Particle spectrograph

Wave operator and propagator

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$ \tau_0^{#1} == 0 $	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$o_0^{\#_1} == 0$	xAct`xTensor`Private`Reconstruct[Symmetry[4, $\partial^{\bullet 4} \sigma^{\bullet 1 \bullet 2 \bullet 3}$,	1
	$\{\bullet 1 \rightarrow a, \bullet 2 \rightarrow b, \bullet 3 \rightarrow -a,$	
	ullet 4 ightharpoonup - b, StrongGenSet[
	{1, 2, 4}, GenSet[-(1,2)]]], {-1, {a, -a, b, -b}[{1, 3, 5, 2}]}}] == 0	
$\tau_{1}^{\#2}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi} == 0$	3
$t_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#1}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\iota^{\beta\chi} + \partial_{\chi}\partial^{\beta}\iota^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\iota^{\alpha\beta} +$	3
	$\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$\partial_\delta\partial_\chi\partial^\alpha\sigma^{eta\chi\delta}+\partial_\delta\partial^\delta\partial_\chi\sigma^{lpha\chieta}$	
$\sigma_1^{\#1}\alpha\beta == \sigma_1^{\#2}\alpha\beta$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} +$	3
	$2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} = =$	
	$3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha}$	
$\tau_2^{\#1}\alpha\beta == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} t^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} t^{\chi}_{\chi} +$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} ==$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} +$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} +$	
	$2 \eta^{lphaeta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} au_{\chi}^{\chi}$	
$\sigma_{2+}^{\#1}\alpha\beta==0$	$3\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + 3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} +$	5
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{X\delta} = 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{X\delta} +$	
	$3 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha} \right)$	
Total constraints/gauge generators:	ige generators:	28

Quadratic (free) action $S = \iiint (\frac{1}{6} (6 \ f^{\alpha\beta} \ r_{\alpha\beta} + 6 \ \omega^{\alpha\beta\chi} - 12 \ r_1 \partial_\beta \omega_\beta^{\ \theta} \partial^\beta \omega^{\alpha\beta} + 12 \ r_1 \partial_\alpha \omega^{\alpha\beta} \partial_\beta \omega_\beta^{\ \theta} - 12 \ r_1 \partial_\alpha \omega^{\alpha\beta} \partial_\beta \omega_\beta^{\ \theta} - 24 \ r_1 \partial^\beta \omega_\alpha^{\alpha\beta} \partial_\beta \omega_\beta^{\ \theta} - 12 \ r_1 \partial_\alpha \omega^{\alpha\beta} \partial_\beta \omega_\beta^{\ \theta} + 24 \ r_1 \partial^\alpha \omega^{\alpha\beta} \partial_\beta \omega_\beta^{\ \theta} + 24 \ r_2 \partial_\alpha \omega^{\alpha\beta} \partial_\beta \omega_\beta^{\ \theta} + 24 \ r_2 \partial_\alpha \omega^{\alpha\beta} \partial_\beta \omega_\beta^{\ \theta} + 24 \ r_2 \partial_\beta \omega_\alpha^{\alpha\beta} - r_2 \partial_\beta r_\alpha^{\ \theta} \partial^\beta r_\alpha^{\ \theta} + r_2 \partial_\beta \omega_\alpha^{\ \theta} \partial^\beta r_\alpha^{\ \theta} + r_2 \partial_\beta \omega_\alpha^{\ \theta} \partial^\beta r_\alpha^{\ \theta} + r_2 \partial_\beta \omega_\alpha^{\ \theta} \partial^\beta r_\alpha^{\ \theta} - r_2 \partial_\beta r_\alpha^{\ \theta} \partial^\beta r_\alpha^{\ \theta} + r_2 \partial_\beta \omega_\alpha^{\ \theta} \partial^\beta r_\alpha^{\ \theta} \partial^\beta r_\alpha^{\ \theta} + r_2 \partial_\beta \omega_\alpha^{\ \theta} \partial^\beta r_\alpha^{\ \theta} \partial^\beta r_\alpha^{\ \theta} + r_2 \partial_\beta \omega_\alpha^{\ \theta} \partial^\beta r_\alpha^{\ \theta} + r_2 \partial_\beta \omega_\alpha^{\ \theta} \partial^\beta r_\alpha^{\ \theta} \partial^\beta r_\alpha^{\$	$\alpha \beta \beta \beta \gamma \beta \beta \gamma \beta \beta \gamma \beta \gamma \beta \gamma \beta \gamma \beta \gamma \beta $
--	--

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

0

 $\sigma_{2}^{\#1} + \alpha \beta$ $\tau_{2}^{\#1} + \alpha \beta$ $\sigma_{2}^{\#1} + \alpha \beta \chi$

 $\sigma_{0^{+}}^{\#1} \ \tau_{0^{+}}^{\#1} \ \tau_{0^{+}}^{\#2} \ \sigma_{0^{-}}^{\#1}$

0

0

0

0

0

0

0

 $\tau_1^{\#1} + \alpha \beta$

0

0

0

0

0 0 0

0

0 0

0 0 0 0

0 0 0 0

 $\begin{array}{c}
\sigma_{1}^{\#_{1}} + \alpha \\
\sigma_{1}^{\#_{2}} + \alpha \\
\tau_{1}^{\#_{1}} + \alpha \\
\tau_{1}^{\#_{2}} + \alpha
\end{array}$

0 0 0

0 0 0

0 0

0 0 0

0 0 0

0 0 0

0 0 0

0

0

0

0

0

 $\omega_{1}^{#1} + \alpha \beta$ $\omega_{1}^{#2} + \alpha \beta$ $\omega_{1}^{#2} + \alpha \beta$ $f_{1}^{#1} + \alpha \beta$ $\omega_{1}^{#2} + \alpha$ $\omega_{1}^{#2} + \alpha$ $f_{1}^{#1} + \alpha$ $f_{1}^{#2} + \alpha$

0

0

0

0

0

0

0

0

0

0

0

0

Massive	and	massless	spectra

	Massive particle					
	Pole residue:	$-\frac{1}{r_2} > 0$				
9	Polarisations:	1				
?	Square mass:	$-\frac{t_2}{r_2} > 0$				
	Spin:	0				
	Parity:	Odd				

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$