Question 1 (9 marks)

A car dealer wants to forecast quarterly sales for each quarter of 2022, based on the data shown below:

Year	Quarter	Sales	
2018	1	225	
	2	272	
	3	233	
	4	372	
2019	1	215	
	2	260	
	3	220	
	4	358	
2020	1	210	
	2	252	
	3	212	
	4	360	
2021	1	200	
	2	250	
	3	210	
	4	340	

a. Determine quarterly seasonal relatives using the centered moving average method.

b. Deseasonalize the sales.

Year	<u>Quarter</u>	Sales	
2018	1	225	
	2	272	
	3	233	
	4	372	
2019	1	215	
	2	260	
	3	220	
	4	358	

Question 2 (8 marks)

The following data are quarterly sales of engine oil (in thousands of gallons) in the Montreal region.

Year	Q1	Q2	Q3	Q4
2018	11.5	19.2	17.4	12.7
2019	11.9	15.1	17.4	12.1
2020	10.6	19.1	13.9	11.5
2021	10.2	6.2	5.6	

The CMA method provided the following seasonal relatives:

Quarter	Q1	Q2	Q3	Q4
Seasonal relative	0.858	1.184	1.098	0.860

The linear trend is observed and the following linear trend equation is obtained based on the deseasonalized data:

$$Y_t = 17.2 - 0.535 t$$

Extend the model to forecast the sales of engine oil in 2022.

Question 3 (9 marks)

A medical supply distributor imports N95 masks from a supplier in Asia. The monthly demand is stable and is 120,000 boxes per month. A box costs \$7 including shipping but placing an order costs \$450. Holding cost is \$1.2 per box per year.

The distributor can also produce the masks in her warehouse – up to 200,000 boxes per month. The manufacturing cost per box is \$5.0 and the inventory holding cost is \$0.72 per box per year. Production setup cost is \$800 per production run. Currently, the warehouse has a capacity to accommodate a maximum of 10,000 boxes in the inventory; however, the warehouse can easily extend this capacity to 80,000 boxes (by leasing another warehouse) at a cost of \$1,200 per year. Propose the most economical recommendation with justification.

Question 4 (7 marks)

A store sells 1000 tennis balls every three months. Currently store orders 2000 units each time an order is placed. At this order quantity, store can buy the tennis balls at \$0.60 per unit. It costs \$50 to place an order and the annual inventory-carrying cost is estimated to be 25 percent of the purchasing cost. The quantity discounts offered by the supplier are listed below:

Order Quantity	Discount
Up to 750	-
751 -1500	10%
1500 or more	20%

Review the current ordering policy and recommend a new policy if needed. Report total costs for the current policy as well as for the recommended policy – if applicable.

Question 5 (8 marks)

The following project has three independent paths as shown in the project network diagram. The deadline to complete this project is 46 days.

Activity	Optimistic Time (days)	Most Likely Time (days)	Pessimistic Time (days)	Expected Time (days)	Variance of Activity
А	10	16	28		
В	20	28	42		
С	18	30	42		
D	15	15	15		
E	1	2	3		
F	42	45	48		

a) What is the probability that this project will be delayed?

٨	1-	m	_	
יו	٧a		_	

b) What is the probability that activity F alone will take between 44 and 46 days?

Question 6 (9 marks)

A project manager has compiled a list of major activities that will be required to install a new computer system. The duration of each activity can be reduced by a maximum of two weeks. The crashing cost for each week is provided in the table below:

			Crashing Costs	
Activity	Immediate predecessor(s)	Normal Duration (weeks)	1st Week	2nd Week
A	-	5	\$8	\$15
В	A	6	7	22
С	B, E	3	17	25
D	-	3	9	21
E	D	7	8	8
F	-	5	10	21
G	F	5	15	23
Н	E, G	5	12	24
End	C, H			

a) Determine the minimum-cost crashing if the goal is to shorten the project by three weeks.

Name:

b) Assume the project manager <u>does not want to crash more than two activities</u>. Which activity will you pick in order to reduce the project duration as much as possible (in the most economical way)? Compute the new project duration and crashing cost.