ТЕОРИЯ ГРУПП

Краткое содержание курса Версия от 1.4.2024

Основано на лекциях Екатерины Михайлец и их конспектах от Александра Васюкова (tgc @overmindv). Автор - Артём Марченко. Обратная связь: tg @m3tr_0.

Порядок тем немного изменён мной для более простой структуризации материала.

Спасибо Кайтуеву Абдулле за обратную связь и нахождение ошибок. Пишите и вы при обнаружении ошибок и опечаток.

Содержание:

1. Базовые элементы общей алгебры.

- Множество. Операции над множествами.
- Отображение. Оператор на множестве. Образ и прообраз. Инъекция, сюръекция и биекция. Композиция.
- Бинарные отношения. Отношение эквивалентности. Класс эквивалентности. Фактормножество.
- Бинарные операции. Ассоциативность и коммутативность.

2. Алгебраические структуры.

- Группоид, полугруппа, моноид, группа и абелева группа. Нейтральный элемент. Обратный элемент. Порядок группы. Произведение групп.
- Подгруппа. Собственная и простая подгруппа. Критерий подгруппы.
- Циклическая группа. Порядок элемента группы.
- Таблица Кэли.

3. Гомоморфизмы.

- Гомоморфизм, мономорфизм, эпиморфизм и изоморфизм.
- Свойства гомоморфизма.
- Ядро гомоморфизма. Образ гомоморфизма. Критерий о тривиальности ядра гомоморфизма.
- Автоморфизм. Внутренний автоморфизм.
- Теорема Кэли.

4. Классы смежности.

- Левый и правый класс смежности.
- Теорема Лагранжа. Леммы и следствия. Малая теорема Ферма. Индекс подгруппы.
- Нормальная погруппа. Естественный гомоморфизм. Сопряжённые элементы. Два критерия нормальности.
- Факторгруппа. Теорема о гомоморфизме групп.
- Центр группы.

Кольца.

- Кольцо, кольцо с единицей, коммутативное кольцо. Подкольцо. Критерий подкольца.
- Делители нуля. Целостное кольцо.
- Идеал. Главный идеал. Кольцо главных идеалов. Факторкольцо.
- Гомоморфизм колец. Теорема о гомоморфизме колец. Леммы.

6. Поля.

- Поле. Обратимый элемент.
- Алгоритм Евклида. Следствие. Взаимно простые элементы кольца.
- Характеристика поля.
- Подполе и расширение поля. Простое подполе. Алгебраический элемент и трансцендентное число. Теорема.
- Факторкольцо кольца многочленов. Теоремы.

7. Применение в криптографии.

- Протокол шифрования Диффи-Хеллмана.
- Криптосистема Эль-Гамаля.

1. Базовые элементы общей алгебры

1.1. Множества

Множество - совокупность каких-либо объектов, **элементов** этого множества. Определим следующие операции над множествами:

• Пересечение множеств А и В состояит из элементов, которые есть и в А, и в В:

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

• **Объединение множеств** A и B состоит из элементов, которые есть либо в A, либо в B (в том числе в обоих множествах):

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

• Разность множеств А и В состоит из элементов, которые есть в А, но не в В:

$$A \setminus B = \{x \mid x \in A \land x \notin B\}$$

• **Декартово (прямое) произведение множеств** A и B состоит из всех упорядоченных пар, первые элементы которых принадлежат множеству A, а вторые - множеству B.

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

1.2. Отображения

Отмображение из множества A в множество B - правило, в соответствии с которым каждому элементу $a \in A$ сопостовляется какой-либо элемент $b \in B$. Обозначение:

$$f:A\to B$$

Преобразование множества A, или **оператор** на A - отображение из множества A в само себя: $f:A \to A$.

Пусть дано отображение $f: A \rightarrow B$. Тогда:

Образ множества A под действием отображения f - множество всех элементов B, которые могут быть получены с помощью f:

$$\operatorname{Im} A = f(A) = \{ f(a) \in B \mid a \in A \}$$
$$\operatorname{Im} A \subset B$$

Прообраз элемента $b \in \text{Im } A$ - такой элемент $a \in A$, что f(a) = b).

Полный прообраз элемента $b \in \text{Im } A$ - множество всех прообразов элемента b:

$$f^{-1}(b) = \{a \in A \mid f(a) = b\}$$

Отображение называется **сюръективным**, если для каждого элемента $b \in B$ существует какой-либо элемент $a \in A$ такой, что f(a) = b. Иными словами, образ множества A равен множеству B.

$$f: A \to B$$
 f сюръективно $\iff \forall b \in B \; \exists a \in A : f(a) = b \iff \operatorname{Im} A = B$

Отображение называется **инъективным**, если разные элементы множества A отображаются в разные элементы множества B. Иными словами, для каждого элемента $b \in B$ существует только один прообраз.

$$f: \mathsf{A} \to \mathsf{B}$$
 f инъективно $\iff \forall a_1, a_2 \in \mathsf{A}: a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$ $\iff \forall a_1, a_2 \in \mathsf{A}: f(a_1) = f(a_2) \Rightarrow a_1 = a_2$

Отображение называется **биективным** (или **взаимно-однозначным**), если оно инъективно и сюръективно.

Композиция, или **произведение** отображений f и g - применение f к результату g. Пусть $g:A\to B$ и $f:B\to C$. Тогда их композиция:

$$f \cdot g : A \to C$$

 $\forall a \in A : (f \cdot g)(a) = f(g(a))$

Композиция в общем случае ассоциативна и не коммутативна:

$$\forall f, f_0, g, h$$
 таких, что $h: A \to B, g: B \to C, f: C \to D, f_0: D \to C$
$$(f \circ g) \circ h = f \circ (g \circ h)$$

$$f \circ g \neq g \circ f$$

1.3. Бинарные отношения

Пусть даны множества A и B. Тогда любое подмножество их декартова произведения $A \times B$ называется **бинарным отношением**. Если X = Y, то это бинарное отношение на множестве X.

Пусть $W \subseteq A \times B$ - бинарное отношение. Тогда обозначают $(a,b) \in W$ как aWb.

Бинарное отношение ~ на множестве A называется **отношением эквивалентности**, если $\forall a_0, a_1, a_2 \in A$ выполняется:

- Рефлексивность: a₀ ~ a₀;
- Симметричность: $a_0 \sim a_1 \Rightarrow a_1 \sim a_0$;
- Транзитивность: $a_0 \sim a_1 \wedge a_1 \sim a_2 \Rightarrow a_0 \sim a_2$.

Класс эквивалентности элемента $a \in A$ - подмножество множества A, содержащее все значения, эквивалентные a:

$$\overline{a} = \{a_0 \in A \mid a_0 \sim a\} \subseteq A$$

Множество классов эквивалентности элементов *А* является *разбиением* множества *А*. Другими словами, классы эквивалентности либо не пересекаются, либо совпадают:

$$\begin{split} A &= \bigcup_{\alpha \in A} \overline{\alpha} \\ \forall a_1, a_2 \in A : \left(\overline{a_1} = \overline{a_2} \right) \vee \left(\overline{a_1} \cap \overline{a_2} = \varnothing \right) \end{split}$$

Утверждение: Если существует разбиение множества на непересекающиеся подмножества, то эти подмножества будут классами эквивалентности по некоторому отношению эквивалентности.

Зададим ~ следующим образом: $a_1 \sim a_2 \Leftrightarrow a_1$ и a_2 лежат в одном и том же из таких непересекающихся подмножеств. Это отношение рефлективно, симметрично и транзитивно. Значит, ~ является отношением эквивалентности.

Следовательно, задать разбиение множества ⇔ задать отношение эквивалентности.

Фактормножество относительно некоторого отношения эквивалентности - разбиение (множество классов эквивалентности), отвечающее этому отношению эквивалентности.

Пусть A - множество, и B - его разбиение, отвечающее отношению эквивалентности \sim . Тогда обознают: $B = A/\sim$.

1.4. Бинарные операции

Бинарной операцией на множестве A называется отображение $\tau : A \times A \to A$ (Отображает пары элементов множества в элементы множества).

Пусть задана бинарная операция $\star: X \times X \to X$. Тогда:

Бинарная операция \star **ассоциативна**, если $\forall a, b, c \in X : (a \star b) \star c = a \star (b \star c)$.

Бинарная операция \star **коммутативна**, если $\forall a, b \in X : a \star b = b \star a$.

2. Алгебраические структуры

2.1. Группоиды

Группоид (или магма) - множество с корректно заданой на нём *бинарной операцией*. (Пусть *A* - множество. Операция должна отображать *A* × *A* в *A*, то есть множество замкнуто относительно операции.)

Группоид обозначают (M, \star) , где M - множество, а \star - операция.

Полугруппа - группоид, операция которого *ассоциативна*. Иными словами полугруппа - множество с корректно заданной на нём ассоциативной бинарной операцией.

Нейтральный элемент e в полугруппе (H, \star) - такой элемент, что выполняется:

$$\forall h \in H : e * h = h * e = h$$

Утверждение: Нейтральный элемент единственен.

□ Пусть e_1 и e_2 - нейтральные элементы в (H, *). Тогда $e_1 = e_1 * e_2 = e_2 \Rightarrow e_1 = e_2$.

Моноид - полугруппа, в которой существует нейральный элемент.

Пусть (M, \star) - моноид с нейтральным элементом e.

Обратный элемент $a^{-1} \in M$ к элементу $a \in M$ - такой, что выполняется:

$$a^{-1} \star a = a \star a^{-1} = e$$

(Следовательно, a - обратный элемент к a^{-1} .)

Группа - моноид, все элементы которого *обратимы* (к ним есть обратный элемент). Другими словами, группа (G, \star) - множество G с корректно заданной на нём бинарной операцией \star , в котором выполняется:

- Ассоциативность: $\forall x, y, z \in G : (x * y) * z = x * (y * z);$
- Существование нейтрального элемента: $\exists e \in G \ \forall x \in G : e \star x = x \star e = x;$
- Обратимость каждого элемента: $\forall x \in G \ \exists x^{-1} \in G : x^{-1} \star x = x \star x^{-1} = e$.

Порядок группы - количество элементов в ней (мощность). Обозначается |G|.

Абелева группа - группа, операция которой коммутативна:

$$\forall x, y \in (M, \star) : x \star y = y \star x$$

Прямое произведение групп (G_1, \cdot) и (G_2, \star) - их прямое (декартово) произведение $G_1 \times G_2$ (как множество), снабжённое операцией \bigstar :

$$\forall (x_1, y_1), (x_2, y_2) \in G_1 \times G_2 : (x_1, y_1) \not \Rightarrow (x_2, y_2) = (x_1 \cdot x_2, y_1 * y_2)$$

2.2. Подгруппа

Пусть (G, \star) - группа и $H \subseteq G$ - его непустое подмножество. H является **подгруппой**, если выполняется:

- замкнутость по бинарной операции: ∀х, у ∈ H : х * у ∈ H;
- нейтральный элемент включён: $\exists e \in H \ \forall x \in H : e * x = x * e = x;$
- замкнутость по взятию обратного элемента: $\forall x \in H \exists x^{-1} \in H : x \star x^{-1} = x^{-1} \star x = e$.

Подгруппа H группы G называется **собственной**, если $H \neq \{e\} \land H \neq G$.

Простая группа - группа, не имеющая собственных подгрупп.

Критерий подгруппы: Пусть H - подмножество группы (G, \star). Тогда:

$$H$$
 является подгруппой \iff $\forall h_1, h_2 \in H: h_1 \star h_2^{-1} \in H$

 $\stackrel{\square}{\Longrightarrow}$

Дано: Н является подгруппой. Тогда:

$$\forall h_2 \in H : h_2^{-1} \in H \implies \forall h_1, h_2^{-1} \in H : h_1 \star h_2^{-1} \in H$$

 \leftarrow

Дано: $\forall h_1, h_2 \in H : h_1 \star h_2^{-1} \in H$.

1. Возьмём $h_1 = h_2$. Тогда:

$$h_1 \star h_2^{-1} \in H \Rightarrow h_1 \star h_1^{-1} \in H \Rightarrow e \in H$$

Значит, обратный элемент включён.

2. Возьмём h_1 = e ∈ H. Тогда $\forall h_2$ ∈ H:

$$h_1 \star h_2^{-1} \in H \implies e \star h_2^{-1} \in H \implies h_2^{-1} \in H$$

Значит, выполняется замкнутость по взятию обратного элемента.

3.
$$\forall h_2 \in H : h_2^{-1} \in H \implies \forall h_1, h_2^{-1} \in H$$
:

$$h_1 \star (h_2^{-1})^{-1} \in H \Rightarrow h_1 \star h_2 \in H$$

Значит, выполняется замкнутость по бинарной операции.

2.3. Циклические группы

Пусть e - нейтральный элемент группы (G, \cdot) и $g \in G$ - некоторый элемент этой группы. Пусть существует $q \in \mathbb{N}$ - наименьшее натуральное число такое, что $q^q = e$.

Тогда g называется элементом **конечного порядка**, а q - **порядком** элемента g. Обозначают q = ord(q).

Если такого q не существует, то q называется элементом **бесконечного порядка**.

Циклическая группа - группа (G, \cdot) , в которой существует такой элемент $a \in G$, что любой элемент $g \in G$ представим в виде $g = a^n$, где $n \in \mathbb{Z}$:

$$G = \langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$$

(Существует мультипликативная запись: $g = a \cdot a \cdot ... \cdot a = a^n$; и аддитивная запись: $g = a + a + ... + a = n \cdot a$.)

В любой группе каждый элемент $g \in G$ порождает циклическую подгруппу < g > (состоящую из всех его степеней).

Утверждение: все циклические группы абелевы.

$$\Box \forall g_1 = a^k, g_2 = a^l \in \langle a \rangle : g_1 \cdot g_2 = a^k \cdot a^l = a^{k+l} = a^l \cdot a^k = g_2 \cdot g_1 \blacksquare$$

Утверждение: порядок любого элемента группы равен порядку циклической подгруппы, порождённой им:

$$\forall g \in G : \operatorname{ord}(g) = | \langle g \rangle |$$

П

Пусть G - группа, и $g \in G$ некторый её элемент.

- 1. Пусть $g^k = g^s$ для некоторых $k \ge s$. Тогда $g^{k-s} = e$. Значит, элемент g имеет конечный порядок. Значит, если $\operatorname{ord}(g) = \infty$, то все степени g^n различны. Следовательно $| < g > | = \infty$ (так как < g > состоит из всех степеней g^n).
- 2. Если порядок g конечен, то существует минимальное $m \in \mathbb{N}$, такое что $g^m = e$. Покажем, что $< g > = \{g^0, g^1, ..., g^{m-1}\}$. $\forall g^n \in < g > :$

$$g^n = g^{m \cdot q + r} = (g^m)^q \cdot q^r = e^q \cdot g^r = e \cdot g^r = g^r \quad \text{, } 0 \leq r < m$$

То есть любой элемент в < g > имеет вид g^r , где 0 ≤ r < m. Значит, |< g > | = ord(g) = m.

2.4. Таблица Кэли

Таблицей Кэли для какой-либо алгебраической структуры (в частности, группы) называется следующая матрица $(g_1, g_2, ..., g_i, ... \in (G, \star)$ - элементы этой структуры):

	g_1	g_2	•••	g _i	•••
g_1	$g_1 \star g_1$	$g_1 \star g_2$	•••	g ₁ *g _i	••
g_2	$g_2 \star g_1$	$g_2 \star g_2$	•••	$g_2 * g_i$	••
	•••	•••	•••	••	••
g _i	$g_i \star g_1$	$g_i \star g_2$	•••	g _i *g _i	•

Если таблица Кэли симметрична, то группа абелева.

Утверждение: Если (G, \star) - группа, то в её таблице Кэли каждый элемент встречается только один раз в каждой строке и каждом столбце.

Для столбца. $\forall g_i, g_k, g_i$:

$$g_i \star g_j = g_k \star g_j \Rightarrow g_i \star g_j \star g_j^{-1} = g_k \star g_j \star g_j^{-1} \Rightarrow g_i = g_k$$

Для строки аналогично.

3. Гомоморфизмы

3.1. Виды гомоморфизмов

Пусть (G_1, \star) и (G_2, \cdot) - группы. Тогда отображение $f: G_1 \to G_2$ называется **гомоморфизмом**, если $\forall a, b \in G_1: f(a \star b) = f(a) \cdot f(b)$.

Инъективный гомоморфизм называется **мономорфизмом**, сюръективный - **эпиморфизмом**, биективный - **изоморфизмом**.

Изоморфные группы G_1 и G_2 (между ними существует изоморфизм) обозначают $G_1 \cong G_2$. Если две группы изоморфны, то с точки зрения алгебры они не различимы.

Утверждение: Все циклические группы одинакового порядка изоморфны.

Покажем, что для любой циклической группы бесконечного порядка выполняется $< a > \cong (\mathbb{Z}, +)$.

Пусть отображение $\varphi: \langle a \rangle \to \mathbb{Z}$ задано как $\varphi(a^n) = n$.

Оно инъективно и сюръективно, а значит биективно. На нём выполняется $\varphi(a^m \star a^n) = \varphi(a^{m+n}) = m + n = \varphi(a^m) + \varphi(a^n)$, значит оно гомоморфизм и изоморфизм.

Покажем, что для любой циклической группы конечного порядка п выполняется < а > ≅ $(\mathbb{Z}_n,+)$, где $(\mathbb{Z}_n,+)$ - группа вычетов по модулю n с операцией сложения.

Пусть отображение $\varphi: \langle a \rangle \to \mathbb{Z}_n$ задано как $\varphi(a^k) = \overline{k}$.

Оно инъективно и сюръективно, а значит биективно. На нём выполняется $\varphi(a^m \star a^n)$ = $\varphi(a^{m+n}) = \overline{m+n} = \overline{m} + \overline{n} = \varphi(a^m) + \varphi(a^n)$, значит оно гомоморфизм и изоморфизм.

3.2. Свойства гомоморфизма

Пусть задан гомоморфизм $f:(G_1,\star,e_1)\to (G_2,\cdot,e_2)$. Тогда: 1. Нейтральный элемент всегда переходит в нейтральный: $f(e_1)=e_2$

 $\forall g \in G_1: f(g) \cdot f(e_1) = f(g \star e_1) = f(g) = f(e_1 \star g) = f(e_1) \cdot f(g) \Rightarrow f(e_1)$ - нейтральный элемент в G_2 . ■

2. Обратный элемент всегда переходит в обратный: $\forall g \in G_1: f(g^{-1}) = (f(g))^{-1}$

$$\Box \ \forall g \in G_1: f(g^{-1}) \cdot f(g) = f(g^{-1} \star g) = f(e_1) = e_2 = f(g \star g^{-1}) = f(g) \cdot f(g^{-1})$$
 $\Rightarrow f(g^{-1})$ - обратный элемент к $f(g)$ в G_2 .

Утверждение: Если f - изоморфизм, то f^{-1} тоже изоморфизм.

Пусть задан изоморфизм $f:(G_1,\star)\to (G_2,\cdot)$. f - биекция, следовательно f^{-1} тоже биекция.

$$f^{-1}(f(a) \circ f(b)) = f^{-1}(f(a \star b)) = a \star b = f^{-1}(f(a)) \star f^{-1}(f(b))$$

Значит, f^{-1} - гомоморфизм, а значит и изоморфизм.

3.3. Ядро и образ гомоморфизма

Ядро гомоморфизма $f: G_1 \to G_2$ - подмножество всех элементов G_1 , которые переходят в нейтральный элемент из G_2 :

$$\text{Ker } f = \{ a \in G_1 \mid f(a) = e_2 \}$$

Ker $f \neq \emptyset$, так как $f(e_1) = e_2$.

Утверждение: Ядро любого гомоморфизма $f: G_1 \to G_2$ является подгруппой в G_1 .

$$\forall a, b \in \text{Ker } f: f(a \star b^{-1}) = f(a) \cdot f(b^{-1}) = f(a) \cdot (f(b))^{-1} = e_2 \cdot e_2^{-1} = e_2$$

Следовательно, $a * b^{-1} \in \text{Ker } f$ и по критерию подгруппы Ker f - подгруппа в G_1 .

Пусть $f: G_1 \to G_2$ - гомоморфизм.

Критерий о тривиальности ядра гомоморфизма: f - мономорфизм \iff Ker $f = \{e_1\}$.

 $^{\square}$

$$\forall g_1, g_2 \in G_1 : g_1 \neq g_2 \Rightarrow f(g_1) \neq f(g_2)$$

$$\downarrow \downarrow$$

$$\forall g \in G_1 : g \neq e_1 \Rightarrow f(g) \neq f(e_1) = e_2$$

$$\downarrow \downarrow$$

$$\text{Ker } f = \{e_1\}$$

 \leftarrow $\forall g_1, g_2$:

$$f(g_1) = f(g_2) \implies f(g_1) \cdot (f(g_2))^{-1} = e_2 \implies f(g_1) \cdot f(g_2^{-1}) = f(g_1 \cdot g_2^{-1}) = e_2$$

Значит, $g_1 \star g_2^{-1} \in \operatorname{Ker} f = \{e_1\}$, следовательно $g_1 \star g_2^{-1} = e_1$ и следовательно $g_1 = g_2$. Итого получаем $\forall g_1, g_2 \in G_1 : f(g_1) = f(g_2) \Rightarrow g_1 = g_2$, то есть f - мономорфизм.

Образ гомоморфизма $f: G_1 \to G_2$ - это образ множества G_1 под действием отображения f с операцией группы G_2 :

Im
$$f = f(G_1) = \{g_2 \in G_2 \mid \exists g_1 \in G_1 : f(g_1) = g_2\} \subseteq G_2$$

Утверждение: Образ гомоморфизма $f: G_1 \to G_2$ является подгруппой в G_2 .

- 1. Замкнутость по операции из определения гомоморфизма;
- 2. Содержит нейтральный элемент e_2 , так как $e_2 = f(e_1)$;
- 3. Содержит обратный элемент к каждому, так как $(f(g))^{-1} = f(g^{-1})$

3.4. Автоморфизмы

Автоморфизм - изоморфизм группы в себя.

Множество всех автоморфизмов группы G обозначается Aut(G) и образует группу относительно операции композиции.

Внутренний автоморфизм - отображение $I_a: G \to G$, такое что $\forall g \in G: I_a(g) = aga^{-1}$ (переводит каждый элемент в сопряжённый к нему по a).

Множество всех внутренних автоморфизмов группы G обозначается Inn(G) и образует подгруппу в Aut(G).

Внутренний автоморфизм действительно является изоморфизмом:

$$I_a(g_1g_2) = ag_1g_2a^{-1} = ag_1a^{-1}ag_2a^{-1} = I_a(g_1)I_a(g_2)$$

В абелевой группе G всегда выполняется $Inn(G) = \{e\} = \{I_a\}$.

3.5. Теорема Кэли

Теорема Кэли: любая конечная подгруппа порядка $n \in \mathbb{N}$ изоморфна некоторой подгруппе в S_n (симметрической группе - группе всех подстановок n элементов).

Пусть G - группа порядка n. Для каждого элемента $a \in G$ рассмотрим отображение $L_a : G \to G$ G, заданное формулой $L_a(g) = ag$ (то есть L_a - это умножение слева на a, или левый сдвиг).

Пусть $e, g_2, ..., g_n$ - элементы группы G. Тогда $a, ag_2, ..., ag_n$ - это те же элементы, но в другом порядке ("склеиваний" нет: $ag_i = ag_j \Rightarrow a^{-1}ag_i = a^{-1}ag_j \Rightarrow g_i = g_j$). Значит, L_a - это биективное отображение, то есть перестановка элементов группы G.

Множество $\{L_a \mid a \in G\}$ является подгруппой в S(G) (все биективные отображения G в себя с операцией композиции), так как:

- замкнуто относительно операции: $\forall g \in G : (L_a \cdot L_b)(g) = L_a(L_b(g)) = a(bg) = (ab)g = L_{ab}(g);$
- включает нейтральный элемент: $\forall g \in G: L_e(g) = eg = g \implies L_e = \text{Id};$ замкнуто по взятию обратоного элемента: $\forall a \in G: (L_a)^{-1} = L_{a^{-1}}$, а значит для любого L_a : $L_{a-1}(L_a(g)) = a^{-1}ag = g;$

Биективные отображения $g_1,...,g_n$ в себя ничем не отличаются от отображений 1,...,n в себя. Значит, $S(G) \cong S_n$.

Зададим отображение $\varphi: G \to \{L_a \mid a \in G\}$, где $\varphi(a) = L_a$. Это гомоморфизм: $\forall a, b \in G$: $\varphi(ab)$ = L_{ab} = $L_a \cdot L_b$ = $\varphi(a) \cdot \varphi(b)$. Он инъективен и сюръективен, а значит φ - изоморфизм.

4. Классы смежности

4.1. Левые и правые смежные классы

Пусть (G, \star) - группа и $H \subseteq G$ - подгруппа. Тогда:

Левый смежный класс элемента $q \in G$ по подгруппе H - это множество элементов из H, "умноженных" слева на q:

$$gH = \{g \star h \mid h \in H\}$$

Правый смежный класс элемента $g \in G$ по подгруппе H - это множество элементов из H, "умноженных" справа на q:

$$Hg = \{h \star g \mid h \in H\}$$

4.2. Теорема Лагранжа

Лемма 1: Левые (аналогично для правых) смежные классы по некоторой подгруппе либо совпадают, либо не пересекаются:

$$\forall g_1, g_2 \in G : (g_1 H = g_2 H) \lor (g_1 H \cap g_2 H = \emptyset)$$

Если $g_1H \cap g_2H \neq \emptyset$, то:

$$\exists h_1, h_2 \in H : g_1h_1 = g_2h_2 \\ \Downarrow \\ \exists h_1, h_2 \in H : g_2 = g_1h_1h_2^{-1} \wedge g_1 = g_2h_2h_1^{-1} \\ \Downarrow \\ \exists h_1, h_2 \in H : g_2H = g_1h_1h_2^{-1}H \wedge g_1H = g_2h_2h_1^{-1}H \\ \Downarrow \\ g_2H \subseteq g_1H \wedge g_1H \subseteq g_2H$$

Значит, $g_1 H = g_2 H$.

Лемма 2: Для любого элемента $g \in G$ и для любой подгруппы $H \subseteq G$ порядок подгруппы H равен порядку левого (аналогично правого) класса элемента g по подгруппе H:

$$\forall q \in G : |qH| = |H|$$

$$gH = \{g \star h \mid h \in H\} \Rightarrow |gH| \leq |H|$$

 $\forall h_1, h_2 \in H$:

$$gh_1 = gh_2 \implies g^{-1}gh_1 = g^{-1}gh_2 \implies h_1 = h_2$$

Значит, $|gH| \ge |H|$ и, следовательно, |gH| = |H|.

Индекс подгруппы H в группе G - число левых (аналогично правых, следует из т. Лагранжа ниже) смежных классов элементов G по H. Обозначается [G:H].

Пусть G - конечная группа и H - подгруппа в ней.

Теорема Лагранжа: Порядок группы G равен произведению порядка подгруппы H и индекса подгруппы H в группе G:

$$|G| = |H| \cdot [G:H]$$

Любой элемент группы G лежит в своём смежном классе, и смежные классы не пересекаются (лемма 1). В то же время, любой смежный класс содержит по |H| элементов (лемма 2). Значит, $|G| = |H| \cdot [G:H]$.

Следствие 1: Порядок любого элемента конечной группы делит порядок этой группы:

$$\forall q \in G : \operatorname{ord}(q) \mid |G|$$

Ранее доказано, что $\forall g \in G : \operatorname{ord}(g) = | \langle g \rangle |. \langle g \rangle$ - подгруппа, следовательно по теореме Лагранжа $|G| = | \langle g \rangle |. [G : \langle g \rangle] = \operatorname{ord}(g) \cdot [G : \langle g \rangle]$. Значит, $\operatorname{ord}(g) | |G|$.

Следствие 2: Пусть G - конечная группа с нейтральным элементом e. Тогда:

$$\forall q \in G : q^{|G|} = e$$

По следствию 1: $|G| = \operatorname{ord}(g) \cdot n$, где n - некоторое целое число. Значит:

$$g^{|G|} = g^{\operatorname{ord}(g) \cdot n} = (g^{\operatorname{ord}(g)})^n = e^n = e$$

 $\mathbb{Z}_p^* = \left(\mathbb{Z}_p \setminus \left\{ \ \overline{0} \ \right\}, \cdot \right)$ - группа вычетов по простому модулю p с операцией умножения. **Следствие 3 - Малая теорма Ферма**: пусть $\overline{a} \in \mathbb{Z}_p^*$ - некоторый ненулевой вычет по модулю p. Тогда:

$$\overline{a}^{p-1} = \overline{1}$$

Другими словами, a^{p-1} сравнимо с единицей по модулю p, где $a \in \mathbb{Z} \setminus \{0\}$, а p - простое число:

$$a^{p-1} \equiv 1 \mod p$$

 $\Box |\mathbb{Z}_p^*| = p - 1$. Значит, по следствию 2: $\overline{a}^{p-1} = \overline{a}^{|\mathbb{Z}_p^*|} = e = \overline{1}$.

4.3. Нормальные подгруппы

Пусть $H \subseteq G$ - подгруппа группы G. Тогда H - **нормальная подгруппа**, если все левые смежные классы по ней совпадают с правыми:

$$\forall g \in G : gH = Hg$$

В абелевой группе все подгруппы нормальные.

Естественный гомоморфизм - отображение, сопостовляющее каждому элементу $g \in G$ его смежный класс по некторой *нормальной* подгруппе $H \subseteq G$:

$$\varepsilon:G\to G/H$$

$$\forall g \in G : \varepsilon(g) = gH$$

Естественный гомоморфизм действительно является гомоморфизмом:

$$\varepsilon(g_1 \star g_2) = g_1 \star g_2 H = g_1 H \cdot g_2 H = \varepsilon(g_1) \cdot \varepsilon(g_2)$$

Элементы $x_1, x_2 \in G$ называются **сопряжёнными**, если существует такой элемент $y \in G$, что $y \star x_1 \star y^{-1} = x_2$.

Пусть $H \subseteq G$ - подгруппа в группе G.

Критерий нормальности подгруппы с использованием сопряжения: Следущие три условия эквивалентны:

- 1. *H* нормальная подгруппа (*H* ⊲ *G*);
- 2. Вместе с каждым своим элементом H содержит все сопряжённые к нему. $\forall g \in G$: $gHg^{-1} \subseteq H$;
- 3. $\forall q \in G : qHq^{-1} = H$. (более строгий вариант пункта 2)

 $1 \Longrightarrow 2$

H - нормальная подгруппа в G, а значит по определению $\forall g \in G : gH = Hg$, то есть $\forall g \in G$:

$$\forall h \in H \exists h \in H : g \cdot h = h \cdot g$$

$$\Downarrow$$

$$\forall g \in H \exists h \in H : g \cdot h \cdot g^{-1} = h$$

$$\Downarrow$$

$$\forall g \in H : g \cdot h \cdot g^{-1} \in H$$

Значит, $gHg^{-1} \subseteq H$.

 $2 \Longrightarrow 3$

 gHg^{-1} ⊆ H. Осталось доказать, что H ⊆ gHg^{-1} . Любой элемент h ∈ H можно представить как:

$$h = (g \cdot g^{-1}) \cdot h \cdot (g \cdot g^{-1}) = g \cdot (g^{-1} \cdot h \cdot g) \cdot g^{-1}$$

 $g^{-1} \cdot h \cdot g$ является элементом H по условию (мы можем взять $g^* = g^{-1} \in G$). Значит, любой элемент $h \in H$ представим как $h = g \cdot h^* \cdot g^{-1}$, где $h^* \in H$. Следовательно, $H \subseteq gHg^{-1}$.

 $3 \Longrightarrow 1$

$$\forall g \in G : H = gHg^{-1}$$

$$\downarrow \downarrow$$

$$\forall g \in G : Hg = gH$$

$$\downarrow \downarrow$$

$$\downarrow \downarrow$$

подгруппа нормальна по определению

Критерий нормальности подгруппы с использованием понятия ядра: H - нормальная подгруппа в $G \iff H$ является ядром некоторого гомоморфизма из G.

 $\overset{\square}{\Longrightarrow}$

Рассмотрим естественный гомоморфизм $\varepsilon: G \to G/H$, $\varepsilon(g) = gH$.

Ker
$$\varepsilon = \{ g \in G \mid \varepsilon(g) = gH = H \}$$

Заметим, что при gH = H выполняется $g \in H$, так как из нормальности $\exists h_1, h_2 \in H : gh_1 = h_2 g$, а значит $\exists h_1, h_2 \in H : g = h_2 g h_1^{-1} \in H$.

Значит, Ker $\varepsilon = H$ и ε - искомый гомоморфизм.

 \leftarrow

Пусть f - некоторый гомоморфизм, и H = Ker f. Тогда $\forall h \in H$:

$$f(g \cdot h \cdot g^{-1}) = f(g) \cdot f(h) \cdot f(g^{-1}) = f(g) \cdot f(g^{-1}) = f(g \cdot g^{-1}) = f(e_1) = e_2$$

Значит, по определению ядра $\forall h \in H : g \cdot h \cdot g^{-1} \in H$, то есть $gHg^{-1} \subseteq H$.

По критерию нормальности подгруппы с использованием сопряжения H является нормальной подгруппой.

Следствие: $A \partial po$ гомоморфизма $f: G_1 \to G_2$ - всегда нормальная подгруппа в G_1 .

4.4. Факторгруппа

Пусть Н - нормальная подгруппа в группе G.

Факторгруппа группы G по подгруппе H - множество левых (= правых) смежных классов по подгруппе H с операцией умножения смежных классов:

$$(g_1H)\cdot(g_2H)=(g_1\cdot g_2H)$$

Факторгруппу обозначают: G/H.

Утверждение: Операция задана корректно. Результат умножения не зависит от выбора представителя смежных классов.

Пусть G/H - факторгруппа.

Пусть $g_1, a_1 \in g_1 H$ и $g_2, a_2 \in g_2 H$, то есть $\exists h_1, h_2 \in H : a_1 = g_1 h_1$ и $a_2 = g_2 h_2$.

 $(g_1H)\cdot (g_2H)=(a_1H)\cdot (a_2H)$. Хотим доказать, что $g_1g_2H=a_1a_2H$ - тогда результат умножения действительно не зависит от выбора представителя смежных классов.

 $a_1a_2=g_1h_1g_2h_2=g_1g_2(g_2^{-1}h_1g_2)h_2$. Хотим найти $h_3=g_2^{-1}h_1g_2$. H - нормальная подгруппа, а значит $Hg_2=g_2H$. Следовательно, $\exists h_3:h_1g_2=g_2h_3$. Значит, $\exists h_3=g_2^{-1}h_1g_2$.

Получаем:

$$a_1a_2H = g_1h_1g_2h_2H = g_1g_2g_2^{-1}h_1g_2h_2H = g_1g_2h_3h_2H = g_1g_2H$$

Факторгруппа является группой, так как:

- операция задана корректно;
- операция ассоциативна;
- есть нейтральный элемент еН = Н;
- для каждого элемента существует обратный: $(gH)^{-1} = g^{-1}H$.

Пусть $f:G_1 o G_2$ - гомоморфизм.

Теорема о гомоморфизме групп: образ гомоморфизма f изоморфен факторгруппе группы G_1 по ядру гомоморфизма f:

$$G_1$$
 / Ker $f \cong \text{Im } f$

Зададим отображение $\tau: G_1 / \operatorname{Ker} f \to \operatorname{Im} f$ в виде формулы $\tau(g \operatorname{Ker} f) = f(g)$.

1. т заданно корректно - результат не зависит от выбора представителя смежного класса. $\forall h_1, h_2 \in \text{Ker } f$:

2. τ - гомоморфизм. $\forall a, g \in G_1$:

$$\tau((g \operatorname{Ker} f)(a \cdot \operatorname{Ker} f)) = \tau((ga) \operatorname{Ker} f) = f(ga) = f(g) \cdot f(a) = \tau(g \operatorname{Ker} f) \cdot \tau(a \operatorname{Ker} f)$$

- 3. τ задано формулой $\tau(g \text{ Ker } f) = f(g)$, оно принимает всевозможные значения из Im f. Значит оно сюъективно и является эпиморфизмом.
- 4. Ker $\tau = \{g \text{ Ker } f \mid \tau(g \text{ Ker } f) = e_2\} = \{g \text{ Ker } f \mid f(g) = e_2\} = \{g \text{ Ker } f \mid g \in \text{Ker } f\} = \{\text{Ker } f\}.$ Значит, оно инъективно и является мономорфизмом по критерию о тривиальности ядра гомоморфизма.

Получаем: т - изоморфизм.

Пусть $f:G_1\to G_2$ - некоторый гомоморфизм, $\epsilon:G_1\to G_1$ / Ker f - естественный гомоморфизм по ядру f, и $\tau:G_1$ / Ker $f\to G_2$ - гомоморфизм по теореме о гомоморфизме групп. Тогда выполняется $f=\tau\cdot \epsilon$:

$$\begin{array}{ccc}
G_1 & \xrightarrow{f} & G_2 \\
\varepsilon \searrow & \nearrow \tau \\
\hline
G_1 / \operatorname{Ker} f
\end{array}$$

4.5. Центр группы

Центр группы - множество всех элемнтов $g \in G$ группы G, для которых выполняется коммутативность с прочими её элементами:

$$Z(G) = \{a \in G \mid \forall b \in G : ab = ba\}$$

Утверждение: Центр группы является её нормальной подгруппой.

1. Докажем, что Z(G) - подгруппа в G.

Для любых $a, b \in Z(G)$ и для любого $g \in G$ выполняется:

$$(a \cdot b^{-1}) \cdot g = a \cdot b^{-1} \cdot (g^{-1})^{-1} = a \cdot (g^{-1} \cdot b)^{-1} = a \cdot (b \cdot g^{-1})^{-1} =$$

$$= a \cdot (g^{-1})^{-1} \cdot b^{-1} = (a \cdot g) \cdot b^{-1} = (g \cdot a) \cdot b^{-1} = g \cdot (a \cdot b^{-1})$$

Следовательно, по определению центра $a \cdot b^{-1} \in Z(G)$. Значит, по критерию подгруппы, Z(G) является подгруппой.

2. Докажем нормальность Z(G).

По определению центра:

$$\forall g \in G \ \forall h \in Z(G) : g \cdot h = h \cdot g$$

Значит, по определению смежного класса:

$$\forall g \in G : g \cdot Z(G) = Z(G) \cdot g$$

Следовательно, Z(G) - нормальная подгруппа по определению.

Утверждение: Факторгруппа группы по её центру изоморфна группе её внутренних автоморфизмов:

$$G/Z(G) \cong InnG$$

Рассмотрим отображение $f: G \to \text{Inn}(G), \ f(g) = I_q$. Оно является гомоморфизмом:

$$f(g_1 \cdot g_2) = I_{g_1 \cdot g_2} = I_{g_1} \cdot I_{g_2} = f(g_1) \cdot f(g_2)$$

Покажем, что $\mathrm{Ker} f = Z(G)$. По определению ядра $\forall g \in \mathrm{Ker} \ f : f(g) = I_g = I_e$. $(I_e - \mathrm{нейтральный} \ \mathrm{элемент} \ \mathrm{B} \ \mathrm{Inn}(G), \ \forall h \in G : I_e(h) = e \cdot h \cdot e^{-1} = h.)$

Значит:

$$\forall g \in \text{Ker } f \ \forall h \in G : g \cdot h \cdot g^{-1} = h$$

$$\downarrow \downarrow$$

$$\forall g \in \text{Ker } f \ \forall h \in G : g \cdot h = h \cdot g$$

Следовательно, $\operatorname{Ker} f = Z(G)$ по определению. Значит, по теореме о гомоморфизме групп, $G/Z(G) \cong \operatorname{Inn} G$.

5. Кольца

5.1. Определение

Кольцо - множество $K ≠ \emptyset$ с двумя заданными операциями + и ·, удовлетворяющее условиям:

- 1. (К, +) абелева группа (аддиктивная группа кольца) (нейтральный элемент ноль).
- 2. (К, ⋅) полугруппа (мультипликативная полугруппа кольца).
- 3. Дистрибутивность: $\forall a, b, c \in K : (a+b) \cdot c = a \cdot c + b \cdot c$ \land $c \cdot (a+b) = c \cdot a + c \cdot b$.

Подкольцо - подмножество $L \subseteq K$ кольца K, которое само является кольцом относительно сложения и умножения, заданных в K.

Критерий подкольца: $L \subseteq K$ - подкольцо в кольце $K \iff B$ ыполнены два условия:

- 1. $\forall x, y \in L : x y \in L$ (критеорий подгруппы в (*K*, +));
- 2. $\forall x, y \in L : x \cdot y \in L$ (замкнутость по умножению).

Кольцо с единицей - кольцо с нейтральным элементом по умножению (единицей).

Утверждение: Если в кольце K с единицей выполняется 0 = 1, то $K = \{0\}$.

$$\Box$$
 $\forall a \in K : a = a \cdot 1 = a \cdot 0 = 0$

Кольцо $(K, +, \cdot)$ коммутативно, если $\forall a, b \in K : a \cdot b = b \cdot a$.

5.2. Делители нуля

Если в кольце K для некоторых $a,b \in K$ выполняется $a \cdot b = 0 \land a \neq 0 \land b \neq 0$, то a - **левый делитель нуля** и b - **правый делитель нуля**.

Утверждение: в кольце *K* всегда выполняется $\forall a \in K : a \cdot 0 = 0 \cdot a = 0$.

$$a + 0 = a$$

$$\downarrow \downarrow$$

$$a \cdot (a + 0) = a \cdot a$$

$$\downarrow \downarrow$$

$$a^2 + a \cdot 0 = a^2$$

$$\downarrow \downarrow$$

$$a \cdot 0 = 0$$

Для умножение на 0 слева - аналогично.

Целостное кольцо (область целостности) - коммутативное кольцо с единицей, не равной нулю, и без делителей нуля.

Утверждение: Коммутативное кольцо с единицей, не равной нулю, целостное \iff в нём выполняется закон сокращения $a \cdot b = a \cdot c \land a \neq 0 \implies b = c$.

 \Longrightarrow

$$a \cdot b = a \cdot c \implies a(b - c) = 0$$

Так как нет делителей нуля, то b = c.

 \leftarrow

Пусть $a \cdot b = 0 \land a \neq 0$. Тогда по закону сокращения $a \cdot b = a \cdot 0 \implies b = 0$.

5.3. Идеалы

Идеал (двухсторонний идеал) - подмножество $I \subseteq K$ кольца K, которое:

- 1. Является подгруппой по сложению в К;
- 2. "Поглощает" элементы по умножению: $\forall a \in I \ \forall r \in K : r \cdot a \in I \land a \cdot r \in I$.

Любой идеал I ⊆ К является подкольцом в К.

В коммутативном колце К:

 $\forall a \in K : \langle a \rangle = \{r \cdot a \mid r \in K\}$ является идеалом.

Главный идеал $I \subseteq K$ - такой, что $\exists a \in K : I = \langle a \rangle$ (порождён одним элементом).

Кольцо главных идеалов - такое, в котором все идеалы главные. (например, кольцо \mathbb{Z} целых чисел - в нём все подгруппы имеют вид $k\mathbb{Z} = \langle k \rangle$)

Любой идеал является нормальной подгруппой в (K, +), так как (K, +) - абелева группа. Значит, можно по некоторому идеалу $I \subseteq K$ рассмотреть факторгруппу с операцией сложения (K/I, +):

$$\forall a, b \in K : (a + I) + (b + I) = (a + b) + I$$

Введём на ней ужножение $(a + I) \cdot (b + I) = a \cdot b + I$. Оно корректно:

$$(a + 1) \cdot (b + 1) = a \cdot b + a \cdot 1 + b \cdot 1 + 1 = a \cdot b + 1$$

(Так как $a \cdot l \in I \land l \cdot b \in I$ по определению идеала.)

Факторкольцо $(K/I, +, \cdot)$ кольца K по идеалу $I \subseteq K$ - это факторгруппа (K/I, +) (задана выше) с операцией умножения (задана выше).

5.4. Гомоморфизм колец

Гомоморфизм колец - отображение $\varphi: (K_1, +, \cdot) \to (K_2, \oplus, \star)$, в котором $\forall x, y \in K_1$ выполняется:

- 1. $\varphi(x + y) = \varphi(x) \oplus \varphi(y)$;
- 2. $\varphi(x \cdot y) = \varphi(x) \star \varphi(y)$.

Ядро гомоморфизма колец $\varphi: K_1 \to K_2$:

$$\operatorname{Ker} \varphi = \left\{ r \in K_1 \mid \varphi(r) = 0 \right\} \subseteq K_1$$

Образ гомоморфизма колец $\varphi: K_1 \to K_2$:

Im
$$\varphi = \{ \varphi(r) \mid r \in K_1 \} \subseteq K_2$$

Пусть $\varphi: K_1 \to K_2$ - гомоморфизм колец.

Лемма 1: Ker φ - идеал в K_1 .

- 1. Является подгруппой по сложению: φ гомоморфизм колец, а значит и гомоморфизм групп $(K_1,+)$ и (K_2,\oplus) . Следовательно, Ker φ подгруппа в $(K_1,+)$ (доказано ранее).
- 2. "Поглощает" элементы по умножению. $\forall a \in \text{Ker } f \ \forall r \in K_1$:

$$\varphi(a \cdot r) = \varphi(a) \cdot \varphi(r) = 0 \quad \Longrightarrow \quad a \cdot r \in \operatorname{Ker} \varphi$$

$$\varphi(r \cdot a) = \varphi(r) \cdot \varphi(a) = \varphi(r) \cdot 0 = 0 \implies r \cdot a \in \operatorname{Ker} \varphi$$

Значит, Ker φ - идеал в K_1 по определению.

Пусть $\varphi: K_1 \to K_2$ - гомоморфизм колец.

Лемма 2: Im φ - подкольцо в K_2 .

Если $a,b\in \text{Im } \varphi$, то $\exists a',b'\in K_1: \varphi(a')=a \land \varphi(b')=b$. Значит $\forall a,b\in \text{Im } \varphi$:

1.
$$a - b = \varphi(a') - \varphi(b') = \varphi(a' - b') \in \text{Im } \varphi$$

2.
$$a \cdot b = \varphi(a') \cdot \varphi(b') = \varphi(a' \cdot b') \in \text{Im } \varphi$$

Значит, Im φ - подкольцо в K_2 по критерию подкольца.

Пусть $\varphi: K_1 \to K_2$ - гомоморфизм колец.

Теорема о гомоморфизме колец: Факторкольцо кольца K_1 по ядру гомоморфизма φ изоморфно образу гомоморфизма φ :

$$K_1$$
 / Ker $\varphi \cong \text{Im } \varphi$

П

Кег f = I - идеал по лемме 1. Значит, факторкольцо K_1 / Кег φ задано корректно. Іт φ - подкольцо в K_2 по лемме 2.

Рассмотрим отображение колец $\tau: K_1/I \to \operatorname{Im} \varphi$, где $\tau(a+I) = \varphi(a)$. Из доказательства теоремы о гомоморфизме групп, τ - изоморфизм групп по сложению $(K_1/I, +)$ и $(\operatorname{Im} \varphi, +)$ (так как τ корректно задано, является гомоморфизмом и биективно). Проверим, что τ "уважает" и умножение:

$$\tau((a+1)\cdot(b+1))=\tau(a\cdot b+1)=\varphi(a\cdot b)=\varphi(a)\cdot\varphi(b)=\tau(a+1)\cdot\tau(b+1)$$

Значит, τ - изоморфизм колец K_1 / Ker φ и Im φ .

6. Поля

6.1. Определение

Обратимый элемент а кольца К с единицей - такой, что:

$$\exists a^{-1} \in K : a \cdot a^{-1} = a^{-1} \cdot a = 1$$

Утверждение: все *обратимые* элементы кольца K с единицей образуют группу по умножению - мультипликативную подгруппу кольца U(K).

Единица включена в группу: $1 \in U(K)$

Обратный элемент к каждому включен в группу: $(a^{-1})^{-1} = a \Rightarrow a^{-1} \in U(K)$ Замкнутость по умножению: $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1} \Rightarrow a \cdot b \in U(K)$

Поле - это коммутативное кольцо с единицей, в котором каждый элемент кроме нуля обратим.

6.2. Алгоритм Евклида

Рассмотрим K[x] - кольцо многочленов с коэффициентами из *целостного* кольца K. Пусть $g(x) \in K[x]$ - некоторый многочлен, старший коэффициент которого обратим в K. Тогда:

$$\forall f(x) \in K[x] \ \exists ! q(x), r(x) \in K[x] : f(x) = g(x)q(x) + r(x) \ , \ \deg r(x) < \deg g(x)$$

Другими словами, f(x) разделим с остатком на g(x).

Пусть F[x] - кольцо многочленов над полем F.

Тогда для любых многочленов $a(x), b(x) \in F[x]$ можно найти gcd(a(x), b(x)) с помощью **алгоритма Евклида** - будем последовательно делить с остатком, пока не получим остаток, равный нулю:

$$a = b \cdot q_1 + r_1, \quad \deg r_1 < \deg b$$

$$b = r_1 \cdot q_2 + r_2, \quad \deg r_2 < \deg r_1$$

$$\vdots$$

$$r_{k-2} = r_{k-1} \cdot q_k + r_k, \quad \deg r_k < \deg r_{k-1}$$

$$r_{k-1} = r_k \cdot q_{k+1} + r_{k+1}, \quad r_{k+1} = 0$$

Получаем $gcd(a(x),b(x)) = r_b(x)$.

Пусть F[x] - кольцо многочленов над полем F.

Следствие из алгоритма Евклида: для любых многочленов $a(x), b(x) \in F[x]$ существуют такие многочлены $u(x), v(x) \in F[x]$, что выполняется $\gcd(a,b) = a \cdot u + b \cdot v$:

$$\forall a(x), b(x) \in F[x] \exists u(x), v(x) \in F[x] : \gcd(a, b) = a \cdot u + b \cdot v$$

По алгоритму Евклида:

$$r_1 = a + b \cdot (-q_1)$$

 $r_2 = b - (a - b \cdot q_1) = a \cdot (-1) + b \cdot (1 + q_1)$
 \vdots
 $r_k = a \cdot (...) + b \cdot (...) = \gcd(a, b)$

Пусть К - коммутативное кольцо с единицей.

Взаимно простые элементы $a, b \in K$ - такие, что выполняется:

$$\exists x, y \in K : a \cdot x + b \cdot y = 1$$

6.3. Характеристика поля

Характеристика поля (обозначают char P) - такое наименьшее натуральное q, что $1 + ... + 1 = q \cdot 1 = 0$. Если такого $q \in \mathbb{N}$ не существует, то char P = 0.

Утверждение: \mathbb{Z}_p является полем $\iff p$ - простое число.

 \Longrightarrow

Предположим противное: $p=l\cdot k$ - составное число, где 1< l, k< p. Тогда $\bar{l}\cdot \bar{k}=\bar{p}=\bar{0}$, то есть \bar{l} и \bar{k} - делители нуля. Они не обратимы:

$$\exists l^{-1} \Rightarrow l^{-1} \cdot l \cdot k = 1 \cdot k = k = l^{-1} \cdot 0 = 0$$

Противоречие с определением поля.

 \leftarrow

 \mathbb{Z}_p - коммутативное кольцо с единицей. Покажем, что

$$\forall a \in \mathbb{Z}_p, a \neq 0 \quad \exists a^{-1}$$

. Если p - простое, то числа 1, 2, ..., p - 1 взаимно просты с p. Значит:

$$\forall a \in \mathbb{Z}_p, a \neq 0 : \gcd(a, p) = 1$$

По следствию из алгоритма Евклида $\exists u, v \in \mathbb{N}$:

$$a \cdot u + p \cdot v = 1$$

$$\downarrow \downarrow$$

$$a \cdot u \equiv 1 \pmod{p}$$

$$\downarrow \downarrow$$

$$\overline{a} \cdot \overline{u} = \overline{1}$$

$$\downarrow \downarrow$$

 \overline{u} - обратный для \overline{a}

.

Утверждение: Любое поле характеристики 0 бесконечно.

1 · 1, 2 · 1, 3 · 1 и так далеее - это различные числа: если k · 1 = l · 1 \wedge k < l, то (l - k) · 1 = 0, а значит char P > 0. Значит, число элеметов как минимум счётное.

Утверждение: характеристика поля либо равна 0, либо является простым числом.

Предположим противное: Пусть char $P = m \cdot k = p \neq 0$, где $1 < m, k < p \land m, k \in \mathbb{N}$. Тогда по дистрибутивности:

$$0 = p \cdot 1 = (m \cdot 1) \cdot (k \cdot 1)$$

Так как p - минимальное число q такое, что $q \cdot 1 = 0$, то $m \cdot 1 \neq 0 \land k \cdot 1 \neq 0$. Значит, есть делители нуля, которые не обратимы. Противоречие.

6.4. Подполя

Подполе - подмножество в поле P, которое само является полем относительно сложения и умножения, заданных в P.

Пересечение двух подполей одного и того же поля является подполем.

Простое подполе - наименьшее по вложению (т.е. не имеющее собственных подполей) подполе.

Пусть P - поле, P_0 - его простое подполе.

Утверждение:

- 1. Если char P = p > 0, то $P_0 \cong \mathbb{Z}_p$;
- 2. Если char P = 0, то $P_0 \cong \mathbb{Q}$.

П

Рассмотрим $<1>\subseteq (P,+)$ - циклическую группу по сложению, порождённую "единицей". Заметим, что <1> - подкольцо. Так как любое подполе содержит единицу, то $<1>\subseteq P_0$.

- 1. char $P=p>0 \implies <1>\cong \mathbb{Z}_p \implies \mathbb{Z}_p\subseteq P_0$ (изоморфизмы считаем неразличимыми). Но \mathbb{Z}_p поле, а P_0 наименьшее подполе. Значит, $P_0\cong \mathbb{Z}_p$.
- 2. char $P = 0 \implies <1> \cong \mathbb{Z} \implies \mathbb{Z} \subseteq P_0$. Но в P_0 должны быть и все обратные элементы вида $a \cdot b^{-1} = \frac{a}{b}$, где $a, b \in \mathbb{Z}, b \neq 0$ (а также в P_0 должны быть всевозможные произведения элементов). Значит, $\mathbb{Q} \subseteq P_0$ (изоморфизмы считаем неразличимыми). Так как P_0 минимальное подполе, то $P_0 \cong \mathbb{Q}$.

Если P_1 - подполе в P_2 , то поле P_2 является **расширением** поля P_1 .

Любое поле является расширением своего простого поля, и у них одинаковая характеристика.

Пусть поле P_2 - расширение поля P_1 .

Алгебраический элемент над полем P_1 - такой элемент $\alpha \in P_2$, что:

$$\exists f(x) \in P_1[x], f(x) \not\equiv 0 : f(\alpha) = 0$$

Трансцендентное число - число, не является алгебраическим элементом.

Теорема (док-во не приводится): для любого многочлена $f(x) \in \mathbb{F}[x]$ из кольца многочленов над \mathbb{F} существует расширение \mathbb{F}_1 этого поля ($\mathbb{F} \subseteq \mathbb{F}_1$), в котором многочлен f(x) имеет корень.

6.5. Факторкольцо кольца многочленов

Пусть $\mathbb{F}[x]$ - кольцо многочленов с коэффициентами из поля \mathbb{F} .

Пусть $\langle f(x) \rangle$ - идеал, порождённый элементом f(x).

Теорема: Факторкольцо $\mathbb{F}[x] / \langle f(x) \rangle$ является полем \iff многочлен f(x) неприводим над \mathbb{F} .

 $\stackrel{\square}{\Longrightarrow}$

Предположим противное: пусть f(x) приводим, то есть

$$f(x) = f_1(x) \cdot f_2(x)$$
, где $\deg f_1 < \deg f \wedge \deg f_2 < \deg f$

Тогда $\overline{f_1(x)}$ и $\overline{f_2(x)}$ - смежные классы и $\overline{f_1(x)} \cdot \overline{f_2(x)} = \overline{f(x)} = \overline{0}$. Получаем противоречие - в факторкольце есть делители нуля.

 \leftarrow

Докажем, что для любого смежного класса $a(x) \neq 0$ существует обратный элемент.

Пусть a(x) - представитель смежного класса $\overline{a(x)}$ и $\deg a < \deg f$.

Так как f(x) неприводим, то $\gcd(a(x),f(x))=1$. Значит, по следствию из алгоритма Евклида:

$$\exists u(x), v(x) \in \mathbb{F}[x]: a(x) \cdot u(x) + f(x) \cdot v(x) = 1$$

Значит:

$$\overline{a(x) \cdot u(x)} + \overline{f(x) \cdot v(x)} = \overline{1} \pmod{\langle f(x) \rangle}$$

$$\downarrow \downarrow$$

$$\overline{a(x)} \cdot \overline{u(x)} = \overline{1} \pmod{\langle f(x) \rangle}$$

$$\downarrow \downarrow$$

$$u(x) \text{ обратный для } a(x)$$

Теорема (док-во не приводится):

- 1. Пусть \mathbb{F}_q конечное поле размера $|\mathbb{F}_q|=q$. Тогда $q=p^n$, где p простое число и $n\in N$.
- 2. Для любого простого p и любого $n \in \mathbb{N}$ существует единственное поле из p^n элементов. (изоморфные поля считаем неразличимыми)

Пусть \mathbb{F}_a - конечное поле размера $|\mathbb{F}_a| = q = p^n$.

Теорема (док-во не приводится): поле \mathbb{F}_q изоморфно факторкольцу $\mathbb{Z}_p[x]$ / < h(x) >, где h(x) - неприводимый многочлен n-й степени над \mathbb{Z}_p .

7. Применение в криптографии

В криптографии, как правило, используются две "односторонние" функции:

- 1. Показательная. Обратная дискретное логарифмирование.
- 2. Умножение. Обратная разложение на множители.

Пусть G - конечная группа и $g \in G$, причём ord g достаточно большой.

Задача **дискретного логарифмирования** заключается в том, чтобы для некоторого $a \in G$ найти такое число k, что $g^k = a$.

7.1. Протокол шифрования Диффи-Хеллмана

Всем известна конечная группа G и элемент $g \in G$. Участник A фиксирует секретное натуральное число a, и сообщает всем открытый ключ g^a . Аналогично участник b фиксирует секретное натуральное число b, и сообщает всем открытый ключ g^b .

Тогда участник A, имея a и g^b , может вычислить $(g^b)^a = g^{a \cdot b}$. Аналогично участник b, имея b и g^a , может вычислить $(g^a)^b = g^{a \cdot b}$.

Тогда $g^{a \cdot b}$ известно только этим двоим участникам, и это значение может использоваться как ключ для секретной переписки.

7.2. Криптосистема Эль-Гамаля

Всем известна конечная группа G и элемент $g \in G$. Участник A фиксирует закрытый ключ $a \in \mathbb{N}$, и сообщает всем открытый ключ g^a .

Если участник Б хочет передать участнику А секретное сообщение $M \in G$, то выбирает некоторое $k \in \mathbb{N}$ и отправляет участнику А пару чисел $(q^k, M \cdot q^{a \cdot k})$.

Тогда участник А может расшифровать это секретное сообщение:

$$M \cdot g^{a \cdot k} \cdot (g^k)^{|G|-a} = M \cdot g^{a \cdot k} \cdot g^{|G| \cdot k} \cdot g^{-a \cdot k} = M \cdot g^{a \cdot k} \cdot e \cdot g^{-a \cdot k} = M$$

В качестве группы G обычно используют $\mathbb{Z}_p^* = \left(\mathbb{Z}_p \setminus \{0\}, \cdot\right)$, где p - простое число. Это циклическая группа.

=== the end ===