

Test Report Page: 1 of 9 No.: KA/2020/60957R1 Date: 2020/06/23

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

The following sample(s) was/were submitted and identified by/on behalf of the applicant as:

: NXP SEMICONDUCTORS Sample Submitted By

Sample Description : NXP WAFERS 2020

Style/Item No. : SSMC-200mm Sample Receiving Date : 2020/06/12

Testing Period 2020/06/12 to 2020/06/19

(1) As specified by client, with reference to RoHS 2011/65/EU Annex II and amending **Test Requested**

Directive (EU) 2015/863 to determine Cadmium, Lead, Mercury, Cr(VI), PBBs, PBDEs,

DBP, BBP, DEHP, DIBP contents in the submitted sample(s).

(2) Please refer to next pages for the other item(s).

Test Result(s) Please refer to next page(s).

(1) Based on the performed tests on submitted sample(s), the test results of Cadmium, Conclusion

Lead, Mercury, Cr(VI), PBBs, PBDEs, DBP, BBP, DEHP, DIBP comply with the limits as

set by RoHS Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU.

Ray Chang Ph.D. / Mar Signed for and on beh SGS Taiwan Limited Chemical Laboratory-K

Test Report Page: 2 of 9 No.: KA/2020/60957R1 Date: 2020/06/23

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Test Result(s)

PART NAME NO.1 : MULTICOLORED WAFER

Test Item (s)	Unit	Method	MDL	Result No.1	Limit
Cadmium (Cd)	mg/kg	With reference to IEC 62321-5: 2013 and performed by ICP-OES.	2	n.d.	100
Lead (Pb)	mg/kg	With reference to IEC 62321-5: 2013 and performed by ICP-OES.	2	n.d.	1000
Mercury (Hg)	mg/kg	With reference to IEC 62321-4:2013+ AMD1:2017 and performed by ICP-OES.	2	n.d.	1000
Hexavalent Chromium Cr(VI)	mg/kg	With reference to IEC 62321-7-2:2017 and performed by UV-VIS.	8	n.d.	1000
Sum of PBBs	mg/kg	With reference to IEC 62321-6:2015 and performed by GC/MS.	-	n.d.	1000
Monobromobiphenyl	mg/kg		5	n.d.	-
Dibromobiphenyl	mg/kg		5	n.d.	-
Tribromobiphenyl	mg/kg		5	n.d.	-
Tetrabromobiphenyl	mg/kg		5	n.d.	-
Pentabromobiphenyl	mg/kg		5	n.d.	-
Hexabromobiphenyl	mg/kg		5	n.d.	-
Heptabromobiphenyl	mg/kg		5	n.d.	-
Octabromobiphenyl	mg/kg		5	n.d.	-
Nonabromobiphenyl	mg/kg		5	n.d.	-
Decabromobiphenyl	mg/kg		5	n.d.	-
Sum of PBDEs	mg/kg		-	n.d.	1000
Monobromodiphenyl ether	mg/kg		5	n.d.	-
Dibromodiphenyl ether	mg/kg		5	n.d.	-
Tribromodiphenyl ether	mg/kg		5	n.d.	-
Tetrabromodiphenyl ether	mg/kg		5	n.d.	-
Pentabromodiphenyl ether	mg/kg		5	n.d.	-
Hexabromodiphenyl ether	mg/kg		5	n.d.	-
Heptabromodiphenyl ether	mg/kg		5	n.d.	-
Octabromodiphenyl ether	mg/kg		5	n.d.	-
Nonabromodiphenyl ether	mg/kg		5	n.d.	-
Decabromodiphenyl ether	mg/kg		5	n.d.	-

Test Report No.: KA/2020/60957R1 Page: 3 of 9 Date: 2020/06/23

NXP SEMICONDUCTORS

HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Test Item (s)	Unit	Method	MDL	Result No.1	Limit
DIBP (Di-isobutyl phthalate) (CAS No.: 84-69-5)	mg/kg	With reference to IEC 62321-8:2017. Analysis was performed by GC/MS.	50	n.d.	1000
DBP (Dibutyl phthalate) (CAS No.: 84-74-2)	mg/kg	With reference to IEC 62321-8:2017. Analysis was performed by GC/MS.	50	n.d.	1000
BBP (Butyl Benzyl phthalate) (CAS No.: 85-68-7)	mg/kg	With reference to IEC 62321-8:2017. Analysis was performed by GC/MS.	50	n.d.	1000
DEHP (Di- (2-ethylhexyl) phthalate) (CAS No.: 117-81-7)	mg/kg	With reference to IEC 62321-8:2017. Analysis was performed by GC/MS.	50	n.d.	1000
DNOP (Di-n-octyl phthalate) (CAS No.: 117-84-0)	mg/kg	With reference to IEC 62321-8:2017. Analysis was performed by GC/MS.	50	n.d.	-
DINP (Di-isononyl phthalate) (CAS No.: 28553-12-0, 68515-48-0)	mg/kg	With reference to IEC 62321-8:2017. Analysis was performed by GC/MS.	50	n.d.	-
DIDP (Di-isodecyl phthalate) (CAS No.: 26761-40-0, 68515-49-1)	mg/kg	With reference to IEC 62321-8:2017. Analysis was performed by GC/MS.	50	n.d.	-
DNPP(Di-n-pentyl phthalate) (CAS No.: 131-18-0)	mg/kg	With reference to IEC 62321-8:2017. Analysis was performed by GC/MS.	50	n.d.	-
Antimony (Sb)	mg/kg	With reference to US EPA 3052: 1996. Analysis was performed by ICP-OES.	2	n.d.	-
Arsenic (As)	mg/kg		2	n.d.	-
Beryllium (Be)	mg/kg		2	n.d.	-
Halogen					
Halogen-Fluorine (F) (CAS No.: 14762-94-8)	mg/kg	With reference to BS EN 14582:2016. Analysis was performed by IC.	50	n.d.	-
Halogen-Chlorine (CI) (CAS No.: 22537-15-1)	mg/kg	With reference to BS EN 14582:2016. Analysis was performed by IC.	50	n.d.	-
Halogen-Bromine (Br) (CAS No.: 10097-32-2)	mg/kg	With reference to BS EN 14582:2016. Analysis was performed by IC.	50	n.d.	-
Halogen-Iodine (I) (CAS No.: 14362-44-8)	mg/kg	With reference to BS EN 14582:2016. Analysis was performed by IC.	50	n.d.	-

Note:

- 1. mg/kg = ppm; 0.1wt% = 1000ppm
- 2. n.d. = Not Detected
- 3. MDL = Method Detection Limit
- 4. " " = Not Regulated
- 5. The statement of compliance conformity is based on comparison of testing results and limits.
- 6. This test report supersedes the previous document bearing the report number KA/2020/60957, the report KA/2020/60957 was voided. The revised date is 2020/06/23.

Test Report No.: KA/2020/60957R1 Page: 4 of 9 Date: 2020/06/23

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Analytical flow chart of Heavy Metal

These samples were dissolved totally by pre-conditioning method according to below flow chart. (Cr6+ test method excluded)

Test Report Page: 5 of 9 No.: KA/2020/60957R1 Date: 2020/06/23

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

PBB/PBDE analytical FLOW CHART

Test Report Page: 6 of 9 No.: KA/2020/60957R1 Date: 2020/06/23

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Analytical flow chart of phthalate content

[Test method: IEC 62321-8]

Test Report Page: 7 of 9 No.: KA/2020/60957R1 Date: 2020/06/23

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Flow Chart of digestion for the elements analysis performed by ICP-OES

These samples were dissolved totally by pre-conditioning method according to below flow chart.

Test Report Page: 8 of 9 No.: KA/2020/60957R1 Date: 2020/06/23

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Analytical flow chart of Halogen

Test Report Page: 9 of 9 No.: KA/2020/60957R1 Date: 2020/06/23

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

* The tested sample / part is marked by an arrow if it's shown on the photo. *

KA/2020/60957

KA/2020/60957

** End of Report **