LC 18: Corps purs et mélanges binaires

Niveau: CPGE

Prérequis:

- Fraction massique
- Potentiel chimique
- Changement d'état du corps pur

Mélange de solides

Menthol

1,1 g

$$T_{fus} = 42,45$$
°C

Acide laurique

0,6 g

$$T_{fus} = 44,33$$
°C

Diagramme de phase d'un corps pur

Diagramme de phase d'un corps pur

Acide palmitique

 $T_{fus} = 63,69$ °C

Variables de composition

$$w_1^l = \frac{m_1^l}{m_1^l + m_2^l}$$

 $\frac{m_1^l}{m_1^l + m_2^l}$ Fraction massique du constituant 1 dans la phase liquide

On définit de même w_2^l , w_1^s et w_2^s

Variables de composition

$$w_1 = \frac{m_1}{m_1 + m_2}$$

Fraction massique **globale** du constituant 1

On définit de même w_2

Expérience : diagramme binaire acide sébacique – acide adipique

Acide palmitique

______он

Thymol

$$T_{fus} = 63,69$$
°C

OH

 $T_{fus} = 49,95$ °C

Mélanges réalisés

Fraction molaire d'acide palmitique	0	0,2	0,24	0,5				1
-------------------------------------	---	-----	------	-----	--	--	--	---

Tracé de courbes d'analyse thermique : protocole

Acquisition de courbes de refroidissement

Diagramme binaire isobare Thymol-Acide palmitique

Tunable hydrophobic eutectic solvents based on terpenes and monocarboxylic acids, Mónia Andreia Rodrigues Martins et al. *ACS Sustainable Chem. Eng*

Salage des routes en hiver

Diagramme partiel eau – chlorure de sodium

Application des diagrammes binaires à eutectique

Minerai de bauxite, contient de l'alumine Al₂O₃

Aluminium

Mélanges	Liquide à partir d'une température de			
Alumine pure	2050°C			
Alumine + cryolithe Na_3AlF_6 (80% environ)	960°C			