Описание вычислительного узла

Наименование CPU	Intel(R)	6248 CPU @ 2.50GHz						
	Archit	ecture	x86_64					
	Mo	des	32-bit, 64-bit					
Краткая характеристика CPU	Addre	ss size	46 bits physical, 48 bits virtual					
	Byte	order	Little Endian					
	CI	PU	80					
	Vend	or ID	GenuineIntel					
	Threads	per core	2					
	Cores pe	er socket	20					
	Soc	kets	2					
	CPU m	ax MHz	3900					
	CPU m	in MHz	1000					
Наименование сервера		ProLiant XL	270d Gen10					
Количество NUMA node	2							
	Node 0	size	385 636 MB					
Количество памяти у каждой ноды	rioue o	free	206 105 MB					
	Node 1	size	387 008 MB					
	INOUE 1	free	371 259 MB					
Операционная система	Ubuntu 22.04.3 LTS (Jammy Jellyfish)							

Анализ масштабируемости

С учётом инициализации:

	Количество потоков														
M = N	1	2		4		7		8		16		20		40	
	T ₁ , c	T ₂ , c	S_2	T ₄ , c	S ₄	T ₇ , c	S ₇	T ₈ , c	S ₈	T ₁₆ , c	S ₁₆	T ₂₀ , c	S ₂₀	T ₄₀ , c	S ₄₀
20 000 (~ 3 GB)	≈3.79	≈2	≈1.9	≈1	≈3.79	≈0.57	≈6.65	≈0.51	≈7.43	≈0.27	≈14	≈0.23	≈16.5	≈0.16	≈23.7
40 000 (~ 12 GB)	≈15.4	≈7.7	≈2	≈4	≈3.85	≈2.3	≈6.7	≈2.1	≈7.33	≈1.1	≈14	≈0.95	≈16.2	≈0.63	≈24.4

Без учёта инициализации:

	Количество потоков														
M = N	1	2		4		7		8		16		20		40	
	T ₁ , c	T ₂ , c	S ₂	T ₄ , c	S ₄	T ₇ , c	S ₇	T ₈ , c	S ₈	T ₁₆ , c	S ₁₆	T ₂₀ , c	S ₂₀	T ₄₀ , c	S ₄₀
20 000 (~ 3 GB)	≈2.14	≈1.1	≈1.95	≈0.55	≈3.89	≈0.35	≈6.11	≈0.31	≈6.9	≈0.14	≈15.3	≈0.11	≈19.5	≈0.08	≈26.8
40 000 (~ 12 GB)	≈7.84	≈4.1	≈1.91	≈2.1	≈3.73	≈1.2	≈6.53	≈1	≈7.84	≈0.58	≈13.5	≈0.48	≈16.3	≈0.4	≈19.6

С учётом инициализации:

Без учёта инициализации:

Вывод: использование параллельности вычислений даёт примерно одинаковый результат на разных объёмах данных, также с ростом количества потоков получаемое ускорение программы всё сильнее расходится с линейной функцией, то есть становится не таким заметным, как если бы использовалось меньшее количество потоков.