You didn't come this far only to come this far.

Today's Content

- Tries intro
 - -> Naming Convention
 -> True Traversal

 - -> Basic Tree problems.

Linear. , stock 4 Quem. list Lint > 4 arrays Linked-list-Hirarchical Bata family Tree-CEO Pather & mother 600 Cfo CTO C_3 Prisident 43 SVPL SVP. [GG2] VP3 VPZ Eq: Folder Staucture meg3 mag2 magi My folder Photos Games rideos 162 Ch. 4,_ TV Series Movies

Naming.

f, c: siblings

A, G, F, C: nodes at same level

leaf node: node with o no. of children.

roof node: node without parent node

Tree: [- will have only 1 root node]

For every node, there will be only 1]

single parent.

Height of a Node.

[length of the longest path] from node to any of its downdent leaf nodes.

length is defined in terms of]
no. of edges.

Observation

- 1) Ht. of any mode = mart (nt. of child nodes) +1.
- @ Ht. of leaf node = 0.
- 3) Ht. of tree = Ht. of root node.

Depth of a node.

to node.

$$d(A) = d(B) = d(c) = 1$$
.
 $d(f) = 4$.

observation

- leight of path from roof node of If depth of a node = d depth of its child node = d+1.
 - @ depth (root nide) = 0
 - 3 depth of a free = Max depth of a leaf node = no of levels.

Binary Tree: Every node can have atmost 2 children. 0, 1, 2, 3, 4, 5, --- leaf nodes. Can - nodes with single child - nodes with 2 children. Node & class Int val; Node left; l'object reference, it holds reference of Node object Node right; / object reference, it holds reference of Node object Node (x) {
 val = x
 left = right = null Node r = new Node (10); #ad1 right val Hade 10 r.lyft = new Node (20); #ad3 J#ad2 right val r. right. new Node (30)? right Hags val 20 #ad 6 #0d5 14) right val

- Cliven the root node of a binary true, we can haverus?

 the entire tree.
- → We will be given root mode for every question.

 → Construction of tree using arrays uses sentalization & de-sevialization. {adv.}

True traversals.

- Pre-order
 - -s In-order
 - -> Post-order
 - -> level-order
 - -> level-order

 -> Vertical level-order Adv.

 -> Diagonal -order

Pre-order = N, L, R.

Skp1 prith (roof-val)

Skpd. Go to left-subtree and print entire left subtree in pre-order.

skeps Cro to signil - subtree and print entire right subtree in pre-order

0/0 - 5, 15, 7, 9, 18, 6, 11, 13, 19

In-order - LN,R

S# todo?

Post-order - L, R, N

Acsignments. - Use recursion]

b Seudo-code.

Asim: Given root node, it should print all node of tree in pre-orden

```
void pre-Order (Node r) \{

if (r = = NULL) { return } \}

print (r.val);

pre-Order (r.left);

pre-Order (r.repht);

}
```

T.C. O(N)

S.C. max size of stack at any given point of time

O(height of tree)

\	
	-premull)
	pre (40)
	pn (30)
	Pre (20)
	pre (10)

y. S-

Tric problems.

- Size (Node roof)
- & Sum [Node root)
- Acignt (Node rust)

Recursive codes only without any Chobal variables.

int size (Node roof) & [[Asm., Clive root, return count of all nodes in tree.

if [root = = null) & return 03

L = Size (root left);

r = Size (root right);

return L + r+1;

Ssire of tree = size of list + size of rist +1. }

11Assm - Civen root, calculate & return sum of value of all the nodes.

Sum of all nody = Sum of nodes + Sum of nodes + ynof val }
in tree in last in rest

int sum (Node root) {

if (root == null) { return 0 }

int L = Sum (root, lyt)

int r = sum (root, right)

return l+r+root.val;

1 Height

if you want to calculate height of how in terms of edges.

in base condition return -1

you want to calculate height of how in terms of nodes,

in base condition return 0.