

# Mastering Machine Learning for Spatial Prediction I

**Introduction and Overview of Methods** 

OpenGeoHub 4/5 September 2019

Madlene Nussbaum

### **Objectives** ...

- Make sense of terms and concepts often heard
- Get an overview of machine learning (ML) methods and their strategies
- Learn to apply at least 3 ML techniques
- Machine learning will not solve all your problems by one click, so be critical!

Be able to judge if computing model averaging on 78 methods found in Package caret is a sensible thing to do ...

#### **Content of lecture**

#### Terms and concepts

Spatial modelling: requirements?

Overview of ML and their strategies

Side note: overfitting

#### Methods

- Lasso
- Support Vector Machines
- Ensemble Learners
  - Random Forest
  - Boosting
  - Model averaging

#### **Introduction: some terms**



→ For environmental mapping maybe better: statistical learning or computational statistics

#### Introduction: some terms

#### Unsupervised learning

No response, just "covariates"

- → e.g. clustering of satellite image by similar values
- → operates "blind"

### Supervised learning

For each covariate value  $x_i$  there is also a response value  $y_i$ 

- → e.g. random forest
- → what we usually do for environmental mapping
  - Regression: continuous responses, e.g. soil clay content, rainfall
- Classification: categorical responses (binary or multinomial),
   e.g. soil type

## Huge topic, hence further reading advised:

#### Gareth et al. 2017, very nice and solid introduction, easy accessible.

Gareth, James, Witten, Daniela, Hastie, Trevor and Tibshirani, Robert. An introduction to statistical learning: With applications in R. 8 edn. New York: Springer, 2017.

#### Hastie et al. 2009, very good and detailed book, but rather advanced.

Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical Learning; Data Mining, Inference and Prediction, Springer, New York, 2 edn., 2009. with examples and data in R package ElemStatLearn, https://cran.r-project.org/web/packages/ElemStatLearn/index.html

## Kuhn et al. 2013, form the author of the R package caret, focuses a bit more on classification

Kuhn, M., Johnson, K.: Applied predictive modeling, Springer, New York, 2013.

See also caret package website for overviews ans basic explanations: https://topepo.github.io/caret/

#### Hothorn, 2018, overview of R packages for ML:

Hothorn, Torsten. CRAN Task View: Machine Learning & Statistical Learning https://CRAN.R-project.org/view=MachineLearning, 2018.

#### **Content of lecture**

Terms and concepts

Spatial modelling: requirements?

Overview of ML and their strategies

Side note: overfitting

#### Methods

- Lasso
- Support Vector Machines
- Ensemble Learners
  - Random Forest
  - Boosting
  - Model averaging

## Step back: What do we need for spatial predictions?

#### My situation ...



texture density gravel soil depth drainage pH, ECEC SOC

300-1400 locations with soil properties in

2–4 soil depth3 study areas



300-500 environmental covariates





48 statistical models

#### Requirements

A spatial prediction method should ...

- model nonlinear relations
- consider spatial autocorrelation
- model continuous and categorical responses
- handle numerous correlated covariates without overfitting calibration data
- automatically build models with good predictive power
- preferably result in sparse model
- accurately quantify accuracy of predictions
- give prediction uncertainty

#### **Content of lecture**

Terms and concepts

Spatial modelling: requirements?

Overview of ML and their strategies

Side note: overfitting

#### Methods

- Lasso
- Support Vector Machines
- Ensemble Learners
  - Random Forest
  - Boosting
  - Model averaging

## I tried to tidy up ...



**Regression**linear and non-linear
models, geostatistics



**Dimension reduction** PCA, PLS



Regularisation Shrinkage Lasso



Bayes methods



**Decision trees**CART



Neuronal networks



Support vector machines kernel methods



**Ensembles**bootstrap, boosting,
model averaging

## I tried to tidy up ...



**Regression**linear and non-linear
models, geostatistics



**Dimension reduction** PCA, PLS



Regularisation Shrinkage Lasso



Bayes methods

#### Linear (more or less)



**Decision trees**CART



Neuronal networks

**High complexity** 



Support vector machines

kernel methods



**Ensembles**bootstrap, boosting,
model averaging

#### **Content of lecture**

Terms and concepts

Spatial modelling: requirements?

Overview of ML and their strategies

Side note: overfitting

#### Methods

- Lasso
- Support Vector Machines
- Ensemble Learners
  - Random Forest
  - Boosting
  - Model averaging

## Side note: Overfitting? Bias-Variance trade-off



**FIGURE 2.11.** *Test and training error as a function of model complexity.* Hastie et al. 2009, p. 38.

#### **Bias-Variance tradeoff**

Linear Regression of 0/1 Response

1-Nearest Neighbor Classifier



Chap.

2009,

<u>ਜ</u>

Hastie

Linear model high bias, but stable

1-nearest neighbours low bias, high variance

$$\mathrm{E}ig[ig(y-\hat{f}\left(x
ight)ig)^2ig]=\mathrm{Bias}ig[\hat{f}\left(x
ight)ig]^2+\mathrm{Var}ig[\hat{f}\left(x
ight)ig]+\sigma^2$$

**Bias:** erroneous assumptions in the model, miss relevant relationship (underfitting). **Variance**: sensitivity to small fluctuations in the calibration data, algorithm models random noise in calibration data, instead of just relevant relationship (overfitting).

#### **Content of lecture**

Terms and concepts

Spatial modelling: requirements?

Overview of ML and their strategies

Side note: overfitting

#### Methods

- Lasso
- Support Vector Machines
- Ensemble Learners
  - Random Forest
  - Boosting
  - Model averaging

#### **Lasso: ML for linear models**



- Select linear regression with stepwise forward/backward, best subset:
   Most often does not find true model, does overfit, selection is binary either in or out
- Shrinkage: include a covariate, but with smaller / downweighted coefficients
- Different approaches (ridge regression etc.), most promising:
   Lasso: least absolute shrinkage and selection operator

$$\hat{\beta}^{\mathrm{lasso}} = \operatorname*{argmin}_{\beta} \bigg\{ \frac{1}{2} \sum_{i=1}^{N} \big( y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \big)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \bigg\}.$$
 OLS Lasso penalty

- Thus the lasso does a kind of continuous subset selection.
- Tuning Parameter  $\lambda$ , find by cross validation

#### **Lasso: ML for linear models**





Path of coefficents for increasing tuning parameter

**FIGURE 3.10.** Profiles of lasso coefficients, as the tuning parameter t is varied. Coefficients are plotted versus  $s = t/\sum_{1}^{p} |\hat{\beta}_{j}|$ . A vertical line is drawn at s = 0.36, the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso profiles hit zero, while those for ridge do not. The profiles are piece-wise linear, and so are computed only at the points displayed; see Section 3.4.4 for details.

#### Model selection with lasso





Path of coefficients for increasing tuning parameter

Coefficient becomes 0, meaning the covariate is removed from the model

**FIGURE 3.10.** Profiles of lasso coefficients, as the tuning parameter t is varied. Coefficients are plotted versus  $s = t/\sum_{1}^{p} |\hat{\beta}_{j}|$ . A vertical line is drawn at s = 0.36, the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso profiles hit zero, while those for ridge do not. The profiles are piece-wise linear, and so are computed only at the points displayed; see Section 3.4.4 for details.

With lambda = 1, there is no shrinkage, and we have the normal ordinary least squares linear model fit

### **Lasso: ML for linear models**





Berne data set, subspoil pH, >400 partly higly correlated and noisy covariates

#### **Lasso: Pros and Cons**



- Very fast
- Selects covariates
- No problems with colinearity
- Easy interpretation (linear relationships)
- $\checkmark$  Linear regression with a lot of covariates, even n>>p
- Response transformation needed (assumption of Gaussian errors)
- Linear only, no interactions if not added explicitly (if n>>>p becomes nonlinear again)
- Take care, not always stable
- Rather underfitting
   (possible solution: relaxed Lasso with a second fit on non-zero covariates only)
- \* Standard errors not defined, prediction uncertainty only with bootstrap
- No direct spatial modelling, only via workaround

#### **Content of lecture**

Terms and concepts

Spatial modelling: requirements?

Overview of ML and their strategies

Side note: overfitting

#### Methods

- Lasso
- Support Vector Machines
- Ensemble Learners
  - Random Forest
  - Boosting
  - Model averaging

## **Support Vector Machines (SVM)**



• Explain ...

#### **SVM: Pros and Cons**



- Quite fast
- Robust to outliers
- Handles non linear relationships
- Good predictive power expected
- Easy to apply, only 1-2 tuning parameters
- Does not select covariates
- Difficult to interpret
- \* Standard errors not defined, prediction uncertainty only with bootstrap
- No direct spatial modelling, only via workaround

#### **Content of lecture**

Terms and concepts

Spatial modelling: requirements?

Overview of ML and their strategies

Side note: overfitting

#### Methods

- Lasso
- Support Vector Machines
- Ensemble Learners
  - Random Forest
  - Boosting
  - Model averaging

#### **Ensemble Machine Learners**

- Combine predictions of several learners (any method)
- Meaningful for low-bias, high-variance procedures



#### Strategies:

- Bagging = bootstrap aggregation.
   Uniform resampling the data with replacement (no change of response distribution), fit the data to each resampled set, prediction = average of all single predictions
- Gradient boosting
   Adaptive updating strategy, shrunken stepwise forward selection, fits on residuals → change of distribution
- Model averaging
   Fits on the same response by different methods

#### random forest



- Ensemble method with CART as base element CART: classification and regression tree
   recursive binary splitting of the dataset
- A large number of trees (ntree) are grown, e.g. 500
- Algorithm ensures trees are decorrelated with
  - Resampling of original dataset with replacement
  - Not all covariates are used at splits of the tree, only a subset (mtry)
- Prediction is the average of all trees (continouous response) or the majority vote (binary or multinomial response)

## random forest: algorithm

- 1) Resample dataset (with replacement)
- 2) Take a random sample of covariates
- Test all selected covariates: find optimal covariate value to split data into 2 portions (minimize squared error or wrongly classified)
- 4) Chose covariate that has the lowest error and split data
- 5) Continue to split the data with (3)-(4) until you are left with a small number of data points (*nodesize*) in each leaf of the tree
- 6) Repeat (1)-(5) *ntree* times

#### Main tuning parameters:

**mtry**: number of randomly selected covariates to try at each split

**ntree**: number of trees (mostly not sensitive)

**nodesize**: size of remaining dataset in tree leaf, when it stops to split (mostly not sensitive)

#### First resampling:

continouous response



#### Second resampling:



## random forest: out-of-bag



For each observation  $z_i = (x_i, y_i)$ , construct its random forest predictor by averaging only those trees corresponding to bootstrap samples in which  $z_i$  did not appear. Hastie et al. 2009, p. 593

#### 1. take a random sample of N

(with replacement) some data points will be duplicated/ triplicated, some will not be chosen (about 30 % will be left out)

#### 2. Fit tree to resampled dataset of N

Hence, some data points are not used for model fitting, they are out-of-bag.



## 3. Compute predictions for the out-of-bag data points

These predictions can now be compared to the observed values and error statistics can be calculated.

#### **Random forest: Pros and Cons**

- Quite fast
- Models interactions in the data / non linear relationships
- Very good predictive power expected
- Yields covariate importance, makes covariate selection possible
- Prediction uncertainty for continouous responses
- **☀** If no additional covariate selection implemented: difficult to interpret
- Don't trust every random forest, also this model can overfit
- No direct spatial modelling, only via workaround



## **Gradient boosting: Algorithm**



#### **Content of lecture**

Terms and concepts

Spatial modelling: requirements?

Overview of ML and their strategies

Side note: overfitting

#### Methods

- Lasso
- Support Vector Machines
- Ensemble Learners
  - Random Forest
  - Boosting
  - Model averaging

## **Gradient boosting: mini example**



## **Gradient boosting: mini example**

$$Y(s) =$$
  $+$   $+$ 

## Gradient boosting: linear, splines and spatial baselearners



$$Y(s) = f_{env}(X) + f_{s}(s) + f_{ns}(X,s)...+ \epsilon$$



partial residuals

## Gradient boosting: Spatial modelling with splines

Spatial autocorrelation can be modelled by including a "smooth spatial surface" as baselearner, non-stationary effects by creating interactions



Fig. 6. Spatial difference in Red Kite breeding between 1979–1983 and 1996–1999 for model (add/vary). The breeding probabilities in the northwestern part decreased, while the southwestern part goes with increased breeding probabilities. For the four selected areas [(i) Unterfranken, (ii) Schwaben, (iii) Mittelfranken, and (iv) Niederbayern], the variability of the estimated spatial difference is shown in Fig. 7. Spatial differences can be interpreted as difference in log-odds ratios.



Fig. 8. Spatially varying coefficients for altitude in Red Kite breeding model (add/vary); here altitude was standardized to the unit interval. Altitude has a positive effect in the western and northwestern part, while its effect is zero or even negative in the rest of Bayaria.

Spatially

varying

## Gradient boosting with splines baselearner

- Finally a ML method that explicitly models spatial surfaces and nonstationarity!
- Selects covariates (but not very rigorous)
- Simple interpretation of non-linear relationships
- Not so fast, needs a lot of setup for fitting

  Because of the difficult setup: not part of the excercises of this course.
- Unfair/biased selection of categorical covariates
- \* Interpretation of covariate importance difficult, if no strong selection
- \* Parametric method: transformations, extrapolation errors
- Prediction uncertainty only with bootstrap

## Should I use gradient boosted trees or random forests?



#### **Boosted trees**

- Selects covariates weakly
- Covariate importance for interpretation and maybe selection
- Predictive accuracy slightly lower than random forest
- Prediction uncertainty only by bootstrapping
- Reduces bias by fitting on residuals

#### Speed?

Do some benchmarking if interested ;-)



#### **Random forest**

- Does not select covariates (only with extra implementation)
- Covariate importance for interpretation and maybe selection
- From my datasets on average most often best performance (best for 50 responses of 85 tested for soil mapping)
- Prediction uncertainty with quantile regression forest
- Always fits on data with same distribution

#### One last problem:

## ML methods are not spatial ... how to deal with spatial autocorrelation?

- Apply geostatistics on residuals often named "regression kriging", requires two independent model fits
- Add spatial coordinates as covariates to model
  - Add X and Y coordinates, might lead to artefacts
    - → predicted maps look like a chessboard
  - Add rotated coordinates (ad-hoc method)
- Add smooth surface of coordinates (tensor splines),
   Works for generalized additive models (GAM) or boosting with splines baselearner.
  - Might overfit or if constrained not catch the spatial structure in the data.
- Preliminary conclusion:
   None of these options is satisfactory.





#### **Summary**

## Can you make sense of all these words now?

boosting

lasso

weak learner

shrinkage

cross-validation

forward selection

support vector machines

ensemble learners

bias-variance tradeoff

bagging

random forest

model averaging

overfitting

Be able to judge if computing model averaging on 78 methods found in Package caret is a sensible thing to do ...

## Exercise: Berne soil mapping study

~ 1000 sites with legacy soil data from 1970-1980 Nussbaum et al. 2017b



#### **Numerous covariates**

#### **Climate**

different data sets (monthly resolution)

#### Soil

soil overview map historic wetlands anthropogenic soil interventions drainage networks

#### **Parent material**

(hydro)geological maps and derivates

#### Vegetation

Landsat, SPOT5, DMC mosaic forest vegetation map and species composition

#### **Terrain**

90 derived attributes (multiple scales)

## **Exercises: Solve at your own speed...**

**PDF**: Instructions

R: Plain R code

Rnw: knitr-file to create PDF

### get materials:

git clone

https://github.com/mnocci/