יריעות אלגבריות – הרצאה תשיעית

אזי ,P
otin X אזי אם אזי $X \subseteq \mathbb{P}^n$ אם **0.1 משפט**

$$\pi_P: X \to \mathbb{P}^{n-1}$$

היא העתקה סופית.

הוכחה: בלי הגבלת הכלליות,

$$P = [1:0\cdots:0]$$

$$X = Z(F)$$

 $\deg F = D$ היפר

$$F(P) \neq 0 \rightarrow F = x_0^d + \cdots$$

$$\pi_P([\alpha_0:\cdots:\alpha_n])=[\alpha_1:\cdots:\alpha_n]$$

יהי

$$U_1 = \{ [1: x_2: \dots : x_n] \mid F(\alpha_0, \dots, \alpha_n) = 0 \ \alpha_1 = 1 \} =$$

$$= \{(x_0, x_2, \dots, x_n) \in \mathbb{C}^n \mid F(x_0, 1, x_2, \dots, x) = 0\} = Y$$

אפיני. נרצה להראות שההעתקה

$$Y \to \mathbb{C}^{n-1}$$

$$(x_0, x_2, \dots, x_n) \mapsto (x_1, \dots, x_n)$$

סופית. כלומר, צריך להראות שהפונקציה $x_0\mid_y$ מקיימת פולינום מתוקן שמקדמיו הם פולינומים ב

$$x_2 \mid_Y, \ldots, x_n \mid_Y$$

. המקיימות פולינום $F\left(X_0,1,X_2,\ldots,X_n
ight)$ שהוא מתוקן

 $p\notin X$ אזי או שנבחר או $X=\mathbb{P}^n$ ואז הכל טוב, או שנבחר $X=\mathbb{P}^n$ אזי או ש $\pi_p(X)\subseteq\mathbb{P}^{n-1}$ ונסתכל על ונסתכל על

$$X \to \pi_p X \to \pi_q \pi_p X \to \dots \to \mathbb{P}^d$$

כלומר לX יש העתקה סופית לתוך מרחב פרוייקטיבי.

נניח כי X אי פריקה, אזי אוסף הפונקציות הרציונליות על X הרחבה הרחבה מניח כי X אי פריקה, אזי אוסף הפונקציות הרציונליות על X כך שX כלומר יש נוצרת סופית של X, כלומר יש בוצרת סופית של בחרחבה הראשונה היא טרנדצנדנטית והשנייה אלגברית. Rat X נקראת דרגת הטרנסצנדנטיות של X

הגדרה 0.3 X אי פריקה,

$$\dim X = \operatorname{tr.deg}(\operatorname{Rat}(X))$$

דוגמא

 $\dim \mathbb{P}^n = \dim \mathbb{C}^n = n$

 $\dim X = \dim Y$ אם f: X o Y אם למה f: X o Y

הוכחה: בלי הגבלת הכלליות נניח כי X,Y אפיניות. מכך שההעתקה על נקבל ש

$$\operatorname{Rat}(Y) \subset \operatorname{Rat}(X)$$

ומכך שהעתקה סופית נקבל שההרחבה היא אלגברית.

 $\dim X \leq \dim Y$ אזי $X \subseteq Y$ אם 0.5 למה

. אפינית בלי הגבלת הכלליות $Y \subseteq \mathbb{C}^n$ אפינית בלי

$$\operatorname{Rat}(Y) = \mathbb{C}(x_1|_Y, \dots, x_n|_Y)$$

$$\operatorname{Rat}(X) = \mathbb{C}(x_1|_X, \dots, x_n|_X)$$

 $|x_i|_X$ וכל יחס אלגברי המתקיים על אלגברי המתקיים על

 $\dim X < \dim Y$ משפט 0.6 אם X,Y אי פריקות, $X \subsetneq Y$ סגורות, אזי אי פריקות

הוכחה: בלי הגבלת הכלליות $Y\subseteq\mathbb{C}^n$. נבחר פולינום בלי הגבלת הכלליות בלי בלי בחר מתאפס על נוצרת ע"י פונקציות הקוארדינטות. נניח כי $\operatorname{Rat}(Y)$. אבל לא על X

$$\dim Y = d$$
.

בלי הגבלת הכלליות, $x_i|_Y$ הם בלתי תלויים אלגברית ו

$$\operatorname{Rat}(Y)/\mathbb{C}(x_1|_Y,...,x_n|_Y)$$

אלגברי מהצורה f מקיימת אלגברי מהצורה

$$g_n(x_i|_Y) \cdot f^n + \dots = g_0(x_i|_Y) = 0$$

 $g_0\left(x_i|_X
ight)=$ כאשר כאשר אבל מונקציות אלו לXאבל במשתנים. כאשר במשתנים. במשתנים לבמשתנים בלתי מלויים אלגברית. אינם בלתי בלתי $x_1|_X,\dots,x_d|_X$ ולכן 0

אי פריק, אזי $f\in\mathbb{C}\left[x_1,\ldots,x_n
ight]$ עבור $X=Z\left(f
ight)\subseteq\mathbb{C}^n$ אי פריק, אזי $\dim X=n-1.$

f בלי מופיע ב הנכלריות, הכלליות בלי בלי הגבלת בלי

$$\operatorname{Rat}(X) = \mathbb{C}(x_1|_X, \dots, x_n|_X)$$

נטען ש $|x_1|_x,\dots,x_{n-1}|_X$ הם בלתי תלויים אלגברית. נניח שהם לא. אזי יש פולינום נטען ש $g(x_1,\dots,x_{n-1})$ כך ש

$$g(x_1|_X,\ldots,x_{n-1}|_X)=0.$$

אם נסתכל על Nullstelensatz אם מתאפס על $g\left(x_1,\ldots,x_{n-1}\right)$ אם נסתכל על קוא מתאפס או $g\left(x_1,\ldots,x_{n-1}\right)$ ואז נקבל א $g\in I\left(Z\left(f\right)\right)$ עבור g עבור g נאן לא, בסתירה.

 $X=Z\left(f
ight)$ אזי אזי n-1 מסקנה אי פריק אי פריק אזי אי אב אזי אזי אזי אזי אזי אזי אי מסקנה

אזי $X \neq Z\left(f\right)$ אזי אונרחה: יהי f פולינום אי פריק המתאפס על

$$\dim X < \dim Z(f) = n - 1$$

בסתירה.

נרחיב את ההגדרה של מימד:

הגדרה 0.9 אם X פריק, נגדיר את המימד של X להיות המקסימום של מימדי תתי המרחבים האי פריקים שלו, כלומר

$$\dim X = \max_{Y \subset X \text{ irred components}} \dim Y.$$