1. Use the Laws of Exponents to rewrite and simplify. Write down the rules that you are using to the side of your work. (below in red)

a.
$$\sqrt[3]{x^{-2}}$$

$$3\sqrt[3]{x^{-2}} = x^{-2/3}$$

$$a. \sqrt[3]{x^{-2}}$$

$$= x^{-2/3}$$
and
$$a. \sqrt[3]{x^{-2}}$$

$$= x^{-2/3}$$
and
$$a. \sqrt[3]{x^{-2}}$$

b.
$$b^{(n-1)}(3b^2)^n$$

= $b^{n-1} 3^n b^{2n}$
 $(a^m)^n = a^m b^n$
= $b^{n-1} + 2n$ 3^n
 $a^m a^n = a^m b^n$
= $(b^{3n-1}) 3^n$

b.
$$b^{(n-1)}(3b^2)^n$$
 c. $\frac{6x^2y}{\sqrt{4xy^3}}$ = $b^{n-1} 3^n b^{2n}$ = $\frac{6 \times 2^n}{2 \times \sqrt{2} y^3/2}$ (ab) $y = a^n b^n$ = $a^m b^n = a^m b^n$ (ab) $y = a^m b^n$ = $a^m a^n a^n = a^m a^n a^n$ = $a^m a^n a^n a^n a^n a^n a^n$ = $a^m a^n a^n a^n a^n$ = $a^m a^n a^n a^n a^n a^n$ = $a^m a^n a^n a^n a^n$ = $a^m a^n a^n a^n$ = $a^m a^n a^n a^n$ = $a^m a$

2. Are the following statements true or false? If either case, explain why. If possible, change the false statements so that they are a true statement. Provide a counterexample Calle Statement.

a.
$$(a+b)^2 = a^2 + b^2$$
 False! $|^2 + 2^2 = 5$ but $(1+2)^2 = 9$.

b.
$$\sqrt{x^2+4} = x+2$$
 False! $\sqrt{1^2+4} = \sqrt{5}$ but $1+2=3$

c.
$$\frac{a+b}{c+d} = \frac{a}{c} + \frac{b}{d}$$
 False! $\frac{1+2}{3+4} = \frac{3}{7}$ but $\frac{1}{3} + \frac{2}{4} = \frac{4}{12} + \frac{6}{12} = \frac{10}{12} = \frac{5}{6}$

$$d. \ \frac{a+b}{c} = \frac{a}{c} + \frac{b}{c} \quad \text{True}.$$

3. On the axes below, graph $f(x) = 2^x$, $g(x) = e^x$, and $k(x) = \left(\frac{1}{2}\right)^x$. Label any x- and yintercepts.

4. What is the domain and range of $f(x) = 2^x$? Asymptotes?

Domain: all real #5 (-00,00)
Range: all positive reals (0,00) HA at y=0 (as x-v-w); no VA

5. Sketch the graph of each function below, using what you know about transformations of functions. Determine its domain and range, and label any x- and y-intercepts (use exact numbers) and horizontal or vertical asymptotes.

