Math 2310-360: Differential Equations

Sketching f(y) vs. y:

When plotting f(y) vs y we're plotting our y' vs y. I think it's helpful to think of it as plotting a function f(x) with respect to x. So think of $\frac{dy}{dt} = y^2(1-y)^2$ as $f(x) = x^2(1-x)^2$.

To find equilibrium points:

We solve the equation y'(t) = 0. In other words the roots to our y'(t) are our equilibrium points. (In calculus 1 we knew these as critical points.)

To classify equilibrium points:

- 1. First we must determine what is actually going on with f(y) near our equilibrium points. We determine the intervals established by our equilibrium points. Then we apply some calculus 1 knowledge:
 - When f(y) > 0 our y(t) is increasing. We represent this on our f(y) vs y sketch with right arrows: $\rightarrow \rightarrow \rightarrow$
 - When f(y) < 0 our y(t) is decreasing. We represent this on our f(y) vs y sketch with left arrows: $\leftarrow\leftarrow\leftarrow$
- 2. Next we determine the behavior of each equilibrium point by looking at our arrows
 - Stable if \rightarrow \leftarrow
 - Unstable if $\leftarrow \bullet \rightarrow$
 - Semi-stable if \rightarrow \rightarrow or \leftarrow \leftarrow

Inflection Points:

Sometimes on an interval our solutions will change direction. This occurs at inflection points which are found when y''(t) = 0.

Math 2310

Lecture # 5: Stability Analysis 1st order ODEs Pate: Wed 2/20/19 $Ex. \int \frac{dy}{dt} = y^2 - 1$ For $f(y) = \frac{dy}{dt}$ We Sketch f(y) Us. y.

For $f(y) = \frac{dy}{dt}$ we sketch f(y) vs. y. $f(y) = y^{2} - 1$ = (y+1)(y-1)Found equilibrium pts $\lim_{t \to \infty} f(y) = \lim_{t \to \infty} f(y) = \lim_$

Inflection Pts: $F(y) = y^2 - 1$ $F'(y) = y'' = 2y \implies \text{inflection pt } @$ y=0

Phase