Distributional Semantics, Pt. II

LING 571 — Deep Processing for NLP November 9, 2022 Shane Steinert-Threlkeld

Roadmap

- Curse of Dimensionality
- Dimensionality Reduction
 - Principle Components Analysis (PCA)
 - Singular Value Decomposition (SVD) / LSA
- Prediction-based Methods
 - CBOW / Skip-gram (word2vec)
- Word Sense Disambiguation

The Curse of Dimensionality

	tasty	delicious	disgusting	flavorful	tree
pear	0		0	0	0
apple	0	0	0		
watermelon	J	0	0	0	0
paw_paw	0	0		0	0
family	0	0	0	0	

The cosine similarity for these words will be zero!

	tasty	delicious	disgusting	flavorful	tree
pear	0	I	0	0	0
apple	0	0	0		
watermelon		0	0	0	0
paw_paw	0	0		0	0
family	0	0	0	0	

The cosine similarity for these words will be >0 (0.293)

	tasty	delicious	disgusting	flavorful	tree
pear	0		0	0	0
apple	0	0	0		
watermelon	I	0	0	0	0
paw_paw	0	0		0	0
family	0	0	0	0	

But if we could collapse all of these into one "meta-dimension"...

	tasty	delicious	disgusting	flavorful	tree
pear	0		0	0	0
apple	0	0	0		
watermelon	I	0	0	0	0
paw_paw	0	0		0	0
family	0	0	0	0	

Now, these things have "taste" associated with them as a concept

	$<\!taste\!>$	tree
pear		0
apple		
watermelon		0
paw_paw		0
family	0	

Curse of Dimensionality

- Vector representations are sparse, very high dimensional
 - # of words in vocabulary
 - # of relations × # words, etc

Curse of Dimensionality

- Vector representations are sparse, very high dimensional
 - # of words in vocabulary
 - # of relations × # words, etc
- Google 1T 5-gram corpus:
 - In bigram 1M × 1M matrix: < 0.05% non-zero values

Curse of Dimensionality

- Vector representations are sparse, very high dimensional
 - # of words in vocabulary
 - # of relations × # words, etc
- Google 1T 5-gram corpus:
 - In bigram 1M × 1M matrix: < 0.05% non-zero values
- Computationally hard to manage
 - Lots of zeroes
 - Can miss underlying relations

Roadmap

- Curse of Dimensionality
- Dimensionality Reduction
 - Principle Components Analysis (PCA)
 - Singular Value Decomposition (SVD) / LSA
- Prediction-based Methods
 - CBOW / Skip-gram (word2vec)
- Word Sense Disambiguation

• Can we use *fewer* features to build our matrices?

- Can we use *fewer* features to build our matrices?
- Ideally with
 - High frequency means fewer zeroes in our matrix
 - High variance larger spread over values makes items easier to separate

- One approach *filter* out features
 - Can exclude terms with too few occurrences
 - Can include only top X most frequently seen features
 - χ^2 selection

- Things to watch out for:
 - Feature correlation if features strongly correlated, give redundant information
 - Joint feature selection complex, computationally expensive

- Approaches to project into lower-dimensional spaces
 - Principal Components Analysis (PCA)
 - Locality Preserving Projections (LPP) [link]
 - Singular Value Decomposition (SVD)

- All approaches create new lower dimensional space that
 - Preserves distances between data points
 - (Keep like with like)

- All approaches create new lower dimensional space that
 - Preserves distances between data points
 - (Keep like with like)
- Approaches differ on exactly what is preserved

Preserves more information than

PCA for Word Vectors

- Take IVI x N matrix of word-vectors
- Apply PCA to get new IVI x N matrix
 - Truncate to IVI x m matrix, for some choice of m < N
- Even with other methods discussed later, very useful for 2/3-D visualization

Singular Value Decomposition (SVD)

- Enables creation of reduced dimension model
 - Low rank approximation of of original matrix
 - Best-fit at that rank (in least-squares sense)

Singular Value Decomposition (SVD)

- Original matrix: high dimensional, sparse
 - Similarities missed due to word choice, etc
- Create new, projected space
 - More compact, better captures important variation
- Landauer et al (1998) argue identifies underlying "concepts"
 - Across words with related meanings

Latent Semantic Analysis (LSA)

- ullet Apply SVD to |V| imes c term-document matrix X
 - V → Vocabulary
 - $c \rightarrow$ documents
 - \bullet X
 - $row \rightarrow word$
 - column → document
 - cell → count of word/document

Latent Semantic Analysis (LSA)

- Factor *X* into three new matrices:
 - $W \rightarrow$ one row per word, but columns are now arbitrary m dimensions
 - $\Sigma \to \text{Diagonal matrix}$, where every (1,1) (2,2) etc... is the *rank* for m
 - $C^T \rightarrow$ arbitrary m dimensions, as spread across c documents

SVD Animation

youtu.be/R9UoFyqJca8

Enjoy some 3D Graphics from 1976!

SVD Animation

youtu.be/R9UoFyqJca8

Enjoy some 3D Graphics from 1976!

Latent Semantic Analysis (LSA)

- LSA implementations typically:
 - ullet truncate initial m dimensions to top k

Latent Semantic Analysis (LSA)

- LSA implementations typically:
 - ullet truncate initial m dimensions to top k
 - then *discard* Σ and C matrices
 - Leaving matrix W
 - ullet Each row is now an "embedded" representation of each w across k dimensions

Original Matrix X (zeroes blank)

	Avengers	Star Wars	Iron Man	Titanic	The Notebook
Userl	I				
User2	3	3	3		
User3	4	4	4		
User4	5	5	5		
User5		2		4	4
User6				5	5
User7				2	2

 $W(w \times m)$ Us Us Us

	ml	m2	m3
Userl	0.13	0.02	-0.01
User2	0.41	0.07	-0.03
User3	0.55	0.09	-0.04
User4	0.68	0.11	-0.05
User5	0.15	-0.59	0.65
User6	0.07	-0.73	-0.67
User7	0.07	-0.29	-0.32

		ml	m2	m3
	ml	12.4		
$\sum (m \times m)$	m2		9.5	
	m3			1.3

 $C(m \times c)$

	Avengers	Star Wars	Iron Man	Titanic	Notebook
ml	0.56	0.59	0.56	0.09	0.09
m2	0.12	-0.02	0.12	-0.69	-0.69
m3	0.40	-0.80	0.40	0.09	0.09

		Avengers	Star Wars	Iron Man	Titanic	The Notebook
	m	0.56	0.59	0.56	0.09	0.09
$C(m \times c)$	m2	0.12	-0.02	0.12	-0.69	-0.69
	m3	0.40	-0.80	0.40	0.09	0.09

"Romance-ness"

		Avengers	Star Wars	Iron Man	Titanic	The Notebook
	ml	0.56	0 59	0.56	0.09	0.09
$C(m \times c) \leq$	m2	0.12	-0.02	0.12	-0.69	-0.69
	m3	0.40	-0.80	0.40	0.09	0.09

		Avengers	Star Wars	Iron Man	Titanic	The Notebook
	ml	0.56	0.59	0.56	0.09	0.09
$C(m \times c)$	m2	0.12	-0.02	0.12	-0.69	-0.69
	m3	0.40	-0.80	0.40	0.09	0.09

LSA Document Contexts

- Deerwester et al, 1990: "Indexing by Latent Semantic Analysis"
 - Titles of scientific articles

cl Human machine interface for ABC computer applications A survey of user opinion of computer system response time The **EPS user interface** management system **c**3 System and human system engineering testing of EPS **c4 c**5 Relation of *user* perceived *response time* to error measurement The generation of random, binary, ordered **trees** ml m2The intersection **graph** of paths in **trees Graph minors** IV: Widths of **trees** and well-quasi-ordering m3 Graph minors: A survey m4

Document Context Representation

- Term x document:
 - corr(human, user) = -0.38; corr(human, minors)=-0.29

	cl	c2	c3	c4	c5	m l	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface		0	1	0	0	0	0	0	0
computer			0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0		1	2	0	0	0	0	0
response	0	1	0	0		0	0	0	0
time	0	1	0	0		0	0	0	0
EPS	0	0	I	1	0	0	0	0	0
survey	0	I	0	0	0	0	0	0	I
trees	0	0	0	0	0	I	1	I	0
graph	0	0	0	0	0	0	1	I	İ
minors	0	0	0	0	0	0	0	I	İ

Improved Representation

- Reduced dimension projection:
 - corr(human, user) = 0.98; corr(human, minors)=-0.83

	cl	c2	c 3	c4	c5	ml	m2	m3	m4
human	0.16	0.40	0.38	0.47	0.18	-0.05	-0.12	-0.16	-0.09
interface	0.14	0.37	0.33	0.40	0.16	-0.03	-0.07	-0.10	-0.04
computer	0.15	0.51	0.36	0.41	0.24	0.02	0.06	0.09	0.12
user	0.26	0.84	0.61	0.70	0.39	0.03	0.08	0.12	0.19
system	0.45	1.23	1.05	1.27	0.56	-0.07	-0.15	-0.2 I	-0.05
response	0.16	0.58	0.38	0.42	0.28	0.05	0.13	0.19	0.22
time	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
EPS	0.22	0.55	0.51	0.63	0.24	-0.07	-0.14	-0.20	-0.11
survey	0.10	0.53	0.23	0.21	0.27	0.14	0.31	0.33	0.42
trees	-0.06	0.23	-0.14	-0.27	0.14	0.24	0.55	0.77	0.66
graph	-0.06	0.34	-0.15	-0.30	0.20	0.31	0.69	0.98	0.85
minors	-0.04	0.25	-0.10	-0.2 I	0.15	0.22	0.50	0.71	0.62

Python Tutorial for LSA

- For those interested in seeing how LSA works in practice:
 - technowiki.wordpress.com/2011/08/27/latent-semantic-analysis-lsa-tutorial/

Dimensionality Reduction for Visualization

- "I see well in many dimensions as long as the dimensions are around two."
 - —Martin Shubek
- Even with 'dense' embeddings, techniques like PCA are useful for visualization
- Another popular one: <u>t-SNE</u>
- Useful for exploratory analysis

Prediction-Based Models

Prediction-based Embeddings

• LSA models: good, but expensive to compute

Prediction-based Embeddings

- LSA models: good, but expensive to compute
- Skip-gram and Continuous Bag of Words (CBOW) models

Prediction-based Embeddings

- LSA models: good, but expensive to compute
- Skip-gram and Continuous Bag of Words (CBOW) models
- Intuition:
 - Words with similar meanings share similar contexts
 - Train language models to learn to predict context words
 - Models train embeddings that make current word more like nearby words and less like distance words
 - Provably related to PPMI models under SVD

Embeddings: Skip-Gram vs. Continuous Bag of Words

- Continuous Bag of Words (CBOW):
 - ullet P(word | context)
 - ullet Input: $(w_{t-1},\ w_{t-2},\ w_{t+1},\ wt_{+2}\ ...)$
 - Output: $p(\mathbf{w_t})$

Embeddings: Skip-Gram vs. Continuous Bag of Words

- Continuous Bag of Words (CBOW):
 - ullet P(word | context)
 - ullet Input: $(w_{t-1},\ w_{t-2},\ w_{t+1},\ wt_{+2}\ ...)$
 - Output: $p(\mathbf{w_t})$
- Skip-gram:
 - ullet P(context | word)
 - Input: w_t
 - ullet Output: $p(w_{t-1}, w_{t-2}, w_{t+1}, w_{t+2} ...)$

Embeddings: Skip-Gram vs. Continuous Bag of Words

- Continuous Bag of Words (CBOW):
 - ullet P(word | context)
 - ullet Input: $(w_{t ext{-}1},\ w_{t ext{-}2},\ w_{t+1},\ wt_{+2}\ ...)$
 - Output: $p(\mathbf{w_t})$
- Skip-gram:
 - ullet P(context | word)
 - Input: w_t

Mikolov et al 2013a (the OG word2vec paper)

Skip-Gram Model

- Learns two embeddings
 - W: word, matrix of shape [vocab_size, embedding_dimension]
 - C: context embedding, matrix of same shape

$$p(w_k | w_j) = \frac{e^{\mathbf{C}_k \cdot \mathbf{W}_j}}{\sum_i e^{\mathbf{C}_i \cdot \mathbf{W}_j}}$$

Skip-Gram Model

- Learns two embeddings
 - W: word, matrix of shape [vocab_size, embedding_dimension]
 - C: context embedding, matrix of same shape
- Prediction task:
 - Given a word, predict each neighbor word in window
 - Compute $p(w_k|w_j)$ as proportional to $c_k \cdot w_j$
 - For each context position
 - Convert to probability via softmax

$$p(w_k | w_j) = \frac{e^{\mathbf{C}_k \cdot \mathbf{W}_j}}{\sum_i e^{\mathbf{C}_i \cdot \mathbf{W}_j}}$$

Training The Model

- Issue:
 - Denominator computation is very expensive
- Strategy:

- $p(w_k | w_j) = \frac{\mathbf{C}_k \cdot \mathbf{W}_j}{\sum_i \mathbf{C}_i \cdot \mathbf{W}_j}$
- Approximate by negative sampling (efficient approximation to Noise Contrastive Estimation):
 - + example: true context word
 - example: k other words, sampled

Training The Model

- Approach:
 - Randomly initialize W, C
 - Iterate over corpus, update w/ stochastic gradient descent
 - Update embeddings to improve loss function
- Use trained embeddings directly as word representations

Negative Sampling, Idea

- Skip-Gram:
 - $P(w_k | w_j)$: what is the probability that w_k occurred in the context of w_j
 - Classifier with IVI classes
- Negative sampling:
 - $P(+|w_k,w_j)$: what is the probability that (w_k,w_j) was a true co-occurrence?
 - $P(-|w_k, w_j) = 1 P(+|w_k, w_j)$
 - Probability that (w_k, w_i) was not a true co-occurrence
 - Examples of "fake" co-occurrences = negative samples
 - Binary classifier

Generating Positive Examples

```
... lemon, a [tablespoon of apricot jam, a] pinch ... c1 c2 w c3 c4
```

positive examples +

W	$c_{ m pos}$
apricot	tablespoon
apricot	of
apricot	jam
apricot	a

Generating Positive Examples

 Iterate through the corpus. For each word: add all words within a window_size of the current word as a positive pair.

```
... lemon, a [tablespoon of apricot jam, a] pinch ...
c1 c2 w c3 c4
```

positive examples +

```
c_{pos}
apricot tablespoon
apricot of
apricot jam
apricot a
```

Generating Positive Examples

- Iterate through the corpus. For each word: add all words within a window_size of the current word as a positive pair.
 - NB: window_size is a hyper-parameter

```
... lemon, a [tablespoon of apricot jam, a] pinch ...
c1 c2 w c3 c4
```

positive examples +

```
c_{pos}
apricot tablespoon
apricot of
apricot jam
apricot a
```

Negative Samples

- For each positive (w, c) sample, generate num_negatives samples
 - (w, c'), where c' is different from c
 - NB: *num_negatives* is a hyper-parameter

negative examples -

W	c_{neg}	\mathcal{W}	c_{neg}
apricot	aardvark	apricot	seven
apricot	my	apricot	forever
apricot	where	apricot	dear
apricot	coaxial	apricot	if

Negative Samples, up-weighting

- It's also common to "upsample" less frequent words
- Instead of sampling from raw frequencies from the corpus, raise them to a power to "flatten" the distribution

$$P_{\alpha}(w) = \frac{count(w)^{\alpha}}{\sum_{w'} count(w')^{\alpha}}$$

- So what is P(1 | w, c) (more specifically, $P(1 | w, c; \theta)$)?
- As before, learns two embeddings
 - W: word, matrix of shape [vocab_size, embedding_dimension]
 - W_w : embedding for word w [row of the matrix]
 - C: context embedding, matrix of same shape

$$P(1 \mid w, c) = \sigma(W_w \cdot C_c)$$

$$P(1 \mid w, c) = \sigma \left(W_w \cdot C_c \right)$$
 Target word embedding

$$P(1 \mid w, c) = \sigma \left(W_w \cdot C_c \right)$$
 Target word embedding Context word embedding

$$P(1 \mid w, c) = \sigma(W_w \cdot C_c)$$

• Target and context words that are *more similar* to each other (have more similar embeddings) have a *higher probability* of being a positive example.

Learning: Intuitively

Relationships via Offsets

Mikolov et al 2013b

Relationships via Offsets

Mikolov et al 2013b

One More Example

Mikolov et al 2013c

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly the relationships between them, as during the training we did not provide any supervised information about what a capital city means.

One More Example

Caveat Emptor

Issues in evaluating semantic spaces using word analogies

Tal Linzen LSCP & IJN

École Normale Supérieure PSL Research University

tal.linzen@ens.fr

Abstract

The offset method for solving word analogies has become a standard evaluation tool for vector-space semantic models: it is considered desirable for a space to represent semantic relations as consistent vector offsets. We show that the method's reliance on cosine similarity conflates offset consistency with largely irrelevant neighborhood structure, and propose simple baselines that should be used to improve the utility of the method in vector space evaluation.

Figure 1: Using the vector offset method to solve the analogy task (Mikolov et al., 2013c).

cosine similarity to the landing point. Formally, if the analogy is given by

$$a:a^*::b:$$
______(1)

Linzen 2016, a.o.

Power of Prediction-based Embeddings

- Count-based embeddings:
 - Very high-dimensional (IVI)
 - Sparse
 - Pro: features are interpretable ["occurred with word W N times in corpus"]
- Prediction-based embeddings:
 - "Low"-dimensional (typically ~300-1200)
 - Dense
 - Con: features are not immediately interpretable
 - i.e. what does "dimension 36 has value -9.63" mean?

Diverse Applications

- Unsupervised POS tagging
- Word Sense Disambiguation
- Essay Scoring
- Document Retrieval
- Unsupervised Thesaurus Induction
- Ontology/Taxonomy Expansion
- Analogy Tests, Word Tests
- Topic Segmentation

59

- Embedding layer (~300-dimensions):
 - download pre-trained embeddings
 - Use as look-up table for every word
 - Then feed those vectors into model of choice

- Embedding layer (~300-dimensions):
 - download pre-trained embeddings
 - Use as look-up table for every word
 - Then feed those vectors into model of choice

- Embedding layer (~300-dimensions):
 - download pre-trained embeddings
 - Use as look-up table for every word
 - Then feed those vectors into model of choice

Depiction of seq2seq NMT architecture c/o Hewitt & Kriz

Pre-trained embeddings!

- Embedding layer (~300-dimensions):
 - download pre-trained embeddings
 - Use as look-up table for every word
 - Then feed those vectors into model of choice
- Newer embeddings:
 - fastText
 - GloVe

Depiction of seq2seq NMT architecture c/o Hewitt & Kriz

Pre-trained embeddings!

Contextual Word Representations

- Global embeddings: single fixed word-vector look-up table
- Contextual embeddings:
 - Get a different vector for every occurrence of every word
- A recent revolution in NLP (via pre-trained large language models)
- Here's a nice "contextual introduction"

Contextual Word Representations

Radford et al 2019

Peters et al 2018

Contextual Word Representations

"Embeddings from Language Models"

Radford et al 2019

Peters et al 2018

Global vs Contextual Representations

Ethical Issues Around Embeddings

 Models that learn representations from reading human-produced raw text also learn our biases

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi¹, Kai-Wei Chang², James Zou², Venkatesh Saligrama^{1,2}, Adam Kalai²

¹Boston University, 8 Saint Mary's Street, Boston, MA

²Microsoft Research New England, 1 Memorial Drive, Cambridge, MA

tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

Abstract

The blind application of machine learning runs the risk of amplifying biases present in data. Such a danger is facing us with *word embedding*, a popular framework to represent text data as vectors which has been used in many machine learning and natural language processing tasks. We show that even word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing extent. This raises concerns because their widespread use, as we describe, often tends to amplify these biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding. Second, gender neutral words are shown to be linearly separable from gender definition words in the word embedding. Using these properties, we provide a methodology for modifying an embedding to remove gender stereotypes, such as the association between the words *receptionist* and *female*, while maintaining desired associations such as between the words *queen* and *female*. Using crowd-worker evaluation as well as standard benchmarks, we

Boukbasi et al 2016

Ethical Issues Around Contextual Embeddings

- Gebru, Bender, and others' "On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? "."
 - Environmental + financial costs
 - Research opportunity costs
 - Datasets so large they are impossible to audit
- More on this during the last week of class

On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?

Emily M. Bender*
ebender@uw.edu
University of Washington
Seattle, WA, USA

Angelina McMillan-Major aymm@uw.edu University of Washington Seattle, WA, USA

ABSTRACT

The past 3 years of work in NLP have been characterized by the development and deployment of ever larger language models, especially for English. BERT, its variants, GPT-2/3, and others, most recently Switch-C, have pushed the boundaries of the possible both through architectural innovations and through sheer size. Using these pretrained models and the methodology of fine-tuning them for specific tasks, researchers have extended the state of the art on a wide array of tasks as measured by leaderboards on specific benchmarks for English. In this paper, we take a step back and ask: How big is too big? What are the possible risks associated with this technology and what paths are available for mitigating those risks? We provide recommendations including weighing the environmental and financial costs first, investing resources into curating and carefully documenting datasets rather than ingesting everything on the web, carrying out pre-development exercises evaluating how the planned approach fits into research and development goals and supports stakeholder values, and encouraging research directions beyond ever larger language models.

Timnit Gebru*
timnit@blackinai.org
Black in AI
Palo Alto, CA, USA

Shmargaret Shmitchell shmargaret.shmitchell@gmail.com The Aether

alone, we have seen the emergence of BERT and its variants [39, 70, 74, 113, 146], GPT-2 [106], T-NLG [112], GPT-3 [25], and most recently Switch-C [43], with institutions seemingly competing to produce ever larger LMs. While investigating properties of LMs and how they change with size holds scientific interest, and large LMs have shown improvements on various tasks (§2), we ask whether enough thought has been put into the potential risks associated with developing them and strategies to mitigate these risks.

We first consider environmental risks. Echoing a line of recent work outlining the environmental and financial costs of deep learning systems [129], we encourage the research community to prioritize these impacts. One way this can be done is by reporting costs and evaluating works based on the amount of resources they consume [57]. As we outline in §3, increasing the environmental and financial costs of these models doubly punishes marginalized communities that are least likely to benefit from the progress achieved by large LMs and most likely to be harmed by negative environmental consequences of its resource consumption. At the scale we are discussing (outlined in §2), the first consideration should be the environmental cost.