Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	0

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia B la banda al 99% di energia del filtro con risposta in frequenza

$$H(f) = 2\sqrt{2\pi}e^{-8\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(4\pi B) = 1$
- **B)** $\operatorname{erfc}(\pi B) = 0$
- C) $erf(4\pi B) = 0.99$
- **D)** $erf(\sqrt{2}\pi B) = 0.99$

Esercizio 2. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A) X(f) non esiste perché il segnale non è a energia finita

B)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

 \mathbf{C})

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

D)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

Esercizio 3. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 2(t - nT)e^{-2(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

 $\mathbf{A})$

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

B)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

 \mathbf{C})

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

D)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

Esercizio 4. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t kT)$
- **B)** $\sigma_X^2(t) = 0$
- C) $\sigma_X^2(t) = \frac{1}{4} p_T(t)$
- **D)** $\sigma_X^2(t) = \frac{9}{4}$

Esercizio 5. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{6}{9 + 4\pi^2 t^2}$$

- **A)** $\mathcal{E}_x = 1/3$
- **B)** $\mathcal{E}_x = 1/6$
- C) $\mathcal{E}_x = \infty$
- $\mathbf{D)} \ \mathcal{E}_x = 1$

Esercizio 6. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

е

$$x_2(t) = \left[\frac{\sin(\pi t)}{\pi t}\right]^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

A) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$

B) $y(t) = x_1(t)$

C) y(t) = 0

D) y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 - |t| per $|t| \le 1$ e zero altrove

Esercizio 7. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

e

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

 $\mathbf{A)} \ \rho_{XY}(t) = \sin(2\pi f_0 t)$

B) $\rho_{XY}(t) = 1$

C) $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$

D) $\rho_{XY}(t) = 0$

Esercizio 8. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

 \mathbf{e}

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

A) $B = \frac{1}{T}$

B) nessuna delle altre risposte è corretta

C) $B = \frac{1}{2T}$

D) $B = \infty$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	1

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{2}{1 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = 2$
- $\mathbf{B)} \ \mathcal{E}_x = 1$
- C) $\mathcal{E}_x = 1/2$
- $\mathbf{D)} \ \mathcal{E}_x = \infty$

Esercizio 2. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$
- **B)** $\rho_{XY}(t) = 1$
- **C**) $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = \sin(2\pi f_0 t)$

Esercizio 3. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{4T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

B) X(f) non esiste perché il segnale non è a energia finita

C)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/T)$$

D)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j2\pi fT}}$$

Esercizio 4. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 1 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A) $\sigma_X^2(t) = \frac{1}{4}$

B) $\sigma_X^2(t) = 0$

C) $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t - kT)$

D) $\sigma_X^2(t) = \frac{1}{2}p_T(t)$

Esercizio 5. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

е

$$x_2(t) = 3 \left[\frac{\sin(\pi t/3)}{\pi t} \right]^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

A) y(t) = 0

B) y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 - |t| per $|t| \le 1$ e zero altrove

C) $y(t) = x_1(t)$

D)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/3)}{\pi\tau} \right]^{3} e^{-j8\pi\tau} d\tau$$

Esercizio 6. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

A) $B = \infty$

B) $B = \frac{1}{2T}$

C) $B = \frac{9}{T}$

D) nessuna delle altre risposte è corretta

Esercizio 7. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\pi}e^{-\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** erf(2B) = 0.95
- **B)** $\operatorname{erfc}(\pi B) = 0$
- **C)** $\operatorname{erf}(\sqrt{2}\pi B) = 0.95$
- **D)** $erfc(2\pi B) = 1$

Esercizio 8. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

B)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

C)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

D)

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	2

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A) X(f) non esiste perché il segnale non è a energia finita

B)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

C)

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - n/T)$$

D)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

Esercizio 2. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 1$
- **B)** $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$
- C) $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **D)** $\rho_{XY}(t) = 0$

Esercizio 3. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 1 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = 0$$

B)
$$\sigma_X^2(t) = \frac{1}{2} p_T(t)$$

C)
$$\sigma_X^2(t) = \frac{1}{4}$$

D)
$$\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t - kT)$$

Esercizio 4. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\pi}e^{-\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

A)
$$\operatorname{erfc}(\pi B) = 0$$

B)
$$erfc(2\pi B) = 1$$

C)
$$erf(2B) = 0.95$$

D)
$$erf(\sqrt{2}\pi B) = 0.95$$

Esercizio 5. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

A)
$$\mathcal{E}_x = 2$$

$$\mathbf{B)} \ \mathcal{E}_x = 4$$

C)
$$\mathcal{E}_x = \infty$$

D)
$$\mathcal{E}_x = 0.5$$

Esercizio 6. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

A)
$$B = \frac{2}{T}$$

B)
$$B = \infty$$

C) nessuna delle altre risposte è corretta

D)
$$B = \frac{1}{2T}$$

Esercizio 7. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 2(t - nT)e^{-2(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2(1+j\pi f)^2}$$

B)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

C)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

D)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

Esercizio 8. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

e

$$x_2(t) = 2 \left[\frac{\sin(\pi t/2)}{\pi t} \right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

A) $y(t) = x_1(t)$

B)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$$

C) y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 - |t| per $|t| \le 1$ e zero altrove

D)
$$y(t) = 0$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	3

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{1}{1 + \pi^2 t^2}$$

- A) $\mathcal{E}_r = 2$
- **B**) $\mathcal{E}_x = 1/2$
- C) $\mathcal{E}_x = 1$
- **D**) $\mathcal{E}_x = \infty$

Esercizio 2. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 1$
- B) nessuna delle altre risposte è corretta
- **C**) $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **E)** $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$

Esercizio 3. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

e

$$x_2(t) = 3 \left[\frac{\sin(\pi t/3)}{\pi t} \right]^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** $y(t) = x_1(t)$
- **B)** y(t) = 0

C)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau/3)}{\pi \tau} \right]^{3} e^{-j8\pi\tau} d\tau$$

D) y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 - |t| per $|t| \le 1$ e zero altrove

Esercizio 4. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

B)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

 \mathbf{C})

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

D)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

Esercizio 5. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{1}{2T}$
- B) $B = \infty$
- **C**) $B = \frac{1}{T}$
- D) nessuna delle altre risposte è corretta

Esercizio 6. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

- A) X(f) non esiste perché il segnale non è a energia finita
- B)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

C)

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - 2n/T)$$

D)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

Esercizio 7. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 1 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{1}{2}p_T(t)$
- **B)** $\sigma_X^2(t) = \frac{1}{4}$
- C) $\sigma_X^2(t) = 0$
- **D)** $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t kT)$

Esercizio 8. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\pi}e^{-\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\pi B) = 0$
- **B)** $erfc(2\pi B) = 1$
- **C)** $erf(\sqrt{2}\pi B) = 0.95$
- **D)** erf(2B) = 0.95

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	4

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

B)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j4\pi fT}}$$

C)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/(2T))$$

D) X(f) non esiste perché il segnale non è a energia finita

Esercizio 2. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

B)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

C)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

D)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

Esercizio 3. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{1}{1 + \pi^2 t^2}$$

- A) $\mathcal{E}_x = 1$
- B) $\mathcal{E}_x = \infty$
- C) $\mathcal{E}_x = 1/2$
- $\mathbf{D)} \ \mathcal{E}_x = 2$

Esercizio 4. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

е

$$x_2(t) = 3 \left\lceil \frac{\sin(\pi t/3)}{\pi t} \right\rceil^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- $\textbf{A)} \ \ y(t) = p(t/3)tri(t/3), \ \text{dove} \ p(t) = 1 \ \text{per} \ |t| \leq 0.5 \ \text{e zero altrove}, \ \text{e} \ tri(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}$
- B) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/3)}{\pi\tau} \right]^{3} e^{-j8\pi\tau} d\tau$
- **C)** y(t) = 0
- **D)** $y(t) = x_1(t)$

Esercizio 5. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

e

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$
- **B)** $\rho_{XY}(t) = 1$
- **C**) $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = \sin(2\pi f_0 t)$

Esercizio 6. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\frac{\pi}{2}}e^{-0.5\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erf(\pi B) = 0.95$
- **B)** $erfc(2\pi B) = 1$
- **C)** erf(2B) = 0.95
- **D)** $\operatorname{erfc}(\sqrt{2}\pi B) = 0$

Esercizio 7. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{1}{T}$
- B) nessuna delle altre risposte è corretta
- **C**) $B = \frac{1}{2T}$
- $\mathbf{D)} \ B = \infty$

Esercizio 8. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 2 e 4 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 1$
- **B)** $\sigma_X^2(t) = \frac{1}{2} p_T(t)$
- **C)** $\sigma_X^2(t) = 0$
- **D)** $\sigma_X^2(t) = \frac{1}{5} \sum_{k=-\infty}^{\infty} p_T(t-kT)$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	5

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\pi}e^{-\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\pi B) = 0$
- **B)** $erfc(2\pi B) = 1$
- **C)** $\operatorname{erf}(\sqrt{2}\pi B) = 0.95$
- **D)** erf(2B) = 0.95

Esercizio 2. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 2 e 4 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 1$
- **B)** $\sigma_X^2(t) = 0$
- C) $\sigma_X^2(t) = \frac{1}{2}p_T(t)$
- D) $\sigma_X^2(t) = \frac{1}{5} \sum_{k=-\infty}^{\infty} p_T(t kT)$

Esercizio 3. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{2}{1 + 4\pi^2 t^2}$$

1

 $\mathbf{A)} \ \mathcal{E}_x = 1$

- B) $\mathcal{E}_x = 2$
- C) $\mathcal{E}_x = \infty$
- **D)** $\mathcal{E}_x = 1/2$

Esercizio 4. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

- B) X(f) non esiste perché il segnale non è a energia finita
- C)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

D)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

Esercizio 5. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) nessuna delle altre risposte è corretta
- **B**) $B = \frac{1}{2T}$
- C) $B = \infty$
- **D)** $B = \frac{2}{T}$

Esercizio 6. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 1$
- **B)** $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- C) $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$
- **D)** $\rho_{XY}(t) = 0$

Esercizio 7. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

e

$$x_2(t) = 2 \left[\frac{\sin(\pi t/2)}{\pi t} \right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- A) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$
- **B)** y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **C**) y(t) = 0
- **D)** $y(t) = x_1(t)$

Esercizio 8. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} (t - nT)e^{-(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

C)

$$X(f) = \frac{1}{(1+j2\pi f)^2}$$

D)

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	6

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 1 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = 0$$

B)
$$\sigma_X^2(t) = \frac{1}{4}$$

C)
$$\sigma_X^2(t) = \frac{1}{2}p_T(t)$$

D)
$$\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$$

Esercizio 2. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

e

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **B)** $\rho_{XY}(t) = 1$
- C) $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$
- **D)** $\rho_{XY}(t) = 0$

Esercizio 3. (Punti 2) Sia B la banda al 99% di energia del filtro con risposta in frequenza

$$H(f) = 2\sqrt{2\pi}e^{-8\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\pi B) = 0$
- **B)** $erfc(4\pi B) = 1$
- **C)** $\operatorname{erf}(\sqrt{2}\pi B) = 0.99$
- **D)** $erf(4\pi B) = 0.99$

Esercizio 4. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

C)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

D)

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

Esercizio 5. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{2}{1 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = \infty$
- $\mathbf{B)} \ \mathcal{E}_x = 1$
- C) $\mathcal{E}_x = 2$
- **D)** $\mathcal{E}_x = 1/2$

Esercizio 6. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j2\pi fT}}$$

B)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/T)$$

C) X(f) non esiste perché il segnale non è a energia finita

D)

$$X(f) = \frac{1}{4T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

Esercizio 7. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{1}{T}$
- **B**) $B = \infty$
- **C**) $B = \frac{1}{2T}$
- D) nessuna delle altre risposte è corretta

Esercizio 8. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

 ϵ

$$x_2(t) = 2 \left[\frac{\sin(\pi t/2)}{\pi t} \right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** $y(t) = x_1(t)$
- $\mathbf{B)} \ \ y(t) = p(t/2)tri(t/2), \ \text{dove} \ p(t) = 1 \ \text{per} \ |t| \leq 0.5 \ \text{e zero altrove}, \ \text{e} \ tri(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}$
- C) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$
- **D)** y(t) = 0

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	7

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A) X(f) non esiste perché il segnale non è a energia finita

B)

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - 2n/T)$$

C)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j4\pi fT}}$$

D)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/(2T))$$

Esercizio 2. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 2 e 4 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = \frac{1}{5} \sum_{k=-\infty}^{\infty} p_T(t - kT)$$

B)
$$\sigma_X^2(t) = 1$$

C)
$$\sigma_X^2(t) = \frac{1}{2} p_T(t)$$

D)
$$\sigma_X^2(t) = 0$$

Esercizio 3. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} (t - nT)e^{-(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

B)

$$X(f) = \frac{1}{(1 + j2\pi f)^2}$$

 \mathbf{C})

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

D)

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

Esercizio 4. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{2}{1 + 4\pi^2 t^2}$$

- **A)** $\mathcal{E}_x = 1/2$
- $\mathbf{B)} \ \mathcal{E}_x = 2$
- C) $\mathcal{E}_x = \infty$
- $\mathbf{D)} \ \mathcal{E}_x = 1$

Esercizio 5. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

e

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 1$
- B) nessuna delle altre risposte è corretta
- **C**) $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **E)** $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$

Esercizio 6. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erf(2\pi B) = 0.9$
- **B)** $erf(\sqrt{2}\pi B) = 0.9$
- C) $\operatorname{erfc}(\pi B) = 0$
- **D)** $erfc(2\pi B) = 1$

Esercizio 7. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

e

$$x_2(t) = 2 \left\lceil \frac{\sin(\pi t/2)}{\pi t} \right\rceil^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- A) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$
- **B)** y(t) = 0
- C) y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **D)** $y(t) = x_1(t)$

Esercizio 8. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{1}{T}$
- **B)** $B = \frac{1}{2T}$
- C) $B = \infty$
- D) nessuna delle altre risposte è corretta

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

B)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

C)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

D) X(f) non esiste perché il segnale non è a energia finita

Esercizio 2. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

A)
$$\rho_{XY}(t) = 1$$

B)
$$\rho_{XY}(t) = 2e^{j2\pi f_0 t}$$

C)
$$\rho_{XY}(t) = \sin(2\pi f_0 t)$$

D)
$$\rho_{XY}(t) = 0$$

Esercizio 3. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

e

$$x_2(t) = 3 \left\lceil \frac{\sin(\pi t/3)}{\pi t} \right\rceil^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- A) y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **B)** y(t) = 0
- C) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/3)}{\pi\tau} \right]^{3} e^{-j8\pi\tau} d\tau$
- **D)** $y(t) = x_1(t)$

Esercizio 4. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) nessuna delle altre risposte è corretta
- **B)** $B = \frac{9}{T}$
- C) $B = \frac{1}{2T}$
- **D)** $B = \infty$

Esercizio 5. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\pi}e^{-\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(2\pi B) = 1$
- **B)** erf(2B) = 0.95
- **C)** $erf(\sqrt{2}\pi B) = 0.95$
- **D)** $\operatorname{erfc}(\pi B) = 0$

Esercizio 6. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

- A) $\mathcal{E}_x = \infty$
- **B)** $\mathcal{E}_x = 0.5$
- C) $\mathcal{E}_x = 4$
- $\mathbf{D)} \ \mathcal{E}_x = 2$

Esercizio 7. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 0 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 0$
- B) $\sigma_X^2(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$
- C) $\sigma_X^2(t) = \frac{2}{3}p_T(t)$
- **D)** $\sigma_X^2(t) = 1$

Esercizio 8. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 2(t - nT)e^{-2(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

B)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

 \mathbf{C})

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

D)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	9

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A) X(f) non esiste perché il segnale non è a energia finita

B)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

C)

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - n/T)$$

D)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

Esercizio 2. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

A)
$$\mathcal{E}_x = 4$$

B)
$$\mathcal{E}_x = 0.5$$

C)
$$\mathcal{E}_x = \infty$$

$$\mathbf{D)} \ \mathcal{E}_x = 2$$

Esercizio 3. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\frac{\pi}{2}}e^{-0.5\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** erf(2B) = 0.95
- **B)** $\operatorname{erfc}(\sqrt{2}\pi B) = 0$
- C) $erf(\pi B) = 0.95$
- **D)** $erfc(2\pi B) = 1$

Esercizio 4. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{1}{4}p_T(t)$
- **B)** $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t kT)$
- C) $\sigma_X^2(t) = \frac{9}{4}$
- **D)** $\sigma_X^2(t) = 0$

Esercizio 5. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

е

$$x_2(t) = 2 \left[\frac{\sin(\pi t/2)}{\pi t} \right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** $y(t) = x_1(t)$
- **B)** y(t) = 0
- C) y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **D)** $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$

Esercizio 6. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

A)
$$B = \frac{1}{2T}$$

- **B**) $B = \infty$
- C) nessuna delle altre risposte è corretta
- **D**) $B = \frac{9}{T}$

Esercizio 7. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- A) nessuna delle altre risposte è corretta
- **B)** $\rho_{XY}(t) = 1$
- C) $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$
- **D)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **E)** $\rho_{XY}(t) = 0$

Esercizio 8. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} (t - nT)e^{-(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

B)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

 \mathbf{C})

$$X(f) = \frac{1}{(1+j2\pi f)^2}$$

D)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	10

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\pi}e^{-\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(2\pi B) = 1$
- **B)** erf(2B) = 0.95
- C) $\operatorname{erfc}(\pi B) = 0$
- **D)** $erf(\sqrt{2}\pi B) = 0.95$

Esercizio 2. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{1}{1 + \pi^2 t^2}$$

- A) $\mathcal{E}_x = \infty$
- **B**) $\mathcal{E}_x = 1/2$
- C) $\mathcal{E}_x = 2$
- $\mathbf{D)} \ \mathcal{E}_x = 1$

Esercizio 3. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

A)
$$\rho_{XY}(t) = \sin(2\pi f_0 t)$$

- **B)** $\rho_{XY}(t) = 1$
- **C**) $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$

Esercizio 4. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

B)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

 \mathbf{C})

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

D)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

Esercizio 5. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{9}{4}$
- **B)** $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t kT)$
- C) $\sigma_X^2(t) = \frac{1}{4}p_T(t)$
- **D)** $\sigma_X^2(t) = 0$

Esercizio 6. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) $B = \infty$
- **B)** $B = \frac{1}{2T}$
- **C**) $B = \frac{9}{T}$

D) nessuna delle altre risposte è corretta

Esercizio 7. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

е

$$x_2(t) = 3 \left\lceil \frac{\sin(\pi t/3)}{\pi t} \right\rceil^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** y(t) = 0
- **B)** $y(t) = x_1(t)$
- C) y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- D) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/3)}{\pi\tau} \right]^{3} e^{-j8\pi\tau} d\tau$

Esercizio 8. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

- A) X(f) non esiste perché il segnale non è a energia finita
- B)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

C)

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - n/T)$$

D)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	11

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

 \mathbf{e}

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A = 1$ e varianza $\sigma_A^2 = 2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 1$
- **B)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- C) $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$
- **D)** $\rho_{XY}(t) = 0$

Esercizio 2. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j4\pi fT}}$$

- B) X(f) non esiste perché il segnale non è a energia finita
- **C**)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

D)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/(2T))$$

Esercizio 3. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{1}{2T}$
- **B**) $B = \infty$
- **C**) $B = \frac{2}{T}$
- D) nessuna delle altre risposte è corretta

Esercizio 4. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

 ϵ

$$x_2(t) = 3 \left\lceil \frac{\sin(\pi t/3)}{\pi t} \right\rceil^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** y(t) = 0
- B) y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **C)** $y(t) = x_1(t)$

D)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau/3)}{\pi \tau} \right]^{3} e^{-j8\pi\tau} d\tau$$

Esercizio 5. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\pi}e^{-\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(2\pi B) = 1$
- **B)** $erf(\sqrt{2}\pi B) = 0.95$
- C) $\operatorname{erfc}(\pi B) = 0$
- **D)** erf(2B) = 0.95

Esercizio 6. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 2(t - nT)e^{-2(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

B)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

C)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

D)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

Esercizio 7. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{6}{9 + 4\pi^2 t^2}$$

- **A)** $\mathcal{E}_x = 1/6$
- B) $\mathcal{E}_x = \infty$
- C) $\mathcal{E}_x = 1$
- **D)** $\mathcal{E}_x = 1/3$

Esercizio 8. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{1}{4} p_T(t)$
- **B)** $\sigma_X^2(t) = 0$
- C) $\sigma_X^2(t) = \frac{9}{4}$
- **D)** $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	12

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{6}{9 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = \infty$
- **B**) $\mathcal{E}_x = 1/3$
- C) $\mathcal{E}_x = 1$
- **D)** $\mathcal{E}_x = 1/6$

Esercizio 2. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

B)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/(2T))$$

- C) X(f) non esiste perché il segnale non è a energia finita
- D)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j4\pi fT}}$$

Esercizio 3. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

A) nessuna delle altre risposte è corretta

- **B**) $B = \frac{1}{2T}$
- C) $B = \infty$
- **D)** $B = \frac{2}{T}$

Esercizio 4. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

e

$$x_2(t) = \left[\frac{\sin(\pi t)}{\pi t}\right]^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** $y(t) = x_1(t)$
- **B)** $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$
- C) y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **D)** y(t) = 0

Esercizio 5. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\frac{\pi}{2}}e^{-0.5\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(2\pi B) = 1$
- **B)** erf(2B) = 0.95
- C) $\operatorname{erfc}(\sqrt{2}\pi B) = 0$
- **D)** $erf(\pi B) = 0.95$

Esercizio 6. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 0$
- **B)** $\sigma_X^2(t) = \frac{9}{4}$

C)
$$\sigma_X^2(t) = \frac{1}{4} p_T(t)$$

D)
$$\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t - kT)$$

Esercizio 7. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

 \mathbf{C})

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

D)

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

Esercizio 8. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

e

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0$
- **B)** $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$
- C) $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **D)** $\rho_{XY}(t) = 1$
- E) nessuna delle altre risposte è corretta

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	13

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{6}{9 + 4\pi^2 t^2}$$

- **A)** $\mathcal{E}_x = 1/6$
- $\mathbf{B)} \ \mathcal{E}_x = 1$
- **C**) $\mathcal{E}_x = 1/3$
- **D**) $\mathcal{E}_x = \infty$

Esercizio 2. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

е

$$x_2(t) = 3 \left\lceil \frac{\sin(\pi t/3)}{\pi t} \right\rceil^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau/3)}{\pi \tau} \right]^{3} e^{-j8\pi\tau} d\tau$
- **B)** $y(t) = x_1(t)$
- C) y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **D)** y(t) = 0

Esercizio 3. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

 \mathbf{e}

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) nessuna delle altre risposte è corretta
- B) $B = \infty$
- **C**) $B = \frac{9}{T}$
- **D)** $B = \frac{1}{2T}$

Esercizio 4. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\pi}e^{-\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(2\pi B) = 1$
- **B)** $erf(\sqrt{2}\pi B) = 0.95$
- **C)** erf(2B) = 0.95
- **D)** $\operatorname{erfc}(\pi B) = 0$

Esercizio 5. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **B)** $\rho_{XY}(t) = 1$
- C) $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$
- **D)** $\rho_{XY}(t) = 0$

Esercizio 6. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

 $\mathbf{A})$

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

- B) X(f) non esiste perché il segnale non è a energia finita
- \mathbf{C})

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - 2n/T)$$

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

Esercizio 7. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 2 e 4 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 1$
- **B)** $\sigma_X^2(t) = 0$
- C) $\sigma_X^2(t) = \frac{1}{5} \sum_{k=-\infty}^{\infty} p_T(t kT)$
- **D)** $\sigma_X^2(t) = \frac{1}{2}p_T(t)$

Esercizio 8. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

B)

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

C)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	14

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 2 e 4 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = 0$$

B)
$$\sigma_X^2(t) = \frac{1}{2}p_T(t)$$

C)
$$\sigma_X^2(t) = \frac{1}{5} \sum_{k=-\infty}^{\infty} p_T(t - kT)$$

D)
$$\sigma_X^2(t) = 1$$

Esercizio 2. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

 \mathbf{A})

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - 2n/T)$$

B)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/(2T))$$

C) X(f) non esiste perché il segnale non è a energia finita

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j4\pi fT}}$$

Esercizio 3. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} (t - nT)e^{-(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

C)

$$X(f) = \frac{1}{(1 + j2\pi f)^2}$$

D)

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

Esercizio 4. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{1}{T}$
- **B**) $B = \frac{1}{2T}$
- C) nessuna delle altre risposte è corretta
- **D)** $B = \infty$

Esercizio 5. (Punti 2) Sia B la banda al 99% di energia del filtro con risposta in frequenza

$$H(f) = 2\sqrt{2\pi}e^{-8\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(4\pi B) = 1$
- **B)** $\operatorname{erfc}(\pi B) = 0$
- C) $erf(4\pi B) = 0.99$
- **D)** $erf(\sqrt{2}\pi B) = 0.99$

Esercizio 6. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0$
- **B)** $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$
- C) nessuna delle altre risposte è corretta
- **D)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **E)** $\rho_{XY}(t) = 1$

Esercizio 7. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{2}{1 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = 2$
- B) $\mathcal{E}_x = \infty$
- C) $\mathcal{E}_x = 1$
- **D)** $\mathcal{E}_x = 1/2$

Esercizio 8. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

(

$$x_2(t) = 3 \left\lceil \frac{\sin(\pi t/3)}{\pi t} \right\rceil^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **B)** $y(t) = x_1(t)$
- C) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/3)}{\pi\tau} \right]^{3} e^{-j8\pi\tau} d\tau$
- **D)** y(t) = 0

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	15

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{1}{2T}$
- B) nessuna delle altre risposte è corretta
- **C**) $B = \frac{9}{T}$
- **D)** $B = \infty$

Esercizio 2. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{2}{1 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = 1$
- B) $\mathcal{E}_x = \infty$
- C) $\mathcal{E}_x = 2$
- **D)** $\mathcal{E}_x = 1/2$

Esercizio 3. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = \frac{9}{4}$$

B) $\sigma_X^2(t) = 0$

C)
$$\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t - kT)$$

D) $\sigma_X^2(t) = \frac{1}{4}p_T(t)$

Esercizio 4. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A) X(f) non esiste perché il segnale non è a energia finita

B)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

C)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

D)

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - 2n/T)$$

Esercizio 5. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 2(t - nT)e^{-2(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

 \mathbf{C})

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

D)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

Esercizio 6. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

е

$$x_2(t) = 3 \left[\frac{\sin(\pi t/3)}{\pi t} \right]^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

A)
$$y(t) = 0$$

B)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/3)}{\pi\tau} \right]^{3} e^{-j8\pi\tau} d\tau$$

C)
$$y(t) = p(t/3)tri(t/3)$$
, dove $p(t) = 1$ per $|t| \le 0.5$ e zero altrove, e $tri(t) = 1 - |t|$ per $|t| \le 1$ e zero altrove

D)
$$y(t) = x_1(t)$$

Esercizio 7. (Punti 2) Sia B la banda al 99% di energia del filtro con risposta in frequenza

$$H(f) = 2\sqrt{2\pi}e^{-8\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

A)
$$erf(4\pi B) = 0.99$$

B)
$$erfc(4\pi B) = 1$$

C)
$$\operatorname{erfc}(\pi B) = 0$$

D)
$$erf(\sqrt{2}\pi B) = 0.99$$

Esercizio 8. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

e

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

A)
$$\rho_{XY}(t) = 0$$

B)
$$\rho_{XY}(t) = 1$$

C)
$$\rho_{XY}(t) = \sin(2\pi f_0 t)$$

D)
$$\rho_{XY}(t) = 2e^{j2\pi f_0 t}$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	16

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 0 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = 1$$

B)
$$\sigma_X^2(t) = \frac{2}{3}p_T(t)$$

C)
$$\sigma_X^2(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} p_T(t - kT)$$

D)
$$\sigma_X^2(t) = 0$$

Esercizio 2. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

A)
$$B = \frac{9}{T}$$

B) nessuna delle altre risposte è corretta

C)
$$B = \frac{1}{2T}$$

$$\mathbf{D)} \ B = \infty$$

Esercizio 3. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{1}{1 + \pi^2 t^2}$$

A)
$$\mathcal{E}_x = 2$$

- $\mathbf{B)} \ \mathcal{E}_x = 1$
- C) $\mathcal{E}_x = 1/2$
- **D**) $\mathcal{E}_x = \infty$

Esercizio 4. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

B)

$$X(f) = \frac{1}{1 - \frac12 e^{-j4\pi fT}}$$

C) X(f) non esiste perché il segnale non è a energia finita

D)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

Esercizio 5. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} (t - nT)e^{-(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{(1+j2\pi f)^2}$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

 \mathbf{C})

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

D)

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

Esercizio 6. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

(

$$x_2(t) = 2 \left[\frac{\sin(\pi t/2)}{\pi t} \right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** y(t) = 0
- B) y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **C)** $y(t) = x_1(t)$

D)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$$

Esercizio 7. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$
- **B)** $\rho_{XY}(t) = 1$
- **C**) $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = \sin(2\pi f_0 t)$

Esercizio 8. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(2\pi B) = 1$
- **B)** $erf(\sqrt{2}\pi B) = 0.9$
- C) $\operatorname{erfc}(\pi B) = 0$
- **D)** $erf(2\pi B) = 0.9$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	17

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

 \mathbf{e}

$$x_2(t) = \left\lceil \frac{\sin(\pi t)}{\pi t} \right\rceil^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

A) y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 - |t| per $|t| \le 1$ e zero altrove

B)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$$

- **C)** $y(t) = x_1(t)$
- **D)** y(t) = 0

Esercizio 2. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

A) nessuna delle altre risposte è corretta

- **B)** $\rho_{XY}(t) = 0$
- **C**) $\rho_{XY}(t) = 1$
- **D)** $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$
- **E)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$

Esercizio 3. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{1}{2T}$
- B) nessuna delle altre risposte è corretta
- **C**) $B = \frac{9}{T}$
- **D)** $B = \infty$

Esercizio 4. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- A) $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$
- **B)** $\sigma_X^2(t) = \frac{9}{4}$
- **C)** $\sigma_X^2(t) = 0$
- **D)** $\sigma_X^2(t) = \frac{1}{4}p_T(t)$

Esercizio 5. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

- B) X(f) non esiste perché il segnale non è a energia finita
- \mathbf{C})

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - 2n/T)$$

D)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

Esercizio 6. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 2(t - nT)e^{-2(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

B)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

C)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

D)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

Esercizio 7. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\frac{\pi}{2}}e^{-0.5\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erf(\pi B) = 0.95$
- **B)** erf(2B) = 0.95
- C) $\operatorname{erfc}(\sqrt{2}\pi B) = 0$
- **D)** $erfc(2\pi B) = 1$

Esercizio 8. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{2}{1 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = 2$
- **B**) $\mathcal{E}_x = 1/2$
- C) $\mathcal{E}_x = 1$
- **D**) $\mathcal{E}_x = \infty$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	18

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

 \mathbf{C})

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

D)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

Esercizio 2. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

A)
$$B = \infty$$

B)
$$B = \frac{1}{2T}$$

C) nessuna delle altre risposte è corretta

D)
$$B = \frac{9}{T}$$

Esercizio 3. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\pi}e^{-\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(2\pi B) = 1$
- **B)** $erf(\sqrt{2}\pi B) = 0.95$
- C) $\operatorname{erfc}(\pi B) = 0$
- **D)** erf(2B) = 0.95

Esercizio 4. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

B)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

 \mathbf{C})

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

D) X(f) non esiste perché il segnale non è a energia finita

Esercizio 5. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 0 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 0$
- **B)** $\sigma_X^2(t) = \frac{2}{3}p_T(t)$
- C) $\sigma_X^2(t) = 1$
- **D)** $\sigma_X^2(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} p_T(t kT)$

Esercizio 6. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

e

$$x_2(t) = 2 \left[\frac{\sin(\pi t/2)}{\pi t} \right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** y(t) = 0
- B) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$
- **C)** $y(t) = x_1(t)$
- **D)** y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove

Esercizio 7. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{6}{9 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = \infty$
- **B)** $\mathcal{E}_x = 1/6$
- **C**) $\mathcal{E}_x = 1/3$
- $\mathbf{D)} \ \mathcal{E}_x = 1$

Esercizio 8. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$
- **B)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **C)** $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = 1$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	19

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0$
- **B)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- C) $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$
- **D)** $\rho_{XY}(t) = 1$
- E) nessuna delle altre risposte è corretta

Esercizio 2. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{6}{9 + 4\pi^2 t^2}$$

- **A)** $\mathcal{E}_x = 1/3$
- $\mathbf{B)} \ \mathcal{E}_x = 1$
- **C**) $\mathcal{E}_x = 1/6$
- D) $\mathcal{E}_x = \infty$

Esercizio 3. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

e

$$x_2(t) = 3 \left[\frac{\sin(\pi t/3)}{\pi t} \right]^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- A) y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **B)** y(t) = 0
- **C)** $y(t) = x_1(t)$
- **D)** $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/3)}{\pi\tau} \right]^{3} e^{-j8\pi\tau} d\tau$

Esercizio 4. (Punti 2) Sia B la banda al 99% di energia del filtro con risposta in frequenza

$$H(f) = 2\sqrt{2\pi}e^{-8\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\pi B) = 0$
- **B)** $erf(4\pi B) = 0.99$
- **C)** $erfc(4\pi B) = 1$
- **D)** $\operatorname{erf}(\sqrt{2}\pi B) = 0.99$

Esercizio 5. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

- A) X(f) non esiste perché il segnale non è a energia finita
- B)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

 \mathbf{C})

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

D)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

Esercizio 6. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} (t - nT)e^{-(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

C)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

D)

$$X(f) = \frac{1}{(1 + j2\pi f)^2}$$

Esercizio 7. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

(

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

A) nessuna delle altre risposte è corretta

- **B)** $B = \frac{1}{2T}$
- C) $B = \frac{9}{T}$
- **D)** $B = \infty$

Esercizio 8. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 0$
- **B)** $\sigma_X^2(t) = \frac{1}{4} p_T(t)$
- C) $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$
- **D)** $\sigma_X^2(t) = \frac{9}{4}$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	20

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

A) nessuna delle altre risposte è corretta

B)
$$B = \frac{1}{2T}$$

C)
$$B = \frac{2}{T}$$

D)
$$B = \infty$$

Esercizio 2. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

е

$$x_2(t) = 3 \left\lceil \frac{\sin(\pi t/3)}{\pi t} \right\rceil^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

A)
$$y(t) = 0$$

B)
$$y(t) = x_1(t)$$

C) y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 - |t| per $|t| \le 1$ e zero altrove

D)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/3)}{\pi\tau} \right]^{3} e^{-j8\pi\tau} d\tau$$

Esercizio 3. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

B)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

C) X(f) non esiste perché il segnale non è a energia finita

D)

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - 2n/T)$$

Esercizio 4. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erf(2\pi B) = 0.9$
- **B)** $\operatorname{erfc}(\pi B) = 0$
- C) erf $(\sqrt{2}\pi B) = 0.9$
- **D)** $erfc(2\pi B) = 1$

Esercizio 5. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

 \mathbf{C})

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

Esercizio 6. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{9}{4}$
- **B)** $\sigma_X^2(t) = 0$
- C) $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t kT)$
- **D)** $\sigma_X^2(t) = \frac{1}{4}p_T(t)$

Esercizio 7. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{2}{1 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = 1$
- $\mathbf{B)} \ \mathcal{E}_x = 2$
- C) $\mathcal{E}_x = \infty$
- **D)** $\mathcal{E}_x = 1/2$

Esercizio 8. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

 \mathbf{e}

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$
- **B)** $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- **C**) $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = 1$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	21

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A) X(f) non esiste perché il segnale non è a energia finita

B)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

C)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

D)

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - n/T)$$

Esercizio 2. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{6}{9 + 4\pi^2 t^2}$$

A)
$$\mathcal{E}_x = \infty$$

$$\mathbf{B)} \ \mathcal{E}_x = 1$$

C)
$$\mathcal{E}_x = 1/3$$

D)
$$\mathcal{E}_x = 1/6$$

Esercizio 3. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 0 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} p_T(t - kT)$$

B)
$$\sigma_X^2(t) = 1$$

C)
$$\sigma_X^2(t) = 0$$

D)
$$\sigma_X^2(t) = \frac{2}{3}p_T(t)$$

Esercizio 4. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

A)
$$\rho_{XY}(t) = 0$$

B)
$$\rho_{XY}(t) = 1$$

C)
$$\rho_{XY}(t) = 2e^{j4\pi f_0 t}$$

D)
$$\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$$

Esercizio 5. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

A)
$$B = \frac{9}{T}$$

B) nessuna delle altre risposte è corretta

C)
$$B = \frac{1}{2T}$$

D)
$$B = \infty$$

Esercizio 6. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} (t - nT)e^{-(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

B)

$$X(f) = \frac{1}{(1 + j2\pi f)^2}$$

C)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

D)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

Esercizio 7. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

е

$$x_2(t) = 3 \left[\frac{\sin(\pi t/3)}{\pi t} \right]^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** y(t) = 0
- B) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/3)}{\pi\tau} \right]^{3} e^{-j8\pi\tau} d\tau$
- C) y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **D)** $y(t) = x_1(t)$

Esercizio 8. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\pi}e^{-\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\pi B) = 0$
- **B)** $erfc(2\pi B) = 1$
- **C)** $\operatorname{erf}(\sqrt{2}\pi B) = 0.95$
- **D)** erf(2B) = 0.95

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	22

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

- **A)** $\mathcal{E}_x = 0.5$
- B) $\mathcal{E}_x = 4$
- C) $\mathcal{E}_x = 2$
- **D**) $\mathcal{E}_x = \infty$

Esercizio 2. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) $B = \infty$
- B) nessuna delle altre risposte è corretta
- **C**) $B = \frac{1}{2T}$
- **D)** $B = \frac{1}{T}$

Esercizio 3. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

B)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

C)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

D) X(f) non esiste perché il segnale non è a energia finita

Esercizio 4. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\pi}e^{-\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** erf(2B) = 0.95
- **B)** $\operatorname{erfc}(\pi B) = 0$
- **C)** $erf(\sqrt{2}\pi B) = 0.95$
- **D)** $erfc(2\pi B) = 1$

Esercizio 5. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 1 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- A) $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$
- **B)** $\sigma_X^2(t) = 0$
- C) $\sigma_X^2(t) = \frac{1}{4}$
- **D)** $\sigma_X^2(t) = \frac{1}{2}p_T(t)$

Esercizio 6. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 2(t - nT)e^{-2(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

B)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

C)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

D)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

Esercizio 7. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

e

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 1$
- **B)** $\rho_{XY}(t) = 0$
- C) $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **D)** $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$

Esercizio 8. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

e

$$x_2(t) = \left[\frac{\sin(\pi t)}{\pi t}\right]^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** $y(t) = x_1(t)$
- **B)** $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$
- **C)** y(t) = 0
- **D)** y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	23

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 1$
- **B)** $\rho_{XY}(t) = 0$
- C) nessuna delle altre risposte è corretta
- **D)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **E)** $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$

Esercizio 2. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

е

$$x_2(t) = 3 \left\lceil \frac{\sin(\pi t/3)}{\pi t} \right\rceil^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** y(t) = 0
- **B)** $y(t) = x_1(t)$
- C) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/3)}{\pi\tau} \right]^{3} e^{-j8\pi\tau} d\tau$
- **D)** y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove

Esercizio 3. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\frac{\pi}{2}}e^{-0.5\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\sqrt{2}\pi B) = 0$
- **B)** erf(2B) = 0.95
- **C)** $erf(\pi B) = 0.95$
- **D)** $erfc(2\pi B) = 1$

Esercizio 4. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 0$
- **B)** $\sigma_X^2(t) = \frac{1}{4} p_T(t)$
- C) $\sigma_X^2(t) = \frac{9}{4}$
- **D)** $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t kT)$

Esercizio 5. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) nessuna delle altre risposte è corretta
- **B**) $B = \frac{1}{T}$
- **C)** $B = \frac{1}{2T}$
- **D)** $B = \infty$

Esercizio 6. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 2(t - nT)e^{-2(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

B)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

C)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

D)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

Esercizio 7. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

B)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

C)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

D) X(f) non esiste perché il segnale non è a energia finita

Esercizio 8. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

- A) $\mathcal{E}_x = 2$
- B) $\mathcal{E}_x = \infty$
- C) $\mathcal{E}_x = 0.5$
- $\mathbf{D)} \ \mathcal{E}_x = 4$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	24

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia B la banda al 99% di energia del filtro con risposta in frequenza

$$H(f) = 2\sqrt{2\pi}e^{-8\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(4\pi B) = 1$
- **B)** $erf(4\pi B) = 0.99$
- **C)** $\operatorname{erf}(\sqrt{2}\pi B) = 0.99$
- **D)** $\operatorname{erfc}(\pi B) = 0$

Esercizio 2. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

е

$$x_2(t) = 2 \left[\frac{\sin(\pi t/2)}{\pi t} \right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** $y(t) = x_1(t)$
- B) y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- C) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$
- **D)** y(t) = 0

Esercizio 3. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/(2T))$$

B) X(f) non esiste perché il segnale non è a energia finita

C)

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - 2n/T)$$

D)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j4\pi fT}}$$

Esercizio 4. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

B)

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

 \mathbf{C})

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

D)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

Esercizio 5. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$$

B)
$$\sigma_X^2(t) = 0$$

C)
$$\sigma_X^2(t) = \frac{1}{4}p_T(t)$$

D)
$$\sigma_X^2(t) = \frac{9}{4}$$

Esercizio 6. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) $B = \infty$
- B) nessuna delle altre risposte è corretta
- **C**) $B = \frac{1}{2T}$
- **D)** $B = \frac{1}{T}$

Esercizio 7. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **B)** $\rho_{XY}(t) = 1$
- **C**) $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$

Esercizio 8. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

- A) $\mathcal{E}_x = 2$
- **B**) $\mathcal{E}_x = 0.5$
- C) $\mathcal{E}_x = 4$
- **D**) $\mathcal{E}_x = \infty$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	25

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) nessuna delle altre risposte è corretta
- **B**) $B = \frac{9}{T}$
- C) $B = \infty$
- **D)** $B = \frac{1}{2T}$

Esercizio 2. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(2\pi B) = 1$
- **B)** $erf(2\pi B) = 0.9$
- C) $\operatorname{erfc}(\pi B) = 0$
- **D)** $erf(\sqrt{2}\pi B) = 0.9$

Esercizio 3. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 2(t - nT)e^{-2(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

B)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

C)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

D)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

Esercizio 4. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

 ϵ

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- **B)** $\rho_{XY}(t) = 0$
- C) $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$
- **D)** $\rho_{XY}(t) = 1$

Esercizio 5. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{6}{9 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = 1$
- **B)** $\mathcal{E}_x = 1/6$
- C) $\mathcal{E}_x = \infty$
- **D)** $\mathcal{E}_x = 1/3$

Esercizio 6. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

 ϵ

$$x_2(t) = 2 \left[\frac{\sin(\pi t/2)}{\pi t} \right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** y(t) = 0
- **B)** $y(t) = x_1(t)$
- C) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$

D) y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 - |t| per $|t| \le 1$ e zero altrove

Esercizio 7. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - n/T)$$

B)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

C)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

D) X(f) non esiste perché il segnale non è a energia finita

Esercizio 8. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 2 e 4 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{1}{5} \sum_{k=-\infty}^{\infty} p_T(t kT)$
- **B)** $\sigma_X^2(t) = \frac{1}{2}p_T(t)$
- C) $\sigma_X^2(t) = 1$
- **D)** $\sigma_X^2(t) = 0$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	26

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A) X(f) non esiste perché il segnale non è a energia finita

B)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/(2T))$$

C)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

D)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j4\pi fT}}$$

Esercizio 2. (Punti 2) Sia B la banda al 99% di energia del filtro con risposta in frequenza

$$H(f) = 2\sqrt{2\pi}e^{-8\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erf(4\pi B) = 0.99$
- **B)** $\operatorname{erfc}(\pi B) = 0$
- **C)** $erfc(4\pi B) = 1$
- **D)** $\operatorname{erf}(\sqrt{2}\pi B) = 0.99$

Esercizio 3. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) $B = \infty$
- **B**) $B = \frac{2}{T}$
- **C**) $B = \frac{1}{2T}$
- D) nessuna delle altre risposte è corretta

Esercizio 4. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{6}{9 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = \infty$
- $\mathbf{B)} \ \mathcal{E}_x = 1$
- C) $\mathcal{E}_x = 1/3$
- **D)** $\mathcal{E}_x = 1/6$

Esercizio 5. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 0$
- **B)** $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t kT)$
- C) $\sigma_X^2(t) = \frac{9}{4}$
- **D)** $\sigma_X^2(t) = \frac{1}{4} p_T(t)$

Esercizio 6. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

e

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A = 1$ e varianza $\sigma_A^2 = 2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0$
- **B)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **C)** $\rho_{XY}(t) = 1$
- **D)** $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$

Esercizio 7. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

e

$$x_2(t) = \left[\frac{\sin(\pi t)}{\pi t}\right]^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** $y(t) = x_1(t)$
- **B)** y(t) = 0
- C) y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **D)** $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$

Esercizio 8. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 2(t - nT)e^{-2(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

C)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

D)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	27

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{1}{2T}$
- B) nessuna delle altre risposte è corretta
- C) $B = \infty$
- **D)** $B = \frac{1}{T}$

Esercizio 2. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

- A) $\mathcal{E}_x = 2$
- B) $\mathcal{E}_x = \infty$
- **C**) $\mathcal{E}_x = 0.5$
- $\mathbf{D)} \ \mathcal{E}_x = 4$

Esercizio 3. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

A)
$$\rho_{XY}(t) = 1$$

- B) nessuna delle altre risposte è corretta
- C) $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **D)** $\rho_{XY}(t) = 0$
- **E)** $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$

Esercizio 4. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/(2T))$$

- B) X(f) non esiste perché il segnale non è a energia finita
- \mathbf{C})

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

D)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j4\pi fT}}$$

Esercizio 5. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** erf $(\sqrt{2}\pi B) = 0.9$
- **B)** $\operatorname{erfc}(\pi B) = 0$
- C) $erf(2\pi B) = 0.9$
- **D)** $erfc(2\pi B) = 1$

Esercizio 6. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 1 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$
- **B)** $\sigma_X^2(t) = 0$
- C) $\sigma_X^2(t) = \frac{1}{2} p_T(t)$
- **D)** $\sigma_X^2(t) = \frac{1}{4}$

Esercizio 7. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 2(t - nT)e^{-2(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

C)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

D)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

Esercizio 8. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

e

$$x_2(t) = 2 \left[\frac{\sin(\pi t/2)}{\pi t} \right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- A) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$
- **B)** y(t) = 0
- C) y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **D)** $y(t) = x_1(t)$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	28

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

B) X(f) non esiste perché il segnale non è a energia finita

C)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

D)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

Esercizio 2. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{1}{1 + \pi^2 t^2}$$

A)
$$\mathcal{E}_x = \infty$$

$$\mathbf{B)} \ \mathcal{E}_x = 1$$

C)
$$\mathcal{E}_x = 1/2$$

$$\mathbf{D)} \ \mathcal{E}_x = 2$$

Esercizio 3. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

B)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

 \mathbf{C})

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

D)

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

Esercizio 4. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

 ϵ

$$x_2(t) = \left[\frac{\sin(\pi t)}{\pi t}\right]^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** y(t) = 0
- B) y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **C)** $y(t) = x_1(t)$

D)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$$

Esercizio 5. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 1$
- B) nessuna delle altre risposte è corretta
- C) $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$
- **D)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **E)** $\rho_{XY}(t) = 0$

Esercizio 6. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = 0$$

B)
$$\sigma_X^2(t) = \frac{9}{4}$$

C)
$$\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$$

D)
$$\sigma_X^2(t) = \frac{1}{4} p_T(t)$$

Esercizio 7. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

A)
$$B = \frac{1}{T}$$

B)
$$B = \frac{1}{2T}$$

C) nessuna delle altre risposte è corretta

D)
$$B = \infty$$

Esercizio 8. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

A)
$$\operatorname{erfc}(\pi B) = 0$$

B)
$$erf(2\pi B) = 0.9$$

C)
$$erfc(2\pi B) = 1$$

D)
$$erf(\sqrt{2}\pi B) = 0.9$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	29

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{6}{9 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = 1$
- **B**) $\mathcal{E}_x = 1/6$
- **C**) $\mathcal{E}_x = 1/3$
- **D**) $\mathcal{E}_x = \infty$

Esercizio 2. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

B) X(f) non esiste perché il segnale non è a energia finita

C)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

D)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

Esercizio 3. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

e

$$x_2(t) = 3 \left\lceil \frac{\sin(\pi t/3)}{\pi t} \right\rceil^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** $y(t) = x_1(t)$
- B) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/3)}{\pi\tau} \right]^{3} e^{-j8\pi\tau} d\tau$
- **C)** y(t) = 0
- **D)** y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove

Esercizio 4. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\pi B) = 0$
- **B)** $erf(\sqrt{2}\pi B) = 0.9$
- **C)** $erfc(2\pi B) = 1$
- **D)** $erf(2\pi B) = 0.9$

Esercizio 5. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{2}{T}$
- B) nessuna delle altre risposte è corretta
- C) $B = \infty$
- **D**) $B = \frac{1}{2T}$

Esercizio 6. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} (t - nT)e^{-(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

B)

$$X(f) = \frac{1}{(1 + j2\pi f)^2}$$

C)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

D)

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

Esercizio 7. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 2 e 4 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 1$
- **B)** $\sigma_X^2(t) = 0$
- C) $\sigma_X^2(t) = \frac{1}{5} \sum_{k=-\infty}^{\infty} p_T(t-kT)$
- **D)** $\sigma_X^2(t) = \frac{1}{2}p_T(t)$

Esercizio 8. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0$
- **B)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$
- C) $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- **D)** $\rho_{XY}(t) = 1$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	30

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\pi B) = 0$
- **B)** $erfc(2\pi B) = 1$
- C) $erf(2\pi B) = 0.9$
- **D)** $erf(\sqrt{2}\pi B) = 0.9$

Esercizio 2. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

B)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

C)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

D)

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

Esercizio 3. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$
- **B)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **C)** $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = 1$

Esercizio 4. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) nessuna delle altre risposte è corretta
- **B**) $B = \frac{2}{T}$
- C) $B = \infty$
- **D**) $B = \frac{1}{2T}$

Esercizio 5. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

 \mathbf{e}

$$x_2(t) = 3 \left\lceil \frac{\sin(\pi t/3)}{\pi t} \right\rceil^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** y(t) = 0
- B) y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **C)** $y(t) = x_1(t)$
- **D)** $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/3)}{\pi\tau} \right]^{3} e^{-j8\pi\tau} d\tau$

Esercizio 6. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{2}{1 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = \infty$
- $\mathbf{B)} \ \mathcal{E}_x = 2$

- C) $\mathcal{E}_x = 1/2$
- $\mathbf{D)} \ \mathcal{E}_x = 1$

Esercizio 7. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A) X(f) non esiste perché il segnale non è a energia finita

B)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

C)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

D)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

Esercizio 8. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 1 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{1}{4}$
- **B)** $\sigma_X^2(t) = 0$
- **C)** $\sigma_X^2(t) = \frac{1}{2} p_T(t)$
- **D)** $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	31

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{6}{9 + 4\pi^2 t^2}$$

- **A)** $\mathcal{E}_x = 1/6$
- B) $\mathcal{E}_x = \infty$
- **C**) $\mathcal{E}_x = 1/3$
- $\mathbf{D)} \ \mathcal{E}_x = 1$

Esercizio 2. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 2(t - nT)e^{-2(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

B)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

C)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

D)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

Esercizio 3. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

е

$$x_2(t) = \left\lceil \frac{\sin(\pi t)}{\pi t} \right\rceil^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- A) y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **B)** $y(t) = x_1(t)$
- **C)** y(t) = 0
- **D)** $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$

Esercizio 4. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 1$
- **B)** $\rho_{XY}(t) = 0$
- C) $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **D)** $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$

Esercizio 5. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/(2T))$$

- **B)** X(f) non esiste perché il segnale non è a energia finita
- \mathbf{C})

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j4\pi fT}}$$

D)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

Esercizio 6. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erf(2\pi B) = 0.9$
- **B)** $\operatorname{erfc}(\pi B) = 0$
- **C)** $erf(\sqrt{2}\pi B) = 0.9$
- **D)** $erfc(2\pi B) = 1$

Esercizio 7. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) nessuna delle altre risposte è corretta
- **B)** $B = \frac{1}{2T}$
- **C**) $B = \frac{9}{T}$
- $\mathbf{D)} \ B = \infty$

Esercizio 8. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 2 e 4 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{1}{2} p_T(t)$
- **B)** $\sigma_X^2(t) = 1$
- **C)** $\sigma_X^2(t) = 0$
- **D)** $\sigma_X^2(t) = \frac{1}{5} \sum_{k=-\infty}^{\infty} p_T(t-kT)$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	32

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\pi B) = 0$
- **B)** $erf(2\pi B) = 0.9$
- C) $\operatorname{erfc}(2\pi B) = 1$
- **D)** $erf(\sqrt{2}\pi B) = 0.9$

Esercizio 2. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = \frac{1}{4} p_T(t)$$

B)
$$\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t - kT)$$

C)
$$\sigma_X^2(t) = \frac{9}{4}$$

D)
$$\sigma_X^2(t) = 0$$

Esercizio 3. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

1

A)
$$\mathcal{E}_x = \infty$$

- B) $\mathcal{E}_x = 4$
- C) $\mathcal{E}_x = 2$
- **D)** $\mathcal{E}_x = 0.5$

Esercizio 4. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- A) nessuna delle altre risposte è corretta
- **B)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **C**) $\rho_{XY}(t) = 1$
- **D)** $\rho_{XY}(t) = 0$
- **E)** $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$

Esercizio 5. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{1}{2T}$
- **B**) $B = \frac{1}{T}$
- C) $B = \infty$
- D) nessuna delle altre risposte è corretta

Esercizio 6. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} (t - nT)e^{-(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

B)

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

 \mathbf{C})

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

D)

$$X(f) = \frac{1}{(1 + j2\pi f)^2}$$

Esercizio 7. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

B) X(f) non esiste perché il segnale non è a energia finita

C)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

D)

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - 2n/T)$$

Esercizio 8. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

 ϵ

$$x_2(t) = \left[\frac{\sin(\pi t)}{\pi t}\right]^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- A) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$
- **B)** $y(t) = x_1(t)$
- C) y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **D)** y(t) = 0

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	33

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\frac{\pi}{2}}e^{-0.5\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(2\pi B) = 1$
- **B)** $\operatorname{erfc}(\sqrt{2}\pi B) = 0$
- C) $erf(\pi B) = 0.95$
- **D)** erf(2B) = 0.95

Esercizio 2. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

е

$$x_2(t) = 3 \left[\frac{\sin(\pi t/3)}{\pi t} \right]^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** $y(t) = x_1(t)$
- **B)** y(t) = 0
- C) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/3)}{\pi\tau} \right]^{3} e^{-j8\pi\tau} d\tau$
- **D)** y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove

Esercizio 3. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

B)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

C) X(f) non esiste perché il segnale non è a energia finita

D)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

Esercizio 4. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) $B=\infty$
- B) nessuna delle altre risposte è corretta
- **C**) $B = \frac{1}{2T}$
- **D)** $B = \frac{2}{T}$

Esercizio 5. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$
- **B)** $\rho_{XY}(t) = 1$
- **C**) $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$

Esercizio 6. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{1}{1 + \pi^2 t^2}$$

- A) $\mathcal{E}_x = \infty$
- **B)** $\mathcal{E}_x = 1/2$
- C) $\mathcal{E}_x = 1$
- $\mathbf{D)} \ \mathcal{E}_x = 2$

Esercizio 7. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 2 e 4 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 0$
- **B)** $\sigma_X^2(t) = \frac{1}{2}p_T(t)$
- C) $\sigma_X^2(t) = \frac{1}{5} \sum_{k=-\infty}^{\infty} p_T(t kT)$
- **D)** $\sigma_X^2(t) = 1$

Esercizio 8. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} (t - nT)e^{-(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

B)

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

C)

$$X(f) = \frac{1}{(1+j2\pi f)^2}$$

D)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	34

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

B)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

C)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

D)

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

Esercizio 2. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0$
- **B)** $\rho_{XY}(t) = 1$

- C) $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$
- D) nessuna delle altre risposte è corretta
- **E)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$

Esercizio 3. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

B)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

C)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

D) X(f) non esiste perché il segnale non è a energia finita

Esercizio 4. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

 ϵ

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{9}{T}$
- B) nessuna delle altre risposte è corretta
- C) $B=\infty$
- **D**) $B = \frac{1}{2T}$

Esercizio 5. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{2}{1 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = \infty$
- **B**) $\mathcal{E}_x = 1/2$
- C) $\mathcal{E}_x = 2$
- $\mathbf{D)} \ \mathcal{E}_x = 1$

Esercizio 6. (Punti 2) Sia B la banda al 99% di energia del filtro con risposta in frequenza

$$H(f) = 2\sqrt{2\pi}e^{-8\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\pi B) = 0$
- **B)** $erfc(4\pi B) = 1$
- C) $erf(4\pi B) = 0.99$
- **D)** $\operatorname{erf}(\sqrt{2}\pi B) = 0.99$

Esercizio 7. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- A) $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$
- **B)** $\sigma_X^2(t) = \frac{1}{4}p_T(t)$
- **C**) $\sigma_X^2(t) = 0$
- **D)** $\sigma_X^2(t) = \frac{9}{4}$

Esercizio 8. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

е

$$x_2(t) = \left\lceil \frac{\sin(\pi t)}{\pi t} \right\rceil^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** $y(t) = x_1(t)$
- B) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$
- **C)** y(t) = 0
- **D)** y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	35

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

е

$$x_2(t) = 2 \left[\frac{\sin(\pi t/2)}{\pi t} \right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

A) y(t) = 0

B)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$$

C) y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 - |t| per $|t| \le 1$ e zero altrove

D)
$$y(t) = x_1(t)$$

Esercizio 2. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

A)
$$\mathcal{E}_x = 2$$

B)
$$\mathcal{E}_x = \infty$$

C)
$$\mathcal{E}_x = 0.5$$

$$\mathbf{D)} \ \mathcal{E}_x = 4$$

Esercizio 3. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

 \mathbf{e}

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{1}{2T}$
- ${f B}$) nessuna delle altre risposte è corretta
- **C**) $B = \frac{9}{T}$
- **D)** $B = \infty$

Esercizio 4. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **B)** $\rho_{XY}(t) = 1$
- C) $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$
- **D)** $\rho_{XY}(t) = 0$

Esercizio 5. (Punti 2) Sia B la banda al 99% di energia del filtro con risposta in frequenza

$$H(f) = 2\sqrt{2\pi}e^{-8\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erf(4\pi B) = 0.99$
- **B)** $erfc(4\pi B) = 1$
- **C)** $\operatorname{erf}(\sqrt{2}\pi B) = 0.99$
- **D)** $\operatorname{erfc}(\pi B) = 0$

Esercizio 6. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

B)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

C)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

D)

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

Esercizio 7. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

B) X(f) non esiste perché il segnale non è a energia finita

C)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

D)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

Esercizio 8. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k = -\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- A) $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$
- **B)** $\sigma_X^2(t) = 0$
- C) $\sigma_X^2(t) = \frac{1}{4} p_T(t)$
- **D)** $\sigma_X^2(t) = \frac{9}{4}$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	36

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 1$
- **B)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **C)** $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$

Esercizio 2. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** erf $(\sqrt{2}\pi B) = 0.9$
- **B)** $\operatorname{erfc}(\pi B) = 0$
- **C)** $erfc(2\pi B) = 1$
- **D)** $erf(2\pi B) = 0.9$

Esercizio 3. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

A) nessuna delle altre risposte è corretta

- **B)** $B = \frac{1}{2T}$
- **C**) $B = \frac{1}{T}$
- **D)** $B = \infty$

Esercizio 4. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

B)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

C) X(f) non esiste perché il segnale non è a energia finita

D)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

Esercizio 5. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

B)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

C)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

D)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

Esercizio 6. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

е

$$x_2(t) = 3 \left[\frac{\sin(\pi t/3)}{\pi t} \right]^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

A) y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 - |t| per $|t| \le 1$ e zero altrove

B)
$$y(t) = 0$$

C)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/3)}{\pi\tau} \right]^{3} e^{-j8\pi\tau} d\tau$$

D)
$$y(t) = x_1(t)$$

Esercizio 7. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{1}{1 + \pi^2 t^2}$$

A)
$$\mathcal{E}_x = 1/2$$

$$\mathbf{B)} \ \mathcal{E}_x = 2$$

C)
$$\mathcal{E}_x = 1$$

D)
$$\mathcal{E}_x = \infty$$

Esercizio 8. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = \frac{1}{4} p_T(t)$$

B)
$$\sigma_X^2(t) = 0$$

C)
$$\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$$

D)
$$\sigma_X^2(t) = \frac{9}{4}$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	37

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A = 1$ e varianza $\sigma_A^2 = 1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0$
- **B)** $\rho_{XY}(t) = 1$
- C) $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- **D)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$

Esercizio 2. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 1 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 0$
- **B)** $\sigma_X^2(t) = \frac{1}{4}$
- C) $\sigma_X^2(t) = \frac{1}{2}p_T(t)$
- D) $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$

Esercizio 3. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

B)

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - 2n/T)$$

C)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

D) X(f) non esiste perché il segnale non è a energia finita

Esercizio 4. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

e

$$x_2(t) = \left[\frac{\sin(\pi t)}{\pi t}\right]^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

A) y(t) = 0

B)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$$

C) $y(t) = x_1(t)$

D) y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 - |t| per $|t| \le 1$ e zero altrove

Esercizio 5. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{2}{1 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = \infty$
- $\mathbf{B)} \ \mathcal{E}_x = 1$
- C) $\mathcal{E}_x = 1/2$
- $\mathbf{D)} \ \mathcal{E}_x = 2$

Esercizio 6. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{1}{2T}$
- B) $B = \infty$
- C) nessuna delle altre risposte è corretta
- **D**) $B = \frac{2}{T}$

Esercizio 7. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\frac{\pi}{2}}e^{-0.5\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erf(\pi B) = 0.95$
- **B)** $\operatorname{erfc}(\sqrt{2}\pi B) = 0$
- **C)** $erfc(2\pi B) = 1$
- **D)** erf(2B) = 0.95

Esercizio 8. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 2(t - nT)e^{-2(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2(1+j\pi f)^2}$$

B)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

C)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	38

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

A) $B = \infty$

е

- B) nessuna delle altre risposte è corretta
- **C**) $B = \frac{1}{2T}$
- **D)** $B = \frac{1}{T}$

Esercizio 2. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

е

$$x_2(t) = \left\lceil \frac{\sin(\pi t)}{\pi t} \right\rceil^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** $y(t) = x_1(t)$
- **B)** y(t) = 0
- C) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$
- **D)** y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove

Esercizio 3. (Punti 2) Sia B la banda al 99% di energia del filtro con risposta in frequenza

$$H(f) = 2\sqrt{2\pi}e^{-8\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erf(\sqrt{2}\pi B) = 0.99$
- **B)** $\operatorname{erfc}(\pi B) = 0$
- **C)** $erf(4\pi B) = 0.99$
- **D)** $erfc(4\pi B) = 1$

Esercizio 4. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{1}{1 + \pi^2 t^2}$$

- A) $\mathcal{E}_x = 2$
- **B**) $\mathcal{E}_x = 1/2$
- C) $\mathcal{E}_x = 1$
- $\mathbf{D)} \ \mathcal{E}_x = \infty$

Esercizio 5. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0$
- **B)** $\rho_{XY}(t) = 1$
- C) $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$
- **D)** $\rho_{XY}(t) = \sin(2\pi f_0 t)$

Esercizio 6. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 0 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 0$
- **B)** $\sigma_X^2(t) = 1$
- C) $\sigma_X^2(t) = \frac{2}{3}p_T(t)$
- D) $\sigma_X^2(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$

Esercizio 7. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 2(t - nT)e^{-2(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

B)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

C)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

D)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

Esercizio 8. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j2\pi fT}}$$

B) X(f) non esiste perché il segnale non è a energia finita

C)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/T)$$

$$X(f) = \frac{1}{4T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	39

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\frac{\pi}{2}}e^{-0.5\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** erf(2B) = 0.95
- **B)** $erfc(2\pi B) = 1$
- C) $erf(\pi B) = 0.95$
- **D)** $\operatorname{erfc}(\sqrt{2}\pi B) = 0$

Esercizio 2. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- **B)** $\rho_{XY}(t) = 0$
- **C**) $\rho_{XY}(t) = 1$
- **D)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$

Esercizio 3. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

A)
$$\mathcal{E}_x = \infty$$

- **B)** $\mathcal{E}_x = 0.5$
- C) $\mathcal{E}_x = 4$
- $\mathbf{D)} \ \mathcal{E}_x = 2$

Esercizio 4. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 0 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 1$
- **B)** $\sigma_X^2(t) = 0$
- C) $\sigma_X^2(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} p_T(t kT)$
- **D)** $\sigma_X^2(t) = \frac{2}{3}p_T(t)$

Esercizio 5. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) $B = \infty$
- **B**) $B = \frac{9}{T}$
- C) nessuna delle altre risposte è corretta
- **D)** $B = \frac{1}{2T}$

Esercizio 6. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 2(t - nT)e^{-2(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

 $\mathbf{B})$

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

C)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

Esercizio 7. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j4\pi fT}}$$

B)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

C) X(f) non esiste perché il segnale non è a energia finita

D)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/(2T))$$

Esercizio 8. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

е

$$x_2(t) = 3 \left\lceil \frac{\sin(\pi t/3)}{\pi t} \right\rceil^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

A) $y(t) = x_1(t)$

B)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau/3)}{\pi \tau} \right]^{3} e^{-j8\pi \tau} d\tau$$

C) y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 - |t| per $|t| \le 1$ e zero altrove

D)
$$y(t) = 0$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	40

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 2(t - nT)e^{-2(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

B)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

C)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

D)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

Esercizio 2. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j2\pi fT}}$$

B)

$$X(f) = \frac{1}{4T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

C)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/T)$$

D) X(f) non esiste perché il segnale non è a energia finita

Esercizio 3. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

е

$$x_2(t) = 2 \left[\frac{\sin(\pi t/2)}{\pi t} \right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- A) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$
- **B)** $y(t) = x_1(t)$
- C) y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **D)** y(t) = 0

Esercizio 4. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

e

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- **B)** $\rho_{XY}(t) = 1$
- **C**) $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$

Esercizio 5. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 2 e 4 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 0$
- **B)** $\sigma_X^2(t) = 1$
- C) $\sigma_X^2(t) = \frac{1}{2}p_T(t)$
- **D)** $\sigma_X^2(t) = \frac{1}{5} \sum_{k=-\infty}^{\infty} p_T(t kT)$

Esercizio 6. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{2}{T}$
- **B)** $B = \frac{1}{2T}$
- C) nessuna delle altre risposte è corretta
- **D)** $B = \infty$

Esercizio 7. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{2}{1 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = \infty$
- $\mathbf{B)} \ \mathcal{E}_x = 2$
- C) $\mathcal{E}_x = 1/2$
- $\mathbf{D)} \ \mathcal{E}_x = 1$

Esercizio 8. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\pi}e^{-\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** erf(2B) = 0.95
- **B)** $\operatorname{erfc}(\pi B) = 0$
- C) $\operatorname{erfc}(2\pi B) = 1$
- **D)** $erf(\sqrt{2}\pi B) = 0.95$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	41

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

е

$$x_2(t) = 3 \left[\frac{\sin(\pi t/3)}{\pi t} \right]^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** y(t) = 0
- B) y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **C)** $y(t) = x_1(t)$

D)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau/3)}{\pi \tau} \right]^{3} e^{-j8\pi \tau} d\tau$$

Esercizio 2. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 0 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 1$
- B) $\sigma_X^2(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$
- **C)** $\sigma_X^2(t) = 0$
- **D)** $\sigma_X^2(t) = \frac{2}{3}p_T(t)$

Esercizio 3. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 1$
- **B)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **C**) $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$
- E) nessuna delle altre risposte è corretta

Esercizio 4. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{2}{1 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = 1$
- B) $\mathcal{E}_x = \infty$
- C) $\mathcal{E}_x = 2$
- **D)** $\mathcal{E}_x = 1/2$

Esercizio 5. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j4\pi fT}}$$

B)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/(2T))$$

- C) X(f) non esiste perché il segnale non è a energia finita
- D)

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - 2n/T)$$

Esercizio 6. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) nessuna delle altre risposte è corretta
- **B**) $B = \frac{1}{T}$
- **C**) $B = \frac{1}{2T}$
- **D)** $B = \infty$

Esercizio 7. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\frac{\pi}{2}}e^{-0.5\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\sqrt{2}\pi B) = 0$
- **B)** $erf(\pi B) = 0.95$
- **C)** $erfc(2\pi B) = 1$
- **D)** erf(2B) = 0.95

Esercizio 8. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 2(t - nT)e^{-2(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

B)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

C)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	42

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) nessuna delle altre risposte è corretta
- **B**) $B = \frac{9}{T}$
- C) $B = \infty$
- **D**) $B = \frac{1}{2T}$

Esercizio 2. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

- **B)** X(f) non esiste perché il segnale non è a energia finita
- C)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

Esercizio 3. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\pi}e^{-\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\pi B) = 0$
- **B)** erf(2B) = 0.95
- **C)** $erfc(2\pi B) = 1$
- **D)** $erf(\sqrt{2}\pi B) = 0.95$

Esercizio 4. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

 ϵ

$$x_2(t) = 3 \left\lceil \frac{\sin(\pi t/3)}{\pi t} \right\rceil^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** y(t) = 0
- B) y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- C) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau/3)}{\pi \tau} \right]^{3} e^{-j8\pi\tau} d\tau$
- **D)** $y(t) = x_1(t)$

Esercizio 5. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} (t - nT)e^{-(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

B)

$$X(f) = \frac{1}{(1 + j2\pi f)^2}$$

 \mathbf{C})

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

Esercizio 6. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 1 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{1}{2}p_T(t)$
- B) $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$
- **C)** $\sigma_X^2(t) = 0$
- **D)** $\sigma_X^2(t) = \frac{1}{4}$

Esercizio 7. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

- A) $\mathcal{E}_x = \infty$
- $\mathbf{B)} \ \mathcal{E}_x = 2$
- C) $\mathcal{E}_x = 0.5$
- $\mathbf{D)} \ \mathcal{E}_x = 4$

Esercizio 8. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

 \mathbf{e}

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$
- **B)** $\rho_{XY}(t) = 1$
- **C**) $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	43

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} (t - nT)e^{-(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

B)

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

C)

$$X(f) = \frac{1}{(1 + j2\pi f)^2}$$

D)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

Esercizio 2. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{1}{1 + \pi^2 t^2}$$

A)
$$\mathcal{E}_x = 2$$

B)
$$\mathcal{E}_x = \infty$$

C)
$$\mathcal{E}_x = 1$$

D)
$$\mathcal{E}_x = 1/2$$

Esercizio 3. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\pi}e^{-\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(2\pi B) = 1$
- **B)** $\operatorname{erfc}(\pi B) = 0$
- **C)** $\operatorname{erf}(\sqrt{2}\pi B) = 0.95$
- **D)** erf(2B) = 0.95

Esercizio 4. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) nessuna delle altre risposte è corretta
- **B)** $B = \frac{1}{2T}$
- C) $B = \frac{2}{T}$
- **D)** $B = \infty$

Esercizio 5. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A = 1$ e varianza $\sigma_A^2 = 1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- **B)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$
- **C)** $\rho_{XY}(t) = 1$
- **D)** $\rho_{XY}(t) = 0$

Esercizio 6. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 0 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{2}{3}p_T(t)$
- **B)** $\sigma_X^2(t) = 1$
- C) $\sigma_X^2(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} p_T(t kT)$

D) $\sigma_X^2(t) = 0$

Esercizio 7. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

е

$$x_2(t) = 3 \left[\frac{\sin(\pi t/3)}{\pi t} \right]^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** y(t) = 0
- **B)** $y(t) = x_1(t)$
- C) y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **D)** $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau/3)}{\pi \tau} \right]^{3} e^{-j8\pi \tau} d\tau$

Esercizio 8. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

B)

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - 2n/T)$$

C)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

D) X(f) non esiste perché il segnale non è a energia finita

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	44

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\pi B) = 0$
- **B)** $erfc(2\pi B) = 1$
- C) $erf(2\pi B) = 0.9$
- **D)** erf $(\sqrt{2}\pi B) = 0.9$

Esercizio 2. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j4\pi fT}}$$

B) X(f) non esiste perché il segnale non è a energia finita

C)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/(2T))$$

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

Esercizio 3. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{1}{2T}$
- **B**) $B = \infty$
- C) nessuna delle altre risposte è corretta
- **D**) $B = \frac{1}{T}$

Esercizio 4. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

е

$$x_2(t) = 2 \left[\frac{\sin(\pi t/2)}{\pi t} \right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** $y(t) = x_1(t)$
- B) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$
- C) y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **D)** y(t) = 0

Esercizio 5. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 2(t - nT)e^{-2(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

C)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

D)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

Esercizio 6. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{2}{1 + 4\pi^2 t^2}$$

- **A)** $\mathcal{E}_x = 1/2$
- B) $\mathcal{E}_x = \infty$
- C) $\mathcal{E}_x = 1$
- $\mathbf{D)} \ \mathcal{E}_x = 2$

Esercizio 7. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$
- **B)** $\rho_{XY}(t) = 1$
- C) $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- **D)** $\rho_{XY}(t) = 0$

Esercizio 8. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 1 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{1}{2} p_T(t)$
- **B)** $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t kT)$
- **C)** $\sigma_X^2(t) = 0$
- **D)** $\sigma_X^2(t) = \frac{1}{4}$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	45

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) $B = \infty$
- **B**) $B = \frac{2}{T}$
- **C**) $B = \frac{1}{2T}$
- D) nessuna delle altre risposte è corretta

Esercizio 2. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} (t - nT)e^{-(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

B)

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

C)

$$X(f) = \frac{1}{(1 + j2\pi f)^2}$$

D)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

Esercizio 3. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

B)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

C)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

D) X(f) non esiste perché il segnale non è a energia finita

Esercizio 4. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **B)** $\rho_{XY}(t) = 1$
- **C)** $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$
- D) nessuna delle altre risposte è corretta
- **E)** $\rho_{XY}(t) = 0$

Esercizio 5. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 2 e 4 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 1$
- **B)** $\sigma_X^2(t) = 0$
- C) $\sigma_X^2(t) = \frac{1}{5} \sum_{k=-\infty}^{\infty} p_T(t-kT)$

D)
$$\sigma_X^2(t) = \frac{1}{2}p_T(t)$$

Esercizio 6. (Punti 2) Sia B la banda al 99% di energia del filtro con risposta in frequenza

$$H(f) = 2\sqrt{2\pi}e^{-8\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\pi B) = 0$
- **B)** $erf(\sqrt{2}\pi B) = 0.99$
- C) $erf(4\pi B) = 0.99$
- **D)** $erfc(4\pi B) = 1$

Esercizio 7. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{1}{1 + \pi^2 t^2}$$

- **A)** $\mathcal{E}_x = 1/2$
- B) $\mathcal{E}_x = \infty$
- C) $\mathcal{E}_x = 2$
- $\mathbf{D)} \ \mathcal{E}_x = 1$

Esercizio 8. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

e

$$x_2(t) = \left[\frac{\sin(\pi t)}{\pi t}\right]^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **B)** $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$
- **C)** $y(t) = x_1(t)$
- **D)** y(t) = 0

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	46

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erf(\sqrt{2}\pi B) = 0.9$
- **B)** $\operatorname{erfc}(\pi B) = 0$
- **C)** $erfc(2\pi B) = 1$
- **D)** $erf(2\pi B) = 0.9$

Esercizio 2. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = \frac{9}{4}$$

B)
$$\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$$

C)
$$\sigma_X^2(t) = \frac{1}{4}p_T(t)$$

D)
$$\sigma_X^2(t) = 0$$

Esercizio 3. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

A)
$$\mathcal{E}_x = 0.5$$

- B) $\mathcal{E}_x = 4$
- C) $\mathcal{E}_x = \infty$
- $\mathbf{D)} \ \mathcal{E}_x = 2$

Esercizio 4. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 2(t - nT)e^{-2(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

 \mathbf{C})

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

D)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

Esercizio 5. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j2\pi fT}}$$

B)

$$X(f) = \frac{1}{4T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

 \mathbf{C})

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/T)$$

D) X(f) non esiste perché il segnale non è a energia finita

Esercizio 6. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) $B = \infty$
- **B**) $B = \frac{2}{T}$
- C) nessuna delle altre risposte è corretta
- **D)** $B = \frac{1}{2T}$

Esercizio 7. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

e

$$x_2(t) = \left[\frac{\sin(\pi t)}{\pi t}\right]^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- A) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$
- B) y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **C)** y(t) = 0
- **D)** $y(t) = x_1(t)$

Esercizio 8. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

e

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A = 1$ e varianza $\sigma_A^2 = 2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **B)** $\rho_{XY}(t) = 0$
- **C)** $\rho_{XY}(t) = 1$
- **D)** $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	47

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

B)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

C)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

D) X(f) non esiste perché il segnale non è a energia finita

Esercizio 2. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{1}{1 + \pi^2 t^2}$$

- A) $\mathcal{E}_x = \infty$
- **B**) $\mathcal{E}_x = 1/2$
- C) $\mathcal{E}_x = 1$
- $\mathbf{D)} \ \mathcal{E}_x = 2$

Esercizio 3. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} (t - nT)e^{-(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

B)

$$X(f) = \frac{1}{(1 + j2\pi f)^2}$$

C)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

D)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

Esercizio 4. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

e

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 1$
- **B)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **C)** $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$
- E) nessuna delle altre risposte è corretta

Esercizio 5. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) nessuna delle altre risposte è corretta
- **B**) $B = \frac{1}{T}$
- C) $B = \infty$
- **D**) $B = \frac{1}{2T}$

Esercizio 6. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 0 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = 1$$

B)
$$\sigma_X^2(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} p_T(t - kT)$$

C)
$$\sigma_X^2(t) = 0$$

D)
$$\sigma_X^2(t) = \frac{2}{3}p_T(t)$$

Esercizio 7. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

e

$$x_2(t) = \left[\frac{\sin(\pi t)}{\pi t}\right]^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

$$\textbf{A)} \ \ y(t) = p(t)tri(t), \ \text{dove} \ p(t) = 1 \ \text{per} \ |t| \leq 0.5 \ \text{e zero altrove}, \ \text{e} \ tri(t) = 1 - |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}$$

B)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$$

C)
$$y(t) = x_1(t)$$

D)
$$y(t) = 0$$

Esercizio 8. (Punti 2) Sia B la banda al 99% di energia del filtro con risposta in frequenza

$$H(f) = 2\sqrt{2\pi}e^{-8\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

A)
$$\operatorname{erfc}(\pi B) = 0$$

B)
$$erfc(4\pi B) = 1$$

C)
$$erf(4\pi B) = 0.99$$

D)
$$\operatorname{erf}(\sqrt{2}\pi B) = 0.99$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	48

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$
- **B)** $\rho_{XY}(t) = 1$
- C) $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- **D)** $\rho_{XY}(t) = 0$

Esercizio 2. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{1}{4} p_T(t)$
- B) $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t kT)$
- C) $\sigma_X^2(t) = \frac{9}{4}$
- **D)** $\sigma_X^2(t) = 0$

Esercizio 3. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\pi}e^{-\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erf(\sqrt{2}\pi B) = 0.95$
- **B)** $\operatorname{erfc}(\pi B) = 0$
- **C)** erf(2B) = 0.95
- **D)** $erfc(2\pi B) = 1$

Esercizio 4. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) $B=\infty$
- **B**) $B = \frac{1}{2T}$
- **C**) $B = \frac{1}{T}$
- D) nessuna delle altre risposte è corretta

Esercizio 5. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

B)

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

C)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

D)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

Esercizio 6. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

е

$$x_2(t) = 2 \left[\frac{\sin(\pi t/2)}{\pi t} \right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

A) y(t) = 0

B) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$

C) $y(t) = x_1(t)$

D) y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 - |t| per $|t| \le 1$ e zero altrove

Esercizio 7. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j4\pi fT}}$$

B)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/(2T))$$

C)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

D) X(f) non esiste perché il segnale non è a energia finita

Esercizio 8. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

- A) $\mathcal{E}_x = 4$
- $\mathbf{B)} \ \mathcal{E}_x = 2$
- C) $\mathcal{E}_x = \infty$
- **D)** $\mathcal{E}_x = 0.5$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	49

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

B)

$$X(f) = 0.5 f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

C)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

D)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

Esercizio 2. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

е

$$x_2(t) = \left\lceil \frac{\sin(\pi t)}{\pi t} \right\rceil^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

A) y(t) = 0

B)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$$

- **C)** $y(t) = x_1(t)$
- **D)** y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove

Esercizio 3. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{9}{4}$
- **B)** $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t kT)$
- **C)** $\sigma_X^2(t) = 0$
- **D)** $\sigma_X^2(t) = \frac{1}{4} p_T(t)$

Esercizio 4. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A = 1$ e varianza $\sigma_A^2 = 1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$
- **B)** $\rho_{XY}(t) = 1$
- C) $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- **D)** $\rho_{XY}(t) = 0$

Esercizio 5. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

B)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

- C) X(f) non esiste perché il segnale non è a energia finita
- D)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

Esercizio 6. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{2}{T}$
- B) nessuna delle altre risposte è corretta
- C) $B = \infty$
- **D)** $B = \frac{1}{2T}$

Esercizio 7. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\frac{\pi}{2}}e^{-0.5\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\sqrt{2}\pi B) = 0$
- **B)** $erf(\pi B) = 0.95$
- **C)** erf(2B) = 0.95
- **D)** $erfc(2\pi B) = 1$

Esercizio 8. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{6}{9 + 4\pi^2 t^2}$$

- **A)** $\mathcal{E}_x = 1/3$
- **B**) $\mathcal{E}_x = 1/6$
- C) $\mathcal{E}_x = \infty$
- $\mathbf{D)} \ \mathcal{E}_x = 1$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	50

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

 ϵ

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) nessuna delle altre risposte è corretta
- **B)** $B = \frac{9}{T}$
- **C**) $B = \frac{1}{2T}$
- $\mathbf{D)} \ B = \infty$

Esercizio 2. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 2 e 4 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{1}{2}p_T(t)$
- **B)** $\sigma_X^2(t) = \frac{1}{5} \sum_{k=-\infty}^{\infty} p_T(t kT)$
- **C**) $\sigma_X^2(t) = 0$
- **D)** $\sigma_X^2(t) = 1$

Esercizio 3. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\pi B) = 0$
- **B)** $erf(\sqrt{2}\pi B) = 0.9$
- **C)** $erfc(2\pi B) = 1$
- **D)** $erf(2\pi B) = 0.9$

Esercizio 4. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{2}{1 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = 2$
- **B**) $\mathcal{E}_x = 1/2$
- C) $\mathcal{E}_x = 1$
- **D**) $\mathcal{E}_x = \infty$

Esercizio 5. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

- B) X(f) non esiste perché il segnale non è a energia finita
- C)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

D)

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - n/T)$$

Esercizio 6. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 2(t - nT)e^{-2(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

B)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

C)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

D)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

Esercizio 7. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

e

$$x_2(t) = 2 \left\lceil \frac{\sin(\pi t/2)}{\pi t} \right\rceil^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** y(t) = 0
- **B)** $y(t) = x_1(t)$
- C) y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- D) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$

Esercizio 8. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

 \mathbf{e}

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- **B)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$
- **C**) $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = 1$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	51

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0$
- **B)** $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- C) $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$
- **D)** $\rho_{XY}(t) = 1$

Esercizio 2. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

- B) X(f) non esiste perché il segnale non è a energia finita
- \mathbf{C})

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

D)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

Esercizio 3. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 2(t - nT)e^{-2(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

B)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

C)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

D)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

Esercizio 4. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\frac{\pi}{2}}e^{-0.5\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\sqrt{2}\pi B) = 0$
- **B)** $erf(\pi B) = 0.95$
- **C)** erf(2B) = 0.95
- **D)** $erfc(2\pi B) = 1$

Esercizio 5. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{2}{T}$
- **B)** $B = \frac{1}{2T}$
- C) $B = \infty$
- D) nessuna delle altre risposte è corretta

Esercizio 6. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

- **A)** $\mathcal{E}_x = 0.5$
- B) $\mathcal{E}_x = \infty$
- C) $\mathcal{E}_x = 2$
- $\mathbf{D)} \ \mathcal{E}_x = 4$

Esercizio 7. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 2 e 4 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 0$
- B) $\sigma_X^2(t) = \frac{1}{5} \sum_{k=-\infty}^{\infty} p_T(t-kT)$
- C) $\sigma_X^2(t) = \frac{1}{2}p_T(t)$
- **D)** $\sigma_X^2(t) = 1$

Esercizio 8. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

e

$$x_2(t) = \left[\frac{\sin(\pi t)}{\pi t}\right]^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** $y(t) = x_1(t)$
- **B)** $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$
- C) y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **D)** y(t) = 0

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	52

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 2 e 4 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = 1$$

B)
$$\sigma_X^2(t) = \frac{1}{5} \sum_{k=-\infty}^{\infty} p_T(t - kT)$$

C)
$$\sigma_X^2(t) = \frac{1}{2}p_T(t)$$

D)
$$\sigma_X^2(t) = 0$$

Esercizio 2. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 2(t - nT)e^{-2(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

 \mathbf{C})

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

D)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

Esercizio 3. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0$
- **B)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **C)** $\rho_{XY}(t) = 1$
- **D)** $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$

Esercizio 4. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

- A) $\mathcal{E}_x = 4$
- B) $\mathcal{E}_x = \infty$
- **C**) $\mathcal{E}_x = 0.5$
- $\mathbf{D)} \ \mathcal{E}_x = 2$

Esercizio 5. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

е

$$x_2(t) = \left[\frac{\sin(\pi t)}{\pi t}\right]^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$
- **B)** y(t) = 0
- **C)** $y(t) = x_1(t)$
- **D)** y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove

Esercizio 6. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

A) $B = \infty$

- B) nessuna delle altre risposte è corretta
- **C**) $B = \frac{2}{T}$
- **D)** $B = \frac{1}{2T}$

Esercizio 7. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A) X(f) non esiste perché il segnale non è a energia finita

B)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

C)

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - n/T)$$

D)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

Esercizio 8. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\pi B) = 0$
- **B)** $erfc(2\pi B) = 1$
- C) $erf(2\pi B) = 0.9$
- **D)** $erf(\sqrt{2}\pi B) = 0.9$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	53

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 1$
- **B)** $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- C) $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$
- **D)** $\rho_{XY}(t) = 0$

Esercizio 2. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} (t - nT)e^{-(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

 \mathbf{C})

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

D)

$$X(f) = \frac{1}{(1 + j2\pi f)^2}$$

Esercizio 3. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

B)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

C) X(f) non esiste perché il segnale non è a energia finita

D)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

Esercizio 4. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

A) nessuna delle altre risposte è corretta

- **B**) $B = \infty$
- C) $B = \frac{1}{2T}$
- **D)** $B = \frac{9}{T}$

Esercizio 5. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{2}{1 + 4\pi^2 t^2}$$

- **A)** $\mathcal{E}_x = 1/2$
- $\mathbf{B)} \ \mathcal{E}_x = 1$
- C) $\mathcal{E}_x = \infty$
- $\mathbf{D)} \ \mathcal{E}_x = 2$

Esercizio 6. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

е

$$x_2(t) = \left[\frac{\sin(\pi t)}{\pi t}\right]^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** y(t) = 0
- **B)** $y(t) = x_1(t)$
- C) y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove

D)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$$

Esercizio 7. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 2 e 4 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- A) $\sigma_X^2(t) = \frac{1}{5} \sum_{k=-\infty}^{\infty} p_T(t-kT)$
- **B)** $\sigma_X^2(t) = 1$
- **C)** $\sigma_X^2(t) = 0$
- **D)** $\sigma_X^2(t) = \frac{1}{2}p_T(t)$

Esercizio 8. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\frac{\pi}{2}}e^{-0.5\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** erf(2B) = 0.95
- **B)** $\operatorname{erfc}(\sqrt{2}\pi B) = 0$
- C) $erf(\pi B) = 0.95$
- **D)** $erfc(2\pi B) = 1$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	54

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(2\pi B) = 1$
- **B)** $\operatorname{erfc}(\pi B) = 0$
- **C)** $erf(\sqrt{2}\pi B) = 0.9$
- **D)** $erf(2\pi B) = 0.9$

Esercizio 2. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) $B = \infty$
- **B**) $B = \frac{1}{2T}$
- C) nessuna delle altre risposte è corretta
- **D**) $B = \frac{1}{T}$

Esercizio 3. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{9}{4}$
- **B)** $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t kT)$
- **C)** $\sigma_X^2(t) = 0$
- **D)** $\sigma_X^2(t) = \frac{1}{4}p_T(t)$

Esercizio 4. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} (t - nT)e^{-(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{(1 + j2\pi f)^2}$$

B)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

C)

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

D)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

Esercizio 5. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

e

$$x_2(t) = 3 \left\lceil \frac{\sin(\pi t/3)}{\pi t} \right\rceil^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- $\textbf{A)} \ \ y(t) = p(t/3)tri(t/3), \ \text{dove} \ p(t) = 1 \ \text{per} \ |t| \leq 0.5 \ \text{e zero altrove}, \ \text{e} \ tri(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{per} \ |t| \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{e zero altrove}, \ \text{e zero altrove}, \ \text{e zero altrove}, \ \text{e tri}(t) = 1 |t| \ \text{e zero altrove}, \ \text{e zero al$
- **B)** $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau/3)}{\pi \tau} \right]^{3} e^{-j8\pi\tau} d\tau$
- **C)** $y(t) = x_1(t)$
- **D)** y(t) = 0

Esercizio 6. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

- A) X(f) non esiste perché il segnale non è a energia finita
- B)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

C)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j4\pi fT}}$$

D)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/(2T))$$

Esercizio 7. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 1$
- **B)** $\rho_{XY}(t) = 0$
- C) $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **D)** $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$

Esercizio 8. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{6}{9 + 4\pi^2 t^2}$$

- **A)** $\mathcal{E}_x = 1/3$
- B) $\mathcal{E}_x = \infty$
- C) $\mathcal{E}_x = 1$
- **D)** $\mathcal{E}_x = 1/6$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	55

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{2}{1 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = 2$
- B) $\mathcal{E}_x = \infty$
- C) $\mathcal{E}_x = 1/2$
- $\mathbf{D)} \ \mathcal{E}_x = 1$

Esercizio 2. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

C)

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

D)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

Esercizio 3. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) $B = \infty$
- B) nessuna delle altre risposte è corretta
- **C**) $B = \frac{1}{2T}$
- **D)** $B = \frac{9}{T}$

Esercizio 4. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j2\pi fT}}$$

- B) X(f) non esiste perché il segnale non è a energia finita
- C)

$$X(f) = \frac{1}{4T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

D)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/T)$$

Esercizio 5. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

 \mathbf{e}

$$x_2(t) = 2 \left[\frac{\sin(\pi t/2)}{\pi t} \right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** $y(t) = x_1(t)$
- **B)** $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$
- **C)** y(t) = 0
- **D)** y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove

Esercizio 6. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$
- **B)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **C**) $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = 1$
- E) nessuna delle altre risposte è corretta

Esercizio 7. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 1 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- A) $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$
- **B)** $\sigma_X^2(t) = 0$
- C) $\sigma_X^2(t) = \frac{1}{2} p_T(t)$
- **D)** $\sigma_X^2(t) = \frac{1}{4}$

Esercizio 8. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\frac{\pi}{2}}e^{-0.5\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $\operatorname{erfc}(\sqrt{2}\pi B) = 0$
- **B)** erf(2B) = 0.95
- C) $erf(\pi B) = 0.95$
- **D)** $erfc(2\pi B) = 1$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	56

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 1 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = \frac{1}{2} p_T(t)$$

B)
$$\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t - kT)$$

C)
$$\sigma_X^2(t) = \frac{1}{4}$$

D)
$$\sigma_X^2(t) = 0$$

Esercizio 2. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

е

$$x_2(t) = 2 \left[\frac{\sin(\pi t/2)}{\pi t} \right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

A)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$$

B)
$$y(t) = 0$$

C)
$$y(t) = x_1(t)$$

D)
$$y(t) = p(t/2)tri(t/2)$$
, dove $p(t) = 1$ per $|t| \le 0.5$ e zero altrove, e $tri(t) = 1 - |t|$ per $|t| \le 1$ e zero altrove

Esercizio 3. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j4\pi fT}}$$

B) X(f) non esiste perché il segnale non è a energia finita

 \mathbf{C})

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - 2n/T)$$

D)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/(2T))$$

Esercizio 4. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

 ϵ

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- **B)** $\rho_{XY}(t) = 1$
- **C**) $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$

Esercizio 5. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 2(t - nT)e^{-2(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

B)

$$X(f) = \frac{1}{2(1 + i\pi f)^2}$$

C)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

D)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

Esercizio 6. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{1}{1 + \pi^2 t^2}$$

- **A)** $\mathcal{E}_x = 1/2$
- $\mathbf{B)} \ \mathcal{E}_x = 1$
- C) $\mathcal{E}_x = 2$
- **D)** $\mathcal{E}_x = \infty$

Esercizio 7. (Punti 2) Sia B la banda al 99% di energia del filtro con risposta in frequenza

$$H(f) = 2\sqrt{2\pi}e^{-8\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(4\pi B) = 1$
- **B)** $erf(\sqrt{2}\pi B) = 0.99$
- C) $\operatorname{erfc}(\pi B) = 0$
- **D)** $erf(4\pi B) = 0.99$

Esercizio 8. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) $B = \infty$
- **B)** $B = \frac{1}{2T}$
- C) $B = \frac{2}{T}$
- D) nessuna delle altre risposte è corretta

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	57

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} (t - nT)e^{-(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{(1+j2\pi f)^2}$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

 \mathbf{C}

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

D)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

Esercizio 2. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

B) X(f) non esiste perché il segnale non è a energia finita

C)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

D)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

Esercizio 3. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erf(2\pi B) = 0.9$
- **B)** $erf(\sqrt{2}\pi B) = 0.9$
- **C)** $erfc(2\pi B) = 1$
- **D)** $\operatorname{erfc}(\pi B) = 0$

Esercizio 4. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{6}{9 + 4\pi^2 t^2}$$

- **A)** $\mathcal{E}_x = 1/3$
- **B)** $\mathcal{E}_x = 1/6$
- C) $\mathcal{E}_x = 1$
- **D**) $\mathcal{E}_x = \infty$

Esercizio 5. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

е

$$x_2(t) = 3 \left\lceil \frac{\sin(\pi t/3)}{\pi t} \right\rceil^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- A) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/3)}{\pi\tau} \right]^{3} e^{-j8\pi\tau} d\tau$
- B) y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **C)** $y(t) = x_1(t)$
- **D)** y(t) = 0

Esercizio 6. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) nessuna delle altre risposte è corretta
- B) $B = \infty$
- **C**) $B = \frac{1}{2T}$
- **D**) $B = \frac{1}{T}$

Esercizio 7. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **B)** $\rho_{XY}(t) = 1$
- **C)** $\rho_{XY}(t) = 0$
- **D)** $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$

Esercizio 8. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{9}{4}$
- **B)** $\sigma_X^2(t) = 0$
- C) $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$
- **D)** $\sigma_X^2(t) = \frac{1}{4}p_T(t)$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	58

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 2 e 4 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = \frac{1}{5} \sum_{k=-\infty}^{\infty} p_T(t-kT)$$

B)
$$\sigma_X^2(t) = \frac{1}{2}p_T(t)$$

C)
$$\sigma_X^2(t) = 1$$

D)
$$\sigma_X^2(t) = 0$$

Esercizio 2. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

е

$$x_2(t) = 2\left[\frac{\sin(\pi t/2)}{\pi t}\right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

A)
$$y(t) = x_1(t)$$

B)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$$

C)
$$y(t) = 0$$

D) y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 - |t| per $|t| \le 1$ e zero altrove

Esercizio 3. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **B)** $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$
- **C)** $\rho_{XY}(t) = 1$
- D) nessuna delle altre risposte è corretta
- **E)** $\rho_{XY}(t) = 0$

Esercizio 4. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

- A) $\mathcal{E}_x = 4$
- **B)** $\mathcal{E}_x = 0.5$
- C) $\mathcal{E}_x = 2$
- D) $\mathcal{E}_x = \infty$

Esercizio 5. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

(

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) nessuna delle altre risposte è corretta
- **B**) $B = \frac{2}{T}$
- C) $B = \infty$
- **D)** $B = \frac{1}{2T}$

Esercizio 6. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 2(t - nT)e^{-2(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

 $\mathbf{B})$

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

C)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

D)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

Esercizio 7. (Punti 2) Sia B la banda al 99% di energia del filtro con risposta in frequenza

$$H(f) = 2\sqrt{2\pi}e^{-8\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erf(\sqrt{2}\pi B) = 0.99$
- **B)** $erfc(4\pi B) = 1$
- C) $erf(4\pi B) = 0.99$
- **D)** $\operatorname{erfc}(\pi B) = 0$

Esercizio 8. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A) X(f) non esiste perché il segnale non è a energia finita

B)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

C)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

D)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	59

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(2\pi B) = 1$
- **B)** $\operatorname{erfc}(\pi B) = 0$
- **C)** erf $(\sqrt{2}\pi B) = 0.9$
- **D)** $erf(2\pi B) = 0.9$

Esercizio 2. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} (t - nT)e^{-(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{(1 + j2\pi f)^2}$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

 \mathbf{C})

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

D)

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

Esercizio 3. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

 ϵ

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **B)** $\rho_{XY}(t) = 1$
- C) $\rho_{XY}(t) = 2e^{j4\pi f_0 t}$
- **D)** $\rho_{XY}(t) = 0$

Esercizio 4. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{2T} \sum_{n=-\infty}^{\infty} \delta(f - 2n/T)$$

- B) X(f) non esiste perché il segnale non è a energia finita
- C)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j4\pi fT}}$$

D)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/(2T))$$

Esercizio 5. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{1}{1 + \pi^2 t^2}$$

- A) $\mathcal{E}_x = 2$
- **B)** $\mathcal{E}_x = 1/2$
- C) $\mathcal{E}_x = 1$
- D) $\mathcal{E}_x = \infty$

Esercizio 6. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

е

$$x_2(t) = 2 \left[\frac{\sin(\pi t/2)}{\pi t} \right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

A) y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 - |t| per $|t| \le 1$ e zero altrove

B)
$$y(t) = 0$$

C)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/2)}{\pi\tau} \right]^{3} e^{-j6\pi\tau} d\tau$$

D)
$$y(t) = x_1(t)$$

Esercizio 7. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

A) nessuna delle altre risposte è corretta

B)
$$B = \frac{1}{T}$$

C)
$$B = \infty$$

D)
$$B = \frac{1}{2T}$$

Esercizio 8. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 1 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$$

B)
$$\sigma_X^2(t) = \frac{1}{4}$$

C)
$$\sigma_X^2(t) = 0$$

D)
$$\sigma_X^2(t) = \frac{1}{2} p_T(t)$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	60

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

 \mathbf{e}

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=2$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 4e^{j5\pi f_0 t}$
- **B)** $\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$
- **C)** $\rho_{XY}(t) = 1$
- D) nessuna delle altre risposte è corretta
- **E)** $\rho_{XY}(t) = 0$

Esercizio 2. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

 \mathbf{e}

$$x_2(t) = \left[\frac{\sin(\pi t)}{\pi t}\right]^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- A) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$
- **B)** y(t) = 0
- **C)** $y(t) = x_1(t)$
- **D)** y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove

Esercizio 3. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{2}{1 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) $B = \infty$
- **B)** $B = \frac{1}{2T}$
- C) $B = \frac{2}{T}$
- D) nessuna delle altre risposte è corretta

Esercizio 4. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - 2nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j4\pi fT}}$$

- **B)** X(f) non esiste perché il segnale non è a energia finita
- C)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - n/(2T))$$

D)

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - 2n/T)$$

Esercizio 5. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{6}{9 + 4\pi^2 t^2}$$

- A) $\mathcal{E}_x = 1$
- **B)** $\mathcal{E}_x = 1/6$
- **C**) $\mathcal{E}_x = 1/3$
- **D**) $\mathcal{E}_x = \infty$

Esercizio 6. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} (t - nT)e^{-(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{T^2 - 4\pi^2 n^2 + j4\pi nT} \delta(f - n/T)$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

C)

$$X(f) = \frac{1}{(1 + j2\pi f)^2}$$

D)

$$X(f) = f \cdot e^{-|f|} \delta(f - 2/T)$$

Esercizio 7. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\pi}e^{-\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(2\pi B) = 1$
- **B)** $erf(\sqrt{2}\pi B) = 0.95$
- **C)** erf(2B) = 0.95
- **D)** $\operatorname{erfc}(\pi B) = 0$

Esercizio 8. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori -2 e 1 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = \frac{1}{4} p_T(t)$
- **B)** $\sigma_X^2(t) = \frac{9}{4}$
- **C)** $\sigma_X^2(t) = 0$
- D) $\sigma_X^2(t) = \frac{5}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	61

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\pi}e^{-\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(2\pi B) = 1$
- **B)** $erf(\sqrt{2}\pi B) = 0.95$
- C) $\operatorname{erfc}(\pi B) = 0$
- **D)** erf(2B) = 0.95

Esercizio 2. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 0$
- **B)** $\rho_{XY}(t) = 1$
- C) $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- **D)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$

Esercizio 3. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 2(t - nT)e^{-2(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

C)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

D)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

Esercizio 4. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{9}{T}$
- **B)** $B = \frac{1}{2T}$
- C) $B = \infty$
- D) nessuna delle altre risposte è corretta

Esercizio 5. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

- **A)** $\mathcal{E}_x = 0.5$
- B) $\mathcal{E}_x = 4$
- C) $\mathcal{E}_x = \infty$
- $\mathbf{D)} \ \mathcal{E}_x = 2$

Esercizio 6. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

e

$$x_2(t) = \left[\frac{\sin(\pi t)}{\pi t}\right]^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- **A)** $y(t) = x_1(t)$
- **B)** y(t) = 0
- C) y(t) = p(t)tri(t), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove

D)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$$

Esercizio 7. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/T)$$

B)

$$X(f) = \frac{1}{4T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

C)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j2\pi fT}}$$

D) X(f) non esiste perché il segnale non è a energia finita

Esercizio 8. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 0 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 0$
- **B)** $\sigma_X^2(t) = \frac{2}{3}p_T(t)$
- C) $\sigma_X^2(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$
- **D)** $\sigma_X^2(t) = 1$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	62

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 2) Sia B la banda al 99% di energia del filtro con risposta in frequenza

$$H(f) = 2\sqrt{2\pi}e^{-8\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erf(4\pi B) = 0.99$
- **B)** $\operatorname{erfc}(\pi B) = 0$
- C) $\operatorname{erfc}(4\pi B) = 1$
- **D)** $erf(\sqrt{2}\pi B) = 0.99$

Esercizio 2. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 0 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 1$
- **B)** $\sigma_X^2(t) = 0$
- C) $\sigma_X^2(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$
- **D)** $\sigma_X^2(t) = \frac{2}{3}p_T(t)$

Esercizio 3. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/2)}{\pi t}$$

е

$$x_2(t) = 2 \left[\frac{\sin(\pi t/2)}{\pi t} \right]^2 e^{-j8\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

A) y(t) = p(t/2)tri(t/2), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 - |t| per $|t| \le 1$ e zero altrove

B)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau/2)}{\pi \tau} \right]^{3} e^{-j6\pi \tau} d\tau$$

C)
$$y(t) = x_1(t)$$

D)
$$y(t) = 0$$

Esercizio 4. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{4}{1 + 16\pi^2 t^2}$$

A)
$$\mathcal{E}_x = 0.5$$

$$\mathbf{B)} \ \mathcal{E}_x = 4$$

C)
$$\mathcal{E}_x = \infty$$

$$\mathbf{D)} \ \mathcal{E}_x = 2$$

Esercizio 5. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

е

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=2$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

A)
$$\rho_{XY}(t) = 2e^{j4\pi f_0 t}$$

B)
$$\rho_{XY}(t) = 1$$

C)
$$\rho_{XY}(t) = 0.5 \sin(2\pi f_0 t)$$

D)
$$\rho_{XY}(t) = 0$$

Esercizio 6. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{1}{1 - \frac{1}{2}e^{-j2\pi fT}}$$

B) X(f) non esiste perché il segnale non è a energia finita

 \mathbf{C})

$$X(f) = \frac{1}{2T} \sum_{n = -\infty}^{\infty} \delta(f - n/T)$$

D)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \delta(f - n/T)$$

Esercizio 7. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

e

$$h_2(t) = \frac{1}{1 + \pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{1}{T}$
- B) nessuna delle altre risposte è corretta
- C) $B = \infty$
- **D)** $B = \frac{1}{2T}$

Esercizio 8. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n=-\infty}^{\infty} 2(t - nT)e^{-2(t-nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = 2f \cdot e^{-2|f|} \delta(f - 1/T)$$

B)

$$X(f) = \frac{1}{2(1 + j\pi f)^2}$$

 \mathbf{C})

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 + \pi^2 n^2)} \delta(f - n/T)$$

D)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{T}{2(T^2 - \pi^2 n^2 + j2\pi nT)} \delta(f - n/T)$$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	63

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t/3)}{\pi t}$$

 \mathbf{e}

$$x_2(t) = 3 \left\lceil \frac{\sin(\pi t/3)}{\pi t} \right\rceil^2 e^{-j10\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

- A) y(t) = p(t/3)tri(t/3), dove p(t) = 1 per $|t| \le 0.5$ e zero altrove, e tri(t) = 1 |t| per $|t| \le 1$ e zero altrove
- **B)** $y(t) = x_1(t)$
- C) $y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi\tau/3)}{\pi\tau} \right]^{3} e^{-j8\pi\tau} d\tau$
- **D)** y(t) = 0

Esercizio 2. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{1}{1 + \pi^2 t^2}$$

- **A)** $\mathcal{E}_x = 1/2$
- $\mathbf{B)} \ \mathcal{E}_x = 2$
- C) $\mathcal{E}_x = \infty$
- $\mathbf{D)} \ \mathcal{E}_x = 1$

Esercizio 3. (Punti 2) Sia B la banda al 95% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{\frac{\pi}{2}}e^{-0.5\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

- **A)** $erfc(2\pi B) = 1$
- **B)** $\operatorname{erfc}(\sqrt{2}\pi B) = 0$
- **C)** erf(2B) = 0.95
- **D)** $erf(\pi B) = 0.95$

Esercizio 4. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

e

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 1$
- **B)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$
- C) $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- **D)** $\rho_{XY}(t) = 0$

Esercizio 5. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/T)$$

B)

$$X(f) = \frac{1}{4T} \sum_{n = -\infty}^{\infty} \delta(f - n/T)$$

- C) X(f) non esiste perché il segnale non è a energia finita
- D)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j2\pi fT}}$$

Esercizio 6. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

 \mathbf{e}

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- A) $B=\infty$
- B) nessuna delle altre risposte è corretta
- **C**) $B = \frac{9}{T}$

D)
$$B = \frac{1}{2T}$$

Esercizio 7. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

B)

$$X(f) = \sum_{n=-\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

C)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

D)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

Esercizio 8. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 0 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

- **A)** $\sigma_X^2(t) = 0$
- B) $\sigma_X^2(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$
- C) $\sigma_X^2(t) = 1$
- **D)** $\sigma_X^2(t) = \frac{2}{3}p_T(t)$

Esonero di

Teoria dei Segnali

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le risposte esatte che verranno esposte in bacheca.

Nome	
Cognome	
Matricola	
Compito	64

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Calcolare l'energia del segnale:

$$x(t) = \frac{1}{1 + \pi^2 t^2}$$

- A) $\mathcal{E}_x = \infty$
- $\mathbf{B)} \ \mathcal{E}_x = 1$
- C) $\mathcal{E}_x = 1/2$
- $\mathbf{D)} \ \mathcal{E}_x = 2$

Esercizio 2. (Punti 1) Due sistemi LTI, con risposte all'impulso rispettivamente

$$h_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

е

$$h_2(t) = \frac{6}{9 + 4\pi^2 t^2}$$

sono collegati in serie per dare luogo a un sistema equivalente con risposta in frequenza $H_{eq}(f)$. La banda assoluta unilatera B di $H_{eq}(f)$ vale:

- **A)** $B = \frac{9}{T}$
- B) nessuna delle altre risposte è corretta
- C) $B = \infty$
- **D)** $B = \frac{1}{2T}$

Esercizio 3. (Punti 1.5) Si consideri il seguente segnale:

$$x(t) = \sum_{n = -\infty}^{\infty} 0.5(t - nT)e^{-0.5(t - nT)}u(t - nT)$$

Si calcoli X(f), la trasformata di Fourier di x(t).

A)

$$X(f) = \frac{0.5}{(0.5 + j2\pi f)^2}$$

B)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 + 4\pi^2 n^2} \delta(f - n/T)$$

C)

$$X(f) = \sum_{n = -\infty}^{\infty} \frac{2T}{T^2 - 16\pi^2 n^2 + j8\pi nT} \delta(f - n/T)$$

D)

$$X(f) = 0.5f \cdot e^{-0.5|f|} \delta(f - 1/(2T))$$

Esercizio 4. (Punti 1.5) Si considerino i processi casuali

$$X(t) = A\sin(2\pi f_0 t)$$

e

$$Y(t) = (A+1)\sin(2\pi f_0 t)$$

dove f_0 è una costante reale strettamente positiva, e A è una variabile casuale con valore atteso $m_A=1$ e varianza $\sigma_A^2=1$. Si calcoli il coefficiente di correlazione tra X(t)e Y(t), $\rho_{XY}(t)$.

- **A)** $\rho_{XY}(t) = 2e^{j2\pi f_0 t}$
- **B)** $\rho_{XY}(t) = 0$
- C) $\rho_{XY}(t) = \sin(2\pi f_0 t)$
- **D)** $\rho_{XY}(t) = 1$

Esercizio 5. (Punti 1.5) Sia dato il segnale

$$x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(t - nT)$$

con T una costante reale strettamente positiva. Si calcoli X(f), la trasformata di Fourier di x(t).

- A) X(f) non esiste perché il segnale non è a energia finita
- B)

$$X(f) = \frac{1}{1 - \frac{1}{4}e^{-j2\pi fT}}$$

 \mathbf{C})

$$X(f) = \frac{1}{4T} \sum_{n=-\infty}^{\infty} \delta(f - n/T)$$

D)

$$X(f) = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \delta(f - n/T)$$

Esercizio 6. (Punti 1.5) Si consideri il processo casuale

$$X(t) = \sum_{k=-\infty}^{\infty} \alpha_k p_T(t - kT)$$

dove $p_T(t)$ è una porta rettangolare causale, di ampiezza unitaria e durata T, e le α_k , $-\infty < k < \infty$ sono variabili casuali statisticamente indipendenti e equidistribuite, che assumono i valori 0 e 2 in modo equiprobabile. La varianza di questo processo, $\sigma_X^2(t)$, vale:

A)
$$\sigma_X^2(t) = 1$$

B)
$$\sigma_X^2(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} p_T(t-kT)$$

C)
$$\sigma_X^2(t) = \frac{2}{3}p_T(t)$$

D)
$$\sigma_X^2(t) = 0$$

Esercizio 7. (Punti 1.5) Sono dati i segnali:

$$x_1(t) = \frac{\sin(\pi t)}{\pi t}$$

е

$$x_2(t) = \left[\frac{\sin(\pi t)}{\pi t}\right]^2 e^{-j3\pi t}$$

Si consideri il segnale $y(t) = x_1(t) * x_2(t)$, dove il simbolo * denota prodotto di convoluzione. y(t) vale:

$$\textbf{A)} \ \ y(t) = p(t)tri(t), \ \text{dove} \ p(t) = 1 \ \text{per} \ |t| \leq 0.5 \ \text{e zero altrove}, \ \text{e} \ tri(t) = 1 - |t| \ \text{per} \ |t| \leq 1 \ \text{e zero altrove}$$

B)
$$y(t) = 0$$

C)
$$y(t) = x_1(t)$$

D)
$$y(t) = \int_{-\infty}^{t} \left[\frac{\sin(\pi \tau)}{\pi \tau} \right]^{3} e^{-j3\pi \tau} d\tau$$

Esercizio 8. (Punti 2) Sia B la banda al 90% di energia del filtro con risposta in frequenza

$$H(f) = \sqrt{2\pi}e^{-2\pi^2 f^2}$$

Ricordando la definizione

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

a quale condizione tra quelle elencate deve soddisfare B?

A)
$$erf(2\pi B) = 0.9$$

B)
$$\operatorname{erfc}(\pi B) = 0$$

C)
$$erf(\sqrt{2}\pi B) = 0.9$$

D)
$$erfc(2\pi B) = 1$$