

数据结构与算法

Data Structure and Algorithm

极夜酱

目录

1	动态规划																1															
	1.1	动态规划																														1

Chapter 1 动态规划

1.1 动态规划

1.1.1 动态规划 (Dynamic Programming)

动态规划在数学上属于运筹学的分支,是求解决策过程最优化的数学方法,同时也是计算机科学与技术领域中一种常见的算法思想。

动态规划算法的基本思想与分治法类似,也是将带求解的问题分解为若干个子问题,按顺序求解子问题。前一子问题的解,为后一子问题的求解提供了有用的信息。

在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其它局部解。依次解决各子问题,最后一个子问题就是初始问题的解。

动态规划的本质是对问题状态的定义和状态转移方程的定义。动态规划通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推的方式去解决。因此在一个典型的动态规划问题上,需要定义问题状态以及写出状态转移方程,这样对于问题的解答就会一目了然。

1.1.2 爬楼梯

有一座高度是 10 级台阶的楼梯,从下往上走,每跨一步只能向上 1 级或者 2 级台阶,要求求出一共有多少种走法。

比如,每次走1级台阶,一共走10步,这是其中一种走法,可以简写成[1,1,1,1,1,1,1,1,1]。再比如,每次走2级台阶,一共走5步,这是另一种走法,可以简写成[2,2,2,2]。当然,除此之外,还有很多很多种走法。

暴力枚举的算法利用排列组合的思想,通过多重循环遍历出所有的可能性。但是暴力枚举的时间复杂度是指数级的,有没有更高效的解法呢?

要不找个楼梯走一下试试吧! 正好能减肥!

动态规划是一种分阶段求解决策问题的数学思想,它不止用于编程领域,也应用于管理学、经济学、生物学等。总的来说就是大事化小,小事化了。

在爬楼梯问题中,假设你只差最后一步就走到第 10 级台阶,这时候会出现几种情况?

当然是两种喽,因为每一步只许走 1 级或 2 级,所以最后一步要么是从第 9 级走到第 10 级,要么是从第 8 级走到第 10 级。

接下来就引申出了一个新的问题,如果已知从第 0 级走到第 9 级的走法有 X 种,从第 0 级走到第 8 级的走法有 Y 种,那么从第 0 级走到第 10 级的走法就有 X + Y 种。