Layer-wise Gradient Decoupling

Dennis Alexander Mertens Velasquez (i6206990)

1 Introduction

Suppose we have n training examples Z_0, Z_T , where $Z_0 = [z_0^0, \ldots, z_0^{n-1}]$ denotes our inputs and $Z_T = [z_T^0, \ldots, z_T^{n-1}]$ our targets, and a feed-forward differentiable circuit of depth T like in figure 1.

$$z_0$$
 z_1 z_1 z_2 z_2 z_3

Figure 1: A feed-forward differentiable circuit of depth T; z_0 denotes the input, z_1, \ldots, z_{T-1} denote the hidden activations, and z_T denotes the output. Each layer $t \in \{0, \ldots, T-1\}$ has parameters θ_t and activation function f.

Usually, when applying backpropagation (BP) and gradient descent (GD), we optimize the parameters $\Theta = [\theta_0, \dots, \theta_{T-1}]$ of every layer by nudging them according to their gradients. In such a setting, the gradients of θ_t depend on the gradients and activations of layers $t+1, \dots, T-1$. This sequential dependence is at the heart of numerous complications during training. We propose a relaxation of the standard formulation of such circuits that promises to mitigate some difficulties and completely remove others.

2 Motivation

• • •

¹To be clear: BP is responsible for propagating the errors through the circuit, and GD is responsible for adjusting the parameters accordingly.

3 Approach

Let z_t^i denote the target activation of the tth layer given the ith training example, and \hat{z}_t^i its estimate. For $t \in \{0, T\}$, the targets are given. However, for $t \in \{1, ..., T-1\}$, we assume auxiliary trainable parameters $Z_t = [z_t^0, ..., z_t^{n-1}]$ and define our hidden activations as

$$\hat{z}_{t+1}^i = f(z_t^i, \theta_t), \forall i \in \{0, \dots, n-1\}.$$
(1)

Usually, any activation \hat{z}_{t+1}^i is defined in terms of the preceding \hat{z}_t^i , hence the sequential dependence. In contrast, we break the dependence by introducing an auxiliary z_t^i . Naturally, if we train such a system, it will not generalize because only the last layer will learn to map z_{T-1}^i to z_T^i whilst every other part of the circuit will settle for arbitrary configurations. To fix this, we must enforce that

$$\hat{z}_t^i \approx z_t^i, \forall t \in \{1, \dots, T-1\}, \forall i \in \{0, \dots, n-1\}.$$

$$(2)$$

During training, we always assume some loss function $\mathcal{L}(Z_T, \hat{Z}_T) = \sum_{i=0}^{n-1} L(z_T^i, \hat{z}_T^i)$, where L measures the output error.² We extend the loss to include terms that regulate the hidden activations. That is,

$$\mathcal{L}(Z_T, \hat{Z}_T) = \sum_{i=0}^{n-1} L(z_T^i, \hat{z}_T^i) + \sum_{t=1}^{T-1} \sum_{i=0}^{n-1} L_h(z_t^i, \hat{z}_t^i), \tag{3}$$

where L_h measures the hidden error. Then, all layers' activations are independent during training.

We hypothesize that by enforcing the condition in equation 2, we will obtain a circuit that settles at a configuration similar to that of the same circuit trained with standard BP and GD. Except that the proposed approach should be completely immune to the difficulties listed in section 2.

4 Evidence

4.1 Empirical

. . .

4.2 Theoretical

. . .

5 Questions

• • •

²Usually, loss functions are augmented with a regularization term, but it is irrelevant in this context, and thus not included.