- Contesta las preguntas en las hojas blancas que se te darán. Indica claramente el número de problema e inciso. No es necesario que copies la pregunta.
- El total de puntos es 15. El examen se calificará sobre 10 puntos.
- 1. (5 puntos) Sea $M = \mathbb{R}^n$ y $g = dx_1^2 + dx_2^2 + \ldots + dx_n^2$. Sea ∇ la conexión de Levi-Civita compatible con g.
 - (a) (1 punto) Sean X y Y dos campos vectoriales sobre \mathbb{R}^n , calcula $\nabla_X Y$.
 - (b) (1 punto) Sea $\gamma: [a,b] \to \mathbb{R}^n$ una curva lisa que conecta los puntos $\gamma(a) = p$ y $\gamma(b) = q$. Sea $v \in T_p \mathbb{R}^n$. Encuentra un campo $V(t) \in \mathfrak{X}(\gamma)$ que sea paralelo y tal que V(a) = v.
 - (c) (1 punto) Sea $p \in \mathbb{R}^n$ y $v \in T_p\mathbb{R}^n$ un vector tangente. Encuentra la geodésica que pasa por p con velocidad v.
 - (d) (2 puntos) Calcula la aplicación exponencial exp : $T\mathbb{R}^n \to \mathbb{R}^n$ y demuestra que está definida globalmente.
- 2. (10 puntos) Recordemos algunos hechos sobre subvariedades. Sea (\tilde{M}, \tilde{g}) una variedad riemanniana. Sea (M,g) otra variedad riemanniana y $i: M \to \tilde{M}$ un encaje tal que $i^*(\tilde{g}) = g$. Dicho de otro modo, M es una subvariedad encajada de \tilde{M} y g es la métrica inducida en M por la métrica \tilde{g} . Sea $\tilde{\nabla}$ la conexión de Levi-Civita de (\tilde{M}, \tilde{g}) . En cada punto $p \in M$, el espacio tangente $T_p\tilde{M}$ se descompone en una suma directa ortogonal $T_p\tilde{M} = T_pM \oplus N_p$ donde $N_p = (T_pM)^{\perp}$ es el complemento ortogonal de T_pM con respecto a \tilde{g} . Sea $\pi_p^T: T_p\tilde{M} \to T_pM$ la proyección en el subespacio T_pM .
 - Sean X y Y dos campos vectoriales en M que se pueden extender (al menos localmente) a campos \tilde{X} y \tilde{Y} en \tilde{M} . Sea $\nabla_X Y|_p := \pi^T (\tilde{\nabla}_{\tilde{X}} \tilde{Y}|_p)$. El operador ∇ es una conexión que es simétrica y compatible con g por lo que de hecho es la conexión de Levi-Civita de (M,g). Dicho de otro modo, una manera de calcular $\nabla_X Y$ donde ∇ es la conexión de Levi-Civita de (M,g) es extender los campos X y Y a campos en \tilde{M} , calcular $\tilde{\nabla}_X Y$ y proyectar el vector resultante a $T_p M$.
 - (a) (2 puntos) Sea γ una curva en M y $V(t) \in \mathfrak{X}(\gamma)$, demuestra que $D_t V(t) = \pi_{\gamma(t)}^T(\tilde{D}_t V)$. Donde \tilde{D}_t es la derivada covariante a lo largo de γ en \tilde{M} y D_t es la derivada covariante en M.
 - (b) (2 puntos) Demuestra que γ es una geodésica de M si y sólo si $D_t\dot{\gamma}(t)$ es ortogonal a $T_{\gamma(t)}M$ para todo t.
 - Sea $\tilde{M} = \mathbb{R}^n$, $\tilde{g} = dx_1^2 + \ldots + dx_n^2$ y $M = \mathbb{S}^{n-1}$. Sea g la métrica inducida en \mathbb{S}^{n-1} bajo la inclusión.
 - (c) (2 puntos) Sea $p \in \mathbb{S}^{n-1}$ y $v \in T_p \mathbb{S}^{n-1}$. Calcula la geodésica de \mathbb{S}^{n-1} que parte de p con velocidad v.
 - (d) (4 puntos) Sea $\exp_p: T_p\mathbb{S}^{n-1} \to \mathbb{S}^{n-1}$ la aplicación exponencial. Demuestra que \exp_p está definida en todo $T_p\mathbb{S}^{n-1}$. Encuentra una fórmula explícita para $\exp_p(v)$; Es \exp_p inyectiva?

Fin del examen