Optimization methods and game theory

- Convex analysis
- Existence and Optimality
- Unconstrained optimization
- Karush-Kuhn-Tucker conditions
- Support Vector Machines
- ε -SV Regression
- Clustering
- Solution methods
- Multiobjective optimization
- Game theory

Convex analysis

Compact set

A set is compact iff it is closed and bounded.

Convex set

A set X is convex iff

$$\forall x, y \in X, \forall \lambda \in [0, 1], \lambda x + (1 - \lambda)y \in X$$

Affine set

A set X is affine iff

$$\forall x, y \in X, \forall \lambda \in \mathbb{R}, \lambda x + (1 - \lambda)y \in X$$

Convex combination

A point x is a convex combination of points x_1, \ldots, x_n iff

$$x = \sum_{i=1}^{n} \lambda_i x_i$$

with $\lambda_i \geq 0$ and $\sum_{i=1}^n \lambda_i = 1$.

Intersection of convex sets

The intersection of any collection (finite or infinite) of convex sets is convex.

Convex hull

The convex hull of a set X is the smallest convex set containing X.

Polyhedron

A polyhedron is the intersection of a finite number of closed half-spaces.

Affine hull

The affine hull of a set X aff(X) is the smallest affine set containing X.

Relative interior

The relative interior of a convex set X is defined as

$$ri(X) := \{ x \in X : \exists \varepsilon > 0 \text{ s.t. } aff(X) \cap B_{\varepsilon}(x) \subseteq X \}$$

Where $B_{\varepsilon}(x)$ is the closed ball of radius ε centered at x

Cone

A set C is a cone iff

$$\forall x \in C, \forall \lambda > 0, \lambda x \in C$$

A cone may be convex or not.

Convex function

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex iff

$$\forall x, y \in \mathbb{R}^n, \forall \lambda \in [0, 1], f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

A function is convex iff its epigraph is a convex set.

A function is strictly convex iff there is < instead of \le in the definition above.

A function is strongly convex if there exits $\tau > 0$ s.t.

$$\forall x,y \in \mathbb{R}^n, \forall \lambda \in [0,1], f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) - \frac{\tau}{2}\lambda(1-\lambda)||x-y||^2$$

A function is convex iff

$$\forall x \in C, \nabla^2 f(x)$$
 is positive semidefinite

A function is strictly convex iff the Hessian is positive definite.

A function is strongly convex iff exists $\tau > 0$ s.t.

$$\nabla^2 f(x) - \tau I$$
 is positive semidefinite

If f is convex αf is convex.

If f_1, f_2 are convex then $f_1 + f_2$ is convex.

If f is convex then f(Ax + b) is convex.

If f is convex and g is convex non-decreasing then $g \circ f$ is convex.

If f is concave and g is convex non-increasing then $g \circ f$ is convex.

If f is concave and g is concave non-decreasing then $g \circ f$ is concave.

If f is convex and g is concave non-increasing then $g \circ f$ is concave.

Quasiconvex function

 $S_k(f) = \{x \in \mathbb{R}^n : f(x) \le k\}$ is the sublevel set of f at level k.

A function is quasiconvex on C iff

$$\forall k \in \mathbb{R}, S_k(f) \cap C \text{ is convex}$$

Existence and Optimality

Weierstrass

If the objective function is continuous and the feasible set is closed and bounded, then a global optimum exists.

Convex function on convex set

If f is convex on the convex set X then any local optimum is a global optimum.

If f is strictly convex then the optimum is unique.

If f is strongly convex and X is closed then there exists a global optimum.

Optimality conditions

First order necessary condition Assume that X is an open set, if $x^* \in X$ is a local optimum of the problem then:

• $\nabla f(x^*) = 0$.

Second order necessary condition Assume that X is an open set, if $x^* \in X$ is a local optimum of the problem then:

- $\nabla f(x^*) = 0$.
- $\nabla^2 f(x^*) \succeq 0$.

Second order sufficient condition Assume that X is an open set, $x^* \in X$ and the following conditions hold:

- $\nabla f(x^*) = 0$.
- $\nabla^2 f(x^*) \succ 0$.

Then x^* is a local optimum of the problem.

NSC For convex problems Let X be an open convex set, f a differentiable convex function on X and $x^* \in X$. x^* is a local optimum of the problem iff $\nabla f(x^*) = 0$.

Unconstrained optimization

Gradient method

- 1. Chose a starting point $x^0 \in \mathbb{R}^n$.
- 2. If $||\nabla f(x^k)|| < \varepsilon$ then STOP.
- 3. Compute the search direction $d^k = -\nabla f(x^k)$.
- 4. Compute an optimal solution t_k of the problem $\min_{t>0} f(x^k + td^k)$
- 5. Set $x^{k+1} = x^k + t_k d^k$ and k = k + 1.
- 6. Go to step 2.

If the function is coercive then for any starting point the sequence is bounded and any of its cluster points is a stationary point.

If the function is coercive and convex then any cluster point is a global minimum.

If the function is strongly convex then for any starting point the sequence converges to the unique global minimum.

For quadratic problems like

$$f(x) = \frac{1}{2}x^T Q x + c^T x$$

with Q positive definite, then the step size is

$$t_k = \frac{\nabla f(x^k)^T \nabla f(x^k)}{\nabla f(x^k)^T Q \nabla f(x^k)}$$

The solution converges linearly to the optimum for quadratic problems.

Armijo inexact line search To find the step size for any problem we can use this method.

- 1. Chose $\alpha, \gamma \in (0,1)$ and $\bar{t} > 0$.
- 2. Given x^k and $d^k = -\nabla f(x^k)$, set $t = \bar{t}$.
- 3. While $f(x^k + td^k) > f(x^k) + \alpha t \nabla f(x^k)^T d^k$ do

1. Set $t = \gamma t$.

If f is coercive then for any starting point the sequence is bounded and any of its cluster points is a stationary point.

Conjugate gradient method If we have a quadratic problem we can chose the direction like this:

$$d^k = \begin{cases} -\nabla f(x^0) & \text{if } k = 0\\ -\nabla f(x^k) + \beta_k d^{k-1} & \text{if } k > 0 \end{cases}$$

Where β_k is computed as

$$\beta_k = -\frac{\nabla f(x^k)^T Q \nabla f(x^k)}{\nabla f(x^{k-1})^T Q \nabla f(x^{k-1})}$$

and the step size with the exact line search is

$$t_k = \frac{\nabla f(x^k)^T \nabla f(x^k)}{\nabla f(x^k)^T Q \nabla f(x^k)}$$

This method converges in at most r steps where r is the number of distinct eigenvalues of Q.

If f is strongly convex then we have global convergence.

We can optionally use Armijo inexact line search to find the step size.

Newton method

Like the gradient method but the direction is computed as

$$d^k: \nabla^2 f(x^k)d^k = -\nabla f(x^k)$$

The convergence is quadratic inside a neighborhood of the optimum if the hessian of the optimum is positive definite.

KKT

Given the problem

$$\begin{cases}
\min f(x) \\
g_i(x) \le 0 \forall i \\
h_i(x) = 0 \forall i
\end{cases}$$
(P)

Abadie Constraint Qualification

ACQ holds if
$$T_x(x^*) = D(x^*)$$

Sufficient conditions

- Affine constraints
- Slater's condition
 if all the g_i are convex and all the h_i are affine and there exists an interior
- point in the feasible set $\bar{x}: g_i(\bar{x}) < 0 \forall i$ and $h_i(\bar{x}) = 0 \forall i$ Linear independence of the gradients of active constraints

KKT System

One of the solutions to the KKT system is the optimal solution to the problem

$$\begin{cases} \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) + \sum_{i=1}^p \mu_i \nabla h_i(x^*) = 0 \\ g_i(x^*) \le 0 \forall i \\ h_i(x^*) = 0 \forall i \\ \lambda_i \ge 0 \forall i \\ \lambda_i g_i(x^*) = 0 \forall i \end{cases}$$

If the problem is convex the solution is a global optimum.

The inf $L(x, \lambda, \mu)$ is the Lagrangian relaxation of the problem P, provides a lower bound to the optimal value of P.

$$\varphi(\lambda,\mu) = \inf_{x \in \mathbb{R}^n} L(x,\lambda,\mu)$$
 is the dual function.

This is the dual problem

$$\begin{cases} \max \varphi(\lambda, \mu) \\ \lambda \ge 0 \end{cases} \tag{D}$$

$$v(D) \le v(P)$$

The dual problem is always a convex optimization problem even if the primal problem is not.

If the primal is continuously differentiable and convex and ACQ holds at the solution, then v(D)=v(P).

 $L(x^*, \lambda, \mu) \le L(x^*, \lambda^*, \mu^*) \le L(x, \lambda^*, \mu^*)$ iff x^*, λ^*, μ^* is an optimal solution and strong duality holds.

Support Vector Machines

Linear SVM

We must solve the problem

$$\begin{cases} \min \frac{1}{2} ||w||^2 \\ 1 - y_i(w^T x_i + b) \le 0 \forall i \end{cases}$$

The dual problem is

$$\begin{cases} \max_{\lambda} -\frac{1}{2} \sum_{i} \sum_{j} y^{i} y^{j} (x^{i})^{T} x^{j} \lambda_{i} \lambda_{j} + \sum_{i} \lambda_{i} \\ \sum_{i} y^{i} \lambda_{i} = 0 \\ \lambda_{i} \geq 0 \forall i \end{cases}$$

Also written as

$$\begin{cases} \max_{\lambda} -\frac{1}{2} \lambda^T X^T X \lambda + 1^T \lambda \\ y^T \lambda = 0 \\ \lambda \ge 0 \end{cases}$$

Where $X = \{y^i x^i\}.$

Once we have found λ^* , we can compute $w^* = \sum_i \lambda_i^* y^i x^i$ and $b^* = \frac{1}{y^i} - (w^*)^T x^i$ for any i s.t. $\lambda_i^* > 0$.

Linear SVM with slack variables

We must solve the problem

$$\begin{cases} \min \frac{1}{2} ||w||^2 + C \sum_i \xi_i \\ 1 - y_i(w^T x_i + b) \le -\xi_i \forall i \\ \xi_i \ge 0 \forall i \end{cases}$$

The dual problem is

$$\begin{cases} \max_{\lambda} -\frac{1}{2} \sum_{i} \sum_{j} y^{i} y^{j} (x^{i})^{T} x^{j} \lambda_{i} \lambda_{j} + \sum_{i} \lambda_{i} \\ \sum_{i} y^{i} \lambda_{i} = 0 \\ 0 \leq \lambda_{i} \leq C \forall i \end{cases}$$

Also written as

$$\begin{cases} \max_{\lambda} -\frac{1}{2}\lambda^T X^T X \lambda + 1^T \lambda \\ y^T \lambda = 0 \\ 0 \le \lambda \le C \end{cases}$$

Where $X = \{y^i x^i\}.$

Once we have found λ^* , we can compute $w^* = \sum_i \lambda_i^* y^i x^i$ and $b^* = \frac{1}{y^i} - (w^*)^T x^i$ for any i s.t. $0 < \lambda_i^* < C$.

Kernel SVM with slack variables

We must solve the problem

$$\begin{cases} \min \frac{1}{2} ||w||^2 + C \sum_i \xi_i \\ 1 - y_i(w^T \phi(x_i) + b) \le -\xi_i \forall i \\ \xi_i \ge 0 \forall i \end{cases}$$

w might be infinite-dimensional so we have to use the dual problem.

The dual problem is

$$\begin{cases} \max_{\lambda} -\frac{1}{2} \sum_{i} \sum_{j} y^{i} y^{j} \phi(x^{i})^{T} \phi(x^{j}) \lambda_{i} \lambda_{j} + \sum_{i} \lambda_{i} \\ \sum_{i} y^{i} \lambda_{i} = 0 \\ 0 \leq \lambda_{i} \leq C \forall i \end{cases}$$

Also written as

$$\begin{cases} \max_{\lambda} -\frac{1}{2} \lambda^T K \lambda + 1^T \lambda \\ y^T \lambda = 0 \\ 0 \le \lambda \le C \end{cases}$$

Where $K = \{k_{ij} = y^i y^j k(x^i, x^j)\}$ is the kernel matrix and $k(x^i, x^j) = \phi(x^i)^T \phi(x^j)$ is the kernel function.

In this way we never need to compute $\phi(x)$.

We then choose an i s.t. $0 < \lambda_i < C$ and compute $b^* = \frac{1}{y^i} - \sum_j \lambda_j^* y^j k(x^i, x^j)$.

The decision function will be:

$$f(x) = \mathrm{sign}(\sum_i \lambda_i^* y^i k(x^i, x) + b^*)$$

e-SV Regression

Linear ε -SV Regression

The problem is

$$\begin{cases} \min \frac{1}{2} ||w||^2 \\ |y_i - w^T x_i - b| \le \varepsilon \forall i \end{cases}$$

We can split the absolute value into two inequalities:

$$\begin{cases} \min \frac{1}{2} ||w||^2 \\ y_i - w^T x_i - b \le \varepsilon \forall i \\ -y_i + w^T x_i + b \le \varepsilon \forall i \end{cases}$$

Linear ε -SV Regression with slack variables

The problem is

$$\begin{cases} \min \frac{1}{2} ||w||^2 + C \sum_i \xi_i \\ y_i - w^T x_i - b \le \varepsilon + \xi_i^+ \forall i \\ -y_i + w^T x_i + b \le \varepsilon + \xi_i^- \forall i \\ \xi_i^+ \ge 0 \forall i \\ \xi_i^- \ge 0 \forall i \end{cases}$$

The dual problem is

$$\begin{cases} \max_{\lambda^+,\lambda^-} -\frac{1}{2} \sum_i \sum_j (\lambda_i^+ - \lambda_i^-) (\lambda_j^+ - \lambda_j^-) (x^i)^T x^j \\ -\varepsilon \sum_i (\lambda_i^+ + \lambda_i^-) + \sum_i y_i (\lambda_i^+ - \lambda_i^-) \\ \sum_i (\lambda_i^+ - \lambda_i^-) = 0 \\ 0 \le \lambda_i^+ \le C \forall i \\ 0 \le \lambda_i^- \le C \forall i \end{cases}$$

In matrix form

$$\begin{cases} \max_{\lambda^+,\lambda^-} -\frac{1}{2} \begin{pmatrix} \lambda^+ \\ \lambda^- \end{pmatrix}^T Q \begin{pmatrix} \lambda^+ \\ \lambda^- \end{pmatrix} + \begin{pmatrix} -\varepsilon \mathbf{1}^T + \begin{pmatrix} y \\ -y \end{pmatrix}^T \end{pmatrix} \begin{pmatrix} \lambda^+ \\ \lambda^- \end{pmatrix} \\ \mathbf{1}^T (\lambda^+ - \lambda^-) = 0 \\ 0 \le \lambda^+ \le C \\ 0 < \lambda^- < C \end{cases}$$

With
$$Q = \begin{pmatrix} K & -K \\ -K & K \end{pmatrix}$$
 and $K_{ij} = x^i \cdot x^j$.

We can find w and b from the dual solution

$$w = \sum_{i} (\lambda_i^+ - \lambda_i^-) x_i$$

If $\exists i \text{ s.t. } 0 < \lambda_i^+ < C \text{ then } b = y_i - w^T x_i - \varepsilon.$

If $\exists i \text{ s.t. } 0 < \lambda_i^- < C \text{ then } b = y_i - w^T x_i + \varepsilon.$

Non-linear ε -SV Regression

We can just replace $x^i \cdot x^j$ with $K(x^i, x^j)$ in the dual problem of the linear ε -SV Regression with slack variables.

The regression function is

$$f(x) = \sum_{i} (\lambda_i^+ - \lambda_i^-) K(x^i, x) + b$$

Where b is computed as

If $\exists i \text{ s.t. } 0 < \lambda_i^+ < C \text{ then}$

$$b = y_i - \varepsilon - \sum_j (\lambda_j^+ - \lambda_j^-) K(x^j, x^i)$$

If $\exists i \text{ s.t. } 0 < \lambda_i^- < C \text{ then}$

$$b = y_i + \varepsilon - \sum_j (\lambda_j^+ - \lambda_j^-) K(x^j, x^i)$$

Clustering

K-means

The problem is

$$\begin{cases} \min \sum_{i} \min_{j=1...k} ||p_i - x_j||_2^2 \\ x_j \in \mathbb{R}^n \forall j \end{cases}$$

If k = 1 the solution is $x_1 = \frac{1}{n} \sum_i p_i$.

If k > 1 the problem is non-convex and non differentiable.

If we fix p_i and x_j then the problem is

$$\begin{cases} \min \sum_{j=1...k} \alpha_{ij} ||p_i - x_j||_2^2 \\ \sum_{j=1...k} \alpha_{ij} = 1 \\ \alpha_{ij} \ge 0 \forall j \end{cases}$$

An optimal solution is $\alpha_{ij} = 1$ if $j = \operatorname{argmin}_{j=1...k} ||p_i - x_j||_2^2$ and 0 otherwise.

The problem is equivalent to

$$\begin{cases} \min \sum_{i} \sum_{j=1...k} \alpha_{ij} ||p_i - x_j||_2^2 \\ \sum_{j=1...k} \alpha_{ij} = 1 \\ \alpha_{ij} \ge 0 \forall j \\ x_j \in \mathbb{R}^n \forall j \end{cases}$$

If we fix x_j then the problem is decomposable in n simple LP problems (in α_{ij}).

$$\alpha_{ij}^* = \begin{cases} 1 & \text{if } j = \operatorname{argmin}_{j=1...k} ||p_i - x_j||_2^2 \\ 0 & \text{otherwise} \end{cases}$$

If we fix α_{ij} then the problem is decomposable in k convex QP problems in x.

$$x_j^* = \frac{\sum_i \alpha_{ij} p_i}{\sum_i \alpha_{ij}}$$

We can then create an algorithm of alternating minimization:

- 1. Initialize x_j randomly and assign α_{ij} as above.
- 2. Update x_j as above.
- 3. Update α_{ij} as above.
- 4. Given $f(x, \alpha) = \sum_{i} \sum_{j} \alpha_{ij} ||p_i x_j||_2^2$ If $f(x^{t+1}, \alpha^{t+1}) = f(x^t, \alpha^t)$ then STOP.
 - Else go to Step 2.

K-median

If we replace the L_2 norm with the L_1 norm we get the K-median problem.

The solution is equivalent to the K-means problem but we update x_i with the median instead of the mean.

Solution methods

Linear equality constraints

The problem

$$\begin{cases} \min f(x) \\ Ax = b \end{cases}$$

A can be written as $A = [A_1, A_2]$ with $det(A_1) \neq 0$ and $A_1 \in \mathbb{R}^{p \times p}$. x can be written as $x = [x_1, x_2]$ with $x_1 \in \mathbb{R}^p$

We can then set $x_1 = A_1^{-1}(b - A_2x_2)$ and thus eliminating the variables x_1 from the problem.

The problem becomes unconstrained in n-p variables x_2

$$\begin{cases} \min f(A_1^{-1}(b - A_2 x_2), x_2) \\ x_2 \in \mathbb{R}^{n-p} \end{cases}$$

Penalty method

The problem

$$\begin{cases} \min f(x) \\ g_i(x) \le 0 \forall i \end{cases} \tag{P}$$

With X the feasible set.

We can define the penalty function

$$p(x) = \sum_{i=1}^{m} \max(0, g_i(x))$$

And then the problem becomes

$$\begin{cases} \min f(x) + \frac{1}{\varepsilon}p(x) := f_{\varepsilon}(x) \\ x \in \mathbb{R}^n \end{cases}$$
 (P_{ε})

If x^* solves (P_{ε}) and $x^* \in X$ then x^* also solves (P).

The algorithm to find the solution of (P) is

- 1. Set $\varepsilon = \varepsilon_0 > 0$ and $\tau \in (0, 1)$.
- 2. Solve (P_{ε}) and get x^* .
- 3. Then
 - If $x^* \in X$ then STOP.
 - Else set $\varepsilon = \tau \varepsilon$ and go to step 2.

If f is coercive then the sequence of solutions x^* is bounded and converges to a solution of (P).

If the sequence converges to a point, that point is a solution of (P).

Exact penalty method

Same as the penalty method but the penalty function is defined as

$$\tilde{p}(x) = \sum_{i=1}^{m} \max(0, g_i(x))$$

The resulting problem $(\tilde{P}_{\varepsilon})$ is unconstrained, convex and non-smooth.

Logarithmic barrier method

The problem

$$\begin{cases} \min f(x) \\ g_i(x) \le 0 \forall i \end{cases} \tag{P}$$

With X the feasible set.

Can be approximated inside int(X) by the problem

$$\begin{cases} \min f(x) - \varepsilon \sum_{i=1}^{m} \log(-g_i(x)) := \psi_{\varepsilon}(x) \\ x \in \text{int}(X) \end{cases}$$
 (P_{ε})

We call $B(x) = -\sum_{i=1}^{m} \log(-g_i(x))$ the barrier function. So $\psi_{\varepsilon}(x) = f(x) - \varepsilon B(x)$.

Note that as x approaches the boundary of X, $\psi_{\varepsilon}(x) \to +\infty$

If x^* is a local minimum of (P_{ε}) then

$$\nabla \psi_{\varepsilon}(x^*) = \nabla f(x^*) - \varepsilon \sum_{i=1}^{m} \frac{\nabla g_i(x^*)}{-g_i(x^*)} = 0$$

We can show that $v(P) = v(P_{\varepsilon}) - m\varepsilon$ where m is the number of constraints.

The algorithm is

1. Set the tolerance $\delta>0$ and $\tau\in(0,1)$ and $\varepsilon_1>0$. Choose $x^0\in\mathrm{int}X$ set k=1

2. Find the optimal solution x^k of

$$\begin{cases} \min \psi_{\varepsilon}(x) \\ x \in \text{int} X \end{cases}$$

using x^{k-1} as a starting point.

- 3. Then
 - If $m\varepsilon_k < \delta$ then STOP.
 - Else $\varepsilon_{k+1} = \tau \varepsilon_k$ and k = k+1 and go to step 2.

To find a starting point x^0 we can solve the problem

$$\begin{cases} \min s \\ g_i(x) \le s \forall i \end{cases}$$

With the Logarithmic barrier method starting from any $\tilde{x} \in \mathbb{R}^n$ and $\tilde{s} > \max g(\tilde{x})$. If $s^* < 0$ then $x^* \in \text{int} X$, otherwise $\text{int} X = \emptyset$.

Multiobjective optimization

The problem is defined as follows:

$$\begin{cases}
\min f(x) = (f_1(x), f_2(x), \dots, f_s(x)) \\
x \in X
\end{cases}$$

Given $x, y \in \mathbb{R}^s$ we say that $x \geq y$ if $x_i \geq y_i \forall i = 1, \dots, s$.

- A point \bar{x} is said to be Pareto ideal minimum (IMin) if $\bar{x} \leq x \forall x \in X$
- A point \bar{x} is said to be Pareto **minimum** (Min) if $\not\exists x \in X : x \neq \bar{x}$ and $\bar{x} > x$
- A point \bar{x} is said to be Pareto weak minimum (WMin) if $\not\exists x \in X : \bar{x} > x$ and $\bar{x}_i > x_i \forall i$

If there exists $\hat{x} \in A$ s.t. $A \cap (\hat{x} - \mathbb{R}^s_+)$ is compact, then $Min(A) \neq \emptyset$.

If f_i is continuous and X is compact, then there exists a Pareto **minimum** of the problem.

If f_i is continuous for any $i \in \{1, ..., s\}$ and X is closed and there exists $v \in \mathbb{R}$ and $j \in \{1, ..., s\}$ s.t. the sublevel set

$$\{x \in X : f_i(x) \le v\}$$

is non-empty and bounded, then there exists a minimum of the problem.

Auxiliary optimization problem

 $x^* \in X$ is a **minimum** of (P) iff the auxiliary optimization problem

$$\begin{cases} \max \sum_{i=1}^{s} \varepsilon_{i} \\ f_{i}(x) + \varepsilon_{i} \leq f_{i}(x^{*}) \forall i \\ x \in X \\ \varepsilon \geq 0 \end{cases}$$

has optimal value 0

 $x^* \in X$ is a **weak minimum** of (P) iff the auxiliary optimization problem

$$\begin{cases} \max v \\ v \le \varepsilon_i \forall i \\ f_i(x) + \varepsilon_i \le f_i(x^*) \forall i \\ x \in X \\ \varepsilon \ge 0 \\ \sum_{i=1}^s \varepsilon_i = 0 \end{cases}$$

has optimal value 0

If x^* is a **weak minimum** then there exists $\theta^* \in \mathbb{R}^s$ such that (x^*, θ^*) is a solution of the system

$$\begin{cases} \sum_{i=1}^{s} \theta_{i} \nabla f_{i}(x) = 0\\ \theta_{i} \geq 0 \forall i\\ \sum_{i=1}^{s} \theta_{i} = 1\\ x \in \mathbb{R}^{n} \end{cases}$$
 (S)

If the problem is convex, the above condition is also sufficient. If $\theta^* > 0$ then x^* is a **minimum**.

Multiobjective KKT system

If x^* is a **weak minimum** of (P) and ACQ holds at x^* , then there exists $\theta^* \in \mathbb{R}^s, \lambda^* \in \mathbb{R}^m, \mu^* \in \mathbb{R}^p$ such that $(x^*, \theta^*, \lambda^*, \mu^*)$ is a solution of the system

$$\begin{cases} \sum_{i=1}^{s} \theta_i \nabla f_i(x) + \sum_{j=1}^{m} \lambda_j \nabla g_j(x) + \sum_{k=1}^{p} \mu_k \nabla h_k(x) = 0 \\ \theta_i \ge 0 \forall i \\ \sum_{i=1}^{s} \theta_i = 1 \\ \lambda \ge 0 \\ \lambda_j g_j(x^*) = 0 \forall j \\ g_j(x) \le 0, h_k(x) = 0 \end{cases}$$

If the problem is unconstrained then the KKT system reduces to (S).

If $\theta^* > 0$ then x^* is a **minimum**.

Weighted sum method

Given the problem

$$\begin{cases}
\min f(x) = (f_1(x), f_2(x), \dots, f_s(x)) \\
x \in X
\end{cases}$$
(P)

And a set of weights $\alpha = \{\alpha_1, \dots \alpha_s\} \geq 0$ associated with the objectives f_i .

We associate with (P) the scalar problem

$$\begin{cases} \min \sum_{i=1}^{s} \alpha_i f_i(x) \\ x \in X \end{cases} \tag{P_{\alpha}}$$

The solutions of (P_{α}) are weak minima of (P) if $\alpha_i \geq 0$ for all i and are minima if $\alpha_i > 0$ for all i.

If the problem is convex, any weak minimum of (P) can be obtained given the right weights α .

If (P) is linear and X is a polyhedron, then any minimum of (P) can be obtained given the right weights α .

Goal method

Define $z_i = \min_{x \in X} f_i(x) \forall i$

We want to find the closest point to z in f(X).

$$\begin{cases} \min \sum_{i=1}^{s} ||f_i(x) - z_i||_q \\ x \in X \end{cases}$$
 (G)

If $q \in [1, +\infty)$ then any optimal solution of (G) is a minimum of (P).

If $q = +\infty$ then any optimal solution of (G) is a weak minimum of (P).

Game theory

A non-cooperative game is defined by a set of N players, each player i with a set of strategies X_i and a cost function $f_i: X_1 \times \ldots \times X_N \to \mathbb{R}$. The aim of each player is to solve

$$\begin{cases} \min f_i(x_1, \dots, x_N) \\ x_i \in X_i \end{cases}$$

Nash equilibrium

In a two-player non-cooperative game (2PNCG), a Nash equilibrium is a pair (\bar{x}, \bar{y}) s.t.

$$f_1(\bar{x}, \bar{y}) = \min_{x \in X} f_1(x, \bar{y})$$

and

$$f_2(\bar{x}, \bar{y}) = \min_{y \in Y} f_2(\bar{x}, y)$$

Matrix game

A matrix game is a 2PNCG with two finite sets of strategies $X = \{1, ..., m\}$ and $Y = \{1, ..., n\}$ and $f_2 = -f_1$. The game can be represented by a matrix $A = \{a_{ij} = f_1(i,j)\}$. (Player 2 wants to maximize the value on the matrix, while player 1 wants to minimize it.)

To have a Nash equilibrium (\bar{x}, \bar{y}) we need to have

$$f_1(\bar{x}, \bar{y}) = \min_{x \in X} f_1(x, \bar{y})$$

and

$$f_1(\bar{x}, \bar{y}) = \max_{y \in Y} f_1(\bar{x}, y)$$

Pure strategy Nash equilibrium algorithm In a two-player non-cooperative game, a strategy x is strictly dominated by x' if $f_1(x,y) > f_1(x',y)$ for all y. The opposite is true for player 2.

To find a pure strategy Nash equilibrium, we can use the following method:

- For each player
 - For each strategy

- * Check if the strategy is strictly dominated by at least one other strategy.
- * If it is, remove it from the set of strategies.
- Repeat until no more strategies can be removed.

If one pair of strategies is left, then it is a Nash equilibrium. If more than one pair is left we can use this other method to find the Nash equilibrium:

- Find all the minima along the columns of the matrix C.
- Find all the maxima along the rows of the matrix C.
- Remember to select all the strategies in a tie.
- If there is a pair of strategies that is both a minimum and a maximum, then it is a Nash equilibrium.

Mixed strategies In a matrix game C, a mixed strategy is a vector of probabilities $x=(x_1,\ldots,x_m)$ s.t. $x_i\geq 0$ and $\sum_{i=1}^m x_i=1$ for player 1 and $y=(y_1,\ldots,y_n)$ s.t. $y_j\geq 0$ and $\sum_{j=1}^n y_j=1$ for player 2.

The expected value of the game is $f_1(x,y) = x^T C y$ and $f_2(x,y) = -x^T C y$.

A Nash equilibrium exists if

$$\max_{y \in Y} \bar{x}^T C y = \bar{x}^T C \bar{y} = \min_{x \in X} x^T C \bar{y}$$

 (\bar{x}, \bar{y}) is a saddle point of $f_1(x, y)$.

It is always possible to find a mixed strategy Nash equilibrium in a finite matrix game.

The problem

$$\min_{x \in X} \max_{y \in Y} f_1(x, y)$$

is equivalent to

$$\begin{cases}
\min v \\
v \ge \sum_{i=1}^{m} c_{ij} x_i \forall j \\
x \ge 0 \\
\sum_{i=1}^{m} x_i = 1
\end{cases}$$
(P₁)

and

$$\max_{y \in Y} \min_{x \in X} f_1(x, y)$$

is equivalent to

$$\begin{cases}
\max w \\
w \le \sum_{j=1}^{n} c_{ij} y_j \forall i \\
y \ge 0 \\
\sum_{j=1}^{n} y_j = 1
\end{cases} (P_2)$$

These two problems are one the dual of the other.

Bimatrix game

A bimatrix game is a matrix game but with two matrices, one for each player. This means that $f_2 \neq -f_1$. $f_1(x,y) = x^T C_1 y$ and $f_2(x,y) = x^T C_2 y$.

Any bimatrix game has a mixed strategy Nash equilibrium.

 (\bar{x}, \bar{y}) is a Nash equilibrium iff $\exists \mu_1, \mu_2$ s.t.

$$\begin{cases}
C_1 \bar{y} + \mu_1 1_m \ge 0 \\
\bar{x} \ge 0 \\
\sum_{i=1}^m x_i = 1 \\
\bar{x}_i (C_1 \bar{y} + \mu_1 1_m)_i = 0 \forall i \\
C_2 \bar{x} + \mu_2 1_n \ge 0 \\
\bar{y} \ge 0 \\
\sum_{j=1}^n y_j = 1 \\
\bar{y}_j (C_2 \bar{x} + \mu_2 1_n)_j = 0 \forall j
\end{cases} (KS)$$

This is the KKT system for the problem.

 $(\bar{x}, \bar{y}, \mu_1, \mu_2)$ is a solution of the KKT system iff it's an optimal solution of this quadratic programming problem:

$$\begin{cases}
\min \psi(x, y, \mu_1, \mu_2) = \\
x^T (C_1 y + \mu_1 1_m) + y^T (C_2 x + \mu_2 1_n) \\
C_1 y + \mu_1 1_m \ge 0 \\
x \ge 0 \\
\sum_{i=1}^m x_i = 1 \\
C_2^T x + \mu_2 1_n \ge 0 \\
y \ge 0 \\
\sum_{i=1}^n y_i = 1
\end{cases} (QP)$$

Convex game

Consider a general 2PNCG

$$\begin{cases} \min f_1(x,y) \\ g_i^1(x) \le 0 \forall i \end{cases} \begin{cases} \min f_2(x,y) \\ g_j^2(y) \le 0 \forall j \end{cases}$$

If X and Y are convex sets, $f_1(\cdot, y)$ is quasiconvex $\forall y \in Y$ and $f_2(x, \cdot)$ is quasiconvex $\forall x \in X$, then the game has a Nash equilibrium.

If (\bar{x}, \bar{y}) is a Nash equilibrium and ACQ holds, then the double KKT system is satisfied:

$$\begin{cases} \nabla_x f_1(\bar{x}, \bar{y}) + \sum_{i=1}^p \lambda_i^1 \nabla g_i^1(\bar{x}) = 0 \\ \lambda_i^1 \geq 0 \\ g^1(\bar{x}) \leq 0 \\ \lambda_i^1 g_i^1(\bar{x}) = 0 \forall i \\ \nabla_y f_2(\bar{x}, \bar{y}) + \sum_{j=1}^q \lambda_j^2 \nabla g_j^2(\bar{y}) = 0 \\ \lambda_j^2 \geq 0 \\ g^2(\bar{y}) \leq 0 \\ \lambda_j^2 g_j^2(\bar{y}) = 0 \forall j \end{cases}$$