DEEP LEARNING: REDES NEURAIS CONVOLUCIONAIS

Aprendizado de Máquina

- 2
- Como programar um computador para resolver problemas muito complexos?
 - Tarefa difícil e que depende do problema a ser resolvido
- Aprendizado de Máquina
 - Estuda como dar aos computadores a capacidade de aprender a partir dos dados

Aprendizado de Máquina

- 3
- Tarefa simples de se resolver
 - Reconhecer um objeto tridimensional
- Tarefa difícil de se resolver
 - Reconhecer um objeto tridimensional mudando o ponto de vista ou as condições de iluminação

Motivação

- 4
- Apesar das melhorias recentes, os algoritmos de aprendizagem tem dificuldades para:
 - Entender cenas e descrevê-las em linguagem natural
 - Inferir conceitos semânticos suficientes a ponto de interagir com humanos

Motivação

- 5
- Como extrair informações de imagens?
 - Tradicionalmente, processamos seus pixels de modo a obter representações mais abstratas
 - Presença de bordas
 - Presença de objetos com determinadas formas
 - etc
 - Alta variabilidade de tipos de estruturas presentes

Motivação

- 6
- Como extrair informações de imagens?
 - □ Geralmente as imagens demandam uma combinação de estratégias
 - Cor dos gatos
 - Textura do camaleão
 - Etc

- 7
- Ou Aprendizado Profundo
- É uma sub área do aprendizado de máquina
 - Utiliza algoritmos de aprendizado que extraem significado dos dados usando uma hierarquia de múltiplas camadas que imitam as redes neurais do nosso cérebro
- Busca aprender representações de dados
 - Eficácia excepcional em padrões de aprendizagem

Deep Learning

- As camadas não são projetadas por engenheiros humanos
 - As camadas são aprendidas a partir dos dados
 - Utiliza um procedimento de aprendizado para fins gerais

- 9
- □ É inspirado na forma como o cérebro funciona
 - Muitos neurônios conectados
 - A força das conexões representa um conhecimento de longo prazo
- É indicado para tarefas cujo espaço de entrada seja localmente estruturado
 - Estrutura espacial ou temporal
 - Imagens, linguagem etc.

Deep Learning

- 10
- Neurônios organizados em camadas hierárquicas
 - Cada camada transforma os dados de entrada em representações cada vez mais abstratas
 - Atributos de baixo nível até conceitos mais abstratos
 - Exemplo: borda -> nariz -> face
 - A camada de saída combina esses recursos para fazer previsões

11

- O cérebro humano funciona dessa forma
 - Primeira hierarquia (dados do córtex visual): sensibilidade às bordas

□ Regiões mais abaixo são sensíveis às estruturas

mais complexas

Exemplo: rostos

Deep Learning

- Processo de aprendizagem que descobre múltiplos níveis de abstração
 - Representações mais abstratas permitem extrair informações mais úteis para os classificadores
 - A profundidade está associada ao número de operações não lineares aprendidas

13

- Podemos usar uma rede MLP tendo como entrada uma imagem?
 - □ Tamanho da entrada em geral é muito grande!
 - □ Uma imagem de 200 x 200: 40000 unidades de entrada
 - Considerando as várias camadas ocultas, podese chegar a bilhões de parâmetros a serem ajustados

Deep Learning

- Podemos usar uma rede MLP tendo como entrada uma imagem?
 - Redes são iniciadas com pesos aleatórios.
 Geralmente ficavam presas a mínimos locais
 - Aumento da profundidade da rede tornava difícil obter uma boa generalização

15

- Convolutional Neural Network CNN
- Proposta por Yann LeCun e Yoshua Bengio em 1995
 - É um tipo especial de rede neural com múltiplas camadas, como a MLP
 - É inspirada na sensibilidade local e orientação seletiva do cérebro humano
 - Projetada para extrair características relevantes da entrada

Rede Neural Convolucional

- □ É uma rede do tipo feed-forward
 - Similar ao sistema visual humano, é projetada para extrair propriedades topológicas da entrada
 - Aprendem múltiplas camadas de transformações
 - As camadas são aplicadas umas sobre as outras
- Treinamento é feito utilizando o algoritmo de back-propagation (ou suas variações)
 - Necessitam de grandes quantidades de dados

17

- Um conjunto de pixels de entrada se transforma em um conjunto de votos nas classes possíveis
 - São redes capazes de reconhecer dados com muita variabilidade
 - Exemplo: caracteres escritos a mão

Rede Neural Convolucional

18

Impacto na classificação de imagens

ImageNet: The "computer vision World Cup"

Fonte: https://www.dsiac.org/sites/default/files/journals/dsiac-winter-2017-volume-4-number-1.pdf

19

- □ Hubel e Wiesel, 1962
 - □ Estudos com o sistema visual de gatos

Rede Neural Convolucional

- □ Hubel e Wiesel, 1962
 - □ Estudos com o sistema visual de gatos
 - Descoberta do papel importante dos Campos Receptivos
 - Atuam como como filtros locais
 - Filtragem Espacial
 - 2 tipos de comportamentos
 - Simple Cells: Respondem a padrões de bordas na imagem;
 - Complex Cells: Possuem campos receptivos grandes e são invariantes à posição do padrão.

21

- □ Hubel e Wiesel, 1962
 - Redes convolucionais s\(\tilde{a}\) o um tipo especial de redes MLP que usam o conceito de campo receptivo local
 - Explora as correlações espaciais focando em conectividade entre unidades de processamento próximas

Filtragem Espacial

22

Definição

- Também conhecidos como operadores locais ou filtros locais
- Combinam a intensidade de um certo número de pixels, para gerar a intensidade da imagem de saída.

Filtragem Espacial

- 24
- Uma grande variedade de filtros digitais podem ser implementados através da convolução no domínio do espaço
 - São os operadores locais mais utilizados em processamento de imagens, com diversas aplicações
 - Pré-processamento
 - Eliminação de ruídos
 - Suavização
 - Segmentação

25

- Refere-se ao plano da imagem
 - Envolve a manipulação direta dos pixels da imagem utilizando uma máscara espacial (kernels, templates, janelas)

- Valores das máscaras são chamados de coeficientes
 - O processo de filtragem é similar a um operação matemática denominada convolução

Filtragem Espacial

- Processo de filtragem
 - □ Cada elemento da máscara é multiplicado pelo valor do pixel correspondente na imagem *f*
 - A soma desses resultados é o novo valor do nível de cinza na nova imagem g
 - Exemplo: w é uma janela de n x n = k pixels. O processo de filtragem para cada pixel na imagem g(x,y) será dada por

$$g(x, y) = \sum_{i=1}^{k} w_i.f(x, y)$$

27

- □ Processo de filtragem
 - □ (a,b,c,d,e,f,g,h,i): são os valores dos níveis de cinza na vizinhança de f(x,y)
 - □ (w₁ a w₂): são os coeficientes da máscara
 - \Box O valor do pixel g(x,y) é dado por

$$g(x,y) = w_1 \cdot a + w_2 \cdot b + w_3 \cdot c + w_4 \cdot d + w_5 \cdot e + w_6 \cdot f + w_7 \cdot g + w_8 \cdot h + w_9 \cdot i$$

Imagem f(x,y							
	а	Ь	С				
	d	e	f				
	g	h	i				

$$k = 3 \times 3 = 9$$

\mathbf{w}_{i}	\mathbf{w}_2	w ₃	
W ₄	\mathbf{w}_{5}	w ₆	
W ₇	w ₈	W ₉	

Filtragem Espacial

28

□ Processo de filtragem

29

- A esse processo de filtragem dá-se o nome de convolução
 - Desloca-se a máscara (espelhada) sobre a imagem e calcula-se a soma dos produtos em cada local
 - A equação devem ser apliada sobre todas as posições x e y da imagem

$$w(x, y) * f(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$$

$$a = (m-1)/2$$
 $b = (n-1)/2$

Espelhamento ou rotação, feito na imagem

Exemplo de Convolução

30

Conjunto de operações

Desloca, Multiplica, Soma

máscara				
1	0			
0	1			

Imagem							
1	1	3	3	4			
1	1	4	4	3			
2	1	3	3	3			
1	1	1	4	4			

11	10	0 3	l <mark>l</mark> g	0 4	0	
01	011	0 4	<mark>)1</mark> 4	0 3	1	
2	1	3	3	3		
1	1	1	4	4		

Resultado							
2	5	7	6	*			
2	4	7	7	*			
3	3 2		7	*			
*	*	*	*	*			

A imagem resultado é menor do que a imagem original. Os valores marcados com * não podem ser calculados.

Convolução

31

Convenção

- Nas máscaras de tamanho par (2 x 2, 4 x 4, ...) o resultado é colocado sobre o primeiro pixel
- Nas máscaras de tamanho ímpar (3 x 3, 5 x 5,
 ...) o resultado é colocado sobre o pixel central
- A imagem resultante da convolução não necessita obrigatoriamente ser menor do que a imagem original
 - Convolução aperiódica
 - Gabarito truncado

Convolução aperiódica

32

 O valor 0 é atribuído aos resultados não calculáveis

Gabarito truncado

33

 Centra-se a máscara com o primeiro pixel da imagem atribuindo o valor 0 aos valores inexistentes na imagem

Custo da convolução

- O custo computacional da convolução é alto
 - Em um imagem de tamanho M x M e máscara N x N, o número de multiplicações é de M²N²
 - Exemplo: imagem de 512 x 512 e máscara de 16 x 16 = 67.108.864 multiplicações.

Máscaras de convolução

35

- O tamanho da máscara e os valores de seus coeficientes definem o tipo de filtragem produzido
- Alguns exemplos
 - □ Filtro Passa Baixa e média espacial (suavização)
 - □ Filtro Passa Alta (realce)
 - □ Gradientes (robert, sobel, etc): detectores de borda

Máscaras de convolução

- □ Filtro Passa Baixa
 - □ Remoção de ruído

Máscaras de convolução

37

- □ Filtro Passa Alta
 - □ Realce de imagens

Máscaras de convolução

38

- Gradientes
 - Detectores de Bordas

Original

Bordas horizontais (Sobel)

Bordas verticais (Sobel)

Imagem gradiente

Estrutura da Rede

39

- Uma Rede Neural Convolucional é formada pela combinação de 4 tipos de camadas
 - □ Camada de Convolução
 - Camada ReLU
 - Camada de Pooling
 - Camada Fully Connected

Camada de Convolução

- Utiliza a ideia de Campos Receptivos Locais
 - A camada calcula a saída dos neurônios conectados a regiões locais da entrada
 - Trata-se de um detector de atributos
 - Aprende automaticamente a filtrar as informações não necessárias de uma entrada usando um filtro de convolução

Camada de Convolução

41

- Os filtros são aprendidos pelo algoritmo
 - □ A inicialização dos filtros é aleatória
 - O pesos dos filtros são os mesmo em qualquer uma das regiões do mapa
 - □ A convolução é linear
 - □ Facilita o paralelismo do processo

Camada de Convolução

42

 Uma imagem permite gerar um conjunto de imagens

Camada de Convolução

43

 Permite aprender diferentes tipos de atributos em cada camada

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Camada ReLU

4/

- □ Do inglês, **Re**ctified **L**inear **U**nits
 - □ Função de ativação ponto-a-ponto
 - É a função de ativação usada nas redes convolucionais

Camada ReLU

45

- Usada como função de ativação para camadas ocultas
 - □ Treino mais muito rápido
 - Mais expressiva que a função logística
 - Evita o problema do gradiente de fuga

Camada ReLU

- Gradiente de Fuga ou Dissipação do Gradiente
 - O gradiente em redes neurais profundas é instável
 - Com isso, ele tende a explodir ou a desaparecer nas camadas anteriores
 - Atualização dos pesos da rede é proporcional à derivada parcial da função de erro com respeito ao peso em cada iteração
 - Gradiente extremamente pequeno impede o peso de ser alterado

Camada ReLU

47

Exemplo de aplicação nos dados

Camada ReLU

48

□ Exemplo de aplicação em uma "imagem"

Camada de Pooling

49

- □ Também chamada de downsample
 - Reduz o tamanho das imagens de entrada
 - Reduz a sensibilidade a deslocamentos e outras formas de distorção
 - Torna a convolução invariante a translação, rotação e shifting (janelamento)
 - Ajuda a detectar objetos em alguns locais incomuns e reduz o tamanho da memória
- □ Tipos de pooling
 - □ Min, Max e Média

Camada de Pooling

- □ Pooling mais utilizado: max-pooling
 - Seleciona-se a maior ativação para propagar na região de interesse
 - Permite capturar semelhanças em imagens mesmo que elas estejam um pouco deslocadas

Camada de Pooling

51

- Algoritmo
 - □ Selecione o tamanho da janela
 - Normalmente 2 x 2 ou 3 x 3
 - Deslize sua janela sobre a imagem
 - Para cada janela, selecione o valor máximo (max-pooling)

6

3

8

4

1	1	2	4	
5	6	7	8	max pool with 2x2 filters and stride 2
3	2	1	0	
1	2	3	4	

Camada de Pooling

Um conjunto de entradas gera saídas menores

Camada de Pooling

53

□ Reconstrução: camada de *polling* da AlexNet

https://github.com/InFoCusp/tf_cnnvis

Camada Fully Connected

- □ Também chamada de camada Dense
 - □ Trabalha como uma Rede Multilayer Perceptron
 - Os neurônios atuam sobre todos os dados fornecidos pelas camadas anteriores
 - Cada neurônio da camada de saída representa uma classe do problema

Camada Fully Connected

55

- Camada Convolucional
 - Extração de atributos de alto nível da imagem
- Camada Fully Connected
 - Busca aprender como classificar esses atributos em um conjunto de classes

Camada Fully Connected

- Função softmax
 - Utilizada quando a rede é voltada para tarefas de classificação
 - Permite interpretar os valores da camada de saída como uma distribuição de probabilidades

$$3 \rightarrow \begin{array}{c} 3 \rightarrow \\ 2 \rightarrow \\ 0,4 \rightarrow \end{array} \rightarrow \begin{array}{c} 0,7 \\ 0,2 \\ 0,4 \rightarrow \end{array}$$

Treinamento

57

- Error back-propagation ou Retropropagação do erro
- ¬ Funcionamento
 - Saída produzida pela rede é diferente do resultado esperado
 - Determina o grau de responsabilidade de cada parâmetro da rede
 - Valor do parâmetro é alterado com o propósito de reduzir o erro produzido

Treinamento

- Error back-propagation ou Retropropagação do erro
 - □ Sentido direto (forward)
 - Cálculo da saída e do erro
 - Sentido inverso (backward)
 - Propagação do erro
 - Erro = (resposta obtida) (resposta correta)

Treinamento

59

- Error back-propagation ou Retropropagação do erro
 - Utiliza a regra da cadeia para calcular o quão rápido o erro muda quando mudamos a ativação de uma unidade oculta
 - Pesos são ajustados para que as previsões figuem mais precisas

Dropout

- Desligamento de neurônios
 - Consiste em eliminar aleatoriamente (e temporariamente) alguns dos neurônios ocultos na rede
 - Os neurônios de entrada e saída não são afetados
 - Permite aprender descritores mais robustos dos dados

Dropout

61

Desligamento de neurônios

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.

Dropout - A Simple Way to Prevent Neural Networks from Overfitting (JMLR, 2014)

Dropout

- Desligamento de neurônios = rede mais robusta
 - □ Eliminar neurônio equivale a treinar redes neurais diferentes
 - Diminui o overfitting
 - □ Reduz co-adaptações complexas de neurônios
 - Um neurônio não pode confiar na presença de outros neurônios em particular, pois podem estar desligados
 - O neurônio é forçado a aprenda atributos mais robustos e úteis em conjunto com outros neurônios aleatoriamente selecionados

Batch Normalization

63

- Normalização em Lote
- Durante o treinamento, os dados são normalizados
 - No entanto, os dados são transformados a medida que passam pelas diferentes camadas da rede
 - Isso pode fazer com que os dados voltem a ficar desnormalizados

Batch Normalization

- Esse problema é conhecido como mudança de covariável interna (internal covariate shift)
 - Aumenta o tempo necessário para treinar a rede
 - Aumenta as chances de dissipação do gradiente
 - Se torna pior a medida que a rede fica mais profunda

Batch Normalization

65

- Consiste em normalizar os dados fornecidos a cada camada oculta
- Vantagens
 - Reduz a dependência da inicialização
 - Melhora o fluxo de gradiente em redes profundas
 - Diminui o tempo de treinamento
 - Diminuição de 14 vezes na quantidade de épocas necessárias para treinar a rede

Projetando a Rede

- Como deve ser a estrutura da rede?
 - Quantas camadas?
 - Quais tipos de camadas usar?
 - Qual a ordem das camadas?
 - Qual tipo de filtro?
 - □ Qual tipo de normalização?
 - Taxa de Dropout?

67

- AlexNet (Krizhevsky, 2012)
 - 60 milhões de parâmetros
 - Entrada: 224 x 224
 - conv1: 96 filtros de 11 x 11 x 3, stride 4
 - conv2: 256 filtros de 5 x 5 x 48
 - conv3: 384 filtros de 3 x 3 x 256
 - conv4: 384 filtros de 3 x 3 x 192
 - conv5: 256 filtros de 3 x 3 x 192
 - fc1 e fc2: 4096 neurônios

Projetando a Rede

68

AlexNet (Krizhevsky, 2012)

69

- VGG 19 (Simonyan 2014)
 - -+camadas, -filtros = menos parâmetros
 - □ Entrada: 224 x 224
 - □ Filtros: todos 3 x 3
 - conv 1-2: 64 filtros + maxpool
 - conv 3-4: 128 filtros + maxpool
 - conv 5-6-7-8: 256 filtros + maxpool
 - conv 9-10-11-12: 512 filtros + maxpool
 - conv 13-14-15-16: 512 filtros + maxpool
 - □ fc1 fc2: 4096 neurônios

Projetando a Rede

70

VGG 19 (Simonyan 2014)

71

- □ GoogLeNet (Szegedy, 2014)
 - □ 22 camadas
 - Inicia com 2 camadas convolucionais
 - Camada Inception ("filter bank")
 - Filtros 1 x 1, 3 x 3, 5 x 5 + max pooling 3 x 3
 - Reduz a dimensionalidade usando filtros 1 x 1
 - 3 classificadores em diferentes partes

Projetando a Rede

- □ GoogLeNet (Szegedy, 2014)
 - □ Blue = convolução
 - □ Red = pooling,
 - □ Yellow = camada Softmax loss fully connected
 - □ Green = normalização ou concatenação

73

- Residual Network ResNet (He et al, 2015)
 - -filtros, +camadas (34-1000)
 - Arquitetura residual
 - Adicionar mais camadas não melhora o desempenho
 - Dificuldade de treinar
 - Dissipação do Gradiente
 - Skip Connection: adiciona a entrada original a saída de um bloco de convolução

Projetando a Rede

- □ Residual Network ResNet (He et al, 2015)
 - O modelo aprende uma função identidade de modo que as camadas mais altas nunca terão um desempenho inferior as camadas mais baixas

Utilizando uma rede pré-treinada

75

Finetuning

- Dados similares a ImageNet
 - Manter o treinamento das camadas convolucionais
 - Treinar apenas as camadas FC

Utilizando uma rede pré-treinada

76

Finetuning

- Dados diferentes da ImageNet
 - Manter o treinamento das camadas convolucionais inferiores
 - Treinar as outras camadas convolucionais e as camadas FC

Utilizando uma rede pré-treinada

77

- Extração de atributos
 - Pegar os valores de ativação das últimas camadas de convolução ou FC
 - Utilizar um classificador externo: SVM, k-NN, Naive Bayes etc

Aplicações

- Reconhecimento de fala e processamento de sinais
 - Microsoft, 2012: nova versão do MAVIS (Microsoft Audio Video Indexing Service), sistema de voz baseado em Deep Learning
 - ~30% menos erros nos 4 principais conjuntos de benchmark

Aplicações

79

- Reconhecimento de objetos
 - Classificação de objetos MNIST
 - Banco de dados de dígitos manuscritos
 - Taxa de erro: 0,27%
 - ImageNet
 - Base de dados de reconhecimento de imagens naturais
 - No primeiro uso, reduziu a taxa de erro de 26,1% para 15,3%
 - Atualmente, a taxa de erro é menor que 5%

Agradecimentos

- Agradeço aos professores
 - Prof. Anderson Soares Universidade Federal de Goiás (UFG)
 - Anderson Tenório Universidade Federal de Pernambuco (UFPE)
 - Prof. Moacir Ponti Universidade de São Paulo (USP)
 - Prof. Eduardo Bezerra (CEFET/RJ)
- pelo material disponibilizado