MAE 221 - Conjunto de Exercícios 4

Profa. Beti Entregar os exercícios assinalados com & em 23.mar. Adiada para 01.abril.2020.

Os exercícios assinalados com Ø serão resolvidos em sala de aula

1. Uma variável aleatória contínua X tem função densidade de probabilidade dada por

$$f(x) = \begin{cases} c, & -1 \le x < 0; \\ 2/3, & 0 \le x < 1; \\ 2c, & 1 \le x < 3/2; \\ 0, & x \ge 3/2. \end{cases}$$

- (a) Determine o valor de c, e a função de distribuição (acumulada) de X.
- (b) Calcule $P(X > -1/2 \mid X \le 1/2)$.
- (c) Qual é o valor de b tal que $P(X > b) = P(X \le b)$?
- 2. Seja X uma variável aleatória com f. densidade de prob. $f(x) = cx^2 \mathbb{1}_{(-1,1)}(x)$.
 - (a) Determine o valor da constante c.
 - (b) Encontre o valor α tal que $F_X(\alpha) = 1/4$, isto é, o primeiro quartil da distribuição de X.
 - (c) Encontre o valor m tal que $F_X(m) = 1/2$, isto é, a mediana da distribuição de X.
- 3. \clubsuit Se Y é uma variável aleatória com distribuição exponencial de média $1/\lambda$, mostre que

$$E(Y^k) = \frac{k!}{\lambda^k}, \quad k = 1, 2, \dots$$

- 4. O tempo T de reparo de uma máquina é uma variável aleatória distribuída exponencialmente com parâmetro $\lambda = 2$ reparos/hora.
 - (a) Calcule a probabilidade de que o tempo de reparo exceda 30 minutos.
 - (b) Dado que o tempo de reparo já excedeu 3 horas, calcule a probabilidade de que o tempo de reparo excederá 3,5 horas. Compare com (a) e comente os resultados.
- 5. Você chega no ponto de ônibus às 6:00, sabendo que o ônibus chegará em algum horário uniformemente distribuído entre 6:00 e 6:30.
 - (a) Qual é a probabilidade de que você tenha que esperar mais de 10 minutos?
 - (b) Se, às 6:15, o ônibus ainda não tiver chegado, qual é a probabilidade de que você tenha que esperar pelo menos mais 10 minutos? Compare com (a) e comente os resultados
 - (c) Comente a comparação do item (b) desse exercício com a comparação do item (b) do exercício anterior.
- 6. \mathscr{Q} Seja X uma variável aleatória com função de distribuição F_X , e sejam a e b constantes, com $a \neq 0$ e $b \in \mathbb{R}$. Então Y = aX + b também é uma variável aleatória.
 - (a) Determine a função de distribuição F_Y de Y em termos de F_X .
 - (b) Assuma agora que X é variável aleatória contínua com função densidade de probabilidade $f_{\scriptscriptstyle X}$. Determine a função densidade de probabilidade $f_{\scriptscriptstyle Y}$ de Y em função de $f_{\scriptscriptstyle X}$.

- 7. \clubsuit A variável aleatória X tem distribuição $\operatorname{Gama}(n,\theta)$. Se c é uma constante, c>0, obtenha a função densidade de probabilidade de Y=cX, para mostrar que $Y\sim\operatorname{Gama}\left(n,\frac{\theta}{c}\right)$.
- 8. Mostre que, para r, λ e b positivos, a função abaixo

$$f(x) = \frac{\lambda^r}{\Gamma(r)} (x - b)^{r-1} e^{-\lambda(x-b)} \mathbb{1}_{(b,\infty)}(x)$$

é função densidade de probabilidade.

Essa é a distribuição Gama com um terceiro parâmetro b.

- 9. \clubsuit Se X tem distribuição Uniforme(0,1), encontre e **identifique** a função densidade de probabilidade de $Y=-\ln X$.
- 10. A função densidade de probabilidade de X é dada por

$$f(x) = \begin{cases} a + bx^2 & 0 \le x \le 1\\ 0 & \text{caso contrário.} \end{cases}$$

Se E(X) = 3/5, determine os valores de $a \in b$.

11. O nível da água de uma represa é monitorado constantemente. Suponha que um nível baixo (antes do volume morto) é representado pelo valor 1 e que o nível atual da água é representado pela variável aleatória Y cuja função de distribuição é dada por

$$F_{_{Y}}(y) = P(Y \le y) = \left\{ \begin{array}{cc} 0 & , \ y < 1 \\ 1 - \frac{1}{y^2} & , \ y \ge 1 \end{array} \right.$$

- (a) Verifique que ${\cal F}_{{\scriptscriptstyle Y}}$ é uma função de distribuição.
- (b) Encontre $f_{Y}(\cdot)$ a função densidade de probabilidade de Y.
- (c) Se o nível baixo for representado por zero e usarmos uma unidade de medida que é 1/10 da anterior, o nível atual da água será representado por $Z=10\,(Y-1)$. Encontre a função de distribuição $F_Z(\cdot)$ de Z.
- 12. $\ensuremath{\mathcal{D}}$ Dizemos que X tem distribuição Cauchy padrão se sua função densidade de probabilidade é dada por

$$f(x) = \frac{1}{\pi(1+x^2)}, x \in \mathbb{R}.$$

- (a) Calcule E(X).
- (b) Encontre e identifique a função densidade de probabilidade de $Y=X^2$.
- 13. \clubsuit Se X tem distribuição exponencial dupla (ou Laplace) com densidade $\frac{\lambda}{2} \exp(-\lambda |x|)$, encontre e identifique a função densidade de probabilidade de Y = |X|.
- 14. Seja X uma variável aleatória contínua. Mostre que
 - (a) \mathcal{Q} se X é não-negativa então

$$E(Y) = \int_0^\infty [1 - F_Y(u)] du ;$$

(b) se X é variável aleatória contínua qualquer, então

$$E(Y) = \int_0^\infty [1 - F_Y(u)] du - \int_{-\infty}^0 F_Y(u) du .$$