Tema 5. Comportamiento inteligente: Representación del Conocimiento e inferencia basados en lógica

Objetivos

- Entender que la resolución de problemas en IA implica definir una representación del problema y un proceso de búsqueda de la solución.
- Comprender la necesidad de representar el conocimiento y realizar inferencia para que un sistema pueda exhibir comportamiento inteligente.
- Conocer los fundamentos de la representación del conocimiento en lógica proposicional y de predicados y sus mecanismos de inferencia asociados.
- Aplicar los aspectos de representación basada en la lógica y mecanismos de inferencia, mediante técnicas y herramientas de programación lógica.

Estudia este tema en ...

• Nils J. Nilsson, "Inteligencia Artificial: Una nueva síntesis", Ed. Mc Graw Hill, 2000. pp. 215-284

Contenido

- Representación del conocimiento en IA
- El cálculo proposicional
- Cálculo de predicados
- Introducción a los Sistemas Basados en el Conocimiento

- Hemos estudiado varias formas de modelar el mundo de un agente, entre ellas:
 - Representaciones icónicas: Simulaciones del mundo que el agente podía percibir.
 - Representaciones descriptivas: Valores binarios que describían aspectos ciertos o falsos sobre el mundo.
- Las representaciones descriptivas tienen ciertas ventajas sobre las icónicas:
 - Son más sencillas.
 - Son fáciles de comunicar a otros agentes.
 - Se pueden descomponer en piezas más simples.

- Además, hay información del entorno del agente que no se puede representar mediante modelos icónicos, tales como:
 - Leyes generales. "Todas las cajas azules pueden ser cogidas".
 - Información negativa. "El bloque A no está en el suelo", sin decir dónde está el bloque A.
 - Información incierta. "O bien el bloque A está sobre el bloque C, o bien el bloque A está sobre el bloque B".
- Sin embargo, este tipo de información es fácil de formular como conjunto de restricciones sobre los valores de las características binarias del agente.
- Estas restricciones representan conocimiento sobre el mundo.

- A menudo, este conocimiento sobre el mundo puede utilizarse para razonar sobre él y hallar nuevas características del mismo.
 Ejemplo:
 - El conocimiento que se tiene es "Todos los pájaros vuelan"; y "Piolín es un pájaro".
 - Se puede *razonar*, por tanto, que "Piolín vuela".
- Otro Ejemplo: Un robot sólo puede levantar un bloque si tiene suficiente batería y el bloque es elevable. Entonces, el conocimiento sobre el mundo es: "Si el bloque es elevable y hay suficiente batería, entonces es posible levantar el bloque".
- El robot "sabrá" si es capaz de levantar el bloque a partir de este **conocimiento** sobre su entorno.

• Estudiaremos 2 tipos básicos para representar el conocimiento y razonar sobre él:

- Cálculo proposicional.
- Cálculo de predicados.

Cálculo Proposicional: el lenguaje

• Elementos de representación: proposiciones y conectivas

$$\land$$
 (y), \lor (o), \rightarrow (implies), \neg (no)

- Inferencia: deducciones con reglas, hechos y Modus-Ponens
- Ejemplos: Ilueve, (¬Nieva∧llueve)vHay-hielo
- Ventaja: representación de tipo general, y decidible (en tiempo finito es capaz de decidir si una proposición es deducible de la información disponible o no)
- Problema: si se quiere razonar sobre conjuntos de cosas.
 Por ejemplo, grafos, o jerarquías de conceptos.

Reglas de inferencia

- Las **reglas de inferencia** nos permiten producir nuevas FBFs (fórmulas bien formadas) a partir de las que ya existen, Algunas de las más comunes son:
 - **Q** puede inferirse a partir de **P** y $P \supset Q$ (modus ponens)
 - $\mathbf{P} \wedge \mathbf{Q}$ se puede inferir a través de la conjunción de \mathbf{P} y \mathbf{Q}
 - $\mathbf{Q} \wedge \mathbf{P}$ se puede inferir desde $\mathbf{P} \wedge \mathbf{Q}$ (conmutatividad)
 - \mathbf{P} (también \mathbf{Q}) se puede inferir desde $\mathbf{Q} \wedge \mathbf{P}$
 - $\mathbf{P} \vee \mathbf{Q}$ se puede inferir bien desde \mathbf{P} , bien desde \mathbf{Q}
 - **P** se puede inferir desde $\neg(\neg P)$

Definición de demostración

- Supongamos Δ un conjunto de FBFs, y una secuencia de **n** FBFs $\{w_1, w_2, w_3, ..., w_n\}$.
- Esta secuencia de FBFs se llama demostración o deducción de $\mathbf{w_n}$ a partir de Δ si, y sólo si, cada $\mathbf{w_i}$ de la secuencia pertenece a Δ o puede inferirse a partir de FBFs en Δ .
- Si existe tal demostración, entonces decimos que $\mathbf{w_n}$ es un **teorema** de Δ , y decimos que $\mathbf{w_n}$ puede demostrarse desde Δ con la siguiente notación: $\Delta \mid \mathbf{w_n}$,
- o como $\Delta \mid_{\mathbf{R}} \mathbf{w_n}$ para indicar que $\mathbf{w_n}$ se demuestra desde Δ mediante las reglas de inferencia \mathbf{R} .

Demostración

• Ejemplo:

- Sea el conjunto de FBFs Δ , $\Delta = \{P, R, P \supset Q\}$
- Entonces, la siguiente secuencia es una demostración de la Fórmula Bien Formada $R \wedge Q$:

$$\{P, P \supset Q, Q, R, Q \land R\}$$

• La demostración se puede llevar a cabo fácilmente a través del siguiente **árbol de demostración**, utilizando Δ y las reglas de inferencia:

Interpretación

- A la hora de resolver problemas con IA, el papel de la semántica es esencial: Hay que hacer una correcta **interpretación** del sistema lógico subyacente.
- Conlleva asociar conceptos del lenguaje lógico con su significado (semántica) en el mundo real o en el mundo del entorno del agente.
- **Ejemplo:** Se desea implantar el conocimiento "Si la batería funciona y el bloque A está en el suelo, entonces se puede levantar" dentro de un agente.
 - Definimos los átomos BATERIA_OK, ESTA_A_SUELO, LEVANTAR_A.
 - Definimos la FBF:

 $BATERIA_OK \land ESTA_A_SUELO \supset LEVANTAR_A$

Interpretación

- En un agente cuyo objetivo sea "levantar el bloque A", con este conocimiento puede especificar las acciones que debe llevar a cabo para realizar su acción.
- Esta planificación se puede hacer mediante árboles de demostración.
- La representación de **grafos Y/O** es muy útil en este tipo de problemas.
- **Ejemplo:** "Debo levantar el bloque A, ¿qué necesito para poder levantarlo?"

 _BATERÍA OK

ESTA_A_SUELO ...
¿Qué necesito para que ESTA_A_SUELO?...

Tablas de la verdad

- Las tablas de verdad establecen la semántica de las conectivas proposicionales.
- Para una representación interna de un agente con \mathbf{n} características, el número de combinaciones (formas de ver el mundo) es $\mathbf{2}^{\mathbf{n}}$.
- Para dos características **A** y **B**:

A	В	AyB	A o B	No A	A implica B
V	V	V	V	F	V
V	F	F	V	F	F
F	V	F	V	V	V
F	F	F	F	V	V

Satisfacibilidad y Modelos

- Una interpretación satisface una FBF cuando a la FBF se le asocia el valor V bajo esa interpretación.
- A la interpretación que satisface una FBF se le denomina modelo.
- Bajo una interpretación una FBF debe indicar una restricción que nos informe sobre algún aspecto del mundo. **Ejemplo:** $A \wedge B \supset C$
 - Para la interpretación A=BATERIA_OK, B=ESTA_A_SUELO, C=LEVANTAR_A, la semántica se corresponde con el entorno y el mundo a modelar.
 - Para la interpretación A=TOCA_LOTERIA,
 B=TENGO_SALUD, C=TIRAR_POR_VENTANA, la semántica es inconsistente con lo que se modela. Esta interpretación no es válida porque no satisface la FBF.

Validez y equivalencia

- Se dice que una FBF es **válida** si se cumple independientemente de la interpretación que se le asocie. Ejemplo: $P \supset P, \neg (P \land \neg P)$
- Las interpretaciones válidas no modelan aspectos del mundo y deben ser evitadas en el diseño del comportamiento del agente.

- Dos FBFs son **equivalentes** si sus tablas de verdad son idénticas. Ejemplo: $\neg(P \lor Q) \equiv \neg P \land \neg Q$
- En el diseño de agentes, debemos evitar FBFs con interpretaciones equivalentes para hacer más eficiente el proceso de razonamiento.

Consecuencia lógica

- Si una fbf w tiene el valor verdadero bajo todas aquellas interpretaciones para las cuales cada una de las fbfs del conjunto \triangle tiene el valor verdadero, entonces decimos que \triangle lleva lógicamente a w, que w se sigue lógicamente de \triangle , o que w es una consecuencia lógica de \triangle .
- $\{P\} \underset{\vDash}{\mid} P$ $\{P, P \supset Q\} \vDash Q$
- $P \wedge Q \models P$
- La noción de consecuencia lógica es importante ya que nos proporciona un mecanismos para demostrar que si ciertas proposiciones son ciertas entonces otras deben serlo también.

Solidez y completitud

- Si, para el conjunto de fbfs \triangle y para la fbf w, $\Delta \dashv_R$ w implica que $\Delta \vDash w$ decimos que el conjunto de reglas de inferencia R es sólido.
- Si, para para el conjunto de fbfs \triangle y para la fbf w, tenemos que siempre que $\Delta \vDash w$, existe una demostración de w a partir de \triangle utilizando el conjunto de reglas de inferencia R, decimos que R es completo.

Ejemplo: proposiciones

 Una fabrica tiene cuatro sensores que detectan fuego y dos sensores que detectan fugas en el circuito del agua. Existen tres alarmas que se producen en diferentes ocasión

• Si el detector 3 de fuego o el detector 2 de fugas saltan, se debe producir la alarma 1

R1:
$$s_3 \vee f_2 \rightarrow a_1$$

Si saltan los detectores de fuego 1 y 4, se debe producir la alarma 2

R2:
$$s_1 \wedge s_4 \rightarrow a_2$$

 Si salta la alarma 1, y el detector de fuego 2 o el de fugas 1, se debe producir la alarma 3

R3:
$$a_1 \wedge (s_2 \vee f_1) \rightarrow a_3$$

Ejemplo de Inferencia: deducción

- Han saltado el detector de fuego 2 y el de fugas 2.
- ¿Qué alarmas saltaran?
 - a. s_2
 - b. f_2
 - c. $(R1 y a) a_1$
 - d. (R3, a y c) a_3

• La refutación es útil para demostrar que la negación de una cláusula es inconsistente en el sistema, quedando así demostrada, por tanto, la veracidad de dicha cláusula.

• Ejemplo:

- 1. Convertir las FBFs de Δ como conjunciones de cláusulas
- a) BATERIA_OK
- $b) \neg ROBOT _SE _MUEVE$
- $c) \neg BATERIA_OK \lor \neg OBJETO_ELEVABLE \lor ROBOT_SE_MUEVE$
 - 2. Convertir ¬w como conjunción de cláusulas

OBJETO _ ELEVABLE

• Ejemplo:

• 3. Unir el resultado de los pasos 1 y 2 en un único conjunto Γ

```
\Gamma = \{ \\ a) BATERIA\_OK \\ b) \neg ROBOT\_SE\_MUEVE \\ c) \neg BATERIA\_OK \lor \neg OBJETO\_ELEVABLE \lor ROBOT\_SE\_MUEVE \\ d) OBJETO\_ELEVABLE \\ \}
```

• Ejemplo:

- 4. Aplicar la resolución a las cláusulas de Γ de forma iterativa, hasta que no haya nada más que resolver o se llegue a **Nil**
 - Resolviendo c) y d), tenemos que
 e)¬BATERIA _ OK ∨ ROBOT _ SE _ MUEVE
 - Resolviendo e) y b), tenemos: $f) \neg BATERIA _ OK$
 - Resolviendo f) y a), tenemos Nil.
 - Queda demostrado que ¬OBJETO_ELEVABLE

- Como hemos visto, el procedimiento de refutación mediante resolución consiste en "aplicar resoluciones hasta que se genere la cláusula vacía o no se puedan hacer más resoluciones".
- La selección de cláusulas para su resolución, de forma manual, es sencilla.
- Existen distintas estrategias que permiten determinar la selección de las cláusulas a resolver para conseguir una mayor eficiencia.

El Cálculo de Predicados

- El cálculo proposicional es limitado. Supongamos nuestro mundo de bloques. Para decir que el bloque A está sobre el bloque B, deberíamos establecer una interpretación SOBRE_A_B.
- Para representar esta situación con todos los bloques usando cálculo proposicional, necesitaríamos tantos literales como posibilidades.
- Además, supongamos dos literales P y Q, con la semántica asociada
 P≡SOBRE_A_B, Q≡SOBRE_B_C.
- En lenguaje natural y mediante el conocimiento que tenemos del problema, nosotros (diseñadores, personas, etc.) *sabemos* que **A** está sobre **B**, y que **B** está sobre **C**. Por tanto, **C** está por debajo de **A**. Sin embargo, necesitaríamos más proposiciones y más complejas para implementar este conocimiento utilizando únicamente cálculo proposicional.

El Cálculo de Predicados

- Sería de gran utilidad un lenguaje que permitiese definir objetos y relaciones entre ellos.
- El **cálculo de predicados** nos permite esta opción y, además solventa los problemas planteados en la diapositiva anterior.
- Ejemplo: Para decir que $SOBRE_B_C \supset \neg LIBRE_C$, para cualquier bloque, el cálculo de predicados nos evita tener que reescribir todas las proposiciones del cálculo proposicional de las situaciones que pueden darse. Podemos abstraer los objetos a variables y escribir:

$$SOBRE(x, y) \supset \neg LIBRE(y)$$

• El significado sería "cuando un objeto x esté sobre otro y, entonces y no estará libre".

Cálculo de Predicados

- Elementos de representación:
 - Términos: Constantes (UGR), Variables (X), Funciones (siguiente(X))
 - Fórmulas atómicas: Predicados definidos sobre términos
 - trabaja-como(empleado1,director)
 - tiene-hijos(empleado1,1)
 - Fórmulas bien formadas (fbf): Fórmulas atómicas unidas por conectivas $(\land, \lor, \neg, \rightarrow)$ y cuantificadas (\forall, \exists)
 - \forall X,Y trabaja-como(X,director), tiene-hijos(X,Y), Y<=2 \rightarrow gana(X,60000)
 - ∀ X,Y trabaja-como(X,director), tiene-hijos(,;Y), Y>2 → gana(X,70000)

Reglas de inferencia

- Inferencia: Todas las de lógica proposicional + instanciación universal
- Instanciación universal: si tenemos ∀ X p(X) entonces se puede deducir p(a), p(Y) . . .
- Ejemplo: Todos los hombres son mortales, Sócrates es un hombre, por tanto Sócrates es mortal:
 - a. R1: \forall X hombre(X) \rightarrow mortal(X)
 - b. hombre(sócrates)
 - c. R1 y X=sócrates: hombre(sócrates) → mortal(sócrates)
 - d. (byc) mortal(sócrates)

Representación

- Una universidad imparte un conjunto de titulaciones en un conjunto de centros y campus.
 - imparte(Universidad, Titulación, Centro, Campus)
 - imparte(UGR,Informática,ETSIIT,Aynadamar)
 - Imparte(UGR, Matemáticas, FC, Ciencias)
- La representación no es única, alternativa:
 - imparte-titulación(Universidad, Titulación)
 - imparte-titulación(UGR,Informática)
 - imparte-titulación(UGR, Matemáticas)
 - imparte-centro(Informática,ETSIIT)
 - imparte-centro(Matémáticas,FC)
 - centro-en-campus(ETSIIT, Aynadamar)
 - centro-en-campus(FC,Ciencias)

Sigue el ejemplo

- Cada titulación tiene un plan de estudios formado por un conjunto de asignaturas troncales, obligatorias, optativas y de libre elección.
 - asignatura-en-plan(Asignatura, Titulación)
 - asignatura-en-plan(IA,Informática)
 - tipo-asignatura(Asignatura, Tipo)
 - tipo-asignatura(IA,obligatoria) o
 - tipo-asignatura(IA,troncal)
- Cada asignatura se imparte en un curso y cuatrimestre determinados y tiene un determinado numero de créditos.
 - curso-asignatura(Asignatura, Curso)
 - cuatrimestre-asignatura(Asignatura, Cuatrimestre)
 - créditos-asignatura (Asignatura, Créditos)

0

asignatura(Asignatura, Curso, Cuatrimestre, Creditos)

Inferencia

 Cuando un alumno se matricula por primera vez en primero, debe matricularse de todas las asignaturas del primer curso.

R1: \forall X,U,Y primera-matrícula(X,U), curso-asignatura(Y,1) \rightarrow matriculado-en(X,Y)

Inferencia: Deducción con Modus-Ponens

- En primero del grado en Informática de la UGR se imparte las asignaturas de FundamentosdeProgramación, . . .
 - 1. curso-asignatura(FundamentosdeProgramación,1)
 - curso-asignatura(FundamentosdelSoftware,1)
- Ana Morales Pérez acaba de matricularse en primero de la titulación.
 - a) primera-matricula(anaMorales,UGR)
- Si X=anaMorales, U=UGR, e Y =FundamentosdeProgramación, (unificación) por el Modus-Ponens, a partir de la regla R1, de 1 y de a), se puede deducir que
 - matriculado-en (ana Morales, Fundamentos de Programación)
- Si X=anaMorales, U=UGR, y Y =FundamentosdelSoftware, por el Modus-Ponens, a partir de la regla R1, de 2 y de a), se puede deducir que matriculado-en(anaMorales, FundamentosdelSoftware)

Deducción hacia atrás

- Y si se desea conocer ¿en qué asignaturas se debe matricular Ana Morales?
- Pregunta: matriculado-en(anaMorales,Y)
- Se busca una implicación lógica en la que aparezca matriculadoen(V, V1) en la parte derecha (puede haber más de una).
- Si se pueden unificar, se intentan deducir los literales que aparezcan en la parte izquierda de la implicación.
- Si existe alguna asignación de valor a las variables de la parte izquierda que permita deducir como ciertas las condiciones, se podrá deducir la pregunta de diferentes formas (diferentes valores de Y: FundamentosdeProgramación, FudamentosdelSoftware, . . .)

Características del cálculo de predicados

- Ventaja: representación de tipo general mas rica que la proposicional
- Características de un sistema de razonamiento lógico:
 - solidez: para estar seguro que una conclusión inferida es cierta.
 - completitud: para estar seguros de que una inferencia tarde o temprano producirá una conclusión verdadera.
 - decidibilidad: para estar seguros de que la inferencia es factible.
- La refutación mediante resolución es sólida y completa.
- Problema: el cálculo de predicados es semidecidible y además en los casos en que la refutación mediante resolución termina, el procedimiento es NP-duro.

Características del cálculo de predicados

- Solución: subconjuntos decidibles de lógica de predicados (clausulas de Horn)
- Existe un lenguaje de programación que permite crear y ejecutar programas en lógica de predicados: PROLOG

```
conectados(X,Y) :- conectados(Y,X).
```

alcanzable(X,Y) :- conectados(X,Y).

alcanzable(X,Y):-conectados(X,Z), alcanzable(Z,Y).

Ejemplo de PROLOG

$$(\forall x, y, z)[Sobre(x, y) \supset Encima(x, y)]$$

$$(\forall x, y)\{(\exists z)[Sobre(x, z) \land Encima(z, y)] \supset Encima(x, y)\}$$

- 1. :- Encima(A,C)
- 2. Sobre(A,B) :-
- 3. Sobre(B.C) :-
- 4. Encima(x,y) :- Sobre(x,y)
- 5. Encima(x,y) :- Sobre(x,z), Encima(z,y)

Ejemplo de Prolog

Otras lógicas

- Lógicas de segundo orden (o de orden superior)
 - tienen dos (o tres) tipos definidos: los objetos y los conjuntos o funciones sobre los mismos (o ambos)
 - es equivalente a decir que los predicados pueden tomar otros predicados como argumentos
- Lógicas modales y temporales
 - necesario y posible
- Lógica difusa
 - grados de pertenencia
- Otras: multi-valuadas, no-monótonas, cuánticas, .

. .

Lógica difusa

- Extensión de la lógica clásica diseñada para permitir el razonamiento sobre conceptos imprecisos
 - "la velocidad del motor es muy alta"
 - "el paciente tiene fiebre moderada"
 - "si el paciente tiene fiebre muy alta y es muy joven, entonces la dosis debe de ser moderada"
- Ejemplo: control del movimiento de un robot

Sistemas Basados en el Conocimiento

- Una gran cantidad de aplicaciones reales de la IA se basan en la existencia de una gran masa de conocimiento:
 - Diagnóstico médico.
 - Diseño de equipos.
 - Sistemas de Recomendación.
 - Etc.
- Este tipo de sistemas se denominan **Sistemas Basados en el Conocimiento**, ya que este ocupa la parte central de la solución al problema a resolver.

Sistemas Basados en el Conocimiento

- Un **Sistema Basado en el Conocimiento (SBC)** necesita 3 componentes básicas:
 - Una **Base de Conocimiento** (**BC**), que contenga el conocimiento experto necesario sobre el problema a resolver. Puede ser:
 - Estática, si la BC no varía a lo largo del tiempo.
 - **Dinámica**, cuando se añaden nuevos hechos o reglas, o se modifican las existentes a lo largo del tiempo.
 - Un **Motor de Inferencia**, que permite razonar sobre el conocimiento de la BC y los datos proporcionados por un usuario.
 - Una interfaz de usuario para entrada/salida de datos.

Sistemas Expertos basados en Reglas (SEBR)

- Un **SEBR** es un **SBC** donde el conocimiento se incluye en forma de reglas y hechos.
- Estas reglas y hechos pueden implementarse, por ejemplo, mediante el **cálculo de predicados**.
- El proceso de construcción de un SEBR es el siguiente:
 - Se extrae el conocimiento experto (bibliografía, entrevistas a expertos reales, etc.).
 - Se modela y se adquiere el conocimiento, utilizando un lenguaje adecuado (cálculo de predicados, otras lógicas más avanzadas, etc.)
 - Se crea la Base de Conocimiento con el conocimiento adquirido.

Sistemas Expertos basados en Reglas (SEBR)

- Por otra parte, también se necesita:
 - Una **interfaz de usuario**, para poder utilizar el sistema y adquirir/enviar datos.
 - Un subsistema de explicación, para los casos en los que sea necesario indicar al usuario porqué se llega a las conclusiones que se llegan.
 - Un **Motor de Inferencia**, para razonar sobre la Base de Conocimiento y los datos proporcionados por el usuario.

Sistemas Expertos basados en Reglas (SEBR)

• El esquema general de diseño de un SEBR es el siguiente:

 La memoria de trabajo contiene la información relevante que el Motor de Inferencia está usando para razonar las respuestas para el usuario.

Otros modelos/problemas de representación del conocimiento

- Representación del conocimiento de sentido común
- Organización jerárquica del conocimiento
- Razonamiento temporal
- ...

Organización jerárquica del conocimiento

- Organización jerárquica del conocimiento
 - Snoopy es una impresora láser
 - Todas las impresoras láser son impresoras
 - Todas las impresoras son máquinas

```
Impresora.laser(Snoopy)
(\forall x)[Impresora.laser(x) \supset Impresora(x)]
(\forall x)[Impresora(x) \supset Maquina.de.oficina(x)]
```

Herencia de Propiedades

```
(\forall x)[Maquina.de.oficina(x) \supset \\ [Fuente.de.alimentacion = Toma.de.la.pared]] (\forall x)[Impresora.laser(x) \supset \\ [Fuente.de.alimentacion = Toma.de.la.pared]]
```

Redes semánticas

- Las redes semánticas son estructuras gráficas que codifican el conocimiento taxonómico sobre objetos y propiedades de estos
- PROPIEDADES: nodos etiquetados con constantes de relación
- OBJETOS: nodos etiquetados con constantes de objetos
 - Arcos de jerárquica
 - Arcos de pertenencia
 - Arcos de función

Razonamiento temporal

- Allen (1983,1984): El tiempo es algo dinámico, sobre el cual los procesos y los evento transcurren
 - E evento o suceso
 - I intervalo de tiempo

Ocurre(E,I)

Intervalos temporales: instantes de inicio y final

$$(\forall x)[inicio(x) \leq fin(x)]$$

Razonamiento temporal

$$(\forall x, y)[Se.encuentra.con(x, y) \equiv (fin(x) = inicio(y))]$$

$$(\forall x,y) \{Antes.de(x,y) \equiv \\ \exists (z) [Se.encuentra.con(x,z) \land Se.encuentra.con(z,y)] \}$$

$$(\forall x, y) \{ Antes. de(x, y) \equiv [(fin(x) < inicio(y))] \}$$

Razonamiento temporal

 Ejemplo: representación de hechos de sentido común el evento salir agua de un grifo está precedido por el de abrir una válvula, y seguido por el de cerrarla

$$(\forall y)\{Ocurre(Saleagua, y) \supset (\exists x, z)[Ocurre(Abrir.V, x) \land Ocurre(Cerrar.V, z) \land Se.solapa.con(x, y) \land Se.solapa.con(y, z)]\}$$