Project I

By Anubhav Kumar Singh

Table of contents

01

Introduction

Problem Statement: Multiple Objectives

03

Methodology

How are things done? Explanation of approach and why so

02

Data

Dataset explanation, Attributes, Independent and Dependent Variables

04

Conclusion

Results with their meanings

Introduction

- ☐ The problem associated with this project is a real life problem
- ☐ Synthetic data from American Express

Problem Statement

Objective 1

Design a targeting campaign for credit card acquisition to target right set of prospects with right set of products with a budget of \$50,000*

Objective 2

You'll need to consider **customer preferences** and **cost and benefits** associated with acquiring a customer to create a winning strategy.

Objective 3

Calculation of **total profit** from all the acquired customers

^{*}There is penalty for underutilizing or overutilizing the budget, i.e., in case of underutilizing, there is penalty of 50% of whatever the budget is left, and in case of overutilizing there will be a penalty of the overutilized amount

Data

In this project, there were three datasets

- 1 Past Campaign Data
- 2. Performance of Customers booked from past campaign
- 3. Potential Customer Data

Test Set - 1 and 2
Target/Validation Set - 3

Dataset Explanation

List of prospects targeted in past campaign with their profiles. These prospects were randomly given products.

Prospects who liked their offer responded to the offer.

However, after underwriting, only a certain percentage were booked.

Dataset 2

List of customers acquired from past campaign with their profile at the time of acquisition, product they chose and their customer lifetime value

Dataset 3

List of prospects available for current campaign along with their profiles. This will be used as validation data to assess your solution.

Attributes with explanation

Variable	Description
ID	Key
long_term_credit_card_opening_propensity_score	long term credit card opening propensity score
creditworthiness_score	Score on how creditworthy the customer is
spend_potential	Spend Potential of customer
number_of_credit_cards	Number of credit cards already owned by customer
short_term_credit_card_opening_propensity_score	Short term credit card opening propensity score
long_term_credit_card_cancellation_propensity_score	Long term credit card cancellation propensity score
credit_card_utilization_score	Aggregate utilization of credit limit across all credit cards
number_of_attempts_to_open_credit_cards	Number of attempts by customer to open credit card
history_at_credit_bureau	Number of years since first credit card or loan
total_limit_across_credit_cards	Average credit limit for on all credit cards
contact_history_score	No. of times targeted for a credit cards
Balance Transfer Propensity Score	Propensity of customer initiating a balance transfer
Targeted_product	Product for which the person was targeted
Applied for the card	Indicator if customer applied for the card
Approved for the card	Indicator if card application was approved
Sampling Factor	Sampling factor is used to calculate likelihood
Customer Lifetime Value	Present value of all cashflow expected from customer

Acquisition Cost (in \$)

Product	Targeting Cost per Contact -Incurred irrespective of response	Welcome Offer Cost per Booked Customer-Incurred only if customer is acquired
А	2	1500
В	0.7	400
С	0.5	250
D	0.2	200
Е	0.4	140

Methodology

Performance of Customers booked from past campaign

Train data based on the acquired customers and implement it on the past campign data to test the results and make further modifications

Past Campaign Data

Test and validate results from the above models and make modifications in to predict credit card for the potential customers

Potential Customer Data

Validate results and provide output on this dataset and further calculate profit

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis

Correlation Matrices

_card_opening_propensity_score	1			0.71		0.3			0.02					-0.2	
creditworthiness_score	-0.074	1		0.12	-0.17	0.31	-0.45			0.61	0.22			0.3	
spend_potential		0.31	1	0.21							0.17			0.39	
number_of_credit_cards	0.71		0.21	1	0.33					0.061				0.0025	
_card_opening_propensity_score				0.33	1	0.017								-0.26	
d_cancellation_propensity_score					0.017	1								0.028	
credit_card_utilization_score		-0.45					1					0.0068		0.015	
f_attempts_to_open_credit_cards								1	-0.12					-0.14	
history_at_credit_bureau	0.02					0.41		-0.12	1					0.18	
total_limit_across_credit_cards									0.3	1	0.16			0.43	
contact_history_score											1			0.35	
alance Transfer Propensity Score												1	0.0057	0.00095	
targeted_product											-0.0092	0.0057	1	-0.56	
Customer Lifetime Value													-0.56	1	
	ening_propensity_score	creditworthiness_score	spend_potential	number_of_credit_cards	ing_propensity_score	ation_propensity_score	card_ublization_score	to_open_credit_cards	history_al_credit_bureau	_across_credit_cards	contact_history_score	ansfer Propensity Score	targeted_product	Customer Lifetime Value	Ī

													4.0
pening_propensity_score	1	-0.11	0.019	0.46	0.059	-0.054	0.32	-0.15	-0.18	-0.0019	0.014		- 1.0
creditworthiness_score	-0.11	1	0.39	-0.13		-0.42	-0.27		0.55		-0.11		- 0.8
spend_potential	0.019	0.39	1	-0.092		-0.18	-0.091				-0.066		
pening_propensity_score		-0.13	-0.092	1	-0.068	-0.11		-0.16	-0.17	-0.099	0.032		- 0.6
ellation_propensity_score	0.059			-0.068	1	-0.029	-0.06			0.078	-0.032		- 0.4
dit_card_utilization_score	-0.054	-0.42	-0.18	-0.11	-0.029	1	0.0094	0.066	-0.29		0.068		
ots_to_open_credit_cards		-0.27	-0.091		-0.06	0.0094	1	-0.19	-0.24	-0.11	0.018		- 0.2
history_at_credit_bureau	-0.15			-0.16		0.066	-0.19	1			-0.022		- 0.0
limit_across_credit_cards	-0.18			-0.17		-0.29	-0.24		1	0.088	-0.076		
contact_history_score	-0.0019			-0.099	0.078		-0.11		0.088	1	-0.017		0.2
Fransfer Propensity Score	0.014	-0.11	-0.066	0.032	-0.032	0.068	0.018	-0.022	-0.076	-0.017	1		0.4
	propensity_score	worthiness_score	spend_potential	propensity_score	propensity_score	_utilization_score	pen_credit_cards	at_credit_bureau	ross_credit_cards	act_history_score	Propensity Score	-	

Analysis – Dataset 1

Model Specification	Accuracy				
knn credit card A	0.8813				
knn credit card B	0.7850				
knn credit card C	0.8504				
knn credit card D	0.8077				
knn credit card E	0.8109				
Overall – knn	0.4568				
Overall – Naïve	0.4513				
Overall – SVC	0.4790				
Overall – Logistic	0.4681				

	Predicted (A)	Predicted (B)	Predicted (C)	Predicted (D)	Predicted (E)	Total
Actual (A)	340	8	1	17	81	447
Actual (B)	34	48	120	75	174	451
Actual (C)	9	23	269	34	94	429
Actual (D)	113	30	64	119	123	449
Actual (E)	43	28	38	37	278	424
Total	539	137	492	282	750	2200

- ☐ Removal of outliers, Dropping null values, as there were not much data removed after this. 21228 data points left out of 25000
- ☐ Random sampling out of the data to create a balanced dataset
- ☐ Creating multiple models and testing the accuracy of each of it with the testing dataset, i.e., 33%
- \square As accuracy was close for all models, so chosen all models to proceed with and check the accuracy with dataset 2
- ☐ Created a random forest regressor model to predict customer lifetime value for the potential customer data

Analysis – Dataset 2

Model Specification	Accuracy				
knn credit card A	0.9274				
knn credit card B	0.7843				
knn credit card C	0.8544				
knn credit card D	0.8973				
knn credit card E	0.6463				
Overall – knn	0.6256				
Overall – Naïve	0.5440				
Overall – SVC	0.6112				
Overall – Logistic	0.5761				

	Predicted (A)	Predicted (B)	Predicted (C)	Predicted (D)	Predicted (E)	Predicted (X)
Actual (A)	240	16	0	8	16	15
Actual (B)	16	163	71	9	39	28
Actual (C)	0	21	261	3	16	8
Actual (D)	18	15	12	223	19	24
Actual (E)	14	31	16	12	212	29
Actual (X)	32	38	35	44	63	51

- ☐ First testing the data with knn model from performance data and doing the required modification
- lue No outliers left after preprocessing the data
- ☐ Created a knn model to predict the credit card for potential customer data
- □ It was able to classify all credit cards correctly to some extent, except the case where there is no allocation

Conclusion

- Let's discuss what happens when we implement the models on potential customer data
- ☐ Results: Multiclass classification, Profit Calculation

Results

Results

Credit Card	Targeted	Response Rate	No. of applicants	Approval Rate	Approvals	Average CLV	Total CLV
А	12654	0.1101 %	14	97.1469 %	14	5441.39	76179.46
В	3187	0.0397 %	1	77.0226 %	1	4352.74	4352.74
С	3392	0.1962 %	7	66.8233 %	5	827.03	4135.15
D	6244	0.0865 %	5	85.4809 %	4	2082.53	8330.12
E	17018	0.1998 %	34	78.5259 %	27	1582.22	42719.94

- ☐ Total CLV = 76179.46 + 4352.74 + 4135.15 + 8330.12 + 42719.94 = 135717.41
- ☐ Total Budget = 50000
- $lue{}$ Our estimated customer lifetime value is much higher than the proposed budget to acquire customers.
 - So, this seems to be a profitable business, but we also have to look out how we have utilized the budget
- ☐ All calculations are in dollars (\$)

Results

Credit Card	Targeted	Targeting Cost	Total TC	Approvals	Welcome Cost	Total WC	Total Cost
А	12654	2	25308	14	1500	21000	46308
В	3187	0.7	2230.9	1	400	400	2630.9
С	3392	0.5	1696	5	250	1250	2946
D	6244	0.2	1248.8	4	200	800	2048.8
E	17018	0.4	6807.2	27	140	3780	10587.2

- ☐ Total Cost = 46308 + 2630.9 + 2946 + 2048.8 + 10587.2 = 64520.9
- ☐ Penalty = 64520.9 50000 = 14520.9
- ☐ Total Cost after penalty = 64520.9 + 14520.9 = 79041.8
- ☐ Profit = 135717.41 79041.8 = 56675.61
- ☐ This credit classification approach seems to be profitable for the business

THANK YOU