Cap 2 – Sistemas numéricos e codificação

ELEVENTH EDITION

Digital Systems

Principles and Applications

Tradução e adaptação: Profa. Denise Stringhini

Ronald J. Tocci

Monroe Community College

Neal S. Widmer

Purdue University

Gregory L. Moss

Purdue University

2-1 Conversão de binário para decimal

Converter de binário para decimal pela soma das posições que contêm um 1:

Um exemplo com um maior número de bits:

1 0 1 1 0 1 0
$$1_2 = 2^7 + 0 + 2^5 + 2^4 + 0 + 2^2 + 0 + 2^0 = 181_{10}$$

2-2 Conversão de decimal para binário

Sucessivas divisões

Divida o número decimal por 2.

Guarde o resto após cada divisão até um quociente de zero seja obtido.

O primeiro resto é o LSB. O último é o MSB.

2-2 Conversão de decimal para binário

Sucessivas divisões

Este fluxograma
descreve o processo
e pode ser utilizado
para converter de
decimal qualquer
outro sistema de
numeração.

2-2 Conversão de decimal para binário

Converta 37₁₀ para binário:

$$\frac{37}{2} = 18.5 \longrightarrow \text{ remainder of 1 (LSB)}$$

$$\frac{18}{2} = 9.0 \longrightarrow 0$$

$$\frac{9}{2} = 4.5 \longrightarrow 1$$

$$\frac{4}{2} = 2.0 \longrightarrow 0$$

$$\frac{2}{2} = 1.0 \longrightarrow 0$$

$$\frac{1}{2} = 0.5 \longrightarrow 1 \text{ (MSB)}$$

Hexadecimal permite a manipulação conveniente de longas cadeias binárias, usando grupos de 4 bits—

–16 símbolos possíveis: 0-9 and A-F

2-3 Sistema numérico hexadecimal

Relações entre hexadecimal, decimal e números binários..

Hexadecimal	Decimal	Binary			
0	0	0000			
1	1	0001			
2	2	0010			
3	3	0011 0100			
4	4				
5	5	0101 0110			
6	6				
7	7	0111 1000 1001			
8	8				
9	9				
Α	10	1010			
В	11	1011			
С	12	1100			
D	13	1101			
E	14	1110			
F	15	1111			

2-3 Conversão de hexa para decimal

 Converter de hexa para decimal multiplicando cada dígito hexa pelo seu peso posicional.

$$356_{16} = 3 \times 16^{2} + 5 \times 16^{1} + 6 \times 16^{0}$$

= $768 + 80 + 6$
= 854_{10}

 Num segundo exemplo, o valor 10 foi substituído por A e 15 substituído por F.

$$2AF_{16} = 2 \times 16^{2} + 10 \times 16^{1} + 15 \times 16^{0}$$

= $512 + 160 + 15$
= 687_{10}

Para praticar, verifique que 1BC2₁₆ é igual a 7106₁₀

2-3 Conversão de decimal para hexa

- Converter de decimal para hexadecimal usando o mesmo método de divisão repetida usado para a conversão de decimal para binário.
- Divida o número decimal por 16.
 - O primeiro resto é o LSB, o último é o MSB.

Converter 423₁₀ para hexa:

$$\frac{423}{16} = 26 + \text{remainder of 7}$$
 $\frac{26}{16} = 1 + \text{remainder of 10}$
 $\frac{1}{16} = 0 + \text{remainder of 1}$
 $423_{10} = 1 + 7_{16}$

Converter 214₁₀ para hexa:

$$\frac{214}{16} = 13 + \text{remainder of 6} - \frac{13}{16} = 0 + \text{remainder of 13} - \frac{13}{16} = 0 + \frac$$

Zeros podem ser adicionados à esquerda do MSB para preencher o último grupo.

2-3 Conversão entre binário e hexa

- Converta de binário para hexadecimal agrupando cada quatro bits, começando com o LSB.
 - Cada grupo é, então, convertido para o equivalente hexadecimal.

Para praticar, verifique que 101011111b = 15Fh

2-3 Conversão entre binário e hexa

Para realizar conversões entre hexa e binário, é necessário conhecer o números binários de quatro bits (0000 - 1111) e seus dígitos hexadecimais equivalentes.

Hex	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

2-3 Sistema hexadecimal: contagem

- Ao contar em hexadecimal, cada posição do dígito pode ser incrementada (um aumento de 1) de 0 a F.
 - Ao chegar valor F, recomeça-se do 0, e a próxima posição do dígito é incrementada.

Exemplo:

38,39,3A,3B,3C,3D,3E,3F,40,41,42

Com 3 dígitos hexa, pode-se contar de 000_{16} a FFF₁₆ ou seja, de 0_{10} a 4095_{10} — um total de 4096 = 16^3 valores.

- Binary Coded Decimal (BCD) é amplamente utilizado para representar números decimais na forma binária.
 - Combina características de ambos os sistemas binários e decimal.
 - Cada dígito é convertido para um equivalente binário.
- BCD não é um sistema de numeração.
 - É um número decimal onde cada dígito é codificado pelo seu equivalente binário.
 - A principal vantagem do BCD é a relativa facilidade de conversão de e para decimal.

Converta o número 874 decimal para BCD:

- Cada dígito decimal é representado usando 4 bits.
 - O grupo de 4 bits nunca pode ser superior a 9.

 Reverta o processo para converter BCD para decimal.

9	4	3	(decimal)
\downarrow	\downarrow	\downarrow	
1001	0100	0011	(BCD)

Converter 0110100000111001 (BCD) ao seu equivalente decimal.

$$\underbrace{0110}_{6} \underbrace{1000}_{8} \underbrace{0011}_{3} \underbrace{1001}_{9}$$

Divida o número BCD em grupos de quatro bits e converta cada um para decimal.

Converter BCD 011111000001 para seu equivalente decimal.

$$\underbrace{0111}_{7} \underbrace{1100}_{0001}$$

O grupo proibido representa um erro no número BCD.

2-7 Byte, Nibble e Word

- A maioria dos microcomputadores manuseia e armazena dados binários e informações em grupos de oito bits.
 - 8 bits = 1 byte.
- Um byte pode representar vários tipos de dados / informações.
- Os números binários são frequentemente divididos em grupos de quatro bits.
 - Um grupo de quatro bits é metade do tamanho de um byte, ele foi nomeado *nibble*.
- Uma palavra (word) é um grupo de bits que representa um determinada unidade de informação.
 - O tamanho da palavra pode ser definido como o número de bits na palavra binária que um sistema digital opera.
 - O tamanho da palavra da maioria dos computadores atuais é de oito bytes (64 bits).

2-8 Códigos alfanuméricos

- Representam caracteres e funções encontrados num teclado de computador.
 - 26 letras minúsculas e 26 letras maiúsculas, 10 dígitos, 7 sinais de pontuação, de 20 a 40 outros caracteres.
- ASCII American Standard Code for Information Interchange.
 - Originalmente 7 bits de código: 2⁷ = 128 possíveis grupos de código
 - Exemplos de utilização: transferência de informação entre computadores; computadores e impressoras; armazenamento interno.

2-8 Códigos alfanuméricos

Trecho da tabela ASCII

Character	HEX	Decimal	Character	HEX	Decimal	Character	HEX	Decimal	Character	HEX	Decimal
NUL (null)	0	0	Space	20	32	@	40	64		60	96
Start Heading	1	1	!	21	33	Α	41	65	а	61	97
Start Text	2	2	"	22	34	В	42	66	b	62	98
End Text	3	3	#	23	35	С	43	67	С	63	99
End Transmit.	4	4	\$	24	36	D	44	68	d	64	100
Enquiry	5	5	%	25	37	E	45	69	е	65	101
Acknowlege	6	6	&	26	38	F	46	70	f	66	102
Bell	7	7	`	27	39	G	47	71	g	67	103
Backspace	8	8	(28	40	Н	48	72	h	68	104
Horiz. Tab	9	9)	29	41	Ĩ	49	73	i	69	105
Line Feed	Α	10	*	2A	42	J	4A	74	j	6A	106
Vert. Tab	В	11	+	2B	43	K	4B	75	k	6B	107
Form Feed	С	12	,	2C	44	L	4C	76	1	6C	108
Carriage Return	D	13	=	2D	45	М	4D	77	m	6D	109
Shift Out	Е	14		2E	46	N	4E	78	n	6E	110

Digital Systems

Principles and Applications

Ronald J. Tocci

Monroe Community College

Neal S. Widmer

Purdue University

Gregory L. Moss

Purdue University