# COMPLEX NUMBERS AND QUADRATIC EQUATIONS

we have studied linear equations in one and two variables and quadratic equations in one variable. We have seen that the equation  $x^2 + 1 = 0$  has no real solution since the root of a negative number does not exist in a real number. So, we need to extend the real number system to a larger number system to accommodate such numbers.

## Complex Numbers

A number of the form a+ib, where a and b are real numbers and  $i=\sqrt{-1}$ . Usually, a complex number is denoted by z, a is the real part of z denoted by Re(z) and b is the imaginary part of z denoted by Im(z). Two complex numbers  $z_1=a+ib$  and  $z_2=c+id$  are equal if a=c and b=d.

For example, 2 + i3,  $(-1) + i\sqrt{3}$ ,  $4 + i\frac{-1}{11}$  are complex numbers.

### **Algebra of Complex Numbers**

1. Addition of two complex numbers:

Let  $z_1 = a+ib$  and  $z_2 = c+id$  be two complex numbers. Then the sum  $z_1 + z_2$  is obtained by adding the real and imaginary parts.

For example 
$$(2+i3)+(-6+i5)=(2-6)+i(3+5)=$$
  
-4+i8

The addition of complex numbers satisfy the following properties:

- (a)  $z_1 + z + z_2$  is a complex number (Closure)
- (b)  $z_1 + z_2 = z_2 + z_1$  (commutative)
- (c)  $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$  (associative)
- (d) 0 + i0 is the identity element.
- (e) -z is the inverse of z.
- 2. Difference of two complex numbers: Given any two complex numbers  $z_1$  and  $z_2$ , the difference  $z_1-z_2$  is defined as follows:  $z_1-z_2=z_1+(-z_2)$
- 3. Multiplication of two complex numbers: Let  $z_1 = a + ib$  and  $z_2 = c + id$  be two complex numbers. Then the product  $z_1 z_2$  is defined as follows:  $z_1 z_2 = (ac-bd) + i(ad+bc)$ .

For example, 
$$(3+i5)(2+i6) = (3 \times 2 - 5 \times 6) + i(3 \times 6 + 5 \times 2) = -24 + i28$$

The multiplication of complex numbers possesses the following properties

- (a) Product of two complex numbers is a complex number(closure)
- (b)  $z_1z_2 = z_2z_1$  (commutative).
- (c)  $z_1(z_2z_3) = (z_1z_2)z_3$  (associative).

- (d) 1 + i0 is the identity element.
- (e)  $\frac{1}{z}$  is the inverse of z.
- (f)  $z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$  (distributive law)
- 4. Division of two complex numbers: Given any two complex numbers  $z_1$  and  $z_2$ , where  $z_2 \neq 0$ , the quotient  $\frac{z_1}{z_2}$  is defined by

$$\frac{z_1}{z_2} = z_1 \times \frac{1}{z_2}$$

- 5. **Power of i:**In General  $i^{4k} = 1$ ,  $i^{4k+1} = i$ ,  $i^{4k+2} = -1$ ,  $i^{4k+3} = -i$ ,  $i^{-1} = -i$
- 6. The square roots of a negative real number: We have

$$(\sqrt{3}i)^2 = \sqrt{3}^2i^2 = 3 \times -1 = -3$$

$$(\sqrt{-3}i)^2 = \sqrt{-3}^2i^2 = 3 \times -1 = -3$$

Therefor the square roots or -3 are  $\sqrt{3}i$  and  $-\sqrt{3}i$ . In general if a is a positive real number then  $\sqrt{-a} = i\sqrt{a}$  and  $-i\sqrt{a}$ .

Therefore  $\sqrt{a} \times \sqrt{b} \neq ab$  if both a and b are negative real numbers.

- 7. Identities:
  - $(z_1 + z_2)^2 = z_1^2 + 2z_1z_2 + z_2^2$
  - $(z_1-z_2)^2=z_1^2-2z_1z_2+z_2^2$
  - $(z_1 + z_2)^3 = z_1^3 + 3z_1^2z_2 + 3z_2^2z_1 + z_2^3$
  - $(z_1-z_2)^3=z_1^3-3z_1^2z_2+3z_2^2z_1-z_2^3$

## The Modulus and the Conjugate of a Complex Number:

Consider a complex number z = a + ib. Then, the conjugate of z is denoted by  $\bar{z}$ , defined as  $\bar{z} = a - ib$  and the modulus of z is denoted by |z|, defined as  $\sqrt{a^2 + b^2}$ .

the multiplicative inverse of the non-zero complex number z is given by

$$z^{-1} = \frac{\bar{z}}{|z|^2}$$

#### **Properties:**

- 1.  $|z_1z_2| = |z_1||z_2|$
- 2.  $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$
- $3. \ \overline{z_1 z_2} = \bar{z_1} \bar{z_2}$
- $4. \ \overline{z_1 \pm z_2} = \bar{z_1} \pm \bar{z_2}$
- 5.  $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\bar{z_1}}{\bar{z_2}}$
- $6. \ z\bar{z} = \left|z\right|^2$

## Argand Plane and Polar Representation

A complex number z=a+ib which corresponds to the ordered pair (a,b) can be represented geometrically as the unique point P(a,b) in the XY-plane, where the real part is taken along the x-axis and the imaginary part along the y-axis. Such a plane is called the Argand Plane or Complex plane.

Some complex numbers such as 2 + 4i, -2 + 3i, 0 + 1i, 2+0i, -5-2i and 1-2i which correspond to the ordered pairs (2,4), (-2,3), (0,1), (2,0), (-5,-2), and (1,-2), respectively, have been represented geometrically by the points A, B, C, D, E, and F, respectively in the Figure



Let P(x,y) be a point in the complex plane representing the non-zero complex number z=x+iy. Let  $\theta$  radian be the angle made by the directed line segment OP with the positive real axis OX in the anticlockwise direction. Let OP=r, is known as modulus or absolute value of the complex number z denoted by |z| or mod(z)

The pair  $(r, \theta)$  is known as polar coordinates of the point  $P.\theta$  is called amplitude or argument of the complex number, denoted by argz or ampz.



For a complex number a + bi

$$|z| = \sqrt{a^2 + b^2}$$

$$tan\theta = \frac{b}{a}$$

$$\theta = tan^{-1}(\frac{b}{a})$$

### Shortcut method to find arg z

| x   | y   | $\arg z$ lies in | arg z =        |
|-----|-----|------------------|----------------|
| +ve | +ve | Quadrant I       | $\theta$       |
| -ve | +ve | Quadrant II      | $\pi - \theta$ |
| -ve | -ve | Quadrant III     | $\theta - \pi$ |
| +ve | -ve | Quadrant IV      | <b>−</b> θ     |