Synthèse De BD Partie Conception

Fait par Brandon Van Bellinghen

année 2021/2022

Cours 6:

Introduction à la conception ;

- Rechercher des entités dans un énoncé
- Les représenter sous la forme d'un Diagramme de Structure de Données (DSD)
 - Mettre en évidence les entités et leurs attributs.
 - Définir un identifiant unique.
 - Préciser le contenu de chaque attribut.
 - Formaliser les relations entre les entités.

Clé primaire ;

- But = assurer l'unicité d'un enregistrement / tuples
- Choix:
 - Identifiant naturel unique

→ Ex : albums.isbn

- Numéro auto-incrémenté

→ Ex: éditeurs.num

Identifiant composite (concaténation)

→ Ex: isbn, num_auteur,participe

Clé étrangère ;

- But = assurer l'intégrité référentielle, garantir la cohérence des références entre les tables
- Conditions pour une intégrité référentielle :
 - Une FK ne peut référer qu'une PK existante
 - Un enregistrement / tuple ne peut pas être supprimé si sa PK est référencée comme FK

bd3.albums				
PK	isbn			
	titre NN serie prix NN num_editeur (FK) NN annee_edition			

bd3.auteurs			
PK	K <u>num</u>		
	nom NN adresse e_mail		

PK concaténées : normes ;

- Conditions pour une clé concaténée :
 - Toutes les parties de la clé doivent être déclarées "NN"
 - La/Les FK doit/doivent être déclarées.

Notations: conventions

- Nom de tables
 - Entièrement en minuscules
 - au pluriel
- Nom de champs entièrement en minuscules
- Pas de caractères spéciaux ou accentués

- Si plusieurs mots, ils sont séparés par "_ "
- > PK = Primary Key : la PK est toujours soulignée
- ➤ FK = Foreign Key
- ➤ NN = Not Null

Organisation graphique;

vocabulaires business;

- Vocabulaire business
 - = vocabulaire du métier
 - = vocabulaire du client
- Il est essentiel d'utiliser le vocabulaire du client! Et dans notre cas, le vocabulaire de l'énoncé.

Relation de 1 à 0:N;

- Une relation = **deux** significations!
- Chaque client peut avoir 0, une ou plusieurs commandes.
- Chaque commande appartient à un seul client.
 - La relation implique une FOREIGN KEY (FK) toujours du côté de la fourche.

Relation de 1 à 1:N;

- Chaque client DOIT avoir au moins une commande
- Il peut avoir plusieurs commandes
- Chaque commande appartient à un seul client.

Relation de 1 à 0:1;

- Une commande référence une facture ou non

 Afin de s'assurer que 2 ou plusieurs commandes ne référencent pas le même numéro de facture, on peut noter une contrainte d'unicité sur l'attribut num factures (noté ici unique).

Relation de 1 à 1;

- Si une commande doit nécessairement correspondre une facture
- La commande est créée avec une clé primaire num commande
- ➤ La facture emplo<u>i</u>e la même clé primaire

- Remarquons qu'il serait plus judicieux d'utiliser le numéro de factures qui est un élément indispensable d'une facture en bonne et due forme.

commandes			factures	
PK	num facture (FK)	РК	num facture	
	date_commande NN etat NN		date_facture NN montant_facture NN etat NN	

Autres relations entre 2 tables ;

- On peut combiner les terminaisons de relations :
 - Relations 0-1 : 0-1 O ————
 - Une entité a référence éventuellement une entité b
 - Même chose pour b
 - Relation 0-1 : 0-N
 - Relations 0-1 : 1-N

Relation de M à N;

- ➤ Une relation de M à N ne peut jamais être représentée directement
- Elle s'implémente toujours par 2 relations de 1 à N

Une relation de M à N s'implémente toujours par 2 relations de 1 à N

- Une commande peut porter sur plusieurs articles
- Un article peut faire partie de plusieurs commandes

Résumé des 8 relations possibles ;

Cours 8;

PK et FK composées ;

PK composite;

```
CREATE TABLE budgets (

code_spectacle char(4) NOT NULL

references spectacles(code_spectacle),

id_poste integer NOT NULL

references postes(id_poste),

budget double precision NOT NULL,

PRIMARY KEY (code_spectacle,id_poste)

PK code spectacle,id_poste (FK) NN id_poste (FK) NN id_poste (FK) NN budget NN
```

FK composite;

```
CREATE TABLE factures (

num_facture integer PRIMARY KEY,

code_spectacle char(4) NOT NULL,

id_poste integer NOT NULL,

...,

FOREIGN KEY(code_spectacle,id_poste)

REFERENCES budget_depenses(code_spectacle,id_poste)

)

//\

factures

PK | num facture

date_facture NN

date_echeance NN

montant NN
code_spectacle NN
id_poste NN
code_spectacle, id_poste (FK)
```

Clé étrangère NULL;

Un rendez-vous peut être attribué à 0 ou 1 patient.

→ num_sis dans la table rendez-vous est une FK qui peut être NULL

Influence du temps sur les clés étrangères ;

Relations multiples entre tables ;

Double relation M:N;

- > Relation de M:N entre
 - Étudiants et cours
 - Locaux et cours

Choix des clés primaires :

- Concaténation (1)
- La combinaison
 'matricule et no_cours'
 est unique : un étudiant ne
 peut être inscrit qu'une
 seule fois à un même cours

Choix des clés primaires :

- Numéro autoincrémenté (2)
- La combinaison
 - 'no_cours et
- 1 code_local' n'est pas unique : un cours pourrait être donné plusieurs fois dans un même local

Relation induite;

- > Relation 1:N entre
 - Clients et commandes
 - Commandes et lignes_commandes
 - → Relation 1:N induite entre clients et lignes_commande
- Une relation induite n'est pas dessinée.

Enumération;

- > Permet de limiter les valeurs autorisées pour un champ spécifique
- S'écrit entre accolades { }
- ➤ Si on reprend l'exemple des "postes" du théâtre du trac, on pourrait par exemple avoir 4 postes : costumier, décorateur, artiste et technicien. Les libellés seraient donc limités à une liste de 4 possibilités.

Cours 8;

Relation cycliques hiérarchique;

- Chaque service a zéro ou un service hiérarchiquement supérieur
- Chaque service a zéro, un ou plusieurs services subordonnés

Relation cyclique non hiérarchique;

Une pièce peut être composée de plusieurs composants et une pièce peut faire partie de plusieurs composants.

Parrainage : relation cyclique hiérarchique ;

- Un étudiant (filleul) peut être parrainé (ou non) par un autre étudiant
- Un étudiant (parrain) peut parrainer (ou non) plusieurs autres étudiants

Parrainage : relation cyclique non hiérarchique ;

- Un étudiant (filleul) peut être parrainé par plusieurs autres étudiants
- Un étudiant (parrain) peut parrainer plusieurs autres étudiants

Parrainage : SELECT ;

Pour chaque parrain (matricule, nom et prénom), affichez le nombre de filleuls qu'il possède.

Pour chaque parrain (matricule, nom et prénom), affichez ses filleuls (matricule, nom, prénom).

Tables spécialisées ;

- Problème : les propriétés encadrées dépendent du type de produit (savon, shampooing, détergent)
- > Elles ne sont pas communes à tous les produits
- Il y a beaucoup de champs qui seront NULL

Attention! Les étudiants et les professeurs ont une clé unique distincte. Deux solutions peuvent être implémentées.

Sauvegarde des données ;

- Mettre en sécurité les données contenues dans un système informatique
 - Back-up
 - Archivage

Back-up;

- ➤ Pourquoi ?
 - Permettre de restaurer un système informatique dans un état de fonctionnement par suite d'un incident
 - Faciliter la restauration d'une partie d'un système informatique
- > Comment?
 - Copie des données sur un support indépendant du système initial
- La restauration = opération inverse, càd réutiliser des données sauvegardées.

Archivage;

- ➤ Pourquoi ?
 - Désengorger des tables de mouvements, souvent volumineuses et rapidement périmées.
 - Raisons légales.
 - Statistiques.