Linear Algebra Reference Sheet

By Danny Liu

1 Basic Knowledge

A vector space is an Abelian group under vector addition with defined scalar multiplication over \mathbb{F} $v_1, v_2, ..., v_n$ linearly independent when $c_1v_1 + c_2v_2 + ... + c_nv_n = 0$ has only the trivial solution If E is an elementary matrix, then EA performs a row operation and AE a column operation $A \sim B$ if they represent the same linear operator under possibly different bases, written $B = PAP^{-1}$

1.1 Positive Definiteness

A symmetric matrix A is positive semi-definite if $x^TAx \ge 0 \ \forall x \ne \mathbf{0} \iff Av = \lambda v \implies \lambda \ge 0$ Positive definite matrices $x^TAx > 0$ are nonsingular and have positive diagonal elements $f: \mathbb{R}^n \to \mathbb{R}$ is convex $\iff \mathbf{H_f}$ is positive semi-definite $\iff f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T(\mathbf{y} - \mathbf{x}) \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ Taylor expansion of f at $\mathbf{z} \in [\mathbf{x}, \mathbf{y}]$ is $f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T(\mathbf{y} - \mathbf{x}) + \frac{1}{2}(\mathbf{y} - \mathbf{x})^TH_f(\mathbf{z})(\mathbf{y} - \mathbf{x})$

1.2 Vectorization

$$\nabla_{x}x^{T}Ax = \nabla_{x}(\sum_{i,j}x_{i}x_{j}A_{ij}) = x^{T}(A + A^{T}), \ \nabla_{x}Ax = A, \ \nabla_{x}x^{T}y = y^{T}, \ \nabla_{x}x^{T}x = 2x^{T}$$
$$\sum_{i}(\sigma(\theta^{T}x^{(i)}) - y^{(i)})x^{(i)} = X^{T}(\sigma(X\theta) - y), \ \nabla_{\theta}\sigma(X\theta) = \operatorname{diag}(\sigma'(X\theta))X$$
$$\nabla_{x}f = (\frac{\partial f}{\partial x_{1}}, \dots, \frac{\partial f}{\partial x_{n}}), \ \boldsymbol{J_{f}} = \begin{bmatrix} \frac{\partial f}{\partial x_{1}} & \dots & \frac{\partial f}{\partial x_{n}} \end{bmatrix}, \ \boldsymbol{H_{f}} = \boldsymbol{J}(\nabla_{x}f)^{T}$$

2 Change of Basis

Let
$$B = \{b_1, b_2, ..., b_n\}$$
 a basis for \mathcal{V} over \mathbb{F} and $T \in \mathcal{L}(\mathcal{V})$. Then $\mathcal{P}_B = \begin{bmatrix} [e_1]_B & [e_2]_B \dots [e_n]_B \end{bmatrix}$ where $\mathcal{P}_B(v) = [v]_B$ and $\mathcal{P}_B^{-1} = \begin{bmatrix} b_1 & b_2 \dots b_n \end{bmatrix}$ $\mathcal{M}(T) = \begin{bmatrix} Te_1 & Te_2 \dots Te_n \end{bmatrix}$ and $\mathcal{M}(T)^{-1} = \begin{bmatrix} T^{-1}e_1 & T^{-1}e_2 \dots T^{-1}e_n \end{bmatrix}$ $[\mathcal{M}(T)]_B = \mathcal{P}_B \mathcal{M}(T)\mathcal{P}_B^{-1} = \mathcal{P}_{BE}[\mathcal{M}(T)]_{EE}\mathcal{P}_{EB} = \begin{bmatrix} [Te_1]_B & [Te_2]_B \dots [Te_n]_B \end{bmatrix}$

3 Orthonormal Bases

A list of vectors (v_1, \ldots, v_m) is orthonormal if $\langle v_i, v_j \rangle = 0$ for $i \neq j$ and $||v_i|| = 1$ If $\{e_1, \ldots, e_n\}$ is an orthonormal basis for \mathcal{V} and $v \in \mathcal{V}$, then $v = \langle v, e_1 \rangle e_1 + \ldots + \langle v, e_n \rangle e_n$ A matrix Q is orthogonal if its columns and rows form orthonormal bases or if $Q^{-1} = Q^T$ An orthogonal matrix can be thought of as a change of basis or a rotation to a new coordinate axes Orthogonal operators preserve inner product and norm. $\langle Tx, Ty \rangle = \langle x, y \rangle$ and ||Tv|| = ||v||

3.1 Gram-Schmidt

If v_i are independent, then there exist orthonormal e_i such that $\operatorname{span}(v_1, \dots, v_m) = \operatorname{span}(e_1, \dots, e_m)$ $e_1 = \frac{v_1}{\|v_1\|}, \ e_2 = \frac{v_2 - \langle v_2, e_1 \rangle e_1}{\|v_2 - \langle v_2, e_1 \rangle e_1\|}, \ e_3 = \frac{v_3 - \langle v_3, e_2 \rangle e_2 - \langle v_3, e_1 \rangle e_1}{\|v_3 - \langle v_3, e_2 \rangle e_2 - \langle v_3, e_1 \rangle e_1\|} \dots$

4 Invertible Matrix Theorem

Let A be an $n \times n$ matrix that represents $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$. Note this implies $\dim \mathcal{V} = \dim \mathcal{W}$. Then A is invertible \iff A^T is invertible \iff $\det(A) \neq 0 \iff$ rank $(A) = n \iff$ 0 is not an eigenvalue of A \iff range $T = \mathcal{W} \iff$ $\ker T = \{0\} \iff$ T is injective \iff T is surjective

5 Determinant and Trace

The determinant is a function from $n \times n$ matrices to \mathbb{F} defined recursively by $\det A = a$ if A = [a] and $\det A = \sum_j (-1)^{1+j} a_{1j} \det A_{1j}$ otherwise where A_{ij} denotes deleting the ith row and jth column $|\det A|$ scales volume of vector transformed by A and is 0 when it is collapsed to a lower dimension If A is triangular, then $\det A = \prod_i a_{ii}$ where a_{ii} are the diagonal elements Interchanging rows or columns, $\det A = -\det A$. Adding rows or columns $\det A = \det A$ $\det A = \prod_i^n \lambda_i$, $\det(AB) = \det A \det B$, $\det(cA) = c^n \det A$, $\det A^{-1} = \frac{1}{\det A}$, $\det A = \det A^T$

5.1 Characteristic Polynomial

 $\det(\lambda I - T) = p(\lambda) = (\lambda - \lambda_1)^{d_1} \dots (\lambda - \lambda_m)^{d_m} \text{ where } d_i = \dim G(\lambda_i, T) = \dim(\operatorname{null}(T - \lambda I)^{\dim \mathcal{V}})$ If $p(\lambda) = \lambda^n + c_{n-1}\lambda^{n-1} + \dots + c_1\lambda + c_0$, then $c_{n-1} = -\operatorname{tr} A$ and $c_0 = (-1)^n \det A$ p(T) = O and the zeros of $p(\lambda)$ are the eigenvalues of T

5.2 Trace

The trace is a function from $n \times n$ matrices to \mathbb{F} defined by $\operatorname{tr} A = \sum_i a_{ii}$ Trace and determinant are both invariant under similarity, so $\operatorname{tr} A = \operatorname{tr}(PJP^{-1}) = \sum_i^n \lambda_i \operatorname{tr}(X^TY) = \sum_{i,j} X_{ij} Y_{ij} = \operatorname{vec}(X)^T \operatorname{vec}(Y) \approx \langle X, Y \rangle, \operatorname{tr}(ABC) = \operatorname{tr}(CAB) = \operatorname{tr}(BCA)$

6 Fundamental Theorem of Linear Algebra

Every $m \times n$ real matrix A contains four fundamental subspaces described by $A = U \Sigma V^T$

This implies if $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$, then $\mathcal{V} = \operatorname{row} T \oplus \ker T$ and $\mathcal{W} = \operatorname{row} T^* \oplus \ker T^*$ $x \mapsto Ax$ is one-to-one $\iff \ker A = \{\mathbf{0}\}$. $\operatorname{col} A = \operatorname{Im} A = \operatorname{range} A = \operatorname{row} A^T$ $A\left[v_1 \dots v_r\right] = \left[u_1 \dots u_r\right] \operatorname{diag}(\sigma_1, \dots, \sigma_r) \implies A = U_r \Sigma_r V_r^T = u_1 \sigma_1 v_1^T + \dots u_r \sigma_r v_r^T$

7 Rank-Nullity Theorem

Let $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$, then $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim V$. Equivalently, $\dim(\operatorname{Im} T) + \dim(\ker T) = \dim V$.

8 Diagonalization

Let $T \in \mathcal{L}(\mathcal{V})$ and $\{\lambda_1, \ldots, \lambda_m\}$ denote the distinct eigenvalues of T. Then T is diagonalizable $\iff \mathcal{V}$ has a basis consisting of eigenvectors of $T \iff \dim G(\lambda_i, T) = \dim E(\lambda_i, T)$ $\iff \mathcal{V} = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T) \iff \mathcal{V} = U_1 \oplus \cdots \oplus U_n$ where each U_i is invariant under T $A = PDP^{-1}$ where $P = \begin{bmatrix} v_1 & v_2 \ldots v_n \end{bmatrix}$ and $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ $D = [A]_B$ where B is the basis consisting of eigenvectors of A and A = B

8.1 Spectral Theorem

If $\mathcal V$ is a real inner-product space and $T\in\mathcal L(\mathcal V)$, then $\mathcal V$ has an orthonormal basis consisting of eigenvectors of T if and only if T is self-adjoint (symmetric). If A is orthogonally diagonalizable, then $A^T=(PDP^{-1})^T=(P^{-1})^TDP^T=PDP^{-1}=A$ If A is symmetric, then $(A-\lambda I)^2v=0 \implies v^T(A-\lambda I)^2v=0 \implies \|(A-\lambda I)v\|^2=0 \implies Av=\lambda v$

9 Singular Value Decomposition

Any real $m \times n$ matrix A can be factored into $A = U\Sigma V^T$ where U, V are orthogonal matrices whose columns are the orthonormal eigenvectors of AA^T and A^TA respectively and Σ is the $m \times n$ diagonal matrix of the square roots of the nonzero eigenvalues values of A^TA .

9.1 Key Insights

Add rest of basis vectors $v_{r+1} \dots v_n$ and $u_{r+1} \dots u_n$ to V_r and U_r to make them orthogonal matrices $A^T A = (AA^T)^T \succeq 0$, so they are orthogonally diagonalizable and have nonnegative eigenvalues $A^T A = (U\Sigma V^T)^T U\Sigma V^T = V\Sigma^2 V^T$, from which V and Σ can be implied by spectral decomposition When A is square, the transformation can be viewed as a change of basis (rotation 1) V^T , a scaling in that intermediate basis Σ and then another change of basis (rotation 2) U $A^T = (U\Sigma V^T)^T = V\Sigma^T U^T$ viewed as inverse rotation (2), same scaling and inverse rotation (1) $A^{-1} = (U\Sigma V^T)^{-1} = (V^T)^{-1} \Sigma^{-1} U^{-1} = V\Sigma^{-1} U^T$. Inverse scaling, assuming that A^{-1} exists.

10 QR Decomposition

Any $m \times n$ matrix A with linearly independent columns can be factored into A = QR, where Q is an $m \times n$ matrix with orthonormal columns and R is a nonsingular upper triangular matrix.

$$A = \begin{bmatrix} u_1 & u_2 \dots u_n \end{bmatrix} = \begin{bmatrix} q_1 & q_2 \dots q_n \end{bmatrix} \begin{bmatrix} \langle q_1, u_1 \rangle & \langle q_1, u_2 \rangle & \dots \\ 0 & \langle q_2, u_2 \rangle & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

If A does not have linearly independent columns, then R will be singular

11 Triangular Matrices

The inverse, product and sum of an upper (lower) triangular matrix is upper (lower) triangular A triangular matrix is invertible if and only if the entires on its main diagonal are nonzero $\mathcal{M}(T-\lambda I)$ is not invertible $\iff \lambda = d_i$ for some diagonal element $d_i \implies$ eigenvalues on main diagonal If Ax = b where A is lower triangular and nonsingular, then $x_1 = \frac{b_1}{a_{11}}, \dots, x_n = \frac{b_n - \sum_{k=1}^{n-1} a_{nk} x_k}{a_{nn}}$ Inverse can be computed by solving $A\begin{bmatrix} x_1 & x_2 \dots x_n \end{bmatrix} = \begin{bmatrix} e_1 & e_2 \dots e_n \end{bmatrix}$ column by column If A = LU, then let Ux = y and solve Ly = b via forward-substitution and Ux = y by back-substitution

11.1 LU Decomposition

If A is square and nonsingular, then A = LU for unit lower triangular L and upper triangular U Defining E_{ij} to remove the ith row in the jth column, we have that $U = E_{n,n-1} \dots E_{32} E_{n,1} \dots E_{21} A$ $A = E_{21}^{-1} \dots E_{n,1}^{-1} E_{32}^{-1} \dots E_{n,n-1}^{-1} U = LU$, where E_{ij} has $-\frac{a_{ij}}{a_{jj}}$ at index (i,j) If A is singular, then there exists P such that the algorithm PA = LU avoids dividing by zero

11.2 LDU Decomposition

If A admits an LU decomposition, then A = LDU for unit triangular L, U and diagonal D Let $D = \text{diag}(u_{11}, \dots, u_{nn})$ and $U_1 = \frac{U}{\text{vec }D}$, then $A = LDU_1$ as L is already unit triangular

11.3 Cholesky Decomposition

If A is real positive definite, then $A = LL^T$ for a lower triangular L with positive diagonal entries. $A \succ 0 \implies A = LDU = A^T = (LDU)^T = U^TDL^T = LDL^T = (LD^{\frac{1}{2}})(D^{\frac{1}{2}}L^T) = L_1L_1^T$ Since L is nonsingular, let $y = L^Tx$. Then $y^TDy = x^TLDLx = x^TAx > 0 \implies D \succ 0$ Once existence proved, find L by $l_{jj} = \sqrt{a_{jj} - \sum_{k=1}^{j-1} l_{jk}^2}$ and $l_{ij} = \frac{1}{l_{jj}}(a_{ij} - \sum_{k=1}^{j-1} l_{ik}l_{jk})$ for i > j

12 Inner Products

$$z = a + bi, |z|^2 = z\overline{z} = (a + bi)(a - bi) = a^2 + b^2, \langle u, v \rangle = \overline{\langle v, u \rangle}, ||v||^2 = \langle v, v \rangle$$

Euclidean inner product over $\mathbb C$ becomes $\langle (u_1, \dots, u_n), (v_1, \dots, v_n) \rangle = u_1\overline{v}_1 + \dots + u_n\overline{v}_n$
If $\langle u, v \rangle = 0$, then $||u + v||^2 = ||u||^2 + ||v||^2$ (Pythagorean)
 $|\langle u, v \rangle| \le ||u|| ||v||$ (Cauchy-Schwartz) and $||u + v|| \le ||u|| + ||v||$ (Triangle)

12.1 Adjoints

The adjoint of $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ is $T^* \in \mathcal{L}(\mathcal{W}, \mathcal{V})$ such that $\langle Tv, w \rangle = \langle v, T^*w \rangle$ for all $v \in \mathcal{V}, w \in \mathcal{W}$ If B is an orthonormal basis for \mathcal{V} , then $[T^*]_B = [T]_B^*$ where $[T]_B^*$ is the conjugate transpose of $[T]_B$

12.2 Orthogonal Projections

```
 \operatorname{proj}_{\mathbf{v}} \mathbf{u} = \frac{\langle u,v \rangle}{\langle v,v \rangle} v = \frac{\|u\| \|v\| \cos \theta}{\|v\|^2} v = \frac{(u_1v_1 + \dots u_nv_n)\hat{v}}{\|v\|} = \|u\| \cos \theta \hat{v}  The orthogonal complement of \mathcal{U} \subseteq \mathcal{V} is \mathcal{U}^{\perp} = \{v \in \mathcal{V} \mid \langle v,u \rangle = 0 \ \forall u \in \mathcal{U}\}  \mathcal{V}^{\perp} = \{\mathbf{0}\} and \mathcal{U}^{\perp} is always a subspace of \mathcal{V}. If \mathcal{U} \subseteq \mathcal{V} is a subsapce, then \mathcal{V} = \mathcal{U} \oplus \mathcal{U}^{\perp} Let \mathcal{U} \subseteq \mathcal{V} be a subspace. The orthogonal projection of \mathcal{V} onto \mathcal{U} is the operator P_{\mathcal{U}} where if v = u + w where u \in \mathcal{U} and w \in \mathcal{U}^{\perp}, then P_{\mathcal{U}}(v) = u If T \in \mathcal{L}(\mathcal{V}), then U is invariant under T \iff P_U T P_U = T P_U \iff U^{\perp} is invariant under T^* Given a subspace \mathcal{U} of \mathcal{V} and a vector v \in \mathcal{V}, then P_{\mathcal{U}}(v) \coloneqq \underset{u \in \mathcal{U}}{\operatorname{argmin}} \|u - v\|
```

12.3 Riesz Representation Theorem

If $\varphi: \mathcal{V} \to \mathbb{F}$ is a linear form, then there exists a unique $u \in \mathcal{V}$ such that $\varphi(v) = \langle v, u \rangle$ for all $v \in \mathcal{V}$