Digitális technika

XIII.

Sorrendi hálózatok tervezése Sorrendi hálózatok elemzése

13.1. Sorrendi (szekvenciális) hálózat

- időtől függ a hálózat viselkedése
- a kimenet nemcsak a bemenetektől függ, hanem a hálózat állapotától is
- A hálózat pillanatnyi állapotát viszont a régebbi állapotok és a bemeneti kombinációk határozzák meg → az állapotváltozók is logikai függvényekkel adhatók meg!
- A hálózati állapotok tárolására új változók bevezetése (a bemeneti és kimeneti mellé) → gyakori a Q, q vagy Q^{t+1}, Q^t (új állapot, régi állapot), több változó esetén sorszámozva (Q₁, Q₂, Q₃, ..., q₁, q₂, ...) vagy esetleg az Y, y (a kimenet ilyenkor más betűvel jelölve!) → elnevezésük állapotváltozók (vagy szekunder változók)
- két típusuk van ---> aszinkron és szinkron sorrendi hálózat

Az állapot megváltozása azonnal visszajut a bemenetre

Az állapot megváltozása csak meghatározott időpillanatokban juthat vissza a bemenetre → órajellel ütemezve!

13.1. Sorrendi (szekvenciális) hálózat

Szinkron sorrendi hálózatok felépítéséhez szinkron tárolókat kell használni

13.1. Sorrendi (szekvenciális) hálózat

Aszinkron sorrendi hálózatok felépíthetők hasonlóan aszinkron tárolókkal, vagy egyszerűen visszacsatolt kombinációs hálózattal

1. mintafeladat

Tervezd meg JK tároló felhasználásával!

Α	В	q	Q
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Meg kell határozni, hogy az adott sorokban lévő állapot átmenet ($q \rightarrow Q$) eléréséhez hogyan kell vezérelni a felhasználandó tároló bemeneteit (most J és K) \rightarrow a tároló állapotdiagramja adja a segítséget ! Ahol valamelyik bemenet 0 és 1 is lehet, az határozatlan ! \rightarrow x (vagy -)

JK tároló állapot diagramja:

JK 10

JK

10

K

X

X

Χ

1. mintafeladat, megoldás

A kitöltött állapot átmeneti tábla

1. mintafeladat, megoldás

vezérlési függvények

 $K = \overline{A}$

Most a kimenetről nincs q visszacsatolva (előfordul, hogy kiesik egyszerűsítéskor), De a JK tárolón belül van visszacsatolás!!

Kapcsolási rajz

2. mintafeladat

Tervezd meg a következő szinkron számlálót JK tárolók felhasználásával!

A számláló állapot diagramja: (bemenet most nincs! csak az órajel)

4 állapot → két tároló !!

állapot átmeneti tábla

q ₂	q1	Q ₂	Q1	J 2	K ₂	J ₁	K ₁
0	0	0	1	?	?	?	?
0	1	1	0	?	?	?	?
1	0	1	1	?	?	?	?
1	1	0	1	?	?	?	?

Kitöltésekor a tárolókat teljesen külön kell kezelni (függetlenek)

2. mintafeladat, megoldás

állapot átmeneti tábla

q ₂	q1	Q ₂	Q ₁	J 2	K ₂	J ₁	K ₁
0	0	0	1	?	?	?	?
0	1	1	0	?	?	?	?
1	0	1	1	?	?	?	?
1	1	0	1	?	?	?	?

JK tároló állapot diagramja:

q 2	Q2	J 2	K ₂	J_2	K ₂
0	0	?	?	0	X
0	1	?	?	1	X
1	1	?	?	X	0
1	0	?	?	X	1

q1	Q1	J ₁	K ₁	${\sf J}_1$	K:
0	1	?	?	1	X
1	0	?	?	X	1
0	1	?	?	1	X
1	1	?	?	X	0

2. mintafeladat, megoldás

állapot átmeneti tábla

2. mintafeladat, megoldás

vezérlési függvények

$$J_2 = K_2 = q_1$$

$$J_1 = 1$$

$$K_1 = \overline{q}_2$$

2. mintafeladat, megoldása másképp

az előző feladat megoldása D tárolókkal

állapot átmeneti tábla

q ₂	q1	Q2	Q1	D ₂	D ₁
0	0	0	1	?	?
0	1	1	0	?	?
1	0	1	1	?	?
1	1	0	1	?	?

q 2	Q2	D ₂	D ₂
0	0	?	0
0	1	?	1
1	1	?	1
1	0	?	0

q1	Q1	D1
0	1	?
1	0	?
0	1	?:
1	1	?

D tároló állapot diagramja:

Amilyen értékű az új állapot (Q) olyan értéket kell a D bemenetre adni

2. mintafeladat, megoldása másképp

megoldás D tárolókkal

q ₂	q1	Q2	Q1	D ₂	D ₁
0	0	0	1	0	1
0	1	1	0	1	0
1	0	1	1	1	1
1	1	0	1	0	1

vezérlési függvények

$$D_1 = \overline{q}_1 + q_2$$

$$D_2 = \overline{q}_1 * q_2 + q_1 * \overline{q}_2$$

vezérlési táblák

 D_1

 D_2

q1

q2

q1

Q1***Q**2

2. mintafeladat, megoldása másképp

$$D_1 = \overline{q}_1 + q_2$$

$$D_2 = \overline{q}_1 * q_2 + q_1 * \overline{q}_2 \rightarrow XOR \text{ kapcsolat } !$$

Kapcsolási rajz

13.4. Gyakorló feladatok

1. Add meg az alábbi működésű tároló állapot diagramját

Α	В	Qt	Q ^{t+1}
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

* Tervezd meg D tároló felhasználásával!

2. Add meg az alábbi működésű tároló igazságtáblázatát

* Tervezd meg T tároló felhasználásával!

13.4. Gyakorló feladatok

1. Megoldás. Add meg az alábbi működésű tároló állapot diagramját

* Tervezd meg D tároló felhasználásával!

D tároló esetén Q^{t+1} = D !! ezért úgy kell vezérelni, hogy D legyen egyenlő Q^{t+1} értékével

Α	В	Qt	Q ^{t+1}	D	
0	0	0	1	?	
0	0	1	0	?	
0	1	0	1	?	
0	1	1	0	?	
1	0	0	1	?	
1	0	1	1	?	
1	1	0	0	?	
1	1	1	1	?	

13.4. Gyakorló feladatok

1. Megoldás. Megvalósítás D tárolóval

				A^*Q^t $A^*\overline{B}$
Α	В	Q ^t	D	vezérlési Ot 00 01 11 10
0	0	0	1	tábla Q ^t 00 / 01 11 10 /
0	0	1	0	
0	1	0	1	
0	1	1	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1	0	0	1	$D = A*\overline{B} + \overline{A}*\overline{Q}^{t} + A*Q^{t}$
1	0	1	1	В —
1	1	0	0	
1	1	1	1	
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

A folyamat, a lépések hasonlók mint szinkron hálózatok esetén

- de nincs órajel!
- megvalósítás aszinkron tárolókkal, vagy egyszerűen visszacsatolt kombinációs hálózattal

1. mintafeladat

Az alábbi ütemdiagrammal megadott sorrendi hálózat megvalósítása RS tárolóval Az ütemdiagram az idő diagramhoz hasonló, de itt vonal jelzi az 1-es és a vonal hiánya a 0-s szintet

1. mintafeladat

1. mintafeladat

Állapot átmeneti tábla

Α	В	q	Q	S	R
0	0	0	0	0	_
0	0	1	0	0	1
0	1	0	0	0	_
0	1	1	1	_	0
1	0	0	1	1	0
1	0	1	1	_	0
1	1	0	0	0	_
1	1	1	1	_	0

 $R = \overline{A} * \overline{B}$

1. mintafeladat

Kapcsolási rajz

$$S=A*\overline{B}$$
 $R=\overline{A}*\overline{B}$ $Z=\overline{q}*A$

1. mintafeladat, b. verzió

Megoldás visszacsatolt kombinációs hálózattal → kiindulás közvetlenül az állapottáblából (és a kimeneti táblából)

2. minta feladat: kapuzott D tároló tervezése

C – clock ---> órajel bemenet (vagy G, gate)

igazságtáblázata

С	D	q	Q
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

stabil állapotok → lehet aszinkron is, mert minden bemeneti kombinációhoz tartozik stabil állapot

kapuzott D tároló tervezése

13.6. Gyakorló feladatok

1. Add meg az alábbi működésű tároló igazságtáblázatát

* Tervezd meg aszinkron hálózatként! (visszacsatolt kombinációs hálózattal)

2. Add meg az alábbi működésű tároló igazságtáblázatát

* Tervezd meg aszinkron hálózatként, aszinkron SR tárolóval!

13.6. Gyakorló feladatok

1. Megoldás. Add meg az alábbi működésű tároló igazságtáblázatát

13.6. Gyakorló feladatok

1. Megoldás. Megvalósítás visszacsatolt kombinációs hálózattal

Megvalósítható, mert minden oszlopban van stabil állapot

$$Q^{t+1} = E^*\overline{F} + \overline{E}^*F + \overline{E}^*Q^t$$

1. mintapélda

az alábbi szinkron szekvenciális hálózat elemzése

- a tárolók bemeneteinek vezérlési függvényei
- állapot-átmeneti tábla

1. mintapélda, megoldás

Állapot átmeneti tábla

- kitöltése a vezérlési függvények alapján
- bekapcsoláskor a kezdeti állapot → QA=Qc=0 és QB=1 (kondenzátor egy rövid ideig rövidzár, a feltöltődéséig !)

Kezdés →

qΑ	q в	q c	JA	Ka	J в	Кв	Jc	Kc	QΑ	Qв	Q c
0	0	0	?	? 1	?	?	?	?	?	?	?
0	0	1	?	? 1	?	?	?	?	?	?	?
0	1	0	? 1	?1	? 1	? 1	? 1	? 1	? 1	? 0	? 1
0	1	1	?	? 1	?	?	?	?	?	?	?
1	0	0	?	? 1	?	?	?	?	?	?	?
1	0	1	?	? 1	?	?	?	?	?	?	?
1	1	0	?	?1	?	?	?	?	?	?	?
1	1	1	?	? 1	?	?	?	?	?	?	?

$$J_A = q_B$$

$$K_A = 1$$

$$J_B = K_B = \overline{q}_A + \overline{q}_C$$

$$J_C = K_C = q_B$$

qaqbqc = 010
Ja =1
Jb = Kb =
$$\overline{0}$$
 + $\overline{0}$ = 1
Jc = Kc = 1

$$U$$
j állapotok számítása
qaqbqc = 010
qa = 0 Ja = Ka = 1 → Qa= 1
qb = 1 Jb = Kb = 1 → Qb= 0
qc = 0 Jc = Kc = 1 → Qc= 1

1. mintapélda, megoldás

A többi sor kitöltése hasonlóan:

- az aktuális állapotokat behelyettesítve a függvényekbe megkapjuk a bemenetek értékeit
- egy tároló új állapota pedig a jelenlegi állapota és a bemenetei alapján számítható

QΑ	q в	qc	JA	KA	J в	Кв	J c	Kc	QΑ	Qв	Qс
0	0	0	?	? 1	?	?	?	?	?	?	?
0	0	1	?	? 1	?	?	?	?	?	?	?
0	1	0	1	1	1	1	1	1	1	0	1
0	1	1	?	? 1	?	?	?	?	?	?	?
1	0	0	?	?1	?	?	?	?	?	?	?
1	0	1	? 0	?1	? 0	? 0	? 0	? 0	? 0	? 0	? 1
1	1	0	?	? 1	?	?	?	?	?	?	?
1	1	1	?	?1	?	?	?	?	?	?	?

Következő →

$$J_A = q_B$$

$$K_A = 1$$

$$J_B = K_B = \overline{q}_A + \overline{q}_C$$

$$J_C = K_C = q_B$$

qaqbqc = 101

$$J_A = 0$$

 $J_B = K_B = \overline{1} + \overline{1} = 0$
 $J_C = K_C = 0$

$$\begin{array}{l} \underline{\text{Uj állapotok számítása}} \\ \text{qaqbqc} = 101 \\ \text{qa} = 1 \quad \text{Ja} = 0 \quad \text{Ka} = 1 \quad \rightarrow \quad \text{Qa} = 0 \\ \text{qb} = 0 \quad \text{Jb} = \text{Kb} = 0 \quad \rightarrow \quad \text{Qb} = 0 \\ \text{qc} = 1 \quad \text{Jc} = \text{Kc} = 0 \quad \rightarrow \quad \text{Qc} = 1 \end{array}$$

1. mintapélda, megoldás

Következő →

qа	Q в	qc	JA	KA	J в	Кв	J c	Kc	Qa	Qв	Qс
0	0	0	?	? 1	?	?	?	?	?	?	?
0	0	1	?0	?1	? 1	? 1	? 0	? 0	?0	? 1	? 1
0	1	0	1	1	1	1	1	1	1	0	1
0	1	1	?	? 1	?	?	?	?	?	?	?
1	0	0	?	? 1	?	?	?	?	?	?	?
1	0	1	0	1	0	0	0	0	0	0	1
1	1	0	?	? 1	?	?	?	?	?	?	?
1	1	1	?	? 1	?	?	?	?	?	?	?

$$q_Aq_Bq_C = 001$$

$$J_A = q_B = 0$$

$$J_B = K_B = \overline{q}_A + \overline{q}_C = \overline{0} + \overline{1} = 1$$

$$J_C = K_C = q_B = 0$$

qaqbqc = 001
qa = 0 Ja = 0 Ka = 1
$$\rightarrow$$
 Qa = 0
qb = 0 Jb = Kb = 1 \rightarrow Qb = 1
qc = 1 Jc = Kc = 0 \rightarrow Qc = 1

1. mintapélda, megoldás

Tovább számolva, 011 állapot után 100 jön majd újra 010 (kezdő állapot)

qа	q в	qc	JA	KA	J в	Кв	Jc	Kc	QA	Qв	Q c
0	0	0	?	? 1	?	?	?	?	?	?	?
0	0	1	0	1	1	1	0	0	0	1	1
0	1	0	1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	0	0
1	0	0	. 0	1	1	1	0	0	0	1	0
1	0	1	0	1	0	0	0	0	0	0	1
1	1	0	?	? 1	?	?	?	?	?	?	?
1	1	1	?	? 1	?	?	?	?	?	?	?

Állapot diagram

1. mintapélda, megoldás

A teljes állapot diagramhoz a maradék 3 állapot átmenet kiszámolására is szükség van

qа	q в	qc	JA	KA	J в	Кв	Jc	Kc	Qа	Qв	Q c
0	0	0	0	1	1	1	0	0	0	1	0
0	0	1	0	1	1	1	0	0	0	1	1
0	1	0	1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	0	0
1	0	0	. 0	1	1	1	0	0	0	1	0
1	0	1	0	1	0	0	0	0	0	0	1
1	1	0	1	1	1	1	1	1	0	0	1
1	1	1	1	1	0	0	1	1	0	1	0

1. minta feladat: számláló áramkör tervezése

Tervezzünk 2 bites számlálót, amely felfelé számol (00 \rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 00 \rightarrow ..) ha az U vezérlő bemenet 1-es, és visszafele számol ha U=0 értékű

állapotdiagram

4 állapot van → 2 állapotváltozó (Q1 és Q2)

Igazságtáblázata (állapotátmeneti tábla)

U	q 2	q1	Q ₂	Q1
0	0	0	1	1
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	1
1	1	1	0	0

- a. megtervezése JK tárolókkal!
- b. megtervezése D tárolókkal!

1. mintafeladat, a. megoldás

JK tárolók vezérlési függvényeinek meghatározása

U	q 2	q1	Q2	Q ₁	J ₂	K ₂	J_1	K ₁
0	0	0	1	1	?	?	?	?
0	0	1	0	0	?	?	?	?
0	1	0	0	1	?	?	?	?
0	1	1	1	0	?	?	?	?
1	0	0	0	1	?	?	?	?
1	0	1	1	0	?	?	?	?
1	1	0	1	, 1	Х	0	1	Х
1	1	1	0	0	?	?	?	?

Hogyan kell vezérelni a tárolók bemeneteit, hogy a kívánt állapot átmenetek jöjjenek létre ?

 $q_2 \rightarrow Q_2$ és $q_1 \rightarrow Q_1$ állapot változásokat most egymástól függetlenül kell vizsgálni !!

pl. $q_2 \rightarrow Q_2$ nem változik ($1 \rightarrow 1$) \rightarrow hogyan vezéreljük J_2 és K_2 bemeneteket ? és $q_1 \rightarrow Q_1$ állapot változik ($0 \rightarrow 1$) \rightarrow hogyan vezéreljük J_1 és K_1 bemeneteket ? Megoldás $\rightarrow K_2 = 0$ és $J_2 = b$ ármi, $K_1 = b$ ármi és $J_1 = 1$

1. mintafeladat, a. megoldás

JK tárolók vezérlési függvényeinek meghatározása

vezérlési táblák

1								O	2 Q 1					
	U	q 2	q1	Q ₂	Q ₁	J ₂	K ₂	J ₁	K1	J_1 U	00	01	11	10
	0	0	0	1	1	1	Х	1	X	(J			1
	0	0	1	0	0	0	Х	X	1	1—) [1	X	Х	1
	0	1	0	0	1	X	1	1	X	<u></u>	L 1	V	V	1
	0	1	1	1	0	X	0	X	1			X	Х	_L
	1	0	0	0	1	0	X	1	X	K ₁	2 Q 1			
	1	0	1	1	0	1	Х	X	1	U	00	01	11	10
	1	1	0	1	1	Х	0	1	X	(1	1	
	1	1	1	0	0	X	1_	Х	1	1 —) X			Х
J_2										-	L	1	1	Х
J ₂	q 2 q 1								IZ.		*			
U		00	01	. 1	1 :	10	_		K ₂	g ₂ q ₁ 00	01	11	10	
	0 1	1			$x \mid$	Χ -	- -			K	-:1		T ::	}
			,				<u></u> `	О Ч ¹		0 '` X	X	0	1 -	$\overline{U}^*\overline{q}_1$
	1	0	1		x	X				1 🔻		1		
			1		!			J*∩₁		T X	Х	1	0	U*q1

1. mintafeladat, a. megoldás

vezérlési függvények
$$J_2 = K_2 = \overline{U}^*\overline{q}_1 + U^*q_1$$

$$J_1 = K_1 = 1$$

Kapcsolási rajz

1. mintafeladat, b. megoldás (D tárolókkal)

D tárolók vezérlési függvényeinek meghatározása

