See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/37406181

Partial Differential Equations for Scientists and Engineers

Article in American Journal of Physics · July 1985

DOI: 10.1119/1.14292 · Source: OAI

CITATIONS READS

315 22,670

1 author:

Stanley Farlow
University of Maine

SEE PROFILE

21 PUBLICATIONS 1,592 CITATIONS

Lokenath Debnath

Nonlinear Partial Differential Equations for Scientists and Engineers

Birkhäuser Boston • Basel • Berlin

Contents

Prej	Preface		xiii
1.	Linea	ar Partial Differential Equations	1
	1.1	Introduction	1
	1.2	Basic Concepts and Definitions	2
	1.3	The Linear Superposition Principle	2 4 7
	1.4	Some Important Classical Linear Model Equations	7
	1.5	The Classification of Second-Order Linear	
		Equations and The Method of Characteristics	10
	1.6	The Method of Separation of Variables	20
	1.7	Fourier Transforms and Initial-Boundary-Value Problems	32
	1.8	Applications of Multiple Fourier Transforms to	
		Partial Differential Equations	44
	1.9	Laplace Transforms and Initial-Boundary-Value Problems	49
	1.10	Hankel Transforms and Initial-Boundary-Value Problems	58
	1.11	Green's Functions and Boundary-Value Problems	67
	1.12	Exercises	78
2.	Nonl	inear Model Equations and Variational Principles	93
	2.1	Introduction	93
	2.2	Basic Concepts and Definitions	93
	2.3	Some Nonlinear Model Equations	94
	2.4	Variational Principles and the Euler-Lagrange Equations	99
	2.5	The Variational Principle for Nonlinear Klein-Gordon	
		Equations	104
	2.6	The Variational Principle for Nonlinear Water Waves	105
	2.7	Exercises	107

viii Contents

3.	First-	Order, Quasi-Linear Equations and The	
	Meth	od of Characteristics	111
	3.1	Introduction	111
	3.2	The Classification of First-Order Equations	111
	3.3	The Construction of a First-Order Equation	112
	3.4	The Geometrical Interpretation of a First-Order Equation	116
	3.5	The Method of Characteristics and General Solutions	118
	3.6	Exercises	130
4.	First	Order Nonlinear Equations and Their Applications	135
	4.1	Introduction	135
	4.2	The Generalized Method of Characteristics	135
	4.3	Complete Integrals of Certain Special Nonlinear Equations	139
	4.4	Examples of Applications to Analytical Dynamics	145
	4.5	Applications to Nonlinear Optics	151
	4.6	Exercises	156
5.	Cons	ervation Laws and Shock Waves	159
	5.1	Introduction	159
	5.2	Conservation Laws	159
	5.3	Discontinuous Solutions and Shock Waves	172
	5.4	Weak or Generalized Solutions	174
	5.5	Exercises	181
6.	Kine	matic Waves and Specific Real-World Nonlinear Problems	185
	6.1	Introduction	185
	6.2	Kinematic Waves	185
	6.3	Traffic Flow Problems	189
	6.4	Flood Waves in Long Rivers	202
-	6.5	Chromatographic Models and Sediment Transport in Rivers	204
	6.6	Glacier Flow	210
	6.7	Roll Waves and Their Stability Analysis	213
	6.8	Simple Waves and Riemann's Invariants	219
	6.9	The Nonlinear Hyperbolic System and Riemann's Invariants	239
	6.10	Generalized Simple Waves and Generalized	
		Riemann's Invariants	250
	6.11	Exercises	254
7.	Nonl	inear Dispersive Waves and Whitham's Equations	263
	7.1	Introduction	263
	7.2	Linear Dispersive Waves	263
	7.3	Initial-Value Problems and Asymptotic Solutions	267

Contents ix

	7.4	Nonlinear Dispersive Waves and Whitham's Equations	270
	7.5	Whitham's Theory of Nonlinear Dispersive Waves	273
	7.6	Whitham's Averaged Variational Principle	276
	7.7	The Whitham Instability Analysis and Its Applications	
		to Water Waves	278
	7.8	Exercises	281
8.	Nonli	inear Diffusion-Reaction Phenomena, Burgers' and	
		er's Equations	283
	8.1	Introduction	283
	8.2	Burgers' Equation and the Plane Wave Solution	283
	8.3	Traveling Wave Solutions and Shock-Wave Structure	286
	8.4	The Cole-Hopf Transformation and the Exact Solution	
		of the Burgers Equation	289
	8.5	The Asymptotic Behavior of the Exact Solution of the	
		Burgers Equation	294
	8.6	The N Wave Solution	296
	8.7	Burgers' Initial- and Boundary-Value Problem	298
	8.8	Fisher's Equation and Diffusion-Reaction Process	301
	8.9	Traveling Wave Solutions and Stability Analysis	303
	8.10	Perturbation Solutions of the Fisher Boundary-Value Problem	307
	8.11	Similarity Methods and Similarity Solutions of	
		Diffusion Equations	309
	8.12	Nonlinear Reaction-Diffusion Equations	319
	8.13	A Brief Summary of Recent Work with References	324
	8.14	Exercises	325
9.	Solite	ons and The Inverse Scattering Transform	331
	9.1	Introduction	331
	9.2	The History of the Soliton and Soliton Interactions	331
	9.3	The Boussinesq and Korteweg-de Vries (KdV) Equations	336
	9.4	Solutions of the KdV Equation, Solitons and Cnoidal Waves	347
	9.5	The Lie Group Method and Similarity and Rational Solutions of the KdV Equation	356
	9.6	Conservation Laws and Nonlinear Transformations	359
	9.7	The Inverse Scattering Transform (IST) Method	363
	9.7 9.8	Bäcklund Transformations and the Nonlinear	303
	2.0	Superposition Principle	386
	9.9	The Lax Formulation, Its KdV Hierarchy, and the	300
	フ.フ	Zakharov and Shabat (ZS) Scheme	391
	9.10	The AKNS Method	400
	9.10	Exercises	400
	7.11	EACICISCS	4U I

x Contents

10.	The N	Ionlinear Schrödinger Equation and Solitary Waves	405
	10.1	Introduction	405
	10.2	The One-Dimensional Linear Schrödinger Equation	405
	10.3	The Derivation of the Nonlinear Schrödinger (NLS)	
		Equation and Solitary Waves	407
	10.4	Properties of the Solutions of the Nonlinear	
		Schrödinger Equation	412
	10.5	Conservation Laws for the NLS Equation	419
	10.6	The Inverse Scattering Method for the Nonlinear	
		Schrödinger Equation	422
	10.7	Examples of Physical Applications in Fluid Dynamics	
		and Plasma Physics	424
	10.8	Applications to Nonlinear Optics	438
	10.9	Exercises	449
11.	Nonli	near Klein-Gordon and Sine-Gordon Equations	453
	11.1	Introduction	453
	11.2	The One-Dimension Linear Klein-Gordon Equation	453
	11.3	The Two-Dimensional Linear Klein-Gordon Equation	456
	11.4	The Three-Dimensional Linear Klein-Gordon Equation	458
	11.5	The Nonlinear Klein-Gordon Equation and	
		Averaging Techniques	459
	11.6	The Klein-Gordon Equation and the Whitham Averaged	
		Variational Principle	467
	11.7	The Sine-Gordon Equation, Soliton and Anti-Soliton	
		Solutions	470
	11.8	The Solution of the Sine-Gordon Equation by Separation	
		of Variables	475
	11.9	Bäcklund Transformations for the Sine-Gordon Equation	484
	11.10	The Solution of the Sine-Gordon Equation by the Inverse	
		Scattering Method	487
-		The Similarity Method for the Sine-Gordon Equation	491
	11.12	Nonlinear Optics and the Sine-Gordon Equation	492
		Exercises	496
12.	Asymptotic Methods and Nonlinear Evolution Equations		50 1
	12.1	Introduction	50 1
	12.2	The Reductive Perturbation Method and	
		Quasi-Linear Hyperbolic Systems	502
	12.3	Quasi-Linear Dissipative Systems	50€
	12.4	Weakly Nonlinear Dispersive Systems and the	
		Korteweg-de Vries Equation	508
	12.5	Strongly Nonlinear Dispersive Systems and the	
		Nonlinear Schrödinger Equation	52 1

Contents		xi
12.6	The Perturbation Method of Ostrovsky and Pelinosky	527
12.7	The Method of Multiple Scales	531

2.,	The Method of Manapie Scales	551
12.8	Method of Multiple Scales for the Case of the Long Wave	
~	Approximation	538

581

Approximation	338
Answers and Hints to Selected Exercises	541
Bibliography	559

Index