Algoritma MD5

Bahan Kuliah IF3058 Kriptografi

Pendahuluan

- MD5 adalah fungsi hash satu-arah yang dibuat oleh Ron Rivest.
- MD5 merupakan perbaikan dari MD4 setelah MD4 ditemukan kolisinya.
- Algoritma MD5 menerima masukan berupa pesan dengan ukuran sembarang dan menghasilkan message digest yang panjangnya 128 bit.

Gambaran umum

- Langkah-langkah pembuatan message digest secara garis besar:
 - 1. Penambahan bit-bit pengganjal (padding bits).
 - Penambahan nilai panjang pesan semula.
 - 3. Inisialisasi penyangga (buffer) MD.
 - 4. Pengolahan pesan dalam blok berukuran 512 bit.

1. Penambahan Bit-bit Pengganjal

- Pesan ditambah dengan sejumlah bit pengganjal sedemikian sehingga panjang pesan (dalam satuan bit) kongruen dengan 448 (mod 512).
- Jika panjang pesan 448 bit, maka pesan tersebut ditambah dengan 512 bit menjadi 960 bit. Jadi, panjang bit-bit pengganjal adalah antara 1 sampai 512.
- Bit-bit pengganjal terdiri dari sebuah bit 1 diikuti dengan sisanya bit 0.

2. Penambahan Nilai Panjang Pesan

- Pesan yang telah diberi bit-bit pengganjal selanjutnya ditambah lagi dengan 64 bit yang menyatakan panjang pesan semula.
- Jika panjang pesan > 2^{64} maka yang diambil adalah panjangnya dalam modulo 2^{64} . Dengan kata lain, jika panjang pesan semula adalah K bit, maka 64 bit yang ditambahkan menyatakan K modulo 2^{64} .
- Setelah ditambah dengan 64 bit, panjang pesan sekarang menjadi kelipatan 512 bit.

3. Inisialisai Penyangga MD

- *MD5* membutuhkan 4 buah penyangga (*buffer*) yang masing-masing panjangnya 32 bit. Total panjang penyangga adalah $4 \times 32 = 128$ bit. Keempat penyangga ini menampung hasil antara dan hasil akhir.
- Keempat penyangga ini diberi nama A, B, C, dan D. Setiap penyangga diinisialisasi dengan nilai-nilai (dalam notasi HEX) sebagai berikut:

A = 01234567

B = 89ABCDEF

C = FEDCBA98

D = 76543210

4. Pengolahan Pesan dalam Blok Berukuran 512 bit.

- Pesan dibagi menjadi L buah blok yang masingmasing panjangnya 512 bit (Y_0 sampai Y_{L-1}).
- Setiap blok 512-bit diproses bersama dengan penyangga MD menjadi keluaran 128-bit, dan ini disebut proses H_{MD5} .
- Gambaran proses H_{MD5} diperlihatkan pada Gambar berikut:

- Pada Gambar tersebut, Y_q menyatakan blok 512-bit ke-q
- MD_q adalah nilai message digest 128-bit dari proses H_{MD5} ke-q. Pada awal proses, MD_q berisi nilai inisialisasi penyangga MD.
- Proses H_{MD5} terdiri dari 4 buah putaran, dan masingmasing putaran melakukan operasi dasar *MD5* sebanyak 16 kali dan setiap operasi dasar memakai sebuah elemen T. Jadi setiap putaran memakai 16 elemen Tabel T.

Fungsi-fungsi f_F , f_G , f_H , dan f_I masing-masing berisi 16 kali operasi dasar terhadap masukan, setiap operasi dasar menggunakan elemen Tabel T.

Operasi dasar MD5 diperlihatkan pada Gambar berikut:

Operasi dasar *MD5* yang diperlihatkan pada Gambar di atas dapat ditulis dengan sebuah persamaan sebagai berikut:

$$a \leftarrow b + CLS_s(a + g(b, c, d) + X[k] + T[i])$$

yang dalam hal ini,

a, b, c, d = empat buah peubah penyangga 32-bit A, B, C, D

g = salah satu fungsi F, G, H, I

 $CLS_s = circular left shift sebanyak s bit$

X[k] = kelompok 32-bit ke-k dari blok 512 bit *message* ke-q. Nilai k = 0 sampai 15.

T[i] = elemen Tabel Tke-i (32 bit)

+ = operasi penjumlahan modulo 2³²

Karena ada 16 kali operasi dasar, maka setiap kali selesai satu operasi dasar, penyanggapenyangga itu digeser ke kanan secara sirkuler dengan cara pertukaran sebagai berikut:

$$temp \leftarrow d$$

$$d \leftarrow c$$

$$c \leftarrow b$$

$$b \leftarrow a$$

Rinaldi Munir/Teknik Informatika STEI-ITB

Tabel 1. Fungsi-fungsi dasar MD5

Nama	Notasi	g(b,c,d)		
f_F	F(b, c, d)	$(b \wedge c) \vee (\sim b \wedge d)$		
f_G	G(b, c, d)	$(b \wedge d) \vee (c \wedge \sim d)$		
f_H	H(b, c, d)	$b \oplus c \oplus d$		
f_{I}	I(b, c, d)	$c \oplus (b \land \sim d)$		

<u>Catatan</u>: operator logika AND, OR, NOT, XOR masing masing dilambangkan dengan \land , \lor , \sim , \oplus

Tabel 2. Nilai T[i]

T[1] = D76AA478	T[17] = F61E2562	T[33] = FFFA3942	T[49] = F4292244
T[2] = E8C7B756	T[18] = C040B340	T[34] = 8771F681	T[50] = 432AFF97
T[3] = 242070DB	T[19] = 265E5A51	T[35] = 69D96122	T[51] = AB9423A7
T[4] = C1BDCEEE	T[20] = E9B6C7AA	T[36] = FDE5380C	T[52] = FC93A039
T[5] = F57C0FAF	T[21] = D62F105D	T[37] = A4BEEA44	T[53] = 655B59C3
T[6] = 4787C62A	T[22] = 02441453	T[38] = 4BDECFA9	T[54] = 8F0CCC92
T[7] = A8304613	T[23] = D8A1E681	T[39] = F6BB4B60	T[55] = FFEFF47D
T[8] = FD469501	T[24] = E7D3FBCB	T[40] = BEBFBC70	T[56] = 85845DD1
T[9] = 698098D8	T[25] = 21E1CDE6	T[41] = 289B7EC6	T[57] = 6FA87E4F
T[10] = 8B44F7AF	T[26] = C33707D6	T[42] = EAA127FA	T[58] = FE2CE6E0
T[11] = FFFF5BB1	T[27] = F4D50D87	T[43] = D4EF3085	T[59] = A3014314
T[12] = 895CD7BE	T[28] = 455A14ED	T[44] = 04881D05	T[60] = 4E0811A1
T[13] = 6B901122	T[29] = A9E3E905	T[45] = D9D4D039	T[61] = F7537E82
T[14] = FD987193	T[30] = FCEFA3F8	T[46] = E6DB99E5	T[62] = BD3AF235
T[15] = A679438E	T[31] = 676F02D9	T[47] = 1FA27CF8	T[63] = 2AD7D2BB
T[16] = 49B40821	T[32] = 8D2A4C8A	T[48] = C4AC5665	T[64] = EB86D391

Misalkan notasi

menyatakan operasi

$$a \leftarrow b + ((a + g(b, c, d) + X[k] + T[i]) <<< s)$$

yang dalam hal ini <<<s melambangkan operasi circular left shift 32-bit, maka operasi dasar pada masing-masing putaran dapat ditabulasikan sebagai berikut:

Putaran 1: 16 kali operasi dasar dengan g(b, c, d) = F(b, c, d) dapat dilihat pada Tabel 3.

Tabel 3. Rincian operasi pada fungsi F(b, c, d)

No.	[abcd	k	s	i]	
1	[ABCD	0	7	1]	
2	[DABC	1	12	2]	
3	[CDAB	2	17	3]	
4	[BCDA	3	22	4]	
5	[ABCD	4	7	5]	
6	[DABC	5	12	6]	
7	[CDAB	6	17	7]	
8	[BCDA	7	22	8]	
9	[ABCD	8	7	9]	
10	[DABC	9	12	10]	
11	[CDAB	10	17	11]	
12	[BCDA	11	22	12]	
13	[ABCD	12	7	13]	
14	[DABC	13	12	14]	
15	[CDAB	14	17	15]	
16	[BCDA	15	22	16]	

Putaran 2: 16 kali operasi dasar dengan g(b, c, d) = G(b, c, d) dapat dilihat pada Tabel 4.

Tabel 4. Rincian operasi pada fungsi G(b, c, d)

No.	[abcd	k	S	i]	
1	[ABCD	1	5	17]	
2	[DABC	6	9	18]	
3	[CDAB	11	14	19]	
4	[BCDA	0	20	20]	-1000
5	[ABCD	5	5	21]	
6	[DABC	10	9	22]	
7	[CDAB	15	14	23]	
8	[BCDA	4	20	24]	
9	[ABCD	9	5	25]	
10	[DABC	14	9	26]	
11	[CDAB	3	14	27]	
12	[BCDA	8	20	28]	
13	[ABCD	13	5	29]	
14	[DABC	2	9	30]	
15	[CDAB	7	14	31]	
16	[BCDA	12	20	32]	1

Putaran 3: 16 kali operasi dasar dengan g(b, c, d) = H(b, c, d) dapat dilihat pada Tabel 5.

Tabel 5. Rincian operasi pada fungsiH(b, c, d)

No.	[abcd	k	S	i]	200
1	[ABCD	5	4	33]	
2	[DABC	8	11	34]	
3	[CDAB	11	16	35]	
4	[BCDA	14	23	36]	
5	[ABCD	1	4	37]	
6	[DABC	4	11	38]	
7	[CDAB	7	16	39]	
8	[BCDA	10	23	40]	
9	[ABCD	13	4	41]	
10	[DABC	0	11	42]	
11	[CDAB	3	16	43]	
12	[BCDA	6	23	44]	
13	[ABCD	9	4	45]	
14	[DABC	12	11	46]	
15	[CDAB	15	16	47]	
16	[BCDA	2	23	48]	

Putaran 4: 16 kali operasi dasar dengan g(b, c, d) = I(b, c, d) dapat dilihat pada Tabel 6.

Tabel 6. Rincian operasi pada fungsi I(b, c, d)

No.	[abcd	k	S	<i>i</i>]	
1	[ABCD	0	6	49]	
2	[DABC	7	10	50]	
3	[CDAB	14	15	51]	
4	[BCDA	5	21	52]	
5	[ABCD	12	6	53]	
6	[DABC	3	10	54]	
7	[CDAB	10	15	55]	
8	[BCDA	1	21	56]	
9	[ABCD	8	6	57]	
10	[DABC	15	10	58]	
11	[CDAB	6	15	59]	
12	[BCDA	13	21	60]	
13	[ABCD	4	6	61]	
14	[DABC	11	10	62]	
15	[CDAB	2	15	63]	
16	[BCDA	9	21	64]	

- Setelah putaran keempat, a, b, c, dan d ditambahkan ke A, B, C, dan D, dan selanjutnya algoritma memproses untuk blok data berikutnya (Y_{q+1}).
- Keluaran akhir dari algoritma MD5 adalah hasil penyambungan bit-bit di A, B, C, dan D.

Contoh 13. Misalkan *M* adalah isi sebuah arsip teksbandung.txt sebagai berikut:

Pada bulan Oktober 2004 ini, suhu udara kota Bandung terasa lebih panas dari hari-hari biasanya. Menurut laporan Dinas Meteorologi Kota Bandung, suhu tertinggi kota Bandung adalah 33 derajat Celcius pada Hari Rabu, 17 Oktober yang lalu. Suhu terseut sudah menyamai suhu kota Jakarta pada hari-hari biasa. Menurut Kepala Dinas Meteorologi, peningkatan suhu tersebut terjadi karena posisi bumi sekarang ini lebih dekat ke matahari daripada hari-hari biasa.

Sebutan Bandung sebagai kota sejuk dan dingin mungkin tidak lama lagi akan tinggal kenangan. Disamping karena faktor alam, jumlah penduduk yang padat, polusi dari pabrik di sekita Bandung, asap knalpot kendaraan, ikut menambah kenaikan suhu udara kota.

Message digest dari arsip bandung.txt yang dihasilkan oleh algoritma MD5 adalah 128-bit:

0010 1111 1000 0010 1100 0000 1100 1000 1000 0100 0101 0001 0010 0001 1011 0001 1011 1001 1001 0101 0

atau, dalam notasi HEX adalah:

2F82D0C845121B953D57E4C3C5E91E63

Kriptanalisis MD5

- Dengan panjang *message digest* 128 bit, maka secara *brute force* dibutuhkan percobaan sebanyak 2¹²⁸ kali untuk menemukan dua buah pesan atau lebih yang mempunyai *message digest* yang sama.
- Pada awalnya penemu algoritma *MD5* menganggap usaha tersebut hampir tidak mungkin dilakukan karena membutuhkan waktu yang sangat lama.
- Tetapi, pada tahun 1996, Dobbertin melaporkan penemuan kolisi pada algoritma *MD5* meskipun kecacatan ini bukan kelemahan yang fatal.

- Pada tanggal 1 Maret 2005, Arjen Lenstra, Xiaoyun Wang, dan Benne de Weger mendemostraskan pembentukan dua buah sertifikat X.509 (akan dijelaskan di dalam bab Infrastruktur Kunci Publik) dengan kunci publik yang berbeda tetapi mempunyai nilai hash yang sama (lihat publikasinya di dalam hhtp://eprint.iacr.org/2005/067).
- Beberapa hari kemudian, Vlastimil Klima (http://eprint.iacr.org/2005/075) memperbaiki algoritma Lenstra dkk yang dapat menghasilkan kolisi MD5 hanya dalam waktu beberapa jam dengan menggunakan komputer PC [WIK06].