

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación SYLLABUS DEL CURSO

Interacción Hombre Máquina

1. CÓDIGO Y NÚMERO DE CRÉDITOS

CÓDIGO	FIEC01545	
NÚMERO DE CRÉDITOS: 4	Teóricos: 4	Prácticos: 0

2. DESCRIPCIÓN DEL CURSO

Este curso introduce principios fundamentales del diseño de la interacción para sistemas usados por humanos pero mediados por computadoras u otros dispositivos tecnológicos. El curso se enfoca en técnicas de diseño centrado en el usuario, prototipado y evaluación y explora las diferencias entre el ciclo de desarrollo de diseño de la interacción y los modelos tradicionales de desarrollo de software. El curso también explora las tecnologías que habilitan los diferentes paradigmas de interacción tales como computación ubicua, realidad virtual, realidad aumentada, interacción cerebro-ordenador, entre otros. Finalmente, también se estudian las habilidades y limitaciones cognitivas para comprender el racional detrás de guías, principios y reglas usadas para el diseño de la interacción y la accesibilidad. Este curso asume que el estudiante desarrolló previamente habilidades de programación y que está en capacidad de aprender nuevos APIs, SDKs, y lenguajes para resolver problemas. Este curso es usualmente tomado por los estudiantes dentro de los tres últimos semestres de la carrera.

3. PRERREOUISITOS Y CORREOUISITOS

PREREQUISITOS	FIEC03053 INGENIERÍA DE SOFTWARE I
CORREQUISITO	

4. TEXTO GUIA Y OTRAS REFERENCIAS REQUERIDAS PARA EL DICTADO DEL CURSO

EXTO GUIA T OTRAS REFERENCIAS REQUERIDAS PARA EL DICTADO DEL CURSO		
TEXTO GUÍA		INTERACTION DESIGN (ID). 3rd Edition Preece Jenny, Rogers Ivonne, Sharp Helen. John Wiley & Sons, 2011.
	2.	USER INTERFACE DESIGN AND EVALUATIONStone Debbie, Jarrett Carolina, Woodroffe Mark & Minocha Shailey. Morgan Kauffman Publishers 2005
REFERENCIAS	3.	DESIGNING WEB USABILITY. Jakob Nielsen New Riders. Publishing,2000
	4.	DON'T MAKE ME THINK. Steve Krug. New Riders Publishing. 2000
	5.	The Design of Everyday Things. Norman D. 2002. Editorial Basic Books. Primera edición.

5. RESULTADOS DE APRENDIZAJE DEL CURSO

Al finalizar el curso el estudiante será capaz de:

- Aplicar conceptos de Interacción Hombre Máquina al diseño de sistemas para satisfacer necesidades humanas de una manera efectiva y fácil de usar a través del uso de dispositivos computacionales
- Diseñar aplicaciones centradas en el usuario, que consideren la tecnología en el contexto de diferentes perfiles y necesidades de los usuarios y de restricciones en las tareas y el entorno
- 3. Identificar aspectos clave, ventajas y desventajas del diseño de la interacción relacionados a los humanos y las tecnologías actuales
- 4. Comunicarse de manera efectiva con los involucrados en un proyecto de Interacción Hombre Máquina

6. PROGRAMA DEL CURSO

- I. INTRODUCCIÓN A LA INTERACCIÓN HOMBRE-MAQUINA (2 sesiones 4 horas).
 - Importancia y evolución de la IHM
 - Diferencias entre IHM y diseño de interfaces
 - La calidad del software y la usabilidad
 - Diseño de software y diseño de la interacción
- II. MODELOS MENTALES Y MODELO CONCEPTUAL (3 sesiones 6 horas).
 - Modelos Mentales
 - El modelo conceptual y la imagen del sistema
 - Golfo de la ejecución y golfo de la evaluación
 - Metáforas
 - Principios, guías y reglas
- III. DCU: DISEÑO CENTRADO EN EL USUARIO (3 sesiones 6 horas).

- Elementos básicos del DCU
- Modelos de diseño de la interacción
- Pasos para realizar un DCU
- Identificación de usuarios y necesidades
- Especificación de requerimientos
- IV. PROTOTIPADO (3 sesiones 6 horas).
 - Características de un prototipo
 - Prototipos de baja y alta fidelidad
 - Técnicas de prototipado
 - Herramientas de prototipado
- V. PARTE HUMANA DE LA INTERACCIÓN (3 sesiones 6 horas).
 - Cognición
 - Percepción
 - Manejo de la atención
 - Memoria y significancia
- VI. AYUDAS Y ACCESIBILIDAD (2 sesiones 4 horas).
 - Breakdowns y ayudas cognitivas
 - Ingeniería de errores
 - Diseño de ayudas
 - Accesibilidad
- VII. COMUNICACIONES Y CSCW (2 sesiones 4 horas).
 - La comunicación y la tecnología
 - Productividad y sistemas CSCW
 - Groupware
 - Social Networks y Social Media
- VIII. EVALUACION (2 sesiones 4 horas).
 - Paradigmas y técnicas de evaluación
 - Observación de usuarios
 - Entrevistas y cuestionarios
 - Inspecciones y walkthroughs
 - Modelamiento de usuarios
 - IX. TECNOLOGIAS DE INTERACCION (3 sesiones 6 horas).
 - GUI y estilos tradicionales de interacción
 - Interfaces tangibles
 - Interfaces basados en gestos
 - Ambientes inmersivos
 - Realidad Aumentada
 - X. PARADIGMAS DE INTERACCION (3 sesiones 6 horas).
 - WIMP (desktop)
 - Computación ubicua o pervasiva
 - Computadoras vestibles
 - Realidad Virtual
 - Interacción cerebro-ordenador
 - XI. TOPICOS ESPECIALES DE INTERACCION (2 sesiones 4 horas).
 - Diseño de experiencias
 - Computación afectiva
 - Sistemas perceptivos e inteligencia ambiental
 - Interacción vs. ancho de banda
 - Interfaces multimodales

7. CARGA HORARIA: TEORÍA/PRÁCTICA

Dos sesiones por semana, con una duración de 2 horas por sesión.

8. CONTRIBUCIÓN DEL CURSO EN LA FORMACIÓN DEL ESTUDIANTE

Los estudiantes exploran paradigmas actuales de interacción hombre máquina, como computación ubicua, interfaces tangibles, realidad aumentada, entre otros. Los estudiantes revisan y aplican modelos de diseño de software centrados en el usuario, así como también principios y guías para la creación de aplicaciones considerando el aspecto humano de la interacción hombre-máquina. Los estudiantes son también expuestos a las diferencias y similitudes entre el modelo del ciclo de desarrollo de IHM y los modelos tradicionales de Ing. de Software. Los estudiantes también aprenden a escribir un reporte sobre su diseño y resultados.

FORMACIÓN BÁSICA	FORMACIÓN	FORMACIÓN
	PROFESIONAL	HUMANA

X	

9. RELACIÓN DE LOS RESULTADOS DE APRENDIZAJE DEL CURSO CON LOS RESULTADOS DE APRENDIZAJE DE LA CARRERA

	RESULTADOS DE APRENDIZAJE DE LA CARRERA*	CONTRIBUCIÓ N (Alta, Media, Baja)	RESULTADOS DE APRENDIZAJE DEL CURSO**	EL ESTUDIANTE DEBE:
a.	Habilidad para aplicar conocimientos de Computación y Matemáticas apropiados a su disciplina.			
b.	Habilidad para analizar un problema, e identificar y definir los requerimientos computacionales apropiados para su solución.	Media	1,3	Usar un enfoque de diseño centrado en el usuario para analizar, proponer y definir los requerimientos así como de las guías y principios de desarrollo del proyecto
C.	Habilidad para diseñar, implementar, y evaluar un sistema basado en computadoras, procesos, componentes o programas que cumplan necesidades específicas.	Alta	1,2,3	Diseñar e implementar un prototipo viable de software/hardware para el proyecto de acuerdo a los requerimientos establecidos siguiendo el enfoque centrado en el usuario
d.	Habilidad para funcionar efectivamente en equipos para alcanzar una meta común.	Alta	2,4	Realizar un proyecto formando parte de un grupo.
e.	Comprensión de las responsabilidades profesionales, éticas, legales, de seguridad y sociales.	Media	1,2,3,4	Considerar condiciones éticas, legales, y sociales durante el ciclo completo de desarrollo del proyecto
f.	Habilidad para comunicarse efectivamente con un rango de audiencias.	Alta	4	Interactuar con los involucrados del proyecto. Escribir un reporte describiendo el análisis y diseño del proyecto
g.	Habilidad para analizar el impacto local y global de la computación sobre los individuos, organizaciones y sociedad.	Media	1,2,3,4	Considerar el impacto local de sus actividades al diseñar y analizar su proyecto
h.	Reconocer la necesidad para y la habilidad de involucrarse en un desarrollo profesional continuo.	Media	2	Aprender los lenguajes y herramientas requeridas para completar el curso del proyecto y reflejarlo en la necesidad de continuar mejorando sus habilidades
i.	Habilidad para usar técnicas, habilidades, y herramientas actuales, necesarias para la práctica de la computación.			
j.	Capacidad de liderar, gestionar o emprender proyectos.			

10. EVALUACIÓN DEL CURSO

Actividades de Evaluación	
Exámenes	Х
Lecciones	Х
Tareas	Х
Proyectos	Х
Laboratorio/Experimental	
Participación en Clase	Х
Visitas	
Otras	

11. RESPONSABLE DE LA ELABORACIÓN DEL SYLLABUS Y FECHA DE ELABORACIÓN

Elaborado por	Guido Caicedo Rossi
Fecha	10 Mayo de 2013

12. VISADO

SECRETARIO ACADÉMICO DE LA UNIDAD ACADÉMICA	DIRECTOR DE LA SECRETARÍA TÉCNICA ACADÉMICA
NOMBRE:	NOMBRE:
FIRMA:	FIRMA:
Resolución y Fecha de aprobación en el Consejo Directivo:	

13. VIGENCIA DEL SYLLABUS

RESOLUCIÓN DEL CONSEJO POLITÉCNICO:	
FECHA:	