Math 114 Review Homework

Lev Kruglyak

December 3, 2022

Problem 1. Suppose a > 0, b > 0 and 1 . Consider the quantities

$$U = (a+b)^p, \quad V = a^p + b^p.$$

Is it true that $U \geq V$? Prove your answer or give a counter example.

Note that $f(x) = x^p$ has second derivative $f''(x) = p(p-1)x^{p-2}$. For x > 0 and p > 1, this second derivative is positive so the function f is convex. Thus we can apply Jensen's inequality to get $f(a) + f(b) \ge f(a+b)$. Thus U > V.

Problem 2. Suppose $f_n \to f$ a.e. for all $x \in X = (0,1)$ and $\sup_n \|f_n\|_{L^2(X)} \le M$ for some fixed M.

- (a) Do we know $||f||_{L^2(X)} < \infty$?
- (b) Do we know $\lim_{n\to\infty} ||f_n f||_{L^2(X)} = 0$?
- (c) Do we know that $\lim_{n \to \infty} ||f_n f||_{L^p(X)} = 0$ for 1 ?
- (a) This is true. By Fatou's lemma, we get

$$||f||_{L^2(X)}^2 = \int_X |f|^2 = \int_X \liminf_n |f_n|^2 \le \liminf_n \int_X |f_n|^2 \le \sup_n \int_X |f_n|^2 = M^2.$$

Thus $||f||_{L^2(X)} \leq M < \infty$.

- (b) This is false. Consider the functions $f_n = n^{1/2} \chi_{[0,1/n]}$. Then clearly $f_n \to 0$ on (0,1), and $||f_n||_{L^2(X)} = n \cdot 1/n = 1$, yet $\lim_{n \to \infty} ||f_n 0||_{L^2(X)} = 1$.
- (c) This is true. We'll begin by proving a generalization of Hölder's inequality.

Claim. Let $a, b, c \ge 1$ satisfy $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$. Then for any functions f, g, we have $||fg||_c \le ||f||_a ||f||_b$.

Proof. Let $f' = f^c$ and $g' = g^c$. Since $\frac{1}{a/c} + \frac{1}{b/c} = 1$, we can apply Hölder's inequality to get $\|f'g'\|_1 \le \|f'\|_{a/c} \|g'\|_{b/c}$. However recall that $\|f\|_{ab} = \|f^a\|_b^{1/a}$. We can use this identity to get

$$||f'g'||_1 = ||(f'g')^{1/c}||_c^c = ||fg||_c^c \le ||f'||_{a/c} ||g'||_{b/c} = ||f||_a^c ||g||_b^c$$

$$\implies ||fg||_c \le ||f||_a ||g||_b,$$

which is what we were trying to prove. Furthermore, equality only happens when $(f')^{a/c} = f^a$ and $(g')^{b/c} = g^b$ are linearly dependent almost everywhere.

1

First of all, let's use Egorov's theorem to construct closed sets $A_{\epsilon} \subset X$ with $\mu(X \setminus A_{\epsilon}) < \epsilon$ and $f_n \to f$ uniformly on A_{ϵ} . This means that for all $\delta > 0$, there is some N such that for all $n \geq N$ we have $\sup_{A_{\epsilon}} |f - f_n| < \delta$. Then $\lim_{n \to \infty} ||f - f_n||_{L^p(A_{\epsilon})} = 0$.

Next, notice that $||f - f_n||_{L^p(X)} = ||f - f_n||_{L^p(A_{\epsilon})} + ||f - f_n||_{L^p(X \setminus A_{\epsilon})}$. By Minkowski's inequality, we have

$$||f - f_n||_{L^p(X \setminus A_{\epsilon})} \le ||f||_{L^p(X \setminus A_{\epsilon})} + ||f_n||_{L^p(X \setminus A_{\epsilon})}.$$

Since p < 2, by generalized Hölder's inequality we have

$$||f||_{L^p(X\setminus A_{\epsilon})} = ||f \cdot \chi_{X\setminus A_{\epsilon}}||_{L^p(X\setminus A_{\epsilon})} \le ||f||_{L^2(X\setminus A_{\epsilon})} ||f||_{L^{2p/p-1}(X\setminus A_{\epsilon})} = ||f||_{L^2(X\setminus A_{\epsilon})} \mu(X\setminus A_{\epsilon}) \le M\epsilon.$$

Similarly, we get $||f_n||_{L^p(X\setminus A_{\epsilon})} \leq M\epsilon$. Putting this together, we get

$$\lim_{n\to\infty} \|f - f_n\|_{L^p(X)} = \lim_{n\to\infty} \|f - f_n\|_{L^p(A_{\epsilon})} + \lim_{n\to\infty} \|f - f_n\|_{L^p(X\setminus A_{\epsilon})} \le 2M\epsilon.$$

Since ϵ was arbitrary, we get $\lim_{n\to\infty} ||f-f_n||_{L^p(X)} = 0$.

Problem 3. Suppose f is a positive function on [0,1]. Which of the following is larger? Prove your claim.

$$\int_0^1 f(x) \log f(x) \ dx, \quad \int_0^1 f(s) \ ds \int_0^1 \log f(t) \ dt.$$

We claim that the first is larger. Consider the function $g: x \to -\log(x)$. This has second derivative $g''(x) = x^{-2}$ which is positive on $(0, \infty)$. Since $\mu([0, 1]) = 1$, we can apply Jensen's inequality to get

$$-\log \int_0^1 f(x) \ dx \le -\int_0^1 \log f(x) \ dx \implies \int_0^1 \log f(x) \ dx \le \log \int_0^1 f(x) \ dx.$$

Similarly, the function $h: x \to x \log(x)$ has second derivative h''(x) = 1/x on $(0, \infty)$ so we get

$$\int_0^1 f(x) \ dx \log \int_0^1 f(x) \ dx \le \int_0^1 f(x) \log f(x) \ dx.$$

Combining the inequalities together, we get

$$\int_0^1 f(x) \, dx \int_0^1 \log f(x) \, dx \le \int_0^1 f(x) \, dx \log \int_0^1 f(x) \, dx \le \int_0^1 f(x) \log f(x) \, dx.$$

Problem 4. Let $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1$ and $1 \leq p, q, r < \infty$. For any positive functions f, g, h on \mathbb{R}^n , prove that

$$\int_{\mathbb{R}^n} fgh \ dx \le ||f||_p ||g||_q ||h||_r.$$

Note that $\frac{1}{p} + \frac{1}{qr/(q+r)} = 1$ so we can apply Hölder's inequality to get

$$\int_{\mathbb{D}^n} fgh \ dx = \|f \cdot gh\|_1 \le \|f\|_p \|gh\|_{qr/(q+r)}.$$

Then by generalized Hölder inequality, (proved in Problem 2) since $\frac{1}{q} + \frac{1}{r} = \frac{1}{qr/(q+r)}$, we get

$$||gh||_{qr/(q+r)} \le ||g||_q ||h||_r \implies \int_{\mathbb{R}^n} fgh \ dx \le ||f||_p ||g||_q ||h||_r.$$

Problem 5. Let μ be a positive measure on X. A sequence $\{f_n\}$ of complex measurable functions on X is said to *converge in measure* to the measurable function f if for every $\epsilon > 0$ there corresponds an N such that

$$\mu(\{x: |f_n(x) - f(x)| > \epsilon\}) < \epsilon$$

for all n > N. (This notion is of importance in probability theory.) Assume $\mu(X) < \infty$ and prove the following statements:

- (a) If $f_n(x) \to f(x)$ a.e., then $f_n \to f$ in measure.
- (b) If $f_n \in L^p(\mu)$ and $||f_n f||_p \to 0$, then $f_n \to f$ in measure; here $1 \le p \le \infty$.
- (c) If $f_n \to f$ in measure, then $\{f_n\}$ has a subsequence which converges to f a.e.
- (a) By Egorov's theorem, for every $\epsilon > 0$, let A_{ϵ} be a closed subset of X with $\mu(X \setminus A_{\epsilon})$ and $f_n \to f$ uniformly on A_{ϵ} . Then there is some N such that for all $n \geq N$ we have $|f(x) f_n(x)| < \epsilon$ for all $x \in A_{\epsilon}$. Thus

$$\mu(\{x: |f(x) - f_n(x)| > \epsilon\}) \le \mu(X \setminus A_{\epsilon}) < \epsilon.$$

This means that $f_n \to f$ in measure.

(b) Let $\epsilon > 0$. Let N be such that for all $n \ge N$, $||f - f_n||_p < \epsilon^{\frac{p+1}{p}}$. This means

$$\int_X |f - f_n|^p < \epsilon^{p+1}.$$

By Tchebychev's inequality and since $p \geq 1$, we get

$$\mu(\{|f - f_n| > \epsilon\}) = \mu(\{|f - f_n|^p > \epsilon^p\}) \le \frac{1}{\epsilon^p} \int_X |f - f_n|^p < \epsilon$$

for all $n \geq N$. The case when $p = \infty$ follows by definition, since $||f_n - f||_{\infty} \to 0$ means that $|f - f_n| < \epsilon$ almost everywhere.

(c) Consider the set

$$E_{n,\epsilon} = \{x : |f(x) - f_n(x)| > \epsilon\}.$$

Consider some subsequence $\{n_k\}$ such that $\mu(E_{n_k,1/2^k}) < 1/2^k$. Then since $\sum_k \mu(E_{n_k,1/2^k}) < \infty$, we can apply the Borel-Cantelli lemma to get $\mu(\limsup_k E_{n_k,1/2^k}) = 0$. This means that $f_n \to f$ almost everywhere, since $\limsup_k E_{n^k,1/2^k}$ is exactly the set where the functions do not converge.

Problem 6. What about the converse of 5a and 5b, i.e., we assume that $f_n \to f$ in measure then whether $f_n \to f$ a.e. or in L_p ? There is no need to consider the case $\mu(X) = \infty$.

In the previous problem we've shown that convergence almost everywhere implies convergence in measure and that L^p convergence implies convergence in measure. If convergence in measure implied either one of these, then convergence almost everywhere and L^p convergence would be the same which is not true. To see why, consider the functions f_n on (0,1) given by

$$f_n(x) = n\chi_{[0,1/n]}.$$

Then $f_n \to f$ almost everywhere, but $||f - f_n||_p = n^{1/p}$. Conversely the functions $f_n = \chi_{E_n}$ where $E_n = [a2^{-k}, (a+1)2^{-k}]$ for $n = 2^k + a$ converges in L^1 but not on X = (0,1).