Ejercicio 1

Explique las curvas graficadas en cada figura, incluyendo las líneas punteadas, y realice un análisis comparativo entre las figuras. Justifique el análisis.

Ejercicio 2

- 1. Defina, explique funcionamiento y uso de la técnica de k-fold cross validation (CV).
- 2. Considere la siguiente gráfica:

- Identifique las curvas de CV y train.
- Para A y B indique si corresponden a alto sesgo y/o alta varianza. Justifique.

Ejercicio 3

Considere una matriz de confusión tal que positivo (P) corresponde a Y=1 y negativo (N) a Y=0, siendo Y la variable a predecir. Defina la fórmula correspondiente a:

- 1. Error de clasificación
- 2. Tasa de precisión: proporción de positivos predichos correctamente clasificados.
- 3. Tasa de recuperación: proporción de positivos reales correctamente clasificados.

Suponga que la probabilidad P[Y=1|x] calculada es la siguiente (el color gris indica que Y=1).

.98	.95	.93	.92	.90	.87	.85	.84	.81	.79	.77	.75	.73	.69	.65	.62	.58	.55

- 1. Si el umbral de clasificación aumenta, qué pasa con la precisión?
 - a. Tiende a aumentar
 - b. Tiende a disminuir
- 2. Si el umbral de clasificación aumenta, qué pasa con la recuperación?
 - a. Tiende a aumentar
 - b. Tiende a disminuir

Justifique su respuesta.

Ejercicio 4

Explique el algoritmo de Boosting.

Considere el ejemplo de la figura. Asuma que la variable a predecir Y es +1 si el individuo es joven y -1 si es anciano. Cuál es la predicción para cada individuo? Cuál es el error?

Ejercicio 5

Explique cuál fue la hipótesis seleccionada en el obligatorio y el método que aplicó para obtenerla. Cómo le fue con esta hipótesis en la competencia? Cómo explica el resultado obtenido?

Ejercicio 6

- 1. Explique la diferencia entre el enfoque generativo y el discriminativo.
- 2. Clasifique los siguientes algoritmos como generativo o discriminativo. Justifique.
 - a. Naïve Bayes
 - b. Regresión logística
 - c. Árboles de decisión

Ejercicio 7

- 1. Considere la siguiente figura.
 - a. Explique todo lo que se observa.
 - b. ¿Qué hipótesis seleccionaría? Justifique

- 2. La siguiente figura muestra dos curvas de exactitud o "accuracy".
 - a. Defina exactitud.
 - b. Identifique cada una de las curvas observadas.
 - c. ¿Qué hipótesis seleccionaría? Justifique.

Ejercicio 3.

- 1. Defina el concepto general de ensemble.
- 2. Considere la siguiente tabla.

Elemento	C1	C2	С3	C4	C5
А	*		*	*	*
В	*		*	*	*
С	*	*		*	*
D	*	*			
E		*	*		

La tabla muestra los resultados obtenidos por 5 clasificadores C1, C2, C3, C4 y C5, sobre un conjunto de datos compuesto por 5 elementos, identificados como A, B, C, D y E. Una * indica que el elemento fue clasificado correctamente.

- a. Calcule el error cometido por el ensemble compuesto por los 5 clasificadores, asumiendo peso uniforme y la **esperanza del error** de los clasificadores.
- b. ¿Se verifica la propiedad fundamental del error del ensemble con respecto a los errores de los clasificadores? Justifique.
- c. En caso que la respuesta sea negativa, construya un ensemble a partir de los clasificadores dados que cumpla la propiedad. Justifique.

Ejercicio 7

- 1. Explique qué se entiende por regularización.
- 2. Explique Ridge (norma 2) y LASSO (norma 1).
- 3. En la siguiente tabla se muestran los coeficientes de una regresión sin (Coeficiente 1) y con (Coeficiente 2) regularización obtenida sobre un conjunto de datos. ¿De qué tipo de regularización se trata? Justifique.

Variable	Coeficiente 1	Coeficiente 2
(intercept)	0.08370835	0.07960114
duration	0.00000035	0.00000035
distance	0.0000004	0.00000004
fare	0.17503086	0.17800492
tolls	0.06266734	0.00000000
weekends	-0.02823731	0.00000000