STAT 346

Theoretical Statistics II Spring Semester 2018

Exam 2

T T	
Nama	
Trailio.	_

- You have 75 min to complete this exam
- Justify your answers
- Evaluate expressions as much as you can

Note: There is a table on the last page that lists pdf/pmf, mean, variance and mgf for a few distributions.

Some (possibly) useful results and definitions

- $\Gamma(n) = \int_0^\infty e^{-x} x^{n-1} dx$, n > 0. Also $\Gamma(n) = (n-1)\Gamma(n-1)$, $\Gamma(0.5) = \sqrt{\pi}$ and $\Gamma(n) = (n-1)!$ if n is an integer
- A pmf/pdf $f(x|\theta)$ belongs to an exponential family if it can be written as

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left(\sum_{i=1}^{k} w_i(\boldsymbol{\theta})t_i(x)\right)$$

- If $X \sim \text{Beta}(\alpha, 1)$ then $Y = -\ln(X) \sim \text{Exponential}(1/\alpha)$
- If X_1, X_2, \dots, X_n are iid Exponential(α) then $\sum_{i=1}^n X_i \sim \text{Gamma}(n, \alpha)$
- If $X \sim \operatorname{Gamma}(\alpha, \beta)$ then $Y = 1/X \sim \operatorname{InvGamma}(\alpha, \beta)$ see pdf on last page

For all questions on this exam you will work with a special case of the Beta distribution:

Let
$$X_1, X_2, \ldots, X_n$$
 be a random sample from Beta $(\theta, 1)$.

Note that in addition to the table in the back with information for several different distributions, the front page also contains many results that may be helpful on this exam.

- 1. (5 points) Use the factorization theorem to show that
 - (a) $T_1 = \prod_{i=1}^n X_i$ is a sufficient statistic for θ .

(b) $T_2 = \sum_{i=1}^n \ln(X_i)$ is a sufficient statistic for θ .

2.	(8 points)	Find	the method	of mome	nts (MOM	I) estimate	or of θ .	

3. (10 points) Show that the maximum likelihood estimator (MLE) of θ is

$$\hat{\theta}^{MLE} = -\frac{n}{\sum_{i=1}^{n} \ln(X_i)}$$

4. (5 points) Show that $W = \frac{n-1}{n} \hat{\theta}^{MLE}$ is an unbiased estimator of θ . Hint: To avoid some lengthy derivations, check out the front and back pages of this exam.

5.	(8 points)	Calculate the Cramer-Rao lower bound for W .	

6.	(4 points) Calculate the variance of W . Is it equal to the Cramer-Rao lower bound?
	Hint: To avoid some lengthy derivations, check out the front and back pages of this exam.

7. (5 points) Find a complete sufficient statistic for θ . (Hint: check whether $Beta(\theta, 1)$ is an exponential family)

8. (5 points) Is W the best unbiased estimator of θ ? Use results from earlier parts to justify your answer.

Problem	1	2	3	4	5	6	7/8	Total
Missed								
Score								
out of	5	8	10	5	8	4	10	50

	Name	pdf or pmf	Parameters	Mean	Variance	Mgf
	Exponential (β)	$f(x) = \frac{1}{\beta}e^{-x/\beta}, \ x \ge 0$	$\beta > 0$	$\mathrm{E}(X)=eta$	$\operatorname{Var}(X) = \beta^2$	$M_X(t) = \frac{1}{1-\beta t}, \ t < \frac{1}{eta}$
	$\operatorname{Gamma}(\alpha,\beta)$	$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta}, \ x \ge 0$	$\alpha, \beta > 0$	$\mathrm{E}(X) = \alpha \beta$	$\operatorname{Var}(X) = \alpha \beta^2$	$M_X(t) = \left(\frac{1}{1-\beta t}\right)^{\alpha}, \ t < \frac{1}{\beta}$
	$\operatorname{InvGamma}(\alpha,\beta)$	$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{-\alpha - 1} e^{-1/x\beta}, \ x \ge 0$	$\alpha, \beta > 0$	$\mathrm{E}(X) = \frac{1}{\beta(\alpha - 1)}$	$\operatorname{Var}(X) = \frac{1}{\beta^2(\alpha - 1)^2(\alpha - 2)}$	-2)
				if $\alpha > 1$	if $\alpha > 2$	$M_X(t)$ does not exist
9	$\mathrm{N}(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}, \ x \in \mathbb{R}$	$\mu \in \mathbb{R}, \sigma > 0$	$\mathrm{E}(X) = \mu$	$\operatorname{Var}(X) = \sigma^2$	$M_X(t) = e^{\mu t + \sigma^2 t^2/2}$
	$\operatorname{Uniform}(a,b)$	$f(x) = \frac{1}{b-a}, \ a \le x \le b$	$a,b\in\mathbb{R},\;a< b$	$\mathrm{E}(X) = \frac{b+a}{2}$	$\operatorname{Var}(X) = \frac{(b-a)^2}{12}$	$M_X(t) = \frac{e^{bt} - e^{at}}{(b-a)t}$
	$\mathrm{Beta}(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \ 0 \le x \le 1$	$\alpha, \beta > 0$	$\mathrm{E}(X) = \frac{\alpha}{\alpha + \beta}$	$\operatorname{Var}(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	<u>+1)</u>
					$M_X(t) = 1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^k \frac{\alpha + r}{\alpha + \beta + r} \right)$	$\left(\prod_{r=0}^{k} \frac{\alpha + r}{\alpha + \beta + r}\right) \frac{t^k}{k!}$
	$\operatorname{Binomial}(n,p)$	$f(x) = \binom{n}{x} p^x (1-p)^{n-x}, \ x = 0, 1, \dots, n$	$n \in \mathbb{N}, \ 0 \le p \le 1$	E(X) = np	Var(X) = np(1-p)	$Var(X) = np(1-p)$ $M_X(t) = (pe^t + (1-p))^n$
	$\mathrm{Poisson}(\lambda)$	$f(x) = \frac{e^{-\lambda \lambda x}}{x!}, \ x = 0, 1, 2, \dots$	$\lambda \geq 0$	$\mathrm{E}(X) = \lambda$	$\mathrm{Var}(X) = \lambda$	$M_X(t) = e^{\lambda(e^t - 1)}$