

MAA American Mathematics Competitions

1st (and probably last)

aMAMC 8

asbodke's Mock AMC 8
Saturday, July 25, 2020

INSTRUCTIONS

- 1 DO NOT BEGIN THE TEST UNTIL YOU START A TIMER FOR 40 MINUTES.
- 2. This is a 25 question multiple choice test. For each question, only one answer choice is correct.
- PM asbodke your answers. Make sure to check for mistakes as you will not be able to change them once they are sent. Edited messages will be disqualified (unless you have a legitimate reason).
- 4. There is no penalty for guessing. Your score is the number of correct answers.
- Only scratch paper, graph paper, rulers, protractors, and erasers are allowed as aids.
 Calculators are NOT allowed. No problems on the test *require* the use of a calculator.
- 6. Figures are not necessarily drawn to scale.
- 7. You will have 40 minutes to complete the test once you start the timer.

4.		ust be at th				tring 'aMAMC8' such are distinguishable bu
	(A) 12	,	(C) 48	(D) 60	(E) 120	
5.	Given the	at $\mathbf{v}x = \sqrt{x}$	\overline{x} and $x \heartsuit y$	$y = x^2 - 2xy$	$y + y^2$ for all re-	eal x and y , find
			\(\psi\ ((4♡[♥4])♡($(\blacktriangledown([\blacktriangledown 4] \heartsuit 4))).$	
	(A) 0	(B) 1	(C) 2	(D) 3	(E) 4	
6.	How mar	ny palindro	mes with 4	or less digit	s have 1 as the	eir last digit?
		=			oe read the sam ndromes but 1	ne forwards and backw 467621 is not.
	(A) 22	(B) 23	(C) 24	(D) 25	(E) 26	
7.	(A) 22 Jack likes gets tired	s eating application of and can determine the second can be seen as a second c	ples. He ca	n eat 2 app anges, at a r	les in 5 minute	es. However, sometim es per 4 minutes. Sup he eat?
7.	(A) 22 Jack likes gets tired	s eating application of and can determine the second can be seen as a second c	ples. He ca	an eat 2 app anges, at a r s. How man	les in 5 minute rate of 2 orang	es per 4 minutes. Sur
	Jack likes gets tired he ate 36 (A) 4	s eating apple and can be apples in 1 (B) 5	ples. He can be a prime at oral (C) 6 primes (a,	an eat 2 appraiges, at a 1 s. How man (\mathbf{D}) 7 (b,c) exist su	les in 5 minuterate of 2 orangey oranges did 1	es per 4 minutes. Sur
	Jack likes gets tired he ate 36 (A) 4	s eating apple and can of apples in (B) 5	ples. He can be a prime at oral (C) 6 primes (a,	an eat 2 appranges, at a 1 s. How man (\mathbf{D}) 7 (b,c) exist suangle?	les in 5 minuterate of 2 orangey oranges did 1	es per 4 minutes. Suphe eat? angle with side lengths
8.	Jack likes gets tired he ate 36 (A) 4 How man and c (if (A) 0 When yo	s eating apple and can be apples in 1 (B) 5 The strength of t	ples. He can be called a primes (a, a right tri (C) 2 of 120% of	an eat 2 appranges, at a rest. How man (\mathbf{D}) 7 (b,c) exist surangle? (\mathbf{D}) 3 of x , you get	les in 5 minuterate of 2 orangey oranges did 1 (E) 8 ch that the trice (E) infinitely 50% of 150%	es per 4 minutes. Suphe eat? angle with side lengths
8.	Jack likes gets tired he ate 36 (A) 4 How man and c (if (A) 0 When yo	s eating apple and can be apples in 1 (B) 5 The strength of t	ples. He can be called a primes (a, a right tri (C) 2 of 120% of	an eat 2 appranges, at a rest. How man (\mathbf{D}) 7 (b,c) exist surangle? (\mathbf{D}) 3 of x , you get	les in 5 minuterate of 2 orangey oranges did 1 (E) 8 ch that the trice (E) infinitely 50% of 150%	es per 4 minutes. Suphe eat? angle with side lengths many of y . Given that $\frac{x}{y}$ ca
8. 9.	Jack likes gets tired he ate 36 (A) 4 How man and c (if (A) 0 When you written a (A) 8	is eating apple and can be apples in (B) 5 The second of apples in (B) 5 The second of apples in (B) 1 The second of apples in (B) 2 The second of app	ples. He can be prime and a right tri (C) 2 of 120% of mand n a right tri (C) 17	an eat 2 appraiges, at a 1 s. How man (\mathbf{D}) 7 (b,c) exist surangle? (\mathbf{D}) 3 of x , you get are relatively	les in 5 minute rate of 2 orangey oranges did 1 (E) 8 ch that the trial (E) infinitely 50% of 150% prime positive (E) 37	es per 4 minutes. Suphe eat? angle with side lengths many of y . Given that $\frac{x}{y}$ ca

1. What is (2018)(2022) - (2017)(2023)?

(C) 9

(D) 2020

2. $\triangle ABC$ has side lengths AB = 28, BC = 45, and AC = 53. What is the area of

(E) 4039

(B) 5

(A) 1

	(A) 792	(B) 924	(C) 1024	(D)	1440	(E) 1716					
12.	2. How many non-similar triangles with integer angle measures (in degrees) satisfy that the largest angle of the triangle is less than 70°?										
	(A) 73	(B) 74	(C) 75 (D)	76	(\mathbf{E})	77					
13.	=		e length 4. Let What is the area			Ipoint of side BC and N be the eral $ABMN$?					
	(A) 8	(B) 9 (C	C) 10 (D) 1	11	(E) 12						
14.	Round (1+	$-\sqrt{2})^5$ to the	e nearest intege	r.							
	(A) 80	(B) 81	(C) 82 (D)	83	(E) 8	34					
15.	The ancient Gruks had 4 letters: A, B, C, and D. They could create a word by taking an arbitrary string of A's, B's, and C's and they could also accent the A's by adding a D after the A (but the A didn't have to be accented). However, a D couldn't be added anywhere else in the word. For example, BADC and ADAD are correct 4-letter words, but ACDB is not since the D is after a C. How many 4-letter words did the ancient Gruks have?										
	(A) 109	(B) 121	(C) 132	(D) 1	.33	(E) 149					
16.	What is 1^3	-2^3+3^3-	$4^3 \dots + 15^3$?								
	(A) 1472	(B) 1504	(C) 1664	$(\Gamma$) 1728	(E) 1856					
17.	7. How many positive integers n less than 1000 satisfy exactly one of the following properties?										
	• n is not a multiple of 3.										
	• n is not a multiple of 5.										
	(A) 400	(B) 401	(C) 466	(D) 4	167	(E) 533					
18.	Given that x and y are positive real numbers such that $x + y = 5$, and that the minimum value of $\frac{1}{x} + \frac{1}{y} + \frac{1}{xy}$ can be written as $\frac{m}{n}$ where m and n are relatively prime positive integers, find $m + n$.										
	(A) 5	(B) 13 ((C) 27 (D)	49	(E) 6	1					

11. The set S is defined as $\{1, 2, 3, \ldots, 12\}$. Let A be the number of subsets of S such that the subset contains 6 or more elements. Let B be the number of subsets of S

such that the subset contains 5 or less elements. Find A-B.

19. Bob is trying to get into a university. There are 5 universities that he is applying to, with ratings of 1, 2, 3, 4, and 5 and acceptance rates of 100%, 80%, 60%, 40%, and 20% respectively. If Bob gets accepted into multiple universities, he will choose the one with the highest rating. Given that the expected value of the rating of the university Bob gets into can be written as $\frac{m}{n}$, where m and n are relatively prime positive integers, find the remainder when m+n is divided by 5.

Note: The *expected value* is the "average" of the possible outcomes; it is the sum of all the (value)(probability)'s. For example, the expected value of a 6-sided die roll is $\frac{1}{6}(1) + \frac{1}{6}(2) + \frac{1}{6}(3) + \frac{1}{6}(4) + \frac{1}{6}(5) + \frac{1}{6}(6) = \frac{7}{2}$.

- (A) 0 (B) 1 (C) 2 (D) 3 (E)
- 20. How many integers n satisfy

$$n = \frac{5m^2 + 14m + 5}{m^2 + 1}$$

for some real m?

- (A) 11 (B) 15 (C) 23 (D) 29 (E) infinitely many
- 21. Rectangle ABCD satisfies AB = 4 and BD = 5. Let M be the on diagonal BD such that BM = 2. Line AM intersects BC at N. Find the area of triangle DMN.
 - **(A)** 2 **(B)** $\frac{12}{5}$ **(C)** 3 **(D)** $\frac{16}{5}$ **(E)** $\frac{18}{5}$
- 22. There exists exactly one solution (x, y, z) that satisfies the following system:

$$x < y < z$$

$$x + y + z = 3$$

$$xy + yz + zx = -12$$

$$xyz = 4$$

Given that z can be written as $\frac{a+\sqrt{b}}{c}$ in simplest form and c is positive, find a+b+c.

- (A) 36 (B) 37 (C) 38 (D) 39 (E) 40
- 23. What is the remainder when 13^{64} is divided by 2194?
 - (A) 135 (B) 356 (C) 689 (D) 1851 (E) 2123
- 24. A point A is outside of a circle ω with center O and radius greater than 1. Line AO intersects ω at B, and AB = 1. A secant from A intersects ω at C and D with C closer to A than D such that CD = 2. A line passing through O intersects the midpoint M of CD. The tangent from A to ω intersects ω at E. Given that OM = 1, find AE^2 .

Note: In this context, the word "secant" may be replaced by the word "line".

(A) $2\sqrt{2}+1$

(B) $2\sqrt{3} + 1$

(C) $\sqrt{3} + 1$

(D) 6

(E) $5 + 2\sqrt{2}$

25. The sequence $a_{n(n\geq 1)}$ is defined so a_n is the largest integral value k such that 2^k divides n! for every integral value of $n\geq 1$. The first 5 terms of the sequence are 0,1,1,3,3. Find the sum of the first 100 terms of the sequence.

(A) 4730

(B) 4731

(C) 4732

(D) 4733

(E) 4734