				Band n5, it applies for 814 MHz to 824 MHz, while the
E LIEDA D	0E0 000 MIL	E0 4D	4 MI !-	rest is covered in clause 6.6.5.2.2.
E-UTRA Band	852 – 869 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in
27	907 924 MILI-	40 4D~	4 111-	Band n5. This requirement also applies to BS operating in Rand
	807 – 824 MHz	-49 dBm	1 MHz	This requirement also applies to BS operating in Band
				n28, starting 4 MHz above the Band n28 downlink
	758 – 803 MHz	-52 dBm	1 MHz	operating band (Note 5). This requirement does not apply to BS operating in
	100 - OUS IVINZ	-52 UDIII	I IVITZ	band n20 or n28.

ng in
ng in
Ü
ng in
ng in
ng in
ng in
n41,
n48,
n48,
n28.
n48,

E-UTRA Band 50 or NR band	1432 – 1517 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n50, n51, n74, n75, n76, n91, n92, n93 or n94.
n50 E-UTRA Band 51 or NR Band	1427 – 1432 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n50, n51, n75, n76, n91, n92, n93 or n94.
n51 E-UTRA Band 53 or NR Band	2483.5 - 2495 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n41, n53 or n90.
n53 E-UTRA Band 65 or NR Band	2110 – 2200 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n1 or n65.
n65	1920 – 2010 MHz	-49 dBm	1 MHz	For BS operating in Band n1, it applies for 1980 MHz to 2010 MHz, while the rest is covered in clause 6.6.5.2.2.
				This requirement does not apply to BS operating in band n65, since it is already covered by the requirement in clause 6.6.5.2.2.
E-UTRA Band 66 or NR Band	2110 – 2200 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n66.
n66	1710 – 1780 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n66, since it is already covered by the requirement in clause 6.6.5.2.2.
E-UTRA Band 67	738 – 758 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n28.
E-UTRA Band 68	753 -783 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n28.
	698-728 MHz	-49 dBm	1 MHz	For BS operating in Band n28, this requirement applies between 698 MHz and 703 MHz, while the rest is covered in clause 6.6.5.2.2.
E-UTRA Band 69	2570 – 2620 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n38.
E-UTRA Band 70 or NR Band	1995 – 2020 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n2, n25 or n70
n70	1695 – 1710 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n70, since it is already covered by the requirement in clause 6.6.5.2.2.
E-UTRA Band 71 or NR Band	617 – 652 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n71
n71	663 – 698 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n71, since it is already covered by the requirement in clause 6.6.5.2.2.
E-UTRA Band	461 – 466 MHz	-52 dBm	1 MHz	
72	451 – 456 MHz	-49 dBm	1 MHz	
E-UTRA Band 74 or NR Band	1475 – 1518 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n50, n74, n75, n92 or n94.
n74	1427 – 1470 MHz	-49 dBm	1MHz	This requirement does not apply to BS operating in band n50, n51, n74, n75, n76, n91, n92, n93 or n94.
E-UTRA Band 75 or NR Band n75	1432 – 1517 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n50, n51, n74, n75, n76, n91, n92, n93 or n94.
E-UTRA Band 76 or NR Band n76	1427 – 1432 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n50, n51, n75, n76, n91, n92, n93 or n94.
NR Band n77	3.3 – 4.2 GHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n48, n77 or n78
NR Band n78	3.3 – 3.8 GHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n48, n77 or n78
NR Band n79	4.4 – 5.0 GHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n79
NR Band n80	1710 – 1785 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n3, since it is already covered by the requirement in clause 6.6.5.2.2.
NR Band n81	880 – 915 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n8, since it is already covered by the requirement in clause 6.6.5.2.2.
NR Band n82	832 – 862 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n20, since it is already covered by the requirement in clause 6.6.5.2.2.

NR Band n83	703 – 748 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n28, since it is already covered by the
				requirement in clause 6.6.5.2.2.
NR Band n84	1920 – 1980 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n1, since it is already covered by the requirement in clause 6.6.5.2.2.
E-UTRA Band 85	728 – 746 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in band n12. For NR BS operating in n29, it applies 1 MHz below the Band n29 downlink operating band (Note 5).
	698 – 716 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n12, since it is already covered by the requirement in clause 6.6.5.2.2.
NR Band n86	1710 – 1780 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n66, since it is already covered by the requirement in clause 6.6.5.2.2.
NR Band n89	824 – 849 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n5, since it is already covered by the requirement in clause 6.6.5.2.2.
NR Band n91	1427 – 1432 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n50, n51, n75 or n76.
	832 – 862 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n20, since it is already covered by the requirement in clause 6.6.5.5.1.2.
NR Band n92	1432 – 1517 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n50, n51, n74, n75 or n76.
	832 – 862 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n20, since it is already covered by the requirement in clause 6.6.5.5.1.2.
NR Band n93	1427 – 1432 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n50, n51, n75 or n76.
	880 – 915 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n8, since it is already covered by the requirement in clause 6.6.5.5.1.2.
NR Band n94	1432 – 1517 MHz	-52 dBm	1 MHz	This requirement does not apply to BS operating in Band n50, n51, n74, n75 or n76.
	880 – 915 MHz	-49 dBm	1 MHz	This requirement does not apply to BS operating in band n8, since it is already covered by the requirement in clause 6.6.5.5.1.2.
NR Band n95	2010 – 2025 MHz	-52 dBm	1 MHz	

- NOTE 1: As defined in the scope for spurious emissions in this clause, except for the cases where the noted requirements apply to a BS operating in Band n28, the co-existence requirements in table 6.6.5.2.3 -1 do not apply for the Δf_{OBUE} frequency range immediately outside the downlink *operating band* (see table 5.2-1). Emission limits for this excluded frequency range may be covered by local or regional requirements.
- NOTE 2: Table 6.6.5.2.3 -1 assumes that two *operating bands*, where the frequency ranges in table 5.2-1 would be overlapping, are not deployed in the same geographical area. For such a case of operation with overlapping frequency arrangements in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications.
- NOTE 3: TDD base stations deployed in the same geographical area, that are synchronized and use the same or adjacent *operating bands* can transmit without additional co-existence requirements. For unsynchronized base stations, special co-existence requirements may apply that are not covered by the 3GPP specifications.
- NOTE 4: For NR Band n28 BS, specific solutions may be required to fulfil the spurious emissions limits for BS for co-existence with E-UTRA Band 27 UL *operating band*.
- NOTE 5: For NR Band n29 BS, specific solutions may be required to fulfil the spurious emissions limits for NR BS for co-existence with UTRA Band XII, E-UTRA Band 12 or NR Band n12 UL operating band, E-UTRA Band 17 UL operating band or E-UTRA Band 85 UL operating band.

The following requirement may be applied for the protection of PHS. This requirement is also applicable at specified frequencies falling between Δf_{OBUE} below the lowest BS transmitter frequency of the downlink *operating band* and Δf_{OBUE} above the highest BS transmitter frequency of the downlink *operating band*. Δf_{OBUE} is defined in clause 6.6.1.

The spurious emission basic limit for this requirement is:

Table 6.6.5.2.3-2: BS spurious emissions basic limits for BS for co-existence with PHS

Frequency range	Basic limit	Measurement Bandwidth	Note
1884.5 – 1915.7 MHz	-41 dBm	300 kHz	Applicable when co-existence with PHS system operating in 1884.5 – 1915.7 MHz

Table 6.6.5.2.3-3: Void

In certain regions, the following requirement may apply to NR BS operating in Band n50 and n75 within the 1432 - 1452 MHz, and in Band n51 and Band n76. The *basic limit is* specified in Table 6.6.5.2.3-4. This requirement is also applicable at the frequency range from Δf_{OBUE} below the lowest frequency of the BS downlink *operating band* up to Δf_{OBUE} above the highest frequency of the BS downlink *operating band*.

Table 6.6.5.2.3-4: Additional operating band unwanted emission *basic limit* for NR BS operating in Band n50 and n75 within 1432 – 1452 MHz, and in Band n51 and n76

Filter centre frequency, Ffilter	Basic limit	Measurement Bandwidth
F _{filter} = 1413.5 MHz	-42 dBm	27 MHz

In certain regions, the following requirement may apply to BS operating in NR Band n50 and n75 within 1492-1517 MHz and in Band n74 within 1492-1518 MHz. The maximum level of emissions, measured on centre frequencies $F_{\rm filter}$ with filter bandwidth according to Table 6.6.5.2.3-5, shall be defined according to the *basic limits* $P_{EM,n50/n75,a}$ nor $P_{EM,n50/n75,b}$ declared by the manufacturer.

Table 6.6.5.2.3-5: Operating band n50, n74 and n75 declared emission above 1518 MHz

Filter centre frequency, F _{filter}	Declared <i>basic</i> <i>limits</i> (dBm)	Measurement bandwidth
1518.5 MHz ≤ F _{filter} ≤ 1519.5 MHz	P _{EM, n50/n75,a}	1 MHz
1520.5 MHz ≤ F _{filter} ≤ 1558.5 MHz	P _{EM,n50/n75,b}	1 MHz

In certain regions, the following requirement shall be applied to BS operating in Band n14 to ensure that appropriate interference protection is provided to 700 MHz public safety operations. This requirement is also applicable at the frequency range from 10 MHz below the lowest frequency of the BS downlink operating band up to 10 MHz above the highest frequency of the BS downlink operating band.

The power of any spurious emission shall not exceed:

Table 6.6.5.2.3-6: BS Spurious emissions limits for protection of 700 MHz public safety operations

Operating Band	Frequency range	Maximum Level	Measurement Bandwidth
n14	769 - 775 MHz	-46 dBm	6.25 kHz
n14	799 - 805 MHz	-46 dBm	6.25 kHz

In certain regions, the following requirement may apply to NR BS operating in Band n30. This requirement is also applicable at the frequency range from 10 MHz below the lowest frequency of the BS downlink operating band up to 10 MHz above the highest frequency of the BS downlink operating band.

The power of any spurious emission shall not exceed:

Table 6.6.5.2.3-7: Additional NR BS Spurious emissions limits for Band n30

Frequency range	Basic limit	Measurement Bandwidth	Note
2200 – 2345 MHz	-45 dBm	1 MHz	
2362.5 – 2365 MHz	-25 dBm	1 MHz	
2365 – 2367.5 MHz	-40 dBm	1 MHz	
2367.5 – 2370 MHz	-42 dBm	1 MHz	
2370 – 2395 MHz	-45 dBm	1 MHz	

The following requirement may apply to BS operating in Band n48 in certain regions. The power of any spurious emission shall not exceed:

Table 6.6.5.2.3-8: Additional BS Spurious emissions limits for Band n48

Frequency range	Maximum Level	Measurement Bandwidth (NOTE)	Note
3530 MHz – 3720 MHz	-25 dBm	1 MHz	Applicable 10 MHz from the assigned channel edge
3100 MHz – 3530 MHz 3720 MHz – 4200 MHz	-40 dBm	1 MHz	

NOTE: The resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

NOTE: The regional requirement, included in [12], is defined in terms of EIRP, which is dependent on both the BS emissions at the *antenna connector* and the deployment (including antenna gain and feeder loss). The requirement defined above provides the characteristics of the base station needed to verify compliance with the regional requirement. The assessment of the EIRP level is described in Annex F.

The following requirement shall be applied to BS operating in Band n26 to ensure that appropriate interference protection is provided to 800 MHz public safety operations. This requirement is also applicable at the frequency range from 10 MHz below the lowest frequency of the BS downlink operating band up to 10 MHz above the highest frequency of the BS downlink operating band.

The power of any spurious emission shall not exceed:

Table 6.6.5.2.3-9: BS Spurious emissions limits for protection of 800 MHz public safety operations

Operating Band	Frequency range	Maximum Level	Measurement Bandwidth	Note
n26	851 - 859 MHz	-13 dBm	100 kHz	Applicable for offsets > 37.5kHz from the
				channel edge

6.6.5.2.4 Co-location with other base stations

These requirements may be applied for the protection of other BS receivers when GSM900, DCS1800, PCS1900, GSM850, CDMA850, UTRA FDD, UTRA TDD, E-UTRA and/or NR BS are co-located with a BS.

The requirements assume a 30 dB coupling loss between transmitter and receiver and are based on co-location with base stations of the same class.

The *basic limits* are in table 6.6.5.2.4-1 for a BS where requirements for co-location with a BS type listed in the first column apply, depending on the declared Base Station class. For a *multi-band connector*, the exclusions and conditions in the Note column of table 6.6.5.2.4-1 shall apply for each supported *operating band*.

Table 6.6.5.2.4-1: BS spurious emissions basic limits for BS co-located with another BS

Type of co-located BS	Frequency range for		Basic limit	s	Measurement	Note
	co-location requirement	WA BS	MR BS	LA BS	bandwidth	
GSM900	876 – 915 MHz	-98 dBm	-91 dBm	-70 dBm	100 kHz	
DCS1800	1710 – 1785 MHz	-98 dBm	-91 dBm	-80 dBm	100 kHz	
PCS1900	1850 – 1910 MHz	-98 dBm	-91 dBm	-80	100 kHz	
GSM850 or CDMA850	824 – 849 MHz	-98 dBm	-91 dBm	-70 dBm	100 kHz	
UTRA FDD Band I or E- UTRA Band 1 or NR Band n1	1920 – 1980 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
UTRA FDD Band II or E- UTRA Band 2 or NR Band n2	1850 – 1910 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
UTRA FDD Band III or E- UTRA Band 3 or NR Band n3	1710 – 1785 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
UTRA FDD Band IV or E- UTRA Band 4	1710 – 1755 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
UTRA FDD Band V or E- UTRA Band 5 or NR Band n5	824 – 849 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
UTRA FDD Band VI, XIX or E-UTRA Band 6, 19	830 – 845 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
UTRA FDD Band VII or E-UTRA Band 7 or NR Band n7	2500 – 2570 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
UTRA FDD Band VIII or E-UTRA Band 8 or NR Band n8	880 – 915 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
UTRA FDD Band IX or E- UTRA Band 9	1749.9 – 1784.9 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
UTRA FDD Band X or E- UTRA Band 10	1710 – 1770 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
UTRA FDD Band XI or E- UTRA Band 11	1427.9 –1447.9 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS operating in Band n50, n75, n91, n92, n93 or n94
UTRA FDD Band XII or E-UTRA Band 12 or NR Band n12	699 – 716 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
UTRA FDD Band XIII or E-UTRA Band 13	777 – 787 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
UTRA FDD Band XIV or E-UTRA Band 14 or NR Band n14	788 – 798 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
E-UTRA Band 17	704 – 716 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
E-UTRA Band 18 or NR Band n18	815 – 830 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
UTRA FDD Band XX or E-UTRA Band 20 or NR Band n20	832 – 862 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
UTRA FDD Band XXI or E-UTRA Band 21	1447.9 – 1462.9 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS operating in Band n50, n75, n92 or n94

UTRA FDD Band XXII or	3410 – 3490 MHz	-96	-91	-88	100 kHz	This is not
E-UTRA Band 22	3410 - 3490 MHZ	-96 dBm	dBm	dBm	100 KHZ	
E-UTRA Band 22		иын	иын	иын		applicable to BS
						operating in
						Band n48, n77 or n78
E-UTRA Band 23	2000 – 2020 MHz	-96	-91	-88	100 kHz	1170
L-OTTA Balla 25	2000 – 2020 IVII IZ	dBm	dBm	dBm	100 KI IZ	
E-UTRA Band 24	1626.5 – 1660.5 MHz	-96	-91	-88	100 kHz	
E-01RA Ballu 24	1626.5 – 1660.5 MHZ	dBm	dBm	dBm	100 KHZ	
UTRA FDD Band XXV or	1850 – 1915 MHz	-96	-91	-88	100 kHz	
E-UTRA Band 25 or NR	1650 - 1915 MHZ	dBm	dBm	dBm	100 KHZ	
Band n25		иын	иын	иын		
UTRA FDD Band XXVI or	814 – 849 MHz	-96	-91	-88	100 kHz	
E-UTRA Band 26 or NR	814 – 849 IVII IZ	dBm	dBm	dBm	100 KI IZ	
Band n26		ubili	UDIII	ubili		
E-UTRA Band 27	807 – 824 MHz	-96	-91	-88	100 kHz	
L-011XA Balld 21	007 - 024 IVII 12	dBm	dBm	dBm	100 KI IZ	
E-UTRA Band 28 or NR	703 – 748 MHz	-96	-91	-88	100 kHz	
Band n28	703 – 748 IVII IZ	dBm	dBm	dBm	100 KI IZ	
E-UTRA Band 30 or NR	2305 – 2315 MHz	-96	-91	-88	100 kHz	
Band n30	2303 – 2313 IVII 12	dBm	dBm	dBm	100 KI IZ	
E-UTRA Band 31	452.5 – 457.5 MHz	-96	-91	-88	100 kHz	
E-OTRA Ballu 31	432.5 – 437.3 WII IZ	dBm	dBm	dBm	100 KI IZ	
UTRA TDD Band a) or E-	1900 – 1920 MHz	-96	-91	-88	100 kHz	
UTRA Band 33	1900 – 1920 MHZ	dBm	dBm	dBm	100 KHZ	
UTRA TDD Band a) or E-	2010 – 2025 MHz	-96	-91	-88	100 kHz	This is not
UTRA IDD Band a) of E-	2010 – 2025 MHZ	-96 dBm	dBm	dBm	100 KHZ	
band n34 of NR		иын	иын	иын		applicable to BS
banu 1154						operating in Band n34
UTRA TDD Band b) or E-	1850 – 1910 MHz	-96	-91	-88	100 kHz	Danu 1134
UTRA Band 35	1830 – 1910 WILIZ	dBm	dBm	dBm	100 KI IZ	
UTRA TDD Band b) or E-	1930 – 1990 MHz	-96	-91	-88	100 kHz	This is not
UTRA Band 36	1930 – 1990 MHZ	dBm	dBm	dBm	100 KHZ	applicable to BS
OTRA Balla 30		ubili	UDIII	ubili		operating in
						Band n2 or band
						n25
UTRA TDD Band c) or E-	1910 – 1930 MHz	-96	-91	-88	100 kHz	1120
UTRA Band 37	1310 1330 1/11/2	dBm	dBm	dBm	100 KHZ	
UTRA TDD Band d) or E-	2570 – 2620 MHz	-96	-91	-88	100 kHz	This is not
UTRA Band 38 or NR	2070 2020 11112	dBm	dBm	dBm	100 1012	applicable to BS
Band n38		abiii	dBiii	uBiii		operating in
Bana neo						Band n38.
UTRA TDD Band f) or E-	1880 – 1920MHz	-96	-91	-88	100 kHz	This is not
UTRA Band 39 or NR		dBm	dBm	dBm		applicable to BS
band n39		42		<u></u>		operating in
bana noo						Band n39
UTRA TDD Band e) or E-	2300 – 2400MHz	-96	-91	-88	100 kHz	This is not
UTRA Band 40 or NR		dBm	dBm	dBm		applicable to BS
Band n40]			operating in
						Band n30 or n40.
E-UTRA Band 41 or NR	2496 – 2690 MHz	-96	-91	-88	100 kHz	This is not
Band n41, n90		dBm	dBm	dBm	-	applicable to BS
, ==						operating in
						Band n41, n53 or
						[n90]
E-UTRA Band 42	3400 – 3600 MHz	-96	-91	-88	100 kHz	This is not
		dBm	dBm	dBm		applicable to BS
						operating in
						Band n48, n77 or
						n78
E-UTRA Band 43	3600 – 3800 MHz	-96	-91	-88	100 kHz	This is not
		dBm	dBm	dBm		applicable to BS
						operating in
						Band n48, n77 or
						n78

		1	1			
E-UTRA Band 44	703 – 803 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS operating in
						Band n28
E-UTRA Band 45	1447 – 1467 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
E-UTRA Band 46	5150 – 5925 MHz	N/A	-91 dBm	-88 dBm	100 kHz	
E-UTRA Band 48 or NR Band n48	3550 – 3700 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS operating in Band n48, n77 or n78
E-UTRA Band 50 or NR Band n50	1432 – 1517 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS operating in Band n51, n74, n75, n91, n92, n93 or n94
E-UTRA Band 51 or NR Band n51	1427 – 1432 MHz	N/A	N/A	-88 dBm	100 kHz	This is not applicable to BS operating in Band n50, n74, n75, n76, n91, n92, n93 or n94
E-UTRA Band 53 or NR Band n53	2483.5 – 2495 MHz	N/A	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS operating in Band n41, n53 or n90
E-UTRA Band 65 or NR Band n65	1920 – 2010 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
E-UTRA Band 66 or NR Band n66	1710 – 1780 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
E-UTRA Band 68	698 – 728 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
E-UTRA Band 70 or NR Band n70	1695 – 1710 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
E-UTRA Band 71 or NR Band n71	663 – 698 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
E-UTRA Band 72	451 – 456 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
E-UTRA Band 74 or NR Band n74	1427 – 1470 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS operating in Band n50, n51, n91, n92, n93 or n94
NR Band n77	3.3 – 4.2 GHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS operating in Band n48, n77 or n78
NR Band n78	3.3 – 3.8 GHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	This is not applicable to BS operating in Band n48, n77 or n78
NR Band n79	4.4 – 5.0 GHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
NR Band n80	1710 – 1785 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
NR Band n81	880 – 915 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	
NR Band n82	832 – 862 MHz	-96 dBm	-91 dBm	-88 dBm	100 kHz	

NR Band n83	703 – 748 MHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		
NR Band n84	1920 – 1980 MHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		
E-UTRA Band 85	698 – 716 MHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		
NR Band n86	1710 – 1780 MHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		
NR Band n89	824 – 849 MHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		
NR Band n91	832 – 862 MHz	N/A	N/A	-88	100 kHz	
				dBm		
NR Band n92	832 – 862 MHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		
NR Band n93	880 – 915 MHz	N/A	N/A	-88	100 kHz	
				dBm		
NR Band n94	880 – 915 MHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		
NR Band n95	2010 – 2025 MHz	-96	-91	-88	100 kHz	
		dBm	dBm	dBm		

- NOTE 1: As defined in the scope for spurious emissions in this clause, the co-location requirements in table 6.6.5.2.4-1 do not apply for the frequency range extending Δf_{OBUE} immediately outside the BS transmit frequency range of a downlink *operating band* (see table 5.2-1). The current state-of-the-art technology does not allow a single generic solution for co-location with other system on adjacent frequencies for 30dB BS-BS minimum coupling loss. However, there are certain site-engineering solutions that can be used. These techniques are addressed in TR 25.942 [4].
- NOTE 2: Table 6.6.5.2.4-1 assumes that two *operating bands*, where the corresponding BS transmit and receive frequency ranges in table 5.2-1 would be overlapping, are not deployed in the same geographical area. For such a case of operation with overlapping frequency arrangements in the same geographical area, special co-location requirements may apply that are not covered by the 3GPP specifications.
- NOTE 3: Co-located TDD base stations that are synchronized and using the same or adjacent *operating band* can transmit without special co-locations requirements. For unsynchronized base stations, special co-location requirements may apply that are not covered by the 3GPP specifications.

6.6.5.3 Minimum requirements for BS type 1-C

The Tx spurious emissions for BS type 1-C for each antenna connector shall not exceed the basic limits specified in clause 6.6.5.2.

6.6.5.4 Minimum requirements for BS type 1-H

The Tx spurious emissions requirements for BS type 1-H are that for each TAB connector TX min cell group and each applicable basic limit in clause 6.6.5.2, the power summation emissions at the TAB connectors of the TAB connectors of the TAB connector TX min cell group shall not exceed a limit specified as the basic limit + X, where $X = 10\log_{10}(N_{TXU,countedpercell})$, unless stated differently in regional regulation.

NOTE: Conformance to the *BS type 1-H* spurious emission requirement can be demonstrated by meeting at least one of the following criteria as determined by the manufacturer:

1) The sum of the emissions power measured on each *TAB connector* in the *TAB connector TX min cell group* shall be less than or equal to the limit as defined in this clause for the respective frequency span.

Or

2) The unwanted emissions power at each *TAB connector* shall be less than or equal to the *BS type 1-H* limit as defined in this clause for the respective frequency span, scaled by $-10\log_{10}(n)$, where n is the number of *TAB connectors* in the *TAB connector TX min cell group*.

6.7 Transmitter intermodulation

6.7.1 General

The transmitter intermodulation requirement is a measure of the capability of the transmitter unit to inhibit the generation of signals in its non-linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter unit via the antenna, RDN and antenna array. The requirement shall apply during the *transmitter ON period* and the *transmitter transient period*.

For BS type 1-C, the transmitter intermodulation level is the power of the intermodulation products when an interfering signal is injected into the antenna connector.

For *BS type 1-H*, the transmitter intermodulation level is the power of the intermodulation products when an interfering signal is injected into the *TAB connector*.

For BS type 1-H, there are two types of transmitter intermodulation cases captured by the transmitter intermodulation requirement:

- 1) Co-location transmitter intermodulation in which the interfering signal is from a co-located base station.
- 2) Intra-system transmitter intermodulation in which the interfering signal is from other transmitter units within the *BS type 1-H*.

For BS type 1-H, the co-location transmitter intermodulation requirement is considered sufficient if the interference signal for the co-location requirement is higher than the declared interference signal for intra-system transmitter intermodulation requirement.

6.7.2 Minimum requirements for BS type 1-C

6.7.2.1 Co-location minimum requirements

For BS type 1-C, the wanted signal and interfering signal centre frequency is specified in table 6.7.2.1-1, where interfering signal level is Rated total output power ($P_{\text{rated,t,AC}}$) at antenna connector in the operating band – 30 dB.

The requirement is applicable outside the *Base Station RF Bandwidth* or *Radio Bandwidth*. The interfering signal offset is defined relative to the *Base Station RF Bandwidth edges* or *Radio Bandwidth* edges.

For a BS operating in *non-contiguous spectrum*, the requirement is also applicable inside a *sub-block gap* for interfering signal offsets where the interfering signal falls completely within the *sub-block gap*. The interfering signal offset is defined relative to the *sub-block* edges.

For a *multi-band connector*, the requirement shall apply relative to the *Base Station RF Bandwidth edges* of each supported *operating band*. In case the *Inter RF Bandwidth gap* is less than 3*BW_{Channel} (where BW_{Channel} is the minimal *BS channel bandwidth* of the band), the requirement in the gap shall apply only for interfering signal offsets where the interfering signal falls completely within the *Inter RF Bandwidth gap*.

The transmitter intermodulation level shall not exceed the unwanted emission limits in clauses 6.6.3, 6.6.4 and 6.6.5 in the presence of an NR interfering signal according to table 6.7.2.1-1.

Table 6.7.2.1-1: Interfering and wanted signals for the co-location transmitter intermodulation requirement

Parameter	Value
Wanted signal type	NR single carrier, or multi-carrier, or multiple intra-band contiguously or non-contiguously aggregated carriers, with NB-IoT operation in NR in-band if supported.
Interfering signal type	NR signal, the minimum <i>BS channel</i> bandwidth (BW _{Channel}) with 15 kHz SCS of the band defined in clause 5.3.5.
Interfering signal level	Rated total output power (P _{rated,t,AC}) in the operating band – 30 dB
Interfering signal centre frequency offset from the lower/upper edge of the wanted signal or edge of sub-block inside a sub-block gap	$f_{offset} = \pm BW_{Channel} \left(n - \frac{1}{2} \right)$, for n=1, 2 and 3
NOTE 1: Interfering signal positions that are partially or band of the base station are excluded from the positions fall within the frequency range of adjageographical area. In case that none of the int the frequency range of the downlink operating guidance regarding appropriate test requirement NOTE 2: In Japan, NOTE 1 is not applied in Band n77.	e requirement, unless the interfering signal acent downlink operating bands in the same erfering signal positions fall completely within band, TS 38.141-1 [5] provides further ents.

6.7.2.2 Additional requirements

No additional requirements.

6.7.3 Minimum requirements for BS type 1-H

6.7.3.1 Co-location minimum requirements

The transmitter intermodulation level shall not exceed the unwanted emission limits in clauses 6.6.3, 6.6.4 and 6.6.5 in the presence of an NR interfering signal according to table 6.7.3.1-1

The requirement is applicable outside the *Base Station RF Bandwidth edges*. The interfering signal offset is defined relative to the *Base Station RF Bandwidth edges* or *Radio Bandwidth* edges.

For *TAB connectors* supporting operation in *non-contiguous spectrum*, the requirement is also applicable inside a *sub-block gap* for interfering signal offsets where the interfering signal falls completely within the *sub-block gap*. The interfering signal offset is defined relative to the *sub-block* edges.

For *multi-band connector*, the requirement shall apply relative to the *Base Station RF Bandwidth edges* of each *operating band*. In case the *inter RF Bandwidth gap* is less than 3*BW_{Channel} (where BW_{Channel} is the minimal *BS channel bandwidth* of the band), the requirement in the gap shall apply only for interfering signal offsets where the interfering signal falls completely within the *inter RF Bandwidth gap*.

Table 6.7.3.1-1: Interfering and wanted signals for the co-location transmitter intermodulation requirement

Parameter	Value
Wanted signal type	NR single carrier, or multi-carrier, or multiple intra-band contiguously or non-contiguously aggregated carriers
Interfering signal type	NR signal, the minimum BS channel bandwidth (BW _{Channel}) with 15 kHz SCS of the band defined in clause 5.3.5.
Interfering signal level	Rated total output power per TAB connector (Prated,t,TABC) in the operating band – 30 dB
Interfering signal centre frequency offset from the lower/upper edge of the wanted signal or edge of <i>sub-block</i> inside a gap	$f_{offset} = \pm BW_{Channel} \left(n - \frac{1}{2} \right), \text{ for n=1, 2 and}$
NOTE 1: Interfering signal positions that are partially or operating band of the TAB connector are exclusionated interfering signal positions fall within the freque bands in the same geographical area. In case to positions fall completely within the frequency ra 38.141-1 [5] provides further guidance regardin NOTE 2: In Japan, NOTE 1 is not applied in Band n77, not seem to see the content of the table seem to see the content of table seem to see the content of the table seem to see the content of table seem to see the conten	ded from the requirement, unless the incy range of adjacent downlink operating that none of the interfering signal ange of the downlink operating band, TS ag appropriate test requirements.

6.7.3.2 Intra-system minimum requirements

The transmitter intermodulation level shall not exceed the unwanted emission limits in clauses 6.6.3 and 6.6.4 in the presence of an NR interfering signal according to table 6.7.3.2-1.

Table 6.7.3.2-1: Interfering and wanted signals for intra-system transmitter intermodulation requirement

Parameter	Value			
Wanted signal type	NR signal			
Interfering signal type	NR signal of the same BS channel bandwidth and SCS as the wanted signal (Note 1).			
Interfering signal level	Power level declared by the base station manufacturer (Note 2).			
Frequency offset between interfering signal and wanted signal	0 MHz			
NOTE 1: The interfering signal shall be incoherent with the				
IOTE 2: The declared interfering signal power level at each <i>TAB connector</i> is the sum of the cochannel leakage power coupled via the combined RDN and Antenna Array from all the other <i>TAB connectors</i> , but does not comprise power radiated from the Antenna Array and reflected back from the environment. The power at each of the interfering <i>TAB connectors</i>				

6.7.3.3 Additional requirements

is Prated,c,TABC.

No additional requirements.

7 Conducted receiver characteristics

7.1 General

Conducted receiver characteristics are specified at the *antenna connector* for *BS type 1-C* and at the *TAB connector* for *BS type 1-H*, with full complement of transceivers for the configuration in normal operating condition.

Unless otherwise stated, the following arrangements apply for conducted receiver characteristics requirements in clause 7:

- Requirements apply during the BS receive period.
- Requirements shall be met for any transmitter setting.
- For FDD operation the requirements shall be met with the transmitter unit(s) ON.
- Throughput requirements defined for the radiated receiver characteristics do not assume HARQ retransmissions.
- When BS is configured to receive multiple carriers, all the throughput requirements are applicable for each received carrier.
- For ACS, blocking and intermodulation characteristics, the negative offsets of the interfering signal apply relative to the lower *Base Station RF Bandwidth* edge or *sub-block* edge inside a *sub-block gap*, and the positive offsets of the interfering signal apply relative to the upper *Base Station RF Bandwidth* edge or *sub-block* edge inside a *sub-block gap*.
- Requirements shall also apply for BS supporting NB-IoT operation in NR in-band. The corresponding NB-IoT requirements are specified in TS 36.104 [13] clause 7.
- NOTE 1: In normal operating condition the BS in FDD operation is configured to transmit and receive at the same time.
- NOTE 2: In normal operating condition the BS in TDD operation is configured to TX OFF power during *receive period*.

7.2 Reference sensitivity level

7.2.1 General

The reference sensitivity power level P_{REFSENS} is the minimum mean power received at the *antenna connector* for *BS type 1-C* or *TAB connector* for *BS type 1-H* at which a throughput requirement shall be met for a specified reference measurement channel.

7.2.2 Minimum requirements for BS type 1-C and BS type 1-H

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channel as specified in annex A.1 with parameters specified in table 7.2.2-1 for Wide Area BS, in table 7.2.2-2 for Medium Range BS and in table 7.2.2-3 for Local Area BS.

The reference sensitivity level requirements for NB-IoT are specified in TS 36.104 [13] clause 7.2.

Table 7.2.2-1: NR Wide Area BS reference sensitivity levels

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	Reference sensitivity power level, PREFSENS (dBm)
E 40 4E	15	G-FR1-A1-1 (Note 1)	-101.7
5, 10, 15		G-FR1-A1-10 (Note 3)	-101.7 (Note 2)
10, 15	30	G-FR1-A1-2 (Note 1)	-101.8
10, 15	60	G-FR1-A1-3 (Note 1)	-98.9
20 25 20 40 50	15	G-FR1-A1-4 (Note 1)	-95.3
20, 25, 30, 40, 50		G-FR1-A1-11 (Note 4)	-95.3 (Note 2)
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	30	G-FR1-A1-5 (Note 1)	-95.6
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	60	G-FR1-A1-6 (Note 1)	-95.7

NOTE 1: Preference is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full BS channel bandwidth.

NOTE 2: The requirements apply to BS that supports NB-IoT operation in NR in-band.

NOTE 3: PREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for a single instance of G-FR1-A1-10 mapped to the 24 NR resource blocks adjacent to the NB-IoT PRB, and for each consecutive application of a single instance of G-FR1-A1-1 mapped to disjoint frequency ranges with a width of 25 resource blocks each.

NOTE 4: PREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for a single instance of G-FR1-A1-11 mapped to the 105 NR resource blocks adjacent to the NB-IoT PRB, and for each consecutive application of a single instance of G-FR1-A1-4 mapped to disjoint frequency ranges with a width of 106 resource blocks each.

Table 7.2.2-2: NR Medium Range BS reference sensitivity levels

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	Reference sensitivity power level, PREFSENS (dBm)
F 40 4F	15	G-FR1-A1-1 (Note 1)	-96.7
5, 10, 15		G-FR1-A1-10 (Note 3)	-96.7 (Note 2)
10, 15	30	G-FR1-A1-2 (Note 1)	-96.8
10, 15	60	G-FR1-A1-3 (Note 1)	-93.9
20 25 20 40 50	15	G-FR1-A1-4 (Note 1)	-90.3
20, 25, 30, 40, 50		G-FR1-A1-11 (Note 4)	-90.3 (Note 2)
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	30	G-FR1-A1-5 (Note 1)	-90.6
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	60	G-FR1-A1-6 (Note 1)	-90.7

NOTE 1: PREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full BS channel bandwidth.

NOTE 2: The requirements apply to BS that supports NB-IoT operation in NR in-band.

NOTE 3: PREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for a single instance of G-FR1-A1-10 mapped to the 24 NR resource blocks adjacent to the NB-IoT PRB, and for each consecutive application of a single instance of G-FR1-A1-1 mapped to disjoint frequency ranges with a width of 25 resource blocks each.

NOTE 4: PREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for a single instance of G-FR1-A1-11 mapped to the 105 NR resource blocks adjacent to the NB-IoT PRB, and for each consecutive application of a single instance of G-FR1-A1-4 mapped to disjoint frequency ranges with a width of 106 resource blocks each.

Table 7.2.2-3: NR Local Area BS reference sensitivity levels

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	Reference sensitivity power level, PREFSENS (dBm)
F 10 1F	45	G-FR1-A1-1 (Note 1)	-93.7
5, 10, 15	15	G-FR1-A1-10 (Note 3)	-93.7 (Note 2)
10, 15	30	G-FR1-A1-2 (Note 1)	-93.8
10, 15	60	G-FR1-A1-3 (Note 1)	-90.9
20 25 20 40 50	45	G-FR1-A1-4 (Note 1)	-87.3
20, 25, 30, 40, 50	15	G-FR1-A1-11 (Note 4)	-87.3 (Note 2)
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	30	G-FR1-A1-5 (Note 1)	-87.6
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	60	G-FR1-A1-6 (Note 1)	-87.7

- NOTE 1: PREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full BS channel bandwidth.
- NOTE 2: The requirements apply to BS that supports NB-IoT operation in NR in-band.
- NOTE 3: PREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for a single instance of G-FR1-A1-10 mapped to the 24 NR resource blocks adjacent to the NB-IoT PRB, and for each consecutive application of a single instance of G-FR1-A1-1 mapped to disjoint frequency ranges with a width of 25 resource blocks each.
- NOTE 4: PREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for a single instance of G-FR1-A1-11 mapped to the 105 NR resource blocks adjacent to the NB-IoT PRB, and for each consecutive application of a single instance of G-FR1-A1-4 mapped to disjoint frequency ranges with a width of 106 resource blocks each.

7.3 Dynamic range

7.3.1 General

The dynamic range is specified as a measure of the capability of the receiver to receive a wanted signal in the presence of an interfering signal at the *antenna connector* for *BS type 1-C* or *TAB connector* for *BS type 1-H* inside the received *BS channel bandwidth*. In this condition, a throughput requirement shall be met for a specified reference measurement channel. The interfering signal for the dynamic range requirement is an AWGN signal.

7.3.2 Minimum requirement for BS type 1-C and BS type 1-H

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel as specified in annex A.2 with parameters specified in table 7.3.2-1 for Wide Area BS, in table 7.3.2-2 for Medium Range BS and in table 7.3.2-3 for Local Area BS.

For NB-IoT operation in NR in-band, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel as specified in Annex A of TS 36.104 [13] with parameters specified in table 7.3.2-1a for Wide Area BS, in table 7.3.2-2a for Medium Range BS and in table 7.3.2-3a for Local Area BS.

Table 7.3.2-1: Wide Area BS dynamic range

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) / BW _{Config}	Type of interfering signal
, ,	15	G-FR1-A2-1	-70.7		ANACON
5	30	G-FR1-A2-2	-71.4	-82.5	AWGN
	15	G-FR1-A2-1	-70.7		
10	30	G-FR1-A2-2	-71.4	-79.3	AWGN
	60	G-FR1-A2-3	-68.4		
	15	G-FR1-A2-1	-70.7		
15	30	G-FR1-A2-2	-71.4	-77.5	AWGN
	60	G-FR1-A2-3	-68.4		
	15	G-FR1-A2-4	-64.5		
20	30	G-FR1-A2-5	-64.5	-76.2	AWGN
	60	G-FR1-A2-6	-64.8		
	15	G-FR1-A2-4	-64.5		
25	30	G-FR1-A2-5	-64.5	-75.2	AWGN
	60	G-FR1-A2-6	-64.8		
	15	G-FR1-A2-4	-64.5	-74.4	AWGN
30	30	G-FR1-A2-5	-64.5		
	60	G-FR1-A2-6	-64.8		
	15	G-FR1-A2-4	-64.5		
40	30	G-FR1-A2-5	-64.5	-73.1	AWGN
	60	G-FR1-A2-6	-64.8		
	15	G-FR1-A2-4	-64.5		
50	30	G-FR1-A2-5	-64.5	-72.1	AWGN
	60	G-FR1-A2-6	-64.8		
60	30	G-FR1-A2-5	-64.5	-71.3	AWGN
60	60	G-FR1-A2-6	-64.8	-71.3	AWGIN
70	30	G-FR1-A2-5	-64.5	-70.7	AWGN
70	60	G-FR1-A2-6	-64.8	-70.7	AWGN
80	30	G-FR1-A2-5	-64.5	-70.1	AWGN
00	60	G-FR1-A2-6	-64.8	-70.1	AWGN
00	30	G-FR1-A2-5	-64.5	60 F	AWGN
90	60	G-FR1-A2-6	-64.8	-69.5	AWGN
100	30	G-FR1-A2-5	-64.5	-69.1	AWGN
100	60	G-FR1-A2-6	-64.8	-09.1	AWGIN

NOTE: The wanted signal mean power is the power level of a single instance of the corresponding reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full BS channel bandwidth.

Table 7.3.2-1a: Wide Area BS dynamic range for NB-IoT operation in NR in-band

BS channel bandwidth (MHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) / BW _{Config}	Type of interfering signal
5			-82.5	
10			-79.3	
15	FDC 445 4 in		-77.5	
20	FRC A15-1 in Annex A.15 in TS 36.104 [13]	-99.7	-76.2	AWGN
25		-99.7	-75.2	AVVGIN
30		300.104 [10]	-74.4	
40			-73.1	
50		-72.1		
5			-82.5	
10			-79.3	
15	FRC A15-2 in		-77.5	
20		105.6	-76.2	AWGN
25	Annex A.15 in TS 36.104 [13]	-105.6	-75.2	AVVGIN
30			-74.4	
40			-73.1	
50			-72.1	

Table 7.3.2-2: Medium Range BS dynamic range

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) / BW _{Config}	Type of interfering signal
5	15	G-FR1-A2-1	-65.7	-77.5	AWGN
5	30	G-FR1-A2-2	-66.4	-11.5	7111011
	15	G-FR1-A2-1	-65.7		
10	30	G-FR1-A2-2	-66.4	-74.3	AWGN
	60	G-FR1-A2-3	-63.4		
	15	G-FR1-A2-1	-65.7		
15	30	G-FR1-A2-2	-66.4	-72.5	AWGN
	60	G-FR1-A2-3	-63.4		
	15	G-FR1-A2-4	-59.5		
20	30	G-FR1-A2-5	-59.5	-71.2	AWGN
	60	G-FR1-A2-6	-59.8		
	15	G-FR1-A2-4	-59.5		
25	30	G-FR1-A2-5	-59.5	-70.2	AWGN
	60	G-FR1-A2-6	-59.8		
	15	G-FR1-A2-4	-59.5		
30	30	G-FR1-A2-5	-59.5	-69.4	AWGN
	60	G-FR1-A2-6	-59.8		
	15	G-FR1-A2-4	-59.5		
40	30	G-FR1-A2-5	-59.5	-68.1	AWGN
	60	G-FR1-A2-6	-59.8		
	15	G-FR1-A2-4	-59.5		
50	30	G-FR1-A2-5	59.5	-67.1	AWGN
	60	G-FR1-A2-6	-59.8		
60	30	G-FR1-A2-5	-59.5	-66.3	AWGN
00	60	G-FR1-A2-6	-59.8	-00.3	AVVGIN
70	30	G-FR1-A2-5	-59.5	-65.7	AWGN
/0	60	G-FR1-A2-6	-59.8	-05.7	AVVGIN
80	30	G-FR1-A2-5	-59.5	-65.1	AWGN
60	60	G-FR1-A2-6	-59.8	-00.1	AVVGIN
90	30	G-FR1-A2-5	-59.5	64.5	AWGN
90	60	G-FR1-A2-6	-59.8	-64.5	AVVGN
100	30	G-FR1-A2-5	-59.5	-64.1	AWGN
100	60	G-FR1-A2-6	-59.8	-04.1	AVVGIN

NOTE: The wanted signal mean power is the power level of a single instance of the corresponding reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full BS channel bandwidth.

Table 7.3.2-2a: Medium Range BS dynamic range for NB-IoT operation in NR in-band

BS channel bandwidth (MHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) / BW _{Config}	Type of interfering signal
5			-77.5	
10			-74.3	
15	FDC 445 4 in		-72.5	
20	FRC A15-1 in Annex A.15 in	-94.7	-71.2	AWGN
25	TS 36.104 [13]	-94.7	-70.2	AWGN
30	13 30.104 [13]		-69.4	
40			-68.1	
50			-67.1	
5			-77.5	
10			-74.3	
15	FRC A15-2 in		-72.5	
20	Annex A.15 in	-100.6	-71.2	AWGN
25	TS 36.104 [13]	-100.6	-70.2	AWGN
30	13 30.104 [13]		-69.4	
40			-68.1	
50			-67.1	

Table 7.3.2-3: Local Area BS dynamic range

(MHz) channel power (dBm) p	oower (dBm) / BW _{Config}	interfering signal
5 15 G-FR1-A2-1 -62.7	-74.5	AWGN
30 G-FR1-A2-2 -63.4	-74.5	AWGN
15 G-FR1-A2-1 -62.7		
10 30 G-FR1-A2-2 -63.4	-71.3	AWGN
60 G-FR1-A2-3 -60.4		
15 G-FR1-A2-1 -62.7		
15 30 G-FR1-A2-2 -63.4	-69.5	AWGN
60 G-FR1-A2-3 -60.4		
15 G-FR1-A2-4 -56.5		
20 30 G-FR1-A2-5 -56.5	-68.2	AWGN
60 G-FR1-A2-6 -56.8		
15 G-FR1-A2-4 -56.5		
25 30 G-FR1-A2-5 -56.5	-67.2	AWGN
60 G-FR1-A2-6 -56.8		
15 G-FR1-A2-4 -56.5		
30 30 G-FR1-A2-5 -56.5	-66.4	AWGN
60 G-FR1-A2-6 -56.8		
15 G-FR1-A2-4 -56.5		
40 30 G-FR1-A2-5 -56.5	-65.1	AWGN
60 G-FR1-A2-6 -56.8		
15 G-FR1-A2-4 -56.5		
50 30 G-FR1-A2-5 -56.5	-64.1	AWGN
60 G-FR1-A2-6 -56.8		
GO 30 G-FR1-A2-5 -56.5	00.0	AWGN
60 G-FR1-A2-6 -56.8	-63.3	AWGN
70 30 G-FR1-A2-5 -56.5	-62.7	AWGN
70 60 G-FR1-A2-6 -56.8		AVVGIN
30 G-FR1-A2-5 -56.5	-62.1	AVA/CNI
80 60 G-FR1-A2-6 -56.8		AWGN
30 G-FR1-A2-5 -56.5	-61.5	AVA/CNI
90 60 G-FR1-A2-6 -56.8		AWGN
30 G-FR1-A2-5 -56-5	C4.4	AVA/CNI
100 60 G-FR1-A2-6 -56.8	-61.1	AWGN

NOTE: The wanted signal mean power is the power level of a single instance of the corresponding reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full BS channel bandwidth.

Reference Wanted Interfering Type of BS channel interfering measurement signal mean signal mean bandwidth channel power (dBm) power (dBm) / signal **BW**Config (MHz) -74.5 5 10 -71.3 15 -69.5 FRC A15-1 in 20 -68.2 **AWGN** Annex A.15 in -91.7 25 -67.2 TS 36.104 [13] 30 -66.4 40 -65.1 50 -64.1 -74.5 5 10 -71.3 15 -69.5 FRC A15-2 in 20 -68.2 Annex A.15 in -97.6 **AWGN** 25 -67.2 TS 36.104 [13] 30 -66.4 40 -65.1 50 -64.1

Table 7.3.2-3a: Local Area BS dynamic range for NB-IoT operation in NR in-band

7.4 In-band selectivity and blocking

7.4.1 Adjacent Channel Selectivity (ACS)

7.4.1.1 General

Adjacent channel selectivity (ACS) is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency at the *antenna connector* for *BS type 1-C* or *TAB connector* for *BS type 1-H* in the presence of an adjacent channel signal with a specified centre frequency offset of the interfering signal to the band edge of a victim system.

7.4.1.2 Minimum requirement for BS type 1-C and BS type 1-H

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel.

For BS, the wanted and the interfering signal coupled to the *BS type 1-C antenna connector* or *BS type 1-H TAB connector* are specified in table 7.4.1.2-1 and the frequency offset between the wanted and interfering signal in table 7.4.1.2-2 for ACS. The reference measurement channel for the wanted signal is identified in table 7.2.2-1, 7.2.2-2 and 7.2.2-3 for each *BS channel bandwidth* and further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D.

For BS supporting NB-IoT operation in NR in-band, the wanted and the interfering signal coupled to the *BS type 1-C* antenna connector are specified in table 7.4.1.2-1 and the frequency offset between the wanted and interfering signal in table 7.4.1.2-2 for ACS. The reference measurement channel for the NB-IoT wanted signal is identified in clause 7.2.1 of TS 36.104 [13]. The characteristics of the interfering signal is further specified in annex D.

The ACS requirement is applicable outside the *Base Station RF Bandwidth* or *Radio Bandwidth*. The interfering signal offset is defined relative to the *Base station RF Bandwidth* edges or *Radio Bandwidth* edges.

For a BS operating in *non-contiguous spectrum* within any *operating band*, the ACS requirement shall apply in addition inside any *sub-block gap*, in case the *sub-block gap size* is at least as wide as the NR interfering signal in table 7.4.1.2-2. The interfering signal offset is defined relative to the *sub-block* edges inside the *sub-block gap*.

For a *multi-band connector*, the ACS requirement shall apply in addition inside any *Inter RF Bandwidth gap*, in case the *Inter RF Bandwidth gap* size is at least as wide as the NR interfering signal in table 7.4.1.2-2. The interfering signal offset is defined relative to the *Base Station RF Bandwidth edges* inside the *Inter RF Bandwidth gap*.

Minimum conducted requirement is defined at the *antenna connector* for *BS type 1-C* and at the *TAB connector* for *BS type 1-H*.

Table 7.4.1.2-1: Base station ACS requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)
5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100 (Note 1)	Prefsens + 6 dB	Wide Area BS: -52 Medium Range BS: -47 Local Area BS: -44

NOTE 1: The SCS for the lowest/highest carrier received is the lowest SCS supported by the BS for that bandwidth.

NOTE 2: Prefixens depends on the RAT. For NR, Prefixens depends also on the BS channel bandwidth as specified in tables 7.2.2-1, 7.2.2-2, 7.2.2-3. For NB-IoT, Prefixens depends also on the sub-carrier spacing as specified in tables 7.2.1-5, 7.2.1-5a and 7.2.1-5c of TS 36.104 [13].

Table 7.4.1.2-2: Base Station ACS interferer frequency offset values

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub- block edge inside a sub- block gap (MHz)	Type of interfering signal
5	±2.5025	5 MHz DFT-s-OFDM NR
10	±2.5075	signal
15	±2.5125	15 kHz SCS, 25 RBs
20	±2.5025	15 KHZ 303, 25 KBS
25	±9.4675	
30	±9.4725	
40	±9.4675	
50	±9.4625	20 MHz DFT-s-OFDM NR
60	±9.4725	signal
70	±9.4675	15 kHz SCS, 100 RBs
80	±9.4625	
90	±9.4725	
100	±9.4675	

7.4.1.3 Void

7.4.1.4 Void

7.4.2 In-band blocking

7.4.2.1 General

The in-band blocking characteristics is a measure of the receiver's ability to receive a wanted signal at its assigned channel at the *antenna connector* for *BS type 1-C* or *TAB connector* for *BS type 1-H* in the presence of an unwanted interferer, which is an NR signal for general blocking or an NR signal with one resource block for narrowband blocking.

7.4.2.2 Minimum requirement for BS type 1-C and BS type 1-H

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to *BS type 1-C antenna connector* or *BS type 1-H TAB connector* using the parameters in tables 7.4.2.2-1, 7.4.2.2-2 and 7.4.2.2-3 for general blocking and narrowband blocking requirements. The reference measurement channel for the wanted signal is identified in clause 7.2.2 for each *BS channel bandwidth* and further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D.

For NB-IoT operation in NR in-band, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to *BS type 1-C antenna connector* using the parameters in tables 7.4.2.2-1, 7.4.2.2-2a and 7.4.2.2-3 for general blocking and narrowband blocking requirements. The reference measurement channel for the NB-IoT wanted signal is identified in clause 7.2.1 of TS 36.104 [13]. The characteristics of the interfering signal is further specified in annex D.

The in-band blocking requirements apply outside the *Base Station RF Bandwidth* or *Radio Bandwidth*. The interfering signal offset is defined relative to the *Base Station RF Bandwidth edges* or *Radio Bandwidth* edges.

The in-band blocking requirement shall apply from $F_{UL,low}$ - Δf_{OOB} to $F_{UL,high}$ + Δf_{OOB} , excluding the downlink frequency range of the FDD *operating band*. The Δf_{OOB} for *BS type 1-C* and *BS type 1-H* is defined in table 7.4.2.2-0.

Minimum conducted requirement is defined at the *antenna connector* for *BS type 1-C* and at the *TAB connector* for *BS type 1-H*.

BS type	Operating band characteristics	Δfoob (MHz)
BS type 1-C	F _{UL,high} - F _{UL,low} ≤ 200 MHz	20
BS type 1-C	200 MHz < F _{UL,high} − F _{UL,low} ≤ 900 MHz	60
BS type 1-H	Ful,high - Ful,low < 100 MHz	20
bs type 1-n	$100 \text{ MHz} \le F_{UL,high} - F_{UL,low} \le 900 \text{ MHz}$	60

Table 7.4.2.2-0: Δf_{OOB} offset for NR operating bands

For a BS operating in *non-contiguous spectrum* within any *operating band*, the in-band blocking requirements apply in addition inside any *sub-block gap*, in case the *sub-block gap* size is at least as wide as twice the interfering signal minimum offset in tables 7.4.2.2-1. The interfering signal offset is defined relative to the *sub-block* edges inside the *sub-block gap*.

For a *multi-band connector*, the blocking requirements apply in the in-band blocking frequency ranges for each supported *operating band*. The requirement shall apply in addition inside any *Inter RF Bandwidth gap*, in case the *Inter RF Bandwidth gap* size is at least as wide as twice the interfering signal minimum offset in tables 7.4.2.2-1.

For a BS operating in *non-contiguous spectrum* within any *operating band*, the narrowband blocking requirement shall apply in addition inside any *sub-block gap*, in case the *sub-block gap size* is at least as wide as the *channel bandwidth* of the NR interfering signal in Table 7.4.2.2-3. The interfering signal offset is defined relative to the *sub-block* edges inside the *sub-block gap*.

For a *multi-band connector*, the narrowband blocking requirement shall apply in addition inside any *Inter RF Bandwidth gap*, in case the *Inter RF Bandwidth gap* size is at least as wide as the NR interfering signal in Table 7.4.2.2-3. The interfering signal offset is defined relative to the *Base Station RF Bandwidth* edges inside the *Inter RF Bandwidth gap*.

Table 7.4.2.2-1: Base station general blocking requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Interfering signal centre frequency minimum offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap (MHz)	Type of interfering signal
5, 10, 15, 20	Prefsens + 6 dB	Wide Area BS: -43 Medium Range BS: -38 Local Area BS: -35	±7.5	5 MHz DFT-s-OFDM NR signal 15 kHz SCS, 25 RBs
25, 30, 40, 50, 60, 70, 80, 90, 100	Prefsens + 6 dB	Wide Area BS: -43 Medium Range BS: -38 Local Area BS: -35	±30	20 MHz DFT-s-OFDM NR signal 15 kHz SCS, 100 RBs
		NR, Prefsens depends als		·

NOTE: Prefsens depends on the RAT. For NR, Prefsens depends also on the BS channel bandwidth as specified in tables 7.2.2-1, 7.2.2-2 and 7.2.2-3. For NB-IoT, Prefsens depends also on the sub-carrier spacing as specified in tables 7.2.1-5, 7.2.1-5a and 7.2.1-5c of TS 36.104 [13].

Table 7.4.2.2-2: Base Station narrowband blocking requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)
5, 10, 15, 20, 25, 30,	P _{REFSENS} + 6 dB	Wide Area BS: -49
40, 50, 60, 70,		Medium Range BS: -44
80,90, 100 (Note 1)		Local Area BS: -41
NOTE 1: The SCS for the lowest/highest carrier received is the		
lowest SCS supported by the BS for that BS channel bandwidth		
NOTE 2: P _{REFSENS} depends on the <i>BS channel bandwidth</i> as specified in tables 7.2.2-1, 7.2.2-2 and 7.2.2-3.		
NOTE 3: 7.5 kHz shift is not applied to the wanted signal.		

Table 7.4.2.2-2a: Base Station narrowband blocking requirement for NB-IoT operation in NR in-band

	hannel dth (MHz)	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)
5, 10, 15,	20, 25, 30,	Prefsens + x dB	Wide Area: -49
40	, 50	(Note 2)	Medium Range: -44
			Local Area: -41
NOTE 1:	Prefsens de	pends on the sub-car	rrier spacing as
specified in tables 7.2.1-5, 7		tables 7.2.1-5, 7.2.1-	5a and 7.2.1-5c of TS
	36.104 [13].		
NOTE 2: "x" is equal to		to 8 in case of 5 MHz	channel bandwidth
	and equal to	o 6 otherwise.	

Table 7.4.2.2-3: Base Station narrowband blocking interferer frequency offsets

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering RB centre frequency offset to the lower/upper Base Station RF Bandwidth edge or sub- block edge inside a sub- block gap (kHz) (Note 2)	Type of interfering signal
5	±(350+m*180),	5 MHz DFT-s-OFDM NR
	m=0, 1, 2, 3, 4, 9, 14, 19, 24	signal, 15 kHz SCS, 1 RB
10	±(355+m*180),	
	m=0, 1, 2, 3, 4, 9, 14, 19, 24	
15	±(360+m*180),	
	m=0, 1, 2, 3, 4, 9, 14, 19, 24	
20	±(350+m*180),	
	m=0, 1, 2, 3, 4, 9, 14, 19, 24	
25	±(565+m*180),	20 MHz DFT-s-OFDM NR
	m=0, 1, 2, 3, 4, 29, 54, 79, 99	signal, 15 kHz SCS, 1 RB
30	±(570+m*180),	
	m=0, 1, 2, 3, 4, 29, 54, 79, 99	
40	±(565+m*180),	
	m=0, 1, 2, 3, 4, 29, 54, 79, 99	
50	±(560+m*180),	
	m=0, 1, 2, 3, 4, 29, 54, 79, 99	
60	±(570+m*180),	
	m=0, 1, 2, 3, 4, 29, 54, 79, 99	
70	±(565+m*180),	
	m=0, 1, 2, 3, 4, 29, 54, 79, 99	
80	±(560+m*180),	
	m=0, 1, 2, 3, 4, 29, 54, 79, 99	
90	±(570+m*180),	
	m=0, 1, 2, 3, 4, 29, 54, 79, 99	
100	±(565+m*180),	
	m=0, 1, 2, 3, 4, 29, 54, 79, 99	

NOTE 1: Interfering signal consisting of one resource block positioned at the stated offset, the *channel bandwidth* of the interfering signal is located adjacently to the lower/upper *Base Station RF Bandwidth edge* or *subblock* edge inside a *sub-block gap*.

NOTE 2: The centre of the interfering RB refers to the frequency location between the two central subcarriers.

7.4.2.3 Void

7.4.2.4 Void

7.5 Out-of-band blocking

7.5.1 General

The out-of-band blocking characteristics is a measure of the receiver ability to receive a wanted signal at its assigned channel at the *antenna connector* for *BS type 1-C* or *TAB connector* for *BS type 1-H* in the presence of an unwanted interferer out of the *operating band*, which is a CW signal for out-of-band blocking.

7.5.2 Minimum requirement for BS type 1-C and BS type 1-H

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to *BS type 1-C antenna connector* or *BS type 1-H TAB connector* using the parameters in table 7.5.2-1. The reference measurement channel for the wanted signal is identified in clause 7.2.2 for each *BS channel*

bandwidth and further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D.

For NB-IoT operation in NR in-band, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to *BS type 1-C antenna connector* using the parameters in table 7.5.2-1. The reference measurement channel for the NB-IoT wanted signal is identified in clause 7.2.1 of TS 36.104 [13].

The out-of-band blocking requirement apply from 1 MHz to $F_{UL,low}$ - Δf_{OOB} and from $F_{UL,high}$ + Δf_{OOB} up to 12750 MHz, including the downlink frequency range of the FDD *operating band* for BS supporting FDD. The Δf_{OOB} for BS type 1-C and BS type 1-H is defined in table 7.4.2.2-0.

Minimum conducted requirement is defined at the *antenna connector* for *BS type 1-C* and at the *TAB connector* for *BS type 1-H*.

For a *multi-band connector*, the requirement in the out-of-band blocking frequency ranges apply for each *operating band*, with the exception that the in-band blocking frequency ranges of all supported *operating bands* according to clause 7.4.2.2 shall be excluded from the out-of-band blocking requirement.

Table 7.5.2-1: Out-of-band blocking performance requirement for NR

Wanted Signal	Interfering	Type of Interfering	
mean power	Signal mean	Signal	
(dBm)	power (dBm)		
Prefsens +6 dB	-15	CW carrier	
(Note)			
depen	ds also on the BS ch		
		7.2.2-2, and 7.2.2-3. For also on the <i>sub-carrier</i>	
	g as specified in table of TS 36.104 [13].	es 7.2.1-5, 7.2.1-5a and	
	B-IoT, up to 24 excep		
spurious response frequencies in each wante			
	frequency when measured using a 1MHz step size. For these exceptions the above throughput		
	•		
	requirement shall be met when the blocking signal is set to a level of -40 dBm for 15 kHz subcarrier		
	spacing and -46 dBm for 3.75 kHz subcarrier		
	spacing and 40 dbm for 3.75 km2 subcarrier spacing. In addition, each group of exceptions shall		
	not exceed three contiguous measurements usin		
	step size.		

7.5.3 Co-location minimum requirements for BS type 1-C and BS type 1-H

This additional blocking requirement may be applied for the protection of NR BS receivers when GSM, CDMA, UTRA, E-UTRA or NR BS operating in a different frequency band are co-located with a NR BS. The requirement is applicable to all *BS channel bandwidths* supported by the NR BS.

The requirements in this clause assume a 30 dB coupling loss between interfering transmitter and NR BS receiver and are based on co-location with base stations of the same class.

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to *BS type 1-C antenna connector* or *BS type 1-H TAB connector* input using the parameters in table 7.5.3-1 for all the BS classes. The reference measurement channel for the wanted signal is identified in tables 7.2.2-1, 7.2.2-2 and 7.2.2-3 for each *BS channel bandwidth* and further specified in annex A.1.

The blocking requirement for co-location with BS in other bands is applied for all *operating bands* for which co-location protection is provided.

Minimum conducted requirement is defined at the *antenna connector* for *BS type 1-C* and at the *TAB connector* for *BS type 1-H*.

Table 7.5.3-1: Blocking performance requirement for NR BS when co-located with BS in other frequency bands.

Frequency range of interfering signal	Wanted signal mean power for WA BS (dBm)	Interfering signal mean power for WA BS (dBm)	Interfering signal mean power for MR BS (dBm)	Interfering signal mean power for LA BS (dBm)	Type of interfering signal
Frequency range of co-located downlink operating band	Prefsens +6dB (Note 1)	+16	+8	x (Note 2)	CW carrier

NOTE 1: Prefsens depends on the BS channel bandwidth as specified in Table 7.2.2-1, 7.2.2-2, and 7.2.2-3.

NOTE 2: x = -7 dBm for NR BS co-located with Pico GSM850 or Pico CDMA850

x = -4 dBm for NR BS co-located with Pico DCS1800 or Pico PCS1900 x = -6 dBm for NR BS co-located with UTRA bands or E-UTRA bands or NR bands

NOTE 3: The requirement does not apply when the interfering signal falls within any of the supported uplink operating

band(s) or in Δf_{OOB} immediately outside any of the supported uplink operating band(s).

7.5.4 Void

7.6 Receiver spurious emissions

7.6.1 General

The receiver spurious emissions power is the power of emissions generated or amplified in a receiver unit that appear at the *antenna connector* (for *BS type 1-C*) or at the *TAB connector* (for *BS type 1-H*). The requirements apply to all BS with separate RX and TX *antenna connectors* / *TAB connectors*.

NOTE: In this case for FDD operation the test is performed when both TX and RX are ON, with the TX *antenna connectors / TAB connectors* terminated.

For antenna connectors / TAB connectors supporting both RX and TX in TDD, the requirements apply during the transmitter OFF period. For antenna connectors / TAB connectors supporting both RX and TX in FDD, the RX spurious emissions requirements are superseded by the TX spurious emissions requirements, as specified in clause 6.6.5.

For RX-only *multi-band connectors*, the spurious emissions requirements are subject to exclusion zones in each supported *operating band*. For *multi-band connectors* that both transmit and receive in *operating band* supporting TDD, RX spurious emissions requirements are applicable during the *TX OFF period*, and are subject to exclusion zones in each supported *operating band*.

For BS type 1-H manufacturer shall declare TAB connector RX min cell groups. Every TAB connector of BS type 1-H supporting reception in an operating band shall map to one TAB connector RX min cell group, where mapping of TAB connectors to cells/beams is implementation dependent.

The number of active receiver units that are considered when calculating the conducted RX spurious emission limits ($N_{RXU,counted}$) for BS type 1-H is calculated as follows:

 $N_{RXU,counted} = min(N_{RXU,active}, 8 \times N_{cells})$

 $N_{RXU,countedpercell}$ is used for scaling of *basic limits* and is derived as $N_{RXU,countedpercell} = N_{RXU,counted} / N_{cells}$, where N_{cells} is defined in clause 6.1.

NOTE: N_{RXU, active} is the number of actually active receiver units and is independent to the declaration of N_{cells}.

7.6.2 Basic limits

The receiver spurious emissions basic limits are provided in table 7.6.2-1.

Table 7.6.2-1: General BS receiver spurious emissions limits

Spurious frequency range	Basic limits	Measurement bandwidth	Note
30 MHz – 1 GHz	-57 dBm	100 kHz	Note 1
1 GHz – 12.75 GHz	-47 dBm	1 MHz	Note 1, Note 2
12.75 GHz – 5 th harmonic of the upper frequency edge of the UL <i>operating band</i> in GHz	-47 dBm	1 MHz	Note 1, Note 2, Note 3
NOTE 1: Measurement bandwidths as in ITU-R SM.329 [2], s4.1. NOTE 2: Upper frequency as in ITU-R SM.329 [2], s2.5 table 1. NOTE 3: This spurious frequency range applies only for operating bands for which the 5 th harmonic of the upper frequency edge of the UL operating band is reaching beyond 12.75 GHz. NOTE 4: The frequency range from Δf _{OBUE} below the lowest frequency of the BS transmitter operating band to Δf _{OBUE} above the highest frequency of the BS transmitter operating band may be excluded from			

the requirement. Δfo_{BUE} is defined in clause 6.6.1. For *multi-band connectors*, the exclusion

7.6.3 Minimum requirement for BS type 1-C

applies for all supported operating bands.

The RX spurious emissions requirements for BS type 1-C are that for each antenna connector, the power of emissions shall not exceed basic limits specified in table 7.6.2-1.

The Rx spurious emissions requirements shall apply to BS that support NR or NR with NB-IoT operation in NR inband.

7.6.4 Minimum requirement for BS type 1-H

The RX spurious emissions requirements for BS type 1-H are that for each applicable basic limit specified in table 7.6.2-1 for each TAB connector RX min cell group, the power sum of emissions at respective TAB connectors shall not exceed the BS limits specified as the basic limits + X, where $X = 10\log_{10}(N_{RXU,countedpercell})$, unless stated differently in regional regulation.

The RX spurious emission requirements are applied per the *TAB connector RX min cell group* for all the configurations supported by the BS.

NOTE: Conformance to the BS receiver spurious emissions requirement can be demonstrated by meeting at least one of the following criteria as determined by the manufacturer:

1) The sum of the spurious emissions power measured on each *TAB connector* in the *TAB connector RX min cell group* shall be less than or equal to the BS limit above for the respective frequency span.

Or

2) The spurious emissions power at each TAB connector shall be less than or equal to the BS limit as defined above for the respective frequency span, scaled by $-10\log_{10}(n)$, where n is the number of TAB connectors in the TAB connector RX min cell group.

7.7 Receiver intermodulation

7.7.1 General

Third and higher order mixing of the two interfering RF signals can produce an interfering signal in the band of the desired channel. Intermodulation response rejection is a measure of the capability of the receiver to receive a wanted signal on its assigned channel frequency at the *antenna connector* for *BS type 1-C* or *TAB connector* for *BS type 1-H* in the presence of two interfering signals which have a specific frequency relationship to the wanted signal.

7.7.2 Minimum requirement for BS type 1-C and BS type 1-H

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel, with a wanted signal at the assigned channel frequency and two interfering signals coupled to the *BS type 1-C antenna connector* or *BS type 1-H TAB connector*, with the conditions specified in tables 7.7.2-1 and 7.7.2-2 for intermodulation performance and in tables 7.7.2-3, and 7.7.2-4 for narrowband intermodulation performance. The reference measurement channel for the wanted signal is identified in tables 7.2.2-1, 7.2.2-2 and 7.2.2-3 for each *BS channel bandwidth* and further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D.

For NB-IoT operation in NR in-band, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with a wanted signal at the assigned channel frequency and two interfering signals coupled to the *BS type 1-C antenna connector*, with the conditions specified in tables 7.7.2-1 and 7.7.2-2 for intermodulation performance and in tables 7.7.2-3, and 7.7.2-4 for narrowband intermodulation performance. The reference measurement channel for the NB-IoT wanted signal is identified in clause 7.2.1 of TS 36.104 [13]. The characteristics of the interfering signal is further specified in annex D.

The subcarrier spacing for the modulated interfering signal shall in general be the same as the subcarrier spacing for the wanted signal, except for the case of wanted signal subcarrier spacing 60 kHz and *BS channel bandwidth* <=20MHz, for which the subcarrier spacing of the interfering signal shall be 30 kHz.

The receiver intermodulation requirement is applicable outside the *Base Station RF Bandwidth* or *Radio Bandwidth edges*. The interfering signal offset is defined relative to the *Base Station RF Bandwidth edges* or *Radio Bandwidth* edges.

For a BS operating in *non-contiguous spectrum* within any *operating band*, the narrowband intermodulation requirement shall apply in addition inside any *sub-block gap* in case the *sub-block gap* is at least as wide as the *channel bandwidth* of the NR interfering signal in table 7.7.2-2 or 7.7.2-4. The interfering signal offset is defined relative to the *sub-block* edges inside the *sub-block gap*.

For a *multi-band connector*, the intermodulation requirement shall apply in addition inside any *Inter RF Bandwidth gap*, in case the gap size is at least twice as wide as the NR interfering signal centre frequency offset from the *Base Station RF Bandwidth edge*.

For a *multi-band connector*, the narrowband intermodulation requirement shall apply in addition inside any *Inter RF Bandwidth gap* in case the gap size is at least as wide as the NR interfering signal in tables 7.7.2-2 and 7.7.2-4. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges inside the *Inter RF Bandwidth gap*.

Table 7.7.2-1: General intermodulation requirement

Base Station Type	Wanted Signal mean power (dBm)	Mean power of interfering signals (dBm)	Type of interfering signals
Wide Area BS	Prefsens +6 dB	-52	
Medium Range BS	P _{REFSENS} +6 dB	-47	See Table 7.7.2-2
Local Area BS	P _{REFSENS} +6 dB	-44	

NOTE 1: Prefsens depends on the RAT and the BS class. For NR, Prefsens depends also on the BS channel bandwidth, see clause 7.2. For NB-IoT, Prefsens depends also on the sub-carrier spacing as specified in tables 7.2.1-5, 7.2.1-5a and 7.2.1-5c of TS 36.104 [13].

Table 7.7.2-2: Interfering signals for intermodulation requirement

±7.5 CW	
5 ±17.5 5 MHz DFT-s-OFD signal (Note 1)	
±7.465 CW	
10 ±17.5 5 MHz DFT-s-OFD signal (Note 1)	
±7.43 CW	
15 ±17.5 5 MHz DFT-s-OFD signal (Note 1)	
±7.395 CW	
20 ±17.5 5 MHz DFT-s-OFD signal (Note 1)	
±7.465 CW	
25 ±25 20MHz DFT-s-OFD signal (Note 2)	
±7.43 CW	
30 ±25 20 MHz DFT-s-OFD signal (Note 2	
±7.45 CW	
40 ±25 20 MHz DFT-s-OFD signal (Note 2)	
±7.35 CW	
50 ±25 20 MHz DFT-s-OFD signal (Note 2)	
±7.49 CW	
60 ±25 20 MHz DFT-s-OFD signal (Note 2	
±7.42 CW	
70 ±25 20 MHz DFT-s-OFD signal (Note 2)	
±7.44 CW	
80 ±25 20 MHz DFT-s-OFD signal (Note 2)	
±7.46 CW	
90 ±25 20 MHz DFT-s-OFD signal (Note 2)	
±7.48 CW	
100 ±25 20 MHz DFT-s-OFD signal (Note 2)	

NOTE 1: Number of RBs is 25 for 15 kHz subcarrier spacing and 10 for 30 kHz subcarrier spacing.

NOTE 2: Number of RBs is 100 for 15 kHz subcarrier spacing, 50 for 30 kHz subcarrier spacing and 24 for 60 kHz subcarrier spacing.

NOTE 3: The RBs shall be placed adjacent to the transmission bandwidth configuration edge which is closer to the Base Station RF Bandwidth edge.

Table 7.7.2-3: Narrowband intermodulation performance requirement in FR1

BS type	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signals
Wide Area BS	Prefsens + 6dB (Note 1)	-52	
Medium Range BS	Prefsens + 6dB (Note 2)	-47	See Table 7.7.2-4
Local Area BS	Prefsens + 6dB (Note 3)	-44	

- NOTE 1: Prefsens depends on the RAT.
 - For NR, Preference depends also on the *BS channel bandwidth* as specified in table 7.2.2-1. For NB-IoT, Preference depends also on the *sub-carrier spacing* as specified in tables 7.2.1-5 of TS 36.104 [13].
- NOTE 2: Prefsens depends on the RAT.
 For NR, Prefsens depends also on the BS channel bandwidth as specified in table 7.2.2-2.
 For NB-IoT, Prefsens depends also on the sub-carrier spacing as specified in tables 7.2.1-5c of TS 36.104 [13].
- NOTE 3: Prefsens depends on the RAT.
 For NR, Prefsens depends also on the BS channel bandwidth as specified in table 7.2.2-3.
 For NB-IoT, Prefsens depends also on the sub-carrier spacing as specified in tables 7.2.1-5a of TS 36.104 [13].
- NOTE 4: For NB-IoT, the requirement shall apply only for a FRC A1-3 of TS 36.104 [13] mapped to the frequency range at the channel edge adjacent to the interfering signals.
- NOTE 5: For NB-IoT, the frequency offset shall be adjusted to accommodate the IMD product to fall in the NB-IoT RB for NB-IoT operation in NR in-band.
- NOTE 6: For NB-IoT, if a BS RF receiver fails the test of the requirement, the test shall be performed with the CW interfering signal frequency shifted away from the wanted signal by 180 kHz and the NR interfering signal frequency shifted away from the wanted signal by 360 kHz. If the BS RF receiver still fails the test after the frequency shift, then the BS RF receiver shall be deemed to fail the requirement.

Table 7.7.2-4: Interfering signals for narrowband intermodulation requirement in FR1

Centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap (kHz) (Note 3) ±360 ±1420 ±370 CW ±1960 ±1960 ±1960 ±1960 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±380 CW ±1960 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±380 CW ±1960 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±390 CW ±1960 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±325 CW ±2320 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±325 CW ±2350 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±335 CW ±2350 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±355 CW ±2710 ±375 CW ±2710 ±375 CW ±2710 ±375 CW ±2710 ±395 CW ±2710 ±435 CW ±2710 ±435 CW ±2710 ±435 CW ±2710 ±365 CW ±2710 ±2710 ±2710 ±2710 ±2710 ±2710 ±2710 ±2710 ±		Interfering RB			
the lowest/highest carrier received (MHz) 5 10 10 10 10 10 10 10 10 10	BS channel		Type of interfering signal		
Dowest/highest carrier received (MHz) Station RF Bandwidth edge or sub-block edge inside a sub-block gap (kHz) (Note 3) ±360 CW	bandwidth of	offset from the			
carrier received (MHz) Bandwidth edge or sub-block edge inside a sub-block gap (kHz) (Note 3) 5 ±360 CW ±1420 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±370 CW 10 ±1960 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±380 CW 15 (Note 2) ±1960 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 (Note 2) ±2320 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 25 (Note 2) ±2320 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 25 (Note 2) ±2350 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 30 (Note 2) ±2350 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 40 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 50 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 4395 CW 60 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±395 CW 60 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±435 CW 80 (Note 2) ±2710 20 MHz DFT-s-OFDM	the	lower/upper <i>Base</i>			
received (MHz) sub-block edge inside a sub-block gap (kHz) (Note 3) \$\pmath{\p	lowest/highest	Station RF			
MHz inside a sub-block gap (kHz) (Note 3) ±360	carrier	Bandwidth edge or			
Sap (kHz) (Note 3)	received	sub-block edge			
5 ±360 CW ±1420 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±370 CW 10 ±1960 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±380 CW 15 (Note 2) ±1960 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 (Note 2) ±390 CW 20 (Note 2) ±2320 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 25 (Note 2) ±2350 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 30 (Note 2) ±2350 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 40 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 50 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 60 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 70 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 80 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 (Note 2) ±2530 20 MHz DFT-s-OFDM	(MHz)	inside a sub-block			
5 ±1420 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 10 ±370 CW 10 ±1960 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 (Note 2) ±380 CW 20 (Note 2) ±1960 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 (Note 2) ±2320 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 25 (Note 2) ±2350 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 30 (Note 2) ±2350 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 40 (Note 2) ±2350 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 50 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 50 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 60 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 70 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 80 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 80 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 80 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 (Note 2) ±2530		gap (kHz) (Note 3)			
#1420 signal, 1 RB (Note 1) #370 CW #1960 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #380 CW #1960 5 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #380 CW #380 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #385 CW #380 CW #380 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #380 CW #380 CW #380 (Note 2) #380 CW #38		±360			
### ### ##############################	5	±1420			
10		±370			
### ##################################	10				
15 (Note 2)		±380			
\$\pmath{	15 (Note 2)		_		
#390 CW #2320 \$ MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #325 CW #2350 #2350 #20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #335 CW #335 CW #336 CW #337 CW #337 CW #338 CW #338 CW #339 CW #339 CW #339 CW #340 (Note 2) #350 #20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #355 CW #355 CW #350 CW #355 CW	,	±1960			
±2320		+390			
\$\frac{\pmatrix}{\pmatrix}\$ signal, 1 RB (Note 1)	20 (Note 2)		5 MHz DFT-s-OFDM NR		
#325	20 (11010 2)	±2320			
25 (Note 2) ±2350 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)		+325	, , ,		
\$\frac{\pmatrix}{\pmatrix}\$ \text{signal, 1 RB (Note 1)} \\ \$\frac{\pmatrix}{\pmatrix}\$ \text{335} \\ \$\frac{\pmatrix}{\pmatrix}\$ \text{signal, 1 RB (Note 1)} \\ \$\frac{\pmatrix}	25 (Note 2)	1020			
±335 CW 30 (Note 2) ±2350 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 40 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±375 CW 50 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±395 CW 60 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) CW 70 (Note 2) ±415 CW 70 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±435 CW 80 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±365 CW 90 (Note 2) ±2530 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±385 CW 100 (Note 2) ±385 CW 100 (Note 2) ±2520 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±385 CW 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±385 CW 20 MHz DFT-s-OFDM NR Signal, 1 RB (Note 1) ±385 CW 20 MHz DFT-s-OFDM NR Signal, 1 RB (Note 1) ±385 CW 20 MHz DFT-s-OFDM NR 50 (Note 2) ±2520 20 MHz DFT-s-OFDM NR 50 (Note 2) ±2520 20 MHz DFT-s-OFDM NR	20 (14010 2)	±2350			
\$\delta_{2350}		+335			
±2350 signal, 1 RB (Note 1) ±355 CW 40 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±375 CW 50 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±395 CW 60 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) CW 70 (Note 2) ±415 CW 70 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±435 CW 80 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±365 CW 90 (Note 2) ±2530 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±385 CW 100 (Note 2) ±385 CW 100 (Note 2) ±2520 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±385 CW 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±385 CW 20 MHz DFT-s-OFDM NR Signal, 1 RB (Note 1) ±385 CW 20 MHz DFT-s-OFDM NR 50 (Note 2) ±2520 20 MHz DFT-s-OFDM NR 50 (Note 2) ±2520 20 MHz DFT-s-OFDM NR	30 (Note 2)				
#355 CW #2710 20 MHz DFT-s-OFDM NR #375 CW 50 (Note 2) ±2710 20 MHz DFT-s-OFDM NR #395 CW 60 (Note 2) ±2710 20 MHz DFT-s-OFDM NR #395 Signal, 1 RB (Note 1) #415 CW 70 (Note 2) ±2710 20 MHz DFT-s-OFDM NR #31981, 1 RB (Note 1) #415 CW 70 (Note 2) ±2710 20 MHz DFT-s-OFDM NR #31981, 1 RB (Note 1) #435 CW 80 (Note 2) ±2710 20 MHz DFT-s-OFDM NR #31981, 1 RB (Note 1) #435 CW 90 (Note 2) ±2710 20 MHz DFT-s-OFDM NR #31981, 1 RB (Note 1) #365 CW 90 (Note 2) ±2530 20 MHz DFT-s-OFDM NR #31981, 1 RB (Note 1) #385 CW 100 (Note 2) ±385 CW	30 (Note 2)				
#2710		+355			
#2710 signal, 1 RB (Note 1) #375 CW 50 (Note 2) #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #285 CW 60 (Note 2) #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2530 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2530 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2530 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2530 20 MHz DFT-s-OFDM NR	40 (Note 2)	1333	,		
#375 CW #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #395 CW #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #415 CW #415 CW #42710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #435 CW #435 CW #435 CW #436 CW #436 CW #4365 CW	40 (Note 2)	±2710			
50 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 60 (Note 2) ±395 CW 60 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 70 (Note 2) ±415 CW 80 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 80 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 90 (Note 2) ±365 CW 90 (Note 2) ±2530 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 100 (Note 2) ±385 CW 100 (Note 2) ±2520 20 MHz DFT-s-OFDM NR		+275			
#2710 signal, 1 RB (Note 1) #395 CW 60 (Note 2) #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) TO (Note 2) #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2530 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2530 20 MHz DFT-s-OFDM NR #2530 20 MHz DFT-s-OFDM NR	50 (Noto 2)	±375			
#395 CW #2710 20 MHz DFT-s-OFDM NR #395 Signal, 1 RB (Note 1) #415 CW #415 CW #415 20 MHz DFT-s-OFDM NR #5 signal, 1 RB (Note 1) #435 CW #435 CW #435 CW #435 CW #436 CW #4365 CW	50 (Note 2)	±2710			
60 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) CW 70 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) CW 80 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) CW 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) CW 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1)		+205			
±2/10 signal, 1 RB (Note 1)	60 (Noto 2)	エンガン	,		
#415 CW 70 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 80 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2530 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #2530 20 MHz DFT-s-OFDM NR #2530 20 MHz DFT-s-OFDM NR	ou (Note 2)	±2710			
70 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) 20 MHz DFT-s-OFDM NR		. 415			
±2710 signal, 1 RB (Note 1)	70 (Noto 2)	±410	,		
#435 CW 80 (Note 2) #2710 #2710 #20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) CW 90 (Note 2) #2530 #2530 #2530 #2530 #2530 #26 CW 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) CW #27530 #	70 (Note 2)	±2710			
80 (Note 2) ±2710 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) CW 90 (Note 2) ±2530 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±2530 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) CW 100 (Note 2) ±385 CW 20 MHz DFT-s-OFDM NR		±42E			
#2710 signal, 1 RB (Note 1) #365 CW 90 (Note 2) #2530 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #385 CW 100 (Note 2) #365 20 MHz DFT-s-OFDM NR	80 (Note 2)	±430	~		
#365 CW 90 (Note 2) #2530 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) #385 CW 100 (Note 2) #3520 20 MHz DFT-s-OFDM NR		±2710			
90 (Note 2) ±2530 20 MHz DFT-s-OFDM NR signal, 1 RB (Note 1) ±385 CW 100 (Note 2) ±2520 20 MHz DFT-s-OFDM NR		+36E			
±2530 signal, 1 RB (Note 1) ±385 CW 100 (Note 2) ±2530 20 MHz DFT-s-OFDM NR	00 (N-+- 0)	±303			
100 (Note 2) 20 MHz DFT-s-OFDM NR	90 (Note 2)	±2530			
		±385	CW		
signal, 1 RB (Note 1)	100 (Note 2)	12520	20 MHz DFT-s-OFDM NR		
	, ,	±233U	signal, 1 RB (Note 1)		

NOTE 1: Interfering signal consisting of one resource block positioned at the stated offset, the BS channel bandwidth of the interfering signal is located adjacently to the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap.

NOTE 2: This requirement shall apply only for a G-FRC mapped to the frequency range at the *channel edge* adjacent to the interfering signals.

interfering signals.

NOTE 3: The centre of the interfering RB refers to the frequency location between the two central subcarriers.

7.8 In-channel selectivity

7.8.1 General

In-channel selectivity (ICS) is a measure of the receiver ability to receive a wanted signal at its assigned resource block locations at the *antenna connector* for *BS type 1-C* or *TAB connector* for *BS type 1-H* in the presence of an interfering signal received at a larger power spectral density. In this condition a throughput requirement shall be met for a specified reference measurement channel. The interfering signal shall be an NR signal which is time aligned with the wanted signal.

7.8.2 Minimum requirement for BS type 1-C and BS type 1-H

For BS type 1-C and BS type 1-H, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel as specified in annex A.1 with parameters specified in table 7.8.2-1 for Wide Area BS, in table 7.8.2-2 for Medium Range BS and in table 7.8.2-3 for Local Area BS. The characteristics of the interfering signal is further specified in annex D.

For NB-IoT operation in NR in-band, the throughput shall be \geq 95% of the maximum throughput of the NB-IoT reference measurement channel as specified in Annex A of TS 36.104 [13] with parameters specified in table 7.8.2-1a for Wide Area BS, in table 7.8.2-2a for Medium Range BS and in table 7.8.2-3a for Local Area BS.

Table 7.8.2-1: Wide Area BS in-channel selectivity

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	-100.6	-81.4	DFT-s-OFDM NR signal, 15 kHz SCS, 10 RBs
10,15,20,25,30	15	G-FR1-A1-1	-98.7	-77.4	DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs
40,50	15	G-FR1-A1-4	-92.3	-71.4	DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs
5	30	G-FR1-A1-8	-101.3	-81.4	DFT-s-OFDM NR signal, 30 kHz SCS, 5 RBs
10,15,20,25,30	30	G-FR1-A1-2	-98.8	-78.4	DFT-s-OFDM NR signal, 30 kHz SCS, 10 RBs
40,50,60,70,80,90,100	30	G-FR1-A1-5	-92.6	-71.4	DFT-s-OFDM NR signal, 30 kHz SCS, 50 RBs
10,15,20,25,30	60	G-FR1-A1-9	-98.2	-78.4	DFT-s-OFDM NR signal, 60 kHz SCS, 5 RBs
40,50,60,70,80,90,100	60	G-FR1-A1-6	-92.7	-71.6	DFT-s-OFDM NR signal, 60 kHz SCS, 24 RBs

NOTE: Wanted and interfering signal are placed adjacently around F_c, where the F_c is defined for *BS channel bandwidth* of the wanted signal according to the table 5.4.2.2-1. The aggregated wanted and interferer signal shall be centred in the *BS channel bandwidth* of the wanted signal.

Table 7.8.2-1a: Wide Area BS in-channel selectivity for NB-loT operation in NR in-band

BS channel bandwidth (MHz)	Reference measurement channel	Wante d signal mean power (dBm)	Interfering signal mean power (dBm) / BW _{Config}	Type of interfering signal		
5	FRC A14-1 in Annex		-81.4	DFT-s-OFDM NR signal, 15 kHz SCS, 10 RBs		
10, 15, 20, 25, 30	A.14 in TS 36.104	-124.3	-		-77.4	DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs
40, 50	[13]		-71.4	DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs		
5	EDC A44 2 in Annay		-81.4	DFT-s-OFDM NR signal, 15 kHz SCS, 10 RBs		
10, 15, 20, 25, 30	FRC A14-2 in Annex A.14 in TS 36.104	-130.2	-77.4	DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs		
40, 50	[13]		-71.4	DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs		

NOTE: Interfering signal is placed in one side of the Fc, while the NB-IoT PRB is placed on the other side. Both interfering signal and NB-IoT PRB are placed at the middle of the available PRB locations. The wanted NB-IoT tone is placed at the centre of this NB-IoT PRB.

Table 7.8.2-2: Medium Range BS in-channel selectivity

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	-95.6	-76.4	DFT-s-OFDM NR signal, 15 kHz SCS, 10 RBs
10,15,20,25,30	15	G-FR1-A1-1	-93.7	-72.4	DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs
40,50	15	G-FR1-A1-4	-87.3	-66.4	DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs
5	30	G-FR1-A1-8	-96.3	-76.4	DFT-s-OFDM NR signal, 30 kHz SCS, 5 RBs
10,15,20,25,30	30	G-FR1-A1-2	-93.8	-73.4	DFT-s-OFDM NR signal, 30 kHz SCS, 10 RBs
40,50,60,70,80,90,100	30	G-FR1-A1-5	-87.6	-66.4	DFT-s-OFDM NR signal, 30 kHz SCS, 50 RBs
10,15,20,25,30	60	G-FR1-A1-9	-93.2	-73.4	DFT-s-OFDM NR signal, 60 kHz SCS, 5 RBs
40,50,60,70,80,90,100	60	G-FR1-A1-6	-87.7	-66.6	DFT-s-OFDM NR signal, 60 kHz SCS, 24 RBs

NOTE: Wanted and interfering signal are placed adjacently around F_c, where the F_c is defined for *BS channel bandwidth* of the wanted signal according to the table 5.4.2.2-1. The aggregated wanted and interferer signal shall be centred in the *BS channel bandwidth* of the wanted signal.

Table 7.8.2-2a: Medium Range BS in-channel selectivity for NB-loT operation in NR in-band

BS channel bandwidth (MHz)	Reference measurement channel	Wante d signal mean power (dBm)	Interfering signal mean power (dBm) / BW _{Config}	Type of interfering signal	
5	FRC A14-1 in Annex A.14 in TS 36.104	FDC A444 in Anney		-76.4	DFT-s-OFDM NR signal, 15 kHz SCS, 10 RBs
10, 15, 20, 25, 30		_	-72.4	DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs	
40, 50	[13]			-66.4	DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs
5	EDC A44 2 in Annay		-76.4	DFT-s-OFDM NR signal, 15 kHz SCS, 10 RBs	
10, 15, 20, 25, 30	FRC A14-2 in Annex A.14 in TS 36.104	-125.2	-72.4	DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs	
40, 50	[13]		-66.4	DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs	

NOTE: Interfering signal is placed in one side of the Fc, while the NB-IoT PRB is placed on the other side. Both interfering signal and NB-IoT PRB are placed at the middle of the available PRB locations. The wanted NB-IoT tone is placed at the centre of this NB-IoT PRB.

Table 7.8.2-3: Local area BS in-channel selectivity

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	-92.6	-73.4	DFT-s-OFDM NR signal, 15 kHz SCS, 10 RBs
10,15,20,25,30	15	G-FR1-A1-1	-90.7	-69.4	DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs
40,50	15	G-FR1-A1-4	-84.3	-63.4	DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs
5	30	G-FR1-A1-8	-93.3	-73.4	DFT-s-OFDM NR signal, 30 kHz SCS, 5 RBs
10,15,20,25,30	30	G-FR1-A1-2	-90.8	-70.4	DFT-s-OFDM NR signal, 30 kHz SCS, 10 RBs
40,50,60,70,80,90,100	30	G-FR1-A1-5	-84.6	-63.4	DFT-s-OFDM NR signal, 30 kHz SCS, 50 RBs
10,15,20,25,30	60	G-FR1-A1-9	-90.2	-70.4	DFT-s-OFDM NR signal, 60 kHz SCS, 5 RBs
40,50,60,70,80,90,100	60	G-FR1-A1-6	-84.7	-63.6	DFT-s-OFDM NR signal, 60 kHz SCS, 24 RBs

NOTE: Wanted and interfering signal are placed adjacently around F_c, where the F_c is defined for *BS channel bandwidth* of the wanted signal according to the table 5.4.2.2-1. The aggregated wanted and interferer signal shall be centred in the *BS channel bandwidth* of the wanted signal.

Table 7.8.2-3a: Local Area BS in-channel selectivity for NB-IoT operation in NR in-band

BS channel bandwidth (MHz)	Reference measurement channel	Wante d signal mean power (dBm)	Interfering signal mean power (dBm) / BW _{Config}	Type of interfering signal
5	FRC A14-1 in Annex A.14 in TS 36.104	-116.3	-73.4	DFT-s-OFDM NR signal, 15 kHz SCS, 10 RBs
10, 15, 20, 25, 30			-69.4	DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs
40, 50	[13]		-63.4	DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs
5	FRC A14-2 in Annex A.14 in TS 36.104 [13]		-73.4	DFT-s-OFDM NR signal, 15 kHz SCS, 10 RBs
10, 15, 20, 25, 30		-122.2	-69.4	DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs
40, 50			-63.4	DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs

NOTE: Interfering signal is placed in one side of the F_c, while the NB-IoT PRB is placed on the other side. Both interfering signal and NB-IoT PRB are placed at the middle of the available PRB locations. The wanted NB-IoT tone is placed at the centre of this NB-IoT PRB.

8 Conducted performance requirements

8.1 General

8.1.1 Scope and definitions

Conducted performance requirements specify the ability of the BS type 1-C or BS type 1-H to correctly demodulate signals in various conditions and configurations. Conducted performance requirements are specified at the antenna connector(s) (for BS type 1-C) and at the TAB connector(s) (for BS type 1-H).

Conducted performance requirements for the BS are specified for the fixed reference channels defined in annex A and the propagation conditions in annex G. The requirements only apply to those FRCs that are supported by the base station.

Unless stated otherwise, performance requirements apply for a single carrier only. Performance requirements for a BS supporting *carrier aggregation* are defined in terms of single carrier requirements.

For FDD operation the requirements in clause 8 shall be met with the transmitter units associated with *antenna* connectors (for BS type 1-H) in the operating band turned ON.

NOTE: In normal operating conditions, *antenna connectors* (for *BS type 1-C*) or *TAB connectors* (for *BS type 1-H*) in FDD operation are configured to transmit and receive at the same time. The associated transmitter unit(s) may be OFF for some of the tests as specified in TS 38.141-1 [5].

The SNR used in this clause is specified based on a single carrier and defined as:

SNR = S / N

Where:

- S is the total signal energy in the slot on a single *antenna connector* (for *BS type 1-C*) or on a single *TAB connector* (for *BS type 1-H*).
- N is the noise energy in a bandwidth corresponding to the *transmission bandwidth* over the duration of a slot on a single *antenna connector* (for *BS type 1-C*) or on a single *TAB connector* (for *BS type 1-H*).

8.1.2 Void

8.2 Performance requirements for PUSCH

8.2.1 Requirements for PUSCH with transform precoding disabled

8.2.1.1 General

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in annex A. The performance requirements assume HARQ retransmissions.

Table: 8.2.1.1-1 Test parameters for testing PUSCH

	Parameter	Value				
Transform precoding		Disabled				
Default TDD UL-DL p	attern (Note 1)	15 kHz SCS:				
		3D1S1U, S=10D:2G:2U				
		30 kHz SCS:				
		7D1S2U, S=6D:4G:4U				
HARQ	Maximum number of HARQ transmissions	4				
	RV sequence	0, 2, 3, 1				
DM-RS	DM-RS configuration type	1				
	DM-RS duration	single-symbol DM-RS				
	Additional DM-RS position	pos1				
	Number of DM-RS CDM group(s) without data	2				
	Ratio of PUSCH EPRE to DM-RS EPRE	-3 dB				
	DM-RS port	{0}, {0, 1}				
	DM-RS sequence generation	$N_{ID}^0=0$, $n_{SCID}=0$				
Time domain	PUSCH mapping type	A, B				
resource	Start symbol	0				
assignment	Allocation length	14				
Frequency domain	RB assignment	Full applicable test				
resource		bandwidth				
assignment	Frequency hopping	Disabled				
TPMI index for 2Tx tw	vo-layer spatial multiplexing transmission	0				
Code block group bas	Code block group based PUSCH transmission Disabled					
Note 1: The same	requirements are applicable to FDD and TDD with different UL-D	L pattern.				

8.2.1.2 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput for the FRCs stated in tables 8.2.1.2-1 to 8.2.1.2-18 at the given SNR for 1Tx or for 2Tx two-layer spatial multiplexing transmission. FRCs are defined in annex A.

Table 8.2.1.2-1: Minimum requirements for PUSCH with 70% of maximum throughput, Type A, 5 MHz channel bandwidth, 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
			(Annex G)				
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-8	pos1	-2.3
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-8	pos1	10.1
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-8	pos1	12.3
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-8	pos1	-5.8
1	1 4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-8	pos1	6.2
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-8	pos1	8.8
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-8	pos1	-8.7
	8	Normal	TDLC300-100 Low	70 %	G-FR1-A4-8	pos1	3.0
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-8	pos1	5.6
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-22	pos1	1.0
		Normal	TDLC300-100 Low	70 %	G-FR1-A4-22	pos1	18.2
2	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-22	pos1	-2.3
4	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-22	pos1	11.0
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-22	pos1	-5.3
	0	Normal	TDLC300-100 Low	70 %	G-FR1-A4-22	pos1	6.8

Table 8.2.1.2-2: Minimum requirements for PUSCH with 70% of maximum throughput, Type A, 10 MHz channel bandwidth, 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-9	pos1	-2.5
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-9	pos1	10.2
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-9	pos1	12.2
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-9	pos1	-6.0
1	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-9	pos1	6.3
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-9	pos1	8.6
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-9	pos1	-8.7
	8	Normal	TDLC300-100 Low	70 %	G-FR1-A4-9	pos1	3.1
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-9	pos1	5.5
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-23	pos1	1.7
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-23	pos1	18.3
2	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-23	pos1	-2.0
2	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-23	pos1	11.2
	0	Normal	TDLB100-400 Low	70 %	G-FR1-A3-23	pos1	-5.5
	8	Normal	TDLC300-100 Low	70 %	G-FR1-A4-23	pos1	6.8

Table 8.2.1.2-3: Minimum requirements for PUSCH with 70% of maximum throughput, Type A, 20 MHz channel bandwidth, 15 kHz SCS

Number of TX	Number of RX	Cyclic prefix	Propagation conditions and	Fraction of maximum	FRC (Annex A)	Additional DM-RS	SNR (dB)
antennas	antennas		correlation matrix	throughput		position	
			(Annex G)				
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-10	pos1	-2.1
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-10	pos1	10.0
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-10	pos1	12.4
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-10	pos1	-5.5
1	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-10	pos1	6.2
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-10	pos1	8.6
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-10	pos1	-8.5
	8	Normal	TDLC300-100 Low	70 %	G-FR1-A4-10	pos1	3.0
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-10	pos1	5.5
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-24	pos1	2.1
		Normal	TDLC300-100 Low	70 %	G-FR1-A4-24	pos1	18.3
2	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-24	pos1	-1.8
	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-24	pos1	11.1
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-24	pos1	-5.3
	0	Normal	TDLC300-100 Low	70 %	G-FR1-A4-24	pos1	6.9

Table 8.2.1.2-4: Minimum requirements for PUSCH with 70% of maximum throughput, Type A, 10 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-11	pos1	-2.3
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-11	pos1	10.2
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-11	pos1	12.8
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-11	pos1	-5.6
1	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-11	pos1	6.4
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-11	pos1	8.6
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-11	pos1	-8.6
	8	Normal	TDLC300-100 Low	70 %	G-FR1-A4-11	pos1	3.3
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-11	pos1	5.5
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-25	pos1	1.3
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-25	pos1	18.4
2	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-25	pos1	-2.2
_	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-25	pos1	11.2
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-25	pos1	-5.2
	0	Normal	TDLC300-100 Low	70 %	G-FR1-A4-25	pos1	7.0

Table 8.2.1.2-5: Minimum requirements for PUSCH with 70% of maximum throughput, Type A, 20 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-12	pos1	-2.9
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-12	pos1	10.2
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-12	pos1	12.5
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-12	pos1	-6.0
1	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-12	pos1	6.4
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-12	pos1	8.6
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-12	pos1	-8.8
	8	Normal	TDLC300-100 Low	70 %	G-FR1-A4-12	pos1	3.2
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-12	pos1	5.5
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-26	pos1	1.3
		Normal	TDLC300-100 Low	70 %	G-FR1-A4-26	pos1	18.1
2	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-26	pos1	-2.2
	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-26	pos1	11.3
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-26	pos1	-5.3
	0	Normal	TDLC300-100 Low	70 %	G-FR1-A4-26	pos1	6.9

Table 8.2.1.2-6: Minimum requirements for PUSCH with 70% of maximum throughput, Type A, 40 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-13	pos1	-2.5
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-13	pos1	10.0
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-13	pos1	12.4
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-13	pos1	-5.8
1	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-13	pos1	6.3
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-13	pos1	8.5
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-13	pos1	-8.7
	8	Normal	TDLC300-100 Low	70 %	G-FR1-A4-13	pos1	3.1
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-13	pos1	5.4
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-27	pos1	1.3
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-27	pos1	19.5
2	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-27	pos1	-2.3
	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-27	pos1	11.3
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-27	pos1	-5.2
	0	Normal	TDLC300-100 Low	70 %	G-FR1-A4-27	pos1	6.9

Table 8.2.1.2-7: Minimum requirements for PUSCH with 70% of maximum throughput, Type A, 100 MHz channel bandwidth, 30 kHz SCS

Number of TX	Number of RX	Cyclic prefix	Propagation conditions and	Fraction of maximum	FRC (Annex A)	Additional DM-RS	SNR (dB)
antennas	antennas	P • • • • • • • • • • • • • • • • • • •	correlation matrix	throughput	(position	(/
			(Annex G)			•	
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-14	pos1	-2.8
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-14	pos1	10.2
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-14	pos1	13.0
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-14	pos1	-5.8
1	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-14	pos1	6.5
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-14	pos1	9.0
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-14	pos1	-8.7
	8	Normal	TDLC300-100 Low	70 %	G-FR1-A4-14	pos1	3.2
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-14	pos1	5.8
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-28	pos1	1.4
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-28	pos1	19.2
2	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-28	pos1	-2.2
_	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-28	pos1	11.6
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-28	pos1	-5.2
	0	Normal	TDLC300-100 Low	70 %	G-FR1-A4-28	pos1	7.1

Table 8.2.1.2-8: Minimum requirements for PUSCH with 70% of maximum throughput, Type B, 5 MHz channel bandwidth, 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-8	pos1	-2.3
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-8	pos1	10.2
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-8	pos1	12.5
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-8	pos1	-5.7
1	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-8	pos1	6.3
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-8	pos1	8.9
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-8	pos1	-8.7
	8	Normal	TDLC300-100 Low	70 %	G-FR1-A4-8	pos1	3.0
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-8	pos1	5.7
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-22	pos1	1.5
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-22	pos1	18.3
2	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-22	pos1	-2.3
_	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-22	pos1	11.1
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-22	pos1	-5.4
	0	Normal	TDLC300-100 Low	70 %	G-FR1-A4-22	pos1	6.8

Table 8.2.1.2-9: Minimum requirements for PUSCH with 70% of maximum throughput, Type B, 10 MHz channel bandwidth, 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-9	pos1	-2.3
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-9	pos1	10.5
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-9	pos1	12.6
	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-9	pos1	-5.7
1		Normal	TDLC300-100 Low	70 %	G-FR1-A4-9	pos1	6.5
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-9	pos1	8.9
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-9	pos1	-9.0
	8	Normal	TDLC300-100 Low	70 %	G-FR1-A4-9	pos1	3.2
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-9	pos1	5.8
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-23	pos1	2.0
		Normal	TDLC300-100 Low	70 %	G-FR1-A4-23	pos1	18.7
2	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-23	pos1	-2.3
	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-23	pos1	11.3
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-23	pos1	-5.2
	0	Normal	TDLC300-100 Low	70 %	G-FR1-A4-23	pos1	7.0

Table 8.2.1.2-10: Minimum requirements for PUSCH with 70% of maximum throughput, Type B, 20 MHz channel bandwidth, 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
			(Annex G)		0 = 0		
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-10	pos1	-2.1
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-10	pos1	10.4
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-10	pos1	12.3
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-10	pos1	-5.7
1	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-10	pos1	6.3
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-10	pos1	8.8
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-10	pos1	-8.5
	8	Normal	TDLC300-100 Low	70 %	G-FR1-A4-10	pos1	3.1
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-10	pos1	5.7
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-24	pos1	1.6
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-24	pos1	18.1
2	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-24	pos1	-2.0
	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-24	pos1	11.2
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-24	pos1	-5.3
	0	Normal	TDLC300-100 Low	70 %	G-FR1-A4-24	pos1	6.9

Table 8.2.1.2-11: Minimum requirements for PUSCH with 70% of maximum throughput, Type B, 10 MHz channel bandwidth, 30 kHz SCS

Number of TX	Number of RX	Cyclic prefix	Propagation conditions and	Fraction of maximum	FRC (Annex A)	Additional DM-RS	SNR (dB)
antennas	antennas		correlation matrix	throughput	, ,	position	(,
			(Annex G)	.		•	
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-11	pos1	-2.4
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-11	pos1	10.1
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-11	pos1	12.5
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-11	pos1	-5.7
1	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-11	pos1	6.4
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-11	pos1	8.6
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-11	pos1	-8.8
	8	Normal	TDLC300-100 Low	70 %	G-FR1-A4-11	pos1	3.2
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-11	pos1	5.6
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-25	pos1	1.1
		Normal	TDLC300-100 Low	70 %	G-FR1-A4-25	pos1	18.5
2	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-25	pos1	-2.5
_	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-25	pos1	11.3
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-25	pos1	-5.6
	O	Normal	TDLC300-100 Low	70 %	G-FR1-A4-25	pos1	7.0

Table 8.2.1.2-12: Minimum requirements for PUSCH with 70% of maximum throughput, Type B, 20 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-12	pos1	-2.9
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-12	pos1	10.1
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-12	pos1	12.5
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-12	pos1	-6.0
1	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-12	pos1	6.3
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-12	pos1	8.6
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-12	pos1	-9.0
	8	Normal	TDLC300-100 Low	70 %	G-FR1-A4-12	pos1	3.1
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-12	pos1	5.6
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-26	pos1	1.3
		Normal	TDLC300-100 Low	70 %	G-FR1-A4-26	pos1	18.2
2	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-26	pos1	-2.3
2	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-26	pos1	11.2
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-26	pos1	-5.4
	0	Normal	TDLC300-100 Low	70 %	G-FR1-A4-26	pos1	7.0

Table 8.2.1.2-13: Minimum requirements for PUSCH with 70% of maximum throughput, Type B, 40 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
		Normal	(Annex G) TDLB100-400 Low	70 %	G-FR1-A3-13	non1	-2.5
						pos1	
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-13	pos1	10.0
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-13	pos1	12.5
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-13	pos1	-5.8
1	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-13	pos1	6.2
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-13	pos1	8.7
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-13	pos1	-8.8
	8	Normal	TDLC300-100 Low	70 %	G-FR1-A4-13	pos1	3.0
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-13	pos1	5.5
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-27	pos1	1.7
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-27	pos1	18.7
2	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-27	pos1	-2.1
2	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-27	pos1	11.2
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-27	pos1	-5.2
	O	Normal	TDLC300-100 Low	70 %	G-FR1-A4-27	pos1	6.9

Table 8.2.1.2-14: Minimum requirements for PUSCH with 70% of maximum throughput, Type B, 100 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-14	pos1	-2.5
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-14	pos1	10.1
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-14	pos1	13.1
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-14	pos1	-5.8
1	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-14	pos1	6.3
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-14	pos1	9.2
		Normal	TDLB100-400 Low	70 %	G-FR1-A3-14	pos1	-8.7
	8	Normal	TDLC300-100 Low	70 %	G-FR1-A4-14	pos1	3.1
		Normal	TDLA30-10 Low	70 %	G-FR1-A5-14	pos1	5.9
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-28	pos1	1.6
	2	Normal	TDLC300-100 Low	70 %	G-FR1-A4-28	pos1	19.3
	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-28	pos1	-2.2
2	4	Normal	TDLC300-100 Low	70 %	G-FR1-A4-28	pos1	11.6
	0	Normal	TDLB100-400 Low	70 %	G-FR1-A3-28	pos1	-5.3
	8	Normal	TDLC300-100 Low	70 %	G-FR1-A4-28	pos1	7.1

Table 8.2.1.2-15: Minimum requirements for PUSCH with 30% of maximum throughput, Type A, 5 MHz channel bandwidth, 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLC300-100 Low	30 %	G-FR1-A4-8	pos1	2.9

Table 8.2.1.2-16: Minimum requirements for PUSCH with 30% of maximum throughput, Type A, 10 MHz channel bandwidth, 30 kHz SCS

lumber of TX ntennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLC300-100 Low	30 %	G-FR1-A4-11	pos1	2.8

Table 8.2.1.2-17: Minimum requirements for PUSCH with 30% of maximum throughput, Type B, 5 MHz channel bandwidth, 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLC300-100 Low	30 %	G-FR1-A4-8	pos1	2.8

Table 8.2.1.2-18: Minimum requirements for PUSCH with 30% of maximum throughput, Type B, 10 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLC300-100 Low	30 %	G-FR1-A4-11	pos1	2.9

8.2.2 Requirements for PUSCH with transform precoding enabled

8.2.2.1 General

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in annex A. The performance requirements assume HARQ retransmissions.

Table 8.2.2.1-1: Test parameters for testing PUSCH

	Parameter	Value
Transform precoding		Enabled
Default TDD UL-DL p	pattern (Note 1)	15 kHz SCS: 3D1S1U, S=10D:2G:2U 30 kHz SCS: 7D1S2U, S=6D:4G:4U
HARQ	Maximum number of HARQ transmissions	4
	RV sequence	0, 2, 3, 1
DM-RS	DM-RS configuration type	1
	DM-RS duration	single-symbol DM-RS
	Additional DM-RS position	pos1
	Number of DM-RS CDM group(s) without data	2
	Ratio of PUSCH EPRE to DM-RS EPRE	-3 dB
	DM-RS port(s)	0
	DM-RS sequence generation	N _{ID} 0=0, group hopping and sequence hopping are disabled
Time domain	PUSCH mapping type	A, B
resource	Start symbol	0
assignment	Allocation length	14
Frequency domain resource assignment	RB assignment	15 kHz SCS: 25 PRBs in the middle of the test bandwidth 30 kHz SCS: 24 PRBs
		in the middle of the test bandwidth
	Frequency hopping	Disabled
Code block group bas	sed PUSCH transmission	Disabled
Note 1: The same	requirements are applicable to FDD and TDD with different UL-I	DL patterns.

8.2.2.2 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput for the FRCs stated in tables 8.2.2.2-1 to 8.2.2.2-4 at the given SNR. FRCs are defined in annex A.

Table 8.2.2.2-1: Minimum requirements for PUSCH with 70% of maximum throughput, Type A, 5 MHz channel bandwidth, 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-31	pos1	-2.4
1	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-31	pos1	-5.7
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-31	pos1	-8.5

Table 8.2.2.2-2: Minimum requirements for PUSCH with 70% of maximum throughput, Type A, 10 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-32	pos1	-2.5
1	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-32	pos1	-5.7
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-32	pos1	-8.4

Table 8.2.2.2-3: Minimum requirements for PUSCH with 70% of maximum throughput, Type B, 5 MHz channel bandwidth, 15 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-31	pos1	-2.3
1	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-31	pos1	-5.8
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-31	pos1	-8.6

Table 8.2.2.2-4: Minimum requirements for PUSCH with 70% of maximum throughput, Type B, 10 MHz channel bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
	2	Normal	TDLB100-400 Low	70 %	G-FR1-A3-32	pos1	-2.7
1	4	Normal	TDLB100-400 Low	70 %	G-FR1-A3-32	pos1	-6.0
	8	Normal	TDLB100-400 Low	70 %	G-FR1-A3-32	pos1	-8.8

8.2.3 Requirements for UCI multiplexed on PUSCH

8.2.3.1 General

In the tests for UCI multiplexed on PUSCH, the UCI information only contains CSI part 1 and CSI part 2 information, and there is no HACK/ACK information transmitted.

The CSI part 1 block error probability (BLER) is defined as the probability of incorrectly decoding the CSI part 1 information when the CSI part 1 information is sent as follow:

$$BLER_{CSI part 1} = \frac{\#(false CSI part 1)}{\#(CSI part 1)}$$

where:

- #(false CSI part 1) denotes the number of incorrectly decoded CSI part 1 information transmitted occasions

- #(CSI part 1) denotes the number of CSI part 1 information transmitted occasions.

The CSI part 2 block error probability is defined as the probability of incorrectly decoding the CSI part 2 information when the CSI part 2 information is sent as follows:

$$BLER_{CSI part 2} = \frac{\#(false CSI part 2)}{\#(CSI part 2)}$$

where:

- #(false CSI part 2) denotes the number of incorrectly decoded CSI part 2 information transmitted occasions
- #(CSI part 2) denotes the number of CSI part 2 information transmitted occasions.

The number of UCI information bit payload per slot is defined for two cases as follows:

- 5 bits in CSI part 1, 2 bits in CSI part 2
- 20 bits in CSI part 1, 20 bits in CSI part 2

The 7bits UCI case is further defined with the bitmap $[c0 \ c1 \ c2 \ c3 \ c4] = [0 \ 1 \ 0 \ 1 \ 0]$ for CSI part 1 information, where c0 is mapping to the RI information, and with the bitmap $[c0 \ c1] = [1 \ 0]$ for CSI part2 information.

The 40bits UCI information case is assumed random information bit selection.

In both tests, PUSCH data, CSI part 1 and CSI part 2 information are transmitted simultaneously.

Table 8.2.3.1-1: Test parameters for testing UCI on PUSCH

	Parameter	Value
Transform precoding		Disabled
Default TDD UL-DL p	attern (Note 1)	30 kHz SCS:
	,	7D1S2U, S=6D:4G:4U
HARQ	Maximum number of HARQ transmissions	1
	RV sequence	0
DM-RS	DM-RS configuration type	1
	DM-RS duration	Single-symbol DM-RS
	Additional DM-RS position	pos1
	Number of DM-RS CDM group(s) without data	2
	Ratio of PUSCH EPRE to DM-RS EPRE	-3 dB
	DM-RS port(s)	{0}
	DM-RS sequence generation	$N_{ID}{}^0=0, n_{SCID}=0$
Time domain	PUSCH mapping type	A,B
resource	Start symbol	0
assignment	Allocation length	14
Frequency domain	RB assignment	Full applicable test
resource		bandwidth
assignment	Frequency hopping	Disabled
Code block group bas	sed PUSCH transmission	Disabled
	Number of CSI part 1 and CSI part 2 information bit payload	{5,2},{20,20}
	scaling	1
UCI	betaOffsetACK-Index1	11
001	betaOffsetCSI-Part1-Index1 and betaOffsetCSI-Part1-Index2	13
	betaOffsetCSI-Part2-Index1 and betaOffsetCSI-Part2-Index2	13
	UCI partition for frequency hopping	Disabled
Note 1: The same red	quirements are applicable to FDD and TDD with different UL-DL p	patterns.

8.2.3.2 Minimum requirements

The CSI part 1 block error probability shall not exceed 0.1% at the SNR in table 8.2.3.2-1 and table 8.2.3.2-2. The CSI part 2 block error probability shall not exceed 1% at the SNR given in table 8.2.3.2-3 and table 8.2.3.2-4.

Table 8.2.3.2-1: Minimum requirements for UCI multiplexed on PUSCH, Type A, CSI part 1, 10 MHz Channel Bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	UCI bits (CSI part 1, CSI part 2)	Additional DM-RS position	FRC (Annex A)	SNR (dB)
4	2	Normal	TDLC300-100 Low	7(5,2)	pos1	G-FR1-A4-11	5.4
	2	Normal	TDLC300-100 Low	40(20,20)	pos1	G-FR1-A4-11	4.3

Table 8.2.3.2-2: Minimum requirements for UCI multiplexed on PUSCH, Type B, CSI part 1, 10 MHz Channel Bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	UCI bits (CSI part 1, CSI part2)	Additional DM-RS position	FRC (Annex A)	SNR (dB)
4	2	Normal	TDLC300-100 Low	7(5,2)	pos1	G-FR1-A4-11	5.8
1	2	Normal	TDLC300-100 Low	40(20,20)	pos1	G-FR1-A4-11	4.1

Table 8.2.3.2-3: Minimum requirements for UCI multiplexed on PUSCH, Type A, CSI part 2, 10 MHz Channel Bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	UCI bits (CSI part 1, CSI part2)	Additional DM-RS position	FRC (Annex A)	SNR (dB)
4	2	Normal	TDLC300-100 Low	7(5,2)	pos1	G-FR1-A4-11	-0.2
	2	Normal	TDLC300-100 Low	40(20,20)	pos1	G-FR1-A4-11	2.4

Table 8.2.3.2-4: Minimum requirements for UCI multiplexed on PUSCH, Type B, CSI part 2, 10 MHz Channel Bandwidth, 30 kHz SCS

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	UCI bits (CSI part 1, CSI part2)	Additional DM-RS position	FRC (Annex A)	SNR (dB)
4	2	Normal	TDLC300-100 Low	7(5,2)	pos1	G-FR1-A4-11	0.3
'	2	Normal	TDLC300-100 Low	40(20,20)	pos1	G-FR1-A4-11	2.6

8.2.4 Requirements for PUSCH for high speed train

8.2.4.1 General

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in annex A. The performance requirements assume HARQ retransmissions. The performance requirements for high speed train are optional.

The performance requirements for PUSCH for high speed train only apply to Wide Area Base Stations and Medium Range Base Stations (subject to declaration).

Table: 8.2.4.1-1 Test parameters for testing high speed train PUSCH

	Parameter	Value				
Transform precoding		Disabled				
Default TDD UL-DL p	attern (Note 1)	15 kHz SCS: 3D1S1U, S=10D:2G:2U 30 kHz SCS:				
	T	7D1S2U, S=6D:4G:4U				
HARQ	Maximum number of HARQ transmissions	4				
	RV sequence	0, 2, 3, 1				
DM-RS	DM-RS configuration type	1				
	DM-RS duration	single-symbol DM-RS				
	Additional DM-RS position	pos2				
	Number of DM-RS CDM group(s) without data	2				
	Ratio of PUSCH EPRE to DM-RS EPRE	-3 dB				
	DM-RS port	0				
	DM-RS sequence generation	$N_{ID}^0=0, n_{SCID}=0$				
Time domain	PUSCH mapping type	Α				
resource	Start symbol	0				
assignment	Allocation length	14				
Frequency domain resource	RB assignment	Full applicable test bandwidth				
assignment	Frequency hopping	Disabled				
Code block group bas	Code block group based PUSCH transmission Disabled					
Note 1: The same	requirements are applicable to FDD and TDD with different UL-D	L pattern.				

8.2.4.2 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput for the FRCs stated in tables 8.2.4.2-1 to 8.2.4.2-4 at the given SNR for 1Tx. FRCs are defined in annex A. Unless stated otherwise, the MIMO correlation matrices for the gNB are defined in annex G for low correlation.

Table 8.2.4.2-1: Minimum requirements for PUSCH, Type A, 10 MHz channel bandwidth, 15 kHz SCS, 350km/h

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
		Normal	HST Scenario 1-NR350	70 %	G-FR1-A3-33	pos2	-3.7
	2	Normal	HST Scenario 1-NR350	70 %	G-FR1-A4-29	pos2	8.4
1	2	Normal	HST Scenario 3-NR350	70 %	G-FR1-A3-33	pos2	-3.6
!		Normal	HST Scenario 3-NR350	70 %	G-FR1-A4-29	pos2	8.7
	8	Normal	HST Scenario 1-NR350	70 %	G-FR1-A3-33	pos2	-9.2
	O	Normal	HST Scenario 1-NR350	70 %	G-FR1-A4-29	pos2	2.6

Table 8.2.4.2-2: Minimum requirements for PUSCH, Type A, 40 MHz channel bandwidth, 30 kHz SCS, 350km/h

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
		Normal	HST Scenario 1-NR350	70 %	G-FR1-A3-34	pos2	-3.7
	2	Normal	HST Scenario 1-NR350	70 %	G-FR1-A4-30	pos2	8.5
1	2	Normal	HST Scenario 3-NR350	70 %	G-FR1-A3-34	pos2	-3.6
!		Normal	HST Scenario 3-NR350	70 %	G-FR1-A4-30	pos2	8.7
	8	Normal	HST Scenario 1-NR350	70 %	G-FR1-A3-34	pos2	-9.1
	O	Normal	HST Scenario 1-NR350	70 %	G-FR1-A4-30	pos2	2.7

Table 8.2.4.2-3: Minimum requirements for PUSCH, Type A, 10 MHz channel bandwidth, 15 kHz SCS, 500km/h

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
		Normal	HST Scenario 1-NR500	70 %	G-FR1-A3-33	pos2	-3.9
	2	Normal	HST Scenario 1-NR500	70 %	G-FR1-A4-29	pos2	8.5
1	2	Normal	HST Scenario 3-NR500	70 %	G-FR1-A3-33	pos2	-3.6
'		Normal	HST Scenario 3-NR500	70 %	G-FR1-A4-29	pos2	9.2
	0	Normal	HST Scenario 1-NR500	70 %	G-FR1-A3-33	pos2	-9.4
	8	Normal	HST Scenario 1-NR500	70 %	G-FR1-A4-29	pos2	2.7

Table 8.2.4.2-4: Minimum requirements for PUSCH, Type A, 40 MHz channel bandwidth, 30 kHz SCS, 500km/h

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
		Normal	HST Scenario 1-NR500	70 %	G-FR1-A3-34	pos2	-3.9
	2	Normal	HST Scenario 1-NR500	70 %	G-FR1-A4-30	pos2	8.7
1	2	Normal	HST Scenario 3-NR500	70 %	G-FR1-A3-34	pos2	-3.6
1		Normal	HST Scenario 3-NR500	70 %	G-FR1-A4-30	pos2	8.0
	0	Normal	HST Scenario 1-NR500	70 %	G-FR1-A3-34	pos2	-9.2
	8	Normal	HST Scenario 1-NR500	70 %	G-FR1-A4-30	pos2	2.8

8.2.5 Requirements for UL timing adjustment

The performance requirement of UL timing adjustment is determined by a minimum required throughput for the moving UE at given SNR. The performance requirements assume HARQ retransmissions. The performance requirements for UL timing adjustment scenario Y defined in Annex G.4 are optional.

In the tests for UL timing adjustment, two signals are configured, one being transmitted by a moving UE and the other being transmitted by a stationary UE. The transmission of SRS from UE is optional. FRC parameters in Table A.4-2B are applied for both UEs. The received power for both UEs is the same. The resource blocks allocated for both UEs are consecutive. In Scenario Y, Doppler shift is not taken into account.

Table 8.2.5-1 Test parameters for testing UL timing adjustment

	Parameter	Value
Transform precoding	1	Disabled
Uplink-downlink alloc		15 kHz SCS: 3D1S1U, S=10D:2G:2U 30 kHz SCS:
Channel bandwidth		7D1S2U, S=6D:4G:4U 15 kHz SCS: 10 MHz
Chamile bandwidth		30 kHz SCS: 40 MHz
MCS		16
HARQ	Maximum number of HARQ transmissions	4
	RV sequence	0, 2, 3, 1
DM-RS	DM-RS configuration type	1
	DM-RS duration	single-symbol DM-RS
	DM-RS position (Io)	2
	Additional DM-RS position	pos2
	Number of DM-RS CDM group(s) without data	2
	Ratio of PUSCH EPRE to DM-RS EPRE	-3 dB
	DM-RS port	{0}
	DM-RS sequence generation	N_{ID}^0 =0, n_{SCID} =0 for moving UE N_{ID}^0 =1, n_{SCID} =1 for stationary UE
Time domain resource	PUSCH mapping type	Both A and B
assignment	Allocation length	14
Frequency domain resource	RB assignment	10MHz CBW: 25 RB for each UE 40MHz CBW: 50 RB for each UE
assignment	Starting PRB index	Moving UE: 0 Stationary UE: 25 for 10 MHz CBW, and 50 for 40 MHz CBW
	Frequency hopping	Disabled
SRS resource allocation	Slots in which sounding RS is transmitted (Note 1)	For FDD: slot #1 in radio frames For TDD:
		 last symbol in slot #3 in radio frames for 15KHz last symbol in slot #7 in radio frames for 30KHz
Note 1. The transmiss	SRS resource allocation ssion of SRS is optional. And the transmission com	15 kHz SCS: C _{SRS} = 11, B _{SRS} =0, for 40 RB 30 kHz SCS: C _{SRS} = 21, B _{SRS} =0, for 80 RB

Note 1. The transmission of SRS is optional. And the transmission comb and SRS periodic are configured as $K_{TC} = 2$, and $T_{SRS} = 10$ respectively.

8.2.5.1 Minimum requirements

The throughput shall be \geq 70% of the maximum throughput of the reference measurement channel as specified in Annex A for the moving UE at the SNR given in table 8.2.5.1-1 for mapping type A and table 8.2.5.1-2 for mapping type B respectively.

Table 8.2.5.1-1 Minimum requirements for UL timing adjustment with mapping type A

Number of TX antennas	Number of RX antennas	Cyclic prefix	Channel Bandwidth [MHz]	SCS [kHz]	Moving propagation conditions and correlation matrix (Annex G)	FRC (Annex A)	SNR [dB]
1	2	Normal	10	15	Scenario Y	G-FR1-A4-29	8.5
ı	2	Nomiai	40	30	Scenario Y	G-FR1-A4-30	8.4

Table 8.2.5.1-2 Minimum requirements for UL timing adjustment with mappying type B

Number of TX antennas	Number of RX antennas	Cyclic prefix	Channel Bandwidth [MHz]	SCS [kHz]	Moving propagation conditions and correlation matrix (Annex G)	FRC (Annex A)	SNR [dB]
4	2	Normal	10	15	Scenario Y	G-FR1-A4-29	8.5
'	2	Noma	40	30	Scenario Y	G-FR1-A4-30	8.4

8.3 Performance requirements for PUCCH

8.3.1 DTX to ACK probability

8.3.1.1 General

The DTX to ACK probability, i.e. the probability that ACK is detected when nothing was sent:

$$Prob(PUCCH DTX \rightarrow Ack bits) = \frac{\#(false \ ACK \ bits)}{\#(PUCCH \ DTX)*\#(ACK/NACK \ bits)}$$

where:

- #(false ACK bits) denotes the number of detected ACK bits.
- #(ACK/NACK bits) denotes the number of encoded bits per slot
- #(PUCCH DTX) denotes the number of DTX occasions

8.3.1.2 Minimum requirement

The DTX to ACK probability shall not exceed 1% for all PUCCH formats carrying ACK/NACK bits:

$$Prob(PUCCH\ DTX \rightarrow Ack\ bits) \leq 10^{-2}$$

8.3.2 Performance requirements for PUCCH format 0

8.3.2.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent.

Table 8.3.2.1-1: Test Parameters

Parameter	Test
Number of UCI information bits	1
Number of PRBs	1
First PRB prior to frequency hopping	0
Intra-slot frequency hopping	N/A for 1 symbol Enabled for 2 symbols
First PRB after frequency hopping	The largest PRB index – (Number of PRBs – 1)
Group and sequence hopping	neither
Hopping ID	0
Initial cyclic shift	0
First symbol	13 for 1 symbol 12 for 2 symbols

The transient period as specified in TS 38.101-1 [17] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

8.3.2.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.2.2-1 and in table 8.3.2.2-2.

Table 8.3.2.2-1: Minimum requirements for PUCCH format 0 and 15 kHz SCS

Number of TX	Number of RX antennas	Propagation conditions and correlation matrix (Annex	Number of OFDM	Channel bandwidth / SNR (dB)			
antennas		G)	symbols -	5 MHz	10 MHz	20 MHz	
1	2	TDLC300-100 Low	1	9.4	8.8	9.3	
			2	2.8	3.7	3.3	
1	4	TDLC300-100 Low	1	3.0	2.9	3.2	
			2	-1.0	-0.5	-0.8	
1	8	TDLC300-100 Low	1	-1.1	-1.1	-1.1	
i			2	-4.1	-3.9	-4.0	

Table 8.3.2.2-2: Minimum requirements for PUCCH format 0 and 30 kHz SCS

Number of TX antennas	Number of RX antennas	Propagation conditions and correlation matrix	Number of OFDM	С	В)		
antennas	antennas	(Annex G)	symbols	10 MHz	20 MHz	40 MHz	100 MHz
1	2	TDLC300-100 Low	1	9.8	9.8	9.5	9.2
			2	4.2	3.6	3.8	3.5
1	4	TDLC300-100 Low	1	3.4	3.4	3.0	3.3
			2	-0.3	-0.4	-0.5	-0.8
1	8	TDLC300-100 Low	1	-1.0	-1.0	-1.1	-1.0
			2	-3.7	-3.8	-4.0	-3.9

8.3.3 Performance requirements for PUCCH format 1

8.3.3.1 NACK to ACK requirements

8.3.3.1.1 General

The NACK to ACK detection probability is the probability that an ACK bit is falsely detected when an NACK bit was sent on the particular bit position, where the NACK to ACK detection probability is defined as follows:

Prob(PUCCH NACK
$$\rightarrow$$
 ACK bits) = $\frac{\#(\text{NACK bits decoded as ACK bits})}{\#(\text{Total NACK bits})}$,

where:

- $\hspace{2cm} \text{\#(Total NACK bits)}_{denotes \hspace{0.1cm} the \hspace{0.1cm} total \hspace{0.1cm} number \hspace{0.1cm} of \hspace{0.1cm} NACK \hspace{0.1cm} bits \hspace{0.1cm} transmitted$
- #(NACK bits decoded as ACK bits) denotes the number of NACK bits decoded as ACK bits at the receiver, i.e. the number of received ACK bits
- NACK bits in the definition do not contain the NACK bits which are mapped from DTX, i.e. NACK bits received when DTX is sent should not be considered.

Random codeword selection is assumed.

Table 8.3.3.1.1-1: Test Parameters

Parameter	Test
Number of information bits	2
Number of PRBs	1
Number of symbols	14
First PRB prior to frequency hopping	0
Intra-slot frequency hopping	enabled
First PRB after frequency hopping	The largest PRB index
First FRB after frequency hopping	- (nrofPRBs - 1)
Group and sequence hopping	neither
Hopping ID	0
Initial cyclic shift	0
First symbol	0
Index of orthogonal cover code	0
(timeDomainOCC)	U

The transient period as specified in TS 38.101-1 [17] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

8.3.3.1.2 Minimum requirements

The NACK to ACK probability shall not exceed 0.1% at the SNR given in table 8.3.3.1.2-1 and table 8.3.3.1.2-2.

Table 8.3.3.1.2-1: Minimum requirements for PUCCH format 1 with 15 kHz SCS

Number of TX	Number of RX			Channel bandwidth / SNR (dB)		
antennas	antennas		and correlation matrix (Annex G)	5 MHz	10 MHz	20 MHz
1	2	Normal	TDLC-300- 100 Low	-3.8	-3.6	-3.6
	4	Normal	TDLC-300- 100 Low	-8.4	-7.6	-8.4
	8	Normal	TDLC-300- 100 Low	-11.8	-11.4	-11.4

Table 8.3.3.1.2-2: Minimum requirements for PUCCH format 1 with 30 kHz SCS

Number of TX	Number of RX	Cyclic Prefix	Propagation conditions	Chann		idth (MHz) B)	/ SNR
antennas	antenna s		and correlation matrix (Annex G)	10 MHz	20 MHz	40 MHz	100 MHz
1	2	Normal	TDLC-300- 100 Low	-2.8	-3.3	-3.9	-3.5
	4	Normal	TDLC-300- 100 Low	-8.1	-8.3	-7.5	-8.0
	8	Normal	TDLC-300- 100 Low	-11.5	-11.2	-11.6	-11.3

8.3.3.2 ACK missed detection requirements

8.3.3.2.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent. The test parameters in table 8.3.3.1.1-1 are configured.

The transient period as specified in TS 38.101-1 [17] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the centre, i.e. intra-slot frequency hopping is enabled.

8.3.3.2.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.3.2.2-1 and in table 8.3.3.2.2-2.

Table 8.3.3.2.2-1: Minimum requirements for PUCCH format 1 with 15 kHz SCS

Number of TX	Number of RX	Cyclic Prefix	Propagation conditions	Channe	el bandwidth / SNR (dB)		
antennas	antennas		and correlation matrix (Annex G)	5 MHz	10 MHz	20 MHz	
1	2	Normal	TDLC-300- 100 Low	-5.0	-4.4	-5.0	
	4	Normal	TDLC-300- 100 Low	-8.6	-8.2	-8.5	
	8	Normal	TDLC-300- 100 Low	-11.6	-11.5	-11.5	

Table 8.3.3.2.2-2: Minimum requirements for PUCCH format 1 with 30 kHz SCS

Number of TX	Number of RX	Cyclic Prefix	Propagation conditions	Chann		idth (MHz) B)	/ SNR
antennas	antenna s		and correlation matrix (Annex G)	10 MHz	20 MHz	40 MHz	100 MHz
1	2	Normal	TDLC-300- 100 Low	-3.9	-4.4	-4.4	-4.2
	4	Normal	TDLC-300- 100 Low	-8.0	-8.1	-8.4	-8.3
	8	Normal	TDLC-300- 100 Low	-11.4	-11.4	-11.4	-11.4

8.3.4 Performance requirements for PUCCH format 2

8.3.4.1 ACK missed detection requirements

8.3.4.1.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent.

The ACK missed detection requirement only applies to the PUCCH format 2 with 4 UCI bits.

Table 8.3.4.1.1-1: Test Parameters

Parameter	Value
Modulation order	QSPK
First PRB prior to frequency hopping	0
Intra-slot frequency hopping	N/A
First PRB after frequency hopping	The largest PRB index – (Number of PRBs – 1)
Number of PRBs	4
Number of symbols	1
The number of UCI information bits	4
First symbol	13
DM-RS sequence generation	N _{ID} ⁰ =0

The transient period as specified in TS 38.101-1 [17] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC center, i.e. intra-slot frequency hopping is enabled.

8.3.4.1.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.4.1.2-1 and table 8.3.4.1.2-2 for 4UCI bits.

Table 8.3.4.1.2-1: Minimum requirements for PUCCH format 2 with 15 kHz SCS

Number of	Number of	Cyclic	Propagation	Channel	bandwidth / SN	IR (dB)
TX antennas	RX antennas	Prefix	conditions and correlation matrix (Annex G)	5 MHz	10 MHz	20 MHz
	2	Normal	TDLC300-100 Low	5.8	5.6	5.9
1	4	Normal	TDLC300-100 Low	0.4	0.5	0.3
	8	Normal	TDLC300-100 Low	-3.5	-3.5	-3.5

Table 8.3.4.1.2-2: Minimum requirements for PUCCH format 2 with 30 kHz SCS

Number of	Number of	Cyclic	clic Propagation		Channel bandwidth / SNR (dB)					
TX antennas	RX antennas	Prefix	conditions and correlation matrix (Annex G)	10MHz	20MHz	40MHz	100MHz			
	2	Normal	TDLC300-100 Low	5.5	5.6	5.5	5.7			
1	4	Normal	TDLC300-100 Low	0.3	0.2	0.3	0.4			
	8	Normal	TDLC300-100 Low	-3.6	-3.6	-3.5	-3.3			

8.3.4.2 UCI BLER performance requirements

8.3.4.2.1 General

The UCI block error probability (BLER) is defined as the probability of incorrectly decoding the UCI information when the UCI information is sent. The UCI information does not contain CSI part 2.

The transient period as specified in TS 38.101-1 [17] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

The UCI block error probability performance requirement only applies to the PUCCH format 2 with 22 UCI bits.

Table 8.3.4.2.1-1: Test Parameters

Parameter	Value
Modulation order	QSPK
First PRB prior to frequency hopping	0
Intra-slot frequency hopping	enabled
Frist PRB after frequency hopping	The largest PRB index – (Number of PRBs – 1)
Number of PRBs	9
Number of symbols	2
The number of UCI information bits	22
First symbol	12
DM-RS sequence generation	$N_{ID}^0=0$

8.3.4.2.2 Minimum requirements

The UCI block error probability shall not exceed 1% at the SNR given in table 8.3.4.2.2-1 and table 8.3.4.2.2-2 for 22 UCI bits.

Table 8.3.4.2.2-1: Minimum requirements for PUCCH format 2 with 15 kHz SCS

Number of	of Number of Cyclic Propagation		Propagation	Channel bandwidth / SNR (dB)			
TX antennas	RX antennas	Prefix	conditions and correlation matrix (Annex G)	5 MHz	10 MHz	20 MHz	
	2	Normal	TDLC300-100 Low	0.2	0.8	1.2	
1	4	Normal	TDLC300-100 Low	-3.6	-3.2	-3.2	
	8	Normal	TDLC300-100 Low	-6.8	-6.7	-6.8	

Table 8.3.4.2.2-2: Minimum requirements for PUCCH format 2 with 30 kHz SCS

Number of	Number of	Cyclic	Propagation	Chai	Channel bandwidth / SNR (dB)				
TX antennas	RX antennas	Prefix	conditions and correlation matrix (Annex G)	10MHz	20MHz	40MHz	100MHz		
	2	Normal	TDLC300-100 Low	0.5	1.1	0.4	0.3		
1	4	Normal	TDLC300-100 Low	-3.3	-2.9	-3.3	-3.4		
	8	Normal	TDLC300-100 Low	-5.8	-5.8	-6.7	-5.9		

8.3.5 Performance requirements for PUCCH format 3

8.3.5.1 General

The performance is measured by the required SNR at UCI block error probability not exceeding 1%.

The UCI block error probability is defined as the conditional probability of incorrectly decoding the UCI information when the UCI information is sent. The UCI information does not contain CSI part 2.

The transient period as specified in TS 38.101-1 [17] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the centre, i.e. intra-slot frequency hopping is enabled.

Table 8.3.5.1-1: Test Parameters

Parameter	Test 1	Test 2	
Modulation order	QP	SK	
First PRB prior to frequency	0		
hopping	,	,	
Intra-slot frequency hopping	ena	bled	
First PRB after frequency		PRB index –	
hopping	(Number of PRBs – 1)		
Group and sequence	neither		
hopping	1101	uici	
Hopping ID	()	
Number of PRBs	1	3	
Number of symbols	14	4	
The number of UCI	16	16	
information bits	10	10	
First symbol	0	0	

8.3.5.2 Minimum requirements

The UCI block error probability shall not exceed 1% at the SNR given in Table 8.3.5.2-1 and Table 8.3.5.2-2.

Table 8.3.5.2-1: Minimum requirements for PUCCH format 3 with 15 kHz SCS

Test Number			Cyclic Prefix	Propagation conditions	Additional DM-RS	Channe	l bandwidth (dB)	n / SNR
	antennas	antennas		and correlation matrix (Annex G)	configuratio n	5 MHz	10 MHz	20 MHz
1	1	2	Normal	TDLC300- 100 Low	No additional DM-RS	0.2	1.1	0.3
					Additional DM-RS	-0.1	0.5	-0.1
		4	Normal	TDLC300- 100 Low	No additional DM-RS	-3.8	-3.3	-3.8
					Additional DM-RS	-4.3	-4.0	-4.0
		8	Normal	TDLC300- 100 Low	No additional DM-RS	-7.0	-6.7	-6.9
					Additional DM-RS	-7.7	-7.5	-7.7
2	1	2	Normal	TDLC300- 100 Low	No additional DM-RS	1.4	2.2	2.0
		4	Normal	TDLC300- 100 Low	No additional DM-RS	-3.1	-2.5	-2.5
		8	Normal	TDLC300- 100 Low	No additional DM-RS	-6.5	-6.0	-6.2

Table 8.3.5.2-2: Minimum requirements for PUCCH format 3 with 30 kHz SCS

Test	Number	Number	Cyclic	Propagation	Additional	Channel bandwidth / SNR (d			(dB)
Numbe r	of TX antennas	of RX antenna s	Prefix	conditions and correlation matrix (Annex G)	DM-RS configuratio n	10 MHz	20 MHz	40 MHz	100 MHz
1	1	2	Normal	TDLC300-100 Low	No additional DM-RS	0.9	0.6	0.6	0.9
					Additional DM-RS	0.5	0.3	0.0	0.1
		4	Normal	TDLC300-100 Low	No additional DM-RS	-3.1	-3.4	-3.2	-3.5
					Additional DM-RS	-3.7	-4.1	-4.0	-4.2
		8	Normal	TDLC300-100 Low	No additional DM-RS	-6.6	-6.7	-6.8	-6.8
					Additional DM-RS	-7.5	-7.6	-7.6	-7.7
2	1	2	Normal	TDLC300-100 Low	No additional DM-RS	1.8	2.0	2.0	1.5
		4	Normal	TDLC300-100 Low	No additional DM-RS	-2.9	-3.0	-2.4	-3.0
		8	Normal	TDLC300-100 Low	No additional DM-RS	-6.4	-6.0	-6.4	-6.2

8.3.6 Performance requirements for PUCCH format 4

8.3.6.1 General

The performance is measured by the required SNR at UCI block error probability not exceeding 1%.

The UCI block error probability is defined as the conditional probability of incorrectly decoding the UCI information when the UCI information is sent. The UCI information does not contain CSI part 2.

The transient period as specified in TS 38.101-1 [17] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the centre, i.e. intra-slot frequency hopping is enabled.

Table 8.3.6.1-1: Test parameters

Parameter	Value
Modulation order	QPSK
First PRB prior to frequency	0
hopping	O
Number of PRBs	1
Intra-slot frequency hopping	enabled
First PRB after frequency	The largest PRB index –
hopping	(Number of PRBs – 1)
Group and sequence hopping	neither
Hopping ID	0
Number of symbols	14
The number of UCI information	22
bits	22
First symbol	0
Length of the orthogonal cover	n2
code	112
Index of the orthogonal cover	n0
code	110

8.3.6.2 Minimum requirement

The UCI block error probability shall not exceed 1% at the SNR given in Table 8.3.6.2-1 and Table 8.3.6.2-2.

Table 8.3.6.2-1: Required SNR for PUCCH format 4 with 15 kHz SCS

Number of TX	Number of RX	Cyclic Prefix	Propagation conditions	Additional DM-RS	Channel bandwidth / SNI (dB)		/SNR
antennas	antennas		and correlation matrix (Annex G)	configuratio n	5 MHz	10 MHz	20 MHz
1	2	Normal	TDLC300- 100 Low	No additional DM-RS	1.8	2.6	2.2
				Additional DM-RS	1.6	2.4	1.8
	4	Normal	TDLC300- 100 Low	No additional DM-RS	-2.3	-1.9	-2.2
				Additional DM-RS	-2.9	-2.6	-2.7
	8	Normal	TDLC300- 100 Low	No additional DM-RS	-5.9	-5.7	-5.8
				Additional DM-RS	-6.6	-6.4	-6.3

Additional Channel bandwidth / SNR (dB) Number Number Cyclic **Propagation** Prefix conditions DM-RS of TX of RX 10 20 40 MHz 100 configuratio antennas antenna and MHz MHz MHz correlation s n matrix (Annex G) 2 TDLC300-100 3.1 2.8 3.1 2.8 1 Normal No additional Low DM-RS Additional 2.8 2.3 3.1 2.2 DM-RS TDLC300-100 4 Normal No -1.7 -1.9 -1.7 -2.1 Low additional DM-RS Additional -2.0 -2.5 -2.5-2.4 DM-RS TDLC300-100 8 Normal No -5.6 -5.5 -5.5 -5.5 additional Low DM-RS -6.2 -6.4 Additional -6.1 -6.2 DM-RS

Table 8.3.6.2-2: Required SNR for PUCCH format 4 with 30 kHz SCS

8.3.7 Performance requirements for multi-slot PUCCH

- 8.3.7.1 General
- 8.3.7.2 Performance requirements for multi-slot PUCCH format 1
- 8.3.7.2.1 NACK to ACK requirements
- 8.3.7.2.1.1 General

The NACK to ACK detection probability is the probability that an ACK bit is falsely detected when an NACK bit was sent on the particular bit position, where the NACK to ACK detection probability is defined as follows:

Prob(PUCCH NACK
$$\rightarrow$$
 ACK bits) = $\frac{\#(\text{NACK bits decoded as ACK bits})}{\#(\text{Total NACK bits})}$,

where:

- $\hbox{$\stackrel{$}{_{}}$ $\#(Total\ NACK\ bits)$ denotes the total number of NACK\ bits\ transmitted}$
- #(NACK bits decoded as ACK bits) denotes the number of NACK bits decoded as ACK bits at the receiver, i.e. the number of received ACK bits
- NACK bits in the definition do not contain the NACK bits which are mapped from DTX, i.e. NACK bits received when DTX is sent should not be considered.

Random codeword selection is assumed.

Table 8.3.7.2.1.1-1: Test Parameters for multi-slot PUCCH format 1

Parameter	Test
Number of information bits	2
Number of PRBs	1
Number of symbols	14
First PRB prior to frequency hopping	0
Intra-slot frequency hopping	disabled
Inter-slot frequency hopping	enabled
First PRB after frequency hopping	The largest PRB index
First FRB after frequency hopping	– (nrofPRBs – 1)
Group and sequence hopping	neither
Hopping ID	0
Initial cyclic shift	0
First symbol	0
Index of orthogonal cover code	0
(timeDomainOCC)	U
Number of slots for PUCCH repetition	2

8.3.7.2.1.2 Minimum requirements

The multi-slot NACK to ACK probability shall not exceed 0.1% at the SNR given in table 8.3.7.2.1.2-1.

Table 8.3.7.2.1.2-1: Minimum requirements for multi-slot PUCCH format 1 with 30kHz SCS

lumber of TX ntennas	Number of RX antennas	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB) 40 MHz
1	2	Normal	TDLC-300-100 Low	-6.3

8.3.7.2.2 ACK missed detection requirements

8.3.7.2.2.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent. The test parameters in table 8.3.7.2.1.1-1 are configured.

8.3.7.2.2.2 Minimum requirements

The multi-slot ACK missed detection probability shall not exceed 1% at the SNR given in table 8.3.7.2.2.2-1.

Table 8.3.7.2.2.2-1: Minimum requirements for multi-slot PUCCH format 1 with 30kHz SCS

Number of TX antennas	Number of RX antenna s	Cyclic Prefix	Propagation conditions and correlation matrix (Annex G)	Channel bandwidth / SNR (dB) 40 MHz
1	2	Normal	TDLC-300-100 Low	-7.6

8.4 Performance requirements for PRACH

8.4.1 PRACH False alarm probability

8.4.1.1 General

The false alarm requirement is valid for any number of receive antennas, for any channel bandwidth.

The false alarm probability is the conditional total probability of erroneous detection of the preamble (i.e. erroneous detection from any detector) when input is only noise.

8.4.1.2 Minimum requirement

The false alarm probability shall be less than or equal to 0.1%.

8.4.2 PRACH detection requirements

8.4.2.1 General

The probability of detection is the conditional probability of correct detection of the preamble when the signal is present. There are several error cases – detecting different preamble than the one that was sent, not detecting a preamble at all or correct preamble detection but with the wrong timing estimation. For AWGN and TDLC300-100, a timing estimation error occurs if the estimation error of the timing of the strongest path is larger than the time error tolerance given in Table 8.4.2.1-1.

The performance requirements for high speed train (table 8.4.23-1 to 8.4.2.3-4) are optional.

Table 8.4.2.1-1: Time error tolerance for AWGN and TDLC300-100

PRACH	PRACH SCS	Time error tolerance	
preamble	(kHz)	AWGN	TDLC300-100
0	1.25	1.04 us	2.55 us
A1, A2, A3, B4,	15	0.52 us	2.03 us
C0, C2	30	0.26 us	1.77 us

The test preambles for normal mode are listed in table A.6-1 and the test parameter msg1-FrequencyStart is set to 0. The test preambles for high speed train restricted set type A are listed in A.6-3 and the test preambles for high speed train restricted set type B are listed in A.6-4. The test parameter msg1-FrequencyStart for high speed train is set to 0.

8.4.2.2 Minimum requirements for Normal Mode

The probability of detection shall be equal to or exceed 99% for the SNR levels listed in Tables 8.4.2.2-1 to 8.4.2.2-3.

Table 8.4.2.2-1: PRACH missed detection requirements for Normal Mode, 1.25 kHz SCS

Number of TX	Number of RX	Propagation conditions and	Frequency offset	SNR (dB)
antennas	antennas	correlation matrix (Annex G)		Burst format 0
1	2	AWGN	0	-14.5
-	_	TDLC300-100 Low	400 Hz	-6.6
	4	AWGN	0	-16.7
		TDLC300-100 Low	400 Hz	-11.9
	8	AWGN	0	-18.9
		TDLC300-100 Low	400 Hz	-15.8

Table 8.4.2.2-2: PRACH missed detection requirements for Normal Mode, 15 kHz SCS

Number	Number	Propagation	Frequency			SNR	(dB)		
of TX antennas	of RX antennas	conditions and correlation matrix (Annex G)	offset	Burst format A1	Burst format A2	Burst format A3	Burst format B4	Burst format C0	Burst format C2
1	2	AWGN	0	-9.3	-12.6	-14.2	-16.8	-6.3	-12.5
		TDLC300-100 Low	400 Hz	-2.1	-4.8	-6.6	-8.8	0.8	-4.9
	4	AWGN	0	-11.6	-14.3	-16.0	-19.0	-8.7	-14.1
		TDLC300-100 Low	400 Hz	-7.3	-10.3	-11.7	-13.8	-4.3	-10.2
	8	AWGN	0	-13.8	-16.7	-18.2	-21.2	-11.1	-16.6
		TDLC300-100 Low	400 Hz	-11.0	-13.9	-15.2	-17.3	-8.1	-13.9

Table 8.4.2.2-3: PRACH missed detection requirements for Normal Mode, 30 kHz SCS

Number	Number	Propagation	on Frequency SNR (dB)						
of TX antennas	of RX antennas	conditions and correlation matrix (Annex G)	offset	Burst format A1	Burst format A2	Burst format A3	Burst format B4	Burst format C0	Burst format C2
1	2	AWGN	0	-9.1	-12.0	-13.8	-16.5	-6.1	-11.9
		TDLC300-100 Low	400 Hz	-2.8	-5.7	-7.4	-9.9	0.1	-5.6
	4	AWGN	0	-11.4	-14.2	-15.9	-19.0	-8.6	-14.1
		TDLC300-100 Low	400 Hz	-7.2	-10.4	-12.0	-14.5	-4.5	-10.4
	8	AWGN	0	-13.7	-16.6	-18.1	-21.1	-11.0	-16.5
		TDLC300-100 Low	400 Hz	-10.7	-13.7	-15.1	-17.6	-7.8	-13.7

Table 8.4.2.2-4: VoidTable 8.4.2.2-5: Void

8.4.2.3 Minimum requirements for high speed train

The probability of detection shall be equal to or exceed 99% for the SNR levels listed in Tables 8.4.2.3-1 to 8.4.2.3-4

Table 8.4.2.3-1: PRACH missed detection requirements for high speed train, burst format 0, restricted set type A, 1.25 kHz SCS

Number of TX antennas	Number of RX antennas	Propagation conditions and correlation matrix (Annex G)	Frequency offset	SNR (dB)
				Burst format 0
1	2	AWGN	625 Hz	-12.0
		AWGN	1340 Hz	-13.8
	4	AWGN	625 Hz	-14.5
		AWGN	1340 Hz	-16.2
	8	AWGN	625 Hz	-16.5
		AWGN	1340 Hz	-18.4

Table 8.4.2.3-2: PRACH missed detection requirements for high speed train, burst format 0, restricted set type B, 1.25 kHz SCS

Number of TX antennas	Number of RX antennas	Propagation conditions and correlation matrix (Annex G)	Frequency offset	SNR (dB) Burst format 0
1	2	AWGN	625 Hz	-11.6
		AWGN	2334 Hz	-13.1
	4	AWGN AWGN	625 Hz 2334 Hz	-14.0 -15.4
	8	AWGN AWGN	625 Hz 2334 Hz	-16.3 -17.4

Table 8.4.2.3-3: PRACH missed detection requirements for high speed train, 15 kHz SCS

Number of	Number of	Propagation	Frequency		SNR (dB)	
TX antennas	RX antennas	conditions and correlation matrix (Annex G)	offset	Burst format A2	Burst format B4	Burst format C2
1	2	AWGN	1740 Hz	-11.3	-14.3	-11.1
	4	AWGN	1740 Hz	-13.5	-16.7	-13.4
	8	AWGN	1740 Hz	-15.6	-18.2	-15.5

Table 8.4.2.3-4: PRACH missed detection requirements for high speed train, 30 kHz SCS

Number of	Number of	Propagation	Frequency		SNR (dB)	
TX antennas	RX antennas	conditions and correlation matrix (Annex G)	offset	Burst format A2	Burst format B4	Burst format C2
1	2	AWGN	3334 Hz	-11.2	-14.6	-11.0
	4	AWGN	3334 Hz	-13.4	-16.7	-13.4
	8	AWGN	3334 Hz	-15.4	-18.4	-15.4

9 Radiated transmitter characteristics

9.1 General

Radiated transmitter characteristics requirements apply on the *BS type 1-H*, *BS type 1-O*, or *BS type 2-O* including all its functional components active and for all foreseen modes of operation of the BS unless otherwise stated.

9.2 Radiated transmit power

9.2.1 General

BS type 1-H, BS type 1-O and BS type 2-O are declared to support one or more beams, as per manufacturer's declarations specified in TS 38.141-2 [6]. Radiated transmit power is defined as the EIRP level for a declared beam at a specific beam peak direction.

For each beam, the requirement is based on declaration of a beam identity, *reference beam direction pair*, beamwidth, *rated beam EIRP*, *OTA peak directions set*, the *beam direction pairs* at the maximum steering directions and their associated *rated beam EIRP* and beamwidth(s).

For a declared beam and *beam direction pair*, the *rated beam EIRP* level is the maximum power that the base station is declared to radiate at the associated *beam peak direction* during the *transmitter ON period*.

For each *beam peak direction* associated with a *beam direction pair* within the *OTA peak directions set*, a specific *rated beam EIRP* level may be claimed. Any claimed value shall be met within the accuracy requirement as described below. *Rated beam EIRP* is only required to be declared for the *beam direction pairs* subject to conformance testing as detailed in TS 38.141-2 [6].

- NOTE 1: *OTA peak directions set* is set of *beam peak directions* for which the EIRP accuracy requirement is intended to be met. The *beam peak directions* are related to a corresponding contiguous range or discrete list of *beam centre directions* by the *beam direction pairs* included in the set.
- NOTE 2: A *beam direction pair* is data set consisting of the *beam centre direction* and the related *beam peak direction*.
- NOTE 3: A declared EIRP value is a value provided by the manufacturer for verification according to the conformance specification declaration requirements, whereas a claimed EIRP value is provided by the manufacturer to the equipment user for normal operation of the equipment and is not subject to formal conformance testing.

For *operating bands* where the supported *fractional bandwidth* (FBW) is larger than 6%, two rated carrier EIRP may be declared by manufacturer:

- P_{rated,c,FBWlow} for lower supported frequency range, and
- P_{rated,c,FBWhigh} for higher supported frequency range.

For frequencies in between F_{FBWlow} and F_{FBWhigh} the rated carrier EIRP is:

- $P_{\text{rated,c,FBWlow}}$, for the carrier whose carrier frequency is within frequency range $F_{\text{FBWlow}} \leq f < (F_{\text{FBWlow}} + F_{\text{FBWhigh}}) / 2$,
- $P_{rated,c,FBWhigh}$, for the carrier whose carrier frequency is within frequency range $(F_{FBWhigh}) / 2 \le f \le F_{FBWhigh}$.

9.2.2 Minimum requirement for BS type 1-H and BS type 1-O

For each declared beam, in normal conditions, for any specific beam peak direction associated with a beam direction pair within the OTA peak directions set, a manufacturer claimed EIRP level in the corresponding beam peak direction shall be achievable to within ± 2.2 dB of the claimed value.

For *BS type 1-O* only, for each declared beam, in extreme conditions, for any specific *beam peak direction* associated with a *beam direction pair* within the *OTA peak directions set*, a manufacturer claimed EIRP level in the corresponding *beam peak direction* shall be achievable to within ±2.7 dB of the claimed value.

Normal and extreme conditions are defined in TS 38.141-2, annex B [6].

In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the range of conditions defined as normal.

9.2.3 Minimum requirement for BS type 2-0

For each declared beam, in normal conditions, for any specific beam peak direction associated with a beam direction pair within the OTA peak directions set, a manufacturer claimed EIRP level in the corresponding beam peak direction shall be achievable to within \pm 3.4 dB of the claimed value.

For each declared beam, in extreme conditions, for any specific *beam peak direction* associated with a *beam direction* pair within the *OTA peak directions set*, a manufacturer claimed EIRP level in the corresponding *beam peak direction* shall be achievable to within ±4.5 dB of the claimed value.

Normal and extreme conditions are defined in TS 38.141-2, annex B [6].

In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the range of conditions defined as normal.

9.3 OTA base station output power

9.3.1 General

OTA BS output power is declared as the TRP radiated requirement, with the output power accuracy requirement defined at the RIB during the *transmitter ON period*. TRP does not change with beamforming settings as long as the *beam peak direction* is within the *OTA peak directions set*. Thus the TRP accuracy requirement must be met for any beamforming setting for which the *beam peak direction* is within the *OTA peak directions set*.

The BS rated carrier TRP output power for BS type 1-O shall be within limits as specified in table 9.3.1-1.

Table 9.3.1-1: BS rated carrier TRP output power limits for BS type 1-O

BS class	P _{rated,c,TRP}
Wide Area BS	(note)
Medium Range BS	≤ + 47 dBm
Local Area BS	≤ + 33 dBm
NOTE: There is no upp	er limit for the P _{rated,c,TRP} of the Wide Area Base Station.

There is no upper limit for the rated carrier TRP output power of BS type 2-O.

Despite the general requirements for the BS output power described in clauses 9.3.2 - 9.3.3, additional regional requirements might be applicable.

NOTE: In certain regions, power limits corresponding to BS classes may apply for BS type 2-O.

9.3.2 Minimum requirement for BS type 1-O

In normal conditions, the BS type 1-O maximum carrier TRP output power, $P_{max,c,TRP}$ measured at the RIB shall remain within ± 2 dB of the rated carrier TRP output power $P_{rated,c,TRP}$, as declared by the manufacturer.

Normal conditions are defined in TS 38.141-1, annex B [6].

9.3.3 Minimum requirement for BS type 2-0

In normal conditions, the BS type 2-O maximum carrier TRP output power, $P_{max,c,TRP}$ measured at the RIB shall remain within ± 3 dB of the rated carrier TRP output power $P_{rated,c,TRP}$, as declared by the manufacturer.

Normal conditions are defined in TS 38.141-2, annex B [6].

9.3.4 Additional requirements (regional)

In certain regions, additional regional requirements may apply.

9.4 OTA output power dynamics

9.4.1 General

The requirements in clause 9.4 apply during the *transmitter ON period*. Transmit signal quality (as specified in clause 9.6) shall be maintained for the output power dynamics requirements.

The OTA output power requirements are *directional requirements* and apply to the *beam peak directions* over the *OTA peak directions set*.

9.4.2 OTA RE power control dynamic range

9.4.2.1 General

The OTA RE power control dynamic range is the difference between the power of an RE and the average RE power for a BS at maximum output power ($P_{max,c,EIRP}$) for a specified reference condition.

This requirement shall apply at each RIB supporting transmission in the operating band.

9.4.2.2 Minimum requirement for BS type 1-0

The OTA RE power control dynamic range is specified the same as the conducted RE power control dynamic range requirement for BS type 1-C and BS type 1-H in table 6.3.2.2-1.

9.4.3 OTA total power dynamic range

9.4.3.1 General

The OTA total power dynamic range is the difference between the maximum and the minimum transmit power of an OFDM symbol for a specified reference condition.

This requirement shall apply at each RIB supporting transmission in the operating band.

NOTE 1: The upper limit of the OTA total power dynamic range is the BS maximum carrier EIRP (Pmax,c,EIRP) when transmitting on all RBs. The lower limit of the OTA total power dynamic range is the average EIRP for single RB transmission in the same direction using the same beam. The OFDM symbol carries PDSCH and not contain RS or SSB.

9.4.3.2 Minimum requirement for BS type 1-0

OTA total power dynamic range minimum requirement for *BS type 1-O* is specified such as for each NR carrier it shall be larger than or equal to the levels specified for the conducted requirement for *BS type 1-C* and *BS type 1-H* in table 6.3.3.2-1.

9.4.3.3 Minimum requirement for BS type 2-0

OTA total power dynamic range minimum requirement for *BS type 2-O* is specified such as for each NR carrier it shall be larger than or equal to the levels specified in table 9.4.3.3-1.

Table 9.4.3.3-1: Minimum requirement for BS type 2-0 total power dynamic range

SCS (kHz)	OTA total power dynamic range (dB)					
303 (KHZ)	50 MHz	100 MHz	200 MHz	400 MHz		
60	18.1	21.2	24.2	N/A		
120	15.0	18.1	21.2	24.2		

9.5 OTA transmit ON/OFF power

9.5.1 General

OTA transmit ON/OFF power requirements apply only to TDD operation of NR BS.

9.5.2 OTA transmitter OFF power

9.5.2.1 General

OTA transmitter OFF power is defined as the mean power measured over 70/N μ s filtered with a square filter of bandwidth equal to the *transmission bandwidth configuration* of the BS (BW_{Config}) centred on the assigned channel frequency during the *transmitter OFF period*. N = SCS/15, where SCS is Sub Carrier Spacing in kHz.

For BS supporting intra-band contiguous CA, the OTA transmitter OFF power is defined as the mean power measured over 70/N us filtered with a square filter of bandwidth equal to the *Aggregated BS Channel Bandwidth* BW_{Channel_CA} centred on $(F_{edge,high}+F_{edge,low})/2$ during the *transmitter OFF period*. N = SCS/15, where SCS is the smallest supported Sub Carrier Spacing in kHz in the *Aggregated BS Channel Bandwidth*.

For *BS type 1-O*, the transmitter OFF power is defined as the output power at the *co-location reference antenna* conducted output(s). For *BS type 2-O* the transmitter OFF power is defined as TRP.

For *multi-band RIBs* and *single band RIBs* supporting transmission in multiple bands, the requirement is only applicable during the *transmitter OFF period* in all supported *operating bands*.

9.5.2.2 Minimum requirement for BS type 1-0

The total power from all co-location reference antenna conducted output(s) shall be less than -106 dBm/MHz.

9.5.2.3 Minimum requirement for BS type 2-0

The OTA transmitter OFF TRP spectral density for BS type 2-O shall be less than -36 dBm/MHz.

9.5.3 OTA transient period

9.5.3.1 General

The OTA *transmitter transient period* is the time period during which the transmitter is changing from the transmitter *OFF period* to the *transmitter ON period* or vice versa. The *transmitter transient period* is illustrated in figure 6.4.2.1-1.

This requirement shall be applied at each RIB supporting transmission in the operating band.

9.5.3.2 Minimum requirement for BS type 1-0

For *BS type 1-O*, the OTA *transmitter transient period* shall be shorter than the values listed in the minimum requirement table 9.5.3.2-1.

Table 9.5.3.2-1: Minimum requirement for the OTA transmitter transient period for BS type 1-0

Transition	Transient period length (µs)
OFF to ON	10
ON to OFF	10

9.5.3.3 Minimum requirement for BS type 2-0

For *BS type 2-O*, the OTA *transmitter transient period* shall be shorter than the values listed in the minimum requirement table 9.5.3.3-1.

Table 9.5.3.3-1: Minimum requirement for the OTA transmitter transient period for BS type 2-0

Transition	Transient period length (μs)
OFF to ON	3
ON to OFF	3

9.6 OTA transmitted signal quality

9.6.1 OTA frequency error

9.6.1.1 General

The requirements in clause 9.6.1 apply to the transmitter ON period.

OTA frequency error is the measure of the difference between the actual BS transmit frequency and the assigned frequency. The same source shall be used for RF frequency and data clock generation.

OTA frequency error requirement is defined as a *directional requirement* at the RIB and shall be met within the *OTA coverage range*.

9.6.1.2 Minimum requirement for BS type 1-0

For *BS type 1-O*, the modulated carrier frequency of each NR carrier configured by the BS shall be accurate to within the accuracy range given in table 6.5.1.2-1 observed over 1 ms.

9.6.1.3 Minimum requirement for BS type 2-0

For *BS type 2-O*, the modulated carrier frequency of each NR carrier configured by the BS shall be accurate to within the accuracy range given in table 9.6.1.3-1 observed over 1 ms.

Table 9.6.1.3-1: OTA frequency error minimum requirement

BS class	Accuracy
Wide Area BS	±0.05 ppm
Medium Range BS	±0.1 ppm
Local Area BS	±0.1 ppm

9.6.2 OTA modulation quality

9.6.2.1 General

Modulation quality is defined by the difference between the measured carrier signal and an ideal signal. Modulation quality can e.g. be expressed as Error Vector Magnitude (EVM). Details about how the EVM is determined are specified in Annex B for FR1 and Annex C for FR2.

OTA modulation quality requirement is defined as a *directional requirement* at the RIB and shall be met within the *OTA coverage range*.

9.6.2.2 Minimum Requirement for BS type 1-0

For *BS type 1-O*, the EVM levels of each NR carrier for different modulation schemes on PDSCH outlined in table 6.5.2.2-1 shall be met. Requirements shall be the same as clause 6.5.2.2 and follow EVM frame structure from clause 6.5.2.3.

9.6.2.3 Minimum Requirement for BS type 2-0

For *BS type* 2-O, the EVM levels of each NR carrier for different modulation schemes on PDSCH outlined in table 9.6.2.3-1 shall be met, following the EVM frame structure described in clause 9.6.2.3.1.

Modulation scheme for PDSCH Required EVM (%)

QPSK 17.5
16QAM 12.5

8

3.5

Table 9.6.2.3-1: EVM requirements for BS type 2-O carrier

9.6.2.3.1 EVM frame structure for measurement

64QAM

256QAM

EVM requirements shall apply for each NR carrier over all allocated resource blocks. Different modulation schemes listed in table 9.6.2.3-1 shall be considered for rank 1.

For NR, for all bandwidths, the EVM measurement shall be performed for each NR carrier over all allocated resource blocks and downlink subframes within 10 ms measurement periods. The boundaries of the EVM measurement periods need not be aligned with radio frame boundaries.

9.6.3 OTA time alignment error

9.6.3.1 General

This requirement shall apply to frame timing in MIMO transmission, carrier aggregation and their combinations.

Frames of the NR signals present in the radiated domain are not perfectly aligned in time. In relation to each other, the RF signals present in the radiated domain may experience certain timing differences.

The TAE is specified for a specific set of signals/transmitter configuration/transmission mode.

For a specific set of signals/transmitter configuration/transmission mode, the OTA Time Alignment Error (OTA TAE) is defined as the largest timing difference between any two different NR signals. The OTA time alignment error requirement is defined as a *directional requirement* at the RIB and shall be met within the *OTA coverage range*.

9.6.3.2 Minimum requirement for BS type 1-0

For MIMO transmission, at each carrier frequency, OTA TAE shall not exceed 65 ns.

For intra-band contiguous carrier aggregation, with or without MIMO, OTA TAE shall not exceed 260 ns.

For intra-band non-contiguous carrier aggregation, with or without MIMO, OTA TAE shall not exceed 3 µs.

For inter-band carrier aggregation, with or without MIMO, OTA TAE shall not exceed 3 µs.

Table 9.6.3.2-1: Void

Table 9.6.3.2-2: Void

Table 9.6.3.2-3: Void

9.6.3.3 Minimum requirement for BS type 2-0

For MIMO transmission, at each carrier frequency, OTA TAE shall not exceed 65 ns.

For intra-band contiguous carrier aggregation, with or without MIMO, OTA TAE shall not exceed 130 ns.

For intra-band non-contiguous carrier aggregation, with or without MIMO, OTA TAE shall not exceed 260 ns.

For inter-band carrier aggregation, with or without MIMO, OTA TAE shall not exceed 3 µs.

Table 9.6.3.3-1: Void

Table 9.6.3.3-2: Void

Table 9.6.3.3-3: Void

9.7 OTA unwanted emissions

9.7.1 General

Unwanted emissions consist of so-called out-of-band emissions and spurious emissions according to ITU definitions ITU-R SM.329 [2]. In ITU terminology, out of band emissions are unwanted emissions immediately outside the *BS channel bandwidth* resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emission, intermodulation products and frequency conversion products, but exclude out of band emissions.

The OTA out-of-band emissions requirement for the BS type 1-O and BS type 2-O transmitter is specified both in terms of Adjacent Channel Leakage power Ratio (ACLR) and operating band unwanted emissions (OBUE). The OTA Operating band unwanted emissions define all unwanted emissions in each supported downlink operating band plus the frequency ranges Δf_{OBUE} above and Δf_{OBUE} below each band. OTA Unwanted emissions outside of this frequency range are limited by an OTA spurious emissions requirement.

The maximum offset of the operating band unwanted emissions mask from the *operating band* edge is Δf_{OBUE} . The value of Δf_{OBUE} is defined in table 9.7.1-1 for *BS type 1-O* and *BS type 2-O* for the NR *operating bands*.

Table 9.7.1-1: Maximum offset Δf_{OBUE} outside the downlink operating band

BS type	Operating band characteristics	Δfobue (MHz)
DC tuno 1 O	F _{DL,high} – F _{DL,low} < 100 MHz	10
BS type 1-0	100 MHz ≤ $F_{DL,high} - F_{DL,low}$ ≤ 900 MHz	40
BS type 2-0	$F_{DL,high} - F_{DL,low} \le 4000 \text{ MHz}$	1500

The unwanted emission requirements are applied per cell for all the configurations. Requirements for OTA unwanted emissions are captured using TRP, *directional requirements* or co-location requirements as described per requirement.

There is in addition a requirement for occupied bandwidth.

9.7.2 OTA occupied bandwidth

9.7.2.1 General

The OTA occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $\beta/2$ of the total mean transmitted power. See also recommendation ITU-R SM.328 [3].

The value of $\beta/2$ shall be taken as 0.5%.

The OTA occupied bandwidth requirement shall apply during the *transmitter ON period* for a single transmitted carrier. The minimum requirement below may be applied regionally. There may also be regional requirements to declare the OTA occupied bandwidth according to the definition in the present clause.

The OTA occupied bandwidth is defined as a *directional requirement* and shall be met in the manufacturer's declared *OTA coverage range* at the RIB.

9.7.2.2 Minimum requirement for BS type 1-O and BS type 2-O

The OTA occupied bandwidth for each NR carrier shall be less than the *BS channel bandwidth*. For intra-band contiguous CA, the OTA occupied bandwidth shall be less than or equal to the *Aggregated BS Channel Bandwidth*.

9.7.3 OTA Adjacent Channel Leakage Power Ratio (ACLR)

9.7.3.1 General

OTA Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency. The measured power is TRP.

The requirement shall be applied per RIB during the transmitter ON period.

9.7.3.2 Minimum requirement for BS type 1-0

The ACLR (CACLR) absolute *basic limits* in table 6.6.3.2-2 + X, 6.6.3.2-2a + X (where X = 9 dB) or the ACLR (CACLR) *basic limit* in table 6.6.3.2-1, 6.6.3.2-2a or 6.6.3.2-3, whichever is less stringent, shall apply.

For a *RIB* operating in multi-carrier or contiguous CA, the ACLR requirements in clause 6.6.3.2 shall apply to *BS* channel bandwidths of the outermost carrier for the frequency ranges defined in table 6.6.3.2-1.For a RIB operating in non-contiguous spectrum, the ACLR requirement in clause 6.6.3.2 shall apply in sub-block gaps for the frequency ranges defined in table 6.6.3.2-2a, while the CACLR requirement in clause 6.6.3.2 shall apply in sub-block gaps for the frequency ranges defined in table 6.6.3.2-3.

For a *multi-band RIB*, the ACLR requirement in clause 6.6.3.2 shall apply in *Inter RF Bandwidth gaps* for the frequency ranges defined in table 6.6.3.2-2a, while the CACLR requirement in clause 6.6.3.2 shall apply in *Inter RF Bandwidth gaps* for the frequency ranges defined in table 6.6.3.2-3.

9.7.3.3 Minimum requirement for BS type 2-0

The OTA ACLR limit is specified in table 9.7.3.3-1.

The OTA ACLR absolute limit is specified in table 9.7.3.3-2.

The OTA ACLR (CACLR) absolute limit in table 9.7.3.3-2 or 9.7.3.3-4a or the ACLR (CACLR) limit in table 9.7.3.3-1, 9.7.3.3-3 or 9.7.3.3-4, whichever is less stringent, shall apply.

For a *RIB* operating in multi-carrier or contiguous CA, the OTA ACLR requirements in table 9.7.3.3-1 shall apply to *BS* channel bandwidths of the outermost carrier for the frequency ranges defined in the table. For a RIB operating in non-contiguous spectrum, the OTA ACLR requirement in table 9.7.3.3-3 shall apply in sub-block gaps for the frequency

ranges defined in the table, while the OTA CACLR requirement in table 9.7.3.3-4 shall apply in *sub-block gaps* for the frequency ranges defined in the table.

The CACLR in a *sub-block gap* is the ratio of:

- a) the sum of the filtered mean power centred on the assigned channel frequencies for the two carriers adjacent to each side of the *sub-block gap*, and
- b) the filtered mean power centred on a frequency channel adjacent to one of the respective *sub-block* edges.

The assumed filter for the adjacent channel frequency is defined in table 9.7.3.3-4 and the filters on the assigned channels are defined in table 9.7.3.3-5.

For operation in *non-contiguous spectrum*, the CACLR for NR carriers located on either side of the *sub-block gap* shall be higher than the value specified in table 9.7.3.3-4.

Table 9.7.3.3-1: BS type 2-O ACLR limit

BS channel bandwidth of lowest/highest carrier transmitted BW _{Channel} (MHz)	BS adjacent channel centre frequency offset below the lowest or above the highest carrier centre frequency transmitted	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit (dB)
50, 100, 200,	$BW_Channel$	NR of same BW	Square	28 (Note 3)
400		(Note 2)	(BW _{Config})	26 (Note 4)

NOTE 1: BW_{Channel} and BW_{Config} are the *BS channel bandwidth* and *transmission bandwidth configuration* of the *lowest/highest carrier* transmitted on the assigned channel frequency.

NOTE 2: With SCS that provides largest transmission bandwidth configuration (BW_{Config}).

NOTE 3: Applicable to bands defined within the frequency spectrum range of 24.25 – 33.4 GHz

NOTE 4: Applicable to bands defined within the frequency spectrum range of 37 – 52.6 GHz

Table 9.7.3.3-2: BS type 2-O ACLR absolute limit

BS class	ACLR absolute limit
Wide area BS	-13 dBm/MHz
Medium range BS	-20 dBm/MHz
Local area BS	-20 dBm/MHz

Table 9.7.3.3-3: BS type 2-O ACLR limit in non-contiguous spectrum

BS channel bandwidth of lowest/highest carrier transmitted (MHz)	Sub-block gap size (Wgap) where the limit applies (MHz)	BS adjacent channel centre frequency offset below or above the sub-block edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit
50, 100	W _{gap} ≥ 100 (Note 5) W _{gap} ≥ 250 (Note 6)	25 MHz	50 MHz NR (Note 2)	Square (BW _{Config})	28 (Note 3) 26 (Note 4)
200, 400	W _{gap} ≥ 400 (Note 6) W _{gap} ≥ 250 (Note 5)	100 MHz	200 MHz NR (Note 2)	Square (BW _{Config})	28 (Note 3) 26 (Note 4)

NOTE 1: BW_{Config} is the transmission bandwidth configuration of the assumed adjacent channel carrier.

NOTE 2: With SCS that provides largest transmission bandwidth configuration (BW_{Config}).

NOTE 3: Applicable to bands defined within the frequency spectrum range of 24.25 – 33.4 GHz.

NOTE 4: Applicable to bands defined within the frequency spectrum range of 37 – 52.6 GHz.

NOTE 5: Applicable in case the *BS channel bandwidth* of the NR carrier transmitted at the other edge of the gap is 50 or 100 MHz.

NOTE 6: Applicable in case the *BS channel bandwidth* of the NR carrier transmitted at the other edge of the gap is 200 or 400 MHz.

Table 9.7.3.3-4: BS type 2-O CACLR limit in non-contiguous spectrum

BS channel bandwidth of lowest/highest carrier transmitted (MHz)	Sub-block gap size (W _{gap}) where the limit applies (MHz)	BS adjacent channel centre frequency offset below or above the sub-block edge (inside the gap)	Assumed adjacent channel carrier	Filter on the adjacent channel frequency and corresponding filter bandwidth	CACLR limit
50, 100	50 ≤W _{gap} < 100 (Note 5)	25 MHz	50 MHz NR	Square (BW _{Config})	28 (Note 3)
30, 100	50 ≤W _{gap} < 250 (Note 6)	20 1411 12	(Note 2)	Square (BVVConfig)	26 (Note 4)
000 400	200 ≤W _{gap} < 400 (Note 6)	400 MH-	200 MHz NR	O THE STATE OF THE	28 (Note 3)
200, 400	200 ≤W _{gap} < 250 (Note 5)	100 MHz	(Note 2)	Square (BW _{Config})	26 (Note 4)

- NOTE 1: BW_{Config} is the transmission bandwidth configuration of the assumed adjacent channel carrier.
- NOTE 2: With SCS that provides largest transmission bandwidth configuration (BW config).
- NOTE 3: Applicable to bands defined within the frequency spectrum range of 24.25 33.4 GHz.
- NOTE 4: Applicable to bands defined within the frequency spectrum range of 37 52.6 GHz.
- NOTE 5: Applicable in case the *BS channel bandwidth* of the NR carrier transmitted at the other edge of the gap is 50 or 100 MHz
- NOTE 6: Applicable in case the *BS channel bandwidth* of the NR carrier transmitted at the other edge of the gap is 200 or 400 MHz.

Table 9.7.3.3-4a: BS type 2-O CACLR absolute limit

BS class	CACLR absolute limit
Wide area BS	-13 dBm/MHz
Medium range BS	-20 dBm/MHz
Local area BS	-20 dBm/MHz

Table 9.7.3.3-5: Filter parameters for the assigned channel

RAT of the carrier adjacent to the sub-block gap	Filter on the assigned channel frequency and corresponding filter bandwidth
NR	NR of same BW with SCS that provides largest transmission bandwidth configuration

9.7.4 OTA operating band unwanted emissions

9.7.4.1 General

The OTA limits for operating band unwanted emissions are specified as TRP per RIB unless otherwise stated.

9.7.4.2 Minimum requirement for BS type 1-0

Out-of-band emissions in FR1 are limited by OTA operating band unwanted emission limits. Unless otherwise stated, the operating band unwanted emission limits in FR1 are defined from Δf_{OBUE} below the lowest frequency of each supported downlink *operating band* up to Δf_{OBUE} above the highest frequency of each supported downlink *operating band*. The values of Δf_{OBUE} are defined in table 9.7.1-1 for the NR *operating bands*.

The requirements shall apply whatever the type of transmitter considered and for all transmission modes foreseen by the manufacturer's specification. For a *RIB* operating in multi-carrier or contiguous CA, the requirements apply to *BS* channel bandwidths of the outermost carrier for the frequency ranges defined in clause 6.6.4.1.

For a *RIB* operating in *non-contiguous spectrum*, the requirements shall apply inside any *sub-block gap* for the frequency ranges defined in clause 6.6.4.1.

For a *multi-band RIB*, the requirements shall apply inside any *Inter RF Bandwidth gap* for the frequency ranges defined in clause 6.6.4.1.

The OTA operating band unwanted emission requirement for BS type 1-O is that for each applicable basic limit in clause 6.6.4.2, the power of any unwanted emission shall not exceed an OTA limit specified as the basic limit + X, where X = 9 dB.

9.7.4.2.1 Additional requirements

9.7.4.2.1.1 Protection of DTT

In certain regions the following requirement may apply for protection of DTT. For *BS type 1-O* operating in Band n20, the level of emissions in the band 470-790 MHz, measured in an 8 MHz filter bandwidth on centre frequencies F_{filter} according to table 9.7.4.2.1.1-1, shall not exceed the maximum emission TRP level shown in the table. This requirement applies in the frequency range 470-790 MHz even though part of the range falls in the spurious domain.

Table 9.7.4.2.1.1-1: Declared emissions levels for protection of DTT

Case	Measurement filter centre frequency	Condition on BS maximum aggregate TRP / 10 MHz, PTRP_10MHz	Maximum level P _{TRP,N,MAX}	Measurement bandwidth		
A	NI*O - 000 MI I-	(NOTE)	0 dD	0.141.1-		
A: for DTT frequencies where	N*8 + 306 MHz, 21 ≤ N ≤ 60	P _{TRP_10MHz} ≥ 59 dBm	0 dBm	8 MHz		
broadcasting is	N*8 + 306 MHz,	36 ≤ P _{TRP_10MHz} < 59 dBm	Р _{ТRР_10МНz} – 59 dBm	8 MHz		
protected	21 ≤ N ≤ 60	D 00 dD	00 -ID	0.141.1-		
	N*8 + 306 MHz, 21 ≤ N ≤ 60	P _{TRP_10MHz} < 36 dBm	-23 dBm	8 MHz		
B: for DTT	N*8 + 306 MHz,	P _{TRP_10MHz} ≥ 59 dBm	10 dBm	8 MHz		
frequencies where	21 ≤ N ≤ 60					
broadcasting is	N*8 + 306 MHz,	$36 \le P_{TRP_10MHz} < 59 \text{ dBm}$	P _{TRP_10MHz} – 49 dBm	8 MHz		
subject to an	21 ≤ N ≤ 60					
intermediate level	N*8 + 306 MHz,	$P_{TRP_10MHz} < 36 \text{ dBm}$	-13 dBm	8 MHz		
of protection	21 ≤ N ≤ 60					
C: for DTT	N*8 + 306 MHz,	N/A	22 dBm	8 MHz		
frequencies where	21 ≤ N ≤ 60					
broadcasting is not						
protected						
NOTE: P _{TRP_10MHz}	NOTE: P _{TRP_10MHz} (dBm) is defined by P _{TRP_10MHz} = P _{10MHz} + G _{ant} + 9dB, where G _{ant} is 17 dBi.					

9.7.4.2.1.2 Limits in FCC Title 47

The BS may have to comply with the applicable emission limits established by FCC Title 47 [8], when deployed in regions where those limits are applied, and under the conditions declared by the manufacturer.

9.7.4.3 Minimum requirement for BS type 2-0

9.7.4.3.1 General

The requirements of either clause 9.7.4.3.2 (Category A limits) or clause 9.7.4.3.3 (Category B limits) shall apply. The application of either Category A or Category B limits shall be the same as for General OTA transmitter spurious emissions requirements (*BS type 2-O*) in clause 9.7.5.3.2. In addition, the limits in clause 9.7.4.3.4 may also apply.

Out-of-band emissions in FR2 are limited by OTA operating band unwanted emission limits. Unless otherwise stated, the OTA operating band unwanted emission limits in FR2 are defined from Δf_{OBUE} below the lowest frequency of each supported downlink *operating band* up to Δf_{OBUE} above the highest frequency of each supported downlink *operating band*. The values of Δf_{OBUE} are defined in table 9.7.1-1 for the NR *operating bands*.

The requirements shall apply whatever the type of transmitter considered and for all transmission modes foreseen by the manufacturer's specification. For a *RIB* operating in multi-carrier or contiguous CA, the requirements apply to the

frequencies (Δf_{OBUE}) starting from the edge of the *contiguous transmission bandwidth*. In addition, for a *RIB* operating in *non-contiguous spectrum*, the requirements apply inside any *sub-block gap*.

Emissions shall not exceed the maximum levels specified in the tables below, where:

- Δf is the separation between the *contiguous transmission bandwidth* edge frequency and the nominal -3dB point of the measuring filter closest to the *contiguous transmission bandwidth* edge.
- f_offset is the separation between the *contiguous transmission bandwidth* edge frequency and the centre of the measuring filter.
- f_{O} first is the offset to the frequency Δf_{OBUE} outside the downlink *operating band*, where Δf_{OBUE} is defined in table 9.7.1-1.
- Δf_{max} is equal to f_{max} minus half of the bandwidth of the measuring filter.

In addition, inside any *sub-block gap* for a *RIB* operating in *non-contiguous spectrum*, emissions shall not exceed the cumulative sum of the limits specified for the adjacent *sub-blocks* on each side of the *sub-block gap*. The limit for each *sub-block* is specified in clauses 9.7.4.3.2 and 9.7.4.3.3 below, where in this case:

- Δf is the separation between the *sub-block* edge frequency and the nominal -3 dB point of the measuring filter closest to the *sub-block* edge.
- f_offset is the separation between the *sub-block* edge frequency and the centre of the measuring filter.
- f_offset_{max} is equal to the *sub-block gap* bandwidth minus half of the bandwidth of the measuring filter.
- Δf_{max} is equal to $f_{offset_{max}}$ minus half of the bandwidth of the measuring filter.

9.7.4.3.2 OTA operating band unwanted emission limits (Category A)

BS unwanted emissions shall not exceed the maximum levels specified in table 9.7.4.3.2-1 and 9.7.4.3.2-2.

Table 9.7.4.3.2-1: OBUE limits applicable in the frequency range 24.25 – 33.4 GHz

Frequency offset of measurement filter -3B point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Limit	Measurement bandwidth
0 MHz ≤ Δf <	0.5 MHz ≤ f_offset < 0.1*	Min(-5 dBm, Max(P _{rated,t,TRP} –	1 MHz
0.1*BWcontiguous	BW _{contiguous} +0.5 MHz	35 dB, -12 dBm))	
$0.1*BW_{contiguous} \le \Delta f$	0.1* BW _{contiguous} +0.5 MHz ≤	Min(-13 dBm, Max(P _{rated,t,TRP}	1 MHz
< Δf_{max}	f_offset < f_ offset _{max}	- 43 dB, -20 dBm))	

NOTE 1: For non-contiguous spectrum operation within any operating band the limit within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap.

Table 9.7.4.3.2-2: OBUE limits applicable in the frequency range 37 – 52.6 GHz

	Frequency offset of measurement filter -3B point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Limit	Measurement bandwidth
Ī	0 MHz ≤ Δf <	0.5 MHz ≤ f_offset < 0.1*	Min(-5 dBm, Max(Prated,t,TRP -	1 MHz
	0.1*BWcontiguous	BW _{contiguous} +0.5 MHz	33 dB, -12 dBm))	
	0.1*BW _{contiguous} ≤	0.1* BW _{contiguous} +0.5 MHz ≤	Min(-13 dBm, Max(P _{rated,t,TRP} -	1 MHz
	$\Delta f < \Delta f_{max}$	f_offset < f_ offset _{max}	41 dB, -20 dBm))	

NOTE 1: For non-contiguous spectrum operation within any operating band the limit within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap.

Table 9.7.4.3.2-3: Void

9.7.4.3.3 OTA operating band unwanted emission limits (Category B)

BS unwanted emissions shall not exceed the maximum levels specified in table 9.7.4.3.3-1 or 9.7.4.3.3-2.

Table 9.7.4.3.3-1: OBUE limits applicable in the frequency range 24.25 – 33.4 GHz

Frequency offset of measurement filter -3 dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Limit	Measurement bandwidth
$0 \text{ MHz} \leq \Delta f < 0.1*BW_{contiguous}$	0.5 MHz ≤ f_offset < 0.1* BW _{contiguous} +0.5 MHz	Min(-5 dBm, Max(P _{rated,t,TRP} – 35 dB, -12 dBm))	1 MHz
$0.1*BW_{contiguous} \le \Delta f$ $< \Delta f_B$	0.1^* BW _{contiguous} +0.5 MHz \leq f_offset $< \Delta f_B +0.5$ MHz	Min(-13 dBm, Max(P _{rated,t,TRP} - 43 dB, -20 dBm))	1 MHz
$\Delta f_{B} \leq \Delta f < \Delta f_{max}$	Δf_B +5 MHz \leq f_offset $<$ f_offset $<$ f_	Min(-5 dBm, Max(P _{rated,t,TRP} – 33 dB, -10 dBm))	10 MHz

NOTE 1: For non-contiguous spectrum operation within any *operating band* the limit within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap.

NOTE 2: $\Delta f_B = 2*BW_{contiguous}$ when $BW_{contiguous} \le 500$ MHz, otherwise $\Delta f_B = BW_{contiguous} + 500$ MHz.

Table 9.7.4.3.3-2: OBUE limits applicable in the frequency range 37 – 52.6 GHz

Frequency offset of measurement filter -3 dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Limit	Measurement bandwidth
$0 \text{ MHz} \leq \Delta f < 0.1 \text{*BW}_{\text{contiguous}}$	0.5 MHz ≤ f_offset < 0.1* BW _{contiguous} +0.5 MHz	Min(-5 dBm, Max(P _{rated,t,TRP} – 33 dB, -12 dBm))	1 MHz
$0.1*BW_{contiguous} \le \Delta f$ $< \Delta f_B$	0.1^* BW _{contiguous} +0.5 MHz \leq f_offset $< \Delta f_B +0.5$ MHz	Min(-13 dBm, Max(P _{rated,t,TRP} - 41 dB, -20 dBm))	1 MHz
$\Delta f_{B} \leq \Delta f < \Delta f_{max}$	Δf_B +5 MHz \leq f_offset $<$ f_offset $<$ f_	Min(-5 dBm, Max(P _{rated,t,TRP} – 31 dB, -10 dBm))	10 MHz

NOTE 1: For non-contiguous spectrum operation within any *operating band* the limit within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks on each side of the sub-block gap.

NOTE 2: $\Delta f_B = 2*BW_{contiguous}$ when $BW_{contiguous} \le 500$ MHz, otherwise $\Delta f_B = BW_{contiguous} + 500$ MHz.

9.7.4.3.4 Additional OTA operating band unwanted emission requirements

9.7.4.3.4.1 Protection of Earth Exploration Satellite Service

For BS operating in the frequency range 24.25 - 27.5 GHz, the power of unwanted emission shall not exceed the limits in table 9.7.4.3.4.1-1.

Table 9.7.4.3.4.1-1: OBUE limits for protection of Earth Exploration Satellite Service

Frequency range	Frequency range Limit	
23.6 – 24 GHz	-3 dBm (Note 1)	200 MHz
23.6 – 24 GHz	-9 dBm (Note 2)	200 MHz

NOTE 1: This limit applies to BS brought into use on or before 1 September 2027 and enters into force from January 1, 2021.

NOTE 2: This limit applies to BS brought into use after 1 September 2027.

9.7.5 OTA transmitter spurious emissions

9.7.5.1 General

Unless otherwise stated, all requirements are measured as mean power.

The OTA spurious emissions limits are specified as TRP per RIB unless otherwise stated.

9.7.5.2 Minimum requirement for *BS type 1-0*

9.7.5.2.1 General

The OTA transmitter spurious emission limits for FR1 shall apply from 30 MHz to 12.75 GHz, excluding the frequency range from Δf_{OBUE} below the lowest frequency of each supported downlink *operating band*, up to Δf_{OBUE} above the highest frequency of each supported downlink *operating band*, where the Δf_{OBUE} is defined in table 9.7.1-1. For some FR1 *operating bands*, the upper limit is higher than 12.75 GHz in order to comply with the 5th harmonic limit of the downlink *operating band*, as specified in ITU-R recommendation SM.329 [2].

For *multi-band RIB* each supported *operating band* and Δf_{OBUE} MHz around each band are excluded from the OTA transmitter spurious emissions requirements.

The requirements shall apply whatever the type of transmitter considered (single carrier or multi-carrier). It applies for all transmission modes foreseen by the manufacturer's specification.

BS type 1-O requirements consists of OTA transmitter spurious emission requirements based on TRP and co-location requirements not based on TRP.

9.7.5.2.2 General OTA transmitter spurious emissions requirements

The Tx spurious emissions requirements for BS type 1-O are that for each applicable basic limit above 30 MHz in clause 6.6.5.2.1, the TRP of any spurious emission shall not exceed an OTA limit specified as the basic limit + X, where X = 9 dB, unless stated differently in regional regulation.

9.7.5.2.3 Protection of the BS receiver of own or different BS

This requirement shall be applied for NR FDD operation in order to prevent the receivers of own or a different BS of the same band being desensitised by emissions from a type 1-O BS.

This requirement is a co-location requirement as defined in clause 4.9, the power levels are specified at the *co-location* reference antenna output.

The total power of any spurious emission from both polarizations of the *co-location reference antenna* connector output shall not exceed the *basic limits* in clause 6.6.5.2.2 + X dB, where X = -21 dB.

9.7.5.2.4 Additional spurious emissions requirements

These requirements may be applied for the protection of systems operating in frequency ranges other than the BS downlink *operating band*. The limits may apply as an optional protection of such systems that are deployed in the same geographical area as the BS, or they may be set by local or regional regulation as a mandatory requirement for an NR *operating band*. It is in some cases not stated in the present document whether a requirement is mandatory or under what exact circumstances that a limit applies, since this is set by local or regional regulation. An overview of regional requirements in the present document is given in clause 4.5.

Some requirements may apply for the protection of specific equipment (UE, MS and/or BS) or equipment operating in specific systems (GSM, CDMA, UTRA, E-UTRA, NR, etc.). The Tx additional spurious emissions requirements for BS type 1-O are that for each applicable basic limit in clause 6.6.5.2.3, the TRP of any spurious emission shall not exceed an OTA limit specified as the basic limit + X, where X = 9 dB.

9.7.5.2.5 Co-location with other base stations

These requirements may be applied for the protection of other BS receivers when GSM900, DCS1800, PCS1900, GSM850, CDMA850, UTRA FDD, UTRA TDD, E-UTRA and/or NR BS are co-located with a BS.

The requirements assume co-location with base stations of the same class.

NOTE: For co-location with UTRA, the requirements are based on co-location with UTRA FDD or TDD base stations.

This requirement is a co-location requirement as defined in clause 4.9, the power levels are specified at the *co-location reference antenna* output(s).

The power sum of any spurious emission is specified over all supported polarizations at the output(s) of the *co-location* reference antenna and shall not exceed the basic limits in clause 6.6.5.2.4 + X dB, where X = -21 dB.

For a *multi-band RIB*, the exclusions and conditions in the notes column of table 6.6.5.2.4-1 apply for each supported *operating band*.

9.7.5.3 Minimum requirement for BS type 2-0

9.7.5.3.1 General

In FR2, the OTA transmitter spurious emission limits apply from 30 MHz to 2^{nd} harmonic of the upper frequency edge of the downlink *operating band*, excluding the frequency range from Δf_{OBUE} below the lowest frequency of the downlink *operating band*, up to Δf_{OBUE} above the highest frequency of the downlink *operating band*, where the Δf_{OBUE} is defined in table 9.7.1-1.

9.7.5.3.2 General OTA transmitter spurious emissions requirements

9.7.5.3.2.1 General

The requirements of either clause 9.7.5.3.2.2 (Category A limits) or clause 9.7.5.3.2.3 (Category B limits) shall apply. The application of either Category A or Category B limits shall be the same as for Operating band unwanted emissions in clause 9.7.4.3.

Table 9.7.5.3.2-1: Void

NOTE: Table 9.7.5.3.2-1 is moved to clause 9.7.5.3.2.2 as Table 9.7.5.3.2.2-1.

9.7.5.3.2.2 OTA transmitter spurious emissions (Category A)

The power of any spurious emission shall not exceed the limits in table 9.7.5.3.2-1

Table 9.7.5.3.2.2-1: BS radiated Tx spurious emission limits in FR2

Frequency range	Limit	Measurement Bandwidth	Note		
30 MHz – 1 GHz		100 kHz	Note 1		
1 GHz – 2 nd harmonic of the upper frequency edge of the DL <i>operating band</i>	-13 dBm	1 MHz	Note 1, Note 2		
NOTE 1: Bandwidth as in ITU-R SM.329 [2], s4.1 NOTE 2: Upper frequency as in ITU-R SM.329 [2], s2.5 table 1.					

9.7.5.3.2.3 OTA transmitter spurious emissions (Category B)

The power of any spurious emission shall not exceed the limits in table 9.7.5.3.2.3-1.

Table 9.7.5.3.2.3-1: BS radiated Tx spurious emission limits in FR2 (Category B)

Frequency range (Note 4)	Limit	Measurement Bandwidth	Note
30 MHz ↔ 1 GHz	-36 dBm	100 kHz	Note 1
1 GHz ↔ 18 GHz	-30 dBm	1 MHz	Note 1
18 GHz \leftrightarrow F _{step,1}	-20 dBm	10 MHz	Note 2
$F_{\text{step,1}} \leftrightarrow F_{\text{step,2}}$	-15 dBm	10 MHz	Note 2
$F_{\text{step,2}} \leftrightarrow F_{\text{step,3}}$	-10 dBm	10 MHz	Note 2
$F_{\text{step,4}} \leftrightarrow F_{\text{step,5}}$	-10 dBm	10 MHz	Note 2
$F_{\text{step,5}} \leftrightarrow F_{\text{step,6}}$	-15 dBm	10 MHz	Note 2
$F_{\text{step,6}} \leftrightarrow 2^{\text{nd}}$ harmonic of	-20 dBm	10 MHz	Note 2, Note 3
the upper frequency edge			
of the DL operating band			

NOTE 1: Bandwidth as in ITU-R SM.329 [2], s4.1

NOTE 2: Limit and bandwidth as in ERC Recommendation 74-01 [19], Annex 2.

NOTE 3: Upper frequency as in ITU-R SM.329 [2], s2.5 table 1.

NOTE 4: The step frequencies F_{step,X} are defined in Table 9.7.5.3.2.3-2.

Table 9.7.5.3.2.3-2: Step frequencies for defining the BS radiated Tx spurious emission limits in FR2 (Category B)

Operating band	F _{step,1} (GHz)	F _{step,2} (GHz)	F _{step,3} (GHz) (Note 2)	F _{step,4} (GHz) (Note 2)	F _{step,5} (GHz)	F _{step,6} (GHz)
n258	18	21	22.75	29	30.75	40.5
n259	23.5	35.5	38	45	47.5	59.5
NOTE 4. E and b	NOTE 4. F. are based on EDC Decommendation 74.04 [40]. Appear 2					

NOTE 1: F_{step,X} are based on ERC Recommendation 74-01 [19], Annex 2.

NOTE 2: F_{step,3} and F_{step,4} are aligned with the values for Δf_{OBUE} in Table 9.7.1-1.

9.7.5.3.3 Additional OTA transmitter spurious emissions requirements

These requirements may be applied for the protection of systems operating in frequency ranges other than the BS downlink *operating band*. The limits may apply as an optional protection of such systems that are deployed in the same geographical area as the BS, or they may be set by local or regional regulation as a mandatory requirement for an NR *operating band*. It is in some cases not stated in the present document whether a requirement is mandatory or under what exact circumstances that a limit applies, since this is set by local or regional regulation. An overview of regional requirements in the present document is given in clause 4.5.

9.7.5.3.3.1 Limits for protection of Earth Exploration Satellite Service

For BS operating in the frequency range 24.25 - 27.5 GHz, the power of any spurious emissions shall not exceed the limits in Table 9.7.5.3.3.1-1.

Table 9.7.5.3.3.1-1: Limits for protection of Earth Exploration Satellite Service

Frequency range	Limit	Measurement Bandwidth	Note
23.6 – 24 GHz	-3 dBm	200 MHz	Note 1
23.6 – 24 GHz	-9 dBm	200 MHz	Note 2

NOTE 1: This limit applies to BS brought into use on or before 1 September 2027 and enters into force from January 1, 2021.

NOTE 2: This limit applies to BS brought into use after 1 September 2027.

9.8 OTA transmitter intermodulation

9.8.1 General

The OTA transmitter intermodulation requirement is a measure of the capability of the transmitter unit to inhibit the generation of signals in its non-linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter unit via the RDN and antenna array from a co-located base station. The requirement shall apply during the *transmitter ON period* and the *transmitter transient period*.

The requirement shall apply at each RIB supporting transmission in the operating band.

The transmitter intermodulation level is the *total radiated power* of the intermodulation products when an interfering signal is injected into the *co-location reference antenna*.

The OTA transmitter intermodulation requirement is not applicable for BS type 2-O.

9.8.2 Minimum requirement for BS type 1-0

For *BS type 1-O* the transmitter intermodulation level shall not exceed the TRP unwanted emission limits specified for OTA transmitter spurious emission in clause 9.7.5.2 (except clause 9.7.5.2.3 and clause 9.7.5.2.5), OTA operating band unwanted emissions in clause 9.7.4.2 and OTA ACLR in clause 9.7.3.2 in the presence of a wanted signal and an interfering signal, defined in table 9.8.2-1.

The requirement is applicable outside the *Base Station RF Bandwidth edges*. The interfering signal offset is defined relative to the *Base Station RF Bandwidth edges* or *Radio Bandwidth* edges.

For RIBs supporting operation in *non-contiguous spectrum*, the requirement is also applicable inside a *sub-block gap* for interfering signal offsets where the interfering signal falls completely within the *sub-block gap*. The interfering signal offset is defined relative to the *sub-block* edges.

For RIBs supporting operation in multiple *operating bands*, the requirement shall apply relative to the *Base Station RF Bandwidth edges* of each *operating band*. In case the *inter RF Bandwidth gap* is less than 3*BW_{Channel} (where BW_{Channel} is the minimal *BS channel bandwidth* of the band), the requirement in the gap shall apply only for interfering signal offsets where the interfering signal falls completely within the *inter RF Bandwidth gap*.

Table 9.8.2-1: Interfering and wanted signals for the OTA transmitter intermodulation requirement

Parameter	Value
Wanted signal	NR signal or multi-carrier, or multiple intra-band contiguously or non- contiguously aggregated carriers
Interfering signal type	NR signal the minimum BS channel bandwidth (BW _{Channel}) with 15 kHz SCS of the band defined in clause 5.3.5
Interfering signal level	The interfering signal level is the same power level as the BS (P _{rated,t,TRP}) fed into a <i>co-location reference antenna</i> .
Interfering signal centre frequency offset from the lower (upper) edge of the wanted signal or edge of <i>sub-block</i> inside a gap	$f_{offset} = \pm BW_{Channel} \left(n - \frac{1}{2} \right)$, for n=1, 2 and 3

NOTE 1: Interfering signal positions that are partially or completely outside of any downlink *operating band* of the RIB are excluded from the requirement, unless the interfering signal positions fall within the frequency range of adjacent downlink *operating bands* in the same geographical area. In case that none of the interfering signal positions fall completely within the frequency range of the downlink *operating band*, TS 38.141-2 [6] provides further guidance regarding appropriate test requirements.

NOTE 2: In Japan, NOTE 1 is not applied in Band n77, n78, n79.

NOTE 3: The Prated,t,TRP is split between polarizations at the co-location reference antenna.

10 Radiated receiver characteristics

10.1 General

Radiated receiver characteristics are specified at RIB for BS type 1-H, BS type 1-O, or BS type 2-O, with full complement of transceivers for the configuration in normal operating condition.

Unless otherwise stated, the following arrangements apply for the radiated receiver characteristics requirements in clause 10:

- Requirements apply during the BS receive period.
- Requirements shall be met for any transmitter setting.
- For FDD operation the requirements shall be met with the transmitter unit(s) ON.
- Throughput requirements defined for the radiated receiver characteristics do not assume HARQ retransmissions.
- When BS is configured to receive multiple carriers, all the throughput requirements are applicable for each received carrier.
- For ACS, blocking and intermodulation characteristics, the negative offsets of the interfering signal apply relative to the lower *Base Station RF Bandwidth* edge or *sub-block* edge inside a *sub-block gap*, and the positive offsets of the interfering signal apply relative to the upper *Base Station RF Bandwidth* edge or *sub-block* edge inside a *sub-block gap*.
- Each requirement shall be met over the RoAoA specified.
- NOTE 1: In normal operating condition the BS in FDD operation is configured to transmit and receive at the same time.
- NOTE 2: In normal operating condition the BS in TDD operation is configured to TX OFF power during *receive period*.

For FR1 requirements which are to be met over the *OTA REFSENS RoAoA* absolute requirement values are offset by the following term:

 $\Delta_{OTAREFSENS} = 44.1 - 10*log_{10}(BeW_{\theta, REFSENS}*BeW_{\phi, REFSENS}) \ dB \ for \ the \ reference \ direction$

and

 $\Delta_{\text{OTAREFSENS}} = 41.1 - 10*\log_{10}(BeW_{\theta, \text{REFSENS}}*BeW_{\phi, \text{REFSENS}}) dB$ for all other directions

For requirements which are to be met over the *minSENS RoAoA* absolute requirement values are offset by the following term:

$$\Delta_{\text{minSENS}} = P_{\text{REFSENS}} - \text{EIS}_{\text{minSENS}} (dB)$$

For FR2 requirements which are to be met over the *OTA REFSENS RoAoA* absolute requirement values are offset by the following term:

 $\Delta_{FR2 \text{ REFSENS}} = -3 \text{ dB}$ for the reference direction

and

 $\Delta_{\text{FR2 REFSENS}} = 0 \text{ dB for all other directions}$

10.2 OTA sensitivity

10.2.1 BS type 1-H and BS type 1-O

10.2.1.1 General

The OTA sensitivity requirement is a *directional requirement* based upon the declaration of one or more *OTA sensitivity direction declarations* (OSDD), related to a *BS type 1-H* and *BS type 1-O* receiver.

The BS type 1-H and BS type 1-O may optionally be capable of redirecting/changing the receiver target by means of adjusting BS settings resulting in multiple sensitivity RoAoA. The sensitivity RoAoA resulting from the current BS settings is the active sensitivity RoAoA.

If the BS is capable of redirecting the receiver target related to the OSDD then the OSDD shall include:

- BS channel bandwidth and declared minimum EIS level applicable to any active sensitivity RoAoA inside the receiver target redirection range in the OSDD.
- A declared *receiver target redirection range*, describing all the angles of arrival that can be addressed for the OSDD through alternative settings in the BS.
- Five declared sensitivity RoAoA comprising the conformance testing directions as detailed in TS 38.141-2 [6].
- The receiver target reference direction.
- NOTE 1: Some of the declared sensitivity RoAoA may coincide depending on the redirection capability.
- NOTE 2: In addition to the declared *sensitivity RoAoA*, several *sensitivity RoAoA* may be implicitly defined by the *receiver target redirection range* without being explicitly declared in the OSDD.

NOTE 3: (Void)

If the BS is not capable of redirecting the receiver target related to the OSDD, then the OSDD includes only:

- The set(s) of RAT, BS channel bandwidth and declared minimum EIS level applicable to the sensitivity RoAoA in the OSDD.
- One declared active sensitivity RoAoA.
- The receiver target reference direction.

NOTE 4: For BS without target redirection capability, the declared (fixed) *sensitivity RoAoA* is always the active *sensitivity RoAoA*.

The OTA sensitivity EIS level declaration shall apply to each supported polarization, under the assumption of *polarization match*.

10.2.1.2 Minimum requirement

For a received signal whose AoA of the incident wave is within the active *sensitivity RoAoA* of an OSDD, the error rate criterion as described in clause 7.2 shall be met when the level of the arriving signal is equal to the minimum EIS level in the respective declared set of EIS level and *BS channel bandwidth*.

10.2.2 BS type 2-0

There is no OTA sensitivity requirement for FR2, the OTA sensitivity is the same as the OTA reference sensitivity in clause 10.3.

10.3 OTA reference sensitivity level

10.3.1 General

The OTA REFSENS requirement is a *directional requirement* and is intended to ensure the minimum OTA reference sensitivity level for a declared *OTA REFSENS RoAoA*. The OTA reference sensitivity power level EIS_{REFSENS} is the minimum mean power received at the RIB at which a reference performance requirement shall be met for a specified reference measurement channel.

The OTA REFSENS requirement shall apply to each supported polarization, under the assumption of *polarization match*.

10.3.2 Minimum requirement for BS type 1-0

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channel as specified in the corresponding table and annex A.1 when the OTA test signal is at the corresponding EIS_{REFSENS} level and arrives from any direction within the *OTA REFSENS RoAoA*.

Table 10.3.2-1: Wide Area BS reference sensitivity levels

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	OTA reference sensitivity level, EIS _{REFSENS} (dBm)
5, 10, 15	15	G-FR1-A1-1	-101.7 - Δ _{OTAREFSENS}
10, 15	30	G-FR1-A1-2	-101.8 - Δ _{OTAREFSENS}
10, 15	60	G-FR1-A1-3	-98.9 - Aotarefsens
20, 25, 30, 40, 50	15	G-FR1-A1-4	-95.3 - Aotarefsens
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	30	G-FR1-A1-5	-95.6 - Δotarefsens
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	60	G-FR1-A1-6	-95.7 - Δotarefsens

NOTE: EISREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full *BS channel bandwidth*.

Table 10.3.2-2: Medium Range BS reference sensitivity levels

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	OTA reference sensitivity level, EIS _{REFSENS} (dBm)
5, 10, 15	15	G-FR1-A1-1	-96.7 - ∆otarefsens
10, 15	30	G-FR1-A1-2	-96.8 - ∆otarefsens
10, 15	60	G-FR1-A1-3	-93.9 - ∆otarefsens
20, 25, 30, 40, 50	15	G-FR1-A1-4	-90.3 - ∆otarefsens
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	30	G-FR1-A1-5	-90.6 - Δ _{OTAREFSENS}
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	60	G-FR1-A1-6	-90.7 - ∆otarefsens

NOTE: EISREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full BS channel bandwidth.

Table 10.3.2-3: Local Area BS reference sensitivity levels

BS channel bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	OTA reference sensitivity level, EISREFSENS (dBm)
5, 10, 15	15	G-FR1-A1-1	-93.7 - $\Delta_{\text{OTAREFSENS}}$
10, 15	30	G-FR1-A1-2	-93.8 - Δ _{OTAREFSENS}
10, 15	60	G-FR1-A1-3	-90.9 - Δ _{OTAREFSENS}
20, 25, 30, 40, 50	15	G-FR1-A1-4	-87.3 - Δotarefsens
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	30	G-FR1-A1-5	-87.6 - ∆otarefsens
20, 25, 30, 40, 50, 60, 70, 80, 90, 100	60	G-FR1-A1-6	-87.7 - Δotarefsens

NOTE: EISREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full BS channel bandwidth.

10.3.3 Minimum requirement for BS type 2-0

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channel as specified in the corresponding table and annex A.1 when the OTA test signal is at the corresponding EIS_{REFSENS} level and arrives from any direction within the *OTA REFSENS RoAoA*.

EIS_{REFSENS} levels are derived from a single declared basis level EIS_{REFSENS_50M}, which is based on a reference measurement channel with 50 MHz *BS channel bandwidth*. EIS_{REFSENS_50M} itself is not a requirement and although it is based on a reference measurement channel with 50 MHz *BS channel bandwidth* it does not imply that BS has to support 50 MHz *BS channel bandwidth*.

For Wide Area BS, $EIS_{REFSENS_50M}$ is an integer value in the range -96 to -119 dBm. The specific value is declared by the vendor.

For Medium Range BS, EIS_{REFSENS_50M} is an integer value in the range -91 to -114 dBm. The specific value is declared by the vendor.

For Local Area BS, EIS_{REFSENS_50M} is an integer value in the range -86 to -109 dBm. The specific value is declared by the vendor.

Table 10.3.3-1: FR2 OTA reference sensitivity requirement

BS channel Bandwidth (MHz)	Sub-carrier spacing (kHz)	Reference measurement channel	OTA reference sensitivity level, EIS _{REFSENS} (dBm)
50, 100, 200	60	G-FR2-A1-1	EIS _{REFSENS_50M} + Δ _{FR2_REFSENS}
50	120	G-FR2-A1-2	EISREFSENS_50M + ΔFR2_REFSENS
100, 200, 400	120	G-FR2-A1-3	EISREFSENS_50M + 3 + Δer2 refsens

NOTE 1: EISREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of the reference measurement channel mapped to disjoint frequency ranges with a width corresponding to the number of resource blocks of the reference measurement channel each, except for one instance that might overlap one other instance to cover the full BS channel bandwidth.

NOTE 2: The declared EIS_{REFSENS_50M} shall be within the range specified above.

10.4 OTA dynamic range

10.4.1 General

The OTA dynamic range is a measure of the capability of the receiver unit to receive a wanted signal in the presence of an interfering signal inside the received *BS channel bandwidth*.

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction and are within the *OTA REFSENS RoAoA*.

The wanted and interfering signals apply to each supported polarization, under the assumption of *polarization match*.

10.4.2 Minimum requirement for BS type 1-O

For NR, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel.

Table 10.4.2-1: Wide Area BS OTA dynamic range for NR carrier

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) / BW _{Config}	Type of interfering signal
	15	G-FR1-A2-1	-70.7- Δotarefsens		
5	30	G-FR1-A2-2	-71.4- Δotarefsens	-82.5- Δotarefsens	AWGN
	15	G-FR1-A2-1	-70.7- Δotarefsens		AWGN
10	30	G-FR1-A2-2	-71.4- Δotarefsens	-79.3- Δotarefsens	
	60	G-FR1-A2-3	-68.4- Δotarefsens		
	15	G-FR1-A2-1	-70.7- Δ _{OTAREFSENS}		
15	30	G-FR1-A2-2	-71.4- Δotarefsens	-77.5- Δotarefsens	AWGN
	60	G-FR1-A2-3	-68.4- Δ _{OTAREFSENS}		
	15	G-FR1-A2-4	-64.5- Δotarefsens		
20	30	G-FR1-A2-5	-64.5- Δotarefsens	-76.2- Δotarefsens	AWGN
	60	G-FR1-A2-6	-64.8- Δotarefsens		
	15	G-FR1-A2-4	-64.5- Δotarefsens		
25	30	G-FR1-A2-5	-64.5- $\Delta_{\text{OTAREFSENS}}$	-75.2- Δotarefsens	AWGN
	60	G-FR1-A2-6	-64.8- Δotarefsens		
	15	G-FR1-A2-4	-64.5- Δ _{OTAREFSENS}	-74.4- Δotarefsens	
30	30	G-FR1-A2-5	-64.5- Δotarefsens		AWGN
	60	G-FR1-A2-6	-64.8- Δotarefsens		
	15	G-FR1-A2-4	-64.5- Δotarefsens		AWGN
40	30	G-FR1-A2-5	-64.5- Δ _{OTAREFSENS}	-73.1- Δ _{OTAREFSENS}	
	60	G-FR1-A2-6	-64.8- Δotarefsens		
	15	G-FR1-A2-4	-64.5- Δotarefsens		
50	30	G-FR1-A2-5	-64.5- Δotarefsens	-72.1- Δotarefsens	AWGN
	60	G-FR1-A2-6	-64.8- Δotarefsens		
00	30	G-FR1-A2-5	-64.5- Δotarefsens	74.0.4	AVAZONI
60	60	G-FR1-A2-6	-64.8- Δotarefsens	-71.3- Δotarefsens	AWGN
70	30	G-FR1-A2-5	-64.5- Δ _{OTAREFSENS}	70.7 4	AMAZAL
70	60	G-FR1-A2-6	-64.8- Δotarefsens	-70.7- Δotarefsens	AWGN
90	30	G-FR1-A2-5	-64.5- Δotarefsens	-70 1- A ozvoz	AMGN
80	60	G-FR1-A2-6	-64.8- Δotarefsens	-70.1- Δotarefsens	AWGN
00	30	G-FR1-A2-5	-64.5- Δotarefsens	60.5. 4	AMAZAL
90	60	G-FR1-A2-6	-64.8- Δotarefsens	-69.5- Δotarefsens	AWGN
100	30	G-FR1-A2-5	-64.5- Δotarefsens	-69.1- Δotarefsens	AWGN

bandwidth.

			60	G-FR1-A2-6	-64.8-				
L			00	G-FK1-A2-0	Δ otarefsens				
	NOTE:	The w	anted signal mea	n power is the pov	ver level of a singl	e instance of the corresp	onding		
		reference measurement channel. This requirement shall be met for each consecutive application of							
		a single instance of the reference measurement channel mapped to disjoint frequency ranges with a							
		width corresponding to the number of resource blocks of the reference measurement channel each,							
ı		except for one instance that might overlap one other instance to cover the full BS channel							

Table 10.4.2-2: Medium Range BS OTA dynamic range for NR carrier

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) / BW _{Config}	Type of interfering signal
	15	G-FR1-A2-1	-65.7- Δotarefsens		
5	30	G-FR1-A2-2	-66.4- Δotarefsens	-77.5- Δotarefsens	AWGN
	15	G-FR1-A2-1	-65.7- Δotarefsens		AWGN
10	30	G-FR1-A2-2	-66.4- Δ _{OTAREFSENS}	-74.3- Δotarefsens	
	60	G-FR1-A2-3	-63.4- Δotarefsens		
	15	G-FR1-A2-1	-65.7- Δotarefsens		
15	30	G-FR1-A2-2	-66.4- Aotarefsens	-72.5- Δotarefsens	AWGN
	60	G-FR1-A2-3	-63.4- Δ _{OTAREFSENS}		
	15	G-FR1-A2-4	-59.5- Δotarefsens		
20	30	G-FR1-A2-5	-59.5- Δotarefsens	-71.2- Δotarefsens	AWGN
	60	G-FR1-A2-6	-59.8- Δotarefsens		
	15	G-FR1-A2-4	-59.5- Δotarefsens		
25	30	G-FR1-A2-5	-59.5- Δ _{OTAREFSENS}	-70.2- Δotarefsens	AWGN
	60	G-FR1-A2-6	-59.8- Δotarefsens		
	15	G-FR1-A2-4	-59.5- Δ _{OTAREFSENS}		
30	30	G-FR1-A2-5	-59.5- Δotarefsens	-69.4- Δotarefsens	AWGN
	60	G-FR1-A2-6	-59.8- Δ _{OTAREFSENS}		
	15	G-FR1-A2-4	-59.5- Δotarefsens		AWGN
40	30	G-FR1-A2-5	-59.5- Δ _{OTAREFSENS}	-68.1- Δ _{OTAREFSENS}	
	60	G-FR1-A2-6	-59.8- Δotarefsens		
	15	G-FR1-A2-4	-59.5- Δotarefsens		
50	30	G-FR1-A2-5	-59.5- Δotarefsens	-67.1- Δotarefsens	AWGN
	60	G-FR1-A2-6	-59.8- Δotarefsens		
60	30	G-FR1-A2-5	-59.5- Δ _{OTAREFSENS}	-66.3- Δotarefsens	AWGN
00	60	G-FR1-A2-6	-59.8- Δotarefsens	-00.3- AOTAREFSENS	AWGN
70	30	G-FR1-A2-5	-59.5- Δ _{OTAREFSENS}	-65.7- Δotarefsens	AWGN
70	60	G-FR1-A2-6	-59.8- Δotarefsens	-UU.1 - AUTAKEFSENS	AVVGIV
80	30	G-FR1-A2-5	-59.5- Δotarefsens	-65.1- Δotarefsens	AWGN
00	60	G-FR1-A2-6	-59.8- Δotarefsens	OO.1 AUTAKEFSENS	7.VV OIN
90	30	G-FR1-A2-5	-59.5- Δotarefsens	-64.5- Δotarefsens	AWGN
90	60	G-FR1-A2-6	-59.8- Δotarefsens	-04.0- AUTAKEFSENS	
100	30	G-FR1-A2-5	-59.5- Δotarefsens	-64.1- Δotarefsens	AWGN

		60	G-FR1-A2-6	-59.8- Δotarefsens		
NOTE:	refere a sing width	nce measurement le instance of the corresponding to tot for one instance	t channel. This red reference measur the number of res	quirement shall be rement channel ma ource blocks of the	e instance of the correspende met for each consecutive apped to disjoint frequence reference measuremence to cover the full BS ch	e application of cy ranges with a t channel each,

Table 10.4.2-3: Local Area BS OTA dynamic range for NR carrier

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm) / BW _{Config}	Type of interfering signal
	15	G-FR1-A2-1	-62.7- ∆otarefsens		
5	30	G-FR1-A2-2	-64.4- Δotarefsens	-74.5- Δotarefsens	AWGN
	15	G-FR1-A2-1	-62.7- Δotarefsens		AWGN
10	30	G-FR1-A2-2	-64.4- Δ _{OTAREFSENS}	-71.3- Δotarefsens	
	60	G-FR1-A2-3	-60.4- Δotarefsens		
	15	G-FR1-A2-1	-62.7- Δ _{OTAREFSENS}		
15	30	G-FR1-A2-2	-64.4- Δotarefsens	-69.5- Δotarefsens	AWGN
	60	G-FR1-A2-3	-60.4- Δ _{OTAREFSENS}		
	15	G-FR1-A2-4	-56.5- Δotarefsens		
20	30	G-FR1-A2-5	-56.5- Δotarefsens	-68.2- Δotarefsens	AWGN
	60	G-FR1-A2-6	-56.8- Aotarefsens		
	15	G-FR1-A2-4	-56.5- Aotarefsens		
25	30	G-FR1-A2-5	-56.5- Δ _{OTAREFSENS}	-67.2- Δotarefsens	AWGN
	60	G-FR1-A2-6	-56.8- Aotarefsens		
	15	G-FR1-A2-4	-56.5- Δ _{OTAREFSENS}		AWGN
30	30	G-FR1-A2-5	-56.5- Δotarefsens	-66.4- Δotarefsens	
	60	G-FR1-A2-6	-56.8- Δ _{OTAREFSENS}		
	15	G-FR1-A2-4	-56.5- Aotarefsens		AWGN
40	30	G-FR1-A2-5	-56.5- Δotarefsens	-65.1- Δ _{OTAREFSENS}	
	60	G-FR1-A2-6	-56.8- Δotarefsens		
	15	G-FR1-A2-4	-56.5- Aotarefsens		
50	30	G-FR1-A2-5	-56.5- Aotarefsens	-64.1- Δotarefsens	AWGN
	60	G-FR1-A2-6	-56.8- Δotarefsens		
60	30	G-FR1-A2-5	-56.5- Δ _{OTAREFSENS}	-63.3- Δotarefsens	AWGN
	60	G-FR1-A2-6	-56.8- Δotarefsens	OO.O ZOTANETSENS	7,117 G11
70	30	G-FR1-A2-5	-56.5- Δ _{OTAREFSENS}	-62.7- Δotarefsens	AWGN
70	60	G-FR1-A2-6	-56.8- Δotarefsens	OZ.1 - AUTAKEFSENS	AWON
80	30	G-FR1-A2-5	-56.5- Δotarefsens	-62.1- Δotarefsens	AWGN
30	60	G-FR1-A2-6	-56.8- Δotarefsens	OZ.I ACIAREFSENS	/ (V V O I V
90	30	G-FR1-A2-5	-56.5- Δotarefsens	-61.5- Δotarefsens	AWGN
30	60	G-FR1-A2-6	-56.8- Aotarefsens	OI.O ACIAREFSENS	7.VV OIN
100	30	G-FR1-A2-5	-56.5- Aotarefsens	-61.1- Δotarefsens	AWGN

		60	G-FR1-A2-6	-56.8-		
		00	G-FK1-A2-0	∆otarefsens		
NOTE:	The w	anted signal mea	n power is the pov	wer level of a singl	e instance of the corresp	onding
	reference measurement channel. This requirement shall be met for each consecutive application of					e application of
	a single instance of the reference measurement channel mapped to disjoint frequency ranges with width corresponding to the number of resource blocks of the reference measurement channel eac except for one instance that might overlap one other instance to cover the full BS channel bandwidth.				it channel each,	

10.5 OTA in-band selectivity and blocking

10.5.1 OTA adjacent channel selectivity

10.5.1.1 General

OTA Adjacent channel selectivity (ACS) is a measure of the receiver's ability to receive an OTA wanted signal at its assigned channel frequency in the presence of an OTA adjacent channel signal with a specified centre frequency offset of the interfering signal to the band edge of a victim system.

10.5.1.2 Minimum requirement for BS type 1-0

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction and are within the *minSENS RoAoA*.

The wanted and interfering signals apply to each supported polarization, under the assumption of polarization match.

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel.

For FR1, the OTA wanted and the interfering signal are specified in table 10.5.1.2-1 and table 10.5.1.2-2 for OTA ACS. The reference measurement channel for the OTA wanted signal is further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D.

The OTA ACS requirement is applicable outside the *Base Station RF Bandwidth* or *Radio Bandwidth*. The OTA interfering signal offset is defined relative to the *Base station RF Bandwidth edges* or *Radio Bandwidth edges*.

For RIBs supporting operation in *non-contiguous spectrum* within any *operating band*, the OTA ACS requirement shall apply in addition inside any *sub-block gap*, in case the *sub-block gap* size is at least as wide as the NR interfering signal in table 10.5.1.2-2. The OTA interfering signal offset is defined relative to the *sub-block* edges inside the *sub-block gap*.

For *multi-band RIBs*, the OTA ACS requirement shall apply in addition inside any *Inter RF Bandwidth gap*, in case the *Inter RF Bandwidth gap* size is at least as wide as the NR interfering signal in table 10.5.1.2-2. The interfering signal offset is defined relative to the *Base Station RF Bandwidth* edges inside the *Inter RF Bandwidth gap*.

Table 10.5.1.2-1: OTA ACS requirement for BS type 1-0

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm) (Note 2)	Interfering signal mean power (dBm)
5, 10, 15, 20, 25, 30,		Wide Area BS: -52 – Δ _{minSENS}
40, 50, 60, 70, 80,90,	EISminSENS + 6 dB	Medium Range BS: -47– Δ _{minSENS}
100 (Note 1)		Local Area BS: -44– Δ _{minSENS}
NOTE 1: The SCS for	the lowest/highest car	rrier received is the lowest SCS
supported by	the BS for that bandy	vidth
NOTE 2: EIS _{minSENS} de	epends on the <i>BS cha</i>	nnel bandwidth

Table 10.5.1.2-2: OTA ACS interferer frequency offset for BS type 1-O

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub- block edge inside a sub- block gap (MHz)	Type of interfering signal
5	±2.5025	
10	±2.5075	5 MHz DFT-s-OFDM NR signal,
15	±2.5125	15 kHz SCS, 25 RBs
20	±2.5025	
25	±9.4675	
30	±9.4725	
40	±9.4675	
50	±9.4625	20 MHz DFT-s-OFDM NR signal,
60	±9.4725	15 kHz SCS, 100 RBs
70	±9.4675	15 KHZ 303, 100 KBS
80	±9.4625	
90	±9.4725	
100	±9.4675	

10.5.1.3 Minimum requirement for BS type 2-0

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction and are within the *OTA REFSENS RoAoA*.

The wanted and interfering signals apply to each supported polarization, under the assumption of polarization match.

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel.

For FR2, the OTA wanted and the interfering signal are specified in table 10.5.1.3-1 and table 10.5.1.3-2 for OTA ACS. The reference measurement channel for the OTA wanted signal is further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D.

The OTA ACS requirement is applicable outside the *Base Station RF Bandwidth*. The OTA interfering signal offset is defined relative to the Base station *RF Bandwidth edges*.

For RIBs supporting operation in *non-contiguous spectrum* within any *operating band*, the OTA ACS requirement shall apply in addition inside any *sub-block gap*, in case the *sub-block gap* size is at least as wide as the NR interfering signal in table 10.5.1.3-2. The OTA interfering signal offset is defined relative to the *sub-block* edges inside the *sub-block gap*.

Table 10.5.1.3-1: OTA ACS requirement for BS type 2-0

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)				
50, 100, 200, 400	EIS _{REFSENS} + 6 dB (Note 3)	EISrefsens_50M + 27.7 + Δ Fr2_REFSENS (Note 1) EISrefsens_50M + 26.7 + Δ Fr2_REFSENS (Note 2)				
NOTE 1: Applicable to - 33.4 GHz	NOTE 1: Applicable to bands defined within the frequency spectrum range of 24.25					
NOTE 2: Applicable to bands defined within the frequency spectrum range of 37 – 52.6 GHz						
NOTE 3: EISREFSENS IS	s given in clause 10.3.3	3				

Table 10.5.1.3-2: OTA ACS interferer frequency offset for BS type 2-0

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub- block edge inside a sub- block gap (MHz)	Type of interfering signal
50	±24.29	
100	±24.31	50 MHz DFT-s-OFDM NR
200	±24.29	signal,60 kHz SCS, 64 RBs
400	±24.31	

10.5.2 OTA in-band blocking

10.5.2.1 General

The OTA in-band blocking characteristics is a measure of the receiver's ability to receive a OTA wanted signal at its assigned channel in the presence of an unwanted OTA interferer, which is an NR signal for general blocking or an NR signal with one RB for narrowband blocking.

10.5.2.2 Minimum requirement for BS type 1-0

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction, and:

- when the wanted signal is based on EIS_{REFSENS}: the AoA of the incident wave of a received signal and the interfering signal are within the *OTA REFSENS RoAoA*.
- when the wanted signal is based on EIS_{minSENS}: the AoA of the incident wave of a received signal and the interfering signal are within the *minSENS RoAoA*.

The wanted and interfering signals apply to each supported polarization, under the assumption of *polarization match*.

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with OTA wanted and OTA interfering signal specified in tables 10.5.2.2-1, table 10.5.2.2-2 and table 10.5.2.2-3 for general OTA and narrowband OTA blocking requirements. The reference measurement channel for the OTA wanted signal is identified in clause 10.3.2 and are further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D.

The OTA in-band blocking requirements apply outside the *Base Station RF Bandwidth* or *Radio Bandwidth*. The interfering signal offset is defined relative to the *Base Station RF Bandwidth edges* or *Radio Bandwidth* edges.

For BS type 1-O the OTA in-band blocking requirement shall apply in the in-band blocking frequency range, which is from $F_{UL,low}$ - Δf_{OOB} to $F_{UL,high}$ + Δf_{OOB} , excluding the downlink frequency range of the FDD operating band. The Δf_{OOB} for BS type 1-O is defined in table 10.5.2.2-0.

Table 10.5.2.2-0: Δf_{OOB} offset for NR operating bands in FR1

BS type	Operating band characteristics	Δf _{OOB} (MHz)
BS type 1-0	Ful,high - Ful,low < 100 MHz	20
BS type 1-0	100 MHz ≤ $F_{UL,high} - F_{UL,low} ≤ 900 MHz$	60

For RIBs supporting operation in *non-contiguous spectrum* within any *operating band*, the OTA in-band blocking requirements apply in addition inside any *sub-block gap*, in case the *sub-block gap* size is at least as wide as twice the interfering signal minimum offset in table 10.5.2.2-1. The interfering signal offset is defined relative to the *sub-block* edges inside the *sub-block gap*.

For *multi-band RIBs*, the OTA in-band blocking requirements apply in the in-band blocking frequency ranges for each supported *operating band*. The requirement shall apply in addition inside any *Inter RF Bandwidth gap*, in case the *Inter*

RF Bandwidth gap size is at least as wide as twice the interfering signal minimum offset in tables 10.5.2.2-1 and 10.5.2.2-3.

For a RIBs supporting operation in *non-contiguous spectrum* within any *operating band*, the OTA narrowband blocking requirements apply in addition inside any *sub-block gap*, in case the *sub-block gap* size is at least as wide as the interfering signal minimum offset in table 10.5.2.2-3. The interfering signal offset is defined relative to the *sub-block* edges inside the *sub-block gap*.

For a *multi-band RIBs*, the OTA narrowband blocking requirements apply in the narrowband blocking frequency ranges for each supported *operating band*. The requirement shall apply in addition inside any *Inter RF Bandwidth gap*, in case the *Inter RF Bandwidth gap* size is at least as wide as the interfering signal minimum offset in table 10.5.2.2-3.

Table 10.5.2.2-1: General OTA blocking requirement for BS type 1-O

BS channel bandwidth of the lowest/highest carrier received (MHz)	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Interfering signal centre frequency minimum offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap (MHz)	Type of interfering signal
5 10 15 20	EIS _{REFSENS} + 6 dB	Wide Area BS: -43 - Δοταπετσενος Medium Range BS: -38 - Δοταπετσενος Local Area BS: -35 - Δοταπετσενος	±7.5	5 MHz DFT-s-OFDM NR signal,
5, 10, 15, 20	EISminsens + 6 dB	Wide Area BS: -43 $ \Delta_{\text{minSENS}}$ Medium Range BS: -38 $ \Delta_{\text{minSENS}}$ Local Area BS: -35 $ \Delta_{\text{minSENS}}$	±7.5	15 kHz SCS, 25 RBs
25 ,30, 40, 50, 60,	EIS _{REFSENS} + 6 dB	Wide Area BS: -43 - Δοτακετεκης Medium Range BS: -38 - Δοτακετεκης Local Area BS: -35 - Δοτακετεκης	±30	20 MHz DFT-s-OFDM NR
70, 80, 90, 100	EISminsens + 6 dB	Wide Area BS: -43 — Δ _{minSENS} Medium Range BS: -38 — Δ _{minSENS} Local Area BS: -35 — Δ _{minSENS}	±30	signal, 15 kHz SCS, 100 RBs

Table 10.5.2.2-2: OTA narrowband blocking requirement for BS type 1-O

BS channel bandwidth of the lowest/highest carrier received (MHz)	OTA Wanted signal mean power (dBm)	OTA Interfering signal mean power (dBm)
5, 10, 15, 20	EIS _{REFSENS} + 6 dB	Wide Area BS: -49 - ΔοταπεΓSENS Medium Range BS: -44 - ΔοταπεΓSENS Local Area BS: -41 - ΔοταπεΓSENS
	EIS _{minSENS} + 6 dB	Wide Area BS: -49 - Δ _{minsens} Medium Range BS: -44 - Δ _{minsens} Local Area BS: -41 - Δ _{minsens}
25, 30, 40, 50, 60, 70, 80, 90, 100	EIS _{REFSENS} + 6 dB	Wide Area BS: -49 - Δ _{OTAREFSENS} Medium Range BS: -44 - Δ _{OTAREFSENS} Local Area BS: -41 - Δ _{OTAREFSENS}
	EIS _{minSENS} + 6 dB	Wide Area BS: -49 – Δ _{minSENS} Medium Range BS: -44 – Δ _{minSENS} Local Area BS: -41 – Δ _{minSENS} carrier received is the lowest SCS

NOTE 1: The SCS for the *lowest/highest carrier* received is the lowest SCS supported by the BS for that bandwidth.

NOTE 2: 7.5 kHz shift is not applied to the wanted signal.

Table 10.5.2.2-3: OTA narrowband blocking interferer frequency offsets for BS type 1-O

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering RB centre frequency offset to the lower/upper Base Station RF Bandwidth edge or sub- block edge inside a sub- block gap (kHz) (Note 2)	Type of interfering signal
5	±(350 + m*180),	5 MHz DFT-s-OFDM NR
	m=0, 1, 2, 3, 4, 9, 14, 19, 24	signal, 15 kHz SCS, 1 RB
10	±(355 + m*180),	
	m=0, 1, 2, 3, 4, 9, 14, 19, 24	
15	±(360 + m*180),	
	m=0, 1, 2, 3, 4, 9, 14, 19, 24	
20	±(350 + m*180),	
	m=0, 1, 2, 3, 4, 9, 14, 19, 24	
25	±(565 + m*180),	20 MHz DFT-s-OFDM NR
	m=0, 1, 2, 3, 4, 29, 54, 79, 99	signal, 15 kHz SCS, 1 RB
30	±(570 + m*180),	
	m=0, 1, 2, 3, 4, 29, 54, 79, 99	
40	±(565 + m*180),	
	m=0, 1, 2, 3, 4, 29, 54, 79, 99	
50	±(560 + m*180),	
	m=0, 1, 2, 3, 4, 29, 54, 79, 99	
60	±(570 + m*180),	
	m=0, 1, 2, 3, 4, 29, 54, 79, 99	
70	±(565 + m*180),	
	m=0, 1, 2, 3, 4, 29, 54, 79, 99	
80	±(560 + m*180),	
	m=0, 1, 2, 3, 4, 29, 54, 79, 99	
90	±(570 + m*180),	
	m=0, 1, 2, 3, 4, 29, 54, 79, 99	
100	±(565 + m*180),	
110== 1 1 1 1 1	m=0, 1, 2, 3, 4, 29, 54, 79, 99	

NOTE 1: Interfering signal consisting of one resource block is positioned at the stated offset, the channel bandwidth of the interfering signal is located adjacently to the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap.

NOTE 2: The centre of the interfering RB refers to the frequency location between the two central subcarriers.

10.5.2.3 Minimum requirement for BS type 2-0

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction and are within the *OTA REFSENS RoAoA*.

The wanted and interfering signals apply to each supported polarization, under the assumption of polarization match.

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel.

For *BS type 2-O*, the OTA wanted and OTA interfering signals are provided at RIB using the parameters in table 10.5.2.3-1 for general OTA blocking requirements. The reference measurement channel for the wanted signal is further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D.

The OTA blocking requirements are applicable outside the *Base Station RF Bandwidth*. The interfering signal offset is defined relative to the *Base Station RF Bandwidth* edges.

For BS type 2-O the OTA in-band blocking requirement shall apply from F_{UL_low} - Δf_{OOB} to F_{UL_high} + Δf_{OOB} . The Δf_{OOB} for BS type 2-O is defined in table 10.5.2.3-0.

Table 10.5.2.3-0: Δf_{OOB} offset for NR operating bands in FR2

BS type	Operating band characteristics	Δf _{OOB} (MHz)
BS type 2-0	$F_{UL_high} - F_{UL_low} \le 4000 \text{ MHz}$	1500

For a RIBs supporting operation in *non-contiguous spectrum* within any *operating band*, the OTA blocking requirements apply in addition inside any *sub-block gap*, in case the *sub-block gap* size is at least as wide as twice the interfering signal minimum offset in table 10.5.2.3-1. The interfering signal offset is defined relative to the *sub-block* edges inside the *sub-block gap*.

Table 10.5.2.3-1: General OTA blocking requirement for BS type 2-0

BS channel bandwidth of the lowest/highest carrier received (MHz)	OTA wanted signal mean power (dBm)	OTA interfering signal mean power (dBm)	OTA interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap (MHz)	Type of OTA interfering signal			
50, 100, 200, 400	EIS _{REFSENS} + 6 dB	EIS _{REFSENS_50M} + 33 + Δ _{FR2_REFSENS}	±75	50 MHz DFT-s-OFDM NR signal, 60 kHz SCS, 64 RBs			
NOTE: EISrefsens and EISrefsens_50M are given in clause 10.3.3.							

10.6 OTA out-of-band blocking

10.6.1 General

The OTA out-of-band blocking characteristics are a measure of the receiver unit ability to receive a wanted signal at the *RIB* at its assigned channel in the presence of an unwanted interferer.

10.6.2 Minimum requirement for BS type 1-0

10.6.2.1 General minimum requirement

The requirement shall apply at the RIB when the AoA of the incident wave of the received signal and the interfering signal are from the same direction and are within the *minSENS RoAoA*.

The wanted signal applies to each supported polarization, under the assumption of *polarization match*. The interferer shall be *polarization matched* in-band and the polarization maintained for out-of-band frequencies.

For OTA wanted and OTA interfering signals provided at the RIB using the parameters in table 10.6.2.1-1, the following requirements shall be met:

- The throughput shall be ≥ 95% of the maximum throughput of the reference measurement channel. The reference measurement channel for the OTA wanted signal is identified in clause 10.3.2 for each *BS channel bandwidth* and further specified in annex A.1.

For a *multi-band RIB*, the OTA out-of-band requirement shall apply for each supported *operating band*, with the exception that the in-band blocking frequency ranges of all supported *operating bands* according to clause 7.4.2.2 shall be excluded from the OTA out-of-band blocking requirement.

For BS type 1-O the OTA out-of-band blocking requirement apply from 30 MHz to $F_{UL,low}$ - Δf_{OOB} and from $F_{UL,high}$ + Δf_{OOB} up to 12750 MHz, including the downlink frequency range of the FDD *operating band* for BS supporting FDD. The Δf_{OOB} for BS type 1-O is defined in table 10.5.2.2-0.

Table 10.6.2.1-1: OTA out-of-band blocking performance requirement

Wanted signal mean power (dBm)	Interfering signal RMS field-strength (V/m)	Type of interfering Signal			
EIS _{minSENS} + 6 dB	0.36	CW carrier			
(Note 1)					
NOTE 1: EIS _{minSENS} depends on the <i>channel bandwidth</i> as specified in clause 10.2.					
NOTE 2: The RMS field-st	DTE 2: The RMS field-strength level in V/m is related to the interferer EIRP level				
at a distance described as $E = \frac{\sqrt{30EIRI}}{\sqrt{30EIRI}}$, where EIRP is in W and r is in m;					
r					
for example, 0.36 V/m is equivalent to 36 dBm at fixed distance of 30 m.					

10.6.2.2 Co-location minimum requirement

This additional OTA out-of-band blocking requirement may be applied for the protection of BS receivers when NR, E-UTRA BS, UTRA BS, CDMA BS or GSM/EDGE BS operating in a different frequency band are co-located with a BS.

The requirement is a co-location requirement. The interferer power levels are specified at the *co-location reference* antenna conducted input. The interfering signal power is specified per supported polarization.

The requirement is valid over the minSENS RoAoA.

For OTA wanted and OTA interfering signal provided at the RIB using the parameters in table 10.6.2.1-1, the following requirements shall be met:

- The throughput shall be ≥ 95% of the maximum throughput of the reference measurement channel. The reference measurement channel for the OTA wanted signal is identified in clause 10.3.2 for each *BS channel bandwidth* and further specified in annex A.1.

For BS type 1-O the OTA blocking requirement for co-location with BS in other frequency bands is applied for all operating bands for which co-location protection is provided.

Table 10.6.2.2-1: OTA blocking requirement for co-location with BS in other frequency bands

Frequency range of interfering signal	Wanted signal mean power (dBm)	Interfering signal mean power for WA BS (dBm)	Interfering signal mean power for MR BS (dBm)	Interfering signal mean power for LA BS (dBm)	Type of interfering signal
Frequency range of co-located downlink operating band	EIS _{minSENS} + 6 dB (Note 1)	+46	+38	+24	CW carrier

NOTE 1: EISminsENS depends on the BS class and on the BS channel bandwidth, see clause 10.2.

NOTE 2: The requirement does not apply when the interfering signal falls within any of the supported uplink operating band(s) or in Δf_{OOB} immediately outside any of the supported uplink operating band(s).

10.6.3 Minimum requirement for BS type 2-0

10.6.3.1 General minimum requirement

The requirement shall apply at the RIB when the AoA of the incident wave of the received signal and the interfering signal are from the same direction and are within the *OTA REFSENS RoAoA*.

The wanted signal applies to each supported polarization, under the assumption of *polarization match*. The interferer shall be *polarization matched* in-band and the polarization maintained for out-of-band frequencies.

For BS type 2-O the OTA out-of-band blocking requirement apply from 30 MHz to $F_{UL,low}$ – 1500 MHz and from $F_{UL,high}$ + 1500 MHz up to 2^{nd} harmonic of the upper frequency edge of the *operating band*.

For OTA wanted and OTA interfering signals provided at the RIB using the parameters in table 10.6.3.1-1, the following requirements shall be met:

- The throughput shall be ≥ 95% of the maximum throughput of the reference measurement channel. The reference measurement channel for the OTA wanted signal is identified in clause 10.3.3 for each *BS channel bandwidth* and further specified in annex A.1.

Table 10.6.3.1-1: OTA out-of-band blocking performance requirement

Frequency range of interfering signal (MHz)	Wanted signal mean power (dBm)	Interferer RMS field- strength (V/m)	Type of interfering signal
30 to 12750	EIS _{REFSENS} + 6 dB	0.36	CW
12750 to F _{UL,low} – 1500	EISREFSENS + 6 dB	0.1	CW
F _{UL,high} + 1500 to 2 nd harmonic of the upper frequency edge of the operating band	EIS _{REFSENS} + 6 dB	0.1	CW

10.7 OTA receiver spurious emissions

10.7.1 General

The OTA RX spurious emission is the power of the emissions radiated from the antenna array from a receiver unit.

The metric used to capture OTA receiver spurious emissions for BS type 1-O and BS type 2-O is total radiated power (TRP), with the requirement defined at the RIB.

10.7.2 Minimum requirement for BS type 1-0

For a BS operating in FDD, OTA RX spurious emissions requirement do not apply as they are superseded by the OTA TX spurious emissions requirement. This is due to the fact that TX and RX spurious emissions cannot be distinguished in OTA domain.

For a BS operating in TDD, the OTA RX spurious emissions requirement shall apply during the *transmitter OFF period* only.

For RX only *multi-band RIB*, the OTA RX spurious emissions requirements are subject to exclusion zones in each supported *operating band*.

The OTA RX spurious emissions requirement for BS type 1-O is that for each basic limit specified in table 10.7.2-1, the power sum of emissions at the RIB shall not exceed limits specified as the basic limit + X, where X = 9 dB, unless stated differently in regional regulation.

Table 10.7.2-1: General BS receiver spurious emission basic limits for BS type 1-O

Spurious frequency range	Basic limit (Note 4)	Measurement bandwidth	Notes
30 MHz – 1 GHz	-36 dBm	100 kHz	Note 1
1 GHz – 12.75 GHz		1 MHz	Note 1, Note 2
12.75 GHz – 5 th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	Note 1, Note 2, Note 3

- NOTE 1: Measurement bandwidths as in ITU-R SM.329 [2], s4.1.
- NOTE 2: Upper frequency as in ITU-R SM.329 [2], s2.5 table 1.
- NOTE 3: This spurious frequency range applies only for *operating bands* for which the 5th harmonic of the upper frequency edge of the UL *operating band* is reaching beyond 12.75 GHz.
- NOTE 4: Additional limits may apply regionally.
- NOTE 5: The frequency range from Δfobue below the lowest frequency of the BS transmitter operating band to Δfobue above the highest frequency of the BS transmitter operating band may be excluded from the requirement. Δfobue is defined in clause 9.7.1. For multiband RIB, the exclusion applies for all supported operating bands.

10.7.3 Minimum requirement for BS type 2-0

The OTA RX spurious emissions requirement shall apply during the transmitter OFF period only.

For the BS type 2-O, the power of any RX spurious emission shall not exceed the limits in table 10.7.3-1.

10.7.3-1: Radiated Rx spurious emission limits for BS type 2-0

Spurious frequency range (Note 4)	Limit (Note 5)	Measurement Bandwidth	Note
30 MHz \leftrightarrow 1 GHz	-36 dBm	100 kHz	Note 1
1 GHz ↔ 18 GHz	-30 dBm	1 MHz	Note 1
18 GHz \leftrightarrow F _{step,1}	-20 dBm	10 MHz	Note 2
$F_{\text{step,1}} \leftrightarrow F_{\text{step,2}}$	-15 dBm	10 MHz	Note 2
$F_{\text{step,2}} \leftrightarrow F_{\text{step,3}}$	-10 dBm	10 MHz	Note 2
$F_{\text{step,4}} \leftrightarrow F_{\text{step,5}}$	-10 dBm	10 MHz	Note 2
F _{step,5} ↔ F _{step,6}	-15 dBm	10 MHz	Note 2
F _{step,6} ↔ 2 nd harmonic of the upper frequency edge of the UL <i>operating band</i>	-20 dBm	10 MHz	Note 2, Note 3

- NOTE 1: Bandwidth as in ITU-R SM.329 [2], s4.1.
- NOTE 2: Limit and bandwidth as in ERC Recommendation 74-01 [19], Annex 2.
- NOTE 3: Upper frequency as in ITU-R SM.329 [2], s2.5 table 1.
- NOTE 4: The step frequencies F_{step,X} are defined in table 10.7.3-2.
- NOTE 5: Additional limits may apply regionally.

Table 10.7.3-2: Step frequencies for defining the radiated Rx spurious emission limits for BS type 2-0

Operating band	F _{step,1} (GHz)	F _{step,2} (GHz)	F _{step,3} (GHz)	F _{step,4} (GHz)	F _{step,5} (GHz)	F _{step,6} (GHz)
n257	18	23.5	25	31	32.5	41.5
n258	18	21	22.75	29	30.75	40.5
n259	23.5	35.5	38	45	47.5	59.5
n260	25	34	35.5	41.5	43	52
n261	18	25.5	26.0	29.85	30.35	38.35

In addition to the requirements in Table 10.7.3-1, the power of any spurious emission shall not exceed the Additional OTA spurious emissions requirements in subclause 9.7.5.3.3.

10.8 OTA receiver intermodulation

10.8.1 General

Third and higher order mixing of the two interfering RF signals can produce an interfering signal in the band of the desired channel. Intermodulation response rejection is a measure of the capability of the receiver unit to receive a wanted signal on its assigned channel frequency in the presence of two interfering signals which have a specific frequency relationship to the wanted signal. The requirement is defined as a *directional requirement* at the *RIB*.

10.8.2 Minimum requirement for BS type 1-0

The requirement shall apply at the RIB when the AoA of the incident wave of a received signal and the interfering signal are from the same direction, and:

- when the wanted signal is based on EIS_{REFSENS}: the AoA of the incident wave of a received signal and the interfering signal are within the *OTA REFSENS RoAoA*.
- when the wanted signal is based on EIS_{minSENS}: the AoA of the incident wave of a received signal and the interfering signal are within the *minSENS RoAoA*.

The wanted and interfering signals apply to each supported polarization, under the assumption of *polarization match*.

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel, with a wanted signal at the assigned channel frequency and two interfering signals at the RIB with the conditions specified in tables 10.8.2-1 and 10.8.2-2 for intermodulation performance and in tables 10.8.2-3 and 10.8.2-4 for narrowband intermodulation performance.

The reference measurement channel for the wanted signal is identified in table 10.3.2-1, table 10.3.2-2 and table 10.3.2-3 for each *BS channel bandwidth* and further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D.

The subcarrier spacing for the modulated interfering signal shall be the same as the subcarrier spacing for the wanted signal, except for the case of wanted signal subcarrier spacing 60kHz and *BS channel bandwidth* <=20MHz, for which the subcarrier spacing of the interfering signal shall be 30kHz.

The receiver intermodulation requirement is applicable outside the *Base Station RF Bandwidth* or *Radio Bandwidth edges*. The interfering signal offset is defined relative to the *Base Station RF Bandwidth edges* or *Radio Bandwidth edges*.

For a RIBs supporting operation in non-contiguous spectrum within any *operating band*, the narrowband intermodulation requirement shall apply in addition inside any *sub-block gap* in case the *sub-block gap* is at least as wide as the *BS channel bandwidth* of the NR interfering signal in tables 10.8.2-2 and 10.8.2-4. The interfering signal offset is defined relative to the *sub-block* edges inside the *sub-block gap*.

For *multi-band RIBs*, the intermodulation requirement shall apply in addition inside any *Inter RF Bandwidth gap*, in case the gap size is at least twice as wide as the NR interfering signal centre frequency offset from the *Base Station RF Bandwidth edge*.

For *multi-band RIBs*, the narrowband intermodulation requirement shall apply in addition inside any *Inter RF Bandwidth gap* in case the gap size is at least as wide as the NR interfering signal in tables 10.8.2-2 and 10.8.2-4. The interfering signal offset is defined relative to the *Base Station RF Bandwidth edges* inside the *Inter RF Bandwidth gap*.

Table 10.8.2-1: General intermodulation requirement

BS class	Wanted Signal mean power (dBm)	Mean power of the interfering signals (dBm)	Type of interfering signals
Wide Area BS	EIS _{REFSENS} + 6 dB	-52 - ∆otarefsens	
	EISminSENS + 6 dB	-52 - ∆minSENS	
Medium Range BS	EIS _{REFSENS} + 6 dB	-47 - ∆otarefsens	See Table 10.8.2-2
	EIS _{minSENS} + 6 dB	-47 - ∆ _{minSENS}	See Table 10.6.2-2
Local Area BS	EIS _{REFSENS} + 6 dB	-44 - ∆otarefsens	
	EIS _{minSENS} + 6 dB	-44 - ∆ _{minSENS}	

NOTE 1: EIS_{REFSENS} and EIS_{minSENS} depend on the BS class and on the BS channel bandwidth, see clause 10.3 and 10.2.

Table 10.8.2-2: Interfering signals for intermodulation requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering signal centre frequency offset from the lower/upper base station RF Bandwidth edge (MHz)	Type of interfering signal (Note 3)
	±7.5	CW
5	±17.5	5 MHz DFT-s-OFDM NR signal (Note 1)
	±7.465	CW
10	±17.5	5 MHz DFT-s-OFDM NR signal (Note 1)
	±7.43	CW
15	±17.5	5 MHz DFT-s-OFDM NR signal (Note 1)
	±7.395	CW
20	±17.5	5 MHz DFT-s-OFDM NR signal (Note 1)
	±7.465	CW
25	±25	20 MHz DFT-s-OFDM NR signal (Note 2)
	±7.43	CW
30	±25	20 MHz DFT-s-OFDM NR signal (Note 2)
	±7.45	CW
40	±25	20 MHz DFT-s-OFDM NR signal (Note 2)
	±7.35	CW
50	±25	20 MHz DFT-s-OFDM NR signal (Note 2)
	±7.49	CW
60	±25	20 MHz DFT-s-OFDM NR signal (Note 2)
	±7.42	CW
70	±25	20 MHz DFT-s-OFDM NR signal (Note 2)
_	±7.44	CW
80	±25	20 MHz DFT-s-OFDM NR signal (Note 2)
_	±7.46	CW
90	±25	20 MHz DFT-s-OFDM NR signal (Note 2)
_	±7.48	CW
100	±25	20 MHz DFT-s-OFDM NR signal (Note 2)

NOTE 1: Number of RBs is 25 for 15 kHz subcarrier spacing and 10 for

30 kHz subcarrier spacing.

NOTE 2: Number of RBs is 100 for 15 kHz subcarrier spacing, 50 for 30 kHz subcarrier spacing and 24 for 60 kHz subcarrier spacing.

NOTE 3: The RBs shall be placed adjacent to the transmission bandwidth

configuration edge which is closer to the Base Station RF Bandwidth edge.

Table 10.8.2-3: Narrowband intermodulation performance requirement in FR1

BS class	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signals
Wide Area BS	EIS _{REFSENS} + 6 dB (Note 1)	-52 - Δotarefsens	
Medium Range BS Local Area BS	EIS _{minSENS} + 6 dB (Note 1)	-52 - Δ _{minSENS}	
	EIS _{REFSENS} + 6 dB (Note 1)	-47 - Δotarefsens	See Table 10.8.2-4
	EIS _{minSENS} + 6 dB (Note 1)	-47 - Δ _{minSENS}	See Table 10.6.2-4
	EIS _{REFSENS} + 6 dB (Note 1)	-44 - Δotarefsens	
	EIS _{minSENS} + 6 dB (Note 1)	-44 - Δ_{minSENS}	
NOTE 1: EISREFSENS / E	ISminSENS depends on the	BS channel bandwidth,	see clause 10.3 and 10.2.

Table 10.8.2-4: Interfering signals for narrowband intermodulation requirement in FR1

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering RB centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap (kHz) (Note 3)	Type of interfering signal
	±360	CW
5	±1420	5 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
	±370	CW
10	±1960	5 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
	±380	CW
15 (NOTE 2)	±1960	5 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
	±390	CW
20 (NOTE 2)	±2320	5 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
	±325	CW
25 (NOTE 2)	±2350	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
(110== 1)	±335	CW
30 (NOTE 2)	±2350	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
42 (440== 2)	±355	CW
40 (NOTE 2)	±2710	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
(110 1)	±375	CW
50 (NOTE 2)	±2710	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
00 (11075 0)	±395	CW
60 (NOTE 2)	±2710	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
70 (1)075 5	±415	CW
70 (NOTE 2)	±2710	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
00 (1)0== 0	±435	CW
80 (NOTE 2)	±2710	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
00 (1)0== 0	±365	CW
90 (NOTE 2)	±2530	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)
	±385	CW
100 (NOTE 2)	±2530	20 MHz DFT-s-OFDM NR signal, 1 RB (NOTE 1)

NOTE 1: Interfering signal consisting of one resource block positioned at the stated offset, the BS channel bandwidth of

the interfering signal is located adjacently to the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap.

NOTE 2: This requirement shall apply only for a G-FRC mapped to the frequency range at the channel edge adjacent to the

interfering signals.

NOTE 3: The centre of the interfering RB refers to the frequency location between the two central subcarriers.

10.8.3 Minimum requirement for BS type 2-0

The requirement shall apply at the RIB when the AoA of the incident wave of the received signal and the interfering signal are from the same direction and are within the OTA REFSENS RoAoA.

The wanted and interfering signals applies to each supported polarization, under the assumption of polarization match.

Throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with OTA wanted signal at the assigned channel frequency and two OTA interfering signals provided at the RIB using the parameters in tables 10.8.3-1 and 10.8.3-2. All of the OTA test signals arrive from the same direction, and the requirement is valid if the signals arrive from any direction within the *OTA REFSENS RoAoA*. The reference measurement channel for the wanted signal is identified in table 10.3.3-1 for each *BS channel bandwidth* and further specified in annex A.1. The characteristics of the interfering signal is further specified in annex D.

The subcarrier spacing for the modulated interfering signal shall be the same as the subcarrier spacing for the wanted signal.

The receiver intermodulation requirement is applicable outside the *Base Station RF Bandwidth*. The interfering signal offset is defined relative to the *Base Station RF Bandwidth edges*.

 BS channel bandwidth of the lowest/highest carrier received (MHz)
 Wanted signal mean power (dBm)
 Interfering signal mean power (dBm)
 Type of interfering signals

 50, 100, 200, 400
 EISREFSENS + 6
 EISREFSENS_50M + 25 + ΔFR2_REFSENS
 See Table 10.8.3-2

 NOTE:
 EISREFSENS and EISREFSENS_50M are given in clause 10.3.3.

Table 10.8.3-1: General intermodulation requirement

Table 10.8.3-2: Interfering signals for intermodulation requirement

BS channel bandwidth of the lowest/highest carrier received (MHz)	Interfering signal centre frequency offset from the lower/upper <i>Base</i> Station RF Bandwidth edge (MHz)	Type of interfering signal
	±7.5	CW
50	±40	50MHz DFT-s-OFDM NR signal (Note 1)
100	±6.88	CW
100	±40	50MHz DFT-s-OFDM NR signal (Note 1)
200	±5.64	CW
200	±40	50MHz DFT-s-OFDM NR signal (Note 1)
	±6.02	CW
400	±45	50MHz DFT-s-OFDM NR signal (Note 1)
NOTE 1: Number of R	RBs is 64 for the 60 kHz subcarrier spacing, 33	2 for the 120 kHz subcarrier spacing

10.9 OTA in-channel selectivity

10.9.1 General

In-channel selectivity (ICS) is a measure of the receiver ability to receive a wanted signal at its assigned resource block locations in the presence of an interfering signal received at a larger power spectral density. In this condition a throughput requirement shall be met for a specified reference measurement channel. The interfering signal shall be an NR signal as specified in annex A.1 and shall be time aligned with the wanted signal.

10.9.2 Minimum requirement for BS type 1-0

The requirement shall apply at the RIB when the AoA of the incident wave of the received signal and the interfering signal are the same direction and are within the *minSENS RoAoA*

The wanted and interfering signals applies to each supported polarization, under the assumption of *polarization match*.

For a wanted and an interfering signal coupled to the RIB, the following requirements shall be met:

- For *BS type 1-O*, the throughput shall be ≥ 95% of the maximum throughput of the reference measurement channel as specified in annex A.1 with parameters specified in table 10.9.2-1 for Wide Area BS, in table 10.9.2-2 for Medium Range BS and in table 10.9.2-3 for Local Area BS. The characteristics of the interfering signal is further specified in annex D.

Table 10.9.2-1: Wide Area BS in-channel selectivity

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	-100.6- Δ _{minSENS}	-81.4 - Δ _{minSENS}	DFT-s-OFDM NR signal, 15 kHz SCS, 10 RBs
10,15,20,25,30	15	G-FR1-A1-1	-98.7- Δ _{minSENS}	-77.4 - ∆ _{minSENS}	DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs
40,50	15	G-FR1-A1-4	-92.3- ΔminSENS	-71.4 - ΔminSENS	DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs
5	30	G-FR1-A1-8	-101.3- ΔminSENS	-81.4 - Δ _{minSENS}	DFT-s-OFDM NR signal, 30 kHz SCS, 5 RBs
10,15,20,25,30	30	G-FR1-A1-2	-98.8- ΔminSENS	-78.4 - Δ _{minSENS}	DFT-s-OFDM NR signal, 30 kHz SCS, 10 RBs
40,50,60,70,80,90,100	30	G-FR1-A1-5	-92.6- ΔminSENS	-71.4 - ΔminSENS	DFT-s-OFDM NR signal, 30 kHz SCS, 50 RBs
10,15,20,25,30	60	G-FR1-A1-9	-98.2- Δ _{minSENS}	-78.4 - Δ _{minSENS}	DFT-s-OFDM NR signal, 60 kHz SCS, 5 RBs
40,50,60,70,80,90,100	60	G-FR1-A1-6	-92.7- Δ _{minSENS}	-71.6 - Δ _{minSENS}	DFT-s-OFDM NR signal, 60 kHz SCS, 24 RBs

NOTE: Wanted and interfering signal are placed adjacently around F_c, where the F_c is defined for *BS channel bandwidth* of the wanted signal according to the table 5.4.2.2-1. The aggregated wanted and interferer signal shall be centred in the *BS channel bandwidth* of the wanted signal.

Table 10.9.2-2: Medium Range BS in-channel selectivity

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	-95.6- ∆minSENS	-76.4 - ΔminSENS	DFT-s-OFDM NR signal, 15 kHz SCS, 10 RBs
10,15,20,25,30	15	G-FR1-A1-1	-93.7- ∆minSENS	-72.4 - ∆minSENS	DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs
40,50	15	G-FR1-A1-4	-87.3- Δ _{minSENS}	-66.4 - Δ _{minSENS}	DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs
5	30	G-FR1-A1-8	-96.3- Δ _{minSENS}	-76.4 - Δ_{minSENS}	DFT-s-OFDM NR signal, 30 kHz SCS, 5 RBs
10,15,20,25,30	30	G-FR1-A1-2	-93.8- ΔminSENS	-73.4 - ΔminSENS	DFT-s-OFDM NR signal, 30 kHz SCS, 10 RBs
40,50,60,70,80,90,100	30	G-FR1-A1-5	-87.6- ΔminSENS	-66.4 - ΔminSENS	DFT-s-OFDM NR signal, 30 kHz SCS, 50 RBs
10,15,20,25,30	60	G-FR1-A1-9	-93.2- ΔminSENS	-73.4 - ΔminSENS	DFT-s-OFDM NR signal, 60 kHz SCS, 5 RBs
40,50,60,70,80,90,100	60	G-FR1-A1-6	-87.7- ∆minSENS	-66.6 - Δminsens	DFT-s-OFDM NR signal, 60 kHz SCS, 24 RBs

NOTE: Wanted and interfering signal are placed adjacently around F_c, where the F_c is defined for *BS channel bandwidth* of the wanted signal according to the table 5.4.2.2-1. The aggregated wanted and interferer signal shall be centred in the *BS channel bandwidth* of the wanted signal.

Table 10.9.2-3: Local area BS in-channel selectivity

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm)	Interfering signal mean power (dBm)	Type of interfering signal
5	15	G-FR1-A1-7	-92.6- ∆ _{minSENS}	-73.4 - Δ_{minSENS}	DFT-s-OFDM NR signal, 15 kHz SCS, 10 RBs
10,15,20,25,30	15	G-FR1-A1-1	-90.7- Δ_{minSENS}	-69.4 - ∆ _{minSENS}	DFT-s-OFDM NR signal, 15 kHz SCS, 25 RBs
40,50	15	G-FR1-A1-4	-84.3- ΔminSENS	-63.4 - Δ _{minSENS}	DFT-s-OFDM NR signal, 15 kHz SCS, 100 RBs
5	30	G-FR1-A1-8	-93.3- ΔminSENS	-73.4 - ΔminSENS	DFT-s-OFDM NR signal, 30 kHz SCS, 5 RBs
10,15,20,25,30	30	G-FR1-A1-2	-90.8- ΔminSENS	-70.4 - ΔminSENS	DFT-s-OFDM NR signal, 30 kHz SCS, 10 RBs
40,50,60,70,80,90,100	30	G-FR1-A1-5	-84.6- Δ _{minSENS}	-63.4 - Δ _{minSENS}	DFT-s-OFDM NR signal, 30 kHz SCS, 50 RBs
10,15,20,25,30	60	G-FR1-A1-9	-90.2- Δ _{minSENS}	-70.4 - Δ _{minSENS}	DFT-s-OFDM NR signal, 60 kHz SCS, 5 RBs
40,50,60,70,80,90,100	60	G-FR1-A1-6	-84.7- Δ _{minSENS}	-63.6 - Δ _{minSENS}	DFT-s-OFDM NR signal, 60 kHz SCS, 24 RBs

NOTE: Wanted and interfering signal are placed adjacently around F_c, where the F_c is defined for *BS channel bandwidth* of the wanted signal according to the table 5.4.2.2-1. The aggregated wanted and interferer signal shall be centred in the *BS channel bandwidth* of the wanted signal.

10.9.3 Minimum requirement for BS type 2-0

The requirement shall apply at the RIB when the AoA of the incident wave of the received signal and the interfering signal are from the same direction and are within the *OTA REFSENS RoAoA*.

The wanted and interfering signals applies to each supported polarization, under the assumption of polarization match.

For BS type 2-O, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel as specified in annex A.1 with parameters specified in table 10.9.3-1. The characteristics of the interfering signal is further specified in annex D.

Table 10.9.3-1: OTA in-channel selectivity requirement for BS type 2-O

BS channel bandwidth (MHz)	Subcarrier spacing (kHz)	Reference measurement channel	Wanted signal mean power (dBm) (Note 2)	Interfering signal mean power (dBm) (Note 2)	Type of interfering signal
50	60	G-FR2-A1-4	EIS _{REFSENS_50M} + Δ _{FR2_REFSENS}	EIS _{REFSENS_50M} + 10 + Δ _{FR2_REFSENS}	DFT-s-OFDM NR signal, 60 kHz SCS, 32 RB
100,200	60	G-FR2-A1-1	EIS _{REFSENS_50M} + 3 + Δ _{FR2_REFSENS}	EIS _{REFSENS_50M} + 13 + Δ _{FR2_REFSENS}	DFT-s-OFDM NR signal, 60 kHz SCS, 64 RB
50	120	G-FR2-A1-5	EISREFSENS_50M + ΔFR2_REFSENS	EIS _{REFSENS_50M} + 10 + Δ _{FR2_REFSENS}	DFT-s-OFDM NR signal, 120 kHz SCS, 16 RB
100,200,400	120	G-FR2-A1-2	EIS _{REFSENS_50M} + 3 + Δ _{FR2_REFSENS}	EIS _{REFSENS_50M} + 13 + Δ _{FR2_REFSENS}	DFT-s-OFDM NR signal, 120 kHz SCS, 32 RB

NOTE 1: Wanted and interfering signal are placed adjacently around F_c, where the F_c is defined for *BS channel bandwidth* of the wanted signal according to the table 5.4.2.2-1. The aggregated wanted and interferer signal shall be centred in the *BS channel bandwidth* of the wanted signal.

NOTE 2: EISREFSENS_50M is defined in clause 10.3.3.

Table 10.9.3-2: (Void)

Table 10.9.3-3: (Void)

11 Radiated performance requirements

11.1 General

11.1.1 Scope and definitions

Radiated performance requirements specify the ability of the BS type 1-O or BS type 2-O to correctly demodulate radiated signals in various conditions and configurations. Radiated performance requirements are specified at the RIB.

Radiated performance requirements for the BS are specified for the fixed reference channels defined in annex A and the propagation conditions in annex G. The requirements only apply to those FRCs that are supported by the BS.

The radiated performance requirements for BS type 1-O and for the BS type 2-O are limited to two OTA demodulation branches as described in clause 11.1.2. Conformance requirements can only be tested for 1 or 2 demodulation branches depending on the number of polarizations supported by the BS, with the required SNR applied separately per polarization.

NOTE 1: The BS can support more than 2 *demodulation branches*, however OTA conformance testing can only be performed for 1 or 2 *demodulation branches*.

Unless stated otherwise, radiated performance requirements apply for a single carrier only. Radiated performance requirements for a BS supporting CA are defined in terms of single carrier requirements.

For BS type 1-O in FDD operation the requirements in clause 8 shall be met with the transmitter units associated with the RIB in the *operating band* turned ON.

NOTE 2: *BS type 1-O* in normal operating conditions in FDD operation is configured to transmit and receive at the same time. The transmitter unit(s) associated with the RIB may be OFF for some of the tests.

In tests performed with signal generators a synchronization signal may be provided from the BS to the signal generator, to enable correct timing of the wanted signal.

Whenever the "RX antennas" term is used for the radiated performance requirements description, it shall refer to the *demodulation branches* (i.e. not physical antennas of the antenna array).

The SNR used in this clause is specified based on a single carrier and defined as:

$$SNR = S / N$$

Where:

- S is the total signal energy in a slot on a RIB.
- N is the noise energy in a bandwidth corresponding to the *transmission bandwidth* over the duration of a slot on a RIB.

11.1.2 OTA demodulation branches

Radiated performance requirements are only specified for up to 2 demodulation branches.

If the *BS type 1-O*, or the *BS type 2-O* uses polarization diversity and has the ability to maintain isolation between the signals for each of the *demodulation branches*, then radiated performance requirements can be tested for up to two *demodulation branches* (i.e. 1RX or 2RX test setups). When tested for two *demodulation branches*, each demodulation branch maps to one polarization.

If the *BS type 1-O*, or the *BS type 2-O* does not use polarization diversity then radiated performance requirements can only be tested for a single *demodulation branch* (i.e. 1RX test setup).

11.1.3 Void

11.2 Performance requirements for PUSCH

11.2.1 Requirements for BS type 1-0

11.2.1.1 Requirements for PUSCH with transform precoding disabled

Apply the requirements defined in clause 8.2.1 for 2Rx.

11.2.1.2 Requirements for PUSCH with transform precoding enabled

Apply the requirements defined in clause 8.2.2 for 2Rx.

11.2.1.3 Requirements for UCI multiplexed on PUSCH

Apply the requirements defined in clause 8.2.3 for 2Rx.

11.2.1.4 Requirements for PUSCH for high speed train

Apply the requirements defined in clause 8.2.4 for 2Rx.

11.2.1.5 Requirements for UL timing adjustment

Apply the requirements defined in clause 8.2.5 for 2Rx.

11.2.2 Requirements for BS type 2-0

11.2.2.1 Requirements for PUSCH with transform precoding disabled

11.2.2.1.1 General

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in annex A. The performance requirements assume HARQ retransmissions.

Table 11.2.2.1.1-1: Test parameters for testing PUSCH

	Parameter	Value		
Transform precoding		Disabled		
Default TDD UL-DL p	Default TDD UL-DL pattern (Note 1)			
HARQ	Maximum number of HARQ transmissions	4		
	RV sequence	0, 2, 3, 1		
DM-RS	DM-RS configuration type	1		
	DM-RS duration	single-symbol DM-RS		
	Additional DM-RS symbols	pos0, pos1		
	Number of DM-RS CDM group(s) without data	2		
	Ratio of PUSCH EPRE to DM-RS EPRE	-3 dB		
	DM-RS port(s)	{0}, {0, 1}		
	DM-RS sequence generation	N _{ID} =0, n _{SCID} =0		
Time domain	PUSCH mapping type	В		
resource	Start symbol index	0		
	Allocation length	10		
Frequency domain resource	RB assignment	Full applicable test bandwidth		
	Frequency hopping	Disabled		
TPMI index for 2Tx tw	o-layer spatial multiplexing transmission	0		
Code block group bas	sed PUSCH transmission	Disabled		
PT-RS configuration	Frequency density (Kpt-Rs)	2, Disabled		
•	Time density (LPT-RS)	1, Disabled		
NOTE 1: The same	requirements are applicable to TDD with different UL-DL pa	atterns		

11.2.2.1.2 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput stated in the tables 11.2.2.1.2-1 to 11.2.2.1.2-7 at the given SNR for 1Tx and for 2Tx two-layer spatial multiplexing transmission.

Table 11.2.2.1.2-1: Minimum requirements for PUSCH with 70% of maximum throughput, 50 MHz channel bandwidth, 60 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughpu	FRC (Annex A)	Addition al DM- RS position	PT-RS	SNR (dB)
1	2	Normal	TDLA30-300 Low	70 %	G-FR2-A3-1	pos0	No	-2.0
					G-FR2-A3-13	pos1	No	-2.2
		Normal	TDLA30-300 Low	70 %	G-FR2-A4-1	pos0	Yes	12.0
							No	11.5
					G-FR2-A4-11	pos1	Yes	10.7
							No	10.7
		Normal	TDLA30-75 Low	70 %	G-FR2-A5-1	pos0	Yes	13.7
							No	13.1
					G-FR2-A5-6	pos1	Yes	13.4
							No	12.9
2		Normal	TDLA30-300 Low	70 %	G-FR2-A3-6	pos0	No	1.5
					G-FR2-A3-18	pos1	No	1.2
		Normal	TDLA30-300 Low	70 %	G-FR2-A7-1	pos0	Yes	15.2
							No	14.3
					G-FR2-A7-6	pos1	Yes	13.8
							No	13.0

Table 11.2.2.1.2-2: Minimum requirements for PUSCH with 70% of maximum throughput, 100 MHz channel bandwidth, 60 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Addition al DM- RS position	PT-RS	SNR (dB)
1	2	Normal	TDLA30-300 Low	70 %	G-FR2-A3-2	pos0	No	-2.1
					G-FR2-A3-14	pos1	No	-2.4
		Normal	TDLA30-300 Low	70 %	G-FR2-A4-2	pos0	Yes	12.2
							No	11.2
					G-FR2-A4-12	pos1	Yes	11.2
							No	10.6
		Normal	TDLA30-75 Low	70 %	G-FR2-A5-2	pos0	Yes	14.2
							No	13.3
					G-FR2-A5-7	pos1	Yes	13.7
							No	13.1
2		Normal	TDLA30-300 Low	70 %	G-FR2-A3-7	pos0	No	1.5
					G-FR2-A3-19	pos1	No	1.2
		Normal	TDLA30-300 Low	70 %	G-FR2-A7-2	pos0	Yes	16.0
							No	14.9
					G-FR2-A7-7	pos1	Yes	13.8
							No	13.1

Table 11.2.2.1.2-3: Minimum requirements for PUSCH with 70% of maximum throughput, 50 MHz channel bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Addition al DM-RS position	PT-RS	SNR (dB)
		Normal	TDLA30-300 Low	70 %	G-FR2-A3-3	pos0	No	-1.8
		Nomai	TDLASU-SUU LUW	70 %	G-FR2-A3-15	pos1	No	-2.1
		Normal			G-FR2-A4-3	pos0	Yes	11.6
1			TDLA30-300 Low	70 %	G-FR2-A4-3	poso	No	10.9
			TDLA30-300 LOW		G-FR2-A4-13	pos1	Yes	10.9
					G-1 1(2-A4-13		No	10.5
		Normal	TDLA30-75 Low	70 %	G-FR2-A5-3	pos0	Yes	13.7
	•				G-1 1(2-A3-3	poso	No	13.1
	2				G-FR2-A5-8	pos1	Yes	13.2
					G-1 1(2-A3-0	posi	No	13.0
		Normal	TDLA30-300 Low	70 %	G-FR2-A3-8	pos0	No	1.4
		INOIIIIai	IDLASU-SUU LUW	70 70	G-FR2-A3-20	pos1	No	1.3
2					G-FR2-A7-3	2000	Yes	14.2
_		NI	TDI 420 200 Low	70.0/	G-FRZ-A7-3	pos0	No	13.6
		Normal	TDLA30-300 Low	70 %	G-FR2-A7-8	2001	Yes	13.9
					G-FRZ-A7-6	pos1	No	13.1

Table 11.2.2.1.2-4: Minimum requirements for PUSCH with 70% of maximum throughput, 100 MHz channel bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughpu	FRC (Annex A)	Addition al DM- RS position	PT-RS	SNR (dB)
		Normal	TDLA30-300 Low	70 %	G-FR2-A3-4	pos0	No	-2.4
					G-FR2-A3-16	pos1	No	-2.5
1	2				G-FR2-A4-4	2000	Yes	11.9
		Normal	TDLA30-300 Low	70 %	G-FRZ-A4-4	pos0	No	10.5
		Normal	TDLA30-300 LOW	10 70	G-FR2-A4-14	pos1	Yes	11.1
					G-FRZ-A4-14	posi	No	10.5

				70 %	G-FR2-A5-4	pos0	Yes	13.5
		Normal	TDLA30-75 Low		G-FRZ-A5-4	poso	No	12.9
		INUITIAI	1DLA30-73 LOW		G-FR2-A5-9	pos1	Yes	13.4
						розт	No	12.8
		Normal	TDLA30-300 Low	70 %	G-FR2-A3-9	pos0	No	1.4
					G-FR21-A3-21	pos1	No	1.2
2					G-FR2-A7-4	pos0	Yes	[13.9]
2		Normal	TDI 420 200 Low	70.0/	G-FRZ-A7-4	poso	No	[13.2]
		Normal	TDLA30-300 Low	70 %	G-FR2-A7-9	2001	Yes	[13.5]
					G-FRZ-A1-9	pos1	No	[12.9]

Table 11.2.2.1.2-5: Minimum requirements for PUSCH with 70% of maximum throughput, 200 MHz channel bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fractio n of maxim um throug hput	FRC (Annex A)	Addition al DM- RS position	PT-RS	SNR (dB)
		Normal	TDLA30-300 Low	70 %	G-FR2-A3-5	pos0	No	-2.1
		Nomai	1DL/100 000 LOW	70 78	G-FR2-A3-17	pos1	No	-2.4
					G-FR2-A4-5	pos0	Yes	11.3
		Normal	TDLA30-300 Low	70 %	G-FR2-A4-3	poso	No	10.9
1					G-FR2-A4-15	pos1	Yes	11.2
'					G-FR2-A4-15	posi	No	10.7
		Normal	TDLA30-75 Low	70 %	G-FR2-A5-5	2000	Yes	14.1
	2				G-FR2-A5-5	pos0	No	13.4
	2	INOIIIIai	TDLA30-73 LOW		G-FR2-A5-10	pos1	Yes	13.7
					G-FR2-A5-10	pos1	No	13.3
		Normal	TDLA30-300 Low	70 %	G-FR2-A3-10	pos0	No	1.4
		INOIIIIai	IDLASU-SUU LUW	70 %	G-FR2-A3-22	pos1	No	1.1
2					C ED2 A7 E	2000	Yes	14.0
2		Normal	TDI 420 200 Low	70.0/	G-FR2-A7-5	pos0	No	13.3
		Normal	TDLA30-300 Low	70 %	G-FR2-A7-10	poo1	Yes	13.6
					G-FR2-A7-10	pos1	No	13.0

Table 11.2.2.1.2-6: Minimum requirements for PUSCH with 30% of maximum throughput, 50 MHz channel bandwidth, 60 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	PT- RS	SNR (dB)
					G-FR2-	pos0	Yes	4.0
1	2	Normal	TDLA30-300	30 %	A4-1	poso	No	3.5
1 2	Normai	Low	30 %	G-FR2-	poo1	Yes	3.7	
					A4-11	pos1	No	3.1

Table 11.2.2.1.2-7: Minimum requirements for PUSCH with 30% of maximum throughput, 50 MHz channel bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	PT- RS	SNR (dB)
					G-FR2-	pos0	Yes	4.0
	2	Normal	TDLA30-300	30 %	A4-3	poso	No	3.6
1	2	Normal	Low	30 %	G-FR2-	pos1	Yes	3.7
					A4-13	pos1	No	3.2

11.2.2.2 Requirements for PUSCH with transform precoding enabled

11.2.2.2.1 General

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in Annex A. The performance requirements assume HARQ retransmissions.

Table 11.2.2.2.1-1: Test parameters for testing PUSCH

	Parameter	Value
Transform precodi	ng	Enabled
Default TDD UL-D	L pattern (Note 1)	60 kHz and 120kHz SCS: 3D1S1U, S=10D:2G:2U
HARQ	Maximum number of HARQ transmissions	4
	RV sequence	0, 2, 3, 1
DM-RS	DM-RS configuration type	1
	DM-RS duration	single-symbol DM-RS
	Additional DM-RS position	pos0, pos1
	Number of DM-RS CDM group(s) without	2
	data	
	Ratio of PUSCH EPRE to DM-RS EPRE	-3 dB
	DM-RS port(s)	0
	DM-RS sequence generation	N _{ID} 0=0, group hopping and sequence hopping are disabled
Time domain	PUSCH mapping type	В
resource	Start symbol	0
assignment	Allocation length	10
Frequency	RB assignment	30 PRBs in the middle of the test bandwidth
domain resource	Frequency hopping	Disabled
assignment		
	based PUSCH transmission	Disabled
PT-RS		Not configured
Note 1: The san	ne requirements are applicable to TDD with diffe	erent UL-DL patterns.

11.2.2.2.2 Minimum requirements

The throughput shall be equal to or larger than the fraction of maximum throughput stated in the tables 11.2.2.2.2-1 to 11.2.2.2.2-2 at the given SNR.

Table 11.2.2.2.2-1: Minimum requirements for PUSCH with 70% of maximum throughput, Type B, 50 MHz Channel Bandwidth, 60 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLA30-300	70 %	G-FR2-A3-11	pos0	-1.8
		INUITIAI	Low	10 70	G-FR2-A3-23	pos1	-1.9

Table 11.2.2.2.2-2: Minimum requirements for PUSCH with 70% of maximum throughput, Type B, 50 MHz Channel Bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	Fraction of maximum throughput	FRC (Annex A)	Additional DM-RS position	SNR (dB)
1	2	Normal	TDLA30-300	70 %	G-FR2-A3-12	pos0	-1.8
1		Normai	Low	70 %	G-FR2-A3-24	pos1	-1.9

11.2.2.3 Requirements for UCI multiplexed on PUSCH

11.2.2.3.1 General

In the tests for UCI multiplexed on PUSCH, the UCI information only contains CSI part 1 and CSI part 2 information, and there is no HACK/ACK information transmitted.

The CSI part 1 block error probability (BLER) is defined as the probability of incorrectly decoding the CSI part 1 information when the CSI part 1 information is sent as follow:

$$BLER_{CSI part 1} = \frac{\#(false CSI part 1)}{\#(CSI part 1)}$$

where:

- #(false CSI part 1) denotes the number of incorrectly decoded CSI part 1 information transmitted occasions
- #(CSI part 1) denotes the number of CSI part 1information transmitted occasions.

The CSI part 2 block error probability is defined as the probability of incorrectly decoding the CSI part 2 information when the CSI part 2 information is sent as follows:

$$BLER_{CSI\ part\ 2} = \frac{\#(false\ CSI\ part\ 2)}{\#(CSI\ part\ 2)}$$

where:

- #(false CSI part 2) denotes the number of incorrectly decoded CSI part 2 information transmitted occasions
- #(CSI part 2) denotes the number of CSI part 2 information transmitted occasions.

The number of UCI information bit payload per slot is defined for two cases as follows:

- 5 bits in CSI part 1, 2 bits in CSI part 2
- 20 bits in CSI part 1, 20 bits in CSI part 2

The 7bits UCI case is further defined with the bitmap $[c0 \ c1 \ c2 \ c3 \ c4] = [0 \ 1 \ 0 \ 1 \ 0]$ for CSI part 1 information, where c0 is mapping to the RI information, and with the bitmap $[c0 \ c1] = [1 \ 0]$ for CSI part2 information.

The 40bits UCI information case is assumed random information bits selection.

In both tests, PUSCH data, CSI part 1 and CSI part 2 information are transmitted simultaneously.

Table 11.2.2.3.1-1: Test parameters for testing UCI multiplexed on PUSCH

	Parameter	Va	lue	
Transform precoding		Disa	bled	
Default TDD UL-DL pa	attern (Note 1)	120 kH	z SCS:	
		3D1S1U, S=	=10D:2G:2U	
HARQ	Maximum number of HARQ transmissions	-	1	
	RV sequence	()	
DM-RS	DM-RS configuration type	,	1	
	DM-RS duration	single-sym	bol DM-RS	
	Additional DM-RS position	pos0	,pos1	
	Number of DM-RS CDM group(s) without data	2	2	
	Ratio of PUSCH EPRE to DM-RS EPRE	-3	dB	
	DM-RS port(s)	{(
	DM-RS sequence generation	$N_{ID}^{0}=0$,	n _{SCID} =0	
Time domain	PUSCH mapping type	E	3	
resource	Start symbol	0		
assignment	Allocation length	1	0	
Frequency domain	RB assignment	Full appli	cable test	
resource		band	width	
assignment	Frequency hopping	Disa	bled	
Code block group bas	sed PUSCH transmission		bled	
	PT-RS	Disabled,	Enabled	
PT-RS configuration	Frequency density (Kpt-Rs)	N/A.	2	
	Time density (L _{PT-Rs})	N/A.	1	
	Number of CSI part 1 and CSI part 2 information bit payload	{5,2},{	20,20}	
	scaling	,	1	
UCI	betaOffsetACK-Index1	1	1	
	betaOffsetCSI-Part1-Index1 and betaOffsetCSI-Part1-Index2	1	3	
	betaOffsetCSI-Part2-Index1 and betaOffsetCSI-Part2-Index2	13		
	UCI partition for frequency hopping	Disa	bled	
Note 1: The same req	uirements are applicable to TDD with different UL-DL patterns.			

11.2.2.3.2 Minimum requirements

The CSI part 1 block error probability shall not exceed 0.1% at the SNR given in table 11.2.2.3.2-1 and table 11.2.2.3.2-2. The CSI part 2 block error probability shall not exceed 1% at the SNR given in table 11.2.2.3.2-3 and table 11.2.2.3.2-4.

Table 11.2.2.3.2-1: Minimum requirements for UCI multiplexed on PUSCH, Type B, with PT-RS, CSI part 1, 50 MHz Channel Bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	UCI bits (CSI part 1, CSI part 2)	Additional DM-RS position	FRC (Annex A)	SNR (dB)
	2	Normal	TDLA30-300 Low	7(5,2)	pos0	G-FR2-A4-3	7.2
1	2	Normal	TDLA30-300 Low	40(20,20)	pos0	G-FR2-A4-3	5.8
'	2	Normal	TDLA30-300 Low	7(5,2)	pos1	G-FR2-A4-13	7.8
	2	Normal	TDLA30-300 Low	40(20,20)	pos1	G-FR2-A4-13	5.9

Table 11.2.2.3.2-2: Minimum requirements for UCI multiplexed on PUSCH, Type B, Without PTRS, CSI part 1, 50 MHz Channel Bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	UCI bits (CSI part 1, CSI part 2)	Additional DM-RS position	FRC (Annex A)	SNR (dB)
	2	Normal	TDLA30-300 LOW	7(5,2)	pos0	G-FR2-A4-3	7.1
1	2	Normal	TDLA30-300 LOW	40(20,20)	pos0	G-FR2-A4-3	5.8
'	2	Normal	TDLA30-300 LOW	7(5,2)	pos1	G-FR2-A4-13	7.3
	2	Normal	TDLA30-300 LOW	40(20,20)	pos1	G-FR2-A4-13	5.5

Table 11.2.2.3.2-3: Minimum requirements for UCI multiplexed on PUSCH, Type B, with PTRS, CSI part 2, 50 MHz Channel Bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	UCI bits (CSI part 1, CSI part 2)	Additional DM-RS position	FRC (Annex A)	SNR (dB)
	2	Normal	TDLA30-300 Low	7(5,2)	pos0	G-FR2-A4-3	1.1
4	2	Normal	TDLA30-300 Low	40(20,20)	pos0	G-FR2-A4-3	4.0
'	2	Normal	TDLA30-300 Low	7(5,2)	pos1	G-FR2-A4-13	1.3
	2	Normal	TDLA30-300 Low	40(20,20)	pos1	G-FR2-A4-13	4.0

Table 11.2.2.3.2-3: Minimum requirements for UCI multiplexed on PUSCH, Type B, with PTRS, CSI part 2, 50 MHz Channel Bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	UCI bits (CSI part 1, CSI part 2)	Additional DM-RS position	FRC (Annex A)	SNR (dB)
	2	Normal	TDLA30-300 Low	7(5,2)	pos0	G-FR2-A4-3	1.1
4	2	Normal	TDLA30-300 Low	40(20,20)	pos0	G-FR2-A4-3	4.0
'	2	Normal	TDLA30-300 Low	7(5,2)	pos1	G-FR2-A4-13	1.3
	2	Normal	TDLA30-300 Low	40(20,20)	pos1	G-FR2-A4-13	4.0

Table 11.2.2.3.2-4: Minimum requirements for UCI multiplexed on PUSCH, Type B, Without PTRS, CSI part 2, 50 MHz Channel Bandwidth, 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Cyclic prefix	Propagation conditions and correlation matrix (Annex G)	UCI bits (CSI part 1, CSI part 2)	Additional DM-RS position	FRC (Annex A)	SNR (dB)
	2	Normal	TDLA30-300 Low	7(5,2)	pos0	G-FR2-A4-3	1.1
1	2	Normal	TDLA30-300 Low	40(20,20)	pos0	G-FR2-A4-3	3.9
'	2	Normal	TDLA30-300 Low	7(5,2)	pos1	G-FR2-A4-13	1.2
	2	Normal	TDLA30-300 Low	40(20,20)	pos1	G-FR2-A4-13	3.7

11.3 Performance requirements for PUCCH

11.3.1 Requirements for BS type 1-0

11.3.1.1 DTX to ACK probability

Apply the requirements defined in clause 8.3.1

11.3.1.2 Performance requirements for PUCCH format 0

Apply the requirements defined in clause 8.3.2 for 2 Rx.

11.3.1.3 Performance requirements for PUCCH format 1

Apply the requirements defined in sub-clause 8.3.3 for 2Rx.

11.3.1.4 Performance requirements for PUCCH format 2

Apply the requirements defined in clause 8.3.4 for 2Rx.

11.3.1.5 Performance requirements for PUCCH format 3

Apply the requirements defined in clause 8.3.5 for 2Rx.

11.3.1.6 Performance requirements for PUCCH format 4

Apply the requirements defined in clause 8.3.6 for 2Rx.

11.3.1.7 Performance requirements for multi-slot PUCCH

Apply the requirements defined in clause 8.3.7 for 2Rx.

11.3.2 Requirements for BS type 2-0

11.3.2.1 DTX to ACK probability

Apply the requirements defined in clause 8.3.1.

11.3.2.2 Performance requirements for PUCCH format 0

11.3.2.2.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent.

Table 11.3.2.2.1-1: Test Parameters

Parameter	Test
Number of UCI information bits	1
Number of PRBs	1
First PRB prior to frequency hopping	0
Intra-slot frequency hopping	N/A for 1 symbol Enabled for 2 symbols
First PRB after frequency hopping	The largest PRB index – (Number of PRBs - 1)
Group and sequence hopping	neither
Hopping ID	0
Initial cyclic shift	0
First symbol	13 for 1 symbol 12 for 2 symbols

The transient period as specified in TS 38.101-1 [17] clause 6.3.3.1 and TS 38.101-2 [18] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

11.3.2.2.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 11.3.2.2.2-1 and in table 11.3.2.2.2-2.

Table 11.3.2.2.2-1: Minimum requirements for PUCCH format 0 and 60 kHz SCS

Number of TX antennas	Number of demodulation branches	Propagation conditions and correlation matrix (Annex G)	Number of OFDM symbols	Channel bandwi	dth / SNR (dB)
antennas	brancies		Syllibols	50 MHz	100 MHz
1	2	TDLA30-300 Low	1	9.3	9.0
			2	4.2	4.0

Table 11.3.2.2.2-2: Minimum requirements for PUCCH format 0 and 120 kHz SCS

Number of TX antennas	Number of demodulation branches	Propagation conditions and correlation matrix (Annex G)	Number of OFDM symbols	Channe	el bandwidth	/ SNR (dB)
antennas	branches		Syllibols	50 MHz	100 MHz	200 MHz
1	2	TDLA30-300 Low	1	9.5	9.2	9.7
			2	4.1	3.8	4.0

11.3.2.3 Performance requirements for PUCCH format 1

11.3.2.3.1 NACK to ACK requirements

11.3.2.3.1.1 General

The NACK to ACK detection probability is the probability that an ACK bit is falsely detected when an NACK bit was sent on the particular bit position, where the NACK to ACK detection probability is defined as follows:

Prob(PUCCHNACK
$$\rightarrow$$
 ACK bits) = $\frac{\#(\text{NACK bits decoded as ACK bits})}{\#(\text{Total NACK bits})}$

where:

- #(Total NACK bits) denotes the total number of NACK bits transmitted
- #(NACK bits decoded as ACK bits) denotes the number of NACK bits decoded as ACK bits at the receiver, i.e. the number of received ACK bits
- NACK bits in the definition do not contain the NACK bits which are mapped from DTX, i.e. NACK bits received when DTX is sent should not be considered.

Random codeword selection is assumed.

Table 11.3.2.3.1.1-1: Test Parameters

Parameter	Test	
Number of information bits	2	
Number of PRBs	1	
Number of symbols	14	
First PRB prior to frequency	0	
hopping	0	
Intra-slot frequency hopping	enabled	
First PRB after frequency hopping	The largest PRB index	
First FRB after frequency hopping	– (nrofPRBs – 1)	
Group and sequence hopping	neither	
Hopping ID	0	
Initial cyclic shift	0	
First symbol	0	
Index of orthogonal cover code	0	
(timeDomainOCC)	0	

The transient period as specified in TS 38.101-1 [17] and TS 38.101-2 [18] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

11.3.2.3.1.2 Minimum requirements

The NACK to ACK probability shall not exceed 0.1% at the SNR given in Table 11.3.2.3.1.2-1 and Table 11.3.2.3.1.2-2.

Table 11.3.2.3.1.2-1: Minimum requirements for PUCCH format 1 with 60 kHz SCS

Number of TX	Number of Demodulation	Cyclic Prefix	Propagation conditions and		oandwidth / ? (dB)
antennas	Branches		correlation matrix (Annex G)	50 MHz	100 MHz
1	2	Normal	TDLA30-300 Low	-1.2	-4.2

Table 11.3.2.3.1.2-2: Minimum requirements for PUCCH format 1 with 120 kHz SCS

Number	Number of	Cyclic	Propagation	Channel	bandwidth / S	NR (dB)
of TX antenna s	Demodulation Branches	Prefix	conditions and correlation matrix (Annex G)	50 MHz	100 MHz	200 MHz
1	2	Normal	TDLA30-300 Low	-3.9	-3.9	-3.0

11.3.2.3.2 ACK missed detection requirements

11.3.2.3.2.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent. The test parameters in Table 11.3.2.3.1.1-1 are configured.

The transient period as specified in TS 38.101-1 [17] and TS 38.101-2 [18] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

11.3.2.3.2.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in Table 11.3.2.3.2.2-1 and in Table 11.3.2.3.2.2-2.

Table 11.3.2.3.2.2-1: Minimum requirements for PUCCH format 1 with 60 kHz SCS

Number of TX	Number of Demodulation	Cyclic Prefix	Propagation conditions and		oandwidth / ? (dB)
antennas	Branches		correlation matrix (Annex G)	50 MHz	100 MHz
1	2	Normal	TDLA30-300 Low	-3.9	-4.2

Table 11.3.2.3.2.2-2: Minimum requirements for PUCCH format 1 with 120 kHz SCS

Number	Number of	Cyclic	Propagation	Channel	bandwidth / S	NR (dB)
of TX antenna s	Demodulation Branches	Prefix	conditions and correlation matrix (Annex G)	50 MHz	100 MHz	200 MHz
1	2	Normal	TDLA30-300 Low	-4.7	-4.6	-4.6

11.3.2.4 Performance requirements for PUCCH format 2

11.3.2.4.1 ACK missed detection requirements

11.3.2.4.1.1 General

The ACK missed detection probability is the probability of not detecting an ACK when an ACK was sent.

The ACK missed detection requirement only applies to the PUCCH format 2 with 4 UCI bits.

Table 11.3.2.4.1.1-1: Test Parameters

Parameter	Value
Modulation order	QSPK
First PRB prior to frequency hopping	0
Intra-slot frequency hopping	enabled
First PRB after frequency hopping	The largest PRB index – (Number of PRBs-1)
Number of PRBs	4
Number of symbols	1
The number of UCI information bits	4
First symbol	13
DM-RS sequence generation	$N_{ID}^0=0$

The transient period as specified in TS 38.101-1 [17] and TS 38.101-2 [18] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC center, i.e. intra-slot frequency hopping is enabled.

11.3.2.4.1.2 Minimum requirements

The ACK missed detection probability shall not exceed 1% at the SNR given in table 11.3.2.4.1.2-1 and table 11.3.2.4.1.2-2 for 4UCI bits.

Table 11.3.2.4.1.2-1: Minimum requirements for PUCCH format 2 with 60 kHz SCS

Number of	Number of	Cyclic	Propagation	Channel band	dwidth / SNR (dB)
TX antennas	demodulatio n branches	Prefix	conditions and correlation matrix (Annex G)	50 MHz	100 MHz
1	2	Normal	TDLA30-300 Low	6.7	7.2

Table 11.3.2.4.1.2-2: Minimum requirements for PUCCH format 2 with 120 kHz SCS

Number of	Number of	Cyclic	Propagation	Channel bandwidth / SNR (dB)			
TX antennas	demodulati on branches	Prefix	conditions and correlation matrix (Annex G)	50 MHz	100 MHz	200 MHz	
1	2	Normal	TDLA30-300 Low	6.6	6.3	6.6	

11.3.2.4.2 UCI BLER performance requirements

11.3.2.4.2.1 General

The UCI block error probability (BLER) is defined as the probability of incorrectly decoding the UCI information when the UCI information is sent. The UCI information does not contain CSI part 2.

The transient period as specified in TS 38.101-1 [17] and TS 38.101-2 [18] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

The UCI performance only applies to the PUCCH format 2 with 22 UCI bits.

Table 11.3.2.4.2.1-1: Test Parameters

Parameter	Value
Modulation order	QSPK
First PRB prior to frequency hopping	0
Intra-slot frequency hopping	N/A
First PRB after frequency hopping	The largest PRB index – (Number of PRBs – 1)
Number of PRBs	9
Number of symbols	2
The number of UCI information bits	22
First symbol	12
DM-RS sequence generation	$N_{ID}^0=0$

11.3.2.4.2.2 Minimum requirements

The UCI block error probability shall not exceed 1% at the SNR given in table 11.3.2.4.2.2-1 and table 11.3.2.4.2.2-2 for 22 UCI bits.

Table 11.3.2.4.2.2-1: Minimum requirements for PUCCH format 2 with 60 kHz SCS

Number of	Number of	Cyclic	Propagation	Channel band	dwidth / SNR (dB)
TX antennas	demodulati on branches	Prefix	conditions and correlation matrix (Annex G)	50 MHz	100 MHz
1	2	Normal	TDLA30-300 Low	2.6	1.1

Table 11.3.2.4.2.2-2: Minimum requirements for PUCCH format 2 with 120 kHz SCS

Number of	Number of	Cyclic	Propagation	Chann	nnel bandwidth / SNR (dB)			
TX antennas	demodulati on branches	Prefix	conditions and correlation matrix (Annex G)	50 MHz	100 MHz	200 MHz		
1	2	Normal	TDLA30-300 Low	1.2	1.2	1.1		

11.3.2.5 Performance requirements for PUCCH format 3

11.3.2.5.1 General

The performance is measured by the required SNR at UCI block error probability not exceeding 1%.

The UCI block error probability is defined as the conditional probability of incorrectly decoding the UCI information when the UCI information is sent. The UCI information does not contain CSI part 2.

The transient period as specified in TS 38.101-2 [18] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

Table 11.3.2.5.1-1: Test parameters

Parameter	Test 1	Test 2	
Modulation order	QF	PSK	
First PRB prior to frequency hopping		0	
Intra-slot frequency hopping	ena	abled	
First PRB after frequency hopping	The largest PRB index – (Number of PRBs - 1)		
Group and sequence hopping	ne	ither	
Hopping ID		0	
Number of PRBs	1	3	
Number of symbols	14	4	
The number of UCI information bits	16 16		
First symbol	0	0	

11.3.2.5.2 Minimum requirements

The UCI block error probability shall not exceed 1% at the SNR given in Table 11.3.2.5.2-1 and Table 11.3.2.5.2-2.

Table 11.3.2.5.2-1: Required SNR for PUCCH format 3 with 60kHz SCS

Test Number	Number of TX antennas	Number of demodul	Cyclic Prefix	Propagation conditions and correlation	Additional DM-RS configuration	Channel Bandwidth / SNR (dB)	
		ation branche s		matrix (Annex G)		50 MHz	100 MHz
1	1	2	Normal	TDLA30-300 Low	No additional DM-RS	1.6	0.7
					Additional DM- RS	1.3	0.9
2	1	2	Normal	TDLA30-300 Low	No additional DM-RS	3.0	2.4

Table 8.3.2.5.2-2: Required SNR for PUCCH format 3 with 120kHz SCS

Test Number	Number of TX	Number of demodulat	Cyclic Prefix	Propagation conditions	Additional DM-RS	Chan	nel Band SNR (dE	
	antennas	ion branches		and correlation matrix (Annex G)	configuration	50 MHz	100 MHz	200 MHz
1	1	2	Normal	TDLA30-300 Low	No additional DM-RS	1.4	0.7	0.7
					Additional DM- RS	1.3	1.4	0.9
2	1	2	Normal	TDLA30-300 Low	No additional DM-RS	1.1	2.9	1.4

11.3.2.6 Performance requirements for PUCCH format 4

11.3.2.6.1 General

The performance is measured by the required SNR at UCI block error probability not exceeding 1%.

The UCI block error probability is defined as the conditional probability of incorrectly decoding the UCI information when the UCI information is sent. The UCI information does not contain CSI part 2.

The transient period as specified in TS 38.101-2 [18] clause 6.3.3.1 is not taken into account for performance requirement testing, where the RB hopping is symmetric to the CC centre, i.e. intra-slot frequency hopping is enabled.

Table 11.3.2.6.1-1: Test parameters

Parameter	Value
Modulation order	QPSK
First PRB prior to frequency hoppingstartingPRB	0
Number of PRBs	1
Intra-slot frequency hopping	enabled
First PRB after frequency hopping	The largest PRB index – (Number of PRBs – 1)
Group and sequence hopping	neither
Hopping ID	0
Number of symbols	14
The number of UCI information bits	22
First symbol	0
Length of the orthogonal cover code	n2
Index of the orthogonal cover code	n0

11.3.2.6.2 Minimum requirements

The UCI block error probability shall not exceed 1% at the SNR given in Table 11.3.2.6.2-1 and Table 11.3.2.6.2-2.

Table 11.3.2.6.2-1: Required SNR for PUCCH format 4 with 60 kHz SCS

Number of TX antennas	Number of	Cyclic Prefix	Propagation conditions and	Additional DM-RS configuration	Channel E	Bandwidth (dB)
	demodula tion branches		correlation matrix (Annex G)		50 MHz	100 MHz
1	2	Normal	TDLA30-300 Low	No additional DM- RS	3.0	2.7
				Additional DM-RS	3.1	3.5

Table 11.3.2.6.2-2: Required SNR for PUCCH format 4 with 120 kHz SCS

	nber of TX	Number of demodulat	Cyclic Prefix	Propagation conditions and	Additional DM-RS configuration	Channe	el Bandwidt (dB)	h / SNR
ant	ennas	ion branches		correlation matrix (Annex G)		50 MHz	100 MHz	200MH z
	1	2	Normal	TDLA30-300 Low	No additional DM-RS	2.8	2.8	3.5
					Additional DM-RS	3.6	3.8	3.2

11.4 Performance requirements for PRACH

11.4.1 Requirements for BS type 1-0

11.4.1.1 PRACH False alarm probability

Apply the requirements defined in clause 8.4.1 for 2Rx.

11.4.1.2 PRACH detection requirements

Apply the requirements defined in clause 8.4.2 for 2Rx.

11.4.2 Requirements for BS type 2-0

11.4.2.1 PRACH False alarm probability

11.4.2.1.1 General

The false alarm requirement is valid for any number of receive antennas, for any channel bandwidth.

The false alarm probability is the conditional total probability of erroneous detection of the preamble (i.e. erroneous detection from any detector) when input is only noise.

11.4.2.1.2 Minimum requirement

The false alarm probability shall be less than or equal to 0.1%.

11.4.2.2 PRACH detection requirements

11.4.2.2.1 General

The probability of detection is the conditional probability of correct detection of the preamble when the signal is present. There are several error cases – detecting different preamble than the one that was sent, not detecting a preamble

at all or correct preamble detection but with the wrong timing estimation. For AWGN and TDLA30-300, a timing estimation error occurs if the estimation error of the timing of the strongest path is larger than the time error tolerance given in Table 11.4.2.2-1.

Table 11.4.2.2-1: Time error tolerance for AWGN and TDLA30-300

PRACH	PRACH SCS	Time error tolerance	
preamble	(kHz)	AWGN	TDLA30-300
A1, A2, A3, B4,	60	0.13 us	0.28 us
C0, C2	120	0.07 us	0.22 us

The test preambles for normal mode are listed in table A.6-2 and the test parameter *msg1-FrequencyStart* is set to 0.

11.4.2.2.2 Minimum requirements

The probability of detection shall be equal to or exceed 99% for the SNR levels listed in Tables 11.4.2.2.2-1 to 11.4.2.2.2-2.

Table 11.4.2.2.2-1: PRACH missed detection requirements for Normal Mode, 60 kHz SCS

Number	Number of	Propagation	Frequency			SNR	(dB)		
of TX antennas	demodulation branches	conditions and correlation matrix (Annex G)	offset	Burst format A1	Burst format A2	Burst format A3	Burst format B4	Burst format C0	Burst format C2
1	2	AWGN	0	-8.9	-11.9	-13.5	-15.8	-6.0	-11.8
		TDLA30-300 Low	4000 Hz	-1.6	-3.8	-4.8	-6.9	1.1	-3.9

Table 11.4.2.2.2-2: PRACH missed detection requirements for Normal Mode, 120 kHz SCS

Number	Number of	Propagation	Frequency	SNR (dB)					
of TX antennas	demodulation branches	conditions and correlation matrix (Annex G)	offset	Burst format A1	Burst format A2	Burst format A3	Burst format B4	Burst format C0	Burst format C2
1	2	AWGN	0	-8.7	-11.5	-13.3	-15.8	-5.8	-11.4
		TDLA30-300 Low	4000 Hz	-1.7	-4.4	-5.8	-7.5	1.2	-4.2

Annex A (normative): Reference measurement channels

A.1 Fixed Reference Channels for reference sensitivity level, ACS, in-band blocking, out-of-band blocking, receiver intermodulation and in-channel selectivity (QPSK, R=1/3)

The parameters for the reference measurement channels are specified in table A.1-1 for FR1 reference sensitivity level, ACS, in-band blocking, out-of-band blocking, receiver intermodulation, in-channel selectivity, OTA sensitivity, OTA reference sensitivity level, OTA ACS, OTA in-band blocking, OTA out-of-band blocking, OTA receiver intermodulation and OTA in-channel selectivity.

The parameters for the reference measurement channels are specified in table A.1-2 for FR2 OTA reference sensitivity level, OTA ACS, OTA in-band blocking, OTA out-of-band blocking, OTA receiver intermodulation and OTA inchannel selectivity.

Table A.1-1: FRC parameters for FR1 reference sensitivity level, ACS, in-band blocking, out-of-band blocking, receiver intermodulation, in-channel selectivity, OTA sensitivity, OTA reference sensitivity level, OTA ACS, OTA in-band blocking, OTA out-of-band blocking, OTA receiver intermodulation and OTA in-channel selectivity

Reference channel	G-FR1- A1-1	G-FR1- A1-2	G-FR1- A1-3	G-FR1- A1-4	G-FR1- A1-5	G-FR1- A1-6	G-FR1- A1-7	G-FR1- A1-8	G-FR1- A1-9	G-FR1- A1-10	G-FR1- A1-11
Subcarrier spacing (kHz)	15	30	60	15	30	60	15	30	60	15	15
Allocated resource blocks	25	11	11	106	51	24	15	6	6	24	105
CP-OFDM Symbols per slot (Note 1)	12	12	12	12	12	12	12	12	12	12	12
Modulation	QPSK	QPSK									
Code rate (Note 2)	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Payload size (bits)	2152	984	984	9224	4352	2088	1320	528	528	[2088]	[8968]
Transport block CRC (bits)	16	16	16	24	24	16	16	16	16	16	24
Code block CRC size (bits)	-	-	-	24	-	-	-	-	-	-	24
Number of code blocks - C	1	1	1	2	1	1	1	1	1	1	2
Code block size ncluding CRC (bits) (Note 3)	2168	1000	1000	4648	4376	2104	1336	544	544	[2104]	[4520]
Total number of bits per slot	7200	3168	3168	30528	14688	6912	4320	1728	1728	[6912]	[30240]
Total symbols per slot	3600	1584	1584	15264	7344	3456	2160	864	864	[3456]	[15120]

NOTE 1: UL-DMRS-config-type = 1 with UL-DMRS-max-len = 1, UL-DMRS-add-pos = 1 with l_0 = 2, l = 11 as per table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: MCS index 4 and target coding rate = 308/1024 are adopted to calculate payload size for receiver sensitivity and in-channel selectivity

NOTE 3: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

Table A.1-2: FRC parameters for FR2 OTA reference sensitivity level, OTA ACS, OTA in-band blocking, OTA out-of-band blocking, OTA receiver intermodulation and OTA in-channel selectivity

Reference channel	G-FR2-A1-1	G-FR2-A1-2	G-FR2-A1-3	G-FR2-A1-4	G-FR2-A1-5
Subcarrier spacing (kHz)	60	120	120	60	120
Allocated resource blocks	66	32	66	33	16
CP-OFDM Symbols per slot (Note	12	12	12	12	12
1)					
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK
Code rate (Note 2)	1/3	1/3	1/3	1/3	1/3
Payload size (bits)	5632	2792	5632	2856	1416
Transport block CRC (bits)	24	16	24	16	16
Code block CRC size (bits)	-	-	-	-	-
Number of code blocks - C	1	1	1	1	1
Code block size including CRC	5656	2808	5656	2872	1432
(bits) (Note 3)					
Total number of bits per slot	19008	9216	19008	9504	4608
Total symbols per slot	9504	4608	9504	4752	2304

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS, additional DM-RS position = pos1 with l_0 = 2, l = 11 as per table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: MCS index 4 and target coding rate = 308/1024 are adopted to calculate payload size. NOTE 3: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

A.2 Fixed Reference Channels for dynamic range (16QAM, R=2/3)

The parameters for the reference measurement channels are specified in table A.2-1 for FR1 dynamic range and OTA dynamic range.

Table A.2-1: FRC parameters for FR1 dynamic range and OTA dynamic range

Reference channel	G-FR1-A2-	G-FR1-A2-	G-FR1-A2-	G-FR1-A2-	G-FR1-A2-	G-FR1-A2-
	1	2	3	4	5	6
Subcarrier spacing (kHz)	15	30	60	15	30	60
Allocated resource blocks	25	11	11	106	51	24
CP-OFDM Symbols per slot	12	12	12	12	12	12
(Note 1)						
Modulation	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Code rate (Note 2)	2/3	2/3	2/3	2/3	2/3	2/3
Payload size (bits)	9224	4032	4032	38936	18960	8968
Transport block CRC (bits)	24	24	24	24	24	24
Code block CRC size (bits)	24	-	-	24	24	24
Number of code blocks - C	2	1	1	5	3	2
Code block size including CRC (bits) (Note 3)	4648	4056	4056	7816	6352	4520
Total number of bits per slot	14400	6336	6336	61056	29376	13824
Total symbols per slot	3600	1584	1584	15264	7344	3456

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS, additional DM-RS position = pos1 with l_0 = 2, l = 11 as per table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: MCS index 16 and target coding rate = 658/1024 are adopted to calculate payload size. NOTE 3: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

A.3 Fixed Reference Channels for performance requirements (QPSK, R=193/1024)

The parameters for the reference measurement channels are specified in table A.3-2, table A.3-2A, table A.3-4, and table A.3-6 for FR1 PUSCH performance requirements:

- FRC parameters are specified in table A.3-2 for FR1 PUSCH with transform precoding disabled, *Additional DM-RS position* = *pos1* and 1 transmission layer.
- FRC parameters are specified in table A.3-2A for FR1 PUSCH with transform precoding disabled, *Additional DM-RS position* = *pos2* and 1 transmission layer.
- FRC parameters are specified in table A.3-4 for FR1 PUSCH with transform precoding disabled, *Additional DM-RS position* = *pos1* and 2 transmission layers.
- FRC parameters are specified in table A.3-6 for FR1 PUSCH with transform precoding enabled, *Additional DM-RS position* = *pos1* and 1 transmission layer.

The parameters for the reference measurement channels are specified in table A.3-7 to table A.3-12 for FR2 PUSCH performance requirements:

- FRC parameters are specified in table A.3-7 for FR2 PUSCH with transform precoding disabled, *Additional DM-RS position* = *pos0* and 1 transmission layer.
- FRC parameters are specified in table A.3-8 for FR2 PUSCH with transform precoding disabled, *Additional DM-RS position* = *pos0* and 2 transmission layers.
- FRC parameters are specified in table A.3-9 for FR2 PUSCH with transform precoding enabled, *Additional DM-RS position* = *pos0* and 1 transmission layer.
- FRC parameters are specified in table A.3-10 for FR2 PUSCH with transform precoding disabled, *Additional DM-RS position = pos1* and 1 transmission layer.
- FRC parameters are specified in table A.3-11 for FR2 PUSCH with transform precoding disabled, *Additional DM-RS position = pos1* and 2 transmission layers.
- FRC parameters are specified in table A.3-12 for FR2 PUSCH with transform precoding enabled, *Additional DM-RS position = pos1* and 1 transmission layer.

Table A.3-1: Void

Table A.3-2: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = pos1 and 1 transmission layer (QPSK, R=193/1024)

Reference channel	G-FR1-						
	A3-8	A3-9	A3-10	A3-11	A3-12	A3-13	A3-14
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per	12	12	12	12	12	12	12
slot (Note 1)							
Modulation	QPSK						
Code rate (Note 2)	193/1024	193/1024	193/1024	193/1024	193/1024	193/1024	193/1024
Payload size (bits)	1352	2856	5768	1320	2792	5768	14856
Transport block CRC (bits)	16	16	24	16	16	24	24
Code block CRC size (bits)	1	-	24	ı	ı	24	24
Number of code blocks - C	1	1	2	1	1	2	4
Code block size including CRC (bits) (Note 2)	1368	2872	2920	1336	2808	2920	3744
Total number of bits per slot	7200	14976	30528	6912	14688	30528	78624
Total symbols per slot	3600	7488	15264	3456	7344	15264	39312

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position = pos1, l_0 = 2 and l =11 for PUSCH mapping type A, l_0 = 0 and l =10 for PUSCH mapping type B as per table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in clause 5.2.2 of TS 38.212 [15].

Table A.3-2A: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = pos2 and 1 transmission layer (QPSK, R=193/1024)

Reference channel	G-FR1- A3-33	G-FR1- A3-34
Subcarrier spacing [kHz]	15	30
Allocated resource blocks	52	106
Data bearing CP-OFDM Symbols per slot (Note 1)	11	11
Modulation	QPSK	QPSK
Code rate (Note 2)	193/1024	193/1024
Payload size (bits)	2600	5256
Transport block CRC (bits)	16	24
Code block CRC size (bits)	-	24
Number of code blocks - C	1	2
Code block size including CRC (bits) (Note 2)	2616	2664
Total number of bits per slot	13728	27984
Total resource elements per slot	6846	13992

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position = pos2, and lo= 2 or 3 for PUSCH mapping type A, as per table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in clause 5.2.2 of TS 38.212 [15].

Table A.3-3: Void

Table A.3-4: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = pos1 and 2 transmission layers (QPSK, R=193/1024)

Reference channel	G-FR1-						
	A3-22	A3-23	A3-24	A3-25	A3-26	A3-27	A3-28
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per	12	12	12	12	12	12	12
slot (Note 1)							
Modulation	QPSK						
Code rate (Note 2)	193/1024	193/1024	193/1024	193/1024	193/1024	193/1024	193/1024
Payload size (bits)	2728	5640	11528	2600	5512	11528	29736
Transport block CRC (bits)	16	24	24	16	24	24	24
Code block CRC size (bits)	-	24	24	-	24	24	24
Number of code blocks - C	1	2	4	1	2	4	8
Code block size including CRC (bits) (Note 2)	2744	2856	2912	2616	2792	2912	3744
Total number of bits per slot	14400	29952	61056	13824	29376	61056	157248
Total symbols per slot	7200	14976	30528	6912	14688	30528	78624

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, $Additional\ DM$ -RS position = pos1, l_0 = 2 and l=11 for PUSCH mapping type A, l_0 = 0 and l=10 for PUSCH mapping type B as per table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in clause 5.2.2 of TS 38.212 [15].

Table A.3-5: Void

Table A.3-6: FRC parameters for FR1 PUSCH performance requirements, transform precoding enabled, *Additional DM-RS position* = pos1 and 1 transmission layer (QPSK, R=193/1024)

Reference channel	G-FR1-A3-31	G-FR1-A3-32
Subcarrier spacing [kHz]	15	30
Allocated resource blocks	25	24
DFT-s-OFDM Symbols per slot (Note 1)	12	12
Modulation	QPSK	QPSK
Code rate (Note 2)	193/1024	193/1024
Payload size (bits)	1352	1320
Transport block CRC (bits)	16	16
Code block CRC size (bits)	-	-
Number of code blocks - C	1	1
Code block size including CRC (bits) (Note 2)	1368	1336
Total number of bits per slot	7200	6912
Total symbols per slot	3600	3456

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position = pos1, lo= 2 and l=11 for PUSCH mapping type A, lo= 0 and l=10 for PUSCH mapping type B as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

Table A.3-7: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = pos0 and 1 transmission layer (QPSK, R=193/1024)

Reference channel	G-FR2- A3-1	G-FR2- A3-2	G-FR2- A3-3	G-FR2- A3-4	G-FR2- A3-5
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	9	9	9	9	9
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK
Code rate (Note 2)	193/1024	193/1024	193/1024	193/1024	193/1024
Payload size (bits)	2664	5384	1320	2664	5384
Transport block CRC (bits)	16	24	16	16	24
Code block CRC size (bits)	-	24	-	-	24
Number of code blocks - C	1	2	1	1	2
Code block size including CRC (bits) (Note 2)	2680	2728	1336	2680	2728
Total number of bits per slot	14256	28512	6912	14256	28512
Total symbols per slot	7128	14256	3456	7128	14256

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position = pos0 with l₀= 0 as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

Table A.3-8: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = pos0 and 2 transmission layers (QPSK, R=193/1024)

Reference channel	G-FR2-	G-FR2-	G-FR2-	G-FR2-	G-FR2-
	A3-6	A3-7	A3-8	A3-9	A3-10
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	9	9	9	9	9
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK
Code rate (Note 2)	193/1024	193/1024	193/1024	193/1024	193/1024
Payload size (bits)	5384	10752	2600	5384	10752
Transport block CRC (bits)	24	24	16	24	24
Code block CRC size (bits)	24	24	-	24	24
Number of code blocks - C	2	3	1	2	3
Code block size including CRC (bits) (Note 2)	2728	3616	2616	2728	3616
Total number of bits per slot	28512	57024	13824	28512	57024
Total symbols per slot	14256	28512	6912	14256	28512

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position = pos0 with l₀= 0 as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

Table A.3-9: FRC parameters for FR2 PUSCH performance requirements, transform precoding enabled, *Additional DM-RS position* = pos0 and 1 transmission layer (QPSK, R=193/1024)

Reference channel	G-FR2-A3-11	G-FR2-A3-12
Subcarrier spacing [kHz]	60	120
Allocated resource blocks	30	30
DFT-s-OFDM Symbols per slot (Note 1)	9	9
Modulation	QPSK	QPSK
Code rate (Note 2)	193/1024	193/1024
Payload size (bits)	1224	1224
Transport block CRC (bits)	16	16
Code block CRC size (bits)	-	-
Number of code blocks - C	1	1
Code block size including CRC (bits) (Note 2)	1240	1240
Total number of bits per slot	6480	6480
Total symbols per slot	3240	3240

NOTE 1: *DM-RS configuration type* = 1 with *DM-RS duration* = *single-symbol DM-RS* and the number of DM-RS CDM groups without data is 2, *Additional DM-RS position* = *pos0* with *l*₀= 0 as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

Table A.3-10: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = pos1 and 1 transmission layer (QPSK, R=193/1024)

Reference channel	G-FR2-	G-FR2-	G-FR2-	G-FR2-	G-FR2-
	A3-13	A3-14	A3-15	A3-16	A3-17
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	8	8	8	8	8
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK
Code rate (Note 2)	193/1024	193/1024	193/1024	193/1024	193/1024
Payload size (bits)	2408	4744	1160	2408	4744
Transport block CRC (bits)	16	24	16	16	24
Code block CRC size (bits)	-	24	-	-	24
Number of code blocks - C	1	2	1	1	2
Code block size including CRC (bits) (Note 2)	2424	2408	1176	2424	2408
Total number of bits per slot	12672	25344	6144	12672	25344
Total symbols per slot	6336	12672	3072	6336	12672

NOTE 1: *DM-RS configuration type* = 1 with *DM-RS duration* = *single-symbol DM-RS* and the number of DM-RS CDM groups without data is 2, *Additional DM-RS position* = *pos1* with *l*₀= 0 and *l* =8 as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

Table A.3-11: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = pos1 and 2 transmission layers (QPSK, R=193/1024)

Reference channel	G-FR2- A3-18	G-FR2- A3-19	G-FR2- A3-20	G-FR2- A3-21	G-FR2- A3-22
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	8	8	8	8	8
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK
Code rate (Note 2)	193/1024	193/1024	193/1024	193/1024	193/1024
Payload size (bits)	4744	9480	2408	4744	9480
Transport block CRC (bits)	24	24	16	24	24
Code block CRC size (bits)	24	24	-	24	24
Number of code blocks - C	2	3	1	2	3
Code block size including CRC (bits) (Note 2)	2408	3192	2424	2408	3192
Total number of bits per slot	25344	50688	12288	25344	50688
Total symbols per slot	12672	25344	6144	12672	25344

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position = pos1 with l₀= 0 and l =8 as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

Table A.3-12: FRC parameters for FR2 PUSCH performance requirements, transform precoding enabled, *Additional DM-RS position* = pos1 and 1 transmission layer (QPSK, R=193/1024)

Reference channel	G-FR2-A3-23	G-FR2-A3-24
Subcarrier spacing [kHz]	60	120
Allocated resource blocks	30	30
DFT-s-OFDM Symbols per slot (Note 1)	8	8
Modulation	QPSK	QPSK
Code rate (Note 2)	193/1024	193/1024
Payload size (bits)	1128	1128
Transport block CRC (bits)	16	16
Code block CRC size (bits)	-	-
Number of code blocks - C	1	1
Code block size including CRC (bits) (Note 2)	1144	1144
Total number of bits per slot	5760	5760
Total symbols per slot	2880	2880

NOTE 1: *DM-RS configuration type* = 1 with *DM-RS duration* = *single-symbol DM-RS* and the number of DM-RS CDM groups without data is 2, *Additional DM-RS position* = *pos1* with *lo*= 0 and *l* =8 as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

A.4 Fixed Reference Channels for performance requirements (16QAM, R=658/1024)

The parameters for the reference measurement channels are specified in table A.4-2, table A.4-2A, table A.4-2B and table A.4-4 for FR1 PUSCH performance requirements:

- FRC parameters are specified in table A.4-2 for FR1 PUSCH with transform precoding disabled, *Additional DM-RS position* = *pos1* and 1 transmission layer.
- FRC parameters are specified in table A.4-2A for FR1 PUSCH with transform precoding disabled, additional DM-RS position = pos 2 and 1 transmission layer.
- FRC parameters are specified in table A.4-2B with transform-precoding disabled, *Additional DM-RS position* = pos2 and 1 transmission layer

The parameters for the reference measurement channels are specified in table A.4-5 to table A.4-8 for FR2 PUSCH performance requirements:

- FRC parameters are specified in table A.4-5 for FR2 PUSCH with transform precoding disabled, *Additional DM-RS position* = *pos0* and 1 transmission layer.
- FRC parameters are specified in table A.4-6 for FR2 PUSCH with transform precoding disabled, *Additional DM-RS position* = *pos0* and 2 transmission layers.
- FRC parameters are specified in table A.4-7 for FR2 PUSCH with transform precoding disabled, *Additional DM-RS position = pos1* and 1 transmission layer.
- FRC parameters are specified in table A.4-8 for FR2 PUSCH with transform precoding disabled, *Additional DM-RS position = pos1* and 2 transmission layers.

Table A.4-1: Void

Table A.4-2: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = *pos1* and 1 transmission layer (16QAM, R=658/1024)

Reference channel	G-FR1-						
	A4-8	A4-9	A4-10	A4-11	A4-12	A4-13	A4-14
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per	12	12	12	12	12	12	12
slot (Note 1)							
Modulation	16QAM						
Code rate (Note 2)	658/1024	658/1024	658/1024	658/1024	658/1024	658/1024	658/1024
Payload size (bits)	9224	19464	38936	8968	18960	38936	100392
Transport block CRC (bits)	24	24	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24	24	24
Number of code blocks - C	2	3	5	2	3	5	12
Code block size including CRC (bits) (Note 2)	4648	6520	7816	4520	6352	7816	8392
Total number of bits per slot	14400	29952	61056	13824	29376	61056	157248
Total symbols per slot	3600	7488	15264	3456	7344	15264	39312

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position = pos1, lo= 2 and l=11 for PUSCH mapping type A, lo= 0 and l=10 for PUSCH mapping type B as per table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in clause 5.2.2 of TS 38.212 [15].

Table A.4-2A: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = pos2 and 1 transmission layer (16QAM, R=658/1024)

Reference channel	G-FR1- A4-29	G-FR1- A4-30
Subcarrier spacing [kHz]	15	30
Allocated resource blocks	52	106
Data bearing CP-OFDM Symbols per slot (Note 1)	11	11
Modulation	16QAM	16QAM
Code rate (Note 2)	658/1024	658/1024
Payload size (bits)	17424	35856
Transport block CRC (bits)	24	24
Code block CRC size (bits)	24	24
Number of code blocks - C	3	5
Code block size including CRC (bits) (Note 2)	5840	7200
Total number of bits per slot	27456	55968
Total resource elements per slot	6846	13992

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position = pos2, and l₀= 2 or 3 for PUSCH mapping type A, as per table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in clause 5.2.2 of TS 38.212 [15].

Table A.4-2B: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = pos2 and 1 transmission layer (16QAM, R=658/1024)

Reference channel	G-FR1-A4-29	G-FR1-A4-30
Subcarrier spacing [kHz]	15	30
Allocated resource blocks	25	50
Data bearging CP-OFDM	11	11
Symbols per slot (Note 1)		
Modulation	16QAM	16QAM
Code rate (Note 2)	658/1024	658/1024
Payload size (bits)	8456	16896
Transport block CRC (bits)	24	24
Code block CRC size (bits)	24	24
Number of code blocks - C	2	3
Code block size including CRC (bits) (Note 2)	4264	5664
Total number of bits per slot	13200	26400
Total data bearing resource elements per slot	3300	6600

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position = pos2, and l₀ = 2 for PUSCH mapping type A, as per table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in subclause 5.2.2 of TS 38.212 [15].

Table A.4-3: Void

Table A.4-4: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = *pos1* and 2 transmission layers (16QAM, R=658/1024)

Reference channel	G-FR1-						
	A4-22	A4-23	A4-24	A4-25	A4-26	A4-27	A4-28
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per	12	12	12	12	12	12	12
slot (Note 1)							
Modulation	16QAM						
Code rate (Note 2)	658/1024	658/1024	658/1024	658/1024	658/1024	658/1024	658/1024
Payload size (bits)	18432	38936	77896	17928	37896	77896	200808
Transport block CRC (bits)	24	24	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24	24	24
Number of code blocks - C	3	5	10	3	5	10	24
Code block size including	6176	7816	7816	6008	7608	7816	8392
CRC (bits) (Note 2)	0170	7010	7010	6006	7606	7010	0392
Total number of bits per	28800	59904	122112	27648	58752	122112	314496
slot	20000	33304	122112	21040	30732	122112	314490
Total symbols per slot	7200	14976	30528	6912	14688	30528	78624

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position = pos1, I₀= 2 and I=11 for PUSCH mapping type A, I₀= 0 and I=10 for PUSCH mapping type B as per table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in clause 5.2.2 of TS 38.212 [15].

Table A.4-5: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = pos0 and 1 transmission layer (16QAM, R=658/1024)

Reference channel	G-FR2-	G-FR2-	G-FR2-	G-FR2-	G-FR2-
	A4-1	A4-2	A4-3	A4-4	A4-5
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	9	9	9	9	9
Modulation	16QAM	16QAM	16QAM	16QAM	16QAM
Code rate (Note 2)	658/1024	658/1024	658/1024	658/1024	658/1024
Payload size (bits)	18432	36896	8968	18432	36896
Transport block CRC (bits)	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24
Number of code blocks - C	3	5	2	3	5
Code block size including CRC (bits) (Note 2)	6176	7408	4520	6176	7408
Total number of bits per slot	28512	57024	13824	28512	57024
Total symbols per slot	7128	14256	3456	7128	14256

NOTE 1: *DM-RS configuration type* = 1 with *DM-RS duration* = *single-symbol DM-RS* and the number of DM-RS CDM groups without data is 2, *Additional DM-RS position* = *pos0* with *l*₀= 0 as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

Table A.4-6: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = pos0 and 2 transmission layers (16QAM, R=658/1024)

Reference channel	G-FR2- A4-6	G-FR2- A4-7	G-FR2- A4-8	G-FR2- A4-9	G-FR2- A4-10
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	9	9	9	9	9
Modulation	16QAM	16QAM	16QAM	16QAM	16QAM
Code rate (Note 2)	658/1024	658/1024	658/1024	658/1024	658/1024
Payload size (bits)	36896	73776	17928	36896	73776
Transport block CRC (bits)	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24
Number of code blocks - C	5	9	3	5	9
Code block size including CRC (bits) (Note 2)	7408	8224	6008	7408	8224
Total number of bits per slot	57024	114048	27648	57024	114048
Total symbols per slot	14256	28512	6912	14256	28512

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position = pos0 with l₀= 0 as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

Table A.4-7: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = *pos1* and 1 transmission layer (16QAM, R=658/1024)

Reference channel	G-FR2-	G-FR2-	G-FR2-	G-FR2-	G-FR2-
	A4-11	A4-12	A4-13	A4-14	A4-15
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	8	8	8	8	8
Modulation	16QAM	16QAM	16QAM	16QAM	16QAM
Code rate (Note 2)	658/1024	658/1024	658/1024	658/1024	658/1024
Payload size (bits)	16392	32776	7936	16392	32776
Transport block CRC (bits)	24	24	24	24	24
Code block CRC size (bits)	24	24	-	24	24
Number of code blocks - C	2	4	1	2	4
Code block size including CRC (bits) (Note 2)	8232	8224	7960	8232	8224
Total number of bits per slot	25344	50688	12288	25344	50688
Total symbols per slot	6336	12672	3072	6336	12672

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, $Additional\ DM$ -RS position = pos1 with l_0 = 0 and l =8 as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

Table A.4-8: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = pos1 and 2 transmission layers (16QAM, R=658/1024)

Reference channel	G-FR2-	G-FR2-	G-FR2-	G-FR2-	G-FR2-
	A4-16	A4-17	A4-18	A4-19	A4-20
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	8	8	8	8	8
Modulation	16QAM	16QAM	16QAM	16QAM	16QAM
Code rate (Note 2)	658/1024	658/1024	658/1024	658/1024	658/1024
Payload size (bits)	32776	65576	15880	32776	65576
Transport block CRC (bits)	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24
Number of code blocks - C	4	8	2	4	8
Code block size including CRC (bits) (Note 2)	8224	8224	7976	8224	8224
Total number of bits per slot	50688	101376	24576	50688	101376
Total symbols per slot	12672	25344	6144	12672	25344

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position = pos1 with I₀= 0 and I = 8 as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

A.5 Fixed Reference Channels for performance requirements (64QAM, R=567/1024)

The parameters for the reference measurement channels are specified in table A.5-2 for FR1 PUSCH performance requirements:

- FRC parameters are specified in table A.5-2 for FR1 PUSCH with transform precoding disabled, *Additional DM-RS position* = *pos1* and 1 transmission layer.

The parameters for the reference measurement channels are specified in table A.5-3 to table A.5-4 for FR2 PUSCH performance requirements:

- FRC parameters are specified in table A.5-3 for FR2 PUSCH with transform precoding disabled, *Additional DM-RS position* = *pos0* and 1 transmission layer.
- FRC parameters are specified in table A.5-4 for FR2 PUSCH with transform precoding disabled, *Additional DM-RS position = pos1* and 1 transmission layer.

Table A.5-1: Void

Table A.5-2: FRC parameters for FR1 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = *pos1* and 1 transmission layer (64QAM, R=567/1024)

Reference channel	G-FR1-						
	A5-8	A5-9	A5-10	A5-11	A5-12	A5-13	A5-14
Subcarrier spacing [kHz]	15	15	15	30	30	30	30
Allocated resource blocks	25	52	106	24	51	106	273
CP-OFDM Symbols per	12	12	12	12	12	12	12
slot (Note 1)							
Modulation	64QAM						
Code rate (Note 2)	567/1024	567/1024	567/1024	567/1024	567/1024	567/1024	567/1024
Payload size (bits)	12040	25104	50184	11528	24576	50184	131176
Transport block CRC (bits)	24	24	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24	24	24
Number of code blocks - C	2	3	6	2	3	6	16
Code block size including CRC (bits) (Note 2)	6056	8400	8392	5800	8224	8392	8224
Total number of bits per slot	21600	44928	91584	20736	44064	91584	235872
Total symbols per slot	3600	7488	15264	3456	7344	15264	39312

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, $Additional\ DM$ -RS position = pos1, l_0 = 2 and l =11 for PUSCH mapping type A, l_0 = 0 and l =10 for PUSCH mapping type B as per table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in clause 5.2.2 of TS 38.212 [15].

Table A.5-3: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = pos0 and 1 transmission layer (64QAM, R=567/1024)

Reference channel	G-FR2-	G-FR2-	G-FR2-	G-FR2-	G-FR2-
	A5-1	A5-2	A5-3	A5-4	A5-5
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	9	9	9	9	9
Modulation	64QAM	64QAM	64QAM	64QAM	64QAM
Code rate (Note 2)	567/1024	567/1024	567/1024	567/1024	567/1024
Payload size (bits)	23568	47112	11528	23568	47112
Transport block CRC (bits)	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24
Number of code blocks - C	3	6	2	3	6
Code block size including CRC (bits) (Note 2)	7888	7880	5800	7888	7880
Total number of bits per slot	42768	85536	20736	42768	85536
Total symbols per slot	7128	14256	3456	7128	14256

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position = pos0 with l_0 = 0 as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

Table A.5-4: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, *Additional DM-RS position* = pos1 and 1 transmission layer (64QAM, R=567/1024)

Reference channel	G-FR2- A5-6	G-FR2- A5-7	G-FR2- A5-8	G-FR2- A5-9	G-FR2- A5-10
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	8	8	8	8	8
Modulation	64QAM	64QAM	64QAM	64QAM	64QAM
Code rate (Note 2)	567/1024	567/1024	567/1024	567/1024	567/1024
Payload size (bits)	21000	42016	10248	21000	42016
Transport block CRC (bits)	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24
Number of code blocks - C	3	5	2	3	5
Code block size including CRC (bits) (Note 2)	7032	8432	5160	7032	8432
Total number of bits per slot	38016	76032	18432	38016	76032
Total symbols per slot	6336	12672	3072	6336	12672

NOTE 1: *DM-RS configuration type* = 1 with *DM-RS duration* = *single-symbol DM-RS* and the number of DM-RS CDM groups without data is 2, *Additional DM-RS position* = *pos1* with *l*₀= 0 and *l* =8 as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

A.6 PRACH Test preambles

Table A.6-1: Test preambles for Normal Mode in FR1

Burst format	SCS (kHz)	Ncs	Logical sequence index	V
0	1.25	13	22	32
A1, A2, A3,	15	23	0	0
B4, C0, C2	30	46	0	0

Table A.6-2: Test preambles for Normal Mode in FR2

Burst format	SCS (kHz)	Ncs	Logical sequence index	V
A1, A2, A3,	60	69	0	0
B4, C0, C2	120	69	0	0

Table A.6-3: Test preambles for high speed train restricted set type A

Burst format	SCS (kHz)	Ncs	Logical sequence index	V
0	1.25	15	384	0

Table A.6-4: Test preambles for high speed train restricted set type B

Burst format	SCS (kHz)	Ncs	Logical sequence index	V
0	1.25	15	30	30

Table A.6-5: Test preambles for high speed train short formats

Burst format	SCS (kHz)	Ncs	Logical sequence index	٧
A2, B4, C2	15	23	0	0
	30	46	0	0

A.7 Fixed Reference Channels for performance requirements (16QAM, R=434/1024)

The parameters for the reference measurement channels are specified in table A.7-1 for FR2 PUSCH performance requirements with transform precoding disabled, additional DM-RS position = pos0 and 2 transmission layers.

The parameters for the reference measurement channels are specified in table A.7-2 for FR2 PUSCH performance requirements with transform precoding disabled, additional DM-RS position = pos1 and 2 transmission layers.

Table A.7-1: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, Additional DM-RS position = pos0 and 2 transmission layers (16QAM, R=434/1024)

Reference channel	G-FR2-	G-FR2-	G-FR2-	G-FR2-	G-FR2-
	A7-1	A7-2	A7-3	A7-4	A7-5
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	9	9	9	9	9
Modulation	16QAM	16QAM	16QAM	16QAM	16QAM
Code rate (Note 2)	434/1024	434/1024	434/1024	434/1024	434/1024
Payload size (bits)	24072	48168	11784	24072	48168
Transport block CRC (bits)	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24
Number of code blocks - C	3	6	2	3	6
Code block size including CRC (bits) (Note 2)	8056	8056	5928	8056	8056
Total number of bits per slot	57024	114048	27648	57024	114048
Total symbols per slot	14256	28512	6912	14256	28512

NOTE 1: *DM-RS configuration type* = 1 with *DM-RS duration* = *single-symbol DM-RS* and the number of DM-RS CDM groups without data is 2, *Additional DM-RS position* = *pos0* with *l*₀= 0 as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

Table A.7-2: FRC parameters for FR2 PUSCH performance requirements, transform precoding disabled, Additional DM-RS position = pos1 and 2 transmission layers (16QAM, R=434/1024)

Reference channel	G-FR2-	G-FR2-	G-FR2-	G-FR2-	G-FR2-
	A7-6	A7-7	A7-8	A7-9	A7-10
Subcarrier spacing [kHz]	60	60	120	120	120
Allocated resource blocks	66	132	32	66	132
CP-OFDM Symbols per slot (Note 1)	8	8	8	8	8
Modulation	16QAM	16QAM	16QAM	16QAM	16QAM
Code rate (Note 2)	434/1024	434/1024	434/1024	434/1024	434/1024
Payload size (bits)	21504	43032	10504	21504	43032
Transport block CRC (bits)	24	24	24	24	24
Code block CRC size (bits)	24	24	24	24	24
Number of code blocks - C	3	6	2	3	6
Code block size including CRC (bits) (Note 2)	7200	7200	5288	7200	7200
Total number of bits per slot	50688	101376	24576	50688	101376
Total symbols per slot	12672	25344	6144	12672	25344

NOTE 1: DM-RS configuration type = 1 with DM-RS duration = single-symbol DM-RS and the number of DM-RS CDM groups without data is 2, Additional DM-RS position = pos1 with l_0 = 0 and l = 8 as per Table 6.4.1.1.3-3 of TS 38.211 [5].

NOTE 2: Code block size including CRC (bits) equals to K' in sub-clause 5.2.2 of TS 38.212 [15].

Annex B (normative): Error Vector Magnitude (FR1)

B.1 Reference point for measurement

The EVM shall be measured at the point after the FFT and a zero-forcing (ZF) equalizer in the receiver, as depicted in figure B.1-1 below.

Figure B.1-1: Reference point for EVM measurement

B.2 Basic unit of measurement

The basic unit of EVM measurement is defined over one slot in the time domain and N_{BW}^{RB} subcarriers in the frequency domain:

$$EVM = \sqrt{\frac{\sum_{t \in T} \sum_{f \in F(t)} |Z'(t, f) - I(t, f)|^{2}}{\sum_{t \in T} \sum_{f \in F(t)} |I(t, f)|^{2}}}$$

where

T is the set of symbols with the considered modulation scheme being active within the slot,

F(t) is the set of subcarriers within the $N_{\rm BW}^{\rm RB}$ subcarriers with the considered modulation scheme being active in symbol t,

I(t, f) is the ideal signal reconstructed by the measurement equipment in accordance with relevant Tx models,

Z'(t, f) is the modified signal under test defined in annex B.3.

NOTE: Although the basic unit of measurement is one slot, the equalizer is calculated over 10 ms measurement interval to reduce the impact of noise in the reference signals. The boundaries of the 10 ms measurement intervals need not be aligned with radio frame boundaries.

B.3 Modified signal under test

Implicit in the definition of EVM is an assumption that the receiver is able to compensate a number of transmitter impairments. The signal under test is equalized and decoded according to:

$$Z'(t,f) = \frac{FFT\left\{z(v - \Delta \tilde{t}) \cdot e^{-j2\pi\Delta \tilde{f}v}\right\} e^{j2\pi f\Delta \tilde{t}}}{\tilde{a}(f) \cdot e^{j\tilde{\varphi}(f)}}$$

where

z(v) is the time domain samples of the signal under test.

 $\Delta \tilde{t}$ is the sample timing difference between the FFT processing window in relation to nominal timing of the ideal signal. Note that two timing offsets are determined, the corresponding EVM is measured and the maximum used as described in annex B.7.

 $\Delta \widetilde{f}$ is the RF frequency offset.

 $\widetilde{\varphi}(f)$ is the phase response of the TX chain.

 $\tilde{a}(f)$ is the amplitude response of the TX chain.

B.4 Estimation of frequency offset

The observation period for determining the frequency offset $\Delta \widetilde{f}$ shall be 1 slot.

B.5 Estimation of time offset

B.5.1 General

The observation period for determining the sample timing difference $\Delta \tilde{t}$ shall be 1 slot.

In the following $\Delta \tilde{c}$ represents the middle sample of the EVM window of length W (defined in annex B.5.2) or the last sample of the first window half if W is even.

 $\Delta \widetilde{c}$ is estimated so that the EVM window of length W is centred on the measured cyclic prefix of the considered OFDM symbol. To minimize the estimation error the timing shall be based on demodulation reference signals. To limit time distortion of any transmit filter the reference signals in the 1 outer RBs are not taken into account in the timing estimation

Two values for $\Delta \tilde{t}$ are determined:

$$\Delta \widetilde{t}_l = \Delta \widetilde{c} + \alpha - \left| \frac{W}{2} \right|$$
 and

$$\Delta \tilde{t}_h = \Delta \tilde{c} + \left\lfloor \frac{W}{2} \right\rfloor$$
 where $\alpha = 0$ if W is odd and $\alpha = 1$ if W is even.

When the cyclic prefix length varies from symbol to symbol then *T* shall be further restricted to the subset of symbols with the considered modulation scheme being active and with the considered cyclic prefix length type.

B.5.2 Window length

Table B.5.2-1, B.5.2-2, B.5.2-3 specify the EVM window length (W) for normal CP.

Table B.5.2-1: EVM window length for normal CP, FR1, 15 kHz SCS

Channel bandwidth (MHz)	FFT size	CP length for symbols 1-6 and 8-13 in FFT samples	EVM window length W	Ratio of W to total CP length for symbols 1-6 and 8-13 (Note) (%)
5	512	36	14	40
10	1024	72	28	40
15	1536	108	44	40
20	2048	144	58	40
25	2048	144	72	50
30	3072	216	108	50
40	4096	288	144	50
50	4096	288	144	50

NOTE: These percentages are informative and apply to a slot's symbols 1 to 6 and 8 to 13. Symbols 0 and 7 have a longer CP and therefore a lower percentage.

Table B.5.2-2: EVM window length for normal CP, FR1, 30 kHz SCS

Channel bandwidth (MHz)	FFT size	CP length for symbols 1-13 in FFT samples	EVM window length W	Ratio of W to total CP length for symbols 1-13 (Note) (%)
5	256	18	8	40
10	512	36	14	40
15	768	54	22	40
20	1024	72	28	40
25	1024	72	36	50
30	1536	108	54	50
40	2048	144	72	50
50	2048	144	72	50
60	3072	216	130	60
70	3072	216	130	60
80	4096	288	172	60
90	4096	288	172	60
100	4096	288	172	60

NOTE: These percentages are informative and apply to a slot's symbols 1 through 13. Symbol 0 has a longer CP and therefore a lower percentage.

Table B.5.2-3: EVM window length for normal CP, FR1, 60 kHz SCS

Channel bandwidth (MHz)	FFT size	CP length in FFT samples	EVM window length W	Ratio of W to total CP length (Note) (%)
10	256	18	8	40
15	384	27	11	40
20	512	36	14	40
25	512	36	18	50
30	768	54	26	50
40	1024	72	36	50
50	1024	72	36	50
60	1536	108	64	60
70	1536	108	64	60
80	2048	144	86	60
90	2048	144	86	60
100	2048	144	86	60

NOTE: These percentages are informative and apply to all OFDM symbols within subframe except for symbol 0 of slot 0 and slot 2. Symbol 0 of slot 0 and slot 2 may have a longer CP and therefore a lower percentage.

Table B.5.2-4 below specifies the EVM window length (*W*) for extended CP. The number of CP samples excluded from the EVM window is the same as for normal CP length.

Channel bandwidth (MHz)	FFT size	CP length in FFT samples	EVM window length W	Ratio of W to total CP length (Note) (%)
10	256	64	54	84
15	384	96	80	83
20	512	128	106	83
25	512	128	110	85.9
30	768	192	164	85.9
40	1024	256	220	85.9
50	1024	256	220	85.9
60	1536	384	340	88.6
70	1536	384	340	88.7
80	2048	512	454	88.7
90	2048	512	454	88.7
100	2048	512	454	88.7
NOTE: These per	centages are in	nformative.		

Table B.5.2-4: EVM window length for extended CP, FR1, 60 kHz SCS

B.6 Estimation of TX chain amplitude and frequency response parameters

The equalizer coefficients $\tilde{a}(f)$ and $\tilde{\varphi}(f)$ are determined as follows:

1. Calculate the complex ratios (amplitude and phase) of the post-FFT acquired signal Z'(t, f) and the post-FFT ideal signal $I_2(t, f)$, for each reference signal, over 10ms measurement interval. This process creates a set of complex ratios:

$$a(t,f).e^{j\varphi(t,f)} = \frac{Z'(t,f)}{I_2(t,f)}$$

Where the post-FFT ideal signal $I_2(t,f)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: i.e. nominal demodulation reference signals, (all other modulation symbols are set to 0 V), nominal carrier frequency, nominal amplitude and phase for each applicable subcarrier, nominal timing.

2. Perform time averaging at each reference signal subcarrier of the complex ratios, the time-averaging length is 10ms measurement interval. Prior to the averaging of the phases $\varphi(t_i, f)$ an unwrap operation must be performed according to the following definition: The unwrap operation corrects the radian phase angles of $\varphi(t_i, f)$ by adding multiples of 2*PI when absolute phase jumps between consecutive time instances t_i are greater than or equal to the jump tolerance of PI radians. This process creates an average amplitude and phase for each reference signal subcarrier (i.e. every second subcarrier).

$$a(f) = \frac{\sum_{i=1}^{N} a(t_i, f)}{N}$$

$$\varphi(f) = \frac{\sum_{i=1}^{N} \varphi(t_i, f)}{N}$$

Where N is the number of reference signal; time-domain locations t_i from Z'(t, f) for each reference signal subcarrier f.

- 3. The equalizer coefficients for amplitude and phase $\hat{a}(f)$ and $\hat{\varphi}(f)$ at the reference signal subcarriers are obtained by computing the moving average in the frequency domain of the time-averaged reference signal subcarriers, i.e. every second subcarrier. The moving average window size is 19. For reference signal subcarriers at or near the edge of the channel the window size is reduced accordingly as per figure B.6-1.
- 4. Perform linear interpolation from the equalizer coefficients $\hat{a}(f)$ and $\hat{\varphi}(f)$ to compute coefficients $\tilde{a}(f)$, $\tilde{\varphi}(f)$ for each subcarrier.

Figure B.6-1: Reference subcarrier smoothing in the frequency domain

B.7 Averaged EVM

EVM is averaged over all allocated downlink resource blocks with the considered modulation scheme in the frequency domain, and a minimum of N_{dl} slots where N_{dl} is the number of slots in a 10 ms measurement interval.

For FDD the averaging in the time domain equals the N_{dl} slot duration of the 10 ms measurement interval from the equalizer estimation step.

$$\overline{EVM}_{frame} = \sqrt{\frac{1}{\sum_{i=1}^{N_{dl}} N_i}} \sum_{i=1}^{N_{dl}} \sum_{j=1}^{N_i} EVM_{i,j}^{2}$$

- Where Ni is the number of resource blocks with the considered modulation scheme in slot i.
- The EVM requirements shall be tested against the maximum of the RMS average at the window *W* extremities of the EVM measurements:

- Thus $\overline{\text{EVM}}_{\text{frame, 1}}$ is calculated using $\Delta \widetilde{t} = \Delta \widetilde{t_l}$ in the expressions above and $\overline{\text{EVM}}_{\text{frame, h}}$ is calculated using $\Delta \widetilde{t} = \Delta \widetilde{t_h}$ in the $\overline{\text{EVM}}_{\text{frame}}$ calculation.
- Thus we get:

$$\overline{EVM} = \max(\overline{EVM}_{\text{frame,l}}, \overline{EVM}_{\text{frame,h}})$$

For TDD, let N_{dl}^{TDD} be the number of slots with downlink symbols within a 10 ms measurement interval, the averaging in the time domain can be calculated from N_{dl}^{TDD} slots of different 10 ms measurement intervals and should have a minimum of N_{dl} slots averaging length where N_{dl} is the number of slots in a 10 ms measurement interval.

- \overline{EVM}_{frame} is derived by: Square the EVM results in each 10 ms measurement interval. Sum the squares, divide the sum by the number of EVM relevant locations, square-root the quotient (RMS).

$$\overline{EVM}_{\text{frame}} = \sqrt{\frac{1}{\sum_{i=1}^{N_{dl}^{TDD}} N_i}} \sum_{i=1}^{N_i} \sum_{j=1}^{N_i} EVM_{i,j}^2$$

- Where N_i is the number of resource blocks with the considered modulation scheme in slot i.
- The EVM_{frame} is calculated, using the maximum of $\overline{EVM}_{\text{frame}}$ at the window W extremities. Thus $\overline{EVM}_{\text{frame,l}}$ is calculated using $\tilde{t} = \Delta \tilde{t}_l$ and $\overline{EVM}_{\text{frame,h}}$ is calculated using $\tilde{t} = \Delta \tilde{t}_h$ (l and h, low and high; where low is the timing ($\Delta c W/2$) and and high is the timing ($\Delta c + W/2$)).

$$EVM_{\text{frame}} = \max(\overline{EVM}_{\text{frame,h}}, \overline{EVM}_{\text{frame,h}})$$

- In order to unite at least N_{dl} slots, consider the minimum integer number of 10 ms measurement intervals, where N_{frame} is determined by.

$$N_{frame} = \left[\frac{10 \times N_{slot}}{N_{dl}^{TDD}} \right]$$

and $N_{slot} = 1$ for 15 kHz SCS, $N_{slot} = 2$ for 30 kHz SCS and $N_{slot} = 4$ for 60 kHz SCS normal CP.

- Unite by RMS.

$$\overline{EVM} = \sqrt{\frac{1}{N_{frame}} \sum_{k=1}^{N_{frame}} EVM_{frame,k}^2}$$

Annex C (normative): Error Vector Magnitude (FR2)

C.1 Reference point for measurement

The EVM shall be measured at the point after the FFT and a zero-forcing (ZF) equalizer in the receiver, as depicted in figure C.1-1 below.

Figure C.1-1: Reference point for EVM measurement

C.2 Basic unit of measurement

The basic unit of EVM measurement is defined over one slot in the time domain and N_{BW}^{RB} subcarriers in the frequency domain:

$$EVM = \sqrt{\frac{\sum_{t \in T} \sum_{f \in F(t)} |Z'(t, f) - I(t, f)|^{2}}{\sum_{t \in T} \sum_{f \in F(t)} |I(t, f)|^{2}}}$$

where

T is the set of symbols with the considered modulation scheme being active within the slot,

F(t) is the set of subcarriers within the $N_{\rm BW}^{\rm RB}$ subcarriers with the considered modulation scheme being active in symbol t,

I(t, f) is the ideal signal reconstructed by the measurement equipment in accordance with relevant Tx models,

Z'(t, f) is the modified signal under test defined in C.3.

NOTE: Although the basic unit of measurement is one slot, the equalizer is calculated over 10 ms measurement intervals to reduce the impact of noise in the reference signals. The boundaries of the 10 ms measurement intervals need not be aligned with radio frame boundaries.

C.3 Modified signal under test

Implicit in the definition of EVM is an assumption that the receiver is able to compensate a number of transmitter impairments. The signal under test is equalized and decoded according to:

$$Z'(t,f) = \frac{FFT\left\{z(v - \Delta \tilde{t}) \cdot e^{-j2\pi\Delta \tilde{f}v}\right\}e^{j2\pi f\Delta \tilde{t}}}{\tilde{a}(f) \cdot e^{j\tilde{\varphi}(f)}}$$

where

z(v) is the time domain samples of the signal under test.

 $\Delta \tilde{t}$ is the sample timing difference between the FFT processing window in relation to nominal timing of the ideal signal. Note that two timing offsets are determined, the corresponding EVM is measured and the maximum used as described in C.7.

 $\Delta \tilde{f}$ is the RF frequency offset.

 $\widetilde{\varphi}(f)$ is the phase response of the TX chain.

 $\tilde{a}(f)$ is the amplitude response of the TX chain.

C.4 Estimation of frequency offset

The observation period for determining the frequency offset $\Delta \tilde{f}$ shall be 1 slot.

C.5 Estimation of time offset

C.5.1 General

The observation period for determining the sample timing difference $\Delta \tilde{t}$ shall be 1 slot.

In the following $\Delta \widetilde{c}$ represents the middle sample of the EVM window of length W (defined in C.5.2) or the last sample of the first window half if W is even.

 $\Delta \widetilde{c}$ is estimated so that the EVM window of length W is centred on the measured cyclic prefix of the considered OFDM symbol. To minimize the estimation error the timing shall be based on the reference signals. To limit time distortion of any transmit filter the reference signals in the 1 outer RBs are not taken into account in the timing estimation

Two values for $\Delta \tilde{t}$ are determined:

$$\Delta \widetilde{t}_l = \Delta \widetilde{c} + \alpha - \left\lfloor \frac{W}{2} \right\rfloor$$
 and

$$\Delta \tilde{t}_h = \Delta \tilde{c} + \left\lfloor \frac{W}{2} \right\rfloor$$
 where $\alpha = 0$ if W is odd and $\alpha = 1$ if W is even.

When the cyclic prefix length varies from symbol to symbol then $\,T\,$ shall be further restricted to the subset of symbols with the considered modulation scheme being active and with the considered cyclic prefix length type.

C.5.2 Window length

Table C.5.2-1 and Table C.5.2-2 specify the EVM window length (W) for normal CP for FR2 for normal CP.

Table C.5.2-1: EVM window length for normal CP, FR2, 60 kHz SCS

Channel bandwidth (MHz)	FFT size	CP length in FFT samples	EVM window length W	Ratio of W to total CP length (Note) (%)
50	1024	72	36	50
100	2048	144	72	50
200	4096	288	144	50

NOTE: These percentages are informative and apply to all OFDM symbols within subframe except for symbol 0 of slot 0 and slot 2. Symbol 0 of slot 0 and slot 2 may have a longer CP and therefore a lower percentage.

Table C.5.2-2: EVM window length for normal CP, FR2, 120 kHz SCS

Channel bandwidth (MHz)	FFT size	CP length in FFT samples	EVM window length W	Ratio of W to total CP length (Note) (%)
50	512	36	18	50
100	1024	72	36	50
200	2048	144	72	50
400	4096	288	144	50

NOTE 1: These percentages are informative and apply to all OFDM symbols within subframe except for symbol 0 of slot 0 and slot 4. Symbol 0 of slot 0 and slot 4 may have a longer CP and therefore a lower percentage.

Table C.5.2-3 below specifies the EVM window length (*W*) for extended CP. The number of CP samples excluded from the EVM window is the same as for normal CP length.

Table C.5.2-3: EVM window length for extended CP, FR2, 60 kHz SCS

Channel bandwidth (MHz)	FFT size	CP length in FFT samples	EVM window length W	Ratio of W to total CP length (Note) (%)
50	1024	256	220	85.9
100	2048	512	440	85.9
200	4096	1024	880	85.9
NOTE: These percentages are informative.				

C.6 Estimation of TX chain amplitude and frequency response parameters

The equalizer coefficients $\tilde{a}(f)$ and $\tilde{\varphi}(f)$ are determined as follows:

1. Calculate the complex ratios (amplitude and phase) of the post-FFT acquired signal Z'(t,f) and the post-FFT ideal signal $I_2(t,f)$, for each reference signal, over 10ms measurement intervals. This process creates a set of complex ratios:

$$a(t, f).e^{j\varphi(t, f)} = \frac{Z'(t, f)}{I_2(t, f)}$$

Where the post-FFT ideal signal $I_2(t, f)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters:

- nominal demodulation reference signals and nominal PT-RS if present (all other modulation symbols are set to 0 V),
- nominal carrier frequency,
- nominal amplitude and phase for each applicable subcarrier,
- nominal timing.
- 2. Perform time averaging at each reference signal subcarrier of the complex ratios, the time-averaging length is 10ms measurement interval. Prior to the averaging of the phases $\varphi(t_i, f)$ an unwrap operation must be performed according to the following definition: The unwrap operation corrects the radian phase angles of $\varphi(t_i, f)$ by adding multiples of 2*PI when absolute phase jumps between consecutive time instances t_i are greater than or equal to the jump tolerance of PI radians. This process creates an average amplitude and phase for each reference signal subcarrier (i.e. every second subcarrier).

$$a(f) = \frac{\sum_{i=1}^{N} a(t_i, f)}{N}$$
$$\varphi(f) = \frac{\sum_{i=1}^{N} \varphi(t_i, f)}{N}$$

Where N is the number of reference signal time-domain locations t_i from Z'(t, f) for each reference signal subcarrier f.

- 3. The equalizer coefficients for amplitude and phase $\hat{a}(f)$ and $\hat{\varphi}(f)$ at the reference signal subcarriers are obtained by computing the moving average in the frequency domain of the time-averaged reference signal subcarriers, i.e. every second subcarrier. The moving average window size is 19. For reference signal subcarriers at or near the edge of the channel the window size is reduced accordingly as per figure C.6-1.
- 4. Perform linear interpolation from the equalizer coefficients $\hat{a}(f)$ and $\hat{\varphi}(f)$ to compute coefficients $\tilde{a}(f)$, $\tilde{\varphi}(f)$ for each subcarrier. To account for the common phase error (CPE) experienced in millimetre wave frequencies, $\bar{\varphi}(f)$, in the estimated coefficients contain phase rotation due to the CPE, θ , in addition to the phase of the equalizer coefficient $\tilde{\varphi}(f)$, that is

$$\bar{\varphi}(f) = \tilde{\varphi}(f) + \theta(t)$$

For OFDM symbols where PT-RS does not exist, $\theta(t)$ can be estimated by performing linear interpolation from neighboring symbols where PT-RS is present.

In order to separate component of the CPE, θ , contained in, $\bar{\varphi}(f)$, estimation and compensation of the CPE needs to follow. $\theta(t)$ is the common phase error (CPE), that rotates all the subcarriers of the OFDM symbol at time t.

Estimate of the CPE, $\theta(t)$, at OFDM symbol time, t, can then be obtained from using the PT-RS employing the expression

$$\tilde{\theta}(t) = arg \left\{ \sum_{f \in f^{ptrs}} \left(\frac{Z'(t, f)}{I_{ptrs}(t, f)} \right) \left(\tilde{a}(f) e^{-j\overline{\varphi}(f)} \right) \right\}$$

In the above equation, f^{ptrs} is the set of subcarriers where PT-RS are mapped, $t \in t^{ptrs}$ where t^{ptrs} is the set of OFDM symbols where PT-RS are mapped while Z'(t,f) and $I_{ptrs}(t,f)$ are is the post-FFT acquired signal and the ideal PT-RS signal respectively. That is, estimate of the CPE at a given OFDM symbol is obtained from frequency correlation of the complex ratios at the PT-RS positions with the conjugate of the estimated equalizer complex coefficients. The estimated CPE can be subtracted from $\bar{\varphi}(f)$ to remove influence of the CPE, and obtain estimate of the complex coefficient's phase

$$\tilde{\varphi}(f) = \bar{\varphi}(f) - \tilde{\theta}(t)$$

Figure C.6-1: Reference subcarrier smoothing in the frequency domain

C.7 Averaged EVM

EVM is averaged over all allocated downlink resource blocks with the considered modulation scheme in the frequency domain, and a minimum of N_{dl} slots where N_{dl} is the number of slots in a 10 ms measurement interval.

For TDD, let N_{dl}^{TDD} be the number of slots with downlink symbols within a 10 ms measurement interval, the averaging in the time domain can be calculated from N_{dl}^{TDD} slots of different 10 ms measurement intervals and should have a minimum of N_{dl} slots averaging length where N_{dl} is the number of slots in a 10 ms measurement interval.

- $\overline{EVM}_{\text{frame}}$ is derived by: Square the EVM results in each 10 ms measurement intervals. Sum the squares, divide the sum by the number of EVM relevant locations, square-root the quotient (RMS).

$$\overline{EVM}_{\text{frame}} = \sqrt{\frac{1}{\sum_{i=1}^{N_{dl}^{TDD}} N_i} \sum_{i=1}^{N_{dl}^{TDD}} \sum_{j=1}^{N_i} EVM_{i,j}^2}$$

- Where N_i is the number of resource blocks with the considered modulation scheme in slot i.
- The EVM_{frame} is calculated, using the maximum of $\overline{EVM}_{\text{frame}}$ at the window W extremities. Thus $\overline{EVM}_{\text{frame,l}}$ is calculated using $\tilde{t} = \Delta \tilde{t}_l$ and $\overline{EVM}_{\text{frame,h}}$ is calculated using $\tilde{t} = \Delta \tilde{t}_h$ (l and h, low and high; where low is the timing ($\Delta c W/2$) and and high is the timing ($\Delta c + W/2$)).

$$EVM_{\text{frame}} = \max(\overline{EVM}_{\text{frame,l}}, \overline{EVM}_{\text{frame,h}})$$

- In order to unite at least N_{dl} slots, consider the minimum integer number of 10 ms measurement intervals, where N_{frame} is determined by.

$$N_{frame} = \left[\frac{10 \times N_{slot}}{N_{dl}^{TDD}} \right]$$

and $N_{slot} = 4$ for 60 kHz SCS and $N_{slot} = 8$ for 120 kHz SCS.

- Unite by RMS.

$$\overline{EVM} = \sqrt{\frac{1}{N_{frame}} \sum_{k=1}^{N_{frame}} EVM_{frame,k}^2}$$

Annex D (normative): Characteristics of the interfering signals

The interfering signal shall be a PUSCH containing data and DM-RS symbols. Normal cyclic prefix is used. The data content shall be uncorrelated to the wanted signal and modulated according to clause 6 of TS38.211 [9]. Mapping of PUSCH modulation to receiver requirement are specified in table D-1.

Table D-1: Modulation of the interfering signal

Receiver requirement	Modulation
In-channel selectivity	16QAM
Adjacent channel selectivity	QPSK
and narrow-band blocking	
General blocking	QPSK
Receiver intermodulation	QPSK

Annex E: Void

Annex F (normative): Relationship between EIRP based regulatory requirements and 3GPP requirements

F.1 General

This annex applies to FR1 BS type 1-C, BS type 1-H and BS type 1-O.

Some regional requirements are defined per effective isotropic radiated power (EIRP), which is a combination of the transmitted power (or in some cases spectral density) and the effective antenna gain which is a site-specific condition. Such requirements may be applied per antenna, per cell, or per base station. It shall be noted that the definition of BS or cell may differ between regulations.

The regulations are based on the assumption on *BS type 1-C* conducted requirements and a passive antenna and must be interpreted for active antenna systems that have active beamforming. This annex describes how the power per connector and sum power over *TAB connectors* can be related to such requirements.

Where the regulator prescribes a method for EIRP calculation, that method supersedes the proposed assessment in this annex.

F.2 Relationship between EIRP based regulatory requirements and conducted requirements

When 3GPP specifications mandate manufacturer declarations of the (conducted) output power or power spectral density per connector for the base station under the reference conditions stated as a way to accommodate the referred regional requirements without putting requirements on the local site conditions.

For the case when the base station manufacturer maximum output power or unwanted emission declarations apply per connector, the maximum EIRP can be estimated using the following formulas:

EIRP per antenna (applicable for BS type 1-C): $P_{EIRP} = P_{Tx} + G_{Ant}$

EIRP per cell or per BS (applicable for BS type 1-H): $P_{EIRPcell} = 10 * log (\sum 10^{PEIRPn/10})$

In case the EIRP requirement is set per polarization, the summation shall be made per polarization.

- "P_{EIRP}" is the resulting effective isotropic radiated power (or radiated power spectral density) resulting from the power (or power spectral density) declared by the manufacturer in dBm (or dBm/measurement BW).
- "P_{Tx}" is the conducted power or power spectral density declared by the manufacturer in dBm (or dBm/measurement BW).
- "G_{Ant}" is the effective antenna gain, calculated as the antenna gain (dBi) minus the loss of the site infrastructure connecting the BS antenna connector with the antenna (dB) for the applied frequency. The antenna nominal gain is only applicable within a certain frequency range. For *BS type 1-H*, G_{Ant} shall be an assumption on the gain of a passive antenna system in order to provide a total power emissions level comparable to the level obtained when a *BS type 1-C* is connected to a passive antenna. A typical example of a passive antenna gain, as used for *BS type 1-O*, is 17 dBi.
- "n" is the index number of the co-located antennas illuminating the same cell. P_{EIRPn} is the P_{EIRP} of the *n*th antenna
- "Cell" is in this annex used in the sense that it is the limited geographical area covered by the carrier transmitted from one site.

F.3 Relationship between EIRP based regulatory requirements and OTA requirements

The regulations set an EIRP limit considering a passive antenna BS. Although the gain of passive antennas may vary somewhat, the variation is in the order of a few dBs. The gain variation of a *BS type 1-O* may be much larger. However, *BS type 1-O* unwanted emissions requirements are defined as TRP, since TRP impacts co-existence properties.

In order to relate the EIRP values in the specifications to TRP, a fixed assumption has been made on the gain of a typical passive BS antenna.

Thus, the maximum TRP can be estimated using the following formulas:

```
TRP limit per antenna: P_{TRP, antenna} = P_{EIRP} - G_{Ant}
TRP limit per cell or per BS: P_{TRP} = P_{TRP, antenna} + 9 \text{ dB}
```

It is noted that the BS type 1-O architecture assumes that a BS subject to OTA requirements will have at least 8 antennas.

In case the TRP requirement is set per polarization, the summation shall be made per polarization.

- "P_{EIRP}" is the effective isotropic radiated power (or radiated power spectral density) set in the regulation (assuming a passive BS antenna) in dBm (or dBm/measurement BW).
- "G_{Ant}" is the effective antenna gain, the antenna gain (dBi) is a fixed reference value of 17 dBi. Directivity value should be used in above equations, however with all antenna losses are assumed zero then we can use effective antenna gain.

Annex G (Normative): Propagation conditions

G.1 Static propagation condition

The propagation for the static performance measurement is an Additive White Gaussian Noise (AWGN) environment. No fading or multi-paths exist for this propagation model.

G.2 Multi-path fading propagation conditions

The multipath propagation conditions consist of several parts:

- A delay profile in the form of a "tapped delay-line", characterized by a number of taps at fixed positions on a sampling grid. The profile can be further characterized by the r.m.s. delay spread and the maximum delay spanned by the taps.
- A combination of channel model parameters that include the Delay profile and the Doppler spectrum that is characterized by a classical spectrum shape and a maximum Doppler frequency.
- Different models are used for FR1 and FR2.

G.2.1 Delay profiles

The delay profiles are simplified from the TR 38.901 [16] TDL models. The simplification steps are shown below for information. These steps are only used when new delay profiles are created. Otherwise, the delay profiles specified in G.2.1.1 and G.2.1.2 can be used as such.

- Step 1: Use the original TDL model from TR 38.901 [16].
- Step 2: Re-order the taps in ascending delays.
- Step 3: Perform delay scaling according to the procedure described in clause 7.7.3 in TR 38.901 [16].
- Step 4: Apply the quantization to the delay resolution 5 ns. This is done simply by rounding the tap delays to the nearest multiple of the delay resolution.
- Step 5: If multiple taps are rounded to the same delay bin, merge them by calculating their linear power sum.
- Step 6: If there are more than 12 taps in the quantized model, merge the taps as follows
- Find the weakest tap from all taps (both merged and unmerged taps are considered)
 - If there are two or more taps having the same value and are the weakest, select the tap with the smallest delay as the weakest tap.
- When the weakest tap is the first delay tap, merge taps as follows
 - Update the power of the first delay tap as the linear power sum of the weakest tap and the second delay tap.
 - Remove the second delay tap.
- When the weakest tap is the last delay tap, merge taps as follows
 - Update the power of the last delay tap as the linear power sum of the second-to-last tap and the last tap.
 - Remove the second-to-last tap.

Otherwise

- For each side of the weakest tap, identify the neighbour tap that has the smaller delay difference to the weakest tap.
 - o When the delay difference between the weakest tap and the identified neighbour tap on one side equals the delay difference between the weakest tap and the identified neighbour tap on the other side.
 - Select the neighbour tap that is weaker in power for merging.
 - o Otherwise, select the neighbour tap that has smaller delay difference for merging.
- To merge, the power of the merged tap is the linear sum of the power of the weakest tap and the selected tap.
- When the selected tap is the first tap, the location of the merged tap is the location of the first tap. The weakest tap is removed.
- When the selected tap is the last tap, the location of the merged tap is the location of the last tap. The weakest tap is removed.
- Otherwise, the location of the merged tap is based on the average delay of the weakest tap and selected tap. If the average delay is on the sampling grid, the location of the merged tap is the average delay. Otherwise, the location of the merged tap is rounded towards the direction of the selected tap (e.g. 10 ns & 20 ns \rightarrow 15 ns, 10 ns & 25 ns \rightarrow 20 ns, if 25 ns had higher or equal power; 15 ns, if 10 ns had higher power) . The weakest tap and the selected tap are removed.
- Repeat step 6 until the final number of taps is 12.
- Step 7: Round the amplitudes of taps to one decimal (e.g. -8.78 dB \rightarrow -8.8 dB)
- Step 8: If the delay spread has slightly changed due to the tap merge, adjust the final delay spread by increasing or decreasing the power of the last tap so that the delay spread is corrected.
- Step 9: Re-normalize the highest tap to 0 dB.
- Note 1: Some values of the delay profile created by the simplification steps may differ from the values in tables G.2.1.1-2, G.2.1.1-3, G.2.1.1-4, and G.2.1.2-2 for the corresponding model.
- Note 2: For Step 5 and Step 6, the power values are expressed in the linear domain using 6 digits of precision. The operations are in the linear domain.

G.2.1.1 Delay profiles for FR1

The delay profiles for FR1 are selected to be representative of low, medium and high delay spread environment. The resulting model parameters are specified in table G.2.1.1-1 and the tapped delay line models are specified in tables $G.2.1.1-2 \sim G.2.1.1-4$.

Table G.2.1.1-1: Delay profiles for NR channel models

Model	Number of channel taps	Delay spread (r.m.s.)			
TDLA30	12	30 ns	290 ns	5 ns	
TDLB100	12	100 ns	480 ns	5 ns	
TDLC300	12	300 ns	2595 ns	5 ns	

Table G.2.1.1-2: TDLA30 (DS = 30 ns)

Tap#	Delay (ns)	Power (dB)	Fading distribution
1	0	-15.5	Rayleigh
2	10	0	Rayleigh
3	15	-5.1	Rayleigh
4	20	-5.1	Rayleigh
5	25	-9.6	Rayleigh
6	50	-8.2	Rayleigh
7	65	-13.1	Rayleigh
8	75	-11.5	Rayleigh
9	105	-11.0	Rayleigh
10	135	-16.2	Rayleigh
11	150	-16.6	Rayleigh
12	290	-26.2	Rayleigh

Table G.2.1.1-3: TDLB100 (DS = 100 ns)

Tap#	Delay (ns)	Power (dB)	Fading distribution
1	0	0	Rayleigh
2	10	-2.2	Rayleigh
3	20	-0.6	Rayleigh
4	30	-0.6	Rayleigh
5	35	-0.3	Rayleigh
6	45	-1.2	Rayleigh
7	55	-5.9	Rayleigh
8	120	-2.2	Rayleigh
9	170	-0.8	Rayleigh
10	245	-6.3	Rayleigh
11	330	-7.5	Rayleigh
12	480	-7.1	Rayleigh

Table G.2.1.1-4: TDLC300 (DS = 300 ns)

Tap#	Delay (ns)	Power (dB)	Fading distribution
1	0	-6.9	Rayleigh
2	65	0	Rayleigh
3	70	-7.7	Rayleigh
4	190	-2.5	Rayleigh
5	195	-2.4	Rayleigh
6	200	-9.9	Rayleigh
7	240	-8.0	Rayleigh
8	325	-6.6	Rayleigh
9	520	-7.1	Rayleigh
10	1045	-13.0	Rayleigh
11	1510	-14.2	Rayleigh
12	2595	-16.0	Rayleigh

G.2.1.2 Delay profiles for FR2

The delay profiles for FR2 are specified in table G.2.1.2-1 and the tapped delay line models are specified in table G.2.1.2-2.

Table G.2.1.2-1: Delay profiles for NR channel models

Model	Number of channel taps	Delay spread (r.m.s.)	Maximum excess tap delay (span)	Delay resolution
TDLA30	12	30 ns	290 ns	5 ns

Table G.2.1.2-2: TDLA30 (DS = 30 ns)

Tap#	Delay (ns)	Power (dB)	Fading distribution
1	0	-15.5	Rayleigh
2	10	0	Rayleigh
3	15	-5.1	Rayleigh
4	20	-5.1	Rayleigh
5	25	-9.6	Rayleigh
6	50	-8.2	Rayleigh
7	65	-13.1	Rayleigh
8	75	-11.5	Rayleigh
9	105	-11.0	Rayleigh
10	135	-16.2	Rayleigh
11	150	-16.6	Rayleigh
12	290	-26.2	Rayleigh

G.2.2 Combinations of channel model parameters

The propagation conditions used for the performance measurements in multi-path fading environment are indicated as a combination of a channel model name and a maximum Doppler frequency, i.e., TDLA<DS>-<Doppler>, TDLB<DS>-<Doppler> or TDLC<DS>-<Doppler> where '<DS>' indicates the desired delay spread and '<Doppler>' indicates the maximum Doppler frequency (Hz).

Table G.2.2-1 and G.2.2-2 show the propagation conditions that are used for the performance measurements in multipath fading environment for low, medium and high Doppler frequencies for FR1 and FR2, respectively.

Table G.2.2-1: Channel model parameters for FR1

Combination name	Tapped delay line model	Maximum Doppler frequency
TDLA30-5	TDLA30	5 Hz
TDLA30-10	TDLA30	10 Hz
TDLB100-400	TDLB100	400 Hz
TDLC300-100	TDLC300	100 Hz

Table G.2.2-2: Channel model parameters for FR2

Combination name	Tapped delay line model	Maximum Doppler frequency
TDLA30-75	TDLA30	75 Hz
TDLA30-300	TDLA30	300 Hz

G.2.3 MIMO Channel Correlation Matrices

The MIMO channel correlation matrices defined in G.2.3 apply for the antenna configuration using uniform linear arrays at both gNB and UE and for the antenna configuration using cross polarized antennas.

G.2.3.1 MIMO Correlation Matrices using Uniform Linear Array (ULA)

The MIMO channel correlation matrices defined in G.2.3.1 apply for the antenna configuration using uniform linear array (ULA) at both gNB and UE.

G.2.3.1.1 Definition of MIMO Correlation Matrices

Table G.2.3.1.1-1 defines the correlation matrix for the gNB:

Table G.2.3.1.1-1: gNB correlation matrix

	One antenna	Two antennas		Four antenn	as					Eigh	nt anten	nas			
								1	$lpha^{1/_{\!\!\!/_{\!\!\!49}}}$	$lpha^{4/_{49}}$	$lpha^{9/_{49}}$	$lpha^{^{16}\!\!/_{\!49}}$	$\alpha^{^{25}\!/_{49}}$	$lpha^{^{36}\!\!/_{\!49}}$	α
				. /		,		$lpha^{\frac{1}{49^*}}$	1	$lpha^{1/_{\!\!\!/_{\!\!\!49}}}$	$lpha^{4/_{49}}$	$lpha^{9/_{49}}$	$lpha^{^{16}\!\!/_{\!49}}$	$lpha^{^{25}\!/_{\!49}}$	$\alpha^{\frac{36}{49}}$
				1 $\alpha^{\frac{1}{9}}$	$lpha^{4/9}$	α		$lpha^{4/_{49^*}}$	$lpha^{^{1\!\!/_{\!\!49^*}}}$	1	$lpha^{1/_{49}}$	$lpha^{4/\!\!/_{\!49}}$	$lpha^{9/_{49}}$	$lpha^{^{16}\!\!/_{\!49}}$	$\alpha^{^{25}\!/_{\!49}}$
gNode B	D _1	$\begin{bmatrix} 1 & \alpha \end{bmatrix}$	α	¹ / ₉ * 1	$lpha^{\frac{1}{9}}$	$lpha^{4/9}$	D.	$lpha^{9/_{49^*}}$	$lpha^{4\!\!/_{\!49^*}}$	$lpha^{\frac{1}{49^*}}$	1	$lpha^{1/\!\!/_{\!49}}$	$lpha^{4/\!\!/_{49}}$	$lpha^{9/_{49}}$	$\alpha^{^{16}\!/_{\!49}}$
Correlation	$R_{gNB} = 1$	$R_{gNB} = \alpha^* 1$	$R_{gNB} = \alpha$	$\alpha^{\frac{1}{9}*}$ $\alpha^{\frac{1}{9}*}$	1	$lpha^{\frac{1}{9}}$	$R_{gNB} =$	$lpha^{^{16}\!\!/_{\!49^*}}$	$lpha^{9/_{49^*}}$	$lpha^{4/_{\!\!\!/49^*}}$	$lpha^{1/_{\!\!\!/49^*}}$	1	$lpha^{1/_{\!\!\!/_{\!\!\!49}}}$	$lpha^{4/_{\!\!\!/\!\!\!49}}$	$\alpha^{9/49}$
				4.7	$lpha^{\frac{1}{9}*}$	1		$lpha^{^{25}\!\!/_{\!\!49^*}}$	$lpha^{^{16}\!\!/_{\hspace{-0.5em}49^*}}$	$lpha^{9/_{\!\!49^*}}$	$lpha^{4/_{\!\!\!/49^*}}$	$lpha^{\frac{1}{49^*}}$	1	$lpha^{1/_{\!\!\!/_{\!\!\!49}}}$	$\alpha^{4/49}$
				ία	u	1)		$lpha^{^{36}\!\!/_{\!49^*}}$	$lpha^{^{25}\!\!/_{\!49^*}}$	$lpha^{^{16}\!\!/_{\!49^*}}$	$lpha^{9/_{49^*}}$	$lpha^{4/_{49^*}}$	$lpha^{1/_{\!\!\!/_{\!\!49^*}}}$	1	$\alpha^{\frac{1}{49}}$
								α^*	$lpha^{^{36}\!\!/_{\!49^*}}$	$lpha^{^{25}\!\!/_{\!49^*}}$	$lpha^{^{16}\!\!/_{\!49^*}}$	$lpha^{9/_{49^*}}$	$lpha^{4\!\!/_{\!49^*}}$	$lpha^{lac{1}{49^*}}$	1

Table G.2.3.1.1-2 defines the correlation matrix for the UE:

Table G.2.3.1.1-2: UE correlation matrix

	One antenna	Two antennas	Four antennas
UE Correlation	$R_{UE} = 1$	$R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$	$R_{UE} = \begin{pmatrix} 1 & \beta^{1/9} & \beta^{1/9} & \beta \\ \beta^{1/9} & 1 & \beta^{1/9} & \beta^{1/9} \\ \beta^{1/9} & \beta^{1/9} & 1 & \beta^{1/9} \\ \beta^* & \beta^{1/9} & \beta^{1/9} & 1 \end{pmatrix}$

Table G.2.3.1.1-3 defines the channel spatial correlation matrix R_{spat} . The parameters α and β in Table G.2.3.1.1-3 defines the spatial correlation between the antennas at the gNB and UE respectively.

Table G.2.3.1.1-3: $R_{\it spat}$ correlation matrices

1x2 cas e	$R_{spat} = R_{gNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$
1x4 cas e	$R_{spat} = R_{gNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$ $R_{spat} = R_{gNB} = \begin{pmatrix} 1 & \alpha^{1/9} & \alpha^{4/9} & \alpha \\ \alpha^{1/9*} & 1 & \alpha^{1/9} & \alpha^{4/9} \\ \alpha^{4/9*} & \alpha^{1/9*} & 1 & \alpha^{1/9} \\ \alpha^* & \alpha^{4/9*} & \alpha^{1/9*} & 1 \end{pmatrix}$
1x8 cas e	$R_{spat} = R_{gNB} = \begin{pmatrix} 1 & \alpha^{1/49} & \alpha^{4/49} & \alpha^{9/49} & \alpha^{16/49} & \alpha^{25/49} & \alpha^{36/49} & \alpha \\ \alpha^{1/49^*} & 1 & \alpha^{1/49} & \alpha^{4/49} & \alpha^{9/49} & \alpha^{16/49} & \alpha^{25/49} & \alpha^{36/49} \\ \alpha^{4/49^*} & \alpha^{1/49^*} & 1 & \alpha^{1/49} & \alpha^{4/49} & \alpha^{9/49} & \alpha^{16/49} & \alpha^{25/49} \\ \alpha^{9/49^*} & \alpha^{4/49^*} & \alpha^{1/49^*} & 1 & \alpha^{1/49} & \alpha^{4/49} & \alpha^{9/49} & \alpha^{16/49} \\ \alpha^{16/49^*} & \alpha^{9/49^*} & \alpha^{4/49^*} & \alpha^{1/49^*} & 1 & \alpha^{1/49} & \alpha^{4/49} & \alpha^{9/49} \\ \alpha^{25/49^*} & \alpha^{16/49^*} & \alpha^{9/49^*} & \alpha^{4/49^*} & \alpha^{1/49^*} & 1 & \alpha^{1/49} & \alpha^{4/49} \\ \alpha^{36/49^*} & \alpha^{25/49^*} & \alpha^{16/49^*} & \alpha^{9/49^*} & \alpha^{4/49^*} & \alpha^{1/49^*} & \alpha^{1/49^*} & 1 & \alpha^{1/49} \\ & & & & & & & & & & & & & & & & & & $
2x2 cas e	$R_{spat} = R_{UE} \otimes R_{gNB} = \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \alpha \\ \alpha^* & 1 \end{bmatrix} = \begin{bmatrix} 1 & \alpha & \beta & \beta \alpha \\ \alpha^* & 1 & \beta \alpha^* & \beta \\ \beta^* & \beta^* \alpha & 1 & \alpha \\ \beta^* \alpha^* & \beta^* & \alpha^* & 1 \end{bmatrix}$
2x4 cas e	$R_{spat} = R_{UE} \otimes R_{gNB} = \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \alpha \\ \alpha^* & 1 \end{bmatrix} = \begin{bmatrix} 1 & \alpha & \beta & \beta \alpha \\ \alpha^* & 1 & \beta \alpha^* & \beta \\ \beta^* & \beta^* \alpha & 1 & \alpha \\ \beta^* \alpha^* & \beta^* & \alpha^* & 1 \end{bmatrix}$ $R_{spat} = R_{UE} \otimes R_{gNB} = \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \alpha^{1/9} & \alpha^{4/9} & \alpha \\ \alpha^{1/9} & 1 & \alpha^{1/9} & \alpha^{4/9} \\ \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^* & \alpha^{4/9} & \alpha^{1/9} & 1 \end{bmatrix}$
2x8 cas e	$R_{spat} = R_{UE} \otimes R_{gNB} = \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \alpha^{1/49} & \alpha^{4/49} & \alpha^{9/49} & \alpha^{16/49} & \alpha^{25/49} & \alpha^{36/4} \\ \alpha^{4/49^*} & 1 & \alpha^{1/49} & \alpha^{4/49} & \alpha^{9/49} & \alpha^{16/49} & \alpha^{25/4} \\ \alpha^{4/49^*} & \alpha^{1/49^*} & 1 & \alpha^{1/49} & \alpha^{4/49} & \alpha^{9/49} & \alpha^{16/49} & \alpha^{16/49} \\ \alpha^{9/49^*} & \alpha^{4/49^*} & \alpha^{1/49^*} & 1 & \alpha^{1/49} & \alpha^{4/49} & \alpha^{1/49} \\ \alpha^{16/49^*} & \alpha^{9/49^*} & \alpha^{4/49^*} & \alpha^{1/49^*} & 1 & \alpha^{1/49} & \alpha^{4/4} \\ \alpha^{25/49^*} & \alpha^{16/49^*} & \alpha^{9/49^*} & \alpha^{4/49^*} & \alpha^{1/49^*} & 1 & \alpha^{1/4} \\ \alpha^{36/49^*} & \alpha^{25/49^*} & \alpha^{16/49^*} & \alpha^{9/49^*} & \alpha^{4/49^*} & \alpha^{1/49^*} & 1 \\ \alpha^* & \alpha^{36/49^*} & \alpha^{25/49^*} & \alpha^{16/49^*} & \alpha^{9/49^*} & \alpha^{4/49^*} & \alpha^{1/49^*} & 1 \\ \alpha^* & \alpha^{36/49^*} & \alpha^{25/49^*} & \alpha^{16/49^*} & \alpha^{9/49^*} & \alpha^{4/49^*} & \alpha^{1/49^*} & 1 \end{bmatrix}$

$$R_{spat} = R_{UE} \otimes R_{gNB} = \begin{pmatrix} 1 & \beta^{1/9} & \beta^{4/9} & \beta \\ \beta^{1/9*} & 1 & \beta^{1/9} & \beta^{4/9} \\ \beta^{4/9*} & \beta^{1/9*} & 1 & \beta^{1/9} \\ \beta^* & \beta^{4/9*} & \beta^{1/9*} & 1 \end{pmatrix} \otimes \begin{bmatrix} 1 & \alpha^{1/9} & \alpha^{4/9} & \alpha \\ \alpha^{1/9} & 1 & \alpha^{1/9} & \alpha^{4/9} \\ \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^* & \alpha^{4/9} & \alpha^{1/9} & 1 \end{bmatrix}$$

For cases with more antennas at either gNB or UE or both, the channel spatial correlation matrix can still be expressed as the Kronecker product of R_{UE} and R_{gNB} according to $R_{spxt} = R_{UE} \otimes R_{gNB}$.

G.2.3.1.2 MIMO Correlation Matrices at High, Medium and Low Level

The α and β for different correlation types are given in Table G.2.3.1.2-1.

Table G.2.3.1.2-1: Correlation for High Medium and Low Level

Low cor	Low correlation Medium Correlation			High Correlation			
α	β	α	β	α	β		
0	0	0.9	0.3	0.9	0.9		

The correlation matrices for high, medium and low correlation are defined in Table G.2.3.1.2-2, G.2.3.1.2-3 and G.2.3.1.2-4 as below.

The values in Table G.2.3.1.2-2 have been adjusted for the 2x4 and 4x4 high correlation cases to insure the correlation matrix is positive semi-definite after round-off to 4-digit precision. This is done using the equation:

$$\mathbf{R}_{high} = [\mathbf{R}_{spatial} + aI_n]/(1+a)$$

Where the value "a" is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the 2x4 high correlation case, a=0.00010. For the 4x4 high correlation case, a=0.00012.

The same method is used to adjust the 4x4 medium correlation matrix in Table G.2.3.1.2-3 to insure the correlation matrix is positive semi-definite after round-off to 4-digit precision with a =0.00012.

Table G.2.3.1.2-2: MIMO correlation matrices for high correlation

1x2 case	$R_{high} = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$							
2x2 case	$R_{high} = \begin{pmatrix} 1 & 0.9 & 0.9 & 0.81 \\ 0.9 & 1 & 0.81 & 0.9 \\ 0.9 & 0.81 & 1 & 0.9 \\ 0.81 & 0.9 & 0.9 & 1 \end{pmatrix}$							
2x4 case	$R_{high} = \begin{bmatrix} 1.0000 & 0.9883 & 0.9542 & 0.8999 & 0.8999 & 0.8894 & 0.8587 & 0.8099 \\ 0.9883 & 1.0000 & 0.9883 & 0.9542 & 0.8894 & 0.8999 & 0.8894 & 0.8587 \\ 0.9542 & 0.9883 & 1.0000 & 0.9883 & 0.8587 & 0.8894 & 0.8999 & 0.8894 \\ 0.8999 & 0.9542 & 0.9883 & 1.0000 & 0.8099 & 0.8587 & 0.8894 & 0.8999 \\ 0.8999 & 0.8894 & 0.8587 & 0.8099 & 1.0000 & 0.9883 & 0.9542 & 0.8999 \\ 0.8894 & 0.8999 & 0.8894 & 0.8587 & 0.9883 & 1.0000 & 0.9883 & 0.9542 \\ 0.8587 & 0.8894 & 0.8999 & 0.8894 & 0.9542 & 0.9883 & 1.0000 & 0.9883 \\ 0.8099 & 0.8587 & 0.8894 & 0.8999 & 0.8999 & 0.9542 & 0.9883 & 1.0000 \end{bmatrix}$							
4x4 case	$R_{high} = \begin{bmatrix} 1.0000 & 0.9882 & 0.9541 & 0.8999 & 0.9882 & 0.9767 & 0.9430 & 0.8894 & 0.9541 & 0.9430 & 0.9105 & 0.8587 & 0.8999 & 0.8894 & 0.8587 & 0.8099 \\ 0.9882 & 1.0000 & 0.9882 & 0.9541 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9541 & 0.9430 & 0.9105 & 0.8894 & 0.8999 & 0.8894 & 0.8587 \\ 0.9541 & 0.9882 & 1.0000 & 0.8894 & 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9105 & 0.9430 & 0.9541 & 0.8989 & 0.8587 & 0.8894 & 0.8999 \\ 0.9882 & 0.9767 & 0.9430 & 0.8894 & 1.0000 & 0.9882 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9541 & 0.9430 & 0.9541 & 0.9430 & 0.9105 & 0.8587 \\ 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 1.0000 & 0.9882 & 0.9541 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9541 & 0.9430 & 0.9105 \\ 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9541 & 0.9882 & 1.0000 & 0.9882 & 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9541 & 0.9430 \\ 0.9430 & 0.9767 & 0.9882 & 0.8999 & 0.9541 & 0.9882 & 1.0000 & 0.8894 & 0.9430 & 0.9767 & 0.9882 & 0.8587 & 0.9105 & 0.9430 & 0.9541 \\ 0.9541 & 0.9430 & 0.9767 & 0.9882 & 0.8999 & 0.9541 & 0.9882 & 1.0000 & 0.8894 & 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9541 \\ 0.9430 & 0.9541 & 0.9430 & 0.9105 & 0.8587 & 0.9882 & 0.9767 & 0.9430 & 0.8894 & 1.0000 & 0.9882 & 0.9541 & 0.8999 & 0.9882 & 0.9767 & 0.9430 & 0.9541 \\ 0.9541 & 0.9430 & 0.9105 & 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 0.9541 & 0.9767 & 0.9882 & 0.9767 & 0.9430 \\ 0.9105 & 0.9430 & 0.9541 & 0.9430 & 0.9130 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 0.9767 & 0.9882 & 0.9767 \\ 0.8587 & 0.9105 & 0.9430 & 0.9541 & 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 1.0000 & 0.8894 & 0.8994 & 0.8999 & 0.8894 & 0.8587 & 0.8994 & 0.8587 & 0.9430 & 0.9541 & 0.9430 & 0.9105 & 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 1.0000 & 0.9882 & 0.9541 & 0.8894 & 0.8999 & 0.8894 & 0.8587 & 0.9430 & 0.9541 & 0.9430 & 0.9105 & 0.9767 & 0.9882 & 0.9767 & 0.9541 & 0.9882 & 1.0000 & 0.9882 & 0.9541 & 0.8894 & 0.8999 & 0.8894 & 0.8999 & 0.8884 & 0.8999 & 0.8884 & 0.8999 & 0.8587 & 0.9105 & 0.9430 & 0.9541 & 0.9430$							

Table G.2.3.1.2-3: MIMO correlation matrices for medium correlation

1x2 case									[N/A]								
2x2 case				F) medium	_ 0	.0000 .9000 .3000) 1	9000	0.2	3000 2700	0.3	700				
					тешит		.2700		.2700 .3000		9000		000 000				
		(1.000	20 ().988	4 0	.9543	0.9	9000	0.3	000	0.29	65 (0.286	3 0	.2700)
		1		884	1.00		0.988		0.9543		.2965		8000	0.29		0.28	
		-												0.2			1
		ŀ		543	0.98		1.000		0.9884		.2863		2965			0.29	1
2x4 case	R	. =		000	0.95		0.988		1.0000		.2700		2863	0.29		0.300	
	N _{medium} —			000	0.29		0.286		0.2700		.0000		9884	0.95		0.900	
				965	0.30		0.296		0.2863		.9884		0000	0.98		0.95^{2}	
			0.2	863	0.29	965	0.300	00	0.2963	5 0	.9543	0.9	9884	1.00	000	0.983	84
		(0.2	700	0.28	363	0.296	55	0.3000	0 (.9000	0.9	543	0.98	384	1.000	00 /
4x4 case		(1.0000 (10883 0	05/11 (9000 A	9747 C	18645 0	93/17 (17972 N	5955 (15797 0	5599 0	5270 0	3000 (2065 (2862 0	2700
4X4 0030		0.9882			0.9541	0.8645	0.8747	0.8645		0.5787		0.5787	0.5588				
		0.9541	0.9882	1.0000	0.9882	0.8347	0.8645	0.8747	0.8645	0.5588		0.5855	0.5787		0.2965		0.2965
		0.8999	0.9541	0.9882	1.0000	0.7872	0.8347	0.8645				0.5787	0.5855	0.2700		0.2965	0.3000
		0.8747	0.8645 0.8747	0.8347	0.7872 0.8347	1.0000 0.9882	0.9882	0.9541 0.9882	0.8999 0.9541			0.8347	0.7872	0.5855	0.5787 0.5855	0.5588	0.5270
		0.8645 0.8347	0.8645	0.8045	0.8547	0.9882	0.9882	1.0000		0.8645 0.8347	0.8747	0.8645 0.8747	0.8347 0.8645	0.5787 0.5588	0.5787		0.5588 0.5787
	R _{medium} =	0.7872	0.8347	0.8645	0.8747	0.8999	0.9541	0.9882		0.7872	0.8347	0.8645	0.8747	0.5270	0.5588	0.5787	0.5855
		0.5855	0.5787	0.5588	0.5270	0.8747	0.8645	0.8347		1.0000		0.9541	0.8999	0.8747	0.8645	0.8347	0.7872
		0.5787	0.5855	0.5787	0.5588	0.8645	0.8747	0.8645		0.9882		0.9882	0.9541	0.8645	0.8747	0.8645	0.8347
		0.5588	0.5787	0.5855	0.5787	0.8347	0.8645	0.8747		0.9541	0.9882	1.0000	0.9882	0.8347	0.8645	0.8747	0.8645
		0.5270 0.3000	0.5588	0.5787 0.2862	0.5855	0.7872 0.5855	0.8347 0.5787	0.8645 0.5588		0.8999	0.9541 0.8645	0.9882 0.8347	1.0000 0.7872	0.7872 1.0000	0.8347 0.9882	0.8645 0.9541	0.8747 0.8999
		0.3000	0.2903	0.2862		0.5787	0.5855	0.5587		0.8645		0.8645	0.7872	0.9882	1.0000	0.9341	
		0.2862	0.2965	0.3000		0.5588	0.5787	0.5855		0.8347	0.8645	0.8747	0.8645	0.9541	0.9882	1.0000	0.9882
		0.2700	0.2862	0.2965	0.3000	0.5270	0.5588	0.5787	0.5855	0.7872	0.8347	0.8645	0.8747	0.8999	0.9541	0.9882	1.0000

Table G.2.3.1.2-4: MIMO correlation matrices for low correlation

1x2 case	$R_{low} = \mathbf{I}_2$
1x4 case	$R_{low} = \mathbf{I}_4$
1x8 case	$R_{low} = \mathbf{I}_8$
2x2 case	$R_{low} = \mathbf{I}_4$
2x4 case	$R_{low} = \mathbf{I}_8$
2x8 case	$R_{low} = \mathbf{I}_{16}$
4x4 case	$R_{low} = \mathbf{I}_{16}$

In Table G.2.3.1.2-4, \mathbf{I}_d is a $d \times d$ identity matrix.

NOTE: For completeness, the correlation matrices were defined for high, medium and low correlation but performance requirements exist only for low correlation.

G.2.3.2 Multi-Antenna channel models using cross polarized antennas

The MIMO channel correlation matrices defined in G.2.3.2 apply to two cases as presented below:

- One TX antenna and multiple RX antennas case, with cross polarized antennas used at gNB
- Multiple TX antennas and multiple RX antennas case, with cross polarized antennas used at both UE and gNB

The cross-polarized antenna elements with \pm 45 degrees polarization slant angles are deployed at gNB. For one TX antenna case, antenna element with \pm 90 degree polarization slant angle is deployed at UE. For multiple TX antennas case, cross-polarized antenna elements with \pm 90/0 degrees polarization slant angles are deployed at UE.

For the cross-polarized antennas, the N antennas are labelled such that antennas for one polarization are listed from 1 to N/2 and antennas for the other polarization are listed from N/2+1 to N, where N is the number of TX or RX antennas.

G.2.3.2.1 Definition of MIMO Correlation Matrices using cross polarized antennas

For the channel spatial correlation matrix, the following is used:

$$R_{Spat} = P_{UL} \left(R_{UE} \otimes \Gamma_{UL} \otimes R_{gNB} \right) P_{UL}^{T}$$

Where

- R_{UE} is the spatial correlation matrix at the UE with same polarization,
- $R_{e\!N\!B}$ is the spatial correlation matrix at the gNB with same polarization,
- Γ_{UL} is a polarization correlation matrix,
- P_{UL} is a permutation matrix, and
- $(\bullet)^T$ denotes transpose.

Table G.2.3.2.1-1 defines the polarization correlation matrix.

Table G.2.3.2.1-1: Polarization correlation matrix

	One TX antenna	Multiple TX antennas
Polarization correlation matrix	$\Gamma_{UL} = \begin{bmatrix} 1 & -\gamma \\ -\gamma & 1 \end{bmatrix}$	$\Gamma_{UL} = \begin{bmatrix} 1 & -\gamma & 0 & 0 \\ -\gamma & 1 & 0 & 0 \\ 0 & 0 & 1 & \gamma \end{bmatrix}$
	[-/ I]	$\begin{bmatrix} 0 & 0 & 1 & \gamma \\ 0 & 0 & \gamma & 1 \end{bmatrix}$

The matrix P_{III} is defined as

$$\mathbf{P}_{UL}(a,b) = \begin{cases} 1 & \textit{for } a = (j-1)Nr + i \textit{ and } b = 2(j-1)Nr + i, & i = 1, \cdots, Nr, \ j = 1, \cdots, \left \lceil Nt \ / \ 2 \right \rceil \\ 1 & \textit{for } a = (j-1)Nr + i \textit{ and } b = 2(j-Nt \ / \ 2)Nr - Nr + i, & i = 1, \cdots, Nr, \ j = \left \lceil Nt \ / \ 2 \right \rceil + 1, \dots, Nt \\ 0 & \textit{otherwise} \end{cases}$$

where Nt and Nr is the number of TX and RX antennas respectively, and $\lceil \bullet \rceil$ is the ceiling operator.

The matrix P_{UL} is used to map the spatial correlation coefficients in accordance with the antenna element labelling system described in G.2.3.2.

G.2.3.2.2 Spatial Correlation Matrices at UE and gNB sides

G.2.3.2.2.1 Spatial Correlation Matrices at UE side

For 1-antenna transmitter, $R_{UE} = 1$.

For 2-antenna transmitter using one pair of cross-polarized antenna elements, $R_{UE}=1$.

For 4-antenna transmitter using two pairs of cross-polarized antenna elements, $R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$.

G.2.3.2.2.2 Spatial Correlation Matrices at gNB side

For 2-antenna receiver using one pair of cross-polarized antenna elements, $R_{\text{2NB}} = 1$.

For 4-antenna receiver using two pairs of cross-polarized antenna elements, $R_{gNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$.

For 8-antenna receiver using four pairs of cross-polarized antenna elements, $R_{gNB} = \begin{pmatrix} 1 & \alpha^{1/9} & \alpha^{4/9} & \alpha \\ \alpha^{1/9*} & 1 & \alpha^{1/9} & \alpha^{4/9} \\ \alpha^{4/9*} & \alpha^{1/9*} & 1 & \alpha^{1/9} \\ \alpha^* & \alpha^{4/9*} & \alpha^{1/9*} & 1 \end{pmatrix}$.

G.2.3.2.3 MIMO Correlation Matrices using cross polarized antennas

The values for parameters α , β and γ for low spatial correlation are given in Table G.2.3.2.3-1.

Table G.2.3.2.3-1: Values for parameters α , β and γ

Low spatial correlation						
α β γ						
	0	0	0			
Note 1:	Note 1: Value of <i>α</i> applies when more than one pair of cross-polarized antenna elements at gNB side.					
Note 2:	te 2: Value of β applies when more than one pair of cross-polarized antenna elements at UE side.					

The correlation matrices for low spatial correlation are defined in Table G.2.3.2.3-2 as below.

Table G.2.3.2.3-2: MIMO correlation matrices for low spatial correlation

1x8 case	$R_{low} = \mathbf{I}_8$
2x8 case	$R_{low} = \mathbf{I}_{16}$

In Table G.2.3.2.3-2, \mathbf{I}_d is a $d \times d$ identity matrix.

G.3 High speed train condition

High speed train conditions are as follows:

- Scenario 1-NR350 / Scenario 1-NR500:: Open space
- Scenario 3-NR350 / Scenario 3-NR500:: Tunnel

The high speed train conditions for the test of the baseband performance are two non-fading propagation channels. For BS with Rx diversity, the Doppler shift time variation is the same for each antenna at each time instant.

Doppler shift for both scenarios is given by:

$$f_s(t) = f_d \cos \theta(t) \tag{G.3.1}$$

where $f_s(t)$ is the Doppler shift and f_d is the maximum Doppler frequency. The cosine of angle $\theta(t)$ is given by:

$$\cos\theta(t) = \frac{D_s/2 - vt}{\sqrt{D_{\min}^2 + (D_s/2 - vt)^2}}, \ 0 \le t \le D_s/v$$
(G.3.2)

$$\cos \theta(t) = \frac{-1.5D_s + vt}{\sqrt{D_{\min}^2 + (-1.5D_s + vt)^2}}, \ D_s/v < t \le 2D_s/v$$
(G.3.3)

$$\cos\theta(t) = \cos\theta(t \mod (2D_s/v)), \ t > 2D_s/v \tag{G.3.4}$$

where $D_s/2$ is the initial distance of the train from BS, and D_{\min} is BS-Railway track distance, both in meters; V is the velocity of the train in m/s, t is time in seconds.

The required input parameters are listed in table G.3-1 and G.3-2.. The resulting time varying Doppler shift is shown in Figure G.3-1, G.3-2, G.3-3 and G.3-4 for 350km/h scenarios, and in Figure G.3-5, G.3-6, G.3-7 and G.3-8 for 500km/h scenarios. For 350km/h scenarios, the Doppler shift was derived such that it corresponds to a velocity of around 350km/h for band n1 for the 15kHz SCS and for band n77 for the 30kHz SCS. For 500km/h scenarios, the Doppler shift was derived such that it corresponds to a velocity of around 500km/h for band n3 for the 15kHz SCS and for band n77 for the 30kHz SCS. However, the same Doppler shift requirement shall be applied regardless of the frequency of operation of the basestation and thus for lower frequencies, the supported speed is higher.

Table G.3-1: Parameters for high speed train conditions for UE velocity 350 km/h

Parameter	Va	lue
	Scenario 1-NR350	Scenario 3-NR350
D_{s}	700 m	300 m
D_{\min}	150 m	2 m
v	350 km/h	350 km/h
f_d	1340 Hz for 15kHz SCS 2334 Hz for 30kHz SCS	1340 Hz for 15kHz SCS 2334 Hz for 30kHz SCS

Table G.3-2: Parameters for high speed train conditions for UE velocity 500 km/h

Parameter	Va	lue
	Scenario 1-NR500	Scenario 3-NR500
D_{s}	700 m	300 m
D_{\min}	150 m	2 m
v	500 km/h	500 km/h
f_d	1740 Hz for 15kHz SCS 3334 Hz for 30kHz SCS	1740 Hz for 15kHz SCS 3334 Hz for 30kHz SCS

Figure G.3-1: Doppler shift trajectory for scenario 1-NR350 (15 kHz SCS)

Figure G.3-2: Doppler shift trajectory for scenario 3-NR350 (15 kHz SCS)

Figure G.3-3: Doppler shift trajectory for scenario 1-NR350 (30 kHz SCS)

Figure G.3-4: Doppler shift trajectory for scenario 3-NR350 (30 kHz SCS)

Figure G.3-5: Doppler shift trajectory for scenario 1-NR500 (15 kHz SCS)

Figure G.3-6: Doppler shift trajectory for scenario 3-NR500 (15 kHz SCS)

Figure G.3-7: Doppler shift trajectory for scenario 1-NR500 (30 kHz SCS)

Figure G.3-8: Doppler shift trajectory for scenario 3-NR500 (30 kHz SCS)

G.4 Moving propagation conditions

Figure G.3-1 illustrates the moving propagation conditions for the test of the UL timing adjustment performance. The time difference between the reference timing and the first tap is according Equation (G.4-1). The timing difference between moving UE and stationary UE is equal to $\Delta \tau - (T_A - 31) \times 16 \times 64 T_c$ for 15kHz SCS and $\Delta \tau - (T_A - 31) \times 16 \times 32 T_c$ for 30kHz SCS. The relative timing among all taps is fixed. The parameters for the moving propagation conditions are shown in Table G.4-1.

Figure G.4-1: Moving propagation conditions

$$\Delta \tau = \frac{A}{2} \cdot \sin(\Delta \omega \cdot t) \tag{G.4-1}$$

Table G.4-1: Parameters for UL timing adjustment

Parameter	Scenario Y
Channel model	Stationary UE: AWGN
	Moving UE: AWGN
UE speed	350 km/h
CP length	Normal
A	15 kHz: 10 μs
	30 kHz: 5 μs
Δω	15 kHz: 0.13 s ⁻¹
	30 kHz: 0.26 s ⁻¹

NOTE 1: Doppler shift is not taken into account in UL TA scenario Y.

Annex H (informative): Change history

	Change history									
Date	Meeting	TDoc	CR	Rev	Cat	Subject/Comment	New			
							version			
2017-05	RAN4#83	R4-				Specification skeleton	0.0.1			
		1704619								
2017-05	RAN4#83	R4-				Specification skeleton (revised)	0.0.2			
		1705332								
2017-05	RAN4#83	R4-				Specification skeleton (revised)	0.0.3			
		1706228								
2017-07	RAN4-NR	R4-				Agreed Text Proposal in RAN4 NR AH #2:	0.1.0			
	AH #2	1706983				R4-1706955 , "TP to TS 38.104: BS classification for NR BS"				
2018-08	RAN4#84	R4-				Agreed Text Proposal in RAN4 #84:	0.2.0			
		1709212				R4-1708872, "TP to TS 38.104 BS transmitter transient period"				

2018-10				
2010 10	RAN4#84	R4-	Agreed Text Proposal in RAN4 #84bis:	0.3.0
	bis	1711970	R4-1710199, "TP for TS 38.104: out of band blocking (10.4)"	
			R4-1710587, "TP for TS 38.104: Relationship with other core specifications (4.1)"	
			R4-1710588, "TP for TS 38.104: Relationship between minimum	
			requirements and test requirements (4.2)"	
			R4-1710589 , "TP for TS 38.104: Regional requirements (4.5)"	
			R4-1710591, "TP for TS 38.104: Conducted transmitter	
			characteristics (general) (6.1)"	
			R4-1710593, "TP for TS 38.104: Operating band unwanted	
			emissions (conducted) (6.6.4)"	
			R4-1710594, "TP for TS 38.104: Conducted receiver characteristics	
			(General) (7.1)"	
			R4-1710595, "TP for TS 38.104: Radiated transmitter characteristics	
			(General) (9.1)"	
			R4-1710598, "TP for TS 38.104: Radiated receiver characteristics	
			(General) (10.1)" R4-1711325 , "TP to TS38.104: OTA Output power dynamics (9.4)"	
			R4-1711363, "TP to TS 38.104 - Occupied bandwidth (6.6.2)"	
			R4-1711345, "TP to TS 38.104 - Conducted and radiated	
			requirement reference points (4.3)"	
			R4-1711746, "TP for TS 38.104: Adding applicability table to clause	
			4.6"	
			R4-1711747, "TP for TS 38.104: Operating bands and channel	
			arrangements. (5)"	
			R4-1711748, "TP to TS38.104: conducted NR BS output power	
			(6.2)"	
			R4-1711750 , "TP for TS 38.104: Transmit ON/OFF power (6.4)"	
			R4-1711753, "TP for TS 38.104: Time alignment error requirements	
			(6.5)"	
			R4-1711754, "TP for TS 38.104: Unwanted emissions, General	
			(Conducted) (6.6.1)" R4-1711755 , "TP to TS 38.104: Occupied bandwidth for FR1 and	
			FR2 NR BS (9.7)"	
			R4-1711756, "TP to TS 38.104: Transmitter spurious emissions	
			(conducted) (6.6.5)"	
			R4-1711757, "TP for TS 38.104:Conducted BS transmitter	
			intermodulation for FR1 (section 6.7)"	
			R4-1711758, "TP to TS 38.104: Reference Sensitivity (conducted)	
			(7.2)"	
			R4-1711759 , "TP to TS 38.104: NR BS conducted ACLR	
			requirement in FR1 (6.6.3)"	
			R4-1711760, "TP to TS38.104: conducted NR BS receiver spurious	
			emissions (7.6)"	
			R4-1711761, "TP to TS38.104: Radiated NR BS transmit power; FR1 (9.2)"	
			R4-1711762 , "TP to TS38.104: OTA base station output power, FR1	
			(9.3)"	
			R4-1711763, "TP for TS 38.104: OTA Transmit ON/OFF power	
			(9.5)"	
			R4-1711764 , "TP to TS 38.104 - OTA ACLR"	
			R4-1711765, "TP for TS 38.104: OTA Operating band unwanted	
			emissions and Spectrum emissions mask (9.7.4)"	
			R4-1711766 , "TP for TS 38.104: OTA Spurious emission (9.7.5)"	
			R4-1711767, "TP for TS 38.104: Adding specification text for OTA	
			TX IMD requirement in clause 9.8"	
			R4-1711768, "TP to TS 38.104: OTA Sensitivity (10.2)"	
			R4-1711771, "TP to TS38.104: OTA receiver spurious emissions,	
			FR1 (10.7)" PA 1711772 "TD to TS 29 104: Pageiver Intermedulation (10.9)"	
			R4-1711772, "TP to TS 38.104: Receiver Intermodulation (10.8)" R4-1711811, "TP to TS 38.104: NR BS conducted in-band selectivity	
			and blocking requirements in FR1 (7.4)"	
			R4-1711950, "TP to TS 38.104: Modulation Quality Skeleton (6.5)"	
			R4-1711951, "TP to TS38.104: frequency error for FR1 NR BS	
			(6.5&9.6)"	
			R4-1711952 , "TP to TS 38.104: OTA reference sensitivity (10.3)"	
		l l		
2017-11	RAN4#84	R4-	Alignment of structure, terminology, and definitions between clauses.	0.4.0

Agreed Teel Proposal in RAN4 #85 7714544 Agreed Teel Proposal in RAN4 #85 7714544 R4-171264, TP to 17 S 30 104: corrections for the applicability of R4-171264, TP to 17 S 30 104: corrections for the applicability of R4-171264, TP to 17 S 30 104: corrections for the applicability of R4-171264, TP to 17 S 30 104: corrections for the applicability of R4-171263, TP to 38 104: doubt of band blocking (7.5)* R4-171363, TP to 38 104 do nimroduction of 71" R4-171363, TP to 38 104, close 4.6 (Requirements for continuous and non-conflicuous spectrum) R4-171416, TP to 38 104, close 6.4 2.6 (pasic limits for additional requirements for operating band unwarded emissions)* R4-171416, TP to 17 S 30 104. Exclased NR BS transit power 2-0 (19.2) 11" R4-171412, TP to 17 S 30 104. CPA Cytopul power dynamics (9.4)* R4-171412, TP to 17 S 30 104. CPA Cytopul power dynamics (9.4)* R4-171412, TP to 17 S 30 104. CPA Cytopul power dynamics (9.4)* R4-171412, TP to 17 S 30 104. CPA CYTO TA TD MIT requirement for the sub-clause 4.0 and sub-clause 9.8" R4-171413, TP to 17 S 30 104. CPA CYTO TA TD MIT requirement for sub-clause 4.0 and sub-clause 9.8" R4-171413, TP to 17 S 30 104. CPA CYTO TA TD MIT requirement for sub-clause 4.0 and sub-clause 9.8" R4-171413, TP to 17 S 30 104. CPA CYTO TA TD MIT requirement for sub-clause 4.0 and sub-clause 9.8" R4-171413, TP to 17 S 30 104. CPA CYTO TA TD MIT requirement for sub-clause 4.0 and sub-clause 9.8" R4-171413, TP to 17 S 30 104. CPA CYTO TA TD MIT requirement for sub-clause 4.1" R4-171413, TP to 17 S 30 104. CPA CYTO TA TD MIT requirements for sub-clause 4.1" R4-171413, TP to 17 S 30 104. CPA CYTO TA TD MIT requirements identification (directional with 4.3") R4-171413, TP to 17 S 30 104. CPA cytopic of requirements identification (directional with 4.3") R4-171413, TP to 17 S 30 104. CPA cytopic of applicability table in sub-clause 9.6. and							
R4-17/2486. "TP to TS 38.104: corrections for the applicability of Bs type* and "requirement set" definitions". R4-17/2584. "TP to TS 38.104: out of band blocking (7.5)" R4-17/3581. "TP to 38.104: out of band blocking (7.5)" R4-17/3581. "TP to 38.104: out of band blocking (7.5)" R4-17/3581. "TP to 38.104: duste 6.6.4.2.6 (basic limits for continuous and non-configuous spectrum). R4-17/3632. "TP to 38.104; duste 6.6.4.2.6 (basic limits for additional requirements for to 38.104. Research of the TR4 definition". R4-17/3632. "TP to 38.104; duste 6.6.4.2.6 (basic limits for additional requirements for operating band unwanted emissions). R4-17/417. "TP to TS 38.104. CAD duste of the R5 definition". R4-17/417. "TP to TS 38.104. CAD duste of the R5 definition". R4-17/417. "TP to TS 38.104. "CAD duste of the R6 definition". R4-17/4125. "TP to TS 38.104. "CAD duste of the R6 definition". R4-17/4125. "TP to TS 38.104. "CAD duste of the R6 definition". R4-17/4125. "TP to TS 38.104. "CAD duste of the R6 definition." R4-17/4129. "TP to TS 38.104. "On Absolute everis for TR2 ACLR absolute levels for TR S5." R4-17/4131. "TP to TS 38.104. "Update of OTA TX IM requirement for sub-clause 4.9 and sub-clause 9.8" R4-17/4141. "TP to TS 38.104. "The TS 38.104. "The TS 48.104. "The R4-17/4141. "TP to TS 38.104. "The TS 48.104. "The requirements" R4-17/4141. "TP to TS 38.104. "The Sate for receiver requirements": R4-17/4141. "TP to TS 38.104. "The Sate for receiver requirement reference points (4.3)" R4-17/4130. "TP to TS 38.104. "Chaudacid and radiated requirement reference points (4.3)" R4-17/430. "TP to TS 38.104. "Data definition and the requirement reference points (4.3)" R4-17/430. "TP to TS 38.104. "Data definition and the requirements identification (reference value). "The TS 38.104. "Data definition and the requirements identification (reference value). "The TS 38.104. "Data definition and the requirements identification (reference value). "The TS 38.104. "Data definition and the requirements identification (reference value)	2017-12	RAN4#85	R4-			Agreed Text Proposal in RAN4 #85:	0.5.0
Fis type* and "requirements set" definitions" RA-1712964, TP for TS 33.104, cluster A. (Requirements for control of the property of the pr			1714544				
R4-17/2964, "TP for TS 38.104, clause 4.7 (Requirements for R4-17/1367). "TP to 38.104 on introduction of n7/1" R4-17/3632. "TP to 38.104, clause 4.7 (Requirements for BS configuration and on configuration spectrum)" R4-17/3633. "TP to 38.104, clause 4.6 (Requirements for BS configuration and on configuration spectrum)" R4-17/3634. "TP to 38.104, clause 6.8 4.2 6 basic limits for additional requirements for operating band unwanted emissions)" R4-17/41417. "To 15.3 3.0 4.8 Revision of the TRP definition" R4-17/41417. "TP to 15.3 3.0 4.8 Revision of the TRP definition" R4-17/41417. "TP to 15.3 3.0 4.8 Revision of the TRP definition" R4-17/41417. "TP to 15.3 3.0 4.0 4.0 CTA ToD Off power? R4-17/4125. "TP to 15.3 3.0 4.0 4.0 CTA ToD Off power? R4-17/4127. "TP to 15.3 3.0 4.0 4.0 CTA ToD Off power? R4-17/4127. "TP to 15.3 3.0 4.0 4.0 CTA TOD Off power? R4-17/4129. "TP to 15.3 3.0 4.0 4.0 CTA TOD Off power? R4-17/4129. "TP to 15.3 3.0 4.0 4.0 CTA TOD Off power? R4-17/4129. "TP to 15.3 3.0 4.0 4.0 CTA TOD Off power? R4-17/4134. "TP to 15.3 3.0 4.0 4.0 CTA TOD Off power? R4-17/4134. "TP to 15.3 3.0 4.0 4.0 CTA TOD Off power? R4-17/4134. "TP to 15.3 3.0 4.0 KNB BS conducted CACLR requirements in R7 (6.5.3)" R4-17/4134. "TP to 15.3 3.0 4.0 KNB BS conducted CACLR absolute lovels for R4-17/4134. "TP to 15.3 3.0 4.0 KNB BS CRO for Tecevier requirements in R7 (6.5.3)" R4-17/4135. "TP to 15.3 3.0 4.0 KNB BS CRO for receiver requirements: R4-17/4136. "TP to 15.3 3.0 KNB BS CRO for receiver requirements: R4-17/4139. "TP to 15.3 3.0 KNB BS CRO for receiver requirements: R4-17/4139. "TP to 15.3 3.0 KNB BS CRO for receiver requirements: R4-17/4139. "TP to 15.3 3.0 KNB BS CRO for Receiver requirements: R4-17/4139. "TP to 15.3 3.0 KNB BS CRO for R5 R5 (6.58.6)" R4-17/4139. "TP to 15.3 3.0 KNB BS CRO for R5 R5 (6.58.6)" R4-17/4139. "TP to 15.3 3.0 KNB BS CRO for R5 R5 (6.58.6)" R4-17/4139. "TP to 15.3 3.0 KNB BS CRO for R5 R5 (6.58.6)" R4-17/4139. "TP to 15.3 3.0 KNB BS CRO for R5 R5 (6.58.6)" R4-17/4139. "TP to 15.3 3.0 KNB BS CRO f							
RA-1713631, "TP to 38.104 cause 4.7 (Requirements for configuous and non-configuous spacitum)" RA-1713634, "TP to 38.104, clause 4.6 (Requirements for BS and the configuous and non-configuous spacitum)" RA-1713634, "TP to 38.104, clause 6.6 4.2.6 (basic limits for additional requirements for both space 4.6 (Requirements for BS and 1713634, "TP to 38.104, clause 6.6 4.2.6 (basic limits for additional requirements for operating band unwanted emissions)" RA-1714116, "TP to TS 38.104, Reduced NR BS transmit power, 2-0 (j.2.3)" RA-1714117, "The to TS 38.104 CRadiated NR BS transmit power, 2-0 (j.2.3)" RA-1714127, "The to TS 38.104 CTA Output power dynamics (j.4)" RA-1714127, "The to TS 38.104 CTA Output power dynamics (j.4)" RA-1714127, "The to TS 38.104 CTA Output power dynamics (j.4)" RA-1714127, "The to TS 38.104 CTA Output power dynamics (j.4)" RA-1714127, "The to TS 38.104 CTA Output power dynamics (j.4)" RA-1714127, "The to TS 38.104 CTA Output power dynamics (j.4)" RA-1714127, "The to TS 38.104 CTA Output power dynamics (j.4)" RA-1714127, "The to TS 38.104 CTA							
configuous and non-contiguous spectrum)" Re1-1713632, The 3.8 1.04, clause 6.8 (A.2.6 (basic limits for additional requirements for operating hand unwanted emissions) and interest of the state of the							
Re-1713633, 'TP to 38, 104, clause 4.8 (Requirements for BS capable of multi-band operation)' Re-1713634, 'TP to 38, 104, clause 6.6.4.2 6 (basic limits for additional requirements for operating band unwanted emissions)' Re-1714116, 'TP to TS 38, 104, Clause 6.6.4.2 6 (basic limits for additional requirements for operating band unwanted emissions)' Re-1714121, 'TP to TS 38, 104, CRASHOW, Revision of the TRP definition'' Revision of the TRP definition of the							
capable of multi-band operation)* RA-1713634, "The 0 38.104, clause 6.6.4.2.6 (basic limits for additional requirements for operating band unwanted emissions)* RA-1714167, "The 1ot 15.3.6.104, Revision of the Thry definition" RA-1714117, "The 1ot 15.3.6.104, Revision of the Thry definition" RA-1714117, "The 1ot 15.3.6.104, Revision of the Thry definition" RA-1714117, "The 1ot 15.3.6.104 (OR 20.104) Revision of the Thry definition" RA-1714127, "The 1ot 15.3.6.104 (OR 20.104) Revision of the Thry definition of the RA-1714127, "The 1ot 15.3.6.104 (OR 104) Revision (19.4) RA-1714129, "The 1ot 15.3.6.104 (NR BS conducted CACLR requirements in FR1 (6.5.3)" RA-1714136, "The 1ot 15.3.6.104 (NR BS FRC CLR absolute levels for RR SS RA-1714136, "The 1ot 15.3.6.104 (NR BS FRC for receiver requirements in FR1 (6.5.3)" RA-1714136, "The 1ot 15.3.6.104 (NR BS FRC for receiver requirements and the state of the RS RA-1714130," The 1ot 15.3.6.104 (NR BS FRC for receiver requirements and the requirement reference points (4.3)" RA-1714130," The 1ot 15.3.6.104 (NR BS FRC for receiver requirements reference points (4.3)" RA-1714310," The 1ot 15.3.6.104 (NR BS FRC for receiver requirement reference points (4.3)" RA-1714310," The 1ot 15.3.6.104 (NR BS FRC for receiver requirement reference points (4.3)" RA-1714310," The 1ot 15.3.6.104 (NR BS FRC for Review							
RA-1713634, "TP to 38.104, clause 6.6.4.2.6 (basic limits for additional requirements for operating band unwanted emissions)' RA-1714116, "TP to TS 38.104: Revision of the TRP definition' RA-1714117, "TP to TS 38.104: Radiated NR IS transmit power; 2-019.2.3) RA-1714121, "TP to TS 38.104: OTA Output power dynamics (9.4)" RA-1714127, "TP for TS 38.104: OTA Output power dynamics (9.4)" RA-1714127, "TP for TS 38.104: OTA Output power dynamics (9.4)" RA-1714127, "TP for TS 38.104: OTA (17.0 CM) FOR SCONDING (9.6.1)" RA-1714129, "TP to TS 38.104: OTA (17.0 CM) FOR SCONDING (9.6.1)" RA-1714134, "TP to TS 38.104: OTA Requency error (9.6.1)" RA-1714134, "TP to TS 38.104: NR BSC ordinated CACLE requirements in FR1 (6.6.3)" RA-1714134, "TP to TS 38.104: Update of OTA TX IM requirement for sub-clause 4.8 and sub-clause 9.8" RA-1714134, "TP to TS 38.104: NR BS FRCs for receiver requirements": RA-1714136, "TP to TS 38.104: NR BS FRCs for receiver requirements": RA-1714130, "TP to TS 38.104: Ord out of band blocking FR1 (10.6)" RA-1714130, "TP to TS 38.104: Ord out of band blocking FR1 (10.6)" RA-1714130, "TP to TS 38.104: Ord out of band blocking FR1 (10.6)" RA-1714130, "TP to TS 38.104: Ord out of band blocking FR1 (10.6)" RA-1714130, "TP to TS 38.104: Ord out of band blocking FR1 (10.6)" RA-1714130, "TP to TS 38.104: Ord out of band blocking FR1 (10.6)" RA-1714131, "TP to TS 38.104: Ord outcase 4.6" RA-171431, "TP to TS 38.104: Ord outcase 4.6" RA-171431, "TP to TS 38.104: Detail on darked and radiated continued to the sub-data of the sub-data of the sub-data outcase (10.7)" RA-171431, "TP to TS 38.104: Detail on darked continued to the sub-data outcase (10.7)" RA-171431, "TP to TS 38.104: Detail on darked continued to the sub-data outcase (10.7)" RA-171431, "TP to TS 38.104: Detail on darked (10.5)" RA-1714318, "TP to TS 38.104: Detail on darked (10.5)" RA-1714318, "TP to TS 38.104: Dynamic Range for FR1 (conducted)" RA-1714318, "TP to TS 38.104: Dynamic Range for FR1 (conducted)" RA-1714318, "TP to TS 38.104: Dynamic R							
additional requirements for operating band unwanted emissions)" R4-171411, "TP to TS 38.10-4. Revision of the TRP definition" R4-1714117, "TP to TS 38.10-4. Rolated NR BS transmit power; 2- 0 (9.2.3)" R4-1714125, "TP to TS 38.10-4. OTA TDD Off power? R4-1714125, "TP to TS 38.10-4. VAI.00 TA TDD Off power? R4-1714129, "TP to TS 38.10-4. VAI.00 TA TDD Off power? R4-1714129, "TP to TS 38.10-4. NR BS contacted CACLE R5-1714129, "TP to TS 38.10-4. NR BS contacted CACLE absolute levels for NR BS" R4-1714134, "TP to TS 38.10-4. Oa basolute levels for FR2 ACLE absolute levels for NR BS" R4-1714134, "TP to TS 38.10-4. Valetaerone Sensitivity (conducted) (7.2)" R4-171412, "TD to TS 38.10-4. Reference Sensitivity (conducted) (7.2)" R4-1714130, "TP to TS 38.10-4. Reference Sensitivity (conducted) (7.2)" R4-1714130, "TP to TS 38.10-4. Self-service Sensitivity (conducted) (7.2)" R4-1714130, "TP to TS 38.10-4. Self-service Sensitivity (conducted) (7.2)" R4-1714130, "TP to TS 38.10-4. Self-service Sensitivity (conducted) (7.2)" R4-1714130, "TP to TS 38.10-4. Self-service Sensitivity (conducted) (7.2)" R4-1714130, "TP to TS 38.10-4. Self-service Sensitivity (conducted) (7.2)" R4-1714130, "TP to TS 38.10-4. Self-self-self-self-self-self-self-self-s							
RA-1714116, "TP to TS 38.104: Revision of the TRP definition" RA-1714117, "TP to TS 38.104: Radiated NR BS transmit power; 2- 0 (9.2.3)" RA-1714121, "TP to TS 38.104: OTA Output power dynamics (9.4)" RA-1714125, "TP to TS 38.104: OTA Output power dynamics (9.4)" RA-1714129, "TP to TS 38.104: OTA TOD Oif power' RA-1714129, "TP to TS 38.104: OTA TOD Oif power' RA-1714129, "TP to TS 38.104: OTA TAX DOI Of the TRP definition," RA-1714124, "TP to TS 38.104: NR SC conducted CACLR RA-1714134, "TP to TS 38.104: Update of OTA TX IM requirement for sub-clause 4.9 and sub-clause 9.5" RA-1714134, "TP to TS 38.104: Update of OTA TX IM requirement for sub-clause 4.9 and sub-clause 9.5" RA-1714141, "TP to TS 38.104: Post Reference Sensitivity (conducted) (7.2)" RA-17141412, "TP to TS 38.104: Post Reference Sensitivity (conducted) (7.2)" RA-17141412, "TP to TS 38.104: Adding of TRP in terminology in Gardian and the Carlo of the Carlo of the Carlo of Radian and Tax Pequirement reference polinic (3.3)" RA-1714306, "TP for TS 38.104: Adding of TRP in terminology in Gardian and Tax Pequirement reference polinic (3.3)" RA-1714307, "TP to TS 38.104: Decision and TRP requirements identification (directional vs. TRP)" RA-1714310, "TP to TS 38.104: Decision and TRP requirements identification (directional vs. TRP)" RA-1714313, "TP to TS 38.104: Operating bands (5.1-5.3)" RA-1714313, "TP to TS 38.104: Operating bands (5.1-5.3)" RA-1714313, "TP to TS 38.104: Dynamic Range for FR1 (Conducted) (7.5)" RA-1714319, "TP to TS 38.104: Operating bands (5.1-5.3)" RA-1714319, "TP to TS 38.104: Operating bands (5.1-5.4)" RA-1714319, "TP to TS 38.104: Operat							
RA-174417, 'TP to TS 38.104: Radiated NR BS transmit power, 2- 0 (9.2.3)' RA-174125, 'TP to TS 38.104: OTA Output power dynamics (9.4)' RA-174125, 'TP to TS 38.104: OTA TDD Off power' RA-174127, 'TP for TS 38.104: OTA TDD Off power' RA-174129, 'TP to TS 38.104: OTA TDD Off power' RA-174129, 'TP to TS 38.104: OTA TDD Off power' RA-174129, 'TP to TS 38.104: OTA TEQUE (9.6.1)' RA-174130, 'TP to TS 38.104: Otate of OTA TX IM requirement for sub-clause s 16.7 in the control of the con							
O (9.2.3)* R4-1714121, "TP to TS 38.104: OTA Output power dynamics (9.4)* R4-1714125, "TP to TS 38.104: V.0.4.0: OTA TDD Off power R4-1714129, "TP to TS 38.104: OTA frequency error (9.6.1)* R4-1714129, "TP to TS 38.104: OTA frequency error (9.6.1)* R4-1714129, "TP to TS 38.104: NDE Sconducted CACLR requirements in FRI (8.6.3)* R4-1714139, "TP to TS 38.104: NDS conducted CACLR requirements in FRI (8.6.3)* R4-1714136, "TP to TS 38.104: Update of OTA TX IM requirement for sub-clause 4.8 and sub-clause 9.6" R4-1714141, "TP to TS 38.104: Update of OTA TX IM requirement for sub-clause 4.8 and sub-clause 9.6" R4-1714141, "TP to TS 38.104: NR BS FRCs for receiver requirements." R4-1714141, "TP to TS 38.104: Adding of TRP in terminology in clause 3.7 and the provided of the prov							
R4-1714125, 'Te for TS 38.104: 'OTA frequency error (je.1.1)' R4-1714129, 'Te for TS 38.104: 'OTA frequency error (je.1.1)' R4-1714129, 'Te for TS 38.104: 'OTA frequency error (je.6.1)' R4-1714130, 'Te for TS 38.104: 'OTA frequency error (je.6.1)' R4-1714136, 'Te for TS 38.104: 'Update of OTA TX IM requirement for sub-clause 9.8' R4-1714136, 'Te for TS 38.104: 'Na BS FRCs for receiver conclusive sub-clause 9.8' R4-1714141, 'Te to TS 38.104: NR BS FRCs for receiver conclusive sub-clause 9.8' R4-17141410, 'Te for TS 38.104: NR BS FRCs for receiver conclusive sub-clause 1.8' R4-1714112, 'Te for TS 38.104: Adding of TRP in terminology in clause 3' R4-1714130, 'Te for TS 38.104: Adding of TRP in terminology in clause 3' R4-1714307, 'Te for TS 38.104: Conducted and radiated requirement reference points (4.3)' R4-1714310, 'Te for TS 38.104: Directional and TRP requirements identification (directional ws. TRP)' R4-1714310, 'Te for TS 38.104: Update of applicability table in sub-clause 4.6' Caluse 4.6' R4-1714313, 'Te for TS 38.104: Operating bands (5.1-5.3)' R4-1714315, 'Te for TS 38.104: Directional and TRP requirements identification (directional ws. TRP)' R4-1714315, 'Te for TS 38.104: Directional graphicability table in sub-clause 4.6' Caluse 4.6' R4-1714319, 'Te for TS 38.104: Diperating bands (5.1-5.3)' R4-1714319, 'Te for TS 38.104: Diperating bands (5.1-5.3)' R4-1714319, 'Te for TS 38.104: Dynamic Range for FR1 (0.14)' R4-1714319, 'Te for TS 38.104: Adding text for clause 6.6.2' Modulation quality' R4-1714319, 'Te for TS 38.104: On The Spurious emission (9.7.5)' R4-1714319, 'Te for TS 38.104: Adding text for clause 9.6.4' Modulation quality' R4-1714319, 'Te for TS 38.104: Adding text for clause 9.6.4' R4-1714319, 'Te for TS 38.104: Adding text for clause 9.6.4' R4-1714319, 'Te for TS 38.104: Conducted Adjacent Channel Leokage Power Ratio (ACLR) (6.6.3)' R4-1714430, 'Te for TS 38.104: Conducted Adjacent Channel Leokage Power Ratio (ACLR) (6.6.3)' R4-1714430, 'Te for TS 38.104: Conducted Adjacent Channel Leokage							
R4-1714127, "TP for TS 38,104: DTA frequency error (9.6.1)" R4-1714129, "TP for TS 38,104: NR BS conducted CACLR requirements in FR1 (6.6.3)" R4-1714134, "TP for TS 38,1040: Absolute levels for FR2 ACLR absolute levels for NR BS" R4-1714136, "TP for TS 38,104: Update of OTA TX IM requirement for sub-clause 4.9 and sub-clause 9.8" R4-1714141, "TP for TS 38,104: NP SERCE for receiver requirements" R4-1714141, "TP to TS 38,104: NP SERCE for receiver requirements" R4-1714150, "TP to TS 38,104: Adding of TRP in terminology in clause 3" R4-1714150, "TP to TS 38,104: Adding of TRP in terminology in clause 3" R4-1714306, "TP for TS 38,104: Conducted and radiated requirements reference points (4.2)" R4-1714306, "TP for TS 38,104: Description and TRP requirements identification in directional vs. TRP)" R4-1714310, "TP for TS 38, 104: Defact of applicability table in sub-clause 4.6" R4-1714310, "TP for TS 38, 104: Defact of applicability table in sub-clause 4.6" R4-1714313, "TP to TS 38, 104: Operating bands (5.1-5.3)" R4-1714315, "TP to TS 38, 104: Operating bands (5.1-5.3)" R4-1714315, "TP to TS 38, 104: Operating bands (5.1-6.3)" R4-1714317, "TP to TS 38, 104: Operating bands (5.1-6.3)" R4-1714317, "TP to TS 38, 104: Operating bands (5.1-6.3)" R4-1714318, "TP to TS 38, 104: Operating bands (5.1-6.3)" R4-1714319, "TP for TS 38, 104: OTA Spurious emission (9.7-5)" R4-1714319, "TP for TS 38, 104: OTA Dynamic Range for FR1 (conducted)" R4-1714319, "TP for TS 38, 104: OTA Dynamic range (10, 4)" R4-1714320, "TP for TS 38, 104: OTA Dynamic range (10, 4)" R4-1714321, "TP for TS 38, 104: OTA Dynamic range (10, 4)" R4-1714320, "TP for TS 38, 104: OTA Dynamic range (10, 4)" R4-1714320, "TP for TS 38, 104: OTA Dynamic range (10, 4)" R4-1714320, "TP for TS 38, 104: OTA Dynamic range (10, 4)" R4-1714320, "TP for TS 38, 104: OTA Partious emissions (or.6)" R4-1714430, "TP to TS 38, 104: OTA Rx spurious emissions (or.6)" R4-1714450, "TP to TS 38, 104: OTA Rx spurious emissions (or.6)" R4-1714450, "TP to TS 38, 104: OTA Rx spurious emis							
R4-1714129, "TP to TS 38.104: NR BS conducted CACLR requirements in FR1 (6.6.3)" R4-1714134, "TP to TS 38.104: Update of OTA TX IM requirement for sub-clause 9.8" R4-1714136, "TP for TS 38.104: Update of OTA TX IM requirement for sub-clause 9.4 and sub-clause 9.4" R4-1714141, "TP to TS 38.104: NR BS FRCs for receiver requirements" R4-1714141, "TP to TS 38.104: NR BS FRCs for receiver requirements" R4-1714150, "TP to TS 38.104: NR BS FRCs for receiver requirements" R4-1714150, "TP to TS 38.104: Adding of TRP in terminology in clause 3" R4-1714306, "TP for TS 38.104: Adding of TRP in terminology in clause 3" R4-1714307, "TP to TS 38.104: Adding of TRP in terminology in clause 3" R4-1714307, "TP to TS 38.104: Descending and additional requirement reference points (4.3)" R4-1714308, "TP for TS 38.104: Descending and TRP requirements identification (directional vs. TRP)" R4-1714310, "TP to TS 38.104: Descending and TRP requirements identification (directional vs. TRP)" R4-1714312, "TP for TS 38.104: Descending bands (5.1-5.3)" R4-1714315, "TP to TS 38.104: Operating bands (5.1-5.3)" R4-1714315, "TP to TS 38.104: Adding text for clause 5.2" R4-1714315, "TP to TS 38.104: Adding text for clause 5.2" R4-1714319, "TP to TS 38.104: Adding text for clause 5.2. R4-1714319, "TP to TS 38.104: Descending the foreign and the foreign							
requirements in FR1 (6.6.3)" R4-1714134, "TP to TS 38.104v; 0.4.0: Absolute levels for FR2 ACLR absolute levels for NR BS" R4-1714136, "TP for TS 38.104: Update of OTA TX IM requirement for sub-clause 4.9 and sub-clause 9.8" R4-1714141, "TP to TS 38.104: NR BS FRCs for receiver requirements" R4-1714141, "TP to TS 38.104: NR BS FRCs for receiver requirements" R4-171414150, "TP to TS 38.104: Adding of TRP in terminology in clause 3.3 R4-1714306, "TP for TS 38.104: Adding of TRP in terminology in clause 3.3 R4-1714307, "TP to TS 38.104: Conducted and radiated requirement reference points (4.3)" R4-1714307, "TP to TS 38.104: Discretional and TRP requirements identification (directional vs. TRP)" R4-1714310, "TP to TS 38.104: Discretional and TRP requirements identification (directional vs. TRP)" R4-1714313, "TP to TS 38.104: Discretional and TRP requirements identification (directional vs. TRP)" R4-1714313, "TP to TS 38.104: Discretional and TRP requirements identification (directional vs. TRP)" R4-1714313, "TP to TS 38.104: Operating bands (5.1-5.3)" R4-1714315, "TP to TS 38.104: Operating bands (5.1-5.3)" R4-1714315, "TP to TS 38.104: Operating bands (5.1-6.3)" R4-1714317, "TP to TS 38.104: Dynamic Range for FR1 (conducted)" R4-1714319, "TP for TS 38.104: DYnamic Range for FR1 (conducted)" R4-1714319, "TP for TS 38.104: OTA Dynamic range (10.4)" R4-1714319, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714320, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714430, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714430, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714430, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714430, "TP to TS 38.104: OTA Rx spurious emissions for BS type 0 20.10 (Conducted) (6.6.5)" R4-1714430, "TP to TS 38.104: OTA Rx spurious emissions (7.6)" R4-1714430, "TP to TS 38.104: OTA Rx spurious emissions (7.6)" R4-171443							
R4-1714134, 'TP to TS 38.104/U0.4c: Absolute levels for FR2 ACLR absolute levels for NB BS' R4-1714136, 'TP for TS 38.104: Update of OTA TX IM requirement for sub-clause 4.9 and sub-clause 9.5" R4-1714141, 'TP to TS 38.104: Reference Sensitivity (conducted) (7.2)" R4-1714141, 'TP to TS 38.104: Reference Sensitivity (conducted) (7.2)" R4-171416, 'TP to TS 38.104: NR BS FRCs for receiver requirements' R4-171416, 'TP to TS 38.104: Adding of TRP in terminology in clause 3" R4-1714306, 'TP for TS 38.104: Adding of TRP in terminology in clause 3" R4-1714306, 'TP for TS 38.104: Conducted and radiated requirement reference points (4.3)" R4-1714301, 'TP to TS 38.104: Directional and TRP requirements identification (directional vs. TRP)' R4-1714310, 'TP to TS 38.104: Update of applicability table in sub-clause 4.6" R4-1714312, 'TP for TS 38.104: Update of applicability table in sub-clause 4.6" R4-1714312, 'TP to TS 38.104: Update of applicability table in sub-clause 4.6" R4-1714313, 'TP to TS 38.104: Update of applicability table in sub-clause 4.6" R4-1714315, 'TP to TS 38.104: Update of applicability table in sub-clause 4.6" R4-1714315, 'TP to TS 38.104: Operating bands (5.1-5.3)" R4-1714316, 'TP to TS 38.104: Operating bands (5.1-5.3)" R4-1714316, 'TP to TS 38.104: Operating bands (5.1-6.8) R4-1714317, 'TP to TS 38.104: Adding text for clause 5.2. Modulation quality' R4-1714317, 'TP to TS 38.104: Adding text for clause 5.2. Modulation quality' R4-171430, 'TP to TS 38.104: Adding text for clause 9.6.4 R4-171430, 'TP to TS 38.104: OTA Dynamic range (10.4)" R4-171430, 'TP to TS 38.104: OTA Dynamic range (10.4)" R4-171430, 'TP to TS 38.104: OTA Dynamic range (10.4)" R4-171430, 'TP to TS 38.104: OTA Dynamic range (10.4)" R4-171430, 'TP to TS 38.104: OTA Paramic range (10.4)" R4-171430, 'TP to TS 38.104: OTA Paramic range (10.4)" R4-1714430, 'TP to TS 38.104: OTA Paramic range (10.4)" R4-1714430, 'TP to TS 38.104: OTA Paramic range (10.6)" R4-1714431, 'TP to TS 38							
absolute levels for NR BS' R4-1714136, "TP for TS 38.104: Update of OTA TX IM requirement for sub-clause 4.9 and sub-clause 9.8" R4-1714141, "TP to TS 38.104: Reference Sensitivity (conducted) (7.2)" R4-1714160, "TP to TS 38.104: NR BS FRCs for receiver requirements' R4-1714150, "TP to TS 38.104: NR BS FRCs for receiver requirements' R4-1714306, "TP for TS 38.104: Adding of TRP in terminology in clause 3" R4-1714307, "TP to TS 38.104: Adding of TRP in terminology in clause 3" R4-1714308, "TP for TS 38.104: Base station classes (4.4)" R4-1714308, "TP for TS 38.104: Directional and TRP requirements identification (directional vs. TRP)" R4-171431, "TP to TS 38.104: Directional and TRP requirements identification (directional vs. TRP)" R4-1714315, "TP to TS 38.104: Update of applicability table in sub-clause 4.6" R4-1714315, "TP to TS 38.104: Operating bands (5.1-5.3)" R4-1714315, "TP to TS 38.104: Directional and TRP Requirements identification (directional vs. TRP)" R4-1714315, "TP to TS 38.104: Update of applicability table in sub-clause 4.6" R4-1714316, "TP to TS 38.104: Directional part of crause 6.5.2 Modulation quality" R4-1714315, "TP to TS 38.104: Directional part of requirement (7.88.10.9)" R4-1714319, "TP to TS 38.104: Directional requirement (7.88.10.9)" R4-1714319, "TP to TS 38.104: Directional representation of the sub-clause 6.4 Modulation quality" R4-1714320, "TP to TS 38.104: OTA Spurious emission (9.7.5)" R4-1714320, "TP to TS 38.104: OTA Spurious emission (9.7.5)" R4-1714320, "TP to TS 38.104: OTA Spurious emission for ER (conducted)" R4-1714320, "TP to TS 38.104: OTA Spurious emission for ER (conducted)" R4-1714430, "TP to TS 38.104: OTA Proprious emissions (conducted) (6.6.5)" R4-1714430, "TP to TS 38.104: OTA Rx spurious emissions for BS type 0.2 (107.3)" R4-1714431, "TP to TS 38.104: OTA Rx spurious emissions (conducted) (6.6.5)" R4-1714431, "TP to TS 38.104: OTA has estation output power, 2-0 (9.3.3)" R4-1714431, "TP to TS 38.104: OTA has estation output power, 2-0 (9.3.3)" R4-1714551, "TP t							
R4-1714136, "TP for TS 38.104: Update of OTA TX IM requirement for sub-clause 9, and sub-clause 9.5" R4-1714141, "TP to TS 38.104: Reference Sensitivity (conducted) (7.2)* R4-1714141, "TP to TS 38.104: NR BS FRCs for receiver requirements" R4-1714150, "TP to TS 38.104: NR BS FRCs for receiver requirements" R4-1714130, "TP to TS 38.104: Adding of TRP in terminology in clauses 3" R4-171430, "TP to TS 38.104: Adding of TRP in terminology in clauses 3" R4-171430, "TP to TS 38.104: Conducted and radiated requirement reference points (4.3)" R4-1714310, "TP to TS 38.104: Base station classes (4.4)" R4-1714310, "TP to TS 38.104: Detailed and TRP requirements identification (directional vs. TRP)" R4-1714312, "TP to TS 38.104: Update of applicability table in sub-clause 4.6" R4-1714313, "TP to TS 38.104: Update of applicability table in sub-clause 4.6" R4-1714315, "TP to TS 38.104: Adding text for clause 6.5.2 Modulation quality" R4-1714316, "TP to TS 38.104: Poparating bands (6.1-5.3)" R4-1714319, "TP to TS 38.104: Dynamic Range for FR1 (conducted)" R4-1714319, "TP to TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714319, "TP to TS 38.104: OTA Spurious emission (9.7.5)" R4-1714320, "TP to TS 38.104: OTA Spurious emission (9.7.5)" R4-1714321, "TP to TS 38.104: TR Spurious emission (9.7.5)" R4-1714321, "TP to TS 38.104: TR Spurious emission (9.7.5)" R4-1714321, "TP to TS 38.104: TR Spurious emission (9.7.5)" R4-1714321, "TP to TS 38.104: OTA Rx spurious emissions (conducted) (6.6.5)" R4-1714321, "TP to TS 38.104: OTA Rx spurious emissions (orabucted) (6.6.5)" R4-1714321, "TP to TS 38.104: OTA Rx spurious emissions (orabucted) (6.6.5)" R4-171433, "TP to TS 38.104: OTA Rx spurious emissions (orabucted) (6.6.5)" R4-1714433, "TP to TS 38.104: OTA Rx spurious emission (7.6)" R4-1714435, "TP to TS 38.104: OTA durity emission (9.7.4)" R4-1714435, "TP to TS 38.104: OTA has estation output power, 2-0 (9.3.3)" R4-1714435, "TP to TS 38.104: OTA has estation output power, 2-0 (9.3.3)" R4-171455, "TP to TS 38.104: CTA							
R4-1714141, "TP to TS 38.104: Reference Sensitivity (conducted) (7.2)" R4-1714142, "TP to TS 38.104: NR BS FRCs for receiver requirements: R4-1714160, "TP to TS 38.104: Adding of TRP in terminology in clause 3" R4-171430, "TP to TS 38.104: Adding of TRP in terminology in clause 3" R4-171430, "TP to TS 38.104: Adding of TRP in terminology in clause 3" R4-171430, "TP to TS 38.104: Conducted and radiated requirement reference points (4.3)" R4-1714310, "TP to TS 38.104: Base station classes (4.4)" R4-1714310, "TP to TS 38.104: Base station classes (4.4)" R4-1714310, "TP to TS 38.104: Directional and TRP requirements identification (directional vs. TRP)" R4-1714311, "TP to TS 38.104: Undate of applicability table in subclause 4.6" R4-1714313, "TP to TS 38.104: Operating bands (5.1-5.3)" R4-1714316, "TP to TS 38.104: Adding text for clause 6.5.2 Modulation quality" R4-1714316, "TP to TS 38.104: Daymaic Range for FR1 (conducted)" R4-1714317, "TP to TS 38.104: Daymaic Range for FR1 (conducted)" R4-1714318, "TP to TS 38.104: DTA Spurious emission (9.7.5)" R4-1714321, "TP to TS 38.104: OTA Spurious emission (9.7.5)" R4-1714321, "TP to TS 38.104: OTA Spurious emission (9.7.5)" R4-1714321, "TP to TS 38.104: DTA Dynamic range (10.4)" R4-1714321, "TP to TS 38.104: DTA Dynamic range (10.4)" R4-1714321, "TP to TS 38.104: DTA Dynamic range (10.4)" R4-1714321, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714331, "TP to TS 38.104: OTA Dynamics for FR1 (conducted), "TP to TS 38.104: OTA Dynamics for FR1 (conducted), "TP to TS 38.							
(7.2)* R4-1714142, "TP to TS 38.104: NR BS FRCs for receiver requirements" R4-1714150, "TP to TS 38.104: OTA out of band blocking FR1 (10.6)* R4-1714306, "TP for TS 38.104: Adding of TRP in terminology in clause 3" R4-1714307, "TP to TS 38.104: Accordance of the requirement reference points (4.3)* R4-1714308, "TP to TS 38.104: Base station classes (4.4)* R4-1714310, "TP to TS 38.104: Directional and TRP requirements identification (directional vs. TRP)* R4-1714312, "TP to TS 38.104: Directional and TRP requirements identification (directional vs. TRP)* R4-1714313, "TP to TS 38.104: Directional and TRP requirements identification (directional vs. TRP)* R4-1714313, "TP to TS 38.104: Directional and TRP requirements identification (directional vs. TRP)* R4-1714313, "TP to TS 38.104: Directional pands (5.1-5.3)* R4-1714313, "TP to TS 38.104: Adding text for clause 6.6.2 Modulation quality* R4-1714317, "TP to TS 38.104: Adding text for clause 6.6.2 Modulation quality* R4-1714319, "TP for TS 38.104: Adding text for clause 9.6.4 Modulation quality* R4-1714319, "TP for TS 38.104: Adding text for clause 9.6.4 Modulation quality* R4-1714321, "TP for TS 38.104: OTA Spurious emission (9.7.5)* R4-1714321, "TP for TS 38.104: OTA Spurious emission (9.7.5)* R4-1714321, "TP for TS 38.104: OTA Dynamic range (10.4)* R4-1714321, "TP for TS 38.104: Adding text for clause 9.6.4 Modulation quality* R4-1714321, "TP for TS 38.104: OTA Dynamic range (10.4)* R4-1714321, "TP for TS 38.104: OTA Conducted Adjacent Channel (conducted)* R4-1714321, "TP for TS 38.104: Conducted Adjacent Channel (conducted)* R4-171433, "TP for TS 38.104: Conducted Adjacent Channel (catage Power Ratio (ACIR) (6.6.3)* R4-171433, "TP for TS 38.104: Conducted Adjacent Channel (catage Power Ratio (ACIR) (6.6.3)* R4-171433, "TP for TS 38.104: Conducted Adjacent Channel (catage Power Ratio (ACIR) (6.6.3)* R4-171433, "TP for TS 38.104: Conducted Adjacent Channel (catage Power Ratio (ACIR) (6.6.3)* R4-171439, "TP for TS 38.104: Conducted Adjacent Channel (catage Power R							
R4-f174142, "TP to TS 38.104: NR BS FRCs for receiver requirements'							
requirements' R4-1714150, "TP to TS 38.104 - OTA out of band blocking FR1 (10.6)" R4-1714306, "TP for TS 38.104: Adding of TRP in terminology in clause 3" R4-1714307, "TP to TS 38.104 - Conducted and radiated requirement reference points (4.3)" R4-1714308, "TP for TS 38.104: Base station classes (4.4)" R4-1714310, "TP to TS 38.104: Directional and TRP requirements identification (directional vs. TRP)" R4-1714312, "TP for TS 38.104: Update of applicability table in subclause 4.6" R4-1714313, "TP to TS 38.104: Prequency error for NR BS (6.58.6)" R4-1714313, "TP to TS 38.104: Inequency error for NR BS (6.58.6)" R4-1714313, "TP to TS 38.104: Adding text for clause 6.6.2 Modulation quality" R4-1714317, "TP to TS 38.104: Adding text for clause 6.6.2 Modulation quality" R4-1714318, "TP to TS 38.104: Adding text for clause 6.6.4 Modulation quality" R4-1714319, "TP to TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714319, "TP to TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714321, "TP to TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714321, "TP to TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714321, "TP to TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714321, "TP to TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714321, "TP to TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714321, "TP to TS 38.104: Oth Dynamic range (10.4)" R4-1714321, "TP to TS 38.104: Oth Dynamic range (10.4)" R4-1714321, "TP to TS 38.104: Oth Dynamic range (10.4)" R4-1714323, "TP to TS 38.104: Add Oth Dynamic range (10.7)" R4-171433, "TP to TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-171433, "TP to TS 38.104: Orangement (6.4)" R4-171439, "TP to TS 38.104: Orangemen							
R4-1714150, "TP to TS 38.104 - OTA out of band blocking FR1 (10.6)" R4-1714306, "TP for TS 38.104: Adding of TRP in terminology in clause 3" R4-1714307, "TP to TS 38.104 - Conducted and radiated requirement reference points (4.3)" R4-1714310, "TP to TS 38.104: Base station classes (4.4)" R4-1714310, "TP to TS 38.104: Directional and TRP requirements identification (increational vs. TRP)" R4-1714312, "TP for TS 38.104: Directional and TRP requirements identification (increational vs. TRP)" R4-1714313, "TP to TS 38.104: Update of applicability table in subclause 4.6" R4-1714313, "TP to TS 38.104: Operating bands (5.1-5.3)" R4-1714315, "TP for TS 38.104: Adding text for clause 6.6.2 Modulation quality" R4-1714316, "TP for TS 38.104: Adding text for clause 6.6.2 Modulation quality" R4-1714318, "TP for TS 38.104: DT samily for clause 9.6.4 Modulation quality" R4-1714319, "TP for TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714320, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714320, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714320, "TP for TS 38.104: OTA Spurious emissions (conducted) R4-1714320, "TP for TS 38.104: OTA Spurious emissions (conducted) R4-1714432, "TP for TS 38.104: OTA Spurious emissions (conducted) R4-1714432, "TP for TS 38.104: OTA Repressions for R1 (conducted) R4-1714432, "TP for TS 38.104: OTA Repressions for R1 (conducted) R4-1714433, "TP for TS 38.104: OTA Rx spurious emissions (conducted) R4-1714435, "TP for TS 38.104: Channel arrangement (5.4)" R4-1714435, "TP for TS 38.104: Channel arrangement (6.4)" R4-1714435, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714451, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714518, "TP for TS 38.104:							
(10.6)" R4-1714306, "TP for TS 38.104: Adding of TRP in terminology in clauses 3" R4-1714307, "TP to TS 38.104 - Conducted and radiated requirement reference points (4.3)" R4-1714308, "TP for TS 38.104: Directional and TRP requirements identification (directional vs. TRP)" R4-1714310, "TP for TS 38.104: Directional and TRP requirements identification (directional vs. TRP)" R4-1714313, "TP for TS 38.104: Update of applicability table in subclause 4.6" R4-1714313, "TP for TS 38.104: Operating bands (5.1-5.3)" R4-1714315, "TP for TS 38.104: Adding text for clause 6.5.2 Modulation quality" R4-1714318, "TP for TS 38.104: CS requirement (7.8&10.9)" R4-1714319, "TP for TS 38.104: CS requirement (7.8&10.9)" R4-1714319, "TP for TS 38.104: CS requirement (7.8&10.9)" R4-1714319, "TP for TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714321, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714321, "TP for TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP for TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP for TS 38.104: OTA Dynamic range (10.4)" R4-1714432, "TP for TS 38.104: OTA Dynamic range (10.4)" R4-1714433, "TP for TS 38.104: OTA Dynamic range (10.4)" R4-1714433, "TP for TS 38.104: OTA Dynamics for FR1 (conducted)" R4-1714432, "TP for TS 38.104: OTA Rx purious emissions (conducted)" R4-1714432, "TP for TS 38.104: OTA Rx purious emissions for BS type 0.2 (10.7.3)" R4-1714432, "TP for TS 38.104: OTA Rx purious emissions for BS type 0.2 (10.7.3)" R4-1714437, "TP for TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714437, "TP for TS 38.104: OTA Dase station output power, 2-0 (9.3.3)" R4-1714437, "TP for TS 38.104: OTA Dase station output power, 2-0 (9.3.3)" R4-1714518, "TP to TS 38.104: OTA Dase station output power, 2-0 (9.3.3)" R4-1714518, "TP to TS 38.104: OTA Dase station output power, 2-0 (9.3.3)" R4-1714518, "TP to TS 38.104: OTA Dase station output power, 2-0 (9.3.3)" R4-1714518, "TP to TS 38.104: OTA Dase station output power, 2-0 (9.3.3)" R4-1714526, "T							
clause 3" R4-1714307, "TP to TS 38.104 - Conducted and radiated requirement reference points (4.3)" R4-1714308, "TP or TS 38.104: Base station classes (4.4)" R4-1714310, "TP to TS 38.104: Directional and TRP requirements identification (directional vs. TRP)" R4-1714312, "TP to TS 38.104: Update of applicability table in subclause 4.6" R4-1714313, "TP to TS 38.104: Update of applicability table in subclause 4.6" R4-1714313, "TP to TS 38.104: Veguency error for NR BS (6.5&9.6)" R4-1714313, "TP to TS 38.104: frequency error for NR BS (6.5&9.6)" R4-1714314, "TP to TS 38.104: Adding text for clause 6.5.2 Modulation quality" R4-1714319, "TP for TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714319, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714321, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714321, "TP for TS 38.104: OTA Dynamic range (10.4)' R4-1714321, "TP for TS 38.104: OTA Dynamic range (10.4)' R4-1714321, "TP for TS 38.104: OTA Dynamic range (10.4)' R4-1714321, "TP for TS 38.104: Vol.40: Time alignment for CA* R4-1714322, "TP for TS 38.104: Vol.40: Time alignment for CA* R4-1714323, "TP for TS 38.104: Vol.40: Time alignment for CA* R4-1714321, "TP for TS 38.104: Other Dynamics for FR1 (conducted)' R4-1714322, "TP for TS 38.104: Other Dynamics for FR1 (conducted)' R4-171433, "TP for TS 38.104: Other Dynamics for FR1 (conducted)' R4-171437, "TP for TS 38.104: Texperiment (5.4)" R4-1714437, "TP for TS 38.104: Texperiment (6.4)" R4-1714437, "TP for TS 38.104: Ornamel arrangement (6.4)" R4-1714451, "TP for TS 38.104: Ornamel arrangement (6.4)" R4-1714451, "TP for TS 38.104: Ornamel arrangement (6.4)" R4-1714451, "TP for TS 38.104: Ornamel arrangement (6.4)" R4-171451, "TP for TS 38.104: Ornamel arrangement (6.4)" R4-171451, "TP for TS 38.104: Ornamel arrangement (6.4)" R4-171451, "TP for TS 38.104: Ornamel arrangement (6.4)" R4-171							
R4-1714307, "TP to TS 38.104 - Conducted and radiated requirement reference points (4.3)" R4-1714308, "TP for TS 38.104: Directional and TRP requirements identification (directional vs. TRP)" R4-1714310, "TP to TS 38.104: Directional and TRP requirements identification (directional vs. TRP)" R4-1714312, "TP for TS 38.104: Update of applicability table in subclause 4.6" R4-1714315, "TP to TS 38.104: Update of applicability table in subclause 4.6" R4-1714315, "TP to TS 38.104: Operating bands (5.1-5.3)" R4-1714316, "TP for TS 38.104: Adding text for clause 6.5.2 Modulation quality" R4-1714317, "TP to TS 38.104: Adding text for clause 6.5.2 Modulation quality" R4-1714319, "TP for TS 38.104: CS requirement (7.88.10.9)" R4-1714319, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714320, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714320, "TP for TS 38.104: Transmitter spurious emissions (conducted) (6.6.5)" R4-1714320, "TP to TS 38.104: Ota Dynamic range (10.4)" R4-1714330, "TP to TS 38.104: Ota Dynamic range (10.4)" R4-1714430, "TP to TS 38.104: Ota Dynamic range (10.4)" R4-1714430, "TP to TS 38.104: Ota Dynamic range (10.4)" R4-1714430, "TP to TS 38.104: Ota Dynamic range (10.4)" R4-1714430, "TP to TS 38.104: Ota Dynamic range (10.4)" R4-1714431, "TP to TS 38.104: Ota Dynamic range (10.4)" R4-1714431, "TP to TS 38.104: Ota Dynamic range (10.4)" R4-1714431, "TP to TS 38.104: Ota Dynamic range (10.4)" R4-1714431, "TP for TS 38.104: Ota Rx spurious emissions for BS type 0 2 (10.7.3)" R4-1714431, "TP for TS 38.104: Ota Rx spurious emission (7.6)" R4-1714439, "TP for TS 38.104: Ota Rx spurious emission (7.6)" R4-1714439, "TP for TS 38.104: Ota And Dynamic range (10.4)" R4-1714439, "TP for TS 38.104: Ota Dut-of-band emissions (9.7.4)" R4-1714451, "TP for TS 38.104: Ota Dut-of-band emissions (9.7.4)" R4-1714451, "TP for TS 38.104: Ota Dut-of-band emissions (9.7.4)" R4-1714451, "TP for TS 38.104: Ota Dut-of-band emissions (9.7.4)" R4-171451, "TP for TS 38.104: Ota Dut-of-band emissions (9.7.4)" R4-171451,						R4-1714306, "TP for TS 38.104: Adding of TRP in terminology in	
requirement reference points (4.3)" R4-171430, "TP for TS 38.104: Base station classes (4.4)" R4-1714310, "TP for TS 38.104: Directional and TRP requirements identification (directional vs. TRP)" R4-1714312, "TP for TS 38.104: Directional and TRP requirements identification (directional vs. TRP)" R4-1714313, "TP to TS 38.104: Update of applicability table in subclause 4.6" R4-1714313, "TP to TS 38.104: Requency error for NR BS (6.5&9.6)" R4-1714315, "TP to TS 38.104: Adding text for clause 6.5.2 Modulation quality" R4-1714317, "TP to TS 38.104: Dynamic Range for FR1 (conducted)" R4-1714319, "TP for TS 38.104: Dynamic Range for FR1 (conducted)" R4-1714319, "TP for TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714320, "TP for TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714321, "TP for TS 38.104: TP SAY IM OTA, 10.8.3" R4-1714321, "TP for TS 38.104: Oxfort Moranic range (10.4)" R4-1714320, "TP to TS 38.104: Transmitter spurious emission (9.7.5)" R4-1714432, "TP to TS 38.104: Transmitter spurious emissions (conducted) (6.6.5)" R4-1714433, "TP to TS 38.104: Oxfort Dynamic range emissions (conducted) (6.6.5)" R4-1714433, "TP to TS 38.104: Oxfort Dynamics for FR1 (conducted)" R4-1714433, "TP to TS 38.104: Oxfort Power Dynamics for FR1 (conducted)" R4-1714433, "TP to TS 38.104: Oxfort Power Dynamics for FR1 (conducted)" R4-1714433, "TP to TS 38.104: Oxfort Power Dynamics for FR1 (conducted)" R4-1714433, "TP to TS 38.104: Oxfort Power Dynamics for FR1 (conducted) (6.6.5)" R4-1714439, "TP for TS 38.104: Oxfort Power Dynamics for FR1 (conducted) (6.6.5)" R4-1714439, "TP to TS 38.104: Oxfort Power Dynamics for FR1 (conducted) (6.6.5)" R4-1714439, "TP for TS 38.104: Oxfort Power Dynamics for FR1 (conducted) (6.6.5)" R4-1714439, "TP for TS 38.104: Oxfort Power Dynamics for FR1 (conducted) (6.6.4)" R4-1714439, "TP for TS 38.104: Oxfort Power Dynamics for FR1 (conducted Adjacent Channel Leakage Power Ratio (ACIR) (6.6.3)" R4-1714439, "TP for TS 38.104: Oxfort Power Dynamics for FR1 (conduc							
R4-1714308, "TP for TS 38.104: Directional and TRP requirements identification (directional vs. TRP)" R4-1714310, "TP for TS 38.104: Directional and TRP requirements identification (directional vs. TRP)" R4-1714315, "TP for TS 38.104: Update of applicability table in subclause 4.6" R4-1714315, "TP to TS 38.104: Operating bands (5.1-5.3)" R4-1714316, "TP for TS 38.104: Adding text for clause 6.6.2 Modulation quality" R4-1714317, "TP to TS 38.104: Adding text for clause 6.6.2 Modulation quality" R4-1714317, "TP to TS 38.104: Adding text for clause 6.6.4 Modulation quality" R4-1714319, "TP for TS 38.104: Dramic Range for FR1 (conducted)" R4-1714319, "TP for TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714321, "TP for TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP for TS 38.104: TA Dynamic range (10.4)" R4-1714321, "TP for TS 38.104: TR2 RXIM OTA, 10.8.3" R4-1714432, "TP to TS 38.104: Transmitter spurious emissions (conducted) (6.6.5)" R4-1714433, "TP to TS 38.104: Orthouse emissions for BS T4-171433, "TP to TS 38.104: OTA Rx spurious emissions for BS Type 0.2 (10.7.3)" R4-1714433, "TP to TS 38.104: OTA Rx spurious emissions for BS Type 0.2 (10.7.3)" R4-1714433, "TP for TS 38.104: Accordated Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Ord Outcuted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714431, "TP for TS 38.104: Ord Outcuted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714431, "TP for TS 38.104: OTA Out-of-band emissions (7.6)" R4-1714431, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714451, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714511, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714511, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714511, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714520, "TP for TS 38.104: FR1 RX IM conducted 7.7" R4-1714520, "TP for TS 38.104: FR1 RX IM							
R4-1714310, "TP to TS 38.104: Directional and TRP requirements identification (directional vs. TRP)" R4-1714312, "TP for TS 38.104: Update of applicability table in subclause 4.6" R4-1714313, "TP to TS 38.104: Operating bands (5.1-5.3)" R4-1714316, "TP to TS 38.104: Operating bands (5.1-5.3)" R4-1714316, "TP to TS 38.104: Adding text for clause 6.5.2 Modulation quality" R4-1714317, "TP to TS 38.104: Adding text for clause 6.5.2 Modulation quality" R4-1714317, "TP to TS 38.104: CIS requirement (7.8&10.9)" R4-1714319, "TP for TS 38.104: CIS requirement (7.8&10.9)" R4-1714319, "TP for TS 38.104: CIS requirement (7.8&10.9)" R4-1714320, "TP for TS 38.104: DTA Dynamic range (10.4)" R4-1714320, "TP for TS 38.104: TP DA Dynamic range (10.4)" R4-1714320, "TP for TS 38.104: TP DA Dynamic range (10.4)" R4-1714320, "TP for TS 38.104: TP DA Dynamic range (10.4)" R4-1714320, "TP for TS 38.104: VO.4.0: Time alignment for CA" R4-1714320, "TP to TS 38.104: VO.4.0: Time alignment for CA" R4-1714320, "TP to TS 38.104: VO.4.0: Time alignment for CA" R4-1714320, "TP to TS 38.104: VO.4.0: Time alignment for CA" R4-1714320, "TP to TS 38.104: VO.4.0: Transmitter spurious emissions (conducted) R4-171433, "TP to TS 38.104: VO.4.0: Transmitter spurious emissions for BS type 0.2 (10.7.3)" R4-1714435, "TP to TS 38.104: CTA Rx spurious emissions for BS type 0.2 (10.7.3)" R4-1714435, "TP to TS 38.104: CTA Rx spurious emission (7.6)" R4-1714439, "TP for TS 38.104: Channel arrangement (5.4)" R4-1714439, "TP for TS 38.104: Channel arrangement (5.4)" R4-1714439, "TP for TS 38.104: OTA out-of-band emissions (9.7.4)" R4-1714451, "TP for TS 38.104: OTA out-of-band emissions (9.7.4)" R4-1714451, "TP for TS 38.104: OTA hr-band selectivity and blocking (10.5)" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714520, "Draft TP to TS 38.104: FRI RX IM conducted 7.7" R4-1714520, "Draft TP to TS 38.104: FRI RX IM conducted 7.7" R4-1714520, "Draft TP to							
Identification (directional vs. TRP)" R4-1714312, "TP for TS 38.104: Update of applicability table in subclause 4.6" R4-1714313, "TP to TS 38.104: Operating bands (5.1-5.3)" R4-1714315, "TP to TS 38.104: Adding text for clause 6.5.2 Modulation quality" R4-1714316, "TP for TS 38.104: Adding text for clause 6.5.2 Modulation quality" R4-1714317, "TP to TS 38.104: Dynamic Range for FR1 (conducted)" R4-1714318, "TP to TS 38.104: Drynamic Range for FR1 (conducted)" R4-1714319, "TP for TS 38.104: ICS requirement (7.8&10.9)" R4-1714319, "TP for TS 38.104: ICS requirement (7.8&10.9)" R4-1714319, "TP for TS 38.104: ICS requirement (7.8&10.9)" R4-1714319, "TP for TS 38.104: ICS requirement (7.6.10)" R4-1714319, "TP for TS 38.104: Dynamic range (10.4)" R4-1714320, "TP for TS 38.104: FR2 RX IM OTA, 10.8.3" R4-1714430, "TP to TS 38.104: FR2 RX IM OTA, 10.8.3" R4-1714430, "TP to TS 38.104: FR2 RX IM OTA, 10.8.3" R4-1714432, "TP to TS 38.104: Conducted (6.6.5)" R4-1714432, "TP to TS 38.104: OTA Rx spurious emissions for BS type 0.2 (10.7.3)" R4-1714432, "TP to TS 38.104: Channel arrangement (5.4)" R4-1714437, "TP for TS 38.104: Channel arrangement (5.4)" R4-1714439, "TP for TS 38.104: Channel arrangement (5.4)" R4-1714439, "TP for TS 38.104: OTA out-of-band emissions (7.6)" R4-1714439, "TP for TS 38.104: OTA out-of-band emissions (9.7.4)" R4-1714451, "TP to TS 38.104: OTA out-of-band emissions (9.7.4)" R4-171451, "TP for TS 38.104: OTA lorb-and selectivity and blocking (10.5)" R4-1714520, "Draft TP to TS 38.104: OTA lorb-and selectivity and blocking (10.5)" R4-1714520, "Draft TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714520, "Draft TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714520, "Draft TP to TS 38.104: FR1 RX IM OTA 10.8.2" Presented to TSG RN for approval. 1.0.0							
Ra41714312, "TP for TS 38.104: Update of applicability table in subclause 4.6"							
R4-1714313, "TP to TS 38.104: Operating bands (5.1-5.3)" R4-1714316, "TP to TS 38.104: frequency error for NR BS (6.5&9.6)" R4-1714316, "TP for TS 38.104: Adding text for clause 6.5.2 Modulation quality" R4-1714318, "TP to TS 38.104: Dynamic Range for FR1 (conducted)" R4-1714319, "TP to TS 38.104: ICS requirement (7.8&10.9)" R4-1714319, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714320, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714320, "TP for TS 38.104: OTA Dynamic range (10.4)" R4-1714320, "TP to TS 38.104: PR2 RX IM OTA, 10.6.3" R4-1714432, "TP to TS 38.104: PR2 RX IM OTA, 10.6.3" R4-1714439, "TP to TS 38.104: Transmitter spurious emissions (conducted) (6.6.5)" R4-1714432, "TP to TS 38.104: Otaput Power Dynamics for FR1 (conducted) (6.6.5)" R4-1714432, "TP to TS 38.104: OTA RX spurious emissions for BS type O 2 (10.7.3)" R4-1714437, "TP for TS 38.104: CTA RX spurious emissions for BS type O 2 (10.7.3)" R4-1714437, "TP for TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.8)" R4-1714451, "TP to TS 38.104: Ota Dand unwanted emissions (6.6.4)" R4-1714517, "TP to TS 38.104: Ota Dand emissions (9.7.4)" R4-1714517, "TP to TS 38.104: Ota Dand emissions (9.7.4)" R4-1714517, "TP to TS 38.104: ACS and blocking update" R4-1714519, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714520, "Draft TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714520, "Draft TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" Presented to TSG RAN for approval. 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. Approved by plenary – Rel-15 spec under change control						R4-1714312, "TP for TS 38.104: Update of applicability table in sub-	
R4-1714316, "TP to TS38.104: frequency error for NR BS (6.589.6)" R4-1714316, "TP for TS 38.104: Adding text for clause 6.5.2 Modulation quality' R4-1714317, "TP to TS 38.104: Dynamic Range for FR1 (conducted)" R4-1714318, "TP to TS38.104: ICS requirement (7.88.10.9)" R4-1714319, "TP for TS 38.104: ICS requirement (7.88.10.9)" R4-1714319, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714321, "TP for TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP for TS 38.104: OTA Dynamic range (10.4)" R4-1714430, "TP to TS 38.104: Transmitter spurious emissions (conducted) (6.6.5)" R4-1714430, "TP to TS 38.104: Transmitter spurious emissions (conducted) (6.6.5)" R4-1714430, "TP to TS 38.104: Other Dynamics for FR1 (conducted)" R4-1714430, "TP to TS 38.104: Other Dynamics for FR1 (conducted)" R4-1714431, "TP to TS 38.104: Other Dynamics for FR1 (conducted)" R4-1714435, "TP to TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Channel arrangement (5.4)" R4-1714431, "TP for TS 38.104: Other Denate arrangement (5.4)" R4-17144515, "TP for TS 38.104: Other Denate arrangement (6.4)" R4-1714515, "TP for TS 38.104: Other Denate arrangement (6.4)" R4-1714515, "TP for TS 38.104: Other Denate arrangement (7.8)" R4-1714515, "TP for TS 38.104: Other Denate arrangement (7.8)" R4-1714516, "TP for TS 38.104: Other Denate arrangement (7.8)" R4-1714516, "TP for TS 38.104: Other Denate arrangement (7.8)" R4-1714516, "TP for TS 38.104: Other Denate arrangement (7.8)" R4-1714516, "TP for TS 38.104: Other Denate arrangement (7.8)" R4-1714516, "TP for TS 38.104: Other Denate arrangement (7.8)" R4-1714516, "TP for TS 38.104: Other Denate arrangement (7.8)" R4-1714516, "TP for TS 38.104: Other Denate arrangement (7.8)" R4-1714516, "TP for TS 38.104: Other Denate arrangement (7.8)" R4-1714516, "TP for TS 38.104: Other Denate arrangement (7.8)" R4-1714516, "TP for TS 38.104: Other Denate arrange							
R4-1714316, "TP for TS 38.104: Adding text for clause 6.5.2 Modulation quality" R4-1714317, "TP to TS 38.104: Dynamic Range for FR1 (conducted)" R4-1714318, "TP to TS 38.104: ICS requirement (7.8&10.9)" R4-1714318, "TP to TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714319, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714320, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714320, "TP to TS 38.104: OTA Dynamic range (10.4)" R4-1714390, "TP to TS 38.104: FR2 RXI M OTA, 108.3" R4-1714439, "TP to TS 38.104: FR2 RXI M OTA, 108.3" R4-1714439, "TP to TS 38.104: OTA Dynamic range for FR1 (conducted) (6.6.5)" R4-1714432, "TP to TS 38.104: Output Power Dynamics for FR1 (conducted) (6.6.5)" R4-1714433, "TP to TS 38.104: OTA Rx spurious emissions for BS type 0 2 (10.7.3)" R4-1714435, "TP to TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714437, "TP for TS 38.104: Receiver spurious emission (7.6)" R4-1714439, "TP for TS 38.104: Channel arrangement (5.4)" R4-1714439, "TP for TS 38.104: Operating band unwanted emissions (6.6.4)" R4-1714451, "TP to TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714515, "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-1714518, "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-171452							
Modulation quality" R4-1714317, "TP to TS 38.104: Dynamic Range for FR1 (conducted)" R4-1714318, "TP to TS 38.104: ICS requirement (7.8&10.9)" R4-1714319, "TP for TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714319, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714321, "TP for TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP for TS 38.104: TR2 RX IM OTA, 10.8.3" R4-1714430, "TP to TS 38.104: V0.4.0: Time alignment for CA" R4-1714430, "TP to TS 38.104: V0.4.0: Time alignment for CA" R4-1714432, "TP to TS 38.104: Other Dynamics for FR1 (conducted) (6.6.5)" R4-1714432, "TP to TS 38.104: Other Dynamics for FR1 (conducted)" R4-1714432, "TP to TS 38.104: OTA Rx spurious emissions for BS type 0.2 (10.7.3)" R4-1714435, "TP to TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Channel arrangement (5.4)" R4-1714439, "TP for TS 38.104: Channel arrangement (5.4)" R4-1714439, "TP for TS 38.104: Other and emissions (7.6)" R4-17144515, "TP for TS 38.104: Other and emissions (9.7.4)" R4-1714515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714515, "TP for TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.5" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.5" R4-1714526, "TP to TS 38.104: FR1 RX IM co							
R4-1714317, "TP to TS 38.104: Dynamic Range for FR1 (conducted)" R4-1714318, "TP to TS38.104: ICS requirement (7.8&10.9)" R4-1714319, "TP for TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714320, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714321, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714322, "TP for TS 38.104: OTA Spurious emissions (10.4)" R4-1714339, "TP to TS 38.104: FR2 RX IM OTA, 10.8.3" R4-1714428, "TP to TS 38.104: Transmitter spurious emissions (conducted) (6.6.5)" R4-1714432, "TP to TS 38.104: Transmitter spurious emissions (conducted) (6.6.5)" R4-1714432, "TP to TS 38.104: OTA Rx spurious emissions for BS type 0 2 (10.7.3)" R4-1714433, "TP to TS 38.104: FR2 REFSENS" R4-1714437, "TP to TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714437, "TP to TR 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714437, "TP to TR 38.104: Operating band unwanted emissions (6.6.4)" R4-1714515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714515, "TP to TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714518, "TP to TS 38.104: OTA base station output power, 2-0 (9.3.3)" R4-1714518, "TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM COTA 10.8.2" 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. Approved by plenary - Re1-15 spec under change control 15.0.0							
(conducted)" R4-1714318, "TP to TS38.104: ICS requirement (7.8&10.9)" R4-1714319, "TP for TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714321, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714321, "TP for TS 38.104: OTA Dynamic range (10.4)" R4-1714320, "TP to TS 38.104: CRZ RX IM OTA, 10.8.3" R4-1714428, "TP to TS 38.104 v0.4.0: Time alignment for CA" R4-1714430, "TP to TS 38.104 v0.4.0: Time alignment for CA" R4-1714430, "TP to TS 38.104: Cutput Power Dynamics for FR1 (conducted) (6.6.5)" R4-1714433, "TP to TS 38.104: OTA Rx spurious emissions for BS type 0 2 (10.7.3)" R4-1714435, "TP to TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Cenducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714479, "TP to TR 38.104: Channel arrangement (5.4)" R4-1714479, "TP to TR 38.104: OTA out-of-band emissions (6.6.4)" R4-1714451, "TP to TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714517, "TP to TS 38.104: OTA base station output power, 2-0 (9.3.3)" R4-1714518, "TP to TS 38.104: OTA base station output power, 2-0 (9.3.3)" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 P-172268 Presented to TSG RAN for approval. Approved by plenary — Rel-15 spec under change control							
R4-1714319, "TP for TS 38.104: Adding text for clause 9.6.4 Modulation quality" R4-1714320, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714321, "TP for TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP for TS 38.104: FR2 RX IM OTA, 10.8.3" R4-1714432, "TP to TS 38.104: FR2 RX IM OTA, 10.8.3" R4-1714439, "TP to TS 38.104: FR2 RX IM OTA, 10.8.3" R4-1714430, "TP to TS 38.104: Output Power Dynamics for FR1 (conducted)" R4-1714432, "TP to TS 38.104: Ota Rx spurious emissions for BS type O 2 (10.7.3)" R4-1714433, "TP to TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714437, "TP for TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Receiver spurious emission (7.6)" R4-1714439, "TP for TS 38.104: Operating band unwanted emissions (6.6.4)" R4-1714515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714517, "TP to TS 38.104: OTA Dase station output power, 2-O (9.3.3)" R4-1714518, "TP to TS 38.104: ACS and blocking update" R4-1714520, "Draft TP to TS 38.104: ACS and blocking update R4-1714520, "Draft TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7"							
Modulation quality" R4-1714320, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714321, "TP for TS 38.104: OTA Dynamic range (10.4)" R4-1714321, "TP for TS 38.104: CTA Dynamic range (10.4)" R4-1714390, "TP to TS 38.104: FR2 RX IM OTA, 10.8.3" R4-1714430, "TP to TS 38.104: FR2 RX IM OTA, 10.8.3" R4-1714430, "TP to TS 38.104: Transmitter spurious emissions (conducted) (6.6.5)" R4-1714432, "TP to TS 38.104: Other Dynamics for FR1 (conducted)" R4-1714433, "TP to TS 38.104: OTA Rx spurious emissions for BS type O 2 (10.7.3)" R4-1714435, "TP to TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Other Dynamics of the Conducted Adjacent Channel (6.6.4)" R4-1714439, "TP for TS 38.104: Operating band unwanted emissions (6.6.4)" R4-1714431, "TP to TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714517, "TP to TS 38.104: OTA Dase station output power, 2-O (9.3.3)" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" Presented to TSG RAN for approval. 1.0.0 Approved by plenary - Rel-15 spec under change control 15.0.0							
R4-1714320, "TP for TS 38.104: OTA Spurious emission (9.7.5)" R4-1714321, "TP for TS 38.104: OTA Dynamic range (10.4)" R4-1714390, "TP to TS 38.104: FR2 RX IM OTA, 10.8.3" R4-1714498, "TP to TS 38.104: FR2 RX IM OTA, 10.8.3" R4-1714428, "TP to TS 38.104: OTA Dimensions (conducted) (6.6.5)" R4-1714432, "TP to TS 38.104: Output Power Dynamics for FR1 (conducted)" R4-1714432, "TP to TS 38.104: OTA Rx spurious emissions for BS type O 2 (10.7.3)" R4-1714435, "TP to TS 38.104: FR2 REFSENS" R4-1714437, "TP for TS 38.104: FR2 REFSENS" R4-1714437, "TP for TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Channel arrangement (5.4)" R4-1714476, "TP to TR 38.104: Other arrangement (5.4)" R4-1714478, "TP for TS 38.104: Other arrangement (5.4)" R4-1714478, "TP for TS 38.104: Other arrangement (5.4)" R4-17144515, "TP for TS 38.104: OTA Dut-of-band emissions (9.7.4)" R4-1714515, "TP for TS 38.104: OTA Dut-of-band emissions (9.7.4)" R4-1714517, "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-1714519, "TP to TS 38.104: ACS and blocking update" R4-1714520, "Draft TP to TS 38.104: ACS and blocking update" R4-1714520, "Draft TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM Conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" Presented to TSG RAN for approval. 1.0.0 Approved by plenary - Rel-15 spec under change control 15.0.0							
R4-1714321, "TP for TS 38.104: OTA Dynamic range (10.4)" R4-1714328, "TP to TS 38.104: FR2 RX IM OTA, 10.8.3" R4-1714430, "TP to TS 38.104: FR2 RX IM OTA, 10.8.3" R4-1714430, "TP to TS 38.104: Transmitter spurious emissions (conducted) (6.6.5)" R4-1714431, "TP to TS 38.104: Output Power Dynamics for FR1 (conducted)" R4-1714433, "TP to TS 38.104: OTA Rx spurious emissions for BS type O 2 (10.7.3)" R4-1714437, "TP for TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714437, "TP for TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Channel arrangement (5.4)" R4-1714449, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714451, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-171451, "TP for TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. 1.0.0							
R4-1714390, "TP to TS 38.104: FR2 RX IM OTA, 10.8.3" R4-1714428, "TP to TS 38.104 v0.4.0.1: Time alignment for CA" R4-1714430, "TP to TS 38.104 v0.4.0.1: Time alignment for CA" R4-1714430, "TP to TS 38.104: Transmitter spurious emissions (conducted) (6.6.5)" R4-1714432, "TP to TS 38.104: Output Power Dynamics for FR1 (conducted)" R4-1714433, "TP to TS 38.104: OTA Rx spurious emissions for BS type O 2 (10.7.3)" R4-1714435, "TP to TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Channel arrangement (5.4)" R4-1714439, "TP for TS 38.104: Otannel arrangement (5.4)" R4-1714515, "TP for TS 38.104: Otannel arrangement (6.4)" R4-1714515, "TP for TS 38.104: Otannel arrangement (9.7.4)" R4-1714517, "TP to TS 38.104: Otannel arrangement (9.7.4)" R4-1714518, "TP to TS 38.104: Otannel arrangement (9.7.4)" R4-1714520, "Draft TP to TS 38.104: Otannel arrangement (9.7.4)" R4-1714520, "Draft TP to TS 38.104: Otannel arrangement (9.7.4)" R4-1714520, "Draft TP to TS 38.104: Otannel arrangement (9.7.4)" R4-1714520, "Draft TP to TS 38.104: Otannel arrangement (9.7.4)" R4-1714520, "Draft TP to TS 38.104: Otannel arrangement (9.7.4)" R4-1714520, "Draft TP to TS 38.104: Otannel arrangement (9.7.4)" R4-1714520, "Draft TP to TS 38.104: Otannel arrangement (9.7.4)" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" Presented to TSG RAN for approval. 1.0.0 Approved by plenary – Rel-15 spec under change control 15.0.0							
R4-1714428, "TP to TS 38.104 v0.4.0: Time alignment for CA" R4-4714430, "TP to TS 38.104: Transmitter spurious emissions (conducted) (6.6.5)" R4-4714432, "TP to TS 38.104: Output Power Dynamics for FR1 (conducted)" R4-4714433, "TP to TS 38.104: OTA Rx spurious emissions for BS type O 2 (10.7.3)" R4-4714435, "TP to TS 38.104: FR2 REFSENS" R4-1714437, "TP for TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-4714439, "TP for TS 38.104: Receiver spurious emission (7.6)" R4-4714439, "TP for TS 38.104: Channel arrangement (5.4)" R4-4714493, "TP for TS 38.104: Operating band unwanted emissions (6.4)" R4-47144515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-4714515, "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-4714518, "TP to TS 38.104: ACS and blocking update" R4-4714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-4714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-4714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. 1.0.0 Approved by plenary – Rel-15 spec under change control 15.0.0							
R4-1714430, "TP to TS 38.104: Transmitter spurious emissions (conducted) (6.6.5)" R4-1714432, "TP to TS 38.104: Output Power Dynamics for FR1 (conducted)" R4-1714433, "TP to TS 38.104: OTA Rx spurious emissions for BS type O 2 (10.7.3)" R4-1714435, "TP to TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Receiver spurious emission (7.6)" R4-1714439, "TP for TS 38.104: Channel arrangement (5.4)" R4-1714443, "TP for TS 38.104: Operating band unwanted emissions (6.6.4)" R4-1714515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714517, "TP to TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714518, "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714520, "Draft TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" Presented to TSG RAN for approval. 1.0.0 Approved by plenary — Rel-15 spec under change control 15.0.0							
(conducted) (6.6.5)" R4-1714432, "TP to TS 38.104: Output Power Dynamics for FR1 (conducted)" R4-1714433, "TP to TS 38.104: OTA Rx spurious emissions for BS type O 2 (10.7.3)" R4-1714435, "TP to TS 38.104: FR2 REFSENS" R4-1714437, "TP for TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Receiver spurious emission (7.6)" R4-1714439, "TP for TS 38.104: Channel arrangement (5.4)" R4-1714493, "TP for TS 38.104: Operating band unwanted emissions (6.6.4)" R4-1714515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714517, "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-1714518, "TP to TS 38.104: ACS and blocking update" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. 1.0.0 Approved by plenary – Rel-15 spec under change control 15.0.0							
(conducted)" R4-1714433, "TP to TS 38.104: OTA Rx spurious emissions for BS type O 2 (10.7.3)" R4-1714437, "TP to TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Receiver spurious emission (7.6)" R4-1714476, "TP to TR 38.104: Channel arrangement (5.4)" R4-1714493, "TP for TS 38.104: Operating band unwanted emissions (6.6.4)" R4-1714515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714515, "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-1714518, "TP to TS 38.104: ACS and blocking update" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. 1.0.0 Approved by plenary – Rel-15 spec under change control 15.0.0							
R4-1714433, "TP to TS 38.104: OTA Rx spurious emissions for BS type O 2 (10.7.3)" R4-1714435, "TP to TS 38.104: FR2 REFSENS" R4-1714437, "TP for TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Receiver spurious emission (7.6)" R4-1714476, "TP to TR 38.104: Channel arrangement (5.4)" R4-1714493, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714517, "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-1714518, "TP to TS 38.104: ACS and blocking update" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 Presented to TSG RAN for approval. 1.0.0 Approved by plenary - Rel-15 spec under change control 15.0.0							
type O 2 (10.7.3)" R4-1714435, "TP to TS 38.104: FR2 REFSENS" R4-1714437, "TP for TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Receiver spurious emission (7.6)" R4-1714476, "TP to TR 38.104: Channel arrangement (5.4)" R4-1714493, "TP for TS 38.104: Operating band unwanted emissions (6.6.4)" R4-1714515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714517, "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-1714518, "TP to TS 38.104: ACS and blocking update" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. 1.0.0 Approved by plenary – Rel-15 spec under change control 15.0.0							
R4-1714435, "TP to TS 38.104: FR2 REFSENS" R4-1714437, "TP for TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Receiver spurious emission (7.6)" R4-1714476, "TP to TR 38.104: Channel arrangement (5.4)" R4-1714493, "TP for TS 38.104: Operating band unwanted emissions (6.6.4)" R4-1714515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714517, "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-1714518, "TP to TS 38.104: ACS and blocking update" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" Presented to TSG RAN for approval. 1.0.0 Approved by plenary – Rel-15 spec under change control 15.0.0						· ·	
R4-1714437, "TP for TS 38.104: Conducted Adjacent Channel Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Receiver spurious emission (7.6)" R4-1714476, "TP to TR 38.104: Channel arrangement (5.4)" R4-1714493, "TP for TS 38.104: Operating band unwanted emissions (6.6.4)" R4-1714515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714517, "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-1714518, "TP to TS 38.104: ACS and blocking update" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. Approved by plenary – Rel-15 spec under change control 15.0.0							
Leakage Power Ratio (ACLR) (6.6.3)" R4-1714439, "TP for TS 38.104: Receiver spurious emission (7.6)" R4-1714476, "TP to TR 38.104: Channel arrangement (5.4)" R4-1714493, "TP for TS 38.104: Operating band unwanted emissions (6.6.4)" R4-1714515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714517, "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-1714518, "TP to TS 38.104: ACS and blocking update" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. Approved by plenary — Rel-15 spec under change control 15.0.0							
R4-1714476, "TP to TR 38.104: Channel arrangement (5.4)" R4-1714493, "TP for TS 38.104: Operating band unwanted emissions (6.6.4)" R4-1714515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714517, "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-1714518, "TP to TS 38.104: ACS and blocking update" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. 1.0.0 2017-12 RAN#78						Leakage Power Ratio (ACLR) (6.6.3)"	
R4-1714493, "TP for TS 38.104: Operating band unwanted emissions (6.6.4)" R4-1714515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714517, "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-1714518, "TP to TS 38.104: ACS and blocking update" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. 1.0.0 2017-12 RAN#78							
emissions (6.6.4)" R4-1714515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714517, "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-1714518, "TP to TS 38.104: ACS and blocking update" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. 2017-12 RAN#78 Approved by plenary – Rel-15 spec under change control 15.0.0							
R4-1714515, "TP for TS 38.104: OTA Out-of-band emissions (9.7.4)" R4-1714517, "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-1714518, "TP to TS 38.104: ACS and blocking update" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. Approved by plenary – Rel-15 spec under change control 15.0.0							
R4-1714517, "TP to TS 38.104: OTA base station output power, 2-O (9.3.3)" R4-1714518, "TP to TS 38.104: ACS and blocking update" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. Approved by plenary – Rel-15 spec under change control 15.0.0						` ,	
(9.3.3)" R4-1714518, "TP to TS 38.104: ACS and blocking update" R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. 2017-12 RAN#78 Approved by plenary – Rel-15 spec under change control 15.0.0							
R4-1714520, "Draft TP to TS 38.104: OTA In-band selectivity and blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. 1.0.0 2017-12 RAN#78 Approved by plenary – Rel-15 spec under change control 15.0.0							
blocking (10.5)" R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. 1.0.0 2017-12 RAN#78 Approved by plenary – Rel-15 spec under change control 15.0.0							
R4-1714525, "TP to TS 38.104: FR1 RX IM conducted 7.7" R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2"							
R4-1714526, "TP to TS 38.104: FR1 RX IM OTA 10.8.2" 2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. 1.0.0 2017-12 RAN#78 Approved by plenary – Rel-15 spec under change control 15.0.0							
2017-12 RAN#78 RP-172268 Presented to TSG RAN for approval. 1.0.0 2017-12 RAN#78 Approved by plenary – Rel-15 spec under change control 15.0.0							
2017-12 RAN#78 Approved by plenary – Rel-15 spec under change control 15.0.0	2017-12	RAN#78	RP-172268		-		1.0.0
			RP-180264	0004	F		

2018-12 RAN#81 RP-181896 0008 F T S 38.104 Combined updates from RAN4 #88 place and #89 (Including 7.5 kHz carrier shift in UL for remaining bands) 2018-12 RAN#82 RP-182362 0017 B CR to TS 38.104 on Combined updates from RAN4 #88bis and #89 (Including 7.5 kHz carrier shift in UL for remaining bands) 2018-03 RAN#83 RP-190403 0019 B CR to 38.104 on Combined CRs for BS Demodulation performance CR for RAN4 #90	018-06	RAN#80	RP-181076	0005		F	TS 38.104 Combined updates (NSA) from RAN4 #86bis and RAN4 #87	15.2.0
2018-12 RAN#82 RP-182362 0017 B CR to 38.104 on Combined CRs for BS Demodulation performance CR to TS 38.104 on Combined updates from RAN4 #90 This document combines the proposed changes in the following Draft CRs from RAN4 #90: R4-1900284, "Draft CR on NR PUCCH format2 performance requirements for TS 38.104" R4-1900284, "Draft CR to TS 38.104: Update of performance requirement numbers for DFT-s-OFDM based PUSCH" R4-1900976, "Draft CR to TS 38.104: Update of performance requirement numbers for DFT-s-OFDM based PUSCH" R4-1900376, "Draft CR to TS 38.104: On RX spurious emissions requirement" R4-1901330, "Draft CR to TS 38.104: Annex C.6 correction" R4-1901330, "Draft CR to TS 38.104: Annex C.6 correction" R4-1901330, "Draft CR to TS 38.104: Abdreviations addition" R4-1901330, "Draft CR to TS 38.104: Corrections on transmitter co-existence and co-location requirements" R4-1901474, "Draft CR to TS 38.104: Corrections on general intermodulation requirements" R4-1901474, "Draft CR to TS 38.104: Addition of missing EIRP/EIS definitions in terminology in clause 3.1" R4-1902249, "Draft CR to 38.104: Correction to FR2 OTA Interfering signal mean power units" R4-1902246, "Draft CR to 38.104: Correction to GBS power limits" R4-19022266, "draft CR to TS 38.104: Correction to FR2 OTA Interfering signal mean power units" R4-1902236, "Draft CR to TS 38.104: Correction to FR2 OTA Interfering signal mean power units" R4-1902236, "Draft CR to TS 38.104 - PUSCH requirements with CP-OPDM and FR1" R4-1902399, "Draft CR to TS 38.104 - PUSCH requirements with CP-OPDM and FR1" R4-1902399, "Draft CR to TS 38.104 - PUSCH requirements with CP-OPDM for FR2" R4-1902391, "Draft CR to TS 38.104: Editorial CR for BS demodulation requirements in TS 38.104: CR to TS 38.104 - Editorial CR for BS demodulation requirements" R4-1902381, "Draft CR to TS 78.104 - Editorial CR for BS demodulation requirements in TS 38.104: Editorial CR for BS demodulation requirements in TS 38.104: Editorial CR for BS demodulation requirements"	018-09	RAN#81	RP-181896	0008		F	TS 38.104 Combined updates from RAN4 #88	15.3.0
RAN#83 RP-190403 0019 CR to TS 38.104 on Combined updates from RAN4 #90 This document combines the proposed changes in the following Draft CRs from RAN4 #90: - R4-1900284, "Draft CR on NR PUCCH format2 performance requirements for TS 38.104" - R4-1900763, "Draft CR to TS 38.104: Update of performance requirement numbers for DFT-s-OFDM based PUSCH" - R4-1900766, "Draft CR for TS 38.104: On RX spurious emissions requirement" - R4-190086, "Draft CR for 38.104: On RX spurious emissions for NR PUCCH format 1" - R4-1901399, "Draft CR to TS 38.104: Annex C.6 correction" - R4-1901399, "Draft CR to 38.104: Abbreviations addition" - R4-1901397, "Draft CR to TS 38.104 BS demodulation PUCCH format 0 requirements" - R4-1901474, "Draft CR to TS 38.104: Corrections on transmitter co-existence and co-location requirements" - R4-1901474, "Draft CR to TS 38.104: Corrections on general intermodulation requirements" - R4-1901474, "Draft CR to TS 38.104: Addition of missing EIRP/EIS definitions in terminology in clause 3.1" - R4-1902241, "Draft CR to 38.104; correction to BS power limits" - R4-1902241, "Draft CR to 38.104: Correction to FR2 OTA Interfering signal mean power units" - R4-1902246, "Draft CR to 38.104; Correction to definition of OTA reference sensitivity" - R4-1902246, "Draft CR to TS 38.104 - update emissions scaling" - R4-1902280, "draft CR to TS 38.104 - update emissions scaling" - R4-1902289, "draft CR to TS 38.104 - PUSCH requirements with CP-OFDM and FR1" - R4-1902398, "draft CR to TS 38.104 - PUSCH requirements with CP-OFDM for FR2' - R4-1902399, "Draft CR to TS 38.104. Editorial CR for BS demodulation requirements" - R4-1902396, "Draft CR to TS 38.104. Editorial CR for BS demodulation requirements" - R4-190244, "Draft CR for updating PRACH performance requirements in TS 38.104." - R4-190244, "Draft CR for updating PRACH performance requirements in TS 38.104.")18-12	RAN#82	RP-182837	0016	1	F	· ·	15.4.0
This document combines the proposed changes in the following Draft CRs from RAN4 #90: R4-1900284, "Draft CR on NR PUCCH format2 performance requirements for TS 38.104" R4-1900763, "Draft CR to TS 38.104: Update of performance requirement numbers for DFT-s-OFDM based PUSCH" R4-1900766, "Draft CR to TS 38.104: On RX spurious emissions requirement" R4-1900968, "Draft CR for 38.104: On RX spurious emissions requirement" R4-1901329, "Draft CR to 38.104: Annex C.6 correction" R4-1901330, "Draft CR to 38.104: Abbreviations addition" R4-1901330, "Draft CR to TS 38.104 BS demodulation PUCCH format 1" R4-1901387, "Draft CR to TS 38.104 BS demodulation PUCCH format 1" R4-1901474, "Draft CR to TS 38.104: Corrections on transmitter co-existence and co-location requirements" R4-1901483, "Draft CR to TS 38.104: Corrections on general intermodulation requirement" R4-1902239, "Draft CR to TS 38.104: Addition of missing EIRP/EIS definitions in terminology in clause 3.1" R4-1902241, "Draft CR to 38.104; clarification of BS power limits" R4-1902245, "Draft CR to 38.104; correction to FR2 OTA Interfering signal mean power units" R4-1902246, "Draft CR to 38.104; Correction to definition of OTA reference sensitivity" R4-1902260, "draft CR to TS 38.104 - update emissions scaling" R4-1902394, "Draft CR to TS 38.104 - update emissions scaling" R4-1902393, "draft CR to TS 38.104 - update emissions scaling" R4-1902394, "Draft CR to TS 38.104 - PUSCH requirements with CP-OFDM and FR1" R4-1902394, "Draft CR to TS 38.104 - PUSCH requirements with CP-OFDM and FR1" R4-1902394, "Draft CR to TS 38.104 - Editorial CR for BS demodulation requirements in TS 38.104: R4-1902396, "CR: Updates to PUCCH formats 3 and 4 performance requirements in TS 38.104: R4-190244, "Draft CR for TS 38.104 - Editorial CR for BS demodulation requirements" R4-190247 - R4)18-12	RAN#82	RP-182362	0017		В	CR to 38.104 on Combined CRs for BS Demodulation performance	15.4.0
requirement numbers for DFT-s-OFDM based PUSCH" - R4-1900876, "Draft CR to TS 38.104: Update of performance requirement" - R4-190088, "Draft CR to TS 38.104: On RX spurious emissions requirement" - R4-1901329, "Draft CR to 38.104: Annex C.6 correction" - R4-1901329, "Draft CR to 38.104: Abneviations addition" - R4-1901387, "Draft CR to 38.104 BS demodulation PUCCH format 0 requirements" - R4-1901474, "Draft CR to TS 38.104: Corrections on transmitter co-existence and co-location requirements" - R4-1901474, "Draft CR to TS 38.104: Corrections on general intermodulation requirements" - R4-1901474, "Draft CR to TS 38.104: Corrections on general intermodulation requirements" - R4-1902299, "Draft CR to TS 38.104: Addition of missing EIFP/EIS definitions in terminology in clause 3.1" - R4-1902241, "Draft CR to 38.104; clarification of BS power limits" - R4-1902241, "Draft CR to 38.104; Correction to FR2 OTA Interfering signal mean power units" - R4-1902246, "Draft CR to 38.104; Correction to definition of OTA reference sensitivity" - R4-1902246, "Draft CR to TS 38.104 - update emissions scaling" - R4-1902239, "draft CR to TS 38.104 - update emissions scaling" - R4-1902390, "draft CR to TS 38.104 - update emissions scaling" - R4-1902394, "Draft CR to TS 38.104 - PUSCH requirements with CP-OFDM and FR1" - R4-1902394, "Draft CR to TS 38.104 - PUSCH requirements with CP-OFDM for FR2" - R4-1902396, "CR: Updates to PUCCH formats 3 and 4 performance requirements in TS 38.104* - R4-1902396, "CR: Updates to PUCCH formats 3 and 4 performance requirements in TS 38.104* Editorial CR for BS demodulation requirements" - R4-1902361, "Draft CR to TS 38.104 - performance requirements in TS 38.104*	019-03	RAN#83					This document combines the proposed changes in the following Draft CRs from RAN4 #90: - R4-1900284, "Draft CR on NR PUCCH format2 performance	15.5.0
- R4-1902561, "Draft CR for updating PRACH performance requirements in TS38.104"						F	requirements for TS 38.104" R4-1900763, "Draft CR to TS 38.104: Update of performance requirement numbers for DFT-s-OFDM based PUSCH" R4-1900876, "Draft CR to TS 38.104: On RX spurious emissions requirement" R4-1900968, "Draft CR for 38.104: Performance requirements for NR PUCCH format 1" R4-1901329, "Draft CR to 38.104: Annex C.6 correction" R4-1901330, "Draft CR to 38.104: Abbreviations addition" R4-1901387, "Draft CR to TS 38.104 BS demodulation PUCCH format 0 requirements" R4-1901474, "Draft CR to TS 38.104: Corrections on transmitter co-existence and co-location requirements" R4-1901483, "Draft CR to TS 38.104: Corrections on general intermodulation requirement" R4-1902239, "Draft CR to TS 38.104: Addition of missing EIRP/EIS definitions in terminology in clause 3.1" R4-1902241, "Draft CR to 38.104; clarification of BS power limits" R4-1902245, "Draft CR to 38.104: Correction to FR2 OTA Interfering signal mean power units" R4-1902246, "Draft CR to 38.104; Correction to definition of OTA reference sensitivity" R4-19022338, "Draft CR to TS 38.104 - update emissions scaling" R4-1902338, "Draft CR to TS 38.104 - pusch requirements with CP-OFDM and FR1" R4-1902389, "draftCR for 38.104 on PUSCH requirements with CP-OFDM for FR2" R4-1902396, "CR: Updates to PUCCH formats 3 and 4 performance requirements in TS 38.104"	
- R4-1902571, "Corrections to 38.104 Delay profile calculation" - R4-1902642, "Draft CR to TS 38.104: Correction on multi-band operation related requirements"							demodulation requirements" - R4-1902561, "Draft CR for updating PRACH performance requirements in TS38.104" - R4-1902571, "Corrections to 38.104 Delay profile calculation" - R4-1902642, "Draft CR to TS 38.104: Correction on multi-band	

2019-06 RAN	#84 RP-191240	0029		CR to TS 38.104 Combined updates from RAN4 #90bis and	15.6.0
2010 00 10 10	701 141 101210	0020		RAN4#91	10.0.0
				From RAN4 #90bis:	
				- R4-1903105, "Draft CR to TS 38.104: Corrections on	
				terminologies and editorial errors"	
				- R4-1903319, "Draft CR to TS 38.104: removal of unused definition: "minimum EIRP level under extreme condition""	
				- R4-1903320, "Draft CR to TS 38.104: OSDD information	
				correction"	
				- R4-1903457, "Draft CR to TS 38.104: Removal of FFS for FR2 TDD OFF power level requirement in clause 9.5"	
				- R4-1903499, "Draft CR to 38.104: Correction to unwanted	
				emissions mask for bands n7 and n38"	
				- R4-1903836, "Draft CR to TS 38.104: Correction on description	
				on multi-band operation in section 4.8" - R4-1904024, "Draft CR to TS 38.104 Applicability rules for BS	
				demodulation" P4.1004234 "dreftCP: Correlation matrix for SPy in TS 38.104"	
				- R4-1904234, "draftCR: Correlation matrix for 8Rx in TS 38.104" - R4-1904723, "Draft CR to TS 38.104: Update of performance	
				requirements for DFT-s-OFDM based PUSCH"	
				R4-1904726, "draftCR for 38.104 on PUSCH requirements with	
				CP-OFDM and FR1" - R4-1904729, "Draft CR on PRACH performance requirements in	
				TS38.104"	
				- R4-1904734, "Draft CR on TS 38.104 Performance requirement	
				for PUCCH format 1" P4 1004735 "Draft CP on NP PLICCH format? porformance	
				- R4-1904735, "Draft CR on NR PUCCH format2 performance requirements for TS 38.104"	
				- R4-1904739, "Draft CR to TS 38.104 BS demodulation PUCCH	
				format 0 requirements"	
				- R4-1904745, "draftCR: Updates to PUCCH formats 3 and 4 performance requirements in TS 38.104"	
				- R4-1904799, "Draft CR to TS 38.104: FRC update for PUSCH	
				FR1 mapping type B and FR2 DMRS 1+1"	
				- R4-1904816, "Draft CR: Clarification on step 5 and step 6 for	
			_	delay profiles calculation (38.104)" - R4-1904842, "Draft CR to TS 38.104 BS demodulation CP-	
			F	OFDM PUSCH FR2 requirements"	
				- R4-1905126, "draft CR to 38.104 for TAE requirements" - R4-1905139, "draft CR to TS 38.104 on EVM measurement	
				(Annex B and C)"	
				- R4-1905140, "Draft CR: editorial correction on FR1 spurious	
				emission requirement in TS38.104"	
				- R4-1905143, "Draft CR for TS 38.104: Addition of NOTE for transmitter intermodulation requirements in certain regions"	
				- R4-1905144, "Draft CR to TS 38.104: FRC reference corrections	
				for the Rx requirements"	
				- R4-1905145, "Draft CR to TS 38.104: Clarification on application of interfering signal offsets for ACS, blocking and intermodulation	
				requirements"	
				- R4-1905148, "Draft CR to TS 38.104: Corrections on out-of-	
				band blocking requirement"	
				From RAN4 #91:	
				- R4-1906002, "Draft CR to 38.104: Subclause 6.7 and 9.8	
				transmitter intermodulation – correction of interfering signal type" - R4-1906096, "Draft CR to 38.104: Correction of frequency range	
				for OTA spurious emissions"	
				- R4-1906311, "Draft CR to 38.104: Correction on FRC (Annex A)"	
				- R4-1906346, "Removal of n65 in Rel-15 38.104" - R4-1906915, "Draft CR to TS 38.104: Clarification on application	
				of interfering signal offsets for OTA ACS, blocking and	
				intermodulation requirements"	
				- R4-1906918, "Draft CR to TS 38.104: Clarification on type of interfering signal for ACS, in-band blocking and ICS requirements"	
				- R4-1907110, "Draft CR to TS 38.104: correction of the	
				fundamental frequency limit of 2.55GHz for the spurious emissions"	
				- R4-1907246, "Draft CR to TS 38.104: Update of performance requirements for DFT-s-OFDM based PUSCH"	
				- R4-1907249, "Draft CR to TS 38.104: Correction on the	
				terminology in PUSCH FRC tables"	
				- R4-1907252, "Draft CR to TS38.104: Updates of PRACH	
				performance requirements" - R4-1907255, "Draft CR on NR PUCCH format2 performance	
				requirements for TS 38.104"	

						- R4-1907258, "Draft CR on NR UCI on PUSCH performance requirements for TS 38.104" - R4-1907261, "draftCR: Updates to PUCCH formats 3 and 4 performance requirements in TS 38.104" - R4-1907266, "Draft CR on TS 38.104 Performance requirement for PUCCH format 1" - R4-1907267, "Draft CR on TS 38.104 Performance requirement for multi-slot PUCCH format 1" - R4-1907272, "Draft CR to TS 38.104 BS demodulation PUCCH format 0 requirements" - R4-1907275, "Draft CR to TS 38.104 BS demodulation CP-OFDM PUSCH FR2 requirements" - R4-1907277, "draftCR for 38.104 on PUSCH requirements with CP-OFDM and FR1" - R4-1907629, "Draft CR to 38.104: Term "reference signal" replacing by term "ideal signal" in EVM context" - R4-1907634, "Draft CR to 38.104: corrections to the EVM annex" - R4-1907659, "Draft CR to TS 38.104 on Spurious emission Category B in FR2" - R4-1907661, "Draft CR to 38.104 Definition of contiguous transmission bandwidth" - R4-1907662, "Draft CR to 38.104: BS TAE requirements" - R4-1907664, "Draft CR to 38.104: BS TAE requirements" - R4-1907667, "Draft CR to 38.104: Clarification of interferer RB frequency for narrowband blocking" - R4-1907679, "Draft CR for TS 38.104: Correction on EVM" - R4-1907689, "Correction to CA carrier spacing"	
2019-06	RAN#84	RP-191252		1	В	CR to TS38.104 to introducing spectrum sharing on band n41	16.0.0
2019-06	RAN#84	RP-191242			В	Introduction of band n14 - CR to TS 38.104	16.0.0
2019-06	RAN#84	RP-191246			В	Introduction of band n30 - CR to TS 38.104	16.0.0
2019-06	RAN#84	RP-191244			В	introduce n18 into TS38.104	16.0.0
2019-06	RAN#84	RP-191250		1	В	n65 introduction to 38.104	16.0.0
2019-06	RAN#84	RP-191251			В	Addition channel bandwidth of 30MHz for n50 in TS 38.104	16.0.0
2019-06	RAN#84	RP-191248	0032		В	CR to 38.104: Introduction of n48	16.0.0

_						,	
2019-09	RAN#85	RP-192049	0034		A	CR to T 38.104: Implementation of endorsed draft CRs from RAN4#92 (Rel-16) (Mirrors changes in R4-1908440 for Rel-15 TS 38.104) - R4-1907940, "Draft CR to TS 38.104: Correction on the terminology in FRC tables in A.1 and A.2" - R4-1908307, "Draft CR to TS 38.104: Clarification on application of OTA receiver requirements for BS supporting polarization" - R4-1908387, "Draft CR for TS38.104: editorial correction for reference meausrement channel" - R4-1908619, "Draft CR to TS38.104: Correction on interferer frequency offset values for ACS" - R4-1908629, "Draft CR to TS38.104: Corrections on EVM window length (Annex B.5.2, C.5.2)" - R4-1908774, "DraftCR to 38.104: Editorial Corrections to redudant units in clause 10.8.3" - R4-1908805, "Draft CR to 38.104: Limits in FCC title 47 for OTA operating band unwanted emissions (9.7)" - R4-1909270, "Draft CR to TS 38.104: Receiver spurious emissions frequency correction" - R4-1909309, "DraftCR to TS 38.104: text corrections, Rel-15" - R4-1909310, "DraftCR to TS 38.104: text corrections, Rel-15" - R4-1909416, "draft CR 38.104 - correct reference to annex F" - R4-1910066, "Draft CR to TS 38.104: Update of performance requirements for DFT-s-OFDM based PUSCH" - R4-1910079, "Draft CR on NR PUCCH format2 performance requirements for TS 38.104" - R4-1910075, "draftCR for 38.104 on PUSCH requirements with CP-OFDM and FR1" - R4-1910078, "Draft CR to TS 38.104 BS demodulation PUCCH format 0 requirements" - R4-1910084, "Draft CR to TS 38.104 BS demodulation PUCCH format 1 or requirements" - R4-1910084, "Draft CR to TS 38.104 BS demodulation CP-OFDM PUSCH FR2 requirements"	16.1.0
						- R4-1910081, "Draft CR to TS 38.104 BS demodulation PUCCH format 0 requirements" - R4-1910084, "Draft CR to TS 38.104 BS demodulation CP-	
						for NR PUCCH format 1" - R4-1910089, "Draft CR for 38.104: Performance requirements for NR multi-slot PUCCH" - R4-1910094, "draftCR: Updates to PUCCH formats 3 and 4	
						performance requirements in TS 38.104" - R4-1910431, "Corrections to EVM calculations in 38.141-1 annex B" - R4-1910462, "Draft CR to 38.104: Correction on regional requirements (4.5)"	
20.10.00	DANINGS	DD 400000	0005			 R4-1910493, "Draft CR to TS 38.104 correction to Annex C.7" R4-1910606, "Draft CR for TS 38.104: Channel spacing for adjacent NR carriers" 	10.1.0
2019-09	RAN#85	RP-192032		1	В	CR to introduce 30MHz bandwidth of n41 to TS 38.104	16.1.0
2019-09	RAN#85	RP-192029			В	CR on Introduction and Protection of SUL band n89 into TS 38.104	16.1.0
2019-09	RAN#85	RP-192031			В	CR for TS 38.104: adding wider channel bandwidths in Band n7	16.1.0
2019-09	RAN#85	RP-192034			В	n29 introduction to 38.104	16.1.0
2019-12	RAN#86 RAN#86	RP-192999 RP-193013	0049	1	A B	CR to TS 38.104: Update of performance requirements for DFT-s-OFDM based PUSCH (Rel-16) Introduction of 2010-2025MHz SUL band into Rel-16 TS 38.104	16.2.0
2019-12	RAN#86	RP-193034			A	Sync raster to SSB resource element mapping	16.2.0
2019-12	RAN#86	RP-192999	0057		A	CR on correction of NR PUCCH format2 performance requirements (Rel-16) for TS 38.104	16.2.0
2019-12	RAN#86		0059	1	A	CR on correction of NR UCI on PUSCH performance requirements (Rel-16) for TS 38.104	16.2.0
2019-12	RAN#86 RAN#86	RP-192999 RP-192999	0061	1	A	CR on correction on FRC table for FR1 PUSCH performance requirements (Rel-16) for TS 38.104 CR for 38.104 on PUSCH requirements with CP-OFDM and FR1	16.2.0
2019-12	RAN#86	RP-193034			Α	CR for TS38.104: Corrections on channel bandwdith for band n34	16.2.0
2019-12	RAN#86	RP-193035			Α_	CR to TS38.104: Editorial corrections	16.2.0
2019-12	RAN#86	RP-193035		1	Α_	CR to 38.104 on Editorial corrections (Rel-16)	16.2.0
2019-12	RAN#86	RP-193034			<u>A</u>	CR to 38.104 on Receiver spurious emission requirements	16.2.0
2019-12	RAN#86	RP-193021		1	<u>F</u>	CR to remove square brackets for n90 in TS38.104	16.2.0
2019-12	RAN#86	RP-192999			A	Updates to PRACH requirements in TS 38.104 for Rel-16	16.2.0
2019-12	RAN#86				Α	CR to TS 38.104: Correction on interference level of receiver dynamic range requirement	16.2.0
2019-12	RAN#86	RP-193034	0083		Α	CR to TS 38.104: Finalization of interfering RB centre frequency offsets in receiver narrowband blocking requirement	16.2.0

A CR to TR 38.104: Correction of table reference of interfering signs for ACS requirement	16.2.0 16.2.0
To receiver intermodulation requirements CR to TS 38.104 on corrections to channel raster entries for NR band (Rel-16)	16.2.0 16.3.0 16.3.0
A CR to TS 38.104 on corrections to channel raster entries for NR band (Rel-16) 2019-12 RAN#86 RP-193035 0097 A CR to TS 38.104: further updates on the abbreviations (section 3.3 x16 Rel-16) 2019-12 RAN#86 RP-193023 0098 1 B CR to TS 38.104 - NB-IoT introduction 2019-12 RAN#86 RP-192999 0100 F CR to TS 38.104 BS demodulation PUCCH format 0 requirements 2019-12 RAN#86 RP-192999 0102 1 F CR to TS 38.104 BS demodulation PUCCH format 0 requirements 2019-12 RAN#86 RP-193017 0103 B CR to 38.104 BS demodulation CP-OFDM PUSCH FR2 requirements 2019-12 RAN#86 RP-193018 0105 B CR to 38.104 - Band n75 - wider CBW 2019-12 RAN#86 RP-193016 0106 B CR for TS 38.104: Addition channel bandwidths in Band n77/n78 2019-12 RAN#86 RP-193035 0108 A CR to 38.104: Correction on FR2 Category B OBUE mask 2019-12 RAN#86 RP-193035 0110 A CR frame averaging for EVM Annex B and C in TS 38.104 2019-12 RAN#86 RP-193035 0114 A CR to TS 38.104: OTA TAE correction, Rel-16 2019-12 RAN#86 RP-193035 0114 A CR to TS 38.104 (Rel-16) 2019-12 RAN#86 RP-193035 0114 A CR to TS 38.104 (Rel-16) 2019-12 RAN#86 RP-193035 0114 A CR to TS 38.104 (Rel-16) 2019-12 RAN#86 RP-193035 0114 A CR to TS 38.104 (Rel-16) 2019-12 RAN#86 RP-193035 0114 A CR to TS 38.104 (Rel-16) 2019-12 RAN#86 RP-193035 0118 A Crection of limit for TX spurios BS type 1-H 2019-12 RAN#86 RP-193035 0118 A Crection of limit for TX spurios BS type 1-H 2019-12 RAN#86 RP-193035 0122 A CR to TS 38.104: Clarification for the number of interfering signals 2020-03 RAN#87 RP-200389 0124 A CR to TS 38.104: Clarification for the number of interfering signals 2020-03 RAN#87 RP-200389 0134 A CR to TS 38.104: Corrections on NB-IoT operation in NR channel bandwidth RAN#87 RP-200389 0134 A CR to TS 38.104: Corrections on trated carrier output power symb 2020-03 RAN#87 RP-200389 0134 A CR	16.2.0 16.2.0
2019-12	16.2.0 16.2.0
2019-12	16.2.0 16.3.0 16.3.0 16.3.0
2019-12 RAN#86 RP-192999 0100 F CR to TS 38.104 BS demodulation PUCCH format 0 requirements	16.2.0 16.3.0 16.3.0 16.3.0
requirements	16.2.0 16.3.0 16.3.0 16.3.0
2019-12	16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.3.0 16.3.0 16.3.0
2019-12	16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.3.0 16.3.0 16.3.0
2019-12	16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.3.0 16.3.0 16.3.0
2019-12	16.2.0 16.2.0 16.2.0 16.2.0 ts 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.3.0 16.3.0 16.3.0
2019-12 RAN#86 RP-193035 0112 A CR frame averaging for EVM Annex B and C in TS 38.104 2019-12 RAN#86 RP-193035 0112 A CR to TS 38.104: OTA TAE correction, Rel-16 2019-12 RAN#86 RP-193035 0114 A CR to TS 38.104: MR BS class terminology correction, Rel-16 2019-12 RAN#86 RP-192999 0116 1 F CR: Updates for PUCCH formats 3 and 4 performance requireme in TS 38.104 (Rel-16) 2019-12 RAN#86 RP-193035 0118 A Correction of limit for TX spurios BS type 1-H 2019-12 RAN#86 RP-192999 0119 A CR for 38.104: Performance requirements for NR PUCCH format 2019-12 RAN#86 RP-192999 0120 A CR for 38.104: Performance requirements for NR multi-slot PUCC 2019-12 RAN#86 RP-193035 0122 A CR to TS 38.104: Deformance requirements for NR multi-slot PUCC 2019-12 RAN#86 RP-193035 0122 A CR to TS 38.104: Clarification for the number of interfering signals 2020-03 RAN#87 RP-200381 0126 B Introduction of n26 B Introduction of n26 B Introduction of n26 RAN#87 RP-200382 0127 1 B Introduction of n53 RAN#87 RP-200410 0132 F CR to TS 38.104: Corrections on NB-IoT operation in NR channel bandwidth Dandwidth RP-200388 0134 1 A CR to TS 38.104: Corrections on rated carrier output power symb Dandwidth Dan	16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.3.0 16.3.0 16.3.0
2019-12 RAN#86 RP-193035 0112 A CR to TS 38.104: OTA TAE correction, Rel-16 2019-12 RAN#86 RP-193035 0114 A CR to TS 38.104: MR BS class terminology correction, Rel-16 2019-12 RAN#86 RP-192999 0116 1 F CR: Updates for PUCCH formats 3 and 4 performance requirement in TS 38.104 (Rel-16) 2019-12 RAN#86 RP-193035 0118 A Correction of limit for TX spurios BS type 1-H 2019-12 RAN#86 RP-192999 0119 A CR for 38.104: Performance requirements for NR PUCCH format 2019-12 RAN#86 RP-193035 0122 A CR for 38.104: Performance requirements for NR multi-slot PUCC 2019-12 RAN#86 RP-193035 0122 A CR to TS 38.104: Clarification for the number of interfering signals 2020-03 RAN#87 RP-193035 0124 A CR to TS 38.104: Clarification for the number of interfering signals 2020-03 RAN#87 RP-200382 0127 1 B Introduction of n25 2020-03 RAN#87 RP-200384 0131	16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.3.0 16.3.0 16.3.0
RAN#86	16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.3.0 16.3.0 16.3.0
2019-12 RAN#86 RP-192999 0116 1 F CR: Updates for PUCCH formats 3 and 4 performance requirement in TS 38.104 (Rel-16)	ts 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.3.0 16.3.0 16.3.0
In TS 38.104 (Rel-16) 2019-12 RAN#86 RP-193035 0118	16.2.0 16.2.0 16.2.0 16.2.0 16.2.0 16.3.0 16.3.0 16.3.0
2019-12 RAN#86 RP-193035 0118 A Correction of limit for TX spurios BS type 1-H	16.2.0 16.2.0 16.2.0 16.2.0 16.3.0 16.3.0 16.3.0 16.3.0
2019-12 RAN#86 RP-192999 0119 A CR for 38.104: Performance requirements for NR PUCCH format 2019-12 RAN#86 RP-192999 0120 A CR for 38.104: Performance requirements for NR multi-slot PUCC 2019-12 RAN#86 RP-193035 0122 A CR to TS 38.104: Editorial corrections 2019-12 RAN#86 RP-193035 0124 A CR to TS 38.104: Editorial corrections 2020-03 RAN#87 RP-200381 0126 B Introduction of n26 2020-03 RAN#87 RP-200382 0127 1 B Introduction of n53 2020-03 RAN#87 RP-200384 0131 B Introduction of n53 2020-03 RAN#87 RP-200384 0131 B Introduction of n53 2020-03 RAN#87 RP-200410 0132 F CR to TS 38.104: Corrections on NB-IoT operation in NR channel bandwidth 2020-03 RAN#87 RP-200398 0134 1 A CR to TS 38.104: Corrections on rated carrier output power symbol and carrier output power symbol	16.2.0 16.2.0 16.2.0 16.2.0 16.3.0 16.3.0 16.3.0 16.3.0
2019-12 RAN#86 RP-192999 0120 A CR for 38.104: Performance requirements for NR multi-slot PUCC 2019-12 RAN#86 RP-193035 0122 A CR to TS 38.104: Editorial corrections 2019-12 RAN#86 RP-193035 0124 A CR to TS 38.104: Editorial corrections 2020-03 RAN#87 RP-200381 0126 B Introduction of n26 2020-03 RAN#87 RP-200382 0127 1 B Introduction of n53 2020-03 RAN#87 RP-200384 0131 B Introduction of n53 2020-03 RAN#87 RP-200410 0132 F CR to TS 38.104: Corrections on NB-IoT operation in NR channel bandwidth 2020-03 RAN#87 RP-200398 0134 1 A CR to TS 38.104: Corrections on rated carrier output power symb 2020-03 RAN#87 RP-200398 0134 1 A CR to TS 38.104: Corrections on rated carrier output power symb 2020-03 RAN#87 RP-200399 0136 1 C CR for 38.104: new FRC tables for FR2 PUSCH 2T2R MC	H 16.2.0 16.2.0 16.2.0 16.3.0 16.3.0 16.3.0 16.3.0
2019-12 RAN#86 RP-193035 0124 A CR to TS 38.104: Clarification for the number of interfering signals 2020-03 RAN#87 RP-200381 0126 B Introduction of n26 2020-03 RAN#87 RP-200382 0127 1 B Introduction of n53 2020-03 RAN#87 RP-200384 0131 B Introducing new channel bandwidth for band n28 2020-03 RAN#87 RP-200410 0132 F CR to TS 38.104: Corrections on NB-IoT operation in NR channel bandwidth 2020-03 RAN#87 RP-200398 0134 1 A CR to TS 38.104: Corrections on rated carrier output power symb 2020-03 RAN#87 RP-200399 0136 1 C CR for 38.104: new FRC tables for FR2 PUSCH 2T2R MCS12 2020-03 RAN#87 RP-200407 0137 2 B CR for 38.104: introduction of UL timing adjustment 2020-03 RAN#87 RP-200407 0138 2 B CR for TS 38.104: adding wider channel bandwidths for n66 2020-03 RAN#87 RP-200398 0142	16.2.0 16.3.0 16.3.0 16.3.0 16.3.0
2020-03	16.3.0 16.3.0 16.3.0 16.3.0
2020-03 RAN#87 RP-200382 0127 1 B Introduction of n53 2020-03 RAN#87 RP-200384 0131 B Introducing new channel bandwidth for band n28 2020-03 RAN#87 RP-200410 0132 F CR to TS 38.104: Corrections on NB-IoT operation in NR channel bandwidth 2020-03 RAN#87 RP-200398 0134 1 A CR to TS 38.104: Corrections on rated carrier output power symb 2020-03 RAN#87 RP-200379 0136 1 C CR for 38.104: new FRC tables for FR2 PUSCH 2T2R MCS12 2020-03 RAN#87 RP-200407 0137 2 B CR for 38.104: introduction of UL timing adjustment 2020-03 RAN#87 RP-200407 0138 2 B CR for 38.104: Appendix for UL timing adjustment 2020-03 RAN#87 RP-200386 0139 B CR for TS 38.104: adding wider channel bandwidths for n66 2020-03 RAN#87 RP-200398 0142 A CR to TS 38.104: Regional requirements 2020-03 RAN#87 RP-200398 0145	16.3.0 16.3.0 16.3.0
2020-03 RAN#87 RP-200384 0131 B Introducing new channel bandwidth for band n28 2020-03 RAN#87 RP-200410 0132 F CR to TS 38.104: Corrections on NB-IoT operation in NR channel bandwidth 2020-03 RAN#87 RP-200398 0134 1 A CR to TS 38.104: Corrections on rated carrier output power symb 2020-03 RAN#87 RP-200379 0136 1 C CR for 38.104: new FRC tables for FR2 PUSCH 2T2R MCS12 2020-03 RAN#87 RP-200407 0137 2 B CR for 38.104: introduction of UL timing adjustment 2020-03 RAN#87 RP-200407 0138 2 B CR for 38.104: Appendix for UL timing adjustment 2020-03 RAN#87 RP-200386 0139 B CR for TS 38.104: adding wider channel bandwidths for n66 2020-03 RAN#87 RP-200398 0142 A CR to TS 38.104: Regional requirements 2020-03 RAN#87 RP-200392 0143 F Maintenance on the BS BW for n92 and n94 2020-03 RAN#87 RP-200398 0145	16.3.0 16.3.0
2020-03 RAN#87 RP-200410 0132 F CR to TS 38.104: Corrections on NB-IoT operation in NR channel bandwidth 2020-03 RAN#87 RP-200398 0134 1 A CR to TS 38.104: Corrections on rated carrier output power symb 2020-03 RAN#87 RP-200379 0136 1 C CR for 38.104: new FRC tables for FR2 PUSCH 2T2R MCS12 2020-03 RAN#87 RP-200407 0137 2 B CR for 38.104: introduction of UL timing adjustment 2020-03 RAN#87 RP-200407 0138 2 B CR for 38.104: Appendix for UL timing adjustment 2020-03 RAN#87 RP-200386 0139 B CR for TS 38.104: adding wider channel bandwidths for n66 2020-03 RAN#87 RP-200398 0142 A CR to TS 38.104: Regional requirements 2020-03 RAN#87 RP-200392 0143 F Maintenance on the BS BW for n92 and n94 2020-03 RAN#87 RP-200398 0145 A IntraSlot frequency hopping applicability in the one OFDM symbol test case 2020-03 RAN#87 RP-200383	16.3.0
bandwidth	
2020-03 RAN#87 RP-200379 0136 1 C CR for 38.104: new FRC tables for FR2 PUSCH 2T2R MCS12 2020-03 RAN#87 RP-200407 0137 2 B CR for 38.104: introduction of UL timing adjustment 2020-03 RAN#87 RP-200407 0138 2 B CR for 38.104: Appendix for UL timing adjustment 2020-03 RAN#87 RP-200386 0139 B CR for TS 38.104: adding wider channel bandwidths for n66 2020-03 RAN#87 RP-200398 0142 A CR to TS 38.104: Regional requirements 2020-03 RAN#87 RP-200392 0143 F Maintenance on the BS BW for n92 and n94 2020-03 RAN#87 RP-200398 0145 A IntraSlot frequency hopping applicability in the one OFDM symbol test case 2020-03 RAN#87 RP-200383 0146 1 B CR to 38.104 Band n1 - wider CBW - Additional Channel BW	
2020-03 RAN#87 RP-200407 0137 2 B CR for 38.104: introduction of UL timing adjustment 2020-03 RAN#87 RP-200407 0138 2 B CR for 38.104: Appendix for UL timing adjustment 2020-03 RAN#87 RP-200386 0139 B CR for TS 38.104: adding wider channel bandwidths for n66 2020-03 RAN#87 RP-200398 0142 A CR to TS 38.104: Regional requirements 2020-03 RAN#87 RP-200392 0143 F Maintenance on the BS BW for n92 and n94 2020-03 RAN#87 RP-200398 0145 A IntraSlot frequency hopping applicability in the one OFDM symbol test case 2020-03 RAN#87 RP-200383 0146 1 B CR to 38.104 Band n1 - wider CBW - Additional Channel BW	ls 16.3.0
2020-03 RAN#87 RP-200407 0138 2 B CR for 38.104: Appendix for UL timing adjustment 2020-03 RAN#87 RP-200386 0139 B CR for TS 38.104: adding wider channel bandwidths for n66 2020-03 RAN#87 RP-200398 0142 A CR to TS 38.104: Regional requirements 2020-03 RAN#87 RP-200392 0143 F Maintenance on the BS BW for n92 and n94 2020-03 RAN#87 RP-200398 0145 A IntraSlot frequency hopping applicability in the one OFDM symbol test case 2020-03 RAN#87 RP-200383 0146 1 B CR to 38.104 Band n1 - wider CBW - Additional Channel BW	16.3.0
2020-03 RAN#87 RP-200386 0139 B CR for TS 38.104: adding wider channel bandwidths for n66 2020-03 RAN#87 RP-200398 0142 A CR to TS 38.104: Regional requirements 2020-03 RAN#87 RP-200392 0143 F Maintenance on the BS BW for n92 and n94 2020-03 RAN#87 RP-200398 0145 A IntraSlot frequency hopping applicability in the one OFDM symbol test case 2020-03 RAN#87 RP-200383 0146 1 B CR to 38.104 Band n1 - wider CBW - Additional Channel BW	16.3.0
2020-03 RAN#87 RP-200398 0142 A CR to TS 38.104: Regional requirements 2020-03 RAN#87 RP-200392 0143 F Maintenance on the BS BW for n92 and n94 2020-03 RAN#87 RP-200398 0145 A IntraSlot frequency hopping applicability in the one OFDM symbol test case 2020-03 RAN#87 RP-200383 0146 1 B CR to 38.104 Band n1 - wider CBW - Additional Channel BW	16.3.0
2020-03 RAN#87 RP-200392 0143 F Maintenance on the BS BW for n92 and n94 2020-03 RAN#87 RP-200398 0145 A IntraSlot frequency hopping applicability in the one OFDM symbol test case 2020-03 RAN#87 RP-200383 0146 1 B CR to 38.104 Band n1 - wider CBW - Additional Channel BW	16.3.0
2020-03RAN#87RP-2003980145AIntraSlot frequency hopping applicability in the one OFDM symbol test case2020-03RAN#87RP-20038301461BCR to 38.104 Band n1 - wider CBW - Additional Channel BW	16.3.0
test case	16.3.0
	16.3.0
	16.3.0
2020-03 RAN#87 RP-200385 0148 B CR to 38.104 Band n38 - wider CBW - Additional Channel BW	16.3.0
2020-03 RAN#87 RP-200398 0149 A CR to TS 38.104 editorial correction R16 catA	16.3.0
2020-03 RAN#87 RP-200407 0156 1 B CR for TS 38.104: Introduction of PRACH demodulation	16.3.0
requirements for NR HST	40.00
2020-03 RAN#87 RP-200407 0157 2 B CR for 38.104: HST PUSCH demodulation requirements introduct	
2020-03 RAN#87 RP-200407 0158 2 B CR for 38.104: HST PUSCH demodulation Annex including both FRC and channel model	16.3.0
2020-03 RAN#87 RP-200379 0159 1 C CR for 38.104: Performance requirements for FR2 PUSCH 2T2R	16.3.0
2020-06 RAN#88 RP-200986 0164 A CR for 38.104: Performance requirements clarification of PUSCH	00 46 4 0
Type O-2 PT-RS configuration for MCS 2	
2020-06 RAN#88 RP-201043 0167 F CR for 38.104: Performance requirements for FR2 PUSCH 2T2R 16QAM	16.4.0
2020-06 RAN#88 RP-200986 0176 A CR to TS 38.104: Correction to out-of-band blocking requirements subclause 7.5 and subclause 10.6	in 16.4.0
2020-06 RAN#88 RP-200986 0178 A CR to TS 38.104: Correction on the CA nominal channel spacing	16.4.0
2020-06 RAN#88 RP-200986 0178 A CR to 15 36.104. Correction on the CA nominal channel spacing 2020-06 RAN#88 RP-200986 0180 A 30k SSB SCS for n50	16.4.0
2020-06 RAN#88 RP-200966 0160 A 30k SSB SCS for Band n38	16.4.0
2020-06 RAN#88 RP-200972 0185 B CR to TS 38.104: Introduction of FR2 DL 256QAM	16.4.0
2020-06 RAN#88 RP-200977 0190 B CR for TS 38.104: adding 50 MHz CBW for n1	16.4.0
2020-06 RAN#88 RP-200986 0195 A CR to 38.104: Adding missing clause on Radiated Performance requirements for multi-slot PUCCH (11.3.1)	16.4.0
2020-06 RAN#88 RP-200980 0198 B CR to TS 38.104 - Add 40 MHz CBW in band n3	16.4.0
2020-06 RAN#88 RP-200982 0199 B CR to TS 38.104 - Add 40 MHz CBW in band n65	16.4.0
2020-06 RAN#88 RP-200986 0209 A CR to 38.104 on Receiver spurious emissions exclusion band (Re	
16)	. 00
2020-06 RAN#88 RP-200986 0211 A CR to 38.104 on EESS protection for bands n257 and n258 (Rel-	İ
2020-06 RAN#88 RP-200986 0213 A TS38.104 draft CR on 30KHz SSB SCS for n40 (Rel-16)	6) 16.4.0
2020-06 RAN#88 RP-200986 0207 1 A CR to 38.104 on Removal of brackets and TBD (Rel-16)	6) 16.4.0
2020-06 RAN#88 RP-200975 0165 1 B CR for 38.104: HST PUSCH demodulation requirements	

2020-06	RAN#88	RP-200975	0166	1	В	CR for 38.104: HST PUSCH demodulation FRC and channel model	16.4.0
						annexes	
2020-06	RAN#88	RP-200975	0186	1	F	CR for 38.104 Introduction of PRACH demodulation requirements for	16.4.0
						NR HST	
2020-06	RAN#88	RP-200975	0187	1	В	CR for 38.104: Performance requirements for UL timing adjustment	16.4.0
2020-06	RAN#88	RP-201043	0168	1	В	CR for TS 38.104: Introduce PUSCH performance requirements at	16.4.0
						30% throughput test point	
2020-06	RAN#88	RP-200986	0172	1	F	UCI multiplexed on PUSCH requirement	16.4.0
2020-06	RAN#88	RP-200978	0205	1	В	CR to 38.104 for Introduction of band n259	16.4.0

History

Document history		
V16.4.0	July 2020	Publication