Introduction to dynamics

G. Anciaux

Civil Enginering, Materials Science, EPFL

Outline

Context: continuum mechanics, small deformation, linear elasticity

Objectives: quickly brush up wave dynamics concepts to later interpret physics of dynamic fracture

- 1D wave propagation; c-t diagram
- Dispersion, wave reflection and transmission
- 3D dynamics; fundamental waves
- Rayleigh wave

1D wave propagation: In an infinite elastic bar

Newton's second law: $\$ \\ \right\ A - \\ A \\ A \\ Frac{\pi A \ Frac{\pi A \ Frac{\pi A \ Frac}} A \} \

With constitutive law: s=E = E = E

Gives wave equation: $\frac{partial^2 u}{partial^2 u} = \frac{E}{\rho x}$ \frac{\partial^2 u}{\partial^2 x} = c^2 \frac{\partial^2 u}{\partial^2 x}\$

with $c = \sqrt{\frac{E}{\rho}}$

Solution: left and right propagating waves u(x,t) = f(x+ct) + g(x-ct)

Boundary conditions set \$f\$ and \$g\$

Particle velocity **is not** wave velocity ($v = \det\{u\} \parallel c$)

1D wave propagation

Space-Time (ct) diagram

Initial conditions: $\$\$u(x, 0) = 0 \quad v(x, 0) = 0\$\$$

Boundary conditions: $\frac{0, t}{sigma_0 h(t) \cdot qquad \cdot t < t_0}$

Right propagation: $s\simeq x(x, t) = f(x-ct) = sigma_0 h(t-x/c)$

Finite size bar; reflection

Incident and reflected wave

Interaction with interfaces

bimaterials: Incident, reflected, and transmitted waves

$$\sigma(0,t) = \sigma_0 \mathsf{T}(t) \tag{E_1, ρ_1, A} \qquad E_2, \rho_2, A$$
 for $t < t_0$
$$c_1 = \sqrt{\frac{E_1}{\rho_1}} \qquad x = L$$

$$c_2 = \sqrt{\frac{E_2}{\rho_2}}$$

\$\$\sigma_I = f_I(x-c_1t)\$\$\$\sigma_R = f_R(x-L+c_1(t-t_R))\$\$\$\sigma_T = f_T(x-L-c_2(t-t_R))\$\$

Continuity: $f_T = \frac{2R}{1+R}f_I$ and $f_R = \frac{R-1}{1+R}f_I$

\$\$\forall t, \text{at } x=L\$\$\$\sigma_I
+ \sigma_R = \sigma_T\$\$\$\$u_I + u_R =
u_T\$\$

or
$$$v_I + v_R = v_T$$
\$

with \$R\$ the impedance ratio $R=\frac{c_2}{\rho_1 c_1}$

3D wave propagation: In elastic isotropic medium

Equations of motion: $\$ in the full $\$ is generally signal = $\$ in the full $\$ in the ful

With constitutive law: $\$ = \lambda tr(\mathbf \epsilon) I + 2\mu \mathbf \epsilon\$\$

Kinematics: $\$\ensuremath{\mbox{cysilon}_{ij}} = \frac{1}{2} (u_{i,j} + u_{i,i})$

Shear planar waves solutions:

 $\su(\mathbf{x}, t) = f(\mathbf{y})$

with

- \$\mathbf d\$: direction of displacement
- \$\mathbf p\$: direction of propagation
- c: wave velocity
- \$\mathbf p \cdot \mathbf p = 1\$

Yields an eigenvalue/eigenvector problem of accoustic tensor:

Solutions of acoustic tensor: Two solutions

Solution 1: \$\mathbf d = d \mathbf p \Rightarrow c_L = \sqrt{\frac{\lambda + 2\mu}{\rho}}\$

Longitudinal waves, P-waves, or Push waves,

Pressure waves, L waves, Primary waves (earthquake warning)

Solution 2: \$\mathbf d \cdot \mathbf p= 0 \Rightarrow c_S = \sqrt{\frac{\mu}{\rho}}\$

Shear waves \$\equiv\$ S-wave

animations from Wikipedia

Two directions for \$\mathbf p\$

Fundamental waves: Helmoltz decomposition

One can show (with Helmoltz decomposition) that all waves can be decomposed as a sum of \$c_L\$ and \$c_T\$ waves; these are called fundamental waves.

Ratio of celerities:

\$\$\frac{cL}{c_S} = \sqrt{\frac{2(1 - \nu)}{1-2\nu}}\$\$

- If \$v = 0\$, \$\frac{c_L}{c_S} = \sqrt{2}\$
- In all cases: \$c_S < \sqrt{2} c_L\$

- Useful to localize earthquakes
- Emergence of «peculiar» waves: such as Love, Lamb, Stoneley and Rayleigh waves

Rayleigh waves: surface waves

- Rayleigh waves (often called «ground roll») are of particular interest to seismologists
 - o Decay slower than bulk waves: carry energy over long distances
 - Rayleight wave speed \$c_R\$

• Freund:

images from Wikipedia

 $\frac{c_R}{c_S} = \sqrt{\frac{0.862 + 114}{nu}}$

