#### Sets

Huynh Tuong Nguyen. Tran Tuan Anh, Nguye An Khuong, Le Hong Trang



Contents

Sets

Set Operation

Chapter 3

Discrete Structures for Computing on August 31, 2021

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen An Khuong, Le
Hong Trang
Faculty of Computer Science and Engineering
University of Technology - VNUHCM
trtanh@hcmut.edu.vn - htnguyen@hcmut.edu.vn

#### **Contents**

1 Sets

Sets

Huynh Tuong Nguyen. Tran Tuan Anh, Nguye An Khuong, Le Hong Trang



Contents

Sets

Set Operation

#### **Course outcomes**

Huynh Tuong Nguyen. Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Sets



| ontents |  |  |  |  |
|---------|--|--|--|--|
|         |  |  |  |  |
|         |  |  |  |  |

Sets

|       | Course learning outcomes                                           |
|-------|--------------------------------------------------------------------|
|       |                                                                    |
| L.O.1 | Understanding of logic and discrete structures                     |
|       | L.O.1.1 – Describe definition of propositional and predicate logic |
|       | L.O.1.2 – Define basic discrete structures: set, mapping, graphs   |
|       |                                                                    |
| L.O.2 | Represent and model practical problems with discrete structures    |
|       | L.O.2.1 – Logically describe some problems arising in Computing    |
|       | L.O.2.2 – Use proving methods: direct, contrapositive, induction   |
|       | L.O.2.3 – Explain problem modeling using discrete structures       |
|       |                                                                    |
| L.O.3 | Understanding of basic probability and random variables            |
|       | L.O.3.1 – Define basic probability theory                          |
|       | L.O.3.2 – Explain discrete random variables                        |
|       |                                                                    |
| L.O.4 | Compute quantities of discrete structures and probabilities        |
|       | L.O.4.1 – Operate (compute/ optimize) on discrete structures       |
|       | L.O.4.2 – Compute probabilities of various events, conditional     |
|       | ones, Bayes theorem                                                |
|       |                                                                    |



Contents

Sets

Set Operation

- Set is a fundamental discrete structure on which all discrete structures are built
- Sets are used to group objects, which often have the same properties

#### **Example**

- Set of all the students who are currently taking Discrete Mathematics 1 course.
- Set of all the subjects that K2011 students have to take in the first semester.
- Set of natural numbers N

#### Definition

A set is an unordered collection of objects.

The objects in a set are called the elements  $(ph\hat{a}n\ t\hat{u})$  of the set. A set is said to contain  $(ch\hat{u}a)$  its elements.

# BK TP.HCM

#### Definition

- $a \in A$ : a is an element of the set A
- $a \notin A$ : a is **not** an element of the set A

#### Definition (Set Description)

- $\bullet$  The set V of all vowels in English alphabet,  $V=\{a,e,i,o,u\}$
- Set of all real numbers greater than 1???  $\{x \mid x \in \mathbb{R}, x > 1\}$   $\{x \mid x > 1\}$   $\{x : x > 1\}$

### **Equal Sets**

#### Sets

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye An Khuong, Le Hong Trang



#### Contents

#### ets

Set Operation

#### Definition

Two sets are equal iff they have the same elements.

•  $(A = B) \leftrightarrow \forall x (x \in A \leftrightarrow x \in B)$ 

#### Example

- $\{1,3,5\} = \{3,5,1\}$
- $\bullet \ \{1,3,5\} = \{1,3,3,3,5,5,5,5\}$

#### Venn Diagram

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

Sets

- BK TP.HCM
- Contents
- Sets

- John Venn in 1881
- Universal set (tập vũ trụ) is represented by a rectangle
- Circles and other geometrical figures are used to represent sets
- Points are used to represent particular elements in set



#### **Special Sets**

Sets

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang



Contents

ets

- Empty set  $(t\hat{q}p \ r\tilde{o}ng)$  has no elements, denoted by  $\emptyset$ , or  $\{\}$
- A set with one element is called a singleton set
- What is {∅}?
- Answer: singleton

# ВК

Contents

Sets

Set Operation

#### Definition

The set A is called a subset  $(t\hat{a}p\ con)$  of B iff every element of A is also an element of B, denoted by  $A\subseteq B$ .

If  $A \neq B$ , we write  $A \subset B$  and say A is a proper subset ( $t\hat{a}p$  con  $th\psi c s\psi$ ) of B.

- $\forall x (x \in A \to x \in B)$
- For every set S, (i)  $\emptyset \subseteq S$ , (ii)  $S \subseteq S$ .



#### **Cardinality**

#### Definition

If S has exactly n distinct elements where n is non-negative integers, S is finite set ( $t\hat{q}p$   $h\tilde{u}u$  han), and n is cardinality ( $b\hat{a}n$   $s\hat{o}$ ) of S, denoted by |S|.

#### Example

- A is the set of odd positive integers less than 10. |A| = 5.
- S is the letters in Vietnamese alphabet, |S| = 29.
- Null set  $|\emptyset| = 0$ .

#### Definition

A set that is **infinite** if it is not finite.

#### **Example**

• Set of positive integers is infinite

Sets

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye An Khuong, Le Hong Trang



Contents

Sets

# BK TP.HCM

#### Contents

#### Sets

Set Operation

#### Definition

Given a set S, the power set  $(t\hat{a}p\ l\tilde{u}y\ th\dot{u}a)$  of S is the set of all subsets of the set S, denoted by P(S).

#### **Example**

What is the power set of  $\{0,1,2\}$ ?  $P(\{0,1,2\}) = \{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$ 

## Example

- What is the power set of the empty set?
- What is the power set of the set  $\{\emptyset\}$

#### **Power Set**

Sets

Huynh Tuong Nguyen. Tran Tuan Anh, Nguye An Khuong, Le Hong Trang



Contents

Sets

Set Operation

#### **Theorem**

If a set has n elements, then its power set has  $2^n$  elements.

Prove using induction!

#### Ordered *n*-tuples

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang



Contents

Sets

Set Operation

#### Definition

The ordered n-tuple ( $d\tilde{a}y$  sắp  $th\acute{u}$  tự)  $(a_1,a_2,\ldots,a_n)$  is the ordered collection that has  $a_1$  as its first element,  $a_2$  as its second element,  $\ldots$ , and  $a_n$  as its nth element.

#### Definition

Two ordered n-tuples  $(a_1, a_2, \ldots, a_n) = (b_1, b_2, \ldots, b_n)$  iff  $a_i = b_i$ , for  $i = 1, 2, \ldots, n$ .

### Example

2-tuples, or **ordered pairs**  $(c \not\ni p)$ , (a,b) and (c,d) are equal iff a=c and b=d

# ВК тр.нсм

Contents

Sets

Set Operation

• René Descartes (1596-1650)

#### Definition

Let A and B be sets. The Cartesian product ( $t\acute{c}ch$   $D\r{e}-c\acute{a}c$ ) of A and B, denoted by  $A\times B$ , is the set of ordered pairs (a,b), where  $a\in A$  and  $b\in B$ . Hence,

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

### Example

Cartesian product of  $A=\{1,2\}$  and  $B=\{a,b,c\}$ . Then

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

Show that  $A \times B \neq B \times A$ 

# ВК

#### **Definition**

 $A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i \text{ for } i = 1, 2, \dots, n\}$ 

#### Example

$$\begin{split} A &= \{0,1\}, B = \{1,2\}, C = \{0,1,2\}. \text{ What is } A \times B \times C? \\ A \times B \times C &= \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), \\ &\quad (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), \\ &\quad (1,2,1), (1,2,2)\} \end{split}$$

### Union

# ВК

#### Definition

The union  $(h\phi p)$  of A and B

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$



- Example:
  - $\{1,2,3\} \cup \{2,4\} = \{1,2,3,4\}$
  - $\{1,2,3\} \cup \emptyset = \{1,2,3\}$

#### Intersection

#### Sets

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

# BK TP.HCM

#### Contents

Sets

Set Operation

#### Definition

The intersection (giao) of A and B

$$A \cap B = \{x \mid x \in A \land x \in B\}$$



#### Example:

- $\{1,2,3\} \cap \{2,4\} = \{2\}$
- $\{1,2,3\} \cap \mathbb{N} = \{1,2,3\}$

## Union/Intersection

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang



$$\bigcup^n A_i = A_1 \cup A_2 \cup \ldots \cup A_n = \{x \mid x \in A_1 \lor x \in A_2 \lor \ldots \lor x \in A_n\}$$

ts

Contents

=1 Set Operation

$$\bigcap^{n} A_{i} = A_{1} \cap A_{2} \cap \dots \cap A_{n} = \{x \mid x \in A_{1} \land x \in A_{2} \land \dots \land x \in A_{n}\}$$

#### **Difference**

# ВК

#### Definition

The difference (hiệu) of A and B

$$A - B = \{x \mid x \in A \land x \notin B\}$$



# Example:

- $\{1,2,3\}$   $\{2,4\}$  =  $\{1,3\}$
- $\{1,2,3\}$   $\mathbb{N} = \emptyset$

### **Complement**

### Definition

The complement (phần bù) of A

$$\overline{A} = \{x \mid x \notin A\}$$



### Example:

- A =  $\{1,2,3\}$  then  $\overline{A}=???$
- Note that A B = A  $\cap \overline{B}$



Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang



Contents

Sets

# **Set Identities**

| Huynh Tuong Nguyer<br>Tran Tuan Anh, Nguy<br>An Khuong, Le Hong |
|-----------------------------------------------------------------|
| Trang                                                           |

Sets



Contents

Sets

| $A \cup \emptyset$     | = | A | Identity laws       |
|------------------------|---|---|---------------------|
| $A \cap U$             | = | A | Luật đồng nhất      |
| $A \cup U$             | = | U | Domination laws     |
| $A \cap \emptyset$     | = | Ø | Luật nuốt           |
| $A \cup A$             | = | A | Idempotent laws     |
| $A \cap A$             | = | A | Luật lũy đẳng       |
| $\overline{(\bar{A})}$ | = | A | Complementation law |
|                        |   |   | Luật bù             |
|                        |   |   |                     |

# **Set Identities**

| Huynh Tuong Nguyen   |  |  |  |  |  |  |
|----------------------|--|--|--|--|--|--|
| Tran Tuan Anh, Nguye |  |  |  |  |  |  |
| An Khuong, Le Hong   |  |  |  |  |  |  |
| Trang                |  |  |  |  |  |  |

Sets



Contents

Sets

| $A \cup B$ $A \cap B$                           | = | $B \cup A$<br>$B \cap A$                                                                | Commutative laws<br>Luật giao hoán  |
|-------------------------------------------------|---|-----------------------------------------------------------------------------------------|-------------------------------------|
| $A \cup (B \cup C)$ $A \cap (B \cap C)$         | = | $(A \cup B) \cup C$ $(A \cap B) \cap C$                                                 | Associative laws<br>Luật kết hợp    |
| $A \cup (B \cap C)$ $A \cap (B \cup C)$         |   | $(A \cup B) \cap (A \cup C)$ $(A \cap B) \cup (A \cap C)$                               | Distributive laws<br>Luật phân phối |
| $\overline{A \cup B} \atop \overline{A \cap B}$ | = | $\overline{\overline{A}} \cap \overline{\overline{B}}$ $\overline{A} \cup \overline{B}$ | De Morgan's laws<br>Luật De Morgan  |

#### Method of Proofs of Set Equations

Sets

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang



Contents

Sets

Set Operation

To prove A = B, we could use

- Venn diagrams
- Prove that  $A \subseteq B$  and  $B \subseteq A$
- Use membership table
- Use set builder notation and logical equivalences

# Example (1)



# Example

Verify the distributive rule  $P \cup (Q \cap R) = (P \cup Q) \cap (P \cup R)$ 

Sets

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyer An Khuong, Le Hong Trang



Contents

Sets

### Example (2)

Huynh Tuong Nguyen Tran Tuan Anh, Nguye An Khuong, Le Hong Trang

# ВК

Sets

Set Operation

#### **Example**

Prove:  $\overline{A\cap B}=\overline{A}\cup \overline{B}$ 

(1) Show that  $\overline{A\cap B}\subseteq \overline{A}\cup \overline{B}$ 

Suppose that  $x \in \overline{A \cap B}$ 

By the definition of complement,  $x \notin A \cap B$ 

So,  $x \notin A$  or  $x \notin B$ 

Hence,  $x \in \bar{A}$  or  $x \in \bar{B}$ 

We conclude,  $x \in \overline{A} \cup \overline{B}$ 

Or,  $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$ 

(2) Show that  $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$ 

# Example (3)

Prove: 
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

| A | B | $A \cap B$ | $\overline{A \cap B}$ | $\bar{A} \cup \bar{B}$ |
|---|---|------------|-----------------------|------------------------|
| 1 | 1 | 1          | 0                     | 0                      |
| 1 | 0 | 0          | 1                     | 1                      |
| 0 | 1 | 0          | 1                     | 1                      |
| 0 | 0 | 0          | 1                     | 1                      |



Huynh Tuong Nguyen. Tran Tuan Anh, Nguye An Khuong, Le Hong Trang



Contents

Sets

### Example (4)

Prove: 
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\overline{A \cap B} = \{x | x \not\in A \cap B\}$$

$$= \{x | \neg (x \in A \cap B)\}$$

$$= \{x | \neg (x \in A \land x \in B)\}$$

$$= \{x | \neg (x \in A) \lor \neg (x \in B)\}$$

$$= \{x | x \not\in A \lor x \not\in B\}$$

$$= \{x | x \in \overline{A} \lor x \in \overline{B}\}$$

$$= \{x | x \in \overline{A} \cup \overline{B}\}$$

Sets

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye An Khuong, Le Hong Trang



Contents

Sets