## **Definition:** Group

A **group** is an ordered pair  $(G,\star)$ , where G is a set and  $\star$  is a binary operation on G satisfying

- 1. The operation is associative:  $(a \star b) \star c = a \star (b \star c) \forall a, b, c \in G$
- 2. G has an identity:  $\exists e \in G$  such that  $e \star a = a \star e = a \forall a \in G$
- 3. Every element  $a \in G$  is invertible:  $\forall a \in G \exists a^{-1} \in G$  such that  $a \star a^{-1} = a^{-1} \star a = e$

## Theorem: Orbit-Stabilizer Theorem

Let G be a group acting on a set X, with  $x \in X$ . Then the map

$$G/G_x \longrightarrow G \cdot x$$
$$aG_x \mapsto a \cdot x$$

is well-defined and bijective, and therefore  $|G\cdot x|=[G:G_x].$ 

**Proof:** Let  $a, b \in G$ . Then

$$aG_x = bG_x \iff b^{-1}a \in G_x$$
$$\iff b^{-1}a \cdot x = x$$
$$\iff a \cdot x = b \cdot x.$$

Observe the map is well-defined by  $(\Longrightarrow)$  and injective by  $(\Leftarrow)$ .

For surjectivity, note for any  $a \in G$ ,  $a \cdot x$  is the image of  $aG_x$ .