9.12 The $1 - i\epsilon$ Prescription in the Path Integral

PURPOSE OF THE $1 - i\epsilon$ FACTOR

849

853

855

857

859

867

868

870

871

872

873

874

875

877

- The factor $1 i\epsilon$ is introduced in the Hamiltonian to achieve two critical goals:
 - Ensure convergence of oscillatory path integrals by suppressing high-energy contributions. The path integral is understood as an asymptotic theory and the $t \to \pm \infty$ proper quantities. Correspondingly, the transition amplitude between asymptotic states.
 - Ensure the path integral project onto the vacuum (ground state) at asymptotic times $t \to \pm \infty$, which simplifies our treatment.

GROUND STATE PROJECTION AT ASYMPTOTIC TIMES

Consider the transition amplitude between states $|i\rangle$ and $|f\rangle$:

$$\lim_{t \to \pm \infty} \langle f | e^{-iH(1-i\epsilon)t} | i \rangle.$$

As $t \to \pm \infty$, the damping factor $e^{-\epsilon Ht}$ suppresses all states except the ground state $|0\rangle$:

$$\lim_{t\to\pm\infty}e^{-\epsilon Ht}|n\rangle=\lim_{t\to\pm\infty}e^{-\epsilon E_nt}|n\rangle=\begin{cases}|0\rangle & \text{if } E_n=E_0,\\0 & \text{otherwise}.\end{cases}$$

Thus, the amplitude reduces to the vacuum-to-vacuum transition.

CONNECTION TO ADIABATIC SWITCHING

- The $1 i\epsilon$ factor mimics adiabatically turning off interactions:
 - In scattering theory, interactions are "switched off" adiabatically to define free in/out states.
 - The prescription suppresses interaction terms in $\mathcal H$ at asymptotic times, projecting the interacting vacuum onto the free vacuum.

PHYSICAL INTERPRETATION

- **Stability of the vacuum**: Ensures only the lowest-energy state survives at $t \to \pm \infty$.
- Scattering theory: Enforces free-field in/out states by "preparing" the vacuum.
- **LSZ reduction**: Necessary to extract connected Greens functions for S-matrix elements.