Lecture 12: Gradient

1 Gradient

1.1 Introduce Gradient

According to the chain rule, suppose that there is a function w = w(x, y, z), where x = x(t), y = y(t), and z = z(t), then

$$\frac{dw}{dt} = w_x \frac{dx}{dt} + w_y \frac{dy}{dt} + w_z \frac{dz}{dt}$$

$$= \langle w_x, w_y, w_z \rangle \cdot \langle \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \rangle$$

$$= \nabla w \cdot \frac{d\vec{r}}{dt}$$

$$\nabla w = \langle w_x, w_y, w_z \rangle$$

$$\frac{d\vec{r}}{dt} = \langle \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \rangle$$

The vector $\langle w_x, w_y, w_z \rangle$ is called gradient, denoted as ∇w . Gradients on different positions can have different directions and magnitude.

1.2 A Property of Gradient

Theorem. The gradient of a function is always perpendicular to the level surfaces of the function, where a level surface means the set of points on the function domain whose function values are equal to a constant.

Notice that the level surfaces refer to points in the function domain, rather than on the function graph. It doesn't include the dimension of the function value.

Example 1. Examine the relation between the gradient and the level surfaces for the function $w = a_1x + a_2y + a_3z$.

$$\frac{\partial w}{\partial x} = a_1$$

$$\frac{\partial w}{\partial y} = a_2$$

$$\frac{\partial w}{\partial z} = a_3$$

$$\nabla w = \langle a_1, a_2, a_3 \rangle$$

The level surfaces of the function $w = a_1x + a_2y + a_3z = c$, where c is any constant, are a series of planes parallel to each other. For any level surfaces of the function, the gradient ∇w is a normal vector to it. Therefore, the gradient is always perpendicular to the level surfaces for the function $w = a_1x + a_2y + a_3z$.

Example 2. Examine the relation between the gradient and the level surfaces for the function $w = x^2 + y^2$.

$$\frac{\partial w}{\partial x} = 2x$$

$$\frac{\partial w}{\partial y} = 2y$$

$$\nabla w = \langle 2x, 2y \rangle = \langle x, y \rangle$$

The level surfaces of the function $w = x^2 + y^2 = c$, where c is any constant, are a series of circles whose centers are the origin. At any point (x_0, y_0) in the function domain, the gradient vector is $\langle x_0, y_0 \rangle$, which has the same direction as the radius through (x_0, y_0) on the level surface $x^2 + y^2 = x_0^2 + y_0^2$. A circle's radius is always perpendicular to the circle, hence the gradient vector is perpendicular to the level surface. Therefore, the gradient is always perpendicular to the level surfaces for the function $w = x^2 + y^2$.

Proof of the theorem:

Suppose there is a curve $\vec{r} = \vec{r}(t)$ that always stays on a level surface of a function f. The velocity vector $\frac{d\vec{r}}{dt}$ is tangent to the curve, and therefore tangent to the level surface on which the curve stays.

By chain rule, on any level surfaces it satisfies the following equation:

$$\frac{df}{dt} = \nabla f \cdot \frac{d\vec{r}}{dt} = 0$$

Therefore, at any points of a curve that stays on a level surface:

$$\nabla f \perp \frac{d\vec{r}}{dt}$$

The same reasoning applies to any curves on a level surface, so at any points on a level surface, the gradient ∇f is perpendicular to velocity vectors of every direction, which are tangent to the level surface. Therefore, at any points on a level surface, the gradient ∇f is perpendicular to the tangent plane to the level surface.

1.3 Application of Gradient

We can use gradients to find the equation of the tangent line of a function graph at any points.

Example 3. Find the equation of the tangent plane to the surface $x^2 + y^2 - z^2 = 4$ at the point (2, 1, 1).

Solution:

The surface $x^2 + y^2 - z^2 = 4$ is a level surface of the function $w = x^2 + y^2 - z^2$.

$$\begin{split} \frac{\partial w}{\partial x} &= 2x \\ \frac{\partial w}{\partial y} &= 2y \\ \frac{\partial w}{\partial z} &= -2z \\ \nabla w &= <2x, 2y, -2z> = < x, y, -z> \end{split}$$

Hence the gradient of the function at the point (2, 1, 1) is (2, 1, -1). According to the property of gradients, the gradient is perpendicular to the tangent plane of the corresponding level surface at the point. Therefore, the equation of the tangent plane is

$$2x + y - z = c$$
, where c is a constant

Then we can substitute the coordinate of the point (2, 1, 1) into the plane equation:

$$c = 2 \times 2 + 1 \times 1 - 1 \times 1 = 4$$

Therefore, the equation of the tangent plane to the surface $x^2 + y^2 - z^2 = 4$ at the point (2, 1, 1) is

$$2x + y - z = 4$$

2 Directional Derivatives

2.1 Introduce Directional Derivatives

How to calculate the partial derivative towards any direction \vec{u} , rather than only along the x axis and y axis?

Suppose there is a multivariable function f(x,y), and an unit vector $\hat{\vec{u}} = \langle a,b \rangle$. The partial derivative along a direction is the rate of change of the function value f(x,y) over the arclength, hence we need the differential of the arclength along the direction of $\hat{\vec{u}}$, which is denoted by ds.

By chain rule, we have

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

$$\frac{df}{ds} = \frac{\partial f}{\partial x}\frac{dx}{ds} + \frac{\partial f}{\partial y}\frac{dy}{ds}$$

$$\frac{df}{ds} = \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle \cdot \langle \frac{dx}{ds}, \frac{dy}{ds} \rangle$$

$$\frac{df}{ds} = \nabla f \cdot \frac{d\vec{r}}{ds}$$

Therefore, we need to describe the position vector \vec{r} along the straight line trajectory with the direction \vec{u} using the parameter s, the arclength.

$$\begin{cases} x(s) = x_0 + as \\ y(s) = y_0 + bs \end{cases}$$
$$\frac{d\vec{r}}{ds} = \langle a, b \rangle$$
$$\frac{d\vec{r}}{ds} = \vec{u}$$

Therefore,

$$\frac{df}{ds} = \nabla f \cdot \frac{d\vec{r}}{ds}$$
$$= \nabla f \cdot \vec{u}$$

which is the formula for directional derivatives.

Definition. The instantaneous rate of change of a multivariable function f at a given direction \vec{u} is called the directional derivative, whose notation is $\frac{df}{ds}|_{\vec{u}}$. The formula of directional derivatives is

$$\frac{df}{ds}|_{\vec{u}} = \nabla f \cdot \vec{u}$$

2.2 Geometric Interpretation of Directional Derivatives

For a multivariable function f with two independent variables, the geometric interpretation of the function toward a direction \vec{u} is the slope of the slice of the function graph by a vertical plane parallel to \vec{u} .

Example 4. Verify the formula of directional derivatives by finding the partial derivative along the x axis.

Suppose there is a multivariable function f(x,y).

$$\begin{split} \frac{\partial f}{\partial x} &= \nabla f \cdot \vec{i} \\ &= <\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} > \cdot \vec{i} \\ &= \frac{\partial f}{\partial x} \end{split}$$

2.3 Max/Min of Directional Derivatives

According to the geometric interpretation of dot product of vectors:

$$\begin{aligned} \frac{df}{ds}|_{\vec{u}} &= \nabla f \cdot \vec{u} \\ &= |\nabla f| \times |\vec{u}| \times \cos \theta \\ &= \cos \theta \times |\nabla f| \end{aligned}$$

We can see that the directional derivative changes as the angle θ between its direction and the gradient vector changes. It is obvious that at a given point:

- The directional derivative with the maximum value has the same direction as the gradient, and the maximum value is the magnitude of the gradient.
- The directional derivative with the minimum value has the opposite direction to the gradient, and the minimum value is the negative value of the magnitude of the gradient.