Advanced R Programming - Lecture 7

Leif Jonsson

Linköping University

leif.jonsson@ericsson.com leif.r.jonsson@liu.se

October 7, 2016

Today

Data munging

Machine Learning

Supervised learning in R

Probability in R

Big data

Questions since last time?

Tidy data

Theoretical approach to data handling

Tidy data and messy data

Tidy data

- 1. Each variable forms a column
- 2. Each observation forms a row
- 3. Each type of observational unit forms a table

Tidy data

Data munging

- 1. Each variable forms a column
- Each observation forms a row
- 3. Each type of observational unit forms a table

Examples: iris and faithful

Why tidy?

80 % of Big Data work is data munging

Why tidy?

Data munging

80 % of Big Data work is data munging

Analysis and visualization is based on tidy data

Why tidy?

80 % of Big Data work is data munging

Analysis and visualization is based on tidy data

Performant code

Data analysis pipeline

Messy data \rightarrow Tidy data \rightarrow Analysis

1. Column headers are values, not variable names. (AirPassengers)

STIMA LiU

Messy data

Data munging

- 1. Column headers are values, not variable names. (AirPassengers)
- 2. Multiple variables are stored in one column. (mtcars)

- Column headers are values, not variable names. (AirPassengers)
- 2. Multiple variables are stored in one column. (mtcars)
- 3. Variables are stored in both rows and columns. (crimetab)

Data munging

- 1. Column headers are values, not variable names. (AirPassengers)
- Multiple variables are stored in one column. (mtcars)
- 3. Variables are stored in both rows and columns. (crimetab)
- 4. Multiple types of observational units are stored in the same table.

Data munging

- Column headers are values, not variable names. (AirPassengers)
- 2. Multiple variables are stored in one column. (mtcars)
- 3. Variables are stored in both rows and columns. (crimetab)
- 4. Multiple types of observational units are stored in the same table.
- 5. A single observational unit is stored in multiple tables.

STIMA LiU

dplyr

Verbs for handling data

Highly optimized C++ code (backend)

Handling larger datasets in R (no copy-on-modify)

STIMA LiU

the cheatsheet

Regular Expressions

Language for manipulating strings

Find strings that match a pattern

Extract patterns from strings

Replace patterns in strings

Component in many functions (grep, gsub, stringr::, tidyr::)

Regular Expressions - Syntax

fruit <- c("apple", "banana", "pear", "pineapple")</pre>

Symbol	Description	Example
?	The preceding item is op-	grep("pi?",fruit)
	tional and will be matched	
	at most once	
*	The preceding item will be	grep("pi*",fruit)
	matched zero or more times	
+	The preceding item will be	grep("pi+",fruit)
	matched one or more times	
n	The preceding item is	$grep("p{2}",fruit)$
	matched exactly n times	

STIMA LiU

Regex Examples - Finding matching

```
> library(gapminder)
> grep("we", gapminder$country)
[1] 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
1695 1696 1697
[18] 1698 1699 1700 1701 1702 1703 1704
grep("we", gapminder$country, value=TRUE)
[1] "Sweden" "Sweden" "Sweden" "Sweden" "Sweden"
"Sweden" "Sweden" "Sweden"
[9] "Sweden" "Sweden" "Sweden" "Zimbabwe"
"Zimbabwe" "Zimbabwe"
[17] "Zimbabwe" "Zimbabwe" "Zimbabwe" "Zimbabwe" "Zimbabwe"
"Zimbabwe" "Zimbabwe"
```


Regex Examples - Extraction

```
> strs <- c("The 13 Cats in the Hats are 17 years", "4 scor
ago")
> str_extract_all(strs, "[a-z]+")
[[1]]
[1] "he" "ats" "in" "the" "ats" "are" "years"
[[2]]
[1] "scores" "and" "beers" "ago"
> str_extract(strs, "[a-z]+")
[1] "he" "scores"
> str_extract(strs, "[0-9]+")
[1] "13" "4"
> str_extract_all(strs, "[0-9]+")
\lceil \lceil 1 \rceil \rceil
[1] "13" "17"
[[2]]
[1] "4" "7"
```

Regex Examples - Tidyr separate

```
> library(gapminder)
> # Create artificial column with numeric data in text
> rnds <- ceiling(runif(nrow(gapminder).80.200))</pre>
> gapminder $ country <- paste (gapminder $ country, rnds, " population")
> tdy <- gapminder %>% separate(country, into = c("Count", "CPop"), sep
="\\d+")
> head(tdv)
# A tibble: 6 <U+00D7> 7
Count
                  CPop
                                 continent
                                             year lifeExp
                                                                pop gdpPercap
<chr>>
                  <chr>>
                                  <fctr> <int>
                                                  <dh1 >
                                                            <int>
                                                                       <dh1>
                                         1952
                                                28.801
                                                         8425333
                                                                  779.4453
1 Afghanistan
                  population
                                   Asia
2 Afghanistan
                                         1957
                                                30.332
                                                         9240934
                                                                  820.8530
                  population
                                   Asia
3 Afghanistan
                  population
                                   Asia
                                          1962
                                                31.997 10267083
                                                                  853.1007
4 Afghanistan
                  population
                                                                  836.1971
                                   Asia
                                          1967
                                                34.020 11537966
```


Data munging

Big data

STIMA LiU

Machine learning?

Automatically detect patterns in data

Machine learning?

Automatically detect patterns in data

Predict future observation

Machine learning?

Automatically detect patterns in data

Predict future observation

Decision making under uncertainty

Types of Machine learning

Supervised learning

Types of Machine learning

Supervised learning

Unsupervised learning

Types of Machine learning

Supervised learning

Unsupervised learning

Reinforcement learning

Supervised learning

(also called predictive learning)

response variable

covariates/features

training set

$$D = (x_i, y_i)_{(i=1)}^N$$

STIMA LiU

Supervised learning types

If y_i is categorical: classification

> If y_i is real: regression

Unsupervised learning

(also called knowledge discovery)

dimensionality reduction

latent variable modeling

$$D=(x_i)_{(i=1)}^N$$

clustering, PCA, discovering of graph structures

data visualization

Curse of dimensionality

The more variables the larger distance between datapoints

 $\begin{tabular}{lll} \textbf{Machine Learning} & Supervised learning in R & Probability in R & Big data \\ \end{tabular}$

Curse of dimensionality

The more variables the larger distance between datapoints

source

Leif Jonsson Lecture 7
 Machine Learning
 Supervised learning in R
 Probability in R
 Big data

Bias and variance in ML

Underfit = high bias, low variance Overfit = low bias, high variance

Model selection

bias and variance - tradeoff

Model selection

bias and variance - tradeoff

hyper parameters

Model selection

bias and variance - tradeoff

hyper parameters

generalization error

Model selection

bias and variance - tradeoff

hyper parameters

generalization error

validation set/cross validation

Predictive modeling pipeline

- 1. Set aside data for test (estimate generalization error)
- 2. Set aside data for validation (if hyperparams)
- 3. Run algorithms
- 4. Find best/optimal hyperparameters (on validation set)
- Choose final model
- 6. Estimate generalization error on test set

STIMA LiU

No free lunch theorem

different models work in different domains

No free lunch theorem

different models work in different domains

accuracy-complexity-intepratability tradeoff

STIMA LiU

No free lunch theorem

different models work in different domains accuracy-complexity-intepratability tradeoff ...but more data always wins

STIMA LiU

the caret package

package for supervised learning

package for supervised learning

does not contain methods - a framework

package for supervised learning does not contain methods - a framework

compare methods on hold-out-data

package for supervised learning

does not contain methods - a framework

compare methods on hold-out-data

http://topepo.github.io/caret/

package for supervised learning

does not contain methods - a framework

compare methods on hold-out-data

http://topepo.github.io/caret/

specific algorithms are part of other courses

Probability Functions

Prefix	Description	Example
r	Random draw	rnorm
d	Density function	dbinom
q	Quantile function	qbeta
D	CDF	pgamma

Big data

Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it...

- Dan Ariely

$$O(N)$$
 10¹²

$$O(N)$$
 10^{12} $O(N^2)$ 10^6

$$O(N)$$
 10^{12} $O(N^2)$ 10^6 $O(N^3)$ 10^4

$$O(N)$$
 10^{12} $O(N^2)$ 10^6 $O(N^3)$ 10^4 $O(2^N)$ 50

... to computational complexity

$$O(N)$$
 10^{12} $O(N^2)$ 10^6 $O(N^3)$ 10^4 $O(2^N)$ 50

We need algorithms that scale!

STIMA LiU

Big data is relative...

... to computational complexity

 $O(P^2 * N)$ Linear regression

$$O(P^2 * N)$$
 Linear regression $O(N^3)$ Gaussian processes

 $O(P^2 * N)$ Linear regression $O(N^3)$ Gaussian processes $O(N^2)/O(N^3)$ Support vector machines

$$O(P^2 * N)$$
 Linear regression $O(N^3)$ Gaussian processes $O(N^2)/O(N^3)$ Support vector machines $O(T(P * N * log(N)))$ Random forests

$O(P^2 * N)$	Linear regression
$O(N^3)$	Gaussian processes
$O(N^2)/O(N^3)$	Support vector machines
O(T(P * N * log(N)))	Random forests
O(1 * N)	Tonic models

Big data in R

R stores data in RAM

Big data in R

R stores data in RAM

integers
4 bytes
numerics
8 bytes

Big data in R

R stores data in RAM

integers 4 bytes numerics 8 bytes

A matrix with 100m rows and 5 cols with numerics $100000000 * 5 * 8/(1024^3) \approx 3.8$

How to deal with large data sets

Handle chunkwise
Subsampling
More hardware
C++/Java backend (dplyr)
Reduce data in memory
Database backend

If not enough

Spark and SparkR

Fast cluster computations for ML /STATS

introduction to Spark

The End... for today. Questions? See you next time!