DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE – RAIGAD -402 103

Winter Semester Examination - Nov - 2019

54

Branch: Computer Science & Engineering

Sem.:- IV

Subject:- Design and Analysis of Algorithms (BTCOC401) Marks: 60

Date: - 26/11/2019

Time:- 3 Hrs.

Instructions to the Students

- 1. Each Question carries 12 marks.
- 2. Attempt any Five Questions of the following.
- 3. Illustrate your answers with neat-sketches, diagram etc., wherever necessary.
- 4. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it clearly
- Q.1)a)Solve the following recurrence relation using master method.

(i)
$$T(n) = 4T(n/2) + n$$

(ii)
$$T(n) = 4T(n/2) + n^2$$

(iii)
$$T(n) = 4T(n/2) + n^3$$

- Q.1)b) Explain different asymptotic notations.
- Q.2)a)Write Strassen's algorithm to multiply two 2X2 matrices. Apply Strassen's algorithm to multiply following matrices.

A=
$$\begin{cases} 1 & 1 \\ 1 & 1 \end{cases}$$
 B = $\begin{cases} 2 & 2 \\ 2 & 2 \end{cases}$

- Q.2) b) Write an algorithm for merge sort. Apply merge sort on following array A=5 1 2 6 3 7 9 4
- Q.3) a) Write Huffman Coding algorithm. Obtain Huffman tree for following data.

Characters	1000				
	"a"	"b"	"c"	"d"	"e"
Frequency	6	11	19	35	50

- Q.3) b) What are the different elements of greedy strategy? Explain the steps to solve the problem by greedy strategy.
- Q.4) a) Compute Longest Common Subsequence using Dynamic Programming approach for sequences X and Y if X = A, B, C, B, D, A, B and Y = B, D, C, A, B, A. What is the

length of LCS.

- b) Compare Greedy Strategy, Dynamic Programming and Divide and Conquer approach.
- Q.5)a) What is state space tree ?Using state space tree show that there exist an solution to 4-Queens problem .
 - b) Given n=6 weights, w={5,10,12,13,15,18} and M=30 .Find all possible subsets for which sum=M using sum of subsets algorithm.
- Q.6) a) What is P class and NP class? Show relationship between them.

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE – RAIGAD - 402 103

Supplementary Winter Semester Examination, 2019

S

Semester: IV

Marks: 60

Time: 3 Hr.

B.Tech. in Computer Engineering

Subject: Probability and Statistics BTCOC4021

Date: 28/11/2019

Instructions to the Students:

- 1. Each question carries 12 marks.
- 2. Attempt any FIVE questions of the following.
- 3. Illustrate your answers with neat sketches, diagram etc., wherever necessary.
- 4. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it clearly.

Marks

Que. 1 Attempt any TWO of the following

[12]

- A) A committee of 12 is to be formed from 9 women and 8 men. In how many ways this can be done if at least five women have to be included in a committee? In how many of these committees.
 - (a) The women are in majority?
 - (b) The men are in majority?
- B) How many arrangements of the letters of the word BENGALI' can be made
 - (i) if the vowels are never together
 - (ii) if the vowels are to occupy only odd places
- In bolt factory, machines A, B and C manufacture respectively 25%, 35% and 40% of the total. Of their output 5, 4, 2 percent are known to be defective bolts. A bolt is drawn at random from the product and is found to be defective. What is the probabilities that it was manufactured by
 - (i) machine A
 - (ii) machine B or C

Que. 2 Attempt the following questions.

[12]

A)

Let X be a discrete random variable with the following PMF

$$PX(k) = \begin{cases} 0.1 & \text{for } k=0 \\ 0.4 & \text{for } k=1 \\ 0.3 & \text{for } k=2 \\ 0.2 & \text{for } k=3 \\ 0 & \text{otherwise} \end{cases}$$

- (a) Find E(X).
- (b) Find var(X).
- (c) If $Y = (X-2)^2$, find E(Y).

1

B) The random variable X has a range of {0, 1, 2} and the random variable Y has a range of {1, 2}. The joint distribution of X and Y is given by the following table:

У	P(X=x, Y=y)
1	0.2
2	0.1
1	0.0
2	0.2
1	0.3
2	4, 0,2
	y 1 2 1 2 1 2

- (i) Write down tables for the marginal distributions of X and of Y
- (ii) Write down a table for the conditional distribution of X given that Y=2
- (iii) Compute E(X) and E(Y)

Que. 3 Attempt any TWO of the following questions.

[12]

- A) A (blindfolded) marksman finds that on the average he hits the target 4 times out of 5. If he fires 4 shots, what is the probability of
 - (i) more than 2 hits?
 - (ii) at least 3 misses?
- B) Vehicles pass through a junction on a busy road at an average rate of 300 per hour.
 - i. Find the probability that none passes in a given minute:
 - ii. What is the expected number passing in two minutes?
 - iii. Find the probability that this expected number actually pass through in a given two-minute period.
- Time taken by the crew, of a company, to construct a small bridge is a normal variate with mean 400 labour hours and standard deviation of 100 labour hours.
 - i.) What is the probability that bridge gets constructed between 350 to 450 labour hours?
 - ii.) If company promises to construct the bridge in 450 labour hours or less and agrees to pay penalty of Rs. 100 for each labour hour spent in excess of 450, what is the probability that a company pays a penalty of at least Rs. 2000?

Que. 4 Attempt the following questions.

[12]

A) Calculate a Spearman rank-order correlation on data without any ties we will use the following data:

Marks

.76 64 58 80 61 62 71 English 56 75 59 77. 63 56 40 60 65 Maths 66 70

B) The table below shows the number of absences x, in a Calculus course and the final exam grade y, for 7 students. Find the correlation coefficient and interpret your result.

		*** · ·						
🔽	X	1	0	2	6	4	3	3
	У	95	90	90	55	70	80	85

			•				
Que. 5	Attempt the fol	llowing questi	ons.				[12]
A)	The values of y			lues of y are	showr	in the ta	ble below
	. x	0	1	2	i Santania. Marija	3 . ,	4
	у .	2	3 .	5		4	6
•	a) Find the leas	st square regr	ession line $y =$	ax + b.			
	b) Estimate the	e value of y wh	nen $x = 10$.				
В)	The data about	t the sales and	d advertiseme	nt expenditu	ire of a	firm is gi	ven below:
				S	ales	Adverti Expen	sement diture
		Mean			40		
		Standar	d Deviation		10	1	5
•	Coefficient of o		CNC & CO N SERVICE CONTRACTOR				
	(i) Estimate the						
		727. "	rtisement exp	enditure if th	ne firm	proposes	a sales target
	of 60 crore	s of rupees?			ing and a second	Tex Jay	
					eri kary	Sign.	
Que. 6	Solve the follow						[12]
A)	A full-time Phi	and the second s					
		and the contract of the contra	N 4 1 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second of the second	7. 3. 44. 4. 7		ate University 5 44 randomly
	3 ' '	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2008 A. A. A. Marie and M. C. Marie and M. Marie and M	A. A. C. A. M. M. S. A. C.			h a standard
	deviation of \$1	the second of th		記す エモスキュ 化ヨ		.,	
B)	and the second s	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.3 LLS, SLC 254 LS.			each pill	is supposed to
-,	have 14	milligrams of	the active in	gredient. Wh	nat are	our null a	and afternative
	hypothe	ses?					
	コールきんがきしゃ とっちんりょちゅう かりょ	The second of th	for a contract of the contract of				ay - that high
		10 No. 1	 A. C. Connection and A.N. Schools 	average3.2	hours	a day. Wł	at are our null
		rnative hypot					
							d the mean of
							the difference the sample is
	small, w		the null hypo			incuit of	are sumple 13
		###	#Paper E	nd####	:		

Areas Under the One-Tailed Standard Normal Curve

This table provides the area between the mean and some Z score. For example, when Z score = 1.45 the area = 0.4265.

Z	0.00	0.01	0.02	£0.0	0.04	0.05	0.06	0.07	0.08	0.09	
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359	
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753	
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141	``
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517	1
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879	1
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	8.2190	0.2224	
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549	1
6.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852]
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133	
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389]
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621]
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830]
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015]
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177]
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319]
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441]
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545	
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633].
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4685	0.4693	0.4699	0.4706	
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767	
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817	
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857	╛
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0,4881	0.4884	0.4887	0.4890	
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916	
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936	
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952	╛
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964	_
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974	
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981	┧
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986	╛
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990	╛
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993	
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995	╛
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997	╛
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998	╛
3.5	0.4998	0.4998	0.4998	0,4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	Ⅎ
3.6	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	
3.7	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	
3.8	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	_
3.9	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	\Box

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE - RAIGAD -402 103

B. Tech Winter Semester Supplementary Examination: Nov.-2019

Branch: B.Tech. (Computer Engineering)

Sem: IV

Subject with Subject Code: Operating System[BTCOC403]

Marks:60

Date: - 30/11/2019

Time: 3 Hrs

Instructions to the Students:

1. Each question carries 12 marks.

- 2. Attempt any five questions of the following.
- 3. Illustrate your answers with neat sketches, diagram etc., wherever necessary.
- 4. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it clearly

Attempt the following questions.

Marks

Q.1 Attempt the following questions.

06

(A) Define operating system. Enlist and explain different types of os.

06

- (B) List five services provided by an operating system, and explain how each creates convenience for users. In which cases would it be impossible for user-level programs to provide these services? Explain your answer.
- Q. 2 Attempt the following questions.
- (A) Describe the actions taken by a kernel to context-switch between processes.

VV

- (B) Using the given information about the processes, calculate Average Waiting Time and Average Turnaround Time of each process under following scheduling algorithms:
- 06

- a) First Come First Served
- b) Shortest Job First
- c) Round Robin (With time slice of 5 ms)

Process	Burst time(ms)
P1	5 3 6
P 2	24
P3	16
P4	10
P5	3

Q.3 Solve any Two.

(A) What is Inter-process communication? Are function callback and inter-process communication same?

(B)	Explain why interrupts are not appropriate for implementing synchronization primitives in multiprocessor systems.	06
(C)	What are the requirements for the solution to critical section problem?	06
Q.4	Attempt the following questions.	
(A)	Consider the deadlock situation that could occur in the dining-philosophers problem when the philosophers obtain the chopsticks one at a time. Discuss how the four necessary conditions for deadlock indeed hold in this setting. Discuss how deadlocks could be avoided by eliminating any one of the four conditions.	06
(B)	What are the Conditions for Deadlock to occur? Briefly explain. In a system, the following state of processes and resources are given. R1→ P1, P1→ R2, P2→ R3, R2→ P2, R3→ P3, P3→ R4, P4→ R3, R4→ P4, P4→ R1, R1→ P5 Draw Resource Allocation Graph for the system and check for deadlock condition. Explain your answer.	06
Q.5	Attempt the following questions.	
(A)	Given five memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and 600 KB (ill order), how would the first-fit, best-fit, and worst-fit algorithms place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in order)? Which algorithm makes the most efficient use of memory?	06
(B)	Compare the memory organization schemes of contiguous memory allocation, pure segmentation, and pure paging with respect to the following issues: a. External fragmentation b. Internal fragmentation c. Ability to share code across processes	06
Q.6	Attempt the following questions.	
(A)	Consider a reference string: 4, 7, 6, 1, 7, 6, 1, 2, 7, 2. the number of frames in the memory is 3. Find out the number of page faults respective to: 1. Optimal Page Replacement Algorithm 2. FIFO Page Replacement Algorithm 3. LRU Page Replacement Algorithm	06
(B)	In what situations would using memory as a RAM disk be more useful than using it as a disk cache?	06
art in	፟፟፟፟፟፟፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠	

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE - RAIGAD - 402 103

Supplementary Examination Winter Dec-2019

Sem.:- IV

Marks: 60

Branch: B. Tech. In Computer Engineering

Subject: Object Oriented Programming in Java (BTCOE404A)

Time: 3 Hours. Date: 02/11/2019

Instructions to the Students

1. Each question carries 12 marks.

2. Attempt any five questions of the following.

3. Illustrate your answers with neat sketches, diagram etc., wherever necessary.

4. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it clearly

Q. No		(Marks)
Q.1.A]	How Java differs from C and C++?	(6M)
Q.1.B]	Explain the general structure of the Java Program.	(6M)
Q.2.A]	What is readLine(). Write a simple Java Program which reads an integer, character and float value from the keyboard.	(6M)
Q.2.B]	What is a class? What is an object? How does class is declared? How instance of a class is generated?	(6M)
Q.3.A]	What are switch statements? Write a simple Java Program which performs Arithmetic Operations using switch statement.	(6M)
Q.3.B]	Explain; a) Conditional operators. b) Logical Operators. c) Bitwise Operators.	(6M)
Q.4.A]	How arrays are declared and created in computer memory? Write a simple Java program performing [2 X 2] matrix addition-	(6M)
Q.4.B]	Write a Java Program to perform [3 X 3] Matrix Multiplication.	(6M)
Q.5.A]	What are constructors? What are methods? How methods are declared in Java.	(6M)
Q.5.B]	Explain the Get and Set Methods using a Java Program.	(6M)
Q.6.A]	Explain the different types of inheritance implemented in Java.	(6M)
Q.6.B]	Write a short note on: a) Polymorphism. b) Strings. c) Packages.	(6M)

******END OF QUESTION PAPER************

DR. B	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY,	VERSITY,	
	LONERE		
	End Semester Examination - Winter 2019		
Course: 1	Course: B. Tech in Ser	Sem: III	
Subject !	Subject Name: Engineering Mathematics-III (BTBSC301) Ma	Marks: 60	
Date: 16	Date: 16/12/2019 Du	Duration: 3 Hr.	
Instruction 1. SG 2. TI 2. Vol. 3. U.S. 4. As	Instructionts to the Students: 1. Solve ANY FIVE questions out of the following. 2. The level question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly.	те (СО) оп	
		(Level/CO)	Marks
2.1 Attempt	Attempt the following.	,	12
A) Find L(c	Find $L\{cosht_0^t e^u coshu du\}$.	Analysis	4
B) If $f(t) = \begin{cases} \pi \\ \pi \end{cases}$ Find $L\{f(t)\}$	$\begin{cases} t, & 0 < t < \pi \\ \pi - t, & \pi < t < 2\pi \end{cases}$ is a periodic function with period 2π .	Analysis	1
C) Using Lap	Using Laplace transform evaluate $\int_0^\infty e^{-at} \frac{\sin^2 t}{t} dt$.	Evaluation	4
			:
Attempt 3	Attempt any three of the following.		17
A) Using con	Using convolution theorem find $L^{-1}\left\{\frac{1}{s(s+1)(s+2)}\right\}$	Application	4
B) Find L ⁻¹ (Find $L^{-1}\{\bar{f}(s)\}$, where $\bar{f}(s) = \log\left(\frac{s^2+1}{s(s+1)}\right)$	Analysis	4
C) Using Lap	Using Laplace transform solve $y'' + 2y' + 5y = e^{-t} \sin t$; $y(0) = 0$, $y'(0) = 1$	Application	4
D) Find L-1	-5+25-4 (a-5)(3 ² +9)	Analysis	4
 	1 2 2 2 2 1		2
3 Attempt 8	Aftempt any three of the following.		1

.		Attempt the following.	Ç
	Analysis	Find the bilinear transformation which maps the points $z = 0, -1, -i$ onto the points $w = i, 0, \infty$. Also, find the image of the unit circle $ z = 1$.	
4	Analysis	Prove that $u = x^2 - y^2 - 2xy - 2x + 3y$ is harmonic. Find a function v such that $f(z) = u + iv$ is analytic.	.
	Analysis	Determine the analytic function $f(z)$ in terms of z whose real part is $\frac{\sin 2x}{\cosh 2y - \cos 2x}$.
12		Attempt the following.	Q.5
4	Application	Use the method of separation of variables to solve the equation $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, given that $u(x, 0) = 6e^{-3x}$	D
		initial condition $u(x,0) = x$; I being the length of the bar.	
		the boundary conditions are $u(0,t) = 0$, $u(l,t) = 0$ $(t > 0)$ and the	
4	Analysis	Determine the solution of one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ where	C
n	Application	Solve $pz - qz = z^2 + (x + y)^2$	B)
	Зуппен	Form the partial differential equation by eliminating arbitrary function $f(x^2 + y^2 + z^2, 3x + 5y + 7z) = 0$	ع
+		Attempt any three of the following.	0.4
	Analysis	If $f_s^*(f(x)) = \frac{e^{-\alpha s}}{s}$, then find $f(x)$. Hence obtain the inverse Fourier sine transform of $\frac{1}{s}$.	D)
•	Analysis	Find the Fourier sine transform of $f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 \le x \le 2 \end{cases}$ 0, & x > 2	·G
<u> </u>		** (x*+g*)(x*+p*)	
ă 4	Application	<u>_</u>	<u> </u>
	:	and hence evaluate that $\int_0^\infty \frac{\sin x \sin x}{1-\lambda^2} d\lambda$.	
=	Evaluation		Ą

		*** Paper End ***	
-	Evaluation	C) Evaluate $\oint_C \frac{e^z}{\cos \pi z} dz$, where C is the unit circle $ z = 1$.	3
4	Analysis	B) Find the poles of function $\frac{z^{2-2z}}{(z+1)^2(z^2+4)}$. Also find the residue at each pole.	В
		the circle $ z = 3$.	
44	Evaluation	A) Use Cauchy's integral formula to evaluate $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, where C is	ځ

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE - RAIGAD -402 103

Winter Semester Examination - Dec. - 2019

Branch: Computer Science

Sem.:- III

Subject: - Discrete Mathematics (BTCOC302)

Marks: 60

Date: - 12/12/2019

Time:-3 Hr.

Instructions to the Students

- 1. Each question carries 12 marks.
- 2. Attempt any five questions of the following.
- 3. Illustrate your answers with neat sketches, diagram etc., wherever necessary.
- 4. If some part or parameter is noticed to be missing, you may appropriate assume it and should mention it clearly

(Marks)

Q.1. a) Let $A = \{4,5,7,8,10\}$, $B = \{4,5,9\}$ and $C = \{1,4,6,9\}$. Then verify that, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

(6)

b) Show that $(n^3 + 2n)$ is divisible by 3, for all $n \ge 1$, by method of induction.

(6)

Q.2. a) Find transitive closure of relation R defined on set $A = \{1, 2, 3, 4\}$ defined as: $R = \{(1,2), (1,3), (1,4), (2,1), (2,3), (3,4), (3,2), (4,2), (4,3)\}$

(6)

b) Let set A = $\{1, 2, 3\}$, B= $\{a, b, c\}$ & C = $\{x,y,z\}$.

Consider following relations R & S from A to B and B to C respectively.

 $R = \{ (1,b), (2,a), (2,c) \} \& S = \{ (a,y), (b,x), (c,y), (c,z) \}$

- (i) Find composition relation R ° S.
- (ii)Write matrices M_R, M_S & M_{R ° S} of relations R, S & R ° S.
- (iii) Find product of M_R , $M_S = M_P$

Compare and comment on contents of M R · S & MP

(6)

Q.3. a) Define discrete numeric function.

Also state rules for product and sum of two numeric functions a and b.

Find sum of two numeric functions defined as:

$$\mathbf{a}_{\mathbf{r}} = \begin{cases} 0 & 0 \le \mathbf{r} \le 1 \\ 2^{-\mathbf{r}} + 5 & \mathbf{r} \ge 3 \end{cases}$$
and

$$b_{r} = \begin{cases} 3-2^{r} & 0 \le r \le 1 \\ r+2 & r \ge 2 \end{cases}$$
 (6)

b) (i) How many different strings of length six can be generated using either three uppercase alphabets followed by three digits or four uppercase alphabets followed by two digits.

(6)

- a) (i) Show that the maximum number of edges in CHNO e graph having n vertices is n * (n-1)/2. AD -4

 - and vertices of two graphs.
 - b) (i) Show that following graphs are isomorphic inatior ve correspondence between edges

- Q.5. a) Show the steps of constructing a binary Search Show the steps of constructing a binary Search data items. Also write steps to search an elemei (1,4,6, following sequence of the resultant tree. 32, 56, 47, 28, 30, 45, 15, 72, 25

 - $. \ge 1$, by
 - b) Find minimum spanning tree for the graph giv $\underset{n \text{ set } A}{\text{ = }}$ using Prim's algorithm), (4,2), (

(6)

(6)

neric fur

Q.6. a) Define following terms

- (1) Abelian Group
- (2) M

(3) Ring

(6)

- b) Let $A = \{0, 1, 2, 3\} \& \langle A, * \rangle$ be an algebraic where $\forall a,b \in A$ and $a * b = (a + b) \mod 4$.
- $\in A, a^2, a^3, a^4$
- (6)

can be go r upperc

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, Winter Semester Examination - December - 2019 LONERE - RAIGAD -402 103

Time: - 3 Hrs Sem.:- III Marks: 60 Branch: B. Tech in Computer Engineering Subject (Subject Code):- Data Structures (BTCOC303) Date: -14/12/2019

Instructions to the Students

- Each question carries 12 marks.
 Attempt any FIVE questions
 Illustrate your answers with neat sketches, diagrams etc., wherever necessary
 If some part or parameter is noticed to be missing, you may appropriately
 assume it and should mention it clearly

Q1. Solve any THREE of the following questions.

(3x4 = 12)

- a) Why to study data structures? What are the major data structures used in the RDBMS, Network and Hierarchical data model.
- Consider the following specification of a graph G = (V, E). 3
 - $V = \{1, 2, 3, 4\}$ $E = \{(1, 2), (1, 3), (3, 3), (3, 4), (4, 1)\}$
 - i) Draw an undirected graph.
- ii) Represent graph G using adjacency matrix, iii) Represent graph G using adjacency linked list.
- c) Suppose the numbers: 50, 15, 62, 5, 20, 58, 91, 3, 8, 37, 60, 24 are inserted in order into an initially empty binary search tree. What is preorder, inorder and postorder traversal sequence of the tree?
- d) What is garbage collection? Who will run garbage collection program? When it will be run?

Q2. Solve all the following questions.

(4x3 = 12)

a) What is sparse matrix? Convert the following sparse matrix into non sparse matrix

- Suppose multidimensional arrays A and B are declared using dimension and the number of elements in A and B. A (-1:3, 2:6) and B (1:5, -3:1). Find the length of each
- c What is header linked list? Use header linked list to store the following

$$p(x) = 2x^8 - 5x^7 + 3x^2 + 4$$

<u>a</u> What is hash data structure? The keys: 32, 18, 23, 2, 3, 44, 5 and hash function H (key) = key mod 10 and linear probing is used to 15 are inserted into an initially empty hash table of length 10 with resoive collision. What is hash table content after every key insertion?

Q3. Solve any THREE of the following questions.

- (3x4 = 12)
- 9 Give an algorithm to implement binary search with its advantages and disadvantages
- ₫ Explain the concept of skip list with an example. Give its advantages and disadvantages
- 2 Sort the following list using radix sort sort. Show all the passes neatly 3 45 7 18 9 4 89 103 11 21
- d) Suppose we are sorting an array of eight integers using quick-sort, the first partition? Also complete the rest of the partitions so that all numbers this: 2, 5, 1, 7, 9, 12, 21, 30. What was the pivot element in we have just finished the first partitioning with the array looking will be in the ascending order.

Q4. Solve any TWO of the following questions

- (2x6 = 12)
- a) Write an algorithm to insert a new node at the beginning of the singly
- 뜨 What is singly circular linked list? Write an algorithm to traverse the list and also enlist different operations performed on it and

c) Write a short note on dynamic storage management. Explain how it is done in C

Q5. Solve any TWO of the following questions

- (2x6 = 12)
- a) Consider the stack, where N=6 memory cells allocated. Suppose initially operations called in order. Show the stack top and any other situation stack contains A, D, E, F, G (Top of stack). Then the following raised while doing each of the operations.
- Push(stack, K)
 Push(stack, S)
- ii) Pop(stack, Item)v) Pop(stack, Item)
- iii) Push(stack, L)
 vi) Push(stack, T)
- b) What is queue? Write an algorithm to implement insert item into queue using singly linked list.
- c) Write an algorithm to evaluate postfix expression using stack and execute Show intermediate stack content after each operation your algorithm with postfix expression 10, 5, 6, *, +, 8, /.

Q6. Solve all of the following questions.

- a) Give the characteristics of good algorithm. Also explain how do we analyze the algorithm.
- 5 Store elements of the given below binary tree using

- c) What is an Abstract Data type (ADT)? Explain, why queue is called
- d) Explain the following graph terminology with figure iii) Simple path i) Undirected graph ii) Total degree of vertex iv) Cycle

----Paper End----

DR. BABASAHER AMBEDKAR TECHNOLOGICAL UNIVERSITY LONERE - RA	/ JGAD -402 103
Winter Semester Examination – Dec - 2019	
Branch: B.Tech. (Computer Engineering)	Sem: III
Subject with Subject Code: Computer Architecture & Organization[BTCOC304]	Marks:60
Date:- 17-12-2019	Time: 3 Hrs
Branch: B.Tech. (Computer Engineering) Subject with Subject Code: Computer Architecture & Organization[BTCOC304] Marks:66 Date:- 17-12-2019 Instructions to the Students: 1. Each question carries 12 marks. 2. Attempt any five questions of the following. 3. Illustrate your answers with neat sketches, diagram etc., wherever necessary. 4. If some part or parameter is noticed to be missing, you may appropriately assume it and should ment it clearly. Q.1 Solve any following questions. (A) What, in general terms, is the distinction between computer organization and computer architecture? (B) Explain the computer: the top level structure with structural component with neat sketch diagram. Q. 2 Attempt the following questions. (A) Enlist and explain any two addressing modes. Given the following memory values and a one-address machine with an accumulator, what values do the following instructions load into the accumulator? • Word 20 contains 40. • Word 30 contains 50. • Word 40 contains 50. • Word 40 contains 60 • Word 50 contains 70. a. LOAD IMMEDIATE 20 b. LOAD IMMEDIATE 20 c. LOAD IMMEDIATE 20 c. LOAD IMMEDIATE 30 (B) I. Convert the following instruction into Accumulator based CPU, Register based CPU. Instruction: (A*B)-(R+Z)/T II. Is RISC better than CISC? Illustrate your answer with example of processor.	and should mention
Q.1 Solve any following questions.	• • •
	-
diagram.	at sketch 06
Q. 2 Attempt the following questions.	
address machine with an accumulator, what values do the following instructions load accumulator? • Word 20 contains 40. • Word 30 contains 50. • Word 40 contains 60 • Word 50 contains 70. a. LOAD IMMEDIATE 20 b. LOAD DIRECT 20 c. LOAD IMDIRECT 20 d. LOAD IMMEDIATE 30	nd a one- d into the
I. Convert the following instruction into Accumulator based CPU, Register based CPU Instruction: (A*B)-(R+Z)/T	J. 03
	03
	aw and 06

truncated to 4 decimal digits). Show the results in normalized form. a. 5.566 × 10 ² × 7.777 × 10 ³ b. 3.344 × 10 ¹ + 8.877 × 10 ² c. 6.21×10 ⁵ +8.877×10 ¹ Q.4 Attempt the following questions. (A) What are the differences among direct mapping, associative mapping, and set-associative mapping? A set-associative cache consists of 64 lines; or slots, divided into four-line sets. Main memory contains 4K blocks of 128 words each. Show the format of main memory addresses. (B) Elaborate the concept of SRAM and DRAM memory with typical memory cell structure. (B) What is the overall function of a processor's control punit? A stack is implemented. show the sequence of micro-operations for a. popping b. pushing the stack PUSH 10 PUSH 70 PUSH 8 ADD PUSH 20 SUB MUL (B) What is the difference between a hardwired implementation and a microprogrammed implementation of a control unit? Attempt any two-questions. (A) The difference between a hardwired implementation and a microprogrammed implementation of a control unit? Attempt any two-questions. (A) In virtually all systems that include DMA modules, DMA access to main memory is giver priority than CPU access to main memory. Why? (B) What is the meaning of each of the four states in the MESI protocol? Can you foresee any problems with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution. (C) How does instruction pipelining enhance system performance? Elaborate your answer using RISC instruction stages.			
a. 5.566 ×10 ² ×7.777 × 10³ b. 3.344 ×10¹ + 8.877 ×10² c. 6.21×10⁵+8.877×10¹ Q.4 Attempt the following questions. (A) What are the differences among direct mapping, associative mapping, and set-associative mapping? A set-associative cache consists of 64 lines; or slots, divided into four-line sets. Main memory contains 4K blocks of 128 words each. Show the format of main memory addresses. (B) Elaborate the concept of SRAM and DRAM memory with typical memory cell structure. Q.5 Attempt the following questions. (A) What is the overall function of a processor scontrol unit? A stack is implemented show the sequence of micro-operations for a popping b. pushing the stack PUSH 10 PUSH 20 SUB MUL. (B) What is the difference between a hardwired implementation and a microprogrammed implementation of a control unit? Attempt any two questions. (A) In virtually all systems that include DMA modules, DMA access to main memory is giver priority than CPU access to main memory. Why? (B) What is the meaning of each of the four states in the MESI protocol? Can you foresee any problems with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution.			
a. 5.566 ×10 ² ×7.777 × 10³ b. 3.344 ×10¹ + 8.877 ×10² c. 6.21×10⁵+8.877×10¹ Q.4 Attempt the following questions. (A) What are the differences among direct mapping, associative mapping, and set-associative mapping? A set-associative cache consists of 64 lines; or slots, divided into four-line sets. Main memory contains 4K blocks of 128 words each. Show the format of main memory addresses. (B) Elaborate the concept of SRAM and DRAM memory with typical memory cell structure. Q.5 Attempt the following questions. (A) What is the overall function of a processor scontrol unit? A stack is implemented show the sequence of micro-operations for a popping b. pushing the stack PUSH 10 PUSH 20 SUB MUL. (B) What is the difference between a hardwired implementation and a microprogrammed implementation of a control unit? Attempt any two questions. (A) In virtually all systems that include DMA modules, DMA access to main memory is giver priority than CPU access to main memory. Why? (B) What is the meaning of each of the four states in the MESI protocol? Can you foresee any problems with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution.			\$1.40.46.75.
a. 5.566 ×10 ² ×7.777 × 10³ b. 3.344 ×10¹ + 8.877 ×10² c. 6.21×10⁵+8.877×10¹ Q.4 Attempt the following questions. (A) What are the differences among direct mapping, associative mapping? A set-associative cache consists of 64 lines; or slots, divided into four-line sets. Main memory contains 4K blocks of 128 words each. Show the format of main memory addresses: (B) Elaborate the concept of SRAM and DRAM memory with typical memory cell structure. (C) Attempt the following questions. (A) What is the overall function of a processor scontrol unit? A stack is implemented show the sequence of micro-operations for a popping b. pushing the stack PUSH 10 PUSH 20 SUB MUL. (B) What is the difference between a hardwired implementation and a microprogrammed implementation of a control unit? Attempt any two questions. (A) In virtually all systems that include DMA modules, DMA access to main memory is giver priority than CPU access to main memory. Why? (B) What is the meaning of each of the four states in the MESI protocol? Can you foresee any problems with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution.			
a. 5.566 ×10 ² ×7.777 × 10³ b. 3.344 ×10¹ + 8.877 ×10² c. 6.21×10⁵+8.877×10¹ Q.4 Attempt the following questions. (A) What are the differences among direct mapping, associative mapping? A set-associative cache consists of 64 lines or slots, divided into four-line sets. Mainmemory contains 4K blocks of 128 words each. Show the format of main memory addresses. (B) Elaborate the concept of SRAM and DRAM memory with typical memory cell structure. Q.5 Attempt the following questions. (A) What is the overall function of a processor secontrol unit? A stack is implemented show the sequence of micro-operations for a. popping b. pushing the stack PUSH 10 PUSH 20 SUB MUL What is the difference between a hardwired implementation and a microprogrammed implementation of a control unit? Attempt any two questions. (A) In virtually all systems that include DMA modules, DMA access to main memory is given priority than CPU access to main memory. Why? (B) What is the meaning of each of the four states in the MESI protocol? Can you foresee any problems with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution.			
a. 5.566 ×10 ² ×7.777 × 10³ b. 3.344 ×10¹ + 8.877 ×10¹ c. 6.21×10⁵ + 8.877 ×10¹ c. 6.21×10⁵ + 8.877×10¹ d. Attempt the following questions. What are the differences among direct mapping, associative mapping, and set-associative mapping? A set-associative cache consists of 64 lines; or slots, divided into four-line sets. Main memory contains 4K blocks of 128 words each. Show the format of main memory addresses. (B) Elaborate the concept of SRAM and DRAM memory with typical memory cell structure. (C) Attempt the following questions. (A) What is the overall function of a processor's control unit? A stack is implemented show the sequence of micro-operations for a popping be pushing the stack PUSH 10 PUSH 8 ADD PUSH 8 ADD PUSH 8 ADD PUSH 90 SUB MUL. (B) What is the difference between a hardwired implementation and a microprogrammed implementation of a control unit? Attempt any two questions. (A) In virtually all systems that include DMA modules, DMA access to main memory is given priority than CPU access to main memory. Why? (B) What is the meaning of each of the four states in the MESI protocol? Can you foresee any problems with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution.		truncated to 4 decimal digits). Show the results in normalized form.	
b. 3.344 ×10 ¹ + 8.877 ×10 ² c. 6.21×10 ³ +8.877×10 ¹ Q.4 Attempt the following questions. (A) What are the differences among direct mapping, associative mapping, and set-associative mapping? A set-associative cache consists of 64 lines, or slots, divided into four-line sets, Mainmemory contains 4K blocks of 128 words each. Show the format of main memory addresses. (B) Elaborate the concept of SRAM and DRAM memory with typical memory cell structure. (B) What is the overall function of a processor's control unit? A stack is implemented show the sequence of micro-operations for a popping b. pushing the stack PUSH 10 PUSH 70 PUSH 8 ADD PUSH 90 SUB MUL (B) What is the difference between a hardwired implementation and a microprogrammed implementation of a control unit? Attempt any two questions. In virtually all systems that include DMA modules, DMA access to main memory is giver priority than CPU access to main memory. Why? (B) What is the meaning of each of the four states in the MESI protocol? Can you foresee any problems with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution.		a. 5.566 ×10 ² ×7.777 × 10 ³	N A JANE
C. 6.21×10 ³ +8.877×10 ¹ Q.4 Attempt the following questions. (A) What are the differences among direct mapping, associative mapping, and set-associative mapping? A set-associative cache consists of 64 lines of slots, divided into four-line sets. Main memory contains 4K blocks of 128 words each. Show the format of main memory addresses. (B) Elaborate the concept of SRAM and DRAM memory with typical memory cell structure. (A) What is the overall function of a processor's control unit? A stack is implemented show the sequence of micro-operations for a popping b, pushing the stack PUSH 10 PUSH 70 PUSH 8 ADD PUSH 20 SUB MUL (B) What is the difference between a hardwired implementation and a microprogrammed implementation of a control unit? (B) What is the difference between a hardwired implementation and a microprogrammed implementation of a control unit? (C) Attempt any two-questions. (A) What is the meaning of each of the four states in the MESI protocol? Can you foresee any problem with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution.	,		
Attempt the following questions. (A) What are the differences among direct mapping, associative mapping, and set-associative mapping? A set-associative cache consists of 64 lines or slots, divided into four-line sets, Main memory contains 4K blocks of 128 words each. Show the format of main memory addresses. (B) Elaborate the concept of SRAM and DRAM memory with typical memory cell structure. (B) Elaborate the concept of SRAM and DRAM memory with typical memory cell structure. (C) Attempt the following questions. (A) What is the overall function of a processor's control unit? A stack is implemented show the sequence of micro-operations for a popping b. pushing the stack PUSH 10 PUSH 10 PUSH 70 PUSH 8 ADD ADD PUSH 20. SUB MULL (B) What is the difference between a hardwired implementation and a microprogrammed implementation of a control unit? (B) What is the difference between a hardwired implementation and a microprogrammed implementation of a control unit? (C) Attempt any two-questions. (A) What is the meaning of each of the four states in the MESI protocol? Can you foresee any problem with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution.		b. 3.344 ×10' + 8.877 ×10"	
(A) What are the differences among direct mapping, associative mapping, and set-associative mapping? A set-associative cache consists of 64 lines; or slots, divided into four-line sets, Main memory contains 4K blocks of 128 words each. Show the format of main memory addresses. (B) Elaborate the concept of SRAM and DRAM memory with typical memory cell structure. (C) Attempt the following questions. (A) What is the overall function of a processor's control unit? A stack is implemented show the sequence of micro-operations for a processor's control unit? A stack is implemented. Show the sequence of micro-operations for a processor's control unit? A stack is implemented. Show the sequence of micro-operations for a processor's control unit? A stack is implemented. Show the sequence of micro-operations for a processor's control unit? A stack is implemented. Show the sequence of micro-operations for a processor's control unit? A stack is implemented. Show the sequence of micro-operations for a processor's control unit? A stack is implemented. Show the sequence of micro-operations for a processor's control unit? A stack is implemented. Show the sequence of micro-operations for a processor's control unit? A stack is implemented. Show the sequence of micro-operations for a processor's control unit? A stack is implemented. Show the sequence of micro-operations for a processor's control unit? A stack is implemented. Show the sequence of micro-operations for a processor's control unit? A stack is implemented. Show the sequence of micro-operations for a processor's control unit? A stack is implemented. Show the sequence of micro-operations for a processor show the format of main memory ell structure. (B) What is the difference between a hardwired implementation and a microprogrammed implemented. Show the sequence of micro-operations for a processor show the sequ		c. 6.21×10 ⁵ ÷8.877×10 ¹	
mapping? A set-associative cache consists of 64 lines; or slots, divided into four-line sets. Mainmemory contains 4K blocks of 128 words each. Show the format of main memory addresses. (B) Elaborate the concept of SRAM and DRAM memory with typical memory cell structure. (C) Attempt the following questions. (A) What is the overall function of a processor's control unit? A stack is implemented show the sequence of micro-operations for a. popping b. pushing the stack PUSH 10 PUSH 70 PUSH 8 ADD PUSH 20 SUB MUL (B) What is the difference between a hardwired implementation and a microprogrammed implementation of a control unit? Attempt any two questions. (A) In virtually all systems that include DMA modules, DMA access to main memory is giver priority than CPU access to main memory. Why? (B) What is the meaning of each of the four states in the MESI protocol? Can you foresee any problem with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution. (B) How does instruction pipelining enhance system performance? Elaborate your answer using	Q.4	Attempt the following questions.	
(B) Elaborate the concept of SRAM and DRAM memory with typical memory cell structure. Q.5 Attempt the following questions. (A) What is the overall function of a processor's control unit? A stack is implemented show the sequence of micro-operations for. a. popping b. pushing the stack PUSH 10 PUSH 70 PUSH 8 ADD PUSH 20 SUB MUL What is the difference between a hardwired implementation and a microprogrammed implementation of a control unit? (B) In virtually all systems that include DMA modules, DMA access to main memory is giver priority than CPU access to main memory. Why? (B) What is the meaning of each of the four states in the MESI protocol? Can you foresee any problem with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution.	(A)	mapping? A set-associative cache consists of 64 lines, or slots, divided into four-line sets. Main memory contains 4K blocks of 128 words each. Show the format of main memory addresses.	06
What is the overall function of a processor's control unit? A stack is implemented show the sequence of micro-operations for a. popping b. pushing the stack PUSH 10 PUSH 70 PUSH 8 ADD PUSH 20 SUB MUL What is the difference between a hardwired implementation and a microprogrammed implementation of a control unit? Of Attempt any two questions. In virtually all systems that include DMA modules, DMA access to main memory is giver priority than CPU access to main memory. Why? What is the meaning of each of the four states in the MESI protocol? Can you foresee any problem with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution.	(B)		06
sequence of micro-operations for a. popping b. pushing the stack PUSH 10 PUSH 70 PUSH 8 ADD PUSH 20. SUB MUL What is the difference between a hardwired implementation and a microprogrammed implementation of a control unit? Of Attempt any two questions. In virtually all systems that include DMA modules, DMA access to main memory is given priority than CPU access to main memory. Why? Of What is the meaning of each of the four states in the MESI protocol? Can you foresee any problem with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution.	Q.5	Attempt the following questions, The State of the State o	
SUB MUL What is the difference between a hardwired implementation and a microprogrammed implementation of a control unit? Attempt any two questions. One of the four states in the MESI protocol? Can you foresee any problem with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution. How does instruction pipelining enhance system performance? Elaborate your answer using	(A)	a. popping b. pushing the stack PUSH 10 PUSH 70 PUSH 8 ADD	06
(B) implementation of a control unit? Attempt any two questions. Q.6 In virtually all systems that include DMA modules, DMA access to main memory is giver priority than CPU access to main memory. Why? (B) What is the meaning of each of the four states in the MESI protocol? Can you foresee any problem with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution. (C) How does instruction pipelining enhance system performance? Elaborate your answer using		SUB	
[A] In virtually all systems that include DMA modules, DMA access to main memory is given priority than CPU access to main memory. Why? (B) What is the meaning of each of the four states in the MESI protocol? Can you foresee any problem with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution. (c) How does instruction pipelining enhance system performance? Elaborate your answer using	(B)		06
(A) priority than CPU access to main memory. Why? (B) What is the meaning of each of the four states in the MESI protocol? Can you foresee any problem with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution. (c) How does instruction pipelining enhance system performance? Elaborate your answer using	Q.6		
problem with the write-once cache approach on bus-based multiprocessors? If so, suggest a solution. How does instruction pipelining enhance system performance? Elaborate your answer using	(A)	In virtually all systems that include DMA modules, DMA access to main memory is given priority than CPU access to main memory. Why?	
	(B)	problem with the write-once cache approach on bus-based multiprocessors? If so, suggest a	06
	(c)		06

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE-RAIGAD-402 103

Winter Semester Examination - 2019

×ڪ

Branch: B. Tech

Sem:-I

Subject:- Digital Electronics & Microprocessor (BTCOC305)

Marks: 60

Date:-19/12/2019

Time:- 3 Hrs

Instructions:-

- 1) Each Question carries 12 marks.
- 2) Attempt any 5 questions of the following.
- 3) Illustrate your answers with neat sketches, diagram etc, wherever necessary
- 4) Assume suitable data if necessary and mention it clearly

Q.No.1 a) Explain the working of following gates with their truth table and logic symbol

6

- a. AND
- b. EX-OR
- c. NAND
- b) Perform the following Conversions

. 6`

1.
$$(49.25)_{10} = ()_2$$

II.
$$(4F7.A8)_{16} = ()_8$$

III.
$$(111011)_2 = ()_{gray}$$

Q.No.2 a) Minimize the following equation using k-map.

6

1.
$$Y = \sum m(0, 1, 2, 4, 5, 6)$$

11.
$$Y = \pi m (0, 2, 4, 5)$$
.

b) Explain the working of Full Subtractor with Truth table. Implement it with half subtractors.

Q.No.3	a)	What are the differences between combinational and sequential circuits? Explain gated S-R flip flop with logic diagram and truth table.	6
	b)	Draw and explain a 4 bit ring counter using D flip flops. Draw its state diagram and sequence table	6
Q.No.4	a)	Explain FLAG register of 8086	6
	b)	Compare features of 8085 with 8086	6
Q.No.5	a)	Draw and explain memory read timing diagram in Minimum Mode configuration of 8086	6
	b)	Explain hardware and software interrupts of 8086.	6
Q.No.6	a)	With instruction example explain addressing modes of 8086	6
	b)	Write a program for addition of two 16 bit numbers using 8086	6
		END OF PAPER	