- **1.** 存在一个闭集 A 使得 $(A)^{(\omega+1)} = \emptyset \neq (A)^{(\omega)}$ 按如下步骤定义集合:
 - $A_0 \triangleq \{0\}$
 - $A_1 \triangleq \{1, \frac{1}{2}, \frac{2}{3}, ..., \frac{n}{n+1}, ...\}$ (是闭集)
 - $A_2 \triangleq \{2\} \cup (1 + \frac{1}{2} \times A_1) \cup (1 + \frac{1}{2} + \frac{1}{6} \times A_1) \cup \dots \cup (1 + \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} \times A_1) \cup \dots$ (是闭集)
 - $A_k \triangleq \{n\} \cup \bigcup_{i \in \omega} (k + \frac{i}{i+1} + \frac{1}{(i+1)(i+2)} \times A_{k-1})$

定义 $A_{\omega} \triangleq \bigcup_{\alpha} A_i$ (是闭集), A_{ω} 中有 ω^{ω} 级的元素。 $A_{\omega}^{(\omega)} = \emptyset$. 故还需进行一次压缩, 定义 A:

$$A = \{ \frac{t}{t+1} \mid t \in A \} \cup \{1\}$$
 (是闭集)

有 $A^{(w)} = \{1\}, A^{(\omega+1)} = \emptyset$, 故存在闭集 A 使得题设成立。

2. 若把 $\overline{A} \leq \overline{B}$ 定义为存在 B 到 A 的满射,则康托伯恩斯坦定理是否依然成立?成立.

设 $f: A \to B, g: B \to A$ 均为满射。

- 因 $\forall b \in B$: $\exists a \in A$: f(a) = b, 不妨构造: $S_b = \{a \mid a \in A \land f(a) = b\}$, 易知 $A = \bigcup_{b \in B} S_b$ 且 $\forall b_1 \neq b_2$: $S_{b_1} \cap S_{b_2} = \emptyset$. 根据选择公理,存在一个集合 A',对每个 S_b , A' 包含且仅包含一个 S_b 中的元素。构造 $f': B \to A'$,使得 $\forall b \in B$: $\exists a \in A'$: f'(b) = a,即 f' 是一个单射。
- 同理构造 g'

根据康托伯恩斯坦定理,存在 A 到 B 的单射 g' 和 B 到 A 的单射 f',因此存在 A 到 B 的双射,证毕。

3. 若 α, β 是序数,且 $f: \alpha \to \beta$ 是保序双射 (同构), 则 $\alpha = \beta$ 且 f 是恒等映射

Solution:

不妨定义: $g = f^{-1}$, 易知 g 也是保序双射

• 证明子命题 1: $\forall a \in \alpha : a \subseteq f(a)$.

定义 $T = \{t \mid f(t) \in t\}$, 反设 $T \neq \emptyset$. 由良序公理, T 中有极小元 t_0 .

由 $t_0 \in t$,故 $f(t_0) \in t_0$ 。设 $t'_0 = f(t_0)$,由 f 保序且一一且 $t'_0 \in t_0$,有 $f(t'_0) \subset f(t_0)$,由序数性质知 $f(t'_0) \in f(t_0)$,即 $f(t'_0) \in t'_0$,故 $t'_0 \in T$. 与 t_0 是极小元矛盾。故子命题成立。

同理可证子命题 2: $\forall b \in \beta$: $b \subseteq g(b)$

- 证 $\alpha = \beta$. 反设 $\alpha \neq \beta$, 则 $\alpha \in \beta$ 或 $\beta \in \alpha$, 不妨假设 $\beta \in \alpha$. 由 $\beta \in \alpha$, 知 $\exists \gamma : \gamma \in \alpha \land \gamma \notin \beta$. 由三歧性即 $\gamma = \beta \lor \gamma \in \beta$ 。又因 $f(\gamma) \in \beta$,得 $f(\gamma) \in \gamma$. 与子命题矛盾。同理可证 $\alpha \in \beta$ 的情况有矛盾。故 $\alpha = \beta$.
- 证 f 恒等

假设 f 不恒等, 即 $\exists a: f(a) \neq a$, 由三歧性有 $f(a) \in a$ 或 $a \in f(a)$

-f(a) ∈ a: 与子命题 1 矛盾

 $-a \in f(a)$: 设 f(a) = b, 则 $g(b) \in b$ 与子命题 2 矛盾

故 $\forall a: f(a) = a$, f 是恒等映射。

(保序: $f: S \to T, \forall s_1 \ s_2 \in S: \ s_1 \subseteq s_2 \implies f(s_1) \subseteq f(s_2)$

- **4.** 任何一个实数集合都是一个可数集与一个无孤立点集的不交并设 $A \subseteq \mathbb{R}$ 为实数集合,记 $A^{(k)}$ 为 A 第 k 次求导的结果。
 - $\exists \alpha: \forall \alpha > \gamma: A^{(\alpha)} = (A^{(\alpha)})' = A^{(\gamma)}$ if:
 - $-\gamma$ 存在: 每求一次导必然去掉至少一个有理数对 (p,q), 且对任意 $x \neq y$ 且 x y 为孤立点,有理数对不相交 (否则与 $x \neq y$ 矛盾),故 $(p_x,q_x) \neq (p_y,q_y)$. 由此 $\alpha < \aleph_1$ (否则与 $\mathbb{Q} = \aleph_0$ 矛盾)。
 - 证明对所有 $\alpha' > \alpha$ 成立: 若 α 是后继序数,则存在 $\beta \geq \alpha$, $A^{(\alpha)} = A^{(\beta+1)}$, 由归纳假设知 $A^{(\alpha)} = (A^{(\beta)})' = (A^{(\gamma)})' = A^{(\gamma)}$ 若 α' 是极限序数,则 $A^{(\alpha)} = \bigcup_{\beta < \gamma} A^{(\beta)} = \bigcup_{\gamma \leq \beta < \alpha} A^{(\beta)}$ 。由归纳假设知满足条件的 $A^{(\beta)} = A^{(\gamma)}$,故 $A^{(\alpha)} = A^{(\gamma)}$

 $A^{(\gamma)}$ 是无孤立点集 (否则与 $A^{(\gamma)} = A^{(\gamma+1)}$ 矛盾)

- $B_{\alpha} = \{x \mid x \in A^{\alpha} \land x \notin A^{(\alpha+1)}\}$, $\bigcup_{\alpha < \gamma} B_{\gamma}$ 是可数集。 证: 定义 $C_{\alpha} = \{(p,q) \mid x \not\in A^{\alpha}$ 中的孤立点且 $(p,q) \cap A^{\alpha} = \{x\}\}$. 可建立 $\bigcup_{\alpha < \gamma} B_{\alpha}$ 到 $\bigcup_{\alpha < \gamma} C_{\alpha}$ 上的双射, 由因为 $\bigcup_{\alpha < \gamma} C_{\alpha}$ 的势小于等于 $\mathbb{Q} \times \mathbb{Q}$ 的势,故 $\bigcup_{\alpha < \gamma} B_{\alpha}$ 可数。
- $\prod A = (\bigcup_{\alpha \leq \gamma} B_{\alpha}) \uplus A^{(\gamma)}$, 其中前者是可数集,后者是无孤立点集。证毕
- **5.** 证明良序公理等价于对每个集合 X, 存在一个函数 $f:\mathcal{P}(X)\to X$, 使得对所有的 $Y\subseteq X, Y\neq\emptyset$ \Longrightarrow $f(Y)\in Y$

Solution:

良序公理:

$$\forall S: \ \forall T \subseteq S: \exists t \in T: \ \forall t' \in T: \ t \subseteq t'$$

选择函数公理:

$$\forall S: \exists f: \mathcal{P}(S) \to S: \forall T \subseteq S: T \neq \emptyset \implies P(T) \in T$$

- 良序公理 \to 选择函数公理: $\forall Y \in \mathcal{P}(X)$ 且 $Y \neq \emptyset$, 由良序公理可从中选出其极小元 y。定义 $f: \mathcal{P}(X) \to X$, $\forall Y \in \text{dom}(f) \land Y \neq \emptyset$, f(Y)等于 Y 中的极小元. f 是符合条件的选择函数。
- 选择函数公理 \rightarrow 良序公理: 只需找到某个序数 α , 建立 α 到 X 的一一映射即可。即将 $\alpha_0, \alpha_1, ..., \alpha_n, \in \alpha$ 一一映到 X 上, 定义 G 如下:

$$G(\alpha_0) = f(X)$$

$$G(\alpha_1) = f(X \setminus \{G(\alpha_0)\})$$

$$G(\alpha_2) = f(X \setminus \{G(\alpha_0), G(\alpha_1)\})$$
.....
$$G(\alpha_k) = f(X \setminus \{G(\alpha_i) \mid \alpha_i \in \alpha_k\})$$
.....

由 $\forall Y: f(Y) \in Y, G$ 最终会将序数列与 X 建立一一映射, 因此知 X 是良序的。

综上所述, 二者等价。

6. 每个不可数的 G_δ 实数集都有一个非空的完备子集 某不可数 G_δ 集 A 描述如下

$$A = \bigcap_{n \in \mathbb{N}} U_n$$
 其中 U_i 为开集

a. 构造实数集 [0,1] 到 A 的子集 D 的映射 h

由第四题结论, A 可以表达为:

$$A = B \cup C$$
 其中B是可数集, C为无孤立点集

C 不空 (因 A 不可数且 B 可数) 且 $C \subseteq \bigcap U_n$

故其中至少有一点 x_0 , 因此可以找到某个区间 $L \subseteq U_0$ (不妨令 |L| < 1) 使得

$$x_0 \in C \cap L$$

由 C 无孤立点,故必存在 $x_1 \neq x_0$ 使得

$$x_1 \in C \cap L$$

知闭区间 $I = [x_0, x_1] \subseteq L$ 。将 x_0, x_1 分开,分别用区间 L_0, L_1 (不妨令 $|L_0|, |L_1| < \frac{1}{2}$) 包含之即

$$x_0 \in L_0 \land x_1 \in L_1 \land L_0 \cap L_1 = \emptyset$$

同理可在 L_0 中找到除 x_0 外的一点 x_{01} , L_1 中除 x_1 外一点 x_{11} , (为方便记名,上一层的点 x_0 更名为 x_{00} , x_1 更名为 x_{10} , 每下一层,末尾加一个 0) 继续分割下去…… 下图描述了这一过程,同一层集族中的集合互不相交:

定义映射 $f: Z \to C$, 其中

$$f(z) = x_z$$

- 定义 Z: 长度是可数无穷多的 01 字符串构成的集合 $(Z = \{0,1\}^{\omega})$
- 定义 x_z : 由 $\{I_{z \mid n}\}^{-1}$ $(n \in \omega)$ 是一个区间套,根据区间套定理,在实数系中存在唯一的点 x_z 使得 $x_z \in I_{z \mid n}$ 易知 f 为单射 (若 $z_0 \neq z_1$ 则 $f(z_0) \neq f(z_1)$),由 f 定义知其为是满射。记 D = range(f)。 定义 $g: [0,1] \to Z$,g(x) 为实数 x 的二进制表示,易知 g 是 [0,1] 到 Z 的同构。 定义 $h = f \circ g$ 。

 $^{^1}I_{z \upharpoonright n}$: 设字符串 z 截取前 n 位为 z', 则 $I_{z \upharpoonright n} = I_{z'}.$ 例如 $I_{0011 \upharpoonright 3} = I_{001}$

b. 证明 h 是连续双射

因 f,g 为双射,故 $h:[0,1]\to D$ 为双射 任取 $y_1,y_2\in[0,1]$,对任意 $\xi>0$,取 $\delta=2^{\lfloor\log_2\xi\rfloor}$ 有:

$$|y_1 - y_2| < \delta \implies |h(y_1) - h(y_2)| < \xi$$

故 h 为 [0,1] 上的连续函数。同理可证 h^{-1} 为 D 上的连续函数。

c. 证明 D 是完备集

- D 无孤立点: 任取 D 中元素 y,在 [0,1] 中取收敛于 $h^{-1}(y)$ 的数列 $\{x_n\}$,因 h 连续,故 $\lim_{n\to\infty}h(x_n)=y$,故 y 是 D 中聚点。
- D 是闭集: 对任意 D 中的柯西列 $\{y_n\}$,由 h 连续知 $\{h^{-1}(y_n)\}$ 也是柯西列,记 $\lim_{n\to\infty} h^{-1}(y_n) = x_0$,因 [0,1] 是闭集,故 $x_0\in[0,1]$,因此 $h(x_0)$ 有定义且序列 $\{y_n\}\to h(x_0)$, $h(x_0)\in D$ 。因此 D 内所有聚点都在 D 中,故 D 为闭集。

综上所述,D 不可数且完备,故任意不可数的 G_δ 实数集 A 都有一非空完备子集。