Fundamentos de Algoritmia

Examen de junio	Curso 2021/2022
Nombre:	
Observaciones:	
• En el test, para cada pregunta hay una única respuesta correcta. Cada resp puntos y cada respuesta incorrecta resta 0,033 puntos .	uesta correcta vale 0,1
1. Si la precondición de un algoritmo es false , ¿qué afirmación es correcta?	
 (a) Cualquier postcondición será válida. (b) Si se ejecuta el algoritmo dicha ejecución no terminará. (c) Si se ejecuta el algoritmo se producirá un error en tiempo de ejecución. (d) Ninguna postcondición será válida. 	
2. Indica cuál de las siguientes afirmaciones es incorrecta:	
(a) $O(\log n) \subset O(n)$. (b) $O(2^n) \subset O(n^2)$. (c) $2 \in O(1)$. (d) $n \log(n) \in O(n^2)$.	
3. Indica la complejidad del siguiente algoritmo:	
<pre>int c = 0; for (int i = 0; i < n; i += 2) c += 1; for (int j = 0; j < n; ++j) c += 3;</pre>	
(a) $\Theta(\log n)$. (b) $\Theta(n)$. (c) $\Theta(n^2)$. (d) Ninguna de las anteriores.	
4. ¿Qué significa el siguiente predicado para un vector no vacío de naturales?	
$\forall i: 1 \leq i < v. \text{size}(): v[i-1] \neq v[i]$	
 (a) Todos los valores del vector son diferentes. (b) No existen dos valores iguales en el vector. (c) Los valores del vector están ordenados en orden creciente. (d) Ninguna de las anteriores. 	

5. Dada la especificación

```
\{0 \le a.size\}
fun contarImpares(vector<int> a) dev (int c)
\{c = \#i : 0 \le i < a.size : a[i] \% 2 = 1\}
```

y el siguiente algoritmo:

```
int contarImPares(std::vector<int> const& a) {
   int c = 0; int k = a.size()-1;
   while (k >= 0)
   {
      if (a[k] % 2 == 1) {c = c + 1;}
      k = k - 1;
   }
   return c;
}
```

indica si el algoritmo es correcto con respecto a la especificación y en tal caso cuál es el invariante que permite demostrar la corrección del bucle.

- (a) Es correcto con invariante $\{-1 \le k < a.size \land c = \#i : 0 \le i < k : a[i] \% 2 = 1\}$.
- (b) Es correcto con invariante $\{-1 \le k \le a.size \land c = \#i : k \le i < a.size : a[i] \% 2 = 1\}.$
- (c) Es correcto con invariante $\{-1 \le k \le a.size \land c = \#i : k < i < a.size : a[i] \% 2 = 1\}$.
- (d) Ninguna de las anteriores.
- 6. Indica cuál de las siguientes propiedades sobre los órdenes de complejidad no es correcta, siendo f y g funciones de coste cualesquiera:

```
(a) \mathcal{O}(f+g) = \mathcal{O}(\max(f,g)).

(b) \mathcal{O}(c.f) = c.\mathcal{O}(f)

(c) \mathcal{O}(\log_a f) = \mathcal{O}(\log_b f)
```

- (d) Ninguna de las anteriores.
- 7. Indica cuál es una función de cota para este algoritmo:

```
{x > 0 }
    int i = x;
    while (i >= 0)
    {
        if (i%2 == 1) {i = i + 1;}
        i = i - 1;
    }
{i%2 = 1}
(a) i + 1
(b) x + i
(c) max(0, i - 1)
(d) Ninguna de las anteriores.
```

- 8. Dados los algoritmos de búsqueda lineal y de búsqueda binaria, indica cual de las siguientes afirmaciones es cierta (n indica el número de elementos del vector en que se realiza la búsqueda):
 - (a) Ambos algoritmos tienen el mismo orden de complejidad en el caso peor.
 - (b) El algoritmo de búsqueda lineal tiene coste $\mathcal{O}(1)$ y el de búsqueda binaria $O(\log(n))$.
 - (c) Ambos algoritmos se pueden aplicar sobre los mismos vectores de entrada.
 - (d) Ninguna de las anteriores.

9. La siguiente especificación:

$$P: v.size \ge 0 \land v = V$$

$$Q: \forall k: 0 \le k < v.size - 1: v[k] \le v[k+1] \land permutacion(v, V)$$

siendo el predicado
$$permutacion(v,w) \equiv v.size() = w.size() \land \forall k: 0 \leq k < v.size(): (\#x: 0 \leq x < v.size():v[x]=v[k]) = (\#x: 0 \leq x < v.size():w[x]=v[k])$$

Se puede implementar con el siguiente algoritmo

- (a) Algoritmo quicksort o de ordenación rápida.
- (b) Algoritmo de partición.
- (c) Algoritmo de búsqueda binaria.
- (d) Ninguna de las anteriores.
- 10. Indica el coste de un algoritmo cuya recurrencia es:

$$T(n) = \left\{ \begin{array}{ll} c_0 & if & n \leq 2 \\ T(n/2) + c_1 & if & n > 2 \end{array} \right.$$

- (a) $\mathcal{O}(\log n)$
- (b) $\mathcal{O}(n)$
- (c) $\mathcal{O}(n \log n)$
- (d) $\mathcal{O}(n^2)$

1	2	3	4	5	6	7	8	9	10