Eigen-9

Title

Eigenvalue and static analysis of a 5- level pyramid building under lateral loads.

Description

Perform the eigenvalue analysis of a pyramid building. Calculate the natural frequencies and the displacements of each floor due to static lateral loads.

(a) Elevation of the structure

Stuctural analysis model

Plan dimensions of each floor

Model

Analysis Type

3-D static and eigenvalue analysis

Unit System

in, kip

Dimension

Length 70×12 in Width 70×12 in Height $5 \times 12.125 \times 12$ in

Floor load W = 100 psf

Floor mass $M = 1.7972 \times 10^{-6} \text{ kips} \cdot \text{sec}^2/\text{in}$

Nodes $42 \sim 45$ are the master nodes for the $4^{th} \sim 1^{st}$ levels in a decending order respectively.

Gravitational acceleration $g = 386.4 \text{ in/ sec}^2$

Mass and rotational mass moment of inertia at each floor.

Floor	Master node	Mass, M _X =M _Y	Rotational mass moment of inertia, I _m
4	42	0.0507246	238.6087
3	43	0.2028986	3817.7391
2	44	0.4565217	19327.3044
1	45	0.8115942	61083.8261

Element

Beam element

Material

Modulus of elasticity E = 29500 ksiPoisson's ratio ν = 0.3

Section Property

Horizontal beams	Area	A	$= 13.5 \text{ in}^2$
	Effective Shear Area	A_{sy}	$= 6.5016 \text{ in}^2$
		A_{sz}	$= 6.1105 \text{ in}^2$
	Torsional stiffness	I_{xx}	$= 1.22 \text{ in}^4$
	Moment of inertia	I_{yy}	$= 712.0 \text{ in}^4 \text{ (Strong axis)}$
		I_{zz}	$= 22.5 \text{ in}^4 \text{ (Weak axis)}$
Diagonals	Area	A	$= 11.7 \text{ in}^2$
	Effective Shear Area	A_{sy}	$= 2.97 \text{ in}^2$
		A_{sz}	$= 7.532 \text{ in}^2$
	Torsional stiffness	I_{xx}	$= 1.12 \text{ in}^4$
	Moment of inertia	I_{yy}	$= 146.0 \text{ in}^4 \text{ (Strong axis)}$
		I_{zz}	$=49.1 \text{ in}^4 \text{ (Weak axis)}$

Boundary Condition

Nodes $6 \sim 41$ (at an increment of 5); Constrain all DOFs.

Nodes $42 \sim 45$; Constrain Dx, Dy and Rz of all nodes at each

level to these nodes. (Master nodes)

Analysis Case

Floor masses are assigned to the master nodes in the directions of X and Y-axes. Rotational mass moment of inertia about Z- axis, $I_m = M \times (b^2 + h^2)/12$ is assigned to each master node..

Load Case 1 ; A lateral load, 20 kips is applied to the master nodes at each floor in the X direction.

Load Case 2; A lateral load, 20 kips is applied to the master nodes at each floor in the direction 45 degrees counterclockwise from the X-axis.

Number of natural frequencies to be computed = 9

Results

Eigenvalue Analysis Results

				ΕI	GENV	ALUE	ΑN	ALYSI	S				
	Mode	Frequency			Per	iod	Tolerance						
	No	(rad/	sec)	(cycle	(cycle/sec) (sec)		ec)	Tolerance					
	1	51,936044		8	,265878	0	,120979	6,743	86e-016				
	2	51	,936044	8	,265878	0	,120979	5,05	77e-016				
	3	99	,591127	15	,850420	0	,063090	3,66	79e-016				
	4	99	,591127	15	,850420		,063090	3,66	79e-016				
	5	103	,027287	16	397302		,060986	0,00	00e+000				
	6	158	,020893	25	,149806		,039762	1,60	26e-015				
	7		,020893		,149806		,039762		10e-015				
	8		,034308		3,746308		,029633	<u> </u>	11e-014				
	9	263	,121148		,877031		,023879		60e-014				
								S(%) PR					
	Mode	TRA		TRA		TRA		ROT		ROT		ROT	
	No	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM
	1	2,03	2,03	94,88	94,88	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	2	94,88	96,91	2,03	96,91	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
1	3	1,42	00 22	0,95	97,85	0,00	0.00	0.001	0,00	0,00	0.00	0,00	0,00
		_	98,33			-	0,00	0,00		_		_	
	4	0,95	99,28	1,42	99,28	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	4 5	0,95 0,00	99,28 99,28	1,42 0,00	99,28 99,28	0,00	0,00 0,00	0,00 0,00	0,00 0,00	0,00 0,00	0,00 0,00	0,00 95,04	95,04
	4 5 6	0,95 0,00 0,09	99,28 99,28 99,37	1,42 0,00 0,61	99,28 99,28 99,89	0,00 0,00 0,00	0,00 0,00 0,00	0,00 0,00 0,00	0,00 0,00 0,00	0,00 0,00 0,00	0,00 0,00 0,00	0,00 95,04 0,00	95,04 95,04
	4 5 6 7	0,95 0,00 0,09 0,61	99,28 99,28 99,37 99,98	1,42 0,00 0,61 0,09	99,28 99,28 99,89 99,98	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	0,00 95,04 0,00 0,00	95,04 95,04 95,04
	4 5 6 7 8	0,95 0,00 0,09 0,61 0,00	99,28 99,28 99,37 99,98 99,98	1,42 0,00 0,61 0,09 0,00	99,28 99,28 99,89 99,98 99,98	0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00	0,00 95,04 0,00 0,00 4,94	95,04 95,04 95,04 99,97
	4 5 6 7	0,95 0,00 0,09 0,61	99,28 99,28 99,37 99,98	1,42 0,00 0,61 0,09	99,28 99,28 99,89 99,98 99,98	0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	0,00 95,04 0,00 0,00	95,04 95,04 95,04

Displacements

_								
	Node	Load	DX (in)	DY (in)	DZ (in)	RX ([rad])	RY ([rad])	RZ ([rad])
-	1	CASE1	0.071174	0.000000	0.000000	0.000000	0.000112	0.000000
	42	CASE1	0.054813	0.000000	0.000000	0.000000	0.000000	0.000000
	43	CASE1	0.040476	0.000000	0.000000	0.000000	0.000000	0.000000
	44	CASE1	0.027948	0.000000	0.000000	0.000000	0.000000	0.000000
	45	CASE1	0.015033	0.000000	0.000000	0.000000	0.000000	0.000000
	1	CASE2	0.050327	0.050327	0.000000	-0.000079	0.000079	0.000000
	42	CASE2	0.038758	0.038758	0.000000	0.000000	0.000000	0.000000
	43	CASE2	0.028621	0.028621	0.000000	0.000000	0.000000	0.000000
	44	CASE2	0.019762	0.019762	0.000000	0.000000	0.000000	0.000000
	45	CASE2	0.010630	0.010630	0.000000	0.000000	0.000000	0.000000

Vibration modes of the structure

X-displacements of the structure (Node 1)

Comparison of Results

Natural Periods

	nıt	•	sec
•	HILL		301

Mada	Natural period			
Mode	ETABS	MIDAS/Civil		
1 st	0.12098	0.12098		
2^{nd}	0.12098	0.12098		
$3^{\rm rd}$	0.06309	0.06309		
$4^{ ext{th}}$	0.06309	0.06309		
5 th	0.06099	0.06099		
6^{th}	0.03976	0.03976		
$7^{ m th}$	0.03976	0.03976		
8^{th}	0.02963	0.02963		
9 th	0.02388	0.02388		

Displacements at each level

Unit: in

		Displacement					
Load Case	Level	ETA	ABS	MIDAS/ Civil			
		δ_{X}	δ_{Y}	δ_{X}	δ_{Y}		
1	1 st	0.01503		0.01503			
	2^{nd}	0.02795		0.02795			
	3^{rd}	0.04048		0.04048			
	4^{th}	0.05481		0.05481			
	5 th	0.07117		0.07117			
2	1 st	0.01063	0.01063	0.01063	0.01063		
	2^{nd}	0.01976	0.01976	0.01976	0.01976		
	3^{rd}	0.02862	0.02862	0.02862	0.02862		
	4^{th}	0.03876	0.03876	0.03876	0.03876		
	5 th	0.05033	0.05033	0.05033	0.05033		

Reference

"ETABS, Examples Manual", Version 6.0 Computers and Structures, Inc., Berkeley, California, 1994, Example 18.