4 Unconstrained optimization

Exercise 4.1

Find all critical points of the function

$$f(x,y) = x^2 + y^2$$

and classify each as a relative maximum, a relative minimum, or a saddle point.

Exercise 4.2

Find all critical points of the function

$$f(x,y) = x^3 - y^3 + 6xy$$

and classify each as a relative maximum, a relative minimum, or a saddle point.

Exercise 4.3

Write the function

$$f(x,y) = x^2 + y^2 + xy + x - 2y + 3$$

under the matrix form

$$f(x,y) = \frac{1}{2}u^T A u + b^T u + c$$

where u=(x,y), A is a symmetric square matrix, b is a vector and c is a scalar. Is this function convex?

Exercise 4.4

Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = ax^2 + bx + c$$

with a > 0, $b \in \mathbb{R}$ and $c \in \mathbb{R}$. We want to prove the convergence of the gradient descent algorithm with constant step which consists in a sequence of values $x^{(k)}$ such that, given $x^{(0)} \in \mathbb{R}$,

$$x^{(k+1)} = x^{(k)} - \eta f'(x^{(k)})$$

with $\eta > 0$.

- 1. Find the critical point x^* of f and show it is a global minimum by studying the sign of f'.
- 2. Show that, for all $(x, y) \in \mathbb{R}^2$,

$$f(y) - f(x) - (y - x)f'(x) = a(y - x).$$

3. Show that

$$f(x^{(k+1)}) - f(x^{(k)}) = -\eta \left(f'(x^{(k)})\right)^2 (1 - a\eta).$$

4. Show that

$$\sum_{k=0}^{N} (f'(x^{(k)}))^2 = \frac{1}{\eta(1-a\eta)} (f(x^{(0)}) - f(x^{(N+1)})).$$

5. Assume that $\eta < \frac{1}{a}$, then show that

$$\sum_{k=0}^{N} (f'(x^{(k)}))^{2} \le \frac{1}{\eta(1-a\eta)} (f(x^{(0)}) - f(x^{*})).$$

6. Assuming that $\eta < \frac{1}{a}$, deduce that

$$\lim_{k \to +\infty} f'(x^{(k)}) = 0,$$

which involves that

$$\lim_{k \to +\infty} x^{(k)} = x^*.$$

Exercise 4.5

We want to code with Jupyter notebook the gradient descent algorithm with constant step in order to compute the minimum of the function :

$$f(x) = \frac{1}{10}x^2 - 8x + 10.$$

- 1. Plot the function f(x) for n = 1000 equally spaced samples x_i satisfying $-60 \le x_i \le 140$.
- 2. Compute the global minimum x^* of f(x).
- 3. Code the gradient descent algorithm with constant step $\eta=2$. The number of iterations is N=20 and $x^{(0)}=-50$. Save the values $x^{(k)}$, $f'(x^{(k)})$ and $e_k=f(x^{(k)})-f(x^*)$ as some sequences depending on the iteration step k.
- 4. Use a subplot figure to plot the sequence $f'(x^{(k)})$ with respect to k and to plot the sequence e_k with respect to k.
- 5. Plot the function f(x) with all the steps $x^{(k)}$ appearing as yellow circles on the curve. The goal of this curve is to show the convergence of the gradient descent algorithm.
- 6. Try the constant step $\eta=8$ and next $\eta=12$. Discuss the impact of η on the algorithm convergence.
- 7. Come back to the constant step $\eta=2$ and try the initialization point $x^{(0)}=10$ and next $x^{(0)}=100$. Discuss the impact of $x^{(0)}$ on the algorithm convergence.