线 实 验 报 쏨

学院: 电子信息与通信学院

班级: 电信 2005 班

姓名: 张智博

学号: <u>U202011950</u>

实验时间: 2021 年 10 月 18 日~25 日

目录

一、		实验名称1
二、		实验目的1
三、		实验元器件1
四、		实验任务1
	1.	研究电压跟随器的作用1
	2.	反向比例加法电路2
	3.	积分电路2
五、		实验原理2
	1.	反向比例加法/减法运算电路2
	2.	积分运算电路3
六、		实验过程4
	1.	电压跟随器实验4
	2.	反向比例加法运算电路实验6
	3.	比例积分电路实验8
七、		实验分析10
Λ.		实验总结

第一次实验: 电子仪器使用与基本运算电路

一、实验名称

电子仪器使用与基本运算电路。

二、实验目的

- 1. 仪器的使用方法
- 2. 信号参数的意义与测量方法
- 3. 简单模拟电路搭建与测试方法。
- 4. 模拟电路参数指标与测量方法
- 5. 测试数据的处理方法
- 6. 基本运算电路工作原理
- 7. 使用示波器 DC、AC 输入方式观察波形的方法。

三、实验元器件

名称	型号(参数)	数量	
集成运算放大器	NE5532	1	
	100Ω	1	
	500Ω	1	
电阻	1ΚΩ	2	
七 压	5. 1ΚΩ	1	
	10ΚΩ	1	
	100ΚΩ	1	
电容	0. 22μF	1	

四、实验任务

1. 研究电压跟随器的作用

(1)按图 a 连接电路。

断开开关 K。输入 f=1kHz, $V_{ipp}=1V$ 的正弦信号,用示波器观察输出波形。闭合开关 K。观察输出波形的变化情况。

分别记录 K 闭合前、后信号源输出信号的峰-峰值, 计算信号源的内阻 R_s, 并解释 100Ω负载电阻连接到信号源上产生的负载效应。

(2) 按图 b 连接电路。

仍然从信号源送出频率为 1kHz、峰峰值为 1V 的正弦信号,用示波器观察输入、输出波形(幅值与相位关系)。分别记录接上 R_L和去掉 R_L,两种情况下输出信号 v。的大小,并解释观察到的实验现象。

图a

图 b

2. 反向比例加法电路

- (1) 按照图 c 在面包板上组装电路。电阻值取 R_r =100k Ω , R_t =10k Ω , R_2 = 5. 1k Ω , 安装电阻前先用万用表测试电阻值填入表 a 中。
- (2) 按照图 c 连接分压电路, 其中 R_{s1} = R_{s2} = $1k\Omega$. 将 v_1 和 v_2 连至图 c 对应输入端。
- (3) 检查无误后接通电源。从信号源送出频率为 1kHz、峰-峰值为 300mV 的正弦信号。用示波器测得 v₁、v₂和 v₆。 填入表 a 中,并记录它们的波形。

图c

表a

3. 积分电路

按照图 d 在面包板上组装电路。取 R_i =10k Ω , R_i =100k Ω , C=0. 22μF, R_p = 10k Ω , 输入 f=200Hz, 峰峰值为 1V 的正方波。用示波器测试 v_i 和 v_o ,并画出其波形。

图 d

五、实验原理

1 反向比例加法/减法运算电路

反向比例加法运算电路和反向比例减法运算电路可以通过如图 e 所示的一个单刀双掷开关电路实现,且改变电位器 R_p的阻值可以得到不同的翰入电压 v_i、

 v_{i2} , 测得多组数据。当开关置上时,此电路为反向比例加法运算电路。此时应有 $R_3=R_1//R_2//R_F=R//R//R_F=5.1k\Omega$,输出电压 $v_o=-\frac{R_F}{R}(v_{i1}+v_{i2})$ 。其中 R_3 是直流补偿电阻,目的是减小运算放大器偏翌电流产生的不良影响。

当开关置下时,此电路为反向比例减法运算电路。此时应有直流补偿电阻 $R_3=R_F=100$ kΩ,输出电压 $v_o=\frac{R_F}{P_F}(v_{i2}-v_{i1})$,此电路有较高的共模抑制能力。

当 R_1 , R_2 不相等时, 有 $v_o = -\left(\frac{R_F}{R_1}v_{i1} + \frac{R_F}{R_2}v_{i2}\right)$

2. 积分运算电路

积分运算电路的电路图如图 f 所示,当运算放大器开环电压增益足够大,且 R_r 开路时,可认为 $i_R=i_C$,其中 $i_R=\frac{v_i}{R_1}$, $i_C=-C\frac{dv_o(t)}{dt}$ 。设 t=0 时,电容器两端初始电压 $v_o(0)$,则 $v_o(t)=\int_0^t v_1(t)dt+v_o(0)$ 。当 $v_o(0)=0$ 且输入信号 $v_i(t)$ 为辐度为 V_i 的直流电压时, $v_o(t)=-\frac{1}{R_1C}\int_0^t V(t)dt+v_o(0)=-\frac{1}{R_1C}V_it$,此时输出电压 $v_o(t)$ 的波形是随时间线性下降的,当输入信号为正方波时,输出电压的稳态波形如图所示。

实际电路中,反馈电阻 R_f 用于直流负反馈,目的是减小集成运算放大器输出端的直接漂移,且其阻值必须取得大一些,防止电路变成一阶低通滤波器。但同时 R_f 的加入会对电容 C 产生分流作用,进而导致积分误差。因此,一般选用的元器件应满足 $R_fC>>R_IC$,以减小误差。

图 f

六、实验过程

所有实验按照上述电路图连接实物电路,集成运算放大器的供电电源电压选用±12V。

1. 电压跟随器实验

直接连接电路中, v_i 端接入频率为 1kHz、峰-峰值为 1V 的正弦信号。不接负载 R_L (K 断开)时,用示波器观测 v_i 波形并填入下表中;接入负载 R_L (K 闭合)时,用示波器观测 v_i 波形并填入下表中。然后在通过电压跟随器连接的电路中,接入同样的信号源,测量接入及不接入负载 R_L 时的 v_i 和 v_o .填入下表。

	不接 R∟		接入 R _L		· 计算 R _s
	V_{ipp}/V	V_{opp}/V	v_{ipp}/V	V_{opp}/V	≠ K s
无电压跟随器	0. 91	_	0. 60	_	52Ω
有电压跟随器	0. 88	0. 86	0.88	0. 90	_

图 1 不接 RL 无电压跟随器 Vipp

图 2不接RL有电压跟随器 Vipp

图 3接入RL无电压跟随器 Vipp (蓝) Vopp (黄)

图 4接入RL有电压跟随器 Vipp (蓝) Vopp (黄)

2. 反向比例加法运算电路实验

研究反向比例加法运算电路,在 v_i 端接入频率为 1kHz、峰峰值为 300mV 的正弦波,直流偏置置零。示波器的两通道 CH1、CH2 分别接 v_i 、 v_2 和 v_i 、 v_o ,调节电位器以获取不同的测量电压值,记录测量数据如下:

	实测值			理论值	相对	
	v_{1pp}/mV	v_{2pp}/mV	V _{opp} /V	V _{opp} /V	误差	
R _{s2} =1K Ω	298	158	5. 44	5. 94	9. 19%	
R _{s2} =500 Ω	284	89	4. 60	4. 96	7. 82%	
实测电阻值	R_1 =9.84 K Ω , R_2 =5.06 K Ω , R_F =97.8 K Ω					

图 5 R_{s2} =1K Ω 时 v_{1pp} (黄) v_{2pp} (蓝)

图 6 R_{s2} =1K Ω 时 v_{1pp} (黄) v_{opp} (蓝)

图 7 R_{s2}=500 Ω 时 V_{1pp} (黄) V_{2pp} (蓝)

图 8 R_{s2} =500 Ω 时 v_{1pp} (黄) v_{opp} (蓝)

3. 比例积分电路实验

取 R_i =10k Ω , R_i =100k Ω , C=0. 22μF, R_i = 10k Ω , v_i 输入 f=200Hz, 峰峰值为 1V 的 正方波。用示波器测试输入 v_i 和输出 v_o , 并画出其波形。

图 9 输入输出波形 v; (蓝) v。(黄)

图 10 手绘记录输入输出波形 vi、v。

七、实验分析

经计算,反向比例加减法运算电路实测值与理论值相比较实验误差绝对值在10%以内,基本满足本实验精度要求,实验步骤正确无误,电路正常工作。

八、实验总结

通过本次实验,基本可以熟练安装、调试由运放构成的基本运算电路,这些基本电路又可以作为单元电路组成多级电子电路,基本掌握了它们的工作原理。同时实验考验了耐心和细心。

由于导线接触不良、电路连接不规范导致在实验过程中浪费了大量时间,应在以后的实验中多加注意以避免。