

检测的重要意义

2.1.1 检测仪表

1.传感器

国标《GB7665-87》规定: "能感受规定的被测量 并按照一定的规律将其转换成可用输出信号的器件或装置, 通常由敏感元件和转换元件组成"。

组成框图(图2-1)

2.变送器

将输出信号变成统一标准信号的传感器。

统一标准信号即各仪表之间的通信协议: 0~10mA、0~2V、 20~100kPa; 4~20mA、1~5V→数字信号。

本章要点(只讲2.1)

- 1) 了解参数检测的意义、检测仪表的基本构成及仪表的统一 信号标准:
- 2) 了解检测误差的概念、熟悉仪表的性能以及零点迁移与量 程调整的确定与计算:
- 3) 熟悉变送器的构成原理、信号传输与接线方式;
- 4) 了解温度检测方法、熟悉温度变速器的工资原理、掌握其 使用方法:
- 5) 掌握压力、流量、物位等检测仪表的工作原理与使用方法。 熟悉压力变送器的工作原理及使用特点;
- 6) 熟悉智能式变送器的特点及硬件构成:
- 7) 熟悉成分检测仪表的工作原理及适用范围。

2.1.2 检测误差

- 1.检测误差的描述 检测误差是指检测仪表的测量值与被测物理量的真值 之间的差值,它反映了仪表的检测精度
 - (1) 真值 即被测物理量的真实(或客观)取值。 在当前现行的检测体系中,是将"认定设备"的检测结果作为真值。

通常,各国(或国际组织)将其法定计量机构的专用设备作为认定设备,它 的检测精度在这个国家(或国际组织)内被认为是最高的。显而易见。用这 种方法确定的"真值"称为"约定真值"。

(2) 绝对误差 仪表的实测值与 "真值" 之差 记为 \triangle $x - x_a$ 绝对误差不能说明检测精度,如。。。

(3) 相对误差(或标称相对误差)

$$\delta = \frac{\Delta}{x_a} \times 100 \% (\delta' = \frac{\Delta}{x} \times 100 \%)$$

(4) 引用误差 记为
$$\gamma = \frac{\Delta}{x_{\text{max}} - x_{\text{min}}} \times 100 \%$$

(5) 基本误差

使用标准:220V±5%、(50±2) Hz、(20±5) ℃、65%±5%

(6) 附加误差(温度附加、频率附加、电源电压附加)
2. 检测误差的规律性
(1) 系统误差 对同一被测参数进行多次重复测量时,按一定规律出现的误差。如。。。
克服系统误差的办法: 负反馈结构
(2) 随机误差或统计误差: 统计计算、滤波消除
(3) 粗大误差(疏忽误差): 剔除
2. 1. 3 检测仪表的基本特性
1. 仪表的固有特性及性能指标
(1) 精确度及其等级
1) 不能用绝对误差或相对误差表示?如。。
2) 用最大引用误差度量? (量程、最大绝对误差)

度量办法: 去掉最大引用误差中的"土"和"%"表示: 0.001、

0.005, 0.02, 0.05, 0.1, 0.2, 0.4, 0.5, 1.0, 1.5, 2.5.

工业常用热电阻的分度表

附表A 附表A-1 铂热电阻(分度号Pt100)分度表 $(R_0 = 100.00\Omega)$, $\alpha = 0.003850$)

温度 /°C	00	10	20	30	40		50	60	70	80	1
/°C	电阻值 Ω										
- 200 - 100 - 0	18. 49 60. 25 100. 0	56. 19 96. 06	52. 11 92. 16	48. 00 88. 22	- 43. 37 84. 27	- 39. 71 80. 31	35. 5 76. 3			22. 80 64. 30	
0 100 200 300 400 500 600 700 800	100. 00 138. 50 175. 84 212. 02 247. 04 280. 90 313. 59 345. 13 375. 51	103. 90 142. 29 179. 51 215. 57 250. 48 284. 22 316. 80 348. 22 378. 48	107. 79 146. 06 183. 17 219. 12 253. 90 287. 53 319. 99 351. 30 381. 45	111. 67 149. 82 186. 32 222. 65 257. 32 290. 83 323. 18 354. 37 384. 40	115. 54 153. 58 190. 45 226. 17 260. 72 294. 11 326. 35 357. 42 387. 34	119. 40 157. 31 194. 07 229. 67 264. 11 297. 39 329. 51 360. 47 390. 26	161. 197. 233. 267. 300. 332. 363.	04 164. 7 69 201. 2 17 236. 6 49 270. 8 65 303. 9 66 335. 7	76 168. 46 29 204. 88 35 240. 13 36 274. 22 91 307. 15 79 338. 92	134. 70 172. 16 208. 45 243. 59 277. 56 310. 38 342. 03 372. 52	

附表A-2 铜热电阻(分度号Cu50) 分度表(R0=50.00Ω α=0。004280) 温度 /°C 电阻值 Ω 43.55 56.42 41.40 58.56 47.85 52.14 45.70 54.28 39.24 60.70 67.12 69.26 82.13 2) 半导体热敏电阻的测温 $B = \frac{\ln R(T) - \ln R(T_0)}{1 + \ln R(T_0)}, B = 1500 \sim 6000 K$ 温度系数:温度变化1℃时电阻值的相对变化量。 负温度系数: NTC型; 正温度系数: PTC型; 临界: CRT型

为什么要延伸? 补偿导线的作用?

等值替换原理(图2-17) 等值替换的条件:

 $E_{AB}(t_C,t_0) = E_{CD}(t_C,t_0)$

 $t_{c} \leq 100^{\circ}$ C

热电回路的总热电势: $E_{ABCD}(t,t_0) = E_{AB}(t) + E_{BD}(t_C) + E_{DC}(t_0) + E_{CA}(t_C)$

 $t = t_0 = t_C \rightarrow E_{AB}(t_C) + E_{BD}(t_C) + E_{DC}(t_C) + E_{CA}(t_C) = 0$

 $E_{ABC}(t,t_0) = E_{AB}(t) - E_{AB}(t_C) + E_{DC}(t_0) - E_{DC}(t_C) = E_{AB}(t,t_C) + E_{CD}(t_C,t_0)$

依据 $E_A(t_C,t_0)=E_C(t_C,t_0)$

则有 $E_{ABC}(t,t_0) = E_{AB}(t,t_C) + E_{CD}(t_C,t_0) = E_{AB}(t) - E_{AB}(t_C) + E_{AB}(t_C) - E_{AB}(t_0) = E_{AB}(t,t_0)$

结论:将满足 $E_{AB}(t_C,t_0)=E_{CD}(t_C,t_0)$ 的补偿导线代替热电偶使冷端延 伸,不会改变热电偶的热电势

补偿导线的连接示意图

2) 电桥补偿法: 利用电桥某桥臂电阻因环境温度变化产生的附加电压补 偿热电偶冷端温度变化引起的热电势的变化 (图2-19及说明)

工作原理。。。

示例: 铂铑一铂铑热偶. 0~100°C: 6μv/°C, 桥 臂电流为0.5mA.α= 0.004/℃。全补偿的条 件为:

$I(mA) \times R_{out}(\Omega) \times 0.004 / ^{\circ}\mathbb{C} = 6(\mu V / ^{\circ}\mathbb{C})$

经计算: $R_{cu}(t_0 = 0^{\circ}\mathbb{C}) = 3\Omega$

加保护套管:可延长使用寿命;但使惯性滞后↑ (1.5~4min).不加为毫秒级 接触式测温优点:精度高、小范围线性度与稳定性好测温范围宽(500~ 2000℃;缺点;高于2000℃时,不能长期使用,对运动物体的测温,不 能使用

(4) 标准热电偶及其补偿导线

标准热电偶: 热电势与温度的关系、允许误差、型号(分 度号)按国际标准(IEC)统一规定。

表2-3 我国部分标准化热由偶及其补偿异线

偶							
		配套的补偿导线 (绝缘层着色)					
₹	热电偶材料①	测温范围/℃			型号②	正极材料	负极材料
		长期	短期				
	铂铑10 - 铂③	0~1300	1600		SC	铜 (红)	铜镍 (绿)
	铂铑30-铂铑6	0 ~ 1600	1800		BC	铜 (红)	铜 (灰)
	镍铬 - 镍硅	- 50 ~ 1000	1300		KX	镍铬 (红)	镍硅 (黑)
	铜 - 康铜	- 200 ~ 300	350		TX	铜 (红)	康铜 (白)
		铂铑10 - 铂③ 铂铑10 - 铂铑6 镍铬 - 镍硅	长期 铂铑10 - 铂(3) 0~1300 铂铑20 - 铂铑6 0~1600 镍铬 - 镍硅 - 50~1000	长期 短期 铂铑10 - 铂③ 0~1300 1600 铂铑20 - 铂铑6 0~1600 1800 镍铬 - 镍硅 - 50~1000 1300	长期 短期 铂铑10 - 铂(3) 0~1300 1600 铂铑20 - 铂(8) 0~1600 1800 镍铬 - 镍κ硅 - 50~1000 1300	技期 短期 日期 日前 日前 日前 日前 日前 日前	长期 短期 铂铑·o·铂③ 0~1300 1600 SC 铜(红) 铂铑·o·铂铑· 0~1600 1800 BC 铜(红) 镍铬·镍硅 -50~1000 1300 KX 镍铬(红)

(5) 热电偶的冷端温度校正

为什么要校正?

1) 查表法: $E_{AB}(t,0) = E_{AB}(t,t_n) + E_{AB}(t_n,0)$

示例: K型热偶, 测t,冷端温度 $t_{ij} = 30^{\circ}$ C

测得 E(t,30)=21.995mV,E(30,0)=1.203mV,经计算: E(t,0)=E(t,30)+E(30,0)=23.198m, 反查分度表: t=560℃

二 非接触式测温(辐射式测温)

1. 非接触式测温及其特点

原理: 载热体→热能→辐射能→受体温度↑。

特点: 无媒介, 无上限, 测速快, 对热场无干扰, 用于运动物体、腐蚀 性介质的测温:

缺点:测量误差大、标定难结构复杂、价格贵

2.常用元件及共性

高温辐射计、低温辐射计、光电温度计;:热辐射→透镜(反射镜)→ 热电堆(热敏电阻、硅光电池)→电信号。

(1), 高温辐射计: 光学玻璃透镜 (光波长0.7~1.1 um) 与硅光电池 (700~2000°C→20mV)组成: 误差: <1500°C, ±0.7%; > 1500°C,

土1%; 响应时间<1毫秒

- (2). 低温辐射计: 锗透镜与半导体热敏电阻组成: 接收2~15µm红外 波; 范围: 0~200℃; 误差: ±1%; 响应时间<2毫秒, 信号需放大。
- (3) 光电温度计: 光透镜 (光波长0.6~2.7μm) +流化铅光敏电阻: 范 围: 400 ~800℃; 误差: ±1%; 响应时间<1.5毫秒, 信号需放大。

(3) 热电阻量程单元 (图2-26)

与热电偶量程单元的区别:

- 1) 用三线制代替了冷端温度补偿:
- 2) 对铂电阻需进行非线性校正,而 铜电阻则无需校正?
- 3) 采用正反馈方法进行校正。。。

3. 放大单元 的构成及工作 原理(图2一 27)

构成:直一交一 直变换电路:集 成运放; 功放电 路:输出电路: 反馈电路。

各部功能:。。。

- (1) 输入模版: 多路转换器、信号调理电路、A/D转换和隔离; 功能。
- (2) 主板: 微处理器系统、通信控制器、信号整形、本机调整、和电源; 功能。
- (3) 显示器:液晶式微功耗数字显示四位半/五位字母
- 3. 软件构成: 系统程序、功能模块

2.3 压力的检测与变送(意义)

1. 弹簧管(波登管)、多圈弹管。

- 角位移→电信号: 2. 波纹管、波/簧组合
- →提高线性度:
- 3. 膜片与膜盒(说明)

密封基圈

