(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-306570

(43)公開日 平成11年(1999)11月5日

(51) Int.CL*	i	微別記号	ΡI		
G11B	7/095		G11B	7/095	D
					G
	7/135			7/135	Z
GIIB			GIIB	-	G

審査請求 未請求 請求項の数1 OL (全 6 頁)

(21)出願番号	特顯平10-109638	(71)出題人	000005223	
			富士通株式会社	
(22)出顧日	平成10年(1998) 4月20日		神奈川県川崎市中原区上小田中4丁目1番	
			1号	
		(72)発明者	下川 職	
	•		神奈川県川崎市中原区上小田中4丁目1番	
			1号 富士通株式会社内	
		(72)発明者	佐藤 規	
			神奈川県川崎市中原区上小田中4丁目1番	
			1号 富士通株式会社内	
		(74)代理人	弁理士 井桁 貞一	

(54) 【発明の名称】 対物レンズ駆動装置

(57)【要約】

【課題】 本発明は光ディスク装置に用いられる対物レンズ駆動装置に関し、対物レンズを保持したレンズホルダを固定部材に支持し、かつレンズホルダ側へ給電させる弾性支持部材のみによって、レンズホルダ側のフォーカシング用、トラッキング用及び傾き補正用の全ての各駆動コイルにそれぞれ独立した電流を供給可能とし安定な駆動特性を確保し得る対物レンズ駆動装置の提供を目的とする。

【解決手段】 支持ベース21上に、対物レンズ23を保持したレンズホルダ22と、該レンズホルダ22を対物レンズ23の光軸方向に移動させるフォーカシング駆動手段と、該対物レンズ23の光軸と交差する方向に駆動させるトラッキング駆動手段及び該対物レンズ23の光軸と交差する方向への傾きを補正する傾き補正駆動手段と、該レンズホルダ22を固定部材に支持し、かつ前記各駆動手段に給電する少なくとも二層の導電層を有する弾性支持部材33を備えた構成とする。

1

【特許請求の範囲】

【請求項1】 支持ベース上に、対物レンズを保持したレンズホルダと、該レンズホルダを該対物レンズの光軸方向に駆動させるフォーカシング駆動手段と、該対物レンズの光軸と交差する水平方向に駆動させるトラッキング駆動手段及び該対物レンズの光軸と交差する水平方向への傾きを補正する傾き補正駆動手段と、該レンズホルダを固定部材に支持し、かつ前記各駆動手段に給電する手段を有する弾性支持部材とを備えた対物レンズ駆動装置において、前記弾性支持部材は、前記各駆動手段に異 10なる電流を供給する少なくとも二層の導電層を有する構造からなることを特徴とする対物レンズ駆動装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は対物レンズを光軸方向に駆動して光記録媒体に対して情報の記録、または再生するための光ビームを微小なスポットに絞り込み、そのスポットを光記録媒体の面状の所定位置に高精度に微小変位制御させる光ディスク装置等に用いられる対物レンズ駆動装置に係り、更に詳細には当該対物レンズ駆動 20装置におけるレンズホルダを支持し、かつ該レンズホルダ側の駆動機構へ給電するための手段を兼ね備えた弾性支持部材の構造の改良に関するものである。

【0002】近年、光ディスク装置においては光ディスクの高密度化に伴って対物レンズ駆動装置における対物レンズを光ディスクに対してフォーカシング方向とトラッキング方向の二軸方向へ駆動させる構成に加えて、光ディスク自体の傾きや、回転に伴って生じる光ディスクの傾き変動に対応して駆動し、高分解能な情報の記録再生を可能とする対物レンズ駆動装置が必要とされている。

[0003]

【従来の技術】一般に光ディスク装置に搭載されている 対物レンズ駆動装置は、光ディスクに対してフォーカシ ング方向とトラッキング方向の二軸方向へ駆動させる性 能を備えている。しかし、設置時に傾いている光ディス クや回転に伴って傾きが生じた光ディスク面に対する記 録・再生用の光ビームの光軸が傾いていると、光学的な 収差が発生して正確な情報の記録再生に支障をきたすこ とになり、上記した二軸方向駆動の対物レンズ駆動装置 40 では対処することができなかった。

【0004】そこで、二軸方向駆動手段に加えて傾き補正駆動手段を備えた構成が、例えば特開平9-231595号によって既に提案されている。図7はそのような二軸方向駆動手段に加えて傾き補正駆動手段を備えた対物レンズ駆動装置の一例を示す分解斜視図である。

【0005】図において、1は対物レンズ2を保持した レンズホルダであり、該レンズホルダ1はベース8側の 固定部材14に、図示のように4本の平行な給電線を兼ね たバネワイヤ5によってフォーカシング方向とトラッキ 50

ング方向に移動可能に支持されている。

【0006】また、該レンズホルダ1のスリット1cにはベース8に突設したヨーク11が挿通され、その各ヨーク11に対応する一対の側面にはトラッキング方向への駆動のための角形偏平コイル3が、それぞれ2個ずつ設けられており、その各角形偏平コイル3に対向するベース8側にマグネット12、13が配設されている。更に、該レンズホルダ1の光ディスク半径方向と対向する両側面にはそれぞれ傾き補正コイル4が設けられ、この傾き補正コイル4に対応してベース8側に互いに逆極のマグネット6、7をそれぞれ設けている。9はサイドヨーク、10はヨークである。

2

【0007】そして、前記レンズホルダ1を図示しない 光ディスクに対してフォーカシング方向とトラッキング 方向に駆動させるには、前記各角形偏平コイル3とヨー ク11とマグネット12, 13及びサイドヨーク9、ヨーク10 とからなる駆動機構における前記各角形偏平コイル3へ の給電を制御することによって行って当該レンズホルダ 1を所望のフォーカシング位置、或いはトラッキング位 置に移動制御させる。

【0008】また、前記レンズホルダ1上の対物レンズ2の光ディスク半径方向の両側に配置された傾き検出用の一対の光センサ1a,1bの出力に基づいて、前記傾き補正コイル4と互いに逆極性のマグネット6,7及びサイドヨーク9とからなる駆動機構における前記傾き補正コイル4とへの給電を制御して、当該レンズホルダ1を傾き方向に電磁駆動させて図示しない光ディスクの傾きに対応するように補正している。

[0009]

30 【発明が解決しようとする課題】ところで、前記した従来のように二軸方向駆動手段に加えて傾き補正駆動手段を備えた対物レンズ駆動装置においては、レンズホルダ1をフォーカシング方向、トラッキング方向および傾き補正方向に駆動制御するために、フォーカシング用コイル、トラッキング用コイルおよび傾き補正用コイルにそれぞれ異なる制御電流を給電する必要があり、最低でも6本の給電線を有するバネワイヤを用いるか、或いは4本の給電線を有するバネワイヤの他に、いずれかの一対のコイルからは直接的に給電線を引き出すようにしなけ40ればならない。

【0010】従って、当該駆動装置の組立工程が煩雑となり、また断線の発生等、電気的な接続の信頼性の面で欠陥が出やすいという問題があった。本発明は上記した従来の問題点に鑑み、対物レンズを保持したレンズホルダを固定部材に支持し、かつレンズホルダ側へ給電させる弾性支持部材のみによって、レンズホルダ側のフォーカシング用、トラッキング用および傾き補正用の全ての各駆動コイルにそれぞれ独立した電流を給電可能にして安定な駆動特性を確保するようにした新規な対物レンズ駆動装置を提供することを目的とするものである。

3

[0011]

【課題を解決するための手段】本発明は上記した目的を 達成するため、支持ベース上に、対物レンズを保持した レンズホルダと、該レンズホルダを該対物レンズの光軸 方向に駆動させるフォーカシング駆動手段と、該対物レ ンズの光軸と交差する方向に駆動させるトラッキング駆 動手段及び該対物レンズの光軸と交差する方向への傾き を補正する傾き補正駆動手段と、該レンズホルダを固定 部材に支持し、かつ前記各駆動手段に給電する手段を有 する弾性支持部材とを備えた対物レンズ駆動装置におい て、前記弾性支持部材は、前記各駆動手段に異なる電流 を供給する少なくとも二層の導電層を有する構造からな る構成とする。

【0012】上記したように前記各駆動手段に異なる電 流を供給する少なくとも二層の導電層を有する構造から なる弾性支持部材の4本で、対物レンズを保持してなる レンズホルダを固定部材に支持した構成とすれば、これ らの弾性支持部材を通して前記フォーカシング駆動手 段、トラッキング駆動手段及び傾き補正駆動手段に対し て最大4通りの独立した駆動電流を給電することができ る。即ち、前記した各駆動手段におけるレンズホルダ側 のフォーカシングコイル、トラッキングコイルおよび傾 き駆動コイルをそれぞれ独立した駆動電流で制御するこ とが可能となる。

【0013】従って、前記弾性支持部材の採用によって 対物レンズ駆動装置の組立工程が容易化され、各コイル に対する電気的な接続の信頼性も向上されて安定な駆動 特性を確保することができる。

[0014]

【発明の実施の形態】以下図面を用いて本発明の実施例 30 について詳細に説明する。 図1は本発明に係る対物レン ズ駆動装置の一実施例を示す要部構成斜視図である。

【0015】図において、23はレーザ発光源を含む光学 系から伝送された光ビームを集光して、光ディスクの信 号記録面に入射させるための対物レンズであり、レンズ ホルダ22に装着されている。該レンズホルダ22には、該 レンズホルダ22を対物レンズ23の光軸111 の方向(フォ ーカシング方向) への移動を可能にする一対のフォーカ シングコイル24と、該レンズホルダ22を前記光軸111 の 方向に対して水平な図示しない光ディスクの半径方向 (トラッキング方向)112への移動を可能とする一対のト ラッキングコイル25と、該レンズホルダ22を図示しない 光ディスクの半径方向に傾けるように傾き方向113 への 移動を可能とする一対の傾き駆動コイル26が取付けられ ている。

【0016】また、前記レンズホルダ22は、その一端が 支持ベース21上の固定部材27に取り付けられ、他端が該 レンズホルダ22に取り付けられた4本のワイヤ形状の弾 性支持部材33によってフォーカシング方向 111、トラッ キング方向 112に移動可能で、かつ、図示しない光ディ 50 き中心点103 を中心にして該レンズホルダ22が傾くこと

4 スクの半径方向の傾き方向113 に変位可能に支持されて

【0017】前記一対のフォーカシングコイル24はそれ ぞれ対応する磁性金属板からなるヨーク28とで前記レン ズホルグ22を対物レンズ23の光軸方向に移動制御させる フォーカシング駆動手段を、前記一対のトラッキングコ イル25はそれぞれ対応する磁性金属板からなるヨーク30 に保持される磁石29とで前記レンズホルダ22をトラッキ ング方向 (光ディスクの半径方向)112に移動制御させる トラッキング駆動手段を、前記一対の傾き駆動コイル26 はそれぞれ対応する磁性金属板からなるヨーク32に保持 される磁石31とで前記レンズホルダ22を図示しない光デ ィスクの半径方向の傾きに変位する傾き補正駆動手段を それぞれ構成している。

【0018】そして、本実施例の一般的な二軸方向駆動 手段に加えて傾き補正駆動手段を備えた対物レンズ駆動 装置においては、上述したように前記フォーカシングコ イル24、トラッキングコイル25および傾き駆動コイル26 にそれぞれ異なる制御電流を給電する給電線を、前記レ ンズホルダ22を支持する4本の弾性支持部材33に依存す る必要があることからその各弾性支持部材33としては、 図2の一部断面を有する要部斜視図に示すように、例え ばポリイミド樹脂等からなる板状の絶縁材料(または絶 縁層)33bの両側に銅(Cu)、またはベリリウム(Be)-銅(C u) 合金等の板状または薄膜状の金属材料 (または導電 層)33aと33c とを固着一体化した二給電線を備えた3層 構造の弾性線材を用いることによって、前記レンズホル ダ22個へ最大4通りの独立した駆動電流を給電すること ができる。

【0019】即ち、前記した各駆動手段におけるフォー カシングコイル24、トラッキングコイル25および傾き駆 動コイル26にそれぞれ独立した駆動電流を給電すること が可能となり、前記レンズホルダ22を前記3方向にそれ ぞれ容易に駆動制御することが可能となる。

【0020】なお、図3(a),(b) のレンズホルダの傾き 補正機構を説明する概略構成図で示すように、光ディス ク101 の記録面が設置時や、回転に伴って傾いている場 合、該光ディスク101 の記録面と対物レンズ23の光軸11 1 との間の相対傾きを図示しない光センサにより検出 し、前記弾性支持部材33を通して一対の傾き駆動コイル 26に所定の制御電流をそれぞれ給電することにより、図 3(b) に示すように該傾き駆動コイル26とヨーク32に保 持された磁石31との間に発生する略円弧状の磁力109 に よって前記一対の傾き駆動コイル26に矢印で示すように 光軸111 の方向への傾き駆動力104 が発生する。

【0021】このとき、図3(a) に示すように前記一対 の傾き駆動コイル26にそれぞれ作用する傾き駆動力104 が互いに逆方向であるか、若しくは同方向であっても異 なる大きさの駆動力であれば、前記レンズホルダ22の傾 10

de .

になるので、前記光ディスク101 の記録面に対する対物 レンズ23の光軸111 の傾きを変位して補正することが可能となる。

【0022】前記レンズホルダ22の傾き駆動時の傾き中心点103をそのレンズホルダ22の慣性モーメントが最小となる位置に一致させることで、傾き補正時の回動性能が向上し、かつ省電力効果を得ることができる。

【0023】また、図4のレンズホルダの光ディスクに対する配設構成を説明する要部平面図に示すように、該レンズホルダ22の両側面に配置した前記一対の傾き駆動コイル26の有効部分中心105を光ディスク101の光ディスク回転中心102を通る半径方向と同一直線上に配置するようにすることで情報信号の記録再生上、有害となる光ディスク101の円周方向の傾き成分が発生することを防止できる。

【0024】更に、前記レンズホルダ22を図1に示すようにフォーカシング方向111 およびトラッキング方向11 2 に移動させる際に発生する当該レンズホルダ22の傾きを最小に抑制する必要がある。そのようなレンズホルダ22が傾く要因の一つに、該レンズホルダ22に対する弾性 20 支持部材33の取り付け中心とフォーカシングおよび/またはトラッキング駆動点とのずれにより生じるトルクが挙げられる。

【0025】しかし、当該駆動装置の組立工程での製造 バラツキを考慮するならば、前記要因を完全に除去する ことは困難であるが、前記レンズホルダ22の両側部に取 り付けて支持する弾性支持部材33の取り付け間隔を拡大 することにより、トルク関性が向上して傾き量を小さく 抑制することができる。このことは図6に同一トルクが 作用したときのレンズホルダ22の傾き量と弾性支持部材 30 33の取付間隔との関係を示している。

【0026】そこで、図1および図5の要部分解斜視図に示すように、前記レンズホルダ22の弾性支持部材33の他端を取り付ける支持部材取付け部106を傾き駆動コイル26の貼り付け面、即ち、コイル貼り付け部108よりも外側に突出させて前記弾性支持部材33の取付間隔を広げることで、上記したように弾性支持部材33で支持された前記レンズホルダ22の傾き量を最小に抑制することができる。

【0027】更に、前記レンズホルグ22の両側面に対する傾き駆動コイル26の取付作業は、光ディスク101の円周方向の傾き成分の発生を防止ために所定の位置に正確に行うことが必要であり、そのためには図5に示すように前記レンズホルグ22の両側面に対して傾き駆動コイル26の形状に合わせたコイル貼り付け部108とそのコイル貼り付け部108内に傾き駆動コイル26を嵌め合わせる凸部状のコイル位置決め部107を形成しておき、これらに対して前記傾き駆動コイル26を嵌め合わせ、かつ貼り付けて固定することにより、正確で迅速なコイル祖立作業が可能となる。

【0028】その他、以上の実施例による対物レンズ駆動装置を、光ディスクの傾きに対してレンズホルグを傾き補正しない光ディスク装置との互換装置(CD装置、DVD装置、3.5 MO装置等)に搭載する場合、上述した前記レンズホルダの両側部に取り付けて支持する弾性支持部材の取り付け間隔を広げて該レンズホルダの傾き量を最小に抑制する構成とすることで、該レンズホルダを光ディスクに対するフォーカシング方向およびトラッキング方向に安定した駆動制御が可能となる。

6

【0029】また、前記一対の傾き駆動コイルにそれぞれ同方向で、かつ同量の駆動力を生じるように電流を給電することにより、光ディスクに対するフォーカシング方向への駆動機構としても利用でき、前記レンズホルダの光ディスクに対するフォーカシング方向への追従制御性能を向上させることができる。このようなことは当然、本実施例の対物レンズ駆動装置においても、例えば前記レンズホルダの両側面に設けた各傾き駆動コイルに対して同方向のフォーカシング駆動力でありながらその各駆動力に差異を生じさせることで、前記レンズホルダの光ディスクに対するフォーカシング方向への追従制御性能の向上と傾き駆動制御とを同時に実現することができる。

[0030]

【発明の効果】以上の説明から明らかなように、本発明に係る対物レンズ駆動装置によれば、フォーカシング駆動手段、トラッキング駆動手段及び傾き補正駆動手段に電流を供給する少なくとも二層の導電層を有する構造の弾性支持部材の4本で対物レンズを保持したレンズホルダを固定部材に支持した構成とすることにより、その各駆動手段のレンズホルダ側のフォーカシング用、トラッキング用および傾き駆動用のコイルにそれぞれ独立して異なる制御電流を給電することができる。

【0031】従って、従来のように傾き駆動コイルに別の専用給電線を引き回して接続する煩雑さがなくなり、対物レンズ駆動装置の租立工程が容易化されると共に、各コイルに対する電気的な接続の信頼性も向上されて安定した駆動特性を確保することが可能となる等の利点を有し、実用上優れた効果を奏する。

【図面の簡単な説明】

[0 【図1】 本発明の対物レンズ駆動装置の一実施例を示す要部構成斜視図である。

【図2】 本発明の対物レンズ駆動装置における弾性支持部材を示す一部断面を有する要部斜視図である。

【図3】 本発明の対物レンズ駆動装置におけるレンズ ホルダの傾き補正機構を説明する概略構成図である。

【図4】 本発明の対物レンズ駆動装置におけるレンズ ホルダの光ディスクに対する配設構成を説明する要部平 面図である。

【図5】 本発明の対物レンズ駆動装置におけるレンズ 50 ホルダに対する弾性支持部材および傾き駆動コイルの取

付け構造を説明する要部分解斜視図である。

【図6】 本発明の対物レンズ駆動装置におけるレンズ ホルダに同一トルクが作用した場合の、傾き量と弾性支 持部材の取付間隔との関係を示す図である。

【図7】 従来の二軸方向駆動手段に加えて傾き補正駆 動手段を備えた対物レンズ駆動装置の一例を示す分解斜 視図である。

【符号の説明】

28, 30, 32

21	支持ベース	
22	レンズホルダ	
23	対物レンズ	
24	フォーカシングコイル	
25	トラッキングコイル	
26	傾き駆動コイル	
27	固定部材	

ヨーク

29, 31 磁石

33 弹性支持部材

33a, 33c 金属材料

33b 絶縁材料

光ディスク 101

102 光ディスク回転中心

103 傾き中心点

傾き駆動力 104

有効部分中心 105

10 106 支持部材取付け部

> 107 コイル位置決め部

108 コイル貼り付け部

109 磁力

フォーカシング方向 (光軸) 111

トラッキング方向 112

113 傾き方向

【図1】

本発明の対衡レンズ部勤装置の一変施例を示す要都 構成料復聞

【図2】

本発引の対策シンズ高助装置における弾性支持部材 を示す一部新潟を有する要値斜接関

8

【図4】

【図5】

本発明の対称レンズ国際集団におけるレンズホルダの 光ディスクに対する配数器点を説明する要部平面図

本発明の対徳レンズ監験装置におけるレンズホルダ に対する事性支持部材および傾き臨動コイルの東付 け番酒を説明する要部分解熱複関

【図3】

本発明の対物レンズ医助装置におけるレンズホルダ の複き補正機器を設明する医時機成因

【図7】

巻来の二輪方向監助手段に加えて領き権正監験手段を 機をやが終しソファ新共和の一般もデナク部分を開

【図6】

本発明の対衡レンズ駆動装置におけるレンズホルダ に同一トルタが作用した場合の、似き量と弾性支持 都材の取付関脳との関係を示す器

