

STATISTICS with R

ANALYSIS OF ONE VARIABLE

Continuous variable	x continuous variable	
	Summary statistics	
	summary(x) # most important summary statistics	
	min(x) # minimum	
	max(x) # maximum	
	mean(x) # mean, average	
	median(x) # median	
	sd(x) # standard deviation	
	IQR(x) # interquartile rang	
	quantile(,) # Ex. 95% percentile: quantile(x, 0.95)	
	o Dot plot	
	plot(x)	
	 Histogram 	
	hist(x)	
	Box plot or Box-and-whisker plot	
	boxplot(x)	
	o Density function	
	plot(density(x))	
	Empirical cumulative distribution	
	plot(ecdf(x))	
	x categorical variable	
Categorical variable	 Frequency table 	
	table(x)	
	prop.table(table(x)) # Table of relative frequencies	
	100*prop.table(table(x)) # Table of percentages	
	○ Bar plot	
	barplot(table(x))	
	o Pie chart	
	pie(table(x))	

RELATION BETWEEN TWO VARIABLES

	Relation between two variables
	x and y continuous variables
	Correlation coefficient
Continuous	cor(x,y) # Pearson correlation coefficient
& continuous	cor(x,y, method="spearman") # Spearman correlation coefficient
	cor(M, use="pairwise.complete.obs") # M is a matrix
	 ○ Regression line equation Im(y~x)
	 Scatter plot and regression line
	plot(x,y) # independent before dependent (x,y)
	abline($Im(y^{x})$) # dependent before independent (y,x)
	abilite(IIII(y x)) # dependent before independent (y,x)
	y continuous, x categorical
	 Numerical summaries of the continuous variable by each category
	of the categorical variable
Continuous	tapply(<continuous>, <categorical>, <function>)</function></categorical></continuous>
& categorical	# Example:
	tapply(y, x, mean) # mean of y for each category of x
	tapply(y, x, summary) # summary of y for each category of x
	 Multiple box plot
	boxplot(<continuous> ~<categorical>)</categorical></continuous>
	# Example:
	boxplot(y~x)
	x and y categorical variables
	 2 by 2 table / Contingency table
Categorical &	table(x,y) # absolute frequencies
categorical	prop.table(table(x,y)) # total proportions
categorical	prop.table(table(x,y),1) # row proportions
	prop.table(table(x,y),1) # row proportions prop.table(table(x,y),2) # column proportions
	100*prop.table(table(x,y),1) # row percentages
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	o Bar plot
	barplot(table(x,y))
	barplot(prop.table(table(x,y)))

RANDOM VARIABLES WITH R

	f(x) or $P(X = x)$	$P(X \leq x)$	$P(X \le q) = \alpha$	
	1	^	1	
Table 3.2	Built-in-functions	for random va	ariables used in this ch	ant

	para-				random
Distribution	meters	density	distribution	quantiles	sampling
Bin	n, p	$\mathtt{dbinom}(x,n,p)$	pbinom(x, n, p)	$\mathtt{qbinom}(\alpha,n,p)$	${\tt rbinom}(10,n,p)$
Normal	μ, σ	$\mathtt{dnorm}(x,\mu,\sigma)$	$\mathtt{pnorm}(x,\mu,\sigma)$	$\mathtt{qnorm}\;(\alpha,\mu,\sigma)$	$rnorm(10, \mu, \sigma)$
Chi-squared	m	dchisq(x,m)	pchisq(x, m)	$qchisq(\alpha, m)$	rchisq(10, m)
T	m	dt(x,m)	pt(x,m)	qt(lpha,m)	rt(10, m)
F	m,n	df(x, m, n)	pf(x, m, n)	$\mathtt{qf}(\alpha,m,n)$	rf(10, m, n)

• Other distributions:

Geometric: dgeom()

Negative Binomial: dnbinom()

Poisson: dpois()

Hipergeometric: dhyper()

Exponential: dexp()

• Examples Binomial distribution

X Binomial with parameters n = 8 i p = 0.35

P(X = 4): dbinom(4, 8, 0.35) $P(X \le 4)$: pbinom(4, 8, 0.35)

95% Percentile: qbinom(0.95, 8, 0.35)

Random sample of 25 values of X: rbinom(25, 8, 0.35)

Examples Normal distribution

X Normal of parameters $\mu = 10$ i $\sigma = 3$

 $P(X \le 15)$: pnorm(15, 10, 3)

P(X > 20): 1-pnorm(20, 10, 3)

 $P(12 \le X \le 20)$: pnorm(20, 10, 3)- pnorm(12, 10, 3)

95% Percentile: qnorm(0.95, 10, 3)

Random sample of 25 values of X: rnorm(25, 10, 3)

STATISTICAL TESTS WITH R

	Normality Te	est: Shapiro-Wilk	
y continuous variable	H0: Data follow a normal distribution		
x categorical variable	H1: Data do not follow a normal distribution		
	shapiro.test(y)		
	If Shapiro p-value >0.05	Si Shapiro p-value <0.05	
	Data follow a normal	Data DO NOT follow a normal	
	distribution	distribution	
Test for the mean	T-test t for one sample	Wilcoxon test for one sample	
H0: mean=prespecified value			
H1: mean≠ prespecified value	t.test(y, mu=value)	wilcox.test(y, mu=value)	
Test for the equality of two	T-test for independent samples	Wilcoxon test for independent samples	
means	(previously, you should test for the	(also known as Wilcoxon–Mann–	
H0: mean1=mean2	equality of variances)	Whitney test)	
H1: mean1≠ mean2			
	t.test(y~x, var.equal=T) # if		
	variances are equal	wilcox.test(y~x)	
	t.test(y~x,var.equal=F) # if variances		
	are different		
Test for the equality of two	T-test for paired samples	Wilcoxon test for paired samples	
means with paired samples			
H0: mean1=mean2	d<-y1-y2	wilcox.test(y1,y2,paired=TRUE)	
H1: mean1≠ mean2	t.test(d,mu=0)		
Test for the equality of more	one-factor ANOVA	Kruskal-Wallis test	
than two means	(Requires normality and		
H0: mean1 = mean2 = =	homoscedasticity)	kruskal.test(y~x)	
meank	aov(y~x)		
H1: at least one of the means is different	Post-hoc analysis: TukeyHSD(aov)		
	Robust ANOVA (if homoscedasticity		
	is not fulfilled): <i>oneway.test(y~x)</i>		
	two-factor ANOVA		
	aov(y~x1*x2)		
Test for the equality of two	F test for the equality of variances		
variances			
H0: variance1= variance2	var.test(y~x)		
H1: variance1≠ variance2			
Test for the equality of several	Homoscedasticity test		
variances	install.packages("Imtest")		
H0: var1 = var2 = = vark	library(Imtest)		
H1: at least one of the means	$bptest(Im(y \sim x), studentize = F)$		
is different			

Test for one proportion	Binomial test for one proportion
H0: p= prespecified value p0	
H1: p≠ p0	binom.test(k,n,p0)
Test for equality of	Test for the equality of two proportions
proportions	
H0: proportion1= proportion2	prop.test(table(x1,x2)) # x1 i x2 are factors with 2 categories
H1: proportion1≠ proportion2	
Multinomial test	Multinomial test for proportions
$H_0: (\pi_{1,\ldots},\pi_m) = (p_{1,\ldots},p_m)$	
$H_1: (\pi_1, \dots, \pi_m) \neq (p_1, \dots, p_m)$	prop.test($x=c(n_1,,n_m),p=c(p_1,,p_m)$)
Test for independence of 2	Chi-squared test for independence of 2 factors
categorical variables	
H0: X and Y are independent	chisq.test(table(x1,x2)) # x1 and x2 are categorical variables
H1: X and Y are related	
Test for independence of 2	Fisher test for independence of 2 factors (2x2 tables)
categorical variables with 2	
categories	fisher.test(table(x1,x2)) # x1 and x2 are categorical variables
H0: X and Y are independent	
H1: X and Y are related	
Test for odds ratio	Odds ratio test for 2 factors (2x2 tables)
H0: OR=1	
H1: OR ≠ 1	install.packages("epitools")
	library("epitools")
	oddsratio(table(x1, x2))
	oddsratio(table, rev="c") # reverse columns
	oddsratio(table, rev="both") #reverse both, columns and rows
Test feetinden and area of true	Connelation tost
Test for independence of two	Correlation test
continuous variables H0: X and Y are not correlated	cartact(v.u) # Dagreen correlation
H1: X and Y are correlated	cor.test(x,y) # Pearson correlation cor.test(x,y, method=c("spearman")) # Spearman correlation
111. A dilu i die correlateu	contest(x,y, method-cf spearman)) # spearman correlation
Outliers test	Outliers test
H0: No outliers	library(outliers)
H1: data contain outliers	grubbs.test(x)
111. data contain outliers	<i>gιαρρ</i> ο.τεοτίν)
Correction for multiple testing	Benjamini and Hochberg FDR control
	p.adjust(p, method = "fdr", n = length(p))
	1 3 (1-1) 3 (1-1)