RESEARCH REPORTS DIVISION NAVAL POSTGAM UATE SCHOOL MONTEREY, CALIFORNIA 9394

NP-S55-87-008

d

NAVAL POSTGRADUATE SCHOOL

Monterey, California

EVALUATION OF GRE DATA -AN EXPERIMENT AT NPS

Donald R. Barr Gilbert T. Howard

AUGUST 1987

Approved for public release; distribution is unlimited.

Prepared for: Naval Postgraduate School Monterey, CA 93943-5000 Rear Admiral R. C. Austin Superintendent

K. T. MARSHALL Acting Provost

Reproduction of all or part of this report is authorized.

This report was prepared by:

	REPORT DOCUM	MENTATION	PAGE -		i e scho		
EPORT SECURITY CLASSIFICATION Unclassified		ID RESTRICTIVE MARKINGS					
ECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION/AVAILABILITY OF REPORT					
DECLASSIFICATION DOWNGRADING SCHEDU	LE	Approved for public release; distribution is unlimited					
REPORT NUMBE	R(S)	5 MONITORING	ORGANIZATION	REPORT NUM	BER(S)		
NPS55-87-008							
NAME OF PERFORMING ORGANIZATION IVAL Posgraduate School	78 NAME OF M	ONITORING ORG	ANIZATION				
onterey, California 1943-5000		76 ADDRESS (Cit	ty, State, and ZIF	P Code)			
IAME OF FUNDING/SPONSORING ORGANIZATION	8b OFFICE SYMBOL (If applicable)	9 PROCUREMEN	T INSTRUMENT II	DENTIFICATION	N NUMBER		
DDRESS (City, State, and ZIP Code)	<u> </u>	10 SOURCE OF E	FUNDING NUMBE	RS			
		PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO		
If LE (Include Security Classification) Evaluation of GRE Data - An Ex	periment at NPS						
ERSONAL AUTHOR(S) Donald R. Bar	r and Gilbert T	. Howard					
TYPE OF REPORT 136 TIME CO	OVERED TO	14 DATE OF REPO		n, Day) 15 Pi	AGE COUNT		
UPPLEMENTARY NOTATION							
COSATI CODES	18 SUBJECT TERMS (Continue on revers	e it necessary ar	nd identify by	block number)		
FIELD GROUP SUB-GROUP							
ABSTRACT (Continue on reverse if necessary	and identify by black i	aumbar)					
DISTRIBUTION / AVAILABILITY OF ABSTRACT LUNCLASSIFIED/UNLIMITED SAME AS F	RPT DTIC USERS	21 ABSTRACT SE	ECURITY CLASSIF	ICATION	-		
NAME OF RESPONSIBLE INDIVIDUAL [] bert T. Howard	MILL OSEKS	226 TELEPHONE (Include Area Code) 22c OFFICE SYMBOL (408) 646-2098 012					
	R edition may be used ur		SECURIT	Y CLASSIFICAT	ION OF THIS PAGE		
	All other editions are o	bsolete					

TABLE OF CONTENTS

ACKNOWLEDGEMENT .	2
EXECUTIVE SUMMARY	
I. INTRODUCTI	ON 4
II. DATA	8
III. ANALYSIS	
A. OVERVIE	W OF ANALYSIS10
B. ANALYSI	S RESULTS11
1. COR	RELATION11
2. REG	RESSION13
3. CURR	ICULA DIFFERENCES17
4. PRINC	CIPAL COMPONENT ANALYSIS19
5. DISC	RIMINANT ANALYSIS20
	CRIPTION OF DATA26
	RIPTION OF DATA26

ACKNOWLEDGEMENT

The assistance of Kathy Fargo, secretary in the Research Administration Office is acknowledged. Her assistance in data entry and in typing and retyping this report is appreciated. In addition the considerable contributions of Hans Doelman and Lloyd Nolan in data preparation were invaluable.

EXECUTIVE SUMMARY

U.S. Naval Officers reporting to the Naval Postgraduate School as students during the period April 1986 to April are required to take the graduate record examination An analysis of the GRE scores obtained to date and of other factors, such as age, sex, years since receiving a baccalaureate degree, and Academic Profile Code (APC) scores was performed. The analysis was based on data for approximately 320 students who have completed at least three quarters at NPS. Two measures of student academic performance were considered: graduate grade point average and total grade point average. The analyses performed are not exhaustive; other analyses could well provide further insights and other variables might be included in future analyses. Additionally, the sample size of tested students who have completed several quarters of work at NPS will

Regression analysis was used to investigate which components of the GRE and APC scores (together with age and years since graduation) are important in predicting academic performance as measured by grade point averages (GPA's). In addition, several multivariate analysis methods were used in an attempt to find predictors of marginal academic performance (GPA's less than 3.0). The major conclusions are:

- Use of GRE's, in addition to APC's and other available indicators, can provide significantly better prediction of academic performance than use of APC's only.
- The VERBAL and QUANT portions of the GRE are most useful in predicting academic performance at NPS. These together with the first component of APC (which reflects overall past academic performance) and AGE are the best available predictors of GPA's.
- The second and third components of APC scores which reflect mathematical background and technical background are not useful predictors of academic performance of students admitted to NPS. Nevertheless, these components of APC remain important criteria for admission.
- Significant differences in GPA's and predictors of GPA's are evident over the various curricula at NPS.
- Discrimination of NPS students who will experience academic difficulties (GPA's less than 3.0), on the basis of combination of the predictor variables, appears difficult.

It should be noted that results of the experiment on GRE's are somewhat difficult to interpret because the GRE scores are obtained only for U.S. Navy students who were accepted by NPS.

Further analysis work with the GRE data, possibly in the form an NPS thesis project, is justified.

I. INTRODUCTION

Every academic institution is concerned with monitoring and controlling the quality of its incoming students. The Naval Postgraduate School, while it has characteristics not shared by civilian universities, is no exception. The Navy's interests are best served by selecting for advanced education only those candidates who are well-prepared and most likely to benefit from the opportunity. To withdraw the officer from his or her operational duties for assignment to graduate school is a significant decision both for the Navy and for the officer. This report considers data from an on-going experiment at NPS, the purpose of which is to determine the value of using the Graduate Record Exam (GRE) in the selection process.

Under the current admission system no reliable benchmark of academic performance is available which allows comparison between officers except in the most general terms. The candidate's academic records are available and these are translated into the Academic Profile Code. The APC is a three-digit code which reflects overall academic performance, mathematical background, and scientific and technical background. It is an important element of the selection process but is clearly not able to measure all elements of an officer's preparation for graduate school. The officer's records span a wide variety of institutions and subject areas and reflect a broad range of grade point averages. Some officers have continued their education by

night school, by correspondence, or by self study courses and the value of these is difficult to assess. Thus, the need for additional means of comparing candidates was sought.

The idea of using the GRE in the NPS selection process has been discussed for several years, but serious consideration began in about 1984. Numerous issues have delayed implementation. Would the exams be required or recommended? How will candidates (who may be on-board a ship or submarine) take the exam? Who will pay for the exam? What use will be made of the scores? Are the scores a reliable measure of future success in graduate school? Some of these questions remain unanswered, but it was decided in 1985 that a 3-year experiment would be conducted and all Navy students who entered NPS after March 1986 would take the GRE at NPS. The purpose of this was to collect data which could be used to address the substantitive questions regarding the value of the GRE for the purpose of selecting students.

It was originally proposed that the GRE be taken by all new Navy officer accessions. Undergraduates planning to accept a commission in the Navy would be required to take the GRE exam near the time of graduation. These scores would then be included in the officers' records and would be available later in the event that advanced education was considered. While the cost of implementing this proposal, for approximately 7000 new officers per year, would be about

\$250k, this considerable cost would be offset or perhaps recovered entirely if the additional information prevented selecting for advanced education even a small number of officers who were not well-prepared. The three-year experiment was posed as a relatively low cost means to assess the value of the GRE results to the Naval Postgraduate School.

The process of selecting officers for advanced education is inherently difficult, but the time lapse between the baccalaureate degree and the selection for graduate school is an additional complication faced by the Navy in choosing students for masters level education. The original proposal, in which all new officers would take the GRE, had the desireable feature that the test would be taken near the time of graduation from their undergraduate program. One item meriting further investigation is the change in performance on GRE exams over time. For example, is the test a better measure of performance when taken near graduation? Does performance change significantly when the exam is delayed several years? Does this vary depending on the field of study? While some information on this subject exists, it was not available to the authors at the time this report was prepared.

One additional point of possible relevance in this study is the fact that the officer-students at NPS are highly motivated. Success or failure at NPS is directly related to success or failure in their ensuing careers. While this is

difficult to measure, the influence of this motivation should not be ignored in interpreting the results. What is sometimes lacking in academic background is often replaced by determination and hard work. Some of the difficulty in predicting which students might fail at NPS may be attributed to this factor.

This report describes the data used in the study, summarizes the analyses conducted, and discusses the results. The appendix contains detailed supporting tables. The analysis reported here was undertaken by the authors at the request of the Provost at NPS. While much has been done, more remains and subsequent analysis will no doubt refine some of the results presented here. There are many interesting questions which remain to be pursued and work is continuing on the analysis of the data.

II. DATA

Data records containing 575 Graduate Record Exam (GRE) scores and social security numbers (SSN's) were paired with records with corresponding SSN's in the Registrar's files. This resulted in approximately 550 records, some of which were incomplete (for example the academic profile code might be missing). Statistical Analysis System (SAS) programs were written to access the data file and to perform statistical analyses as described below. Checks were made on data fields as the data were read by the SAS programs. In most cases, records with missing fields were not included in the analyses.

After some preliminary investigation, it was decided to limit analysis involving grade point averages (GPA's) to data for students who had completed at least three academic quarters at NPS. The resulting database consisted of approximately 320 records. Two GPA's were considered: the total GPA, including all courses taken at NPS (TOTGPA), and the graduate GPA (GRADGPA), based only on 4000-level courses taken at NPS.

Table 1 shows summary statistics for the variables considered in our analyses. Table 1 is expanded by curriculum and included in Appendix 2 as Table 12.

VERBAL - verbal component of GRE score

QUANT - quantitative component of GRE score

ANAL - analytical component of GRE score

APC1 - first component of APC score (overall academic performance)

APC2 - second component of APC score (mathematical background)

APC3 - third component of APC score (science and technical background)

AGE - age of student (1987-year of birth)

DEGYRS - years since receipt of baccalaureate degree (1987-year of degree)

GRADGPA - graduate GPA

TOTGPA - total GPA

An important element of this analysis is the three character APC described above. Each digit represents one element of the student's academic background. The values of the digits in the APC range from 0 to 6. The smaller values indicate better preparation. Thus an APC of 000 is superior to 666.

TABLE 1 SUMMARY OF DATA ANALYZED

VARIABLE	И	MEAN	STD DEV	SUM	MINIMUM	MAXIMUM	
VERBAL	317	546. 151420	91.8361352	173130.000	300.000000	780.000000	
QUANT	317	636.056782	86. 1183131	201630.000	370.000000	800.000000	
ANAL	317	588.706625	95.9820941	186620.000	260.000000	800.000000	
APC1	317	1.965300	0.8976381	623.000	0	4.000000	
APC2	317	2.277603	1.2033326	722.000	0	6.000000	
APC3	317	3.135647	1.5843051	994.000	0	5.000000	
AGE	315	31.723810	3.4377871	9993.000	26.000000	42.000000	
DEGYRS	314	8. 471333	2.9360827	2660.000	0	18.000000	
GPADGPA	317	3.449968	0.3482729	1093.640	1.840000	4.000000	
TOTOPA	317	3.443312	0.3783476	1091.530	1.000000	4.000000	

Further description of the data elements and the contents of the records can be found in Appendix 1.

III. ANALYSIS

A. OVERVIEW OF ANALYSIS

The questions addressed by this analysis include:

- "How well can APC scores predict success at NPS?",
- "How well can GRE scores predict success at NPS?",
- "Do APC and GRE scores measure the same attributes of success potential?",
- "What would be the amount of improvement in predictions of student GPA's if GRE's were used to augment APC's?", and
- "How should APC and GRE scores be used jointly for applicant screening?"

Regression analysis was used to answer several of these questions, where "success" was measured by TOTGPA and GRADGPA after at least three quarters at NPS.

Stepwise regressions were performed to provide insight into the importance of the candidate carriers in predicting GPA's. Significant differences in GPA's were observed among curricula, and the ability to predict GPA's by curriculum was investigated for curricula having sufficient data.

Principal component analysis was used on the independent variables to determine if there were significant "factor scores" accounting for the total variability in the independent variables when considered as a multivariate set. Discriminant analysis was also conducted with respect to students achieving GPA's below 3.0 (roughly 10% of the total cases), in an attempt to see which scores were useful in predicting marginal academic performance.

Results of these analyses are described in the next section. Details and computer output are shown in Appendix 2.

It should be noted that only U.S. Navy officers with sufficiently "good" APC scores, and other indicators, to gain acceptance to NPS contributed GRE and APC data to this study. Thus, technically, all of these results are conditional on acceptance to NPS. It is believed that this does not pose a serious problem.

B. ANALYSIS RESULTS

1. Correlation

It is common in studies of student success prediction to find that the correlations of GPA's with the potential predictor variables are generally quite low. Table A1 in Appendix 2 shows the correlations among the major variables in our study. It can be seen that there are relatively strong correlations among the GRE variables, and that APC2 and APC3 are relatively strongly correlated. In general, both GRADGPA and TOTGPA show modest correlations (in the range .2 to .4 in absolute value) with all of the predictors variables except APC2, APC3 and DEGYRS. As an example, graphical depiction of the relationship between VERBAL and APC1 is shown in the scatterplot in Figure 1. is apparent that, even though the correlation (-.21) is highly significant (α <.001), the relationship is very imprecise.

Figure 1. Scatter Plot of VERBAL Quantile Versus APC1.

The pattern of correlation in Table A1 of Appendix 2 suggests that useful relationships among the variables could be found through other analyses. These are discussed below.

2. Regression

Regressions of GPA's on three sets of carriers were performed. The first set had only APC scores (plus AGE and DEGYRS) as carriers; the second had only GRE scores, AGE and DEGYRS as carriers; the third had the union of the carriers in the first two sets. The results are summarized in Table 2 below, and output is shown in Table A2 in Appendix 2. It can be seen, in terms of R2 (the fraction of the total variability in the GPA's explained by the regression model), that the set of GRE's alone can predict GPA somewhat better than can the APC's alone. In the former case, VERBAL and QUANT are the most important carriers, while in the latter case APC1 is the most important carrier.

TABLE 2
SUMMARY OF REGRESSIONS WITH THREE SETS OF CARRIERS

	R2	VERBAL	QUANT	ANAL	AGE	DEGYRS	APC1	APC2	APC3
Regression without APC's									
a. GRADGPA	.23	**	**		*		N/A	N/A	N/A
b. TOTGPA	.17	**	*	*			N/A	N/A	N/A
Regression without GRE's									
c. GRADGPA	.15	N/A	N/A	N/A	**		**		*
d. TOTGPA	.11	N/A	N/A	N/A	*		**		
Regression with all Carriers	3								
e. GRADGPA	.26	**	**		**		**		
f. TOTGPA	.21	**		* ,			常士		

^{&#}x27;**' denotes "very significant" ($\alpha < .001$); '*' denotes "significant ($\alpha < .05$); R2 is the coefficient of determination.

In the regression with all carriers (GRE's, APC's, AGE and DEGYRS), the carriers that are most important for predicting GRADGPA are VERBAL, QUANT, AGE and APC1. For TOTGPA, the most important carriers are VERBAL, ANAL and APC1. It thus appears that use of GRE's in addition to APC's can improve the prediction of success at NPS; it is interesting to note that APC2 and APC3 are not significant carriers when GRE's are also used.

To further investigate the "importance" of potential carriers in the combined set, for predicting GPA's, stepwise regression was performed for GRADGPA and TOTGPA. The results are summarized in the top rows of Table 3 and output is shown in Table A3 in Appendix 2. The orders of entry of variables in the stepwise regressions indicate that VERBAL and QUANT are the most important carriers, followed by APC1. The results of the stepwise regression are generally consistent with the ordinary regression results shown in Table 2. Differences are due to the way in which sums of squares were computed in the two analyses.

It is interesting to note that, in a stepwise regression with data from only female students (n = 43), for prediction of GRADGPA, only the carrier APC3 was selected. No explanation of this evident, but it suggests that further analysis might be warranted.

Diagnostic checks were performed with the regressions, to assess whether non-compliance with the major model assumptions appeared to be serious. These included

TABLE 3

SUMMARY OF RESULTS FROM STEPWISE REGRESSIONS FOR ALL DATA

AND CURRICULA FOR WHICH SAMPLE SIZE N WAS AT LEAST 10. NUMBERS

IN EACH ROW INDICATE THE ORDER OF ENTRY OF THE VARIABLES, SHOWING

"IMPORTANCE" OF THE CARRIERS IN PREDICTING GPA'S

	R2	N	VERBAL	QUANT	ANAL	AGE	DEGYRS	APC1	APC2	APC3
ERALL DATA										
GRADGPA TOTGPA	. 26 . 21	312 312	1 1	2	3	4		3		
rriculum 360										
GRADGPA	.51	25	1	2						
TOTGPA	.38	25	1	2					3	
rriculum 366										
GRADGPA	.78	16	1	2		4		3		
TOTGPA	.56	16		1						
rriculum 367										
GRADGPA	.21	27		1					2	
TOTGPA	.22	27	1			2				
rriculum 368										
GRADGPA	.74	14	1							2
TOTGPA	.61	14	1							2
rriculum 373										
GRADGPA	.70	13		1	2					
TOTGPA	.56	13		1	2					
rriculum 525										
GRADGPA	. 45	15						1		
TOTGPA	.47	15						1		
rriculum 530										
GRADGPA	.51	24		1		2				
TOTGPA	.64	24						1	2	

TABLE 3

SUMMARY OF RESULTS FROM STEPWISE REGRESSIONS FOR ALL DATA

AND CURRICULA FOR WHICH SAMPLE SIZE N WAS AT LEAST 10. NUMBERS

IN EACH ROW INDICATE THE ORDER OF ENTRY OF THE VARIABLES, SHOWING

"IMPORTANCE" OF THE CARRIERS IN PREDICTING GPA'S

CONT'D

	R2	N	VERBAL	QUANT	ANAL	AGE	DEGYRS	APC1	APC2	APC3
Curriculum 570										
GRAD GPA	.64	21		1						2
TOTGPA	.38	21		1						
Curriculum 590										
GRADGPA	.60	15	1					1		
TOTGPA	.69	15	1		2			3		
Curriculum 620										
GRADGPA	None Sel	ected								
TOTGPA	. 19	14						1		
Curriculum 827										
GRADGPA	.67	14	1	2						3
TOTGPA	.68	14	1	2						3
Curriculum 837										
GRADGPA	.81	17	1		2	4				3
TOTGPA	.78	17				2				1

plots of residuals versus predicted values, examination of the "Hat" matrix, and Cook's D and DF fits. These diagnostics provide checks on homogeneity of variance, systematic model error, "outliers", leverage points and influence points. The regressions reported here appeared to pass these checks.

Plots of residuals (observed GPA - predicted GPA) provide insight into how poor the regression prediction of an individual student's performance might be when using the regression predictor. Figures A1 through A6 in Appendix 2 show histograms of residuals for the six regressions summarized in Table 2. The histograms corresponding to the regressions with all carriers available (Figures A5 and A6 of Appendix 2) indicate that the fitted predictors would have over-predicted performance (negative residual) by .5 grade point units or more in TOTGPA and GRADGPA for about six percent of students admitted. This error rate is seven to eight percent when only GRE score or only APC scores are used. Under-prediction of performance by as much as .5 in GPA's occurred in about two to three percent of the cases.

3. <u>Curricula</u> <u>Differences</u>

An analysis of covariance was run for each of the response measures GRADGPA and TOTGPA, with curriculum (CURRIC) at 33 levels as the factor of interest, and with VERBAL, QUANT, ANAL, APC1, APC2, APC3, AGE and DEGYRS as covariates. The results are shown in Table A4 of Appendix 2. There are highly significant differences in mean GPA's

for the various curricula. Also, consistent with the regressions discussed above, the covariables VERBAL, QUANT, APC1 were significant (and also AGE for GRADGPA).

This covariance analysis suggests that the effects of the carriers in predicting GPA's might be different for the various curricula. Stepwise regressions with the combined set of carriers were run for those curricula having at least 10 students in the data set. The results are summarized in Table 3; output for the final step in each case is shown in Table A5 of Appendix 2. These results indicate substantial differences in the sets of carriers selected in the various curricula. These differences might be due to a combination of factors, including types of students who select certain curricula, grading practices in the curricula, selection policies by NPS, and departmental differences with respect to handling marginal or failing students.

Average scores on the various carriers vary considerably over curricula. For example, curriculum 590 has 15 students with average GRE's much higher than that for curriculum 360; students in curriculum 590 also have APC scores averaging much lower (better) than that for curriculum 360. The students in curriculum 590 are somewhat older but have been out of school for a shorter length of time than the students in curriculum 360. Averages of carrier values and GPA's for the various curricula are shown in Table A6 of Appendix 2.

4. Principal Component Analysis

Principal component analysis estimates "factors" which are linear combinations of the carrier variables such that the first (PRIN1) accounts for the maximal amount of variability among the carriers, the second (PRIN2) is orthogonal to the first and accounts for the maximal amount of the remaining variability, after removing the effect of PRIN1, and so on. The purpose of principal component analysis is to derive a small number of factors of a set of carriers that retain as much of the information in the original variables as possible. The analysis can also uncover approximate linear dependencies among the variables. The output is shown in Table A7 of Appendix 2.

The weighting placed on each carrier for the first three factors, shown at the bottom of Table A7, can be interpreted roughly as follows. PRIN1 is roughly the negative of the average of the carriers, with signs such that "big is good" for GRE's and "big is bad" for the other carriers. PRIN2 weighs VERBAL heavily and discounts QUANT and negates APC1 and ANAL. PRIN3 discounts VERBAL and QUANT and negates ANAL and DEGYRS. Note that the first three factors account for about 70% of the total variation. This does not provide a substantial reduction in the number of carriers for regression, since most of the regressions included only three or four carriers in the first place.

The overall conclusions from the principal component analysis are:

the GRE's and APC's are certainly not orthogonal measures;

the best overall representation of the combined set of carriers would be a properly signed average, as in PRIN1; and

no useful reduction in the set of possible carriers is afforded by the principal component analysis.

5. Discriminant Analysis

Canonical discriminant analysis is a dimension-reduction technique related to principal component analysis and canonical correlation. Given a classification variable and several carriers, the analysis derives several "canonical variables", which are linear combinations of the carriers, that summarize between-class variation.

We applied canonical discriminant analysis to a classification variable based on marginal academic performance. Specifically, we defined an indicator variable for each of the GPA variables as follows:

GRADIND =
$$\begin{cases} 0 & \text{if GRADGPA} < 3.0 \\ 1 & \text{if GRADGPA} \geqslant 3.0 \end{cases}$$
TOTIND =
$$\begin{cases} 0 & \text{if TOTGPA} < 3.0 \\ 1 & \text{if TOTGPA} \geqslant 3.0 \end{cases}$$

About 9% of the students had GRADGPA < 3.0 and about 7% had TOTGPA < 3.0.

The goal was to determine if one or two "optimal" linear combinations of the carrier variables could discriminate, on the basis of the carriers, which students would experience marginal academic performance at NPS (i.e.,

would have indicator values of 0). Results are shown in Table A8 in Appendix 2. It is interesting to note that ANAL is weighted heavily in the first canonical factor, CAN1, in predicting marginal performance, even though it was generally unimportant in predicting GPA.

The ability of CAN1 and CAN2 to discriminate between students with marginal and students with non-marginal performance, on the basis of corresponding weighted averages of the carriers, is shown graphically in Figures 2 and 3. These plots show that attempts to discriminate which students will experience academic difficulties will necessarily encounter high error rates, since the "0" and "1" points are intermixed in the figure.

Mean values of the carriers within levels of TOTIND and GRADIND are given in Table A9 in Appendix 2.

For a set of observations containing one or more quantitative variables and a classification variable defining groups of observations, discriminant analysis develops a model to classify each observation into one of the groups. We performed discriminant analysis with the classification variables TOTIND and GRADIND, using various threshold definitions for "academic difficulty". A summary of results from stepwise discriminant analyses with two threshold values, 3.2 and 3.0, are shown in Table 4. The interesting result in these analyses is the predominance of ANAL as a discriminator for marginal academic performance.

Figure 2. Plot of GRADIND Levels for Combinations of the Two Major Canonical Discriminant Factors.

Figure 3. Plot of TOTIND Levels 23

TABLE 4
SUMMARY OF VARIABLES IN
STEPWISE DISCRIMINANT ANALYSIS

Response Variable	Threshold	Ratio IND=0:IND=1	Variables Selected
GRADGPA TOTGPA	3.0	26:286 23:289	ANAL AGE
GRADGPA TOTGPA	3.2 3.2	69:243 49:263	QUANT ANAL AGE APC1 APC2 ANAL APC1

This is in contrast with the regression based predictors of academic performance overall, where ANAL was not an important carrier.

Results of discriminant analyses using GPA threshold 3.0 and the major variables selected in the stepwise procedure, QUANT, ANAL, APC1 and AGE, are shown in Tables A10 and A11 of Appendix 2. The discriminant function is not successful in separating the two groups associated with GPA indicator values of "0" and "1", based on information in the carrier variables. As can be seen in Tables A10 and A11, there is considerable error in assignment of cases to the "0" group. For GRADIND, only 7

of the 27 "0 cases" were assigned to the "0 group"; for TOTIND, only 1 of the 23 "0 cases" was assigned to the "0 group".

Performance of the discriminant function can be modified somewhat by changing the threshold definition of the GPA indicator and the prior probabilities of "0" and "1". However, when using the available GRE and APC variables the error rates remain quite high in discriminating students having marginal academic performance, regardless of threshold and prior. It appears that prediction of which U.S. Navy officer students, among those admitted to NPS, will experience academic difficulty remains an elusive goal.

APPENDIX 1 - DATA

This section describes the data sources and the data elements used in creating the GRE database.

There are 575 GRE test results from five test dates

- a. April 1986 75 items
- b. August 1986 148 items
- c. October 1986 140 items
- d. February 1987 98 items
- e. April 1987 114 items

The raw data from the GRE test scores consists of

- Name and address
- sex
- birthdate
- social security number
- institution (NPS)
- test date
- verbal score and percentile
- quantitative score and percentile
- analytical score and percentile

This data was received in printed form. The following items were manually entered into a file on the NPS mainframe computer:

- a. social security SSN
- b. first three characters of last name NAM
- c. sex SEX
- d. test date TDATE
- e. verbal score VERBAL
- f. percentile VPER

- q. quantitative score QUANT
- h. percentile QPER
- i. analytic score ANAL
- j. percentile APER

After entry this file was made available to programmer/analysts in the Academic Administration department who used the social security number to access records of the Registrar and the Admissions Office. For each record obtained, the first three characters of the last name were used as a check to verify that the records were for the same individual. If the check failed or if the social security number was not found, the records were not included in the final database. Approximately 543 records were accepted.

For those records where the social security number and the three character code matched, the data below was obtained from or computed from the Registrar's (or Admissions Office) records and combined with the GRE data. For some records certain data elements are missing or obviously erroneous. Preliminary analysis was conducted to eliminate records with serious errors.

- k. Birthdate BDATE
- 1. Academic Profile Code APC
- m. Degree Date (previous degree) DDATE
- n. Degree (coded degree type) DEG
- o. NPS Curriculum number CURR
- p. NPS entry date ENTRY

- q. Number of quarters completed at NPS N
- r. QPR (graduate) by quarter GRADGPA
- s. QPR (total) by quarter TOTGPA

To prevent misuse of the information, names and social security numbers do not appear in the final database being used for analysis.

APPENDIX 2 - SUPPORTING FIGURES AND TABLES

Figure Al. Histogram of Residuals for Regression of GRADGPA on GRE's and AGE.

PERCENTAGE BAR CHART

Figure A2. Histogram of Residuals for Regression of TOTGPA on GRE's and AGE.

Figure A3. Histogram of Residuals for Regression of GRADGPA on APC's and AGE.

Figure A4. Histogram of Residuals for Regression of TOTGPA ON APC's and AGE.

Figure A5. Histogram of Residuals for Regression of GRADGPA on all Carriers.

Figure A6. Histogram of Residuals for Regression of TOTGPA on all Carriers.

TABLE A1 CORRELATIONS AMONG VARIABLES IN THE STUDY

CORRELAT	TION COEFF OF OBSERV	ICIENTS /	PROB >	R UNDER	HO: RHO=0			
,	VERBAL	QUANT	ANAL	APC1	AFC2	APC3	AGE	DEGYRS
VERBAL	1.00000 0.0000 317	0.28349 0.0001 317	0.47351 0.0001 317	-0.20547 0.0002 317	-0.01006 0.8584 317	-0.04425 0.4324 317	-0.01955 0.7296 315	0.05980 0.2908 314
QUANT	0.28349 0.0001 317	1.00000 0.0000 317	0.57511 0.0001 317	-0.20687 0.0002 317	-0.38C89 0.0001 317	-0.49173 0.0001 317	-0.23621 C.0001 315	-0.16761 0.0029 314
ANAL	0.47351 0.0001 317	0.57511 0.0001 317	1.00000 0.0000 317	-0.19740 0.0004 317	-0.13333 0.0175 317	-0.22880 0.0001 317	-0.26280 0.0001 315	-0.19012 0.0007 314
APC1	-0.20547 0.0002 317	-0.20687 0.0013	-0.19740 0.0004 317	1.00000 0.0000 317	0.15250 0.0065 317	0.09900 0.0784 317	0.02005 0.7229 315	0.02392 0.5728 314
APC2	-0.01006 0.8584 317		-0.13333 0.0175 317	0.15250 0.0065 317	1.00000 0.0000 317	0.53460 0.0001 317	0.25036 0.0001 315	0.21384 0.0001 314
APC3	-0.04425 0.4324 317	-0.49173 0.0001 317	-0.22880 0.0001 317	0.09900 0.0784 317	0.53460 0.0001 317	1.00000 0.0000 317	0.18381 0.0010 315	0.16332 0.0037 314
AGE	-0.01955 0.7296 315	-0.23621 0.0001 315	-0.26280 0.0001 315	0.02005 0.7229 315	0.25036 0.0001 315	0.18381 0.0010 315	1.00000 0.0000 315	0.73917 0.0001 312
DEGYRS	0.05980 0.2908 314	-0.16761 0.0029 314	-0.19012 0.0007 314	0.02392 0.6728 314	0.21384 0.0001 314	0.16332 0.0037 314	0.73917 0.0001 312	1.00000 0.0000 314
GRADGPA	0.28187 0.0001 317	C.39485 O.0001 317	0.34196 0.0001 317	-0.28172 0.0001 317	-0.15206 0.0067 317	-0.19275 0.0006 317	-0.25743 0.0001 315	-0.12952 0.0217 314
TOTGPA	0.31465 0.0001 317	0.31779 0.0001 317	0.35104 0.0001 317	-0.28796 0.0001 317	-0.12373 0.0276 317	-0.14868 0.0080 317	-0.11428 0.0427 315	-0.03392 0.5493 314
	GRADGPA	TOTGPA						
CORREL / NUMBE	ATION COE	FFICIENTS RVATIONS	/ PROB >	R UNDE	R HO: RHO=)		
	GRADGP	A TOTGP!	A					
VERBAL	0.28187	1 0.0001						
QUANT	0.3948 0.000 31	0.000						
ANAL	0.34196 0.000	0.000	L					
APC1	-0.28177 0.000	2 - 0.28796 1 0.0001 7 31	5					
APC2	-0.1520g 0.006	6 -0.12373 7 0.0276 7 313	3					
APC3	-0.19275 0.0006)					
AGE	-0.2574 0.000 31		7					
DEGYRS	-0.1295; 0.021	2 -0.03391 7 0.5491 4 314	23					
GRADGPA		0.71450) 					
TOTGPA	0.71450	0 1.00000		27				

TABLE A2 OUTPUT FROM REGRESSIONS (CASES 4a-4f AS SHOWN IN TABLE 2)

DEP VARI	ABLE	: GRADGPA			
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB>F
MODEL ERROR C TOTAL	306 311	8.050536 27.180612 35.231149	1.610107 0.088826	18.127	0.0001
ROOT DEP 1 C.V.	MSE MEAN	0.298036 3.452436 8.632633	R-SQUARE ADJ R-SQ	0.2285 0.2159	
VARIABLE	DF	PARAMETER ESTIMATE	STANDARD ERROR	T FOR HO: PARAMETER=0	PROB > T
INTERCEP VERBAL QUANT ANAL AGE DEGYRS		2.795013 0.0006997335 0.001022753 0.003022753 -0.019262 0.007499623	0.263719 0.0002128045 0.0002384926 0.0002384935 0.005749135 0.008593153	10.598437 598447 11.5587 -20.8	0.0001 0.0001 0.00060 0.2013 0.3835
DEP VARIZ	ABLE:	TOTGPA			
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB>F
MODEL ERROR C TOTAL	306 311	7.776952 36.783206 44.560159	1.555390 0.120207	12.939	0.0001
ROOT DEP 1 C. V.		0.346708 3.440673 10.07675	R-SQUARE ADJ R-SQ	0.1745 0.1610	
VARIABLE	DF	PARAMETER ESTIMATE	STANDARD ERROR	T FOR HO: PARAMETER=0	PROB > T
INTERCEP VERBAL QUANT ANAL AGE DEGYRS		2.376056 0.00081157461 0.0006891355 -0.000634115566 0.009416823	0.306786 0.0002475574 0.0002317384 0.0002774407 0.008703124 0.009996494	7. 459,669 7. 4487 4 2. 429 9 -0. 9	0.0001 0.00150 0.0152359 0.33469
DEP VARIA	ABLE:				
SCURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PRCB>F
MODEL ERROR C TOTAL	306 311	5.371714 29.859434 35.231149	1.074343 0.097580	11.010	0.0001
ROOT DEP 1 C. V.	MSE MEAN	0.312378 3.452436 9.048039	R-SQUARE ADJ R-SQ	0. 1525 0. 1386	
VARIABLE INTERCEP APC1 APC2 APC3 ACE DEGYRS	DF 111111111111111111111111111111111111	PARAMETER ESTIMATE 4.540814 -0.10808114 0.006.00135 -0.00135	STANDARD ERROR 0.200048 0.020061 0.0130338 0.013219 0.0077772591 0.008955563	T FOR HO: PARAMETER=0 22.6998 -5.03757 -2.760 -3.760 1.509	PROB > T 0.0001 0.0001 0.7078 0.0211 0.0002 0.1323

TABLE A2 OUTPUT FROM REGRESSIONS (CASES 4a-4f AS SHOWN IN TABLE 2) CONT'D

DEP VAR	IABLE				
SCURCE	DF	SUM OF SQUARES	MĒAN SQUĀRĒ	F VALUE	PROB>E
MODEL ERROR C TOTAL	5 306 311	4.974101 39.586058 44.560159	0.994820 0.129356	7.690	0.0031
ROO' DEP C. V	T MSE MEAN	0.359675 3.410673 10.45363	R-SQUARE ADJ R-SQ	0.1116 0.0971	
VARIABL	E DF	PARAMETER ESTIMATE	STANDARD ERROR	T FOR HO: PARAMETER=0	PROB > T
INTERCE: AFC1 AFC2 AFC3 ACE DEGTRS	P 1 1 1 1 1 1 1 1	4. 2407 †8 -0.111906055 -0.001906055 -0.0019077	0.230308 305099 0.0215509 0.0215509 0.03510 0.03510	#10/10/00/00 #10/10/00/00 #10/10/00/00 #10/10/00/00 #11/10/00/00	0.0011155519 0.00148153 0.0091691
DEP VAR	IABLE:	GRADGPA			
SOURCE	DE	SUM OF SQUARES	MEAN SQUARE	F VALUE	PRCB>F
MODEL ERROR C TOTAL	303 311	9.188180 26.042969 35.231149	1.143522 0.085950	13.363	0.0001
ROO' DEP C.V	I MSE MEAN	0.293173 3.452436 8.491772	R-SQUARE ADJ R-SQ	0.2608 0.2413	
VARIABL	E DF	PARAMETER ESTIMATE	STANDARD ERROR	T FOR HO: PARAMETEP=0	PROB > {T
INTERAL VERALL VERANLI VOUAACIO OAAPPOCE VARACE VARACE VERANLI		3.13773473 0.0006052705060 0.00006052705060 0.00006052705060 0.00006050607	0.221152453 0.00227365457 0.00227365457 0.01273657 0.01273657 0.01273657 0.01288119 0.008471	102137-100013 102137-100014-1000 102137-100014-1000 102137-100014-1000 102137-100014-1000	0.000000000000000000000000000000000000
DEP VAI	RIABLE				
SCURCE	DE	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB>F
MODEL ERROR C TOTAI	303 313	9.518923 35.041230 44.550159	1.189366 0.115648	10.289	0.0001
ROO DEI C. V	OT MSE P MEAL 7.	0.340070 3.440670 9.883823	R-SQUARE B ADJ R-SQ	0.2136 0.1929	
VARIAB!			R STANDARD ERROR	T FOR HO: PARAMETER=0	PROB > T
INTERAL VERANAL OUMANAL APPOCA APOCA APPOCA	EP	2.796499 0.0007193499 0.00055599579250 1 0.00055599579250 1 0.00055599579250 1 0.00055599579250 1 0.0005599579250 1 0.0005599579250 1 0.0005599579250	0.33241374999329 0.00002774999329 0.00002774999329 0.0002775295572	8. 9645147219 2. 6455447419 40555477419 -3.0.14215 -3.0.14215 -11.1	0.000930397312 0.000930397312 0.000088234

TABLE A3 STEPWISE REGRESSIONS FOR TOTGPA AND GRADGPA, OVER ALL DATA

STEPWISE RESTEP 4	GRESSION PROC RIABLE VERBAL	CEDURE FOR DEPEN	DENT VARIABLE G JARE = 0.25631704 = 2.76364872	RADGPA	
	DF	SUM OF SQUARES	MEAN SQUARE	F	PROB>F
REGRESSION ERFOR TOTAL	310 314	9.78409770 28.31344389 38.09754159	2. 44602442 0. 09133369	26.78	0.0001
	B VALUE	STD ERROR	TYPE II SS	F	PROB>F
INTERCEPT VERBAL QUANT APC1 AGE	3.17935904 0.00064981 0.00105222 -0.07622085 -0.01910310	0.00019726 0.00021508 0.01966267 0.00511360	0.99116707 2.18597894 1.37244038 1.27463287	10.85 23.93 15.03 13.96	0.0011 0.0001 0.0001 0.0002
ST	EPWISE REGRESS	ION PROCEDURE FOR	DEPENDENT VARIABI	LE TOTGPA	
STEP 4 VA	RIABLE QUANT E	NTERED R SOU C(P)	JARE = 0.21290895 = 2.56556353		
	DF	SUM OF SQUARES	MEAN SQUARE	F	PROB>F
REGRESSION ERROR TOTAL	310 314	9.56452473 35.35854956 44.92307429	2.39113118 0.11405984	20.96	0.0001
	B VALUE	STD ERROR	TYPE II SS	F	PROB>F
INTERCEPT VERBAL QUANT ANAL APC1	2.48298434 0.00070502 0.00060980 0.00059939 -0.08566403	0.00023894 0.00027168 0.00026388 0.002193605	0.99305577 0.57463361 0.58848315 1.73155118	8.71 5.04 5.16 15.18	0.0034 0.0255 0.0238 0.0001

TABLE A4 ANALYSIS OF COVARIANCE FOR GRADGPA AND TOTGPA WITH THE FACTOR CURRICULUM

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE	: GRADGPA				
SOURCE	DF	SUM OF SQUARES	ME.A	N SQUARE	F VALUE
MODEL	40	15.77275347		39431884	5. 49
ERROR	271	19.45839525	0.	07180220	PR > F
CORRECTED TOTAL	311	35. 23114872			0.0001
R-SQUARE	C.V.	ROOT MSE	GRAD	GPA MEAN	
0. 447693	7.7615	0.26795932		45243590	
SOURCE	DF	TYPE III SS	F YALUE	PR > F	
CURRIC VERBAL QUANT ANAL APC1 APC2 APC3 AGE DEGYRS	32	6.58457396 0.50819020 1.116208183 0.77550831 0.94126429 0.06555473 1.006555473 0.11306991	2: 87 7: 08 15: 555 1: 03 13: 73 0: 57 0: 91 1: 57	0.0001 0.0083 0.00015 0.29963 0.4491 0.3404 0.0002	

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE:	TOTGPA			
SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE
MODEL	40	16. 41456443	0.41036411	3.95
ERROR	. 271	28. 14559422	0.10385828	PR > F
CORRECTED TOTAL	311	44.56015865		0.0001
R-SQUARE	C. V.	ROOT MSE	TOTGPA MEAN	
0.368369	9.3665	0.32227051	3.44067308	
SOURCE	DF	TYPE III SS	F VALUE PR > F	
CUPRIC VERBAL QUANT ANAL APC1 APC2 APC3 AGE DEGYRS	3 2	6.89563555 0.556635450 0.52588 0.3215788221 0.3215788527 0.327559815250 0.3412188284	2.07 0.0010 5.02 0.0258 8.77 0.0033 3.10 0.0797 12.28 0.0005 2.46 0.1176 0.34 0.5631 3.29 0.0707 1.47 0.2271	

CURRIC=360

		ON PROCEDURE FOR		LE GRADGFA	
STEP 2 VAR	RIABLE VERBAL E	INTERED R SQU C(P)	ARE = 0.51233932 = 2.74972449		
	DF	SUM OF SQUARES	MEAN SQUARE	F	PROB>F
REGRESSION ERROR TOTAL	2 2 2 2 1	1.15810000 1.10231600 2.26041600	0.57905000 0.05010527	11.56	0.0004
	B VALUE	STD ERROR	TYPE II SS	F	PROB>F
INTERCEPT	1.60146116 0.00134655 0.00172545	0.00019145	0 37616291	7 51	0.0120
INTERCEPT VERBAL QUANT	0.00172545	0.00049145 0.00054058	0.37616281 0.51047467	7.51 10.19	0.0012
		CURRIC=36	0		
		ON PROCEDURE FOR		LE TOTGPA	
STEP 3 VAR	IABLE APC2 ENT	ERED R SQU C(P)	ARE = 0.38430014 = 1.92190744		
	DF	SUM OF SQUARES	MEAN SQUARE	£	PROB>F
REGRESSION ERROR TOTAL	3 21 24	4.82701882 7.73352518 12.56054400	1.60900627 0.36826310	4.37	0.0154
	B VALUE	STD ERROR	TYPE II SS	F	PROB>F
INTERCEPT VERBAL QUANT APC2	0.53079240 0.00269668 0.00271046 -0.26196103	0.00136746 0.00151353 0.15435590	1.43213535 1.18102273 1.06068178	3.89 3.21 2.88	0.0619 0.0877 0.1044
71-02	0.20174103	0.15455550	1.000001.3	2.00	0.1044
NO OTHER VARI	ABLES MET THE	0.1500 SIGNIFICAN	CE LEVEL FOR ENTR	Y INTO THE M	IODEL.
		CURR=366 GRADGPA			
STEP 4 VA	RIABLE VERBAL	ENTERED R SO C(P)	UARE = 0.78449481 = 3.8082505		
	DF	SUM OF SQUARES	MEAN SQUARE	F	PROB>F
REGRESSION ERROR TOTAL	11 15	2.87567848 0.78996527 3.66564375	0.71891962 0.07181502	10.01	0.0011
	B VALUE	STD ERROR	TYPE II SS	F	PROB>F
INTERCEPT VERBAL QUANT APC1 AGE	4.13939979 -0.00168452 0.00441687 -0.22838922 -0.07238691	0.00094223 0.00142678 0.092263 1 7	0.22953927 0.68822682 0.44005498 0.85472289	3.20 9.58 6.13	0.1014 0.0102 0.0308
ĀĢĒ	-0.07238691	0.02098239	0.85472289	11.90	0.0054
NO OTHER VAR	IABLES MET THE	0.1500 SIGNIFICA	NCE LEVEL FOR ENT	TRY INTO THE	MODEL.
		CURRIC=36	6		
STE	PWISE REGRESSI	ON PROCEDURE FOR	DEPENDENT VARIABI	E TOTGPA	
STEP 1 VAR	IABLE QUANT EN	TERED R SQU	ARE = 0.55739769 -2.62124178		
		SUM OF SQUARES	MEAN SQUARE	F	PROB>F
REGRESSION ERROR TOTAL	1 1 1 1 5	0.58526409 0.46472966 1.04999375	0.58526409 0.03319498	17.63	0.0009
	B VALUE	STD ERROR	TYPE II SS	E	PROB>F
INTERCEPT QUANT	1.40763798 0.00306271	0.00072940	0.58526409	17.63	0.0009
NO OTHER VARI	ABLES MET THE	0.1500 SIGNIFICAN	CE LEVEL FOR ENTE	Y INTO THE N	MODEL.

CURRIC=367

STEPWISE RE	THOTEGETON	DDOCEDIDE	TOD	DEDENDENT	TINDINDER	CDIFCDI

STEP 2 V	ARIABLE QUANT !	ENTERED	R SQUARE = C C(P) = -0	. 20974100 . 42038355		
	DF	SUM OF SQUA	RES MEAN	SQUARE	F	PROB>F
REGRESSION ERROR TOTAL	2 24 26	0.60899 2.29456 2.90 3 56	9619 0.30 6678 0.09 6296	1449809 1560695	3.18	0.0593
	B VALUE	STD EF	RROR TYPE	II SS	F	PROB>F
INTERCEPT QUANT APC2	3.19950520 0.00112447 -0.14167935	0.00069 0.07967	9301 0.25 7534 0.30	171054 231155	2.63 3.16	0.1177 0.0880
		CUF	RIC=367			
S	TEPWISE REGRES:	SION PROCEDUR	RE FOR DEPENDE	NT VARIABLE	TOTGPA	
STEP 2 V	ARIABLE AGE EN	CERED	R SQUARE = C). 22342964). 10636571		
	DF	SUM OF SQUA	ARES MEAN	SQUARE	F	PROB>F
REGRESSION ERROR TOTAL	2 24 26	0.43261 1.50363 1.93625	3580 0.06	630803	3.45	0.0481
	B VALUE	STD EF	RROR TYPE	II SS	F	PROB>F
INTERCEPT VERBAL AGE	3.60105032 0.00136135 -0.02496323	0.00060 0.01378	0631 0.31 8649 0.20	585644 0541204	5.04 3.28	0.0342 0.0827
NO OTHER VA	RIABLES MET THE	E 0.1500 SIGN	HIFICANCE LEVE	L FOR ENTRY	INTO THE	MODEL.

STEP 2	VARIABLE VERBAL		SQUARE = 0.74016276 P) = -0.24186727		
	DF	SUM OF SQUARES	MEAN SQUAPE	F	PROB>F
REGRESSION ERROR TOTAL	N 2 11 13	0.77175714 0.27092857 1.04268571	0.02462987	15.67	0.0006
	B VALUE	STD ERROR	TYPE II SS	F	PROB>F
INTERCEPT VERBAL APC3	3.08176970 0.00158904 -0.09854337	0.00053247 0.02595483		8.91 14.42	0.0124 0.0030

NO OTHER VARIABLES MET THE 0.1500 SIGNIFICANCE LEVEL FOR ENTRY INTO THE MODEL.

CURRIC=368

STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE TOTGPA

STEP 2	VARIABLE	VERBAL	ENTERED	R S C(F	SQUARE = 0.60777981 -1.05343411		
	DF		SUM OF	SQUARES	MEAN SQUARE	F	PRCB>F
RECRESSION ERROR TOTAL	N 2 11 13		Ō.	99309485 64087658 63397143	0.49654743 0.05826151	8.52	0.0058
	E	B VALUE	S	ID ERROR	TYPE II SS	F	PROB>F
INTERCEPT VERBAL APC3	0.00	4128748 0169737 1611348		00081895 03991885	0.25027497 0.49293644	4.30 8.46	0.0625 0.0142

NO OTHER VARIABLES MET THE 0.1500 SIGNIFICANCE LEVEL FOR ENTRY INTO THE MODEL.

CURRIC=373

ST	EPWISE REGRESS	ION PROCEDURE FOR	DEPENDENT VARIAB	LE GRADGPA	
STEP 2 VA	RIABLE QUANT E	NTERED R SOLC(P)	UARE = 0.69527182 -1.20137335		
	DF	SUM OF SQUARES	MEAN SQUARE	F	PROB>F
REGRESSION ERROR TOTAL	10 12	0.79728424 0.34943884 1.14672303	0.39864212 0.03494388	11. 41	0.0026
	B VALUE	STD ERROR	TYPE II SS	F	PROB>F
INTERCEPT QUANT ANAL	3.64172311 -0.00294669 0.00284530	0.00102706 0.00059990	0.28763773 0.78607773	8. 23 22. 50	0.0167 0.0008
		CURRIC=3			
	EPWISE REGRESS RIABLE QUANT E	ION PROCEDURE FOR		LE TOTGPA	
JIEL & VA.	KIADLE QUALL E	C(P)	JARE = 0.55737834 = -0.69581073		
	DF	SUM OF SQUARES	MEAN SQUARE	Ê	PROB>F
REGRESSION ERROR TOTAL	10 12	0.42578560 0.33812209 0.76390769	0.21289280 0.03381221	6.30	0.0170
	B VALUE	STD ERROR	TYPE II SS	E	PROB>F
INTERCEPT QUANT ANAL	3.71088287 -0.00233103 0.00209086	0.00101029 0.00059011	0.17999963 0.42448449	5.32 12.55	0.0437 0.0053
		CURRIC=5	25		
ST	EPWISE REGRESS	CURRIC=5.		LE GRADGPA	
	EPWISE REGRESS	ION PROCEDURE FOR		LE GRADGPA	
		ION PROCEDURE FOR	DEPENDENT VARIAB	LE GRADGPA F	PROB>F
	RIABLE APC1 EN	ION PROCEDURE FOR R SQI	DEPENDENT VARIAB UARE = 0.45445362 -0.65274793		PROB>F 0.0059
STEP 1 VA	RIABLE APC1 END DF 13 14 B VALUE	TON PROCEDURE FOR TERED R SQU C(F) SUM OF SQUARES	DEPENDENT VARIAB UARE = 0.45445362 -0.65274793 MEAN SQUARE	F	
STEP 1 VA	DF 13 14	TION PROCEDURE FOR R SOI C(F) SUM OF SQUARES 0.974-0000 1.17007333 2.14477333	DEPENDENT VARIAB UARE = 0.45445362 = 0.65274793 MEAN SQUARE 0.97470000 0.09000564 TYPE II SS 0.97470000	F 10.83 F 10.83	0.0059 PROB>F 0.0059
STEP 1 VA REGRESSION ERROR TOTAL	RIABLE APC1 END DF 13 14 B VALUE	TION PROCEDURE FOR TERED R SOI C(F) SUM OF SQUARES 0.974-0000 1.17007333 2.14477333 STD ERROR	DEPENDENT VARIAB UARE = 0.45445362 = -0.65274793 MEAN SQUARE 0.97470000 0.09000564 TYPE II SS 0.97470000 9:40 THUR	F 10.83 F	0.0059 PROB>F 0.0059
REGRESSION ERROR TOTAL INTERCEPT APC1	DF 13 14 B VALUE 3.99466667 -0.28500000	TION PROCEDURE FOR C(F) SUM OF SQUARES 0.974-0000 1.17007333 2.14477333 STD ERROR 0.08660525	DEPENDENT VARIAB UARE = 0.45445362 -0.65274793 MEAN SQUARE 0.97470000 0.09000564 TYPE II SS 0.97470000 9:40 THUR DEPENDENT VARIAB	F 10.83 F 10.83 SDAY, AUGUST	0.0059 PROB>F 0.0059
STEP 1 VA REGRESSION ERROR TOTAL INTERCEPT APC1 ST	DF 13 14 B VALUE 3.99466667 -0.28500000	TON PROCEDURE FOR TERED R SQL C(F) SUM OF SQUARES 0.974-0000 1.17007333 2.14477333 STD ERROR 0.08660525 CURRIC=5.	DEPENDENT VARIAB UARE = 0.45445362 = -0.65274793 MEAN SQUARE 0.97470000 0.09000564 TYPE II SS 0.97470000 9:40 THUR	F 10.83 F 10.83 SDAY, AUGUST	0.0059 PROB>F 0.0059
STEP 1 VA REGRESSION ERROR TOTAL INTERCEPT APC1 ST STEP 1 VA	DF 13 14 B VALUE 3.99466667 -0.28500000 EPWISE REGRESS	TON PROCEDURE FOR C(P) SUM OF SQUARES C. 974-0000 1. 17007333 2. 14477333 STD ERROR O. 08660525 CURRIC=5: ION PROCEDURE FOR TERED R SQUARES	DEPENDENT VARIAB UARE = 0.45445362 -0.65274793 MEAN SQUARE 0.97470000 0.09000564 TYPE II SS 0.97470000 9:40 THUR DEPENDENT VARIAB UARE = 0.46672541 -0.27545354	F 10.83 F 10.83 SDAY, AUGUST	0.0059 PROB>F 0.0059
STEP 1 VA REGRESSION ERROR TOTAL INTERCEPT APC1 ST	DF 13 14 B VALUE 3.99466667 -0.28500000 EPWISE REGRESS RIABLE APC1 EN	TERED R SOLUTION PROCEDURE FOR C(P) SUM OF SQUARES 0.974-0000 1.17007333 2.14477333 STD ERROR 0.08660525 CURRIC=5. ION PROCEDURE FOR C(P)	DEPENDENT VARIAB UARE = 0.45445362 -0.65274793 MEAN SQUARE 0.97470000 0.09000564 TYPE II SS 0.97470000 9:40 THUR DEPENDENT VARIAB UARE = 0.46672541 -0.27545354	F 10.83 F 10.83 SDAY, AUGUST LE TOTGPA	0.0059 PROB>F 0.0059 6, 1987
STEP 1 VA REGRESSION ERROR TOTAL INTERCEPT APC1 ST STEP 1 VA	RIABLE APC1 END DF 13 14 B VALUE 3.99466667 -0.28500000 EPWISE REGRESS RIABLE APC1 END DF 13	TON PROCEDURE FOR C(P) SUM OF SQUARES C. 974-0000 1. 17007333 2. 14477333 STD ERROR O. 08660525 CURRIC=5: ION PROCEDURE FOR TERED R SQUARES	DEPENDENT VARIAB UARE = 0.45445362 = -0.65274793 MEAN SQUARE 0.97470000 0.09000564 TYPE II SS 0.97470000 9:40 THUR 25 DEPENDENT VARIAB UARE = 0.46672541 = -0.27545354 MEAN SQUARE	F 10.83 F 10.83 SDAY, AUGUST LE TOTGPA F	0.0059 PROB>F 0.0059 6, 1987
STEP 1 VA REGRESSION ERROR TOTAL INTERCEPT APC1 ST STEP 1 VA	DF 13 14 B VALUE 3.99466667 -0.28500000 EPWISE REGRESS RIABLE APC1 EN DF 13 14	TERED R SOLUTION PROCEDURE FOR C(F) SUM OF SQUARES 0.974-0000 1.17007333 2.14477333 STD ERROR 0.08660525 CURRIC=5: ION PROCEDURE FOR C(F) SUM OF SQUARES 0.56767500 0.64861833 1.21629333	DEPENDENT VARIAB UARE = 0.4545362 = -0.65274793 MEAN SQUARE 0.97470000 0.09000564 TYPE II SS 0.97470000 9:40 THUR DEPENDENT VARIAB UARE = 0.46672541 = -0.27545354 MEAN SQUARE 0.56767500 0.04989372	F 10.83 F 10.83 SDAY, AUGUST LE TOTGPA F 11.38	0.0059 PROB>F 0.0059 6, 1987 PROB>F 0.0050

CURRIC=530

ST	EPWISE REGRESS:	ION PROCEDURE FOR :	DEPENDENT VARIABL	E GRADGPA	
STEP 2 VAR		ITERED R SQU.		ownorn	
	DF	SUM OF SQUARES	MEAN SQUARE	E	PROB>F
REGRESSION ERROR TOTAL	2 21 23	1.54920991 1.50124009 3.05045000	0.77460495 0.07148762	10.34	0.0006
	B VALUE	STD ERROR	TYPE II SS	E	PROB>F
INTERCEPT QUANT AGE	3.41753740 0.00257687 -0.05657275	0.00081766 0.01715376	0.71001498 0.77754706	9.93 10.88	0.0048 0.0034
NO OTHER VARI	ABLES NET THE	0.1500 SIGNIFICANO	CE LEVEL FOR ENTR	Y INTO THE N	MODEL.
		, CURRIC=53	0		
STE	EPWISE REGRESS	ION PROCEDURE FOR	DEPENDENT VARIABL	E TOTGPA	
STEP 3 VA	RIABLE APC1 EN	rered R sou C(P)	ARE = 0.64018930 = 3.66586200		
	DF	SUM OF SQUARES	MEAN SQUARE	E	PROB>F
REGRESSION ERROR TOTAL	3 · 20 23	2.39718617 1.34730966 3.74449583	0.79906206 0.06736548	11.86	0.0001
	B VALUE	STD ERROR	TYPE II SS	F	PROB>F
INTERCEPT QUANT APC1 APC2	1.10014723 0.00383125 0.18990759 -0.34849108	0.00086243 0.07111000 0.07711170	1.32944280 0.48046392 1.37587908	19.73 7.13 20.42	0.0003 0.0147 0.0002
CURRIC=570					
ST	EPWISE REGRESS	ION PROCEDURE FOR	DEPENDENT VARIAB	LE GRADGPA	
	EPWISE REGRESS RIABLE APC3 EN	ION PROCEDURE FOR		LE GRADGPA	
		ION PROCEDURE FOR		LE GRADGPA F	PROB>F
	RIABLE APC3 EN	TERED R SQU C(P)	JARE = 0.63701889 = -0.38862313		PROB>F
STEP 2 VA	RIABLE APC3 EN	ION PROCEDURE FOR R SQU	JARE = 0.63701889 = -0.38862313 MEAN SQUARE	E	
STEP 2 VA REGRESSION ERRCR TOTAL	RIABLE APC3 EN DF 18 20 B VALUE	TERED R SQU C(P) SUM OF SQUARES 0.86010291 0.49009709 1.35020000	JARE = 0.63701889 -0.38862313 MEAN SQUARE 0.43005145 0.02722762	F 15. 79	0.0001
STEP 2 VA	RIABLE APC3 EN DF 2 18 20	TON PROCEDURE FOR C(P) SUM OF SQUARES 0.86010291 0.49009709 1.35020000 STD ERROR	JARE = 0.63701889 -0.38862313 MEAN SQUARE 0.43005145 0.02722762 TYPE II SS 0.59889814 0.09391897	F 15. 79 F	0.0001 PROB>F
REGRESSION ERRCR TOTAL INTERCEPT QUANT APC3	DF 2 18 20 B VALUE 2.09410320 0.00232472 -0.05873629	TON PROCEDURE FOR C(P) SUM OF SQUARES 0.86010291 0.49009709 1.35020000 STD ERROR 0.00049568 0.03162530	JARE = 0.63701889 -0.38862313 MEAN SQUARE 0.43005145 0.02722762 TYPE II SS 0.59889814 0.09391897	F 15.79 F 22.00 3.45	0.0001 PROB>F
REGRESSION ERRCR TOTAL INTERCEPT QUANT APC3 ST WARNING:	DF 2 18 20 B VALUE 2.09410320 0.00232472 -0.05873629 EPWISE REGRESS 1 OBSERVATION	TERED R SQU C(P) SUM OF SQUARES 0.86010291 0.49009709 1.35020000 STD ERROR 0.00049568 0.03162530 CURRIC=57 ION PROCEDURE FOR	JARE = 0.63701889 = -0.38862313 MEAN SQUARE 0.43005145 0.02722762 TYPE II SS 0.59889814 0.09391897 TO DEPENDENT VARIAB	F 15.79 F 22.00 3.45	0.0001 PROB>F
REGRESSION ERRCR TOTAL INTERCEPT QUANT APC3 ST WARNING:	DF 2 18 20 B VALUE 2.09410320 0.00232472 -0.05873629 EPWISE REGRESS	TON PROCEDURE FOR C(P) SUM OF SQUARES 0.86010291 0.49009709 1.35020000 STD ERROR 0.00049568 0.03162530 CURRIC=57 ION PROCEDURE FOR STD ELETED DUE TO N	JARE = 0.63701889 = -0.38862313 MEAN SQUARE 0.43005145 0.02722762 TYPE II SS 0.59889814 0.09391897 TO DEPENDENT VARIAB	F 15.79 F 22.00 3.45	0.0001 PROB>F
REGRESSION ERRCR TOTAL INTERCEPT QUANT APC3 ST WARNING:	DF 2 18 20 B VALUE 2.09410320 0.00232472 -0.05873629 EPWISE REGRESS 1 OBSERVATION	TON PROCEDURE FOR C(P) SUM OF SQUARES 0.86010291 0.49009709 1.35020000 STD ERROR 0.00049568 0.03162530 CURRIC=57 ION PROCEDURE FOR STD ELETED DUE TO N	JARE = 0.63701889 = -0.38862313 MEAN SQUARE 0.43005145 0.02722762 TYPE II SS 0.59889814 0.09391897 TO DEPENDENT VARIAB MISSING VALUES. JARE = 0.37932039 = -2.56070676	F 15.79 F 22.00 3.45	0.0001 PROB>F 0.0002 0.0797
REGRESSION ERRCR TOTAL INTERCEPT QUANT APC3 ST WARNING:	RIABLE APC3 ENDER DE LA COMPANSION DE LA	TON PROCEDURE FOR TERED R SQU C(P) SUM OF SQUARES 0.86010291 0.49009709 1.35020000 STD ERROR 0.00049568 0.03162530 CURRIC=57 ION PROCEDURE FOR S DELETED DUE TO N NTERED R SQU C(P)	JARE = 0.63701889 = -0.38862313 MEAN SQUARE 0.43005145 0.02722762 TYPE II SS 0.59889814 0.09391897 TO DEPENDENT VARIAB MISSING VALUES. JARE = 0.37932039 = -2.56070676	F 15.79 F 22.00 3.45 LE TOTGPA	0.0001 PROB>F 0.0002 0.0797
REGRESSION ERRCR TOTAL INTERCEPT QUANT APC3 STEP 1 VA REGRESSION ERROR	RIABLE APC3 ENDF 2 18 20 B VALUE 2.09410320 0.00232472 -0.05873629	TERED R SQUARES O. 86010291 O. 49009709 1. 35020000 STD ERROR O. 00049568 O. 03162530 CURRIC=57 ION PROCEDURE FOR S DELETED DUE TO NOTERED R SQUARES	JARE = 0.63701889 = -0.38862313 MEAN SQUARE 0.43005145 0.02722762 TYPE II SS 0.59889814 0.09391897 TO DEPENDENT VARIABLE MISSING VALUES. JARE = 0.37932039 = -2.56070676 MEAN SQUARE	F 15.79 F 22.00 3.45 LE TOTGPA	O.0001 PROB>F O.0002 O.0797 PROB>F O.3030
REGRESSION ERRCR TOTAL INTERCEPT QUANT APC3 STEP 1 VA REGRESSION ERROR	RIABLE APC3 ENDE	TERED R SQUARES 0.86010291 0.49009709 1.35020000 STD ERROR 0.00049568 0.03162530 CURRIC=50 ION PROCEDURE FOR S DELETED DUE TO N NTERED R SQUARES 0.88529406 1.44850118 2.33389524	JARE = 0.63701889 = -0.38862313 MEAN SQUARE 0.43005145 0.02722762 TYPE II SS 0.59889814 0.09391897 TO DEPENDENT VARIABINATION VARIABINESING VALUES. JARE = 0.37932039 = -2.56070676 MEAN SQUARE 0.88529406 0.07624217 TYPE II SS	F 15.79 F 22.00 3.45 LE TOTGPA F 11.61	O.0001 PROB>F O.0002 O.0797 PROB>F O.3030 PROB>F

NO OTHER VARIABLES MET THE 0.1500 SIGNIFICANCE LEVEL FOR ENTRY INTO THE MODEL.

CURRIC=590

cmc	PHICE DECERTOR	ON PROCEDURE FOR I	DEDENDENIM TILDTANI	E CDADCDA						
	RIABLE APC1 ENT			LE GRADGPA						
SIEP 2 VAR	TABLE AFCI ENI	C(P)	ARE = 0.59503953 = 0.53332517							
		SUM OF SQUARES	MEAN SQUARE	F	PROB>F					
REGRESSION ERROR TOTAL	12 14	1.10865384 0.75450616 1.86316000	0.55432692 0.06287551	8.82	0.0044					
	B VALUE	STD ERROR	TYPE II SS	F	PROB>F					
INTERCEPT	2.35240625 0.00244926 -0.15147373	0.00082628	0 55245055	8.79	0.0118					
VERBAL APC1	-0.15147373	0.07984553	0.55245055 0.22628458	3.60	Ŏ. Ŏ821					
		CURRIC=590								
		ON PROCEDURE FOR I		LE TOTGPA						
STEP 3 VAR	RIABLE ANAL ENT	ERED R SQU! C(P)	ARE = 0.68560367 = 0.45081963							
	DF	SUM OF SQUARES	MEAN SQUARE	F	PROB>F					
REGRESSION ERROR TOTAL	3 11 14	2.02950571 0.93066762 2.96017333	0.67550190 0.08460615	8.00	0.0042					
	B VALUE	STD ERROR	TYPE II SS	F	PROB>F					
INTERCEPT VERBAL ANAL	1.59324263 0.00214141 0.00150220 -0.17692933	0.00106885 0.00084218 0.09375793	0.33960307 0.26918019 0.30128716	4. 01 3. 18 3. 56	0.0704 0.1021					
APC1	-0.17692833	0.09375793	0.30128716	3.56	0.0858					
NO OTHER VARI	ABLES MET THE	0.1500 SIGNIFICANO	CE LEVEL FOR ENTR	Y INTO THE M	10DEL.					
C.T.	EDUTOR DECDES	CURRIC=6:								
NO VARIABLES		ION PROCEDURE FOR								
10 /ARIABLES	MEI IME 0.1300	O SIGNIFICANCE LET CURRIC=6.	20 SOK ENTRY THE	O THE MODEL.						
ST	EPWISE REGRESS.	ION PROCEDURE FOR	DEPENDENT VARIAB	LE TOTGPA	STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE TOTGPA					
STEP 1 VA	RIABLE APC1 ENT	TERED R SOU	STEP 1 VARIABLE APC1 ENTERED R SQUARE = 0.19055238 C(P) = -1.26725073							
			= -1. 26725073							
	DF	SUM OF SQUARES	= -1. 26725073 MEAN SQUARE	£	PROB>F					
REGRESSION	1	SUM OF SQUARES	MEAN SQUARE 0.19111642		PROB>F 0.1038					
REGRESSION ERROR TOTAL			MEAN SQUARE	E						
REGRESSION ERROR TOTAL	1 1 3	SUM OF SQUARES	MEAN SQUARE 0.19111642	E						
ERROR TOTAL	1 13 14 B VALUE	SUM OF SQUARES 0.19111642 0.81184358 1.00296000	MEAN SQUARE 0.19111642 0.06244951	F 3.06	0.1038					
ERROR TOTAL	1314	SUM OF SQUARES 0.19111642 0.81184358 1.00296000 STD ERROR	MEAN SQUARE 0.19111642 0.06244951 TYPE II SS	F 3.06 F	0.1038 PROB>F					
ERROR TOTAL	1 13 14 B VALUE	SUM OF SQUARES 0.19111642 0.81184358 1.00296000 STD ERROR	MEAN SQUARE 0.19111642 0.06244951 TYPE II SS 0.19111642	F 3.06 F	0.1038 PROB>F					
ERROR TOTAL INTERCEPT APO1	1 13 14 B VALUE 3.62770270 -0.09841216	SUM OF SQUARES 0.1911642 0.81184358 1.00296000 STD ERROR 0.05625541	MEAN SQUARE 0.19111642 0.06244951 TYPE II SS 0.19111642	F 3.06 F 3.06	0.1038 PROB>F					
ERROR TOTAL INTERCEPT APC1	1 13 14 B VALUE 3.62770270 -0.09841216	SUM OF SQUARES 0.19111642 0.81184358 1.00296000 STD ERROR 0.05625541 CURRIC=8 SION PROCEDURE FOR	MEAN SQUARE 0.19111642 0.06244951 TYPE II SS 0.19111642	F 3.06 F 3.06 BLE GRADGPA	0.1038 PROB>F					
ERROR TOTAL INTERCEPT APC1	B VALUE 3.62770270 -0.09841216 TEFWISE REGRESS ARIABLE VERBAL	SUM OF SQUARES 0.19111642 0.81184358 1.00296000 STD ERROR 0.05625541 CURRIC=8 SION PROCEDURE FOR ENTERED R SCC(P)	MEAN SQUARE 0.19111642 0.06244951 TYPE II SS 0.19111642	F 3.06 F 3.06 BLE GRADGPA	0.1038 PROB>F					
ERROR TOTAL INTERCEPT APC1 STEP 3 VI REGRESSION	B VALUE 3.62770270 -0.09841216 TEFWISE REGRESS ARIABLE VERBAL DF 3	SUM OF SQUARES O. 19111642 O. 81194358 1. 00296000 STD ERROR O. 05625541 CURRIC=8 SION PROCEDURE FOR ENTERED R SC C(P) SUM OF SQUARES	MEAN SQUARE 0.19111642 0.06244951 TYPE II SS 0.19111642 0.27 R DEPENDENT VARIA QUARE = 0.6738251 = 3.2128707 MEAN SQUARE	F 3.06 F 3.06 BLE GRADGPA 35	0.1038 PROB>F 0.1038					
ERROR TOTAL INTERCEPT APC1 STEP 3 V	B VALUE 3.62770270 -0.09841216 TEPWISE REGRESS ARIABLE VERBAL	SUM OF SQUARES 0.19111642 0.81184358 1.00296000 STD ERROR 0.05625541 CURRIC=8 SION PROCEDURE FOR ENTERED R SCC(P)	MEAN SQUARE 0.19111642 0.06244951 TYPE II SS 0.19111642 227 R DEPENDENT VARIA RUARE = 0.6738251 = 3.2128707	F 3.06 F 3.06 BLE GRADGPA F	0.1038 PROB>F 0.1038 PROB>F					
ERROR TOTAL INTERCEPT APC1 STEP 3 VA REGRESSION ERROR	B VALUE 3.62770270 -0.09841216 TEFWISE REGRESS ARIABLE VERBAL DF 10	SUM OF SQUARES 0.19111642 0.891184358 1.00296000 STD ERROR 0.05625541 CURRIC=8 SION PROCEDURE FOR ENTERED R SCC(P) SUM OF SQUARES 0.62738895 0.30369677	MEAN SQUARE 0.19111642 0.06244951 TYPE II SS 0.19111642 0.27 R DEPENDENT VARIA QUARE = 0.6738251 = 3.2128707 MEAN SQUARE	F 3.06 F 3.06 BLE GRADGPA F	0.1038 PROB>F 0.1038 PROB>F					
ERROR TOTAL INTERCEPT APC1 STEP 3 VI REGRESSION ERROR TOTAL	B VALUE 3.62770270 -0.09841216 TEFWISE REGRESS ARIABLE VERBAL DF 3 10 13 B VALUE	SUM OF SQUARES 0.1911642 0.81184358 1.00296000 STD ERROR 0.05625541 CURRIC=8 SION PROCEDURE FOR ENTERED R SC C(P) SUM OF SQUARES 0.62738895 0.30369677 0.93108571 STD ERROR	MEAN SQUARE 0.19111642 0.06244951 TYPE II SS 0.19111642 227 2 DEPENDENT VARIA QUARE = 0.6738251 3.2128707 MEAN SQUARE 0.20912965 0.03036968 TYPE II SS	F 3.06 F 3.06 BLE GRADGPA F 6.89	0.1038 PROB>F 0.1038 PROB>F 0.0085 PROB>F					
ERROR TOTAL INTERCEPT APC1 STEP 3 VA REGRESSION ERROR	B VALUE 3.62770270 -0.09841216 TEFWISE REGRESS ARIABLE VERBAL DF 3 10 13	SUM OF SQUARES 0.19111642 0.81194358 1.00296000 STD ERROR 0.05625541 CURRIC=8 SION PROCEDURE FOR ENTERED R SCC(P) SUM OF SQUARES 0.62738895 0.30369677 0.93108571	MEAN SQUARE 0.19111642 0.06244951 TYPE II SS 0.19111642 227 R DEPENDENT VARIA PLARE = 0.6738251 3.2128707 MEAN SQUARE 0.20912965 0.03036968	F 3.06 F 3.06 BLE GRADGPA 5 F 6.89	0.1038 PROB>F 0.1038 PROB>F 0.0085					

CURRIC=827

	STEPWISE	REGRESS	SICN S	PROCEDURE	FUR D	EPENDENT	. VARIABLE	TOTGP.	A	
STEP 3	VARIABLE	VERBAL	ENTE	RED	R SQUA	RE = 0.6	57781922 07924798			
	DF		SUM	OF SQUAR	ES	MEAN SQ	QUARE	Е	:	PROB>F
REGRESSION ERPOR TOTAL	N 3 10 13			0.575221 0.273414 0.848635	60 12 71	0.1917 0.0273	74053 34141	7.01	L	0.0080
		B VALUE		STD ERR	OR	TYPE I	II SS	E		PROB>F
INTERCEPT VERBAL QUANT APC3	0.8 0.0 0.0 0.1	1605039 0111605 0231890 4966422		0.000695 0.000665 0.067205	62 46 02	0.0703 0.3319 0.1355	37877 99976 59807	2.57 12.13 4.96	7	0.13 97 0.0059 0.0501
				CURR	IC=837					
	STEPWISE	REGRESS	I NOI	PROCEDURE	FOR D	EPENDENT	C VARIABLE	GRADGE	P.A	
STEP 4	VARIABLE	AGE ENT	rered		R SQUAI C(P) =	RE = 0.8	31416304 58827361			
	DF		SUM	OF SQUAR		MEAN SQ	QUARE	E	£	PROB>F
REGRESSION ERROR TOTAL	1 4 12 16			0.700161 0.159315 0.859976	06 41 47	0.1750 0.0133	04026 31795	13. 14	1	0.0002
		B VALUE		STD ERR	OR	TYPE 1	II SS	E	3	PROB>F
INTERCEPT VERBAL ANAL APC3 AGE	2. 4 0. 0 0. 0 0. 0	2873481 0173070 0110541 4562393 2141177		0.000382 0.000438 0.017041 0.011715	59 40 76 20	0.2725 0.0846 0.095	52834 57196 15395 18802	20. 46 6. 36 7. 17 3. 34	7	0.0007 0.0268 0.0201 0.0926
				CURP	IC=837					
	STEPWISE	REGRESS	ION E	ROCEDURE				TOTGPA	F.	
STEP 4	VARIABLE	AGE ENT	TERED		R SQUA C(P) =	RE = 0.1	77505357 73750225			
	DF		SUM	OF SQUAR	ES	MEAN SO	QUARE	E	3	PROB>F
REGRESSION ERROR TOTAL	1 4 12 16			0.606520 0.176032 0.782552	49	0. 1518 0. 0148	53011 56937	10.34	1	0.0007
		B VALUE		STD ERR	OR	TYPE :	II SS	E	?	PROB>F
INTERCEPT	2.6	5449873								
APC3 AGE	0. 0 -0. 0)4250155)2356370		0.017889 0.012299	552 524	0.082 0.053	83581 87965	5.6 3.6	5 7	0.0350 0.0794

NO OTHER VARIABLES MET THE 0.1500 SIGNIFICANCE LEVEL FOR ENTRY INTO THE MODEL.

TABLE A6 AVERAGES OF CARRIER VARIABLES WITHIN CURRICULA

GENERAL LINEAR MODELS PROCEDURE

MEANS

CURRIC	И	25.55.	MERNS		
		GRADGPA	TOTGPA	VERBAL	QUANT
015678340501450015001045734595777 6666666776455555555566666668888888888888	2 1211 12 21 2 1211 12 21 1 1 1 1 1 1 1	777036643307010000000000099000006766603324433060700000000000000000000000000000000	7307335707310327000 630691486707310327000 1306514860637503950000070000037180 930692755606880039560000500000037180 930692756068800395600005000000037180 5098286600071403396000000000000037180 10085866000714033960000000000000000000000000000000000	07075995300744077300000000000000000000000000000	6033647533300660000060000000000000000000000000
CURRIC	И	ANAL	APC1	APC2	APC3
3333333333333335555555555666666888888888	4635743625472315555555521744816477 21 1211 12 21 1	63:63:901:3030903993993000703300900007939 63:63:50506630300190313000060330002000006259 63:63:505063030014036130000603300012000006259 93:63:908:303001037730000603300010000061221 73:63:908:30305503303000603300010000061221 73:63:508:3077303130000603300070000061221 73:65:25:58:507303130000603300070000061221 73:65:25:58:507303130000603300070000067885 84:10770200339353935300006033000700050067885 84:1077020033935393536124750005006785 85:5050505050505556555555555555555555555	2. 08333333 3.3000 2. 0800000000000000000000000000000000000	2. 000000000000000000000000000000000000	3. 3333333 1. 33333333 1. 3333333 1. 3333333 1. 3333333 1. 3333333 1. 3333333 1. 3333333 1. 3333333 1. 333333 1. 333333 1. 333333 1. 333333 1. 333333 1. 33333 1. 3333 1. 33333 1.

TABLE A6 AVERAGES OF CARRIER VARIABLES WITHIN CURRICULA CONT'D

GEMERAL LINEAR MODELS PROCEDURE

MEANS

CURRIC	11	AGE	DEGYRS
0-15667834050012500150010345734595777 6666666677623333779390014128888141142234	463574362547231555595521744816477 21 12 11 11 11	30.91000000739900017399000173990000000334715100000000000000000000000000000000000	7. 95.66679 9. 95.66679 9. 95.66679 9. 95.66679 9. 95.66679 9. 95.66679 9. 95.6679 9. 95.6799 9. 95.6799 8. 95.6799 9. 95.6799 9. 95.6799 9. 95.6799 9. 95.6799 9. 95.6799 9. 95.6799 9. 95.6799 8. 95.6799 9. 95.6799 9. 95.6799 8. 95.6799 9. 95.6799 8. 95.6799 9. 95.6799 9. 95.6799 8. 95.6799 8. 95.6799 9. 95.6799 8. 95.6799 9. 95.6799 8. 95.6799

TABLE A7 PRINCIPAL COMPONENT ANALYSIS SUMMARY

PRINCIPAL COMPONENT ANALYSIS

314 OBSERVATIONS 7 VARIABLES

			SIMPLE ST	ATISTICS			
	VERBAL	QUANT	ANAL	APC1	APC2	APC3	DEGYRS
MEAN ST DEV	545.4459 91.9575	636. 1465 85. 6294	587.9618 95.9715	1.968153 0.896713	2.267516 1.187701	3.133758 1.587071	8.471338 2.936083
			CORREL	ATIONS			
	VERBAL	QUANT	ANAL	APC1	APC2	APC3	DEGYRS
VERBAL QUANT ANAL APC1 APC2 APC3 DEGYRS	1.0000 0.2873 0.4705 2071 0146 0442 0.0598	0.2873 1.0000 0.57657 3681 4882 1676	0.4705 0.5765 1.00064 1337 2273 1901	2071 2067 1964 1.0000 0.1610 0.1018 0.0239	0146 3681 1337 0.1610 1.0000 0.5318 0.2138	0442 4882 2273 0.1019 1.0000 0.1633	0.0598 1676 10239 0.21333 1.000
	ΕI	GENVALUE	DIFFER	ENCE	PROPORTION	CUMU	LATIVE
PRINT PRINT PRINT PRINT PRINT PRINT PRINT		2. 487277 1. 371407 0. 946057 0. 867721 0. 57721 0. 427225 0. 330139	1. 11 0. 42 0. 07 0. 29 0. 14 0. 09	5870 5356 8336 87548 72949 7086	0.355325 0.195915 0.135151 0.123960 0.081453 0.061032 0.047163	0. 0. 0.	355325 551241 6863922 8103528 8918037 00000
			EIGENV	ECTORS			
	PRIN1	PRIN2	PRIN3	PRIN4	PRIN5	PRIN6	PRIN7
VERBAL QUANT ANAL AFCCO AFCCO APCCY	287369 524953 453899 0.247118 0.383586 0.427545 0.211705	0.596933 0.036658 0.3663290 0.3692410 0.395296	0.022572 0.045329 0.320527 0.5330177 0.227272 703918	0.122627 0.205079 0.078380 0.755801 008536 277650 0.536995	666290 0.443421 0.2513061 0.1710248 056007 0.165664	242920 0.173860 0.255999 0.092228 5694619 0.172005	0.206375 0.672397 651581 0.027591 0.085325 0.240451 121965

TABLE A8 CANONICAL DISCRIMINANT ANALYSES SUMMARY: (a) GRADIND

CANONICAL DISCRIMINANT ANALYSIS

315 OBSERVATIONS 7 VARIABLES 2 CLASSES

314 DF TOTAL 313 DF WITHIN CLASSES 1 DF BETWEEN CLASSES

CANONICAL CORRELATIONS AND TESTS OF HO: THE CANONICAL CORRELATION IN THE CURRENT ROW AND ALL THAT FOLLOW ARE ZERO

CANONICAL ADJUSTED APPROX VARIANCE CORRELATION CAN CORR STD ERROR RATIO

1 0.289154575 0.239111494 0.051714859 0.0912

CANONICAL LIKELIHOOD R-SQUARED RATIO F STATISTIC NUM DF DEN DF PROB>F

1 0.083610368 0.916389632

4.3015 7 307 0.0003

CAMONICAL DISCRIMINANT ANALYSIS

STANDARDIZED CANONICAL COEFFICIENTS

	CAN1	CAN2
VERBAL QUANT ANAL APC1 APC2 APC3 AGE	-0.113997555 -0.105021459 -0.00000000000000000000000000000000000	0.2148 -1.933636 -0.09433 -0.06433 -0.323

RAW CANONICAL COEFFICIENTS

	CANI	CAN2
VERBAL QUANT ANAL APC1 APC2 APC3 AGE	0009337030 0.0028723495 0.0028723965 2329397677 016881511819 1802053984	9.235150022 9.00105151939 0.0010553515395139 0.0010537535139 0.0010537535139 0.0010537535139

CLASS MEANS ON CANONICAL VARIABLES

GRADIND	CAN1	CAN2
0	-0.9834 0.0922	0.0000

TABLE A8 CANONICAL DISCRIMINANT ANALYSES SUMMARY: (b) TOTIND

CAHONICAL DISCRIMINANT ANALYSIS

315 OBSERVATIONS 7 VARIABLES 2 CLASSES

CANONICAL CORRELATIONS AND TESTS OF HO: THE CANONICAL CORRELATION IN THE CURRENT ROW AND ALL THAT FOLLOW ARE ZERO

CANONICAL ADJUSTED APPROX VARIANCE CORRELATION CAN CORR STD ERROR RATIO

1 0.206060719 0.132380039 0.054037051

CANONICAL LIKELIHOOD R-SQUARED RATIO F STATISTIC NUM DF DEN DF PROB>F

1 0.042461020 0.957538980 1.9448 7 307 0.0623

CANONICAL DISCRIMINANT ANALYSIS

STANDARDIZED CANONICAL COEFFICIENTS

	CAN1	CAN2
VERBAL QUANT ANAL APC1 APC3 AGE	0.07779 -0.302486 -0.553188 -0.03405	0.71632 -0.30149 -0.374206 -0.11406 -0.0915

RAW CANONICAL COEFFICIENTS

	CANI	CAN2
VERBAL QUANT ANAL APC2 APC3 AGE	0.0009536863 0003562659660 0556459660 12513975299	0.0078456653209 000785272299 0.00321657245505765 0.831656269656

CLASS MEANS ON CANONICAL VARIABLES

TOTIND	CAN1	CAN2
0	-0.7479 0.0589	0.0000

TABLE A9 MEANS OF CARRIER VARIABLES WITHIN LEVELS OF INDICATORS OF MARGINAL GPA'S

	TOTIND E	FREQUENCY WEI	GHT PROPORTION	
	0	23 289	23 0.073718 289 0.926292	
	1	289	289 0.926292	
		CLASS MEANS		
TOTIND	VERBAL	TIAUQ	ANAL	APC1
0	514.34782609	620. 43478261	534.34782609	2.39130435
ī	548. 89273356	620. 43478261 637. 40484429	534.34782609 592.42214533	2.39130435 1.92733564
TOTIND	APC2	APC3	AGE	DEGYRS
0	2.17391304 2.27335640	3.17391304 3.13840830	32.08695652 31.68512111	8.08695652 8.5155709 3
1	2.2/335040	3.13840830	31. 68512111	8.5155/093
	GRADIND	FREQUENCY WE	GHT PROPORTION	
		_		
	0	26 286	26 0.083333 286 0.916667	
		CLASS MEANS		
GRADIND	VERBAL	QUANT	ANAL	APC1
		594 61538462	516 53846154	2 19230769
0	518.84615335 548.84615385	594.61538462 639.93006993	516.53846154 594.65034965	2.19230769 1.94055944
GRADIND	APC2	APC3	AGE	DEGYRS
0	2.42307692 2.25174825	3.11538462 3.14335664	33. 98461538 31. 51748252	9.92307692 8.35314685
0	2.25174825	3.14335664	31.51748252	8.35314685

TABLE A10 SUMMARY OF DISCRIMINANT ANALYSIS RESULTS FOR GRADIND

DISCRIMINANT ANALYSIS

GRADIND	FREQUENCY	FRIOR PROBABILITY
0	27	0.20000000
1	288	0.80000000
TOTAL	315	1.00000000

WARNING: 2 OF THE 317 OBSERVATIONS WILL NOT BE INCLUDED IN THE ANALYSIS DUE TO MISSING VALUES.

DISCRIMINANT ANALYSIS PAIRWISE SQUARED GENERALIZED DISTANCES BETWEEN GROUPS

$$D^{2}(I|J) = (X_{I} - X_{J}), CON_{-J} (X_{I} - X_{J}) - 5 FN ELOR^{2}$$

GENERALIZED SQUARED DISTANCE TO GRADIND

FROM GRADIND 0 1 1 45923162 1 45923162 1 44529710

DISCRIMINANT ANALYSIS LINEAR DISCRIMINANT FUNCTION

CONSTANT = -.5
$$X_J'$$
 CCV^{-1} X_J + LN PRIOR COEFFICIENT VECTOR = COV^{-1} X_J

GRADIND

	C	1
CONSTANT QUANT ANAL APC1 AGE	-114.11843459 0.091930365 0.095265535 5.50267323	-109.87550143 0.09239236 0.05877090 5.26903948 3.65052610

NUMBER OF OBSERVATIONS AND PERCENTS CLASSIFIED INTO GRADIND:

	GRADÎND	0	1	TOTAL
	0	25. 93	74. 07	100.00
	1	2.7S	97. 22	288 100.00
TOTA PERC	ENT	4. 76	300 95. 24	315 100.00
PRIC	RS	0.2000	0.8000	

TABLE A11 SUMMARY OF DISCRIMINANT ANALYSIS RESULTS FOR TOTIND

DISCRIMINANT ANALYSIS

TOTIND	FREQUENCY	PRIOR PPCBABILITY
0	23	0.20000000
1 TOTAL	292 315	0.3000000

WARNING: 2 OF THE 317 OBSERVATIONS WILL NOT BE INCLUDED IN THE ANALYSIS DUE TO MISSING VALUES.

DISCRIMINANT ANALYSIS PAIRWISE SQUARED GENERALIZED DISTANCES BETWEEN GROUPS

$$D^{2}(I|J) = (X_{I} - X_{J})' COV^{-1} (X_{I} - X_{J}) - 2 LM PRIOR_{J}$$

GENERALIZED SQUARED DISTANCE TO TOTIND

FROM TOTIND 0 1

0 3.21887582 1.06842236
1 3.84101108 0.44628710

DISCRIMINANT AMALYSIS LINEAR DISCRIMINANT FUNCTION

CONSTANT = -.5
$$X_J'$$
 COV^{-1} X_J + LN PRIOR COEFFICIENT VECTOR = COV^{-1} X_J

DISCRIMINANT ANALYSIS CLASSIFICATION SUMMARY FOR CALIBRATION DATA: WORK.ONE GENERALIZED SQUARED DISTANCE FUNCTION:

$$D_J^2(X) = (X-X_J)' COV^{-1}(X-X_J) - 2 LN PRIOR_J$$

POSTERIOR PROBABILITY OF MEMBERSHIP IN EACH TOTIND:

$$PR(J|X) = EXP(-.5 D_J^2(X)) / SUM EXP(-.5 D_K^2(X))$$

NUMBER OF OBSERVATIONS AND PERCENTS CLASSIFIED INTO TOTIND:

FROM TOTIND	0	1	TOTAL
0	4.35	95.65	100.00
1	2.05	286 97.95	100.00
TOTAL PERCENT	2.22	309 97.78	315 100.00
PRIORS	0.2000	0.8000	

VARIABLE	И	MEAN	STANDARD DEVIATION CURRIC=360	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN
VERNING AND AND GRAND CONTROL AND CONTROL	\$20055555455 \$200000000000000000000000000000000000	20004:680639 20009:28641 20009:28641 20009:380639 2495 2495 3	95.6999 104.9928 10.88220 1.0831 0.831 0.72	3 ± 0. 00 5 ± 20. 00 3 8 0. 00 0. 00 1. 00 2 7. 00 2. 77 1. 00	710.00 800.00 800.00 31.00 37.00 14.00 4.00	13. 14 17. 40 20. 98 0. 207 0. 20 0. 609 0. 06 0. 14
VERBAL COMMENS A COMMENS A	Მ	703033300011 60353800011 10353800011 17381110733	129.069 99.250175523 98.501102433 00.336	330.00 550.00 550.00 0.00 0.00 26.00 4.00 2.69	710.00 830.00 780.000 31.000 37.000 12.98	52.69 40.41 34.80 0.22 0.42 0.45 1.32 0.13
VERBAL QUAL QUAL APC11 APC03 APC03 APC03 APC03 APC04 APC04 APC04 APC04 APC04 APC04 APC04 APC05 APC05 APC06 A	,	510.00 5103.600 610.000 240.000 249.6335 3.5	43.59 90.74 0.00 11.000 2.000 2.000 2.7	460.00 530.00 520.00 1.00 3.00 27.00 5.00 3.03	540.000 650.000 700.000 31.000 31.33.8	25. 17 37. 12 52. 39 0. 58 0. 58 1. 15 1. 20 0. 21
VERBAL OUANT ANAC1 APOC2 AEC3 ACC3 ACC5 DECADOPA TOTOPA	1-	5566 53358 63358 6358 6358 6350 6350 6350 7350 7350 7350 7350 7350 7350 7350 7	9.00 01.32.39.6 9.69.00 01.32.39.6	420.00 570.00 430.00 0.00 1.00 26.00 4.00 1.84 2.98	740.00 770.00 800.00 3.00 4.00 5.00 39.00 11.00 3.83	23. 12 16. 12 24. 93 0. 24 0. 21 0. 41 0. 88 0. 55 0. 12 0. 07
VERBAL CUANC ANAL APPOS APPOS ACCE MES ACCE MES	277 777 77 77 77 77 77 77 77 77 77 77 77	9:40:2144:4583 4:46:217-07-0845 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	CURRIC=367 82.85 87.25 0.75 0.75 1.564 3.02 0.33 0.27	400.00 440.00 410.00 1.00 0.00 27.00 27.00 2.42 2.74	700.00 760.00 720.00 4.00 5.00 40.00 16.00 3.82 3.91	15. 94 16. 91 14. 844 0. 15 0. 27 0. 58 0. 05

VARIABLE	11	MEAN	STANDARD DEVIATION CURRIC=368	MINIMUM VALUE	MAKIMUM VALUE	STD ERROR OF MEAN
VEFRAL OUANT APCI APCI APCO ACC ACC DEGYRS GRADOPA TOTOPA	555555+555	525.33 658.00 601.33 1.47 1.47 31.21 7.60 3.66	95.357 72.106685 1.0068450 1.49235	340.00 530.00 480.00 0.00 0.00 28.00 28.00 3.13 2.70	670.00 800.00 720.00 3.00 3.00 37.00 15.00 4.00	24.88 19 200 15.627 0.27 0.432 0.775 0.09
VERBAL OUANT ANAL AFC23 AFC3 APCE APCB GRADGPA TOTGFA	13333333333313331333133333333333333333	505.38 597.639 525.35 2.15 2.92 9.00 3.36 3.42	CURRIC=373 104.45 72.70 124.47 0.699 1.264 3.556 0.31 0.25	380.00 480.00 260.00 1.00 0.00 28.00 28.00 2.83 3.07	790.00 730.000 4.000 5.000 4.000 12.000 13.883 3.883	28.97 20.16 34.525 0.196 0.361 0.999 0.07
VERBAL QUANT ANAL ANCO: APCO: APCO: APCO: ACCO:	000000000000	558.33 663.33 609.33 1.67 1.50 29.00 6.33 3.41 3.41	79.69.101.01.01.01.01.01.01.01.01.01.01.01.01	460.00 540.00 480.00 0.00 1.00 28.00 2.59 2.76	700.00 800.00 750.000 2.000 31.000 3.003 3.003	32.50 42.653 44.533 0.33422 0.55486
VERBAL GUANT ANAL APOCI APOCI APOCI APOCI ACCI CRADOPA TOTO	222222222222222222222222222222222222222	500.00 670.00 605.00 1.50 3.00 30.50 30.50 3.23 3.23	28. 271 270. 271 12. 771 12. 921 12. 921 14. 35 14. 35 15. 1	480.00 620.00 520.00 1.00 1.00 27.00 27.00 2.93 2.84	5229 5229 5229 5229 53541.33.33	20.00 50.00 85.050 1.00 2.00 3.50 3.00 0.30
VEREAL QUANT AMBOCOS YROA AAPG YROA AAPG ADGAA GCOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOT	155555555555555555555555555555555555555	568.00 670.33 2.00 1.60 2.47 30.37 3.42 3.55	CURRIC=525 98. 21 77. 37 90. 67 0. 83 1. 13 3. 39 0. 39 0. 29	400.00 550.00 510.00 0.00 0.00 27.00 4.00 2.74 3.08	710.00 \$00.00 \$00.00 3.000 4.00 16.00 4.00 4.00	25.36 19.98 23.424 0.221 0.983 0.08

VARIABLE	И	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN
ACCOMPANDA	ACANDANANANA 구축구설라구축구축	1720 1450 1450 1477 1477 1477 1477 1477 1477 1477 147	83.614 672.433 01.1253 01.1253 01.40 0.40 CURRIC=531	410.00 560.00 480.00 0.00 0.00 27.00 2.46 2.70	7CO.00 78O.00 73O.00 3.00 3.00 39.00 12.00 3.89 4.00	17. 07 13. 93 14. 78 0. 19 0. 24 0. 65 0. 55 0. 07
VERBAL OUNACIO ANDOCOS ANDOCOS ANDOCOS ANDOCOS ANDES MONA DESACO DESACO TO	7 7 7 7 7 7 7 7	907 7096497 2055829753 4082429633 5666	94.67 94.69 1100.79 01.396 01.34 0.31 0.35	480.00 610.00 460.00 2.00 0.00 27.00 27.00 27.00 3.00	770.00 790.000 800.000 4.000 1.000 34.000 12.004 3.95	35. 78 22. 78 13. 83 0. 325 0. 825 0. 82 0. 92 0. 12
VERBAL QUANT APCOS APES YES ADE YES APES YES APES YES APES YES APES YES APES APES	222222222222222222222222222222222222222	510.000 515.000 27.5000 27.500 3.544	141. 42 0.00 49.50 0.00 1.11 2.12 1.41 0.13	410.00 610.00 540.00 2.00 1.00 26.00 3.48 3.30	610.00 610.00 610.00 2.000 3.000 29.000 3.67 3.59	100.00 0.00 35.00 0.00 0.50 1.50 1.00 0.09
VERBAL CUANT ANCOI		526.67 60.033 1.333 1.330 1.300 2.14	115. 90 900 83 11. 555 11. 555 88 11.	420.00 660.00 540.00 0.00 0.00 26.00 24.00 2.02 3.00	650.00 730.00 700.00 3.00 2.00 3.00 35.00 13.00 3.16 3.43	65. 92 20. 87 0. 83 0. 68 0. 68 2. 65 0. 14
VERBAL QUANT ANACL AAPOOS AAPOS ACCS ACCS ACCS ACCS ACCS ACCS ACCS AC	222222222 222222222 2222222222 22222222	144908944555 56100654655 383024112833	CURRIC=570 103.76 173.92 118.79 0.82 0.78 1.18 3.27 0.27 0.35	330.00 530.00 350.00 0.00 0.00 26.00 4.00 3.14 2.70	710.00 760.00 780.00 3.00 3.00 4.00 36.00 14.00 3.98 4.00	22. 12 15. 97 25. 33 0. 17 0. 17 0. 70 0. 70 0. 70 0. 67

VARIABLE	11	MEAN	STANDARD DEVIATION CURFIC=590	MINIMUM	MAXIMUM VALUE	STD ERROR OF MEAN
VERBAL OUANL ANAL APOCO APOCO AGE YRSA DEGADORA TOTO		\$9055 \$103333337 \$103594735 \$11.77.45 \$31.77.45	85.40 980 107.00 1083 1083 1083 1083 1093 1093 1093 1093 1093 1093 1093 109	460.00 540.00 400.00 0.00 27.00 27.00 27.00	740.00 750.000 750.000 34.000 39.000 13.00 4.00	22.05 15.70 27.70 0.224 0.342 0.601 0.619
VERBAL QUANT ANACI APCO1 APCO3 ACCI ACCI ACCI ACCI ACCI ACCI ACCI ACC	0500055555	5499.000 6499.0000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.0000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.0000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.0000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.0000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.0000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.0000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.0000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.0000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.0000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.0000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.0000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.0000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.0000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.000 6499.00	9465427911 981051427911 981011142000	470.00 540.00 5.00 0.00 0.00 28.00 25.00 2.96 3.00	590.000 7760.000 35.000 11.000 11.3.8	22.006 30.5554 36.224 0.56516 0.56616 11.14
VERBAL CUANT ANAL APROCI AARCO AAROE YESA DECATORA TOTAL	55555555555	522.00 626.00 534.00 22.00 4.20 31.00 3.30 3.30	569.67.71 69.67.71 00.883.384 00.883.384 00.827 00.335	440.00 490.00 450.00 1.00 29.00 29.00 29.66	580.00 7310.00 640.000 35.000 35.000 36.000 36.000 36.000 36.000	25. 19 44. 451 38. 912 0. 377 0. 375 0. 10
VERBAL QUANT ANACI AAPCOCS AACE WSPA ADEATORA TOTAL	5505555555	506. C0 7C0. 00 568. 40 2. 40 1. 60 2. 220 32. 260 3. 67 3. 55	1320559 1955591795024 1000	460.00 620.00 520.00 1.00 0.00 28.00 3.44 3.14	590.00 790.00 600.000 3.000 55.000 39.000 11.000 4.000	24. 21 30. 89 13. 19 0. 40 0. 40 0. 971 0. 87 0. 19
VERBOURD SAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	######################################	527.75.67.6338 527.55.61.53783226 661.61.5378322647 320.537.322.547	CURRIC=610 984.593 10 10 10 10 10 10 10 10 10 10 10 10 10	400.00 590.00 450.00 0.00 1.00 29.00 3.20 2.70	670.00 790.000 790.000 30.000 50.000 38.000 16.000 3.97	32.861 33.951 0.7498 0.498 1.029 0.14

VARIABLE	N	MEAN	STANDARD DEVIATION CURRIC=611	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN
VERBAL QUANT ANACI APOCI APOCI APOCI APOCI CRESCON ACCE YOUR CRESCON ACCE YOUR AC YOUR ACCE YOUR ACCE YOUR ACCE YOUR ACCE YOUR ACCE YOUR ACCE YOUR	សភាភាភាភាភាភាភាភាភាភាភាភាភាភាភាភាភាភាភា	00000000000000000000000000000000000000	85.560 163.684 01.644 01.7783 00.442	350.00 630.00 310.00 1.00 0.00 29.00 7.00 3.03 2.70	570.00 750.00 700.00 3.00 3.00 4.00 38.00 16.00 3.75	38.26 20.318 70.377 0.377 0.69 1.69 0.13
VERBAL QUAL QUAL APPOCO APOCO APOC APOC		000370033731 00036655434 547742444333 5573	109.888 69.57 105.73 10.77 0.74 3.89 3.14 0.49 0.27	300.00 450.00 370.00 0.00 0.00 3.00 26.00 4.00 1.93 3.01	700.00 670.00 750.00 3.00 3.00 35.00 14.00 3.95 3.96	28.11 17.36 27.36 0.31 0.20 0.19 1.00 0.81 0.13
VERBAL QUANT APC1 APC12 AFC3 AFC3 AGE DEGMESA DEGMEA TOTOFA	തത്തന്നെത്തവരാ	636.0033 5560.0333 41.35564 31.35566 33.35566	41.63 79.37 75.558 0.558 0.558 0.725	590.00 500.00 1.00 2.00 4.00 31.00 8.00 3.40	670.00 650.00 660.00 6.00 6.00 32.00 32.00 33.89	24. 04 45. 59 0. 33 1. 203 0. 33 0. 50 0. 14
VERBAL CUANT ANAL APCO2 APCO3 ACE YRS DEGYRS GRADGPA TOTGPA	חחחחחחחח	680.00 620.00 640.00 3.00 4.00 27.00 6.00 3.89	: : : : :	680.00 620.00 640.00 2.00 3.00 27.00 6.00 3.89 3.89	680.00 620.00 640.00 3.00 4.00 27.00 3.89 3.89	
VERBAL CUANC AAPOL AAPOL AAPOS AAPOS AAPOR	7 7 7 7 7 7 7 7	7 47 707 7665 5151-057-7665 87.82-487-7 999	61. 49 93. 75 110. 82 0. 90 2. 31 1. 81 4. 10 2. 79 0. 11	500.00 490.00 420.00 1.00 1.00 29.00 5.00 3.61 3.61	680.00 770.00 750.00 68.00 40.00 13.00 13.93 3.93	23. 24 35. 849 41. 834 0. 865 0. 556 1. 004

VARIAELE	11	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERFOR OF MEAN
VERSAL QUANT ANAL APC1 APC2 AGC3 AGE YRS DEGATOPA TOIGNA	1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.000 54.000 64.000 775 34.002 4.4.000 3.000 3.000 4.000 3.0	CURRIC=813 92.01 114.13 63.25 0.82 1.50 0.50 3.46 2.50 0.20 0.21	360.00 \$10.00 \$50.00 \$1.00 \$1.00 \$1.00 \$2.24 3.24	590.00 600.000 45.000 37.000 14.000 33.68	46.01 55.062 0.455 0.475 0.273 1.255 0.10
VERBAL QUANT ANAL APC1 APC3 AGE YPS DEGYPSA TO	44444444444444444444444444444444444444	00000000000000000000000000000000000000	88. 88 191. 309 1. 000 1. 000 1. 000 2. 38 0. 220	460.00 440.00 510.00 3.00 31.00 8.00 31.25	670.00 650.00 610.00 610.00 610.00 610.00 610.00 37.00 13.69	44. 44. 51. 550 0. 709 0. 209 1. 10
VERBAL QUANT ANAL APC1 APC2 APC3 AGE DEGYRS GRADGPA TOTGPA	@@@@@@@@@	5000300305777 7.5.7.1243.5.3 4866 3.93.3	29774064965 59477774122 888300003200	430.00 460.00 460.00 1.00 1.00 3.00 28.00 6.00 3.12 3.14	710.00 730.00 750.00 3.00 3.00 3.00 13.00 13.00 3.93	34. 83 35. 004 0. 25 0. 27 0. 27 1. 77 0. 09
VERBAL QUANT APOCO APOCO ACCO S ACCO S DECADOPA TOTO		510.00 660.00 600.000 4.000 35.052 3.52		510.00 660.00 600.00 31.00 350.00 350.00 350.00	510.00 660.00 600.00 3.000 35.000 35.000 3.552	
VERBLA QUARCE ANDC	\$ \$	003777 0036138836740 0036138836740 6666 6666	CURRIC=825 10597-0.340 5075-0.370 114,2851 00.46	390. C0 560. 000 500. 000 2000 2000 2000 244 2000	710.00 750.00 640.00 65.00 40.00 13.00 13.80 3.82	43. 03 243. 330 00. 6545 00. 11. 100 0. 11. 100

VARIABLE	11	MEAN	STANDARD DEVIATION	MINIMUM VALUE			
VERBAL QUALL ARCOS ARCOS ARGE PSA DERALOPA TOTO	स्थानात्त्रात्त्रात्त्रात्त्रात्त्रात्त्रात्त्रात्त्रात्त्रात्त्रात्त्रात्त्रात्त्रात्त्रात्त्रात्त्रात्त्रात्	550.000 5343.0322399 54223993 33.9443 33.443	CURRIC=827 69.17 76.64 103.76 1.28 0.753 3.022 3.10 0.27 0.26 CURRIC=837	410.00 4490.00 11.000 1.000 26.000 26.22.89		19.448 20.47354 20.1319 00.8837 00.007	
VEFBAL OUAAL AMACO A AMACO AMACO AMACO AMACO A AMACO AMACO AMACO AMACO AMACO A AMACO A AMACO A AMACO A AMACO A AMACO A AMACO A AMACO A AMACO A A A A A A A A A A A A A A A A A A	17 17 17 17 17 17 17	19592: 159010 12308: 620055 3005: 30055	9330. 11.09979933 11.22000.	350.00 440.00 10.00 28.00 28.00 3.06	0/500 7500 45.57.000 3750.865	221900000000	
	7 7 7 7 7 7 7 7 7 7	540.00 552.57 563.57 31.243 31.443 8.237 3.36	CURRIC=847 117.62 111.91 117.90 1.025 0.735 2.829 2.69 0.31	360.00 370.00 2.00 2.00 2.00 26.00 3.00	630.00 650.60 570.60 5.00 5.00 35.00 12.83 3.86	44.33538 442.5038 42.5000 42.7000 11.000	
OVERALL CURRICULA							
	11	MEAN	STANDARD DEVIATION	MINIMUM EULAV	MAXIMUM VALUE	STD ERROR OF MEAN	
VERNAL APPROVED APPRO	3311111111111777554777554777	5466.07.921.74.45 5338.1.31.44.55 3.44.668.33.44.455	989 989 989 989 989	300.00 370.00 260.00 0.00 0.00 26.00 1.84 1.00	780.00 500.00 800.00 4.00 5.00 12.00 18.00 4.00	5.1039579997 5.00011100	

INITIAL DISTRIBUTION LIST

Library, Code 0142 Naval Postgraduate School Monterey, California 93943	2
Defense Technical Information Center Cameron Station Alexandria, Virginia 22314	2
RADM R. C. Austin, Code 00 Naval Postgraduate School Monterey, California 93943-5000	1
D. A. Schrady, Code 01 Naval Postgraduate School Monterey, California 93943-5000	1
R. D. Zucker, Code 011 Naval Postgraduate School Monterey, California 93943-5000	1
J. M. Barron, Code 013 Naval Postgraduate School Monterey, California 93943-5000	1
G. H. Lindsey, Code 014 Naval Postgraduate School Monterey, California 93943-5000	1
CAPT H. Venezia, Code 03 Naval Postgraduate School Monterey, California 93943-5000	1
Kneale T. Marshall, Code 05 Naval Postgraduate School Monterey, California 93943-5000	1
Gordon E. Schacher, Code 06 Naval Postgraduate School Monterey, California 93943-5000	1
Donald R. Barr, Code 55Bn Naval Postgraduate School Monterey, California 93943-5000	1
Gilbert T. Howard, Code 012 Naval Postgraduate School Monterey, California 93943-5000	2

U232890

#232890**