The Operator

An important problem in mathematical physics is the solution of the one-dimensional Schrödinger equation with distributional potential, which is formally defined by the operation

$$-\frac{d^2}{dx^2} + \rho \sum_{i \in \mathbb{Z}} \delta_{x_i} \tag{1.1}$$

on the whole of \mathbb{R} where f is a function modelling an external force and x_i are periodically distributed. Ω_k will denote the periodicity cell containing delta point x_k and let w.o.l.g. $x_0 = 0$ and $|\Omega_i| = 1 \ \forall i \in \mathbb{Z}$. Henceforth, consider for a $\mu \in \mathbb{R}$ small enough the problem

$$\int u'\overline{v'} + \rho \sum_{i \in \mathbb{Z}} u(x_i)\overline{v(x_i)} - \mu \int u\overline{v} = \int f\overline{v}, \quad \forall v \in H^1(\mathbb{R})$$
 (1.2)

where $f \in L^2(\mathbb{R})$ and $u \in H^1(\mathbb{R})$.

This expression actually converges as for arbitrary $\tilde{x}_i \in \Omega_i$

$$\sum_{i \in \mathbb{Z}} |u(x_i)|^2 \leq \sum_{i \in \mathbb{Z}} \left(|u(\tilde{x}_i) + \int_{\tilde{x}_i}^{x_i} u'(\tau) d\tau | \right)^2 \\
\leq 2 \sum_{i \in \mathbb{Z}} \left(\int_{\Omega_i} |u(x)|^2 dx + \int_{\Omega_i} |u'(\tau)|^2 d\tau \right) \\
\leq 2 \cdot ||u||_{H^1(\mathbb{R})}^2$$
(1.3)

Now, as we can interpret the left-hand side of (1.2) as a bounded bilinear mapping $B: H^1(\mathbb{R}) \times H^1(\mathbb{R}) \to \mathbb{R}$, Lax Milgram's Theorem asserts the existence of a unique element $u \in H^1$ satisfying

$$B[u,v] = \langle f, v \rangle$$

if there exist constants $\alpha, \beta >$ such that

(i)
$$|B[u,v]| \le \alpha ||u|| ||v|| \quad (u,v \in H^1(\mathbb{R}))$$

and

(ii)
$$\beta \|u\|^2 \le B[u, u] \quad (u \in H^1(\mathbb{R}))$$

Taking these two condition under examination, (1.3) yields for the norm of B[u, v] both:

Theorem 1.1. The bilinear form B[u, v] is bounded.

Proof.

$$|B(u,\varphi)|^{2} \leq ||u'|| \cdot ||v'|| + 2\rho \sum_{i \in \mathbb{Z}} |u(x_{i})|^{2} |v(x_{i})|^{2} - \mu ||u|| \cdot ||v||$$

$$\leq ||u'|| \cdot ||v'|| + 8\rho \cdot ||u||_{H^{1}(\mathbb{R})}^{2} ||v||_{H^{1}(\mathbb{R})}^{2} - \mu ||u|| \cdot ||v||$$

$$= (8\rho - \mu)||u|| \cdot ||v|| + 8\rho (||u|| \cdot ||v'|| + ||u'|| \cdot ||v||) + (8\rho + 1)||u'|| \cdot ||v'||$$

$$\leq \alpha \cdot ||u||_{H^{1}} \cdot ||\varphi||_{H^{1}}$$

and

Theorem 1.2. B[u, u] is coercive.

Proof. Lets first assume $\rho \geq 0$ then for $\mu < -1$:

$$B(u, u) = \langle u', u' \rangle + \rho \sum_{i \in \mathbb{Z}} u(x_i)^2 - \mu \langle u, u \rangle$$
$$\geq \langle u', u' \rangle - \mu \langle u, u \rangle \geq \langle u', u' \rangle + \langle u, u \rangle$$
$$= \|u\|_{H^1}^2$$

and for $\rho < 0$:

$$B(u, u) = \langle u', u' \rangle + \rho \sum_{i \in \mathbb{Z}} |u(x_i)|^2 - \mu \langle u, u \rangle$$

$$= \langle u', u' \rangle + \rho \sum_{i \in \mathbb{Z}} |u(\tilde{x}_i)|^2 + \int_{\tilde{x}_i}^{x_i} u(x) dx |^2 - \mu \langle u, u \rangle$$

$$\geq \langle u', u' \rangle + 2\rho \left(\int_{\mathbb{R}} |u(x)|^2 dx + \int_{\mathbb{R}} |u'(\tau)|^2 d\tau \right) - \mu \langle u, u \rangle$$

$$= (2\rho + 1) ||u'||^2 + (2\rho - \mu) ||u||^2$$

$$\geq \beta ||u||_{H^1}^2$$

Such that that the problem (1.2) has the unique element $u \in H$ and with that the resolvent mapping $R_{\mu} \colon L^{2}(\mathbb{R}) \to H^{1}(\mathbb{R}), f \mapsto u$ is well-defined; obviously the mapping is one-to-one since for $u_{1} = u_{2}$

$$0 = B[u_1, v] - B[u_2, v] = \int (f_1 - f_2)\overline{v}, \quad \forall v \in H^1(\mathbb{R})$$

and as H^1 is dense in L^2 this means that this equation holds also for all $v \in L^2(\mathbb{R})$ and therefore $f_1 = f_2$ almost everywhere. Accordingly R_{μ} is bijective and in turn we can define

$$A := R_{\mu}^{-1} + \mu I$$
 and with that $\mathcal{D}(A) = \mathcal{R}(R_{\mu})$

The Domain

For every fixed $k \in \mathbb{Z}$ choosing a $v \in C^{\infty}(\mathbb{R})$ with supp $v = \Omega_k$ as test function in (1.2) yields

$$\int_{x_k - 1/2}^{x_k} u'(x) \overline{v'(x)} dx = \int_{x_k - 1/2}^{x_k} Au \overline{v} \iff \int_{x_k - 1/2}^{x_k} u(x) \overline{v''(x)} dx = \int_{x_k - 1/2}^{x_k} -Au \overline{v}$$

Such that $Au = -u'' \in L^2$ on $(x_k - 1/2, x_k)$ and analogously on $(x_k, x_k + 1/2)$. As $k \in \mathbb{Z}$ was arbitrary $\mathcal{D}(A) \subset \left\{ u \in \bigcap_{i \in \mathbb{Z}} \left(H^2(x_i - 1/2, x_i) \cap H^2(x_i, x_i + 1/2) \right) \right\}$.

Next, again for an arbitrary $k \in \mathbb{Z}$ choosing a $v \in C^{\infty}(\mathbb{R})$ such that supp $v = \Omega_k$ and integrating in (1.2) on both sides of x_k by parts yields

$$-\left(\int_{x_k-1/2}^{x_k}+\int_{x_k}^{x_k+1/2}\right)u''\cdot\overline{v}+\left(u'(x_k-0)\overline{v(x_k)}-u'(x_k+0)\overline{v(x_k)}\right)$$

$$+\rho u(x_k)\overline{v(x_k)} = -\int_{x_k-1/2}^{x_k} u''\overline{v} - \int_{x_k}^{x_k+1/2} u''\overline{v}$$

But as $v \in C^{\infty}(\mathbb{R})$ this is equivalent to

$$u'(x_k - 0) - u'(x_k + 0) + \rho u(x_k) = 0$$

Such that

$$\mathcal{D}(A) \subset \left\{ u \in \bigcap_{i \in \mathbb{Z}} H^2(x_i, x_{i+1}), u'(x_i - 0) - u'(x_i + 0) + \rho u(x_i) = 0, \ \forall i \in \mathbb{Z} \right\} =: B$$

and the action of the operator is defined by

$$Au = \begin{cases} -u'' & (x_k - \frac{1}{2}, x_k) \\ -u'' & (x_k, x_k + \frac{1}{2}) \end{cases}, \ \forall k \in \mathbb{Z}$$

The opposite inclusion is shown, as $\mathcal{R}(R_{\mu}) = \mathcal{D}(A)$, by proving that a $u \in B$ is also in the range of R_{μ} . More specifically, as $\mathcal{D}(R_{\mu}) = L^{2}(\mathbb{R})$ define f := Au and show that $u = R_{\mu}(f - \mu u)$:

$$\int_{\mathbb{R}} u' \overline{v'} + \rho \sum_{i \in \mathbb{Z}} u(x_i) \overline{v(x_i)} - \mu \int_{\mathbb{R}} u \overline{v} = \int_{\mathbb{R}} (f - \mu u) \overline{v}$$

$$\iff \sum_{i \in \mathbb{Z}} \int_{\Omega_i} u' \overline{v'} + \rho u(x_i) \overline{v(x_i)} = -\sum_{i \in \mathbb{Z}} \int_{x_i - 1/2}^{x_i} u'' \overline{v} + \int_{x_i}^{x_i + 1/2} u'' \overline{v}$$

For each $k \in \mathbb{Z}$ partial integration for a v with supp $v = (x_k - 1/2, x_k + 1/2)$ yields

$$\left(\int_{x_k - 1/2}^{x_k} + \int_{x_k}^{x_k + 1/2} \right) u' \overline{v'} - u'(x_k - 0) \overline{v(x_k)} + u'(x_k + 0) \overline{v(x_k)} = \int_{\Omega_k} u' \overline{v'} + \rho u(x_k) \overline{v(x_k)}$$

$$\iff u'(x_k + 0) - u'(x_k - 0) - \rho u(x_k) = 0$$

such that

$$\mathcal{D}(A) = \left\{ u \in H^1(\mathbb{R}) : u \in \bigcap_{j \in \mathbb{Z}} H^2(x_j, x_{j+1}), u'(x_j - 0) - u'(x_j + 0) + \rho \cdot u(x_j) = 0 \ \forall j \in \mathbb{Z} \right\}$$

Furthermore, A is self-adjoint which will be later important.¹

Theorem 2.1. A is a self-adjoint operator

¹Here HAS to be some more text but I don't know what

Proof. First, focus on $R_{\mu}(A)^{-1} = (A - \mu I)$ which is a symmetric operator as $\forall v \in H^1$:

$$\begin{split} \langle R_{\mu}^{-1}u,v\rangle &= \langle (A-\mu I)u,v\rangle \\ &= \int (A-\mu I)(u)\overline{v}dx \\ &= \int u'\overline{v'} - \lambda \int u\overline{v} + \rho \sum_{i\in\mathbb{Z}} u(x_i)\overline{v(x_i)} \\ &= \langle u, (A-\mu I)v\rangle = \langle u, R_{\mu}^{-1}v\rangle \end{split}$$

Now as $\mathcal{D}(R_{\mu}) = L^2(\mathbb{R})$ and $\mathcal{R}(R_{\mu}) = \mathcal{D}(R_{\mu}^{-1})$ for each $f, g \in L^2(\mathbb{R})$ it follows

$$\langle R_{\mu}f, g \rangle = \langle R_{\mu}f, R_{\mu}^{-1}R_{\mu}g \rangle = \langle f, R_{\mu}g \rangle$$

such that also R_{μ} is symmetric. Both can be used to show that R_{μ} is even self-adjoint, as for an arbitrary $v^* \in \mathcal{D}(R_{\mu}^{-1})$ there exists a $v \in \mathcal{R}(R_{\mu}^{-1}) = \mathcal{D}(R_{\mu})$:

$$\langle u, v^* \rangle = \langle R_{\mu}^{-1} R_{\mu} u, v^* \rangle = \langle R_{\mu} u, v \rangle = \langle u, R_{\mu} v \rangle$$

Which means $v^* \in \mathcal{R}(R_{\mu})$ and therefore is R_{μ}^{-1} self-adjoint. As A is simply R_{μ}^{-1} shifted by the real constant μ , A is self-adjoint as well.

Fundamental domain of periodicity and the Brillouin zone

Let Ω be the fundamental domain of periodicity associated with (1.1), for simplicity let $\Omega = \Omega_0$ and with that $x_0 = 0$ being the delta-point contained in Ω . As commonly used by literature the reciprocal lattice for Ω is equal to $[-\pi, \pi]$, this set is the so called one-dimensional Brillouin zone B. For fixed $k \in \overline{B}$, consider now the operator A_k on Ω formally defined by the operation

$$-\frac{d^2}{dx^2} + \rho \delta_{x_0}$$

More precicely, define A_k as follows: let us consider the problem to find for $f \in L^2(\Omega)$ a $u \in H^1_k$ such that

$$\int_{\Omega} u' \overline{v'} + \rho u(x_0) \overline{v(x_0)} - \mu \int_{\Omega} u \overline{v} = \int_{\Omega} f \overline{v}, \quad \forall v \in H_k^1$$

where

$$H_k^1 := \left\{ H^1(\Omega) : \psi(-\frac{1}{2}) = e^{ik}\psi(-\frac{1}{2}), \psi'(-\frac{1}{2}) = e^{ik}\psi'(-\frac{1}{2}) \right\}$$

and $\psi'(x_0 - 0) - \psi'(x_0 + 0) + \rho\psi'(x_0) = 0$ (3.1)

Using the fact that H_k^1 is a closed subspace¹ of $H^1(\mathbb{R})$ one can use the same arguments as above for A to show that the resolvent $R_{\mu,k}$ of A_k is well defined and analogously as before

$$A_k := R_{\mu,k}^{-1} + \mu$$

Subsequently, we will now mainly consider the eigenvalue problem

$$A_k \psi = \lambda \psi \text{ on } \Omega,$$
 (3.2)

In writing the boundary condition in the form (3.1), we understand ψ extended to the whole of \mathbb{R} . In fact, (3.1) forms boundary conditions on $\partial\Omega$, so-called semi-periodic boundary conditions. Furthermore we know that (3.2), (3.1) is a symmetric eigenvalue problem² in $L^2(\Omega)$ and ψ from (3.2) extended to the whole of \mathbb{R} by (3.1) solves also the eigenvalue problem of A with the same eigenvalue.

Since Ω is bounded, the subsequently shown compactness can be used to prove that (3.2), (3.1) has a $\langle \cdot, \cdot \rangle$ -orthonormal and complete system $(\psi_s(\cdot, k))_{s \in \mathbb{N}}$ of eigenfunctions in $H^2_{loc}(\mathbb{R})$, with corresponding eigenvalues satisfying

$$\lambda_1(k) \le \lambda_2(k) \le \ldots \le \lambda_s(k) \to \infty \text{ as } s \to \infty$$

The eigenfunctions $\psi_s(\cdot, k)$ are called Bloch waves. They can be chosen such that they depend on k in a measurable way (see [M. Reed and B. Simon. Methods of modern mathematical physics I–IV]).

Theorem 3.1. The operator $R_{\mu,k}$ is compact.

Proof. For each bounded sequence $(f_j)_{j\geq 1}\in L^2(\Omega)$ there exist $(u_j)_{j\geq 1}\in H^1_k$ with

$$R_{\mu,k}f_j = u_j \quad \forall j \ge 1$$

¹I think I will explain this also in more detail

²explain this in more detail

Though such u_j has to satisfy

$$\int_{\Omega} u_j' \overline{v'} + \rho u_j(x_0) \overline{v(x_0)} - \mu \int_{\Omega} u_j \overline{v} = \int f_j \overline{v} \quad \forall v \in H_k^1$$

Now, choosing here $v = u_j$ and (1.3) yields for μ small enough

$$||u_j||_{H^1(\Omega)} \le ||f_j||_{L^2(\Omega)} ||u_j||_{L^2(\Omega)} \le c\sqrt{vol(\Omega)}$$

Which shows that this u_j is bounded in $H^1(\Omega)$. As $H^1(\Omega) \subset C(\Omega)$:

$$|f(x) - f(y)| \le c|x - y|^{1/2} \text{ for some } c > 0$$
 (3.3)

From (3.3) for a $f \in B_{H^1} := \{ f \in H_k^1(\Omega) : ||f|| \le 1 \} \exists g \in \{ g_1, \dots, g_{n_\epsilon} \} : ||f - g|| \le \epsilon$ it follows that

$$|f(x)|^2 \le 2||f||_{L^2}^2 + 2 \le 4 \quad \forall x \in \Omega$$

And with that we can approximate f by simple functions through partitioning Ω into n_{ϵ} equidistant intervals. As our simple function is constant on each subinterval, we chose this constant c_k such that $|f(\frac{k}{n}) - c_{k+1}| < \frac{1}{n}$ which leads to

$$||f - g||_{L^{2}}^{2} = \sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} |f - c_{k+1}|^{2} dx$$

$$= 2 \sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} |f - f(\frac{k}{n})|^{2} dx + 2 \sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} |f(\frac{k}{n}) - c_{k+1}|^{2} dx$$

$$\leq 2 \sum_{n=0}^{n-1} \frac{1}{n^{2}} + 2 \sum_{n=0}^{n-1} \frac{1}{n^{3}} = \frac{2}{n} + \frac{2}{n^{2}} < \epsilon^{2} \text{ for } n \text{ small enough.}$$

Which means $\forall f \in B_{H_k^1}$. Together with the closure of H_k^1 this yields the compact embedding of H_k^1 in $L^2(\Omega)$ such that $R_{\mu,k}$ is compact.

Now, we want to transform the eigenvalue problem (3.2) such that the boundary condition is independent from k. Define therefore

$$\varphi_s(x,k) \coloneqq e^{-ikx}\psi_s(x,k)$$

Then,

$$A_k \psi_s(x,k) = \frac{d^2}{dx^2} \psi_s(x,k)|_{(x_0 - \frac{1}{2}, x_0)} \cdot \mathbb{1}_{(x_0 - \frac{1}{2}, x_0)} + \frac{d^2}{dx^2} \psi_s(x,k)|_{(x_0, x_0 + \frac{1}{2})} \cdot \mathbb{1}_{(x_0, x_0 + \frac{1}{2})}$$

$$= e^{ikx} \left(\frac{d^2}{dx^2} + ik\right)^2 \varphi_s(x,k)|_{(x_0 - \frac{1}{2}, x_0)} \cdot \mathbb{1}_{(x_0 - \frac{1}{2}, x_0)}$$

$$+ e^{ikx} \left(\frac{d^2}{dx^2} + ik\right)^2 \varphi_s(x,k)|_{(x_0, x_0 + \frac{1}{2})} \cdot \mathbb{1}_{(x_0, x_0 + \frac{1}{2})}$$

Defining the operator $\tilde{A}_k \colon D(A_k) \to L^2(\mathbb{R})$,

$$\tilde{A}_k \varphi_s(x,k) \coloneqq \begin{cases} \left(\frac{d^2}{dx^2} + ik\right)^2 \varphi_s(x,k)|_{(x_0 - \frac{1}{2}, x_0)} & \text{for } x \in (x_0 - \frac{1}{2}, x_0) \\ \left(\frac{d^2}{dx^2} + ik\right)^2 \varphi_s(x,k)|_{(x_0, x_0 + \frac{1}{2})} & \text{for } x \in (x_0, x_0 + \frac{1}{2}) \end{cases}$$

Furthermore, using (3.2) and (3.1),

$$\varphi_s(x - \frac{1}{2}, k) = e^{-ik(x - \frac{1}{2})}\psi_s(x - \frac{1}{2}, k) = e^{-ik(x + \frac{1}{2})}\psi_s(x + \frac{1}{2}, k) = \varphi_s(x + \frac{1}{2}, k)$$

which shows that $(\varphi_s(\cdot, k))_{s \in \mathbb{N}}$ is an orthonormal and complete system of eigenfunctions of the periodic eigenvalue problem

$$\tilde{A}_k \varphi = \lambda \varphi \text{ on } \Omega,$$
 (3.4)

$$\varphi(x - \frac{1}{2}) = \varphi(x + \frac{1}{2}) \tag{3.5}$$

with the same eigenvalue sequence $(\lambda_s(s))_{s\in\mathbb{N}}$ as before. We shall see that the spectrum of the operator A can be constructed from the eigenvalue sequences $(\lambda_s(s))_{s\in\mathbb{N}}$ by varying k over the Brillouin zone B.

An important step towards this aim is the Floquet transformation

$$(Uf)(x,k) := \frac{1}{\sqrt{|B|}} \sum_{n \in \mathbb{Z}} f(x-n)e^{ikn} \quad (x \in \Omega, k \in B)$$
 (3.6)

Theorem 3.2. $U: L^2(\mathbb{R}) \to L^2(\Omega \times B)$ is an isometric isomorphism, with inverse

$$(U^{-1}g)(x-n) = \frac{1}{\sqrt{|B|}} \int_{B} g(x,k)e^{-ikn}dk \quad (x \in \Omega, n \in \mathbb{Z})$$
 (3.7)

If $g(\cdot, k)$ is extended to the whole of \mathbb{R} by the semi-periodicity condition (3.1), we have

$$U^{-1}g = \frac{1}{\sqrt{|B|}} \int_{B} g(\cdot, k) dk. \tag{3.8}$$

Proof. For $f \in L^2(\mathbb{R})$,

$$\int_{\mathbb{R}} |f(x)|^2 dx = \sum_{n \in \mathbb{Z}} \int_{\Omega} |f(x-n)|^2 dx.$$
 (3.9)

Here, we can exchange summation and integration by Beppo Levi's Theorem. Therefore,

$$\sum_{n\in\mathbb{Z}}|f(x-n)|^2<\infty \text{ for a.e. } x\in\Omega.$$

Thus, (Uf)(x,k) is well-defined by (3.6) (as a Fourier series with variable k) for a.e. $x \in \Omega$, and Parseval's equality gives, for these x,

$$\int_{B} |(Uf)(x,k)|^{2} dk = \sum_{n \in \mathbb{Z}} |f(x-n)|^{2}.$$

By (3.9), this expression is in $L^2(\Omega)$, and

$$||Uf||_{L^2(\Omega \times B)} = ||f||_{L^2(\mathbb{R})}.$$

We are left to show that U is onto, and that U^{-1} is given by (3.7) or (3.8). Let $g \in L^2(\Omega \times B)$, and define

$$f(x-n) := \frac{1}{\sqrt{|B|}} \int_{B} g(x,k)e^{-ikn}dk \quad (x \in \Omega, n \in \mathbb{Z}).$$
 (3.10)

For fixed $x \in \Omega$, Parseval's Theorem gives

$$\sum_{n \in \mathbb{Z}} |f(x-n)|^2 = \int_B |g(x,k)|^2 dk,$$

whence, by integration over Ω ,

$$\int_{\Omega \times B} |g(x,k)|^2 dx dk = \int_{\Omega} \sum_{n \in \mathbb{Z}} |f(x-n)|^2 dx$$
 (3.11)

$$= \sum_{n \in \mathbb{Z}} \int_{\Omega} |f(x-n)|^2 dx \tag{3.12}$$

$$= \int_{\mathbb{R}} |f(x)|^2 dx, \tag{3.13}$$

i.e. $f \in L^2(\mathbb{R})$. Now (3.6) gives, for a.e. $x \in \Omega$,

$$f(x-n) = \frac{1}{\sqrt{|B|}} \int_{B} (Uf)(x,k)e^{-ikn}dk \quad (n \in \mathbb{Z}),$$

whence (3.10) implies Uf = g and (3.7). Now (3.8) follows from (3.7) using $g(x + n, k) = e^{ikn}g(x, k)$.

Completeness of the Bloch waves

Using the Floquet transformation U, we are now able to prove a completeness property of the Bloch waves $\psi_s(\cdot, k)$ in $L^2(\Omega)$ when we vary k over the Brillouin zone B.

Theorem 4.1. For each $f \in L^2(\mathbb{R})$ and $l \in \mathbb{N}$, define

$$f_l(x) := \frac{1}{\sqrt{|B|}} \sum_{s=1}^l \int_B \langle (Uf)(\cdot, k), \psi_s(\cdot, k) \rangle_{L^2(\Omega)} \psi_s(x, K) dk \quad (x \in \mathbb{R}).$$
 (4.1)

Then, $f_l \to f$ in $L^2(\mathbb{R})$ as $l \to \infty$.

Proof. Sine $Uf \in L^2(\Omega \times B)$, we have $(Uf)(\cdot, k) \in L^2(\Omega)$ for a.e. $k \in B$ by Fubini's Theorem. Since $(\psi_s(\cdot, k))_{s \in \mathbb{N}}$ is orthonormal and complete in $L^2(\Omega)$ for each $k \in B$, we obtain

$$\lim_{l\to\infty} \|(Uf)(\cdot,k) - g_l(\cdot,k)\|_{L^2(\Omega)} = 0 \text{ for a.e. } k \in B$$

where

$$g_l(x,k) := \sum_{s=1}^l \langle (Uf)(\cdot,k), \psi_s(\cdot,k) \rangle_{L^2(\Omega)} \psi_s(x,k). \tag{4.2}$$

Thus, for $\chi(k) := \|(Uf)(\cdot, k) - g_l(\cdot, k)\|_{L^2(\Omega)}^2$, we get

$$\chi_l(k) \to 0$$
 as $l \to \infty$ for a.e. $k \in B$,

and moreover, by Bessel's inequality,

$$\chi_l(k) \leq \|(Uf)(\cdot,k)\|_{L^2(\Omega)}^2$$
 for all $l \in \mathbb{N}$ and a.e. $k \in B$

and $\|(Uf)(\cdot,k)\|_{L^2(\Omega)}^2$ is in $L^1(B)$ as a function of k by Theorem 3.2. Altogether, Lebesgue's Dominated Convergence theorem implies

$$\int_{B} \chi_l(k) dk \to 0 \text{ as } l \to \infty,$$

i.e.,

$$||Uf - g_l||_{L^2(\Omega \times B)} \to 0 \text{ as } l \to \infty$$
 (4.3)

Using (4.1), (4.2) and (3.8), we find that $f_l = U^{-1}g_l$, whence (4.3) gives

$$||U(f-f_l)||_{L^2(\Omega\times B)}\to 0$$
 as $l\to\infty$,

and the assertion follows since $U \colon L^2(\mathbb{R}) \to L^2(\Omega \times B)$ is isometric by Lemma (3.2).

The spectrum of A

In this section, we will prove the main result stating that

$$\sigma(A) = \bigcup_{s \in \mathbb{N}} I_s \tag{5.1}$$

where

$$I_s := \{\lambda_s(k) : k \in \overline{B}\} \quad (s \in \mathbb{N})$$

For each $s \in \mathbb{N}$, λ_s is a continuous function of $k \in \overline{B}$, which follows by standard arguments from the fact that the coefficients in the eigenvalue problem (3.4), (3.5) depend continuously on k. Thus, since B is compact and connected,

$$I_s$$
 is a compact real interval, for each $s \in \mathbb{N}$. (5.2)

Moreover, Poincare's min-max principle for eigenvalues implies that

$$\mu_s \leq \lambda_s(k)$$
 for all $s \in \mathbb{N}, k \in \overline{B}$

with $(\mu_s)_{s\in\mathbb{N}}$ denoting the sequence of eigenvalues of problem (3.2) with Neumann ("free") boundary conditions. Since $\mu_s \to \infty$ as $s \to \infty$, we obtain

$$\min I_s \to \infty \text{ as } s \to \infty$$
,

which together with (5.2) implies that

$$\bigcup_{s\in\mathbb{N}}I_s \text{ is close.}$$

The first part of the statement (5.1) is

Theorem 5.1. $\sigma(A) \supset \bigcup_{s \in \mathbb{N}} I_s$.

Proof. Let $\lambda \in \bigcup_{s \in \mathbb{N}} I_s$, i.e. $\lambda = \lambda_s(k)$ for some $s \in \mathbb{N}$ and some $k \in \overline{B}$, and

$$A\psi_s(\cdot, k) = \lambda\psi_s(\cdot, k) \tag{5.3}$$

We regard $\psi_s(\cdot, k)$ as extended to the whole of \mathbb{R} by the boundary condition (3.1), whence, due to the periodicity of A, (5.3) holds for all $x \in \mathbb{R}$ and $\psi_s \in H^2_{loc}(\mathbb{R})$ We choose a function $\eta \in H^2(\mathbb{R})$ such that

$$\eta(x) = 1 \text{ for } |x| \le \frac{1}{4}, \quad \eta(x) = 0 \text{ for } |x| \ge \frac{1}{2},$$

and define, for each $l \in \mathbb{N}$,

$$u_l(x) := \eta\left(\frac{|x|}{l}\right)\psi_s(x,k).$$

Then,

$$(A - \lambda I)u_{l} = \sum_{j \in \mathbb{N}} \left[\left(-\frac{d^{2}}{dx^{2}} - \lambda \right) u_{l}|_{(x_{j}, x_{j+1})} \cdot \mathbb{1}_{(x_{j}, x_{j+1})} \right]$$

$$= \sum_{j \in \mathbb{N}} \left[\left(-\frac{d^{2}}{dx^{2}} - \lambda \right) \left(\eta \left(\frac{|\cdot|}{l} \right) \psi_{s}(\cdot, k) \right) \Big|_{(x_{j}, x_{j+1})} \cdot \mathbb{1}_{(x_{j}, x_{j+1})} \right]$$

$$- \frac{2}{l} \sum_{j \in \mathbb{N}} \left[\left(\eta' \left(\frac{|\cdot|}{l} \right) \psi_{s}'(\cdot, k) \right) \Big|_{(x_{j}, x_{j+1})} \cdot \mathbb{1}_{(x_{j}, x_{j+1})} \right]$$

$$- \frac{1}{l^{2}} \sum_{j \in \mathbb{N}} \left[\left(\eta'' \left(\frac{|\cdot|}{l} \right) \psi_{s}(\cdot, k) \right) \Big|_{(x_{j}, x_{j+1})} \cdot \mathbb{1}_{(x_{j}, x_{j+1})} \right]$$

$$= \sum_{j \in \mathbb{N}} \left[\eta \left(\frac{|\cdot|}{l} \right) \left(-\frac{d^{2}}{dx^{2}} - \lambda \right) \psi_{s}(\cdot, k) \Big|_{(x_{j}, x_{j+1})} \cdot \mathbb{1}_{(x_{j}, x_{j+1})} \right] + R$$

where R is a sum of products of derivatives (of order ≥ 1) of $\eta(\frac{|\cdot|}{l})$, and derivatives (of order ≤ 1) of $\psi_s(\cdot, k)$. Thus (note that $\psi_s(\cdot, k) \in H^2_{loc}(\mathbb{R})$), and the semi-periodic structure of $\psi_s(\cdot, k)$ implies

$$||R|| \le \frac{c}{l} ||\psi_s(\cdot, k)||_{H^1(K_l)} \le c \frac{1}{\sqrt{l}},$$
 (5.5)

with K_l denoting the ball in \mathbb{R} with radius l, centered at x_0 . Together with (5.3), (5.4) and (5.5), this gives

$$\|(A - \lambda I)u_l\| \le \frac{c}{\sqrt{l}}$$

Again, by the semiperiodicity of $\psi_s(\cdot, k)$,

$$||u_l|| \ge c||\psi_s(\cdot, k)|| \ge c\sqrt{l}$$

with c > 0. We obtain therefore

$$\frac{1}{\|u_l\|}\|(A - \lambda I)u_l\| \le \frac{c}{l}$$

Because moreover $u_l \in D(A)$, this results in

$$\frac{1}{\|u_l\|}\|(A-\lambda I)u_l\|\to 0 \text{ as } l\to\infty$$

Thus, either λ is an eigenvalue of A, or $(A - \lambda I)^{-1}$ exists but is unbounded. In both cases, $\lambda \in \sigma(A)$.

Theorem 5.2. $\sigma(A) \subset \bigcup_{s \in \mathbb{N}} I_s$.

Proof. todo
$$\Box$$

TODO Theorem 3.6.3.

Appendix A

Appendix

Theorem A.1 (Lax-Milgram). Let H be a real Hilbert space, with norm $\|\cdot\|$ and inner product $\langle\cdot,\cdot\rangle$ as well as the pairing of H with its dual space. Assume that

$$B \colon H \times H \to R$$

is a bilinear mapping, for which there exist constant $\alpha, \beta > 0$ such that

$$|B[u,v]| \le \alpha ||u|| ||v|| \quad (u,v \in H)$$

and

$$\beta \|u\|^2 \le B[u, u] \quad (u \in H)$$

Finally, let $f \colon H \to \mathbb{R}$ be a bounded linear functional on H.

Then there exists a unique element $u \in H$ such that

$$B[u,v] = \langle f, v \rangle$$

for all $v \in H$.

Proof. For each fixed element $u \in H$, the mapping $v \mapsto B[u, v]$ is a bounded linear functional on H; whence the Riesz' Representation Theorem asserts the existence of

a unique element $w \in H$ satisfying

$$B[u, v] = \langle w, v \rangle \tag{A.1}$$

Let us write Au = w whenever (A.1) holds; so that

$$B[u, v] = \langle Au, v \rangle \quad (u, v \in H)$$

We first claim $A: H \to H$ is a bounded linear operator. Indeed if $\lambda_1, \lambda_2 \in \mathbb{R}$ and $u_1, u_2 \in H$, we see for each $v \in H$ that

$$\langle A(\lambda_1 u_1 + \lambda_2 u_2), v \rangle = B[\lambda_1 u_1 + \lambda_2 u_2, v], \text{ (by (A.1))}$$

$$= \lambda_1 B[u_1, v] + \lambda_2 Bu_2, v]$$

$$= \lambda_1 \langle Au_1, v \rangle + \lambda_2 \langle Au_2, v \rangle, \text{ (by (A.1) again)}$$

$$= \langle \lambda_1 Au_1 + \langle_2 Au_2, v \rangle.$$

This equality obtains for each $v \in H$, and so A is linear. Furthermore

$$||Au||^2 = \langle Au, Au \rangle = B[u, Au] \le \alpha ||u|| ||Au||.$$

Consequently $||Au|| \le \alpha ||u||$ for all $u \in H$, and so A is bounded.

Next we assert

$$\begin{cases} A \text{ is one-to-one, and} \\ R(A), \text{ the range of } A, \text{ is close in } H. \end{cases}$$
 (A.2)

To prove this, let us compute

$$\beta \|u\|^2 \le B[u,u] = \langle Au,u\rangle \le \|Au\| \|u\|$$

Hence $\beta ||u|| \le ||Au||$. This inequality easily implies (A.2).

We demonstrate now

$$R(A) = H \tag{A.3}$$

For if not, then, since R(A) is closed, there would exist a nonzero element $w \in H$ with $w \in R(A)^{\perp}$. But this fact in turn implies the contradiction $\beta ||w||^2 \leq B[w, w] = \langle Aw, w \rangle = 0$.

Next, we observe once more from the Riesz' Representation Theorem that

$$\langle f, v \rangle = \langle w, v \rangle$$
 for all $v \in H$

for some element $w \in H$. We then utilise (A.2) and (A.3) to find $u \in H$ satisfying Au = w. Then

$$B[u, v] = \langle Au, v \rangle = \langle w, v \rangle = \langle f, v \rangle (v \in H)$$

and this is the claim.

Finally, we show there is at most one element $u \in H$ verifying the claim. For if both $B[u,v] = \langle f,v \rangle$ and $B[\tilde{u},v] = \langle f,v \rangle$, then $B[u-\tilde{u},v] = 0$ ($v \in H$). We set $v = u - \tilde{u}$ to find $\beta ||u - \tilde{u}||^2 \leq B[u - \tilde{u}, u - \tilde{u}] = 0$.

Theorem A.2 (Sobolev Embedding).

$$H^1[0,1] \subset C[0,1].$$

Proof. Prove that the H^1 norm dominates the C norm, namely, sup-norm, on $C_c^{\infty}[0,1]$. First, for $0 \le x \le y \le 1$, the difference between maximum and minimum values of $f \in C_c^{\infty}[0,1]$ is constrained:

$$|f(y) - f(x)| = \left| \int_{x}^{y} f'(t)dt \right| \le \left(\int_{0}^{1} |f'(t)|^{2} dt \right)^{1/2} \cdot |x - y|^{\frac{1}{2}} = ||f'||_{L^{2}} \cdot |x - y|^{\frac{1}{2}}$$

Let $y \in [0,1]$ be such that $|f(y) = \min_x |f(x)|$. Then, using this inequality,

$$|f(x)| \le |f(y)| + |f(x) - f(y)|$$

$$\le \int_0^1 |f(t)dt + |f(x) - f(y)|$$

$$\le ||f|| + ||f'|| \ll 2 (||f||^2 + ||f'||^2)^{1/2} = 2||f||_{H^1}$$

Thus, on $C_c^{\infty}[0,1]$ the H^1 norm dominates the sup-norm and therefore this comparison holds on the H^1 completion $H^1[0,1]$, and $H^1[0,1] \subset C[0,1]$.