实数理论

1 基本认识

1.1 互推关系

Dedekind 连续性公理 ← 确界原理(公理) ← 单调收敛定理 ← 闭区间套定理(+ 阿基米德原理) ← 有限覆盖定理 ← 致密性定理 ← 柯西收敛原理 ← 聚点原理

1.2 Dedekind 连续性公理

Dedekind 分割: $A, B \in R$ 的两个子集,满足 $A \cup B = \mathbb{R}, A \cap B = \emptyset, A \neq \emptyset, B \neq \emptyset$ 且对任何 $a \in A, b \in B$ 都有 a < b,则称 (A, B) 为 \mathbb{R} 的一个分割.

Dedekind 连续性公理

对于 \mathbb{R} 的任何分割,都存在唯一的 $x^* \in \mathbb{R}$,使对所有 $a \in A$ 和 $b \in B$,都有 $a \le x^* \le b$.

1.3 确界原理

确界:

- (1) 如果数集 S 的上界集中有最小元,则称之为 S 的上确界,记为 $\sup S$;
- (2) 如果数集 S 的下界集中有最大元,则称之为 S 的下确界,记为 $\inf S$.

注1: sup 是 supremum 的缩写, inf 是 infimum 的缩写.

注²: 上确界的另一种翻译是 least upper bound,下确界的另一种翻译是 greatest lower bound. 这种翻译实际上蕴含了它们实际上是最小上界和最大下界.

定理: β 是数集 S 的上确界的充分必要条件是:

- (1) 对任意 $x \in S$, 都有 $x \le \beta$;
- (2) 对任意 $\varepsilon > 0$,都存在 $x_0 \in S$,使得 $x_0 > \beta \varepsilon$.

命题: β 是数集 S 的上确界的充分必要条件是:

- (1) 对任意 $x \in S$, 都有 $x \le \beta$;
- (2) 存在数列 $\{x_n\} \subseteq S$,使得 $\lim_{n \to \infty} x_n = \beta$.

确界原理(公理)

有上界的非空数集必有上确界.

注1: 这里选择确界原理当做公理, 但实际上也可以选择其他理论作为公理.

在确界原理的基础上我们容易得出:有下界的非空数集必有下确界.

一个小命题: $\sup\{|x-y| \mid x,y \in S\} = \sup S - \inf S$.

1.4 单调收敛定理

单调收敛定理

- (1) 若数列 $\{x_n\}$ 单调递增且有上界,则 $\lim_{n\to\infty}x_n=\sup\{x_n\mid x\in\mathbb{N}^*\};$
- (2) 若数列 $\{x_n\}$ 单调递减且有下界,则 $\lim_{n\to\infty} x_n = \inf\{x_n \mid x \in \mathbb{N}^*\}.$

1.5 区间套定理

区间套定理

设 $\{[a_n,b_n]\}$ 是一列闭区间,满足:

- (1) $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n], n = 1, 2, 3, \dots;$
- (2) $\lim_{n \to \infty} (b_n a_n) = 0.$

则存在唯一的实数 ξ ,使得 ξ 是区间列 $\{[a_n,b_n]\}$ 的唯一公共点.

注1: 若把区间套定理中的闭区间改成一列开区间或者无界区间, 定理将不再成立.

注²: 区间套定理在直观上也是自明的,它和确界原理是可以相互证明的(但区间套定理需要加上阿基米德原理才能得到确界原理).事实上,历史上曾经把它作为"几何学"的公理,用来刻画直线的完备性.

下面介绍阿基米德原理:

阿基米德原理

若 a 与 b 都是正实数,则必存在 $n \in \mathbb{N}^*$,使得 na > b.

由阿基米德原理可知,既没有最大的正有理数,也没有最小的正有理数.

阿基米德原理由确界原理的证明如下:

证明: 假设阿基米德原理不成立,则存在 a>0,b>0,使对任何正整数 n,有 $na\leq b$. 令 $A=\{na\mid n\in\mathbb{N}^*\}$,则 A 非空有上界,从而有上确界,记 $\alpha=\sup A$.

因为 a > 0,所以 $\alpha - a < \alpha$. 由于 $\alpha - a$ 不是 A 的上界,故存在正整数 m,使得 $\alpha - a < ma$,于是 $\alpha < (m+1)a$,这与 α 是 A 的上界矛盾.故得证.

2

1.6 致密性定理

定理: 若 $\lim x_n = a$,则 $\{x_n\}$ 的任意子列 $\{x_{n_k}\}$ 收敛,并且极限也是 a.

定理: 若 $\{x_n\}$ 是一个无界数列,则存在子列 $x_{n_k} \to \infty$.

定理: 设 $\{x_n\}$ 是一个数列, A 是一个实数. 则一下两个条件等价:

- (1) 存在 $\{x_n\}$ 的一个子列收敛到 A;
- (2) A 的任何邻域都含有 $\{x_n\}$ 的无穷多项.

极限点: 若存在子列 $\{x_{n_k}\}$ 使得 $\lim_{k\to\infty} x_{n_k} = x$,则称 x 是数列 $\{x_n\}$ 的极限点.

我们知道收敛的数列一定是有界的,但是有界的数列是否存在收敛的子列呢,下面的定理给出了肯定的回答:

致密性定理

任一有界数列必有收敛子列.

注: 致密性定理又被称为 Bolzano-Weierstrass 定理.

聚点: 设点集 $S \subseteq \mathbb{R}, \alpha \in \mathbb{R}$, 如果 α 的任何空心邻域中都含有点集 S 中的点,则称 α 为集合 S 的<mark>聚点</mark>. 注: S 中所有聚点的集合称为 S 的导集,记作 S'.

设点集 $S \subseteq \mathbb{R}, \alpha \in \mathbb{R}$,以下命题是彼此等价的:

- (1) α 为集 S 的聚点.
- (2) α 的任何空心邻域内都有点集 S 中无穷多个点.
- (3) 存在 $\{x_n\} \subseteq S$,使得 $x_n \neq \alpha, n = 1, 2, \dots$,且 $\lim x_n = \alpha$.
- (4) 存在 $\{x_n\} \subseteq S$,使得对任何两个不同的正整数 i, j,有 $x_i \neq x_j$,且 $\lim_{n \to \infty} x_n = \alpha$.

聚点定则

有界无穷点集必有聚点.

1.7 柯西收敛原理

柯西收敛原理

数列 $\{x_n\}$ 收敛的充分必要条件为:对于任意的 $\varepsilon > 0$,存在 $N \in \mathbb{N}$,使得当 m, n > N 时,就有

$$|x_m - x_n| < \varepsilon$$

1.8 有限覆盖定理

区间集的并集: 设 J 是一个区间集,即 J 中的每一个元素 I 都是一个区间,那么把 J 中所有区间合并成一个集合,记为 $\bigcup J$ 或者 $\bigcup \{I | I \in J\}$.即满足

$$x\in\bigcup J\iff\exists I\in J,\ s.t.\ x\in I.$$

覆盖: 设 S 是一个数集,J 是一个区间集,如果 $S\subseteq\bigcup J$,我们就称区间集 J 是数集 S 的一个覆盖,或者说 J 覆盖 S.

3

进一步,如果 J 是一个开区间集,即 J 中的区间都是开区间,我们称 J 是数集 S 的一个 开覆盖.

子覆盖: 设 J 是 S 的一个覆盖,如果 J 的一个子集 J_1 仍然是 S 的一个覆盖,称 J_1 是 J 的子覆盖. 进一步,如果 J_1 是一个有穷集合,则称 J_1 是 J 的 有限子覆盖.

有限覆盖定理

闭区间的任意开覆盖都存在有限子覆盖.

注: 若把有限子覆盖的条件放宽,把闭区间改为任意一个数集,我们可以得到下面的结论: 任何一个数集的任意开覆盖都存在至多可数的子覆盖.

2 基于确界原理的实数系定理互推

2.1 互推顺序

我们选择的互推顺序如下:

2.2 Dedekind 连续性公理 ← 确界原理

2.2.1 Dedekin 连续性公理 ⇒ 确界原理

设非空数集 S 有上界 M, B 为 S 的上界集,于是 $B \neq \emptyset$. 再令 $A = \mathbb{R} \setminus B$,于是 $A \neq \emptyset$ 且 (A,B) 为 \mathbb{R} 的一个分割.

从而由 Dedekind 连续性公理知有唯一的 x^* , 使对任何 $a \in A, b \in B$ 都有

$$a \le x^* \le b$$

若 x^* 不是 S 的上界,那么存在 $x_0 \in S$ 使得 $x_0 > x^*$. 于是有

$$x^* < \frac{x^* + x_0}{2} < x_0$$

从而由定义知道 $\frac{x^*+x_0}{2}$ 不是 S 的上界,所以 $\frac{x^*+x_0}{2}\in A$.从而由分割知道 $\frac{x^*+x_0}{2}\leq x^*$ 与 $x^*< x_0$ 矛盾,从而 x^* 为 A 的上界,即 $x^*\in B$.

又有对于 S 的任何上界 $\beta \in B$, 有 $x^* < \beta$, 从而知 x^* 为 S 的上确界.

2.2.2 确界原理 ⇒ Dedekind 连续性公理

设 (A, B) 为 \mathbb{R} 的任一分割,由确界原理知 A 有上确界 x^* . 由定义知对任意 $a \in A$,都有 $a \le x^*$. 又由上确界的最小上界性与 B 中元素都是 A 的上界,从而知道对任意 $b \in B$,都有 $x^* < b$.

若还有 $x_0 \in \mathbb{R}, x_0 \neq x^*$, 使得对于任何 $a \in A, b \in B$ 都有 $a \leq x_0 \leq b$. 不妨设 $x_0 > x^*$, 于是

$$x^* < \frac{x^* + x^0}{2} < x_0$$

从而 $\frac{x^* + x_0}{2}$ 既不在 A 中也不在 B 中,与 (A, B) 为 \mathbb{R} 矛盾,从而证明了唯一性.

2.3 确界原理 ⇒ 单调收敛定理 ⇒ 闭区间套定理 ⇒ 确界原理

2.3.1 确界原理 ⇒ 单调收敛定理

只证明单调递增有上界的情况:

设数列 $\{x_n\}$ 递增且有上界,则集合 $\{x_n|x\in\mathbb{N}^*\}$ 有上界,因而有上确界. 记 $\beta=\sup\{x_n|n\in\mathbb{N}^*\}$,于是知对于任意的 $n\in\mathbb{N}^*$,有 $x_n\leq\beta$. 并且对任意 $\varepsilon>0$,都存在 N,使得 $x_N>\beta-\varepsilon$. 由于 $\{x_n\}$ 递增,从而当n>N 时,有

$$\beta - \varepsilon < x_N < x_n \le \beta$$

从而 $|x_n - \beta| < \varepsilon$. 由极限定义知 $\lim_{n \to \infty} x_n = \beta$.

2.3.2 单调收敛定理 ⇒ 闭区间套定理

设 $\{[a_n,b_n]\}$ 为一列闭区间,满足 $[a_{n+1},b_{n+1}]\subseteq [a_n,b_n], n=1,2,3,\cdots$,且 $\lim_{n\to\infty}(b_n-a_n)=0$. 从而知道 $\{a_n\}$ 单调递增有上界 b_1 , $\{b_n\}$ 单调递增有下界 a_1 ,故 $\{a_n\}$, $\{b_n\}$ 收敛. 且由于 $\lim_{n\to\infty}(b_n-a_n)=0$,知道 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\xi$.

从而有对于任意的 n, 满足 $a_n \le \xi \le b_n$. 故 ξ 为这一区间列的公共点.

若还存在 $\xi^* \neq \xi$ 为区间列的公共点,不妨设 $\xi^* > \xi$,从而由 $\lim_{n \to \infty} b_n = \xi$ 知,存在 $b_n < \xi^*$ 从而导致矛盾,从而唯一性得证.

2.3.3 闭区间套定理 ⇒ 单调收敛定理

设 S 是有上界的非空集合,不妨设 S 没有最大元.

任取一个 $a_1 \in S$,又设 b_1 为 S 的一个上界,把闭区间 $[a_1, b_1]$ 等分成两个区间 $[a_1, \frac{a_1 + b_1}{2}]$ 和 $[\frac{a_1 + b_1}{2}, b_1]$. 若 $\frac{a_1 + b_1}{2}$ 是 S 的一个上界,则记 $[a_2, b_2] = [a_1, \frac{a_1 + b_1}{2}]$,否则记 $[a_2, b_2] = [\frac{a_1 + b_1}{2}, b_1]$. 无论是哪种情况,都满足 b_2 是 S 的上界而 a_2 不是. 以此类推得到一列闭区间 $\{[a_n, b_n]\}$ 使得每一个 b_n 都是 S 的上界而 a_n 不是. 且这一列闭区间满足:

(1) $[a_1,b_1] \supseteq [a_2,b_2] \supseteq \cdots \supseteq [a_n,b_n] \supseteq \cdots$; (2) 对于任意给定的 $\varepsilon > 0$,由阿基米德公理,都存在正整数 n 使得 $n\varepsilon > b_1 - a_1$,从而 $b_n - a_n = \frac{b_1 - a_1}{2^{n-1}} \le \frac{b_1 - a_1}{n} < \varepsilon$,故区间长度收敛于 0.

5

, 则由区间套定理知道存在唯一的 ξ 是区间列 $\{[a_n,b_n]\}$ 的公共点.

下面先证明 ξ 是 S 的一个上界,由于对于任意的 $\varepsilon > 0$,存在 $b_n < \xi + \varepsilon$,从而 $\xi + \varepsilon$ 为 S 的一个上界,从 而对于任意的 $x \in S$,有 $x \le \xi + \varepsilon$,从而由 ε 的任意性知 $x \le \xi$,从而 ξ 为 S 的一个上界.

再证 $\xi - \varepsilon$ 不是上界,事实上对于任意给定的 $\varepsilon > 0$,存在正整数 n,使得 $b_n - a_n < \varepsilon$,从而 $a_n > b_n - \varepsilon \ge \xi - \varepsilon$. 由于 a_n 不是 S 的上界,故存在 $x_0 > a_n > \xi - \varepsilon$,从而 $\xi - \varepsilon$ 不是 S 的上界.

综上所述 $\xi = \sup S$.

2.4 闭区间套定理 ⇒ 致密性原理 ⇒ 柯西收敛原理 ⇒ 闭区间套定理

2.4.1 闭区间套定理 ⇒ 致密性原理

设 $\{x_n\}$ 是一个有界数列,即有实数 a,b 使得 $a \le x_n \le b$. 把 [a,b] 等分成两个区间 $[a,\frac{a+b}{2}],[\frac{a+b}{2},b]$. 知道这两个区间中至少有一个含有 $\{x_n\}$ 中的无穷多项,任取一个记为 $[a_1,b_1]$.

以此类推,得到区间列 $\{[a_n,b_n]\}$,满足:

- $(1) [a_1, b_1] \supseteq [a_2, b_2] \supseteq \cdots \supseteq [a_n, b_n] \supseteq \cdots;$
- (2) $b_n a_n = \frac{b_1 a_1}{2^{n-1}} \to 0 (n \to \infty).$

从而由区间套定理,存在唯一的 $\xi \in [a,b]$,使得 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} = \xi$.

下面在 $\{x_n\}$ 中选出一个子列 $\{x_{n_k}\}$ 收敛到 ξ .

在 $[a_1,b_1]$ 中任取 $\{x_n\}$ 中的一项,记为 x_{n_1} . 由 $[a_2,b_2]$ 中存在 $\{x_n\}$ 中的无穷多项,因此可以找到 $n_2>n_1$ 使得 $x_{n_2}\in[a_2,b_2]$.

以此类推,可以找到一列正整数 $n_1 < n_2 < \cdots < n_k < \cdots$, 使得 $a_k \le x_{n_k} \le b_k$.

 $\diamondsuit k \to \infty$ 即得 $\lim_{k \to \infty} x_{n_k} = \xi.$

2.4.2 致密性原理 ⇒ 柯西收敛原理

只证明充分性:

首先证明 $\{x_n\}$ 是一个有界数列,条件知道对于 $\varepsilon=1$,存在 $N_0\in\mathbb{N}^*$,使得当 $m,n>N_0$ 时,有

$$|x_n - x_m| < 1$$

特别地,取 $m = N_0 + 1$,有 $|x_n - x_{N_0+1}| < 1$,从而有

$$|x_n| < |x_{N_0+1}| + 1, \forall n > N_0$$

从而 $\{x_n\}$ 有界. 由致密性原理, $\{x_n\}$ 有收敛子列 $\{x_{n_k}\}$. 设 $\lim_{k\to\infty}x_{n_k}=a$. 对于任意 $\varepsilon>0$ 存在正整数 K,满足当 k>K 时,有

$$|x_{n_k} - a| < \varepsilon$$

又对上面的 ε ,存在正整数 N,满足当 m,n>N 时,有

$$|x_n - x_m| < \varepsilon$$

6

记 $k_0 = \max\{K+1, N+1\}$,则对 n > N 时,有 $n_{k_0} \ge k_0 > N$,从而有

$$|x_n - a| \le |x_n - x_{n_{k_0}}| + |x_{n_{k_0}} - a| < \varepsilon + \varepsilon = 2\varepsilon$$

从而 $\lim_{n\to\infty} x_n = a$.

2.4.3 柯西收敛原理 ⇒ 闭区间套定理

设闭区间套 $\{[a_n,b_n]\}$ 满足:

- (1) $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n], n = 1, 2, 3, \dots;$
- (2) $\lim_{n \to \infty} (b_n a_n) = 0.$

于是,对于任意 $\varepsilon > 0$,存在正整数 N,当 n > N 时,有 $|b_n - a_n| < \varepsilon$,此时对于任意的 m > n > N,有 $a_n \le a_m \le b_m \le b_n$,此时有

$$|a_n - a_m| \le |b_n - a_n| < \varepsilon, \quad |b_n - b_m| \le |b_n - a_n| < \varepsilon$$

由柯西收敛原理知道 $\{a_n\},\{b_n\}$ 都收敛. 又由于 $\lim_{n\to\infty}(b_n-a_n)=0$,故存在实数 ξ 满足

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \xi \in [a_k, b_k], (k = 1, 2, 3, \dots)$$

2.5 闭区间套定理 ⇒ 有限覆盖定理 ⇒ 致密性原理

2.5.1 闭区间套定理 ⇒ 有限覆盖定理

设 S=[a,b],开区间集 J 覆盖 S. 假设 [a,b] 不能被 J 中有限个区间覆盖,我们把 [a,b] 分为两个区间 $[a,\frac{a+b}{2}],[\frac{a+b}{2},b]$,其中至少有一个不能被 J 中有限个区间覆盖,记为 $[a_1,b_1]$.以此类推分下去得到一列闭区间 $\{[a_n,b_n]\}$,其中每一个 $[a_n,b_n]$ 都不能被 J 中有限个开区间覆盖,并且满足

- (1) $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n], n = 1, 2, 3, \dots;$
- $(2) \lim_{n \to \infty} (b_n a_n) = 0.$

由闭区间套定理知道存在 ξ 使得:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \xi \in [a_k, b_k], (k = 1, 2, 3, \dots)$$

又由于 J 覆盖 [a,b],故在 J 中必然有一个开区间 (α,β) 使得 $\xi \in (\alpha,\beta)$. 从而存在 N,对 n > N 有

$$\alpha < a_n < b_n < \beta$$

7

即 $[a_n, b_n] \subseteq (\alpha, \beta)$, 从而 $[a_n, b_n]$ 可以被 J 中一个区间覆盖, 矛盾. 故得证.

2.5.2 有限覆盖定理 ⇒ 致密性原理

设 $\{x_n\}$ 是一个有界数列,即有实数 a,b 使 $a \le x \le b(n \in \mathbb{N}^*$

假设对于任意 $\xi \in [a,b]$,都有 $\varepsilon_{\xi} > 0$,使在领域 $(\xi - \varepsilon_{\xi}, \xi + \varepsilon_{\xi})$ 中只含有 $\{x_n\}$ 的有限项,于是我们得到一个开区间集

$$J = \{(\xi - \varepsilon_{\xi}, \xi + \varepsilon_{\xi}) | \xi \in [a, b] \}$$

显然 J 是 [a,b] 的一个开覆盖,从而存在一个有限子覆盖

$$J_1 = \{(\xi_1 - \varepsilon_{\xi_1}, \xi_1 + \varepsilon_{\xi_1}), \cdots, (\xi_m - \varepsilon_{\xi_m}, \xi_m + \varepsilon_{\xi_m})\}$$

从而由 ε_{ξ} 的选取知道,对于 $i=1,2,\cdots,m$,在开区间 $(\xi_i-\varepsilon_{\xi_i},\xi_i+\varepsilon_{\xi_i})$ 中只含有有限个 $\{x_n\}$ 中的项,从而存在正整数 N_i ,满足对任意 $n>N_i$,有 $x_n\notin (\xi_i-\varepsilon_{\xi_i},\xi_i+\varepsilon_{\xi_i})$.

从而取 $N = \max\{N_1, N_2, \cdots, N_m\}$, 当 n > N 时, 有

$$x_n \notin \bigcup_{i=1}^m (\xi_i - \varepsilon_{\xi_i}, \xi_i + \varepsilon_{\xi_i}) = J_1 \supseteq [a, b]$$

8

从而与 $x_n \in [a,b]$ 矛盾. 故得证.