International Rectifier

IRF7343PbF

HEXFET® Power MOSFET

- Generation V Technology
- Ultra Low On-Resistance
- Dual N and P Channel MOSFET
- Surface Mount
- Fully Avalanche Rated
- Lead-Free

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques.

	N-Ch	P-Ch
V _{DSS}	55V	-55V
R _{DS(on)}	0.050Ω	0.105Ω

Absolute Maximum Ratings

		N			
	Parameter	N-Channel	P-Channel	Units	
V _{DS}	Drain-Source Voltage	55	-55	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	4.7	-3.4		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	3.8	-2.7	Α	
I _{DM}	Pulsed Drain Current ①	38	-27		
P _D @T _A = 25°C	Maximum Power Dissipation ⑤	2.0		W	
P _D @T _A = 70°C	Maximum Power Dissipation ⑤	1.3		W	
E _{AS}	Single Pulse Avalanche Energy®	72	114	mJ	
I _{AR}	Avalanche Current	4.7	-3.4	А	
E _{AR}	Repetitive Avalanche Energy	0.20		mJ	
V _{GS}	Gate-to-Source Voltage	:	± 20	V	
dv/dt	Peak Diode Recovery dv/dt ②	5.0	-5.0	V/ns	
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150		℃	

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{eJA}	Maximum Junction-to-Ambient ⑤		62.5	°C/W
www.irf.com				1

IRF7343PbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter		Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	N-Ch	55	_	_	V	$V_{GS} = 0V, I_D = 250\mu A$
* (DK)U00	Diam-to-Source Breakdown Voltage	P-Ch	-55	_	_	٧ [$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	N-Ch	_	0.059	_	v/°c	Reference to 25°C, I _D = 1mA
A (BR)DSS/A I J	Breakdown Voltage Temp. Goemolent	P-Ch	_	0.054	_	V/ C	Reference to 25°C, I _D = -1mA
		N-Ch	_	0.043	0.050		V _{GS} = 10V, I _D = 4.7A ④
D	Static Drain-to-Source On-Resistance	IN-CII	_	0.056	0.065	Ω	V _{GS} = 4.5V, I _D = 3.8A ④
R _{DS(ON)}	Static Diam-to-Source On-itesistance	P-Ch	—	0.095	0.105	1 22	V _{GS} = -10V, I _D = -3.4A ④
		P-CII	_	0.150	0.170		V _{GS} = -4.5V, I _D = -2.7A ④
V _{GS(th)}	Gate Threshold Voltage	N-Ch	1.0	_	_	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
V GS(th)	Oate Threshold Voltage	P-Ch	-1.0	_	_	1 V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
a.	Forward Transconductance	N-Ch	7.9	_	_	s	V _{DS} = 10V, I _D = 4.5A ④
9 _{fs}	1 of ward Transconductance	P-Ch	3.3		_		$V_{DS} = -10V, I_D = -3.1A$ (4)
		N-Ch	_		2.0		V _{DS} = 55V, V _{GS} = 0V
l	Drain-to-Source Leakage Current	P-Ch	_		-2.0		$V_{DS} = -55V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current	N-Ch	—	—	25	μΑ	$V_{DS} = 55V, V_{GS} = 0V, T_{J} = 55^{\circ}C$
		P-Ch	_	_	-25		V _{DS} = -55V, V _{GS} = 0V, T _J = 55°C
I _{GSS}	Gate-to-Source Forward Leakage	N-P	-	_	±100	nA	$V_{GS} = \pm 20V$
Q _q	Total Gate Charge	N-Ch	_	24	36		N-Channel
∝ g	Total Gate Gharge	P-Ch	_	26	38]	N-Channel I _D = 4.5A, V _{DS} = 44V, V _{GS} = 10V
Q_{qs}	Gate-to-Source Charge	N-Ch	_	2.3	3.4	nC	1D - 4.5A, V _{DS} - 44V, V _{GS} - 10V
⊶gs	Sate to Source Sharge	P-Ch	_	3.0	4.5	lic	P-Channel
Q_{ad}	Gate-to-Drain ("Miller") Charge	N-Ch		7.0	10		I _D = -3.1A, V _{DS} = -44V, V _{GS} = -10V
~ ga	Cate to Brain (Willion) Charge	P-Ch	_	8.4	13		1D3.1A, V _{DS} 44V, V _{GS} 10V
$t_{d(on)}$	Turn-On Delay Time	N-Ch		8.3	12		N-Channel
ru(on)	Turn On Bolay Timo	P-Ch		14	22]	$V_{DD} = 28V, I_D = 1.0A, R_G = 6.0\Omega,$
t _r	Rise Time	N-Ch	_	3.2	4.8]	$V_{DD} = 26V, I_{D} = 1.0A, K_{G} = 0.052,$ $R_{D} = 16\Omega$
۲	THOS TIMO	P-Ch	_	10	15	ns	(A)
$t_{d(off)}$	Turn-Off Delay Time	N-Ch	_	32	48	1115	P-Channel
-u(OII)	Tani di Zolay Timo	P-Ch		43	64		$V_{DD} = -28V$, $I_{D} = -1.0A$, $R_{G} = 6.0\Omega$,
tf	Fall Time	N-Ch		13	20		$ V_{DD} = -26V, I_D = -1.0A, K_G = 0.052,$ $ R_D = 16\Omega$
*1		P-Ch	_	22	32		
C _{iss}	Input Capacitance	N-Ch	_	740	_		N-Channel
-155		P-Ch	_	690	_		$V_{GS} = 0V, V_{DS} = 25V, f = 1.0MHz$
C _{oss}	Output Capacitance	N-Ch		190	_	pF	
- USS		P-Ch	_	210			P-Channel
C _{rss}	Reverse Transfer Capacitance	N-Ch	_	71			$V_{GS} = 0V, V_{DS} = -25V, f = 1.0MHz$
		P-Ch	I —	86	l —		

Source-Drain Ratings and Characteristics

	Parameter		Min.	Тур.	Max.	Units	Conditions
		N-Ch	_	_	2.0		
IS	Continuous Source Current (Body Diode)	P-Ch	_	_	-2.0	Α	
	D 10	N-Ch	_	_	38	^	
I _{SM}	Pulsed Source Current (Body Diode) ①	P-Ch	_	_	-27		
	5: 1 = 11/1	N-Ch	_	0.70	1.2	V	$T_J = 25$ °C, $I_S = 2.0$ A, $V_{GS} = 0$ V ③
V_{SD}	Diode Forward Voltage	P-Ch	_	-0.80	-1.2	1 "	$T_J = 25^{\circ}C$, $I_S = -2.0A$, $V_{GS} = 0V$ ③
	D D T	N-Ch	_	60	90	ns	N-Channel
τ _{rr}	Reverse Recovery Time	P-Ch	_	54	80	113	$T_J = 25$ °C, $I_F = 2.0$ A, $di/dt = 100$ A/ μ s
Q _{rr}	Reverse Recovery Charge	N-Ch	_	120	170	nC	P-Channel 4
		P-Ch	_	85	130		$T_J = 25$ °C, $I_F = -2.0A$, $di/dt = 100A/\mu s$

Notes:

- $\ \, \textcircled{1}$ Repetitive rating; pulse width limited by max. junction temperature. (See fig. 22)
- ② N-Channel $I_{SD} \le 4.7A$, di/dt $\le 220A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 150$ °C P-Channel $I_{SD} \le -3.4A$, di/dt $\le -150A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 150$ °C
- ③ N-Channel Starting T_J = 25°C, L = 6.5mH R_G = 25 Ω , I_{AS} = 4.7A. P-Channel Starting T_J = 25°C, L = 20mH R_G = 25 Ω , I_{AS} = -3.4A.
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Source-Drain Diode Forward Voltage

 I_D

0.120 R DS (on), Drain-to-Source On Resistance (\Omega) 0.100 0.080 VGS = 4.5V0.060 VGS = 10V 10 20 I_D , Drain Current (A) 30 40

Fig 5. Normalized On-Resistance Vs. Temperature

Fig 6. Typical On-Resistance Vs. Drain Current

Fig 7. Typical On-Resistance Vs. Gate Voltage

Fig 8. Maximum Avalanche Energy Vs. Drain Current

4 www.irf.com

200

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. Typical Output Characteristics

Fig 13. Typical Output Characteristics

Fig 14. Typical Transfer Characteristics

Fig 15. Typical Source-Drain Diode Forward Voltage

O.240
O.240
O.200
O.200
O.300

Fig 16. Normalized On-Resistance Vs. Temperature

Fig 17. Typical On-Resistance Vs. Drain Current

Fig 18. Typical On-Resistance Vs. Gate Voltage

Fig 19. Maximum Avalanche Energy Vs. Drain Current

300

Fig 20. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 21. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 22. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

SO-8 Package Outline

Dimensions are shown in milimeters (inches)

SO-8 Part Marking Information (Lead-Free)

SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.10/04