COMP 9102 Data Management and Information Retrieval Assignment 3

Top-k and Skyline Queries

Tianle WANG
Univ No. 3030096596
The University of Hong Kong

Date: November 21, 2022

Preparation

0.1 Environment Requirement

```
MacOS Monterey == 13.0 (OS that can run python3 command)

python == 3.8

pandas == 1.5.1
```

0.2 Compile

```
python3 baseline.py --category_ids [2,5] --k 10
python3 topk_query.py --category_ids [2,5] --k 10
python3 skyline_query.py --category_ids [2,5]
```

1 Top-k queries

1.1 baseline

	Player	Tm	AST	PTS	SCORE
559	Russell Westbrook	OKC	840	2558	1.927152
211	James Harden	HOU	906	2356	1.921032
551	John Wall	WAS	831	1805	1.622848
270	LeBron James	CLE	646	1954	1.476902
121	Stephen Curry	GSW	523	1999	1.358733
517	Isaiah Thomas	BOS	449	2199	1.355241

```
326
            Damian Lillard POR 439
                                      2024
                                            1.275791
550
              Kemba Walker
                                 435
                            CHO
                                      1830
                                            1.195535
513
               Jeff Teague IND
                                 639
                                            1.195525
                                      1254
20
     Giannis Antetokounmpo MIL
                                      1832 1.195213
                                 434
```

1.2 NRA algorithm

```
[559, 211, 551, 270, 121, 517, 326, 550, 513, 20]

[1.9271523178807946, 1.9210320562939796, 1.6228479410135195, 1.476902312271418,

1.358732591514825, 1.3552409701978125, 1.2757906200864015, 1.1955351086579435,

1.1955247528853772, 1.1952132167273342]
```

2 Skyline queries

2.1 BNL algorithm

```
[211, 559]
```

3 Conclusion

- 1. The running times of several algorithms are fast.
- NRA iteratively retrieves objects and their atomic scores from the ranked inputs in a round-robin fashion.
- 3. NRA accesses objects sequentially from all inputs and updates the upper bounds for all objects seen so far unconditionally.
- 4. Cost: O(n) per access (the expected distinct number of objects accessed so far is O(n)).
- 5. No input list is pruned until the algorithm terminates.
- 6. BNL can do multiple passes over the data (for high dimensional data the domination probability is low).