NG86 example

Seq1	ACA	ATA	ATC	TTT	AAT	CAA
Syn	1	2/3	2/3	1/3	1/3	1/3
NonSyn	2	7/3	7/3	8/3	8/3	7/3
Seq2	ACA	ATA	ACC	TTT	AAC	CAA
Syn	1	2/3	1	1/3	1/3	1/3
NonSyn	2	7/3	2	8/3	8/3	7/3
Syn	1	2/3	5/6	1/3	1/3	1/3
NonSyn	2	7/3	13/6	8/3	8/3	7/3

Mean

ES = $3\frac{1}{2}$, EN = $14\frac{1}{6}$: under neutrality, we <u>expect</u> the ratio of non-synonymous to synonymous substitutions of EN/ES ~ 4.05

NG86 example

- The observed N/S ratio (1.0) is lower than the expected EN/ES ratio (4.05).
- The ratio of the ratios (N:S)/(EN:ES) yields $dN/dS = 1/4.05 \sim 0.25$.
- This ratio quantifies the *excess* or *paucity* of non-synonymous substitutions and is near dN/dS = 1 for neutrally evolving sequences/sites.
- Because there are fewer non-synonymous substitutions than expected under neutrality, we conclude that most non-synonymous mutations are removed by natural selection, i.e., the sequences are under negative selection
- If there were more non-synonymous substitutions than expected, we would conclude that many non-synonymous mutations are fixed due to natural selection, i.e., the sequences are under positive selection