Big Bayes without sub-sampling bias: Paths of Partial Posteriors

Heiko Strathmann

Gatsby Unit, University College London

22nd May 2015

Joint work

Being Bayesian: Averaging beliefs of the unknown

$$\phi = \int d\theta \varphi(\theta) \underbrace{p(\theta|\mathcal{D})}_{\text{posterior}}$$

where
$$p(\theta|\mathcal{D}) \propto \underbrace{p(\mathcal{D}|\theta)}_{\text{likelihood data prior}} \underbrace{p(\theta)}_{\text{prior}}$$

Markov Chains

▶ Problem: Need iid $\theta^{(j)} \sim p(\theta|\mathcal{D})$. Hard!

But can construct a Markov chain

$$\theta^{(0)} \to \theta^{(1)} \to \theta^{(2)} \to \dots$$

whose stationary distribution is $p(\theta|\mathcal{D})$, *i.e.*,

$$\lim_{j o \infty} heta^{(j)} \sim p(heta|\mathcal{D})$$

and break dependence of the $\theta^{(j)}$ by thinning.

Metropolis Hastings Transition Kernel

Target $\pi(\theta) \propto p(\theta|\mathcal{D})$

- ▶ At iteration i + 1, state $\theta^{(j)}$
- ▶ Propose $\theta' \sim q\left(\theta|\theta^{(j)}\right)$
- ▶ Accept $\theta^{(j+1)} \leftarrow \theta'$ with probability

$$\min\left(rac{\pi(heta')}{\pi(heta^{(j)})} imes rac{q(heta^{(j)}| heta')}{q(heta'| heta^{(j)})}, 1
ight)$$

▶ Reject $\theta^{(j+1)} \leftarrow \theta^{(j)}$ otherwise.

Big \mathcal{D} & MCMC

Need to evaluate

$$\pi(\theta) \propto p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta)$$

in every iteration.

▶ For example, for $\mathcal{D} = \{x_1, \dots, x_N\}$,

$$p(\mathcal{D}|\theta) = \prod_{i=1}^{N} p(x_i|\theta)$$

- ► Infeasible for growing *N*
- ▶ Lots of current research: Can we use subsets of \mathcal{D} ?

Alternative transition kernels

Existing methods construct alternative transition kernels.

(Welling & Teh 2011), (Korattikara, Chen, Welling 2014), (Bardenet, Doucet, Holmes 2014) (Maclaurin & Adams 2014), (Chen, Fox, Guestrin 2014).

They

- use mini-batches
- ▶ inject noise
- augment the state space
- make clever use of approximations

Problem: Most methods

- are biased (in asymptotic sense)
- have no convergence guarantees
- mix badly

Desiderata for Bayesian estimators in Big Data

- 1. Computational costs sub-linear in N
- 2. No bias. Hard! No additional bias (compared to MCMC)
- 3. Finite & controllable variance

Reminder: Where we came from – expectations

$$\mathbb{E}_{p(\theta|\mathcal{D})}\left\{\varphi(\theta)\right\} \qquad \varphi:\Theta\to\mathbb{R}$$

Idea: Assuming the goal is estimation, give up on simulation.

Outline

Partial Posterior Path Estimators

Experiments & Extensions

Discussion

Idea

- 1. Construct partial posterior distributions
- 2. Compute partial expectations (biased)
- 3. Remove sub-sampling bias

Note:

- ▶ No access to $p(\theta|\mathcal{D})$
- Partial posterior inference less challenging
- Exploit existing methodology & engineering
- Not restricted to MCMC

Partial Posterior Paths

- ▶ Model $p(x,\theta) = p(x|\theta)p(\theta)$, data $\mathcal{D} = \{x_1, \dots, x_N\}$
- ▶ Full posterior $\pi_N := p(\theta|\mathcal{D}) \propto p(x_1, \dots, x_N|\theta)p(\theta)$

- L subsets \mathcal{D}_I of sizes $|\mathcal{D}_I| = n_I$
- ► Here: $n_1 = a, n_2 = 2^1 a, n_3 = 2^2 a, \dots, n_L = 2^{L-1} a$
- ▶ Partial posterior $\tilde{\pi}_l := p(\mathcal{D}_l|\theta) \propto p(\mathcal{D}_l|\theta)p(\theta)$

Path from prior to full posterior

$$p(\theta) = \tilde{\pi}_0 \to \tilde{\pi}_1 \to \tilde{\pi}_2 \to \cdots \to \tilde{\pi}_L = \pi_N = p(\mathcal{D}|\theta)$$

Gaussian Mean, Conjugate Prior

Partial posterior path statistics

For partial posterior paths

$$p(\theta) = \tilde{\pi}_0 \to \tilde{\pi}_1 \to \tilde{\pi}_2 \to \cdots \to \tilde{\pi}_L = \pi_N = p(\mathcal{D}|\theta)$$

define a sequence $\{\phi_t\}_{t=1}^{\infty}$ as

$$\phi_t := \hat{\mathbb{E}}_{\tilde{\pi}_t} \{ \varphi(\theta) \} \qquad t < L$$

$$\phi_t := \phi := \hat{\mathbb{E}}_{\pi_N} \{ \varphi(\theta) \} \qquad t \ge L$$

This gives

$$\phi_1 \to \phi_2 \to \cdots \to \phi_L = \phi$$

 $\hat{\mathbb{E}}_{\tilde{\pi}_t}\{\varphi(\theta)\}$ is empirical estimate. Not necessarily MCMC.

Debiasing Lemma (Rhee & Glynn 2012, 2014)

lacktriangledown ϕ and $\{\phi_t\}_{t=1}^\infty$ real-valued random variables. Assume

$$\lim_{t \to \infty} \mathbb{E}\left\{ \left| \phi_t - \phi \right|^2 \right\} = 0$$

- ▶ T integer rv with $\mathbb{P}[T \geq t] > 0$ for $t \in \mathbb{N}$
- Assume

$$\sum_{t=1}^{\infty} \frac{\mathbb{E}\left\{\left|\phi_{t-1} - \phi\right|^{2}\right\}}{\mathbb{P}\left[T \geq t\right]} < \infty$$

▶ Unbiased estimator of $\mathbb{E}\{\phi\}$

$$\phi = \phi_{\infty} = \sum_{t=1}^{\infty} \phi_t - \phi_{t-1} \qquad \qquad \phi_T^* = \sum_{t=1}^{I} \frac{\phi_t - \phi_{t-1}}{\mathbb{P}\left[T \ge t\right]}$$

Computational complexity

- ▶ Recall for posterior paths: $\phi_{t+1} = \phi_t = \phi$ for $t \ge L$
- Assume geometric batch size increase n_t and truncation probabilities for $1 \le t \le L$

$$\Lambda_t := \mathbb{P}(T = t) = 2^{-\alpha t}$$
 $\alpha \in (0, 1)$

Average computational cost sub-linear in N

$$\mathcal{O}\left(a\left(\frac{N}{a}\right)^{1-\alpha}\right)$$

Variance-computation tradeoffs in Big Data

Fixed N: Variance finite by construction

$$\mathbb{E}\left\{\left(\phi_T^*\right)^2\right\} = \sum_{t=1}^{\infty} \frac{\mathbb{E}\left\{\left|\phi_{t-1} - \phi\right|^2\right\} - \mathbb{E}\left\{\left|\phi_t - \phi\right|^2\right\}}{\mathbb{P}\left[T \ge t\right]}$$

If we assume $\forall t \leq L$, there is a constant c and $\beta > 0$ s.t.

$$\mathbb{E}\left\{\left|\phi_{t-1} - \phi\right|^2\right\} \le \frac{c}{n_t^{\beta}}$$

and furthermore $\alpha < \beta$, then

$$\sum_{t=1}^{L} \frac{\mathbb{E}\left\{\left|\phi_{t-1} - \phi\right|^{2}\right\}}{\mathbb{P}\left[T \geq t\right]} = \mathcal{O}(1)$$

and variance stays bounded as $N \to \infty$.

Outline

Partial Posterior Path Estimators

Experiments & Extensions

Discussion

Synthetic log-Gaussian

- ► (Bardenet, Doucet, Holmes 2014) all data
- ► (Korattikara, Chen, Welling 2014) wrong result

Synthetic log-Gaussian – debiasing

- ▶ Truly large-scale version: $N \approx 10^8$
- ► Sum of likelihood evaluations: $\approx 0.25 N$

Large-scale synthetic logistic regression

Large-scale synthetic logistic regression

► Sum of likelihood evaluations: ≈ 9 N

Non-factorising likelihoods

No need for

$$p(\mathcal{D}|\theta) = \prod_{i=1}^{N} p(x_i|\theta)$$

Example: Approximate Gaussian Process regression

Estimate predictive mean

$$k_*^{\top} (K + \lambda I)^{-1} y$$

- ▶ Vanilla computational costs: $\mathcal{O}(N^3)$
- ▶ Finite rank kernel expansion: $\mathcal{O}(m^2N)$
- ▶ Combined with debiasing $\mathcal{O}(m^2N^{1-\alpha})$, sub-linear
- ▶ No MCMC (!)

Gaussian Processes for Big Data

(Hensman, Fusi, Lawrence, 2013): SVI & inducing variables

- ▶ Airtime delays, N = 700,000, D = 8
- ▶ m = 1000 random Fourier features (Rahimi, Recht, 2007)
- ► Estimate predictive mean on 100,000 test data

Outline

Partial Posterior Path Estimators

Experiments & Extensions

Discussion

Conclusions

If goal is estimation rather than simulation, we arrive at

- 1. Data complexity sub-linear in N
- 2. No sub-sampling bias (in addition to MCMC)
- 3. Finite & controllable variance

Practical:

- Not limited to MCMC
- Not limited to factorising likelihoods
- Competitive initial results
- ▶ Parallelisable, re-uses existing engineering effort

Still biased?

MCMC and finite time

- ▶ MCMC estimator $\hat{\mathbb{E}}_{\tilde{\pi}_t}\{\varphi(\theta)\}$ is not unbiased
- Could imagine two-stage process
 - Apply debiasing to MC estimator
 - Use to debias partial posterior path
- Need conditions on MC convergence to control variance, (Rhee & Glynn 2012, Agapiou, Roberts, Vollmer, 2014)
- ► Hard! Even possible?

Memory restrictions

- ▶ Partial posterior expectations need be computable
- Memory limitations cause bias
- ▶ e.g. large-scale GMRF (Lyne et al, 2014)

Free lunch? Not uniformly better than MCMC

- ▶ Need $\mathbb{P}[T \geq t] > 0$ for all $t \leq L$
- ► This includes the whole dataset
- ► Negative example: a9a dataset (Welling & Teh, 2011)
- ► $N \approx 32,000$
- Converges, but full posterior sampling likely

The two extremes of Big Data

Xi'an's og, Feb 2015: Discussion of M. Betancourt's note on HMC and subsampling.

"...the information provided by the whole data is only available when looking at the whole data."

See http://goo.gl/bFQvd6

We claim:

The transition from highly redundant data on trivial models to sparse data on complex models is continuous!

Thank you

Questions?