Hunting C2 Beaconing at Scale in the Modern Age

Mehmet Ergene Security Researcher & Data Scientist, Binalyze

About me

Mehmet Ergene

Security Researcher & Data Scientist, Binalyze

Handpan player

Lindy hopper

@Cyb3rMonk

https://github.com/Cyb3r-Monk

https://posts.bluraven.io

Agenda

- Current C2 Beaconing Hunting Process
- C2 Usage in Modern Attacks
- The Experiment
- Solution & Jupyter Notebook Release
- Q&A

Current C2 Beaconing Hunting Process

Current C2 Beaconing Hunting Process

Proxy/Bro/Zeek Logs

Timestamp	SourceIP	DestinationHostName	SentBytes	ReceivedBytes
7/14/2023, 1:06:58.916 AM	10.35.20.61	twitter.com	2000	360
7/14/2023, 1:08:06.920 AM	10.35.20.61	kas2kjah13eas.cloudfront.net	800	430
7/14/2023, 1:09:13.932 AM	10.35.20.61	kas2kjah13eas.cloudfront.net	810	410
7/14/2023, 1:09:15.109 AM	172.18.5.30	www.amazon.com	600	5000
7/14/2023, 1:10:10.909 AM	10.35.20.61	kas2kjah13eas.cloudfront.net	815	425
7/14/2023, 1:11:02.921 AM	10.35.20.61	kas2kjah13eas.cloudfront.net	820	20000
7/14/2023, 1:11:30.409 AM	172.18.5.30	www.yahoo.com	700	3000
7/14/2023, 1:12:15.921 AM	10.35.20.61	kas2kjah13eas.cloudfront.net	800	40000

Current C2 Beaconing Hunting Process

- For each source-destination pair (Source IP/User Destination IP/Host):
 - Generate list of connection intervals (time delta) and data size (packet size)
 time_delta = [0,0,14,16,25,30,30,25,15,13,22,60,68,10,100,150]
 packet_size = [600,610,600,605,680,700,760,900,20000,15000,600,640,620,250000,630,625]
 - o Analyze time delta distribution
 - Analyze data size distribution
 - o If both distributions are uniform and narrow, it's more likely a beaconing traffic
 - If false positive, whitelist the IP or Hostname

Uniform time delta distribution of a beacon with 60s sleep and 33% jitter

Percentile

Percentage of values below a specified point
 25th percentile (p_25) = the value x where 25% of the values are below x

Median

- Middle number of an ordered list [1,1,2,2,4,6,9]: 2
- o 50th percentile = Median

Median Absolute Deviation(MAD)

- Measurement of how wide or narrow the distribution is
 - Find median: 2
 - Calculate the absolute distance between the median and each item [1,1,0,0,2,4,7] -sort \rightarrow [0,0,1,1,2,4,7] (absolute deviation list)
 - Find the median of the absolute deviation list: 1

- Mean
 - The average of a data set
- Mode
 - The value(s) that appears most frequently in a data set $[1,1,2,2,4,6,9] \Rightarrow 1,2$
 - Doesn't have to exist in every data set
- Skewness
 - Asymmetry of a data distribution
 - o Bowley's Formula: $(p_25 + p_75 p_50 * 2) / (p_75 p_25) = x$ (-1 < x < 1)

$$x = 0$$

$$-1 < x < 0$$

- Analyze skewness ⇒ skewness_score
 - Less skewed ⇒ higher score
- Analyze dispersion ⇒ mad_score
 - Dispersion is about MAD
 - Small dispersion = narrow distribution ⇒ higher score

Score = (skewness_score + mad_score) / 2

Score $> 0.85 \Rightarrow BEACONING!$

RITA (Real Intelligence Threat Analytics)

C2 Usage in Modern Attacks

Domain Fronting

- Attacker host : myevilc2[.]com
- Fronted domain: jkahsfkjah13eas.cloudfront.net
 - o **Globally unique** hostname given by the provider or set by the attacker
- How the traffic looks in the logs

Source	Destination Host	Destination IP
Victim User/IP	kasfkjah13eas.cloudfront.net	Multiple Cloudfront IPs

- Can't block/whitelist the host when it's a False Positive
 - It belongs to a Cloud Service Provider
 - Hard to maintain

Web Services

- Attacker host: ??
- Web Service: graph.microsoft.com
- How the traffic looks in the logs

Source	Destination Host	Destination IP
Victim User/IP	graph.microsoft.com	MS Graph IP

- Can't block/whitelist the host when it's a False Positive
 - o It belongs to a SaaS or Cloud Service Provider

Malleable C2 Profiles

- Attacker host: ??
- Host header: www.amazon.com
- Attacker IP : An arbitrary IP that doesn't belong to www.amazon.com
- How the traffic looks in the logs

Source	Destination Host	Destination IP	
Victim User/IP	www.amazon.com	5[.]4.23.34	

- Can't block/whitelist the host when it's a False Positive
 - It's a benign hostname

SOCKS Tunneling

- Tunneling Post-Ex tool traffic (Evil WinRM, etc.) to the target network
 - No need to drop the malicious files on target
- HTTP/1.1 (Cobalt Strike SOCKS proxy)
 - Requires small sleep parameter (sleep 0) to function effectively
- HTTP/2 (gTunnel, etc.)
 - Single HTTP connection (no beaconing behavior)
 - Most likely(?) blocked in enterprise environments
- SSH
 - Most likely blocked in enterprise environments

★ Tunneling can be done over the C2 channel or a different channel

In-Memory Execution

- Transfer the command/code over the C2 to the Beacon
- Execute the code in the Beacon or sacrificial process memory
- Beacon sends the results back over the C2

The Experiment

Scenario

Beacon Usage

Phase	Duration	Sleep	Jitter
SOCKS Tunneling*	30 min	2s	50%
Keyboard Activity	450 min	90s	50%
No Activity(Idle)	960 min	900s	50%

State	Data Size(Bytes)	Jitter(Bytes)
Idle (just checking in)	800	500
Keyboard Activity (commands/tools)	20000, 40000,	500

*HTTP/1.1 SOCKS Tunneling

Time Delta Distribution

0.005 0.005 0.005 0.005 0.005

Uniform distribution we're looking for

Doesn't look like a uniform distribution?

Data Size Distribution

Falls into the 75% - 100% percentile, doesn't impact the scoring

Detected Beaconing in an Enterprise

#	Source	Destination	Destination Prevalence	Score	Result
1	src_01	ah3s32ds.cloudfront.net	2	0.95	FP
2	src_02	dst_01	4	0.94	FP
3	src_03	music.youtube.com	5	0.90	FP
4	src_04	<xyz>.amazon.com</xyz>	3	0.89	FP
					FP
150	src_130	dst_130	9	0.81	FP
240	src_240	www.amazon.com	105	0.77	ТР

Solution

Time Delta Analysis

- Use 15th, 30th, and 45th percentiles
 - Large sleep values doesn't impact the scoring
- Use jitter as a scoring parameter

```
30th percentile : 58s

MAD : 30s

Jitter : (30/58) * 100 = 52 (52%)
```

Jitter <= $55 \Rightarrow$ Jitter score = 1 Jitter > $55 \Rightarrow$ Jitter score = 1 - (Jitter * 0.004)

- Do NOT use skewness for scoring
 - Jitter in C2 doesn't guarantee uniform distribution

Beaconing with skewed time delta distribution

Data Size Analysis

- Use 15th, 30th, and 45th percentiles of the Sent Bytes
 - Sending command/code over C2 doesn't impact the score
- Use jitter as a scoring parameter
- Do NOT use skewness for scoring
- At least 1 connection must have Received Bytes > 20.000
 - Beacon receives the command/code to execute
 - Adjustable as a threshold (do your own risk analysis!)
 - Nation State TA : 1
 - Ransomware TA: 5-10

Active C&C Detector

https://github.com/Cyb3r-Monk/ACCD

AC&CD Performance

#	Source	Destination	Destination Prevalence	Score	Result
1	src_240	www.amazon.com	105	1.00	ТР
2	src_05	dst_08	3	1.00	FP
3	src_02	dst_01	4	0.94	FP
					FP
150	src_130	dst_130	9	0.81	FP

Future Work

• Implementation in MSTICPy

• Working on a ML algorithm

DFIR Bonus

• Time Series graph shows when the attacker executed commands

Q&A