A Study on Population Changes in Food Chain and Its Affectedness by Contagions, via Mathematical Modelling

Yuan Ning, Huilin Tong and Yushi Liu School of Engineering, Tufts University May 10, 2018

Biological interaction

Biological interaction

- Analyzing population dynamics
 - Biological competition;
 - Predation.
- Analyzing change of population of species
 - with contagions.
- Birth rate is related to its population
 - internal competition;
 - Population of prey.
- Death rate is related to population of predator
 - Contagions

• Differential equations based on the assumption can be described as follows:

$$X_{1}'[t] = K_{1} * X_{1}[t] - K_{2} * X_{1}[t] * X_{2}[t]$$

 $X_{2}'[t] = K_{3} * X_{1}[t] * X_{2}[t] - K_{4} * X_{2}[t]$

The birth rate of the predator is $K_1 * X_1[t]$, the mortality rate is $K_2 * X_1[t] * X_2[t]$, and the birth rate of the prey is $K_3 * X_1[t] * X_2[t]$, and the mortality rate is $K_4 * X_2[t]$.

• The predator's period is in delay.

 $K_1=0.2$ $K_2=0.0005$ $K_3=0.0002$ $K_4=0.2$ K1/K2=400K4/K3=1000

Initial: X1(0)=1000 X2(0)=600

• Differential equations based on the assumption can be described as follows:

$$X_{1}'[t] = K_{1} * X_{1}[t] - K_{2} * X_{1}[t] * X_{2}[t]$$

 $X_{2}'[t] = K_{3} * X_{1}[t] * X_{2}[t] - K_{4} * X_{2}[t]$

The birth rate of the predator is $K_1 * X_1[t]$, the mortality rate is $K_2 * X_1[t] * X_2[t]$, and the birth rate of the prey is $K_3 * X_1[t] * X_2[t]$, and the mortality rate is $K_4 * X_2[t]$.

• Considering the constraint due to internal competition.

$$X_{1}'[t] = X_{1}[t] * (K_{1} - K_{2} * X_{1}[t] - K_{3} * X_{2}[t])$$

$$X_{2}'[t] = X_{2}[t] * (K_{4} * X_{1}[t] - K_{5} * X_{2}[t] - K_{6})$$

• Considering stability, when the increase or decrease rate is zero (derivatives are zero), system is stable.

• The population become stable after periods of oscillation.

Model II: $A \rightarrow B$; $A \rightarrow C$

X: prey
Y: predators

- Considering one more predator.
 - Differential equations
 - Similar assumption

$$Y_{1}'[t] = Y_{1}[t](K_{1}X[t] - K_{2}Y_{1}[t] - K_{3})$$

$$Y_{2}'[t] = Y_{2}[t](K_{4}X[t] - K_{5}Y_{2}[t] - K_{6})$$

$$X'[t] = X[t](K_{7} - K_{8}X[t] - K_{9}Y_{1}[t] - K_{10}Y_{2}[t])$$

Model II: $A \rightarrow B$; $A \rightarrow C$

X: prey
Y: predators

Biological interaction w/ Contagions

Constant population

- Contagions could constraint increase of population
- Simple model: no recovery.
- Assuming constant total population.
- Population: N(t) = X(t) + Y(t) (= constant)
 - Uninfected: X(t)
 - Infected: Y(t)

$$X'[t] = K*X[t]*Y[t]$$
 $N=X[t] + Y[t]$
 $Y'[t] = K*(N-Y[t])*Y[T]$

Constant population

• analytic solution
$$Y[t] = \frac{e^{KNT}NY_0}{N-Y_0+e^{KNT}Y_0}$$

Constant population

- Contagion could constraint the speed of increase of population
- Simple model: no recovery.
- Assuming constant total population.
- Population: N(t) = X(t) + Y(t) (= constant)
 - Uninfected: X(t)
 - Infected: Y(t)

$$X'[t] = K*X[t]*Y[t]$$
 $N=X[t] + Y[t]$
 $Y'[t] = K*(N-Y[t])*Y[T]$

Decreased population

• Infected individuals recovers with immunity

- Population: N(t) = X(t) + Y(t) + Z(t)
 - Uninfected: X(t)
 - Infected: Y(t)
 - Recovery with immunity: Z(t)

Decreased population

- Not considering natural growth rate, the increase of population is from net migration.
- Individual death rate is a constant, ignore the restriction of environment recourse.

$$X'[t] = K_1 - K_2 X[t] - K_3 X[t] Y[t] + K_4 Z[t]$$

$$Y'[t] = K_3X[t]Y[t] - (K_2 + K_5 + K_6)Y[t]$$

$$Z'[t] = K_6Y[t] - (K_2 + K_4)Z[t]$$

$$N'[t] = K_1 - K_2N[t] - K_5Y[t]$$

K₁: #healthy individual coming from external environment in unit time

K₂: normal death rate

K₃: healthy individual infection rate(not include individuals with immunity)

K₄: rate of individuals lost their immunity

K₅: fatality rate

K₆: recovery rate

Decreased population

- Trivial Solution: $X = \frac{K_1}{K_2}$, Y = 0, Z = 0;
- Stable solution:

$$X = \frac{K_2 + K_5 + K_6}{K_3}$$

$$Y = \frac{-(K_2 + K_4)(K_2^2 - K_1 K_3 + K_2 K_5 + K_2 K_6)}{K_3(K_2^2 + K_2 K_4 + K_2 K_5 + K_4 K_5 + K_2 K_6)}$$

$$Z = \frac{-K_6(K_2^2 - K_1 K_3 + K_2 K_5 + K_2 K_6)}{K_3(K_2^2 + K_2 K_4 + K_2 K_5 + K_4 K_5 + K_2 K_6)}$$

• Stable condition: $K_1/K_2 > (K_2 + K_5 + K_6)/K_3$

Decreased population

K1=3 K2=0.005 K3=0.0013 K4=0 K5=0.042 K6=0.001 X(0)=80 Y(0)=20 Z(0)=20 N(0)=120

- Not considering natural growth rate, the increase of population is from net migration.
- Individual death rate is a constant, ignore the restriction of environment recourse.

$$X'[t] = \frac{K_1 - K_2 X[t] - K_3 X[t] Y[t] + K_4 Z[t]}{Y'[t] = K_3 X[t] Y[t] - (K_2 + K_5 + K_6) Y[t]}$$
$$Z'[t] = K_6 Y[t] - (K_2 + K_4) Z[t]$$

$$N'[t] = K_1 - K_2N[t] - K_5Y[t]$$

K₁: #healthy individual coming from external environment in unit time

K₂: normal death rate

K₃: healthy individual infection rate(not include individuals with immunity)

K₄: rate of individuals lost their immunity

K₅: fatality rate

K₆: recovery rate

With reproduction

- Considering natural growth rate.
- Individual death rate is a constant, ignore the restriction of environment recourse.

$$X'[t] = \mathbf{K}_{1} N[t] - \mathbf{K}_{2} X[t] - \mathbf{K}_{3} X[t] Y[t] + \mathbf{K}_{4} Z[t]$$

$$Y'[t] = \mathbf{K}_{3} X[t] Y[t] - (\mathbf{K}_{2} + \mathbf{K}_{5} + \mathbf{K}_{6}) Y[t]$$

$$Z'[t] = \mathbf{K}_{6} Y[t] - (\mathbf{K}_{2} + \mathbf{K}_{4}) Z[t]$$

$$N'[t] = (\mathbf{K}_{1} - \mathbf{K}_{2}) N[t] - \mathbf{K}_{5} Y[t] \quad \mathbf{K}_{1} : \text{ birth rate}$$

K₁: birth rate

K₂: normal death rate

K₃: healthy individual infection rate(not

include individuals with immunity)

 K_4 : rate of individuals lost their immunity

K₅: fatality rate

K₆: recovery rate

With reproduction

- Trivial Solution: X = Y = Z = 0
- Stable solution:

$$X = \frac{K_2 + K_5 + K_6}{K_3}$$

$$Y = \frac{(K_1 - K_2)(K_2 + K_4)(K_2 + K_5 + K_6)}{K_3(K_1 K_2 - K_2^2 + K_1 K_4 - K_2 K_4 - K_2 K_5 - K_4 K_5 + K_1 K_6 - K_2 K_6)}$$

$$Z = \frac{(K_1 - K_2)K_6(K_2 + K_5 + K_6)}{K_3(K_1 K_2 - K_2^2 + K_1 K_4 - K_2 K_4 - K_2 K_5 - K_4 K_5 + K_1 K_6 - K_2 K_6)}$$

• Stable condition: $K_5 > (K_1 - K_2)(1 + \frac{K_6}{K_2 + K_4})$

With reproduction

K1=0.006 K2=0.005 K3=0.0003 K4=0 K5=0.02 K6=0.001 X(0)=80 Y(0)=20 Z(0)=0 N(0) = 120

