6.6 Prove that if V is a real inner-product space, then

$$\langle u,v\rangle = \frac{||u+v||^2 - ||u-v||^2}{4}$$

for all $u.v \in V$.

Proof. Let V be a real inner-product space and let $u, v \in V$. We have that

$$\begin{split} \frac{||u+v||^2-||u-v||^2}{4} &= \frac{\langle u+v,u+v\rangle - \langle u-v,u-v\rangle}{4} \\ &= \frac{\langle u,u+v\rangle + \langle v,u+v\rangle - \langle u,u-v\rangle - \langle -v,u-v\rangle}{4} \\ &= \frac{\langle u+v,u\rangle + \langle u+v,v\rangle - \langle u-v,u\rangle + \langle v,u-v\rangle}{4} \\ &= \frac{\langle u+v,u\rangle + \langle u+v,v\rangle - \langle u-v,u\rangle + \langle v,u-v\rangle}{4} \\ &= \frac{\langle u+v,u\rangle + \langle u+v,v\rangle + \langle v,v\rangle - \langle u,u\rangle + \langle v,u\rangle + \langle u-v,v\rangle}{4} \\ &= \frac{\langle u,u\rangle + \langle v,u\rangle + \langle u,v\rangle + \langle v,v\rangle + \langle v,u\rangle + \langle u-v,v\rangle}{4} \\ &= \frac{\langle v,u\rangle + \langle u,v\rangle + \langle v,v\rangle + \langle v,u\rangle + \langle u,v\rangle - \langle v,v\rangle}{4} \\ &= \frac{\langle v,u\rangle + \langle u,v\rangle + \langle v,v\rangle + \langle v,u\rangle + \langle u,v\rangle - \langle v,v\rangle}{4} \\ &= \frac{\langle v,u\rangle + \langle u,v\rangle + \langle v,u\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{4} \\ &= \frac{\langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle + \langle u,v\rangle}{$$

6.10 On $\mathcal{P}_2(\mathbb{R})$, consider the inner product given by

$$\langle p, q \rangle = \int_0^1 p(x)q(x)dx.$$

Apply the Gram-Schmidt procedure to the basis $(1, x, x^2)$ to produce an orthonormal basis of $\mathcal{P}_2(\mathbb{R})$.

Solution. We want to construct an orthonormal basis (e_1, e_2, e_3) for $\mathcal{P}_2(\mathbb{R})$; so applying

the Gram-Schmidt procedure to the basis $(1, x, x^2)$, we have

$$\begin{split} e_1 &= \frac{1}{||1||} \\ e_2 &= \frac{x - \langle x, e_1 \rangle e_1}{||x - \langle x, e_1 \rangle e_1||} \\ e_3 &= \frac{x^2 - \langle x^2, e_1 \rangle e_1 - \langle x^2, e_2 \rangle e_2}{||x^2 - \langle x^2, e_1 \rangle e_1 - \langle x^2, e_2 \rangle e_2||}. \end{split}$$

So

$$||1|| = \sqrt{\langle 1, 1 \rangle} = \sqrt{\int_0^1 1 \ dx} = \sqrt{1} = 1,$$

so that $e_1 = 1$. Now

$$\langle x, e_1 \rangle = \int_0^1 x \ dx = \frac{1}{2},$$

and

$$\left| \left| x - \frac{1}{2} \right| \right| = \sqrt{\int_0^1 \left(x - \frac{1}{2} \right)^2 dx} = \frac{\sqrt{3}}{6}.$$

Thus
$$e_2 = \left(x - \frac{1}{2}\right) \cdot \frac{6}{\sqrt{3}} = 2x\sqrt{3} - \sqrt{3}$$
.

Similarly we find that

$$\langle x^2, e_1 \rangle e_1 = \int_0^1 x^2 dx = \frac{1}{3},$$

and

$$x^{2} - \langle x^{2}, e_{2} \rangle e_{2} = x^{2} - \left(\int_{0}^{1} (2x^{3}\sqrt{3} - x^{2}\sqrt{3}) dx \right) (2x\sqrt{3} - \sqrt{3}) = x^{2} - x + \frac{1}{6},$$

so that

$$\left| \left| x^2 - x + \frac{1}{6} \right| \right| = \sqrt{\int_0^1 \left(x^2 - x + \frac{1}{6} \right)^2 dx} = \frac{1}{6\sqrt{5}}.$$

Thus
$$e_3 = \left(x^2 - x + \frac{1}{6}\right) \cdot 6\sqrt{5} = 6x^2\sqrt{5} - 6x\sqrt{5} + \sqrt{5}.$$

Thus an orthonormal basis for $\mathcal{P}_2(\mathbb{R})$ is

$$(1,2x\sqrt{3}-\sqrt{3},6x^2\sqrt{5}-6x\sqrt{5}+\sqrt{5}).$$

6.13 Suppose (e_1, \ldots, e_m) is an orthonormal list of vectors in V. Let $v \in V$. Prove that

$$||v||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2$$

if and only if $v \in \text{span}(e_1, \dots, e_m)$.

Proof. Suppose (e_1, \ldots, e_m) is an orthonormal list of vectors in V and let $v \in V$.

(\Leftarrow) Assume that $v \in \text{span}(e_1, \dots, e_m)$. Therefore $v = a_1 e_1 + \dots + a_m e_m$ for some scalars a_1, \dots, a_m . By the orthonomality of (e_1, \dots, e_m) , it follows that $\langle v, e_j \rangle = a_j$ for all $j \in \{1, 2, \dots, m\}$, so we have that

$$||v||^2 = ||a_1e_1 + \dots + a_me_m||^2$$

$$= ||\langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m||^2$$

$$= |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2$$
 [Proposition 6.15]

(\Rightarrow) Now assume that $||v||^2 = |\langle v, e_1 \rangle|^2 + \cdots + |\langle v, e_m \rangle|^2$. Extend the orthonormal list (e_1, \ldots, e_m) to an orthonormal basis $(e_1, \ldots, e_m, e_{m+1}, \ldots, e_{m+n})$ for V. Thus there exist scalars b_1, \ldots, b_{m+n} such that $v = b_1 e_1 + \cdots + b_{m+n} e_{m+n}$. Thus

$$|b_{1}|^{2} + \dots + |b_{m}|^{2} = |\langle v, e_{1} \rangle|^{2} + \dots + |\langle v, e_{m} \rangle|^{2}$$

$$= ||v||^{2}$$

$$= ||b_{1}e_{1} + \dots + b_{m+n}e_{m+n}||^{2}$$

$$= |b_{1}|^{2} + \dots + |b_{m+n}|^{2}$$
 [Proposition 6.15]
$$= |b_{1}|^{2} + \dots + |b_{m}|^{2} + |b_{m+1}|^{2} + \dots + |b_{m+n}|^{2},$$

so that $|b_{m+1}|^2 + \cdots + |b_{m+n}|^2 = 0$. Since $|b_{m+i}|$ is nonnegative for all $i \in \{1, \dots, n\}$, it follows that $b_{m+1} = \cdots = b_{m+n} = 0$, so that $v = b_1 e_1 + \cdots + b_m$. That is

$$v \in \operatorname{span}(e_1, \dots, e_m).$$

6.17 Prove that if $P \in \mathcal{L}(V)$ is such that $P^2 = P$ and every vector in null P is orthogonal to every vector in range P, then P is an orthogonal projection.

Proof. Suppose $P \in \mathcal{L}(V)$ such that $P^2 = P$. Also suppose that every vector in null P is orthogonal to every vector in range P. First we want to show that $V = \text{range } P \oplus \text{null } P$. Let $v \in \text{range } P \cap \text{null } P$. By our hypothesis, we must have that $\langle v, v \rangle = 0$, so that v = 0; i.e., range $P \cap \text{null } P = \{0\}$. Now let dim range P = m and let dim null P = n. Then there exist a basis (b_1, \ldots, b_m) for range P and a basis (e_1, \ldots, e_n) for null P. We claim that the list $(b_1, \ldots, b_m, e_1, \ldots, e_n)$ is linearly independent. So consider the equation

$$\alpha_1 b_1 + \dots + \alpha_m b_m + \alpha_{m+1} e_1 + \dots + \alpha_{m+n} e_n = 0.$$

It follows that

$$\alpha_1 b_1 + \dots + \alpha_m b_m = \alpha_{m+1} e_1 + \dots + \alpha_{m+n} e_n$$

and since range $P \cap \text{ null } P = \{0\}$, it must be the case that

$$\alpha_1 b_1 + \dots + \alpha_m b_m = \alpha_{m+1} e_1 + \dots + \alpha_{m+n} e_n = 0,$$

so that by the linear independence of (b_1, \ldots, b_m) and (e_1, \ldots, e_n) , we must have that

$$\alpha_1 = \dots = \alpha_m = \alpha_{m+1} = \dots = \alpha_{m+n} = 0.$$

By the Rank-Nullity Theorem, we have that $\dim V = m + n$. Thus the list $(b_1, \ldots, b_m, e_1, \ldots, e_n)$ forms a basis for V, so that $V = \operatorname{range} P + \operatorname{null} P$. We have thus shown that $V = \operatorname{range} P \oplus \operatorname{null} P$. To complete the proof, we now want to show that $P = P_{\operatorname{range} P}$. Let $v \in V$. Then we can write v = r + n for unique $r \in \operatorname{range} P$ and $n \in \operatorname{null} P$. To show that $P = P_{\operatorname{range} P}$, it suffices to show that Pv = r. Now we have that v = r + n for unique $v \in r$. Now we have

$$P(r - P(r)) = P(r) - P(P(r)) = P(r) - P(r) = 0.$$

Notice that r = P(r) + (r - P(r)), where $P(r) \in \text{range } P$ and $r - P(r) \in \text{null } P$. But r = r + 0, so that r = P(r) by the uniqueness of decomposition in direct sums. Thus

$$P(v) = P(r+n)$$

$$= P(r) + P(n)$$

$$= P(r) + 0$$

$$= P(r) = r,$$

which is what we wanted to show.

6.29 Suppose $T \in \mathcal{L}(\mathcal{V})$ and U is a subspace of V. Prove that U is invariant under T if and only if U^{\perp} is invariant under T^* .

Proof. Suppose $T \in \mathcal{L}(\mathcal{V})$ and U is a subspace of V.

 (\Rightarrow) Assume that U is invariant under T. Let $v \in U^{\perp}$. In order to show that U^{\perp} is invariant under T^* , it suffices to show that $T^*v \in U^{\perp}$. That is, we must show that $\langle u, T^*v \rangle = 0$ for all $u \in U$. So let $u \in U$. Thus

$$\langle u, T^*v \rangle = \langle Tu, v \rangle$$
 [Definition]
= 0 [$Tu \in U$ and $v \in U^{\perp}$],

which is what we wanted to show.

(\Leftarrow) Now assume that U^{\perp} is invariant under T^* . Let $u \in U$. We want to show that $Tu \in U$. Consider any $v \in U^{\perp}$. We have that

$$\begin{split} \langle Tu,v\rangle &= \langle u,T^*v\rangle [\text{Definition}]\\ &= 0 & [u\in U \text{ and } T^*v\in U^\perp], \end{split}$$

so that Tu is orthogonal to every vector in U^{\perp} . That is, $Tu \in (U^{\perp})^{\perp}$; but $(U^{\perp})^{\perp} = U$. Thus $Tu \in U$, so that U is invariant under T.