Monotonic Alpha-Divergence Variational Inference

Kamélia Daudel

Research collaboration day -27/04/2022Joint work with Randal Douc and François Roueff

- \bullet Bayesian Inference : complex posterior density $p(y|\mathcal{D})$ only known up to a constant
- Variational Inference :
 - lacktriangle Posit a simpler variational family Q
 - 2 Find the best approximation to the posterior density belonging to $\mathcal Q$ solve an optimisation problem involving a measure of dissimilarity D

$$\inf_{q \in \mathcal{Q}} D(q \mid\mid p(\cdot \mid \mathcal{D}))$$

 Typically, D is the exclusive Kullback-Leibler (KL) divergence and Q is parametric

$$Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\}$$

with θ for example being optimised via stochastic gradient descent

- \bullet Bayesian Inference : complex posterior density $p(y|\mathcal{D})$ only known up to a constant
- Variational Inference :
 - lacktriangle Posit a simpler variational family Q
 - ② Find the best approximation to the posterior density belonging to $\mathcal Q$: solve an optimisation problem involving a measure of dissimilarity D

$$\inf_{q \in \mathcal{Q}} D(q \mid\mid p(\cdot | \mathscr{D}))$$

 Typically, D is the exclusive Kullback-Leibler (KL) divergence and Q is parametric

$$Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\}$$

with θ for example being optimised via stochastic gradient descent

- \bullet Bayesian Inference : complex posterior density $p(y|\mathcal{D})$ only known up to a constant
- Variational Inference :
 - lacktriangle Posit a simpler variational family Q
 - ② Find the best approximation to the posterior density belonging to $\mathcal Q$: solve an optimisation problem involving a measure of dissimilarity D

$$\inf_{q \in \mathcal{Q}} D(q \mid\mid p(\cdot | \mathscr{D}))$$

 Typically, D is the exclusive Kullback-Leibler (KL) divergence and Q is parametric

$$Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\}\$$

with θ for example being optimised via stochastic gradient descent.

- \bullet Bayesian Inference : complex posterior density $p(y|\mathcal{D})$ only known up to a constant
- Variational Inference :
 - lacktriangle Posit a simpler variational family Q
 - ② Find the best approximation to the posterior density belonging to $\mathcal Q$: solve an optimisation problem involving a measure of dissimilarity D

$$\inf_{q \in \mathcal{Q}} D(q \mid\mid p(\cdot | \mathscr{D}))$$

 Typically, D is the exclusive Kullback-Leibler (KL) divergence and Q is parametric

$$Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\}\$$

with θ for example being optimised via stochastic gradient descent.

Instead of the exclusive KL divergence and ${\mathcal Q}$ of the form

$$\mathcal{Q} = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\} ,$$

$$Q = \left\{ q : y \mapsto \mu_{\lambda,\Theta} k(y) := \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- → Why is that a good idea?
 - 1 The α -divergence family is more general and permits to bypass some issues of the exclusive KL divergence when $\alpha < 1$
 - **2** Optimising w.r.t. λ and Θ expands the traditional parametric variational family \rightarrow Optimising w.r.t. λ enables to select the mixture components according to their overall importance in the set of component parameters Θ

Instead of the exclusive KL divergence and ${\mathcal Q}$ of the form

$$Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\} ,$$

$$Q = \left\{ q : y \mapsto \mu_{\lambda,\Theta} k(y) := \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- \rightarrow Why is that a good idea?
 - ① The α -divergence family is more general and permits to bypass some issues of the exclusive KL divergence when $\alpha < 1$
 - ② Optimising w.r.t. λ and Θ expands the traditional parametric variational family \rightarrow Optimising w.r.t. λ enables to select the mixture components according to their overall importance in the set of component parameters Θ

Instead of the exclusive KL divergence and ${\mathcal Q}$ of the form

$$Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\} ,$$

$$Q = \left\{ q : y \mapsto \mu_{\lambda,\Theta} k(y) := \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- \rightarrow Why is that a good idea?
 - \blacksquare The $\alpha\text{-divergence}$ family is more general and permits to bypass some issues of the exclusive KL divergence when $\alpha<1$
 - **②** Optimising w.r.t. λ and Θ expands the traditional parametric variational family \rightarrow Optimising w.r.t. λ enables to select the mixture components according to their overall importance in the set of component parameters Θ

Instead of the exclusive KL divergence and $\ensuremath{\mathcal{Q}}$ of the form

$$Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\} ,$$

$$Q = \left\{ q : y \mapsto \mu_{\lambda,\Theta} k(y) := \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- \rightarrow Why is that a good idea?
 - \blacksquare The $\alpha\text{-divergence}$ family is more general and permits to bypass some issues of the exclusive KL divergence when $\alpha<1$
 - **Q** Optimising w.r.t. λ and Θ expands the traditional parametric variational family \rightarrow Optimising w.r.t. λ enables to select the mixture components according to their overall importance in the set of component parameters Θ

Instead of the exclusive KL divergence and ${\cal Q}$ of the form

$$Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\} ,$$

consider the α -divergence and choose $\mathcal Q$ of the form

$$\mathcal{Q} = \left\{ q: y \mapsto \mu_{\pmb{\lambda},\Theta} k(y) := \sum_{j=1}^J \lambda_j k(\theta_j,y) \; : \; \pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} \; .$$

- → What are the challenges?
 - **1** The optimisation w.r.t λ is over a constrained space (the simplex)
 - 2 How do we establish theoretical guarantees?

Monotonic Alpha-divergence Minimisation for Variational Inference.

K. Daudel, R. Douc and F. Roueff (2021). https://arxiv.org/abs/2103.05684

Goal : Propose valid update formulas for (λ, Θ) that ensures a **systematic decrease in the** α -divergence $D_{\alpha}(\mu_{\lambda,\Theta}k \mid\mid p(\cdot \mid \varnothing))$ at each step, with $\alpha \in [0,1)$.

Instead of the exclusive KL divergence and ${\cal Q}$ of the form

$$Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\},\$$

consider the α -divergence and choose $\mathcal Q$ of the form

$$\mathcal{Q} = \left\{ q: y \mapsto \mu_{\pmb{\lambda},\Theta} k(y) := \sum_{j=1}^J \lambda_j k(\theta_j,y) \; : \; \pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} \; .$$

- \rightarrow What are the challenges?
 - **1** The optimisation w.r.t λ is over a constrained space (the simplex)
 - 2 How do we establish theoretical guarantees?

Monotonic Alpha-divergence Minimisation for Variational Inference.

K. Daudel, R. Douc and F. Roueff (2021). https://arxiv.org/abs/2103.05684

Goal : Propose valid update formulas for (λ, Θ) that ensures a **systematic decrease in the** α -divergence $D_{\alpha}(\mu_{\lambda,\Theta}k \mid\mid p(\cdot \mid \mathscr{D}))$ at each step, with $\alpha \in [0,1)$.

Instead of the exclusive KL divergence and ${\mathcal Q}$ of the form

$$Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\},\$$

consider the α -divergence and choose $\mathcal Q$ of the form

$$\mathcal{Q} = \left\{ q: y \mapsto \mu_{\pmb{\lambda},\Theta} k(y) := \sum_{j=1}^J \lambda_j k(\theta_j,y) \; : \; \pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} \; .$$

- \rightarrow What are the challenges?
 - **1** The optimisation w.r.t λ is over a constrained space (the simplex)
 - 2 How do we establish theoretical guarantees?

Monotonic Alpha-divergence Minimisation for Variational Inference.

K. Daudel, R. Douc and F. Roueff (2021). https://arxiv.org/abs/2103.05684

Goal : Propose valid update formulas for (λ, Θ) that ensures a **systematic decrease in the** α -divergence $D_{\alpha}(\mu_{\lambda,\Theta}k \mid\mid p(\cdot \mid \mathscr{D}))$ at each step, with $\alpha \in [0,1)$.

Instead of the exclusive KL divergence and ${\mathcal Q}$ of the form

$$Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\}\$$
,

consider the α -divergence and choose $\mathcal Q$ of the form

$$\mathcal{Q} = \left\{ q: y \mapsto \mu_{\pmb{\lambda},\Theta} k(y) := \sum_{j=1}^J \lambda_j k(\theta_j,y) \; : \; \pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} \; .$$

- → What are the challenges?
 - **1** The optimisation w.r.t λ is over a constrained space (the simplex)
 - 2 How do we establish theoretical guarantees?

Monotonic Alpha-divergence Minimisation for Variational Inference.

K. Daudel, R. Douc and F. Roueff (2021). https://arxiv.org/abs/2103.05684

Goal : Propose valid update formulas for (λ, Θ) that ensures a **systematic decrease in the** α -divergence $D_{\alpha}(\mu_{\lambda,\Theta} k \mid\mid p(\cdot \mid \mathscr{D}))$ at each step, with $\alpha \in [0,1)$.

Monotonic Alpha-Divergence Minimisation

• Goal : Given (λ_n, Θ_n) find $(\lambda_{n+1}, \Theta_{n+1})$ such that

$$D_{\alpha}(\mu_{\boldsymbol{\lambda}_{n+1},\Theta_{n+1}}k \mid\mid p(\cdot|\mathscr{D})) \leqslant D_{\alpha}(\mu_{\boldsymbol{\lambda}_{n},\Theta_{n}}k \mid\mid p(\cdot|\mathscr{D}))$$

• Core step : simplify the problem by writing conditions enabling separate (and simultaneous!) updates for λ_{n+1} and Θ_{n+1}

$$\begin{split} \int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}}\right) \nu(\mathrm{d}y) &\geqslant 0 \\ \int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) &\geqslant 0 \end{split} \tag{Components} \\ \text{where } \varphi_{j,n}^{(\alpha)}(y) = k(\theta_{j,n},y) \left(\frac{\mu_{\lambda_{n},\Theta_{n}}k(y)}{p(y,\mathscr{D})}\right)^{\alpha-1} \end{split}$$

Monotonic Alpha-Divergence Minimisation

ullet Goal : Given $(oldsymbol{\lambda}_n,\Theta_n)$ find $(oldsymbol{\lambda}_{n+1},\Theta_{n+1})$ such that

$$D_{\alpha}(\mu_{\lambda_{n+1},\Theta_{n+1}}k \mid\mid p(\cdot|\mathscr{D})) \leqslant D_{\alpha}(\mu_{\lambda_{n},\Theta_{n}}k \mid\mid p(\cdot|\mathscr{D}))$$

• Core step : simplify the problem by writing conditions enabling separate (and simultaneous!) updates for λ_{n+1} and Θ_{n+1}

$$\begin{split} &\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}}\right) \nu(\mathrm{d}y) \geqslant 0 \\ &\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) \geqslant 0 \\ &\text{where } \varphi_{j,n}^{(\alpha)}(y) = k(\theta_{j,n},y) \left(\frac{\mu_{\lambda_{n},\Theta_{n}}k(y)}{p(y,\mathscr{D})}\right)^{\alpha-1} \end{split} \tag{Components}$$

$$\int_{\mathbf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

ightarrow (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\lambda_{n+1} = \operatorname{argmax}_{\lambda \in \mathcal{S}_J} \int_{\mathsf{Y}} \sum_{i=1}^J \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_j}{\lambda_{j,n}}\right) \nu(\mathrm{d}y)$$

$$\int_{\mathbf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

ightarrow (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\lambda_{n+1} = \operatorname{argmax}_{\lambda \in \mathcal{S}_J} \int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_j}{\lambda_{j,n}}\right) \nu(\mathrm{d}y)$$

$$\int_{\mathbb{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

ightarrow (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \int_{\mathbf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}, \quad j = 1 \dots J$$

$$\int_{\mathbb{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

ightarrow (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}} , \quad j = 1 \dots J$$

where $\eta_n \in (0,1]$ and κ_n is such that $(\alpha-1)\kappa_n \geqslant 0$

$$\int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

• Maximisation approach : for all $i = 1 \dots J$,

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta \in \mathsf{T}} \int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y)$$

• Gradient-based approach : for all $j=1\ldots J,\ \gamma_{j,n}\in(0,1]$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}$$

where $g_{i,n}$ is assumed to be $\beta_{i,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$ with

$$g_{j,n}(\theta) = \int_{\mathsf{Y}} \frac{\varphi_{j,n}^{(\alpha)}(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y)$$

$$\int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

• Maximisation approach : for all $j = 1 \dots J$,

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta \in \mathsf{T}} \int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta,y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y)$$

• Gradient-based approach : for all $j=1\ldots J,\ \gamma_{j,n}\in(0,1]$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}$$

where $g_{i,n}$ is assumed to be $\beta_{i,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$ with

$$g_{j,n}(\theta) = \int_{\mathsf{Y}} \frac{\varphi_{j,n}^{(\alpha)}(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y)$$

$$\int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

ullet Maximisation approach : for all $j=1\dots J$, $b_{j,n}\geqslant 0$ and

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta \in \mathsf{T}} \int_{\mathsf{Y}} \left[\varphi_{j,n}^{(\alpha)}(y) + b_{j,n} k(\theta_{j,n},y) \right] \log \left(\frac{k(\theta,y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y)$$

• Gradient-based approach : for all $j=1\ldots J,\ \gamma_{j,n}\in(0,1]$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}$$

where $g_{i,n}$ is assumed to be $\beta_{i,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$ with

$$g_{j,n}(\theta) = \int_{\mathsf{Y}} \frac{\varphi_{j,n}^{(\alpha)}(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y)$$

$$\int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

ullet Maximisation approach : for all $j=1\dots J$, $b_{j,n}\geqslant 0$ and

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta \in \mathsf{T}} \int_{\mathsf{Y}} \left[\varphi_{j,n}^{(\alpha)}(y) + b_{j,n} k(\theta_{j,n},y) \right] \log \left(\frac{k(\theta,y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y)$$

• Gradient-based approach : for all $j=1\ldots J,\ \gamma_{j,n}\in(0,1]$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}$$

where $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$ with

$$g_{j,n}(\theta) = \int_{\mathsf{Y}} \frac{\varphi_{j,n}^{(\alpha)}(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

An example : GMMs, $k(\theta_j, y) = \mathcal{N}(y; m_j, \Sigma_j)$

• Maximisation approach with $\theta_j = (m_j, \Sigma_j)$: for all $j = 1 \dots J$,

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}$$

$$\Sigma_{j,n+1} = (1 - \gamma_{j,n}) \tilde{\Sigma}_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) (y - m_{j,n+1}) (y - m_{j,n+1})^T \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}$$

where $\tilde{\Sigma}_{j,n} = \Sigma_{j,n} + (m_{j,n+1} - m_{j,n})(m_{j,n+1} - m_{j,n})^T$ and $\gamma_{j,n}$ depends on $b_{j,n}$

ullet Gradient-based approach with $heta_j=m_j$: for all $j=1\dots J$

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}$$

where $\gamma_{j,n} \in (0,1]$, and $\Sigma_j = \sigma_j^2 I_d$ with $\sigma_j > 0$ fixed (here $g_{j,n}$ is $\beta_{j,n}$ -smooth with $\beta_{j,n} = \sigma_j^{-2} (1-\alpha)^{-1} \int \varphi_{j,n}^{(\alpha)} d\nu_j$

An example : GMMs, $k(\theta_j, y) = \mathcal{N}(y; m_j, \Sigma_j)$

• Maximisation approach with $\theta_j = (m_j, \Sigma_j)$: for all $j = 1 \dots J$,

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}$$

$$\Sigma_{j,n+1} = (1 - \gamma_{j,n}) \tilde{\Sigma}_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) (y - m_{j,n+1}) (y - m_{j,n+1})^T \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}$$

where $\tilde{\Sigma}_{j,n} = \Sigma_{j,n} + (m_{j,n+1} - m_{j,n})(m_{j,n+1} - m_{j,n})^T$ and $\gamma_{j,n}$ depends on $b_{j,n}$. Considering all possible values of $b_{j,n}$, we have $\gamma_{j,n} \in (0,1]$

• Gradient-based approach with $\theta_j = m_j$: for all $j = 1 \dots J$

$$m_{j,n+1} = (1 - \gamma_{j,n})m_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y)\nu(\mathrm{d}y)}$$

where $\gamma_{j,n} \in (0,1]$, and $\Sigma_j = \sigma_j^2 I_d$ with $\sigma_j > 0$ fixed (here $g_{j,n}$ is $\beta_{j,n}$ -smooth with $\beta_{j,n} = \sigma_j^{-2} (1-\alpha)^{-1} \int \varphi_{j,n}^{(\alpha)} d\nu$)

An example : GMMs, $k(\theta_j, y) = \mathcal{N}(y; m_j, \Sigma_j)$

• Maximisation approach with $\theta_j = (m_j, \Sigma_j)$: for all $j = 1 \dots J$,

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}$$

$$\Sigma_{j,n+1} = (1 - \gamma_{j,n}) \tilde{\Sigma}_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) (y - m_{j,n+1}) (y - m_{j,n+1})^T \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}$$

where $\tilde{\Sigma}_{j,n} = \Sigma_{j,n} + (m_{j,n+1} - m_{j,n})(m_{j,n+1} - m_{j,n})^T$ and $\gamma_{j,n}$ depends on $b_{j,n}$ Considering all possible values of $b_{j,n}$, we have $\gamma_{j,n} \in (0,1]$

ullet Gradient-based approach with $heta_j=m_j$: for all $j=1\dots J$

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}$$

where $\gamma_{j,n} \in (0,1]$, and $\Sigma_j = \sigma_j^2 \mathbf{I}_d$ with $\sigma_j > 0$ fixed (here $g_{j,n}$ is $\beta_{j,n}$ -smooth with $\beta_{j,n} = \sigma_j^{-2} (1-\alpha)^{-1} \int \varphi_{j,n}^{(\alpha)} \mathrm{d}\nu$)

Goal : Given (λ_n, Θ_n) find $(\lambda_{n+1}, \Theta_{n+1})$ such that

$$D_{\alpha}(\mu_{\boldsymbol{\lambda}_{n+1},\Theta_{n+1}}k \mid\mid p(\cdot|\mathscr{D})) \leqslant D_{\alpha}(\mu_{\boldsymbol{\lambda}_{n},\Theta_{n}}k \mid\mid p(\cdot|\mathscr{D}))$$

We found

1 Updates for the mixture weights λ_{n+1}

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}} , \quad j = 1 \dots J$$

where $\eta_n \in (0,1]$ and κ_n is such that $(\alpha-1)\kappa_n \geqslant 0$

- 2 Updates for the mixture components parameters Θ_{n+1}
 - Maximisation approach
 - Gradient-based approach

that are applicable to GMMs [maximisation approach providing covariance matrices updates].

Goal : Given $(\boldsymbol{\lambda}_n,\Theta_n)$ find $(\boldsymbol{\lambda}_{n+1},\Theta_{n+1})$ such that

$$D_{\alpha}(\mu_{\boldsymbol{\lambda}_{n+1},\Theta_{n+1}}k \mid\mid p(\cdot|\mathscr{D})) \leqslant D_{\alpha}(\mu_{\boldsymbol{\lambda}_{n},\Theta_{n}}k \mid\mid p(\cdot|\mathscr{D}))$$

We found:

1 Updates for the mixture weights λ_{n+1}

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}} , \quad j = 1 \dots J$$

where $\eta_n \in (0,1]$ and κ_n is such that $(\alpha - 1)\kappa_n \geqslant 0$

- **2** Updates for the mixture components parameters Θ_{n+1}
 - Maximisation approach
 - Gradient-based approach

that are applicable to GMMs [maximisation approach providing covariance matrices updates].

Goal : Given $(\boldsymbol{\lambda}_n,\Theta_n)$ find $(\boldsymbol{\lambda}_{n+1},\Theta_{n+1})$ such that

$$D_{\alpha}(\mu_{\boldsymbol{\lambda}_{n+1},\Theta_{n+1}}k \mid\mid p(\cdot|\mathscr{D})) \leqslant D_{\alpha}(\mu_{\boldsymbol{\lambda}_{n},\Theta_{n}}k \mid\mid p(\cdot|\mathscr{D}))$$

We found:

lacktriangle Updates for the mixture weights $oldsymbol{\lambda}_{n+1}$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}} , \quad j = 1 \dots J$$

where $\eta_n \in (0,1]$ and κ_n is such that $(\alpha-1)\kappa_n \geqslant 0$

- **2** Updates for the mixture components parameters Θ_{n+1}
 - Maximisation approach
 - Gradient-based approach

that are applicable to GMMs [maximisation approach providing covariance matrices updates].

Goal : Given (λ_n, Θ_n) find $(\lambda_{n+1}, \Theta_{n+1})$ such that

$$D_{\alpha}(\mu_{\boldsymbol{\lambda}_{n+1},\Theta_{n+1}}k \mid\mid p(\cdot|\mathscr{D})) \leqslant D_{\alpha}(\mu_{\boldsymbol{\lambda}_{n},\Theta_{n}}k \mid\mid p(\cdot|\mathscr{D}))$$

We found:

1 Updates for the mixture weights λ_{n+1}

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}} , \quad j = 1 \dots J$$

where $\eta_n \in (0,1]$ and κ_n is such that $(\alpha-1)\kappa_n \geqslant 0$

- **2** Updates for the mixture components parameters Θ_{n+1}
 - Maximisation approach
 - Gradient-based approach

that are applicable to GMMs [maximisation approach providing covariance matrices updates].

Goal : Given (λ_n, Θ_n) find $(\lambda_{n+1}, \Theta_{n+1})$ such that

$$D_{\alpha}(\mu_{\lambda_{n+1},\Theta_{n+1}}k \mid\mid p(\cdot|\mathscr{D})) \leqslant D_{\alpha}(\mu_{\lambda_{n},\Theta_{n}}k \mid\mid p(\cdot|\mathscr{D}))$$

We found:

lacktriangle Updates for the mixture weights $oldsymbol{\lambda}_{n+1}$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}} , \quad j = 1 \dots J$$

where $\eta_n \in (0,1]$ and κ_n is such that $(\alpha-1)\kappa_n \geqslant 0$

- **2** Updates for the mixture components parameters Θ_{n+1}
 - Maximisation approach
 - Gradient-based approach

that are applicable to GMMs [maximisation approach providing covariance matrices updates].

Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS Variational inference via χ -upper bound minimization. A. Dieng, D. Tran, R. Ranganath, J. Paisley, and D. Blei (2017). NeurIPS

→ Main focus on mixture component parameters optimisation (via GD)

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}$$

- We recover GD steps for mixture components optimisation by Rényi's
- Same update on the means for maximisation and gradient-based

Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS Variational inference via χ -upper bound minimization. A. Dieng, D. Tran, R. Ranganath, J. Paisley, and D. Blei (2017). NeurIPS

→ Main focus on mixture component parameters optimisation (via GD) Recall that in the GMM case, we obtained: for all $i = 1 \dots J$,

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}$$

where $\gamma_{j,n} \in (0,1]$

- We recover GD steps for mixture components optimisation by Rényi's
- Same update on the means for maximisation and gradient-based

Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS Variational inference via χ -upper bound minimization. A. Dieng, D. Tran, R. Ranganath, J. Paisley, and D. Blei (2017). NeurIPS

→ Main focus on mixture component parameters optimisation (via GD) Recall that in the GMM case, we obtained: for all $i = 1 \dots J$,

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}$$

where $\gamma_{j,n} \in (0,1]$

Core insights:

- We recover GD steps for mixture components optimisation by Rényi's
- Same update on the means for maximisation and gradient-based

Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS Variational inference via χ -upper bound minimization. A. Dieng, D. Tran, R. Ranganath, J. Paisley, and D. Blei (2017). NeurIPS

→ Main focus on mixture component parameters optimisation (via GD) Recall that in the GMM case, we obtained: for all $i = 1 \dots J$,

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}$$

where $\gamma_{j,n} \in (0,1]$

Core insights:

- We recover GD steps for mixture components optimisation by Rényi's α -divergence minimisation for a well-chosen $\gamma_{i,n}$.
 - → Compatibility between GD steps and mixture weights updates
- Same update on the means for maximisation and gradient-based

Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS Variational inference via χ -upper bound minimization. A. Dieng, D. Tran, R. Ranganath, J. Paisley, and D. Blei (2017). NeurIPS

→ Main focus on mixture component parameters optimisation (via GD) Recall that in the GMM case, we obtained: for all $i = 1 \dots J$,

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}$$

where $\gamma_{j,n} \in (0,1]$

Core insights:

- We recover GD steps for mixture components optimisation by Rényi's α -divergence minimisation for a well-chosen $\gamma_{i,n}$.
 - → Compatibility between GD steps and mixture weights updates
- 2 Same update on the means for maximisation and gradient-based approaches
 - → Compatibility between GD steps, mixture weights updates and covariance matrices updates

Infinite-dimensional gradient-based descent for alpha-divergence minimisation. K. Daudel, R. Douc and F. Portier. Ann. Statist. 49 (4) 2250 - 2270, August 2021. https://doi.org/10.1214/20-AOS2035.

→ Main focus on mixture weights optimisation

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}}, \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_n$$

where $\eta_n \in (0,1]$ and κ_n is such that $(\alpha-1)\kappa_n \geqslant 0$

- Same update on the mixture weights as the Power Descent
 - \rightarrow Compatibility between mixture weights updates and mixture components parameters updates
- ② The mixture weights update is gradient-based, η_n plays the role of a learning rate

Infinite-dimensional gradient-based descent for alpha-divergence minimisation. K. Daudel, R. Douc and F. Portier. Ann. Statist. 49 (4) 2250 - 2270, August 2021. https://doi.org/10.1214/20-AOS2035.

→ Main focus on mixture weights optimisation

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}}, \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_n$$

where $\eta_n \in (0,1]$ and κ_n is such that $(\alpha-1)\kappa_n \geqslant 0$

- Same update on the mixture weights as the Power Descent
 - \rightarrow Compatibility between mixture weights updates and mixture components parameters updates
- ② The mixture weights update is gradient-based, η_n plays the role of a learning rate

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier. Ann. Statist. 49 (4) 2250 - 2270, August 2021. https://doi.org/10.1214/20-AOS2035.

→ Main focus on mixture weights optimisation

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}}, \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_n$$

where $\eta_n \in (0,1]$ and κ_n is such that $(\alpha-1)\kappa_n \geqslant 0$

- Same update on the mixture weights as the Power Descent
 - \rightarrow Compatibility between mixture weights updates and mixture components parameters updates
- ${f 2}$ The mixture weights update is gradient-based, η_n plays the role of a learning rate

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier. Ann. Statist. 49 (4) 2250 - 2270, August 2021. https://doi.org/10.1214/20-AOS2035.

→ Main focus on mixture weights optimisation

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}}, \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_n$$

where $\eta_n \in (0,1]$ and κ_n is such that $(\alpha-1)\kappa_n \geqslant 0$

- Same update on the mixture weights as the Power Descent
 - \rightarrow Compatibility between mixture weights updates and mixture components parameters updates
- ② The mixture weights update is gradient-based, η_n plays the role of a learning rate

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier. Ann. Statist. 49 (4) 2250 - 2270, August 2021. https://doi.org/10.1214/20-AOS2035.

→ Main focus on mixture weights optimisation

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}} , \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_n$$

where $\eta_n \in (0,1]$ and κ_n is such that $(\alpha-1)\kappa_n \geqslant 0$

- Same update on the mixture weights as the Power Descent
 - \rightarrow Compatibility between mixture weights updates and mixture components parameters updates
- ${f 2}$ The mixture weights update is gradient-based, η_n plays the role of a learning rate

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier. Ann. Statist. 49 (4) 2250 - 2270, August 2021. https://doi.org/10.1214/20-AOS2035.

→ Main focus on mixture weights optimisation

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa_n \right]^{\eta_n}} , \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_n$$

where $\eta_n \in (0,1]$ and κ_n is such that $(\alpha-1)\kappa_n \geqslant 0$

- Same update on the mixture weights as the Power Descent
 - \rightarrow Compatibility between mixture weights updates and mixture components parameters updates
- $oldsymbol{2}$ The mixture weights update is gradient-based, η_n plays the role of a learning rate

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

We recover this algorithm by setting:

- $-\alpha = 0$
- $\eta_n = 1$, $\kappa_n = 0$ in the mixture weights update
- $b_{j,n} = 0$ in the maximisation approach

Core insights:

We have generalised an integrated EM algorithm for mixture models optimisation

- ① We extend the systematic decrease property to $\alpha \in [0,1)$
- 2 We introduce η_n and κ_n , where η_n acts as a learning rate
- 3 In the GMM case, we introduce $\gamma_{j,n}$ via $b_{j,n}$, which acts as a learning rate

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

We recover this algorithm by setting :

- $-\alpha = 0$
- $\eta_n = 1$, $\kappa_n = 0$ in the mixture weights update
- $b_{j,n} = 0$ in the maximisation approach

Core insights:

We have generalised an integrated EM algorithm for mixture models optimisation

- ① We extend the systematic decrease property to $\alpha \in [0,1)$
- 2 We introduce η_n and κ_n , where η_n acts as a learning rate
- 3 In the GMM case, we introduce $\gamma_{j,n}$ via $b_{j,n}$, which acts as a learning rate

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

We recover this algorithm by setting :

- $-\alpha = 0$
- $\eta_n = 1$, $\kappa_n = 0$ in the mixture weights update
- $b_{j,n} = 0$ in the maximisation approach

Core insights:

We have generalised an integrated EM algorithm for mixture models optimisation

- ① We extend the systematic decrease property to $\alpha \in [0,1)$
- 2 We introduce η_n and κ_n , where η_n acts as a learning rate
- 3 In the GMM case, we introduce $\gamma_{j,n}$ via $b_{j,n}$, which acts as a learning rate

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

We recover this algorithm by setting :

- $-\alpha = 0$
- $\eta_n = 1$, $\kappa_n = 0$ in the mixture weights update
- $b_{j,n} = 0$ in the maximisation approach

Core insights:

We have generalised an integrated EM algorithm for mixture models optimisation

- ① We extend the systematic decrease property to $\alpha \in [0,1)$
- 2 We introduce η_n and κ_n , where η_n acts as a learning rate
- 3 In the GMM case, we introduce $\gamma_{j,n}$ via $b_{j,n}$, which acts as a learning rate

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

We recover this algorithm by setting :

- $-\alpha = 0$
- $\eta_n = 1$, $\kappa_n = 0$ in the mixture weights update
- $b_{j,n} = 0$ in the maximisation approach

Core insights:

We have generalised an integrated EM algorithm for mixture models optimisation

- **1** We extend the systematic decrease property to $\alpha \in [0,1)$
- 2 We introduce η_n and κ_n , where η_n acts as a learning rate
- 3 In the GMM case, we introduce $\gamma_{j,n}$ via $b_{j,n}$, which acts as a learning rate

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

We recover this algorithm by setting :

- $-\alpha = 0$
- $\eta_n = 1$, $\kappa_n = 0$ in the mixture weights update
- $b_{j,n} = 0$ in the maximisation approach

Core insights:

We have generalised an integrated EM algorithm for mixture models optimisation

- **1** We extend the systematic decrease property to $\alpha \in [0,1)$
- 2 We introduce η_n and κ_n , where η_n acts as a learning rate
- 3 In the GMM case, we introduce $\gamma_{j,n}$ via $b_{j,n}$, which acts as a learning rate

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

We recover this algorithm by setting :

- $-\alpha = 0$
- $\eta_n = 1$, $\kappa_n = 0$ in the mixture weights update
- $b_{j,n} = 0$ in the maximisation approach

Core insights:

We have generalised an integrated EM algorithm for mixture models optimisation

- lacktriangle We extend the systematic decrease property to $\alpha \in [0,1)$
- 2 We introduce η_n and κ_n , where η_n acts as a learning rate
- **3** In the GMM case, we introduce $\gamma_{j,n}$ via $b_{j,n}$, which acts as a learning rate

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

We recover this algorithm by setting :

- $-\alpha = 0$
- $\eta_n = 1$, $\kappa_n = 0$ in the mixture weights update
- $b_{j,n} = 0$ in the maximisation approach

Core insights:

We have generalised an integrated EM algorithm for mixture models optimisation

- lacktriangle We extend the systematic decrease property to $\alpha \in [0,1)$
- 2 We introduce η_n and κ_n , where η_n acts as a learning rate
- **3** In the GMM case, we introduce $\gamma_{j,n}$ via $b_{j,n}$, which acts as a learning rate

Monte Carlo approximations

Algorithm 1: Gaussian Mixture Models optimisation

At iteration n,

- **①** Draw independently M samples $(Y_{m,n})_{1 \leq m \leq M}$ from the proposal q_n .
- **2** For all $j = 1 \dots J$, set:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\sum_{m=1}^{M} \hat{\varphi}_{\ell,n}^{(\alpha)}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}$$

$$(MG) \quad m_{j,n+1} = (1 - \gamma_{n}) \, m_{j,n} + \gamma_{n} \frac{\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) \cdot Y_{m,n}}{\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n})}$$

$$(RGD) \quad m_{j,n+1} = m_{j,n} + \gamma_{n} \frac{\lambda_{j,n} \sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) \cdot (Y_{m,n} - \theta_{j,n})}{\sum_{j=1}^{J} \sum_{m=1}^{M} \lambda_{j,n} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n})}$$

$$\rightarrow \text{ Here } \hat{\varphi}_{j,n}^{(\alpha)}(y) = \frac{\varphi_{j,n}^{(\alpha)}(y)}{q_n(y)}, \ \gamma_{j,n} := \gamma_n \in (0,1] \ \text{(simultaneity matters!)}$$

- ightarrow RGD : updates derived from GD steps w.r.t. Θ applied to Rényi's α -divergence
- o 2 possible samplers : $q_n = \mu_{\lambda_n,\Theta_n}$ (IS-n) and $q_n = J^{-1} \sum_{i=1}^J k(\theta_{j,n},\cdot)$ (IS-unif).

Monte Carlo approximations

Algorithm 1: Gaussian Mixture Models optimisation

At iteration n,

- **①** Draw independently M samples $(Y_{m,n})_{1 \leq m \leq M}$ from the proposal q_n .
- **2** For all $j = 1 \dots J$, set:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\sum_{m=1}^{M} \hat{\varphi}_{\ell,n}^{(\alpha)}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}$$

$$(MG) \quad m_{j,n+1} = (1 - \gamma_{n}) \, m_{j,n} + \gamma_{n} \frac{\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) \cdot Y_{m,n}}{\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n})}$$

$$(RGD) \quad m_{j,n+1} = m_{j,n} + \gamma_{n} \frac{\lambda_{j,n} \sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) \cdot (Y_{m,n} - \theta_{j,n})}{\sum_{j=1}^{J} \sum_{m=1}^{M} \lambda_{j,n} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n})}$$

$$\rightarrow$$
 Here $\hat{\varphi}_{j,n}^{(\alpha)}(y)=rac{arphi_{j,n}^{(\alpha)}(y)}{q_n(y)},\ \gamma_{j,n}:=\gamma_n\in(0,1]$ (simultaneity matters!)

ightarrow RGD : updates derived from GD steps w.r.t. Θ applied to Rényi's α -divergence

$$o$$
 2 possible samplers : $q_n = \mu_{\lambda_n,\Theta_n}$ (IS-n) and $q_n = J^{-1} \sum_{i=1}^J k(\theta_{j,n},\cdot)$ (IS-unif).

Monte Carlo approximations

Algorithm 1: Gaussian Mixture Models optimisation

At iteration n,

- **①** Draw independently M samples $(Y_{m,n})_{1 \leq m \leq M}$ from the proposal q_n .
- **2** For all $j = 1 \dots J$, set:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\sum_{m=1}^{M} \hat{\varphi}_{\ell,n}^{(\alpha)}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}$$

$$(MG) \quad m_{j,n+1} = (1 - \gamma_{n}) \, m_{j,n} + \gamma_{n} \frac{\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) \cdot Y_{m,n}}{\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n})}$$

$$(RGD) \quad m_{j,n+1} = m_{j,n} + \gamma_{n} \frac{\lambda_{j,n} \sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) \cdot (Y_{m,n} - \theta_{j,n})}{\sum_{j=1}^{J} \sum_{m=1}^{M} \lambda_{j,n} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n})}$$

$$\rightarrow$$
 Here $\hat{\varphi}_{j,n}^{(\alpha)}(y)=rac{\varphi_{j,n}^{(\alpha)}(y)}{q_n(y)}, \ \gamma_{j,n}:=\gamma_n\in(0,1]$ (simultaneity matters!)

- ightarrow RGD : updates derived from GD steps w.r.t. Θ applied to Rényi's α -divergence
- \to 2 possible samplers : $q_n = \mu_{\lambda_n,\Theta_n}$ (IS-n) and $q_n = J^{-1} \sum_{i=1}^J k(\theta_{j,n},\cdot)$ (IS-unif).

Comparing RGD to MG (fixed λ)

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• MC estimate of the VR Bound averaged over 30 trials for RGD and MG.

[Here,
$$\alpha = 0.2$$
, $d = 16$, $M = 200$, $\kappa_n = 0$, $\eta_n = 0$. and $q_n = \mu_n k$.]

• LogMSE averaged over 30 trials for RGD and MG.

	J = 10			J = 50			
	$\gamma = 0.1$	$\gamma = 0.5$	$\gamma = 1.0$	$\gamma = 0.1$			
	-0.081		-0.218	-1.640	-1.673	-1.560	
$MG ext{-}IS ext{-}n(\gamma)$	-3.702	-1.875	-2.711	-2.760	-2.771	-2.788	

Comparing RGD to MG (fixed λ)

Target :
$$p(y) = 2 \times [0.5\mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• MC estimate of the VR Bound averaged over 30 trials for RGD and MG.

Here,
$$\alpha=0.2, d=16, M=200, \kappa_n=0, \eta_n=0.$$
 and $q_n=\mu_n k.$

J = 50

• LogMSE averaged over 30 trials for RGD and MG.

	J = 10			J = 50		
	$\gamma = 0.1$	$\gamma = 0.5$	$\gamma = 1.0$	$\gamma = 0.1$	$\gamma = 0.5$	$\gamma = 1.0$
$\overline{RGD\text{-}IS\text{-}n(\gamma)}$	-0.081	-0.076	-0.218	-1.640	-1.673	-1.560
$MG ext{-}IS ext{-}n(\gamma)$	-3.702	-1.875	-2.711	-2.760	-2.771	-2.788

Comparing RGD to MG (varying λ)

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• MC estimate of the VR Bound averaged over 30 trials for RGD and MG.

[Here,
$$\alpha = 0.2$$
, $d = 16$, $M = 200$, $\eta = 0.1$, $\kappa_n = 0$.]

LogMSE averaged over 30 trials for RGD and MG.

	J = 10			J = 50			
	$\gamma = 0.1$		$\gamma = 1.0$	$\gamma = 0.1$		$\gamma = 1.0$	
RGD-IS-n (γ)	0.372	0.510	0.384	-0.616	-0.713		
$MG-IS-n(\gamma)$	1.104	1.074	0.387	1.135	-0.077		
RGD-IS-unif(γ)	0.359	0.469	0.458		-0.670		
$MG-IS-unif(\gamma)$	-0.200	-0.229	-0.515	-1.500	-1.462	-1.246	

Comparing RGD to MG (varying λ)

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• MC estimate of the VR Bound averaged over 30 trials for RGD and MG.

[Here,
$$\alpha = 0.2$$
, $d = 16$, $M = 200$, $\eta = 0.1$, $\kappa_n = 0$.]

• LogMSE averaged over 30 trials for RGD and MG.

		J = 10			J = 50	
	$\gamma = 0.1$	$\gamma = 0.5$	$\gamma = 1.0$	$\gamma = 0.1$	$\gamma = 0.5$	$\gamma = 1.0$
RGD-IS-n (γ)	0.372	0.510	0.384	-0.616	-0.713	-0.778
$MG ext{-}IS ext{-}n(\gamma)$	1.104	1.074	0.387	1.135	-0.077	-0.060
$RGD ext{-}IS ext{-}unif(\gamma)$	0.359	0.469	0.458	-0.688	-0.670	-0.583
$MG ext{-}IS ext{-}unif(\gamma)$	-0.200	-0.229	-0.515	-1.500	-1.462	-1.246

Comparing RGD to MG (varying λ) - 2

$$\text{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• LogMSE averaged over 30 trials for RGD and MG. [Here, $\alpha = 0.2$, d = 16, M = 200, $\gamma = 0.5$, $\kappa_n = 0$.]

	J = 10			J = 50		
	$\eta = 0.05$	$\eta = 0.1$	$\eta = 0.5$	$\eta = 0.05$	$\eta = 0.1$	$\eta = 0.5$
RGD-IS-n (γ)	0.045	0.510	1.299	-1.355	-0.713	0.924
$MG ext{-}IS ext{-}n(\gamma)$	0.087	1.074	1.343	-1.205	-0.077	1.329
$RGD ext{-}IS ext{-}unif(\gamma)$	-0.018	0.469	1.328	-1.385	-0.670	0.928
$MG ext{-}IS ext{-}unif(\gamma)$	-1.244	-0.229	1.100	-2.524	-1.462	0.309

Comparing RGD to MG (varying λ) - 2

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• LogMSE averaged over 30 trials for RGD and MG. [Here, $\alpha=0.2$, d=16, M=200, $\gamma=0.5$, $\kappa_n=0.$]

		J = 10			J = 50	
	$\eta = 0.05$	$\eta = 0.1$	$\eta = 0.5$	$\eta = 0.05$	$\eta = 0.1$	$\eta = 0.5$
RGD-IS-n (γ)	0.045	0.510	1.299	-1.355	-0.713	0.924
$MG ext{-}IS ext{-}n(\gamma)$	0.087	1.074	1.343	-1.205	-0.077	1.329
RGD-IS-unif(γ)	-0.018	0.469	1.328	-1.385	-0.670	0.928
$MG ext{-}IS ext{-}unif(\gamma)$	-1.244	-0.229	1.100	-2.524	-1.462	0.309

Conclusion

Novel framework for monotonic alpha-divergence minimisation

- applicable to mixture models optimisation with theoretical guarantees
- mixture weights and mixture components parameters can be updated simultaneously
- links with gradient-based approaches and with an Integrated EM algorithm
- Encouraging empirical benefits of our general framework

Some perspectives

- Additional convergence results
- Hyperparameters tuning...

Conclusion

Novel framework for monotonic alpha-divergence minimisation

- applicable to mixture models optimisation with theoretical guarantees
- mixture weights and mixture components parameters can be updated simultaneously
- links with gradient-based approaches and with an Integrated EM algorithm
- Encouraging empirical benefits of our general framework

Some perspectives

- Additional convergence results
- Hyperparameters tuning...

Conclusion

Novel framework for monotonic alpha-divergence minimisation

- applicable to mixture models optimisation with theoretical guarantees
- mixture weights and mixture components parameters can be updated simultaneously
- links with gradient-based approaches and with an Integrated EM algorithm
- Encouraging empirical benefits of our general framework

Some perspectives

- Additional convergence results
- Hyperparameters tuning...

Thank you for your attention!