Int. Cl.:

C 08 f, 29/02

BUNDESREPUBLIK DEUTSCHLAND

Deutsche Kl.:

39 b4, 29/02

(1) (1)	Offenlegu	ingss	chrift	2028 240	
2	9	J	Aktenzeichen: Anmeldetag:	P 20 28 240.0 9. Juni 1970	
43			Offenlegungstag:	23. Dezember 1970	•
	Ausstellungspriorität:				
199	Unionspriorität Datum:	11. 6. 69 27. 12. 69	15. 11. 69 31. 3. 70	27. 12. 69 31. 3. 70	27. 12. 69
83	Land:	Japan			•
3	Aktenzeichen:	45912-69 104892-69	91184-69 27132-70	104890-69 27133-70	104891-69
(A)	Bezeichnung:	Gegen the	rmischen Abbau s	tabilisierte Polyolefinz	ısammensetzung
6 1	Zusatz zu:			•	
®	Ausscheidung aus:	_			
70	Anmelder:		Petrochemical Co sei Kaisha Ltd., O	•	
	Vertreter:	Haßler, Di 5880 Lüde	•	nat. W., Patentanwalt,	• .
@	Als Erfinder benannt:		iyoshi, Yokkaichi Naohiko, Kobe, H		

Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGBl. I S. 960):

DT 2028240

Dr. Werner Haßler FATENTANWALT 58° LUDENSCHEID A-engerg 36-Postfach 1704

Lüdenscheid, 8. Juni 70 A 70109 -3

Anmelderin: Fa. Mitsubishi Petrochemical Company Ltd. 5-2, Marunouchi, 2-chome, Chiyoda-ku, Tokio, Japan und

Fa. Shipro Kasei Kaisha Ltd., 18, 2-chome, Kitadoshin-Cho, Kita-Ku, Osaka-Shi, Osaka-Fu, Japan

Gegen thermischen Abbau stabilisierte Polyolefinzusammensetzung

Die Erfindung betrifft eine gegen thermischen Abbau stabilisierte Polyolefinzusammensetzung.

Polyolefine haben gute mechanische Eigenschaften und sind infolgedessen als Werkstoff für Spritzgußteile, Folien und
Fasern brauchbar. Diese Zusammensetzungen lassen jedoch ihre.
Brauchbarkeit nicht im vollen Umfang zur Geltung kommen, weil
sie gegenüber einem oxidativen Abbau in erhitztem Zustand
unter Gegenwart von Luft empfindlich sind. Dieser Nachteil
ist allen diesen Zusammensetzungen eigen. Zur Überwindung
dieser Schwierigkeit sind bereits verschiedene Antioxidantien
oder Stabilisatoren vorgeschlagen worden. Doch sind diese nicht
vollständig zufriedenstellend.

Aufgabe der Erfindung ist die Bereitstellung einer Polyolefinzusammensetzung mit einer verbesserten Stabilität gegen thermische Alterung oder thermischen Abbau.

Diese Aufgabe wird gelöst durch eine Polyolefinzusammensetzung aus Olefin und einem Anteil eines Stabilisators inform eines Esters einer Säure der Formel

 $R - S - C_n^H_{2n} - COOH$ (I) wobei R ein $C_8 - C_{30}$ -Alkylrest und n eine ganze Zahl 2 oder 3 ist, mit einem Polyol aus der folgenden Verbindungsgruppe

1) Polyole der Formel

$$HO - R' - OH \tag{II}$$

mit R' als C2-C12-Alkenrest.

.2) Polyole der Formel

$$HO - C_m H_{2m} - S - C_m H_{2m} - OH$$
 (III)

mit m als einer ganzen Zahl 2 oder 3,

3) Polyole der Formel

HO -
$$CH_2$$
HO - CH_2
C - R"

(IV)

mit R" als C₁-C₂₀-Alkylrest,

- 4) Glycerin und
- 5) Pentaerythrit-tetranitrat
 wobei R, R', R" gleiche oder verschiedene Reste
 innerhalb einer Verbindung sind.

Die Säurekomponente des Esters ist eine Alkylthio-propion- oder -buttersäure gemäß Formel I. Die Anzahl der Kohlenstoffatome des Alkylrestes R spielt eine Rolle. Wenn ein sehr niedrig-Alkylrest vorliegt, kann ein Verdampfungsverlust des Esters bei der Erhitzung auftreten, wenn derselbe in die Polyolefinzusammensetzung eingebaut wird. Wenn jedoch ein übermäßig hoher-Alkylrest vorliegt, verringert sich die Verträglichkeit des Esters mit der Polyolefinzusammensetzung. Zwar ist die Obergrenze der Anzahl der Kohlenstoffatome in dem Alkylrest R nicht sehr kritisch, doch die Untergrenze ist bedeutungsvoll, weil der Stabilisierungseffekt des Esters mindestens teilweise von der Anzahl der Kohlenstoffatome in dem Alkylrest R abhängt. Ein Säureester, wo R ein Wasserstoffatom ist, hat einen kleinen oder gar keinen Stabilisierungseffekt auf die Polyolefinzusammensetzung, wenn er allein benutzt wird. Vorzugsweise verwendet man als Alkylrest R einen Alkylrest mit 8 bis 20 Kohlenstoffatomen. Der Alkylrest R und der C_nH_{2n}-Alkenrest kann geradkettig oder verzweigtkettig sein.

Beispiele von brauchbaren Säuren sind

3-Octylthiopropionsaure

3-Dodecylthiopropionsäure

3-Tridecylthiopropionsäure

3-Tetradecylthiopropionsäure

48 3-Octadecylthiopropionsäure

8 3-Octylthiobuttersäure

U_ 3-Dodecylthiobuttersäure

3-Tridecylthiobuttersäure

3-Tetradecylthiobuttersäure

3-Octadecylthiobuttersäure

3-Octylthioisobuttersäure

3-Dodecylthioisobuttersäure

3-Octadecylthioisobuttersäure

4-Octylthiobuttersäure

4-Tridecylthiobuttersäure

4-Hexadecylthiobuttersäure

4-Octadecylthiobuttersäure

Je nach der Art der benutzten Alkohole lassen sich die als Stabilisator benutzten Ester in die folgenden fünf Gruppen einteilen:

1) Ester von Polyolen HO-R'-OH (II)

Der Alkenrest R' kann geradkettig oder verzweigtkettig sein.

Diese Ester sind Diester wo beide Hydroxylgruppen durch die jeweils angegebene Säure verestert sind.

Beispiele solcher Ester sind

Athylen-bis(3-dodecylthiopropionat)

Äthylen-bis(3-octadecylthiopropionat)

Tetramethylen-bis(3-dodecylthiopropionat)

Tetramethylen-bis(3-octadecylthiopropionat)

Pentamethylen-bis(3-dodecylthiopropionat)

Pentamethylen-bis(3-octadecylthiopropionat)
Heptamethylen-bis(3-dodecylthiopropionat)
Heptamethylen-bis(3-octadecylthiopropionat)
Octamethylen-bis(3-dodecylthiopropionat)
Octamethylen-bis(3-octadecylthiopropionat)
Nonamethylen-bis(3-dodecylthiopropionat)
Nonamethylen-bis(3-octadecylthiopropionat)
Decamethylen-bis(3-dodecylthiopropionat)
Decamethylen-bis(3-octadecylthiopropionat)

2) Ester von Polyolen $HO-C_mH_{2m}-S-C_mH_{2m}-OH$ (III)

Der C_mH_{2m} -Alkenrest kann geradkettig oder verzweigtkettig sein.

Diese Ester sind Diester, wo beide Hydroxylgruppen durch die Säure verestert sind.

Beispiele solcher Ester sind

Bis(äthylen-3-octylthiopropionat)sulfid
Bis(äthylen-3-dodecylthiopropionat)sulfid
Bis(äthylen-3-tridecylthiopropionat)sulfid
Bis(äthylen-3-tetradecylthiopropionat)sulfid
Bis(äthylen-3-octadecylthiopropionat)sulfid
Äthylen(3-dodecylthiopropionat)sulfid
Äthylen(3-octadecylthiopropionat)sulfid
Bis(äthylen-4-octylthiobutyrat)sulfid
Bis(äthylen-4-dodecylthiobutyrat)sulfid
Bis(äthylen-3-octadecylthiobutyrat)sulfid
Bis(äthylen-3-octadecylthiobutyrat)sulfid

3) Ester von Polyolen der Formel

Der Alkylrest R" kann geradkettig oder verzweigtkettig sein.

Mindestens eine der drei Hydroxylgruppen ist durch die

betreffende Säure verestert.

Diese Polyole werden auch als Trimethylolalkane bezeichnet und umfassen insbesondere die folgenden Verbindungen

Trimethylolpropan
Trimethylolisopropylmethan
Trimethylolheptadecan

Die im Rahmen der Erfindung verwendbaren Ester sind Mono-, Dioder Triester eines Trimethylolalkans mit einer der angegebenen
Säuren. Diester und Triester sind vorzuziehen, vor allem Triester. Jedoch zeigen auch Monoester eine ausreichende Wirksamkeit. Die Alkylreste in einem Diester oder Triester können
gleich oder verschieden sein.

- 4) Ester von Glycerin
 Die Glyceride können Mono-, Di- oder Triglyceride mit
 einer der angegebenen Säuren sein. Diglyceride und Triglyceride sind vorzuziehen, insbesondere Triglyceride;
 jedoch zeigen auch Monoglyceride eine ausreichende Wirksamkeit.
- 5) Ester von Pentaerythrit-tetranitrat
 Diese Ester können Mono-, Di-, Tri- oder Tetraester mit
 einer der angegebenen Säuren sein. Diester, Triester und
 Tetraester sind vorzuziehen, wenn auch Monoester eine
 ausreichende Wirksamkeit zeigen. Die Alkylreste der
 höheren Ester können gleich oder verschieden sein.

Die genannten Ester sind bereits allein wirksam, damit eine Polyolefinzusammensetzung gegenüber thermischer Alterung oder thermischem Abbau widerstandsfähig wird, wenn diese Ester in die Zusammensetzung eingebaut werden. Eine merkliche synergetische Wirkung erhält man, wenn die Ester zusammen mit einem Phenol-Antioxidans mit sterischer Hinderung eingebaut werden. Phenol-Antioxidantien mit sterischer Hinderung, die die gewünschten Einflüsse erwarten lassen, sind einwertige oder mehrwertige Phenolverbindungen, wo ein Alkyl-, Aralkyl- oder Cyclo-alkylrest in mindestens einer der Orthostellungen zu einer

Hydroxylgruppe substituiert ist. Bevorzugte Substituenten enthalten 3 bis 10 Kohlenstoffatome. Der Alkylrest ebenso wie der
Aralkyl- und Cycloalkylrest kann ungesättigt sein. Die Phenolverbindungen können weiter substituiert sein. Es kann sich
auch um Polyphenolverbindung handeln wie Biphenol-, Triphenoloder Tetrakisphenolverbindungen, wo die Phenolkerne durch eine
Brückengruppe wie einen Alken-, Thioäther- oder Triazinoxyrest
miteinander verknüpft sind.

Beispiele solcher Phenolverbindungen mit sterischer Hinderung sind:

```
2,6-Di-tertiär-butyl-p-cresol
2.6-Di-isobornyl-p-cresol
2,6-Bis(1-methyl-1-phenyl-äthyl-)-p-cresol
2,6-Di-tertiär-butyl-4-nonylphenol
n-Octadecyl-3-(3,5-di-tertiär-butyl-4-hydroxyphenyl)pro-
2,2'-Methylen-bis(4-äthyl-6-tertiär-butylphenol)
2,2'-Methylen-bis(4-methyl-6- &-methylcyclohexylphenol)
4,4'-Thio-bis(2-tertiar-butyl-5-methylphenol)
4,4'-Thio-bis(2-tertiär-butyl-6-methylphenol)
4,4'-Methylen-bis(2-tertiar-butyl-5-methylphenol)
4,4'-Methylen-bis(2,6-di-tertiär-butylphenol)
4,4'-Butyliden-bis(2-tertiär-butyl-5-methylphenol)
4,4'-Butyliden-bis(2-isopropyl-5-methylphenol)
2.4-Bis(3.5-di-tertiar-butyl-4-hydroxyphenoxy)-6-
                               (n-octylthio)-1,3,5-triazin
1,3,5-Trimethyl-2,4,6-tris(3,5-di-tertiär-butyl-4-
                               hydroxybenzyl)benzol
1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2-methylphenyl)
Tetrakis | methylen-3-(3,5-di-tertiär-butyl-4-hydroxy-
                               phenyl) propionat methan
```

Von einigen dieser Phenolverbindungen mit sterischer Hinderung nämlich solchen wie 2,6-Di-tertiär-butyl-p-cresol, 2,6-Di-isobornyl-p-cresol, 2,6-Bis(1-methyl-1-phenyl-äthyl)-p-cresol kann man erwarten, daß sie unter anderen einen thermischen

Abbau von Polyolefinzusammensetzungen innerhalb einer Verarbeitungsmaschine verhindern können.

Die Anteile der Ester und Phenol-Antioxidantien innerhalb der Polyolefinzusammensetzung liegen vorzugsweise bei 0,01 % oder mehr, noch besser bei 0,05 % oder mehr jeweils bezogen auf das Gewicht der Polyolefinzusammensetzung. Die oberen Grenzen dieser Anteile sind unkritisch. Abgesehen von Sonderfällen wird es nicht erforderlich sein, mehr als 1 % zuzufügen, da sich normalerweise mit einem Anteil von weniger als 1 % ausreichende Ergebnisse einstellen.

Polyolefinzuammensetzungen, die durch Einbau dieser Zusatzstoffe stabilisiert werden können, sind Homopolymere oder Mischpolymere von Olefinen wie Äthylen, Propylen, Buten-1 oder Polymermischungen, die diese Polymere enthalten.

Die Verfahrensweise und die Einrichtungen zum Eindringen des Stabilisators in die Kunststoffzusammensetzung können aus herkömmlichen Techniken ausgewählt werden, womit allgemein Zusätze wie Stabilisatoren, Farbstoffe oder Füllstoffe in einen Thermoplasten eingemischt werden können.

Der Stabilisator nach der Erfindung kann in Verbindung mit einem anderen, damit verträglichen Zusatzstoff benutzt werden, bspw. organischen Phosphitestern, Ultraviolettabsorbern, Metall-wachsen. Die Polyolefinzusammensetzungen können außerdem Füllstoffe oder Pigmente enthalten.

Die Erfindung wird im folgenden anhand bevorzugter Ausführungsformen erläutert.

Beispiel IA

Die Versuche im Ausführungsbeispiel IA und im folgenden Ausführungsbeispiel IB dienen zur Erläuterung der Stabilisierungswirkung der Ester eines Polyols II bei alleiniger Verwendung.

Beliebigen Anteilen von Polypropylenpulver mit einer Grenzviskosität von 1,9 gemessen in Tetralin bei einer Temperatur von 135°C und mit einem isotaktischen Anteil von etwa 98 % werden mit einer Stabilisatormenge vermischt. Art und Menge des Zusatzes bezogen auf den Kunststoff sind in der folgenden Tabelle angegeben.

Jede Zubereitung wird in einem Mischer gemischt, geknetet und mittels eines Extruders granuliert. Der Extruder hat eine Zylindertemperatur von 230°C, einen L/D-Wert von 20 und einen inneren Zylinderdurchmesser von 20 mm. Das Granulat wurde dann bei einer Temperatur von 230°C in eine Folienform von 0,5 mm Dicke verspritzt. Die entsprechenden Teile werden als Probenkörper benutzt.

Die Beständigkeit gegen einen thermischen Abbau wird durch die Zeitdauer in Stunden abgeschätzt, wo der Probenkörper nach Erhitzung auf 140°C in einem Luftofen brüchig wird.

Probe	nnummer	Stabilisator	70 4 11 3 1 1 1
Bezug	Probe	Stabilisator	Beständigkei gegen thermi- schen Abbau (h)
1		ohne	weniger als 3
	1	Athylen-bis(3-octadecylthio- propionat) 0,3 %	52
_	2	Pentamethylen-bis(3-dodecyl-thiopropionat 0,3 %	96
	3	Octamethylen-bis(3-dodecyl-thiopropionat) 0,3 %	126
	4	Octamethylen-bis(3-dodecyl-thiopropionat) 0,6 %	191
	5	Octamethylen-bis(3-dodecylthio- propionat) 0,001 %	7
	6	Decamethylen-bis(3-octadecyl- thiopropionat) 0,3 %	143

Beispiel IB

Änliche Versuche wie im Beispiel IA werden für ein Propylenäthylen-Mischpolymer mit einer Grenzviskosität von 2,3 gemessen in Tetralin bei 130°C und einem Äthylenanteil von 21 Gewichts-% durchgeführt.

Probeni	nummer		Beständigk.
Bezug	ezug Probe Stabilisator		gegen thermi- schen Abbau (h)
2		ohne	weniger als 3
	7	Äthylen-bis(3-octadecyl-thiopropionat) 0,3%	50
	8	Pentamethylen-bis(3-dodecyl-thiopropionat) 0,3%	89
	9	Octamethylen-bis(3-dodecyl-thiopropionat) 0,3%	123

Beispiel IIA

Beliebige Anteile von Polypropylenpulver mit einer Grenzvis-kosität von 1,9 gemessen in Tetralin bei 135°C und einem isotaktischen Anteil von etwa 98 % werden mit einer Stabilisatormenge vermischt. Art und Menge jedes Zusatzstoffes bezogen auf die Kunststoffzusammensetzung sind in der folgenden Tabelle angegeben. Jede Zubereitung wird in einem Mischer gemischt, geknetet und mittels eines Extruders granuliert, dessen Zylindertemperatur 230°C beträgt, der L/D-Wert beträgt 20 und der innere Zylinderdurchmesser 20 mm.

Das Granulat wird dann bei einer Temperatur von 230°C in eine Folienform mit einer Dicke von 0,5 mm verspritzt. Die erhaltenen Teile werden als Probenkörper benutzt.

Die Beständigkeit gegen thermischen Abbau wird durch die Zeitdauer in Stunden abgeschätzt, bei der der Probenkörper nach Erhitzung auf 140°C in einer Luftatmosphäre brüchig wird.

Probe	nnr.		Bestän-
	Probe	Stabilisator	digk. gegen therm. Abbau
1	•	ohne	weniger als 3
	1	(C ₁₂ H ₂₅ -S-CH ₂ CH ₂ C-O-CH ₂) ₄ -C 0,3 %	121
	2	(с ₁₈ н ₃₇ -s-сн ₂ сн ₂ с-о-сн ₂) ₄ -с 0,3 %	139
	3	С ₁₈ H ₃₇ -S-CH ₂ CH ₂ C-O-CH ₂) ₄ -С 0,3 %	187
	. 4	о (с ₁₈ н ₃₇ -s-сн ₂ сн ₂ с-о-сн ₂) ₃ с-сн ₂ он о,2 %	134
-	5	о с ₁₈ н ₃₇ -s-сн ₂ сн ₂ с-о-сн ₂ -с-(сн ₂ он) ₃ о,3%	42
2		n-Octadecyl-3-(3,5-di-tertiär-butyl-4- hydroxyphenyl)propionat 0,3 %	136
3		4,4'-Butyliden-bis(2-tertiär-butyl-5-methylphenol) 0,3 %	123
4		1,1,3-Tris(5-tertiär-butyl-4-hydroxy- 2-methylphenyl)butan 0,3 %	137
5		1,3,5-Trimethyl-2,4,6-tris(3,5-di-tertiä butyl-4-hydroxybenzyl)benzol 0,3 %	239
6	•••	Tetrakis (methylen-3-(3,5-di-tertiär- butyl-4-hydroxyphenyl)propionat) methan 0,3 %	1 692
-	6	о (с ₁₂ н ₂₅ -s-сн ₂ сн ₂ с-о-сн ₂) ₄ -с о,2 %	mehr als
	· !	n-Octadecyl-3-(3,5-di-tertiär-butyl-4- hydroxyphenyl)propionat 0,1 %	3 000

Probe	ennr.		
	Probe	Stabilisator	Beständigk. gegen therm. Abbau
1	i i	ohne	weniger als 3
	7	(C ₁₈ H ₃₇ -S-CH ₂ CH ₂ C-O-CH ₂) ₄ -C 0,2 % 4,4'-Butyliden-bis(2-tertiär-butyl- 5-methylphenol 0,1 %	mehr als 3 000
	8	(C ₁₈ H ₃₇ -S-CH ₂ CH ₂ C-O-CH ₂) ₄ -C 0,2 % 1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2-methylphenyl)butan 0,1 %	mehr als 3 000
	9	(C ₁₈ H ₃₇ -S-CH ₂ CH ₂ C-O-CH ₂) ₃ -C-CH ₂ OH 0,2% 1,3,5-Trimethyl-2,4,6-tris(3,5-di-tertiär-butyl-4-hydroxybenzyl)benzol 0,1%	mehr als 3 000
_	10	C ₁₈ H ₃₇ -S-CH ₂ CH ₂ C-O-CH ₂ -C-(CH ₂ OH) ₃ O,2% Tetrakis (methylen-3-(3,5-di-tertiär-butyl-4-hydroxyphenyl) propion) methan 0,1 %	mehr als 3 000

Beispiel IIB

Ähnliche Probenkörper wie im Beispiel IIA wurden aus einem Propylen-äthylen-Mischpolymer hergestellt, dessen Grenzvis-kosität 2,3 gemessen in Tetralin bei 135°C und dessen Äthylen-anteil 21 Gewichts-% beträgt.

	· · · · · · · · · · · · · · · · · · ·		<u>,</u>
	Probe	Stabilisator	Bestän- digkeit gegen therm. Abbau
7		ohne	weniger als 3
•	11	(c ₁₈ н ₃₇ -s-сн ₂ сн ₂ с-о-сн ₂) ₄ с 0,3 %	183
	12	о (с ₁₈ н ₃₇ -s-сн ₂ сн ₂ с-о-сн ₂) ₃ с-сн ₂ он о,3 %	127
8		1,1,3-Tris(5-tertiär-butyl-4-hydroxy- 2-methylphenyl)butan 0,3 %	134
9		Tetrakis (methylen-3(3,5-di-tertiär- butyl-4-hydroxyphenyl)propionat]methan 0,3 %	1 618
	.13	(C ₁₈ H ₃₇ -S-CH ₂ CH ₂ C-O-CH ₂) ₄ C 0,2 % 1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2-methylphenyl)butan	mehr als 3 000
	14	о (с ₁₈ н ₃₇ -s-сн ₂ сн ₂ с-о-сн ₂) 3 с-(сн ₂ он) о,2 %	
		Tetrakis (methylen-3(3,5-di-tertiär-buty: 4-hydroxyphenyl)propionat) methan 0,1 %	mehr als 3 000

Beispiel IIIA

Ähnliche Probenkörper wie im Beispiel IIA werden mit einer anderen Gruppe von Stabilisatoren zubereitet.

	·	_ 13 _ 2	028240
Probemmmer Bezug Probe		Stabilisator	Beständigkeit gegen thermi- schen Abbau (h)
1		ohne	weniger als
	1	Bis(äthylen-3-octylthiopropionat)sulfid 0,3%	148
	2	Bis(äthylen-3-dodecylthiopropionat)sulfid 0,3%	97
	3	Bis(äthylen-3-octadecylthiopropionat)sulf 0,3%	id 134
2		n-Octadecyl-3-(3,5-di-tertiär_butyl-4- hydroxyphenyl)propionat 0,3%	136
3		4,4'-butyliden-bis(2-tertiär-butyl-5-methylphenol) 0,3%	123
4		1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2-methylphenyl)butan 0,3%	137
5		1,5,5-Trimethyl-2,4,6-tris(3,5-di-tertiär butyl-4-hydroxybenzyl)benzol 0,3%	 - 239
6		Tetrakis (methylen-3-(3,5-di-tertiär-butyl 4-hydroxyphenyl) propionat) methan 0,3%	1692
	4	Bis(äthylen-3-dodecylthiopropionat)sulfid 0,2% n-Octadecyl-3-(3,5,di-tertiär-butyl-4- hydroxyphenyl)propionat 0,1%	743
	5	Bis(äthylen-3-dodecylthiopropionat) sulfid 0,2% 4,4'-Butyliden-bis(2-tertiär-butyl-5- methylphenol 0,1%	698
	6	Bis(äthylen-3-octadecylthiopropionat sulfid 0,2% 1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2-methylphenyl)butan 0,1%	1630

	<u></u>	_ 14 _ 2	028240
<u> </u>	nummer Probe	Stabilisator	Beständigkeit gegen themi- schen Abbau (h)
1		ohne	weniger als
	7	Bis(äthylen-3-octadecylthiopropionat) sulfid 0,2% 1,3,5-Trimethyl-2,4,6-tris(3,5-di-tertiän butyl-4-hydroxybenzyl)benzol 0,2%	2610
	8	Bis(äthylen-3-octadecylthiopropionat) sulfid 0,2% Tetrakis(methylen-3-(3,5-di-tertiär-butyl 4-hydroxyphenyl)propionat)methan 0,1%	mehr als 3000

Ausführungsbeispiel IIIB

Ähnliche Probenkörper wie im Beispiel IIB werden mit einer anderen Gruppe von Stabilisatoren zubereitet.

Probenummer		1	Beständigkei
	Probe	Stabilisator	gegen themi schen Abbau (h)
7		ohne	weniger als 3
	9	Bis(äthylen-3-dodecylthiopropionat)sulfic 0,3%	93
	10	Bis(äthylen-3-octadecylthiopropionat) sulfid 0,3%	127
* 8		1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2-methylphenyl)butan 0,3%	134
9		Tetrakis (methylen-3-(3,5-di-tertiär-buty: 4-hydroxyphenyl) propionat) methan 0,3%	1618
**********	11	Bis(äthylen-3-dodecylthiopropionat)sulfic	739
		1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2-methylphenyl)butan 0,1%	

Probemummer		Stabilisator	Beständigkeit gegen thermi-	
Bezug	Probe		schen Abbau (h)	
1		ohne	weniger als 3	
	12	Bis(äthylen-octadecylthiopropionat sulfid 0,2% Tetrakis methylen-3-(3,5-di-tertiär-butyl-4-hydroxyphenyl)propionat methan 0.1%	mehr als 3000	

Ausführungsbeispiel IVA

Ahnliche Probenkörper wie im Beispiel IIA werden mit anderen Gruppen von Stabilisatoren zubereitet.

age was re		- 16 -	28240
Proben Bezug	nummer	Stabilisator	Beständigeit gegen themi- schen Abbau (h)
1		ohne	weniger als
2		0 (HSCH ₂ CH ₂ C - 0 - CH ₂) ₃ -C ₂ H ₅ 0,3%	weniger als
	1	о (с ₈ н ₁₇ - s - сн ₂ сн ₂ с - о - сн ₂) ₃ -с - с ₂ н ₅ о,3%	
	2	о (с ₁₂ н ₂₅ - s - сн ₂ сн ₂ с - о - сн ₂) ₃ -с-с ₂ н ₅ о,3%	113
	3	о (с ₁₂ н ₂₅ - s - сн ₂ сн ₂ с - о - сн ₂) ₃ -с - сн ₃ о,3	% 112
	4	о (с ₁₈ н ₃₇ - s - сн ₂ сн ₂ с - о - сн ₂) ₃ -с-с ₂ н ₅ о,3%	175
	5	С ₁₈ н ₃₇ - s - сн ₂ сн ₂ с - о - сн ₂ - с -(сн ₂ с о,3%	_
	6	СН _З 0 (С ₁₂ Н ₂₅ - s - СНСН ₂ С - О - СН ₂) ₃ -С - С ₂ Н ₅ О,3%	3
	7	СН ₃ 0 (С ₁₂ Н ₂₅ - S - СН ₂ СН С - О - СН ₂) ₃ -С-С ₂ Н ₅ О,3%	148
	8	(с ₁₂ н ₂₅ - s - сн ₂ сн ₂ сн ₂ с с - о - сн ₂) ₃ -с- о,3%	
3		n-Octadecyl-3-(3,5-di-tertiär-butyl-4- hydroxyphenyl)propionat 0,3%	136
		•	

		- 17 -	28240
Proben Bezug	nummer Probe	Stabilisator	Beständigkeit gegen thermi- schen Abbau (h)
4		4,4'-Butyliden-bis(2-tertiär-butyl- 5-methylphenol) 0,3%	123
5		1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2-methylphenyl)butan 0,3%	137
6		1,3,5-Trimethyl-2,4,6-tris(3,5-di-tertiä butyl-4-hydroxybenzyl)benzol 0,3%	r- 239
7		Tetrakis (methylen-3-(3,5-di-tertiär- butyl-4-hydroxyphenyl) propionat) methan 0,3%	1692
	9	n-Octadecyl-3-(3,5-di-tertiär-butyl-4-hydroxyphenyl)propionat	mehr als 3000
-	10	CH ₃ 0 (C ₁₂ H ₂₅ -S-CHCH ₂ C-O-CH ₂) ₃ -C-C ₂ H ₅ 0,2% 4,4'-Butyliden-bis(2-tertiär-butyl-5-methylphenol) 0,1%	mehr als 3000
	11	CH ₃ 0 (C ₁₈ H ₃₇ -S-CHCH ₂ C-O-CH ₂) ₃ -C-C ₂ H ₅ 1,1,3-Tris(5-tertiär-butyl-4-hydroxy- 2-methylphenyl)butan 0,1%	mehr als 3000
-	• 12	CH ₃ O (C ₁₂ H ₂₅ -S-CH ₂ CH C-O-CH ₂) ₃ -C-C ₂ H ₅ 0,2% 1,3,5-Trimethyl-2,4,6-tris(3,5-di- tertiär-butyl-4-hydroxybenzyl)benzol 0,1%	mehr als 3000
	13	O (C ₁₂ H ₂₅ -S-CH ₂ CH ₂ CH ₂ C-O-CH ₂) ₃ -C-C ₂ H ₅ O,2% Tetrakis (methylen-3-(3,5-di-tertiär-butyl-4-hydroxyphenyl) propionat) methan O,1%	mehr als 3000

Ausführungsbeispiel IVB

Ähnliche Probenkörper wie im Beispiel IIB werden mit einer anderen Gruppe von Stabilisatoren hergestellt.

Proben	nummer	Stabilisator		Beständigkeit gegen thermi-
Bezug	Probe	Suggestive		schen Abbau (h)
8		ohne		weniger als 3
	14	о С ₁₂ H ₂₅ -S-CH ₂ CH ₂ C-O-CH ₂) ₃ -C-C ₂ H ₅	0,3%	106
	15	СН ₃	0,3%	130
9		1,1,3-Tris(5-tertiär-butyl-4-hydromethylphenyl)butan	0,3%	134
10		Tetrakis (methylen-3-(3,5-di-tertibutyl-4-hydroxyphenyl)propionat) me	är- ethan 0,3%	1618
,	16	(C ₁₂ H ₂₅ -S-CH ₂ CH ₂ C-O-CH ₂) ₃ -C-C ₂ H ₅ 1,1,3-Tris(5-tertiär-butyl-4-hydromethylphenyl) butan	0,2%	mehr als 3000
	17	CH ₃ 0 (C ₁₂ H ₂₅ -S-CHCH ₂ C-O-CH ₂) ₃ -C-C ₂ H ₅ Tetrakis(methylen-3-(3,5-di-terti: 4-hydroxyphenyl)propionat) methan	0,2% är-but; 0,1%	mehr als 3000

Ausführungsbeispiel VA

Ähnliche Probenkörper wie im Beispiel IIA werden mit einer anderen Gruppe von Stabilisatoren hergestellt.

	•	- 19 -	20	28240
	nummer	Stabilisator		Beständigkei gegen thenn schen Abba
Bezug 1	Probe	ohne		(h) weniger als
		0		3
		н sc н ₂ c н - c - о - сн ₂		
2		нscн ₂ сн ₂ - c - o - cн 0,3%		weniger al
		HSCH ₂ CH ₂ - C - O - CH ₂		
		с ₈ н ₁₇ - s - сн ₂ сн ₂ с - о - сн ₂		
	.1	с ₈ н ₁₇ - s - сн ₂ сн ₂ - с - о - сн	0,3%	97
. :		с ₈ н ₁₇ - s - сн ₂ сн ₂ - c - о - сн ₂		-
		о с ₁₂ н ₂₅ - s - сн ₂ сн ₂ с - о - сн ₂	•	
	2	о с ₁₂ н ₂₅ - s - сн ₂ сн ₂ с - о - сн	0,3%	103
•		С ₁₂ H ₂₅ - s - сн ₂ сн ₂ с - о - сн ₂		-
		с ₁₈ н ₃₇ - s - сн ₂ сн ₂ с - о - сн ₂		
	3	о с ₁₈ н ₃₇ - s - сн ₂ сн ₂ с - о - сн	0,3%	136
		о с ₁₈ н ₃₇ - s - сн ₂ сн ₂ с - о - сн ₂		

o		- 20 <u>-</u>	28240
Proben	nummer	Stablilisator	Bestandigkeit gegeb thermi-
Bezug	Probe	5000111150001	schen Abbau (h)
		С ₁₈ н ₃₇ - s - сн ₂ сн ₂ с - о - сн ₂	
	4	но - сн о,3% но - сн ₂	32
		С ₁₂ H ₂₅ - S - CH - CH ₂ - C - O - CH ₂	
	5	СH ₃ 0 С ₁₂ H ₂₅ - S - CH - CH ₂ - C - O - CH 0,3%	125
		CH ₃ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne en en e es
		C ₁₂ H ₂₅ - S - CH ₂ CH - C - O - CH ₂	· :
	6	$C_{12}^{H_{25}} - S - C_{12}^{CH_{20}} - C - O - C_{12}^{CH_{20}} = 0,3\%$	128
	·	СH ₃ 0 С ₁₂ H ₂₅ - S - CH ₂ CH - C - O - CH ₂	•
		с ₁₂ н ₂₅ - s - сн ₂ сн ₂ сн ₂ с - о - сн ₂	`
•	7	С ₁₂ H ₂₅ - s - CH ₂ CH ₂ CH ₂ - C - O - CH О,39	
		о С ₁₂ H ₂₅ - s - сн ₂ Сн ₂ Сн ₂ - c - о - сн ₂	
3		n-Octadecyl-3-(3,5-di-tertiär-butyl-4- hydroxyphenyl)propionat 0,3%	6 136
4	-	4,4'-Butyliden-bis(2-tertiär-butyl-5-methylphenol) 0,3%	123
	·		

009852/2098

			•
Prober Bezug	nummer Probe	Stabilisator	Beständigkeit gegen themi- schen Abbau (h)
5		1,1,3-Tris(5-tertiär-butyl-4-hydroxy- 2-methylphenyl)butan 0,3%	137
6		1,3,5-Trimethyl-2,4,6-tris-(3,5-di- tertiär-butyl-4-hydroxy-benzyl)benzol 0,3%	239
7		Tetrakis (methylen-3-(3,5-di-tertiär-butyl 4-hydroxyphenyl) propionat) methan 0,3%	1692
	8	о c ₁₂ H ₂₅ - s - cH ₂ CH ₂ C - о - CH ₂ о c ₁₂ H ₂₅ - s - cH ₂ CH ₂ C - о - CH	mehr als 3000
		C ₁₂ H ₂₅ - S - CH ₂ CH ₂ C - O - CH ₂ n-Octadecyl-3-(3.5-di-tertiär-butyl-	
	9	4-hydroxyphenyl)propionat 0,1% CH ₃ 0 C ₁₂ H ₂₅ - S - CHCH ₂ C - O - CH ₂ CH ₃ 0 C ₁₂ H ₂₅ - S - CHCH ₂ C - O - CH CH ₃ 0 CH ₃ 0	mehr als 3000
		4,4'-Butyliden-bis(2-tertiär-butyl-5-methylphenol 0,1%	,

ORIGINAL INSPECTED

	- 22 - 20	028240
Probennummer Bezug Probe	Stabilisator	Beständigkei gegen themi- schen Abbai (h)
10	C ₁₈ H ₃₇ - S - CHCH ₂ C - O - CH ₂ C ₁₈ H ₃₇ - S - CHCH ₂ C - O - CH O,2% CH ₃ C ₁₈ H ₃₇ - S - CHCH ₂ C - O - CH CH ₃ C ₁₈ H ₃₇ - S - CHCH ₂ C - O - CH ₂ 1,1,3-Tris-(5-tertiär-butyl-4-hydroxy-2-methylphenyl)butan O,1%	mehr als 3000
. 11	C ₁₂ H ₂₅ - S - CH ₂ CH - C - O - CH ₂ CH ₃ O C ₁₂ H ₂₅ - S - CH ₂ CH - C - O - CH O,2% CH ₃ O CH ₂ O CH ₃ O CH ₄ O	mehr als 3000
12	O,1% C ₁₂ H ₂₅ - S - CH ₂ CH ₂ CH ₂ C - O - CH ₂ O C ₁₂ H ₂₅ - S - CH ₂ CH ₂ CH ₂ C - O - CH O,2% O C ₁₂ H ₂₅ - S - CH ₂ CH ₂ CH ₂ C - O - CH ₂ Tetrakis (methylen-3-(3,5-di-tertiär-butyl-4-hydroxyphenyl) propionat) methan O,1%	mehr als 3000

Ausführungsbeispiel VB

Ähnliche Probenkörper wie im Beispiel IIB wurden mit einer anderen Gruppe von Stabilisatoren hergestellt.

		- 23 -	
Proben		Stabilisator	Beständigkeit gegen themi schen Abbau
Bezug · 8	Probe		(h) weniger als
	13	$C_{12}H_{25} - s - cH_{2}CH_{2} = 0 - cH_{2}$ $C_{12}H_{25} - s - cH_{2}CH_{2} = 0 - cH = 0,3\%$ $C_{12}H_{25} - s - cH_{2}CH_{2} = 0 - cH_{2}$ $C_{12}H_{25} - s - cH_{2}CH_{2} = 0 - cH_{2}$	100
-	14	$c_{12}H_{25} - s - chch_2 c - o - ch_2$ $ch_3 o$ $c_{12}H_{25} - s - chch_2 c - o - ch$ $ch_3 o$	120
9		1,1,3-Tris-(5-tertiär-butyl-4-hydroxy- 2-methylphenyl)butan 0,3%	134
10		Tetrakis methylen-3-(3,5-di-tertiär-butyl-4-hydroxyphenyl)propionat methan 0,3%	1618
	15	C ₁₂ H ₂₅ - S - CH ₂ CH ₂ C - O - CH ₂ C ₁₂ H ₂₅ - S - CH ₂ CH ₂ C - O - CH O C ₁₂ H ₂₅ - S - CH ₂ CH ₂ C - O - CH 1,1,3-Tris-(5-tertiär-butyl-4-hydroxy-2-methylphenyl) butan O,1%	mehr als 3000

		- 24 -	20	28240
Proben	nummer	Stabilisator		Beständigkeit gegen themi-
Bezug	Probe	303322		schen Abbau (h)
	1 6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,2%	mehr als 3000

Ausführungsbeispiel VIA

Ähnliche Probenkörper wie im Ausführungsbeispiel IIA werden mit einer anderen Gruppe von Stabilisatoren zubereitet.

Tetrakis (methylen-3-(3,5-di-tertiärbutyl-4-hydroxyphenyl) propionat) methan

Probennummer Bezug Probe		Stabilisator	Beständigkeit gegen thermi- schen Abbau (h)
1			weniger als 3
2		(HSCHCH ₂ C = 0 = CH ₂ /4-C	weniger als 3
	1	$\begin{pmatrix} c_{8}^{H}_{17} - s - c_{H}^{C}_{13} & c_{13}^{C} & c_$	125
·	2.	$\begin{pmatrix} c_{12}^{H_{25}} - s - c_{HCH_{2}} c - o - c_{H_{2}} \end{pmatrix}_{4^{-C}} 0,3\%$	131
	3	$\begin{pmatrix} c_{18}^{H_3} - s - c_{HCH_2} & c - o - c_{H_2} \end{pmatrix}_{4^{-C}} $	189
	4	$c_{18}^{\text{H}_3}$ $c_{18}^{$	

			028240			
D	- 25 -					
Probennum Bezug Pro	ner obe	Stabilisator	Beständigkeit gegen themi- schen Abbau			
	5	$\begin{pmatrix} c_{12}H_{25} - s - cH_2CH c - o - cH_2 \end{pmatrix}_{4^{-C}}$	137			
6	6	$\left(c_{12}H_{25} - s - cH_{2}C$	134			
3		n-Octadecyl-3-(3,5-di-tertiär-butyl-4-hydroxyphenyl)propionat 0,3%	136			
4		4,4'-Butyliden-bis(2-tertiär-butyl-5-methylphenol) 0,3%	123			
5		1,1,3-Tris(5-tertiär-butyl-4-hydroxy- 2-methylphenyl)butan 0,3%	137			
6		1,3,5-Trimethyl-2,4,6-tris(3,5-di- tertiär-butyl-4-hydroxybenzyl)benzol 0,3%	239			
7	ī	Tetrakis (methylen-3-(3,5-di-tertiär-but, 4-hydroxyphenyl) propionat) methan 0,3%	y1 - 1692			
7	7	C ₁₂ H ₂₅ - S - CHCH ₂ C - 0 ₄ -C 0,2% n-Octadecyl-3-(3,5-di-tertiär-butyl- 4-hydroxyphenyl)propionat 0,1%	mehr als 3000			
8	3	CH3 0 C12H25 - S - CHCH2 - C - 0/4-C 0,2% 4,4'-Butyliden-bis(2-tertiär-butyl-5-methylphenol 0,1%	mehr als 3000			
9		CH3 0 C18 ^H 37 - S - CHCH2 - C - 0)4-C 0,2% 1,1,3-Tris(5-tertiär-butyl-4-hydroxy- 2-methylphenyl)butan 0,1%	mehr als 3000			
		•				

		- 26 -	028240	
Proben	nummer	Stabilisator	Beständigkeit gegen thermi-	
Bezug	Probe	•	schen Abbau (h)	
	10	CH3 0 C12H25 - S - CH2CH - C - O - CH2)4-C 0,2% 1,3,5-Trimethyl-2,4,6-tris(3,5-di- tertiär-butyl-4-hydroxybenzyl)benzol 0,1%		
	11	C ₁₂ H ₂₅ - S - CH ₂ CH ₂ CH ₂ C - CH ₂) ₄ -C O,2% Tetrakis(methylen-3-(3,5-di-tertiär-butyl-4-hydroxyphenyl)propionat) methan		

Ausführungsbeispiel VIB

Ähnliche Probekörper wie im Beispiel IIB werden mit einer anderen Gruppe von Stabilisatoren zubereitet.

Probennummer Bezug Probe		Stabilisator	Beständigkeit gegen thermi- schen Abbau (h)
8			weniger als 3
	12	$\begin{pmatrix} c_{12}^{H_{3}} & 0 \\ c_{12}^{H_{25}} - s - chch_{2} & - o - ch_{2} \end{pmatrix}_{4}$ -c	·
		0,3%	128
	13	$\left(c_{12}^{\text{H}}_{25} - s - c_{12}^{\text{CH}}_{2}^{\text{CH}}_{2}^{\text{CH}}_{2}^{\text{C}} - o - c_{12}^{\text{C}}\right)_{4}^{\text{C}}$. 130
9		1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2-methylphenyl)butan 0,3%	
		,	

:		- 27 -	028240
Proben	nummer	Stabilisator	Bestandigkeit gegen thermi- schen Abbau
Bezug	Probe		(h)
. 10		Tetrakis (methylen-3-(3,5-di-tertiär- butyl-4-hydroxyphenyl) propionat) methan 0,3%	1618
	14	$\left(c_{12}H_{25} - s - chcH_{2} c - o - cH_{2}\right)_{4} - c$	mehr als 3000
		1,1,3-Tris(5-tertiär-butyl-4-hydroxy- 2-methylphenyl)butan 0,1%	
	15	$\left(c_{12}H_{25} - s - cH_{2}CH_{2}CH_{2}C - o - cH_{2}\right)_{4}-C$	mehr als 3000
	-	Tetrakis (methylen-3-(3,5-di-tertiär- butyl-4-hydroxyphenyl) propionat) methan 0,1%	

Ausführungsbeispiel VIIA

Ahnliche Probenkörper wie im Beispiel IIA werden mit einer anderen Gruppe von Stabilisatoren hergestellt.

		L L
nummer		Beständigkeit gegen thermi-
Probe		schen Abbau (h)
		weniger als
1	Äthylen-bis(3-dodecylthiobutyrat) 0,3%	50
2	Äthylen-bis(3-octadecylthioisobutyrat) 0,3%	58
3	Äthylen-bis(4-octadecylthiobutyrat) 0,3%	51
4	Propylen-bis(3-octadecylthiobutyrat) 0,3%	57
5	Octamethylen-bis(3-octadecylthiobutyrat) 0,3%	89
	Probe 1 2 3	Probe Athylen-bis(3-dodecylthiobutyrat) 0,3% Athylen-bis(3-octadecylthioisobutyrat) 0,3% Athylen-bis(4-octadecylthiobutyrat) 0,3% Propylen-bis(3-octadecylthiobutyrat) 0,3% O,3% Octamethylen-bis(3-octadecylthiobutyrat)

		- 28 -	28240
Proben Bezug	nummer Probe	Stabilisator	Beständigkei gegen thermi schen Abbau (h)
	6	Bis(äthylen-3-octadecylthiobutyrat) sulfid 0,3%	93
	~ 7	Bis(propylen-3-octadecylthiobutyrat) sulfid 0,3%	95
2		n-Octadecyl-3-(3,5-di-tertiär-butyl-4- hydroxyphenyl)propionat 0,3%	136
3		4,4'Butyliden_bis(2-tertiär-butyl-5-methylphenol) 0,3%	123
4		1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2-methylphenyl)butan 0,3%	137
5 -		1,3,5-Trimethyl-2,4,6-tris(3,5-di-tertia butyl-4-hydroxybenzyl)benzol 0,3%	
6		Tetrakis (methylen-3-(3,5-di-tertiär-buty 4-hydroxyphenyl) propionat) methan 0,3%	
	8	Äthylen-bis(3-dodecylthiobutyrat) 0,2% n-Octadecyl-3-(3,5-di-tertiär-butyl-4-hydroxyphenyl)propionat 0,1%	570
	9	Äthylen-bis(3-octadecylthioisobutyrat) 0,2% 4,4-Butyliden-bis(2-tertiär-butyl-5- methylphenol) 0,1%	1240
	10	Äthylen-bis(4-octadecylthiobutyrat) 0,2% 1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2- methylphenyl)butan 0,1%	1410
•	11	Propylen-bis(3-octadecylthiobutyrat) 0,2% 1,3,5-Trimethyl-2,4,6-tris(3,5-di- tertiär-butyl-4-hydroxybenzyl)benzol 0,1%	2019

- 29 - 2028240			
Probennummer		Stabilisator	Beständigkeit gegen thermi-
Bezug	Probe		schen Abbau (h)
	12	Octamethylen-bis(3-octadecylthiobutyrat) 0,2% Tetrakis(methylen-3-(3,5-di-tertiär- butyl-4-hydroxyphenyl)propionat) methan 0,1%	mehr als 3000
	13	Bis(äthylen-3-octadecylthiobutyrat) sulfid 0,2% Tetrakis(methylen-3-(3,5-di-tertiär- butyl-4-hydroxyphenyl)propionat)methan 0,1%	mehr als 3000
	14	Bis(propylen-3-octadecylthiobutyrat) sulfide 0,2% Tetrakis(methylen-3-(3,5-di-tertiär- butyl-4-hydroxyphenyl)propionat)methan 0,1%	mehr als 3000

Ausführungsbeispiel VIIB

Ähnliche Probenkörper wie im Beispiel IIB werden mit einer anderen Gruppe von Stabilisatoren zubereitet.

- 30 -	2028240
70	

		- 30 -	720240
Probennummer Bezug Probe		Stabilisator	Bestänigkeit gegen thermi schen Abbau (h)
7		ohne	weniger als
	15	Äthylen-bis(4-octadecylthiobutyrat) 0,3%	50
	16	Bis(äthylen-3-octadecylthiobutyrat) sulfid 0,3%	89
8		1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2-methylphenyl)butan 0,3%	. 134
9		Tetrakis (methylen-3-(3,5-di-tertiär- butyl-4-hydroxyphenyl) propionat) methan 0,3%	1618
	17	Äthylen-bis(4-octadecylthiobutyrat) 0,2% 1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2- methylphenyl)butan 0,1%	1283
	18	Bis(äthylen-3-octadecylthiobutyrat) sulfid 0,2% Tetrakis(methylen-3-(3,5-di-tertiär-butyl-4-hydroxyphenyl)propionat)methan 0,1%	mehr als 3000

Ausführungsbeispiel VIIIA

Die Versuche dieses Beispiels und des folgendes Beispiels VIIIB sollen die Stabilisierungswirkung von Estern eines Polyols II mit einem Phenol-Antioxidans zeigen. Folglich sind die Proben, wo die Ester allein benutzt sind, als "Bezug" bezeichnet.

Entsprechende Probenkörper wie im Beispiel IIA werden aus einer anderen Gruppe kombinierter Stabilisatoren zubereitet.

nummer	Stabilisator	55 96 136
	Äthylen-bis(3-octadecylthiopropionat) 0,3% Propylen-bis(3-octadecylthiopropionat) 0,3% Pentamethyl-bis(3-dodecylthiopropionat) 0,3% n-Octadecyl-3-(3,5-di-tertiär-butyl-4-	52 55 55 96 136
	Propylen-bis(3-octadecylthiopropionat) 0,3% Pentamethyl-bis(3-dodecylthiopropionat) 0,3% n-Octadecyl-3-(3,5-di-tertiär-butyl-4-	55 96 136
	Pentamethyl-bis(3-dodecylthiopropionat) 0,3% 0,3% n-Octadecyl-3-(3,5-di-tertiär-butyl-4-	96
	n-Octadecyl-3-(3,5-di-tertiär-butyl-4-	136
	n-Octadecyl-3-(3,5-di-tertiär-butyl-4- hydroxyphenyl)propionat 0,3%	
	1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2-methylphenyl)butan 0,3%	137
•	1,3,5-Trimethyl-2,4,6-tris(3,5-di-terti butyl-4-hydroxybenzyl)benzol 0,3%	
	Tetrakis (methylen-3-(3,5-di-tertiär- butyl-4-hydroxyphenyl) propionat methan 0,3%	1692
1	Äthylen-bis(3-octadecylthiopropionat) 0,29 n-Octadecyl-3-(3,5-di-tertiär-butyl-4- hydroxyphenyl)propionat 0,19	
2	Äthylen-bis(3-octadecylthiopropionat) 0,2% 1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2- methylphenyl)butan 0,1%	-
3	Propylen-bis(3-octadecylthiopropionat) 0,29 1,3,5-Trimethyl-2,4,6-tris(3,5-di- tertiär-butyl-4-hydroxybenzyl)benzol 0,19	1920
4	Pentamethylen-bis(3-dodecylthiopropion 0,29 Tetrakis(methylen-2-(3,5-di-tertiär-bu-4-hydroxyphenyl)propionat)methan 0,19	% 3000 tyl-
	3	7,1,3-Tris(5-tertiär-butyl-4-hydroxy-2-methylphenyl)butan O,29 Propylen-bis(3-octadecylthiopropionat) O,29 1,3,5-Trimethyl-2,4,6-tris(3,5-di-tertiär-butyl-4-hydroxybenzyl)benzol O,19 Pentamethylen-bis(3-dodecylthiopropion O,29 Tetrakis(methylen-2-(3,5-di-tertiär-bu

Ausführungsbeispiel VIIIB

Ähnliche Probenkörper wie im Beispiel IIB werden mit einer anderen Gruppe von kombinierten Stabilisatoren hergestellt.

		Beständigkeit	
	Scapitizator.	gegen thermi- schen Abbau	
Probe		' (h)	
	ohne	weniger als 3	
	Äthylen-bis(3-octadecylthiopropionat) 0,3%	50	
	Propylen-bis(3-octadecylthiopropionat 0,3%	52	
	1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2-methylphenyl)butan 0,3%	134	
	Tetrakis (methylen-3-(3,5-di-tertiär- butyl-4-hydroxyphenyl) propionat) methar 0,3%	n 1618	
5	Äthylen-bis(3-octadecylthiopropionat) 0,2% 1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2- methylphenyl)butan 0,1%	1947	
6	Propylen-bis(3-octadecylthiopropionat) 0,2% Tetrakis[methylen-3-(3,5-di-tertiär-butyl-4-hydroxyphenyl)propionat] methan 0,1%	mehr als 3000	
		Probe Stabilisator Probe Athylen-bis(3-octadecylthiopropionat) 0,3% Propylen-bis(3-octadecylthiopropionat 0,3% 1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2-methylphenyl)butan 0,3% Tetrakis(methylen-3-(3,5-di-tertiär-butyl-4-hydroxyphenyl)propionat) methan 0,3% Athylen-bis(3-octadecylthiopropionat) 0,2% 1,1,3-Tris(5-tertiär-butyl-4-hydroxy-2-methylphenyl)butan 0,1% Propylen-bis(3-octadecylthiopropionat) 0,2% Tetrakis(methylen-3-(3,5-di-tertiär-butyl-4-hydroxyphenyl)propionat) methan	

009852/2098

Patentansprüche

1. Polyolefinzusammensetzung aus einem Polyolefin und einem Anteil eines Stabilisators inform eines Esters einer Säure der Formel

$$R - S - C_n H_{2n} - COOH$$
 (I)

wobei R ein C₈ - C₃₀-Alkylrest und n eine ganze Zahl 2 oder 3 ist, mit einem Polyol aus der folgenden Verbindungsgruppe 1)Polyole der Formel

$$HO - R' - OH$$
 , (II)

mit R' als C2-C12-Alkenrest,

2) Polyole der Formel

$$HO - C_m H_{2m} - S - C_m H_{2m} - OH$$
 (III)

mit m als ganzer Zahl 2 oder 3,

3) Polyole der Formel

$$HO - CH_2$$
 $HO - CH_2$
 $C - R''$
 $HO - CH_2$

mit R" als C₁-C₂₀-Alkylrest,

- 4) Glycerin und
- 5) Pentaerythrit-tetranitrat wobei R, R', R" gleiche oder verschiedene Reste innerhalb einer Verbindung sind.
- 2. Polyolefinzusammensetzung nach Anspruch 1, gekennzeichnet durch einen Diester der genannten Säure mit einem Polyol der Formel

mit R' als C2-C12-Alkenrest.

3. Polyolefinzusammensetzung nach Anspruch 1, gekennzeichnet

durch einen Diester der genannten Säure mit einem Polyol der Formel

$$HO - C_mH_{2m} - S - C_mH_{2m} - OH$$

mit m als einer ganzen Zahl 2 oder 3.

4. Polyolefinzusammensetzung nach Anspruch 1, gekennzeichnet durch einen Ester der genannten Säure mit einem Polyol der Formel

mit R" als C₁₂-Alkylrest, mit Glycerin oder Pentaerythrittetranitrat.

- 5. Polyolefinzusammensetzung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Stabilisator neben dem Ester ein Phenol-Antioxidansinform einer Phenolverbindung mit sterrischerHinderung enthält.
- 6. Polyolefinzusammensetzung nach Anspruch 5, gekennzeichnet durch Homopolymere und Mischpolymere von Propylen und Äthylen.

THIS PAGE BLANK (USPTO)

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

U	BLACK BORDERS
O	IMAGE CUI OFF AT TOP, BOTTOM OR SIDES
	FADED TEXT OR DRAWING
B	BLURED OR ILLEGIBLE TEXT OR DRAWING
0	SKEWED/SLANTED IMAGES
	COLORED OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY. As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox

THIS PAGE BLANK (USPTO)