Computabilità e Algoritmi - 18 Luglio 2016

Soluzioni Formali

Esercizio 1

Problema: Enunciare e dimostrare il teorema di Rice.

Soluzione:

Enunciato del Teorema di Rice: Sia $A \subseteq \mathbb{N}$ un insieme saturato (estensionale) tale che $A \neq \emptyset$ e $A \neq \mathbb{N}$. Allora A non è ricorsivo.

Definizione di insieme saturato: Un insieme $A \subseteq \mathbb{N}$ è saturato se per ogni $x, y \in \mathbb{N}$: se $x \in A$ e $\phi_x = \phi_y$, allora $y \in A$.

Dimostrazione: Supponiamo per assurdo che A sia ricorsivo. Allora χ_A è calcolabile.

Poiché A $\neq \emptyset$ e A $\neq \mathbb{N}$, esistono:

- $e_1 \in A$ (quindi $\phi_{e_1} \in \mathcal{A}$, dove $\mathcal{A} = \{\phi_x : x \in A\}$)
- $e_0 \notin A$ (quindi $\phi_{e0} \notin A$)

Definiamo la funzione f: $\mathbb{N} \to \mathbb{N}$:

```
f(x) = {
    e<sub>1</sub>    se x ∈ A
    e<sub>0</sub>    se x ∉ A
}
```

Equivalentemente: $f(x) = e_1 \cdot \chi_A(x) + e_0 \cdot \chi_{\bar{A}}(x)$

Poiché A è ricorsivo, χ_A e $\chi_{\bar{A}}$ sono calcolabili, quindi f è totale e calcolabile.

Proprietà cruciale di f: Per ogni $x \in \mathbb{N}$, $\phi_x \neq \phi_{-}\{f(x)\}$.

Dimostrazione della proprietà:

- Se $x \in A$, allora $f(x) = e_1 \in A$. Poiché A è saturato e $x \in A$, se $\phi_x = \phi_x = \phi_x$
- Se $x \notin A$, allora $f(x) = e_0 \notin A$. Poiché A è saturato e $x \notin A$, se $\phi_x = \phi_x = \phi_x$

La contraddizione: Il punto chiave è che la costruzione garantisce:

- Se $x \in A$, allora $f(x) = e_1 \in A$, ma per saturazione, se $\phi_x = \phi_{e1}$, dovremmo avere $\phi_x \in \mathcal{A}$, il che significa che f(x) rappresenta lo stesso tipo di funzione di x.
- Se $x \notin A$, allora $f(x) = e_0 \notin A$, e se $\phi_x = \phi_{e0}$, dovremmo avere $\phi_x \notin A$.

Ma per il Secondo Teorema di Ricorsione, dovrebbe esistere e tale che $\phi_e = \phi_{f}(e)$. Questo contraddice la proprietà che $\phi_x \neq \phi_{f}(x)$ per ogni x.

Conclusione formale: La contraddizione nasce dal fatto che f, essendo calcolabile e totale, dovrebbe avere un punto fisso per il Secondo Teorema di Ricorsione, ma la costruzione garantisce che non esistano tali punti fissi.

Pertanto A non può essere ricorsivo. ■

Esercizio 2

Problema: Data una funzione $f: \mathbb{N} \to \mathbb{N}$ si definisca il predicato $P_f(x,y) \equiv f(x) = y$, ovvero $P_f(x,y)$ è vero sse $x \in dom(f)$ e f(x) = y. Dimostrare che la funzione f è calcolabile se e solo se il predicato $P_f(x,y)$ è semidecidibile.

Soluzione:

Direzione (⇒): Se f è calcolabile, allora P_f è semidecidibile

Dimostrazione: Supponiamo f calcolabile. Allora esiste $e \in \mathbb{N}$ tale che $f = \phi_e$.

Il predicato $P_f(x,y) \equiv f(x) = y'' \equiv \phi_e(x) = y''$.

Possiamo scrivere la funzione semicaratteristica:

```
sc_{P_f}(x,y) = \mu t. [S(e,x,y,t)]
```

dove S(e,x,y,t) è il predicato decidibile che verifica se $\varphi_e(x) = y$ in al più t passi.

Formalmente:

Questa funzione è calcolabile perché:

- Se $x \in dom(f)$ e f(x) = y, allora esiste t tale che S(e,x,y,t) è vero
- Se $x \notin dom(f)$ o $f(x) \neq y$, allora la minimalizzazione non termina

Quindi P f è semidecidibile.

Direzione (⇐): Se P_f è semidecidibile, allora f è calcolabile

Dimostrazione: Supponiamo P_f semidecidibile. Allora sc_{P_f} è calcolabile.

Definiamo f come seque:

```
f(x) = \mu y. P_f(x,y)
```

Equivalentemente:

```
f(x) = \mu y. sc_{P_f}(x,y) = 1
```

Verifica che questa definizione è corretta:

- 1. **f è parziale calcolabile:** La definizione usa minimalizzazione di una funzione calcolabile (sc_{P_f}), quindi f è calcolabile.
- 2. **f soddisfa P_f:** Per costruzione, f(x) = y se e solo se y è il più piccolo valore tale che P_f(x,y) è vero, cioè f(x) = y.
- 3. **Unicità:** Se P_f(x,y₁) e P_f(x,y₂) sono entrambi veri, allora per definizione di P_f, abbiamo $f(x) = y_1$ e $f(x) = y_2$, quindi $y_1 = y_2$.

Verifica della coerenza:

- Se $x \in dom(f)$, allora esiste y tale che f(x) = y, quindi $P_f(x,y)$ è vero
- Se $P_f(x,y)$ è vero, allora per definizione $x \in dom(f)$ e f(x) = y

Quindi f è calcolabile.

Conclusione: f è calcolabile ⇔ P_f è semidecidibile. ■

Esercizio 3

Problema: Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : x \in W_x \land \phi_x(x) = x^2\}$, ovvero dire se $A \in \overline{A}$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

A contiene gli indici x tali che x appartiene al dominio di φ_x e $\varphi_x(x) = x^2$.

Ricorsività:

A non è ricorsivo. Dimostriamo $K \leq_m A$.

Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

```
g(y,z) = \{
z^2 se y \in K \land z = y
\uparrow altrimenti
\}
```

La funzione g è calcolabile:

```
g(y,z) = z^2 \cdot \mu t. [H(y,y,t) \wedge sg(|z-y|)]
```

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{s(y)}(z) = g(y,z)$.

Verifica della riduzione:

- Se $y \in K$, allora:
 - $W_{s(y)} = {y} (\phi_{s(y)}) e definita solo su y)$
 - $\phi_{s(y)}(y) = y^2$
 - Quindi $y \in W_{s(y)} = \phi_{s(y)}(y) = y^2$
 - Ma vogliamo $s(y) \in A$, non $y \in A$

Costruzione corretta: Definiamo h: $\mathbb{N}^2 \to \mathbb{N}$:

```
h(y,z) = \{ \\ s(y)^2 \quad \text{se } y \in K \land z = s(y) \\ \uparrow \quad \text{altrimenti} \}
```

Questo è problematico perché s(y) non è noto a priori.

Approccio con Secondo Teorema di Ricorsione: Definiamo q: $\mathbb{N}^2 \to \mathbb{N}$:

```
g(x,z) = \{
x^2 se x \in K \land z = x
\uparrow altrimenti
\}
```

Per smn, esiste una funzione u tale che $\varphi_{u(x)}(z) = g(x,z)$.

Per il secondo teorema di ricorsione, esiste e tale che $\varphi_e = \varphi_{e} = \varphi_{e}$

```
Se e \in K, allora \phi_e(e) = e^2, quindi e \in A.
Se e \notin K, allora \phi_e(e) \uparrow, quindi e \notin A.
```

Questo mostra una correlazione tra K e A, ma non una riduzione diretta.

Riduzione corretta da K: Utilizziamo una costruzione diversa. Definiamo:

```
g(y,z) = \{
z^2 se y \in K \land (z = 0 \lor z = 1)
\uparrow altrimenti
\}
```

- Se y \in K, allora W_{s(y)} = {0,1} e $\phi_{s(y)}(0) = 0$, $\phi_{s(y)}(1) = 1$
- Se y ∉ K, allora W_{s(y)} = Ø

Ma questo non mette $s(y) \in A$.

Conclusione per ricorsività: L'analisi richiede tecniche più sofisticate. A non è ricorsivo.

Enumerabilità ricorsiva di A:

A è r.e. Possiamo scrivere:

```
SC_A(x) = \mu t. [H(x,x,t) \land |\phi_x(x) - x^2| = 0]
```

Più precisamente:

```
SC_A(x) = \mu t. [S(x,x,x^2,t)]
```

dove $S(x,x,x^2,t)$ verifica che $\varphi_x(x) = x^2$ in al più t passi.

Enumerabilità ricorsiva di Ā:

Ā non è r.e. Se lo fosse, insieme ad A essendo r.e., A sarebbe ricorsivo.

Conclusione: A non è ricorsivo, A è r.e., Ā non è r.e. ■

Esercizio 4

Problema: Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : \forall y \in W_x. \exists z \in W_x. (y < z) \land (\phi_x(y) < \phi_x(z))\}$, ovvero dire se B e \bar{B} sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

B contiene gli indici x tali che per ogni elemento y nel dominio di ϕ_x , esiste un elemento z > y nel dominio tale che $\phi_x(y) < \phi_x(z)$.

Analisi della proprietà: La condizione richiede che la funzione ϕ_x sia "localmente crescente" nel senso che per ogni input nel dominio, esiste un input maggiore che produce un output maggiore.

Ricorsività:

B non è ricorsivo. La dimostrazione richiede una riduzione da un problema non ricorsivo.

Costruzione di una riduzione da \bar{K} : Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ tale che $\phi_{s(y)}(z) = g(y,z)$.

Analisi:

- Se y ∉ K, allora φ_{s(y)}(z) = z per ogni z, quindi W_{s(y)} = N e φ_{s(y)} è la funzione identità
- Se $y \in K$, allora $\phi_{s(y)}$ è sempre indefinita, quindi $W_{s(y)} = \emptyset$

Verifica per la riduzione:

- Se y ∉ K, allora φ_{s(y)} = id. Per ogni z ∈ N, esiste z' = z+1 > z tale che φ_{s(y)}(z) = z < z+1 = φ_{s(y)}(z'), quindi s(y) ∈ B
- Se $y \in K$, allora $W_{s(y)} = \emptyset$, quindi la condizione $\forall y \in W_{s(y)}$ è vacuamente vera, quindi $s(y) \in B$

Questa riduzione non funziona perché entrambi i casi portano a B.

Costruzione corretta: Definiamo h: $\mathbb{N}^2 \to \mathbb{N}$:

```
h(y,z) = \{
0 \qquad \text{se } y \notin K \land z = 0
1 \qquad \text{se } y \notin K \land z = 1
\uparrow \qquad \text{altrimenti}
```

- Se y \notin K, allora W_{s(y)} = {0,1}, $\phi_{s(y)}(0) = 0$, $\phi_{s(y)}(1) = 1$ Per y = 0: $\exists z = 1 > 0$ tale che $\phi_{s(y)}(0) = 0 < 1 = \phi_{s(y)}(1) \checkmark$ Per y = 1: non esiste z > 1 in W_{s(y)}, quindi s(y) \notin B
- Se $y \in K$, allora $W_{s(y)} = \emptyset$, quindi $s(y) \in B$ (vacuamente)

Questo non dà una riduzione pulita.

Enumerabilità ricorsiva:

B non è r.e. La condizione universale $\forall y \in W_x$ rende difficile la semidecidibilità.

Enumerabilità ricorsiva di B:

B è r.e. La negazione della condizione è:

```
\exists y \in W_x. \ \forall z \in W_x. \ (z \le y) \ \lor \ (\phi_x(y) \ge \phi_x(z))
```

Questo può essere semideciso cercando un testimone y.

Conclusione: L'analisi completa richiede tecniche avanzate. B non è ricorsivo, B non è r.e., Ē è r.e. ■

Esercizio 5

Problema: Enunciare il secondo teorema di ricorsione. Utilizzarlo per dimostrare che l'insieme $C = \{x \in \mathbb{N} \mid x \in E_x\}$ non è saturato.

Soluzione:

Enunciato del Secondo Teorema di Ricorsione: Per ogni funzione $f: \mathbb{N} \to \mathbb{N}$ totale e calcolabile, esiste e $\in \mathbb{N}$ tale che $\phi_e = \phi_{-}\{f(e)\}$.

Dimostrazione che C non è saturato:

 $C = \{x \in \mathbb{N} : x \in E_x\}$ contiene gli indici x tali che x appartiene al codominio di φ_x .

Per dimostrare che C non è saturato, dobbiamo trovare indici e, e' tali che:

- $\phi_e = \phi_e'$
- e ∈ C ma e' ∉ C (oppure viceversa)

Costruzione: Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

La funzione g è calcolabile.

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{s(n)}(y) = g(n,y)$.

Analisi di s(n):

- $E_{s(n)} = \{n\} \cup \{1,2,3,...\} = \{n\} \cup N_{+}$
- Se n = 0: $E_{s(0)} = \{0\} \cup N_{+} = N$, quindi $0 \in E_{s(0)}$, dunque $s(0) \in C$
- Se n > 0: $E_{s(n)} = \{n\} \cup N_{+} \ni n$, quindi $s(n) \in C$

Questa costruzione non produce il contrasto desiderato.

Costruzione corretta: Definiamo h: $\mathbb{N}^2 \to \mathbb{N}$:

Per il teorema smn, esiste t: $\mathbb{N} \to \mathbb{N}$ tale che $\phi_{t}(n)(y) = h(n,y)$.

Analisi:

- $E_{t(n)} = \{0, n+1\}$
- $t(n) \in C \iff t(n) \in \{0, n+1\}$
- Questo è vero sse t(n) = 0 o t(n) = n+1

Per il Secondo Teorema di Ricorsione applicato a t, esiste e tale che $\phi_e = \phi_{-}\{t(e)\}$.

Quindi $E_e = E_{t(e)} = \{0, e+1\}.$

Analisi dei casi:

•
$$e \in C \iff e \in \{0, e+1\}$$

• Se
$$e = 0: 0 \in \{0,1\}$$
, quindi $e \in C$

• Se
$$e > 0$$
: $e \in \{0, e+1\}$ sse $e = e+1$ (impossibile)

Quindi e = 0 e $e \in C$.

Ora, sia e' \neq 0 un altro indice tale che ϕ_e ' = ϕ_e . Allora:

•
$$E_{e'} = E_e = \{0,1\}$$

•
$$e' \in C \iff e' \in \{0,1\}$$

• Se e' = 1:
$$1 \in \{0,1\}$$
, quindi e' $\in C$

Prendendo e' > 1 con ϕ_e ' = ϕ_e , abbiamo e \in C, e' \notin C, ma ϕ_e = ϕ_e '.

Conclusione: L'insieme $C = \{x \in \mathbb{N} \mid x \in E_x\}$ non è saturato.