Parallized State Estimation

ME 766: HPSC

Aryan Agal - 16D170004 Chitrangna Bhatt - 16D170015 Siddhesh Pawar 17D170011

Under guidance of Prof. S. Gopalakrishnan

Model Equations

$$\frac{dC_m}{dt} = \frac{F(C_{min} - C_m)}{V} - (k_p + k_{fm})C_m P_0$$

$$\frac{dC_I}{dt} = \frac{(F_I C_{Iin} - FC_I)}{V} - k_I C_I$$

$$\frac{dD_0}{dt} = (0.5k_{tc} + k_{td})P_0^2 + k_{fm}C_m P_0 - \frac{FD_0}{V}$$

$$\frac{dD_1}{dt} = M_m(k_p + k_{fm})C_m P_0 - \frac{FD_1}{V}$$

$$\frac{dT}{dt} = \frac{F(T_{in} - T)}{V} + \frac{(-\Delta H)k_p C_m P_0}{\rho C_p} - \frac{UA(T - T_j)}{\rho C_p V}$$

$$\frac{dT_j}{dt} = \frac{F_{cw}(T_{w0} - T_j)}{V_0} + \frac{UA(T - T_j)}{\rho_w C_{pw} V_0}$$

Non-linearities

$$k_s = A_s e^{-E_s/RT}$$

 p, fm, I, td, tc
 $P_0 = (2f'C_Ik_I/(k_{td} + k_{tc}))^{1/2}$

Kalman Filtering

Kalman Filtering: Model Linearization

$$\frac{d\mathbf{X}}{dt} = \mathbf{f}(\mathbf{X}, \mathbf{U}, \mathbf{D}) \tag{1}$$

$$\frac{d\mathbf{X}}{dt} \approx \mathbf{f}(\mathbf{X}^*, \mathbf{U}^*, \mathbf{D}^*) + \mathbf{A}(\mathbf{X} - \mathbf{X}^*) + \mathbf{B}(\mathbf{U} - \mathbf{U}^*) + \mathbf{H}(\mathbf{D} - \mathbf{D}^*)$$
(2)

$$\mathbf{x} = \mathbf{X} - \mathbf{X}^* \quad , \mathbf{u} = \mathbf{U} - \mathbf{U}^*, \quad \mathbf{d} = \mathbf{D} - \mathbf{D}^*$$
 (3)

$$\frac{d\mathbf{x}}{dt} \approx \mathbf{f}(\mathbf{X}^*, \mathbf{U}^*, \mathbf{D}^*) + \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{H}\mathbf{d} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{H}\mathbf{d}$$
(4)

$$\mathbf{x}(k+1) = \mathbf{\Phi}\mathbf{x}(k) + \mathbf{\Gamma}_u\mathbf{u}(k) + \mathbf{\Gamma}_d\mathbf{d}(k)$$

Kalman Filtering

Prediction step

$$\hat{\mathbf{x}}(k \mid k-1) = \Phi \hat{\mathbf{x}}(k-1 \mid k-1) + \Gamma \mathbf{u}(k-1)$$

$$\mathbf{P}(k \mid k-1) = \Phi \mathbf{P}(k-1 \mid k-1) \Phi^{T} + \Gamma_{d} \mathbf{Q}_{d} \Gamma_{d}^{T}$$

Kalman Gain Computation

$$\mathbf{L}^*(k) = \mathbf{P}(k \mid k-1)\mathbf{C}^T \left[\mathbf{C}\mathbf{P}(k \mid k-1)\mathbf{C}^T + \mathbf{R} \right]^{-1}$$

Update step

$$\mathbf{e}(k) = [\mathbf{y}(k) - \mathbf{C}\hat{\mathbf{x}}(k \mid k - 1)]$$

$$\hat{\mathbf{x}}(k \mid k) = \hat{\mathbf{x}}(k \mid k - 1) + \mathbf{L}^*(k)\mathbf{e}(k)$$

$$\mathbf{P}(k \mid k) = [\mathbf{I} - \mathbf{L}^*(k)\mathbf{C}]\mathbf{P}(k \mid k - 1)$$

Generating States & Measurements

- Measurements are available for T and Tj
- Sampling interval of 28.8 seconds (=0.008 hrs)
- Expected simulation time: 1000 instants = 8 hrs
- Simulation parameters^[1]

```
\mathbf{x}(0) = [5.9655 \ 0.0249 \ 0.0020 \ 50.3287 \ 351.4013 \ 332.90774]^{T}
Q = diag\{3.2028 \times 10^{-6}; 6.2 \times 10^{-12}; 25 \times 10^{-14}; 25.28 \times 10^{-6}; 12.34 \times 10^{-4}; 11.08 \times 10^{-4}\}
R = diag\{2.5 \times 10^{-1} \ 2.5 \times 10^{-1}\} \ \hat{\mathbf{x}}_{0|0} = 1.025 \times \mathbf{x}_{0|0} \ P_{0|0} = 10 \times Q
```

Results - Kalman Filter Performance

State	RMSE
1	0.012
2	0.00003
3	0.0001
4	1.744
5	0.847
6	0.687

X axis: Time in hours

Results - Effect of Parallelization

State Explosion Factor	GPU Time(s)	CPU Time(s)
10	4.96	0.9
20	10.17	2.45
30	15.59	5.28
40	21.27	9.48
50	27.48	16.53
60	33.4	24.72
70	39.74	37.05
80	43.41	52.75
90	49.89	74.61

State Explosion Factor= 1, Number of states=6
GPU: 1.013s
CPU: 0.33s

Work Division

- Problem Selection, System Selection: Siddhesh, Chitrangna
- Modelling the System dynamics: Siddhesh
- Understanding Kalman filter: Chitrangna
- True State (data) Generation: Aryan
- KF implementation: Aryan and Siddhesh
- Experiments and Plotting Code: Chitrangna
- Report, PPT: All 3

Conclusion and Future Work

- For small matrices, CPU should be used over GPU and for applications where state space is high dimensional use a GPU
- Using the state estimation algorithm to aid the online Model Predictive Control (MPC) algorithm to control the process
- Predicting adverse phenomena such as Trommsdorff-Norrish effect that occur due to local variations in the viscosity, using a more complicated state space model

Thank you

Supplementary: Meaning of states

C_m concentration of monomer inside the reactor (kg mol/m^3)

C_i concentration of monomer inside the reactor

D₀ and **D**₁ Polymer moments (used to calculate the weight and density of the Polymer)

T Reactor Temperature

T_i Jacket Temperature

Supplementary - Block Diagonal Matrix

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} & \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 0 & 0 \\ 4 & 5 & 6 & 0 & 0 \\ 7 & 8 & 9 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 & 4 \end{pmatrix}$$

Supplementary - GPU Specifications

```
NVIDIA-SMI 465.19.01 Driver Version: 460.32.03 CUDA Version: 11.2
   Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC
GPU
                          Memory-Usage | GPU-Util Compute M.
   Temp Perf Pwr:Usage/Cap
Fan
                                                          MTG M.
    Tesla T4 Off |
                           00000000:00:04.0 Off
N/A 71C P0 31W / 70W | 11600MiB / 15109MiB
                                                         Default
                                                            N/A
```

2560 CUDA Cores Clock speed: 1582 MHz

Supplementary- RAM(VM) Specs GPU

Filesystem overlay	Size 69G	Used 39G	Avail 30G	Use% 57%	Mounted on
tmpfs	64M	0	64M	0%	/dev
tmpfs	6.4G	0	6.4G	0%	/sys/fs/cgroup
shm	5.8G	0	5.8G	0%	/dev/shm
/dev/sda1	75G	41G	35G	54%	/opt/bin
tmpfs	6.4G	24K	6.4G	1%	/var/colab
tmpfs	6.4G	0	6.4G	0%	/proc/acpi
tmpfs	6.4G	0	6.4G	0%	/proc/scsi
tmpfs	6.4G	0	6.4G	0%	/sys/firmware

Supplementary - CPU Specifications(Processor 1)

```
processor : 0
vendor id : GenuineIntel
cpu family : 6
model: 63
model name : Intel(R) Xeon(R) CPU @ 2.30GHz
stepping : 0
microcode : 0x1
cpu MHz : 2299.998
cache size : 46080 KB
physical id: 0
siblings : 2
core id : 0
cpu cores : 1
apicid : 0
initial apicid : 0
fpu : yes
fpu exception : yes
cpuid level: 13
```

CPU Specs - Continued (Processor 1)

```
syp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr
sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant tsc rep good nopl xtopology nonstop tsc cpuid
tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c
rdrand hypervisor lahf lm abm invpcid single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 avx2 smep
bmi2 erms invpcid xsaveopt arat md_clear arch_capabilities
bugs : cpu_meltdown spectre_v1 spectre_v2 spec_store_bypass l1tf mds swapgs
bogomips : 4599.99
clflush size : 64
cache alignment : 64
address sizes : 46 bits physical, 48 bits virtual
```

CPU Specs continued (Processor 2)

CPU Specs Continued(Processor 2)

```
initial apicid : 1
fpu
          : ves
fpu exception : yes
cpuid level: 13
ФW
         : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm
constant tsc rep good nopl xtopology nonstop tsc cpuid tsc known freq pni
pclmulqdq ssse3 fma cx16 pcid sse4 1 sse4 2 x2apic movbe popcnt aes xsave
avx f16c rdrand hypervisor lahf lm abm invpcid single ssbd ibrs ibpb stibp
fsqsbase tsc adjust bmil avx2 smep bmi2 erms invpcid xsaveopt arat md clear
arch capabilities
bugs
           : cpu meltdown spectre v1 spectre v2 spec store bypass l1tf mds
swapqs
bogomips : 4599.99
clflush size : 64
cache alignment : 64
address sizes : 46 bits physical, 48 bits virtual
power management:
```

CPU - VM specs

Filesystem	Size Used Avail Use%	Mounted or
overlay	108G 39G 70G 36%	/
tmpfs	64M 0 64M 0%/de	V
tmpfs	6.4G 0 6.4G 0% /sys	s/fs/cgroup
shm	5.9G 0 5.9G 0% /de	v/shm
tmpfs	6.4G 32K 6.4G 1%/v	ar/colab
/dev/sda1	114G 41G 74G 36%	/etc/hosts
tmpfs	6.4G 0 6.4G 0% /pro	c/acpi
tmpfs	6.4G 0 6.4G 0% /pro	c/scsi
tmpfs	6.4G 0 6.4G 0% /sys	s/firmware

Graphics Processor GPU Name: TU104 GPU Variant: TU104-895-A1 Architecture: Turing Foundry: TSMC Process Size: 12 nm Transistors: 13,600 million Die Size: 545 mm²

Memory Memory Size: 16 GB Memory Type: GDDR6 Memory Bus: 256 bit Bandwidth: 320.0 GB/s

Graphics Features	
DirectX:	12 Ultimate (12_2)
OpenGL:	4.6
OpenCL:	3.0
Vulkan:	1.2
CUDA:	7.5
Shader Model:	6.6

Graphics Card	
Release Date:	Sep 13th, 2018
Generation:	Tesla (Txx)
Production:	Active
Bus Interface:	PCIe 3.0 x16

CIOCK	speeds
Base Clock:	585 MHz
Boost Clock:	1590 MHz
Memory Clock:	1250 MHz 10 Gbps effective

Clark Chands

Radeon RX Vega 64	85% *
GeForce GTX 1080	86%
GeForce RTX 2060	86%
Radeon RX 5700	90%
GeForce RTX 2060 SU	97%
Tesla T4	100%
GeForce RTX 2070	101%
GeForce RTX 3060	103%
Radeon RX 5700 XT	103%
Radeon VII	104%
TITAN X Pascal	107%

Render Config	
Shading Units:	2560
TMUs:	160
ROPs:	64
SM Count:	40
Tensor Cores:	320
RT Cores:	40
L1 Cache:	64 KB (per SM)
L2 Cache:	4 MB

Pixel Rate:	101.8 GPixel/s
Texture Rate:	254.4 GTexel/s
FP16 (half) performance:	65.13 TFLOPS (8:1)
FP32 (float) performance:	8.141 TFLOPS
FP64 (double) performance:	254.4 GFLOPS (1:32)

Tesla T4