Estadística I

Tercero del grado en Matemáticas, UAM, 2018-2019

Examen final, 14-1-2019

Ejercicio 1. Consideramos una muestra aleatoria (X_1, \ldots, X_{50}) de tamaño 50 de una variable $X \sim \mathcal{N}(\mu, \sigma^2)$, con $\mu = 1$ y $\sigma^2 = 4$.

a) Definimos el vector aleatorio $\mathbb{Z} = (Z_1, \dots, Z_{50})^{\mathsf{T}}$ dado por

$$\begin{cases} Z_1 = X_1 \\ Z_2 = X_2 \\ \vdots \\ Z_{49} = X_{49} \\ Z_{50} = X_1 + \dots + X_{50} \end{cases}$$

El vector \mathbb{Z} sigue una normal multidimensional $\mathcal{N}(\mathbf{m}, V)$. ¿Cuáles son sus parámetros \mathbf{m} y V?

b) Considera las siguientes variables aleatorias:

$$\overline{X} = \frac{1}{50} \sum_{i=1}^{50} X_i$$
 y $D^2 = \frac{1}{50} \sum_{i=1}^{50} (X_i - \overline{X})^2$.

Aquí, las variables X_1, \ldots, X_{50} son las del apartado anterior.

Calcula la probabilidad de que ocurra que $\overline{X} < 6/5$ y que $D^2 < 2$ simultáneamente.

Ejercicio 2. La variable aleatoria (discreta) X tiene la siguiente función de masa:

$$f(k;\theta) = \frac{1}{k!} e^{-k\theta} (k\theta)^{k-1} \quad \text{para } k = 1, 2, \dots$$

Aquí, θ es un parámetro, $\theta \in (0,1)$. Se sabe que

$$\mathbf{E}_{\theta}(X) = \frac{1}{1-\theta}$$
 y $\mathbf{V}_{\theta}(X) = \frac{\theta}{(1-\theta)^3}$.

- a) Halla la cota de Cramér–Rao para estimadores insesgados del parámetro θ (con muestras aleatorias de X de tamaño n).
 - b) Considera el estadístico

$$T(X_1,\ldots,X_n)=1-\frac{1}{\overline{X}}.$$

Escribe un resultado de normalidad asintótica para T.

Ejercicio 3. a) Sea X una variable aleatoria con función de densidad $f(x;\theta)$. Aquí, θ es un parámetro positivo. El estadístico T_n es un estimador de θ para muestras aleatorias de tamaño n de X. Se sabe que la variable

$$\frac{nT_n}{\theta}$$

se distribuye como una χ^2 con n grados de libertad.

Hemos obtenido una muestra aleatoria de tamaño 10 de X. La estimación de θ usando el estimador T_{10} es el número $\hat{\theta} = 3$. Halla el correspondiente intervalo de confianza para θ al 95 %.

b) Una cierta magnitud X se distribuye como una $\mathcal{N}(\mu, \sigma^2)$. Estamos contrastando la hipótesis $H_0: \mu = 3$ con muestras aleatorias de X.

La muestra 1 tiene tamaño 100, tiene media muestral 2.7 y cuasidesviación típica 2.

La muestra 2 tiene tamaño 200, tiene media muestral 2.7 y cuasidesviación típica 2.

¿Cuál de las dos muestras tiene un mayor p-valor? Justifica adecuadamente tu respuesta.

Ejercicio 4. La variable X tiene función de densidad

$$f(x; a) = \frac{2}{a^2} x$$
 para $x \in (0, a)$,

donde a es un parámetro positivo.

Para contrastar la hipótesis

$$H_0: a = 1$$

se diseña el siguiente test: dada una muestra aleatoria (x_1, \ldots, x_n) de tamaño n de la variable X, rechazaremos H_0 si, o bien $\max(x_1, \ldots, x_n) > 1$, o bien $\max(x_1, \ldots, x_n) < 1/2$.

Calcula la función de potencia del test, dibuja (con detalle) su gráfica y halla el nivel de significación del test.

Ejercicio 5. La variable X toma los valores 1, 2 y 3 con probabilidades respectivas p, p y 1-2p. Aquí, p es un parámetro, $p \in (0, 1/2)$.

Se dispone de una muestra de X de tamaño 10 en la que han aparecido 3 unos, 2 doses y 5 treses.

Se desea contrastar la hipótesis $H_0: p < p_0$, donde p_0 es un cierto valor entre 0 y 1/4, y para ello se utilizará un test de razón de verosimilitudes con calibre 1/32.

¿Qué valor de p_0 marca el paso entre rechazo y aceptación de la hipótesis H_0 para la muestra observada?

Percentiles de la χ^2 con n grados de libertad (n = 1, ..., 12):

n	1	2	3	4	5	6	7	8	9	10	11
$\chi^2_{\{n;97.5\%\}}$	0.001	0.051	0.216	0.484	0.831	1.237	1.690	2.180	2.700	3.247	3.816
$\chi^2_{\{n;95\%\}}$	0.004	0.103	0.352	0.711	1.145	1.635	2.167	2.733	3.325	3.940	4.575
$\chi^2_{\{n;5\%\}}$	3.841	5.991	7.815	9.488	11.070	12.592	14.067	15.507	16.919	18.307	19.675
$\chi^2_{\{n;2.5\%\}}$	5.024	7.378	9.348	11.143	12.833	14.449	16.013	17.535	19.023	20.483	21.920

Algunos percentiles de la t de Student con n grados de libertad $(n = 1, \dots, 24)$:

n	1	2	3	4	5	6	7	8	9	10	11	12
$t_{\{n;5\%\}}$	6.314	2.920	2.353	2.132	2.015	1.943	1.895	1.860	1.833	1.812	1.796	1.782
$\overline{}$	13	14	15	16	17	18	19	20	21	22	23	24
$t_{\{n;5\%\}}$	1.771	1.761	1.753	1.746	1.740	1.734	1.729	1.725	1.721	1.717	1.714	1.711
n	1	2	3	4	5	6	7	8	9	10	11	12
$t_{\{n;2.5\%\}}$	12.70	6 4.30	3 3.18	2 - 2.77	6 2.571	2.447	2.365	5 2.30	6 2.26	2.228	3 2.201	2.179
$\overline{}$	13	14	15	16	17	18	19	20	21	22	23	24
$t_{\{n;2.5\%\}}$	2.160	0 2.14	5 2.13	1 2.12	0 2.110	2.101	2.093	3 2.08	6 2.08	0 - 2.074	4 2.069	2.064

Algunos valores de percentiles de la normal estándar:

α	5 %	4.5%	4.0%	3.5%	3.0%	2.5%	2.0%	1.5%	1.0%	0.5%
z_{α}	1.645	1.695	1.751	1.812	1.881	1.960	2.054	2.170	2.326	2.576

Algunos valores de percentiles $F_{\{n_1,n_2;\alpha\}}$ de la F de Fisher con n_1 y n_2 grados de libertad:

α	1 %	- , 0	- , 0	- , 0	5%	0,0	. , .	- , 0	0,0	-0,0
$F_{\{9,11;\alpha\}}$										
$F_{\{11,9:\alpha\}}$	5,178	4.198	3.688	3.351	3.102	2.908	2.748	2.614	2.498	2.396