DC Analysis of Transistor Circuits

DC analysis procedure:

For DC analysis, knowledge of mode of operation of the transistor is required. Sometimes Guess to Start!

- Assume transistor in forward-active mode, $V_{BE} = V_{BE}$ (on), $I_B > 0$ and $I_C = \beta I_B$.
- If analysis proves I_B <0 and V_{CE} < V_{CE} (sat) then assumption is wrong, restart.

$$I_C/I_B < eta$$
 Biased in Saturation mode (both forward bias) $eta_{
m Forced} \equiv eta_{
m Forced}$ $eta_{
m Forced} < eta$

Example (tutorial):

+10 V

$$V_{CE} = V_{CC} - I_{CR_C} \rightarrow \text{Negative } (\langle V_{CE}(\text{Sat}) \rangle)$$

$$I_C = I_C(\text{sat}) = \frac{V_{CC} - V_{CE}(\text{sat})}{R_C} \longrightarrow \text{given} \qquad \frac{I_C}{I_B} < \beta$$

Inverse-active mode:

B—E junction is reverse biased and the B—C junction is forward biased.

- The transistor is operating "upside down", emitter acting as a collector and collector as an emitter
- Transistors are not electrically & physically symmetrical, so it will have significantly smaller β
- BJTs have very low saturation voltage (mV)
- App: Digital Electronics Circuit

Piecewise linear model $\leftarrow \rightarrow$ Ebers-Moll model

Voltage Transfer Characteristics:

Output voltage versus input voltage

$$V_{BE}(on) = 0.7V, \beta = 120,$$

 $V_{CE}(sat) = 0.2V, V_A \rightarrow \infty$

$$V_{EB}(on) = 0.7V, \beta = 80,$$

 $V_{EC}(sat) = 0.2V, V_A \rightarrow \infty$

NPN

$$I_B = \frac{V_I - 0.7}{R_B}$$

$$V_I \le 0.7 \, \text{V}$$

$$I_B = I_C = 0$$
.

$$V_I \le 0.7 \,\text{V}$$
 $I_B = I_C = 0$ $V_O = V^+ = 5 \,\text{V}$

$$V_I > 0.7 \text{ V}$$

$$I_C = \beta I_B = \frac{\beta (V_I - 0.7)}{R_B}$$

$$V_O = 5 - I_C R_C = 5 - \frac{\beta (V_I - 0.7) R_C}{R_B}$$

$$V_{o} = V_{CE}$$

$$V_0 = 0.2 \, \text{V}$$

$$V_0 = V_{CE}$$
 $V_0 = 0.2 \text{ V}$ $V_I = 1.9 \text{ V}$.

$$V_I \ge 1.9 \text{ V}$$

$$V_I \ge 1.9 \, \text{V}$$
 $V_O = 0.2 \, \text{V}$

PNP

$$4.3 \le V_I$$
 $I_B = I_C = 0$ $V_O = 0$

$$V_I < 4.3 \text{ V}, \qquad I_B = \frac{(5-0.7) - V_I}{R_B} \quad I_C = \beta I_B = \beta \left[\frac{(5-0.7) - V_I}{R_B} \right]$$

$$V_O = I_C R_C = \beta R_C \left[\frac{(5 - 0.7) - V_I}{R_B} \right]$$

$$V^+ - V_O = V_{EC}$$
 $V_O = 4.8 \text{ V}$ $V_I = 2.8 \text{ V}$.

 $V_I \le 2.8 \text{ V}$ Saturation

 $V_O = 4.8 \text{ V}$ Active

Voltage transfer characteristics are determined by finding the range of input voltage values that biases the transistor in cut off, the forward-active mode, or the saturation mode.

2.8

Basic Transistor Applications

Switch:

Inverter

 $\circ V_{CC}$

$$v_I < V_{BE}(on)$$

$$i_B = i_C = 0$$

$$v_O = V_{CC}$$

$$v_I = V_{CC}$$

$$\frac{R_B}{R_C} < \beta \rightarrow saturation mode$$

$$i_C = I_C(\text{sat}) = \frac{V_{CC} - V_{CE}(\text{sat})}{R_C}$$

$$v_O = V_{CE}(\text{sat})$$

Digital Logic

$$V_1=0, V_2=0
ightarrow V_0=5V$$
, both cut off $V_1=5, V_2=0
ightarrow V_0=0.2V$, Q1 saturation Q2 cut off $V_1=0, V_2=5
ightarrow V_0=0.2V$, Q2 saturation Q1 cut off $V_1=5, V_2=5
ightarrow V_0=0.2V$, Q1 saturation Q2 saturation

Positive logic system - NOR logic function

- Bipolar transistor circuits can be configured to perform logic functions
- Logic circuits must be designed to minimize or eliminate such loading effects

	The bipolar NOR logic circuit response	
$V_1(V)$	$V_2(V)$	$V_{O}\left(\mathbf{V}\right)$
0	0	5
5	0	0.2
0	5	0.2
5	5	0.2

Amplifier

vo I Q-point Time Time

In forward active region

$$v_{O} = V^{+} - I_{C}R_{C} = V^{+} - \frac{\beta(V_{BB} + \Delta v_{I} - 0.7)}{R_{B}}R_{C}$$

$$V_O + \Delta v_O = V^+ - \frac{\beta (V_{BB} - 0.7)}{R_B} R_C - \frac{\beta \Delta v_I}{R_B} R_C$$

Therefore, the bipolar inverter circuit with proper biasing can be used to amplify a time-

varying signal.

Improper DC biasing:

There are many schemes for properly biasing the transistor for analog or amplifier applications