ACÁMICA

TEMA DEL DÍA

Series de tiempo

Cuando podemos ver cómo una magnitud cambia en el tiempo, los análisis se hacen más interesantes y, a veces, complejos.

También podemos intentar predecir el futuro, pero te recomendamos no apostar fuerte a esas predicciones.

Agenda

Daily

Explicación: Predicción a Futuro.

Break

Hands-on training

Proyecto

Cierre

Daily

Daily

Sincronizando...

Bitácora

¿Cómo te ha ido? ¿Obstáculos? ¿Cómo seguimos?

Challenge

¿Cómo te ha ido? ¿Obstáculos? ¿Cómo seguimos?

Predicción a Futuro

Train Test Split y Validación Cruzada

Fig. 5) Basically, there are two kinds of cross-validation for the time series sliding window and forward chaining. In this post, we will consider forward chaining cross-validation method

Fuente: Marco de regresión de aprendizaje automático de series temporales

Benchmarks

- Predecir el valor anterior.
- Predecir el promedio de n valores anteriores.
- Regresión lineal o polinómica con n valores anteriores.

- N: largo de la serie
- n: look back, equivalente a cantidad de features

y ₁	y ₂	y ₃	 y _{n-1}	y _n	y _{n+1}

- N: largo de la serie
- n: look back, equivalente a cantidad de features

y ₁	y ₂	y ₃	 y _{n-1}	y _n	y _{n+1}
y ₂	y ₃	y ₄	 y _n	y _{n+1}	y _{n+2}

- N: largo de la serie
- n: look back, equivalente a cantidad de features

y ₁	y ₂	y ₃	 y _{n-1}	y _n	y _{n+1}
y ₂	y ₃	y ₄	 y _n	y _{n+1}	y _{n+2}
y ₃	y ₄	y ₅	 y _{n+1}	y _{n+2}	y _{n+3}

- N: largo de la serie
- n: look back, equivalente a cantidad de features

y ₁	y ₂	y ₃	 y _{n-1}	y _n	y _{n+1}
y ₂	y ₃	y ₄	 y _n	y _{n+1}	y _{n+2}
y ₃	y ₄	y ₅	 y _{n+1}	y _{n+2}	y _{n+3}
y _{N -n -2}	y _{N -n -1}	y _{N -n}	 y _{N-3}	y _{N-2}	y _{N-1}
У _{N -n -1}	y _{N -n}	y _{N -n +1}	 y _{N-2}	y _{N-1}	y _N

- N: largo de la serie
- n: look back, equivalente a cantidad de features

y ₁	y ₂	y ₃	 y _{n-1}	y _n	y _{n+1}
y ₂	y ₃	y ₄	 y _n	y _{n+1}	y _{n+2}
y ₃	y ₄	y ₅	 y _{n+1}	y _{n+2}	y _{n+3}
y _{N -n -2}	y _{N -n -1}	y _{N-n}	 y _{N-3}	y _{N-2}	y _{N-1}
y _{N -n -1}	y _{N -n}	y _{N -n +1}	 y _{N-2}	y _{N-1}	y _N

- N: largo de la serie
- n: look back, equivalente a cantidad de features

- N: largo de la serie
- n: look back, equivalente a cantidad de features

- N: largo de la serie
- n: look back, equivalente a cantidad de features

Es un problema de regresión

Estrategia Recursiva

Una vez que contamos con un predictor a un paso YA entrenado, vamos agregando a las variables predictoras el resultado de esa predicción.

Estrategia Recursiva

Una vez que contamos con un predictor a un paso YA entrenado, vamos agregando a las variables predictoras el resultado de esa predicción.

y ₁	y ₂	y ₃	 y _{n-1}	y _n	y ^{pred} n+1
y ₂	y ₃	y ₄	 y _n	y ^{pred} n+1	y ^{pred} n+2
y ₃	У ₄	y ₅	 y ^{pred} n+1	y ^{pred} n+2	y ^{pred} n+3

Estrategia Recursiva

Una vez que contamos con un predictor a un paso YA entrenado, vamos agregando a las variables predictoras el resultado de esa predicción.

Ventaja: solo hay que entrenar un modelo.

Desventaja: cuando más nos alejamos de los datos medidos, más probable es se acumulen los errores.

entrenamiento)

Fuente: Machine Learning Strategies for Time Series Forecasting

Estrategia Recursiva

Una vez que contamos con un predictor a un paso YA entrenado, vamos agregando a las variables predictoras el resultado de esa predicción.

Ventaja: solo hay que entrenar un modelo.

Desventaja: cuando más nos alejamos de los datos medidos, más probable es se acumulen los errores.

У ₁	y ₂	y ₃	 y _{n-1}	y _n	y ^{pred} n+	y ^{pred} n+
У ₂	y ₃	y ₄	 y _n	y ^{pred} n+	y ^{pred} n+	y ^{pred} _{n+}
у ₃	y ₄	y ₅	 y ^{pred} n+	y ^{pred} n+	y ^{pred} _{n+}	y ^{pred} _{n+}

2° predicción

3° predicción

4° predicción

Multi-Step prediction

Estrategia Directa

Creamos un modelo por cada paso que queremos predecir.

Por ejemplo, si queremos predecir tres pasos:

Ventaja: no acumula error.

Desventaja: hay que crear un modelo por cada paso.

Fuente: Machine Learning Strategies for Time Series Forecasting

Hands-on training

Hands-on training

DS_Bitácora_42_Series_de_Tiempo.ipynb

Sección 2

Proyecto 03

El Proyecto 3 de tu carrera tiene como objetivo que apliques las herramientas aprendidas dentro de tres dominios específicos sobre los que aprenderás en el Bloque 3:

- Sistemas de Recomendación
- Procesamiento de lenguaje natural
- Series de tiempo

El Proyecto 3 de tu carrera tiene como objetivo que apliques las herramientas aprendidas dentro de tres dominios específicos sobre los que aprenderás en el Bloque 3:

- Sistemas de Recomendación
- Procesamiento de lenguaje natural
- Series de tiempo

Implementa un modelo para predecir el flujo vehicular en una autopista de la Ciudad de Buenos Aires, Argentina.

- Dataset. Aquí puedes descargar el dataset. Deberás descargar –al menos para comenzar – los años 2017, 2018 y 2019. ¡Agradecemos a todos/as los que hacen Datos Abiertos!
- Notebook. Aquí te dejamos un notebook con algunas recomendaciones y líneas de código para que empieces a explorar los datos.
- Referencia Extra

Para la próxima

- Avanza con el notebook de hoy.
- Lee la bitácora 43 y carga las dudas que tengas al Trello.

En el encuentro que viene uno/a de ustedes será seleccionado/a para mostrar cómo resolvió el challenge de la bitácora. De esta manera, ¡aprendemos todos/as de (y con) todas/as, así que vengan preparados/as.

ACAMICA