21.08.2020

Digital Image Processing (CSE/ECE 478)

Lecture-4: Recap/Discussion

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Announcements

- Mini-quiz-1
 - For those who could not submit: Best 5 of 7 remaining mini-quizzes
 - Others: Default (Best 5 of 8)
- Next quiz (Friday) will be Moodle-based
- Mock quiz will be posted for practice.

Histogram: An image representation + visualization

$$h_r(i) = n_i$$

i → intensity value, range [0,L-1] n_i → number of pixels with intensity i

Histograms and Contrast

Histogram Equalization - Example

64 x 64 image

3-bits / pixel

r_k	n_k	$p_r(r_k) = \frac{n_k/MN}{n_k}$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Histogram Equalization - Example

a b c

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

$$s_k = T(r_k) = \mathtt{round}\left((L-1)\sum_{j=0}^{j=k} p_r(r_j)
ight)$$

Histogram Equalization

Cumulative Histogram

Wider

Histogram Equalization v/s Contrast Enhancement

Histogram equalization

Image Courtesy: Gonzalez and Woods

Histogram specification

Histogram Specification / Matching [GW Section 3.3.2]

Image Courtesy: Gonzalez and Woods

Histogram specification (custom curve)

Histogram specification (curve from a reference image) original image output image output image

https://images1.programmersought.com/152/73/733d674297c6e27a58bdc3d852dca118.png

Histogram Processing

Global to Point

Histogram: Discussion

- A visualization
- A useful statistical representation of image intensities
 - Not dependent on image size (after normalization)
- Drawbacks
 - No spatial information
 - Intensity-centric
 - Raw (unnormalized form): Image-size dependent
- Equalization:
 - An image 'normalization' approach
 - Improves global contrast, but can also boost noise

References

▶ Gonzalez, Woods textbook: Chapter – 3.3.1 to 3.3.3

Point to Point

Intensity Transforms

Global Attribute to Point

Point to Point

а

▶ Neighborhood to Point

Global Attribute to Point

Neighborhood

Local Histogram Processing

Conditional Image Enhancement

- Objective for given image: Enhance dark areas while leaving light areas unchanged
- we use some statistical parameters
 - global:
 - $m(r) = \sum_{i=0}^{L-1} p(r_i) r_i$
 - $m(r) = \sum_{i=0}^{L-1} p(r_i) r_i$ $\sigma^2(r) = \sum_{i=0}^{L-1} (r_i m)^2 p(r_i)$
 - ° local:
 - $p(r_{s,t})$: neighborhood normalized histogram at coordinates (s,t) using a mask centered at (x,y)
 - $m_{S_{xy}} = \sum_{(s,t) \in S_{xy}} p(r_{s,t}) \, r_{s,t}$
 - $\sigma^2(S_{xy}) = \sum_{(s,t) \in S_{xy}} [r_{s,t} m_{S_{xy}}]^2 p(r_{s,t})$

- Enhance dalk

Image Enhancement Using Histogram Statistics

abc

FIGURE 3.27 (a) SEM image of a tungsten filament magnified approximately 130×. (b) Result of global histogram equalization. (c) Image enhanced using local histogram statistics. (Original image courtesy of Mr. Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)

Scribe List

2018101010
2018101015
2018101019
2018101021
2018101022
2018101028