Jimmy Wrangler, Data Explorer

1. INDUSTRY

Movies and entertainment industry is chosen as the digital video platforms because it has one of the fastest growing market.

2. DATA SETS

2.1. SOURCE: The dataset is from <u>Kaggle (https://www.kaggle.com/datasets)</u> in <u>this link (https://www.kaggle.com/ruchi798/movies-on-netflix-prime-video-hulu-and-disney)</u>.

DESCRIPTION: The dataset contains about sixteen thousand data with attributes related to movies released in streaming platforms including netflix, hulu, prime and disney+. The following attributes from the dataset will be used for analysis.

Attribute	Datatype	
Title	Object	
Age	Int64	
Year	Int64	
IMDb	Float64	
Rotten Tomatoes	Object	
Netflix	Int64	
Hulu	Int64	
Prime Video	Int64	
Disney+	Int64	
Туре	Int64	

2.2. SOURCE: The dataset is from <u>Kaggle (https://www.kaggle.com/datasets)</u> in <u>this link (https://www.kaggle.com/ruchi798/tv-shows-on-netflix-prime-video-hulu-and-disney)</u>.

DESCRIPTION: The dataset contains about sixteen thousand data with attributes related to movies released in streaming platforms including netflix, hulu, prime and disney+. All the attributes from the dataset will be used for analysis.

Attribute	Datatype
Title	Object
Age	Int64
Year	Int64
IMDb	Float64
Rotten Tomatoes	Object
Netflix	Int64
Hulu	Int64
Prime Video	Int64
Disney+	Int64
Туре	Int64

3. IDEAS TO COMBINE THE DATASETS

- **3.1.** To understand the count and rating of videos available in different platforms, the common columns in both the datasets can be combined using concat.
- **3.2.** To understand the release of videos in different platforms for the release years and their ratings, the common columns in both the datasets will be combined using concat.

4. LOADING THE DATASETS

In [1]: #Load the libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

```
In [2]: #Import the csv file of first dataset
    movies_data=pd.read_csv("/Users/madhumithrasubramaniankarthikesh/Downl
    oads/MoviesOnStreamingPlatforms_updated.csv")
    movies_data.drop(["Directors","ID", "Genres","Country","Language","Run
    time"], inplace=True, axis=1)
    #Inserting new column category to keep track of movies
    movies_data.insert(11, 'Category','Movie')
    movies_data['Category'] = 'Movie'
    movies_data.head()
```

Out[2]:

	Unnamed: 0	Title	Year	Age	IMDb	Rotten Tomatoes	Netflix	Hulu	Prime Video	Disney+	Туре	C
0	0	Inception	2010	13+	8.8	87%	1	0	0	0	0	
1	1	The Matrix	1999	18+	8.7	87%	1	0	0	0	0	
2	2	Avengers: Infinity War	2018	13+	8.5	84%	1	0	0	0	0	
3	3	Back to the Future	1985	7+	8.5	96%	1	0	0	0	0	
4	4	The Good, the Bad and the Ugly	1966	18+	8.8	97%	1	0	1	0	0	

```
In [3]: #Import the csv file of second dataset
    tvshow_data=pd.read_csv("/Users/madhumithrasubramaniankarthikesh/Downl
    oads/tv_shows.csv")
    tvshow_data.head()
```

Out[3]:

	Unnamed: 0	Title	Year	Age	IMDb	Rotten Tomatoes	Netflix	Hulu	Prime Video	Disney+	type	_
0	0	Breaking Bad	2008	18+	9.5	96%	1	0	0	0	1	
1	1	Stranger Things	2016	16+	8.8	93%	1	0	0	0	1	
2	2	Money Heist	2017	18+	8.4	91%	1	0	0	0	1	
3	3	Sherlock	2010	16+	9.1	78%	1	0	0	0	1	
4	4	Better Call Saul	2015	18+	8.7	97%	1	0	0	0	1	

5. DATA PREPARATION

5.1 DATA CLEANING

```
In [4]: #Rename the column type as Type
    tvshow_data.rename(columns={"type": "Type"},inplace=True)
    #Inserting new column category to keep track of movies
    tvshow_data.insert(11, 'Category','TV')
    tvshow_data['Category'] = 'TV'
    tvshow_data.head()
```

Out[4]:

	Unnamed: 0	Title	Year	Age	IMDb	Rotten Tomatoes	Netflix	Hulu	Prime Video	Disney+	Туре	Cat
0	0	Breaking Bad	2008	18+	9.5	96%	1	0	0	0	1	
1	1	Stranger Things	2016	16+	8.8	93%	1	0	0	0	1	
2	2	Money Heist	2017	18+	8.4	91%	1	0	0	0	1	
3	3	Sherlock	2010	16+	9.1	78%	1	0	0	0	1	
4	4	Better Call Saul	2015	18+	8.7	97%	1	0	0	0	1	

```
In [5]: #Checking the dimensions of the datasets
    print(movies_data.shape)
    print(tvshow_data.shape)

(16744, 12)
(5611, 12)
```

5.2 TRANSFORMATION INTO A SINGLE DATASET

```
In [6]: #Combined dataset
    prep_data = pd.concat([movies_data, tvshow_data])
    prep_data.head()
```

Out[6]:

	Unnamed: 0	Title	Year	Age	IMDb	Rotten Tomatoes	Netflix	Hulu	Prime Video	Disney+	Туре	Cŧ
0	0	Inception	2010	13+	8.8	87%	1	0	0	0	0	
1	1	The Matrix	1999	18+	8.7	87%	1	0	0	0	0	
2	2	Avengers: Infinity War	2018	13+	8.5	84%	1	0	0	0	0	
3	3	Back to the Future	1985	7+	8.5	96%	1	0	0	0	0	
4	4	The Good, the Bad and the Ugly	1966	18+	8.8	97%	1	0	1	0	0	

```
In [7]: #Dimension of the combined dataset
    print(prep_data.shape)
```

(22355, 12)

5.3 FORMATTING

In [8]:

#Attributes and datatypes
for column in prep_data.columns:
 print(column, " is ", prep_data[column].dtype.name)
#Removing percentage sign in tomatoes
prep_data['Rotten Tomatoes'] = prep_data['Rotten Tomatoes'].str.rstrip
('%').astype('float') / 100.0
prep_data.head()

Unnamed: 0 is int64
Title is object
Year is int64
Age is object
IMDb is float64
Rotten Tomatoes is object
Netflix is int64
Hulu is int64
Prime Video is int64
Disney+ is int64
Type is int64
Category is object

Out[8]:

	Unnamed: 0	Title	Year	Age	IMDb	Rotten Tomatoes	Netflix	Hulu	Prime Video	Disney+	Туре	Cŧ
0	0	Inception	2010	13+	8.8	0.87	1	0	0	0	0	
1	1	The Matrix	1999	18+	8.7	0.87	1	0	0	0	0	
2	2	Avengers: Infinity War	2018	13+	8.5	0.84	1	0	0	0	0	
3	3	Back to the Future	1985	7+	8.5	0.96	1	0	0	0	0	
4	4	The Good, the Bad and the Ugly	1966	18+	8.8	0.97	1	0	1	0	0	

5.4 VISUALIZATION

```
In [9]: #IMDb ratings and their distribution plot
    plt.figure(figsize=(10, 5))
    sns.distplot(prep_data['IMDb'].dropna()).set_title('Distribution plot
    for IMDb');
    prep_data['IMDb'].describe()
```

```
Out[9]: count
                  20623.000000
                       6.163953
         mean
                       1.396126
         std
         min
                       0.00000
                       5.300000
         25%
         50%
                       6.300000
         75%
                       7.200000
                       9.600000
         max
         Name: IMDb, dtype: float64
```

ame. IMDD, dtype. IIOato4

The average IMDb rating for videos is 6.16. This was done to get an idea of IMDb rating distribution.

```
In [10]: #Rotten tomato ratings and distribution plot
    plt.figure(figsize=(10, 5))
    sns.distplot(prep_data['Rotten Tomatoes'].dropna()).set_title('Distrib
    ution plot for Rotten Tomatoes');
    prep_data['Rotten Tomatoes'].describe()
```

6169.000000 Out[10]: count 0.674075 mean std 0.261066 min 0.020000 25% 0.490000 50% 0.750000 75% 0.890000 1.000000 max

Name: Rotten Tomatoes, dtype: float64

The average rotten tomatoes rating for videos is 67.40%. This was done to get an idea of rotten tomatoes rating distribution.

```
In [11]:
         #Barplot of videos in each categories
         all bar = prep data.groupby(['Age']).get group('all')
         all movie=all bar.Category.value counts()['Movie']
         all tv=all bar.Category.value counts()['TV']
         seven bar = prep data.groupby(['Age']).get group('7+')
         seven movie=seven bar.Category.value counts()['Movie']
         seven tv=seven bar.Category.value counts()['TV']
         thirteen_bar = prep_data.groupby(['Age']).get group('13+')
         thirteen movie=thirteen bar.Category.value counts()['Movie']
         thirteen tv=thirteen bar.Category.value counts()['TV']
         six bar = prep data.groupby(['Age']).get group('16+')
         six movie=six bar.Category.value counts()['Movie']
         six tv=six bar.Category.value counts()['TV']
         eight bar = prep data.groupby(['Age']).get_group('18+')
         eight movie=eight bar.Category.value counts()['Movie']
         eight tv=eight bar.Category.value counts()['TV']
         movie=[all movie, seven movie, thirteen movie, six movie, eight movie]
         tv=[all tv,seven tv,thirteen tv,six tv,eight tv]
         # The position of the bars on the x-axis
         barWidth = 1
         x axis=['All','7+','13+','16+','18+']
         r = range(len(x axis))
         #plot bars
         plt.figure(figsize=(10,7))
         plt.bar(r,movie, edgecolor='white', width=barWidth, label="Movie")
         plt.bar(r,tv, bottom=np.array(movie), edgecolor='white', width=barWidt
         h, label='TV')
         plt.legend()
         # Custom X axis
         plt.xticks(r,x axis)
         plt.ylabel("Count", fontsize=12)
         plt.xlabel("Age", fontsize=12)
         plt.title("Platforms vs Video Streaming", fontsize=14)
         plt.show()
```


The relationship between the age category and the number of movies and tv shows was analyzed.

- 1. Except in 16+ category, all other categories have more movies than tv shows.
- 2. Highest number of movies fall in the category of 18+.
- 3. Highest number of tv shows fall in the category of 16+.

```
In [12]: #Barplot of videos for each year
   plt.figure(figsize=(20,10))
   g = sns.countplot(x=prep_data['Year'], data=prep_data)
   g.set_xticklabels(g.get_xticklabels(), rotation=90, ha="right");
```


The relationship between the year and the number of videos was analyzed. Highest number of videos were released in 2017.

```
In [13]: #Number of videos available in each platforms
    print("Total videos available in each platform")
    print("Netflix: "+str(prep_data['Netflix'].value_counts()[1]))
    print("Hulu: "+str(prep_data['Hulu'].value_counts()[1]))
    print("Prime video: "+str(prep_data['Prime Video'].value_counts()[1]))
    print("Disney+: "+str(prep_data['Disney+'].value_counts()[1]))
```

Total videos available in each platform

Netflix: 5491 Hulu: 2657

Prime video: 14498

Disney+: 744

```
In [14]:
         netflix bar = prep data.groupby(['Netflix']).get group(1)
         netflix movie=netflix bar.Category.value counts()['Movie']
         netflix tv=netflix bar.Category.value counts()['TV']
         hulu bar = prep data.groupby(['Hulu']).get group(1)
         hulu movie=hulu bar.Category.value counts()['Movie']
         hulu tv=hulu bar.Category.value counts()['TV']
         prime bar = prep data.groupby(['Prime Video']).get group(1)
         prime movie=prime bar.Category.value counts()['Movie']
         prime tv=prime bar.Category.value counts()['TV']
         disney bar = prep data.groupby(['Disney+']).get group(1)
         disney movie=disney bar.Category.value counts()['Movie']
         disney tv=disney bar.Category.value counts()['TV']
         movie=[netflix movie,hulu movie,prime movie,disney movie]
         tv=[netflix tv,hulu tv,prime tv,disney tv]
         # The position of the bars on the x-axis
         barWidth = 1
         x axis=['Netflix','Hulu','Prime','Disney+']
         r = range(len(x axis))
         #plot bars
         plt.figure(figsize=(10,7))
         plt.bar(r,movie, color='yellow', edgecolor='white', width=barWidth, la
         bel="Movie")
         plt.bar(r,tv, bottom=np.array(movie), color='green', edgecolor='white'
         , width=barWidth, label='TV')
         plt.legend()
         # Custom X axis
         plt.xticks(r,x axis)
         plt.ylabel("Count", fontsize=12)
         plt.xlabel("Platforms", fontsize=12)
         plt.title("Platforms vs Video Streaming", fontsize=14)
         plt.show()
```


The relationship between the platforms and the number of movies and tv shows was analyzed.

- 1. Except Hulu, all other platforms have more movies than tv shows.
- 2. Highest number of movies is in Prime.
- 3. Highest number of tv is in Disney+.

```
In [15]: #Barplot of videos in Netflix over the years
    netflix_year = prep_data.groupby(['Netflix']).get_group(1)
    plt.figure(figsize=(20,10))
    g = sns.countplot(x=netflix_year['Year'], data=netflix_year)
    g.set_xticklabels(g.get_xticklabels(), rotation=90, ha="right");
    g.set_title('Years vs Counts in Netflix');
```


The relationship between the release year and the number of videos in Netflix was analyzed. The collection of movies released in 2018 is the highest.

```
In [16]: #Barplot of videos in Hulu over the years
hulu_year = prep_data.groupby(['Hulu']).get_group(1)
plt.figure(figsize=(20,10))
g = sns.countplot(x=hulu_year['Year'], data=hulu_year)
g.set_xticklabels(g.get_xticklabels(), rotation=90, ha="right");
g.set_title('Years vs Counts in Hulu');
```


The relationship between the release year and the number of videos in Hulu was analyzed. The collection of movies released in 2018 is the highest.

```
In [17]: #Barplot of videos in Prime over the years
    prime_year = prep_data.groupby(['Prime Video']).get_group(1)
    plt.figure(figsize=(20,10))
    g = sns.countplot(x=prime_year['Year'], data=prime_year)
    g.set_xticklabels(g.get_xticklabels(), rotation=90, ha="right");
    g.set_title('Years vs Counts in Prime Video');
```


The relationship between the release year and the number of videos in Prime was analyzed. The collection of movies released in 2017 is the highest.

```
In [18]: #Barplot of videos in Disney+ over the years
    disney_year = prep_data.groupby(['Disney+']).get_group(1)
    plt.figure(figsize=(20,10))
    g = sns.countplot(x=disney_year['Year'], data=disney_year)
    g.set_xticklabels(g.get_xticklabels(), rotation=90, ha="right");
    g.set_title('Years vs Counts in Disney+');
```


The relationship between the release year and the number of videos in Disney+ was analyzed. The collection of movies released in 2018 is the highest.

```
In [19]:
         #Videos in all platforms over the years
         prime_count=prime_year['Year'].value_counts().to_frame()
         prime count.rename(columns={"Year": "Prime Count"},inplace=True)
         prime count['Year'] = prime count.index
         prime count = prime count.sort values('Year')
         prime count = (prime count.set index('Year')
                 .reindex(range(1901, 2021), fill value=0)
                 .reset index())
         prime count = prime count[prime count['Year']>1923]
         prime count = prime count.reset index()
         prime count.drop(["index"], inplace=True, axis=1)
         netflix count=netflix year['Year'].value counts().to frame()
         netflix count.rename(columns={"Year": "Netflix Count"},inplace=True)
         netflix count['Year'] = netflix count.index
         netflix count = netflix count.sort values('Year')
         netflix count = (netflix count.set index('Year')
                 .reindex(range(1901, 2021), fill value=0)
                 .reset index())
         netflix count = netflix count[netflix count['Year']>1923]
         netflix count = netflix count.reset index()
         netflix count.drop(["index"], inplace=True, axis=1)
         disney count=disney year['Year'].value counts().to frame()
         disney count.rename(columns={"Year": "Disney Count"},inplace=True)
         disney count['Year'] = disney count.index
         disney count = disney count.sort values('Year')
         disney count= (disney count.set index('Year')
                 .reindex(range(1901, 2021), fill value=0)
                 .reset_index())
         disney count = disney count[disney count['Year']>1923]
         disney count = disney count.reset index()
         disney count.drop(["index"], inplace=True, axis=1)
         hulu count=hulu year['Year'].value counts().to frame()
         hulu count.rename(columns={"Year": "Hulu Count"},inplace=True)
         hulu count['Year'] = hulu count.index
         hulu count = hulu count.sort values('Year')
         hulu count= (hulu count.set index('Year')
                 .reindex(range(1901, 2021), fill value=0)
                 .reset index())
         hulu count = hulu count[hulu count['Year']>1923]
         hulu count = hulu count.reset index()
         hulu count.drop(["index"], inplace=True, axis=1)
         #Creating new data frame with data for stacked barplot
         movie count=netflix count
         movie count.insert(2, 'Hulu Count', hulu count['Hulu Count'])
         movie_count.insert(3, 'Disney Count', disney_count['Disney Count'])
         movie count.insert(4, 'Prime Count', prime count['Prime Count'])
         movie_count
```

Out[19]:

	Year	Netflix Count	Hulu Count	Disney Count	Prime Count
0	1924	0	0	0	1
1	1925	0	0	0	6
2	1926	0	0	0	3
3	1927	0	0	0	2
4	1928	0	0	1	2
	•••				
92	2016	663	196	27	961
93	2017	790	256	41	1068
94	2018	832	297	29	780
95	2019	661	213	45	208
96	2020	214	47	17	49

97 rows × 5 columns

```
In [20]: #Stacked barplot of movies over years
```

```
N = 97
ind = np.arange(N)
width = 0.66
plt.figure(figsize=(30,20))
p1 = plt.bar(ind, movie count['Netflix Count'], width, color='red', al
ign='edge')
p2 = plt.bar(ind, movie count['Hulu Count'], width, color='lime', alig
n='edge')
p3 = plt.bar(ind, movie count['Prime Count'], width, color='skyblue',
align='edge')
p4 = plt.bar(ind, movie count['Disney Count'], width, color='blue', al
ign='edge')
plt.xlabel('Year', fontsize=23)
plt.ylabel('Count', fontsize=23)
plt.title('Year vs Streamcounts', fontsize=23)
plt.xticks(ind, movie_count['Year'],rotation=90, fontsize=20)
plt.legend((p1[0], p2[0], p3[0], p4[0]), ('Netflix', 'Hulu', 'Prime',
'Disney'), prop={'size': 20})
plt.show()
```


The relationship between the year and the number of videos was analyzed in different platforms.

- 1. Prime has highest collections of movies and tv shows released in all years except in 2020 and 2019.
- 2. The collection of 2019 and 2020 released movies and tv shows is highest in Netflix.

```
In [21]:
         #Understanding Rotten Tomatoes Rating for all platforms
         sns.set(style="white", palette="muted", color codes=True)
         f, axes = plt.subplots(2, 2, figsize=(10, 8))
         #Boxplot of Rotten Tomatoes Rating vs Age for Netflix
         sns.boxplot(y='Age', x='Rotten Tomatoes', data=netflix year, ax=axes[0
         , 0]).set title('Netflix')
         #Boxplot of Rotten Tomatoes Rating vs Age for Prime
         sns.boxplot(y='Age', x='Rotten Tomatoes', data=prime year, ax=axes[0,
         1]).set title('Prime')
         #Boxplot of Rotten Tomatoes Rating vs Age for Hulu
         sns.boxplot(y='Age', x='Rotten Tomatoes', data=hulu year, ax=axes[1, 0
         ]).set title('Hulu')
         #Boxplot of Rotten Tomatoes Rating vs Age for Disney
         sns.boxplot(y='Age', x='Rotten Tomatoes', data=disney year, ax=axes[1,
         1]).set title('Disney')
         plt.tight layout()
```


In the box plots, the relationship between the rotten tomato rating for all various platforms has been studied for different age category.

- 1. All age category has highest average rotten tomatoes in Prime.
- 2. 7+ and 18+ age categories have highest average rotten tomatoes in Hulu.
- 3. 13+ age category has highest average rotten tomatoes in Disney+.
- 4. 16+ age category has highest average rotten tomatoes in Netflix.

```
In [22]:
         #Understanding IMDb Rating for all platforms
         sns.set(style="white", palette="muted", color codes=True)
         f, axes = plt.subplots(2, 2, figsize=(10, 8))
         #Boxplot of IMDb vs Age for Netflix
         sns.boxplot(y='Age', x='IMDb', data=netflix year, ax=axes[0, 0]).set t
         itle('Netflix')
         #Boxplot of IMDb vs Age for Prime
         sns.boxplot(y='Age', x='IMDb', data=prime year, ax=axes[0, 1]).set tit
         le('Prime')
         #Boxplot of IMDb vs Age for Prime
         sns.boxplot(y='Age', x='IMDb', data=hulu year, ax=axes[1, 0]).set titl
         e('Hulu')
         #Boxplot of IMDb vs Age for Disney
         sns.boxplot(y='Age', x='IMDb', data=disney year, ax=axes[1, 1]).set ti
         tle('Disney')
         plt.tight layout()
```


In the box plots, the relationship between the rotten tomato rating for all various platforms has been studied for different age category.

- 1. All, 16+ and 18+ age category has highest average rotten tomatoes in Hulu.
- 2. 7+ age categories have highest average rotten tomatoes in Netflix.
- 3. 13+ age category has highest average rotten tomatoes in Disney+.

```
In [23]: #Jointplot of IMDB vs Rotten Tomatoes for Netflix
   plt.figure(figsize=(30,50))
   graph=sns.jointplot(x='IMDb', y='Rotten Tomatoes', data=netflix_year,
   kind="hex",height=10, ratio=10);
   graph.x = netflix_year['IMDb']
   graph.y = netflix_year['Rotten Tomatoes']
```

<Figure size 2160x3600 with 0 Axes>

High correlation between the imdb and rotten tomatoes for netflix is found in the imdb rating range of 7 to 8 and rotten tomatoes range of 0.9 and 1.0.

```
In [24]: #Jointplot of IMDB vs Rotten Tomatoes for Prime
    sns.jointplot(x='IMDb', y='Rotten Tomatoes', data=prime_year, kind="he
    x",height=10, ratio=10);
```


High correlation between the imdb and rotten tomatoes for Prime is found in the imdb rating around 7 and rotten tomatoes between 0.8 and 1.0.

```
In [25]: #Jointplot of IMDB vs Rotten Tomatoes for Disney
    sns.jointplot(x='IMDb', y='Rotten Tomatoes', data=disney_year, kind="h
    ex",height=10, ratio=10);
```


High correlation between the imdb and rotten tomatoes for Disney+ is found in the imdb rating range of 6 to 8 and rotten tomatoes between 0.8 and 1.0.

In [26]: #Jointplot of IMDB vs Rotten Tomatoes for Hulu
 sns.jointplot(x='IMDb', y='Rotten Tomatoes', data=hulu_year, kind="hex
 ",height=10, ratio=10);

High correlation between the imdb and rotten tomatoes for Hulu is found in the imdb rating range of 6 to 9 and rotten tomatoes between 0.8 and 1.0.

In [27]:

```
#Toprated IMDb video in Netflix
netflix imdb=(netflix year.loc[netflix year['IMDb']== netflix year['IM
Db'].max() , ['Title','Rotten Tomatoes','IMDb']])
#Toprated IMDb video in Hulu
hulu imdb=hulu year.loc[hulu year['IMDb']== hulu year['IMDb'].max() ,
['Title','Rotten Tomatoes','IMDb']]
#Toprated IMDb video in Disney
disney_imdb=disney_year.loc[disney_year['IMDb']== disney_year['IMDb'].
max() , ['Title','Rotten Tomatoes','IMDb']]
#Toprated IMDb video in Prime
prime_imdb=prime_year.loc[prime_year['IMDb']== prime year['IMDb'].max(
) , ['Title', 'Rotten Tomatoes', 'IMDb']]
imdb data=pd.DataFrame({'Platform':['Netflix','Hulu','Prime','Disney+'
], 'Title':[netflix imdb['Title'][0], hulu imdb['Title'][3023], prime imd
b['Title'][3747], disney imdb['Title'][5465]], 'IMDb': [netflix imdb['IMD
b'][0],hulu imdb['IMDb'][3023],prime imdb['IMDb'][3747],disney imdb['I
MDb'][5465]], 'Rotten Tomatoes': [netflix imdb['Rotten Tomatoes'][0], hul
u imdb['Rotten Tomatoes'][3023],prime imdb['Rotten Tomatoes'][3747],di
sney imdb['Rotten Tomatoes'][5465]]})
imdb data
```

Out[27]:

	Platform	Title	IMDb	Rotten Tomatoes
0	Netflix	Breaking Bad	9.5	0.96
1	Hulu	Destiny	9.6	NaN
2	Prime	Malgudi Days	9.5	NaN
3	Disney+	The Imagineering Story	9.1	1.00

In [28]: #Toprated rotten tomatoes video in Netflix netflix_year.loc[netflix_year['Rotten Tomatoes']== netflix_year['Rotte n Tomatoes'].max() , ['Title','IMDb','Rotten Tomatoes']]

Out[28]:

	Title	IMDb	Rotten Tomatoes
11	3 Idiots	8.4	1.0
89	The Dawn Wall	8.1	1.0
126	Bad Genius	7.6	1.0
141	Bill Burr: I'm Sorry You Feel That Way	8.4	1.0
148	The Square	8.1	1.0
621	The Standups	6.7	1.0
690	Kantaro: The Sweet Tooth Salaryman	7.6	1.0
742	Final Fantasy XIV: Dad of Light	7.2	1.0
817	The Honeymoon Stand Up Special	6.8	1.0
1214	The Comedy Lineup	5.7	1.0

195 rows × 3 columns

In [29]: #Toprated rotten tomatoes video in Hulu
hulu_year.loc[hulu_year['Rotten Tomatoes']== hulu_year['Rotten Tomatoe
s'].max() , ['Title','IMDb','Rotten Tomatoes']]

Out[29]:

	Title	IMDb	Rotten Tomatoes
148	The Square	8.1	1.0
285	Hey Arnold! The Jungle Movie	7.6	1.0
3613	Honeyland	8.0	1.0
3625	Minding the Gap	8.1	1.0
3693	Sands of Iwo Jima	7.1	1.0
3695	Sword Art Online: The Movie - Ordinal Scale	7.4	1.0
3741	The Domestics	5.7	1.0
3742	Andy Irons: Kissed by God	8.3	1.0
3760	Burn	7.5	1.0
3769	After the Screaming Stops	7.1	1.0

3825	Red Dog: True Blue	6.4	1.0
3845	Food Evolution	7.0	1.0
3849	Dumb: The Story of Big Brother Magazine	7.2	1.0
3853	March of the Penguins 2	6.6	1.0
3855	Seymour: An Introduction	7.4	1.0
3870	Two Trains Runnin'	7.4	1.0
3913	Legion of Brothers	5.7	1.0
4077	Who Let the Dogs Out	8.2	1.0
15	Fullmetal Alchemist: Brotherhood	9.1	1.0
23	One-Punch Man	8.8	1.0
123	Mushi-Shi	8.5	1.0
202	Soul Eater	7.8	1.0
337	Rake	8.6	1.0
1948	Gravity Falls	8.9	1.0
1956	My Hero Academia	8.5	1.0
1957	Adventure Time	8.6	1.0
1961	Mr. Bean	8.5	1.0
1972	Black Books	8.5	1.0
1981	Steins;Gate	8.8	1.0
1992	Tokyo Ghoul	7.9	1.0
1996	Spaced	8.6	1.0
2016	Elfen Lied	8.0	1.0
2025	Inside No. 9	8.5	1.0
2035	Please Like Me	8.5	1.0
2053	TRIGUN	8.3	1.0
2068	Prime Suspect	8.4	1.0
2073	The Mighty Boosh	8.3	1.0
2097	Invader Zim	8.3	1.0
2101	Home Movies	8.0	1.0
2116	Bunheads	7.6	1.0
2119	Afro Samurai	7.7	1.0
2196	Yu Yu Hakusho	8.4	1.0

2200	Pretty Little Liars: The Perfectionists	7.1	1.0
2232	Making It	7.9	1.0
2235	Mary Kills People	7.5	1.0
2258	Deutschland 86	7.6	1.0
2311	Clique	7.0	1.0
2359	Prisoners of War	8.4	1.0
2414	Spy	7.9	1.0
2908	Sherman's Showcase	5.4	1.0
2927	Flirty Dancing	6.6	1.0

Out[30]:

	Title	IMDb	Rotten Tomatoes
5164	Robin Hood	7.2	1.0
5398	The Three Musketeers	7.0	1.0
16215	Toy Story	8.3	1.0
16233	Toy Story 2		1.0
16251	Mary Poppins	7.8	1.0
16273	Pinocchio	7.4	1.0
16286	The Many Adventures of Winnie the Pooh	7.6	1.0
16289	Mickey's Christmas Carol	8.0	1.0
16318	Tinker Bell	6.8	1.0
16327	Old Yeller	7.3	1.0
16329	Phineas and Ferb the Movie: Across the 2nd Dim	7.4	1.0
16341	Tinker Bell and the Lost Treasure	6.7	1.0
16345	Darby O'Gill and the Little People	7.2	1.0
16360	The Journey of Natty Gann	7.1	1.0
16365	Adventures in Babysitting	6.0	1.0
16368	The Color of Friendship	7.2	1.0
16371	Davy Crockett, King of the Wild Frontier	7.0	1.0
16392	Greyfriars Bobby: The True Story of a Dog	7.3	1.0
16480	Marvel Rising: Secret Warriors	5.2	1.0
1948	Gravity Falls	8.9	1.0
5458	Star Wars Rebels	8.0	1.0
5459	DuckTales	8.2	1.0
5465	The Imagineering Story	9.1	1.0
5469	Lizzie McGuire	6.6	1.0
5509	Diary of a Future President	5.5	1.0

In [31]: #Toprated rotten tomatoes video in Prime
 prime_year.loc[prime_year['Rotten Tomatoes']== prime_year['Rotten Tomatoes'].max() , ['Title','IMDb','Rotten Tomatoes']]

Out[31]:

	Title	IMDb	Rotten Tomatoes
11	3 Idiots	8.4	1.0
148	The Square	8.1	1.0
288	Hamburger Hill	6.7	1.0
395	Whisky	7.1	1.0
418	Retribution	6.6	1.0
3655	Mr. Show with Bob and David	8.3	1.0
3661	Eerie, Indiana	8.2	1.0
3680	Home Fires	8.2	1.0
3763	Garfunkel and Oates	7.5	1.0
4033	Funny or Die Presents	5.6	1.0

275 rows × 3 columns

For all videos across all platforms, for all videos released in 16+ age category the IMDb rating is usually higher. Also, lot of lower IMDb rating fall under 18+ age category for many years.

For all videos across all platforms, for all videos released in 16+ age category the rotten tomatoes rating is usually higher as in case of IMDb.