

AD-A125 472 TRANSITION FROM CONDUCTIVE TO CONVECTIVE HEAT TRANSFER 1/1
IN FLUID-FILLED PO. (U) NAVAL SURFACE WEAPONS CENTER
SILVER SPRING MD R A CAMPOLATTARO ET AL. JUL 81
UNCLASSIFIED NSWC/TR-82-136 SBI-AD-F500 136 F/G 28/13 NL

END

FILMED
3 1/2"
B&W

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

F500136

(12)

NSWC TR 82-136

TRANSITION FROM CONDUCTIVE TO CONVECTIVE HEAT TRANSFER IN FLUID-FILLED POROUS MATERIALS

BY A. A. CAMPOLATTARO,
G. R. LAIB

RESEARCH AND TECHNOLOGY DEPARTMENT

JULY 1981

Approved for public release, distribution unlimited.

NAVAL SURFACE WEAPONS CENTER

Dahlgren, Virginia 22448 • Silver Spring, Maryland 20910

DTIC
S
MAR 4 1983
A

DTIC FILE COPY

83 03 03 100

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NSWC TR 82-136	2. GOVT ACCESSION NO. ADA125 472	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) TRANSITION FROM CONDUCTIVE TO CONVECTIVE HEAT TRANSFER IN FLUID-FILLED POROUS MATERIALS		5. TYPE OF REPORT & PERIOD COVERED
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) A. A. Campolattaro and G. R. Laib		8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Surface Weapons Center (Code R12) White Oak Silver Spring, MD 20910		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 62633N; F33354; SF333544391 1R10BB
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE July 1981
		13. NUMBER OF PAGES 41
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Porous Materials Porous Explosives Solid Propellants Conductive Burning Convective Burning DDT		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The heat transfer mechanism for an infinite, horizontal, fluid-saturated, homogeneous, porous slab is analyzed by assuming the validity of Darcy's law. By perturbing the equilibrium configuration, it is shown that there exists a stability condition for the temperature gradient β such that for		
$\beta > \frac{4\pi}{K} \frac{c}{\rho h^2}$		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

(where κ is the thermal diffusivity, K is the permeability, h is the thickness through which the thermal gradient is established and α is the bulk thermal expansion coefficient of the fluid), the mechanism of heat transfer changes from conductive to primarily convective. The role of this stability criterion in DDT (deflagration-to-detonation transition) or porous explosives and propellants is discussed.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

FOREWORD

The conditions for transition from primarily conductive to convective heat transfer in a simple porous material have been analyzed, assuming the validity of Darcy's law. A stability criterion, which may apply in the Deflagration-to-Detonation Transition (DDT) of porous explosives and propellants, has been derived and discussed. This work should be of interest to those concerned with propellant safety and DDT in porous reactive materials.

Funding for this work was provided by the NAVSEASYS COM Explosives 6.2 Block Program, Task Number SF33-337-691/1R10BB403.

Approved by:
James F. Proctor

JAMES F. PROCTOR, Head
Energetic Materials Division

A

CONTENTS

	<u>Page</u>
I. INTRODUCTION	5
II. STABILITY ANALYSIS	6
III. THE ROLE OF THE STABILITY CONDITION IN THE BURNING OF POROUS MATERIALS AND PROPELLANTS	12
IV. AN ESTIMATE OF THE THERMAL GRADIENT ESTABLISHED IN A PROPELLANT GRAIN	13
V. CONCLUSIONS	19

ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
1	THERMAL CONDUCTIVITY (k) CURVES FOR CARBORUNDUM WITH H_2 , SHOWN IN DOTTED LINE, AND FILLED WITH AIR, SHOWN IN SOLID LINE, VS. PRESSURE (REF. 6)	20
2	CONDUCTIVITY OF HYDROGEN AND AIR AS A FUNCTION OF PRESSURE (REF. 6)	21
3a	CALCULATED TEMPERATURE RISE AS A FUNCTION OF TIME AT VARIOUS DISTANCES AHEAD OF THE FLAME FRONT FOR EJC PROPELLANT	22
3b	CALCULATED TEMPERATURE RISE AS A FUNCTION OF TIME AT VARIOUS DISTANCES AHEAD OF THE FLAME FRONT FOR TP-H-1148 PROPELLANT	23
3c	CALCULATED TEMPERATURE RISE AS A FUNCTION OF TIME AT VARIOUS DISTANCES AHEAD OF THE FLAME FRONT FOR PYRONOL PYROTECHNIC	24
4a	CALCULATED "STEADY-STATE" TEMPERATURE RISE AS A FUNCTION OF DISTANCE AHEAD OF THE FLAME FRONT FOR EJC PROPELLANT (AT $t=0.045$ sec)	25
4b	CALCULATED "STEADY-STATE" TEMPERATURE RISE AS A FUNCTION OF DISTANCE AHEAD OF THE FLAME FRONT FOR TP-H-1148 PROPELLANT (AT $t=0.100$ sec)	26
4c	CALCULATED "STEADY-STATE" TEMPERATURE RISE AS A FUNCTION OF DISTANCE AHEAD OF THE FLAME FRONT FOR PYRONOL PYROTECHNIC (AT $t=0.006$ sec)	27

TABLES

<u>Table</u>		<u>Page</u>
1	DENSITY OF SOLID MATERIALS (ρ) AS WELL AS POWDERED MATERIALS (ρ_o) FOR DIFFERENT TYPES OF CARBORUNDUM. THE AVERAGE LINEAR DIMENSION (l) OF THE POWDERED MATERIAL IS ALSO SHOWN (REF. 6)	28
2	SELECTED PROPERTIES OF REACTIVE MATERIALS USED FOR CALCULATION....	28

I. INTRODUCTION

In 1948 Lapwood¹ analyzed the heat flow in an infinite, horizontal, fluid-saturated, homogeneous, porous slab. By adopting the mathematical technique used by Lord Rayleigh in 1916² in an analogous problem (the stability of a liquid layer heated from below), Lapwood showed that the flow is not always stable, but that there exists the same stability condition that Rayleigh had found in the case of the liquid layer. The stability condition states that, if the temperature gradient exceeds a certain critical value, one has the onset of instabilities associated with fluid convection.

This analysis was conducted assuming zero viscosity, which drastically simplifies the problem. Only recently, Kassoy and Zebib^{3,4,5} have investigated the same problem by taking into account the viscosity and using the more realistic configuration of a confined medium.

The onset of instabilities corresponds to a transition from a conductive to convective heat transfer which manifests itself in a dramatic change in the thermal conductivity characteristics of the porous material. As early as 1933, Kannuluik⁶ showed that the thermal conductivity of powders shows a sharp increase when they are permeated by a gas. For example, for evacuated powders such as carborundum, the thermal conductivity is typically of the order of 0.1×10^{-5} cal/cm-sec-°C. However, when carborundum powder is filled with hydrogen, whose conductivity is 38.0×10^{-5} , in the same units, the conductivity of the powder increases to 300×10^{-5} cal/cm-sec-°C, 3 $\times 10^3$ times the thermal conductivity of the evacuated powder!

¹Lapwood, E. R., "Convection of a Fluid in a Porous Medium," Proc. Camb. Phil. Soc., 44, 508-521, 1948.

²Lord Rayleigh, "On Convection Currents in a Horizontal Layer of Fluid, When the Higher Temperature is on the Under Side," Phil. Mag., 6, 32, 529-546, 1916.

³Kassoy, D.R. and Zebib, A., "Variable Viscosity Effects on the Onset of Convection in Porous Media," Phys. of Fluids, 12, 18, 1649-1651, 1975.

⁴Zebib, A. and Kassoy, D. R., "Onset of Natural Convection in a Box of Water-Saturated Porous Media with Large Temperature Variation," Phys. of Fluids, 20 (1), 4-9, 1977

⁵Zebib, A., "Onset of Natural Convection in a Cylinder of Water-Saturated Porous Media," Phys. Fluids, 21 (4), 699-700, 1978.

⁶Kannuluik, W. G., "Conduction of Heat in Powders," Proc. Roy. Soc., A141, 144-158, 1933.

This phenomenon can be explained only by assuming that a convective process is established and that the heat is transferred to the grains of powder by collision with the fluid molecules.

The effect of the gas imbedded in a porous medium is illustrated in Figure 1, which also shows the importance of grain sizes and density for carborundum powder (See Table I for density and particle size parameters for carborundum). The effect of different gases imbedded in the powder (hydrogen and air) is also shown. Figure 1 shows also that the conductivities increase with pressure, although they tend to reach a plateau at pressures of the order of one atmosphere, so that for high pressures one can assume that the conductivities become pressure-independent. This seems reasonable if one considers the data shown on curves of conductivity vs pressure in Figure 2 for two typical gases--namely, air and hydrogen.

These results appear to play an important role in the deflagration-to-detonation transition in high explosives because, as is well known, this transition is preceded by another transition, that from conductive to convective burning. An analysis to determine the conditions necessary for this transition will now be considered.

II. STABILITY ANALYSIS

The xy-plane contains a horizontal slab of a fluid-saturated homogenous, porous material with thickness h , so that $0 \leq z \leq h$.

In absence of viscosity, the Navier-Stokes equation reduces to the Euler equation:

$$\rho \frac{\vec{D}\vec{V}}{Dt} = -\vec{\nabla}p - \vec{F} \quad (1)$$

with

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \vec{V} \cdot \vec{\nabla} \quad (2)$$

ρ , the density, \vec{V} , the macroscopic velocity of the element of fluid at the point (x,y,z) , whose components are u,v , and w , with p , the pressure, and \vec{F} , the system of forces acting on the element of fluid. This force \vec{F} consists of two components, the weight $\vec{W} = (0,0,\rho g)$, with g , the acceleration of gravity, and a resistance component for the porous material given by Darcy's law, so that one has for the total force:

$$\vec{F} = \frac{\rho g}{K} \vec{V} + \rho g \vec{k} \quad (3)$$

K being the permeability and \vec{k} , the unit vector in the direction of the z -axis. The gravitational component $\rho g \vec{k}$, although negligible in comparison to the Darcy term (which, in the case of low permeability materials, such as propellants, is large) has been included for the sake of completeness.

To the fluiddynamic equation, one must add the heat conduction equation:

$$\frac{D\theta}{Dt} = \kappa \nabla^2 \theta \quad (4)$$

where θ is the temperature and κ the thermal diffusivity. To Equations 1-4, one must also add two other equations, a continuity equation:

$$\frac{1}{\rho} \frac{D\rho}{Dt} = - \vec{\nabla} \cdot \vec{V} \quad (5)$$

and an equation for thermal expansion:

$$\rho = \rho_c (1 - \alpha \theta) \quad (6)$$

where ρ_c is the value of ρ at $\theta = 0$, and α is the bulk thermal expansion coefficient.

Equations (1)-(6) can be linearized by assuming that velocity and the departures of temperature, density, and pressure from the equilibrium state are small so that second order terms can be assumed negligible.

If the variations in density as well as the $(\vec{V} \cdot \vec{\nabla}) \vec{V}$ term are considered negligible, one has

$$\rho \frac{\partial \vec{V}}{\partial t} = - \vec{\nabla} P - \frac{\rho g}{K} \vec{V} - \rho g \vec{k}, \quad (7)$$

$$\frac{D\theta}{Dt} = \kappa \nabla^2 \theta, \quad (8)$$

$$\vec{\nabla} \cdot \vec{V} = 0, \quad (9)$$

$$\rho = \rho_c (1 - \alpha \theta) \quad (10)$$

The subscript "0" labels the parameters in the equilibrium state. The system is assumed perturbed from the equilibrium state and the perturbations are, as usual, considered small. We have:

$$\theta = \theta_0 + \theta = -\beta z + \theta, \quad (11)$$

$$P = P_0 + p = -\rho_0 g z + p, \quad (12)$$

$$\rho_0 = \rho_c (1-\alpha\theta_0), \quad (13)$$

$$\rho = \rho_c (1-\alpha(\theta+\theta_0)) = \rho_0 - \rho_c \alpha \theta, \quad (14)$$

where β is the temperature gradient.

Since the term $\vec{V} \cdot \vec{\nabla} \theta$ is negligible, equation (8) reads

$$-\beta w + \frac{\partial \theta}{\partial t} = \kappa \nabla^2 \theta. \quad (15)$$

By taking the divergence of (7), since (10) holds, one has

$$\nabla^2 P - \rho_c g \alpha \frac{\partial \theta}{\partial z} = 0. \quad (16)$$

The third component of (7) gives

$$\rho_0 \frac{\partial w}{\partial t} = -\frac{\partial p}{\partial t} - \frac{\rho_0 g}{K} w - \rho_0 g + g \rho_c \alpha \theta, \quad (17)$$

and with (15) and its time derivative, w can be eliminated, and one has

$$-\frac{\partial p}{\partial z} + \rho_c g \alpha \theta = \frac{1}{\beta} \rho_c \left(\frac{\partial}{\partial t} + \frac{g}{K} \right) \left(\frac{\partial}{\partial t} - \kappa \nabla^2 \right) \theta + \rho_0 g \quad (18)$$

By taking the Laplacian of (18) and the z derivative of (16), the pressure also can be eliminated, and one readily has the fourth order partial differential equation for the temperature θ ,

$$\left(\frac{\partial}{\partial t} + \frac{g}{K}\right) \left(\frac{\partial}{\partial t} - \kappa^2\right)^2 \nabla_1^2 \theta = g \alpha \beta \nabla_1^2 \theta , \quad (19)$$

where ∇_1^2 , is the partial Laplacian, namely

$$\nabla_1^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} . \quad (20)$$

Let us now consider a simple case, with the following boundary conditions:

$$\theta = 0 \text{ at } z = 0 \text{ and } z = h \quad (21)$$

$$\frac{\partial^2 \theta}{\partial z^2} = 0 \text{ at } z = 0 \text{ and } z = h \quad (22)$$

The search for a solution of Equation (19) of the form

$$\theta = R(x,y,t) Z(z) \quad (23)$$

imposes on Z , through the boundary conditions (21) and (22), the following conditions,

$$Z(0) = Z(h) = 0 , \quad (24)$$

$$Z''(0) = Z''(h) = 0 , \quad (25)$$

so that by taking

$$Z(z) = A \sin \omega z \quad (26)$$

one has

$$\sin \omega h = 0 \text{ i.e., } \omega h = n\pi . \quad (27)$$

Now we try a solution of the form

$$\theta = A \sin \lambda x \sin \mu y \sin \frac{m}{h} z e^{\nu t}. \quad (28)$$

By substitution into Equation (19), one has

$$\left(v + \frac{g}{K} \right) \left\{ v + \frac{\kappa}{h^2} (a^2 + n^2 \pi^2) \right\} \left(a^2 + n^2 \pi^2 \right) = g \alpha \beta a^2 \quad (29)$$

where

$$a^2 = h^2 (\mu^2 + \lambda^2), \quad (30)$$

$$\alpha_1 = \frac{g}{K}, \quad (31)$$

$$\alpha_2 = \frac{\kappa}{h^2} (a^2 + n^2 \pi^2), \quad (32)$$

$$\alpha_3 = \frac{\frac{g \alpha a}{a^2 + n^2 \pi^2} \beta}{2}, \quad (33)$$

and Equation 29 reads

$$(v + \alpha_1)(v + \alpha_2) = \alpha_3, \quad (34)$$

which admits the following roots

$$v = -1/2(\alpha_1 + \alpha_2) \pm 1/2 \sqrt{(\alpha_1 - \alpha_2)^2 + 4\alpha_3} \quad (35)$$

When v is complex, its real part, $-1/2(\alpha_1 + \alpha_2)$, is always negative and the perturbation decays with time, since α_1 and α_2 are positive. If we require the perturbation to persist then the roots must be real and positive, i.e.,

$$(\alpha_1 - \alpha_2)^2 + 4\alpha_3 > 0 , \quad (36)$$

and

$$-(\alpha_1 + \alpha_2) \pm \sqrt{(\alpha_1 - \alpha_2)^2 + 4\alpha_3} > 0 . \quad (37)$$

If $\beta > 0$, (35) is certainly satisfied, and the roots are real.

The value of $\beta = \beta_{cr}$ which results in a value of zero for v is the one for which, when $\beta < \beta_{cr}$, the perturbation dies down, and when $\beta > \beta_{cr}$, it increases exponentially. This value is found by solving the equation:

$$(\alpha_1 - \alpha_2)^2 + 4\alpha_3 = (\alpha_1 + \alpha_2)^2 , \quad (38)$$

$$\alpha_3 = \frac{(\alpha_1 + \alpha_2)^2 - (\alpha_1 - \alpha_2)^2}{4} , \quad (39)$$

$$\alpha_3 = \alpha_1 \alpha_2 , \quad (40)$$

which gives

$$\beta_{cr} = \frac{\kappa}{Kah^2} \frac{(a^2 + n^2 \pi^2)^2}{a^2} \quad (41)$$

The minimal value of $\beta_{cr} = \bar{\beta}_{cr}$ is obtained, since n is an integer, for $n = 1$ and for a value of a , such that the function $\frac{a^2 + \pi^2}{a}$ is minimum.

This minimum is readily recognized for $a^2 = \pi^2$, so that

$$\bar{\beta}_{cr} = \frac{4\pi^2 \kappa}{Kah^2} , \quad (42)$$

and for

$$\beta < \frac{4\pi k}{Kah^2}, \quad (43)$$

the flow is stable and the perturbation rapidly dies exponentially. For

$$\beta > \frac{4\pi k}{Kah^2}, \quad (44)$$

the perturbation increases exponentially and the flow is unstable. This represents the condition for the transition from conductive to convective heat transfer in a fluid-filled porous material in the hypothesis that Darcy's law holds.

III. THE ROLE OF THE STABILITY CONDITION IN THE BURNING OF POROUS MATERIALS AND PROPELLANTS

The stability condition discussed in the previous pages appears to be of particular interest in the study of the combustion of porous material and propellants. It involves all the typical parameters one expects to encounter in the process; namely, the temperature gradient, the thermal diffusivity, the thermal expansion coefficient of the fluid filling the pores, the permeability of the porous material, and the thickness of the material through which the thermal gradient is established.

The stability condition states that when the temperature gradient β is such that

$$\beta > \frac{4\pi k}{Kah^2},$$

the heat transfer dramatically changes character from conductive to primarily convective. Analogous criteria are expected to apply to the burning of modern solid propellants with a high content of solid materials. In this case, during combustion, ahead of the flame, there exists a layer of propellant-heated, although not yet burning. Although the temperature is initially insufficient to ignite the propellant, it increases with time and can reach a value at which the solvent and the binder begin to evaporate or decompose so that a porous layer whose thickness varies with time, begins to form ahead of the flame. The previous considerations then apply. In the case of small propellant grains, the total burning time is probably too short for such a phenomenon to occur. The advent of longer range solid-propellant requires longer burning propellant grain, so that the process described above could develop.

IV. AN ESTIMATE OF THE THERMAL GRADIENT ESTABLISHED IN A PROPELLANT GRAIN

The problem of heat transfer in thermal conductors when the heat sources are moving, is a problem of foremost importance in several fields, such as metal welding, and many studies have been made on the subject.^{7,8} However, since, from a mathematical point of view, the rigorous treatment is of great difficulty, this analysis has been confined to the quasi-stationary regime. This regime is experimentally verified⁹ and is seen in the fact that, if the sample is long enough, the temperature ahead of the moving source rapidly approaches a constant value. In different terms, an observer who is moving with the source does not detect, after a certain time, any change in the temperature distribution in the sample ahead of the source. While the quasi-stationary solution is often of practical utility, the transient regime is important in many cases.

For the sake of simplicity, we will make an assumption, which will be removed in a successive study, that the sample is non-reactive. The burning process is then schematized by substituting for the flame front a heat source which moves along the x-axis with a constant speed v and a constant heat rate q. The evaluation of the temperature distribution $T(x,y,z,t)$ will be determined by the heat conduction equation:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 2\lambda \frac{\partial T}{\partial t}, \quad (45)$$

where

$$2\lambda = \frac{c\rho}{k}, \quad (46)$$

c being the specific heat of the solid material, ρ its density and k the thermal conductivity coefficient of the material. The transformation

$$\xi = x - vt, \quad (47)$$

brings Equation (45) into the following form:

⁷Campolattaro, A. A., Numerical Modelling of the Burning of Highly Exothermic Mixtures, NSWC report 1977 (To be published).

⁸Rosenthal, D., The Theory of Moving Sources of Heat and Its Applications to Metal Treatment, Trans. Amer. Soc. Mech Engrs., 68 849-866, 1946, and included bibliography.

⁹Bornfeld, H., Temperature Measurement in Fusion Welding, Technische Zentralblatt Fur Praktische Metal Bearbeitung Vol. 43, pp. 14-18, 1933.

$$\nabla^2 T + 2\lambda v \frac{\partial T}{\partial \xi} - 2\lambda \frac{\partial T}{\partial t} = 0. \quad (48)$$

where the Laplacian is the Eulerian one, i.e. the operator Laplacian involving the coordinates system moving with the heat source, i.e.

$$\nabla^2 = \frac{\partial^2}{\partial \xi^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}. \quad (49)$$

By putting

$$T = T_0 + e^{-\alpha \xi} \phi(\xi, y, z, t) \quad (50)$$

where T_0 is the initial temperature, Equation (48) becomes

$$\nabla^2 \phi + 2(\lambda v - \alpha) \frac{\partial \phi}{\partial \xi} - 2\lambda \frac{\partial \phi}{\partial t} + \alpha(\alpha - 2\lambda v) \phi = 0. \quad (51)$$

and by taking

$$\alpha = \lambda v, \quad (52)$$

the term $\frac{\partial \phi}{\partial \xi}$ can be eliminated and one has

$$\nabla^2 \phi - 2\lambda \frac{\partial \phi}{\partial t} - (\lambda v)^2 \phi = 0. \quad (53)$$

By putting

$$\phi = e^{\frac{-\lambda v t}{2}} \psi, \quad (54)$$

Equation (53) reduces further to the ordinary heat conduction equation, i.e.

$$\nabla^2 \psi - 2\lambda \frac{\partial \psi}{\partial t} = 0 , \quad (55)$$

The solution of (48) which satisfies the boundary condition that at the flame ($\xi = 0$), the temperature remains constant and equal to T_f , for the one-dimensional case, will be

$$T - T_o = e^{-\lambda v \xi} e^{-\frac{-\lambda v^2}{2} t} \psi(\xi, t) , \quad (56)$$

so that the initial condition for ψ is

$$\psi(\xi, t) = 0 \quad \text{for } t = 0 , \quad (57)$$

and at the boundary,

$$T_f - T_o = e^{-\frac{-\lambda v^2}{2} t} \psi(0, t) , \quad (58)$$

Equation (55) must be integrated with the initial and boundary conditions given by

$$\psi(\xi, t) = 0 \quad \text{for } t = 0 , \quad (59)$$

$$\psi(\xi, t) = (T_f - T_o) e^{\frac{\lambda v^2}{2} t} \quad \text{for } \xi = 0 . \quad (60)$$

This integral is readily found¹⁰

¹⁰Carslaw, H. S., and Jaeger, J. C., Conduction of Heat in Solids, Oxford at the Clarendon Press, II Ed., 1959, page 63.

$$e^{-\frac{\lambda v \xi}{2}} e^{\frac{\lambda v^2 t}{2}} (T - T_0) =$$

$$\sqrt{\frac{\lambda}{2\pi}} (T_f - T_0) \xi \int_0^t \frac{e^{\frac{\lambda v t'}{2}} - e^{\frac{-\lambda \xi \mu}{2(t-t')}}}{(t-t')^{3/2}} dt \quad (61)$$

By putting

$$t - t' = \mu, \quad (62)$$

Equation (61) reads

$$T - T_0 = \sqrt{\frac{\lambda}{2\pi}} (T_f - T_0) \xi e^{-v\xi} \int_0^\mu \mu^{-3/2} e^{\frac{-\lambda v \mu}{2}} e^{\frac{-\lambda \xi^2}{2\mu}} d\mu, \quad (63)$$

or

$$T - T_0 = \sqrt{\frac{\lambda}{2\pi}} (T_f - T_0) \xi e^{-\lambda v \xi} \int_0^\mu \mu^{-3/2} e^{\frac{-\lambda \xi^2}{2}} e^{\frac{v^2 \mu^2}{2}} d\mu \quad (64)$$

which gives the temperature at any time t and at a distance ξ from the propagating flame.

An easy check of this solution can be made by setting $v=0$ in Equation (64) to determine whether or not it reduces to the solution for a semi-infinite slab with the boundary at $\xi=0$ kept at constant temperature T_f and the initial temperature constant and equal to T_0 , which is a classical problem.¹¹

For $v=0$, Equation (64) reads:

¹¹Carslaw, H. S., and Jaeger, J. C., Conduction of Heat in Solids.

$$T - T_0 = \sqrt{\frac{\lambda}{2\pi}} (T_f - T_0) \xi \int_0^t \mu^{-3/2} e^{-\frac{\lambda \xi}{2\mu}} d\mu , \quad (65)$$

which, by setting

$$x = \sqrt{\frac{\lambda}{2\mu}} \xi , \quad (66)$$

readily gives:

$$T - T_0 = (T_f - T_0) \operatorname{erfc} \xi \sqrt{\frac{\lambda}{2t}} , \quad (67)$$

which is indeed the solution given by Carslaw and Jaeger.¹²

It is also useful to evaluate the steady-state solution of Equation (48). Neglecting the time derivative in Equation (48), we have as the steady-state equation,

$$\nabla^2 T + 2\lambda v \frac{\partial T}{\partial \xi} = 0 . \quad (68)$$

By putting

$$T = T_0 + e^{-\lambda v \xi} \phi . \quad (69)$$

Equation (65) becomes

$$\nabla^2 \phi - (\lambda v)^2 \phi = 0 , \quad (70)$$

which reduces to, in the one-dimensional case:

$$\frac{d^2 \phi}{d\xi^2} - (\lambda v)^2 \phi = 0 , \quad (71)$$

¹² Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids, p. 60.

whose general integral is

$$\phi = Ae^{\lambda v \xi} + Be^{-\lambda v \xi}, \quad (72)$$

with A and B as arbitrary constants of integration.

The boundary conditions for T which are of physical interest are:

$$T = T_f \text{ for } \xi = 0, \text{ and } \lim_{\xi \rightarrow \infty} T = T_0, \quad (73)$$

and, from (69) and (72), one readily has

$$T = T_0 + (T_f - T_0) e^{-2v\lambda\xi}. \quad (74)$$

If T_r is the temperature at which some chemical reaction or phase change occurs within one or more of the components of a mixture undergoing combustion, then the distance ξ_r , ahead of the flame, at which the burning material has reached temperature T_r is readily evaluated from (74), and one has

$$\xi_r = \frac{1}{\lambda v} \ln \frac{T_f - T_0}{T_r - T_0} \quad (75)$$

This distance is only of interest if we have

$$\xi_r > vt \quad (76)$$

where t is the reaction time at the temperature T_r . Equation (76) combined with Equation (75) gives the following relation among the physical parameters of the system for a reaction or phase change to occur:

$$\lambda v^2 t < \ln \frac{T_f - T_0}{T_r - T_0} \quad (77)$$

Equation (64) may be integrated numerically to evaluate the temperature at any time t at a distance ξ from the propagating flame for materials whose burn velocity (v), flame temperature (T_f) and thermal diffusivity are known. These parameters are summarized for three materials in Table 2. Equation (64) was integrated for each material at various distances (ξ) ahead of the flame as a function of time. The results are shown in Figures 3(a), 3(b) and 3(c). The time required to establish a "steady-state" temperature varies directly with the distance ahead of the flame (ξ) and the thermal diffusivity, as expected.

Calculations were also made to determine "steady-state" temperature rise as a function of distance ahead of the flame front by integrating at each of 10 distances numerically until convergence is reached. The results of these calculations for materials listed in Table I are shown in Figures 4(a), 4(b), and 4(c). The calculated temperature as $\xi \rightarrow 0$, though not shown in these figures, does indeed approach the flame temperature. From these calculations, an estimate can be made of the thermal gradient existing in porous materials burning conductively to assess when the transition conditions for the onset of convective flow are reached. Measurements of the permeability (K) of these propellants as well as the thermal expansion coefficient of their combustion products (α) must be made in order to check the validity of the model.

V. CONCLUSIONS

A condition has been found which governs the transition from conductive to convective burning in nonreactive analogs of porous propellants and explosives. The relevant physical parameters in the transition are, as one would expect, the temperature gradient in the material, its thermal diffusivity, and the thermal expansion coefficient of its combustion gases. It has been previously well-established^{13,14} that the conductive-convective flow transition precedes that from deflagration-to-detonation. A mechanism has been proposed whereby an initially non-porous propellant grain may become porous through conductive heating ahead of the flame and subsequent phase change or thermal degradation of propellant ingredients. The establishment of a sufficiently high thermal gradient throughout this newly-formed porous layer, whose thickness increases with time, then defines the condition for the onset of primarily-convective flow.

Experimental work will be done in the near future to obtain the physical parameters necessary to verify the validity of the condition for conductive-convective flow transition in porous materials and its role as a precursor to DDT.

¹³Griffith, N., and Glocock, J. M., "The Burning to Detonation of Solid Explosives," J. Chem. Soc., 4154, 1960.

¹⁴Bernecker, R. R., and Price, D., "Studies in the Transition from Deflagration To Detonation in Granular Explosives-I Experimental Arrangement and Behavior of Explosives which Fail To Exhibit Detonation," Combust. Flame, 22, 111-117, 1974.

FIGURE 1. THERMAL CONDUCTIVITY (k) CURVES FOR CARBORUNDUM WITH H_2 , SHOWN IN DOTTED LINE, AND FILLED WITH AIR, SHOWN IN SOLID LINE, VS PRESSURE (REF. 6)

FIGURE 2. CONDUCTIVITY OF HYDROGEN AND AIR AS A FUNCTION OF PRESSURE (REF. 6)

FIGURE 3a. CALCULATED TEMPERATURE RISE AS A FUNCTION OF TIME AT VARIOUS DISTANCES AHEAD OF THE FLAME FRONT FOR EJC PROPELLANT

FIGURE 3b. CALCULATED TEMPERATURE RISE AS A FUNCTION OF TIME AT VARIOUS DISTANCES AHEAD OF THE FLAME FRONT FOR TP-H-1148 PROPELLANT

FIGURE 3c. CALCULATED TEMPERATURE RISE AS A FUNCTION OF TIME AT VARIOUS DISTANCES AHEAD OF THE FLAME FRONT FOR PYRONOL PYROTECHNIC

FIGURE 4a. CALCULATED "STEADY-STATE" TEMPERATURE RISE AS
A FUNCTION OF DISTANCE AHEAD OF THE FLAME FRONT
FOR EJC PROPELLANT (AT $t = 0.045$ sec)

FIGURE 4b. CALCULATED "STEADY-STATE" TEMPERATURE RISE AS A FUNCTION OF DISTANCE AHEAD OF THE FLAME FRONT FOR TP-H-1148 PROPELLANT (AT $t = 0.100$ sec)

FIGURE 4c. CALCULATED "STEADY- STATE" TEMPERATURE RISE AS A FUNCTION OF DISTANCE AHEAD OF THE FLAME FRONT FOR PYRONOL PYROTECHNIC (AT $t = 0.006$ sec)

TABLE 1. DENSITY OF SOLID MATERIALS (ρ) AS WELL AS POWDERED MATERIALS (ρ_0) FOR DIFFERENT TYPES OF CARBORUNDUM. THE AVERAGE LINEAR DIMENSION (l) OF THE POWDERED MATERIAL IS ALSO SHOWN. (REF. 6)

	CARBORUNDUM			
	NO. 40	NO. 90	NO. 280	NO. 600
ρ , g cm ⁻³	1 · 80	1 · 89	1 · 84	1 · 54
ρ_0 , g cm ⁻³	3 · 20	3 · 20	3 · 20	3 · 20
l, cm	0 · 055	0 · 0194	0 · 0061	0 · 0027

TABLE 2. SELECTED PROPERTIES OF REACTIVE MATERIALS USED FOR CALCULATION

MATERIAL	BURN VELOCITY (cm/sec)	FLAME TEMPERATURE	THERMAL DIFFUSIVITY (cm ² /sec)
EJC PROPELLANT	1.372	3913.5	375.3
TP-H-1148 PROPELLANT	1.067	3429.6	229.6
PYRONOL PYROTECHNIC	41.58	2473.0	2.58

BIBLIOGRAPHY

Bernecker, R. R., and Price, D., "Studies in the Transition from Deflagration to Detonation in Granular Explosives-I Experimental Arrangement and Behavior of Explosives Which Fail to Exhibit Detonation," Combust. Flame, 22, 111-117, 1974.

Bornfeld, H., Temperature Measurement in Fusion Welding, Technische Zentralblatt Fur Praktische Metal Bearbeitung, Vol. 43, pp. 14-18, 1933.

Campolattaro, A. A., Numerical Modelling of The Burning of Highly Exothermic Mixtures, NSWC report 1977 (To be published).

Carslaw, H. S., and Jaeger, J. C., Conduction of Heat in Solids, Oxford at the Clarendon Press, II Ed., 1959, page 63.

Griffith, N., and Glocock, J. M., "The Burning to Detonation of Solid Explosives," J. Chem. Soc., 4154, 1960.

Kannuluik, W. G., "Conduction of Heat in Powders," Proc. Roy. Soc., A141, 144-158, 1933.

Kassoy, D. R., and Zebib, A., "Variable Viscosity Effects on the Onset of Convection in Porous Media," Phys. of Fluids, 12, 18, 1649-1651, 1975.

Lapwood, E. R., "Convection of a Fluid in a Porous Medium," Proc. Camb. Phil. Soc., 44, 508-521, 1948.

Lord Rayleigh, "On Convection Currents in a Horizontal Layer of Fluid, When the Higher Temperature is on the Under Side," Phil. Mag., 6, 32, 529-546, 1916.

Rosenthal, D., "The Theory of Moving Sources of Heat and Its Applications to Metal Treatment," Trans. Amer. Soc. Mech. Engrs., 68, 849-866, 1946, and included bibliography.

Zebib, A., and Kassoy, D. R., "Onset of Natural Convection in a Box of Water-Saturated Porous Media with Large Temperature Variation," Phys. of Fluids, 20 (1), 4-9, 1977.

Zebib, A., "Onset of Natural Convection in a Cylinder of Water-Saturated Porous Media," Phys. Fluids, 21 (4), 699-700, 1978.

DISTRIBUTION

<u>Copies</u>	<u>Copies</u>		
Chief of Naval Material Washington, DC 20360	1	Office of Chief of Naval Operations Operations Evaluation Group (OPO3EG) Washington, DC 20350	1
Commander Naval Air Systems Command Attn: AIR-350 AIR-330	1	Director Office of the Secretary of Defense Advanced Research Projects Agency Washington, DC 20301	1
Department of the Navy Washington, DC 20361	1	Commanding Officer Naval Weapons Station Attn: R&D Division Code 50	1
Commander Naval Sea Systems Command Attn: SEA-09G32 SEA-03B SEA-62R SEA-62R3 SEA-62R32	2	Yorktown, VA 23691	1
Department of the Navy Washington, DC 20362	1	Commanding Officer Naval Propellant Plant Attn: Technical Library Indian Head, MD 20640	1
Office of Naval Technology Attn: MAT-07P (J. Enig)	1	McDonnell Aircraft Company Attn: M. L. Schimmel P. O. Box 516 St. Louis, MO 63166	1
Department of the Navy Arlington, VA 22217	1	Commanding Officer Naval Ammunition Depot Crane, IN 47522	1
Commander Naval Weapons Center Attn: Technical Library Code 3264 Code 3205 (C. Thelin) Code 32052 (L. Smith) Code 388 (R. L. Derr, T. Boggs) Code 383 (H. D. Mallory) Code 3835 (K. Graham)	1	Commanding Officer Naval Weapons Evaluation Facility Attn: Code AT-7 Kirtland Air Force Base Albuquerque, NM 87117	1
China Lake, CA 93555	1		

DISTRIBUTION (Cont.)

<u>Copies</u>	<u>Copies</u>		
Commanding Officer Naval Ammunition Depot Attn: QEL Concord, CA 94522	1	Commanding Officer Harry Diamond Laboratories Attn: Library Don Torrieri 2800 Powder Mill Road Adelphi, MD 20783	1
Superintendent Naval Academy Attn: Library Annapolis, MD 21402	1	Armament Development & Test Center DLOSL/Technical Library Eglin Air Force Base, FL 32542	1
Naval Plant Representative Office Strategic Systems Project Office Lockheed Missile and Space Company Attn: SPL-332 (R. H. Guay) P. O. Box 504 Sunnyvale, CA 94088	1	Commanding Officer Naval Ordnance Station Lousiville, KY 40124	1
Hercules Incorporated Allegany Ballistics Laboratory Attn: Library P. O. Box 210 Cumberland, MD 21502	1	Director Applied Physics Laboratory Attn: Library Johns Hopkins Road Laurel, MD 20707	1
AMCRD 5001 Eisenhower Avenue Alexandria, VA 22302	1	U. S. Department of Energy Attn: DMA Washington, DC 20545	1
Redstone Scientific Information Center U. S. Army Missile Command Attn: Chief, Documents Redstone Arsenal, AL 35809	2	Research Director Pittsburgh Mining and Safety Research Center Bureau of Mines 4800 Forbes Avenue Pittsburgh, PA 15213	1
Commanding Officer Army Armament Research and Development Command Energetic Materials Division Attn: W. Voreck, LCWSL/EMD Lousi Avrami, DRDAR-LCE Dover, NJ 07801	1	Goddard Space Flight Center, NASA Glen Dale Road Greenbelt, MD 20771	1
Commanding General Attn: BRL Library DRDAR-BLT (P. Howe) Aberdeen Proving Ground, MD 21005	1		

DISTRIBUTION (Cont.)

<u>Copies</u>	<u>Copies</u>
Lawrence Livermore National Laboratory University of California Attn: W. Moss M. Finger E. James E. Lee P. Urtiew C. Tarver P. O. Box 808 Livermore, CA 94550	Hercules Incorporated Research Center Attn: Technical Information Division B. E. Clouser Wilmington, DE 19899
	Thiokol/Huntsville Division Attn: Technical Library Huntsville, AL 35807
Sandia National Laboratories Attn: R. J. Lawrence, Div 5166 Jim Kennedy, Div 2513 David Anderson, Div 2510 Phil Stanton, Div 2513 Dennis Hayes, Div 5510 P. D. Wilcox, Div 2515 J. E. Shepherd, Div 2513 P. O. Box 5800 Albuquerque, NM 87115	Shock Hydrodynamics Division Whittaker Corporation Attn: Dr. L. Zernow 4716 Vineland Avenue North Hollywood, CA 91706
	Stanford Research Institute Attn: D. Curran 333 Ravenswood Avenue Menlo Park, CA 94025
Director Los Alamos National Laboratory Attn: Library R. L. Rabie B. G. Craig H. Flaugh C. Forest P. O. Box 1663 Los Alamos, NM 87544	Thiokol/Wasatch Division Attn: Technical Library P. O. Box 524 Brigham City, UT 84302
	Thiokol/Elkton Division Attn: Technical Library P. O. Box 241 Elkton, MD 21921
Chairman DOD Explosives Safety Board Attn: Dr. T. A. Zoker 2461 Eisenhower Avenue Alexandria, VA 22331	Teledyne McCormick Selph P. O. Box 6 Hollister, CA 95023
Aerojet Ordnance and Manufacturing Company 9236 East Hall Road Downey, CA 90241	Lockheed Missiles and Space Co., Inc. P. O. Box 504 Sunnyvale, CA 94086
	R. Stresau Laboratory, Inc. Star Route Spooner, WI 54801

DISTRIBUTION (Cont.)

<u>Copies</u>	<u>Copies</u>		
Rohm and Haas Huntsville, Defense Contract Office Attn: H. M. Shuey 723-A Arcadia Circle Huntsville, AL 35801	1	Chemical Propulsion Information Agency The Johns Hopkins University Applied Physics Laboratory Johns Hopkins Road Laurel, MD 20707	1
U. S. Army Foreign Service and Technology Center 220 7th Street, N.E. Charlottesville, VA 22901	1	IIT Research Institute Attn: H. S. Napadensky 10 West 35th Street Chicago, IL 60616	1
Princeton Combustion Research Laboratories, Inc. 1041 U. S. Highway One North Attn: M. Summerfield N. Messina Princeton, NJ 08540	1	Erion Associates, Inc. Attn: W. Petray 600 New Hampshire Avenue, Suite 870 Washington, DC 20037	1
Pennsylvania State University Department of Mechanical Engineering Attn: K. Kuo University Park, PA 16802	1	Brigham Young University Department of Chemical Engineering Attn: Dr. M. W. Beckstead Provo, UT 84601	1
Ballistic Research Laboratories Attn: N. Gerri P. Howe R. Frey D. Kooker Aberdeen Proving Ground, MD 21005	1 1 1 1	Library of Congress Attn: Gift and Exchange Division Washington, DC 20540	4
Paul Gough Associates 1048 South Street Portsmouth, NH 03801	1	California Institute of Technology Jet Propulsion Laboratory Pasadena, CA 91103	1
Hercules Incorporated, Bacchus Works Attn: B. Hopkins Library 100-H D. Caldwell P. O. Box 98 Magna, UT 84044	1 1 2	Commander Armament Research & Development Command Scientific & Technical Division Attn: DRDAR-TSS Building 59 Dover, NJ 07801	1
Professor H. Krier A & A Engineering Department 101 Transportation Building University of Illinois Urbana, IL 61801	1	Director Army Ballistic Research Labs Attn: DRDAR-BLI J. M. Hurban Aberdeen Proving Ground, MD 21005	1
		Director Army Ballistic Research Labs Attn: DRDAR-BLV R. Vitali Aberdeen Proving Ground, MD 21005	1

DISTRIBUTION (Cont.)

<u>Copies</u>	<u>Copies</u>		
Commander Army Material Development- Readiness Command Attn: DRCDE-DW 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commanding Officer Naval Ordnance Station Attn: Technical Library Indian Head, MD 20640	1
Commander Army Material Systems Analysis Activity Attn: DRXSY-PS-Security Office Aberdeen Proving Ground, MD 21005	1	Superintendent Naval Postgraduate School Attn: Code 1424 Library Director Monterey, CA 93940	1
Commander Army Missile Command Redstone Science Information Center Attn: DRSMI-RPR Redstone Arsenal, AL 35898	1	Director Naval Research Branch Office-Pasadena Attn: Dr. Rudolph J. Marcus 1030 E. Green Street Pasadena, CA 91106	1
Chief Army Research Office Research Triangle Park Information Proc Office Attn: DRXRO-IP-L P. O. Box 1221 Research Triangle Park, NC 27709	1	Commanding Officer Naval Research Laboratory Attn: Code 6100 Washington, DC 20375	1
Commander White Sands Missile Range Attn: Technical Library White Sands Missile Range, NM 88002	1	Chief Naval Research (ONR) Attn: Dr. Richard S. Miller 800 N. Quincy Street Arlington, VA 22217	1
Commander Naval Air Development Center Attn: Code 8131 Warminster, PA 18974	1	Commander Naval Sea Systems Command Attn: SEA 62R2 J. W. Murrin Washington, DC 20362	1
Commander Naval Air Systems Command Attn: AIR-00D4 Techincal Library Washington, DC 20361	1	Commander Naval Sea Systems Command Attn: SEA 9961-Technical Library National Center Building 3 Washington, DC 20362	1
Commanding Officer Naval Intelligence Support Center Attn: NISC-H. Ruskie 4301 Suitland Road Washington, DC 20390	1		

DISTRIBUTION (Cont.)

<u>Copies</u>	<u>Copies</u>		
Defense Technical Information Center Cameron Station Alexandria, VA 22314	12	Commander AFRPL Attn: Technical Library/Stop 24 Edwards Air Force Base, CA 93523	1
Commanding Officer Naval Underwater Systems Center Attn: Library Division Newport, RI 02840	1	Commander AFRPL Attn: TSPR Edwards Air Force Base, CA 93523	1
Commander Naval Weapons Center Attn: 343 Technical Library China Lake, CA 93555	1	Commander AD (XRC) Attn: T. O'Grady Eglin AFB, FL 32542	1
Director Navy Strategic Systems Project Office Attn: Technical Library Branch Head Washington, DC 20376	1	National Aeronautics & Space Administration Lyndon B. Johnson Space Center Attn: JM2 Technical Library Houston, TX 77058	1
Commander AFATL Attn: (DLOD) S. M. Lefstad Eglin AFB, FL 32542	1	National Aeronautics & Space Administration Langley Research Center Attn: MS-185 Technical Library Hampton, VA 23665	1
Commander ESMC (Easter Space & Missile Center) Attn: PM/Linda M. Adams Patrick AFB, FL 32925	1	National Aeronautics & Space Administration Lewis Research Center Attn: Library 21000 Brookpark Road Cleveland, OH 44135	1
Commander AFRPL Attn: PA Edwards Air Force Base, CA 93523	1	National Aeronautics & Space Administration Scientific Technical Information Facility Attn: Accessioning Department P. O. Box 8757 Baltimore Washington International Airport, MD 21240	1
Commander AFRPL Attn: LK Edwards Air Force Base, CA 93523	1		
Commander AFRPL Attn: MK Edwards Air Force Base, CA 93523	1		

DISTRIBUTION (Cont.)

<u>Copies</u>	<u>Copies</u>		
Director Under Secretary of Defense Research & Engineering Attn: G. R. Makepeace The Pentagon, Room 3D1089 Washington, DC 20301	1	Ford Aerospace & Comm Corporation Aeronutronic Division Attn: Technical Information Service-DDC Acquisition Ford & Jamboree Roads Newport Beach, CA 92663	1
Aerojet General Corporation Sacramento Aerojet Liquid Rocket Co. Division Attn: Technical Information Center P. O. Box 13222 Sacramento, CA 95813	1	Hercules Incorporated Aerospace Division Allegany Ballistics Laboratory Attn: Technical Library P. O. Box 210 Cumberland, MD 21502	1
Aerojet Tactical Systems Attn: R. Mironenko P. O. Box 13400 Sacramento, CA 95813	1	Hercules Incorporated Attn: Library 100-H-2 P. O. Box 98 Magna, UT 84044	1
Aerospace Corporation Los Angeles Attn: Library Acquisition Group P. O. Box 92957 Los Angeles, CA 90009	1	Hercules Incorporated Attn: Engineering Services Manager P. O. Box 548 McGregor, TX 76657	1
Atlantic Research Corporation Attn: Library 5390 Cherokee Avenue Alexandria, VA 22314	1	Hughes Aircraft Company Attn: Technical Doctrine Center 6E-110-B Centinela & Teals Sts Culver City, CA 90230	1
California Institute of Technology Jet Propulsion Laboratory Attn: Richard Bailey MS/125-224 4800 Oak Grove Drive Pasadena, CA 91103	1	Johns Hopkins University Applied Physics Laboratory - Chemical Propulsion Information Agency Attn: Code ML, R. D. Brown Johns Hopkins Road Laurel, MD 20707	1
California Institute Technology Jet Propulsion Laboratory-Library Op Group Attn: Library Acquisition- Standing Orders 4800 Oak Grove Drive Pasadena, CA 91103	1	Marquardt Company Attn: Library P. O. Box 2013 Van Nuys, CA 91409	1

DISTRIBUTION (Cont.)

<u>Copies</u>	<u>Copies</u>		
Martin Marietta Corporation Orlando Martin Co-Orlando Attn: MP-30 Engineering Library P. O. Box 5837 Orlando, FL 32855	1	Textron Incorporated Bell Aerospace Company Division Attn: Technical Library P. O. Box 1 Buffalo, NY 14240	1
McDonnell-Douglas Corporation Attn: Library Services A3-135 5301 Bolsa Avenue Huntington Beach, CA 92647	1	Thiokol Chemical Corporation Wasatch Division Attn: Technical Library Brigham City, UT 84302	1
McDonnell-Douglas Corporation Attn: Library P. O. Box 516 St. Louis, MO 63166	1	Thiokol Chemical Corporation Attn: Security Office P. O. Box 241 Elkton, MD 21921	1
Olin Corporation Marion Marion Works Attn: R. D. Altekruze P. O. Drawer G (Crab Orchard National Ref) Marion, IL 62959	1	Thiokol Corporation Huntsville Division Attn: Technical Library Redstone Arsenal Huntsville, AL 35807	1
Rockwell International Corporation Rocketdyne Division Attn: TIC, D/586-103, BA29 6633 Canoga Avenue Canoga Park, CA 91304	1	TRW Defense & Space Systems Group Attn: Technical Information Center-Doctrine Services One Space Park Redondo Beach, CA 90278	1
Rockwell International Corporation Downey Space Information Systems Division Attn: TIC-D096-400-AJ01 12214 Lakewood Boulevard Downey, CA 90241	1	TRW Defense & Space Systems Group Attn: Technical Information Center-Doctrine Services For: R. D. Reeve One Space Park Redondo Beach, CA 90278	1
Rohm & Haas Company Attn: Security Office 723-A Arcadia Circle Huntsville, AL 35801	1	United Technologies Corporation Chemical Systems Division Attn: Library P. O. Box 358 Sunnyvale, CA 94088	1
SRI International Attn: Mr. Don Ross 333 Ravenswood Avenue Menlo Park, CA 94025	1		

DISTRIBUTION (Cont.)

<u>Copies</u>	<u>Copies</u>		
United Technologies Corporation Research Center Attn: Acquisition Library 400 Main Street East Hartford, CT 06108	1	Commander Naval Sea Systems Command Attn: SEA-62Z31B Washington, DC 20362	1
Vought Corporation Dallas Systems Division Attn: Library-2-58010 P. O. Box 225907 Dallas, TX 75265	1	Commander AFWAL Attn: (MLTN) C. S. Anderson Wright-Patterson AFB, OH 45433	1
Director Army Ballistic Research Labs ARRADCOM Attn: DRDAR-TSB-S R. P. Ryan Aberdeen Proving Ground, MD 21005	1	Commander AFSC Attn: DLFP Richard Smith Andrews AFB, Washington, DC 20334	1
Talley Industries, Incorporated Attn: Library P. O. Box 839 Mesa, AZ 85201	1	Commander FTD Attn: FTD/SDBP Wright-Patterson AFB, OH 45433	1
Gould, Incorporated Attn: Ocean Systems Information Center For: R. J. kittenhouse 18901 Euclid Avenue Cleveland, OH 44117	1	Commander Ogden ALC Attn: (MANPA) A. Inverso Hill AFB, UT 84401	1
Commander Armament Research & Development Command Scientific & Technical Division Attn: Dr. J. P. Picard Dover, NJ 07801	1	Commander SAALC Attn: (SFQT) W. E. Vandeventer Kelly AFB, TX 78241	1
Commander Radford Army Ammunition Plant Attn: DARRA-QA Radford, VA 24141	1	National Aeronautics & Space Administration Lewis Research Center Attn: D. A. Pettrash 21000 Brookpark Road Cleveland, OH 44135	1
Commanding Officer Naval Air Engineering Center Attn: Code 1115 Technical Library 1 Lakehurst, NJ 08733	1	National Aeronautics & Space Administration George C. Marshall Space Flight Center Attn: AS24L Marshall Space Flight Center, AL 35812	1

DISTRIBUTION (Cont.)

<u>Copies</u>	<u>Copies</u>		
National Aeronautics & Space Administration George C. Marshall Space Flight Center Attn: John Q. Miller EP-25 Marshall Space Flight Center, AL 35812	1	Chief Naval Research (ONR) Attn: Code 412 R. Junker Arlington, VA 22217	1
Martin Marietta Corporation Martin Company Denver Attn: 6617 Research Library P. O. Box 179 Denver, CO 80201	1	Ashland Chemical Company Attn: Security Officer Specialty Fuels Department 5200 Paul G. Blazer Memorial Drive Dublin, OH 43017	1
Sundstrand Corporation Attn: Security Office 4751 Harrison Avenue Rockford, IL 61101	1	<u>Internal distribution:</u> R12 (E. Elzufon) 2 R12 (C. Zovko) 1 R12 (F. Menz) 2 R121 (M. Stosz) 1 R12 (J. Erkman) 1 R10 (S. Jacobs) 1 R12 (L. Roslund) 2 R12 (J. Short) 1 R13 (D. Demske) 1 R13 (J. Forbes) 1 R10 (J. Proctor) 1 R10 (D. Price) 1 R13 (K. Kim) 1 R12 (P. Spahn) 1 R11 (M. Kamlet) 1 R12 (H. Sternberg) 1 R12 (V. deVost) 1 R12 (A. Campolattaro) 10 R12 (G. Laib) 20 R13 (R. Bernecker) 1 R13 (C. Coffey) 1 R12 (D. Lull) 1 R13 (H. Sandusky) 1 R12 (D. Chung) 1 E35 1 E431 9 E432 3	

3 - 8

DTI