Лекция 5 Квадратичные формы

5.1 Понятие формы

А5.1.1 Определение. Многочлен степени k от переменных $x_1, x_2, ..., x_n$ называется формой степени k, если все слагаемые имеют одну и ту же степень относительно совокупности переменных $x_1, x_2, ..., x_n$.

А5.1.2 Замечание 1. 1) форма первой степени (линейная форма) от переменных $x_1, x_2, ..., x_n$ имеет вид f_1 $\{x_1, x_2, ..., x_n\} = \sum_{i=1}^n a_i x_i$; 2) форма второй степени (квадратичная форма) от переменных $x_1, x_2, ..., x_n$ имеет вид f_2 $\{x_1, x_2, ..., x_n\} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$; 3) форма третьей степени от переменных $x_1, x_2, ..., x_n$ имеет вид f_3 $\{x_1, x_2, ..., x_n\} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j x_j$.

А5.1.3 Замечание 2. 1) Линейную форму $\sum_{i=1}^{n} a_i x_i$ можно рассматривать как скалярное произведение вектора $\vec{x} = \P_1, x_2, ..., x_n$ и вектора $\vec{a} = \P_1, a_2, ..., a_n$; 2) Квадратичную форму также можно рассматривать как скалярное произведение $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j = \P^T, A\vec{x}$, где матрица

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 называется матрицей квадратичной формы. Кроме того, квадратичную

форму можно представить как произведение матриц $f = \vec{x} A \vec{x}^T$.

А5.1.4 Замечание 3. Поскольку $x_i x_j = x_j x_i$, то $a_{ij} = a_{ji}$ и матрица квадратичной формы является симметрической матрицей, а сама квадратичная форма $f = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$ в развернутом виде выглядит так: $f = a_{11} x_1^2 + a_{22} x_2^2 + \ldots + a_{nn} x_n^2 + 2a_{12} x_1 x_2 + 2a_{13} x_1 x_3 + \ldots + 2a_{n-1,n} x_{n-1} x_n$.

5.2 Невырожденные линейные замены

А5.2.1 Рассмотрим линейное преобразование переменных $x_1, x_2, ... x_n$

с невырожденной матрицей
$$Q = \begin{pmatrix} q_{11} & q_{12} & \dots & q_{1n} \\ q_{21} & q_{22} & \dots & q_{2n} \\ \dots & \dots & \dots & \dots \\ q_{n1} & q_{n2} & \dots & q_{nn} \end{pmatrix}$$
. Очевидно, что равенства (*) можно

записать в следующем матричном виде: $\vec{x}^T = Q \vec{y}^T$

А5.2.2 Теорема (о линейных преобразованиях квадратичных форм) Квадратичная форма от n неизвестных $x_1, x_2, ... x_n$, имеющая матрицу A после выполнения линейного преобразования неизвестных с матрицей Q превращается в квадратичную форму о новых неизвестных с матрицей $B = O^T AO$.

Доказательство: Покажем сначала, что для любых матриц Q и Y имеет место равенство $QY \supset = Y^TQ^T$. Элемент матрицы $QY \supset$, стоящий в ее $QY \supset = Y^TQ^T$ i-ой строке и j-ом столбце, в матрице QY расположен в j-ой строке и i-ом столбце. Он равен сумме произведений соответствующих элементов j-ой строки матрицы Q и i-ого столбца матрицы Y, а значит, равен сумме произведений соответствующих элементов j-ого столбца матрицы Q^T и i-ой строки матрицы Y^T . Что и требовалось.

Поскольку $\vec{x}^T = Q \vec{y}^T$, то $\vec{x} = \vec{y} Q^T$. Значит, $f = \vec{x}^T A \vec{x} = \vec{y} Q^T A Q \vec{y}^T$. Обозначив $B = Q^T A Q$, получим $f = \vec{y} B \vec{y}^T$, что и требовалось.

А5.2.3 Пример. Матрицей квадратичной формы $x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_2 + 4x_1x_3 - 10x_2x_3$ является $A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 2 & -5 \\ 2 & -5 & 3 \end{pmatrix}$. Сделаем линейную замену переменных $\begin{cases} x_1 = y_1 + y_2 - 2y_3 \\ x_2 = y_2 \end{cases}$ с $x_3 = y_3$

матрицей $Q = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Согласно теореме A29.2.2 получим квадратичную форму с матрицей

$$B = Q^T A Q = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ -1 & 2 & -5 \\ 2 & -5 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -3 \\ 0 & -3 & -1 \end{pmatrix}, \text{ то есть, квадратичная}$$

форма $y_1^2 + y_2^2 - x_3^2 - 6y_2y_3$

5.3 Канонический вид квадратичной формы

А5.3.1 Определение: Говорят, что квадратичная форма имеет канонический вид, если она имеет вид $f = \sum_{i=1}^n a_{ii} x^2$.

А5.3.2 Теорема (о каноническом виде квадратичной формы) Любая квадратичная форма может быть приведена к каноническому виду некоторым линейным преобразованием с матрицей, имеющей ненулевой определитель.

Доказательство: Допустим сначала, что среди слагаемых квадратичной формы $f = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$ есть хотя бы один квадрат. Без ограничения общности можно считать, что это квадрат первой переменной: $a_{11}x_1^2$. Тогда выражение

$$a_{11}^{-1} \mathbf{q}_{11} x_1 + a_{12} x_2 + ... + a_{1n} x_n$$

содержит такие же слагаемые с неизвестным x_1 , как и квадратичная форма $f = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$. Значит, разность

$$g_1 = f - a_{11}^{-1} \mathbf{4}_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n$$

будет квадратичной формой, не содержащей переменной x_1 .

$$f = a_{11}^{-1} y_1^2 + a_{22}^{-1} y_2^2 + g_2 \mathbf{C}_3, \dots x_n$$

Если квадратичная форма g_2 $\P_3,...x_n$ снова содержит хотя бы один квадрат, то с ней также можно поступить аналогично и т.д.

Пусть на каком-то этапе квадратичная форма g_i не содержит ни одного квадрата неизвестных. Допустим, что среди слагаемых квадратичной формы g_i есть слагаемое $2a_{ij}x_ix_j$. Рассмотрим линейное преобразование

$$x_i = z_i - z_j$$
, $x_j = z_i + z_j$, $x_k = z_k$ (при $k \neq i, k \neq j$).

Тогда $2a_{ij}x_ix_j=2a_{ij}z_i^2-2a_{ij}z_j^2$ и в квадратичной форме появятся слагаемые, содержащие квадраты.

Каждому из линейных преобразований соответствует некоторая матрица. Пусть последовательно выполняемым линейным преобразованиям соответствуют матрицы $A_1,A_2...A_k$, тогда композиции всех проведенных преобразований Y=AX будет соответствовать матрица $A=A_n,...A_2A_1$. $Teopema\ dokasaha$.

А5.3.3 Пример: Привести к каноническому виду квадратичную форму $f = 2x_1x_2 - 6x_2x_3 + 4x_1x_3$

Решение: Поскольку в форме отсутствуют квадраты, выполним преобразование $x_1 = y_1 - y_2$, $x_2 = y_1 + y_2$, $x_3 = y_3$:

$$f = 2 \mathbf{Q}_1 - y_2 \mathbf{Y}_1 + y_2 \mathbf{Y}_3 + 4 \mathbf{Q}_1 - y_2 \mathbf{Y}_3 = 0$$

$$=2y_1^2-2y_2^2-2y_1y_3-10y_2y_3$$
.

$$2y_1^2 - 2y_2^2 - 2y_1y_3 - 10y_2y_3 = \frac{1}{2} \mathbf{Q}y_1 - y_3 - 2y_2^2 - \frac{1}{2}y_3^2 - 10y_2y_3$$

Полагаем
$$2y_1 - y_3 = z_1, y_2 = z_2, y_3 = z_3$$
: $f = \frac{1}{2}z_1^2 - 2z_2^2 - \frac{1}{2}z_3^2 - 10z_2z_3$.

$$\frac{1}{2}z_1^2 - 2z_2^2 - \frac{1}{2}z_3^2 - 10z_2z_3 = \frac{1}{2}z_1^2 - \frac{1}{2} 2z_2 + 5z_3^2 + 12z_3^2$$

Полагаем
$$z_1 = t_1, 2z_2 + 5z_3 = t_2, z_3 = t_3$$
: $f = \frac{1}{2}t_1^2 - \frac{1}{2}t_2^2 + 12t_3^2$.

Можно также сделать линейное преобразование $\frac{t_1}{\sqrt{2}} = u_1, \frac{t_2}{\sqrt{2}} = u_2, 2\sqrt{3}t_3 = u_3$:

$$f = u_1^2 - u_2^2 + u_3^2.$$

А5.3.4 Теорема (о каноническом виде квадратичной формы) Одним из канонических видов квадратичной формы является $\sum_{i=1}^n \lambda_i x_i^2$, где $\lambda_1, \lambda_2, ... \lambda_n$ - собственные числа матрицы, а

соответствующее линейное преобразование при этом задается матрицей $\begin{pmatrix} eta_{11} & eta_{12} & \dots & eta_{1n} \\ eta_{21} & eta_{22} & \dots & eta_{2n} \\ \dots & \dots & \dots \\ eta_{n1} & eta_{n2} & \dots & eta_{nn} \end{pmatrix}$,

где \mathbf{Q}_{i1} , β_{i2} ,.... β_{in} - собственный вектор единичной длины, соответствующий собственному числу λ_i .

Без доказательства.

5.4 Определенные квадратичные формы

А5.4.1 Определение. Квадратичная форма $f = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j$ называется:

- неотрицательно определенной, если при любых значениях переменных выполнено неравенство $f \ge 0$;
- *положительно определенной*, если она неотрицательно определена и обращается в ноль только при $x_1 = x_2 = ... = x_n$;
- неположительно определенной, если при любых значениях переменных выполнено неравенство $f \le 0$;

- *отрицательно определенной*, если она неположительно определена и обращается в ноль только при $x_1 = x_2 = ... = x_n$;
- *неопределенной* если при различных значениях переменной она может принимать как положительные, так и отрицательные значения;

А5.4.2 Примеры: 1) f **(** $_1$, x_2) = $x_1^2 - 2x_1x_2 + x_2^2$ - неотрицательно определенная форма, так как f **(** $_1$, x_2) = **(** $_1$, x_2) = **(** $_2$) = **(** $_3$, x_4) = **(** $_4$) , x_5 , x_5 , = **(** $_4$) , x_5 , x

А5.4.3 Теорема (об определенных квадратичных формах) Квадратичная форма:

- неотрицательно определена, когда все собственные числа ее матрицы неотрицательны;
- положительно определена, когда все собственные числа ее матрицы положительны;
- неположительно определена, когда все собственные числа ее матрицы неположительны;
- отрицательно определена, когда все собственные числа ее матрицы отрицательны;

Доказательство. Пусть квадратичная форма $f = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$ заменой переменных с невырожденной матрицей Q приведена к виду $f = \sum_{i=1}^n \lambda_i \, y_i^2$ (среди слагаемых могут быть и нулевые).

Если все $\lambda_i > 0$, то и $f = \sum_{i=1}^n \lambda_i y_i^2 > 0$ и форма положительно определена.

Пусть все $\lambda_i \geq 0$ и при этом $\lambda_1 > 0, \lambda_2 > 0,..., \lambda_r > 0, \ \lambda_{r+1} = \lambda_{r+2} = ... = \lambda_n = 0$. Тогда, очевидно, $f = \sum_{i=1}^n \lambda_i \, y_i^2 \geq 0$. При этом если $y_1 = y_2 = ... = y_r = 0$ и $y_{r+1} = y_{r+2} = ... = y_n = 1$, то f = 0. И форма неотрицательно определена, не будучи положительно определенной.

Если все $\lambda_i < 0$, то и $f = \sum_{i=1}^n \lambda_i \, y_i^2 < 0$ и форма отрицательно определена.

Пусть все $\lambda_i \leq 0$ и при этом $\lambda_1 < 0, \lambda_2 < 0, ..., \lambda_r < 0$, $\lambda_{r+1} = \lambda_{r+2} = ... = \lambda_n = 0$. Тогда, очевидно, $f = \sum_{i=1}^n \lambda_i y_i^2 \leq 0$. При этом если $y_1 = y_2 = ... = y_r = 0$ и $y_{r+1} = y_{r+2} = ... = y_n = 1$, то f = 0. И форма неположительно определена, не будучи отрицательно определенной. Теорема доказана.

А5.4.4 Следствие. Квадратичная форма от n переменных положительна определена, если она имеет ранг n и приводится к какому-либо каноническому виду с положительными

коэффициентами при квадратах. Квадратичная форма от n переменных отрицательна определена, если она имеет ранг n и приводится к какому-либо каноническому виду с отрицательными коэффициентами при квадратах.

5.5 Критерий Сильвестра

А5.5.1 Определение. Главными минорами матрицы
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
, а если эта матрица

симметрична, то и главными минорами соответствующей квадратичной формы называются:

$$\Delta_{1} = a_{11}, \ \Delta_{2} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \ \Delta_{3} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}, \dots, \ \Delta_{n} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}.$$

А5.5.2 Теорема (критерий Сильвестра) Квадратичная форма положительно определена тогда и только тогда, когда все ее главные миноры положительны.

Без доказательства.

А5.5.3 Теорема (критерий Сильвестра) Квадратичная форма отрицательно определена тогда и только тогда, когда $\Delta_1 = a_{11} < 0$ и далее знаки главных миноров чередуются.

Без доказательства.

А5.5.5 Пример Проверить, будет ли положительно определенной квадратичная форма $f = 5x_1^2 + x_2^2 + 5x_3^2 + 4x_1x_2 - 8x_1x_3 - 4x_2x_3$

Решение: Составим матрицу квадратичной формы:

$$\begin{pmatrix}
5 & 2 & -4 \\
2 & 1 & -2 \\
-4 & -2 & 5
\end{pmatrix}$$

Вычислим ее главные миноры:
$$5 > 0$$
, $\begin{vmatrix} 5 & 2 \\ 2 & 1 \end{vmatrix} = 1 > 0$, $\begin{vmatrix} 5 & 2 & -4 \\ 2 & 1 & -2 \\ -4 & -2 & 5 \end{vmatrix} = 1 > 0$.

Квадратичная форма положительно определена.

Контрольные вопросы:

- 1. Что называется квадратичной формой? Что называется матрицей квадратичной формы?
- 2. Сформулируйте теорему о линейных преобразованиях квадратичных форм.
- 3. Что такое канонический вид квадратичной формы? Сформулируйте теорему о каноническом виде квадратичной формы.
- 4. Какая квадратичная форма называется положительно (неположительно, неотрицательно, отрицательно) определенной?
- 5. Сформулируйте теорему об определенных квадратичных формах.
- 6. Что называется главными минорами матрицы? Сформулируйте критерий Сильвестра)