

Art of Problem Solving 2016 USA Team Selection Test

USA Team Selection Test 2016

Dec	December 10th, 2015
1	Let $S = \{1,, n\}$. Given a bijection $f: S \to S$ an orbit of f is a set of the form $\{x, f(x), f(f(x)),\}$ for some $x \in S$. We denote by $c(f)$ the number of distinct orbits of f . For example, if $n = 3$ and $f(1) = 2$, $f(2) = 1$, $f(3) = 3$, the two orbits are $\{1, 2\}$ and $\{3\}$, hence $c(f) = 2$.
	Given k bijections f_1, \ldots, f_k from S to itself, prove that
	$c(f_1) + \dots + c(f_k) \le n(k-1) + c(f)$
	where $f: S \to S$ is the composed function $f_1 \circ \cdots \circ f_k$.
	Proposed by Maria Monks Gillespie
2	Let ABC be a scalene triangle with circumcircle Ω , and suppose the incircle of ABC touches BC at D . The angle bisector of $\angle A$ meets BC and Ω at E and F . The circumcircle of $\triangle DEF$ intersects the A -excircle at S_1 , S_2 , and Ω at $T \neq F$. Prove that line AT passes through either S_1 or S_2 .
	Proposed by Evan Chen
3	Let p be a prime number. Let \mathbb{F}_p denote the integers modulo p , and let $\mathbb{F}_p[x]$ be the set of polynomials with coefficients in \mathbb{F}_p . Define $\Psi : \mathbb{F}_p[x] \to \mathbb{F}_p[x]$ by
	$\Psi\left(\sum_{i=0}^{n} a_i x^i\right) = \sum_{i=0}^{n} a_i x^{p^i}.$
	Prove that for nonzero polynomials $F, G \in \mathbb{F}_p[x]$,
	$\Psi(\gcd(F,G))=\gcd(\Psi(F),\Psi(G)).$
	Here, a polynomial Q divides P if there exists $R \in \mathbb{F}_p[x]$ such that $P(x) - Q(x)R(x)$ is the polynomial with all coefficients 0 (with all addition and multiplication in the coefficients taken modulo p), and the gcd of two polynomials is the highest degree polynomial with leading coefficient 1 which divides both of them. A non-zero polynomial is a polynomial with not all coefficients 0. As an example of multiplication, $(x+1)(x+2)(x+3) = x^3 + x^2 + x + 1$ in $\mathbb{F}_5[x]$.

Proposed by Mark Sellke

Contributors: v_Enhance