Deep Learning

Roll No.: - 19121028

Assignment No: 1

Title of the Assignment:

Linear regression by using Deep Neural network: Implement Boston housing price, prediction problem by Linear regression using Deep Neural network. Use Boston House price prediction dataset.

```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# Load the data from the CSV file
data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data",
                   delim_whitespace=True, header=None, names=['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PI
# Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(data.drop('MEDV', axis=1), data['MEDV'], test_size=0.2, random_state=42)
# Define the linear regression model
model = LinearRegression()
# Train the model
model.fit(X_train, y_train)
# Make predictions on the test set
y_pred = model.predict(X_test)
# Calculate the mean squared error
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
     Mean Squared Error: 24.291119474973478
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.preprocessing import StandardScaler
# Load the Boston Housing dataset
data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data",
                   delim_whitespace=True, header=None, names=['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PI
data.head()
           CRIM
                   ZN INDUS CHAS
                                     NOX
                                            RM
                                                 AGE
                                                        DIS RAD
                                                                   TAX PTRATIO
                                                                                      B LSTAT MEDV
      0 0.00632 18.0
                        2.31
                                0 0.538 6.575 65.2 4.0900
                                                               1 296.0
                                                                            15.3 396.90
                                                                                          4.98
                                                                                                24.0
      1 0.02731
                  0.0
                        7.07
                                0 0.469 6.421 78.9 4.9671
                                                               2 242.0
                                                                            17.8 396.90
                                                                                          9.14
                                                                                                21.6
      2 0.02729
                        7.07
                  0.0
                                0 0.469 7.185 61.1 4.9671
                                                               2 242.0
                                                                            17.8 392.83
                                                                                          4.03
                                                                                                34.7
```

```
3 0.03237
            0.0
                  2.18
                          0 0.458 6.998 45.8 6.0622
                                                         3 222.0
                                                                     18.7 394.63
                                                                                    2.94
                                                                                          33.4
4 0.06905
            0.0
                  2.18
                          0 0.458 7.147 54.2 6.0622
                                                         3 222.0
                                                                      18.7 396.90
                                                                                    5.33
                                                                                          36.2
```

```
data.columns
```

```
dtype='object')
```

```
data['MEDV']
```

- 0 24.0
- 21.6 1
- 2 34.7
- 33.4 3

```
...
501 22.4
502 20.6
503 23.9
504 22.0
505 11.9
Name: MEDV, Length: 506, dtype: float64
```

#Looking at the data with names and target variable data.head(n=10)

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2
5	0.02985	0.0	2.18	0	0.458	6.430	58.7	6.0622	3	222.0	18.7	394.12	5.21	28.7
6	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311.0	15.2	395.60	12.43	22.9
7	0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5	311.0	15.2	396.90	19.15	27.1
8	0.21124	12.5	7.87	0	0.524	5.631	100.0	6.0821	5	311.0	15.2	386.63	29.93	16.5
9	0.17004	12.5	7.87	0	0.524	6.004	85.9	6.5921	5	311.0	15.2	386.71	17.10	18.9

print(data.shape)

(506, 14)

data.isnull().sum()

CRIM INDUS 0 CHAS 0 NOX 0 RM 0 0 0 AGE DIS 0 RAD TAX PTRATIO 0 LSTAT 0 MEDV 0 dtype: int64

data.describe()

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.

data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):
# Column Non-Null Count Dtype
```

0	CRIM	506	non-null	float64			
1	ZN	506	non-null	float64			
2	INDUS	506	non-null	float64			
3	CHAS	506	non-null	int64			
4	NOX	506	non-null	float64			
5	RM	506	non-null	float64			
6	AGE	506	non-null	float64			
7	DIS	506	non-null	float64			
8	RAD	506	non-null	int64			
9	TAX	506	non-null	float64			
10	PTRATIO	506	non-null	float64			
11	В	506	non-null	float64			
12	LSTAT	506	non-null	float64			
13	MEDV	506	non-null	float64			
types: float64(12), int64(2)							

memory usage: 55.5 KB

#checking the distribution of the target variable import seaborn as sns sns.distplot(data.MEDV)

<ipython-input-11-366a0ef1c28f>:3: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see $\underline{\text{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}$

sns.distplot(data.MEDV) <Axes: xlabel='MEDV', ylabel='Density'>

#Distribution using box plot sns.boxplot(data.MEDV)

```
<Axes: >
correlation = data.corr()
correlation.loc['MEDV']
     CRIM
                -0.388305
                 0.360445
     ΖN
     INDUS
                -0.483725
                 0.175260
     CHAS
     NOX
                -0.427321
     RM
                 0.695360
     AGE
                -0.376955
     DIS
                 0.249929
     RAD
                -0.381626
                -0.468536
     \mathsf{TAX}
     PTRATIO
                -0.507787
                 0.333461
     LSTAT
                -0.737663
     MEDV
                 1.000000
     Name: MEDV, dtype: float64
                                                                                I
\mbox{\tt\#} plotting the heatmap
import matplotlib.pyplot as plt
fig,axes = plt.subplots(figsize=(15,12))
sns.heatmap(correlation,square = True,annot = True)
```



```
plt.figure(figsize=(20, 5))
features = ['LSTAT', 'RM', 'PTRATIO']
```

```
for i, col in enumerate(features):
   plt.subplot(1, len(features), i+1)
   x = data[col]
   y = data.MEDV
   plt.scatter(x, y, marker='o')
   plt.title("Variation in House prices")
   plt.xlabel(col)
   plt.ylabel("House prices in $1000")
```

```
Variation in House prices

10

10

10

11

10

11

10

11

10

11

11

12

13

14

15

18

20

PIRATIO
```

```
# Splitting the dependent feature and independent feature
#X = data[['LSTAT','RM','PTRATIO']]
X = data.iloc[:,:-1]
y= data.MEDV
\ensuremath{\mathtt{\#}} In order to provide a standardized input to our neural network, we need the
#perform the normalization of our dataset.
# This can be seen as an step to reduce the differences in scale that may arise
#from the existent features.
# We perform this normalization by subtracting the mean from our data and dividing it by the standard deviation.
# One more time, this normalization should only be performed by using the meanand standard deviation from the training set,
# in order to avoid any information leak from the test set.
mean = X train.mean(axis=0)
std = X_train.std(axis=0)
X_train = (X_train - mean) / std
X_{\text{test}} = (X_{\text{test}} - \text{mean}) / \text{std}
#Linear Regression
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
#Fitting the model
regressor.fit(X_train,y_train)
      ▼ LinearRegression
      LinearRegression()
# Model Evaluation
#Prediction on the test dataset
y_pred = regressor.predict(X_test)
# Predicting RMSE the Test set results
from sklearn.metrics import mean squared error
rmse = (np.sqrt(mean_squared_error(y_test, y_pred)))
print(rmse)
     4.928602182665338
from sklearn.metrics import r2_score
r2 = r2_score(y_test, y_pred)
print(r2)
# Neural Networks
#Scaling the dataset
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
```

```
5/18/23, 7:45 AM
                                                              19121012_DL_ASN_01.ipynb - Colaboratory
   X_train = sc.fit_transform(X_train)
   X_test = sc.transform(X_test)
         0.6687594935356318
   # Due to the small amount of presented data in this dataset, we must be carefulto not create an overly complex model,
   # which could lead to overfitting our data. For this, we are going to adopt anarchitecture based on two Dense layers,
   # the first with 128 and the second with 64 neurons, both using a ReLU activationfunction.
   # A dense layer with a linear activation will be used as output layer.
   # In order to allow us to know if our model is properly learning, we will use amean squared error loss function and to report the perform
   # By using the summary method from Keras, we can see that we have a total of10,113 parameters, which is acceptable for us.
   #Creating the neural network model
   import keras
   from keras.layers import Dense, Activation, Dropout
   from keras.models import Sequential
   model = Sequential()
   model.add(Dense(128,activation = 'relu',input_dim =13))
   model.add(Dense(64,activation = 'relu'))
   model.add(Dense(32,activation = 'relu'))
   model.add(Dense(16,activation = 'relu'))
   model.add(Dense(1))
   #model.compile(optimizer='adam', loss='mse', metrics=['mae'])
   model.compile(optimizer = 'adam',loss ='mean_squared_error',metrics=['mae'])
    !pip install ann_visualizer
    !pip install graphviz
    from ann_visualizer.visualize import ann_viz;
         Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/public/simple/</a>
         Collecting ann_visualizer
           Downloading ann_visualizer-2.5.tar.gz (4.7 kB)
           Preparing metadata (setup.py) ... done
         Building wheels for collected packages: ann_visualizer
           Building wheel for ann_visualizer (setup.py) ... done
           Created wheel for ann_visualizer: filename=ann_visualizer-2.5-py3-none-any.whl size=4167 sha256=b1b4c05c91208873a49ce351c16a7a555
           Stored in directory: /root/.cache/pip/wheels/6e/0f/ae/f5dba91db71b1b32bf03d0ad18c32e86126093aba5ec6b6488
         Successfully built ann_visualizer
         Installing collected packages: ann_visualizer
         Successfully installed ann_visualizer-2.5
         Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
         Requirement already satisfied: graphviz in /usr/local/lib/python3.10/dist-packages (0.20.1)
        4
    #Build your model here
    ann viz(model, title="DEMO ANN");
   history = model.fit(X_train, y_train, epochs=100, validation_split=0.05)
   # By plotting both loss and mean average error, we can see that our model wascapable of learning patterns in our data without overfitting
   from plotly.subplots import make_subplots
    import plotly.graph_objects as go
   fig = go.Figure()
   fig.add_trace(go.Scattergl(y=history.history['loss'],
   name='Train'))
   fig.add_trace(go.Scattergl(y=history.history['val_loss'],
    name='Valid'))
   fig.update_layout(height=500, width=700,
   xaxis_title='Epoch',
   yaxis_title='Loss')
    fig.show()
```

```
Epoch 1/100
  12/12 [=====
          Epoch 2/100
  Epoch 3/100
  Epoch 4/100
            ========== ] - 0s 9ms/step - loss: 89.8134 - mae: 7.3993 - val_loss: 74.14
  12/12 [=====
   Epoch 5/100
  Epoch 6/100
  Epoch 7/100
  Epoch 8/100
  Epoch 9/100
   Epoch 10/100
  Epoch 11/100
  Epoch 12/100
  12/12 [=============] - 0s 11ms/step - loss: 16.8629 - mae: 2.9965 - val_loss: 44.4
  Epoch 13/100
  12/12 [============== ] - 0s 13ms/step - loss: 15.6940 - mae: 2.8980 - val loss: 42.2
  Epoch 14/100
  Epoch 15/100
  12/12 [=============] - 0s 20ms/step - loss: 13.9116 - mae: 2.7373 - val_loss: 38.6
   Epoch 16/100
  Fnoch 17/100
  Epoch 18/100
  Epoch 19/100
   #Evaluation of the model
y_pred = model.predict(X_test)
mse_nn, mae_nn = model.evaluate(X_test, y_test)
print('Mean squared error on test data: ', mse_nn)
print('Mean absolute error on test data: ', mae_nn)
  4/4 [=========] - 0s 4ms/step
  Mean squared error on test data: 9.531891822814941
  Mean absolute error on test data: 1.9659347534179688
#Comparison with traditional approaches
#First let's try with a simple algorithm, the Linear Regression:
from sklearn.metrics import mean_absolute_error
lr_model = LinearRegression()
lr_model.fit(X_train, y_train)
y_pred_lr = lr_model.predict(X_test)
mse_lr = mean_squared_error(y_test, y_pred_lr)
mae_lr = mean_absolute_error(y_test, y_pred_lr)
print('Mean squared error on test data: ', mse_lr)
print('Mean absolute error on test data: ', mae_lr)
from sklearn.metrics import r2 score
r2 = r2_score(y_test, y_pred)
print(r2)
  Mean squared error on test data: 24.291119474973513
  Mean absolute error on test data: 3.1890919658878474
  0.8700204594160786
# Predicting RMSE the Test set results
from sklearn.metrics import mean squared error
rmse = (np.sqrt(mean_squared_error(y_test, y_pred)))
print(rmse)
   3.0873761423674453
# Make predictions on new data
import sklearn
new_data = sklearn.preprocessing.StandardScaler().fit_transform(([[0.1, 10.0,
5.0, 0, 0.4, 6.0, 50, 6.0, 1, 400, 20, 300, 10]]))
prediction = model.predict(new_data)
print("Predicted house price:", prediction)
   1/1 [=======] - 0s 22ms/step
   Predicted house price: [[11.541498]]
```

- V