Aspect microscopique du courant électrique t_1 > L'intensité correspond à la quantité des charges en rouge ayant traversé la section de fil électrique pendant une durée $\Delta t = t_2 - t_1$.

INFO

Une charge électrique Q s'exprime en coulomb de symbole C.

1 L'intensité du courant électrique

- Dans un circuit électrique, le courant électrique est défini par le mouvement d'ensemble des porteurs de charge (électrons dans les parties métalliques, ions dans les solutions).
- Plus les porteurs de charge sont nombreux à traverser une section de conducteur pendant une durée Δt donnée, plus le débit de charges électriques est élevé. Le courant électrique est alors d'autant plus intense (schémas \triangle).

L'intensité I du courant correspond au débit de charges dans une portion du circuit. Cela se traduit par la relation :

$$l = \frac{Q}{\Delta t}$$
 Q en C

 $\Delta t = 0$ $\Delta t = 0$

La source réelle de tension continue

• Une source de tension est un dipôle permettant d'alimenter un circuit électrique. Sa caractéristique, c'est-à-dire le graphique U = f(I), est obtenue avec le montage du schéma \Box .

	Source idéale	Source réelle		
	Source idéale Source réelle $I(A)$			
Équation	<i>U</i> = <i>E U</i> et <i>E</i> en <i>V</i>	$U = E - r \times I$ $U = E - r \times I$ $I = R$ $I = R$		
Schéma	<u>U</u> + €	$\frac{U}{E,r}$ ou $\frac{U}{ E }$		
Propriété	U est indépendante de <i>l</i> .	U diminue lorsque I augmente.		

Une source réelle de tension est modélisée par l'association en série d'une source idéale de tension et d'un conducteur ohmique.

3 Le bilan de puissance

a. Puissance et énergie électriques

- La **puissance** est une grandeur indiquant l'aptitude d'un système à convertir rapidement de l'énergie.
- Nous appellerons énergie électrique, l'énergie transportée par le courant électrique.

Puissance électrique en entrée (W)					Puissance électrique en sortie (W)	
Calculatrice	Smartphone	Lampe à LED	Ordinateur	Radiateur	Éolienne	Centrale nucléaire
					A	
10 ⁻³	10°	10 ¹	10 ²	10 ³	10 ⁵ – 10 ⁶	10 ⁹

Énergie et unités = *P* $1 \text{ kW} \cdot \text{h} = 1 \text{ kW} \times 1 \text{ h}$ $1 \text{ kW} \cdot \text{h} = 1 \times 10^3 \text{ W} \times 3600 \text{ s}$ $1 \text{ kW} \cdot \text{h} = 3.6 \times 10^6 \text{ J}$

La puissance électrique $\mathcal{P}_{\mathrm{elec}}$ d'un convertisseur est définie comme le produit de la tension U à ses bornes et de l'intensité I du courant électrique qui le traverse :

$$\mathcal{P}_{\text{elec}}$$
 en W $\mathcal{P}_{\text{elec}} = \overrightarrow{U \times I}$ U en V

L'énergie électrique consommée ou produite $\mathscr{C}_{\mathrm{elec}}$ est liée à la durée de fonctionnement et à la puissance du convertisseur :

$$\mathcal{E}_{\text{elec}}$$
 en J $\mathcal{E}_{\text{elec}} = \mathcal{P}_{\text{elec}} \times \Delta t$ Δt en s

On utilise également le kilowattheure comme unité d'énergie (encadré).

b. Bilan de puissance et rendement

- Au cours d'une conversion, l'énergie et la puissance sont des grandeurs qui se conservent.
- La chaîne de puissance d'un convertisseur permet d'illustrer cette conservation (schéma [3]).

Le rendement de conversion η d'un convertisseur, est une grandeur sans dimension qui mesure l'efficacité de sa conversion.

Le rendement est toujours inférieur ou égal à 1.

- Un conducteur ohmique convertit toute la puissance électrique reçue en puissance thermique restituée au milieu extérieur (photographie).
- Établissement du bilan de puissance.

	Source réelle de tension	Conducteur ohmique		
Caractéristique	$U = E - r \times I$	$U = R \times I$		
Puissance électrique % élec = U x I	$\underbrace{U \times I}_{A} = \underbrace{E \times I}_{r} - \underbrace{r \times I}_{r}^{2}$	$\underbrace{U \times I}_{R} = \underbrace{R \times I^{2}}_{R}$		
Bilan de puissance	$\mathcal{P}_{\text{élec}}^{/} = \mathcal{P}_{\text{chimique}}^{/} - \mathcal{P}_{\text{joule}}^{/}$	$\mathcal{P}_{\text{élec}} = \mathcal{P}_{\text{joule}}$		
Rendement de conversion	$\eta = \frac{\mathcal{P}_{\text{élec}}}{\mathcal{P}_{\text{chimique}}} = \frac{U \times I}{E \times I} = \frac{U}{E}$	$\eta = \frac{\mathscr{Y}_{\text{joule}}}{\mathscr{Y}_{\text{élec}}} = 1$		

Le bilan de puissance appliqué à une source réelle de tension montre qu'elle ne convertit pas totalement la puissance chimique stockée car une partie de cette puissance est dégradée par effet Joule à cause de sa résistance interne.

1 L'intensité du courant électrique

L'intensité d'un courant électrique correspond à un débit de charges.

$$l \text{ en A}$$
 $I = \frac{Q}{\Delta t}$ $Q \text{ en C}$ $\Delta t \text{ en s}$

2 La source réelle de tension continue

Caractéristique U = f(I)d'une source idéale de tension continue. U = E (résistance interne nulle) dont le symbole est :

La tension *U* est toujours la même.

Caractéristiques de sources de tension continue

Caractéristique U = f(I) d'une source réelle de tension continue.

dont le symbole peut être :

Modélisation : association en série d'une source idéale de tension et d'un conducteur ohmique. En raison de la résistance interne, la tension *U* n'est pas toujours la même.

3 Le bilan de puissance

$$\mathcal{P}_{\text{elec}}$$
 en W $\mathcal{P}_{\text{elec}} = U \times I$ $U \text{ en V}$ $I \text{ en A}$

$$\mathcal{E}_{\text{elec}}$$
 en J $\mathcal{E}_{\text{elec}} = \mathcal{P}_{\text{elec}} \times \Delta t$ $\Delta t \text{ en s}$

⁹dégradée

source réelle de tension : résistance interne non nulle

> effet Joule : échauffement durant le fonctionnement

rendement , 1

Rendement:

$$\eta = \frac{\mathscr{P}_{\text{exploitable}}}{\mathscr{P}_{\text{entrée}}}$$

Sans unité $0, \eta < 1$.