Digital Logic Design

Lecture of Week 11-16 March 2011
K-MAP
Four Variable
The University of Gujrat

Four-Variable Map: Flat and on a Torus to Show Adjacencies

Four-variable K-Maps

Four-variable K-Maps

WX	Z 00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

$$F(W, X, Y, Z) = \Sigma(2, 4, 5, 6, 7, 9, 13, 14, 15)$$

Four-variable K-Maps

Implicant

- Definition
 - A product term is an Implicant of a Boolean function if the function has an output 1 for all minterms of the product term.
- In K-map, an Implicant is
 - bubble covers only 1 (bubble size must be a power of 2)

Prime Implicants

A product term that cannot have any of its variables removed and still imply the logic function is called a **prime implicant**.

Prime Implicant

- Definition
 - If the removal of any literal from an implicant I results in a product term that is not an implicant of the Boolean function, then I is an Prime Implicant.
 - Examples
 - BCD is an implicant, but CD or BD or BC do not imply a 1 in this function; BCD is a PI
- In K-map, a Prime Implicant (PI) is
 - bubble that is expanded as big as possible (bubble size must be a power of 2)

CD AB	00	01	11	10
00	1	1	0	0
01	0	0	1	0
11	0	1	1	1
10	1	1)	0	0

Essential Prime Implicant

- Definition
 - If a minterm of a Boolean function is included in only one PI, then this PI is an Essential Prime Implicant.
- In K-map, an Essential Prime Implicant is
 - Bubble that contains a 1 covered only by itself and no other PI bubbles

CD				
AB	00	01	11	10
00	1	1	0	0
01	0	0	1	0
11	0	1	1	1
10	1	1	0	0

Non-Essential Prime Implicant

- Definition
 - A Non-Essential Prime Implicant is a PI that is not an Essential PI.
- In K-map, an Non-Essential Prime Implicant is
 - A 1 covered by more than one PI bubble

Simplification for SOP

- Form K-Map for the given Boolean function
- Identify all Essential Prime Implicants for 1's in the K-map
- Identify non-Essential Prime Implicants in the K-map for the 1's which are not covered by the Essential Prime Implicants
- Form a sum-of-products (SOP) with all Essential Prime Implicants and the necessary non-Essential Prime Implicants to cover all 1's

Example for SOP

- Identify all the essential PIs for 1's
- Identify the nonessential PIs to cover 1's
- Form an SOP based on the selected PIs

$$F = \sum m(0,1,4,6,7)$$

$$F = \overline{AB} + AB + \overline{BC}$$
or
$$F = \overline{AB} + AB + \overline{AC}$$

Example for SOP

- Identify all the essential PIs for 1's
- Identify the nonessential PIs to cover 1's
- Form an SOP based on the selected PIs

$$F = \sum m(0,1,7,8,9,13,14,15)$$

$$F = \overline{BC} + ABC + BCD + A\overline{CD}$$

or
 $F = \overline{BC} + ABC + BCD + ABD$

Example for SOP

- Identify all the essential PIs for 1's
- Identify the nonessential PIs to cover 1's
- Form an SOP based on the selected PIs

$$F = \prod M(1,3,4,6,11,12)$$

$$F = \overline{BD} + BD + ABC + A\overline{C}D$$
or
$$F = \overline{BD} + BD + ABC + A\overline{B}C$$

Prime Implicants

- All the prior definitions apply to '0' (or maxterm) as well
- Consider these implicants imply a '0' output

Simplification for POS

- Form K-Map for the given Boolean function
- Identify all Essential Prime Implicants for 0's in the K-map
- Identify non-Essential Prime Implicants in the K-map for the 0's which are not covered by the Essential Prime Implicants
- Form a product-of-sums (POS) with all Essential Prime Implicants and the necessary non-Essential Prime Implicants to cover all 0's

Example for POS

- Identify all the essential PIs for 0's
- Identify the nonessential PIs to cover 0's
- Form an POS based on the selected PIs

$$F = \prod M(2,3,5)$$

BC	00	01	11	10
0	1	1	0	0
1	1	0	1	1

$$F = (A + \overline{B})(\overline{A} + B + \overline{C})$$

Example for POS

- Identify all the essential PIs for 0's
- Identify the nonessential PIs to cover 0's
- Form an POS based on the selected PIs

$$F = \prod M(1,3,4,6,11,12)$$

$$F = (\overline{B} + C + D)(A + B + \overline{D})(B + \overline{C} + \overline{D})(A + \overline{B} + D)$$

Don't Care Condition — X

- Don't care (X)
 - Those input combinations which are irrelevant to the target function (i.e. If the input combination signals can be guaranteed never occur)
 - Can be used to simplify Boolean equations, thus simply logic design
- In K-map
 - Use X to express Don't Care in the map
 - Don't care can be bubbled as 1 or 0 depending on SOP or POS simplification to result into bigger bubble

Another Example of Don't Care (SOP)

$$F(A,B,C,D) = \sum m(2,3,4,6,11,12) + d(10,13,14)$$

$$F = B\overline{D} + \overline{B}C$$

Another Example of Don't Care (POS)

$$F(A,B,C,D) = \sum m(2,3,4,6,11,12) + d(10,13,14)$$

CD				
AB	00	01	11	10
00	0	0	1	1
01	1	0	0	1
11	1	х	0	х
10	0	0	1	х

$$F = (\overline{B} + \overline{D})(B + C)$$