

INDEX

- 1. THEORY & SPECIFICATIONS
- 2. SIMPLE CURRENT MIRROR
 - SETUP & SIMULATION
 - OBSERVATION
- 3. CASCODE CURRENT MIRROR
 - SETUP & SIMULATION
 - OBSERVATION
- 4. WIDE SWING CASCODE CURRENT MIRROR
 - SETUP & SIMULATION
 - OBSERVATION
- 5. SELF BIAS WIDE SWING CURRENT MIRROR
 - SETUP & SIMULATION
 - OBSERVATION

CURRENT MIRROR: THEORY & SPECS

Key Types of MOS Current Mirrors

1. Simple Current Mirror

The **Simple Current Mirror** is the most straightforward current mirroring circuit, using two transistors—M1 and M2—configured to mirror a reference current I_{REF} to the output. This structure relies on precise matching of transistor parameters (such as threshold voltage and gain factor) to achieve consistent current.

- **Pros**: Simplicity, minimal area usage, and ease of implementation make it valuable in designs where absolute current precision isn't critical.
- Cons: Output resistance is limited, which can degrade current matching with variations in output voltage. Channel-length modulation is a significant drawback, impacting performance when V_{OUT} changes.

2. Cascode Current Mirror

For applications requiring higher output resistance and less sensitivity to output voltage changes, the **Cascode Current Mirror** is preferred. This circuit adds an additional transistor layer (e.g., **M3** in cascode with **M2**), effectively increasing the output resistance and mitigating channellength modulation effects.

- **Pros**: The cascode configuration provides higher impedance, significantly improving output accuracy by isolating the output node from variations in the drain-source voltage of the mirroring transistor.
- Cons: Increased headroom requirement due to the additional transistors, making it challenging to use in low-voltage designs.

3. Wide-Swing Cascode Current Mirror

In the **Wide-Swing Cascode Current Mirror**, the goal is to address the headroom limitation of traditional cascode mirrors while still benefiting from a high output resistance. This design modifies the gate biasing scheme of the cascode transistors, effectively allowing a **lower minimum supply voltage** without compromising on output resistance.

- **Pros**: Allows higher voltage swing at the output and is thus compatible with lower supply voltages, making it suitable for modern low-voltage applications.
- Cons: The gate-biasing circuit can increase design complexity and introduce dependencies on process variations.

4. Self-Biased Wide-Swing Cascode Current Mirror

The **Self-Biased Wide-Swing Cascode Current Mirror** further enhances the wide-swing mirror by incorporating a self-biasing mechanism. Self-biasing alleviates the need for external bias circuits, reducing design overhead and area, which is especially valuable in large-scale integrations (e.g., complex analog or mixed-signal systems).

- **Pros**: High output resistance, wide output swing, and the added benefit of stable self-biasing that adapts to variations, providing a robust and compact design.
- **Cons**: Self-biasing can be susceptible to process and temperature variations if not carefully managed, potentially impacting long-term stability.

Summary:

Each current mirror type presents a unique trade-off between accuracy, headroom, output swing, and complexity:

- Simple Current Mirror: Ideal for low-power, non-critical biasing circuits.
- Cascode Current Mirror: Provides high accuracy and is preferred in precision circuits but requires higher supply voltage.
- Wide-Swing Cascode Current Mirror: Balances high output resistance with low headroom, ideal for low-voltage applications.
- Self-Biased Wide-Swing Cascode Current Mirror: Offers wide swing and high impedance with a streamlined design, suitable for large-scale, integrated low-power circuits.

Specifications Required for Current Mirrors:

Specification	Requirement
Output Resistance	High output resistance to minimize current variation with changes in output voltage
Input Resistance	Low input resistance for accurate reference current setting and efficient current transfer
Linear I _{OUT} vs. I _{IN}	Slope of 1 for the I _{OUT} vs. I _{IN} characteristic, ensuring accurate current mirroring
Voltage Swing	High output voltage swing to enable operation across a wide range without compromising saturation

1. Simple Current Mirror:

Schematic:

<u>Simulation (Calculating Rout)</u>: $R_{out} = r_{o1}$ (where r_{o} denotes output resistance of a transistor)

Input Resistance: $R_{in} = 1/gm_o$ (where gm denotes the transconductance of the transistor)

NOTE: We observe a straight line here with slope = 1.

Rout	485.4 kΩ
Rin	1.22 kΩ
Vout(min)	730 mV

2. Cascode Current Mirror:

Schematic:

Simulation (Calculating Rout): $R_{out} = gm_5 * r_{o5} * r_{o6}$

Input Resistance: $R_{in} = 1/gm_4$

NOTE: We observe a straight line here with slope = 1.

Rout	68.5 MΩ
Rin	1.22 kΩ
Vout(min)	1.1 V

3. Wide Swing Cascode Current Mirror:

Schematic:

Simulation (Calculating Rout): $R_{out} = gm_1 * r_{o1} * r_{o3}$

Input Resistance: $R_{in} = 1/gm_2$

NOTE: We observe a straight line here with slope = 1.

Rout	5.42 MΩ
Rin	1.44 kΩ
Vout(min)	500 mV

4. Self-biased Wide Swing Cascode Current Mirror:

Schematic:

Simulation (Calculating Rout): $R_{out} = gm_1 * r_{o1} * r_{o3}$

Input Resistance: $R_{in} = r + 1/gm_2$ (here, $r = 2.5k\Omega$)

NOTE: We observe a straight line here with slope = 1.

Rout	$6.36~\mathrm{M}\Omega$
Rin	3.63 kΩ
Vout(min)	400 mV