Computador: tecnologias e abstrações

História dos computadores

- Pré-história:
 - ENIAC (1946), UNIVAC (1950)
- Era pré-PC (final de 1970, início 1980)
 - Mainframes, minicomputadores
- Era do PC (meados de 1980, meados 2000)
 - Computadores pessoais (desktops, notebooks)
 - Servidores
- Era pós-PC (final de 2000 em diante)
 - Personal mobile devices (PMDs)
 - Warehouse scale computers (WSC)

A era Pós-PC

- Personal Mobile Device (PMD)
 - Alimentado por bateria e conectado à Internet
 - Custa centenas de dólares
 - Aplicações: Web-based, media oriented
 - » Possivelmente "Third party software"
 - Exemplos: Smart phones, tablets
- Warehouse-Scale Computer (WSC)
 - Custa milhões de dólares
 - Software as a Service (SaaS)
 - » Parte do software roda no PMD, parte em Cloud computing
 - Exemplos: Amazon and Google

A era Pós-PC

(Número de artefatos computacionais fabricados por ano)

Classes de Computadores

Class	Price		Examples
	System	μProcessor	
Personal Mobile Device (PMD)	\$100 \$1000	\$10 \$100	Cell phones Tablets
Desktop	\$300 \$2500	\$50 \$500	Netbooks, notebooks Workstations
Server	\$5000 \$10,000,000	\$200 \$2000	ATM machines, airline reservation systems
Clusters / Warehouse- scale computer (WSC)	\$100,000 \$200,000,000	\$50 \$250	Search, social network, vídeo viewing/sharing, multiplayer games online shopping
Embedded Computers / Internet of Things (IoT)	\$10 \$100,000	\$0.01 \$100	Appliances, automobiles, smart speakers, watches, cars, homes

Fonte: CAQA by Patterson & Hennessy, 6th edition, 2017

INE 5411, abstractions, slide 5 Luiz C. V. dos Santos, INE/CTC/UFSC

Por baixo de seu programa

INE 5411, abstractions, slide 6 Luiz C. V. dos Santos, INE/CTC/UFSC

O Processo de Geração de Código

Linguagem de Alto Nível

```
swap (int v[], int k)
{
  int temp;
  temp = v[k];
  v[k] = v[k+1];
  v[k+1] = temp;
}
```

Linguagem de máquina

Linguagem de montagem

swap: muli \$2,\$5, 4
add \$2,\$4,\$2
lw \$15, 0(\$2)
lw \$16, 4(\$2)
sw \$16, 0(\$2)
sw \$15, 4(\$2)
jr \$31

INE 5411, abstractions, slide 7 Luiz C. V. dos Santos, INE/CTC/UFSC

Componentes de um computador

Entrada/Saída inclui:

- Interface com usuário
 - » Display, teclado, mouse
- Armazenamento
 - » Hard disk, CD/DVD, flash
- Adaptadores de rede
 - » Comunicação com outros computadores

Abrindo a caixa

INE 5411, abstractions, slide 9 Luiz C. V. dos Santos, INE/CTC/UFSC

Dentro do processador

Apple A5

- (ARM Cortex A9)

GPU

CPUs

Abstrações

- Arquitetura
 - ISA: "Instruction-set architecture"
 - O que se precisa saber para rodar programa em linguagem binária
 - Utilidade: compatibilidade binária
- Implementação
 - HW que obedece à arquitetura
 - Utilidade: desempenho, eficiência energética

Exemplos

ISA	Implementações	
MIPS 32	BRCM 5000, MIPS 74K	
MIPS 64	Godson-3	
X86-32 (IA-32)	Pentium 4, Pentium M	
IA-64	Itanium, Itanium2	
X86-64	Core2 Duo, Core2 Quad, Opteron 2356 (Barcelona), Atom (e.g. Z3480)	
ARMv7	Cortex-A8, Cortex-A9 (Apple A5), Cortex-A15	
ARMv8	Cortex-A57 (Apple A7, AMD Opteron A1100)	

Luiz C. V. dos Santos, INE/CTC/UFSC

Conclusões

Comum aos egressos de Computação e Engenharia

- Para tradução de programas
 - Irrelevante como HW é implementado
 - Só ISA é relevante
- Para otimização de programas
 - Relevante como HW é implementado
 - Desempenho afetado pela implementação
 - Eficiência energética também
- Para manutenção ou projeto
 - Relevante como HW é construído

O que vamos aprender?

- Tradução de programas:
 - Como programas C/Java são traduzidos para a linguagem do HW
- Execução de programas:
 - Como o HW executa o programa traduzido
- Melhoria do desempenho de programas:
 - O que determina o desempenho de um programa
 - Como programador pode melhor o desempenho

Desempenho de programas

Hardware or software component		
Algorithm	Determines both the number of source-level statements and the number of I/O operations executed	Other books!
Programming language, compiler, and architecture	Determines the number of computer instructions for each source-level statement	Chapters 2 and 3
Processor and memory system	and memory Determines how fast instructions can be executed	
I/O system (hardware and operating system)	Determines how fast I/O operations may be executed	Chapters 4, 5, and 6

Como aumentar desempenho de um programa

- Exemplo: multiplicação de matrizes
 - Data-level parallelism: x 3.8
 - » Sub-word parallelism via detalhes de C
 - Instrution-level parallelism: x 2.3
 - » Loop unrolling para emissão múltipla e execução OoO
 - Otimização do uso da memória: x 2 a 2.5
 - » Cache blocking
 - Thread-level parallelism: x 4 a 14
 - » Parallel for in OpenMP

Livro-texto

Computer Organization and Design: The Hardware/Software Interface, 5th edition

- Autores: David Patterson and John Henessy
- MIPS edition (Não ARM edition! Nem RISC V edition!)
 - Exemplares na BU: 4th edition

Computador: tecnologias e abstrações

