

Lower Power Design

Lecture 2: Battery Modeling 1

Anuj Pathania on behalf of Prof. Dr. Jörg Henkel Summer Semester 2017

CES – Chair for Embedded Systems

ces.itec.kit.edu

- Slides available for download -
 - http://cesweb.itec.kit.edu/teaching/LPD/s17/slides/
 - Username: student
 - Password: CES-Student
- Homework
 - Read a relevant scientific paper.
 - Discussion next class.
- Oral Exam
 - Make appointment with KIT CES secretary 6-8 weeks in advance.
 - Exam will be in English (or German if told in advance).
 - More information: http://ces.itec.kit.edu/972.php

Lectures

- 27.04.2017 Lecture 0: Introduction
- 04.05.2017 Lecture 1: Energy Sources
- 11.05.2017 Lecture 2: Battery Modelling Part 1
- 18.05.2017 Lecture 3: Battery Modelling Part 2
- 25.05.2017 Ascension Day (Holiday)
- 01.06.2017 TBA
- 08.06.2017 TBA
- 15.06.2017 Corpus Christi (Holiday)
- 22.06.2017 TBA
- 29.06.2017 TBA
- 06.07.2017 TBA
- 13.07.2017 TBA
- 20.07.2017 TBA
- 27.07.2017 TBA

Overview for Today

- Battery characteristics.
 - Definition of battery capacity.
 - Rate dependent capacity.
 - Temperature dependent capacity.
 - Fading of capacity through charge-/discharge cycles.
- Need for battery modeling.
- Battery models.
- Applying battery models.

Overview for Today

- Battery characteristics.
 - Definition of battery capacity.
 - Rate dependent capacity.
 - Temperature dependent capacity.
 - Fading of capacity through charge-/discharge cycles.

5

- Need for battery modeling.
- Battery models.
- Applying battery models.

Terminology for Capacity [Wh]

- Full Charge Capacity.
 - Remaining capacity of a fully charged battery at beginning of a discharge cycle.
- Full Design Capacity.
 - Capacity of a newly manufactured battery.
- Theoretical Capacity.
 - Maximum amount of charge that can be extracted from a battery based on the amount of active materials (chemicals) contained.
- Standard Capacity.
 - Amount of charge that can be extracted from battery when discharged under standard load and temperature conditions.
- Actual Capacity.
 - Amount of charge the battery delivers under applied load and given temperature.

- Rate
 - Speed at which battery is discharge.

Rate Dependent Battery Capacity 2

- Why does battery capacity depend on the discharge rate?
- State A: Electrode surface contains max. number of active species.
- State B:
 - Active species are consumed at electrode surface and replenished by diffusion from the bulk of the electrolyte.
 - Diffusion cannon keep pace.
 - A concentration gradient builds up over the width of the electrolyte.
 - A higher load current results in a higher gradient.
 - Less active species available at electrode surface.
- State B/C/D: Voltage cutoff
 - If concentration is below a certain threshold, chemical reaction cannot be sustained at electrode surface; the charge that was unavailable (but kind of present through gradient) cannot be used as a result capacity of battery is reduced.
- State D:
 - non-used charge is physically not lost but unavailable due to lag between reaction and diffusion rates (load was probably too large current-wise).

Rate Dependent Battery Capacity 3

- Note: reducing discharge rate reduces the effect.
- The lower the discharge rate the faster the battery can recover and make formerly unavailable charge available again (recovery).
- Note: if system designers are aware of the effect they can maximize the energy drawn from a battery and prevent early discharged state.
- If discharge rate is very small → maximum amount of energy can be drawn from battery.

Battery Capacity: Rate Dependent Capacity 4

Temperature Dependency

- Discharging a battery involves a chemical reaction.
 - Depends on the temperature (some chemical reactions increase activity by 2x when temperature rises by 10K.)
 - Below room temp (~25°C): chemical activity in battery decreases notably and internal resistance (migration through electrolyte etc.) increases.
 - Full-charge capacity is decreased.
 - Increases slope of discharge curve
- Higher temperatures:
 - Increase of chemical activity, full charge capacity, voltage.
 - But also leads to higher rate of self-discharge -> might actually decrease actual capacity.

Battery Capacity: Temperature Dependency 2

Fading of Battery Capacity

- Problem: every charge/discharge cycle reduces full charge capacity.
- Reason: side effects occurring in battery during chemical reaction.
 - Electrolyte decomposition.
 - Active material dissolution.
 - Passive film formation.
- Irreversible.
- Reduce capacity in the short/mid term.
- Leads to failure of battery in long term.
- How to reduce battery fading:
 - Electronic system needs to control the discharge level (i.e. switch off when battery is almost empty).
 - Deep discharge will reduce life (i.e. # of charge/discharge cycles of battery). This holds even for Lithium-Ion batteries!

Battery Capacity: Fading Capacity

Battery Modeling: Why and How?

- Why: If designer of portable knows about the effects the system can be designed such that
 - Amount of energy drawn from battery can be maximized => leads to longer run-time of system before re-charge is necessary.
 - Optimize trade-off between energy drawn and life time of the battery
 - Life time of battery can be maximized -> reduces costs for maintaining a system
 - Need to predict battery capacity in order to choose right battery for a given electronic system
- How? By modeling battery behavior.
 - Accuracy: what accuracy is necessary?
 - Computational complexity,
 - Optimize trade-off between
 - Configuration effort (# of parameters; is chemical knowledge of battery necessary?)
 - Analytical insight: qualitative understanding of battery behavior. Useful in exploring ways to trade off lifetime and performance

Model	Temperature effect	Capacity fading	Accuracy	Computational complexity	Configuration effort	Analytical insight	Applications
Physical							
Lithium- polymer- insertion cell (Doyle et al.)	Yes	Yes; support for Arrhenius temperature dependence and cycle aging added by Rong and Pedram	Very high	High	Very high (> 50 parameters)	Low	
Empirical							
Peukert's law	Yes; needs recalibration for each temperature	No	Medium (14% average error for constant load, 8% average error for interrupted and variable loads)	Low	Low (2 parameters)	Low	
Battery efficiency (Pedram and Wu)	Yes; needs recalibration for each temperature	No	Medium	Low	Low (2 parameters)	Low	Design of interleaved dual-battery power supply; load splitting for maximum lifetime of multibattery systems
Weibull fit (Syracuse and Clark)	Yes	No	Medium	Low	Low (3 parameters)	Low	

17

Abstract							
Electrical- circuit (Gold)	Yes	Yes	Medium (12% error predicting cell voltage and thermal characteristics, 5% error predicting cycle	Medium	Medium (> 15 parameters)	Medium	
Electrical- circuit (Bergveld et al.)	Yes	No	aging) Medium	Medium	High (> 30 parameters)	Medium	Thermostatic charge method: high charging efficiency
Discrete-time (Benini et al.)	Yes	No	Medium (1% compared to Hspice continuous-time model)	Medium	Medium (>15 parameters)	Medium	Dynamic Power Management; multibattery discharge
Stochastic (Chiasserini and Rao)	No	No	High (1%)	Low	Low (2 parameters)	Medium (stochastic model of load pattern assumed)	Shaping load pattern to exploit charge recovery
Mixed						F	
Analytical high-level (Rakhmatov et al.)	No	No	High (5%)	Medium	Low (2 parameters)	High	Task scheduling by sequencing and Wf scaling; analysis of discharge methods for multibattery systems
Analytical high-level (Rong and Pedram)	Yes	Yes	High (3.5%)	Medium	Medium (> 15 parameters)	High	

Peukert's Law

• Ideal battery: $capacity_N = t_{run} * I$, (for constant I) capacity may be given in Wh or Ah)

(note:

- Peukert Law: capacity_N = t_{run} * I^{α}
 - Alpha: exponent accounts for discharge rate
 - capacity_N: normalized capacity for 1 Ampere (standard capacity)
- + simple way to model *capacity(discharge_rate)*
- α is different for different temperatures \rightarrow needs to be obtained empirically
- α also depends on battery type etc. (e.g. Li-ion: α =1.05)

Abstract Battery Models

- Idea: Rather than describing the behavior of a battery how it has been observed, the idea of abstract techniques is to model the individual effects of the battery in a constructive way.
- Models differ at level of abstraction and amount of details that are included.
- Some approaches to battery modeling/emulation.
 - Battery emulation (more details later).
 - Discrete-time model using VHDL (more details later).
 - Others: eg. PSPICE model (electrical circuit).

Battery Emulation

- Problem: want to design electronic system to adapt to battery characteristics. System exists already in form of hardware and is analyzed by measuring the current/voltage of diverse components
- Obvious ways
 - 1. Use non-rechargeable batteries.
 - under circumstance large costs since many runs need to be performed until all characteristics are explored.
 - 2. Use re-chargeable batteries:
 - problem: after recharge, battery might have different characteristics (fading of capacity) and as such results may not be reproducible.
- Additional problem: temperature dependency might prevent reproducibility.
- Goal: full reproducibility.

Battery Emulation 2

Solution: hardware that emulates battery.

- A regular battery with internal resistance R_i
- Observed voltage

•
$$V_b = V_{oc} - I R_I$$

• When battery discharges, V_{oc} decreases while R_i increases (dep. on batteries state and internal temperature)

V_{oc}: initial potential of a fully charged cell under no-load condition (i.e. no current)

Battery Emulation 2

- The simulation model can maintain battery's state; ambient temp. and current can be measured
- Emulator performs repeatedly:
 - measure I and T.
 - •Call simulator to compute V_{oc} and R_i in response to I and T.
 - .Set V_{oc} and R_{i.}

B# System Block Diagram

Basic idea: combine speed and accuracy of a measurement-based approach with flexibility and reproducibility of simulation-based approach

Can implement many battery models eg. "Dualfoil" (Dualfoil": one of the most accurate simulators for Lithium-Ion batteries; has 58 paramters: geometrical dimension of anode, cathode etc. plus chemistry parameters etc.)

B# Hardware

B# System Block Diagram

Discrete-Time Battery Models

- Idea: Need to overcome the gap between electrical level and high-level simulation.
 - Describes first-order effects and second order effects and implements them as a VHDL model.
- First-Order Effects:
 - Battery voltage depends non-linearly on its state of charge.
 - The actual usable capacity of a battery cell depends on the discharge rate.
- The "frequency" of the discharge current affects the amount of charge the battery can deliver
- Second-Order Effects:
 - External temperature.
 - Battery internal resistance.

V_sense is a zero-valued voltage source added in series as the discharge-current (I_Batt) sensor

rate is modeled with a voltage source V_lost in series with the charge storage capacitor. Voltage V_lost reduces the apparent charge of the battery [which controls battery voltage (V_Batt)]. The value of V_lost is a nonlinear function of the discharge rate (which can be modeled by another LUT).

Dependency on the **discharge frequency**, and

the time-domain transient behavior of the battery are modeled by averaging the instantaneous discharge rate used to control V_lost through a low-pass filter (R_f, C_f). The low-pass filter models the relative insensitivity of batteries to high-frequency changes in discharge current.

Dependency on the SOC (state-of-charge)

(V_ideal(V_C)) is realized by storing several points of the curve into a lookup table (LUT) addressed by the value of the state of charge (V_C). The model is accurate up to a minimum cutoff voltage, after which the battery is considered fully discharged.

VHDL program is based on circuit-level model and consists of two concurrent, communicating processes. The **first** one (Compute_V_C) computes the value of node V_C in the instantaneous state of charge of the battery (accounting for **losses due to high discharge rate).** The **second** process (Compute)V_lost) computes the value of V_lost (**low-pass filter**).

The output voltage of the battery V_Batt is a function of V_C. It is implemented as a continuous assignment: V_Batt=F(V_C) where F is realized by a LUT with linear interpolation (PWL). The main challenge: discretization is required to simulate values in an event-driven setting. Therefore, implemented are an autonomous source of events (signal update) that generates events at a fixed frequency. The state of charge V_C and the value of V_Rate are updated when the autonomous source generates an event. The change in SOC is obtained by integrating the differential equations of the continuous-time model over the update period.

```
entity battery is
  port(I<sub>Batt</sub>: in amps; update : in std_logic; V<sub>batt</sub> out real);
end battery;
architecture behavior of battery is
   V_{Batt} \le PWL(V_C) + V_{Cell\ Temp} - R_{Int} * I_{Batt}
  -- Voy Tame is 0.0 if no second order effects are considered
  Compute_V<sub>C</sub>: process ( I<sub>Batt.</sub> update, V<sub>Los</sub>)
   beain
    cap\_act := (cap\_act - I_{BattOld} * (NOW - chgt));
(*) V_C \leq (cap\_act/cap\_i - V_{Lost});
     I_{BattOld} = I_{Batt}
     chgt = NOW;
  Compute_V<sub>Lost</sub>: process ( I<sub>Batt,</sub> update, Compute)
  begin
     V_{\tau} := I_{BattOld} / CAPACITY;
(**) V_{Rate} := (V_{RateOld} - V_{\tau}) * exp(-(NOW - chgt)/(R_f * C_f)) + V_{\tau};
     V_{Lost} := PWL(V_{Rate});
    if I<sub>Batt</sub> 'event) then
       V_{RateOld} := V_{Rate};
       Compute \leq '1' after (\tau/ 5.0),
                '0' after ( τ/ 5.0 * 2.0),
                '1' after ( τ/ 5.0 * 3.0),
                '0' after (\tau/ 5.0 * 4.0),
                '1' after ( √ 5.0 * 5.0),
                '0' after ( τ/ 5.0 * 6.0);
    end if;
  end process;
end behavior;
```


Applications for Battery Modeling

- Battery-aware scheduling (next lecture).
- Battery-aware power supply design.
- Load-profile shaping for multi-battery systems.
 - Sequentially discharging each battery until empty.
 - Static switching: discharge each battery for a fixed duration in round-robin schedule (allows batteries to recover).
 - Dynamic switching of batteries: schedule healthies battery for discharge at any time,
 - Battery aware Dynamic Power Management (DPM).
 - DPM: Typically only try to minimize power consumption of whole system.
 - Idea: Include non-ideal battery characteristics into the strategy (e.g. "Sleep" adapted to battery recovery cycle, etc.)

Summary of Battery Modeling

- Rechargeable batteries have non-ideal effects like:
 - Recovery effect.
 - Capacity depending on temperature.
 - Capacity depending on discharge rate.
- When these effects are known, they can be modeled at different levels of abstraction depending on what accuracy is needed and how much time is available for simulation.
- The battery models can eventually be deployed in order to estimate or optimize the system's power/energy consumption and increase the system's run-time before a recharging is necessary

Source

- Homework >> Rao, Ravishankar, Sarma Vrudhula, and Daler N. Rakhmatov. "Battery modeling for energy aware system design." Computer 36.12 (2003): 77-87.
- Park, Chulsung, Jinfeng Liu, and Pai H. Chou. "B#: A battery emulator and power-profiling instrument." *IEEE design & test of computers* 22.2 (2005): 150-159.
- Benini, Luca, et al. "Discrete-time battery models for system-level low-power design." *IEEE Transactions on Very Large Scale Integration* (VLSI) Systems 9.5 (2001): 630-640.