Law Enforcement Simulation Project Roadmap

Sedar Olmez

November 2018

1 Introduction

In our model, we will be focusing on a specific domain, that being the law enforcement agencies. Therefore, our ABM (Agent Based Model) will be tailored to acknowledge all the characteristics of this domain. It is crucial that the model behaves in the utmost realistic manner as possible, although this will always be an estimate and not definitive as we are focusing on a non-deterministic environment. The goals of this project are:

- Create a simulation of law enforcement agent's behaviour when it comes to responding to crime.
- Ensure the optimum number of resources are distributed and exhausted according to crime severity to minimise the number of crimes.
- Categorise the severity level of crimes and produce a mechanism to delegate response to more fitting entities i.e. local crimes to neighbourhood watch, terrorist attacks to armed patrol and so forth.

The initial model at a low calibre will be developed on Netlogo, the literature followed for this task will be that of [1] which covers all areas of agent-based modelling in Netlogo. Markov Decision Processes (MDP) can be embedded in the simulation to ensure the dynamic changes in the environment are always accounted for and that the correct resource aims to reach the highest reward which will be tackling a specific crime. An example scenario is presented below:

Figure 1: An example of Markov Decision Process in an ABM

In Figure 1, the armed police officer is delegated the task of getting to the criminal. The mechanism for task delegation is not clear at this early stage but will be worked on.

In Figure 1, we wanted to present how useful Markov Decision Processes can be to this project. The reason for why this is necessary is that the agents can not just move randomly, this will lead to anomalies and not answer the second bullet point above, we need structure and efficiency if randomness is involved then agents will behave in a non-optimal fashion.

Everything we came up with above is prone to change on demand, now we will focus on understanding the:

- Environment which the simulation will be based on
- The variables which will be tweaked to present new phenomena like increasing the number of officers, increasing the number of crime and so forth.
- The different types of resources represented as agents and their characteristics i.e. abilities, the maximum speed of police vehicles and so forth. The more detail the more accurate the simulation becomes.
- How Markov Decision Processes will be embedded into the simulation.

References

[1] Uri Wilensky and William Rand. An introduction to agent-based modeling: modeling natural, social, and engineered complex systems with NetLogo. MIT Press, 2015.