Discrete Mathematics Exercise 14

Qiu Yihang, 2020/11/11

1. Solution:

Path: a), b).

Simple path: a).

Circuits: b).

The length of Path a) is 4 and the length of path b) is 4.

2. Solution:

3. Solution:

Strongly connected components of graph a) are G_1, G_2, G_3 , in which G_1, G_2, G_3 are the subgraphs induced by $\{a, b, e\}, \{c\}, \{d\}$ respectively.

Strongly connected components of graph b) are G_1, G_2, G_3, G_4 , in which G_1, G_2, G_3, G_4 are the subgraphs induced by $\{c, d, e\}, \{a\}, \{b\}, \{f\}$ respectively.

Strongly connected components of graph c) are G_1 , G_2 , in which G_1 , G_2 are the subgraphs induced by $\{a, b, c, d, f, g, h, i\}$, $\{e\}$ respectively.

4. Proof:

First, we prove the "only if" part.

When the simple path G is bipartite with a bipartition (V_1, V_2) , a path starting from a vertex in V_1 with an odd-number length ends at a vertex in V_2 , and a path starting from a vertex in V_2 with an odd-number length ends at a vertex in V_1 .

Since a circuit is firstly a path and it starts from and ends at the same vertex, G has no circuits with an odd number of edges.

Then we prove the "if" part. Let $G = \{V, E\}$.

For $u, v \in V$ and u is connected to v, let d(u, v) = the least length of the path from u to v. Since there are no circuits in G with an odd number of edges, i.e. the length of all circuits in G is even. Therefore, if d(u, v) is even, all paths from u to v is even. The same works for the case when d(u, v) is odd.

```
Let V_0^* = V.

Pick u_0 \in V_0^*.

Let V_{10} = \{v \in V_0^* \mid u_0 \text{ and } v \text{ is connected and } d(u_0, v) \text{ is odd } \}.

Let V_{20} = \{v \in V_0^* \mid u_0 \text{ and } v \text{ is connected and } d(u_0, v) \text{ is even } \}.

Let V_1^* = V_0^* \setminus (V_{10} \cup V_{20}).

Pick u_1 \in V_1^*.

.....

Pick u_n \in V_n^*.

Let V_{1n} = \{v \in V_n^* \mid u_n \text{ and } v \text{ is connected and } d(u_n, v) \text{ is odd } \}.

Let V_{2n} = \{v \in V_n^* \mid u_n \text{ and } v \text{ is connected and } d(u_n, v) \text{ is even } \}.

Let V_{n+1}^* = V_n^* \setminus (V_{1n} \cup V_{2n}).

.....
```

Now we prove (V_1, V_2) is a bipartition by contradiction.

Assume there exists $u, v \in V_1$ s.t. u is adjacent to v. Thus, u is connected to v. We can find $w \in \bigcup_{i=0}^{\infty} \{u_i\}$ s.t. w is connected to u, i.e. w is connected to v. From the definition of V_1 , we know d(w, u) and d(w, v) is odd, i.e. all paths from w to v is odd. On the other hand, exists a path $w, x_1, x_2, ... x_m, u$, whose length is odd. Then there exists a path with an even length from w to v, i.e. $w, x_1, x_2, ... x_m, u, v$, whose length is even. Contradiction.

Thus, a simple graph G is bipartite if and only if it has no circuits with an odd number of edges.

QED

5. Proof:

```
Since exists a path from u to v: u, e_0, v, u and v are connected in graph G'.
```

Thus, $[u]_{\operatorname{Conn}(G')} = [v]_{\operatorname{Conn}(G')}$.

For any $x, y \in [u]_{Conn(G)}$, obviously x and y are still connected in graph G'.

For any $x, y \in [v]_{Conn(G)}$, obviously x and y are still connected in graph G'.

For any $x \in [u]_{Conn(G)}$, $y \in [v]_{Conn(G)}$, there exist a path from x to u: $x, e_1, x_1, e_2, ..., e_n, u$ and a path from y to v: $y, e_{n+1}, x_{n+1}, e_{n+2}, ..., e_m, v$. Since G' is undirected, there exists a path from x to y: $x, e_1, x_1, e_2, ..., e_n, u, e_0, v, e_m, x_m, e_{m-1}, ..., e_{n+1}, y$, i.e. x and y are connected in graph G'.

Let x = u, we know $[u]_{Conn(G)} \subseteq [u]_{Conn(G')}$ and $[v]_{Conn(G)} \subseteq [u]_{Conn(G')}$. Thus, $[u]_{Conn(G)} \cup [v]_{Conn(G)} \subseteq [u]_{Conn(G')}$.

Now we prove $[u]_{Conn(G)} \subseteq [u]_{Conn(G)} \cup [v]_{Conn(G)}$ by contradiction.

If exists $x \in [u]_{Conn(G')}$ and $x \notin [u]_{Conn(G)} \cup [v]_{Conn(G)}$.

- 1) x = u. Obviously $u \in [u]_{Conn(G)} \cup [v]_{Conn(G)}$. Contradiction.
- 2) $x \neq u$. Thus, exists a simple path from x to $u: x, e_1, x_1, e_2, ..., e_n, u$. Since $x \notin [u]_{Conn(G)} \cup [v]_{Conn(G)}$ and $G' = (V, E \cup \{e_0\})$, we know e_0 is definitely included in the path.

Thus, v is included in the path, i.e. x is connected to v in graph G.

Thus, $x \in [v]_{Conn(G)} \subseteq [u]_{Conn(G)} \cup [v]_{Conn(G)}$. Contradiction.

Thus, $[u]_{\operatorname{Conn}(G')} \subseteq [u]_{\operatorname{Conn}(G)} \cup [v]_{\operatorname{Conn}(G)}$.

QED

6. Proof:

- 0) Obviously V is a finite set and $I \subseteq \mathcal{P}(V)$.
- 1) By the definition of indepent sets of vertices, pick any $u \in V$, let $v^* = u$ and k = 0, we know that $\emptyset \in I$.
- 2) For any A⊆B⊆V, let A = {a₁, a₂, ..., a_s}, B = {b₁, b₂, ..., b_k} (s < k).</p>
 If B⊆I, we know there exist v*∈V s.t. B is an independent set whose source vertex is v*.
 In other words, exist k pairwise-disjoint paths ρ₁, ρ₂, ..., ρ_k s.t. ρ_i connects v* and b_i.
 Since for any a_i ∈ A, a_i ∈ B, we pick these ρ_j s.t. b_j = a_i ∈ A and let ρ'_i = ρ_j. Then we get s pairwise-disjoint paths ρ'₁, ρ'₂, ..., ρ'_s s.t. ρ'_i connects v* and a_i.
 Thus, A⊆I.
 - 3) For any $A, B \in I$, |A| < |B|, let $A = \{a_1, a_2, ..., a_s\}$, $B = \{b_1, b_2, ..., b_k\}$ (s < k). We prove there exists $x \in B \setminus A$ s.t. $A \cup \{x\} \in I$ by contradiction.

Assume for any $x \in B \setminus A$, no matter which $v \in V \setminus A \cup \{x\}$ we pick as source vertex v^* , there exists no pair of pair-wise disjoint paths $\rho_1, \rho_2, ..., \rho_s, \rho_{s+1}$ s.t. ρ_i connects v^* and a_i $(1 \le i \le s)$ and ρ_{s+1} connects v^* and x.

In other words, for any $v \in V \setminus A \cup \{x\}$ we pick as sourse vertex v^* , any path from v^* to x and any path of v^* to a certain a_i ($1 \le i \le s$) have common edges. Therefore, the first edge in any path from v^* to x and any path from v^* to a_i must be the same. In this case, we call there is a conflict between x and a_i .

For any designated source vertex v^* , we know for any $x, y \in B \setminus A$, if there are conflicts between x and a_i and between y and a_i , x = y. (Otherwise, we know there must be at least one common edge, i.e. the first edge in the path, in the path from v^* to x and v^* to y. Thus, if $x \in B \setminus A$, $y \notin B \setminus A$. Contradiction.)

Let $C = A \cap B$. Obviously there is no vertex $x \in B \setminus A$ s.t. there is a conflict between x and a $y \in C$. Otherwise, $x \notin B$.

Therefore, for any designated source vertex v^* , there are at most (s - |C|) vertices in $B \setminus A$ s.t. there are conflicts between the vertex and a $y \in A \setminus C$ since $|A \setminus C| = s - |C|$.

That is to say, there are at least (k-s) vertices in $B \setminus A$ which would not cause conflicts with any $y \in A \setminus C$, i.e. exists a designated $v^* \in V \setminus A \cup \{x\}$ and there exist pair-wise disjoint paths $\rho_1, \rho_2, ..., \rho_s, \rho_{s+1}$ s.t. ρ_i connects v^* and a_i $(1 \le i \le s)$ and ρ_{s+1} connects v^* and the vertex. $(k-s \ge 1)$ Contradiction.

Thus, exist at least one vertex $x \in B \setminus A$, exists a desginated $v^* \in V \setminus A \cup \{x\}$ s.t. there exist (s+1) pair-wise disjoint paths $\rho_1, \rho_2, ..., \rho_s, \rho_{s+1}$ s.t. ρ_i connects v^* and a_i $(1 \le i \le s)$ and ρ_{s+1} connects v^* and x.

In other words, exist at least one vertex $x \in B \setminus A$ s.t. $A \cup \{x\} \in I$.

Thus, (V, I) is a finite matroid.