Diffusion Ratchets and Molecular Motors

A Pathwise Approach

Overview of the Talk

- The Biology--Molecular Motors
- A Suggested Model--The Brownian/Diffusion Ratchet
 - A Particle Description of a Ratchet
 - Definition of Continuous Ratchet and Weak Convergence Result
 - Some Asymptotic Results
 - Numerical Methods
- A Motor with Cargo
 - A Two-dimensional Process
 - An Asymptotic Result
 - Numerical Methods
 - Non-linear Filtering
- o Future Work

Molecular Motors

- Large, complex proteins that convert chemical energy into mechanical energy.
- Examples--dynein, kinesin, myosin, the flagella rotor.
- Kinesin and dynein often have two heads and "walk" along microtubules.

Microtubules

- Microtubules form a skeletal network throughout the cell.
- Since the microtubules are relatively straight, models for a motor are most often given via a one-dimensional dynamical system.
- Microtubules also have a structurally periodic structure.

Kinesin

Movie from R Milligan's web page at the Scripps Institute

Models for Molecular Motors

- Continuous time, Markov jump processes. Stepping from one period to the next, but which may consist of a number of intermediate chemical step.
- o Continuous state space models.
 - Tilted Periodic Potential $X(t) = x + \int_0^t (\cos(X(s)) + \mu) ds + \sigma W(s)$
 - o Brownian/Diffusion Ratchet
- Mixed Approach--Flashing (Correlation) Ratchet

$$dX^{(1)}(t) = b_1(X^{(1)}(t))dt + a_1(X^{(1)}(t))dW^{(1)}(t)$$

$$dX^{(2)}(t) = b_2(X^{(2)}(t))dt + a_2(X^{(2)}(t))dW^{(2)}(t)$$

Brownian/Diffusion Ratchet

- There are "ratchet sites" located at a fixed period, L, in the state space of the process (0, L, 2L,...)
- Away from these barriers, the process follows a given diffusion process.
- When a particle reaches a ratchet site from the left, it cannot pass through the barrier and is immediately reflected back.
- The ratchet site has no effect on the particle as it approaches from the right.

Brownian/Diffusion Ratchet

An Intuitive Discrete Space Model

Let $X_n(t)$ be the location of the motor at time t.

 $X_n(t)$ is a pure jump process on a lattice with states at a distance of $\frac{1}{n}$ with n in $N' = \{n \in R : n = \frac{m}{L}, m \in N\}$

Given that $X_n(t) = x$, the rate of jump left (or at a ratchet site remaining at x) is

$$\lambda_n(x)(1-p_n(x)) = n^2 \left(\alpha(x) + \frac{b_2(x)}{n}\right)$$

The rate of jump right is $\lambda_n(x)p_n(x) = 1$

$$\lambda_n(x)p_n(x) = n^2\left(\alpha(x) + \frac{b_1(x)}{n}\right)$$

As n increases, the jumps get smaller and more often. Away from the barriers, one expects a convergence to a diffusion behavior as $n \to \infty$.

Reflected Diffusion

Skorokhod Problem and Reflection Map

Let $x(\cdot) \in D([0,\infty):R)$. We say that a pair of trajectories $z(\cdot), l(\cdot) \in D([0,\infty):R_+)$ solve the Skorokhod Problem for $x(\cdot)$ if

- 1. z(t) = x(t) + l(t) for all $t \in [0, \infty)$.
- 2. l(0) = 0.
- 3. l(t) is increasing and increases only when z(t) = 0, i.e $l(t) = \int_{[0,t]} 1_{\{z(s)=0\}} dl(s)$.

We also write $Z(t) = \Gamma(X(\cdot))(t)$ where Γ is called the Skorokhod Map or Reflection Map.

Also,
$$Z(t) = X(t) - \inf_{0 \le s \le t} X(s)$$

Reflected Diffusion

- Let W(t) be a standard Brownian motion.
- o $Z(t) = \Gamma(W(\cdot))(t) = W(t) \inf_{0 \le s \le t} W(s)$ is called a Reflected *Brownian Motion*.
- $X(t) = \Gamma\left(x_0 + \int_0^t b(X(s))ds + \int_0^t \sigma(X(s))dW(s)\right)(t)$ is a Reflected Diffusion process, where $b(\cdot)$ and $\sigma(\cdot)$ are Lipschitz continuous and of linear growth.

Definition of a Diffusion Ratchet

- The ratchet sites are at 0, L, 2L,... in the state space.
- An infinite system of reflected diffusion process.
- The ith process is reflected at the ith barrier. (With an associated reflection map we denote by $\Gamma_i(\cdot)$).
- Reflected diffusions are patched together using stopping times. This "patching" map is continuous to the space of continuous functions.

Definition of a Diffusion Ratchet

Definition of a Diffusion Ratchet

$$X^{(i)}(t) = \Gamma_i \left(iL + \int_0^{\infty} b(X^{(i)}(s)) ds + \int_0^{\infty} a(X^{(i)}(s)) dW^{(i)}(s) \right) (t), \ t \in [0, \infty)$$

$$\tau^{(i)} = \inf\{t : X^{(i)}(t) \ge (i+1)L\}$$

$$\sigma^{(i)} = \tau^{(i-1)} + \sigma^{(i-1)}$$

$$X(t) = X^{(i)}(t - \sigma^{(i)}); \ t \in [\sigma^{(i)}, \sigma^{(i+1)}), \ i \in Z_+$$

Weak Convergence Theorem

Theorem $X_n(\cdot)$ converges to $X(\cdot)$ in $D([0,\infty): \mathbb{R}_+)$ as $n \to \infty$ with $b(x) = b_1(x) - b_2(x)$ and $\alpha(x) = \frac{a^2(x)}{2}$

Sketch of Weak Convergence Proof

Step 1: Let $X_0 \doteq \mathcal{D}([0,\infty) : I\!\!R_+) \times [0,\infty]$. Then $Z \doteq \{(X^{(i)}, \tau^{(i)})\}_{i \in I\!\!N_0}$ is a $X_0^{\otimes \infty} \doteq X$ valued random variable and $X(\cdot) = \Psi(Z)$. By "chopping" $X_n(\cdot)$ suitably obtain $Z_n \doteq \{(\tilde{X}_n^{(i)}, \tau_n^{(i)})\}_{i \in I\!\!N_0}$ s.t. $X_n(\cdot) = \Psi(Z_n)$.

Step 2: Show that $\exists \tilde{X} \subseteq X$ s.t. $P[Z(\cdot) \in \tilde{X}] = 1$ and Ψ is continuous for all $z \in X$.

Step 3: Show $\tilde{X}_n^{(i)}(\cdot) \Rightarrow X^{(i)}$ for all i.

Step 4: For $\varphi \in \mathcal{D}([0,\infty) : IR_+)$, let $\tau(\varphi(\cdot)) \doteq \inf\{t : \varphi(t) \geq L\}$. Then there is a Borel set A s.t. τ is continuous for all $\varphi \in A$ and $P[X^{(i)} \in A] = 1$, for all i.

Step 5: Step 3 and Step 4 imply $Z_n \doteq \{(\tilde{X}_n^{(i)}, \tau_n^{(i)})\}_{i \in \mathbb{N}_0} \Rightarrow Z \doteq \{(X^{(i)}, \tau^{(i)})\}_{i \in \mathbb{N}_0}$.

Step 6: Step 1, Step 2, and Step 5 imply $X_n(\cdot) \Rightarrow X(\cdot)$.

Asymptotic Velocity

$$\lim_{t\to\infty}\frac{X(t)}{t}$$

Theorem Assuming periodicity, $\frac{X(t)}{t} \to \frac{L}{E\tau_0}$ almost surely. Sketch of proof

$$\frac{X(t)}{t} = \frac{\sum_{i=0}^{n_t - 1} X^{(i)}(\tau^{(i)}) + \varepsilon_t}{t}$$

$$= \frac{n_t L}{t} + \frac{\varepsilon_t}{t}$$

where $n_t = \inf\{m : \sum_{i=0}^{m-1} \tau^{(i)} \ge t\}$ is a renewal process, and ε_t is bounded.

Effective Diffusivity

Functional Central Limit Theorem

$$\sqrt{n}\left(\frac{X(n\cdot)}{n} - \frac{L}{\mu}\cdot\right) \Rightarrow \frac{\sigma L}{\mu^{3/2}}W(\cdot)$$

$$\mu = E \tau_0$$
 $\sigma = \sqrt{Var(\tau_0)}$

 $\frac{\sigma^2L^2}{\mu^3}$ is called the Effective Diffusivity.

Alternate Definition (used by experimentalist)

$$\lim_{t\to\infty}\frac{Var(X(t))}{t}$$

Randomness Parameter (asymptotic SNR)

$$\lim_{t \to \infty} \frac{Var(X(t))}{EX(t)L} = \frac{\sigma^2}{\mu^2}$$

Numerical Methods

- Approximation of hitting times with linear programming. (Helmes, Rohl, and Stockbridge)
- Markov chain approximation method.
 (Kushner/Dupuis, Wang/Elston/Peskin).
- o Monte Carlo

Linear Programming

$$X^{(i)}(t) = \int_0^t b(X^{(0)}(s))ds + \int_0^t a(X^{(0)}(s))dW^{(0)}(s) + \ell(t)$$

Ito's formula gives

$$f(X^{(0)}(t \wedge \tau^{(0)})) = f(x_0) + \int_0^{t \wedge \tau^{(0)}} Af(X^{(0)}(s))ds + \int_0^{t \wedge \tau^{(0)}} f'(X^{(0)}(s))dW(s) + f'(0)\ell(t \wedge \tau^{(0)})$$

where

$$Af(x) = \frac{1}{2}a^{2}(x)\frac{\partial^{2} f}{\partial x^{2}} + b(x)\frac{\partial f}{\partial x}.$$

Taking expections and letting $t \to \infty$

$$f(L) = Ef(X^{(0)}(\tau^{(0)})) = f(x_0) + E\int_0^{\tau^{(0)}} Af(X^{(0)}(s))ds + f'(0)E\ell(\tau)$$

which gives...

Linear Programming

$$\int_{[0,L]} Af(x)\mu_0(dx) + f(x) - f(L) + f'(0)\vartheta = 0.$$

where

$$\mu_0(B) = E\left[\int_0^{\tau^{(0)}} I_B(X^{(0)}(s))ds\right], \ B \in B(\mathbb{R}_+), \vartheta = E\ell(t)$$

Take $f(\cdot)$ to be the monomials and we have linear constraints

$$\sum_{i=0}^{n} c_i m_i + \vartheta d + \kappa = 0 \text{ where } m_k = \int x^k \mu_0(dx).$$

 $E\tau^{(0)}$ is m_0 . In addition, Hausdorff moment conditions are used. Then, we minimize and maximize m_0 to get bounds.

Markov Chain Approximation

- In general, discretize the process in time and space. Used for many types of problems.
- One adaptaion (by Wang et al) was designed to calculate asymptotic velocity and effective diffusivity for a one-dimensional motor processes.
- The state space is discretized, and one considers the equilibrium distribution of the motor modulo the step size.
- Extended method to include cargo. (Joint work with T Elston)

Numerical Results

$$X(t) = \mu t + \sigma W(t) + \ell(t)$$

σ	μ	$E au_0$	Monte Carlo	Markov Chain	Lin Prog Lower	Lin Prog Upper
1	0	4	4.4302	3.9596	4	4
1	2	0.8750	0.9104	0.8647	0.8749	0.8751
1	-1	24.7991	29.7683	22.749	24.7990	24.7992
2	1	0.7357	0.8270	0.7267	0.7357	0.7357
2	-1	1.4366	1.7643	1.4091	1.4366	1.4366

Motor Pulling a Cargo

- A motor moves along a microtubule and has a long tail to which a cargo may be attached.
- The cargo is usually many times the mass of the motor.
- Using laser traps, one may indirectly "observe" the motor by attaching a bead as a cargo and observing this bead.

Motor and Cargo

Dynamics of the Coupled System

- \circ Y(t) is the location of cargo at time t
- \circ X(t) is the location of motor at time t

$$\begin{cases} Y(t) = & y_0 + \int_0^t b_1(X(s), Y(s)) ds + \int_0^t a_1(X(s), Y(s)) dB(s), \\ X^{(i)}(t) = & \Gamma_i \left(iL + \int_0^{\cdot} b_2(X^{(i)}(s), Y(s + \sigma^{(i)})) ds + \int_0^{\cdot} a_2(X^{(i)}(s), Y(s + \sigma^{(i)})) dW^{(i)}(s) \right)(t), \\ \tau^{(i)} = & \inf\{t : X^{(i)}(t) = (i+1)L\}, \\ \sigma^{(i)} = & \tau^{(i-1)} + \sigma^{(i-1)} \\ X(t) = & X^{(i)}(t - \sigma^{(i)}); \ t \in [\sigma^{(i)}, \sigma^{(i+1)}), \ i \in N_0, \end{cases}$$

A Special Case: Linear Spring

$$Y(t) = y_0 + K_1 \int_0^t (X(s) - Y(s)) ds + \sigma_1 W_1(t)$$

$$X(t) = x_0 + K_2 \int_0^t (Y(s) - X(s)) ds + \sigma_2 W_2(t) + L(t)$$

This represents a motor and cargo connected by a linear spring.

Theorem

As
$$t \to \infty$$
, $\frac{X(t)}{t}$ converges in probability.

Sketch of Proof

Notice

$$\frac{X(t)}{t} = \frac{Y(t)}{t} - \frac{Y(t) - X(t)}{t} = \frac{Y(t)}{t} - \frac{Z(t)}{t}$$
where $Z(t) = Y(t) - X(t)$.

Recall

$$\frac{Y(t)}{t} = \frac{y_0}{t} + \frac{K_1}{t} \int_0^t Z(s) ds + \sigma_1 \frac{W_1(t)}{t}.$$

Define $\varphi(t) = (Z(t), \lfloor \frac{X(t)}{L} \rfloor L)$.

One can show that $\varphi(t)$ is a Feller-Markov process with values in (IR, [0, L]).

Define $\mu_T(\cdot) = \frac{1}{T} \int_0^T P[Z(t) \in \cdot] dt$. Show that $\{\mu_T : T \ge 0\}$ is a tight family of measures.

Sketch of Proof

From the above tightness and the Feller property, it follows that $\varphi(t)$ has an invariant distribution.

Use the non-degeneracy of the diffusion to show that the invariant distribution is unique. Denote the invariant measure by $\mu(dz, dx)$, and thus

$$\frac{1}{t} \int_0^t Z_s ds \to \int_{\mathbb{R}} z d\mu(dz, dx)$$

Can also show $\frac{Z(t)}{t} \to 0$ in probability. The result follows, and the constant is

$$\lim_{t\to\infty}\frac{X(t)}{t}=K_1\int zd\mu(dz,dx)$$

•

Numerical Method

Numerical Method

A Non-Linear Filtering Problem

- Optical traps allow dynamic measurement and manipulation of microscopic objects of certain sizes.
- The cargo can be observed dynamically -- the motor cannot.
- The observation noise is not independent of the signal. There is feedback of the observation process back into the signal dynamics

A Non-Linear Filtering Problem

Discretize the model:

$$Y_{k+1} = Y_k + K_1(X_{k+1} - Y_{k+1})\Delta + \sigma_1\sqrt{\Delta}\xi_{k+1}$$

$$X_{k+1} = \left(X_k + K_2(Y_k - X_k)\Delta + \sigma_2\sqrt{\Delta}\eta_{k+1}\right) \wedge \left(\lfloor \frac{X_k}{L} \rfloor L\right)$$

 $\{\xi_k\}, \{\eta_k\}$ are i.i.d. N(0,1).

 $\zeta_k = (X_k, Y_k)$ is a Markov chain.

 Δ is the discretization parameter.

Recursion Formula

Transition law of the Markov chain allows us to write a recursive formula for the non-linear filter, i.e. $F_k(dz)$, the distribution of X_k given $Y_1, ..., Y_k$.

$$F_k(dz) = p(Y_k|Y_{k-1},x_k) \int_{x_{k-1}} Q(dz|x_{k-1},Y_{k-1}) F_{k-1}(dx_{k-1})$$

 $p(y_k|y_{k-1},x_k)$ is the transition density for Y_k given Y_{k-1},X_k .

 $Q(x_k|x_{k-1},y_{k-1})$ is the transition distribution for X_k given X_{k-1},Y_{k-1} .

Approximation of Non-Linear Filter: Numerical Integration

$$F_k(dz) = p(Y_k|Y_{k-1}, x_k) \int_{x_{k-1}} Q(dz|x_{k-1}, Y_{k-1}) F_{k-1}(dx_{k-1})$$

- Must discretize in space in some type of fixed grid.
- Must adapt the grid deterministically.
- Can be computationally intensive.

Approximation of Non-Linear Filter: Particle Filter

• Algorithm

- Initialize--take an iid sample for n=0 $\{X_0^{(i)}, i=1...n\}$
- \circ Evolve, sample $X_k^{(i)}$ from $Q(dz|X_{k-1}^{(i)},Y_{k-1})$
- o Weight $X_k^{(i)}$ with $w_k = p(Y_k | X_k^{(i)}, Y_{k-1}) w_{k-1}$
- Resample (not at every time step)
- Return to Evolve
- The filter estimate at time k is $\hat{F}_k(z) = \sum_{i=1}^n w_k I_{\{X_k^{(i)} \leq z\}}$
- Inherent adaptivity which fits this application well.

Filtering Result

Parameter Estimation under Partial Observation

- Bayesian Approach--Include the parameter as another "hidden" variable of the stochastic system.
- Stochastic Maximum Likelihood
- Stochastic EM (Expectation Maximization)
 algorithm
- Smoothing can better facilitate these approaches.

Future Work

- Fast Motor Limit, i.e Very Small Motor/ Very Large Cargo
- Connection between Flashing Ratchet,
 Imperfect Ratchet, and Diffusion Ratchet
- Soft/Weak spring limits via FCLT
- More information can be found at:<u>www.unc.edu/~fricks/</u>