Συνδυαστική Απαρίθμηση

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Συνδυαστική Απαρίθμηση

- Υπολογισμός (με συνδυαστικά επιχειρήματα) του πλήθους των διαφορετικών αποτελεσμάτων ενός «πειράματος».
 - «Πείραμα»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων αποτελεσμάτων.
 - Π.χ. ρίψη ζαριών, μοίρασμα τράπουλας, ανάθεση γραφείων, επιλογή password, 6άδες Lotto, ...
 - Πληθάριθμος δυναμοσυνόλου: αν |A| = n, τότε |P(A)| = 2ⁿ
- Βασικές αρχές και έννοιες:
 - Κανόνες γινομένου και αθροίσματος, αρχή εγκλεισμού αποκλεισμού.
 - Διατάξεις και μεταθέσεις (με ή χωρίς) επανάληψη.
 - Συνδυασμοί (με ή χωρίς) επανάληψη.

Κανόνας Γινομένου

- Πείραμα Α με η αποτελέσματα. Πείραμα Β με m αποτελέσματα.
- Αν αποτελέσματα Α και Β είναι ανεξάρτητα, τότε συνδυασμός των πειραμάτων Α και Β έχει n×m αποτελέσματα.
 - Ανεξάρτητα: το αποτέλεσμα του Α δεν επηρεάζει (ως προς τον αριθμό των αποτελεσμάτων) το αποτέλεσμα του Β, και αντίστροφα.
 - \square $\Pi.\chi. |A \times B| = |A| \times |B|$
 - Επιλογή ενός ψηφίου 0-9 και ενός κεφαλαίου Ελληνικού γράμματος:
 - □ 10×24 = 240 διαφορετικά αποτελέσματα.
 - #συμβ/ρών (με κεφαλαία Ελληνικά) μήκους 10: 24¹⁰
 - \blacksquare #παλινδρομικών συμβ/ρών μήκους 10: 24^5
 - \blacksquare #συναρτήσεων από A στο B (|A| = n, |B| = m): m^n
 - #συναρτήσεων **1-1** από A στο B (m ≥ n): $m(m-1)\cdots(m-n+1)$

Κανόνας Αθροίσματος

- Πείραμα Α με η αποτελέσματα. Πείραμα Β με m αποτελέσματα.
- Αν αποτελέσματα Α και Β είναι αμοιβαία αποκλειόμενα, τότε συνδυασμός των πειραμάτων Α ή Β έχει n+m αποτελέσματα.
 - Αμοιβαία αποκλειόμενα: η παρατήρηση αποτελέσματος του Α αποκλείει την παρατήρηση αποτελέσματος του Β, και αντίστροφα.
 - \blacksquare $|A \cup B| = |A| + |B|$, av $|A \cap B| = \emptyset$
 - **Αρχή εγκλεισμού αποκλεισμού:** $|A \cup B| = |A| + |B| |A \cap B|$
- 5 Ελληνικά, 7 Αγγλικά, και 10 Γερμανικά βιβλία.
 - Τρόποι να διαλέξουμε 2 βιβλία σε διαφορετική γλώσσα:
 - \square E $\lambda\lambda$. A $\gamma\gamma\lambda$.: $5\times7=35$
 - \Box Ελλ. Γερμ.: $5 \times 10 = 50$
 - \square Αγγλ. Γερμ.: $7 \times 10 = 70$
 - Αμοιβαία αποκλειόμενα. Σύνολο: 155 διαφορετικές επιλογές.
 - lacksquare Τρόποι να διαλέξουμε 2 βιβλία: 22 imes 21/2 = 231

- #passwords με 6 8 χαρακτήρες αποτελούμενα από κεφαλαία(Αγγλικά) γράμματα και (τουλάχιστον ένα) δεκαδικό ψηφίο.
 - #passwords μήκους k = 36^k − 26^k
 - \blacksquare #passwords = $(36^6 + 36^7 + 36^8) (26^6 + 26^7 + 26^8)$
- #passwords μήκους 2 από A, B, C, D και 0, 1, 2 με τουλάχιστον ένα ψηφίο.
 - **Σ**ωστό το $7^2 4^2 = 33$. Λάθος το (γιατί;) $2 \times 3 \times 7 = 42$
- #δυαδικών συμβ/ρών μήκους 8 που είτε αρχίζουν από 1 είτε τελειώνουν σε 00:
 - 'Όχι αμοιβαία αποκλειόμενα: 2⁷ + 2⁶ − 2⁵ = 160.

Διατάξεις - Μεταθέσεις

- Διατάξεις P(n, k): k από n διακεκριμένα αντικείμενα σε k διακεκριμένες θέσεις (1 αντικείμενο σε κάθε θέση).
 - P(n, k) = #τρόπων να πληρωθούν k διακεκριμένες θέσεις από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»).

$$P(n,k) = n(n-1)\cdots(n-k+1) = \frac{n!}{(n-k)!}$$

- #πρόπων να πληρώσουμε 4 (διαφορετικές) θέσεις εργασίας αν έχουμε 30 υποψήφιους: P(30,4)=30!/26!
- \blacksquare #συμβ/ρών μήκους 10 με όλα τα σύμβολα διαφορετικά από κεφαλαίους Ελληνικούς χαρακτήρες: P(24,10)=24!/14!
- □ Μεταθέσεις n αντικειμένων: P(n, n) = n!
 - Arr #αναθέσεων 10 (διαφορετικών) γραφείων σε 10 καθηγητές: P(10,10)=10!
 - #συμβ/ρών μήκους 24 με όλα τα σύμβολα διαφορετικά από κεφαλαίους Ελληνικούς χαρακτήρες: P(24,24)=24!

- #συμβ/ρών από 4 διαφορετικούς χαρακτήρες ακολουθούμενους από 3 διαφορετικά ψηφία:
 - \blacksquare P(24, 4) × P(10, 3)
- #τετραψήφιων δεκαδικών αριθμών που δεν αρχίζουν από 0 και δεν έχουν επαναλαμβανόμενα ψηφία:
 - $9 \times 9 \times 8 \times 7 = 4536.$
- #μεταθέσεων (κεφαλαίων Ελληνικών) όπου Α εμφανίζεται πριν από τα Β και Γ:
 - P(24, 21) × 2!
- #μεταθέσεων όπου Α εμφανίζεται πριν το Β, και μετά από τα Γ και Δ:
 - \blacksquare P(24, 20) × 2!

Διατάξεις με Επανάληψη

- □ #πενταψήφιων δεκαδικών αριθμών: 10⁵
- \square Διατάξεις με **επανάληψη**: n διακεκριμένα αντικείμενα (διαθέσιμα σε απεριόριστα «αντίγραφα») σε k διακεκριμένες θέσεις: n^k
 - Διανομή k διακεκριμένων αντικειμένων σε n διακεκριμένες υποδοχές (χωρίς περιορισμό στη χωρητικότητα), όταν η σειρά στις υποδοχές δεν έχει σημασία.
- \square #πενταψήφιων δεκαδικών αριθμών με τουλ. ένα $8 \colon 10^5 9^5$
- - |A| στοιχεία σε 2 υποδοχές (ανήκει − δεν ανήκει στο υποσύνολο).
- lacktriangle #δυαδικών συμβ/ρών μήκους η με άρτιο πλήθος από $1\colon 2^{n-1}$
 - ∀ συμβ/ρά μήκους n-1, ∃ μοναδική συμ/ρά με άρτιο πλήθος 1.
 - Ιδέα του parity bit.

Διατάξεις με Επανάληψη

- Διανομή k διακεκριμένων αντικειμένων σε n διακεκριμένες υποδοχές (χωρίς περιορισμό χωρητικότητας) με σειρά στις υποδοχές να έχει σημασία.
 - Ιστιοφόρο έχει η κατάρτια στα οποία μπορεί να αναρτηθούν k διαφορετικές σημαίες. Πόσα διαφορετικά σήματα;

$$n(n+1)\cdots(n+k-1) = \frac{(n+k-1)!}{(n-1)!}$$

- Κυκλικές μεταθέσεις η ατόμων: (n-1)!
 - #τρόπων που n ἀνθρωποι κάθονται σε κυκλικό τραπέζι (διακρίνουμε μεταξύ δεξιά και αριστερά).

Συνδυασμοί

Συνδυασμοί C(n, k): #επιλογών k από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»).

$$C(n,k) = \frac{P(n,k)}{k!} = \frac{n!}{k!(n-k)!} = \binom{n}{k} = \binom{n}{n-k} = C(n,n-k)$$

- Διαφορετικές 6άδες Lotto (από 1-49): C(49,6)
- #υποσυνόλων με k στοιχεία από σύνολο n στοιχείων: C(n,k)
- #τρόπων στελέχωσης 5μελούς κοινοβουλευτικής επιτροπής, όπου μέλη ισότιμα: C(300,5)
- #δυαδικών συμβ/ρών μήκους 32 με (ακριβώς) επτά 1: C(32,7)
- #επιλογών 3 αριθμών 1-300 ώστε άθροισμα να διαιρείται από 3.
 - Αριθμοί 1-300 σε 3 ομάδες 100 αριθμών με βάση mod 3.
 - Είτε 3 από ίδια ομάδα είτε έναν από κάθε ομάδα.
 - Τελικά $3C(100, 3) + 100^3 = 1.485.100$

Μεταθέσεις με Ομάδες

- #συμβ/ρών (μήκους 8) με γράμματα λέξης ΕΦΗΒΙΚΟΣ: 8!
- #συμβ/ρών (μήκους 8) με γράμματα λέξης ΠΑΡΑΠΟΝΑ:
 - Μεταθέσεις με ομάδες ίδιων αντικειμένων: 8!/(2!3!1!1!1!)
- Μεταθέσεις η αντικειμένων σε k ομάδες ίδιων αντικειμένων με πληθάριθμο n_1 , n_2 , ..., n_k αντίστοιχα:

$$\frac{n!}{n_1!n_2!\cdots n_k!} = \binom{n}{n_1}\binom{n-n_1}{n_2}\binom{n-(n_1+n_2)}{n_3}\cdots\binom{n-\sum_{i=1}^{k-1}n_i}{n_k}$$

- #συμβ/ρών μήκους 24 από 7 Α, 8 Β, 5 Γ, και 4 Δ: 24!/(7!8!5!4!)
 - Αν πρώτο και τελευταίο A: $\frac{22!}{(5!8!5!4!)}$
 - Αν δεν πρέπει να εμφανίζεται ΔΔΔΔ: 24!/(7!8!5!4!) 21!/(7!8!5!1!)

- Έστω το «τετράγωνο» που ορίζεται από τα σημεία (0, 0), (0, 8), (10, 0), kai (10, 8).
- Πόσα διαφορετικά «μονοπάτια» από το (0, 0) στο (10, 8), αν σε κάθε βήμα μετακινούμαστε είτε κατά μια μονάδα προς τα πάνω είτε κατά μια μονάδα προς τα δεξιά.
 - Πρέπει να κάνουμε 8 βήματα Πάνω και 10 βήματα Δεξιά.
 - #μονοπατιών = #μεταθέσεων 8 Π και $10 \Delta = 18!/(10! 8!)$
- Ακολουθίες $a_1, ..., a_n$ και $\beta_1, ..., \beta_m$. #τρόπων καταγραφής στοιχείων των 2 ακολουθιών ώστε να διατηρείται η σειρά μεταξύ των στοιχείων της ίδιας ακολουθίας;
 - Μεταθέσεις η Α και η Β δείχνουν θέσεις στοιχείων κάθε ακολουθίας.
 - Δεδομένη η σειρά των στοιχείων κάθε ακολουθίας.
 - Τελικά: (n+m)!/(n! m!).

Συνδυασμοί με Επανάληψη

- Διαφορετικά αποτελέσματα από ρίψη 2 (ίδιων) ζαριών: 21
- Συνδυασμοί με επανάληψη: k από n διακεκριμένα αντικείμενα (διαθέσιμα σε απεριόριστα «αντίγραφα»).
 - Διανομή k ίδιων αντικειμένων σε n διακεκριμένες υποδοχές (χωρίς περιορισμό στη χωρητικότητα).

$$C(n+k-1,k) = \frac{(n+k-1)!}{k!(n-1)!} = \binom{n+k-1}{k}$$

- Διανομές αντιστοιχούν σε μεταθέσεις k 1 και n-1 0. #1 ανάμεσα σε 0 καθορίζει #αντικειμένων σε κάθε υποδοχή.
- #διανομών k ίδιων αντικειμένων σε n διακεκριμένες υποδοχές $\dot{\omega}$ στε καμία υποδοχή κενή (k ≥ n).
 - C(n + (k n) 1, k n) = C(k 1, k n) = C(k 1, n 1)

Ανακεφαλαίωση

Μεταθέσεις (n = k):

P(n,n) = n!

Μεταθέσεις *n* αντικειμένων όταν έχουμε *k* **ομάδες** ίδιων αντικ. με πληθάριθμο $n_1, ..., n_k$:

- \Box 10 όμοιες καραμέλες σε $(3+10-1) = {12 \choose 10}$
- Επιλογή 10 από 12 παιδιά $P(12,10)=\frac{12!}{2!}$
- lacktriangle Επιλογή 10 από 12 παιδιά $C(12,10)=egin{pmatrix} 12 \ 10 \end{pmatrix}$
- \square Επιλογή 10 από 3 χρώματα με επανάληψη $\binom{3+10-1}{10}=\binom{12}{10}$ (σειρά επιλογής δεν έχει σημασία):
- Επιλογή 3 από 10 χρώματα με επανάληψη $\binom{10+3-1}{3}=\binom{12}{3}$ (σειρά επιλογής δεν έχει σημασία):

- #διμελών σχέσεων στο σύνολο Α, |A| = n:
 - Όλες: 2^{n^2}
 - Ανακλαστικές: $2^{n(n-1)}$
 - Συμμετρικές: $2^{n(n+1)/2}$
 - Αντισυμμετρικές: $2^n imes 3^{n(n-1)/2}$

- #τοποθέτησης 8 (ίδιων / διακεκριμένων) πύργων σε μια σκακιέρα 8x8, ώστε να μην απειλεί ο ένας τον άλλο.
 - Ένας πύργος σε κάθε γραμμή. Ο πύργος της 1^{ης} γραμμής με 8 τρόπους, ο πύργος της 2^{ης} γραμμής με 7 τρόπους, KOK.
 - Αν πύργοι ίδιοι, συνολικά: 8! τρόποι.
 - Αν πύργοι διακεκριμένοι: πολλαπλασιάζουμε με μεταθέσεις: 8!.
 - \square Συνολικά: $(8!)^2$ τρόποι.

- 40 βουλευτές του κόμματος Α, 35 βουλευτές του κόμματος Β, και 25 βουλευτές του κόμματος Γ.
- #τρόπων να ορίσουμε 10 (μη διακεκριμένες) 3μελείς κοινοβουλευτικές ομάδες, με έναν βουλευτή από κάθε κόμμα, αν κάθε βουλευτής μπορεί να συμμετέχει σε 1 το πολύ ομάδα;
 - #τρόποι επιλογής 10 βουλευτών κόμματος Α: C(40, 10).
 - #τρόποι επιλογής και «τοποθέτησης» 10 βουλ. Β: P(35, 10).
 - #τρόποι επιλογής και «τοποθέτησης» 10 βουλ. Γ: P(25, 10).
 - #τρόπων συνολικά: 40!35!25!/(10!30!25!15!).

- #ακεραίων λύσεων της εξίσωσης $x_1 + x_2 + x_3 + x_4 = 20$
 - Av $x_i \ge 0$: C(20 + 4 1, 20) = C(23, 20) = C(23, 3)
 - Av $x_i \ge 1$: C(16 + 4 1, 16) = C(19, 16) = C(19, 3)
 - Av $x_1 \ge 2$, $x_2 \ge 4$, $x_3 \ge 1$, $x_4 \ge 5$: C(8 + 4 1, 8) = C(11, 3)
- 5 διαφορετικά γράμματα (π.χ. Α, Β, Γ, Δ, Ε) και 20 κενά _ . #συμβ/ρών που αρχίζουν και τελειώνουν με γράμμα και έχουν ανάμεσα σε διαδοχικά γράμματα τουλάχιστον 3 κενά.
 - Μεταθέσεις 5 γραμμάτων: 5!
 - 12 κενά στις 4 διακεκριμένες «υποδοχές» ανάμεσα σε γράμματα.
 - Υπόλοιπα 8 κενά στις 4 «υποδοχές» με C(4 + 8 1, 8) τρόπους.
 - Τελικά: C(11, 8) 5! συμβ/ρές.

- η θρανία στη σειρά για k φοιτητές που εξετάζονται ($n \ge 2k-1$). #τοποθετήσεων ώστε τουλάχιστον μια κενή θέση ανάμεσα σε κάθε ζευγάρι φοιτητών.
 - Μεταθέσεις k φοιτητών: k! (καταλαμβάνουν k θρανία).
 - Τοποθετούμε k-1 θρανία ανάμεσά τους.
 - Υπόλοιπα n-2k+1 (ίδια) θρανία στις k+1 διακεκριμένες «υποδοχές» στην αρχή, στο τέλος, και ανάμεσα σε φοιτητές.
 - C((k+1) + (n-2k+1) 1, n-2k+1) = C(n-k+1, n-2k+1)= C(n-k+1, k)
 - Τελικά C(n-k+1, k) k! = (n-k+1)!/(n-2k+1)!
 - Διαφορετικά μεταθέσεις (με ομάδες) k διαφορετικών αντικειμένων (φοιτητών) και n-2k+1 <mark>ίδιων</mark> αντικειμένων (ελεύθερων θρανίων).

- #διανομών 22 διαφορ. βιβλίων πάχους 5 εκ. σε 3 διακεκριμένα ράφια μήκους 1 μ. το καθένα ώστε κανένα ράφι κενό.
 - k διακεκριμένα αντικείμενα σε n διακεκριμένες υποδοχές ώστε καμία υποδοχή κενή $(k \ge n, πάχος βιβλίων δεν συνιστά περιορισμό).$
 - Αν αντικείμενα ίδια, #διανομών: C(k 1, n 1).
 - Αντικείμενα διαφορετικά: C(k 1, n 1) × k!

- #συμβ/ρών μήκους 24 από 7 Α, 8 Β, 5 Γ, και 4 Δ όπου δεν εμφανίζεται το ΓΑ.
 - #συμβ/ρών μήκους 19 από 7 A, 8 B, και 4 Δ: 19!/(7!8!4!)
 - Δημιουργούνται 20 διακεκριμένες «υποδοχές» για τα 5 Γ.
 - Εξαιρούνται οι 7 πριν από κάθε Α.
 - Διανομή 5 Γ σε 13 διακεκριμένες «υποδοχές»: C(17, 5).
 - Τελικά: [19!/(7!8!4!)]×[17!/(5!12!)].
- #συμβ/ρών μήκους 24 από 7 Α, 8 Β, 5 Γ, και 4 Δ όπου το πρώτο Β εμφανίζεται πριν το πρώτο Α.
 - #επιλογών θέσεων για 4 Δ (από 24): C(24, 4).
 - #επιλογών θέσεων για 5 Γ (από 20): C(20, 5).
 - Ένα Β σε πρώτη διαθέσιμη θέση.
 - #επιλογών θέσεων για υπόλοιπα 7 Β (από 14): C(14, 7).
 - Συνολικά: [24!/(4!5!15!)]×[14!/(7!7!)].

- Πόσα υποσύνολα 4 στοιχείων του $A = \{1, ..., 15\}$ δεν περιέχουν διαδοχικούς αριθμούς;
 - Υποσύνολο ως 4άδα (a_1, a_2, a_3, a_4) όπου $1 \le a_1 < a_2 < a_3 < a_4 \le 15$
 - 1-1 αντιστοιχία μεταξύ τέτοιων 4άδων (α1, α2, α3, α4) και λύσεων της εξίσωσης $\beta_1+\beta_2+\beta_3+\beta_4+\beta_5=14$ στους φυσικούς με β_2 , β_3 , $\beta_4 \ge 1$:

$$1 + \beta_1 = \alpha_1 \qquad \alpha_1 + \beta_2 = \alpha_2$$

$$\alpha_2 + \beta_3 = \alpha_3 \qquad \alpha_3 + \beta_4 = \alpha_4$$

$$\alpha_4 + \beta_5 = 15$$

- Για να μην είναι a_1 , a_2 , a_3 , a_4 διαδοχικοί, πρέπει $β_2$, $β_3$, $β_4 ≥ 2$.
- Διανομή 14 ίδιων μπαλών σε 5 διαφορετικές υποδοχές, ώστε υποδοχές 2, 3, και 4 να έχουν τουλάχιστον 2 μπάλες.
- Αποτέλεσμα: C(12, 8) = C(12, 4) = 495.
- Να γενικεύσετε για #υποσυνόλων k στοιχείων του {1, ..., n} που δεν περιέχουν διαδοχικούς αριθμούς.

- 2n+1 κοινοβουλευτικές έδρες να μοιραστούν σε 3 κόμματα ώστε αν οποιαδήποτε 2 συμφωνούν να έχουν πλειοψηφία.
 - #διανομών 2n+1 (ίδιες) μπάλες σε 3 διακεκριμένες υποδοχές $\dot{\omega}$ στε κάθε υποδοχή ≤ η μπάλες.
 - #διανομών χωρίς περιορισμούς: $\binom{2n+1+3-1}{2n+1} = \binom{2n+3}{2n+1} = \binom{2n+3}{2}$
 - #διανομών όπου κάποια υποδοχή έχει ≥ n+1 μπάλες:
 - Επιλέγουμε (με 3 τρόπους) υποδοχή με «πλειοψηφία».
 - Τοποθετούμε σε αυτή n+1 μπάλες.
 - #διανομών υπόλοιπων η μπαλών στις 3 υποδοχές:

$$\binom{n+3-1}{n} = \binom{n+2}{n} = \binom{n+2}{2}$$

Τελικά #διανομών: $\binom{2n+3}{2} - 3\binom{n+2}{2} = \frac{n(n+1)}{2}$

Διατάξεις με Επανάληψη

- #εβδομαδιαίων προγραμμάτων μελέτης για μαθήματα Μ, Φ, Χ, Ο ώστε κάθε μάθημα τουλάχιστον 1 ημέρα.
 - Αρχή εγκλεισμού αποκλεισμού: $4^7 |\overline{\mathbf{M}} \cup \overline{\Phi} \cup \overline{\mathbf{X}} \cup \overline{\mathbf{O}}|$
 - #προγραμμάτων χωρίς (τουλ.) 1 μάθημα: 3⁷ (4 περιπτώσεις).
 - #προγραμμάτων χωρίς (τουλ.) 2 μαθήματα: 2⁷ (6 περιπτώσεις).
 - \square #προγραμμάτων χωρίς (τουλ.) 3 μαθήματα: $1^7 = 1$ (4 περιπτ.)
 - #προγραμμάτων χωρίς (τουλ.) 4 μαθήματα: 0
 - Τελικά: $4^7 4 \times 3^7 + 6 \times 2^7 4 = 8400$

Υποσύνολα Πολυσυνόλου

- #διαιρετών του 180;
 - Ανάλυση σε γινόμενο πρώτων παραγόντων: 180 = 22 32 5.
 - #διαιρετών 180 = #υποσυνόλων {2:2, 3:2, 5:1}
 - #διαιρετών του $180 = 3 \times 3 \times 2 = 18$.
- #υποσύνολων πολυσυνόλου με k στοιχεία όπου κάθε στοιχείο p είναι διαθέσιμο σε n_p «αντίγραφα».
 - $(1+n_1)(1+n_2) \dots (1+n_k)$
 - Για #μη κενών υποσυνόλων: $(1+n_1)(1+n_2)$... $(1+n_k) 1$
- #διαιρετών του 1400;
 - Ανάλυση σε γινόμενο πρώτων παραγόντων: $1400 = 2^3 5^2 7$.
 - #διαιρετών 1400 = #υποσυνόλων {2:3, 5:2, 7:1}
 - #διαιρετών του $1400 = 4 \times 3 \times 2 = 24$.

Εφαρμογή: Διακριτή Πιθανότητα

- Διακριτός δειγματοχώρος: αριθμήσιμο σύνολο Ω, όπου $\forall \omega \in \Omega$, αντιστοιχούμε $p(\omega) \in [0, 1]$ και $\sum p(\omega) = 1$ $\omega \in \Omega$
 - Γεγονός Ε: υποσύνολο Ω.
 - $p(E) = \sum_{\omega \in E} p(\omega)$
 - Πιθανότητα για 6άρες στο τάβλι:
 - □ 1/36.
 - Πιθανότητα για 6-5 στο τάβλι:
 - □ 2/36.
 - Πιθανότητα για ίδιο αποτέλεσμα στα 2 ζάρια:
 - \Box 6*1/36 = 1/6.
- Πιθανότητα τουλάχιστον 2 από m (τυχαία επιλεγμένους) ανθρώπους να έχουν γενέθλια την ίδια ημέρα;

Μπάλες σε Διαφορετικά Κουτιά

Πιθανότητα όλες οι m (< n) μπάλες σε διαφορετικό κουτί:

$$P_{m} = \frac{n}{n} \frac{n-1}{n} \frac{n-2}{n} \cdots \frac{n-m+1}{n} = \prod_{k=1}^{m-1} \left(1 - \frac{k}{n}\right)$$

$$\leq \prod_{k=1}^{m-1} e^{-k/n} = e^{-m(m-1)/(2n)}$$

- Πιθανότητα τουλ. 2 μπάλες στο ίδιο κουτί ≥ 1 Ρ_m
 - Για n = 365 και m = 28: πιθανότητα σε 28 ανθρώπους, κάποιοι να έχουν γενέθλια την ίδια μέρα $> 1 - e^{-1}$

Εφαρμογή: Διακριτή Πιθανότητα

- Ρίχνουμε 4 (ίδια / διακ.) ζάρια. Πιθανότητα κανένα να μην φέρει 6;
 - Αφού η πιθανότητα δεν σχετίζεται με «ταυτότητα» ζαριών, δεν παίζει ρόλο αν τα ζάρια είναι διακεκριμένα ή όχι.
 - Τα θεωρούμε διακεκριμένα, ώστε όλα τα ενδεχόμενα **ισοπίθανα**.
 - Όλα τα ενδεχόμενα: $6^4 = 1296$. Eνδεχόμενα χωρίς 6: $5^4 = 625$. Ενδεχόμενα με τουλάχιστον ένα 6: 1296 - 625 = 671.
- Έχουμε 10 ζευγάρια παπούτσια ανακατεμένα σε ένα ντουλάπι. Επιλέγουμε τυχαία 8 παπούτσια από το ντουλάπι.
 - Ποια η πιθανότητα να μην επιλέξουμε κανένα ζευγάρι παπουτσιών;
 - Ποια η πιθανότητα να επιλέξουμε ακριβώς ένα ζευγάρι παπουτσιών;

Δυωνυμικοί Συντελεστές

- Δυωνυμικό Θεώρημα: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k = \sum_{k=0}^n C(n,k) x^{n-k} y^k$
- Ως άμεση συνέπεια: $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$
 - Προκύπτει συνδυαστικά ως #υποσυνόλων συνόλου με η στοιχεία.
 - Mε x = 1 και y = -1:

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0 \Rightarrow \binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots$$

- Απόδειξη για τύπο εγκλεισμού αποκλεισμού: $\sum_{k=0}^{\infty} (-1)^{k+1} \binom{n}{k} = 1$
- Για x = 2 και y = 1: $\sum_{k=0}^{n} 2^k \binom{n}{k} = 3^n$

Ταυτότητα του Pascal

- **□** Ταυτότητα του Pascal: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$
 - #τρόπων να επιλέξουμε k ano n αντικείμενα:
 - είτε επιλέγουμε το τελευταίο και επιλέγουμε τα άλλα k-1 από τα υπόλοιπα n-1 αντικείμενα,
 - είτε δεν επιλέγουμε το τελευταίο και επιλέγουμε όλα τα k από τα υπόλοιπα n-1 αντικείμενα.

Τρίγωνο του Pascal

n

Αναδρομική σχέση για υπολογισμό δυωνυμικών συντελεστών:

$$\binom{n}{k} = \begin{cases} \binom{n-1}{k-1} + \binom{n-1}{k} & \text{an } 0 < k < n \\ 1 & \text{diagoo.} \end{cases}$$

Η τεχνική σήμερα είναιγνωστή ωςδυναμικόςπρογραμματισμός.

Ταυτότητα Vandermonde

- Ταυτότητα Vandermonde: $\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$
 - #τρόπων να επιλέξουμε r από n (αριθμημένες) πράσινες μπάλες και m (αριθμημένες) κόκκινες μπάλες:
 - □ Επιλέγουμε r − k από m κόκκινες k από n πράσινες με $C(m, r - k) \times C(n, k)$ τρόπους.
 - Αμοιβαία αποκλειόμενα ενδεχόμενα για διαφορετικές τιμές του k.
- \square Άμεση συνέπεια: $\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2$

Δημιουργία Μεταθέσεων

- ... n αντικειμένων σε λεξικογραφική σειρά.
 - Συνάρτηση που επιστρέφει (λεξικογραφικά) επόμενη μετάθεση.
 - Ελάχιστη: αντικείμενα σε αύξουσα σειρά.
 - Μέγιστη: αντικείμενα σε φθίνουσα σειρά.
- □ Δεδομένης μετάθεσης α₁α₂...α_n :
 - Υπολόγισε ελάχιστη δυνατή κατάληξη που επιδέχεται (λεξικογραφικής) αύξησης.
 - Υπολογισμός επόμενης μετάθεσης
 (που δεν έχει εμφανιστεί ήδη ως κατάληξη)
 για αυτή την κατάληξη.

1	2	3	4
1	2	4	3
1	3	2	4
1	3	4	2
1	4	2	3
1	4	.3	2
2	1	3	4
2	1	4	3
2	3	1	4
2	3	4	1
2	4	1	3
2	4	3	1
3	1	2	4

Δημιουργία Μεταθέσεων

- □ Δεδομένης μετάθεσης α₁α₂...α_n :
 - Μέγιστος δείκτης j τ.ω. a_j < a_{j+1}
 (ἀρα a_{j+1} > a_{j+2} > ... a_{n-1} > a_n)
- □ Επόμενη μετάθεση α΄₁ α΄₂...α΄_n :
 - Πρόθεμα α₁ ... α_{i-1} αμετάβλητο.
 - a'_j = ελάχιστο από τα a_{j+1}, ..., a_n που «ξεπερνά» το a_j.
 - Υπόλοιπα από τα α_j, α_{j+1}, ..., α_n (εκτός αυτού που πήρε θέση j) σε αύξουσα σειρά.
 - 36**2541** → 364125
 - **48765321** → 51234678

1234

1 2 4 3

1 3 2 4

1 3 4 2

1 4 2 3

1437

2 1 3 4

2 1 4 3

2 3 1 4

2 3 4 1

2 4 1 3

2 4 3 1

3124

3 1 4 2

3 2 1 4

3 2 4 1

3 4 1 2

3 4 2 1

4 1 2 3

4132

4 2 1 3

4231

4 3 1 2

Δημιουργία Μεταθέσεων

- Υλοποίηση:
 - Μέγιστο j τ.ω. $a_j < a_{j+1}$.
 - Ισχύει ότι $a_{i+1} > a_{i+2} > ... > a_n$.
 - Μετά την αντιμετάθεση των a_i kai a_k, ta a_{i+1}, ..., a_n είναι ταξινομημένα σε φθίνουσα σειρά.
 - Αντιμετάθεση ζευγών $(a_{i+1}, a_n), (a_{i+2}, a_{n-1}), KOK.$ καταλήγει σε ταξινόμηση σε αύξουσα σειρά.
- Υλοποίηση χωρίς ταξινόμηση σε χρόνο O(n).

```
NextPermutation(a_1 a_2 \dots a_n)
/* a_1a_2\ldots a_n όχι τελευταία */
    j := n - 1;
    while a_j > a_{j+1} do
         j := j - 1;
     k := n;
    while a_i > a_k do
         k := k - 1;
     swap(a_j, a_k);
    r := n; \quad s := j + 1;
    while r > s do
          swap(a_r, a_s);
          r := r - 1; \quad s := s + 1;
```

Δημιουργία Συνδυασμών

	Όλοι οι (2 ⁿ) <mark>συνδυασμοί n</mark> αντικειμένων:	1 2 3 4
	δημιουργία δυαδικών αριθμών μήκους η.	1 2 3 5
		1236
	Δημιουργία όλων των συνδυασμών k	
	αντικειμένων από n σε λεξικογραφική σειρά.	1 2 4 6
	Συνάρτηση για επόμενο συνδυασμό.	1 2 5 6
	 Αντικείμενα σε αύξουσα σειρά. 	1 3 4 5
		1 3 4 6
	■ Ελάχιστος: 1 2 k. Μέγιστος: (n – k +1) n	1 3 5 6
\Box	Λεδομένης μετάθεσης σ σ	

- Δεδομενης μεταθεσης $a_1a_2...a_n$:
 - Υπολόγισε ελάχιστη δυνατή κατάληξη που επιδέχεται αύξησης.
 - Αύξηση λαμβάνει υπόψη ότι έχουμε συνδυασμούς.

3 4 5 6

Δημιουργία Συνδυασμών

- Δεδομένου συνδυασμού $a_1a_2...a_k$:
 - Μέγιστος δείκτης j τ.ω. a_i ≠ n-k+j (ἀρα α_{i+1} ... α_k μέγιστος συνδυασμός k - j στοιχείων)
- Επόμενος συνδυασμός α΄ α΄ α΄ ω΄ :
 - Πρόθεμα α₁ ... α_{i-1} αμετάβλητο.
 - $a'_{i} = a_{i} + 1.$
 - Τα επόμενα στοιχεία $(a_i + 2, a_i + 3, ...)$ στις υπόλοιπες θέσεις.

Δημιουργία Συνδυασμών

Υλοποίηση σε χρόνο O(k).

```
Next_k-Combination(a_1 a_2 \dots a_k)
/* a_1a_2 \ldots a_k όχι τελευταίος */
    j := k;
     while a_i = n - k + j do
          j := j - 1;
     a_i := a_i + 1; \quad s := a_i + 1
     for i := j + 1 to k do
          a_i := s; \quad s := s + 1;
```