Programmation linéaire

Program linéaire

maximiser $c_{1} 2 c_{1} + c_{2} 2 c_{2} + \dots + c_{n} 2 c_{n}$ $a_{11} 2 c_{1} + a_{12} 2 c_{2} + \dots + a_{1n} 2 c_{n} \leq b_{1}$ $a_{m1} 2 c_{1} + a_{m2} 2 c_{2} + \dots + a_{mn} 2 c_{n} \leq b_{m}$

 $\mathcal{O}(1, \mathcal{O}_2, \dots, \mathcal{O}_n \geq 0)$

Forme cononique:

maximiser cToc

A oc \(\beta \)

Solution optimale

polyèdre de IR

ensemble des solutions

ad missibles

L'algorithme du simplexe sur un exemple:

Fabrique en terre cuite:

Objet	Cendrier	Bol	Cruche	Vase	Dispo
Moulage	2	4	5	1	42 h
Cuisson	1	1	2	2	17h
Peinture	1	2	3	3	246
Bénéfice	7	9	18	17	

But: Etabliz un plan de production, maximisant le bénéfice.

maximiser
$$Z = 7x_1 + 9x_2 + 18x_3 + 17x_4$$

 $2x_1 + 4x_2 + 5x_3 + 7x_4 \le 42$ (x_5)
 $x_1 + x_2 + 2x_3 + 2x_4 \le 17$ (x_6)
 $x_1 + 2x_2 + 3x_3 + 3x_4 \le 24$ (x_7)
 $x_1, x_2, x_3, x_4 > 0$

Dictionnaire (D1)

$$x_5 = 42 - 2x_1 - 4x_2 - 5x_3 - 7x_4$$

$$x_6 = 17 - x_1 - x_2 - 2x_3 - 2x_4$$

$$x_7 = 24 - x_1 - 2x_2 - 3x_3 - 3x_4$$

 $Z = 7x_1 + 9x_2 + 18x_3 + 17x_4$

Solution base admissible: $x_1 = x_2 = x_3 = x_4 = 0$, $x_5 = 42$, $x_6 = 17$, $x_7 = 24$ et $x_7 = 0$.

Pour l'ameliorer:

Variable entrante: x3 (coefficient >0)

Variable sortante: x_7 (la plus contreignante x_7 (la plus contreignante x_7) $x_7 \ge 0$ => $x_3 \le 8,4$ $x_7 \ge 0$ => $x_7 \le 0$ => $x_7 \le 8$ = $x_7 \ge 0$ => $x_7 \le 8$

Etape du pivot: 203 entre dans la base et 207 sorte de la base. On exprime 203 par 207 et les antres variables hors-base.

$$(22) \quad \chi_3 = 8 - \frac{1}{3}\chi_1 - \frac{2}{3}\chi_2 - \chi_4 - \frac{1}{3}\chi_7$$

$$\chi_5 = 2 - \frac{1}{3}\chi_1 - \frac{2}{3}\chi_2 - 2\chi_4 + \frac{5}{3}\chi_7$$

$$\chi_6 = 1 - \frac{1}{3}\chi_1 + \frac{1}{3}\chi_2 + \frac{2}{3}\chi_7$$

$$Z = 144 + \chi_1 - 3\chi_2 - \chi_4 - 6\chi_7$$

Solution base admissible:
$$2C_1 = X_2 = 2C_4 = X_7 = 0$$

 $x_3 = 8$, $x_5 = 2$, $x_6 = 1$ et $\boxed{7 = 144}$

Variable entrante: x_1 (seule avec $\cos f. > 0$)

Variable sortante: x_6 (la plus contreignante

sur la cooissance de x_1 : $\begin{cases} x_3 > 0 \Rightarrow x_1 \leq 24 \\ x_5 > 0 \Rightarrow x_1 \leq 6 \end{cases}$

Etape du pivot: x, entre dans la base et x6 sort de la base.

$$(23) \quad 3(1=3+x_2 -3x_6+2x_7)$$

$$x_3 = 7 - x_2 - x_4 + x_6 - x_7$$

$$x_5 = 1 - x_2 - 2x_4 + x_6 + x_7$$

$$\overline{z} = 147 - 2x_2 - x_4 - 3x_6 - 4x_7$$

Tous les coefficients de 7 sont <0 => Z=147 est optimale.

Solution optimale:
$$x_1=3$$
, $x_2=0$, $x_3=7$, $x_4=0$.
Bénéfice: $147 \in$