微积分作业 第5次

请直接拍照上传照片,切勿用附件形式上传拍照上传时,请注意调整图片方向

第1题. 设 $a \neq \frac{1}{2}$. 讨论以下函数的单调性

$$f(x) = \left(1 + \frac{1}{x}\right)^{x+a}.$$

用 GeoGebra 画图检查你的结果.

第2题. 设 f 为 \mathscr{C}^{∞} 函数. 请用 f 的导数和高阶导数表达函数 $g(x) = \frac{f(x)}{x}$ $(x \neq 0)$ 的 n 阶导函数的表达式。

【提示:用 Leibniz 公式】

第3题. 考虑笛卡尔叶形线 $x^3 + y^3 = 3xy$.

欧拉通过引进 $t=\frac{y}{x}$ 可以得到该曲线的参数方程。

- (1) 试写出参数方程 (x(t),y(t)), 并说明它们都是 \mathscr{C}^{∞} 函数;
- (2) 讨论函数 x(t) 和 y(t) 的单调性和极值,以此确定曲线的大致走向和位置。

第4题. 考虑笛卡尔叶形线 $x^3 + y^3 = 3xy$. 利用第3题得到的参数方程计算二阶导数 $\frac{d^2y}{dx^2}$,并用它来解释曲线的凹凸性态。

第5题. 考虑笛卡尔叶形线 $x^3 + y^3 = 3xy$. 利用第3题得到的参数方程求曲线的渐近线,并确定曲线与渐近线的位置关系。用GeoGebra画一下曲线的图形,结合图形检查你在第3-5题中的计算结论。

第6题. 设 f 是区间 (a,b) 上的可微的凸函数。证明 f' 是连续函数。

第7题. 设
$$f(x)$$
 在 $x = a$ 可导, $f(a) \neq 0$. 求 $\lim_{x \to \infty} \left(\frac{f\left(a + \frac{1}{x}\right)}{f(a)} \right)^x$.

第8题. 用 Newton 迭代证明
$$8 < \sqrt{65} < 8 + \frac{1}{16}$$
.

第9题. 证明 Legendre 多项式 $P_n(x) = \frac{d^n}{dx^n} [(x^2 - 1)^n]$

在区间 [-1,1] 中恰有 n 个不同实根。

【提示:考虑 $\frac{\mathrm{d}^k}{\mathrm{d}x^k}\left[(x^2-1)^n\right]$ 的实根】

第10题. 已知 f(x) 在区间 $[0,+\infty)$ 上连续,

在开区间
$$(0, +\infty)$$
 内可微,且 $0 \le f(x) \le \frac{x}{1+x^2} (\forall x \ge 0)$.
证明:存在 $\xi > 0$ 使得 $f'(\xi) = \frac{1-\xi^2}{(1+\xi^2)^2}$.

证明: 存在
$$\xi > 0$$
 使得 $f'(\xi) = \frac{1 - \xi^2}{(1 + \xi^2)^2}$.