PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
 C12N 15/82, 15/54, C08B 30/04, A01H 5/00

(11) International Publication Number:

WO 96/34968

(43) International Publication Date:

7 November 1996 (07.11.96)

(21) International Application Number:

PCT/GB96/01075

(22) International Filing Date:

3 May 1996 (03.05.96)

(30) Priority Data:

9509229.2 9607409.1 5 May 1995 (05.05.95)

10 April 1996 (10.04.96)

GB (8

(71) Applicant (for all designated States except US): NATIONAL STARCH AND CHEMICAL INVESTMENT HOLDING CORPORATION [US/US]; Suite 27, 501 Silverside Road, Wilmington, DE 19809 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): COOKE, David [GB/GB]; 2 Hunts Path, Oakley, Bedfordshire MK43 7SR (GB). DEBET, Martine [FR/GB]; 12 Bentley Close, Rectory Farm, Northampton NN3 5JS (GB). GIDLEY, Michael, John [GB/GB]; 45 Holmes Avenue, Raunds, Northamptonshire NN9 6SZ (GB). JOBLING, Stephen, Alan [GB/GB]; 19 Burwell Road, Eaton Socon, Huntingdon PE19 3QQ (GB). SAFFORD, Richard [GB/GB]; 10 Furness Close, Bedford, Bedfordshire MK41 8RN (GB). SIDEBOTTOM, Christopher, Michael [GB/GB]; 35 Waterloo Road, Bedford, Bedforshire MK40 3PQ (GB). WESTCOTT, Roger, John

[GB/GB]; 46 Castle Street, Wellingborough, Northamptonshire NN8 1LW (GB).

(74) Agent: KEITH W. NASH & CO.; 90-92 Regent Street, Cambridge CB2 1DP (GB).

(81) Designated States: AU, BR, CA, JP, KR, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: IMPROVEMENTS IN OR RELATING TO PLANT STARCH COMPOSITION

(57) Abstract

Disclosed is a nucleotide sequence encoding an effective portion of a class A starch branching enzyme (SBE) obtainable from potato plants, or a functional equivalent thereof, together with, inter alia, a corresponding polypeptide, a method of altering the characteristics of a plant, a plant having altered characteristics; and starch, particularly starch obtained from a potato plant, having novel properties.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Јарап	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	и	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

1

Title: <u>Improvements in or Relating to Plant Starch Composition</u>

Field of the Invention

This invention relates to novel nucleotide sequences, polypeptides encoded thereby, vectors and host cells and host organisms comprising one or more of the novel sequences, and to a method of altering one or more characteristics of an organism. The invention al;so relates to starch having novel properties and to uses thereof.

Background of the Invention

Starch is the major form of carbon reserve in plants, constituting 50% or more of the dry weight of many storage organs - e.g. tubers, seeds of cereals. Starch is used in numerous food and industrial applications. In many cases, however, it is necessary to modify the native starches, via chemical or physical means, in order to produce distinct properties to suit particular applications. It would be highly desirable to be able to produce starches with the required properties directly in the plant, thereby removing the need for additional modification. To achieve this via genetic engineering requires knowledge of the metabolic pathway of starch biosynthesis. This includes characterisation of genes and encoded gene products which catalyse the synthesis of starch. Knowledge about the regulation of starch biosynthesis raises the possibility of "re-programming" biosynthetic pathways to create starches with novel properties that could have new commercial applications.

The commercially useful properties of starch derive from the ability of the native granular form to swell and absorb water upon suitable treatment. Usually heat is required to cause granules to swell in a process known as gelatinisation, which has been defined (W A Atwell et al, Cereal Foods World 33, 306-311, 1988) as "... the collapse (disruption) of molecular orders within the starch granule manifested in irreversible changes in properties such as granular swelling, native crystallite melting, loss of birefringence, and starch solubilisation. The point of initial gelatinisation and the range over which it occurs is governed by starch concentration, method of observation, granule type, and heterogeneities within the granule population under observation". A number of techniques are available

2

for the determination of gelatinisation as induced by heating, a convenient and accurate method being differential scanning calorimetry, which detects the temperature range and enthalpy associated with the collapse of molecular orders within the granule. To obtain accurate and meaningful results, the peak and/or onset temperature of the endotherm observed by differential scanning calorimetry is usually determined.

The consequence of the collapse of molecular orders within starch granules is that the granules are capable of taking up water in a process known as pasting, which has been defined (W A Atwell et al, Cereal Foods World 33, 306-311, 1988) as "... the phenomenon following gelatinisation in the dissolution of starch. It involves granular swelling, exudation of molecular components from the granule, and eventually, total disruption of the granules". The best method of evaluating pasting properties is considered to be the viscoamylograph (Atwell et al, 1988 cited above) in which the viscosity of a stirred starch suspension is monitored under a defined time/temperature regime. A typical viscoamylograph profile for potato starch shows an initial rise in viscosity, which is considered to be due to granule swelling. In addition to the overall shape of the viscosity response in a viscoamylograph, a convenient quantitative measure is the temperature of initial viscosity development (onset). Figure 1 shows such a typical viscosity profile for potato starch, during and after cooking, and includes stages A-D which correspond to viscosity onset (A), maximum viscosity (B), complete dispersion (C) and reassociation of molecules (or retrogradation, D). In the figure, the dotted line represents viscosity (in stirring number units) of a 10% w/w starch suspension and the unbroken line shows the temperature in degrees centigrade. At a certain point, defined by the viscosity peak, granule swelling is so extensive that the resulting highly expanded structures are susceptible to mechanically-induced fragmentation under the stirring conditions used. With increased heating and holding at 95°C, further reduction in viscosity is observed due to increased fragmentation of swollen granules. This general profile has previously always been found for native potato starch.

After heating starches in water to 95°C and holding at that temperature (for typically 15 minutes), subsequent cooling to 50°C results in an increase in viscosity due to the process of retrogradation or set-back. Retrogradation (or set-back) is defined (Atwell et al., 1988)

3

cited above) as "...a process which occurs when the molecules comprising gelatinised starch begin to reassociate in an ordered structure...". At 50°C, it is primarily the amylose component which reassociates, as indicated by the increase in viscoamylograph viscosity for starch from normal maize (21.6% amylose) compared with starch from waxy maize (1.1% amylose) as shown in Figure 2. Figure 2 is a viscoamylograph of 10% w/w starch suspensions from waxy maize (solid line), conventional maize (dots and dashes), high amylose variety (hylon 5, dotted line) and a very high amylose variety (hylon 7, crosses). The temperature profile is also shown by a solid line, as in Figure 1. The extent of viscosity increase in the viscoamylograph on cooling and holding at 50°C depends on the amount of amylose which is able to reassociate due to its exudation from starch granules during the gelatinisation and pasting processes. A characteristic of amylose-rich starches from maize plants is that very little amylose is exuded from granules by gelatinisation and pasting up to 95°C, probably due to the restricted swelling of the granules. This is illustrated in Figure 2 which shows low viscosities for a high amylose (44.9%) starch (Hylon 5) from maize during gelatinisation and pasting at 95°C and little increase in viscosity on cooling and holding at 50°C. This effect is more extreme for a higher amylose content (58%, as in Hylon 7), which shows even lower viscosities in the viscoamylograph test (Figure 2). For commercially-available high amylose starches (currently available from maize plants, such as those described above), processing at greater than 100°C is usually necessary in order to generate the benefits of high amylose contents with respect to increased rates and strengths of reassociation, but use of such high temperatures is energetically unfavourable and costly. Accordingly, there is an unmet need for starches of high amylose content which can be processed below 100°C and still show enhanced levels of reassociation, as indicated for example by viscoamylograph measurements.

The properties of potato starch are useful in a variety of both food and non-food (paper, textiles, adhesives etc.) applications. However, for many applications, properties are not optimum and various chemical and physical modifications well known in the art are undertaken in order to improve useful properties. Two types of property manipulation which would be of use are: the controlled alteration of gelatinisation and pasting temperatures; and starches which suffer less granular fragmentation during pasting than

4

conventional starches.

Currently the only ways of manipulating the gelatinisation and pasting temperatures of potato starch are by the inclusion of additives such as sugars, polyhydroxy compounds of salts (Evans & Haisman, Starke 34, 224-231, 1982) or by extensive physical or chemical pre-treatments (e.g. Stute, Starke 44, 205-214, 1992). The reduction of granule fragmentation during pasting can be achieved either by extensive physical pretreatments (Stute, Starke 44, 205-214, 1992) or by chemical cross-linking. Such processes are inconvenient and inefficient. It is therefore desirable to obtain plants which produce starch which intrinsically possesses such advantageous properties.

Starch consists of two main polysaccharides, amylose and amylopectin. Amylose is a generally linear polymer containing α -1,4 linked glucose units, while amylopectin is a highly branched polymer consisting of a α -1,4 linked glucan backbone with α -1,6 linked glucan branches. In most plant storage reserves amylopectin constitutes about 75% of the starch content. Amylopectin is synthesized by the concerted action of soluble starch synthase and starch branching enzyme [α -1,4 glucan: α -1,4 glucan 6-glycosyltransferase, EC 2.4.1.18]. Starch branching enzyme (SBE) hydrolyses α -1,4 linkages and rejoins the cleaved glucan, via an α -1,6 linkage, to an acceptor chain to produce a branched structure. The physical properties of starch are strongly affected by the relative abundance of amylose and amylopectin, and SBE is therefore a crucial enzyme in determining both the quantity and quality of starches produced in plant systems.

In most plants studied to date e.g. maize (Boyer & Preiss, 1978 Biochem. Biophys. Res. Comm. 80, 169-175), rice (Smyth, 1988 Plant Sci. 57, 1-8) and pea (Smith, Planta 175, 270-279), two forms of SBE have been identified, each encoded by a separate gene. A recent review by Burton et al., (1995 The Plant Journal 7, 3-15) has demonstrated that the two forms of SBE constitute distinct classes of the enzyme such that, in general, enzymes of the same class from different plants may exhibit greater similarity than enzymes of different classes from the same plant. In their review, Burton et al. termed the two respective enzyme families class "A" and class "B", and the reader is referred thereto (and to the references cited therein) for a detailed discussion of the distinctions

5

between the two classes. One general distinction of note would appear to be the presence, in class A SBE molecules, of a flexible N-terminal domain, which is not found in class B molecules. The distinctions noted by Burton *et al.* are relied on herein to define class A and class B SBE molecules, which terms are to be interpreted accordingly.

However in potato, only one isoform of the SBE molecule (belonging to class B) has thus far been reported and only one gene cloned (Blennow & Johansson, 1991 Phytochem. 30, 437-444, and Koßmann et al., 1991 Mol. Gen. Genet. 230, 39-44). Further, published attempts to modify the properties of starch in potato plants (by preventing expression of the single known SBE) have generally not succeeded (e.g. Müller-Rober & Koßmann 1994 Plant Cell and Environment 17, 601-613).

Summary of the Invention

In a first aspect the invention provides a nucleotide sequence encoding an effective portion of a class A starch branching enzyme (SBE) obtainable from potato plants.

Preferably the nucleotide sequence encodes a polypeptide comprising an effective portion of the amino acid sequence shown in Figure 5 (excluding the sequence MNKRIDL, which does not represent part of the SBE molecule), or a functional equivalent thereof (which term is discussed below). The amino acid sequence shown in Figure 5 (Seq ID No. 15) includes a leader sequence which directs the polypeptide, when synthesised in potato cells. to the amyloplast. Those skilled in the art will recognise that the leader sequence is removed to produce a mature enzyme and that the leader sequence is therefore not essential for enzyme activity. Accordingly, an "effective portion" of the polypeptide is one which possesses sufficient SBE activity to complement the branching enzyme mutation in E. coli KV 832 cells (described below) and which is active when expressed in E. coli in the phosphorylation stimulation assay. An example of an incomplete polypeptide which nevertheless constitutes an "effective portion" is the mature enzyme lacking the leader sequence. By analogy with the pea class A SBE sequence, the potato class A sequence shown in Figure 5 probably possesses a leader sequence of about 48 amino acid residues, such that the N terminal amino acid sequence is thought to commence around the glutamic acid residue (E) at position 49 (EKSSYN... etc.). Those skilled in the art will appreciate

6

that an effective portion of the enzyme may well omit other parts of the sequence shown in the figure without substantial detrimental effect. For example, the C-terminal glutamic acid-rich region could be reduced in length, or possibly deleted entirely, without abolishing class A SBE activity. A comparison with other known SBE sequences, especially other class A SBE sequences (see for example, Burton *et al.*, 1995 cited above), should indicate those portions which are highly conserved (and thus likely to be essential for activity) and those portions which are less well conserved (and thus are more likely to tolerate sequence changes without substantial loss of enzyme activity).

Conveniently the nucleotide sequence will comprise substantially nucleotides 289 to 2790 of the DNA sequence (Seq ID No. 14) shown in Figure 5 (which nucleotides encode the mature enzyme) or a functional equivalent thereof, and may also include further nucleotides at the 5' or 3' end. For example, for ease of expression, the sequence will desirably also comprise an in-frame ATG start codon, and may also encode a leader sequence. Thus, in one embodiment, the sequence further comprises nucleotides 145 to 288 of the sequence shown in Figure 5. Other embodiments are nucleotides 228 to 2855 of the sequence labelled "psbe2con.seq" in Figure 8, and nucleotides 57 to 2564 of the sequence shown in Figure 12 (preferably comprising an in-frame ATG start codon, such as the sequence of nucleotides 24 to 56 in the same Figure), or functional equivalents of the aforesaid sequences.

The term "functional equivalent" as applied herein to nucleotide sequences is intended to encompass those sequences which differ in their nucleotide composition to that shown in Figure 5 but which, by virtue of the degeneracy of the genetic code, encode polypeptides having identical or substantially identical amino acid sequences. It is intended that the term should also apply to sequences which are sufficiently homologous to the sequence of the invention that they can hybridise to the complement thereof under stringent hybridisation conditions - such equivalents will preferably possess at least 85%, more preferably at least 90%, and most preferably at least 95% sequence homology with the sequence of the invention as exemplified by nucleotides 289 to 2790 of the DNA sequence shown in Figure 5. It will be apparent to those skilled in the art that the nucleotide sequence of the invention may also find useful application when present as an "antisense"

7

sequence. Accordingly, functionally equivalent sequences will also include those sequences which can hybridise, under stringent hybridisation conditions, to the sequence of the invention (rather than the complement thereof). Such "antisense" equivalents will preferably possess at least 85%, more preferably at least 90%, and most preferably 95% sequence homology with the complement of the sequence of the invention as exemplified by nucleotides 289 to 2790 of the DNA sequence shown in Figure 5. Particular functional equivalents are shown, for example, in Figures 8 and 10 (if one disregards the various frameshift mutations noted therein).

The invention also provides vectors, particularly expression vectors, comprising the nucleotide sequence of the invention. The vector will typically comprise a promoter and one or more regulatory signals of the type well known to those skilled in the art. The invention also includes provision of cells transformed (which term encompasses transduction and transfection) with a vector comprising the nucleotide sequence of the invention.

The invention further provides a class A SBE polypeptide, obtainable from potato plants. In particular the invention provides the polypeptide in substantially pure form, especially in a form free from other plant-derived (especially potato plant-derived) components, which can be readily accomplished by expression of the relevant nucleotide sequence in a suitable non-plant host (such as any one of the yeast strains routinely used for expression purposes, e.g. *Pichia spp.* or *Saccharomyces spp*). Typically the enzyme will substantially comprise the sequence of amino acid residues 49 to 882 shown in Figure 5 (disregarding the sequence MNKRIDL, which is not part of the enzyme), or a functional equivalent thereof. The polypeptide of the invention may be used in a method of modifying starch *in vitro*, comprising treating starch under suitable conditions (e.g. appropriate temperature, pH, etc) with an effective amount of the polypeptide according to the invention.

The term "functional equivalent", as applied herein to amino acid sequences, is intended to encompass amino acid sequences substantially similar to that shown in Figure 5, such that the polypeptide possesses sufficient activity to complement the branching enzyme mutation in *E. coli* KV 832 cells (described below) and which is active in *E. coli* in the

8

phosphorylation stimulation assay. Typically such functionally equivalent amino acid sequences will preferably possess at least 85%, more preferably at least 90%, and most preferably at least 95% sequence identity with the amino acid sequence of the mature enzyme (i.e. minus leader sequence) shown in Figure 5. Those skilled in the art will appreciate that conservative substitutions may be made generally throughout the molecule without substantially affecting the activity of the enzyme. Moreover, some non-conservative substitutions may be tolerated, especially in the less highly conserved regions of the molecule. Such substitutions may be made, for example, to modify slightly the activity of the enzyme. The polypeptide may, if desired, include a leader sequence, such as that exemplified by residues 1 to 48 of the amino acid sequence shown in Figure 5, although other leader sequences and signal peptides and the like are known and may be included.

A portion of the nucleotide sequence of the invention has been introduced into a plant and found to affect the characteristics of the plant. In particular, introduction of the sequence of the invention, operably linked in the antisense orientation to a suitable promoter, was found to reduce the amount of branched starch molecules in the plant. Additionally, it has recently been demonstrated in other experimental systems that "sense suppression" can also occur (i.e. expression of an introduced sequence operably linked in the sense orientation can interfere, by some unknown mechanism, with the expression of the native gene), as described by Matzke & Matzke (1995 Plant Physiol. 107, 679-685). Any one of the methods mentioned by Matzke & Matzke could, in theory, be used to affect the expression in a host of a homologous SBE gene.

It is believed that antisense methods are mainly operable by the production of antisense mRNA which hybridises to the sense mRNA, preventing its translation into functional polypeptide, possibly by causing the hybrid RNA to be degraded (e.g. Sheehy *et al.*, 1988 PNAS 85, 8805-8809; Van der Krol *et al.*, Mol. Gen. Genet. 220, 204-212). Sense suppression also requires homology between the introduced sequence and the target gene, but the exact mechanism is unclear. It is apparent however that, in relation to both antisense and sense suppression, neither a full length nucleotide sequence, nor a "native" sequence is essential. Preferably the "effective portion" used in the method will comprise

9

at least one third of the full length sequence, but by simple trial and error other fragments (smaller or larger) may be found which are functional in altering the characteristics of the plant.

Thus, in a further aspect the invention provides a method of altering the characteristics of a plant, comprising introducing into the plant an effective portion of the sequence of the invention operably linked to a suitable promoter active in the plant. Conveniently the sequence will be linked in the anti-sense orientation to the promoter. Preferably the plant is a potato plant. Conveniently, the characteristic altered relates to the starch content and/or starch composition of the plant (i.e. amount and/or type of starch present in the plant). Preferably the method of altering the characteristics of the plant will also comprise the introduction of one or more further sequences, in addition to an effective portion of the sequence of the invention. The introduced sequence of the invention and the one or more further sequences (which may be sense or antisense sequences) may be operably linked to a single promoter (which would ensure both sequences were transcribed at essentially the same time), or may be operably linked to separate promoters (which may be necessary for optimal expression). Where separate promoters are employed they may be identical to each other or different. Suitable promoters are well known to those skilled in the art and include both constitutive and inducible types. Examples include the CaMV 35S promoter (e.g. single or tandem repeat) and the patatin promoter. Advantageously the promoter will be tissue-specific. Desirably the promoter will cause expression of the operably linked sequence at substantial levels only in the tissue of the plant where starch synthesis and/or starch storage mainly occurs. Thus, for example, where the sequence is introduced into a potato plant, the operably linked promoter may be tuber-specific, such as the patatin promoter.

Desirably, for example, the method will also comprise the introduction of an effective portion of a sequence encoding a class B SBE, operably linked in the antisense orientation to a suitable promoter active in the plant. Desirably the further sequence will comprise an effective portion of the sequence encoding the potato class B SBE molecule. Conveniently the further sequence will comprise an effective portion of the sequence described by Blennow & Johansson (1991 Phytochem. 30, 437-444) or that disclosed in

10

WO92/11375. More preferably, the further sequence will comprise at least an effective portion of the sequence disclosed in International Patent Application No. WO 95/26407. Use of antisense sequences against both class A and class B SBE in combination has now been found by the present inventors to result in the production of starch having very greatly altered properties (see below). Those skilled in the art will appreciate the possibility that, if the plant already comprises a sense or antisense sequence which efficiently inhibits the class B SBE activity, introduction of a sense or antisense sequence to inhibit class A SBE activity (thereby producing a plant with inhibition of both class A and class B activity) might alter greatly the properties of the starch in the plant, without the need for introduction of one or more further sequences. Thus the sequence of the invention is conveniently introduced into plants already having low levels of class A and/or class B SBE activity, such that the inhibition resulting from the introduction of the sequence of the invention is likely to have a more pronounced effect.

The sequence of the invention, and the one or more further sequences if desired, can be introduced into the plant by any one of a number of well-known techniques (e.g. Agrobacterium-mediated transformation, or by "biolistic" methods). The sequences are likely to be most effective in inhibiting SBE activity in potato plants, but theoretically could be introduced into any plant. Desirable examples include pea, tomato, maize, wheat, rice, barley, sweet potato and cassava plants. Preferably the plant will comprise a natural gene encoding an SBE molecule which exhibits reasonable homology with the introduced nucleic acid sequence of the invention.

In another aspect, the invention provides a plant cell, or a plant or the progeny thereof, which has been altered by the method defined above. The progeny of the altered plant may be obtained, for example, by vegetative propagation, or by crossing the altered plant and reserving the seed so obtained. The invention also provides parts of the altered plant, such as storage organs. Conveniently, for example, the invention provides tubers comprising altered starch, said tubers being obtained from an altered plant or the progeny thereof. Potato tubers obtained from altered plants (or the progeny thereof) will be particularly useful materials in certain industrial applications and for the preparation and/or processing of foodstuffs and may be used, for example, to prepare low-fat waffles and

11

chips (amylose generally being used as a coating to prevent fat uptake), and to prepare mashed potato (especially "instant" mashed potato) having particular characteristics.

In particular relation to potato plants, the invention provides a potato plant or part thereof which, in its wild type possesses an effective SBE A gene, but which plant has been altered such that there is no effective expression of an SBE A polypeptide within the cells of at least part of the plant. The plant may have been altered by the method defined above, or may have been selected by conventional breeding to be deleted for the class A SBE gene, presence or absence of which can be readily determined by screening samples of the plants with a nucleic acid probe or antibody specific for the potato class A gene or gene product respectively.

The invention also provides starch extracted from a plant altered by the method defined above, or the progeny of such a plant, the starch having altered properties compared to starch extracted from equivalent, but unaltered, plants. The invention further provides a method of making altered starch, comprising altering a plant by the method defined above and extracting therefrom starch having altered properties compared to starch extracted from equivalent, but unaltered, plants. Use of nucleotide sequences in accordance with the invention has allowed the present inventors to produce potato starches having a wide variety of novel properties.

In particular the invention provides the following: a plant (especially a potato plant) altered by the method defined above, containing starch which, when extracted from the plant, has an elevated endotherm peak temperature as judged by DSC, compared to starch extracted from a similar, but unaltered, plant; a plant (especially a potato plant) altered by the method defined above, containing starch which, when extracted from the plant, has an elevated viscosity onset temperature (conveniently elevated by 10 - 25°C) as judged by viscoamylograph compared to starch extracted from a similar, but unaltered, plant; a plant (especially a potato plant) altered by the method defined above, containing starch which, when extracted from the plant, has a decreased peak viscosity (conveniently decreased by 240 - 700SNUs) as judged by viscoamylograph compared to starch extracted from a similar, but unaltered, plant; a plant (especially a potato plant) altered by the method

12

defined above, containing starch which, when extracted from the plant, has an increased pasting viscosity (conveniently increased by 37 - 260SNUs) as judged by viscoamylograph compared to starch extracted from a similar, but unaltered, plant; a plant (especially a potato plant) altered by the method defined above, containing starch which, when extracted from the plant, has an increased set-back viscosity (conveniently increased by 224 - 313 SNUs) as judged by viscoamylograph compared to starch extracted from a similar, but unaltered, plant; a plant (especially a potato plant) altered by the method defined above, containing starch which, when extracted from the plant, has a decreased set-back viscosity as judged by viscoamylograph compared to starch extracted from a similar, but unaltered, plant; and a plant (especially a potato plant) altered by the method defined above, containing starch which, when extracted from the plant, has an elevated amylose content as judged by iodometric assay (i.e. by the method of Morrison & Laignelet 1983, cited above) compared to starch extracted from a similar, but unaltered, plant. The invention also provides for starch obtainable or obtained from such plants as aforesaid.

In particular the invention provides for starch which, as extracted from a potato plant by wet milling at ambient temperature, has one or more of the following properties, as judged by viscoamylograph analysis performed according to the conditions defined below: viscosity onset temperature in the range 70-95°C (preferably 75-95°C); peak viscosity in the range 500 - 12 stirring number units; pasting viscosity in the range 214 - 434 stirring number units; set-back viscosity in the range 450 - 618 or 14 - 192 stirring number units; or displays no significant increase in viscosity during viscoamylograph. Peak, pasting and set-back viscosities are defined below. Viscosity onset temperature is the temperature at which there is a sudden, marked increase in viscosity from baseline levels during viscoamylograph, and is a term well-known to those skilled in the art.

In other particular embodiments, the invention provides starch which as extracted from a potato plant by wet milling at ambient temperature has a peak viscosity in the range 200 - 500 SNUs and a set-back viscosity in the range 275-618 SNUs as judged by viscoamylograph according to the protocol defined below; and starch which as extracted from a potato plant by wet milling at ambient temperature has a viscosity which does not decrease between the start of the heating phase (step 2) and the start of the final holding

13

phase (step 5) and has a set-back viscosity of 303 SNUs or less as judged by viscoamylograph according to the protocol defined below.

For the purposes of the present invention, viscoamylograph conditions are understood to pertain to analysis of a 10% (w/w) aqueous suspension of starch at atmospheric pressure, using a Newport Scientific Rapid Visco Analyser with a heating profile of: holding at 50°C for 2 minutes (step 1), heating from 50 to 95°C at a rate of 1.5°C per minute (step 2), holding at 95°C for 15 minutes (step 3), cooling from 95 to 50°C at a rate of 1.5°C per minute (step 4), and then holding at 50°C for 15 minutes (step 5). Peak viscosity may be defined for present purposes as the maximum viscosity attained during the heating phase (step 2) or the holding phase (step 3) of the viscoamylograph. Pasting viscosity may be defined as the viscosity attained by the starch suspensions at the end of the holding phase (step 3) of the viscoamylograph. Set-back viscosity may be defined as the viscosity of the starch suspension at the end of step 5 of the viscoamylograph.

In yet another aspect the invention provides starch from a potato plant having an apparent amylose content (% w/w) of at least 35%, as judged by iodometric assay according to the method described by Morrison & Laignelet (1983 J. Cereal Science 1, 9-20). Preferably the starch will have an amylose content of at least 40%, more preferably at least 50%, and most preferably at least 66%. Starch obtained directly from a potato plant and having such properties has not hitherto been produced. Indeed, as a result of the present invention, it is now possible to generate *in vivo* potato starch which has some properties analogous to the very high amylose starches (e.g. Hylon 7) obtainable from maize.

Starches with high (at least 35%) amylose contents find commercial application as, amongst other reasons, the amylose component of starch reassociates more strongly and rapidly than the amylopectin component during retrogradation processes. This may result, for example, in pastes with higher viscosities, gels of greater cohesion, or films of greater strength for starches with high (at least 35%) compared with normal (less than 35%) amylose contents. Alternatively, starches may be obtained with very high amylose contents, such that the granule structure is substantially preserved during heating, resulting in starch suspensions which demonstrate substantially no increase in viscosity during

14

cooking (i.e. there is no significant viscosity increase during viscoamylograph conditions defined above). Such starches typically exhibit a viscosity increase of less than 10% (preferably less than 5%) during viscoamylograph under the conditions defined above.

In commerce, these valuable properties are currently obtained from starches of high amylose content derived from maize plants. It would be of commercial value to have an alternative source of high amylose starches from potato as other characteristics such as granule size, organoleptic properties and textural qualities may distinguish application performances of high amylose starches from maize and potato plants.

Thus high amylose starch obtained by the method of the present invention may find application in many different technological fields, which may be broadly categorised into two groups: food products and processing; and "Industrial" applications. Under the heading of food products, the novel starches of the present invention may find application as, for example, films, barriers, coatings or gelling agents. In general, high amylose content starches absorb less fat during frying than starches with low amylose content, thus the high amylose content starches of the invention may be advantageously used in preparing low fat fried products (e.g. potato chips, crisps and the like). The novel starches may also be employed with advantage in preparing confectionery and in granular and retrograded "resistant" starches. "Resistant" starch is starch which is resistant to digestion by α -amylase. As such, resistant starch is not digested by α -amylases present in the human small intestine, but passes into the colon where it exhibits properties similar to soluble and insoluble dietary fibre. Resistant starch is thus of great benefit in foodstuffs due to its low calorific value and its high dietary fibre content. Resistant starch is formed by the retrogradation (akin to recrystallization) of amylose from starch gels. retrogradation is inhibited by amylopectin. Accordingly, the high amylose starches of the present invention are excellent starting materials for the preparation of resistant starch. Suitable methods for the preparation of resistant starch are well-known to those skilled in the art and include, for example, those described in US 5,051,271 and US 5,281,276. Conveniently the resistant starches provided by the present invention comprise at least 5% total dietary fibre, as judged by the method of Prosky et al., (1985 J. Assoc. Off. Anal. Chem. 68, 677), mentioned in US 5,281, 276.

15

Under the heading of "Industrial" applications, the novel starches of the invention may be advantageously employed, for example, in corrugating adhesives, in biodegradable products such as loose fill packaging and foamed shapes, and in the production of glass fibers and textiles.

Those skilled in the art will appreciate that the novel starches of the invention may, if desired, be subjected *in vitro* to conventional enzymatic, physical and/or chemical modification, such as cross-linking, introduction of hydrophobic groups (e.g. octenyl succinic acid, dodecyl succinic acid), or derivatization (e.g. by means of esterification or etherification).

In yet another aspect the invention provides high (35% or more) amylose starches which generate paste viscosities greater than those obtained from high amylose starches from maize plants after processing at temperatures below 100°C. This provides the advantage of more economical starch gelatinisation and pasting treatments through the use of lower processing temperatures than are currently required for high amylose starches from maize plants.

The invention will now be further described by way of illustrative example and with reference to the drawings, of which:

Figure 1 shows a typical viscoamylograph for a 10% w/w suspension of potato starch;

Figure 2 shows vsicoamylographs for 10% suspensions of starch from various maize varieties;

Figure 3 is a schematic representation of the cloning strategy used by the present inventors;

Figure 4a shows the amino acid alignment of the C-terminal portion of starch branching enzyme isoforms from various sources: amino acid residues matching the consensus

16

sequence are shaded;

Figure 4b shows the alignment of DNA sequences of various starch branching enzyme isoforms which encode a conserved amino acid sequence;

Figure 5 shows the DNA sequence (Seq ID No. 14) and predicted amino acid sequence (Seq ID No. 15) of a full length potato class A SBE cDNA clone obtained by PCR;

Figure 6 shows a comparison of the most highly conserved part of the amino acid sequences of potato class A (uppermost sequence) and class B (lowermost sequence) SBE molecules;

Figure 7 shows a comparison of the amino acid sequence of the full length potato class A (uppermost sequence) and pea (lowermost sequence) class A SBE molecules;

Figure 8 shows a DNA alignment of various full length potato class A SBE clones obtained by the inventors;

Figure 9 shows the DNA sequence of a potato class A SBE clone determined by direct sequencing of PCR products, together with the predicted amino acid sequence;

Figure 10 is a multiple DNA alignment of various full length potato SBE A clones obtained by the inventors;

Figure 11 is a schematic illustration of the plasmid pSJ64;

Figure 12 shows the DNA sequence and predicted amino acid sequence of the full length potato class A SBE clone as present in the plasmid pSJ90; and

Figure 13 shows viscoamylographs for 10% w/w suspensions of starch from various transgenic potato plants made by the relevant method aspect of the invention.

17

Examples

Example 1

Cloning of Potato class A SBE

The strategy for cloning the second form of starch branching enzyme from potato is shown in Figure 3. The small arrowheads represent primers used by the inventors in PCR and RACE protocols. The approximate size of the fragments isolated is indicated by the numerals on the right of the Figure. By way of explanation, a comparison of the amino acid sequences of several cloned plant starch branching enzymes (SBE) from maize (class A), pea (class A), maize (class B), rice (class B) and potato (class B), as well as human glycogen branching enzyme, allowed the inventors to identify a region in the carboxy-terminal one third of the protein which is almost completely conserved (GYLNFMGNEFGHPEWIDFPR) (Figure 4a). A multiple alignment of the DNA sequences (human, pea class A, potato class B, maize class B, maize class A and rice class B, respectively) corresponding to this region is shown in Figure 4b and was used to design an oligo which would potentially hybridize to all known plant starch branching enzymes: AATTT(C/T)ATGGGIAA(C/T)GA(A/G)TT(C/T)GG (Seq ID No. 20).

Library PCR

The initial isolation of a partial potato class A SBE cDNA clone was from an amplified potato tuber cDNA library in the λ Zap vector (Stratagene). One half μ L of a potato cDNA library (titre 2.3 x 10°pfu/mL) was used as template in a 50 μ L reaction containing 100 pmol of a 16 fold degenerate POTSBE primer and 25 pmol of a T7 primer (present in the λ Zap vector 3' to the cDNA sequences - see Figure 3), 100 μ M dNTPs, 2.5 U Taq polymerase and the buffer supplied with the Taq polymerase (Stratagene). All components except the enzyme were added to a 0.5 mL microcentrifuge tube, covered with mineral oil and incubated at 94°C for 7 minutes and then held at 55°C, while the Taq polymerase was added and mixed by pipetting. PCR was then performed by incubating for 1 min at 94°C, 1 min at 58°C and 3 minutes at 72°C, for 35 cycles. The PCR products were extracted with phenol/chloroform, ethanol precipitated and resuspended in TE pH 8.0 before cloning into the T/A cloning vector pT7BlueR (Invitrogen).

18

Several fragments between 600 and 1300 bp were amplified. These were isolated from an agarose gel and cloned into the pT7BlueR T/A cloning vector. Restriction mapping of 24 randomly selected clones showed that they belonged to several different groups (based on size and presence/absence of restriction sites). Initially four clones were chosen for sequencing. Of these four, two were found to correspond to the known potato class B SBE sequence, however the other two, although homologous, differed significantly and were more similar to the pea class A SBE sequence, suggesting that they belonged to the class A family of branching enzymes (Burton *et al.*, 1995 The Plant Journal, cited above). The latter two clones (~ 800bp) were sequenced fully. They both contained at the 5' end the sequence corresponding to the degenerate oligonucleotide used in the PCR and had a predicted open reading frame of 192 amino acids. The deduced amino acid sequence was highly homologous to that of the pea class A SBE.

The ~800 bp PCR derived cDNA fragment (corresponding to nucleotides 2281 to 3076 of the psbe2 con.seq sequence shown in Figure 8) was used as a probe to screen the potato tuber cDNA library. From one hundred and eighty thousand plaques, seven positives were obtained in the primary screen. PCR analysis showed that five of these clones were smaller than the original 800 bp cDNA clone, so these were not analysed further. The two other clones (designated 3.2.1 and 3.1.1) were approximately 1200 and 1500 bp in length respectively. These were sequenced from their 5' ends and the combined consensus sequence aligned with the sequence from the PCR generated clones. The cDNA clone 3.2.1 was excised from the phage vector and plasmid DNA was prepared and the insert fully sequenced. Several attempts to obtain longer clones from the library were unsuccessful, therefore clones containing the 5' end of the full length gene were obtained using RACE (rapid amplification of cDNA ends).

Rapid Amplification of cDNA ends (RACE) and PCR conditions

RACE was performed essentially according to Frohman (1992 Amplifications 11-15). Two μg of total RNA from mature potato tubers was heated to 65°C for 5 min and quick cooled on ice. The RNA was then reverse transcribed in a 20 μL reaction for 1 hour at 37°C using BRL's M-MLV reverse transcriptase and buffer with 1 mM DTT, 1 mM dNTPs, 1 U/ μL RNAsin (Promega) and 500 pmol random hexamers (Pharmacia) as

19

primer. Excess primers were removed on a Centricon 100 column and cDNA was recovered and precipitated with isopropanol. cDNA was A-tailed in a volume of 20 µl using 10 units terminal transferase (BRL), 200 µM dATP for 10 min at 37°C, followed by 5 min at 65°C. The reaction was then diluted to 0.5 ml with TE pH 8 and stored at 4°C as the cDNA pool. cDNA clones were isolated by PCR amplification using the primers $R_0 R_1 dT_{17}$, R_0 and POTSBE24. The PCR was performed in 50 μ L using a hot start technique: 10 µL of the cDNA pool was heated to 94°C in water for 5 min with 25 pmol POTSBE24, 25 pmol R_o and 2.5 pmol of $R_oR_idT_{17}$ and cooled to 75°C. Five μL of 10 x PCR buffer (Stratagene), 200 μ M dNTPs and 1.25 units of Taq polymerase were added, the mixture heated at 45°C for 2 min and 72°C for 40 min followed by 35 cycles of 94°C for 45 sec, 50°C for 25 sec, 72°C for 1.5 min and a final incubation at 72°C for 10 min. PCR products were separated by electrophoresis on 1% low melting agarose gels and the smear covering the range 600-800 bp fragments was excised and used in a second PCR amplification with 25 pmol of R_i and POTSBE25 primers in a 50 μ L reaction (28 cycles of 94°C for 1 min, 50°C 1 min, 72°C 2 min). Products were purified by chloroform extraction and cloned into pT7 Blue. PCR was used to screen the colonies and the longest clones were sequenced.

The first round of RACE only extended the length of the SBE sequence approximately 100 bases, therefore a new A-tailed cDNA library was constructed using the class A SBE specific oligo POTSBE24 (10 pmol) in an attempt to recover longer RACE products. The first and second round PCR reactions were performed using new class A SBE primers (POTSBE 28 and 29 respectively) derived from the new sequence data. Conditions were as before except that the elongation step in the first PCR was for 3 min and the second PCR consisted of 28 cycles at 94 °C for 45 seconds, 55 °C for 25 sec and 72 °C for 1 min 45 sec.

Clones ranging in size from 400 bp to 1.4 kb were isolated and sequenced. The combined sequence of the longest RACE products and cDNA clones predicted a full length gene of about 3150 nucleotides, excluding the poly(A) tail (psbe 2con.seq in Fig. 8).

As the sequence of the 5' half of the gene was compiled from the sequence of several

20

RACE products generated using Taq polymerase, it was possible that the compiled sequence did not represent that of a single mRNA species and/or had nucleotide sequence changes. The 5' 1600 bases of the gene was therefore re-isolated by PCR using Ultma, a thermostable DNA polymerase which, because it possesses a 3'-5' exonuclease activity, has a lower error rate compared to Taq polymerase. Several PCR products were cloned and restriction mapped and found to differ in the number of *Hind III*, *Ssp I*, and *EcoR I* sites. These differences do not represent PCR artefacts as they were observed in clones obtained from independent PCR reactions (data not shown) and indicate that there are several forms of the class A SBE gene transcribed in potato tubers.

In order to ensure that the sequence of the full length cDNA clone was derived from a single mRNA species it was therefore necessary to PCR the entire gene in one piece. cDNA was prepared according to the RACE protocol except that the adaptor oligo $R_oR_idT_{17}$ (5 pmol) was used as a primer and after synthesis the reaction was diluted to 200 μ L with TE pH 8 and stored at 4°C. Two μ L of the cDNA was used in a PCR reaction of 50 μ L using 25 pmol of class A SBE specific primers PBER1 and PBERT (see below), and thirty cycles of 94° for 1 min, 60°C for 1 min and 72°C for 3 min. If Taq polymerase was used the PCR products were cloned into pT7Blue whereas if Ultma polymerase was used the PCR products were purified by chloroform extraction, ethanol precipitation and kinased in a volume of 20 μ L (and then cloned into pBSSK IIP which had been cut with EcoRV and dephosphorylated). At least four classes of cDNA were isolated, which again differed in the presence or absence of *Hind* III, *Ssp* I and *EcoR* I sites. Three of these clones were sequenced fully, however one clone could not be isolated in sufficient quantity to sequence.

The sequence of one of the clones (number 19) is shown in Figure 5. The first methionine (initiation) codon starts a short open reading frame (ORF) of 7 amino acids which is out of frame with the next predicted ORF of 882 amino acids which has a molecular mass (Mr) of approximately 100 Kd. Nucleotides 6-2996 correspond to SBE sequence - the rest of the sequence shown is vector derived. Figure 6 shows a comparison of the most highly conserved part of the amino acid sequence of potato class A SBE (residues 180-871, top, row) and potato class B SBE (bottom row, residues 98-792); the middle row indicates the

21

degree of similarity, identical residues being denoted by the common letter, conservative changes by two dots and neutral changes by a single dot. Dashes indicate gaps introduced to optimise the alignment. The class A SBE protein has 44% identity over the entire length with potato class B SBE, and 56% identity therewith in the central conserved domain (Figure 6), as judged by the "Megalign" program (DNASTAR). However, Figure 7 shows a comparison between potato class A SBE (top row, residues 1-873) and pea class A SBE (bottom row, residues 1-861), from which it can be observed that cloned potato gene is more homologous to the class A pea enzyme, where the identity is 70% over nearly the entire length, and this increases to 83% over the central conserved region (starting at IPPP at position ~170). It is clear from this analysis that this cloned potato SBE gene belongs to the class A family of SBE genes.

An E. coli culture, containing the plasmid pSJ78 (which directs the expression of a full length potato SBE Class A gene), has been deposited (on 3rd January 1996) under the terms of the Budapest Treaty at The National Collections of Industrial and Marine Bacteria Limited (23 St Machar Drive, Aberdeen, AB2 1RY, United Kingdom), under accession number NCIMB 40781. Plasmid pSJ78 is equivalent to clone 19 described above. It represents a full length SBE A cDNA blunt-end ligated into the vector pBSSKIIP.

Polymorphism of class A SBE genes

Sequence analysis of the other two full length class A SBE genes showed that they contain frameshift mutations and are therefore unable to encode full length proteins and indeed they were unable to complement the branching enzyme deficiency in the KV832 mutant (described below). An alignment of the full length DNA sequences is shown in Figure 8: "10con.seq" (Seq ID No. 12), "19con.seq" (Seq ID No. 14) and "11con.seq" (Seq ID No. 13) represent the sequence of full length clones 10, 19 and 11 obtained by PCR using the PBER1 and PBERT primers (see below), whilst "psbe2con.seq" (Seq ID No. 18) represents the consensus sequence of the RACE clones and cDNA clone 3.2.1. Those nucleotides which differ from the overall consensus sequence (not shown) are shaded. Dashes indicate gaps introduced to optimise the alignment. Apart from the frameshift mutations these clones are highly homologous. It should be noted that the 5' sequence of psbe2con is longer because this is the longest RACE product and it also contains several

22

changes compared to the other clones. The upstream methionine codon is still present in this clone but the upstream ORF is shortened to just 3 amino acids and in addition there is a 10 base deletion in the 5' untranslated leader.

The other significant area of variation is in the carboxy terminal region of the protein coding region. Closer examination of this area reveals a GAA trinucleotide repeat structure which varies in length between the four clones. These are typical characteristics of a microsatellite repeat region. The most divergent clone is #11 which has only one GAA triplet whereas clone 19 has eleven perfect repeats and the other two clones have five and seven GAA repeats. All of these deletions maintain the ORF but change the number of glutamic acid residues at the carboxy terminus of the protein.

Most of the other differences between the clones are single base changes. It is quite possible that some of these are PCR errors. To address this question direct sequencing of PCR fragments amplified from first strand cDNA was performed. Figure 9 shows the DNA sequence, and predicted amino acid sequence, obtained by such direct sequencing. Certain restriction sites are also marked. Nucleotides which could not be unambiguously assigned are indicated using standard IUPAC notation and, where this uncertainty affects the predicted amino acid sequence, a question mark is used. Sequence at the extreme 5' and 3' ends of the gene could not be determined because of the heterogeneity observed in the different cloned genes in these regions (see previous paragraph). However this can be taken as direct evidence that these differences are real and are not PCR or cloning artefacts.

There is absolutely no evidence for the frameshift mutations in the PCR derived sequence and it would appear that these mutations are an artefact of the cloning process, resulting from negative selection pressure in *E. coli*. This is supported by the fact that it proved extremely difficult to clone the full length PCR products intact as many large deletions were seen and the full length clones obtained were all cloned in one orientation (away from the LacZ promoter), perhaps suggesting that expression of the gene is toxic to the cells. Difficulties of this nature may have been responsible, at least in part, for the previous failure of other researchers to obtain the present invention.

23

A comparison of all the full length sequences is shown in Figure 10. In addition to clones 10, 11 and 19 are shown the sequences of a *Bgl* II - *Xho* I product cloned directly into the QE32 expression vector ("86CON.SEQ", Seq ID No. 16) and the consensus sequence of the directly sequenced PCR products ("pcrsbe2con.seq", Seq ID No. 17). Those nucleotides which differ from the consensus sequence (not shown) are shaded. Dashes indicate gaps introduced to optimise the alignment. There are 11 nucleotide differences predicted to be present in the mRNA population, which are indicated by asterisks above and below the sequence. The other differences are probably PCR artefacts or possibly sequencing errors.

Complementation of a branching enzyme deficient E. coli mutant

To determine if the isolated SBE gene encodes an active protein i.e. one that has branching enzyme activity, a complementation test was performed in the E. coli strain KV832. This strain is unable to make bacterial glycogen as the gene for the glycogen branching enzyme has been deleted (Keil et al., 1987 Mol. Gen. Genet. 207, 294-301). When wild type cells are grown in the presence of glucose they synthesise glycogen (a highly branched glucose polymer) which stains a brown colour with iodine, whereas the KV832 cells make only a linear chain glucose polymer which stains blueish green with iodine. To determine if the cloned SBE gene could restore the ability of the KV832 cells to make a branched polymer, the clone pSJ90 (Seq ID No. 19) was used and constructed as below. The construct is a PCR-derived, substantially full length fragment (made using primers PBE 2B and PBE 2X, detailed below), which was cut with Bgl II and Xho I and cloned into the BamH I / Sal I sites of the His-tag expression vector pQE32 (Qiagen). This clone, pSJ86, was sequenced and found to have a frameshift mutation of two bases in the 5' half of the gene. This frameshift was removed by digestion with Nsi I and SnaB I and replaced with the corresponding fragment from a Taq-generated PCR clone to produce the plasmid pSJ90 (sequence shown in Figure 12; the first 10 amino acids are derived from the expression vector). The polypeptide encoded by pSJ90 would be predicted to correspond to amino acids 46-882 of the full SBE coding sequence. The construct pSJ90 was transformed into the branching enzyme deficient KV832 cells and transformants were grown on solid PYG medium (0.85% KH₂PO₄, 1.1% K₂HPO₄, 0.6% yeast extract) containing 1.0% glucose. To test for complementation, a loop of cells was

24

scraped off and resuspended in $150\mu l$ of water, to which was added $15\mu l$ Lugol's solution (2g KI and 1g I₂ per 300ml water). It was found that the potato SBE fragment-transformed KV832 cells now stained a yellow-brown colour with iodine whereas control cells containing only the pQE32 vector continued to stain blue-green.

Expression of potato class A SBE in E. coli

Single colonies of KV832, containing one of the plasmids pQE32, pAGCR1 or pSJ90, were picked into 50ml of 2xYT medium containing carbenicillin, kanamycin and streptomycin as appropriate (100, 50 and 25 mg/L, respectively) in a 250ml flask and grown for 5 hours, with shaking, at 37°C. IPTG was then added to a final concentration of 1mM to induce expression and the flasks were further incubated overnight at 25°C. The cells were harvested by centrifugation and resuspended in 50 mM sodium phosphate buffer (pH 8.0), containing 300mM NaCl, 1mg/ml lysozyme and 1mM PMSF and left on ice for 1 hour. The cell lysates were then sonicated (3 pulses of 10 seconds at 40% power using a microprobe) and cleared by centrifugation at 12,000g for 10 minutes at 4°C. Cleared lysates were concentrated approximately 10 fold in a CentriconTM 30 filtration unit. Duplicate 10µl samples of the resulting extract were assayed for SBE activity by the phosphorylation stimulation method, as described in International Patent Application No. PCT/GB95/00634. In brief, the standard assay reaction mixture (0.2ml) was 200mM 2-(N-morpholino) ethanesulphonic acid (MES) buffer pH6.5, containing 100nCi of ¹⁴C glucose-1-phosphate at 50mM, 0.05 mg rabbit phosphorylase A, and E. coli lysate. The reaction mixture was incubated for 60 minutes at 30°C and the reaction terminated and glucan polymer precipitated by the addition of 1ml of 75% (v/v) methanol, 1% (w/v) potassium hydroxide, and then 0.1ml glycogen (10mg/ml). The results are presented below:

Construct .	SBE Activity (cpm)
pQE32 (control)	1,829
pSJ90 (potato class A SBE)	14,327
pAGCR1 (pea class A SBE)	29,707

The potato class A SBE activity is 7-8 fold above background levels. It was concluded therefore that the potato class A SBE gene was able to complement the BE mutation in the

25

phosphorylation stimulation assay and that the cloned gene does indeed code for a protein with branching enzyme activity.

Oligonucleotides

The following synthetic oligonucleotides (Seq ID No.s 1-11 respectively) were used:

 $R_0R_1dT_{17}$ AAGGATCCGTCGACATCGATAATACGACTCACTATAGGGA(T)₁₇

R_o AAGGATCCGTCGACATC

R_i GACATCGATAATACGAC

POTSBE24 CATCCAACCACCATCTCGCA

POTSBE25 TTGAGAGAAGATACCTAAGT

POTSBE28 ATGTTCAGTCCATCTAAAGT

POTSBE29 AGAACAACAATTCCTAGCTC

PBER 1 GGGGCCTTGAACTCAGCAAT

PBERT CGTCCCAGCATTCGACATAA

PBE 2B CTTGGATCCTTGAACTCAGCAATTTG

PBE 2X TAACTCGAGCAACGCGATCACAAGTTCGT

Example 2

Production of Transgenic Plants

Construction of plant transformation vectors with antisense starch branching enzyme genes

A 1200 bp $Sac\ I$ - $Xho\ I$ fragment, encoding approximately the -COOH half of the potato class A SBE (isolated from the rescued λ Zap clone 3.2.1), was cloned into the $Sac\ I$ - $Sal\ I$ sites of the plant transformation vector pSJ29 to create plasmid pSJ64, which is illustrated schematically in Figure 11. In the figure, the black line represents the DNA sequence. The broken line represents the bacterial plasmid backbone (containing the origin of replication and bacterial selection marker), which is not shown in full. The filled triangles on the line denote the T-DNA borders (RB = right border, LB = left border). Relevant restriction sites are shown above the black line, with the approximate distances (in kilobases) between the sites (marked by an asterisk) given by the numerals below the

26

line. The thinnest arrows indicate polyadenylation signals (pAnos = nopaline synthase, pAg7 = Agrobacterium gene 7), the arrows intermediate in thickness denote protein coding regions (SBE II = potato class A SBE. HYG = hygromycin resistance gene) and the thickest arrows represent promoter regions (P-2x35 = double CaMV 35S promoter, Pnos = nopaline synthase promoter). Thus pSJ64 contained the class A SBE gene fragment in an antisense orientation between the 2X 35S CaMV promoter and the nopaline synthase polyadenylation signal.

For information, pSJ29 is a derivative of the binary vector pGPTV-HYG (Becker et al., 1992 Plant Molecular Biology 20, 1195-1197) modified as follows: an approximately 750 bp (Sac I, T4 DNA polymerase blunted - Sal I) fragment of pJIT60 (Guerineau et al., 1992 Plant Mol. Biol. 18, 815-818) containing the duplicated cauliflower mosaic virus (CaMV) 35S promoter (Cabb-JI strain, equivalent to nucleotides 7040 to 7376 duplicated upstream of 7040 to 7433, Frank et al., 1980 Cell 21, 285-294) was cloned into the Hind III (Klenow polymerase repaired) - Sal I sites of pGPTV-HYG to create pSJ29.

Plant transformation

Transformation was conducted on two types of potato plant explants; either wild type untransformed minitubers (in order to give single transformants containing the class A antisense construct alone) or minitubers from three tissue culture lines (which gave rise to plants #12, #15, #17 and #18 indicated in Table 1) which had already been successfully transformed with the class B (SBE I) antisense construct containing the tandem 35S promoter (so as to obtain double transformant plants, containing antisense sequences for both the class A and class B enzymes).

Details of the method of Agrobacterium transformation, and of the growth of transformed plants, are described in International Patent Application No. WO 95/26407, except that the medium used contained 3% sucrose (not 1%) until the final transfer and that the initial incubation with Agrobacterium (strain 3850) was performed in darkness. Transformants containing the class A antisense sequence were selected by growth in medium containing 15mg/L hygromycin (the class A antisense construct comprising the HYG gene, i.e. hygromycin phosphotransferase).

27

Transformation was confirmed in all cases by production of a DNA fragment from the antisense gene after PCR in the presence of appropriate primers and a crude extract of genomic DNA from each regenerated shoot.

Characterisation of starch from potato plants

Starch was extracted from plants as follows: potato tubers were homogenised in water for 2 minutes in a Waring blender operating at high speed. The homogenate was washed and filtered (initially through 2mm, then through 1mm filters) using about 4 litres of water per 100gms of tubers (6 extractions). Washed starch granules were finally extracted with acetone and air dried.

Starch extracted from singly transformed potato plants (class A/SBE II antisense, or class B/SBE I antisense), or from double transformants (class A/SBE II and class B/SBE I antisense), or from untransformed control plants, was partially characterised. The results are shown in Table 1. The table shows the amount of SBE activity (units/gram tissue) in tubers from each transformed plant. The endotherm peak temperature (°C) of starch extracted from several plants was determined by DSC, and the onset temperature (°C) of pasting was determined by reference to a viscoamylograph ("RVA"), as described in WO 95/26407. The viscoamylograph profile was as follows: step 1 - 50°C for 2 minutes; step 2 - increase in temperature from 50°C to 95°C at a rate of 1.5°C per minute; step 3 holding at 95°C for 15 minutes; step 4 - cooling from 95°C to 50°C at a rate of 1.5°C per minute; and finally, step 5 - holding at 50°C for 15 minutes. Table 1 shows the peak, pasting and set-back viscosities in stirring number units (SNUs), which is a measure of the amount of torque required to stir the suspensions. Peak viscosity may be defined for present purposes as the maximum viscosity attained during the heating phase (step 2) or the holding phase (step 3) of the viscoamylograph. Pasting viscosity may be defined as the viscosity attained by the starch suspensions at the end of the holding phase (step 3) of the viscoamylograph. Set-back viscosity may be defined as the viscosity of the starch suspension at the end of step 5 of the viscoamylograph.

A determination of apparent amylose content (% w/w) was also performed, using the iodometric assay method of Morrison & Laignelet (1983 J. Cereal Sci. 1, 9-20). The

28

results (percentage apparent amylose) are shown in Table 1. The untransformed and transformed control plants gave rise to starches having apparent amylose contents in the range 29(+/-3)%.

Generally similar values for amylose content were obtained for starch extracted from most of the singly transformed plants containing the class A (SBE II) antisense sequence. However, some plants (#152, 249) gave rise to starch having an apparent amylose content of 37-38%, notably higher than the control value. Starch extracted from these plants had markedly elevated pasting onset temperatures, and starch from plant 152 also exhibited an elevated endotherm peak temperature (starch from plant 249 was not tested by DSC).

Table f

WO 96/34968

PCT/GB96/01075

			280		Viscosmylograph	(RVA)		Apparent	Phosphorus
Samole description	Sample.	Tuber SBE	Peak	Onset	Peak	Pasting	Set-beck	amylose	content
	mumber	activity	bemperature	temperature	whecosity	viscosity	viscosity	contant	
		(Ug starch)	5	5	(SKU)	(SNU)	(SNU)	(% whu)	(mg/100g)
Unbansformed control	148	7.0	6.58	65.5	575	101	280	31.2	28
	243	22	2	97.0	761	135	. 54	28.1	
	Ē		98	ş	1	AL.	8	300	9
ASCUSS A SUE	1 :		n .	2 ;	· !	} ;		; ;	3
	2	13.B		9.00	į	ð	e e	g 8	
AS-Cless B SBE (17) (control)	145	7.0	66.9	9:99	689	111	900	20.6	111
AS-Class B SBE (17) + AS-Class A SBE	2	9.0	74.0	0.89	214	214	303	53.1	85
	ē	0.5	0.E	76.6	36	324	916	40.9	82
AS-Class B SBE (16) (control)	ž	9;	2 2	64.7	714	151	258	29.0	40
AS-Class B 58E (18) + AS-Class A 58E	5	06	85.55	98	474	267	462	35.8	127
ASClass B SBE (15) (control)	172	0.22	Ē	<u>8</u>	707	167	2360	28.8	130
AS-Class B SBE (15) + AS-Class A SBE	ž	0.10	E	š	no peak	12	ŭ	7.88	210
	200	0.10	2	Š	no peak	ž.	17	7.	-
	8	0.30	72.6-60.5	864	no peak	*	9	62.6	240
	£	0.02	g	60.4	no pestk	ţ	5	57.9	
	212	3 .	Ę	780	8	98	2	49.5	
	8	1.	2	75.0	358	5K	8	<u>.</u>	
AS-Class B SBE (12) (control)	5	0.2	Ę	86.5	768	202	88	27.8	
AS-Class B SBE (12) + AS-Class A SBE	236	2.0	2	95.0	no peak	23	14	90.4	
	238*	0.0	8	91.2	no peak	S.	102	56.7	
	ą g	9.0	P	77.8	244	238	450	46.2	
¥									

29

SOFC & mby, 50-65°C (1.5°C/mb), 95°C (15 mby, 95.60°C (1.5°C/mby, 60°C (15 mby) at end of 50°C (mby, 50-95°C (1.5°C/mby, 95°C (15 mby)

at end of profits

Set-back viscosity (92 mih) Pasting viscosity (47 min)

Starch Branching Enzyme

29/1

			DSC.	
Sample description	Sample.	Tuber SBE	Peak	Onset
	number	activity	temperature	temperature
·		(U/g starch)	(°C)	()_()
Unbansformed control	146	7.6	65.8	65.5
	243	22.2	ğ	. 9.79
AS-Class A SBE	152	12.7	68.5	8.07
	240	13.0	Ş	70.0
		•		
AS-Class B SBE (17) (control)	145	0.7	6.99	8.99
AS-Class B SBE (17) + AS-Class A SBE	8	0.6	. 74.0	86.0
	161	0.5	73.0	76.6
AS-Class B SBE (18) (control)	144	1.6	64.5	64.7
AS-Class B SBE (18) + AS-Class A SBE	149	3.0	68.5	6.69

WO 96/34968

PCT/GB96/01075

29/2

		(very)		Apparent	Phosphorus
<u> </u>	Peak	Pasting	Set-back	amylose	content
_	viscosity	viscosity	viscosity	content	
	(SNU)	(SNU)	(SNU)	(% w/w)	(mg/100g)
	545	161	280	31.2	89
	781	135	241.	29.1	
	467	380	825	37.5	86
	497	434	518	38.5	·
	689	177	305	29.8	111
,	214	214	303	53.1	198
	349	324	618	40.9	506
-	714	154	258	29.0	26
4	474	. 267	482	35.6	127
J	-				

SUBSTITUTE SHEET (RULE 26)

					WO 9
AS-Class B SBE (15) (control)	172	0.22	pu	65.4	6/34968
AS-Class B SBE (15) + AS-Class A SBE	201	0.10	pu	>95	
	208a	0.10	שם	>95	
	208	0:30	72.8-80.5	>95	
	302	0.02	pu	89.4	
	212	1.40	pu	78.0	
	82	1.40	2	75.8	
					29
AS-Class B SBE (12) (control)	170	0.2	٦	66.5	/3
AS-Class B SBE (12) + AS-Class A SBE	238	0.7	рu	95.0	
	236a	0.0	ď	91.2	
	2302	9.0	P	77.6	
RVA profile	50°C (2 min),	50-95°C (1.5°C/mil	1), 95°C (15 min).	50°C (2 min), 50-95°C (1.5°C/min), 95°C (15 min), 95-50°C (1.5°C/min), 50°C (15 min)	
Pasting viscosity (47 min)	at end of 50°C	at end of 50°C (2min), 50-85°C (1.5°C/min), 95°C (15 min)	1.5°C/min), 95°C (15 min)	CT/G
Set-back viscosity (92 min)	at end of profile	.0			B96
S 98S	Starch Branching Enzyme	ing Enzyme			/0107
SNU CANA	nstrument "St	Instrument "Stirring Number Units" (arbitrary units)	" (arbitrary units)		75
pu	not determined				·.

WO 96/34968

PCT/GB96/01075

29/4

	130	210		240			·					
	28.8	66.4	64.1	62.8	57.9	49.5	44.1	27.8	60.4	56.7	48.2	
\	280	13	17	6	245	25	283	303	14	192	450	
	167	12	15	14	173	536	345	202	23	139	239	
	707	no peak	no peak	no peak	no peak	308	355	768	no peak	no peak	244	

SUBSTITUTE SHEET (RULE 26)

30

It should be noted that, even if other single transformants were not to provide starch with an altered amylose/amylopectin ratio, the starch from such plants might still have different properties relative to starch from conventional plants (e.g. different average molecular weight or different amylopectin branching patterns), which might be useful.

Double transformant plants, containing antisense sequences for both the class A and class B enzymes, had greatly reduced SBE activity (units/gm) compared to untransformed plants or single anti-sense class A transformants, (as shown in Table 1). Moreover, certain of the double transformant plants contained starch having very significantly altered properties. For example, starch extracted from plants #201, 202, 208, 208a, 236 and 236a had drastically altered amylose/amylopectin ratios, to the extent that amylose was the main constituent of starch from these plants. The pasting onset temperatures of starch from these plants were also the most greatly increased (by about 25-30°C). Starch from plants such as #150, 161, 212, 220 and 230a represented a range of intermediates, in that such starch displayed a more modest rise in both amylose content and pasting onset temperature. The results would tend to suggest that there is generally a correlation between % amylose content and pasting onset temperature, which is in agreement with the known behaviour of starches from other sources, notably maize.

The marked increase in amylose content obtained by inhibition of class A SBE alone, compared to inhibition of class B SBE alone (see PCT/GB95/00634) might suggest that it would be advantageous to transform plants first with a construct to suppress class A SBE expression (probably, in practice, an antisense construct), select those plants giving rise to starch with the most altered properties, and then to re-transform with a construct to suppress class B SBE expression (again, in practice, probably an antisense construct), so as to maximise the degree of starch modification.

In addition to pasting onset temperatures, other features of the viscoamylograph profile e.g. for starches from plants #149, 150, 152, 161, 201, 236 and 236a showed significant differences to starches from control plants, as illustrated in Figure 13. Referring to Figure 13. a number of viscoamylograph traces are shown. The legend is as follows: shaded box - normal potato starch control (29.8% amylose content); shaded circle - starch from plant

31

149 (35.6% amylose): shaded triangle, pointing upwards - plant 152 (37.5%); shaded triangle, pointing downwards - plant 161 (40.9%); shaded diamond - plant 150 (53.1%); unshaded box - plant 236a (56.7%); unshaded circle - plant 236 (60.4%); unshaded triangle, pointing upwards - plant 201 (66.4%); unshaded triangle, pointing downwards - Hylon V starch, from maize (44.9 % amylose). The thin line denotes the heating profile.

With increasing amylose content, peak viscosities during processing to 95°C decrease, and the drop in viscosity from the peak until the end of the holding period at 95°C also generally decreases (indeed, for some of the starch samples there is an increase in viscosity during this period). Both of these results are indicative of reduced granule fragmentation, and hence increased granule stability during pasting. This property has not previously been available in potato starch without extensive prior chemical or physical modification. For applications where a maximal viscosity after processing to 95°C is desirable (i.e. corresponding to the viscosity after 47 minutes in the viscoamylograph test). starch from plant #152 would be selected as starches with both lower (Controls, #149) and higher (#161, #150) amylose contents have lower viscosities following this gelatinisation and pasting regime (Figure 13 and Table 1). It is believed that the viscosity at this stage is determined by a combination of the extent of granule swelling and the resistance of swollen granules to mechanical fragmentation. For any desired viscosity behaviour, one skilled in the art would select a potato starch from a range containing different amylose contents produced according to the invention by performing suitable standard viscosity tests.

Upon cooling pastes from 95°C to 50°C, potato starches from most plants transformed in accordance with the invention showed an increase in viscoamylograph viscosity as expected for partial reassociation of amylose. Starches from plants #149, 152 and 161 all show viscosities at 50°C significantly in excess of those for starches from control plants (Figure 13 and Table 1). This contrasts with the effect of elevated amylose contents in starches from maize plants (Figure 2) which show very low viscosities throughout the viscoamylograph test. Of particular note is the fact that, for similar amylose contents, starch from potato plant 150 (53% amylose) shows markedly increased viscosity compared with Hylon 5 starch (44.9% amylose) as illustrated in Figure 13. This demonstrates that

32

useful properties which require elevated (35% or greater) amylose levels can be obtained by processing starches from potato plants below 100°C, whereas more energy-intensive processing is required in order to generate similarly useful properties from high amylose starches derived from maize plants.

Final viscosity in the viscoamylograph test (set-back viscosity after 92 minutes) is greatest for starch from plant #161 (40.9% amylose) amongst those tested (Figure 13 and Table 1). Decreasing final viscosities are obtained for starches from plant #152 (37.5% amylose), #149 (35.6% amylose) and #150 (53.1% amylose). Set-back viscosity occurs where amylose molecules, exuded from the starch granule during pasting, start to reassociate outside the granule and form a viscous gel-like substance. It is believed that the set-back viscosity values of starches from transgenic potato plants represent a balance between the inherent amylose content of the starches and the ability of the amylose fraction to be exuded from the granule during pasting and therefore be available for the reassociation process which results in viscosity increase. For starches with low amylose content, increasing the amylose content tends to make more amylose available for reassociation, thus increasing the set-back viscosity. However, above a threshold value, increased amylose content is thought to inhibit granule swelling, thus preventing exudation of amylose from the starch granule and reducing the amount of amylose available for reassociation. This is supported by the RVA results obtained for the very high amylose content potato starches seen in the viscoamylograph profiles in Figure 13. For any desired viscosity behaviour following set-back or retrogradation to any desired temperature over any desired timescale, one skilled in the art would select a potato starch from a range containing different amylose contents produced according to the invention by performing standard viscosity tests.

Further experiments with starch from plants #201 and 208 showed that this had an apparent amylose content of over 62% (see Table 1). Viscoamylograph studies showed that starch from these plants had radically altered properties and behaved in a manner similar to hylon 5 starch from maize plants (Figure 13). Under the conditions employed in the viscoamylograph, this starch exhibited extremely limited (nearly undetectable) granule swelling. Thus, for example, unlike starch from control plants, starch from plants

33

201, 208 and 208a did not display a clearly defined pasting viscosity peak during the heating phase. Microscopic analysis confirmed that the starch granule structure underwent only minor swelling during the experimental heating process. This property may well be particularly useful in certain applications, as will be apparent to those skilled in the art.

Some re-grown plants have so far been found to increase still further the apparent amylose content of starch extracted therefrom. Such increases may be due to:-

- i) Growth and development of the first generation transformed plants may have been affected to some degree by the exogenous growth hormones present in the tissue culture system, which exogenous hormones were not present during growth of the second generation plants; and
- ii) Subsequent generations were grown under field conditions, which may allow for attainment of greater maturity than growth under laboratory conditions, it being generally held that amylose content of potato starch increases with maturity of the potato tuber. Accordingly, it should be possible to obtain potato plants giving rise to tubers with starch having an amylose content in excess of the 66% level so far attained, simply by analysing a greater number of transformed plants and/or by re-growing transgenic plants through one or more generations under field conditions.

Table 1 shows that another characteristic of starch which is affected by the presence of anti-sense sequences to SBE is the phosphorus content. Starch from untransformed control plants had a phosphorus content of about 60-70mg/100gram dry weight (as determined according to the AOAC Official Methods of Analysis, 15th Edition, Method 948.09 "Phosphorus in Flour"). Introduction into the plant of an anti-sense SBE B sequence was found to cause a modest increase (about two-fold) in phosphorus content, which is in agreement with the previous findings reported at scientific meetings. Similarly, anti-sense to SBE A alone causes only a small rise in phosphorus content relative to untransformed controls. However, use of anti-sense to both SBE A and B in combination results in up to a four-fold increase in phosphorus content. which is far greater than any *in planta* phosphorus content previously demonstrated for potato starch.

This is useful in that, for certain applications, starch must be phosphorylated in vitro by

34

chemical modification. The ability to obtain potato starch which, as extracted from the plant, already has a high phosphorus content will reduce the amount of *in vitro* phosphorylation required suitably to modify the starch. Thus, in another aspect the invention provides potato starch which, as extracted from the plant, has a phosphorus content in excess of 200mg/100gram dry weight starch. Typically the starch will have a phosphorus content in the range 200 - 240mg/100gram dry weight starch.

35

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT:
 - (A) NAME: National Starch and Chemical Investment

Holding Corporation

- (B) STREET: 501 Silverside Road, Suite 27
- (C) CITY: Wilmington (D) STATE: Delaware
- (E) COUNTRY: United States of America
- (F) POSTAL CODE (ZIP): 19809
- (ii) TITLE OF INVENTION: Improvements in or Relating to Plant Starch Composition
- (iii) NUMBER OF SEQUENCES: 20
- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0. Version #1.30 (EPO)
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 57 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

AAGGATCCGT CGACATCGAT AATACGACTC ACTATAGGGA TTTTTTTTT TTTTTTTT

57

17

- (2) INFORMATION FOR SEQ ID NO: 2:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 17 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

AAGGATCCGT CGACATC

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17 base pairs

WO 96/34968	PC1/GB96/010/5
36	•
(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO: 3:
GACATCGATA ATACGAC	17
(2) INFORMATION FOR SEQ ID NO: 4:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO: 4:
CATCCAACCA CCATCTCGCA	20
(2) INFORMATION FOR SEQ ID NO: 5:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO: 5:
TTGAGAGAAG ATACCTAAGT	20
(2) INFORMATION FOR SEQ ID NO: 6:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO: 6:
ATGTTCAGTC CATCTAAAGT	. 20
(2) INFORMATION FOR SEQ ID NO: 7:	•
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

VO 96/34968	PCT/GB96/01075
3	7
(xi) SEQUENCE DESCRIPTION: SEQ IC	NO: 7:
AGAACAACAA TTCCTAGCTC	20
(2) INFORMATION FOR SEQ ID NO: 8:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO: 8:
GGGGCCTTGA ACTCAGCAAT	20
(2) INFORMATION FOR SEQ ID NO: 9:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO: 9:
CGTCCCAGCA TTCGACATAA	20
(2) INFORMATION FOR SEQ ID NO: 10:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID	NO: 10:
CTTGGATCCT TGAACTCAGC AATTTG	26
(2) INFORMATION FOR SEQ ID NO: 11:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ II	NO: 11:
TAACTCGAGC AACGCGATCA CAAGTTCGT	29

38

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3003 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

GATGGGGCCT	TGAACTCAGC	AATTTGACAC	TCAGTTAGTT	ACACTGCCAT	CACTTATCAG	60
ATCTCTATTT	TTTCTCTTAA	TTCCAACCAA	GGAATGAATA	AAAAGATAGA	TTTGTAAAAA	120
CCCTAAGGAG	AGAAGAAGAA	AGATGGTGTA	TACACTCTCT	GGAGTTCGTT	TTCCTACTGT	180
TCCATCAGTG	TACAAATCTA	ATGGATTCAG	CAGTAATGGT	GATCGGAGGA	ATGCTAATAT	240
TTCTGTATTC	TTGAAAAAAC	ACTCTCTTC	ACGGAAGATC	TTGGCTGAAA	AGTCTTCTTA	300
CAATTCCGAA	TCCCGACCTT	CTACAATTGC	AGCATCGGGG	AAAGTCCTTG	TGCCTGGAAT	360
CCAGAGTGAT	AGCTCCTCAT	CCTCAACAGA	TCAATTTGAG	TTCGCTGAGA	CATCTCCAGA	420
AAATTCCCCA	GCATCAACTG	ATGTAGATAG	TTCAACAATG	GAACACGCTA	GCCAGATTAA	480
AACTGAGAAC	GATGACGTTG	AGCCGTCAAG	TGATCTTACA	GGAAGTGTTG	AAGAGCTGGA	540
TTTGCTTCA	TCACTACAAC	TACAAGAAGG	TGGTAAACTG	GAGGAGTCTA	AAACATTAAA	600
TACTTCTGAA	GAGACAATTA	TTGATGAATC	TGATAGGATC	AGAGAGAGGG	GCATCCCTCC	660
ACCTGGACTT	GGTCAGAAGA	TTTATGAAAT	AGACCCCCTT	TTGACAAACT	ATCGTCAACA	720
CCTTGATTAC	AGGTATTCAC	AGTACAAGAA	ACTGAGGGAG	GCAATTGACA	AGTATGAGGG	780
TGGTTTGGAA	GCTTTTCTC	GTGGTTATGA	AAGAATGGGT	TTCACTCGTA	GTGCTACAGG	840
TATCACTTAC	CGTGAGTGGG	CTCCTGGTGC	CCAGTCAGCT	GCCCTCATTG	GGGATTTCAA	900
CAATTGGGAC	GCAAATGCTG	ACTTTATGAC	TCGGAATGAA	TTTGGTGTCT	GAGAGATTTT	960
TCTGCCAAAT	AATGTGGATG	GTTCTCCTGC	AATTCCTCAT	GGGTCCAGAG	TGAAGATACG	1020
TATGGACACT	CCATCAGGTG	TTAAGGATTC	CATTCCTGCT	TGGATCAACT	ACTCTTTACA	1080
GCTTCCTGAT	GAAATTCCAT	ATAATGGAAT	ATATTATGAT	CCACCCGAAG	AGGAGAGGTA	1140
TATCTTCCAA	CACCCACGGC	CAAAGAAACC	AAAGTCGGTG	AGAATATATG	AATCTCATAT	1200
TGGAATGAGT	AGTCCGGAGC	CTAAAATTAA	CTCATACGTG	AATTTTAGAG	ATGAAGTTCT	1260
TCCTCGCATA	AAAAAAGCTT	GGGTACAATG	CGGTGCAAAT	TATGGCTATT	CAAGAGCATT	1320
CTTATTATGC	TAGTTTTGGT	TATCATGTCA	CAAATTTTTT	TGCACCAAGC	AGCCGTTTTG	1380

GAACGCCCGA	CGACCTTAAG	TCTTTGATTG	ATAAAGCTCA	TGAGCTAGGA	ATTGTTGTTC	1440
TCATGGACAT	TGTTCACAGC	CATGCATCAA	ATAATACTTT	AGATGGACTG	AACATGTTTG	1500
ACGGCACAGA	TAGTTGTTAC	TTTCACTCTG	GAGCTCGTGG	TTATCATTGG	ATGTGGGATT	1560
TCCGCCTCTT	TAACTATGGA	AACTGGGAGG	TACTTAGGTA	TCTTCTCTCA	AATGCGAGAT	1620
GGTGGTTGGA	TGAGTTCAAA	TTTGATGGAT	TTAGATTTGA	TGGTGTGACA	TCAATGATGT	1680
GTACTCACCA	CGGATTATCG	GTGGGATTCA	CTGGGAACTA	CGAGGAATAC	TTTGGACTCG	1740
CAACTGATGT	GGATGCTGTT	GTGTATCTGA	TGCTGGTCAA	CGATCTTATT	CATGGGCTTT	1800
TCCCAGATGC	AATTACCATT	GGTGAAGATG	TTAGCGGAAT	GCCGACATTT	TGTGTTCCCG	1860
TTCAAGATGG	GGGTGTTGGC	TTTGACTATC	GGCTGCATAT	GGCAATTGCT	GATAAATGGA	1920
TTGAGTTGCT	CAAGAAACGG	GATGAGGATT	GGAGAGTGGG	TGATATTGTT	CATACACTGA	1980
CAAATAGAAG	ATGGTCGGAA	AAGTGTGTTT	CATACGCTGA	AAGTCATGAT	CAAGCTCTAG	2040
TCGGTGATAA	AACTATAGCA	TTCTGGCTGA	TGGACAAGGA	TATGTATGAT	TTTATGGCTC	2100
TGGATAGACC	GTCAACATCA	TTAATAGATC	GTGGGATAGC	ATTACACAAG	ATGATTAGGC	2160
TTGTAACTAT	GGGATTAGGA	GGAGAAGGGT	ACCTAAATTT	CATGGGAAAT	GAATTCGGCC	2220
ACCCTGAGTG	GATTGATTTC	CCTAGGGCTG	AACAACACCT	CTCTGATGGC	TCAGTAATTC	2280
CCAGAAACCA	ATTCAGTTAT	GATAAATGCA	GACGGAGATT	TGACCTGGGA	GATGCAGAAT	2340
ATTTAAGATA	CCGTGGGTTG	CAAGAATTTG	ACCGGGCTAT	GCAGTATCTT	GAAGATAAAT	2400
ATGAGTTTAT	GACTTCAGAA	CACCAGTTCA	TATCACGAAA	GGATGAAGGA	GATAGGATGA	2460
TTGTATTTGA	AAAAGGAAAC	CTAGTTTTTG	TCTTTAATTT	TCACTGGACA	AAAGGCTATT	2520
CAGACTATCG	CATAGGCTGC	CTGAAGCCTG	GAAAATACAA	GGTTGCCTTG	GACTCAGATG	2580
ATCCACTTTT	TGGTGGCTTC	GGGAGAATTG	ATCATAATGC	CGAATATTTC	ACCTTTGAAG	2640
GATGGTATGA	TGATCGTCCT	CGTTCAATTA	TGGTGTATGC	ACCTAGTAGA	ACAGCAGTGG	2700
TCTATGCACT	AGTAGACAAA	GAAGAAGAAG	AAGAAGAAGA	AGTAGCAGTA	GTAGAAGAAG	2760
TAGTAGTAGA	AGAAGAATGA	ACGAACTTGT	GATCGCGTTG	AAAGATTTGA	ACGCCACATA	2820
GAGCTTCTTG	ACGTATCTGG	CAATATTGCA	TTAGTCTTGG	CGGAATŢTCA	TGTGACAACA	2880
GGTTTGCAAT	TCTTTCCACT	ATTAGTAGTG	CAACGATATA	CGCAGAGATG	AAGTGCTGAA	2940
CAAAAACATA	TGTAAAATCG	ATGAATTTAT	GTCGAATGCT	GGGACGATCG	AATTCCTGCA	3000
GCC						3003

40

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2975 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

TTGATGGGCC	TTGAACTCAG	CAATTTGACA	CTCAGTTAGT	TACACTCCTA	TCACTTATCA	60
GATCTCTATT	TTTTCTCTTA	ATTCCAACCA	GGGGAATGAA	TAAAAGGATA	GATTTGTAAA	120
AACCCTAAGG	AGAGAAGAAG	AAAGATGGTG	TATATACTCT	CTGGAGTTCG	TTTCCTACT	180
GTTCCATCAG	TGTACAAATC	TAATGGATTC	AGCAGTAATG	GTGATCGGAG	GAATGCTAAT	240
GTTTCTGTAT	TCTTGAAAAA	GCACTCTCTT	TCACGGAAGA	TCTTGGCTGA	AAAGTCTTCT	300
TACAATTCCG	AATTCCGACC	TTCTACAGTT	GCAGCATCGG	GGAAAGTCCT	TGTGCCTGGA	360
ACCCAGAGTG	ATAGCTCCTC	ATCCTCAACA	GACCAATTTG	AGTTCACTGA	GACATCTCCA	420
GAAAATTCCC	CAGCATCAAC	TGATGTAGAT	AGTTCAACAA	TGGAACACGC	TAGCCAGATT	480
AAAACTGAGA	ACGATGACGT	TGAGCCGTCA	AGTGATCTTA	CAGGAAGTGT	TGAAGAGCTG	540
GATTTTGCTT	CATCACTACA	ACTACAAGAA	GGTGGTAAAC	TGGAGGAGTC	TAAAACATTA	600
AATACTTCTG	AAGAGACAAT	TATTGATGAA	TCTGATAGGA	TCAGAGAGAG	GGGCATCCCT	660
CCACCTGGAC	TTGGTCAGAA	GATTTATGAA	ATAGACCCCC	TTTTGACAAA	CTATCGTCAA	720
CACCTTGATT	ACAGGTATTC	ACAGTACAAG	AAACTGAGGG	AGGCAATTGA	CAAGTATGAG	780
GGTGGTTTGG	AAGCTTTTCT	CGTGGTTATG	AAAAAATGGG	TTTCACTCGT	AGTGCTACAG	840
GTATCACTTA	CCGTGAGTGG	GCTCCTGGTG	CCCAGTCAGC	TGCCCTCATT	GGAGATTTCA	900
ACAATTGGGA	CGCAAATGCT	GACATTATGA	CTCGGAATGA	ATTTGGTGTC	TGGGAGATTT	960
TTCTGCCAAA	TAATGTGGAT	GGTTCTCCTG	CAATTCCTCA	TGGGTCCAGA	GTGAAGATAC	1020
GTATGGACAC	TCCATCAGGT	GTTAAGGATT	CCATTCCTGC	TTGGATCAAC	TACTCTTTAC	1080
AGCTTCCTGA	TGAAATTCCA	TATAATGGAA	TATATTATGA	TCCACCCGAA	GAGGAGAGGT	1140
ATATCTTCCA	ACACCCACGG	CCAAAGAAAC	CAAAGTCGCT	GAGAATATAT	GAATCTCATA	1200
TTGGAATGAG	TAGTCCGGAG	CCTAAAATTA	ACTCATACGT	GAATTTTAGA	GATGAAGTTC	1260
TTCCTCGCAT	AAAAAAGCTT	GGGTACAATG	CGCTGCGAAT	TATGGCTATT	CAAGAGCATT	1320
CTTATTATGC	TAGTTTTGGT	TATCATGTCA	CAAATTTTTT	TGCACCAAGC	AGCCGTTTTG	1380

41

GAACGCCCGA CGACCTTAAG TCTTCGATTG ATAAAGCTCA TGAGCTAGGA ATTGTTGTTC 1440 TCATGGACAT CGTTCACAGC CATGCATCAA ATAATACTTT AGATGGACTG AACATGTTTG 1500 ACGGCACCGA TAGTTGTTAC TTTCACTCTG GAGCTCGTGG TTATCATTGG ATGTGGGATT 1560 CCGCCTCTTT AACTATGGAA ACTGGGAGGT ACTTAGGTAT CTTCTCTCAA ATGCGAGATG 1620 GTGGTTGGAT GAGTTCAAAT TTGATGGATT TAGATTCGAT GGTGTGACAT CAATGATGTA 1680 TACTCACCAC GGATTATCGG TGGGATTCAC TGGGAACTAC GAGGAATACT TTGGACTCGC 1740 AACTGATGTG GATGCTGTTG TGTATCTGAT GCTGGTCAAC GATCTTATTC ATAGGCTTTT 1800 CCCAGATGCA ATTACCATTG GTGAAGATGT TAGCGGAATG CCGACATTTT GTATTCCCGT 1860 TCAAGATGGG GGTGTTGGCT TTGACTATCG GCTGCATATG GCAATTGCTG ATAAATGGAT 1920 TGAGTTGCTC AAGAAACGGG ATGAGGATTG GAGAGTGGGT GATATTGTTC ATACACTGAC 1980 AAATAGAAGA TGGTCGGAAA AGTGTGTTTC ATACGCTGAA AGTCATGATC AAGCTCTAGT 2040 CGGTGATAAA ACTATAGCAT TCTGGCTGAT GGACAAGGAT ATGTATGATT TTATGGCTCT 2100 GGATAGACCG CCAACATCAT TAATAGATCG TGGGATAGCA TTGCACAAGA TGATTAGGCT 2160 TGTAACTATG GGATTAGGAG GAGAAGGGTA CCTAAATTTC ATGGGAAATG AATTCGGCCA 2220 CCCTGAGTGG ATTGATTTCC CTAGGGCTGA GCCACACCTT TCTGATGGCT CAGTAATTCC 2280 CGGAAACCAA TTCAGTTATG ATAAATGCAG ACGGAGATTT GACCTGGGAG ATGCAGAATA 2340 TTTAAGATAC CATGGGTTAC AAGAATTTGA CTGGGCTATG CAGTATCTTG AAGATAAATA 2400 TGAGTITATG ACTICAGAAC ACCAGTITCAT ATCACGAAAG GATGAAGGAG ATAGGATGAT 2460 TGTATTTGAA AGAGGAAACC TAGTTTTCGT CTTTAATTTT CACTGGACAA ATAGCTATTC 2520 AGACTATCGC ATAGGCTGCC TGAAGCCTGG AAAATACAAG GTTGTCTTGG ACTCAGATGA 2580 TCCACTITIT GGTGGCTTCG GGAGAATTGA TCATAATGCC GAATATITCA CCTCTGAAGG 2640 ATCGTATGAT GATCGTCCTT GTTCAATTAT GGTGTATGCA CCTAGTAGAA CAGCAGTGGT 2700 CTATGCACTA GTAGACAAAC TAGAAGTAGC AGTAGTAGAA GAACCCATTG AAGAATGAAC 2760 GAACTTGTGA TCGCGTTGAA AGATTTGAAC GTTACTTGGT CATCCACATA GAGCTTCTTG 2820 ACATCAGTCT TGGCGGAATT GCATGTGACA ACAAGGTTTG CAGTTCTTTC CACTATTAGT 2880 AGTCCACCGA TATACGCAGA GATGAAGTGC TGAACAAACA TATGTAAAAT CGATGAATTT 2940 ATGTCGAATG CTGGGACGAT CGAATTCCTG CAGCC 2975

42

(2) INFORMATION FOR SEQ ID NO:	Ι	SE ₀	FOR	TION	INFORMAT	(2)
--------------------------------	---	-----------------	-----	------	----------	-----

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 3033 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION:145..2790

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

	(//	, ,,	QULIN	CL D	LJCK	11.11.	UIV.	שבע	וו טו	0. 1.	╅,					
TTG	ATGG	GGC	CTTG	AACT	CA G	CAAT	TTGA	C AC	TCAG	TTAG	TTA	CACT	CCT .	ATCA	CTTATC	60
AGA	TCTC	TAT '	Ш	ТСТС	TT A	ATTC	CAAC	C AA	GGAA'	TGAA	TAA	4AGG	ATA (GATT	TGTAAA	120
AAC	CCTA	AGG /	AGAG/	4AGA	AG A	AAG /	ATG (Met \ 1	STG : Val	TAT . Tyr	ACA (Thr I	CTC : Leu : 5	TCT (Ser (GGA (GTT (Val /	CGT Arg	171
Phe	CCT Pro	ACT Thr	GTT Val	CCA Pro	TCA Ser 15	GTG Val	TAC Tyr	AAA Lys	TCT Ser	AAT Asn 20	GGA Gly	TTC Phe	AGC Ser	AGT Ser	AAT Asn 25	219
GGT Gly	GAT Asp	CGG Arg	AGG Arg	AAT Asn 30	GCT Ala	AAT Asn	GTT Val	TCT Ser	GTA Val 35	TTC Phe	TTG Leu	AAA Lys	AAG Lys	CAC His 40	TCT Ser	267
CTT Leu	TCA Ser	CGG Arg	AAG Lys 45	ATC Ile	TTG Leu	GCT Ala	GAA G1u	AAG Lys 50	TCT Ser	TCT Ser	TAC Tyr	AAT Asn	TCC Ser 55	GAA G1u	TTC Phe	315
CGA Arg	CCT Pro	TCT Ser 60	ACA Thr	GTT Val	GCA Ala	GCA Ala	TCG Ser 65	GGG Gly	AAA Lys	GTC Val	CTT Leu	GTG Val 70	CCT Pro	GGA Gly	ACC Thr	363
CAG G1n	AGT Ser 75	GAT Asp	AGC Ser	TCC Ser	TCA Ser	TCC Ser 80	TCA Ser	ACA Thr	GAC Asp	CAA Gln	TTT Phe 85	GAG G1u	TTC Phe	ACT Thr	GAG Glu	411
	TCT Ser															459
ATG Met	GAA G1u	CAC His	GCT Ala	AGC Ser 110	CAG Gln	ATT Ile	AAA Lys	ACT Thr	GAG Glu 115	AAC Asn	GAT Asp	GAC Asp	GTT Val	GAG Glu 120	CCG Pro	507
	AGT Ser															555

				43				
					TCT Ser			603
					AGG Arg 165			651
					TAT Tyr			699
					AGG Arg			747
					GGT Gly			795
					CGT Arg			843
					TCA Ser 245			891
					ATT Ile			939
					AAT Asn			987
					CGT Arg			1035
					AAC Asn			1083
					TAT Tyr 325			1131
					AAG Lys			1179
					AGT Ser			1227

									44							
ATT	AAC Asn	TCA Ser	TAC Tyr 365	Val	AAT Asn	TTT Phe	AGA Arg	GAT Asp 370	GAA Glu	GTT Val	CTT Leu	CCT Pro	CGC Arg 375	ATA Ile	AAA Lys	1275
AAG Lys	CTT Leu	GGG G1y 380	TAC Tyr	AAT Asn	GCG Ala	CTG Leu	CAA G1n 385	ATT Ile	ATG Met	GCT Ala	ATT Ile	CAA Gln 390	GAG G1u	CAT His	TCT Ser	1323
TAT Tyr	TAC Tyr 395	GCT Ala	AGT Ser	TTT Phe	GGT Gly	TAT Tyr 400	CAT His	GTC Val	ACA Thr	AAT Asn	TTT Phe 405	TTT Phe	GCA Ala	CCA Pro	AGC Ser	1371
AGC Ser 410	CGT Arg	TTT Phe	GGA Gly	ACG Thr	CCC Pro 415	GAC Asp	GAC Asp	CTT Leu	AAG Lys	TCT Ser 420	TTG Leu	ATT Ile	GAT Asp	AAA Lys	GCT Ala 425	1419
CAT His	GAG G1u	CTA Leu	GGA Gly	ATT Ile 430	GTT Val	GTT Val	CTC Leu	ATG Met	GAC Asp 435	ATT Ile	GTT Val	CAC His	AGC Ser	CAT His 440	GCA Ala	1467
TCA Ser	AAT Asn	AAT Asn	ACT Thr 445	TTA Leu	GAT Asp	GGA Gly	CTG Leu	AAC Asn 450	ATG Met	TTT Phe	GAC Asp	TGC Cys	ACC Thr 455	GAT Asp	AGT Ser	1515
TGT Cys	TAC Tyr	TTT Phe 460	CAC His	TCT Ser	GGA Gly	GCT Ala	CGT Arg 46 5	GGT Gly	TAT Tyr	CAT His	TGG Trp	ATG Met 470	TGG Trp	GAT Asp	TCC Ser	1563
CGC Arg	CTC Leu 475	TTT Phe	AAC Asn	TAT Tyr	GGA Gly	AAC Asn 480	TGG Trp	GAG G1u	GTA Val	CTT Leu	AGG Arg 485	TAT Tyr	CTT Leu	CTC Leu	TCA Ser	1611
AAT Asn 490	GCG Ala	AGA Arg	TGG Tṛp	TGG Trp	TTG Leu 495	GAT Asp	GCG Ala	TTC Phe	AAA Lys	TTT Phe 500	GAT Asp	GGA Gly	TTT Phe	AGA Arg	TTT Phe 505	1659
GAT Asp	GGT Gly	GTG Va 1	ACA Thr	TCA Ser 510	ATG Met	ATG Met	TAT Tyr	ATT Ile	CAC His 515	CAC His	GGA Gly	TTA Leu	TCG Ser	GTG Val 520	GGA Gly	1707
TTC Phe	ACT Thr	GGG G1y	AAC Asn 525	TAC Tyr	GAG Glu	GAA G1u	TAC Tyr	TTT Phe 530	GGA Gly	CTC Leu	GCA Ala	ACT Thr	GAT Asp 535	GTG Val	GAT Asp	1755
GCT Ala	GTT Val	GTG Val 540	TAT Tyr	CTG Leu	ATG Met	CTG Leu	GTC Val 545	AAC Asn	GAT Asp	CTT Leu	ATT Ile	CAT His 550	GGG Gly	CTT Leu	TTC Phe	1803
		GCA Ala														1851
TGT Cys 570	ATT Ile	CCC Pro	GTC Val	CAA Gln	GAG Glu 575	GGG Gly	GGT Gly	GTT Val	GGC Gly	TTT Phe 580	GAC Asp	TAT Tyr	CGG Arg	CTG Leu	CAT His 585	1899

									45							
ATG Met	GCA Ala	ATT Ile	GCT Ala	GAT Asp 590	AAA Lys	CGG Arg	ATT	GAG Glu	TTG Leu 595	CTC Leu	AAG Lys	AAA Lys	CGG Arg	GAT Asp 600	GAG Glu	1947
GAT Asp	TGG Trp	AGA Arg	GTG Val 605	GGT Gly	GAT Asp	ATT	GTT Val	CAT His 610	ACA Thr	CTG Leu	ACA Thr	AAT Asn	AGA Arg 615	AGA Arg	TGG Trp	1995
						TAC Tyr										2043
GGT Gly	GAT Asp 635	AAA Lys	ACT Thr	ATA Ile	GCA Ala	TTC Phe 640	TGG Trp	CTG Leu	ATG Met	GAC Asp	AAG Lys 645	GAT Asp	ATG Met	TAT Tyr	GAT Asp	2091
TTT Phe 650	ATG Met	GCT Ala	CTG Leu	GAT Asp	AGA Arg 655	CCG Pro	TCA Ser	ACA Thr	TCA Ser	TTA Leu 660	ATA Ile	GAT Asp	CGT Arg	GGG Gly	ATA Ile 665	2139
GCA Ala	TTG Leu	CAC His	AAG Lys	ATG Met 670	ATT Ile	AGG Arg	CTT Leu	GTA Val	ACT Thr 675	ATG Met	GGA Gly	TTA Leu	GGA Gly	GGA G1y 680	GAA Glu	2187
GGG Gly	TAC Tyr	CTA Leu	AAT Asn 685	TTC Phe	ATG Met	GGA Gly	AAT Asn	GAA G1u 690	TTC Phe	GGC Gly	CAC His	CCT Pro	GAG G1u 695	TGG Trp	ATT Ile	2235
GAT Asp	TTC Phe	CCT Pro 700	AGG Arg	GCT Ala	GAA G1u	CAA Gln	CAC His 705	CTC Leu	TCT Ser	GAT Asp	GGC Gly	TCA Ser 710	GTA Val	ATC Ile	CCC Pro	2283
GGA Gly	AAC Asn 715	CAA G1n	TTC Phe	AGT Ser	TAT Tyr	GAT Asp 720	AAA Lys	TGC Cys	AGA Arg	CGG Arg	AGA Arg 725	TTT Phe	GAC Asp	CTG Leu	GGA Gly	2331
						TAC Tyr										2379
ATG Met	CAG G1n	TAT Tyr	CTT Leu	GAA G1u 750	GAT Asp	AAA Lys	TAT Tyr	GAG G1u	TTT Phe 755	ATG Met	ACT Thr	TCA Ser	GAA G1u	CAC His 760	CAG Gln	2427
						GAA G1u										2475
GGA Gly	AAC Asn	Leu	GTT Val	TTT Phe	GTC Val	TTT Phe	AAT Asn 785	TTT Phe	CAC His	TGG Trp	ACA Thr	AAA Lys 790	AGC Ser	TAT Tyr	TCA Ser	2523
						CTG Leu 800										2571

46

											AGA Arg					2619
GCC Ala	GAA G1u	TAT Tyr	TTC Phe	ACC Thr 830	TTT Phe	GAA G1u	GGA Gly	TGG Trp	TAT Tyr 835	GAT Asp	GAT Asp	CGT Arg	CCT Pro	CGT Arg 840	TCA Ser	2667
											GTC Val					2715
											GAA G1u					2763
		GAA G1u							TGAA	(CGAA	CT T	GTG/	TCGC	CG		2810
TTGA	WAGA	TT I	GAAC	GCTA	C AT	AGAG	CTTC	TTG	ACGT	ATC	TGGC	CAATA	TT G	CATO	CAGTCT	2870
TGGC	GGAA	ו דד	CATO	TGAC	A CA	AGGT	TTGC	TAA	тстт	TCC	ACTA	TTAG	TA G	STGCA	ACGAT	2930
ATAC	GCAG	AG A	TGAA	GTGC	T GA	ACAA	ACAT	ATG	TAAA	ATC	GATO	EAATT	TA T	GTCG	SAATGC	2990
TGGG	ACGA	ATC G	TTAA	CCTG	iC AG	GCCG	GGGG	ACC	CCTT	AGT	TCT					.3033

(2) INFORMATION FOR SEQ ID NO: 15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 882 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

Met Val Tyr Thr Leu Ser Gly Val Arg Phe Pro Thr Val Pro Ser Val. 1 5 10

Tyr Lys Ser Asn Gly Phe Ser Ser Asn Gly Asp Arg Arg Asn Ala Asn 20 25 30

Val Ser Val Phe Leu Lys Lys His Ser Leu Ser Arg Lys Ile Leu Ala 35 40 45

Glu Lys Ser Ser Tyr Asn Ser Glu Phe Arg Pro Ser Thr Val Ala Ala 50 60

Ser Gly Lys Val Leu Val Pro Gly Thr Gln Ser Asp Ser Ser Ser Ser 65 70 75 80

Ser Thr Asp Gln Phe Glu Phe Thr Glu Thr Ser Pro Glu Asn Ser Pro 85 90 95

47

Ala Ser Thr Asp Val Asp Ser Ser Thr Met Glu His Ala Ser Gln Ile 105 Lys Thr Glu Asn Asp Asp Val Glu Pro Ser Ser Asp Leu Thr Gly Ser Val Glu Glu Leu Asp Phe Ala Ser Ser Leu Gln Leu Gln Glu Gly Gly 130 135 140 Lys Leu Glu Glu Ser Lys Thr Leu Asn Thr Ser Glu Glu Thr Ile Ile 145 150 155 160 Asp Glu Ser Asp Arg Ile Arg Glu Arg Gly Ile Pro Pro Pro Gly Leu 165 170 175 Gly Gln Lys Ile Tyr Glu Ile Asp Pro Leu Leu Thr Asn Tyr Arg Gln 180 185 190 His Leu Asp Tyr Arg Tyr Ser Gln Tyr Lys Lys Leu Arg Glu Ala Ile 195 200 205 Asp Lys Tyr Glu Gly Gly Leu Glu Ala Phe Ser Arg Gly Tyr Glu Lys 210 220 Met Gly Phe Thr Arg Ser Ala Thr Gly Ile Thr Tyr Arg Glu Trp Ala 225 230 235 240 Leu Gly Ala Gln Ser Ala Ala Leu Ile Gly Asp Phe Asn Asn Trp Asp 245 250 255 Ala Asn Ala Asp Ile Met Thr Arg Asn Glu Phe Gly Val Trp Glu Ile 260 265 270 Phe Leu Pro Asn Asn Val Asp Gly Ser Pro Ala Ile Pro His Gly Ser 275 280 285 Arg Val Lys Ile Arg Met Asp Thr Pro Ser Gly Val Lys Asp Ser Ile 290 295 300 Pro Ala Trp Ile Asn Tyr Ser Leu Gln Leu Pro Asp Glu Ile Pro Tyr 305 310 315 320 Asn Gly Ile His Tyr Asp Pro Pro Glu Glu Glu Arg Tyr Ile Phe Gln 325 330 335 His Pro Arg Pro Lys Lys Pro Lys Ser Leu Arg Ile Tyr Glu Ser His 340 345 Ile Gly Met Ser Ser Pro Glu Pro Lys Ile Asn Ser Tyr Val Asn Phe 355 360 365 Arg Asp Glu Val Leu Pro Arg Ile Lys Lys Leu Gly Tyr Asn Ala Leu 370 380 Gln Ile Met Ala Ile Gln Glu His Ser Tyr Tyr Ala Ser Phe Gly Tyr 385 390 395 400

48

His Val Thr Asn Phe Phe Ala Pro Ser Ser Arg Phe Gly Thr Pro Asp Asp Leu Lys Ser Leu Ile Asp Lys Ala His Glu Leu Gly Ile Val Val Leu Met Asp Ile Val His Ser His Ala Ser Asn Asn Thr Leu Asp Gly 435 440 445 Leu Asn Met Phe Asp Cys Thr Asp Ser Cys Tyr Phe His Ser Gly Ala 450 460 Arg Gly Tyr His Trp Met Trp Asp Ser Arg Leu Phe Asn Tyr Gly Asn 470 475 480 Trp Glu Val Leu Arg Tyr Leu Leu Ser Asn Ala Arg Trp Trp Leu Asp 485 490 495 Ala Phe Lys Phe Asp Gly Phe Arg Phe Asp Gly Val Thr Ser Met Met 500 505 Tyr Ile His His Gly Leu Ser Val Gly Phe Thr Gly Asn Tyr Glu Glu 515 520 525 Tyr Phe Gly Leu Ala Thr Asp Val Asp Ala Val Val Tyr Leu Met Leu 530 540 Val Asn Asp Leu Ile His Gly Leu Phe Pro Asp Ala Ile Thr Ile Gly 545 550 555 560 Glu Asp Val Ser Gly Met Pro Thr Phe Cys Ile Pro Val Gln Glu Gly 565 570 575 Gly Val Gly Phe Asp Tyr Arg Leu His Met Ala Ile Ala Asp Lys Arg 580 585 590 Ile Glu Leu Leu Lys Lys Arg Asp Glu Asp Trp Arg Val Gly Asp Ile 595 600 605 Val His Thr Leu Thr Asn Arg Arg Trp Ser Glu Lys Cys Val Ser Tyr 610 615 620 Ala Glu Ser His Asp Gln Ala Leu Val Gly Asp Lys Thr Ile Ala Phe 625 630 635 640 Trp Leu Met Asp Lys Asp Met Tyr Asp Phe Met Ala Leu Asp Arg Pro 645 650 655 Ser Thr Ser Leu Ile Asp Arg Gly Ile Ala Leu His Lys Met Ile Arg 660 665 670 Leu Val Thr Met Gly Leu Gly Gly Glu Gly Tyr Leu Asn Phe Met Gly 675 680 685 Asn Glu Phe Gly His Pro Glu Trp Ile Asp Phe Pro Arg Ala Glu Gln 690

49

(2) INFORMATION FOR SEQ ID NO: 16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2576 base pairs .
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

TCATTAAAGA	GGAGAAATTA	ACTATGAGAG	GATCTCACCA	TCACCATCAC	CATGGGATCT	60
TGGCTGAAAA	GTCTTCTTAC	AATTCCGAAT	TCCGACCTTC	TACAGTTGCA	GCATCGGGGA	120
AAGTCCTTGT	GCCTGGAACC	CAGAGTGATA	GCTCCTCATC	CTCAACAAAC	CAATTTGAGT	180
TCACTGAGAC	ATCTCCAGAA	AATTCCCCAG	CATCAACTGA	TGTAGATAGT	TCAACAATGG	240
AACACGCTAG	CCAGATTAAA	ACTGAGAACG	ATGACGTTGA	GCCGTCAAGT	GATCTTACAG	300

GAAGTGTTGA AGAGCT	TGGAT TTTGCTTCAT (CACTACAACT	ACAAGAAGGT	GGTAAACTGG	360
AGGAGTCTAA AACATT	TAAAT ACTTCTGAAG A	AGACAATTAT	TGATGAATCT	GATAGGATCA	420
GAGAGAGGGG CATCCC	CTCCA CCTGGACTTG (GTCAGAAGAT	TTATGAAATA	GACCCCCTTT	480
TGACAAACTA TCGTCA	ACAC CTTGATTACA (GGTATTCACA	GTACAAGAAA	CTGAGGGAGG	540
CAATTGACAA GTATGA	AGGGT GGTTTGGAAG (сттттстсс	TGGTTATGAA	AAAATGGGTT	600
TCACTCGTAG TGCTAC	CAGGT ATCACTTACC G	GTGAGTGGGC	TCCTGGTGCC	CAGTCAGCTG	660
CCCTCATTGG AGATTT	CAAC AATTGGGACG (CAAATGCTGA (CATTATGACT	CGGAATGAAT	720
TTGGTGTCTG GGAGAT	TTTT CTGCCAAATA A	ATGTGGATGG	TTCTCCTGCA	ATTCCTCATG	780
GGTCCAGAGT GAAGAT	ACGT ATGGACACTC C	CATCAGGTGT -	TAAGGATTCC	ATTCCTGCTT	840
GGATCAACTA CTCTAC	AGCT TCCTGATGAA A	ATTCCATATA A	ATGGAATATA	TTATGATCCA	900
CCCGAAGAGG AGAGGT	TATAT CTTCCAACAC C	CCACGGCCAA A	AGAAACCAAA	GTCGCTGAGA	960
ATATATGAAT CTCATA	TTGG AATGAGTAGT C	CCGGAGCCTA A	AAATTÄACTC	ATACGTGAAT	1020
TTTAGAGATG AAGTTC	TTCC TCGCATAAAA A	AGCTTGGGT A	ACAATGCGCT	GCAAATTATG	1080
GCTATTCAAG AGCATT	CTTA TTATGCTAGT T	TTTGGTTATC A	ATGTCACAAA	TTTTTTGCA	1140
CCAAGCAGCC GTTTTG	GAAC GCCCGACGAC C	TTAAGTCTT 1	IGATTGATAA .	AGCTCATGAG	1200
CTAGGAATTG TTGTTC	TCAT GGACATTGTT C	CACAGCCATG (CATCAAATAA	TACTTTAGAT	1260
GGACTGAACA TGTTTG	ACGG CACCGATAGT T	GTTACTTTC A	ACTCTGGAGC	TCGTGGTTAT	1320
CATTGGATGT GGGATT	CCCG CCTTTTTAAC T	ATGGAAACT G	GGAGGTACT	TAGGTATCTT	1380
CTCTCAAATG CGAGAT	GGTG GTTGGATGAG T	TCAAATTTG A	ATGGATTTAG .	ATTTGATGGT	1440
GTGACATCAA TGATGT	ATAC TCACCACGGA T	TATCGGTGG G	SATTCACTGG (GAACTACGAG	1500
GAATACTTTG GACTCG	CAAC TGATGTGGAT G	CTGTTGTGT A	ATCTGATGCT (GGTCAACGAT	1560
CTTATTCATG GGCTTT	TCCC AGATGCAATT A	CCATTGGTG A	AGATGTTAG (CGGAATGCCG	1620
ACATTITGTA TTCCCG	TTCA AGATGGGGGT G	TTGGCTTTG A	CTATCGGCT (GCATATGGCA	1680
ATTGCTGATA AATGGA	TTGA GTTGCTCAAG A	AACGGGATG A	AGGATTGGAG	AGTGGGTGAT	1740
ATTGTTCATA CACTGA	CAAA TAGAAGATGG T	CGGAAAAGT G	STGTTTCATA (CGCTGAAAGT	1800
CATGATCAAG CTCTAG	TCGG TGATAAAACT A	TAGCATTCT G	GCTGATGGA (CAAGGATATG	1860
TATGATTTTA TGGCTC	TGGA TAGACCGCCA A	CATCATTAA T	AGATCGTGG (GATAGCATTG	1920
CACAAGATGA TTAGGC	TTGT AACTATGGGA T	TAGGAGGAG A	AGGGTACCT A	AAATTTCATG	1980

51

(GGAAATGAAT	TCGGCCACCC	TGAGTGGATT	GATTTCCCTA	GGGCTGAACA	ACACCTCTCT	2040
(GATGACTCAG	TAATTCCCGG	AAACCAATTC	AGTTATGATA	AATGCAGACG	GAGATTTGAC	2100
(CTGGGAGATG	CAGAATATTT	AAGATACCGT	GGGTTGCAAG	AATTTGACCG	GGCTATGCAG	2160
	TATCTTGAAG	ATAAATATGA	GTTTATGACT	TCAGAACACC	AGTTCATATC	ACGAAAGGAT	2220
(GAAGGAGATA	GGATGATTGT	ATTTGAAAAA	GGAAACCTAG	TTTTGTCTT	TAATTTTCAC	2280
-	TGGACAAAAA	GCTATTCAGA	CTATCGCATA	GGCTGCCTGA	AGCCTGGAAA	ATACAAGGTT	2340
(GCCTTGGACT	CAGATGATCC	ACTTTTTGGT	GGCTTCGGGA	GAATTGATCA	TAATGCCGAA	2400
-	TATTTCACCT	TTGAAGGATG	GTATGATGAT	CGTCCTCGTT	CAATTATGGT	GTATGCACCT	2460
-	TGTAGAACAG	CAGTGGTCTA	TGCACTAGTA	GACAAAGAAG	AAGAAGAAGA	AGAAGAAGAA	2520
(GAAGAAGTAG	CAGTAGTAGA	AGAAGTAGTA	GTAGAAGAAG	AATGAACGAA	CTTGTG	2576

(2) INFORMATION FOR SEQ ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2529 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

GGATGCTAAT	GTTTCTGTAT	TCTTGAAAAA	GCACTCTCTT	TCACGGAAGA	TCTTGGCTGA	60
AAAGTCTTCT	TACAATTCCG	AATCCCGACC	TTCTACAGTT	GCAGCATCGG	GGAAAGTCCT	120
TGTGCCTGGA	AYCCAGAGTG	ATAGCTCCTC	ATCCTCAACA	GACCAATTTG	AGTTCACTGA	180
GACATCTCCA	GAAAATTCCC	CAGCATCAAC	TGATGTAGAT	AGTTCAACAA	TGGAACACGC	240
TAGCCAGATT	AAAACTGAGA	ACGATGACGT	TGAGCCGTCA	AGTGATCTTA	CAGGAAGTGT	300
TGAAGAGCTG	GATTTTGCTT	CATCACTACA	ACTACAAGAA	GGTGGTAAAC	TGGAGGAGTC	360
TAAAACATTA	AATACTTCTG	AAGAGACAAT	TATTGATGAA	TCTGATAGGA	TCAGAGAGAG	420
GGGCATCCCT	CCACCTGGAC	TTGGTCAGAA	GATTTATGAA	ATAGACCCCC	TTTTGACAAA	480
CTATCGTCAA	CACCTTGATT	ACAGGTATTC	ACAGTACAAG	AAACTGAGGG	AGGCAATTGA	540
CAAGTATGAG	GGTGGTTTGG	AAGCTTTTTC	TCGTGGTTAT	GAAAAAATGG	GTTTCACTCG	600
TAGTGCTACA.	GGTATCACTT	ACCGTGAGTG	GGCTCCTGGT	GCCCAGTCAG	CTGCCCTCAT	660
TGGAGATTTC	AACAATTGGG	ACGCAAATGC	TGACATTATG	ACTCGGAATG	AATTTGGTGT	720
CTGGGAGATT	TTTCTGCCAA	ATAATGTGGA	TGGTTCTCCT	GCAATTCCTC	ATGGGTCCAG	780

AGTGAAGATA	CGYATGGACA	CTCCATCAGG	TGTTAAGGAT	TCCATTCCTG	CTTGGATCAA	840
CTACTCTTTA	CAGCTTCCTG	ATGAAATTCC	ATATAATGGA	ATATATTATG	ATCCACCCGA	900
AGAGGAGAGG	TATRTCTTCC	AACACCCACG	GCCAAAGAAA	CCAAAGTCGC	TGAGAATATA	960
TGAATCTCAT	ATTGGAATGA	GTAGTCCGGA	GCCTAAAATT	AACTCATACG	TGAATTTTAG	1020
AGATGAAGTT	CTTCCTCGCA	TAAAAAASCT	TGGGTACAAT	GCGGTGCAAA	TTATGGCTAT	1080
TCAAGAGCAT	TCTTATTATG	CTAGTTTTGG	TTATCATGTC	ACAAATTTTT	TTGCACCAAG	1140
CAGCCGTTTT	GGAACGCCCG	ACGACCTTAA	GTCTTTGATT	GATAAAGCTC	ATGAGCTAGG	1200
AATTGTTGTT	CTCATGGACA	TTGTTCACAG	CCATGCATCA	AATAATACTT	TAGATGGACT	1260
GAACATGTTT	GACGGCACAG	ATAGTTGTTA	CTTTCACTCT	GGAGCTCGTG	GTTATCATTG	1320
GATGTGGGAT	TCCCGCCTCT	TTAACTATGG	AAACTGGGAG	GTACTTAGGT	ATCTTCTCTC	1380
AAATGCGAGA	TGGTGGTTGG	ATGAGTTCAA	ATTTGATGGA	TTTAGATTTG	ATGGTGTGAC	1440
ATCAATGATG	TATACTCACC	ACGGATTATC	GGTGGGATTC	ACTGGGAACT	ACGAGGAATA	1500
CTTTGGACTC	GCAACTGATG	TGGATGCTGT	TGTGTATCTG	ATGCTGGTCA	ACGATCTTAT	1560
TCACGGGCTT	TTCCCAGATG	CAATTACCAT	TGGTGAAGAT	GTTAGCGGAA	TGCCGACATT	1620
TTGTATTCCC	GTTCAAGATG	GGGGTGTTGG	CTTTGACTAT	CGGCTGCATA	TGGCAATTGC	1680
TGATAAATGG	ATTGAGTTGC	TCAAGAAACG	GGATGAGGAT	TGGAGAGTGG	GTGATATTGT	1740
TCATACACTG	ACAAATAGAA	GATGGTCGGA	AAAGTGTGTT	TCATMCGCTG	AAAGTCATGA	1800
TCAAGCTCTA	GTCGGTGATA	AAACTATAGC	ATYCTGGCTG	ATGGACAAGG	ATATGTATGA	1860
TTTTATGGCT	CTGGATAGAC	CGYCAACAYC	ATTAATAGAT	CGTGGGATAG	CATTGCACAA	1920
GATGATTAGG	CTTGTAACTA	TGGGATTAGG	AGGAGAAGGG	TACCTAAATT	TCATGGGAAA	1980
TGAATTCGGC	CACCCTGAGT	GGATTGATTT	CCCTAGGGCT	GARCAACACC	TCTCTGATGG	2040
CTCAGTAATT	CCCGGAAACC	AATTCAGTTA	TGATAAATGC	AGACGGAGAT	TTGACCTGGG	2100
AGATGCAGAA	TATTTAAGAT	ACCATGGGTT	GCAAGAATTT	GACCGGGCTA	TGCAGTATCT	2160
TGAAĢATAAA	TATGAGTTTA	TGACTTCAGA	ACACCAGTTC	ATATCACGAA	AGGATGAAGG	2220
AGATAGGATG	ATTGTATTTG	AAARAGGAAA	CCTAGTTTTT	GTCTTTAATT	TTCACTGGAC	2280
AAATAGCTAT	TCAGACTATC	GCATAGGCTG	CCTGAAGCCT	GGAAAATACA	AGGTTGGCTT	2340
GGACTCAGAT	GATCCACTTT	TTGGTGGCTT	CGGGAGAATT	GATCATAATG	CCGAATATTT	2400
CACCTCTGAA	GGATCGTATG	ATGATCGTCC	TCGTTCAATT	ATGGTGTATG	CACCTAGTAG	2460

53

AACAGCAGTG	GTCTATGCAC	TAGTAGACAA	ANTAGAAGNA	GAAGAAGAAG	AAGAANCCGN	2520
NGAAGAATT						2529

(2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3231 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

GATTTAATAC	GACTCACTAT	AGGGATTTTT	$\overline{\mathbf{m}}$	TTTTAAAAAC	CTCCTCCACT	60
CAGTCTTGGG	ATCTCTCTCT	CTCTTCACGC	TTCTCTTGGG	GCCTTGAACT	CAGCAATTTG	120
ACACTCAGTT	AGTTACACTC	CTATCACTCA	TCAGATCTCT	ATTTTTCTC	TTAATTCCAA	180
CCAAGGAATG	AATTAAAAGA	TTAGATTTGA	AGGAGAGAAG	AAGAAAGATG	GTGTATACAC	240
TCTCTGGAGT	TCGTTTTCCT	ACTGTTCCAT	CAGTGTACAA	ATCTAATGGA	TTCAGCAGTA	300
ATGGTGATCG	GAGGAATGCT	AATGTTTCTG	TATTCTTGAA	AAAGCACTCT	CTTTCACGGA	360
AGATCTTGGC	TGAAAAGTCT	TCTTACGATT	CCGAATCCCG	ACCTTCTACA	GTTGCAGCAT	420
CGGGGAAAGT	CCTTGTACCT	GGAATCCAGA	GTGATAGCTC	CTCATCCTCA	ACAGACCAAT	480
TTGAGTTCAC	TGAGACAGCT	CCAGAAAATT	CCCCAGCATC	AACTGATGTG	GATAGTTCAA	540
CAATGGAACA	CGCTAGCCAG	ATTAAAACTG	AGAACGATGA	CGTTGAGCCG	TCAAGTGATC	600
TTACAGGAAG	TGTTGAAGAG	TTGGATTTTG	CTTCATCACT	ACAACTACAA	GAAGGTGGTA	660
AACTGGAGGA	GTCTAAAACA	TTAAATACTT	CTGAAGAGAC	AATTATTGAT	GAATCTGATA	720
GGATCAGAGA	GAGGGCATC	CCTCCACCTG	GACTTGGTCA	GAAGATTTAT	GAAATAGACC	780
CCCTTTTGAC	AAACTATCGT	CAACACCTTG	ATTACAGGTA	TTCACAGTAC	AAGAAAATGA	840
GGGAGGCAAT	TGACAAGTAT	GAGGGTGGTT	TGGAAGCTTT	TTCTCGTGGT	TATGAAAAA	900
TGGGTTTCAC	TCGTAGTGCT	ACAGGTATCA	CTTACCGTGA	GTGGGCTCCT	GGTGCCCAGT	960
CAGCTGCTCT	CATTGGAGAT	TTCAACAATT	GGGACGCAAA	TGCTGACATT	ATGACTCGGA	1020
ATGAATTTGG	TGTCTGGGAG	ATTTTTCTGC	CAAATAATGT	GGATGGTTCT	CCTGCAATTC	1080
CTCATGGGTC	CAGAGTGAAG	ATACGCATGG	ACACTTCATC	AGGTGTTAAG	GATTCCATTC	1140
CTGCTTGGAT	CAACTACTCT	TTACAGCTTC	CTGATGAAAT	TCCATATAAT	GGAATATATT	1200
ATGATCCACC	CGAAGAGGAG	AGGTATGTCT	TCCAACACCC	ACGGCCAAAG	AAACCAAAGT	1260

CGCTGAGAAT	ATATGAATCT	CATATTGGAA	TGAGTAGTCC	GGAGCCTAAA	ATTAACTCAT	1320
ACGTGAATTT	TAGAGATGAA	GTTCTTCCTC	GCATAAAAAA	CCTTGGGTAC	AATGCGGTGC	1380
AAATTATGGC	TATTCAAGAG	CATTCTTATT	ATGCTAGTTT	TGGTTATCAT	GTCACAAATT	1440
TTTTGCACC	AAGCAGCCGT	TTTGGAACGC	CCGACGACCT	TAAGTCTTTG	ATTGATAAAG	1500
CTCATGAGCT	AGGAATTGTT	GTTCTCATGG	ACATTGTTCA	CAGCCATGCA	TCAAATAATA	1560
CTTTAGATGG	ACTGAACATG	TTTGACGGCA	CAGATAGTTG	TTACTTTCAC	TCTGGAGCTC	1620
GTGGTTATCA	TTGGATGTGG	GATTCCCGCC	TCTTTAACTA	TGGAAACTGG	GAGGTACTTA	1680
GGTATCTTCT	CTCAAATGCG	AGATGGTGGT	TGGATGAGTG	CAAATTTGRT	GGATTTAGAT	1740
TTGATGGTGT	GACATCAATG	ATGTATACTC	ACCACGGATT	ATCGGTGGGA	TTCACTGGGA	1800
ACTACGAGGA	ATACTTTGGA	CTCGCAACTG	ATGTRGATGC	TGCCGTGTAT	CTGATGCTGG	1860
CCAACGATCT	TATTCATGGG	CTTTTCCCAG	ATGCAATTAC	CATTGGTGAA	GATGTTAGCG	1920
GAATGCCGAC	ATTTTGTATT	CCCGTTCAAG	ATGGGGGTGT	TGGCTTTGAC	TATCGGCTGC	1980
ATATGGCAAT	TGCTGATAAA	TGGATTGAGT	TGCTCAAGAA	ACGGGATGAG	GATTGGAGAG	2040
TGGGTGATAT	TGTTCATACA	CTGACAAATA	GAAGATGGTC	GGAAAAGTGT	GTTTCATACG	2100
CTGAAAGTCA	TGATCAAGCT	CTAGTCGGTG	ATAAAACTAT	AGCATTCTGG	CTGATGGACA	2160
AGGATATGTA	TGATTTTATG	GCTTTGGATA	GACCGTCAAC	ATCATTAATA	GATCGTGGGA	2220
TAGCATTGCA	CAAGATGATT	AGGCTTGTAA	CTATGGGATT	AGGAGGAGAA	GGGTACCTAA	2280
ATTTCATGGG	AAATGAATTC	GGCCACCCTG	AGTGGATTGA	TTTCCCTAGG	GCTGAACAAC	2340
ACCTCTCTGA	TGGCTCAGTA	ATTCCCGGAA	ACCAATTCAG	TTATGATAAA	TGCAGACGGA	2400
GATTTGACCT	GGGAGATGCA	GAATATTTAA	GATACCGTGG	GTTGCAAGAA	TTTGACCGGG	2460
CTATGCAGTA	TCTTGAAGAT	AAATATGAGT	TTATGACTTC	AGAACACCAG	TTCATATCAC	2520
GAAAGGATGA	AGGAGATAGG	ATGATTGTAT	TTGAAAAAGG	AAACCTAGTT	TTTGTCTTTA	2580
ATTTTCACTG	GACAAAAAGC	TATTCAGACT	ATCGCATAGG	CTGGCTGAAG	CCTGGAAAAT	2640
ACAAGGTTGC	CTTGGACTCA	GATGATCCAC	TTTTGGTGG	CTTCGGGAGA	ATTGATCATA	2700
ATGCCGAATG	TTTCACCTTT	GAAGGATGGT	ATGATGATCG	TCCTCGTTCA	ATTATGGTGT	2760
ATGCACCTAG	TAGAACAGCA	GTGGTCTATG	CACTAGTAGA	CAAAGAAGAA	GAAGAAGAAG	2820
AAGTAGCAGT	AGTAGAAGAA	GTAGTAGTAG	AAGAAGAATG	AACGAACTTG	TGATCGCGTT	2880
GAAAGATTTG	AACGCTACAT	AGAGCTTCTT	GACGTATCTG	GCAATATTGC	ATCAGTCTTG	2940

55

GCGGAATTTC	ATGTGACAAA	AGGTTTGCAA	TTCTTTCCAC	TATTAGTAGT	GCAACGATAT	3000
ACGCAGAGAT	GAAGTGCTGA	ACAAACATAT	GTAAAATCGA	TGAATTTATG	TCGAATGCTG	3060
GGACGGGCTT	CAGCAGGTTT	TGCTTAGTGA	GTTCTGTAAA	TTGTCATCTC	TTTANATGTA	3120
CAGCCCACTA	GAAATCAATT	ATGTGAGACC	TAAAAAACAA	TAACCATAAA	ATGGAAATAG	3180
TGCTGATCTA	ATGATGTTTT	AANCCNNNNA	AAAAAAAA	AAAAACTCGA	G	3231

(2) INFORMATION FOR SEQ ID NO: 19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2578 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

60	CATGGGATCT	TCACCATCAC	GATCTCACCA	ACTATGAGAG	GGAGAAATTA	TCATTAAAGA
120	GCATCGGGGA	TACAGTTGCA	TCCGACCTTC	AATTCCGAAT	GTCTTCTTAC	TGGCTGAAAA
180	CAATTTGAGT	CTCAACAAAC	GCTCCTCATC	CAGAGTGATA	GCCTGGAACC	AAGTCCTTGT
. 240	TCAACAATGG	TGTAGATAGT	CATCAACTGA	AATTCCCCAG	ATCTCCAGAA	TCACTGAGAC
300	GATCTTACAG	GCCGTCAAGT	ATGACGTTGA	ACTGAGAACG	CCAGATTAAA	AACACGCTAG
360	GGTAAACTGG	ACAAGAAGGT	CACTACAACT	TTTGCTTCAT	AGAGCTGGAT	GAAGTGTTGA
420	GATAGGATCA	TGATGAATCT	AGACAATTAT	ACTTCTGAAG	AACATTAAAT	AGGAGTCTAA
480	GACCCCCTTT	TTATGAAATA	GTCAGAAGAT	CCTGGACTTG	CATCCCTCCA	GAGAGAGGGG
540	CTGAGGGAGG	GTACAAGAAA	GGTATTCACA	CTTGATTACA	TCGTCAACAC	TGACAAACTA
600	AAAATGGGTT	TGGTTATGAA	CTTTTTCTCG	GGTTTGGAAG	GTATGAGGGT	CAATTGACAA
660	CAGTCAGCTG	TCCTGGTGCC	GTGAGTGGGC	ATCACTTACC	TGCTACAGGT	TCACTCGTAG
720	CGGAATGAAT	CATTATGACT	CAAATGCTGA	AATTGGGACG	AGATTTCAAC	CCCTCATTGG
780	ATTCCTCATG	TTCTCCTGCA	ATGTGGATGG	CTGCCAAATA	GGAGATTTTT	TTGGTGTCTG
840	ATTCCTGCTT	TAAGGATTCC	CATCAGGTGT	ATGGACACTC	GAAGATACGT	GGTCCAGAGT
900	TATTATGATC	TAATGGAATA	AAATTCCATA	CTTCCTGATG	CTCTTCACAG	GGATCAACTA
960	AAGTCGCTGA	AAAGAAACCA	ACCCACGGCC	ATCTTCCAAC	GGAGAGGTAT	CACCCGAAGA
1020	TCATACGTGA	TAAAATTAAC	GTCCGGAGCC	GGAATGAGTA	ATCTCATATT	GAATATATGA
1080	GTGCAAATTA	GTACAATGCG	AAAAGCTTGG	CCTCGCATAA	TGAAGTTCTT	ATTTTAGAGA

TGGCTATTCA	AGAGCATTCT	TATTATGCTA	GTTTTGGTTA	TCATGTCACA	AATTTTTTG	1140
CACCAAGCAG	CCGTTTTGGA	ACGCCCGACG	ACCTTAAGTC	TTTGATTGAT	AAAGCTCATG	1200
AGCTAGGAAT	TGTTGTTCTC	ATGGACATTG	TTCACAGCCA	TGCATCAAAT	AATACTTTAG	1260
ATGGACTGAA	CATGTTTGAC	GGCACCGATA	GTTGTTACTT	TCACTCTGGA	GCTCGTGGTT	1320
ATCATTGGAT	GTGGGATTCC	CGCCTTTTTA	ACTATGGAAA	CTGGGAGGTA	CTTAGGTATC	1380
TTCTCTCAAA	TGCGAGATGG	TGGTTGGATG	AGTTCAAATT	TGATGGATTT	AGATTTGATG	1440
GTGTGACATC	AATGATGTAT	ACTCACCACG	GATTATCGGT	GGGATTCACT	GGGAACTACG	1500
AGGAATACTT	TGGACTCGCA	ACTGATGTGG	ATGCTGTTGT	GTATCTGATG	CTGGTCAACG	1560
ATCTTATTCA	TGGGCTTTTC	CCAGATGCAA	TTACCATTGG	TGAAGATGTT	AGCGGAATGC	1620
CGACATTTTG	TATTCCCGTT	CAAGATGGGG	GTGTTGGCTT	TGACTATCGG	CTGCATATGG	1680
CAATTGCTGA	TAAATGGATT	GAGTTGCTCA	AGAAACGGGA	TGAGGATTGG	AGAGTGGGTG	1740
ATATTGTTCA	TACACTGACA	AATAGAAGAT	GGTCGGAAAA	GTGTGTTTCA	TACGCTGAAA	1800
GTCATGATCA	AGCTCTAGTC	GGTGATAAAA	CTATAGCATT	CTGGCTGATG	GACAAGGATA	1860
TGTATGATTT	TATGGCTCTG	GATAGACCGC	CAACATCATT	AATAGATCGT	GGGATAGCAT	1920
TGCACAAGAT	GATTAGGCTT	GTAACTATGG	GATTAGGAGG	AGAAGGGTAC	CTAAATTTCA	1980
TGGGAAATGA	ATTCGGCCAC	CCTGAGTGGA	TTGATTTCCC	TAGGGCTGAA	CAACACCTCT	2040
CTGATGACTC	AGTAATTCCC	GGAAACCAAT	TCAGTTATGA	TAAATGCAGA	CGGAGATTTG	2100
ACCTGGGAGA	TGCAGAATAT	TTAAGATACC	GTGGGTTGCA	AGAATTTGAC	CGGGCTATGC	2160
AGTATCTTGA	AGATAAATAT	GAGTTTATGA	CTTCAGAACA	CCAGTTCATA	TCACGAAAGG	2220
ATGAAGGAGA	TAGGATGATT	GTATTTGAAA	AAGGAAACCT	AGTTTTTGTC	TTTAATTTTC	2280
ACTGGACAAA	AAGCTATTCA	GACTATCGCA	TAGGCTGCCT	GAAGCCTGGA	AAATACAAGG	2340
TTGCCTTGGA	CTCAGATGAT	CCACTTTTTG	GTGGCTTCGG	GAGAATTGAT	CATAATGCCG	2400
AATATTTCAC	CTTTGAAGGA	TGGTATGATG	ATCGTCCTCG	TTCAATTATG	GTGTATGCAC	2460
CTTGTAGAAC	AGCAGTGGTC	TATGCACTAG	TAGACAAAGA	AGAAGAAGAA	GAAGAAGAAG ·	2520
AAGAAGAAGT	AGCAGTAGTA	GAAGAAGTAG	TAGTAGAAGA	AGAATGAACG	AACTTGTG	2578

57

(2) INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 23 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

AATTTYATGG GNAAYGARTT YGG

58

CLAIMS

- 1. Starch extracted from a potato plant and having an amylose content of at least 35%, as judged by the iodometric assay method of Morrison & Laignelet (1983 J. Cereal Science 1, 9-20).
- 2. Starch according to claim 1, having an amylose content of at least 37%, as judged by the method defined in claim 1.
- 3. Starch according to claim 1, having an amylose content of at least 40%, as judged by the method defined in claim 1.
- 4. Starch according to claim 1, having an amylose content of at least 50%, as judged by the method defined in claim 1.
- 5. Starch according to claim 1, having an amylose content of at least 66%, as judged by the method defined in claim 1.
- 6. Starch according to any one of claims 1-5, having an amylose content of 35 66%, as judged by the method defined in claim 1.
- 7. Starch which as extracted from a potato plant by wet milling at ambient temperature has a viscosity onset temperature in the range 70 95°C, as judged by viscoamylograph of a 10% w/w aqueous suspension thereof, performed at atmospheric pressure using the Newport Scientific Rapid Visco Analyser 3C with a heating profile of holding at 50°C for 2 minutes, heating from 50 to 95°C at a rate of 1.5°C per minute, holding at 95°C for 15 minutes, cooling from 95 to 50°C at a rate of 1.5°C per minute, and then holding at 50°C for 15 minutes.
- 8. Starch which as extracted from a potato plant by wet milling at ambient temperature has peak viscosity in the range 500 12 stirring number units (SNUs), as judged by viscoamylograph conducted according to the protocol defined in claim 7.

- 9. Starch which as extracted from a potato plant by wet milling at ambient temperature has a pasting viscosity in the range 214 434 SNUs, as judged by viscoamylograph conducted according to the protocol defined in claim 7.
- 10. Starch which as extracted from a potato plant by wet milling at ambient temperature has a set-back viscosity in the range 450 618 SNUs, as judged by viscoamylograph conducted according to the protocol defined in claim 7.
- 11. Starch which as extracted from a potato plant by wet milling at ambient temperature has a set-back viscosity in the range 14 192 SNUs, as judged by viscoamylograph conducted according to the protocol defined in claim 7.
- 12. Starch which as extracted from a potato plant by wet milling at ambient temperature has a peak viscosity in the range 200 500 SNUs and a set-back viscosity in the range 275-618 SNUs as judged by viscoamylograph according to the protocol defined in claim 7.
- 13. Starch which as extracted from a potato plant by wet milling at ambient temperature has a viscosity which does not decrease between the start of the heating phase (step 2) and the start of the final holding phase (step 5) and has a set-back viscosity of 303 SNUs or less as judged by viscoamylograph according to the protocol defined in claim 7.
- 14. Starch which as extracted from a potato plant by wet milling at ambient temperature displays no significant increase in viscosity as judged by viscoamylograph conducted according to the protocol defined in claim 7.
- 15. Starch which as extracted from a potato plant by wet milling at ambient temperature, is in accordance with claim 7 and in accordance with any one of claims 8 to 14.
- 16. Starch according to any one of claims 7 to 15, having an amylose content in the range 35 66%, as judged by the method of Morrison & Laignelet defined in claim 1.

- 17. Starch which as extracted from a potato plant, has a phosphorus content in excess of 200mg/100grams dry weight starch.
- 18. Starch according to claim 17, having a phosphorus content in the range 200 240mg/100grams dry weight starch.
- 19. Starch according to claim 17 or 18, further in accordance with any one of claims 1 to 16.
- 20. Starch prepared by physical, chemical and/or enzymatic treatment of a starch initially having properties in accordance with any one of claims 1-19.
- 21. Starch according to claim 20, being resistant starch prepared by physical, chemical and/or enzymatic treatment of a starch initially having properties in accordance with any one of claims 1-19.
- 22. Starch according to claim 21, comprising in excess of 5% total dietary fibre, as determined according to the method of Prosky *et al.*, (1985 J. Assoc. Off. Anal. Chem. 68, 677).
- 23. Use of starch according to any one of claims 1-22 in the preparation or processing of a foodstuff.
- 24. Use of starch according to claim 23, wherein the starch is used to provide a film, barrier, coating or as a gelling agent.
- 25. Use of starch according to claim 23, to prepare resistant starch compositions.
- 26. Use of starch according to any one of claims 1-22 in the preparation or processing of corrugating adhesives, biodegradable products, packaging, glass fibers and textiles.
- 27. A nucleotide sequence encoding an effective portion of a class A starch branching

61

enzyme (SBE) obtainable from potato plants.

- 28. A nucleotide sequence according to claim 27, encoding a polypeptide comprising substantially the amino acid sequence of residues 49 to 882 of the sequence shown in Figure 5.
- 29. A nucleotide sequence according to claim 27 or 28, comprising substantially the sequence of nucleotides 289 to 2790 of the sequence shown in Figure 5, or a functional equivalent thereof.
- 30. A nucleotide sequence according to claim 29, further comprising the sequence of nucleotides 145 to 288 of the sequence shown in Figure 5, or a functional equivalent thereof.
- 31. A nucleotide sequence according to claim 27, comprising the sequence of nucleotides 228 to 2855 of the sequence labelled psbe2con.seq in Figure 8, or a functional equivalent thereof.
- 32. A nucleotide sequence according to claim 27, comprising the sequence of nucleotides 57 to 2564 of the sequence labelled as psbe2con.seq in Figure 12, or a functional equivalent thereof.
- 33. A nucleotide sequence according to any one of claims 27 to 32, comprising an inframe ATG start codon, and optionally including a 5' and/or a 3' untranslated region.
- 34. A nucleotide sequence according to claim 27, comprising the sequence of nucleotides 45 to 3200 of the sequence labelled as psbe2con.seq in Figure 8, or a functional equivalent thereof.
- 35. A nucleic acid construct comprising a sequence in accordance with any one of claims 27 to 34.

- 36. An expression vector comprising a nucleic acid construct according to claim 35.
- 37. A host cell into which has been introduced a sequence in accordance with any one of claims 27 to 36.
- 38. An effective portion of a class A SBE polypeptide obtainable from potato plants and encoded by a nucleotide sequence in accordance with any one of claims 27 to 36.
- 39. A polypeptide according to claim 38, comprising substantially the sequence of amino acids 49 to 882 of the sequence shown in Figure 5, or a functional equivalent thereof.
- 40. A polypeptide according to claim 38 or 39, comprising the sequence of amino acids 1 to 48 of the sequence shown in Figure 5.
- 41. A polypeptide in accordance with any one of claims 38, 39 or 40 in substantial isolation from other plant-derived constituents.
- 42. A method of altering the characteristics of a plant, comprising introducing into the plant a portion of a nucleotide sequence in accordance with any one of claims 27 to 36, operably linked to a suitable promoter active in the plant, so as to affect the expression of a gene present in the plant.
- 43. A method according to claim 42, wherein the nucleotide sequence is operably linked in the anti-sense orientation to a suitable promoter active in the plant.
- 44. A method according to claim 42, wherein the introduced sequence comprises one or more of the following operably linked in the sense orientation to a promoter active in the plant, so as to cause sense suppression of an enzyme naturally expressed in the plant: a 5' untranslated region, a 3' untranslated region, or a coding region of the potato SBE class A starch branching enzyme.
- 45. A method according to any one of claims 42, 43 or 44, further comprising

63

introducing into the plant one or more further sequences.

- 46. A method according to claim 45, wherein one or more of the further sequences are operably linked in the anti-sense orientation to a suitable promoter active in the plant.
- 47. A method according to claim 45 or 46, wherein the further sequence comprises a portion of a class B SBE nucleotide sequence.
- 48. A method according to any one of claims 42 to 47, effective in altering the starch composition of a plant.
- 49. A plant or plant cell having characteristics altered by the method of any one of claims 42 to 48, or the progeny of such a plant, or part of such a plant.
- 50. A plant according to claim 49, selected from one of the following: potato, pea, tomato, maize, wheat, rice, barley, sweet potato, and cassava.
- 51. A tuber or other storage organ from a plant according to claim 49 or 50.
- 52. Use of a tuber or other storage organ according to claim 51, in the preparation and/or processing of a foodstuff.
- 53. A plant according to claim 49 or 50, containing starch which, as extracted from the plant by wet milling at ambient temperature, has an elevated viscosity onset temperature as judged by viscoamylograph conducted according to the protocol defined in claim 7, compared to starch extracted from a similar, but unaltered, plant.
- 54. A plant according to claim 53, wherein the viscosity onset temperature is elevated by an amount in the range of 10 to 25°C.
- 55. A plant according to claim 49 or 50, containing starch which, as extracted from the plant by wet milling at ambient temperature, has a decreased peak viscosity as judged by

64

viscoamylograph conducted according to the protocol defined in claim 7, compared to starch extracted from a similar, but unaltered. plant.

- 56. A plant according to claim 55, wherein the peak viscosity is decreased by an amount in the range of 240 to 700 SNUs.
- 57. A plant according to claim 49 or 50, containing starch which, as extracted from the plant by wet milling at ambient temperature, has an increased pasting viscosity as judged by viscoamylograph conducted according to the protocol defined in claim 7, compared to starch extracted from a similar, but unaltered, plant.
- 58. A plant according to claim 57, wherein the pasting viscosity is increased by an amount in the range of 37 to 260 SNUs.
- 59. A plant according to claim 49 or 50, containing starch which, as extracted from the plant by wet milling at ambient temperature, has an increased set-back viscosity as judged by viscoamylograph conducted according to the protocol defined in claim 7, compared to starch extracted from a similar, but unaltered, plant.
- 60. A plant according to claim 59, wherein the set-back viscosity is increased by an amount in the range of 224 to 313 SNUs.
- 61. A plant according to claim 49 or 50, containing starch which, as extracted from the plant by wet milling at ambient temperature, has a decreased set-back viscosity as judged by viscoamylograph conducted according to the protocol defined in claim 7, compared to starch extracted from a similar, but unaltered, plant.
- 62. A plant according to claim 49 or 50, containing starch which, as extracted from the plant by wet milling at ambient temperature, has an elevated apparent amylose content as judged by iodometric assay according to the method of Morrison & Laignelet, compared to starch extracted from a similar, but unaltered, plant.

- 63. A plant according to claim 49 or 50, containing starch which, as extracted from the plant, has a phosphorus content in excess of 200mg/100grams dry weight starch.
- 64. Starch obtainable from a plant according to any one of claims 49, 50 or 53 63.
- 65. Starch according to claim 64 and further in accordance with any one of claims 1 22.
- 66. A method of modifying starch in vitro, comprising treating starch under suitable conditions with an effective amount of a polypeptide in accordance with any one of claims 38 to 41.
- 67. A potato plant or part thereof which, in its wild type possesses an effective SBE A gene, but which plant has been altered such that there is no effective expression of an SBE A polypeptide within the cells of at least part of the plant.
- 68. A potato plant according to claim 67, wherein the alteration is effected by a method according to any one of claims 42-48.

3/75

Fig. 3

SUBSTITUTE SHEET (RULE 26)

PCT/GB96/01075

WO 96/34968

4/75 Fig.4a Sheet 2 z ZZZZZZ S **С**Ш О О О С L لد لد لد لد لد لد 000000 G S **ഗഗഗഗഗ**∢ I Σ ΣΣΣΣΣΣ 4 --SSA4 ب بنا بنا بنا بنا بنا بنا > Z ZZZZZZ L AHDDD U ن ဟ ш Ф О О О Ф エ > **>->->->->->**ш G IZQQQQ G **a a a a a a** a 以下 REKR > Ш ш α \propto G 000000 W шшошош SOGGG <u>O</u> <u>ය ය ය ය ය ය</u> S نـ I ك Ø HAAASK S 0 0 **0 0 0** 0 ර **500**444 z OOZZZZ 000000 G Σ ΣΣΣΣΖ Σ ΣΣΣΣΣΞ ш \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} $\boldsymbol{\succ}$ -4 AAAAA > **リー >>** IU IU 0 OKOOKK __ Þ A D A A A A I L Ø ഗ M M A A A Z လ လ လ လ လ လ Σ z OOZZZZ _____ لــ ¥ Σ ΣΣΣΣΣ I 000 ල (C) (C) >- >- LL LL 4 >> < < < > \checkmark > 4 > **×** $\alpha \alpha \alpha \alpha \alpha$ ---2 α **>** G 0000000 ┙ \mathbf{Y} D.H \propto R R R R A R G 000000 0 ٩ Ø AAHHSD _ 0 ٥. 000000 G ບ**ບ**>>∢⊦ ပ S \vdash \vdash \circ \circ \circ \vdash _ G 000000 Þ SSAAAT ഗ OOWWZI > ٩ ¥ L LL3331 Majority Majority Majority 2 rice 1 potato1 3 2 rice 1 potato1 potatol malze maize pea 1 maize pea 1 maize pea 1 maize human human maize חששחר rice SUBSTITUTE SHEET (RULE 26)

Fig. 4a sheer 1

5/75

```
666
713
624
624
618
638
566
                       736
783
694
688
708
636
                                         798
845
764
758
778
698
    KK0000
0
\propto
    xxxxx
                       \propto
    RRRRRR
                       FSロメロト
                  ш
    00000 <del>|</del>
    ススススス>
¥
                  S
                                     Þ
Z
                   Z
S
    တ လ လ လ လ လ
                  ۵
3
    ZZ333W
Z
                                     S
                  L
                                         \Omega \Omega \Gamma \Gamma \Lambda \Omega
Z
    ZZZZZZ
                   Z
                                         ٩
    999999
                                     ഗ
                                         \vdash \triangleleft \circ \circ \circ
                   >
                   ഗ
                                         တတတတတ
                       \Box \Box \Box \Box \Box \Box
                                         \alpha
                                     Z
ш
    らの国国国内
    R R R R R W R
                   \mathbf{x}
_ مـ
    بالبالد الدائد الدائد
                   G
ш
                                             ය ය ය
3
    33333
ш
    ப்பட்டிய பட்டிய
                   ם ם ם ם ם ם
                   S
                       တတက္တတလ
                                          1 1 0 0 0 i
I
    TITITI
    000000
G
                                          1 1 2 2 2
                   0
                       00000
                                     S
```

Fig. 4a SHEET 2

PCT/GB96/01075

SUBSTITUTE SHEET (RULE 26)

PCT/GB96/01075

WO 96/34968

8/75

AAGGAATGAATAAAAGGATAGATTTGTAAAAACCCTAAGGAGAGA
TTCCTTACTTATTTTCCTATCTAAACATTTTTGGGATTCCTCTCT

M N K R I D L

GTTCCATCAGTGTACAAATCTAATGGATTCAGCAGTAATGGTGAT
CAAGGTAGTCACATGTTTAGATTACCTAAGTCGTCATTACCACTA
V P S V Y K S N G F S S N G D

TCACGGAAGATCTTGGCTGAAAAGTCTTCTTACAATTCCGAATTC
AGTGCCTTCTAGAACCGACTTTTCAGAAGAATGTTAAGGCTTAAG
S R K I L A E K S S Y N S E F

ACCCAGAGTGATAGCTCCTCATCCTCAACAGACCAATTTGAGTTC
TGGGTCTCACTATCGAGGAGTAGGAGTTGTCTGGTTAAACTCAAG
T Q S D S S S S T D Q F E F

AGTTCAACAATGGAACACGCTAGCCAGATTAAAACTGAGAACGAT
TCAAGTTGTTACCTTGTGCGATCGGTCTAATTTTGACTCTTGCTA
S S T M E H A S Q I K T E N D

GATTTTGCTTCATCACTACAACTACAAGAAGGTGGTAAACTGGAG
CTAAAACGAAGTAGTGATGTTGATGTTCTTCCACCATTTGACCTC
D F A S S L Q L Q E G G K L E

Fig 5 Sheet 2

Fig. 5 SHEET 1

SUBSTITUTE SHEET (RULE 26)

PCT/GB96/01075

9/75

Bal II

CTCCTATCACTTATCAGATCTCTATTTTTTCTCTTAATTCCAACC GAGGATAGTGAATAGTCTAGAGATAAAAAAAGAGAAATTAAGGTTGG AGAAGAAGATGGTGTATACACTCTCTGGAGTTCGTTTTCCTACT TCTTCTTCTACCACATATGTGAGAGACCTCAAGCAAAAGGATGA MVYTLSGVRFPT CGGAGGAATGCTAATGTTTCTGTATTCTTGAAAAAGCACTCTCTT GCCTCCTTACGATTACAAAGACATAAGAACTTTTTCGTGAGAGAA RRNANVSVFLKKHSL CGACCTTCTACAGTTGCAGCATCGGGGAAAGTCCTTGTGCCTGGA GCTGGAAGATGTCAACGTCGTAGCCCCTTTCAGGAACACGGACCT R P S T V A A S G K V L V P G ACTGAGACATCTCCAGAAAATTCCCCAGCATCAACTGATGTAGAT TGACTCTGTAGAGGTCTTTTAAGGGGTCGTAGTTGACTACATCTA TETSPENSPASTDVD GACGTTGAGCCGTCAAGTGATCTTACAGGAAGTGTTGAAGAGCTG CTGCAACTCGGCAGTTCACTAGAATGTCCTTCACAACTTCTCGAC D V E P S S D L T G S V E E L GAGTCTAAAACATTAAATACTTCTGAAGAGACAATTATTGATGAA CTCAGATTTTGTAATTTATGAAGACTTCTCTGTTAATAACTACTT E S . K T L N T S E E T I I. D E

Fig 5 SHEET 2

SUBSTITUTE SHEET (RULE 26)

10/75

TCTGATAGGATCAGAGAGAGGGGCATCCCTCCACCTGGACTTGGT AGACTATCCTAGTCTCTCCCCGTAGGGAGGTGGACCTGAACCA RIRERGIPPPGLG HLDYR SQYKKLREA Υ GAAAAAATGGGTTTCACTCGTAGTGCTACAGGTATCACTTACCGT Fig.5 CTTTTTTACCCAAAGTGAGCATCACGATGTCCATAGTGAATGGCA Sheet4 E K M G F T R S A T G I T Y NADI M T GCAATTCCTCATGGGTCCAGAGTGAAGATACGTATGGACACTCCA CGTTAAGGAGTACCCAGGTCTCACTTCTATGCATACCTGTGAGGT A I P H G S' R V KIRMDTP

PCT/GB96/01075

WO 96/34968

11/75

														Hir	nc II
CAG	SAAG	ATT	TAT	GAA	AŢA	GAC	ccc	CTT	TTG	ACA	AAC	TAT	CGT	CAA	700
GIC	. 1 1 C	IAA	AIA	(C 1	IAI	CIG	GGG	GAA	AAC	TGT	TTG	ATA	GCA	GTT	720
Q	K	I	Y	Ε	I.	D.	Ρ	L	L	T	N	Y	R	Q [']	
ATT	GAC	AAG	TAT	GAG	GGT	GGT	TTG	ĢAA	GCC	TTT	TÇT	CGT	GGT	TAT	
TAA	CTG.	TTC	ATA	CTC	CCA	CCA	AAC	CŢŢ	CGG	AAA	· I · AGA	GCA	CCA	ATA	810
I	D	K	Y				L				S	R	G	Y	
								Pv	u II						
GAG	TGG	GCT	CTT	GGT	GCC	CAG	TCA	GCT	GCĊ	CTC.	ΑŢΤ	GGA	GAT	TTC	
• . •	ACCC	CGA	GAA	CCA	CGG	GTC.	AGT	CGA	CGG	GAG	TAA	ССТ	CTA	+ AAG	900
Ε	W	Α	L	G	Α.	Q	S	Α	Α	L	I	G	D	F	
GGT	GTCT	GG	GAG.	ATTI	ГТТ	CTG	CCA	AAT.	AAT	GTG	GAT	GGT	TCT	ССТ	990
CCA	LAGA	100	ا ا	TAAA	AAA(GÁC	GGT.	TTA	TTA	CAC	CTA	CCA	AGA	GGA	990
G	V.	W	Ε	I	F	L	Ρ	N	N	٧	D	G	S	Р	
TCA	GGTG	TTA	AG	GATT	CCA	4 T T (ССТ	GCT.	TGG	ATC	ĄĊ.	TAC	TCT:	TTA	
AGT	CCAC	[AA]	TC	CTAA	GG	ΓΑΑ	GGA	GA	ACC.	TAG	TG	ATG	4GA/	···· AAT	1080
S	G	٧	K.	D	S	I	Ρ	Α	W	I	N .	Y	S	L	

Fig. 5 SHEET 4

12/75

CAGCTTCCTGATGAAATTCCATATAATGGAATACATTATGATCCA GTCGAAGGACTACTTTAAGGTATATTACCTTATGTAATACTAGGT OLPDEIPY Н CCAAAGTCGCTGAGAATATATGAATCTCATATTGGAATGAGTAGT GGTTTCAGCGACTCTTATATACTTAGAGTATAACCTTACTCATCA PKSLRIYESHIG M S SHinD III CTTCCTCGCATAAAAAAGCTT.GGGTACAATGCGCTGCAAATTATG Fig.5 Sheet GAAGGAGCGTATTTTTCGAACCCATGTTACGCGACGTTTAATAC RIKK LGY LOIM N ACAAATTTTTTGCACCAAGCAGCCGTTTTGGAACGCCCGACGAC TGTTTAAAAAACGTGGTTCGTCGGCAAAACCTTGCGGGCTGCTG TNFFAPSSRF CTCATGGACATTGTTCACAGCCATGCATCAAATAATACTTTAGAT GAGTACCTGTAACAAGTGTCGGTACGTAGTTTATTATGAAATCTA LMDIVHSHASNNTL

13/75

CCCGAAGAGGAGGTATATCTTCCAACACCCACGGCCAAAGAAA GGGCTTCTCCTCTCCATATAGAAGGTTGTGGGTGCCGGTTTCTTT PEEERYIFOHPRPKK Xmn I CCGGAGCCTAAAATTAACTCATACGTGAATTTTAGAGATGAAGTT GGCCTCGGATTTTAATTGAGTATGCACTTAAAATCTCTACTTCAA PEPKINSYVNFRDEV GCTATTCAAGAGCATTCTTATTACGCTAGTTTTGGTTATCATGTC CGATAAGTTCTCGTAAGAATAATGCGATCAAAACCAATAGTACAG AIQEHSYYASFGYHV CTTAAGTCTTTGATTGATAAAGCTCATGAGCTAGGAATTGTTGTT GAATTCAGAAACTAACTATTTCGAGTACTCGATCCTTAACAACAA LKSLIDKAHELGIVV GGACTGAACATGTTTGACTGCACCGATAGTTGTTACTTTCACTCT CCTGACTTGTACAAACTGACGTGGCTATCAACAATGAAAGTGAGA G L N M F D C T D S C Y F H S

PCT/GB96/01075

14/75

GGAGCTCGTGGTTATCATTGGATGTGGGATTCCCGCCTCTTTAAC

CCTCGAGCACCAATAGTAACCTACACCCTAAGGGCGGAGAAATTG G A R G Y H W M W D S R L F N

Sacl

TGGTGGTTGGATGCGTTCAAATTTGATGGATTTAGATTTGATGGT
ACCACCAACCTACGCAAGTTTAAACTACCTAAAATCTAAACTACCA
W W L D A F K F D G F R F D G

ACTGGGAACTACGAGGAATACTTTGGACTCGCAACTGATGTGGAT
TGACCCTTGATGCTCCTTATGAAACCTGAGCGTTGACTACACCTA
T G N Y E E Y F G L A T D V D

TTCCCAGATGCAATTACCATTGGTGAAGATGTTAGCGGAATGCCG
AAGGGTCTACGTTAATGGTAACCACTTCTACAATCGCCTTACGGC
F P D A I T I G E D V S G M P

CGGCTGCATATGGCAATTGCTGATAAACGGATTGAGTTGCTCAAG
GCCGACGTATACCGTTAACGACTATTTGCCTAACTCAACGAGTTC
R L H M A I A D K R I E L L K

ACAAATAGAAGATGGTCGGAAAAGTGTTTCATACGCTGAAAGT

Fig 5 Sheet 8

Fig. 5 SHEET 7

SUBSTITUTE SHEET (RULE 26)

TGTTTATCTTCTACCAGCCTTTTCACACAAAGTATGCGACTTTCA

PCT/GB96/01075

15/75

TATGGAAACTGGGAGGTACTTAGGTATCTTCTCAAATGCGAGA ATACCTTTGACCCTCCATGAATCCATAGAAGAGAGTTTACGCTCT YGNWEVLRYLLSNAR GTGACATCAATGATGTATATTCACCACGGATTATCGGTGGGATTC CACTGTAGTTACTACATATAAGTGGTGCCTAATAGCCACCCTAAG V T S M M Y I H H G L S V G F Hinc II GCTGTTGTGTATCTGATGCTGGTCAACGATCTTATTCATGGGCTT 1800 CGACAACACATAGACTACGACCAGTTGCTAGAATAAGTACCCGAA AVVYLMLVNDLIHGL ACATTTTGTATTCCCGTCCAAGAGGGGGGGTGTTGGCTTTGACTAT TGTAAAACATAAGGGCAGGTTCTCCCCCCACAACCGAAACTGATA T F C I P V Q E G G V G F D Y AAACGGGATGAGGATTGGAGAGTGGGTGATATTGTTCATACACTG TTTGCCCTACTCCTAACCTCTCACCCACTATAACAAGTATGTGAC KRDEDWRVGDIVHTL CATGATCAAGCTCTAGTCGGTGATAAAACTATAGCATTCTGGCTG 2070 GTACTAGTTCGAGATCAGCCACTATTTTGATATCGTAAGACCGAC H D Q A L V G D K T I A F W L

16/75

Hinc II ATGGACAAGGATATGTATGATTTTATGGCTCTGGATAGACCGTCA TACCTGTTCCTATACATACTAAAATACCGAGACCTATCTGGCAGT DMYDFMALDRP Asp 718 Kpn I CTTGTAACTATGGGATTAGGAGGAGAAGGGTACCTAAATTTCATG GAACATTGATACCCTAATCCTCCTCTTCCCATGGATTTAAAGTAC LVIMGLGGEGYLNFM GAACAACACCTCTCTGATGGCTCAGTAATCCCCGGAAACCAATTC (Fig.5 Sheet 10 CTTGTTGTGGAGAGACTACCGAGTCATTAGGGGCCTTTGGTTAAG E Q H L S D G S V I P G N Q F . Ssp I TATTTAAGATACCGTGGGTTGCAAGAATTTGACCGGCCTATGCAG ATAAATTCTATGGCACCCAACGTTCTTAAACTGGCCGGATACGTC YLRYRGLQEFDRPMQ ATATCACGAAAGGATGAAGGAGATAGGATGATTGTATTTGAAAAA TATAGTGCTTTCCTACTTCCTCTATCCTACTAACATAAACTTTTT SRKDEGDRMIVFEK

Fig. 5 SHEET 9

SUBSTITUTE SHEET (RULE 26)

AGTCTGATAGCGTATCGGACGGACCTTTTATGTTCCAA
S D Y R I A C L K P G K Y K V ...

17/75

ACATCATTAATAGATCGTGGGATAGCATTGCACAAGATGATTAGG
TGTAGTAATTATCTAGCACCCTATCGTAACGTGTTCTACTAATCC
T S L I D R G I A L H K M I R

EcoR I

GGAAATGAATTCGGCCACCCTGAGTGGATTGATTTCCCTAGGGCT
CCTTTACTTAAGCCGGTGGGACTCACCTAACTAAAGGGATCCCGA
G N E F G H P E W I D F P R A

AGTTATGATAAATGCAGACGGAGATTTGACCTGGGAGATGCAGAA
TCAATACTATTTACGTCTGCCTCTAAACTGGACCCTCTACGTCTT

S Y D K C R R R F D L G D A E

TATCTTGAAGATAAATATGAGTTTATGACTTCAGAACACCAGTTC
ATAGAACTTCTATTTATACTCAAATACTGAAGTCTTGTGGTCAAG

Y L E D K Y E F M T S E H Q F

GGAAACCTAGTTTTTGTCTTTAATTTTCACTGGACAAAAAGCTAT
CCTTTGGATCAAAAACAGAAATTAAAAGTGACCTGTTTTTCGATA
G N L V F V F N F H W T K S Y

GCCTTGGACTCAGATGATCCACTTTTTGGTGGCTTCGGGAGAATT
CGGAACCTGAGTCTACTAGGTGAAAAACCACCGAAGCCCTCTTAA

A L D S D D P L F G G F G R I

Fig. 5 SHEET 10

SUBSTITUTE SHEET (RULE 26)

18/75

Ssp I

GATCATAATGCCGAATATTTCACCTTTGAAGGATGGTATGATGAT

CTAGTATTACGGCTTATAAAGTGGAAACTTCCTACCATACTACTA

D H N A E Y F T F E G W Y D D

GTCTATGCACTAGTAGACAAAGAAGAAGAAGAAGAAGAAGAAGAA

TGAACGAACTTGTGATCGCGTTGAAAGATTTGAACGCTACATAGA ACTTGCTTGAACACTAGCGCAACTTTCTAAACTTGCGATGTATCT

Fig 5 Sheet 12

TCATGTGACACAAGGTTTGCAATTCTTTCCACTATTAGTAGTGCA AGTACACTGTGTTCCAAACGTTAAGAAAGGTGATAATCATCACGT

EcoRI Pst I

GATGAATTTATGTCGAATGCTGGGACGATCGAATTCCTGCAGGCC
CTACTTAAATACAGCTTACGACCCTGCTAGCTTAAGGACGTCCGG

PCT/GB96/01075

19/75

Cla I

ACGATATACGCAGAGATGAAGTGCTGAACAAACATATGTAAAAATC

TITTE TITTE TITTE TO THE TOTAL TOTA

GGGGGACCCCTTAGTTCT
3033
CCCCCTGGGGAATCAAGA

PCT/GB96/01075

20/75

F180 √190 **√**200 **√**210 **₹220** IYEIDPLLTNYRQHLDYRYSQYKKLREAIDKYEGGLEAFSRGYEKMGFTR : :: DP L. Y : H: . R .: Y . : I: KYEG LE. F: : GY K. GF. R LLNL DPTLEPYL DHFRHRMKRY VD QKML I EKYEGPLEEF AQG YLKFGFNR **1**00 **1**00 **1**00 **4**110 **€**120 **~**130 **€140** £230 **√240 ₹**250 **\$260 √**270 SATGITYREWALGAQSAALIGDFNNWDANADIMTRNEFGVWEIFLPNNVD I. YREWA : AQ. A. : IGDFN. W: : : : : : M. : : : FGVW. I : P: VD EDGCIVYREWAPAAQEAEVIGDFNGWNGSNHMMEKDQFGVWSIRIPD-VD · **1**60 **150 €**170 **~**190 **~**180 **₹280 √**290 **₹**300 **₹310 ₹320** GSPAIPHGSRVKIRMDTPSGV-KDSIPAWINYSLQLPDEI--PYNGIHYD : . P. IPH. SRVK: R. . : GV D. IPAWI: Y: . : . : PY: G: . . D SKPV IPHNSRVKFRFKHGNGVWVDRIPAWIKYATADATKFAAPYDGV YWD **£**200 **4**210 £220 **£230 ~240 ₹330** £340 **₹**350 **√**360 **₹**370 PPEEERY IF QHPRPKKPKSLRIYESHIGMSSPEPK INSYVNFRDEVLPRI PP . ERY F: . PRP KP:: RIYE: H: GMSS: EP: : NSY : F D: VLPRI PPPSERYHFKYPRPPKPRAPRI YEAHVGMSSSEPRVNSYREFADDVLPRI **€**250 **£**260 **~**270 **4**280 **£**290 **√**380 **₹390 ₹**400 .\$410 **√**420 KKLGYNALQIMAIQEHSYYASFGYHVTNFFAPSSRFGTPDDLKSLIDKAH . YN: : Q: MAI EHSYY: SFGYHVTNFFA S: R: G. P: DLK LIDKAH KANNYNT VQLMA I MEHS YYGSF GYHVT NFFAV SNRYGNPEDL KYL I DKAH **4**300 **€**310 **4**320 **€**340 **~**330 : **₹**430 £440 · £450 £460. ELGIVVLMDIVHSHASNNTLDGLNMFDC---TDSCYFHSGARGYHWMWDS . LG: VL: D: VHSHASNN. DGLN FD ::.. YFH: G. RGYH : WDS SL GL QVL VD VVHSHASNNV TDGLNGFD I GQGSQESYFHAGER GYHKL WDS **4**350 **4**360 **4**370 4380 **4**390 480ء **₹**490 **₹**500 **₹**510 RLFNYGNWEVLRYLLSNARWWLDAFKFDGFRFDGVTSMMYIHHGLSVGFT RLFNY: NWEVLR: LLSN RWWL: . : : FDGFRFDG: TSM: Y: HHG: : : GFT RLFNYANWEVLRFLLSNLRWWLEEYNFDGFRFDGITSMLYVHHGINMGFT **4**400 **4**410 **4**420 *430 **~**440 **√53**0 **₹**540 **~**550 **√**560. GNYEEYFGLATDVDAVVYLMLVNDLIHGLFPDAITIGEDVSGMPTFCIPV GNY: EYF: ATDVDAVVYLML. N: LIH : FPDA. . I: EDVSGMP. : . PV GNYNEYF SEATD VDAV V YL MLANNL I HK I FPD AT V I AED VSGMP GLSRP V **4**460 **~**450 **470 4**480 **4**490 **√**580 **₹**590 **√6**00 **√**610 QEGGVGFDYRLHMAIADKRIELLK-KRDEDWRVGDIVHTLTNRRWSEKCV EGG: GFDYRL MAI: DK: I: LK K. DEDW.: ::. : LTNRR.: EKC: SEGG I GF DYRLAMA I PDKW I DYLKNKNDEDWSMK EVT SSLTNRR Y TEKC I **⁴**510 . **~**500 **~**520 **4**530 **€**540

PCT/GB96/01075

21/75

```
√640
                             √650
                                        ₹660
                                                   √670
SYAESHDQALVGDKTIAFWLMDKDMYDFMALDRPSTSLIDRGIALHKMIR
: YAESHDQ:: VGDKTIAF LMDK: MY. M: ::::: DRGIALHKMI:
AYAE SHD QS I VG DK T I A FLLMDKE MYS GM SCL TD ASP V V DRG I ALHK M I H
   €550
              ^560
                         4570
                                    €580
        ₽680
                  √690
                             ₹700
                                        ₹710
                                                   ₹720
LVTMGLGGEGYLNFMGNEFGHPEWIDFPRAEOHLSDGSVIPGNOFSYDKC
  TM: LGGEGYLNFMGNEFGHPEWIDFPR
                                            GN: . SYDKC
FFTMALGGEGYLNFMGNEFGHPEWIDFPR------EGNNWSYDKC
   €600
              4610
                         4620
        ⊊730∙
                  ⊊740
                             √750
                                        ₽760
                                                   ₽770
RRRFDLGDAEYLRYRGLQEFDRPMQYLEDKYEFMTSEHQFISRKDEGDRM
RR: .: L: D: E. LRY: ::. FDR: M: L:: K:. F:: S. . Q:: S. . D:::::
RROWNLADSEHLRYKFMNAFDRAMNSLDEKFSFLASGKO I VSSMDDD NKV
    ^640
               4650
                          4660
                                     ⁴670 ′
        ₹780
                  ₽790
                             √800
                                        ₹810
                                                   √820
IVFEKGNLVFVFNFHWTKSYSDYRIACLKPGKYKVALDSDDPLFGGFGRI
: VFE: G: LVFVFNFH . : : Y. : Y: : : C PGKY: VAL: SD.
                                              FGG GR
VVFERGDLVFVFNFHPNNTYEGYK VGCDLPGKYR VALGSDAWEFGGHGRA
    4690
               €700
                          €710
                                     €720
                                                4730
        ₹830
                           $840
                                      ₹8.50
                                                 ₹860
DHNAEYFT-----FEGWYDDRPRSIMVYAPCKTAVVYALVDKEEEE
                 E. ::: RP. S: . V : P : T V. Y VD. . E.
GHDV DHF TSPEG I PGVPET NFNGRPNSFK VLSPARTC VA YYR VDERM SET
    €740
                          ₹760
               4750
                                     €770
     ₹870
EEEEEEV
E: :::
EDYQTDI
    ₹790
```

PCT/GB96/01075

WO 96/34968

22/75

₽10 **\$20 ~3**0 **~**40 MVYTLSGVRFPTVPSVYKSNGFSSNGDRRNANVSVFLKKH--SLSRKILA MVYT: SG: RFP.: PS: . KS : . DRR.:: S FLK:: S: SR. L MVYTISGIRFPVLPSLHKS---TLRCDRRASSHSFFLKNNSSSFSRTSLY **€**10 · **4**30 **£20 ~**40 **√**50 **√60 ₽**70 **₽80 ~**90 EKSSYNSEFRPSTVAASGKVLVPGTQSDSSSSSTDQFEFTETSPENSPAS . K S : SE :: ST: A. S: KVL: P. . Q D: S S : DQ: E . : . : : E: : . AKFSRDSETKSSTI AESDK VLI PEDQ-DNSVSLADQLENPD I TSEDA QNL **4**60 **~**50 **₹**70 **4**80 : **490 √100 ₹110 √**120 **₹130 ₹140** TDVDSSTMEHASQIKTENDDVEPSSDLTGSVEELDFASSLOLQEGGKLEE TM.:::: :.:: :...: : S ::::::: EDL - - - TMKDGNKYNID - ESTSSYREVGDEKGSVTSSSLVDVNTDTO - - A **~**100 **€**110 **€**120 **4**130 £140 **₹150 ₹**160 **≠**170 **₹180 ₹190** SKTLNTSEET I I DESDRIRERGIPPPGLGQKI YE I DPLLTNYRQHLD YRY S: . . : 1 IPPPG GQKIYEIDPLL . . RQHLD: RY KKTSVHSDKKVKVDKPKI----IPPPGSGQKIYEIDPLLQAHRQHLDFRY **~**150 **~**160 **€**170 **4**180 **\$200 √**210 **\$220 \$230** SQYKKLREAIDKYEGGLEAFSRGYEKMGFTRSATGITYREWALGAQSAAL : QYK: : RE. IDKYEGGL: AFSRGYEK. GFTRSATGITYREW: GA: SAAL GOYKRIREEIDKYEGGLDAFSRGYEKFGFTRSATGITYREWGPGAKSAAL **~**190 **200 4**210 **4**220 **~**230 **€**250 **√260** £270 **√**280 I GDFNNWDANAD I MTRNEF GVWE I FLPNNVDGSPA I PHGSRVK I RMD TPS : GDFNNW: : NAD: MT: : . FGVWEIFLPNN. DGSP: IPHGSRVKI: MDTPS VGDFNNWNPNADVMTKDAFGVWEIFLPNNADGSPPIPHGSRVKIHMDTPS **~**240 **£**250 **4**260 **£**270 **~**280 **\$300 √**310 **¥320 √**330 **~340** GVKDSIPAWINYSLQLPDEIPYNGIHYDPPEEERYIFQHPRPKKPKSLRI G: KDSIPAWI: : S: Q P: EIPYNGI. YDPPEEE: Y: F: HP: PK: P: S: RI GIKDSIPAWIKFSVQAPGEIPYNGIYYDPPEEEKYVFKHPQPKRPQSIRI **£**290 **4**300 **4**310 **4**320 **4**330 **√**350 **√**360 **√**370 **√380 £**390 YESHIGMSSPEPKINSYVNFRDEVLPRIKKLGYNALQIMAIQEHSYYASF YESHIGMSSPEPKIN: Y. NFRD: VLPRIKKLGYNA: QIMAIQEHSYYASF YESH IGMSSPEPK INTY ANFRODVLPR IKKLG YNAVO IMAIOEHSYY ASF **^**340 ^350 **4**360 **4**370 **^**380 **√**400 . \$410 £420 **√**430 . GYHVTNFFAPSSRFGTPDDLKSLIDKAHELGIVVLMDIVHSHASNNTLDG GYHVTNFFAPSSRFGTP: DLKSLID: AHELG: : VLMDIVHSH: SNNTLDG GYHVTNFFAPSSRFGTPEDLKSLIDRAHELGLLVLMDIVHSHSSNNTLDG **4**390 **~**400 **~**410 **4**420 **4**430

PCT/GB96/01075

WO 96/34968

23/75

```
√450
            £460
                        √470
                                   √480
LNMFDCTDSCYFHSGARGYHWMWDSRLFNYGNWEVLRYLLSNARWWLDAF
LNMFD TD: YFH: G: RGYHWMWDSRLFNYG: WEVLRYLLSNARWWLD.:
LNMFDGTDGHYFHPGSRGYHWMWDSRLFNYGSWEVLRYLLSNARWWLDEY
   ~440
               4450
                          4460
                                     €470
                                                4480
 ₹500
                        ₹520
            £510
                                   √530
                                              ₹540
KFDGFRFDGVTSMMYIHHGLSVGFTGNYEEYFGLATDVDAVVYLMLVNDL
KFDGFRFDGVTSMMY. HHGL V: FTGNY. EYFGLATDV: AVVY: MLVNDL
KFDGFRFDGVTSMMYTHHGLQVSFTGNYSEYFGLATDVEAVVYMMLVNDL
   ~490
                          €510
                                     €520
               $500
                                                4530
 ₹550
            ₹560
                        √570
                                   √580
                                              $590
IHGLFPDAITIGEDVSGMPTFCIPVQEGGVGFDYRLHMAIADKRIELLKK
IHGLFP: A: : IGEDVSGMPTFC: P. Q: GG: GF: YRLHMA: ADK: IELLKK
IHGLFPEAVSIGED VSGMPTFCLPTODGG IGFNYRLHMA VADKW IELLKK
   €540
               4550
                          4560
                                     €570
                                                ~580
 ~600
            √610
                        -620
                                   √630
                                              √640
RDEDWRVGDIVHTLTNRRWSEKCVSYAESHDOALVGDKTIAFWLMDKDMY
: DEDWR: GDIVHTLTNRRW EKCV YAESHDOALVGDKT: AFWLMDKDMY
QDEDWRMGD I VHTLTNRRWLEKCV VYAESHDQAL VGDKTLAF WLMDKDMY
   ~590
               4600
                          ^610
                                     4620
                                                ^630
 √650
            √660
                       ₽670
                                   √680
                                              √690
DFMALDRPSTSLIDRGIALHKMIRLVTMGLGGEGYLNFMGNEFGHPEWID
DFMALDRPST: LIDRGIALHKMIRL: TMGLGGEGYLNFMGNEFGHPEWID
DFMALDRPSTPL IDRGI ALHKMIRLITMGLGGEGYLNFMGNEFGHPEWID
   640
               ~65.0
                          4660
                                     4670
                                                4680
 ₽700
            ₽710
                       ₹720
                                   √730¹
                                              ₽740
FPRAEQHLSDGSVIPGNQFSYDKCRRRFDLGDAEYLRYRGLQEFDRPMQY
FPR: EQHL: : G. : : PGN: SYDKCRRRFDLGDA: YLRY: G: QEFDR: MQ.
FPRGEOHLPNGK I VPGNNNSYDKCRRRFDLGDAD YLR YHGMOEFDRAMOH
   4690
              ^700
                          ~710
                                     €720
                                                ∿730
 ⊊750
            √760
                       ₹770
                                   ₽780
                                              ₹790
LEDKYEFMTSEHQF I SRKDEGDRM I VFEKGNL VF VFNFHWTKSYSDYR I A
LE: . Y. FMTSEHQ: ISRK: EGDR: I: FE: : NLVFVFNFHWT: SYSDY: : :
LEETYGFMTSEHQY ISRKNEGDRV I IFERDNL VF VFNFHWTNSY SDY KVG
   ~740
              ₹750
                          €760
                                     €770
                                                ~780
 ₹800
            √810
                       ₹820
                                  £830
                                              √840
CLKPGKYKVALDSDDPLFGGFGRIDHNAEYFTFEGWYDDRPRSIMVYAPC
CLKPGKYK: LDSDD. LFGGF. R: : H. AEYFT EGWYDDRPRS: : VYAP.
CLKPGKYKIVLDSDDTLFGGFNRLNHTAEYFTSEGWYDDRPRSFLVYAPS
   ⁴790
               2800
                                     4820
                         4810
                                                ^830
 ₹850
            √860
                       √870
KTAVVYALVDKEEEEEEEEEVAA
: TAVVYAL. D
             E. E E . : . V. :
RTAVVYALADGVESEPIELSDGVES
   °840
               4850
                          4860
                                       Fig. 7 SHEET 2
```

24/75

1	TTG-AT	1
1		
1		
45	AAAAACCTCCTCCACTCAGTCTTCGGGATCTCTCTCTCT	
72	TTTCTCTTAATTCCAACCAGGGGAATGAATAAAAGGAT-A	Ĭ
73	TTTCTCTTAATTCCAACCAAGG-AATGAATAAAAGGAT-A	
71	TTTCTCTTAATTCCAACCAAGG-AATGAATAAAAAGAT-A	
165	TTTCTCTTAATTCCAACCAAGG-AATGAATUAAAAGATUA	
191	TGTACAAATCTAATGGATTCAGCAGTAATGGTGATCGGAG	
191	TGTACAAATCTAATGGATTCAGCAGTAATGGTGATCGGAG	
189	TGTACAAATCTAATGGATTCAGCAGTAATGGTGATCGGAG	
274	TGTACAAATCTAATGGATTCAGCAGTAATGGTGATCGGAG	
311	AATTCCGACCTTCTACAGTTGCAGCATCGGGGAAAGTCCT	1
311	AATTCCGACCTTCTACAGTTGCAGCATCGGGGAAAGTCCT	1
309	AATCCCGACCTTCTACAATTGCAGCATCGGGGAAAGTCCT	
394	AATCCCGACCTTCTACAGTTGCAGCATCGGGGAAAGTCCT	} {
431	CAGCATCAACTGATGTAGATAGTTCAACAATGGAACACGC	
431	CAGCATCAACTGATGTAGATAGTTCAACAATGGAACACGC	
429	CAGCATCAACTGATGTAGATAGTTCAACAATGGAACACGC	1
514	CAGCATCAACTGATGTCGATGTTCAACAATGGAACACGC	
551	CATCACTACAACTACAAGAAGGTGGTAAACTGGAGGAGTC	
551	CATCACTACAACTACAAGAAGGTGGTAAACTGGAGGAGTC	
549	CATCACTACAACTACAAGAAGGTGGTAAACTGGAGGAGTC	
634	CATCACTACAACTACAAGAAGGTGGTAAACTGGAGGAGTC	
671	TTGGTCAGAAGATTTATGAAATAGACCCCCTTTTGACAAA	
671	TTGGTCAGAAGATTTATGAAATAGACCCCCTTTTGACAAA	
669	TTGGTCAGAAGATTTATGAAATAGACCCCCTTTTGACAAA	
754	TTGGTCAGAAGATTTATGAAATAGACCCCCTTTTGACAAA	
791	AAGC-TTTTCTCGTGGTTATGAAAAAATGGGTTTCACTCG	
791	AAGCTTTTCTCGTGGTTATGAAAAAATGGGTTTCACTCG	
789	AAGCTTTTTCTCGTGGTTATGAAAGAATGGGTTTCACTCG	7
374	AAGCTTTTTCTCGTGGTTATGAAAAAATGGGTTTCACTCG	

Fig.8 Sheet 2

25/75

GATTTGTAAAAACCCTAAGGAGAAGAAGAAGAAGATGGTGTATATACTCTCT GATTTGTAAAAACCCTAAGGAGAGAAGAAGAAGATGGTGTATACACTCTCT GATTTGTAAAAACCCTAAGGAGAGAAGAAGAAGATGGTGTATACACTCTCT GATTTG------AAGGAGAGAAGAAGAAGATGGTGTATACACTCTCT

GAATGCTAATGTTTCTGTATTCTTGAAAAAGCACTCTCTTTCACGGAAGATC
GAATGCTAATGTTTCTGTATTCTTGAAAAAGCACTCTCTTTCACGGAAGATC
GAATGCTAATATTCTTGTATTCTTGAAAAAAACACTCTCTTTCACGGAAGATC
GAATGCTAATGTTTCTGTATTCTTGAAAAAAGCACTCTCTTTCACGGAAGATC

TGTGCCTGGAACCCAGAGTGATAGCTCCTCATCCTCAACAGACCAATTTGAG TGTGCCTGGAACCCAGAGTGATAGCTCCTCATCCTCAACAGACCAATTTGAG TGTGCCTGGAATCCAGAGTGATAGCTCCTCATCCTCAACAGATCAATTTGAG TGTACCTGGAATCCAGAGTGATAGCTCCTCATCCTCAACAGACCAATTTGAG

TAGCCAGATTAAAACTGAGAACGATGACGTTGAGCCGTCAAGTGATCTTACA TAGCCAGATTAAAACTGAGAACGATGACGTTGAGCCGTCAAGTGATCTTACA TAGCCAGATTAAAACTGAGAACGATGACGTTGAGCCGTCAAGTGATCTTACA TAGCCAGATTAAAACTGAGAACGATGACGTTGAGCCGTCAAGTGATCTTACA

TAAAACATTAAATACTTCTGAAGAGACAATTATTGATGAATCTGATAGGATC TAAAACATTAAATACTTCTGAAGAGACAATTATTGATGAATCTGATAGGATC TAAAACATTAAATACTTCTGAAGAGACAATTATTGATGAATCTGATAGGATC TAAAACATTAAATACTTCTGAAGAGACAATTATTGATGAATCTGATAGGATC

CTATCGTCAACACCTTGATTACAGGTATTCACAGTACAAGAAACTGAGGGAG CTATCGTCAACACCTTGATTACAGGTATTCACAGTACAAGAAACTGAGGGAG CTATCGTCAACACCTTGATTACAGGTATTCACAGTACAAGAAACTGAGGGAG CTATCGTCAACACCTTGATTACAGGTATTCACAGTACAAGAAA

TAGTGCTACAGGTATCACTTACCGTGAGTGGGCTCCTGGTGCCCAGTCAGCT
TAGTGCTACAGGTATCACTTACCGTGAGTGGGCTCTTGGTGCCCAGTCAGCT
TAGTGCTACAGGTATCACTTACCGTGAGTGGGCTCCTGGTGCCCAGTCAGCT
TAGTGCTACAGGTATCACTTACCGTGAGTGGGCTCCTGGTGCCCAGTCAGCT

Fig. 8 Sheet

PCT/GB96/01075

26/75

ACTCCTATCACTTATCAGATCTCTATTT 11con.seq
ACTCCTATCACTTATCAGATCTCTATTT 19con.seq
ACTCCTATCACTTATCAGATCTCTATTT 10con.seq
ACTCCTATCACTCATCAGATCTCTATTT psbe2con.seq

GGAGTTCGTTTTCCTACTGTTCCATCAG 11con.seq GGAGTTCGTTTTCCTACTGTTCCATCAG 19con.seq GGAGTTCGTTTTCCTACTGTTCCATCAG 10con.seq GGAGTTCGTTTTCCTACTGTTCCATCAG psbe2con.seq

TTGGCTGAAAAGTCTTCTTACAATTCCG 11con.seq TTGGCTGAAAAGTCTTCTTACAATTCCG 19con.seq TTGGCTGAAAAGTCTTCTTACAATTCCG 10con.seq TTGGCTGAAAAGTCTTCTTACCATTCCG psbe2con.seq

TTCACTGAGACATCTCCAGAAAATTCCC 11con.seq
TTCACTGAGACATCTCCAGAAAATTCCC 19con.seq
TTCGCTGAGACATCTCCAGAAAATTCCC 10con.seq
TTCACTGAGACAGCTCCAGAAAATTCCC psbe2con.seq

GGAAGTGTTGAAGAGCTGGATTTTGCTT 11con.seq GGAAGTGTTGAAGAGCTGGATTTTGCTT 19con.seq GGAAGTGTTGAAGAGCTGGATTTTGCTT 10con.seq GGAAGTGTTGAAGAGTTTGGATTTTGCTT psbe2con.seq

AGAGAGAGGGCATCCCTCCACCTGGAC 11con.seq
AGAGAGAGGGGCATCCCTCCACCTGGAC 19con.seq
AGAGAGAGGGGCATCCCTCCACCTGGAC 10con.seq
AGAGAGAGGGGCATCCCTCCACCTGGAC psbe2con.seq

GCAATTGACAAGTATGAGGGTGGTTTGG 11con.seq GCAATTGACAAGTATGAGGGTGGTTTGG 19con.seq GCAATTGACAAGTATGAGGGTGGTTTGG 10con.seq GCAATTGACAAGTATGAGGGTGGTTTGG psbe2con.seq

GCCCTCATTGGAGATTTCAACAATTGGG 11con.seq GCCCTCATTGGAGATTTCAACAATTGGG 19con.seq GCCCTCATTGGGGATTTCAACAATTGGG 10con.seq GCTCTCATTGGAGATTTCAACAATTGGG psbe2con.seq

PCT/GB96/01075

27/75

910	ACGCAAATGCTGACATTATGACTCGGAATGAATTTGGTGTC)
911	ACGCAAATGCTGACATTATGACTCGGAATGAATTTGGTGTC	
909	ACGCAAATGCTGACTTTATGACTCGGAATGAATTTGGTGTC]
994	ACGCAAATGCTGACATTATGACTCGGAATGAATTTGGTGTC	
•		
1030	CTCCATCAGGTGTTAAGGATTCCATTCCTGCTTGGATCAAC	
1031	CTCCATCAGGTGTTAAGGATTCCATTCCTGCTTGGATCAAC	
1029	CTCCATCAGGTGTTAAGGATTCCATTCCTGCTTGGATCAAC	
1114	CTTCATCAGGTGTTAAGGATTCCATTCCTGCTTGGATCAAC	
	_	
1150	AACACCCACGGCCAAAGAAACCAAAGTCGCTGAGAATATAT	
1151	AACACCCACGGCCAAAGAAACCAAAGTCGCTGAGAATATAT	
	AACACCCACGGCCAAAGAAACCAAAGTCGGTGAGAATATAT	
	AACACCCACGGCCAAAGAAACCAAAGTCGCTGAGAATATAT	
1270	TAAAAAA-GCTTGGGTACAATGCGCTGCCAATTATGGCTAT	
	TAAAAAA-GCTTGGGTACAATGCGCTGCAAATTATGGCTAT	
1269		
1354	TAAAAAAC-CTTGGGTACAATGCGGTGCAAATTATGGCTAT	
		Fig. 8
1389	GACGACCTTAAGTCTTCGATTGATAAAGCTCATGAGCTAGG	Sheet 5
1390	GACGACCTTAAGTCTTTGATTGATAAAGCTCATGAGCTAGG	
1389	and a second sec	
1473	GACGACCTTAAGTCTTTGATTGATAAAGCTCATGAGCTAGG	
	GATAGTTGTTACTTTCACTCTGGAGCTCGTGGTTATCATTG	4
	GATAGTTGTTACTTTCACTCTGGAGCTCGTGGTTATCATTG	
	GATAGTTGTTACTTTCACTCTGGAGCTCGTGGTTATCATTG	
1593	GATAGTTGTTACTTTCACTCTGGAGCTCGTGGTTATCATTG	
4650	C. T. C. C. T. C. C. T.	
1628	GATGAGTTCAAATTTGATGGATTTAGATTCGATGGTGTGAC	
	GATGGTTCAAATTTGATGGATTTAGATTTGATGGTGTGAC	
	GATGAGTTCAAATTTGATGGATTTAGATTTGATGGTGTGAC	1
1/13	GATGAGTGCAAATTTGTTGGATTTAGATTTGATGGTGTGAC	
1740	CTCCATCCTCTCTCTATCTCATCTCATCTCATCTCATC	
	GTGGATGCTGTTGTGTATCTGATGCTGGTCAACGATCTTAT	
	GTGGATGCTGTTGTGTATCTGATGCTGGTCAACGATCTTAT	
	GTGGATGCTGTGTGTATCTGATGCTGGTCAACGATCTTAT	J
T022	GTRGATGCTGCGGTGTATCTGATGCTGGCCAACGATCTTAT	Fig. 8
		SUEET

SHEET 4

PCT/GB96/01075

28/75

TGGGAGATTTTTCTGCCAAATAATGTGGATGGTTCTCCTGCAATTC
TGGGAGATTTTTCTGCCAAATAATGTGGATGGTTCTCCTGCAATTC
TGAGAGATTTTTCTGCCAAATAATGTGGATGGTTCTCCTGCAATTC
TGGGAGATTTTTCTGCCAAATAATGTGGATGGTTCTCCTGCAATTC

TACTCTTTACAGCTTCCTGATGAAATTCCATATAATGGAATATTTTACTCTTTACAGCTTCCTGATGAAATTCCATATAATGGAATATTTACTCTTTACAGCTTCCTGATGAAATTCCATATAATGGAATATTTACTCTTTACAGCTTCCTGATGAAATTCCATATAATGGAATATTT

GAATCTCATATTGGAATGAGTAGTCCGGAGCCTAAAATTAACTCAT GAATCTCATATTGGAATGAGTAGTCCGGAGCCTAAAATTAACTCAT GAATCTCATATTGGAATGAGTAGTCCGGAGCCTAAAATTAACTCAT GAATCTCATATTGGAATGAGTAGTCCGGAGCCTAAAATTAACTCAT

TCAAGAGCATTCTTATTATGCTAGTTTTGGTTATCATGTCACAAAT TCAAGAGCATTCTTATTATGCTAGTTTTTGGTTATCATGTCACAAAT TCAAGAGCATTCTTATTATGCTAGTTTTTGGTTATCATGTCACAAAT TCAAGAGCATTCTTATTATGCTAGTTTTTGGTTATCATGTCACAAAT

AATTGTTGTTCTCATGGACATGGTTCACAGCCATGCATCAAATAAT
AATTGTTGTTCTCATGGACATTGTTCACAGCCATGCATCAAATAAT
AATTGTTGTTCTCATGGACATTGTTCACAGCCATGCATCAAATAAT
AATTGTTGTTCTCATGGACATTGTTCACAGCCATGCATCAAATAAT

GATGTGGGATT CCGCCTCTTTAACTATGGAAACTGGGAGGTACTT GATGTGGGATTCCCGCCTCTTTAACTATGGAAACTGGGAGGTACTT GATGTGGGATT CCGCCTCTTTAACTATGGAAACTGGGAGGTACTT GATGTGGGATTCCCGCCTCTTTAACTATGGAAACTGGGAGGTACTT

ATCAATGATGTATACTCACCACGGATTATCGGTGGGATTCACTGGG ATCAATGATGTATATTCACCACGGATTATCGGTGGGATTCACTGGG ATCAATGATGTGTACTCACCACGGATTATCGGTGGGATTCACTGGG ATCAATGATGTATACTCACCACGGATTATCGGTGGGATTCACTGGG

TCATAGGCTTTTCCCAGATGCAATTACCATTGGTGAAGATGTTAGC
TCATGGGCTTTTCCCAGATGCAATTACCATTGGTGAAGATGTTAGC
TCATGGGCTTTTCCCAGATGCAATTACCATTGGTGAAGATGTTAGC
TCATGGGCTTTTCCCAGATGCAATTACCATTGGTGAAGATGTTAGC

Fig. 8 Sheet 6

29/75

CTCATGGGTCCAGAGTGAAGATACGTATGGACA 11con.seq CTCATGGGTCCAGAGTGAAGATACGTATGGACA 19con.seq CTCATGGGTCCAGAGTGAAGATACGTATGGACA 10con.seq CTCATGGGTCCAGAGTGAAGATACGCATGGACA psbe2con.seq ATGATCCACCCGAAGAGGAGGGTATATCTTCC 11con.seq ATGATCCACCCGAAGAGGAGGGAGGTATATCTTCC 19con.seq ATGATCCACCCGAAGAGGAGGGTATATCTTCC 10con.seq ATGATCCACCCGAAGAGGAGGGTATCTCC. psbe2con.seq ACGTGAATTTTAGAGATGAAGTTCTTCCTCGCA 11con.seq ACGTGAATTTTAGAGATGAAGTTCTTCCTCGCA 19con.seq ACGTGAATTTTAGAGATGAAGTTCTTCCTCGCA 10con.seq ACGTGAATTTTAGAGATGAAGTTCTTCCTCGCA psbe2con.seq TTTTTTGCACCAAGCAGCCGTTTTGGAACGCCC 11con.seq TTTTTTGCACCAAGCAGCCGTTTTGGAACGCCC 19con.seq TTTTTTGCACCAAGCAGCCGTTTTGGAACGCCC 10con.seq TTTTTTGCACCAAGCAGCCGTTTTGGAACGCCC psbe2con.seq ACTTTAGATGGACTGAACATGTTTGACGGCACC 11con.seq ACTTTAGATGGACTGAACATGTTTGACTGCACC 19con.seq ACTTTAGATGGACTGAACATGTTTGACGGCACA 10con.seq ACTTTAGATGGACTGAACATGTTTGACGGCACA psbe2con.seq AGGTATCTTCTCAAATGCGAGATGGTGGTTG 11con.seq AGGTATCTTCTCAAATGCGAGATGGTGGTTG 19con.seq AGGTATCTTCTCAAATGCGAGATGGTGGTTG 10con.seq AGGTATCTTCTCAAATGCGAGATGGTGGTTG psbe2con.seq AACTACGAGGAATACTTTGGACTCGCAACTGAT 11con.seq AACTACGAGGAATACTTTGGACTCGCAACTGAT 19con.seq AACTACGAGGAATACTTTGGACTCGCAACTGAT 10con.seq AACTACGAGGAATACTTTGGACTCGCAACTGAT psbe2con.seq GGAATGCCGACATTTTGTATTCCCGTTCAAGAT 11con.seq GGAATGCCGACATTTTGTATTCCCGTCCAAGAG 19con.seq GGAATGCCGACATTTTGTGTTCCCGTTCAAGAT 10con.seq GGAATGCCGACATTTTGTATTCCCGTTCAAGAT psbe2con.seq SHEET 6

SUBSTITUTE SHEET (RULE 26)

PCT/GB96/01075

30/75

1868	GGGGGTGTTGGCTTTGACTATCGGCTGCATATGGCAATTGC	
1870	1	
1869	GGGGGTGTTGGCTTTGACTATCGGCTGCATATGGCAATTGC	
1953	GGGGGTGTTGGCTTTGACTATCGGCTGCATATGGCAATTGC	
1988	AGATGGTCGGAAAAGTGTGTTTCATACGCTGAAAGTCATGA	
1990	AGATGGTCGGAAAAGTGTTTTCATACGCTGAAAGTCATGA	
1989	AGATGGTCGGAAAAGTGTGTTTCATACGCTGAAAGTCATGA	
2073	AGATGGTCGGAAAAGTGTGTTTCATACGCTGAAAGTCATGA	
2108	CCGCCAACATCATTAATAGATCGTGGGATAGCATTGCACAA	
2110	CCGTCAACATCATTAATAGATCGTGGGATAGCATTGCACAA	
2109	CCGTCAACATCATTAATAGATCGTGGGATAGCATTACACAA	
2193	CCGTCAACATCATTAATAGATCGTGGGATAGCATTGCACAA	
2228	TGGATTGATTTCCCTAGGGCTGAGCCCACACCTTTCTGATGG	
2230	TGGATTGATTTCCCTAGGGCTGAACAACACCTCTCTGATGG	
2229	TGGATTGATTTCCCTAGGGCTGAACAACACCTCTCTGATGG	
2313	TGGATTGATTTCCCTAGGGCTGAACAACACCTCTCTGATGG	E:- 0
		Fig.8 Sheet 8
	TACCATGGGTTACAAGAATTTGACTGGGCTATGCAGTATCT	Jileet 0
	TACCGTGGGTTGCAAGAATTTGACCGCCCTATGCAGTATCT	
	TACCGTGGGTTGCAAGAATTTGACCGGGCTATGCAGTATCT	
2433	TACCGTGGGTTGCAAGAATTTGACCGGGCTATGCAGTATCT	
2460		
	GAAAGAGGAAACCTAGTTTTCGTCTTTAATTTTCACTGGAC	
	GAAAAAGGAAACCTAGTTTTTGTCTTTAATTTTCACTGGAC	
	GAAAAAGGAAACCTAGTTTTTGTCTTTAATTTTCACTGGAC	
2555	GAAAAAGGAAACCTAGTTTTTGTCTTTAATTTTCACTGGAC	
2500	TTTGGTGGCTTCGGGAGAATTGATCATAATGCCGAATATTT	
	TTTGGTGGCTTCGGGAGAATTGATCATAATGCCGAATATTT	
	TTTGGTGGCTTCGGGAGAATTGATCATAATGCCGAATATTT	
2013	TTTGGTGGCTTCGGGAGAATTGATCATAATGCCGAATGTTT	
2708	CTAGTAGACAAACTAGAAG	
	CTAGTAGACAAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAA	F: 0
	CTAGTAGACAAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAA	Fig.8
	CTAGTAGACAAGAAGAAGAAGAAGAAGAAGAAG——————————	SHEET 7
	· · · · · · · · · · · · · · · · · · ·	

SUBSTITUTE SHEET (RULE 26)

PCT/GB96/01075

31/75

TGATAAATGGATTGAGTTGCTCAAGAAACGGGATGAGGATTGGAGA TGATAAATGGATTGAGTTGCTCAAGAAACGGGATGAGGATTGGAGA TGATAAATGGATTGAGTTGCTCAAGAAACGGGATGAGGATTGGAGA TGATAAATGGATTGAGTTGCTCAAGAAACGGGATGAGGATTGGAGA

TCAAGCTCTAGTCGGTGATAAAACTATAGCATTCTGGCTGATGGAC TCAAGCTCTAGTCGGTGATAAAACTATAGCATTCTGGCTGATGGAC TCAAGCTCTAGTCGGTGATAAAACTATAGCATTCTGGCTGATGGAC TCAAGCTCTAGTCGGTGATAAAACTATAGCATTCTGGCTGATGGAC

GATGATTAGGCTTGTAACTATGGGATTAGGAGGAGAAGGGTACCTA GATGATTAGGCTTGTAACTATGGGATTAGGAGGAGAAGGGTACCTA GATGATTAGGCTTGTAACTATGGGATTAGGAGGAGAAGGGTACCTA GATGATTAGGCTTGTAACTATGGGATTAGGAGGAGAAGGGTACCTA

CTCAGTAATTCCCGGAAACCAATTCAGTTATGATAAATGCAGACGG CTCAGTAATCCCCAGAAACCAATTCAGTTATGATAAATGCAGACGG CTCAGTAATTCCCAGAAACCAATTCAGTTATGATAAATGCAGACGG CTCAGTAATTCCCGGAAACCAATTCAGTTATGATAAATGCAGACGG

TGAAGATAAATATGAGTTTATGACTTCAGAACACCAGTTCATATCA TGAAGATAAATATGAGTTTATGACTTCAGAACACCAGTTCATATCA TGAAGATAAATATGAGTTTATGACTTCAGAACACCAGTTCATATCA TGAAGATAAATATGAGTTTATGACTTCAGAACACCAGTTCATATCA

AAAAAGCTATTCAGACTATCGCATAGGCTGCCTGAAGCCTGGAAAA AAAAAGCTATTCAGACTATCGCATAGCCTGCCTGAAGCCTGGAAAA AAAAAGCTATTCAGACTATCGCATAGGCTGCCTGAAGCCTGGAAAA AAAAAGCTATTCAGACTATCGCATAGGCTGCCTGAAGCCTGGAAAA

CACCTTGAAGGATGGTATGATGATCGTCCTTGTTCAATTATGGTG
CACCTTTGAAGGATGGTATGATGATCGTCCTCGTTCAATTATGGTG
CACCTTTGAAGGATGGTATGATGATCGTCCTCGTTCAATTATGGTG
CACCTTTGAAGGATGGTATGATGATCGTCCTCGTTCAATTATGGTG

 Fig.8 Sheet 9

Fig. 8

PCT/GB96/01075

32/75

GTGGGTGATATTGTTCATACACTGACAAATAGA 11con.seq GTGGGTGATATTGTTCATACACTGACAAATAGA 19con.seq GTGGGTGATATTGTTCATACACTGACAAATAGA 10con.seq GTGGGTGATATTGTTCATACACTGACAAATAGA psbe2con.seq

AAGGATATGTATGATTTTATGGCTCTGGATAGA 11con.seq
AAGGATATGTATGATTTTATGGCTCTGGATAGA 19con.seq
AAGGATATGTATGATTTTATGGCTCTGGATAGA 10con.seq
AAGGATATGTATGATTTTATGGCT

AATTTCATGGGAAATGAATTCGGCCACCCTGAG 11con.seq
AATTTCATGGGAAATGAATTCGGCCACCCTGAG 19con.seq
AATTTCATGGGAAATGAATTCGGCCACCCTGAG 10con.seq
AATTTCATGGGAAATGAATTCGGCCACCCTGAG psbe2con.seq

AGATTTGACCTGGGAGATGCAGAATATTTAAGA 11con.seq AGATTTGACCTGGGAGATGCAGAATATTTAAGA 19con.seq AGATTTGACCTGGGAGATGCAGAATATTTAAGA 10con.seq AGATTTGACCTGGGAGATGCAGAATATTTAAGA psbe2con.seq

CGAAAGGATGAAGGAGATAGGATGATTGTATTT 11con.seq CGAAAGGATGAAGGAGATAGGATGATTGTATTT 19con.seq CGAAAGGATGAAGGAGATAGGATGATTGTATTT 10con.seq CGAAAGGATGAAGGAGATAGGATGATTGTATTT psbe2con.seq

TACAAGGTTGICTTGGACTCAGATGATCCACTT 11con.seq
TACAAGGTTGCCTTGGACTCAGATGATCCACTT 19con.seq
TACAAGGTTGCCTTGGACTCAGATGATCCACTT 10con.seq
TACAAGGTTGCCTTGGACTCAGATGATCCACTT psbe2con.seq

TATGCACCTAGTAGAACAGCAGTGGTCTATGCA 11con.seq
TATGCACCTTGTAAAACAGCAGTGGTCTATGCA 19con.seq
TATGCACCTAGTAGAACAGCAGTGGTCTATGCA 10con.seq
TATGCACCTAGTAGAACAGCAGTGGTCTATGCA psbe2con.seq

AACTTGTGATCGCGTTGAAAGATTTGAACGTTA 11con.seq
AACTTGTGATCGCGTTGAAAGATTTGAACG--- 19con.seq
AACTTGTGATCGCGTTGAAAGATTTGAACG--- psbe2con.seq
AACTTGTGATCGCGTTGAAAGATTTGAACG--- psbe2con.seq

Fig. 8

PCT/GB96/01075

33/75

2795	CTTGGTCAT CCACATAGAGCTTCTTGAC	ì
2827	CTACATAGAGCTTCTTGACGTATCTGGCAATAT	
2814	CCACATAGAGCTTCTTGACGTATCTGGCAATAT	
2895	CTACATAGAGCTTCTTGACGTATCTGGCAATAT	
2898	AGAGATGAAGTGCTGAACAAACATATGTAAAATCGATGAA	
	AGAGATGAAGTGCTGAACAAACATATGTAAAATCGATGAA	Fig. 8
2924	AGAGATGAAGTGCTGAACAAAAACATATGTAAAATCGATGAA	Sheet 11
3005	AGAGATGAAGTGCTGAACAAACATATGTAAAATCGATGAA	
2975		
3012		
3003		
3123	GCCCACTAGAAATCAATTATGTGAGACCTAAAAAACAATAAC	

PCT/GB96/01075

34/75

TGCATCAGTCTTGGCGGAATTCCATGTGACAACAAGGTTTGCACTT
TGCATCAGTCTTGGCGGAATTTCATGTGACAACAAGGTTTGCAATT
TGCATUAGTCTTGGCGGAATTTCATGTGACAA-CAGGTTTGCAATT
TGCATCAGTCTTGGCGGAATTTCATGTGACAA-AAGGTTTGCAATT

TTTATGTCGAATGCTGGGACGATCGAATTCCTGCAGCC
TTTATGTCGAATGCTGGGACGATCGAATTCCTGCAG
TTTATGTCGAATGCTGGGACGATCGAATTCCTGCAGCC
TTTATGTCGAATGCTGGGACGGCTTCAGCAGC

Fig. 8 Sheet 12

CATAAAATGGAAATAGTGCTGATCTAATGATGTTTTAANCCNNNNA

35/75

CTTTCCACTATTAGTAGTCACCGATATACGC 11con.seq CTTTCCACTATTAGTAGTGCAACGATATACGC 19con.seq CTTTCCACTATTAGTAGTGCAACGATATACGC 10con.seq CTTTCCACTATTAGTAGTGCAACGATATACGC psbe2con.seq

> 11con.seq 19con.seq 10con.seq

GTTCTGTAAATTGTCATCTCTTTANATGTACA psbe2con.seq

11con.seq 19con.seq 10con.seq psbe2con.seq

AAAAAAAAAAAAAAACTCGAG

PCT/GB96/01075

36/75

GGATGCTAATGTTTCTGTATTCTTGAAAAAGCACTCTCTTTCACGG CCTACGATTACAAAGACATAAGAACTTTTTCGTGAGAGAAGTGCC ANVSVFLKKH S TTCTACAGTTGCAGCATCGGGGAAAGTCCTTGTGCCTGGAAYCCAG AAGATGTCAACGTCGTAGCCCCTTTCAGGAACACGGACCTTRGGTC STVAASGKVLVP GACATCTCCAGAAAATTCCCCAGCATCAACTGATGTAGATAGTTCA CTGTAGAGGTCTTTTAAGGGGTCGTAGTTGACTACATCTATCAAGT T S P E N S P A S T D V D Fig.9 TGAGCCGTCAAGTGATCTTACAGGAAGTGTTGAAGAGCTGGATTTT Sheet ACTCGGCAGTTCACTAGAATGTCCTTCACAACTTCTCGACCTAAAA EPSSDLTGSVEELDF TAAAACATTAAATACTTCTGAAGAGACAATTATTGATGAATCTGAT ATTTTGTAATTTATGAAGACTTCTCTGTTAATAACTACTTAGACTA KTLNTSEETIID Hinc II GATTTATGAAATAGACCCCCTTTTGACAAACTATCGTCAACACCTT CTAAATACTTTATCTGGGGGAAAACTGTTTGATAGCAGTTGTGGAA D P L L T N Y R Q H L

37/75

В	gl II														
AAGA															00
TTC															90
K	I	Γ.	Α	Ε	K	S.	S	Y	N	S	Ε	S	R	Ρ	
AGT	GAT.	AGC	TCC	TCA	TCC	TCA	ACA	GAC	CAA	TTT	GAG	TTC	ACT	GA	100
TCA															180
S	D	S	S	S	S	S	T	D	Q	F	Ε	F	T	Ε	
ACAA	ATG!	GAA	CAC	GCT	AGC	CAG	ATT	AAA	ACT	GAG.	AAC	GAT	GAC	GT	270
TGT															270
T	М	Ε	Н	Α	S	Q	I	K	T	Ε	N	D	D	٧	
GCT.	CA	TCA	СТА	CAA	CTA	CAA	GAA	GGT	GGT.	AAA	CTG	GAG	GAG	TC	360
CGA															
Α	S	S	L	Q	L	Q	Ε	G	G	·K	L	Ε	Ε	S	
AGG	ATC.	AGA	GAG	AGG	GGC	ATC	CCT	CCA	CCT	GGA	CTT	GGT	CAG	AA	450
TCC.															100
R	I	R	Ε	R	G	I	Р	Р	Р	G	L	G	Q	K	
GAT															540
CTA															540
D	Y	R	Υ	S	Q	Y	K	K	L	R	Ε	Α	I	D	
											F	ig.	9	SH	EET 2

PCT/GB96/01075

Fig.9 Sheet

38/75

HinD III

CAAGTATGAGGGTGGTTTGGAAGACTTTTTCTCGTGGTTATGAAAAAGTTCATACTCCCACCAAACCTTCGAAAAAGAGCACCAATACTTTTT K Y E G G L E A F S R G Y E K

Pvu II

GGCTCCTGGTGCCCAGTCAGCTGCCCTCATTGGAGATTTCAACAAT CCGAGGACCACGGGTCAGTCGACGGGAGTAACCTCTAAAGTTGTTA

A P G A Q S A A L I G D F N N

CTGGGAGATTTTTCTGCCAAATAATGTGGATGGTTCTCCTGCAATT

WEIFLPNNVDGSPAI

TGTTAAGGATTCCATTCCTGCTTGGATCAACTACTCTTTACAGCTT

ACAATTCCTAAGGTAAGGACGAACCTAGTTGATGAGAAATGTCGAA

V K D S I P A W I N Y S L Q L

AGAGGAGAGGTATRTCTTCCAACACCCACGGCCAAAGAAACCAAAG

TCTCCTCTCCATAYAGAAGGTTGTGGGTGCCGGTTTCTTTGGTTTC

EERY?FQHPRPKKPK

Fig. 9 SHEET 3

PCT/GB96/01075

AT		111	JAC	rcg [·]	[AG]	GC.	ΓΑς	AGG.	TAT	CAC	TŢA	CCGT	rga (TG	630
TA	CCCA	AAA	STG	AGCA	\TCA	CG	ATGT	CC/	ATA(GTG	4AT(GGC/	CTC	AC	630
М	G			R	S							R		W	
TG	GAC	GCA	TAA	GÇT	GAC	ΑТТ	ATG	ACT	CGC	SAAT	rga <i>A</i>	TTT	GGT	СT	
	CTG					o									720
W	D	Α	N	A								AAA F			
				•		•		•	IX.	14	_	r	G	٧	
CCT	CAT	GGG	TCC	AĢA	GTG	AAG	АТА	CGY	ATG	GAC	AC'T	CCA	TCA	GG	
	GTA					+		-							810
Ρ	Н	G					I	R	M				S		
CCT	GAT	GAA	ATT	CCA	TAT	AAT	GGA	ATA	TAT	TAT	ĢAT	CCA	CCC	GA	
GGA	CTA	CTT	TAA	GGT	ATA	TTA	ССТ	TAT	ATA	ATA	CTA	GGT	GGG	• -+ CT	900
Ρ	D	Ε	I	Ρ	Y	N			Υ		D	Р	Р	Ε	
TCC	CTO.				.		_								
	CTG/				\rightarrow										000
	unc	ГСТ	TAT	ATA	CTT	AGA	GTA	TAA	CCT	TAC	TCA	TCA	GGC	T	990
S	L	R	I	Y	Ε	S	Н	I	G	М	S	S	Р	Ε	
												Λ.			

Fig. 9 SHEET 4

PCT/GB96/01075 WO 96/34968

40/75

Xmn I GCCTAAAATTAACTCATACGTGAATTTTAGAGATGAAGTTCTTCCT CGGATTTTAATTGAGTATGCACTTAAAATCTCTACTTCAAGAAGGA P K I N S Y V N F R D E V L P TCAAGAGCATTCTTATTATGCTAGTTTTGGTTATCATGTCACAAAT AGTTCTCGTAAGAATAATACGATCAAAACCAATAGTACAGTGTTTA Q E H S Y Y A S F G Y H V T N GTCTTTGATTGATAAAGCTCATGAGCTAGGAATTGTTGTTCTCATG CAGAAACTAACTATTTCGAGTACTCGATCCTTAACAACAAGAGTAC SLIDKAHELGIVVLM Fig.9 Sheet GAACATGTTTGACGGCACAGATAGTTGTTACTTTCACTCTGGAGCT CTTGTACAAACTGCCGTGTCTATCAACAATGAAAGTGAGACCTCGA NMFDGTDSCYFHSGA AAACTGGGAGGTACTTAGGTATCTTCTCTCAAATGCGAGATGGTGG TTTGACCCTCCATGAATCCATAGAAGAGAGTTTACGCTCTACCACC W E V L R Y L L S N A R W W ATCAATGATGTATACTCACCACGGATTATCGGTGGGATTCACTGGG

Fig. 9 SHEET 5

GFT

TAGTTACTACATATGAGTGGTGCCTAATAGCCACCCTAAGTGACCC YTHHGLSV

PCT/GB96/01075

41/75

	CA	:GA	TA	ACC	r a c	(CT	TGA	CGT			AAA F				AIG	TTG.
1530	- 									+		- -		+	 	AAC
	T	٧	G	D	7	F	R	F	G	D	F	K	F	Ε	D	L
1440	TG	CAC	CA	TA	AA(ΓΑΑ	TCT	AAA	CCT	СТА	AAA	TTT	AAC	СТС	СТА	AAC
4.11.11.0	AÇ	GTG	GT!	AT	ГТС	\TT	ΓAGA	TTT	GGA	GAT	TTT	AAA	TTC	GAG	GAT	TTG
		Y	N N	F				S		W		Ņ				R
1350	+							 -	 	+		ACC		• • •	+	
	GG.	TAT	AAC	тт.	TCT	CCT	CCG	TCC	GAT	TGG	ATG	TGG	CAI	TAT	GGT	i CGT
															i	Sac
	L		D .									S				
1260						•			•	+		TCG				
	CT	GGA	GAT	ΓΤΑ	CT.	TA(ΤΑΑ΄	AAI	TCA	GCA	CAT	AGC	CAC	GTI	ΑTΤ	GAC
	K	L	.D	D	Ρ	F	Т	G	F	R	S	S	Ρ	Α	F	F
1170	+	GAA	CTG	TG	GG	CG(TTG	CC.	AAA	GCA	TCC	TCG	GG.	CGT	AAA	AAA
	ΓΑΑ	СТТ	GAC	GAC	CC	GC(AAC	GG	TT	CGT	AGC	AGC	ACC	GC/	TTT	TTT
	I	Α	М	I	Q	(٧	Α	N	Y	G	L	?	K	I	R
1000	۱TA	CGA	TAC	ΓΑΑ	TT	CG.	CCA	CG	TT	ATG	CCC	SGA/	TTT:	TT.	TAT	GCG
1080							·					•				

42/75

Hinc II

TGTGTATCTGATGCTGGTCAACGATCTTATTCACGGGCTTTTCCCA

ACACATAGACTACGACCAGTTGCTAGAATAAGTGCCCGAAAAGGGT

V Y L M L V N D L I H G L F P

TTGTATTCCCGTTCAAGATGGGGGTGTTGGCTTTGACTATCGGCTG

AACATAAGGGCAAGTTCTACCCCCACAACCGAAACTGATAGCCGAC

C I P V Q D G G V G F D Y R L

GGATGAGGATTGGAGAGTGGGTGATATTGTTCATACACTGACAAAT
CCTACTCCTAACCTCTCACCCACTATAACAAGTATGTGACTGTTTA

D E D W R V G D I V H T L T N

Fig.9 Sheet 8

TCAAGCTCTAGTCGGTGATAAAACTATAGCATYCTGGCTGATGGAC
AGTTCGAGATCAGCCACTATTTTGATATCGTARGACCGACTACCTG
Q A L V G D K T I A ? W L M D

ATTAATAGATCGTGGGATAGCATTGCACAAGATGATTAGGCTTGTA
TAATTATCTAGCACCCTATCGTAACGTGTTCTACTAATCCGAACAT
L I D R G I A L H K M I R L V .

Fig. 9 SHEET 7

PCT/GB96/01075

43/75

44/75

EcoR I TGAATTCGGCCACCCTGAGTGGATTGATTTCCCTAGGGCTGARCAA ACTTAAGCCGGTGGGACTCACCTAACTAAAGGGATCCCGACTYGTT E F G H P E W I D F P R A Sspl TGATAAATGCAGACGGAGATTTGACCTGGGAGATGCAGAATATTTA ACTATTTACGTCTGCCTCTAAACTGGACCCTCTACGTCTTATAAAT DKCRRFDLGDAEYL TGAAGATAAATATGAGTTTATGACTTCAGAACACCAGTTCATATCA ACTTCTATTTATACTCAAATACTGAAGTCTTGTGGTCAAGTATAGT DKY E F SEHQFIS М Τ Fig 9 CCTAGTTTTTGTCTTTAATTTTCACTGGACAAATAGCTATTCAGAC Sheet 10 GGATCAAAACAGAAATTAAAAGTGACCTGTTTATCGATAAGTCTG LVFVFNFHWTNSY GGACTCAGATGATCCACTTTTTGGTGGCTTCGGGAGAATTGATCAT CCTGAGTCTACTAGGTGAAAAACCACCGAAGCCCTCTTAACTAGTA SDDPLFGGFGRI YCGYYCAATTATGGTGTATGCACCTAGTAGAACAGCAGTGGTCTAT RGCRRGTTAATACCACATACGTGGATCATCTTGTCGTCACCAGATA R 7 I M V Y A P S R T A V NGAAGAATTTT NCTTCTTAAAA Fig 9 SHEET 9 EEF

PCT/GB96/01075

45/75

CACCTCTCTGATGGCTCAGTAATTCCCGGAAACCAATTCAGTTA GTGGAGAGACTACCGAGTCATTAAGGGCCTTTGGTTAAGTCAAT H L S D G S V I P G N Q F S Y Nco I AGATACCATGGGTTGCAAGAATTTGACCGGGCTATGCAGTATCT TCTATGGTACCCAACGTTCTTAAACTGGCCCGATACGTCATAGA RYHGLQEFDRAMQYL CGAAAGGATGAGGAGATAGGATGATTGTATTTGAAARAGGAAA GCTTTCCTACTTCCTCTATCCTACTAACATAAACTTTYTCCTTT R K D E G D R M I V F E ? G N TATCGCATAGGCTGCCTGAAGCCTGGAAAATACAAGGTTGGCTT ATAGCGTATCCGACGGACTTCGGACCTTTTATGTTCCAACCGAA Y R I G C L K P G K Y K V G L Ssp I AATGCCGAATATTTCACCTCTGAAGGATCGTATGATGATCGYCC TTACGGCTTATAAAGTGGAGACTTCCTAGCATACTACTAGCRGG NAEYFTSEGSYDDRP GCACTAGTAGACAAANTAGAAGNAGAAGAAGAAGAAGAANCCGN CGTGATCATCTGTTTNATCTTCNTCTTCTTCTTCTTCTTNGGCN ALVDK?.E?EEEE?? Fig. 9 SHEET 10

Fig. 10 SHEET 1

Fig. 10 SHEET 2

48/75

				_
	360 *	370 ⁻	380	
348 350	TTGTGCCTGGAAGCCAG			
350	TTGTGCCTGGAACCCAG			
127 120	TTGTGCCTGGAACCCAG	SAGTGATAGCI	CCTCATCCTC	
120	TTGTGCCTGGAATCCAG	BAGIGATAGU	ICCICATECIC	Ī
	430	440	450	
418	AGAAAATTCCCCAGCAT		I	
420	AGAAAATTCCCCAGCAT			
420	AGAAAATTCCCCAGCAT			
197 190	AGAAAATTCCCCAGCAT			
			TAGATAGT TCA	
	500	510	520	1
488	AACGATGACGTTGAGC			}
490 490	AACGATGACGTTGAGCC	CGTCAAGTGAT CGTCAAGTGAT	TCTTACAGGAA	1
267	AACGATGACGTTGAGC	CGTCAAGTGA	TCTTACAGGAA	
260	AACGATGACGTTGAGC	CGTCAAGTGA	TÇTTAÇAGGAA	
•	. 570	580	590.	
558	AACTACAAGAAGGTGG	TAAACTGGAG		
560 560	AACTACAAGAAGGTGG	TAAACTGGAG	GAGTCTAAAAC	
337	AACTACAAGAAGGTGG'			1
330	AACTACAAGAAGGTGG			Į.
		1		
000	640	650	660	
628 630	ATCTGATAGGATCAGAC			١.
630	ATCTGATAGGATCAGAG	GAGAGGGGCAT	CCCTCCACCT	
407 400	ATCTGATAGGATCAGAG ATCTGATAGGATCAGAG	GAGAGGGGCAT	TOCCTCCACCT	
.00	A TO TURNING A TONGAG	AGAGGGGCA I	I CCC I CCACCI	

Fig.10 Sheet 4

Fig. 10 SHEET 3

PCT/GB96/01075

		49/75	
390	400	410	420
AACAGAT	CAATTTGAGTT	CGCTGAGACA	TCTCC 10con. seq
AACAGAC	CAATTTGAGTT	CACTGAGACA	TCTCC 11con, sea
AACAGAC	CAATTTGAGTT	CACTGAGACA	TCTCC 19con. seq
AACACAC	CAATTTGAGTT	CACTGAGACA	
AACAGACI	CAATTTGAGTT	CALIGAGACA	TCTCC pcrsbe2con. see
	γ	· · · · · · · · · · · · · · · · · · ·	
460	470	480	490
ACAATGGA	AACACGCTAGC	CAGATTAAAA	CTGAG 10con. seq
ACAAIGG	ACACGCTAGC	CAGATTAAAA	CTGAG 11con. seq
ACAATOO	ACACGCTAGC	CAGATTAAAA	CTGAG 19con. seq
ACAATGGA	ACACGCTAGC	CAGATTAAAA	
ACAATGGA	ACACGCTAGC	CAGATTAAAA	CTGAG pcrsbe2con. sed
530	540	550	
GTGTTCA	GAGCTGGATT	TIGCTTCATC	
GTGTTGAA	\GAGCTGGATT \GAGCTGGATT	TTCCTTCATC	
GTGTTGA	GAGCTGGATT	TTECTTCATC	ACTAC 19con. seq ACTAC 86CON. SEQ
GTGTTGA	GAGCTGGATT	TTGCTTCATC	ACTAC persbe2con sec
			————
600	610	620	630
ATTAAATA	CTTCTGAAGA	GACAATTATT	GATGA 10con. seq
ATTAAATA	CTTCTGAAGA	GACAATTATT	GATGA 11con sea
ATTAAATA	CTTCTGAAGA	GACAATTATT	GATGA 19con sea
ATTAAATA	CTTCTGAAGA	GACAATTATT	GATGA 86CON SEC
ATTAAATA	CLICTGAAGA	GACAATTATT	GATGA pcrsbe2con. sec
670	600	200	700
670	680	690	700
GGACTTG	TCAGAAGATT	TATGAAATAG.	
GGACTTO	STCAGAAGATT	TATCALATAG	
GGACTTGG	STCAGAAGATT STCAGAAGATT	TATGAAATAG	
GGACTTGG	TCAGAAGATT	TATGAAATAG	ACCCC 86CON.SEQ ACCCC pcrsbe2con.sec
	- JAGAAGA I	TATUAAATAU	Accept spezdon, sec

Fig. 10 SHEET 4

50/75 710 720 730 698 CTTTTGACAAACTATCGTCAACACCTTGATTACAGGT 700 CTTTTGACAAACTATCGTCAACACCTTGATTACAGGT 700 CTTTTGACAAACTATCGTCAACACCTTGATTACAGGT 477 CTTTTGACAAACTATCGTCAACACCTTGATTACAGGT 470 CTTTTGACAAACTATCGTCAACACCTTGATTACAGGT 780 790 800 768 ACAAGTATGAGGGTGGTTTGGAAGCTTTTTCTCGTGG 770 ACAAGTATGAGGGTGGTTTGGAAGCETTTTCTCGTGG 770 **ACAAGTATGAGGGTGGTTTGGAAGC@TTTTCTCGTGG** 547 ACAAGTATGAGGGTGGTTTGGAAGCTTTTTCTCGTGG 540 ACAAGTATGAGGGTGGTTTGGAAGCTTTTTCTCGTGG 850 860 870 838 AGGTATCACTTACCGTGAGTGGGCTCCTGGTGCCCAG Fig.10 839 AGGTATCACTTACCGTGAGTGGGCTCCTGGTGCCCAG Sheet 6 840 AGGTATCACTTACCGTGAGTGGGCTC TTGGTGCCCAG 617 AGGTATCACTTACCGTGAGTGGGCTCCTGGTGCCCAG 610 AGGTATCACTTACCGTGAGTGGGCTCCTGGTGCCCAG 930 940 920 GACGCAAATGCTGACTTTATGACTCGGAATGAATTTG 908 909 GACGCAAATGCTGACATTATGACTCGGAATGAATTTG 910 GACGCAAATGCTGACATTATGACTCGGAATGAATTTG 687 GACGCAAATGCTGACATTATGACTCGGAATGAATTTG 680 GACGCAAATGCTGACATTATGACTCGGAATGAATTTG 1010 1000 990 ATGGTTCTCCTGCAATTCCTCATGGGTCCAGAGTGAA 978 979 ATGGTTCTCCTGCAATTCCTCATGGGTCCAGAGTGAA 980 ATGGTTCTCCTGCAATTCCTCATGGGTCCAGAGTGAA 757 ATGGTTCTCCTGCAATTCCTCATGGGTCCAGAGTGAA 750 ATGGTTCTCCTGCAATTCCTCATGGGTCCAGAGTGAA

Fig. 10 SHEET 5

PCT/GB96/01075

Fig. 10 SHEET 6

52/75

		1060	1070	1080
1048 1049		CCTGCTTGGA [*] CCTGCTTGGA [*]		
1050	TTCCATT	CCTGCTTGGAT	CAACTACTC	TTTACAGCTT
827 820		CCTGCTTGGA1 CCTGCTTGGA1		
		1130	1140	1150
1118		CCGAAGAGGAG CCGAAGAGGAG		
1120 895	GATCCAC	CCGAAGAGGAC	SAGGTATATC	TTCCAACACC
890		CCGAAGAGGA6 CCGAAGAGGA6		
				 _
		1200	1210	1220
1188 1189		TCATATTGGAA TCATATTGGAA		
1190 965		TCATATTGGAA TCATATTGGAA		
960		TCATATTGGAA		
		1270	1280	1290
1258 1259		CGCATAAAAA CGCATAAAAA		
1260	TCTTCCT	CGCATAAAAA	A-GCTTGGGT	ACAATGCGCT
1035 1030		CGCATAAAAAA CGCATAAAAAA		
			*	<u>*</u>
1000		1340	13,50	1360
1328 1328	TGCTAGT TGCTAGT	TTTGGTTATC <i>I</i> TTTGGTTATC <i>I</i>	ATGTCACAAA ATGTCACAAA	
1329 1104	E GCTAGT TGCTAGT		TGTCACAAA TGTCACAAA	TTTTTTGCA
1099	TGCTAGT		TGTCACAAA	

Fig.10 Sheet 8

Fig. 10 SHEET 7

53/75 1100 , 1090 11.10 1120 CCTGATGAAATTCCATATAATGGAATATATTAT 10con. sea CCTGATGAAATTCCATATAATGGAATATATTAT 11con. seq CCTGATGAAATTCCATATAATGGAATA@ATTAT 19con. seq CCTGATGAAATTCCATATAATGGAATATATTAT 86CON. SEO CCTGATGAAATTCCATATAATGGAATATATTAT pcrsbe2con. seq 1160 1170 1180 1190 CACGGCCAAAGAACCAAAGTCGGTGAGAATAT 10con. seq CACGGCCAAAGAACCAAAGTCGCTGAGAATAT 11con. sea CACGGCCAAAGAACCAAAGTCGCTGAGAATAT 19con. sea CACGGCCAAAGAAACCAAAGTCGCTGAGAATAT 86CON SEQ CACGGCCAAAGAACCAAAGTCGCTGAGAATAT pcrsbe2con seq 1230 1240 1250 1260 AATTAACTCATACGTGAATTTTAGAGATGAAGT 10con. seq AATTAACTCATACGTGAATTTTAGAGATGAAGT 11con. seq AATTAACTCATACGTGAATTTTAGAGATGAAGT 19con. seq AATTAACTCATACGTGAATTTTAGAGATGAAGT 86CON. SEQ AATTAACTCATACGTGAATTTTAGAGATGAAGT pcrsbe2con.seq 1300 1310 1320 1330 GCAAATTATGGCTATTCAAGAGCATTCTTATTA 10con, sea GCCAATTATGGCTATTCAAGAGCATTCTTATTA 11con. seq GCAAATTATGGCTATTCAAGAGCATTCTTATTA 19con. seg GCAAATTATGGCTATTCAAGAGCATTCTTATTA 86CON. SEO GCAAATTATGGCTATTCAAGAGCATTCTTATTA pcrsbe2con.seg 1370 1380 1390 1400

1370 1380 1390 1400

CCAAGCAGCCGTTTTGGAACGCCCGACGACCTT 10con. seq
CCAAGCAGCCGTTTTGGAACGCCCGACGACCTT 11con. seq
CCAAGCAGCCGTTTTGGAACGCCCGACGACCTT 19con. seq
CCAAGCAGCCGTTTTGGAACGCCCGACGACCTT 86C0N. SEQ
CCAAGCAGCCGTTTTGGAACGCCCGACGACCTT pcrsbe2con. seq

Fig. 10 SHEET 8

	141	10 1420	1430	7
1398			CATGAGCTAGGAAT	
1398 1399			CATGAGCTAGGAAT CATGAGCTAGGAAT	
1174			CATGAGCTAGGAAT	
1169			CATGAGCTAGGAAT	
				— [
	148			
1468 1468	CAAATAATAC		GAACATGTTTGAC	
			TGAACATGTTTGAC TGAACATGTTTGAC	
1244	CAAATAATAC	TTTAGATGGACT	rGAACATGTTTGAC (GG
1239	CAAATAATAC	TTTAGATGGACT	TGAACATGTTTGAC	3G
	4.5.5			-1
1500	155		15,70	_ 1
1538 1538		TGGATGTGGGAT TGGATGTGGGAT		C Lig. 10
1539			TCCCGCCTCTTTAA	
1314	TGGTTATCAT	TGGATGTGGGAT	TCCCGCCTTTTTAA	/C
1309	IGGITATCAT	TGGATGTGGGAT	TCCCGCCTCTTTAA	'C
	162	0 1630	1640	- 1
1608		GATGGTGGTTGG		
1.607			ATGAGTTCAAATTT	.G
1609	TCAAATGCGAG	GATGGTGGTTGG	ATGCGTTCAAATTT	Ğ
1384 1379			ATGAGTTCAAATTT ATGAGTTCAAATTT	G
:379	TCAAATGCGAG	3A 66 66 166	AIGAGIICAAAIII	6
	1690	0 1700	17.10	
			GGTGGGATTCACTG	
1677 1679	IGTATACTCAC TGTATA∏TC∧C	CACGGATTATC	GGTGGGATTCACTG GGTGGGATTCACTG	G
	TGTATACTCAC	CACGGATTATC	GGTGGGATTCACTG	G
			GGTGGGATTCACTG	

Fig. 10 SHEET 9

PCT/GB96/01075

1440	1450	1460	147	0.	
TTGTTC	TCATGGACATT TCATGGACAT TCATGGACATT	GTTCACAGCC	ATGCAT	10con. seq 11con. seq 19con. seq	
TTGTTC	TCATGGACATT TCATGGACATT	GTTCACAGCCA	ATGCAT	86CON. SEQ pcrsbe2con.	seq
1510	1520	1530	154	0	
CACCGA CACCGA CAC <u>C</u> GA	TAGTTGTTACT TAGTTGTTACT TAGTTGTTACT TAGTTGTTACT TAGTTGTTACT	TTCACTCTGG/ TTCACTCTGG/ TTCACTCTGG/	AGCTCG AGCTCG AGCTCG	10con. seq 11con. seq 19con. seq 86CON. SEQ pcrsbe2con.	seq
1580	1590	1600	161	0	
TATGGAA TATGGAA TATGGAA	AACTGGGAGGT AACTGGGAGGT AACTGGGAGGT AACTGGGAGGT AACTGGGAGGT	ACTTAGGTATO ACTTAGGTATO ACTTAGGTATO	TTCTC TTCTC TTCTC	10con. seq 11con. seq 19con. seq 86CON. SEQ pcrsbe2con.	seq
1650	1660	1670	16,80	O	
ATGGATT ATGGATT ATGGATT	TTAGATTTGAT(TTAGATT GAT(TTAGATTTGAT(TTAGATTTGAT(TTAGATTTGAT(GGTGTGACATO GGTGTGACATO GGTGTGACATO GGTGTGACATO	AATGA AATGA AATGA	10con. seq 11con. seq 19con. seq 86C0N. SE0 pcrsbe2con.	seq
1720	1730	1740	1750		
GAACTAC GAACTAC GAACTAC	GAGGAATACT GAGGAATACT GAGGAATACT GAGGAATACT GAGGAATACT	TTGGACTCGCA TTGGACTCGCA TTGGACTCGCA	ACTGA ACTGA ACTGA	10con. seq 11con. seq 19con. seq 86CON. SEQ pcrsbe2con.	seq

Fig. 10 SHEET 10

				`
	1760	1770	1780	1
1748	TGTGGATGCTGTTGT		_	
1747 1749	TGTGGATGCTGTTGT TGTGGATGCTGTTGT		· · · · ·	
1524	TGTGGATGCTGTTGT			
1519	TGTGGATGCTGTTGT	•		
	1830	1840	1850	
1818	ATTGGTGAAGATGTT		_	
1817 1819	ATTGGTGAAGATGTT			-
1594	ATTGGTGAAGATGTT ATTGGTGAAGATGTT			
1589	ATTGGTGAAGATGTT			
	1900	1910	1920	
1888	ATCGGCTGCATATGG	CAATTGCTGAT	AAATGGATTGA	Fig.10
1887	ATCGGCTGCATATGG			Sheet 12
1889 1664	ATCCCCTCCATATGG			
1659	ATCGGCTGCATATGG ATCGGCTGCATATGG			
			AAATGGATTGA	1
	1970	1980	1990	
1958	GGGTGATATTGTTCA	TACACTGACAA	ATAGAAGATGG	
1957			ATAGAAGATGG	
1959 1734	GGGTGATATTGTTCA GGGTGATATTGTTCA		ATAGAAGATGG	
1729	GGGTGATATTGTTCA			
				1
	2040	2050	2060	
2020				1
2028	GATCAAGCTCTAGTC GATCAAGCTCTAGTC			
2029	GATCAAGCTCTAGTC			
1804				
1799	GATCAAGCTCTAGTC	GGTGATAAAAC	CTATAGCATYCT	ر

Fig. 10 SHEET 11

1790	1800	18,10	182	0	
	ATGGGCTTTTC				
	ATAGGCTTTTC			11con. seq	
	ATGGGCTTTTC			19con. seq	
	ATGGGCTTTTC			86CON. SEQ	
CITATTCA	A@GGGCTTTTC	CCAGATGCAA	ATTACC	pcrsbe2con.	seq
	· · · · · · · · · · · · · · · · · · ·		—		
1860	1870	1880	189	0 .	
	CAAGATGGG				
	CAAGA <u>T</u> GGGG			11con. seq	
	CAAGAGGGGG			19con. seq	
	CAAGATGGGG			86CON. SEO	
TTCCCGTT	rcaagatgege	GTGTTGGCTT	IGACI	pcrsbe2con.	seq
	<u> </u>		·		
1930	1940	1950	196	0	
GTTGCTCA	AGAAACGGGA	TGAGGATTG	SAGAGT	10con. seq	
	AAGAAACGGGA			11con. seq	
	AAGAAACGGGA			19con. seq	
	AGAAACGGGA			86CON. SEO	
GTTGCTCA	AAGAAACGGGA	TGAGGATTG	SAGAGT	pcrsbe2con.	seq
				·	
2000	20,10	2020	203	0	
TCGGAAAA	AGTGTGTTTCA	TACGCTGAAA	GTCAT	10con. seq	
TCGGAAAA		TACGCTGAAA	AGTCAT	11con. seq	
TCGGAAAA		TACGCTGAAA		19con. seq	
	AGTGTGTTTCA	· · · · · · · · · · · · · · · · · · ·		86CON. SEQ	
TCGGAAAA	AGTGTGTTTCA	ATMCGCTGAAA	AGTCAT	pcrsbe2con.	seq
					
2070	2080	2090	210	0	
	GACAAGGATA			10con. seq	
	GACAAGGATA			11con. seq	
	GACAAGGATA			19con. seq	
	GACAAGGATA			86CON. SEQ	
GGCTGATG	GACAAGGATA	LIGTATGATTT	IAIGG	pcrsbe2con.	seq

Fig. 10 SHEET 12

				\
	2110 💥	2120	2130	
2098	CTCTGGATAGACCGT			
2097	CTCTGGATAGACCG			
2099	CTCTGGATAGACCGT			
1874 1869	CTCTGGATAGACCGC CTCTGGATAGACCGY			l
1003	**	CAACA <u>H</u> CATTAA	ATAGATEGTGG	
	2180	2190	2200	
2168				
2167	TATGGGATTAGGAGG TATGGGATTAGGAGG	· ·	·	
2169	TATGGGATTAGGAGG			
1944	TATGGGATTAGGAGG	· · · · · · · · · · · · · · · · · · ·		
1939	TATGGGATTAGGAGG			
•				
	2250 💥	2260	2270	
2238	TTCCCTAGGGCTGAA	CAACACCTCTCT	GATGGCTCAG	
2237	TTCCCTAGGGCTGAG	CCACÁCCTITCT	GATGGCTCAG	Fig.10
2239	TTCCCTAGGGCTGAA			Sheet 14
2014	TTCCCTAGGGCTGAA			i.
2009	TTCCCTAGGGCTGAR	CAACACCTCTCT	GATGGCTCAG	
	~			
	2320	2330	23,40	
2308		ACCTGGGAGAT		
2307	GCAGACGGAGATTTG	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
2309		ACCTGGGAGATO		1
2084 2079	GCAGACGGAGATTTG GCAGACGGAGATTTG			
2019	GCAGACGGAGATTTG	ACC I GGGAGA I G	CAGAATATT	
	2390	2400	2410	
2270	TATGCAGTATCTTGA			
	TATGCAGTATCTTGA			
2379	TATGCAGTATCTTGA			
2154	TATGCAGTATCTTGA			ł
2149	TATGCAGTATCTTGA	AGATAAATATGA	AGTTTATGACT	J

Fig. 10 SHEET 13

				
2140	2150	2160	217	0
GATAGCAT	TACACAAGAT	GATTAGGCTT	GTAAC	10con. seq
GATAGCAT	TGCACAAGAT	GATTAGGCTT	GTAAS	11con. seq
GATAGCAT	TGCACAAGAT	GATTAGGCTT	GTAAC	19con. seq
GATAGCAT	TGCACAAGAT	GATTAGGCTT	GTAAC	86CON. SEQ
CATACCAT	TGCACAAGAT	GATTAGGCTT	GTAAC	pcrsbe2con. seq
GAIAGCAI	, depondent			
2210	2220	2230	224	0
GGAAATGA	ATTCGGCCAC	CCTGAGTGGA	IIIGAL	10con. seq
GGAAATGA	ATTCGGCCAC	CCTGAGTGGA	TTGAL	11con. seq
GGAAATGA	ATTCGGCCAC	CCTGAGTGGA	TTGAL	19con. seq
GGAAATGA	ATTCGGCCAC	CCTGAGTGGA	TTGAL	86CON. SEQ
GGAAATGA	ATTCGGCCAC	CCTGAGTGGA	TTGAT	pcrsbe2con. seq
2280	2290	2300	231	0
TAATTCCC	AGAAACCAAT	TCAGTTATGA	TAAAT	10con. seq
TAATTCCC	GGAAACCAAT	TCACTTATGA	ΤΔΑΔΤ	11con. seq
TAATICCC	GGAAACCAAT	TCACTTATGA	ΤΔΔΑΤ	19con. seq
TAATECCC	GGAAACCAAT	TCACTTATCA	ΤΔΔΑΤ	86CON. SEQ
TAATTCCC	GGAAACCAAT	TCACTTATGA	ΤΔΔΑΤ	pcrsbe2con. seq
TAATTCCC	.GGAAACCAA I	-		,
0250	2360	2370	238	0
2350	1			
AAGATACC	<u>GTGGGTTG</u> CA	AGAATTTGAG	CGGGC	10con. seq
AAGATACC	ATGGGTTACA	AGAATTIGAL		11con. seq
AAGATACO	:GTGGGTTGC <i>A</i>	AGAATITGAU		19con. seq
AAGATACO	GTGGGTTGCA	AGAATTIGA		86CON. SEQ
AAGATACO	ATGGGTTGC	AGAATTIGAG	CGGGG	pcrsbe2con. seq
2420	2430	2440	245	
TCAGAACA	CCAGTTCATA	TCACGAAAG	GATGAA	10con. seq
TCAGAACA	ACCAGTTCATA	ATCACGAAAGI	GATGAA	llcon. seq
TOACAACA	ACC ACT T CAT	ATCACGAAAG	GATGAA	19con. seq
TOAGAACA	ACCACTTCAT	ATCACGAAAG	GATGAA	BOLUN. SEU
TCAGAACA	CCAGTTCAT	ATCACGAAAG	GATGAA	pcrsbe2con. seq
. 57.47.707				

Fig. 10 SHEET 14

		_		
	2460 24	70 *	2480	
2448	GGAGATAGGATGATTGTAT	TTGAAA <u>A</u> A	GGAAACCTAG	
2447 2449	GGAGATAGGATGATTGTAT GGAGATAGGATGATTGTAT			
2224	GGAGATAGGATGATTGTAT		GGAAACCTAG	
2219	GGAGATAGGATGATTGTAT	TTGAAARA	GGAAACCTAG	
		※		
•	25,30 25	40	2550	
2518	ATTCAGACTATCGCATAGG			
2517 2519	ATTCAGACTATCGCATAGG ATTCAGACTATCGCATAG			<u> </u>
2294	ATTCAGACTATCGCATAGG			
2289	ATTCAGACTATCGCATAGG			
	<u></u>			
	2600 26	10	2620	
2588	TTTTGGTGGCTTCGGGAGA		TAATGCCGAA	Fig. 10
2587 2589	TTTTGGTGGCTTCGGGAGA			Sheet 16
2364	TTTTGGTGGCTTCGGGAGA. TTTTGGTGGCTTCGGGAGA			İ
2359	TTTTGGTGGCTTCGGGAGA			1
				
	2670 26	80	£ 690	
2658			AGTAGAACAG	
2657 2659	CCT GTTCAATTATGGTGT, CCTCGTTCAATTATGGTGT,		AGTAGAACAG	1
2434	CCTCGTTCAATTATGGTGTA			
2429	CCTCGTTCAATTATGGTGT			
		<u> </u>	*	
	2740 27	50	2760	
2722	AAGAAGAAGAAGA			
2722 2729			TAGCAGTAGT	
2501	AAGAAGAAGAAGAAGAAGAA			
2499	NAGAAGAAGAAGAAN-			J

Fig. 10 SHEET 15

				•
2490	2500	2510	¥ 2520	0
TTTTTGTC	TTTAATTTT	CACTGGACAA	AAGGCT	10con. seq
TTTTCGTC	TTTAATTTT	CACTGGACAA	AMAGCI	11:con. seq
		CACTGGACAA		19con. seq 86 CON. SEQ
		CACTGGACAA CACTGGACAA		pcrsbe2con. seq
111111111111111111111111111111111111111	IIIAAIIII	CACIGGACAA	*	50.000
2560	2570	2580	259	
		ACTCAGATGA		10con. seq 11con. seq
ATACAACC	TTCCCTTCC	ACTCAGATGA ACTCAGATGA	TOCACT	19con. seq
		ACTCAGATGA		86CON. SEQ
		ACTCAGATGA		pcrsbe2con. seq
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
2630	<u>¥</u> 2640	2650 عد	266	0
TATTTCAC	CTTTGAAGG	ATGGTATGAT	GATCGT	10con. seq
TATTTCAC	CTOTGAAGG	ATEGTATGAT	GATCGT	11con. seq
TATTTCAC	CTTTGAAGG	ATGGTATGAT	GATCGT	19con. seq
TATTTCAC	CTTTGAAGG	ATGGTATGAT	GATCGT	86CON. SEQ
TATTTCAC	CTOTGAAGG	ATCGTATGAT	GAICGI	pcrsbe2con. seq
				
2700	27,10	2720	273	· .
CAGTGGT	TATGCACTA	GTAGACAAA		10con. seq
CAGTGGT	TATGCACTA	GTAGACAAA		11con. seq
CAGTGGTC	TATGCACIA	GTAGACAAA	AVALGAAG	19con. seq 86CON. SEQ
CAGIGGIL	TATOCACTA	GTAGACAAA	TARAG	
CAGIGGIC	, I A I GUAU I A	GTAGACAAA	MIACAAG	, pc: 350200111 304
0770	.0790	2790	280)O ·
2770	27,80			
AGAAGAA	STAGTAGTAG	AAGAAGAAT	SAALGAA	10con. seq
AGAAGAA	TACTACTAC	AAGAAT	244CGAA	11con. seq 19con. seq
AGAAGAAG	STAGTAGTAG	AAGAAGAAT SAAGAAGAAT		86CON. SEQ
AGAAGAAG	TAGTAGTAG	NNGAAGAAT		_
		Table Co		

Fig. 10 SHEET 16

Fig. 10 SHEET 17

Fig. 10 SHEET 18

WO 96/34968

SUBSTITUTE SHEET (RULE 26)

9

Nco I BstX I

AGTAATTTCTCCTCTTTAATTGATACTCTCCTAGAGTGGTAGTGGTAGTGGTACCCTAGA

エ

I

I

エ

エ

ഗ

ය

œ

EcoR I

TCATTAAAGAGGAGAAATTAACTATGAGAGGATCTCACCATCACCATCACCATGGGATC1

PCT/GB96/01075

240

TCACTGAGACATCTCCAGAAAATTCCCCAGCATCAACTGATGTAGATAGTTCAACAATGG

<u> AGTGACTCTGTAGAGGTCTTTTAAGGGGTCGTAGTTGACTACATCTATCAAGTTGTTACC</u>

WO 96/34968

65/75

Fig.12 SHEET 1

Σ

ഗ

ഗ

0

0

ഗ

ဟ

z

ဟ

180 TGGCTGAAAAGTCTTCTTACAATTCCGAATTCCGACCTTCTACAGTTGCAGCATCGGGGA TTCAGGAACACGGACCTTGGGTCTCACTATCGAGGAGTAGGAGTTGTTTGGTTAAACTCA <u> ACCGACTTTTCAGAAGAATGTTAAGGCTTAAGGCTGGAAGATGTCAACGTCGTAGCCCTT</u> <u> AAGTCCTTGTGCCTGGAACCCAGAGTGATAGCTCCTCATCCTCAACAAACCAATTTGAG</u> Ø z လ် တ တ တ œ ഗ ഗ لنا ۵ တ ဟ 0 z > G ဟ ഗ

SUBSTITUTE SHEET (RULE 26)

4

Fig. 12

SHEET 2

WO 96/34968

300

AACACGCTAGCCAGATTAAAACTGAGAACGATGACGTTGAGCCGTCAAGTGATCTTACAG

TTGTGCGATCGGTCTAATTTTGACTCTTGCTACTGCAACTCGGCAGTTCACTAGAATGTC

တ

۵

> 0

E N

_ _ ~

V

66/75

360 540 GAAGTGTTGAAGAGCTGGATTTTGCTTCATCACTACAACTACAAGAAGGTGGTAAACTGG CTTCACAACTTCTCGACCTAAAACGAAGTAGTGATGTTGATGTTCTTCCACCATTTGACC **AGGAGTCTAAAACATTAAATACTTCTGAAGAGACAATTATTGATGAATCTGATAGGATCA** TCCTCAGATTTTGTAATTTATGAAGACTTCTCTGTTAATAACTACTTAGACTATCCTAGT CTCTCTCCCCGTAGGGAGGTGGACCTGAACCAGTCTTCTAAATACTTTATCTGGGGGAAA GAGAGAGGGCATCCCTCCACCTGGACTTGGTCAGAAGATTTATGAAATAGACCCCTT1 **ACTGTTTGATAGCAGTTGTGGAACTAATGTCCATAAGTGTCATGTTCTTTGACTCCTCC** SEETIID S - C 0 L 0 ပ တ ر ق I P P Hinc II E E L D x ~ ဟ z ш

900

GTTAACTGTTCATACTCCCACCAAACCTTCGAAAAAGAGCACCAATACTTTTTACCCAA

CAATTGACAAGTATGAGGGTGGTTTGGAAGCTTTTTCTCGTGGTTATGAAAAAATGGGT

Hind III

Pvu ∥

ය

ප

 α

ഗ

ட்

Ø

ය

ග

ليا

¥

PCT/GB96/01075 WO 96/34968

67/75

Fig 12 SHEET 3

I

٩

က

G

z

ය

780

| TGGTGTCTGGGAGATTTTTCTGCCAAATAATGTGGATGGTTCTCCTGCAATTCCTCATG

Σ

--0

V V

0

3

Z

z

AACCACAGACCCTCTAAAAAGACGGTTTATTACACCTACCAAGAGGACGTTAAGGAGTAC

099 TCACTCGTAGTGCTACAGGTATCACTTACCGTGAGTGGGCTCCTGGTGCCCAGTCAGCTG AGTGAGCATCACGATGTCCATAGTGAATGGCACTCACCCGAGGACCACGGGTCAGTCGAC O ¥ ග ٩ ⋖ 3 2 ය 4

WO 96/34968

68/75

Fig. 12 SHEET 4

1020 096 840 CACCCGAAGAGGAGAGATATCTTCCAACACCCACGGCCAAAGAAACCAAAGTCGCTGA **CCAGGTCTCACTTCTATGCATACCTGTGAGGTAGTCCACAATTCCTAAGGTAAGGACGAA GGATCAACTACTCTTCACAGCTTCCTGATGAAATTCCATATAATGGAATATATTATGATC** GTGGGCTTCTCCTCTCCATATAGAAGGTTGTGGGTGCCGGTTTCTTTGGTTTCAGCGACT GAATATATGAATCTCATATTGGAATGAGTAGTCCGGAGCCTAAAATTAACTCATACGTGA **GG**TCCAGAGAGAAAGATACGTATGGACACTCCATCAGGTGTTAAGGATTCCATTCCTGCTT CTTATATACTTAGAGTATAACCTTACTCATCAGGCCTCGGATTTTAATTGAGTATGCACT Ø ഗ တ z ა უ ~ _ ج ئ **≻** a. œ ш م S 0 E ۵ H 0 တ _ 0 ഗ ட S 0 L P Σ . В -SnaB I χ Σ ය I ഗ ഗ ليا > z W ليا တ ය **SUBSTITUTE SHEET (RULE 26)**

WO 96/34968

Hind III

Xmn

69/75

Fig. 12 SHEET 5 1260 1200 140 **AGCTAGGAATTGTTGTTCTCATGGACATTGTTCACAGCCATGCATCAAATAATACTTTAG** TCGATCCTTAACAACAAGAGTACCTGTAACAAGTGTCGGTACGTAGTTTATTATGAAATC **ACCGATAAGTTCTCGTAAGAATAATACGATCAAAACCAATAGTACAGTGTTTAAAAAAAC ATTTTAGAGATGAAGTTCTTCCTCGCATAAAAAAGCTTGGGTACAATGCGGTGCAAATTA IGGCTATTCAAGAGCATTCTTATTATGCTAGTTTTGGTTATCATGTCACAAATTTTTTG** TAAAATCTCTACTTCAAGAAGGAGCGTATTTTTTCGAACCCATGTTACGCCACGTTTAAT O > V **○** Z NS: z တ <u>≻</u> ئ ⋖ S C I တ ය エ .ဟ ~ م တ I A .I 0 ය

WO 96/34968

70/75

FIG. 12 SHEET 6 380 GTGTGACATCAATGATGTATACTCACCACGGATTATCGGTGGGATTCACTGGGAACTACG CACACTGTAGTTACTACATATGAGTGGTGCCTAATAGCCACCCTAAGTGACCCTTGATGC **ATCATTGGATGTGGGATTCCCGCCTTTTTAACTATGGAAACTGGGAGGTACTTAGGTATC** TAGTAACCTACACCCTAAGGGCGGAAAATTGATACCTTTGACCCTCCATGAATCCATAG TTCTCTCAAATGCGAGATGGTGGTTGGATGAGTTCAAATTTGATGGATTTAGATTTGATG **AAGAGAGITTACGCTCTACCACCTACTCAAGTTTAAACTACCTAAATCTAACTAC** TACCTGACTTGTACAAACTGCCGTGGCTATCAACAATGAAAGTGAGACCTCGAGCACCAA ATGGACTGAACATGTTTGACGGCACCGATAGTTGTTÄCTTTCACTCTGGAGCTCGTGGT G Sacl ය ш တ G I 3 z ග တ ں ட ш G ဟ Z I ェ ය 3 ~ 0 တ 3 œ Σ 3 Ø Σ z S တ ෆ ェ

560

AGGAATACTTTGGACTCGCAACTGATGTGGATGCTGTTGTGTATCTGATGCTGGTCAACG

TCCTTATGAAACCTGAGCGTTGACTACACCTACGACAACACATAGACTACGÄCCAGTTGC

0 V

>

0 ·

V

G

ـــا

Hinc II

PCT/GB96/01075

WO 96/34968

71/75

1680

1620

Fig 12 sheet 7 1800 1740 ATATTGTTCATACACTGACAAATAGAAGATGGTCGGAAAAGTGTGTTTCATACGCTGAAA CAATTGCTGATAAATGGATTGAGTTGCTCAAGAACGGGATGAGGATTGGAGAGTGGGTG GITAACGACTATTTACCTAACTCAACGAGTTCTTTGCCCTACTCCTAACCTCTCACCCAC TATAACAAGTATGTGACTGTTTATCTTCTACCAGCCTTTTCACACAAAGTATGCGACTTT 0 ш ں ۵ ය œ ليا E. L. K. K. တ ය 3 ග ~ 0 8 o z **≥** <u>-</u> ပ

SUBSTITUTE SHEET (RULE 26)

CGACATTTTGTATTCCCGTTCAAGATGGGGGTGTTGGCTTTGACTATCGGCTGCATATGG

T A GAATA A GTA C C C GAAA A G G G T C T A C G T T A A T G G T A A C C A C T T C T A C A T C G C C T T A C G

ഗ

ى

AITIA

Ο.

۵.

L L

ග

I

ATCTTATTCATGGGCTTTTCCCAGATGCAATTACCATTGGTGAAGATGTTAGCGGAATGC

GCTGTAAAACATAAGGGCAAGTTCTACCCCCACAACCGAAACTGATAGCCGACGTATACC

WO 96/34968

72/75

Fig 12 sheet 8 2040 **ACCCTTTACTTAAGCCGGTGGGACTCACCTAACTAAAGGGATCCCGACTTGTTGTGGAGA** TGGGAAATGAATTCGGCCACCCTGAGTGGATTGATTTCCCTAGGGCTGAACAACACCTCT TGCACAAGATGATTAGGCTTGTAACTATGGGATTAGGAGGAGAAGGGTACCTAAATTTCA ACGTGTTCTACTAATCCGAACATTGATACCCTAATCCTCCTCTTCCCATGGATTTAAAGT R ග م ග ග 0 ය Σ لعا œ ල EcoR I Σ z ග I

1860

GTCATGATCAAGCTCTAGTCGGTGATAAAACTATAGCATTCTGGCTGATGGACAAGGATA

CAGTACTAGTTCGAGATCAGCCACTATTTTGATATCGTAAGACCGACTACCTGTTCCTAT

V

. O

ය

0

ェ

ဟ

ACATACTAAAATACCGAGACCTATCTGGCGGTTGTAGTAATTATCTAGCACCCTATCGTA

ග

œ

ഗ

<u>Г</u> . Ч

م

œ

۵

A

Σ

ــا

SUBSTITUTE SHEET (RULE 26)

TGTATGATTTTATGGCTCTGGATAGACCGCCAACATCATTAATAGATCGTGGGATAGCAT

2100

CTGATGACTCAGTAATTCCCGGAAACCAATTCAGTTATGATAAATGCAGACGGAGATTTG

GACTACTGAGTCATTAAGGGCCTTT**GG**TTAAGTCAATACTATTTAC**G**TCTGCCTCTAAAC

œ

ပ

¥

တ

O

Z

ب

م

ဟ

တ

Ssp

PCT/GB96/01075

73/75

Fig. 12 SHEET 9 2340 2280 2160 CONTROL CONTRO TGACCTGTTTTCGATAAGTCTGATAGCGTATCCGACGGACTTCGGACCTTTTATGTTCC TACTTCCTCTATCCTACTAACATAAACTTTTTCCTTTGGATCAAAAACAGAAATTAAAAG <u> ACTGGACAAAAAGCTATTCAGACTATCGCATAGGCTGCCTGAAGCCTGGAAAATACAAGG</u> <u> ACCTGGGAGATGCAGAATATTTAAGATACCGTGGGTTGCAAGAATTTGACCGGGCTATGC</u> ය ۵ <u>ح</u> ය W ~ တ Σ ഗ ~ ග

PCT/GB96/01075

74/75

2520 2400 2460 2578 TTGCCTTGGACTCAGATGATCCACTTTTTGGTGGCTTCGGGAGAATTGATCATAATGCCG AACGGAACCTGAGTCTACTAGGTGAAAAACCACCGAAGCCCTCTTAACTAGTATTACGGC TICTICITCATCGICATCATCTICATCATCATCTTCTTCTTACTIGCTTGAACAC œ ර ш ය ග ш ليا W ٩ 0 ഗ Ssp

7

PCT/GB96/01075

SUBSTITUTE SHEET (RULE 26)