Estructuras Discretas Examen 2 Sábado 11 de Noviembre de 2023

Profesor: Nestaly Marín Nevárez
Ayudantes de teoría: Eduardo Pereyra Zamudio
Ricardo López Villafán
Ayudantes de laboratorio: Edgar Mendoza León
David Valencia Rodríguez

Resuelve de manera limpia y ordenada los siguientes ejercicios. Indica claramente el número de pregunta que se esta resolviendo.

 $2\ puntos$

1. Decide, utilizando interpretaciones o *tableaux*, si el siguiente conjunto es satisfacible. En caso de serlo, da un modelo para el conjunto.

$$\Gamma = \{ \neg (p \to q), \neg (q \land r), r \leftrightarrow \neg p, \neg q \to (p \land \neg r) \}$$

2 puntos

2. Usando interpretaciones o *tableaux*, determina si el siguiente argumento es correcto. En caso de no serlo exhibe una interpretación que haga verdaderas a las premisas y falsa a la conclusión.

$$(r \lor u) \rightarrow s, r, s \rightarrow t/:: t \lor u.$$

4 puntos

3. Traduce el siguiente argumento a lenguaje formal y demuestra que es correcto usando derivaciones. Justifica la obtención de la expresión mostrada en cada paso: indica si es una premisa, una suposición, resultado de aplicar una regla de inferencia en una o más líneas anteriores (por ejemplo, MP 1, 2 para indicar obtención por medio de Modus Ponens con las líneas 1 y 2), o razomamiento ecuacional (RE).

Si Chubaka no es perro, entonces no es cierto que sea alado o que sea borogove. Si Chubaka es quelite, entonces es alado. Sabemos que Chubaka no es perro. Luego entonces, Chubaka no es quelite.

2 puntos

4. Construye la siguiente derivación. Justifica el proceso como en la pregunta anterior.

$$\vdash (\neg p \land q) \lor (p \land \neg q) \rightarrow (\neg p \land (\neg p \land q)) \lor (p \land (p \land \neg q))$$

1. Decide, utilizando interpretaciones o *tableaux*, si el siguiente conjunto es satisfacible. En caso de serlo, da un modelo para el conjunto.

$$\Gamma = \{ \neg (p \to q), \neg (q \land r), r \leftrightarrow \neg p, \neg q \to (p \land \neg r) \}$$

Interpretaciones:

comple $I(r \mapsto \gamma \rho) = 1$.

-Supongamos que existe una interpretación I que satisfare a Γ .

-Entonces tenemos $I(\tau(p\to q))=1$, por lo que $I(p\to q)=0$ y, en consecuencia, I(p)=1 mientras que I(q)=0. Esto basta para obtenen $I(q\wedge r)=0$, por lo que se cumple $I(\tau(q\vee r))=1$.

-Como $I(\tau q\to (p\wedge \tau r))=1$ e $I(\tau q)=1$, tenemos $I(p\wedge \tau r)=1$, por lo que $I(p)=I(\tau r)=1$ osí como $I(\tau p)=I(r)=0$. Esto implica que se

.. El conjunto Γ es satisfacible bajo el modelo: I(p)=1, I(q)=0, I(r)=0.

*Formato de lista:

1-
$$I(\tau(\rho \to q)) = 1$$
 Premisa
2- $I(\tau(q \land r)) = 1$ Premisa
3- $I(r \to \tau \rho) = 1$ Premisa
4- $I(\tau(q \to \tau \rho)) = 1$ Premisa
5- $I(\rho \to q) = 0$ Por 1
6- $I(\rho) = 1$ Por 5
7- $I(q) = 0$ Por 5
8- $I(\tau q) = 1$ Por 7
9- $I(\rho \land \tau r) = 1$ Por 9
10- $I(\rho) = 1$ Por 9
12- $I(r) = 0$ Por 1

La interpretación I(p)=1, I(q)=0, I(r)=0 es un modelo para todas las fórmulas de Γ .

:. El conjunto \(\Gamma\) es satisfacible

1. Decide, utilizando interpretaciones o *tableaux*, si el siguiente conjunto es satisfacible. En caso de serlo, da un modelo para el conjunto.

$$\Gamma = \{ \neg (p \to q), \neg (q \land r), r \leftrightarrow \neg p, \neg q \to (p \land \neg r) \}$$

· Construimos el tableau para la formula:

$$\frac{1(p \rightarrow q)^{\wedge} - (q \wedge r)^{\wedge} - p \rightarrow q}{1(p \rightarrow q)}$$

$$\frac{1(p \rightarrow q)}{p}$$

$$\frac{p}{q}$$

$$\frac{q}{q}$$

Ø

ρ | α(1)

-Quedan dos ramas

abiertas, ambas dan

el modelo:

 $I(\rho) = 1, I(q) = I(r) = 0.$

:. Tes satisfacible.

10 0 C S

7(9/1)

1. Decide, utilizando interpretaciones o tableaux, si el siguiente conjunto es satisfacible. En caso de serlo, da un modelo para el conjunto.

$$\Gamma = \{ \neg (p \to q), \neg (q \land r), r \leftrightarrow \neg p, \neg q \to (p \land \neg r) \}$$

*Construimos el tableau para la formula:

$$7(p\rightarrow q)^{\wedge} - (q \wedge r)^{\wedge} r \rightarrow q \wedge q \rightarrow (p \wedge r r)$$
 $7(p\rightarrow q)$
 $7(p\rightarrow$

 $2\ puntos$

2. Usando interpretaciones o *tableaux*, determina si el siguiente argumento es correcto. En caso de no serlo exhibe una interpretación que haga verdaderas a las premisas y falsa a la conclusión.

$$(r \lor u) \to s, r, s \to t/ \therefore t \lor u.$$

Metodo directo

1- $I(rvu \rightarrow s) = 1$ Premisa

2- I(r) = 1 Premisa

3- $I(s \rightarrow t) = 1$ Premisa

4- I(rvu) = 1 Por 2

5- I(s) = 1 Por 1_{y4} 6- I(t) = 1 Por 3_{y5} 7- I(t) = 1 Por G

-Logramos evaluor or 1 la conclusión con base en las suposiciones.

.. El argumento es correcto.

Metado indirecto 1- I (rvu →s)=1 Premisa 2-I(r)=1Premisa $3-I(s\to +)=1$ Premisa $4-I(+v_0)=0$ Refutación S - I(1) = 0Par 4 C = (S) = 0Por 543 7 - I(rvu) = 0Por 1,6 $\lambda - I(r) = 0$ Por 7.

- Se contradicen las líneas 2 y 8 al suponer que la conclusión es falsa.

.. El argumento es correcto.

2. Usando interpretaciones o *tableaux*, determina si el siguiente argumento es correcto. En caso de no serlo exhibe una interpretación que haga verdaderas a las premisas y falsa a la conclusión.

$$(r \lor u) \to s, r, s \to t/:: t \lor u.$$

- Construimos el tableau para la negación de la fórmula asociada al argumento:

$$= \begin{array}{c} \neg (rvv \rightarrow s \wedge r \wedge (s \rightarrow t) \rightarrow tvv) \\ \equiv rvv \rightarrow s \wedge r \wedge (s \rightarrow t) \wedge \neg (tvv) \\ \neg (tvv) \\ \neg t \\ \downarrow \\ rvv \rightarrow s \\ \neg (rvv) \\ s \rightarrow t \\ \otimes \\ s \rightarrow t \\ \otimes \\ \end{array}$$

.: El argumento es correcto.

3. Traduce el siguiente argumento a lenguaje formal y demuestra que es correcto usando derivaciones. Justifica la obtención de la expresión mostrada en cada paso: indica si es una premisa, una suposición, resultado de aplicar una regla de inferencia en una o más líneas anteriores (por ejemplo, MP 1, 2 para indicar obtención por medio de Modus Ponens con las líneas 1 y 2), o razomamiento ecuacional (RE).

Si Chubaka no es perro, entonces no es cierto que sea alado o que sea borogove. Si Chubaka es quelite, entonces es alado. Sabemos que Chubaka no es perro. Luego entonces, Chubaka no es quelite.

p: (hubaka es perro r: (hubaka es borogove q: (hubaka es alado s: (hubaka es quelite $\neg p \rightarrow \neg (q \lor r), s \rightarrow q, \neg p / : ... \neg s$

$$1 - \tau p \rightarrow \tau(q \vee r) \quad \text{Premisa}$$

$$2 - s \rightarrow q \quad \text{Premisa}$$

$$3 - \tau p \quad \text{Premisa}$$

$$4 - \tau(q \vee r) \quad \text{MP, 1,3}$$

$$5 - \tau q \wedge \tau r \quad \text{RE, 4}$$

$$6 - \tau q \quad \text{E}^{\lambda}, 5$$

$$7 - \tau s \quad \text{MT, 2,6}$$

.. El argumento es norrecto.

4. Construye la siguiente derivación. Justifica el proceso como en la pregunta anterior.

$$\vdash (\neg p \land q) \lor (p \land \neg q) \rightarrow (\neg p \land (\neg p \land q)) \lor (p \land (p \land \neg q))$$

1-
$$(πρλq) ∨ (ρλπq)$$
 Suposition
2- $πρλq$ Suposition
3- $πρλ$ $πρλ$