Penerapan Metode ARCH/ GARCH dalam Peramalan Indeks Harga Saham PT Telekomunikasi Indonesia

I. PEMBAHASAN

- 1. Untuk meramalkan harga saham, akan digunakan model ARIMA yang dapat memperhitungkan tren, pola musiman, dan fluktuasi acak dalam data historis untuk membuat prediksi tentang harga saham di masa depan.
 - A. Penjelasan Data & Pembentukan Time Series Data
 - Penjelasan Data

Data yang kami gunakan adalah data saham PT Telekomunikasi Indonesia Tbk (TLKM.JK) selama 3 tahun terakhir (22/05/2019-20/05/2022). Kami mengambil data Close* pada bagian historical data. Data tersebut dapat diakses pada:

https://finance.yahoo.com/quote/TLKM.JK/history?p=TLKM.JK

• Mengolah Data Menjadi Return (rt)

$$r_t = log\left(\frac{p_t}{p_{t-1}}\right)$$

Data Awal

Dari hasil pengecekan, diketahui bawah data belum berbentuk data *time series*. Sehingga data terlebih dahulu diubah menjadi data *time series*.

B. Cek Stasioneritas Data

Hipotesis

H₀: data tidak stasioner terhadap mean

H₁: data stasioner terhadap mean

- Tingkat Signifikansi

 $\alpha = 0.05$

- Statistik Uji

Augmented Dickey-Fuller Test

```
data: data2 Dickey-Fuller = -9.6104, Lag order = 9, p-value = 0.01 alternative hypothesis: stationary p\text{-value} = 0.01
```

- Daerah Kritik

H₀ ditolak jika p-value < α

J 1

- Kesimpulan

Karena nilai p-value = $0.01 < \alpha = 0.05$, maka H₀ ditolak. Oleh karena itu, dapat disimpulkan bahwa data time series tersebut stasioner terhadap mean.

Interpretasi:

Untuk mengetahui stasioneritas sebuah data *time series*, digunakan Augmented Dickey-Fuller Test atau ADF Test. Dari ADF Test, didapatkan nilai pvalue sebesar 0.01. Nilai tersebut lebih kecil dari $\alpha = 0.05$. Dari hipotesis awal Hobahwa data tidak stasioner terhadap mean dan hipotesis alternatif H₁ bahwa data stasioner terhadap mean dan daerah kritik Hoditolak jika p-value $< \alpha$, maka Hoditolak. Karena Hoditolak, diambil kesimpulan bahwa data *time series* yang digunakan sudah stasioner terhadap mean.

C. Cek Diferensi dan Transformasi Data

Diferensi dan Transformasi data hanya perlu dilakukan apabila setelah dilakukan uji stasioneritas didapatkan hasil bahwa data belum stasioner. Berdasarkan uji stasioneritas yang telah kami lakukan di atas, terlihat bahwa nilai p-value $< \alpha$ sehingga H_0 ditolak yang artinya data sudah stasioner terhadap mean. Oleh karena itu, kami tidak perlu melakukan diferensi dan transformasi terhadap data ini sekaligus didapatkan bahwa nilai d pada model ARIMA adalah 0.

D. Identifikasi Model ARIMA(p,d,q)

Identifikasi Model ARIMA (p, d, q) dilakukan dengan cara melihat empat lag pertama yang terakhir keluar melebihi batas pada plot PACF untuk menentukan orde p dan plot ACF untuk menentukan orde q.

Interpretasi:

Dari hasil plot ACF dan PACF yang terlihat diatas diketahui bahwa lag ke-3 merupakan lag terakhir yang keluar melebihi batas dari 4 lag pertama. Sehingga dapat disimpulkan bahwa orde p=3 dan orde q=3. Sedangkan untuk orde d=0 karena data yang digunakan diketahui sudah stasioner terhadap variansi sehingga tidak dilakukan transformasi pada data. Dari nilai p, q, dan, d yang sudah ditentukan, didapatkan model dengan bentuk ARIMA (3,0,3)

E. Overfitting

Kemungkinan model yang dapat dibentuk:

1. ARIMA (3, 0, 3) dengan konstanta

- 2. ARIMA (3, 0, 2) dengan konstanta
- 3. ARIMA (3, 0, 1) dengan konstanta
- 4. ARIMA (3, 0, 0) dengan konstanta
- 5. ARIMA (2, 0, 3) dengan konstanta
- 6. ARIMA (2, 0, 2) dengan konstanta
- 7. ARIMA (2, 0, 1) dengan konstanta
- 8. ARIMA (2, 0, 0) dengan konstanta
- 9. ARIMA (1, 0, 3) dengan konstanta
- 10. ARIMA (1, 0, 2) dengan konstanta
- 11. ARIMA (1, 0, 1) dengan konstanta
- 12. ARIMA (1, 0, 0) dengan konstanta
- 13. ARIMA (0, 0, 3) dengan konstanta
- 14. ARIMA (0, 0, 2) dengan konstanta
- 15. ARIMA (0, 0, 1) dengan konstanta
- 16. ARIMA (3, 0, 3) tanpa konstanta
- 17. ARIMA (3, 0, 2) tanpa konstanta
- 18. ARIMA (3, 0, 1) tanpa konstanta
- 19. ARIMA (3, 0, 0) tanpa konstanta
- 20. ARIMA (2, 0, 3) tanpa konstanta
- 21. ARIMA (2, 0, 2) tanpa konstanta
- 22. ARIMA (2, 0, 1) tanpa konstanta
- 23. ARIMA (2, 0, 0) tanpa konstanta
- 24. ARIMA (1, 0, 3) tanpa konstanta
- 25. ARIMA (1, 0, 2) tanpa konstanta
- 26. ARIMA (1, 0, 1) tanpa konstanta
- 27. ARIMA (1, 0, 0) tanpa konstanta
- 28. ARIMA (0, 0, 3) tanpa konstanta
- 29. ARIMA (0, 0, 2) tanpa konstanta
- 30. ARIMA (0, 0, 1) tanpa konstanta

F. Uji Signifikansi

• Uji Hipotesis

H0: Konstanta/AR/MA tidak signifikan pada model

H1: Konstanta/AR/MA signifikan pada model

• Tingkat Signifikansi

 $\alpha = 0.05$

• Statistik Uji

No	Model	Variabel	p-value	Keterangan
1	ARIMA	AR(1)	3.89E-14	Signifikan

	C(3, 0, 3)	AR(2)	0.01123	Signifikan
		AR(3)	0.87609	Tidak Signifikan
		MA(1)	1.21E-13	Signifikan
		MA(2)	0.0803	Tidak Signifikan
		MA(3)	0.36899	Tidak Signifikan
		С	0.55794	Tidak Signifikan
2	ARIMA	AR(1)	< 2.2e-16	Signifikan
	C(3, 0, 2)	AR(2)	< 2.2e-16	Signifikan
		AR(3)	1.14E-05	Signifikan
		MA(1)	< 2.2e-16	Signifikan
		MA(2)	< 2.2e-16	Signifikan
		С	0.5739	Tidak Signifikan
3	ARIMA	AR(1)	0.709855	Tidak Signifikan
	C(3, 0, 1)	AR(2)	0.003066	Signifikan
		AR(3)	0.351409	Tidak Signifikan
		MA(1)	0.847592	Tidak Signifikan
		С	0.574528	Tidak Signifikan
4	ARIMA	AR(1)	0.04898	Signifikan
	C(3, 0, 0)	AR(2)	9.95E-05	Signifikan
		AR(3)	0.03125	Signifikan
		С	0.56805	Tidak Signifikan
5	ARIMA	AR(1)	< 2.2e-16	Signifikan
	C(2, 0, 3)	AR(2)	< 2.2e-16	Signifikan
		MA(1)	< 2.2e-16	Signifikan
		MA(2)	3.74E-07	Signifikan
		MA(3)	7.45E-06	Signifikan
		С	0.5539	Tidak Signifikan
6	ARIMA	AR(1)	0.01053	Signifikan
	C(2, 0, 2)	AR(2)	0.02482	Signifikan
		MA(1)	0.03453	Signifikan
		MA(2)	0.31884	Tidak Signifikan
		С	0.56447	Tidak Signifikan

7	ARIMA	AR(1)	0.003374	Signifikan
	C(2, 0, 1)	AR(2)	7.30E-07	Signifikan
		MA(1)	0.015705	Signifikan
		С	0.554572	Tidak Signifikan
8	ARIMA	AR(1)	0.02058	Signifikan
	C(2, 0, 0)	AR(2)	4.34E-05	Signifikan
		С	0.54388	Tidak Signifikan
9	ARIMA	AR(1)	0.818195	Tidak Signifikan
	C(1,0,3)	MA(1)	0.623747	Tidak Signifikan
		MA(2)	0.001573	Signifikan
		MA(3)	0.06182	Tidak Signifikan
		С	0.572418	Tidak Signifikan
10	ARIMA	AR(1)	0.02953	Signifikan
	C(1,0,2)	MA(1)	0.0815	Tidak Signifikan
		MA(2)	2.57E-06	Signifikan
		С	0.5487	Tidak Signifikan
11	ARIMA	AR(1)	0.06622	Tidak Signifikan
	C(1,0,0)	MA(1)	0.01452	Signifikan
		С	0.56099	Tidak Signifikan
12	ARIMA	AR(1)	0.04695	Signifikan
	C(1,0,0)	С	0.59542	Tidak Signifikan
13	ARIMA	MA(1)	0.0426413	Signifikan
	C(0,0,3)	MA(2)	0.0003168	Signifikan
		MA(3)	0.0153938	Signifikan
		С	0.5686185	Tidak Signifikan
14	ARIMA	MA(1)	0.1070802	Tidak Signifikan
	C(0,0,2)	MA(2)	0.0002903	Signifikan
		С	0.5390958	Tidak Signifikan
15	ARIMA	MA(1)	0.01762	Signifikan
	C(0,0,1)	С	0.5821	Tidak Signifikan
16	ARIMA	AR(1)	4.60E-14	Signifikan
	(3,0,3)	AR(2)	0.01087	Signifikan
		AR(3)	0.86269	Tidak Signifikan
		MA(1)	1.43E-13	Signifikan

		MA(2)	0.07814	Tidak Signifikan
		MA(3)	0.3799	Tidak Signifikan
17	ARIMA	AR(1)	< 2.2e-16	Signifikan
	(3,0,2)	AR(2)	< 2.2e-16	Signifikan
		AR(3)	1.25E-05	Signifikan
		MA(1)	< 2.2e-16	Signifikan
		MA(2)	< 2.2e-16	Signifikan
18	ARIMA	AR(1)	0.734978	Tidak Signifikan
	(3,0,1)	AR(2)	0.003369	Signifikan
		AR(3)	0.334503	Tidak Signifikan
		MA(1)	0.871177	Tidak Signifikan
19	ARIMA	AR(1)	0.05034	Tidak Signifikan
	(3,0,0)	AR(2)	0.000104	Signifikan
		AR(3)	0.030471	Tidak Signifikan
20	ARIMA	AR(1)	< 2.2e-16	Signifikan
	(2,0,3)	AR(2)	< 2.2e-16	Signifikan
		MA(1)	< 2.2e-16	Signifikan
		MA(2)	3.49E-07	Signifikan
		MA(3)	7.87E-06	Signifikan
21	ARIMA	AR(1)	0.009786	Signifikan
	(2,0,2)	AR(2)	0.025532	Signifikan
		MA(1)	0.032334	Signifikan
		MA(2)	0.32024	Tidak Signifikan
22	ARIMA	AR(1)	0.003267	Signifikan
	(2,0,1)	AR(2)	7.61E-07	Signifikan
		MA(1)	0.015202	Signifikan
23	ARIMA	AR(1)	0.0212	Signifikan
	(2,0,0)	AR(2)	4.55E-05	Signifikan
24	ARIMA	AR(1)	0.811623	Tidak Signifikan
	(1,0,3)	MA(1)	0.618541	Tidak Signifikan
		MA(2)	0.001623	Signifikan
		MA(3)	0.059437	Tidak Signifikan
25	ARIMA	AR(1)	0.03189	Signifikan
	(1,0,2)	MA(1)	0.08623	Tidak Signifikan

		MA(2)	2.76E-06	Signifikan
26	ARIMA	AR(1)	0.06375	Tidak Signifikan
	(1,0,1)	MA(1)	0.01348	Signifikan
27	ARIMA	AR(1)	0.04795	Signifikan
	(1,0,0)			
28	ARIMA	MA(1)	0.043636	Signifikan
	(0,0,3)	MA(2)	0.0003288	Signifikan
		MA(3)	0.0149777	Signifikan
29	ARIMA	MA(1)	0.1095984	Tidak Signifikan
	(0,0,2)	MA(2)	0.0003011	Signifikan
30	ARIMA	MA(1)	0.0181	Signifikan
	(0,0,1)			

Daerah Kritik H0 ditolak jika P-value < α

• Kesimpulan

Berdasarkan tabel di atas model yang layak adalah model ARIMA (3, 0, 2), model ARIMA (2, 0, 3), model ARIMA (2, 0, 1), model ARIMA (2, 0, 0), model ARIMA (1, 0, 0), model ARIMA (0, 0, 3), dan model ARIMA (0, 0, 1).

G. Uji Diagnostik

Uji Diagnostik terdiri dari uji autokorelasi residual, uji stasioneritas residual, dan uji normalitas residual. Tujuan dari uji diagnostik untuk mengetahui apakah model sudah cukup baik atau belum untuk dilakukan peramalan.

1. Tidak Ada Autokorelasi Residual

• Uji Hipotesis

H0: p-value > 0.05 (tidak ada autokorelasi residual)

H1: p-value < 0.05 (ada autokorelasi residual)

• Tingkat Signifikansi

 $\alpha = 0.05$

• Statistik Uji

Nilai p-value

No	Model	No Autokorelasi	Stasioner	Normal Residual
17	ARIMA(3,0,2)	0.2169 (V)	0.01 (V)	< 2.2e-16 (X)
20	ARIMA(2,0,3)	0.2645 (V)	0.01 (V)	< 2.2e-16 (X)
22	ARIMA(2,0,1)	0.0247 (X)	0.01 (V)	< 2.2e-16 (X)

23	ARIMA(2,0,0)	0.01216 (X)	0.01 (V)	< 2.2e-16 (X)
27	ARIMA(1,0,0)	8.218e-05 (X)	0.01 (V)	< 2.2e-16 (X)
28	ARIMA(0,0,3)	0.0262 (X)	0.01 (V)	< 2.2e-16 (X)
30	ARIMA(0,0,1)	0.0002402 (X)	0.01 (V)	< 2.2e-16 (X)
	Keterangan	(V) > 0.05	(V) < 0.05	(V) > 0.05

Daerah Kritik

H0 ditolak jika nilai p-value $< \alpha$

• Kesimpulan

H0 tidak ditolak pada model arima17 dan arima20 karena nilai p-value > 0.05 sehingga tidak ada autokorelasi residual. Sedangkan 5 model lainnya, H0 ditolak karena nilai p-value < 0.05 sehingga ada autokorelasi residual. Maka dari itu, model yang lolos kriteria adalah model arima 17 dan arima20.

2. Stasioneritas Residual

• Uji Hipotesis

H0: p-value > 0.05 (residual tidak bersifat stasioner)

H1: p-value < 0.05 (residual bersifat stasioner)

• Tingkat Signifikansi

 $\alpha = 0.05$

• Statistik Uji

Nilai p-value

No	Model	No Autokorelasi	Stasioner	Normal Residual
17	ARIMA(3,0,2)	0.2169 (V)	0.01 (V)	< 2.2e-16 (X)
20	ARIMA(2,0,3)	0.2645 (V)	0.01 (V)	< 2.2e-16 (X)
22	ARIMA(2,0,1)	0.0247 (X)	0.01 (V)	< 2.2e-16 (X)
23	ARIMA(2,0,0)	0.01216 (X)	0.01 (V)	< 2.2e-16 (X)
27	ARIMA(1,0,0)	8.218e-05 (X)	0.01 (V)	< 2.2e-16 (X)
28	ARIMA(0,0,3)	0.0262 (X)	0.01 (V)	< 2.2e-16 (X)
30	ARIMA(0,0,1)	0.0002402 (X)	0.01 (V)	< 2.2e-16 (X)
	Keterangan	(V) > 0.05	(V) < 0.05	(V) > 0.05

Daerah kritik

H0 ditolak jika nilai p-value $< \alpha$

Kesimpulan

H0 ditolak karena semua model memiliki nilai p-value < 0.05, sehingga residual bersifat stasioner.

3. Normalitas Residual

Uji Hipotesis

H0: p-value > 0.05 (residual berdistribusi normal)

H1: p-value < 0.05 (residual tidak berdistribusi normal)

Tingkat Signifikansi

 $\alpha = 0.05$

• Statistik Uji

Nilai p-value

No	Model	No Autokorelasi	Stasioner	Normal Residual
17	ARIMA(3,0,2)	0.2169 (V)	0.01 (V)	< 2.2e-16 (X)
20	ARIMA(2,0,3)	0.2645 (V)	0.01 (V)	< 2.2e-16 (X)
22	ARIMA(2,0,1)	0.0247 (X)	0.01 (V)	< 2.2e-16 (X)
23	ARIMA(2,0,0)	0.01216 (X)	0.01 (V)	< 2.2e-16 (X)
27	ARIMA(1,0,0)	8.218e-05 (X)	0.01 (V)	< 2.2e-16 (X)
28	ARIMA(0,0,3)	0.0262 (X)	0.01 (V)	< 2.2e-16 (X)
30	ARIMA(0,0,1)	0.0002402 (X)	0.01 (V)	< 2.2e-16 (X)
	Keterangan	(V) > 0.05	(V) < 0.05	(V) > 0.05

Daerah Kritik

H0 ditolak jika nilai p-value $< \alpha$

Kesimpulan

H0 ditolak karena semua nilai p-value normalitas residual < 0.05, sehingga semua modelnya memiliki residual yang tidak berdistribusi normal.

4. Model Terbaik ARIMA

Berdasarkan uji diagnostik, model arima17 (ARIMA(3,0,2)) dan model arima20 (ARIMA(2,0,3)) adalah model yang paling unggul karena lolos pada uji no autokorelasi dan stasioner.

H. Pemilihan Model Terbaik ARIMA

Didapatkan model ARIMA(3,0,2) tanpa konstan dan ARIMA(2,0,3) tanpa konstan yang lolos Uji Diagnostik. Pemilihan model terbaik ARIMA menggunakan parameter AIC, BIC, dan Loglikelihood. Dengan ketentuan parameter sebagai berikut:

- Nilai AIC dan BIC terkecil
- Nilai Loglikelihood terbesar

ARIMA(3,0,2)

Series: data2

ARIMA(3,0,2) with zero mean

Coefficients:

Dari *output* di atas, didapatkan:

- a. AIC = -3643.15
- b. BIC = -3615.57
- c. Loglikelihood = 1827.58

ARIMA(2,0,3)

Series: data2

ARIMA(2,0,3) with zero mean

Coefficients:

Dari *output* di atas, didapatkan:

- a. AIC = -3643.76
- b. BIC =-3616.18
- c. Loglikelihood = 1827.88

Dari kedua *output* di atas didapatkan ringkasan sebagai berikut:

Model	AIC	BIC	Loglikelihood
ARIMA(3,0,2)	-3643.15	-3615.57	1827.58
ARIMA(2,0,3)	-3643.76	-3616.18	1827.88

Interpretasi:

Dari kedua model ARIMA tersebut, terlihat bahwa ARIMA(2,0,3) memenuhi 3 dari 3 kriteria parameter model terbaik. Maka dapat disimpulkan bahwa model terbaik dari metode ARIMA adalah model ARIMA(2,0,3).

2. Dalam data runtun waktu di bidang keuangan, terdapat sifat penting yang dimiliki untuk data return (keuntungan). Adanya volatility clustering, yakni jika terjadi variabilitas data yang relatif tinggi pada suatu waktu maka akan terjadi kecenderungan yang sama dalam kurun waktu selanjutnya, dan sebaliknya. Hal ini sering juga disebut sebagai kasus timevarying variance yang merupakan satu keadaan yang disebut sebagai heteroskedasticity. Untuk mengatasi hal tersebut, kami akan melakukan analisis ARCH-GARCH berdasarkan model terbaik yang didapatkan dari langkah sebelumnya.

A. Cek Heteroskedastisitas

- Hipotesis

Ho: data tidak bersifat heteroskedastis

H₁: data bersifat heteroskedastis

- Tingkat Signifikansi

$$\alpha = 0.05$$

- Statistik Uji

```
Lagrange-Multiplier test:
     order
              LM p.value
[1,]
         4 415.8 0.00e+00
[2,]
         8 181.0 0.00e+00
[3,]
        12 115.8 0.00e+00
[4,]
            80.6 5.47e-11
        16
[5,]
            62.1 1.78e-06
        20
[6,]
        24
            49.4 1.11e-03
```

Daerah Kritik

H₀ ditolak jika p-value < α

- Kesimpulan

Karena nilai p-value semua ordenya < α, maka H₀ tidak ditolak. Oleh karena itu, dapat disimpulkan bahwa data masih bersifat heteroskedastisitas.

Interpretasi:

Sifat heteroskedastisitas pada model ARIMA dapat dilakukan dengan melakukan Lagrange-Multiplier test. Berdasarkan hasil Langrange-Multiplier test di atas, diperoleh hasil bahwa semua orde pada model ARIMA memiliki nilai pvalue < α yang artinya H₀ tidak ditolak. Dari hipotesis awal, karena H₀ tidak ditolak maka dapat disimpulkan bahwa data masih bersifat heteroskedastisitas sehingga perlu dilakukan penanganan yaitu membentuk model ARMA/GARCH dengan menambahkan efek ARMA dari model ARIMA terbaik (ARMA-GARCH) yang akan dilakukan di langkah berikutnya.

B. Overfitting ARMA-GARCH

Dalam melakukan *overfitting* model ARMA-GARCH, digunakan model ARMA (2, 3) dimana model ARMA tersebut didapat berdasarkan model ARIMA terbaik yang diketahui sebelumnya yaitu ARIMA (2, 0, 3). Selain itu, digunakan juga model GARCH (1, 1) beserta penurunanya, baik menggunakan konstanta maupun tidak. Penurunan GARCH (1, 1) yaitu :

- GARCH (1, 1) C
- GARCH (1, 0) C
- GARCH (1, 1) TC
- GARCH (1, 0) TC

C. Pemilihan Model Terbaik ARMA-GARCH

Pemilihan model terbaik ARMA-GARCH dilihat melalui AIC, BIC, dan ARCH LM Test. Tujuannya tentu agar dapat menentukan model manakah yang paling baik untuk dilakukan peramalan.

1. AIC

Akaike Information Criterian (AIC) mendasarkan perhitungannya dengan memaksimalkan nilai expected entropy dari model. Entropy secara sederhana merupakan suatu ukuran dari informasi yang diharapkan, pada kasus ini adalah ukuran informasi Kullback – Leibler. Pada dasarnya, AIC merupakan suatu ukuran log-likelihood. Model yang baik adalah model yang memiliki nilai AIC kecil.

- Uji Hipotesis
 - H0: Model terbaik dengan nilai AIC terkecil.
 - H1: Model terbaik dengan nilai AIC terbesar.
- Tingkat Signifikansi
 Nilai perhitungan AIC.
- Statistik Uji

Model	AIC	BIC	ARCH LM Test
garch11T	-5.118482	-5.062037	0.7692955
garch10T	-5.038622	-4.988448	1.05E-06
garch11F	-5.119381	-5.069208	0.7051506
garch10F	-5.03855	-4.994648	1.00E-06

- Daerah Kritik
 Model terbaik adalah model dengan nilai AIC terkecil.
- Kesimpulan

H0 tidak ditolak, model terbaik berdasarkan nilai AIC yang terkecil adalah model garch11F.

2. BIC

Bayes Information Criterian (BIC) merupakan perluasan Bayesian dari AIC. Model yang baik adalah model yang memiliki nilai BIC kecil.

• Uji Hipotesis

H0: Model terbaik dengan nilai BIC terkecil.

H1: Model terbaik dengan nilai BIC terbesar.

 Tingkat Signifikansi Nilai perhitungan BIC.

• Statistik Uji

Model	AIC	BIC	ARCH LM Test
garch11T	-5.118482	-5.062037	0.7692955
garch10T	-5.038622	-4.988448	1.05E-06
garch11F	-5.119381	-5.069208	0.7051506
garch10F	-5.03855	-4.994648	1.00E-06

Daerah Kritik

Model terbaik adalah model dengan nilai BIC terkecil.

• Kesimpulan

H0 tidak ditolak, model terbaik berdasarkan nilai BIC yang terkecil adalah model garch11F.

3. ARCH LM Test

• Uji Hipotesis

H0 = tidak ada efek ARCH dalam residual.

H1 = ada efek ARCH dalam residual.

• Tingkat Signifikansi

 $\alpha = 0.05$

• Statistik Uji

Model	AIC	BIC ARCH LM Test	
garch11T	-5.118482	-5.062037	0.7692955
garch10T	-5.038622	-4.988448	1.05E-06
garch11F	-5.119381	-5.069208	0.7051506

garch10F -5.03855 -4.99	4648 1.00E-06
-------------------------	---------------

- Daerah Kritik
 H0 ditolak jika prob < α
- Kesimpulan

Targetnya tentu tidak ada efek ARCH dalam residual, artinya menghilangkan efek heteroskedastisitas pada model (homoskedastisitas). Maksudnya, yaitu variansi dari error konstan (tidak dipengaruhi oleh waktu). Tidak adanya efek ARCH terlihat pada model garch11T dan garch11F karena nilai probabilitas ARCH LM Test nya > α sehingga H0 tidak ditolak.

4. Memilih Model Terbaik

Model	AIC	BIC ARCH LM Tes	
garch11T	-5.118482	-5.062037	0.7692955
garch10T	-5.038622	-4.988448	1.05E-06
garch11F	-5.119381	-5.069208	0.7051506
garch10F	-5.03855	-4.994648	1.00E-06

Secara keseluruhan, model terbaik ARMA-GARCH adalah model garch11F karena memiliki nilai AIC dan BIC terkecil serta tidak ada efek ARCH dalam residual.

- 3. Dilakukan prediksi return dan perhitungan harga saham dari return yang telah didapat dari hasil prediksi untuk satu periode ke depan berdasarkan model ARCH-GARCH terbaik yang didapatkan dari poin (2).
 - A. Forecasting

Dari langkah model terbaik ARMA-GARCH didapatkan model ARMA(2,3)-GARCH(1,1) tanpa konstan sebagai model terbaik. Untuk melakukan *forecast* data saham satu periode ke depan, dapat menggunakan rumus r_t .

$$r_t = log\left(\frac{p_t}{p_{t-1}}\right)$$

Nilai satu periode kedepan disimbolkan dengan nilai p_t dengan t=734, sedangkan nilai p_{t-1} didapatkan dari data saham terakhir, yaitu 4170. Untuk nilai r_t diperoleh dari output di bawah.

upperInterval	lowerInterval	standardDeviation	meanError	meanForecast
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0.0424225	-0.03502292	0.01975685	0.01975685	0.003699793

Dari *output* di atas, didapatkan nilai $r_t = 0.003699793$.

Untuk mencari nilai forecast, digunakan rumus

$$p_t = e^{(r_t + \ln(p_{t-1}))}$$

$$p_t = e^{(0.003699793 + \ln(4170))}$$

Menggunakan R, didapatkan nilai $p_t = 4185.457 \approx 4186$. Sehingga dapat disimpulkan bahwa *forecast* nilai saham pada 23 Mei 2022 adalah 4186.

B. Pembentukan Model Mean dan Variansi

Model Mean

$$\begin{split} r_t &= \mathit{C} \,+\, \varepsilon_t \,+\, \sum_{i=1}^m a_i r_{t-i} \,+\, \sum_{j=1}^s b_j \varepsilon_{t-j} \\ r_t &= \mathit{C} \,+\, a_1 r_{t-1} \,+\, \cdots \,+\, a_m r_{t-m} \,+\, \varepsilon_t \,+\, b_1 \varepsilon_{t-1} \,+\, \cdots \,+\, b_s \varepsilon_{t-s} \\ r_t &=\, \varepsilon_t - r_{t-1} \,-\, 0.28913 r_{t-2} \,+\, 0.89884 \varepsilon_{t-1} \,-\, 0.0080324 \varepsilon_{t-2} \,-\, 0.020184 \varepsilon_{t-3} \end{split}$$

Interpretasi:

- a. Setiap kenaikan satu satuan return 1 periode sebelumnya akan mengakibatkan penurunan data ramalan sebesar 1 satuan dengan menganggap variabel lain konstan.
- b. Setiap kenaikan satu satuan return 2 periode sebelumnya akan mengakibatkan penurunan data ramalan sebesar 0,28913 satuan dengan menganggap variabel lain konstan.
- c. Setiap kenaikan satu satuan error 1 periode sebelumnya akan mengakibatkan kenaikan data ramalan sebesar 0,89884 satuan dengan menganggap variabel lain konstan.
- d. Setiap kenaikan satu satuan error 2 periode sebelumnya akan mengakibatkan penurunan data ramalan sebesar 0,0080324 satuan dengan menganggap variabel lain konstan.
- e. Setiap kenaikan satu satuan error 3 periode sebelumnya akan mengakibatkan penurunan data ramalan sebesar 0,020184 satuan dengan menganggap variabel lain konstan.

Model Variansi

$$\sigma_t^2 = a_0 + \sum_{i=1}^m \alpha_i \in _{t-i}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2$$

$$\sigma_t^2 = 0.000020585 + 0.074297 \in_{t-1}^2 + 0.87039\sigma_{t-1}^2$$

Interpretasi:

a. Setiap kenaikan satu satuan variansi 1 periode sebelumnya akan mengakibatkan kenaikan nilai residual forecast sebesar 0,074297 satuan dengan menganggap variabel lain konstan.

b. Setiap kenaikan satu satuan nilai residual forecast 1 periode sebelumnya akan mengakibatkan kenaikan nilai residual forecast sebesar 0,87039 satuan dengan menganggap variabel lain konstan.

II. KESIMPULAN

- 1. Model terbaik dari metode ARIMA adalah model ARIMA(2,0,3) karena memiliki nilai AIC & BIC terkecil, serta nilai Loglikelihood terbesar.
- 2. Model terbaik ARMA-GARCH adalah model garch11F karena memiliki nilai AIC dan BIC terkecil serta tidak ada efek ARCH dalam residual.
- 3. Menggunakan R, didapatkan nilai $p_t=4185.457\approx 4186$. Sehingga dapat disimpulkan bahwa *forecast* nilai saham pada 23 Mei 2022 adalah 4186.