Let $L := O_X \cdot s$ be line bundle with connection ∇ such that

$$\nabla(s) = \frac{i}{n} \frac{dx}{x} s$$

And let $\mathcal L$ be local system of flat sections of L Let $p:Y\to X$ be defined by $y^n=x$. The equivariant bundle on Y should be the Deligne extension of the pullback of the local system corresponding to L. In this case, the equivariant bundle should be the vector bundle $V_Y=O_Y\cdot e$ with the trivial connection. Let Γ be the Galois group of p. Γ is generated by the n-th root of unity μ . The Γ -action on V should encode the local system on X. Last time I defined the action to be

$$\mu \cdot e = \mu^{-i}e$$

which was a consequence of having the knowledge that $s=x^{i/n}$ in mind. But this time I have a better reason to justify this action, and we will see the jump happens at i/n.

First, consider $(V_1:=p^*L,\nabla_1=p^*\nabla)$. This sheaf carries a natural Γ -action. Write $V_1=O_Y\cdot e_1$. Then, ∇_1 can be represented as

$$\nabla_1(e_1) = i \frac{dy}{y} e_1$$

The flat sections of V_1 is in fact $y^{-i}e_1$, which lives in $V_1(i\tilde{D})$. This means we can define an O_Y -isomorphism

$$\alpha: V_1(i\tilde{D}) \to V_Y$$

 $y^{-i}e_1 \mapsto e$

sending flat sections to flat sections. There is a natural Γ -action on $V_1(i\tilde{D})$. So we can define a Γ -action on V_Y via α , *i.e.*

$$\mu \cdot e = \mu^{-i} \times e$$

Next, we will see how

$$(p_*V_Y\otimes O_Y(|-nt|\tilde{D}))^{\Gamma}$$

recovers the parabolic structure of L. First, we need a map

$$\beta:(p_*V_Y)^\Gamma\to L$$

As a O_X -module, p_*O_Y looks like

$$\sum_{j=0}^{n-1} O_X \cdot y^j$$

and it has an algebra structure given by

$$y^n = x$$

We write

$$p_*V_Y = \sum_{j=0}^{n-1} O_X \cdot y^j \otimes e$$

Then, we know how Γ acts on each direct summand. Obviously, the $\Gamma\text{-invariant}$ part is

$$O_X \cdot y^i \otimes e$$

So the map β is

$$\beta: (p_*V_Y)^\Gamma \to L$$
$$y^i \otimes e \mapsto s$$

Write $V_Y \otimes O_Y(-k\tilde{D}) = O_Y \cdot y^k \otimes e$. Then, we write

$$p_*V_Y \otimes O_Y(-j\tilde{D}) = \sum_{j=0}^{n-1} O_X \cdot y^j \otimes y^k \otimes e$$

we can see the invariant part is

$$O_X \cdot y^j \otimes y^k \otimes e$$

such that $j+k=i, i+n, i+2n, \cdots$. That why as soon as k is bigger than i, we will jump to

$$L(-D)$$