

Ministerul Educației și Cercetării Serviciul Naţional de Evaluare şi Examinare) Olimpiada Naţională de Fizică

Târgovişte - 2002

Proba teoretică

BAREM DE CORECTARE ŞI NOTARE

- pentru orice altă cale corectă de rezolvare a unui subiect se construiește un barem echivalent ca punctaj cu cel de mai jos și se acordă, pe baza acestuia, punctajul corespunzător detalierea punctajului prevăzută la rubrica "Obs." este valabilă <u>doar</u> pentru rezolvări nefinalizate la punctajul fiecărei lucrări se adaugă din oficiu 10 puncte

SUBIEC	SIECTUL I: 30 pun	
A)	$y^{2} = \left(\sqrt{\frac{D^{2}}{4} + f^{2}} - nx\right)^{2} - (f - x)^{2};$ soluție corectă și rezultat final $d = \frac{1}{n-1} \left(\sqrt{\frac{D^{2}}{4} + f^{2}} - f\right)$	10 p
	Obs.: numai pentru stationaritatea drumului optic (ABF) = (CF)3 p	
	numai pentru expresiile lui BF si CF3 p	
B)	Soluție corectă și rezultat final (deducerea expresiilor lui R si T din enuntul problemei)	10 p
	Obs.: numai pentru $R = \begin{pmatrix} E_r^2 \\ E_i^2 \end{pmatrix}; R_{\parallel} = E_{r\parallel}^2 / E_{i\parallel}^2; R_{\perp} = \frac{E_{r\perp}^2}{E_{i\perp}^2} \dots 2 p$	
	numai pentru $E_i^2=E_{i\parallel}^2+E_{i\perp}^2; E_r^2=E_{r\parallel}^2+E_{r\perp}^2$	
	si introducerea lui $ \gamma_{_i}$ in expresia lui $ R $ 1,5 p	
	numai pentru $T=f\left(\frac{E_t^2}{E_i^2}\right)$, T_{\parallel} si T_{\perp} analog, unde $f=\frac{n_t}{n_i}\frac{\cos\theta_t}{\cos\theta_i}$ 2 p	
	numai pentru $E_t^2=E_{t\parallel}^2+E_{t\perp}^2$ si introducerea lui γ_i in expresia lui T 1,5 p	
C)	Soluție corectă și rezultat final $p = \frac{W}{c} \sqrt{1,56} \approx 1,25 \frac{W}{c} \approx 4,16 \cdot 10^{-7} N$	10 p
	Obs.: numai pentru desen corect	
	numai pentru conservarea impulsului $\vec{p}=\vec{p}_1-\vec{p}_2$	
	numai pentru ridicarea la patrat (teorema cosinusului) pentru aflarea lui p 2 p	
	numai pentru $p_1 = W/c$ si $p_2 = 0, 4\frac{W}{c}$ 2 p	
	Total	30 p

SUBIEC	CTUL II: 30 puncto	e
a)	soluție corectă rezultat final $tg\theta=\frac{v}{v_0}\sqrt{1-\frac{v_0^2}{c^2}};\ tg\theta"=\frac{v}{v_0\sqrt{1-\frac{v^2}{c^2}}};$ $\theta-\theta"\approx\frac{v_0v}{2c^2}$	15 p
	Obs.: numai pentru relatiile dintre componentele vitezei lui O" raportate la S' si S3 p numai pentru legea miscarii lui O" in raport cu O	
b)	soluție corectă și rezultat final $x' = \frac{\frac{c^2}{v_0^2} \left(1 - \sqrt{1 - \frac{v_0^2}{c^2}}\right) - v_0}{\sqrt{1 - \frac{v_0^2}{c^2}}}t$	5 p
	Obs.: numai pentru relatiile directe Lorentz	
c)	soluție corectă și rezultat final $t_B = \frac{t_A + t_{1A}}{2}$	10 p
	Obs.: numai pentru durata propagarii semnalului optic pe distanta AB, dus si intors, pe baza indicatiilor de timp local ale punctului A: $\Delta t_A = t_{1A} - t_A$	
	Total	30 p

SUBIECTUL III: 30 puncte 10 p A.a) soluție corectă și rezultat final $\alpha = \frac{q\gamma}{2\varepsilon_0 m v_0^2}$ **Obs.:** numai pentru intensitatea campului electric al firului electrizat $E = \frac{\gamma}{2\pi c r}$1 p numai pentru justificarea influentei campului electric al firului asupra componentei numai pentru justificarea influentei campului electric al firului asupra componentei verticale a vitezei particulei electrizate2 p numai pentru legea miscarii proiectiei pe verticala a particulei electrizate1 p numai pentru valoarea finala a componentei verticale a vitezei b) 5 p soluție corectă și rezultat final $v = \sqrt{v_0^2 + \frac{q\gamma}{\pi\varepsilon_0 m}} \ln R$ **Obs.:** numai pentru justificarea uniformitatii miscarii de-a lungul firului0,5 p numai pentru justificarea miscarii pe directia perpendicularei pe fir1,5 p numai pentru variatia elementara a aenergiei cinetice a particulei electrizate2 p. B) 15 p soluție corectă și rezultat final $v_2 \approx v_1 \left(1 - \frac{8}{45Z} \left(\frac{v_1}{c} \right)^3 + \dots \right)$ **Obs.:** numai pentru conservarera energiei $W = \frac{m}{2}v_1^2 = \frac{m}{2}v^2 + K\frac{Ze^2}{r}$ si aflarea expresiei numai pentru scrierea lui $\frac{dv}{dt} = \frac{1}{2} \frac{dv^2}{dr}$ cu $\frac{dv^2}{dr} = \frac{2KZe^2}{mr^2}$2 p numai pentru scrierea lui $dt = \frac{dr}{v}$ cu v de mai sus si, prin transacrierea relatiei din enunt, obtinerea rezultatului numai pentru calcularea pierderii totale de energie prin radiatie $\Delta W = \Delta W_{dus} + \Delta W_{intors} = 2W_{intors}$ cu integrala de la r_{min} la ∞ 4 p numai pentru conditia pierderilor mici $\frac{\Delta W}{W} = \frac{16}{45Z} \left(\frac{v_1}{c}\right)^3 << 1.....1$ p **Total** 30 p OFICIU10 p