A FALTA DE PAN, BUENAS SON TORTAS: THE EFFICACY OF PREDICTED UPOS TAGS FOR LOW RESOURCE UD PARSING

Mark Anderson, Mathieu Dehouck, Carlos Gómez Rodríguez

PREVIOUSLY: TAMIL RESULTS

Still some improvement with low-accuracy taggers.

	Tra	ining	Dev		
	sents	tokens	sents	tokens	
bxr	15	120	4	33	
kk	24	395	7	134	
kmr	16	192	4	50	
olo	15	114	4	30	
hsb	18	310	5	150	
be	307	6,441	77	1,449	
gl	480	12,317	120	3,119	
lt	166	3,444	42	852	
mr	335	2,751	84	686	
orv	256	8,253	64	1903	
ta	383	6,082	96	1,254	
су	491	10,719	123	2,616	

DATA

Very low resource: < 25 sentences

Low resource: < 500

sentences

METHODOLOGY

Taggers

• control accuracy?

Parser

• biaffine (Dozat & Manning, 2017)

VERY LOW-RESOURCE

	UP	OS		LAS			
	Single	Multi	None	Pred	Gold	Multi	
bxr	48.72	48.34	10.45	12.36	20.31	14.41	
kk	53.37	52.14	22.48	21.63	36.66	23.50	
kmr	50.56	53.73	19.16	18.31	35.54	21.58	
olo	37.84	37.37	9.74	10.89	17.54	7.59	
hsb	53.44	47.28	18.36	20.03	41.88	14.66	
avg	48.79	47.77	16.04	16.64	30.39	16.25	

FAIRLY LOW-RESOURCED

	UP	OS		LAS			
	Single	Multi	None	Pred	Gold	Multi	
be	92.82	87.29	61.82	64.91	68.87	62.28	
gl	93.54	88.56	70.60	72.73	79.06	70.54	
It	79.25	71.51	37.17	35.94	48.30	38.96	
mr	80.58	76.46	57.04	58.74	64.32	56.31	
orv	87.77	81.60	49.53	51.34	60.24	50.33	
ta	86.88	79.23	63.85	62.75	74.31	63.15	
су	91.77	86.41	72.10	72.93	80.71	73.00	
avg	85.89	77.77	55.24	56.52	64.13	55.10	

ARTIFICIAL

AUGMENTED

END