MATE 6551: Tarea 1

Due on October 8, 2025

Prof. Iván Cardona , C41, October 8, 2025

Sergio Rodríguez

Problem 0

If X is a topological space homeomorphic to D^n , then every continuous $f: X \to X$ has a fixed point.

Demo:

MEP

Problem 1

Let $f \in \text{Hom}(A, B)$ be a morphism in a category \mathcal{C} . If f has an inverse g and a right inverse h, then g = h.

Demo:

MEP

Problem 2

Let G be a group and let \mathcal{C} be the one-object category it defines: obj $\mathcal{C} = \{*\}$, $\operatorname{Hom}(*,*) = G$, and composition is a group operation. If H is a normal subgroup of G, define $x \sim y$ to mean $xy^{-1} \in H$. Show that \sim is a congruence on \mathcal{C} and that [*,*] = G/H in the corresponding quotient category.

Demo:

MEP

Problem 3

Let $x_0, x_1 \in X$ and let $f_i: X \to X$ for $i \in \{0,1\}$ denote the constant map at x_i . Prove that $f_0 \simeq f_1$ if and only if there is a continuous $F: I \to X$ with $F(0) = x_0$ and $F(1) = x_1$.

Demo:

MEP

Problem 4

- (i) Give an example of a continuous image of a contractible space that is not contractible.
- (ii) Show that a retract of a contractible space is contractible.

Demo:

MEP