6LoWPan

Roteamento

Agenda

- 1. Introdução
- 2. Roteamento L2 (Mesh Under)
- 3. Roteamento L3 (Route Over)
 - 3.1. Contextualização
 - 3.2. Escopo
 - 3.3. Métricas
 - 3.4. RPL

Introdução

- Necessidade de encaminhar pacotes passando por mais de um hop
 - Nós podem não ser alcançáveis diretamente
- LoWPAN impõe várias restrições que impactam na escolha de um protocolo de roteamento
 - Baixo consumo de bateria
 - Baixo consumo de memória
 - Baixo consumo de processamento

Introdução

- Importante levar em consideração o sentido do roteamento
 - intra-LoWPAN Roteamento dentro da própria rede
 - Border routing Roteamento passando para uma rede externa
- 6LoWPAN possibilita roteamento em duas camadas
 - Mesh Under (Roteamento L2)
 - Route Over (Roteamento L3)

- Roteamento na camada de adaptação da LoWPAN
- Utiliza o cabeçalho Mesh definido na RFC 4944
 - Baseado nos endereço MAC dos dispositivos
- Faz com que a comunicação L3 seja transparente entre origem e destino
 - Comunicação IPv6 é abstraída como um único link
- Atualmente o IETF n\u00e3o est\u00e1 trabalhando na defini\u00e7\u00e3o de nenhum protocolo de roteamento Mesh Under

- Origem

- Preenche o cabeçalho mesh com os MACs de origem e destino
- Seta o destino L2 com o endereço do próximo hop escolhido pelo protocolo de roteamento

Nó intermediário

- Verifica que o pacote não tem como destino final ele mesmo
- Decrementa o campo next hop do cabeçalho mesh
- Altera o destino L2 com o endereço do próximo hop escolhido pelo protocolo de roteamento

Destino

- Verifica que o pacote tem como destino final ele mesmo
- Consome o pacote

Route Over

- Roteamento na camada IP (L3)
- Utilização de apenas uma interface para comunicação
 - Envio e recebimento
- Espaço de endereçamento flat
 - Todos os dispositivos compartilham o mesmo prefixo IPv6
- Diversos requisitos
 - Suportar ciclos de sleep
 - Economia de energia
 - Múltiplos tipos de endereçamento

Route Over

Route Over

- Muitas características e requisitos conflitantes
- Desafio é equilibrar demandas as restrições com qualidade de serviço
- Grupo criado dentro do IETF para definir um protocolo de roteamento para
 6LoWPAN
- ROLL WG (Routing Low power and Lossy Networks Working Group)

Route Over - Contextualização

- Distance-vector Routing
 - Variante do algoritmo de Bellman-Ford
 - Associa custo a cada um dos links
 - Escolhe o caminho com menor custo
- Link-state Routing
 - Cada nó tem visão completa da rede (flooding)
 - Cálculo do menor caminho de cada nó para os demais
 - Utiliza algoritmo de Dijkstra

Route Over - Contextualização

Proactive Routing

- Cria tabela de roteamento antes dela ser necessária
- Alto overhead na rede
- Ideal para topologias com baixa mobilidade na rede

Reactive Routing

- Cria tabela de roteamento sob demanda
- Pouco overhead na rede
- Ideal para topologias com alta mobilidade e alta comunicação peer-to-peer

- Redes Urbanas
 - Monitoramento ambiental
 - Leitura automática de sensores
 - Smart Grids
- Algoritmo de roteamento deve ter
 - Baixo consumo energético
 - Escalável e autônomo
 - Levar em conta limitação dos nós

- Redes Industriais
 - Sensores de baixo custo
 - Aumento de segurança
 - Aumento de produtividade
- Algoritmo de roteamento deve ter
 - Baixo consumo energético
 - Confiabilidade
 - Fácil configuração e manutenção

- Redes Prediais
 - Sensores de baixo custo
 - Aumento de segurança
 - Aumento de produtividade
- Algoritmo de roteamento deve ter
 - Baixo consumo energético
 - Escalabilidade
 - Auto configuração e fácil gerência

- Redes Residenciais
 - Saúde
 - Automação
 - Segurança e monitoramento
- Algoritmo de roteamento deve ter
 - Baixo consumo energético
 - Comunicação peer-to-peer
 - Nenhuma configuração e adaptabilidade

- Redes Residenciais
 - Saúde
 - Automação
 - Segurança e monitoramento
- Algoritmo de roteamento deve ter
 - Baixo consumo energético
 - Comunicação peer-to-peer
 - Nenhuma configuração e adaptabilidade

Type	Areas	Requirement
Addressing	U, I, B, H	The protocol MUST support unicast, anycast and multicast addressing.
Addressing	B, H	A device MUST be able to communicate peer-to-peer with any other device in the network.
General	В	The protocol MUST support the capability of nodes to act as a proxy
		for sleeping nodes. The proxy stores packets for a sleeping node,
		and delivers them during the next awake cycle.
Traffic flow	U, I	The protocol MUST support multiple paths to a given destination
		for reliability and load balancing.
Configuration	U, I, B, H	Autoconfiguration of the routing algorithm MUST be supported, without human intervention.
Configuration	В	It MUST be possible to commission devices without requiring any
		additional commissioning devices (e.g. a laptop).
Configuration	U, I, B, H	The protocol MUST be able to dynamically adapt to changes based
		on network layer and link-layer abstractions.
Configuration	I	The protocol MUST support the distribution of configuration
C		information from a centralized management controller.
Management	Н	The protocol MUST support the ability to isolate a misbehaving
		node.

Scalability	U	The protocol MUST be able to support a large number of nodes in
		regions containing on the order of 10^2 to 10^4 nodes.
Scalability	U	The protocol MUST accommodate a very large and increasing
		number of nodes without deteriorating selected performance
		parameters.
Scalability	В	The protocol MUST be able to support networks with at least 2000
		nodes, and subnetworks with up to 255 nodes each.
Scalability	H	The protocol MUST support up to 250 devices in the network.
Performance	I	Success or failure regarding route discovery MUST be reported
		within several minutes and SHOULD be reported within tens of
		seconds.
Performance	H	The protocol MUST converge within 0.5 seconds with no mobility,
		respond to topology change within 0.5 seconds if the sender has
		moved, and with 2 seconds if the destination has moved.
Performance	H	Sleeping nodes MUST be taken into account by the routing
		algorithm.
Metrics	U, I, B, H	The protocol MUST support different link and node metrics for use
		in constraint-based routing.

Route Over - Métricas

- Utilizado para escolher a melhor rota
- Métricas de link
 - Taxa de transmissão
 - Latência
 - Confiabilidade
- Métricas de nó
 - Memória
 - Processamento
 - Batería restante

Metric	Type	Description
Node memory	QT, ST	The memory available for routing information on a node.
Node CPU	QT, ST	Computational power, not considered to be critical in most
		ROLL applications.
Node energy	QT, DY	The residual energy left for battery-powered nodes, important
		for optimizing network lifetime.
Node overload	QT, DY	A simple indication of the network load (e.g. queue size) of a
		node.
Link throughput	QT, DY	The total and currently available throughput of a link.
Link latency	QT, DY	The range of latency and current latency for a link.
Link reliability	QT, DY	The link reliability specified as e.g. average packet error rate,
		which is a critical routing metric.
Link coloring	QL, ST	This static attribute is used to prefer or avoid specific links for
		specific traffic types.

QT = Quantitative, QL = Qualitative, ST = Static, DY = Dynamic.

- ROLL Working Group avaliou diversos algoritmos de roteamento já existentes
 - AODV
 - DYMO
 - OLSR
- Foi verificado que nenhum deles atendia os requisitos sem a implementação de modificações consideráveis

- ROLL Working Group propôs a implementação de outro algoritmo
 - RPL
- Otimizado para "Sink Communication"
 - Comunicação entre um nó da internet para vários sensores
 - Comunicação de um sensor para vários nós da internet
- Pode ser classificado como um protocolo
 - Distance-Vector
 - Proativo

- DAG (Directed Acyclic Graph)
 - Grafo sem nenhum ciclo
- DAG Root
 - Nó de borda do grafo (Não possui filhos)
 - Edge Router
 - Pode existir mais de um na rede
- DODAG (Destination Oriented Directed Acyclic Graph)
 - DAG com apenas um único DAG Root

- Rank

- Define a posição relativa de um nó na DODAG
- Aumenta conforme descemos na DODAG
- Diminui quando subimos na DODAG
- Calculado baseado na função objetiva que leva em conta as métricas definidas

Non-Storing Mode

- Cada nó da DODAG tem informação apenas dos nós pais
- Apenas a raiz da DODAG possui informação completa da rede

Storing Mode

- Todos os nós da DODAG tem informação completa da rede

- Mensagens baseadas em ICMPv6
- DIO (DODAG Information Object)
 - Mensagem multicast que propaga informações do nó para a rede
- DIS (DODAG Information Solicitation)
 - Mensagem propagada para perguntar na rede pela existência de alguma DODAG
- DAO (DODAG Destination Advertisement Object)
 - Mensagem enviada por um nó filho para pedir permissão para se juntar a uma DODAG
- DAO-ACK (DODAG Destination Advertisement Object Acknowlogement)
 - Mensagem de resposta ao DAO permitindo ou negando a entrada de um nó na DODAG

- Para realizar roteamento peer-to-peer existem duas possibilidades
 - No modo Storing é possível que um nó dentro intermediário na DODAG envie os pacotes para o destino correto
 - No modo Non-Storing é necessário que que todos os pacotes sejam encaminhados até o
 DODAG root (Edge Router) para depois serem encaminhados para o destino final

Referências

- RFC 6550 RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks
- 6LoWPAN The Wireless Embedded Internet