Amendments to the Claims

1.-14. (canceled)

15. (original) A process for preparing a compound of the formula:

wherein:

A is selected from CH2 and NR;

B, D and E are independently selected from CH and N;

Y is

- phenyl, optionally substituted with 1-3 substituents independently selected from R⁴:
- (b) naphthyl, optionally substituted with 1-3 substituents independently selected from R⁴;
- (c) C₃-C₈ cycloalkyl, optionally substituted with 1-2 substituents independently selected from R⁴:
- (d) C₃-C₈ cycloalkynyl, optionally substituted with 1-2 substituents independently selected from R⁴;
- (e) a five membered heterocycle containing up to two heteroatoms selected from the group consisting of -O-, -NR²- and -S(O)_n-, optionally substituted with 1-3 substituents independently selected from R⁴;
- (f) a six membered heterocycle containing up to two heteroatoms selected from the group consisting of -O-, -NR²- and -S(O)_n- optionally substituted with 1-3 substituents independently selected from R⁴; or
- (g) a bicyclic ring system consisting of a five or six membered heterocyclic ring fused to a phenyl ring, said heterocyclic ring containing up to two heteroatoms selected from the group consisting of -O-, -NR²-, NR²- and -S(O)_n-, optionally substituted with 1-3 substituents independently selected from R⁴.

Z1 is

- (a) -(CH₂)_p W(CH₂)_q-;
- (b) -O(CH₂)_p CR⁵R⁶-;
- (c) -O(CH₂)_pW(CH₂)_q;
- (d) -OCHR²CHR³-; or
- (e) -SCHR²CHR³-;

G is

(a) -NR⁷R⁸;

(b)

wherein n is 0, 1 or 2; m is 1, 2 or 3; Z^2 is -NH-, -O-, -S-, or -CH₂-; optionally fused on adjacent carbon atoms with one or two phenyl rings and, optionally independently substituted on carbon with one to three substituents and, optionally, independently on nitrogen with a chemically suitable substituent selected from \mathbb{R}^4 ; or

(c) a bicyclic amine containing five to twelve carbon atoms, either bridged or fused and optionally substituted with 1-3 substituents independently selected from R⁴:

Z1 and G in combination may be

W is

- (a) -CH₂-;
- (b) -CH=CH-;
- (c) -O-;
- (d) -NR²-;
- (e) -S(O)_n-;

(f)

- (g) -CR2(OH)-;
- (h) -CONR²-;
- (i) -NR2CO-;

(i)

(k) -C≡C-;

R is hydrogen or C₁-C₆ alkyl;

R2 and R3 are independently

- (a) hydrogen; or
- (b) C₁-C₄ alkyl;

R4 is

- (a) hydrogen;
 - (b) halogen;
 - (c) C₁-C₆ alkyl;
 - (d) C₁-C₄ alkoxy;
 - (e) C₁-C₄ acyloxy;
 - (f) C₁-C₄ alkylthio;
 - (g) C₁-C₄ alkylsulfinyl;
 - (h) C₁-C₄ alkylsulfonyl;
 - hydroxy (C₁-C₄)alkyl;
 - (j) aryl (C₁-C₄)alkyl;
 - (k) -CO₂H;
 - (l) -CN;
 - (m) -CONHOR;
 - (n) -SO₂NHR;
- (o) -NH₂;
 - (p) C₁-C₄ alkylamino;
- (q) C₁-C₄ dialkylamino;
- (r) -NHSO₂R;
- (s) -NO₂;
- (t) -aryl; or
- (u) -OH.

R5 and R6 are independently C1-C8 alkyl or together form a C3-C10 carbocyclic ring;

R7 and R8 are independently

- (a) phenyl;
- (b) a C₃-C₁₀ carbocyclic ring, saturated or unsaturated;
- a C₃-C₁₀ heterocyclic ring containing up to two heteroatoms, selected from -O- -N- and -S-
- (d) H;
- (e) C₁-C₆ alkyl; or
- (f) form a 3 to 8 membered nitrogen containing ring with R⁵ or R⁶;

 R^7 and R^8 in either linear or ring form may optionally be substituted with up to three substituents independently selected from C_1 - C_6 alkyl, halogen, alkoxy, hydroxy and carboxy;

a ring formed by R7 and R8 may be optionally fused to a phenyl ring;

e is 0, 1 or 2;

m is 1, 2 or 3;

n is 0, 1 or 2;

p is 0, 1, 2 or 3;

g is 0, 1, 2 or 3;

and optical and geometric isomers thereof;

comprising enzymatically resolving of a compound of the formula

wherein \mathbb{R}^1 is (C_1-C_0) alky1, (C_2-C_0) alkeny1, (C_2-C_0) alkyny1 wherein the alky1, alkeny1 or alkyny1 groups are optionally substituted by one to three halo in the presence of a lipase and an aqueous buffer solution; and (b) reacting the compound of formula IV so formed

wherein R1 is as defined above, with a base in the presence of a polar protic solvent.

- 16. (original) A process according to claim 15, wherein the aqueous buffer solution is a phosphate, citric acid or boronic acid solution.
- 17. (currently amended) A process according to claim 15, wherein the lipase is from Mucor miehei.
- 18. (currently amended) A process according to claim 15, wherein the base is sodium methoxy methoxide, sodium hydroxide, lithium hydroxide or potassium hydroxide.
- (original) A process according to claim 15, wherein the polar protic solvent is methanol, ethanol or water.
- (original) A process according to claim 15, wherein the lipase is immobilized on a solid support.
- (original) A process according to claim 15, wherein the lipase is a cross-linked enzyme.
- (original)A process according to claim 15, wherein the lipase is in pure crystalline form.
 - 23. (original) A process according to claim 15, for preparing a compound of the formula

VIII

comprising enzymatically resolving of a compound of the formula

wherein R^1 is (C_1-C_0) alky, (C_2-C_0) alkenyl, (C_2-C_0) alkynyl wherein the alkyl, alkenyl or alkynyl groups are optionally substituted by one to three halo in the presence of a lipase and an aqueous buffer solution; and (b) reacting the compound of Formula X so formed

wherein R'is as defined above, with a base in the presence of a polar protic solvent.

24.-40. (canceled)