Geometric Sequences and Series

Determine if the sequence is geometric. If it is, find the common ratio, the 8th term, and the explicit formula.

1) -1, -3, -9, -27, ...

2) 2, $\frac{1}{2}$, $\frac{1}{8}$, $\frac{1}{32}$, ...

3) 148, 1488, 14888, 148888, ...

4) 0.75, 3, 12, 48, ...

Given the explicit formula for a geometric sequence find the common ratio, the term named in the problem, and the recursive formula.

5)
$$a_n = -3 \cdot \left(\frac{1}{2}\right)^{n-1}$$

Find a_{11}

6)
$$a_n = -1.5 \cdot (-2)^{n-1}$$

Find a_{10}

Given two terms in a geometric sequence find the common ratio, the explicit formula, and the recursive formula.

7)
$$a_4 = -\frac{1}{4}$$
 and $a_1 = 2$

8)
$$a_5 = -24$$
 and $a_4 = -12$

Find the missing term or terms in each geometric sequence.

Evaluate each geometric series described.

11)
$$-3 + 15 - 75 + 375...$$
, $n = 8$

12)
$$2 + 8 + 32 + 128...$$
, $n = 8$

13)
$$a_1 = 1$$
, $r = 4$, $n = 7$

14)
$$a_1 = 3$$
, $r = 2$, $n = 7$

15)
$$\sum_{k=1}^{8} -2 \cdot 6^{k-1}$$

16)
$$\sum_{m=1}^{8} 32 \cdot \left(\frac{1}{2}\right)^{m-1}$$

17)
$$\sum_{i=1}^{10} 0.2 \cdot 5^{i-1}$$

18)
$$\sum_{n=1}^{10} -2 \cdot 2^{n-1}$$

Determine the number of terms n in each geometric series.

19)
$$\sum_{i=1}^{n} -4^{i-1} = -341$$

20)
$$a_1 = -1$$
, $r = -5$, $S_n = 104$

Determine if each geometric series converges or diverges.

$$21) -1 + 2 - 4 + 8...$$

22)
$$-16-4-1-\frac{1}{4}$$
...

23)
$$\sum_{k=1}^{\infty} -3 \cdot \left(\frac{2}{5}\right)^{k-1}$$

24)
$$\sum_{i=1}^{\infty} 2 \cdot 2^{i-1}$$

Evaluate each infinite geometric series described.

$$25) \sum_{i=1}^{\infty} \left(\frac{1}{3}\right)^{i-1}$$

26)
$$\sum_{i=1}^{\infty} 0.4 \cdot 0.9^{i-1}$$

$$27) \sum_{m=1}^{\infty} \left(-\frac{2}{3}\right)^{m-1}$$

28)
$$\sum_{k=1}^{\infty} -4^{k-1}$$

-2-

Geometric Sequences and Series

Date Period

Determine if the sequence is geometric. If it is, find the common ratio, the 8th term, and the explicit formula.

1) -1, -3, -9, -27, ...

Common Ratio:
$$r = 3$$
 $a_8 = -2187$

Explicit: $a_n = -3^{n-1}$

2) 2,
$$\frac{1}{2}$$
, $\frac{1}{8}$, $\frac{1}{32}$, ... Common Ratio: $r = \frac{1}{4}$

$$a_8 = \frac{1}{8192}$$
Explicit: $a_n = 2 \cdot \left(\frac{1}{4}\right)^{n-1}$

4) 0.75, 3, 12, 48, ...

Common Ratio:
$$r = 4$$
 $a_8 = 12288$

Explicit: $a_n = 0.75 \cdot 4^{n-1}$

Given the explicit formula for a geometric sequence find the common ratio, the term named in the problem, and the recursive formula.

5)
$$a_n = -3 \cdot \left(\frac{1}{2}\right)^{n-1}$$
 Common Ratio: $r = \frac{1}{2}$

Find a_{11}

$$a_{11} = -\frac{3}{1024}$$
Recursive: $a_n = a_{n-1} \cdot \frac{1}{2}$

$$a_1 = -3$$

6)
$$a_n = -1.5 \cdot (-2)^{n-1}$$

Find a_{10}
Common Ratio: $r = -2$
 $a_{10} = 768$
Recursive: $a_n = a_{n-1} \cdot -2$
 $a_1 = -1.5$

Given two terms in a geometric sequence find the common ratio, the explicit formula, and the recursive formula.

7)
$$a_4 = -\frac{1}{4}$$
 and $a_1 = 2$ Common Ratio: $r = -\frac{1}{2}$

Explicit: $a_n = 2 \cdot \left(-\frac{1}{2}\right)^{n-1}$

Recursive: $a_n = a_{n-1} \cdot -\frac{1}{2}$

8) $a_5 = -24$ and $a_4 = -12$

Common Ratio: $r = 2$

Explicit: $a_n = -1.5 \cdot 2^n$

Recursive: $a_n = a_{n-1} \cdot -\frac{1}{2}$
 $a_1 = -1.5$

S)
$$a_5 = -24$$
 and $a_4 = -12$
Common Ratio: $r = 2$
Explicit: $a_n = -1.5 \cdot 2^{n-1}$
Recursive: $a_n = a_{n-1} \cdot 2$
 $a_1 = -1.5$

Find the missing term or terms in each geometric sequence.

10) ..., -25, ____, ____,
$$-\frac{1}{25}$$
, ...
-5, -1, $-\frac{1}{5}$

Evaluate each geometric series described.

11)
$$-3 + 15 - 75 + 375...$$
, $n = 8$

195312

$$15 - 75 + 375..., n = 8$$
 $12) 2 + 8 + 32 + 128..., n = 8$ 43690

13)
$$a_1 = 1$$
, $r = 4$, $n = 7$

5461

)
$$a_1 = 1$$
, $r = 4$, $n = 7$
 $a_1 = 3$, $r = 2$, $n = 7$
 $a_2 = 3$, $a_3 = 3$, $a_4 = 3$, $a_5 = 3$

15)
$$\sum_{k=1}^{8} -2 \cdot 6^{k-1}$$

$$-671846$$

16)
$$\sum_{m=1}^{8} 32 \cdot \left(\frac{1}{2}\right)^{m-1}$$

$$\frac{255}{4}$$

17)
$$\sum_{i=1}^{10} 0.2 \cdot 5^{i-1}$$
488281.2

18)
$$\sum_{n=1}^{10} -2 \cdot 2^{n-1}$$
$$-2046$$

Determine the number of terms n in each geometric series.

19)
$$\sum_{i=1}^{n} -4^{i-1} = -341$$

20)
$$a_1 = -1$$
, $r = -5$, $S_n = 104$

Determine if each geometric series converges or diverges.

21)
$$-1 + 2 - 4 + 8...$$
 Diverges

22)
$$-16-4-1-\frac{1}{4}$$
...

Converges

23) $\sum_{k=1}^{\infty} -3 \cdot \left(\frac{2}{5}\right)^{k-1}$

24)
$$\sum_{i=1}^{\infty} 2 \cdot 2^{i-1}$$

Converges

Diverges

Evaluate each infinite geometric series described.

$$25) \sum_{i=1}^{\infty} \left(\frac{1}{3}\right)^{i-1}$$

$$\frac{3}{2}$$

26)
$$\sum_{i=1}^{\infty} 0.4 \cdot 0.9^{i-1}$$

27)
$$\sum_{m=1}^{\infty} \left(-\frac{2}{3} \right)^{m-1} \frac{3}{5}$$

$$28) \sum_{k=1}^{\infty} -4^{k-1}$$
No sum

Create your own worksheets like this one with Infinite Precalculus. Free trial available at KutaSoftware.com