## МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Вятский государственный университет» (ФГБОУ ВО «ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

# МЕТОДЫ ИЗМЕРЕНИЯ НАПРЯЖЕНИЯ И СИЛЫ ТОКА В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

Отчет

Лабораторная работа №1 по дисциплине «Метрология, стандартизация и сертификация» Вариант 2

| Выполнил студент группы ИВТ-32 |                  |
|--------------------------------|------------------|
| Проверил доцент кафедры ЭВМ    | /Скворцов А. А./ |

#### 1 Цель работы

Цель данной лабораторной работы — изучение основных методов и средств измерения напряжения и силы тока в электрических цепях и получение навыков их практического использования.

#### 2 Задание

1. Собрать схему.  $R_A = 10~\mathrm{Om}$  . Установить  $E = 10,2~\mathrm{B},~R_u = 12~\mathrm{Om}$  и  $R_u = 1,2~\kappa\mathrm{Om}$  .

Измерить значение тока в цепи, созданного источником ЭДС E с внутренним сопротивлением  $R_u$ . Рассчитать значение тока  $I_p$  и сравнить с показанием амперметра.

- 2. Рассчитать действительное (истинное) значение тока  $I_u$  и погрешность измерения тока  $\gamma_A$ .
- 3. Установить внутреннее сопротивление амперметра  $R_A = 1$  Ом и повторить операции по п.п. 2-3.
- 4. Собрать схему.  $R_V=100~\kappa\mathrm{Om}$ . Установить  $E=10.2~\mathrm{B},~R_u=120~\mathrm{Om}$  и  $R_u=102~\kappa\mathrm{Om}$ .
- 5. Измерить значение напряжения в цепи. Рассчитать значение напряжения  $U_p$  и сравнить с показанием вольтметра.
- 6. Рассчитать действительное (истинное) значение напряжения  $U_u$  и погрешность измерения напряжения  $\gamma_B$ .
- 7. Установить внутреннее сопротивление вольтметра  $R_V = 200 \text{ кOm } \text{и}$  повторить операции по п.п. 6-7.
- 8. Собрать схему.  $R_V = 100 \text{ кOm}$ .  $E_{on} = 10 \text{ B}$ .  $R_k = 1 \text{ кOm}$ . Установить  $E_x = 2,2 \text{ B}$ .
  - 9. Уравновесить схему резистором  $R_k$  до достижения  $U_{V1} = 0$ .
- 10. Рассчитать погрешность измерения напряжения нулевым методом по формуле

$$\gamma_B = \frac{U_k - E_x}{E_x}.$$

- 11. Собрать схему.  $R_V=100~{
  m kOm},~R_A=10~{
  m Om}$  .  $E_{on}=50~{
  m B}.~R_k=1~{
  m kOm}.$  Установить  $I_X=122,2~{
  m mA}.$ 
  - 12. Уравновесить схему резистором  $\mathbf{R}_{\mathbf{k}}$  до достижения  $\mathbf{U}_{V} \approx 0$ .
  - 13. Рассчитать погрешность измерения тока нулевым методом по формуле

$$\gamma_A = \frac{I_k - I_x}{I_x}.$$

### 3 Выполнение задания

## 3.1 Экспериментальная часть

Результаты всех измерений, проведенных во время работы представлены на рисунках 1-6.



Рисунок 1 — Схема подключения амперметра при непосредственной оценке при  $R_A = 10~{
m Om}$ 



Рисунок 2 — Схема подключения амперметра при непосредственной оценке при  $R_A = 1~{
m Om}$ 



Рисунок 3 — Схема подключения вольтметра при непосредственной оценке при  $R_V = 100~{
m kOm}$ 



Рисунок 4 — Схема подключения вольтметра при непосредственной оценке при  $R_V$ = 200 кОм



Рисунок 5 – Схема нулевого метода измерения напряжения



Рисунок 6 – Схема нулевого метода измерения тока

#### 3.2 Аналитическая часть

1) Расчеты для схемы подключения амперметра при непосредственной оценке.

Расчеты при  $R_A = 10$  Ом:

$$I_u = \frac{E}{R_u + R_H} = 8,416 \text{ MA}.$$

$$I_p = \frac{E}{R_u + R_H + R_A} = 8,347 \text{ MA}.$$

$$\gamma_A = \frac{I_p - I_u}{I_u} = -\frac{R_A}{R_u + R_u + R_A} = -8,1833*10^{-3}.$$

Расчеты при  $R_A = 1$  Ом:

$$I_u = \frac{E}{R_u + R_H} = 8,416 \text{ MA}.$$

$$I_p = \frac{E}{R_u + R_H + R_A} = 8,409 \text{ MA}.$$

$$\gamma_A = \frac{I_p - I_u}{I_u} = -\frac{R_A}{R_u + R_H + R_A} = -8,244*10^{-4}.$$

2) Расчеты для схемы подключения вольтметра при непосредственной оценке

Расчеты при  $R_V = 100$  кОм:

$$U_p = E \frac{\frac{R_H R_V}{R_H + R_V}}{R_u + \frac{R_H R_V}{R_u + R_V}} = 10,176 \text{ B}.$$

$$U_u = E \frac{R_u}{R_u + R_H} = 10,188 \text{ B}.$$

$$\gamma_B = \frac{U_p - U_u}{U_u} = \frac{R_H / R_V}{1 + \frac{R_H}{R_V} + \frac{R_H}{R_u}} = 1,99*10^{-3}.$$

Расчеты при  $R_V = 200$  кОм:

$$U_p = E \frac{\frac{R_H R_V}{R_H + R_V}}{R_u + \frac{R_H R_V}{R_H + R_V}} = 10,176 \text{ B}.$$

$$U_u = E \frac{R_u}{R_u + R_u} = 10,182 \text{ B}.$$

$$\gamma_B = \frac{U_p - U_u}{U_u} = \frac{R_H / R_V}{1 + \frac{R_H}{R_V} + \frac{R_H}{R_u}} = 6*10^{-4}.$$

3) Расчеты для схемы нулевого метода измерения напряжения

$$U_x = U_k + \Delta U = 2,196 + 0,003672 = 2,199672 \text{ B}.$$

$$\gamma_B = \frac{U_k - E_x}{E_x} = -1,491*10^{-4}.$$

4) Расчеты для схемы нулевого метода измерения тока

$$I_x = I_k + \frac{u_V}{R_V} = 122,2 + 0,001 = 122,201 \text{ mA}.$$

$$\gamma_A = \frac{I_k - I_x}{I_x} = 8.322 * 10^{-6}.$$

#### 4 Вывод

В ходе данной лабораторной работы были изучены основные методы измерения напряжения и силы тока в электрических цепях, реализованных в среде Electronics Workbench. Были изучены схемы подключения амперметра и вольтметра при непосредственной оценке и нулевого измерения напряжения и тока. В ходе изучения выяснилось, что погрешность измерения при непосредственном подключении зависит от внутренних сопротивлений амперметра и вольтметра, также было определено, что данное измерение имеет большую погрешность, нежели метод нулевого измерения.