Алгоритмы и структуры данных-2

Хеширование-3. Вероятностные структуры данных

Практическое занятие **16** 27.01–01.02.2024 **2024-2025** учебный год

План

Обычное хеширование и фильтр Блума

Фильтр **кукушки**: хранение «отпечатков»

Многоуровневый **список с пропусками**: логарифмическая сложность

Warm-up

FAQ по фильтрам

- 1. Что же фильтрует фильтр Блума/фильтр кукушки?
- 2. Какие операции точно поддерживает стандартная реализация фильтра Блума?
- 3. В чем состоит проблема удаления элементов из фильтра Блума стандартной реализации?
- 4. В чем разница между хеш-таблицей и фильтром?

Фильтр Блума

Устройство фильтра Блума

arepsilon — доля ложно-положительных срабатываний

- k хеш-функций h_1,h_2,\ldots,h_k , где $k=\log(1/arepsilon)$ и $h_i\colon U o\{0,m-1\}$
- массив(-ы) из m битов, где $m = (\ln 2)nk = 1.44 \cdot nk$, и n количество объектов в множестве U

ПРИМЕР КОНФИГУРАЦИИ

- n = 2 объекта и $\varepsilon = 1/8$
- $k = \log 8 = 3$ хеш-функции
- $m = 1.44 \cdot 3 \cdot 2 \approx 9$ бит

Устройство фильтра Блума

arepsilon — доля ложно-положительных срабатываний

- k хеш-функций h_1,h_2,\ldots,h_k , где $k=\log(1/arepsilon)$ и $h_i\colon U o\{0,m-1\}$
- массив(-ы) из m битов, где $m = (\ln 2)nk = 1.44 \cdot nk$, и n количество объектов в множестве U

- для каждой хеш-функции можно использовать отдельный массив
- снижение количества коллизий значений разных хеш-функций

как проверить принадлежность объекта множеству с помощью фильтра Блума?

0	1	2	3	4	5	6	7	8
1	0	1	0	1	0	1	0	1

параметры конфигурации *m* и *k* у фильтра Блума можно задать **вручную** и вычислять фактическое изменение доли ложно-положительных срабатываний фильтра

Фильтрация вредоносных сайтов-1

URL	Характеристика
br-icloud.com.br	фишинг
www.marketingbyi nternet.com	фишинг
larcadelcarnevale.com	дефейс
www.vnic.co	дефейс
www.raci.it	дефейс
retajconsultancy.com	фишинг

1. Вставить данные URL в фильтр Блума размером m=12 бит с использованием k=3 следующих хеш-функций: $h_1(s)=1237\cdot s[0]$ $h_2(s)=1237\cdot s[0]+67\cdot s[5]$ $h_3(s)=555\cdot s[0]+13\cdot s[1]+7\cdot s[5]$

- 2. Оценить вероятность ложноположительного срабатывания после вставки первого и последнего URL.
- 3. Выполнить поиск другого *хорошего* URL.

Фильтрация вредоносных сайтов-1

справочно: значения хеш-функций

URL	Характеристика	h ₁ mod 12	h ₂ mod 12	h ₃ mod 12
br-icloud.com.br	фишинг	2	2	0
www.marketingbyi nternet.com	фишинг	11	6	3
larcadelcarnevale.com	дефейс	0	4	5
www.vnic.co	дефейс	11	1	10
www.raci.it	дефейс	11	6	3
retajconsultancy.com	фишинг	6	3	8
•••	•••	•••	•••	•••

Фильтр кукушки

 ε — доля ложно-положительных срабатываний

- k хеш-функций h_1,h_2,\ldots,h_k , где k не зависит от ε
- функция-отпечаток [fingerprint] $f\colon U \to \{1,1/\varepsilon\}$ предположив, что $1+1/\varepsilon=2^f$, мы можем зарезервировать f бит для хранения отпечатка
- хеш-таблица на m слотов, каждый из которых хранит f бит m также не зависит от ε обычно определяется как $m = C \cdot n$, где n число объектов

 ε — доля ложно-положительных срабатываний

- k хеш-функций h_1 , h_2 , ..., h_k , где k не зависит от arepsilon
- функция-отпечаток [fingerprint] $f\colon U \to \{1,1/\varepsilon\}$ предположив, что $1+1/\varepsilon=2^f$, мы можем зарезервировать f бит для хранения отпечатка
- хеш-таблица на m слотов, каждый из которых хранит f бит m также не зависит от ε обычно определяется как $m = C \cdot n$, где n число объектов

ПРИМЕР КОНФИГУРАЦИИ

- n = 4 объекта и m = 2n = 8
- $\varepsilon = 1/3$ и f = 2 бита на слот
- k = 2 хеш-функции
- $f(x) = 2_{10} = 10_2$

 ε — доля ложно-положительных срабатываний

- k хеш-функций h_1 , h_2 , ..., h_k , где k не зависит от ε
- функция-отпечаток [fingerprint] $f\colon U \to \{1,1/\varepsilon\}$ предположив, что $1+1/\varepsilon=2^f$, мы можем зарезервировать f бит для хранения отпечатка
- хеш-таблица на m слотов, каждый из которых хранит f бит m также не зависит от ε обычно определяется как $m=C\cdot n$, где n число объектов

ПРИМЕР КОНФИГУРАЦИИ

- n = 4 объекта и m = 2n = 8
- $\varepsilon = 1/3$ и f = 2 бита на слот
- k = 2 хеш-функции
- $f(x) = 2_{10} = 10_2$

 ε — доля ложно-положительных срабатываний

ПРИМЕР КОНФИГУРАЦИИ

• $f(y) = 1_{10} = 01_2$

 ε — доля ложно-положительных срабатываний

ПРИМЕР КОНФИГУРАЦИИ

- $f(y) = 1_{10} = 01_2$
- вычисление нового места для отпечатка из первого слота 4: $4\ XOR\ h(11_2) = 7$
- h доп. хеш-функция для вычисления нового места: $h(f(...)): f(...) \to \{1, m-1\}$
- пусть h(f(y)) = 7

arepsilon — доля ложно-положительных срабатываний

ПРИМЕР КОНФИГУРАЦИИ

- $f(y) = 1_{10} = 01_2$
- ullet вычисление нового места для отпечатка из слота 4: $4\ XOR\ h(11_2)=7$
- h доп. хеш-функция для вычисления нового места: $h(f(...)): f(...) \to \{1, m-1\}$
- пусть h(f(y)) = 7

- если новое место также занято, **продолжаем по цепочке пытаться двигать** отпечатки..
- если пришлось передвинуть $O(\log n)$ отпечатков, то фильтр **нужно перестроить**!

arepsilon — доля ложно-положительных срабатываний

ПРИМЕР КОНФИГУРАЦИИ

- $f(y) = 1_{10} = 01_2$
- ullet вычисление нового места для отпечатка из слота 4: $4\ XOR\ h(11_2)=7$
- h доп. хеш-функция для вычисления нового места: $h(f(...)): f(...) \to \{1, m-1\}$
- пусть h(f(y)) = 7

такой процесс называется хешированием с **частичным ключом**, так об объекте ничего не известно, кроме его отпечатка $f(\dots)$

как и в фильтре Блума, хранение отпечатков объектов по каждой хешфункции можно организовать в отдельных массивах, но это приведет к увеличению затрат по памяти

как проверить принадлежность объекта множеству с помощью фильтра кукушки?

0	1	2	3	4	5	6	7
00	01	00	00	01	10	10	11

Фильтрация вредоносных сайтов-2

URL	Характеристика
br-icloud.com.br	фишинг
www.marketingbyi nternet.com	фишинг
larcadelcarnevale.com	дефейс
www.vnic.co	дефейс
www.raci.it	дефейс
retajconsultancy.com	фишинг
	•••

- 1. Вставить данные URL в фильтр кукушки размером 8 слотов на 3 бита, используя данные об отпечатках и потенциальных индексах, которые даны на следующем слайде.
- 2. Что необходимо учитывать при оценке вероятности **ложно-положительного ответа** фильтра кукушки?

Фильтрация вредоносных сайтов-2

URL	Характеристика	Отпечаток $f(URL)$	Потенциал	L(f(HDI))	
OKL			$h_1(URL)$	$h_2(URL)$	h(f(URL))
br-icloud.com.br	фишинг	001	1	4	6
www.marketingbyi nternet.com	фишинг	000	4	7	5
larcadelcarnevale.com	дефейс	010	3	0	1
www.vnic.co	дефейс	010	7	5	2
www.raci.it	дефейс	100	1	0	3
retajconsultancy.com	фишинг	101	1	2	1
		•••	•••	•••	

фильтр Блума $\vee\mathbb{S}$ фильтр кукушки

Фильтр Блума	Фильтр кукушки
вставка и проверка принадлежности объектов требует вычисления значений <i>k</i> различных хеш-функций	на практике используется особая схему с двумя хеш-функциями
время вставки остается неизменным вне зависимости от заполненности битового вектора(-ов)	с ростом заполненности хеш-таблицы хеширование кукушки потребует больше времени для поиска свободной ячейки – потребуется перехеширование
с ростом заполненности битового вектора(-ов) фильтра Блума значительно возрастает вероятность ложно-положительного срабатывания	целевой порог вероятности ложно- положительного ответа может остаться неизменным до заполнения на 95.5% (практические данные)
не поддерживается удаление объектов, так как иначе возможны ложно-отрицательные ответы	объекты, о которых точно известно, что они были добавлены в фильтр, могут быть удалены

Список с пропусками skip-list

Список с пропусками

Уильям Пью, 1989 г. Статья "**Skip Lists: Probabilistic Alternative to Balanced Trees**" в журнале Communications of the ACM.

- Обобщение отсортированных списков
- Ожидаемое время поиска O(log n)
- Вероятностная структура данных

Идеальный список с пропусками

Ключи хранятся в отсортированном виде.

Содержит **O(log n)** уровней, каждый из которых также является списком.

Все ключи хранятся только на последнем уровне, а каждый вышестоящий уровень содержит *половину* ключей, которые хранятся уровнем ниже.

search(71)

search(96)


```
Node *cur = head;
for (int i = MAX_LEVEL; i > 0; --i) {
    while (!cur->next[i] &&
            cur->next[i]->data < key)</pre>
        cur = cur->next[i];
cur = cur->next[0];
if (cur->data = key) {
    return cur;
} else {
    return nullptr;
```

```
class Node {
    T data;
    Node **next;
class SkipList {
    Node *head;
```

Идеальный список с пропусками

проблемы со вставкой и удалением

Из-за фиксированных требований в результате вставки и удаления потребуется перестройка всего списка.

Решение: на каждом уровне *ожидается* половина ключей нижележащего уровня – используем рандомизацию

Допускается не идеальная сбалансированность

Вероятность того, что ключ будет находиться на следующем (по высоте) уровне составляет ок. **0,5**:

- Ожидается половина всех ключей на уровне 1
- Ожидается четверть всех ключей на уровне 2

• ...

insert(87) и 3 раза выпал орел

delete(91) со всех уровней

delete(91) со всех уровней

Ожидаемая сложность выполнения основных операций совпадает с идеальным списком с пропусками

Вероятность вырожденных ситуация крайне мала:

- 1. Список с пропусками становится простым связным списком (всегда выпадают решки)
- 2. Каждый узел списка с пропусками будет находиться на каждом уровне (всегда выпадают орлы)

Упражнение на работу со SkipList

12 17 20 25 31 38 39 44 50 55

- 1. Создайте список с пропусками из приведенной выше последовательности ключей, используя результаты некоторого «физического эксперимента».

 Максимальное количество уровней 5.
- 2. Выполните поиск каких-либо элементов в полученном списке. Сколько сравнений было выполнено?
- 3. Выполните удаление каких-либо элементов в полученном списке. Как может измениться сложность поиска?

Домашнее задание

опционально

К следующему семинару!

На выбор или вместе...

- 1. Реализуйте класс **SkipList** для хранения целочисленных данных
- 2. Сравните количество операций, которые потребуются для поиска в **SkipList** с каким-либо сбалансированным деревом на ваш выбор.