Problema de la Mochila

Descripción: Encontrar s tal que $p \le c_0$, para cada objeto od_j en om su número de unidades es menor o igual que m_j y v tenga el mayor valor posible

Técnica: Programación Dinámica Con Filtro

Tipos

- s SoluciónMochila
- A Integer

Propiedades Compartidas	od, List $<$ OM $>$, ordenada por vu de mayor a menor n , Número de elementos, derivada c_0 , Capacidad inicial
Propiedades Individuales	

Solución: Se tipo SolucionMochila

Tamaño: n-j

Solucion Parcial: (a,v)

Siendo v el valor de los objetos en la mochila

Alternativas: $A = [0, k], k = \min\left(\frac{c}{p_j}, m_j\right)$, ordenadas de mayor a menor

La alternativa a representa el número de unidades del objeto j que introducimos en la mochila

Instanciación

 $Inicial = (c_0, 0, 0)$

Casos base

$$c = 0 | |j = n - 1|$$

Solución Caso Base

$$\begin{cases} (0,0), & c = 0\\ (k,kv_j), & j = n-1 \end{cases}$$
$$k = \min\left(\frac{c}{p_j}, m_j\right)$$

Número de subproblemas: 1

Subproblema

$$p = (c, j, va) \xrightarrow{a} p_a = (c - ap_j, j + 1, va + av_j)$$

Esquema Recursivo

$$sp(p) = \begin{cases} (0,0), & c = 0 \\ (k,kv_j), & j = N-1 \\ \max_{a \in A} \{(a,av_j + sp(p_a).v)\}, & en \ otro \ caso \end{cases}$$

$$cS(a,(a',v)) = (a,v+av_i))$$

sA: Elige la solución parcial con mayor valor de v

Objetivo: v: Valor de la Mochila

ObjetivoEstimado(a) = va+ct(a)

Función de Cota

$$ct(a) = av_i + ct'(c - ap_i, i + 1)$$

$$ct'(c,i) = \begin{cases} 0, & c = 0 \\ kv_i, & i = n-1 \\ kv_i + ct'(c - kp_i, i+1), & i < n \end{cases}$$

$$k = \min\left(\frac{(double)c}{p_i}, m_i\right)$$

Solución reconstruida

$$sr(a, v) = od_j \times a$$
, es un caso base
 $sr(a, s) = s + od_j \times a$, es un caso recursivo

Complejidad

Solucion Parcial

- (a,v).a : La alternativa de la solución parcial
- (a,v).v : La propiedad de la solución parcial

ObjetoMochila (v,p,m,vu)

- Valor, Básica
- Peso, Básica
- Número Máximo de Unidades, Básica
- Valor Unitario, Derivada, v/p

SolucionMochila (om,v,p)

- ObjetosE nMochila: Multiset<ObjetoMochila>, básica
- Valor, Derivada, Valor Total de los objetos en la mochila
- Peso, Derivada, Peso Total de los objetos en la Mochila

Notación Solución Mochila

- Ø, Multiset Vacío
- $od_i \times a$, Multiset con a unidades del objeto en la posición j
- $s + od_i \times a$, Añadir a unidades a la solución s del objeto en la posición j

ProblemaMochila od, n, c_0 , (c,j,va)

- Objetos disponibles
- Número de objetos disponibles
- Capacidad Inicial
- Capacidad, Básica
- Índice en objetos disponibles
- Valor Acumulado

Notación

- ullet od_j , Objeto disponible en la posición j
- v_i , Valor del objeto en la posición j
- p_i , Peso del objeto en la posición j
- ullet m_{i} , Número máximo de unidades del objeto en la posición j

Operadores y Funciones

- sA: Selecciona alternativa. Es una función de tipo Sp<A,T> sA(List<Sp<A,T>> sp)
- cS: Combina soluciones de subproblemas. Es una función de tipo Sp<A,T> cS(A a, Sp<A,T> sp)
- ct: Función de cota
- sr: Solución Reconstruida