# MBW damage model history and outlook

- Monotonic loading case

Junhe Lian & Fuhui Shen

This version was presented on 20.03.17. Updates and corrections will be added in future versions.

#### Subgroup MBW damage model Discussion held on Nov 2 2016



#### **Basic equations in MBW**

$$\varepsilon = \varepsilon^e + \varepsilon^p$$

Yield function.

$$\Phi = \bar{\sigma}(\boldsymbol{\sigma}) - (1 - D)\sigma_{\mathbf{y}} \leq 0$$

#### 1. Flow curves

The original one without strain rate and T effects.

$$\sigma_{\mathbf{y}} = \bar{\sigma}_{\mathbf{y}}(\bar{\varepsilon}^{\mathbf{p}}) \cdot f(\eta) \cdot f(\bar{\theta})$$
1.1

The one with strain rate and T effects.

$$\sigma_{\mathbf{v}} = \bar{\sigma}_{\mathbf{v}}(\bar{\varepsilon}^{\mathbf{p}}, \dot{\bar{\varepsilon}}^{\mathbf{p}}) \cdot f(\eta) \cdot f(\bar{\theta}) \cdot f(T)$$
1.2

$$f(T) = C_1^T \cdot exp(C_2^T \cdot T) + C_3^T$$

The new one with strain rate and T effects, which are dependent on  $\bar{\varepsilon}^p$ .

$$\sigma_{\mathbf{y}} = \bar{\sigma}_{\mathbf{y}}(\bar{\varepsilon}^{\mathbf{p}}, \dot{\bar{\varepsilon}}^{\mathbf{p}}) \cdot f(\eta) \cdot f(\bar{\theta}) \cdot f(T)$$
1.3

$$\blacktriangleright \ \bar{\sigma}_y(\bar{\varepsilon}^p,\dot{\bar{\varepsilon}}^p) = \bar{\sigma}_y(\bar{\varepsilon}^p,f(\dot{\bar{\varepsilon}}^p,\bar{\varepsilon}^p))$$

$$ightharpoonup f(T) = f(T, \overline{\varepsilon}^p)$$

# 2. Ductile damage initiation (DDI)

The original one without loading history dependence.

$$\overline{\varepsilon}^{\mathrm{p}} = \overline{\varepsilon}_{\mathrm{ddi}}^{\mathrm{p}}$$
 2.1

$$\succ \ \bar{\varepsilon}_{\mathrm{ddi}}^{\mathrm{p}} = f(\eta, \bar{\theta} | C_1 \sim C_6)$$

The one with loading history dependence.

$$I_{\rm dd} = \int \frac{d\bar{\varepsilon}^{\rm p}}{\bar{\varepsilon}_{\rm ddi}^{\rm p}(\eta, \bar{\theta})} = 1$$
 2.2

# 3. Ductile damage evolution (DDE)

$$\dot{D} = \frac{\sigma_{yi} \cdot L}{2 \cdot G_f} \cdot \dot{\varepsilon}^p$$

$$\dot{D} = \frac{\sigma_{y0} \cdot L}{2 \cdot G_f} \cdot \dot{\varepsilon}^{p}$$
 3.2

3.1

$$\dot{D} = \frac{\sigma_{yi}(\sigma_{y0})}{2 \cdot G_f} \cdot \dot{\varepsilon}^p$$
3.3

$$\dot{D} = \frac{\sigma_{\rm yi}(\sigma_{\rm y0})}{G_{\rm f}} \cdot \dot{\varepsilon}^{\rm p}$$
 3.4

### 4. Ductile fracture (DF)

The original one without stress state dependence.

$$D = D_{\rm cr}$$

$$\triangleright$$
  $D_{\rm cr} = {\rm constant}$ 

The new one with stress state dependence.

$$D = D_{\rm cr}$$

4.1

$$D_{\rm cr} = C_1^{\rm cr} \cdot \bar{\theta}^2 + C_2^{\rm cr}$$

The new one with stress state dependence and considering loading history effects.

$$I_{\rm df} = \int \frac{dD}{D_{\rm cr}(\eta, \bar{\theta})} = 1 \tag{4.3}$$

$$D_{\rm cr} = f(\eta, \bar{\theta} | C_1 \sim C_6)$$

# 5. Cut-off values

# 5. Cut-off values

#### 6. Cleavage fracture initiation (CFI)

The original one.

$$\sigma_1 = \sigma_{
m c}$$

6.1

$$\sigma_{\rm c} = {\rm constant}$$

The new one with stress state dependence.

$$\sigma_1 = \sigma_c \quad \land \quad \overline{\varepsilon}^p = \overline{\varepsilon}_{mdi}^p$$

6.2

$$\triangleright \sigma_{\rm c} = {\rm constant}$$

$$\triangleright \quad \bar{\varepsilon}_{\mathrm{mdi}}^{\mathrm{p}} = f(\eta, \bar{\theta} | C_1 \sim C_6)$$

The new one with stress state dependence and P value.

$$\sigma_1 = \sigma_c \quad \land \quad \overline{\varepsilon}^p = \overline{\varepsilon}_{mdi}^p$$

6.3

$$\triangleright \sigma_{\rm c} = {\rm constant}$$

$$ightharpoonup \bar{\varepsilon}_{\mathrm{mdi}}^{\mathrm{p}} = \bar{\varepsilon}_{\mathrm{u}}^{\mathrm{p}} \cdot \left( \ln \left( \frac{1}{1 - P_{\mathrm{mdi}}} \right) \right)^{1/m}$$

$$\triangleright \ \bar{\varepsilon}_{\mathrm{u}}^{\mathrm{p}} = f(\eta, \bar{\theta} | \mathcal{C}_1 \sim \mathcal{C}_6)$$

The new one with loading history dependence.

$$\sigma_1 = \sigma_{
m c} \quad \land \quad I_{
m cf} = \int rac{d\overline{arepsilon}^{
m p}}{\overline{arepsilon}^{
m p}_{
m mdi}(\eta,\overline{ heta})} = 1$$

6.4

$$\sigma_{\rm c} = {\rm constant}$$

#### 7. Ductile & cleavage interaction

The original one.

$$D = \begin{cases} 0 & \overline{\varepsilon}^{p} < \overline{\varepsilon}^{p} \\ 0 & \overline{\varepsilon}^{p}_{mdi} < \overline{\varepsilon}^{p} < \overline{\varepsilon}^{p}_{ddi} & \wedge & \sigma_{1} < \sigma_{c} \\ 1 & \overline{\varepsilon}^{p}_{mdi} < \overline{\varepsilon}^{p} < \overline{\varepsilon}^{p}_{ddi} & \wedge & \sigma_{1} \geq \sigma_{c} \\ 0 & I_{dd} < 1 \\ 0 & I_{dd} \geq 1 & \wedge & I_{df} < 1 \\ 1 & I_{df} = 1 \end{cases}$$

$$7.1$$

The new one.

$$D = \begin{cases} 0 & I_{cf} < 1\\ 0 & I_{cf} = 1, I_{dd} < 1 & \wedge & \sigma_{1} < \sigma_{c}\\ 1 & I_{cf} = 1, I_{dd} < 1 & \wedge & \sigma_{1} \ge \sigma_{c}\\ 0 & I_{dd} < 1\\ 0 & I_{dd} \ge 1 & \wedge & I_{df} < 1\\ 1 & I_{df} = 1 \end{cases}$$
7.2

| Basic equations in MBW                                                                                                                                                                                                                                                                      | 4. Ductile fra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cture (DF)                                                          |            | 6. Cleavage fracture initiation (CFI)   |                                                                                                                                                                            |                                                                                                                                                                                                               |                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|
| $\varepsilon = \varepsilon^{e} + \varepsilon^{p}$                                                                                                                                                                                                                                           | The original one wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The original one without stress state dependence.                   |            |                                         | The original one.                                                                                                                                                          |                                                                                                                                                                                                               |                        |  |  |
| $\varepsilon = \varepsilon^{-} + \varepsilon^{-}$ Yield function.                                                                                                                                                                                                                           | $D=D_{ m cr}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $D = D_{\rm cr} 		4.1$                                              |            |                                         | $\sigma_1 = \sigma_c$ 6.1                                                                                                                                                  |                                                                                                                                                                                                               |                        |  |  |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\succ D_{cr} = constant$ The new one with stress state dependence. |            |                                         | $ ightharpoonup \sigma_{\rm c} = { m constant}$                                                                                                                            |                                                                                                                                                                                                               |                        |  |  |
| $\Phi = \bar{\sigma}(\boldsymbol{\sigma}) - (1 - D)\sigma_{\mathbf{y}} \le 0$                                                                                                                                                                                                               | $D = D_{\rm cr}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ness state dependence.                                              | 4.2        |                                         | The new one with                                                                                                                                                           | stress state dependence.                                                                                                                                                                                      | ι                      |  |  |
| 1. Flow curves                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ D_{cr} = C_1^{cr} \cdot \bar{\theta}^2 + C_2^{cr} $               |            |                                         |                                                                                                                                                                            | $\sigma_1 = \sigma_c  \wedge  \overline{\varepsilon}^p = \overline{\varepsilon}_{mdi}^p $ 6.2                                                                                                                 |                        |  |  |
|                                                                                                                                                                                                                                                                                             | The new one with s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tress state dependence and considering loading histo                |            | $\succ \sigma_{\rm c} = {\rm constant}$ |                                                                                                                                                                            |                                                                                                                                                                                                               |                        |  |  |
| The original one without strain rate and T effects.  1.1                                                                                                                                                                                                                                    | $I_{\rm df} = \int \frac{dD}{D_{\rm e}(n,\bar{\theta})} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $I_{df} = \int \frac{dD}{D_{crt}(n,\bar{\theta})} = 1 \tag{4.3}$    |            |                                         |                                                                                                                                                                            | $\eta, \bar{\theta}   C_1 \sim C_6)$                                                                                                                                                                          | nd B value             |  |  |
| $\sigma_{\mathbf{y}} = \bar{\sigma}_{\mathbf{y}}(\bar{\epsilon}^{\mathbf{p}}) \cdot f(\eta) \cdot f(\bar{\theta})$                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |            |                                         | The new one with stress state dependence and P value $ \vec{P} = \vec{P} = \vec{P} $ 6.3                                                                                   |                                                                                                                                                                                                               |                        |  |  |
| The one with strain rate and T effects.                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |            |                                         |                                                                                                                                                                            | $\sigma_{1} = \sigma_{c}  \wedge  \overline{\varepsilon}^{p} = \overline{\varepsilon}_{mdi}^{p}$ $\Rightarrow  \sigma_{c} = constant$ $\sigma_{c} = constant$ $\sigma_{c} = constant$ $\sigma_{c} = constant$ |                        |  |  |
| $\sigma_{\mathbf{y}} = \bar{\sigma}_{\mathbf{y}}(\bar{\varepsilon}^{\mathbf{p}}, \dot{\varepsilon}^{\mathbf{p}}) \cdot f(\eta) \cdot f(\bar{\theta}) \cdot f(T) $ $1.2$                                                                                                                     | 5. Cut-off val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5. Cut-off values                                                   |            |                                         |                                                                                                                                                                            |                                                                                                                                                                                                               |                        |  |  |
|                                                                                                                                                                                                                                                                                             | none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     | 5.         | - 1 1                                   | $ \mathbf{\mathcal{E}}_{\mathrm{mdi}}^{\mathrm{p}} = \mathbf{\mathcal{E}}_{\mathrm{u}}^{\mathrm{p}} \cdot \left(\ln\left(\frac{1}{1-p_{\mathrm{mdi}}}\right)\right)^{1/m}$ |                                                                                                                                                                                                               |                        |  |  |
| $f(T) = C_1^T \cdot \exp(C_2^T \cdot T) + C_2^T$                                                                                                                                                                                                                                            | $\eta \leq \eta_{\rm c} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     | 5.         |                                         |                                                                                                                                                                            | $\theta   C_1 \sim C_6$ )  loading history dependent                                                                                                                                                          | re.                    |  |  |
| The new one with strain rate and T effects, which are dependent on $\bar{\epsilon}^{p}$ .                                                                                                                                                                                                   | $\eta \leq \eta_{ m c} = -rac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Rightarrow \dot{I} = 0 \qquad \&  \dot{D}_{\rm f} = 0$            | 5.         |                                         |                                                                                                                                                                            |                                                                                                                                                                                                               | 6.4                    |  |  |
| $\sigma_{\mathbf{v}} = \bar{\sigma}_{\mathbf{v}}(\bar{\mathbf{c}}^{\mathbf{p}}, \dot{\mathbf{c}}^{\mathbf{p}}) \cdot f(\eta) \cdot f(\bar{\theta}) \cdot f(T) $ $1.3$                                                                                                                       | $\eta \leq \eta_{	ext{c}} = f(ar{	heta})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     | 5.         | 3                                       | $\sigma_1 = \sigma_c  \wedge  I_c$                                                                                                                                         | $\frac{de}{ef} = \int \frac{de}{\overline{e}_{\mathrm{mdi}}^{\mathrm{p}}(\eta, \overline{\theta})} = 1$                                                                                                       | 0.1                    |  |  |
| $ \bar{\sigma}_{\mathbf{y}}(\bar{\varepsilon}^{\mathbf{p}}, \dot{\varepsilon}^{\mathbf{p}}) = \bar{\sigma}_{\mathbf{y}}(\bar{\varepsilon}^{\mathbf{p}}, f(\dot{\varepsilon}^{\mathbf{p}}, \bar{\varepsilon}^{\mathbf{p}})) $                                                                | 7. Ductile & cleavage interaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |            |                                         | $\sigma_{c} = \text{constant}$ $\epsilon_{\text{mdi}}^{p} = f(\eta, \bar{\theta}   C_{1} \sim C_{6})$                                                                      |                                                                                                                                                                                                               |                        |  |  |
| $\Rightarrow f(T) = f(T, \overline{\varepsilon}^{p})$                                                                                                                                                                                                                                       | The original one.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |            |                                         | mai / x                                                                                                                                                                    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                       |                        |  |  |
| 2. Ductile damage initiation (DDI)                                                                                                                                                                                                                                                          | ( 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\bar{\varepsilon}^{\mathrm{p}} < \bar{\varepsilon}^{\mathrm{p}}$ . | (          | 0                                       | $I_{\rm ef} < 1$                                                                                                                                                           |                                                                                                                                                                                                               |                        |  |  |
|                                                                                                                                                                                                                                                                                             | $D = \begin{cases} 0 & \overline{\varepsilon}^{p} < \overline{\varepsilon}^{p}_{mdi} \\ 0 & \overline{\varepsilon}^{p}_{mdi} < \overline{\varepsilon}^{p} < \overline{\varepsilon}^{p}_{ddi} & \wedge & \sigma_{1} < \sigma_{c} \\ 1 & \overline{\varepsilon}^{p}_{mdi} < \overline{\varepsilon}^{p} < \overline{\varepsilon}^{p}_{ddi} & \wedge & \sigma_{1} < \sigma_{c} \\ 0 & I_{dd} < 1 \\ 0 & I_{dd} \ge 1 & \wedge & I_{df} < 1 \\ 1 & I_{df} = 1 \end{cases}$ $D = \begin{cases} 0 & I_{cf} < 1 \\ 0 & I_{cf} = 1, I_{dd} < 1 & \wedge & \sigma_{1} < \sigma_{c} \\ 1 & I_{cf} = 1, I_{dd} < 1 & \wedge & \sigma_{1} \ge \sigma_{c} \\ 0 & I_{dd} < 1 & \wedge & I_{df} < 1 \\ 1 & I_{df} = 1 \end{cases}$ $0 & I_{dd} \ge 1 & \wedge & I_{df} < 1 \\ 1 & I_{df} = 1 \end{cases}$ |                                                                     |            |                                         |                                                                                                                                                                            |                                                                                                                                                                                                               |                        |  |  |
| The original one without loading history dependence.                                                                                                                                                                                                                                        | $D = \begin{cases} 1 & \overline{\varepsilon}_{\text{mdi}}^{\text{p}} < \overline{\varepsilon}^{\text{p}} < \overline{\varepsilon}^{\text{p}} < \overline{\varepsilon}_{\text{ddi}}^{\text{p}} & \wedge & \sigma_{1} \ge \sigma_{\text{c}} \end{cases} $ 7.1 $ D = \begin{cases} 1 & I_{\text{cf}} = 1, I_{\text{dd}} < 1 & \wedge & \sigma_{1} \ge \sigma_{\text{c}} \\ 0 & I_{\text{dd}} < 1 \end{cases} $ 7.2                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |            |                                         |                                                                                                                                                                            |                                                                                                                                                                                                               |                        |  |  |
| $\bar{\varepsilon}^{\mathrm{p}} = \bar{\varepsilon}_{\mathrm{ddi}}^{\mathrm{p}}$ 2.1                                                                                                                                                                                                        | $\begin{bmatrix} 0 & I_{\mathrm{dd}} < 1 \\ 0 & I_{\mathrm{dd}} \ge 1 & \wedge & I_{\mathrm{df}} < 1 \end{bmatrix}$ $\begin{bmatrix} 0 & I_{\mathrm{dd}} \ge 1 & \wedge & I_{\mathrm{df}} < 1 \\ 1 & I_{\mathrm{de}} = 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     |            |                                         |                                                                                                                                                                            |                                                                                                                                                                                                               |                        |  |  |
| $\triangleright  \bar{\varepsilon}_{ddi}^{p} = f(\eta, \bar{\theta}   C_1 \sim C_6)$                                                                                                                                                                                                        | \1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $I_{ m df}=1$                                                       |            |                                         | *di *                                                                                                                                                                      |                                                                                                                                                                                                               |                        |  |  |
| The one with loading history dependence.                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     | T          |                                         | I                                                                                                                                                                          |                                                                                                                                                                                                               |                        |  |  |
| ( d=p                                                                                                                                                                                                                                                                                       | Internal name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Features                                                            | Subroutine | IS                                      | Location                                                                                                                                                                   | Developer                                                                                                                                                                                                     | Comment                |  |  |
| $I_{\rm dd} = \int \frac{d\bar{\varepsilon}^{\rm p}}{\bar{\varepsilon}^{\rm p}_{\rm ddi}(\eta, \bar{\theta})} = 1 $ 2.2                                                                                                                                                                     | MBW 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1; 2.1; 3.1; 4.1; 5.0                                             | VUMAT      | Expl.                                   | О                                                                                                                                                                          | Sharaf/Lian                                                                                                                                                                                                   |                        |  |  |
| 3. Ductile damage evolution (DDE)                                                                                                                                                                                                                                                           | MBW 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2; 2.1; 3.1; 4.1; 5.1; 6.1; 7.1                                   | VUMAT      | Expl.                                   | 0                                                                                                                                                                          | Sharaf/Lian                                                                                                                                                                                                   | Equivalent to bw-001.f |  |  |
| $\dot{\rho} = \frac{\sigma_{yi} \cdot L}{\dot{\sigma}_{yi}}$ 3.1                                                                                                                                                                                                                            | MBW 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1; 2.1; 3.1; 4.1; 5.1; 6.1; 7.1                                   | VUMAT      | Impl.                                   | О                                                                                                                                                                          | Sharaf/Lian                                                                                                                                                                                                   | Unverified             |  |  |
| $\dot{D} = \frac{\sigma_{yi} \cdot L}{2 \cdot G_f} \cdot \dot{\varepsilon}^p \tag{3.1}$                                                                                                                                                                                                     | MBW 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2; 2.1; 3.4; 4.2; 5.1                                             | VUMAT      | Expl.                                   | О                                                                                                                                                                          | Novokshanov                                                                                                                                                                                                   |                        |  |  |
| $\dot{D} = \frac{\sigma_{y0} \cdot L}{2 \cdot G_f} \cdot \dot{\bar{\epsilon}}^{p} $ 3.2                                                                                                                                                                                                     | MBW 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2; 2.2; 3.4; 4.3; 5.2; 6.1; 7.1                                   | VUMAT      | Expl.                                   | 0                                                                                                                                                                          | Wu                                                                                                                                                                                                            |                        |  |  |
| $\dot{D} = \frac{\sigma_{y0} \cdot L}{2 \cdot G_{f}} \cdot \dot{\bar{\varepsilon}}^{p}$ $\dot{D} = \frac{\sigma_{yl}(\sigma_{y0})}{2 \cdot G_{f}} \cdot \dot{\bar{\varepsilon}}^{p}$ $\dot{D} = \frac{\sigma_{yl}(\sigma_{y0})}{G_{f}} \cdot \dot{\bar{\varepsilon}}^{p}$ $3.3$ $3.3$ $3.4$ | MBW 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2; 2.1; 3.1; 4.1; 5.1; 6.4; 7.2                                   | VUMAT      | Expl.                                   | О                                                                                                                                                                          | Не                                                                                                                                                                                                            |                        |  |  |
| $\sigma_{vi}(\sigma_{v0})$ 3.4                                                                                                                                                                                                                                                              | MBW 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.3; 2.1; 3.4; 4.2; 5.1; 6.3; 7.1                                   | VUMAT      | Expl.                                   | GG                                                                                                                                                                         | Golisch                                                                                                                                                                                                       |                        |  |  |
| $\div  ^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$                                                                                                                                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     |            |                                         |                                                                                                                                                                            |                                                                                                                                                                                                               |                        |  |  |
| $\dot{D} = \frac{\sigma_{y1}(\sigma_{y0})}{G_{f}} \cdot \dot{\varepsilon}^{p}$                                                                                                                                                                                                              | MBW 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2; 2.2; 3.4; 4.3; 5.2; 6.4; 7.2                                   | VUMAT      | Expl.                                   | О                                                                                                                                                                          | Wu/He/Shen                                                                                                                                                                                                    |                        |  |  |

| Internal name | Features                          | Subroutine | IS    | Location | Developer   | Comment                |
|---------------|-----------------------------------|------------|-------|----------|-------------|------------------------|
| MBW 1.0       | 1.1; 2.1; 3.1; 4.1; 5.0           | VUMAT      | Expl. | О        | Sharaf/Lian |                        |
| MBW 2.0       | 1.2; 2.1; 3.1; 4.1; 5.1; 6.1; 7.1 | VUMAT      | Expl. | 0        | Sharaf/Lian | Equivalent to bw-001.f |
| MBW 2.1       | 1.1; 2.1; 3.1; 4.1; 5.1; 6.1; 7.1 | VUMAT      | Impl. | О        | Sharaf/Lian | Unverified             |
| MBW 3.0       | 1.2; 2.1; 3.4; 4.2; 5.1           | VUMAT      | Expl. | О        | Novokshanov |                        |
| MBW 4.0       | 1.2; 2.2; 3.4; 4.3; 5.2; 6.1; 7.1 | VUMAT      | Expl. | О        | Wu          |                        |
| MBW 5.0       | 1.2; 2.1; 3.1; 4.1; 5.1; 6.4; 7.2 | VUMAT      | Expl. | О        | Не          |                        |
| MBW 6.0       | 1.3; 2.1; 3.4; 4.2; 5.1; 6.3; 7.1 | VUMAT      | Expl. | GG       | Golisch     |                        |
| MBW 7.0       | 1.2; 2.2; 3.4; 4.3; 5.2; 6.4; 7.2 | VUMAT      | Expl. | О        | Wu/He/Shen  |                        |