2. PROIECTAREA ANGRENAJULUI CILINDRIC

Calculul de rezistență a angrenajelor cilindrice cu dantura în evolventă este reglementat în **STAS 12268-84**, considerând încărcarea reală atât la solicitarea flancului prin oboseală de contact cât și la solicitarea de încovoiere a dinților.

Forța tangențială reală pentru calculul la solicitarea flancului prin oboseală de contact este dată de relația:

$$F_{tHef} = F_{tH} \cdot K_A \cdot K_V \cdot K_{H\beta} \cdot K_{H\alpha} \tag{2.1}$$

iar pentru solicitarea de încovoiere a dinților este:

$$F_{tFef} = F_{tF} \cdot K_A \cdot K_V \cdot K_{F\beta} \cdot K_{F\alpha} \tag{2.2}$$

în care: F_{tH} și F_{tF} sunt forțele nominale, iar factorii K_A , K_V , $K_{H\beta}$, $K_{H\alpha}$, $K_{F\beta}$, $K_{F\alpha}$ se aleg din tabele sau nomograme.

2.1. Predimensionarea angrenajului cilindric

Se determină distanța minimă între axe și modulul normal minim din condițiile de rezistență la solicitarea de oboseală de contact, respectiv încovoiere a dinților, se aleg numerele de dinți și deplasările specifice de profil pentru cele două roți cilindrice.

Calculul la oboseala de contact a flancurilor dinților se poate realiza prin compararea tensiunii de contact σ_H cu tensiunea admisibilă de contact $\sigma_{HP1(2)}$ cu relația:

$$\sigma_{H} = Z_{H} \cdot Z_{\varepsilon} \cdot Z_{E} \cdot Z_{\beta} \cdot \sqrt{\frac{F_{tH} \cdot K_{A} \cdot K_{V} \cdot K_{H\beta} \cdot K_{H\alpha}}{b_{w} \cdot d_{1}} \cdot \frac{u_{c} + 1}{u_{c}}} \leq \sigma_{HP1(2)}$$
(2.3)

cu:
$$\sigma_{HP1(2)} = \frac{\sigma_{H \text{ lim1}(2)}}{S_{HP1(2)}}$$
 (2.4)

unde: $\sigma_{H \, \text{lim} \, 1(2)}$ este tensiunea limită la oboseala de contact a pinionului, respectiv roții cilindrice și $S_{HP1(2)}$ este coeficientul de siguranță la solicitarea de contact.

Astfel rezultă relația de calcul pentru distanța minimă necesară între axe:

$$a_{\min} = (u_c \pm 1) \cdot \left[\frac{T_{1c} \cdot K_A \cdot K_V \cdot K_{H\beta} \cdot K_{H\alpha}}{2 \cdot \psi_a \cdot u_c \cdot \left(\frac{\sigma_{H \, \text{lim} b}}{S_{HP}} \right)^2} \cdot \left(\frac{Z_H \cdot Z_{\varepsilon} \cdot Z_E \cdot Z_{\beta}}{Z_N \cdot Z_L \cdot Z_R \cdot Z_V \cdot Z_x \cdot Z_W} \right)^2 \right]^{1/3}$$
(2.5)

în care: T_{1c} este momentul care solicită pinionul cilindric și depinde de ciclograma de încărcare (constantă, în trepte sau variabilă continuu) reprezentată în **tabelul 1.4** (Creţu S., ş.a., 1992).

Calculul dinților la oboseala prin încovoiere scris sub forma:

$$\sigma_{F} = \frac{F_{tF} \cdot K_{A} \cdot K_{V} \cdot K_{F\beta} \cdot K_{F\alpha}}{b \cdot m_{n}} \cdot Y_{Fa} \cdot Y_{Sa} \cdot Y_{\beta} \cdot Y_{\varepsilon} \le \sigma_{FP}$$
(2.6)

în care:

$$\sigma_{FP} = \frac{\sigma_{F \, \text{lim}}}{S_{FP}} \tag{2.7}$$

conduce la relația pentru modulul normal minim:

$$m_{n\min} = \frac{(u_c \pm 1) \cdot T_{1c} \cdot K_A \cdot K_V \cdot K_{F\beta} \cdot K_{F\alpha} \cdot Y_{Fa} \cdot Y_{Sa} \cdot Y_{\beta} \cdot Y_{\varepsilon}}{\psi_a \cdot a_W^2 \cdot (\sigma_{0\lim} / S_{FP}) \cdot Y_N \cdot Y_{\delta} \cdot Y_R \cdot Y_X}$$
(2.8)

Mărimi de calcul

1. Date initiale:

• Puterea transmisă de pinionul cilindric : $P_{1c} = P_{2k} = P_{1k} \cdot \eta_k$ [kW] (2.9)

• Turația pinionului:
$$n_{1c} = n_{2k} = \frac{n_{1k}}{i_k}$$
 [rot/min] (2.10)

• Viteza unghiulară a pinionului:
$$\omega_{lc} = \frac{\pi \cdot n_{lc}}{30}$$
 [rad/s] (2.11)

• Momentul de torsiune al pinionului :
$$T_{1c} = \frac{P_{1c}}{\omega_{1c}} \times 10^6$$
 [N· mm] (2.12)

• Raportul numerelor de dinți:
$$u_c = \frac{z_{mare}}{z_{mic}} = \frac{z_{2c}}{z_{1c}} = i_c$$
 (2.13)

• Turația roții cilindrice condusă:
$$n_{2c} = \frac{n_{1c}}{i_c}$$
 [rot/min] (2.14)

• Numărul de cicluri de funcționare a pinionului (pentru solicitarea de oboseală de contact și încovoiere):

$$N_H = N_F = 60 \cdot n_{1c} \cdot D_h \tag{2.15}$$

• Condițiile de funcționare: specificate în tema de proiectare.

2. Date adoptate

- Tipul angrenajului: cilindric exterior
- Materialul și tratamentul termic: se aleg *oțeluri laminate* sau *forjate*. Marca de oțel și tehnologia de fabricație se stabilesc astfel încât să poată oferi dinților condiții optime de duritate și structură, astfel:
- oţeluri de îmbunătăţire (HB \leq 3000...3500 MPa) pentru viteze periferice v_p = 4...2 m/s, cu tratament termic de călire-revenire înaltă în toată masa semifabricatului;
- oţeluri durificate superficial (HB > 3500 MPa) pentru viteze periferice v_p > 12 m/s, cu tratament termic de nitrurare (în baie, gaz), călire prin curenți de înaltă frecvență (CIF) sau călire cu flacără (CFL), cementare.

Tabelul 1.1 (Crețu S., ș.a., 1992): *Marcă oțel, duritatea flancului, mărimea caracteristică* "s" (dimensiunea roții dințate pe a cărei direcție se primește și se cedează cantitatea maximă de căldură în timpul încălzirii și aplicării sarcinii)

• Clasa de precizie: se adoptă - clasa mijlocie: 7; 8

- Profilul de referință: definit în secțiunea normală pe direcția dintelui prin cremaliera de referință STAS 821 82: $\alpha_n = \mathbf{20^0}$, $h_{an}^* = \mathbf{1}$, $c_n^* = \mathbf{0,25}$.
 - Unghiul de înclinare de divizare al danturii: β se recomandă: = 10^0 - pentru danturi durificate superficial; = 15^0 - pentru danturi îmbunătătite
- Coeficientul diametral al lățimii danturii: ψ_d **tabelul 1.7** (Crețu S., ș.a., 1992) funcție de $HB_{1(2)}$, așezarea pinionului față de reazeme și treapta de precizie.
- Factorul de utilizare: $K_A = K_{Am} \cdot K_{Al}$ **tabelele 1.5** și **1.6** (Crețu S., ș.a., 1992) funcție de caracteristicile și tipul mașinii motoare și a mașinii de lucru (antrenată).
 - Factorul dinamic: $K_V = 1,2$ la dantura dreaptă; = 1,15 la dantura înclinată.
- Factorul repartiției sarcinii pe lățimea danturii: $K_{H\beta} = K_{F\beta}$ cu relațiile din **tabelul 1.8** (Crețu S., ș.a., 1992) funcție de duritate, treapta de precizie, așezarea pinionului față de reazeme și ψ_d adoptat din **tabelul 1.7** (Crețu S., ș.a., 1992).
 - Factorul repartiției frontale a sarcinii la solicitarea de contact:

 $K_{H\alpha}=1$ - la dantură precisă dreaptă (treptele 1...7) și înclinată (treptele 1...6); = $1/Z_{\varepsilon}^2$ - la dantura neprecisă (treptele > 7) dreaptă și înclinată.

• Factorul influenței formei flancurilor dinților:
$$Z_H = \left(\frac{2 \cdot \cos \beta_b}{\sin \alpha_t \cdot \cos \alpha_t}\right)^{1/2}$$
 (2.16)

unde: - unghiul de înclinare pe cercul de bază: $\beta_b = \arcsin(\sin \beta \cdot \cos \alpha_n)$ (2.17)

- unghiul de presiune de referință frontal: $\alpha_t = arctg(tg\alpha_n/\cos\beta)$ (2.18)

La dantura dreaptă nedeplasată: $Z_H = 2,5$.

• Factorul influenței lungimii minime de contact:

 Z_{ε} = **0,95** la danturi drepte sau înclinate cu $\psi_d \le 0.5$; = **0,88** pentru $\psi_d > 0.5$

- ullet Factorul materialelor: Z_E **tabelul 1.9** (Crețu S., ş.a., 1992) funcție de tipul materialelor roților și modulele de elasticitate.
 - Factorul influenței înclinării danturii: $Z_{\beta} = (\cos \beta)^{1/2}$ (2.19)
 - Coeficientul axial al lățimii danturii: $\psi_a = \psi_d \cdot \frac{2}{u_c + 1} = \frac{b}{a_W}$ (2.20)

- Rezistența limită de bază la oboseala de contact: $\sigma_{H \, {
 m lim}b}$ **tabelul 1.11** (Crețu S., ș.a., 1992) funcție de tipul materialului, tratamentul termic și duritatea flancurilor dinților.
- Factorul de siguranță admisibil pentru solicitarea de contact: S_{HP} **tabelul 1.10** (Crețu S., ş.a., 1992).
- Factorul influenței duratei de funcționare asupra solicitării de contact și încovoiere: Z_N , respectiv Y_N **tabelul 1.12** (Crețu S., ș.a., 1992) funcție de materialul, tratamentul termic al danturii și numărul de cicluri de solicitare la contact sau încovoiere ($N_H = N_F$)
 - ullet Factorul influenței ungerii: $Z_L=1$ dacă nu se cunoaște vâscozitatea uleiului; din fig. 6.6 în funcție de v_{50^0} a uleiului.
 - Factorul influenței rugozității flancurilor dinților:

$$Z_R = 1$$
 - la danturi rectificate (R = 1...5 μm);
= 0,9 - la danturi frezate.

- Factorul influenței vitezei periferice: $Z_V = 1$
- Factorul de dimensiune: $Z_X = 1$
- Factorul influenței raportului durităților flancurilor dinților celor două roți:

$$Z_W=1$$
 - la angrenaje normale; - la angrenaje cu diferență mare de duritate între roți (pinionul durificat superficial și rectificat, iar roata îmbunătățită la $1300 < HB < 4000$ și frezată)

- ullet Factorul repartiției frontale a sarcinii la solicitarea de încovoiere: $K_{Flpha}=1$
- Factorul de formă a dintelui: $Y_{Fa} = 2,5$
- Factorul concentratorului de tensiune la piciorul dintelui: $Y_{Sa} = 2$
- Factorul înclinării dinților: $Y_{\beta} = 1$ la danturi drepte; $= 0.9 \quad \text{- la danturi înclinate durificate;} \\ = 0.8 \quad \text{- la danturi înclinate îmbunătățite și dantura în V.}$
- ullet Factorul gradului de acoperire: $Y_{\varepsilon} = 1$
- Rezistența limită de bază la solicitarea de încovoeire: $\sigma_{0 \, \text{lim}}$ tabelele 1.14, a, b, c, d (Crețu S., ş.a., 1992) funcție de materialul danturii, tratamentul termic si duritatea flancului in zona de racordare.
- Factorul de siguranță admisibil pentru solicitarea de încovoiere: S_{FP} **tabelul 1.10** (Crețu S., ș.a., 1992).
 - ullet Factorul sensibilității materialului solicitat la oboseală la concentratorul de tensiune: $Y_{\delta} = 1,1$
 - Factorul de rugozitate: $Y_R = 1$
 - Factorul de dimensiune: $Y_X = 1$.

3. Elemente geometrice calculate

- Distanța minimă între axe: a_{\min} [mm] cu relația (2.5)
- Distanța între axe: a_W [mm] se adoptă.

Există două cazuri:

a) se cere o distanță între axe a_{STAS} conform STAS 6055-82: a_{\min} se mărește la prima valoare standardizată (se poate și micșora la precedenta valoare dacă: $\frac{\left(a_{STAS}-a_{\min}\right)}{a_{STAS}} \le \pm 0,05$) și se obține

 $a_w = a_{STAS}$;

b) nu se cere a_{STAS} : a_{min} se rotunjește la următoarea valoare întreagă în mm și se obține a_w .

Dacă se consideră cazul a) valoarea calculată se rotunjește la o valoarea superioară standardizată pentru *distanța între axe* a_W [mm] conform STAS 6055 – 82, **Tabelul 1.13** (Crețu S., ș.a., 1992), din șirul următor:

40; 45; **50**; 56; **63**; 71; **80**; 90; **100**; 112; **125**; 140; **160**; 180; **200**; 225; **250**; 280; **315**; 355; **400**; 450; **500**; 560; **630**; 710; **800**; 900; **1000**; 1120; **1250**; 1400; **1600**; 1800; **2000**; 2250; **2500**.

• Diametrele de divizare preliminare:

$$d_{1pr} = \frac{2 \cdot a_W}{u_c + 1} \; ; \qquad d_{2pr} = u_c \cdot d_{1pr}$$
 (2.21)

• Vitezele tangențiale preliminare ale roților dințate:

$$v_{t1pr} = \frac{\omega_{1c} \cdot d_{1pr}}{2 \cdot 1000} = \frac{\pi \cdot d_{1pr} \cdot n_{1c}}{60 \cdot 1000} = v_{t2pr}$$
 [m/s]

- Modulul normal minim necesar: $m_{n \min}$ [mm] cu relația (2.8).
- Modulul normal: m_n [mm] se adoptă valoarea superioară celei calculate conform STAS 822-82, **Tabelul 1.13** (Creţu S., ş.a., 1992), din următorul şir :

1; 1,125; **1,25**; 1,375; **1,5**; 1,75; **2**; 2,25; **2,5**; 2,75; **3**; 3,5; **4**; 4,5; **5**; 5,5; **6**; 7; **8**; 9; **10**; 11; **12**; 14; **16**; 18; **20**; 22; **25**; 28; **32**; 36; **40**; 45; **50**; **60**; 70; **80**; 90; **100**.

• Numărul maxim de dinți pentru pinion:

$$z_{1c \max} = \frac{2 \cdot (a_W - m_n) \cdot \cos \beta}{(u_c + 1) \cdot m_n}$$
 (2.23)

• Numărul de dinți pentru pinionul cilindric: z_{1c} - se recomandă : $\geq 10^{0}$; = 12...17 (21) - la danturile cementat-călite; = 25...35 - la danturile îmbunătățite; = 15...23 (25) - la danturile durificate (CIF, nitrurate).

• Numărul de dinți pentru roata cilindrică condusă: $z_{2c} = u_c \cdot z_{1c}$ (2.24)

Observații:

- z_{1c} și z_{2c} se rotunjesc la valori întregi cu respectarea condiției:

$$\Delta u = \left| \frac{u_{dat} - u_{realizat}}{u_{dat}} \right| \cdot 100 \le \Delta u_a \tag{2.25}$$

unde: $u_{dat} = i_c = u_c$; $u_{realizat} = z_2 / z_1$; $\Delta u_a = 3 \%$

- Dacă nu se realizează condiția: se micșorează sau se măresc z_{1c} și /sau z_{2c} pe cât posibil să nu aibă divizori comuni.

• Modulul normal recalculat :
$$m_n = \frac{2 \cdot a_W \cdot \cos \beta}{z_{1c} \cdot (u \pm 1) + 2 \cdot \cos \beta}$$
 [mm] (2.26)

în care: $u = u_{realizat}$ și se standardizează - **tabelul 1.13** (Crețu S., ș.a., 1992).

• Distanța de referință dintre axe:
$$a = m_n \cdot \frac{z_1 + z_2}{2 \cdot \cos \beta}$$
 [mm] (2.27)

• Unghiul de angrenare frontal:
$$\alpha_{tW} = \arccos\left(\frac{a}{a_W} \cdot \cos \alpha_t\right)$$
 [deg] (2.28)

• Coeficientul deplasării de profil însumate:

$$x_{ns} = x_{n1} + x_{n2} = \frac{z_1 + z_2}{2 \cdot tg \alpha_n} \cdot \left(inv \alpha_{tW} - inv \alpha_t \right)$$
 (2.29)

unde: $inv\alpha = tg\alpha - \alpha$ pentru unghiul α [rad]

• Coeficienții deplasărilor de profil pentru fiecare dintre cele două roți dințate: x_{n1} , x_{n2} se determină folosind diagramele din **fig. 1.16, b** (Crețu S., ș.a., 1992).