FIT3036: Daisyworld Project specification

Jack Hosemans

September 1, 2015

Contents

1	Abstract		1	
2	Introduction			
3	J		2	
	3.1 Functional requirements		2	
	3.2 Non-functional requirements		2	
4	1 Project plan		2	
	4.1 Risk Analysis		2	
	4.2 Project Timeline		2	
5	5 Program design		3	
	5.1 Program architecture		3	
	5.2 Basic program flow overview		4	
	5.3 Update world flow		4	
6	References			
7	7 Appendix		4	

1 Abstract

Daisyworld is a computer simulation proposed by James Lovelock and Andrew Watson in a paper published in 1983. It proposes the possibility of a simple system that self regulates via the albedo of the two kinds of daisies that grow on an isolated planet. In an attempt to illustrate the effects of a species causing the local environment to be detrimental to its own growth,

the computer simulation is modified by having the two types of daisies flourish at different temperatures. (Should I change my design spec?)

2 Introduction

What problem am I actually solving?

3 Project requirements

3.1 Functional requirements

3.2 Non-functional requirements

4 Project plan

4.1 Risk Analysis

What risks are there in doing this project? How can I mitigate them? To what order are the risks involved?

Risk	Chance	Impact	Mitigation
Misunderstanding of project	Medium	High	Clarify with supervisor
${ m specification}$			
Hardware failure	Low	Medium	Use off site backups and
			multiple machines
Scope creep	Medium	High	Follow initial design as
			Closely as possible.
			Implement as little
			logic as required.

4.2 Project Timeline

- \bullet Weeks 1 to 4
 - Read relevant documentation on Daisyworld
 - Figure out implementation of agent based models and how it can be applied to simulation
 - Choose modification of model
- Week 5

- Implement initial prototype of simulation
- Week 6
 - Implement UI interaction for simulation
 - Modify simulation slightly, with user option to enable/disable
- Week 7
 - Start gathering data for different parameters
- Week 8
 - ???
- Week 9
 - Profit!

5 Program design

5.1 Program architecture

5.2 Basic program flow overview

5.3 Update world flow

6 References

7 Appendix