The Heap

The Priority Queue ADT

From previous lecture

add(key, value) add a new element into the priority queue

min() return the value with the minimum key

remove_min() remove and return the value with the minimum key

length() return the number of items in the priority queue

No commitment to any particular organisation of the data underneath

Priority queue: implementation complexity

From previous lecture

	add(k,v)	min()	remove_min()	length()	build full PQ	
unsorted list	O(1)* append(E(k,v))	O(n)	O(n)	O(1)	O(n)	
unsorted DLL	O(1) add at end	O(n)	O(n)	O(1)	O(n)	
sorted list	O(n)	O(1)	O(1)* min at end	O(1)	O(n ²)	
sorted DLL	O(n)	O(1)	O(1)	O(1)	O(n ²)	
AVL tree	O(log n)	O(log n)	O(log n)	O(1)	O(n log n)	
		can we do any better?				

Priority queue: informal analysis

- Keep the complexity of any operation to no worse than O(log n)
- Keep the complexity of min() to O(1), since it is just a reporting method, requiring no change to any data
- ➤ Prefer array-based representation over linked structure, but binary trees give us a O(log n) bound each individual operation.
- Build the initial structure efficiently

It looks like we need some compromise between a fully sorted structure (which gives low access time) and an unsorted structure (which gives low update time)

Keep the min key element at the root of the tree?

each of its children must have a higher key

use that as the recursive definition?

Maintaining the PQ data

A binary tree where every node has lower key than its children?

Where do we add a new element? E.g. an element with key 26 How do we rebalance the tree when we remove the top node?

The Binary Heap

A binary tree where:

- every node has lower (or equal) key than its children
- every level (except maybe the last) is complete
- the lowest level, counting from the left, has nodes in every position up to some point, and then no more nodes

Each node has a relationship to its ancestors (it has higher key), and to its descendants (it has lower key), but no relationship to any other node.

The Binary Heap

A binary tree where:

- every node has lower (or equal) key than its children
- every level (except maybe the last) is complete
- the lowest level, counting from the left, has nodes in every position up to some point, and then no more nodes

Create Element object
Add element in last position
Bubble element up heap
Update last position
Update heap size

Each swap is O(1)
At most O(log n) swaps
So add is O(log n)

Bubble element up (recursive):
if key < parent key
swap element with parent
bubble parent up heap

Bubble element up (iterative):
while this key < this.parent key
swap this and this.parent
set this to parent

Apply the same reasoning – we know what the tree shape will be, so do the minimal change, then recursively move the key that changed position until the heap is restored?

Extract the root value
Copy the last element into the root
Remove last node.
Bubble root element down
Update last position
Update size

Bubble element down (recursive):

if children

target = child with min key

if this key > target key

swap element with target

bubble element down heap

updating the last position might be expensive ...

Do we have to use a linked tree?

➤ Prefer array-based representation over linked structure, but binary trees give us a O(log n) bound each individual operation.

Root node is at index 0. Next item to be added is at index *size*. Last item is at index *size-1*

left(i) =
$$2*i + 1$$

right(i) = $2*i + 2$
parent(i) = $(i-1)//2$

left(i) =
$$2*i + 1$$

right(i) = $2*i + 2$
parent(i) = $(i-1)//2$

left(i) =
$$2*i + 1$$

right(i) = $2*i + 2$
parent(i) = $(i-1)//2$

left(i) =
$$2*i + 1$$

right(i) = $2*i + 2$
parent(i) = $(i-1)//2$

Remove min

Remove min

25's value

Examples

left(i) =
$$2*i + 1$$

right(i) = $2*i + 2$
parent(i) = $(i-1)//2$

Priority queue: implementation complexity

	add(k,v)	min()	remove_min()	length()	build full PQ
unsorted list	O(1)* append(E(k,v))	O(n)	O(n)	O(1)	O(n)
unsorted DLL	O(1) add at end	O(n)	O(n)	O(1)	O(n)
sorted list	O(n)	O(1)	O(1) min at end	O(1)	O(n ²)
sorted DLL	O(n)	O(1)	O(1)	O(1)	O(n ²)
AVL tree	O(log n)	O(log n)	O(log n)	O(1)	O(n log n)
Binary heap	O(log n)*	O(1)	O(log n)*	O(1)	O(n log n) or O(n)

Next Lecture

Dictionaries