Competitors when Non-null, Varying Sample Size, log2-fold standard deviation, and π_0 .

David Gerard

February 10, 2016

Abstract

I compare MOUTHWASH to various competitors. I look at AUC and estimates of π_0 . I also look at the Kendall's Tau between the p-values or lfdr's for the different methods. This file runs the same analysis as varyNsampNullpiLog2sd.pdf but with smaller sample sizes and smaller log2sd.

1 Competitors

For each competitor, I performed two methods. The first method consisted of a two-step procedure:

- 1. Estimate $\hat{\beta}_{[2,i]}$ and it's corresponding standard error \hat{s}_i .
- 2. Run ASH on $\hat{\beta}_{[2,i]}$ and \hat{s}_i .

The second method was to just calculate a normal (or t, where appropriate) p-values from $\hat{\beta}_{[2,i]}/\hat{s}_i$. The ASH methods provide an estimate of π_0 . I obtained an estimate of π_0 from the p-values by the qvalue package in R [Storey, 2002]. In some cases for the quasi-binomial methods, the largest p-values were less than 0.9 and qvalue would return an error (because it uses the largest p-values to estimate the proportion of nulls). For these, I used the upper quartile of p-values to estimate the proportion of nulls. Maybe a bad idea.

The methods that Mengyin and I have coded to get $\hat{\beta}_{[2,i]}$ and \hat{s}_i were

- VOOM [Law et al., 2014].
- RUVseq [Risso et al., 2014] followed by VOOM [Law et al., 2014] with the estimated confounding factors. Half of the factors were used as control genes. RUVseq is RUV2 on the log(counts + 1) matrix.
- SVAseq [Leek, 2014] followed by VOOM [Law et al., 2014] with the estimated confounding factors. SVAseq is SVA on the log(counts + 1) matrix.
- Quasi-binomial glm.
- RUVseq + quasi-binomial glm.
- SVAseq + quasi-binomial glm.
- MYRNA, which is just a quasi-binomial glm using the 75th percentile of the samples' counts as covariates [Langmead et al., 2010].
- MYRNA offset, which is just a quasi-binomial glm using the 75th percentile of the samples' counts as offsets [Langmead et al., 2010].
- DESeg2glm [Love et al., 2014].
- The robust regression version of CATE [Wang et al., 2015] on the $\log(\text{counts} + 1)$.

- The negative controls version of CATE [Wang et al., 2015] on the log(counts + 1).
- SVA [Leek and Storey, 2007] with the number of confounders estimated using the method of Buja and Eyuboglu [1992] on the log(counts + 1), followed by OLS.
- RUV2 [Gagnon-Bartsch et al., 2013] with 50% of the observations being control genes with the number of confounders estimated using the method of Buja and Eyuboglu [1992] on the log(counts + 1), followed by OLS.
- OLS on the $\log(\text{counts} + 1)$.
- The ridge-regression version of LEAPP [Sun et al., 2012] on the log(counts + 1).
- The soft-thresholding version of LEAPP [Sun et al., 2012] on the log(counts + 1).

Notes:

- "VOOM" means using VOOM [Law et al., 2014] to find weights for each observations, then fitting a linear model using LIMMA [Smyth, 2005].
- LEAPP does not easily provide standard errors, so I excluded it from the ASH analysis. But I still use it for the qvalue analysis.
- EdgeR was giving me trouble, so I excluded it.

The factor analysis part of MOUTHWASH was done with the quasi-mle approach of Bai et al. [2012] with the number of hidden confounders using the methods of Buja and Eyuboglu [1992] implemented in the num.sv() function in the sva package in R.

In summary, there are 31 methods that I compared in estimating π_0 and in their AUC:

- 1. MOUTHWASH
- 2. voom + ASH
- 3. Quasi-binomial GLM + ASH
- 4. MyrnaQB + ASH
- 5. Myrnaoffqb + ASH
- 6. RUVseq + voom + ASH
- 7. SVAseq + voom + ASH
- 8. RUVseq + Quasi-binomial GLM + ASH
- 9. SVAseq + Quasi-binomial GLM + ASH
- 10. DESeq2glm + ASH
- 11. OLS on $\log(\text{counts} + 1) + \text{ASH}$
- 12. RUV2 on $\log(\text{counts} + 1) + \text{ASH}$
- 13. SVA on $\log(\text{counts} + 1) + \text{ASH}$
- 14. Robust Regression Cate + ASH
- 15. Negative Control CATE + ASH
- 16. voom + qvalue
- 17. Quasi-binomial GLM + qvalue
- 18. Myrnaqb + qvalue
- 19. Myrnaoffqb + qvalue
- 20. RUVseq + voom + qvalue
- 21. SVAseq + voom + qvalue
- 22. RUVseq + Quasi-binomial GLM + qvalue
- 23. SVAseq + Quasi-binomial GLM + qvalue
- 24. DESeq2glm + qvalue
- 25. OLS on $\log(\text{counts} + 1) + \text{qvalue}$
- 26. RUV2 on $\log(\text{counts} + 1) + \text{qvalue}$

- 27. SVA on $\log(\text{counts} + 1) + \text{qvalue}$
- 28. Robust Regression CATE + qvalue
- 29. Negative Control CATE + qvalue
- 30. Soft-thresholding version of LEAPP+ qvalue
- 31. Ridge version of LEAPP+ qvalue

2 Simulation Study

I ran through 100 repetitions of generating data from GTEX lung data under the following parameter conditions:

- $n \in \{3, 5\},$
- p = 1000,
- $\pi_0 \in \{0.5, 0.9\},\$
- $\sigma_{log2} \in \{1, 5\}.$

I extracted the most expressed p genes (excluding the top 5 expressed genes) from the GTEX lung data and n samples are chosen at random. Half of these samples are randomly given the "treatment" label 1, the other half given the "treatment" label 0. Of the p genes, $\pi_0 p$ were chosen to be non-null. Signal was added by the Poisson-thinning approach in Mengyin's code with a mean log2-fold change of 0 and a standard deviation log2-fold change of σ_{log2} . That is

$$A_1, \dots, A_{p/2} \sim N(0, \sigma_{log2}^2)$$
 (1)

$$B_i = 2^{A_i} \text{ for } i = 1, \dots, p/2.$$
 (2)

If $A_i > 0$ then we replace $Y_{[1:(n/2),i]}$ with $Binom(Y_{[j,i]}, 1/B_i)$ for j = 1, ..., n/2. If $A_i < 0$ then we replace $Y_{[(n/2+1):n,i]}$ with $Binom(Y_{[j,i]}, B_i)$ for j = n/2 + 1, ..., n.

For each iteration, I calculated three things:

- 1. The pairwise Kendall's tau between the methods' lfdr's or p-values.
- 2. The AUC using either the lfdrs or p-values.
- 3. The estimates of π_0 .

3 Results

For the frequentist procedures, I used the vector of p-values as the predictions and I used the vector of lfdr's from the ASH-like procedures for prediction. These were used to create ROC curves and calculate AUCs. In general, the AUC's were all very similar with the ash-like methods having slightly higher AUC. DESeq2glm (with or without ASH) is the winner when the sample size is 3 vs 3. The results are less clear for 5 vs 5.

Graphical representations of the median Kendall's taus are presented below. The median Kendall's tau can get quite low between the separate groups — as small as 0.2. This indicates that for many datasets, the rankings can be quite different.

From the p-values, I used the qvalue package [Storey, 2002] to estimate π_0 . Estimates of π_0 are given from ashr for the ASH-like methods. MOUTHWASH (SUCCOTASH) performs the worst in estimating π_0 , usually underestimating it. The ASH-like methods usually estimate π_0 to be smaller

than their non-ASH counterparts. Notably, the negative controls version of CATE does not excel in the small sample size scenario.

References

Jushan Bai, Kunpeng Li, et al. Statistical analysis of factor models of high dimension. The Annals of Statistics, 40(1):436-465, 2012.

Andreas Buja and Nermin Eyuboglu. Remarks on parallel analysis. *Multivariate behavioral research*, 27(4):509–540, 1992.

J Gagnon-Bartsch, L Jacob, and TP Speed. Removing unwanted variation from high dimensional

- data with negative controls. Technical report, Technical Report 820, Department of Statistics, University of California, Berkeley, 2013.
- Ben Langmead, Kasper D Hansen, Jeffrey T Leek, et al. Cloud-scale rna-sequencing differential expression analysis with myrna. *Genome Biol*, 11(8):R83, 2010.
- Charity W Law, Yunshun Chen, Wei Shi, and Gordon K Smyth. Voom: precision weights unlock linear model analysis tools for rna-seq read counts. *Genome Biol*, 15(2):R29, 2014.
- Jeffrey T Leek. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic acids research, page gku864, 2014.
- Jeffrey T Leek and John D Storey. Capturing heterogeneity in gene expression studies by surrogate variable analysis. *PLoS Genet*, 3(9):1724–1735, 2007.
- Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and dispersion for rna-seq data with deseq2. *Genome Biol*, 15(12):550, 2014.
- Davide Risso, John Ngai, Terence P Speed, and Sandrine Dudoit. Normalization of rna-seq data using factor analysis of control genes or samples. *Nature biotechnology*, 32(9):896–902, 2014.
- Gordon K Smyth. Limma: linear models for microarray data. In *Bioinformatics and computational biology solutions using R and Bioconductor*, pages 397–420. Springer, 2005.
- John D Storey. A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(3):479–498, 2002.
- Yunting Sun, Nancy R Zhang, Art B Owen, et al. Multiple hypothesis testing adjusted for latent variables, with an application to the agemap gene expression data. *The Annals of Applied Statistics*, 6(4):1664–1688, 2012.
- Jingshu Wang, Qingyuan Zhao, Trevor Hastie, and Art B Owen. Confounder adjustment in multiple hypotheses testing. arXiv preprint arXiv:1508.04178, 2015.