Reference of complexity

VE281 - Data Structures and Algorithms, Xiaofeng Gao, TA: Qingmin Liu, Autumn 2019

1 The O-Notation

The O-notation provides an *upper bound* of the running time; it may not be indicative of the actual running time of an algorithm.

Definition 1 (O-Notation). Let f(n) and g(n) be functions from the set of natural numbers to the set of nonnegative real numbers. f(n) is said to be O(g(n)), written f(n) = O(g(n)), if

$$\exists c. \exists n_0. \forall n \ge n_0. f(n) \le cg(n)$$

Intuitively, f grows no faster than some constant times g.

2 The Ω -Notation

The Ω -notation provides a *lower bound* of the running time; it may not be indicative of the actual running time of an algorithm.

Definition 2 (Ω -Notation). Let f(n) and g(n) be functions from the set of natural numbers to the set of nonnegative real numbers. f(n) is said to be $\Omega(g(n))$, written $f(n) = \Omega(g(n))$, if

$$\exists c. \exists n_0. \forall n \geq n_0. f(n) \geq cg(n)$$

Clearly f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$.

3 The Θ -Notation

The Θ -notation provides an exact picture of the growth rate of the running time of an algorithm.

Definition 3 (Θ -Notation). Let f(n) and g(n) be functions from the set of natural numbers to the set of nonnegative real numbers. f(n) is said to be $\Theta(g(n))$, written $f(n) = \Theta(g(n))$, if both f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Clearly $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.

4 The o-Notation

Definition 4 (o-Notation). Let f(n) and g(n) be functions from the set of natural numbers to the set of nonnegative real numbers. f(n) is said to be o(g(n)), written f(n) = o(g(n)), if

$$\forall c. \exists n_0. \forall n > n_0. f(n) < cq(n)$$

5 The ω -Notation

Definition 5 (ω -Notation). Let f(n) and g(n) be functions from the set of natural numbers to the set of nonnegative real numbers. f(n) is said to be $\omega(g(n))$, written $f(n) = \omega(g(n))$, if

$$\forall c. \exists n_0. \forall n > n_0. f(n) > cq(n)$$

6 Definition in Terms of Limits

Suppose $\lim_{n\to\infty} f(n)/g(n)$ exists.

$$\circ \lim_{n \to \infty} \frac{f(n)}{g(n)} \neq \infty \text{ implies } f(n) = O(g(n)).$$

$$\circ \lim_{n \to \infty} \frac{f(n)}{g(n)} \neq 0 \text{ implies } f(n) = \Omega(g(n)).$$

$$\circ \lim_{n \to \infty} \frac{f(n)}{g(n)} = c \text{ implies } f(n) = \Theta(g(n)).$$

$$\circ \lim_{n\to\infty}\frac{f(n)}{g(n)}=0 \text{ implies } f(n)=o(g(n)).$$

$$\circ \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \text{ implies } f(n) = \omega(g(n)).$$

7 A Helpful Analogy

$$\circ f(n) = O(g(n))$$
 is similar to $f(n) \leq g(n)$.

o
$$f(n) = o(g(n))$$
 is similar to $f(n) < g(n)$.

$$\circ f(n) = \Theta(g(n))$$
 is similar to $f(n) = g(n)$.

$$\circ f(n) = \Omega(g(n))$$
 is similar to $f(n) \ge g(n)$.

$$\circ f(n) = \omega(g(n))$$
 is similar to $f(n) > g(n)$.

8 Complexity Classes

An equivalence relation \mathcal{R} on the set of complexity functions is defined as follows: $f\mathcal{R}g$ if and only if $f(n) = \Theta(g(n))$.

A complexity class is an equivalence class of \mathcal{R} .

The equivalence classes can be ordered by \prec defined as follows: $f \prec g$ iff f(n) = o(g(n)).

$$1 \prec \log\log n \prec \log n \prec \sqrt{n} \prec n^{\frac{3}{4}} \prec n \prec n \log n \prec n^2 \prec 2^n \prec n! \prec 2^{n^2}$$