Universidad de la República - Facultad de Ingeniería - IMERL: Matemática Discreta 2-semipresencial

Segunda prueba - 26 de octubre de 2015.

Segunda prueba - principales errores cometidos

Ejercicio 1.

- 1. Sea G un grupo y H, K dos subgrupos de G. Hallar los posibles valores de |H| si $K \subsetneq H \subsetneq G$, |G| = 345 y |K| = 23.
 - En esta parte, si bien la mayoría notó que por el Teorema de Lagrange, al ser H < G se debe cumplir que $|H| \mid |G|$, es decir que $|H| \mid 345$ muchos no se dieron cuenta que también s debe cumplir que $|K| \mid |H|$; es decir que 23 $\mid |H|$. Como K y H son subgrupos de G y $K \subset H$, resulta que K es un subrupo de H; y por lo tanto el teo de Lagrange también se aplica para K y H.
 - Muchos no notaron la condición $H \neq K$ y $H \neq G$ en la letra; por lo que olvidaron descartar 23 y 345 de las posibildades para |H|.
- 2. Hallar todos los subgrupos del grupo diedral D_5 .
 - Muchos escribieron conjuntos con cardinales que no dividen a $10 = |D_5|$. Por el teorema de Lagrange, estos conjuntos no pueden ser subgrupos de D_5 .
 - Al buscar subgrupos, la mayoría se concentró en que si $h \in H$ entonces $h^{-1} \in H$, pero olvidaron la condición de que H debe ser cerrado por la operación. Por ejemplo, si $r \in H$, entonces pusieron que $r^{-1} \in H$, pero olvidaron que también debe pasar que $r * r \in H$.
 - Vale la pena notar, que en general, si $h \in H < G$, entonces $< h > \subset H$, ya que al ser H cerrado por inversos y por la operación, todas las potencias de h deben estar en H.
 - Muchos se equivocaron al hallar $(rs)^{-1}$. Recuerden que en general, para grupos no abelianos, vale que si $x, y \in G$ entonces $(xy)^{-1} = y^{-1}x^{-1}$ (y no $x^{-1}y^{-1}$). Por lo tanto en D_5 vale que $(rs)^{-1} = s^{-1}r^{-1} = sr^4$.

Ejercicio 2.

- 1. Sea G un grupo. Probar que si $a \in G$ cumple $a^n = e_G$ entonces $o(a) \mid n$.
 - En este ejercicio, al dividir n entre o(a): n = qo(a) + r con $0 \le r < o(a)$ y luego obtener que $a^r = e$, para concluir que entonces r = 0 muchos dijeron que esto se debe a que o(a) es el menor entero (o natural) tal que $a^m = e$. Faltó decir entero (o natural) **mayor que cero**. Por lo tanto al ser $o \le r < o(a)$ y $a^r = e$, debe ser r = 0.
- 2. Sea el grupo de invertibles módulo 58 G = U(58).
 - a) Calcular el orden de $g = \overline{9} \in G$.
 - Aquí muchos no tuvieron en cuenta, que como (por Euler) $9^{\varphi(58)} \equiv 1 \pmod{58}$, entonces por la parte anterior $o(9) \mid \varphi(58) = \varphi(2 \times 29) = 28$, y que por lo tanto las posibilidades para o(9) son 1, 2, 4, 7, 14 y 28.
 - Varios dieron como respuesta para o(9) números que no dividen al orden del grupo (es decir a 28).

- Algunos, como por errores de cuenta no obtuvieron un exponente tal que $9^n \equiv 1 \pmod{58}$, contestaron que entonces $o(9) = \infty$. Primero, por Euler sabemos que dicho exponente existe. Pero además, adentro de un grupo FINITO (es decir, con una cantidad FINITA de elementos) NO PUEDE HABER elementos de orden INFINITO!!!; pues tendríamos infinitas potencias distintas de ese elemento en el grupo, pero el grupo sólo tiene una cantidad finita de elementos!!
- b) Es G cíclico? Si es cíclico dar un generador del grupo G. Aquí muchos dieron como generador del grupo elementos con orden menor que 28 = |G|

Ejercicio 3. Sea el grupo de permutaciones de 4 elementos $G = S_4$. Determinar si los siguientes conjuntos son subgrupos de G.

$$1. \ \ H = \left\{ \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{array} \right), \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{array} \right), \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{array} \right), \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{array} \right), \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{array} \right) \right\}.$$

$$2. \ \ H = \left\{ \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{array} \right), \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{array} \right), \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{array} \right) \right\}.$$

■ Uno de los errores más cometidos, fue que operaron mal con las permutaciones. La mayoría se equivocó en el orden de la composición. Si $f, g \in S_4$ entonces $f \circ g$ es la composición usual de funciones, por lo tanto hay que aplicar PRIMERO g y luego f. Por ejemplo: si

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}, g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

entonces para hallar $f \circ g$ debemos calcular

- $(f \circ g)(1) = f(g(1)) = f(3) = 3$
- $(f \circ g)(2) = f(g(2)) = f(2) = 1$
- $(f \circ q)(3) = f(q(3)) = f(1) = 2$
- $(f \circ g)(4) = f(g(4)) = f(4) = 4$

y por lo tanto

$$f * g = \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{array}\right).$$

■ Otro error fue que para comprobar (en la segunda parte) que H es cerrado con la operación, es decir que si $h, h' \in H$ entonces también $h * h' \in H$, la mayoría olvidó considerar los casos cuando h = h'. Por ejemplo, para la segunda parte, los elementos de H son $f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$, $Id, g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$.

Para probar que H es cerrado NO BASTA con ver que f*g y g*f están en H, también hay que ver que f*f y g*g están en H. En este ejemplo esto se cumple ya que $f*f=g\in H$ y $g*g=f\in H$. (no es necesario probar cuando unos de los elementos es id ya que para todo elemento h en H, $id*h=h*id=h\in H$.

También, como S_4 no es conmutativo, si $f * g \in H$, esto no garantiza que $f * g \in H$; es decir, para ver que H es cerrado hay que probar que ambas composiciones f * g y g * f están en H. En este caso como JUSTO f * g = id, entonces g es el inverso de f y por lo tanto también se cumple que $g * f = id \in H$. Pero en general, si $x, y \in S_4$, pasa que $xy \neq yx$ y puede pasar que $xy \in H$ pero $yx \notin H$.