Homework 4: Bayes' Nets

Qianlang Chen

CS 4300 Spring 2021

Problem I: Inference

Part I.I

$$P(-y \mid +x) = 1 - P(+y \mid +x) = 1 - .8 = \boxed{.2}$$

Part 1.2

$$P(-z \mid -x) = 1 - P(+z \mid -x) = 1 - .4 = \boxed{.6}$$

Part 1.3

$$P(-y \mid +x, +z) = P(-y \mid +x) = \boxed{.2}$$

Part I.4

$$P(+y, -z, -x) = P(+y, -z \mid -x) P(-x)$$

$$= P(+y \mid -x) P(-z \mid -x) P(-x)$$

$$= .3 \times .6 \times .7$$

$$= \boxed{.126}$$

Part 1.5

$$P(-y) = 1 - P(+y)$$

$$= 1 - (P(+y, +x) + P(+y, -x))$$

$$= 1 - (P(+y | +x) P(+x) + P(+y | -x) P(-x))$$

$$= 1 - (.8 \times .3 + .3 \times .7)$$

$$= \boxed{.55}$$

Part I.6

$$P(+y, +z) = P(+y, +z, +x) + P(+y, +z, -x)$$

$$= P(+y \mid +z, +x) P(+z, +x) + P(+y \mid +z, -x) P(+z, -x)$$

$$= P(+y \mid +x) P(+z \mid +x) P(+x) + P(+y \mid -x) P(+z \mid -x) P(-x)$$

$$= .8 \times .8 \times .3 + .3 \times .4 \times .7$$

$$= .276$$

$$P(+z) = P(+z, +x) + P(+z, -x)$$

$$= P(+z \mid +x) P(+x) + P(+z \mid -x) P(-x)$$

$$= .8 \times .3 + .4 \times .7$$

$$= .52$$

$$P(+y \mid +z) = \frac{P(+y, +z)}{P(+z)}$$
$$= \frac{.276}{.52}$$
$$\approx \boxed{.5308}$$

Part 1.7

$$P(-y \mid +z) = 1 - P(+y \mid +z)$$

$$\approx 1 - .5308$$

$$\approx \boxed{.4692}$$

Problem 2: Joint Probabilities

Part 2.1

$$P(+b, -e, +a, +j, +m) = P(+b) P(-e) P(+a \mid +b, -e) P(+j \mid +a) P(+m \mid +a)$$

= .1 × .998 × .92 × .4 × .6
 $\approx \boxed{.02204}$

Part 2.2

$$P(-b, -e, +a, -j, -m) = P(-b) P(-e) P(+a \mid -b, -e) P(-j \mid +a) P(-m \mid +a)$$

= $.9 \times .998 \times .1 \times .6 \times .4$
 $\approx \boxed{.02156}$

Part 2.3

$$P(-b, +e, +a, +j, +m) = P(-b) P(+e) P(+a \mid -b, +e) P(+j \mid +a) P(+m \mid +a)$$

$$= .9 \times .002 \times .2 \times .4 \times .6$$

$$= 8.64 \times 10^{-5}$$

Part 2.4

$$P(-b, -e, -a, -j, -m) = P(-b) P(-e) P(-a \mid -b, -e) P(-j \mid -a) P(-m \mid -a)$$

= .9 × .998 × .9 × .95 × .9
 $\approx \boxed{.6912}$

Problem 3: D-Separation

Part	3.	
-------------	----	--

Yes

Part 3.2

Not enough information

Part 3.3

Yes

Part 3.4

Not enough information

Part 3.5

Not enough information

Part 3.6

Not enough information

Part 3.7

Yes

Part 3.8

Not enough information

Part 3.9

Yes

Problem 4: Variable Elimination

Part 4.1

R	T	P(R,T)
+r	+t	$= P(+r) \times P(+t \mid +r) = .3 \times .8 = .24$
		$= P(+r) \times P(-t \mid +r) = .3 \times .2 = .06$
-r	+t	$= P(-r) \times P(+t \mid -r) = .7 \times .4 = .28$
-r	-t	$= P(-r) \times P(-t \mid -r) = .7 \times .6 = .42$

Part 4.2

T	P(T)
+ <i>t</i>	= P(+r, +t) + P(-r, +t) = .24 + .28 = .52
-t	= P(+r, -t) + P(-r, -t) = .06 + .42 = .48

Part 4.3

T	L	P(T,L)
+t	+l	$= P(+t) \times P(+l \mid +t) = .52 \times .2 = .104$
+ <i>t</i>	-l	$= P(+t) \times P(-l \mid +t) = .52 \times .8 = .416$
		$= P(-t) \times P(+l \mid -t) = .48 \times .3 = .144$
		$= P(-t) \times P(-l \mid -t) = .48 \times .7 = .336$

Part 4.4

$$\begin{array}{c|c} L & P(L) \\ \hline +l & = P(+t,+l) + P(-t,+l) = .104 + .144 = .248 \\ \hline -l & = P(+t,-l) + P(-t,-l) = .416 + .336 = .752 \\ \end{array}$$

Problem 5: Sampling

Part 5.1

$$w(+s, +w, +c, +r) = P(+c) P(+r \mid +c) = .5 \times .8 = \boxed{.4}$$

Part 5.2

$$w(+s, +w, -c, +r) = P(-c) P(+r \mid -c) = .5 \times .2 = \boxed{.1}$$

Part 5.3

$$w(+s, +w, +c, -r) = P(+c) P(-r \mid +c) = .5 \times .2 = \boxed{.1}$$

Part 5.4

$$w(+s, +w, -c, -r) = P(-c) P(-r \mid -c) = .5 \times .8 = \boxed{.4}$$

Part 5.5

The total value of the samples is

$$.4 + .1 + .1 + .4 + .4 = 1.4$$

Therefore,

$$P(+s, +w, +c, +r) = \frac{1 \times .4}{1.4} \approx .2857$$

$$P(+s, +w, +c, -r) = \frac{0 \times .1}{1.4} = 0$$

$$P(+s, +w, +c) = P(+s, +w, +c, +r) + P(+s, +w, +c, -r) \approx .2857 + 0 \approx \boxed{.2857}$$

Part 5.6

$$P(+s, +w, -c, +r) = \frac{2 \times .1}{1.4} \approx .1429$$

$$P(+s, +w, -c, -r) = \frac{1 \times .4}{1.4} \approx .2857$$

$$P(+s, +w, -c) = P(+s, +w, -c, +r) + P(+s, +w, -c, -r) \approx .1429 + .2857 \approx \boxed{.4286}$$

Problem 6: Decision Networks

Part 6.1

EU(take) = U(take, sun) P(sun) + U(take, rain) P(rain)
=
$$20 \times .6 + 70 \times .4$$

= $\boxed{40}$

Part 6.2

EU(leave) = U(leave, sun) P(sun) + U(leave, rain) P(rain)
=
$$80 \times .6 + 0 \times .4$$

= $\boxed{48}$

Part 6.3

Since EU(leave) > EU(take), it is better to leave the umbrella behind.

Part 6.4

F	P(F)
good	$= P(good \mid sun) P(sun) + P(good \mid rain) P(rain) = .6 \times .7 + .4 \times .2 = .5$
bad	= $P(bad sun) P(sun) + P(bad rain) P(rain) = .6 \times .3 + .4 \times .8 = .5$

W
 F

$$P(W | F)$$

 sun
 good
 = $\frac{P(\text{sun}) P(\text{good} | \text{sun})}{P(\text{good})} = \frac{.6 \times .7}{.5} = .84$

 sun
 bad
 = $\frac{P(\text{sun}) P(\text{bad} | \text{sun})}{P(\text{bad})} = \frac{.6 \times .3}{.5} = .36$

 rain
 good
 = $\frac{P(\text{rain}) P(\text{good} | \text{rain})}{P(\text{good})} = \frac{.4 \times .2}{.5} = .16$

 rain
 bad
 = $\frac{P(\text{rain}) P(\text{bad} | \text{rain})}{P(\text{bad})} = \frac{.4 \times .8}{.5} = .64$

EU(take | good) = U(take, sun) P(sun | good) + U(take, rain) P(rain | good)
=
$$20 \times .84 + 70 \times .16$$

= 28

Part 6.5

EU(leave | good) = U(leave, sun) P(sun | good) + U(leave, rain) P(rain | good)
=
$$80 \times .84 + 0 \times .16$$

= $\boxed{67.2}$

Part 6.6

Since $EU(leave \mid good) > EU(take \mid good)$, it is better to leave the umbrella behind.