MODULE TWO: MEASURING UNCERTAINTY; AND DRAWING CONCLUSIONS ABOUT POPULATIONS BASED ON SAMPLE DATA

TOPIC 4: PROBABILITY AND DISCRETE DISTRIBUTIONS

Patient: "Will I survive this operation?"

Surgeon: "Yes, I'm absolutely sure that you'll survive the operation."

Patient: "But how can you be so sure?"

Surgeon: "First of all, statistics show that 99 out of 100 patients die having this particular

operation; next, you're my 100th patient; and finally, all my previous patients died."

Learning Objectives

At the completion of this topic, you should be able to:

- recognise basic probability concepts
- calculate probabilities of simple, marginal and joint events
- calculate conditional probabilities and determine whether events are independent or not
- revise probabilities using Bayes' theorem
- use counting rules to calculate the number of possible outcomes
- recognise and use the properties of a discrete probability distribution
- calculate the expected value and variance of a discrete probability distribution
- identify situations that can be modelled by Binomial and Poisson distributions and calculate their probabilities

+4.1 Basic Probability Concepts

A **probability** is a numerical value that represents the *chance*, *likelihood* or *possibility* that a particular event will occur (always between 0 and 1)

There are 3 approaches to assigning a probability to an event:

- 1. a priori classical probability
 - based on prior knowledge
- 2. empirical classical probability
 - based on observed data
- 3. subjective probability
 - based on individual judgment or opinion about the probability of occurrence

+Events

Events

Simple event (denoted A)

An outcome from a sample space with <u>one characteristic</u>
 e.g. planned to purchase TV

Complement of an event A (denoted A'. P(A') = 1-P(A))

All outcomes that are <u>not part of event A</u>
 e.g. did not plan to purchase TV)

Joint event (denoted A∩B)

Involves two or more characteristics simultaneously
 e.g. planned to purchase a TV and did actually purchase TV

+Sample Space

The sample space is the collection of ALL possible events

e.g. all 6 faces of a die

all 52 playing cards

TattsLotto - forty five balls numbered 1 to 45

+Events (cont)

Mutually Exclusive Events

Events that <u>cannot occur</u> together

```
e.g. Event A = Male
Event B = Event A'= Other
```

Events A and B are mutually exclusive

Collectively Exhaustive Events

- One of the events <u>must occur</u>
- The set of events <u>covers</u> the <u>entire</u> sample space
 e.g. member of loyalty program or not member of loyalty program

+Visualising Events

Contingency Tables (Cross Tabs/Pivot Tables)

- Event A = Order > \$50
- Event B = Member loyalty program

	Member loyalty program			
	Yes (B)	No (B')	Total	
Order > \$50				
Yes (A)	(210)	70	280	
No (A')	110	110	220	
Total	320	180	(500)	
			$\overline{}$	
	Joint B	Event	Samp space	

space

+Visualising Events

Member loyalty program Yes (B) No (B') Total Order > \$50 210 70 280 Yes (A) 110 110 No (A') Total 320 180 500 Sample Joint Event

Venn Diagrams

Figure 4.1 Venn diagram for events A and B

Figure 4.2 Venn diagram for Gaia Cruises scenario

+Probability and Events

The probability of any event must be between 0 and 1, inclusively

 $0 \le P(A) \le 1$ For any event A

The <u>sum of the probabilities</u> of <u>all</u> mutually exclusive <u>and</u> collectively exhaustive events is 1

If A and B are mutually exclusive and collectively exhaustive

$$P(A) + P(B) = 1$$

+Computing Joint Probabilities

The probability of a joint event, A and B:

 $P(A \text{ and } B) = \frac{\text{number of outcomes satisfying A and B}}{\text{total number of elementary outcomes}}$

	Member loyalty program		
	Yes (B)	No (B')	Total
Order > \$50			
Yes (A)	(210)) 70	280
No (A')	110	110	220
Total	320	180	(500
		1	$\overline{\Box}$
	Joint E	vent	Sam spac

+Computing Joint Probability

Example:

P (Order >\$50 AND member of loyalty program)
$$= \frac{210}{500} = 0.42 \text{ or } 42\%$$

	Member loyalty program			
		Yes (B)	No (B')	Total
Order > \$	50			
Yes (A)		(210	70	280
No (A')		110	110	220
Total		320	180	500

 $P(A \text{ and } B) = \frac{\text{number of outcomes satisfying A and B}}{\text{total number of elementary outcomes}}$

+ Computing Marginal (or Simple event) Probability

$$P(A) = P(A \text{ and } B_1) + P(A \text{ and } B_2) + \cdots + P(A \text{ and } B_k)$$

where B₁, B₂, ..., B_k are k mutually exclusive and collectively exhaustive events

Example

P (Order > \$50) $= \frac{280}{500}$

	Member loyal		
	Yes (B)	No (B')	Total
Order > \$50			
Yes (A)	210	70	(280
No (A')	110	110	22 0
Total	320	180	500

+Joint and Marginal ProbabilitiesUsing Contingency Tables

+General Addition Rule

$$P(A \text{ or } B) = P(A \cup B) = P(A) + P(B) - P(A \text{ and } B)$$

Note:

If A and B are mutually exclusive, then

P(A and B) = 0, so the addition rule can be simplified

$$P(A \text{ or } B) = P(A \cup B) = P(A) + P(B)$$

+General Addition Rule (cont)

Example:

		Member loyalty program					
		Yes	(B)	No	(B')	To	otal
Order > \$	50						
Yes (A)			(210)		70		280
No (A')			110		110		220
Total			320		180		500

Note: $P(A \cap B)$ is (double) counted in both P(A) AND P(B) so we must subtract it

 $P(\text{Order} > $50 \text{ } \underline{\text{OR}} \text{ } \text{member of loyalty program}) = (70 + 210 + 110)/500$

+4.2 Conditional Probability

A conditional probability is the probability of one event, given that another event has occurred

The conditional probability of A <u>given that</u> B has occurred

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

The conditional probability of B <u>given that</u> A has occurred

$$P(B \mid A) = \frac{P(A \text{ and } B)}{P(A)}$$

where P(A and B) = joint probability of A and B
P(A) = marginal probability of A
P(B) = marginal probability of B

+Calculating Conditional **Probabilities**

Example:

$$P(B|A) = 210/280$$

= 75%

P(A and B)

+Decision Trees

A Decision Tree:

- is an alternative to contingency tables
- allows sequential events to be graphed

allows calculation of joint probabilities by multiplying respective branch

probabilities Figure 4.3 Decision tree for Gaia Cruises scenario

 $P(A) = \frac{280}{500}$ $P(A \text{ and } B) = \frac{210}{500}$ $P(A \text{ and } B) = \frac{210}{500}$ $P(A \text{ and } B) = \frac{70}{500}$ $P(A \text{ and } B) = \frac{70}{500}$ $P(A \text{ and } B) = \frac{70}{500}$ $P(A' \text{ and } B) = \frac{110}{500}$ $P(A' \text{ and } B) = \frac{110}{500}$ $P(A' \text{ and } B') = \frac{110}{500}$

Statistical Independence

Two events are independent if and only if:

$$P(A \mid B) = P(A)$$

or
$$P(B \mid A) = P(B)$$

Events A and B are independent when the probability of one event is <u>not affected</u> by the other event

Example 1: P(Brand X given Male) = P(Brand X)

Example 2: P(Brand X given Male) ≠ P(Brand X)

+Multiplication Rules

Multiplication rule for two events A and B:

$$P(A \text{ and } B) = P(A | B)P(B)$$

Note: If A and B are independent then:

$$P(A|B) = P(A)$$

and the multiplication rule simplifies to:

$$P(A \text{ and } B) = P(A)P(B)$$

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

+Marginal Probability Using the General Multiplication Rule

Marginal probability for event A:

$$P(A) = P(A | B_1) P(B_1) + P(A | B_2) P(B_2) + \dots + P(A | B_k) P(B_k)$$

where: B_1 , B_2 , ..., B_k are k mutually exclusive and collectively exhaustive events

```
Note: Refer to Slide 12
P(A) = P(A \text{ and } B_1) + P(A \text{ and } B_2) + \dots + P(A \text{ and } B_k)
Substitute (Slide 20)
P(A \text{ and } B) = P(A \mid B) P(B)
```

+4.3 Bayes' Theorem

A technique used to revise previously calculated probabilities with the addition of new information

Need to identify:

• Prior probabilities
$$P(S_i) \Rightarrow P(S_1), P(S_2), ..., P(S_k)$$

• Conditional probabilities $P(F|S_i) => P(F|S_1), P(F|S_2), ..., P(F|S_k)$

Then we can calculate:

• Joint probabilities
$$P(F \cap S) = P(F \mid S_1) * P(S_1) + P(F \mid S_2) * P(S_2) + ... + P(F \mid S_k) * P(S_k)$$

• Revised probabilities
$$P(S_i|F) \Rightarrow P(S_1|F), P(S_2|F), ..., P(S_k|F)$$

where i =1, ..., k

+4.3 Bayes' Theorem (cont)

Example:

Suppose a Consumer Electronics Company is considering marketing a new model of television. In the past, 40% of the televisions introduced by the company have been successful and 60% have been unsuccessful. Simple events - Marginal Prob.

Before introducing a television to the marketplace, the marketing research department always conducts an extensive study and releases a report, either favourable or unfavourable. In the past, 80% of the successful televisions had received a *favourable* market research report and 30% of the unsuccessful televisions had received a *favourable* report. Conditional Prob.

For the new model of television under consideration, the marketing research department has issued a *favourable* report. What is the probability that the television will be successful, given this favourable report? P(F|S) = 0.8 $P(F\cap S)$

where: S = successful television S' = unsuccessful television F = favourable report F' = unfavourable report

+ 4.3 Bayes' Theorem (cont)

$$P(A \cap B) = P(A \mid B) * P(B)$$

$$P(F|S) = 0.8 \quad P(F \cap S) = 0.4 * 0.8 = 0.32$$

$$P(S) = 0.4 \quad P(F'|S) = 0.2 \quad P(F' \cap S) = 0.4 * 0.2 = 0.08$$

$$P(F|S') = 0.3 \quad P(F \cap S') = 0.6 * 0.3 = 0.18$$

$$P(F'|S') = 0.7 \quad P(F' \cap S') = 0.6 * 0.7 = 0.42$$

	Prior probability	Conditional probability	Joint probability	Revised probability
Event S_i	$P(S_i)$	P(F S _i)	$P(F \mid S_i)P(S_i)$	<i>P</i> (<i>S_i</i> <i>F</i>)
S = successful television set	0.40	0.80	0.32	$0.32/0.50 = 0.64 = P(S \mid F)$
S' = unsuccessful television set	0.60	0.30	$\frac{0.18}{0.50}$	$0.18/0.50 = 0.36 = P(S' \mid F)$

Table 4.3 Bayes' theorem calculations for the television-marketing example

$$P(S|F) = P(F \cap S)/P(F)$$

 $P(F) = P(F \cap S) + P(F \cap S') = 0.32 + 0.18 = 0.5$
 $P(S|F) = P(F \cap S)/P(F) = 0.32/0.5 = 0.64 = 64\%$

Counting Rule 1:

• If any one of *k* different mutually exclusive and collectively exhaustive events can occur on each of *n* trials, the number of possible outcomes is equal to:

Example:

• Suppose you toss a coin 5 times. What is the number of different possible outcomes (i.e. the sequence of heads and tails)

Answer:

• $2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$ or (2)(2)(2)(2)(2) = 32 possible outcomes

Counting Rule 2:

• If there are k_1 events on the first trial, k_2 events on the second trial, ... and k_n events on the n^{th} trial, the number of possible outcomes is:

$$(k_1)(k_2)...(k_n)$$

Example:

• Standard New South Wales vehicle registration plates previously consisted of 3 letters followed by 3 digits. How many possible combinations were there?

Answer:

• 26 x 26 x 26 x 10 x 10 x 10 = 26³ x 10³ = 17,576,000 possible outcomes

Counting Rule 3:

• The number of ways that n items can be arranged in order is:

$$n! = (n)(n-1)...(1)$$

Example:

• If a set of 6 textbooks are to be placed on a shelf, in how many ways can the 6 books be arranged?

Answer:

• 6! = (6)(5)(4)(3)(2)(1) = 720 possible outcomes

Counting Rule 4 - Permutations:

• The number of ways of arranging X objects selected from n objects in order is:

$$_{n}P_{x}=\frac{n!}{(n-X)!}$$

Example:

If there are 6 textbooks but room for only 4 books on a shelf, in how many ways can these books be arranged on the shelf?

$$_{6}P_{4} = \frac{6!}{(6-4)!} = \frac{6!}{2!} = \frac{720}{2} = 360$$

Answer: $(\underline{6})^*(\underline{5})^*(\underline{4})^*(\underline{3}) = 360$ different permutations

Counting Rule 5 - Combinations:

• The number of ways of selecting *X* objects from *n* objects irrespective of order is:

$$_{n}C_{x} = \frac{n!}{X!(n-X)!}$$

Example:

How many ways can you choose 4 textbooks out of the 6 to place on a shelf?

$$_{6}C_{4} = \frac{6!}{4!(6-4)!} = \frac{720}{(24)(2)} = 15$$

Answer:

• 15 different combinations

*Introduction to Probability Distributions

Random variable

• Represents a possible numerical value from an uncertain event

+5.1 Probability Distribution for a Discrete Random Variable

A probability distribution for a **discrete random variable** is a mutually exclusive list of all possible numerical outcomes of the random variable with the probability of occurrence associated with each outcome

Table 5.1 Probability distribution of the number of home mortgages approved per week

+Discrete Random Variable

Can only assume a countable number of values

Examples:

• Roll a die twice. Let X be the <u>number of times 4 comes up</u>; thus X could be 0, 1, or 2 times

• Toss a coin five times. Let X be the <u>number of heads</u>; thus X could = 0, 1, 2, 3, 4, or 5

+Discrete Probability Distribution

Experiment: Toss 2 Coins. Let X = # heads

+Expected Value of a Discrete Random Variable

Expected value (or mean - μ) of a discrete random variable (weighted average)

$$\mu = E(X) = \sum_{i=1}^{N} X_i P(X_i)$$

Toss 2 coins, X = # of heads, calculate expected value of X:

$$E(X) = (0 \times 0.25) + (1 \times 0.50) + (2 \times 0.25) = 1.0$$

$$0.5 + (H,H)$$

$$0.5 + (T,H)$$

$$0.5 + (T,H)$$

).25).50).25

+Variance and Standard Deviation of a Discrete Random Variable

Example:

• Toss two coins, X = # heads, calculate the variance, σ^2 , and standard deviation, σ (from previous slide, E(X) = 1)

$$\sigma^{2} = \sum_{i=1}^{N} X_{i}^{2} P(X_{i}) - E(X)^{2}$$

$$\sigma^{2} = (0^{2} * 0.25 + 1^{2} * 0.5 + 2^{2} * 0.25) - (1^{2}) = 0.5$$

Standard deviation
$$\sigma = \sqrt{\sigma^2} = \sqrt{0.5} = 0.707$$

where: E(X) = expected value of the discrete random variable X = the ith outcome of the discrete random variable X

 $P(X_i)$ = probability of the ith occurrence of X

+Variance and Standard Deviation of a Discrete Random Variable

Home mortgages approved per week				
X _i	$P(X_i)$	$X_iP(X_i)$	$X_i^2 P(X_i)$	
0	0.10	0.0	0.0	
1	0.10	0.1	0.1	
2	0.20	0.4	0.8	
3	0.30	0.9	2.7	
4	0.15	0.6	2.4	
5	0.10	0.5	2.5	
6	0.05	0.3	1.8	

Table 5.2 Calculating the mean and variance of the number of home mortgages approved per week

$$\mu = E(X) = \sum_{i=1}^{N} X_i P(X_i)$$

$$\sigma^2 = \sum_{i=1}^N (X_i - E(X))^2 P(X_i)$$

$$\sigma^{2} = \sum_{i=1}^{N} X_{i}^{2} P(X_{i}) - E(X)^{2}$$

$$\sigma^2 = 10.3 - 2.8^2$$

$$\sigma = \sqrt{10.3 - 2.8^2}$$

$$\sigma$$
 =1.57

A binomial distribution can be thought of as simply the probability of <u>a SUCCESS or FAILURE</u> outcome in an experiment or survey that is repeated multiple times

The binominal distribution is a mathematical model

Possible binominal scenarios:

- A manufacturing plant labels items as either defective or acceptable
- A firm bidding for contracts will either get a contract or not
- A marketing research firm receives survey responses of 'yes, I will buy' or 'no, I will not'
- A new job applicant either accepts the offer or rejects it

There are <u>4 essential properties</u> of the binominal distribution:

- 1. A fixed number of observations, or trials, n
- e.g. 15 tosses of a coin; 10 light bulbs taken from a warehouse
- 2. Two mutually exclusive and collectively exhaustive categories
- e.g. head or tail in each toss of a coin; defective or not defective light bulb
- generally called 'success' and 'failure'
- probability of success is p, probability of failure is 1-p

+5.3 Binomial Distribution (cont)

- 3. Constant probability for each observation
- e.g. probability of getting a tail is the same each time we toss the coin
- 4. Observations are independent
- the outcome of one observation does not affect the outcome of the other
- two sampling methods can be used to ensure independence; either:
 - selected from infinite population without replacement; or
 - selected from finite population with replacement

The Binomial Distribution Formula

$$P(X) = \frac{n!}{X!(n-X)!}p^{X}(1-p)^{n-X}$$

where:

```
P(X) = probability of X successes in n trials, with the probability of success p on each trial
```

X = number of 'successes' in sample, (X = 0, 1, 2, ..., n)

n = sample size (number of trials or observations)

p = probability of 'success'

1-p = probability of failure

Example:

A customer has a 35% probability of making a purchase. Ten customers enter the shop. What is the probability of (randomly selected) three customer making a purchase?

```
1-p = (1-0.35) = 0.65
X = 3
```

Let X = # customer purchases:
where:

$$n = 10$$

 $p = 0.35$
 $1-p = (1-0.35) = 0.65$
 $X = 3$

$$P(X = 3) = \frac{n!}{X!(n-X)!}p^{X}(1-p)^{n-X}$$

$$= \frac{10!}{3!(10-3)!}(0.35)^{3}(1-0.35)^{10-3}$$

$$= (120)(0.35)^{3}(0.65)^{7}$$

$$= (120)(0.042875)(0.04902227890625)$$

$$= 0.2522$$

n = 10									
х		p=.20	p=.25	p=.30	p=.35	p=.40	p=.45	p=.50	
0		0.1074	0.0563	0.0282	0.0135	0.0060	0.0025	0.0010	10
1		0.2684	0.1877	0.1211	0.0725	0.0403	0.0207	0.0098	9
2		0.3020	0.2816	0.2335	0.1757	0.1209	0.0763	0.0439	8
3		0.2013	0.2503	0.2668	0.2522	0.2150	0.1665	0.1172	7
4		0.0881	0.1460	0.2001	0.2377	0.2508	0.2384	0.2051	6
5		0.0264	0.0584	0.1029	0.1536	0.2007	0.2340	0.2461	5
6		0.0055	0.0162	0.0368	0.0689	0.1115	0.1596	0.2051	4
7		0.0008	0.0031	0.0090	0.0212	0.0425	0.0746	0.1172	3
8		0.0001	0.0004	0.0014	0.0043	0.0106	0.0229	0.0439	2
9		0.0000	0.0000	0.0001	0.0005	0.0016	0.0042	0.0098	1
10		0.0000	0.0000	0.0000	0.0000	0.0001	0.0003	0.0010	0
		p=.80	p=.75	p=.70	p=.65	p=.60	p=.55	p=.50	х

n = 10, p = 0.35, x = 3: P(x = 3 | n = 10, p = 0.35) = 0.2522

n = 10, p = 0.75, x = 2: P(x = 2 | n = 10, p = 0.75) = 0.0004

Table 5.4 Finding a binomial probability for n = 4, X = 2 and p = 0.1 (extracted from Table E.6)

				р	
n	X	0.01	0.02		0.10
4	0	0.9606	0.9224		0.6561
	1	0.0388	0.0753		0.2916
	2	0.0006	0.0023		→ 0.0486
	3	0.0000	0.0000		0.0036
	4	0.0000	0.0000		0.0001

$$P(X=2) = 0.0486$$

$$P(X \le 2) = P(X=0) + P(X=1) + P(X=2)$$

$$P(X < 2) = P(X \le 1) = P(X = 0) + P(X = 1)$$

$$P(X>2) = 1 - P(X \le 2) = 1 - P(X=0) - P(X=1) - P(X=2)$$

$$P(X \ge 2) = 1 - P(X < 2) = 1 - P(X = 0) - P(X = 1)$$

Characteristics of the Binomial Distribution

Mean

$$\mu = E(x) = np$$

Variance and standard deviation

$$\sigma^2 = np(1-p)$$

$$\sigma = \sqrt{np(1-p)}$$

Where:

n = sample size

p = probability of success

(1 - p) = probability of failure

Figure 5.2

Microsoft Excel worksheet for calculating binomial probabilities

	А	В	С
3	Data		
4	Sample size	4	
5	Probability of success	0.1	
6			
7	Statistics		
8	Mean	0.4	=B4*B5
9	Variance	0.36	=B8*(1-B5)
10	Standard deviation	0.6	=SQRT(B9)
11			
12	Binomial probabilities tal	ole	
13	X	P(X)	
14	0	0.6561	=BINOM.DIST(A14,\$B\$4,\$B\$5,FALSE)
15	1	0.2916	=BINOM.DIST(A15,\$B\$4,\$B\$5,FALSE)
16	2	0.0486	=BINOM.DIST(A16,\$B\$4,\$B\$5,FALSE)
17	3	0.0036	=BINOM.DIST(A17,\$B\$4,\$B\$5,FALSE)
18	4	0.0001	=BINOM.DIST(A18,\$B\$4,\$B\$5,FALSE)

Microsoft® product screen shots are reprinted with permission from Microsoft Corporation.

Excel Function

= BINOM.DIST(X, n, p, Cumulative)

FALSE

e.g. P(X=4)

TRUE

e.g. $P(X \le 2) = P(X=0) + P(X=1) + P(X=2)$

+5.4 Poisson Distribution

We can apply the Poisson distribution to calculate probabilities when counting the number of times a particular event occurs in an interval of time or space if:

- the probability an event occurs in any interval is the same for all intervals of the same size
- the number of occurrences of the event in one interval is independent of the number in any other interval
- the probability that two or more occurrences of the event in an interval approaches zero as the interval becomes smaller

Mean

$$\mu = \lambda$$

Variance and Standard Deviation

$$\sigma^2 = \lambda$$

$$\sigma = \sqrt{\lambda}$$

where: λ = expected number of events

The Poisson distribution has one parameter λ (lambda) which is the mean or expected number of events per interval

$$P(X) = \frac{e^{-\lambda} \lambda^x}{X!}$$

where:

P(X) = the probability of X events in a given interval

 λ = expected number of events in the given interval

e = base of the natural logarithm system (2.71828...)

	λ								
Х	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90
0	0.9048	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966	0.4493	0.4066
1	0.0905	0.1637	0.2222	0.2681	0.3033	0.3293	0.3476	0.3595	0.3659
2	0.0045	0.0164	0.0333	0.0536	0.0758	0.0988	0.1217	0.1438	0.1647
3	0.0002	0.0011	0.0033	0.0072	0.0126	0.0198	0.0284	0.0383	0.0494
4	0.0000	0.0001	0.0003	0.0007	0.0016	0.0030	0.0050	0.0077	0.0111
5	0.0000	0.0000	0.0000	0.0001	0.0002	0.0004	0.0007	0.0012	0.0020
6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	0.0003
7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Example: Find P(X = 2) if λ = 0.50

$$P(X=2) = \frac{e^{-\lambda}\lambda^{X}}{X!} = \frac{e^{-0.50}(0.50)^{2}}{2!} = 0.0758$$

			λ	
Х	9.1	9.2		10
0	0.0001	0.0001		0.0000
1	0.0010	0.0009		0.0005
2	0.0046	0.0043		0.0023
3	0.0140	0.0131		0.0076
4	0.0319	0.0302		0.0189
5	0.0581	0.0555		0.0378
6	0.0881	0.0851		0.0631
7	0.1145	0.1118		0.0901

Table 5.5

Calculating a Poisson probability for $\lambda=10$ (extracted from Table E.7 in Appendix E of this book)

$$P(X=5) = 0.0378$$

				_	_		
	A	В	С	D	E		
3	Data						
4	Average/expected	number of success	es:		10		
5							
6	Poisson probabiliti	es table					
7	X	P(X)					
8	0	0.000045	=P0ISS0N.D	IST(\$A8,\$E\$4,	FALSE)		
9	1	0.000454	=P0ISS0N.D	IST(\$A9,\$E\$4,	FALSE)		
10	2	0.002270	=P0ISS0N.D	IST(\$A10,\$E\$4	I,FALSE)		
11	3	0.007567	=P0ISS0N.D	IST(\$A11,\$E\$4	I,FALSE)		
12	4	0.018917	=P0ISS0N.D	IST(\$A12,\$E\$4	I,FALSE)		
13	5	0.037833	=P0ISS0N.D	IST(\$A13,\$E\$4	I,FALSE)		
14	6	0.063055	=P0ISS0N.D	IST(\$A14,\$E\$4	I,FALSE)		
15	7	0.090079	=P0ISS0N.D	IST(\$A15,\$E\$4	I,FALSE)		
16	8	0.112599	=P0ISS0N.D	IST(\$A16,\$E\$4	,FALSE)		
17	9	0.125110	=P0ISS0N.D	IST(\$A17,\$E\$4	I,FALSE)		
18	10	0.125110	=P0ISS0N.D	IST(\$A18,\$E\$4	,FALSE)		
19	11	0.113736	=P0ISS0N.D	IST(\$A19,\$E\$4	I,FALSE)		
20	12	0.094780	=POISSON.D	IST(\$A20,\$E\$4	I,FALSE)		
21	13	0.072908	=P0ISS0N.D	IST(\$A21,\$E\$4	,FALSE)		
22	14	0.052077	=P0ISS0N.D	IST(\$A22,\$E\$4	,FALSE)		
23	15	0.034718	=P0ISS0N.D	IST(\$A23,\$E\$4	,FALSE)		
24	16	0.021699	=P0ISS0N.D	IST(\$A24,\$E\$4	I,FALSE)		
25	17	0.012764	=P0ISS0N.D	IST(\$A25,\$E\$4	I,FALSE)		
26	18	0.007091	=POISSON.D	IST(\$A26,\$E\$4	,FALSE)		
27	19	0.003732	=POISSON.D	IST(\$A27,\$E\$4	,FALSE)		
28	20	0.001866		IST(\$A28,\$E\$4			

Figure 5.4

Microsoft Excel worksheet for calculating Poisson probabilities

Excel Function

= POISSON.DIST(X, Mean (λ), Cumulative)

Microsoft® product screen shots are reprinted with permission from Microsoft Corporation.