- ♦ 전체 : 선택형 14문항(70점), 서답형 5문항(30점)
- ♦ 배점 : 문항 옆에 배점 표시
- ♦ 선택형은 답안 카드에 컴퓨터용 사인펜으로 정확히 마킹하고, 서 답형은 반드시 검정볼펜으로 기입하시오.

선택형

- 1. 함수 $f(x) = \cos 2x + 1$ 에 대하여 곡선 y = f(x) 위의 점 $\left(\frac{\pi}{4}, f\left(\frac{\pi}{4}\right)\right)$ 에서의 접선이 점 $\left(\frac{1}{2}, \frac{a}{2}\right)$ 를 지날 때, a의 값은? [4]
- ① $-\pi$ ② $-\frac{\pi}{2}$ ③ 0 ④ $\frac{\pi}{2}$ ⑤ π

- **2.** 곡선 $y = \left(\ln \frac{1}{ax}\right)^2$ 의 변곡점이 $y = \frac{1}{2}x$ 위에 있을 때, 양수 a의 값은? [4점]

- ① $\frac{e}{3}$ ② $\frac{e}{2}$ ③ e ④ $\frac{2}{e}$ ⑤ $\frac{3}{e}$

- **3.** x에 대한 방정식 $2x + ke^{-x} = 0$ 의 실근이 존재하도록 하는 실수 k의 최댓값은? (단, $\lim_{x \to -\infty} xe^x = 0$) [4점]
- ① $-\frac{2}{e}$ ② $-\frac{1}{e}$ ③ $\frac{1}{e}$ ④ $\frac{2}{e}$ ⑤ $\frac{4}{e}$

4. $\int_{1}^{e^2} \frac{(1+\ln x)^3}{4x} dx$ 의 값은? [4점] (T) 5 (2) 10 (3) 15(4)20(5)25

- 5. 양의 실수 전체의 집합에서 미분가능한 함수 f(x)가 모든 | 7. f(-1) = 0인 일차함수 f(x)에 대하여 양의 실수 x에 대하여 $xf(x) = x + \int_1^x f(t)dt$ 를 만족시킨다. $\left| \int_0^1 e^x \{f(x) + f'(x)\} dx = 4e - 2$ 일 때, f(4)의 값은? [5점] $f(e^4)$ 의 값은? [5점]
 - (1)5
- (2)6
- (3) 7
- (4) 8
- (5)9
- (1) 22)4 3 6 **(5)** 10

6. 양의 실수 t에 대하여 곡선 $y = t(\ln x)^2$ 이 곡선 $y = kx^2$ 과 서로 다른 두 점에서만 만나도록 하는 실수 k의 값을 f(t)라 하자. $\frac{f'(2\alpha)}{f(\alpha)} = \frac{1}{3}$ 을 만족시키는 양수 a의 값은?

(단, $\lim_{x\to\infty} \frac{\ln x}{x} = 0$) [5점]

- ①1
- (2)2
- ③3
- 4 4
- (5) 56
- 8. 함수 $f(x) = \frac{a}{x+2}$ 에 대하여 $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f'\left(1 + \frac{3k}{n}\right) = \frac{1}{6}$ 일 때, 상수 *a*의 값은? [5점]
- ① -5 ② -4 ③ -3

- (5) -1

9. 닫힌구간 $[0,2\pi]$ 에서 정의된 함수 $f(x) = \frac{\cos x}{\sin x + 2}$ 에 대하 11. 좌표평면 위를 움직이는 점 P의 시각 $t \left(0 < t < \frac{\pi}{2} \right)$ 여 <보기>에서 옳은 것을 모두 고른 것은? [5점]

_____ <보기> ____

- (가) 함수 f(x)의 극댓값과 극솟값이 모두 존재한다.
- (나) 함수 f(x)의 변곡점은 2개이다.
- (다) 닫힌구간 $\left[0, \frac{\pi}{2}\right]$ 에서 f''(x) > 0이다.
- ① 가
- ② 가,나
- ③ 가,다

- ④ 나,다
- ⑤ 가,나,다

- **10.** 매개변수 t로 나타낸 곡선 $x = 2\ln(t^2 1), y = 2t$ 에 대하여 2 ≤ *t* ≤ 7에서 이 곡선의 길이는? [5점]
- ① $8 + 2 \ln \frac{3}{2}$ ② $8 + 2 \ln 2$
- $310+2\ln\frac{3}{2}$
- (4) 10 + 4 ln $\frac{3}{2}$ (5) 8 + 4 ln $\frac{3}{2}$

- 에서의 위치 (x, y)가 $x = 3 \sin x$, $y = \ln(\cos t)$ 이다. $0 < t < \frac{\pi}{2}$ 에서 점 P의 속력이 최소인 시각이 $t = \alpha$ 일 때,

- (1) 3 (2) $2\sqrt{3}$ (3) $\sqrt{15}$ (4) $3\sqrt{2}$

시각 $t = \alpha$ 에서의 점 P의 가속도의 크기는? [6점]

- $(5) 4\sqrt{2}$

- **12.** 수열 $\{a_n\}$ 은 모든 자연수 n에 대하여
- $\frac{a_n}{n+1} = \int_0^p (\tan^n x + \tan^{n+2} x) dx$ 를 만족시킨다. $\sum_{n=1}^\infty a_n = \frac{1}{30}$ 일 때, $\tan p$ 의 값은? (단, $p = -\frac{\pi}{4} 인 상수) [6점]$
- $\bigcirc -\frac{1}{6}$ $\bigcirc -\frac{1}{5}$ $\bigcirc \frac{1}{5}$ $\bigcirc \frac{1}{6}$ $\bigcirc \frac{1}{2}$

13. 함수 $f(x) = \cos(2\pi x)$ 에 대하여 함수 g(x)를

$$g(x) = \pi^2 \int_0^1 x^2 (1 - t) f(xt) dt$$

라 하고, 함수 h(x)를

$$h(x) = \begin{cases} g(x) & (x < a) \\ g(x - a) + g(a) & (x \ge a) \end{cases}$$

라 하자. 함수 h(x)가 실수 전체의 집합에서 미분가능하도록 하는 모든 양수 a의 값을 작은 수부터 크기순으로 나열한 수열을 $\{a_n\}$ 이라 할 때, $\sum\limits_{k=1}^m a_k = 14$ 을 만족시키는 자연수 m의 값은? [6점]

- ①7
- **(2)** 8
- ③ 9
- **4**) 10
- **(5)** 11

14. 양의 실수 전체의 집합에서 정의된 함수 $f(x) = (ax+b)e^x$ 의 역함수가 존재하고, f(x)의 역함수를 g(x)라 할 때, 두 함수 f(x), g(x)가 다음 조건을 만족시킨다.

____<보기> -

$$(7)$$
 $\frac{f'(1)}{f(1)} = \frac{4}{3}$

$$(1) \int_{1}^{13} g'(f(x)))e^{x} dx = \ln \sqrt{2}$$

두 상수 a,b에 대하여 ab의 값은? (단, $a \neq 0$) [6점]

- ① 26
- (2)28
- (3) 30
- (4) 32
- (5)34

서답형

단답형 1. 곡선 $y = \cos x$ 위를 움직이는 점 $P(t,\cos t)$ 를 중심으로 하고 직선 $y = x + \frac{\pi}{2}$ 에 접하는 원의 반지름의 길이를 f(t)라 하자. $f'\left(\frac{\pi}{2}\right)$ 의 값을 구하시오. (단, $-\frac{\pi}{2} < t < \frac{\pi}{2}$) [5점]

단답형 2. 그림과 같이 곡선 $y = \frac{\ln x}{\sqrt{x}}$ 와 x축 및 두 직선 x = e, $x = e^2$ 으로 둘러싸인 부분을 밑면으로 하고, x축에 수직인 평면으로 자른 단면이 모두 정삼각형인 입체도형의 부피가 $\frac{q}{p}\sqrt{3}$ 이다. pq의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.) [5점]

서술형 1. 부정적분 $\int \sec x dx$ 을 구하는 풀이과정을 쓰시오. [8점]

서술형 2. 함수 $y = \frac{\ln}{x}$ 를 이용하여 e^{π} 와 π^e 의 크기를 비교하는 풀이과정을 쓰시오. [6점]

서술형 3. 자연수 n에 대하여 함수 $f(x) = \ln(x^2 + x + n) + kx$ 의 극값이 존재하지 않도록 하는 양수 k의 최솟값을 g(n)이라 하자. $\frac{1}{g(7)}$ 의 값을 구하는 풀이과정을 쓰시오. [6점]