TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division 2068 Magh

Exam.	Microsoften ich bestehr bei beiter Mentele)			
Level	BE	Full Marks	80	
Programme	BEL, BEX, BCT, B.Agri.	Pass Marks	32 Alimin	
Year / Part	II / II	Time	3 hrs.	

Subject: - Numerical Method

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

- 1. Evaluate the real root of $f(x) = 4 \sin x e^x$, using Newton Raphson method. The absolute error of root in consecutive iteration should be less than 0.01%.
- 2. Write an algorithm to find a real root of a non-linear equation using the Newton-Raphson method.
- 3. Round off the numbers 865250 and 37.46235 to four significant figures and compute relative, absolute and percentage errors.
- 4. Solve the following system of linear algebraic equations using the Gauss Elimination Method.

$$2x_1 + 3x_2 + 2x_3 + 5x_4 = 11$$

$$4x_1 + 2x_2 + 2x_3 + 4x_4 = 11$$

$$4x_1 + x_2 + 4x_3 + 5x_4 = 11$$

$$5x_1 - 5x_2 + 3x_3 + x_4 = 11$$

- 5. Find the inverse of the matrix $A = \begin{bmatrix} 4 & 3 & -1 \\ 1 & 1 & 1 \\ 3 & 5 & 3 \end{bmatrix}$ using Gauss elimination. [8]
- 6. Develop a Pseudocode to interpolate the given set of data using Lagrange method.

[8]

[8]

[4]

[4]

[8]

OR

What is Cubic Spline Interpolation? What is the advantage of this method over polynomial interpolation?

7. Use Stirling's formula to compute y(35) from the following table:

[8]

[4]

	X	20	30	40	50
-	Y	512	439	346	243

OR

Fit the following set of data into a curve $y = \frac{ax}{b+x}$

X	1	2	3	4 .	5
Y	0.500	0.667	0.750	0.2	0.833

8. A rod is rotating in a plain. The following table gives the angle in radians (θ) through which the rod has turned for various values of time in seconds (t). Find the angular velocity and angular acceleration t = 0.2.

t	0	0.2	0.4	0.6	0.8
0	1.0	0.122	0.493	0.123	2.022

2068 Magh

9. Evaluate the following using Gaussian three point formula: $\int_0^2 e^{-x/3} dx$.	[4]
Solve the ordinary differential equation, $y'' = xy'^2 - y^2$ for $x = 0.6$ with initial conditions $y(0) = 1$, $y'(0) = 0$ by using R-K second order method. (Take $h = 0.3$)	inisi
y(0) = 1, $y'(0) = 0$ by using R-K second order method. (Take $h = 0.3$)	[6]
11. Write Psedocode to solve an initial value problem (first order differential equation) using the Runge-Kutta fourth order method.	
	[6]
12. Solve the Possion equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 2x^2y^2$ over the square domain $0 \le y \le 3$ with $h = 0$	
k = 1 and boundary conditions are $u(0,0) = 0$, $u(3,0) = 0$, $u(0,3) = 0$ and $u(3,3) = 0$.	[10]