

机器学习与人工智能
Machine Learning
and Artificial
Intelligence

Lecture 7 PCA

Yingjie Zhang (张颖婕)
Peking University
yingjiezhang@gsm.pku.edu.cn
2021 Fall

Principal Component Analysis

High Dimension Data

High resolution images (millions of pixels)

High Dimension Data

Customer purchase data

Useful for

- Visualization
- More efficient use of resources
 (e.g., time, memory, communication)
- Statistical: fewer dimensions → better generalization
- Noise removal (improving data quality)
- Further processing by ML algorithms

PCA Overview

- PCA is a technique that can simplify data
- It is a linear transformation that chooses a new coordinate system for the data set such that
 - greatest variance by any projection of the data set comes to lie on the first axis (then called the first principal component)
 - the second greatest variance on the second axis, and so on.

Toy Example

Consider the following 3D data points

 If each component is stored in a byte, we need $18 = 3 \times 6$ bytes

Toy Example

Consider the following 3D data points

They can be stored using only 9 bytes (50% savings!)

Toy Example

Principle Component Analysis

- Identifying the axes is known as Principal Components Analysis, and can be obtained by using classic matrix computation tools (Eigen or Singular Value Decomposition).
- Data for PCA:

$$\mathcal{D} = \left\{x^{(i)}\right\}_{i=1}^{N} \qquad X = \begin{bmatrix} \left(x^{(1)}\right)^{T} \\ \left(x^{(2)}\right)^{T} \\ \vdots \\ \left(x^{(N)}\right)^{T} \end{bmatrix}$$
assume the data is centered: $\mu = \frac{1}{T} \sum_{i=1}^{N} x_i$

We assume the data is centered: $\mu = \frac{1}{N} \sum_{i=1}^{N} x^{(i)} = \mathbf{0}$

2D Gaussian Dataset

The original dataset:

2D Gaussian Dataset

First find the direction of maximum variance, labeled "Component 1"

Along this direction:

- Features are most correlated with each other
- Contains the most of the information

2D Gaussian Dataset

Component 2: orthogonal to the first direction & maximized variance

Sample Covariance matrix

• The sample covariance matrix is given by:

$$\sum_{jk} = \frac{1}{N} \sum_{i=1}^{N} \left(x_j^{(i)} - \mu_j \right) \left(x_k^{(i)} - \mu_k \right)$$

• Since the data matrix is centered, we rewrite as:

$$\sum = \frac{1}{N} X^T X$$

Definition of PCA

• Given K vectors, $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, ..., $\overrightarrow{v_K}$, the projection of a vector $x^{(i)}$ to a lower K-dimensional space is

$$\vec{u}^{(i)} = \begin{bmatrix} \overrightarrow{v_1}^T \vec{\chi}^{(i)} \\ \dots \\ \overrightarrow{v_K}^T \vec{\chi}^{(i)} \end{bmatrix}$$

• Def: PCA repeatedly chooses a next $\overrightarrow{v_j}$ that minimize the reconstruction error, s.t., $\overrightarrow{v_j}$ is orthogonal to $\overrightarrow{v_1}$,..., $\overrightarrow{v_{j-1}}$

PCA: Maximize the Variance

Quiz: Consider the two projections below

- 1. Which maximizes the variance?
- 2. Which minimizes the reconstruction error?

Eigenvectors and Eigenvalues

• For a square matrix **A** $(n \times n)$, the vector **v** $(n \times 1)$ is an eigenvector iff there exists eigenvalue λ (scalar) such that

$$Ax = \lambda x$$

- Theorem 1: The vector that maximizes the variance is the eigenvector of Σ with largest eigenvalue
- Theorem 2: The eigenvector of a symmetric matrix are orthogonal to each other
- Fact 1: Σ is a symmetric matrix

Algorithms for PCA

- Singular Value Decomposition (SVD)
 - Find all the principal components at once
 - Two options:
 - Option A: run SVD on X^TX
 - Option B: run SVD on X

How Many PCs?

- For M original dimensions, sample covariance matrix is MxM, and has up to M eigenvectors. So M PCs.
- Where does dimensionality reduction come from?
 Can ignore the components of lesser significance.

- You do lose some information, but if the eigenvalues are small, you don't lose much
 - M dimensions in original data
 - calculate M eigenvectors and eigenvalues
 - choose only the first D eigenvectors, based on their eigenvalues
 - final data set has only D dimensions

Example: Facial Recognition

PCA Transformation

 β_0 , β_1 , and so on are the coefficients of the principal components for this data point.

