

Predicting Store Sales

NUR AZIZAH
REFLY ALEXANDER M
YANTI SIMANUNGKALIT

Summary

Data Introduction Objective of Analysis

Result of Analysis

Business Solution

Data Introduction

- The data used for this analysis is Store Sales "Favorita" in Ecuador. In Ecuador, Favorita is one of the largest grocery chains.
- As an oil-dependent country, Ecuador's economy is highly sensitive to oil price fluctuations. Shipping products to grocery stores throughout the country affects inventory, and therefore sales.
- Source Data:

https://www.kaggle.com/competitions/storesales-time-series-forecasting/data

(train, sample_submission, stores, oil, holidays_event)

Data **Definition**

- **Store_nbr** identifies the store at which the products are sold.
- Family identifies the type of product sold.
- Sales gives the total sales for a product family at a particular store at a given date
- Onpromotion gives the total number of items in a product family that were being promoted at a store at a given date.

- **Cluster** is a grouping of similar stores.
- **Dcoilwtico** oil price

Objective of Analysis

Exploratory Data Analysis

- Descriptive & Univariat Analysis
- Multivariate Analysis

Deep Dive Analysis

- How the growth of sales, product available on promotion and oilprice in monthly basis?
- How the correlation between sales, onpromotion, and oilprice is calculated in a monthly basis?
- When do sales have greatest impact?
- Who are the top biggest customers?
- Which cities are growing the most?

Dataset Information

This project uses the following combined dataset:

- Transaction start from 1st Jan
 2013 till 15th Aug 2017
- Event data start from 2nd Mar
 2012 till 26th Dec 2017
- Oil price data start form 1st Jan
 2013 till 31st Aug 2017
- Train data start from 1st Jan 2013
 till 15th Aug 2017

Therefore, 1st Jan 2013 to 31st Jul 2017 was the date range used.

The dataset consist of:

3027618 rows &13 features

After combining & Filtering

Process

Handling missing value on feature **Dcoilwtico**using median price

One hot encoding for Modelling dataset

Handling outliers using clipping method

Split Data

Descriptive & Univariate Analysis

Descriptive Statistics

Numerical Features

	sales	onpromotion	dcoilwtico	cluster
count	3.027618e+06	3.027618e+06	3.027618e+06	3.027618e+06
mean	3.580840e+02	2.587650e+00	6.819603e+01	8.481481e+00
std	1.105955e+03	1.221098e+01	2.133661e+01	4.649735e+00
min	0.000000e+00	0.000000e+00	2.619000e+01	1.000000e+00
25%	0.000000e+00	0.000000e+00	4.913000e+01	4.000000e+00
50%	1.100000e+01	0.000000e+00	6.819603e+01	8.500000e+00
75%	1.957038e+02	0.000000e+00	9.193000e+01	1.300000e+01
max	1.247170e+05	7.410000e+02	1.106200e+02	1.700000e+01

Categorical Features

day_type	state	city	family	
3054348	3054348	3054348	3054348	count
7	16	22	33	unique
Normal	Pichincha	Quito	AUTOMOTIVE	top
2551824	1074678	1018116	92556	freq

- Sales and onpromotion not indicating a symmetrical distribution by looking at the mean-median difference
- Dcoilwtico and cluster indicating a symmetrical distribution
- The values of family, city, state, and day_type are unique

Univariate Analysis

Except for sales and onpromotion, there are no outliers in store_nbr, dcoilwtico, or cluster. The data distribution of sales and onpromotion is not symmetric and there are many outliers.

Multivariate Analysis

Heatmap Correlation

The largest correlation plot for sales and promotion characteristics is shown with probability = 0.43. This shows that both are positively related and that sales increase with more products advertised.

Result of Analysis

How the growth of sales, product available on promotion and oilprice in monthly basis?

Sales vs Product & Promotion

Conclusion:

1 Due to promotions and oil prices there is a large difference in sales volume compared to solid product available but overall sales increased from January 2013 to July 2017. This coincides with the increase in production available for promotion and the drop in oil prices that really characterizes Ecuador that sensitive to oil prices.

Result of Analysis

How the correlation between sales, onpromotion, and oilprice is calculated in a monthly basis?

Who are the top biggest customers?

Conclusion:

- Promotion is positively correlated to sales, while oil prices are negatively correlated to sales with a strong correlation.
- 3 Sales with the highest consistency figures are on normal days. Whereas at events & holidays there are outliers where this is possible because of customer behavior
- The customer with that ID is the customer with the highest number of purchases

Result of Analysis

Which cities are growing the most?

5 According to the result graph from a conventional EDA, Quito has the highest sales, hence Quito is clearly the market leader in terms of sales.

Model Prediction

Result of Hyperparameter Tuning and applied best paramaters on Test Data

Model Forecasting	Parameters	RMSE*	MAE**	R2***	Result
Ridge Regression	Alpha=10	121.623	91.948	55,545	Declined
Lasso Regression	Alpha=0.0001	121.623	91.94	55,545%	Declined
Random Forest	Max_depth=10, min_samples=4, n_estimator=15	53.265	22.224	91,472%	Declined
XGBoost	Learning_rate=0.5, max_depth=10, n_estimatord=15	35.016	14.184	96,521%	Accepted

XGBoost

Features Importance

- The location of the stores has significant impact to the sales amount
- The RMSE, MAE, and R-squared of the train and test data are not significantly different, indicating that the XGB Boost model fits the data well.
- R-squared = 96,521% demonstrates that 96,521% of independent variables can account for the volume of sales (dependent variables). Additionally, 3,479% more are explained by other factors.

Business Solution

- 1. To cut costs, the supply chain's delivery and allocation processes must be efficient.
- 2. Creating a discount scheme.
 - Discount scheme based on client loyalty cards
 - A recurring discount program for any goods
- 3. Increase soft marketing and digital marketing efforts to connect with customers and potential purchasers.

