Examen Analyse Numérique Master 1 2018 2019 S1

Preprint	: · January 2019		
CITATIONS	;	READS	
0		6,495	
1 author:			
	Jean Jules Fifen		
	The University of Ngaoundere		
	87 PUBLICATIONS 1,532 CITATIONS		
	SEE PROFILE		

Année Académique 2018-2019 Master 1 EEA (Semestre 1, Session 1, 19 janvier 2019), $\Delta t = 2h$ Examinateur : **Pr. FIFEN Jean Jules**

EXAMEN DE CALCUL NUMERIQUE (EEA451)

14pts 1 Résolution numérique d'une EDO

Soit a résoudre l'EDO du premier ordre

$$\begin{cases} y'(t) &= f(t, y(t)), & t \in I \quad y \in C^{1}(I) \\ y(t_{0}) &= y_{0}, \end{cases}$$
 (1.1)

f étant une fonction continue de $I \times \mathbb{R} \longrightarrow \mathbb{R}$. I etant un intervalle de \mathbb{R}^*_{\perp} .

2,5pts

- 1. Établir l'algorithme de Runge-Kutta 4.
- 0,5pt 2. Donner la condition d'existence et d'unicité de la solution du problème de Cauchy (1.1).
- 3. Les méthodes Runge-Kutta 4 sont à un pas et par conséquent moins précises que les méthodes à pas multiples.
 - 1pt (a) Donner le principe des méthodes de **prédiction-correction** qui sont des méthodes à pas multiples.
 - 2pts (b) Établir les formules d'Adams-Moulton et d'Adams-Bashforth d'ordre 2.
- 2pts 4. Soit à résoudre le système d'EDO suivant :

$$\begin{cases}
y'_{1}(t) &= f_{1}(t, y_{1}(t), y_{2}(t), \dots, y_{m}(t)) &, y_{1}(t_{0}) = y_{1,0} \\
y'_{2}(t) &= f_{1}(t, y_{1}(t), y_{2}(t), \dots, y_{m}(t)) &, y_{2}(t_{0}) = y_{2,0} \\
\vdots &\vdots &\vdots &\vdots \\
y'_{m}(t) &= f_{m}(t, y_{1}(t), y_{2}(t), \dots, y_{m}(t)) &, y_{m}(t_{0}) = y_{m,0},
\end{cases} (1.2)$$

où $m \in \mathbb{N}^*$ et les f_i , $i \in [1, m] \cap \mathbb{N}^*$ sont des fonctions continues de $I \times \mathbb{R} \longrightarrow \mathbb{R}$. Établir un algorithme de résolution par la méthode de Runge-Kutta 4.

6pts

5. On considère l'EDO d'ordre m avec condition initiale :

$$\begin{cases} y^{(m)}(t) = f(t, y(t), y^{(1)}(t), y^{(2)}(t), \cdots, y^{(m-1)}(t)) &, m \in \mathbb{N}^* \\ y^{(k)}(t_0) = c_{k+1}, & k \in [0, m-1] \cap \mathbb{N}, \quad c_{k+1} \in \mathbb{R}. \end{cases}$$
(1.3)

avec $\forall k \in [0, m-1] \cap \mathbb{N}, y^{(k)}$ est la dérivée d'ordre k de la fonction $y \in C^{m-1}(I)$ et f une fonction continue de $I \times \mathbb{R}^m \longrightarrow \mathbb{R}$.

1pt (a) Montrer que le système (1.3) est équivalent au système (1.4) défini par

$$\begin{cases}
y'_{1}(t) &= y_{2}(t) \\
y'_{2}(t) &= y_{2}(t) \\
\vdots &\vdots &\vdots \\
y'_{m-1}(t) &= y_{m}(t) \\
y'_{m}(t) &= f(t, y_{1}(t), y_{2}(t), \dots, y_{m}(t)) \\
y_{k}(t_{0}) &= c_{k}, \quad \forall k \in [1, m-1]. \cap \mathbb{N}
\end{cases}$$
(1.4)

5pts (b) Application

Résoudre l'EDO d'ordre 4 suivante en utilisant une méthode de **prédiction-correction** d'ordre 2.

$$\begin{cases} y^{(4)}(t) &= y^{(2)}(t) e^t + \left(y^{(3)}(t)\right)^3 \\ y(0) &= 2, y^{(1)}(0) = 1, y^{(2)}(0) = 0 \text{ et } y^{(3)}(0) = 4. \end{cases}$$
 (1.5)

On présentera toute la théorie possible puis on donnera un programme Fortran prêt à être exécuté.

4pts 2 Résolution des EDP par différences finies.

En utilisant le schéma implicite, résoudre l'équation de la chaleur se propageant sur une surface rectangulaire. On rappelle que le problème à résoudre est donné par le système (2.1).

$$\begin{cases}
\frac{\partial u}{\partial t} - \nu \frac{\partial^2 u}{\partial x^2} - \nu \frac{\partial^2 u}{\partial y^2} &= 0, \quad \forall (x, y, t) \in \Omega \times \mathbb{R}_+^*, \\
u(0, x, y) &= u_0(x, y), \quad \forall (x, y) \in \Omega = (0, 1) \times (0, L), \quad L \in \mathbb{R}_+^*, \\
u(t, x, y) &= 0, \quad \forall t \in \mathbb{R}_+^*, \, \forall (x, y) \in \partial \Omega.
\end{cases}$$
(2.1)

Indications: On montrera qu'il suffira d'inverser la matrice symétrique tridiagonale "par blocs"

$$\begin{pmatrix}
D_1 & E_1 & 0 & \cdots & 0 \\
E_1 & D_2 & E_2 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & E_{Nx-2} & D_{Nx-1} & E_{Nx-1} \\
0 & \cdots & 0 & E_{Nx-1} & D_{Nx},
\end{pmatrix}$$
(2.2)

où les blocs diagonaux D_j sont des matrices carrées de tailles ${\cal N}_y$ définies par

$$\begin{pmatrix}
1 + (C_x + C_y) & -C_y & 0 & \cdots & 0 \\
-C_y & 1 + (C_x + C_y) & -C_y & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & -C_y & 1 + (C_x + C_y) & -C_y \\
0 & \cdots & 0 & -C_y & 1 + (C_x + C_y),
\end{pmatrix}$$
(2.3)

où les C_x , C_y et E_j sont à définir.

2pts 3 Optimisation

Dans tout l'exercice, f est un champ scalaire sur \mathbb{R}^n et $n \in \mathbb{N}^*$.

- 0,5pt 1. Donner les conditions d'optimalité en maximisation.
- 0,5pt 2. On suppose que f est de classe C^1 sur un ensemble convexe $\mathbb{E} \subset \mathbb{R}^n$. Monter que si f est convexe, alors

$$\forall (x,y) \in \mathbb{E} \times \mathbb{E}, \ ^{t}(y-x)\nabla f(x) \le f(y) - f(x). \tag{3.1}$$

3. En optimisation numérique locale, chaque itération se traduit par l'équation

$$x_{k+1} = x_k + \alpha_k p_k, \quad k \in \mathbb{N}. \tag{3.2}$$

On suppose que f est concave et on se propose de rechercher un maximum.

- 0,5pt (a) Établir l'expression de α_k si f est une fonction quadratique.
- 0,5pt (b) Établir l'expression de p_k pour l'algorithme de Newton.