1. Espacios de medida

1.1. Álgebras y σ -álgebras

- 1. Sea \mathcal{F} una colección finita de $\mathcal{P}(X)$. Mostrar que \mathcal{F} es σ -álgebra si y sólo si \mathcal{F} es álgebra.
- **2**. Sea $X = \{a, b, c, d\}$, comprobar que \mathcal{F} es una σ -álgebra sobre X, donde

$$\mathcal{F} = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\}\}.$$

- **3**. Sean $A, B \subset X$. Describir la σ -álgebra generada por $\mathcal{C} = \{A, B\}$, es decir, $\sigma(\mathcal{C})$.
- **4**. Una colección de conjuntos $\mathcal{F} \subset \mathcal{P}(X)$ es un álgebra si y sólo si $X \in \mathcal{F}$ y \mathcal{F} es cerrada para diferencias (es decir, $A B \in \mathcal{F}$ siempre que $A, B \in \mathcal{F}$).
- 5. Supongamos que $X \in \mathcal{F}$ y que \mathcal{F} es cerrada para la complementación y para uniones finitas disjuntas. Mostrar que \mathcal{F} no es necesariamente un álgebra.
- 6. Sea $\mathcal{F} \subset \mathcal{P}(\mathbb{R})$. Mostrar que \mathcal{F} es una σ -álgebra si y sólo si es un álgebra cerrada para uniones numerables disjuntas.
- 7. Demostrar que \mathcal{F} es una σ -álgebra sobre X si y sólo si \mathcal{F} cumple
 - (a) $X \in \mathcal{F}$
 - (b) \mathcal{F} es cerrada para diferencias.
 - (c) \mathcal{F} es cerrada para uniones numerables disjuntas.
- 8. Sea $\mathcal{F} \subset \mathcal{P}(\mathbb{R})$ la familia constituida por todos los conjuntos A tales que $x \in A$ si y sólo si $x+1 \in A$. Probar que \mathcal{F} es una σ -álgebra y que $\{x\} \notin \mathcal{F}$, para todo $x \in \mathbb{R}$.
- **9**. Se consideran las siguientes colecciones de $\mathcal{P}(X)$:

$$\mathcal{F}_1 = \{ A \subset X : A \text{ es finito \'o } A^c \text{ es finito} \},$$

$$\mathcal{F}_2 = \{ A \subset X : A \text{ es contable \'o } A^c \text{ es contable} \},$$

$$\mathcal{F}_3 = \{ A \subset X : A \subset B \text{ ó } A^c \subset B \}, \text{ donde } B \subset X \text{ es fijo.}$$

- (a) Mostrar que \mathcal{F}_1 es σ -álgebra cuando y sólo cuando X es finito.
- (b) Mostrar que \mathcal{F}_2 y \mathcal{F}_3 son σ -álgebras.
- 10. Demuestra o da un contraejemplo para las siguientes afirmaciones.

- (a) La unión de álgebras no es necesariamente un álgebra.
- (b) Si $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$ y cada \mathcal{F}_n es un álgebra, entonces $\bigcup_{n \geq 1} \mathcal{F}_n$ es un álgebra.
- (c) La unión de σ -álgebras no es necesariamente una σ -álgebra incluso cuando \mathcal{F} no es finito.
- (d) Si $\{\mathcal{F}_n\}$ es una colección creciente de σ -álgebras $(\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots)$, la unión $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ puede no ser una σ -álgebra.

Sugerencia: Para los apartados (c) y (d) se puede usar el conjunto de los números naturales y σ -álgebras del tipo \mathcal{F}_3 del problema anterior.

- 11. Sea X un conjunto no vacío. Describir $\sigma(\mathcal{H})$, donde
 - (a) $\mathcal{H} = \{A_1, A_2, \dots\}$ es una partición (contable) de X, es decir, los elementos de \mathcal{H} son dos a dos disjuntos y la unión de todos ellos es X.
 - (b) \mathcal{H} es la colección de los subconjuntos finitos de X. Distinguir si X es contable o no.
- 12. Sea $\mathcal{E} \subset \mathcal{P}(X)$ no vacío y $B \subset X$ fijo. Consideramos el conjunto de trazas

$$\mathcal{E} \cap B = \{A \cap B : A \in \mathcal{E}\}.$$

Queremos demostrar que $\sigma(\mathcal{E} \cap B) = \sigma(\mathcal{E}) \cap B$ (sobre B). Para ello mostrar:

- (a) $\sigma(\mathcal{E}) \cap B$ es una σ -álgebra sobre B y por tanto $\sigma(\mathcal{E} \cap B) \subset \sigma(\mathcal{E}) \cap B$.
- (b) $\mathcal{F} = \{A \in \sigma(\mathcal{E}) : A \cap B \in \sigma(\mathcal{E} \cap B)\}$ es una σ -álgebra sobre X y por tanto $\mathcal{F} = \sigma(\mathcal{E})$.
- (c) Finalmente, $\sigma(\mathcal{E} \cap B) = \sigma(\mathcal{E}) \cap B$.
- 13. Mostrar que cada una de las siguientes colecciones de intervalos genera la σ -álgebra boreliana usual sobre la recta real:

$$\{(a,b): a,b \in \mathbb{Q}\}, \qquad \{(a,b]: a,b \in \mathbb{Q}\}, \qquad \{[a,b): a,b \in \mathbb{Q}\}, \qquad \{[a,b]: a,b \in \mathbb{Q}\}.$$

$$\{(-\infty,a]: a \in \mathbb{Q}\}, \qquad \{(-\infty,a): a \in \mathbb{Q}\}, \qquad \{[a,\infty): a \in \mathbb{Q}\}, \qquad \{(a,\infty): a \in \mathbb{Q}\}.$$

14. Sea (X, \mathcal{F}) un espacio medible y $f, g: (X, \mathcal{F}) \to \mathbb{R}$ funciones reales tales que los conjuntos $\{x \in X: f(x) > \lambda\}, \quad \{x \in X: g(x) > \lambda\} \in \mathcal{F}, \quad \text{para todo } \lambda \in \mathbb{R}.$

Mostrar que los siguientes conjuntos también pertenecen a \mathcal{F}

$$\{x \in X : f(x) \le \lambda\}, \quad \{x \in X : f(x) = \lambda\}, \quad \{x \in X : f(x) < g(x)\}.$$