Unité d'Enseignement RCP101 : Recherche Opérationnelle et Aide à la Décision

Cours 9 – Files d'attente

Conservatoire National des Arts et Métiers

E. Soutil – F. Badran

UE RCP101 – Recherche Opérationnelle et Aide à la Décision – Plan du cours

- □ Partie 1 Eléments de Théorie des Graphes
 - □ Généralités, fermeture transitive et connexité
 - □ Chemins de longueur optimale
- □ Partie 2 Ordonnancement
 - Méthode PERT
 - Méthode MPM
- □ Partie 3 Programmation linéaire
 - Modélisation
 - Méthode du simplexe
 - Dualité
- Partie 4 : Processus de Markov et files d'attente
- □ Partie 5 : Optimisation multicritères

Plan de la partie 4

1. Processus de Markov

2. Files d'attente

Phénomène d'attente

Guichet

1 ou plusieurs guichets

Caractéristiques du système d'attente

Discipline de(s) file(s) d'attente : □ FIFO: Premier arrivé premier servi. □ LIFO: Premier arrivée dernier servi. ALEATOIRE Capacité du système Infini : système ouvert □ Fini : Système Fermé Processus des arrivées des clients : Poissonien Loi du temps de service : exponentielle, Erlang

Classification de KENDALL

File M/M/1

- \square Processus des arrivées : de Poisson (taux λ)
- Temps de service exponentiel (de paramètre μ)
- □ 1 guichet
- Processus ouvert (par défaut)
- Discipline de la file : FIFO (par défaut)

- \square X_t : Nombre de clients présents au temps t.
- Les arrivées : Processus de naissance.
- Les Départs : Processus de mort.

Calcul des probabilités en régime permanent

Processus de naissance et de mort ouvert tel que pour tout n:

$$\lambda_n = \lambda$$
 (constant) et $\mu_n = \mu$ (constant)

- \Box La condition de convergence devient : $\frac{\lambda}{\mu} = \rho < 1$
- \square La série géométrique (ρ^n) est convergente et $\sum_{n\geq 0} \rho^n = \frac{1}{1-\rho}$
- \square On a alors : $p_0 = 1 \rho$ et $p_n = \rho^n (1 \rho)$ pour tout n.
- dans la file d'attente :

$$\overline{n} = \sum_{n \ge 0} n p_n = \frac{\lambda}{\mu - \lambda}$$

$$\overline{v} = \sum_{n \ge 1} n p_{n+1} = \frac{\lambda^2}{\mu(\mu - \lambda)}$$

File M/M/S

- o Processus des arrivées : de Poisson (Taux λ)
- \square Temps de service exponentiel (de paramètre μ)
- \Box S guichets
- Processus ouvert (par défaut)
- Discipline de la file : FIFO (par défaut)

- Les arrivées : Processus de naissance.
- Les Départs : Processus de mort.

Calcul des probabilités

- oxdot Processus de naissance et de mort ouvert et tel que pour tout n :
 - $\square \lambda_n = \lambda \text{ (constant)}$

- $_{\square}$ La condition de convergence devient : $rac{\lambda}{S\mu} < 1$
- □ On a :

$$p_n = \begin{cases} \frac{1}{n!} \frac{\lambda^n}{\mu^n} p_0 & \text{si } n \le S \\ \frac{1}{S! S^{n-S}} \frac{\lambda^n}{\mu^n} p_0 & \text{si } n > S \end{cases}$$

Formules de Little (en régime permanent)

- $oxedsymbol{ar{t}}$: temps moyen passé dans le système d'attente.
- \overline{n} : nombre moyen de clients dans le système d'attente.
- \overline{v} : nombre moyen de clients dans la file d'attente.

$$\lambda ar{t} = \overline{n}$$
 et $\lambda ar{t}_f = \overline{
u}$

- Or $\bar{t} \bar{t}_f =$ durée moyenne de service $= \frac{1}{\mu'}$ d'où $\bar{n} \bar{\nu} = \lambda (\bar{t} \bar{t}_f) = \frac{\lambda}{\mu}$ et $\bar{\nu} = \bar{n} \frac{\lambda}{\mu}$
- \Box Cas particulier pour M/M/1 : $\bar{t}=\frac{1}{\mu-\lambda}$ et $\bar{t}_f=\frac{\lambda}{\mu(\mu-\lambda)}$.

Annexe – Lois d'Erlang

- Le processus de service est composé d'une suite de k serveurs élémentaires exponentiels, identiques (de même paramètre μ), et 2 à 2 indépendants.
- Le temps de service T est alors la somme des temps passés dans chaque serveur.
- □ Exemple pour $k = 2 : T = T_1 + T_2$

$$P(T \le t) = P(X_1 + X_2 \le t) = 1 - e^{-\mu t} - \mu t e^{-\mu t}$$

- □ Moyenne : $E(T) = \frac{2}{\mu}$
- □ Variance : $\frac{2}{\mu^2}$

