I hereby certify that this correspondence (including Exhibits) is being deposited with the United States Postal Service via Express Mail in an envelope addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450, on August 15, 2006 (Express Mail Label No.: ET615079096US).

Natu J. Patel

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of C. Earl Woolfork

Serial No. 10/648,012 : Group Art Unit: 2615

Confirm. No.: 3337 : Examiner: Andrew C. Flanders

Filed: August 26, 2003

For: WIRELESS DIGITAL AUDIO MUSIC SYSTEM

DECLARATION OF APPLICANT REGARDING LIMITED BATTERY LIFE UNDER 35 USC Section 132

I, C. Earl Woolfork, being duly sworn, depose and declare as follows:

- 1. I am the Inventor of the above referenced patent application ("Application"). I have personal knowledge of the following matter and if asked to testify, could and would testify competently, thereto.
- 2. Daphne Burton, my then attorney, conducted the interview with Examiner Flanders and Supervisory Patent Examiner Tran (collectively "Examiners") on June 13, 2006 regarding the pending office action dated May 17, 2006. I participated in that interview.
- 3. During the interview, among other things, we discussed U.S. Patent No. 5,771,441 issued to Altstatt ("Alstatt" or "the 441 Patent") and U.S. Patent No. 5,946,343 issued to Schotz ("Schotz" or "the 343 Patent").
- 4. Examiners requested that I submit evidence in an affidavit under 35 USC Section 132 explaining as to why the combination of Altstatt in view of Schotz is non-operative due to limited battery life.
- 5. I am hereby submitting this affidavit and all the supporting documentation to the Examiners for their consideration.

PATENT

6. Altstatt's invention is based on an analog technology and is operated by a battery. Altstatt recites that the maximum value of V is fixed by the battery voltage of 1.5 or possibly 3 volts (Column 8, lines 22-24).

- 7. Schotz' invention is based on digital technology. Schotz's digital wireless speaker system requires 120VAC at 60Hz. Schotz further states that "[b]oth the transmitter 22 and the receiver 24 have respective power circuits (not shown) that convert input power (e.g., 120VAC at 60 Hz) into proper voltage levels for appropriate transmitter and receiver operation." Please refer to Column 14, lines 1-4.
- 8. Exhibit A, attached hereto, lists the commercially available Integrated Chip components ("IC Components") that both Altstatt and Schotz identify in their respective designs. Datasheets identifying electrical current requirements to operate the IC Components are included in Exhibit B.
- 9. Alstatt cannot be combined with Schotz. However, even assuming such a combination is possible, the Altstatt's battery powered analog headphone system will suffer from a significantly reduced playtime due to the power consumption of Schotz's numerous integrated circuit components, as articulated in the calculation spreadsheet attached hereto as Exhibit C.
- 10. The "playtime" is defined as the time the invention can be operated continuously before the battery must be changed or recharged. The playtime calculation consists of simple unit conversions as defined in chapter one, problem 1.5 and solution set of well known Theodore S. Rappaport's Wireless Communications Principles & Practice textbook. The relevant pages from the textbook are attached herewith as Exhibit D.

According to Exhibit D, the formula for the playtime calculation is:

{((60minutes/1hour) x BmA-h)/[(60 minutes/hour x 24 hour/day)(sum of IC currents in mA)]} x (24hour/day)

where B is the battery current capacity.

Docket No.: <u>W003-4000</u>

- 11. As shown in Exhibit C, Altstatt's portable invention will yield a playtime greater than 10 hours when operated with a small battery having a current capacity of 50mA-h (50 milliamp-hours).
- 12. If we were to hypothetically apply the same 50mA-h battery capacity to operate Schotz's invention, Exhibit C further shows that the frequency hopping spread spectrum ("FHSS") system will operate for approximately six minutes, and the direct sequence spread spectrum ("DSSS") system will operate for approximately eleven

Docket No.: W003-4000

minutes before requiring a new battery or a recharged battery. Please note that the FHSS and DSSS system operations are constrained to the lowest device (transmitter or receiver) operation time.

Date:

Respectfully Submitted,

By: C. Earl Woolfork

EXHIBIT A

US Patent Number:5,771,441 Issued to Altstatt

Number	Component Description	Reference			
1	Transmitter,BA1404	column 5, lines 34-37			
2	Receiver, TA7766AF	column 8, lines 54-58			
3	Receiver,TA7792F	column 8, lines 54-58			

US Patent Number:5,946,343 Issued to Schotz

_	Di ii lei Dansana Bobsocco	column 14, lines 49-50
1	Digital Signal Processor, DSP56002	
2	A/D converter,SAA7360	column 7, lines 11-12
3	Stereo Filter MPEG,SAA2520	column 14, lines 47-48
4	MPEG,SAA2521	column 14, lines 47-48
5	Modulator,RF2422	column 10, lines 17-18
6	Power Amplifier,TQ9132	column 10, lines 31-32
7	Phase Locked Loop,MC12210	column 10, lines 49-50
8	Voltage Controlled Oscillator,SMV2500	column 14, lines 51-53
9	Low Noise Amplifier,MGA86576	column 11, lines 16-18
10 .	Digital Interface Transmitter, CS8402	column 11, lines 31-33
11	Digital to Analog Converter, TDA1305T	column 13, lines 57-59
12	Clock Recovery & Timing, TRU-050	column 12, lines 28-29
13	Demodulator,RF2703	column 12, lines 13-15
14	Microprocessor,PIC16C55	column 6, lines 63-66
15·	DSSS Transmitter, CYLINK SSTX	column 16, lines 62-64
16	DSSS Receiver, CYLINK Part#SPECTRE	column 18, lines 4-5
17	Mixer,IAM81008	column 11, lines 16-18
18	Channel Encoder/Decoder,SRT241203	column 9, lines 25-26
19	Interleaver/De-interleaver,SRT-24INT	column 9, lines 50-52
20	Optical Digital Receiver, HK-3131-01	column 7, lines 40-43
21	Optical Digital Transmitter, HK-3131-03	column 13, lines 15-17
. 22	Voltage Controlled Oscillator,M2 D300	column 8, lines 49-50

EXHIBIT B

US Patent Number:5,771,441 Issued to Altstatt

Item Number 1: Transmitter, BA1404

ROHM CO LTD 40E D 7828999 0004568 6 配RHM オーディオ用 IC/ICs for Audio Applications BA1404/BA1404F

● 絶対最大定格/Absolute Maximum Ratings (Ta=25℃)

Parameter .	Symbol	Limita	Unit
2020年	Vco .	2.5	V
許容損失	Pa	600 *	Wm
低作温度轨道	Topr	-25~75	c
保存温度粒圈	Tstg	−60~125	'n

◆Te≕5℃以上で使用する場合は、1℃につき5mWを減じる

● 推奨動作条件/Recommended Operating Conditions (Ta=25℃)

Parameter	Symbol	Min.	Тур.	Max.	Unit
智泽思压	Vco	1	1.25	2	٧

● 電気的特性/Electrical Characteristics (Ta=25℃, Vcc=1.25V)

Parameter	Symbol	. Min.	Тур.	Max	Unit	Conditions
無信号時程並	· lo	0.5	3	- 5	mA	_ :
入力インピーダンス	Zm .	380	540	720	. 0	fin =1kHz
入力利得	Gγ	30	37		dB	V _{IN} =0.5mV
チャンネルバランス	CB	_	_	2	dB	Vpr =0.5mV
MPX最大出力包圧	Vos	200	_	-	mVp.p	THD≤3%
MPX 38kHz&h .	Voo	-	1	_	mV	5080
パイロット出力な圧	Váp	460	580	-	mVp-p	新 杂页的
チャンネルセパレーション	Sep	25	. 45	-	dB	基準体内器にて
入力換算維合電圧	VIN		1	_	₽Vœ	· Sakhz@itsa IHF-A
RF部最大出力 犯 压	Voso	350	600	 	mVmm	

MHON

1149

TOSHIBA

Item Number 2: Receiver, TA 7766AF

TA7766AF

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, Ta = 25°C, V_{CC} = 1.5V, f_m = 1kHz)

CHARAC	TERISTIC	SYMBOL	TEST CIR- CUIT	TES	T CONDI	TION	MIN.	TYP.	МАХ.	UNIT
Supply Cur	rent	lcc		At lamp of	ff		_	0.8	1.6	mA
Input Resis	tance	RIN					_	36		kΩ
Output Res	istance	ROUT					_	15	_	kΩ
Max. Comp Signal Inpu		V _{in} (MAX) (STEREO)	_	SW ₁ →R _{LEC} SW ₅ →LPF	$0 = 50k\Omega$	6, THD = 5%	_	250	_	mV _{rms}
				L+R=90m	V _{rms}	f _m = 100Hz		30		
Separation		Sep	_	P = 10mV _{rn} SW _{1→RIF}	$0.50 \times \Omega$	f _m = 1kHz	22	35		dB
				SW1→RLEC SW5→LPF	ÓN	$f_m = 10kHz$	-	30	-	
Total	Monaural	THD (MONAURAL)		$V_{in} = 100 \text{mV}_{rms}$ $SW_1 \rightarrow R_{LED} = 500 \Omega$ $L + R = 90 \text{mV}_{rms}$, $P = 10 \text{mV}_{rms}$ $SW_1 \rightarrow R_{LED} = 50 \text{k} \Omega$ $SW_5 \rightarrow LPF \text{ ON}$		_	0.2	1.5		
Harmonic Distortion	Stereo	THD (STEREO)	_			_	0.4	_	%	
Voltage Ga	in	GV	_	$V_{in} = 100 \text{mV}_{rms}$ SW1 \rightarrow RLED = 500 Ω		-4	-2	1	dB	
Channel Ba	lance	СВ	_	V _{in} = 100m SW ₁ →R _{LEC}			_	0	2.0	dB
Lamp ON S	ensitivity	V _L (ON)		Pilot	SW1-→R	$LED = 50k\Omega$		_	5	
Lamp OFF	Sensitivity	V _L (OFF)		input		LED = 500Ω	7			mV _{rms}
Stereo Lam Hysteresis	р	VH	_	to turn-off	from tu	rn-on	_	3	_	mV _{rms}
Capture Ra	nge	CR	_	$P = 10mV_{rm}$	ns			±3	_	%
Carrier Lea	k 19kHz	CL		L + R = 90m ³ P = 10mV _{rm}	V _{rms}		_	30	_	מג
(Note)	38kHz			$SW_1 \rightarrow R_{LED} = 50k\Omega$		_	50	_	dB	
SCA Rejecti	on Ratio	SCA Rej	_	P = 10mV _{rms} , L + R = 80mV _{rms} SCA = 10mV _{rms} , f _{SCA} = 67kHz SW ₁ \rightarrow R _{LED} = 50k Ω		_	70	_	dB	
Signal To N	loise Ratio	S/N	-	V _{in} = 100m ¹ SW ₁ →R _{LED}	V _{rms} , R _g	=620Ω	_	65	_	dB

(Note) Carrier leak of 38kHz is only carrier.

US Patent Number:5,771,441 Issued to Altstatt

TOSHIBA

Item Number 3: Receiver, TA 7792F

TA7792P/F

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC Supply Voltage		SYMBOL	RATING	UNIT	
		Vcc	5	V	
Danna Dissipation	TA7792P	P _D (Note)	750	mW	
Power Dissipation	TA7792F	PD (Note)	350		
Operating Temperating	ature	Topr	- 25~75	°C	
Storage Temperature		T _{stg}	- 55~150	°C	

(Note) Derated above $Ta = 25^{\circ}C$ in the proportion of $6mW/^{\circ}C$ for TA7792P, and of 2.8mW/°C for TA7792F.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, Ta = 25°C, V_{CC} = 1.5V FM : V_{in} = 60dB μ V EMF, f = 83MHz, f_{m} = 1kHz, Δf = \pm 22.5kHz AM : V_{in} = 60dB μ V EMF, f = 1MHz, f_{m} = 1kHz, MOD = 30%

			. 1111 - 0000/		11, 10 1111112, 1M = 1K112	,			
	CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	МАХ.	UNIT
Sur	ply Current		ICC (FM)	1	V _{in} = 0		4.0	5.2	mA
301	ply Current		ICC (AM)	1	V _{in} = 0	_	1.2	1.8	""
	Input Limiting Voltag	е	Vin (lim)	1	-3dB limiting	_	10	16	dBµV EMF
	Total Harmonic Disto	rtion	THD (FM)	1		_	0.25	_	%
	Signal To Noise Ratio)	S/N(FM)	1		_	62	_	dB
	Quiescent Sensitivity		Qs	1	S / N = 30dB	_	12	_	dB _H V EMF
FM	FM AM Rejection Ratio		AMR	1	MOD = 30%	_	30	_	dB
	Oscillator Voltage		Vosc	2	f = 60MHz	53	90	135	mV _{rms}
	Oscillator Stop Supply Voltage		V _{stop} (FM)	1	V _{in} < -20dBμV EMF	_	0.85	0.95	V
	Recovered Output Vo	ltage	V _{OD} (FM)	1		28	45	68	mV _{rms}
	Voltage Gain		GV	1	V _{in} = 30dB _μ V EMF	14	25	50	mV _{rms}
	Recovered Output Vo	ltage	V _{OD} (AM)	1		25	40	60	mV _{rms}
AM	Total Harmonic Distor	rtion	THD (AM)	1		_	1.5	_	%
Alvi	Signal To Noise Ratio		S/N(AM)	1		_	40	_	dB
	Oscillator Stop Supply Voltage		V _{stop} (AM)	1	V _{in} <-20dBμV EMF	_	0.85	0.95	٧
Out	put Resistance Pin®	FM	R _O (FM)	1	f=1kHz	_	1.4	_	
	spot itesistance ring	AM	R _O (AM)	1	f = 1kHz		8	_	kΩ

※ V_{in}: Open Display

Item Number 1: Digital Signal Processor, DSP56002

Specifications

DC Electrical Characteristics

DC ELECTRICAL CHARACTERISTICS

Table 2-3 DC Electrical Characteristics

Characteristics	Symbol	Min	Тур	Max	Units
Supply Voltage	V _{CC}	4.5	5.0	5.5	V
Input High Voltage					
•EXTAL	· V _{IHC}	4.0	i — I	v_{cc}	V
•RESET	V _{IHR}	2.5	l —	V_{CC}	V
• MODA, MODB, MODC	V _{IHM}	3.5	-	v_{cc}	<u>v</u>
All other inputs	V _{IH}	2.0		v_{cc}	V
Input Low Voltage					
• EXTAL	V _{ILC}	-0.5	_	0.6	V
• MODA, MODB, MODC	VILM	-0.5	-	2.0	V
All other inputs	V _{IL}	-0.5		0.8	V
Input Leakage Current EXTAL, RESET, MODA/IRQA, MODB/IRQB, MODC/NMI, DR, BR, WT, CKP, PINIT, MCBG, MCBCLR, MCCLK, D20IN	I _{IN}	-1	_	1	μА
Tri-state (Off-state) Input Current (@ 2.4 V/0.4 V)	ITSI	-10	_	10	μА
Output High Voltage (I _{OH} = -0.4 mA)	V _{OH}	2.4	_	_	V
Output Low Voltage ($I_{OL} = 3.0 \text{ mA}$) $\overline{\text{HREQ}} I_{OL} = 6.7 \text{ mA}$, TXD $I_{OL} = 6.7 \text{ mA}$	V _{OL}	-		0.4	V
Internal Supply Current at 40 MHz ¹	I _{CCI}	_	90	105	mA
• In Wait mode ²	ICCW		12	20	mA
• In Stop mode ²	Iccs	_	2	95	μΑ
Internal Supply Current at 66 MHz ¹	I _{CCI}	_	95	130	mA
• In Wait mode ²	Iccw	_	15	25	mA
• In Stop mode ²	Iccs	_	2	95	μΑ
Internal Supply Current at 80 MHz ¹	I _{CCI}		115	160	mA
• In Wait mode ²	Iccw		18	30	mA
• In Stop mode ²	Iccs	_	2	95	μА
PLL Supply Current ³					
• 40 MHz		_	1.0	1.5	mA
• 66 MHz			1.1	1.5	mA
• 80 MHz		_	1.2	1.8	mA
CKOUT Supply Current ⁴					
• 40 MHz		_	14	20	mA
• 66 MHz		_	28	35	mA
• 80 MHz			34	42	mA
Input Capacitance ⁵	C _{IN}	_	10		pF

Notes: 1. Section 4 Design Considerations describes how to calculate the external supply current.

^{2.} In order to obtain these results all inputs must be terminated (i.e., not allowed to float).

Values are given for PLL enabled.

^{4.} Values are given for CKOUT enabled.

Periodically sampled and not 100% tested

Item Number 2: A/D Converter, SAA7360

Philips Semiconductors

Product specification

Bitstream conversion ADC for digital audio systems

SAA7360

Table 1 Output data formats

ODF2	ODF1	MODE
0	0	test
0	1	format 1
1	0	format 2
1	1	I ² S

Reset

When pin RESET is held LOW the data outputs are set to zero. The RESET pin operates as a Schmitt trigger, enabling a power-on reset function by using an external RC circuit.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DDA}	analog supply voltage	note 1	-0.5	+6.5	V
VI	DC input voltage		-0.5	+6.5	V
lıK	DC input diode current		-	±20	mA
Vo	DC output voltage		-0.5	V _{DD} + 0.5	V
ю	DC output source or sink current		-	±20	mA
I _{DD} or I _{SS}	total DC V _{DD} or V _{SS} current		_	±0.5	Α
T _{amb}	operating ambient temperature		-40	+85	°€
T _{stg}	storage temperature		-65	+150	°C
V _{es}	electrostatic handling	note 2	-2000	+2000	V
		note 3	-200	+200	V

Notes

- 1. All V_{DD} and V_{SS} pins must be externally connected to the same power supply.
- 2. Equivalent to discharging a 100 pF capacitor via a 1.5 k Ω series resistor with a rise time of 15 ns.
- 3. Equivalent to discharging a 200 pF capacitor via a 2.5 μH series inductor.

CHARACTERISTICS

 $V_{DD} = 5 \text{ V}$; $T_{amb} = 25 \,^{\circ}\text{C}$; $f_{xtal} = 256 f_{s}$; $f_{s} = 44.1 \,\text{kHz}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies			 			
V _{DDA}	analog supply voltage		4.5	5.0	5.5	Tv
I _{DDA}	analog supply current		_	43		mA
V_{DDD}	digital supply voltage		4.5	5.0	5.5	V
I _{DDD}	digital supply current		_	50	1=	mA
P _{tot}	total power consumption		_	465	- 	mW

Item Number 3: Stereo Filter MPEG. SAA2520

Philips Semiconductors Preliminary specification

Stereo filter and codec for MPEG layer 1 audio applications

SAA2520

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DD}	supply voltage		-0.5	6.5	ν
Vi	input voltage	note 1	-0.5	V _{DD} + 0.5	٧
I _{SS}	supply current from V _{SS}		-	160	mA
I _{DD}	supply current in V _{DD}		-	160	mA
l ₁	input current		-10	10	mA
lo	output current		-20	20	mA
P _{tot}	total power dissipation		-	880	mW
T _{stg}	storage temperature range		-55	150	°C
T _{amb}	operating ambient temperature range		- 40	85	°C
V _{es1}	electrostatic handling	note 2	-1500	1500	٧
V _{es2}	electrostatic handling	note 3	-70	70	V

Notes

- 1. Input voltage should not exceed 6.5 V unless otherwise specified
- 2. Equivalent to discharging a 100 pF capacitor through a 1.5 k Ω series resistor
- 3. Equivalent to discharging a 200 pF capacitor through a 0 Ω series resistor.

DC CHARACTERISTICS

 T_{amb} = -40 to 85 °C; V_{DD} = 3.8 to 5.5 V unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply				<u>.</u>	i	
V_{DD}	supply voltage range		3.8	5.0	5.5	V
loo	operating current	V _{DD} = 5 V (note 1)	-	82	110	mA
םס ^ו	operating current	V _{DD} = 3.8 V (note 1)	-	58	80	mA
Inputs URI	OA, SBDIR, SBEF, LTCLK,	LTCNTO, LTNCT1, X22II	N, X24IN	1		
V _{IH}	HIGH level input voltage		0.7V _{DD}	T	7-	Tv
V _{IL}	LOW level input voltage		-	_	0.3V _{DD}	V
-l _i	input current	V _i = 0 V; T _{amb} = 25 °C	_	-	10	μА
+11	input current	V _i = 5.5 V; T _{amb} = 25 °C	-	_	10	μΑ
inputs PWI	RDWN, LTENA					
ViH	HIGH level input voltage		0.7V _{DD}		T_	Tv
V _{IL}	LOW level input voltage		-	-	0.3V _{DD}	Tv
+11	input current	V _i = V _{DD} ; T _{amb} = 25 °C	40	-	250	μА

August 1993

Item Number 4: MPEG, SAA2521

Philips Semiconductors

Preliminary specification

Masking threshold processor for MPEG layer 1 audio compression applications

SAA2521

DC CHARACTERISTICS

 V_{DD} = 3.8 to 5.5 V; T_{amb} = -40 to 85 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V _{DD}	supply voltage range		3.8	5	5.5	V
I _{DD}	operating current	V _{DD} = 3.8 V	-	15	30	mA
I _{DD}	operating current	V _{DD} = 5 V	-	25	50	mA
I _{PWRDWN}	stand-by current	in power-down mode	-	100	-	μА
Inputs						
V _{IL}	LOW level input voltage		0	 	0.3 V _{DD}	V
V _{IH}	HIGH level input voltage		0.7 V _{DD}	_	V _{DD}	V
l _l	input current		_	_	10	μА
Outputs						
V _{OL}	LOW level output voltage	note 1	-	_	0.4	V
V _{OH}	HIGH level output voltage	note 1	V _{DD} 0.5	-	-	V
3-state out	puts					
loz	OFF state current	$V_i = 0 \text{ to } 5.5 \text{ V}$	 -	-	10	μА

Note

Maximum load current for LTDATA, LTCNT1C, LTCNT0C, LTENC, LTCLKC, TEST1, TEST2, FDAC, FDAF = 2 mA; for LTDATAC = 3 mA.

Item Number 5: Modulator, RF2422

RF2422

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to +7.5	V _{DC}
Input LO and RF Levels	+10	dBm
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	℃

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Domentos		Specification	n	Unit	Condition
Parameter	Min.	Тур.	Max.	Unit	Condition
Carrier Input	<u> </u>				T=25°C, V _{CC} =5V
Frequency Range	800		2500	MHz	
Power Level	-6]	+6	dBm	
Input VSWR	i	5:1			At 900MHz
	ļ	1.8:1			At 1800 MHz
		1.2:1			At 2500 MHz
Modulation Input					
Frequency Range	DC	1	250	MHz	
Reference Voltage (V _{REF})	2.0	3.0		V	
Maximum Modulation (I&Q)	1	-	V _{REF} ±1.0	V	
Gain Asymmetry	1	0.2		dB	
Quadrature Phase Error	1	3	1 :	•	
Input Resistance		30	1	kΩ	
Input Bias Current			40	μА	
RF Output					LO=2GHz and -5dBm, I&Q=2.0V _{PR} SSB
Output Power	-3	f	+3	dBm	
Output Impedance		50		Ω	
Output VSWR		3.5:1	1 1		At 900MHz
		1.3:1	1		At 2000 MHz
		1.15:1	1 1		At 2500MHz
Harmonic Output	-30	-35	1	dBc	
Sideband Suppression	25	35		dB	
Carrier Suppression	30	35		dB	
IM ₃ Suppression	30	35		dB	Intermodulation of the carrier and the desired RF signal
	25	30	1	dB	Intermodulation of baseband signals
Broadband Noise Floor			1		At 20MHz offset, V _{CC} =5V.
					Tied to V _{REF} : ISIG, QSIG, IREF, and QREF.
		-145	1	dBm/Hz	At 850MHz
	<u> </u>	-152	l	dBm/Hz	At 1900MHz
Power Down					
Turn On/Off Time			100	ns	,
PD Input Resistance	50			kΩ	0
Power Control "ON"			2.8	V	Threshold voltage
Power Control *OFF*	1.0	1.2	<u> </u>	V	Threshold voltage
Power Supply					
Voltage		5		V	Specifications
	4.5		6.0	V	Operating Limits
Current		45	50	mA	Operating
			25	μА	Power Down

Item Number 6: Power Amplifier, TQ9132

Product Description

The TQ9132B amplifier is an 800-2500 MHz amplifier capable of providing moderate output power (50 mW) for a wide variety of transmit and receive applications. The amplifier's input and output are matched to 50 Ω with internal circuitry, simplifying interfaces to 50 Ω systems. In addition, DC blocking capacitors are included on chip, permitting direct connections to the input and output. Its 8-pin surface mount package and low cost are well suited to many wireless communications applications.

Electrical Specifications¹

Parameter	Min	Тур	Max	Units
Gain	13.5	16		dB
Output 1 dB Gain Compression	15.5	17		dBm
Input Return Loss		12		dB
Output Return Loss	<u> </u>	12		dB
DC Supply Current		85	100	MA

Note 1: Test Conditions: Voo = 5.0 V, Freq. = 2500 MHz, TA= 25°C.

Note 2: . Min/max values 100% production tested

TQ9132B

DATA SHEET

3V Cellular TDMA/AMPS Power Amplifier IC

Features

- Single 3V- 6V supply
- Wide frequency range
- +17 dBm output power
- Input and output matched to 50 Ω
- SO-8 surface mount plastic package

Applications

- Power Amplifier drivers
- PCN Medium-power amplifiers
- Medium-power WLANs
- CDPD Modems
- Base Station receivers

MC12210 Item Number 7: Phase Locked Loop, MC12210

ELECTRICAL CHARACTERISTICS (V_{CC} = 2.7 to 5.5 V; T_A = -40 to +85°C, unless otherwise noted.)

ICC IP PARAMENT FIN FOSC	_ _ _ _ _ _ 2500	8.8 10.2 0.7 0.8	13.0 16.0 1.1	mA mA	Note 1 Note 2
nax F _{IN}	-	0.7			Note 2
nax F _{IN}	-		1.1		
min		0.8		I IIVA	Note 3
min	2500		1.3	1	Note 4
Fosc	-	-	- 500	MHz	Note 5
1 .030	-	12	20	MHz	Crystal Mode
		-	40	MHz	External Reference Mode
f _{IN} V _{IN}	200		1000	mVpp	
Cin Vosc	500	_	2200	mVpp	
FC VIH	0.7 V _{CC}	-	_	V	
FC V _{IL}	-	_	0.3 V _{CC}	V	V _{CC} = 5.5 V
lн	-	1.0	2.0	μА	V _{CC} = 5.5 V
I _I L	-10	-5.0	-	μА	V _{CC} = 5.5 V
losc	_	130 -310	_	μА	OSCin = V _{CC} OSCin = V _{CC} - 2.2 V
¹IH	-	1.0	2.0	μА	
ΙιL	-75	-60		μА	
ISource ⁶	-2.6	-2.0	-1.4	mA	$V_{Do} = V_{D}/2; V_{D} = 2.7 V$
^I Sink ⁶	+1.4	+2.0	+2.6	1	$V_{BISW} = V_p/2; V_p = 2.7 V$
lHi–Z	-15	-	+15	nΑ	0.5< V _{DO} < V _p - 0.5 0.5 < V _{BISW} < V _p - 0.5
Voн	4.4	_	-	V	V _{CC} = 5.0 V
	2.4	_	-	v	V _{CC} = 3.0 V
VOL	_	_	0.4	V	V _{CC} = 5.0 V
	_	-	0.4	V	V _{CC} = 3.0 V
ЮН	-1.0	_	_	mA	
101	1.0	_	_	mΔ	
	FC VIH FC VIL IIH IIL IOSC IIH IIL ISource ISink6 IHI-Z VOH	FC V _{IH} 0.7 V _{CC} FC V _{IL} - I _{IH} -10 I _{IL} -10 I _{OSC} - - I _{IH} -75 I _{Source} 6 -2.6 I _{Sink} 6 +1.4 I _{H-Z} -15 V _{OH} 4.4 2.4 V _{OL} - - - I _{OH} -1.0	FC VIH 0.7 V _{CC} - FC VIL ItH - 1.0 ItL -10 -5.0 IOSC - 130 -310 ItH - 1.0 ItH - 1.0	FC V _{IH} 0.7 V _{CC} 0.3 V _{CC} I _{IH} - 1.0 2.0 I _{IL} -10 -5.0 I _{OSC} - 130 I _{IH} - 1.0 2.0 I _{IL} -75 -60 - I _{Source} -2.6 -2.0 -1.4 I _{Sink} +1.4 +2.0 +2.6 I _{H-Z} -15 - +15 V _{OH} 4.4 2.4 V _{OL} - 0.4 I _{OH} -1.0	FC V _{IH} 0.7 V _{CC} V FC V _{IL} 0.3 V _{CC} V I _{IH} - 1.0 2.0 μA I _{IL} -10 -5.0 - μA I _{OSC} - 130 - μA I _{IH} - 1.0 2.0 μA I _{IH} - 1.0 2.0 μA I _{IH} - 1.0 2.0 μA I _{IL} -75 -60 - μA I _{Source} -2.6 -2.0 -1.4 mA I _{Sink} +1.4 +2.0 +2.6 I _{H-Z} -15 - +15 nA V _{OH} 4.4 V 2.4 V 2.4 V V _{OL} 0.4 V I _{OH} -1.0 - mA

^{1.} V_{CC} = 3.3 V, all outputs open.

Figure 9. Typical Lock Detect Circuit

Figure 8. Typical External Charge Pump Circuit

^{2.} VCC = 5.5 V, all outputs open.

^{3.} Vp = 3.3 V, all outputs open.

^{4.} V_p = 6.0 V, all outputs open.
5. AC coupling, F_{IN} measured with a 1000 pF capacitor.

^{6.} Source current flows out of the pin and sink current flows into the pin.

Z-

Item Number 8: Voltage Controlled Oscillator, SMV2500

L-Communications, Inc.

9939 Via Pasar • San Diego, CA 92126 TEL (619) 621-2700 FAX (619) 621-2722 **SMV2500L**

VOLTAGE CONTROLLED OSCILLATOR
Rev E5

FEATURES

- · Frequency Range: 2400 2484 MHz
- Tuning Voltage:

0-3 Vdc

SUB-L - Style Package

APPLICATIONS

- · Personal Communications Systems
- · WLAN
- · Portable Radios

OFFSET (Hz)

PERFORMANCE SPECIFICATIONS	VALUE	UNITS
Oscillation Frequency Range	2400 - 2484	MHz
Phase Noise @ 10 kHz offset (1 Hz BW, typ.)	-87	dBc/Hz
Harmonic Suppression (2nd, typ.)	-20	dBc
Tuning Voltage	0-3	Vdc
Tuning Sensitivity (avg.)	105	MHz/V
Power Output	9.25±2.75	dBm
Load Impedance	50	Ω
Input Capacitance (max.)	50	pF
Pushing	<30	MHz∕V
Pulling (14 dB Return Loss, Any Phase)	<25	MHz
Operating Temperature Range	-40 to 85	°C
Package Style	SUB-L	
POWER SUPPLY REQUIREMENTS		
Supply Voltage (Vcc, nom.)	3	Vdc
Supply Current (Icc, typ.)	19	mA

All specifications are typical unless otherwise noted and subject to change without notice.

APPLICATION NOTES

- AN-100/1 : Mounting and Grounding of VCOs
- AN-102: Proper Output Loading of VCOs
- AN-107: How to Solder Z-COMM VCOs

NOTES:

Item Number 9: Low Noise Amplifier, MBA86576

Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]
V_d	Device Voltage, RF output to ground	V	9
Vg	Device Voltage, RF input to ground	v	+0.5 -1.0
P _{in}	CW RF Input Power	dBm	+13
T_{ch}	Channel Temperature	°C	150
T _{STG}	Storage Temperature	°C	-65 to 150

Thermal Resistance ^[2] :
$\theta_{\text{ch-c}} = 110^{\circ}\text{C/W}$

Notes:

- Operation of this device above any one of these limits may cause permanent damage.
- T_c = 25°C (T_c is defined to be the temperature at the package pins where contact is made to the circuit board).

MGA-86576 Electrical Specifications, $T_C = 25$ °C, $Z_o = 50$ Ω , $V_d = 5$ V

Symbol	Parameters and Test Con	nditions	Units	Min.	Тур.	Max.
Gp	PowerGain $(S_{21} ^2)$	f = 1.5 GHz	dB		21.2	
		f = 2.5 GHz			23.7	
		f = 4.0 GHz		20	23.1	
		$f = 6.0 \mathrm{GHz}$		1	19.3	ļ
		$f = 8.0 \mathrm{GHz}$			15.4	1
NF_{50}	50 Ω Noise Figure	f = 1.5 GHz	dB		2.2	
		f = 2.5 GHz			1.9	
		f = 4.0 GHz	1		2.0	2.3
		f = 6.0 GHz			2.3	
· · · · · · · · · · · · · · · · · · ·		$f = 8.0 \mathrm{GHz}$			2.5	
NF_o	Optimum Noise Figure	f = 1.5 GHz	dB		1.6	
	(Input tuned for lowest noise	f = 2.5 GHz			1.5	
	figure)	f = 4.0 GHz			1.6	
		$f = 6.0 \mathrm{GHz}$	i		1.8	
		f = 8.0 GHz			2.1	
P_{1dB}	Output Power at 1 dB Gain	f = 1.5 GHz	dBm		6.4	
	Compression	f = 2.5 GHz			7.0	
		f = 4.0 GHz			6.3	
		f = 6.0 GHz			4.3	
		$f = 8.0 \mathrm{GHz}$			3.8	
IP_3	Third Order Intercept Point	f = 4.0 GHz	dBm		16.0	
VSWR	Input VSWR	f = 1.5 GHz			3.6:1	
		f = 2.5 GHz			3.3:1	
		f = 4.0 GHz			2.2:1	3.6:1
		f = 6.0 GHz			1.4:1	
		$f = 8.0 \mathrm{GHz}$			1.2:1	
	Output VSWR	f = 1.5 GHz			2.5:1	
		f = 2.5 GHz		1	2.1:1	
		f = 4.0 GHz			1.7:1	
		$f = 6.0 \mathrm{GHz}$			1.4:1	
		f = 8.0 GHz			1.3:1	
I _d	Device Current		mA	9	16	22

Item Number 10: Digital Interface Transmitter, CS8402

CS8401A CS8402A

ABSOLUTE MAXIMUM RATINGS (GND = 0V, all voltages with respect to ground.)

Parameter	Symbol	Min	Max	Units
DC Power Supply	VD+		6.0	V
Input Current, Any Pin Except Supply Note 1	lin	-	±10	mA
Digital Input Voltage	VIND	-0.3	VD+	V
Ambient Operating Temperature (power applied)	TA	-55	125	°C
Storage Temperature	T _{stg}	-65	150	°C

Notes:

1. Transient currents of up to 100 mA will not cause SCR latch-up.

WARNING: Operation at or beyond these limits may result in permanent damage to the device.

Normal operation is not guaranteed at these extremes.

RECOMMENDED OPERATING CONDITIONS

(GND = 0V; all voltages with respect to ground)

Parameter	Symbol	Min	Тур	Max	Units	
DC Voltage		VD+	4.5	5.0	5.5	V
Supply Current	Note 2	סמי		1.5	5	mA
Ambient Operating Temperature: CS8401/24 CS8401/24		TA	0 -40	25	70 85	°C
Power Consumption	Note 2	PD		7.5	25	mW

Notes:

- 2. Drivers open (unloaded). The majority of power is used in the load connected to the drivers.
- 3. The '-CP' and '-CS' parts are specified to operate over 0 to 70 °C but are tested at 25 °C only. The '-IP' and '-IS' parts are tested over the full -40 to 85 °C temperature range.

DIGITAL CHARACTERISTICS

(T_A = 25 °C for suffixes 'CP' & 'CS', T_A = -40 to 85 °C for 'IP' & 'IS'; VD+ = $5V \pm 10\%$)

Symbol V _{IH}	Min 2.0	Тур	Max	Units
	2.0		14 .00	
			V _{DD} +0.3	V
V_{IL}	-0.3		+0.8	V
v _{OH}	V _{DD} -1.0			V
VOL			0.4	V
l _{in}		1.0	10	μA
MCK			22	MHz
	40			MHz %
	V _{OH} V _{OL}	V _{OH} V _{DD} -1.0 V _{OL} I _{in}	VOH VDD-1.0 VOL 1.0 MCK 1.0	VOH VDD-1.0 VOL 0.4 I _{in} 1.0 10 MCK 22 7.1

4. MCK for the CS8401 must be 128, 192, 256, or 384x the input word rate based on M0 and M1 in control register 2. MCK for the CS8402A must be 128x the input word rate, except in Transparent Mode where MCK is 256x the input word rate.

Specifications are subject to change without notice.

2

DS60F1

Item Number 11: Digital to Analog Converter, TDA1305T

Philips Semiconductors

Preliminary specification

Stereo 1fs data input up-sampling filter with bitstream continuous dual DAC (BCC-DAC2)

TDA1305T

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DDD}	digital supply voltage	note 1	3.4	5.0	5.5	V
V _{DDA}	analog supply voltage	note 1	3.4	5.0	5.5	V
V _{DDO}	operational amplifier supply voltage	note 1	3.4	5.0	5.5	V
ססס	digital supply current	V _{DDD} = 5 V; at code 00000H	_	30	-	mA
I _{DDA}	analog supply current	V _{DDA} = 5 V; at code 00000H	-	5.5	8	mA
IDDO	operating amplifier supply current	V _{DDO} = 5 V; at code 00000H	_	6.5	9	mA
V _{FS(rms)}	full-scale output voltage (RMS value)	$V_{DDD} = V_{DDA} = V_{DDO} = 5 V$	1.425	1.5	1.575	V
(THD + N)/S total harmonic distortio		at 0 dB signal level	-	-90	-81	dB
	plus noise-to-signal ratio		_	0.003	0.009	%
		at -60 dB signal level	-	-44	-40	dB
			_	0.63	0.1	%
		at –60 dB signal level;	-	-46	-	dB
		A-weighted	_	0.5	[-	%
S/N	signal-to-noise ratio at bipolar zero	A-weighting; at code 00000H	100	108	_	dB
BR _{ns}	input bit rate at data input	f _s = 48 kHz; normal speed	_	-	3.072	Mbits
BR _{ds}	input bit rate at data input	f _s = 48 kHz; double speed	-	_	6.144	Mbits
f _{sys}	system clock frequency		6.4	-	18.432	MHz
TC _{FS}	full scale temperature coefficient at analog outputs (VOL and VOR)		-	±100 × 10 ⁻⁶	-	
T _{amb}	operating ambient temperature		-30	_	+85	°C

Note

1. All V_{DD} and V_{SS} pins must be connected to the same supply.

Item Number 12: Clock Recovery & Timing, TRU-050

7	. For input RZ data, Manchester encoded data,
	and input clock recovery applications, the
	output dock must run at two times the input
	rate to ensure that the input is docked
	correctly. Since the output clock has a max-
	imum frequency of 65.536 MHz, these inputs
	are limited to a maximum rate of 32.768 MHz.

- OUT2 is a binary submultiple of OUT1, or it may be disabled.
- 3. A 3.3 volt supply option is also available.
- Figure 1 defines these parameters. Figure 2 illustrates the equivalent five-gate MTTL hoad and operating conditions under which these parameters are specified and tested.
- 5. Symmetry is the ON TIME/PERIOD in percent with $V_S = 1.4$ V for TTL, per figure 1.
- 6. A loss of signal (LOS) indicator is set to a logic high if no transitions are detected at DATAIN after 256 clock cycles. As soon as a transition occurs at DATAIN, LOS is set to a logic low.
- Accuracy at room temperature. Stability over temperature is typically ± 20 ppm.

	C 1-1	ΛΛ'.	Λ Δ	11.3
Parameter	Symbol	Min	Max	Unit
Input NRZ Data Rates	DATAIN	0.008	65.536	MHz
Input RZ Data and Clock Rates 1	DATAIN	0.008	32.768	MHz
Nominal Output Frequency		! !		
Output 1	OUT1	12.0	65.536	MHz
Output 2 ²	ОИТ2	0.05	32.768	MHz
Supply Voltage ³	V ₀₀	4.5	5.5	ν
Supply Current (V _{DD} = 5.5 V)	100	<i>25</i>	63	mA
Output Voltage Levels (V _{DD} = 4.5 V)				
Output Logic High ⁴	v _{OH}	2.5		V
Output Logic Low 4	VOL		0.5	V
Transition Times: 4			į	i •
Rise Time (0.5 V to 2.5 V)	t_R	0.5	5	ns
Fall Time (2.5 V to 0.5 V)	lf	0.5	5	ns
Symmetry or Duty cycle ⁵				
Output 1	SYM 1	40	60	%
Output 2	SYM 2	45	55	%
Recovered Clock	RCIK	40	60	%
Input Data			!	1 1 1
Input Logic High	v_{IH}	2.0		ν
Input Logic Low	v_{IL}		0.8	V
Control Voltage Bandwith (-3 dB,VC = 2.50 V)	BW	50		kHz
Sensitivity @ VC = VO	$\Delta F/\Delta V_C$	See Fig	ure 11	ppm/V
Loss of Signal Indication ⁶	Los		! !	
Output Logic High	v _{OH}	2.5		ν
Output Logic Low	v _{Ol}		0.5	V
Nominal Output Frequency on Loss of Signal: 7			1	
Output 1	OUT1	∙75 ppm	75 ppm	ppm from fo 1
Оири 2	ОИТ2	-75 ppm	75 ppm	ppm from fo 2
Phase Detector Gain	KD	-0.53 x Da	·	V/rad
			- 7	

Table 1.

RF2703

Absolute Maximum Ratings

Parameter	Rating	Unit	
Supply Voltage	-0.5 to 7.0	Voc	
IF Input Level	500	mV _{PP}	
Operating Ambient Temperature	-40 to +85	°C	
Storage Temperature	-40 to +150	°C	

RF Nicro Devices believes the furnished information is correct and accurate at the time of this printing. Noveyer, RF Nicro Devices reserves the right to make changes to its products without notice. RF Nicro Devices does not opeums responsibility for the use of the described product(s).

Specification			Mait	Condition	
Min. Typ. Max.		Unit			
				T=25°C, V _{CC} =3.0V. IF=100MHz,	
				LO=200MHz, F _{MOD} =500kHz	
	0.1 to 250		MHz	For IF frequencies below ~2.5MHz, the LO should be a square wave. IF frequencies lower than 100kHz are attainable if the LO a square wave and sufficiently large DC blocking capacitors are used.	
	DC to 50	1	MHz		
	1200 1pF		Ω	Each input, single-ended	
1					
				Twice (2x) the IF frequency. For IF frequencies below ~2.5MHz, the LO should be a square wave. IF frequencies lower than 100kHz are attainable if the LO is a square wave and sufficiently large DC blocking capacitors are used.	
	0.06 to 1		Ves		
	500 1pF				
	1			IF _{IN} =28mV _{PP} , LO=200mV _{PP} , Z _{LOAD} =10k	
		1		IN TOWN PP, BO ZOOM PP, ZEOAU TOW	
	50 1pF		α	Each output, IOUT and QOUT	
	1.4	ļ		Saturated Saturated	
	20	1		V _{CC} =3.0V	
22.5	24	25.1			
		20.1		V _{CC} =5.0V	
	24		08	Single Sideband. IF Input of device reactively matched	
'	35		₫₿	Single Sideband, 50Ω shunt resistor at IF	
				Input	
	-22		dBm	V _{CC} =3.0V, IF Input of device reactively matched	
	-11	1	dBm	V _{CC} =3.0V, 50Ω shunt resistor at IF Input	
	-19			V _{CC} =5.0V, IF Input of device reactively matched	
	-8		dBm	V _{CC} =5.0V, 50Ω shunt resistor at IF Input	
	-28	ĺ		V _{CC} =5.0V, IF Input of device reactively	
				matched, $Z_{LOAD} = 50\Omega$	
1	0.1	0.5	dВ	LINE COAD - JULY	
Ī	<±1		3		
ĺ	800		mV	V _{CC} =3.0V, I _{OUT} and Q _{OUT} to GND	
2.0	2.4	2.8		Ver = 5.0V to month On to GND	
]	1	1	•	V _{CC} =5.0V, lour and Q _{OUT} to GND	
	22.5	Min. Typ. 0.1 to 250 DC to 50 1200 1pF 0.06 to 1 500 1pF 50 1pF 1.4 20 22.5 24 24 35 -22 -11 -19 -3 -28 0.1 <11 800	Min. Typ. Max. 0.1 to 250 DC to 50 1200 1pF 0.06 to 1 500 1pF 50 1pF 1.4 20 22.5 24 25.1 24 35 -22 -11 -19 -8 -28 0.1 -28 0.1 800 2.4 2.8	Min. Typ. Max. 0.1 to 250 MHz DC to 50 1200 1pF MHz Ω 0.06 to 1 500 1pF Vpp Ω 1.4 20 20 24 35 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	

Item Number 13: Demodulator, RF2703 continued

RF2703

Modulator Configuration					IFIN=28mVpp. LO=200mVpp.
Modulator Comigaration			l		Z _{LOAD} =1200Ω
Maximum Output		200	1	mV _{PP}	Saturated
Input Voltage		90		mV _{PP}	Single Sideband, 1dB Gain Compression.
Voltage Gain		6		dB	Single Sideband
I/Q Amplitude Bafance		0.1	İ	₫₿	
Quadrature Phase Error		<±1	1	•	
Carrier Suppression		25		dBc	Unadjusted. Carrier Suppression may be optimized further by adjusting the DC offset level between the A and B inputs.
Sideband Suppression		30		dBc	
Power Supply					•
Voltage		2.7 to 6	}	V	Operating limits
Current		8		mA	V _{CC} =3.0V
	8	10	12	mA	V _{CC} =5.0V

7

QUADRATURE

PIC16C5X

Item Number 14: Microprocessor, PIC16C55

12.1 DC Characteristics: PIC16C54/55/56/57-RC, XT, 10, HS, LP (Commercial)

PIC16C54/55/56/57-RC, XT, 10, HS, LP (Commercial)			Standard Operating Conditions (unless otherwise specific Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial				(unless otherwise specified) ≤ +70°C for commercial
Param No.	Symbol	Characteristic/Device	Min	Typt	Max	Units	Conditions
D001	Voo	Supply Voltage PIC16C5X-RC PIC16C5X-XT PIC16C5X-10 PIC16C5X-HS PIC16C5X-LP	3.0 3.0 4.5 4.5 2.5		6.25 6.25 5.5 5.5 6.25	>>>>	
D002	VDR	RAM Data Retention Voltage ⁽¹⁾		1.5*	_	V	Device in SLEEP Mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset		Vss	-	٧	See Section 5.1 for details on Power-on Reset
D004	SVDD	Vod Rise Rate to ensure Power-on Reset	0.05*		-	V/ms	See Section 5.1 for details on Power-on Reset
D010	IDD	Supply Current ⁽²⁾ PIC16C5X-RC ⁽³⁾ PIC16C5X-XT PIC16C5X-10 PIC16C5X-HS PIC16C5X-HS PIC16C5X-HS		1.8 1.8 4.8 4.8 9.0	3.3 3.3 10 10 20 32	mA mA mA mA mA μA	Fosc = 4 MHz, VDD = 5.5V Fosc = 4 MHz, VDD = 5.5V Fosc = 10 MHz, VDD = 5.5V Fosc = 10 MHz, VDD = 5.5V Fosc = 20 MHz, VDD = 5.5V Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D020	lPD	Power-down Current ⁽²⁾	_ _	4.0 0.6	12 9	μ Α μ Α	VDD = 3.0V, WDT enabled VDD = 3.0V, WDT disabled

- These parameters are characterized but not tested.
- † Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - 3: Does not include current through Rext. The current through the resistor can be estimated by the formula: R = VDD/2Rext (mA) with Rext in $k\Omega$.

Item Number 15: DSSS Transmitter, CYLINK SSTX

Item Number 16: DSSS Receiver, CYLINK Part# SPECTRE

Item Number 17: Mixer, IAM81008

Item Number 18: Channel Encoder/Decoder, SRT241203

Item Number 19: Interleaver/De-interleaver, SRT-24INT

Item Number 20: Optical Digital Receiver, HK-3131-01

Item Number 21: Optical Digital Transmitter, HK-3131-03

Item Number 22: Voltage Controlled Oscillator, M2 D300

EXHIBIT C

NOTE: A=Altstatt S=Schotz FHSS=Frequency Hopping Spread Spectrum w=with Tx=transmitter

	_	SupplyCurrent	Size		
System	Part	(în mA)	(in inches)	Playtime	Note
					Altstatt's Tx
•			18-pin	1 1	
A(Tx)	BA1404	3	0.44 x 0.30		FM Stereo Transmitter
				16+	
				hours	Tx continuous operation time
		ودوي جاجيت التجاري			
			144-pin		
S(Tx w SS)	DSP56002	90	0.78 x 0.78		Schotz FHSS Tx
	>PLL	1	N/A		PLL located inside DSP56002
	>ckout	14	N/A		ckout located inside DSP56003
,			44-pin	٠,	
	SAA7360		0.50×0.50		A/D converter
	>analog	43			function of the A/D converter
•	>digital	50			function of the A/D converter
			44-pin		
•	SAA2520	82	0.55 x 0.55		Stereo Filter MPEG
			44-pin		
	SAA2521	25	0.55 x 0.55		MPEG
			16-pin		· · ·
••	RF2422	45	0.39 x 0.24		Modulator
			8-pin	·	
	TQ9132	85	0.19×0.23		Power Amp
			16-pin		
•	MC12210	10.2	0.39 x 0.24	1	PLL
· · · · · · · · · · · · · · · · · · ·			12-pin		
	SMV2500	19	0.28 x 0.28		VCO
•	HK-3131-01	no data	no data		Optical Digital Rcvr (*)
•	M2 D300	no data	no data		VCO (*)
	SRT241203	no data	no data	<u> </u>	FEÇ (*)
	SRT-24INT	no data	no data		Interleaver (*)
· - · - ·		, , , , , , , , , , , , , , , , , , ,			- · · · - · · · · · · · · · · · · · · ·
				0.1 hours	•
			•	or 6+	·
				minutes	
				minutes	
(Tx) equation	in hours.	Section Section 1	e vice as the same	une proportion (Alberta	
		s/bour v 24 bour	·/dou//2m///11 v /	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) = 16.6 hours
MOOVOOLINA-IIIII	nutes)/[(60 minute		rudy)(SITIA)]) X (Z4NOUR/day	j - 10.0 nours
)(T (CD)	<u> </u>			-	
	ation in hours:			15.5	
			4+43+50+82+25	+45+85+10	.2+19mA)]}x(24hr/day)=6.4min
here min = m	inutes and hr = !	nours I		į į	· ·

NOTE: A=Altstatt S=Schotz FHSS=Frequency Hopping Spread Spectrum w=with Rx=Receiver

		SupplyCurrent	Size		
System	Part	(în mA)	(in inches)	Playtime	Note
					Altstatt's Rx
			16-pin	1	
(Rx)	TA7792	4	0.77×0.30		AM/FM Tuner System
			18-pin		
	TA7766A	0.8	0.44×0.30		FM PLL
				10+	
				hours	Rx continuous operation time
			144-pin		Oak at FUCO Da
(Rx w SS)	DSP56002	90	0.78 x 0.78	+	Schotz FHSS Rx
	>PLL	1	N/A	<u> </u>	PLL located inside DSP56002
	>ckout	14	N/A		ckout located inside DSP5600
	MONGETO	16	4-pin		LNA
	MGA86576 HK-3131-03	no data	0.20 x 0.07 no data	-	Optical Digital Tx (*)
	TK-3131-03	110 data	28-pin		Optical Digital TX ()
	CS8402	1.5	1.20 x 0.20		Digital Interface Tx
	030402	1,5	44-pin	1	Digital Interface 1x
	SAA2520	82	0.55 x 0.55	1	Stereo Filter MPEG
		1	28-pin	1	Stereo Filter Wif LO
	TDA1305T	42	0.70×0.40		DAC
		14-	16-pin	 	DAO
•	TRU-050	63	0.80×0.30	1 1	Clock Recovery and Timing
			14-pin	+	Clock (Coovery and Tilling
	RF2703	10	0.34 x 0.24		Demodulator
			16-pin	1	, Demodalator
	MC12210	10.2	0.39 x 0.24	1 . 1	PLL
			12-pin		
	SMV2500	19	0.28 x 0.28	1 . 1	VCO
	SRT241203	no data	no data	1.	FEC (*)
	SRT-24INT	no data	no data		De-interleaver (*)
	IAM81008	no data	no data		Mixer (*)
				0.14	
				hours or	
				8+	
				minutes	
(D.)					
Rx) equation	in hours:				
im-Amucxuo	nutes)/[(60 minute	s/hour x 24 hour	(day)(4.8mA)]} x	(24hour/da	y)
(D	L				
	ration in hours:				
IIM-AMUCXUO	iutes)/[(60 minute	s/nour x 24 hour	day)(sum of IC	currents in r	nA)]} x (24hour/day)

NOTE: A=Altstatt S=Schotz DSSS=Direct Sequence Spread Spectrum w=with Tx=transmitter

		SupplyCurrent	Size	Dia dina	Note
System	Part	(in mA)	(in inches)	Playtime	Altstatt's Tx
	<u> </u>		40 min	 	Alistati's IX
			18-pin	} }	FM Stereo Transmitter
A(Tx)	BA1404	3	0.44 x 0.30	16+	FIVI Stelet Transmitter
				hours	Tx continuous operation time
•		·		nours	1x continuous operation time
			144-pin		
· ·	DSP56002	90	0.78×0.78		Schotz DSSS Tx
S(Tx w SS)	>PLL	1	N/A		PLL located inside DSP56002
		14	N/A	+	ckout located inside DSP56003
 	>ckout	14	28-pin		CROUL IOCALCU IIICIGO DOI 00001
	DICAGOSS	1.8	1.5 x 0.50		Microprocessor
	PIC16C55	1.0	44-pin	 	Wicioprocessor
•	SAA7360		0.50 x 0.50		A/D converter
		43	0.50 x 0.50	 	function of the A/D converter
	>analog	50	·		function of the A/D converter
	>digital	50	16-pin	1	full cubit of the AD converter
	DE0400	45	0.39 x 0.24		Modulator
	RF2422	45	16-pin	-	iviodulatoi
	MC40040	40.0	0.39 x 0.24	:	PLL
•	MC12210	10.2			FLL
•	SMV2500	19	12-pin 0.28 x 0.28		VCO
	CYLINK SSTS	no data	no data	1	DSSS Transmitter (*)
	HK-3131-01	no data	no data	·	Optical Digital Rcvr (*)
	M2 D300	no data	no data	+	VCO (*)
	IVIZ D300	no data	110 uata	0.18	VCO().
		2.0		hours or	
				11	
				minutes	
		30-7		minutes	
A(Tx) equation	in hours:				
	inutes)/[(60 minutes	hour v 24 hou	(day)(3m/\)) ~ /	24hour/dox	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
//OUXSUIDA-III			ruay)(SIIIA)]} X (Z4nounday	·
		<u></u>			
S(Ty W SS) en	uation in hours:				
		/hour x 24 hou	r/day)(sum of IC	currente in	mA)]} x (24hour/day)
Manyouin Juli	indicoji (Co minute)	#11001 X 27 11001	ruay/(aum.or to	Currents III	III //// A (Z-HIOUI/GGY)

NOTE: A=Altstatt S=Schotz DSSS=Direct Sequence Spread Spectrum w=with Rx=Receiver

		SupplyCurrent	Size	Dloutimo	Note
System	Part	(in mA)	(in inches)	Playtime	Altstatt's Rx
			46 nin		Albiatora
. 1			16-pin	1	AM/FM Tuner System
A(Rx)	TA7792	4	0.77 x 0.30	-	AWIT WI Tulier Cystem
		0.0	18-pin 0.44 x 0.30		FM PLL
l	TA7766A	. 0.8	0.44 X 0.30	. 10+	7 (11) L2
				hours	Rx continuous operation time
				nouro	TA CONTAINED TO SPECIAL STATE OF THE SPECIAL STATE
			144-pin		
	DODECOOO	90	0.78×0.78		Schotz DSSS Rx
S(Rx w SS)	DSP56002	1 .	N/A	 	PLL located inside DSP56002
	>PLL	14	N/A	 	ckout located inside DSP56002
	>ckout	14	28-pin		OROGE IOCATOL
	PIC16C55	1.8	1.5′x 0.50	1 . 1	Microprocessor
	CYLINK	no data	no data		DSSS Receiver
	CILINK	110 data	4-pin		
	MGA86576	16 ·	0.20 x 0.07		LNA
	IAM81008	no data	no data		Mixer (*)
	IANO 1000	110 data	28-pin		
	CS8402	1.5	1.20 x 0.20		Digital Interface Tx
			28-pin	†	
	TDA1305T	42	0.70×0.40]	DAC
	10111000		16-pin	1. :	·
	MC12210	10.2	0.39 x 0.24		PLL
			12-pin		·
	SMV2500	19	0.28 x 0.28		VCO
	HK-3131-03	no data	no data	1	Optical Digital Tx (*)
	·		4.	0.25	
				hours or	
				. 15 .	
		The state of the s		minutes	
A(Rx) equation	in hours:				
{(60x50mA-mir	nutes)/[(60 minute	s/hour x 24 hou	r/day)(4.8mA)]}	x (24hour/d	ay)
		•			
	uation in hours:				
{(60x50mA-mir	nutes)/[(60 minute	s/hour x 24 hou	r/day)(sum of IC	currents in	mA)]} x (24hour/day)
					l · =

EXHIBIT D

microcellular systems. However, satellite mobile systems offer tremendous promise for paging, data collection, and emergency communications, as well as for global roaming before IMT-2000 is deployed. In early 1990, the aerospace industry demonstrated the first successful launch of a small satellite on a rocket from a jet aircraft. This launch technique is more than an order of magnitude less expensive than conventional ground-based launches and can be deployed quickly, suggesting that a network of LEOs could be rapidly deployed for wireless communications around the globe. Already, several companies have proposed systems and service concepts for worldwide paging, cellular telephone, and emergency navigation and notification [IEE91].

In emerging nations, where existing telephone service is almost nonexistent, fixed cellular telephone systems are being installed at a rapid rate. This is due to the fact that developing nations are finding it is quicker and more affordable to install cellular telephone systems for fixed home use, rather than install wires in neighborhoods which have not yet received telephone connections to the PSTN.

The world is now in the early stages of a major telecommunications revolution that will provide ubiquitous communication access to citizens, wherever they are [Kuc91], [Goo91], [ITU94]. This new field requires engineers who can design and develop new wireless systems, make meaningful comparisons of competing systems, and understand the engineering trade-offs that must be made in any system. Such understanding can only be achieved by mastering the fundamental technical concepts of wireless personal communications. These concepts are the subject of the remaining chapters of this text.

1.6 Problems

1.1 Why do paging systems need to provide low data rates? How does a low data rate lead to better coverage?

1.2 Qualitatively describe how the power supply requirements differ between mobile and portable cellular phones, as well as the difference between pocket pagers and cordless phones. How does coverage range impact battery life in a mobile radio system?

1.3 In simulcasting paging systems, there usually is one dominant signal arriving at the paging receiver. In most, but not all cases, the dominant signal arrives from the transmitter closest to the paging receiver. Explain how the FM capture effect could help reception of the paging receiver. Could the FM capture effect help cellular radio systems? Explain how.

1.4 Where would walkie-talkies fit in Tables 1.5 and 1.6? Carefully describe the similarities and differences between walkie-talkies and cordless telephones. Why would consumers expect a much higher grade of service for a cordless

telephone system?

1.5 Assume a 1 Amp-hour battery is used on a cellular telephone (often called a cellular subscriber unit). Also assume that the phone's radio receiver draws 35 mA on receive and 250 mA during a call. How long would the phone work (i.e. what is the battery life) if the user has one 3-minute call every day? every 6

Problems 23

hours? every hour? What is the maximum talk time available on the cellular phone in this example?

1.6 Assume a CT2 subscriber unit has the same size battery as the phone in Problem 1.5, but the paging receiver draws 5 mA and the transmitter draws 80 mA during a call. Recompute the battery life for the cases in Problem 1.5. Recompute the maximum talk time for the CT2 handset.

1.7 Why would one expect the CT2 handset in Problem 1.6 to have a smaller bat-

tery drain during transmission than a cellular telephone?

1.8 Why is FM, rather than AM, used in most mobile radio systems today? List as many reasons as you can think of, and justify your responses. Consider issues such as fidelity, power consumption, and noise.

1.9 List the factors that led to the development of (a) the GSM system for Europe, and (b) the U.S. digital cellular system. How important was it for both efforts to (i) maintain compatibility with existing cellular phones? (ii) obtain spectral

efficiency? (iii) obtain new radio spectrum?

1.10 Assume that a GSM, an IS-95, and a U.S. digital cellular base station transmit the same power over the same distance. Which system will provide the best SNR at a mobile receiver? How much is the improvement over the other two systems? Assume a perfect receiver with only thermal noise is used for each of the three systems.

1.11 Discuss the similarities and difference between a conventional cellular radio system and a space-based cellular radio system. What are the advantages and disadvantages of each system? Which system could support a larger number of users for a given frequency allocation? How would this impact the cost of service for each subscriber?

1.12 Assume that wireless communication services can be classified as belonging to one of the following four groups:

High power, wide area systems (cellular)

Low power, local area systems (cordless telephone and PCS)

Low speed, wide area systems (mobile data)

High speed, local area systems (wireless LANs)

Classify each of the wireless systems described in Chapter 1 using these four groups. Justify your answers. Note that some systems may fit into more than one group.

1.13 Discuss the importance of regional and international standards organizations such as ITU-R, ETSI, and WARC. What competitive advantages are there in using different wireless standards in different parts of the world? What disadvantages arise when different standards and different frequencies are used in different parts of the world?

1.14 Based on the proliferation of wireless standards throughout the world, discuss how likely it is for IMT-2000 to be adopted. Provide a detailed explanation, along with probable scenarios of services, spectrum allocations, and cost.

Solutions Manual to Accompany

Wireless Communications Principles and Practices

FIRST EDITION

Zhigang Rong

Theodore S. Rappaport

Prentice Hall PTR Upper Saddle River, New Jersey 07458

in-frastructure, complexity, hardware cost are all low.

A condless telephone, on the

ther hand. is a full duplex system. It allows simuluneous two-may communication. Transmission and reception s on two different channels (FDD) although new cordess system are using TDD. The consider muge, required if mostructure, hardware cost of a cordless phone system are not and the complexity is moderate. Her expectations are reater for a cordless telephone.

1.5 If the user has one 3-minute call every day

the battery life = $\frac{60 \times 1000 \text{ (mA-ninute)}}{(60 \times 24-3) \times 35 + 3 \times 250 \text{ (mA-ninute)}}$

= 1.175 days = 28.2 hours

If the user has one 3-minute call every 6 hours
the battery life = $\frac{60 \times 1000}{(60 \times 6 - 3) \times 35 + 3 \times 250} \times 6 = \frac{27.18}{27.18}$ hours

If the user has one 3-minute call every hour.

the battery life = 60×1000 = 21.86 hours

the maximum talk time = $\frac{60 \times 1000}{250} = 240$ minutes = $\frac{4}{100}$ hours

b For 3-minuse call/day

bastery life = \frac{60x1000 (tr.A-trimme)}{60x24-3)x5+3x80} = 8.08 days = 193.94 hours

1.6 Cent'd

For 3 minute-call / 6 hours,

5

battery life = 60x1000 x6 = 177.78 hours

For 3 minute-call / hour,

battery life = 60x 1000 = 114.29 hours

The praximum talk time = $\frac{60 \times 1000}{80}$ = 750 minutes = 12.5 hours.

1.7 Since the coverage range of the CT-2 system is lower than that of the collular radio system, to obtain the same signal-to-noise ratio in the coverage area, a CT-2 handset requires less transmitted power than a cellular telephone, and thus a smaller battery drain.

1.8 FM has several advantages over AM. The most important advantage is FM's superior noise suppression characteristics. With Conventional AM, the modulating signal is impressed onto the carrier in the form of emphitude variations. However, noise introduced into the system also produces changes in the complitude of the envelope. Therefore, the noise cannot be removed from the composite waveform without also removing a portion of the imformation signal. With FM, the information is impressed onto the carrier in the form of frequency variations. Therefore, with FM receivers,

COMMERCIAL APPLICATIONS

THIRD EDITION

ROBERT (. DIXON

A good in more inde in loutput I eight in this I and age is reasin in the

Figure 2.23 Simple time-hopping (pseudorandom pulse) system.

time-frequency hopping system might change frequency and/or amplitude only at one/zero transitions in the code sequence. Figure 2.23 shows a time-hopping system in block form. The simplicity of the modulator is obvious. Any pulse-modulatable signal source capable of following code waveforms is eligible as a time-hopping modulator.

Time hopping may be used to aid in reducing interference between systems in time-division multiplexing. However, stringent timing requirements must be placed on the overall system to ensure minimum overlap between transmitters. Also, as in any other coded communications system, the codes must be considered carefully from the standpoint of their cross-correlation properties.

Simple time-hopping modulation offers little in the way of interference rejection because a continuous carrier at the signal center frequency can block communications effectively. The primary advantage offered is in the reduced duty cycle; that is, to be really effective an interfering transmitter would be forced to transmit continuously (assuming the coding used by the time-hopper is unknown to the interferer). The power required of the reduced-duty-cycle time-hopper would be less than that of the interfering transmitter by a factor equal to the signal duty cycle.

Because of this relative vulnerability to interference, simple time-hopping transmissions should not be used for antijamming unless combined with frequency hopping to prevent single frequency interferers from causing significant losses. For ranging, multiple access, or other special uses time-hopping may be especially useful, if only because of the simplicity of generating the transmitted signal.

Electronic, Electrical and Computer Engineering

3rd month report

Optical CDMA Networks

M. Massoud Karbassian

1. Introduction

The process of optical to electrical and vice versa conversion in fibre-optic-based optical networks for signal processing limits how much fibre bandwidth can be used because of the limited speed of electronic signal processors. It is believed that optical components, once fully developed and integrated, will offer much higher speeds for optical signal processing than electrical one. Therefore, a desirable feature of optical communications systems would be the ability to perform signal processing functions optically only when desired. Fibre optic CDMA takes advantages of excess bandwidth in single mode fibres to map the low information rate of electrical or optical data into high rate optical pulse sequences followed by a laser beam to obtain random, asynchronous communications access free of network control among many users. (Fig.1)

OCDMA signals would be compared at the receivers to a stored copy of itself (correlation process and characteristic of spread spectrum communications) and to a threshold level at the comparator for the data recovery. (Fig.1)

Figure 1. Fibre optic communications system using optical codec

Actually in such a system, there are N transmitters and receivers pairs as users that the set of OCDMA pulse sequences essentially become a set of address codes or signature sequences for the network which is shown in Figure 2.

Figure 2. Schematic diagram of an OCDMA communications system

The theoretical available bandwidth in a standard single-mode optical fibre invites us to use it in an advantageous manner to the full usage of such great capacity. For local area networks we can use Time-Division Multiple-Access (TDMA) but we are limited to a few Gbps by the speed of current electro-optic technology and we need an exact synchronization between the

users. Wavelength-Division Multiple-Access (WDMA) would be our next choice but technology again cannot help us avoid the limitations of tuneable optical receivers, which provide us just about an hundred different wavelengths. Although we can combine TDMA and WDMA to get greater speed and flexibility, we really get a great deal of advantage when using Optical Asynchronous Code-Division Multiple-Access (OACDMA) because we eliminate all these problems and others, like channel allocation, channel degradation, security, fixed bit-rate. With all this in mind we can undoubtedly consider OCDMA as a communication system which deserves our attention for present research.

2. Aims and Objectives

Based on the mentioned motivations and because CDMA coding scheme has already been applied into practical radio networks like Mobile Communication (3G) or Global Positioning System (GPS), also deploying CDMA coding in optical channel and making benefit of huge bandwidth with as less as possible *interference* would be the main aims of the project.

There are various types of interferences such as channel noise, thermal noise, users simultaneous access to the network, etc. therefore in order to provide a secure and reliable communication having a clear system performance in an acceptable standard specially dealing with Multi-User Interference (MUI) reduction based on our design or code selection and application would be the main task.

Objectives of the project principally could be pointed as following:

- > Grasp CDMA method as multiple access
- > Applying CDMA in Optical Communications Networks (OCDMA)
- > Introduce novel system feature based on using alternative schemes than previously used
- > Improving the system performance:
 - Focused on MUI Suppression
 - Noise Reduction

3. Literature Survey

3.1. Spread Spectrum Communications

Spread spectrum (SS) communications systems have the characteristic attributes that the needed transmission bandwidth is much greater than the baseband message signal bandwidth and that the transmission bandwidth is determined by a spreading signal that is independent of the message. Furthermore, the receiver will recover the signal by applying the same spreading code which was in transmitted signal. The main advantage of such a system is interference rejection both intentional and unintentional one. In addition to interference rejection, spread spectrum system offers secure communication (hard to intercept), multi-user random access and high resolution ranging. So by definition a transmission technique in which a pseudo-noise code independent of the information is employed as a modulation waveform to 'spread' the signal energy over a bandwidth much greater than the signal information bandwidth then at the receiver the signal 'despread' using a synchronised replica of the pseudo-noise random code (Fig.3). Two main spread spectrum topologies of all are discussed in the following:

instantaneously: broadband

Figure 3. Message signal energy spread on bandwidth (DSSS)

3.1.1. Direct Sequence Spread Spectrum (DSSS)

A pseudo-noise (PN) sequence pn_t generated at the modulator is used in conjunction with an M-array PSK modulation to shift the phase of the PSK signal pseudo-randomly at the chipping rate R_c (=1/ T_c) that is an integer multiple of the symbol rate Rs (=1/Ts) (Fig.4). The transmitted bandwidth is determined by the chip rate and by the baseband filtering. The implementation limits the maximum chip rate R_c (clock rate) and thus the maximum spreading. The PSK modulation scheme requires a coherent demodulation. A short-code system uses a PN code

length equal to a data symbol, while a long-code system uses a PN code length that is much longer than a data symbol, so that a different chip pattern is associated with each symbol. (Fig.5)

Figure 4. DSSS system concept

Figure 5. DSSS -a) Short-Code -b) Long-Code systems

3.1.2. Frequency Hopping Spread Spectrum (FHSS)

A pseudo-noise (PN) sequence pn_t generated at the modulator is used in conjunction with an M-array FSK modulation to shift the carrier frequency of the FSK signal pseudo-randomly, at the hopping rate T_h (=1/ R_h) referred to as dwell time. FHSS divides the available bandwidth into N channels and hops between these channels according to PN sequence. At each frequency hop-time the PN generator feeds the frequency synchroniser a frequency word FW (a sequence of n chips) which dictates one of 2^n frequency positions f_{hi} . Transmitter and receiver follow the same frequency hop pattern. (Fig.6)

Figure 6. FHSS -a) System concept -b) Frequency hopping during the bandwidth

The transmitted bandwidth is determined by the lowest and highest hop positions and by the bandwidth per hop position (Δf_{ch}). For a given hop, the instantaneous occupied bandwidth is identical to bandwidth of conventional M-FSK, which is typically much smaller than W_{ss} . So the FHSS signal is a narrowband signal, all transmission power is concentrated on one channel. Averaged over many hops, the FH/M-FSK spectrum occupies the entire spread spectrum bandwidth. Because the bandwidth of a FHSS system only depends on the tuning range, it can be hopped over a much wider bandwidth than a DSSS system.

Since the hops generally result in phase-discontinuity (depending on the particular implementation) a non-coherent demodulation is done at the receiver, while with slow hopping there are multiple data symbols per hop and with fast hopping there are multiple hops per data symbol. (Fig. 7)

Figure 7. FHSS -a) Fast hopping -b) Slow hopping

3.2. Multiple Access Systems

Code Division Multiple Access (CDMA) is a method of (wirelessly) multiplexing users by distinct (orthogonal) codes. All users can transmit at the same time, and each is allocated the entire available frequency spectrum for transmission. CDMA is also known as spread spectrum multiple access (SSMA). CDMA require neither the bandwidth allocation of FDMA nor the time synchronisation of the individual users needed in TDMA. A CDMA user has full time and full bandwidth available, but the quality of the communication decreases with the number of users (BER increases).

As it can be seen from the Figure 8, each user has its own PN code, uses the same RF bandwidth and transmits simultaneously (synchronous or asynchronous).

Figure 8. CDMA Network Concept

Correlation of the received baseband spread spectrum signal rx_b with the PN sequence of user1 only despread the signal of user1. The other users produce noise N_u for user1. (Fig.9)

Figure 9. Power distribution on the spectrum and despreading user1

3.3. Codes

In OCDMA systems with incoherent signal processing we are obliged to use signature sequences composed of only zeros and ones. Bi-polar codes used currently on radio networks are infeasible so we need to devise a new kind of codes which satisfy this requirement and the acceptable cross and auto correlation conditions. Optical orthogonal codes (OOC) is a family of unipolar (0,1) sequences characterised by a quadruple $(n, \omega, \lambda_a, \lambda_c)$ where n denotes the sequence length, ω its weight (the number of 1s) then λ_a and λ_c the maximum value of the out-of-phase auto and cross correlation respectively. OOCs are closely related to constant-weight error correcting codes and difference sets.

At the same time we can focus our attention on prime sequences (PC), extended prime sequences (EPC) and their performance improvements against OOC.

Another level of complexity and performance improvement can be achieved when using Turbo Codes (TC) and their performance evaluation on OCDMA systems, since this is a relatively new technology, some new studies of TC applied to OCDMA are worthwhile to study as well.

A field of research is also estimation of interference at the receiver. It has been shown that the system performance increases dramatically when using chip-level detection and/or blind detection. Chip-level detection system performance when using both *PPM* and *OOK* regarding MUI with receiver shot noise, blind detection and interference suppression Avalanche Photo Detector (APD) receivers and interference estimation used to choose an optimum decision threshold level.

4. Task and Time Management

4.1. First Step

Last three months have been successfully dedicated to study the fundamental and very essential materials. As an achievement, I have fully understood:

- Spread Spectrum Communications: focused on two main methods of signal spreading DSSS and FHSS
- > Digital Modulations: various signal and pulse modulations, applications and properties
- > Source and Channel Coding: different codes and objectives
- > CDMA: system concepts and structures as a multiple-access protocol

4.2. Second Step

For next 6 months, I still need a lot more details about CDMA and coding so I have to expand my knowledge in this field especially to implement the software simulation using MATLAB to understand well enough the coding features, modulation and spreading methods altogether. Finally well-developed selections of the methods from each part for the project would be considered. Furthermore, I am going to complete the initial studying of the fundamentals of optical field of research as soon as possible such as:

- > Optical Sources and Transmitters
- > Optical Fibre as a Channel
- > Optical Detectors and Receivers
- > Noise in Optical Devices and Systems

Finally at the end of 9 months, I would experiment most of the main concepts of OCDMA and face a new overview. Figure 10 illustrates time and task management progress graphically.

5. Conclusion

To sum up, as tracked in this report the project is in under well control and follows the plan as expected and more importantly a strong foundation of literature has been built. During the few months later, computational and simulation concepts will be implemented and can be realised where the project goes by the hope that a chance of novelty will also be achieved.

Figure 10. Project Planning

Bibliography

- 1. John G. Proakis, "Digital Communications", McGraw Hill 1995
- 2. Ir. J. Meel, "Spread Spectrum Introduction and Application", Sirius Communication, 1999
- 3. R.C.V Macario, "Personal & Mobile Radio Systems", Peter Peregrinus Ltd., 1991
- 4. J.E. Flood, "Angle Modulation: The Theory of System Assessment", IEE Telecommunications Series 5, Peter Peregrinus Ltd. 1977
- 5. Samuel C. Yang, "CDMA, RF System Engineering", Artech House Inc. 1998
- Jerry D. Gibson, "Principles of Digital & Analog Communications", Maxwell Macmillan Publishing Company 1993
- 7. Simon Haykin, "Communication Systems", John Wiley & Sons Inc. 1994
- 8. Martin S. Roden, "Analog and Digital Communication Systems", Prentice-Hall Inc. 1996
- 9. John G. Proakis, Masoud Salehi, "Communication Systems Engineering", Prentice-Hall 1994
- Robert C. Dixon, "Spread Spectrum Systems with Commercial Applications", 3rd Edition John Wiley & Sons Inc. 1994
- George R. Cooper and Clare D. McGillem, "Modern Communications and Spread Spectrum", McGraw Hill 1986
- 12. A. P. Clark, "Principle of Digital Data Transmission", Pentech press 1983
- 13. Ramjee Prasad, "CDMA for Wireless Personal Communications", Artech House Publisher, 1996
- Andrew J. Viterbi, "CDMA, Principles of Spread Spectrum Communication", Addison Wesley Publishing Company 1995
- 15. Jawad.A.Salehi, "Code division multiple-access techniques in optical fibre networks part I: Fundamental principles" IEEE Transactions on Communications, vol. 37, pp. 824-833, Aug. 1989.
- Jawad.A.Salehi and C. A. Brackett," Code division multiple-access techniques in optical fibre networks - part II: Systems performance analysis," IEEE Transactions on Communications, vol. 37, pp. 834-842, Aug. 1989.
- 17. H. Chung and P. Kumar, "Optical orthogonal codes new bounds and an optimal construction," IEEE Transactions on Information theory, vol. 36, pp. 866-873, July 1990
- 18. S. V. Maric, "New family of algebraically designed optical orthogonal codes for use in cdma fiber-optic networks" Electronics Letters, vol. 29, pp. 538-539, Feb./Mar./Apr. 1993
- 19. Jawad.A.Salehi, F. R. K. Chung, and V. K. Wei, "Optical orthogonal codes: Design, analysis, and applications", IEEE Transactions on Information theory, vol. 35, pp. 595-605, May 1989
- 20. G.-C. Yang and Wing.C.Kwong, "Performance analysis of optical cdma with prime codes", Electronics Letters, vol. 31, pp. 569-570, Mar. 1995

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
SKEWED/SLANTED IMAGES	
COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
·	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.