Apunte de Mï
¿ $\frac{1}{2}$ dulos Bï¿ $\frac{1}{2}$ sicos (v. 0.3 $\alpha)$

Algoritmos y Estructuras de Datos II, DC, UBA. $1^{\rm er} \ {\rm cuatrimestre} \ {\rm de} \ 2019$

Índice

1.	Diccionario Trie (α)	2
2.	$ ext{M\"i}_{m{\dot{i}}} extstyle{rac{1}{2}} ext{dulo Juego}$	5
3.	$ ext{M\"i}_{m{\dot{i}}} frac{1}{2} ext{dulo Mapa}$	10
4.	Mï $oldsymbol{\dot{\iota}}_2^1$ dulo Direcciï $oldsymbol{\dot{\iota}}_2^1$ n	12
5.	Mï $ ildot_2 frac{1}{2}$ dulo Acciï $ ildot_2 frac{1}{2}$ n	14

1. Diccionario Trie (α)

El mï $leq \frac{1}{2}$ dulo Diccionario Trie provee un diccionario bï $leq \frac{1}{2}$ sico montado sobre un trie. Solo se definen e implementan las operaciones que serï $leq \frac{1}{2}$ n utilizadas.

Interfaz

```
\begin{aligned} \mathbf{pari}; & \frac{1}{2}\mathbf{metros} \text{ formales} \\ & \mathbf{g\"i}; & \frac{1}{2}\mathbf{neros}\alpha \\ & \mathbf{funci\"i}; & \frac{1}{2}\mathbf{n} \operatorname{COPIAR}(\mathbf{in} \ s \colon \alpha) \to res \ \colon \alpha \\ & \mathbf{Pre} \equiv \{\text{true}\} \\ & \mathbf{Post} \equiv \{res =_{\text{obs}} s\} \\ & \mathbf{Complejidad}; \ \Theta(copy(s)) \\ & \mathbf{Descripci\"i}; & \frac{1}{2}\mathbf{n}; \ \text{funci\"i}; & \frac{1}{2}\mathbf{n} \ \text{de copia de } \alpha \end{aligned} se explica con: DICCIONARIO(string, \alpha).
```

Operaciones bi $\frac{1}{6}$ sicas de diccionario

```
\text{VAC\"i}_{c}(\frac{1}{2}\text{O}() 	o res: 	ext{diccTrie}(string, lpha)
\mathbf{Pre} \equiv \{\mathrm{true}\}
\mathbf{Post} \equiv \{res =_{obs} vacio\}
Complejidad: \Theta(1)
Descripcii; \frac{1}{2}n: genera un diccionario vaci; \frac{1}{2}o.
DEFINIR(in/out d: diccTrie(string, \alpha), in k: string, in s: \alpha)
\mathbf{Pre} \equiv \{d =_{\text{obs}} d_0\}
\mathbf{Post} \equiv \{d =_{obs} \operatorname{definir}(d, k, s)\}\
Complejidad: \Theta(|k| + copy(s))
Descripci; \frac{1}{2}n: define la clave k \notin \text{claves}(d) con el significado s en el diccionario.
Aliasing: los elementos k y s se definen por copia.
DEFINIDO?(in d: diccTrie(string, \alpha), in k: string) \rightarrow res: bool
\mathbf{Pre} \equiv \{ \mathrm{true} \}
\mathbf{Post} \equiv \{ res =_{obs} \operatorname{def}?(d, k) \}
Complejidad: \mathcal{O}(|k|)
Descripci; \frac{1}{2}n: devuelve true si y si; \frac{1}{2}lo k esti; \frac{1}{2} definido en el diccionario.
SIGNIFICADO(in d: diccTrie(string, \alpha), in k: string) \rightarrow res : \sigma
\mathbf{Pre} \equiv \{ \operatorname{def}?(d, k) \}
\mathbf{Post} \equiv \{ \operatorname{alias}(res =_{\operatorname{obs}} \operatorname{obtener}(d, k)) \}
Complejidad: \Theta(|k|)
Descripciï; \frac{1}{2}n: devuelve el significado de la clave k en d.
Aliasing: res es modificable si y gusï\frac{1}{2}lo si d es modificable.
```

Representacii; ½n

Representacii $\frac{1}{2}$ n del diccionario

```
diccTrie(string, \alpha) se representa con estr donde estr es tupla(raiz: puntero(nodo), claves: conj(string)) donde nodo es tupla(significado: puntero(\alpha), siguientes: arreglo(puntero(nodo))[256]) Rep : diccTrie \longrightarrow bool
```

```
Rep(d) \equiv true \iff
```

(Los nodos del diccionario (excepto la raiz) tienen un unico padre. Es decir, no hay dos Nodos en la estructura que tengan punteros iguales en los siguientes del Nodo. \land

La raiz no tiene padre. Es decir, no hay un camino de hijos por el cual se llegue a dicho Nodo. \land Todas las hojas tienen un significado distinto de NULL.

Un s string pertenece a d.claves si y solo si se puede seguir un camino de nodos en el diccionario con los caracteres de s (en orden) llegando finalemente al ultimo nodo (correspondiente a la ultima letra) teniendo este significado distinto de NULL)

// La primer condicion implica que no hay ciclos ni Nodos con hijos de menor nivel

```
Abs : estr e \longrightarrow \text{diccTrie}(string, \alpha) {Rep(e)} Abs(e) =_{\text{obs}} d: diccTrie(string, \alpha) |  (\forall :: s \text{ string})(\text{def}?(s,d) =_{\text{obs}} \text{ estaDefinido}(e.\text{raiz}, s)) \land \\  (\forall :: s \text{ string})(\text{def}?(s,d) \Rightarrow_{\text{L}} \text{ obtener}(s, d) =_{\text{obs}} \text{ significado}(e.\text{raiz}, s)) \land \\  \text{claves}(d) =_{\text{obs}} \text{ e.claves}  estaDefinido(r, s) \equiv \text{if } \text{ vacia}?(s) then r \to \text{significado} \neq \text{NULL} else r \to \text{sigueintes}[\text{int}(\text{prim}(s))] \neq \text{NULL} \land_{\text{L}} \text{ estaDefinido}(r.\text{siguientes}[\text{int}(\text{prim}(s))], \text{ fin}(s)) \text{ fi}  significado(r, s) \equiv \text{if } \text{ vacia}?(s) then r \to \text{significado} else significado else significado (r.siguientes[int(prim}(s))], fin(s)) fi
```

Algoritmos

```
 \begin{aligned} & \textbf{iSignificado}(\textbf{in/out}\ d\colon \textbf{estr},\ \textbf{in}\ k\colon string) \rightarrow res : \alpha \\ & 1:\ \textit{Nodo}\ actual \leftarrow d.raiz \\ & 2:\ \textbf{for}\ (char\ c\ :\ k)\ \textbf{do} \\ & 3:\ \ \ actual \leftarrow (actual \rightarrow siguientes[toInt(c)]) \\ & 4:\ \textbf{end}\ \textbf{for} \\ & 5:\ res \leftarrow *(actual \rightarrow significado) \end{aligned} \qquad \qquad \triangleright \Theta(1)
```

Complejidad: $\Theta(|k|)$

Justificacii; $\frac{1}{2}$ n: Los accesos y las asignaciones de punteros son $\Theta(1)$. Como el ciclo se ejecuta $|\mathbf{k}|$ veces, se ejecutaran dichas asignaciones $|\mathbf{k}|$ veces. Luego la complejidad seri; $\frac{1}{2}$ $\Theta(|k|)$.

```
iDefinido?(in/out d: estr, in k: string) \rightarrow res: bool
 1: Nodo\ actual \leftarrow d.raiz
                                                                                                                                                                           \triangleright \Theta(1)
 2: for (char \ c : k) do
                                                                                                                                                                         \triangleright \mathcal{O}(|k|)
 3:
             if (actual \rightarrow siguientes[toInt(c)] \neq NULL)
                                                                                                                                                                           \triangleright \Theta(1)
                    then actual \leftarrow (actual \rightarrow siguientes[toInt(c)])
                                                                                                                                                                           \triangleright \Theta(1)
 4:
 5:
                    else res \leftarrow false
                                                                                                                                                                           \triangleright \Theta(1)
             end if
 6:
 7: end for
 8: res \leftarrow ((actual \rightarrow significado) \neq NULL)
                                                                                                                                                                            \triangleright \Theta(1)
```

Complejidad: $\mathcal{O}(|k|)$

Justificacii; $\frac{1}{2}$ n: Los accesos y las asignaciones de punteros son $\Theta(1)$. Como el ciclo se ejecuta a lo sumo $|\mathbf{k}|$ veces, se ejecutaran dichas asignaciones $|\mathbf{k}|$ veces como m $\ddot{i}_{\dot{c}}$ $\frac{1}{2}$ ximo. Luego la complejidad ser $\ddot{i}_{\dot{c}}$ $\frac{1}{2}$ $\mathcal{O}(|k|)$.

```
iDefinir(in/out d: estr, in k: string, in s: \alpha) \rightarrow res: \alpha
 1: Nodo actual \leftarrow d.raiz
 2: for (char\ c\ :\ k) do
                                                                                                                                              \triangleright \Theta(|k|)
           // Si no tengo siguiente, lo creo
 3:
           \mathbf{if}\;(actual \to siguientes[toInt(c)] \; == \; NULL) \;\; \mathbf{then}
                                                                                                                                                \triangleright \Theta(1)
 4:
                 actual \rightarrow siguientes[toInt(c)] = nuevoNodo()
 5:
                                                                                                                                                \triangleright \Theta(1)
 6:
           actual \leftarrow (actual \rightarrow siguientes[toInt(c)])
                                                                                                                                                \triangleright \Theta(1)
 7:
 8: end for
 9:
10: // Estoy parado en el nodo que va a tener el puntero al significado.
11: // Reservo un lugar en memoria y hago una copia del provisto en dicho lugar.
                                                                                                                                        \triangleright \Theta(copy(s))
12: sig \leftarrow s
13: // Asigno al significado del nodo el puntero creado con s.
14: (actual \rightarrow significado) \leftarrow \&sig
                                                                                                                                                \triangleright \Theta(1)
15: // Agrego la nueva clave al conjunto de claves
16: // Como precondicion, se que no existe así que la agrego rapido
                                                                                                                                        \rhd \; \Theta(copy(k))
17: AgregarRapido(e.claves, k)
18: // Devuelvo por referencia el significado.
19: res \leftarrow sig
                                                                                                                                                \triangleright \Theta(1)
     Complejidad: \Theta(|k| + copy(s))
```

```
\,\rhd\, {\rm Funci}\ddot{\imath} ; \frac{1}{2} {\rm n} privada que crea un nuevo nodo
inuevoNodo() \rightarrow res : puntero(nodo)
 1: // Reserva la memoria para un nuevo nodo con significado null y siguientes vac\ddot{i}_{1} os
 2: res \leftarrow \&\langle significado: NULL, siguientes: arreglo estatico[256] de puntero(Nodo)\rangle
                                                                                                                                                      \triangleright \Theta(1)
     Complejidad: \Theta(1)
     Justificacii; \frac{1}{2}n: El tiempo de creacii; \frac{1}{2}n de un array de 255 posiciones es \mathcal{O}(255) \in \mathcal{O}(1)
```

Justificacii, $\frac{1}{2}$ n: Siempre se recorre toda la palabra para definirla, entonces el for siempre tiene |k| ciclos. La

dereferenciacii; $\frac{1}{2}$ n y comparacii; $\frac{1}{2}$ n de punteros, e indexacii; $\frac{1}{2}$ n en arreglos esti; $\frac{1}{2}$ ticos son $\Theta(1)$.

```
iClaves(in \ d: estr) \rightarrow res : conj(string)
  1: res \leftarrow e.claves
                                                                                                                                                                       \triangleright \Theta(1)
      Complejidad: \Theta(1)
```

2. Mi $\frac{1}{2}$ dulo Juego

Aqui va la descripci \ddot{i} , $\frac{1}{2}$ n

```
Interfaz
```

 $\mathbf{Pre} \equiv \{ \text{true} \}$

 $\mathbf{Post} \equiv \{fantasmaValido(j, res) \land_{\mathtt{L}} \}$

```
generos: juego.
    se explica con: JUEGO.
Operaciones bij į į sicas de Juego
    INICIAR(in m: mapa, \ddot{i}; \frac{1}{2}in pjs: conj(jugador), in eventosFan: vector(evento))) \rightarrow res: juego
    \mathbf{Pre} \equiv \{\neg vacio(pjs) \land \overline{(\forall e : evento)}(est\frac{1}{2}?(e, eventosFan) \Rightarrow_{\mathbf{L}} e.pos \in libres(m))\}
    \mathbf{Post} \equiv \{res =_{obs} nuevoJuego(m, pjs, eventosFan)\}\
     Complejidad: \Theta(?) TODO
    Descripci\ddot{\iota}_{2}n: crea un nuevo juego con el mapa dado, un conjunto de jugadores, y los eventos de un fantasma.
    PASARTIEMPO(in j: juego) \rightarrow res: juego
    \mathbf{Pre} \equiv \{ \mathbf{true} \}
    \mathbf{Post} \equiv \{res =_{obs} pasar(j)\}\
     Complejidad: \Theta(?)
    Descripci\ddot{i}\dot{i}\dot{j}n: ejecuta un paso de tiempo cuando ning\ddot{i}\dot{i}\dot{j}n jugador realiza una acci\ddot{i}\dot{i}\dot{j}n.
    EJECUTARACCION(in j: juego, in a: accion, in pj: jugador) \rightarrow res: juego
    \mathbf{Pre} \equiv \{pj \in jugadores(j) \land_{\mathbf{L}} jugadorVivo(pj, j) \land \neg esPasar(a)\}
    \mathbf{Post} \equiv \{res =_{obs} step(j, a, pj)\}\
     Complejidad: \Theta(?)
    Descripci; \frac{1}{2}n: actualiza con la acci; \frac{1}{2}n a del jugador pj.
     	ext{JUGADORESVIVOS}(	ext{in } j \colon 	ext{juego}) 	o res : 	ext{conj(puntero(infoPJ))}
    \mathbf{Pre} \equiv \{ \text{true} \}
    \mathbf{Post} \equiv \{(\forall p : puntero(infoPJ))(p \in res \Rightarrow_{\mathtt{L}}
                       (p \rightarrow id \in jugadores(j)) \land_{\mathtt{L}}
                       (p \rightarrow vivo? \land jugadorVivo(p \rightarrow id, j)) \land
                       ((\forall e: evento)(e \in p \rightarrow eventos \Rightarrow_{\mathtt{L}}
                              (e.pos =_{obs} posJugador(p \rightarrow id, j)) \land
                              (e.dir =_{obs} dir Jugador(p \rightarrow id, j))))
     Complejidad: \Theta(1)
    Descripci\ddot{i}; \frac{1}{2}n: devuelve un conjunto con punteros a la informaci\ddot{i}; \frac{1}{2}n de los personajes que est\ddot{i}; \frac{1}{2}n vivos.
     Aliasing: res es no modificable.
    	ext{FANTASMASVIVOS}(	ext{in } j : 	ext{juego}) 
ightarrow res : 	ext{conj(infoFan)}
    \mathbf{Pre} \equiv \{\mathrm{true}\}
     \mathbf{Post} \equiv \{fantasmaValido(j, res)\}
     Complejidad: \Theta(1)
     Descripci\ddot{i}; devuelve un conjunto referencias a la informaci\ddot{i}; \frac{1}{2}n de los fantasmas que est\ddot{i}; \frac{1}{2}n vivos.
     Aliasing: las referencias son no modificables.
    FANTASMAESPECIAL(in j: juego) \rightarrow res: infoFan
    \mathbf{Pre} \equiv \{ \text{true} \}
    \mathbf{Post} \equiv \{res =_{obs} fantasmaEspecial(j)\}\
     Complejidad: \Theta(1)
    Descripci\ddot{i}_{2}^{\frac{1}{2}}n: devuelve el fantasma especial.
     Aliasing: res es una referencia no modificable.
    	ext{FANTASMASVIVOSQUEDISPARAN}(	ext{in } j : 	ext{juego}) 
ightarrow res: 	ext{conj(infoFan)}
```

 $((\forall f : infoFan)(f \in res \Rightarrow_{\perp} disparando(f.eventos, step(j))))$

```
Complejidad: O(\#fv)
    Descripci\ddot{i}_{\dot{i}}2n: devuelve un conjunto con punteros a la informaci\ddot{i}_{\dot{i}}2n de los fantasmas que est\ddot{i}_{\dot{i}}2n vivos y
    disparan en el ultimo paso ejecutado en el juego.
    Aliasing: res es un conjunto de referencias no modificables.
    VIVO?(\mathbf{in}\ j: juego, \mathbf{in}\ pj: string) \rightarrow res: bool
    \mathbf{Pre} \equiv \{pj \in jugadores(j)\}\
    \mathbf{Post} \equiv \{res =_{obs} jugadorVivo(pj, j)\}\
    Complejidad: O(|j|)
    Descripcii\frac{1}{2}n: devuelve si un jugador esti\frac{1}{2} vivo
    \texttt{POSOCUPADASPORDISPAROS}(\textbf{in}\ j \colon \texttt{juego}) \rightarrow res\ : \texttt{conj}(\texttt{posicion})
    \mathbf{Pre} \equiv \{ \text{true} \}
    \mathbf{Post} \equiv \{res =_{obs} alcance Disparos Fantas mas(fantas mas(j), j)\}
    Complejidad: O(\#fv*m)
    Descripcii; ½n: devuelve un conjunto de las posiciones afectadas por disparos de fantasmas en la ï; ½ltima *ronda*
    (TODO: ronda o paso?).
    Predicados auxiliares:
    fantasmaValido(j, fs):
     (\forall f : infoFan)(f \in res \Rightarrow_{\perp} )
          (f.eventos \in fantasmas(j)) \land_{L}
          (fantasmaVivo(f.eventos, j)) \land
          ((\forall e : evento)(e \in f.eventos \Rightarrow_{\mathtt{L}})
               (e.pos =_{obs} posFantasma(f.eventos, j)) \land
               (e.dir =_{obs} dirFantasma(f.eventos, j))))
Representacii; \frac{1}{2}n
Representacii; <sup>1</sup>/<sub>2</sub>n de Juego
    juego se representa con estr
      donde j es tupla(// General
                          paso: nat,
                          ronda: nat,
                          mapa: m,
                          // Disparos
                          mapaDisparos: arreglo(arreglo(tupla(nat, nat))),
                          disparos Ultimo Paso: conj (posicion),
                          // Jugadores
                          infoJugadores: diccTrie(string, infoPJ),
                          infoActualJugadoresVivos: conj(infoActualPJ),
                          infoJugadoresVivos: conj(puntero(infoPJ)),
                          // Fantasmas
                          infoFantasmas: conj(infoFan),
                          infoActualFantasmasVivos: conj(infoActualFan),
                          infoFantasmasVivos: conj(itConj(infoFan)),
                          infoFantasmaEspecial: itConj(infoActualFan) )
      donde infoPJ es tupla(eventos: vector(evento),
                                 vivo?: bool,
                                 infoActual: itConj(infoActualPJ) )
      donde infoActualPJ es tupla(identidad: string,
```

posicion: pos,
direccion: dir)

```
\label{eq:conton} \begin{split} \operatorname{donde} & \operatorname{infoFan} \operatorname{es} \operatorname{tupla}(\inf \operatorname{OActual}: \operatorname{itConj}(\operatorname{infoActualFan}), \\ & \operatorname{eventos}: \operatorname{vector}(\operatorname{evento}) \ ) \\ & \operatorname{donde} & \operatorname{infoActualFan} \operatorname{es} \operatorname{tupla}(\operatorname{posicion}: \operatorname{pos}, \\ & \operatorname{direccion}: \operatorname{dir} \ ) \end{split} \operatorname{Rep}: & \operatorname{mapa} \longrightarrow \operatorname{bool} \\ \operatorname{Rep}(m) & \equiv \operatorname{true} \Longleftrightarrow \\ \\ \operatorname{Abs}: & \operatorname{mapa} m \longrightarrow \operatorname{hab} \\ \operatorname{Abs}(m) & =_{\operatorname{obs}} \operatorname{h}: \operatorname{hab} \ | \end{split} \{\operatorname{Rep}(m)\}
```

Algoritmos

En esta secciï; $\frac{1}{2}$ n se hace abuso de notaciï; $\frac{1}{2}$ n en los cï; $\frac{1}{2}$ lculos de ï; $\frac{1}{2}$ lgebra de ï; $\frac{1}{2}$ rdenes presentes en la justificaciones de los algoritmos. La operaciï; $\frac{1}{2}$ n de suma "+" denota secuencializaciï; $\frac{1}{2}$ n de operaciones con determinado orden de complejidad, y el sï; $\frac{1}{2}$ mbolo de igualdad "=" denota la pertenencia al orden de complejidad resultante.

Algoritmos del mï $\frac{1}{2}$ dulo

```
iIniciar(in m: mapa, in pjs: conj(jugador), in eventosFan: vector(evento)) \rightarrow res: estr
 1: // Inicializo la estructura
 2: res: \langle
         // Inicializo contadores
 3:
         paso:0,
                                                                                                                       \triangleright \Theta(1)
 4:
         ronda:0,
                                                                                                                       \triangleright \Theta(1)
 5:
 6:
         // Seteo el mapa
 7:
         mapa:m,
                                                                                                                        \triangleright \Theta(1)
 9:
         // Inicializo el mapa de disparos con el mismo tamaï\frac{1}{2}o que el mapa
10:
                                                                                                              \triangleright \Theta(Tam(m)^2)
         mapaDisparos: arreglo(arreglo(tupla(nat, nat))[Tam(m)])[Tam(m)],
11:
         disparosUltimoPaso:Vacio(),
12:
                                                                                                                       \triangleright \Theta(1)
13:
         // Inicializo estructuras de jugadores y fantasmas como vaci\frac{1}{2}as
14:
         infoActualJugadoresVivos: Vacio(),
15:
         infoJugadoresVivos: Vacio(),
         infoJugadores: Vacia(),
17:
         infoFantasmas: Vacio(),
18:
         infoActualFantasmasVivos:Vacio(),
19:
20:
         infoFantasmasVivos: Vacia(),
21:
         infoFantasmaEspecial: CrearIt(Vacio())
22: \
23:
    // Suponemos la existencia de la funcii; \frac{1}{2}n
    // dict(jugador, tupla(pos, dir)) localizar Jugadores(m, conj(jugador) pjs)
26:
    // Obtengo las posiciones y direcciones de jugadores
27:
28:
    localPJs \leftarrow localizarJugadores(m, pjs)
    // Lleno las estructuras de jugadores
31: for (j, localizacion : localPJs) do
         // Creo la infoActual y la agrego a su conjunto
32:
         infoActual \leftarrow \langle identidad: j, posicion: localizacion.pos, direccion: localizacion.dir \rangle
33:
         itInfoActual \leftarrow AgregarRapido(res.infoActualJugadoresVivos, infoActual)
34:
35:
         // Creo la infoPJ con la actual
36:
         info \leftarrow iNuevaInfoPJ(j, localizacion, itInfoActual)
37:
         // La agrego al trie y me guardo el puntero a la info guardada
38:
         infoPtr \leftarrow \&Definir(res.infoJugadores, j, info)
39:
40:
         // Agrego al conjunto de jugadores vivos el puntero a la info del PJ
41:
         AgregarRapido(res.infoJugadoresVivos, infoPtr)
42:
    end for
43:
44:
    // Lleno las estructuras de fantasmas
    // Creo la infoActual y la agrego a su conjunto
47: infoActualFan \leftarrow \langle posicion : eventosFan[0].pos, direccion : eventosFan[0].dir \rangle
48: itInfoActualFan \leftarrow AgregarRapido(infoActualFan, res.infoActualFantasmasVivos)
49:
    // Hago que el fantasma especial sea este
51: res.infoFantasmaEspecial \leftarrow itInfoActualFan
52:
53: // Creo la infoFan con la actual
54: infoFan \leftarrow \langle infoActual : itInfoActualFan, \ eventos : eventosFan \rangle
    // La agrego al conjunto de informacii\frac{1}{2}n de fantasmas y me guardo su iterador
56: itInfoFan \leftarrow AgregarRapido(infoFan, res.infoFantasmas)
    // Agrego al conjunto de fantasmas vivos el interador a la info del Fan
59: AgregarRapido(itInfoFan, res.infoFantasmasVivos)
```

Complejidad: $\Theta(?)$

$\overline{iPasarTiempo(in \ j:estr)}$

1: // Aumentas paso // Por cada fantasma // Si dispara // Agregar disparo // Agregas el disparo al conjunto (inteligentemente) // Agregas las pos afectadas al mapa de disparos // // Actualizo la info actual // Por cada jugador // Te fijas si muere // Actualizas la info actual

 $\overline{\mathbf{iEjecutarAccion}(\mathbf{in}\ j \colon \mathtt{estr},\ \mathbf{in}\ a \colon \mathtt{accion},\ \mathbf{in}\ pj \colon \mathtt{jugador}) \to res\ \mathrm{:estr}}$

1:

3. Mi $\frac{1}{2}$ dulo Mapa

Aqui va la descripci \ddot{i} , $\frac{1}{2}$ n

Interfaz

```
generos: mapa. se explica con: Habitaciï
eq \frac{1}{2}N.
```

Operaciones bi $\frac{1}{2}$ sicas del mapa

```
{\tt NUEVOMAPA}(\mathbf{in}\ n : \mathtt{nat}) 	o res : \mathtt{mapa}
\mathbf{Pre} \equiv \{ \mathbf{true} \}
\mathbf{Post} \equiv \{res =_{\mathbf{obs}} nuevaHab(n)\}
Complejidad: \Theta(n^2)
Descripci\ddot{i}_{b}^{1}n: genera un mapa de tamano n x n.
OCUPAR(\mathbf{in/out}\ m: \mathtt{mapa}, \ \mathbf{in}\ c: tupla(int, int))
\mathbf{Pre} \equiv \{m =_{\mathrm{obs}} m_0 \land c \in casilleros(m) \land_{\mathsf{L}} libre(m,c) \land alcanzan(libres(m)-c, libres(m)-c, m)\}
\mathbf{Post} \equiv \{m =_{\mathrm{obs}} ocupar(c, m_0)\}\
Complejidad: \Theta(1)
Descripci\ddot{\iota}_{2}n: ocupa una posicion del mapa siempre y cuando este no deje de ser conexo.
TAM(in m: mapa) \rightarrow res: nat
\mathbf{Pre} \equiv \{ \mathrm{true} \}
\mathbf{Post} \equiv \{res =_{obs} tam(m)\}\
Complejidad: \Theta(1)
Descripcii; \frac{1}{2}n: devuelve el tamano del mapa.
LIBRE(in m: mapa, in c: tupla(int, int)) \rightarrow res: bool
\mathbf{Pre} \equiv \{c \in casilleros(m)\}\
\mathbf{Post} \equiv \{res =_{obs} libre(c, m)\}\
Complejidad: \Theta(1)
Descripcii; \frac{1}{2}n: devuelve si un elemento esta ocupado.
```

Representacii; $\frac{1}{2}$ n

Representacii $\frac{1}{2}$ n del mapa

El objetivo de este mï $\frac{1}{2}$ dulo es implementar una lista doblemente enlazada con punteros al principio y al fin. Para simplificar un poco el manejo de la estructura, vamos a reemplazarla por una lista circular, donde el siguiente del ï $\frac{1}{2}$ ltimo apunta al primero y el anterior del primero apunta al ï $\frac{1}{2}$ ltimo. La estructura de representaciï $\frac{1}{2}$ n, su invariante de representaciï $\frac{1}{2}$ n y su funciï $\frac{1}{2}$ n de abstracciï $\frac{1}{2}$ n son las siguientes.

```
mapa se representa con m
```

```
donde m es tupla(tamano: nat,casilleros: vec(vec(bool)),)

Rep: mapa \longrightarrow bool

Rep(m) \equiv true \iff La longitud de m.casilleros es igual a tamano \land

La longitud del vector m.casilleros es igual a la de todo otro vector dentro de el) \land

Es conexa

Abs: mapa m \longrightarrow hab

Abs(m) = obs h: hab | m.tamano = obs tam(h) \land_L

(\forall t: tuple(nat,nat))(0 \le \Pi_1(t), \Pi_2(t) < m.tamano - 1 \Rightarrow_L

libre(m, t) = obs m.casilleros[\Pi_1(t)][\Pi_2(t)])
```

Algoritmos

En esta seccii $\frac{1}{2}$ n se hace abuso de notacii $\frac{1}{2}$ n en los ci $\frac{1}{2}$ lculos de i $\frac{1}{2}$ lgebra de i $\frac{1}{2}$ rdenes presentes en la justifi-

caciones de los algoritmos. La operacii; $\frac{1}{2}$ n de suma "+" denota secuencializacii; $\frac{1}{2}$ n de operaciones con determinado orden de complejidad, y el si; $\frac{1}{2}$ mbolo de igualdad "=" denota la pertenencia al orden de complejidad resultante.

Algoritmos del m $\ddot{i}_2^{\frac{1}{2}}$ dulo

```
iTam(in m: mapa) → res: nat

1: res \leftarrow m.tamano ▷ \Theta(1)

Complejidad: \Theta(1)
```

```
\begin{aligned} & \mathbf{iOcupar(in/out} \ m: \mathtt{mapa, in} \ c: \mathtt{tupla(int, int)}) \\ & 1: \ m[\Pi_1(c)][\Pi_2(c)] \leftarrow true \\ & \qquad \qquad \triangleright \Theta(1) \\ & \qquad \qquad \underbrace{\text{Complejidad:}}_{\text{Justificaciii}; \frac{1}{2}n:} \text{ El acceso a una posiciii}; \frac{1}{2}n \text{ de un vector y su modificaciii}; \frac{1}{2}n \text{ es } \Theta(1) \end{aligned}
```

```
 \overline{\textbf{iLibre}(\textbf{in } m : \texttt{mapa}, \textbf{in } c : \texttt{tupla}(\textbf{int, int})) \rightarrow res : \texttt{bool} }  
 1: res \leftarrow \neg m[\Pi_1(c)][\Pi_2(c)]  
 \underline{ \text{Complejidad: } \Theta(1) }  
 \underline{ \text{Justificacii}_{\dot{c}} \frac{1}{2} n : \text{El acceso a una posicii}_{\dot{c}} \frac{1}{2} n \text{ de un vector es } \Theta(1) }
```

```
iNuevoMapa(in \ n: nat) \rightarrow res: mapa
  1: m.tamano \leftarrow n
                                                                                                                                                                               \triangleright \Theta(1)
  2: v \leftarrow Vacia()
                                                                                                                                                                               \triangleright \Theta(1)
  3: i \leftarrow 0
                                                                                                                                                                               \triangleright \Theta(1)
  4: while i < n do
                                                                                                                                                                              \triangleright O(n)
           v.AgregarAtras(false)
           i \leftarrow i + 1
  7: end while
  8: i \leftarrow 0
                                                                                                                                                                             \triangleright O(n^2)
  9: while i < n \operatorname{do}
           res.AgregarAtras(v.Copiar())
                                                                                                                                                                              \triangleright O(n)
10:
           i \leftarrow i+1
                                                                                                                                                                               \triangleright O(1)
11:
12: end while
```

Complejidad: $\Theta(n^2)$

Justificacii; $\frac{1}{2}$ n: Copiar un vector de n booleanos es O(n * copy(bool)) y copiar un bool es $\Theta(1)$. Luego, agregar n vector la copia del vector es $O(n^2)$

4. Mï $\frac{1}{2}$ dulo Direcci $\frac{1}{2}$ n

Aqui va la descripci \ddot{i} , $\frac{1}{2}$ n

Interfaz

```
generos: dir. se explica con: DIRECCIÏ\frac{1}{6}N.
```

Operaciones bi $\frac{1}{2}$ sicas de Direccii $\frac{1}{2}$ n

```
ARRIBA() \rightarrow res : dir
\mathbf{Pre} \equiv \{ \mathrm{true} \}
\mathbf{Post} \equiv \{res =_{obs} \uparrow\}
Complejidad: \Theta(1)
Descripci\ddot{i}_{2}n: genera la direcci\ddot{i}_{2}n arriba.
ABAJO() \rightarrow res : dir
\mathbf{Pre} \equiv \{ \mathrm{true} \}
\mathbf{Post} \equiv \{res =_{\mathrm{obs}}\downarrow\}
Complejidad: \Theta(1)
Descripci\ddot{i}_{2}n: genera la direcci\ddot{i}_{2} n abajo.
IZQUIERDA() \rightarrow res: dir
\mathbf{Pre} \equiv \{ \mathrm{true} \}
\mathbf{Post} \equiv \{res =_{obs} \leftarrow \}
Complejidad: \Theta(1)
Descripci\ddot{i}_{2}n: genera la direcci\ddot{i}_{2}n izquierda.
DERECHA() \rightarrow res: dir
\mathbf{Pre} \equiv \{ \text{true} \}
\mathbf{Post} \equiv \{res =_{\mathrm{obs}} \rightarrow \}
Complejidad: \Theta(1)
Descripci\ddot{i}_{2}n: genera la direcci\ddot{i}_{2} derecha.
INVERTIR(in/out d: dir)
\mathbf{Pre} \equiv \{ \mathrm{true} \}
\mathbf{Post} \equiv \{res =_{obs} invertir(d)\}\
Complejidad: \Theta(1)
Descripci; \frac{1}{2}n: invierte la direcci; \frac{1}{2}n.
```

Representacii; $\frac{1}{2}$ n

Representacii; $\frac{1}{2}$ n de Direccii; $\frac{1}{2}$ n

dir se representa con string

```
\begin{aligned} \operatorname{Rep}: \operatorname{dir} &\longrightarrow \operatorname{bool} \\ \operatorname{Rep}(d) &\equiv \operatorname{true} \Longleftrightarrow \\ &\operatorname{d} =_{\operatorname{obs}} "\operatorname{arriba}" \vee \\ &\operatorname{d} =_{\operatorname{obs}} "\operatorname{abajo}" \vee \\ &\operatorname{d} =_{\operatorname{obs}} "\operatorname{izquierda}" \vee \\ &\operatorname{d} =_{\operatorname{obs}} "\operatorname{derecha}" \end{aligned}
\operatorname{Abs}: \operatorname{dir} d &\longrightarrow \operatorname{dir} 
\operatorname{Abs}(d) =_{\operatorname{obs}} \operatorname{d}_{\operatorname{tad}} : \operatorname{dir} \mid (\operatorname{d} =_{\operatorname{obs}} "\operatorname{arriba}" \wedge \operatorname{d}_{\operatorname{tad}} =_{\operatorname{obs}} \uparrow) \vee \\ &(\operatorname{d} =_{\operatorname{obs}} "\operatorname{abajo}" \wedge \operatorname{d}_{\operatorname{tad}} =_{\operatorname{obs}} \uparrow) \vee \\ &(\operatorname{d} =_{\operatorname{obs}} "\operatorname{izquierda}" \wedge \operatorname{d}_{\operatorname{tad}} =_{\operatorname{obs}} \hookrightarrow) \vee \\ &(\operatorname{d} =_{\operatorname{obs}} "\operatorname{derecha}" \wedge \operatorname{d}_{\operatorname{tad}} =_{\operatorname{obs}} \to) \end{aligned}
```

Algoritmos

Algoritmos del mï $\frac{1}{2}$ dulo

$iArriba() \rightarrow res : dir$	
1: $res \leftarrow "arriba"$	$\triangleright \Theta(1)$
$\underline{\text{Complejidad:}}\ \Theta(1)$	
$\overline{\mathbf{iAbajo}() ightarrow res : dir}$	
1: $res \leftarrow "abajo"$	$\triangleright \Theta(1)$
Complejidad: $\Theta(1)$	
$\overline{\mathbf{iIzquierda}() \to res: dir}$	
1: $res \leftarrow "izquierda"$	$\triangleright \Theta(1)$
Complejidad: $\Theta(1)$	
$\overline{\mathbf{iDerecha}}() \to res: \mathrm{dir}$	
1: $res \leftarrow "derecha"$	$\triangleright \Theta(1)$
Complejidad: $\Theta(1)$	
$\overline{\mathbf{iInvertir}(\mathbf{in}/\mathbf{out}\ d\colon \mathtt{dir})}$	
1: $switch(d)$	$ hd \Theta(1)$
2: case "arriba" :	
3: $d \leftarrow "abajo"$ 4: $case "abajo"$:	
4: $case \ aoajo$: 5: $d \leftarrow "arriba"$	
6: case "izquierda" :	
7: $d \leftarrow$ "derecha"	
8: case "derecha":	
9: $d \leftarrow "izquierda"$	
$\underline{\text{Complejidad:}}\ \Theta(1)$	

5. Mï $\frac{1}{2}$ dulo Acci $\frac{1}{2}$ n

Aqui va la descripci \ddot{i} $\frac{1}{2}$ n

Interfaz

```
generos: accion. se explica con: ACCII ; \frac{1}{2}N.
```

Operaciones bi $\frac{1}{2}$ sicas de Accii $\frac{1}{2}$ n

```
	ext{MOVER}(	ext{in }d \colon 	ext{dir}) 	o res: 	ext{accion}
\mathbf{Pre} \equiv \{ \mathrm{true} \}
\mathbf{Post} \equiv \{res =_{obs} mover(d)\}\
Complejidad: \Theta(1)
Descripci; \frac{1}{2}n: genera una acci\frac{1}{2}n de mover en la direcci\frac{1}{2}n especificada.
PASAR() \rightarrow res : accion
\mathbf{Pre} \equiv \{ \text{true} \}
\mathbf{Post} \equiv \{res =_{obs} pasar\}
Complejidad: \Theta(1)
Descripcii; \frac{1}{2}n: genera la accii; \frac{1}{2}n de pasar.
DISPARAR() \rightarrow res : accion
\mathbf{Pre} \equiv \{ \mathrm{true} \}
\mathbf{Post} \equiv \{res =_{obs} disparar\}
Complejidad: \Theta(1)
Descripci\ddot{i}_{\ell} \frac{1}{2}n: genera la acci\ddot{i}_{\ell} \frac{1}{2}n de disparar.
APLICAR() \rightarrow res : tupla()
\mathbf{Pre} \equiv \{ \text{true} \}
\mathbf{Post} \equiv \{res =_{\mathrm{obs}} disparar\}
Complejidad: \Theta(1)
Descripci; \frac{1}{2}n: genera la acci; \frac{1}{2}n de disparar.
```

Representacii; $\frac{1}{2}$ n

Representacii $\frac{1}{2}$ n de Accii $\frac{1}{2}$ n

El objetivo de este mï $\frac{1}{2}$ dulo es implementar una lista doblemente enlazada con punteros al principio y al fin. Para simplificar un poco el manejo de la estructura, vamos a reemplazarla por una lista circular, donde el siguiente del ï $\frac{1}{2}$ ltimo apunta al primero y el anterior del primero apunta al ï $\frac{1}{2}$ ltimo. La estructura de representaciï $\frac{1}{2}$ n, su invariante de representaciï $\frac{1}{2}$ n y su funciï $\frac{1}{2}$ n de abstracciï $\frac{1}{2}$ n son las siguientes.

```
mapa se representa con m
```

```
donde m es tupla(tamano: nat,casilleros: vec(vec(bool)),)

Rep: mapa \longrightarrow bool

Rep(m) \equiv true \iff La longitud de m.casilleros es igual a tamano \land

La longitud del vector m.casilleros es igual a la de todo otro vector dentro de el) \land

Es conexa

Abs: mapa m \longrightarrow hab

Abs(m) = obs h: hab | m.tamano = obs tam(h) \land_L

(\forall t: tuple(nat,nat))(0 \le \Pi_1(t), \Pi_2(t) < m.tamano - 1 <math>\Rightarrow_L

libre(m, t) = obs m.casilleros[\Pi_1(t)][\Pi_2(t)])
```

Algoritmos

En esta secci \ddot{i}_{ℓ} $\frac{1}{2}$ n se hace abuso de notaci \ddot{i}_{ℓ} $\frac{1}{2}$ n en los c \ddot{i}_{ℓ} $\frac{1}{2}$ lculos de \ddot{i}_{ℓ} $\frac{1}{2}$ lgebra de \ddot{i}_{ℓ} $\frac{1}{2}$ rdenes presentes en la justifi-

caciones de los algoritmos. La operaci
ï $\frac{1}{2}$ n de suma "+" denota secuencializaci
ï $\frac{1}{2}$ n de operaciones con determinado orden de complejidad, y el s
ï $\frac{1}{2}$ mbolo de igualdad "=" denota la pertenencia al orden de complejidad resultante.

Algoritmos del mï
¿ $\frac{1}{2}$ dulo