CSC 4740 / 6740 Data Mining

Spring 2024

Chapter 9 Classification: Advanced Methods

Neural Network

Neural Network

$$I_j = \sum_i w_{i,j} x_i + \theta_j$$
$$O_j = f(I_j) = \frac{1}{1 + e^{-\beta I_j}}$$

$$f(I_j) = \frac{1}{1 + e^{-\beta I_j}}$$
Sigmoid function
$$\beta \to \infty$$

Dendrites

$$\beta \to \infty$$
: $f(I_j) = \operatorname{sign}(I_j)$

Neural Network

Topology:

of units in the input layer# of hidden layers# of units in each hidden layer

of units in the output layer

Parameters:

 $w_{i,j}$ for each connection β , θ_i for each hidden or output unit

Neural networks can closely approximate any function Given enough hidden units and enough training samples

Neural Network as a Classifier

Weakness	Strength
Long learning time	High tolerance to noisy data
Some parameters are determined empirically, e.g., the network topology or "structure"	Well-suited for continuous-values inputs and outputs
Poor interpretability: Difficult to interpret the weights of the hidden units	Successful on an array of real-world data, e.g., hand-written letters
	Inherently parallel

Neural Network	SVM
Non-deterministic algorithm	Deterministic algorithm
Can easily be learned in incremental fashion	Hard to learn: learned in batch mode using quadratic programming techniques
To learn complex functions—use multilayer perceptron (nontrivial)	Using kernels can learn very complex functions

How to Train the Neural Network?

Backpropagation Algorithm: A neural network learning algorithm

 \blacktriangleright For each training data object, the weights $w_{i,j}$ are adjusted to minimize the mean squared error between prediction and ground truth

Adjustments are made in the "backwards" direction: from the output layer, to the hidden layer

How to Train the Neural Network?

Backpropagation Algorithm: A neural network learning algorithm

Steps:

- 1. Initialize weights $w_{i,j}$ and biases θ_j to small random numbers
- 2. For each training data object
 - 1) Propagate the inputs forward
 - 2) Backpropagate the error by updating weights $w_{i,j}$ and biases $heta_j$
- 3. Terminating condition: when the error is very small, etc.

Backpropagation Algorithm

The error:

$$Err_j = O_j(1 - O_j)(T_j - O_j)$$

where, O_i is the actual output

 T_i is the known value

 $O_i(1-O_i)$ is the derivative of the logistic function

Unit *j* in the output layer

Update the weights:

$$\Delta w_{i,j} = l \cdot \operatorname{Err}_{j} \cdot O_{i}$$

$$w_{i,j} = w_{i,j} + \Delta w_{i,j}$$

Update the bias:

$$\Delta \theta_j = l \cdot \text{Err}_j$$
$$\theta_i = \theta_i + \Delta \theta_i$$

 $l \in (0,1)$: learning rate

Rule of thumb:

$$l = \frac{1}{t}$$

Backpropagation Algorithm

The error:

$$\operatorname{Err}_{j} = O_{j}(1 - O_{j}) \sum_{k} w_{j,k} \cdot \operatorname{Err}_{k}$$

Unit *j* in the hidden layer

where, O_i is the actual output

 $w_{i,k}$ is the weight of the connection from unit j to k in higher layer

 Err_k is the error of unit k

Update the weights:

$$\Delta w_{i,j} = l \cdot \operatorname{Err}_{j} \cdot O_{i}$$

$$w_{i,j} = w_{i,j} + \Delta w_{i,j}$$

Update the bias:

$$\Delta \theta_j = l \cdot \text{Err}_j$$
$$\theta_j = \theta_j + \Delta \theta_j$$

 $l \in (0,1)$: learning rate

Rule of thumb:

$$l = \frac{1}{t}$$

$$X_i = \{1, 0, 1\}$$
 class label: 1

Initial values:

$W_{1,4}$	0.2
$W_{1,5}$	-0.3
$W_{2,4}$	0.4
$W_{2,5}$	0.1
$W_{3,4}$	-0.5
$W_{3,5}$	0.2
$W_{4,6}$	-0.3
$W_{5,6}$	-0.2
$ heta_4$	-0.4
$ heta_5$	0.2

 θ_6

0.1

Multilayer feed-forward networks Learning rate l=0.9

$$X_i = \{1, 0, 1\}$$
 class label: 1

Initial values:

	$W_{1,4}$	0.2	
	$W_{1,5}$	-0.3	
	$W_{2,4}$	0.4	
	$W_{2,5}$	0.1	
	$W_{3,4}$	-0.5	
	$W_{3,5}$	0.2	
	$W_{4,6}$	-0.3	
	<i>W</i> _{5,6}	-0.2	
	$ heta_4$	-0.4	
	$ heta_5$	0.2	Ì
Geor	$ heta_6$	0.1	Ì

Unit j	Net Input I_j	Output $oldsymbol{o}_j$
4	0.2 + 0 - 0.5 - 0.4 = -0.7	$\frac{1}{1 + e^{0.7}} = 0.332$
5	-0.3 + 0 + 0.2 + 0.2 = 0.1	$\frac{1}{1 + e^{-0.1}} = 0.525$
6	$-0.3 \times 0.332 - 0.2 \times 0.525 + 0.1 = -0.105$	$\frac{1}{1 + e^{0.105}} = 0.474$

Propagate the inputs forward $I_j = \sum_i \overline{w_{i,j}} x_i + \theta_j$ $O_j = f(I_j) = \frac{1}{1 + e^{-\beta I_j}}$

$$X_i = \{1, 0, 1\}$$
 class label: 1

Initial values:

$W_{1,4}$	0.2
$W_{1,5}$	-0.3
$W_{2,4}$	0.4
$W_{2,5}$	0.1
$W_{3,4}$	-0.5
$W_{3,5}$	0.2
$W_{4,6}$	-0.3
$W_{5,6}$	-0.2
$ heta_4$	-0.4

 θ_5

 θ_6

0.2

0.1

Unit j	Error Err _j	
6	$0.474 \times (1 - 0.474) \times (1 - 0.474) = 0.1311$	
5	$0.525 \times (1 - 0.525) \times 0.1311 \times (-0.2) = -0.0065$	
4	$0.332 \times (1 - 0.332) \times 0.1311 \times (-0.3) = -0.0087$	

Backpropagate the errors

Output layer:

 $Err_j = O_j(1 - O_j)(T_j - O_j)$

Hidden layer:

 $\operatorname{Err}_{i} = O_{i}(1 - O_{i}) \sum_{k} w_{i,k} \cdot \operatorname{Err}_{k}$

$$X_i = \{1, 0, 1\}$$
 class label: 1

Initial values:

$W_{1,4}$	0.2
$W_{1,5}$	-0.3
$W_{2,4}$	0.4
$W_{2,5}$	0.1
$W_{3,4}$	-0.5
$W_{3,5}$	0.2
$W_{4,6}$	-0.3
$W_{5,6}$	-0.2
$ heta_4$	-0.4

 θ_5

 θ_6

0.2

0.1

weights	Error Err _j
W _{4,6}	$-0.3 + 0.9 \times 0.1311 \times 0.332 = -0.261$
$W_{5,6}$	$-0.2 + 0.9 \times 0.1311 \times 0.525 = -0.138$

Backpropagate the errors Learning rate l=0.9

Update the weights: $\Delta w_{i,j} = l \cdot \mathrm{Err}_j \cdot O_i$ $w_{i,j} = w_{i,j} + \Delta w_{i,j}$

$$X_i = \{1, 0, 1\}$$
 class label: 1

Initial values:

$w_{1,4}$	0.2
$W_{1,5}$	-0.3
$W_{2,4}$	0.4
$W_{2,5}$	0.1
$W_{3,4}$	-0.5
$W_{3,5}$	0.2
$W_{4,6}$	-0.3
W _{5,6}	-0.2
$ heta_4$	-0.4

0.2

0.1

weights	Error Err _j
$w_{1,4}$	$0.2 + 0.9 \times (-0.0087) \times 1 = 0.192$
$w_{2,4}$	$0.4 + 0.9 \times (-0.0087) \times 0 = 0.4$
$w_{3,4}$	$-0.5 + 0.9 \times (-0.0087) \times 1 = -0.508$

Update the weights:

Backpropagate the errors Learning rate l=0.9

 $\Delta w_{i,j} = l \cdot \operatorname{Err}_{j} \cdot O_{i}$ $w_{i,j} = w_{i,j} + \Delta w_{i,j}$

 θ_5

 θ_6

$$X_i = \{1, 0, 1\}$$
 class label: 1

Initial values:

$W_{1,4}$	0.2
$W_{1,5}$	-0.3
$W_{2,4}$	0.4
$W_{2,5}$	0.1
$W_{3,4}$	-0.5
$W_{3,5}$	0.2
$W_{4,6}$	-0.3
$W_{5,6}$	-0.2
$ heta_4$	-0.4

 θ_5

 θ_6

0.2

0.1

weights	Error Err _j	
$w_{1,5}$	$-0.3 + 0.9 \times (-0.0065) \times 1 = -0.306$	
$w_{2,5}$	$0.1 + 0.9 \times (-0.0065) \times 0 = 0.1$	
$w_{3,5}$	$0.2 + 0.9 \times (-0.0065) \times 1 = 0.194$	

Backpropagate the errors Learning rate l=0.9

Update the weights:

 $\Delta w_{i,j} = l \cdot \operatorname{Err}_{j} \cdot O_{i}$ $w_{i,j} = w_{i,j} + \Delta w_{i,j}$

$$X_i = \{1, 0, 1\}$$
 class label: 1

Initial values:

$W_{1,4}$	0.2
$W_{1,5}$	-0.3
$W_{2,4}$	0.4
$W_{2,5}$	0.1
$W_{3,4}$	-0.5
$W_{3,5}$	0.2
$W_{4,6}$	-0.3
$W_{5,6}$	-0.2
$ heta_4$	-0.4

0.2

0.1

 θ_5

Geor

weights	Error Err _j
θ_6	$0.1 + 0.9 \times 0.1311 = 0.218$
$ heta_5$	$0.2 + 0.9 \times (-0.0065) = 0.194$
$ heta_4$	$-0.4 + 0.9 \times (-0.0087) = -0.408$

Backpropagate the errors Learning rate l=0.9

Update the biases: $\Delta heta_j = l \cdot \mathrm{Err}_j$ $heta_j = heta_j + \Delta heta_j$

$$X_i = \{1, 0, 1\}$$
 label: 1

Initial values:

weights	old	new
$W_{1,4}$	0.2	0.192
$W_{1,5}$	-0.3	-0.306
$W_{2,4}$	0.4	0.4
$W_{2,5}$	0.1	0.1
$W_{3,4}$	-0.5	-0.508
$W_{3,5}$	0.2	0.194
$W_{4,6}$	-0.3	-0.261
$w_{5,6}$	-0.2	-0.138
$ heta_4$	-0.4	-0.408
$ heta_5$	0.2	0.194
θ_6	0.1	0.218

Multilayer feed-forward networks Learning rate l=0.9

Lee Sedol 9-dan vs AlphaGo

AlphaGo 4 – Lee Sedol 1

Neural Networks

- Human expert positions
- > Self-play positions

Mastering the game of Go with deep neural networks and tree search
David Silver, et al
Nature, 2016

Deep Learning Package Zoo

- Torch => PyTorch
- Caffe
- Theano (Keras, Lasagne)
- nVidia CuDNN
- Google TensorFlow
- Mxnet
- etc.

Pre-Trained Models

- AlexNet
- VGG-16 (Visual Geometry Group University of Oxford)
- BERT (Bidirectional Encoder Representations from Transformers)
- GPT (Generative Pre-trained Transformer) / GPT2 / GPT3

Architecture of AlexNet CNN

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012): 1097-1105.

VGG-16 Architecture

Georgia State University

Ferguson, Max, Ronay Ak, Yung-Isun Tina Lee, and Kincho H. Law. "Automatic localization of casting defects with convolutional neural networks." In 2017 IEEE international conference on big data (big data), pp. 1726-1735. IEEE, 2017.

- Linear Scale Exponential growth on linear scale
- Log Scale — Exponential growth on logarithmic scale

Compute Required

Intelligence - Final Report https://www.nscai.gov/wpcontent/uploads/2021/03/Full-Report-Digital-1.pdf

Source: OpenAl, Al and Compute (May 16, 2018), https://openai.com/blog/ai-and-compute/

Log Scale

Linear Scale

Al & Compute Petaflop/s-days

k-Nearest Neighbor (k-NN) Classifier

1. Compute the Distance/Similarity

$$d_{i,j} = \sqrt{(x_{i,1} - x_{j,1})^2 + (x_{i,2} - x_{j,2})^2}$$

- 2. Rank the remaining nodes
- 3. Select the Top-k nodes
- 4. Majority Vote

How to choose parameter k?

"too small" k: sensitive to outliers

"too large" k: many objects from other classes

medium k: highest accuracy

Decision set for k = 1

Decision set for k = 7

Decision set for k = 16

Difference Between 1-NN and 5-NN

Original dataset

5-NN

White Region: class votes are tied {red, red, blue, blue, green}