NLU, BERT, and Tokenizer

Finda

전희국

NLP = NLU + NLG

NLP

Transformer, BERT, GPT

Figure 1: The Transformer - model architecture.

BERT Embeddings

Figure 2: BERT input representation. The input embeddings is the sum of the token embeddings, the segmentation embeddings and the position embeddings.

BERT Input1: Token IDs

integer encoded using vocabulary

Tokenizer: Encode

```
from transformers import AutoTokenizer
kobert_tokenizer = AutoTokenizer.from_pretrained("monologg/kobert")
token_ids = kobert_tokenizer.encode("날은 아주 좋았어.")
```

[2, 1407, 7086, 3128, 4208, 6855, 54, 3]

Tokenizer: Decode

decoded_tokens = kobert_tokenizer.encode([2, 1407, 7086, 3128, 4208, 6855, 54, 3])

날은 아주 좋았어.

Tokenizer: Vocab Size

from transformers import AutoTokenizer

kobert_tokenizer = AutoTokenizer.from_pretrained("monologg/kobert")

kobert_tokenizer.vocab_size

8002

Embedding Layer

https://lena-voita.github.io/nlp_course/word_embeddings.html

BERT Input2: Segment IDs

segment_ids = token_type_ids

Tokenizer: __call__

```
from transformers import AutoTokenizer

kobert_tokenizer = AutoTokenizer.from_pretrained("monologg/kobert")

inputs = kobert_tokenizer(
"그는 밥을 먹는다",
padding="max_length",
truncation=True,
return_tensors="pt",
max_length=20
)
```

BERT Input3: Attention Mask

Figure 1: The Transformer - model architecture

Tokenizer: __call__

```
from transformers import AutoTokenizer

kobert_tokenizer = AutoTokenizer.from_pretrained("monologg/kobert")

inputs = kobert_tokenizer(
"그는 밥을 먹는다",
padding="max_length",
truncation=True,
return_tensors="pt",
max_length=20
)
```

Tokenizer: all_special_tokens

```
from transformers import AutoTokenizer

kobert_tokenizer = AutoTokenizer.from_pretrained("monologg/kobert")

print(kobert_tokenizer.all_special_tokens)

print(kobert_tokenizer.all_special_ids)
```

```
['[UNK]', '[SEP]', '[PAD]', '[CLS]', '[MASK]']
[0, 3, 1, 2, 4]
```