

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T Y \text{ им. H.9. Баумана})$

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

Расчетно-пояснительная записка

к курсовому проекту

Гема: Генера	ация трехмерного ландшафта		
Дисциплина:	Компьютерная графика		
Студент		(Подпись, дата)	Хетагуров П.К (И.О. Фамилия)
Руководитель пр	оекта	(Подпись, дата)	Степанов (И.О. Фамилия)

Содержание

В	ведение	3
1	Аналитическая часть	4
2	Конструкторская часть	5
3	Технологическая часть	6
4	Экспериментальная часть	7
	4.1 Вывод	7
3	Заключение	
\mathbf{C}	Список литературы	

Введение

Компьютерные системы уже глубоко проникли во все сферы жизни и являются неотъемлемыми составляющими все более различной человеческой деятельности. Организация работы предприятий, проектирование ракет, моделирование химических процессов - все это значительно облегчилось после широкого распространения компьютеров.

При все большем усложнении информационных систем и развитии компьютерной техники, росли и требования к таким системам. Очень быстро появилась потребность в визуализации данных, полученных или обрабатанных с помощью уже существующего программного обеспечения. Ответом на эту потребность стала машинная графика - область компьютерной науки, отвечающая за обработку, синтез и распознавание изображений. В частности выделилось такое направление машинной графики, как 3D-моделирование, отвечающее за синтез и обработку изображений объемных объектов.

В настоящее время существует большое количество задач, решаемых с помощью 3D-моделирования, например высокоточное моделирование деталей и объектов, добавление спецэффектов при производстве фильмов, компьютерные игры. Одной из таких задач является генерация трехмерного ландшафта.

1 Аналитическая часть

В данном разделе будут поставлены задачи работы, будут рассмотренны основные теоритические сведения связанные с трехмерной генерацией ландшафта.

Задачу генерации трехмерного ландшафта можно решать различными способами, но почти все из них можно разделить на следующие этапы:

- 1. генерация карты высот;
- 2. построение трехмерного изображения по карте высот;
- 3. текстурирование.

Этап текстурирования в общем случае необязателен.

2 Конструкторская часть

3 Технологическая часть

4 Экспериментальная часть

4.1 Вывод

Видно, что алгоритм полного перебора самый долгий из реализованных алгоритмов, а алгоритм поиска по сегментам - самый быстрый. Это происходит потому, что при поиске по сегментам мы заранее отсекаем большую часть проверяемых слов.

Заключение

В данной лабораторной работе были описаны и реализованны несколько алгоритмов поиска, проведены замеры времени их выполнения. Цель работы достигнута, все задачи выполнены.

Список литературы

- [1] Целочисленный двоичный поиск. ITMO [Электронный ресурс]. Режим доступа: (дата обращения 20.11.2020) Свободный. URL: https://neerc.ifmo.ru/wiki/index.php?title=Целочисленный_двоичный_поиск
- [2] Golang [Электронный ресурс]. Режим доступа: (дата обращения 20.11.2020) Свободный. URL: https://ru.wikipedia.org/wiki/C Sharp
- [3] Visual Studio [Электронный ресурс]. Режим доступа: (дата обращения 20.11.2020) Свободный. URL: https://visualstudio.microsoft.com/ru/