TU Kaiserslautern

Research Member (GRTA)

TU Kaiserslautern

Research Member (GRTA)

Academic genealogy:

```
\ldots \to \mathsf{Gau} \$ \to \mathsf{Bessel} \to \mathsf{Scherk} \to \mathsf{Kummer} \to \mathsf{Frobenius} \to \mathsf{Schur}
```

ightarrow Brauer ightarrow Fong ightarrow Olsson ightarrow Külshammer ightarrow me ightarrow Dauter?

TU Kaiserslautern

Research Member (GRTA)

Academic genealogy:

```
\ldots \to \mathsf{Gau\$} \to \mathsf{Bessel} \to \mathsf{Scherk} \to \mathsf{Kummer} \to \mathsf{Frobenius} \to \mathsf{Schur} \\ \to \mathsf{Brauer} \to \mathsf{Fong} \to \mathsf{Olsson} \to \mathsf{K\"{u}lshammer} \to \mathsf{me} \to \mathsf{Dauter}?
```

TU Kaiserslautern

Research Member (GRTA)

Academic genealogy:

 $\ldots \to \mathsf{Gau\$} \to \mathsf{Bessel} \to \mathsf{Scherk} \to \mathsf{Kummer} \to \mathsf{Frobenius} \to \mathsf{Schur}$

ightarrow Brauer ightarrow Fong ightarrow Olsson ightarrow Külshammer ightarrow me ightarrow Dauter?

My preferences:

 \square groups \square algebras

TU Kaiserslautern

Research Member (GRTA)

Academic genealogy:

$$\ldots \to \mathsf{Gau} \$ \to \mathsf{Bessel} \to \mathsf{Scherk} \to \mathsf{Kummer} \to \mathsf{Frobenius} \to \mathsf{Schur} \\ \to \mathsf{Brauer} \to \mathsf{Fong} \to \mathsf{Olsson} \to \mathsf{K\"{u}lshammer} \to \mathsf{me} \to \mathsf{Dauter}?$$

My preferences:

TU Kaiserslautern

Research Member (GRTA)

Academic genealogy:

 $\ldots \to \mathsf{Gau\$} \to \mathsf{Bessel} \to \mathsf{Scherk} \to \mathsf{Kummer} \to \mathsf{Frobenius} \to \mathsf{Schur} \\ \to \mathsf{Brauer} \to \mathsf{Fong} \to \mathsf{Olsson} \to \mathsf{K\"{u}lshammer} \to \mathsf{me} \to \mathsf{Dauter}?$

My preferences:

 \square finite \square infinite

TU Kaiserslautern

Research Member (GRTA)

Academic genealogy:

 $\ldots \to \mathsf{Gau} \$ \to \mathsf{Bessel} \to \mathsf{Scherk} \to \mathsf{Kummer} \to \mathsf{Frobenius} \to \mathsf{Schur} \\ \to \mathsf{Brauer} \to \mathsf{Fong} \to \mathsf{Olsson} \to \mathsf{K\"{u}lshammer} \to \mathsf{me} \to \mathsf{Dauter}?$

My preferences:

✓ groups □ algebras

TU Kaiserslautern

Research Member (GRTA)

Academic genealogy:

 $\ldots \to \mathsf{Gau\$} \to \mathsf{Bessel} \to \mathsf{Scherk} \to \mathsf{Kummer} \to \mathsf{Frobenius} \to \mathsf{Schur} \\ \to \mathsf{Brauer} \to \mathsf{Fong} \to \mathsf{Olsson} \to \mathsf{K\"{u}lshammer} \to \mathsf{me} \to \mathsf{Dauter}?$

My preferences:

✓ groups □ algebras

 \square representations \square modules

TU Kaiserslautern

Research Member (GRTA)

Academic genealogy:

```
\ldots \to \mathsf{Gau\$} \to \mathsf{Bessel} \to \mathsf{Scherk} \to \mathsf{Kummer} \to \mathsf{Frobenius} \to \mathsf{Schur} \\ \to \mathsf{Brauer} \to \mathsf{Fong} \to \mathsf{Olsson} \to \mathsf{K\"{u}lshammer} \to \mathsf{me} \to \mathsf{Dauter}?
```

- ✓ groups □ algebras
- \square representations \square modules \square characters

TU Kaiserslautern

Research Member (GRTA)

Academic genealogy:

```
\ldots \to \mathsf{Gau\$} \to \mathsf{Bessel} \to \mathsf{Scherk} \to \mathsf{Kummer} \to \mathsf{Frobenius} \to \mathsf{Schur} \\ \to \mathsf{Brauer} \to \mathsf{Fong} \to \mathsf{Olsson} \to \mathsf{K\"{u}lshammer} \to \mathsf{me} \to \mathsf{Dauter}?
```

- ✓ groups □ algebras
- \checkmark finite \Box infinite
- \square representations \square modules \square characters
- \Box char = 0 \Box char > 0

TU Kaiserslautern

Research Member (GRTA)

Academic genealogy:

```
\ldots \to \mathsf{Gau\$} \to \mathsf{Bessel} \to \mathsf{Scherk} \to \mathsf{Kummer} \to \mathsf{Frobenius} \to \mathsf{Schur} \\ \to \mathsf{Brauer} \to \mathsf{Fong} \to \mathsf{Olsson} \to \mathsf{K\"{u}lshammer} \to \mathsf{me} \to \mathsf{Dauter}?
```

- ✓ groups □ algebras
- \Box representations \Box modules $\ensuremath{\,\,\overline{\vee}\,\,}$ characters
- \checkmark char = 0 \checkmark char > 0

TU Kaiserslautern

Research Member (GRTA)

Academic genealogy:

```
\ldots \to \mathsf{Gau\$} \to \mathsf{Bessel} \to \mathsf{Scherk} \to \mathsf{Kummer} \to \mathsf{Frobenius} \to \mathsf{Schur} \\ \to \mathsf{Brauer} \to \mathsf{Fong} \to \mathsf{Olsson} \to \mathsf{K\"{u}lshammer} \to \mathsf{me} \to \mathsf{Dauter}?
```

My preferences:

- ✓ groups □ algebras
- \checkmark finite \Box infinite
- ☐ representations ☐ modules ☐ characters
- \checkmark char = 0 \checkmark char > 0

splitting fields?

TU Kaiserslautern

Research Member (GRTA)

Academic genealogy:

```
\ldots \to \mathsf{Gau\$} \to \mathsf{Bessel} \to \mathsf{Scherk} \to \mathsf{Kummer} \to \mathsf{Frobenius} \to \mathsf{Schur} \\ \to \mathsf{Brauer} \to \mathsf{Fong} \to \mathsf{Olsson} \to \mathsf{K\"{u}lshammer} \to \mathsf{me} \to \mathsf{Dauter}?
```

√ groups	□ algebras
√ finite	□ infinite

Let ${\cal G}$ be a finite group and p a prime.

Let G be a finite group and p a prime. Let $B \subseteq Irr(G)$ be a p-block and let

$$p^d := \frac{|G|_p}{\min\{\chi(1)_p : \chi \in B\}}.$$

Let G be a finite group and p a prime. Let $B \subseteq Irr(G)$ be a p-block and let

$$p^d := \frac{|G|_p}{\min\{\chi(1)_p : \chi \in B\}}.$$

Richard Brauer, 1946:

Let G be a finite group and p a prime. Let $B \subseteq Irr(G)$ be a p-block and let

$$p^d := \frac{|G|_p}{\min\{\chi(1)_p : \chi \in B\}}.$$

Richard Brauer, 1946:

Theorem 8: A block B of defect d contains at most $p^{d(d+1)/2}$ ordinary characters.

It is probable that the bound $p^{d(d+1)/2}$ here can be replaced by p^d , but I have been able to prove this stronger result only for d=0,1,2.

Let G be a finite group and p a prime. Let $B \subseteq Irr(G)$ be a p-block and let

$$p^d := \frac{|G|_p}{\min\{\chi(1)_p : \chi \in B\}}.$$

Richard Brauer, 1946:

Theorem 8: A block B of defect d contains at most $p^{d(d+1)/2}$ ordinary characters.

It is probable that the bound $p^{d(d+1)/2}$ here can be replaced by p^d , but I have been able to prove this stronger result only for d=0,1,2,3