

Mansoura University Faculty of Computers and Information Department of Computer Science Second Semester: 2020-2021

[MED-145] Genomics: Genome Indexing & Reads Mapping Grade: Third Year (Medical Informatics Program)

Sara El-Metwally, Ph.D.

Faculty of Computers and Information,

Mansoura University,

Egypt.

COURSE OUTLINES

- Course Meeting Time: Monday 8:30-10:100, Wednesday 12:20-2.00.
- Course Instructor: Sara El-Metwally, PhD
- Course TAs: Eng. Nada El-Madah, Eng. Ola Magdy
- Course Labs: Unix-based commands, Shell Scripting, Python.
- Course Grading:
 - Midterm: 10%
 - Oral: 10%
 - Practical: 10%
 - Project / Paper: 10%
 - Final: 60%

MANSOURA FCIS COURSE DEPENDENCY

COURSE PROJECTS

Choice No. 1

- Teams (up to 5 students).
- Pick a project from the projects list or propose an idea for your project.
- Projects outcomes:
 - A Project Proposal that describes the problem, how to solve it, the technologies/tools that you will use, team members and their tasks, etc.
 - A Github page that includes a Readme file that describes your project idea, algorithm, how to run and use the code and any useful links etc. and your project source code with any dependency.
 - Your proposal should be added to your Github page.
 - A Video demo that describes your project (English), the link should be added to your Github page and the video should be uploaded to our course channel on YouTube!
 - Group Photo with a faculty logo.
 - There is a competition among different genomics projects; the top best five projects will awarded a genomics course certificate plus some other prizes in the case of extraordinary projects.
 - Think big drive forward!

COURSE PROJECTS

Genomics Course List Projects 2021		
Project Name	Example of already existing tools in the field	
Genome/Transcriptome Browsers	UCSC Genome Browser	
Genome/Transcriptome Assemblers	Velvet, Canu, LightAssembler, Trinity, SPAdes	
Multiple Sequence Aligners (DNA, RNA, Amino Acids)	Clustal Omega, MAFFT, MUSCLE	
Local alignment tool	BLAST	
Short/long reads aligner to a reference genome	Bowtie, BWA	
Phylogenetic Trees Drawing/Analysis Tool	iTOL, phylot, PhyML	
Variant Calling Programs	GATK, SAMtools, FreeBayes, DeepVariant	
Errors Correction Programs	Bless, Musket, Lighter, Fiona, NanoReviser, MARVEL	
Efficient kmers counting tools	Jellyfish, KMC, DSK	
Quality control of sequencing reads (short/long)	FastQC, FASTX-Toolkit, LongQC	
Assembly Evaluation Software	QUAST	
Fastq compression tool	MZPAQ, fqzcomp, Spring	
Your Idea?	Your Program	

COURSE PROJECTS

Choice No. 2

- One student.
- □ Pick a paper published in 2020/2021 in the genomics field in general or related to SARS-CoV-2 data analysis.
- Student outcomes:
 - □ A document that summarizes the paper, the analysis pipeline, the findings and your comment on the paper results (Max. 3 pages).
 - A Video that explains the paper idea using the presentation prepared by you.
 - Student Photo with a faculty logo.
 - □ A Github page that includes a Readme file that describes the paper idea, data analysis, etc. including the paper reference and your created video along with your photo.

AGENDA

- A Typical Genomics Analysis Workflow.
- Alignment is central to most genomic research.
- Sequence mapping versus alignment.
- Reference based analysis mapping and challenges.
- Mapping Quality.
- Sequence alignment/Mapping software.
- Typical Mapping/Alignment Workflow.
- Hash-based mapping approach.
- Hash-based mapping approach drawbacks.

A TYPICAL GENOMICS DATA ANALYSIS PIPELINE

ALIGNMENT IS CENTRAL TO MOST GENOMIC RESEARCH

Slides adapted from Aaron Quinlan: https://github.com/quinlan-lab/applied-computational-genomics

BEST CASE SCENARIO: AN ERROR-FREE SEQUENCING TECHNOLOGY

Computers are rather good at finding *exact* matches. Think Google.

REALITY CHECK. ERRORS HAPPEN. FREQUENTLY.

"Fuzzy" matching is much more computationally expensive.

Think Google's "Did you mean..."

SEQUENCE MAPPING VERSUS ALIGNMENT

Mapping: (quickly) find the best possible loci to which a sequence could be aligned.

Alignment: for each locus to which a sequence can be mapped, determine the optimal base by base alignment of the query sequence to the reference sequence.

SEQUENCE MAPPING VERSUS ALIGNMENT

> find possible candidate mapping locations (kmers, subsequences, etc.)

> Chr 10
GCACCACCTTCTCGTCGCTGCGTCGCTCGCTGCTCGCGGCTAAA
AAATTGGAAACAACATTCGGCTACAGATACCAAA

Chr10: 3400

SEQUENCE MAPPING VERSUS ALIGNMENT

> find alignment score for each candidate alignment.

> Chr 10
GCACCACCTTCTCGTCGCTGCGTCGCTCGCTGCTCGCGGCTAAA
AAATTGGAAACAACATTCGGCTACAGATACCAAA

mismatch = 0

REFERENCE-BASED ANALYSIS

- ✓ Mapping for long reads, aligning for short reads, or used interchangeably.
- ✓ Discover genetic variations by comparing reads to a reference genome.
- √To do this, the best mapping positions between reads and the reference should be identified (Some Challenges will be here!).

- ❖ Genomes are very large (3 billion bases in human) and have repetitive regions.
- ❖ Naïve algorithms would take too much time and memory to map reads to a reference

Reference

Text

Read

Pattern

❖ Genomes are very large (3 billion bases in human) and have repetitive regions.

Reference

* Reads have <u>sequencing errors</u> (substitutions, insertions, and deletions).

- √ Mappers must able to find <u>inexact alignments</u> by tolerating differences.
- √ Substitutions are more tolerance than Indels.

* Reads could be mapped to many locations across the genome, which one will be reported?

- * Reads could be mapped to many locations across the genome, which one will be reported?
 - ❖ MQ is an estimation of the probability that a mapping is incorrect (it encodes many factors such as the number of mismatches, type of mismatch, quality scores, etc.)

Chr10:1020 AGGGACCGGTTCGTTTAGGGTTTGGTTCGTTGAGGCTTTAG

Mapping Quality: 10 AGGGATTGGTTCGTT

Chr2:2139 AGGGACCGGTTCGTTTAGGGTTTCGTTGAGGCTTTAG

AGGGATTGGTTCGTT Mapping Quality: 1

MAPPING QUALITY (MAPQ)

- What is the probability that the sequence should be mapped here and only here?
- MAPQ also uses the Phred (log) scale:

$$MAPQ = -10*log_{10}(P_{map_loc_wrong})$$

(P _{map_loc_wrong})	$log_{10}(P_{map_loc_wrong})$	MAPQ
1	0	0
0.1	-1	10
0.01	-2	20
0.001	-3	30
0.0001	-4	40

* Reads could be mapped to many locations across the genome, which one will be reported?

Low quality mismatches are less important than high quality mismatches.

- * Reads could be mapped to many locations across the genome, which one will be reported?
 - ❖ When two mappings have the same exact alignment, the mapping is ambiguous. Two positions are equal? Which one is correct?

❖ Reads could be mapped to many locations across the genome, which one will be reported?

❖ Choose one mapping position at random, MQ=0

AGGGTTTGGTTCGTTTTAGGGTTTGGTTCGTTGAGGCTTTAG Chr10:1020 AGGGATTGGTTCGTT AGGGATCGGTTCGTTTAGGGTTTGGTTCGTTGAGGCTTTAG Chr2:2139 AGGGAACGGTTCGTT

- * Reads could be mapped to many locations across the genome, which one will be reported?
 - Paired-end reads can help in resolving ambiguous mappings.

* Reads could be mapped to many locations across the genome, which one will be reported?

AGGGTTTGGTTCGTTTTAGGGTTTGGTTCGTTGAGGCTTTAG

AGGGATTGGTTCGTT

AGGGATCGGTTCGTTTAGGGTTTGGTTCGTTGAGGCTTTAG

Chr2:2139 | | | | | | | | | | | | | | |

AGGGAACGGTTCGTT

* Reads could be mapped to many locations across the genome, which one will be reported?

SEQUENCE ALIGNMENT/MAPPING SOFTWARE

Λ	līd	100	- 10
Δ			
	ш	ıne	, I
)	

BWA-mem

Bowtie2

Novoalign

TopHat

STAR

GSNAP

Approach

Burrows-Wheeler

Burrows-Wheeler

hash-based

Burrows-Wheeler

hash-based (reads)

hash-based (reads)

Applications

DNA, SE, PE, SV

DNA, SE, PE, SV

DNA, SE, PE

RNA-seq

RNA-seq

RNA-seq

Availability

open-source

open-source

free for academic use

open-source

open-source

open-source

Genome Indexing and Mapping Approaches

Genome Indexing and Mapping Approaches

Genome Indexing and Mapping Approaches

Step1: hash/index the genome

Toy
genome CATGGTCATTGGTTCC
(16 bp)

Step1: hash/index the genome

CATGGTCATTGGTTCC

k = 3 Kmer/Hash CAT **Genome Positions**

Could be zero-based indexing

Step1: hash/index the genome

CATGGTCATTGGTTCC

k = 3	<u>Kmer/Hash</u>	Genome Positions
	CAT	1
	ATG	2

Step1: hash/index the genome

CATGGTCATTGGTTCC

k = 3	Kmer/Hash	Genome Positions
	CAT	1
	ATG	2
	TGG	3

Step1: hash/index the genome

k = 3	Kmer/Hash	Genome Positions		
	CAT	1		
	ATG	2		
	TGG	3		
	GGT	4		

Step1: hash/index the genome

k = 3	Kmer/Hash	Genome Positions
	CAT	1
	ATG	2
	TGG	3
	GGT	4
	GTC	5

Step1: hash/index the genome

k = 3	Kmer/Hash	Genome Positions
	CAT	1
	ATG	2
	TGG	3
	GGT	4
	GTC	5
	TCA	6

Step1: hash/index the genome

k = 3	Kmer/Hash	Genome Positions
	CAT	1,7
	ATG	2
	TGG	3
	GGT	4
	GTC	5
	TCA	6

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
С	A	T	G	G	T	C	A	T	T	G	G	T	T	C	C

Step1: hash/index the genome CATGGTCATTGGTTCC

Complete hash/kmer index of our toy genome (forward strand only), k=3

Kmer/hash	Genomic position
CAT	1,7
ATG	2
TGG	3,10
GGT	4,11
GTC	5
TCA	6
ATT	8
TTG	9
GTT	12
TTC	13
TCC	14

-Genome Index

41

TYPICAL MAPPING/ALIGNMENT WORKFLOW

Genome Indexing and Mapping Approaches

Step2: use the index to map (i.e., find alignment locations) reads

Genome Index

Kmer/hash	Genomic position
CAT	1,7
ATG	2
TGG	3,10
GGT	4,11
GTC	5
TCA	6
ATT	8
TTG	9
GTT	12
TTC	13
TCC	14

Step2: use the index to map (i.e., find alignment locations) reads. **Genome Index**

			Kmer/hash	Genomic position
			CAT	1,7
			ATG	2
	→ Read	TGGTCA	TGG	3,10
	Read	TGGTCA Hash m	GGT	4,11
			GTC	5
	TGG	3,10	TCA	6
			ATT	8
			TTG	9
			GTT	12
			TTC	13
ides curiosity from Aaro	n Quinlan: https://github.c	om/quinlan-lab/applied-comput	onal-genomics TCC	14

Step2: use the index to map (i.e., find alignment locations) reads. Genome Index

45

Step2: use the index to map (i.e., find alignment locations) reads.

Step2: use the index to map (i.e., find alignment locations) reads

Genome Index

	Kmer/hash	Genomic position
	CAT	1,7
	ATG	2
→ Read TGGTCT	TGG	3,10
Read 166101	GGT	4,11
$\sqrt{}$	GTC	5
{3,10}	TCA	6
	ATT	8
T is an erroneous bases?	TTG	9
Alignments will be tolerated to mismatches \	GTT	12
	TTC	13
Slides curiosity from Aaron Quinlan: https://github.com/quinlan-lab/applied-computational-genomics	TCC	14

47

EDIT DISTANCE (LEVENSHTEIN DISTANCE)

How many edits (changes) must be made to a word or kmer to make it match (align) to another word or kmer?

What is the difference between Edit distance & Hamming distance?

TGTTACGG TG-TT-ACGG
GGTTGACTA -GGTTGACTA

Edit distance = 5

TGTT-ACGG
GGTTGACTA

Edit distance = 4

Step2: use the index to map (i.e., find alignment locations) reads

Genome Index

Or :T is a True variation on the read and should be reported and studied.

Kmer/hash	Genomic position
CAT	1,7
ATG	2
TGG	3,10
GGT	4,11
GTC	5
TCA	6
ATT	8
TTG	9
GTT	12
TTC	13
TCC	14

Thought experiment: what is a good choice of hash size (k for k-mers) for building a hash table to facilitate sequence mapping to the human genome?

Thought experiment: what is a good choice of hash size (k for k-mers) for building a hash table to facilitate sequence mapping to the human genome?

k=10?

4¹⁰ (1,048,576)

Every one of these is present in the human genome at least once

http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-167

It takes a very long k-mer to be unique in most genomes!

http://genome.cshlp.org/content/20/9/1165

- We have a sequencing run with over 100 million reads.
- ➤ After processing, the reads are between 20 and 25 nucleotide long.
- >We would like to know if these sequences are in the human genome, and if so where.
- For a 20-mer such as ACGTGTGACGTGATCTGAGC takes about 10 seconds.
- ➤ Querying 100 million sequences would take more than 30 years.
- >Without any indexing techniques, the whole genome will be scanned for every query.
- > Hash-based indexing, access time is fast, does not depend on the text size.

- Kmers length ranges from 20 to 25 chars, each character will be represented in two bits (A:00, C:01, G:10, T:11). 20 to 25 kmers will take 40 to 50 bits of storage.
- The human genome contains over 3.2 billion nucleotides, so we need at least 108 GB (in reality many 20 to 25-mers are repeated so this number would be lower).
- If the storage required for the locations and the overhead for the dictionary will be added, the total size will be over 200 GB.

Thank you!