Special Topic: RSA Algorithm

Division of Computer Science and Engineering HANYANG UNIVERSITY

Fall, 2016

1. Euler's Phi-Function

Definition 1.1. For $n \geq 1$, let $\phi(n)$ denote the number of positive integers not exceeding n that are relatively prime to n. The function ϕ is called the *Euler phi-function* or *totient*.

• $\phi(30)=8$; the following are the positive integers not exceeding 30 that are relatively prime to 30.

Similarly,

$$\phi(1) = 1$$
, $\phi(2) = 1$, $\phi(3) = 2$, $\phi(4) = 2$, $\phi(5) = 4$, $\phi(6) = 2$, $\phi(7) = 6$, ...

• For any n > 1.

 $\phi(n) = n - 1$ if and only if n is prime.

Theorem 1.1. If p is a prime and k > 0, then

$$\phi(p^k) = p^k - p^{k-1} = p^k (1 - \frac{1}{p}).$$

Proof. $gcd(n, p^k)=1$ iff $p \nmid n$. There are p^{k-1} integers between 1 and p^k divisible by p, namely,

$$p, 2p, 3p, \dots, (p^{k-1})p$$

Thus, $\{1,\,2,\,\dots,\,p^k\}$ contains exactly p^k-p^{k-1} integers that are relatively prime to p^k .

Lemma. Given integers a,b,c, $\gcd(a,bc)=1$ if and only if $\gcd(a,b)=1$ and $\gcd(a,c)=1$.

Theorem 1.2. The function ϕ is a multiplicative function, i.e., $\phi(mn) = \phi(m)\phi(n)$ wherever $\gcd(m,n) = 1$.

Theorem 1.3. If the integer n>1 has the prime factorization $n=p_1^{k_1}\cdots p_r^{k_r}$, then

$$\phi(n) = (p_1^{k_1} - p_1^{k_1 - 1})(p_2^{k_2} - p_2^{k_2 - 1}) \cdots (p_r^{k_r} - p_r^{k_r - 1})$$
$$= n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2}) \cdots (1 - \frac{1}{p_r}).$$

Example 1.1. Since $360 = 2^3 \cdot 3^2 \cdot 5$, we have

$$\phi(360) = 360(1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{5}) = 96.$$

Theorem 1.4. For n > 2, $\phi(n)$ is an even integer.

Another proof of Euclid's theorem:

Assume that there are only a finite number of primes, we call p_1,\ldots,p_r . Consider the integer

$$n=p_1p_2\cdots p_r.$$

Then for any $1 < a \le n$, $\gcd(a,n) \ne 1$. (Why?) Thus, $\phi(n) = 1$, which contradicts to Theorem 1.4.

1.2. Euler's Theorem

Theorem 1.5. (Euler's Generalization of Fermat's Theorem)

If $n \ge 1$ and $\gcd(a, n) = 1$, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

(Fermat's Little Theorem): If p is a prime and a any positive integer such that $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$.

Example 1.2. Let us find the last two digits in the decimal representation of 3^{256} . This is equivalent to obtaining the smallest nonnegative integer to which 3^{256} is congruent modulo 100. Because $\gcd(3,100)=1$ and

$$\phi(100) = \phi(2^2 \cdot 5^2) = (2^2 - 2)(5^2 - 5) = 40,$$

Euler's theorem yields

$$3^{40} \equiv 1 \pmod{100}$$
.

Thus.

$$3^{256} = 3^{6 \cdot 40 + 16} = (3^{40})^6 3^{16} \equiv 3^{16} \equiv 21 \pmod{100}.$$

Proof. Because $\gcd(n,10)=1$ and $\gcd(9,10)=1$, we have $\gcd(9n,10)=1$. By Euler's theorem,

$$10^{\phi(9n)} \equiv 1 \pmod{9n}.$$

This says that $10^{\phi(9n)}-1=9nk$ for some integer k or, what amounts to the same thing,

$$kn = \frac{10^{\phi(9n)} - 1}{9} = 111 \cdots 111$$

1.3. RSA Algorithm (Rivest, Shamir and Adleman)

Key Generation

- 1 Let p and q be large prime numbers $(p \neq q)$.
- N = pq
- $\phi(N) = \phi(p)\phi(q) = (p-1)(q-1)$ (By Theorem 1.3)
- $\textbf{4} \ \ \mathsf{Find} \ e \ \mathsf{such that} \ 1 < e < \phi(N) \ \mathsf{and} \ \mathsf{gcd}(e,\phi(N)) = 1.$
- 5 Find d which is the modular multiplicative inverse of e (mod $\phi(N)$). Then, $de \equiv 1 \pmod{\phi(N)}$. (Recall that if $\gcd(a,m)=1$ and m>1, then a has a unique (modulo m) inverse a'.)

Now, the public and private keys are < N, e> and < N, d>, respectively.

Assume that A wants to send his(her) message m to B.

Encryption (by A)

- 1 Acquire the public key of B, namely $\langle N, e \rangle$
- **2** Encrypt m into c such that $c = m^e \pmod{N}$
- \blacksquare Send c to \square

Decryption (by B)

- \blacksquare Recieve the cipher text c from A

Proof of correctness (using Euler's Theorem)

We want to show that $c^d \pmod N = m^{ed} \pmod N \equiv m \pmod N$. Since $de \equiv 1 \pmod {\phi(N)}$, there exist a positive integer k which satisfies $de = k\phi(N) + 1$. Then,

$$m^{de} = m^{k\phi(N)+1} = m(m^{\phi(N)})^k$$

By Euler's Theorem, $m^{\phi(N)} \equiv 1 \pmod{N}$. Hence, $m^{de} \equiv m(1)^k \equiv m \pmod{N}$.

Security of the RSA Algorithm

If we know $\phi(N)$, others can find the private key < N, d > using public key < N, e >. However, if we do not know p and q, it is extremly difficult (actually, almost impossible) to find $\phi(N)$. Also, it is known that the prime factorization of a sufficiently large number is an intractable problem. Hence, if we use sufficiently large primes p and q and keep them securely, others cannot factorize N(=pq) and so cannot figure out $\phi(N)$. Hence, RSA algorithm is secure provided that sufficiently large primes, p and q, are used.