

Chameleon at NCAR Running a bare-metal cloud on found hardware Or: Adventures with ARM nodes

Michael Sherman Computer Science, University of Chicago MCS, Argonne National Laboratory shermanm@uchicago.edu

Chameleon in a Nutshell

- Chameleons like to change: a testbed that adapts itself to your experimental needs
 - Deep Reconfigurability (bare metal) and isolation + KVM cloud (cost/isolation trade-off)
 - **Capabilities**: power on/off/reboot, custom kernel, serial console, etc.
 - Democratized Hardware: NSF funded, no-cost access unlike Commercial Clouds
- Balance: large-scale vs diverse hardware
 - Large-scale: large homogenous partition (~15,000 cores), ~6PB of storage over 2 sites (UC, TACC) connected via 100G network
 - Diverse: X86, Intel, AMD, ARM (on CHI@NCAR), FPGAs, GPUs, Corsa SDN switches, etc.
- Cloud++: Chameleon Infrastructure (CHI) via mainstream cloud tech
 - Powered by **OpenStack** with bare-metal reconfiguration (Ironic) + "special sauce"
 - Resource reservations (Blazar) contributed as official OpenStack component
 - CHI-in-a-Box sites at Northwestern, and in-progress: NCAR, IIT, EVL
- Workflows for Researchers: Reproducibility, Repeatability, and Sharing
 - Users can package their imperative and non-transactional experiments using Jupyter, share it via Trovi, publish via Zenodo integration, and let anyone reproduce them with Daypass.

Open Testbed – By The Numbers

Challenges in Operating a Bare-Metal Cloud

- Different from HPC
 - User freedom: Root access, serial console, full disk images
 - No batch scheduling, user has interactive access. Time to deploy is crucial.
 - Repeatability and isolation: Deploy requires new disk image and networking
 - O Dynamic, multi-tenant networking environment
- Cost vs Reliability
 - Very Heterogeneous hardware
 - Higher hardware and operations costs per node
 - Availability, repeatability more important than perfect utilization
- More things to go wrong
 - Hardware is often unreliable, especially chassis managers for provisioning
 - Users are interactive, no scheduler, triggers frequent deploys
 - Failures can be the user's fault (specifying a bad disk image), or the system's (bad cable, temporary service outage).
 - Sometimes both (User sets a kernel flag that should work, but firmware crashes)

Lowering Operations Cost with Chameleon and OpenStack

- Working with mainstream open source project
 - Familiar interfaces, transferable skills: 858 deployments, 441 organizations, 63 countries
 - Working with large community (~8,400 total contributors, ~6,000 reviewing code)
 - Access to existing documentation and support systems
- Consistent deployment process, scaling horizontally as hub-and-spoke
 - Releases created at UChicago, deployed to Dev, Staging, then Production Site
 - All other sites pull and deploy releases
 - Supported disk images and experiments follow the same pattern
- Usability / Reliability
 - We eat our own dog food, catch errors and surprises early
 - Work to make the deployment process easy, consistent, and frequent
 - Favor multiple small releases over giant risky ones
- A suite of operational tools
 - Monitoring and Alerting: smoke tests, live monitoring with coverage, centralized logging
 - Remediation: runbooks and hammers (automated repair)
 - Create a process around maintenance (automated scripts ensure uniformity)

CHI-in-a-Box: Chameleon Near You!

- CHI-in-a-box: packaging a commodity-based testbed
 - First released in summer 2018, continuously improving
 - Packaging systems as well as operations model
- CHI-in-a-box scenarios
 - Chameleon extension: join the Chameleon testbed (currently serving only selected users), and includes both user and operations support
 - Part-time Chameleon extension: like Chameleon extension but with the option to take the testbed offline for certain time periods (support is limited); includes a stable point of presence and BYOD for dynamically adding and removing resources
- Take advantage of some centralized services:
 - Federated authentication with single-sign-on
 - Usage enforcement and accounting
 - Jupyterhub with Chameleon API and authentication baked in
 - Hardware discovery and resource browser
- https://github.com/chameleonCloud/chi-in-a-box

Bringing up the NCAR site for IndySCC 2021

- Needed dedicated, interesting hardware for 5 teams, but supply chains are a mess
 - Repurposed "found" ARM nodes at NCAR, originally for cluster evaluation
- Use chi-in-a-box to deploy control plane running on single VM
 - 4 cores, 8gb memory (after some tuning), public and private network interfaces, 100gb disk space to hold user images.
- Had to port some capabilities from upstream, now supported for all sites
 - Enabled ipxe, and compiled binary for arm64 (not in repos)
 - Built ironic pre-boot agent for ARM64
 - Built new supported images with UEFI boot support
 - Disabled multi-tenant networking, dedicated switch wasn't available yet
 - Grab power metrics from PDUs when out of band controller lacks support
- Lessons learned
 - System was able to function despite very minimal support from the ARM hardware, documentation, or vendor
 - o BMCs are flaky. Had to disable some "auto-healing" mechanisms in OpenStack
 - A lot of layers to run a complex system, but familiar components underneath

Outcome and Parting Thoughts

- After SC21, (and some sprucing up), CHI@NCAR will be available for general use by our community
- If you wish your spare hardware was more useful, please get in touch!
- I'm happy to take any questions and comments.

"Lessons Learned from the Chameleon Testbed". In Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC '20), https://bit.ly/3omq5dL

IndySCC power metrics available at https://chi.hpc.ucar.edu:3000
Become a new user at https://chameleoncloud.org
Getting Started docs at: https://chameleoncloud.readthedocs.io/

