50 Hz

Baureihe CEA-CA in Edelstahl 1.4301 CEA(N)-CA(N) in Edelstahl 1.4404

Ein. und zweistufige Kreiselpumpen mit IE2/IE3-Motoren entsprechend EU-Richtlinie (EC) Nr. 640/2009

BAUREIHE CEA-CA – CEA(N)-CA(N) KENNFELDER BEI 50 Hz

INHALT

CEA-CEA(N) Allgemeine Technische Daten
CEA-CEA(N) Modell- und Werkstoffübersichten
CEA-CEA(N) Gleitringdichtungen
CEA-CEA(N) Hydraulische Leistungen und Betriebsdaten
CEA-CEA(N) Kennfelder und Kennlinien bei 50 Hz
CEA-CEA(N) Abmessungen und Gewichte
CA-CA(N) Allgemeine Technische Daten
CA-CA(N) Modell- und Werkstoffübersichten
CA-CA(N) Gleitringdichtungen 22
CA-CA(N) Hydraulische Leistungen und Betriebsdaten
CA-CA(N) Kennfelder und Kennlinien bei 50 Hz26
CA-CA(N) Abmessungen und Gewichte
Technischer Anhang

Einstufige Kreiselpumpen

Baureihe

CEA-CEA(N)

EINSATZGEBIETE

Industrie, Haus- und Gebäudetechnik, Landwirtschaft.

ANWENDUNG

Ausführung aus Edelstahl 1.4301

- Förderung von chemisch und mechanisch nicht aggressiven Medien (*)
- Wasserversorgung
- Bewässerung
- Wärmerückgewinnung, Temperiertechnik, Kühlanlagen
- Für mäßig aggressive Medien ist die Ausführung mit FPM Elastomeren erhältlich /CEA.../...-V). Bei aggressiven Medien fragen Sie bitte unser Verkaufspersonal.

Ausführung "N" aus Edelstahl 1.4404 (für aggressive Medien)

- Umkehrosmose (beim Einsatz von demineralisiertem Wasser)
- Industrielle Waschanlagen, Oberflächentechnik
- Warmwasser
- Chlordosierung in Schwimmbädern
- Schmuckindustrie
- Weingüter und -kellereien

Drehstrom: 220-240 V / 380-415 V, 50 Hz, 2-polig, Überlastschutz muss bauseitig gestellt werden

• Kondensat-Stopfen als Standard

PUMPE

- Fördermenge bis 520 l/min $(31 \text{ m}^3/\text{h})$
- Förderhöhe bis 32 m
- max. Temperatur des Fördermediums: -10° bis +85° C Standard
- max. **Betriebsdruck**: 8 bar (PN8)
- Drehrichtung im Uhrzeigersinn (vom Motorlüfter zur Pumpe hin betrachtet)

TECHNISCHE DATEN

MOTOR

- geschlossener Motor mit Lüfterrad, Rippengehäuse aus Aluminiumlegierung
- Schutzart IP55
- Isolationsklasse 155 (F)
- Leistungen gemäß EN 60034-1
- Standardspannungen: Wechselstrom: 220-240 V, 50 Hz, 2-polig mit eingebautem Überlastschutz bis 1,5 kW. Für höhere Leistungen muss Überlastschutz bauseitig gestellt werden.

KONSTRUKTIONSMERK-**MALE**

- Horizontale, einstufige normalsaugende Kreiselpumpe in kompakter Blockbauform und saug-/druckseitigem Gewindeanschluss
- Kompakte Konstruktion: Blockpumpe, verlängerte Motorwelle mit Kugellagern
- Back-Pull-Out-Design: bei gezogener Läufereinheit bleibt das Pumpengehäuse in der Rohrlei-
- Druck- und Saugstutzen mit Gewindeanschluss (Rp UNI-ISO7)
- Geschlossenes Laufrad aus Edelstahl 1.4301 (Edelstahl 1.4404 bei der N-Ausführung)
- Gleitringdichtung: Keramik/ Kohle, Elastomere NBR (EPDM bei der N-Ausführuna), übrige Teile aus Edelstahl 1.4301 (Edelstahl 1.4404 bei der N-Ausführung) Abmessungen gemäß EN 12756 (DIN 24960) und ISO 3069
- O-Ringe aus NBR (EPDM bei der N-Ausführung)
- Stützfuß am Pumpengehäuse

AUF ANFRAGE

- Verschiedene Spannungen und Frequenzen
- Verschiedene Werkstoffqualitäten für Gleitringdichtungen und O-Ringe

☐ Standardmäßig ausgestattet mit IE2-**Motoren entsprechend EU-Richtlinie (EC) Nr.** 640/2009

BEZEICHNUNGSSCHLÜSSEL Die Pumpen der Baureihe CEA werden wie folgt bezeichnet:

BEISPIEL: CEAM 120/5-V Pumpe der Baureihe CEA, Wechselstromausführung, Nennförderleistung 120 l/min, 50 Hz, Laufradgröße 5, Ausführung in FPM

TYPENSCHILD

TYPENSCHILD

- 1 Pumpentyp
- 2 Artikelnummer
- 3 Nennfördermenge
- 4 Nennförderhöhe
- 5 Motortyp
- 6 Produktionsdatum und Seriennummer
- 8 Mindestförderhöhe
- 11 Motornennleistung
- 12 Schutzart der Pumpe mit Motor
- 13 Max. Temperatur des Fördermediums

BAUREIHE CEA-CEA(N) MODELL- UND WERKSTOFFÜBERSICHTEN

BAUREIHE CEA WERKSTOFFÜBERSICHTEN

Nr.	BAUTEIL	WERKSTOFFE	BEZEICHNUNG DER NORM					
			EUROPA	USA				
1	Pumpengehäuse	Edelstahl	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304				
2	Laufrad	Edelstahl	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304				
3	Diffusor	Edelstahl	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304				
4	Gehäusedeckel	Edelstahl	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304				
5	Adapter	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-				
12	Gleitringdichtung	Keramik/Kohle/NBR (Standard)						
13	Elastomere	NBR (Standard)						
16	Befüll-/Entleerungsschraube	Edelstahl	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316				
26	Laufradmutter	Edelstahl	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316				
27	Stützfuß	lackierter Stahl						
28	Befestigungsschrauben des Stützfußes	verzinkter Stahl						
29	Wellenende	Edelstahl	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316				

BAUREIHE CEA(N) WERKSTOFFÜBERSICHTEN

cea-cea_b_tm

Nr.	BAUTEIL	WERKSTOFFE	BEZEICHNUNG DER NO	PRM
			EUROPA	USA
1	Pumpengehäuse	Edelstahl	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
2	Laufrad	Edelstahl	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
3	Diffusor	Edelstahl	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
4	Gehäusedeckel	Edelstahl	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
5	Adapter	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	1
12	Gleitringdichtung	Keramik/Kohle/NBR (Standard)		
13	Elastomere	EPDM (Standard)		
16	Befüll-/Entleerungsschraube	Edelstahl	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
26	Laufradmutter	Edelstahl	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
27	Stützfuß	lackierter Stahl		
28	Befestigungsschrauben des Stützfußes	verzinkter Stahl		
29	Wellenende	Edelstahl	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316

cea-ceaN_a_tm

CEA-CA, CEA(N), GLEITRINGDICHTUNGEN GEM. EN 12756

Abmessungen der Gleitringdichtung gem. EN 12756 (früher DIN 24960) und ISO 3069

CEA-CA, CEA(N) - WERKSTOFFE

Nr. 1 - 2	Nr. 3	Nr. 4 – 5
B : Kunstharzimpṛägṇierte Kohle	P : NBR	F : Edelstahl 1.4301
C : Spezial-Kunstharzimprägnierte Kohle	E : EPDM	G : Edelstahl 1.4404
Q ₁ : Siliziumkarbid	V : FPM	
U ₃ : Wolframkarbid		
V : Keramik		

cea-ca_ten-mec_b_tm

CEA – DICHTUNGSVARIANTEN

			Nr.			Temperatur							
Тур	1	2	3	4	5	(℃)							
	ROTIERENDES TEIL	STATIONÄRES TEIL	Elastomere	Feder	andere Bauteile	()							
		STANDARDWER	KSTOFFE GLEITRIN	GDICHTUNG									
V B P GF													
		SONDERWERK	STOFFE GLEITRING	DICHTUNG									
VBEGG	V	В	E	G	G	-10 +110							
VCEGG	V	U	E	G	G	-10 +110							
Q ₁ Q ₁ EGG	Q ₁	Q ₁	E	G	G	-10 +110							
U₃CEGG	U ₃	O	E	G	G	-10 +110							
U₃U₃EGG	U ₃	U₃	E	G	G	-10 +110							
VBVGG	V	В	V	G	G	-10 +110							
VCVGG	V	U	٧	G	G	-10 +110							
Q_1Q_1VGG	Q ₁	Q ₁	>	G	G	-10 +110							
U₃CVGG	U ₃	C	>	G	G	-10 +110							
U₃U₃VGG	U ₃	U ₃	V	G	G	-10 +110							

cea_tipi-ten-mec_b_tc

CEA(N)- – DICHTUNGSVARIANTEN

		Nr.												
Тур	1	2	3	4	5	(℃)								
	ROTIERENDES TEIL	STATIONÄRES TEIL	Elastomere	Feder	andere Bauteile	(C)								
		STANDARDWER	KSTOFFE GLEITRIN	GDICHTUNG										
V B E G G	V	В	Е	G	G	-10 +110								
		SONDERWERK	STOFFE GLEITRING	DICHTUNG										
VCEGG	V	U	E	G	G	-10 +110								
$Q_1 Q_1 E G G$	Q ₁	Q ₁	E	G	G	-10 +110								
VCVGG	V	С	V	G	G	-10 +110								
$Q_1 Q_1 V G G$	Q ₁	Q ₁	٧	G	G	-10 +110								

cean-can_tipi-ten-mec_b_tc

BAUREIHE CEA-CEA(N) TABELLE DER HYDRAULISCHEN LEISTUNGEN BEI 50 Hz, 2POLIG

Pumpentyp	Nei	nn-								Q =	- Förd	erme	nge							
	leist	ung	l/min 0	30	40	60	80	100	120	140	160	180	200	250	300	350	400	430	480	520
			m³/h 0	1,8	2,4	3,6	4,8	6	7,2	8,4	9,6	10,8	12	15	18	21	24	26	29	31
	kW	HP		,	,			Н	= För	derhö	he in	Mete	Wass	ersäu	le					
CEA(M) 70/3	0,37	0,5	22,0	20,1	19,1	16,6	12,8													
CEA(M) 70/5	0,55	0,75	31,1	28,8	27,7	24,7	20,2													
CEA(M) 80/5	0,75	1	32,0	30,0	29,3	27,4	24,7	21,0												
CEA(M) 120/3	0,55	0,75	22,4			18,9	17,5	15,9	14,0	11,8	9,2									
CEA(M) 120/5	0,9	1,2	31,8			28,2	26,5	24,6	22,4	20,0	17,3									
CEA(M) 210/2	0,75	1	17,7						16,5	16,1	15,6	15,0	14,4	12,6	10,4					
CEA(M) 210/3	1,1	1,5	20,8						19,7	19,3	19,0	18,5	18,0	16,5	14,4					
CEA(M) 210/4	1,5	2	25,5						24,8	24,5	24,0	23,6	23,0	21,3	19,0					
CEA(M) 210/5	1,85	2,5	29,0						28,2	27,9	27,5	27,1	26,6	25,1	23,1					
CEA(M) 370/1	1,1	1,5	16,3									15,5	15,2	14,3	13,0	11,4	9,4	8,1		
CEA(M) 370/2	1,5	2	20,4										19,1	18,3	17,2	15,8	14,1	13,0	10,8	
CEA(M) 370/3	1,85	2,5	24,4										22,9	22,1	21,1	19,8	18,2	17,1	15,0	13,0
CEA370/5	3	4	30,3										28,3	27,5	26,5	25,3	23,8	22,8	20,8	19,0

cea-2p50 d th

BAUREIHE CEA-CEA(N) BETRIEBSDATEN, 50 Hz, 2POLIG

PUMPENTYP	MOTORTYP	NENN- LEISTUNG*	Strom- Aufnahme*	Konden- sator	PUMPENTYP	MOTORTYP	NENN- LEISTUNG*	STROM- AUFNAHME*	Strom- Aufnahme*
WECHSEL- STROM			220-240 V		DREHSTROM			220-240 V	380-415 V
		kW	Α	μF / 450 V			kW	Α	Α
CEAM70/3	SM63BG/1045	0,60	2,72	14	CEA70/3	SM63BG/304	0,61	2,51	1,45
CEAM70/5	SM71BG/1055	0,97	4,55	16	CEA70/5	SM71BG/305	0,88	2,86	1,65
CEAM80/5	SM71BG/1075	1,07	4,87	20	CEA80/5	SM80BG/307PE	0,98	3,08	1,78
CEAM120/3	SM71BG/1055	0,91	4,33	16	CEA120/3	SM71BG/305	0,82	2,74	1,58
CEAM120/5	SM71BG/1095	1,39	6,24	25	CEA120/5	SM80BG/311PE	1,28	4,10	2,37
CEAM210/2	SM71BG/1075	1,13	5,10	20	CEA210/2	SM80BG/307PE	1,04	3,22	1,86
CEAM210/3	SM80BG/1115	1,48	6,68	30	CEA210/3	SM80BG/311PE	1,35	4,24	2,45
CEAM210/4	SM80BG/1155	1,91	8,60	40	CEA210/4	SM80BG/315PE	1,73	5,46	3,15
CEAM210/5	PLM90BG/1225	2,24	10,2	70	CEA210/5	PLM90BG/322	2,20	7,35	4,24
CEAM370/1	SM80BG/1115	1,49	6,75	30	CEA370/1	SM80BG/311PE	1,40	4,35	2,51
CEAM370/2	SM80BG/1155	2,05	9,26	40	CEA370/2	SM80BG/315PE	1,95	5,94	3,43
CEAM370/3	PLM90BG/1225	2,45	11,1	70	CEA370/3	PLM90BG/322	2,45	7,84	4,53
					CEA370/5	PLM90BG/330	3,26	10,1	5,86

^{*} Höchstwerte im Betriebsbereich cea-2p50_f_te

MOTOREN FÜR BAUREIHEN CEA-CEA(N)

Standardmäßig gelieferte IE2-Drehstrom-Motoren ≥ 0,75 kW entsprechen EU-Richtlinie (EC) Nr. 640/2009 und IEC 60034-30.

Leistungen gem. EN 60034-1.

Isolationsklasse 155 (F), Schutzart IP55. Standardmäßig mit Kondensat-Ablassschraube.

Gekühlt mit Lüfter gem. EN 60034-6

Metrische Kabelverschraubung gem. EN 50262. Standardspannung:

• **Wechselstrom**: 220-240 V, 50 Hz (mit integriertem automatischen Reset, Überlastschutz)

• **Drehstrom**: 220-240/380-415 V, 50 Hz (ein Überlastschutz ist bauseitig vorzusehen).

WECHSELSTROMMOTOREN, 50 Hz, 2POLIG

		C RÖßE*	FORM	STROM- AUFNAHME	KONDE	NSATOR		BETRI	EBSDAT	EN BEI	400 V /	50 Hz	
P _N	MOTORTYP	IEC	2	In (A)							Tn		
kW		BA	ВА	220-240 V	μF	V	min ⁻¹	ls / In	η%	cosφ	Nm	Ts/Tn	Tm/Tn
0,4	SM63BG/1045	63		2,79-2,85	14	450	2745	2,64	65,1	0,96	1,39	0,68	1,63
0,55	SM71BG/1055	71		3,76-3,99	16	450	2820	3,72	68,9	0,91	1,86	0,61	2,00
0,75	SM71BG/1075	71	ER	4,90-4,85	20	450	2765	3,42	70,1	0,96	2,59	0,58	1,75
0,95	SM71BG/1095	71	N Q	6,25-5,89	25	450	2740	3,39	71,1	0,98	3,31	0,58	1,66
1,1	SM80BG/1115	80	S	6,88-6,65	30	450	2800	3,89	74,7	0,96	3,75	0,46	1,72
1,5	SM80BG/1155	80		9,21-8,58	40	450	2810	4,00	76,1	0,98	5,09	0,39	1,74
1,85	PLM80BG/1225	90		12,5-11,6	70	450	2825	4,47	82,4	0,97	7,43	0,53	1,87

DREHSTROMMOTOREN, 50 Hz, 2POLIG

cea-motm-2p50 a te

	Effizienz 🖺 🐰													-sr						
		Δ 220 V			Δ 230 V			Δ 240 V			∆ 380 V			Δ 400 V			∆ 415 V	'		duktio jahr
P _N kW	4/4	Y 380 V 3/4	2/4	4/4	Y 400 V 3/4	2/4	4/4	Y 415 V 3/4	2/4	4/4	Y 660 V 3/4	2/4	4/4	Y 690 V 3/4	2/4	4/4	3/4	2/4	IE	Proc
0,4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
0,55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
0,75	82,5	83,1	81,3	82,8	82,7	80,1	82,6	82,0	78,9	82,5	82,0	78,9	82,5	82,0	78,9	82,5	82,0	78,9		
0,9	84,0	84,7	83,4	84,4	84,5	82,5	84,3	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	2	20.
1,1	84,0	84,7	83,4	84,4	84,5	82,5	84,3	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	ر	Juni
1,5	85,6	86,5	85,8	85,9	86,4	84,9	86,0	86,0	84,0	85,6	86,0	84,0	85,6	86,0	84,0	85,6	86,0	84,0		
1,85	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7		bis
2,2	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	2	
3	85,5	86,8	85,6	86,1	86,8	85,6	86,3	86,8	85,6	85,5	86,8	85,6	85,5	86,8	85,6	85,5	86,8	85,6		

	Hersteller	* <u> </u>	Σ						=					
	Lowara srl Unipersonale	, ig	Ä				BETKIEBSD	ATEN BEI 40	0 V / 50 Hz					
	Reg. No. 03471820260	띮뽔	F.			T _N								
P_N	Montecchio Maggiore Vicenza - Italia	IEC AUGRÖßE*	BAUFORM	Anz.	f _N									
kW	Тур	8/	Ã	Pole	Hz	cosφ	Is / I _N	Nm	Ts/T _N	Tm/Tn				
0,4	SM63BG/304	63				0,66	4,32	1,38	4,14	3,13				
0,55	SM71BG/305	71				0,74	5,97	1,85	3,74	3,56				
0,75	SM80BG/307PE	80	~			0,78	7,38	2,48	3,57	3,75				
0,9	SM80BG/311PE	80	SONDER			0,79	8,31	3,63	3,95	3,95				
1,1	SM80BG/311PE	80		2	50	0,79	8,31	3,63	3,95	3,95				
1,5	SM80BG/315PE	80	SC			0,80	8,80	4,96	4,31	4,10				
1,85	PLM90BG/322	90				0,80	8,63	7,25	3,74	3,71				
2,2	PLM90BG/322	90				0,80	8,63	7,25	3,74	3,71				
ч	PLM90RG/330	90				0.82 8.39 9.96 3.50 3.32								

					SPAI	NNUN V	G U _N					Betriebs	bedingunger	า **		
		Δ			Υ			Δ		١	′			Höhe über	Umgebungstemp.	ATEX
P_N	220 V	230 V	240 V	380 V	400 V	415 V	380 V	400 V	415 V	660 V	690 V	n _N		Meeresspiegel	min/max.	
kW						I _N (A)						min ⁻¹		m	°C	
0,4	2,20	2,34	2,51	1,27	1,35	1,45	-	-	-	-	-	2740 ÷ 2790				
0,55	2,56	2,56	2,62	1,48	1,48	1,51	-	-	-	-	-	2825 ÷ 2850	шu			
0,75	2,96	2,94	2,96	1,71	1,70	1,71	1,70	1,69	1,70	0,98	0,98	2875 ÷ 2895	₹			
0,9	4,19	4,14	4,16	2,42	2,39	2,40	2,41	2,38	2,38	1,39	1,37	2870 ÷ 2900	s.			
1,1	4,19	4,14	4,16	2,42	2,39	2,40	2,41	2,38	2,38	1,39	1,37	2870 ÷ 2900		≤ 1000	-15 / 4 0	nein
1,5	5,56	5,49	5,51	3,21	3,17	3,18	3,21	3,18	3,19	1,85	1,84	2870 ÷ 2895				
1,85	8,05	8,04	8,09	4,65	4,64	4,67	4,62	4,61	4,63	2,67	2,66	2885 ÷ 2900				
2,2	8,05	8,04	8,09	4,65	4,64	4,67	4,62	4,61	4,63	2,67	2,66	2885 ÷ 2900				
3	10,8	10,6	10,6	6,23	6,14	6,12	6,18	6,10	6,06	3,57	3,52	2850 ÷ 2885				

cea-ie2-mott-2p50_b_te

^{*} Anmerkung = Beachten Sie die lokalen Vorschriften bezügl. Abfallentsorgung
** Betriebsbedingungen beziehen sich nur auf den Motor. Daten zur Pumpe entnehmen Sie bitte der Bedienungsanleitung.

VERFÜGBARE SPANNUNGEN MOTOREN FÜR BAUREIHEN CEA-CEA(N)

				WE	CHS	ELST	RON	/I	
			50 H	Z		(60 H	Z	
P _N kW	BAUGRÖßE	1 x 220-240	1 x 100	1 x 110-120	1 x 220-230	1 x 100	1x 110-115	1 x 120-127	1 x 200-210
0,4	63	S	0	0	S	-	0	-	-
0,55	71	S	0	0	S	0	0	0	0
0,75	71	S	0	0	S	0	0	0	0
0,95	71	S	0	0	S	0	0	0	0
1,1	80	S	-	0	S	-	0	-	0
1,5	80	S	-	-	S	-	0	-	0
2,2	90	S	-	-	S	-	-	-	-

									DR	REHS	TRO	M 2	-PO	LIG			
			,	50 Hz	Z						60	Hz				50/6	0 Hz
P _N kW	3 x 220-230-240/380-400-415	3 x 380-400-415/660-690	3 x 200-208/346-360	3 x 255-265/440-460	3 x 290-300/500-525	3 x 440-460/-	3 x 500-525/-	3 x 220-230/380-400	3 x 255-265-277/440-460-480	3 x 380-400/660-690	3 x 440-460-480/-	3 x 110-115/190-200	3 x 200-208/346-360	3 x 330-346/575-600	-/575 x S	3 x 230/400 50 Hz 3 x 265/460 60 Hz	3 x 400/690 50 Hz 3 x 460/- 60 Hz
0,4	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
0,55	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
0,75	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
0,95	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
1,1	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
1,5	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
2,2	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
3	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0

s = Standardspannung o = optional erhältliche Spannung

- = nicht verfügba

cea-volt-lowa_a_te

BAUREIHE CEA-CEA(N) KENNFELDER BEI 50 Hz, 2POLIG

BAUREIHE CEA70-CEA80 KENNLINIEN BEI 50 Hz, 2POLIG

CEA120 KENNLINIEN BEI 50 Hz, 2POLIG

CEA210 KENNLINIEN BEI 50 Hz, 2POLIG

CEA370 KENNLINIEN BEI 50 Hz, 2POLIG

BAUREIHE CEA ABMESSUNGEN UND GEWICHTE BEI 50 Hz, 2-POLIG

PUMPENTYP			AE	BMESSUN	GEN (mn	n)			DNA	DNM	GEWICHT
	Α	D	н	Н1	H2	L	L1	w			kg
CEAM 70/3/A	51	120	222	111	222	311	62	65	Rp 11/4	Rp 1	9,7
CEAM 70/5/A	51	140	222	111	232	325	76	65	Rp 11/4	Rp 1	11,6
CEAM 80/5/A	51	140	222	111	232	325	76	65	Rp 11/4	Rp 1	12,5
CEAM 120/3/A	51	140	222	111	232	325	76	65	Rp 11/4	Rp 1	11,5
CEAM 120/5/A	51	140	222	111	241	325	31	65	Rp 11/4	Rp 1	13
CEAM 210/2/A	54	140	224	113	232	339	76	76	Rp 1½	Rp 11/4	13
CEAM 210/3/A	54	156	224	113	248	385	69	76	Rp 1½	Rp 11/4	14,5
CEAM 210/4/A	54	156	224	113	248	385	69	76	Rp 1½	Rp 11/4	16,1
CEAM 210/5/P	54	174	224	113	262	429	84	76	Rp 1½	Rp 11/4	17
CEAM 370/1/A	54	156	224	113	248	385	69	76	Rp 2	Rp 11/4	14
CEAM 370/2/A	54	156	224	113	248	385	69	76	Rp 2	Rp 11/4	16,1
CEAM 370/3/P	54	174	224	113	262	429	84	76	Rp 2	Rp 11/4	20
CEA 70/3/A	51	120	222	111	222	311	62	65	Rp 11/4	Rp 1	9,7
CEA 70/5/A	51	140	222	111	232	325	76	65	Rp 11/4	Rp 1	11,6
CEA 80/5/D	51	155	222	111	240	371	114	65	Rp 11/4	Rp 1	14,4
CEA 120/3/A	51	140	222	111	232	325	76	65	Rp 11/4	Rp 1	11,5
CEA 120/5/D	51	155	222	111	240	371	114	65	Rp 11/4	Rp 1	14,6
CEA 210/2/D	54	155	224	113	240	385	114	76	Rp 1½	Rp 11/4	14,6
CEA 210/3/D	54	155	224	113	240	385	114	76	Rp 1½	Rp 11/4	16,4
CEA 210/4/D	54	155	224	113	240	385	114	76	Rp 11/2	Rp 11/4	17,9
CEA 210/5/C	54	174	224	113	245	429	172	76	Rp 1½	Rp 11/4	21
CEA 370/1/D	54	155	224	113	240	385	114	76	Rp 2	Rp 11/4	15,8
CEA 370/2/D	54	155	224	113	240	385	114	76	Rp 2	Rp 11/4	17,9
CEA 370/3/C	54	174	224	113	245	429	172	76	Rp 2	Rp 11/4	21
CEA 370/5/P	54	174	224	113	245	429	172	76	Rp 2	Rp 11/4	21

cea-2p50_h_td

Zweistufige

Baureihen

CA-CA(N)

EINSATZGEBIETE

Kreiselpumpen Industrie, Haus- und Gebäudetechnik, Landwirtschaft

ANWENDUNG

Ausführung aus Edelstahl 1.4301

- Förderung von chemisch und mechanisch nicht aggressiven Medien (*)
- Wasserversorgung
- Bewässerung
- Wärmerückgewinnung, Temperiertechnik, Kühlanlagen
- * Für mäßig aggressive Medien ist die Ausführung mit FPM Elastomeren erhältlich /CA.../...-V). Bei aggressiven Medien fragen Sie bitte unser Verkaufspersonal.

Ausführung "N" aus Edelstahl 1.4404 (für aggressive Medien)

- Umkehrosmose (beim Einsatz von demineralisiertem Wasser)
- Industrielle Waschanlagen, Oberflächentechnik
- Warmwasser
- Chlordosierung in Schwimmbädern
- Schmuckindustrie
- Weingüter und -kellereien

TECHNISCHE DATEN PUMPE

• Fördermenge: Bis zu 210 l/ min (12.5 m³/h)

• Förderhöhe: bis 62 m

- Temperaturbereich des Fördermediums: -10°C bis + 85°C (Standardausführung)
- Max. Betriebsdruck: 8 bar (PN8)
- Drehrichtung im Uhrzeigersinn (vom Motorlüfter zur Pumpe hin betrachtet)
- ☐ Standardmäßig ausgestattet mit IE2-**Motoren entsprechend** EU-Richtlinie (EC) Nr. 640/2009

MOTOR

- · Geschlossener Käfigläufer-Asynchronmotor mit Lüfterrad, Aluminiumgehäuse
- Schutzart IP 55
- Isolationsklasse 155 (F)
- Leistungsdaten gemäß EN 60034-1

- Standardspannungen: Wechselstrom 220-240 V. 50 Hz, 2polig mit eingebautem Überlastschutz bis 1,5 kW, bei höheren Leistungen muss Über-lastschutz bauseitig vorgesehen werden
 - **Drehstrom** 220-240/380-415V, 50 Hz, 2polig. Überlastschutz muss bauseitig vorgesehen werden
- Kondensat-Stopfen als Standard

KONSTRUKTIONSMERK-**MALE**

- Zweistufige horizontale Kreiselpumpe in Blockbauweise mit axialem Saug- und radialem Druckstutzen
- Druck- und Saugstutzen mit Gewindeanschluss (Rp UNI-ISO7)
- Kompakte Konstruktion: Pumpe mit verlängerter Motorwelle, gelagert mit Kugellagern
- Laufrad aus Edelstahl 1.4301 (Edelstahl 1.4404 bei Ausführung N)
- **Gleitringdichtung**: Als Standard: Keramik/Kohle, Elastomere NBR, übrige Teile aus Edelstahl 1.4301. In der N-Version EP-DM-Elastomere, übrige Teile aus Edelstahl 1.4404. Abmessungen gem. EN 12756 (früher DIN 24960) und ISO 3069.
- O-Ringe aus NBR, in der N-Ausführung aus EPDM)
- Montage: Motorstützfuß

OPTIONEN

- Verschiedene Motorspannungen und Betriebsfrequenzen
- Verschiedene Werkstoff-paarungen für Gleitringdichtung und O-Ringe

BEZEICHNUNGSSCHLÜSSELDie Pumpen der Baureihe CEA werden wie folgt bezeichnet:

BEISPIEL: CAM 120/33-V Pumpe der Baureihe CA, Wechselstromausführung, Nennförderleistung 120 l/min, 50 Hz, Laufradgröße 33, Ausführung in FPM

TYPENSCHILD

ERKLÄRUNG

- 1 Pumpentyp
- 2 Artikelnummer
- 3 Nennfördermenge
- 4 Nennförderhöhe
- 5 Motortyp
- 6 Produktionsdatum und Seriennummer
- 8 Mindestförderhöhe
- 11 Motornennleistung
- 12 Schutzart der Pumpe mit Motor
- 13 Max. Temperatur des Fördermediums

BAUREIHE CA-CA(N) MODELL- UND WERKSTOFFÜBERSICHTEN

BAUREIHE CA WERKSTOFFÜBERSICHTEN

Nr.	BAUTEIL	WERKSTOFFE	BEZEICHNUNG DER NO	DRM
			EUROPA	USA
1	Ansaugstutzen	Edelstahl	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
2	Pumpengehäuse	Edelstahl	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
3	Laufrad	Edelstahl	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
4	Diffusordeckel	Edelstahl	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
5	Diffusor	Edelstahl	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
8	Distanzhülle Laufrad	Edelstahl	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
9	Elastomere	NBR (Standard)		
11	Gleitringdichtung	Keramik/Kohle/NBR (Standard)		
13	Befüll-/Entleerungsschraube	Edelstahl	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
24	Stützfuß	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
33	Adapter	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
34	Gehäuseschrauben + Muttern	verzinkter Stahl		
35	Laufrad Stützscheibe	Edelstahl	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
36	Passfeder	Edelstahl	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
37	Laufradmutter und Scheibe	Edelstahl	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
38	Wellenende	Edelstahl	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316

BAUREIHE CA(N) WERKSTOFFÜBERSICHTEN

ca-ca_b_tm

Nr.	BAUTEIL	WERKSTOFFE	BEZEICHNUNG DER NO	DRM
			EUROPA	USA
1	Ansaugstutzen	Edelstahl	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
2	Pumpengehäuse	Edelstahl	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
3	Laufrad	Edelstahl	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
4	Diffusordeckel	Edelstahl	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
5	Diffusor	Edelstahl	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
8	Distanzhülle Laufrad	Edelstahl	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
9	Elastomere	EPDM (Standard)		
11	Gleitringdichtung	Keramik/Kohle/EPDM (Standard	d)	
13	Befüll-/Entleerungsschraube	Edelstahl	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
24	Stützfuß	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
33	Adapter	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
34	Gehäuseschrauben + Muttern	verzinkter Stahl		
35	Laufrad Stützscheibe	Edelstahl	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
36	Passfeder	Edelstahl	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
37	Laufradmutter und Scheibe	Edelstahl	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
38	Wellenende	Edelstahl	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316

ca-caN_a_tm

CA(N), GLEITRINGDICHTUNGEN GEM. EN 12756

Abmessungen der Gleitringdichtung gem. EN 12756 (früher DIN 24960) und ISO 3069

CA, CA(N) - WERKSTOFFE

Nr. 1 - 2	Nr. 3	Nr. 4 – 5
B : Kunstharzimprägnierte Kohle	P : NBR	F : Edelstahl 1.4301
C : Spezial-Kunstharzimprägnierte Kohle	E : EPDM	G : Edelstahl 1.4404
Q ₁ : Siliziumkarbid	V : FPM	
U ₃ : Wolframkarbid		
V : Keramik		

cea-ca_ten-mec_b_tm

CA – DICHTUNGSVARIANTEN

			Nr.			Temperatur
Тур	1	2	3	4	5	(℃)
	ROTIERENDES TEIL	STATIONÄRES TEIL	Elastomere	Feder	andere Bauteile	()
		STANDARDWER	KSTOFFE GLEITRIN	IGDICHTUNG		
V B P GF	V	В	Р	G	F	-10 +85
		SONDERWERK	STOFFE GLEITRING	DICHTUNG		
VBEGF	V	В	E	G	F	-10 +110
VCEGG	V	C	E	G	G	-10 +110
Q ₁ Q ₁ EGF	Q ₁	Q ₁	E	G	F	-10 +110
U₃BEGF	U ₃	В	Е	G	F	-10 +110
U₃CEGF	U ₃	С	E	G	F	-10 +110
U₃U₃EGF	U ₃	U ₃	E	G	F	-10 +110
VBVGF	V	В	V	G	F	-10 +110
VCVGF	V	O	٧	G	F	-10 +110
Q ₁ Q ₁ VGF	Q ₁	Q ₁	٧	G	F	-10 +110
U₃CVGF	U ₃	С	V	G	F	-10 +110
U ₃ U ₃ VGF	U ₃	U ₃	V	G	F	-10 +110

CA(N) – DICHTUNGSVARIANTEN

ca_tipi-ten-mec_b_tc

			Nr.			Temperatur
Тур	1	2	3	4	5	(℃)
	ROTIERENDES TEIL	STATIONÄRES TEIL	Elastomere	Feder	andere Bauteile	()
		STANDARDWER	KSTOFFE GLEITRIN	GDICHTUNG		
V B E G G	V	G	-10 +110			
		SONDERWERKS	STOFFE GLEITRING	DICHTUNG		
VCEGG	V	С	E	G	G	-10 +110
$Q_1 Q_1 E G G$	Q ₁	Q ₁	E	G	G	-10 +110
VCVGG	V	C	V	G	G	-10 +110
$Q_1 Q_1 V G G$	Q ₁	Q ₁	V	G	G	-10 +110

cean-can_tipi-ten-mec_b_tc

BAUREIHE CA-CA(N) TABELLE DER HYDRAULISCHEN LEISTUNGEN BEI 50 Hz, 2POLIG

Pumpentyp	Nennle	eistung					Q = Fö	rderme	nge					
		V		30	40	50	60	70	80	100	120	150	180	210
			m³/h 0	1,8	2,4	3	3,6	4,2	4,8	6	7,2	9	10,8	12,6
	kW	HP				H = Fö	rderhöl	ne in M	eter Wa	assersäi	ule			
CA(M) 70/33	0,75	1	42,9	38,8	36,9	34,6	31,7	28,2	23,9					
CA(M) 70/34	0,9	1,2	48,8	45,1	43,2	40,7	37,7	34,0	29,5					
CA(M) 70/45	1,1	1,5	56,2	52,0	49,8	47,1	43,9	39,9	35,3					
CA(M) 120/33	1,1	1,5	44,3			39,1	37,8	36,4	34,8	31,4	27,6	21,0		
CA(M) 120/35	1,5	2	54,0			49,4	48,1	46,6	44,9	41,2	36,8	29,3		
CA(M) 120/55	2,2	3	63,8			59,6	58,2	56,6	54,8	50,6	45,7	37,1		
CA(M) 200/33	1,85	2,5	43,2			41,8	41,2	40,6	39,9	38,3	36,4	33,2	29,5	25,5
CA(M) 200/35	2,2	3	53,5			52,4	51,9	51,4	50,7	49,2	47,5	44,3	40,6	36,5
CA 200/55	3	4	62,6			61,0	60,6	60,1	59,5	58,2	56,6	53,8	50,4	46,2

ca-2p50_d_th

BAUREIHE CA-CA(N) BETRIEBSDATEN, 50 Hz, 2POLIG

PUMPENTYP	MOTORTYP	NENN- LEISTUNG*	STROM- AUFNAHME*	Konden- sator	PUMPENTYP		NENN- LEISTUNG*	STROM- AUFNAHME*	Strom- Aufnahme*
WECHSEL- STROM			220-240 V		DREHSTROM			220-240 V	380-415 V
31KOW		kW	Α	μF / 450 V			kW	Α	Α
CAM70/33	SM71CA/1075	1,15	5,16	20	CA70/33	SM80CA/307PE	1,06	3,24	1,87
CAM70/34	SM71CA/1095	1,39	6,22	25	CA70/34	SM80CA/311PE	1,28	4,10	2,37
CAM70/45	SM80CA/1115	1,76	7,92	30	CA70/45	SM80CA/311PE	1,63	4,90	2,83
CAM120/33	SM80CA/1115	1,67	7,53	30	CA120/33	SM80CA/311PE	1,54	4,69	2,71
CAM120/35	SM80CA/1155	2,18	9,87	40	CA120/35	SM80CA/315PE	2,01	6,11	3,53
CAM120/55	PLM90CA/1225	2,54	11,5	70	CA120/55	PLM90CA/322	2,55	8,05	4,65
CAM200/33	PLM90CA/1225	2,29	10,4	70	CA200/33	PLM90CA/322	2,26	7,47	4,31
CAM200/35	PLM90CA/1225	2,94	12,6	70	CA200/35	PLM90CA/322	3,02	9,08	5,24
-	-	-	-	-	CA200/55	PLM90CA/330	3,51	10,7	6,18

^{*} Höchstwerte im Betriebsbereich ca-2p50_f_te

MOTOREN FÜR BAUREIHEN CA-CA(N)

Standardmäßig gelieferte IE2-Drehstrom-Motoren ≥ 0,75 kW entsprechen EU-Richtlinie (EC) Nr. 640/2009 und IEC 60034-30.

Leistungen gem. EN 60034-1.

Isolationsklasse 155 (F), Schutzart IP55. Standardmäßig mit Kondensat-Ablassschraube. Gekühlt mit Lüfter gem. EN 60034-6:

Metrische Kabelverschraubung gem. EN 50262. Standardspannung:

- Wechselstrom: 220-240 V, 50 Hz (mit integriertem automatischen Reset, Überlastschutz)
- **Drehstrom**: 220-240/380-415 V, 50 Hz (ein Überlastschutz ist bauseitig vorzusehen).

WECHSELSTROMMOTOREN, 50 Hz, 2POLIG

		IEC .UGRÖßE*	ORM	STROM- AUFNAHME	KONDENSATOR BETRIEBSDATEN BEI 400 V / 50 Hz								
P _N kW	MOTORTYP	IE BAUGF	BAU-F	In (A) 220-240 V	μF	v	min ⁻¹	ls / In	η%	cosφ	Tn Nm	Ts/Tn	Tm/Tn
0,75	SM71CA/1075	71		4,90-4,85	20	450	2765	3,42	70,1	0,96	2,59	0,58	1,75
0,95	SM71CA/1095	71	-	6,25-5,89	25	450	2740	3,39	71,1	0,98	3,31	0,58	1,66
1,1	SM80CA/1115	80	ONDER	6,88-6,65	30	450	2800	3,89	74,7	0,96	3,75	0,46	1,72
1,5	SM80CA/1155	80	NO O	9,21-8,58	40	450	2810	4,00	76,1	0,98	5,09	0,39	1,74
1,85	PLM80CA/1225	90	Ň	12,5-11,6	70	450	2825	4,47	82,4	0,97	7,43	0,53	1,87
2,2	PLM80CA/1225	90		12,5-11,6	70	450	2825	4,47	82,4	0,97	7,43	0,53	1,87

DREHSTROMMOTOREN, 50 Hz, 2POLIG

ca-motm-2p50_a_te

	Effizienz η _N														-sı					
										%										ktion
		Δ 220 V			Δ 230 V	,		Δ 240 V	,		Δ 380 V	,		∆ 400 V	,		Δ 415 V	,		dukt jah
P_N		Y 380 V	•		Y 400 V Y 415 V Y 660 V									Y 690 V	,				ΙE	ro d
kW	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4		4
0,75	82,5	83,1	81,3	82,8	82,7	80,1	82,6	82,0	78,9	82,5	82,0	78,9	82,5	82,0	78,9	82,5	82,0	78,9		
0,9	84,0	84,7	83,4	84,4	84,5	82,5	84,3	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	3	-
1,1	84,0	84,7	83,4	84,4	84,5	82,5	84,3	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	ر	201
1,5	85,6	86,5	85,8	85,9	86,4	84,9	86,0	86,0	84,0	85,6	86,0	84,0	85,6	86,0	84,0	85,6	86,0	84,0		Juni
1,85	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7		
2,2	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	2	bis
3	85,5	86,8	85,6	86,1	86,8	85,6	86,3	86,8	85,6	85,5	86,8	85,6	85,5	86,8	85,6	85,5	86,8	85,6		

	Hersteller Lowara srl Unipersonale Reg. No. 03471820260	IEC ,UGRÖßE*	-FORM				BETRIEBSD	ATEN BEI 40	0 V / 50 Hz	
P_N	Montecchio Maggiore Vicenza - Italia	- a	BAU	Anz.	f _N			T _N		
kW	Тур	9	- Δ	Pole	Hz	cosφ	Is / I _N	Nm	Ts/T _N	Tm/Tn
0,75	SM80CA/307PE	80				0,78	7,38	2,48	3,57	3,75
0,9	SM80CA/311PE	80				0,79	8,31	3,63	3,95	3,95
1,1	SM80CA/311PE	80	2			0,79	8,31	3,63	3,95	3,95
1,5	SM80CA/315PE	80	NDER	2	50	0,80	8,80	4,96	4,31	4,10
1,85	PLM90BG/322	90	S			0,80	8,63	7,25	3,74	3,71
2,2	PLM90BG/322	90				0,80	8,63	7,25	3,74	3,71
3	PLM90BG/330	90				0,82	8,39	9,96	3,50	3,32

					SPA	NNUN V	G Un							Betriebsl	bedingunger	า **
		Δ			Υ			Δ		,	Y				Umgebungstemp.	ATEX
P_N	220 V	230 V	240 V	380 V	400 V	415 V	380 V	400 V	415 V	660 V	690 V	n _N		Meeresspiegel	min/max.	
kW						I _N (A)						min ⁻¹	-:	m	°C	
0,75	2,96	2,94	2,96	1,71	1,70	1,71	1,70	1,69	1,70	0,98	0,98	2875 ÷ 2895	Anm			
0,9	4,19	4,14	4,16	2,42	2,39	2,40	2,41	2,38	2,38	1,39	1,37	2870 ÷ 2900	S. A			
1,1	4,19	4,14	4,16	2,42	2,39	2,40	2,41	2,38	2,38	1,39	1,37	2870 ÷ 2900				
1,5	5,56	5,49	5,51	3,21	3,17	3,18	3,21	3,18	3,19	1,85	1,84	2870 ÷ 2895		≤ 1000	-15 / 4 0	nein
1,85	8,05	8,04	8,09	4,65	4,64	4,67	4,62	4,61	4,63	2,67	2,66	2885 ÷ 2900				
2,2	8,05	8,04	8,09	4,65	4,64	4,67	4,62	4,61	4,63	2,67	2,66	2885 ÷ 2900				
3	10,8	10,6	10,6	6,23	6,14	6,12	6,18	6,10	6,06	3,57	3,52	2850 ÷ 2885				

ca-ie2-mott-2p50_c_te

^{*} Anmerkung = Beachten Sie die lokalen Vorschriften bezügl. Abfallentsorgung
** Betriebsbedingungen beziehen sich nur auf den Motor. Daten zur Pumpe entnehmen Sie bitte der Bedienungsanleitung.

VERFÜGBARE SPANNUNGEN MOTOREN FÜR BAUREIHEN CA-CA(N)

				WE	CHSI	ELST	RON	/I	
			50 H	Z		(60 H	Z	
P _N kW	BAUGRÖßE	1 x 220-240	1 x 100	1 x 110-120	1 x 220-230	1 x 100	1x 110-115	1 x 120-127	1 x 200-210
0,75	71	S	0	0	S	0	0	0	0
0,95	71	S	0	0	S	0	0	0	0
1,1	80	S	-	0	S	-	0	-	0
1,5	80	S	-	-	S	-	0	-	0
2,2	90	S	-	-	S	-	-	-	-

									DR	EHS	TRO	M 2	-PO	LIG			
				50 H	Z						60	Hz				50/6	0 Hz
P _N kW	3 x 220-230-240/380-400-415	3 x 380-400-415/660-690	3 x 200-208/346-360	3 x 255-265/440-460	3 x 290-300/500-525	3 x 440-460/-	3 x 500-525/-	3 x 220-230/380-400	3 x 255-265-277/440-460-480	3 x 380-400/660-690	3 x 440-460-480/-	3 x 110-115/190-200	3 x 200-208/346-360	3 x 330-346/575-600	3 x 575/-	3 x 230/400 50 Hz 3 x 265/460 60 Hz	3 x 400/690 50 Hz 3 x 460/- 60 Hz
0,75	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
0,95	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
1,1	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
1,5	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
2,2	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
3	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0

– nicht verfügba

ca-volt-lowa_a_te

s = Standardspannung

o = optional erhältliche Spannung

BAUREIHE CA-CA(N) KENNFELDER BEI 50 Hz, 2POLIG

BAUREIHE CA70 KENNLINIEN BEI 50 Hz, 2POLIG

BAUREIHE CA120 KENNLINIEN BEI 50 Hz, 2-POLIG

BAUREIHE CA200 KENNLINIEN BEI 50 Hz, 2POLIG

BAUREIHE CA-CA(N) ABMESSUNGEN UND GEWICHTE BEI 50 Hz, 2-POLIG

PUMPENTYP					ABMES	SUNGE	N (mm)					DNA	DNM	GEWICHT
	D	н	L	L1	М	M1	N	N1	s	S 1	w			kg
CAM 70/33/B	140	226	383	76	90	113	112	135	12	7	66	Rp 11/4	Rp 1	15
CAM 70/34/B	140	235	383	31	90	113	112	135	12	7	66	Rp 11/4	Rp 1	15,8
CAM 70/45/B	156	242	420	69	100	125	125	153	12	9	76	Rp 11/4	Rp 1	18,5
CAM 120/33/B	156	242	420	69	100	125	125	153	12	9	76	Rp 11/4	Rp 1	18,4
CAM 120/35/B	156	242	420	69	100	125	125	153	12	9	76	Rp 11/4	Rp 1	20,2
CAM 120/55/P	174	256	454	84	125	155	140	170	13	10	98	Rp 11/4	Rp 1	27
CAM 200/33/P	174	256	454	84	125	155	140	170	13	10	98	Rp 11/2	Rp 1	27
CAM 200/35/P	174	256	454	84	125	155	140	170	13	10	98	Rp 11/2	Rp 1	27
CA 70/33/D	155	234	420	114	100	125	125	153	12	9	76	Rp 11/4	Rp 1	16,7
CA 70/34/D	155	234	420	114	100	125	125	153	12	9	76	Rp 11/4	Rp 1	17,4
CA 70/45/D	155	234	420	114	100	125	125	153	12	9	76	Rp 11/4	Rp 1	18,7
CA 120/33/D	155	234	420	114	100	125	125	153	12	9	76	Rp 11/4	Rp 1	18,7
CA120/35/D	155	234	420	114	100	125	125	153	12	9	76	Rp 11/4	Rp 1	20,4
CA 120/55/P	174	239	454	172	125	155	140	170	13	10	98	Rp 11/4	Rp 1	25
CA 200/33/P	174	239	454	172	125	155	140	170	13	10	98	Rp 11/2	Rp 1	25
CA 200/35/P	174	239	454	172	125	155	140	170	13	10	98	Rp 11/2	Rp 1	25
CA 200/55/P	174	239	454	172	125	155	140	170	13	10	98	Rp 11/2	Rp 1	27

ca-2p50_L_td

TECHNISCHER ANHANG

TYPISCHE ANWENDUNGEN FÜR KREISELPUMPEN DER BAUREIHEN CEA UND CA

Wasserreinigung:

Deionisation Wasseraufbereitung

Filtration

Einsatz in öffentlichen und privaten

Schwimmbädern

Kunststoffindustrie: Extrusionanlagen Temperierung

Polymererzeugung

Bewässerung/Gebäudetechnik

Bewässerung Gewächshäuser Luftbefeuchter Wasserversorgung

Heizung, Klima, Kühlung, Lüftung:

Luftwäscher Kühlanlagen Kühl- und Heizkreisläufe

Kühltürme Kühlsysteme

Temperaturregelung Induktionsheizung Wärmetauscher Wassererwärmung Wasserzirkulation

Industrie allgemein: Brandschutzsysteme Druckerhöhungsanlagen

Förderung chemisch leicht aggressiver

Medien

Lackierkabinen

Medizin: Laserkühlung

Massagevorrichtungen Mediz. Kühlanlagen Sanitäre Anlagen Abwasser.

Wasserbehandlung Wasseraufbereitung

Werkzeugmaschinenbau:

Entfettungsanlagen Teilewaschanlagen Chemische Behandlung Wärmebehandlung

Grafik:

Reinigung von Filmen

Kühlverfahren

Schifffahrt:

Wasserversorgung an Board

Computertechnik: Platinenreinigung Hardwarekühlung

Reinigungstechnik:

industrielle Waschmaschinen

Lebensmittel-/Getränkeindustrie: Nahrungsmittelverarbeitung Flaschenspülung/-reinigung Obst-/Gemüsewaschanlagen Spülprozesse allgemein

Brauereianlagen

Wasserversorgung allgemein

BAUREIHE CEA - CA Standardausführung: Kohle/Keramik Gleitringdichtung, O-Ringe NBR Übersicht Materialverträglichkeit für die häufigsten Medien, weitere Medien finden Sie auf unserer Homepage www.lowara.de

		KONZENTRATION TEMPERATUR	TEMPERATUR	DICHTE				SLEITRING	GLEITRINGDICHTUNG	U
MEDIUM	FORMEL	CONCENTRATION	TEMPERATURE	DENSITY	Werkstoffübersicht	ıt		MECHAN	MECHANICAL SEAL	
LIQUID		%	- MIN (°C)	kg/dm_	Gleitring-dichtung	o-ring				
			- MAX (°C)				STD	Nr. A	Nr. B	Nr. N
Essigsäure (1)	CH ₃ CO OH	80	-5	1.05			3	3	1	3
Acetic acid			+20		Wolframkarbid	EPDM				
Artikel-Nr Zusatz					XPB					
Zitronensäure	C ₆ H ₈ O ₇	5	-5	1.54			2	1	2	2
Citric acid	_		+20		Kohle/Keramik	FPM	L			
Artikel-Nr Zusatz					XAA					
Phosphorsäure (1)	H₃ PO₄	20	-5	1.33			3	2	1	-
Phosphoric acid			+30		Wolframkarbid	EPDM				
Artikel-Nr Zusatz					XPB					
Wasser	H ₂ O	100	-5				1	-	-	-
Water			+85		Kohle/Keramik	NBR				
Artikel-Nr Zusatz					Standard					
De-ionisiertes Wasser		100	9-							
Water deionized			+85		Kohle/Keramik	FPM				
Artikel-Nr Zusatz					XAA					
Entmineralisiertes Wasser		100	9-							
Water demineralized			+85		Kohle/Keramik	NBR				
Artikel-Nr Zusatz					Standard					
Meerwasser (4)		/	9-							
Sea water (4)			+25							
Artikel-Nr Zusatz					nicht empfohlen					
Buthyl-Alkohol	$CH_3 (CH_2)_2 CH_2 OH$	100	9-	0.81			1	1	2	1
Butyl alcohol			+80		Kohle/Keramik	NBR				
Artikel-Nr Zusatz					Standard		_			
Ethanol		100	9-	0.81						
Ethyl alcohol (Ethanol)			+40		Kohle/Keramik	NBR				
Artikel-Nr Zusatz					Standard					
Methylalkohol	CH ₃ OH	100	9-	0.79			1	3	1	3
Methyl alcohol			+40		Kohle/Keramik	NBR				
Artikel-Nr Zusatz					Standard		_			
Chloroform	CHCI³	/	-5	1.48			3	2	3	1
Chloroform			+30		Wolframkarbid	FPM				
Artikel-Nr Zusatz					XNA					
Freon 112	CCI ₂ FCCI ₂ F	100	-5	1.57			2	2	3	1

			+30		Wolframkarbid	FPM			
Artikel-Nr Zusatz					XNA				
Freon 113	CCI ₂ FCCIF ₂	100	-2	1.42			1 2	2 3	1
Trichlortrifluorethan			+30		Kohle/Keramik	NBR			
Artikel-Nr Zusatz					Standard				
Ethylenglykol	СН2ОНСН2ОН	20	-5	1.13			2 2	2 1	-
Ethylene glycol			+80		Kohle/Keramik	NBR			
Artikel-Nr Zusatz					Standard				
Natriumhypochlorit (1)	Na O CI	0.5	-2						
Sodium hypochlorite			+25						
Artikel-Nr Zusatz					nicht empfohlen				
Rizinusöl		100	-2					_	
Castor Oil			+85		Kohle/Keramik	NBR			
Artikel-Nr Zusatz					Standard				
Mineralöl		100	-2	0.94					
Mineral oil			+85		Kohle/Keramik	NBR			
Artikel-Nr Zusatz					Standard				
Natriumhydroxid (Natronlauge)	Na OH	25	0	2.13					
Caustic Soda			+20		Wolframkarbid	EPDM			
Artikel-Nr Zusatz					XPB				
Trichlorethylen (1)	CHCI:CCI ²	/	-2	1.46			3	3	1
(Trielina) (1)			+40		Kohle/Keramik				
Artikel-Nr Zusatz					XAA			_	

WASSERBEDARF IN DER HAUSTECHNIK

Die Festlegung des Wasserbedarfes hängt von der Art der Benutzer und vom Gleichzeitigkeitsfaktor ab. Diese Berechnung kann von Vorschriften, Maßstäben oder von der Kundschaft, die von Land zu Land unterschiedlich sind, beeinflusst werden. Die weiter unten aufgeführte Berechnungsmethode ist ein Beispiel, das auf praktischer Erfahrung basiert und die Bestimmung eines Referenzwerts ermöglicht, jedoch nicht die ausführliche Analyseberechnung ersetzt.

Wasserbedarf in Wohnanlagen

Die **Tabelle** über den Verbrauch zeigt die maximalen Werte für jeden Betriebspunkt, je nach Einrichtung der Rohrleitungen.

MAXIMALER VERBRAUCH PRO BETRIEBSPUNKT

ТҮР	VERBRAUCH (l/min)
Spülbecken	9
Geschirrspülmaschine	10
Waschmaschine	12
Dusche	12
Badewanne	15
Waschbecken	6
Bidet	6
WC mit Spülkasten	6
Geregeltes WC-Spülsystem	90

G-at-cm a th

Die **Summe der Wasserverbrauchswerte** aller Entnahmestellen bestimmt den maximalen theoretischen Bedarf, der gemäß der **Gleichzeitigkeitsrichtzahl** gesenkt werden muss, da die Entnahmestellen eigentlich nie alle zusammen verwendet werden.

$$f = \frac{1}{\sqrt{(0,857\times Nr\times Na)}} \quad \text{Richtzahl für Wohnungen mit einem Badezimmer und WC mit Spülkasten}$$

$$f = \frac{1}{\sqrt{(0,857\times Nr\times Na)}} \quad \text{Richtzahl für Wohnungen mit einem Badezimmer und geregeltem WC-Spülsystem}$$

$$f = \frac{1,03}{\sqrt{(0,545\times Nr\times Na)}} \quad \text{Richtzahl für Wohnungen mit zwei Badezimmern und geregeltem WC-Spülsystem}$$

$$f = \frac{0,8}{\sqrt{(0,727\times Nr\times Na)}} \quad \text{Richtzahl für Wohnungen mit zwei Badezimmern und geregeltem WC-Spülsystem}$$

$$f = \text{Richtzahl; Nr.} = \text{Anzahl an Betriebspunkten; Na} = \text{Anzahl an Wohnungen}$$

Die **Wasserverbrauchstabelle in der Haustechnik** zeigt die Werte der maximalen gleichzeitigen Fördermenge, basierend auf der Anzahl an Wohnungen und der Art des WCs bei Wohnungen mit einem Badezimmer oder zwei Badezimmern.

Im Hinblick auf die Wohnungen mit einem Badezimmer wurden 7 Entnahmestellen angesetzt, bei Wohnungen mit zwei Badezimmern dagegen 11 Entnahmestellen. Für abweichende Anzahl der Entnahmestellen oder Wohnungen kalkulieren Sie bitte den Bedarf anhand der Formeln.

TABELLE FÜR WASSERBEDARF IN DER HAUSTECHNIK

ANZAHL	MIT SPÜLK	ASTEN-WC	MIT GEREGELTEM	WC-SPÜLSYSTEM
WOHNUNGEN	1	2	1	2
		FÖRDERME	NGE (l/min)	
1	32	40	60	79
2	45	56	85	111
3	55	68	105	136
4	63	79	121	157
5	71	88	135	176
6	78	97	148	193
7	84	105	160	208
8	90	112	171	223
9	95	119	181	236
10	100	125	191	249
11	105	131	200	261
12	110	137	209	273
13	114	143	218	284
14	119	148	226	295
15	123	153	234	305
16	127	158	242	315
17	131	163	249	325
18	134	168	256	334
19	138	172	263	343
20	142	177	270	352
21	145	181	277	361
22	149	185	283	369
23	152	190	290	378
24	155	194	296	386
25	158	198	302	394
26	162	202	308	401
27	165	205	314	409
28	168	209	320	417
29	171	213	325	424
30	174	217	331	431
35	187	234	357	466
40	200	250	382	498
45	213	265	405	528
50	224	280	427	557
55	235	293	448	584
60	245	306	468	610
65	255	319	487	635
70	265	331	506	659
75	274	342	523	682
80	283	354	540	704
85	292	364	557	726
90	301	375	573	747
95	309	385	589	767
100	317	395	604	787
120	347	433	662	863
140	375	468	715	932
160	401	500	764	996
180	425	530	811	1056
200	448	559	854	1114

Für Badeorte muss die Fördermenge um mindestens 20 % erhöht werden.

G-at-fi_a_th

WASSERBEDARF IN INDUSTRIELLEN GEBÄUDEN

Der Bedarf der Häuser für spezifische Verbraucher, wie z. B. **Bürohäuser, Unterkünfte, Hotels, Kaufhäuser, Seniorenheime usw.**, unterscheidet sich von dem Bedarf in Wohnanlagen. Der allgemeine Wasserverbrauch am Tag sowie die maximale gleichzeitige Fördermenge fallen für gewöhnlich höher aus. Das **Diagramm für den Wasserbedarf in industriellen Gebäuden** zeigt die maximale gleichzeitige Fördermenge von manchen Industriezweigen als Anhaltswerte.

Dieser Bedarf muss von Fall zu Fall mit größter Sorgfalt durch die Verwendung einer Analyseberechnungsmethode je nach speziellem Bedarf und lokalen Gegebenheiten neu festgelegt werden.

Für Badeorte muss die Fördermenge um mindestens 20 % erhöht werden.

- 1 = Bürohäuser (Anzahl an Beschäftigten)
- 2 = Kaufhäuser (Anzahl an Personen)
- 3 = Altenpflegeheime (Anzahl an Betten)
- 4 = Hotels, Unterkünfte (Anzahl an Betten)

NPSH (Saugbedingungen)

Die Stelle des niedrigsten Druckes in einem Pumpensystem ist der Laufradeintritt. Bei bestimmten Betriebsbedingungen kann der Druck an dieser Stelle so niedrig sein, dass das Fördermedium zu verdampfen beginnt. Die Entstehung von Dampfbläschen innerhalb der Flüssigkeit und deren implosionsartiger Zusammenfall kurz danach, wenn der Druck wieder ansteigt, wird als <u>Kavitation</u> bezeichnet.

Dieser Effekt äußert sich durch stärkere Geräusche, die sich anhören, als würden sich kleine Steinchen in der Pumpe befinden. Es treten erhöhte Vibrationen und Verschleiß auf und ungünstigstenfalls reißt die Strömung ab. Bei diesem implosionsartigen Zusammenfall der Dampfbläschen entstehen sehr große Kräfte, die das Material am Laufrad oder am Pumpengehäuse abtragen und somit zu erheblichen Schäden an der Pumpe führen können. Aus diesem Grund muss Kavitation beim Pumpenbetrieb unbedingt vermieden werden.

Die Ansaugbedingungen müssen insbesondere dann untersucht werden, wenn die Pumpe von einem tiefer liegendem Niveau ansaugen muss (Saugbetrieb), wenn es sich um ein heißes Medium handelt, bzw. wenn sich das Medium in der Nähe des Siedepunktes befindet.

Die Betrachtungen um den NPSH-Wert (**N**et **P**ositiv **S**uction **H**ead , positive Netto-Saughöhe) dienen dazu, in dem Punkt niedrigsten Druckes (Saugmund), einen bestimmten Sicherheitsabstand zum Verdampfungspunkt einzuhalten. Somit soll vermieden werden, dass Kavitation auftritt. Die NPSH-Werte sind Druckwerte, die in Meter angegeben werden.

Hierzu gibt es 2 Kenngrößen

Der NPSH-Wert der Pumpe NPSH_{erf} (erforderlicher NPSH – Wert)

NPSH_{erf} bezieht sich auf die Pumpe und macht eine Aussage darüber, welcher Mindestdruck am Laufradeintritt herrschen muss, um Kavitation zu vermeiden. NPSH_{erf} gibt an, um welchen Wert der Druck an dieser Stelle über dem Verdampfungsdruck des Fördermediums liegen muss. Dieser Wert wird von den Pumpenherstellern auf dem Prüfstand ermittelt und befindet sich in den Pumpenkennlinien als veränderliche Größe über dem Förderstrom (Höhenangabe in Meter). Die Werte gelten für kaltes Wasser.

Der NPSH-Wert der Anlage NPSH_{vorh} (vorhandener NPSH – Wert)

NPSH_{vorh} bezieht sich auf die Anlage und macht eine Aussage darüber, welcher Druck bei der vorhandenen Anlage am Laufradeintritt herrscht. Dieser Wert wird mit Hilfe der Anlagedaten berechnet und wird ebenfalls in Meter angegeben.

Um nun einen störungsfreien Betrieb der Pumpe zu gewährleisten, muss der Druck in der Anlage an der Stelle des Laufradeintrittes (NPSH_{vorh}) größer sein, als der erforderliche NPSH-Wert der Pumpe (NPSH_{erf}) im Betriebspunkt.

 $NPSH_{vorh} > NPSH_{erf}$

Üblicherweise verwendet man einen Sicherheitszuschlag von 0,5 m.

 $NPSH_{vorh} > NPSH_{erf} + 0.5 m$

Ermittlung des NPSH-Wert der Anlage NPSH_{vorh}

Die Bezugsebene für die hier angestellten Betrachtungen liegt in der Mitte des Saugstutzens der Pumpe. Somit ergibt sich die Nettodruckhöhe nach folgender Formel.

Nettodruckhöhe **NPSH**_{vorh} heißt: absolute Druckhöhe minus Verdampfungsdruckhöhe.

 $NPSH_{vorh}[m]$ 1 bar = 100.000 N/m² oder Pa (Pascal)

 $p_{\ddot{u}}$ [N/m²] = Überdruck über dem Luftdruck (geschlossener Behälter)

p___ [N/m²] = örtlicher Luftdruck (der Normalluftdruck beträgt 101.300 N/m²)

 p_D [N/m²] = Dampfdruck (Funktion der Temperatur)

H₂ [m] = Höhenunterschied Wasserspiegel zu Pumpeneinlaß

 H_{V}^{\perp} [m] = Verlusthöhe in der Saugleitung ς (Rho) [kg/m3] = Dichte des Fördermediums g [m/s²] = 9,81 (Erdbeschleunigung)

NPSH_{vorb} im Saugbetrieb:

$$NPSH_{vorh} = \frac{p_{u} + p_{amb} - p_{D}}{\varsigma x g} - H_{z} - H_{v}$$

NPSH_{vorb} im Zulaufbetrieb:

$$NPSH_{vorh} = \frac{p_{\ddot{u}} + p_{amb} - p_{D}}{\varsigma x g} + H_{Z} - H_{V}$$

Für kaltes Wasser, bei offenem Behälter und in nicht allzu großer Höhe kann für die meisten praktischen Anwendungen folgende vereinfachte Formel verwendet werden:

für Saugbetrieb:

für Zulaufbetrieb:

$$NPSH_{vorh} = 10 \text{ m} + H_{z} - H_{v}$$

Die für die Berechnung notwendigen Werte können der nachstehenden Tabelle entnommen werden.

STOFFWERTE FÜR WASSER

t	Т	ps	0	t	Т	ns	0	t	Т	ns	0
°C		·	ρ	°C		ps	ρ	°C		ps	ρ
	K	bar	kg/dm ³		K	bar	kg/dm³		K	bar	kg/dm³
0	273,15	0,00611	0,9998	55	328,15	0,15741	0,9857	120	393,15	1,9854	0,9429
1	274,15	0,00657	0,9999	56	329,15	0,16511	0,9852	122	395,15	2,1145	0,9412
2	275,15	0,00706	0,9999	57	330,15	0,17313	0,9846	124	397,15	2,2504	0,9396
3	276,15	0,00758	0,9999	58 59	331,15	0,18147	0,9842	126	399,15	2,3933	0,9379
5	277,15	0,00813	1,0000		332,15	0,19016	0,9837	128	401,15	2,5435	0,9362
6	278,15 279,15	0,00872 0,00935	1,0000	60	333,15 334,15	0,1992 0,2086	0,9832 0,9826	130	403,15 405,15	2,7013 2,867	0,9346 0,9328
7	280,15	0,00933	0,9999	62	335,15	0,2080	0,9820	134	407,15	3,041	0,9328
8	281,15	0,01001	0,9999	63	336,15	0,2184	0,9821	136	407,15	3,223	0,9294
9	282,15	0,01147	0,9998	64	337,15	0,2391	0,9811	138	411,15	3,414	0,9276
10	283,15	0,01227	0,9997	65	338,15	0,2501	0,9805	140	413,15	3,614	0,9258
11	284,15	0,01312	0,9997	66	339,15	0,2615	0,9799	145	418,15	4,155	0,9214
12	285,15	0,01401	0,9996	67	340,15	0,2733	0,9793	155	428,15	5,433	0,9121
13	286,15	0,01497	0,9994	68	341,15	0,2856	0,9788	160	433,15	6,181	0,9073
14	287,15	0,01597	0,9993	69	342,15	0,2984	0,9782	165	438,15	7,008	0,9024
15	288,15	0,01704	0,9992	70	343,15	0,3116	0,9777	170	433,15	7,920	0,8973
16	289,15	0,01817	0,9990	71	344,15	0,3253	0,9770	175	448,15	8,924	0,8921
17	290,15	0,01936	0,9988	72	345,15	0,3396	0,9765	180	453,15	10,027	0,8869
18	291,15	0,02062	0,9987	73	346,15	0,3543	0,9760	185	458,15	11,233	0,8815
19	292,15	0,02196	0,9985	74	347,15	0,3696	0,9753	190	463,15	12,551	0,8760
20	293,15	0,02337	0,9983	75	348,15	0,3855	0,9748	195	468,15	13,987	0,8704
21	294,15	0,24850	0,9981	76	349,15	0,4019	0,9741	200	473,15	15,550	0,8647
22	295,15	0,02642	0,9978	77	350,15	0,4189	0,9735	205	478,15	17,243	0,8588
23	296,15	0,02808	0,9976	78	351,15	0,4365	0,9729	210	483,15	19,077	0,8528
24	297,15	0,02982	0,9974	79	352,15	0,4547	0,9723	215	488,15	21,060	0,8467
25	298,15	0,03166	0,9971	80	353,15	0,4736	0,9716	220	493,15	23,198	0,8403
26	299,15	0,03360	0,9968	81	354,15	0,4931	0,9710	225	498,15	25,501	0,8339
27	300,15	0,03564	0,9966	82	355,15	0,5133	0,9704	230	503,15	27,976	0,8273
28	301,15	0,03778	0,9963	83	356,15	0,5342	0,9697	235	508,15	30,632	0,8205
29	302,15	0,04004	0,9960	84	357,15	0,5557	0,9691	240	513,15	33,478	0,8136
30	303,15	0,04241	0,9957	85	358,15	0,5780	0,9684	245	518,15	36,523	0,8065
31	304,15	0,04491	0,9954	86	359,15	0,6011	0,9678	250	523,15	39,776	0,7992
32	305,15	0,04753	0,9951	87	360,15	0,6249	0,9671	255	528,15	43,246	0,7916
33	306,15	0,05029	0,9947	88	361,15	0,6495	0,9665	260	533,15	46,943	0,7839
34	307,15	0,05318	0,9944	89	362,15	0,6749	0,9658	265	538,15	50,877	0,7759
35	308,15	0,05622	0,9940	90	363,15	0,7011	0,9652	270	543,15	55,058	0,7678
36	309,15	0,05940	0,9937	91	364,15	0,7281	0,9644	275	548,15	59,496	0,7593
37	310,15 311,15	0,06274 0,06624	0,9933	92 93	365,15 366,15	0,7561 0,7849	0,9638 0,9630	280 285	553,15 558,15	64,202	0,7505
38		0,06624	0,9930 0,9927	93	366,15	0,7849	0,9630	285	563,15	69,186	0,7415 0,7321
40	312,15 313,15	0,06991	0,9927	95	367,15	0,8146	0,9624	290	568,15	74,461 80,037	0,7321
40	314,15	0,07373	0,9923	96	369,15	0,8769	0,9610	300	573,15	85,927	0,7223
42	315,15	0,07777	0,9915	97	370,15	0,8709	0,9602	305	578,15	92,144	0,7122
43	316,15	0,09639	0,9911	98	370,15	0,9430	0,9596	310	583,15	98,70	0,6906
44	317,15	0,09100	0,9907	99	371,15	0,9776	0,9586	315	588,15	105,61	0,6791
45	318,15	0,09582	0,9902	100	373,15	1,0133	0,9581	320	593,15	112,89	0,6669
46	319,15	0,10086	0,9898	102	375,15	1,0878	0,9567	325	598,15	120,56	0,6541
47	320,15	0,10612	0,9894	104	377,15	1,1668	0,9552	330	603,15	128,63	0,6404
48	321,15	0,11162	0,9889	106	379,15	1,2504	0,9537	340	613,15	146,05	0,6102
49	322,15	0,11736	0,9884	108	381,15	1,3390	0,9522	350	623,15	165,35	0,5743
50	323,15	0,12335	0,9880	110	383,15	1,4327	0,9507	360	633,15	186,75	0,5275
51	324,15	0,12961	0,9876	112	385,15	1,5316	0,9491	370	643,15	210,54	0,4518
52	325,15	0,13613	0,9871	114	387,15	1,6362	0,9476	374,15	647,30	221,20	0,3154
53	326,15	0,14293	0,9862	116	389,15	1,7465	0,9460				
54	327,15	0,15002	0,9862	118	391,15	1,8628	0,9445				

G-at_npsh_a_sc

TABELLE DES DURCHFLUSSWIDERSTANDES AUF 100 M NEUE UND GERADE ROHRLEITUNG AUS **GRAUGUSS (FORMEL VON HAZEN-WILLIAMS C = 100)**

FÖRDE	RMENG	E							N	IENND	JRCHM	ESSER	IN mm	UND Z	OLL					
m³/h	l/min			15	20	25	32	40	50	65	80	100	125		175	200	250	300	350	400
		1	V	1/2" 0,94	3/4" 0,53	1" 0,34	1 1/4" 0,21	1 1/2" 0,13	2	2 1/2"	3"	4"	5"	6"	7"	8"	10"	12"	14"	16"
0,6	10		hr	16	3,94	1,33	0,40	0,13					sen multi				l 			
0,9	15		v hr	1,42 33,9	0,80 8,35	0,51 2,82	0,31 0,85	0,20 0,29					aus vernic aus Edelst			ertem Sta	hl			
1,2	20	Ī	v hr	1,89 57,7	1,06 14,21	0,68 4,79	0,41 1,44	0,27	0,17 0,16				aus PVC o			İ	I			
1,5	25		٧	2,36	1,33	0,85	0,52	0,33	0,21						ĺ					
		ŀ	hr v	87,2 2,83	21,5 1,59	7,24 1,02	2,18 0,62	0,73	0,25 0,25											
1,8	30		hr v	122 3,30	30,1 1,86	10,1 1,19	3,05 0,73	1,03 0,46	0,35											
2,1	35		hr	162	40,0	13,5	4,06	1,37	0,46											
2,4	40		v hr		2,12 51,2	1,36 17,3	0,83 5,19	0,53 1,75	0,34 0,59	0,20 0,16										
3	50		v hr		2,65 77,4	1,70 26,1	1,04 7,85	0,66 2,65	0,42 0,89	0,25 0,25										
3,6	60		V		3,18	2,04	1,24	0,80	0,51	0,30										
4,2	70		hr V		108 3,72	36,6 2,38	11,0 1,45	3,71 0,93	1,25 0,59	0,35 0,35										
			hr v		144 4,25	48,7 2,72	14,6 1,66	4,93 1,06	1,66 0,68	0,46										
4,8	80		hr V		185	62,3	18,7	6,32	2,13 0,76	0,59	0,30									
5,4	90		hr			77,5	23,3	7,85	2,65	0,74	0,27									
6	100		v hr			3,40 94,1	2,07 28,3	1,33 9,54	0,85 3,22	0,50 0,90	0,33 0,33									
7,5	125	•	v hr			4,25 142	2,59 42,8	1,66 14,4	1,06 4,86	0,63 1,36	0,41 0,49									
9	150	Ì	V			174	3,11	1,99	1,27	0,75	0,50	0,32								
10,5	175		hr V				59,9 3,63	20,2	6,82 1,49	1,90 0,88	0,69 0,58	0,23								
·			hr V				79,7 4,15	26,9 2,65	9,07 1,70	2,53	0,92	0,31								
12	200		hr V				102 5,18	34,4	11,6	3,23 1,26	1,18	0,40	0,34							
15	250		hr				154	52,0	17,5	4,89	1,78	0,60	0,20							
18	300		v hr					3,98 72,8	2,55 24,6	1,51 6,85	1,00 2,49	0,64 0,84	0,41 0,28							
24	400		v hr					5,31 124	3,40 41,8	2,01 11,66	1,33 4,24	0,85 1,43	0,54 0,48	0,38 0,20						
30	500		V					6,63	4,25	2,51	1,66	1,06	0,68	0,47						
36	600		hr V					187	63,2 5,10	17,6 3,02	6,41 1,99	2,16 1,27	0,73	0,30 0,57	0,42					
			hr v						88,6 5,94	24,7 3,52	8,98 2,32	3,03 1,49	1,02 0,95	0,42	0,20					
42	700		hr v						118 6,79	32,8 4,02	11,9 2,65	4,03 1,70	1,36 1,09	0,56 0,75	0,26					
48	800		hr						151	42,0	15,3	5,16	1,74	0,72	0,34					
54	900		v hr						7,64 188	4,52 52,3	2,99 19,0	1,91 6,41	1,22 2,16	0,85 0,89	0,62 0,42					
60	1000		v hr							5,03 63,5	3,32 23,1	2,12 7,79	1,36 2,63	0,94 1,08	0,69 0,51	0,53 0,27				
75	1250	Ì	v hr							6,28 96,0	4,15 34,9	2,65 11,8	1,70 3,97	1,18 1,63	0,87	0,66 0,40				
90	1500	ŀ	V							7,54	4,98	3,18	2,04	1,42	1,04	0,80				
		ŀ	hr v							134 8,79	48,9 5,81	16,5 3,72	5,57 2,38	2,29 1,65	1,08	0,56				
105	1750	-	hr v							179	65,1 6,63	21,9 4,25	7,40 2,72	3,05 1,89	1,44 1,39	0,75 1,06	0,68	-		
120	2000	ŀ	hr V								83,3	28,1	9,48	3,90	1,84	0,96	0,32			
150	2500		hr								8,29 126	5,31 42,5	3,40 14,3	2,36 5,89	1,73 2,78	1,33 1,45	0,85 0,49			
180	3000		v hr									6,37 59,5	4,08 20,1	2,83 8,26	2,08 3,90	1,59 2,03	1,02 0,69	0,71 0,28		
210	3500	İ	v hr									7,43 79,1	4,76 26,7	3,30 11,0	2,43 5,18	1,86 2,71	1,19 0,91	0,83		
240	4000	ŀ	V									8,49	5,44	3,77	2,77	2,12	1,36	0,94		
		ļ	hr V									101	34,2 6,79	14,1 4,72	6,64 3,47	3,46 2,65	1,17	0,48 1,18		
300	5000	ŀ	hr v										51,6 8,15	21,2 5,66	10,0 4,16	5,23 3,18	1,77 2,04	0,73 1,42		
360	6000	ļ	hr										72,3	29,8	14,1	7,33	2,47	1,02	1.34	
420	7000		v hr											6,61 39,6	4,85 18,7	3,72 9,75	2,38 3,29	1,65 1,35	1,21 0,64	
480	8000		v hr											7,55 50,7	5,55 23,9	4,25 12,49	2,72 4,21	1,89 1,73	1,39 0,82	
540	9000	İ	v hr											8,49 63,0	6,24 29,8	4,78 15,5	3,06 5,24	2,12 2,16	1,56 1,02	1,19 0,53
600	10000	ŀ	٧											03,0	6,93	5,31	3,40	2,36	1,73	1,33
550	10000		hr												36,2	18,9	6,36	2,62	1,24	0,65

 $\begin{array}{l} hr = Durchflusswiderstand~f\"ur~100~m~Geradrohr~(m) \\ V = Geschwindigkeit~des~Wassers~(m/s \end{array}$

DRUCKVERLUSTE

TABELLE DER DRUCKVERLUSTE IN BÖGEN, VENTILEN UND ABSPRERRARMATUREN

Der Druckverlust errechnet sich durch Verwendung der Methode der äquivalenten Rohrlänge gemäß der unten aufgeführten Tabelle:

ZUBEHÖR		DN										
	25	32	40	50	65	80	100	125	150	200	250	300
					Entspr	echende	Rohrlär	ige (m)				
Bogen mit 45°	0,2	0,2	0,4	0,4	0,6	0,6	0,9	1,1	1,5	1,9	2,4	2,8
Bogen mit 90°	0,4	0,6	0,9	1,1	1,3	1,5	2,1	2,6	3,0	3,9	4,7	5,8
gleichmäßiger Bogen 90°	0,4	0,4	0,4	0,6	0,9	1,1	1,3	1,7	1,9	2,8	3,4	3,9
T- oder Kreuzverzweigung	1,1	1,3	1,7	2,1	2,6	3,2	4,3	5,3	6,4	7,5	10,7	12,8
Absperrarmatur	-	-	-	0,2	0,2	0,2	0,4	0,4	0,6	0,9	1,1	1,3
Rückschlagventil	1,1	1,5	1,9	2,4	3,0	3,4	4,7	5,9	7,4	9,6	11,8	13,9

G-a-pcv_a_th

Diese Tabelle ist gültig für die Richtzahl von Hazen Williams C = 100 (Rohrleitung aus Grauguss). Für Rohrleitungen aus Stahl müssen die Werte mit 1,41 multipliziert werden. Bei Verrohrungen aus Edelstahl, Kupfer und beschichtetem Grauguss sind die Werte mit 1,85 zu multiplizieren.

Wenn die entsprechende **Rohrlänge** bestimmt ist, kann man den Druckverlust aus der Tabelle entnehmen. Die angegebenen Werte sind Richtwerte und schwanken leicht je nach Ausführung. Dies gilt speziell für Durchgangsventile und Rückschlagventile, bei denen es ratsam ist, die von den Herstellern angegebenen Werte zu überprüfen.

FÖRDERMENGE

Liter pro Minute	Kubikmeter pro Stunde	Kubikfuß pro Stunde	Kubikfuß pro Minute	lmp. gal. per minuto	US gal. per minuto
l/min	m³/h	ft³/h	ft³/min	lmp. gal/min	Us gal./min
1,0000	0,0600	2,1189	0,0353	0,2200	0,2640
16,6667	1,0000	35,3147	0,5886	3,6660	4,4030
0,4720	0,0283	1,0000	0,0167	0,1040	0,1250
28,3170	1,6990	60,0000	1,0000	6,2290	7,4800
4,5460	0,2728	9,6326	0,1605	1,0000	1,2010
3,7850	0,2271	8,0209	0,1337	0,8330	1,0000

DRUCK UND FÖRDERHÖHE

Newton pro Quadratmenter N/m²	Kilopascal kPa	bar bar	pound force per square inch psi	Wasser in Meter m H ₂ O	Quecksilber in mm mm Hg
1,0000	0,0010	1 x 10 ⁻⁵	1,45 x 10 ⁻⁴	1,02 x 10 ⁻⁴	0,0075
1000,0000	1,0000	0,0100	0,1450	0,1020	7,5000
1 x 10 ⁵	100,0000	1,0000	14,5000	10,2000	750,1000
6895,0000	6,8950	0,0690	1,0000	0,7030	51,7200
9789,0000	9,7890	0,0980	1,4200	1,0000	73,4200
133,3000	0,1333	0,0013	0,0190	0,0140	1,0000

LÄNGE

Millimeter	Zentimeter	Meter	Inch	Fuß	Yard
mm	cm	m	in	ft	yd
1,0000	0,1000	0,0010	0,0394	0,0033	0,0011
10,0000	1,0000	0,0100	0,3937	0,0328	0,0109
1000,0000	100,0000	1,0000	39,3701	3,2808	1,0936
25,4000	2,5400	0,0254	1,0000	0,0833	0,0278
304,8000	30,4800	0,3048	12,0000	1,0000	0,3333
914,4000	91,4400	0,9144	36,0000	3,0000	1,0000

VOLUMEN

Kubikmeter	Liter	Milliliter	Imp.	gallone US	piede cubo
m³	l	ml	gallo	US gal.	ft³
1,0000	1000,0000	1 x 10 ⁶	220,0000	264,2000	35,3147
0,0010	1,0000	1000,0000	0,2200	0,2642	0,0353
1 x 10 ⁻⁶	0,0010	1,0000	2,2 x 10 ⁻⁴	2,642 x 10 ⁻⁴	3,53 x 10 ⁻⁵
0,0045	4,5460	4546,0000	1,0000	1,2010	
0,0038	3,7850	3785,0000	0,8327	1,0000	0,1337
0,0283	28,3170	28317,0000	6,2288	7,4805	1,0000

G-at_pp_a_sc

ZUSÄTZLICHE PRODUKTAUSWAHL UND DOKUMENTATIONEN

Xylect

Xylect ist eine Software mit Pumpenlösungen und greift auf eine umfangreiche Online-Datenbank quer durch das komplette Produktportfolio von Lowara und Vogelpumpen zu. Sie bietet vielfältige Suchoptionen und hilfreiche Einrichtungen zum Projekt- und Angebotsmanagement. Das neue Programm bietet stets aktuelle Produktinformationen über Tausende von Produkten und das dazu passende Zubehör.

Die Möglichkeit, nach Anwendungen suchen zu können und die gegebenen detaillierten Informationen erleichtern die optimale Auswahl, ohne die Produkte von Lowara und Vogel gut kennen zu müssen.

Die Suche kann erfolgen nach

- Anwendung
- Produkttyp
- Betriebspunkt

Xylect zeigt bzw. erstellt detailliert:

- eine Ergebnisliste
- Kennlinien mit Fördermengen und –höhen, Wellenleistung, Wirkungsgrad und NPSH
- Motordaten
- Produktabmessungen
- Zubehör
- Ausdrucke von Datenblättern
- Download von Dokumenten einschließlich dxf-Dateien

Die Suchmöglichkeit nach Anwendung lotst auch den Softwarenutzer, der das Produktprogramm nicht kennt, zur richtigen Produktauswahl.

a xylem brand

ZUSÄTZLICHE PRODUKTAUSWAHL UND DOKUMENTATIONEN

Xylect

Die detaillierte Anzeige erleichtert die Auswahl der optimalen Pumpe aus den vorgeschlagenen Alternativen.

Die Einrichtung eines persönlichen Kontos bietet die beste Möglichkeit, mit Xylect zu arbeiten. Dadurch kann folgendes genutzt werden:

- eigene Standardeinheiten einstellen
- Projekte erstellen und sichern
- Projekte mit anderen Xylect-Anwendern teilen und bearbeiten

Jeder Anwender hat einen eigenen "My Xylect"-Bereich, in den alle Projekte gespeichert werden.

Weitere Informationen von unserem Verkaufspersonal oder direkt unter www.xylect.com, wo man sich auch direkt registrieren kann.

Die Produktmaße sind auf dem Bildschirm sichtbar und können im dxf-Format herunter geladen werden.

Xylem |'zīləm|

- 1) Das Gewebe in Pflanzen, das Wasser von den Wurzeln nach oben befördert;
- 2) ein führendes globales Wassertechnikunternehmen.

Wir sind 12.900 Menschen, die ein gemeinsames Ziel eint: innovative Lösungen zu schaffen, um den Wasserbedarf unserer Welt zu decken. Im Mittelpunkt unserer Arbeit steht die Entwicklung neuer Technologien, die die Art und Weise der Wassernutzung und Wiedernutzung in der Zukunft verbessern. Wir bewegen, behandeln, analysieren Wasser und führen es in die Umwelt zurück, und wir helfen Menschen, Wasser effizient in ihren Haushalten, Gebäuden, Fabriken und landwirtschaftlichen Betrieben zu nutzen. In mehr als 150 Ländern verfügen wir über feste, langjährige Beziehungen zu Kunden, bei denen wir für unsere leistungsstarke Mischung aus führenden Produktmarken und Anwendungskompetenz, unterstützt durch eine Tradition der Innovation, bekannt sind.

Weitere Informationen darüber, wie Xylem Ihnen helfen kann, finden Sie auf xyleminc.com.

XYLEM WATER SOLUTIONS DEUTSCHLAND GmbH Biebigheimer Straße 12 D-63762 Großostheim

Telefon: (0 60 26) 9 43 - 0 info.lowarade@xyleminc.com

Fax: (0 60 26) 9 43 - 2 10 www.lowara.de