

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 05257282 A

(43) Date of publication of application: 08.10.93

(51) Int. CI

G03F 7/038

G03F 7/031 G03F 7/039 H01L 21/027

(21) Application number: 04053671

(22) Date of filing: 12.03.92

(71) Applicant:

TORAY IND INC

(72) Inventor:

SHIN YUJI

AKAIWA TOSHIYUKI SUZUKI YOSHIO

(54) RESIST COMPOSITION FOR MICROFABRICATION

(57) Abstract:

PURPOSE: To enhance sensitivity and resolution by composing the composition with a polymer having phenolic hydroxyl groups in molecular structural units and soluble in aqueous solution of alkali and a compound having a structure of an aromatic ring combined with a specified atomic group.

CONSTITUTION: The resist composition microfabrication comprises the polymer having a phenolic hydroxyl group in each of the molecular structural units and soluble in aqueous alkaline solution and the compound having the chemical structure of an atomic group represented by formula I combined with an aromatic ring in the molecule or the salt of its organic or inorganic acid. In formula I, each of R1 and R2 is H or a 1-4C hydrocarbon group, and each of R3 and R4 is H or a 1-10C hydrocarbon group. This resist composition is fundamentally composed of the 2 components and one of both is a polymer having phenolic hydroxyl groups in the molecule and soluble in aqueous solution, such as novolak resin and vinylphenol type polymer.

COPYRIGHT: (C)1993,JPO&Japio

· · · · · ·			
•			
3 -			
•			
		2	
		•	
		•,•,•	

(19)日本国特許庁(JP)

(12) 公 開 特 許 公 報 (A)

(11)特許出願公開番号

特開平5-257282

(43)公開日 平成5年(1993)10月8日

(51)Int.Cl. ⁵	識別記号	庁内整理番号	FΙ	技術表示箇所
G 0 3 F 7/038 7/031	5 0 5			
7/039 H 0 1 L 21/027	5 0 1			
110112 21/021		7352—4M		21/30 301 R 審査請求 未請求 請求項の数1(全 9 頁)
(21)出願番号	特願平4-53671		(71)出願人	
(22)出願日	平成4年(1992)3.	月12日		東レ株式会社 東京都中央区日本橋室町2丁目2番1号
			(72)発明者	新 祐治 滋賀県大津市中央1丁目1番24-901号
			(72)発明者	· ·
			(72)発明者	

(54) 【発明の名称】 微細加工用レジスト組成物

(57)【要約】

【構成】この発明は、分子構造中にフェノール性の水酸 基を含み、かつアルカリ水溶液に可溶性のポリマーと

(2) 芳香族環に下記の原子団

【化1】

(ここにR¹、R²は水素原子または炭素数1~4個の炭化水素基、R³、R⁴は水素原子または炭素数1~10個の炭化水素基を表わす)が結合した化学構造を分子構造中に含む化合物またはその有機致もしくは無機致との塩とから成る微細加工用レジスト組成物である。

【効果】この発明によれば、感度および解像度特性が高く、乾式エッチングに優れた耐性をもち、露光後ベーキング工程が不要で、プロセス寛容度が大きいレジスト組成物を得ることができる。

1

【特許請求の範囲】

【請求項1】(1)分子構造中にフェノール性の水酸基を含み、かつアルカリ水溶液に可溶性のポリマーと

(2) 芳香族環に下記の原子団

【化1】

(ここにR¹、R²は水素原子または炭素数1~4個の炭化水素基、R³、R⁴は水素原子または炭素数1~10個の炭化水素基を表わす)が結合した化学構造を分子構造中に含む化合物またはその有機致もしくは無機酸との塩とから成る微細加工用レジスト組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は新規な微細加工用レジスト組成物に関するものである。さらに詳しくは、優れた感度特性とトライエッチングなどのプロセスに対する適 20合性を有し、とくに半導体製造工程などにおける高精細度の微細加工に適するレジスト組成物に関するものである。

[0002]

【従来の技術】従来、集積回路の製造工程におけるパタ ーン形成プロセスでは、感光材料としてホトレジストと 称するノボラック樹脂とキノンジアジド系感光剤とから 成る組成物が主として用いられてきた。この場合、光源 としては水銀ランプが用いられ、その輝線のうちg線 (436nm) が利用された。しかし、このような近紫外 線とホトレジストを用いるパターン形成技術では、光の 回折現象のために解像能力に本質的な限界があり、最近 では高集積化に伴うパターン微細化の要求に対応するこ とが困難になりつつある。描画能力をさらに高め、より 微細なパターンを得るためにg線に代って、より波長の 短いi線(365m)やエキシマレーザー光源から得ら れる308nm (XeClレーザー) や248nm (KrF レーザー) などの遠紫外域の波長を用いるパターン形成 技術が開発され、上記の目的に用いられるようになりつ つある。さらに、X線やイオンビームを用いるパターン 40 形成技術も微細化のための有力な技術であり、それらの 新しい露光光源に対応するレジストの開発が重要な課題

【0003】それらの新しいパターン形成技術に用いられるレジストはいくつかの要件を満す必要がある。その一つは感度である。これらの露光技術では高価な設備を用いるため、工業生産においては、生産能率のために高い感度が必須である。また、これらの新技術では従来技術よりも微細なパターンを目的とするものであるからレジストの解像度特性はとくに重要である。さらに、レジ 50

ストに要求される他の条件として、乾式エッチングに対する耐性が大きいこと、パターン形成後に熱的変形をおこさない限界温度が高いことなどが重要である。このほか、塗膜形成性や保存安定性なども均一な加工精度を得るために要求される。

2

【0004】当面g線に代る技術として注目されるi線およびエキシマレーザーによる遠紫外線用のレジストとしては多数のものが提案されているが、上記の諸要件をバランスよく満足するものはまだ知られていない。

【0005】近年、高い感度を得るために化学増幅法と いわれる技術を用いるレジストが研究された。この方法 ではある種のオニウム塩や有機ハロゲン化合物など露光 によって酸を発生する化合物をレジスト成分として用 い、この酸を触媒とし、露光後のベーキング工程で露光 部のベース樹脂に分子鎖切断または分子間橋カケなどの 化学反応をおこさせるものである。 たとえば、特開昭6 2-164045号公報には放射線により酸を発生する 化合物と熱硬化性樹脂とから成るレジストが提案されて いる。この方法では露光によって生じた酸を触媒とし、 露光後のベーキングによって、露光部分の樹脂を現像溶 媒に対し不溶化するものである。この種の方法では単位 露光量当りの化学反応の数を原理的には非常に多くする ことができるため、髙い感度が得られるが、露光後のベ ーキングの程度や現像までの時間によって感度が変化す ること、露光によって生成した酸が経時的にレジスト膜 内を移動するためにプロセス中の経過時間によって線幅 が変化することなどの困難を伴う。また、一般に保存安 定性にも問題があり工業生産の目的には改善すべき余地 が多い。

30 [0006]

【発明が解決しようとする課題】このような現状に鑑み、本発明者らは新しいパターン形成技術に適合する高性能レジスト材料を見出すため研究を重ね本発明に到達した。

【0007】すなわち、本発明の目的は感度および解像度特性が高く、乾式エッチングに優れた耐性をもち、露光後ベーキング工程が不要で、プロセス寛容度が大きいレジスト組成物を提供することにある。本発明のレジストはその化学構造や組成を選択することによって、近紫外線から遠紫外線に至る各波長域の紫外線のほか、電子線、イオンビームなどの高エネルギー粒子線、X線、シンクロトロン放射光など各種の光源を用いるパターン形成技術に適合するものが得られ、製造も比較的容易で保存安定性も優れている。

[0008]

【課題を解決するための手段】かかる本発明の目的は、 (1)分子構造中にフェノール性の水酸基を含み、かつ アルカリ水溶液に可溶性のポリマーと(2)芳香族環に 下記の原子団

【化2】

(ここに R^1 、 R^2 は水素原子または炭素数 $1\sim4$ 個の 炭化水素基、R³ 、R⁴は水素原子または炭素数1~1 0個の炭化水素基を表わす)が結合した化学構造を分子 の塩とから成る微細加工用レジスト組成物により達成さ れる。

【0009】本発明のレジスト組成物は基本的に二つの 成分から構成される。

【0010】構成成分の一つは分子中にフェノール性の 水酸基を含み、かつアルカリ水溶液に可溶性のポリマー である。この条件を満すポリマーは多数知られており、 いずれも本発明のレジストの構成成分として用いること ができる。それらのうち代表的なものの少数の例を挙げ ると次のとおりである。

【0011】(1)ノボラック樹脂

フェノール、クレゾール、キシレノールなどのフェノー ル類とホルムアルデヒドとから成るものが代表的であ る。従来ホトレジストで多く用いられたものはm, p-混合クレゾールとホルムアルデヒドから成るノボラック 樹脂であるが一部キシレソールなどを含むものもある。 本発明のレジストの構成成分であるノボラック樹脂にお いては、フェノール成分としてはこのほかにクロロフェ ノール、エチルフェノールなどメチル基以外の置換基を 有するフェノールやレゾルシンなどの多価フェノールを 30 用いることができる。さらに1-ナフトール、2-ナフ トール、1,5ージヒドロキシナフタレン、1ーヒドロ キシアントラセンなどベンゼン環以外の芳香環をもつフ ェノール類も用いることができる。また、アルデヒド成 分としてはホルムアルデヒドのほかアセトアルデヒド、 nーブチルアルデヒド、ベンズアルデヒド、pークロロ ベンズアルデヒドなど各種のアルデヒドが単独でまたは 混合して用いられる。

【0012】ノボラック樹脂の合成方法は公知の方法が 広く利用できる。各成分の種類、組成、分子量、合成の 40 方法・条件などによって多様な樹脂が得られ目的に適し た設計が可能である。

【0013】(2)ビニルフェノール類重合体 ビニルフェノール重合体がもっとも一般的である。とく に、pービニルフェノールの重合体は従来もレジストの ベース樹脂として用いられた。他のビニルフェノール類 として2-ビニルナフトール、3-ビニルナフトール、 4 ービニルナフトールなどのビニルナフトールの重合体 やビニルフェノールとビニルナフトールとの共重合体お

以外のビニルモノマーとの共重合体もアルカリ水溶液に 可溶性である限り本発明の組成物の成分として用いるこ

【0014】(3)その他のフェノール性水酸基を含む ポリマー

イソプロペニルフェノール類、アリルフェノール類の重 合体やこれらのモノマーとビニルフェノール類その他の ビニルモノマーの共重合体である。また、N-(p-ヒ ドロキシフェニル)マレイミドの重合体またはこのモノ 構造中に含む化合物またはその有機酸もしくは無機酸と 10 マーとスチレン、ビニルエーテルなど他のビニルモノマ ーとの交互共重合体の構造をもつポリマー 【化3】

【化4】

20

などがある。

【0015】本発明の構成成分であるこれらのポリマー の平均分子量はそれがアルカリ水溶液に可溶である限り とくに制限はない。好ましい範囲は重量平均分子量で3 00~1,000,000である。とくに好ましい範囲 は500~100,000である。一般に分子量はあま り小さいと塗膜のさい膜形成性が低下し、また、大きす ぎると現像に長時間を要し、また現像困難や膜の膨潤に よる解像度低下をおこすことがある。また、感度の面か らも最適範囲が存在する。現像性と感度特性または解像 度のバランスを改善するために、ポリマーの分子量分布 を変えるとよい場合がある。分子量分別やその他の方法 で分子量分布を制御することが可能である。また、同じ 目的で2種以上の構造の異なるポリマーを混合すること も可能である。たとえばm、pー混合クレゾールノボラ ック樹脂とmークレゾールノボラック樹脂またはm,p よびこれらのビニルフェノール類とビニルフェノール類・50 -混合クレゾールノボラック樹脂とポリビニルフェノー

ルなどを混合して本発明の組成物の構成成分とすること ができる。

【0016】レジストのもう一つの構成成分は芳香族環 に結合した下記の原子団

【化5】

が結合した化学構造を分子中に含む化合物である。ここに R^1 、 R^2 は水素原子または炭素数 $1\sim 4$ 個の炭化水素基, R^3 、 R^4 は水素原子または炭素数 $1\sim 1$ 0 個の炭化水素基を表わす。また R^1 、 R^2 、 R^3 、 R^4 の一部または全部が同一であってもよい。さらに $R^1\sim R^4$ のうちの二つの間に結合が存在して窒素原子を含む環を形成していてもさしつかえない。

【0017】芳香族環としてはベンゼン環が代表的なものである。また、5または6員環の複素環構造たとえばフラン環、チオフェノ環、ピロール環、ピリジン環なども利用可能である。複数のベンゼン環またはベンゼン環と複素環が縮合した構造の環、たとえばナフタレン環、アントラセン環、フェナントレン環、ベンゾフラン環、インドール環、キノリン環、カルバゾール環なども本発明でいう芳香族環に含まれることはいうまでもない。

【0018】芳香族環と原子団 【化6】

$$\begin{array}{c|c}
R^{1} \\
-C - N \\
R^{2}
\end{array}$$

の結合した化学構造を分子中に含む化合物の例を挙げる と次の通りである。ベンジルアミン、Nーメチルベンジ ルアミン、Nーエチルベンジルアミン、Nーイソプロピ ルベンジルアミン、N-(n-ヘキシル)ベンジルアミ ン、N, N-ジメチルベンジルアミン、N-N-ジエチ ルベンジルアミン、N-N-ジ(n-プロピル)ベンジ ルアミン、N, N-ジフェニルベンジルアミン、N, N 40 ージシクロヘキシルベンジルアミン、ジベンジルアミ ン、トリベンジルアミン、エチルベンジルアミン、N-ベンジルピペラジン、Nーベンジルピロール、Nーベン ジルピロリジン、N-ベンジルカルバゾール、1-フェ ニルー1ージメチルアミノエタン、2ーフェニルピロリ ジン、pーメチルベンジルアミン、ジメチル(pーメト キシベンジル) アミン、ジエチル (p-ブロモベンジ ル) アミン、p-クロロベンジルアミン、ジイソプロピ ル(2,4-ジクロロベンジル)アミン、N,N'ージ ベンジルテトラメチレンジアミン、N, N' - ジベンジ 50

 \mathcal{N} ー \mathbf{p} ーフェニレンジアミン、 \mathbf{N} , \mathbf{N} , \mathbf{N}' , \mathbf{N}' ーテ トラベンジルーmーフェニレンジアミン、N, N, N', N', N", N" - ヘキサベンジルメラミン、1 -アミノメチルナフタレン、2-(N-メチルアミノメ チル) ナフタレン、1-(N, N-ジメチルアミノメチ ル)ナフタレン、2-(N, N-ジエチルアミノメチ ル) ナフタレン、1, 4 - ビス(N, N - ジメチルアミ ノメチル) ナフタレン、2, 6-ビス(N, N-ジ-n ープロピルアミノメチル)ナフタレン、9-(N, N-10 ジメチルアミノメチル)アントラセン、9,10-ビス (N, N-ジエチルアミノメチル) アントラセン、1-N, N-ジメチルアミノメチルフェナントレン、4 (N, N-ジメチルアミノメチル) ビフェニル、N-ベ ンジルカルバゾール、フルフリルアミン、Nーベンジル ベンゾイミダゾール、ベンジルー1ーナフチルアミン、 N-ベンジルインドール、2-ジメチルアミノメチルピ リジン、N, N-ジベンジルピペラジン、2-ジメチル アミノメチルキノリン、4, 4' ーピス (N, Nージメ チルアミノメチル)スチルベン、4,4'ービス(ジメ チルアミノメチル) カルコン、4-N, N-ジメチルア ミノメチルジフェニルエーテル、ビス〔4 - (N, N-ジメチルアミノメチル)フェニル]スルホンなどであ

【0019】上記は本発明で用いられる構成成分の少数例にすぎない。

【0020】 R^1 、 R^2 の少くとも一方は水素原子であ る場合に比較的高い感度が得られるものが多い。また紫 外光、遠紫外光のように光をエネルギー源とするリソグ ラフィーに用いるレジストではこれらの構成成分である 30 アミンの光吸収が重要である。構成成分に含まれる芳香 族環の共役系が大きいほど光の吸収は次第に長波長に及 び、また一般に吸収が大きくなる。リソグラフィーで用 いる光の波長においてある程度の吸収をもつことが高い 感度を得るためには望ましいが、あまり吸収が強すぎる とレジスト膜の上部で光エネルギーの吸収が強く、上部 と下部で露光ムラを生じる。この結果、現像後に得られ るパターンの断面形状が上部で太く、下部で細いいわゆ る逆テーパーの傾向を生ずる。しかし、この露光ムラの 程度は塗膜の厚さによっても異なるので膜厚や要求され るパターンの形状、感度などを考慮して最適のものを選 択すべきである。一般的にいってキセノンー水銀ランプ の254nmやKrFエキシマレーザー (248nm) のよ うな比較的短波長の紫外光を用いるリソグラフィー用の レジストでは芳香族環はベンゼン環、ナフタレン環など の1環または2環のものが良く、水銀ランプの303n m、365nm、436nmなどの比較的長波長の紫外光を 用いる場合にはナフタレン環、アントラセン環など2環 以上の芳香環を含むことが良い結果を与えることが多

【0021】この芳香族環を含むアミン化合物はそれ自

体で用いることができるほか、炭酸塩、酢酸、プロピオン酸などのカルボン酸塩、ホウ酸塩、リン酸塩などの有機酸または無機酸の塩として用いることも可能である。

【0022】本発明のレジストにおいて第一の構成成分であるアルカリ水溶液に可溶性のポリマーと第二の構成成分であるアミン化合物の混合割合は一般にはポリマー100重量部についてアミン化合物0.5~100重量部である。好ましい範囲はポリマー100重量部当りアミン化合物5~50重量部である。アミン化合物の量がこれより少いと十分な感度が得られない傾向があり、こ 10れより多いと塗膜のさい膜形成性が低下するおそれがある。

【0023】本発明のレジスト組成物を用いる微細パターンの形成は次のように行なう。

【0024】ポリマーとアミン化合物を同時にまたは順 次に溶媒に溶解し、必要によって口過を行なったのち、 シリコンウエファー、クロムマスク基板、その他の基板 の上に塗布して均一な塗膜を形成させる。塗膜のための 溶媒としてはジオキサン、テトラヒドロフラン、エチレ ングリコールジメチルエーテルなどのエーテル類、クロ 20 ロベンゼン、トリクロロエチレンなどの塩素化炭化水 素、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸 nーブチル、酢酸イソアミル、酢酸セロソルブ、酢酸メ チルセロソルブ、酢酸エチルセロソルブ、乳酸エチルな どのカルボン酸エステル、ジメチルアセトアミド、ジメ チルホルムアミド、Nーピロリドンなどの非プロトン性 極性溶媒シクロヘキサノン、メチルイソブチルケトン、 ジアセトンアルコールなどのケトン類が主として用いら れる。これらは単独でまた、場合によっては混合して用 いて塗膜性を高めることができる。それ自体は構成成分 30 に対して非溶媒である炭化水素やアルコール類も溶媒の 一部成分としては用いることがある。さらにこの溶液に はレジスト組成物のほかに塗膜性を向上させるための界 面活性剤やパターン形状を改良するためのある種の染料 その他保存安定剤などを添加することができる。溶液中 のレジスト組成物の濃度は通常5~50%であり、必要 とする膜厚や塗膜の方法および条件によって定める。塗 膜は回転塗布または噴霧塗布が多く用いられる。

【0025】塗膜後、必要によってベーキング処理を行ない、薄膜の所望部分に露光を行なう。描画のための露 40 光光源としては電子線、X線、紫外線、シンクロトロン放射線、イオンビームなどが用いられる。光源と被露光面との間に所望のパターンに従ってエネルギーが到達し得るようなマスクを介在させる露光方式と、露光エネルギーを細いビームにして塗膜面に所望のパターンを描画してゆく露光方式が知られている。電子線やイオンビームを光源として用いるときは後者の方法が可能である。現像は浸漬または噴霧方式が一般的である。現像液としてはアルカリ水溶液を用いる。たとえば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウ 50

ム、リン酸三ナトリウム、ホウ酸ナトリウムなどのアルカリ金属水酸化物、アルカリ金属の弱酸塩やテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、コリンなどの第四級アンモニウムヒドロキシド水溶液が挙げられる。とくに溶解しやすい組成物の場合にはアンモニア水やnープロピルアミン、ジエチルアミン、βーピコリン、ピペリジン、コリジンなどアミン類の水溶液が用いうる場合もある。これらの現像液には第四級アンモニウム塩やその他の塩類、アルコール類、界面活性剤などを必要に応じて添加してもよい。リンスおよび

【0026】本発明のレジスト組成物は塗膜溶媒に溶解して保存しても熱または可視光線に対して不安定な構造は含まないため保存安定性にすぐれている。とくに長期に保存する場合には容器を窒素ガスでシールし、また冷暗所に保存すれば性能変化はきわめて少い。とくに近紫外域または可視域の波長の光にデザインしたものを除けば可視光に対して事実上感受性をもたないため、明所で取扱うことができ、黄色ランプなどを必要としない。このような安定性のために本発明の組成物は常に一定の画像形成特性を発揮することができ、工業生産の工程においてきわめて有利である。

ポストベークについても公知の方法が利用できる。

[0027]

【実施例】以下実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されない。

【0028】実施例1

クレゾールノボラック樹脂(群栄化学製,PSF-2803)1.00g、ジベンジルアミン0.20gを酢酸メチルセロソルブ4.0gに溶解し、レジスト溶液を作成した。これをシリコンウエファー上に回転塗布し、エアオーブン中で90℃で20分間ベーキング処理を行ない、厚さ0.59μmの塗膜を得た。500WのXe-Hgランプを光源とし、290nmに反射ピークをもつコールドミラーを含む露光装置で露光試験を行なった。レジスト膜面に露光時間を変えて小スポットを多数露光した。露光後0.215Nのテトラメチルアンモニウムヒドロキシドの水溶液を用いてスプレー現像を行ない、次いで水でリンスし、ポストベーキング処理を行なった。それぞれの露光量に対する現像後の膜厚を測定し、感度曲線を作成したところ、残膜率50%に対応する露光時間は1.10秒であった。

【0029】実施例2

ノボラック樹脂としてmークレゾールノボラック樹脂 (群栄化学製、PSF-2807)を用いたほかは実施 例1に記載した方法および条件でシリコンウエファー上 にレジスト膜を作成した。膜厚は0.59μmであった。実施例1と同じ方法で露光実験を行ない、0.065Nのテトラメチルアンモニウムヒドロキシド水溶液で 現像し、さらに実施例1に記載した方法で感度曲線を作

成した。残膜率50%に相当する露光時間は0.58秒 であった。

【0030】実施例3

クレゾールノボラック樹脂(群栄化学製、PSF-28 03) 1.00g、ジベンジルアミン酢酸塩0.20g を酢酸メチルセロソルブ4.0gに溶解し、レジスト溶 液を作成した。これをシリコンウエファー上に回転塗布 した後、エアオーブン中90℃で20分間ベーキング処 理を行なった。膜厚は0.75μmであった。この膜面 に500WのXe-Hgランプを光源とし、干渉フィル 10 アミノメチル基を2個有する化合物0.20gを酢酸メ ターを介して波長254nmの遠紫外光のスポットを露光 時間を変えて多数露光した。露光後0.214Nのテト ラメチルアンモニウムヒドロキシド水溶液を用いてスプ レー現像を行ない、次いで水でリンスし、ポストベーキ ング処理を行なった。それぞれの露光量に対する現像後 の膜厚を測定し、感度曲線を作成したところ、残膜率5 0%を与える露光量は5.3 m J / cm² であった。

【0031】実施例4

実施例3で干渉フィルターの透過波長のピークが280 nmであるものを用いたほか、実施例3と同じ条件で実験*20

*を行なったところ、50%残膜感度は2.1mJ/cm2 であった。また、残膜の開始する露光量は0.47mJ $/cm^2$ であった。

10

【0032】実施例5-8

混合クレゾールノボラック樹脂(群栄化学製、PSF-2803)を再沈でん処理により精製した。回収したポ リマーの重量はもとのポリマーの58%であり、25℃ のDMFで測定した固有粘度はO.114であった。こ の精製ポリマー1. 00gと芳香環に結合したジメチル チルセロソルブの18%溶液とした。このレジスト溶液 をそれぞれシリコンウエファー上に回転塗布し、エアオ ーブン中で90℃で20分プレベーク処理を行ない、以 下実施例1に記載した方法にならって感度曲線を作成し た。残膜率50%に対応する露光時間 t0.5 および感度 曲線上の残膜率50%の点で引いた接線から求めたコン トラスト γ0.5 は表1、表2のとおりであった。

[0033]

【表1】

	実施例番号	アミン化合物
		$H_3 C$ $CH_2 N$ $CH_3 C$ CH_3 CH_3
表 1	6	$H_3 C$ $CH_2 N$ $CH_3 C$ $CH_3 C$
	7	$H_3 C$ $CH_2 N C CH_2 CH_2 N CH_3$ $CH_3 C$
	8	$H_3 C$ $H_3 C$ $CH_2 N$ O O $CH_2 N$ CH_3

【表2】

		実施例番号	塗 膜 厚 (μm)	現像液濃度 (N)	現像時間 (秒)	t _{0.5} (秒)	γ _{0.5}
		5	0.76	0. 371	5 9	1. 06	1. 74
表	2	6	0.76	0.387	6 0	1. 03	1. 56
		7	0.74	0. 557	5 7	1. 12	1. 53
		8	0.76	0. 506	5 6	1. 06	1. 56

実施例9

ポリビニルフェノール(丸善石油化学製, PHM-C) 1. 00g、ジベンジルアミン酢酸塩0. 25gを酢酸 メチルセロソルブ4.0gに溶解し、実施例3に記載し た方法に従って感度特性の測定を行なった。現像には 0. 10 Nのテトラメチルアンモニウムヒドロキシド水 溶液を用いた。また、塗膜厚は1.00 μm、露光前の ベーキングはホットプレートを用い、100℃で120 秒間行なった。残膜率50%における感度は20mJ/ cm^2 であった。

【0034】なお、このレジストの露光前の塗膜の波長 248nmの遠紫外光に対する透過率は55%であり、K r Fエキシマレーザー (波長248nm) でテストパター ンを露光した実験では膜厚1.00μm、露光量200 mJ/cm^2 で線幅 0. $35\mu m$ のテストパターンを良好 に解像した。

【0035】実施例10

m-クレゾール60モル%、p-クレゾール40%から 成るクレゾール成分とホルムアルデヒド60モル%、p ークロロベンズアルデヒド40モル%から成るアルデヒ ド成分を用いて常法に従ってノボラック樹脂の合成を行

を含むm,p-混合クレゾールノボラック樹脂を得た。 30 25℃のDMF中で測定した固有粘度は 0.0536で あり、樹脂の軟化濃度は140-150℃であった。 【0036】このノボラック樹脂1.00gとジベンジ ルアミン酢酸塩0.20gを酢酸メチルセロソルブ4. 0 gに溶解しレジスト溶液を作成した。この溶液をシリ コンウエファー上に回転塗布した後エアオーブン中で9 0℃で20分間プレベーク処理を行い、膜厚0.70 µ mの塗膜を得た。次いでこの塗膜に実施例1に記載した 方法で遠紫外線露光を行ない、濃度0.492Nのテト ラメチルアンモニウムヒドロキシド水溶液で現像処理を 40 行ない、さらに水によるリンスの後エアオーブン中90 ℃で20分間ポストベーク処理を行なった。感度曲線上 の残膜率50%に対応する露光時間は1.3秒であっ た。

【0037】実施例11-17

ノボラック樹脂のフェノール成分としてmークレゾール およびpークレゾール以外のフェノール類を含むものを レジスト成分として用いた。ノボラック樹脂1.00g とジベンジルアミン酢酸塩0.20gを酢酸メチルセロ ソルブ4.0gに溶解し、実施例1に記載した方法にな ないアルデヒド成分としてp-クロロベンズアルデヒド 50 らって感度測定を行なった。結果は表3、表4のとおり

14

13

であった。なお、ノボラック樹脂のアルデヒド成分はす * [0038] 【表3】 べてホルムアルデヒドである。

表 3

<u> </u>	フェノー	ポリマーの		
	成 分 1	成 分 2	成 分 3	外観
11	m-クレゾール	pークレゾール	フェノール	淡紫色粉末
	(48)	(32)	(20)	
12	mークレゾール	pークレゾール	レブルシノール	淡桃色粉末
1.2	(48)	(32)	(20)	
1 3	mークレゾール	pークレゾール	レゾルシノール	淡黄色粉末
	(40)	(40)	(20)	
14	mークレゾール	pーtープチルフェノール		白色粉末
	(70)	(30)		
15	mークレゾール	pーtープチルフェノール		白色粉末
	(70)	(30)		
16	mークレゾール	p-t-ブチルフェノール		淡黄色粉末
	(60)	(40)		
17	mークレゾール	pークレゾール	フェノール	白色粉末
	(32)	(48)	(20)	

【表4】

表 4

	[n] 25°CDMF	塗 膜 厚 (μm)	現像液濃度 (N)	現像時間(秒)	t _{0.5} (秒)
1 1	0. 145	0.730	0. 309	5 0	1. 26
1 2	0. 168	0.764	0. 103	5 8	1. 81
1 3	0. 138	0.740	0.059	5 4	1. 29
14	0. 059	0.754	0. 158	5 3	0. 63
1 5	0.061	0.736	0. 227	5 8	0. 69
16	0.041	0.720	0. 136	5 4	0. 41
1 7	0.097	0. 738	0.407	5 2	0. 73

[0039]

【発明の効果】本発明は上述のごとく構成したので、感 度および解像度特性が高く、乾式エッチングに優れた耐 50 た、本発明のレジストはその化学構造や組成を選択する

性をもち、露光後ベーキング工程が不要で、プロセス寛 容度が大きいレジスト組成物を得ることができる。ま

15

ことによって、近紫外線から遠紫外線に至る各波長域の 紫外線のほか、電子線、イオンビームなどの高エネルギ ー粒子線、X線、シンクロトロン放射光など各種の光源 を用いるパターン形成技術に適合するものが得られ、製造も比較的容易で保存安定性も優れている。

16

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 05289322 A

(43) Date of publication of application: 05.11.93

(51) Int. CI

G03F 7/004

G03F 7/023

G03F 7/028

G03F 7/20

G03F 7/30

H01L 21/027

(21) Application number: 04090609

(22) Date of filing: 10.04.92

(71) Applicant:

HITACHI LTD

(72) Inventor:

SHIYUREEGERU REO

UENO TAKUMI

(54) PATTERN FORMING MATERIAL AND METHOD FOR FORMING PATTERN USING THE SAME

(57) Abstract:

PURPOSE: To form a pattern having steps by exposing a pattern forming material which drastically changes dissolving rate at some developing time, through a mask having a pattern different in transmissivity.

CONSTITUTION: The dissolving rate after exposing and baking the pattern forming material containing an alkali

soluble phenolic resin, a dissolving restrainer, an acid precursor and an acid capturing agent, is drastically changed at some developing time. The pattern having steps is formed by baking and developing after exposing the material through the mask having the pattern different in transmissivity. Thus, the pattern having steps and high resolution is formed by the exposing method by the use of a short wavelength light exposure device.

COPYRIGHT: (C)1993, JPO& Japio

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-289322

(43)公開日 平成5年(1993)11月5日

(51)Int.Cl. ⁵ G 0 3 F	7/004 7/023 7/028	餓別記号 5 0 3 5 1 1	庁内整理番号	FI		技術表示箇所
	,		7352—4M 7352—4M		21/30 301 R 361 L 対 請求項の数8(全 4 頁)	最終頁に続く
(21)出願番号	<u> </u>	特願平4-90609		(71)出願人	000005108 株式会社日立製作所	
(22)出願日		平成 4年(1992) 4	月10日	(72)発明者	東京都千代田区神田駿河台は シュレーゲル・レオ 東京都国分寺市東恋ケ窪1 株式会社日立製作所中央研究	丁目280番地
				(72)発明者	上野 巧 東京都国分寺市東恋ケ窪 1 7 株式会社日立製作所中央研究	
				(74)代理人	弁理士 小川 勝男	

(54) 【発明の名称 】 パタン形成材料及びそれを用いたパタン形成方法

(57)【要約】

【目的】溶解速度がある現像時間で大きく変化するパタン形成材料に透過率の異なるパタンを有するマスクを介して露光することにより段差のあるパタンを形成する。

【構成】アルカリ可溶性フェノール樹脂,溶解抑制剤,酸前駆体と酸捕捉剤を含むパタン形成材料の露光,ベーク後の溶解速度はある現像時間で大きく変化する。この材料に透過率の異なるパタンを有するマスクを介して露光した後ベーク,現像を行うことにより段差のあるパタンを形成する。

【効果】短波長光露光装置を用いた露光法により段差の ある高解像度のパタンを形成することができる。

【特許請求の範囲】

【請求項1】アルカリ可溶性フェノール樹脂,溶解抑制剤,酸前駆体,酸捕捉剤からなる化学増幅系レジスト組成物の塗膜であって、溶解速度がその塗膜の途中で変わることを特徴とするパタン形成材料。

【請求項2】請求項1において、上記酸前駆体がフェノール性水酸基を2個以上有する化合物とアルキルスルホン酸とのエステルであるパタン形成材料。

【請求項3】請求項1において、上記溶解抑制剤がフェノール性水酸基を有する化合物、高分子のフェノール性 10 水酸基をテトラヒドロピラニル基、tーブトキシカルボニル基で保護した化合物、高分子から少なくとも一種類選ばれた溶解抑制剤であるパタン形成材料。

【請求項4】請求項1において、上記酸捕捉剤がアミンから少なくとも一種類選ばれた化合物であるパタン形成材料。

【請求項5】アルカリ可溶性フェノール樹脂,溶解抑制剤,酸前駆体,酸捕捉剤からなるパタン形成材料の塗膜を形成する工程と、活性化学線を用いて上記塗膜に透過率の異なるパタンを有するマスクを介して所望のパタン潜像を形成する工程と、上記パタン潜像形成部のアルカリ水溶液に対する溶解性を変化させる反応を促進する工程と、アルカリ水溶液を現像液として上記所定パタンを現像する工程を含むパタン形成に段差のあるパタンを形成することを特徴とするパタン形成法。

【請求項6】請求項1において、上記酸前駆体がフェノール性水酸基を2個以上有する化合物とアルキルスルホン酸とのエステルであるパタン形成法。

【請求項7】請求項1において、上記溶解抑制剤がフェノール性水酸基を有する化合物、高分子のフェノール性 30 水酸基をテトラヒドロピラニル基、tーブトキシカルボニル基で保護した化合物、高分子から少なくとも一種類選ばれた溶解抑制剤であるパタン形成法。

【請求項8】請求項1において、上記酸捕捉剤がアミンから少なくとも一種類選ばれた化合物であるパタン形成法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は半導体素子製作または高さの異なる所望の有機物パタンを形成材料とパタン形成 40 法に関する。

[0002]

【従来の技術】LSI, VLSI等の半導体素子製作に 用いられる微細加工技術は他のパタン形成技術にも応用 できる。高さの異なるあるいは段差のあるパタン形成技 術としてジアゾナフトキノンとノボラック樹脂からなる ポジ型フォトレジスト, 酸硬化型ネガ型化学増幅系レジ ストを用いて、透過率の異なるパタンを有するマスクを 介して露光する方法がフィーリー (Feely)により報告さ れている(エス・ピー・アイ・イー, 631巻, 48ペ 50 ージ,1986年)。

[0003]

【発明が解決しようとする課題】ジアゾナフトキノンと ノボラック樹脂からなるポジ型フォトレジスト、酸硬化 型ネガ型化学増幅系レジストを用いる場合、レジストの 露後部、透過率が30%から70%の中間露後部、未露 後部の現像速度の差を利用して段差のあるパタンを形成 する。このことは現像時間の違いにより中間露光領域の 膜厚の変化が大きい。本発明の目的は膜厚変化の少ない パタン形成材料とパタン形成法を提供することにある。 【0004】

2

【課題を解決するための手段】上記の目的はアルカリ可溶性フェノール樹脂,溶解抑制剤,酸前躯体,酸捕捉剤からなるパタン形成材料の塗膜を形成し、透過率の異なるパタンを有するマスクを介して露光した後ベーク,現像を行うパタン形成方法により達成される。

【0005】本発明のパタン形成材料でアルカリ水溶液に溶解可能なフェノール樹脂としてノボラック樹脂,ハロゲン化ノボラック樹脂,ポリビニルフェノール,ポリビニルフェノールのハロゲン化物なる群から選ばれた少なくとも一種類の高分子である。

【0006】酸前駆体はアルキルおよびアリールスルホン酸エステルを用いることができる。例えば、トリ(メタンスルホニルオキシ)ベンゼン、トリ(エタンスルホニルオキシ)ベンゼン、トリ(プロパンスルホニルオキシ)ベンゼン、トリ(ベンゼンスルホニルオキシ)ベンゼン、トリ(ベンゼンスルホニルオキシ)ベンゼン、トリ(トルエンスルホニルオキシ)ベンゼン、トリ(ナフタレンスルホニルオキシ)ベンゼンなどがある。また、酸前駆体としてオニウム塩を用いることもできる。例えば、トリフェニルスルホニルトリフレート、ジフェニルヨードニウムトリフレート、ビス(p-t-ブチルフェニル)ヨードニウムトリフレートなどがある。

【0007】溶解抑制剤はフェノール性水酸基を有する化合物、高分子のフェノール性水酸基をテトラヒドロピラニル基、tーブトキシカルボニル基で保護した化合物、高分子を用いることができる。例えば、ノボラック樹脂、ハロゲン化ノボラック樹脂、ポリビニルフェノール、ポリビニルフェノールのハロゲン化物のフェノール性水酸基をテトラヒドロピラニル基で保護した高分子、ビスフェノールA、1、1、1ートリス(4ーヒドロキシフェニル)エタンをテトラヒドロピラニル基、tーブトキシカルボニル基で保護した化合物などが用いられる。

【0008】酸捕捉剤はアミンが用いられる。例えば、イミダゾール、ベンズイミダゾール、フェニルイミダゾール、アミノフェノールなどが用いられる。この酸捕捉剤は露光後のベーク中にレジスト膜から飛ばないことが望ましい。

[0009]

【作用】アルカリ可溶性フェノール樹脂、溶解抑制剤、 酸前駆体と酸捕捉剤を含むパタン形成材料の露光、ベー ク後溶解速度を調べたところ、ある露光量においてレジ ストの溶解速度がある膜厚で極端に低下することを見出 した。これは露光により発生した酸濃度が膜厚方向に分 布しており(レジスト上方で多く、基板付近で少な い)、ある濃度以下の酸は酸捕捉剤であるアミンに捕捉 されてしまい、ある膜厚以下では酸触媒反応が抑制され てしまうためと考えられる。酸触媒反応生成物がある膜 厚以下では少ないため溶解速度が低下したと考えられ る。一方、酸捕捉剤を含まないパタン形成材料を用いた 場合にはある膜厚で極端に溶解速度が低下することはな く、レジスト膜が現像されていく。このように、酸捕捉 剤であるアミンをパタン形成材料に添加することにより 膜厚方向の溶解速度を制御することができ、この材料に 透過率の異なるパタンを有するマスクを介して露光した 後ベーク、現像を行うことにより段差のあるパタンを形 成することができ、その制御が容易になる。

[0010]

【実施例】

〈実施例1〉m, p-クレゾールノボラック樹脂(分子 量約1万)100重量部、ポリビニルフェノールをテト ラヒドロピラニル基で保護した溶解抑制剤12.9重量 部,1,2,3ートリ(メタンスルホニルオキシ)ベ ンゼン4.7重量部, ベンズイミダゾール1重量部を酢 酸メトキシエチル354重量部に溶解し、これを孔径 0.2 μm のテフロンメンブレムフィルタを用いて濾過 し、レジスト溶液を得た。シリコン基板上にこの組成の レジスト液を滴下、回転塗布後120℃、1分間ベーク して1μmのレジスト膜を形成した。600WHg-X 30 eランプからの光を248nmのバンドパスフィルタを 用いて248nmの単色光が通るように68mJ/cm² ウエハ上のフォトレジスト膜に照射した。照射後フォト レジストを80℃、2分間ベークし、現像液中での膜厚 変化をHe-Neレーザの干渉を利用した方法で調べ た。

【0011】その結果、図1に示すように、レジストの 現像速度は50秒のところで大きく変化し、遅くなる。 また、このレジスト膜に透過率はば100%,50%, 0%のパタンを含むマスクを介して138mJ/cm² 照 40 射した。照射後フォトレジストを80℃、2分間ベーク し水酸化テトラメチルアンモニウム2.38% 水溶液で 80秒間現像した。その結果、透過率50%のパタンの 残膜が480nmとなり、段差ある良好なパタンが得ら れた。

【0012】〈実施例2〉5ーアミノー2ーナフトール 重量部を酸捕捉剤として用いた以外実施例1と同様にレ ジスト膜をシリコンウエハ上に塗布し、透過率ほぼ10 0%, 50%, 0%のパタンを含むマスクを介して10 9 m J / cm² 照射した。80℃、2分間ベークし水酸化 テトラメチルアンモニウム2.38% 水溶液で現像した ところ、透過率50%のパタンの残膜が500nmとな り、段差のある良好なパタンを形成することができた。 【0013】〈実施例3〉4-フェニルイミダゾール1 重量部を酸捕捉剤として用いた以外実施例1と同様にレ ジスト膜をシリコンウエハ上に塗布し、透過率ほぼ10 0%, 50%, 0%のパタンを含むマスクを介して48 m J / cm² 照射した。80℃、2分間ベークし水酸化テ トラメチルアンモニウム2.38% 水溶液で現像したと ころ、透過率50%のパタンの残膜が512nmとな り、段差のある良好なパタンを形成することができた。 【0014】〈実施例4〉イミダゾール1重量部を酸捕 捉剤として用いた以外実施例1と同様にレジスト膜をシ リコンウエハ上に塗布し、透過率ほぼ100%,50 %, 0%のパタンを含むマスクを介して205mJ/cm 2 照射した。80℃、2分間ベークし水酸化テトラメチ ルアンモニウム2.38% 水溶液で現像したところ、透

[0015]

【発明の効果】本発明のパタン形成方法によればレジストの残膜が初期膜厚と初期膜厚の半分程度の残膜のある段差のあるパタンを形成することができる。また、このパタン形成材料を用いたパタン形成方法によれば、KrFエキシマレーザ縮小投影露光装置を用いた露光法により高解像度のパタンを形成することができる。従って、本発明によるパタン形成方法により任意の有機物の段差パタンを高解像度で形成することが可能となる。

過率50%のパタンの残膜が480nmとなり、段差の

ある良好なパタンを形成することができた。

【図面の簡単な説明】

【図1】本発明に係るパタン形成材料の残存膜厚と現像 時間関係を示す特性図。

【符号の説明】

1…68mJ/cm² 露光したレジスト膜、2…140m J/cm² 露光したレジスト膜。

_

【図1】

図 1

フロントページの続き

(51) Int.Cl.5 G O 3 F 7/20 7/30 H O 1 L 21/027 識別記号 **庁内整理番号** FI 521 7818-2H 7124-2H

技術表示箇所