STAT115: Introduction to Biostatistics

University of Otago Ōtākou Whakaihu Waka

Lecture 13: Introduction to Confidence Intervals

Outline

- Previous:
 - ▶ Introduction to (normal) statistical model
 - Sampling distributions
 - Describe variation in the sample mean \bar{y} (or any other statistic) from one sample to another
 - Relies on us knowing σ
- Today:
 - Use that to find confidence interval
 - Interval estimate for the parameter value
 - **Look** at what happens when σ is unknown

Example

- Continue using the GAG concentration data
 - ▶ Data from urine tests of n = 314 children (aged 0 17 years)
 - ▶ (log) concentration of glycosaminoglycan (GAG)
- Asking: what is the expected (or mean) GAG concentration?

Sampling distribution

- Recall we have a normal model for the data
 - lacktriangle Data come from a normal distribution with mean μ and standard deviation σ
- ullet Last lecture we found the sampling distribution for $ar{y}$
 - lacktriangle Distribution that describes how \bar{y} will vary from one sample to another
 - Sampling distribution is normally distributed (for a normal model)
 - Mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$

Cool result!

- We know about what will happen in repeated samples
 - Without having to take repeated samples!
- If we know the data distribution (i.e. we know μ and σ):
 - ightharpoonup We know how variable we expect \bar{y} to be without even sampling from the population
- If we know σ (but don't know μ):
 - Can we use a single sample to tell us about a range of plausible values of μ ?

Cool result!

- We know about what will happen in repeated samples
 - Without having to take repeated samples!
- If we know the data distribution (i.e. we know μ and σ):
 - lacktriangleright We know how variable we expect \bar{y} to be without even sampling from the population
- If we know σ (but don't know μ):
 - \blacktriangleright Can we use a single sample to tell us about a range of plausible values of μ ?

Yes!

Excursion: standard error

- Over the past few lectures, we have seen:
 - ightharpoonup Population standard deviation σ
 - ightharpoonup Sample standard deviation s
 - ightharpoonup Standard deviation of sampling distribution of \bar{y}
 - It is $\frac{\sigma}{\sqrt{n}}$
 - Has a special name: standard error
 - Can be represented with notation $\sigma_{\bar{u}}$
 - ightharpoonup Estimate of the standard deviation of the sampling distribution of \bar{y}
 - It is $\frac{s}{\sqrt{n}}$
 - It is often also called the standard error
 - Can be represented with notation $s_{ar{y}}$

Previous knowledge

- Want to determine an interval estimate of μ from \bar{y}
- From our knowledge of normal distribution:
 - \blacktriangleright 95% of observations will fall within (approx) ± 2 standard deviations of mean
 - More precisely it is ± 1.96
 - In R: qnorm(0.025) and qnorm(0.975)
 - Arr Pr(-1.96 < Z < 1.96) = 0.95

Sampling distribution

- Applying this to the sampling distribution we have:
 - ▶ 95% of sample means (\bar{y}) are between ± 1.96 standard errors $(\frac{\sigma}{\sqrt{n}})$ of the mean
- 95% of samples we collect will have sample means in the grey area
 - Given by $\mu \pm 1.96 \frac{\sigma}{\sqrt{n}}$

Flipping things I

- Consider any sample mean that is inside the shaded grey area
 - ▶ We've plotted one in brown on plot below
- Here's the magic:
 - ▶ If \bar{y} is inside the grey area $(\mu \pm 1.96 \frac{\sigma}{\sqrt{n}})$ (brown point)
 - ▶ Then μ (vertical black line) is inside the interval $\bar{y} \pm 1.96 \frac{\sigma}{\sqrt{n}}$ (brown interval)

Lecture 13 \overline{y} Slide 9

Flipping things II

- Consider any sample mean that is outside the shaded grey area
 - ▶ We've plotted one in blue on plot below
- Here's the magic:
 - ▶ If \bar{y} is outside the grey area $(\mu \pm 1.96 \frac{\sigma}{\sqrt{n}})$ (blue point)
 - ▶ Then μ (vertical black line) is outside the interval $\bar{y} \pm 1.96 \frac{\sigma}{\sqrt{n}}$ (blue interval)

Lecture 13 \overline{y} Slide 10

Confidence interval

$$\bar{y} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

- This is a 95% confidence interval for μ
 - ▶ Interval estimate of μ
 - ightharpoonup Quantifies how precise the estimate of μ is
- On average, 95% of sample means will lie in shaded grey area (established above)
 - ▶ That means that our confidence interval should contain the true μ in 95% of samples
 - Gives us confidence in the procedure (hence the name)
 - Care is needed: we cannot say that there is a probability of 0.95 that μ is in the interval

A few notes on confidence intervals

• The confidence interval is in a general form:

estimate
$$\pm$$
 multiplier \times standard error

- ullet estimate: $ar{y}$
- multiplier:
 - ▶ 1.96 for 95% confidence interval
 - ▶ More generally, we write $z_{1-\alpha/2}$
 - More details on next slide
- Standard error: $\frac{\sigma}{\sqrt{n}}$

Multiplier

- Multiplier: $z_{1-\alpha/2}$
 - Also referred to as the critical value
- α : significance level
 - ightharpoonup significance level = 1 confidence level
 - 95% interval: $\alpha = 1 0.95 = 0.05$
 - 90% interval: what is α ?
- $\Pr(Z < z_{1-\alpha/2}) = 1 \alpha/2$
 - Find z-value so that tails have probability $\alpha/2$

Multiplier

- For a 95% interval
 - $\alpha = 0.05$
 - $-\alpha/2 = 0.975$
 - ▶ We want to find $z_{0.975}$

```
qnorm(0.975)
## [1] 1.96
```

• How do we find the multiplier for a 90% interval?

Multiplier

- For a 95% interval
 - $\alpha = 0.05$
 - $1 \alpha/2 = 0.975$
 - ▶ We want to find $z_{0.975}$

```
qnorm(0.975)
## [1] 1.96
```

- How do we find the multiplier for a 90% interval?
 - $\alpha = 0.10$
 - $-1 \alpha/2 = 0.95$
 - ▶ We want to find $z_{0.95}$

```
qnorm(0.95)
## [1] 1.645
```

- Let's find an interval estimate for mean GAG concentration!
- We can't... we don't know σ
 - Population standard deviation
- Can we just replace σ with s?
 - ▶ No, the sampling distribution is no longer normal
 - All is not lost: most of the reasoning we worked through remains the same
- Replacing σ by s introduces additional noise (variability)
 - Sampling distribution no longer normally distributed
 - We need to use a t-distribution instead

t-distribution

- A t-distribution looks a lot like a (standard) normal distribution
 - ► Has fatter tails
- Additional parameter $\nu > 0$, called the degrees of freedom
 - ► This defines how fat the tails are

Historical excursion: William Gosset (1876 – 1937)

- Head Brewer of Guinness who 'discovered' the t-distribution
- Running experiments on yield of barley varieties and did not have statistical tools he needed to analyze the data
 - ► Statistical methodology developed due to applications in food science, agriculture
- The t-distribution is commonly known as Student's t-distribution
 - Gosset published under the pseudonym 'Student'
 - Guinness allowed its scientists to publish research if they did not mention:
 - Beer
 - Guinness
 - Their own surname

Confidence interval: unkonwn σ

ullet Replacing σ by s leads to the confidence interval

$$\bar{y} \pm t_{\nu,1-\alpha/2} \frac{s}{\sqrt{n}}$$

- $t_{\nu,1-\alpha/2}$: multiplier for the *t*-distribution
 - ightharpoonup Significance level α
 - ightharpoonup Degrees of freedom ν
- When finding confidence interval for μ
 - ▶ Degrees of freedom $\nu = n 1$
- Find multiplier in R: for 95% interval when n=30

```
n = 30
qt(0.975, df = n-1)
## [1] 2.045
```

- We are now ready to find an interval estimate for mean GAG concentration
- We need to get a few bits and pieces together:
 - Call in the data:

```
GAG = read.csv('GAG.csv')
```

ightharpoonup Find the sample mean: \bar{y}

```
ybar = mean(GAG$conc)
ybar
## [1] 2.364
```

Find the sample standard deviation: s

```
s = sd(GAG$conc)
s
## [1] 0.6682
```

▶ Find the sample size: n

```
n = length(GAG$conc) # length() tells us the number of values
n
## [1] 314
```

Find the standard error: $s_{\bar{y}} = \frac{s}{\sqrt{n}}$

```
se = s/sqrt(n)
se
## [1] 0.03771
```

► Find the multiplier: 95% confidence interval

```
alpha = 0.05
tcrit = qt(1-alpha/2, df = n-1)
tcrit
## [1] 1.968
                                                                                Slide 20
```

Lecture 13

▶ Put it all together

```
lower = ybar - tcrit * se # lower confidence limit
upper = ybar + tcrit * se # upper confidence limit
ci = c(lower, upper)
ci
## [1] 2.290 2.439
```

- ▶ The 95% confidence interval for μ is (2.29, 2.44)
 - Interval estimate for μ
- Spend some time interpreting the interval in the next lecture

Summary

- Found confidence interval for μ
 - \blacktriangleright Interval that quantifies how precise our estimate of μ is
- Found confidence interval if σ is known
 - Useful for understanding
 - ► Not practically useful
- Found confidence interval if σ is unknown
 - ▶ Introduced the *t*-distribution
- Looking forward:
 - ► More about confidence intervals