Section 1.4: Comparing Graphs of Linear Motion

Tutorial 1 Practice, page 34

1. Step 1: The data plotted on the velocity—time graph in Figure 8 form an increasing straight-line graph. You can determine acceleration from a velocity—time graph by calculating its slope. Since the velocity—time graph in Figure 8 is a straight line, its slope does not change. So we can calculate the slope or acceleration over any time interval.

clope =
$$\frac{\text{rise}}{\text{run}}$$

 $\vec{a}_{\text{av}} = \frac{\Delta \vec{v}}{\Delta t}$
= $\frac{6.0 \text{ m/s [N]}}{2.0 \text{ s}}$
 $\vec{a}_{\text{av}} = 3.0 \text{ m/s}^2 \text{ [N]}$

Step 2: The table shows the calculations for the area under the curve in Figure 8 at 0.5 s intervals from t = 0 s to t = 2.0 s.

	Equation		
Time (s)	$\Delta \vec{d} = \vec{v}_{i} \Delta t + \frac{1}{2} \Delta \vec{v} \Delta t$	Displacement (m [N])	Acceleration (m/s ² [N])
0.0		0.0	3.0
0.5	$\Delta \vec{d} = \left(2.0 \frac{\text{m}}{\text{g}} \text{ [N]}\right) \left(0.5 \text{ g}\right) + \frac{1}{2} \left(1.5 \frac{\text{m}}{\text{g}} \text{ [N]}\right) \left(0.5 \text{ g}\right)$	1.4	3.0
1.0	$\Delta \vec{d} = \left(2.0 \frac{\text{m}}{\text{g}} \text{ [N]}\right) \left(1.0 \text{ g}\right) + \frac{1}{2} \left(3.0 \frac{\text{m}}{\text{g}} \text{ [N]}\right) \left(1.0 \text{ g}\right)$	3.5	3.0
1.5	$\Delta \vec{d} = \left(2.0 \frac{\text{m}}{\text{g}} \text{ [N]}\right) \left(1.5 \text{ g}\right) + \frac{1}{2} \left(4.5 \frac{\text{m}}{\text{g}} \text{ [N]}\right) \left(1.5 \text{ g}\right)$	6.4	3.0
2.0	$\Delta \vec{d} = \left(2.0 \frac{\text{m}}{\text{s}} \text{ [N]}\right) \left(2.0 \text{ s}\right) + \frac{1}{2} \left(6.0 \frac{\text{m}}{\text{s}} \text{ [N]}\right) \left(2.0 \text{ s}\right)$	10.0	3.0

Step 3: Use these values to create position—time and acceleration—time graphs.

Position v. Time for Motion with Uniform Acceleration

Acceleration v. Time for Motion with Uniform Acceleration

Section 1.4 Questions, page 35

1.

TT 1		D 1: 6 /		
How do you		Read information		
determine	Given a	from graph	Take the slope	Find the area
position	position-time graph	$\sqrt{}$		
velocity	position-time graph		V	
velocity	velocity-time graph	$\sqrt{}$		
velocity	acceleration-time graph			√
acceleration	velocity-time graph		√	
acceleration	acceleration-time graph	V		

2. Step 1: Use the area under the graph to determine the position at each time. Since each rectangle on the grid is 1.0 s by 2.0 m/s [S], they each represent 2.0 m [S]. You can count the grid rectangles to determine the area.

Time	Grid	Position
(s)	Rectangles	(m [S])
0.0	0	0
1.0	4	8
2.0	8	16
3.0	11.5	23
4.0	14	28
5.0	15.5	31
6.0	16	32

Step 2: Use these values to create a position–time graph.

Position v. Time for Complex Motion

3. (a) Reading from the graph, at $t = 5.0 \text{ s}, \vec{d} = 45.0 \text{ m} [\text{S}].$

(b) Given: t = 3.0 s; position–time graph

Required: \vec{v}_{inst}

Analysis: \vec{v}_{inst} is equal to the slope, m, of the

tangent to the curve at t = 3.0 s; $m = \frac{\Delta \vec{d}}{\Delta t}$.

By placing a ruler along the curve in Figure 10 at t = 3.0 s, I can picture the tangent. The tangent has a rise of about 45.0 m [S] over a run of 4.0 s.

Solution:
$$m = \frac{\Delta \vec{d}}{\Delta t}$$

 $m = \frac{45.0 \text{ m [S]}}{4.0 \text{ s}}$
 $\vec{v}_{\text{inst}} = 11 \text{ m/s [S]}$

Statement: The instantaneous velocity of the object at 3.0 s is 11 m/s [S].

(c) Given: $\Delta \vec{d} = 65 \text{ m [S]}; \Delta t = 6.0 \text{ s}$

Required: \vec{v}_{av}

Analysis:
$$\vec{v}_{av} = \frac{\Delta \vec{d}}{\Delta t}$$

Solution:
$$\vec{v}_{av} = \frac{\Delta \vec{d}}{\Delta t}$$

$$= \frac{65 \text{ m [S]}}{6.0 \text{ s}}$$

$$\vec{v}_{av} = 11 \text{ m/s [S]}$$

Statement: The average velocity of the object over the time interval from 0.0 s to 6.0 s is 11 m/s [S].

4. Step 1: The data plotted on the velocity—time graph in Figure 11 form a decreasing straight-line graph. You can determine acceleration from a velocity—time graph by calculating its slope. Since the velocity—time graph in Figure 11 is a straight line, its slope does not change. So we can calculate the slope or acceleration over any time interval.

slope =
$$\frac{\text{rise}}{\text{run}}$$

 $\vec{a}_{\text{av}} = \frac{\Delta \vec{v}}{\Delta t}$
= $\frac{-12 \text{ m/s [S]}}{6.0 \text{ s}}$
 $\vec{a}_{\text{av}} = -2.0 \text{ m/s}^2 \text{ [S]}$

Step 2: Use this value to create an acceleration—time graph.

Acceleration v. Time for Accelerated Motion

