2.2. 6.
$$f(x) = f(x) - f(x+a)$$

 $F(o) \cdot F(a) = (f(o) - f(a)) (f(a) - f(o)) \leq 0$.
v.s. Chapter 2 · 5.
 $F(x) = f(x) - f(x+h)$

$$\begin{cases} F(x) = f(x) - f(x), \\ F(x) = f(x) - f(x)$$

13.0
$$\exists x \ an \Rightarrow a \ (an > a)$$
, $|am - an| < 8 \ (n > N)$
 $\Rightarrow |f(am) - f(an)| < \varepsilon \ (n > N)$
 $\Rightarrow |f(am) - f(an)| < \varepsilon \ (n > N)$
 $\Rightarrow |x' - x''| < 8$
 $\Rightarrow |x' - x''| < 8$
 $\Rightarrow |f(x') - f''(x'')| < \varepsilon$.

7.
$$M = \sup_{x \to \infty} f(x)$$
. $M = \inf_{x \to \infty} f(x)$. $M > 1 > m$

if $M > 1 > m$

$$\Rightarrow f(x) < \text{ If } E = \frac{M-1}{2} < M$$

$$\Rightarrow f(x) < \text{ If } E = \frac{M+1}{2} < M$$

在 Ta , $X T$ $Ta > 0$, $Ta > 0$. $Ta > 0$

$$\begin{aligned} &\forall \chi_{i} \in [a,b] \ , \ Def \quad \chi_{nn\bar{i}} = f(\chi_{n}) \\ &|\chi_{n-1} - \chi_{n}| = |f(\chi_{n}) - f(\chi_{n-1})| \leq k |\chi_{n} - \chi_{n-1}| \leq \dots \leq k^{n-1} |\chi_{2} - \chi_{1}| \\ &\Rightarrow |\chi_{n-1} - \chi_{n}| \leq (k^{n+p-2} + \dots + k^{n-1}) |\chi_{2} - \chi_{1}| \leq \frac{k^{n-1}}{1-k} |\chi_{2} - \chi_{1}| \to 0 \end{aligned}$$

(1) · (1) · (4)

$$P_{n+1}(x) = \chi^{n+1} + P_n(x)$$

$$\overline{A} \Rightarrow 1 - \chi_n^n = \frac{1}{\chi_n} - 1 \qquad \chi_n^n < \chi_1^n \to 0 \qquad \Rightarrow \qquad \chi_n \to \frac{1}{2} \qquad (x_n) = \frac{1}{\chi_n} - 1 \qquad ($$

from
$$\tilde{\Sigma}$$

from $\tilde{\Sigma}$

from $\tilde{\Sigma}$
 $\tilde{\Sigma}$
 $\tilde{\Sigma}$

(2).
$$Q_n = (\chi + 2\chi^2 + ... + h\chi^h)' = (\chi(1 + 2\chi + ... + h\chi^{h-1}))'$$

3.1
$$f(x) = \begin{cases} \chi^{x} \sin \frac{1}{x}, & \chi \neq 0 \\ 0, & \chi = 0 \end{cases}$$

$$d>0$$
 $C(IR)$ $d>1$ $f'(x) = { $\chi^{d-1} \left(d \times s \Delta s \frac{1}{\lambda} + s in \frac{1}{\lambda} \right) } \chi \neq 0$ $d>1$ $C'(IR)$ $C'(IR)$$

3.3 2.
$$F(1) = F(2) \Rightarrow \exists y \in (1,2)$$
 . s.t. $F'(y) \Rightarrow 0$ $\exists y \notin (1, y)$. s.t. $F'(y) = 0$.
$$F'(x) = 2(x-1) f(x) + (x-1)^{2} f'(x) \Rightarrow F'(1) \Rightarrow 0$$

4. (3). ①
$$P \tilde{n} = \frac{a+b}{2} \ln \frac{a+b}{2} - a \ln a < b \ln b - \frac{a+b}{2} \ln \frac{a+b}{2}$$
 $f(x) = x \ln x$, $f'(x) = \ln x + 1$, $f'(x) = \frac{1}{x} > 0$
 $\exists y \in (a, \frac{a+b}{2})$, $s \cdot t = \frac{a+b}{2} \ln \frac{a+b}{2} - a \ln a = \frac{b-a}{2} f'(y)$
 $\exists \eta \in (\frac{a+b}{2}, b)$, $s \cdot t = b \ln b - \frac{a+b}{2} \ln \frac{a+b}{2} = \frac{b-a}{2} f'(\eta)$
 $g < \eta$
 $g < \eta$
 $g < \eta$
 $g = \frac{1}{2} \ln \frac{a+b}{2} = \frac{a+b}{2} \ln \frac{a+b}{2} = \frac{b-a}{2} \ln \frac{a+b}{2} = \frac{a+b}{2} \ln \frac{a+b}{2} = \frac{a$

$$g(0) > 0$$
. $g(1) = f(1) - 1 < 0$. $\exists x^*, s.t. f(x^*) = x^*$

7.
$$i = \lim_{x \to \infty} f(x)$$
 $f(x)$ $f(x) = \lim_{x \to \infty} f(x)$ $f(x)$ $f(x) = \lim_{x \to \infty} f(x)$ $f(x) = \lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$ $f(x) = \lim_{x \to \infty} f(x) = \lim_$

$$|f(y)-f(0)| < y$$
. $|f(y)-f(0)| < |-2+y|$