# STAT 88: Lecture 20

### Contents

Section 6.1: Variance and Standard Deviation

Section 6.2: Simplifying the Calculation

Warm up: Let the distribution of X be:

| x       | l   | 2   | 3   |
|---------|-----|-----|-----|
| (x-µx)* |     |     |     |
| P(X=x)  | ٥.٧ | 0.5 | ٥٠3 |

- (a) Find  $\mu_X = E(X)$ .
- (b) Find the distribution of  $(X \mu)^2$  in table.
- (c) Find  $E((X \mu)^2)$ .

6.1. Variance and Standard Deviation (Expectation: Center of a distribution

**Variance** Let X be a random variable and let  $\mu_X = E(X)$ . Define  $D = X - \mu_X$ , the deviation from the expected value. Note  $E(D) = E(X - \mu_X) = 0$ .

We define a measure called the variance of X by

$$Var(X) = E(D^2) = E((X - \mu)^2).$$

We saw how to calculate this in the warm up. Note that the units of X are squared.

Standard deviation

$$SD(X) = \sqrt{Var(X)} = \sqrt{E((X - \mu)^2)}.$$

Interpretation: "SD(X)" is roughly the "average" variation from the center.

 $\underline{\text{Ex:}}$ 

| y        | 3    | 4   | 5    |
|----------|------|-----|------|
| P(Y = y) | 0.55 | 0.1 | 0.35 |

Calculate (1) E(Y) (2) Var(Y) (3) SD(Y).

## In Python:

variance\_table\_Y

| у | (y - E(Y))**2 | P(Y = y) |
|---|---------------|----------|
| 3 | 0.64          | 0.55     |
| 4 | 0.04          | 0.1      |
| 5 | 1.44          | 0.35     |

### 0.9273618495495703

### Picture:



E(1) = 3.8

# Compare with



E(x) = 3.8

SD(X) VS SD(Y) ?

Example: About 300 Stat 88 students at UC Berkeley, were asked how many college mathetmatics courses they had taken other than Stat 88. The average number of courses was about 1.1; the SD was about 1.5. Would the histogram for the data look like (i), (ii), or (iii)?



# 6.2. Simplifying the Calculation

### **Linear Transformations**

Celsius-Fahrenheit conversion:

$$Y = (9/5) \cdot X + 32.$$

How does  $SD(\mathbf{Y})$  compare to  $SD(\mathbf{X})$ ?



$$(x)d2 = (d+x)d2$$



$$a>0$$
  
 $SD(ax) = a SD(x)$ 



$$a(o)$$
,  $SD(aX) = |a|SD(X)$ 

So, we have

$$SD(aX + b) = |a|SD(X),$$

and

$$Var(aX + b) = a^{2}Var(X).$$

Hence if Y = (9/5)X + 32, then

$$SD(Y) = (9/5) \cdot SD(X).$$

**A Different Way of Calculating Variance** An algebraic simplification for calculating variance:

$$Var(X) = E((X - \mu_X)^2)$$

 $\underline{\text{Ex:}}$ 

| у        | 3    | 4   | 5    |
|----------|------|-----|------|
| P(Y = y) | 0.55 | 0.1 | 0.35 |

Find  $Var(Y) = E(Y^2) - E(Y)^2$ .

Example: (Exercise 6.5.5) Let  $p \in (0,1)$  and let X be the number of spots showing on a flattened die that shows its six faces according to the following chances:

- P(X = 1) = P(X = 6)
- P(X = 2) = P(X = 3) = P(X = 4) = P(X = 5)
- P(X = 1 or X = 6) = p

Find SD(X).