TP558 - Tópicos avançados em Machine Learning: Deep Q-Learning

Alexandre de Araujo alexandre.araujo@dtel.Inatel.br

Introdução

- Deep Q-Learning é uma técnica de aprendizado de máquina que combina o algoritmo Q-Learning com redes neurais profundas.
- É utilizada em problemas de aprendizado por reforço, nos quais um agente aprende a executar ações em um ambiente para maximizar uma recompensa cumulativa ao longo do tempo.

Introdução

- O algoritmo Q-Learning é uma forma de aprendizado por reforço que envolve aprender uma função de valor de ação chamada de função Q, que associa pares de estado-ação a valores representando a utilidade esperada dessas ações.
- Tradicionalmente, o Q-Learning é implementado com tabelas de valores Q, onde cada estado-ação tem uma entrada na tabela.

V=0.71	V=0.74	V=0.86	
V=0.63		V=0.39	
V=0.55	V=0.46	V=0.36	V=0.22

Introdução

- No entanto, o Deep Q-Learning é uma técnica específica dentro do campo da inteligência artificial, e sua importância é destacada em várias áreas:
 - Aplicações em Jogos: Jogos de Atari e jogos de tabuleiro;
 - Saúde e Medicina: Otimizar tratamentos médicos;
 - Sistemas de Navegação Autônoma: Tomada de decisões de navegação, ajudando a evitar obstáculos;
 - Controle de Sistemas Complexos: Ações sequenciais em ambientes dinâmicos e complexos;

APRENDIZADO POR REFORÇO

O Aprendizado por Reforço é um paradigma de aprendizado de máquina inspirado na psicologia comportamental, no qual um agente aprende a executar ações em um ambiente para maximizar uma recompensa cumulativa.

Processo

O **agente** é o sistema de inteligência artificial que está aprendendo a interagir com o ambiente. Ele observa o estado atual do ambiente e toma decisões sobre quais ações tomar.

O **ambiente** é tudo com o qual o agente interage. Pode ser físico (como um robô navegando em um ambiente real) ou virtual (como um programa de computador jogando um jogo).

O **estado** representa a configuração atual do ambiente em um determinado momento. É a informação relevante para a tomada de decisão do agente.

Uma **ação** é uma escolha feita pelo agente em resposta ao estado atual do ambiente. O agente seleciona a ação que ele acredita ser mais vantajosa com base em sua política de decisão.

A **recompensa** é um sinal de feedback que o agente recebe do ambiente após realizar uma ação. Ela indica o quão boa ou ruim foi a ação tomada em relação ao objetivo do agente. O objetivo do agente é maximizar a recompensa cumulativa ao longo do tempo.

A **política** é a estratégia que o agente utiliza para escolher ações com base nos estados do ambiente. Ela mapeia estados para ações e é ajustada ao longo do tempo à medida que o agente aprende.

O **agente aprende** a melhor política através de tentativa e erro. Ele explora diferentes ações e observa as recompensas resultantes, ajustando sua política com o objetivo de maximizar as recompensas futuras.

O agente enfrenta um dilema entre **explorar** novas ações para descobrir novas informações e explorar ações conhecidas para maximizar recompensas imediatas. Encontrar um equilíbrio entre exploração e exploração é fundamental para o sucesso do aprendizado por reforço.

Q-LEARNING

Q-Learning é um algoritmo de aprendizado de reforço que visa aprender uma política ótima para controlar um agente em um ambiente desconhecido e estocástico.

Ele é frequentemente utilizado em problemas de tomada de decisão sequencial, nos quais o agente interage com o ambiente de maneira iterativa, recebendo feedbacks em forma de recompensa.

CONCEITOS DE FUNCIONAMENTOS

Inicialização: Inicialize a tabela Q com valores arbitrários ou zeros para todos os pares estado-ação possíveis.

Escolha de ação: Selecionar uma ação para ser executada no estado atual. Isso pode ser feito usando uma política de exploração que equilibra a exploração de novas ações com a exploração das ações já conhecidas.

Execução da ação: Executar a ação escolhida no ambiente e observar a recompensa e o próximo estado.

Atualização do Q-Value: Usar a equação de atualização do Q-Value para atualizar o valor Q do par estado-ação, levando em consideração a recompensa recebida, o valor Q do próximo estado e a taxa de aprendizado.

Iteração: Repetir os passos 2 a 4 até que um critério de parada seja alcançado, como um número máximo de iterações ou até que a convergência seja alcançada.

CONCEITO DE REDES NEURAIS

As redes neurais são uma classe de modelos computacionais inspirados no funcionamento do cérebro humano. Essa estrutura é capaz de aprender a partir de dados e realizar tarefas complexas, como reconhecimento de padrões, classificação, previsão e tomada de decisão.

COMBINAÇÃO DE REDES NEURAIS COM Q-LEARNING

A combinação de redes neurais com o algoritmo Q-learning é uma abordagem interessante para resolver problemas de aprendizado por reforço em ambientes complexos e de alta dimensionalidade.

- Em vez de manter uma tabela Q explícita (que pode ser inviável em ambientes com um grande número de estados), podemos usar uma rede neural para representar a função Q. Isso é conhecido como "Deep Q-Network" (DQN).
- A entrada da rede neural é uma representação do estado do ambiente, e a saída é um vetor de valores Q para cada ação possível no estado atual.
- Durante o treinamento, a rede neural é ajustada para minimizar a diferença entre os valores Q preditos e os valores Q reais, calculados usando a equação de Bellman.

EQUAÇÃO DE BELLMAN

$$Q(s,a) = r(s,a) + \gamma \max_{a} Q(s',a)$$

Q = Quantidade

s = Estado

a = ação

r = Recompensa

y = Fator de desconto

- A exploração do espaço de ações pode ser feita usando uma política ε-greedy, onde uma pequena fração ε das vezes uma ação aleatória é escolhida, enquanto o restante do tempo a ação com o maior valor Q é escolhida.
- O processo de treinamento envolve a coleta de experiências (estado, ação, recompensa, próximo estado) e a utilização dessas experiências para atualizar os pesos da rede neural, usando um algoritmo de otimização como o gradiente descendente.

REDE NEURAL PROFUNDA (DNN)

Uma Rede Neural Profunda (DNN) é uma forma de rede neural artificial composta por várias camadas de neurônios, com cada camada se comunicando com a próxima.

Camada de Entrada

 É a camada inicial da rede onde os dados de entrada são alimentados.

Camadas Ocultas

 São as camadas intermediárias ou ocultas, onde realizam cálculos sobre os dados de entrada.

Camada de Saída

 É a camada final da rede onde os resultados são gerados.

Funções de Ativação

 Cada neurônio em uma camada oculta aplica uma função de ativação aos resultados da soma ponderada das entradas

Pesos e Viés

 Cada conexão entre neurônios é associada a um peso que controla a força da conexão

Função de Perda

 Durante o treinamento, os pesos da rede são ajustados para minimizar a função de perda

Algoritmo de Otimização

O algoritmo
usado para
ajustar os pesos
da rede durante
o treinamento,
com o objetivo
de minimizar a
função de
perda.

FUNÇÃO "Q" EM REDE NEURAL

A função Q (também chamada de função de valor de ação) é usada para avaliar a qualidade de uma ação em um determinado estado.

Ela atribui um valor numérico a cada par (estado, ação), representando a "utilidade" esperada de escolher essa ação enquanto estiver no estado correspondente.

A função Q pode ser representada como uma tabela (para problemas com um número finito de estados e ações) ou, mais comumente, por uma função aproximadora, como uma Rede Neural.

TREINAMENTO DA DNN

No treinamento, a rede neural é atualizada para minimizar uma função de perda, que mede a diferença entre os valores Q previstos pela rede e os valores Q reais observados. A função de perda comum é o erro quadrático médio (MSE - Mean Squared Error) entre os valores Q previstos e os valores alvo.

Os valores alvo são calculados usando a equação de Bellman, que é uma equação de recursão que relaciona o valor Q de um estado e uma ação ao valor Q do próximo estado e à melhor ação subsequente.

TREINAMENTO DA DNN

Durante o treinamento, a rede neural é ajustada iterativamente usando gradient descent para minimizar a diferença entre os valores Q previstos e os valores alvo.

PROCESSO BÁSICO DE TREINAMENTO EM DEEP Q-LEARNING

- Ambiente Simulado
- Ambiente do Mundo Real

Definir o Ambiente

Iniciar a Rede Neural

- Servirá Como a Função Q
- Rede Neural Profunda

- Taxa de Aprendizado
- Tamanho do Lote

Iniciar os Parâmetros

Iniciar a Memória de Reprodução

 Treine com Amostras de Experiência Passada

- Obter a Observação Inicial
- Loop de Episódio

Loop de Treinamento

Finalizar o Treinamento

- Repita o loop de treinamento
- Rede Neural Convirja

- Teste o Agente em um Conjunto
- Avaliar seu Desempenho

Testar o Agente

Ajustar Hiperparâmetros

 Não for Satisfatório, Ajuste os Hiperparâmetros,

```
Q(s, a) = Q(s, a) + \alpha * (r + \gamma * max(Q(s', a')) - Q(s, a))
```

- •Q(s, a) é o valor Q para o estado s e a ação a.
- •α é a taxa de aprendizado.
- •r é a recompensa recebida após a execução da ação a no estado s.
- •y é o fator de desconto.
- •s' é o próximo estado após executar a ação a.
- •a' é a próxima ação escolhida no próximo estado s'.
- •max(Q(s', a')) é o valor Q máximo para o próximo estado.

- As ações possíveis A são mover a barra que o jogador controla para cima ou para baixo.
- As recompensas R(S; A; S0) são recebidas quando a bola chega ao fim da tela do lado esquerdo ou direito, gerando uma positiva se chegar do lado do adversário e negativa se chegar do lado do jogador.
- As probabilidades de transição P(S; A; S0) são as probabilidades de o jogo estar em um estado S, por exemplo com a bola sendo rebatida pelo jogador, e transitar para algum outro estado futuro S0, como marcar um ponto, após tomar uma ação A, como mover a barra para cima.

PONG

Vantagens e Desvantagens

VANTAGENS

- Alta capacidade de generalização;
- Capacidade de aprender a partir de grandes quantidades de dados;
- Potencial para lidar com problemas complexos e de grande escala;

DESVANTAGENS

- Requer grande poder computacional
- Sensível à inicialização e hiperparâmetros
 - Instabilidade durante o treinamento

Exemplo(s) de aplicação

- Jogos de Vídeo: (Sucesso na aprendizagem de jogos de Atari);
- **Robótica**: (Controlar o movimento de robôs em ambientes complexos e dinâmicos);
- Gerenciamento de Energia: (Otimizar o consumo de energia em edifícios);
- Controle de Tráfego: (Otimizar o fluxo de tráfego, minimizar congestionamentos e reduzir o tempo de viagem);

Comparação com outros algoritmos

Q-Learning Clássico

Usa tabelas de pesquisa para armazenar os valores Q para todos os pares estado-ação possíveis.

Policy Gradient Methods

São baseados na otimização direta da política

A₃C

Utiliza múltiplos agentes (atores) em paralelo para explorar e coletar experiências

Perguntas?

Referências

- https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
- https://keras.io/examples/rl/deep q network breakout/
- https://www.tensorflow.org/agents/tutorials/0 intro rl?hl=pt-br
- https://proceedings.mlr.press/v120/yang20a
- https://ojs.aaai.org/index.php/AAAI/article/view/11757

https://forms.gle/62Bv1yh13WTHxXTr8

Obrigado!