Южно-Уральский государственный университет (НИУ) Высшая школа электроники и компьютерных наук Кафедра «Информационно-измерительная техника»

7	/ТВЕРЖДАН	O
Заведующи	ий кафедро	й
	(А.П.Лапин	I)
	2021	Г

ЗАДАНИЕ НА РАБОТУ

на курсовую работу студентам: группа: КЭ-413

- 1. Дисциплина: Программное обеспечение измерительных процессов.
- 2. Тема работы: _Разработка устройства управления яркостью _
- 3. Требования к разработке:
 - Для разработки должна использоваться отладочная плата XNUCLEO-F411RE
 - Софт должен измерять напряжения с переменного резистора, уставленного на плате расширения
 - Для измерения напряжения должен использоваться встроенный АЦП
 - Период измерения должен быть 50 ms
 - Для получения кода измерения должен использоваться механизм DMA
 - Для изменения напряжения должна использоваться плата Accessories Shield или Analog Test Shield
 - Точность измерения напряжения должна быть не менее 0,01 вольта
 - К измеренному напряжению должен быть применен цифровой фильтр вида: $tau = int ((1-e^{-t/(R*C)}), RC > 0 sec), (1, RC <= 0 sec))$

```
(( c ( de/(ii e/// iie / d see// ( // iie / d see//
```

```
"FilteredValue" = "OldFiltered" + ("Value" - "OldValue") * tau,
```

где dt - 100 мс;

Value – текущее нефильтрованное измеренное значение напряжения; oldValue - предыдущее фильтрованное значение.

- Для управления яркостью светодиода должен использоваться модуль PWM
 - Светодиод находится на порту PortC.8
- Передача значений по беспроводному интерфейсу должна осуществляться через модуль BlueTooth Bee HC-06 или I/O Expansion Shield
 - Общение с платой расширения должно осуществляться через USART2
 - формат вывод:

"Напряжение: " X.XXX [Units]

- Архитектура должна быть представлена в виде UML диаграмм в пакете Star UML
- Приложение должно быть написано на языке C++ с использование компилятора ARM 8.40.2
- При разработке должна использоваться Операционная Система Реального Времени FreeRTOS и C++ обертка над ней

4. Перечень вопросов, подлежащих разработке:

- В ходе работы необходимо разработать архитектуру программного обеспечения в виде диаграммы UML.
- В ходе работы необходимо разработать код программного обеспечения.
 - Код должен соответствовать стандарту кодирования Стэнфордского университета, см также оригинал
- Работа программы должна быть продемонстрирована совместно с платой XNUCLEO-F411RE.
- Содержание работы должно соответствовать ГОСТ 19.402–78 «Единая система программной документации. Описание программы».
 - работа должна быть оформлена в формате Asciidoc и выложена на Github
- Описание архитектуры в виде UML диаграмм должно быть оформлено в разделе «Описание логической структуры» → "Алгоритм программы".
- Дополнительно к архитектуре, в разделе «Описание логической структуры» → "Структура программы с описанием функций составных частей и связи между ними" должен быть описан принцип работы программы и взаимодействия разных блоков программы друг с другом.
- Оформление пояснительной записки к курсовой работе в соответствии с СТО ЮУрГУ 04–2008 «Курсовое и дипломное проектирование. Общие требования к содержанию и оформлению».

5. Календарный план:

• Сдача этапов выполнения курсовой работы осуществляется строго в соответствии с календарным планом.

Наименование разделов курсовой работы	Срок выполнения разделов работы	Отметка руководителя о выполнении
Разработка общей архитектуры программы	28 марта 2020 г.	
Разработка кода каркаса программы	4 апреля 2020 г.	
Разработка детальной архитектуры модуля измерения напряжения	11 апреля 2020 г.	
Разработка кода для модуля измерения напряжения	11 апреля 2020 г.	

Наименование разделов курсовой работы	Срок выполнения разделов работы	Отметка руководителя о выполнении
Разработка детальной архитектуры модуля работы с PWM	18 апреля 2020 г.	
Разработка кода для модуля работы с PWM	18 апреля 2020 г.	
Разработка детальной архитектуры модуля работы с USART и блутуз	25 апреля 2020 г.	
Разработка кода для модуля работы с USART и блутуз	25 апреля 2020 г.	
Разработка детальной архитектуры и кода для оставшихся модулей	2 мая 2020 г.	
Сдача и демонстрация работы устройства	9 мая 2020 г.	
Оформление пояснительной записки к курсовой работе	20 мая 2020 г.	

Руководитель работы:		/C. B. Ko	олодий/
	(подпись)		
Студент _			/
	(подпись)		
Студент			/
	(подпись)		