SVD: Decomposição em Valores Singulares

<u>Autovalores (eigenvalues) e Autovetores (eigenvectors):</u>

Considere um sistema linear do tipo:

$$\overline{\mathbf{y}} = \overline{\overline{\mathbf{A}}} \, \overline{\mathbf{b}} \,, \tag{1}$$

em que $\overline{\overline{A}}$ é uma matriz arbitrária N x N que transforma o vetor $\overline{\overline{b}}$ de dimensão N no vetor $\overline{\overline{y}}$ também de dimensão N. Vamos considerar que o nosso objetivo seja resolver este sistema linear sendo que o vetor $\overline{\overline{y}}$ é o vetor contendo os dados conhecidos e o nosso problema consiste em achar o vetor $\overline{\overline{b}}$. No entanto, nesta seção nós não iremos nos preocupar com nenhum método para a solução deste sistema, ao contrário iremos nos concentrar no estudo das propriedades básicas deste sistema.

Considerando que $\overline{\overline{A}}$ é uma matriz arbitrária N x N e $\overline{\overline{X}}$ um vetor em Rⁿ, então geralmente não há uma relação geométrica comum entre o vetor $\overline{\overline{X}}$ e o vetor $\overline{\overline{A}}\overline{\overline{X}}$ (Figura 1a). No entanto, há geralmente certos vetores $\overline{\overline{X}}$ tal que $\overline{\overline{X}}$ e $\overline{\overline{A}}\overline{\overline{X}}$ são múltiplos escalares de um no outro (Figura 1b).

DEFINIÇÃO: se \overline{A} é uma matriz arbitrária N x N, então um vetor não nulo \overline{X} em Rⁿ é chamado **autovetor** (**eigenvector**) de $\overline{\overline{A}}$ se o vetor $\overline{\overline{A}}\overline{X}$ é um escalar múltiplo do vetor \overline{X} , ou seja,

$$\overline{\overline{\mathbf{A}}}\overline{\mathbf{x}} = \lambda \overline{\mathbf{x}} \tag{2}$$

para algum escalar λ . O escalar λ é chamado de **autovalor** (**eigenvalue**) de $\overline{\overline{A}}$, e $\overline{\overline{X}}$ é o autovetor de $\overline{\overline{A}}$ correspondente (associado) ao autovalor λ .

Autovalores e autovetores têm uma interpretação geométrica em R^2 . Se o escalar λ é o autovalor de $\overline{\overline{A}}$ correspondente ao autovetor $\overline{\overline{X}}$, então dependendo do valor do autovalor λ , a multiplicação por $\overline{\overline{A}}$ levará há uma dilatação, contração ou mudança de direção de $\overline{\overline{X}}$ (Figura 2).

Para acharmos os autovalores da matriz $\overline{\overline{\mathbf{A}}}$ (N x N) temos que escrever a equação

$$\overline{\overline{\mathbf{A}}}\overline{\mathbf{x}} = \lambda \ \overline{\mathbf{x}} \ \text{como} :$$

$$\overline{\overline{\mathbf{A}}}\overline{\mathbf{x}} = \lambda \overline{\overline{\mathbf{I}}} \overline{\mathbf{x}}$$
 (3)

ou seja:

$$\left(\begin{array}{c} \overline{\overline{\mathbf{A}}} - \lambda \overline{\overline{\mathbf{I}}} \end{array}\right) \overline{\mathbf{x}} = \overline{\mathbf{0}}$$
 (4)

Valéria Cristina F. Barbosa Observatório Nacional

Para λ ser um autovalor deve existir uma solução não nula para esta equação, ou seja, deve existir uma solução não trivial $\overline{\mathbf{X}} \neq \overline{\mathbf{0}}$ que satisfaça esta equação homogênea. Uma solução não trivial ($\overline{\mathbf{X}} \neq \overline{\mathbf{0}}$) para esta equação homogênea ocorre se a matriz ($\overline{\overline{\mathbf{A}}} - \lambda \ \overline{\overline{\mathbf{I}}}$) for singular e isto ocorre se e somente se

$$DET \left(\overline{\overline{A}} - \lambda \overline{\overline{I}} \right) = 0$$
 (5)

Esta equação acima é chamada de **equação característica** de $\overline{\overline{A}}$; os escalares que satisfazem a esta equação são os autovalores de $\overline{\overline{A}}$. Os autovalores de $\overline{\overline{A}}$ devem satisfazer ao polinômio de ordem N chamado de **polinômio característico** em que o coeficiente de λ^N é 1 e tem a seguinte forma:

$$\mathsf{DET}\left(\lambda \ \overline{\overline{\mathbf{I}}} \ - \ \overline{\overline{\mathbf{A}}}\right) = \lambda^N + \mathsf{c_1} \ \lambda^{N-1} + \dots + \mathsf{c_N} = 0 \tag{6}$$

Teorema: Se a matriz $\overline{\overline{\mathbf{A}}} \in R^{N \times N}$ tem N autovalores distintos ($\lambda_1,...,\lambda_N$) então existe um conjunto LI (linearmente independente) de N autovetores ($x_1,...,x_N$).

Auto-Sistemas

Se a matriz $\overline{\overline{\mathbf{A}}} \in R^{N \times N}$ tem N autovalores distintos ($\lambda_1,..., \lambda_N$) então existe um conjunto LI (linearmente independente) de N autovetores ($\overline{\mathbf{x}}_1,..., \overline{\mathbf{x}}_N$), sendo que cada autovetor está associado a um autovalor, levando as seguintes equações;

$$\overline{\overline{\overline{A}}}\overline{x}_1 = \lambda_1 \overline{x}_1, \quad \overline{\overline{\overline{A}}}\overline{x}_2 = \lambda_2 \overline{x}_2, \quad \cdots, \quad \overline{\overline{\overline{A}}}\overline{x}_N = \lambda_N \overline{x}_N.$$

Das equações acima $\overline{\overline{A}}\overline{\mathbf{x}}_i = \lambda_i \overline{\mathbf{x}}_i$, para $1 \le i \le N$ obtemos a seguinte forma compacta:

$$\left\lceil \overline{\overline{\overline{\mathbf{A}}}} \overline{\overline{\mathbf{x}}}_{1}, \overline{\overline{\overline{\mathbf{A}}}} \overline{\overline{\mathbf{x}}}_{2}, ..., \overline{\overline{\overline{\mathbf{A}}}} \overline{\overline{\mathbf{x}}}_{N} \right\rceil = \left[\lambda_{1} \overline{\mathbf{x}}_{1}, \lambda_{2} \overline{\mathbf{x}}_{2}, ..., \lambda_{N} \overline{\mathbf{x}}_{N} \right]$$

$$\overline{\overline{\mathbf{A}}} \begin{bmatrix} \overline{\mathbf{x}}_1 \ \overline{\mathbf{x}}_2 \ \dots \ \overline{\mathbf{x}}_N \end{bmatrix} = \begin{bmatrix} \overline{\mathbf{x}}_1 \ \overline{\mathbf{x}}_2 \ \dots \ \overline{\mathbf{x}}_N \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \lambda_N \end{bmatrix}$$

Para escrever de uma forma mais compacta, façamos

$$\overline{\overline{\mathbf{P}}} = \begin{bmatrix} \overline{\mathbf{x}}_1 & \overline{\mathbf{x}}_2 & \dots & \overline{\mathbf{x}}_N \end{bmatrix} \mathbf{e} \quad \overline{\overline{\mathbf{A}}} = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \lambda_N \end{bmatrix}$$

Desta forma a equação $\left[\overline{\overline{A}}\overline{x}_{1}, \overline{\overline{A}}\overline{x}_{2}, ..., \overline{\overline{A}}\overline{x}_{N}\right] = \left[\lambda_{1}\overline{x}_{1}, \lambda_{2}\overline{x}_{2}, ..., \lambda_{N}\overline{x}_{N}\right]$ pode ser escrita como:

$$\overline{\overline{\overline{A}}} \ \overline{\overline{\overline{P}}} = \overline{\overline{\overline{P}}} \ \overline{\overline{\overline{\Lambda}}}$$

Note que é $\overline{\overline{P}}$ uma matriz N x N cujas colunas são os autovetores da matriz $\overline{\overline{A}}$ como consideramos que há N autovalores distintos ($\lambda_1,...,\lambda_N$) então existe um conjunto LI de N autovetores de $\overline{\overline{A}}$. Como o conjunto de colunas de é LI, então ela é Não-Singular (i.e., inversível); portanto pós-multiplicando os dois lados da equação acima por $\overline{\overline{P}}^{-1}$ temos:

$$\overline{\overline{\mathbf{A}}} \ \overline{\overline{\mathbf{P}}}\overline{\mathbf{P}}^{-1} = \overline{\overline{\mathbf{P}}} \ \overline{\overline{\mathbf{\Lambda}}}\overline{\mathbf{P}}^{-1}$$

$$\overline{\overline{\mathbf{A}}} = \overline{\overline{\mathbf{P}}} \overline{\overline{\mathbf{A}}} \overline{\overline{\mathbf{P}}}^{-1}$$

Assim, a existência de N autovalores distintos $(\lambda_1,...,\lambda_N)$ da matriz $\overline{\overline{A}} \in R^{N \times N}$ leva a existência de um conjunto LI de N autovetores $(\overline{x}_1,...,\overline{x}_N)$ que formam os vetores colunas de uma matriz $\overline{\overline{P}} \in R^{N \times N}$, permitindo decompor a matiz por um tipo especial de produto $\overline{\overline{A}} = \overline{\overline{P}} \ \overline{\overline{\Lambda}} \overline{P}^{-1}$

Valéria Cristina F. Barbosa Observatório Nacional

Teorema: Uma matriz $\overline{\overline{\mathbf{A}}} \in R^{N \times N}$ tem conjunto LI de N autovalores se somente existe uma matriz não singular $\overline{\overline{\mathbf{P}}} \in R^{N \times N}$ e uma matiz diagonal $\overline{\overline{\mathbf{A}}}$ para a qual

$$\overline{\overline{\mathbf{A}}} = \overline{\overline{\mathbf{P}}} \overline{\overline{\mathbf{A}}} \overline{\overline{\mathbf{P}}}^{-1}$$

As colunas da matriz $\overline{\overline{P}} = [\overline{x}_1 \ \overline{x}_2 \ \dots \ \overline{x}_N]$ são os autovetores de $\overline{\overline{A}}$ associados respectivamente com os autovalores λ_i , onde λ_i é o (i,i)-ésimo elemento da matriz diagonal $\overline{\overline{A}}$.

Teorema: Se a matriz $\overline{\overline{\bf A}} \in R^{N \times N}$ é real e simétrica¹ , então $\overline{\overline{\bf A}}$ pode ser decomposta como

$$\overline{\overline{\mathbf{A}}} = \overline{\overline{\mathbf{Q}}} \overline{\overline{\mathbf{\Lambda}}} \overline{\overline{\mathbf{Q}}}^T$$

em que $\overline{\overline{\mathbf{Q}}}$ é uma matriz real orthogonal² cujas coluna são os autovetores de $\overline{\overline{\mathbf{A}}}$ e $\overline{\overline{\mathbf{A}}}$ é uma matiz real diagonal dos autovalores de $\overline{\overline{\mathbf{A}}}$.

Uma Informação:

No MATLAB há um commando " eig " que pode fornecer os autovalores e autovetores de uma matriz quadrada qualquer. Digite no matlab "help eig" para obter informações sobre este comando. Veja um exemplo

$$a=[4\ 0\ ;\ 0\ 4]$$

$$a = 4 \quad 0$$

$$> [P,S] = eig(a)$$

$$P = 1$$
 0

$$S = 4$$
 0

0 4

Neste exemplo acima a matriz é a variável "a" os autovetores são as colunas da matriz P e os valores singulares estão na diagonal da matriz S

-

¹ Matriz simétrica é uma matriz quadrada tal que $\overline{\overline{\mathbf{A}}}^T = \overline{\overline{\mathbf{A}}}$.

Interpretação Geométrica de autovalor e autovetor:

Considere a matriz simétrica

$$\overline{\overline{\mathbf{A}}} = \begin{bmatrix} 4 & 8 \\ 8 & 4 \end{bmatrix}$$

Esta matriz simétrica pode ser interpretada como uma matriz de dados em estatística, em que as colunas representam variáveis e as linhas representam observações. Assim o conteúdo de informação desta matriz pode ser visualizado geometricamente em R² (e também em R³ matriz 3 x 3), representando-se as observações num espaço definido por eixos de variáveis (ou vice-versa):

Assim os pontos A (vermelho) e B (azul) representam as duas observações (linhas da matriz) num espaço de duas variáveis (colunas da matriz)

Os autovalores da matriz $\overline{\overline{\mathbf{A}}}$ são dados resolvendo-se a equação característica. Assim temos que

$$DET\begin{bmatrix} 4 - \lambda & 8 \\ 8 & 4 - \lambda \end{bmatrix} = (4 - \lambda)^2 - 64 = 0$$

Portanto a equação característica de $\overline{\overline{\mathbf{A}}}$ é:

² Uma matriz qua<u>drada $\overline{\overline{\mathbf{Q}}} \in R^{N \times N}$ é ortogonal se $\overline{\overline{\mathbf{Q}}}^T \overline{\overline{\mathbf{Q}}} = \overline{\overline{\mathbf{Q}}} \overline{\overline{\mathbf{Q}}}^T = \overline{\overline{\mathbf{I}}}_N$, logo $\overline{\overline{\mathbf{Q}}}^{-1} = \overline{\overline{\mathbf{Q}}}^T$ Curso de Inversão de Dados Geofísicos

Programa de Pós-graduação em Geofísica do ON</u>

$$\lambda^2 - 8\lambda - 48 = 0$$

A solução desta equação são $\lambda_1=12$ e $\lambda_2=-4$; estes são os autovalores da matriz $\overline{\overline{\bf A}}$.

Por definição temos que $\left(\lambda\ \overline{\overline{I}}\ -\ \overline{\overline{A}}\ \right)\overline{x}=\overline{0}$ portanto os autovetores respectivos são:

$$\begin{bmatrix} 4 - \lambda_1 & 8 \\ 8 & 4 - \lambda_1 \end{bmatrix} \begin{bmatrix} x \mathbf{1}_1 \\ x \mathbf{1}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Tomando-se $\lambda_1=12$, assim temos o vetor normalizado $\overline{\boldsymbol{x}}1=\begin{bmatrix}1\\1\end{bmatrix}$ e

$$\begin{bmatrix} 4 - \lambda_2 & 8 \\ 8 & 4 - \lambda_2 \end{bmatrix} \begin{bmatrix} x 2_1 \\ x 2_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Tomando-se $\lambda_1 = -4$, assim temos o vetor normalizado $\overline{\mathbf{x}}2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Introduzindo-se os autovetores e autovalores no gráfico acima temos:

Vemos que os autovetores tomados com módulos iguais ao valores absolutos dos respectivos autovalores caracterizam uma elipse com centro na origem e que passa

pelos pontos A e B. A forma elíptica indica a existência de um autovalor próximo a zero. Mas o que significa um autovalor próximo de zero ? Ou ainda. O que significa um autovalor igual a zero ? Veremos, a seguir, que na direção do autovetor associado a este autovalor próximo a zero há um mal-condicionamento do sistema, ou seja, há uma dependência linear.

Vamos considerar agora dois casos extremos:

CASO (a) - Neste primeiro caso temos

$$\overline{\overline{\mathbf{A}}} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$$

Neste primeiro caso os autovalores são $\lambda_1=4$ e $\lambda_2=4$; e $\$ os autovetores da matriz

 $\overline{\overline{A}}$ associada a estes autovalores são indeterminados: quaisquer dos vetores satisfazem a equação $\left(\lambda\ \overline{\overline{I}}\ -\ \overline{\overline{A}}\ \right)\overline{x}=\overline{0}$.

Graficamente podemos constatar que este caso representa uma situação ideal em que as observações A e B são o mais diferentes possível (são informações não redundantes) e os autovalores são idênticos.

A forma circular indica uma independência linear do sistema.

CASO (b) - O segundo caso extremo temos:

$$\overline{\overline{\mathbf{A}}} = \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix}$$

Neste segundo caso os autovalores são $\lambda_1=8$ e $\lambda_2=0$; e os autovetores da matriz

$$\overline{\overline{A}}$$
 associada a estes autovalores são $\overline{x}1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ e $\overline{x}2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Graficamente podemos constatar que as observações são idênticas (redundantes), ou seja a observação A é idêntica a observação B = (4,4).

Concluímos que o caso (a) representa uma situação ideal: as observações A e B são o mais diferente possível e os autovalores são valores idênticos. Note que neste o número de condição (razão entre o maior e menor valor singular) é igual a 1.No caso (b), ao contrário, as observações A e B são idênticas (redundantes), neste caso o numero de condição tende para o infinito (razão extrema).

Valéria Cristina F. Barbosa Observatório Nacional

Os três casos que estudados podem ser sintetizados de acordo com o número de condição $\frac{3}{2}$:

	COND = $ \lambda_1 / \lambda_2 $, $ \lambda_1 > \lambda_2 $
Observações completamente	
independentes	COND = 4/4 = 1
Observações parcialmente independentes	COND = 12/4 = 3
Observações redundantes	$COND = 8/0 = \zeta \infty$

Note que a presença de um autovalor NULO ou muito próximo a zero aumenta a razão (em valor absoluto) entre os módulos dos autovalores extremos e indica observações redundantes.

Podemos constatar que um autovalor nulo ou muito próximo de zero é um medidor da não unicidade e da instabilidade, respectivamente, já que a redundância de observações leva a problema subdeterminado, contendo mais incógnitas do que observações (equações), e caracterizando portanto uma demanda de informação maior que aquela contida nos dados observados **problema mal-posto**.

Então, para caracterizarmos se um problema é mal-posto, basta então analisarmos os autovalores da matriz associada com o sistema linear correspondente.

Vale lembrar que para determinarmos os autovalores e autovetores a matriz arbitrária $\overline{\overline{A}}$ é obrigatoriamente quadrada de dimensão N x N. Infelizmente, a análise acima não pode ser aplicada diretamente porque em geral o número de observações difere do número de parâmetros (incógnitas), de modo que os autovalores e os autovetores de matriz não quadrada (N x M) não são definidos. Veremos abaixo como este problema é contornado.

$$\overline{\overline{\mathbf{A}}}$$
 é cond = $\begin{vmatrix} \lambda_{\text{max}} \\ \lambda_{\text{min}} \end{vmatrix}$

³ Numero de condição de uma matriz $\overline{\overline{A}}$ ($N \times N$) é dado pela razão entre o módulo do maior autovalor ($\left|\lambda_{\max}\right|$) e o módulo do menor autovalor ($\left|\lambda_{\min}\right|$) da matriz $\overline{\overline{A}}$, i.e., o numero de condição da matriz

Decomposição em Valores Singulares Sistema linear Arbitrário:

Agora iremos investigar um sistema linear arbitrário N X M

$$\overline{\mathbf{y}} = \overline{\overline{\mathbf{A}}} \, \overline{\mathbf{p}} \,,$$
 (7)

em $\overline{\overline{A}}$ é uma matriz arbitrária N x M, o vetor $\overline{\overline{p}}$ de dimensão M e o vetor $\overline{\overline{y}}$ de dimensão N. Portanto a matriz $\overline{\overline{A}}$ transforma o vetor $\overline{\overline{p}}$ de dimensão M no vetor $\overline{\overline{y}}$ de dimensão N. É evidente que a matriz $\overline{\overline{A}}$ está associada com dois espaços em que um é de N dimensão e o outro de M dimensão. Se o vetor $\overline{\overline{p}}$ do espaço M-dimensional é dado, o operador $\overline{\overline{A}}$ opera e o transplanta dentro do espaço N-dimensional. Por outro lado, se o nosso objetivo é resolver este sistema linear, em que foi nos dado o vetor $\overline{\overline{y}}$ do espaço N-dimensional (vetor contendo os dados geofísicos), então o nosso problema consiste em achar o vetor $\overline{\overline{p}}$ do espaço M-dimensional que o produza por meio do operador $\overline{\overline{A}}$. No entanto, nesta seção nós também não iremos nos preocupar com nenhum método para a solução deste sistema, ao contrário iremos nos concentrar no estudo das propriedades básicas deste sistema

A idéia central que será a base para toda as nossas discussões do comportamento do operados linear é a seguinte. Nós não consideraremos o sistema linear $\overline{y}=\overline{\overline{A}} \ \overline{p}$ isoladamente mas expandido pelo sistema adjunto (M x N)

$$\overline{\overline{\mathbf{A}}} \ ^{\mathsf{T}} \ \overline{\mathbf{q}} = \overline{\mathbf{x}}$$
 (8)

A matriz $\overline{\overline{A}}^T$ tem M linhas e N colunas (M x N) e adequadamente os vetores $\overline{\overline{q}}$ e $\overline{\overline{x}}$ estão em uma relação de reciprocidade (intercâmbio) com os vetores $\overline{\overline{p}}$ e $\overline{\overline{y}}$. Concretamente, $\overline{\overline{y}}$ e $\overline{\overline{q}}$ são vetores que pertencem ao espaço N-dimensional, enquanto $\overline{\overline{p}}$ e $\overline{\overline{x}}$ são vetores que pertencem ao espaço M-dimensional.

Tomaremos o sistema adjunto $\overline{\overline{A}}$ $\overline{q}=\overline{x}$ como um sistema auxiliar para formarmos um sistema aumentado. Assim combinaremos o sistema $\overline{\overline{A}}$ $\overline{q}=\overline{x}$ com o sistema $\overline{\overline{A}}$ $\overline{p}=\overline{y}$ dentro do esquema aumentado:

$$\overline{\overline{\mathbf{T}}} \ \overline{\mathbf{z}} = \overline{\mathbf{a}} \tag{9}$$

em que introduzimos uma nova matriz quadrada $\overline{\overline{T}}$ de dimensões (N+M X N+M) e definida como segue:

$$\overline{\overline{T}} = \frac{N}{M} \begin{bmatrix} \overline{\overline{0}} & \overline{\overline{A}} \\ \overline{\overline{A}}^{T} & \overline{\overline{0}} \end{bmatrix}$$

$$N M$$
(10)

$$\overline{z} = \frac{N}{M} \begin{bmatrix} \overline{q} \\ \overline{p} \end{bmatrix}$$
 (11)

е

$$\overline{\mathbf{a}} = \frac{\mathsf{N}}{\mathsf{M}} \begin{bmatrix} \overline{\mathbf{y}} \\ \overline{\mathbf{x}} \end{bmatrix} \tag{12}$$

O sistema linear pode ser então definido como

Curso de Inversão de Dados Geofísicos Programa de Pós-graduação em Geofísica do ON

12

isto é no sistema:

$$\left[\begin{array}{cc} \overline{\overline{0}} & \overline{\overline{A}} \\ \overline{\overline{A}}^{\mathrm{T}} & \overline{\overline{0}} \end{array}\right] \left[\begin{array}{c} \overline{q} \\ \overline{p} \end{array}\right] = \left[\begin{array}{c} \overline{y} \\ \overline{x} \end{array}\right]$$

Vale ressaltar que o sistema adjunto $\overline{\overline{A}}$ $\overline{q} = \overline{x}$ não exerce nenhum efeito no sistema linear principal $\overline{\overline{A}}$ $\overline{p} = \overline{y}$. Assim os vetores \overline{q} e \overline{x} são completamente independente dos vetores \overline{p} e \overline{y} , e vice-versa. Porém a adição do sistema adjunto ao sistema linear principal amplia o nosso conhecimento sobre as propriedades do sistema linear arbitrário N x M.

Como a matriz $\overline{\overline{T}}$ é quadrada podemos definir agora seus autovalores e autovetores. Para tanto vamos tomar a equação fundamental dos autovalores

$$\overline{\overline{\mathbf{T}}}\,\overline{\mathbf{W}} = S\,\overline{\mathbf{W}}$$

ou seja,

$$\left(\overline{\overline{\mathbf{T}}} - s\,\overline{\overline{\mathbf{I}}}\right)\overline{\mathbf{W}} = \overline{\mathbf{0}} \tag{14}$$

Em vista das características da nossa matriz \overline{T} de dimensões (N+M X N+M) o vetor $\overline{\overline{w}}$ é um vetor de dimensão N+M. Vamos considerar então que o vetor $\overline{\overline{w}}$ seja particionado nos vetores $\overline{\overline{u}}$ e $\overline{\overline{v}}$ de dimensões N e M, respectivamente

$$\frac{\mathbf{W}_{(N+M\times 1)}}{\mathbf{W}_{(N+M\times 1)}} = \frac{\mathbf{N}}{\mathbf{M}} \left\{ \begin{array}{c} \mathbf{\overline{u}} \\ \mathbf{\overline{v}} \end{array} \right\}$$

$$\overline{\mathbf{w}} = \frac{N}{M} \begin{bmatrix} \overline{\mathbf{u}} \\ \overline{\mathbf{v}} \end{bmatrix}$$

Então o sistema $\overline{\overline{T}}$ $\overline{\mathbf{w}} = s$ $\overline{\mathbf{w}}$ pode ser desdobrado na seguinte forma:

$$\begin{cases}
\overline{\overline{\mathbf{A}}} \ \overline{\mathbf{v}} = s \overline{\mathbf{u}} \\
\overline{\overline{\mathbf{A}}} T \underline{\mathbf{u}} = s \overline{\mathbf{v}}
\end{cases} \tag{15}$$

Este par de equações chamaremos de "problema de autovalor deslocado" uma vez que os vetores do lado direito $\overline{\overline{u}}$ e $\overline{\overline{v}}$ estão deslocados quando comparando com o problema de autovalor já estudado em que temos $\overline{\overline{\overline{A}}}\overline{\overline{x}}=\lambda\ \overline{\overline{x}}$.

Vamos então pré multiplicar a primeira equação do sistema acima por $\overline{\overline{A}}^{\mathsf{T}}$ e a segunda equação por $\overline{\overline{A}}$. Temos então o seguinte sistema

$$\begin{cases}
\overline{\overline{A}} \, \overline{\overline{A}} \, \overline{\overline{v}} = s \, \overline{\overline{A}} \, \overline{\overline{u}} \\
\overline{\overline{A}} \, \overline{\overline{A}} \, \overline{\overline{u}} = s \, \overline{\overline{A}} \, \overline{\overline{v}}
\end{cases} \tag{16}$$

Da primeira equação do sistema (15) temos que $\overline{\overline{A}}$ $\overline{v} = s\overline{u}$. Substituindo na segunda equação do sistema (16) temos que

$$\overline{\overline{A}}\overline{\overline{A}}^{\mathsf{T}}\overline{\mathbf{u}} = s^2 \quad \overline{\mathbf{u}} \tag{17}$$

Da segunda equação do sistema (15) temos que $\overline{\mathbf{A}}^\mathsf{T} \mathbf{u} = s \mathbf{v}$. Substituindo na primeira equação do sistema (16) temos que

$$\overline{\overline{A}}^{\mathsf{T}} \overline{\overline{A}} = s^2 \overline{v}$$
 (18)

As equações (17) e (18) definem dois problemas de autovalores-autovetores. O primeiro problema é associado a matriz simétrica N x N $\overline{A} \overline{A} \overline{A}$ e o segundo problema está associado a matriz M x M $\overline{A} \overline{A} \overline{A}$, ambos problemas com os mesmos

autovalores não nulos s^2 . Os vetores $\mathbf{u} \in \overline{\mathbf{V}}$ são, respectivamente, os autovetores de $\overline{\mathbf{A}} \overline{\mathbf{A}} \overline{\mathbf{A}} = \overline{\mathbf{A}} \overline{\mathbf{A}} \overline{\mathbf{A}}$, portanto são vetores ortogonais que geram, respectivamente espaços de N e M dimensões.

Existirão, no máximo, min (M,N) autovalores diferentes de zero, todos os outros autovalores serão nulos. Assim se N > M a equação (18) comportará M autovalores que poderão ser diferentes de zero. Por outro lado, a equação (17) comportará os mesmos M autovalores que poderão ser diferentes de zero e também comportará N - M autovalores nulos. As mesmas observações se aplicam, mutatis mutandis, para o caso M > N.

Presumindo, sem perda da generalidade, que N > M a primeira equação do sistema (15) aplicado a cada par de autovalor-autovetor leva ao sistema:

$$\begin{bmatrix}
\overline{\overline{\mathbf{A}}} \ \overline{\mathbf{v}_{1}} = s_{1} \overline{\mathbf{u}_{1}} \\
\overline{\overline{\mathbf{A}}} \ \overline{\mathbf{v}_{2}} = s_{2} \overline{\mathbf{u}_{2}}
\end{bmatrix}$$

$$\bullet$$

$$\bullet$$

$$\overline{\overline{\mathbf{A}}} \ \overline{\mathbf{v}_{M}} = s_{M} \overline{\mathbf{u}_{M}}$$
(19)

Em notação matricial podemos escrever o sistema acima como:

$$\overline{\overline{\mathbf{A}}} \left[\overline{\mathbf{v}_1} \quad \overline{\mathbf{v}_2} \quad \dots \quad \overline{\mathbf{v}_M} \right] = \left[s_1 \overline{\mathbf{u}_1} \quad s_2 \overline{\mathbf{u}_2} \quad \dots \quad s_M \overline{\mathbf{u}_M} \right]$$
(20)

ou ainda

$$\overline{\overline{\mathbf{A}}} \ \overline{\overline{\mathbf{V}}} = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1M} & u_{1M+1} & \cdots & u_{1N} \\ u_{21} & u_{22} & \cdots & u_{2M} & u_{2M+1} & \cdots & u_{2N} \\ \vdots & \vdots & & & \vdots & & \\ u_{N1} & u_{N2} & \cdots & u_{NM} & u_{NM+1} & \cdots & u_{NN} \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ \overline{\overline{\mathbf{0}}} \end{bmatrix}$$

Veja na Figura abaixo o mesmo sistema linear de equações (19) em sua forma matricial dado pela equação (20). Nesta Figura destacamos a relação dos M autovalores diferentes de zero $[s_1, s_2, ..., s_M]$ e os M autovetores $[\overline{\mathbf{u}_1} \ \overline{\mathbf{u}_2} \ ... \ \overline{\mathbf{u}_M}]$. Note neste caso particular, em que N>M que há N-M autovetores que $[\overline{\mathbf{u}_{M+1}}, \overline{\mathbf{u}_{M+2}}, ... \ \overline{\mathbf{u}_N}]$ associados com N-M autovalores iguais a de zero

Finalmente podemos escrever:

$$\overline{\overline{\mathbf{A}}}_{(\mathsf{N}\times\mathsf{M})}\overline{\overline{\mathbf{V}}}_{(\mathsf{M}\times\mathsf{M})} = \overline{\overline{\mathbf{U}}}_{(\mathsf{N}\times\mathsf{N})}\overline{\overline{\mathbf{S}}}_{(\mathsf{N}\times\mathsf{M})}$$
(21)

as matrizes $\overline{\overline{U}}$ e $\overline{\overline{V}}$ são definidas como

$$\overline{\overline{\mathbf{V}}} = \begin{bmatrix} \overline{\mathbf{v}_1} & \overline{\mathbf{v}_2} & ... & \overline{\mathbf{v}_M} \end{bmatrix}$$

е

$$\overline{\overline{\mathbf{U}}} = \begin{bmatrix} \overline{\mathbf{u}_1} & \overline{\mathbf{u}_2} & \dots & \overline{\mathbf{u}_N} \end{bmatrix}$$

Isto é $\overline{\overline{U}}$ e $\overline{\overline{\overline{V}}}$ são matrizes cujas colunas são os autovalores de $\overline{\overline{A}}\overline{\overline{A}}^T$ e $\overline{\overline{A}}^T\overline{\overline{A}}$, respectivamente. Como os autovetores são ortogonais, concluímos que os conjuntos

$$\overline{\overline{\mathbf{V}}}^{\mathbf{T}} \overline{\overline{\mathbf{V}}} = \overline{\overline{\mathbf{V}}} \overline{\overline{\mathbf{V}}}^{\mathbf{T}} = \overline{\overline{\mathbf{I}}}_{(M \times M)} \quad e$$

$$\overline{\overline{\mathbf{U}}}^{\mathbf{T}} \overline{\overline{\mathbf{U}}} = \overline{\overline{\mathbf{U}}} \overline{\overline{\mathbf{U}}}^{\mathbf{T}} = \overline{\overline{\mathbf{I}}}_{(N \times N)}$$

Pós multiplicando a equação (21) por $\ \overline{\overline{\mathbf{V}}}^T$:

$$\overline{\overline{\mathbf{A}}} \overline{\overline{\mathbf{V}}} \overline{\overline{\mathbf{V}}} T = \overline{\overline{\mathbf{U}}} \overline{\overline{\mathbf{S}}} \overline{\overline{\mathbf{V}}} T$$

portanto;

$$\overline{\overline{\mathbf{A}}} = \overline{\overline{\mathbf{U}}} \overline{\overline{\mathbf{S}}} \overline{\overline{\mathbf{V}}}^{T}$$

$$(N \times M) (N \times M) (M \times M)$$
(22)

A equação 22 representa a <u>DECOMPOSIÇÃO EM VALORES SINGULARES</u> da matriz $\overline{\overline{A}}$, assim chamada porque os valores S_i que compõe a diagonal da matriz $\overline{\overline{S}}$, são a raiz quadrada positiva dos autovalores das matrizes $\overline{\overline{A}}^{\mathsf{T}} \overline{\overline{A}}$ ou $\overline{\overline{A}} \overline{\overline{A}}^{\mathsf{T}}$ e são denominados de <u>valores singulares</u> de $\overline{\overline{A}}$.

A importância da decomposição de uma matriz em valores singulares está na obtenção dos valores singulares, cuja análise, como já vimos, permite detectar se um problema é mal-posto quando pelo menos um valor singular for NULO ou PRÓXIMO DE ZERO. Veremos a seguir uma análise detalhada da relação entre a não unicidade e da instabilidade com os valores singulares nulo ou próximo do valor zero.

SVD da matriz $\overline{\mathbf{A}}$ e os r valores singulares não-nulos

Um sistema linear arbitrário N X M

$$\overline{\mathbf{y}} = \overline{\overline{\overline{\mathbf{A}}}} \overline{\mathbf{p}}$$
,

sendo $\overline{\overline{A}}$ uma matriz arbitrária N x M, $\overline{\overline{p}}$ um vetor de dimensão M e $\overline{\overline{y}}$ um vetor de dimensão N. A matriz $\overline{\overline{A}}$ (matriz de sensibilidade) transforma o vetor $\overline{\overline{p}}$ de dimensão M no vetor $\overline{\overline{y}}$ de dimensão N e portanto esta matriz está associada com dois espaços diferentes: um espaço N dimensional e o outro M dimensional. Nesta seção iremos nos concentrar em examinar as propriedades da matriz $\overline{\overline{A}}$ deste sistema linear e a ferramenta para fazermos esta análise é a decomposição em valores singulares (SVD) da matriz $\overline{\overline{A}}$.

Se $\overline{\overline{A}}$ (M x N) é real a decomposta em:

$$\overline{\overline{\mathbf{A}}} = \overline{\overline{\mathbf{U}}} \overline{\overline{\mathbf{S}}} \overline{\overline{\mathbf{V}}} T$$

$$(N \times M) = (N \times N) (N \times M) (M \times M)$$

Valéria Cristina F. Barbosa Observatório Nacional

-

 $^{^4}$ Uma matriz $\stackrel{=}{\overline{U}}$ real N x N é chamada de <u>matriz ortogonal</u> se $\stackrel{=}{\overline{U}}$ $\stackrel{=}{\overline{U}}$ $\stackrel{=}{\overline{U}}$ $\stackrel{=}{\overline{U}}$ $\stackrel{=}{\overline{U}}$ (NxN). Cada coluna e cada linha de uma matriz ortogonal é um <u>vetor ortonormal</u>, ou seja, $\stackrel{=}{\overline{u_i}}$ $\stackrel{=}{\overline{u_i}}$ em que $\stackrel{=}{\overline{u_i}}$ é a I-ésima coluna da matriz ortogonal $\stackrel{=}{\overline{U}}$

⁵ Base de um espaço vetorial é um conjunto LI de vetores que geram o espaço vetorial

⁶ <u>Base ortogonal</u> é uma base contendo vetores ortogonais, ou seja, $\overline{\mathbf{u}_i}^T \overline{\mathbf{u}_k} = 0$ em que $\overline{\mathbf{u}_i}$ e $\overline{\mathbf{u}_k}$ são respectivamente a i-ésima e k-ésima colunas da matriz ortogonal $\overline{\overline{\mathbf{U}}}$

$$\overline{\overline{V}}^T \overline{\overline{V}} = \overline{\overline{V}} \overline{\overline{V}}^T = \overline{\overline{I}}_{(M \times M)} e$$

$$\overline{\overline{U}}^T \overline{\overline{U}} = \overline{\overline{U}} \overline{\overline{U}}^T = \overline{\overline{I}}_{(N \times N)}$$

A matriz \mathbf{S} (N x M) de valores singulares é uma matriz diagonal com valores positivos. Em geral, as rotinas que realizam a SVD de uma matriz N x M, usualmente ordenam de forma decrescente os valores singulares ao longo da diagonal da matriz $\mathbf{\bar{S}}$, tal que

$$S_1 \geq S_2 \geq \ldots \geq S_{\min(M,N)} \geq 0$$
.

Veja que alguns dos valores singulares podem ser ZERO. Vamos supor que temos r valores singulares não-nulos. Neste caso a matriz $\frac{1}{s}$ pode ser particionada da seguinte forma:

Em que $\overline{\mathbf{S}}_r$ é uma matriz diagonal de dimensão r x r composta dos r valores singulares positivos. Fazendo a decomposição da matriz temos:

$$\overline{\overline{\mathbf{A}}} = \overline{\overline{\mathbf{U}}} \overline{\overline{\mathbf{S}}} \overline{\overline{\mathbf{V}}}^{T}$$

$$\overline{\overline{\mathbf{A}}} = \overline{\overline{\mathbf{U}}} \begin{bmatrix} \overline{\mathbf{S}}_{r} & \overline{\overline{\mathbf{0}}} \\ \overline{\overline{\mathbf{0}}} & \overline{\overline{\mathbf{0}}} \end{bmatrix} \overline{\overline{\mathbf{V}}}^{T}$$

$$\overline{\overline{\mathbf{A}}} = \begin{bmatrix} \overline{\mathbf{u}}_1 & \overline{\mathbf{u}}_2 & \cdots & \overline{\mathbf{u}}_r \\ \overline{\overline{\mathbf{0}}} & \overline{\overline{\mathbf{0}}} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{v}}_1 & \overline{\mathbf{v}}_2 & \cdots & \overline{\mathbf{v}}_r \\ \overline{\overline{\mathbf{0}}} & \overline{\overline{\mathbf{0}}} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{v}}_1 & \overline{\mathbf{v}}_2 & \cdots & \overline{\mathbf{v}}_r \\ \overline{\overline{\mathbf{v}}} & \overline{\mathbf{v}}_2 & \cdots & \overline{\mathbf{v}}_r \end{bmatrix}^T$$

Considerando as matrizes particionadas:

$$\mathbf{\ddot{V}} = \begin{bmatrix} \mathbf{\ddot{V}}_r & \mathbf{\ddot{V}}_{M-r} \end{bmatrix} \\
\mathbf{\ddot{U}} = \begin{bmatrix} \mathbf{\ddot{U}}_r & \mathbf{\ddot{U}}_{N-r} \end{bmatrix}$$

em que a matriz $\overline{\overline{U}}_r = [\overline{\mathbf{u}}_1 \, \overline{\mathbf{u}}_2 \, ... \overline{\mathbf{u}}_r]$ é uma matriz (N x r) , a matriz $\overline{\overline{\mathbf{U}}}_{N-r} = [\overline{\mathbf{u}}_{r+1} \, \overline{\mathbf{u}}_{r+2} ... \overline{\mathbf{u}}_N]$ é uma matriz (N x N-r), a matriz $\overline{\overline{\mathbf{V}}}_r = [\overline{\mathbf{v}}_1 \, \overline{\mathbf{v}}_2 \, ... \, \overline{\mathbf{v}}_r]$ é uma matriz (M x r) e a matriz $\overline{\overline{\mathbf{V}}}_{M-r} = [\overline{\mathbf{v}}_{r+1} \, \overline{\mathbf{v}}_{r+2} \, ... \, \overline{\mathbf{v}}_M]$ é uma matriz (M x M-r), decomposição da matriz de sensibilidade $\overline{\overline{\mathbf{A}}} = \overline{\overline{\mathbf{U}}} \, \overline{\overline{\mathbf{S}}} \, \overline{\overline{\mathbf{V}}}^T$ pode ser escrita como:

$$\overline{\overline{\mathbf{A}}} = \begin{bmatrix} \overline{\overline{\mathbf{U}}}_r & \overline{\overline{\mathbf{U}}}_{N-r} \end{bmatrix} \begin{bmatrix} \overline{\overline{\mathbf{S}}}_r & \overline{\overline{\mathbf{0}}} \\ \overline{\overline{\mathbf{0}}} & \overline{\overline{\mathbf{0}}} \end{bmatrix} \begin{bmatrix} \overline{\overline{\mathbf{V}}}_r \\ \overline{\overline{\mathbf{V}}}_{M-r} \end{bmatrix}$$

Neste caso a matriz é escrita como

$$\overline{\overline{A}} = \overline{\overline{U_r}} \overline{\overline{S}_r} \overline{\overline{V}_r}$$

Exemplo numérico simples:

Uma Informação:

No MATLAB há um commando "svd" que calcula a decomposição em valores singulares de uma matriz retangular $N \times M$ fornecendo a matriz de valores singulares e as matrizes ortogonais $(N \times N)$ e $(M \times M)$ cujas os vetores colunas são bases do espaço R^N (espaço das observações) e R^M respectivamente.

Veja um exemplo

$$\begin{array}{ll} "a=[1\ 1\ 0;\ 1\ 1\ 0]\\ a=&&&&\\ 1&1&0\\ 1&1&0 \end{array}$$

$$\gg [U, S, V] = svd(a)$$

Neste exemplo acima $\overline{\overline{\mathbf{A}}} \in R^{N \times M}$ é uma matriz expressa como $\overline{\overline{\mathbf{A}}} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$ (N=2 e M=3). Note que o posto desta matriz é igual a 1 (há

apenas uma vetor LI). A decomposição em valores singulares de \overline{A} mostra exatamente que o posto é igual a 1 uma vez que a matriz dos valores singulares $\overline{\overline{S}}$, é uma matriz diagonal contendo apenas um valor não nulo (r=1) $\frac{=}{S} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

Logo $\overline{\overline{S}}_r = [2]$ tem dimensão (1 x 1). Como neste caso as matrizes ortogonais $\overline{\overline{\overline{U}}}$ e $\overline{\overline{\overline{V}}}$ que expressas respectivamente como:

$$\overline{\overline{\mathbf{U}}} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \quad \mathbf{e} \ \overline{\overline{\mathbf{v}}} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

as suas formas particionadas são

$$\overline{\overline{\mathbf{U}}} = \left[\overline{\overline{\mathbf{U}}}_r \quad \overline{\overline{\overline{\mathbf{U}}}}_{N-r} \right] \quad \mathbf{e} \quad \overline{\overline{\overline{\mathbf{V}}}} = \left[\overline{\overline{\overline{\mathbf{V}}}}_r \quad \overline{\overline{\overline{\mathbf{V}}}}_{M-r} \right] .$$

Como temos apenas um valor singular diferente de zero (r = 1) então temos que:

$$\overline{\overline{\mathbf{U}}}_{r} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} e \overline{\overline{\mathbf{V}}_{r}}_{r} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0 \end{bmatrix}$$

Veja que a matriz $\overline{\overline{\mathbf{A}}}$ pode ser escrita como

$$\overline{\overline{A}} = \overline{\overline{U_r}} \overline{\overline{S}_r} \overline{\overline{V}_r}$$

Veja o resultado no Matlab

» Ur=U(:,1) (comando para extrair a primeira coluna da matriz U)

Ur =

0.7071

0.7071

» Vr=V(:,1) (comando para extrair a primeira coluna da matriz V)

Vr =

0.7071

0.7071

0

» Sr = S(1,1) (comando para extrair o único valor singular diferente se zero)

Sr = 2

» Ur*Sr*Vr' (comando que faz o calculo da matriz $\overline{\overline{A}} = \overline{\overline{U_{\mathbf{r}}}} \overline{\overline{S}_{\mathbf{r}}} \overline{\overline{V}_{\mathbf{r}}}$

ans =

1.0000 1.0000

1.0000 1.0000