30.11.07

s05-022

1. Nájdite zložené funkcie $f_2=f(f), \, f_3=f(f(f)), \, \ldots, \, f_n=f(f(f(\ldots(f)))), \, n\in \mathbb{N},$ ak funkcia $f_1=f$ je definovaná predpisom $f(x)=-5+3x, \, x\in \mathbb{R}.$

$$f_{2}(x) = f(-5+3x) - 5+2(-5+3x) = -5+45+9x = 9x-20$$

$$f_{3}(x) = f(f(-5+3x)) = f(-5+2(-5+3x)) = -5+3(-5+3x) = -5+3(-5+3x) = -5+45+9x = -5+45+75+24x = 27x-65$$

$$f_{3}(x) = f(f(-5+3x)) = f(-5+2(-5+3x)) = -5+3(-5+3x) = -5+3(-5+45+9x) = -5+45+75+24x = 27x-65$$

$$f_{3}(x) = f(f(-5+3x)) = f(-5+2(-5+3x)) = -5+3(-5+3x) = -5+3(-5+4x) = -5+45+9x = -200+24x$$

$$f_{3}(x) = f(-5+3x) = f(-5+3x) = f(-5+3x) = -5+3(-5+3x) = -5+45+9x = -200+24x$$

$$f_{4}(x) = f(-5+3x) =$$

$$f_n(x) = 3^n \times -5^n \times = 2^n \times = 2^n$$

2. Nájdite zložené funkcie $f_2 = f(f)$, $f_3 = f(f(f))$, ..., $f_n = f(f(f(\dots(f))))$, $n \in \mathbb{N}$, ak funkcia $f_1 = f$ je definovaná predpisom f(x) = -5 - 3x, $x \in \mathbb{R}$.

$$f_{2}(y) = -T - 3\left(-T - 24x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{3}(y) = -T - 3\left(-5 - 3x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{4}(x) = -T - 3\left(-5 - 3x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3\left(-5 - 3x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3\left(-5 - 3x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3\left(-5 - 3x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3\left(-5 - 3x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3\left(-5 - 3x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3\left(-5 - 3x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3\left(-5 - 3x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3\left(-5 - 3x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3\left(-5 - 3x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3\left(-5 - 3x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3\left(-5 - 3x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3\left(-5 - 3x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3\left(-5 - 3x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3\left(-5 - 3x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3\left(-5 - 3x\right) = -T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3x + 10T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3x + 10T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3x + 10T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3x + 10T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3x + 10T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3x + 10T + 10T + 729x = 100 + 729x$$

$$f_{5}(x) = -T - 3x + 10T +$$

$$f^{-1}(x) = \frac{3}{x} + \frac{1}{x} + \frac{$$

4. Zostrojte periodickú funkciu y = f(x) s primitívnou periódou 10 a načrtnite jej graf tak, aby bola párna, klesajúca na intervale (1; 2), rastúca na intervale (-3; -2) a aby f(5) = -1.

5. Nájdite s presnosťou $\varepsilon=0.01$ kladné riešenie rovnice 5 e $^x-18x^5-5=0.$

Výpočet počtu krokov n: 0,01 = $10^{-2} = \frac{1}{160}$ \Rightarrow $\frac{1}{2^n} < \frac{1}{160} \Rightarrow 100 < 2^m$

$a_n \bigcirc$	x_{n+1}	b_n \odot	$f(x_{n+1})$
0 -	0,5	1	+ 1,08
0,5	0,75	1	+ 1,3135
0,75	0,875	1	- 2,2379
-0,75	0,8125	0,875	- 0,4059
0,75	0,7.872.5	0,8421	+ 0,0823
0,77125	0,796975	0, 8121	+ 0,3090

a_n	x_{n+1}	b_n	$f(x_{n+1})$
0,796275	0,8046875	0,8125	+0,106
0,8046875	0,100593	0,2125	

Približné riešenie $x_{n+1} \approx 0.30859375$

4b do 03.12.07, 3b do 10.12.07, 2b do 17.12.07, 1b do 24.12.07

MIROSLAV DREVENAK 521012

$$f_{1}(x) = \frac{-x-2}{x-3}$$

$$f_{1}(x) = f\left(\frac{-x-2}{x-3}\right) = \frac{-\left(\frac{-x-2}{x-3}\right)-2}{-\frac{-x-2}{x-3}-3} = \frac{\frac{x+2}{-x+2}-2}{\frac{-x-2}{x-3}} = \frac{\frac{x+2}{-x+2}-2x}{-\frac{x+2}{x-3}} = \frac{\frac{x+2}{-x+2}-2x}{\frac{-x+2}{x-3}} = \frac{\frac{x+2}{-x+2}-2x}{\frac{-x+2}{x-3}-2x} = \frac{\frac{x+2}{-x+2}-2x}{\frac{-x+2}{x-2}-2x} = \frac{\frac{x+2}{-x+2}-2x}{\frac{-x+2}{x-2}-2x} = \frac{\frac{x+2}{-x+2}-2x}{\frac{-x+2}{x-2}-2x} = \frac{\frac{x+2}{-x+2}-2x}{\frac{-x+2}{x-2}-2x} = \frac{\frac{x+2}{x-2}-2x}{\frac{-x+2}{x-2}-2x} = \frac{\frac{x+2}{x-2}-2x}{\frac{-x+2}{x-2}-2x} = \frac{\frac{x+2}{x-2}-2x}{\frac{-x+2}{x-2}-2x} = \frac{\frac{x+2}{x-2}-2x}{\frac{-x+2}{x-2}-2x} = \frac{\frac{x+2}{x-2}-2x}{\frac{-x+2}{x-2}-2x} = \frac{x+2}{x-2} = \frac{x+2}{x$$