Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

- 1-64. (Cancelled)
- 65. (Currently amended) The Josephson junction device of claim 59<u>A</u>

 Josephson junction device, comprising:
 - a first layer comprising an oxide high-temperature superconductor;
 - a second layer comprising an oxide high-temperature superconductor; and
- a third layer connecting the first and second layers and comprising a non-superconductor,

the first and third layers being formed from a starting oxide high-temperature superconductor layer of an oxide high-temperature superconductor, the third layer being an ion-modified portion of the starting oxide high-temperature superconductor layer, the first layer being an unmodified portion of the starting oxide high-temperature superconductor layer,

the device having an R_nA value of about 1×10^{-9} to about 3×10^{-7} Ω -cm² at 4.2_K.

- 66. (Currently amended) The Josephson junction device of claim 65[2], wherein the first layer comprises an YBCO superconducting oxide having an R_nA value of about 1×10^{-9} to about $3\times10^{-7} \Omega$ cm² at 4.2K.
- 67. (Currently amended) The device of claim 1 An electronic device comprising:

a crystalline substrate;

an electrode formed on and epitaxial to the substrate, the electrode comprising a first superconductive oxide;

<u>a barrier comprising a non-superconducting, ion-modified surface layer of the</u> <u>first superconductive oxide; and</u> a counter-electrode formed directly on and epitaxial to the barrier, the counter-electrode comprising a second superconductive oxide, whereby a Josephson junction is formed between the electrode and the counter-electrode, having an R_nA value of about 1×10^{-9} to about $3\times10^{-7}~\Omega$ -cm² at 4.2K.

- 68. (Currently amended) The device of claim <u>67, wherein the first and second</u> superconductive oxides are YBCO having an R_nA value of about 1×10^{-9} to about 3×10^{-7} Ω -cm² at 4.2K.
 - 69. (Cancelled)
 - 70. (Cancelled)
- 71. (**Currently amended**) The Josephson junction device of claim 59<u>A</u>

 Josephson junction device, comprising:

a first layer comprising an oxide high-temperature superconductor;

a second layer comprising an oxide high-temperature superconductor; and
a third layer connecting the first and second layers and comprising a nonsuperconductor,

the first and third layers being formed from a starting oxide high-temperature superconductor layer of an oxide high-temperature superconductor, the third layer being an ion-modified portion of the starting oxide high-temperature superconductor layer, the first layer being an unmodified portion of the starting oxide high-temperature superconductor layer,

the device having a J_c value of about 1×10³ to about 5×10⁶ A/cm² at 4.2_K.

72. (Currently amended) The Josephson junction device of claim 7162 wherein the first layer comprises an YBCO superconducting oxide, having a J_e value of about 1×10^3 to about 5×10^6 A/cm² at 4.2K.

73. (Currently amended) The Josephson junction device of claim 1An electronic device comprising:

a crystalline substrate;

an electrode formed on and epitaxial to the substrate, the electrode comprising a first superconductive oxide;

<u>a barrier comprising a non-superconducting, ion-modified surface layer of the</u> <u>first superconductive oxide; and</u>

a counter-electrode formed directly on and epitaxial to the barrier, the counterelectrode comprising a second superconductive oxide, whereby a Josephson junction is formed between the electrode and the counter-electrode,

the device having a J_c value of about 1×10^3 to about 5×10^6 A/cm² at 4.2_K.

- 74. (Currently amended) The Josephson junction device of claim 73[7], wherein the first and second superconductive oxides are YBCO having a J_e value of about 1×10^3 to about 5×10^6 A/cm² at 4.2K.
- 75. (New) The Josephson junction device of claim 65, wherein the third layer is substantially uniform.