

every millisecond counts

Surveiller, prédire et analyser les éléments clés de connectivité d'un réseau: latence, fiabilité & débit

Information pour le Hackathon CodeML

Challenge LatenceTech (FR)

- Contexte: Notre agent logiciel, nomme QoSAgent, génère des mesures de latence réseau à chaque 2 secondes en utilisant les protocoles TCP, UDP, HTTP, ICMP et TWAMP. Ces mesures (time-series) sont agrégées et visualisées en quasi-temps-réel.
- **Existant**: Aujourd'hui, nous utilisons une méthode statistique simple (« exponential smoothing ») pour prédire, en environ en 150ms, la latence moyenne des protocoles (ex. 10,4 ms) pour les 6 prochaines valeurs soit +5sec, +10secs, 15 ... 30 secondes avec un niveau de confiance convenable (+80%).
- Ambition: Nous aimerions si vous pouviez tester de nouvelles méthodes basées sur ML et avec d'autres données collectées afin d'obtenir de meilleures prédictions (à +30 secs) et aussi tenter de prédire plus loin dans le futur proche.
- Note: La capacité à prédire rapidement (en moins de 0,5 seconde) est aussi importante que la précision de la prédiction (basée sur « mean squared error »)
- Challenge: pouvez-vous faire mieux avec une méthode basée ML?

LatenceTech Challenge (EN)

- Background: Our software agent, called QoSAgent, generates network latency measurements every 2 seconds using TCP, UDP, HTTP, ICMP and TWAMP protocols. These measurements (time-series) are aggregated and visualized in near real-time.
- Existing solution: Today, we use a statistical method (exponential smoothing) to predict, in approximately 150ms, the average latency of measured protocols in milliseconds (ex. 10,4 ms) for the next 6 values i.e. +5 secs, +10, 15 ... +30 seconds with a suitable level of confidence (+80%).
- Objective: We would like if you could test new methods based on ML and with other collected data in order to get better predictions (at +30 secs) and also attempt to predict further into the near future.
- O **Note**: The ability to predict quickly (in less than 0.5 seconds) is as important as the accuracy of the prediction (based on mean squared error.)
- Challenge: can you do better with an ML-based method?

La solution LatenceTech

Bénéfices des réseaux à haute vitesse (5G, FTTH, LEO, WIFI)

Très haute FIABILITÉ

99,99%

^{*} Temps de réponse pour traverser le réseau

Mesure de performance de la connectivité

destination»

Les innovations demandent une connectivité maitrisée

Applications industrielles

Automatisation avancée

Robots

collaboratifs

Véhicules autonomes ou téléopérés

Services numériques

Services connectés

dans le véhicule

Jeux en

IA générative

Variations de latence ou de débit observées

Services inutilisables Risques de sécurité Faible expérience

Récents événements dus à des variations de connectivité

Un robot industriel défaillant au salon de la chaîne d'approvisionnement à Chicago

Téléopération de véhicule lourd avec perte de flux video, Australie

Robotaxis Cruise à l'arrêt à San Francisco, USA LATENCETECH

Solution LatenceTech

SURVEILLANCE

avec données en temps réel

PRÉDICTIONS

pour assurer sureté et continuité

DIAGNOSTIQUES

pour comprendre les variations

<u>É</u>VALUATIONS

des performances du réseau

Valeur pour véhicules connectés

Supporter la téléconduite et l'autonomie

cartes thermiques

prévisions

PRÉDICTIONS de la connectivité à faible latence en support de la mobilité avancée

Solution active de monitoring

(Envoi de paquets typés pour générer des indicateurs clés de qualité)

Architecture de la solution logicielle

Solution logicielle prête pour les déploiements clients

Tableau de bord avec ICP (KPI) de qualité

dynamiques

Détection d'anomalies

Prévisions de latence à court terme

Gen-Al Diagnostics & Recoms (beta)

LATENCETECH

Prévision de niveau de latence (prochaines 90 secondes)

Méthodes testées par LatenceTech

Contact: bikram@latencetech.com

Experiments with 5G data collection

- Performed univariate forecasting using the 5G data collected for around 4 weeks
- Experimented with combined <u>DNN and stats</u> approach by using LSTM to predict a baseline and combination of EWMA and Epanechnikov Kernel sampling to predict short term fluctuations
- Experimented using DeepAR by Amazon
- Experimented using Global Darts models LSTM, NBEATSModel, NHiTSModel, TCNModel, TransformerModel, TFTModel, DLinearModel, NLinearModel, TiDEModel, TSMixerModel, LightGBMModel, CatBoostModel, XGBModel
- Experimented using local darts models which don't require training such as ARIMA,
 Exponential Smoothing, Theta, and Facebook Prophet
- All models performed worse than the current CNN model for explaining the variance as the previous model was positive in R2 score but the new models were negative
- However, the DeepAR and Darts TCN performed better than current CNN implementation for mean absolute error
- The Exponential Smoothing, ARIMA, Prophet and Theta also outperformed the CNN model with Exponential Smoothing beating all other models
- The Exponential Smoothing doesn't need any training time, just 3-4 minutes of data.

Modeling Results (top 2 deep learning and stats models)

Model	Mean Absolute Error
CNN (previous)	0.57
DeepAR	0.43
Darts TCN	0.46
ARIMA	0.32
Exponential Smoothing (new)	0.28

Forecasting Model Architecture

Forecasting Dashboard (actual)

LATENCETECH

Available datasets

Contact: bikram@latencetech.com

Datasets

- 1. **File**: latencymeasures_geoloc_752813491_Sept16th2024, CSV format, 1272 rows, with timestamp, agent ID, GPS position, latency results in milliseconds for icmp, http, tcp and udp protocols.
- 2. **File**: latencymeasures_geoloc_752813491_Sept20th2024, CSV format, 665 rows, with timestamp, agent ID, GPS position, latency results in milliseconds for icmp, http, tcp and udp protocols.
- 3. File: to be provided if required

Targeted Use case: Smart Mobility

Solution used to collect real-time QoS data while self-driving and latency predictions to warn ADAS system of a network quality degradation

Smart Mobility Use Case →

Support self-driving "connected" vehicles with connectivity information and prediction to ensure safety and system reliability

Merci

LATENCETECH

C-Corp based in Montreal, Canada

Benoit Gendron
CEO & co-fondateur
+1-438-399-7009
benoit.gendron@latencetech.com

Emmanuel Audousset
CRO & co-fondateur
+ 33 608 613 482

emmanuel@latencetech.com

Chloé Durand
COO & co-fondateur

