## **AERO 422: Active Controls for Aerospace Vehicles**

Frequency Response-Design Method

#### Raktim Bhattacharya

Intelligent Systems Research Laboratory
Aerospace Engineering, Texas A&M University.

# Frequency Response

$$\xrightarrow{u(t)} \mathbb{P} \xrightarrow{y(t)}$$

Frequency Response

- Let  $u(t) = A_u \sin(\omega t)$
- Vary  $\omega$  from 0 to  $\infty$

A linear system's response to sinusoidal inputs is called the system's frequency response

Example

Frequency Response 00000

■ Let 
$$P(s) = \frac{1}{s+1}, u(t) = \frac{\sin(t)}{\sin(t)}$$

$$y(t) = \frac{1}{2}e^{-t} - \frac{1}{2}\cos(t) + \frac{1}{2}\sin(t)$$

$$= \underbrace{\frac{1}{2}e^{-t}}_{\text{natural response}} + \underbrace{\frac{1}{\sqrt{2}}\sin(t - \frac{\pi}{4})}_{\text{forced response}}$$

- Forced response has form  $A_u \sin(\omega t + \phi)$
- $A_u$  and  $\phi$  are functions of  $\omega$

Generalization

In general

$$Y(s) = G(s) \frac{\omega_0}{s^2 + \omega_0^2}$$

$$= \frac{\alpha_1}{s - p_1} + \dots + \frac{\alpha_n}{s - p_n} + \frac{\alpha_0}{s + j\omega_0} + \frac{\alpha_0^*}{s - j\omega_0}$$

$$\implies y(t) = \underbrace{\alpha_1 e^{p_1 t} + \dots + \alpha_n e^{p_n t}}_{\text{natural}} + \underbrace{A_y \sin(\omega_0 + \phi)}_{\text{forced}}$$

Forced response has same frequency, different amplitude and phase.

Generalization (contd.)

00000

For a system P(s) and input

$$u(t) = A_u \sin(\omega_0 t),$$

forced response is

$$y(t) = A_u \mathbf{M} \sin(\omega_0 t + \mathbf{\phi}),$$

where

$$M(\omega_0)=|P(s)|_{s=j\omega_0}=|P(j\omega_0)|,$$
 magnitude 
$$\phi(\omega_0)=/P(j\omega_0) \ {
m phase}$$

In polar form

$$P(j\omega_0) = Me^{j\phi}.$$

# Fourier Analysis

# **Fourier Series Expansion**

Given a signal y(t) with periodicity T,

$$y(t) = \frac{a_0}{2} + \sum_{n=1,2,\dots} a_n \cos\left(\frac{2\pi nt}{T}\right) + b_n \sin\left(\frac{2\pi nt}{T}\right)$$
$$a_0 = \frac{2}{T} \int_0^T y(t) dt$$
$$a_n = \frac{2}{T} \int_0^T y(t) \cos\left(\frac{2\pi nt}{T}\right) dt$$
$$b_n = \frac{2}{T} \int_0^T y(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

# **Fourier Series Expansion**

Approximation of step function





uency Response Fourier Analysis Bode Plot Asymptotes Steady-State Stability Design
oo ooooo oooooo ooo ooooooo ooooooo

## **Fourier Transform**

Step function



Fourier transform reveals the frequency content of a signal

Response **Fourier Analysis** Bode Plot Asymptotes Steady-State Stability Design **○○○○●○** ○○○○○○○○○ ○○○○○○○ ○○○○○○○○

## **Fourier Transform**

Step function – frequency content



Fourier Analysis 000000

# **Signals & Systems**

#### **Input Output**



#### **Fourier Series Expansion**

superposition principle

$$\xrightarrow{\sum_i u_i(t)} \mathsf{P} \xrightarrow{\sum_i y_i(t)}$$

#### **Fourier Transform**

$$\xrightarrow{U(j\omega)} \mathsf{P} \xrightarrow{Y(j\omega)}$$



$$u_i(t) = a_i \sin(\omega_i t)$$

$$y_{i_{\text{forced}}}(t) = a_i M \sin(\omega_i t + \phi)$$

$$Y(j\omega) = P(j\omega)U(j\omega)$$

Suffices to study  $P(j\omega) |P(j\omega)|, P(j\omega)$ 

# **Bode Plot**

# **First Order System**



- P(s) = 1/(s+1)
- loglog scale
- $dB = 10 \log_{10}(\cdot)$
- $20dB = 10 \log_{10}(100/1)$



- $u(t) = A\sin(\omega_0 t)$

# **Second Order System**





$$\omega_n = 1 \text{ rad/s}$$



$$u(t) = A\sin(\omega_0 t)$$

# **Lead Compensator**



- Phase lead
- low gain at low frequency
- high gain at high frequency
- relate it to derivative control

 Fourier Analysis
 Bode Plot 000000
 Asymptotes 000000
 Steady-State 0000000
 Stability 0000000
 Design 00000000

# **Lag Compensator**



- Phase lag
- high gain at low frequency
- low gain at high frequency
- relate it to integral control

$$S(j\omega) + T(j\omega) = 1$$





- $P(s) = \frac{1}{(s+1)(s/2+1)}$
- C(s) = 10
- $S = G_{er} = \frac{1}{1+PC} = \frac{1}{1+10P}$
- $T = G_{yr} = \frac{PC}{1+PC} = \frac{10P}{1+10P}$



### **All transfer functions**

With proportional controller



# **Piper Dakota Control System**

Designed with root locus method

#### **System**

Transfer function from  $\delta_e$  (elevator angle) to  $\theta$  (pitch angle) is

$$P(s) = \frac{\theta(s)}{\delta_e(s)} = \frac{160(s+2.5)(s+0.7)}{(s^2+5s+40)(s^2+0.03s+0.06)}$$

#### **Control Objective 1**

Design an autopilot so that the step response to elevator input has  $t_r < 1$  and  $M_p < 10\% \implies \omega_n > 1.8$  rad/s and  $\zeta > 0.6$   $2^{nd}$  order

#### Controller

$$C(s) = 1.5 \frac{s+3}{s+25} (1+0.15/s)$$

# **Piper Dakota Control System**

Time Response



# **Piper Dakota Control System**

Frequency Response



# **Piper Dakota Control System**

Frequency Response (contd.)



# Asymptotes

# **Approximate Bode Plot**

Useful for Design & Analysis

Let open-loop transfer function be

$$KG(s) = K \frac{(s-z_1)(s-z_2)\cdots}{(s-p_1)(s-p_2)\cdots}$$

Write in Bode form

$$KG(j\omega) = K_0 \frac{(j\omega\tau_1 + 1)(j\omega\tau_2 + 1)\cdots}{(j\omega\tau_a + 1)(j\omega\tau_b + 1)\cdots}$$

 $K_0$  is the DC gain of the system.

#### Example

$$G(s) = \frac{(s+1)}{(s+2)(s+3)} \implies G(j\omega) = \frac{j\omega + 1}{(j\omega + 2)(j\omega + 3)} = \frac{1}{6} \frac{j\omega + 1}{(j\omega/2 + 1)(j\omega/3 + 1)}$$

# **Approximate Bode Plot**

contd.

Transfer function in Bode Form

$$KG(j\omega) = K_0 \frac{(j\omega\tau_1 + 1)(j\omega\tau_2 + 1)\cdots}{(j\omega\tau_a + 1)(j\omega\tau_b + 1)\cdots}$$

#### Three cases

- 1.  $K_0(j\omega)^n$  pole, zero at origin
- 2.  $(i\omega + 1)^{\pm 1}$  real pole, zero
- 3.  $\left[ \left( \frac{j\omega}{\omega_n} \right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1 \right]^{\pm 1}$  complex pole, zero

# Case:1 $K_0(j\omega)^n$ pole, zero at origin

Gain

$$\log K_0 |(j\omega)|^n = \log K_0 + n \log |jw| = \log K_0 + n \log w$$

#### **Phase**



# Case:2 $(j\omega au + 1)^{\pm 1}$ real pole, zero

Gain

$$(j\omega\tau + 1) = \begin{cases} \approx 1, & \omega\tau << 1, \\ \approx j\omega\tau, & \omega\tau >> 1. \end{cases}$$

Frequency  $\omega = 1/\tau$  is the break point



# Case:2 $(j\omega au + 1)^{\pm 1}$ real pole, zero (contd.)

#### Phase

$$\underline{/j\omega\tau + 1} = \begin{cases}
\approx 1, & \omega\tau << 1, & \underline{/1} = 0^{\circ} \\
\approx j\omega\tau, & \omega\tau >> 1, & \underline{/j\omega\tau} = 90^{\circ} \\
& \omega\tau \approx 1, & \underline{/j\omega\tau + 1} = 45^{\circ}
\end{cases}$$



# **Example**

$$G(s) = \frac{200(s+0.5)}{s(s+10)(s+50)}$$





# Steady-State Errors

## **Closed-loop system**



**Closed-loop transfer function** 

$$G_{er} = \frac{1}{1 + PC} = \mathbf{K_0}(j\omega)^n \frac{(j\omega\tau_1 + 1)(j\omega\tau_2 + 1)\cdots}{(j\omega\tau_a + 1)(j\omega\tau_b + 1)\cdots}$$

Steady-state gain

$$\lim_{s \to 0} sG_{er}(s) \frac{1}{s} \Leftrightarrow \lim_{\omega \to 0} |G_{er}(j\omega)|$$

$$PC = \frac{200(s+0.5)}{s(s+10)(s+50)}$$

Typically analysis is done with open-loop system



## **Open-loop system**



Open-loop transfer function

$$PC = \frac{200(s+0.5)}{s(s+10)(s+50)} = K_0(j\omega)^n \frac{(j\omega\tau_1 + 1)(j\omega\tau_2 + 1)\cdots}{(j\omega\tau_a + 1)(j\omega\tau_b + 1)\cdots}$$

Steady-state error step

$$e_{ss} = \frac{1}{1 + K_p}, \ K_p := K_0.$$

Steady-state error ramp

$$e_{\rm ss} = \frac{1}{K_v}$$

- System type is the slope of the low frequency asymptote
- $lackbox{ } K_v$  is the value of low frequency asymptote at  $\omega=1~{
  m rad/s}$





# Stability Analysis

# **Stability**



#### Given open-loop data

$$C(s) = K, P(s) = \frac{1}{s(s+1)^2}$$



- All points on root locus satisfy 1 + P(s)C(s) = 0
- $P(s)C(s) = -1 \implies |P(s)C(s)| = 1$ and  $/P(s)C(s) = 180^{\circ}$
- At neutral stability point  $s = j\omega$ ,

$$|P(j\omega)C(j\omega)| = 1$$
  
 $/P(j\omega)C(j\omega) = 180^{\circ}$ 

# **Stability**

 $|P(j\omega)C(j\omega)| < 1$  at  $/P(j\omega)C(j\omega) = 180^{\circ}$ 



# **Gain Margin**

Open loop Bode Plot



Gain Margin (GM): factor by which gain can be increased at  $P(j\omega)C(j\omega) = -180^{\circ}$ 

### **Phase Margin**

Open loop Bode Plot



Phase Margin (PM): amount by which phase exceeds  $-180^{\circ}$  at  $|P(j\omega)C(j\omega)|=1$ 

## **Nyquist Plot**

- Relates open-loop frequency response to number of unstable closed-loop poles
- Residue theorem in complex analysis
- Plot  $P(j\omega)C(j\omega)$  in the complex plain
- Number of encirclements of -1 equals Z P of 1 + P(s)C(s)

### **Nyquist Plot**

contd.

■ Write  $P(s)C(s) = KG(s) = K\frac{N(s)}{D(s)}$ 

$$\implies 1 + P(s)C(s) = \frac{D(s) + KN(s)}{D(s)}$$

- Poles of 1 + P(s)C(s) = Poles of G(s) none of them on RHP
- Number of encirclements = number of zeros of 1 + P(s)C(s) on RHP number of poles of closed-loop system

# **Nyquist Plot**

Example: 
$$P(s)C(s) = \frac{K}{s(s+1)^2}$$



### **Nyquist Plot**

Determining Gain

- $\blacksquare$  Given  $P(s)C(s)=\frac{K}{s(s+1)^2}$ , what is K for stability?
- Encirclement of  $1/\vec{K} + G(s) = 0$



Stability 000000000

### **Nyquist Plot**

Gain and Phase Margin

Nyquist plot of P(s)C(s)



# Frequency Domain Design

# Design Using Bode Plot of $P(j\omega)C(j\omega)$

Loop Shaping

Develop conditions on the Bode plot of the open loop transfer function

- Sensitivity  $\frac{1}{1+PC}$
- Steady-state errors: slope and magnitude at  $\lim_{\omega} \to 0$
- Robust to sensor noise
- Disturbance rejection
- lacktriangledown Controller roll off  $\Longrightarrow$  not excite high-frequency modes of plant
- Robust to plant uncertainty

Look at Bode plot of  $L(j\omega) := P(j\omega)C(jw)$ 

### **Frquency Domain Specifications**

Constraints on the shape of  $L(j\omega)$ 



- Choose  $C(j\omega)$  to ensure  $|L(j\omega)|$  does not violate the constraints
- Slope  $\approx -1$  at  $\omega_c$  ensures  $PM \approx 90^\circ$  stable if  $PM > 0 \implies PC > -180^\circ$

### **Plant Uncertainty**

$$P(j\omega) = P_0(j\omega)(1 + \Delta P(j\omega))$$





#### **Sensor Characteristics**

Noise spectrum





$$G_{yn} = -\frac{PC}{1 + PC}$$

### **Reference Tracking**

Bandlimited else conflicts with noise rejection





$$G_{yr} = \frac{PC}{1 + PC}$$

$$G_{yn} = -\frac{PC}{1+PC}$$

### **Disturbance Rejecton**

Bandlimited else conflicts with noise rejection





$$G_{yd} = \frac{P}{1 + PC}$$
 
$$G_{yn} = -\frac{PC}{1 + PC}$$