Pressing Matters

Fall 2024 Design Review Presentation

What are we trying to solve?

- Screen printing electrodes for flexible, wearable biosensors
- Electrodes are screen printed by hand, which can be time consuming and wastes expensive conductive ink
- The goal of this project is to build a desktop-sized printer that automates this process while minimizing wasted ink.

Results of Market Survey

- Existing printers sold commercially for lab applications can cost thousands of dollars
- Ultimately the market for wearable sensors is massive and continues to grow
- Screen printed electrodes also used in water quality testing and sensing environmental contaminants

Customer Needs and Design Criteria

- Device can successfully squeegee onto stencil
- Squeegee motion is automated
- Controlled pressure on squeegee
- Control over volume of ink dispensed
- Accommodates 12in x 12in stencil
- Print time takes about 5-10 minutes
- Machine is easy to use
- Machine is easy to clean
- Device can cure stencil prints on plate (optional)

Standards/Regulatory Needs

- Heating element must be covered (only applies if we include ability to cure print)
- Pressing motion must be contained to prevent injury
- Ink must be safely stored and uncontaminated
- Standard Electronics Communication Protocols
 - USB connection between Teensy and RaspberryPi

Targeted Final Specs

- Even pressure applied to each side of squeegee (2.5% force deviation)
- Minimize leftover ink (10% of dispensed ink wasted in each print)
- Final machine should have maximum dimensions 1.5ft x 1.5ft x 2.5 ft
- Printing time at or below 5 minutes
- Print should yield 95% successful electrodes
- Device should score 9/10 on a ease-of-use survey

Design Methodology

Design Decisions MECH

- Decided not to repurpose an existing 3d printer due to concerns about proprietary software and ability to provide downward force on squeegee
- 3d printed parts for rapid prototyping
 - o PLA fairly reliable for most pieces
 - Will upgrade to higher quality materials if necessary
- Screw driven linear actuators chosen for fine movement control
 - This mechanism was chosen through a pugh scoring matrix of several designs

Category	Detail 1	Detail 2	Detail 3	Detail 4
Container	Bottle clip	Threaded cap	Vent cap	Syringe
Dispenser	From housing	From tube	1111	
Dispenser System	Peristaltic pump	Regular pump	Syringe-type plunger	gravity feed
Stencil Holder	Pen clamp	Single clamps		
Squeegee Pressure Z	Screw gears	Belt gantry		
Dispenser Movement	Belt	Screw gantry	rack and pinion	
Squeegee Movement X/Y	Screw gears	Belt Rotation		
Gantry Movement	Belt	Screw	Rack & pinion	
Cleaning Ability		8.		
Tubes:	Ethanol flush			
Container:	Vibrator/ultrasonic	Ethanol flush		
Squeegee:	Removable	Ethanol dunk	Junk it	Wipe it
Bed:	Wipe it			

Design Decisions ELEC I

Microcontroller

- Teensy chosen over TI MSP Family
 - Teensy is more adaptable for motor control
 - MSP Family generally had less processing speed and memory

Motors

- Stepper Motors chosen over DC Motors
 - Stepper Motors offer more precise control
 - Closed Loop Stepper Motors were chosen

Design Decisions for ELEC II

- Stepper Motor Drivers
 - CLT57T chosen among a variety of similar drivers
 - High Quality driver and very well priced

Electronics Design Flow

Cycle 2 Objectives

- Locked Differential on Y Gantry is functional
- Linear Actuators Move Mechanically Over X and Y Gantries (goal per axis)
- Electronics installed in undercarriage
- Teensy-driven motor control circuit assembled
- Preliminary code for running motors completed
- Custom PCB ordered
- Linear actuator ink dispenser parts 3D printed

Locked Differential

Assuming even start position, assures equal movement of left and right

sides of y-gantry

Linear Actuators - X and Y Gantry Movement

Electronics Undercarriage

- Plexiglass panel with heat inserts, holds all electronics in place
- Easily removable from base of machine
- Will add new screw holes as we add new components, will eventually have fans on sides of base for cooling air flow

Motor Control and Movement

- This goal has not been met
 - Current Problem: Missing Component (UCD74HCT125E Buffer)
- Solution to Solving this Problem
 - Get component and implement into system
- Preliminary Code Written
- Wiring completed
 - Implemented in Electronics undercarriage

Custom PCB - Overview I

- Customized PCB to fit required specs
- Features connections for:
 - Teensy 4.1 Microcontroller
 - CD74HCT125E Logic Buffer
 - Bypass Capacitors
 - Screw Terminal Connectors for Motor Wires
 - Header Pins for expanded Input and Output Access

A larger picture of the PCB and Schematic are in the following slides

Custom PCB - Overview II

- The custom PCB is divided 4 layers
 - Top Layer (Red)
 - Primarily for Signal Routes
 - Ground Plane (Yellow)
 - Provides EMI Protection
 - Saves space on the top and bottom of the board
 - Power (+5V) Plane (Orange)
 - Saves space on the top and bottom of the board
 - Bottom Layer (Blue)
 - Primarily for Signal Routes

Ground Plane

+5V Power Plane

Custom PCB - Teensy Microcontroller

- Teensy Microcontroller acts as the brain of the PCB
- Sends low voltage signals to the Voltage Buffers to be used to control the motors
- Connects to additional Header Pins for increased accessibility for other components
 - This allows for expansion in the future

Custom PCB - CD74HCT125E Buffer

- Voltage Buffer receives signals from the Teensy and increases voltage of the signals
- The higher voltage signal is then sent to the Motor Drivers on the Electronics Undercarriage
- The PCB has 4 Buffers One for each motor

Ink Dispenser

- Racks and pinion move squeegee up/down on z axis
 - Downwards pressure needed for printing
- Ink loaded into syringe, screw-driven linear actuator pressed syringe plunger down to dispense ink
 - Ink is very viscous and should not leak but we may need to raise plunger a bit between dispensing ink over stencils to use pressure to hold it in
- Squeegee and syringe/ink dispenser move over x-axis on same toolhead

Ink Dispenser (contd.)

- Tool Head needs major changes
 - Need to cut down on ink dispenser height
 - Limited motor placement due to magnetic interference
 - Squeegee motor does not currently have a place in the CAD
- Alt. design being considered
 - o 12 in. long squeegee that does not need to move on x-gantry, just makes a single swipe
 - Not without its own issues

Plans for Spring Semester

- Finish tool head/ink dispenser redesign
- Identify and enter external design competition
- Full machine assembly
 - Nylon, possibly milled pieces to replace PLA printed parts
- Full electronics wiring and implementation
- Development of code for controlled ink dispensing
- Full System Testing beginning February 1st

Spring Semester Deadlines

- Design Completed with Full Construction: January 31
- Functional product: March 14
- Team's Project Completion Goal: April 11
- OEDK Showcase: April 17

Questions?

