Shortest Path Problem

- Given a directed graph G = (V, E, w).
- Each edge $(u,v) \in E$ has associated real-valued weight w(u,v).
- The weight w(P) of a path P between vertices u and v in G is the sum of weights along P.
- Any path of minimum weight between u and v is called a shortest path from u to v.

Variants of Shortest Path Problem

- Single pair: shortest path from a given vertex u to a given vertex v.
- Single source: shortest paths from a single source vertex s to every vertex in G.
- Single target: shortest paths from every vertex in G to a single target vertex t.
- All pairs: shortest paths between all pairs of vertices in G.

Optimal Substructure Property

- Consider a shortest path P between vertices u and v in G.
- Let z be a vertex on P.
- The portion of P between u and z is a shortest path between u and z.
- The portion of P between z and v is a shortest path between z and v.

Cycles and Shortest Paths

- All edges have positive weights: Shortest paths cannot contain cycles.
- All edges have non-negative weights. 0-cycles can occur in shortest paths but can be removed without changing the length.
- Some edges have negative weights: If negative weight cycles are in the graph, shortest path problem is not well-defined. Otherwise, we are back in one of the above two cases.
- Conclusion: Shortest paths in graphs with n vertices have at most n-1 edges.

Triangle Inequality for Shortest Paths

- Claim: $\delta(s,v) \le \delta(s,u) + w(u,v)$ for all $(u,v) \in E$
- Proof: The shortest path from s to u followed by the single edge path from u to v is a path from s to v.
- The length of this path must be at least equal to the length of the shortest path from s to v.

Shortest Path Algorithms - Intuition

- A path from s to every vertex v will be maintained.
 - d[v] = weight of a path from s to v.
 - -p[v] = predecessor of v on a path from s to v.
- Initially
 - d[s] = 0,
 - -d[v] = ∞ for all $v \neq s$,
 - p[v] = null for all v ∈ G
- Suppose that an edge (u,v) exists such that

$$d[v] > d[u] + w(u,v)$$

• Relaxation: Update p[v] and reduce d[v]. Repeat.

Initialization

- INITIALIZE-SINGLE-SOURCE(s)
 - d[s] = 0;
 - for each vertex v in $V \{s\}$ do d[v] = ∞
 - for each vertex v in V do p[v] = null;

Relaxation

- RELAXATION(*u*,*v*)
 - if d[v] > d[u] + w(u,v) then
 - $\bullet \ d[v] = d[u] + w(u,v)$
 - p[v] = u
 - else do nothing
- After relaxation attempt: $d[v] \le d[u] + w(u,v)$

Algorithm

- INITIALIZE-SINGLE-SOURCE(s)
- RELAX as long as possible.

Upper Bound Property

- CLAIM: d[v] ≥ δ(s,v) for all v in V at all times. Once d[v] = δ(s,v),
 d[v] never changes.
- PROOF: By induction on the number of relaxations.
 - BASIS: Clearly true before the first relaxation.
 - INDUCTIVE STEP: Suppose that we are about to relax edge (u,v). d[u] will not change after the relaxation. By inductive hypothesis:
 - $-d[v] = d[u] + w(u,v) \ge \delta(s,u) + w(u,v) \ge \delta(s,v)$
- NO-PATH PROPERTY: If $\delta(s, v) = \infty$ (no path from s to v) then $d[v] = \infty$. Follows directly from the upper bound property.

Convergence Property

- Let (u,v) be an edge in G.
 - Assume that the shortest path from s to v goes through (u,v).
 - Assume that at some stage of the execution of the shortest path algorithm we have $d[u] = \delta(s,u)$, and we try to relax edge (u,v).
 - After the relaxation attempt:

$$d[v] \le d[u] + w(u,v) = \delta(s,u) + w(u,v) = \delta(s,v)$$

- Upper bound property: d[v] ≥ $\delta(s,v)$.

Bellman-Ford Algorithm

- INITIALIZE-SINGLE-SOURCE(G,s)
- for (i = 1; i ≤ n-1; i++) do
 for each edge (u,v) ∈ G do relax (u,v);
- for each edge (u,v) ∈ G do
 if d[v] > d[u] + w(u,v) then return FALSE;
- return TRUE;
- Worst case time complexity: O(nm)

Correctness of BF Algorithm

- Let $P = \{ v_0, v_1, ..., v_k \}$ be a shortest path from $s = v_0$ to v_k .
- CLAIM: If G has no negative cycles then $d[v] = \delta(s,v)$ for all v after at most n-1 iterations.
- PROOF: Any path in G without cycles has at most n-1 edges.
 Therefore k <= n-1.
 - Before the first round of relaxations, $d[v_0] = \delta(s, v_0)$. When (v_0, v_1) is relaxed in the first round, $d[v_1] = \delta(s, v_1)$.
 - Before the second round of relaxations, $d[v_1] = \delta(s, v_1)$. When (v_1, v_2) is relaxed in the second round, $d[v_2] = \delta(s, v_2)$
 - Before the *i*-th round of relaxations, $d[v_{i-1}] = \delta(s, v_{i-1})$. When (v_{i-1}, v_i) is relaxed in the *i*-th round, $d[v_i] = \delta(s, v_i)$.

Correctness of BF Algorithm

- If G has no negative cycles then after n-1 iteration: d[v] = δ(s,v) for every v ∈ G.
- Let (u,v) be arbitrary edge in G.
 - $d[v] = \delta(s,v) \le \delta(s,u) + w(u,v) = d[u] + w(u,v)$
- Bellman-Ford returns TRUE.

Correctness of BF Algorithm

- Supose that G contains a negative cycle reachable from s.
- Assume for the purpose of contradiction that BF returns TRUE.
- Let $C = \{ v_0, v_1, ..., v_k \}, v_0 = v_k$, be a negative cycle.
 - Since BF is assumed to return TRUE, we must have
 - $d[v_i] \le d[v_{i-1}] + w(v_{i-1}, v_i), i = 1, 2, ..., k.$
 - Summing these inequalities around the cycle, we get

$$\sum_{i=1}^{k} d[v_i] \leq \sum_{i=1}^{k} (d[v_{i-1}] + w(v_{i-1}, v_i))$$

This leads to a contradiction since we get

$$0 \le \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

Shortest Paths in DAGs

- Topologically sort vertices of the DAG.
- Process vertices in topological order. For each vertex, relax its outgoing edges.

Correctness of the Shortest Paths Algorithm for DAGs

- If v is not reachable from s, then the algorithm returns d[v] = ∞ (no edge into v is ever relaxed).
- If v is reachable from s, consider the shortest path $\{v_0, v_1, ..., v_k\}$ with $v_0 = s$ and $v_k = v$.
- The edges of this path: (v_0, v_1) , (v_1, v_2) , ..., (v_{k-1}, v_k) are relaxed in this order since the vertices are processed in topological order.
- As a consequence, shortest paths in a DAG are computed after one relaxation pass of all its edges.
- Worst-case time complexity of the algorithm is O(m+n).

Dijkstra's Algorithm

- Non-negative edge weights.
- Let S be a set of vertices whose shortest paths from s have been determined. Initially S = Ø, d[s] = 0, d[u] = ∞ for all u ≠ s.
- At each iteration, select a vertex u with the smallest d[u] and not in S.
 - Relax along all edges going out from u.
 - Add u to S.
- How to implement Dijkstra's algorithm?

Correctness of Dijkstra's Algorithm

- We need to show that when a vertex u is added to S, then $d[u] = \delta(s,u)$.
- For the purpose of contradiction, let u be the first vertex added to S for which $d[u] > \delta(s,u)$. Note that $u \neq s$.
- Let *P* be the shortest path from *s* to this *u*.
- Let x be the last vertex on P that is in S. Note that it is possible that x = s.
- Let (x,y) be the edge on P. Note that it is possible that y = u.
- When x was added to S, the edge (x,y) was relaxed, Therefore $d[y] = \delta(s,x) + w(x,y) = \delta(s,y) \le \delta(s,u) < d[u]$
- Neither u nor y are in S. Since u was added to S, we have d[u] ≤ d[y], a contradiction.

All-Pairs Shortest Path Problem

- Find shortest paths between all pairs of vertices.
- Focus on finding minimum weights of paths. Shortest paths itself can be reconstructed if an appropriate predecessor matrix is used.
- Recall optimal substructure property of shortest paths.

Shortest Paths and Matrix Multiplication

- Enumerate the vertices from 1 to n.
- d_{ij}^m = weight of the shortest path from *i* to *j* with at most *m* edges,
 m = 1, 2, ..., n-1.
- $\bullet \quad d_{ij}^{\ 1} = w(i,j)$
- $d_{ij}^{m} = \min \{ d_{ij}^{m-1}, \min_{1 \le k \le n} \{ d_{ik}^{m-1} + w(k,j) \} \} = \min_{1 \le k \le n} \{ d_{ik}^{m-1} + w(k,j) \}$
- If you know how to multiply matrices, you will see that matrix D_m can be obtained by matrix "multiplication" of D_{m-1} with W
- Since $D_1 = W$, it follows that $D_m = W^m$

Floyd-Warshall Algorithm

- Enumerate the vertices from 1 to n.
- d_{ij}^{k} = weight of the shortest path from i to j with intermediate vertices (if any) having indices less than or equal to k.
- $\bullet \quad d_{ij}^{\ 0} = w(i,j)$
- $d_{ij}^{k} = \min \{ d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1} \}$