Examen partiel 2 - Vendredi 4 mai 2018 - Durée: 60 min

Aucun document, pas de téléphone, pas de calculatrice.

Nom: SKETCH OF Prénom: The Solution Signature:

Exercice 1: Exercice 2: Total	/20:
-------------------------------	------

Exercise 1 (Classifieur Naïf de Bayes, ≃ 10 pts)

On considère un problème de classification binaire où l'étiquette de classe est notée $Y \in \{0,1\}$ et chaque exemple d'entraînement X contient 2 attributs binaires $X_1, X_2 \in \{0,1\}$. Dans ce problème, on admet que X_1 et X_2 sont conditionnellement indépendants étant donné Y, c'est-à-dire $\Pr_V(X_1, X_2|Y) = \Pr_V(X_1|Y)\Pr_V(X_2|Y)$, que les probabilités a priori sont $\Pr_V(Y=0) = \Pr_V(Y=1) = 0.5$, et que les probabilités conditionnelles sont :

$\Pr_V(X_1 Y)$	$X_1 = 0$	$X_1 = 1$
Y = 0	0.7	0.3
Y = 1	0.2	8.0

$\Pr_V(X_2 Y)$	$X_2 = 0$	$X_2 = 1$
Y = 0	0.9	0.1
Y = 1	0.5	0.5

La notation $\Pr_V(\cdot)$ indique qu'il s'agit de la vraie distribution des variables aléaatoires. La distribution des variables aléaoires modélisée par le test na $\widehat{\mathbf{n}}$ de Bayes sera notée $\Pr_{NB}(\cdot)$.

Le taux d'erreur d'un classifieur est la probabilité que le classifieur fournisse une prédiction incorrecte pour une observation donnée Z: si Y est la vraie étiquette et $Z = Z(X_1, X_2)$ est l'observation utilisée pour prendre une décision ($Z = X_1$, $Z = X_2$ ou $Z = (X_1, X_2)$ dans la suite de l'exercice) et si $\hat{Y}(Z)$ correspond à la classe prédite, alors le taux d'erreur est

$$\Pr_{V}(Y \neq \hat{Y}(Z)) = \sum_{x_{1}=0}^{1} \sum_{x_{2}=0}^{1} \Pr_{V}(X_{1} = x_{1}, X_{2} = x_{2}, Y = 1 - \hat{Y}(Z(x_{1}, x_{2}))).$$

1. Rappeler la règle de décision du Maximum A Posteriori (MAP) du test naïf de Bayes qui exploite uniquement l'attribut X_1 . Montrer que cette règle de décision nécessite uniquement de connaître la distribution conjointe $Pr_{NB}(X_1, Y)$.

2. Écrire le test naïf de Bayes qui exploite uniquement l'attribut X_1 pour les 2 valeurs possibles de X_1 . Écrire les réponses dans le tableau suivant :

X_1	$\Pr_{NB}(X_1, Y=0)$	$\Pr_{NB}(X_1, Y = 1)$	$\hat{Y}(X_1)$
0	0.7/2=0.55	0.1	0
1	0.3/2=0.15	0.4	1

Justifier vos calculs ci-dessous:

$$R_{NB}(X_{1}=0,Y=0)=R_{NB}(X_{1}=0|Y=0)R_{NB}(Y=0)$$

$$=R_{V}(X_{1}=0|Y=0)R_{V}(Y=0)$$

$$=0.7 \times 1/2 = 0.37$$

3. Calculer le taux d'erreur p_1 du test na \ddot{i} f de Bayes qui exploite seulement X_1 .

$$P_{1} - P_{1}(X_{1} = 0, Y = 1) + P_{1}(X_{1} = 1, Y = 0)$$

$$= 0.1 + 0.1Y = 0.2Y$$

4. Écrire le test naïf de Bayes qui exploite uniquement l'attribut X_2 pour les 2 valeurs possibles de X_2 . Écrire les réponses dans le tableau suivant :

X_2	$\Pr_{NB}(X_2, Y=0)$	$\Pr_{NB}(X_2, Y=1)$	$\hat{Y}(X_2)$
0	0.45	0.25	0
1	0.05	0.25	1

Justifier vos calculs ci-dessous:

$$P_{NNS}(X_2 = 0, Y = 0) = P_{NN}(X_2 = 0|Y = 0) P_{NN}(Y = 0)$$

$$- 0.9 \times 1 = 0.47$$

UNS/LF 2/7 2017/2018

5. Calculer le taux d'erreur p_2 du test na \ddot{i} f de Bayes qui exploite seulement X_2 .

$$P_{2}^{-} = 0.2T + 0.05 = 0.3.$$

6. Écrire le test na \ddot{i} de Bayes pour les 4 configurations possibles de X_1, X_2 . Écrire les réponses dans le tableau suivant :

X_1	X_2	$\Pr_{NB}(X_1, X_2, Y = 0)$	$\Pr_{NB}(X_1, X_2, Y = 1)$	$\hat{Y}(X_1, X_2)$
0	0	0.315	0.2×0.7×0.7 = 0.05	0
0	1	0.7x0.1x0.5 = 0.035	0.2×0.7×0.5=0.05	1
1	0	0.3 x 0.9xb. (=0.135	0.8 x0.7 x0.5 = 0.2	2
1	1	63 x0.1x0.7=0.015	0.8×05×05=0.2	1

Justifier vos calculs ci-dessous:

$$P_{NM}(X_1 = 0, X_2 = 0, Y = 0) = P_{NM}(X_1 = 0, X_2 = 0, Y = 0) P_{NM}(Y_2)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2 = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2 = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2 = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2 = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0) P_{NM}(Y_2 = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0, Y = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}(X_2 = 0, Y = 0)$$

$$= P_{NM}(X_1 = 0, Y = 0) P_{NM}($$

7. Calculer le taux d'erreur $p_{1,2}$ du test naïf de Bayes qui exploite X_1 et X_2 .

$$P = 0.05 + 0.035 + 0.015$$

$$= 0.235$$

UNS/LF 3/7 2017/2018

8. On suppose maintenant créer un nouveau attribut X_3 qui est une copie déterministe de X_2 . Écrire le test na \ddot{i} f de Bayes pour les 8 configurations possibles de X_1 , X_2 et X_3 .

X_1	X_2	X_3	$Pr_{NB}(X_1, X_2, X_3, Y = 0)$	$Pr_{NB}(X_1, X_2, X_3, Y = 1)$	$\hat{Y}(X_1, X_2, X_3)$
0	0	0	0.7x0,9x0,2x0,T	0,2x05x05x05	0
0	0	1	0.7 x 0.9 x 0.1 x 0.T	0.2x05x05x01	0
0	1	0	0.7 x0.1 x 0.9 x u. r	0,2xv.5x0.5x0.5	0
0	1	1	0.7x0,1x0.1 x0.5	02 405 105 405	1
1	0	0	0.3x09x0.9x0.	0.8 × 05 x0.1 x0,1	0
1	0	1	03 ×09 x01 x0.	0.1×0.7×0.5×0.5	1
1	1	0	0,3 x 0.1 x 0.9 x 0.7	0.8 x 0.5 x 0.5 x 0.5	1
1	1	1	03x 01x01 x11	0.8x U.T x0.7x0.1	1

Justifier (brièvement) vos calculs ci-dessous:

Just avourne X2 and X, are independentand do the same calculation as before

9. Calculer le taux d'erreur $p_{1,2,3}$ du test naïf de Bayes qui exploite X_1 , X_2 et X_3 .

 $P_{1,2.5} = 0.2 \times 0.5 \times 0.5 + 0.7 \times 0.1 \times 0.5 + 0.4 \times 0.5 \times 0.1 \times 0.5 + 0.4 \times 0.5 \times 0.1 \times 0.5 \times 0.1 \times 0.5 = 0.5 \times (0.4 + 0.07 + 0.4 + 0.03) = 0.3$

10. Pouvez-vous expliquer la différence entre le taux d'erreur $p_{1,2}$ basé sur (X_1, X_2) et le taux d'erreur $p_{1,2,3}$ basé sur (X_1, X_2, X_3) ?

the independence commption is wrong.

Here the Bayes test with X, X2 = Xg is

worst than the Days test with just X, and X.

Some cases do not occur (exp: X=0,X=0,X=1).

Exercise 2 (Régression Logistique, ~ 10 pts)

106 patients atteints par la grippe ont été hospitalisés. On note Y_k la variable indicatrice valant 1 si le patient k est décédé et 0 sinon. Un facteur de risque X_k a été relevé : $X_k = 1$ si le patient k a plus de 65 ans et $X_k = 0$ si la personne a 65 ans ou moins.

Le tableau de contingence résumant les données observées est donné ci-dessous :

	Y = 0	Y = 1	
X = 0	82	14	96
X = 1	3	7	10
	85	21	106

On note n_{ij} le nombre de patients tels que X = i et Y = j pour i = 0, 1 et j = 0, 1, soit $n_{00} = 82$, $n_{01} = 14$, $n_{10} = 3$ et $n_{11} = 7$.

Nous voulons utiliser un modèle de régression logistique pour modéliser le lien entre la variable Y et le facteur de risque X.

1. Notons $P(X) = \Pr(Y = 1 | X)$ la probabilité de décès connaissant le facteur de risque X. Décrire le modèle mathématique entre P(X) et X sous la forme $\operatorname{logit}(P(X)) = \cdots$ où vous définirez la fonction "logit". Le coefficient associé à X sera noté a et le terme constant sera noté b.

Pogit
$$P(t) = a \times + b$$

Pogit $(p) = \ln \frac{p}{1-p}$

2. Quelle est l'inverse de la fonction "logit(u)" pour $u \in]0,1[$? Prouver le résultat annoncé.

Let
$$u \in (0,1)$$
 and $3 \in \mathbb{R}$
 $3 = \log^{3} (u) = \ln \frac{u}{1-u}$

(=) $e^{3} = \frac{u}{1-u} = (-1)$

3. On note $p_0 = P(0)$ et $p_1 = P(1)$. Exprimer p_0 et p_1 en fonction de a et b.

We have
$$P(X) = \sigma(aX + b)$$

$$P = P(0) = \sigma(b) = \frac{1}{1+e^{-b}}$$

$$P = P(1) = \sigma(a+b) = \frac{1}{1+e^{-a-b}}$$

$$1 + e^{-a-b}$$

4. Montrer que la log-vraisemblance L(a, b) du modèle logistique s'exprime sous la forme

$$L(a,b) = -n_{00} \ln\left(1 + e^{b}\right) - n_{01} \ln\left(1 + e^{-b}\right) - n_{10} \ln\left(1 + e^{a+b}\right) - n_{11} \ln\left(1 + e^{-a-b}\right).$$

$$\frac{1}{2}(a_{1}b) = \frac{1}{2} \frac$$

5. Calculer le gradient $\nabla L(a, b)$ de L(a, b) par rapport au couple de variables (a, b).

5. Calculer le gradient
$$\nabla L(a,b)$$
 de $L(a,b)$ par rapport au couple de variables (a,b) .

$$\frac{\partial L(a,b)}{\partial a} = \begin{bmatrix} -n_{00} & \frac{e^{a+b}}{1+e^{a+b}} & \frac{e^{a+b}}{1+e^{a+b}} & \frac{e^{-a-b}}{1+e^{-a-b}} \\ \frac{e^{a+b}}{1+e^{a+b}} & \frac{e^{-a-b}}{1+e^{a+b}} & \frac{e^{-a-b}}{1+e^{-a-b}} \\ \frac{\partial L(a,b)}{\partial b} & \frac{\partial L(a,b)}{\partial b} & \frac{\partial L(a,b)}{\partial b} & \frac{\partial L(a,b)}{\partial b} \\ \frac{\partial L(a,b)}{\partial b} & \frac{\partial L(a,b)}{\partial b} & \frac{\partial L(a,b)}{\partial b} & \frac{\partial L(a,b)}{\partial b} \\ \frac{\partial L(a,b)}{\partial b} & \frac{\partial$$

UNS/LF 6/7 2017/2018 6. Calculer \hat{a} et \hat{b} qui maximise L(a,b) à partir du calcul du gradient de la question précédente.

UNS/LF 7/7 2017/2018