1. (3 val) Caso exista, calcule o seguinte limite

$$\lim \left[\frac{1}{n} \left(\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots + \frac{n}{n+1} \right) \right]$$

$$\lim \left[\frac{1}{n} \left(\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots + \frac{n}{n+1} \right) \right] = \lim \frac{\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots + \frac{n}{n+1}}{n} = \lim \frac{n}{n+1} \dots$$

de acordo com um Teorema das Teóricas

$$\dots = \lim \frac{1}{1 + 1/n} = 1$$

2. (3 val) Calcule a soma da série

$$\sum_{n=1}^{+\infty} \frac{1}{(2n-3)(2n-1)}$$

$$\frac{1}{(2n-3)(2n-1)} = \frac{A}{2n-3} + \frac{B}{2n-1} = \frac{A(2n-1) + B(2n-3)}{(2n-3)(2n-1)} = \frac{(2A+2B)n - (A+3B)}{(2n-3)(2n-1)}$$

donde

$$2A + 2B = 0$$
 e $-(A + 3B) = 1$ \Leftrightarrow $A = 1/2$ e $B = -1/2$

Então

$$\sum_{n=1}^{+\infty} \frac{1}{(2n-3)(2n-1)} = \sum_{n=1}^{+\infty} \left(\frac{1/2}{2n-3} + \frac{-1/2}{2n-1} \right) =$$

$$= \frac{1}{2} \sum_{n=1}^{+\infty} \left(\frac{1}{2n-3} - \frac{1}{2n-1} \right) = \frac{1}{2} \lim_{N \to +\infty} \sum_{n=1}^{N} \left(\frac{1}{2n-3} - \frac{1}{2n-1} \right) =$$

$$= \frac{1}{2} \lim_{N \to +\infty} \left(\frac{1}{2 \cdot 1 - 3} - \frac{1}{2N-1} \right) = \frac{1}{2} \cdot \frac{1}{-1} = -\frac{1}{2}$$

3. (3 val) Verifique se a seguinte série é divergente, absolutamente convergente, ou simplesmente convergente.

$$\sum_{n=1}^{+\infty} (-1)^n \left(\sqrt{n^2 + 1} - \sqrt{n} \right)$$

$$\sqrt{n^2 + 1} - \sqrt{n} = \frac{\left(\sqrt{n^2 + 1} - \sqrt{n}\right)\left(\sqrt{n^2 + 1} + \sqrt{n}\right)}{\sqrt{n^2 + 1} + \sqrt{n}} = \frac{n^2 + 1 - n}{\sqrt{n^2 + 1} + \sqrt{n}} = \frac{1 - \frac{1}{n} + \frac{1}{n^2}}{\sqrt{\frac{1}{n^2} + \frac{1}{n^4}} + \sqrt{\frac{1}{n^3}}} \longrightarrow +\infty$$

Portanto,

$$(-1)^n \left(\sqrt{n^2+1} - \sqrt{n}\right) \longrightarrow \infty$$

e portanto a série em questão diverge pois o termo geral não tende para zero.

4. (3 val) Determine a natureza da série de termo geral:

$$\frac{(1000)^n}{n!}$$

$$\frac{\frac{(1000)^{n+1}}{(n+1)!}}{\frac{(1000)^n}{n!}} = \frac{(1000)^{n+1}}{(1000)^n} \frac{n!}{(n+1)!} = \frac{1000}{n+1} \longrightarrow 0 < 1$$

Pelo critério de d'Alembert, a série com o termo geral indicado é convergente.

5. (1,5 val) Determine a natureza da série de termo geral:

$$\frac{e^n n!}{n^n}$$

$$\frac{e^1 \cdot 1!}{1^1} = e > 1$$

Suponhamos que para certo natural n, é verdade que

$$\frac{e^n n!}{n^n} > 1$$

Então:

$$\frac{e^{n+1}(n+1)!}{(n+1)^{(n+1)}} = \frac{e \cdot e^n \cdot n! \cdot (n+1)}{n^n \cdot \frac{(n+1)^{(n+1)}}{n^n}} = \frac{e(n+1)}{(n+1)\left(\frac{n+1}{n}\right)^n} \frac{e^n \cdot n!}{n^n} > \frac{e}{\left(\frac{n+1}{n}\right)^n} \cdot 1 > 1$$

pois a sucessão $u_n = \left(\frac{n+1}{n}\right)^n$ "cresce para e".

Provámos, por indução, que

$$\frac{e^n n!}{n^n} > 1 \qquad \text{para todo o } n \in \mathbb{N}$$

Em particular, este termo geral não tende para zero e a série com este termo geral diverge.

6. (3 val) Calcule a função derivada de

$$f(x) = (\sin x)^x$$
 para todo o $x \in]0, \pi[$

$$f'(x) = \left(e^{\ln\left((\sin x)^x\right)}\right)' = \left(e^{x\ln(\sin x)}\right)' = e^{x\ln(\sin x)} \cdot \left(x\ln(\sin x)\right)' =$$

$$= e^{x\ln(\sin x)} \cdot \left(1 \cdot \ln(\sin x) + x \cdot \frac{1}{\sin x}\cos x\right) = (\sin x)^x \left(\ln(\sin x) + x \cdot \frac{\cos x}{\sin x}\right)$$

7. (3 val) Considere a função

$$f(x) = 4x^3 + 3x^2 - 6x - 6$$

Mostre que a recta y=12x-17 é tangente ao gráfico de f e determine o ponto de tangência.

$$f'(x) = (4x^3 + 3x^2 - 6x - 6)' = 12x^2 + 6x - 6$$

donde

$$12 = 12x^2 + 6x - 6 = 6(2x^2 + x - 1)$$
 \Leftrightarrow $0 = 2x^2 + x - 3$

e portanto

$$x = \frac{-1 \pm \sqrt{1 - 4 \cdot 2 \cdot (-3)}}{2 \cdot 2} = \frac{-1 \pm 5}{4} = 1 \text{ ou } -\frac{3}{2}$$

$$f(1) = 4 \cdot 1^3 + 3 \cdot 1^2 - 6 \cdot 1 - 6 = -5 = 12 \cdot 1 - 17$$

$$f\left(-\frac{3}{2}\right) = 4\left(-\frac{3}{2}\right)^3 + 3\left(-\frac{3}{2}\right)^2 - 6\left(-\frac{3}{2}\right) - 6 = -2\frac{27}{4} + \frac{27}{4} + 9 - 6 =$$
$$= -\frac{27}{4} + \frac{12}{4} = -\frac{15}{4} \neq -35 = 12\left(-\frac{3}{2}\right) - 17$$

O ponto de tangência ocorre em (1, -5).

8. (0,5 val) Mostre que se $f:[a,b] \to \mathbf{R}$ é contínua e todos os valores de f estão em [a,b], então existe $x \in [a,b]$ tal que f(x) = x.

Se f(a) = a ou f(b) = b o problema fica resolvido com x = a ou x = b. Suponhamos então que nenhuma destas situações ocorre.

Como $f([a, b]) \subset [a, b]$, então f(a) > a e f(b) < b.

Considere-se então a função contínua (porquê?)

$$g(x) = f(x) - x \qquad \text{para todo o } x \in [a, b]$$

Tem-se

$$g(a) = f(a) - a > 0$$
 e $g(b) = f(b) - b < 0$

Então, por um Corolário do Teorema de Bolzano, existe $c \in]a, b[$, tal que

$$0 = g(c) \left(= f(c) - c \right)$$

donde

$$f(c) = c$$

terminando a demonstração.