

SILABO QUÍMICA GENERAL

ÁREA CURRICULAR: MATEMATICAS Y CIENCIAS BÁSICAS

CICLO: III CURSO DE VERANO 2018-I

I. CÓDIGO DEL CURSO : 09003703030

II. CREDITOS : 03

III. REQUISITO : 09066201020 Introducción a la Ingeniería

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso de química General es de carácter teórico y práctico. El propósito del curso, es brindar al estudiante los conceptos y principios básicos de química y sus aplicaciones, a fin de contribuir en su formación profesional, en el análisis, valoración de materiales e insumos químicos relacionados a la industria con criterios de innovación en la tecnología de materiales, y fabricación de dispositivos eléctricos. El desarrollo del curso comprende las siguientes unidades de aprendizaje: I. Materia, propiedades y estructura. II. Formación de compuestos. III. Disoluciones. IV. Estequiometria. V. Estado gaseoso. VI. Energía y las reacciones químicas.

VI. FUENTES DE CONSULTA

Bibliográficas

- Atkins, Jones. (2006). Principios de Química: Los caminos del descubrimiento. 3era edición. Ed. Médica Panamericana.
- · Budge J., Chang R. (2008). "Chemistry" -. Ed. Mc Graw Hill.
- · Mortimer C. E. (1983). Química. Quinta Edición. Grupo Editorial Iberoamérica.
- · Russell J.B. (1992). Química. Séptima edición. Mc. Graw Hill..

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: MATERIA, PROPIEDADES Y ESTRUCTURA

OBJETIVOS DE APRENDIZAJE:

- Clasifica la materia en sustancias y mezclas.
- Mide y/o calcula las propiedades más características de la materia como peso, densidad, volumen, etc.
- Identifica propiedades físicas y químicas, así como los cambios de la materia
- Construye la estructura de los átomos en estado basal a partir de su número y masa atómica.

PRIMERA SEMANA

Materia y Energía. Propiedades de la materia: generales y particulares, masa y peso. Clasificación de la materia: sustancia y mezcla, características generales. Elementos y compuestos. Mezclas homogéneas y heterogéneas.

SEGUNDA SEMANA

El átomo. Estructura. Número atómico y Masa atómica. Isótopos. Naturaleza ondulatoria del electrón. Configuración electrónica: los números cuánticos.

UNIDAD II: FORMACIÓN DE COMPUESTOS

OBJETIVOS DE APRENDIZAJE:

- Describe las propiedades de los elementos a partir de su ubicación en la tabla periódica
- Identifica y/o predice los enlaces químicos que se formarán entre los átomos al formar sustancias.

 Escribe y lee correctamente los compuestos inorgánicos básicos e identifica la función a la que pertenecen.

TERCERA SEMANA

La Tabla Periódica: Bloques, periodos y grupos en la tabla periódica. Ubicación de los elementos. Propiedades periódicas: radio atómico, electronegatividad, energía de ionización, carácter metálico.

CUARTA SEMANA

Práctica Calificada 1

Enlace químico. Electronegatividad y enlace químico: enlaces covalente, iónico y metálico.

QUINTA SEMANA

Características de los enlaces químicos: covalente, iónico y metálico.

Disoluciones: soluto y solvente. Solubilidad. Concentración en unidades físicas: % en peso, % en volumen.

UNIDAD III: DISOLUCIONES

OBJETIVOS DE APRENDIZAJE:

- Identifica el soluto y el solvente en una disolución.
- · Obtiene la concentración de una solución en unidades físicas y químicas.
- · Clasifica las sustancias en ácidos y bases.
- Obtiene la concentración de una solución por titulación.

SEXTA SEMANA

Concentración en unidades químicas: molaridad, normalidad, fracción molar. Ejercicios.

Definición de ácidos y bases de Arrhenius, Bronsted y Lowry y Lewis. Reacciones de neutralización. Titulación de soluciones. Ejercicios.

SÉPTIMA SEMANA

Reacciones Químicas. Reactivos y Productos. Clasificación por: productos, cambio de energía, cambios en el número de oxidación y sentido de la reacción.

Cálculos estequiométricos en masa, número de moles.

OCTAVA SEMANA

Examen Parcial

UNIDAD IV: ESTEQUIOMETRÍA

OBJETIVOS DE APRENDIZAJE:

- Clasifica adecuadamente las Reacciones Químicas de acuerdo al criterio establecido.
- · Identifica los reactivos limitantes y en exceso en una reacción química.
- Realiza cálculos estequiométricos en problemas complejos que incluyen pureza de reactivo, conversión y rendimiento.

NOVENA SEMANA

Estequiometría: Problemas con pureza de reactivo y concentración. Problemas con conversión de reactivo y rendimiento de reacción

UNIDAD V: ESTADO GASEOSO

OBJETIVOS DE APRENDIZAJE:

- Describe los principios de la Teoría Cinético Molecular.
- Aplica apropiadamente la Ley de los Gases Ideales en la resolución de problemas

DÉCIMA SEMANA

El estado Gaseoso. Características. Definición y problemas sobre presión.

Principios de la Teoría Cinético Molecular de los Gases. Gases Ideales y Gases Reales.

Ley General de los Gases Ideales. Aportes de Gay Lussac, Charles, Boyle y Mariotte. Ley de los Gases Ideales: Problemas.

UNDÉCIMA SEMANA

Definición de Sistema y límites del sistema. Energía: clases. Calor: Calor latente y calor sensible. Cálculos para calcular el calor ganado o perdido por un cuerpo. Trabajo. Cálculo para obtener el trabajo que realiza o recibe un cuerpo. Ejercicios.

UNIDAD VI: ENERGÍA Y LAS REACCIONES QUÍMICAS

OBJETIVOS DE APRENDIZAJE:

- Identifica las energías de tránsito: Calor y Trabajo.
- Calcula la entalpía de reacción en función de los datos de calor de formación y de forma práctica usando un calorímetro.
- Calcula los requerimientos de energía para los procesos electroquímicos

DUODÉCIMA SEMANA

Práctica Calificada 2

DECIMOTERCERA SEMANA

Cambios de energía en una reacción química. Definición de entalpía de reacción. Cálculos de la entalpía de reacción. Ley de Hess. Ejemplos.

DECIMOCUARTA SEMANA

Electroquímica: unidades de carga e intensidad. Leyes de Faraday. Aplicaciones Celdas Galvánicas. Descripción y cálculos del voltaje obtenido.

DECIMOQUINTA SEMANA

Exposición de Trabajos de Investigación

DECIMOSEXTA SEMANA

Examen Final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a.- Matemática y Ciencias Básicas 3 b.- Tópicos de Ingeniería 0 c.- Educación General 0

IX. PROCEDIMIENTOS DIDÁCTICOS

Las clases se realizarán estimulando la participación activa de los estudiantes mediante las preguntas que puedan hacer sobre el desarrollo de ejercicios y problemas desarrollados en clase. Las exposiciones del docente irán orientadas a hacer razonar al alumno.

X. EQUIPOS Y MATERIALES

Materiales: Texto base recomendado y las separatas de ejercicios dados.

XI. EVALUACIÓN

PF = (2*PE + EP + EF) / 4PE = (PPR + W1 + PL)/3PPR = (P1 + P2) / 2PL = ((Lb1+Lb2+Lb3+Lb4+Lb5+Lb6)/6+EO)/2

Donde:

PF: promedio Final P2 : Práctica Calificada 2 (escrito)

W1: Trabajo Final (escrito y exposición oral) PE : Promedio de Evaluaciones

PL: Promedio de Laboratorio (LC) EP: Examen Parcial (escrito) EF : Examen final (escrito) EO : Examen de Laboratorio

PPR: Promedio de Prácticas Calificadas Lb1...Lb6: Nota de calificación de laboratorio

P1 : Práctica Calificada 1 (escrito)

Las Sesiones de Laboratorio se calificarán de acuerdo a:

- Puntualidad y asistencia: 0 a 3 puntos.
- Informe de Laboratorio (según formato y puntualidad de entrega): 0 a 12 puntos.
- Trabajo y Desempeño en sesión de laboratorio: 0 a 5 puntos (Se consideran aquí los puntos ganados por intervención en clase teórica y laboratorio).

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para las Escuelas Profesionales de: Ingeniería Electrónica, Ingeniería Civil, Ingeniería de Industrias Alimentarias, se establece en la tabla siguiente:

K = clave R = relacionado Recuadro vacío = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	
(d).	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	
(f).	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	K

XIII.HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
1	2	2

- b) Número de sesiones por semana: Dos sesiones por semana
- c) Duración: 5 horas académicas de 45 minutos

XIV. JEFE DE CURSO

Ing. Rosa Aguirre Medrano

XV. FECHA

La Molina, enero de 2018