AArch32 Instructions AArch64 Instructions Index by Encoding

External Registers

PMBLIMITR_EL1, Profiling Buffer Limit Address Register

The PMBLIMITR EL1 characteristics are:

Purpose

Defines the upper limit for the profiling buffer, and enables the profiling buffer

Configuration

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMBLIMITR EL1 are undefined.

Attributes

PMBLIMITR EL1 is a 64-bit register.

Field descriptions

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

	LIMIT										
LIMIT			RESC)		PΜ	RE	S 0	FI	۷	Е
31 30 29 28 27 26 25 24 23 22 21 20 1	9 18 17 16 15 14 13 12	11 10	9 8	7	6	5	4	3	2	1	0

LIMIT, bits [63:12]

Limit address. PMBLIMITR_EL1.LIMIT:Zeros(12) is the address of the first byte in memory after the last byte in the profiling buffer. If the smallest implemented translation granule is not 4KB, then bits[N-1:12] are res0, where N is the implementation defined value, Log₂(smallest implemented translation granule).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [11:6]

Reserved, res0.

PMFZ, bit [5] When FEAT SPEv1p2 is implemented:

Freeze PMU on SPE event. Stop PMU event counters when PMBSR EL1.S == 1.

PMFZ	Meaning
0b0	Do not freeze PMU event
	counters on Statistical Profiling
	Buffer Management event.
0b1	Freeze PMU event counters on
	Statistical Profiling Buffer
	Management event.

The PMU event counters affected by this control is controlled by PMCR_EL0. FZS and, if EL2 is implemented, MDCR_EL2. HPMFZS. See the descriptions of these control bits for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [4:3]

Reserved, res0.

FM, bits [2:1]

Fill mode.

FM	Meaning	Applies when			
0b00	Fill mode.				
	Stop				
	collection and				
	raise				
	maintenance				
	interrupt on				
	buffer fill.				
0b10	Discard mode.	When			
	All output is	FEAT_SPEv1p2			
	discarded.	is implemented			

All other values are reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

E, bit [0]

Profiling Buffer enable

E	Meaning
0b0	All output is discarded.
0b1	Profiling buffer enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PMBLIMITR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMBLIMITR_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b1001	0b1010	0b000

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT RME) && MDCR EL3.NSPBE !=
SCR_EL3.NSE)) then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMBLIMITR_EL1
== '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && (MDCR EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
```

```
else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR EL2.<NV2,NV> == '11'
then
        X[t, 64] = NVMem[0x800];
    else
        X[t, 64] = PMBLIMITR EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT RME) && MDCR EL3.NSPBE !=
SCR EL3.NSE)) then
        UNDEFINED;
    elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = PMBLIMITR\_EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = PMBLIMITR\_EL1;
```

MSR PMBLIMITR EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b1001	0b1010	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMBLIMITR_EL1
== '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
```

```
SCR EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR EL2.<NV2,NV> == '11'
then
        NVMem[0x800] = X[t, 64];
    else
        PMBLIMITR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR EL3.NSE)) then
        UNDEFINED;
    elsif HaveEL(EL3) && (MDCR EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        PMBLIMITR EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
    PMBLIMITR_EL1 = X[t, 64];
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.