DISCLAIMER

My prediction data in my google drive somehow disappeared so I had to run all the predictions again tonight (28.feb).

So I ran my analysis on not all the data and I will be updating the numbers and discussion of the results if the results change a lot.

Numbers in this paper are generated with;

Musicnn: 434/574 chunks predicted

VGGish: 265/574 chunks predicted

I will submit it not fully finished because I want to submit on time and like I said I will be updating it, when prediction data is finished

Audio And Music Processing Lab

Module 1 - Large audio datasets assignment

For this task I will annotate music data by hand. I was given 574 audio chunks to annotate. I have eleven characteristics for annotating. The characteristics are;

- If the song is electric
- If the song is acoustic
- If the song is aggressive
- If the song is relaxed
- If the song is happy
- If the song is sad
- If its a party song
- If the song is tonal or atonal
- Danceability
- If the song is instrumental
- · Finally if the song is not instrumental then what gender is the singing voice

One of the main purposes for annotating data by hand is to transform that data into a form, that is suitable for computer-aided analysis. I will take my annotated data and compare it to two different pre-existing models, musicnn and vggish, that predict these characteristics automatically and analyse the accuracy of those models.

My process was pretty straight forward. I used the programming environment Colab because it is the easiest way to use Essentia (I have not figured out how to install Essentia on my macBook computer). I installed all the prediction models using !wget. I iterated over all the sound chunks and for each sound chunk I used each model to predict all the characteristics and saved the results in a json file so it was formatted the same way as the data which was annotated by hand. The predictions from the models gave me an array of probabilities for each characteristic, so I find what index gives me the best probability and that is what the model classified. I then calculate the accuracy for each model given that my annotation are ground truth and calculate confusion matrices for the results. I also noticed that some data was flipped and calculated the accuracies with that in mind.

Accuracy table for musicnn model:

	mood _acou stic	mood _elect ronic	mood _aggr essive	mood _relax ed	mood _happ y	mood _sad	mood _party	tonal_ atonal	dance ability	voice_ instru menta I	gende r
Accur	0.7575	0.7304	0.7603	0.5184	0.6843	0.4285	0.8364	0.5783	0.6889	0.7972	0.9838
	05773	14746	68663	33179	31797	71428	05529	41013	40092	35023	70967
	67205	54377	59447	72350	23502	57142	95391	82488	16589	04147	74193
	54	88	01	23	3	855	7	48	86	46	55

Accuracy table for vggish model

	mood _acou stic	mood _elect ronic	mood _aggr essive	mood _relax ed	mood _happ y	mood _sad	mood _party	tonal_ atonal	dance ability	voice_ instru menta I	gende r
Accur	0.8295	0.8409	0.7765	0.6212	0.6439	0.6363	0.8030	0.3371	0.7272	0.8409	0.9545
	45454	09090	15151	12121	39393	63636	30303	21212	72727	09090	45454
	54545	90909	51515	21212	93939	36363	03030	12121	27272	90909	54545
	46	09	15	12	39	64	3	21	73	09	46

Confusion matrices for vggish model

		Actual Values			
	mood_acoustic	Positive	Negative		
Predicted Values	Positive	66	38		
values	Negative	7	153		

		Actual Values			
	mood_electronic	Positive	Negative		
Predicted Values	Positive	133	28		
values	Negative	14	89		

		Actual Values	
	mood_aggressive	Positive	Negative
Predicted Volume	Positive	29	46
Values	Negative	13	176

		Actual Values		
	mood_relaxed	Positive	Negative	
Predicted Values	Positive	97	99	
values	Negative	1	67	
		Actual Values		
	mood_happy	Positive	Negative	
Predicted Values	Positive	31	57	
values	Negative	37	139	
		Actual Values		
	mood_sad	Positive	Negative	
Predicted Values	Positive	136	92	
values	Negative	4	32	
		Actual Values		
	mood_party	Positive	Negative	
Predicted Values	Positive	172	40	
values	Negative	12	40	
		Actual Values		
	tonal_atonal	Positive	Negative	
Predicted Values	Positive	86	90	
values	Negative	85	3	
		Actual Values		
	danceability	Positive	Negative	
Predicted Values	Positive	75	10	
values	Negative	62	117	

		Actual Values			
	voice_instrumental	Positive	Negative		
Predicted Values	Positive	165	33		
values	Negative	9	57		

		Actual Values		
	gender	Positive	Negative	
Predicted Values	Positive	144	66	
values	Negative	7	47	

The vggish model gave me better results. It has better accuracy in 7 out of 11 characteristics. One interesting result is tonality in both models, it looks like I misrepresented what tonality is. You can see when notating objective characteristics like acoustic, electronic and voice/instrumentals both models give a decent score there and for me that is expected. For the more subjective characteristics the accuracy score fluctuates a little bit. I think its a bit tough to get an accurate model for predicting such subjective characteristics, the feeling of sadness and happiness and just mood in general can be pretty different individually I think.