### EE-220 Signals and Systems

Session 2019

#### Week 6



### Last Week

- Linear Constant-Coefficient Differential Equations
- ☐ Block Diagram Representation
- ■Basic Functions
  - ☐Sine, Exponential

© A Raza. 202

### Fourier Series of a Periodic Continuous-Time Signal

☐ This pair of equations, then, defines the Fourier series of a periodic continuous-time signal:

$$x(t) = \sum_{k = -\infty}^{+\infty} a_k e^{jk\omega_0 t} = \sum_{k = -\infty}^{+\infty} a_k e^{jk(2\pi/T)t},$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt.$$

$$a_0 = \frac{1}{T} \int_T x(t) dt,$$

© A Raza, 2021

#### Example 3.3

 $x(t) = \sin \omega_0 t,$ 

$$\sin \omega_0 t = \frac{1}{2j} e^{j\omega_0 t} - \frac{1}{2j} e^{-j\omega_0 t}.$$

$$a_1 = \frac{1}{2j}$$
,  $a_{-1} = -\frac{1}{2j}$ ,  $a_k = 0$ ,  $k \neq +1$  or  $-1$ .

© A Raza. 20

#### Example 3.4

$$x(t) = 1 + \sin \omega_0 t + 2\cos \omega_0 t + \cos \left(2\omega_0 t + \frac{\pi}{4}\right),$$

$$x(t) = 1 + \frac{1}{2i} [e^{ji\omega_0 t} - e^{-j\omega_0 t}] + [e^{ji\omega_0 t} + e^{-j\omega_0 t}] + \frac{1}{2} [e^{j(2\omega_0 t + \varphi/4)} + e^{-j(2\omega_0 t + \varphi/4)}].$$

$$x(t) = 1 + \left(1 + \frac{1}{2i}\right)e^{im\phi} + \left(1 - \frac{1}{2i}\right)e^{-j\omega_0 t} + \left(\frac{1}{2}e^{j(\pi/4)}\right)e^{j2\omega_0 t} + \left(\frac{1}{2}e^{-j(\pi/4)}\right)e^{-j2\omega_0 t}$$

© A Raza 202

#### Example 3.4

$$x(f) = 1 + \left(1 + \frac{1}{2j}\right)e^{j\omega_0 f} + \left(1 - \frac{1}{2j}\right)e^{-j\omega_0 f} + \left(\frac{1}{2}e^{j(\pi i d)}\right)e^{j2\omega_0 f} + \left(\frac{1}{2}e^{-j(\pi i d)}\right)e^{-j2\omega_0 f}.$$

$$a_0 = 1,$$

$$a_1 = \left(1 + \frac{1}{2j}\right) = 1 - \frac{1}{2}j,$$

$$a_{-1} = \left(1 - \frac{1}{2j}\right) = 1 + \frac{1}{2}j,$$

$$a_2 = \frac{1}{2}e^{j(\pi i d)} = \frac{\sqrt{2}}{4}(1 + j),$$

$$a_{-2} = \frac{1}{2}e^{-j(\pi i d)} = \frac{\sqrt{2}}{4}(1 - j),$$

$$a_k = 0, |k| > 2.$$

1





# Example 3.5 $a_k = \frac{\sin(\pi k/2)}{1-k}, \quad k \neq 0,$



#### Example 3.5

$$\begin{aligned} a_k &= \frac{2}{k\omega_0 T} \left[ \frac{e^{jk\omega_0 T_1} - e^{-jk\omega_0 T_1}}{2j} \right]. \\ a_k &= \frac{2\sin(k\omega_0 T_1)}{k\omega_0 T} = \frac{\sin(k\omega_0 T_1)}{k\pi}, \quad k \neq 0, \end{aligned}$$

 $\Box$  For T= 4T1, x(t) is a square wave that is unity for half the period and zero for half the period

$$\omega_0 T_1 = \pi/2$$

#### **CONVERGENCE OF THE FOURIER SERIES**

Over any period, x(t) must be absolutely integrable; that is,

$$\int_{T} |x(t)| dt < \infty.$$

- In any finite interval of time, x(t) is of bounded variation; that is, there are no more than a finite number of maxima and minima during any single period of the signal.
- In any finite interval of time, there are only a finite number of discontinuities. Furthermore, each of these discontinuities is finite.



#### **Gibbs Phenomenon**

- ☐ Thus, as *N* increases, the ripples in the partial sums become compressed toward the discontinuity, but for any finite value of N, the peak amplitude of the ripples remains constant. This behavior has come to be known as the Gibbs phenomenon.
- $\square$  The implication is that the truncated Fourier series approximation  $X_N(t)$  of a discontinuous signal x(t) will in general exhibit high-frequency ripples and overshoot x(t) near the discontinuities.
- A large enough value of N should be chosen so as to guarantee that the total energy in these ripples is insignificant.

### PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

Linearity:

$$\begin{aligned} x(t) & \stackrel{g_S}{\longleftrightarrow} a_k, \\ y(t) & \stackrel{g_S}{\longleftrightarrow} b_k. \\ z(t) & = Ax(t) + By(t) & \stackrel{g_S}{\longleftrightarrow} c_k = Aa_k + Bb_k. \end{aligned}$$

☐ Time Shifting:

$$\begin{split} x(t) & \stackrel{\Im S}{\longleftrightarrow} a_k, \\ x(t-t_0) & \stackrel{\Im S}{\longleftrightarrow} e^{-jk\omega_0 t_0} a_k = e^{-jk(2\pi/T)t_0} a_k. \end{split}$$

© ∆ Raza 2021

### PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

☐ Time Reversal:

$$x(t) \stackrel{\mathfrak{F}S}{\longleftrightarrow} a_k$$
  
 $x(-t) \stackrel{\mathfrak{F}S}{\longleftrightarrow} a_{-k}$ .

■ Time Scaling:

 $\square$  x(at), where a is a positive real number, is periodic with period Tla and fundamental frequency  $aw_0$ 

$$x(\alpha t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk(\alpha \omega_0)t}$$

© A Raza, 20

## PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

■ Multiplication:

$$x(t) \stackrel{\Im S}{\longleftrightarrow} a_k,$$

$$y(t) \stackrel{\Im S}{\longleftrightarrow} b_k.$$

$$x(t)y(t) \stackrel{\Im S}{\longleftrightarrow} h_k = \sum_{}^{\infty} a_l b_{k-l}.$$

- Multiplication in time-domain=Convolution in Frequency Domain
- ☐ Convolution in time-domain= Multiplication in Frequency Domain

© A Raza. 2021

### PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

☐ Conjugation and Conjugate Symmetry:

$$x(t) \stackrel{\Im S}{\longleftrightarrow} a_k$$
 $x^*(t) \stackrel{\Im S}{\longleftrightarrow} a_{-k}^*$ 

- ☐ For real and even x(t)

 $a_k = a_{-k}$   $a_k = a_k^*$ 

© A Raza, 201

# Parseval's Relation for Continuous-Time Periodic Signals

☐ Total average power in a periodic signal equals the sum of the average powers in all of its harmonic components

$$\frac{1}{T}\int_T|x(t)|^2dt=\sum_{k=-\infty}^{+\infty}|a_k|^2,$$

$$\frac{1}{T}\int_{T}\left|a_{k}e^{jk\omega_{0}t}\right|^{2}dt=\frac{1}{T}\int_{T}|a_{k}|^{2}dt=|a_{k}|^{2},$$

© A Baza 2021

| E innersity                               | 3.5.1 | Ax(t) + By(t)                                                                                                                  | $Aa_i + Bb_i$                                                                                           |
|-------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Linearity<br>Time Shifting                | 3.5.2 | $x(t-t_0)$                                                                                                                     | $a_i e^{-\beta a_0 a_i} = a_i e^{-\beta i 2a_i T a_i}$                                                  |
| Frequency Shifting                        | 3.3.6 | $e^{jM\omega_0t}x(t) = e^{jM(2\pi/T)t}x(t)$                                                                                    | a <sub>i</sub> e a <sub>i</sub> e                                                                       |
| Conjugation                               | 3.5.6 | x(t)                                                                                                                           | a'.,                                                                                                    |
| Time Reversal                             | 3.5.3 | x(-t)                                                                                                                          | g_4                                                                                                     |
| Time Scaling                              | 3.5.4 | $x(\alpha t)$ , $\alpha > 0$ (periodic with period $T/\alpha$ )                                                                | $a_i$                                                                                                   |
| Periodic Convolution                      |       | $\int_{T} x(\tau)y(t-\tau)d\tau$                                                                                               | $Ta_kb_k$                                                                                               |
| Multiplication                            | 3.5.5 | x(t)y(t)                                                                                                                       | $\sum_{l=-n}^{+\infty} a_l b_{k-l}$                                                                     |
| Differentiation                           |       | $\frac{dx(t)}{dt}$                                                                                                             | $jk\omega_0 a_t = jk \frac{2\pi}{T} a_t$                                                                |
| Integration                               |       | $\int_{-\infty}^{t} x(t) dt$ (finite valued and periodic only if $a_0 = 0$ )                                                   | $\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$                           |
| Conjugate Symmetry for                    | 3.5.6 | x(t) real                                                                                                                      | $\begin{cases} a_i = a_{-i}^* \\ \Re e[a_k] = \Re e[a_{-i}] \\ \Im e[a_k] = -\Im e[a_{-i}] \end{cases}$ |
| Real Signals                              |       |                                                                                                                                | $ a_k  =  a_{-k} $<br>$\forall a_k = - \forall a_{-k}$                                                  |
| Real and Even Signals                     | 3.5.6 | x(t) real and even                                                                                                             | $a_i$ real and even                                                                                     |
| Real and Odd Signals                      | 3.5.6 | x(r) real and odd                                                                                                              | a, purely imaginary and odd                                                                             |
|                                           |       |                                                                                                                                |                                                                                                         |
| Even-Odd Decomposition<br>of Real Signals | 22.0  | $\begin{cases} x_s(t) = \delta e\{x(t)\} & [x(t) \text{ real}] \\ x_s(t) = \theta d\{x(t)\} & [x(t) \text{ real}] \end{cases}$ | (Re(a <sub>k</sub> )<br>jśrola <sub>k</sub> }                                                           |





#### Example 3.8

$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT); \qquad \dots$$

$$= \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-jt2\pi i T} dt = \frac{1}{T}.$$

In other words, all the Fourier series coefficients of the impulse train are identical.

© A Raza, 2021.



#### Example 3.8

$$\begin{split} q\left(t\right) &= \frac{\dot{c}g\left(t\right)}{dt} \\ \dot{b}_k &= \left(jk\,\omega_0\right)c_k \\ c_k &= \left(1/jk\,\omega_0\right)\dot{b}_k \\ c_k &= \left(\frac{1}{jk\,\omega_0}\right)\frac{1}{T}\left[2\,j\sin\left(k\,\omega_0.T_1\right)\right] \\ c_k &= \frac{1}{k\pi}\left[\sin\left(k\,\omega_0.T_1\right)\right], \quad k\neq 0 \\ c_0 &= \frac{2T_1}{T}, \quad k=0 \end{split}$$

© A Raza, 202