Trapping and imaging of single atom in the present of light shift

Yichao Yu May 17, 2016 Ni Group/Harvard

Single atom loading

• Similar to Ref1

Ref2

- MOT Loading
- Trapping
- Imaging
- Works for Cs

- Similar to Ref1 Ref2
- MOT Loading
- Trapping
- Imaging
- Works for Cs

- Similar to Ref1 Ref2
- MOT Loading
- Trapping
- Imaging
- Works for Cs

- Similar to Ref1 Ref2
- MOT Loading
- Trapping
- Imaging
- Works for Cs

- Similar to Ref1 Ref2
- MOT Loading
- Trapping
- Imaging
- Works for Cs

Add Histogram

2/7

- Inefficient cooling
- Reduced trap depth (for $\beta < 1$)
- Out of resonance

$$\bullet \ \beta = \frac{\alpha_e}{\alpha_g}$$

- Inefficient cooling
- Reduced trap depth (for $\beta < 1$)
- Out of resonance

$$\bullet \ \beta = \frac{\alpha_e}{\alpha_g}$$

- Inefficient cooling
- Reduced trap depth (for $\beta < 1$)
- Out of resonance

$$\bullet \ \beta = \frac{\alpha_e}{\alpha_g}$$

- Inefficient cooling
- Reduced trap depth (for β < 1)
- Out of resonance

$$\bullet \ \beta = \frac{\alpha_e}{\alpha_g}$$

- Inefficient cooling
- Reduced trap depth (for β < 1)
- Out of resonance

3/7

$$\beta = \frac{\alpha_e}{\alpha_g}$$

- Inefficient cooling
- Reduced trap depth (for $\beta < 1$)
- Out of resonance

Add photon-vs-detuning

3/7