SECOND SEMESTER 2020-21 COURSE HANDOUT

Date: 04.01.2021

In addition to part I (General Handout for all courses appended to the Time table) this portion gives further specific details regarding the course.

Course No : EEE/INSTR F342
Course Title : Power Electronics
Instructor-in-Charge : Rajneesh Kumar

Instructor(s) : Ashish Patel, Dheerendra Singh, H D Mathur, Aditya R Gautam

1. Course Description: This course covers basic power electronic circuits which includes DC-DC converters, Rectifiers and Inverters. Steady state analysis of these converters is discussed in details with emphasis on proper selection of devices and magnetic components. Mathematical modeling of converter transfer function using various approaches is also included for controller design of these converters. Experiments are designed to understand the working of these power electronic circuits supported with MATLAB/SIMULINK based simulation platform.

2. Scope and Objective of the Course:

- a. Understand the main elements of power electronic circuits
- b. Steady-state analysis of basic power electronic circuits like DC-DC converters, rectifiers and inverters
- c. Development of converter transfer function to locate pol-zero for controller design
- d. Experimental validation of these power electronic circuits
- e. Development of one lab prototype power electronic circuit

3. Text Books:

T1: N. Mohan, T. Undeland, and W. Robbins, *Power Electronics: Converters, Applications, and Design*, 3rd edit. John Wiley & Sons, 2003

T2: Robert W. Erickson, Dragan Maksimovic, Fundamental Power Electronics: 2nd edit. Springer International, 2001

4. Reference Books:

- R1: J. Kassakian, M. Schlecht, and G. Verghese, *Principles of power electronics*, 3rd edit. Pearson, 2012
- R2: P. Krein, Elements of power electronics, 2nd edit. Oxford university press, 2011

5. Course Plan:

Module No.	Lecture Session	Reference	Learning outcomes	
1. Elements of Power	L0-L3	T2 (4.1-3);	SPST switch realization using semiconductor devices	
Electronics		R1(24.1-3)	(MOSFET, Diode and IGBT) for various converter	
			topologies. Analysis of switching losses.	
2. DC-DC converters:	L4-L13	T2 (2.1-6,	Steady state converter analysis in CCM and DCM with	
Buck, Boost, Buck-boost,		3.1-6)	loss analysis. Converter component design for a given	
Flyback, SEPIC, Cuk and		T1(7.1-8)	voltage and current ripple	
other derived converters				
3. AC-DC conversion:	L14-L20	T1(5.1-7,	Analysis and design of single phase and three phase	
Line commutated and		6.1-3)	rectifiers. Current harmonics and distortion in voltage	
pulse width modulated		T2(17.1-5,	waveforms	
rectifiers		18.1-2)		
4. DC-AC conversion:	L21-L28	T1(8.1-7)	Design and analysis of single phase and three phase	
Single Phase and Three			inverters with low THD. Application of various PWM	
Phase Inverters			schemes. Understanding effect of blanking time.	
5. Modeling and Control	L29-L35	T2(7.1-5,	Analysis of converter transfer function using various	
of power converters		8.2-3, 9.1-5)	approaches. Effect of negative feedback on the network	
			transfer function	
6. Practical converter	L36-L40	R1(24.1-3)	Design of filter and coupled inductor; Gate driver,	
design considerations and		T2(14.1-2,	Snubber circuits and signal generators. Soft switching	
advanced converter		15.1-2), class	converters	
design		notes		

6. Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of component (Close Book/ Open Book)
Mid-Semester Test	90 Min.	25%	To be announced	Close book/open book
Comprehensive Examination	2 h	30%	4/5	Close book/ open book
Tutorials/quizzes		20%	During tutorial hours	Close book/ open book
Laboratory/design assignments		25%	During Lab sessions	Open book/ open book

7. Chamber Consultation Hour: Will be announced

8. Notices: EEE notice board

9. Make-up Policy: Will be given ONLY for genuine cases with prior permission

10. Note (if any): Laboratory experiment details will be provided in the Lab during practical sessions.

Instructor-in-charge EEE/INSTR F342