問題 3. 平面幾何

 $\triangle ABC$ において、辺 AC,BC 上に点 D,E を取る. このとき

$$\angle ABD: \angle CBD = 3:1, \quad AB = DE = EC, \quad DB = DC$$

 \parallel が成り立つ. $\angle BAC$ の大きさを求めよ.

 $\angle DBC = \theta$ とする. BA = BF の点 F を BC 上に取るとき

$$\triangle BFD \equiv \triangle CED \qquad (\because \angle FBD = \angle ECD, BD = CD, BF = CE) \tag{1}$$

 $\angle BFD=180^{\circ}-2\theta, \angle BFA=90^{\circ}-2\theta$ より $\angle AFD=90^{\circ}.$ A から AB の垂線を引き, BD との交点を G とする.

$$\triangle ABG \equiv \triangle FDA \qquad (\because AB = FD, \angle BAG = \angle DFA, \angle ABG = \angle ADF) \tag{2}$$

よって AG = FA, BG = DA. $\triangle AFG$ で $\angle FGA = 2\theta, AF = AG$ より, $\angle AFG = 90^{\circ} - \theta$. $\angle GFD = \theta$ となり, $\angle BGF = 2\theta$

$$\triangle BFG \equiv \triangle AGD \qquad (BG = AD, FG = GD, \angle BGF = \angle ADG) \tag{3}$$

よって AG=BF=FA となり $\triangle ABF$ は正三角形. $4\theta=60^{\circ}$ より

$$\angle BAC = 180^{\circ} - 5\theta = 105^{\circ} \tag{4}$$

図 1