

FCC Test Report

(PART 27)

Report No.: RF170407C04-2

FCC ID: V65S2720

Test Model: S2720

Received Date: Apr. 07, 2017

Test Date: Apr. 24, 2017 ~ Apr. 28, 2017

Issued Date: Jul. 12, 2017

Applicant: Kyocera Corporation c/o Kyocera International, Inc.

Address: 8611 Balboa Drive, San Diego, CA 92123

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

(R.O.C)

Test Location (1): No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan

Hsien 333, Taiwan, R.O.C.

Test Location (2): No.215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231, Taiwan,

R.O.C

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencie

Table of Contents

Re	Release Control Record					
1	Cer	tificate of Conformity	. 4			
2	Sun	nmary of Test Results	5			
	21	Measurement Uncertainty	6			
		Test Site and Instruments				
3						
3						
	3.2					
	3 3					
1		·				
4		**				
	4.1					
		·				
		·				
	4.2					
			tty 4 Its 5 ertainty 6 ments 7 8 6 to of EUT 8 stem under Test. 10 of Support Units 10 illity and Tested Channel Detail 11 diditions 14 to of Applied Standards 14 surement 15 put Power Measurement 15 res 15 surement 15 quency Stabiliity Measurement 23 re 23 gre 23 tre 22 upied Bandwidth Measurement 32 gre 32 gre 32 gres 37 debde Measurement 37 debde Measurement 37 debde Measurement 37 gres 37 statio 48 k to Average Ratio Measurement 53 gre 53 <tr< td=""></tr<>			
		·				
	4.0					
	4.3					
		· ·				
		·				
	4.4	Band Edge Measurement	37			
		·				
	15					
	4.5	5				
3.1 General Description of EUT 3.2 Configuration of System under Test 3.2.1 Description of Support Units 3.3 Test Mode Applicability and Tested Channel Detail 3.4 EUT Operating Conditions. 3.5 General Description of Applied Standards. 4 Test Types and Results 4.1 Output Power Measurement. 4.1.1 Limits of Output Power Measurement. 4.1.2 Test Procedures 4.1.3 Test Setup. 4.1.4 Test Results. 4.2 Frequency Stability Measurement. 4.2.1 Limits of Frequency Stability Measurement. 4.2.1 Limits of Frequency Stability Measurement. 4.2.2 Test Procedure 4.2.3 Test Setup. 4.2.4 Test Results. 4.3 Occupied Bandwidth Measurement. 4.3.1 Limits of Cocupied Bandwidth Measurement. 4.3.2 Test Procedure 4.3.3 Test Setup. 4.3.4 Test Results. 4.4 Limits of Band Edge Measurement. 4.4.1 Limits of Band Edge Measurement. 4.4.1 Limits of Band Edge Measurement. 4.4.1 Test Setup. 4.4.3 Test Procedures 4.4.4 Test Results 4.5 Peak to Average Ratio 4.5.1 Limits of Peak to Average Ratio Measurement. 4.5.2 Test Setup. 4.5.3 Test Procedures 4.5.4 Test Results 4.5.4 Test Results 4.5.5 Test Setup. 4.5.5 Test Setup. 4.5.6 Conducted Spurious Emissions Measurement 4.6.1 Limits of Peak to Average Ratio Measurement 4.6.2 Test Setup. 4.6.3 Test Procedures 4.5.4 Test Results 4.6 Ronducted Spurious Emissions Measurement 4.7.1 Limits of Radiated Emission Measurement 4.7.2 Test Procedure 4.6.3 Test Procedure 4.6.4 Test Results 4.7 Test Setup. 4.7.5 Test Results 5 Pictures of Test Arrangements. Appendix – Information on the Testing Laboratories						
	4.6					
		·				
		·				
	4.7					
		·				
5	Pict	ures of Test Arrangements	73			
Αp	pen	dix – Information on the Testing Laboratories	74			
•	··					

Release Control Record

Issue No.	Description	Date Issued
RF170407C04-2	Original Release	Jul. 12, 2017

Certificate of Conformity 1

Product: Feature phone

Brand: Kyocera

Test Model: S2720

Sample Status: Identical Prototype

Applicant: Kyocera Corporation c/o Kyocera International, Inc.

Test Date: Apr. 24, 2017 ~ Apr. 28, 2017

Standards: FCC Part 27, Subpart C, L

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Gina Liu / Specialist Prepared by: Jul. 12, 2017

Approved by: Date: Jul. 12, 2017

David Huang / Project Engineer

2 Summary of Test Results

	Applied Standard: FCC Part 27 & Part 2 (LTE 4)							
FCC Clause	Test Item	Result	Remarks					
2.1046 27.50(d)(4)	Maximum Peak Outnut Power		Meet the requirement of limit.					
2.1055 27.54	Frequency Stability	Pass	Meet the requirement of limit.					
2.1049 27.53(h)	Occupied Bandwidth	Pass	Meet the requirement of limit.					
27.50(d)(5) Peak to Average Ratio		Pass	Meet the requirement of limit.					
27.53(h)	Band Edge Measurements	Pass	Meet the requirement of limit.					
2.1051 27.53(h)	Conducted Spurious Emissions	Pass	Meet the requirement of limit.					
2.1053 27.53(h)	Radiated Spurious Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -23.37 dB at 5197.50 MHz.					

	Applied Standard: FCC Part 27 & Part 2 (LTE 13)							
FCC Clause	Test Item	Result	Remarks					
2.1046 27.50(b)(10)	Maximum Peak Output Power	Pass	Meet the requirement of limit.					
2.1055 27.54	Frequency Stability	Pass	Meet the requirement of limit.					
2.1049 27.53(g)	Occupied Bandwidth	Pass	Meet the requirement of limit.					
27.50(d)(5)	Peak to Average Ratio	Pass	Meet the requirement of limit.					
27.53(g)	Band Edge Measurements	Pass	Meet the requirement of limit.					
2.1051 27.53(g)	Conducted Spurious Emissions	Pass	Meet the requirement of limit.					
2.1053 27.53(g)(f)	Radiated Spurious Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -18.41 dB at 1564.00 MHz.					

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.44 dB
Dodieted Emissions up to 1 CHz	30 MHz ~ 200 MHz	2.0153 dB
Radiated Emissions up to 1 GHz	200 MHz ~1000 MHz	2.0224 dB
Dedicted Emissions above 1 CUT	1 GHz ~ 18 GHz	1.0121 dB
Radiated Emissions above 1 GHz	18 GHz ~ 40 GHz	1.1508 dB

2.2 **Test Site and Instruments**

Description & Manaufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent Technologies	N9038A	MY52260177	Jun. 21, 2016	Jun. 20, 2017
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261 Dec. 13, 2016		Dec. 12, 2017
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Dec. 16, 2016	Dec. 15, 2017
HORN Antenna ETS-Lindgren	3117	00143293	Dec. 29, 2016	Dec. 28, 2017
Double Ridge Guide Horn Antenna EMCO	3115	5619	Dec. 27, 2016	Dec. 26, 2017
BILOG Antenna SCHWARZBECK	VULB 9168	9168-153	Dec. 13, 2016	Dec. 12, 2017
Agilent Communications Tester-Wireless	8960 Series 10	MY53201073	Jul. 03, 2015	Jul. 02, 2017
Preamplifier Agilent	310N	187226	Jun. 24, 2016	Jun. 23, 2017
Preamplifier Agilent	83017A	MY39501357	Jun. 24, 2016	Jun. 23, 2017
Power Meter Anritsu	ML2495A	1232002	Sep. 08, 2016	Sep. 07, 2017
Power Sensor Anritsu	MA2411B	1207325	Sep. 08, 2016	Sep. 07, 2017
RF signal cable ETS-LINDGREN	5D-FB	Cable-CH1-01(RFC -SMS-100-SMS-12 0+RFC-SMS-100-S MS-400)	Jun. 24, 2016	Jun. 23, 2017
RF signal cable ETS-LINDGREN	8D-FB	Cable-CH1-02(RFC -SMS-100-SMS-24)	Jun. 24, 2016	Jun. 23, 2017
Software BV ADT	E3 8.130425b	NA	NA	NA
Antenna Tower MF	NA	NA	NA	NA
Turn Table MF	NA	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA
Communications Tester-Wireless Agilent	8960 Series 10	MY53201073	Jul. 03, 2015	Jul. 02, 2017
Radio Communication Analyzer Anritsu	MT8820C	6201240432	Jul. 06, 2015	Jul. 05, 2017
Temperature & Humidity Chamber	GTH-120-40-CP-AR	MAA1306-019	Sep. 02, 2016	Sep. 01, 2017
DC Power Supply Topward	33010D	807748	Oct. 25, 2016	Oct. 24, 2018
Digital Multimeter Fluke	87-III	70360742	Jul. 01, 2016	Jun. 30, 2017

- Note: 1. The calibration interval of the above test instruments is 12 / 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
 - 2. The test was performed in HsinTien Chamber 1.
 - 3. The horn antenna and preamplifier (model: 83017A) are used only for the measurement of emission frequency above 1 GHz if tested.The FCC Site Registration No. is 149147.The IC Site Registration No. is IC7450I-1.

3 General Information

3.1 General Description of EUT

Product	Feature phone				
Brand	Kyocera				
Test Model	S2720				
Status of EUT	Identical Prototype				
Davier Comply Dating	5.0 Vdc (adapter or host equipment)				
Power Supply Rating	3.8 Vdc (Li-ion battery)				
Modulation Type	LTE	QPSK, 16QAM			
	LTE Band 4 (Channel Bandwidth: 1.4 MHz)	1710.7 ~ 1754.3 MHz			
	LTE Band 4 (Channel Bandwidth: 3 MHz)	1711.5 ~ 1753.5 MHz			
	LTE Band 4 (Channel Bandwidth: 5 MHz)	1712.5 ~ 1752.5 MHz			
Fraguency Banga	LTE Band 4 (Channel Bandwidth: 10 MHz)	1715.0 ~ 1750.0 MHz			
Frequency Range	LTE Band 4 (Channel Bandwidth: 15 MHz)	1717.5 ~ 1747.5 MHz			
	LTE Band 4 (Channel Bandwidth: 20 MHz)	1720.0 ~ 1745.0 MHz			
	LTE Band 13 (Channel Bandwidth: 5 MHz)	779.5 ~ 784.5 MHz			
	LTE Band 13 (Channel Bandwidth: 10 MHz)	782.0 MHz			
	LTE Band 4 (Channel Bandwidth: 1.4 MHz)	1M09W7D			
	LTE Band 4 (Channel Bandwidth: 3 MHz)	2M70G7D			
	LTE Band 4 (Channel Bandwidth: 5 MHz)	4M50W7D			
Emission Designator	LTE Band 4 (Channel Bandwidth: 10 MHz)	8M97W7D			
Limbsion Designator	LTE Band 4 (Channel Bandwidth: 15 MHz)	14M5W7D			
	LTE Band 4 (Channel Bandwidth: 20 MHz)	18M0W7D			
	LTE Band 13 (Channel Bandwidth: 5 MHz)	4M50W7D			
	LTE Band 13 (Channel Bandwidth: 10 MHz)	8M96W7D			
Max. ERP Power	LTE Band 13 (Channel Bandwidth: 5 MHz)	227.04mW			
Wax. ERP Power	LTE Band 13 (Channel Bandwidth: 10 MHz)	226.31mW			
	LTE Band 4 (Channel Bandwidth: 1.4 MHz)	284.90mW			
	LTE Band 4 (Channel Bandwidth: 3 MHz)	286.09mW			
May EIDD Dower	LTE Band 4 (Channel Bandwidth: 5 MHz)	284.45mW			
Max. EIRP Power	LTE Band 4 (Channel Bandwidth: 10 MHz)	287.74mW			
	LTE Band 4 (Channel Bandwidth: 15 MHz)	288.87mW			
	LTE Band 4 (Channel Bandwidth: 20 MHz) 285.43mW				
Antenna Type	Fixed Internal Antenna				
Accessory Device	sory Device Refer to Note as below				
Data Cable Supplied	Refer to Note as below				

Note:

1. The EUT contains following accessory devices.

Product	Brand	Model	Description
Adapter 1	KYOCERA	SCP-4/ADI	I/P: 100-240 Vac, 50/60 Hz, 200 mA O/P: 5.0 Vdc, 1000 mA
Adapter 2	KYOCERA	SCP-51ADI	I/P: 100-240 Vac, 50/60 Hz, 200 mA O/P: 5.0 Vdc, 1000 mA
Battery	KYOCERA	SCP-70LBPS	3.8 Vdc, 1400/1430 mAh
USB Cable	KYOCERA	SCP-23SDC	1.0 m shielded cable w/o core

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Configuration of System under Test

<Radiated Emission Test>

<E.R.P. / E.I.R.P. Test>

*Kept in a remote area

3.2.1 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID
1.	Radio Communication Analyzer	Anritsu	MT8820C	6201300640	N/A
2.	Earphone	N/A	N/A	N/A	N/A

No.	Signal Cable Description Of The Above Support Units
1.	N/A
2.	N/A

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Item 1 acted as communication partner to transfer data.

3.3 Test Mode Applicability and Tested Channel Detail

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis, and antenna ports

The worst case was found when positioned as the table below. Following channel(s) was (were) selected for the final test as listed below:

Band	ERP / EIRP	Radiated Emission
LTE Band 4	Y-plane	Y-axis
LTE Band 13	Y-plane	Y-axis

LTE Band 4

EUT Configure Mode	Test Item	Available Channel	Tested Channel	Channel Bandwidth	Modulation	Mode
		19957 to 20393	19957, 20175, 20393	1.4 MHz	QPSK, 16QAM	1 RB / 5 RB Offset
		19965 to 20385	19965, 20175, 20385	3 MHz	QPSK, 16QAM	1 RB / 14 RB Offset
	EIRP	19975 to 20375	19975, 20175, 20375	5 MHz	QPSK, 16QAM	1 RB / 24 RB Offset
-	EIRP	20000 to 20350	20000, 20175, 20350	10 MHz	QPSK, 16QAM	1 RB / 49 RB Offset
		20025 to 20325	20025, 20175, 20325	15 MHz	QPSK, 16QAM	1 RB / 74 RB Offset
		20050 to 20300	20050, 20175, 20300	20 MHz	QPSK, 16QAM	1 RB / 99 RB Offset
		19957 to 20393	19957, 20393	1.4 MHz	QPSK	1 RB / 5 RB Offset
		19965 to 20385	19965, 20385	3 MHz	QPSK	1 RB / 14 RB Offset
	Frequency	19975 to 20375	19975, 20375	5 MHz	QPSK	1 RB / 24 RB Offset
-	Stability	20000 to 20350	20000, 20350	10 MHz	QPSK	1 RB / 49 RB Offset
		20025 to 20325	20025, 20325	15 MHz	QPSK	1 RB / 74 RB Offset
		20050 to 20300	20050, 20300	20 MHz	QPSK	1 RB / 99 RB Offset
		19957 to 20393	19957, 20175, 20393	1.4 MHz	QPSK, 16QAM	6 RB / 0 RB Offset
		19965 to 20385	19965, 20175, 20385	3 MHz	QPSK, 16QAM	15 RB / 0 RB Offset
	Occupied	19975 to 20375	19975, 20175, 20375	5 MHz	QPSK, 16QAM	25 RB / 0 RB Offset
-	Bandwidth	20000 to 20350	20000, 20175, 20350	10 MHz	QPSK, 16QAM	50 RB / 0 RB Offset
		20025 to 20325	20025, 20175, 20325	15 MHz	QPSK, 16QAM	75 RB / 0 RB Offset
		20050 to 20300	20050, 20175, 20300	20 MHz	QPSK, 16QAM	100 RB / 0 RB Offset
		19957 to 20393	19957, 20175, 20393	1.4 MHz	QPSK, 16QAM	1 RB / 2 RB Offset
		19965 to 20385	19965, 20175, 20385	3 MHz	QPSK, 16QAM	1 RB / 7 RB Offset
	Peak to	19975 to 20375	19975, 20175, 20375	5 MHz	QPSK, 16QAM	12 RB / 0 RB Offset
-	Average Ratio	20000 to 20350	20000, 20175, 20350	10 MHz	QPSK, 16QAM	1 RB / 24 RB Offset
		20025 to 20325	20025, 20175, 20325	15 MHz	QPSK, 16QAM	36 RB / 0 RB Offset
		20050 to 20300	20050, 20175, 20300	20 MHz	QPSK, 16QAM	50 RB / 0 RB Offset

EUT Configure Mode	Test Item	Available Channel	Tested Channel	Channel Bandwidth	Modulation	Mode
			19957	1.4 MHz	QPSK	1 RB / 0 RB Offset
		19957 to 20393	10001	1.4 1011 12	QI OIL	6 RB / 0 RB Offset
		10007 10 20000	20393	1.4 MHz	QPSK	1 RB / 5 RB Offset
			20000	1.4 1011 12	QI OIL	6 RB / 0 RB Offset
			19965	3 MHz	QPSK	1 RB / 0 RB Offset
		19965 to 20385	10000	0 1011 12	Q. 0.1	15 RB / 0 RB Offset
		10000 10 20000	20385	3 MHz	QPSK	1 RB / 14 RB Offset
				02		15 RB / 0 RB Offset
			19975	5 MHz	QPSK	1 RB / 0 RB Offset
		19975 to 20375		5 <u>-</u>		25 RB / 0 RB Offset
			20375	5 MHz	QPSK	1 RB / 24 RB Offset
_	Band Edge					25 RB / 0 RB Offset
			20000	10 MHz	QPSK	1 RB / 0 RB Offset
		20000 to 20350		-		50 RB / 0 RB Offset
			20350	10 MHz	QPSK	1 RB / 49 RB Offset
						50 RB / 0 RB Offset
			20025	15 MHz	QPSK	1 RB / 0 RB Offset
		20025 to 20325	25 to 20325			75 RB / 0 RB Offset
			20325	15 MHz	QPSK	1 RB / 74 RB Offset
						75 RB / 0 RB Offset
			20050	20 MHz	QPSK	1 RB / 0 RB Offset
		20050 to 20300				100 RB / 0 RB Offset
			20300	20 MHz	QPSK	1 RB / 99 RB Offset
		400574 00000	10057 00175 00000	4.4.841.1	0.0014	100 RB / 0 RB Offset
		19957 to 20393	19957, 20175, 20393	1.4 MHz	QPSK	1 RB / 2 RB Offset
		19965 to 20385	19965, 20175, 20385	3 MHz	QPSK	1 RB / 7 RB Offset
-	Conducted	19975 to 20375	19975, 20175, 20375	5 MHz	QPSK	12 RB / 0 RB Offset
	Emission	20000 to 20350	20000, 20175, 20350	10 MHz	QPSK	50 RB / 0 RB Offset
		20025 to 20325	20025, 20175, 20325	15 MHz	QPSK	36 RB / 0 RB Offset
	Dodistad	20050 to 20300	20050, 20175, 20300	20 MHz	QPSK	50 RB / 0 RB Offset
-	Radiated Emission	20050 to 20300	20050, 20175, 20300	20 MHz	QPSK	1 RB / 99 RB Offset

Note: This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in QPSK modulation.

LTE Band 13

EUT Configure Mode	Test Item	Available Channel	Tested Channel	Channel Bandwidth	Modulation	Mode
_	ERP	23205 to 23255	23205, 23230, 23255	5 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
	LIXI	23230	23230	10 MHz	QPSK, 16QAM	1 RB / 24 RB Offset
	Frequency	23205 to 23255	23205, 23255	5 MHz	QPSK	1 RB / 0 RB Offset
-	Stability	23230	23230	10 MHz	QPSK	1 RB / 24 RB Offset
	Occupied	23205 to 23255	23205, 23230, 23255	5 MHz	QPSK, 16QAM	25 RB / 0 RB Offset
-	Bandwidth	23230	23230	10 MHz	QPSK, 16QAM	50 RB / 0 RB Offset
	Peak to Average	23205 to 23255	23205, 23230, 23255	5 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
_	Ratio	23230	23230	10 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
			23205	5 MHz	QPSK	1 RB / 0 RB Offset
		23205 to 23255	20200	3 1011 12	QI OIX	25 RB / 0 RB Offset
		23203 to 23233	23255	5 MHz	QPSK	1 RB / 24 RB Offset
	Band Edge		20200	3 1011 12	QI SIX	25 RB / 0 RB Offset
-	Band Edge		23230	10 MHz	QPSK	1 RB / 0 RB Offset
		23230	23230	10 MHZ	QFSK	50 RB / 0 RB Offset
		23230	23230	10 MHz	QPSK	1 RB / 49 RB Offset
			23230	10 MHZ	QPSK	50 RB / 0 RB Offset
	Conducted	23205 to 23255	23205, 23230, 23255	5 MHz	QPSK	1 RB / 0 RB Offset
-	Emission	23230	23230	10 MHz	QPSK	1 RB / 0 RB Offset
	Radiated	00000	00000	40 MH	ODOK	1 RB / 24 RB Offset
-	Emission	23230	23230	10 MHz	QPSK	1 RB / 50 RB Offset

Note: This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in QPSK modulation.

Test Condition:

Test Item	Environmental Conditions	Input Power	Tested By
ERP / EIRP	25 deg. C, 65 % RH	3.8 Vdc	Karl Lee
Frequency Stability	25 deg. C, 65 % RH	3.8 Vdc	Anson Lin
Occupied Bandwidth	25 deg. C, 65 % RH	3.8 Vdc	Anson Lin
Band Edge	25 deg. C, 65 % RH	3.8 Vdc	Anson Lin
Peak to Average Ratio	25 deg. C, 65 % RH	3.8 Vdc	Anson Lin
Condcudeted Emission	25 deg. C, 65 % RH	3.8 Vdc	Anson Lin
Radiated Emission	25 deg. C, 65 % RH	120 Vac, 60 Hz	Karl Lee

3.4 EUT Operating Conditions

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2
FCC 47 CFR Part 27
KDB 971168 D01 Power Meas License Digital Systems v02r02
ANSI/TIA/EIA-603-D 2010

Note: All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Output Power Measurement

4.1.1 Limits of Output Power Measurement

Fixed, mobile, and portable (hand-held) stations operating in the 1710–1755 MHz band are limited to 1 watt EIRP.

Portable stations (hand-held devices) operating in the 776-787 MHz band are limited to 3 watts ERP

4.1.2 Test Procedures

EIRP / ERP Measurement:

- a. All measurements were done at low, middle and high operational frequency range. RBW and VBW is 5 MHz for WCDMA and 10 MHz for LTE mode.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8 m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G.
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power 2.15 dBi.

Conducted Power Measurement:

- a. The EUT was set up for the maximum power with LTE link data modulation and link up with simulator.
- b. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

4.1.3 Test Setup

EIRP / ERP Measurement:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

Conducted Power Measurement:

4.1.4 Test Results

Conducted Output Power (dBm)

				QPSK						
Band /	RB Since	RB	Low Ch 19957	Mid Ch 20175	High Ch 20393	3GPP MPR	Low Ch 19957	Mid Ch 20175	High Ch 20393	3GPP MPR
BW	Size	Offset	1710.7	1732.5	1754.3	(dB)	1710.7	1732.5	1754.3	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.34	23.57	23.71	0	22.28	22.51	22.65	1
	1	2	23.21	23.44	23.58	0	22.15	22.38	22.52	1
	1	5	23.40	23.63	23.77	0	22.34	22.57	22.71	1
4 / 1.4M	3	0	23.31	23.54	23.68	0	22.25	22.48	22.62	1
	3	1	23.09	23.32	23.46	0	22.03	22.26	22.40	1
	3	3	22.97	23.20	23.34	0	21.91	22.14	22.28	1
	6	0	22.37	22.60	22.74	1	21.31	21.54	21.68	2

				QPSK						
Band /	RB	RB Offerst	Low Ch 19965	Mid Ch 20175	High Ch 20385	3GPP MPR	Low Ch 19965	Mid Ch 20175	High Ch 20385	3GPP MPR
BW	Size	Offset	1711.5	1732.5	1753.5	(dB)	1711.5	1732.5	1753.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.40	23.63	23.77	0	22.34	22.57	22.71	1
	1	7	23.27	23.50	23.64	0	22.21	22.44	22.58	1
	1	14	23.46	23.69	23.83	0	22.40	22.63	22.77	1
4 / 3M	8	0	22.57	22.80	22.94	1	21.51	21.74	21.88	2
	8	3	22.35	22.58	22.72	1	21.29	21.52	21.66	2
	8	7	22.23	22.46	22.60	1	21.17	21.40	21.54	2
	15	0	22.43	22.66	22.80	1	21.37	21.60	21.74	2

				QPSK						
Band / BW	RB Size	RB Offset	Low Ch 19975	Mid Ch 20175	High Ch 20375	3GPP MPR	Low CH 19975	Mid CH 20175	High CH 20375	3GPP MPR
DVV	Size	Offset	1712.5	1732.5	1752.5	(dB)	1712.5	1732.5	1752.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.47	23.70	23.84	0	22.41	22.64	22.78	1
	1	12	23.34	23.57	23.71	0	22.28	22.51	22.65	1
	1	24	23.53	23.76	23.90	0	22.47	22.70	22.84	1
4 / 5M	12	0	22.64	22.87	23.01	1	21.58	21.81	21.95	2
	12	6	22.42	22.65	22.79	1	21.36	21.59	21.73	2
	12	13	22.30	22.53	22.67	1	21.24	21.47	21.61	2
	25	0	22.50	22.73	22.87	1	21.44	21.67	21.81	2

				QPSK			16QAM				
Band /	RB Size	RB	Low Ch 20000	Mid Ch 20175	High Ch 20350	3GPP MPR	Low Ch 20000	Mid Ch 20175	High Ch 20350	3GPP MPR	
BW	Size	Offset	1715.0	1732.5	1750.0	(dB)	1715.0	1732.5	1750.0	(dB)	
			MHz	MHz	MHz		MHz	MHz	MHz		
	1	0	23.55	23.78	23.92	0	22.49	22.72	22.86	1	
	1	24	23.42	23.65	23.79	0	22.36	22.59	22.73	1	
	1	49	23.61	23.84	23.98	0	22.55	22.78	22.92	1	
4 / 10M	25	0	22.72	22.95	23.09	1	21.66	21.89	22.03	2	
	25	12	22.50	22.73	22.87	1	21.44	21.67	21.81	2	
	25	25	22.38	22.61	22.75	1	21.32	21.55	21.69	2	
	50	0	22.58	22.81	22.95	1	21.52	21.75	21.89	2	

				QPSK			16QAM				
Band /	RB Since	RB	Low Ch 20025	Mid Ch 20175	High Ch 20325	3GPP MPR	Low Ch 20025	Mid Ch 20175	High Ch 20325	3GPP MPR	
BW	Size	Offset	1717.5	1732.5	1747.5	(dB)	1717.5	1732.5	1747.5	(dB)	
			MHz	MHz	MHz		MHz	MHz	MHz		
	1	0	23.64	23.87	24.01	0	22.58	22.81	22.95	1	
	1	37	23.51	23.74	23.88	0	22.45	22.68	22.82	1	
	1	74	23.70	23.93	24.07	0	22.64	22.87	23.01	1	
4 / 15M	36	0	22.81	23.04	23.18	1	21.75	21.98	22.12	2	
	36	19	22.59	22.82	22.96	1	21.53	21.76	21.90	2	
	36	39	22.47	22.70	22.84	1	21.41	21.64	21.78	2	
	75	0	22.67	22.90	23.04	1	21.61	21.84	21.98	2	

				QPSK				16QAM		
Band /	RB Since	RB	Low Ch 20050	Mid Ch 20175	High Ch 20300	3GPP MPR	Low Ch 20050	Mid Ch 20175	High Ch 20300	3GPP MPR
BW	Size	Offset	1720.0	1732.5	1745.0	(dB)	1720.0	1732.5	1745.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.75	23.98	24.12	0	22.69	22.92	23.06	1
	1	50	23.62	23.85	23.99	0	22.56	22.79	22.93	1
	1	99	23.81	24.04	24.18	0	22.75	22.98	23.12	1
4 / 20M	50	0	22.92	23.15	23.29	1	21.86	22.09	22.23	2
	50	25	22.70	22.93	23.07	1	21.64	21.87	22.01	2
	50	50	22.58	22.81	22.95	1	21.52	21.75	21.89	2
	100	0	22.78	23.01	23.15	1	21.72	21.95	22.09	2

				QPSK				16QAM		
Band /	RB Since	RB Offset	Low Ch 23205	Mid Ch 23230	High Ch 23255	3GPP MPR	Low Ch 23205	Mid Ch 23230	High Ch 23255	3GPP MPR
BW	Size	Offset	779.5	782.0	784.5	(dB)	779.5	782.0	784.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	23.52	23.63	23.65	0	22.47	22.58	22.60	1
	1	12	23.66	23.77	23.79	0	22.61	22.72	22.74	1
	1	24	23.72	23.83	23.85	0	22.67	22.78	22.80	1
13 / 5M	12	0	22.56	22.67	22.69	1	21.51	21.62	21.64	2
	12	6	22.48	22.59	22.61	1	21.43	21.54	21.56	2
	12	13	22.51	22.62	22.64	1	21.46	21.57	21.59	2
	25	0	22.52	22.63	22.65	1	21.47	21.58	21.60	2

Band / BW	RB Size	RB Offset	QPSK Mid Ch 23230 782.0 MHz	3GPP MPR (dB)	16QAM Mid Ch 23230 782.0 MHz	3GPP MPR (dB)
	1	0	23.75	0	22.70	1
	1	24	23.89	0	22.84	1
	1	49	23.95	0	22.90	1
13 / 10M	25	0	22.79	1	21.74	2
	25	12	22.71	1	21.66	2
	25	25	22.74	1	21.69	2
	50	0	22.75	1	21.70	2

ERP Power (dBm)

				LTE Band 13			
			Channel Ba	andwidth: 5 MHz	/ QPSK		
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	ERP (dBm)	ERP (mW)	Polarization (H/V)
	23205	779.5	-7.11	32.771	23.51	224.44	
	23230	782.0	-7.03	32.741	23.56	227.04	Н
Y	23255	784.5	-7.18	32.854	23.52	225.11	
l ^t	23205	779.5	-9.81	32.5	20.54	113.24	
	23230	782.0	-9.83	32.52	20.54	113.24	V
	23255	784.5	-9.92	32.62	20.55	113.50	
			Channel Ba	ndwidth: 5 MHz	/ 16QAM		
	23205	779.5	-8.13	32.771	22.49	177.46	
	23230	782.0	-8.03	32.741	22.56	180.34	Н
\ \ \	23255	784.5	-8.16	32.854	22.54	179.64	
Y	23205	779.5	-10.83	32.5	19.52	89.54	
	23230	782.0	-10.78	32.52	19.59	90.99	V
	23255	784.5	-10.97	32.62	19.50	89.13	

	LTE Band 13								
			Channel Ba	ndwidth: 10 MHz	/ QPSK				
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	ERP (dBm)	ERP (mW)	Polarization (H/V)		
Y	23230	782.0	-7.04	32.737	23.55	226.31	Н		
Ť	23230	782.0	-9.81	32.52	20.56	113.76	V		
		(Channel Bar	ndwidth: 10 MHz	/ 16QAM				
Y	23230	782.0	-8.02	32.737	22.57	180.59	Н		
Y	23230	782.0	-10.77	32.52	19.60	91.20	V		

EIRP Power (dBm)

				LTE Band 4			
			Channel Bai	ndwidth: 1.4 MH	z / QPSK		
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)
	19957	1710.7	-17.96	42.49	24.53	283.47	
	20175	1732.5	-17.78	42.33	24.55	284.90	Н
Y	20393	1754.3	-17.58	42.10	24.52	283.14	
Y	19957	1710.7	-23.54	42.99	19.45	88.10	
	20175	1732.5	-23.24	42.74	19.50	89.13	V
	20393	1754.3	-22.67	42.21	19.54	89.95	
		C	hannel Ban	dwidth: 1.4 MHz	:/16QAM		
	19957	1710.7	-19.00	42.49	23.49	223.10	
	20175	1732.5	-18.82	42.33	23.51	224.23	Н
\ \ \	20393	1754.3	-18.60	42.10	23.50	223.87	
Y	19957	1710.7	-24.50	42.99	18.49	70.63	
	20175	1732.5	-24.17	42.74	18.57	71.94	V
	20393	1754.3	-23.60	42.21	18.61	72.61	

				LTE Band 4			
			Channel Ba	ndwidth: 3 MHz	/ QPSK		
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)
	19965	1711.5	-17.92	42.49	24.57	286.09	
	20175	1732.5	-17.82	42.33	24.51	282.29	Н
Y	20385	1753.5	-17.54	42.10	24.56	285.76	
ľ	19965	1711.5	-23.38	42.99	19.61	91.41	
	20175	1732.5	-23.26	42.74	19.48	88.72	V
	20385	1753.5	-22.76	42.21	19.45	88.10	
			Channel Ba	ndwidth: 3 MHz	/ 16QAM		
	19965	1711.5	-18.92	42.49	23.57	227.25	
	20175	1732.5	-18.70	42.33	23.63	230.52	Н
Y	20385	1753.5	-18.62	42.10	23.48	222.84	
Y	19965	1711.5	-24.40	42.99	18.59	72.28	
	20175	1732.5	-24.19	42.74	18.55	71.61	V
	20385	1753.5	-23.77	42.21	18.44	69.82	

				LTE Band 4			
			Channel Ba	ndwidth: 5 MHz	/ QPSK		
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)
	19975	1712.5	-17.96	42.49	24.53	283.47	
	20175	1732.5	-17.83	42.33	24.50	281.64	Н
Y	20375	1752.5	-17.56	42.10	24.54	284.45	
, i	19975	1712.5	-23.50	42.99	19.49	88.92	
	20175	1732.5	-23.26	42.74	19.48	88.72	V
	20375	1752.5	-22.63	42.21	19.58	90.78	
			Channel Ba	ndwidth: 5 MHz	/ 16QAM		
	19975	1712.5	-18.92	42.49	23.57	227.25	
	20175	1732.5	-18.83	42.33	23.50	223.72	Н
Y	20375	1752.5	-18.58	42.10	23.52	224.91	
T T	19975	1712.5	-24.56	42.99	18.43	69.66	
	20175	1732.5	-24.21	42.74	18.53	71.29	V
	20375	1752.5	-23.71	42.21	18.50	70.79	

				LTE Band 4			
			Channel Ba	ndwidth: 10 MHz	z / QPSK		
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)
	20000	1715.0	-17.93	42.49	24.56	285.43	
	20175	1732.5	-17.80	42.33	24.53 283.60	Н	
Y	20350	1750.0	-17.51	42.10	24.59	287.74	
Y	20000	1715.0	-23.50	42.99	19.49	88.92	
	20175	1732.5	-23.15	42.74	19.59	90.99	V
	20350	1750.0	-22.69	42.21	19.52	89.54	
		(Channel Bar	ndwidth: 10 MHz	/ 16QAM		
	20000	1715.0	-18.90	42.49	23.59	228.30	
	20175	1732.5	-18.92	42.33	23.41	219.13	Н
Y	20350	1750.0	-18.64	42.10	23.46	221.82	
Y	20000	1715.0	-24.50	42.99	18.49	70.63	
	20175	1732.5	-24.12	42.74	18.62	72.78	V
	20350	1750.0	-23.63	42.21	18.58	72.11	

				LTE Band 4			
			Channel Ba	ndwidth: 15 MHz	z / QPSK		
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)
	20025	1717.5	-18.01	42.49	24.48	280.22	
	20175	1732.5	-17.72	42.33	24.61	288.87	Н
Y	20325	1747.5	-17.56	42.10	24.54	284.45	
Y	20025	1717.5	-23.52	42.99	19.47	88.51	
	20175	1732.5	-23.14	42.74	19.60	91.20	V
	20325	1747.5	-22.70	42.21	19.51	89.33	
		(Channel Bar	ndwidth: 15 MHz	/ 16QAM		
	20025	1717.5	-19.01	42.49	23.48	222.59	
	20175	1732.5	-18.76	42.33	23.57	227.35	Н
Y	20325	1747.5	-18.62	42.10	23.48	222.84	
Y	20025	1717.5	-24.50	42.99	18.49	70.63	
	20175	1732.5	-24.19	42.74	18.55	71.61	V
	20325	1747.5	-23.60	42.21	18.61	72.61	

				LTE Band 4			
			Channel Ba	ndwidth: 20 MHz	z / QPSK		
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)
	20050	1720.0	-17.93	42.49	24.56	285.43	
	20175	1732.5	-17.84	42.33	24.49	281.00	Н
Y	20300	1745.0	-17.60	42.10	24.50	281.84	
Y	20050	1720.0	-23.46	42.99	19.53	89.74	
	20175	1732.5	-23.17	42.74	19.57	90.57	V
	20300	1745.0	-22.69	42.21	19.52	89.54	
		(Channel Bar	ndwidth: 20 MHz	/ 16QAM		
	20050	1720.0	-18.94	42.49	23.55	226.20	
	20175	1732.5	-18.76	42.33	23.57	227.35	Н
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	20300	1745.0	-18.62	42.10	23.48	222.84	
Y	20050	1720.0	-24.43	42.99	18.56	71.78	
	20175	1732.5	-24.21	42.74	18.53	71.29	V
	20300	1745.0	-23.66	42.21	18.55	71.61	

4.2 Frequency Stability Measurement

4.2.1 Limits of Frequency Stability Measurement

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

4.2.2 Test Procedure

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ± 0.5 °C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

Note: The frequency error was recorded frequency error from the communication simulator.

4.2.3 Test Setup

4.2.4 Test Results

Frequency Error vs. Voltage

		LTE Band 4						
Voltage								
(Volts) Low Channel		High C	hannel	Limit (ppm)				
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)				
3.8	1710.700003	0.002	1754.300003	0.002	2.5			
3.3	1710.700004	0.002	1754.300004	0.002	2.5			
4.35	1710.700004	0.002	1754.300001	0.001	2.5			

Note: The applicant defined the normal working voltage of the battery is from 3.3 Vdc to 4.35 Vdc.

Frequency Error vs. Temperature

		LTE B	Band 4		
		Channel Band	width: 1.4 MHz		
Temp. (℃)	Low C	hannel	High C	hannel	Limit (ppm)
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-30	1710.700001	0.001	1754.300003	0.002	2.5
-20	1710.700003	0.001	1754.300002	0.001	2.5
-10	1710.700001	0.001	1754.300002	0.001	2.5
0	1710.700004	0.002	1754.300002	0.001	2.5
10	1710.700002	0.001	1754.300004	0.002	2.5
20	1710.699996	-0.002	1754.299998	-0.001	2.5
30	1710.699996	-0.002	1754.299996	-0.002	2.5
40	1710.699997	-0.002	1754.299997	-0.002	2.5
50	1710.699997	-0.002	1754.299996	-0.002	2.5
60	1710.699997	-0.002	1754.299997	-0.002	2.5

- 1. The applicant declared that the normal operating temperature of the EUT is from -20°C to 60°C.
- 2. The EUT would shut down automatically as below -20 $^{\circ}\text{C}.$

		LTE B	Band 4		
Voltage					
(Volts)	Low Channel High Channel			Limit (ppm)	
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
3.8	1711.500001	0.001	1753.500004	0.002	2.5
3.3	1711.500002	0.001	1753.500004	0.002	2.5
4.35	1711.500003	0.002	1753.500001	0.001	2.5

Note: The applicant defined the normal working voltage of the battery is from 3.3 Vdc to 4.35 Vdc.

Frequency Error vs. Temperature

		LTE B	Band 4		
		Channel Band	dwidth: 3 MHz		
Temp. (℃)	Low C	hannel	High C	hannel	Limit (ppm)
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-30	1711.500001	0.001	1753.500003	0.002	2.5
-20	1711.500004	0.002	1753.500003	0.002	2.5
-10	1711.500004	0.002	1753.500002	0.001	2.5
0	1711.500004	0.002	1753.500001	0.001	2.5
10	1711.500004	0.002	1753.500002	0.001	2.5
20	1711.499997	-0.002	1753.499997	-0.002	2.5
30	1711.499999	-0.001	1753.499998	-0.001	2.5
40	1711.499996	-0.002	1753.499998	-0.001	2.5
50	1711.499999	-0.001	1753.499996	-0.002	2.5
60	1711.499997	-0.002	1753.499997	-0.002	2.5

- 1. The applicant declared that the normal operating temperature of the EUT is from -20°C to 60°C.
- 2. The EUT would shut down automatically as below -20 $^{\circ}\text{C}.$

		LTE B	Sand 4		
Voltage					
(Volts)	Low Channel High Channel			Limit (ppm)	
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
3.8	1712.500004	0.002	1752.500002	0.001	2.5
3.3	1712.500001	0.001	1752.500003	0.002	2.5
4.35	1712.500002	0.001	1752.500002	0.001	2.5

Note: The applicant defined the normal working voltage of the battery is from 3.3 Vdc to 4.35 Vdc.

Frequency Error vs. Temperature

		Channel Band	dwidth: 5 MHz		
Temp. (℃)	Low C	hannel	High C	hannel	Limit (ppm)
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-30	1712.500004	0.002	1752.500002	0.001	2.5
-20	1712.500003	0.002	1752.500001	0.001	2.5
-10	1712.500001	0.001	1752.500002	0.001	2.5
0	1712.500002	0.001	1752.500002	0.001	2.5
10	1712.500002	0.001	1752.500003	0.002	2.5
20	1712.499998	-0.001	1752.499997	-0.002	2.5
30	1712.499998	-0.001	1752.499998	-0.001	2.5
40	1712.499999	-0.001	1752.499999	-0.001	2.5
50	1712.499997	-0.002	1752.499997	-0.002	2.5
60	1712.499996	-0.002	1752.499997	-0.002	2.5

- 1. The applicant declared that the normal operating temperature of the EUT is from -20°C to 60°C.
- 2. The EUT would shut down automatically as below -20 $^{\circ}\text{C}.$

Voltage					
(Volts)	Low C	hannel	High C	Limit (ppm)	
(**************************************	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
3.8	1715.000002	1715.000002 0.001 1750.000001 0.001		2.5	
3.3	1715.000003	0.002	1750.000002	0.001	2.5
4.35	1715.000002	0.001	1750.000003	0.002	2.5

Note: The applicant defined the normal working voltage of the battery is from 3.3 Vdc to 4.35 Vdc.

Frequency Error vs. Temperature

		Channel Band	width: 10 MHz		
Temp. (°C)	Low C	hannel	High C	hannel	Limit (ppm)
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-30	1715.000002	0.001	1750.000004	0.002	2.5
-20	1715.000003	0.002	1750.000002	0.001	2.5
-10	1715.000004	0.002	1750.000003	0.002	2.5
0	1715.000003	0.002	1750.000003	0.002	2.5
10	1715.000003	0.002	1750.000002	0.001	2.5
20	1714.999997	-0.002	1749.999999	-0.001	2.5
30	1714.999999	-0.001	1749.999999	-0.001	2.5
40	1714.999998	-0.001	1749.999998	-0.001	2.5
50	1714.999998	-0.001	1749.999999	-0.001	2.5
60	1714.999996	-0.002	1749.999997	-0.002	2.5

- 1. The applicant declared that the normal operating temperature of the EUT is from -20°C to 60°C.
- 2. The EUT would shut down automatically as below -20°C.

Voltage		Channel Band	width: 15 MHz		
(Volts)	Low C	hannel	High C	Limit (ppm)	
(1 11)	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
3.8	1717.500004	0.002	1747.500003	0.001	2.5
3.3	1717.500003	0.002	1747.500003	0.002	2.5
4.35	1717.500003	0.002	1747.500003	0.002	2.5

Note: The applicant defined the normal working voltage of the battery is from 3.3 Vdc to 4.35 Vdc.

Frequency Error vs. Temperature

		Channel Band	width: 15 MHz		
Temp. (℃)	Low C	hannel	High C	hannel	Limit (ppm)
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-30	1717.500002	0.001	1747.500002	0.001	2.5
-20	1717.500002	0.001	1747.500004	0.002	2.5
-10	1717.500001	0.001	1747.500004	0.002	2.5
0	1717.500002	0.001	1747.500004	0.002	2.5
10	1717.500002	0.001	1747.500003	0.001	2.5
20	1717.499998	-0.001	1747.499997	-0.002	2.5
30	1717.499996	-0.002	1747.499999	-0.001	2.5
40	1717.499996	-0.002	1747.499997	-0.002	2.5
50	1717.499997	-0.002	1747.499999	-0.001	2.5
60	1717.499999	-0.001	1747.499998	-0.001	2.5

- 1. The applicant declared that the normal operating temperature of the EUT is from -20°C to 60°C.
- 2. The EUT would shut down automatically as below -20 $^{\circ}\text{C}.$

Voltage		Channel Band	width: 20 MHz		
(Volts)	Low C	hannel	High C	Limit (ppm)	
(1 11)	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
3.8	1720.000003	0.001	1745.000001	0.001	2.5
3.3	1720.000002	0.001	1745.000003	0.002	2.5
4.35	1720.000001	0.001	1745.000002	0.001	2.5

Note: The applicant defined the normal working voltage of the battery is from 3.3 Vdc to 4.35 Vdc.

Frequency Error vs. Temperature

		Channel Band	width: 20 MHz		
Temp. (°C)	Low C	hannel	High C	hannel	Limit (ppm)
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-30	1720.000003	0.002	1745.000002	0.001	2.5
-20	1720.000001	0.001	1745.000003	0.002	2.5
-10	1720.000003	0.002	1745.000002	0.001	2.5
0	1720.000003	0.002	1745.000003	0.002	2.5
10	1720.000001	0.001	1745.000004	0.002	2.5
20	1719.999998	-0.001	1744.999999	-0.001	2.5
30	1719.999997	-0.002	1744.999996	-0.002	2.5
40	1719.999998	-0.001	1744.999997	-0.001	2.5
50	1719.999999	-0.001	1744.999998	-0.001	2.5
60	1719.999998	-0.001	1744.999998	-0.001	2.5

- 1. The applicant declared that the normal operating temperature of the EUT is from -20°C to 60°C.
- 2. The EUT would shut down automatically as below -20 $^{\circ}\text{C}.$

Voltage					
(Volts)	Low Channel High Channel				Limit (ppm)
,	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
3.8	779.500002	0.003	784.500001	0.002	2.5
3.3	779.500002	0.002	784.500001	0.001	2.5
4.35	779.500004	0.004	784.500003	0.004	2.5

Note: The applicant defined the normal working voltage of the battery is from 3.3 Vdc to 4.35 Vdc.

Frequency Error vs. Temperature

		Channel Band	dwidth: 5 MHz		
Temp. (℃)	Low C	hannel	High C	hannel	Limit (ppm)
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-30	779.500003	0.004	784.500004	0.005	2.5
-20	779.500003	0.004	784.500002	0.002	2.5
-10	779.500001	0.002	784.500001	0.001	2.5
0	779.500003	0.004	784.500002	0.002	2.5
10	779.500003	0.004	784.500003	0.004	2.5
20	779.499997	-0.004	784.499998	-0.003	2.5
30	779.499999	-0.002	784.499999	-0.001	2.5
40	779.499998	-0.003	784.499997	-0.003	2.5
50	779.499997	-0.003	784.499997	-0.003	2.5
60	779.499997	-0.004	784.499997	-0.004	2.5

- 1. The applicant declared that the normal operating temperature of the EUT is from -20°C to 60°C.
- 2. The EUT would shut down automatically as below -20 $^{\circ}\text{C}.$

	LTE Ba		
Voltage (Volts)	Channel Band	width: 10 MHz	Limit (ppm)
(voits)	Frequency (MHz)	Frequency Error (ppm)	
3.8	782.000003	0.004	2.5
3.3	782.000003	0.003	2.5
4.35	782.000003	0.004	2.5

Note: The applicant defined the normal working voltage of the battery is from 3.3 Vdc to 4.35 Vdc.

Frequency Error vs. Temperature

	LTE E		
Temp. (°C)	Channel Band	Limit (ppm)	
	Frequency (MHz)	Frequency Error (ppm)	
-30	782.000003	0.004	2.5
-20	782.000001	0.002	2.5
-10	782.000002	0.002	2.5
0	782.000004	0.005	2.5
10	782.000004	0.005	2.5
20	781.999998	-0.002	2.5
30	781.999999	-0.001	2.5
40	781.999996	-0.005	2.5
50	781.999997	-0.004	2.5
60	781.999998	-0.003	2.5

- 1. The applicant declared that the normal operating temperature of the EUT is from -20°C to 60°C.
- 2. The EUT would shut down automatically as below -20°C.

4.3 Occupied Bandwidth Measurement

4.3.1 Limits of Occupied Bandwidth Measurement

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

4.3.2 Test Procedure

- a. The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- b. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

4.3.3 Test Setup

4.3.4 Test Result

LTE Band 4							
Channel Bandwidth: 1.4 MHz					Channel Band	dwidth: 3 MH	z
Channel	Frequency (MHz) 99 % Occupied Bandwidth (MHz) QPSK 16QAM Channel	i (nannoi i -	Frequency		ccupied Ith (MHz)		
		QPSK	16QAM		(MHz)	QPSK	16QAM
19957	1710.7	1.09	1.09	19965	1711.5	2.70	2.70
20175	1732.5	1.09	1.09	20175	1732.5	2.70	2.70
20393	1754.3	1.09	1.09	20385	1753.5	2.70	2.70

LTE Band 4									
Channel Bandwidth: 5 MHz				Channel Bandwidth: 10 MHz					
Channel	Frequency (MHz)	99 % Occupied Bandwidth (MHz)		Channel	Frequency	99 % Occupied Bandwidth (MHz)			
		QPSK	16QAM		(MHz)	QPSK	16QAM		
19975	1712.5	4.49	4.50	20000	1715.0	8.96	8.97		
20175	1732.5	4.49	4.49	20175	1732.5	8.97	8.97		
20375	1752.5	4.49	4.49	20350	1750.0	8.97	8.96		

LTE Band 4									
C	hannel Band	width: 15 MH	Iz	Channel Bandwidth: 20 MHz					
Channel	Frequency (MHz)	99 % Occupied Bandwidth (MHz)		Channel	Frequency	99 % Occupied Bandwidth (MHz)			
		QPSK	16QAM		(MHz)	QPSK	16QAM		
20025	1717.5	13.47	13.46	20050	1720.0	17.93	17.96		
20175	1732.5	13.47	14.46	20175	1732.5	17.93	17.95		
20325	1747.5	13.47	13.45	20300	1745.0	17.92	17.94		

LTE Band 13									
Channel Bandwidth: 5 MHz				Channel Bandwidth: 10 MHz					
Channel	Frequency (MHz)	99 % Occupied Bandwidth (MHz)		Channel	Frequency	99 % Occupied Bandwidth (MHz)			
		QPSK	16QAM		(MHz)	QPSK	16QAM		
23205	779.5	4.49	4.49	23230	782.0	8.96	8.96		
23230	782.0	4.49	4.49						
23255	784.5	4.50	4.50						

4.4 Band Edge Measurement

4.4.1 Limits of Band Edge Measurement

For operations in the 776-787 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater.

However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

For operations in the 1710–1755 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

4.4.2 Test Setup

4.4.3 Test Procedures

- a. All measurements were done at low and high operational frequency range.
- b. The center frequency of spectrum is the band edge frequency and span is 1 MHz. RB of the spectrum is 13 kHz and VB of the spectrum is 51 kHz (LTE Bandwidth 1.4 MHz).
- c. The center frequency of spectrum is the band edge frequency and span is 1 MHz. RB of the spectrum is 30 kHz and VB of the spectrum is 100 kHz (LTE Bandwidth 3 MHz).
- d. The center frequency of spectrum is the band edge frequency and span is 1 MHz. RB of the spectrum is 100 kHz and VB of the spectrum is 300 kHz (LTE Bandwidth 5 MHz/10 MHz).
- e. The center frequency of spectrum is the band edge frequency and span is 1 MHz. RB of the spectrum is 150 kHz and VB of the spectrum is 470 kHz (LTE Bandwidth 15 MHz).
- f. The center frequency of spectrum is the band edge frequency and span is 1 MHz. RB of the spectrum is 180 kHz and VB of the spectrum is 560 kHz (LTE Bandwidth 20 MHz).
- g. Record the max trace plot into the test report.

4.4.4 Test Results

For the 763 - 775 MHz and 793 - 805 MHz band ,the FCC limit is 65+10log(P[watt]) in a 6.25 kHz bandwidth . Since it was not possible to set the resolution bandwidth to 6.25 kHz with the available equipment , a bandwidth of 10 kHz was used instead to show compliance. By using a 10 kHz bandwidth on the spectrum analyzer.

 $10\log(10kHz/6.25kHz) = 2.04 dB$

Limit line = -35 dBm + 2.04 dB = -32.96 dBm

For the 763 - 775 MHz and 793 - 805 MHz band ,the FCC limit is 65+10log(P[watt]) in a 6.25 kHz bandwidth . Since it was not possible to set the resolution bandwidth to 6.25 kHz with the available equipment , a bandwidth of 10 kHz was used instead to show compliance. By using a 10 kHz bandwidth on the spectrum analyzer.

 $10\log(10kHz/6.25kHz) = 2.04 dB$

Limit line = -35 dBm + 2.04 dB = -32.96 dBm

4.5 Peak to Average Ratio

4.5.1 Limits of Peak to Average Ratio Measurement

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB.

4.5.2 Test Setup

4.5.3 Test Procedures

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Record the maximum PAPR level associated with a probability of 0.1 %.

4.5.4 Test Results

LTE Band 4								
С	hannel Band	width: 1.4 MF	łz	(Channel Band	lwidth: 3 MH	z	
Channel	Frequency	Peak to Ave	erage Ratio B)	Channel	Frequency	Peak to Average Ratio (dB)		
	(MHz)	QPSK	16QAM		(MHz)	QPSK	16QAM	
19957	1710.7	3.78	4.66	19965	1711.5	3.82	4.57	
20175	1732.5	4.09	4.88	20175	1732.5	4.14	5.15	
20393	1754.3	3.88	3.88 5.02 20385 1753.5 3.96					

LTE Band 4								
(Channel Band	dwidth: 5 MH	z	Channel Bandwidth: 10 MHz				
Channel	Frequency	Peak to Ave	erage Ratio B)	Channel	Frequency	Peak to Average Ratio (dB)		
	(MHz)	QPSK	16QAM		(MHz)	QPSK	16QAM	
19975	1712.5	3.85	4.56	20000	1715.0	3.79	4.71	
20175	1732.5	4.11	5.06	20175	1732.5	4.09	5.07	
20375	1752.5	3.95	4.76	20350	1750.0	3.92	4.72	

LTE Band 4								
C	hannel Band	width: 15 MH	Iz	Channel Bandwidth: 20 MHz				
Channel	Frequency	Peak to Ave	erage Ratio B)	Channel	Frequency	Peak to Average Ratio (dB)		
	(MHz)	QPSK	16QAM		(MHz)	QPSK	16QAM	
20025	1717.5	3.75	4.66	20050	1720.0	3.79	4.76	
20175	1732.5	4.31	5.06	20175	1732.5	4.28	5.07	
20325	1747.5	3.77	4.63	20300 1745.0 3.85				

LTE Band 13							
(Channel Band	dwidth: 5 MH	Z	Channel Bandwidth: 10 MHz			
Channel	Frequency	Peak to Ave	erage Ratio B)	Channel	Frequency	Peak to Average Ratio (dB)	
	(MHz)	QPSK	16QAM		(MHz)	QPSK	16QAM
23205	779.5	3.27	4.13				
23230	782.0	3.99	4.98	23230	782.0	3.25	4.24
23255	784.5	4.00	5.05				

4.6 Conducted Spurious Emissions

4.6.1 Limits of Conducted Spurious Emissions Measurement

The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 +10 log10(P) dB. The limit of emission is equal to -13 dBm.

4.6.2 Test Setup

4.6.3 Test Procedure

- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- b. Measuring frequency range is from 30 MHz to 18 GHz for LTE Band 4. 10 dB attenuation pad is connected with spectrum. RBW=1 MHz and VBW=3 MHz are used for conducted emission measurement.

4.6.4 Test Results

4.7 Radiated Emission Measurement

4.7.1 Limits of Radiated Emission Measurement

- a. The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 +10 log10(P) dB. The limit of emission is equal to -13 dBm.
- b. For operations in the 775-788 MHz, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz. The limit of emissions is equal to -40 dBm.

4.7.2 Test Procedure

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8 m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G.
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power 2.15 dBi.

Note: The resolution bandwidth of spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz.

4.7.3 Deviation from Test Standard

No deviation.

4.7.4 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.7.5 Test Results

LTE Band 4

Channel Bandwidth: 20 MHz / QPSK

Low Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 27(B4/B17) Horizontal Remark : LTE_Band 4_Link_CH20050

Tested by: Harry Hsueh

Read Limit Over

Freq Level Level Line Limit Factor Remark

MHz dBm dBm dB dB

1 3440.00 -45.95 -60.30 -13.00 -32.95 14.35 Peak 2 pp 5160.00 -43.85 -63.77 -13.00 -30.85 19.92 Peak

Site : 966 chamber 1

Condition: PART 27(B4/B17) Vertical Remark : LTE_Band 4_Link_CH20050

Tested by: Harry Hsueh

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dB dB dB

1 pp 3440.00 -50.73 -65.08 -13.00 -37.73 14.35 Peak

Middle Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 27(B4/B17) Horizontal Remark : LTE_Band 4_Link_CH20175

Tested by: Harry Hsueh

	- - J	. ,					
			Read	Limit	0ver		
	Freq	Level	Level	Line	Limit	Factor	Remark
_							
	MHz	dBm	dBm	dBm	dB	dB	
1	103.17	-57.48	-47.71	-13.00	-44.48	-9.77	Peak
2	193.08	-58.16	-52.29	-13.00	-45.16	-5.87	Peak
3	208.47	-58.05	-51.98	-13.00	-45.05	-6.07	Peak
4	337.80	-68.50	-62.98	-13.00	-55.50	-5.52	Peak
5	602.40	-69.00	-69.40	-13.00	-56.00	0.40	Peak
6	741.00	-69.64	-68.49	-13.00	-56.64	-1.15	Peak
7	3465.00	-46.11	-60.45	-13.00	-33.11	14.34	Peak
8 pp	5197.50	-36.37	-56.49	-13.00	-23.37	20.12	Peak

Site : 966 chamber 1

Condition: PART 27(B4/B17) Vertical Remark : LTE_Band 4_Link_CH20175

Tested by: Harry Hsueh

			Read	Limit	0ver		
	Freq	Level	Level	Line	Limit	Factor	Remark
-	MHz	dBm	dBm	dBm	dB	dB	
1	74.28	-56.49	-44.22	-13.00	-43.49	-12.27	Peak
2	119.64	-68.48	-60.16	-13.00	-55.48	-8.32	Peak
3	201.72	-68.89	-62.73	-13.00	-55.89	-6.16	Peak
4	531.00	-72.20	-69.12	-13.00	-59.20	-3.08	Peak
5	616.40	-68.30	-68.54	-13.00	-55.30	0.24	Peak
6	812.40	-66.51	-68.38	-13.00	-53.51	1.87	Peak
7	3465.00	-46.35	-60.69	-13.00	-33.35	14.34	Peak
8 pp	5197.50	-38.80	-58.92	-13.00	-25.80	20.12	Peak

High Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 27(B4/B17) Horizontal Remark : LTE_Band 4_Link_CH20300

Tested by: Harry Hsueh

Read Limit Over

Freq Level Line Limit Factor Remark

MHz dBm dBm dB dB

1 pp 3490.00 -47.52 -61.83 -13.00 -34.52 14.31 Peak

Site : 966 chamber 1

Condition: PART 27(B4/B17) Vertical Remark : LTE_Band 4_Link_CH20300

Tested by: Harry Hsueh

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 3490.00 -48.81 -63.12 -13.00 -35.81 14.31 Peak 2 pp 5235.00 -39.66 -59.82 -13.00 -26.66 20.16 Peak

LTE Band 13 Channel Bandwidth: 10 MHz / QPSK (1, 49)

Site : 966 chamber 1

Condition: PART 27(B13) Horizontal Remark : LTE_Band 13_Link_CH23230

			Read	Limit	0ver		
	Freq	Level	Level	Line	Limit	Factor	Remark
	MHz	dBm	dBm	dBm	dB	dB	
1	100.20	-60.34	-50.22	-13.00	-47.34	-10.12	Peak
2	193.89	-58.56	-52.65	-13.00	-45.56	-5.91	Peak
3	211.71	-59.12	-53.09	-13.00	-46.12	-6.03	Peak
4	335.70	-67.86	-62.31	-13.00	-54.86	-5.55	Peak
5	547.80	-71.28	-69.48	-13.00	-58.28	-1.80	Peak
6	624.80	-68.71	-68.86	-13.00	-55.71	0.15	Peak
7 pp	1564.00	-58.43	-65.29	-40.00	-18.43	6.86	Peak
8	2346.00	-46.48	-57.42	-13.00	-33.48	10.94	Peak

Site : 966 chamber 1

Condition: PART 27(B13) Vertical Remark : LTE_Band 13_Link_CH23230

			Kead	Limit	Over		
	Freq	Level	Level	Line	Limit	Factor	Remark
	MHz	dBm	dBm	dBm	dB	dB	
1	33.78	-55.85	-44.87	-13.00	-42.85	-10.98	Peak
2	74.55	-56.48	-44.21	-13.00	-43.48	-12.27	Peak
3	187.68	-67.38	-61.68	-13.00	-54.38	-5.70	Peak
4	419.70	-71.90	-68.71	-13.00	-58.90	-3.19	Peak
5	567.40	-70.28	-69.34	-13.00	-57.28	-0.94	Peak
6	943.30	-65.03	-69.87	-13.00	-52.03	4.84	Peak
7 pp	1564.00	-58.41	-65.27	-40.00	-18.41	6.86	Peak
8	2346.00	-50.49	-61.43	-13.00	-37.49	10.94	Peak

Channel Bandwidth: 10 MHz / QPSK (50, 0)

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 27(B13) Horizontal Remark : LTE_Band 13_Link_CH23230

			Read	Limit	0ver		
	Freq	Level	Level	Line	Limit	Factor	Remark
_							
	MHz	dBm	dBm	dBm	dB	dB	
1	104.79	-59.72	-50.19	-13.00	-46.72	-9.53	Peak
2	171.75	-62.81	-56.31	-13.00	-49.81	-6.50	Peak
3	201.18	-58.26	-52.09	-13.00	-45.26	-6.17	Peak
4	394.50	-68.94	-65.94	-13.00	-55.94	-3.00	Peak
5	575.10	-70.33	-69.71	-13.00	-57.33	-0.62	Peak
6	628.30	-68.63	-68.74	-13.00	-55.63	0.11	Peak
7 pp	1564.00	-59.08	-65.94	-40.00	-19.08	6.86	Peak

Site : 966 chamber 1

Condition: PART 27(B13) Vertical Remark : LTE_Band 13_Link_CH23230

	Freq	Level	Level	Limit		Factor	Remark
	MHz	dBm	dBm	dBm	dB	dB	
1	74.28	-56.57	-44.30	-13.00	-43.57	-12.27	Peak
2	161.49	-71.94	-64.47	-13.00	-58.94	-7.47	Peak
3	214.95	-67.56	-61.58	-13.00	-54.56	-5.98	Peak
4	419.00	-72.00	-68.83	-13.00	-59.00	-3.17	Peak
5	540.10	-72.02	-69.65	-13.00	-59.02	-2.37	Peak
6	626.90	-68.59	-68.72	-13.00	-55.59	0.13	Peak
7 pp	1564.00	-58.83	-65.69	-40.00	-18.83	6.86	Peak

5 Pictures of Test Arrangements
Please refer to the attached file (Test Setup Photo).

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---