Extracorporeal Gas Exchange and Spontaneous Breathing for the Treatment of Acute Respiratory Distress Syndrome: An Alternative to Mechanical Ventilation?*

Thomas Langer, MD^{1,2,3}; Vittoria Vecchi, MD^{1,3,4}; Slava M. Belenkiy, MD¹; Jeremy W. Cannon, MD^{1,5}; Kevin K. Chung, MD^{1,6}; Leopoldo C. Cancio, MD¹; Luciano Gattinoni, MD^{2,7}; Andriy I. Batchinsky, MD¹

*See also p. 758.

¹Comprehensive Intensive Care Research Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX.

²Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy.

³National Research Council, National Academies, Washington, DC.

⁴School of Medicine, Università degli Studi di Milano, Milan, Italy.

⁵Department of Surgery, San Antonio Military Medical Center, San Antonio, TX.

⁶Uniformed Services University of the Health Sciences, Bethesda, MD.

⁷Dipartimento di Anestesia, Rianimazione (Intensiva e Sub-intensiva) e Terapia del Dolore, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.

This work was performed at the Comprehensive Intensive Care Research Task Area, US Army Institute of Surgical Research, Fort Sam Houston, TX.

Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal's website (http://journals.lww.com/ccmjournal).

Supported, in part, by the Comprehensive Intensive Care Research Task Area, U.S. Army Institute of Surgical Research, Fort Sam Houston, TX.

Dr. Cannon received support for travel from Maquet Cardiovascular (funded travel to evaluate Cardiohelp in Wayne, NJ). Dr. Cannon's institution received grant support from the Department of Defense (Defense Medical Research and Development Program Research Funding). Dr. Chung's institution received grant support from the American Burn Association (grant to support multicenter study in septic shock in burns). Dr. Chung and his institution disclosed a patent: Burn decision support (Patent co-owned with Department of Defense). Dr. Cancio disclosed that this was government work. Dr. Gattinoni served as a board member for GRIFOLS, lectured for KCI, BBRAUN, BAXTER, and GRIFOLS (lectures and service on speakers bureau). Dr. Batchinsky served as board member for the Society for Complex Acute IIIness and received support for travel from Maquet Cardiovascular. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense. The remaining authors have disclosed that they do not have any potential conflicts of interest.

Address requests for reprints to: Thomas Langer, MD, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Via F. Sforza 35, 20122 Milano, Italy. E-mail: thomas.langer@unimi.it

Copyright © 2014 by the Society of Critical Care Medicine and Lippincott Williams & Wilkins

DOI: 10.1097/CCM.000000000000121

Objectives: Venovenous extracorporeal gas exchange is increasingly used in awake, spontaneously breathing patients as a bridge to lung transplantation. Limited data are available on a similar use of extracorporeal gas exchange in patients with acute respiratory distress syndrome. The aim of this study was to investigate the use of extracorporeal gas exchange in awake, spontaneously breathing sheep with healthy lungs and with acute respiratory distress syndrome and describe the interactions between the native lung (healthy and diseased) and the artificial lung (extracorporeal gas exchange) in this setting.

Design: Laboratory investigation.

Setting: Animal ICU of a governmental laboratory.

Subjects: Eleven awake, spontaneously breathing sheep on extracorporeal gas exchange.

Interventions: Sheep were studied before (healthy lungs) and after the induction of acute respiratory distress syndrome via IV injection of oleic acid. Six gas flow settings (1–10 L/min), resulting in different amounts of extracorporeal ${\rm Co_2}$ removal (20–100% of total ${\rm Co_2}$ production), were tested in each animal before and after the injury. **Measurements and Main Results:** Respiratory variables and gas exchange were measured for every gas flow setting. Both healthy and injured sheep reduced minute ventilation according to the amount of extracorporeal ${\rm Co_2}$ removal, up to complete apnea. However, compared with healthy sheep, sheep with acute respiratory distress syndrome presented significantly increased esophageal pressure variations (25±9 vs 6±3 cm ${\rm H_2O}$; ρ < 0.001), which could be reduced only with very high amounts of ${\rm Co_2}$ removal (>80% of total ${\rm Co_2}$ production).

Conclusions: Spontaneous ventilation of both healthy sheep and sheep with acute respiratory distress syndrome can be controlled via extracorporeal gas exchange. If this holds true in humans, extracorporeal gas exchange could be used in awake, spontaneously breathing patients with acute respiratory distress syndrome to support gas exchange. A deeper understanding of the pathophysiology of spontaneous breathing during acute respiratory distress syndrome is however warranted in order to be able to propose extracorporeal gas exchange as a safe and valuable alternative to

maintaining the data needed, and c including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding ar OMB control number.	ion of information. Send comments a arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 01 MAR 2014	2. REPORT TYPE N/A			3. DATES COVERED			
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER		
Extracorporeal gas exchange and spontaneous breathing for the treatment of acute respiratory distress syndrome: an alternative to				5b. GRANT NUMBER			
mechanical ventilation?*					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)		~		5d. PROJECT NUMBER			
Langer T., Vecchi V., Belenkiy S. M., Cannon J. W., Chung K. K., Cancio L. C., Gattinoni L., Batchinsky A. I.,					5e. TASK NUMBER		
L. C., Gattinoni L., Dattinisky A. I.,					5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX				8. PERFORMING ORGANIZATION REPORT NUMBER			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)					10. SPONSOR/MONITOR'S ACRONYM(S)		
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited							
13. SUPPLEMENTARY NOTES							
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF				18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT unclassified	ь. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	10	ALST UNSIBLE PERSUN		

Report Documentation Page

Form Approved OMB No. 0704-0188 mechanical ventilation for the treatment of patients with acute respiratory distress syndrome. (*Crit Care Med* 2014; 42:e211–e220) **Key Words:** acute respiratory distress syndrome; control of breathing; extracorporeal membrane oxygenation; healthy lungs; spontaneous breathing; transpulmonary pressure

enovenous extracorporeal gas exchange (ECGE), also called "extracorporeal membrane oxygenation," is increasingly used as an adjunct to mechanical ventilation in patients with acute respiratory distress syndrome (ARDS) (1–4). Furthermore, ECGE has been successfully used in awake, nonintubated, spontaneously breathing patients as a bridge to lung transplantation (5–8) and starts to be used for the treatment of exacerbation of chronic obstructive pulmonary disease (9, 10).

The rationale for supporting gas exchange with ECGE alone, that is, without mechanical ventilation, in patients with ARDS is strong. Indeed, the avoidance of mechanical ventilation would have several advantages as it could potentially reduce the prevalence of ventilator-associated pneumonia and ventilator-induced lung injury. Furthermore, as the performance of active physical therapy was shown to be feasible while on ECGE (7, 11, 12), the reduction in depth of sedation allowed by the avoidance of mechanical ventilation could favor its performance. Nevertheless, limited data are available on the use of ECGE as an alternative to mechanical ventilation for ARDS patients (13), that is, for patients characterized both by acute impairment of Co, removal and severe hypoxemia.

If we consider the use of ECGE in awake, spontaneously breathing patients with ARDS, a new factor needs to be taken into account. Indeed, while the control of breathing has been thoroughly studied in physiological conditions and the key role of Co₂ has been identified (14, 15), less is known about the respiratory drive of ARDS patients. It is conceivable that neural pathways that are silent under physiological conditions—for example, bronchopulmonary C-fibers and other lung receptors (16, 17)—could be activated by lung edema, congestion, and inflammation and could influence the respiratory activity of patients with ARDS (18, 19).

The aim of the present work was to develop a model of awake, spontaneously breathing sheep on venovenous ECGE in order to study the interactions between the artificial and the native lung. We hypothesized that, in sheep with ARDS, gas exchange could be supported with ECGE alone and that spontaneous ventilation could be controlled via ECGE similarly to healthy sheep.

MATERIALS AND METHODS

This study was approved by the U.S. Army Institute of Surgical Research Animal Care and Use Committee and was conducted in compliance with the Animal Welfare Act, the Implementing Animal Welfare Regulations, and in accordance with the principles of the Guide for the Care and Use of Laboratory Animals.

Animal Preparation

Under general anesthesia, 11 mixed-breed female sheep (45±6kg) were tracheostomized. Catheters were placed in

the right carotid artery and in the pulmonary artery (via left jugular vein). A balloon catheter (Ackrad Labs, Cooper Surgical, CT) was introduced transnasally in the esophagus (20) and respiratory system and lung pressure-volume (PV) curves were obtained, as previously described (21), starting from functional residual capacity. Chest CT (Toshiba Aquilion 64-slice Medical System, Tustin, CA) was performed (60 mAs, 120 kVp, pitch factor 0.85) at airway pressures of 0 and 30 cm H₂O for lung quantitative analysis (Maluna 3.17, Göttingen, Germany) (22, 23). A 23F bicaval dual-lumen catheter (Avalon Elite, Maquet, Rastatt, Germany) was placed via right jugular vein as previously described (24) and connected to the Cardiohelp (Cardiohelp, Maquet, Rastatt, Germany). Blood flow (BF) through the membrane lung (ML) was set at 2 L/min and kept constant throughout the study. Activated clotting time was kept greater than 160 with heparin infusion. Midazolam (0.05-0.20 mg/kg/ hr) and buprenorphine (0.01 mg/kg every 4–6 hr) were administered for sedation and analgesia. For each sheep, the level of sedation was kept constant throughout the study.

Study: "Healthy Lungs"

Sheep were placed prone, awakened, weaned from mechanical ventilation and kept, via tracheostomy, on continuous positive airway pressure (CPAP) of 8 cm $\rm H_2O$ with $\rm Fio_2$ of 0.5 (Evita XL, Dräger Medical, Germany). Control measurements were performed once the animals were stable (on average 180 min after instrumentation). Thereafter, six different sweep gas flows (GFs) (range, 1–10 L/min) and therefore different amounts of $\rm Co_2$ removal by the ML ($\rm V_{M}Co_{2}$) were randomly tested in each sheep (Table E1, Supplemental Digital Content 1, http://links.lww.com/CCM/A818); $\rm Fio_{2}$ of GF was set at 0.5. Each setting was maintained for 30–40 minutes, at the end of which measurements were performed ($Data\ Collection\ Section$). Every two steps, GF was zeroed to measure control conditions.

ARDS Induction and Study: "ARDS"

Once all measurements had been performed, Fio₂ was increased to 1.0 and ARDS was induced via IV oleic acid (OA) injection (0.1–0.15 mL/kg) (25, 26) with target Pao₂ less than 200 mm Hg. All GF settings were repeated in the same order of the "healthy study" and the same measurements were performed. Less time (15–20 min) was spent at 0 L/min of GF to avoid discomfort for the animals.

Data Collection

Respiratory variables, esophageal pressure variations ($\Delta P_{\rm es}$), arterial and mixed-venous blood gases, hemodynamics, VCO₂ (CO₂SMO, Novametrix, Wallingford, CT) and oxygen uptake (Vo₂) of the native lung (V_LCO₂, V_LO₂), and V_MCO₂ (VMax Encore, Viasys, Yorba Linda, CA) were recorded for every GF setting; Vo₂ of the ML (V_MO₂) was measured at predefined GF settings (Table E1, Supplemental Digital Content 1, http://links.lww.com/CCM/A818). Pulmonary shunt fraction and physiologic dead space were calculated with standard equations. Blood chemistry and serum cytokines (interleukin

Figure 1. Average pressure-volume (PV) curve of the lung (*gray dots*) and respiratory system (*black dots*) of healthy sheep (n=10). The curve was computed as previously described (21). Pressure represents transpulmonary pressure in the case of lung PV curve and airway pressure in the case of respiratory system PV curve. For clarity, data are expressed as mean \pm se.

[IL]-1 β , IL-8, IL-6; tumor necrosis factor- α and IL-10, Mybiosource, San Diego, CA) were evaluated at baseline and end of study. CT was repeated under general anesthesia at the end of study (see Fig. E1 for study design, Supplemental Digital Content 1, http://links.lww.com/CCM/A818).

Statistical Analysis

Data are expressed as mean \pm SD unless otherwise stated. Variables recorded before (healthy lungs) and after the induction of ARDS were compared via paired t test or signed rank sum test, as appropriate. Categories of extracorporeal Co_2 removal were compared with one-way analysis of variance (ANOVA) or the Kruskal-Wallis test. Tukey or Dunn test were used for post hoc multiple comparisons. Two-way ANOVA was used to assess interactions between groups (healthy sheep vs ARDS) and categories of extracorporeal Co_2 removal. A rank transformation was used for nonnormally distributed variables that did not pass the equal variance test. Slopes and intercepts of linear regressions were compared with the test for equality of slopes and intercepts, respectively. Statistical significance was defined as p value less than 0.05. Analysis was performed with SAS v.9.2 (SAS, Cary, NC) and SigmaPlot v.12.0 (Systat Software, San Jose, CA).

For additional details on the methods, see the **online sup-plemental data** (Supplemental Digital Content 1, http://links.lww.com/CCM/A818).

RESULTS

All sheep were placed uneventfully on ECGE and survived the injury. No ECGE-related complications were observed. During OA injection, a transient period (45–90 s) of apnea coupled

TABLE 1. Quantitative Chest CT Scan Results of Healthy Sheep and Sheep With Acute Respiratory Distress Syndrome

Quantitative CT results	Airway Pressure (cm H ₂ O)	Healthy	Acute Respiratory Distress Syndrome	p
Lung volume (mL)	0	2,435±680	$2,017 \pm 454$	0.006
	30	$3,838 \pm 730$	2,382±550	< 0.001
Air volume (mL)	0	1,717±586	292±211	< 0.001
	30	3,145±617	595±388	< 0.001
Mean CT number (HU)	0	-696±47	-135±83	< 0.001
	30	-819±11	-233±121	< 0.001
Hyperinflated tissue (%)	0	0±0	0±0	0.24
	30	5±3	0±0	< 0.001
Normally aerated tissue (%)	0	83±5	5±4	< 0.001
	30	85±5	10±9	< 0.001
Poorly aerated tissue (%)	0	16±5	22±12	0.19
	30	9±2	26±5	< 0.001
Nonaerated tissue (%)	0	2±1	73±15	< 0.001
	30	2±1	64±11	< 0.001
Lung weight (g)		705 ± 120	1,756±303	< 0.001

Airway pressure = airway pressure at which the scan was performed (either 0 or $30 \, \text{cm} \, \text{H}_2\text{O}$), p = p value of the comparison between values of healthy sheep and sheep with acute respiratory distress syndrome, lung volume = total lung volume, air volume = total volume of air of the lung, mean CT number = mean CT number of the whole lung expressed in Hounsfield Units, hyperinflated tissue = mass of hyperinflated tissue (density between $-901 \, \text{and} -1,000 \, \text{HU}$), normally aerated tissue (density between $-900 \, \text{and} -501 \, \text{HU}$), poorly aerated tissue = mass of poorly aerated tissue (density between $-500 \, \text{and} -101 \, \text{HU}$), nonaerated tissue = mass of normally aerated tissue (density between $-100 \, \text{and} +200 \, \text{HU}$), lung weight = weight of the lungs expressed in grams. All compartments are expressed as percentage of total lung weight.

with a marked bradycardia followed by 10–15 minutes of rapid shallow breathing was observed in all sheep.

Description of the Study Population Without ECGE

The average lung and respiratory system PV curves of healthy sheep are shown in **Figure 1**.

Table 1 summarizes quantitative CT results before and after the induction of ARDS. Respiratory variables and gas exchange of healthy spontaneously breathing sheep and sheep with ARDS are reported in **Table 2**. All data were recorded at $2L/\min$ of BF (33% \pm 9% of cardiac output) in the absence of sweep GF.

A significant increase in pulmonary pressure (16 ± 3) vs 21 ± 6 mm Hg; p=0.003) was observed after the induction of ARDS. Furthermore, a reduction in cardiac output (6.3 ± 1.1) vs 4.6 ± 1.5 L/min; p=0.006) and central venous (2 ± 5) vs -2 ± 5 mm Hg; p=0.03) and pulmonary occlusion pressure (7 ± 3) vs (3 ± 4) mm Hg; (3 ± 4) mm Hg; (3 ± 4) was recorded. These variations were likely due to intravascular hypovolemia induced by plasma leakage caused by OA (25) which explains also the increase in hemoglobin (9.9 ± 1.1) vs (3 ± 1.7) vs (3 ± 1.7) ydL; (3 ± 1.7) vs (3 ± 1.1) und in plasma cytokines IL-1 (3 ± 1.1) vs (3 ± 1.1) varecorded.

Interactions Between Native and Artificial Lung

Figure 2A shows the response in terms of reduction in minute ventilation to different amounts of $V_{\rm M} co_2$ (expressed as percentage of total $V co_2$ [$V_{\rm TOT} co_2$]) of healthy sheep. A good correlation ($r^2 = 0.74$; p < 0.001) was found between $V_{\rm M} co_2$ and reduction in minute ventilation. The equation of the overall regression (y = -3.6 + 0.94x) closely resembled the identity line.

Figure 2*B* shows the same graph for injured sheep. Also sheep with ARDS reduced their spontaneous breathing activity according to the amount of Co_2 removed extracorporeally $(y = -24.0 + 1.1x; r^2 = 0.59; p < 0.001)$, up to complete apnea when $V_M co_2$ approached total metabolic Co_2 production.

When comparing linear regressions of healthy and injured animals, no significant difference was observed for slopes (p = 0.19) while a significant difference was observed for the intercepts of the equations (p < 0.001).

Analysis by Categories of Extracorporeal Co₂ Removal

Experimental points were divided in three categories of $V_{\rm M}co_2$ (1–60%, 61–80%, and 81–100%, expressed as percentage of $V_{\rm TOT}co_2$), in order to analyze, for each group, the variations in respiratory variables and gas exchange in response to different

TABLE 2. Respiratory Variables and Blood Gases of Spontaneously Breathing Sheep Without Extracorporeal Gas Exchange

Variables -	Healthy	Acute Respiratory Distress Syndrome	p
Respiratory rate (breaths/min)	24±5	62±27	< 0.001
Tidal volume (mL)	395±121	265±69	0.002
$\Delta P_{\rm es}$ (cm ${\rm H_2O}$)	6.1 ± 2.8	24.7 ± 8.7	< 0.001
Minute ventilation (L/min)	9.8±3.6	17.0±6.9	0.008
Alveolar minute ventilation (L/min)	5.7 ± 2.7	2.7 ± 1.5	0.003
Dead space fraction	0.44 ± 0.10	0.81 ± 0.10	< 0.001
Pulmonary shunt fraction	0.01 ± 0.01	0.25±0.10	< 0.001
V _L co ₂ (mL/min)	230±106	145±49	0.002
V _L o ₂ (mL/min)	185±63	189±83	0.41
Arterial pH	7.41 ± 0.04	7.30 ± 0.08	0.002
Paco ₂ (mm Hg)	40.5±3.9	47.0 ± 10.0	0.02
Pao ₂ (mm Hg)	227 ± 27	94±57	< 0.001
Pao ₂ :Fio ₂ ratio	454±54	94±57	< 0.001
Sao ₂ (%)	100±0	90±7	< 0.001
Svo ₂ (%)	73±7	56±13	0.002
Base excess (mEq/L)	1.0 ± 3.9	-3.0 ± 6.1	0.008
Lactate (mmol/L)	2.1 ± 1.5	3.4±2.6	0.14

p=p value of the paired t test, $\Delta P_{\rm qs}$ = swing of esophageal pressure (surrogate of pleural pressure variation), dead space fraction = physiologic dead space fraction, shunt fraction = fraction of venous admixture, $V_{\rm L}co_2$ = carbon dioxide removed through the native lung expressed in mL/min, $V_{\rm L}o_2$ = oxygen consumption expressed in mL/min.

Fio_ was set at 0.5 for healthy sheep, while it was set at 1 after acute respiratory distress syndrome induction. Positive end-expiratory pressure was kept constant throughout the study at 8 cm H₂O.

TABLE 3. Plasma Cytokines in Healthy Sheep and in Sheep With Acute Respiratory Distress Syndrome

Cytokines (ng/mL)	Healthy	Acute Respiratory Distress Syndrome	p
IL-1β	97±46	66±53	0.02
Tumor necrosis factor- α	38±9	39±11	0.20
IL-6	263 ± 274	211±217	0.12
IL-10	382±229	139±182	< 0.001
IL-8	216±235	67±92	0.008

IL = interleukin.

Measurement of plasma cytokines was performed on a subset of animals (n = 8) for technical problems related to plasma storage of the first 3 experiments. Comparison was performed with the paired t test. For additional details on the methodology used for cytokine analysis, see the online supplemental data (Supplemental Digital Content 1, http://links.lww.com/CCM/A818).

amounts of $V_{M}CO_{2}$. Furthermore, data obtained at 0L/min of GF, that is, $V_{M}CO_{2}$ of $0\,mL/min$ (0% of $V_{TOT}CO_{2}$), were added to the analysis (when applicable) as a separate group. Results for healthy and injured sheep are reported in **Tables 4** and **5**, respectively.

By partitioning minute ventilation into its two components, tidal volume and respiratory rate, a slight difference between healthy and injured animals was found. Indeed, both respiratory rate variation (**Fig. 3**) and tidal volume variation (**Fig. 4**) differed significantly between the two groups.

For additional results, see the online supplemental data (Supplemental Digital Content 1, http://links.lww.com/CCM/A818).

DISCUSSION

We developed a model of awake, spontaneously breathing sheep on venovenous ECGE that allowed us to study the ventilatory response to different amounts of extracorporeal Co₂ removal both in healthy sheep and in sheep with OA-induced ARDS.

Previous studies, performed in similar experimental settings in healthy, spontaneously breathing lambs and sheep (14, 15), demonstrated the key role of extracorporeal Co₂ removal in the control of breathing. So far, however, no experimental data had been reported on the use of ECGE in spontaneously breathing animals with ARDS and on the interactions between the artificial lung and the native, diseased lung.

The response to different amounts of extracorporeal Co_2 removal was, in some respects, similar in healthy and diseased animals. Indeed, in both conditions sheep reduced minute ventilation progressively and accordingly to the amount of removed Co_2 , up to complete apnea (Fig. 2). Furthermore, the response of healthy sheep was very similar to previous reports

Figure 2. Correlation between extracorporeal Co_2 removal and reduction in minute ventilation in healthy sheep (**A**) and in the same sheep with acute respiratory distress syndrome (**B**). Extracorporeal Co_2 removal is expressed as percentage of total Co_2 production $(V_{TOT} co_2 = V_M co_2 + V_L co_2)$, while minute ventilation is expressed as percentage reduction compared to control values, that is, measured minute ventilation in the absence of extracorporeal Co_2 removal. Every symbol (combination of shape and color) represents, in both panels, experimental points recorded from the same animal. The regression lines refer to the overall population.

TABLE 4. Analysis by Categories of Extracorporeal Co. Removal in Healthy Sheep

	Extracorporeal Co ₂ Removal (% of Total Vco ₂)					
	0%	1-60%	61-80%	81-100%		
Healthy Sheep (n = 11)	(n = 11)	(n = 21)	(n = 22)	(n = 17)	p	
V _M CO ₂ % (%)	NA	43±11ª,b	70±6ª	91±7	< 0.001	
Sweep gas flow (L/min)	NA	3.5 ± 3.1 a,b	7.1 ± 3.7	7.3 ± 3.7	0.001	
V _M co ₂ (mL/min)	NA	123±61ª,b	180±49	175±35	< 0.001	
$V_{LCO_{2}}$ (mL/min)	$230 \pm 106^{a,b,c}$	$158 \pm 69^{a,b}$	79±32ª	18±17	< 0.001	
$V_{TOT}CO_{2}$ (mL/min)	NA	281±115ª	258±76ª	193±42	0.008	
V_{LO_2} (mL/min)	$185 \pm 64^{a,b}$	174±102ª	124±50	96±54	< 0.001	
$V_{TOT}O_2$ (mL/min)	NA	227±111ª	172±55	145±64	0.008	
MV reduction (% of control)	NA	$36\pm17^{a,b}$	60±13ª	84±14	< 0.001	
MV _{ALV} reduction (% of control)	NA	39±21ª,b	65±12ª	90±8	< 0.001	
Tidal volume (mL)	395±121ª,b	$317 \pm 96^{a,b}$	231±112ª	84±65	< 0.001	
$\Delta P_{\rm es}$ (cm $\rm H_2O$)	$6.1 \pm 2.8^{a,b}$	5.6±2.5 ^{a,b}	3.2 ± 1.0	2.6 ± 2.0	< 0.001	
Respiratory rate (breaths/min)	24±5ª	23 ± 5^a	19±6	11±10	< 0.001	
Pulmonary shunt fraction	0.01 ± 0.01 a,b	$0.01 \pm 0.00^{a,b}$	0.03 ± 0.03	0.12 ± 0.17	< 0.001	
Dead space fraction	0.44 ± 0.12^a	0.46±0.11ª	0.52±0.11ª	0.76 ± 0.19	< 0.001	
Pao ₂ (mm Hg)	227±27ª	229±39ª	214±29	168±64	0.001	
Paco ₂ (mm Hg)	40.5±3.9	38.1 ± 4.3	37.3 ± 4.8	36.4 ± 4.7	0.13	
Arterial pH	7.41 ± 0.04	7.45 ± 0.06	7.43 ± 0.05	7.46 ± 0.05	0.07	

p=p value of the one-way analysis of variance, NA = not available, $V_{\rm M}{\rm Co}_2$ % = amount of extracorporeal Co $_2$ removal expressed as percentage of total Vco $_2$. $V_{\rm M}{\rm Co}_2$ = absolute value of extracorporeal Co $_2$ removal expressed in mL/min, $V_{\rm L}{\rm Co}_2$ = Vco $_2$ of the sheep, $V_{\rm TO}{\rm TO}_2$ = total Vco $_2$, $V_{\rm L}{\rm O}_2$ = oxygen uptake of the sheep, $V_{\rm TO}{\rm TO}_2$ = total oxygen uptake (sheep + extracorporeal gas exchange, $V_{\rm M}{\rm O}_2$ did not change with gas flow and was considered constant for each sheep), MV reduction = reduction in minute ventilation expressed as % of control values, MV ally reduction = reduction in alveolar minute ventilation expressed as percentage of control values, $\Delta P_{\rm es}$ = esophageal pressure swings (available in 10 animals).

Experimental measurements were divided into four categories of extracorporeal Co_2 removal: 0%, 1–60%, 61–80%, and 81–100%, expressed as percentage of total metabolic Co_2 production. The average value for each sheep of data obtained at 0 L/min of gas flow, that is, $V_M co_2$ of 0 mL/min (0% of $V_{TOI} co_2$), was used for analysis.

Data are expressed as mean \pm sp.

(14, 15), with the overall regression equation being close to the identity line (Fig. 2A).

On the other hand, sheep with ARDS had a similar slope, but a significantly lower intercept (Fig. 2*B*). As the intercept of this graph represents the reduction in minute ventilation expressed as percentage of control (ventilation without ECGE), a negative value means that sheep with ARDS, on average, would have needed to breathe 20–25% more than their control ventilation to eliminate all metabolically produced Co_2 . Furthermore, this means that 20–25% of total Vco_2 could be removed extracorporeally without a significant effect on minute ventilation. Above those values, pco_2 and pH were normalized and sheep responded to increasing Co_2 removal by reducing ventilation, up to apnea. However, in injured animals, the response to Co_2 removal was more heterogeneous, with some animals presenting significant spontaneous ventilation despite high amounts of Co_2 unloading. This observation, which might be explained

by the influence on spontaneous breathing of factors not directly linked to gas exchange (agitation, metabolic status, and lung receptor activity), might be of potential clinical relevance as it suggests that the response of individual patients could differ despite similar circumstances.

An increase in pulmonary shunt fraction was recorded in all animals for high amounts of extracorporeal $\mathrm{Co_2}$ removal. This fact, which was likely caused by pulmonary derecruitment/ atelectasis (14), might have been accentuated by high $\mathrm{Fio_2}$ in sheep with ARDS. Lung derecruitment might not be tolerated by the sickest patients; however, it is conceivable that the application of higher levels of CPAP (27) or the use of biphasic positive airway pressure (28) could reduce/prevent its occurrence. Of note, injured sheep presented only moderate pulmonary shunt (25% \pm 10%) despite the marked increase in pulmonary edema and the increase in poorly and nonaerated lung tissue (Table 1). This fact might be explained by some typical features

 $^{^{}a}p < 0.05 \text{ vs. } 81-100\%$

 $^{^{}b}p$ < 0.05 vs. 61-80%.

 $^{^{\}circ}p$ < 0.05 vs. 1–60%.

TABLE 5. Analysis by Categories of Extracorporeal Co₂ Removal in Sheep With Acute Respiratory Distress Syndrome

	Extracorporeal Co ₂ Removal (% of Total Vco ₂)				
	0%	1-60%	61-80%	81-100%	
Acute Respiratory Distress Syndrome (n = 11)	(n = 11)	(n = 12)	(n = 18)	(n = 31)	p
V _M CO ₂ % (% of total VCO ₂)	NA	48±8a,b	71±7ª	93±7	< 0.001
Sweep gas flow (L/min)	NA	2.1 ± 1.0^{a}	5.0 ± 2.6^{a}	8.2 ± 3.2	< 0.001
V _M co ₂ (mL/min)	NA	$107 \pm 32^{a,b}$	176±47ª	212±37	< 0.001
$V_{LCO_{2}}$ (mL/min)	$145 \pm 49^{a,b}$	116±35ª	71 ± 24	16±17	< 0.001
V _{TOT} CO ₂ (mL/min)	NA	223±58	247 ± 61	229 ± 43	0.40
$V_{LO_{2}}$ (mL/min)	185±80ª	156±77ª	94 ± 40	75±58	< 0.001
$V_{TOT}O_2$ (mL/min)	NA	233±81ª	169±37	151±56	0.004
MV reduction (% of control)	NA	$32 \pm 9^{a,b}$	58±19ª	79 ± 24	< 0.001
MV _{ALV} reduction (% of control)	NA	39 ± 20^a	60±21ª	81±25	< 0.001
Tidal volume (mL)	265 ± 69^{a}	248 ± 48^a	214±73ª	113±89	< 0.001
$\Delta P_{\rm es}$ (cm $\rm H_2O$)	24.7 ± 8.7	26.7 ± 6.1	22.8 ± 7.7	13.8±11.1	0.01
Respiratory rate (breaths/min)	62±27ª	54±26ª	38±24	23 ± 25	< 0.001
Pulmonary shunt fraction	0.25 ± 0.10^{a}	0.23 ± 0.12^a	0.30 ± 0.18	0.48 ± 0.29	0.005
Dead space fraction	0.81 ± 0.10	0.78 ± 0.10	0.78 ± 0.15^{a}	0.90 ± 0.12	0.008
Pao ₂ (mm Hg)	94±57	119±98	118±80	89±58	0.45
Paco ₂ (mm Hg)	47.0 ± 10.0 ^a	39.1 ± 7.4	40.6±9.3	35.8±8.0	0.004
Arterial pH	7.30 ± 0.08 a,b	7.40 ± 0.06	7.36 ± 0.09	7.41 ± 0.08	< 0.001

p=p value of the one-way analysis of variance, NA = not available, $V_{t_0} co_{t_2} = 0$ = amount of extracorporeal $t_0 co_{t_2} = 0$ = amount of extracorporeal $t_0 co_{t_2} = 0$ = absolute value of extracorporeal $t_0 co_{t_2} = 0$ = absolute value of extracorporeal $t_0 co_{t_2} = 0$ = absolute value of extracorporeal $t_0 co_{t_2} = 0$ = oxygen uptake of the sheep, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake of the sheep, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange, $t_0 co_{t_2} = 0$ = total oxygen uptake (sheep + extracorporeal gas exchange) = 0 = total oxygen uptake (sheep + extracorporeal gas exchange) = 0 = total oxygen uptake (sheep + extracorpore

Experimental measurements were divided into four categories of extracorporeal Co_2 removal: 0%, 1–60%, 61–80%, and 81–100%, expressed as percentage of total metabolic Co_2 production. The average value for each sheep of data obtained at 0 L/min of gas flow, that is, $V_M co_2$ of 0 mL/min (0% of $V_{TOT} co_2$), was used for analysis.

Data are expressed as mean \pm sp.

of spontaneous breathing: preserved diaphragmatic activity and favorable ventilation/perfusion ratio (29).

High amounts of extracorporeal Co₂ removal were also associated to a significant increase in physiologic dead space, which was likely caused primarily by a relative increase in anatomic dead space fraction due to the reduction in tidal volume. Another possible factor contributing to the observed increase in physiologic dead space was the recorded increment in pulmonary shunt (30).

Another interesting finding was the analysis of the two components of Vo₂. On the one hand, oxygen delivery through the ML, that is, $V_M o_2$, was constant throughout the study phases (no correlation with $V_M co_2$) but increased significantly after ARDS induction (51 ± 18 vs 79 ± 17 mL/min; p < 0.001) due to increased hemoglobin concentration and reduced hemoglobin saturation of blood entering the ML (72% ± 8% vs 62% ± 10%; p < 0.001). On the other hand, a progressive and significant

reduction in $V_L O_2$ was observed with increasing $V_M CO_2$, resulting in a significant reduction in total oxygen consumption. The reduced oxygen consumption might be explained by a reduced respiratory muscle activity, that is, a lower cost of breathing (31). As a reduction in oxygen consumption also implies a lower CO_2 production, this effect could therefore potentially increase the relative contribution of ECGE. In our opinion, this "metabolic" effect of ECGE deserves attention, and its potential role in optimizing extracorporeal support needs to be defined, especially in patients supported with ECGE for longer periods.

When analyzing the relative contribution of tidal volume and respiratory rate to the reduction in minute ventilation due to Co_2 unloading (Figs. 3 and 4), we found slightly different responses in healthy and injured sheep. In healthy sheep, the reduction in minute ventilation was caused first by a reduction in tidal volume and only for higher values of V_Mco_2 , also by

 $^{^{}a}p$ < 0.05 vs. 81–100%.

 $^{^{}b}p$ < 0.05 vs. 61–80%.

Figure 3. Variations in respiratory rate (expressed as % of control measurements) caused by different amounts of extracorporeal ${\rm Co_2}$ removal expressed as percentage of total ${\rm Co_2}$ production. Experimental points were grouped in three categories of extracorporeal ${\rm Co_2}$ removal: 1-60%, 61-80%, and 81-100%. *Black bars* represent healthy sheep, while *hatched bars* represent sheep with acute respiratory distress syndrome. A two-way analysis of variance was performed (p=0.01). Data are expressed as mean \pm ss.

Figure 4. Variations in tidal volume (expressed as % of control measurements) caused by different amounts of extracorporeal Co_2 removal expressed as percentage of total Co_2 production. Experimental points were grouped in three categories of extracorporeal Co_2 removal: 1–60%, 61–80%, and 81–100%. *Black bars* represent healthy sheep, while *hatched bars* represent sheep with acute respiratory distress syndrome. A two-way analysis of variance was performed (p = 0.001). Data are expressed as mean \pm se.

reduction in respiratory rate. On the contrary, in sheep with ARDS, the reduction in minute ventilation was caused first by a reduction in respiratory rate and only for higher values of $V_{\text{\tiny MCO}_2}$ also by a reduction in tidal volume.

Recorded tidal volumes without ECGE (GF = 0 L/min) were between 8 and 9 mL/kg in healthy sheep and between 5 and 6 mL/kg in sheep with ARDS. In fact, spontaneous tidal volumes recorded in sheep with ARDS could be considered "protective" for mechanical ventilation (32).

However, in injured animals at 0 L/min of GF, ΔP_{es} (a surrogate for transpulmonary pressures) was 24.7 ± 8.7 cm H₂O, which corresponds to a dynamic variation in transpulmonary pressure very close to the one recorded in *static* conditions in healthy animals when inflating the lung from functional residual capacity to total lung capacity (Fig. 1). If we assume that the portion of the lung still viable for ventilation, that is, the "baby lung" (33), has similar anatomical and physiological characteristics of healthy alveoli, we might hypothesize that those lung units were subject to a deformation that approached their own total capacity and that they could therefore be potentially subjected to cellular stress failure (34). Indeed, several studies that investigated spontaneous hyperventilation, be it experimental (35, 36), exercise-related (37, 38), or clinical (39), discussed the potential role of spontaneous alveolar stretching in the development of pulmonary edema that in fact did not differ from ventilator-induced lung injury. We must therefore be very cautious in assuming that the risk of ventilator-induced lung injury could be eliminated through the use of ECGE and the avoidance of mechanical ventilation, as spontaneous ventilation per se could also be potentially injurious ("ventilationinduced lung injury"). Furthermore, it is very important to underline the fact that sheep with ARDS reduced esophageal pressure variations and tidal volume only when very high amounts of Co, (> 80% of total Vco,) were removed extracorporeally.

It might be of interest to speculate on the mechanisms that caused these high pleural pressure swings and this response pattern to extracorporeal $\mathrm{Co_2}$ unloading. On the one hand, due to edema accumulation and lower lung compliance, higher pleural swings were necessary to be able to ventilate the injured lung. On the other, it is conceivable that other factors, for example, lung receptor activity, were involved. Indeed, while the control of breathing has been extensively studied in physiological conditions (40, 41), less is known about pathological situations in which neural pathways that are usually silent in physiological conditions may be active (18, 19).

In the present study, we have not evaluated the activity of pulmonary receptors or vagal afferents; however, we clearly observed, a few seconds after the injection of OA, the clinical manifestations of the pulmonary chemoreflex, that is, apnea and bradycardia followed by rapid shallow breathing. These phenomena have been attributed to the simultaneous activation of bronchopulmonary C-fibers (J-receptors) (42, 43). It is therefore likely that, because of both direct chemical activation and the ensuing activation caused by lung congestion, collapse, and microembolization (44), the activity of unmyelinated pulmonary fibers and other lung receptors was increased throughout the second study phase (ARDS) (18).

The role of cytokines in the pathogenesis of OA-induced ARDS is still debated (45). Indeed, some studies reported an increase in cytokines (46, 47), while others did not show any significant variation (48). Interestingly, we observed a reduction in several plasma cytokines (Table 4). These results are difficult to explain and their interpretation is of pure speculative

nature: on the one hand, it is possible that OA induced cellular lysis (reduction in WBCs) with ensuing reduction in circulating inflammatory mediators; on the other hand, a "cytokine catching" effect of the ML might be hypothesized.

Some important limitations of the present study need to be mentioned. First, the intrinsic limitations of the OA model need to be kept in mind (45). Indeed, the fact that inflammation is not a clear feature of the OA model limits the clinical translatability of our results to human ARDS.

Furthermore, we need to point out the relative short duration of the observations once ARDS was induced. In fact, we studied only the acute phase of ARDS. We therefore do not know if other factors could have a role in determining the respiratory pattern and response to extracorporeal Co₂ removal in later stages of the disease.

In conclusion, the rationale to use ECGE for the treatment of ARDS in spontaneously breathing patients as an alternative to mechanical ventilation is strong as it would allow to avoid several mechanical ventilation—associated side effects. Indeed, ECGE could be used both as first-line treatment in nonintubated patients with ARDS and to accelerate the weaning process in already intubated patients with respiratory failure. The risks associated with ECGE, especially bleeding and membrane failure, however, need to be kept in mind. Finally, in this scenario, a somewhat new player, namely spontaneous breathing, would enter in the arena of the ICUs.

This study sheds light on some aspects of the use of venovenous ECGE in spontaneously breathing patients with ARDS, but a deeper understanding of the pathophysiology of spontaneous breathing during ARDS and of the potential harm caused by high pleural pressure variations is warranted in order to be able to propose ECGE as a safe and valuable alternative to mechanical ventilation for the treatment of patients with ARDS.

ACKNOWLEDGMENTS

We are grateful to Tillman Schwab (Clinical Director, Maquet Cardiovascular Global) and Brian Osswald (Vice President, Maquet Cardiopulmonary, USA) for providing the Cardiohelp and the HLS Circuits used in this study; Peter Herrmann, PhD, and Michael Quintel, MD, PhD, from the Department of Anesthesiology of the University of Göttingen, Germany, who kindly provided Maluna, the software used for lung quantitative analysis; André Cap, MD, PhD, Nicolas Prat, MD, Beverly Schaffer, and Chryselda Fedyk for plasma cytokine analysis; James K. Aden, PhD, and Eleonora Carlesso, PhD, for statistical support; and Michael Lucas, Rachael Dimitri, Kerfoot P. Walker, Corina Necsoiu, MD, Belinda Meyers, Johnny Nelson, Alisa Leon, William L. Baker, and John Lizama for technical support.

REFERENCES

- Brodie D, Bacchetta M: Extracorporeal membrane oxygenation for ARDS in adults. N Engl J Med 2011; 365:1905–1914
- Davies A, Jones D, Bailey M, et al: Extracorporeal membrane oxygenation for 2009 influenza A(H1N1) acute respiratory distress syndrome. JAMA 2009; 302:1888–1895

- Noah MA, Peek GJ, Finney SJ, et al: Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1). JAMA 2011; 306:1659–1668
- Peek GJ, Mugford M, Tiruvoipati R, et al; CESAR trial collaboration: Efficacy and economic assessment of conventional ventilatory support vs. extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): A multicentre randomised controlled trial. *Lancet* 2009; 374:1351–1363
- Crotti S, lotti GA, Lissoni A, et al: Organ allocation waiting time during extracorporeal bridge to lung transplant affects outcomes. Chest 2013; 144:1018–1025
- Fuehner T, Kuehn C, Hadem J, et al: Extracorporeal membrane oxygenation in awake patients as bridge to lung transplantation. Am J Respir Crit Care Med 2012; 185:763–768
- Javidfar J, Brodie D, Iribarne A, et al: Extracorporeal membrane oxygenation as a bridge to lung transplantation and recovery. J Thorac Cardiovasc Surg 2012; 144:716–721
- Olsson KM, Simon A, Strueber M, et al: Extracorporeal membrane oxygenation in nonintubated patients as bridge to lung transplantation. Am J Transplant 2010; 10:2173–2178
- Abrams DC, Brenner K, Burkart KM, et al: Pilot study of extracorporeal carbon dioxide removal to facilitate extubation and ambulation in exacerbations of chronic obstructive pulmonary disease. *Ann Am Thorac Soc* 2013; 10:307–314
- Crotti S, Lissoni A, Tubiolo D, et al: Artificial lung as an alternative to mechanical ventilation in COPD exacerbation. Eur Respir J 2012; 39:212–215
- Rehder KJ, Turner DA, Hartwig MG, et al: Active rehabilitation during extracorporeal membrane oxygenation as a bridge to lung transplantation. Respir Care 2013; 58:1291–1298
- Turner DA, Cheifetz IM, Rehder KJ, et al: Active rehabilitation and physical therapy during extracorporeal membrane oxygenation while awaiting lung transplantation: A practical approach. Crit Care Med 2011; 39:2593–2598
- Hoeper MM, Wiesner O, Hadem J, et al: Extracorporeal membrane oxygenation instead of invasive mechanical ventilation in patients with acute respiratory distress syndrome. *Intensive Care Med* 2013; 39:2056–2057
- Kolobow T, Gattinoni L, Tomlinson TA, et al: Control of breathing using an extracorporeal membrane lung. *Anesthesiology* 1977; 46:138–141
- Phillipson EA, Duffin J, Cooper JD: Critical dependence of respiratory rhythmicity on metabolic CO₂ load. J Appl Physiol Respir Environ Exerc Physiol 1981; 50:45–54
- Kubin L, Alheid GF, Zuperku EJ, et al: Central pathways of pulmonary and lower airway vagal afferents. J Appl Physiol (1985) 2006; 101:618–627
- Widdicombe J: Reflexes from the lungs and airways: Historical perspective. J Appl Physiol (1985) 2006; 101:628–634
- Lin S, Walker J, Xu L, et al: Behaviours of pulmonary sensory receptors during development of acute lung injury in the rabbit. Exp Physiol 2007: 92:749–755
- Trenchard D, Gardner D, Guz A: Role of pulmonary vagal afferent nerve fibres in the development of rapid shallow breathing in lung inflammation. Clin Sci 1972; 42:251–263
- Abraham WM, Watson H, Schneider A, et al: Noninvasive ventilatory monitoring by respiratory inductive plethysmography in conscious sheep. J Appl Physiol Respir Environ Exerc Physiol 1981; 51:1657–1661
- Protti A, Cressoni M, Santini A, et al: Lung stress and strain during mechanical ventilation: Any safe threshold? Am J Respir Crit Care Med 2011; 183:1354–1362
- Gattinoni L, Caironi P, Pelosi P, et al: What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 2001; 164:1701–1711
- Vecchi V, Langer T, Bellomi M, et al: Low-dose CT for quantitative analysis in acute respiratory distress syndrome. Crit Care 2013; 17:R183
- Langer T, Vecchi V, Belenkiy SM, et al: Pressure-guided positioning of bicaval dual-lumen catheters for venovenous extracorporeal gas exchange. *Intensive Care Med* 2013; 39:151–154

e219

- Gemer M, Dunegan LJ, Lehr JL, et al: Pulmonary insufficiency induced by oleic acid in the sheep: A model for investigation of extracorporeal oxygenation. J Thorac Cardiovasc Surg 1975; 69:793–799
- Hirschl RB, Parent A, Tooley R, et al: Liquid ventilation improves pulmonary function, gas exchange, and lung injury in a model of respiratory failure. Ann Surg 1995; 221:79–88
- Gattinoni L, lapichino G, Kolobow T: Hemodynamic, mechanical and renal effects during "apneic oxygenation" with extracorporeal carbon dioxide removal, at different levels of intrapulmonary pressure in lambs. Int J Artif Organs 1979; 2:249–253
- Isgrò S, Zanella A, Sala C, et al: Continuous flow biphasic positive airway pressure by helmet in patients with acute hypoxic respiratory failure: Effect on oxygenation. *Intensive Care Med* 2010; 36:1688–1694
- Wrigge H, Zinserling J, Neumann P, et al: Spontaneous breathing improves lung aeration in oleic acid-induced lung injury. *Anesthesiology* 2003; 99:376–384
- Niklason L, Eckerström J, Jonson B: The influence of venous admixture on alveolar dead space and carbon dioxide exchange in acute respiratory distress syndrome: Computer modelling. Crit Care 2008; 12:R53
- Field S, Kelly SM, Macklem PT: The oxygen cost of breathing in patients with cardiorespiratory disease. Am Rev Respir Dis 1982; 126:9–13
- Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 2000; 342:1301–1308
- Gattinoni L, Pesenti A: The concept of "baby lung". Intensive Care Med 2005; 31:776–784
- Vlahakis NE, Hubmayr RD: Cellular stress failure in ventilator-injured lungs. Am J Respir Crit Care Med 2005; 171:1328–1342
- Mascheroni D, Kolobow T, Fumagalli R, et al: Acute respiratory failure following pharmacologically induced hyperventilation: An experimental animal study. *Intensive Care Med* 1988; 15:8–14
- 36. Yoshida T, Uchiyama A, Matsuura N, et al: Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury

- model: High transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. *Crit Care Med* 2012; 40:1578–1585
- Hopkins SR, Schoene RB, Henderson WR, et al: Intense exercise impairs the integrity of the pulmonary blood-gas barrier in elite athletes. Am J Respir Crit Care Med 1997; 155:1090–1094
- Erickson BK, Erickson HH, Coffman JR: Pulmonary artery, aortic and oesophageal pressure changes during high intensity treadmill exercise in the horse: A possible relation to exercise-induced pulmonary haemorrhage. Equine Vet J Suppl 1990; 9:47–52
- Schmidt UH, Hess DR: Does spontaneous breathing produce harm in patients with the acute respiratory distress syndrome? Respir Care 2010; 55:784–786
- Caruana-Montaldo B, Gleeson K, Zwillich CW: The control of breathing in clinical practice. Chest 2000; 117:205–225
- 41. Duffin J: The role of the central chemoreceptors: A modeling perspective. Respir Physiol Neurobiol 2010; 173:230–243
- 42. Anand A, Paintal AS: Reflex effects following selective stimulation of J receptors in the cat. *J Physiol* 1980; 299:553–572
- Coleridge HM, Coleridge JC, Green JF, et al: Pulmonary C-fiber stimulation by capsaicin evokes reflex cholinergic bronchial vasodilation in sheep. J Appl Physiol (1985) 1992; 72:770–778
- Roberts AM, Bhattacharya J, Schultz HD, et al: Stimulation of pulmonary vagal afferent C-fibers by lung edema in dogs. Circ Res 1986; 58:512–522
- Schuster DP: ARDS: Clinical lessons from the oleic acid model of acute lung injury. Am J Respir Crit Care Med 1994; 149:245–260
- Chen HI, Hsieh NK, Kao SJ, et al: Protective effects of propofol on acute lung injury induced by oleic acid in conscious rats. Crit Care Med 2008; 36:1214–1221
- Ito K, Mizutani A, Kira S, et al: Effect of ulinastatin, a human urinary trypsin inhibitor, on the oleic acid-induced acute lung injury in rats via the inhibition of activated leukocytes. *Injury* 2005; 36:387–394
- Rosenthal C, Caronia C, Quinn C, et al: A comparison among animal models of acute lung injury. Crit Care Med 1998; 26:912–916