Mathematical analysis 2 Chapter 6 : Fourier series

R. KECHKAR

2023/2024

Course outline

- Generalities
- 2 Trigonometric series
- 3 Fourier series

Some definitions

Definition

We say that a function defined on a subset D of \mathbb{R} is T-periodic if:

$$\forall x \in D$$
: $x + T \in D$ and $f(x + T) = f(x)$.

Lemma

- If f is T-periodic, then f(x+nT) = f(x) for any integer n.
- The functions $\cos(mx)$ and $\sin(mx)$ have a period $T = \frac{2\pi}{m}$ $(m \neq 0)$.

Lemma

Let $f : \mathbb{R} \to \mathbb{R}$ be a T-periodic function where T > 0, integrable over the interval [0, T]. Then:

$$\forall \alpha \in \mathbb{R}, \quad \int_{\alpha}^{\alpha+T} f(t) dt = \int_{0}^{T} f(t) dt.$$

Course outline

- Generalities
- 2 Trigonometric series
- Fourier series

Trigonometric series

Definition

• We call trigonometric series all series of functions $\sum f_n$ whose general term is of the form:

$$f_0(x) = \frac{a_0}{2}$$
 and $f_n(x) = a_n \cos\left(\frac{n\pi x}{l}\right) + b_n \sin\left(\frac{n\pi x}{l}\right) \ \forall n \ge 1$,

where $l \neq 0$, and $(a_n)_n$ and $(b_n)_n$ are two sequences called the coefficients of the trigonometric series.

• A trigonometric series is denoted as:

$$\frac{a_0}{2} + \sum_{n>1} (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l})$$

Trigonometric series

Example.

- The series $\sum_{n\geq 1} \frac{\cos(nx)}{n^2}$ is a trigonometric series with $l=\pi$, $a_0=0$, and for all $n\in\mathbb{N}^*$, $a_n=\frac{1}{n^2}$ and $b_n=0$.
- The series $2 + \sum_{n \ge 1} \frac{\cos(nx)}{n^2} + \frac{\sin(nx)}{n}$ is a trigonometric series with $l = \pi$, $a_0 = 4$, and for all $n \in \mathbb{N}^*$, $a_n = \frac{1}{n^2}$ and $b_n = \frac{1}{n}$.

Convergence of trigonometric series

Theorem

If the numerical series $\sum a_n$ and $\sum b_n$ converge absolutely, then the trigonometric series:

$$\frac{a_0}{2} + \sum_{n>1} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

converges normally (and then absolutely and uniformly) over \mathbb{R} .

Convergence of trigonometric series

Proposition

Let $(a_n)_n$ and $(b_n)_n$ be two sequences of positive real numbers, decreasing, and converging to 0. The trigonometric series:

$$\frac{a_0}{2} + \sum_{n \ge 1} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

- converges pointwise for all $x \in \mathbb{R}$ such that $x \neq 2kl$, $k \in \mathbb{Z}$.
- converges uniformly on every interval $[2kl + \alpha, 2(k+1)l \alpha]$ where $k \in \mathbb{Z}$ and $\alpha \in]0, l[$.

Properties of the sum of a trigonometric series

Proposition (Continuity)

If the trigonometric series $\frac{a_0}{2} + \sum_{n \geq 1} (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l})$ converges uniformly over an interval I, then its sum is a continuous function on I.

Proof.

- All functions f_n such that $f_n(x) = a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l}$ are continuous on \mathbb{R} ;
- The series $\frac{a_0}{2} + \sum_{n \ge 1} (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l})$ converges uniformly on I; thus, the sum function is continuous on I.

Properties of the sum of a trigonometric series

Proposition (Periodicity)

If the trigonometric series $a_0 + \sum_{n \ge 1} (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l})$ converges, then its sum is a periodic function with period 2l.

Suppose the series $a_0 + \sum_{n \ge 1} (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l})$ converges and its sum is equal to S(x), i.e., $S(x) = a_0 + \sum_{n \ge 1} (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l})$. Let's demonstrate that S(x+2l) = S(x):

$$S(x+2l) = a_0 + \sum_{n\geq 1} (a_n \cos(\frac{n\pi}{l}(x+2l)) + b_n \sin(\frac{n\pi}{l}(x+2l)))$$

$$= a_0 + \sum_{n\geq 1} (a_n \cos(\frac{n\pi x}{l} + 2n\pi) + b_n \sin(\frac{n\pi x}{l} + 2n\pi))$$

$$= a_0 + \sum_{n\geq 1} (a_n \cos(\frac{n\pi x}{l}) + b_n \sin(\frac{n\pi x}{l})) = S(x)$$

Links between the sum of a trigonometric series and the coefficients of the series

Proposition

If the trigonometric series: $a_0 + \sum_{n \ge 1} (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l})$ converges uniformly to f on [-l, l], then its coefficients are given by:

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx, \quad \forall n \ge 1$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx, \quad \forall n \ge 1$$

Course outline

- Generalities
- 2 Trigonometric series
- 3 Fourier series

Expansion of a function into a Fourier series

Given a function f from \mathbb{R} to \mathbb{R} , 2l-periodic, we would like to find coefficients $(a_n)_n$ and $(b_n)_n$ such that f can be expanded into a trigonometric series, that is:

$$f(x) = \frac{a_0}{2} + \sum_{n \ge 1} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

The purpose of this section is to address the following two questions:

- What properties must the function f have for the coefficients $(a_n)_n$ and $(b_n)_n$ to exist?
- If $(a_n)_n$ and $(b_n)_n$ exist, what properties must the function f have for its trigonometric series to converge and for its sum to be equal to f(x)?

Fourier coefficients

Definition

Let f be a function that is 2l-periodic, integrable over any bounded closed interval in \mathbb{R} .

• The **Fourier coefficients** of f are defined as follows:

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) \, dx$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos\left(\frac{n\pi x}{l}\right) \, dx, \quad \forall n \ge 1$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin\left(\frac{n\pi x}{l}\right) \, dx, \quad \forall n \ge 1$$

• The Fourier series associated with f is the trigonometric series given

by:
$$Ff(x) = \frac{a_0}{2} + \sum_{n \ge 1} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

Remarks

Remark

- We can replace the boundaries of the integrals in the previous definition by \int_0^{2l} or to any interval of length 2l.
- It is not evident that Ff(x) converges, and even if it converges, its sum is not necessarily f(x).

Definition

- A function f is said to be even if $f(x) = f(-x) \ \forall x \in D_f$.
- The graph of f is symmetric with respect to the y-axis.
- In this case, $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$ for all a.

Definition

- A function f is said to be **odd** if $f(x) = -f(-x) \ \forall x \in D_f$.
- The graph of f is symmetric with respect to the origin O.
- In this case, $\int_{a}^{a} f(x) dx = 0$ for all a.

Fourier series of odd an even functions

Proposition

Let f be a function that is 2l-periodic and integrable over any closed and bounded interval in \mathbb{R} .

1 If f is **even**, then for all $n \in \mathbb{N}^*$, $b_n = 0$ and

$$a_0 = \frac{2}{l} \int_0^l f(x) \, dx; \quad a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{n\pi x}{l} \, dx, \quad \text{for } n \ge 1.$$

② If f is odd, then for all $n \in \mathbb{N}$, $a_n = 0$ and

$$b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi x}{l} dx, \quad \text{for } n \ge 1.$$

Case of functions $2-\pi$ periodic $(I = \pi)$

Proposition

Let f be a 2π -periodic function, integrable over any closed and bounded interval in \mathbb{R} .

- **1** The Fourier coefficients of f are given by: $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$ $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$, $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$, $\forall n \ge 1$.
- \bigcirc The Fourier series associated with f is:

$$Ff(x) = \frac{a_0}{2} + \sum_{n>1} (a_n \cos(nx) + b_n \sin(nx))$$

3 If f is even, then for all $n \in \mathbb{N}^*$, $b_n = 0$ and $a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx$

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) dx, \quad \forall n \ge 1$$

1 If f is odd, then for all $n \in \mathbb{N}$, $a_n = 0$ and

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx, \quad \forall n \ge 1$$

Case of functions $2-\pi$ periodic $(l=\pi)$

Example: Consider the function $f: [-\pi, \pi] \to \mathbb{R}$, a 2π -periodic and even function defined by f(x) = x if $x \in [0, \pi]$.

- Plot the graph of f in the interval $[-2\pi, 2\pi]$.
- Calculate the Fourier coefficients of f and provide its Fourier series.

Solution

- 1) Graph of f in the interval $[-2\pi, 2\pi]$:
- 2) Calculation of the Fourier coefficients of *f*:

f is 2π -periodic over \mathbb{R} . f is continuous over \mathbb{R} , thus it is integrable over any bounded closed set of \mathbb{R} . Then Ff exists.

f is even, so $b_n = 0$, $\forall n \ge 1$. And

$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_0^{\pi} x dx = \frac{2}{\pi} \left[\frac{x^2}{2} \right]_0^{\pi} = \pi.$$

$$\forall n \ge 1, a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) \, dx = \frac{2}{\pi} \int_0^{\pi} x \cos(nx) \, dx$$

By integrating by parts,

$$\begin{cases} u = x \\ v' = \cos(nx) \end{cases} \implies \begin{cases} u' = 1, \\ v = \frac{1}{n}\sin(nx) \end{cases}$$

$$a_n = \frac{2}{n\pi} \left[x \sin(nx) \right]_0^{\pi} - \frac{2}{n\pi} \int_0^{\pi} \sin(nx) \, dx = \frac{2}{n^2 \pi} (\cos(n\pi) - 1) = \frac{2}{n^2 \pi} ((-1)^n - 1).$$

We obtain:

$$Ff(x) = \frac{\pi}{2} + \sum_{n>1} \frac{2((-1)^n - 1)}{n^2 \pi} \cos(nx).$$

We notice that

$$a_n = \begin{cases} -\frac{4}{(2k+1)^2 \pi}, & \text{if } n = 2k+1, k \in \mathbb{N} \\ 0, & \text{otherwise} \end{cases}$$

$$Ff(x) = \frac{\pi}{2} - \sum_{n \ge 0} \frac{4}{(2n+1)^2 \pi} \cos((2n+1)x).$$

Piecewise continuity and piecewise differentiability

Definition

We say that the function f is **piecewise continuous** on [a,b] if there exists a subdivision $a = x_0 < x_1 < ... < x_i < ... < x_n = b$ such that:

- For every i, f is continuous on each $]x_i, x_{i+1}[$,
- and $\lim_{x \to x_i^+} f(x)$ and $\lim_{x \to x_{i+1}^-} f(x)$ exist and are finite, i := 0; ...; n-1.

Definition

We say that the function f is C^1 piecewise on [a,b] if there exists a subdivision $a = x_0 < x_1 < x_2 < ... < x_n = b$ such that:

- For every i, f is C^1 on each $]x_i, x_{i+1}[$,
- and $\lim_{x \to x_i^+} f'(x)$ and $\lim_{x \to x_{i+1}^-} f'(x)$ exist and are finite, i := 0; ...; n-1.

Dirichlet theorem

What properties must the function f possess for its Fourier series to converge and for its sum to be equal to f?

Theorem

Let f be a function that is 2l-periodic, integrable over any bounded closed set in \mathbb{R} , and let $x_0 \in \mathbb{R}$ satisfy:

- $\lim_{x \to x_0^+} \frac{f(x) f(x_0^+)}{x x_0} \text{ and } \lim_{x \to x_0^-} \frac{f(x) f(x_0^-)}{x x_0} \text{ exist and are finite.}$

Then, $Ff(x_0)$ converges, and its sum is equal to $\frac{1}{2}(f(x_0^+) + f(x_0^-))$, i.e.,

$$Ff(x_0) = \frac{1}{2}(f(x_0^+) + f(x_0^-)).$$

Additionally, if f is continuous at x_0 (i.e., $f(x_0^+) = f(x_0^-) = f(x_0)$), then: $Ff(x_0) = f(x_0).$

Dirichlet theorem

Corollary

If f is a 2l-periodic function, piecewise C^1 on [-l,l], then the Fourier series Ff of f converges on \mathbb{R} , and its sum is given by:

$$\forall x \in \mathbb{R}, \ Ff(x) = \frac{1}{2} \left(f(x^+) + f(x^-) \right)$$

Moreover, if f is continuous on $E \subseteq \mathbb{R}$, then: $\forall x \in E$, Ff(x) = f(x).

Parseval formula

Theorem

Let f be a 2l-periodic function, integrable over any bounded closed set of \mathbb{R} , with Fourier coefficients $(a_n)_n$ and $(b_n)_n$. Then:

- 2 $\frac{1}{l} \int_{-l}^{l} f^2(x) dx = \frac{a_0^2}{2} + \sum_{n \ge 1} (a_n^2 + b_n^2)$ (Parseval's Formula).

Corollary

If f is a 21-periodic function, integrable over any bounded closed set of \mathbb{R} , then its Fourier coefficients tend toward zero as $n \to +\infty$, which means that

$$\lim_{n \to +\infty} a_n = 0 \quad and \quad \lim_{n \to +\infty} b_n = 0$$

Example: Consider the function $f : \mathbb{R} \to \mathbb{R}$, a 2π -periodic and odd function defined by $f(x) = 1, \forall x \in [0, \pi]$.

- Plot the graph of f in the interval $[-2\pi, 2\pi]$.
- Calculate the Fourier coefficients of *f* and provide its Fourier series.
- Study the convergence of of *Ff*.
- Derive the value of the series:

$$\sum_{n\geq 0} (-1)^n \frac{1}{2n+1}, \sum_{n\geq 0} \frac{1}{(2n+1)^2}, \sum_{n\geq 1} \frac{1}{n^2}, \sum_{n\geq 1} (-1)^{n+1} \frac{1}{n^2}.$$

Solution:

- 1. The graph of f:
- 2. Calculating the Fourier coefficients of f: f is 2π -periodic over \mathbb{R} . f is piecewise continuous over \mathbb{R} , hence it is integrable over any closed and bounded set of \mathbb{R} . Thus, Ff exists.

As f is odd, $a_n = 0$, $\forall n \ge 0$. And

$$\forall n \ge 1, \ b_n = \frac{2}{\pi} \int_0^{\pi} \sin(nx) \, dx = \frac{2}{\pi} \left[-\frac{1}{n} \cos(nx) \right]_0^{\pi} = -\frac{2}{n\pi} (\cos(n\pi) - 1)$$

Then

$$\forall n \ge 1, \ b_n = -\frac{2((-1)^n - 1)}{n\pi}.$$

Thus,

$$Ff(x) = \frac{a_0}{2} + \sum_{n \ge 1} (a_n \cos(nx) + b_n \sin(nx)) = \sum_{n \ge 1} \frac{2(1 - (-1)^n)}{n\pi} \sin(nx).$$

We can see that:

$$b_n = \begin{cases} \frac{4}{(2k+1)\pi}, & \text{if } n = 2k+1, k \in \mathbb{N} \\ 0, & \text{otherwise} \end{cases}.$$

Hence,

$$Ff(x) = \sum_{n > 0} \frac{4}{(2n+1)\pi} \sin((2n+1)x).$$

3. **Study of the convergence of** *Ff*: Since f is odd and 2π -periodic, it suffices to apply the Dirichlet's Theorem on $[0,\pi]$ to f. f is of class C^1 piecewise over $[0,\pi]$. Indeed, f is C^1 on $]0,\pi[$ as it's constant. And

$$\lim_{x \to \pi^{-}} f'(x) = \lim_{x \to \pi^{-}} 0 = 0 \in \mathbb{R}, \quad \lim_{x \to 0^{+}} f'(x) = \lim_{x \to 0^{+}} 0 = 0 \in \mathbb{R}.$$

Thus, Ff converges for all $x \in \mathbb{R}$, and at points of continuity of f, its sum equals:

$$Ff(x) = \sum_{n \ge 0} \frac{4}{(2n+1)\pi} \sin((2n+1)x) = f(x), \quad \forall x \in \mathbb{R} - \{n\pi\}.$$

And at points of discontinuity of f, its sum equals:

$$\forall x \in \{n\pi\}, \quad Ff(x) = \frac{f(x+) + f(x-)}{2} = 0 \neq f(x).$$

Conclusion: *Ff* converges toward f on $\mathbb{R} - \{n\pi\}$.

1. Calculating $\sum_{n>0} (-1)^n \frac{1}{2n+1}$: for $x = \frac{\pi}{2}$:

$$Ff\left(\frac{\pi}{2}\right) = f\left(\frac{\pi}{2}\right) \Rightarrow \sum_{n \geq 0} \frac{4}{(2n+1)\pi} \sin\left((2n+1)\frac{\pi}{2}\right) = 1 \Rightarrow \sum_{n \geq 0} \frac{4(-1)^n}{(2n+1)\pi} = 1$$

This implies:

$$\sum_{n\geq 0} (-1)^n \frac{1}{(2n+1)} = \frac{\pi}{4}.$$

2. Calculating $\sum_{n\geq 0} \frac{1}{(2n+1)^2}$: applying Parseval's formula: f is 2π -periodic and integrable over any closed and bounded set of \mathbb{R} , thus:

$$\frac{a_0^2}{2} + \sum_{n \ge 1} (a_n^2 + b_n^2) = \frac{2}{\pi} \int_0^{\pi} 1 dx$$

$$\sum_{n \ge 0} \frac{16}{(2n+1)^2 \pi^2} = \frac{2}{\pi} \int_0^{\pi} 1 \, dx = 2$$

This implies:

$$\sum_{n>0} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}.$$

3. Calculating $S_3 = \sum_{n \ge 1} \frac{1}{n^2}$: As the series $\sum_{n \ge 1} \frac{1}{n^2}$ converges absolutely, we can write:

$$\sum_{n\geq 1}\frac{1}{n^2}=\sum_{k\geq 1}\frac{1}{(2k)^2}+\sum_{k\geq 0}\frac{1}{(2k+1)^2}=\frac{1}{4}\sum_{k\geq 1}\frac{1}{k^2}+\sum_{k\geq 0}\frac{1}{(2k+1)^2}=\frac{1}{4}S_3+\frac{\pi^2}{8}$$

This implies: $S_3 = \frac{1}{4}S_3 + \frac{\pi^2}{8}$, thus $S_3 = \frac{\pi^2}{6}$.

4. Calculating $S_4 = \sum_{n \ge 1} (-1)^{n+1} \frac{1}{n^2}$: Similarly, as the series $\sum_{n \ge 1} (-1)^{n+1} \frac{1}{n^2}$ converges absolutely, we can write:

$$\sum_{n\geq 1} (-1)^{n+1} \frac{1}{n^2} = \sum_{k\geq 1} (-1)^{2k+1} \frac{1}{(2k)^2} + \sum_{k\geq 0} (-1)^{2k+2} \frac{1}{(2k+1)^2}$$
$$= -\frac{1}{4} \sum_{k\geq 1} \frac{1}{k^2} + \sum_{k\geq 0} \frac{1}{(2k+1)^2} = -\frac{1}{4} S_3 + \frac{\pi^2}{8}$$

This implies:
$$S_4 = -\frac{1}{4} \frac{\pi^2}{6} + \frac{\pi^2}{8}$$
, thus $S_4 = \frac{\pi^2}{12}$.