Name: Andrew Tee

Github Account Name: atee001

Github Repo for HW2: https://github.com/CS211-Fall2023/hw2-atee001/tree/main

HW# 2

PROBLEM 1

Image shows all intermediate calculations regarding the non-blocked LU factorization A = LU.

$$A = \frac{1}{1} \begin{cases} 1 & 2 & 3 \\ 4 & 13 & 18 \\ 7 & 54 & 78 \end{cases}$$

$$\frac{1}{3} \begin{cases} \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{3} \begin{cases} \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{3} \begin{cases} \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{3} \begin{cases} \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{3} \begin{cases} \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{3} \begin{cases} \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{3} \begin{cases} \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{3} \begin{cases} \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{4} \begin{cases} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{4} \begin{cases} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{4} \begin{cases} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{4} \begin{cases} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{4} \begin{cases} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{4} \begin{cases} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{4} \begin{cases} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{4} \begin{cases} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{4} \begin{cases} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{4} \begin{cases} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{4} \begin{cases} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{4} \begin{cases} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{4} \begin{cases} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{4} \begin{cases} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{cases}$$

$$\frac{1}{4} \begin{cases} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}$$

PROBLEM 2

Output for N = 1000, 2000, 3000, 4000

```
rm -f main
gcc main.c -o main -I /act/opt/intel/composer_xe_2013.3.163/mkl/include \
-L /act/opt/intel/composer_xe_2013.3.163/mkl/lib/intel64 \
-03 -DMKL_ILP64 -lmkl_avx2 -lmkl_intel_lp64 -lmkl_sequential -lmkl_core -lpthread -lm -m64
n=1000, pad=1
time=0.059905s
n=1000, pad=1
time=0.157215s
n=2000, pad=1
time=0.206416s
n=2000, pad=1
n=3000, pad=1
time=0.660857s
n=3000, pad=1
time=6.487672s
n=4000, pad=1
time=1.328586s
n=4000, pad=1
time=16.376956s
```

TA said to assume the same flops for LAPACK and my GEPP algorithms.

TOTAL FLOP COUNT = FACTORIZATION + L + U

1. PART 1. FACTORIZATION (mydgetrf) FLOP Count

Only this part of code for mydgetrf has floating point operations:

For i = 0

Inner Loop Flop: 2 flops per iteration Inner Loop Iterations: N-1

=> 2*(N-1)

Outer Loop Flops: 1 flop per iteration

Outer Loop Iterations: (N-1)

Flops for i = 0: (2*(N-1))*(N-1)

For i = 0 : N-2

```
(2*(N-1))*(N-1) + (2*(N-2))*(N-2) ... (2*(N-(N-1))*(N-(N-1))
```

=> LU Factorization Flops =
$$2\sum_{i=1}^{N-1} (N-i)^2$$

2. PART 2. Forward Substitution

```
for (int i = 1; i < n; i++)
{
    double sum = 0.0;
    for (int j = 0; j < i; j++)
    {
        sum += y[j] * A[i * n + j];
    }
    y[i] = B[ipiv[i]] - sum;
}</pre>
```

Inner Loop Flop: 2

Inner Loop Iterations: 1+2+ 3+4....N-1 =>
$$\sum_{i=1}^{N-1} i = (N-1) * (N)/2$$

Outer Loop Flops: 1

Outer Loop Iterations: N-1

Forward Substitution Flops =
$$(2 * (N - 1) * (N/2)) + (1 * (N - 1)) = N(N - 1) + N - 1$$

3. Part 3. Backward Substitution

```
double x[n];
x[n - 1] = y[n - 1] / A[(n * n) - 1];

for (int i = n - 2; i >= 0; i--)
{
    double sum = 0.0;
    for (int j = i + 1; j < n; j++)
    {
        sum += x[j] * A[i * n + j];
    }
    x[i] = (y[i] - sum) / A[i * n + i];
}</pre>
```

1 Flop outside nested loops

Inner Loop Flop: 2

Inner Loop Iterations: 1, 2, 3, ... N-1 =>
$$\sum_{i=1}^{N-1} i = (N-1) * (N)/2$$

Outer Loop Flops: 2

Outer Loop Iterations: N-1

Backward Substitution Flops =
$$(2 * (N - 1) * (N/2)) + (2 * (N - 1)) + 1 = (N - 1)N + 2(N - 1) + 1$$

TOTAL FLOPS = LU + FORWARD + BACKWARD

```
=> \left(2\sum_{i=1}^{N-1} (N-i)^2 + N(N-1) + N-1 + (N-1)N + 2(N-1) + 1\right)
```

MY GFLOPS PER SECOND

n	LU Flops	Forward Flops	Backward Flops	Total Flops	Time	Gflops	Gflops per second
1000	665667000	999999	1000999	667667998	0.156361	0.667667998	4.27004175
2000	532933400 0	3999999	4001999	533733599 8	1.680327	5.337335998	3.176367456
3000	179910010 00	8999999	9002999	180090039 98	6.541332	18.009004	2.753109611
4000	426506680 00	15999999	16003999	426826719 98	16.312457	42.682672	2.616569165
5000	833083350 00	24999999	25004999	833583399 98	32.099974	83.35834	2.596835125

LAPACK GLOPS PER SECOND

n	LU Flops	Forward Flops	Backward Flops	Total Flops	Time	Gflops	Gflops per second
1000	665667000	999999	1000999	667667998	0.063136	0.667667998	10.57507599
2000	532933400 0	3999999	4001999	533733599 8	0.20903	5.337335998	25.53382767
3000	179910010 00	8999999	9002999	180090039 98	0.663943	18.009004	27.12432242
4000	426506680 00	15999999	16003999	426826719 98	1.336713	42.682672	31.93106673
5000	833083350 00	24999999	25004999	833583399 98	2.658872	83.35834	31.35101652

FLOP Spreadsheet Link

PERFORMANCE ANALYSIS: The LAPACK version has significantly better computation density (gflops per second) than my code. This is because my algorithm is the non blocked GEPP version and isn't fully optimized compared to the LAPACK version. The execution time of the LAPACK program is also significantly faster than my version.

PROBLEM 3

Image demonstrates all intermediate states of A after each step of the blocked GEPP algorithm:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 9 & 12 & 15 \\ 3 & 26 & 41 & 49 \\ 5 & 40 & 107 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 \\ 3 & 26 & 41 & 49 \\ 4 & 9 & 12 & 15 \\ 3 & 26 & 41 & 49 \\ 5 & 40 & 107 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 9 & 12 & 15 \\ 3 & 26 & 41 & 49 \\ 5 & 40 & 107 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 \\ 5 & 40 & 107 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 49 \\ 5 & 40 & 107 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 49 \\ 5 & 40 & 107 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 49 \\ 5 & 40 & 107 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 49 \\ 5 & 40 & 107 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 49 \\ 5 & 40 & 107 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 49 \\ 2 & 2 & 4 & (3,2) - A(2,1) & A(1,2) \\ 2 & 26 - 6 & 20 \\ 4 & 2 & 3 & 4 \\ 3 & 20 & 41 & 49 \\ 5 & 30 & 107 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 \\ 3 & 2 & 13 \\ 3 & 20 & 41 & 49 \\ 5 & 30 & 107 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 \\ 3 & 2 & 3 & 4 \\ 3 & 2 & 3 & 4 \\ 4 & 3 & 2 & 3 & 4 \\ 3 & 2 & 3 & 4 \\ 3 & 2 & 3 & 4 \\ 3 & 2 & 3 & 4 \\ 3 & 2 & 3 & 4 \\ 3 & 3 & 4 \\ 4 & 49 \\ 5 & 30 & 107 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 12 & 15 \\ 3 & 20 & 41 & 49 \\ 5 & 30 & 107 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 12 & 15 \\ 3 & 20 & 41 & 49 \\ 4 & 2 & 5 & 12 & 15 \\ 3 & 20 & 41 & 49 \\ 5 & 30 & 107 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 12 & 15 \\ 3 & 20 & 41 & 49 \\ 4 & 5 & 107 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 12 & 15 \\ 3 & 20 & 17 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 12 & 15 \\ 3 & 20 & 17 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 12 & 15 \\ 3 & 20 & 17 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 12 & 15 \\ 3 & 20 & 17 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 12 & 15 \\ 3 & 20 & 17 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 12 & 15 \\ 3 & 20 & 17 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 12 & 15 \\ 3 & 20 & 17 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 12 & 15 \\ 3 & 20 & 17 & 135 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 15 \\ 3 & 20 & 17 & 20 \\ 3 & 20 & 17 & 20 \\ 3 & 20 & 17 & 20 \\ 3 & 20 & 17 & 20 \\ 3 & 20 & 17 & 20 \\ 3 & 20 & 17 & 20 \\ 3 & 20 & 17 & 20 \\ 3 & 20 & 17 & 20 \\ 3 & 20 & 17$$

3 Gaussian dimination and row
$$A(2,3) = A(2,3) - A(2,1) A(3,1)$$

$$A(2,4) = A(2,4) - A(2,1) A(4,1)$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 7 \\ 3 & 4 & 41 & 49 \\ 5 & 6 & 107 & 135 \end{bmatrix}$$

A(end+1:n, end+1:n)

$$A_{2x2} = \begin{bmatrix} 41 & 49 \\ 107 & 135 \end{bmatrix} - \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 6 & 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 7 \\ 3 & 4 & 8 & 9 \\ 5 & 6 & 56 & 73 \end{bmatrix}$$

5) Diwde 3rd column below
$$A_{313}$$
 by $A_{313} = 8$ $A_{433} = 56/8 = 7$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 1 \\ 2 & 5 & 6 & 7 & 1 \\ 3 & 4 & 8 & 9 \\ 5 & 6 & 7 & 73 & 1 \end{bmatrix}$$

6 Gaussian elemination on A4,4 A(4,4) = A(4,4) - A(4,3) A(3,4) = 73-63=10

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 7 \\ 3 & 4 & 8 & 9 \\ 5 & 6 & 7 & 10 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ 3 & 6 & 7 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 4 & 1 & 0 \\ 3 & 6 & 7 & 1 \end{bmatrix}$$