UCSD Embedded C Assignment 6

By

Hsuankai Chang

hsuankac@umich.edu

Step 1. Startup STM32CubeIDE and create new STM32 project

Step 2. Access board selector and type in the board you use, click Next

Step 3. Enter the project name then click Next

Step 4. See the firmware package name and version

Step 5. Click yes to initialize all peripherals to default

Step 6. When in .ioc file, click Pinout & Configurations

Step 7. Observe PC5 -> ADC1_IN14 -> ADR_A0

Step 8. Set ADC1, IN14 to Single-ended

Step 9. Generate code

Step 10. In main.c, find code that initializes the ADC1

Step 11. In main.c, find code that initialize the channel IN14

```
255 hadc1.Init.ExternalTrigConvEdge = ADC EXTERNALTRIGCONVEDGE NONE;
256 hadc1.Init.DMAContinuousRequests = DISABLE;
257 hadc1.Init.Overrun = ADC OVR DATA PRESERVED;
258 hadc1.Init.OversamplingMode = DISABLE;
    if (HAL_ADC_Init(&hadc1) != HAL_OK)
260
261
       Error_Handler();
262
      /** Configure the ADC multi-mode
265
      multimode.Mode = ADC_MODE_INDEPENDENT;
      if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
268
269
       Error_Handler();
270
271
      /** Configure Regular Channel
274 sConfig.Channel = ADC CHANNEL 14;
275 sConfig.Rank = ADC REGULAR RANK 1;
276 sConfig.SamplingTime = ADC SAMPLETIME 2CYCLES 5;
277 sConfig.SingleDiff = ADC_SINGLE_ENDED;
278 sConfig.OffsetNumber = ADC_OFFSET_NONE;
     sConfig.Offset = 0;
      if (HAL ADC ConfigChannel(&hadc1, &sConfig) != HAL OK)
281
282
       Error_Handler();
283
      /* USER CODE BEGIN ADC1_Init 2 */
285
      /* USER CODE END ADC1 Init 2 */
287
288 }
289
2909/**
291 * @brief DFSDM1 Initialization Function
    * @param None
    * @retval None
295@static void MX_DFSDM1_Init(void)
296 {
297
     /* USER CODE BEGIN DFSDM1 Init 0 */
299
```

Step 12. Add code to main.c to read from ARD_A0

```
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX DFSDM1 Init();
MX_I2C2_Init();
MX_QUADSPI_Init();
MX_SPI3_Init();
MX USART1 UART Init();
MX USART3 UART Init();
MX_USB_OTG_FS_PCD_Init();
MX_ADC1_Init();
/* USER CODE BEGIN 2 */
uint32_t adcResult;
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
 /* USER CODE END WHILE */
 /* USER CODE BEGIN 3 */
 HAL_ADC_Start(&hadc1);
 HAL_ADC_PollForConversion(&hadc1, 100);
 adcResult = HAL_ADC_GetValue(&hadc1);
 printf("adcResult: %lu - 0x%lx\n", adcResult, adcResult);
 HAL_ADC_Stop(&hadc1);
 HAL Delay(1000);
/* USER CODE END 3 */
```

Step 13. Build project and run in debug mode

```
£ | 04 E | □ 12 E 1
 81 /* USER CODE END 0 */
 830/**

    adcResult

                                                                                                           uint32_t
 * @brief The application entry point.
 85 * @retval int
 87 int main(void)
 89 /* USER CODE BEGIN 1 */
 91 /* USER CODE END 1 */
      /* MCU Configuration-----*/
 93
 95
      /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
 96 | HAL_Init();
     /* USER CODE BEGIN Init */
 98
 99
100
      /* USER CODE END Init */
101
102
      /* Configure the system clock */
      SystemClock_Config();
105 /* Configure the peripherals common clocks */
     PeriphCommonClock_Config();
108
      /* USER CODE BEGIN SysInit */
     /* USER CODE END SysInit */
112 /* Initialize all configured peripherals */
113 MX_GPIO_Init();
114 MX_DFSDM1_Init();
     MX I2C2 Init();
116 MX_QUADSPI_Init();
     MX_SPI3_Init();
118 MX_USART1_UART_Init();
     MX_USART3_UART_Init();
120 MX_USB_OTG_FS_PCD_Init();
     MX_ADC1_Init();
122 /* USER CODE BEGIN 2 */
      uint32_t adcResult;
124
     /* USER CODE END 2 */
125
                                                                                             □ Console × 🗈 Problems • Executables 🖫 Debugger Console • Memory
Embedded-C-Assignment-6 Debug [STM32 C/C++ Application] [pid: 27]
Time elapsed during download operation: 00:00:01.088
Verifying ...
Download verified successfully
                                       ⊗ Writable
                                                                          96:1:2749
                                                          Smart Insert
```

Step 14, Set the break point, then read the adcResult when nothing connected to ARD_AO. In my case adcResult = 916

Step 15. Connect ADR_A0 to GND, then adcResult = 0

Step 16. Connect ADR_A0 to 1.5VDC. Then adcResult = 1856

