ПРАКТИЧЕСКИЕ ЗАНЯТИЯ №11-12

Тема занятий. Изоморфизм групп. Смежные классы. Нормальные делители. Фактор-группы. Гомоморфизм. Задание группы образующими и определяющими соотношениями

I. Изоморфизм групп. Две группы G и G с операциями * и \circ называются изоморфными , если существует биективное отображение $rac{1}{2}:\mathbb{C}_{1}^{2} o\mathbf{C}_{2}^{1}$ THROW, YTO $\ell(\alpha * \ell) = \ell(\alpha) \circ \ell(\ell) \quad \forall \alpha, \ell \in G$.

Свойства изоморфизма.

1) Единица переходит в единицу. Действительно, пусть е - единичный элемент из G . Тогда еже = е , откуда e е e , где e = e , где e = e , где e = e . а следовательно, $\ell = \ell \circ \ell^{-1} = \ell' - единичный элемент в группе <math>G'$.

2) $f(a^{-1}) = [f(a)]^{-1}$. Действительно,

(a) = [f(a)] . денствительно, $f(a) \circ f(a^{-1}) = f(a * a^{-1}) = f(e) = e',$ откуда $f(a^{-1}) = [f(a)]^{-1}$.

3) $f^{-1} : G' \to G$ также является изоморфизмом. Действительно, $f^{-1} = f(a) \circ f(a) \circ$ a' = f(a), f' = f(f). Torma $f(a*f) = f(a) \cdot f(f)$, откуда $f(a*b) = a' \circ b'$, а следовательно, $a*b = f^{-1}(a' \circ b')$ $f^{-1}(a')*f^{-1}(b') = f^{-1}(a' \circ b')$.

<u>Пример 1.</u> В качестве изоморфного отображения

↓ ной группы $(\mathbb{R}_{\perp}, \cdot)$ положительных чисел на аддитивную группу $(\mathbb{R}, +)$ всех вещественных чисел может служить $\rho = \ell_N$. Действительно, $\forall a, \ell \in \mathbb{R}_+$ имеем ℓ и $a\ell = \ell$ и $a + \ell$ и ℓ (биективность очевидна). Обратным $\kappa \stackrel{?}{\downarrow}$ является отображение $x \longmapsto e^{X}$.

Утверждение 1. Все циклические группы одного и того же порядка (в том числе и бесконечного) изоморфны.

Утверждение 2 (Кэли). Любая конечная группа С порядка морфна некоторой подгруппе H симметрической группы S_n .

При доказательстве утверждения 2 приводится конкретный вид изоморфного отображения 🛴 :

$$\forall a \in G$$
 $a \mapsto La = \begin{pmatrix} g_1 & g_2 & \cdots & g_n \\ ag_1 & ag_2 & \cdots & ag_n \end{pmatrix} \in S_h$.

Тогда $H = \{ L_{\alpha} \mid \alpha \in G \}$ — подгруппа G_{α} , изоморфная G_{α} 3адача I. Определить подгруппу Н группы S_N , изоморфную группе G:

a)
$$C_{\pi} = (\{0; I\}, + (mod 2)\}, n = 2;$$

6)
$$C_{\pi}^{1} = (\{0, 1, 2\}, +(mod 3)\}$$
, $n = 3$;

B)
$$G = (\{0, 1, 2, 3\}, + (mod 4)\}, n = 4$$

Решение. a) Имеем:
$$0 \mapsto L_0 = \begin{pmatrix} 0 & \frac{1}{1} \\ 0+0 & 0+1 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{1} \\ 0 & \frac{1}{1} \end{pmatrix} = e$$
,
$$I \mapsto L_1 = \begin{pmatrix} 0 & \frac{1}{1+0} \\ 1+1 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{1} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix},$$

 $H = \{e, (0.1)\}$ откуда

o) where:
$$0 \mapsto L_0 = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix} = e$$
;
 $\mathbf{I} \mapsto L_1 = \begin{pmatrix} 0 & 1 & 2 \\ 1+0 & 1+1 & 1+2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}$,
 $2 \mapsto L_2 = \begin{pmatrix} 0 & 1 & 2 \\ 2+0 & 2+1 & 2+2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 1 \end{pmatrix}$,

откуда $H = \{ e, (0 1 2), (0 2 1) \};$

B) MMeem:
$$0 \mapsto \bot_0 = e$$
,

$$3 \mapsto L_3 = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 3 & 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 3 & 2 & 1 \end{pmatrix}$$

 $3 \mapsto L_3 = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 3 & 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 3 & 2 & 1 \end{pmatrix}$, откуда $H = \left\{ e , \begin{pmatrix} 0 & 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 0 & 2 \end{pmatrix} (I & 3), \begin{pmatrix} 0 & 3 & 2 & 1 \end{pmatrix} \right\}$.

Задача 2. Показать, что группа положительных рациональных чисел по умножению не изоморфна группе всех рациональных чисел по сложению.

Решение. Пусть существует изоморфное отображение p группы (\mathbb{Q}_+ , *) на $(\mathbb{Q},+)$. Обозначим $\mathbb{Q}=\mathcal{L}^{-1}(\mathbb{Z}(2)/2)$. Очевидно, что $2\in\mathbb{Q}_+$ $\Rightarrow f(2) \in \mathbb{Q} \Rightarrow f(2) / 2 \in \mathbb{Q} \Rightarrow f^{-1}(f(2) / 2) \in \mathbb{Q} +$. C ppyrož стороны $a^2 = 1^{-1} (f(2)/2) \cdot f^{-1} (f(2)/2) = (см. свойство 3 изомор$ физма) = $f^{-1}(f(2)/2 + f(2)/2) = f^{-1}(f(2)) = 2$, но уравнение $\alpha^2 = 2$ не имеет решений на множестве рациональных чисел.

Задача 3. Пусть G' - группа с операцией * , π - биекция из Gвведём операцию о на G следующим образом со d = $=\pi(a*b)$, the c, $d\in G$, $a=\pi^{-1}(c)$, $b=\pi^{-1}(d)$. Показать, что группа (G, *) изоморфна группе (G, \circ) .

Решение. $\forall a, \ell \in G$ имеем $\alpha = \pi^{-1}(\pi(a))$, $\ell = \pi^{-1}(\pi(\ell))$, откуда по впределению \bullet получаем $\pi(a) \circ \pi(\ell) = \pi(a * \ell)$.

Задача 4. Найти все с точностью до изоморфизма группы порядка 4.

Решение. Пусть $G' = \{a, b, c, d\}$. В силу задачи 3 для определёниости можно считать, что CL -единичный элемент. Рассмотрим следующее дополнительное условие

(1) $\ell = \ell^{-1}$, $c = c^{-1}$, $d = d^{-1}$

(т.е. при выполнении (1) каждый элемент из G обратен к самому себе).

Пусть сначала условие (1) выполняется. Тогда в силу коммутативности любой группы четвёртого порядка (см. предыдущий семинар) таблица Кэли для рассматриваемой группы имеет вид

	a	В	c	1 d!
a	а	В	C	d
В	В	а	Х	у
С	С	Х	a	Z
d	d	у	Z	а

! -! , где х,у, ≥ неизвестны.

Отметим следующее очевидное свойство таблицы Кэли: в каждую строку (в каждый столбец) этой таблицы входит любой элемент из группы G, причём ровно по одному разу. Из этого свойства следует, что $\{x,y\}=\{c,d\}$, $\{x,z\}=\{b,d\}$, откуда x=d, y=c, z=b. Таким образом, существует единственная с точностью до изоморфизма группа G такая, что выполняется (I) (заметим, что построенная группа изоморфиа группе (I,Z), (I,Z)

Пусть теперь условие (1) не выполняется и ,например, в \neq в \rightarrow . Пусть, например, в \rightarrow . Рассмотрим таблицу Кэли для рассматриваемого случая

	a	B	C	d !	!
а	а	В	С	d	
В	В	Х	у	а	
С	С	у	Z	w	[
d	d	a	w	10	ľ

где $x,y, \ge , \omega , \upsilon$ неизвестны. Из таблицы следует, что $\{x,y\} = \{c,d\}$

Предположим, что $\mathbf{x}=d$, тогда $\mathbf{y}=\mathbf{c}$, и при этом в третью строку таблицы Кэли дважды войдёт элемент \mathbf{c} . Но тогда $\mathbf{x}=\mathbf{c}$, $\mathbf{y}=d$, а следовательно, таблица Кэли имеет вид

	a	В	c !	d !	-
а	а	В	С	d	
В	В	С	d	а	
С	С	d	Z	w	<u> </u>
d	d	a	110	10	!

Из таблицы следует, что $\{z,w\}=\{a,b\}$, $\{w,v\}=\{c,b\}$, откуда z=a , w=b , y=c , т.е. таблица Кэли имеет вид

1	a!	в	c!	d
а	а	В	С	d
В	В	С	d	а
С	С	d	а	В
d	d	а	В	С

+ !	0 !	I!	2	3!	
0	0	I	2	3	
I	I	2	3	0	ŗ
2	2	3	0	I	
3	3	0	I	2	-

Нетрудно видеть, что построенная группа изоморфна группе ($\{0,1,2,3\}$, + ($\operatorname{uned} \mathcal{A}$) $\{$ (здесь \mathcal{A} (a) = 0, \mathcal{A} (b) = 1 , \mathcal{A} (c) = 2 , \mathcal{A} (d) = 3 , где \mathcal{A} – изоморфизм ; см. таблицы Кэли для этих групп).

Аналогично рассматривается случай $\mathbf{B}^{-1} = \mathbf{c}$, а также случай $\mathbf{c}^{-1} = d$, в каждом из которых получаемая в результате группа изоморфна группе $\{(0,1,2,3), + (\bmod 4)\}$, а следовательно, все эти группы изоморфны друг другу. Таким образом, существуют 2 группы с точностью до изоморфизма порядка 4.

Смежные классы по подгрупне. Пусть H — подгруппа группы G . Девым (правым) смежным классом группы G по подгруппе H (коротко G по H) называется множество $gH = \{gh \mid h \in H\}$ ($Hg = \{hg \mid h \in H\}$). Элемент g называется представителем смежного класса.

Утверждение 3. Два левых (правых) смежных класса G по H либо совпадают либо не имеют общих элементов. Разбиение G на левые (правые) смежные классы по H определяет на G отношение эквивалентности: а \sim в $\exists g \in G \mid \alpha, \ell \in gH$ (а \sim в $\Longrightarrow \exists g \in G \mid \alpha, \ell \in Hg$).

Множество всех левых смежных классов G по H обозначается символом

G/H. Пусть G — конечная группа. Тогда из того, что отображение $h \mapsto g h_1 k \in H$, является взаимнооднозначным $(gh_1 = g h_2 \Rightarrow g^{-1}gh_1 = g^{-1}gh_2 \Rightarrow h_1 = h_2$, а следовательно, $h_1 \neq h_2 \Rightarrow gh_1 \neq gh_2$), получаем $\forall g \in G/H$ $|g \in H| = |H|$, откуда в силу $G = \bigcup_{g \in G/H} g \in G/H$, $g_1 \in G/H$, $g_2 \in G/H$, $g_2 \in G/H$, $g_1 \in G/H$, $g_2 \in G/H$, $g_1 \in G/H$, $g_2 \in G/H$, $g_2 \in G/H$, $g_1 \in G/H$, $g_2 \in G/H$

Следствием из (2) является

<u>Теорема</u>(Лагранж). Порядок конечной группы делится на порядок каждой своей подгруппы.

Следствие. Порядок любого элемента делит порядок группы. Группа простого порядка всегда циклическая и с точностью до изоморфизма единственная (см. утверждение об изоморфизме циклических групп одного порядка).

Пример 2. Пусть $G = S_3$, $H = \langle (1 3 2) \rangle$. Определить множество всех левых и правых смежных классов G по H. Показать, что $\forall g \in G$ g H = Hg.

Решение. Заметим, что $\S_3 = \{e, (12), (13), (23), (123), (132)\}$ (поскольку $|\S_3| = 3! = 6$, то других элементов нет), $H = \{e, (132), (132)\}$ ($(132)^2\} = \{e, (132), (123)\}$ (порядок элемента (132) равен 3, а следовательно, $((132)^2) = \{e, (132)^2\}$). Найдём теперь g H для каждого $g \in \S_3$:

I/eH = H,

 $2/(12) H = \{(12)e, (12)(132), (12)(123)\} = \{(12), (13), (23)\},$

3/ (I 3) Н очевидно, содержит (I 3)∈(I 2) Н, а следовательно, (I 3) Н = (I 2) Н (см. уберкурные 3),

4/ $(2\ 3)$ Н очевидно, содержит $(2\ 3)$ \in $(1\ 2)$ Н , а следовательно, $(2\ 3)$ Н = $(1\ 2)$ Н .

5/ (I 2 3) H содержит (I 2 3) \in H , а следовательно,(I 2 3) H = H ,

6/ (I 3 2) H содержит (I 3 2) \in H, а следовательно, (I 3 2) H = H . Таким образом, еН =(I 2 3) H =(I 3 2) H = H , (I 2) H =(I 3) H =(2 3) H , т.е. множество левых смежных классов состоит из H ,(I 2) H .

Определим теперь $\mathrm{H}\,g$ для каждого $g\in\mathrm{S}_3$:

I/He = H,

 $2/H(I2) = \{e(I2), (I32), (I23), (I23), (I23), (I23), (I3)\} = \{(I2), (I3), (I3)\} = (I2), (I3)\}$

3/ H (1 3) содержит (1 3) ϵ H (1 2), а следовательно, H (1 3) = H (1 2) = =(1 2) H = (1 3) H,

4/ H(2 3) содержит $(2 3) \in H(1 2)$, а следовательно, H(2 3) = H(1 2) = (1 2) H = (2 3) H,

5/ H (I 2 3) содержит (I 2 3) \in H , а следовательно, H (I 2 3) = H = = (I 2 3) H .

6/ H (I 3 2) содержит (I 3 2) \in H , а следовательно, H (I 3 2) = H = (132) H.

Задача 5. Пусть $G = S_3$, $H = \angle (2\ 3) >$. Определить множество всех левых и правых смежных классов G по H . При каких $g \in G$ g H = H g ? Решение. Заметим, что $H = \{e, (2\ 3)\}$. Найдём g H для каждого

элемента $g \in S_3$:

I/eH = H,

 $2/(1 \ 2) H = \{(1 \ 2), (1 \ 2) (2 \ 3)\} = \{(1 \ 2), (1 \ 2 \ 3)\},$

 $3/(13)H = \{(13), (13)(23)\} = \{(13), (132)\},$

4/(2 3)Н содержит (2 3)Є \mathcal{R} , а следовательно, (2 3)Н = Н,

5/ (І 2 3)Н содержит (І 2 3) \in (І 2) Н , а следовательно, (І 2 3)Н =(І 2) Н 6/ (І 3 2)Н содержит (І 3 2) \in (І 3)Н , а следовательно, (І 3 2)Н =(І 3)Н

Таким образом, eH = $(2\ 3)$ H = H , $(1\ 2)$ H = $(1\ 2\ 3)$ H , $(1\ 3)$ H = $(1\ 3\ 2)$ H , т.е. множество левых смежных классов состоит из H, (12) H , $(1\ 3)$ H .

Определим Hg для каждого $g \in S_3$:

I/He = H = eH.

 $2/H(12)=\{(12),(23)(12)\}=\{(12),(132)\}\neq (12)H$

3/ $H(I 3) = \{(I 3), (2 3), (I 3)\} = \{(I 3), (I 2 3)\} \neq (I 3) H$

4/ ${\rm H}$ (2 3) содержит (2 3) ${\rm \in H}$, а следовательно, ${\rm H}$ (2 3) = ${\rm H}$ =(2 3) ${\rm H}$,

5/ $H(I\ 2\ 3)$ содержит $(I\ 2\ 3)\in H(I\ 3)$, а следовательно, $H(I\ 2\ 3)==H(I\ 3)\neq (I\ 2\ 3)H$,

6/ $H(\bar{1}\ 3\ 2)$ содержит $(\bar{1}\ 3\ 2)\in H(\bar{1}\ 2)$, а следовательно, $H(\bar{1}\ 3\ 2)==H(\bar{1}\ 2)\neq (\bar{1}\ 3\ 2)$ H .

Таким образом, множество правых смежных классов S_3 по $H = \langle (2\ 3) \rangle$ состоит из H , H (I 2) , H (I 3) .

Замачание 1. Очевидно, что в коммутативной группе G для любой подгруппы $H \subset G$ выполняется $\forall g \in G$ g H = Hg.

а следовательно, в коммутативных группах можно не различать левые и правые смежные классы и говорить просто о смежных классах.

Задача 6. Определить смежные классы группы $G = (\{0,1,2,3,4,5\}, + (mod 6)\}$ по $H = \langle 3 \rangle$.

Решение. Заметим, что $H = \{0, 3\}$. Определим теперь g + H для каждого $g \in G$:

I/O + H = H,

 $2/I + H = \{I, 4\},$

 $3/2 + H = \{2, 5\},$

4/3 + H = H,

5/4 + H = 1 + H

6/5 + H = 2 + H.

Takum oбразом, $G/H = \{H, I+H, 2+H\}$.

Задача 7. Доказать, что порядок любого элемента g конечной группы G делит порядок группы G .

 $\underline{\text{Решение}}$. Пусть q – порядок элемента g . Тогда

$$\langle g \rangle = \{ e, g, ..., g^{q-1} \}$$

(см. семинар №9), и по теореме Лагранжа получаем, что |G| делится на |<g>| , т.е. на g .

3. <u>Нормальные подгрунпы</u>. Подгруппа H группы G называется нормальной, если

В случае, когда H — нормальная подгруппа, уже не имеет смысла различать левые и правые смежные классы, а говорят просто о смежных классах G по H . Множество смежных классов при этом обозначается символом G /H . В силу замечания I любая подгруппа коммутативной группы G является нормальной.

Пример 3. Пусть $G = S_3$, $H = \langle (1 \ 3 \ 2) \rangle$. Тогда H — нормальная подгруппа (см. пример 2), напротив, подгруппа $H = \langle (2 \ 3) \rangle$ не является нормальной (см. задачу 5).

Пусть G - группа порядка 2 N . Тогда любая её подгруппа порядка N называется подгруппой индекса 2 .

Задача 8. Доказать, что любая подгруппа индекса 2 является нормальной. Решение. Пусть H – подгруппа группы G , |G| = 2 n , |H| = n , $g \in G$. Покажем, что gH = Hg

Возможны случаи: $a/g \in H$, $o/g \notin H$. Рассмотрим сначала случай a/. Из того, что $g \in H$ имеем gH = H = Hg, а следовательно, в этом случае (2) выполняется. Рассмотрим теперь случай o). Из того, что $g \notin H$, имеем $gH \cap H = \emptyset$ (так как, если $gh_1 = h_2$, где $h_1, h_2 \in H$, то $g = h_2 h_1^{-1} \in H$), и при этом |gH| = |H| = n, а следовательно, $|gH| \cup H| = |gH| + |H| = 2n$. Но тогда $gH \cup H = G$, а следовательно, $|gH| \cup H| = G$. Н. Совершенно аналогично получаем, что $|H| = G \setminus H$, откуда и следует (2).

Задача 9. Доказать, что множество \succeq всех элементов группы G, каждый из которых перестановочен со всеми элементами этой группы, является нормальной подгруппой (центр группы G).

Решение. Покажем, что \mathbb{Z} — подгруппа. Пусть a_1 , $a_2 \in \mathbb{Z}$. Тогда $\forall g \in \mathcal{G}$ — $g(a_1a_2) = (ga_1)a_2 = (a_1g)a_2 = a_1(ga_2) = a_1(a_2g) = (a_1a_2)g$, а следовательно, $a_1a_2 \in \mathbb{Z}$. Таким образом a_1 , $a_2 \in \mathbb{Z} \Rightarrow a_1a_2 \in \mathbb{Z}$. Очевидно, что $e \in \mathbb{Z}$, так как $\forall g \in \mathcal{G}$ eg = ge . Пусть теперь $a \in \mathbb{Z}$, покажем, что $a^{-1} \in \mathbb{Z}$. Действительно, $\forall g \in \mathcal{G}$ ga = ag, откуда $\forall g \in \mathcal{G}$ — $a^{-1}g = ga^{-1}$, а следовательно, $a^{-1} \in \mathbb{Z}$. Таким образом, \mathbb{Z} — подгруппа, и при этом $\forall g \in \mathcal{G}$ выполняется $g \mathbb{Z} = \{ga \mid a \in \mathbb{Z}\} = \{ag \mid$

Задача 10. Элемент $a \ a^{-1} \ b^{-1}$ называется коммутатором элементов $a \ b$ и b в группе a . Доказать, что все коммутаторы и их произведения (с конечным числом сомножителей) образуют нормальную подгруппу.

Решение. Заметим, что $(aba^{-1}b^{-1})^{-1} = bab^{-1}a^{-1}$, т.е. элемент, обратный к коммутатору элементов a, b, является коммутатором элементов b, a. Пусть теперь $k = k_1 \cdots k_K$, где $k_i = k_i \cdots k_K$, где $k_i = k_i \cdots k_K$ торы, тогда $k_i = k_i \cdots k_K$, где $k_i = k_K \cdots k_K$, где $k_i = k_K \cdots k_K$ также как и $k_i = k_K \cdots k_K$ является произведением коммутаторов. Заметим далее, что $k_i = k_K \cdots k_K$ заметим е и е. Но тогда множество $k_i = k_K \cdots k_K$ коммутаторов и их конечных произведений является подгруппой (по определе-

нию К имеем $h_4,h_2\in K \implies h_1h_2\in K$). Покажем, что K – нормальная подгруппа. Заметим, что

 $g \, a_1 \, b_1 \, a_1^{-1} \, b_1^{-1} \dots \, a_K \, b_K \, a_K^{-1} \, b_K^{-1} = \widetilde{a}_1 \, \widetilde{b}_1 \, \widetilde{a}_1^{-1} \, \widetilde{b}_1^{-1} \, \widetilde{b}_1^{-1} \, \widetilde{b}_K^{-1} \, \widetilde{b}_K^{-1} \, \widetilde{b}_K^{-1} \, g$ где $\widetilde{a}_i = g \, a_i \, g^{-1}$, $\widetilde{b}_i = g \, B_i \, g^{-1}$, $i = 1, 2, \dots$, k, k > 1, откуда следует, что любой элемент $g \, k$, где $g \in G$, $k \in K$ может быть представлен в виде $\widetilde{k} \, g$, где $\widetilde{k} \in K$, а следовательно, $g \, K \subseteq K \, g$. Взяв в последнем включении вместо g элемент g = 1, имеем $g^{-1} \, K \subseteq K \, g^{-1}$ откуда $K \, g \subseteq g \, K$, а следовательно, $\forall g \in G$, $g \, K = K \, g$.

Задача 11. Доказать, что если пересечение двух нормальных подгрупп H_{\perp} и H_{2} группы G содержит лишь единицу е , то любой элемент $k_{1} \in H_{2}$ перестановочен с любым элементом $k_{2} \in H_{2}$.

Решение. Предположим, что для некоторых $h_1 \in H_1$, $h_2 \in H_2$ выполняется $h_1 h_2 \neq h_2 h_1$. Тогда $h = h_1 h_2 h_1^{-1} h_2^{-1} \neq e$. В силу того, что H_4 , H_2 — нормальные подгруппы, имеем $\forall g \in G$ $g H_1 g^{-1} = H_1$, $g H_2 g^{-1} = H_2$, а следовательно, $h \in H_1$ (так как $h_2 h_1^{-1} h_2^{-1} \in H$, $h_4 \in H_1$), $h \in H_2$ (так как $h_4 h_2 h_4^{-1} \in H_2$, $h_2^{-1} \in H_2$). Таким образом, $h \neq e$, $h \in H_1 \cap H_2$, что противоречит условиям жадачи.

<u>Факторгруппа</u>. Пусть G — некоторая группа, H — нормальная подгруппа. Рассмотрим множество смежных классов G /H . Введём бинарную операцию на множествах из G:

Ассоциативность в G влечёт ассоциативность введённой бинарной операции. Заметим, что если H – подгруппа, то H^2 = H (так как $e \in H$ и композиция не выводит из H).

Произведением смежных классов аН , вН является множество аН вН . Заметим, что если Н не является нормальным делителем, то последнее множество, вообще говоря, не обязано быть снова смежным классом. Так, например, в случае $H = \langle (1 \ 2) \rangle = \{e, (1 \ 2)\} \subset S_3$ имеем $H \cdot (1 \ 3) \ H = H \cdot \{ (1 \ 3), (1 \ 3) (1 \ 2) \} = H \cdot \{ (1 \ 3), (1 \ 2 \ 3) \} = \{ (1 \ 3), (1 \ 2) (1 \ 3), (1 \ 2) (1 \ 3) \} = \{ (1 \ 3), (1 \ 3), (1 \ 2 \ 3), (2 \ 3) \} = (1 \ 3) \ H \cup (2 \ 3) \ H$. Очевидно, что $H \cdot (1 \ 3)$ H уже не является левым смежным классом \mathbf{S}_3 по H, так как любой левый смежный класс содержит ровно 2 элемента (так как |H| = 2), а $H \cdot (1 \ 3)$ H содержит 4 элемента.

Однако, в случае, когда H – нормальный делитель, имеем $\alpha H \cdot \beta H = \alpha (H \beta) H = \alpha (\beta H) H = \alpha \beta H^2 = \alpha \beta H$,

т.е. произведение смежных классов снова является смежным классом.

Очевидные свойства

aH·BH = aBH

H-aH = aH-H = aH

 $a^{-1}H \cdot aH = aH \cdot a^{-1}H = eH = H$

показывают, что справедлива

Теорема. Если Н - нормальная подгруппа в G, то операция умножения аН⋅вН = авН наделяет фактормножество G/Н строением группы, называемой факторгруппой G по Н . Смежный класс Н служит единичным элементом в G/Н , а a^{-1} Н = $(aH)^{-1}$ - элементом, обратным к аН .

Замечание 2. В случае конечной группы G в силу (2) порядок факторгруппы G/H определяется по формуле

Замечание 3. В случае аддитивно записываемых абелевых групп G вместо ан-вн = авн пишем

$$(a+H) + (B+H) = (a+B) + H.$$

В абелевих группах G/Н часто называют группой G по модулю H, а в применении к паре $G = \mathbb{Z}$, $H = m \mathbb{Z}$ употребляется выражение "группа \mathbb{Z} по модулю m".

Пример 4. Пусть $G = (\mathbb{Z}, +)$, $H = 3\mathbb{Z} = \{0, \pm 3, \pm 6, \dots\}$. Тогда $G / H = \{H, I + H, 2 + H\}$ — факторгруппа, называемая группой целых чисел по модулю 3.

Задача 11. Доказать, что если Н — нормальная подгруппа группы G, а, в $\in G$, то \forall а, \in аН, \forall в, \in вН выполняется G, $\bigcup_{i=1}^{n} H = G$ Н . Привести пример группы G и подгруппы Н $\in G$ таких, что для некоторых а,в, а,

 $B_1\in G$ таких, что $a_1\in aH$, $B_1\in BH$, выполняется $a_1a_1H\neq aBH$.

<u>Решение</u>. 1. В силу $a_{\underline{i}} \in aH$, $B_{\underline{i}} \in BH$ имеем $a_{\underline{i}} H = aH$, $B_{\underline{i}} H = BH$, а следовательно, $a_{\underline{i}} B_{\underline{i}} H = a_{\underline{i}} H \cdot B_{\underline{i}} H = aH \cdot BH = aBH$.

2. Пусть $G = S_3$, $H = \langle (1\ 2) \rangle = \{e, (1\ 2)\}$, $a = B = (1\ 3)$, $a_1 = B_1 = (1\ 2\ 3)$. Torma $a_1 = B_1 \in aH = BH = \{(1\ 3), (1\ 2\ 3)\}$, $a_1B_1H = (1\ 3\ 2)H = \{(1\ 3\ 2), (1\ 3\ 2), (1\ 3\ 2), (1\ 3\ 2), (2\ 3)\} \neq \{e, (1\ 2)\} = aBH$.

Задача 12. Доказать, что если в группе G порядка n $\forall g \in G$ выполняется $g^2 = e$, то $n = 2^k$, где $k \ge 0$.

Решение. Возможны случаи: а) $G = \{e\}$; б) $(\exists g \in G)(g \neq e)$. В случае а) $|G| = n = 1 = 2^0$. Рассмотрим теперь случай б). Пусть $a \in G$, $a \neq e$. Тогда a = a = e. Обозначим a = e. a = e. Тогда a = e. Поста a = e. Пос

Заметим, что $\forall a_1 \in G_1$ выполняется $\mathbf{a}_1^2 = \mathbf{e}_1$, где $\mathbf{e}_1 = \mathbf{H}_1$ — единичний элемент в группе G_1 (действительно, $\mathbf{a}_1 = g$ \mathbf{H}_1 , где g — некоторый элемент из G , а следовательно, (g $\mathbf{H}_1)^2 = g^2$ $\mathbf{H}_1 = \mathbf{e}_1 = \mathbf{H}_1 = \mathbf{e}_1$). Но тогда аналогично предыдущему либо $|G_1| = n/2 = 1$ и тогда $n = 2^1$, либо мы перейдём к группе G_2 такой, что $|G_2| = |G_1|/2 = n/2^2$, $\forall a_2 \in G_2$ $\mathbf{a}_2^2 = \mathbf{e}_2$, где \mathbf{e}_2 — единичный элемент группы G_2 . Поскольку n — конечное число, то продолжая указанный процесс последовательного перехода от группы G_1 \mathbf{k} некоторой группе G_{1+1} , мы при некотором номере \mathbf{k} получим $|G_1| = n/2^{\mathbf{k}} = 1$ и тогда $n = 2^{\mathbf{k}}$.

Задача 13. Доказать, что факторгруппа G /Н тогда и только тогда коммутативна, когда Н содержит коммутант К группы G (см. задачу 10).

<u>Решение</u>. Запишем формулу, выражающую коммутативность G / H

 $\forall a, \ell \in G \quad aH \cdot \ell H = \ell H \cdot aH,$

откуда \forall а,в \in С авн = ван , а следовательно, \forall а,в \in С а $^{-1}$ в $^{-1}$ н = в $^{-1}$ а 1 н. Но тогда \forall а,в \in С \exists k_{1},k_{2} \in н : а $^{-1}$ в $^{-1}$ k_{4} = в $^{-1}$ а $^{-1}$ k_{2} , откуда \forall а,в \in С ава $^{-1}$ в $^{-1}$ \in Н. Таким образом, коммутативность С / Н эквивалентна тому, что н содержит коммутатор любых элементов а,в \in С , откуда и следует справедливость доказываемого утверждения.

Задача 14. Доказать, что факторгруппа некоммутативной группы G по её центру Z (см. задачу 9) не может быть циклической.

Решение. Предположим, что G/Z — циклическая группа. Тогда для некоторого элемента $a \in G$ выполняется $G/Z = \langle aH \rangle$, а следовательно, для любых двух элементов $g_4, g_2 \in G$ найдутся $h_1, h_2 \in \mathbb{Z}$ такие, что

 $g_1 H = (\alpha H)^{n_1} = \alpha^{n_1} H$, $g_2 H = (\alpha H)^{n_2} = \alpha^{n_2} H$, откуда для некоторых элементов $h_1, h_2 \in \mathbb{Z}$ выполняется $g_1 = \alpha^{n_1} h_1, g_2 = \alpha^{n_2} h_2$. Используя теперь то, что $h_1, h_2 \in \mathbb{Z}$, имеем $g_1 g_2 = (\alpha^{n_1} h_1)(\alpha^{n_2} h_2) = \alpha^{n_1 + n_2} h_1 h_2 = \alpha^{n_2} \alpha^{n_1} h_2 h_1 = (\alpha^{n_2} h_2)(\alpha^{n_1} h_1) = g_2 g_1$, а это противоречит тому, что группа G_1 не является коммутативной.

<u>Гомоморфизмы.</u> Отображение $2: G \to G'$ группы (G, *) в (G', \circ) называется гомоморфизмом , если

$$f(a*b) = f(a) \circ f(b) \quad \forall a, b \in G.$$

Ядром гомоморфизма 🖟 называется множество

$$\operatorname{Kerf} = \left\{ g \in G \middle| f(g) = \mathbf{e}' - \operatorname{equhu4huū элемент в } G' \right\}$$

Гомоморфное отображение группы в себя называется ещё эндоморфизмом. Если f — сюръективное отображение, то гомоморфизм называется эпиморфизмом. В случае, если f — инъективное отображение, гомоморфизм называется мономорфизмом. Если f — обмективное отображение, то f — изоморфизм.

Свойства гомоморфизма:

I/ $\frac{1}{2}$ (e)= e (см. доказательство аналогичного свойства изомофизма).

 $2/ p(a^{-1}) = [p(a)]^{-1}$ (см. доказательство аналогичного сойства изоморфизма

3/ Кеч ∮ - подгруппа в С . Это следует из 1/,2/.

4/ $\ker f$ - нормальная подгруппа в C_r . Докажем это. Обозначим $H = \ker f$. Тогда $\forall g \in G$, $\forall h \in H$ имеем (опускаем ж , \circ)

 $f(g h g^{-1}) = f(g) f(h) [f(g)]^{-1} = f(g) e^{i} [f(g)]^{-1} = e^{i}$

а следовательно, $g h g^{-1} \in H$, откуда $g H g^{-1} \subseteq H$. Заменив g на g^{-1} имеем $g^{-1} H g \subseteq H$, откуда $H \subseteq g H g^{-1}$, а следовательно, $g H g^{-1} = H$ или g H = H g , т.е. H – нормальная подгруппа.

теорема (основная теорема о гомоморфизмах). Пусть $f: G \to G'$ — гомоморфизм групп с ядром $H = \text{Ke}^2 f$. Тогда H — нормальная подгруппа в G и факторгруппа G /H изоморфиз подгруппе f(G) (образу G) .

Обратно, если H — нормальная подгруппа в G , то отображение f : $G^! \to G^! / H$, определяемое формулой $\forall g \in G + (g) = gH$, есть эпиморфизм с ядром H .

Задача 15. Доказать, что если группа G гомоморфно отображается на группу G, причём элемент а из G отображается на $\mathbf{a}' \in G'$, то

a/ порядок a делится на порядок a';

6/ порядок G' делится на порядок G'.

Решение. Пусть $H = \text{Ke}^{2} f$, где f - гомомофное отображение G на G (при этом f(G) = G). Тогда в силу основной теоремы о гомоморфизме группа G /Н изоморфна G , а следовательно, G /Н G , а следовательно, G /Н G , а следовательно, выполняется G. Пусть G , G - порядки элементов G , где G - G , а следовательно. Тогда (G - G) G делится на G , т.е. выполняется G .

Задача I6. Найти все гомоморфные отображения циклической группы \sqrt{a} порядка I8 в циклическую группу порядка 6.

Решение. Гомоморфный образ G при отображении f: G G' есть подгруппа группы G' (см. свойства гомоморфизма), норядок которой делит порядок группы G' (см. теорему Лагранжа), а также порядок группы G' (см. задачу 15), т.е. делит числа 6 и 18, а следовательно, $|f(G)| \in \{2,3,6\}$.

а/ Пусть |f(G)| = 2, тогда $f(G) = \langle f^3 \rangle = \{e', f^3\}$ (каждому делителю с порядка циклической группы соответствует одна и только одна её циклическая подгруппа порядка d), где $e' = B^0$. Обозначим $H = Ke \mathcal{L}$. Тогда по основной теореме о гомоморфизмах факторгруппа $\mathcal{C}_{\mathbf{F}}/H$ изоморфна f(G), т.е. имеет порядок f(G). Но тогда f(G)/H = |G|/H = 2, а следовательно, f(H) = 9, откуда f(G). При этом, очевидно, f(G)/H = 2, ан f(G)/H = 3, $f(H) = \{e\}$, $f(H) = \{e\}$, f

б/ Пусть $|\xi(\mathcal{G})| = 3$, тогда $\xi(\mathcal{G}) = \langle \mathbf{B}^2 \rangle = \{ \mathbf{e}, \mathbf{B}^2, \mathbf{B}^4 \} = \langle \mathbf{B}^4 \rangle$. Обозначим $\mathbf{H} = \mathrm{Ker}\, \xi$. Тогда $|\mathcal{G}/\mathbf{H}| = |\mathcal{G}|/|\mathbf{H}| = |\xi(\mathcal{G})| = 3$, откуда $|\mathbf{H}| = 6$,

а следовательно, $H = \langle a^3 \rangle$. При этом, очевидно, $G/H = \{H , aH , a^2H \}$, $f(H) = \{e\}$, и возможны 2 случая: $I/f(aH) = B^2$, $f(a^2H) = B^4$; $2/f(aH) = \{g^4\}$, $f(a^2H) = \{g^2\}$.

в/ Пусть $| \{(G)| = 6$, тогда $\{(G) = \angle B > = \angle B^5 > .$ Обозначим $H = Eeq \{ .$ Тогда $| G/H | = | G/H | = | \{(G)| = 6$, откуда | H | = 3, а следовательно, $H = \angle a^6 > .$ При этом, очевидно, $G/H = \{ H, aH, a^2H, a^3H, a^4H, a^5H \}$, и возможны два случая: $I/\{(a^KH) = \{B^K\}, K = \overline{0,5}; 2/\{(a^KH) = \{B^{5K}\} = \{B^{6-K}\}, K = \overline{0,5}.$

Задача 17. Найти все гомоморфные отображения циклической группы $C_{r}^{l} = \langle a \rangle$ порядка 6 в циклическую группу $C_{r}^{l} = \langle a \rangle$ порядка 18.

Решение. Гомоморфный образ G при отображении $4:G \to G'$ есть подгруппа группы G', порядок которой делит порядки групп G', G (см. задачу 16), т.е. делит числа 18, 6, а следовательно, $|f(G)| \in \{2,3,6\}$.

а/ Пусть $| \downarrow (G) | = 2$. Тогда $| \downarrow (G) | = \langle B^9 \rangle$. Обозначим $H = Ke^{\circ}c \downarrow$. Тогда $| G / H | = | G / / | H | = | \downarrow (G) | = 2$, откуда | H | = 3, а следовательно, $H = \langle a^2 \rangle$. При этом, очевидно, $G / H = \{ H , aH \}$, $\downarrow (H) = \{ e \}$, $\downarrow (aH) = \{ B^9 \}$, т.е. отображение \downarrow полностью определено.

б/ Пусть |f(G)| = 3. Тогда $f(G) = \langle B^6 \rangle = \langle B^{12} \rangle$. Обозначим $H = Ee^*f$. Тогда |G/H| = |G|/|H| = |f(G)| = 3, откуда |H| = 2, а следовательно, $H = \langle a^3 \rangle$. При этом, очевидно, $G/H = \{ H$, аH, $a^2H \}$, $f(H) = \{ e \}$ и возможны 2 случая: $I/f(aH) = \{ B^6 \}$, $f(a^2H) = \{ B^{12} \}$; $2/f(aH) = \{ B^{12} \}$, $f(a^2H) = \{ B^6 \}$.

в/ Пусть | f(G) | = 6. Тогда | f(G) | = 2 в $^3 > = 2$ в $^{15} > 0$ обозначим | H | = 1 . Тогда | G | H | = | G | / | H | = | f(G) | = 6, откуда | H | = 1, а следовательно, | H | = 1. При этом, очевидно, | G | H | = 6 и возможны два случая: $| I | f(a^R) = a^{3R}$, | K | = 0.5; $| I | f(a^R) = a^{15R} = a^{18-3R}$, | K | = 0.5.

Задача 18. Доказать, что группа $\zeta_i^{(l)}$ тогда и только тогда является гомоморфным образом циклической группы $\zeta_i^{(l)} = \langle a \rangle$, когда $\zeta_i^{(l)}$ также циклическая группа и её порядок делит порядок группы $\zeta_i^{(l)}$.

Решение. Необходимость. Пусть G' — гомоморфный образ группы G при отображении G' : G' . Тогда в силу задачи 15 порядок группы

G' делит порядок группы G'. Покажем, что G' – циклическая группа. В силу основной теоремы о гомоморфизмах группа G' изоморфна факторгруппе G' /Н , где G' . Заметим, что G' /Н — циклическая группа с образующей аН (действительно, $\forall g \in G'$ имеем $g = a^K$, где $K \in \mathbb{Z}_L$, а следовательно, $g \in G'$ имеем $g \in G'$ и иклической будет и изоморфная ей группа G' .

Постаточность. Пусть G' — циклическая группа и её порядок делит порядка G' — Выделим в группе G' циклическую подгруппу G' порядка G' — G' —

Образующие и определяющие соотношения в группах. Пусть F_d — произвольная группа, порождённая d образующими f_1, \dots, f_d . Тогда каждый элемент f_1, \dots, f_d в общем случае неоднозначно) в виде f_1, \dots, f_d в общем случае неоднозначно) в виде f_2, \dots, f_d f_1, \dots, f_d f_2, \dots, f_d f_1, \dots, f_d f_2, \dots, f_d f_d глее f_d f_d

Если $f = e \iff s_1 = \ldots = s_K = 0$ для каждого f, записанного в виде (4), то говорят, что f_d — свободная группа, порождённая f_d свободными образующими.

Элементы группы \vdash_d обычно называются словами в алфавите $\{f_1, f_2, \dots, f_d, f_d^{-1}\}$ (е — пустое слово). Несократимая запись (4) слова f и его длина $\{(f) = |S_4| + \dots + |S_K|$ однозначно определены, так как в противном случае слово $e = f f^{-1}$ имело бы длину > 0. При данном f две свободные группы \vdash_d и f , порождённые свободными обра-

зующими $1, \dots, 1_d$ и g_1, \dots, g_d (соответственно) изоморфны: достаточно положить $\varphi(f_i) = g_i$ и для произвольного слова f вида (4) считать

 $\mathcal{P}(\mathfrak{f})=g_{i_1}^{s_1}g_{i_2}^{s_2}\cdots g_{i_K}^{s_K}$. Если G не является свободной группой, то \mathcal{P} — всего лишь эпиморфизм (так как $\varphi(F_d) = G_d$) с ядром Ке $\xi \Phi$, состоящим из тех слов, которые при подстановке $\xi_i \longmapsto g_i$ переходят в единичный элемент группы С. .

Пример 5. 1. d = I, $F_1 = \langle 1 \rangle = \{ \mathbb{Z}, + \}$. 2. d = 2, $F_2 = \langle (0, 1), (1, 0) \rangle = (\mathbb{Z}^2, +)$, rge \mathbb{Z}^2 - множество пар вида (M, R), $M, R \in \mathbb{Z}$, + - покоординатное сложение пар.

 f_d , $S = \{w_i, i \in I\}$ — некоторое множество элементов $w_i(f_1, \dots, f_d) \in F_d$, т.е. слов в алфавите $\{f_1, f_1^{-1}, \dots, f_d, f_d^{-1}\}$ и $K = \langle S F_d \rangle$ - наименьшая нормальная подгруппа в Fa , содержащая S (пересечение всех нормальных подгрупп, содержащих 💲). Говорят, что группа 🔾 задана d образующими a_1, \ldots, a_d и соотношениями $\psi_i(a_1, \ldots, a_d) = e$, $i \in I$, если \exists эпиморфизм $\pi : F_d \longrightarrow G$ с ядром K такой, что $\mathcal{T}(f_K) = \alpha_K$, $I \le K \le d$. При этом пишут

 $G = \langle a_1, \dots, a_d | w_i(a_1, \dots, a_d) = e, i \in I \rangle$.

Пример 6. Пусть d = 1, $F_1 = \langle f_4 \rangle$, $S = \{ w_4 \}$, $w_4 = f_4 \}$. Тогда $K = \left\{ \begin{array}{l} 1 \\ 1 \\ 1 \end{array} \right\}$, $R \in \mathbb{Z}$ $\left\{ \begin{array}{l} - \end{array} \right\}$ — наименьшая нормальная подгруппа (циклическая группа коммутативна, а поэтому в ней всякая подгруппа является нормальной), содержащая f_1^3 . Рассмотрим $G=\{e,a,a^2\}$, $\mathcal{T}:F_1 \longrightarrow G$, где $\mathcal{T}(f_1^n)=a^n\pmod 3$. Тогда \mathcal{T} — эпиморфизм с ядром $\mathrm{Ke}^n\mathcal{T}=\mathrm{K}$ и $\mathcal{T}(f_1)=a$, aследовательно, $C' = \langle a \mid a^3 = e \rangle$.

ношения $u^2 = e$, $v^5 = e$, $(uv)^4 = e$, $(uv^{-2}uv^2)^2 = e$. Доказать, что в группе G' справедливы равенства a/ $(vu)^4 = e$; б/ $uv^{-2}uv^2 =$ $= v^{-2} u v^{2} u : B / v^{-1} u v = v^{3} u v^{-1} u v^{-1} u$

Решение. a/ В силу ($\mathcal{U}\mathcal{V}$) 4 = е имеем

uv, u'v, u'v, u'v = e

Умножая это равенство слева на \mathcal{U}^{-1} , а справа на \mathcal{U} , имеем $\underline{\mathcal{U}^{-1}}\,\,\mathcal{U}$, $\underline{\mathcal{U}}\,\,\overline{\mathcal{U}}\,\,\overline{\mathcal{U}}\,\,\overline{\mathcal{U}}\,\,\overline{\mathcal{U}}\,\,\overline{\mathcal{U}}\,\,=\,\mathcal{U}^{-1}\,\,\mathcal{U}\,\,=\,\mathcal{C}$

откуда $(19u)^4 = e$.

6/ N3 $u^2 = e$, $(uv^{-2}uv^2)^2 = e$ mmeem $u^{-1} = u$, $uv^{-2}uv^2 = (uv^{-2}uv^2)^{-1} = v^{-2}u^{-1}v^2u^{-1} = v^{-2}uv^2u$.

B/B силу $(uu)^4 = uuuuuuuuuu = e$ имеем $v^{-1}uv^{-1}uv^{-1}u = e$, откуда $uv^{-1}uv^{-1}u = vuv$, а следовательно, используя то, что $v^5 = e$ (откуда $v^4 = v^{-1}$), имеем $v^3uv^{-1}uv^{-1}u = v^4uv = v^{-1}uv$.

Задача 20. Пусть в группе $C_V^l = \langle a, b \rangle$ выполняются соотношения $a^4 = b^3 = (ab)^2 = e$.

Доказать, что элементи a^2 , $b^{-1}a^2b$, ba^2b^{-1} попарно перестановочны.

<u>Решение</u>. Покажем, что перестановочны элементы a^2 , $b^{-1}a^2b$, т.е. что выполняется

(5) $a^2 b^{-1} a^2 b = b^{-1} a^2 b a^2$ Обозначим $c = a^2 b^{-1} a^2 b$, тогда $c^{-1} = b^{-1} a^{-2} b a^{-2}$ или, используя то, что $a^4 = e$, а следовательно, $a^2 = a^{-2}$, имеем $c^{-1} = b^{-1} a^2 b a^2$, откуда получаем, что (5) эквивалентно условию $c = c^{-1}$ или $c^2 = e$. Используя то, что $(ab)^2 = e$, имеем авав = e , откуда

(6) $Ba = a^{-1}B^{-1}$, $a^{-1} = BaB$.

Используя (6), имеем $c = a^2 B^{-1} a^2 B = a^{-2} B^{-1} a^2 B = a^{-1} (a^{-1} B^{-1}) a^2 B = a^{-1} (Ba) a^2 B = a^{-1} Ba^3 B = a^{-1} Ba^{-1} B = BaBBBaBB = Ba^2 B^2$, а следовательно, $c^2 = Ba^2 B^2 Ba^2 B^2 = Ba^2 B^3 a^2 B^2 = Ba^4 B^2 = B^3 = e$, т.е. элементы a^2 , $B^{-1} a^2 B$ перестановочны.

Покажем, что перестановочны элементы a^2 , ba^2b^{-1} , т.е. что выполняется

(7) $a^2 B a^2 B^{-1} = B a^2 B^{-1} a^2.$

Обозначим $d = a^2 b a^2 b^{-1}$, тогда $cl^{-1} = b a^2 b^{-1} a^2$, откуда получаем, что (7) эквивалентно условию $d = d^{-1}$ или $d^2 = e$. Используя то, что $(ab)^2 = e$, имеем авав = e, откуда

 $a = B^{-1}a^{-1}B^{-1}$, $B^{-1} = aBa$, $aB^{-1}a = a^2Ba^2$. (8)

Используя (8), имеем

 $d^{2} = \underbrace{a^{2} B a^{2}}_{B} B^{-1} \underbrace{a^{2} B a^{2}_{B} B^{-1}}_{B^{-1} a^{-1} B^{-1} a^{-1} B^{-1} a^{-1} B^{-1} a^{-1} B^{-1} a^{-1} B^{-1} = \underbrace{a^{-1} a^{-1} a^{-1} B^{-1}}_{B^{-1} a^{-1} B^{-1} a^{-1} B^{-1} a^{-1} B^{-1} a^{-1} B^{-1} = \underbrace{a^{-1} a^{-1} a^{-1} B^{-1}}_{B^{-1} a^{-1} B^{-1} a^{-1} a^{-1} B^{-1} a^{-1} a^{-1} B^{-1} a^{-1} a^{-1}$ $= B^{-3} = e$.

Помажем теперь, что перестановочны элементы $b^{-1}a^2b$. ba^2b^{-1} . т.е. что выполняется $_{B}^{-1}a^{2}B_{B}Ba^{2}B^{-1} = _{B}a^{2}B^{-1}_{B}$ $_{B}^{-1}a^{2}B_{B}$ или

 $B^{-1}a^{2}B^{-1}a^{2}B^{-1} = Ba^{2}Ba^{2}B$

Обозначим $f = e^{-1}a^2e^{-1}a^2e^{-1}$, тогда $f^{-1} = e^2e^2e^2$, откуда получаем, что (9) эквивалентно условию $\ell = \ell^{-1}$ или $\ell^{-2} = e$. Используя то, что $(ab)^2 = e$, имеем abab = e, откуда $b = a^{-1}b^{-1}a^{-1}$, а следовательно. $1^{-1} = Ba^2Ba^2B = a^{-1}B^{-1}a^{-1}$ $a^2 \cdot a^{-1}B^{-1}a^{-1}$ $a^2 \cdot a^{-1}B^{-1}a^{-1} = Ba^2Ba^2B = a^{-1}B^{-1}a^{-1}$ $= a^{-1}B^{-1} \cdot a^{-1}a^{2}a^{-1} \cdot B^{-1} \cdot a^{-1}a^{2}a^{-1} \cdot B^{-1}a^{-1} = a^{-1}B^{-3}a^{-1} = a^{-2}$ откуда $1^{-2} = a^{-4} = e$.

Задача 21. Пусть мы находимся в условиях задачи 20. Показать, что подгруппа $< a^2$, в > является нормальной подгруппой группы G .

Решение. Заметим, что в силу (8) выполняется

(10)
$$aba^{-1} = (ab) a^{-1} = (ab) a^3 = aba^3 = (aba) a^2 = b^{-1}a^2 \in \langle a^2, b \rangle$$

(II)
$$aB^{-1}a^{-1} = (aBa^{-1})^{-1} = a^2B \in \langle a^2, B \rangle$$
.

(12)
$$a^{-1}Ba = (a^{-1})Ba = a^{3}Ba = a^{2}(aBa) = a^{2}B^{-1} \in \langle a^{2}, B \rangle$$
,

(13)
$$a^{-1}b^{-1}a = (a^{-1}ba)^{-1} = ba^2 \in \angle a^2, b > .$$

Кроме того, очевидно, что

(14)
$$a(a^2)a^{-1} = a^{-1}(a^2)a = a(a^{-2})a^{-1} = a^{-1}(a^{-2})a = a^2 \in (a^2, B),$$

(15)
$$Ba^2B^{-1}$$
, $B^{-1}a^2B$, $Ba^{-2}B^{-1}$, $B^{-1}a^{-2}B \in \langle a^2, B \rangle$,

(16) B B B⁻¹ = B⁻¹ B B₁₀ = B $\epsilon \langle a^2, B \rangle$, B B⁻¹B⁻¹=B⁻¹ B⁻¹ B = B⁻¹ $\epsilon \langle a^2, B \rangle$ Пусть теперь $k \in H \stackrel{df}{=} \langle a^2, B \rangle$. Тогда

 $h = h_1^{i_1} h_2^{i_2} \dots h_\ell^{i_\ell}$, the $h_j \in \{a^2, b\}$, $i_j \in \{i, k\}$, $j = \overline{1, k}$, и в силу (10),(11),(14) выполняется

$$a h a^{-1} = (a h_1^{i_1} a^{-1}) (a h_2^{i_2} a^{-1}) \cdots (a h_\ell^{i_\ell} a^{-1}) \in \langle a^2, 6 \rangle.$$

Аналогично в силу (12)-(16) справедливо $a^{-1}ha$, bhb^{-1} , $b^{-1}hbe^{-2}$

Таким образом.

Tarum oбразом, (17)
$$\forall h \in H$$
 aha-1, $a^{-1}ha$, bhb^{-1} , $b^{-1}hb \in H$.

Пусть теперь $g \in G = \langle a \rangle$. Тогда

 $g = g_1^{i_1} g_2^{i_2} \dots g_l^{i_l}$, rme $g_j \in \{a, b\}, i_j \in \{I; -I\}, j = \overline{I, l}$,

а следовательно, в силу (17)
$$\forall h \in H$$
 имеем $g h g^{-1} = g_1^{i_1} (g_2^{i_2} (... (g_e^{ie} h g_e^{-ie})...) g_2^{-i_2}) g_1^{-i_1} \in H.$

Таким образом, $\forall g \in G$, $\forall h \in H$ $ghg^{-1} \in H$, а следовательно,

 $\forall g \in G \quad gHg^{-1} \subset H.$

Производя в (18) замену g на g^{-1} , имеем g^{-1} Н g \subseteq Н , а следовательно, $H \subseteq gHg^{-1}$, откуда, учитывая (18), иолучаем $gHg^{-1} = H$ или gH = Hg $\forall g \in G$, т.е. H — нормальная подгруппа группы G.