Capítulo 5

Integração

CÁLCULO GEORGE B. THOMAS

VOLUME 1

VOLUME

Seção 5.1 – Estimando Com Somas Finitas

FIGURA 5.1 A área da região *R* não pode ser encontrada com uma fórmula simples (Exemplo 1).

FIGURA 5.2 (a) Usando dois retângulos que contêm *R*, obtemos uma estimativa superior da área de *R*. (b) Quatro retângulos fornecem uma estimativa superior melhor. Ambas as alternativas ultrapassam o valor real da área.

FIGURA 5.3 (a) Os retângulos contidos em R dão uma estimativa da área que subestima o valor real. (b) A regra do ponto médio usa retângulos cuja altura é o valor de y = f(x) no ponto médio de suas bases.

 $\left(\frac{7}{8}, \frac{15}{64}\right)$

CÁLCULO GEORGE B. THOMAS 11º EDIÇÃO

CAPÍTULO 5 INTEGRAÇÃO

FIGURA 5.4 (a) Soma inferior usando 16 retângulos de igual largura $\Delta x = 1/16$. (b) Soma superior usando 16 retângulos.

TABELA 5.1 Aproximações finitas da área de *R*

	Regra do	
Soma inferior	ponto médio	Soma superior
275	(075	075
,3/3	,08/3	,875
,53125	,671875	,78125
,634765625	,6669921875	,697265625
,6566	,6667	,6766
,66165	,666675	,67165
,6661665	,66666675	,6671665
	,375 ,53125 ,634765625 ,6566 ,66165	Soma inferior ponto médio ,375 ,6875 ,53125 ,671875 ,634765625 ,6669921875 ,6566 ,6667 ,66165 ,666675

Seção 5.2 – Notação Sigma e Limites de Somas Finitas

O índice k termina em k = n.

n

O símbolo de somatório (letra grega sigma)

$$-\sum$$

 $a_{k} - a_{k}$ é a fórmula para o k-ésimo termo.

$$k = 1$$

O índice k começa em k = 1.

• Exemplo 1

		The second secon
A soma em notação sigma	A soma escrita, um termo para cada valor de <i>k</i>	O valor da soma
$\sum_{k=1}^{5} k$	1 + 2 + 3 + 4 + 5	15
$\sum_{k=1}^{3} (-1)^k k$	$(-1)^{1}(1) + (-1)^{2}(2) + (-1)^{3}(3)$	-1 + 2 - 3 = -2
$\sum_{k=1}^{2} \frac{k}{k+1}$	$\frac{1}{1+1} + \frac{2}{2+1}$	$\frac{1}{2} + \frac{2}{3} = \frac{7}{6}$
$\sum_{k=1}^{2} \frac{k}{k+1}$ $\sum_{k=4}^{5} \frac{k^2}{k-1}$	$\frac{4^2}{4-1} + \frac{5^2}{5-1}$	$\frac{16}{3} + \frac{25}{4} = \frac{139}{12}$

Regras algébricas para somas finitas

1. Regra da soma:

$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

2. Regra da diferença:

$$\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k$$

3. Regra da multiplicação por constante:

$$\sum_{k=1}^{n} ca_k = c \cdot \sum_{k=1}^{n} a_k \qquad \text{(Qualquer número } c\text{)}$$

4. Regra do valor constante: $\sum c = n \cdot c$

$$\sum_{k=1}^{n} c = n \cdot c \qquad (c \neq qu$$

(c é qualquer valor constante)

Usando as regras algébricas

• Exemplo 3: Calcule

a)
$$\sum_{k=1}^{n} (3k - k^2);$$

$$b) \sum_{k=1}^{n} (-a_k);$$

c)
$$\sum_{k=1}^{3} (k+4)$$
;

d)
$$\sum_{k=1}^{n} \frac{1}{n}$$
.

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Primeiros *n* quadrados:

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Primeiros *n* cubos:

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Somas de Riemann - Partições

O primeiro desses subintervalos é $[x_0, x_1]$, o segundo, $[x_1, x_2]$, e o **k-ésimo** subintervalo de P é $[x_{k-1}, x_k]$, sendo k um inteiro entre 1 e n.

A largura do primeiro subintervalo $[x_0, x_1]$ é denotada por Δx_1 , a largura do segundo, $[x_1, x_2]$, por Δx_2 , e a largura do k-ésimo subintervalo é $\Delta x_k = x_k - x_{k-1}$. Se todos os n subintervalos tiverem a mesma largura, então a largura comum Δx será igual a (b-a)/n.

Em cada subintervalo selecionamos um ponto. Chamamos o ponto escolhido no k-ésimo subintervalo $[x_{k-1}, x_k]$ de c_k . Depois, em cada subintervalo, construímos um retângulo que tem base no eixo x e toca a curva em $(c_k, f(c_k))$. Esses retângulos podem estar tanto acima como abaixo do eixo, dependendo de $f(c_k)$ ser positiva ou negativa, ou ainda sobre ele se $f(c_k) = 0$ (Figura 5.9).

Em cada subintervalo, formamos o produto $f(c_k) \cdot \Delta x_k$. Esse produto pode ser positivo, negativo ou nulo, dependendo do sinal de $f(c_k)$. Quando $f(c_k) > 0$, o produto $f(c_k) \cdot \Delta x_k$ é a área de um retângulo com altura $f(c_k)$ e largura Δx_k . Quando $f(c_k) < 0$, o produto $f(c_k) \cdot \Delta x_k$ é um número negativo, o oposto da área de um retângulo com largura Δx_k que começa no eixo x e estende-se para baixo, até o número negativo $f(c_k)$.

Por fim, somamos todos esses produtos e obtemos:

$$S_P = \sum_{k=1}^n f(c_k) \Delta x_k$$

FIGURA 5.9 Os retângulos aproximam a região que fica entre a curva da função y = f(x) e o eixo x.

CÁLCULO GEORGE B. THOMAS

11ª EDIÇÃO

CAPÍTULO 5 INTEGRAÇÃO

FIGURA 5.10 A curva da Figura 5.9 com retângulos obtidos de partições mais finas de [a, b]. Partições mais finas criam conjuntos de retângulos com bases menores que aproximam a região entre a curva de f e o eixo x com precisão cada vez maior.

Norma de uma partição

 Definição: Seja P uma partição de um intervalo fechado I. Definimos norma de P como sendo a maior de todas as larguras dos subintervalos de P. Denotaremos tal número por ||P||.

Seção 5.3 – A Integral Definida

Definição A integral definida como limite de somas de Riemann

Seja f(x) uma função definida em um intervalo fechado [a, b]. Dizemos que um número I é a **integral definida de** f **em** [a, b] e que I é o limite das somas de Riemann $\sum_{k=1}^{n} f(c_k) \Delta x_k$ se a seguinte condição é satisfeita:

Dado qualquer número $\epsilon > 0$, existe um número correspondente $\delta > 0$, tal que, para qualquer partição $P = \{x_0, x_1, ..., x_n\}$ de [a, b] com $\|P\| < \delta$ e qualquer escolha de c_k em $[x_{k-1}, x_k]$, temos

$$\left| \sum_{k=1}^{n} f(c_k) \, \Delta x_k - I \right| < \epsilon$$

Teorema 1 A existência de integrais definidas

Uma função contínua é integrável. Isto é, se uma função f é contínua em um intervalo [a, b], então sua integral definida em [a, b] existe.

Uma função não integrável

• Exemplo 1: A função

$$f(x) = \begin{cases} 1, & \text{se } x \text{ \'e racional} \\ 0, & \text{se } x \text{ \'e irracional} \end{cases}$$

não apresenta integral de Riemann no intervalo [0, 1].

Teorema 2

Quando *f* e *g* são integráveis no intervalo [*a*, *b*], a integral definida satisfaz as regras 1 a 7 da Tabela 5.3.

TABELA 5.3 Propriedades satisfeitas pelas integrais definidas

Ordem de integração:

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

Uma definição.

Intervalo de largura zero:

$$\int_{a}^{a} f(x) dx = 0$$

Também uma definição.

Multiplicação por constante:

$$\int_{a}^{b} k f(x) \ dx = k \int_{a}^{b} f(x) \ dx$$

Qualquer número k.

$$\int_a^b -f(x) \ dx = -\int_a^b f(x) \ dx$$

$$k = -1$$

Soma e subtração:

$$\int_{a}^{b} (f(x) \pm g(x)) \, dx = \int_{a}^{b} f(x) \, dx \pm \int_{a}^{b} g(x) \, dx$$

TABELA 5.3 Propriedades satisfeitas pelas integrais definidas

$$\int_a^b f(x) \, dx + \int_b^c f(x) \, dx = \int_a^c f(x) \, dx$$

6. Desigualdade max-min: S

Se f tem o valor máximo max f e o valor mínimo min f em [a, b], então

$$\min f \cdot (b - a) \le \int_a^b f(x) \, dx \le \max f \cdot (b - a)$$

$$f(x) \ge g(x) \text{ em } [a, b] \implies \int_a^b f(x) dx \ge \int_a^b g(x) dx$$

$$f(x) \ge 0 \text{ em } [a, b] \implies \int_a^b f(x) dx \ge 0 \text{ (Caso especial)}$$

CÁLCULO GEORGE B. THOMAS 11º EDIÇÃO

CAPÍTULO 5 INTEGRAÇÃO

(a) Intervalo de largura zero:

$$\int_{a}^{a} f(x) dx = 0$$

(A área sob um ponto é 0)

FIGURA 5.11

(b) Multiplicação por constante:

$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

(Mostrado para k = 2)

CÁLCULO GEORGE B. THOMAS

11ª EDIÇÃO

CAPÍTULO 5 INTEGRAÇÃO

y = f(x) + g(x) y = g(x) y = f(x) y = f(x)

(c) Soma:

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

(Soma das áreas)

FIGURA 5.11

(d) Aditividade para integrais definidas:

$$\int_a^b f(x) \, dx + \int_b^c f(x) \, dx = \int_a^c f(x) \, dx$$

CÁLCULO

CAPÍTULO 5 INTEGRAÇÃO

GEORGE B. THOMAS 11ª EDIÇÃO

(e) Desigualdade max-min:

$$f\min \cdot (b - a) \le \int_{a}^{b} f(x) dx$$

 $\le f\max \cdot (b - a)$

(f) Dominação:

$$f(x) \ge g(x) \text{ em } [a, b]$$

$$\Rightarrow \int_a^b f(x) \, dx \ge \int_a^b g(x) \, dx$$

FIGURA 5.11

Usando as propriedades

- Exemplo 2: Supondo que $\int_{-1}^{1} f(x) dx = 5$, $\int_{1}^{4} f(x) dx = -2$, e $\int_{-1}^{1} h(x) dx = 7$, calcule:
- a) $\int_4^1 f(x) dx$;
- b) $\int_{-1}^{1} [2f(x) + 3h(x)] dx$;
- c) $\int_{-1}^{4} f(x) dx$.

Determinando limitantes

• Exemplo 3: Mostre que o valor de $\int_0^1 \sqrt{1 + \cos x} \, dx \text{ é menor que } 3/2.$

Definição Área sob uma curva (como uma integral definida)

Se y = f(x) for não negativa e integrável em um intervalo fechado [a, b], então a **área sob a curva** y = f(x) **em** [a, b] será a integral de f de a até b:

$$A = \int_{a}^{b} f(x) \, dx$$

FIGURA 5.12 A região do Exemplo 4 é um triângulo.

11ª EDIÇÃO

FIGURA 5.13 A área dessa região trapezoidal é $A = (b^2 - a^2)/2$.

$$\int_{a}^{b} x \, dx = \frac{b^2}{2} - \frac{a^2}{2}, \qquad a < b \tag{1}$$

$$\int_{a}^{b} c \, dx = c(b - a), \qquad \text{sendo } c \text{ qualquer constante}$$
 (2)

$$\int_{a}^{b} x^{2} dx = \frac{b^{3}}{3} - \frac{a^{3}}{3}, \qquad a < b \tag{3}$$

Definição Média ou valor médio de uma função

Se f for integrável em [a, b], então seu **valor médio** em [a, b], também chamado sua **média**, será:

$$M(f) = \frac{1}{b-a} \int_a^b f(x) dx$$

Determinando um valor médio

• Exemplo 5: Determine o valor médio de $f(x) = \sqrt{4 - x^2}$ em [-2, 2].

FIGURA 5.15 O valor médio de $f(x) = \sqrt{4-x^2}$ em [-2, 2] é $\pi/2$ (Exemplo 5).

Seção 5.4 – O Teorema Fundamental do Cálculo

Teorema 3 O teorema do valor médio para integrais definidas Se f for contínua em [a, b], então em algum ponto c em [a, b]

$$f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx$$

11ª EDIÇÃO

CAPÍTULO 5 INTEGRAÇÃO

FIGURA 5.16 O valor f(c) no teorema do valor médio é, de certo modo, a altura média de f em [a, b]. Quando $f \ge 0$, a área do retângulo sombreado é a área sob a curva de f de a até b,

$$f(c)(b-a) = \int_a^b f(x) \ dx$$

FIGURA 5.17 Uma função descontínua não precisa assumir o valor médio.

• Exemplo 2: Mostre que, se f é contínua em [a,b], sendo $a \neq b$, e se $\int_a^b f(x) dx = 0$, então f(x) = 0 pelo menos uma vez em [a,b].

$$F(x) = \int_{a}^{x} f(t)dt$$

(1)

FIGURA 5.19 A função F(x) definida pela Equação (1) fornece a área sob a curva de f de a até x quando f é não negativa e x > a.

Teorema 4 O teorema fundamental do cálculo, parte 1

Se f é contínua em [a, b], então $F(x) = \int_a^x f(t) dt$ é contínua em [a, b] e derivável em (a, b) e sua derivada é f(x).

$$F'(x) = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$
 (2)

CÁLCULO INTEGRAÇÃO INTEGRAÇÃO Teorema Fundamental

• Exemplo 3 (exercício de leitura): Calcule $\frac{dy}{dx}$ onde:

a)
$$y = \int_a^x \cos t \, dt$$
;

b)
$$y = \int_0^x \frac{1}{1+t^2} dt$$

c)
$$y = \int_{x}^{5} 3t \operatorname{sen} t \, dt$$
;

$$d) y = \int_1^{x^2} \cos t \, dt;$$

e)
$$y = \int_{1+3x^2}^4 \frac{1}{2+e^t} dt$$
.

CAPÍTULO 5 INTEGRAÇÃO GEORGE B. THOMAS 11ª EDIÇÃO Solução do exemplo 3

(a)
$$\frac{d}{dx} \int_{a}^{x} \cos t \, dt = \cos x$$

Equação 2 com
$$f(t) = \cos t$$

(b)
$$\frac{d}{dx} \int_0^x \frac{1}{1+t^2} dt = \frac{1}{1+x^2}$$
 Equação 2 com $f(t) = \frac{1}{1+t^2}$

Equação 2 com
$$f(t) = \frac{1}{1}$$

(c) A Regra 1 das integrais (Tabela 5.3, Seção 5.3) reorganiza essas funções para podermos usar o teorema fundamental.

$$\frac{dy}{dx} = \frac{d}{dx} \int_{x}^{5} 3t \operatorname{sen} t \, dt = \frac{d}{dx} \left(-\int_{5}^{x} 3t \operatorname{sen} t \, dt \right)$$

$$= -\frac{d}{dx} \int_{5}^{x} 3t \operatorname{sen} t \, dt$$

$$= -3x \operatorname{sen} x$$

(d) O limite superior de integração não é x, mas x². Isso torna y um misto de duas funções:

$$y = \int_{1}^{u} \cos t \, dt \qquad e \qquad u = x^2$$

Portanto, devemos aplicar a regra da cadeia quando encontrarmos dy/dx.

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$= \left(\frac{d}{du} \int_{1}^{u} \cos t \, dt\right) \cdot \frac{du}{dx}$$

$$= \cos u \cdot \frac{du}{dx}$$

$$= \cos(x^{2}) \cdot 2x$$

$$= 2x \cos x^{2}$$

(e)
$$\frac{d}{dx} \int_{1+3x^2}^4 \frac{1}{2+e^t} dt = \frac{d}{dx} \left(-\int_4^{1+3x^2} \frac{1}{2+e^t} dt \right)$$
 Regra 1

$$= -\frac{d}{dx} \int_4^{1+3x^2} \frac{1}{2+e^t} dt$$

$$= -\frac{1}{2+e^{(1+3x^2)}} \frac{d}{dx} (1+3x^2)$$
 Equação (2) e regra da cadeia.

$$= -\frac{6x}{2+e^{(1+3x^2)}}$$

Teorema 4 (continuação) O teorema fundamental do cálculo, parte 2

Se f é contínua em qualquer ponto de [a, b] e se F é qualquer primitiva de f em [a, b], então

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

11ª EDIÇÃO

Calculando integrais

- Exemplo 5:
- a) $\int_0^{\pi} \cos x \, dx$;
- b) $\int_0^{1/2} \frac{dx}{\sqrt{1-x^2}};$
- c) $\int_1^4 \left(\frac{3}{2}\sqrt{x} \frac{2}{x}\right) dx$. (Exercício)

Determinando áreas com primitivas

• Exemplo 6: Calcule a área delimitada pelo eixo x e pela parábola $y = 6 - x - x^2$.

11ª EDIÇÃO

CAPÍTULO 5 INTEGRAÇÃO

 $y = 6 - x - x^2$ $\frac{25}{4}$

FIGURA 5.21 A área deste arco parabólico é calculada com uma integral definida (Exemplo 6).

Cancelando áreas

- Exemplo 7: A Figura 5.22 mostra o gráfico da função $f(x) = \operatorname{sen} x$ entre x = 0 e $x = 2\pi$. Calcule:
- a) A integral definida de f(x) em $[0, 2\pi]$;
- b) A área entre o gráfico de f(x) e o eixo x em $[0, 2\pi]$.

FIGURA 5.22 A área total entre $y = \text{sen } x \text{ e o eixo } x \text{ para } 0 \le x \le 2\pi$ é a soma dos valores absolutos de duas integrais (Exemplo 7).

Resumo

Para determinar a área entre o gráfico de y = f(x) e o eixo x no intervalo [a, b], faça o seguinte.

- 1. Subdivida [a, b] nas raízes de f.
- 2. Integre *f* em cada subintervalo.
- 3. Some os valores absolutos das integrais.

Determinando áreas com primitivas

• Exemplo 8: Determine a área da região entre o eixo x e o gráfico de $f(x) = x^3 - x^2 - 2x$, sendo $-1 \le x \le 2$.

GEORGE B. THOMAS 11ª EDIÇÃO

FIGURA 5.23 A região entre a curva $y = x^3 - x^2 - 2x$ e o eixo x (Exemplo 8).

Seção 5.5 - Integrais Indefinidas e a Regra da Substituição

Se *u* é uma função derivável qualquer, então

$$\int u^n du = \frac{u^{n+1}}{n+1} + C \qquad (n \neq -1, n \text{ qualquer número}).$$
 (1)

Teorema 5 A regra da substituição

Se u = g(x) é uma função derivável cuja imagem é um intervalo I e f é contínua em I, então

$$\int f(g(x))g'(x) dx = \int f(u) du$$

"Usando a regra da potenciação

- Exemplo 1: Calcule $\int \sqrt{1+y^2} \cdot 2y dy$.
- Exemplo 2: Calcule $\int \sqrt{4t-1}dt$.

11ª EDIÇÃO

- Exemplo 3: Calcule $\int \cos(7\theta + 5)d\theta$. (Exercício)
- Exemplo 4: Calcule $\int x^2 e^{x^3} dx$. (Exercício)
- Exemplo 5: Calcule $\int \frac{dx}{e^x + e^{-x}}$.
- Exemplo 6: Calcule $\int \frac{\ln x^2}{x} dx$.
- Exemplo 7: Calcule $\int \frac{1}{\cos^2(2x)} dx$.
- Exemplo 8: Calcule $\int \frac{2zdz}{\sqrt[3]{z^2+1}}$.

Integrais de sen² x e de cos² x

- Exemplo 9: Calcule:
- a) $\int \operatorname{sen}^2 x \, dx$;
- b) $\int \cos^2 x \, dx$. (Exercício)

Área sob curva

- Exemplo 10: A Figura 5.24 mostra o gráfico de $g(x) = \sin^2 x$ ao longo do intervalo $[0, 2\pi]$. Determine:
- a) A integral definida de g(x) em $[0, 2\pi]$;
- b) A área entre o gráfico da função e o eixo x em $[0, 2\pi]$.

FIGURA 5.24 A área sob a curva $y = \text{sen}^2 x$ ao longo de $[0, 2\pi]$ é igual a π unidades quadradas (Exemplo 10).

Seção 5.6 – Substituição e Área Entre Curvas

Teorema 6 Substituição em integrais definidas

Se g' é contínua no intervalo [a, b] e f é contínua na imagem de g, então

$$\int_a^b f(g(x)) \cdot g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du$$

Substituindo pelos dois métodos

- Exemplo 1: Calcule $\int_{-1}^{1} 3x^2 \sqrt{x^3 + 1} \, dx$.
- Exemplo 2: Calcule
- a) $\int_0^{\ln 2} e^{3x} dx$; (Exercício)
- b) $\int_{-\pi/4}^{\pi/4} \operatorname{tg} x \, dx$.

Teorema 7

Seja f contínua no intervalo simétrico [-a, a].

(a) Se f é par, então
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

(b) Se f é impar, então
$$\int_{-a}^{a} f(x) dx = 0$$

FIGURA 5.26

(a)
$$f$$
 par,

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$
(b) f impar,

$$\int_{-a}^{a} f(x) dx = 0$$

Integral de uma função par

• Exemplo 3: Calcule $\int_{-2}^{2} (x^4 - 4x^2 + 6) dx$.

FIGURA 5.27 A região entre as curvas y = f(x) e y = g(x) e as retas x = a e x = b.

FIGURA 5.28 Fazemos uma aproximação dividindo a região com retângulos perpendiculares ao eixo *x*.

Definição Área entre curvas

Se f e g são contínuas com $f(x) \ge g(x)$ ao longo de [a, b], então a **área** da região entre as curvas y = f(x) e y = g(x) de a até b é a integral de (f - g) desde a até b:

$$A = \int_a^b [f(x) - g(x)] dx$$

CÁLCULO

CAPÍTULO 5 INTEGRAÇÃO

GEORGE B. THOMAS 11ª EDIÇÃO

FIGURA 5.29 A área ΔA_k do késimo retângulo é o produto entre
sua altura, $f(c_k) - g(c_k)$, e sua largura, Δx_k .

Area entre curvas que se cruzam

• Exemplo 4: Determine a área da região compreendida entre a parábola $y = 2 - x^2$ e a reta y = -x.

CÁLCULO

CAPÍTULO 5 INTEGRAÇÃO

GEORGE B. THOMAS 11ª EDIÇÃO

FIGURA 5.30 A região do Exemplo 4 com um retângulo de aproximação típico.

com uma mudança de fronteira

• Exemplo 5: Determine a área do primeiro quadrante que é limitada acima por $y = \sqrt{x}$ e abaixo pelo eixo x e pela reta y = x - 2 (ver Figura 5.31).

CÁLCULO GEORGE B. THOMAS 11ª EDIÇÃO

CAPÍTULO 5 INTEGRAÇÃO

FIGURA 5.31 Quando a fórmula para uma curva fronteira muda, a integral que dá a área também muda, tornando-se a soma das integrais correspondentes, uma integral para cada uma das regiões sombreadas → x mostradas aqui (Exemplo 5).

GEORGE & THOMAS

Integração em relação a y

Se as curvas que formam as fronteiras de uma região são descritas por funções de y, os retângulos de aproximação são horizontais, e não verticais, e a fórmula básica tem y no lugar de x.

Para regiões como estas

use a fórmula

$$A = \int_{c}^{d} [f(y) - g(y)] dy$$

Nessa equação, f sempre denota a curva à direita e g a curva à esquerda, $\log f(y) - g(y)$ é não negativa.

Integrando em relação a y

• Exemplo 6: Determine a área da região do Exemplo 5 em relação a y.

11ª EDIÇÃO

FIGURA 5.32 Se integrarmos em relação a *x*, serão necessárias duas integrações para achar a área dessa região. Se integrarmos em relação a *y*, será necessária apenas uma (Exemplo 6).

Algumas figuras da seção dos exercícios

FIGURA 5.34 Funções contínuas por partes como esta são integradas parte por parte.

Regra de Leibniz

Se f for continua em [a, b] e se u(x) e v(x) forem funções deriváveis de x cujos valores situam-se em [a, b], então

$$\frac{d}{dx} \int_{u(x)}^{v(x)} f(t) dt = f(v(x)) \frac{dv}{dx} - f(u(x)) \frac{du}{dx}$$

FIGURA 5.35 Enrolando e desenrolando um tapete: uma interpretação geométrica para a regra de Leibniz:

$$\frac{dA}{dx} = f(v(x))\frac{dv}{dx} - f(u(x))\frac{du}{dx}$$