Визуализация мышечных сокращений

Выполнил: Кузин Антон Андреевич группа ИУ7-52Б

Научный руководитель: Строганов Юрий Владимирович

Цель и задачи работы

Цель – разработать программу, моделирующую мышечные сокращения.

Задачи:

- 1. Выбрать алгоритмы машинной графики, с помощью которых будет визуализирована трёхмерная сцена и построена анимация.
- 2. Выбрать метод для визуализации мышц.
- 3. Спроектировать архитектуру программы и структуры данных для хранения модели.
- 4. Реализовать выбранные алгоритмы.

Выбор метода моделирования мышц

Метод	Преимущества	Недостатки
Использован ие деформируе мых эллипсоидов	 позволяет симулировать и изометрическое и изотоническое сокращение параметры регулируются простыми математическими соотношениями возможно моделирования сложных мышц 	 при полигональном представлении необходимо аппроксимировать эллипсоиды не учитывает физическую составляющую сокращения
Обобщенная цилиндриче ская модель	 представляет возможность регулировать каждый отдельный участок мышцы изменение формы регулируется простым соотношением 	 моделируется только изометрическое сокращение не учитывает физическую составляющую сокращения
Mass-spring system	позволяет рассчитать силу сокращенийучитывает физический фактор	• моделирует только мышцы, обладающие вытянутой формой
Метод конечных элементов	 учитывает силу сокращения мышцы аппроксимируются отдельными упругими элементами 	 требует интерполирования между вершинами модели и блоков требует расчёта динамических уравнений равновесия для каждой вершины блоков

Выбор метода моделирования

Метод	Преимущества	Недостатки
Каркасный	 низкие вычислительные затраты для представления небольшой объём затрачиваемой памяти для хранения 	• низкая информативность
Граничная	 удобство масштабирования объектов небольшой объем данных для описания поверхностей, аппроксимируемых плоскими гранями при применении преобразований вычисляются только координаты вершин 	 аппроксимация плоскими гранями приводит к погрешности моделирования сложности с топологическими операциями
Сплошная	 простое выполнение топологических операций позволяет просто описывать сложные объекты и сцены 	 большое количество информации, необходимой для представления объёмных данных сложности при уменьшении и увеличении объектов

Выбор алгоритма удаления невидимых граней

Алгоритм	Преимущества	Недостатки
Алгоритм Робертса	• относительная простота	• теоретическая трудоёмкость растёт как квадрат числа объектов
Алгоритм Варнока	• затрачивается мало времени на обработку областей, содержащих малое количество информации	• необходимость производить большое количество разбиений
Алгоритм, использующий Z-буфер	 обладает не более чем линейной вычислительной трудоёмкостью простота реализации пересечение поверхностей тривиально 	• необходимость хранить буфер глубины
Алгоритм трассировки лучей	 возможность изображения гладких объектов без аппроксимации их примитивами вычислительная сложность метода линейно зависит от сложности сцены высокая реалистичность изображения 	• большие вычислительные затраты на поиск пересечений

Выбор метода закраски

Метод	Преимущества	Недостатки
Метод простой закраски	простота реализациинизкая вычислительная трудоёмкость	• одна интенсивность для всей грани
Метод Гуро	• устраняет дискретность изменения интенсивности	появление полос Маханекоторые рёбра могут казаться сглаженными
Метод Фонга	 устраняет дискретность изменения интенсивности отсутствует проблема полос Маха 	• более высокие вычислительные затраты по сравнению с методом Гуро

Выбор метода морфинга

Метод	Преимущества	Недостатки
Двумерный морфинг	• меньшие временные затраты на отрисовку, так как преобразовывается изображение, а не трёхмерная модель	 необходимо выделить основные точки и установить соответствие между ними проблемы с изменением видимости
Трехмерный морфинг	 учитывает источники освещения и положения камеры промежуточные формы не зависят от точки обзора и освещения 	 затраты на установление соответствия вершин необходимость обрабатывать каждую трёхмерную форму

Общий алгоритм работы программы

Модель скелетных мышц с использованием деформируемых эллипсоидов

Для представления сокращения параметры эллипсоида задаются с помощью математических уравнений, что позволяет сохранять объем и соотношение между высотой и шириной мышцы. Объем рассчитывается по формуле:

$$v = \frac{4\pi abc}{3}$$

Полагая l ' новой длиной мышцы, r=a/b , то

$$c' = \frac{l'}{2}, b' = \sqrt{\frac{3v}{4\pi rc'}}, a' = b'r$$

Для визуализации изометрического сокращения мышцы соотношения r пересчитывается по формуле:

$$r = (1 - t + kt)r_n$$

Простая модель освещения

В простой модели освещения интенсивность рассчитывается по формуле Ламберта

$$I = I_a k_a + I_l k_d cos \theta, 0 \le \theta \le \frac{\pi}{2},$$

Где I - интенсивность отражённого света, I_l - интенсивность точечного источника, k_d - коэффициент диффузного отражения ($0 \le k_d \le 1$), θ - угол между направлением света и нормалью к поверхности,

 I_a - интенсивность рассеянного света, k_a - коэффициент диффузного отражения рассеянного света

$$(0 \le k_a \le 1).$$

Выбор языка программирования и среды разработки

Язык программирования Python

- Ознакомился с этим языком во время обучения
- Поддержка ООП

Среда разработки PyCharm Community Edition

Для создания графического интерфейса использую PyQt5

Интерфейс программы

Изотоническое сокращение

Изометрическое сокращение

Результаты исследования

Заключение

В результате выполнения данной работы цель была достигнута и решены поставленные задачи:

- 1. Выбраны алгоритмы машинной графики, с помощью которых была визуализирована трёхмерная сцена и построена анимация сокращения.
- 2. Выбран метод для визуализации мышц.
- 3. Спроектированы архитектура программы и структуры данных для хранения модели.
- 4. Реализованы выбранные алгоритмы.