Rain Fall disrict wise dataset

Problem statement: Analysing the monthly rainfall data and comparing with Annual data.

In [2]:

1 df=pd.read_csv(r"C:\Users\yoshitha lakshmi\OneDrive\Desktop\python\Rainfall district wise.csv")

2 df

Out[2]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	Jan- Feb	Mi M
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9	354.8	326.0	315.2	250.9	2805.2	165.2	54(
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1	455.6	301.2	275.8	128.3	3015.7	69.7	483
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9	454.8	276.1	198.6	100.0	2913.3	48.6	40ŧ
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8	313.6	167.1	34.1	29.8	3043.8	123.0	841
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2	568.0	206.9	29.5	31.7	4034.7	112.8	645
636	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	527.3	308.4	343.2	172.9	48.1	3302.5	35.5	426
637	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	636.3	263.1	234.9	84.6	18.4	3621.6	3.3	272
638	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	352.7	266.2	359.4	213.5	51.3	2958.4	65.0	553
639	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	592.9	230.7	213.1	93.6	25.8	3253.1	13.1	275
640	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	217.5	163.1	157.1	117.7	58.8	1600.0	35.5	232

641 rows × 19 columns

In [3]: 1 df.head()

Out[3]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	Jun- Sep
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9	354.8	326.0	315.2	250.9	2805.2	165.2	540.7	1207.2
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1	455.6	301.2	275.8	128.3	3015.7	69.7	483.5	1757.2
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9	454.8	276.1	198.6	100.0	2913.3	48.6	405.6	1884.4
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8	313.6	167.1	34.1	29.8	3043.8	123.0	841.3	1848.5
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2	568.0	206.9	29.5	31.7	4034.7	112.8	645.4	3008.4

In [4]:

1 df.tail()

Out[4]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Feb	Mar- May
636	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	527.3	308.4	343.2	172.9	48.1	3302.5	35.5	426.6
637	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	636.3	263.1	234.9	84.6	18.4	3621.6	3.3	272.9
638	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	352.7	266.2	359.4	213.5	51.3	2958.4	65.0	553.5
639	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	592.9	230.7	213.1	93.6	25.8	3253.1	13.1	275.4
640	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	217.5	163.1	157.1	117.7	58.8	1600.0	35.5	232.4

In [5]: 1 df.shape

Out[5]: (641, 19)

In [6]: 1 df.describe()

Out[6]:

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV
count	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000
mean	18.355070	20.984399	30.034789	45.543214	81.535101	196.007332	326.033697	291.152262	194.609048	90.446334	34.117473
std	21.082806	27.729596	45.451082	71.556279	111.960390	196.556284	221.364643	152.647325	99.830540	74.990685	59.371274
min	0.000000	0.000000	0.000000	0.000000	0.900000	3.800000	11.600000	14.100000	8.600000	3.100000	1.200000
25%	6.900000	7.000000	7.000000	5.000000	12.100000	68.800000	206.400000	194.600000	128.800000	34.300000	6.600000
50%	13.300000	12.300000	12.700000	15.100000	33.900000	131.900000	293.700000	284.800000	181.300000	62.600000	12.900000
75%	19.200000	24.100000	33.200000	48.300000	91.900000	226.600000	374.800000	358.100000	234.100000	130.200000	32.300000
max	144.500000	229.600000	367.900000	554.400000	733.700000	1476.200000	1820.900000	1522.100000	826.300000	517.700000	475.100000

```
In [7]:
           1 df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 641 entries, 0 to 640
         Data columns (total 19 columns):
                             Non-Null Count Dtype
              Column
                              _____
              STATE UT NAME
                                             object
                              641 non-null
              DISTRICT
                              641 non-null
                                              obiect
                              641 non-null
                                             float64
          2
              JAN
                                             float64
              FEB
                              641 non-null
                                             float64
              MAR
                              641 non-null
                              641 non-null
                                             float64
          5
              APR
                              641 non-null
                                             float64
              MAY
                                             float64
              JUN
                              641 non-null
                                             float64
                              641 non-null
              JUL
              AUG
                              641 non-null
                                             float64
                                             float64
              SEP
                              641 non-null
          10
              OCT
                              641 non-null
                                             float64
              NOV
                              641 non-null
                                             float64
          12
                                             float64
          13
              DEC
                              641 non-null
                                             float64
              ANNUAL
                             641 non-null
                                             float64
          15 Jan-Feb
                              641 non-null
          16 Mar-May
                             641 non-null
                                             float64
                                             float64
          17 Jun-Sep
                              641 non-null
          18 Oct-Dec
                                             float64
                              641 non-null
         dtypes: float64(17), object(2)
         memory usage: 95.3+ KB
In [15]:
           1 features=df.columns[2:13]
In [16]:
           1 target=df.columns[14]
```

```
In [17]: FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC'], y_vars=['ANNUAL'], height=7, aspect=0.7, kind='reg')
Out[17]: <seaborn.axisgrid.PairGrid at 0x1f097f97f40>
In [18]:
           1 x=np.array(df[features])
           2 y=np.array(df[target])
In [19]:
           1 from sklearn.model selection import train test split
           2 from sklearn.linear model import LinearRegression
           3 x train,x test,y train,y test=train test split(x,y,train size=0.25)
           4 lm=LinearRegression()
           5 lm.fit(x_train,y_train)
           6 print(lm.score(x train,y train)
```

0.9998981063634227

```
1 coeff_df=pd.DataFrame(lm.coef_)
In [20]:
           2 coeff df
Out[20]:
                   0
           0 1.547951
           1 0.594910
           2 1.233032
           3 1.011594
           4 0.962484
           5 1.005697
           6 1.001794
           7 0.978258
           8 1.065904
           9 0.795722
          10 1.644514
In [36]:
           1 predictions=lm.predict(x test)
In [25]:
           1 from sklearn import metrics
           2 print('MAE:',metrics.mean absolute error(y test,predictions))
           3 print('MSE:',metrics.mean_squared_error(y_test,predictions))
           4 print('RMSE:',np.sqrt(metrics.mean squared error(y test,predictions)))
         MAE: 5.915817136311949
         MSE: 75.99669382142075
         RMSE: 8.717608262672782
```

Exploratory Data Analysis

```
In [27]: 1 raindf=df[['JAN','FEB','MAR','APR','MAY','JUN','JUL','AUG','SEP','OCT','NOV','DEC','ANNUAL']]
In [28]: 1 sns.heatmap(raindf.corr())
```

Out[28]: <Axes: >

In [39]: 1 predictions=lm.predict(x_test)
2 plt.scatter(y_test,predictions)

Out[39]: <matplotlib.collections.PathCollection at 0x1f0b601a620>

In [43]: 1 sns.displot((y_test-predictions),bins=50);


```
In [44]: 1 sns.displot(df['ANNUAL'])
```

Out[44]: <seaborn.axisgrid.FacetGrid at 0x1f0b5da4c10>

Ridge Regression Model

Ridge Model

Train score for ridge model is 0.9998981062781498 Test score for ridge model is 0.9998869925352645


```
In [56]: 1 lassoReg = Lasso(alpha=10)
2 lassoReg.fit(x_train,y_train)
3 train_score_lasso = lassoReg.score(x_train,y_train)
4 test_score_lasso = lassoReg.score(x_test,y_test)
5 print('\nRidge Model\n')
7 print('Train score for lasso model is {}'.format(train_score_lasso))
8 print('Test score for lasso model is{}'.format(test_score_lasso))
```

Ridge Model

Train score for lasso model is 0.9998976095395863 Test score for lasso model is 0.999882011015853

comparison between ridge, lasso and linear

The train score for ridge model is 0.9998981036461831 The test score for ridge model is 0.9998869496121741

The train score for lasso model is 0.9998980995382691 The test score for lasso model is 0.9998872120915944 In [60]:

```
3    regr.fit(x,y)
4    print(regr.coef_)
5    print(regr.intercept_)
6    y_pred_elastic = regr.predict(x_train)
7    mean_squared_error = np.mean((y_pred_elastic-y_train)**2)
8    print('Mean squared error on test set',mean_squared_error)

[1.59402227 0.77496303 1.07666284 1.00645481 0.98815802 1.00582305
0.99931781 0.97704429 1.06450887 0.81537098 1.62088766]
-0.9346307788046033
Mean squared error on test set 88.18210015402676

In [65]: 1    regr.score(x_train,y_train)
```

Conclusion

Out[65]: 0.999888082161808

2 regr = ElasticNet()

The Accuracy for LinearRegression model is 0.99 i.e, the data is fitted well where the accuracy for Ridge and Lasso and Elastic Net is also same.

Rainfall 1901-2015 dataset

1 **from** sklearn.linear model **import** ElasticNet

Problem statement: Analysed the annual rainfall data for different years.

```
In [66]:

1 import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [67]:

1 df=pd.read_csv(r"C:\Users\yoshitha lakshmi\OneDrive\Desktop\python\Rainfall 1901-2015.csv")

2 df

Out[67]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	Jun- Sep) [
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	136.3	560.3	1696.3	98
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	159.8	458.3	2185.9	71
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	156.7	236.1	1874.0	69
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	24.1	506.9	1977.6	57
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	1.3	309.7	1624.9	63
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	7.9	196.2	1013.0	31
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	19.3	99.6	1119.5	16
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	60.6	131.1	1057.0	17
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	69.3	76.7	958.5	29
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	2.7	223.9	860.9	55

4116 rows × 19 columns

In [68]: 1 df.head()

Out[68]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	Jun- Sep	Oct- Dec
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	136.3	560.3	1696.3	980.3
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	159.8	458.3	2185.9	716.7
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	156.7	236.1	1874.0	690.6
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	24.1	506.9	1977.6	571.0
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	1.3	309.7	1624.9	630.8

In [69]:

1 df.tail()

Out[69]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	Jun- Sep	Oct- Dec
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	7.9	196.2	1013.0	316.6
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	19.3	99.6	1119.5	167.1
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	60.6	131.1	1057.0	177.6
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	69.3	76.7	958.5	290.5
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	2.7	223.9	860.9	555.4

4

In [70]: 1 df.describe()

Out[70]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
count	4116.000000	4112.000000	4113.000000	4110.000000	4112.000000	4113.000000	4111.000000	4109.000000	4112.000000	4110.000000	4109.
mean	1958.218659	18.957320	21.805325	27.359197	43.127432	85.745417	230.234444	347.214334	290.263497	197.361922	95.
std	33.140898	33.585371	35.909488	46.959424	67.831168	123.234904	234.710758	269.539667	188.770477	135.408345	99.
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.400000	0.000000	0.000000	0.100000	0.
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.350000	175.600000	155.975000	100.525000	14.
50%	1958.000000	6.000000	6.700000	7.800000	15.700000	36.600000	138.700000	284.800000	259.400000	173.900000	65.
75%	1987.000000	22.200000	26.800000	31.300000	49.950000	97.200000	305.150000	418.400000	377.800000	265.800000	148.
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.900000	2362.800000	1664.600000	1222.000000	948.

In [71]: 1 df.shape

Out[71]: (4116, 19)

```
1 df.info()
In [72]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 4116 entries, 0 to 4115
         Data columns (total 19 columns):
              Column
                           Non-Null Count Dtype
                           _____
              SUBDIVISION 4116 non-null
                                           object
              YEAR
                           4116 non-null
                                           int64
                                           float64
          2
              JAN
                           4112 non-null
                           4113 non-null
              FEB
                                           float64
              MAR
                           4110 non-null
                                           float64
                           4112 non-null
                                           float64
              APR
                           4113 non-null
                                           float64
              MAY
                           4111 non-null
                                           float64
              JUN
                           4109 non-null
                                           float64
              JUL
              AUG
                           4112 non-null
                                           float64
              SEP
                           4110 non-null
                                           float64
          10
              OCT
                           4109 non-null
                                           float64
          12 NOV
                           4105 non-null
                                           float64
                           4106 non-null
                                           float64
          13
              DEC
          14 ANNUAL
                           4090 non-null
                                           float64
          15 Jan-Feb
                           4110 non-null
                                           float64
          16 Mar-May
                           4107 non-null
                                           float64
          17 Jun-Sep
                           4106 non-null
                                           float64
          18 Oct-Dec
                           4103 non-null
                                           float64
         dtypes: float64(17), int64(1), object(1)
         memory usage: 611.1+ KB
In [93]:
           1 df.fillna(method='ffill', inplace=True)
In [94]:
           1 features=df.columns[1:13]
```

```
In [95]:
           1 target=df.columns[14]
In [96]:
           1 df.columns
Out[96]: Index(['SUBDIVISION', 'YEAR', 'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL',
                'AUG', 'SEP', 'OCT', 'NOV', 'DEC', 'ANNUAL', 'Jan-Feb', 'Mar-May',
                'Jun-Sep', 'Oct-Dec'],
               dtvpe='object')
In [97]:
           1 sns.pairplot(df,x vars=['YEAR', 'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL',
                     'AUG', 'SEP', 'OCT', 'NOV', 'DEC'],y vars=['ANNUAL'],height=7,aspect=0.5,kind='reg')
Out[97]: <seaborn.axisgrid.PairGrid at 0x1f0be4e8940>
In [98]:
           1 x=np.array(df[features])
           2 y=np.array(df[target])
In [99]:
           1 from sklearn.model selection import train test split
           2 from sklearn.linear model import LinearRegression
           3 x train,x test,y train,y test=train test split(x,y,train size=0.25)
           4 lm=LinearRegression()
           5 lm.fit(x train,y train)
           6 print(lm.score(x train,y train))
```

0.9916135364757804

```
1 coeff_df=pd.DataFrame(lm.coef_)
In [102]:
            2 coeff_df
Out[102]:
                     0
            0 -0.036257
            1 1.094004
            2 0.792353
            3 1.285093
            4 1.018243
            5 0.956323
            6 0.995912
            7 1.017815
            8 0.917773
            9 1.033492
              1.061315
           11 1.282726
In [103]:
            1 print(lm.intercept_)
          82.37961923825105
            1 predictions=lm.predict(x_test)
In [104]:
```

```
In [105]: 1  from sklearn import metrics
2  print('MAE:',metrics.mean_absolute_error(y_test,predictions))
3  print('MSE:',metrics.mean_squared_error(y_test,predictions))
4  print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 25.590560026817133 MSE: 3777.721275095668 RMSE: 61.46317007034105

Exploratory Data Analysis

In [107]: 1 sns.heatmap(Raindf.corr())

Out[107]: <Axes: >


```
In [108]: 1 predictions=lm.predict(x_test)
2 plt.scatter(y_test,predictions)
```

Out[108]: <matplotlib.collections.PathCollection at 0x1f094e8e740>


```
In [119]: 1 sns.displot(x='YEAR',y='ANNUAL',data=df,color='aquamarine')
2 plt.show()
```



```
In [120]:

1     from sklearn.linear_model import Ridge,Lasso,RidgeCV
     ridgeReg = Ridge(alpha=10)
     ridgeReg.fit(x_train,y_train)
     train_score_ridge = ridgeReg.score(x_train,y_train)
     test_score_ridge = ridgeReg.score(x_test,y_test)
     print('\nRidge Model\n')
     print('Train score for ridge model is {}'.format(train_score_ridge))
     print('Test score for ridge model is {}'.format(test_score_ridge))
     print('Test score for ridge model is {}'.format(test_score_ridge))
```

Ridge Model

Train score for ridge model is 0.9916135364755825 Test score for ridge model is 0.9954207572738636


```
In [122]: 1 lassoReg = Lasso(alpha=10)
    lassoReg.fit(x_train,y_train)
    train_score_lasso = lassoReg.score(x_train,y_train)
    test_score_lasso = lassoReg.score(x_test,y_test)

    print('\nRidge Model\n')
    print('Train score for lasso model is {}'.format(train_score_lasso))
    print('Test score for lasso model is{}'.format(test_score_lasso))
```

Ridge Model

Train score for lasso model is 0.9916132450486558 Test score for lasso model is 0.9954172471874398

comparison between ridge, lasso and linear

The train score for ridge model is 0.9916135364727774
The test score for ridge model is 0.9954207508330051

The train score for lasso model is 0.9916135364460524 The test score for lasso model is 0.9954207194518694

```
In [127]:
            1 from sklearn.linear_model import ElasticNet
            2 regr = ElasticNet()
            3 regr.fit(x,y)
            4 print(regr.coef )
            5 print(regr.intercept )
            6 y pred elastic = regr.predict(x train)
           7 mean_squared_error = np.mean((y_pred_elastic-y_train)**2)
            8 print('Mean squared error on test set', mean squared error)
          [0.00452878 1.21391301 1.00790437 1.04920427 0.96127995 1.00091858
           0.99101193 0.99152702 0.98668101 1.02070562 1.04790013 1.26485708]
          -4.503727353915792
          Mean squared error on test set 7054.045634195742
In [128]:
           1 regr.score(x train,y train)
Out[128]: 0.9913834208596437
```

Conclusion

The accuracy is same for all Linear, Ridge, Lasso Regressions where Elastic Net has less accuracy compared to them.