README

Dong-Jun (DJ) Seo <u>djseo@uta.edu</u> Aug 14, 2021

1. Introduction

This document describes the AEnKF_for_SACUH package for adaptive conditional biaspenalized ensemble Kalman filter (AEnKF) for the Sacramento (SAC) soil moisture accounting and unit hydrograph (UH) models. It also describes how to run the example for 4 forecast points and plot the results, and how one may use the AEnKF-specific subroutines for other possible applications. This self-contained package includes the source code, the hydrologic model parameter files, the hydrologic model input files, a script to run the example, and the R scripts to plot the results (see Table 1).

The source code, <code>AEnKF_for_SACUH_for_CandG.f90</code>, uses AEnKF to assimilate retrospectively the real-time observations of streamflow, precipitation and potential evapotranspiration into SACUH to improve streamflow prediction. Most of the subroutines in the source code is to support the hydrologic models, rather than the AEnKF algorithm. In the source code, only the 3 subroutines, <code>eval_aenkf_gain</code>, <code>eval_opt_alpha1</code> and <code>eval_opt_alpha2</code>, and lower-level subroutines <code>eval_aenkf_gain</code> calls comprise the AEnKF algorithm.

The AEnKF-specific subroutines are heavily commented. As such, it is expected that the user will be able to adapt the code for other applications with a minimal to modest amount of effort. Due to the legacy nature of the hydrologic models and the supporting subroutines, the source code is mostly in a Fortran 77 style with only a few exceptions, including dynamic memory allocation and matrix algebra.

2. Files included

The following files are included in the self-contained package.

Table 1. List of files included in the AEnKF for SACUH package.

Name	Description		Note
AEnKF for SACUH for CandG.f90	Source code		
SACSMA_COLI2_COLI2_UpdateStates.xml	Sacramento model	COLI2	
SACSMA_DLTC1H_DLTC1HLF_UpdateStates.	(SAC) parameters	DLTC1	
xml	for:		
SACSMA_GTBM3SNE_GTBM3SNE_UpdateSta		GTBM3	
tes.xml			
SACSMA_MONN7_MONN7_UpdateStates.xml		MONN7	
UNITHG_COLI2_COLI2_UpdateStates.xml		COLI2	See Seo
UNITHG_DLTC1H_DLTC1_UpdateStates.xml		DLTC1	et al.

UNITHG_GTBM3SNE_GTBM3SNE_UpdateSta	Unit hydrograph	GTBM3	(2021)
tes.xml	model (UH)		for
UNITHG_MONN7_MONN7_UpdateStates.xml	parameters for:	MONN7	details.
new_map06_COLI2	Mean areal	COLI2	
new_map06_DLTC1	precipitation (MAP)	DLTC1	
new_map06_GTBM3	data for:	GTBM3	
new_map06_MONN7		MONN7	
COLI2.qin	Streamflow data for:	COLI2	
DLTC1.qin		DLTC1	
GTBM3.qin		GTBM3	
MONN7.qin		MONN7	
run_AEnKF_for_SACUH	Script for running the		
	executable for the 4 locations		
plot_mean_crps.R	R script for plotting the mean CRPS results for the 4 locations		See Seo
			et al.
plot_rmse.R	R script for plotting the RMSE results for the 4 locations		(2021)
			to verify
			the
			results.

3. Running the example

- 1) Compile the source code. The simplest way is to type *gfortran AEnKF_for_SACUH_for_CandG.f90* which will generate the executable *a.out*. If you have an Intel® compiler, which is significantly faster, type *ifort* instead of *gfortran*.
- 2) Once compiled, run the executable for the 4 locations by typing ./run_AEnKF_for_SACUH > capture where capture is the file name of your choice to capture all output written to the screen.
- 3) Once the run is complete, run the R scripts, plot_mean_crps.R and plot_rmse.R, to generate jpeg files for mean continuous ranked probability score (CRPS) of ensemble prediction and root mean square error (RMSE) of ensemble mean prediction vs. lead time, respectively. The 4 jpeg files from plot_mean_crps.R should produce the 4 panels shown in Fig 1. Similarly, the 4 jpeg files from plot_rmse.R should produce the 4 panels shown in Fig 2.

Fig 1. Mean CRPS results from running *plot_mean_crps.R*.

4. Adaptation for other applications

To use the AEnKF-specific parts of the source code for other applications, it is necessary to modify subroutine $get_h_and_r$ in subroutine $eval_aenkf_gain$. Subroutine $get_h_and_r$ specifies the observation structure matrix, H_k , the observation error covariance matrix, R_k , and its inverse, R_k^{-1} .

Subroutines $eval_opt_alpha1$ and $eval_opt_alpha2$ evaluate the first- and second-order derivatives of the degrees of freedom for noise, $d_{n,k}$, with respect to α_k for its optimization using the Newton's method. They follow Subsection 2.2 of Seo et al. (2021). Subroutine $eval_opt_alpha1$ evaluates all terms in Subsection 2.2 that are not ensemble member-specific and hence may be evaluated only once. Subroutine $eval_opt_alpha2$ evaluates all terms in

Fig 2. RMSE results from running the example.

Subsection 2.2 of Seo et al. (2021) that are ensemble member-specific and hence evaluated for each ensemble member. These subroutines are general and no modification are necessary. To help the user provide the subroutines with correct arguments, they are extensively commented.

References

Seo, D.-J., H. Shen, and H. Lee, 2021. Adaptive conditional bias-penalized Kalman filter with degrees of freedom for noise minimization for superior state estimation and prediction of extremes, submitted to Computers and Geosciences.