

SDS 384 11: Theoretical Statistics

Lecture 10: U Statistics cont.

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

U Statistics

- We will see many interesting examples of U statistics.
- Interesting properties
 - Unbiased (done)
 - Reduces variance (done)
 - Concentration (via McDiarmid) (done)
 - Asymptotic variance (done)
 - Asymptotic distribution (today)

- Trick: find some \hat{U} such that \hat{U} is asymptotically equivalent to U.
- Make sure \hat{U} is easy to analyze.

Theorem

If $X_n \stackrel{d}{\to} X$ and $|Y_n - X_n| \stackrel{P}{\to} 0$, then $Y_n \stackrel{d}{\to} X$.

- In our case we will use \hat{U} as a sum of functions of X_i
- Then use CLT on \hat{U}
- We will find the functions using Hajek projections.

Hajek Projections - Setup

- Let $\{X_1, \ldots, X_n\}$ be independent random vectors.
- ullet Consider a linear space ${\mathcal S}$ of random variables.
 - \bullet E.g. ${\cal S}$ can be the set of all random variables of the form

$$\sum_{i=1}^n g_i(X_i)$$

- g_i are arbitrary measurable functions $g_i : \mathbb{R}^d \to \mathbb{R}$ with $E[g_i(X_i)^2] < \infty$, for $i \in [n]$
- $\textit{ES}^2 < \infty, \forall \textit{S} \in \mathcal{S}$
- Consider a random variable T with $E[T^2] < \infty$

Hájek projections

• Define by the projection $\hat{S} = \arg \inf_{S \in \mathcal{S}} E[(T - S)^2]$

Theorem

 \hat{S} is a projection of T onto a linear space S with finite second moments, iff, $\hat{S} \in \mathcal{S}$ and

$$E[(T - \hat{S})S] = 0$$
, For every $S \in S$. Orthogonality

Every two projections of T onto S are equal a.s. If S contains the constant variables, then $E[T] = E[\hat{S}]$ and $cov(T - \hat{S}, S) = 0$ for every $S \in \hat{S}$.

4

Hájek projections

Proof.

First note that

$$E(T-S)^{2} = E[(T-\hat{S})^{2}] + 2E[(T-\hat{S})(\hat{S}-S)] + E[(S-\hat{S})^{2}]$$

- If the orthogonality condition is satisfied, then the middle term is zero.
- So $E(T-S)^2 \ge E(T-\hat{S})^2$, and this inequality is strict unless $E(\hat{S}-S)^2 = 0$. This proves uniqueness.

Hájek projections-converse

Proof.

ullet For any number lpha

$$E(T - \hat{S} - \alpha S)^{2} = E[(T - \hat{S})^{2}] - 2\alpha E[(T - \hat{S})S] + \alpha^{2}E[S^{2}]$$

• If \hat{S} is the projection, then $\forall \alpha$ and $\forall S \in \mathcal{S}$,

$$\alpha^2 E[S^2] - 2\alpha E[(T - \hat{S})S] \ge 0$$

- So for $\alpha > 0$, $E[(T \hat{S})S] \le \alpha E[S^2]/2$
- for $\alpha < 0$, $E[(T \hat{S})S] \ge -|\alpha|E[S^2]/2$
- So the orthogonality condition must hold.

Hájek projections-proos cont.

- If constants are in S, then the orthogonality condition with S=1 gives $E[T]=E[\hat{S}]$.
- So, $cov(T \hat{S}, S) = E[(T \hat{S})S] E[T \hat{S}]E[S] = 0$
- The first term is zero using orthogonality.
- The second term is zero because $E[T] = E[\hat{S}]$.
- Hájek projections do not always exist, i.e. the $\inf_{S \in \mathcal{S}}$ may not be achievable.
- However it is typically easy to establish existence directly

Projections and asymptotic equivalence

- By the orthogonality, we have $E[T^2] = E[(T \hat{S})^2] + E[\hat{S}^2]$
- If S contains constants, then $E[T] = E[\hat{S}]$
- So $var(T) = var(T \hat{S}) + var(\hat{S})$
- So if S has constants, and $var(T) = var(\hat{S})$, then $\hat{S} = T$ a.s.
- What if the variances are not equal, but almost (or asymptotically) equal?

Projections and asymptotic equivalence

Theorem

Consider linear spaces of random variables with finite second moment S_n that contains constants. Let T_n be random variables with projections \hat{S}_n onto S_n . If $var(T_n)/var(S_n) \to 1$, then,

$$\frac{T_n - E[T_n]}{sd(T_n)} - \frac{\hat{S}_n - E[\hat{S}_n]}{sd(\hat{S}_n)} \stackrel{P}{\to} 0,$$

where sd(X) is $\sqrt{var(X)}$.

Projections and asymptotic equivalence-proof

Proof.

We will prove convergence in second mean.

• Let
$$D_n = \frac{T_n - E[T_n]}{\operatorname{sd}(T_n)} - \frac{\hat{S}_n - E[\hat{S}_n]}{\operatorname{sd}(\hat{S}_n)}$$

- $E[D_n] = 0$
- So the variance calculation gives:

$$\operatorname{var}(D_n) = 2 - 2 \frac{\operatorname{cov}(T_n, \hat{S}_n)}{\operatorname{sd}(T_n)\operatorname{sd}(\hat{S}_n)}$$

$$= 2 - 2 \frac{\operatorname{cov}(T_n - \hat{S}_n, \hat{S}_n) + \operatorname{var}(\hat{S}_n)}{\operatorname{sd}(T_n)\operatorname{sd}(\hat{S}_n)}$$

$$= 2 - 2 \frac{\operatorname{var}(\hat{S}_n)}{\operatorname{sd}(T_n)\operatorname{sd}(\hat{S}_n)} \to 0$$

How to get a Hájek projection

- Let $\{X_1, \ldots, X_n\}$ be independent random vectors.
- ullet Consider a linear space ${\cal S}$ of random variables.
 - E.g. $\mathcal S$ can be the set of all random variables of the form $\sum_{i=1}^n g_i(X_i)$.
 - g_i are arbitrary measurable functions $g_i: \mathbb{R}^d \to \mathbb{R}$ with $E[g_i(X_i)^2] < \infty$, for $i \in [n]$

Theorem

The Hájek projection of an arbitrary random variable $T(X_1, \ldots, X_n)$ with finite second moment onto S is given by

$$\hat{S} = \sum_{i=1}^{n} E[T|X_i] - (n-1)E[T].$$

How to get a Hájek projection

Proof.

- First note that $\hat{S} \in \mathcal{S}$
- All that remains is to check the orthogonality condition.

$$E[(T - \hat{S})S] = E[(T - \hat{S}) \sum_{i} g_{i}(X_{i})]$$

$$= \sum_{i} E[(T - \hat{S})g_{i}(X_{i})]$$

$$= \sum_{i} E_{X_{i}}E[(T - \hat{S})g_{i}(X_{i})|X_{i}]$$

$$= \sum_{i} Eg_{i}(X_{i})E[T - \hat{S}|X_{i}]$$

• But
$$E[\hat{S}|X_i] = E[\sum_j E[T|X_j]|X_i] - (n-1)E[T] = E[T|X_i].$$

What if X_i 's are iid?

- If X_1, \ldots, X_n are iid,
- So in this case,

$$E[T|X_i = x] = E[T(X_1, ..., X_{i-1}, x, X_i, ...)]$$

= $E[T(x, X_2, ..., X_n)]$

- Thus the Hájek projections can be computed by taking a projection on a smaller set $\mathcal{S}' \subset \mathcal{S}$
- \mathcal{S}' contains random variables of the form $\sum_{i=1}^n g(X_i)$ where g is some arbitrary measurable function with $E[g(X_i)^2] < \infty$

- Recall $U := \frac{1}{\binom{n}{r}} \sum_{S \in \mathcal{I}_r} h(X_S)$
- Define the Hájek projection as

$$\hat{U} := \sum_{i=1}^{n} E[U - \theta | X_i]$$

$$= \frac{1}{\binom{n}{r}} \sum_{i=1}^{n} \sum_{S \in \mathcal{I}_r} E[h(X_S) - \theta | X_i]$$

Note that

$$E[h(X_S) - \theta | X_i = x] = \begin{cases} E[h(x, X_2, \dots, X_r)] - \theta =: g(x) & \text{When } i \in S \\ 0 & \text{o.w.} \end{cases}$$

Define the Hájek projection as

$$\hat{U} := \sum_{i=1}^{n} E[U - \theta | X_i]$$

$$= \frac{1}{\binom{n}{r}} \sum_{i=1}^{n} \sum_{S \in \mathcal{I}_r} E[h(X_S) - \theta | X_i]$$

$$= \frac{1}{\binom{n}{r}} \sum_{i=1}^{n} \sum_{S \in \mathcal{I}_r : X_i \in S} E[h(X_S) - \theta | X_i]$$

$$= \frac{1}{\binom{n}{r}} \sum_{i=1}^{n} \binom{n-1}{r-1} g(X_i)$$

$$= \frac{r}{n} \sum_{i=1}^{n} g(X_i)$$

- Ok. So we got a projection. Now we need to move to asymptotics
- So let us calculate the variance of \hat{U}

$$\operatorname{var}(\hat{U}) = \frac{r^2}{n} \operatorname{var}(g(X_1))$$
$$= \frac{r^2}{n} \operatorname{var}(E[h(X_S)|X_1]) = \frac{r^2}{n} \xi_1$$

• Now CLT gives, $\sqrt{n}(\hat{U} - \theta) \stackrel{d}{\rightarrow} N(0, r^2 \xi_1)$

•
$$\sqrt{n}\hat{U} \stackrel{d}{\to} N(0, r^2\xi_1)$$

- ullet We already proved $\dfrac{\mathsf{var}(\mathit{U})}{\mathsf{var}(\hat{\mathit{U}})} o 1$
- So $\sqrt{n}(\hat{U} (U \theta)) \stackrel{P}{\rightarrow} 0$
- So $\sqrt{n}(U-\theta) \stackrel{d}{\rightarrow} N(0, r^2\xi_1)$