Program Verification Revision / Background Material

Program Verifiers and Program Verification

UBC, Winter Term 2 (2021)
Alexander J. Summers

Background: Propositional Logic

- Fix an alphabet of *propositional variables* $p,q,r,p_1,p_2,...$
- Define *propositional formulas* (\neg binds tighter than \land , tighter than \lor , etc.):

```
A,B ::= p \mid T \mid \bot \mid \neg A \mid A \land B \mid A \lor B \mid A \Rightarrow B \mid A \Leftrightarrow B
```

- ullet A *propositional model* M is a partial map from prop. variables to *true/false*
 - Unless stated, we'll assume $\operatorname{dom}(M)$ includes all prop. variables in current formula
- A formula A is *satisfied by a model* M, written $M \models A$, via usual semantics: $M \models p$ iff M(p). $M \models T$ always. $M \models \bot$ never. $M \models \neg A$ iff $M \not\models A$. etc. ...
- A formula A is *valid* iff for *all* models M: $M \models A$
- A formula A is *satisfiable* iff for *some* model M: $M \models A$
- A formula A is *unsatisfiable* iff not satisfiable (equivalently, $\neg A$ is valid)
- A entails B (written $A \models B$) iff for all models M: if $M \models A$ then $M \models B$
- A and B equivalent (written $A \equiv B$) iff for all models M: $M \models A$ iff $M \models B$

Background: Conjunctive Normal Form

- A *literal* is a variable or the negation of one $(p, \neg p, ...)$
 - For a literal 1 we write \sim 1 for the negation of 1, cancelling double negations
- A *clause* is a disjunction of (any finite number of) literals
 - e.g. $p \lor \neg q$, $q \lor r \lor \neg r$, q are all clauses
 - the *empty clause* (0 disjuncts) is defined to be \perp (why?)
 - a *unit clause* is just a single literal (exactly 1 disjunct)
 - a variable p occurs positively in a clause iff p is one of the clause's disjuncts
 - a variable p occurs negatively in a clause iff $\neg p$ is one of the clause's disjuncts
- A formula A is in *conjunctive normal form (CNF)* iff it is a conjunction of (any finite number of) clauses
 - i.e. a conjunction of disjunctions of literals
 - an *empty conjunction* (0 disjuncts) is defined to be \top (why?)
 - e.g. $(p \lor \neg q) \land (q \lor r \lor \neg r)$, $(p \land \neg q)$, q are in CNF $(p \lor \neg q \land q \lor r \lor \neg r)$ is not why?)

Background: Propositional Equivalences

• Some important propositional logic equivalences (for all A, B, C):

$$\neg \neg A \equiv A \quad \text{and} \quad \neg \top \equiv \bot \quad \text{and} \quad \neg A \equiv A \Rightarrow \bot$$

$$A \land B \equiv B \land A \quad \text{and} \quad A \lor B \equiv B \lor A \quad \text{and} \quad A \Leftrightarrow B \equiv B \Leftrightarrow A$$

$$A \land \top \equiv A \quad \text{and} \quad A \land \bot \equiv \bot \quad \text{and} \quad A \lor \top \equiv \top \quad \text{and} \quad A \lor \bot \equiv A$$

$$(A \land B) \lor C \equiv (A \lor C) \land (B \lor C) \quad \text{and} \quad (A \lor B) \land C \equiv (A \land C) \lor (B \land C)$$

$$\neg (A \lor B) \equiv \neg A \land \neg B \quad \text{and} \quad \neg (A \land B) \equiv \neg A \lor \neg B$$

$$A \Rightarrow B \equiv (\neg A \lor B) \equiv \neg (A \land \neg B) \equiv \neg B \Rightarrow \neg A$$

$$A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A) \equiv (A \land B) \lor (\neg A \land \neg B)$$

$$A \Rightarrow B \lor C \equiv A \land \neg B \Rightarrow C \quad \text{and} \quad A \land B \Rightarrow C \equiv A \Rightarrow \neg B \lor C$$

Make sure that you're comfortable with understanding and using these

For propositional logic lecture notes, see e.g. CPSC 121 course materials, or e.g. https://www.doc.ic.ac.uk/~imh/teaching/140 logic/140.pdf (p. 53-58)

Background: Sorted First-Order Logic - Syntax

- Fix a set of *sorts* (types), T_1 , T_2 , ... (typically includes Bool)
- For each sort, fix an alphabet of *variables* $x,y,z,x_1,...$
- Fix a set of function symbols $f,g,h,f_1,...$ each with a function signature
 - a function signature defines an arity (≥ 0), sort for each argument, return sort
 - nullary functions are also referred to as *constant symbols*
- Then we can define *first-order terms* $t,s:=x\mid f(t_1,t_2,...)$
 - we assume all terms to be type-correct (well-sorted) and to respect arities
- A *signature* is a set of sorts and function symbols (over those sorts)
- For a given signature, first-order assertions A are defined by $A,B:=t \mid \neg A \mid A \land B \mid A \lor B \mid A \Rightarrow B \mid A \Leftrightarrow B \mid \forall x:T.A \mid \exists x:T.A$
 - Here, t must be a term of (interpreted) sort Bool (assertions also Bool terms)
 - We write FV(A) for set of variables occurring free (not bound by \forall/\exists) in A

Background: Sorted First-Order Logic - Semantics

- ullet A *first-order model* M is a (partial) map mapping:
 - ullet sorts to non-empty sets of values: the interpretation of the sort in M
 - variables to *elements* (i.e. values) of the interpretations of their sorts
 - function symbols to (total) *mathematical functions* with appropriate arity, domain/range according to interpretations of function arguments/return sort
- The value of a term t in a model M, written $\lceil t \rfloor_M$, is defined by: $\lceil x \rfloor_M = M(x)$ and $\lceil f(t_1, t_2, ...) \rfloor_M = M(f)(\lceil t_1 \rfloor_M, \lceil t_2 \rfloor_M, ...)$
- A formula A is satisfied by a model M, written $M \models A$, defined by:

 $M \models t$ iff $\lceil t \rfloor_M = true$. $M \models \neg A$ iff $M \not\models A$...(usual propositional cases)

 $M \models \forall x:T.A$ iff for all values $v \in M(T)$, $M[x \mapsto v] \models A$

 $M \models \exists x: T.A$ iff for some value $v \in M(T)$, $M[x \mapsto v] \models A$

• here $M[x\mapsto v]$ denotes a new model mapping x to v and otherwise unchanged

Background: First-Order Logic Equivalences

Note: we will sometimes omit sorts from quantifiers when irrelevant

$$\forall x_1. \forall x_2. \ A \equiv \forall x_2. \forall x_1. \ A$$

$$\exists x_1. \exists x_2. \ A \equiv \exists x_2. \exists x_1. \ A$$

$$\neg \forall x. A \equiv \exists x. \neg A \quad \text{and} \quad \neg \exists x. A \equiv \forall x. \neg A$$

$$\forall x. (A \land B) \equiv (\forall x. A) \land (\forall x. B)$$

$$\exists x. (A \lor B) \equiv (\exists x. A) \lor (\exists x. B)$$
 If $x \notin F \lor (A)$ then $\exists x. A \equiv A \equiv \forall x. A$ and
$$\forall x. (A \lor B) \equiv A \lor (\forall x. B)$$
 and $\exists x. (A \land B) \equiv A \land (\exists x. B)$

Make sure that you're comfortable with understanding and using these

For lecture notes on first-order logic, see CPSC 121, or e.g. https://www.doc.ic.ac.uk/~imh/teaching/140 logic/140.pdf (p. 199-203)