Devoir surveillé n° 06

Durée: 3 heures, calculatrices et documents interdits

Traiter (I et II) ou (exclusif!) (I et III).

I. Une relation fonctionnelle sur des polynômes.

Soit $\mathbb{C}[X]$ l'ensemble des polynômes à coefficients complexes. Dans tout cet exercice, on identifie les éléments de $\mathbb{C}[X]$ et leurs fonctions polynomiales associées. Soit $P \in \mathbb{C}[X]$ un polynôme non nul vérifiant la relation

(*)
$$P(X^2 - 1) = P(X - 1)P(X + 1)$$

- 1) Montrer que si a est racine de P alors $(a+1)^2 1$ et $(a-1)^2 1$ sont aussi des racines de P.
- 2) Soit $a_0 \in \mathbb{C}$. On définit la suite de nombres complexes $(a_n)_{n\geqslant 0}$ en posant, pour tout $n\geqslant 0$, $a_{n+1}=a_n^2+2a_n$.
 - a) Vérifier que lorsque a_0 est une racine, pour tout entier naturel n le nombre complexe a_n est une racine de P.
 - b) Montrer que lorsque a_0 est un réel strictement positif, la suite $(a_n)_{n\geqslant 0}$ est une suite strictement croissante de réels positifs.
 - c) En déduire que P n'admet pas de racine réelle strictement positive.
 - d) Montrer que -1 n'est pas racine de P.
 - e) Montrer que pour tout $n \in \mathbb{N}$, $a_n + 1 = (a_0 + 1)^{2^n}$.
- 3) Déduire des questions précédentes que si a est une racine complexe de P alors |a+1|=1. On admettra que l'on a aussi |a-1|=1.
- 4) Montrer que si le degré de P est strictement positif alors P a pour unique racine 0.
- 5) Déterminer tous les polynômes $P \in \mathbb{C}[X]$ qui vérifient la relation (*).

II. La constante d'Euler.

Le théorème des accroissements finis intervient à plusieurs reprises dans ce problème. Vous devrez préciser chaque fois clairement pour quelle fonction et entre quelles bornes vous l'utilisez.

Ce problème a pour objet une étude de la constante d'Euler notée γ .

Pour tout entier naturel non nul n, on pose $u_n = \sum_{k=1}^n \frac{1}{k} - \ln n$.

Partie I

- 1) Prouver pour tout $k \in \mathbb{N}^*$ l'encadrement : $\frac{1}{k+1} \leqslant \ln \frac{k+1}{k} \leqslant \frac{1}{k}$.
- 2) a) Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est décroissante.
 - **b)** Montrer que pour tout $n \in \mathbb{N}^*$: $\frac{1}{n} \leqslant u_n \leqslant 1$.
 - c) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge.

On note γ sa limite (constante d'Euler).

- 3) Montrer que $\gamma \leq 1$.
- 4) a) Étudier, sur l'intervalle [k, k+1] $(k \in \mathbb{N}^*)$, le signe de la fonction f_k définie par

$$f_k(x) = \frac{1}{k} + \left(\frac{1}{k+1} - \frac{1}{k}\right)(x-k) - \frac{1}{x}.$$

- **b)** En déduire le signe de $\int_k^{k+1} f_k(t) dt$.
- c) Prouver l'inégalité : $\ln \frac{k+1}{k} \le \frac{1}{2} \left(\frac{1}{k} + \frac{1}{k+1} \right)$ (*).
- 5) a) Montrer que : $\sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=1}^{n+1} \frac{1}{k} 1$ et $\sum_{k=1}^{n} \frac{1}{k} \leqslant \sum_{k=1}^{n+1} \frac{1}{k}$.
 - **b)** En déduire, en sommant (\star) , que $\frac{1}{2} \leqslant \gamma$.

Partie II

1) On définit les fonctions g_1 et g_2 sur $]0, +\infty[$ par :

$$g_1(x) = -\frac{1}{x+1} + \ln\left(1 + \frac{1}{x}\right) - \frac{1}{2x^2}$$

 $g_2(x) = g_1(x) + \frac{2}{3x^3}$

Étudier les variations de g_1 et g_2 sur $]0,+\infty[$ et en déduire leur signe.

- 2) Pour tout entier $n \in \mathbb{N}^*$, exprimer $u_n u_{n+1}$ en fonction de $g_1(n)$ et de n.
- 3) Montrer que pour tout entier $n \geqslant 1$: $\frac{1}{2n^2} \frac{2}{3n^3} \leqslant u_n u_{n+1} \leqslant \frac{1}{2n^2}$.
- 4) Dans cette question $n \ge 2$ et $p \ge n$.
 - a) En utilisant le théorème des accroissements finis appliqué à la fonction $x \mapsto \frac{1}{x}$ entre k et k+1 (k entier), former un encadrement de $\sum_{k=1}^{p} \frac{1}{k^2}$.
 - b) Former par une méthode analogue à celle de la question précédente un encadrement de $\sum_{i=1}^{p} \frac{1}{k^3}$.
 - c) Montrer que pour tout $n \in \mathbb{N}^*$, $\frac{1}{n} + \frac{1}{n^2} \leqslant \frac{1}{n-1}$ et $\frac{1}{n^2} + \frac{2}{n^3} \leqslant \frac{1}{(n-1)^2}$.

d) En déduire
$$\frac{1}{2n} - \frac{1}{3(n-1)^2} \le u_n - \gamma \le \frac{1}{2(n-1)}$$
.

5) Un calcul numérique donne $u_{100} \in [0, 582207; 0, 582208]$. Donner une valeur approchée de γ à 10^{-4} près.

III. Points fixes stables et instables.

PRÉLIMINAIRES

On se place dans le contexte suivant : f est une fonction définie sur un intervalle réel I, à valeurs dans \mathbb{R} , et I est stable par f.

Pour $x_0 \in \mathcal{I}$, on définit la suite récurrente $(x_n)_{n \in \mathbb{N}}$ par : $\forall n \in \mathbb{N}, x_{n+1} = f(x_n)$.

On donne les définitions suivantes :

- On dira qu'un point fixe a de f est stable (ou attractif) si et seulement si il existe un intervalle J stable par f tel que a est à l'intérieur de J et que, pour toute condition initiale $x_0 \in J$, la suite $(x_n)_{n\in\mathbb{N}}$ converge vers a.
- On dira qu'un point fixe a de f est instable (ou $r\'{e}pulsif$) si et seulement si il existe un intervalle J tel que a est à l'intérieur de J et que, pour toute condition initiale $x_0 \in J$ différente de a, il existe un entier $N(x_0)$ tel que :

$$x_{N(x_0)} \notin J \text{ et } \forall k < N(x_0), x_k \in J.$$

Soit a un point fixe de f et J un sous-intervalle de I contenant a dans son intérieur.

1) On suppose que sur J la distribution des signes de f – Id est comme dans le tableau suivant :

Montrer que a est instable.

2) On suppose que sur J la distribution des signes de f – Id est comme dans le tableau suivant et que f est croissante :

$$f(x)-x$$
 $+$ 0 $-$

Montrer que a est stable.

- 3) On suppose maintenant que f est de classe \mathscr{C}^1 et que |f'(a)| > 1. Montrer que a est instable.
- 4) On suppose maintenant que f est de classe \mathscr{C}^1 et que |f'(a)| < 1. Montrer que a est stable.
- 5) Si f est de classe \mathscr{C}^1 et f'(a) = 1, que peut-il se passer?

Venons-en maintenant au problème proprement dit :

Soit $a \in]0,1[$, la fonction f_a est définie dans $[0,+\infty[$ par $f_a(x)=a^x.$ On considère des suites définies par récurrence par $x_0 \ge 0$ et $x_{n+1}=f_a(x_n)$.

Dans le problème, on pourra noter f au lieu de f_a pour alléger l'écriture.

PARTIE I

- 1) a) Montrer que f_a est strictement décroissante et admet un unique point fixe noté c. Comme c dépend de a, on pourra le noter c_a en cas d'ambiguïté. Que peut-on en conclure pour les suites extraites $(x_{2n})_{n\in\mathbb{N}}$ et $(x_{2n+1})_{n\in\mathbb{N}}$?
 - **b)** Montrer que c est un point fixe de $f \circ f$, exprimer $(f \circ f)'(c)$ en fonction de f'(c).
- \mathbf{a}) Montrer, en utilisant la stricte décroissance de f que

$$\frac{1}{\ln\frac{1}{a}} < \frac{1}{e} \Leftrightarrow |f'(c)| > 1$$

b) Que peut-on dire du point fixe c de f_a lorsque $a < e^{-e}$ ou $a > e^{-e}$?

PARTIE II

On pose $g(x) = f \circ f(x) - x$ et h(x) = x + f(x) pour tout $x \ge 0$.

1) a) Montrer que pour tout $x \ge 0$

$$g'(x) = (\ln a)^2 a^{x+f(x)} - 1$$

b) Montrer que h' est strictement croissante et que

$$h'(0) = 1 + \ln a$$
, $g'(0) = (\ln a)^2 a - 1$, $g(0) = a$

- c) Préciser les limites en $+\infty$ de h', g et g'.
- d) Comparer les variations de g' avec celles de h.
- 2) a) Montrer que, si $a > \frac{1}{e}$, h' reste strictement positif dans $[0, +\infty[$.
 - b) Montrer que, si $a \leq \frac{1}{e}$, h' s'annule dans $[0, +\infty[$ seulement au point

$$b = \frac{\ln(\ln\frac{1}{a})}{\ln(\frac{1}{a})}$$

- c) Montrer que $a < e^{-e}$ entraı̂ne g'(b) > 0, et que $a > e^{-e}$ entraı̂ne g'(b) < 0.
- 3) On suppose ici $a > \frac{1}{e}$. Préciser le tableau des signes de g. En déduire le comportement de $(x_n)_{n \in \mathbb{N}}$ suivant la valeur de x_0 .
- 4) On suppose ici e $^{-e} < a \leqslant \frac{1}{e}$. Préciser le tableau des signes de g. En déduire le comportement de $(x_n)_{n\in\mathbb{N}}$ suivant la valeur de x_0 .
- **5)** On suppose $a < e^{-e}$.
 - a) Montrer que g'(0) < 0 et g'(b) > 0. En déduire la forme du tableau de variations de g. Combien g peut-elle avoir de zéros?
 - **b)** Montrer que g s'annule exactement trois fois en des points c_1 , c, c_2 avec $c_1 < c < c_2$. Montrer que $f(c_1) = c_2$ et que $f(c_2) = c_1$.
 - c) Préciser le comportement de $(x_n)_{n\in\mathbb{N}}$ suivant la valeur de x_0 .