Lösungshinweise für Blatt 2

(Aufgabe 2.1, Aufgabe 2.2(b),(d),(e), Aufgabe 2.3)

Aufgabe 2.1

(a). Voraussetzung: $f_1: \mathbb{R} \to \mathbb{R}, x \mapsto x^2 + x + 1$.

Behauptung: f_1 ist weder injektiv noch surjektiv. Insbesondere ist f_1 also nicht bijektiv.

Beweis. Da gilt f(0) = 1 = f(-1) und bekanntlich $0 \neq -1$ ist, folgt, dass f_1 nicht injektiv ist. Dies impliziert auch schon, dass f_1 nicht bijektiv ist.

Annahme: f_1 is surjektiv. Dann muss es ein $x \in \mathbb{R}$ geben mit $x^2 + x + 1 = -1$. Letzteres ist äquivalent zu $x^2 + x + 2 = 0$. Aus der Schule wissen wir, dass die Lösungen dieser Gleichung gegeben sind durch

$$x_{1/2} = \frac{-1 \pm \sqrt{1-8}}{2} = \frac{-1 \pm \sqrt{-7}}{2}.$$

Da es sich hierbei um komplexe Zahlen handelt, die nicht in \mathbb{R} liegen, erhalten wir einen Widerspruch. \Rightarrow Annahme falsch, d.h. f_1 ist surjektiv.

(b). Voraussetzung: $f_2: \mathbb{N} \to \mathbb{N}, x \mapsto x^2 + x + 1$.

Behauptung: f_2 ist injektiv, aber nicht surjektiv. Insbesondere ist f_2 also nicht bijektiv.

Beweis. Für $x \in \mathbb{N}$ gilt:

$$f_2(x+1) = (x+1)^2 + (x+1) + 1 = x^2 + 2x + 1 + x + 1 + 1 = f_2(x) + 2x + 2 > f_2(x).$$
 (*)

 f_2 ist injektiv: Seien $x_1, x_2 \in \mathbb{N}$ mit $x_1 \neq x_2$. Ohne Beschränkung der Allgemeinheit können wir annehmen, dass $x_1 > x_2$ ist. Mit (*) folgt dann $f_2(x_1) > f_2(x_2)$ (Ist Ihnen klar, warum das folgt? In einer Abgabe müssten Sie hier mehr Details geben.). Insbesondere ist $f_2(x_1) \neq f_2(x_2)$. Daraus ergibt sich, dass f_2 injektiv ist.

 $\underline{f_2}$ ist nicht surjektiv: (*) impliziert, dass f(x) > f(1) ist für $x \in \mathbb{N}$ mit x > 1. Da f(1) = 4 ist, gibt es kein $x \in \mathbb{N}$, für das $f(x) = 2 \in \mathbb{N}$ ist. Daher ist f_2 nicht surjektiv und somit auch nicht bijektiv.

(c). Voraussetzung: $f_3: \mathbb{R} \setminus \{-3\} \to \mathbb{R} \setminus \{2\}, \ x \mapsto \frac{2x+5}{x+3}$.

Behauptung: f_3 ist bijektiv.

Beweis. $\underline{f_3}$ ist injektiv: Seien $x_1, x_2 \in \mathbb{R} \setminus \{-3\}$ mit $f_3(x_1) = f_3(x_2)$. Wir zeigen, dass daraus schon folgt $x_1 = x_2$. Es gilt:

$$f_3(x_1) = f_3(x_2) \iff \frac{2x_1 + 5}{x_1 + 3} = \frac{2x_2 + 5}{x_2 + 3}$$

Durch Multiplizieren mit $(x_1 + 3)(x_2 + 3)$ auf beiden Seiten erhalten wir

$$(2x_1+5)(x_2+3) = (2x_2+5)(x_1+3). \tag{**}$$

Da $(2x_1 + 5)(x_2 + 3) = 2x_1x_2 + 6x_1 + 5x_2 + 15$ und $(2x_2 + 5)(x_1 + 3) = 2x_1x_2 + 6x_2 + 5x_1 + 15$ ist, erhalten wir aus (**), dass $x_1 = x_2$ sein muss.

Somit gilt: $\forall x_1, x_2 \in \mathbb{R} \setminus \{-3\} : f_3(x_1) = f_3(x_2) \Rightarrow x_1 = x_2$. D.h. f_3 ist injektiv.

 $\underline{f_3}$ ist surjektiv: Sei $y \in \mathbb{R} \setminus \{2\}$ beliebig. Zu zeigen: Es gibt ein $x \in \mathbb{R} \setminus \{-3\}$ mit $f_3(x) = y$.

Betrachte $x := \frac{3y-5}{2-y}$. Da $y \neq 2$ ist, gilt $x \in \mathbb{R}$. Weiter lässt sich nachrechnen, dass

$$f_3(x) = \frac{2(\frac{3y-5}{2-y})+5}{\frac{3y-5}{2-y}+3} = \dots in \ der \ Abgabe \ auszuf\"{u}hren \ \dots = y.$$

ABER ACHTUNG! Wir müssen noch zeigen, dass $x = \frac{3y-5}{2-y} \neq -3$ ist.

Annahme: $\frac{3y-5}{2-y} = -3$. Durch Multiplizieren mit 2-y auf beiden Seiten erhalten wir die Gleichheit: 3y-5=-6+3y, welche äquivalent ist zu -5=-6. — Das ist ein Widerspruch und somit erhalten wir $x=\frac{3y-5}{2-y}\in\mathbb{R}\setminus\{-3\}$, wie gefordert.

 $\Rightarrow f_3$ ist surjektiv. Da f_3 auch injektiv ist, folgt die Behauptung (f_2 ist bijketiv).

(c). Voraussetzung: $f_4: \mathbb{R}^2 \to \mathbb{R}^2$, $(x_1, x_2) \mapsto (2x_1 + 5x_2, x_1 + 3x_2)$.

Behauptung: f_4 ist bijektiv.

Bemerkung: Wenn $(x_1, x_2) \neq (y_1, y_2)$ ist, dann gilt entweder $x_1 \neq y_1$ (und x_2, y_2 sind beliebig) oder es ist: $x_1 = y_1$ und $x_2 \neq y_2$. $(z.B. (1, 2) \neq (1, 3))$.

Beweis. f_4 ist injektiv: Seien $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$ mit $f(x_1, x_2) = f(y_1, y_2)$.

Zu zeigen: $(x_1, x_2) = (y_1, y_2)$.

Da $f(x_1, x_2) = f(y_1, y_2)$, folgt:

$$(I) \quad 2x_1 + 5x_2 = 2y_1 + 5y_2$$

$$(II)$$
 $x_1 + 3x_2 = y_1 + 3y_2.$

Ziehen wir $2 \cdot (II)$ von (I) ab, erhalten wir

$$(I) - 2 \cdot (II) \quad -x_2 = -y_2$$

Setzen wir diese Gleichheit in (II) ein, bekommen wir $x_1+3x_2=y_1+3x_2$ und hieraus ergibt sich $x_1=y_1$. Insgesamt haben wir gezeigt, dass aus $f(x_1,x_2)=f(y_1,y_2)$ schon folgt $(x_1,x_2)=(y_1,y_2)$. Also ist f_4 injektiv.

 f_4 ist surjektiv: Sei $(b_1, b_2) \in \mathbb{R}^2$ beliebig. Wir definieren $(x_1, x_2) := (3b_1 - 5b_2, -b_1 + 2b_2)$. Dann gilt:

 $f(x_1, x_2) = (2(3b_1 - 5b_2) + 5(-b_1 + 2b_2), (3b_1 - 5b_2) + 3(-b_1 + 2b_2)) = \dots in \ Abgabe \ auszuf \ddot{u}hren \ \dots = (b_1, b_2).$

Somit ist f_4 surjektiv. Da f_4 auch injektiv ist, folgt: f_4 ist bijektiv.

Aufgabe 2.2 Voraussetzung: A, B, C Mengen, $f: A \to B$ aund $g: B \to C$ Abbildungen.

(b). Behauptung: Falls $g \circ f$ sujrektiv ist, so ist g surjektiv.

Beweis. Zu zeigen: $\forall c \in C \ \exists b \in B : g(b) = c$.

Sei $c \in C$ beliebig. Da $g \circ f$ surjektiv ist, gibt es ein $a \in A$ mit $(g \circ f)(a) = c$.

Wir definieren $b := f(a) \in B$. Dann gilt:

$$g(b) = g(f(a)) = (g \circ f)(a) = c.$$

Daher ist g surjektiv.

(d). Behauptung: f ist surjektiv $\Leftrightarrow \exists q : B \to A$ mit $f \circ q = id_B$.

Beweis. " \Leftarrow ": Falls es eine Abbildung $q: B \to A$ gibt mit $f \circ q = id_B$, so ist $f \circ q$ bijektiv und somit insbesondere surjektiv. Nach Aufgabe 2.2.(b) folgt, dass f surjektiv ist.

<u>"\(\Rightarrow\)"</u>: Da f surjektiv ist gibt es für jedes $b \in B$ mindestens ein $a \in A$ mit f(a) = b.

Für jedes $b \in B$ wählen wir ein $a_b \in A$ mit $f(a_b) = b$ (existiert, da f surjektiv ist). Wir definieren $q: B \to A$ durch $q(b) := a_b$. Das ist eine wohldefinierte Abbildung und

$$(f \circ q)(b) = f(q(b)) = f(a_b) = b = id_B(b).$$

Damit folgt $f \circ q = id_B$, wie gewünscht.

(e). Voraussetzung: A, B sind endliche Mengen mit gleich viel Elementen, $m := |A| = |B| < \infty$. (Hierbei bezeichnet |A| die Anzahl der Elemente der Menge A).

Behauptung: f ist injektiv $\Leftrightarrow f$ is bijektiv $\Leftrightarrow f$ is surjektiv.

Beweis. Nach der Definition von bijektiv genügt es zu zeigen:

f is injektiv $\Leftrightarrow f$ ist surjektiv.

<u>"\(\Rightarrow\)"</u>: Sei f injektiv. Wir betrachten die Menge $f(A) := \{f(a) \mid a \in A\} \subset B$. Da f injektiv ist, gilt |f(A)| = m. (Ist Ihnen diese Folgerung klar?). Da $f(A) \subseteq B$ ist und $|f(A)| = |B| < \infty$ ist, folgt f is surjektiv. (Ist Ihnen diese Folgerung klar?).

<u>" \Leftarrow ":</u> Sei f surjektiv.

Annahme: f ist nicht injektiv. Dann gilt |f(A)| < |A| = m = |B|. Dies steht aber im Widerspruch dazu, dass f surjektiv ist, d.h. dass es für jedes $b \in B$ ein $a \in A$ gibt mit f(a) = b. (Ist Ihnen diese Folgerung klar?).

Aufgabe 2.3 Voraussetzung: Für $n \in \mathbb{N}$ ist $S_n := \{\sigma : \{1, \dots, n\} \to \{1, \dots, n\} \mid \sigma \text{ ist bijektiv}\}.$

(a). Voraussetzung: $\circ: S_n \times S_n \to S_n, \ (\sigma, \tau) \mapsto \sigma \circ \tau \ (\text{Komposition von Abbildungen}).$

Behauptung: (S_n, \circ) ist eine Gruppe.

Beweis. (1) \circ ist wohldefiniert: Zunächst müssen wir zeigen, dass $\sigma \circ \tau$ bijektiv ist, falls σ und τ bijektiv sind.

 $\sigma \circ \tau$ ist injektiv: Seien $x, y \in \{1, \dots, n\}$ mit $x \neq y$. Zu zeigen: $(\sigma \circ \tau)(x) \neq (\sigma \circ \tau)(y)$.

Da τ injektiv ist, gilt $\tau(x) \neq \tau(y)$. Da weiter σ injektiv ist, folgt hieraus $\sigma(\tau(x)) \neq \sigma(\tau(y))$, was zu zeigen war

 $\sigma \circ \tau$ ist surjektiv: Sei $z \in \{1, \dots, n\}$. Da σ surjektiv ist, gibt es ein $y \in \{1, \dots, n\}$ mit $\sigma(y) = z$. Da nun wiederum τ surjektiv ist, gibt es ein $x \in \{1, \dots, n\}$ mit $\tau(x) = y$.

Zusammen folgt, dass wir ein x gefunden haben mit der Eigenschaft $(\sigma \circ \tau)(x) = \sigma(\tau(x)) = \sigma(y) = z$. Da $z \in \{1, \ldots, n\}$ beliebig war, ist $\sigma \circ \tau$ surjektiv.

(2) \circ ist assoziativ: Seien $\sigma, \tau, \rho \in S_n$. Für alle $x \in \{1, \ldots, n\}$ gilt:

$$\Big(\sigma\circ(\tau\circ\rho)\Big)(x)=\sigma\Big((\tau\circ\rho)(x)\Big)=\sigma(\tau(\rho(x)))=(\sigma\circ\tau)(\rho(x))=\Big((\sigma\circ\tau)\circ\rho\Big)(x).$$

Daher ist $\sigma \circ (\tau \circ \rho) = (\sigma \circ \tau) \circ \rho$ und \circ ist assoziativ.

(3) Existenz des neutralen Elements: Betrachten wir die Abbildung $e: \{1, ..., n\} \to \{1, ..., n\}$, welche gegeben ist durch e(x) = x für alle $x \in \{1, ..., n\}$. Es gilt $e \in S_n$ (Ist das Ihnen klar?) und für alle $\sigma \in S_n$ ist

$$(\sigma \circ e)(x) = \sigma(e(x)) = \sigma(x) = e(\sigma(x)) = (e \circ \sigma)(x)$$
, für alle $x \in \{1, \dots, n\}$.

Daher gilt $\sigma \circ e = \sigma = e \circ \sigma$ und e ist das neutrale Element bezüglich \circ .

(2) Existenz des Inversen: Sei $\sigma \in S_n$ gegeben. Da σ bijektiv ist, wissen wir nach der Vorlesung (Bemerkung 0.3.12 a)), dass das Inverse $\sigma^{-1} : \{1, \dots, n\} \to \{1, \dots, n\}$ bijektiv ist. Daher ist $\sigma^{-1} \in S_n$ und es gilt $\sigma^{-1} \circ \sigma = e = \sigma \circ \sigma^{-1}$.

(b+c). Behauptung: (S_n, \circ) ist nicht kommutativ für $n \geq 3$.

Beweis. Betrachten wir die Abbildungen $\sigma, \tau \in S_n$ definiert durch

$$\begin{array}{ll} \sigma(1) = 2 & \quad \tau(1) = 3 \\ \sigma(2) = 1 & \quad \tau(2) = 2 \\ \sigma(3) = 3 & \quad \tau(3) = 1 \\ \sigma(i) = i & \quad \tau(i) = i \quad \text{für } i \geq 4. \end{array}$$

(Ist Ihnen klar, dass σ und τ in S_n liegen?) Es gilt:

$$(\sigma \circ \tau)(1) = \sigma(\tau(1)) = \sigma(3) = 3 \neq 2 = \tau(2) = \tau(\sigma(1)) = (\tau \circ \sigma)(1).$$

Daher ist $\sigma \circ \tau \neq \tau \circ \sigma$, d.h. S_n ist nicht kommutativ.