157016

NASA TECHNICAL MEMORANDUM 107710 447

surf3d: A 3-D FINITE-ELEMENT PROGRAM FOR THE ANALYSIS OF SURFACE AND CORNER CRACKS IN SOLIDS SUBJECTED TO MODE-I LOADINGS

I. S. RAJU AND J. C. Newman, Jr.

FEBRUARY 1993

National Aeronautics and Space Administration Langley Research Center

Hampton, Virginia 23681-0001

(NASA-TM-107710) surf3d: A 3-D FINITE-ELEMENT PROGRAM FOR THE ANALYSIS OF SURFACE AND CORNER CRACKS IN SOLIDS SUBJECTED TO MODE-1 LOADINGS (NASA) 101 p

N93-23735

Unclas

G3/39 0157616

TABLE OF CONTENTS

	Page
Abstract	1
Introduction	2
Crack Configurations and Loadings	2
Finite Element Analysis	4
Stress-Intensity Factors	4
Input To surf3d	. 11
Output Of surf3d	16
Examples	18
References	24
Appendix A	26
Appendix B	35

Acknowledgements

The computer program surf3d was first written in 1976 and since then it has been continuously updated. This report describes the program as it stands today. (The authors realize that a computer program is never 'completed' nor is it totally bug proof!) This documentation was performed at the NASA Langley Research Center (contracts NAS 1-18599 and NAS 1-19317) and at the Center for Composite Materials Research in the Department of Mechanical Engineering at the North Carolina A&T State University, where the first author was a Research Professor. The program was implemented on the CRAY Y-MP (flyer), a UNIX supercomputer, at the North Carolina Supercomputing Center, Research Triangle Park, North Carolina. The first author takes this opportunity to express his gratitude to these organizations and the people who helped us in all these years.

ABSTRACT

A computer program, surf3d, that uses the 3D finite element method to calculate the stress-intensity factors for surface, corner and embedded cracks in finite-thickness plates with and without circular holes, was developed. The cracks are assumed to be either elliptic or part-elliptic in shape. The computer program uses eight-noded hexahedral elements to model the solid. The program uses a skyline storage and solver. The stress-intensity factors are evaluated using the force method, the crack-opening displacement method and the 3D virtual crack closure methods.

In the manual the input to and the output of the surf3d program are described. This manual also demonstrates the use of the program and describes the calculation of the stress-intensity factors. Several examples with sample data files are included with the manual. To facilitate modeling of the user's crack configuration and loading, a companion program (a preprocessor program) that generates the data for the surf3d called gensurf was also developed. The gensurf program is a three dimensional mesh generator program that requires minimal input and that builds a complete data file for surf3d. The program surf3d is operational on Unix machines such as CRAY Y-MP, CRAY-2, and Convex C-220.

INTRODUCTION

Stress-intensity factors are fundamental quantities used to predict fatigue crack propagation rates and crack growth profiles. Surface and corner cracks usually initiate at imperfections and voids in metallic structures. These cracks usually grow into near or part-elliptical shapes [1]. Therefore stress-intensity factors for elliptical cracks are needed. A computer program, surf3d, that uses 3D finite elements was developed to calculate the stress-intensity factors for surface and corner cracks in finite plates and in plates with circular holes. This program was used extensively by the authors [2-15] and the results were compared to those obtained by others and other methods.

The purpose of this manual is to document this program, to describe the input to and the output of the program, and to demonstrate the program. Several examples are presented and several sample data files are included with this manual. To model crack configurations and loadings, a companion program (a preprocessor program) that generates the data for the surf3d called gensurf [16] was also developed. The gensurf is a three dimensional mesh generator program that requires minimal input and that builds the complete data file for surf3d.

First, the crack configurations and loading that can be analyzed with surf3d are discussed. Next the program specifications and organization is presented. The procedure for the development of the models is explained. Then models for elliptic cracks are presented. Finally, several example problems and their output are presented. Appendix A lists names and functions of subroutines and major program variables. Appendix B describes the procedures to compile and execute surf3d both interactively and in the batch mode on UNIX supercomputers such as $CRAY\ Y-MP$.

CRACK CONFIGURATIONS AND LOADING

Several crack configurations can be analyzed with *surf3d*. A cross-section through the crack plane of each configuration is shown in Figure 1. The configurations are (see Figure 1)

- (a) Surface crack
- (b) Embedded crack
- (c) Corner crack
- (d) Corner crack from a circular hole
- (e) Surface crack at a semicircular notch
- (f) Surface crack from a circular hole

The cracks are assumed to be elliptic, semi-elliptic or quarter elliptic in shape and are defined by the semi-major axis, c, and the semi-minor axis, a. Any point on the crack front is defined by c, a, and ϕ , the parametric angle of the ellipse (see Figure 2).

The first three cases (a), (b), and (c), can be analyzed by imposing appropriate boundary conditions on the model shown in Fig. 2(b). Similarly, the next three cases, (d), (e), and (f) can be analyzed by imposing appropriate boundary conditions on the model shown in Figure 2(c). The boundary conditions for all the six cases are described below.

For all the six cases, v = 0 is prescribed for all nodes on the uncracked portion (shaded portion in Figure 2), including the nodes on the crack front, of the y = 0 plane.

- (a) Surface crack in a plate: u = 0 for all nodes on the x = 0 plane
 - w = 0 for the node at (W, h, 0)
- (b) Embedded crack in a plate:
 - u = 0 for all nodes on the x = 0 plane
 - w = 0 for all nodes on the z = 0 plane
- (c) Corner crack in a plate:
 - u = 0 for nodes at (0, h, 0) and (0, h, -t)
 - w = 0 for the node at (W, h, 0)
- (d) Corner crack from a circular hole:
 - u = 0 for all nodes on the x = -R plane
 - w = 0 for the node at (W, h, 0)
- (e) Surface crack from a semicircular hole:
 - u = 0 for nodes at (-R, h, 0) and (-R, h, -t)
 - w = 0 for all nodes on the z = 0 plane
- (f) Surface crack from a circular hole:
 - u=0 for all nodes on the x=-R plane
 - w = 0 for all nodes on the z = 0 plane

Loading

Several types of loading conditions can also be imposed on the cracked configurations. Four types of loading are commonly used:

- (a) Remote tensile loading
- (b) Remote bending loading about the x-axis
- (c) Remote bending loading about the z-axis
- (d) Uniform crack face pressure loading

The three loading conditions (a), (b), and (c) are illustrated in Figure 3. These loadings are usually applied on the y = h plane as shown in Figure 3. The uniform pressure loading condition on the crack face is usually described by $\sigma_y = -1$ at all the nodes on the crack face.

The magnitudes of the tractions at the four nodes of a loaded face of an element are taken from the global vector of the nodal tractions. surf3d assumes that the tractions at the nodes are input in the global Cartesian coordinate directions. Using these nodal tractions, the tractions at any point on the loaded face of an element are obtained by interpolating with the element shape functions. From these tractions the consistent loads at the nodes are calculated following the standard FE principles [17].

Sometimes the user may require stress-intensity factors for loadings applied simultaneously on several faces of the model. In these situations *surf3d* may be executed with (a) several loadings in a single run or (b) once for each loading condition. In the first

case, case (a), however, the boundary conditions should be the same for all the loading conditions and such that the loading produces only mode-I type deformations.

In addition to traction type loadings, surf3d accepts displacement type loadings. The same restrictions mentioned in the previous paragraph for combined loading conditions apply.

FINITE ELEMENT ANALYSIS

The cracked solid is modeled with 8-noded hexahedra (Hex-8), isoparametric elements. These isoparametric elements are serendipity elements based on a linear displacement field [17]. Near the crack front, singularity elements that are in the shape of pentahedrons are used. The formulation and the details of these elements can be found in references 2 through 4.

A typical model of a quarter of a plate with a surface crack (with a/c = 1 and a/t = 0.5) is shown in Figure 4. At any station on the crack front, eight singularity elements are used as shown in Figure 4. Around the crack front these singularity elements form a torus. The rest of the solid is modeled with the Hex-8 elements. Models such as this were developed using the mesh generator program gensurf; the details of the program are explained in the gensurf user's manual [16].

Figure 5 shows the Hex-8 element and the pentahedral singularity element and how the elements are defined by their nodal connectivity. This figure also shows several ways to define the Hex-8 and singularity elements. The $\sqrt{\xi}$ terms in the shape functions require that η is always along the crack front in the singularity element.

Improper definition of the element connectivity leads to the calculation of zero or negative volumes. For example, two inconsistently defined elements are shown in Figure 6. When an element's volume is computed as zero or negative, surf3d aborts execution and prints the element number, nodal connectivity information, coordinates of each of the nodes of the element, and the value of the diagonal terms of the element stiffness matrix. The user can then use this information to check his input for improper definition of the elements.

STRESS-INTENSITY FACTOR CALCULATIONS

The stress-intensity factors are calculated at each station on the crack front using three methods.

- 1. Force Method
- 2. Crack Opening Displacement (COD) Method
- 3. Three-Dimensional Virtual Crack Closure Technique (3D-VCCT)

The first two methods are used when singularity elements are used at the crack front, while the 3D-VCCT method is used when the solid is modeled completely with nonsingular elements.

Force Method

The force method was developed in references 2 and 3 and is briefly explained below. The method assumes that the 2D state stress is valid within every infinitesimal portion of the crack front, so that the stress normal to the crack plane, σ_y , can be written as

$$\sigma_y = \frac{K_I}{\sqrt{2\pi r}} + A_1 + O(r^{1/2}) \tag{1}$$

where K_I is the stress-intensity factor and A_1 is a constant. Note that the distance r in Eq.(1) is measured normal to the crack front. The total force normal to crack plane and in a region bounded by $z_1 \le z \le z_2$ and $0 \le r \le r_D$ is

$$F_{y} = \int_{z_{1}}^{z_{2}} \left[\int_{0}^{r_{D}} \sigma_{y} dr \right] dz$$

$$F_{y} = \frac{K_{I}}{\sqrt{2\pi}} 2\sqrt{r_{D}} (z_{2} - z_{1}) + A_{1} r_{D} (z_{2} - z_{1}) + \cdots$$

$$\simeq \frac{K_{I}}{\sqrt{2\pi}} 2\sqrt{r_{D}} (z_{2} - z_{1}) + A_{1} r_{D} (z_{2} - z_{1})$$
(2)

The forces F_y in the region $z_1 \le z \le z_2$ and $0 \le r \le r_D$ are known from the finite element analysis and can be used to evaluate the unknowns K_I and A_1 in Eq. (2). However, Eq. (2) is valid only for small distances r from the crack front. A procedure for evaluating the K-values using the forces F_y at various distances r is explained below.

Figure 7 shows a portion of the crack plane with two consecutive layers i and (i+1) in the model. The nodes j, k, ...p and the nodes b, d, e, ...h define the model ahead of the crack front in the i^{th} layer. The FE solution calculates the forces F_y at all these nodes as shown in Figure 8. In this figure, F_{k_1} is the force in the y-direction computed at node k due to element I and F_{k_2} is the force in the y-direction computed at node k due to element J. The total force in the y-direction at node k in the i^{th} layer is

$$F_k = F_{k_1} + F_{k_2} \tag{3}$$

Thus the total force F_y for $r = r_2$ in the i^{th} layer (see Figure 8) is

$$(F_y)_{r=r_2} = F_j + F_k + F_{l_1} + F_b + F_d + F_{e_1}$$
(4)

Similarly, the total force F_y for $r = r_3$ in the i^{th} layer is

$$(F_y)_{r=r_3} = F_j + F_k + F_l + F_{m_1} + F_b + F_d + F_e + F_{f_1}$$
(5)

Thus total F_y forces are computed for five values of r and are used in Eq. (2) to obtain the following set of equations.

$$(F_{y})_{r=r_{1}} = F_{y_{1}} = \frac{K_{I}}{\sqrt{2\pi}} t_{i} 2\sqrt{r_{1}} + A_{1} r_{1} t_{i}$$

$$(F_{y})_{r=r_{2}} = F_{y_{2}} = \frac{K_{I}}{\sqrt{2\pi}} t_{i} 2\sqrt{r_{2}} + A_{1} r_{2} t_{i}$$

$$\vdots$$

$$(F_{y})_{r=r_{5}} = F_{y_{5}} = \frac{K_{I}}{\sqrt{2\pi}} t_{i} 2\sqrt{r_{5}} + A_{1} r_{5} t_{i}$$

$$(6)$$

where t_i is the thickness of the i^{th} layer. The unknowns in Eq. (6) are K_I and A_1 . The five equations in Eq. (6) are used in a least square procedure to evaluate K_I and A_1 . Through numerical experimentation it was found that consistent results are obtained when

- (a) Five force equations are used (as in Eq. (6)), and
- (b) the maximum value of $r(r_5)$ is less than or equal to (a/10), where a is the depth of elliptical crack (semi-minor axis).

Equation (5) was modified slightly to calculate K_I at the two nodes (nodes j and b in Figures 7 and 8.) that define the ends of the crack in the i^{th} layer. The total force on the 'bottom' * half of the i^{th} layer, for example, for $r = r_2$ is

$$(F_{y})_{r=r_{2}} = F_{j} + F_{k} + F_{l_{1}} = (F_{y_{2}})_{bot}$$
 (7)

Substituting Eq. (7) in Eq. (2) one obtains

$$(F_{y_2})_{bot} = \frac{(K_I)_{bot}}{\sqrt{2\pi}} \frac{t_i}{2} 2\sqrt{r_2} + (A_1)_{bot} r_2(\frac{t_i}{2})$$
(8)

^{*} Note that 'bottom' and 'top' are relative and are used here for convenience in presentation. Each layer has a top and bottom. For example, node j in figure 7 is at the bottom of layer i and is also at the top of layer i-1. Similarly, node b is at the top of layer i and at the bottom of layer i+1. Also note that the nodes j and b in figure 7 are at stations i and i+1, respectively.

Note that this force is the force calculated using σ_{ν} only in the bottom half of the i^{th} layer. Similarly one can write for the top part of the i^{th} layer as

$$(F_{y_2})_{top} = \frac{(K_I)_{top}}{\sqrt{2\pi}} \frac{t_i}{2} 2\sqrt{r_2} + (A_1)_{top} r_2(\frac{t_i}{2})$$
(9)

where

$$(F_{y_2})_{top} = F_b + F_d + F_{e_1} \tag{10}$$

Again the least square procedure is used independently for both top and bottom of the i^{th} layer individually to calculate the stress-intensity factors at both sides of this layer.

This procedure is repeated for all layers. The stress-intensity factors are then calculated as

$$(K_I)_{\text{ station }(i)} = \frac{1}{2} [\{(K_I)_{\text{ top}}\}_{\text{layer }(i-1)} + \{(K_I)_{\text{ bot}}\}_{\text{layer }(i)}]$$

for all stations except the first and the last. (Note that node j in Figure 7 defines station i, node b defines station (i+1), and so on.) For the first station, K_I is calculated from

$$(K_I)_{\text{ station }(1)} = \{(K_I)_{\text{ bot}}\}_{\text{layer }(1)}$$

and for the last station,

$$(K_I)_{\text{station }(Nlayer+I)} = \{(K_I)_{\text{top}}\}_{\text{layer}=(Nlayer)}$$

COD (Crack-Opening Displacement) Method

In the COD method, the crack opening displacement at the nodes just behind the crack front are used to calculate the stress-intensity factor from

$$COD = 2v = 2\frac{K_I}{2G}\sqrt{\frac{r}{2\pi}} 4(1-\nu^2) + O(r^{3/2}) + \dots$$
 (11)

where G is the shear modulus and ν is the Poisson's ratio of the material.

The crack opening displacements are known at all nodes behind the crack front. Therefore, as in the force method, equation (11) is evaluated at several values of r as follows

$$\frac{2G v}{\sqrt{\frac{r}{2\pi}}4(1-\nu^2)} = K_I + A'r + \cdots$$

$$\simeq K_I + A'r$$
(12)

where K_I and A' are unknown constants. For various values of r the nodal opening displacement v is known; hence, Eq. (12) can be written as

$$\frac{c \cdot (v)_{r=r_1}}{\sqrt{r_1}} = K_I + A' r_1$$

$$\frac{c \cdot (v)_{r=r_2}}{\sqrt{r_2}} = K_I + A' r_2$$

$$\frac{c \cdot (v)_{r=r_5}}{\sqrt{r_5}} = K_I + A' r_5$$
(13)

where c is a constant equal to $2G\sqrt{2\pi}/[4(1-\nu^2)]$.

Again the least square procedure is used to evaluate the constants K_I and A' in Eq. (13). As in the force method, five values of r are used in Eq. 13 and the nodes in the region $0 \le r \le (a/10)$ are used. The nodes that are used in the COD method k', l', \dots, p' for the i^{th} layer are shown in Figure 8.

3D VCCT

When the model does not contain singularity elements, the stress-intensity factors can be calculated from the strain energy release rates, G_I , assuming a state of plane strain [18,19].

For the ith layer, reference 19 proposed that

$$(G_I)_i = -\frac{1}{2\Delta_i t_i} [F_j v_{k'} + F_b v_{d'}]$$
 (14)

where Δ_i is the average of the radial distance between the set of nodes j and k and nodes b and d, and t_i is the thickness of the i^{th} layer. The nodes k' and d' are the COD-nodes on the crack front (see Figure 8). Note that the forces F_j and F_b are the force calculated using the elements in the i^{th} layer alone. The stress-intensity factor is then calculated assuming plane strain conditions as

$$K_{I_i} = \sqrt{\frac{EG_{I_i}}{(1 - \nu^2)}}$$
 (15)

The stress-intensity factor calculated from Eq. (15) is assumed to be the value at the center of the i^{th} layer.

A slightly different approach, suggested in reference 18, is used in *surf3d* and is described below. The node j on the crack front (see Figure 8) belongs to both layers (i-1) and (i). The strain energy release rate at node j (i.e., station i) in Figure 8 is given by

$$(G_I)_j = -\frac{1}{2\Delta t_{av}} [F'_j v_{k'}]$$
 (16)

where

$$F'_{j} = (F_{j})_{\text{layer}(i-1)} + (F_{j})_{\text{layer}(i)}$$

$$\Delta = \text{ radial distance between nodes } j \text{ and } k'$$

$$= (\text{also radial distance between nodes } j \text{ and } k)$$

$$t_{\text{av}} = \frac{(t_{i-1} + t_{i})}{2}$$
(17)

In Eq. (16), F'_j is the total force in the y-direction at node j, t_{av} is the average thickness of layers (i-1) and (i) computed as in the force method.

Eq. (16) is used for every station along the crack front. The stress-intensity factors are evaluated as before assuming plane strain as

$$\left(K_{I}\right)_{j} = \sqrt{\frac{E \cdot \left(G_{I}\right)_{j}}{\left(1 - \nu^{2}\right)}} \tag{18}$$

or assuming plane stress as

$$(K_I)_j = \sqrt{E \cdot (G_I)_j} \tag{19}$$

Input Data for Stress-Intensity Factors

Figures 7 and 8 show the i^{th} and $(i+1)^{th}$ layers and the variables that are used to calculate the stress-intensity factors. Figure 7 shows the modeling with 4 singularity elements and shows the nodes, MNODE, and the elements, KELEM, used by the three methods for the i^{th} layer. Note that in this figure, for clarity, the modeling detail behind crack front and above the crack plane are not shown. Figure 8 shows the forces that are used in the force method and the COD nodes that are used in the COD and the VCCT methods. In this figure, the subscript IR in the arrays FCENT and FTIP denotes the IR^{th} loading condition (right hand side).

Figure 9 shows the details on the z=0 plane for a typical surface crack model. Here eight singularity elements are used. As explained in the gensurf user's manual, first the z=0 plane with a width of t units and height of t units is modeled. This is termed as the base model. Figure 9 shows only a part of the base model for a/t=0.8 and a/c=1. In this base model, 151 nodes and 128 elements were used. This figure also defines the input data for variables that are needed in the stress-intensity factor computations. Figure 10 shows details on the crack plane (y=0 plane) and very close to the crack front for a 4-layer model. This figure also shows the complete data that is needed to define all the variables that are necessary in the stress-intensity factor computations. The tedious preparation of the input data can be avoided by using a mesh generator like gensurf.

The required input for calculating the stress-intensity factors using any of the three methods is described in the following section. By referring back to Figs. 7-9, the user's understanding of input parameters will be greatly enhanced.

INPUT TO surf3d

The required input data is described in this section. The data is created on a file, DFN, and is given an input to surf3d. A complete data file for surf3d could be generated using a mesh generator program like gensurf. Several sample input data files are attached. This section and the examples section together with Figures 6-8 will completely explain the input. (In this section, for convenience in presentation, the phrases cards, card sets, data sets, and lines are used interchangeably.)

Card set	Format	Variable	Description
1	20A4	TITLE	Title of the job
2	A6	POUT	Output Option. Input SHORT for short output and XLONG for long output option.
3	*†	EMOD,NU	Young's modulus and Poisson's ratio
denot	es free for	nnat	
4	*	NPOIN,NELEM	Number of nodes and elements in the model
5	*	I, X(I,1), X(I,2),	Node number, $x-,y-$ and $z-$ coordinates of the model
	*	X(I,3)	viie model
		ed assumes that Node 1 is a ic or part-elliptic crack.	at $(c,0,0)$, i.e., at the end of the major
6	*	I, NOD(I,1), NOD(I,2),	Element number, nodal connectivity and the index of each element (=1 for singularity elements and =0 for Hex-8 elements).
		NOD(I,8), NINDX(I)	

Repeat this line NELEM times until all the elements are specified.

7 * NP,IU,IV,IW

Boundary Conditions Node number,
Restraint code for the u-displacement
Restraint code for the v-displacement
Restraint code for the w-displacement
Restraint code:
= 0 is free
= 1 is fixed.

Repeat this line until all boundary conditions are prescribed. Terminate this set of lines with four zeros.

8	*	NCASE	Number of loading conditions (number of right hand sides)
9	A 6	СТҮРЕ	Loading type. Input REMOTE for remote loading. Input CFACE for crack-face pressure loading.
10	*	NF, NL, NI, LIND, IFACE	Pressure loading definition - Number of first element, Number of last element, Increment, Load index-Input Unity, i.e LIND=1 Number of face where pressure loading is prescribed.

Repeat until all loaded elements are defined. Terminate this set of cards with five zeros.

11 * IP, PX, PY, PZ

Traction Definitions - Node number Magnitude of traction in the global x-direction at node IP Magnitude of traction in the global y-direction at node IP Magnitude of traction in the global z-direction at node IP

Repeat this line until all the tractions are specified for current loading condition. Terminate each loading condition with zero for the integer and zeros for all three tractions. Repeat Item 11 until all traction loading conditions (NCASE) have been defined.

* NP,IU,IV,IW,
U, V, W
Nodal Displacements Node Number,
Restraint code for the u-displacement,
Restraint code for the w-displacement,
Prescribed U-displacement,
Prescribed V-displacement,
Prescribed W-displacement
Restraint code:
= 0 is free
= 1 is fixed.

Repeat this line until all displacements are prescribed. Terminate this set of lines with zeros for all four integers.

13	*	IRENUM	Renumbering option: = 0 if no renumbering given; = 1 if renumbering scheme is provided.
14	*	JNEW(NPOIN)	Renumbering scheme: Needed only if IRENUM is not equal to zero.

Use as many lines as needed to read NPOIN integers.

15	*	NLOAD	Number of concentrated loads
16	*	NA(1) NA(2) NA(NLOAD)	Degree of freedom at which the concentrated loads are applied.

Use as many lines as needed to read NLOAD integers.

17 * XY(1) XY(2) Magnitude of concentrated loads corresponding to the degree of freedom directions defined in NA(I).

XY(NLOAD)

Use as many lines as needed to read NLOAD values.

* NSINGU, NLAYER

Number of singularity elements in each layer and number of layers in the model.

Note that the number of singularity elements are assumed to be the same in each layer of the model.

* ICOD(I,1),
ICOD(I,2),
ICOD(I,3),
ICOD(I,4),
ICOD(I,5)

* ICOD(I,1),
COD Node Definitions Node numbers of the nodes that are
used in the COD method (see Fig. 8).

Read (NLAYER+1) lines to define all the COD nodes along the complete crack front.

20 MTIP(I,1),Node numbers defining the crack front for MTIP(1,2) each layer of the model with singularity elements (see Fig. 9). 21 NTIP(I,1),Element numbers for pentahedral (singularity) elements around the crack front for each NTIP(I,2),layer of the model (see Fig. 9). NTIP(I,NSINGU) 22 KELEM(I,1),Element numbers of elements on the crack KELEM(I,2), plane and ahead of the crack front for each layer of the model (see Figs. 7 and 9). KELEM(1,5)

23	*	MNODE(I,1), MNODE(I,2), MNODE(I,10)	Node numbers of nodes on the crack plane and ahead of the crack front for each layer of the model (see Figs. 7 and 9).
24	*	HT, WIDTH, AOT, RPT, AOC	Height of the model, h Width of the model, W (a/t) ratio (R+t) value for a plate with a hole (a/c) ratio.

As previously mentioned, Node 1 is assumed to be at (c,0,0). Thus the value of c is automatically defined. Using this value of c and the ratios AOC, (a/c), and AOT, (a/t), the values of a and t are computed by the program.

OUTPUT OF surf3d

The output of surf3d is described in this section. Two output options, long and short, are available. If the user exercises the long output option (XLONG on the second card in columns 1-5), the following items will be printed. If the user specifies the short output option (SHORT on the second card), the items listed below with an asterisk will be omitted. Only a general description of major output sections is presented. Example output files are discussed and presented in the next section.

- Title
- Output Specification
- Description of the model
- Nodes and coordinates
- Element connectivity and index of the element.
- Boundary conditions
- Pressure or traction loading elements, faces, nodes & traction magnitudes.
- Prescribed displacements
- Renumbering option and renumbering scheme
- Data for calculating stress-intensity factors
- Volume of the solid modeled
- For each loading condition:
 - (a) Sum of x-forces before boundary conditions
 - (b) Sum of y-forces before boundary conditions
 - (c) Sum of z-forces before boundary conditions
- Projected surface areas: x-, y-, and z- components
- Nodal displacements at each node in the model for the first loading condition.
- Nodal displacements at each node in the model for each loading condition.
- *Nodal forces at each node in the model for each of the loading condition. (If the absolute value of the forces F_{x_i} , F_{y_i} and F_{z_i} at node i are less than 10^{-6} , then the forces are not listed.)
- *Average nodal stresses at each node for each loading condition.
- Equilibrium checks for each of the loading conditions

$$(\sum_i F_{x_i}, \sum_i F_{y_i}, \sum_i F_{z_i}, i = 1, \text{NPOIN in the model})$$

- Sum of applied loads and surface area components for the current loading condition.
- Nominal stresses for the current loading condition.
- *Stress-intensity factor calculations:-
 - COD method:- K-value for each station along the crack front
 - Force-method: Apparent K-values at various distances from the crack front.

These values are computed on 'top' and 'bottom'

for each layer.

- Summary of stress-intensity factors calculated using
 - (a) the Force method
 - (b) the COD method when singularity elements are present
 - (c) the 3D-VCCT method, when singularity elements are not present in the model. K-values using both plane stress and plane strain assumptions are output with this method.
- Element Equilibrium: If each element satisfies equilibrium, $\sum F_x = \sum F_y = \sum F_z \le 1.0E 6$, then the program prints "All elements satisfy equilibrium". If some elements do not satisfy equilibrium, the program prints a warning message that N number of elements do not satisfy equilibrium and lists the element numbers.

EXAMPLES

In this section several examples illustrating the use of *surf3d* are presented. Only part of the input data files are shown because the data files are very long. The output files are also very long even when the short output option is exercised, and, therefore only the pertinent parts of the output file are presented here. However, the complete data and output files are available on the disk accompanying this manual.

In all examples the following assumptions are made: For remote loading, the applied stress S is assumed to be unity. The maximum bending stresses (the outer surface fiber bending stresses) S_{bx} and S_{bz} are also assumed to be unity (see Figure 2). The crack depth, a, is assumed to be unity. The square of the elliptic integral of the second kind, Q, is approximated in the program as

$$Q = 1.0 + 1.464(a/c)^{1.65},$$
 for $a/c \le 1.0$
= $1.0 + 1.464(a/c)^{1.65},$ for $a/c > 1.0$

All the stress intensity factors are normalized by $S_n \sqrt{\frac{\pi a}{Q}}$ where

$$S_n = S$$
, for remote tension
 $= S_{b_x}$, for bending about x -axis
 $= S_{b_x}$, for bending about z -axis

The loadings in these examples in this section are selected so that the nominal stress S is unity. In general this will not be the case. Therefore, surf3d calculates the nominal stresses in the x-,y-, and z-directions for each of the loading conditions. The nominal stresses are calculated by evaluating the sum of the x-,y-, and z-components of the forces on the loaded faces of the model and dividing these components by the corresponding nonzero x-,y-, and z-components of the area of that face. The normalized stress-intensity factors computed by the program can be then be divided by S, where S is the correct value of the nominal stress. For bending loadings the nominal stress is zero. Therefore, for bending cases the outer-fiber stress is used as the nominal stress. This is assumed to be unity in the program.

For loading in the form of the prescribed displacements, the user needs to calculate the nominal stress. This is because the information on the loaded face areas are not available to surf3d. Fortunately, this calculation is very simple to perform. The sum of the x-,y-, and z-components of the forces on this face is available from the output of surf3d. These force components are divided by the corresponding nonzero components of the area to obtain the value of S. The normalized stress-intensity factors given by the program are then divided by S to obtain the correct normalized value. Note that this division needs to be performed by the use externally, i.e., after obtaining the output from surf3d.

The following table defines the input and output files used in each of the examples presented in this section.

Input and Output Files in the Examples

Example Number	Input File	Output File
1.	dex1 (Table 1 [†])	out12 (Table 2 [†])
2.		outn12 (Table 3)
3(a).	dex3a (Table 4)	outr22 (Table 5)
(b).	dex3b	outc22 (Table 6)
4(a).	dex 4 a	outr28 (Table 7)
(b).	dex4b	outc28 (Table 8)
5.	dex5	outcor28 (Table 9)
6.	dez6	outem28 (Table 10)
7.	dex7	occor15 (Table 11)
8.	dex8	oscor15 (Table 12)
9.	dex9	osmcor15 (Table 13)
10.	<i>dex10</i> (Table 14)	outd12 (Table 15)
11.	dex11	outdx12 (Table 16)

 $^{^{\}dagger}$ Partial listing is shown in these tables

Traction-Type Loading

Surface, Corner and Embedded Cracks in Finite Plates

Example 1: Surface crack with a/c = 1 and a/t = 0.2 in a plate subjected to remote tension and bending about x- and z-axes. (W = 25; h = 125; t = 5.0)

One quarter of the solid is modeled with 2161 nodes and 1664 elements. Eight layers are used to model the solid. In each layer 8 singularity elements are used at the crack front. The input data file is partially presented in Table 1. Part of the output file is shown in Table 2. The complete output file out12 is available on the disk. The first part of the output is for remote tensile loading (loading number 1). The stress-intensity factors at each station along the crack front from $\phi = 0$ to $\pi/2$ calculated by the force and COD methods are given. In this part of the output, first the absolute value of K and then the normalized value of K from both methods are presented. Next the normalized values of K by the force and COD methods are tabulated for each station along the crack front, i.e., for each value of ϕ . The results for loadings 2 and 3, bending about x- and z-axes, respectively, are also listed in Table 2.

Example 2: Same configuration as in example 1 but without singularity elements.

This example uses non-singular elements through out the model. The program scans the NINDX array to determine if singularity elements are present in the model. When singularity elements are not present, force and COD methods are not used and instead the 3D-VCCT method is used to calculate the stress-intensity factors. This example presents the results obtained using the same model as in example 1, and setting all the indices INDX, in the NINDX array to zero. When 3D-VCCT method is used, one has to assume either plane stress or plane strain. The program calculates the normalized values of the stress-intensity factors using both assumptions. The results for example 2 are presented in Table 3. Comparison of these results with those in Table 2 shows that the 3D-VCCT assuming plane strain agrees well with the force method results for most of the crack front for all three loading conditions.

Example 3: Surface crack with a/c = 0.2 and a/t = 0.2 in a plate subjected to

- (a) remote uniform tensile loading and
- (b) uniform crack face pressure loading.

As in the previous examples, one quarter of the solid is modeled with 2441 nodes and 1872 elements. Again eight layers are used and in each of these layers 8 singularity elements are used at the crack front. Table 4 presents a partial listing of the data file.

From superposition principles, it can be shown that the stress-intensity factors for the two loading conditions are identical. This example demonstrates that *surf3d* nearly reproduces this result. Tables 5 and 6 present, respectively, the partial output files for remote tensile and crack face pressure loadings. Comparison of the results shows that the stress-intensity factors calculated by both methods are nearly but not exactly identical.

The slight differences between the two sets of stress-intensity factors are due to the non-exact nature of the loading on the crack face. Note that on the crack face, there is a semi-elliptic slit with a semi-major axis of $\sqrt{c^2 - (0.001a)^2}$ and semi-minor axis of 0.001a. The loading for the two cases are not exactly identical to each other and, hence, the slight differences in the stress-intensity factors.

Example 4: Deep surface crack in a plate with
$$a/c = 0.2$$
 and $a/t = 0.8$; $(W = 50; h = 125; t = 1.25; a = 1; c = 5)$

One quarter of the solid is modeled with 2464 nodes and 1856 elements. As before eight layers are used to model the crack front and 8 singularity elements are used in each layer. The model is subjected to

- (a) remote uniform tensile loading, and
- (b) uniform crack face pressure loading of magnitude S.

The input files for these two cases $dex_4(a)$ and (b) are on the disk. Table 7 and 8 present the output files for loadings (a) and (b), respectively. Comparing the results obtained for this deep elliptic crack show that both loadings give nearly identical stress-intensity factors along most of the crack front.

Example 5: Corner crack with
$$a/c = 0.2$$
 and $a/t = 0.8$; $(W = 50; h = 125; t = 1.25; a = 1; c = 5)$

Consider a quarter-elliptical corner crack in a plate subjected to remote tensile loading. One half of the plate is modeled with 2464 nodes and 1856 elements. This model is identical to that used in example 4 but the boundary conditions are changed to the corner crack boundary conditions. The output is presented in Table 9.

Example 6: Embedded crack with
$$a/c = 0.2$$
 and $a/t = 0.8$; $(W = 50; h = 125; t = 1.25; a = 1; c = 5)$

One-eighth of the solid is modeled with 2464 nodes and 1856 elements. This model is identical to those used in examples 4 and 5 but the boundary conditions are changed to embedded crack-boundary conditions. The output is presented in Table 10.

Surface and Corner Cracks in a Plate with Holes

In this subsection, three examples of surface and corner cracks at a semi-circular or a circular hole are presented. In all these examples, the crack front is modeled with 8 layers, with 8 singularity elements at the crack front in each layer. The hole is modeled (on the z=0 plane, see Figure 2) with 5 unequal thickness layers. The thickness of the five layers from the deepest point of the crack are 5,10, 25, 35, and 40 percent of the radius of the hole. (See gensurf users manual [16] for details on hole modeling.)

Example 7: Corner cracks at a circular hole with
$$a/c = 1$$
, $a/t = 0.5$, and $R/t = 1$; $(W = 25; h = 125; a = 1; c = 1; t = 2; R = 2)$

Because of symmetries, one quarter of the solid is modeled with 2863 nodes and 2260 elements. Loading conditions of remote uniform tension and bending about x-axis are considered. Table 11 presents a partial listing of the output.

Example 8: Surface crack at a circular hole with a/c = 1, a/t = 0.5, and R/t = 1; (W = 25; h = 125; a = c = 1; R = t = 2)

The same model as in example 7 is used for this example. The boundary conditions on z=0 plane are prescribed to reflect the symmetric boundary conditions, i.e., all nodes on z=0 plane are prescribed to have zero w-displacements. Remote uniform tensile loading was prescribed. Table 12 presents a partial listing of the output.

Example 9: Surface crack at a semi-circular hole with a/c = 1, a/t = 0.5, and R/t = 1; (W = 25; h = 125; a = c = 1; R = t = 2)

The same model as in examples 7 and 8 is used in this example. All the boundary conditions, except those on the x = -R plane see Fig 2(c)), used in example 8 are used. Only one node on the x = -R plane is prescribed to have a zero u-displacement. Remote uniform tensile loading was applied to this model. Table 13 presents a partial listing of the output.

Prescribed Displacement Loadings

Surface Crack in a Finite Plate

Example 10: Surface crack with a/c = 1 and a/t = 0.2 in a plate subjected to remote prescribed displacements, $v = 10^{-6}$ in. on the y = h face. (W = 25; h = 125; t = 5.0)

The configuration in this example is identical to example 1. Part of the input data file is presented in Table 14. Part of the output file is shown in Table 15. The complete output file outd12 is available on the disk. The calculation of the nominal stress is illustrated in this example. The sum of the forces on the loaded face y=h are computed as $F_x=0.0$, $F_y=29.99872$ lbs, and $F_z=0.0$. The components of the area are $A_x=0.0$, $A_y=25.0x5.0=125.0$ sq. in., and $A_z=0.0$. Therefore, the nominal stress is S=29.99872/125.0=0.24 psi. All the output stress-intensity factors are divided by 0.24, the value of the nominal stress S. For example, the $K/S\sqrt{\pi} \ a/Q$ at $\phi=\pi/2$ using the force method will now be equal to 0.24519/0.24=1.0216. This value agrees extremely well with that for the traction-type loading in example 1 for the same configuration (using the force method this value is 1.0221). This is expected because of the large plate used in both examples.

Example 11: Surface crack with a/c = 1 and a/t = 0.2 in a plate subjected to remote prescribed displacements, $u = -0.3 \cdot 10^{-7}$ in. on the x = b face. (W = 25; h = 125; t = 5.0)

The configuration in this example is identical to that used in example 1. The loading used in this example gives zero values for the stress-intensity factors. This example shows

that the stress-intensity factors calculated by *surf3d* will be nearly zero but not identically zero. Note that the run was aborted because of the attempted square root of small negative stress-intensity factors. Part of the output file is shown in Table 16. The complete output file outdx12 is available on the disk.

REFERENCES

- R. J. Gran , F. D. Orazio, P. C. Paris, G. R. Irwin, and R. H. Hertzberg, "Investigation and Analysis Development of Early Life Aircraft Structural Failures," AFFL-TR-70-149, Air Force Flight Laboratory, 1971.
- 2. I. S. Raju and J. C. Newman, Jr., "Improved Stress-Intensity Factors for Semi-Elliptical Surface Cracks in Finite-Thickness Plates," Proceedings of the 4th Conference on Structural Mechanics in Reactor Technology, San Francisco, CA, 1977. (Also available as NASA TM X-72825, 1977).
- 3. I. S. Raju and J. C. Newman, Jr., "Three-Dimensional Finite Element Analysis of Finite Thickness Fracture Specimens," NASA TN-D 8414, May 1977.
- 4. I. S. Raju and J. C. Newman, Jr., "Stress-Intensity Factors for a Wide Range of Semi-Elliptical Surface Cracks in Finite-Thickness Plates," Engineering Fracture Mechanics, Vol. 11, pp. 817-829, 1979.
- I. S. Raju and J. C. Newman, Jr., "Stress-Intensity Factors for Corner Cracks at the Edge of a Hole," Presented at the 11th National Symposium on Fracture Mechanics, Blacksburg, VA, 1978. (Also available as NASA TM-78728, 1978).
- I. S. Raju and J. C. Newman, Jr., "Stress-Intensity Factors for Two Symmetric Corner Cracks," Fracture Mechanics, C. W. Smith (Ed), ASTM STP 677, American Society for Testing of Materials, pp. 411-430, 1979.
- 7. J. C. Newman, Jr. and I. S. Raju, "Stress-Intensity Factors for Internal Surface Cracks in Cylindrical Pressure Vessels," Proceedings of the 5th Conference on Structural Mechanics in Reactor Technology, Berlin, West Germany, 1979.
- 8. J. C. Newman, Jr., and I. S. Raju, "Analysis of Surface Cracks in Finite Plates Under Tension or Bending Loads," NASA TP 1578, 1979.
- J. C. Newman, Jr., and I. S. Raju, "Stress-Intensity Factors for Internal Surface Cracks in Cylindrical Pressure Vessels," Transactions of ASME, Journal of Pressure Vessel Technology, Vol. 102, pp. 342-346, 1980.
- I. S. Raju and J. C. Newman, Jr., "Stress-Intensity Factors for Internal and External Surface Cracks in Cylindrical Vessels," Transactions of ASME, Journal of Pressure Vessel Technology, Vol. 104, pp. 293-298, 1982.
- J. C. Newman, Jr. and I. S. Raju, "Stress-Intensity Factor Equations for Cracks in Three-Dimensional Finite Bodies," Fracture Mechanics Fourteenth Symposium, Vol. I: Theory and Analysis, ASTM STP 791, J. C. Lewis and G. Sines, Eds. pp. I238-I265, 1983.
- 12. I. S. Raju and J. C. Newman, Jr., "Methods for Analysis of Cracks in Three-Dimensional Solids," Special Issue of the Journal of Aeronautical Society of India,

- I. S. Raju, K. N. Raju, and B. Dattaguru (Guest Editors), Vol. 36, No. 3, pp. 153-172, 1984. (Also available as NASA TM-86266, July 1984).
- I. S. Raju and J. C. Newman, Jr., "Stress-Intensity Factors for Circumferential Surface Cracks in Pipes and Rods," Presented at the 17th National Symposium on Fracture Mechanics, Albany, NY, August 7-9, 1984. (Also available as NASA TM-87594, August 1985).
- I. S. Raju and J. C. Newman, Jr., "Stress-Intensity Factors for Corner Cracks in Rectangular Bars", Fracture Mechanics: Nineteenth Symposium, ASTM STP 969, T. A. Cruse, Ed., American Society of Testing and Materials, Philadelphia, pp.43-55, 1988.
- I. S. Raju, S. N. Atluri, and J. C. Newman, Jr., "Stress-Intensity Factors for Small Surface and Corner Cracks in Plates," Fracture Mechanics: Perspectives and Directions (Twentieth Symposium), ASTM STP 1020, R. P. Wei and R. P. Gangloff, Eds., American Society for Testing and Materials, Philadelphia, pp. 297-316, 1989. (Also available as NASA TM-100599, April 1988.)
- I. S. Raju, "gensurf: A 3D Finite Element Mesh Generator for Modeling Surface and Corner Cracks in Cracked 3D Solids", NASA Contractor Report 189559, December 1991.
- 17. O. C. Zienkiewicz, The Finite Element Method, 2nd Edition, McGraw-Hill Book Company, New York, 1985.
- 18. I. S. Raju, B. Dattaguru, and J. D. Whitcomb, "2-D, Quasi 3-D, and 3-D Analysis of Composite Joints," Presented at the 5th ASCE-EMD Speciality Conference, Laramie, WY, August 1-3, 1984.
- K. N. Shivakumar, P. W. Tan, and J. C. Newman, Jr., "A Virtual Crack-Closure Technique for Calculating Stress-Intensity Factors for Cracked Three-Dimensional Bodies", Int. Jul. of Fracture, Vol. 36, pp. R43-R50, 1988.
- 20. A. K. Noor and S. J. Hartley, "Evaluation of Element Stiffness Matrices on CDC STAR-100 Computer," Computers and Structures, Vol. 9, pp. 151-161, 1978.

APPENDIX A

PARAMETERS, SUBROUTINES, MAJOR PROGRAM VARIABLES, AND COMMON BLOCKS

This appendix presents the names and functions of the subroutines and major program variables and the common blocks with their elements and the subroutines which use the common blocks. A flow chart of *surf3d* is presented in Figure 11.

A-1: PARAMETER STATEMENT VARIABLES

NAME	DEFINITION
MAXBK	Maximum dimension of the assembled stiffness matrix - BIGK
MAXNOD	Maximum number of nodes
MAXEL	Maximum number of elements
MAXRHS	Maximum number number of right hand sides (loading conditions)
MAXBC	Maximum number of boundary conditions
MAXB	Maximum bandwidth of equations
NNODE	Number of nodes on the Hex-8 element = 8
NDOF=NFREE	Number of degrees of freedom per node = 3
NSIF	Number of stations along the crack front where the stress- intensity factors are evaluated.
MAXRUND	Maximum dimension of IRUND
MAXDIS	Maximum number of degrees of freedom = MAXNOD*NFREE
NSMK	Dimension of the stiffness matrix of the Hex-8 element. = NNODE * NFREE = 24

A-2: SUBROUTINES

NAME	FUNCTION
1. ADJUST	Reorders the nodal coordinate array, the element connectivity array and the boundary condition array according to the renumbering scheme provided by the user. If no renumbering is given, no reordering of these arrays is performed.
2. ASEMB	Processes all elements, obtains element stiffness matrices, load vectors and assembles the global stiffness matrix.
	Obtains the transformation relationship between the generalized coordinates and the nodal coordinates. This routine is called only once.

4. BLOCK DATA	Contains the Gaussian coordinates and weights up to an 8-point integration rule. Also contains the parent coordinates (ξ, η, ζ) of the Hex-8 elements.
5. BOUND	Prescribes the boundary conditions.
6. CCLOCK	Calculates the CPU and accumulated CPU times between successive calls.
7. CDER	Calculates the Cartesian derivatives at the Gaussian points and forms the BJ matrix.
8. CORDIN	Reads the coordinates of all the nodes in the model.
9. DERIVE	Obtains the derivatives of the shape functions at any point (ξ, η, ζ) in the Hex-8 and pentahedron singularity elements.
10. FORCES	Calculates the element forces and checks the element equilibrium. Calculates the nodal stresses and forces and checks global equilibrium.
11. GDERV	Calculates the parent derivatives, $\frac{\partial N_i}{\partial \xi}$, $\frac{\partial N_i}{\partial \eta}$, $\frac{\partial N_i}{\partial \zeta}$, $i=1,8$, at each of the $(NGAUSS)^3$ Gaussian points, both for singularity and Hex 8 elements (If reduced integration is used (IRED=1), the parent derivatives are calculated at the center of the element).
12. LITTLE	Calculates the numerically smallest node number on each element
13. LOAD	Calculates the consistent loads on each of the loaded elements.
14. MATINV	Obtains the inverse of a square matrix.
15. MATMUL	Obtains the product of two matrices.
16. MODULUS	Computes the modulus matrix of an isotopic material.
17. PARENT	Calculates the parent derivatives, $\frac{\partial N_i}{\partial \xi}$, $\frac{\partial N_i}{\partial \eta}$, $i = 1, 8$, at each of the $(NGAUSS)^2$ Gaussian points.
18. REND	Calculates the half-band width for each degree of freedom, sets up the row pointer array and calculates the total memory required to store the assembled stiffness matrix in profile form.
19. SETPP	Calculates the half-band widths required for each of the degree of freedom in the model.

20. SHAPE	Calculates the shape functions of the Hex-8 element.
21. SFACTOR	Calculates the stress-intensity factors using the force and the crack-opening displacement methods.
22. SMALL	Controlling subprogram which calls the stiffness matrix and load routines for the Hex 8 and singularity elements.
23. SMALLK	Calculates the element stiffness matrix of the Hex 8 and singularity elements.
	Note: The element stiffness matrices are calculated using a procedure similar to that presented by Noor and Hartley [20] for vector computers like the STAR-100, CYBER 203, CYBER 205. The vector version was very efficient and was later devectorized for UNIX machines. Numerical experimentation showed that the current UNIX version is as efficient as the CYBER 205 version. The source code in this subprogram does not follow conventional procedures used for evaluating element stiffness matrices.
24. SOLV	Calls the solver, SYMBAN, and prints the displacements of the all the nodes in the model.
25. STRAN	Calculates the stress-transformation matrices for the singularity elements.
26. STRESS	Calculates the stresses in each element by calculating the stresses at the 2x2x2 Gaussian points.
27. SYMBAN	Solves the system of equations using the Cholesky decomposition. The left hand side matrix is arranged in profile form. This is an in-core solver.
28. TRANF	Calculates the singularity element transformation matrices.
29, TRANS	Obtains the transpose of a matrix.
30. ZEROLN	Zeros out an integer array.
31. ZEROLV	Zeros out a real variable array.

A-3: MAJOR PROGRAM VARIABLES

The variables in various commons are listed alphabetically by the common block name and then the other major variables are listed in alphabetical order.

COMMON	<u>VARIABLE</u>	DEFINITION			
ASTIF	BIGK(MAXBK)	Assembled stiffness matrix stored in profile form.			
AVERAGE	FSUMS(3,MAXRHS)	Sum of the forces in the $x-,y-$ and z -directions on the loaded faces of the model.			
	ASUMS(3)	Projected areas in the $x-,y-$ and $z-$ coordinate directions of the loaded faces,			
BANDW	P(MAXDIS)	Work array used to store the reciprocal of the diagonal coefficients in the solver			
	T(MAXB)	Work array needed to store the half- band widths in the solver			
BNOD	X(MAXNOD,NFREE)	x-,y- and $z-$ coordinates of all the nodes in the model. $X(I,1),X(I,2),X(I,3)$ represent the $x-,y-$ and $z-$ coordinates of node I .			
CLOCKS	TSTART	Temporary storage for CPU Time			
COD	ICOD(NSIF,MAXKE)	Nodes that are used in the COD method to evaluate the stress-intensity factors at various stations along the crack front.			
CLIST	LIST(MAXBC)	Boundary condition array. LIST(I) defines degrees of freedom (dof) I to be zero.			
	NA(NLOAD)	Defines the dof where external loads are prescribed.			
	XY(NLOAD)	Defines the magnitude of the external load corresponding to the dof defined in the the NA array.			
	NLOAD	Number of external loads prescribed.			
COMB	NCASE	Number of loading conditions.			

	DEPTH NSINGU	Number o	Thickness of the solid (t, see Figure 1) Number of singularity elements around the crack front Radius of the circular hole		
	RHOLE	Radius of			ole
DISP	DIS(MAXDIS,MAXRHS)	sponding lution and	Array that contains the loads corresponding to each of the dof before solution and the displacements after the solution for each loading condition.		
GAUSS	CORD (8,8) WEIGHT(8,8)	Gaussian An N-poi weight ca of the arr	Gaussian coordinates Gaussian weights. An N-point Gaussian coordinate and weight can be found in the Nth column of the arrays CORD and WEIGHT, respectively, $(1 \le N \le 8)$.		
IND	NINDX(MAXEL)		d to index the elements denotes that the element I is a Hex-8		
		NINDX(1)=1	elemei	es that nt I is a hedron	
	LINDX(MAXEL,2)	-	Array used to indicate elements with pressure loading.		elements with
		LINDX(I,1)=	-	elemen	s that the it I does not ny pressure loading.
		LINDX(I,1)=		denote elemen	s that the at I is subjected ssure loading.
		the press 6 faces a	LINDX(I,2) defines the face on which the pressure loading is prescribed. The 6 faces are defined using the parent co- ordinates ξ, η, ζ as follows:		
		$\xi=0$ face	numbe	r =	1
		$\xi=1$ face	numbe		2
			numbe		3
		',	numbe		4
		•	e numbe		5
		$\zeta = 1$ face	e numbe	r =	6

LIND LIND = LINDX (I,1)INDX INDX = NINDX(I)**IFACE** IFACE = LINDX(I,2)INTGR **NPOIN** Number of nodes in the model **NBOUN** Number of boundary conditions NELEM Number of elements in the model **NBAND** Maximum half-bandwidth of the equations **NDIS** Number of dof in the model = NPOIN*NFREE INTNST KELEM(NSIF, MAXKE) Elements on the crack plane and ahead of the crack plane used in stressintensity factor calculation. (See Figure 7 for definitions). MNODE(NSIF,2*MAXKE) Nodes on the crack plane and ahead of the crack plane used in the stressintensity factor calculation. (See Figure 7 for definitions). FCENT(NSIF, Forces in the y-direction at the 2*MAXKE,2, nodes on the crack plane and ahead of MAXRIIS) the crack used in the stress-intensity factor calculation. (See Figure 8 for definition of this array.) NKOUNT(NSIF,2*MAXKE) An integer array to keep the count of the occurrence of nodes in the MNODE аггау. MTIP(NSIF,2) Nodes on the crack front of each layer of the model. (See Figures 8 through 10 for definitions and examples). NTIP(NSIF, MSINGU) The elements closest to and around the crack front. These elements are used to evaluate the forces at the crack front nodes. (See Figures 8 through 10 for definitions and examples). FTIP(NSIF,2,MAXRHS) Forces at the crack tip nodes. (See Figures 8 through 10 for definitions and examples). NLAYER Number of layers (wedges) in the model. Stress-intensity factors are evaluated at (NLAYER+1) stations on the crack front.

MASTER (See subprograms GDERV and PAR-ENT for details)

	DMASTX(216,3), DMASTE(216,3), DMASTZ(216,3)	Derivatives $\frac{\partial N_i}{\partial \xi}$, $\frac{\partial N_i}{\partial \eta}$, $\frac{\partial N_i}{\partial \zeta}$ for a Hex-8 element, at the quadrature points for 2 or 3-point Gaussian quadrature. For a 2-point Gaussian, 8 derivatives, For a 3-point Gaussian, 27 derivatives.
	DMASSX(216,3), DMASSE(216,3), DMASSZ(216,3)	Derivatives $\frac{\partial N_i}{\partial \xi}$, $\frac{\partial N_i}{\partial \eta}$, $\frac{\partial N_i}{\partial \zeta}$ for pentahedron singularity elements at the (8 or 27) quadrature points with 2- or 3-point Gaussian quadrature.
	DSHX(216,3), DSHE(216,3), DSHZ(216,3)	Derivatives $\frac{\partial N_i}{\partial \xi}$, $\frac{\partial N_i}{\partial \eta}$, $\frac{\partial N_i}{\partial \zeta}$ for Hex-8 elements at the center of the element for reduced integration
	WT(27,3)	Gaussian weights at the quadrature points for 2- or 3-point Gaussian quadrature in each direction.
PDER.	DNX(216), DNY(216), DNZ(216)	Parent derivatives of all shape functions (i=1,8) at all the quadrature points (8 or 27) for 2- and 3- point Gaussian quadrature (see subprogram GDERV for details)
POINTER	NBW(MAXDIS) IRPNT(MAXDIS)	Bandwidth for each degree of freedom Row pointer array for each degree of freedom
	NDSTK(MAXNOD)	NDSTK(I) gives the lowest node number that is connected to node I. This array is used to compute the IRPNT array in subprogram REND.
RENUM	JOLD(MAXNOD)	Array which relates the old nodal numbers to the new nodal numbers in the renumbered scheme. JOLD(IN) gives the old number of new node IN. This array is complementary to the array JNEW.
	JNEW(MAXNOD)	Array which relates the new node numbers to the old node numbers. JNEW(IO) gives the new nodal number of the old node IO. This array is complementary to the array JOLD.

STIF	NGAUSS	Order of Gaussian integration used to integrate the elements
	<i>IRED</i> IR	Flag used to turn on and off reduced integration EED =1 Reduced integration is ON = 0 Reduced integration is OFF
	DELVOL	Volume of the element being processed
SUMM	STRESS-INTENSITY FACTORS SIFF(NSIF)	Stress-intensity factors calculated by the force method.
	SIFD(NSIF)	Stress-intensity factors calculated by the COD method assuming plane strain.
TYPE	СТҮРЕ	Loading Type: REMOTE-for remote loading CFACE - for crack face pressure loading
ULOAD	UL(NSMK,MAXRHS)	Consistent loads calculated by subprogram LOAD for each of the loading conditions
	ALOAD(MAXNOD,	Magnitudes of tractions at each
	NFREE,MAXRHS)	of the nodes in the model for all loading conditions
	PLOAD(NNODE,	Magnitudes of tractions at each
	***** *** * * * * * * * * * * * * * *	641 1 641 1 441 1

MAJOR PROGRAM VARIABLES NOT IN ANY COMMON BLOCK(S)

NFREE, MAXRHS)

of the nodes of the element being

processed for all loading conditions.

VARIABLE	DEFINITION
ELDIS(NSMK,MAXRIIS)	Nodal displacements of the element being processed.
FOR(NSMK,MAXRHS)	Nodal forces of the element being processed.
FORCE(MAXNOD,3,MAXRHS)	Nodal forces at each node of the model. The first subscript indicates the node number, the second subscript indicates the direction, the third subscript indi- cates the loading condition.

ND(MAXNOD)

Array containing the number of elements connected to a specific node.

SP(MAXNOD,6,MAXRHS)

Average nodal stresses at each node of the model. The first subscript indicates the node number. The second subscript indicates one of the six stresses, $\sigma_x, \sigma_y, \sigma_z, \sigma_{xy}, \sigma_{yz}, \sigma_{zx}$. The third subscript indicates the loading condition. Array containing the number of ele-

ND(MAXNOD)

ments connected to a specific node.

XE(NNODE,3)

Nodal coordinates of the element being processed.

APPENDIX B EXECUTION OF surf3d

This appendix describes the procedures to compile and execute surf3d both interactively and in the batch mode on a CRAY Y-MP computer. To distinguish among commands and responses in this appendix the following code is used. The typewriter font is used to denote a system response. (For example, flyer 25% denotes the 25th command to the Cray Y-MP named flyer.) The italic font is used to denote the user commands and the file names. The Roman font is used in the explanation of various commands and responses.

B-1: Interactive Compilation and Execution of surf3d

cft77 surf3d.f

s.e < dat12 >k out12k

ps

flyer 25%

flyer 27%

flyer 28%

liyel 23%	cjirr surjou.j	and create the object file, surf3d.o
	FF0001 CFT77 VERSION 4.0.3.13	
	(392409) 04/30/91 13:15:30	
	FF0002 COMPILE TIME 14.168 SECONDS	
	FF0006 MAXIMUM FIELD LENGTH 409116	
	DECIMAL WORDS	
	FF0003 4963 SOURCE LINES	
	FF0004 O ERRORS	
	FF0005 CODE: 9683 WORDS, DATA: 2338	
	WORDS	
	(For Convex computers use	Here -cfc flag emulates the
	fc -cfc -72 -o s.e surf3d.f)	Cray FORTRAN compiler and
		the -o s.e names the
		executable s.e. If -o s.e is
		omitted the executable name
		defaults to a.out.
flyer 26%	segldr -f indef -o s.e surf3d.o	link and create the
11,01 10N		executable file, s.e.

The first ampersand directs that the execution to be carried out in the background. The second ampersand directs the errors to the output file, out12.

Determine process status

The core is set to

-f indef flag.

indefinite values with the

Execution with dat12 as data

file and out12 as output file.

Invoke the FORTRAN compiler

PID TTY TIME COMMAND 41299 p001 0:00 ps 41253 p001 0:00 quotamon 41292 p001 0:14 s.e 41247 p001 0:00 csh

flyer 29%

PID TTY TIME COMMAND 41253 p001 0:00 quotamon 41315 p001 0:00 ps 41292 p001 0:30 s.e 41247 p001 0:00 csh Process status

flyer 30%

[1] Done s.e < dat12 >& out12&

Job completed.

B-2: Batch Compilation and Execution of surf3d

The following commands describe how to compile and execute *surf3d* in the batch mode. A batch file, *surfer*, is used to perform the majority of this task. Because of variations in the batch processes in different systems, the users are encouraged to consult their system administrator to determine specifics of their system batch processes.

Here the source and the data files are assumed to be in a temporary (space) directory /tmp/raju.

flyer 25%

cat surfer
#QSUB -me
#QSUB -IT 100
#QSUB -IM 16mw
ja
set verbose
date
cd /tmp/raju
pwd
cf177 surf3d.f
segldr -f indef -o s.e surf3d.o
./s.e < dat12 > out12
date
ja -csft

Lists the script file, surfer.

flyer 26%

qsub -co -o slog surfer

Submits the script surfer to the batch processor with a request to write the log, the errors and all the information to the file slog.

flyer 27% qstat -a

Tells the user the status of batch job.

flyer 28%

cat slog

Lists the log file slog.

The table B-1 lists only the pertinent portions of the log file.

Table B-1: Listing of the file slog

```
Warning: no access to tty; thus no job control in this shell...
 Beginning Batch Execution
  18:41:21
  18:41:21 + exit
 18:41:21 + /usr/spool/nqs/scripts/++02f++++0+++
 date
 Sun Sep 29 18:41:21 EDT 1991
 cd /tmp/raju
 /tmp/raju
 pwd
 /tmp/raju
 cft77 surf3d.f
segldr -f indef -o s.e surf3d.o
./s.e < dat12 > out12
STOP (called by $MAIN )
CP: 29.470s, Wallclock: 29.823s, 24.7.
HWM mem: 7730286, HWM stack: 310502, Stack overflows: 0
ja -csft
Job Accounting - Command Report
```

医医毒素原毒素 有自己者 医克里耳氏 医克里氏 医克里氏 医克里氏 医克里氏 Command Started Elapsed User CPU Sys CPU I/O Wait I/O Wait Name At Seconds Seconds Seconds Sec Lck Sec Unlck SBU's ja 18:41:21 0.0042 0.0004 0.0037 0.0000 0.0000 0.00 date 18:41:21 0.0026 0.0005 0.0020 0.0000 0.0000 0.00 pwd 18:41:21 0.0049 0.0005 0.0043 0.0000 0.0000 0.00 pwd 18:41:21 0.0048 0.0005 0.0042 0.0000 0.0000 0.00 cft77 18:41:21 14.3477 14.1998 0.1284 0.0030 0.0147 7.16 segldr 18:41:35 0.6375 0.5865 0.0503 0.0000 0.0000 0.32 s.s 18:41:36 29.8828 29.4708 0.3972 0.0007 0.0112 14.93 date 18:42:06 0.0026 0.0005 0.0020 0.0000 0.0000 0.00 Job Accounting - Command Flow Report ************************ parent -> child ... ja date pwd pwd cft77 segldr 8.8 date Job Accounting - Summary Report Job Accounting File Name : /tmp/nqs.+++++002f/.jacct5018

Operating System: sn1015 flyer 6.0 woo.19 CRAY Y-MP

User Name (ID) : raju (14006)

Group Name (ID) : ncedu (14000)

Account Name (ID) : raju (14006)

Job Name (ID) : surfer (5018)

Report Starts : 09/29/91 18:41:21

Report Ends: 09/29/91 18:42:06

Elapsed Time: 45 Seconds

User CPU Time: 44.2593 Seconds

System CPU Time : 0.5922 Seconds

I/O Wait Time (Locked): 0.0037 Seconds

I/O Wait Time (Unlocked): 0.0259 Seconds

CPU Time Memory Integral : 231.3400 Mword-seconds

SDS Time Memory Integral : 0.0000 Mword-seconds

I/O Wait Time Memory Integral : 0.0070 Mword-seconds

Data Transferred: 3.1413 MWords

Maximum memory used : 7918592 Words

Logical I/O Requests: 1796

Physical I/O Requests: 755

Number of Commands: 8

Billing Units: 22.4258

logout

18:42:06 + clear

18:42:06 + set lo=logout

18:42:06 + set bye=logout

B-3: Lower to Upper Case Conversions

After the input to surf3d is generated, change all the lower case characters in the file to the upper case characters using the script file called trans. The conversion is recommended because of string inputs. When alphanumeric strings with mixed upper and lower case characters are used, comparisons cause problems. To avoid these difficulties all upper case characters are recommended in the input files. The conversions file trans is provided with this manual. For example, to change all the characters in an input file called tinp to upper case characters, type

trans tinp

The system response will be

remove tinp.n?

Type y to remove temporary files. All the lower case characters in the file *tinp* are now changed to upper case characters. If the original file does not contain any lower case characters then the above command has no effect on the file. Therefore, the use of *trans* is recommended on the input file before the file is submitted for execution with *surf3d*.

The script file trans contains the following statements.

tr a-z A-Z <\$1> \$1.n

cp \$1.n \$1

rm \$1.n

Figure 1: Crack Configurations.

(Elliptic crack: Semi-major axis= c ; Semi-minor axis= a)

(a) Surface crack in a plate

(b) Region modeled for surface crack plate problems.

(c) Region modeled for surface crack in a plate with a circular hole problems.

(d) Semi-elliptic surface crack and the crack plane.

Figure 2: Surface crack in a finite plate.

Figure 3: Remote loading applied to the models.

Figure 4 : 3D finite element model for a surface crack with a/c≖1 and a/l≖0.8.

(NLAYER=6, NSINGU=8)

44

Hex 8	j	k	l	i	n	p	q	m
)F				<u> </u>		
Hex 8	k	ı	1	J	P	q	m	n
		or						
Hex 8	1	1	J	k	q	m	n	p

Definitions for the six faces of the Hex 8 element			
FAC	CE	IFACE	
i-j-m-n	(ξ=0)	1	
l-q-p-k	(ξ=1)	2	
k-p-n-j	(η =0)	3	
l-m-q-l	(η=1)	4	
i-l-k-j	(ζ=0)	5	
p-q-m-n	(ζ=1)	6	

Figure. 5: Definition of Hex-8 and singlularity elements.

Figure. 6 : iconsistently defined elements.

(Zero or negative volumes will result for these elements.)

Figure 7: Definitions and various input parameters for the force method

Forces Used in the Force Method

$$\begin{aligned} & \text{FCENT}(\textbf{i},\textbf{1},\textbf{1},\textbf{IR}) = \begin{array}{l} \textbf{F}_{k_1} & \text{FTIP}(\textbf{i},\textbf{1},\textbf{IR}) = \textbf{F}_{\textbf{j}} \\ & \text{FCENT}(\textbf{i},\textbf{1},\textbf{2},\textbf{IR}) = \begin{array}{l} \textbf{F}_{k_2} & \text{FTIP}(\textbf{i},\textbf{2},\textbf{IR}) = \textbf{F}_{\textbf{b}} \\ & \text{FCENT}(\textbf{i},\textbf{2},\textbf{1},\textbf{IR}) = \begin{array}{l} \textbf{F}_{\textbf{i}_1} \\ & \textbf{FCENT}(\textbf{i},\textbf{2},\textbf{2},\textbf{IR}) = \begin{array}{l} \textbf{F}_{\textbf{i}_2} \\ & \textbf{I} = \text{Layer number} \\ & \textbf{IR} = \text{Current right} \\ & \text{hand side} \\ & \text{FCENT}(\textbf{i},\textbf{10},\textbf{1},\textbf{IR}) = \begin{array}{l} \textbf{F}_{\textbf{h}_1} \\ & \textbf{FCENT}(\textbf{i},\textbf{10},\textbf{2},\textbf{IR}) = \textbf{F}_{\textbf{h}_2} \\ & \textbf{FCENT}(\textbf{i},\textbf{10},\textbf{2},\textbf{IR}) = \textbf{F}_{\textbf{h}_2} \end{aligned}$$

COD Nodes

Figure 8: Forces and displacements in the ith layer

Figure 9: Example of a base model with 151 nodes and 128 elements (details of data input for the first layer and only details near the crack front are shown)

Figure 10: Example of a model with 4 layers and 8-singularity elements (151 nodes and 128 elements in the base model)

NLAYER= 4 NSIF=NLAYER+1=5 MAXKE= 5 NSINGU=8

KELEM(NSIF,MAXKE) = 1 9 17 25 33 129 137 145 153 161 357 365 373 381 389 485 493 501 509 517

MNODE(NSIF, 2*MAXKE) = 2 11 20 29 38 153 162 171 180 189

> 153 162 171 180 189 304 313 322 331 340

304 313 322 331 340 455 464 473 482 491

455 464 473 482 491 606 615 624 633 642

MTIP (NSIF,2) = 1 152 152 303 303 454 454 605

NTI P(NSIF,NSINGU) = 1 2 3 4 5 6 7 8 129 130 131 132 133 134 135 136 357 358 359 360 361 362 363 364 485 486 487 488 489 490 491 492

ICOD(NLAYER+1,MAXKE) = 10 19 28 37 46 161 170 179 188 197 312 321 330 339 348 463 472 481 490 499 614 623 632 641 650

Figure 10: (Concluded.)

1651 1651

1664 1664

203 204 205 206	0.0000 0.0000 0.0000 0.0000	1.0000 1.0000 1.0000 1.0000	0.0000 0.0000 0.0000 0.0000		
207	0.0000	1.0000	0.0000		
•••					
0147	0 0000	1 0000	0 0000		
2147 2161	0.0000 0.0000	1.0000 1.0000	0.0000 0.0000		
0 203	0.0000 0.0000	0.0000 1.0000	0.0000		
204	0.0000	1.0000	0.0000 0.0000		
205	0.0000	1.0000	0.0000		
• • •					
2105	0.0000	-0.5000	0.0000		
2119	0.0000	-1.0000	0.0000		
2133 2147	0.0000 0.0000	-1.0000 -1.0000	0.0000 0.0000		
2161 0	0.0000 0.0000	-1.0000	0.0000		
203	0.0000	0.0000 0.6000	0.0000 0.0000		
204	0.0000	0.6800	0.0000		
• • •					
2091	0.0000	-0.3600	0.0000		
2105 2119	0.0000	-1.0000	0.0000		
2133	0.0000 0.0000	0.4400 0.1200	0.0000 0.0000		
2147 2161	0.0000 0.0000	-0.3600 -1.0000	0.0000 0.0000		
0	0.0000	0.0000	0.0000		
0 1	0 0	0 0.0	0000E+00	0.00000E+00	0.00000E+00
1	2 7	3	4	5	
6 11	12	8 13	9 14	10 15	
16	17	18	19	20	
• • •					
1310	1311	1312	1313	1314	
1315 1320	1316	1317	1318	1319	
1325	1321	1322	1323	1324	
1 1					
0.0000					
8 8 10	19	28	37	46	
219	228	237	246	255	
428 637	437 646	446 655	455 664	464 673	
•	- · -			-,-	

846 1055 1264 1473 1682 1 628 1046	855 1064 1273 1482 1691 210 628 1255	864 1073 1282 1491 1700 210 837 1255	873 1082 1291 1500 1709 419 837 1464	882 1091 1300 1509 1718 419 1046 1464
1673	2	3	4	5
1	2 7	8	183	184
6 185	186	187	188	189
190	365	366	367	368
369	370	371	372	547
548	549	550	551	552
553	554	729	730	731
732	733	734	735	736
911	912	913	914	915 1094
916	917	918 1097	1093 1098	1094
1095	1096	1097	1038	1278
1100	1275 1280	1281	1282	
1279 1	9	17	25	33
183	191	199	207	215
365	373	381	389	397
547	555	563	571	579
729	737	745	753	761
911	919	927	935	943
1093	1101	1109	1117	1125 1307
1275	1283	1291	1299 29	38
2	11	20 229	238	247
211	220 220	229	238	247
211 420	429	438	447	456
420	429	438	447	456
629	638	647	656	665
629	638	647	656	665
838	847	856	865	874
838	847	856	865	874
1047	1056	1065	1074 1074	1083 1083
1047	1056	1065 127 4	1283	1292
1256	1265 1265	1274	1283	1292
1256	1474	1483	1492	1501
1465 1465	1474	1483	1492	1501
1674	1683	1692	1701	1710
125.0000	25.0000	0.2000	5.0000	1.0000

Table 2: 0	utput file out12 for	Example 1.	
SURFACE C	**************************************	ON AND RENDING A/C	1 0 4/7 0 0
	DESCRIPTION OF	THE MODEL	
	OUTPUT OPTION YOUNG S MODULUS POISSION S RATIO NUMBER OF NODES IN 1 NUMBER OF ELEMENTS I	= = 2161	0.300 0.300
NODE	NODAL X-COORD	COORDINATES Y-COORD	Z-COORD
1 2 3 4 	1.00000 1.01320 1.01220 1.00930	0.00000 0.00000 0.00520 0.00930	0.00000 0.00000 0.00000 0.00000
	IERR FROM SYMBN=	0	
	LOADING NUMBER	1	
E Q U SUM O SUM O	JILIBRIUM C F THE X FORCE= F THE Y FORCE= F THE Z FORCE=	**************************************	
Y-COMPONENTS: Y-COMPONENTS: Z-COMPONENTS:	ED LOAD AND THE SURFA FORCE= 0.0000 FORCE= 0.1250 FORCE= 0.0000	00E+00 AREA= 00E+03 AREA= 00E+00 AREA=	0.000000E+00 0.125000E+03 0.000000E+00
NOMIN/ NOMIN/	NOMINAL AL STRESS IN THE X-D AL STRESS IN THE Y-D AL STRESS IN THE Z-D	STRESSES IRECTION = 0.	0000000E+00

FROM THE FORCE METHOD

	110	Off The Follow	
STATION	PHI	ABSOLUTE-K	<pre>K/(S*SQRT(PI*A/Q))</pre>
1	0.000	0.1297875E+01	0.1149418E+01
2	11.250	0.1261908E+01	0.1117566E+01
3	22.500	0.1215839E+01	0.1076766E+01
4	33.750	0.1188309E+01	0.1052385E+01
5	45.000	0.1171463E+01	0.1037467E+01
6	56.250	0.1161649E+01	0.1028774E+01
7	67.500	0.1156257E+01	0.1024000E+01
8	78.750	0.1153536E+01	0.1021590E+01
9	90.000	0.1152694E+01	0.1020844E+01
	FROM THE CR	ACK OPENING DISPLACE	MENT METHOD
1	0.000	0.1335318E+01	0.1182579E+01
2	11.250	0.1243665E+01	0.1101410E+01
3	22.500	0.1202907E+01	0.1065313E+01
4	33.750	0.1176129E+01	0.1041599E+01
5	45.000	0.1159989E+01	0.1027305E+01
6	56.250	0.1150607E+01	0.1018996E+01
7	67.500	0.1145500E+01	0.1014473E+01
8	78.750	0.1142883E+01	0.1012155E+01
9	90.000	0.1142066E+01	0.1011432E+01
	*****	****************	**************************************

*******	*****	*****	***
STATION	PHI	K/(S*SQRT(F	COD METHOD
1	0.000		· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	0.000	0.11494E+01	0.11826E+01
2	11.250	0.11176E+01	0.11014E+01
3	22.500	0.10768E+01	0.10653E+01
4	33.750	0.10524E+01	0.10416E+01
5	45.000	0.10375E+01	0.10273E+01
6	56.250	0.10288E+01	0.10190E+01
7	67.500	0.10240E+01	0.10145E+01
8	78.750	0.10216E+01	0.10122E+01
9	90.000	0.10208E+01	0.10114E+01
**************************************	**************************************		
APPLIED LOAD X-COMPONENTS: FORC Y-COMPONENTS: FORC Z-COMPONENTS: FORC	E= 0.0000 E= 0.9399 E= 0.0000	76E-04 AKEA= 00E+00 AREA= 	0.125000E+03 0.000000E+00
NOMINAL STRES NOMINAL STRES NOMINAL STRES NOMINAL STRES	M I N A L S IN THE X- DI S IN THE Y- DI S IN THE Z- DI	S T R E S S E S [RECTION = 0.0] [RECTION = 0.0] [RECTION = 0.0]	000000E+00 519827E-06 000000E+00
******	******	**************************************	****

FROM THE FORCE METHOD

STATION	l PHI	ABSO	LUTE-K	K/(S*SQRT(PI*A/Q))
1	0.000	0.1160	053E+01	0.1027362E+01
2	11.250	0.1097	790E+01	0.9722205E+00
3	22.500	0.1012	613E+01	0.8967860E+00
4	33.750	0.9453	700E+00	0.8372347E+00
5	45.000	0.8916	253E+00	0.7896376E+00
6	56.250	0.8502	292E+00	0.7529765E+00
7	67.500	0.8206	783E+00	0.7268058E+00
8	78.750	0.8028	458E+00	0.7110130E+00
9	90.000	0.7968	713E+00	0.7057219E+00
	FROM THE	CRACK OPENIN	G DISPLACEM	ENT METHOD
1	0.000	0.1208	218E+01	0.1070017E+01
2	11.250	0.1081	892E+01	0.9581404E+00
3	22.500	0.1001	718E+01	0.8871372E+00
4	33.750	0.9348	640E+00	0.8279304E+00
5	45.000	0.8816	859E+00	0.7808351E+00
6	56.250	0.8405	767E+00	0.7444282E+00
7	67.500	0.8112	083E+00	0.7184190E+00
8	78.750	0.7934	419E+00	0.7026848E+00
9	90.000	0.7874	846E+00	0.6974089E+00
	NUMBER OF SING	ULARITY ELEM	ENTS IN THE	***************** MODEL= 64 *******
	*****	*****		********
	STATION *******	PHI ******	FORCE-MI	*SQRT(PI A/Q)) ETHOD
	1	0.000	0.10274	E+01 0.10700E+01
	2	11.250	0.97222	E+00 0.95814E+00

	3	22.500	0.8967	79E+00	0.88714E+00			
	4	33.750	0.8372	23E+00	0.82793E+00			
	5	45.000	0.7896	64E+00	0.78084E+00			
	6	56.250	0.7529	98E+00	0.74443E+00			
	7	67.500	0.7268	31E+00	0.71842E+00			
	8	78.750	0.7110)1E+00	0.70268E+00			
	9	90.000	0.7057	⁷ 2E+00	0.69741E+00			
*****	**************************************							
*****	************ EQUILIB			*****	*****			
	SUM OF THE X I SUM OF THE Y I SUM OF THE Z I	FORCE=	0.1084288 -0.3993250	E-10				

X-COMPONI Y-COMPONI Z-COMPONI	APPLIED LOAD A ENTS: FORCE ENTS: FORCE ENTS: FORCE	= 0.000 = 0.251	000E+00	AREA= AREA=	0.000000E+00 0.125000E+03 0.000000E+00			
*****	*****	*****	*****	*****	*****			
	N O NOMINAL STRESS NOMINAL STRESS NOMINAL STRESS	M I N A L IN THE X- IN THE Y- IN THE Z-	DIRECTION =	0.0	0000000E+00 2011872E-06 0000000E+00			
****	********				*****			
****	STRESS INTENSITY FACTORS ARE AS FOLLOWS							
		FROM THE FO	ORCE METHOD					
STATION	PHI	ABS	OLUTE-K	K/(S*S	GQRT(PI*A/Q))			
1	0.000	0.243	0848E-02	0.21	52797E-02			
2	11.250	0.236	29 4 7E-02	0.20	92664E-02			
3	22.500	0.227	6044E-02	0.20	15700E-02			
4	33.750	0.222	4167E-02	0.19	69758E-02			

5	45.000	0.21925	57E-02	0.194176	3E-02
6	56.250	0.21742	76E-02	0.192557	4E-02
7	67.500	0.21643	44E-02	0.191677	/8E-02
8	78.750	0.21593	91E-02	0.191239)1E-02
9	90.000	0.21578	72E-02	0.191104	6E-02
	FROM THE CR	ACK OPENING	DISPLACEMENT	METHOD	
1	0.000	0.25014	64E-02	0.221533	86E-02
2	11.250	0.23289	75E-02	0.206257	'8E-02
3	22.500	0.22519	80E-02	0.199438	39E-02
4	33.750	0.22014	86E-02	0.194967	1E-02
5	45.000	0.21711	61E-02	0.192281	5E-02
6	56.250	0.21536	51E-02	0.190730	98E-02
7	67.500	0.21442	14E-02	0.189895	0E-02
8	78.750	0.21394	33E-02	0.189471	6E-02
9	90.000	0.21379	52E-02	0.189340	4E-02
	**************************************	ARITY ELEME	NTS IN THE MOD	EL= 64	
	*****	*****			
	STATION *********	PHI *****	K/(S*SQF FORCE-METHO ******)D	COD METHOD
	1	0.000	0.21528E-02	<u> </u>	0.22153E-02
	2 1	1.250	0.20927E-02		0.20626E-02
	3 2	2.500	0.20157E-02	2	0.19944E-02
	4 3	3.750	0.19698E-02	?	0.19497E-02
	5 4	5.000	0.19418E-02	?	0.19228E-02
	6 5	6.250	0.19256E-02	?	0.19073E-02
	7 6	7.500	0.19168E-02	2	0.18989E-02
	8 7	8.750	0.19124E-02	2	0.18947E-02

ALL ELEMENTS SATISFY EQUILIBRIUM

STOP (called by \$MAIN)
CP: 29.608s, Wallclock: 84.966s, 8.7% of 4-CPU Machine
HWM mem: 7733236, HWM stack: 310499, Stack overflows: 0

	SURFAC	**************************************	TENSION AND RENDING	A/C-1 0 A/T-0 2
		DESCRIPTION O	F THE MODEL	
		OUTPUT OPTION YOUNG S MODULUS POISSION S RATIO NUMBER OF NODES I	= SH = 0 N THE MODEL = 21 S IN THE MODEL= 16	ORT .300000E+08 0.300 61
NODE		NOD, X-COORD	AL COORDINATES Y-COORD	Z-COOR
	1 2 3 	1.00000 1.01320 1.01220	0.00000 0.00000 0.00520	
****	SUM SUM	U I L I B R I U M OF THE X FORCE= OF THE Y FORCE= OF THE Z FORCE=	0.1052262E-09 -0.2110426F-08	******

****		*****	*****
NOMINAL STRES	M I N A L SS IN THE X- DIF SS IN THE Y- DIF SS IN THE Z- DIF	RECTION =	0.0000000E+00 0.1000000E+01 0.0000000E+00
*****	****	*************	**************************************
****	****		
	****	*****	*************************************
STATION	PHI	FROM VCCT	FROM VCCT P-STRESS
****	*****	k*************************************	
1	0.000	0.11774E+01	0.11232E+01
2	11.250	0.11215E+01	0.10699E+01
3	22.500	0.10819E+01	
4	33.750	0.10576E+01	
5	45.000	0.10428E+01	0.99475E+00
6	56.250	0.10341E+0	0.98650E+00
7	67.500	0.10294E+0	1 0.98196E+00
8	78.750	0.10269E+0	1 0.97964E+00
9	90.000	0.10262E+0	0.97892E+00

****	LOADING NUMBER	2	· · · · · · · · · · · · · · · · · · ·
********	*****	****	*****
	*****	*****	*****
		0.2532065E-0 -0.6705818E-0 -0.9852940E-0	
SUM OF TH	E Z FORCE=	-0.9852940E-0	
	FORCE 0.00	0079E-04 Al	DNENTS REA= 0.000000E+00 REA= 0.125000E+03 REA= 0.000000E+00

*****	*****	*****	****	Andrea a service
	NOMINAL ST NOMINAL ST	NOMINAL RESS IN THE X RESS IN THE V		*************** E S 0.0000000E+00 0.7519827E-06 0.0000000E+00
*1	*****	****		
**	NUMBER OF S	INGULARITY EL		************************************
**	*****	****	***	******
ST	ATION	PHI	K/(S*SQF FROM VCCT	RT(PI A/Q))
**	*****	*****	P-STRAIN	P-STRESS
	•		***************	*******
	1 2	0.000	0.10588E+01	0.10100E+0
	3	11.250	0.97573E+00	0.93078E+0
	4	22.500 33.750	0.90118E+00	0.85967E+0
	5	45.000	0.84131E+00	0.80256E+00
	6	56.250	0.79357E+00	0.75701E+00
	7		0.75670E+00	0.72185E+00
	8	67.500	0.73037E+00	0.69673E+00
	9	78.750	0.71446E+00	0.68155E+00
	9	90.000	0.70912E+00	0.67646E+00
******	*******	*****	******	*****
****	LU/ ******	ADING NUMBER *******	3 *********	
****	******	halled a second	**********	******
MII2	OF TUE V	COOC OF CF	**************************************	******
3UM	OF THE Y F OF THE Z F	ORCE= _	0.1055867E-10 0.2489742E-10 0.4182784E-10	
APPL X-COMPONENTS:	IED LOAD AI	ND THE SURFACE	E AREA COMPONENTS	
Y-COMPONENTS:			JE+UU AREA=	0.000000F±00
Z-COMPONENTS:	FORCE.	0.251484	IE-04 AREA= DE+00 AREA=	0.125000E+03
			- NUTVE	0.000000E+00

******	******	***********	• • • • •
NOMINAL	NOMINAL STRESS IN THE X- [STRESS IN THE Y- [STRESS IN THE Z- [STRESSES DIRECTION = 0. DIRECTION = 0.	0000000E+00 2011872E-06 0000000E+00
******* NUMBEK ()	F SINGULARITY ELEM	**************************************	0 ******
STATION	PHI	*************** K/(S*SQRT(PI FROM VCCT P-STRAIN ****	A/Q)) FROM VCCT
1	0.000	0.22053E-02	0.21038E-02
2	11.250	0.21001E-02	0.20033E-02
3	22.500	0.20253E-02	0.19320E-02
4	33.750	0.19795E-02	0.18883E-02
5	45.000	0.19517E-02	0.18618E-02
6	56.250	0.19356E-02	0.18465E-02
7	67.500	0.19269E-02	0.18382E-02
8	78.750	0.19225E-02	0.18339E-02
9	90.000	0.19211E-02	0.18327E-02

ALL ELEMENTS SATISFY EQUILIBRIUM

STOP (called by \$MAIN)
CP: 30.631s, Wallclock: 37.531s, 20.4% of 4-CPU Machine
HWM mem: 7730259, HWM stack: 310502, Stack overflows: 0

Table 4: Input file dex3a for Example 3.						
SURFACE (SHORT 0.30000) 2441 1872	CRACK IN A PLATE E+08 0.30000E+00	A/C=0.2 A/T=0.2				
1 2 3 4	5.000000000 5.002656718 5.002454282 5.001868300	0.00000000 0.000000000 0.00520000 0.009300000	0.00000000 0.00000000 0.00000000 0.000000			

```
-5.000000000
                                   15.000000000
             25.000000000
2437
                                    25.000000000
                                                          -5.000000000
             25,000000000
2438
                                                          -5.000000000
                                    45.000000000
             25.000000000
2439
                                                          -5.00000000
                                    85.000000000
             25.000000000
2440
                                                          -5.000000000
                                   125.000000000
             25.000000000
2441
                                             212
                                                      1
                                          3
                                     1
                             210
                    2
                       211
              1
      210
   1
                                           4
                                              213
                                                      1
                                     1
                    3
                       212
                             210
   2
      210
              1
                                              214
                                                      1
                                           5
                             210
                                     1
                       213
                    4
      210
              1
   3
                                              215
                                                      1
                                           6
                                     1
                       214
                             210
                    5
       210
               1
                                           7
                                              216
                                                      1
                             210
                                     1
                       215
                    6
       210
               1
   5
                                                      1
                                              217
                                     1
                             210
                    7
                       216
               1
       210
   6
1867 2422 2421 2435 2436 2310 2309 2323 2324
                                                      0
1868 2423 2422 2436 2437 2311 2310 2324 2325
                                                      0
1869 2424 2423 2437 2438 2312 2311 2325 2326
                                                      0
1870 2425 2424 2438 2439 2313 2312 2326 2327
                                                      0
1871 2426 2425 2439 2440 2314 2313 2327 2328
                                                      0
1872 2427 2426 2440 2441 2315 2314 2328 2329
                                                      0
                     1
                          0
               0
         1
                          0
                     1
         2
               0
                          0
                     1
               0
        11
         . . .
                          0
                     0
      1878
               1
                          0
                     0
      1879
               1
                          0
                     0
      1880
               1
                          0
      1881
               1
                     0
                     0
                          1
               0
      2441
                     0
                           0
               0
          0
          1
REMOTE
                                4
                           1
                     1
        177
             177
                                4
                     1
                           1
             178
        178
                           1
                     1
             179
        179
        . . .
        . . .
                                4
                     1
                           1
       1859 1859
                                 4
                           1
                     1
       1872 1872
                                 0
                           0
                     0
                0
          0
                                      0.0000
                           1.0000
                0.0000
        203
                                      0.0000
                0.0000
                           1.0000
        204
                                      0.0000
                           1.0000
        205
                0.0000
                                      0.0000
                           1.0000
                0.0000
        206
        . . .
        . . .
                                       0.0000
                           1.0000
                0.0000
       2399
                                       0.0000
                0.0000
                           1.0000
       2413
                                       0.0000
                            1.0000
                0.0000
       2427
                                       0.0000
                            1.0000
                0.0000
       2441
```

0	0.0000	0.0000	0.0000 00E+00	0.00000E+00	0.00000E+00
1 6 11 16	2 7 12 17	3 8 13 18	4 9 14 19	5 10 15 20	
1590 1595 1600 1605	1591 1596 1601	1592 1597 1602	1593 1598 1603	1594 1599 1604	
0.0000 8 8 10 219 428 637 846 1055 1264 1473 1682 1	19 228 437 646 855 1064 1273 1482 1691 210 628	28 237 446 655 864 1073 1282 1491 1700 210 837	37 246 455 664 873 1082 1291 1500 1709 419 837 1464	46 255 464 673 882 1091 1300 1509 1718 419 1046 1464	
1046 1673 1 6 185 190 369 548 553 732 911 916 1095 1100 1279 1 183 365 547 729 911 1093	1255 2 7 186 365 370 549 554 733 912 917 1096 1275 1280 9 191 373 555 737 919 1101	1255 3 8 187 366 371 550 729 734 913 918 1097 1276 1281 17 199 381 563 745 927 1109	4 183 188 367 372 551 730 735 914 1093 1098 1277 1282 25 207 389 571 753 935 1117	1404 5 184 189 368 547 552 731 736 915 1094 1099 1278 33 215 397 579 761 943 1125 1307	
1275 2 211 211 420	1283 11 220 220 429	1291 20 229 229 438	1299 29 238 238 447	38 247 247 456	

420 629 629 838 838 1047 1047 1256 1256 1465 1465 1674 125.0000	429 638 638 847 847 1056 1056 1265 1265 1474 1683 25.0000	438 647 647 856 856 1065 1274 1274 1483 1483 1692 0.2000	1074 1074 1283 1283 1492	456 665 665 874 874 1083 1083 1292 1292 1501 1501 1710 0.2000			
***	**************************************	*****	*********	**************************************	******		
** **		DESCRIPT	ION OF THE	 MODFI			
	YO Po Nui	TPUT OPTIO UNG S MODU ISSION S R MBER OF NO	N LUS ATIO DES IN THF	=	2441	+08 300	
NODI	.	Y .CO	NODAL COC				
	- ·	X-CO()KU ·	Y-C001	RD	Z-COORD	
	1 2 3 4	5.0000 5.0026 5.0024 5.0018	66 5	0.00000 0.00000 0.00520 0.00930) 	0.00000 0.00000 0.00000 0.00000	
	IER	R FROM SYM	BN= 0				
*****				*****	*****		
		IOANTAC	MIMDED	•			
######################################							
	SUM OF TH	IBRIU EXFORCE= EYFORCE=	JM CHE • 0. • -0.	C K S 4193217E-09 3798505E-08 4241372E-09) B	*****	

			•
X-COMPON Y-COMPON Z-COMPON	ENTS: FORCE	AND THE SURFACE AREA = 0.000000E+00 = 0.124996E+03 = 0.000000E+00	AREA= 0.000000E+00 AREA= 0.124996E+02
*****	*****	******	*******
	NOMINAL STRESS NOMINAL STRESS	M I N A L S T R E IN THE X- DIRECTION IN THE Y- DIRECTION IN THE Z- DIRECTION	S S E S = 0.0000000E+00
*****	******	***************	***
	STRESS IN	TENSITY FACTORS ARE #	IC FOLLOWS
0747404		FROM THE FORCE METHO	DD .
STATION	PHI	ABSOLUTE-K	K/(S*SQRT(PI*A/Q))
1	0.000	0.1042638E+01	0.6177579E+00
2	11.250	0.1097014E+01	0.6499757E+00
3	22.500	0.1265662E+01	0.7498990E+00
4	33.750	0.1461145E+01	0.8657214E+00
5	45.000	0.1629536E+01	0.9654924E+00
6	56.250	0.1761401E+01	0.1043622E+01
7	67.500	0.1856268E+01	0.1099831E+01
8	78.750	0.1913422E+01	0.1133694E+01
9	90.000	0.1932516E+01	0.1145007E+01
	FROM THE CR	ACK OPENING DISPLACE	MENT METHOD
1	0.000	0.8606799E+00	0.5099489E+00
2	11.250	0.1028380E+01	0.6093103E+00
3	22.500	0.1265637E+01	0.7498842E+00
4	33.750	0.1475477E+01	0.8742133E+00
5	45.000	0.1642917E+01	0.9734206E+00
6	56.250	0.1769638E+01	0.1048502E+01
7	67.500	0.1859042E+01	0.1101474E+01

8	78.750	0.1912	002E+01	0.1132852E+01			
9	90.000	0.1929	571E+01	0.11 43262E+0 1			
,				*****			
	NUMBER OF SINGULARITY ELEMENTS IN THE MODEL = 64 ************************************						
	****	*****	****	*****			
	STATION *******	PHI	K/(S*SQRT FORCE-METHOD	(PI A/Q))			
	1	0.000	0.61776E+00	0.50995E+00			
	2	11.250	0.64998E+00	0.60931E+00			
	3	22.500	0.74990E+00	0.74988E+00			
	4	33.750	0.86572E+00	0.87421E+00			
	5	45.000	0.96549E+00	0.97342E+00			
	6	56.250	0.10436E+01	0.10485E+01			
	7	67.500	0.10998E+01	0.11015E+01			
	8	78.750	0.11337E+01	0.11329E+01			
	9	90.000	0.11450E+01	0.11433E+01			
	ALL ELEM	ENTS SATISFY	EQUILIBRIUM				
CP: 38.705s, HWM mem: 7733	STOP (called by \$MAIN) CP: 38.705s, Wallclock: 92.835s, 10.4% of 4-CPU Machine HWM mem: 7733236, HWM stack: 310499, Stack overflows: 0						
Table	6: Output file	• OUTC22 TOR	Example 3(b).				

	DES	CRIPTION OF	THE MODEL				
	POISSIO NUMBER	MODULUS N S RATIO OF NODES IN 1	= SI = 0 = THE MODEL = 20 IN THE MODEL= 10	0.300000E+08 0.300 441			

NODE	X-C0		COORDINATES Y-CO	OORD	Z-COORD
1 2 3 4	5.000 5.002 5.002 5.001	266 245	0.000 0.000 0.000	000 520	0.00000 0.00000 0.00000 0.00000
• •	IERR FROM S'	YMBN=	0		
		NG NUMBE	R 1		*****
	************** E Q U I L I B R SUM OF THE X FOR SUM OF THE Y FOR SUM OF THE Z FOR	IUM CE= CE=	**************************************	!E-11)E-11	******
X-COMPONE Y-COMPONE Z-COMPONE	INTS: FORCE=	0.00 0.38	10000E+00 39798E+01	V D P V =	0.175788E-10 0.389798E+01
*****		INAL INTHEX INTHEY	STRE: DIRECTION = DIRECTION =	\$	**************************************
	**************************************	FNSITY F	ACTORS ARE A	S FOLLO	iws .
		FROM THE	FORCE METHO	D	
STATION	PHI	A	BSOLUTE-K	K/	'(S*SQRT(PI*A/Q))
1	0.000	0.1	038225E+01		0.6151432E+00
2	11.250	0.1	.095227E+01		0.6489169E+00
3	22.500	0.1	265707E+01		0.7499253E+00
4	33.750	0.1	1462723E+01		0.8666567E+00
5	45.000	0.3	1632234E+01		0.9670910E+00

6	56.250	0.17	764889E+01	0.1045689E+01			
7	67.500	0.18	860285E+01	0.1102210E+01			
8	78.750	0.19	917742E+01	0.1136254E+01			
9	90.000	0.19	936936E+01	0.1147626E+01			
	FROM THE CRACK OPENING DISPLACEMENT METHOD						
1	0.000		65032E+00	0.5015492E+00			
2	11.250	0.10	21579E+01	0.6052811E+00			
3	22.500	0.12	63493E+01	0.7486140E+00			
4	33.750	0.14	74976E+01	0.8739167E+00			
5	45.000	0.164	43138E+01	0.9735514E+00			
6	56.250	0.177	70183E+01	0.1048826E+01			
7	67.500	0.185	59740E+01	0.1101887E+01			
8	78.750	0.191	2768E+01	0.1133306E+01			
9	90.000	0.193	0357E+01	0.1143727E+01			
	MOMREK OF 21NG	ULARITY FIF	MENTS IN THE MA	**************************************			

	STATION ********	PHI	K/(S*SC FORCE-METH	ORT(PI A/O))			
	1	0.000	0.61514E+0				
	2	11.250		0.001001400			
	3	22.500	0.64892E+0	-			
	4	33.750	0.74993E+0	- 0.74001[400			
	_	45.000	0.86666E+0	- 0.0/3326+00			
	_	56.250	0.96709E+0	0.3/335E+00			
	_	67.500	0.10457E+0	0.104002401			
		78.750	0.11022E+01	0111015[10]			
	_	90.000	0.11363E+01	***************************************			
	•	<i>5</i> 0.000	0.11476E+01	0.11437E+01			

		Evample 4(a).		
Table 7: Ou	itput file outr28 for	Example 4(a).		
******* SURFACE *****	KXXXXXXX	************ A/C=0.2 ,A/T ******	_n a	
	DESCRIPTION OF	THE MODEL		
	OUTPUT OPTION YOUNG S MODULUS POISSION S RATIO NUMBER OF NODES IN NUMBER OF ELEMENTS	THE MODEL =	2464	
	NODA	L COORDINATES Y-COO		Z-COORD
NODE	X-COORD			
1 2 3 4 5	5.00000 5.00266 5.00245 5.00187 5.00102	0.0000 0.0000 0.005 0.0093 0.0123	00 10 30	0.00000 0.00000 0.00000 0.00000 0.00000
•••				
•••	IERR FROM SYMBN≖	0		
****	****	******	******	****
	LOADING NUM	*****	*******	*****
	*****	*****	*****	****
E	Q U I L I B R I U M SUM OF THE X FORCE= SUM OF THE Y FORCE= SUM OF THE Z FORCE=	C H E C K S 0.8482506 -0.5669275 -0.1710956	E-09 E-08	

Z-COMPOI	NENTS: NENTS:	FORCE=	0.6	RFACE AREA 00000E+00 24962E+02 00000E+00	AREA= AREA= AREA=	0.000000E+00 0.624962E+02 0.000000E+00
****	*****	****	*****	*****	****	*****
*	NOMINAL S NOMINAL S NOMINAL S	STRESS IN STRESS IN STRESS IN	THE X- THE Y- THE Z-	DIRECTION DIRECTION DIRECTION	2 2 E S	0.0000000E+00 0.1000000E+01 0.0000000E+00
****	*****	*****	*****	****		*****
****	STRE	SS INTENS	ITY FAC	TORS ARE A	S FOLLOW	'*************************************
		~~~~~	*****	*****	*****	S ******
		FRO	M THE F	ORCE METHO	D	
STATION 1	PHI			OLUTE-K		S*SQRT(PI*A/Q))
_	0.00	00	0.194	2565E+01	0.	1150961E+01
2	11.25	0	0.194	5317E+01		1152591E+01
3	22.50	0	0.2148	3890E+01		1273207E+01
4 ·	33.75	0	0.2397	951E+01		1420775E+01
5	45.000	)	0.2637	838E+01		1562907E+01
6	56.250	)	0.2815	154E+01		667966E+01
7	67.500		0.29346	586E+01		738788E+01
8	78.750	I	0.29800	24E+01		765651E+01
9	90.000	(	0.29904	30E+01		771816E+01
	FROM TH	IE CRACK (	PENING	DISPLACEME	NT METHO	חר
1	0.000		. 166743			79444E+00
2	11.250	0	. 183767	OE+01		88811E+01
3	22.500	0	.217317	9E+01		87598E+01
4	33.750	0.	245003	9E+01		51637E+01
5	45.000	0.	262502	3E+01		55314E+01
6	56.250	0.	2841981	lE+01		3861E+01
7	67.500	0.	2935053	E+01		9006E+01

	8 78.750	0.296	0373E+01	0.1754007E+01		
	9 90.000	0.296	3058E+01	0.1755598E+01		
	**************************************		MENTS IN THE MODE	************** L= 64 ******		
	STATION	РНІ	****************** K/( S*SQRT FORCE-METHOD	CÓD METHOD		
	1	0.000	0.11510E+01	0.98794E+00		
	2	11.250	0.11526E+01	0.10888E+01		
	3	22.500	0.12732E+01	0.12876E+01		
	4	33.750	0.14208E+01	0.14516E+01		
	5	45.000	0.15629E+01	0.15553E+01		
	6	56.250	0.16680E+01	0.16839E+01		
	7	67.500	0.17388E+01	0.17390E+01		
	8	78.750	0.17657E+01	0.17540E+01		
	9	90.000	0.17718E+01	0.17556E+01		
	ALL EL	EMENTS SATISFY	EQUILIBRIUM			
STOP (cal CP: 45.682 HWM mem: 7	STOP (called by \$MAIN) CP: 45.682s, Wallclock: 85.788s, 13.3% of 4-CPU Machine HWM mem: 7733236, HWM stack: 310499, Stack overflows: 0					
Ta	ble 8: Output fi	le outc28 for	Example 4(b).			
•	**************************************					
-	DESCRIPTION OF THE MODEL					
-	YOUNG POISSI NUMBER		= SHO = 0. # HE MODEL = 246 N THE MODEL= 185	300000E+08 0.300 4		

		NODAL CO	ORDINATES		
NODE	X-CO	OORD	Y-C	OORD	Z-COORD
1	5.000		0.00		0.00000
2	5.002		0.00		0.00000
3	5.00		0.00		0.00000
4	5.00	107	0.00	930	0.00000
• •	• •				
• •	••				
	IERR FROM SY	/MBN= 0			
*****	******	*****	*****	*****	******
	LOADI!	NG NUMBER	1	والمراقع والمراقع والمراقع والمراقع والمراقع	
******	*****************			*****	********
*****	*******			*****	*****
	EQUILIBRI				
	SUM OF THE X FORCE				
	SUM OF THE Y FORCE	.t= - `r_	0./681145	E-10	
	SUM OF THE Z PORC	,E# -	0.1/20/83	L-U/ 	
		THE OUDEAC			
V COMPONE	APPLIED LOAD AND ENTS: FORCE=				0 1046005 16
X - COMPONE Y - COMPONE					0.184609E-16 0.389798E+01
Z-COMPONE	NTS: FORCE=	0.00000	0F+00	AREA=	0.390507E-16
	******			رى داد رىل رىل داد داد داد داد داد داد داد داد	
			STRES		~~~~~
	NOMINAL STRESS IN				0000000E+00
	NOMINAL STRESS IN				1000000E+01
	NOMINAL STRESS IN	I THE Z- DI	RECTION =	0.	0000000E+00
****	******	****	*****	*****	*****
	STRESS INTEN				
****	******	*****	*****	*****	*****
	FR	OM THE FOR	CE METHOD		
STATION	PHI	ABSOL	UTE-K	K/(S*	SQRT(PI*A/Q))
1	0.000	0.19399	65E+01	0.1	149420E+01
2	11.250	0.19465	02E+01	0.1	153294E+01
3	22.500	0.21529	37E+01	0.1	275605E+01
4	33.750	0.24034	08E+01	0.1	424008E+01
5	45.000	0.26293	50E+01	0.1	557878E+01

6	56.250	0.28	18348E+01	0.1669858E+01
7	67.500	0.29	39771E+01	0.1741801E+01
8	78.750	0.29	86851E+01	0.1769696E+01
9	90.000	0.29	97954E+01	0.1776274E+01
	FROM THE	CRACK OPEN	ING DISPLACEM	ENT METHOD
1	0.000	0.16	54822E+01	0.9804745E+00
2	11.250	0.18	31812E+01	0.1085340E+01
3	22.500	0.21	71463E+01	0.1286582E+01
4	33.750	0.24	49731E+01	0.1451454E+01
5	45.000	0.26	25300E+01	0.1555478E+01
6	56.250	0.28	42561E+01	0.1684204E+01
7	67.500	0.293	35786E+01	0.1739440E+01
8	78.750	0.296	51178E+01	0.1754485E+01
9	90.000	0.296	53886E+01	0.1756089E+01
	NUMBER OF SING	ULARITY ELE	EMENTS IN THE	**************************************
	******	*****	*****	******
	STATION ********	PHI ******	FORCE-ME	SQRT(PI A/Q) ) THOD COD METHOD
	1	0.000	0.11494E	+01 0.98047E+00
	2	11.250	0.11533E	+01 0.10853E+01
	3	22.500	0.12756E	+01 0.12866E+01
	4	33.750	0.14240E	+01 0.14515E+01
	5	45.000	0.15579E	+01 0.15555E+01
	6	56.250	0.16699E	+01 0.16842E+01
	7	67.500	0.17418E	+01 0.17394E+01
	8	78.750	0.17697E	+01 0.17545E+01
	9	90.000	0.17763E	+01 0.17561E+01

Table 9:	Output file outcor28	for Example 5.	
***************************************	**************************************		
	DESCRIPTION OF	THE MODEL	
	OUTPUT OPTION YOUNG S MODULUS POISSION S RATIO NUMBER OF NODES IN NUMBER OF ELEMENTS	THE MODEL =	0.300000E+08 0.300 2464
NODE	NODA X-COORD	L COORDINATES Y-COO	ORD Z-COOR
1 2 3 4	5.00000 5.00266 5.00245 5.00187	0.0000 0.0000 0.0051 0.0093	0.00000 0.00000
• • •	IERR FROM SYMBN=	0	
	**************************************	ER 1	
E S	**************************************	CHECKS 0.1055787E-	.08 .08

#### NOMINAL STRESSES

NOMINAL STRESS IN THE X- DIRECTION = 0.0000000E+00 NOMINAL STRESS IN THE Y- DIRECTION = 0.1000000E+01 NOMINAL STRESS IN THE Z- DIRECTION = 0.0000000E+00

# STRESS INTENSITY FACTORS ARE AS FOLLOWS

STATION	PHI	ABSOLUTE-K	K/(S*SQRT(PI*A/Q))
1	0.000	0.2016223E+01	0.1194603E+01
2	11.250	0.2019591E+01	0.1196598E+01
3	22.500	0.2228682E+01	0.1320484E+01
4	33.750	0.2490525E+01	0.1475624E+01
5	45.000	0.2750801E+01	0.1629837E+01
6	56.250	0.2961335E+01	0.1754578E+01
7	67.500	0.3142617E+01	0.1861986E+01
8	78.750	0.3339150E+01	0.1978431E+01
9	90.000	0.3552545E+01	0.2104866E+01
	FROM THE CRACK	OPENING DISPLACEMENT	METHOD
1	0.000	0.1740380E+01	0.1031167E+01
2	11.250	0.1905171E+01	0.1128805E+01
3	22.500	0.2252796E+01	0.1334771E+01
4	33.750	0.2542841E+01	0.1506621E+01
5	45.000	0.2734719E+01	0.1620308E+01
6	56.250	0.2983844E+01	0.1767914E+01
7	67.500	0.3129717E+01	0.1854343E+01
8	78.750	0.3271988E+01	0.1938638E+01
9	90.000	0.3648129E+01	0.2161499E+01

**** NUME	**************************************	**************************************	**************************************
***	*********	*********	*************
***	******	****************	
STAT]	ON PHI	K/( S*SQRT(PI FORCE-METHOD *********	COD METHOD
1	0.000	0.11946E+01	0.10312E+01
2	11.250	0.11966E+01	0.11288E+01
3	22.500	0.13205E+01	0.13348E+01
4	33.750	0.14756E+01	0.15066E+01
5	45.000	0.16298E+01	0.16203E+01
6	56.250	0.17546E+01	0.17679E+01
7	67.500	0.18620E+01	0.18543E+01
8	78.750	0.19784E+01	0.19386E+01
9	90.000	0.21049E+01	0.21615E+01
	ALL ELEMENTS SATIS	FY EQUILIBRIUM	
STOP (called by \$M/CP: 45.308s, Wallcl	ock: 116.253s, 9. M stack: 310499, S	itack overflows: 0	-
Table 10: Ou	tput file outem28	for Example 6.	<u>-</u>
EMBEDDED	CRACK-REMOTE TENSION	**************************************	
	DESCRIPTION OF	THE MODEL	
!	OUTPUT OPTION YOUNG S MODULUS POISSION S RATIO NUMBER OF NODES IN NUMBER OF ELEMENTS	= SHORT = 0.30000 THE MODEL = 2464 IN THE MODEL= 1856	00E+08 0.300
NODE	NODAL X-COORD	COORDINATES Y-COORD	Z-COORD
1	5.00000	0.00000	0.00000

2 3 4 	5.0026 5.0024 5.0018	5 0.005 37 0.009	510	0.00000 0.00000 0.00000		
•••	IERR FROM SYN					
		**************************************				
	*****	*****				
E ( SUI SUI	U I L I B R I OF THE X FORC OF THE Y FORC OF THE Z FORC	E= -0.40309/8	E-09 E-08	·*****		
X-COMPONENT Y-COMPONENT Z-COMPONENT	S: FORCE= S: FORCE= S: FORCE=		AREA= AREA=	0.624962E+02 0.000000E+00		
NC NC	N O M I MINAL STRESS II MINAL STRESS II	INAL STRES NTHE X- DIRECTION NTHE Y- DIRECTION NTHE Z- DIRECTION	= = 5 2 F 2	**************************************		
*****	**************************************					
	F	ROM THE FORCE METHO				
STATION	PHI	ABSOLUTE-K	·	(S*SQRT(PI*A/Q))		
1	0.000	0.9477525E+00		0.5615390E+00		
2	11.250	0.1026610E+01		0.6082616E+00		
3	22.500	0.1222969E+01		0.7246035E+00		
4	33.750	0.1440403E+01		0.8534321E+00		
5	45.000	0.1682060E+01		0.9966126E+00		
6	56.250	0.1921766E+01		0.1138638E+01		
7	67.500	0.2169597E+01		0.1285476E+01		
8	78.750	0.2345304E+01		0.1389582E+01		

9	90.000	0.24	09995E+01	0.1427911E+01
	FROM THI	E CRACK OPEN	ING DISPLACEMENT	METHOD
1	0.000	0.76	04610E+00	0.4505696E+00
2	11.250	0.96	81786E+00	0.5736414E+00
3	22.500	0.122	28963E+01	0.7281549E+00
4	33.750	0.146	55673E+01	0.8684046E+00
5	45.000	0.165	58270E+01	0.9825174E+00
6	56.250	0.192	8974E+01	0.1142908E+01
7	67.500	0.217	4445E+01	0.1288349E+01
8	78.750	0.235	1977E+01	0.1393536E+01
9	90.000	0.241	8940E+01	0.1433211E+01
	**************************************		K/( S*SQRT	**************************************
**		PHI ******	FORCE-METHOD	CÓD METHOD
	1	0.000	0.56154E+00	0.45057E+00
	2	11.250	0.60826E+00	0.57364E+00
	3	22.500	0.72460E+00	0.72815E+00
	4	33.750	0.85343E+00	0.86840E+00
	5	45.000	0.99661E+00	0.98252E+00
		56.250	0.11386E+01	0.11429E+01
		67.500	0.12855E+01	0.12883E+01
	8	78.750	0.13896E+01	0.13935E+01
	_			0.13335ET01
	9 9	90.000	0.14279E+01	0.14332E+01

STOP (called by \$MAIN )
CP: 45.622s, Wallclock: 88.919s, 12.8% of 4-CPU Machine
HWM mem: 7733236, HWM stack: 310499, Stack overflows: 0

**************************************	**************************************	**************************************	********* ,A/T=0.5 , ******	******* R/T=1.0 *****
***	***			
	DESCRIPTION O	F THE MODEL		
	OUTPUT OPTION YOUNG S MODULUS POISSION S RATIO NUMBER OF NODES I NUMBER OF ELEMENT	N THE MODEL S IN THE MODE	= SHORT = 0.3000 = = 2863 EL= 2260	000E+08 0.300
NODE	NOE X-coord	AL COORDINATI	ES -coord 	Z-C00R
1 2 3 4	1.00000 1.01320 1.01220 1.00930	0.	00000 00000 00520 00930	0.00000 0.00000 0.00000 0.00000
•••	IERR FROM SYMBN=		****	****
****	LOADING N	JMBER 1 ******	****	*******
****	****			
*********** E SU SU SU	Q U I L I B R I U M OF THE X FORCE= M OF THE Y FORCE= M OF THE Z FORCE=	M CHECK 0.3811 -0.6030 -0.2428	S 911E-09 9213E-08 9789E-08	
Y COMPONEN	PPLIED LOAD AND THE IS: FORCE= IS: FORCE=	0.000002100	ADEA-	ი 539980E+0
		****	*****	*****
	N O M I N OMINAL STRESS IN T OMINAL STRESS IN T	AL		ი იიიიიიიE+00

# 

## FROM THE FORCE METHOD

		LONG THE FORCE METHO	NA CONTRACTOR OF THE CONTRACTO
STATION	PHI	ABSOLUTE-K	
1	0.000	0.2326628E+01	K/(S*SQRT(PI*A/Q))
2	11.250	0.2276628E+01	0.2060499E+01
3	22.500	0.2221275E+01	0.2016218E+01
4	33.750		0.1967197E+01
5	45.000	0.2218767E+01	0.1964975E+01
6	56.250	0.2265604E+01	0.2006455E+01
7		0.2362867E+01	0.2092592E+01
8	67.500	0.2530806E+01	0.2241322E+01
-	78.750	0.2691461E+01	0.2383601E+01
9	90.000	0.2359771E+01	0.2089851E+01
	FROM THE CI	RACK OPENING DISPLACEM	ENT METHOD
1	0.000	0.2387579E+01	0.2114478E+01
2	11.250	0.2243456E+01	0.1986840E+01
3	22.500	0.2194859E+01	
4	33.750	0.2191650E+01	0.1943802E+01
5	45.000	0.2237883E+01	0.1940961E+01
6	56.250	0.2333527E+01	0.1981904E+01
7	67.500	0.2482424E+01	0.2066608E+01
8	78.750		0.2198474E+01
9	90.000	0.2787567E+01	0.2468713E+01
		0.2379925E+01	0.2107699E+01

NUMBER OF SINGULARITY ELEMENTS IN THE MODEL= 64

****	*****	******	
STATION ******	PHI	K/( S*SQRT FORCE-METHOD *********	(PI A/Q) )
1	0.000	0.20605E+01	0.21145E+01
2	11.250	0.20162E+01	0.19868E+01
3	22.500	0.19672E+01	0.19438E+01
4	33.750	0.19650E+01	0.19410E+01
5	45.000	0.20065E+01	0.19819E+01
6	56.250	0.20926E+01	0.20666E+01
7	67.500	0.22413E+01	0.21985E+01
8	78.750	0.23836E+01	0.24687E+01
9	90.000	0.20899E+01	0.21077E+01
	LOADING NUME		
		*******	
E Q U I SUM OF SUM OF	LIBRIUM THE X FORCE=	0.7870824E-08 -0.1061700E-08	·*******
X-COMPONENTS: Y-COMPONENTS:	FORCE 0.0 FORCE -0.2	RFACE AREA COMPONENT 00000E+00 AREA= 01877E-02 AREA= 00000E+00 AREA=	0.000000E+00 0.539980F+02
NOMINAL NOMINAL	NOMINAL STRESS IN THE X STRESS IN THE Y	**************************************	0.0000000E+00 0.3738595E-04
ST	RESS INTENSITY F	**************************************	IS

STATIO	N PHI	ABS	OLUTE-K	K/(S*SQRT(PI*A/Q))	
1	0.000	0.170	9044E+01	0.1513557E+01	
2	11.250	0.154	2926E+01	0.1366440E+01	
3	22.500	0.131	0887E+01	0.1160942E+01	
4	33.750	0.111	3279E+01	0.9859379E+00	
5	45.000	0.948	27 <b>4</b> 9E+00	0.8398074E+00	
6	56.250	0.817	0198E+00	0.7235657E+00	
7	67.500	0.723	5576E+00	0.6407942E+00	
8	78.750	0.657	3300E+00	0.5821419E+00	
9	90.000	0.504	5022E+00	0.4467952E+00	
	FROM THE	CRACK OPFNII	NG DISPLACEME	NT MFTHOD	
1	0.000		4866E+01	0.1607274E+01	
2	11.250		9294E+01	0.1345511E+01	
3	22.500		1912E+01	0.1146795E+01	
4	33.750		7889E+01	0.9723082E+00	
5	45.000		1272E+00	0.8272779E+00	
6	56.250		3078E+00		
				0.7114222E+00	
7	67.500		?324E+00	0.6272219E+00	
8	78.750		2082E+00	0.5846909E+00	
9	90.000		)405E+00	0.4932353E+00	
**************************************					
	*****	******	*****	******	
	STATION ********	PHI	FORCE-ME	SQRT(PI A/Q) ) THOD COD METHOD	
	1	0.000	0.15136E-	+01 0.16073E+01	
	2	11.250	0.13664E-	+01 0.13455E+01	

3	22.500	0.11609E+	0.11468E+01
4	33.750	0.98594E+	0.97231E+00
5	45.000	0.83981E+	0.82728E+00
6	56.250	0.72357E+	00 0.71142E+00
7	67.500	0.64079E+	00 0.62722E+00
8	78.750	0.58214E+	00 0.58469E+00
9	90.000	0.44680E+	00 0.49324E+00
	ALL ELEMENTS SATISF	Y EQUILIBRIUM	
HWM mem: 7733236, H	Name		
Table 12: 0	Output file oscor15	for Example 8.	
21175401	CRACK AT A CIRCULAL  ***********  DESCRIPTION OF	R HOLE A/C=1 ,/ ********	A/T=0.5 . R/T=1.0
	OUTPUT OPTION YOUNG S MODULUS POISSION S RATIO NUMBER OF NODES IN NUMBER OF ELEMENTS	# THE MODEL =	SHORT 0.300000E+08 0.300 2863 2260
	NODA	L COORDINATES	7 0000
NODE	X-COORD	Y-C00	RD Z-COORD
1 2 3 4	1.00000 1.01320 1.01220 1.00930	0.0000 0.0000 0.0052 0.0093	0.00000 0.00000
•••	IERR FROM SYMBN=	0	
			******

**********************

1

LOADING NUMBER

*****						
	SUM OF THE X FO	R I U M C H E C K  ORCE	01E-09			
Z-COMPON	ENTS: FORCE= ENTS: FORCE=	D THE SURFACE AREA ( 0.000000E+00 0.539980E+02 0.000000E+00	AREA= 0.000000E+00 AREA= 0.539980E+02 AREA= 0.000000E+00			
****	NOMINAL STRESS I	I N A L S T R E IN THE X DIRECTION	**************************************			
	**************************************					
	F	ROM THE FORCE METHOD	)			
STATION	PHI	ABSOLUTE-K	K/(S*SQRT(PI*A/Q))			
1	0.000	0.1972444E+01	0.1746828E+01			
2	11.250	0.1981288E+01	0.1754661E+01			
3	22.500	0.2008866E+01	0.1779084E+01			
4	33.750	0.2058871E+01	0.1823369E+01			
5	45.000	0.2139874E+01	0.1895107E+01			
6	56.250	0.2259833E+01	0.2001344E+01			
7	67.500	0.2442181E+01	0.2162834E+01			
8	78.750	0.2614491E+01	0.2315435E+01			
9	90.000	0.2308667E+01	0.2044592E+01			
	FROM THE CRA	CK OPENING DISPLACEM	ENT METHOD			
1	0.000	0.1951981E+01	0.1728706E+01			
2	11.250	0.1960570E+01	0.1736312E+01			
3	22.500	0.1987496E+01	0.1760158E+01			
		A				

33.750	0.203550	0.18 O.18	02675E+01			
45.000	0.21145	58E+01 0.18	72695E+01			
56.250	0.22322	17E+01 0.19	76887E+01			
67.500	0.23962	66E+01 0.21	22171E+01			
78.750	0.27048	75E+01 0.23	95481E+01			
90.000	0.23411	06E+01 0.20	73321E+01			
NUMBER OF SI	**************************************					
	DUIT	K/( S*SQRT(PI FORCE-METHOD	COD METHOD			
1	0.000	0.17468E+01	0.17287E+01			
2	11.250	0.17547E+01	0.17363E+01			
3	22.500	0.17791E+01	0.17602E+01			
4	33.750	0.18234E+01	0.18027E+01			
5	45.000	0.18951E+01	0.18727E+01			
6	56.250	0.20013E+01	0.19769E+01			
7	67.500	0.21628E+01	0.21222E+01			
8	78.750	0.23154E+01	0.23955E+01			
9	90.000	0.20446E+01	0.20733E+01			

STOP (called by \$MAIN ) CP: 33.958s, Wallclock: 64.160s, 13.2% of 4-CPU Machine HWM mem: 7733236, HWM stack: 310499, Stack overflows: 0

```
Table 13: Output file osmcor15 for Example 9.
         *****************
         SURFACE CRACK AT A SEMI-CIRCULAR HOLE A/C=1 ,A/T=0.5 , R/T=1.0
                         DESCRIPTION OF THE MODEL
                    OUTPUT OPTION
YOUNG S MODULUS
POISSION S RATIO

SHORT
0.300000E+08
0.300
                    NUMBER OF NODES IN THE MODEL = 2863
NUMBER OF ELEMENTS IN THE MODEL= 2260
                                   NODAL COORDINATES
                 X-COORD Y-COORD Z-COORD
        NODE

      1.00000
      0.00000
      0.00000

      1.01320
      0.00000
      0.00000

      1.01220
      0.00520
      0.00000

      1.00930
      0.00930
      0.00000

            2
            3
                   IERR FROM SYMBN= 0
        ***********************
                         LOADING NUMBER 1
 ******************
      *********************
             EQUILIBRIUM CHECKS
            SUM OF THE X FORCE=
SUM OF THE Y FORCE=
SUM OF THE Z FORCE=

0.1603649E-08
-0.6038583E-08
-0.2318881E-09
            APPLIED LOAD AND THE SURFACE AREA COMPONENTS
  X-COMPONENTS: FORCE= 0.000000E+00 AREA= 0.000000E+00 Y-COMPONENTS: FORCE= 0.539980E+02 AREA= 0.539980E+02 AREA= 0.000000E+00 AREA= 0.000000E+00
NOMINAL STRESSES
           NOMINAL STRESS IN THE X- DIRECTION = 0.0000000E+00 NOMINAL STRESS IN THE Y- DIRECTION = 0.1000000E+01 0.0000000E+00
```

#### 

### FROM THE FORCE METHOD

STATION	PHI	ABSOLUTE-K	K/(S*SQRT(PI*A/Q))
1	0.000	0.2132622E+01	0.1888684E+01
2	11.250	0.2142476E+01	0.1897411E+01
3	22.500	0.2173118E+01	0.1924548E+01
4	33.750	0.2228355E+01	0.1973466E+01
5	45.000	0.2317019E+01	0.2051989E+01
6	56.250	0.2446855E+01	0.2166974E+01
7	67.500	0.2641224E+01	0.2339110E+01
8	78.750	0.2817368E+01	0.2495106E+01
9	90.000	0.2474677E+01	0.2191613E+01
	FROM THE CR	MACK OPENING DISPLACEME	NT METHOD
1	0.000	0.2110524E+01	0.1869114E+01
2	11.250	0.2120098E+01	0.1877593E+01
3	22.500	0.2150030E+01	0.1904100E+01
4	33.750	0.2203130E+01	0.1951127E+01
5	45.000	0.2289751E+01	0.2027840E+01
6	56.250	0.2417397E+01	0.2140886E+01
7	67.500	0.2592295E+01	0.2295777E+01
8	78.750	0.2918831E+01	0.2584963E+01
9	90.000	0.2493143E+01	0.2207967E+01
44			

*****	*****	*******	*****
STATION ******	PHI *******	K/( S*SQRT(PI FORCE-METHOD ********	A/Q) ) COD METHOD
1	0.000	0.18887E+01	0.18691E+01
2	11.250	0.18974E+01	0.18776E+01
3	22.500	0.19245E+01	0.19041E+01
4	33.750	0.19735E+01	0.19511E+01
5	45.000	0.20520E+01	0.20278E+01
6	56.250	0.21670E+01	0.21409E+01
7	67.500	0.23391E+01	0.22958E+01
8	78.750	0.24951E+01	0.25850E+01
9	90.000	0.21916E+01	0.22080E+01

STOP (called by \$MAIN )
CP: 33.899s, Wallclock: 60.821s, 13.9% of 4-CPU Machine
HWM mem: 7733236, HWM stack: 310499, Stack overflows: 0

Table 14:	Input file dat:	2d for Example 10.	

	SURFACE CRACK	C -Prescibed displacements	- A/C=1.0 A/T=0.2
DRT			
0.3000		000E+00	
161 1664			
1	1.00000000		0.00000000
2	1.01320000		0.00000000
3	1.01220000	0.005200000	0.00000000
2 3 4 5	1.00930000	0.009300000	0.00000000
5	1.00520000	0.012200000	0.00000000
• • •			
• • •			
56	25.00000000	10.00000000	-5.000000000
57	25.00000000	15.00000000	-5.000000000
58	25.00000000	25.00000000	-5.000000000
59	25.00000000		-5.000000000
60	25.00000000	• •	-5.000000000
61	25.00000000		-5.000000000
1 210	<del></del>		_
2 210		2 210 1 4 213	l 1

92

```
1658 2141 2140 2154 2155 2085 2084 2098 2099
                                                        0
  1659 2142 2141 2155 2156
                              2086
                                   2085 2099 2100
                                                       0
  1660 2143 2142 2156 2157 2087
                                   2086 2100 2101
                                                       0
  1661 2144 2143 2157 2158 2088 2087 2101 2102
                                                       0
  1662 2145 2144 2158 2159 2089 2088 2102 2103
                                                       0
  1663 2146 2145 2159 2160 2090 2089 2103 2104
                                                       0
  1664 2147 2146
                  2160 2161 2091 2090 2104 2105
                                                       0
           1
                0
                      1
                           0
           2
                0
                      1
                           0
       1877
                1
                     0
                           0
       1878
                1
                     0
                           0
       1879
                1
                     0
                           0
       1880
                1
                     0
                           0
       1881
                1
                     0
                           0
      2161
               0
                     0
                           1
          0
               0
                     0
                           0
          1
REMOTE
          0
               0
                     0
                          0
          0
               0.0000
                          0.0000
                                     0.0000
       203
               0
                     1
                          0
                                0.00000E+00
                                                0.10000E-05
                                                                 0.0000E+00
       204
               0
                     1
                          0
                                0.00000E+00
                                                0.10000E-05
                                                                 0.00000E+00
       205
               0
                    1
                          0
                                0.00000E+00
                                                0.10000E-05
                                                                 0.00000E+00
       206
               0
                    1
                          0
                                0.00000E+00
                                                0.10000E-05
                                                                 0.00000E+00
       207
               0
                    1
                          0
                               0.00000E+00
                                                0.10000E-05
                                                                 0.0000E+00
       208
               0
                    1
                          0
                               0.00000E+00
                                                0.10000E-05
                                                                 0.00000E+00
       209
              0
                    1
                          0
                               0.00000E+00
                                                0.10000E-05
                                                                 0.0000E+00
       412
              0
                    1
                          0
                               0.00000E+00
                                                0.10000E-05
                                                                 0.0000E+00
       413
              0
                    1
                          0
                               0.0000E+00
                                                0.10000E-05
                                                                 0.00000E+00
       414
              0
                    1
                          0
                               0.00000E+00
                                                0.10000E-05
                                                                0.00000E+00
      415
              0
                    1
                         0
                               0.00000E+00
                                                0.10000E-05
                                                                0.00000E+00
      416
              0
                    1
                         0
                               0.00000E+00
                                                0.10000E-05
                                                                0.00000E+00
      417
              0
                    1
                         0
                               0.00000E+00
                                                0.10000E-05
                                                                0.0000E+00
      418
              0
                    1
                         0
                               0.00000E+00
                                                0.10000E-05
                                                                0.0000E+00
      621
              0
                   1
                         0
                               0.00000E+00
                                               0.10000E-05
                                                                0.00000E+00
      622
              0
                    1
                         0
                              0.00000E+00
                                               0.10000E-05
                                                                0.0000E+00
      623
              0
                   1
                         0
                              0.00000E+00
                                               0.10000E-05
                                                                0.0000E+00
      624
              0
                   1
                         0
                              0.00000E + 00
                                               0.10000E-05
                                                                0.00000E+00
      625
              0
                   1
                         0
                              0.00000E+00
                                               0.10000E-05
                                                                0.00000E+00
      626
              0
                   1
                         0
                              0.00000E+00
                                               0.10000E-05
                                                                0.00000E+00
      627
             0
                   1
                         0
                              0.00000E+00
                                               0.10000E-05
                                                                0.00000E+00
      830
             0
                   1
                         0
                              0.00000E+00
                                               0.10000E-05
                                                                0.00000E+00
      831
             0
                   1
                         0
                              0.00000E+00
                                               0.10000E-05
                                                               0.0000E+00
     832
             0
                   1
                        0
                              0.00000E+00
                                               0.10000E-05
                                                               0.00000E + 00
     833
             0
                   1
                        0
                              0.00000E+00
                                               0.10000E-05
                                                               0.00000E+00
     834
             0
                   1
                        0
                              0.00000E+00
                                               0.10000E-05
                                                               0.00000E+00
     835
             0
                   1
                        0
                              0.00000E+00
                                               0.10000E-05
                                                               0.00000E+00
     836
             0
                   1
                        0
                              0.00000E+00
                                              0.10000E-05
                                                               0.00000E+00
    1039
             0
                   1
                        0
                              0.00000E+00
                                              0.10000E-05
                                                               0.00000E+00
    1040
             0
                   1
                        0
                              0.00000E+00
                                              0.10000E-05
                                                               0.00000E+00
    1041
             0
                   1
                        0
                              0.0000E+00
                                              0.10000E-05
                                                               0.00000E+00
    1042
             0
                   1
                        0
                              0.00000E+00
                                              0.10000E-05
                                                               0.00000E+00
```

```
0.00000E+00
                                           0.10000E-05
                           0.00000E+00
                     0
               1
          0
 1043
                                                            0.0000E+00
                                           0.10000E-05
                           0.00000E+00
                     0
                1
          0
 1044
                                                            0.0000E+00
                                           0.10000E-05
                           0.00000E+00
                     0
                1
          0
 1045
                                                            0.00000E+00
                                            0.10000E-05
                           0.0000E+00
                     0
          0
                1
 1248
                                                            0.0000E+00
                                            0.10000E-05
                           0.00000E+00
                     0
                1
          0
 1249
                                                            0.00000E+00
                                            0.10000E-05
                           0.00000E+00
                     0
          0
                1
 1250
                                                            0.0000E+00
                                            0.10000E-05
                           0.00000E+00
                     0
                1
          0
 1251
                                                             0.00000E+00
                                            0.10000E-05
                           0.00000E+00
                     0
                1
          0
 1252
                                                             0.00000E+00
                                            0.10000E-05
                           0.00000E+00
                      0
                1
          0
 1253
                                                             0.00000E+00
                                            0.10000E-05
                           0.00000E+00
                      0
          0
                1
 1254
                                                             0.00000E+00
                                            0.10000E-05
                           0.00000E+00
                      0
          0
                1
 1457
                                                             0.00000E+00
                                            0.10000E-05
                           0.00000E+00
                1
                      0
           0
  1458
                                                             0.00000E+00
                                            0.10000E-05
                           0.0000E+00
                      0
                1
           0
  1459
                                            0.10000E-05
                                                             0.00000E+00
                           0.00000E+00
                      0
           0
                1
  1460
                                            0.10000E-05
                                                             0.00000E+00
                           0.00000E+00
                      0
           0
                1
  1461
                                                             0.00000E+00
                                            0.10000E-05
                           0.00000E+00
                      0
                1
           0
  1462
                                                             0.00000E+00
                                            0.10000E-05
                            0.00000E+00
                1
                      0
           0
  1463
                                                             0.0000E+00
                                            0.10000E-05
                            0.0000E+00
                      0
                1
           0
  1666
                                                             0.00000E+00
                                            0.10000E-05
                            0.0000E+00
                      0
                1
           0
  1667
                                                             0.00000E+00
                                            0.10000E-05
                            0.00000E+00
                      0
           0
                 1
  1668
                                            0.10000E-05
                                                             0.00000E+00
                            0.00000E+00
           0
                 1
                      0
  1669
                                                             0.00000E+00
                                            0.10000E-05
                            0.0000E+00
                      0
                 1
           0
  1670
                                                             0.00000E+00
                                             0.10000E-05
                            0.00000E+00
                      0
                 1
           0
  1671
                                                              0.00000E+00
                                             0.10000E-05
                            0.00000E+00
                      0
                 1
           0
  1672
                                                              0.00000E+00
                                             0.10000E-05
                            0.0000E+00
                      0
                 1
  1875
           0
                                                              0.0000E+00
                                             0.10000E-05
                            0.0000E+00
                      0
           0
                 1
  1876
                                                              0.0000E+00
                                             0.10000E-05
                            0.00000E+00
                      0
                 1
           0
  1877
                                                              0.00000E+00
                                             0.10000E-05
                       0
                            0.0000E+00
           0
                 1
  1878
                                                              0.00000E+00
                                             0.10000E-05
                       0
                            0.00000E+00
                 1
           0
  1879
                                                              0.00000E+00
                                             0.10000E-05
                            0.0000E+00
                       0
                 1
           0
   1880
                                                              0.00000E+00
                                             0.10000E-05
                            0.00000E+00
                       0
            0
                 1
   1881
                                                              0.00000E+00
                                             0.10000E-05
                            0.00000E+00
                 1
                       0
            0
   1923
                                                              0.00000E+00
                                             0.10000E-05
                            0.00000E+00
                 1
                       0
            0
   1937
                                                              0.0000E+00
                                             0.10000E-05
                       0
                            0.00000E+00
                 1
            0
   1951
                                                              0.00000E+00
                                             0.10000E-05
                            0.00000E+00
                       0
            0
                 1
   1965
                                                              0.0000E+00
                                             0.10000E-05
                            0.0000E+00
                       0
                 1
            0
   1979
                                                              0.0000E+00
                                             0.10000E-05
                             0.0000E+00
                       0
            0
                  1
   1993
                                                              0.00000E+00
                                             0.10000E-05
                             0.00000E+00
                       0
                  1
            0
   2007
                                                              0.00000E+00
                                              0.10000E-05
                             0.00000E+00
                       0
                  1
            0
   2021
                                                              0.00000E+00
                                              0.10000E-05
                             0.00000E+00
                       0
            0
                  1
   2035
                                                              0.00000E+00
                                              0.10000E-05
                             0.00000E+00
                  1
                       0
            0
   2049
                                                              0.00000E+00
                                              0.10000E-05
                             0.00000E+00
                       0
            0
                  1
   2063
                                                              0.00000E+00
                                              0.10000E-05
                             0.00000E+00
                  1
                       0
            0
   2091
                                                               0.00000E+00
                                              0.10000E-05
                             0.00000E+00
                       0
                  1
            0
   2105
                                                               0.00000E+00
                                              0.10000E-05
                             0.00000E+00
                       0
                  1
            0
   2119
                                                               0.00000E+00
                                              0.10000E-05
                             0.00000E+00
                  1
                        0
            0
   2133
                                                               0.00000E+00
                                              0.10000E-05
                             0.0000E+00
                        0
            0
                  1
   2147
                                                               0.00000E+00
                                              0.10000E-05
                             0.0000E+00
                        0
                  1
   2161
             0
                                                               0.00000E+00
                                              0.0000E+00
                             0.00000E+00
                        0
                  0
       0
       1
                                                    5
                                         4
                             3
                  2
       1
                                         9
                                                   10
                              8
                  7
       6
       . . .
                                               1.0000
                                   5.0000
            25.0000
                        0.2000
125.0000
```

DESCRIPTION OF TO		
OUTDIT ADTION	<ul><li>SHORT</li></ul>	
YOUNG S MODULUS	= 0.300000E	2+08 300
COTON C DATIO	<del></del>	.300
POISSION S RATIO NUMBER OF NODES IN T NUMBER OF ELEMENTS I	N THE MODEL= 1664	
	COORDINATES	z-coori
NODE X-COORD	Y-COORD	
	0.00000	0.00000
1 1.00000 1.01320	0.0000	0.00000
1 1.00000 2 1.01320 3 1.01220 4 1.00930	0.00520	0.00000 0.00000
1.00930	0.00930	0.0000
•••		
•••		
IERR FROM SYMBN=	0	
************	*******	*****
		*****
LOADING NOMO	***	
	CONDED DISPLACEMENT NODE	S
	CRIBED DISPLACEMENT NODE	
SUM OF THE X FORCE=	0.3833682E-04	
CHM OF THE Y FORCE	(1. £3330) EE ' ~ =	
SUM OF THE Z FORCE=	-0.1479277E-09	
*******	********	****
EQUILIBRIUM	0.2801653E-10	
E Q U I L I B R I U M SUM OF THE X FORCE= SUM OF THE Y FORCE=	-0.7433272E-09	
SUM OF THE Z FORCE=	0.556203/E-10	
		****
***************	FACTORS ARE AS FOLLOWS	
STRESS INTENSITY	***********	***

		THE LOKE WEIH	UD
STATION	PHI	ABSOLUTE-K	K/(S*SQRT(PI*A/Q))
1	0.000	0.3113099E+00	0.2757010E+00
2	11.250	0.3026873E+00	0.2680647E+00
3	22.500	0.2916434E+00	0.2582840E+00
4	33.750	0.2850461E+00	0.2524414E+00
5	45.000	0.2810111E+00	0.2488679E+00
6	56.250	0.2786616E+00	0.2467871E+00
7	67.500	0.2773719E+00	0.2456450E+00
8	78.750	0.2767214E+00	0.2450689E+00
9	90.000	0.2765203E+00	0.2448908E+00
	FROM THE CI	RACK OPENING DISPLACEN	MENT METHOD
1	0.000	0.3202891E+00	0.2836531E+00
2	11.250	0.2983115E+00	0.2641894E+00
3	22.500	0.2885413E+00	0.2555368E+00
4	33.750	0.2821246E+00	0.2498540E+00
5	45.000	0.2782588E+00	0.2464304E+00
6	56.250	0.2760132E+00	0.2444417E+00
7	67.500	0.2747916E+00	0.2433598E+00
8	78.750	0.2741661E+00	0.2428059E+00
9	90.000	0.2739710E+00	0.2426330E+00
****	******	**************************************	**************************************
STATIO	NC	**************************************	QRT(PI A/O) )
1		000 0.27570E+0	•
2	11.2		0.203032400

3	22.500	0.25828E+00	0.25554E+00
4	33.750	0.25244E+00	0.24985E+00
5	45.000	0.24887E+00	0.24643E+00
6	56.250	0.24679E+00	0.24444E+00
7	67.500	0.24565E+00	0.24336E+00
8	78.750	0.24507E+00	0.24281E+00
9	90.000	0.24489E+00	0.24263E+00
AL	L ELEMENTS SATISFY	EQUILIBRIUM	

STOP (called by \$MAIN )

CP: 28.635s, Wallclock: 55.219s, 13.0% of 4-CPU Machine HWM mem: 7733236, HWM stack: 310499, Stack overflows: 0

Table 16: Output file outdx12 for Example 11.

************ SURFACE CRACK IN A PLATE-PRESCRIBED DISPLACEMENTS - U= -0.3E-7 on x=b A/C=1.0 A/T=0.2

#### DESCRIPTION OF THE MODEL

OUTPUT OPTION = SHORT
YOUNG S MODULUS = 0.300000E+08
POISSION S RATIO = 0.300
NUMBER OF NODES IN THE MODEL = 2161

NUMBER OF ELEMENTS IN THE MODEL= 1664

NODAL COORDINATES X-COORD Y-COORD Z-COORD NODE 

HEIGHT OF THE MODEL = 125.00
WIDTH OF THE MODEL = 25.00
SURFACE LENGTH OF THE CRACK = 1.00
DEPTH OF THE CRACK = 1.00
THICKNESS OF THE PLATE = 5.00

A/C RATIO = 1.00 A/T RATIO = 0.20 RADIUS OF THE CIRCULAR HOLE = 0.00	
RADIUS OF THE CIRCULAR HOLE - ***********************************	*****
MAXIMUM BANDWIDTH = 444 TOTAL CORE REQUIREMENT OF BIGK= 444	1002 9930
	*****
**************************************	
SUM OF THE X-FORCES ARE = 0.000000E+00 SUM OF THE Y-FORCES ARE = 0.000000E+00 SUM OF THE Z-FORCES ARE = 0.000000E+00	
PROJECTED SURFACE AREAS IN EACH OF THE COORDINAT SURFACE AREA X-COMPONENT = 0.000000E+00 SURFACE AREA Y-COMPONENT = 0.000000E+00 SURFACE AREA Z-COMPONENT = 0.000000E+00	TE DIRECTIONS
VOLUME OF THE SOLID MODELED = 0.1562	250E+05
AT SUBPROGRAM SOLVE-B CPU TIME= 0.453569E+0	01
AT SUBPROGRAM SOLVE-E CPU TIME= 0.231621E+0 ACCUMULATED CPU= 0.276978E+02	02
IERR FROM SYMBN= 0	
*************	*****
LOADING NUMBER 1	*****
(88888888888888888888888888888888888888	
REACTION FORCES AT PRESCRIBED DISPLACEMEN	IT NODES
SUM OF THE X FORCE= -0.2250000E+02 SUM OF THE Y FORCE= -0.6472670E-08 SUM OF THE Z FORCE= 0.1818062E-10	
*********	*****
E Q U I L I B R I U M C H E C K S  SUM OF THE X FORCE= 0.1828226E-10  SUM OF THE Y FORCE= -0.2951272E-10  SUM OF THE Z FORCE= -0.8830405E-11	

## 

STATION	PHI	ABSOLUTE-K	K/(S*SQRT(PI*A/Q))
1	0.000	-0.1037153E-04	-0.9185194E-05
2	11.250	-0.2597900E-05	-0.2300741E-05
3	22.500	0.9410255E-06	0.8333872E-06
4	33.750	0.5019746E-05	0.4445567E-05
5	45.000	0.9920509E-05	0.8785760E-05
6	56.250	0.1478098E-04	0.1309027E-04
7	67.500	0.1890774E-04	0.1674499E-04
8	78.750	0.2166702E-04	0.1918866E-04
9	90.000	0.2263688E-04	0.2004758E-04
	FROM THE C	RACK OPENING DISPLACEM	ENT METHOD
1	0.000	-0.9245535E-04	-0.8187993E-04
2	11.250	-0.7967842E-04	-0.7056447E-04
3	22.500	-0.6818843E-04	-0.6038876E-04
4	33.750	-0.4885792E-04	-0.4326935E-04
5	45.000	-0.2653945E-04	-0.2350376E-04
6	56.250	-0.4131448E-05	-0.3658876E-05
7	67.500	0.1484371E-04	0.1314583E-04
8	78.750	0.2753143E-04	0.2438228E-04
9	90.000	0.3198674E-04	0.2832797E-04

				•
				•
			•	
			•	
				•
				· ·
				•
				A
•				
				,

#### REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. To Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED February 1993 Technical Memorandum 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS surf3d: A 3-D Finite-Element Program for the Analysis of Surface and Corner Cracks in Solids Subjected to Mode-I Loadings WU 505-63-50-04 6. AUTHOR(S) I.S. Raju and J. C. Newman, Jr. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER NASA Langley Research Center Hampton, VA 23681 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING AGENCY REPORT NUMBER National Aeronautics and Space Administration Washington, DC 20546 NASA TM-107710 11. SUPPLEMENTARY NOTES Raju: Analytical Services and Materials, Inc., Hampton, VA 23666; Newman: NASA Langley Research Center, Hampton, VA 23681 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Unclassified - Unlimited Subject Category 39 13. ABSTRACT (Maximum 200 words) A computer program, surf3d, that uses the 3D finite-element method to calculate the stress-intensity factors for surface, corner, and embedded cracks in finite-thickness plates with and without circular holes, was developed. The cracks are assumed to be either elliptic or part-elliptic in shape. The computer program uses eight-noded hexahedral elements to model the solid. The program uses a skyline storage and solver. The stress-intensity factors are evaluated using the force method, the crack-opening displacement method, and the 3-D virtual crack closure methods. in the manual the input to and the output of the surf3d program are described. This manual also demonstrates the use of the program and describes the calculation of the stress-intensity factors. Several examples with sample data files are included with the manual. To facilitate modeling of the user's crack configuration and loading, a companion program (a preprocessor program) that generates the data for the surf3d called gensurf was also developed. the gensurf program is a three dimensional mesh generator program that requires minimal input and that builds a complete data file for surf3d. The program surf3d is operational on Unix machines such as CRAY Y-MP, CRAY-2, and Convex C-220. 14. SUBJECT TERMS 15. NUMBER OF PAGES Stress-intensity factors; Finite-elements; Surface cracks; Holes; Fracture mechanics 101 16. PRICE CODE

SECURITY CLASSIFICATION

OF THIS PAGE

Inclassified

Updassified NSN 7540-01-280-5500

OF REPORT

17. SECURITY CLASSIFICATION

20. LIMITATION OF ABSTRACT

A06

SECURITY CLASSIFICATION

OF ABSTRACT