Requirements for device A to drive device B:

A's output provides	≤/≥?	≤/≥? B's input requires	
V _{OH} (min)	≥	V _{IH} (min)	
I _{OH} (max)	≥	I _{IH} (max)	
V _{OL} (max)	≤	V _{IL} (max)	
I _{OL} (max)	2	I _{IL} (max)	

DC noise margin = min(Difference in input/output voltages)

DC fan-out = min(Ratio of output/input currents)

Tristate vs Open-drain

Tristate device	Open-drain device			
Outputs can be connected together				
Does not require external pull- up resistor	Requires external pull-up resistor			
Has enable input	Does not have enable input			
At most one individual output can produce High or Low (i.e. enabled) at any time. The rest must be Hi-Z.	Each individual output can produce High or Low at any time.			
Common output follows enabled output; Hi-Z when all outputs are disabled	Common output is wire-AND of individual outputs			

Are these input/output waveforms of a answer: Schmitt-trigger buffer or inverter?

What circuit is implemented?

Fig. 9.33 from Fundamentals of Logic Design by Roth and Kinney

Fill up the truth table

inputs		outputs		
Α	В	С	X	Υ
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

It is a full adder circuit (Y=carry, X=sum)