(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 26 September 2002 (26.09.2002)

PCT

(10) International Publication Number WO 02/074986 A2

(51) International Patent Classification⁷: C07K 14/47, C12N 15/85, 5/10

C12Q 1/68,

(21) International Application Number: PCT/EP02/03013

(22) International Filing Date: 19 March 2002 (19.03.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/278,670 60/282,463 21 March 2001 (21.03.2001) US 10 April 2001 (10.04.2001) US

(71) Applicant (for all designated States except US): EXON-HIT THERAPEUTICS S.A. [FR/FR]; 26, rue Brunel, F-75017 Paris (FR).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): RESINK, Annelies [NL/FR]; 48, rue Bobillot, F-75013 Paris (FR). FUENTES, Nathalie [FR/FR]; 4, rue Marc Sangnier, F-94270 Kremlin Bicetre (FR). SCHWEIGHOFFER, Fabien [FR/FR]; 38, avenue Paul Déroulède, F-94300 Vincennes (FR).
- (74) Agents: BECKER, Philippe et al.; Becker et Associes, 10, rue de Milan, F-75009 Paris (FR).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

of inventorship (Rule 4.17(iv)) for US only

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: AN EARLY PRE-SYMPTOMATIC PRION DIAGNOSTIC BLOOD TEST FOR ENCEPHALOPATHIES

(57) Abstract: This invention relates to compositions and methods of detecting encophalopathies in a subject. This invention also relates to genetic markers, nucleic acid preparations or libraries, and kits for use in the implementation of said detection methods. The compositions and methods of this invention can also be used for the diagnosis, characterization, progression monitoring, etc. of encophalopathies, including at carly stages thereof, particularly Transmissible Spongiform Encephalopathies (TSE), including Bovine Spongiform Encephalopathies (BSE, "Mad Cow Disease").

AN EARLY PRE-SYMPTOMATIC PRION DIAGNOSTIC BLOOD TEST FOR ENCEPHALOPATHIES

This invention relates to compositions and methods of detecting encephalopathies in a subject. This invention also relates to genetic markers, nucleic acid preparations or libraries, and kits for use in the implementation of said detection methods. The compositions and methods of this invention can also be used for the diagnosis, characterization, progression monitoring, etc. of encephalopathies, including at early stages thereof, particularly Transmissible Spongiform Encephalopathies (TSE), including Bovine Spongiform Encephalopathies (BSE, "Mad Cow disease").

Encephalopathies, more particularly Transmissible Spongiform Encephalopathies (TSEs) consist of a unique group of invariably fatal neurological disorders, which affect both human and animals and which are characterised by long presymptomatic incubation periods of months or years, and brain lesions associated with deposits of protease-resistant proteins. The nature of the infectious agent has not been definitively determined, although the predominant theory is that a previously unrecognised pathogenic agent called a prion, an abnormally folded protein, is responsible.

One of the most common form is Bovine Spongiform Encephalopathies (BSE), which affects cows and cause the "Mad Cow" disease. There is a new urgency in the efforts to determine the scale of the BSE epidemic and to safeguard public health. The EU (European Union) agreed last December to the systematic BSE diagnostic testing of all slaughtered cattle older than 30 months. Since BSE-incubation time in cattle is around five years, during which infection can probably be spread by lateral and vertical transmission, the development of an early presymptomatic test in living animals is of vital importance. Such a pre-clinical

diagnostic test will offer a means to reliably exclude infected animals from the human food chain. Furthermore, the infectious BSE agent can infect sheep and goats, including genotypes resistant to the sheep-specific TSE agent. This latter observation signals a need for pre-clinical testing program of BSE in sheep flocks in order to prevent further human food contamination. So far, the only test available to identify the presence of BSE infection prior to clinical manifestations of the disease is a bioassay consisting of the injection of contaminated brain tissue into mice followed by the observation of disease development. Because this bioassay takes months to finish, it is an impractical tool for systematic testing.

As of November 2000, a total of 180,000 cows were found to be infected in United Kingdom and an additional 1,500 in Ireland, Portugal, Switzerland, Germany, Italy, Spain and France. Approximately 320,000 diagnostic tests have been performed to date using three products (from three companies) approved by the EU. The average cost per test is \$23 (ranging from \$15 to \$30), not including the cost of obtaining the brain tissue sample. The EU is evaluating five other BSE tests, but like the three tests that are already approved, they cannot be performed until the animal is slaughtered. The EU has ordered that mandatory BSE testing begin in July 2001 for seven million slaughtered cows annually and it is expected that a total of 10 million tests will be sold and administered over the coming year.

There is thus a need for new methods of detecting encephalopathies, particularly methods that can be performed on living animals, are rapid, and preferably, can detect the pathology at pre-symptomatic stage. It is the object of this invention to provide such a pre-symptomatic blood test for encephalopathies, particularly for TSE, including BSE, in a mammal. The invention allows to readily test potentially every animal at risk, optionally multiple times, during the life of the animal. This invention also relates to genetic markers, nucleic acid preparations or libraries, and kits for use in the implementation of said detection methods.

3

Applicants have created a pre-symptomatic diagnostic test in easily accessible body fluids of living animals. Applicants have undertaken an extensive research and development program using an innovative approach to identify new markers for TSE. These and other aspects represent objects of the present application.

5

10

This invention thus relates to a method of detecting the presence of an encephalopathy in a subject, the method comprising (i) collecting or providing a biological sample containing nucleic acids from the subject, typically a fluid sample (e.g., blood, serum, saliva, urine, etc.), although other tissue or cell sample may be used as well, and (ii) contacting said sample with at least a nucleic acid molecule comprising the sequence of all or part of a sequence selected from SEQ ID Nos 1-15 or a sequence complementary thereto, under conditions allowing hybridisation to occur, and (iii) determining the presence of such hybrids, the presence of hybrids indicating the presence of an encephalopathy in the subject.

15

This invention also relates to a method of determining or detecting subject (e.g., a mammal) at risk of developing an encephalopathy, the method comprising (i) collecting or providing a biological sample containing nucleic acids from the mammal, typically a fluid sample (e.g., blood, serum, saliva, urine, etc.), although other tissue or cell sample may be used as well, and (ii) contacting said sample with at least a nucleic acid molecule comprising the sequence of all or part of a sequence selected from SEQ ID Nos 1-15 or a sequence complementary thereto, under conditions allowing hybridisation to occur, and (iii) determining the presence of such hybrids, the presence of hybrids indicating a risk of developing an encephalopathy in the mammal.

25

20

The nucleic acid may be immobilized on a support, such as a chip, filter, membrane, glass slide, etc. The contacting step may comprise any combination of the above sequences and, typically, uses at least two, preferably at least 3.

4

In a first variant, the contacting step above comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:1 or a functional equivalent thereof or a sequence complementary thereto.

5 SEQ ID NO: 1 NE206922 Preproelastase

> CCCCAGAGAGGAGCCGAAGCTCACGATGCCATGCACCTGCCACTGGCCATTAGATGCCCG GCAATTCAGTGGTCCGCCAGAGTCCCCATTGCAGCTGGAGGTCACGCCGTCGCCACCAGC GCACACCATGCTGGACTTCACAGAGCTTCCCCACCAGCTAGCGCTGGAGCAGGTGGCATA GTCCACAACCAGCAGGCGGCCCTGCCTCAGGGTGTCAGGACTGTTCCCATTGGTCTGCAG CAGGCCCAGCCTGTGACATAGCAGACATAGTTTCTCGGGAGAATGGTGCCAGCGGGTGG GAGGCAAGCTGTCTGGAT

In a further variant, the contacting step above comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:2 or a functional equivalent thereof or a sequence complementary thereto.

SEQ ID NO: 2

20 NE206230 Chymotrypsin-like protease

ATGGACCAGGGGTAGAACAACTTGCTGCAGGCGAGCTGGTGTCACATTGCCCACACCACT GATTCGGCCCCAGCCAGTGGTGACACAGGTGAGCCCCGAAGGCAGTGCCTCGTTTGTGGA AGCCAGGCAGACTGGTGAGACTTGTGCTGTGTACCGGGCTGGCGAGGCAAGCTTCAGGAG AGTCAGGTCATTGTTCATGGTGTTGGCGTTCCAGTTAGGGTGGC

In a further variant, the contacting step above comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:3 or a functional equivalent thereof or a sequence complementary thereto.

30

25

10

SEQ ID NO: 3 NE212490 Unknown

- CGGTGGCAAGTCGGGTTCCAGGTCCATGAAGCCCCCGGGAGGAGAATCGAGCGATCTTTT

 CGGAAGTCCAGAAGAAGGTATTTCTTCAAGCAAGCCTAATAGGATGGCATCTAATATTTT

 CGGACCAACTGAAGAACCTAAAAACATACCCAAGAGGACAAATCCTCCAGGAGGCAAAGG

 AAGTGGGATCTTTGATGAATCGACTCCTGTGCAAACTCGACAACGTTTGAATCCACCAGG

 GGGGAAGACCAGTGACATATTTGGGTCCCCAGTCCT
- In a further variant, the contacting step above comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:4 or a functional equivalent thereof or a sequence complementary thereto.

SEQ ID NO: 4

NE212911 Chymotrypsinogen

5 CAACAGACACAGTCTCAGAGAACTGGGCAGGAGTGGCCAGCTTCAGCAGGGTGATGTCAT
TACGCACGGTGAAGGAGTTGAACTTGGGGTTCTTAAAAACCTGAGCGATTTTCAGGACCT
GGACATTCTCTTCGTCGGAGCCCTGATCAAACTCTCCAGCTACCACCACATCGGTTGTCT
TGACCCCGCAGTGGGCAGCAGTGACCACCCAGTTTTCGCTGATGAGGGAGCCCCCGCAGA
AATGGAAGCCAGTTCTGTCCTGCAGGGACACCTGCCAGGGCCAGGAGCCAGGGATAGCAT
CCT

In a further variant, the contacting step above comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:5 or a functional equivalent thereof or a sequence complementary thereto.

15

35

SEQ ID NO: 5

NE211662 Amylase-2

GTCTTGGTGGTCCAATCCAGTCATTCTGATCTTTTCCTTCTGGAAATTTCTATTCCAACG

20 GTAACTCGACATTACTCTTGTGAATCCATAAGGATGAGCCNTCATAAATCCGACAGCCAT
TTTATACATT

In a further variant, the contacting step above comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ

25 ID NO:6 or a functional equivalent thereof or a sequence complementary thereto.

SEO ID NO: 6

NE216391 Kinase substrate HASPP28

30 GGGTGGCCTCGAACTCAGAAATCCGCCTGCCTCTGCCTCCCGAGTGCTGGGATTAAAGGC GTGGCCACCACGCCCGGCTTTGCATGCTTTATTTCTTGTGGAATAACTGACACCCAAGTT CTCCTTCAGAAGCTTCAGCCAAGCCCACCTTGAGGAACAAGACGAGGACACATGATGGGT GAGACATGGCAGAGGTCCTGGCGGCACGGCCCAGTTCCCCGGCATCTCCTCCCACAGGCC AGCTACTTATTCAGGGACAGCGACTG

In a further variant, the contacting step above comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:7 or a functional equivalent thereof or a sequence complementary thereto.

40 SEQ ID NO: 7

NE208331 Carboxyl ester lipase

CGTGGACGATGGCTAAGTACCGGTCTACAGCTATACAGGCCAGCAGCAGCTGCTGCAGT AGAAATTGATCTTGTGCAGAGCGATCACAGTTTTGCAGAGGAAGGTCCCTAGGACCCAAC

In a further variant, the contacting step above comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:8 or a functional equivalent thereof or a sequence complementary thereto.

10

5

SEQ ID NO: 8 NE228092 Unknown

GGATGCATTTGAACTGATAAGGACTAGGTAGAACTGAAGGGCTAGATGGAATGTTACGGC

15 CTAGGTATAACGTTAAGCCTAAGTAACTCTTACGTGGCTAGCCTGCCATTTTGCGCTGTT

ACTAGTATTATAAGGAAACTTCCTTATGTGCAAGTTGATTGCATATTCTCTTAAATTCTT

TGCTCTTGGAAACTGAGCACAACAGAGGTTAGTTAGAACTGCTCTGTATAGTTAGCCAAA

ATGAGCTTTGACCCAATCAGCCAATCAGCAGCACTTCTGCATATGTGTAAAGCTTGTATG

GTATCTGCTTTTATAAGCTG

20

30

35

In a further variant, the contacting step above comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:9 or a functional equivalent thereof or a sequence complementary thereto.

25 SEQ ID NO: 9 NE230511 Unknown

> GTGTCCAGGAGGGAACTGGTATGATCTAATGAATCCTTTTACTAAGATGGGGATGTGATG GTAGCACACAGCAGGGAAGAGGGACTTCGAATCTCAGGCCTCAGCTTAGAAGGGGAAGCA CCTATTTCCACTGCCCCTTCTTTAAGACATCTCCCTTTTGCTGAGGCTTACCAGGGGGTA GGGGAGCGCAGGGAAGGTCAAGGAGGTGTATCAAAGTATC

In a further variant, the contacting step above comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:10 or a functional equivalent thereof or a sequence complementary thereto.

SEQ ID NO: 10 NE230512 Unknown

40 AGACACTTTGATACACCTCCTTGACCTTCCCTGCGCTCCCCTACCCCCTGGTAAGCCTCA
GCAAAAGGGAGATGTCTTAAAGAAAGGGGCAGTGGAAATAGGTGCTTCCCTCCTAAGCT
GGGGCCTGAGATTCGAAGTCCCTCTTCCCTGCTGTGTGCTACCATCACATCCCCATCTTA
GTAAAAGGATTCATTAGATCATACCAGTTCCCTCCTGGACACCC

In a further variant, the contacting step above comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:11 or a functional equivalent thereof or a sequence complementary thereto.

5 <u>SEQ ID NO: 11</u>

10

15

30

35

40

NE230551 Unknown

TACCATGAGGGAGTGGCTGGATTAGGCCTAGGGAGGATGACTGTCCATGAGAGATGACAG GTGTGGGCAGCTCTTCTAGGGGGTGTGGGCACTGGAGTAGCCTCAGGAGGCAGCGGCTCC CCCGCTGTTGGTTCTGAGACTGGTGAGGCGGGACCAGCCCCGTTGTTTCCAGTTCTTCAT GCCTGGTGGCACCCTCA

In a further variant, the contacting step above comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:12 or a functional equivalent thereof or a sequence complementary thereto.

SEQ ID NO: 12

NE230612 Unknown

20 GGGTAAAAGAGGGAAATGAAAAGGAGAGAGACAGTATCCAGCTCGGTAAACAGTTTCCCT AAGTGTTCTCCACCATGTGGAACACACAGGAGATTCATGGGAGTTGGGTAGAGAAGAGAA GGGGGAAGGAGGAGACAGAGGCA

In a further variant, the contacting step above comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:13 or a functional equivalent thereof or a sequence complementary thereto.

SEQ ID NO: 13

NE213890 G-protein beta2 subunit

CTGACCCAGATCACAGCCTGGGCTGGTACCCAGTGGGGCGAATTCAGATGAGTAACACGG AGGACCCTCCGTGGACACCTGGCAAAAATCTATGCCATGCACTGGGGGACAGACTCAAGG CTGCTGGTCAGCGCCTCCCAGGACGGAAAGCTCATCATTTGGGACAGCTCACCACTAACA AGGTCCACGCCATCCCTCTGCGTTCCTCCTGGGTAATGACCTGTGCCTCGCCCCCTCAGG GAACTTTGTGGCCTGTGGGGGTTTTGGACAACATCTGCTCCATCTATAGTCTCAAGACCCG AGAGGGCAAT

In a further variant, the contacting step above comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:14 or a functional equivalent thereof or a sequence complementary thereto.

SEQ ID NO: 14

NE214232 Mitochondrion

TCGACCCCGCCTGTTTACCAAAAACATCACCTCTAGCATTACAAGCTATTAGAGGCACT GCCTGCCCAGTGACTAAAGTTTAACGGCCGCGGTATCCTGACCGTGCAAAGGTAGCATAA TCACTTGTTCCTTAATTAGGGACTAGCATGAACGGCTAAACGAGGGTCCAACTGTCTCTT ATCTTTAATCAGTGAAATTGACCTTTCAGTGAAGAGGCTGAAATATAATAATAAGACGAG AAGACCCTATGGAGCTAAATTATATAACTTATCTATTAATTTATAAACCTAATGGCCCAA AACTAT

10

20

5

In a further variant, the contacting step above comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:15 or a functional equivalent thereof or a sequence complementary thereto.

15 SEQ ID NO: 15

NE211610 Exostoses multiple 2 (EXT2)

TGGCTGTGTCCCAGTTGTCATTGCAGACTCTTATATTCTGCCTTTCTCTGAAGTTCTGGA
CTGGAAGAGGGCATCTGTGGTCGTTCCAGAGGAAAAGATGTCAGATGTGTACAGCATCCT
GCAGAACATCCCACAGAGGCAGATTGAAGAGATGCAGAGACAGGCACGGTGGTTCTGGGA
GGCATACTTCCAGTCCATTAAAGCCATTGCCCTGGCCCCCTACAGATCATCAATGACAGG
ATCTATCCATATGCAGCCTCTCCTATGAAGAGTGGAATGACCCTCCTGCTGTGAAGTGGG
CTA

Preferably, for screening purposes, the biological sample is treated to render 25 nucleic acids or polypeptides available for detection (e.g., for hybridization or antigen-antibody reaction). Treatment may include cell lysis, particularly using chemical, mechanical or physical means. Furthermore, the nucleic acids in the sample may be labeled prior to hybridization, for instance by conventional radiolabels, fluorescent labels, enzymatic labels, chemoluminescent labels, etc. 30 Hybridization can be performed under any conventional techniques and conditions, which are known to the skilled person and can be adjusted by the skilled person. In this regard, the hybridization can be carried out under high, intermediate or low stringency, depending on the desired level of sensitivity, quantity of available material, etc. For instance conditions suitable for 35 hybridization include a temperature of between about 62 and 67°C for 2 to 18 hours. Following hybridization, various washes may be performed to remove nonhybridized molecules, typically in SSC buffers comprising SDS such as 0.1 to 10xSSC, 0.1%SDS.

In a typical experiment, the nucleic acids (or arrays or chips or filters) are prehybridized in hybridization buffer (Rapid Hybrid Buffer, Amersham) containing 100 µg/ml of salmon sperm DNA at 65°C for 30 min. The nucleic acids from the sample are then applied to the filter (0.5x10⁶ to 1x10⁶ cpm/ml) at 65°C for 2 to 18 hours. Filters are washed in 5X SSC buffer, 0.1% SDS at 65°C for 30 min then in 0.2X SSC buffer, 0.1% SDS. The hybridization profiles are analyzed according to known techniques, for example by measuring the radioactivity with an InstantImager (Packard Instruments). The hybridization conditions may be adjusted by those skilled in the art according to conventional techniques, particularly by decreasing the hybridization temperature and/or by increasing the salt concentration of the hybridization buffer.

15

20

25

30

10

The invention also relates to various genetic markers of encephalopathies, particularly TSEs. These markers have been identified from infected mammals and can be detected in biological fluids, including blood, serum, saliva, urine, etc., i.e., with no need to perform tissue biopsies. The markers more specifically represent qualitative genetic differences between healthy and affected mammals. These markers have been prepared using the DATAS technology disclosed in WO99/46403, incorporated therein by reference. DATAS identifies qualitative differences between expressed genes and provides a systematic analysis of alternative RNA splicing events between two conditions: either healthy/diseased, untreated/treated or control/infected. Thus, DATAS leads to the identification of functionally distinct RNA variants and thus also proteins, which play a role in cellular equilibrium. The technique involves three different steps including tissue collection, RNA isolation and construction of a database of events showing qualitative differences. Identifying qualitative differences via DATAS clearly holds a stronger interest for diagnostics than identifying sequences up or down

regulated through the use of classical genomic profiling approaches. DATAS-based qualitative differences represent *new sequence* fragments not present in previous expression profiles that can be selected for characterising a given pathophysiological situation.

5

Several different signatures (or genetic markers) that are present specifically in the blood from affected mammals have been isolated, as described in the examples. These genetic markers more precisely comprise all or part of any one of nucleic acid sequences SEQ ID Nos 1 to 15, or functional equivalents thereof.

10

This invention thus relates also to a nucleic acid molecule selected from the group of SEQ ID Nos 1-15 or a fragment thereof, a sequence complementary thereto or a functional equivalent thereof.

15

This invention also relates to a vector comprising a nucleic acid as described above, as well as to recombinant host cells comprising such a nucleic acid molecule or vector.

20

Another object of this invention lies in the use of a nucleic acid molecule comprising the sequence of all or part of a sequence selected from SEQ ID Nos 1-15 or a sequence complementary thereto or a functional equivalent thereof, for the detection of a pathological event in a subject, more preferably of the presence of an encephalopathy.

25

30

Within the context of this invention, the term "functional equivalent of a sequence" designates any nucleic acid molecule that can hybridise with or detect said sequence or a complementary strand thereof, as well as any nucleic acid molecule that can hybridise with or detect a gene, RNA or genetic deregulation event (e.g., splicing, rearrangement, mutation, etc.) in a gene or RNA, that is detected by said sequence. In other words, the present invention discloses the

10

15

identification of target genes and the methods or compositions of this invention include any nucleic acid sequence that can detect said gene or deregulation event in a sample. Such target genes include for instance a preproelastase gene or RNA comprising SEQ ID NO: 1, a chymotrypsin-like protease gene or RNA comprising SEO ID NO: 2, a chymotrypsinogen gene or RNA comprising SEO ID NO: 4, an amylase-2 gene or RNA comprising SEO ID NO: 5, a kinase substrate HASPP28 gene or RNA comprising SEQ ID NO: 6, a carboxyl ester lipase gene or RNA comprising SEQ ID NO: 7, a G-protein beta2 subunit gene or RNA comprising SEQ ID NO: 13, an exostoses multiple 2 gene or RNA comprising SEQ ID NO: 15, as well as any gene or RNA comprising SEQ ID NO: 3, 8-12 and 14. Functional equivalents may thus comprise a sequence that overlaps with one of the above sequences, or is specific for a distinct region in the gene or RNA, or for a distinct genetic alteration in the gene or RNA. Functional equivalents also include (i) corresponding nucleic acids from different species as well as (ii) nucleic acid sequences having one or several sequence variation(s) such as mutation(s), substitution(s) addition(s) or deletion(s) of one or several bases, and retaining substantially the same specificity. Preferably, sequence variations do not affect more than 5% of the sequence.

The nucleic acid molecule may include all or part of the sequence disclosed, and may comprise additional sequence corresponding to synthetic sequence (e.g. cloning sites) or to flanking sequence in the target gene or RNA. The nucleic acid may be a DNA (e.g., cDNA, gDNA), RNA, oligonuleotide, PCR fragment, probe, etc. It may be single-stranded or double-stranded.

25

30

Within the context of the present invention, a "part" of the above nucleic acid sequences includes any fragment of said sequences comprising at least 5 consecutive bases, more preferably at least 7 consecutive bases, even more preferably at least 8 consecutive bases. Indeed, the fragment or part should be sufficiently long to exhibit the selectivity of the entire sequence in a hybridisation

experiment under high stringency. Preferred part include at least 10 consecutive bases, typically at least 15 consecutive bases.

A sequence complementary to the above sequences designates any sequence having full complementarity therewith or only partial complementarity. Partial complementarity indicates that certain mismatches would be tolerated, as long as the nucleic acid retains a specificity in hybridisation experiments. For instance, a mismatch every 15 bases would not substantially alter the ability of a nucleic acid molecule to retain the hybridisation profile.

10

25

The invention preferably uses nucleic acid molecules of between about 10 and about 800 bases in length, specific for a gene as described above, for detecting encephalopathies in a sample.

The invention also includes vectors comprising a nucleic acid as defined above. The vector may be a plasmid, episome, chromosome, phage, virus, etc. The vector may comprise regulatory sequences, such as a promoter, origin of replication, selection gene, polyA sequence, secretion sequence, etc. Typical examples of plasmids include commercially available plasmids such as pBR, pUC, pcDNA, etc. Suitable examples of viruses include replication defective adenoviruses, retroviruses, AAVs or herpes viruses.

Recombinant host cells comprising a nucleic acid or a vector as defined above include prokaryotic or eukaryotic cells, such as bacteria (e.g., E. coli), yeasts (e.g., Saccharomyces, Kluyveromyces, etc.), plant cells, insect cells, mammalian cells, etc. Mammalian cells may be derived from various species, including rodents, bovines, monkey and humans. They may be primary cells or established cell lines. Such cells include, for instance, CHO, COS, 3T3, HeLa, etc.

10

15

25

The compositions and methods of this invention can be used for the diagnosis, characterization, progression monitoring, etc. of encephalopathies, including at early stages thereof, particularly Transmissible Spongiform Encephalopathies (TSE), including Bovine Spongiform Encephalopathies (BSE, "Mad Cow disease"). The invention is also suitable to detect vCJD in human beings.

The value of having a pre-symptomatic blood test is, inter alia:

- Identify the infected animal, and thus avert contact and subsequent infection with other members of the herd; current tests that rely on detection of the prion protein after slaughter can only detect the symptomatic stage of the disease;
- Keeps sick animals out of the slaughter-house; currently slaughter houses are full of infected animals, detected and undetected;
- Avoid complicated slaughter-house processing and tracking of animals, and avoid errors of mixing contaminated meat with meat approved for market;
- The blood test can be carried out a few days or a week before bringing animals to the slaughter house, while the current test creates a bottle-neck at the slaughter-house;
- Avoid the expense of brain tissue extraction and processing;
- Detect different stages of the disease early and late forms;
 - Animals found negative by the test can be re-tested to increase the opportunity to detect the disease, if present; and
 - Prevent the social and economic impact of killing entire herds; farmers just
 do not want to see their herds killed without solid scientific evidence or
 demonstration that such extreme measures are necessary and warranted.

The disclosed diagnostic methods do not require knowledge, with certainty, of the infectious agent as it is based on identified markers of the presence of the disease and the progression of the disease from early to late stages.

20

25

30

The methods are advantageous since they can be used to test for early, presymptomatic BSE in animals incubating the disease, and since they work from a simple blood samples.

- The invention describes genetic markers from circulating fluids, isolated from test animals that are suspected to participate in the disease progression, and thus to be encoded by genes critical for the progression of the disease, and further capable of distinguishing the early and late stages of the disease.
- 10 Studies were performed in several mammalian species:
 - o Reliable TSE-infected signatures have been detected in said species;
 - o Genetic markers for the early, pre-symptomatic phase and symptomatic phases of the disease have been identified.
 - We have identified 5 signatures that are present in the blood of infected sheep;
 - o In 4 individual infected sheep studied, these 5 signatures are present in the blood and are up-regulated in comparison to 2 control sheep;
 - In mice, we have identified 7 signatures that are present in the spleen of infected mice and are up-regulated in comparison to control mice;
 - o The progression of the disease was studied over multiple timepoints:
 - signatures were followed over different timepoints from early stage to late stage of the disease;
 - 3 signatures were highly expressed (up-regulated) at 35 days (pre-symptomatic early stage) and the expression diminished by 200 days (symptomatic late stage);

The new diagnostic test is thus based on a genome-wide analysis of differential expression of splice variants that occur between infected and uninfected individuals. By applying a unique gene profiling technology, DATAS (Differential Analysis of Transcripts with Alternative Splicing), Applicants have

15

20

25

now identified genetic markers for TSE infection. From these data we selected those signatures of downstream events that are induced or inhibited by the TSE infectious agent. Based on the large number of events that have been screened and are being validated it is likely that this diagnostic test will have greater impact and value than the available prion-antibody-based analysis currently being used to address the epidemic.

The invention also relates to the polypeptides encoded by the above nucleic acid molecules, and their use for diagnostic or therapeutic purposes. More specifically, an object of this invention resides in a polypeptide, wherein said polypeptide has an amino acid sequence encoded by a nucleic acid molecule as defined above.

The invention also relates to antibodies (monoclonal or polyclonal) directed against said polypeptides, as well as fragments or derivatives of said antibodies (e.g. Fab, Fab'2, ScFv, humanized antibodies, etc.). Such antibodies may be produced according to conventional methods, including immunization of an animal and collection of serum (polyclonal) or spleen cells (to produce hybridomas by fusion with appropriate cell lines). Methods of producing polyclonal antibodies from various species are well known in the art. As an example, the antigen may be combined with an adjuvant (e.g., Freund's adjuvant) and administered to an animal, typically by sub-cutaneous injection. Repeated injections may be performed. Blood samples are collected and immunoglobulins or serum are separated. Methods of producing monoclonal antibodies from various species are also known in the art (Harlow et al., Antibodies: A laboratory Manual, CSH Press, 1988). Briefly, these methods comprise immunizing an animal with the antigen, followed by a recovery of spleen cells which are then fused with immortalized cells, such as myeloma cells. The resulting hybridomas produce the monoclonal antibodies and can be selected by limit dilutions to isolate individual clones.

Preferred antibodies of this invention are antibodies that specifically bind an epitope comprised in the polypeptides encoded by SEQ ID NOs: 1 to 15.

These antibodies can be used for the appearance or diagnostic purposes. In particular, the test may be based on the detection of the above polypeptides or parts thereof in a biological sample, using said antibodies, optionally attached to a support.

In this regard, a further object of this invention resides in a method of detecting the presence or the risk of developing an encephalopathy in a subject, the method comprising (i) providing a biological sample containing proteins (or fragments thereof) from the subject, (ii) contacting said sample with at least an antibody as defined above, and (iii) determining the presence of antibody-antigen complexes, the presence of such complexes indicating the presence or the risk of developing an encephalopathy in the subject.

15

20

25

10

5

The present invention also concerns kits for the implementation of the aforementioned methods. The kits of the invention more generally comprise a nucleic acid molecule or antibody as defined above, or a nucleic acid array as defined above, or a nucleic acid preparation or library as defined above. The kits may further advantageously comprise control clones for calibration of the detected signals.

A specific object of this invention thus resides in a product comprising, immobilised on a support, at least one specific target molecule selected from a nucleic acid molecule, a vector, a polypeptide and an antibody as defined above. The support may be of various shapes, nature and origin, such as a filter, a membrane, a slide, a polymer, a glass, a plastic and a biomaterial.

The invention also encompasses nucleic acid arrays comprising at least one nucleic acid molecule or vector comprising the sequence of all or part of a sequence selected from SEQ ID Nos 1-15 or a sequence complementary thereto or a functional equivalent thereof. The array comprises preferably at least two distinct nucleic acid molecules as defined above, more preferably at least 3, even more preferably at least 4. Typically, the array comprises at least 5, more specifically at least 8 of said molecules, or even all of them.

Nucleic acid arrays are preferably comprised of a nucleic acid molecule attached to a support, such as a filter, membrane, slide, polymer, glass, plastic, biomaterial, etc. The support may be flat or not, solid or semi-solid. It includes beads, etc. Such DNA-chips or oligo-chips are also included in the instant invention. They can be prepared according to known techniques (see WO99/46403).

The invention also encompasses methods of selecting candidate drug compounds comprising contacting a test compound with a target selected from a nucleic acid molecule, a vector, a recombinant host cell, a polypeptide and an antibody as defined above, and assessing the ability of the test compound to bind to or to modulate the activity of said target in vitro or in vivo.

20

25

30

5

10

The invention also relates to the use of the above nucleic acid sequences as targets in screening assays to select candidate drug compounds. The screening assay comprises, for instance, contacting the target (nucleic acid or corresponding polypeptide or protein) with a test compound and assessing the ability of the test compound to bind to or to modulate the activity of said target in vitro or in vivo.

Binding can be determined by any conventional technique, such as immunoassays, for instance, or binding assays (RIE, ELISA, SPA, FRET, etc.). Modulation of the activity can be assessed in various cellular assays or in acellular assays, using for instance enzyme substrates, reporter genes, etc.

Other aspects of this invention will be described in the following examples, which should be regarded as illustrative and not limiting.

5 LEGEND TO THE FIGURES

Figure 1: Identification of spleen markers associated with TSE infection

Figure 2: Expression pattern of a genetic marker of TSE

Figure 3: Identification of circulating markers using a Macro-array.

10

EXAMPLES

Example 1. TSE markers obtained in an experimentally infected mouse model

15

20

30

C57BL/6 mice were either intra-cerebrally or intra-peritoneally infected with brain homogenate containing the murine C506M3 strain derived from a natural case of sheep Scrapie. Control mice were inoculated with brain homogenate of healthy animals. At different time points before and at clinical appearance (i.e., pre-and post-symptoms) diseased animals were sacrificed and total RNA of brain and spleen were prepared. Tissue samples were collected at 35, 70, 111, 148, 190 and 230 days after intra-peritoneal inoculation, whereas tissue collection was performed at 28, 63, 93,121,135 and 153 after intra-cerebral inoculation.

25 Brain samples were studied to identify genes involved in brain invasion and neurodegeneration.

Spleen samples were also evaluated since the PrpSc propagation is dependent on the immune system and is noticeably present in the spleen follicular dendritic cells. The sequences identified from spleen samples are thus providing

10

15

20

25

information on the mechanisms involved in PrpSc propagation through the immune system. The signatures obtained from spleen represent the repertoire of qualitative differences that distinguish infected and non-infected situations that can arise in various cell types. Among these cells are the circulating blood cells whose gene expression can be altered by the presence of even low (currently undetectable) amounts of PrpSc. Since this PrpSc may be expressed either in the circulating cell with the altered profile, or in resident non-circulating cells interacting with the circulating cells, it can be envisioned that some of the signatures identified in spleen will be specifically detected in the blood cells of infected animals.

1.1. Identification of potential markers at different time points after infection

DATAS profiling assays were carried out between pooled RNAs derived from spleen or brain tissue from five infected and five control mice at different stages of the disease. A macro-array containing all DATAS fragments was constructed. TSE infected animals were profiled against control animals by differential hybridisation in order to identify TSE specific signatures. For each time point after infection the macro-array was hybridised with a minimum of two probes derived from control and infected tissue. Z-scores of each clone for each hybridisation were calculated. Statistical z-score analysis identified differentially expressed DATAS fragments with a probability of at least 95% by cross-comparison between the results obtained from the hybridisations with two control and two infected probes. Figure 1 below shows an example indicating that DATAS can identify spleen markers (outlined in red boxes) that are specifically associated with TSE infection.

Results of z-score analysis are indicated in the table below: numbers < -2 indicate a > 95% probability of down-regulation of clones, whereas > +2 reflect an upregulation with a probability > 95%.

5 Summary table of identified markers

Marker	Probe	Up/down regulation	Z-score
			(pre-clinical stage)
Α	Spleen	up	4.10
В	Spleen	up	3.76
С	Spleen	ир	3.52
D	Spleen	up	2.31
E	Spleen	up	3.2
F	Spleen	up	2.2
G	Spleen	up	2.7

1.2. Kinetic studies of selected diagnostic candidates

- Candidates selected by differential hybridisation were further characterised in kinetic studies using quantitative PCR. Expression patterns of three potential candidates in spleen have been established in three infected mice and two control mice. Data were normalised to a reference gene, whose expression is not altered during disease progress. Northern blotting of individual spleen samples derived from two control and infected mice at different times after infection confirmed the expression pattern previously estimated by quantitative PCR. Figure 2 shows the expression pattern of one candidate determined by quantitative PCR as well as Northern blotting, in each lane 20µg of total RNA was loaded.
- The candidates validated so far were prioritised for analysis based on their cellular localisation. All encode proteins that can be processed and are normally secreted

by cells. It is reasonable to assume that their specific up regulation can be detected in blood at the level of RNA in circulating cells or at the level of proteins directly in blood.

5

10

Example 2. Diagnostic markers obtained in a naturally infected Romanov sheep flock

LVK sheep are either naturally infected by or resistant to Scrapie. The symptoms of Scrapie appear on infected animals after 12 months. The first year of life of these animals corresponding to the pre-symptomatic phase. Spleen tissue was obtained from these animals at the age of 6 and 9 months and total RNA of spleen samples were prepared. In addition, total RNA of blood was prepared from Scrapie infected sheep at preclinical and clinical phases.

15

20

DATAS profiling was performed on RNA derived from spleen and pre-clinical blood samples of infected and resistant/control sheep. The macro-array containing all the DATAS fragments isolated in the sheep model was hybridised with probes derived from blood samples collected from two control sheep, four infected sheep in pre-clinical and clinical phase of the disease. Differential expression was also determined in pooled spleen samples derived from four infected and four resistant sheep at 6 months old. A macro-array challenged with a blood probe is shown in figure 3, indicating that we can identify circulating markers.

25

In total, three candidates were isolated by hybridisation performed with probes derived from blood samples and two by hybridisation with spleen samples. Probing the mouse macro-array with individual sheep blood probes resulted in the identification of two additional candidates. The table below shows the results of the z-scores analysis: numbers < -2 indicate a > 95% probability of down-

10

15

regulation of clones, whereas numbers > +2 reflect an up-regulation with a probability > 95%.

Summary table of identified markers hybridising sheep macro-array

Marker	Probe	Up/down	Z-score	Z-score
		regulation	Pre-clinical stage	Clinical stage
1	Blood	down	-1.9	-2.5
2	Blood	up	3.4	3.9
3	Blood	down	-2.1	-2.3
4	Spleen	down	-2.6	
5	Spleen	up	2.8	

Summary table of identified markers hybridising mouse macro-array

Marker	Probe	Up/down	Z-score	Z-score
		regulation	Pre-clinical stage	Clinical stage
6	Blood	down	-2.17	-1.7
7	Blood	down	-2.46	-2.55

For some genes a direct functional link could be established based on literature research. Irrespective of the outcome of the reverse Northern blotting, those potential markers are included in subsequent research.

Eight potential markers are currently under investigation in terms of their expression levels during TSE progress. Furthermore, their expression patterns in blood will be correlated to different polymorphisms of the prion protein known to be associated with the sensitivity of sheep to the Scrapie agent. ExonHit has access to blood samples of sheep with the ARR/ARR genotype, which are resistant to prion disease, with the VRQ/VRQ genotype, which is highly sensitive to Scrapie infection and with the ARR/VRQ genotype, which has an incidence disease of 5%. Furthermore, blood samples from a kinetic study in sheep

experimentally infected with the BSE agent are being collected for ExonHit in order to determine their inducibility by the BSE agent of the early-identified markers.

5

Example 3. Identification of circulating BSE markers at pre-symptomatic stages

Markers identified in the sheep and mouse model can be validated in BSE infected cattle by quantitative PCR and Northern blotting. Macro-arrays containing DATAS fragments isolated in both the sheep and mouse model can be challenged with a panel of blood probes derived from BSE infected cattle at pre-clinical stages in order to identify new BSE specific signatures.

15 Concurrently with the analysis outlined above, further DATAS experiments using blood samples of BSE infected cattle at different pre-clinical stages in comparison to healthy animals can be performed to identify additional potential markers. The identified candidate markers will be further validated performing quantitative PCR, and added to the final diagnostic if necessary.

20

A typical diagnostic assay is based on the use of DNA chip, PCR detection or antibody detection.

15

20

25

30

CLAIMS

- 1. A method of detecting the presence or the risk of developing an encephalopathy in a subject, the method comprising (i) providing a biological sample containing nucleic acids from the subject, (ii) contacting said sample with at least a nucleic acid molecule comprising the sequence of all or part of a sequence selected from SEQ ID Nos 1-15 or a sequence complementary thereto, under conditions allowing hybridisation to occur, and (iii) determining the presence of hybrids, the presence of such hybrids indicating the presence or the risk of developing an encephalopathy in the subject.
- 2. The method of claim 1, wherein the contacting step comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:1 or a functional equivalent thereof or a sequence complementary thereto.
- 3. The method of claim 1, wherein the contacting step comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:2 or a functional equivalent thereof or a sequence complementary thereto.
- 4. The method of claim 1, wherein the contacting step comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:3 or a functional equivalent thereof or a sequence complementary thereto.
- 5. The method of claim 1, wherein the contacting step comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:4 or a functional equivalent thereof or a sequence complementary thereto.

10

15

20

25

- 6. The method of claim 1, wherein the contacting step comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:5 or a functional equivalent thereof or a sequence complementary thereto.
- 7. The method of claim 1, wherein the contacting step comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:6 or a functional equivalent thereof or a sequence complementary thereto.
- 8. The method of claim 1, wherein the contacting step comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:7 or a functional equivalent thereof or a sequence complementary thereto.
- 9. The method of claim 1, wherein the contacting step comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:8 or a functional equivalent thereof or a sequence complementary thereto.
- 10. The method of claim 1, wherein the contacting step comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:9 or a functional equivalent thereof or a sequence complementary thereto.
- 11. The method of claim 1, wherein the contacting step comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:10 or a functional equivalent thereof or a sequence complementary thereto.

10

15

20

- 12. The method of claim 1, wherein the contacting step comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:11 or a functional equivalent thereof or a sequence complementary thereto.
- 13. The method of claim 1, wherein the contacting step comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:12 or a functional equivalent thereof or a sequence complementary thereto.
- 14. The method of claim 1, wherein the contacting step comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:13 or a functional equivalent thereof or a sequence complementary thereto.
- 15. The method of claim 1, wherein the contacting step comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:14 or a functional equivalent thereof or a sequence complementary thereto.
- 16. The method of claim 1, wherein the contacting step comprises contacting the sample with at least a nucleic acid molecule comprising the sequence of all or part of SEQ ID NO:15 or a functional equivalent thereof or a sequence complementary thereto.
- 17. The method of any one of claims 1 to 16, wherein the nucleic acid is immobilized on a support, such as a chip, filter, membrane or a glass slide.

- 18. The method of any one of claims 1 to 16, wherein the biological sample comprises blood, serum, saliva, urine, a tissue sample or a cell sample, preferably blood.
- 5 19. A nucleic acid molecule selected from the group of SEQ ID Nos 1-15 or a fragment thereof, a sequence complementary thereto or a functional equivalent thereof.
 - 20. A vector comprising a nucleic acid of claim 19.

- 21. A recombinant host cell comprising at least one nucleic acid molecule of claim 19 or vector of claim 20.
- 22. A nucleic acid array comprising at least one nucleic acid molecule of claim 19or vector of claim 20.
 - 23. A polypeptide, wherein said polypeptide has an amino acid sequence encoded by a nucleic acid molecule of claim 19.
- 20 24. An antibody that binds a polypeptide of claim 23.
 - 25. A product comprising, immobilised on a support, at least one specific target molecule selected from a nucleic acid molecule of claim 19, a vector of claim 20, a polypeptide of claim 23 and an antibody of claim 24.

- 26. The product of claim 25, wherein the support is selected from a filter, a membrane, a slide, a polymer, a glass, a plastic and a biomaterial.
- 27. The use of a nucleic acid molecule comprising the sequence of all or part of a sequence selected from SEQ ID Nos 1-15 or a sequence complementary thereto or

- a functional equivalent thereof, for the detection of a pathological event in a subject, more preferably of the presence of an encephalopathy.
- 28. A method of selecting candidate drug compounds comprising contacting a test compound with a target selected from a nucleic acid molecule of claim 19, a vector of claim 20, a polypeptide of claim 23 and an antibody of claim 24, and assessing the ability of the test compound to bind to or to modulate the activity of said target in vitro or in vivo.
- 29. A method of detecting the presence or the risk of developing an encephalopathy in a subject, the method comprising (i) providing a biological sample containing proteins from the subject, (ii) contacting said sample with at least an antibody of claim 24, and (iii) determining the presence of antibody-antigen complexes, the presence of such complexes indicating the presence or the risk of developing an encephalopathy in the subject.
 - 30. The method of claim 1, wherein the subject is a mammal selected from a cow, sheep or a goat.

Figure 1

Figure 2

Figure 3

SEQUENCE LISTING

```
<110> Exonhit Therapeutics SA
<120> An early pre-symptomatic prion diagnostic blood test
      for encephalopathies
<130> B0072W0
<140>
<141>
<160> 15
<170> PatentIn Ver. 2.1
<210> 1
·<211> 318
<212> DNA
<213> mammalian
<400> 1
ccccagagag gagccgaagc tcacgatgcc atgcacctgc cactggccat tagatgcccg 60
gcaattcagt ggtccgccag agtccccatt gcagctggag gtcacgccgt cgccaccagc 120
gcacaccatg ctggacttca cagagettee ccaccageta gcgctggage aggtggcata 180
gtccacaacc agcaggcggc cctgcctcag ggtgtcagga ctgttcccat tggtctgcag 240
caggececag cetgtgacat ageagacata gttteteggg agaatggtge cagegggtgg 300
gaggcaagct gtctggat
                                                                   318
<210> 2
<211> 224
<212> DNA
<213> mammalian
<400> 2
atggaccagg ggtagaacaa cttgctgcag gcgagctggt gtcacattgc ccacaccact 60
gattcggccc cagccagtgg tgacacaggt gagccccgaa ggcagtgcct cgtttgtgga 120
agccaggcag actggtgaga cttgtgctgt gtaccgggct ggcgaggcaa gcttcaggag 180
agtcaggtca ttgttcatgg tgttggcgtt ccagttaggg tggc
                                                                   224
<210> 3
<211> 276
<212> DNA
<213> mammalian
<400> 3
```

```
cggtggcaag tcgggttcca ggtccatgaa gcccccggga ggagaatcga gcgatctttt 60
  cggaagtcca gaagaaggta tttcttcaag caagcctaat aggatggcat ctaatatttt 120
  cggaccaact gaagaaccta aaaacatacc caagaggaca aatcctccag gaggcaaagg 180
  aagtgggatc tttgatgaat cgactcctgt gcaaactcga caacgtttga atccaccagg 240
  ggggaagacc agtgacatat ttgggtcccc agtcct
                                                                     276
  <210> 4
  <211> 303
  <212> DNA
  <213> mammalian
  <400> 4
  caacagacac agtctcagag aactgggcag gagtggccag cttcagcagg gtgatgtcat 60
  tacgcacggt gaaggagttg aacttggggt tcttaaaaac ctgagcgatt ttcaggacct 120
  ggacattete ttegteggag ecetgateaa actetecage taccaccaca teggttgtet 180
  tgaccccgca gtgggcagca gtgaccaccc agttttcgct gatgagggag cccccgcaga 240
  aatggaagcc agttctgtcc tgcagggaca cctgccaggg ccaggagcca gggatagcat 300
                                                                     303
<210> 5
  <211> 130
  <212> DNA
  <213> mammalian
  <400> 5
 gtcttggtgg tccaatccag tcattctgat cttttccttc tggaaatttc tattccaacq 60
 gtaactcgac attactcttg tgaatccata aggatgagcc ntcataaatc cgacagccat 120
  tttatacatt
                                                                     130
  <210> 6
  <211> 266
  <212> DNA
  <213> mammalian
 <400> 6
 gggtggcctc gaactcagaa atccgcctgc ctctgcctcc cgagtgctgg gattaaaggc 60
 gtggccacca cgcccggctt tgcatgcttt atttcttgtg gaataactga cacccaagtt 120
 ctccttcaga agcttcagcc aagcccacct tgaggaacaa gacgaggaca catgatgggt 180
 gagacatggc agaggteetg geggeaegge ceagtteece ggcateteet eccaeaggee 240
 agctacttat tcagggacag cgactg
                                                                    266
 <210> 7
 <211> 362
```

2

<212> DNA

PCT/EP02/03013 WO 02/074986

<213> mammalian <400> 7 cgtggacgat ggctaagtac cggtctacag ctatacaggc cagcagcagg ctgctgcagt 60 agaaattgat cttgtgcaga gcgatcacag ttttgcagag gaaggtccct aggacccaac 120 ccacagagee eteageeact geaaaaggea ggatgaagae taagagaagg teggetaetg 180 cgaggtggaa caggaaggtc tcggttgagc tccgcgtgtg ccggtgcctc tccgggattc 240 cagcaccagg atgtttccca tcatacccag gaggaagatg aggctgtagg cccaggcatg 300 aatccgcctt aaggacgtca gtaagggtcc ctcgactgta gagcagaagt tctgtctgta 360 gg <210> 8 <211> 320 <212> DNA <213> mammalian <400> 8 ggatgcattt gaactgataa ggactaggta gaactgaagg gctagatgga atgttacggc 60 ctaggtataa cgttaagcct aagtaactct tacgtggcta gcctgccatt ttgcqctqtt 120 actagtatta taaggaaact toottatgtg caagttgatt goatattoto ttaaattott 180 tgctcttgga aactgagcac aacagaggtt agttagaact gctctgtata gttagccaaa 240 atgagetttg acceaateag ceaateagea geaettetge atatgtgtaa agettgtatg 300 gtatctgctt ttataagctg 320 <210> 9 <211> 220 <212> DNA <213> mammalian <400> 9 gtgtccagga gggaactggt atgatctaat gaatcctttt actaagatgg ggatgtgatg 60 gtagcacaca gcagggaaga gggacttcga atctcaggcc tcagcttaga aggggaagca 120 cctatttcca ctgccccttc tttaagacat ctcccttttg ctgaggctta ccagggggta 180 ggggagcgca gggaaggtca aggaggtgta tcaaagtatc 220 <210> 10 <211> 224 <212> DNA <213> mammalian <400> 10 agacactttg atacacetee ttgacettee etgegeteee etaceceetg gtaageetea 60

gcaaaaggga gatgtcttaa agaaaggggc agtggaaata ggtgcttccc ctcctaagct 120 ggggcctgag attcgaagtc cctcttccct gctgtgtgct accatcacat ccccatctta 180

gtaaaaggat tcattagatc ataccagttc cctcctggac accc 224

PCT/EP02/03013

```
<210> 11
 <211> 197
 <212> DNA
 <213> mammalian
<400> 11
taccatgagg gagtggctgg attaggccta gggaggatga ctgtccatga gagatgacag 60
gtgtgggcag ctcttctagg gggtgtgggc actggagtag cctcaggagg cagcggctcc 120
cccgctgttg gttctgagac tggtgaggcg ggaccagccc cgttgtttcc agttcttcat 180
gcctggtggc accctca
<210> 12
<211> 143
<212> DNA
<213> mammalian
<400> 12
gggtaaaaga gggaaatgaa aaggagaga acagtatcca gctcggtaaa cagtttccct 60
gggggaagga ggagacagag gca
                                                               143
<210> 13
<211> 310
<212> DNA
<213> mammalian
<400> 13
ctgacccaga tcacagcctg ggctggtacc cagtggggcg aattcagatg agtaacacgg 60
aggaccetec gtggacacct ggcaaaaatc tatgccatgc actgggggac agactcaagg 120
ctgctggtca gcgcctccca ggacggaaag ctcatcattt gggacagctc accactaaca 180
aggtecacge catecetetg egttecteet gggtaatgae etgtgeeteg eeceeteagg 240
gaactttgtg geetgtgggg gtttggacaa eatetgetee atetatagte teaagaceeg 300
agagggcaat
                                                              310
<210> 14
<211> 306
<212> DNA
<213> mammalian
<400> 14
togaccoccg cetgtttacc aaaaacatca cetctagcat tacaagctat tagaggcact 60
geetgeecag tgactaaagt ttaacggeeg eggtateetg acegtgeaaa ggtageataa 120
```

tcacttgttc cttaattagg gactagcatg aacggctaaa cgagggtcca actgtctctt 180

atctttaatc	agtgaaattg	acctttcagt	gaagaggctg	aaatataata	ataagacgag	240
aagaccctat	ggagctaaat	tatataactt	atctattaat	ttataaacct	aatggcccaa	300
aactat						306

<210> 15 <211> 303 <212> DNA <213> mammalian

<400> 15

tggctgtgtc ccagttgtca ttgcagactc ttatattctg cctttctctg aagttctgga 60 ctggaagagg gcatctgtgg tcgttccaga ggaaaagatg tcagatgtg acagcatcct 120 gcagaacatc ccacagaggc agattgaaga gatgcagaga caggcacggt ggttctggga 180 ggcatacttc cagtccatta aagccattge cctggcccc tacagatcat caatgacagg 240 atctatccat atgcagctc tcctatgaag agtggaatga ccctcctgct gtgaagtggg 300 cta

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 26 September 2002 (26.09.2002)

(10) International Publication Number WO 02/074986 A3

- (51) International Patent Classification7: C12O 1/68. C07K 14/47, C12N 15/85, 5/10, G01N 33/50, 33/68
- (21) International Application Number: PCT/EP02/03013
- (22) International Filing Date: 19 March 2002 (19.03.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/278,670 60/282,463 21 March 2001 (21.03.2001) 10 April 2001 (10.04.2001)

- (71) Applicant (for all designated States except US): EXON-HIT THERAPEUTICS S.A. [FR/FR]; 26, rue Brunel, F-75017 Paris (FR).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): RESINK, Annelies [NL/FR]; 48, rue Bobillot, F-75013 Paris (FR). FUENTES, Nathalie [FR/FR]; 4, rue Marc Sangnier, F-94270 Kremlin Bicetre (FR). SCHWEIGHOFFER, Fabien [FR/FR]; 38, avenue Paul Déroulède, F-94300 Vincennes (FR).
- (74) Agents: BECKER, Philippe et al.; Becker et Associés, 35 rue des Mathurins, F-75008 Paris (FR).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

of inventorship (Rule 4.17(iv)) for US only

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 4 December 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: AN EARLY PRE-SYMPTOMATIC PRION DIAGNOSTIC BLOOD TEST FOR ENCEPHALOPATHIES

(57) Abstract: This invention relates to compositions and methods of detecting encophalopathies in a subject. This invention also relates to genetic markers, nucleic acid preparations or libraries, and kits for use in the implementation of said detection methods. The compositions and methods of this invention can also be used for the diagnosis, characterization, progression monitoring, etc. of encophalopathies, including at carly stages thereof, particularly Transmissible Spongiform Encephalopathies (TSE), including Bovine Spongiform Encephalopathies (BSE, "Mad Cow Disease").

INTERNATIONAL SEARCH REPORT International Application No PCT/EP 02/03013 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12Q1/68 C07K14/47 C12N15/85 C12N5/10 G01N33/50 G01N33/68 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N C12Q G01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, BIOSIS C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ° 1 DE 199 18 141 A (BOEHRINGER INGELHEIM A VETMED) 26 October 2000 (2000-10-26) page 2, line 67 - page 4, line 41; claims 1-38 DE 199 17 838 A (BUNDESREPUBLIK DEUTSCHLAND LET) 13 July 2000 (2000-07-13) page 2, line 57 - page 4, line 27 1 A

A US 6 033 858 A (BASTIAN FRANK 0)
7 March 2000 (2000-03-07)
the whole document

A US 5 618 673 A (NARANG HARASH K)
8 April 1997 (1997-04-08)
column 2, line 45 - line 67; claims 1-58;
example 2

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
"Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
"P" document published prior to the international filing date but later than the priority date claimed	"&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
31 July 2003	2 7. 10. 2003
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Osborne, H.

INTERNATIONAL SEARCH REPORT

Internetional Application No
PCT/EP 02/03013

.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Contract to No.
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
\	WO 99 04237 A (PREDDIE ENRIQUE R ;BERGMANN JOHANNA E (DE)) 28 January 1999 (1999-01-28) the whole document	1
\	WO 99 47932 A (EBRINGER ALAN ;KING S COLLEGE UNIVERSITY OF L (GB)) 23 September 1999 (1999-09-23) page 2, paragraph 2; claim 7	1
١	WO 98 26293 A (NEUROMARK ;HARRINGTON MICHAEL G (US)) 18 June 1998 (1998-06-18) page 1, line 13 - page 2, line 16	1
1	OTTO M ET AL: "ELEVATED LEVELS OF TAU-PROTEIN IN CEREBROSPINAL FLUID OF PATIENTS WITH CREUTZFELDT-JAKOB DISEASE" NEUROSCIENCE LETTERS, LIMERICK, IE, vol. 225, no. 3, 11 April 1997 (1997-04-11), pages 210-212, XP001003009 ISSN: 0304-3940 Abstract page 212	1
	HOCHSTRASSER D F ET AL: "Elevation of apolipoprotein E in the CSF of cattle affected by BSE" FEBS LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 416, no. 2, 20 October 1997 (1997-10-20), pages 161-163, XP004261330 ISSN: 0014-5793 Introduction and Discussion	

INTERNATIONAL SEARCH REPORT

International application No. PCT/EP 02/03013

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box ii Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This international Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-30, all partially
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1-30, all partially

A method for detecting the presence or the risk of developing an encephalopathy in a biological substance of a subject based on determining the presence of a nucleic acid sequence complementary to SEQ ID No 1 or to the polypeptide encoded by SEQ ID No 1; and SEQ ID NO 1 derived products.

2. claims: 1-30, all partially

A method for detecting the presence or the risk of developing an encephalopathy in a biological substance of a subject based on determining the presence of a nucleic acid sequence complementary to SEQ ID No 2 or to the polypeptide encoded by SEQ ID No 2; and SEQ ID NO 2 derived products.

3. claims: 1-30, all partially

A method for detecting the presence or the risk of developing an encephalopathy in a biological substance of a subject based on determining the presence of a nucleic acid sequence complementary to SEQ ID No 3 or to the polypeptide encoded by SEQ ID No 3; and SEQ ID NO 3 derived products.

4. claims: 1-30, all partially

Inventions 4-15.

A method for detecting the presence or the risk of developing an encephalopathy in a biological substance of a subject based on determining the presence of a nucleic acid sequence complementary to SEQ ID No X or to the polypeptide encoded by SEQ ID No X; and SEQ ID NO X derived products, wherein X is a sequence selected from SEQ ID No 4-15.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No PCT/EP 02/03013

Patent document		Publication		Patent family		Publication
cited in search report		date		member(s)		date
DE 19918141	A	26-10-2000	DE AU	19918141 / 4297400 /		26-10-2000 10-11-2000
			BG	106021 /	4	28-06-2002
			BR	0009843 /		13-02-2002
			CA	2367696	A1	02-11-2000
			CN		T	01-05-2002
			CZ	20013771 /	43	13-03-2002
			EE	200100547		17-02-2003
			MO	0065357		02-11-2000
			EP	1093585 /		25-04-2001
			HU	0200777	_	29-06-2002
			JP		Ţ	17-12-2002
			МО	20015094		17-12-2001
			PL	350985 /		24-02-2003
			SK	15032001		05-02-2002 21-02-2002
			TR US	200103011 2003129667	T2	10-07-2002
			US	2003129667 7		03-04-2003
				2003004424 /	 4T	
DE 19917838	Α	13-07-2000	DE	19917838	A1	13-07-2000
US 6033858	A	07-03-2000	NONE			
US 5618673	Α	08-04-1997	AU	2379692	A	16-03-1993
00 00200.0			CA	2115829	A1	04-03-1993
			DE	69222948	D1	04-12-1997
			DE	69222948		12-03-1998
			EP	0613501		07-09-1994
			WO	9304198		04-03-1993
			GB	2258867		24-02-1993
			JP		Ţ	17-11-1994
			NZ 	243922	A 	26-10-1994
WO 9904237	Α	28-01-1999	CA	2206774		16-12-1998
			AU	8972998		10-02-1999
			MO	9904237		28-01-1999
			EP	1062517	_	27-12-2000
			JP		T A1	30-01-2001
			US	2002155552	 VT	24-10-2002
			AU	750634	B2	25-07-2002
W0 9947932	Α	23-09-1999	NU			44 45 4555
WO 9947932	A	23-09-1999	AU	2948799		11-10-1999
WO 9947932	A	23-09-1999	AU Ca	2323597	A1	23-09-1999
WO 9947932	Α	23-09-1999	AU Ca Ep	2323597 1064555	A1 A2	23-09-1999 03-01-2001
WO 9947932	Α	23-09-1999	AU Ca	2323597	A1 A2	23-09-1999
W0 9947932	A 	23-09-1999	AU Ca Ep	2323597 1064555	A1 A2 A2	23-09-1999 03-01-2001

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER: ___

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.