Zestaw 5: Struktury danych

- **Zadanie 1.** Liczby wymierne są reprezentowane przez krotkę (l,m). Gdzie: l liczba całkowita oznaczająca licznik, m liczba naturalna oznaczająca mianownik. Proszę napisać podstawowe operacje na ułamkach, m.in. dodawanie, odejmowanie, mnożenie, dzielenie, potęgowanie, skracanie, wypisywanie i wczytywanie.
- **Zadanie 2.** Używając funkcji z poprzedniego zadania proszę napisać funkcję rozwiązującą układ 2 równań o 2 niewiadomych.
- **Zadanie 3.** Na szachownicy o wymiarach 100 na 100 umieszczamy N hetmanów (N < 100). Położenie hetmanów jest opisywane przez tablicę $dane = [(w_1, k_1), (w_2, k_2), (w_3, k_3), ...(w_N, k_N)]$ Proszę napisać funkcję, która odpowiada na pytanie: czy żadne z dwa hetmany się nie szachują? Do funkcji należy przekazać położenie hetmanów.
- **Zadanie 4.** Dana jest tablica zawierająca liczby wymierne. Proszę napisać funkcję, która policzy występujące w tablicy ciągi arytmetyczne (LA) i geometryczne (LG) o długości większej niż 2. Funkcja powinna zwrócić wartość 1 gdy LA > LG, wartość -1 gdy LA < LG oraz 0 gdy LA = LG.
- **Zadanie 5.** Dany jest zbiór punktów leżących na płaszczyźnie opisany przy pomocy struktury $dane = [(x_1, y_1), (x_2, y_2), (x_3, y_3), ...(x_N, y_N)]$ Proszę napisać funkcję, która zwraca wartość True jeżeli zbiorze istnieją 4 punkty wyznaczające kwadrat o bokach równoległych do osi układu współrzędnych, a wewnątrz tego kwadratu nie ma żadnych innych punktów. Do funkcji należy przekazać strukturę opisującą położenie punktów.
- **Zadanie 6.** Liczby zespolone są reprezentowane przez krotkę (re, im). Gdzie: re część rzeczywista liczby, im część urojona liczby. Proszę napisać podstawowe operacje na liczbach zespolonych, m.in. dodawanie, odejmowanie, mnożenie, dzielenie, potęgowanie, wypisywanie i wczytywanie.
- **Zadanie 7.** Używając funkcji z poprzedniego zadania proszę napisać funkcję rozwiązującą równanie kwadratowe o współczynnikach zespolonych.
- **Zadanie 8.** Napis nazywamy wielokrotnym, jeżeli powstał przez n-krotne (n > 1) powtórzenie innego napisu o długości co najmniej 1. Przykłady napisów wielokrotnych: ABCABCABC, AAAA, ABAABA. Dana jest tablica T[N] zawierająca napisy. Proszę napisać funkcję $\mathtt{multi}(T)$, która zwraca długość najdłuższego napisu wielokrotnego występującego w tablicy T lub wartość 0, jeżeli takiego napisu nie ma w tablicy.
- Zadanie 9. Dana jest tablica T[N][N] wypełniona wartościami 0,1. Każdy wiersz tablicy traktujemy jako liczbę zapisaną w systemie dwójkowym o długości N bitów. Stała N jest rzędu 1000. Proszę zaimplementować funkcję distance(T), która dla takiej tablicy wyznaczy dwa wiersze, dla których różnica zawartych w wierszach liczb jest największa. Do funkcji należy przekazać tablicę, funkcja powinna zwrócić odległość pomiędzy znalezionymi wierszami. Można założyć, że żadne dwa wiersze nie zawierają identycznego ciągu cyfr.
- **Zadanie 10.** Proszę napisać funkcję która zamienia liczby wymierne reprezentowane jako rozwinięcia dziesiętne w postaci napisów na liczbę w postaci pary licznik mianownik. Na przykład: "0.25" na (1,4), "0.1(6)" na (2,3), "0.(142857)" na (1,7)