Linear Bounded Automata LBAs

Linear Bounded Automata (LBAs) are the same as Turing Machines with one difference:

The input string tape space is the only tape space allowed to use

Linear Bounded Automaton (LBA)

All computation is done between end markers

We define LBA's as NonDeterministic

Open Problem:

NonDeterministic LBA's have same power with Deterministic LBA's?

Example languages accepted by LBAs:

$$L = \{a^n b^n c^n\}$$

$$L = \{a^{n!}\}$$

LBA's have more power than NPDA's

LBA's have also less power than Turing Machines

The Chomsky Hierarchy

Unrestricted Grammars:

Productions

String of variables and terminals

String of variables and terminals

Example unrestricted grammar:

$$S \to aBc$$

$$aB \to cA$$

$$Ac \to d$$

Theorem:

A language L is recursively enumerable if and only if L is generated by an unrestricted grammar

Context-Sensitive Grammars:

Productions

String of variables and terminals

String of variables and terminals

and: $|u| \leq |v|$

The language $\{a^nb^nc^n\}$

is context-sensitive:

$$S \rightarrow abc \mid aAbc$$
 $Ab \rightarrow bA$
 $Ac \rightarrow Bbcc$
 $bB \rightarrow Bb$
 $aB \rightarrow aa \mid aaA$

Derive a353c3

Theorem:

A language L is context sensistive if and only if L is accepted by a Linear-Bounded automaton

Observation:

There is a language which is context-sensitive but not recursive

The Chomsky Hierarchy

Non-recursively enumerable

Recursively-enumerable

Recursive

Context-sensitive

Context-free

Regular

Decidability

Consider problems with answer YES or NO

Examples:

• Does Machine M have three states?

- Is string w a binary number?
- Does DFA M accept any input?

A problem is decidable if some Turing Machine decides (solves) the problem

Decidable problems:

• Does Machine M have three states?

- Is string w a binary number?
- Does DFA M accept any input?

The Turing machine that decides (solves) a problem answers YES or NO for each instance of the problem

The machine that decides (solves) a problem:

 If the answer is YES then halts in a <u>yes state</u>

• If the answer is NO then halts in a <u>no state</u>

These states may not be final states

Turing Machine that decides a problem

YES and NO states are halting states

Difference between
Recursive Languages
and Decidable problems

For decidable problems:

The YES states may not be final states

Some problems are undecidable:

which means: there is no Turing Machine that solves all instances of the problem

A simple undecidable problem:

The membership problem

The Membership Problem

Input: • Turing Machine M

•String w

Question: Does M accept w?

$$w \in L(M)$$
?

Theorem:

The membership problem is undecidable

(there are M and w for which we cannot decide whether $w \in L(M)$)

Proof: Assume for contradiction that the membership problem is decidable

Thus, there exists a Turing Machine $\,H\,$ that solves the membership problem

Let L be a recursively enumerable language

Let M be the Turing Machine that accepts $\ L$

We will prove that L is also recursive:

we will describe a Turing machine that accepts Land halts on any input

Turing Machine that accepts L and halts on any input

Therefore, L is recursive

Since L is chosen arbitrarily, every recursively enumerable language is also recursive

But there are recursively enumerable languages which are not recursive

Contradiction!!!!

Therefore, the membership problem is undecidable

Another famous undecidable problem:

The halting problem

The Halting Problem

Input: • Turing Machine M

•String w

Question: Does M halt on input w?

Theorem:

The halting problem is undecidable

(there are M and w for which we cannot decide whether M halts on input w)

Proof: Assume for contradiction that the halting problem is decidable

Thus, there exists Turing Machine $\,H\,$ that solves the halting problem

Construction of H

Construct machine H':

If H returns YES then loop forever

If H returns NO then halt

H'

Construct machine \hat{H} :

Input: w_M (machine M)

If M halts on input w_M

Then loop forever

Else halt

Run machine \hat{H} with input itself:

Input: $w_{\hat{H}}$ (machine \hat{H})

If \hat{H} halts on input $w_{\hat{H}}$

Then loop forever

Else halt

 \hat{H} on input $w_{\hat{H}}$:

If \hat{H} halts then loops forever

If \hat{H} doesn't halt then it halts

NONSENSE !!!!!

Therefore, we have contradiction

The halting problem is undecidable

END OF PROOF

Another proof of the same theorem:

If the halting problem was decidable then every recursively enumerable language would be recursive

Theorem:

The halting problem is undecidable

Proof: Assume for contradiction that the halting problem is decidable

There exists Turing Machine H that solves the halting problem

Let M be a recursively enumerable language Let M be the Turing Machine that accepts L

We will prove that L is also recursive:

we will describe a Turing machine that accepts Land halts on any input

Turing Machine that accepts L and halts on any input

Therefore L is recursive

Since L is chosen arbitrarily, every recursively enumerable language is also recursive

But there are recursively enumerable languages which are not recursive

Contradiction!!!!

Therefore, the halting problem is undecidable

END OF PROOF

Reductions

- If we can solve problem y
- then we can solve problem X

Definition:

Language A is reduced to language B

There is a computable function f (reduction) such that:

$$w \in A \Leftrightarrow f(w) \in B$$

Recall:

```
Computable function f:
There is a deterministic Turing machine M which for any string w computes f(w)
```

Theorem:

If: a: Language A is reduced to B

b: Language B is decidable

Then: A is decidable

Proof:

Basic idea:

Build the decider for A using the decider for B

Decider for A

$$w \in A \Leftrightarrow f(w) \in B$$

END OF PROOF

Example:

 $EQUAL_{DFA} = \{\langle M_1, M_2 \rangle : M_1 \text{ and } M_2 \text{ are DFAs} \}$ that accept the same languages}

is reduced to:

 $EMPTY_{DFA} = \{\langle M \rangle : M \text{ is a DFA that accepts}$ the empty language $\emptyset \}$

We only need to construct:

$$\frac{\langle M_1, M_2 \rangle}{\longrightarrow} \longrightarrow \begin{array}{c} \text{Turing Machine} \\ \text{for reduction } f \end{array} \longrightarrow \begin{array}{c} f(\langle M_1, M_2 \rangle) \\ = \langle M \rangle \text{ DFA} \end{array}$$

$$\langle M_1, M_2 \rangle \in EQUAL_{DFA} \Leftrightarrow \langle M \rangle \in EMPTY_{DFA}$$

Let
$$L_1$$
 be the language of DFA M_1
Let L_2 be the language of DFA M_2

$$\langle M_1, M_2 \rangle \longrightarrow \begin{array}{c} \text{Turing Machine} \\ \text{for reduction } f \end{array} \longrightarrow \begin{array}{c} f(\langle M_1, M_2 \rangle) \\ = \langle M \rangle \text{ DFA} \end{array}$$

construct DFA M
by combining Mand Mo that:

$$L(M) = (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$$

$$L(M) = (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$$

$$L_1 = L_2 \Leftrightarrow L(M) = \emptyset$$

$$\langle M_1, M_2 \rangle \in EQUAL_{DFA} \Leftrightarrow \langle M \rangle \in EMPTY_{DFA}$$

Decider for EQUALDEA

Theorem (version 1):

If: a: Language Ais reduced to B

b: Language As undecidable

Then: B is undecidable

(this is the negation of the previous theorem)

Contradiction!

Proof: Suppose B is decidable Using the decider for B build the decider for A

If B is decidable then we can build:

Decider for A

$$w \in A \Leftrightarrow f(w) \in B$$

CONTRADICTION!

END OF PROOF

Observation:

In order to prove that some language B is undecidable

we only need to reduce a known undecidable language A to B

State-entry problem

- Input: Turing Machine M
 - •State 9
 - •String W

Question: Does M enter state q while processing input string w?

Corresponding language:

 $STATE_{TM} = \{\langle M, w, q \rangle : M \text{ is a Turing machine that enters state } q \text{ on input string } w \}$

Theorem: STATE_{TM} is undecidable

(state-entry problem is unsolvable)

```
Proof: Reduce

HALT_{TM} (halting problem)

to

STATE_{TM} (state-entry problem)
```

Halting Problem Decider

Decider for HALTTM

Given the reduction, if $STATE_{TM}$ is decidable, then $HALT_{TM}$ is decidable

A contradiction! since $HALT_{TM}$ is undecidable

We only need to build the reduction:

So that:

$$\langle M, w \rangle \in HALT_{TM} \quad \Leftrightarrow \quad \langle \hat{M}, w, q \rangle \in STATE_{TM}$$

A transition for every unused tape symbol x of q_i

M halts on state q

Therefore: M halts on input W

 \hat{M} halts on state q on input W

Equivalently:

$$\langle M, w \rangle \in HALT_{TM} \quad \Leftrightarrow \quad \langle \hat{M}, w, q \rangle \in STATE_{TM}$$

END OF PROOF

Blank-tape halting problem

Input: Turing Machine M

Question: Does M halt when started with a blank tape?

Corresponding language:

 $BLANK_{TM} = \{\langle M \rangle : M \text{ is aTuring machine that halts when started on blank tape} \}$

Theorem: $BLANK_{TM}$ is undecidable

(blank-tape halting problem is unsolvable)

```
Proof: Reduce

HALT_{TM} (halting problem)

to

BLANK_{TM} (blank-tape problem)
```

Halting Problem Decider

Decider for HALT

Given the reduction, If $BLANK_{TM}$ is decidable, then $HALT_{TM}$ is decidable

A contradiction! since $HALT_{TM}$ is undecidable

We only need to build the reduction:

So that:

$$\langle M, w \rangle \in HALT_{TM}$$
 $\langle \hat{M} \rangle \in BLANK_{TM}$

M halts on input w

M halts when started on blank tape

M halts on input W

M halts when started on blank tape

Equivalently:

$$\langle M, w \rangle \in HALT_{TM}$$
 $\langle \hat{M} \rangle \in BLANK_{TM}$

END OF PROOF

Theorem (version 2):

If: a: Language A is reduced to B b: Language A is undecidable

Then: B is undecidable

Proof: Suppose B is decidable Then B is decidable Using the decider for B build the decider for A

Contradiction!

Suppose Bis decidable

Suppose B is decidable Then \overline{B} is decidable

If \overline{B} is decidable then we can build:

$$w \in A \Leftrightarrow f(w) \in B$$

CONTRADICTION!

Alternatively:

$$w \in A \Leftrightarrow f(w) \notin B$$

CONTRADICTION!

END OF PROOF

Observation:

```
In order to prove that some language B is undecidable we only need to reduce some known undecidable language A to B (theorem version 1) or to \overline{B} (theorem version 2)
```

Undecidable Problems for Turing Recognizable languages

Let L be a Turing-acceptable language

- L is empty?
- L is regular?
- L has size 2?

All these are undecidable problems

Let Ibe a Turing-acceptable language

- $igcup_{\bullet} L$ is empty?
 - L is regular?
 - L has size 2?

Empty language problem

Input: Turing Machine M

Question: Is L(M) empty? $L(M) = \emptyset$?

Corresponding language:

 $EMPTY_{TM} = \{\langle M \rangle : M \text{ is aTuring machine that accepts the empty language } \emptyset \}$

Theorem: EMPTY_{TM} is undecidable

(empty-language problem is unsolvable)

Proof: Reduce

(membership problem)

EMPTY_{TM} (empty language problem)

membership problem decider

Decider for Am

Given the reduction, if $\overline{EMPTY_{TM}}$ is decidable, then A_{TM} is decidable

A contradiction! since A_{TM} is undecidable

We only need to build the reduction:

So that:

$$\langle M, w \rangle \in AT_{TM}$$
 $\langle \hat{M} \rangle \in \overline{EMPTY_{TM}}$

The only possible accepted string

Turing Machine \widehat{M}

Maccepts
$$W \longrightarrow L(\hat{M}) = \{Louisiana\} \neq \emptyset$$

$$M \stackrel{\text{does not}}{\text{accept}} W \longrightarrow L(\hat{M}) = \emptyset$$

Turing Machine M

Therefore:

$$M$$
 accepts W $L(M) \neq \emptyset$

$$L(\hat{M}) \neq \emptyset$$

Equivalently:

$$\langle M, w \rangle \in AT_{TM}$$

$$\langle M, w \rangle \in AT_{TM}$$
 $\langle \hat{M} \rangle \in \overline{EMPTY_{TM}}$

END OF PROOF

Let Ibe a Turing-acceptable language

- L is empty?
- L is regular?
 - L has size 2?

Regular language problem

Input: Turing Machine M

Question: Is L(M) a regular language?

Corresponding language:

 $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a Turing machine that accepts a regular language} \}$

Theorem: REGULAR, is undecidable

(regular language problem is unsolvable)

Proof: Reduce A_{TM} (membership problem)

to $REGULAR_{TM}$ (regular language problem)

membership problem decider

Decider for Am

Given the reduction, If $\overline{REGULAR_{TM}}$ is decidable, then A_{TM} is decidable

A contradiction! since A_{TM} is undecidable

We only need to build the reduction:

So that:

$$\langle M, w \rangle \in AT_{TM}$$
 $\langle \hat{M} \rangle \in \overline{REGULAR_{TM}}$

Construct $\langle \hat{M} \rangle$ from $\langle M, w \rangle$:

Tape of \hat{M}

5

input string

Turing Machine M

Maccepts
$$W \longrightarrow L(\hat{M}) = \{a^n b^n : n \ge 0\}$$

$$M \stackrel{\text{does not}}{\text{accept}} W \longrightarrow L(\hat{M}) = \emptyset \text{ regular}$$

Turing Machine M

Therefore:

Equivalently:

$$\langle M, w \rangle \in AT_{TM}$$
 $\langle \hat{M} \rangle \in \overline{REGULAR_{TM}}$

$$\langle \hat{M} \rangle \in \overline{REGULAR_{TM}}$$

END OF PROOF

Let Ibe a Turing-acceptable language

- L is empty?
- L is regular?
- igcircles igcup L has size 2?

Size2 language problem

Input: Turing Machine M

Question: Does
$$L(M)$$
 have size 2 (two strings)? $|L(M)| = 2$?

Corresponding language:

 $SIZE 2_{TM} = \{\langle M \rangle : M \text{ is a Turing machine that accepts exactly two strings} \}$

Theorem: SIZE 2_{TM} is undecidable

(size2 language problem is unsolvable)

Proof: Reduce

A_M (membership problem)

to

SIZE 2_{TM} (size 2 language problem)

membership problem decider

Decider for Am

Given the reduction, If $SIZE 2_{TM}$ is decidable, then A is decidable

A contradiction! since A_{TM} is undecidable

We only need to build the reduction:

So that:

$$\langle M, w \rangle \in AT_{TM}$$
 $\langle \hat{M} \rangle \in SIZE 2_{TM}$

Maccepts
$$W \longrightarrow L(\hat{M}) = \{Baton, Rouge\}$$

$$M \stackrel{\text{does not}}{\text{accept}} W \longrightarrow L(\hat{M}) = \emptyset \quad 0 \text{ strings}$$

Turing Machine M

Therefore:

$$M$$
 accepts $w \leftarrow L(\hat{M})$ has size 2

Equivalently:

$$\langle M, w \rangle \in AT_{TM}$$
 $\langle \hat{M} \rangle \in SIZE 2_{TM}$

$$\langle \hat{M} \rangle \in SIZE 2_{TM}$$

END OF PROOF

RICE's Theorem Undecidable problems:

- L is empty?
- L is regular?
- · L has size 2?

This can be generalized to all non-trivial properties of Turing-acceptable languages

Non-trivial property:

A property P possessed by some Turing-acceptable languages but not all

```
Example: P_1: L \text{ is empty?}

YES L = \emptyset

NO L = \{\text{Louisiana}\}^{\times}

NO L = \{\text{Baton, Rouge}\}^{\times}
```

More examples of non-trivial properties:

 P_2 : L is regular? YES $L = \emptyset$ YES $L = \{a^n : n \ge 0\}$ NO $L = \{a^nb^n : n \ge 0\}$

$$P_3$$
: L has size 2 ?

NO $L = \emptyset \times \mathbb{Z}$

NO $L = \{\text{Louisiana}\}^{\times}$

YES $L = \{\text{Baton, Rouge}\}^{\times}$

Trivial property:

A property P possessed by ALL Turing-acceptable languages

Examples: P_4 : L has size at least Q? True for all languages

 P_5 : L is accepted by some Turing machine?

True for all Turing-acceptable languages

We can describe a property P as the set of languages that possess the property

If language L has property P then $L \in P$

Example:
$$P: L \text{ is empty?}$$

YES $L_1 = \emptyset$

NO $L_2 = \{\text{Louisiana}\}$

NO $L_3 = \{\text{Baton, Rouge}\}$

Example: Suppose alphabet is $\Sigma = \{a\}$

```
P: L \text{ has size } 1?
   \rightarrowYES \{\lambda\} \{a\} \{aaa\} \{aaa\} \cdots
         NO \{\lambda,a\} \{\lambda,aa\} \{a,aa\} ...
         NO \{\lambda,a,aa\} \{aa,aaa,aaaa\} ...
```

$$P = \{\{\lambda\}, \{a\}, \{aaa\}, \{aaaa\}, \{aaaa\}, \ldots\}$$

Non-trivial property problem

Input: Turing Machine M

Question: Does L(M) have the non-trivial property P? $L(M) \in P$?

Corresponding language:

 $PROPERTY_{TM} = \{\langle M \rangle : M \text{ is aTuring machine}$ such that L(M) has the non - trivial property P, that is, $L(M) \in P\}$

Rice's Theorem: PROPERTY_{TM} is undecidable

(the non-trivial property problem is unsolvable)

Proof: Reduce A_{TM} (membership problem)

to $PROPERTY_{TM}$ or $PROPERTY_{TM}$

We examine two cases:

Case 1: $\emptyset \in P$

Examples: P: L(M) is empty?

P: L(M) is regular?

Case 2: $\emptyset \notin P$

Example: P: L(M) has size 2?

Case 1: $\emptyset \in P$

Since P is non-trivial, there is a Turing-acceptable language X such that: $X \notin P$

Let M_X be the Turing machine that accepts X

Reduce

A_{TM} to (membership problem)

PROPERTY

membership problem decider

Decider for Am

Given the reduction, if $\overline{PROPERTY_{TM}}$ is decidable, then A_{TM} is decidable

A contradiction! since A_{TM} is undecidable

We only need to build the reduction:

So that:

$$\langle M, w \rangle \in AT_{TM}$$
 $\langle \hat{M} \rangle \in \overline{PROPERTY_{TM}}$

For this we can run machine M_χ , that accepts language χ , with input string $_{\bf 5}$

Maccepts
$$w \longrightarrow L(\hat{M}) = X^- \notin P$$

$$M \stackrel{\text{does not}}{\text{accept}} w \longrightarrow L(\hat{M}) = \emptyset \in P$$

Turing Machine M

Therefore:

$$M$$
 accepts W $\downarrow L(\hat{M}) \notin P$

$$L(\hat{M}) \notin P$$

Equivalently:

$$\langle M, w \rangle \in AT_{TM}$$

$$\langle M, w \rangle \in AT_{TM}$$
 $\langle \hat{M} \rangle \in \overline{PROPERTY_{TM}}$

Case 2: Ø ∉ P

Since P is non-trivial, there is a Turing-acceptable language X such that: $X \in P$

Let M_X be the Turing machine that accepts χ

Reduce

Am (membership problem) to

PROPERTY

membership problem decider

Decider for Am

Given the reduction, if property is decidable, then A is decidable

A contradiction! since Amis undecidable

We only need to build the reduction:

So that:

$$\langle M, w \rangle \in AT_{TM}$$
 $\langle \hat{M} \rangle \in PROPERTY_{TM}$

Construct $\langle \hat{M} \rangle$ from $\langle M, w \rangle$:

Tape of \hat{M}

input string

Turing Machine M

Maccepts
$$w \mapsto L(\hat{M}) = X \in P$$

$$L(\hat{M}) = X$$

$$\in P$$

 $M \stackrel{\text{does not}}{\text{accept}} w \longrightarrow L(\hat{M}) = \emptyset \notin P$

$$L(\hat{M}) = \emptyset$$

$$\not\in P$$

Turing Machine M

Therefore:

$$M$$
 accepts w $L(\hat{M}) \in P$

$$L(\hat{M}) \in P$$

Equivalently:

$$\langle M, w \rangle \in AT_{TM}$$

$$\langle M, w \rangle \in AT_{TM}$$
 $\langle \hat{M} \rangle \in PROPERTY_{TM}$

END OF PROOF

The Post Correspondence Problem

Envil Post 1946

Some <u>undecidable</u> problems for context-free languages:

• Is
$$L(G_1) \cap L(G_2) = \emptyset$$
?
$$G_1, G_2 \text{ are context-free grammars}$$

 \cdot Is context-free grammar G ambiguous?

We need a tool to prove that the previous problems for context-free languages are <u>undecidable</u>:

The Post Correspondence Problem

The Post Correspondence Problem

Input: Two sets of <u>n</u> strings

$$A = w_1, w_2, ..., w_n$$

$$B = v_1, v_2, ..., v_n$$

There is a Post Correspondence Solution if there is a sequence i, j, ..., k such that:

PC-solution:
$$w_i w_j \cdots w_k = v_i v_j \cdots v_k$$

Indices may be repeated or omitted

Example:

A:

 W_1 100

 w_2

B:

 v_2

111

*V*3

PC-solution: 2,1,3

$$w_2w_1w_3 = v_2v_1v_3$$

Example: w_1 w_2 w_3 00 001 1000 w_1 w_2 w_3 w_4 w_5 w_6 w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_8 w_9 w_9 w

There is no solution

Because total length of strings from $\,B\,$ is smaller than total length of strings from $\,A\,$

The Modified Post Correspondence Problem

Inputs:
$$A = w_1, w_2, ..., w_n$$

$$B = v_1, v_2, ..., v_n$$

MPC-solution: (1, i, j, ..., k)

$$w_1 w_i w_j \cdots w_k = v_1 v_i v_j \cdots v_k$$

Example:

A:

*w*₁ 11

*w*₂111

 $\frac{w_3}{100}$

*V*3

B :

 $\frac{v_1}{111}$

 v_2

11

001

MPC-solution: 1,3,2

$$w_1 w_3 w_2 = v_1 v_3 v_2$$

11100111

We will show:

1. The MPC problem is undecidable (by reducing the membership to MPC)

2. The PC problem is undecidable (by reducing MPC to PC)

Theorem: The MPC problem is undecidable

Proof: We will reduce the membership problem to the MPC problem

Membership problem

Input: Turing machine M string w

Question: $W \in L(M)$?

Undecidable

Membership problem

Input: unrestricted grammar G string w

Question: $w \in L(G)$?

Undecidable

Suppose we have a decider for the MPC problem

String Sequences

MPC solution?

We will build a decider for the membership problem

The reduction of the membership problem to the MPC problem:

Membership problem decider

We need to convert the input instance of one problem to the other

Membership problem decider

Reduction:

Convert grammar G and string W to sets of strings A and B

Such that:

There is an \underline{MPC} solution for \overline{A} , B

\boldsymbol{A}	B	Grammar G
$FS \Longrightarrow$	\overbrace{F}	S: start variable F : special symbol
a	$\frac{a}{-}$	For every symbol <u>a</u>
V	V	For every variable \underline{V}

\boldsymbol{A}	\boldsymbol{B}	Grammar G
E	$\Rightarrow wE$	string w E : special symbol
y	X	For every production $x \rightarrow y$
\Rightarrow	\Rightarrow	

Example:

Grammar
$$G: S \rightarrow aABb \mid Bbb$$

$$Bb \rightarrow C$$

$$AC \rightarrow aac$$

String
$$w = aaac$$

Grammar
$$G$$
:

$$S \rightarrow aABb \mid Bbb$$

$$Bb \rightarrow C$$

$$AC \rightarrow aac$$

$$aaac \in L(G)$$
:

$$S \Rightarrow aABb \Rightarrow aAC \Rightarrow aaac$$

$$S \rightarrow aABb \mid Bbb$$
 $Bb \rightarrow C$
 $AC \rightarrow aac$

$$A: \quad \underline{\underline{w_1}}$$

$$E \quad S \Rightarrow$$

$$B: \quad v_1$$

W= GAAC

$$S \Rightarrow aABb$$

$$\begin{array}{c|cccc}
S \to \underline{aABb} & Bbb \\
Bb \to C \\
AC \to aac
\end{array}$$

$$S \Rightarrow aABb \Rightarrow aAC$$

$$S \rightarrow aABb \mid Bbb$$

 $Bb \rightarrow C$
 $AC \rightarrow aac$

$$S \Rightarrow aABb \Rightarrow aAC \Rightarrow aaac$$

$$S \rightarrow aABb \mid Bbb$$

 $Bb \rightarrow C$
 $AC \rightarrow aac$

A:
$$w_1$$
 w_{10} w_{14} w_2 w_5 w_{12} w_{14} w_2 w_{13}
F $S \Rightarrow a$ A B $b \Rightarrow a$ A $C \Rightarrow a$ a a c E
B: v_1 v_{10} v_{14} v_2 v_5 v_{12} v_{14} v_2 v_{13}

$$S \Rightarrow aABb \Rightarrow aAC \Rightarrow aaac$$

$$S \rightarrow aABb \mid Bbb$$

 $Bb \rightarrow C$
 $AC \rightarrow aac$

A:
$$w_1$$
 w_{10} w_{14} w_2 w_5 w_{12} w_{14} w_2 w_{13} w_9
F $S \Rightarrow a$ A B $b \Rightarrow a$ A $C \Rightarrow a$ a a c E
B: v_1 v_{10} v_{14} v_2 v_5 v_{12} v_{14} v_2 v_{13} v_9

(A,B) has an MPC-solution

$$w \in L(G)$$

Membership problem decider

Since the membership problem is undecidable, The MPC problem is undecidable

END OF PROOF

Theorem: The PC problem is undecidable

Proof: We will reduce the MPC problem to the PC problem

Suppose we have a decider for the PC problem

We will build a decider for the MPC problem

String Sequences MPC solution? $A \longrightarrow MPC \text{ problem } decider \longrightarrow NO$

The reduction of the MPC problem to the PC problem:

MPC problem decider PC problem decider no We need to convert the input instance of one problem to the other

A,B: input to the MPC problem

$$A = w_1, w_2, ..., w_n$$

 $B = v_1, v_2, ..., v_n$

Translated to

C,D: input to the PC problem

$$C = w'_1, ..., w'_n, w'_{n+1}$$

$$D = \mathbf{v}_1', \ldots, \mathbf{v}_n', \mathbf{v}_{n+1}'$$

$$\mathbf{W}_i = \sigma_1 \sigma_2 \cdots \sigma_k$$

For each i

$$w'_i = \underline{\sigma_1} * \underline{\sigma_2} * \cdots \underline{\sigma_k} *$$
replace $w'_1 = * w'_1$

$$w'_{n+1} = \Diamond$$

$$\mathbf{v}_i = \pi_1 \pi_2 \cdots \pi_k$$

For each i

$$\mathbf{v}_{i}' = \mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{2} \cdots \mathbf{x}_{k}$$

$$\mathbf{v}'_{n+1} = \mathbf{x} \Diamond$$

Has to start with These strings

$$C$$
 PC-solution D

$$w'_1w'_i\cdots w'_kw'_{n+1}=v'_1v'_i\cdots w'_kv'_{n+1}$$

$$\begin{array}{ccc}
A & B \\
\mathbf{w_1}\mathbf{w_i} & \cdots \mathbf{w_k} & = \mathbf{v_1}\mathbf{v_i} & \cdots \mathbf{v_k}
\end{array}$$

MPC-solution

C,D has a PC solution

A, B has an MPC solution

MPC problem decider

Since the MPC problem is undecidable, The PC problem is undecidable

END OF PROOF

Some <u>undecidable</u> problems for context-free languages:

• Is
$$L(G_1) \cap L(G_2) = \emptyset$$
?
$$G_1, G_2 \text{ are context-free grammars}$$

- Is context-free grammar G ambiguous?
- We reduce the <u>PC problem</u> to these <u>problems</u>

Theorem: Let G_1, G_2 be context-free grammars. It is undecidable to determine if

$$L(G_1) \cap L(G_2) = \emptyset$$

(intersection problem)

Proof: Reduce the PC problem to this problem

Suppose we have a decider for the intersection problem

We will build a decider for the PC problem

The reduction of the PC problem to the empty-intersection problem:

We need to convert the input instance of one problem to the other

Introduce new unique symbols: a_1, a_2, \dots, a_n

$$A = w_1, w_2, ..., w_n$$

$$L_A = \{s: \ s = w_i w_j \cdots w_k a_k \cdots a_j a_i \}$$

Context-free grammar $G_A\colon S_A\to w_{\underline{i}}S_Aa_{\underline{i}}\mid w_{\underline{i}}a_{\underline{i}}$

$$B = v_1, v_2, ..., v_n$$

$$L_B = \{s: s = v_i v_j \cdots v_k a_k \cdots a_j a_i\}$$

Context-free grammar $G_B\colon S_B\to v_iS_Ba_i\mid v_ia_i$

(A,B) has a PC solution

$$L(G_A) \cap L(G_B) \neq \emptyset$$

$$L(G_1) \cap L(G_2) \neq \emptyset$$

$$s = w_i w_j \cdots w_k a_k \cdots a_j a_i$$

$$s = v_i v_j \cdots v_k a_k \cdots a_j a_i$$

Because a_1, a_2, \dots, a_n are unique

There is a PC solution:

$$\mathbf{W}_i \mathbf{W}_j \cdots \mathbf{W}_k = \mathbf{V}_i \mathbf{V}_j \cdots \mathbf{V}_k$$

PC problem decider

Since PC is undecidable, the Intersection problem is undecidable

END OF PROOF

Theorem: For a context-free grammar ${\cal G}$, it is undecidable to determine if ${\cal G}$ is ambiguous

Proof: Reduce the PC problem to this problem

PC problem decider

 S_A start variable of G_A

 S_B start variable of G_B

S start variable of G

$$S \to S_A \mid S_B$$

(A,B) has a PC solution

