8.1 The Nature of Acid-Base Equilibria

- Acidic solutions are sour tasting, conduct electricity, and turn blue litmus red.
- Basic solutions, like aqueous ammonia, also conduct electricity, are bitter tasting, feel slippery, and turn red litmus blue.
- Arrhenius: acids produce H⁺(aq) ions and bases produce OH⁻(aq) ions.
- Brønsted-Lowry: a proton is transferred from one reactant to the other.

Brønsted-Lowry Theory

- A Brønsted-Lowry acid is a proton donor and a Brønsted-Lowry base is a proton acceptor.
- E.g. H₂O_(I) + HCl_(g) → H₃O⁺_(aq) + Cl⁻_(aq) (water forms the hydronium ion)
 H₂O_(I) is the Brønsted-Lowry base and HCl_(g) Brønsted-Lowry acid.
- E.g. NH_{3(g)} + H₂O_(I) → NH₄+_(aq) + OH⁻_(aq) (water forms the hydroxide ion)
 H₂O_(I) is the Brønsted-Lowry acid and NH_{3(g)} Brønsted-Lowry base.
- Water is amphoteric (amphiprotic) which is a substance capable of acting as an acid or a base in different chemical reactions.

Reversible Acid-Base Reactions

 In a reversible reaction there is an acid and a base in each of the 2 reactions. They are known as conjugate acid-base pairs (difference of only a single proton)

Competition for Protons

- In the reaction above the acetic acid is a weak acid and the reactants are favoured. HCl is a strong acid and products are favoured.
- The stronger the acid, the weaker its conjugate base, and conversely, the weaker an acid, the stronger its conjugate base.

The Autoionization of Water

- Autoionization of water is the reaction between two water molecules producing a hydronium ion and a hydroxide ion.
- $H_2O_{(I)} \leftrightarrow H^+_{(aq)} + OH^-_{(aq)}$
- It will occur in pure water. Put into perspective it will only happen to about 2 water molecules out of every billion (at SATP).
- We can apply the equilibrium law to find the K_e value. $\frac{\left[H^+_{(aq)}\right]OH^-_{(aq)}}{\left[H_2O_{(l)}\right]}=K_e$
 - Since the $[H_2O]$ is constant we include it in K_e to get...

$$K_{w} = \left[H^{+}_{(aq)}\right]OH^{-}_{(aq)}$$

in pure water the concentration of $[H^+_{(aq)}] = [OH^-_{(aq)}] = 1.0 \times 10^{-7} \text{ mol/L}$

Therefore $K_w = 1.0 \times 10^{-14}$ (at SATP)

The equation can be rewritten to find concentrations of $[H^+_{(aq)}]$ and $[OH^-_{(aq)}]$.

- $[H^{+}_{(aa)}] = [OH^{-}_{(aa)}]$ therefore the solution is neutral
- $[H^{+}_{(aq)}] > [OH^{-}_{(aq)}]$ the solution is acidic
- $[H^+(aq)] < [OH^-(aq)]$ the solution is basic

Strong Acids

 A strong acid is an acid that ionizes completely in water to form hydrogen ions.

• E.g.
$$HCI_{(g)}$$
 $\xrightarrow{H_2O_{(l)}}$ $H^+_{(aq)} + CI^-_{(aq)}$

- Strong acids: hydrochloric, hydrobromic, sulfuric, nitric, and phosphoric.
- Monoprotic acids are acids that possess only one ionizable (acidic) proton. There are also diprotic and triprotic acids.

Strong Bases

 A strong base is an ionic substance that (according to Arrhenius) disassociates completely in water to release hydroxide ions.

• E.g. NaOH_(s)
$$\xrightarrow{\text{H}_2O_{(1)}}$$
 Na+_(aq) + OH⁻_(aq)

Strong bases: group 1 and 2 hydroxides.

Hydrogen Ion Concentration and pH

- pH = -log[H⁺(aq)] (the negative log of the hydrogen ion concentration)
- a logarithmic scale a pH of 2 is 10 times more acidic than a pH of 3.
- E.g. pH of a solution with a hydrogen ion conc. of 4.7×10^{-11} mol/L

$$pH = -log[H^{+}_{(aq)}] = -log[4.7 \times 10^{-11}] = 10.33$$

- pH = 7 is neutral
- pH > 7 is basic
- pH < 7 is acidic

pOH and pKw

- pOH = -log[OH+(aq)] (the negative log of the hydroxide ion concentration)
- pK_w = -log K_w (the negative log of the equilibrium constant for water)
- pH + pOH = p K_w pH + pOH = 14 (at SATP)

Measuring pH

- We will use acid base indicators such as litmus and pH meters.
- Litmus: pH<4.7 = red, pH>8.3 = blue, 4.7>pH<8.3 = brown.

pH of Strong Acids and pH of Strong Bases

- Excellent example for acids on page 545.
- Excellent example for bases on page 547.

Homework

- Practice 1,2,3,4,5,6,8,9,10,11,12,13,14,15,17,18,19
- Questions 1,2,3,4,5,6,7