Rede de Crenças e Lógica Fuzzy

Independência

Duas variáveis aleatórias $\it AB$ são (absolutamente) <u>independentes</u> se $\it P(A|B) = \it P(A)$

ou
$$P(A,B) = P(A|B)P(B) = P(A)P(B)$$

por exemplo, A e B são duas moedas moedas atiradas Se *n* variáveis Booleanas são independentes, o conjunto completo é

$$\mathbf{P}(X_1,\ldots,X_n)=\prod_i\mathbf{P}(X_i)$$

Portanto, pode ser especificado por apenas n número

A independência absoluta é uma exigência muito forte, raramente atendida

Prof. Dr. Tiago Araújo

Redes de Crenças

Uma notação simples e gráfica para afirmações de independência condicional e, portanto, para a especificação compacta de distribuições conjuntas completas

Sintaxe:

um conjunto de nós, um por variável um gráfico dirigido, acíclico (link ≈ "influências diretas") uma distribuição condicional para cada nó dado seus país:

$$\mathbf{P}(X_i|Parents(X_i))$$

No caso mais simples, a distribuição condicional ressentiu-se como uma tabela de probabilidade condicional (CPT).

Exemplo

Estou no trabalho, o vizinho John liga para dizer que meu alarme está tocando, mas a vizinha Mary não liga. Às vezes é desencadeado por pequenos terremotos. Há um assaltante?

Variáveis: Burlar, Earthquake, Alarm, JohnCalls, MaryCalls A topologia da rede reflete o conhecimento "causal":

Nota: $\leq k. parents \implies O(d^k n) numbers vs O(d^n)$

Semânticas

A semântica "global" define a distribuição conjunta completa como o produto da distribuição condicional local:

$$\mathbf{P}(X_1,\ldots,X_n)=\prod_{i=1}^n\mathbf{P}(X_i|Parents(X_i))$$

Por exemplo,
$$\begin{array}{c} \mathbf{P}(X_1,\dots,X_n) = \prod_{i=1}^n \mathbf{P}(X_i|Parents(X_i)) \\ \text{e.g., } P(J \land M \land A \land \neg B \land \neg E) \ \mathbf{\H{E}} \ \mathbf{dada} \ \mathbf{por??} \\ = \end{array}$$

4

Lógica Fuzzy

- É a lógica baseada em análises de informações estritamente qualitativas. Isto é feito de forma que a decisão não se resuma entre um 'sim' e um 'não', mas, também considera abstrações do tipo 'próximo de', 'em torno de', 'muito alto', 'bem baixo', etc.
- Exemplo: Homens de meia idade
- Lógica Clássica:
- Se 40 ≤ Idade ≤ 55 então Homem meia idade
- Lógica fuzzy:

Idade	35	40	45	50	55
Grau de pertinência	0,0	0,5	1,0	0,5	0,0

Conjuntos Fuzzy

INSTITUTO FEDERAL Pará

FEDERAL

Discreta

$$F = \{(u, \mu_F(u)), u \in U\}$$

Notação

$$F = \left\{ \frac{\mu_F(u)}{u}, u \in U \right\}$$
$$F = \{\mu_F(u), u \in U\}$$

Exemplo

$$F = \{(30,0), (35,0,3), (40,1), (45,1), (50,0,7), (55,0,4), (60,0)\}$$

$$F = \{ (\frac{0}{30}), (\frac{0.3}{35}), (\frac{1}{40}), (\frac{1}{45}), (\frac{0.7}{50}), (\frac{0.4}{55}), (\frac{0}{60}) \}$$
$$F = \{ 0.0.3, 1, 1, 0.7, 0.4, 0) \}$$

Variáveis linguísticas

- Uma variável linguística é uma variável cujos valores são palavras
- Uma variável linguística é definida por

<X, T(X), U, G, M>

 X: nome, T(X):função de pertinência de X, U:universo de discurso, G: gramática, M: regras semânticas associadas

Regras Fuzzy

- Relacionam variáveis fuzzy, cada uma delas associada a um dos seus predicados linguísticos
- SE Velocidade é Baixa ENTÃO Aceleração é Alta

Base de conhecimento

- Base de dados: definições de conjuntos fuzzy
- Base de regras
- Exemplo de uma regra SE-ENTÃO:

 Se Erro é Pequeno e Variação do erro é
 - Se Erro é Pequeno e Variação do erro é Baixa então:
 - o posição da válvula tampão é ZERO.
 - o Parte SE: antecedente
 - o Parte ENTÃO: consequente

Inferência e defuzificação

- Operação de max-min
 - o Inferência: Operador mínimo
 - Agregação: Operador máximo
- Defuzificação
 - o Centro de área

12