The Product and Quotient Rule

Agenda

- 1. The Product Rule Definition
- 2. The Product Rule Examples
- 3. The Quotient Rule Definition
- 4. The Quotient Rule Examples

Reason for the Product Rule

The Product Rule must be utilized when the derivative of the product of two functions is to be taken.

The Product Rule

If f and g are both differentiable, then:

$$\frac{d}{dx}(f(x) * g(x)) = \frac{d}{dx}(f(x)) * g(x) + f(x) * \frac{d}{dx}(g(x))$$

which can also be expressed as:

$$(f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)$$

The Product Rule in Words

The Product Rule says that the derivative of a product of two functions is the first function times the derivative of the second function plus the second function times the derivative of the first function.

Examples of the Product Rule

Example 1:

If
$$f(x) = xe^x$$
, find $f'(x)$

By the Product Rule we have:

$$f'(x) = \frac{d}{dx} (xe^x) = x \frac{d}{dx} (e^x) + e^x \frac{d}{dx} (x)$$
$$= xe^x + e^x \cdot 1 = (x+1)e^x$$

Examples of the Product Rule Cont.

Example 2:

Differentiate the function $f(t) = \sqrt{t} (a + bt)$

$$f'(t) = \sqrt{t} \frac{d}{dt} (a + bt) + (a + bt) \frac{d}{dt} (\sqrt{t})$$

$$= \sqrt{t} \cdot b + (a + bt) \cdot \frac{1}{2} t^{-1/2}$$

$$= b\sqrt{t} + \frac{a + bt}{2\sqrt{t}} = \frac{a + 3bt}{2\sqrt{t}}$$
THE ARC.

Examples of the Product Rule Cont.

Example 3:

$$f'(x) = \frac{d}{dx}[\sin(x)] * \cos(x) + [\sin(x)] * \frac{d}{dx}[\cos(x)]$$

$$= [\cos(x)][\cos(x)] + [\sin(x)][-\sin(x)]$$

$$= \cos^2(x) - \sin^2(x)$$

Reason for the Quotient Rule

The Product Rule must be utilized when the derivative of the quotient of two functions is to be taken.

The Quotient Rule

If f and g are both differentiable, then:

$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{\frac{d}{dx} (f(x)) * g(x) + f(x) * \frac{d}{dx} (g(x))}{[g(x)]^2}$$
be expressed as: $[g(x)]^2$

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) * g(x) + f(x) * g'(x)}{[g(x)]^2}$$

The Quotient Rule in Words

The Quotient Rule says that the derivative of a quotient is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the square of the denominator.

Examples of the Quotient

Rule Example 1:

Let
$$y = \frac{x^2 + x - 2}{x^3 + 6}$$

$$y' = \frac{(x^3 + 6)\frac{d}{dx}(x^2 + x - 2) - (x^2 + x - 2)\frac{d}{dx}(x^3 + 6)}{(x^3 + 6)^2}$$

$$= \frac{(x^3 + 6)(2x + 1) - (x^2 + x - 2)(3x^2)}{(x^3 + 6)^2}$$

$$= \frac{(2x^4 + x^3 + 12x + 6) - (3x^4 + 3x^3 - 6x^2)}{(x^3 + 6)^2}$$

$$=\frac{-x^4-2x^3+6x^2+12x+6}{(x^3+6)^2}$$

Examples of the Quotient Rule Cont.

Example 2:

If
Then with e^x/u of the u tient Rule the derivative is:

$$\frac{dy}{dx} = \frac{(1+x^2)\frac{d}{dx}(e^x) - e^x \frac{d}{dx}(1+x^2)}{(1+x^2)^2}$$

$$= \frac{(1+x^2)e^x - e^x(2x)}{(1+x^2)^2} = \frac{e^x(1-x)^2}{(1-x^2)^2}$$

Examples of the Quotient Rule Cont.

fre Quotient Rule the derivative is:

$$f(x) = \tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$f'(x) = \frac{\frac{d}{dx}[\sin(x)] * \cos(x) + [\sin(x)] * \frac{d}{dx}[\cos(x)]}{[\cos(x)]^2}$$

$$= \frac{[\cos(x)][\cos(x)] + [\sin(x)][-\sin(x)]}{\cos^2(x)}$$

$$= \frac{\cos^2(x) - \sin^2(x)}{\cos^2(x)} = \frac{\cos^2(x)}{\cos^2(x)} - \frac{\sin^2(x)}{\cos^2(x)} = 1 - \tan^{\frac{1}{2}}(x)$$

References

• Stewart, James. *Calculus*. Belmont, CA: Thomson Brooks/Cole, 2008.

