

Título de la tesis o trabajo de investigación

Nombres y apellidos completos del autor

Universidad Nacional de Colombia Facultad, Departamento (Escuela, etc.) Ciudad, Colombia Año

Título de la tesis o trabajo de investigación

Nombres y apellidos completos del autor

Tesis o trabajo de grado presentada(o) como requisito parcial para optar al título de: Indicar el título que se obtendrá. Por ejemplo, Magister en Ingeniería Química

Director(a):
Título (Ph.D., Doctor, Químico, etc.) y nombre del director(a)

Línea de Investigación:

Nombrar la línea de investigación en la que enmarca la tesis o trabajo de investigación

Grupo de Investigación:

Nombrar el grupo en caso que sea posible

Universidad Nacional de Colombia Facultad, Departamento (Escuela, etc.) Ciudad, Colombia Año

(Dedicatoria o un lema)

Su uso es opcional y cada autor podrá determinar la distribución del texto en la página, se sugiere esta presentación. En ella el autor dedica su trabajo en forma especial a personas y/o entidades.

Por ejemplo:

A mis padres

o

La preocupación por el hombre y su destino siempre debe ser el interés primordial de todo esfuerzo técnico. Nunca olvides esto entre tus diagramas y ecuaciones.

Albert Einstein

Agradecimientos

Esta sección es opcional, en ella el autor agradece a las personas o instituciones que colaboraron en la realización de la tesis o trabajo de investigación. Si se incluye esta sección, deben aparecer los nombres completos, los cargos y su aporte al documento.

Resumen

El resumen es una presentación abreviada y precisa (la NTC 1486 de 2008 recomienda revisar la norma ISO 214 de 1976). Se debe usar una extensión máxima de 12 renglones. Se recomienda que este resumen sea analítico, es decir, que sea completo, con información cuantitativa y cualitativa, generalmente incluyendo los siguientes aspectos: objetivos, diseño, lugar y circunstancias, pacientes (u objetivo del estudio), intervención, mediciones y principales resultados, y conclusiones. Al final del resumen se deben usar palabras claves tomadas del texto (mínimo 3 y máximo 7 palabras), las cuales permiten la recuperación de la información.

Palabras clave: (máximo 10 palabras, preferiblemente seleccionadas de las listas internacionales que permitan el indizado cruzado).

A continuación se presentan algunos ejemplos de tesauros que se pueden consultar para asignar las palabras clave, según el área temática:

Artes: AAT: Art y Architecture Thesaurus.

Ciencias agropecuarias: 1) Agrovoc: Multilingual Agricultural Thesaurus - F.A.O. y 2)GEMET: General Multilingual Environmental Thesaurus.

Ciencias sociales y humanas: 1) Tesauro de la UNESCO y 2) Population Multilingual Thesaurus.

Ciencia y tecnología: 1) Astronomy Thesaurus Index. 2) Life Sciences Thesaurus, 3) Subject Vocabulary, Chemical Abstracts Service y 4) InterWATER: Tesauro de IRC - Centro Internacional de Agua Potable y Saneamiento.

Tecnologías y ciencias médicas: 1) MeSH: Medical Subject Headings (National Library of Medicine's USA) y 2) DECS: Descriptores en ciencias de la Salud (Biblioteca Regional de Medicina BIREME-OPS).

Multidisciplinarias: 1) LEMB - Listas de Encabezamientos de Materia y 2) LCSH- Library of Congress Subject Headings.

También se pueden encontrar listas de temas y palabras claves, consultando las distintas bases de datos disponibles a través del Portal del Sistema Nacional de Bibliotecas¹, en la sección Recursos bibliográficos.ºpción "Bases de datos".

Abstract

Es el mismo resumen pero traducido al inglés. Se debe usar una extensión máxima de 12 renglones. Al final del Abstract se deben traducir las anteriores palabras claves tomadas del

¹ver: www.sinab.unal.edu.co

texto (mínimo 3 y máximo 7 palabras), llamadas keywords. Es posible incluir el resumen en otro idioma diferente al español o al inglés, si se considera como importante dentro del tema tratado en la investigación, por ejemplo: un trabajo dedicado a problemas lingüísticos del mandarín seguramente estaría mejor con un resumen en mandarín.

Keywords: palabras clave en inglés(máximo 10 palabras, preferiblemente seleccionadas de las listas internacionales que permitan el indizado cruzado)

Contenido

	Agr	adecimientos	VII
	Res	umen	IX
1	Intr	oducción	2
2	ТВ	4	3
	2.1	El juego de la vida	3
		2.1.1 Los inicios	4
		2.1.2 FRACTRAN	4
		2.1.3 Life	8
3	Nún	neros Surreales	14
	3.1	Definición de los números surreales	14
	3.2	Suma de números surreales	22
	3.3	Multiplicación de números surreales	28
	Rihl	iografía	37

1 Introducción

2 TBA

2.1. El juego de la vida

En Octubre de 1970, Martin Gardner en su columna *Mathematical Games* del *Scientific American* [6] escribiría un texto que cambiaría para siempre la vida de Conway. El texto se llamaría *The fantastic combinations of John Conway's new solitaire game "life"* y describiría un automata celular en dos dimensiones, una suerte de juego con cero jugadores tal que, a partir de un patrón inicial, evolucionaba conforme a unas reglas sencillas.

La columna, además de describir el juego proponía un reto, encontrar un patrón inicial que evolucionara de tal forma que su patrón creciera sin límites y prometía 50\$ a quien fuera el primero en encontrarla o demostrar que no existe.

La columna fue un éxito, el juego de la vida se volvió un clásico de culto. Hoy en día si se busca el juego de la vida de Conway en Google la página misma empieza a jugar el juego de la vida, y si por ejemplo, se busca el juego de la vida en Youtube se puede encontrar muchísimos ejemplos de creaciones asociadas al juego de la vida, calculadoras en el juego de la vida, relojes, otros juegos parecidos al juego de la vida, incluso hay videos como este [1] que muestran 'naves espaciales' y otros 'organismos' viviendo en el juego. Como describiría Siobhan Roberts en la biografía de Conway [10]:

Hablando de manera práctica, el juego (de la vida) empujó el uso de automatas celulares y simulaciones basadas en agentes en las ciencias de la complejidad, modelando el comportamiento de todo, desde hormigas pasando por el tráfico, por las nubes y hasta las galaxias. Hablando de manera poco práctica, el juego se convirtió en un clásico de culto para aquellos entusiasmados en ninguna otra aplicación extravagante más que perder el tiempo. 1

En la biografía también cuentan varias leyendas que se cuentan alrededor del juego de la vida. Se dice que un informe militar de Estados Unidos estimó que el tiempo total gastado por personas jugando el juego de la vida en el trabajo equivalía a millones de dolares perdidos, también se dice que en el momento en que el juego fue más viral, en $\frac{1}{4}$ de los computadores del mundo se jugaba el juego de la vida.

Fue tanta la fama del juego de la vida que su creador, Jhon Horton Conway, llegó a decir que odiaba el juego de la vida ya que cada vez que se mencionaba su nombre en algun artículo matemático lo único que se mencionaba era el juego de la vida, casi que eclipsando todos los otros logros matemáticos que él había hecho [9].

¹Traducción del texto

4 2 TBA

2.1.1. Los inicios

La biografía de Conway [10] cuenta que la idea del juego de la vida comenzó desde mucho antes. Según Stephen Wolfram [4], Conway le contó que en ese tiempo había sido contratado como profesor de lógica pero que ese no era su campo de investigación principal. Conway se interesó entonces en los autómatas, su plan era encontrar una buena enumeración de las funciones recursivas. En ese entonces Conway tenía una copia del libro Automata Studies [11], una recolección de ensayos sobre autómatas recopilados por Claude Shannon y Jhon McCarthy, los padres de la teoría de la información y de la inteligencia artificial respectivamente. Conway cuenta que fueron las ideas de cómo los autómatas podrían en algún momento simular cosas complejas como el cerebro humano, o incluso, podrían replicarse a sí mismas. John von Neumann por ejemplo, veía un potencial en los autómatas inmenso, pensaba en que en algún momento se podría crear una máquina que pudiera crear otras máquinas y utilizarlas colonizando otros planetas. La idea que Von Neumann desarrollaba, ya más abstraída al terreno matemático, era sobre un autómata celular dos dimensional con la posibilidad de replicarse a sí mismo, la idea fue publicada después de su muerte en su libro Theory of self-reproducing automata [13]. Sin embargo Conway le veía un problema al resultado de Von Neumann, cada celda del autómata podría estar en un total de 29 estados, lo que él consideraba muy complejo. Como diría el en su biografía:

Parecía terriblemente complicado. Lo que me emociona son las cosas que tienen una maravillosa simplicidad.

Y así empezó una busqueda hacía un automata, universal (que pueda replicar cualquier máquina), y además que fuera lo más simple posible. Algo que describiría como su *Jugend-traum*, su sueño de juventud.

2.1.2. FRACTRAN

Su primera aproximación fue la creación del lenguaje de programación **FRACTRAN**, una idea 1-dimensional de hacer una máquina universoal. El nombre surge de una combinación del nombre del lenguaje de programación **FORTRAN** (IBM's Mathematical **For**mula **Tran**slating System), con la palabra fracción, que es básicamente como se codifican los programas en este lenguaje.

Los programas en FRACTRAN se escriben como una lista finita de fracciones enteras, por ejemplo,

$$\left(\frac{1}{2},\frac{1}{3},\frac{1}{5}\right).$$

El programa siempre recibe solamente un número entero n y procede de tal forma que

1. Encuentra la primera fracción f de izquierda a derecha tal que nf sea un número entero.

- 2. Reemplaza el número n, por el número nf.
- 3. Repite el procedimiento desde el punto (1) hasta que no exista tal fracción.

Por ejemplo, supongamos que nuestro programa es el que se escribió antes y nuestro número es $n_1 = 10$. La primera fracción de izquierda a derecha tal que multiplicada por n_1 es entero es la fracción $f = \frac{1}{2}$, por lo tanto reemplazamos nuestro n_1 por $n_2 = n_1/2 = 5$, y repetimos. Fíjese que ahora que $n_2 = 5$, ni la primera fracción ni la segunda multiplicadas por n dan un número entero, en cambio la tercera, $f = \frac{1}{5}$, sí da un número entero, por lo tanto reemplazamos n_2 por $n_3 = n_2/5 = 1$. Ahora, con nuestro último $n_3 = 1$, tenemos que ninguna de las fracciones multiplicadas por $n_3 = 1$ nos dan un número entero, por lo tanto nuestro programa ha finalizado y ha dado como resultado 1. En general, se puede representar el programa con la tabla

#	N	f
1	10	$\frac{1}{2}$
2	5	$\frac{1}{5}$
3	1	FINAL

Si bien el FRACTRAN parece simple, tiene la capacidad de hacer cualquier procedimiento que un computador cualquiera puede hacer, en palabras de la teoría de la computación, FRACTRAN es Turing completo.

Mostremos por ejemplo que se pueden sumar números. Considere el programa que consiste en la fracción

$$\left(\frac{2}{3}\right)$$

Ahora por ejemplo corramos el programa con el número $n_1 = 72 = 2^3 3^2$. Entonces nuestro programa correría de manera que

#	N	Descomposición	f
1	72	$2^{3}3^{2}$	$\frac{2}{3}$
2	48	2^43^1	$\frac{2}{3}$
2	32	2^{5}	FINAL

En este caso, si nos fijamos en la descomposición, podemos ver que en cada paso del algoritmo lo que está pasando es que el exponente que acompaña el factor 3 se va reduciendo en 1 mientras el que acompaña el factor de 2 se va aumentando en 1, y esto se repite hasta que no haya exponente del factor de 3. En otras palabras, si $n_1 = 2^a 3^b$, entonces en el siguiente paso lo que pasará es que $n_2 = 2^{a+1} 3^{b-1}$, y lo seguirá haciendo hasta que

6 2 TBA

 $n_k = 2^{a+b}3^{b-b} = 2^a + b$. Lo que está sucediendo es que a este programa ingresan números de la forma 2^a3^b y salen números de la forma 2^{a+b} , es decir, se están sumando los números a y b.

En general, el lenguaje de FRACTRAN se basa en que los valores se guardaran en los exponentes de los números primos. Por ejemplo en este programa, si queremos saber la suma de dos números a y b entonces lo que tendremos que hacer es poner en el programa el número 2^a3^b y la respuesta la obtendremos en el exponente del número 2 del resultado que nos dará el programa, en este caso el número 2^{a+b} . En este sentido las 'variables' en FRACTRAN son números primos y sus 'valores' son los exponentes que los acompañan, cada fracción es entonces una instrucción para quitar un valor fijo a algunas variables y agregarle un valor fijo a otras variables.

Teniendo esto en cuenta podemos diseñar diferentes algoritmos para mostrar su poder computacional. Así como se puede sumar también se puede restar, analizemos el programa

$$\left(\frac{1}{6}\right)$$
.

Aquí tenemos que si corremos el programa con el número $2^a 3^b$, el resultado depende de cuál número es menor. Si a > b, entonces el programa nos dará como resultado 2^{a-b} , si a < b, entonces el programa nos dará como resultado 3^{b-a} , y si a = b, entonces lo que pasaría es que el resultado sería 1. Aquí en este programa no solamente tenemos una forma de restar números, sino también una forma de compararlos.

También podemos pensar en cómo se diseñaría una condición en FORTRAN, una estructura IF. Supongamos que el programa tiene como entrada un número $2^a 3^b 5^c$ y queremos diseñarlo tal que si c=1 entonces el programa suma a+b, y si c=0 el programa los resta. Considere entonces el programa

$$\left(\frac{2\times7}{3\times5}, \frac{5}{7}, \frac{1}{2\times3}\right) = \left(\frac{14}{15}, \frac{5}{7}, \frac{1}{6}\right).$$

Aquí añadimos dos 'variables' más, los números primos 5 y 7. La función de estos dos es intercalarse para que cada vez que haya valor en el 5 se sumen, y se utiliza el 7 para de cierto modo guardar el valor del 5 puesto que cada vez que se suman el 5 va disminuyendo su valor en 1. Si el 5 no está en la entrada, es decir, si c = 0, entonces se puede ver que el programa va directo a la fracción $\frac{1}{2\times 3} = \frac{1}{6}$, es decir, la fracción de restar. Veamos entonces un ejemplo, veamos los pasos del programa con el número $2^3 3^2 5^1$.

#	N	Descomposición	f
1	360	$2^3 3^2 5^1$	$\frac{2\times7}{3\times5}$
2	336	$2^4 3^1 7^1$	$\frac{5}{7}$
2	240	$2^4 3^1 5^1$	$\frac{2\times7}{3\times5}$
2	224	2^57^1	$\frac{5}{7}$
2	160	$2^{5}5^{1}$	FINAL

Un diseño interesante es ver cómo se puede utilizar todo esto para multiplicar dos números. Ya teniendo un programa que sume dos números, si queremos un programa que multiplique necesitaremos entonces que el programa sume dos números varias veces. Veamos como podríamos diseñarlo, supongamos que de entrada del programa tenemos un número $2^a 3^b$, y que queremos como resultado 5^{ab} . Una forma de intentarlo sería, cada vez que le quitemos uno al exponente de 2 vamos a agregar b al exponente de 5, para esto podemos utilizar las condicionales que desarrollamos en el ejemplo anterior: cada vez que le quitemos uno al exponente de 2 vamos a agregarle 1 al exponente de 11 que nos indicará que tenemos que sumarle b al exponente de 5. Por ahora nuestro programa se vería así

$$\left(\ldots,\frac{1}{11},\frac{11}{2},\ldots\right)$$
.

La fracción $\frac{1}{11}$ la agregamos para limpiar el 11 cuando terminemos de sumarle b al exponente de 5.

Ahora, si queremos sumar b al exponente de 5 podemos hacerlo de un modo parecido a la condición anterior. En este caso tendríamos

$$\left(\frac{5\times13}{3\times11},\frac{11}{13},\frac{1}{11},\frac{11}{2}\right).$$

Este algoritmo tiene un problema, si bien le añadimos b a 5, solo lo hacemos una vez, ya que despues de la primera vez el exponente de 3 queda en 0. Lo que podemos hacer para arreglar esto, es añadir una 'variable' más que nos ayude a guardar el valor de 3 en cada iteración, lo podemos hacer con el número 7. Algo así nos quedaría

$$\left(\frac{5 \times 13 \times 7}{3 \times 11}, \frac{11}{13}, \frac{1}{11}, \frac{3}{7}, \frac{11}{2}\right),\,$$

este programa de FRACTRAN nos devuelve como resultado 5^ab3^b , por lo tanto, si queremos limpiar el exponente de 3 lo que podríamos hacer es poner la fracción 1/3 al final, así, nuestro programa final queda

8 2 TBA

$$\left(\frac{5\times13\times7}{3\times11},\frac{11}{13},\frac{1}{11},\frac{3}{7},\frac{11}{2},\frac{1}{3}\right)=\left(\frac{455}{33},\frac{11}{13},\frac{1}{11},\frac{3}{7},\frac{11}{2},\frac{1}{3}\right),$$

y nos queda idéntico al programa definido en la página de Wikipedia de FRACTRAN [14].

Lo sorprendente de FRACTRAN es que su simplicidad permita generar cualquier programa posible, uno de los ejemplos que Conway da en su artículo [2] en el que da a conocer FRACTRAN es el de un programa de 14 fracciones que genera los números primos sucesivamente

$$\left(\frac{17}{91}, \frac{78}{85}, \frac{19}{51}, \frac{23}{38}, \frac{29}{33}, \frac{77}{29}, \frac{95}{23}, \frac{77}{19}, \frac{1}{17}, \frac{11}{13}, \frac{13}{11}, \frac{15}{14}, \frac{15}{2}, \frac{55}{1}\right).$$

Sin embargo, esto no era suficiente para lograr su *Jugendtraum*, Conway estaba buscando algo con un poco más de vida, algo órganico. El lo describiría como un sistema sin ningún plan de desarrollo, un sistema no planeado.

2.1.3. Life

El juego de la vida pasó por muchísimas versiones, mientras FRACTRAN era una idea de hacer un autómata en cierto sentido 1-dimensional, Conway desechó la idea y se concentró en hacer autómatas 2-dimensionales.

Empezaron a pensar en términos de vida y muerte, la idea era tener reglas para que una celda 'viviera' y para que una celda 'muriera', en ese sentido la celda tenía dos estados. La idea era encontrar un buen balance entre las dos reglas, si las reglas sobre la muerte eran muy estrictas entonces todas las celdas terminarían muertas pasados unas cuantas iteraciones, y si las reglas de la vida eran muy suaves entonces los patrones crecerían muchísimo sin dar tiempo a poder hacer algo útil con ellos.

En la penúltima versión del juego de la vida, las celdas tenían tres posibles estados, la idea era darles un 'sexo' a las celdas vivas, dando los posibles estado 'macho', 'hembra' y 'muerto'. En el blog de Tanya Khonakova [8], Conway cuenta que los nombres que les pusieron eran 'obispos' y 'actrices' según un chiste británico. El problema que tenía esta idea era que para que las reglas estuvieran bien balanceadas, las celdas que nacieran necesitaban que hubiera tres celdas vivos adyacentes, en este caso tendría que haber dos 'padres' con el mismo sexo y la nueva celda tendría que tener el sexo contrario para que hubiera un balance entre ambos sexos, era un tanto complicado y al final vieron que el sexo no tenía más efecto que determinar el sexo de la nueva celda, por lo tanto la solucion que encontraron fue hacer un autómata asexual, solamente dos estados, 'vivos' y 'muertos'.

El juego de la vida se juega en un tablero dos dimensional conformado por celdas, como un tablero de Go pero infinito. El juego empieza con un estado inicial y va evolucionando conforme a las reglas. Cada celda tiene 8 celdas adyacentes, cuatro que comparten un lado

y cuatro que comparten solamente un vértice, es decir, dos horizontales, dos verticales, y cuatro en diagonal. Las reglas del juego son:

- 1. Regla de nacimiento: Si una celda está muerta en el tiempo t, y la celda tiene exactamente 3 celdas vecinas que están vivas, entonces la celda se convierte en una celda viva en el tiempo t+1.
- 2. Regla de muerte: Si una celda viva en el tiempo t tiene menos que 2 vecinos vivos, la celda muere por soledad en el tiempo t + 1. Si una celda viva en el tiempo t tiene más que 3 vecinos vivos, la celda muere por hacinamiento en el tiempo t + 1.
- 3. Regla de supervivencia: Si una celda viva tiene exactamente 2 o 3 celdas vivas vecinas, entonces la celda sigue viva en el tiempo t + 1.

Hagamos un ejemplo. Supongamos que de estado inicial tenemos tres celdas vivas puestas verticalmente, como en la figura **2-1**. Después del primer paso, la celda que está en el medio tenía dos celdas adyacentes vivas, entonces la celda sobrevivira, mientras que las celdas de arriba y abajo solo tenían una celda vecina viva, por lo tanto estas celdas morirán en la siguiente iteración. Sin embargo, las celdas que se encuentran justo a los lados derecho e izquierdo de la celda del frente tenían exactamente tres vecinos vivos, por lo tanto nacerán en el siguiente paso.

Figura 2-1: En la izquierda se muestra la configuración en el paso t = 0, a la derecha en la iteración siguiente t = 1. A esta figura se le conoce como *blinker*.

Los *blinker* de la figura **2-1** tienen la propiedad de que se repiten, es decir, vuelven a su estado inicial. En el caso del *blinker* se puede ver que por simetría, pasa de ser tres celdas verticales a ser tres celdas horizontales y viceversa. A los patrones que tienen la propiedad de volver a su estado inicial se les llama *osciladores*, y a la cantidad de pasos que se demoran para volver a su estado inicial se le llama *periodo*.

Además de los osciladores, también existían otros patrones que no cambiaban en absoluto al pasar el tiempo, a estos patrones se les llama estacionarios. El más simple de estos patrones

10 2 TBA

Figura 2-2: En la figura se pueden ver los pasos de la evolución de un patrón llamado *pulsar*. Es un oscilador de periodo 3, por lo tanto después del tercer paso vuelve a su estado inicial.

es el *bloque*, conformado por cuatro celdas vivas unidas en forma de cuadrado, ninguna muere porque cada una está en contacto con exactamente 3 celdas vivas mientras que las celdas muertas alrededor solamente están en contacto con 2 celdas vivas, por lo tanto no pueden nacer. Se puede ver el bloque de primeras en la figura **2-3**.

De las primeros patrones que se estudiaron, problablemente los más interesantes son los llamados *Matusalén*, en referencia al personaje más longevo de la biblia. Estos patrones tienen en común que evolucionan por largos periodos de tiempo antes de estabilizarse, es decir, en volverse figuras conocidas, como los osciladores o las figuras estacionarias. El primer Matusalén que se encontró fue el R-pentominó (ver figura **2-4**), que también fue una de las primeras evidencias de la complejidad que podría traer el juego de la vida. El R-pentominó se demora 1103 iteraciones en estabilizarse, por lo tanto, fue un gran desafío para los primeros investigadores del juego de la vida, que básicamente hacían toda su investigación en tableros de Go y a mano.

La complejidad del R-pentominó se descubrió porque Conway y su equipo estaban probando patrones simples, empezaron con los pentominós y se dieron cuenta que la mayoría de ellos se estabilizaba apenas pasaban unas cuantas iteraciones, todos los demás pentominós

Figura 2-3: Cinco patrones estacionarios, es decir, ninguno cambia con el tiempo. Sus nombres izquierda a derecha: un *bloque*, una *colmena*, una *tajada de pan*, un *bote*, un *balde*.

Figura 2-4: El R-pentominó.

con menos de 6 celdas vivas se estabilizan antes de la onceava iteración. Como Conway y su equipo hacía el trabajo de revisar los patrones de manera análoga, se realizaban muchos errores. Al equipo de ellos llegó a ayudarlos Richard Guy, un matemático de Cambridge, que tuvo el trabajo de revisar y escrutinar la evolución de los patrones de los que aún no conocían todo, entre esos, el R-pentominó. En la iteración número 69, Richard Guy atisbó un nuevo patrón que se separaba del caos formado por el R-pentominó y en las siguientes generaciones se apartaba más y más, cada vez como si caminara a través del tablero. Guy se lo mostró a Conway, y este último lo bautizó $glider^2$.

Este glider cambiaría el curso que tomaría el juego de la vida. Para que un autómata se asemeje a un computador tiene que poder enviar información de alguna manera, cuando Conway y su equipo encontró el glider se imaginaron que podrían enviar información mediante ellos. Para poder hacerlo, igual que se hace con el voltaje en la vida real, se necesita una forma de generar los gliders en masa y controladamente, algo así como un cañon de gliders. En el artículo de Gardner [6], el reto era para cualquier patrón que creciera sin límites, pero hacía referencia a que una pistola de gliders sería lo mejor para la investigación, pues una pistola de gliders también sería un patrón que crecería sin límite.

En Noviembre del año en que salió la columna de Gardner (1970), un equipo del MIT liderado por Bill Gosper, un matemático y programador estadounidense, se ganó el premio

Figura 2-5: La evolución del *glider*. Después de 4 iteraciones se transforma por una copia del mismo pero una casilla corrida a la derecha y abajo.

²Su traducción al español sería planeador, haciendo referencia a los aviones planeadores

12 2 TBA

propuesto en la columna al descubrir/inventar una pistola de gliders ahora conocida como la Gosper Glider gun (ver figura 2-6).

Figura 2-6: La *Gosper glider gun*. Genera un glider en la iteración 15, y a partir de esa genera un glider cada 30 iteraciones.

Después de la carrera por encontrar una pistola de gliders, vino la carrera para mostrar que el juego de la vida era universal, es decir, que se podía generar un computador en el juego de la vida. Después del glider se econtraron muchas otras 'naves espaciales', muchas más grandes, y se estudió también cómo sus interacciones (o choques) podrían ser útiles para mostrar la universalidad.

Una forma de, por ejemplo, hacer una compuerta lógica NOT es utilizando estas propiedades. Si dos gliders se chocan de una manera precisa, resultara en la destrucción de los dos gliders, tal como se muestra en la figura 2-7. Por lo tanto, si tenemos una corriente de gliders a la cual le queremos sacar el NOT, lo que podemos hacer es chocarla con una corriente de gliders constante, de modo que si no se chocan la corriente constante seguirá produciendo y si en cambio sí se chocan, todos los producidos por la corriente se destruirán.

Si bien la existencia de compuertas lógicas de por sí no implica que el juego de la vida fuera universal, se fueron descubriendo varios patrones que implicaban de cierta manera que se podía construir un computador en el juego de la vida. Esto es, se descubrieron varios patrones para poder guardar información, igualmente todo basado en gliders.

Un mes después de que Bill Gosper descubriera la pistola de gliders que lleva su nombre, Conway le escribió una carta a Martin Gardner que decía [10]:

Figura 2-7: Dos gliders llendo en direcciones opuestas que chocan destruyendose mutuamente. Fotos tomadas al tiempo t=0,2,4,6, respectivamente de izquierda a derecha.

Querido MG,

Espero que esta carta no te llegue muy tarde - el correo parece que se demora mucho en llegarte. Retrasé esta carta hasta ahora porque quería completar mi prueba de que EL JUEGO DE LA VIDA ES UNIVERSAL.

Si bien Conway nunca publicó su prueba de que el juego de la vida es universal, el juego se volvió tan famoso que hasta la fecha se han hecho un montón de construcciones en el juego de la vida que lo prueban. En ese entonces se estimaba que para hacer un computador en el juego de la vida se necesitaría millones de celdas, sin embargo, ahora se sabe, gracias a descubrimientos hechos por comunidades en línea, que no se necesita tantas celdas para hacer un computador.

3 Números Surreales

Jhon Conway fue un matemático bastante prolífico, según su página de Wikipedia [15] Conway trabajó en 'teoría de grupos finitos, teoría de nudos, teoría de números, teoría combinatoria de juegos, teoría de códigos y matemáticas recreacionales', en el libro *The Mathematical Artist* [4] lo describen como un 'polymath' que transformó las matemáticas.

Sin embargo, según su biografa, existía un descubrimiento que lo enorgullecía más que el resto de sus aportes a las matemáticas, los números surreales [9]. Los números surreales son una extensión de los números reales que admite infinitos e infinitesimales.

Nuestro objetivo en este capítulo va a ser definir los números surreales y explicar su teoría como cuerpo ordenado. Para esto nos vamos a basar en lo desarrollado en [3], [12] y [7].

3.1. Definición de los números surreales

Los números surreales se definen de manera recursiva y parecida a las cortaduras de Dedekind¹. Cada número surreal x es una pareja de conjuntos de números surreales a los que se les llama L y R de izquierdo y derecho en inglés, y se representa $x \equiv \{L \mid R\}$ (Aquí usamos el símbolo \equiv para diferenciarlo de la igualdad en números surreales). La idea es que el número x sea "mayor" que todos los números de L y que sea "menor" que todos los números de R, que en cierto sentido sea el número más 'sencillo' que está en la mitad de los dos conjuntos.

Construyamos un número surreal. Como la definición es recursiva, empezamos con el conjunto más sencillo posible: el conjunto vacío. El primer número que se crea de esta manera es el número conformado por la pareja $L = \emptyset$ y $R = \emptyset$, es decir, $\{\emptyset \mid \emptyset\}$. A este número se le llama 0, y veremos luego que tiene las mismas propiedades del 0 de los números reales, esto es, es el módulo de la suma en números surreales y cualquier número multiplicado por éste da 0.

Ya teniendo el 0, se pueden formar las parejas de conjuntos

$$\left\{ \left\{ 0\right\} \mid\emptyset\right\} ,\quad\left\{ \emptyset\mid\left\{ 0\right\}\right\} ,\quad\left\{ \left\{ 0\right\} \mid\left\{ 0\right\}\right\} .$$

Para hacer la notación más sencilla, vamos a escribir solamente los elementos de L y R sin los corchetes, por ejemplo $\{\{0\} \mid \emptyset\} \equiv \{0 \mid \}$ y también $0 \equiv \{\emptyset \mid \emptyset\} \equiv \{\mid \}$.

 $^{^{1}}$ En las cortaduras de Dedekind, se definen los números reales como parejas de conjuntos L y R de números racionales con la idea de que el número que está representando sea mayor o igual que todos los elementos de L y menor o igual que todos los elementos de R. Se puede ver la definición en [5].

Si queremos que el número surreal esté entre L y R entonces tendremos que todos los elementos de L tienen que ser 'menores' que todos los elementos de R, y aunque aún no hayamos definido un orden en el conjunto podemos ver que el par $\{0 \mid 0\}$ no puede ser un número surreal ya que L y R comparten el mismo elemento.

Las otras dos parejas que quedan, $\{0 \mid \}$ y $\{\mid 0\}$, sí son números surreales y tienen su propio nombre. Diremos que $1 \equiv \{0 \mid \}$ y $-1 \equiv \{\mid 0\}$. Luego veremos que efectivamente estos dos números tienen las mismas propiedades que sus correspondientes números reales.

Si seguimos haciendo nuevas parejas con los números que ya creamos tendremos entonces las parejas

```
 \left\{1\mid\right\}, \left\{\mid1\right\}, \\ \left\{-1\mid\right\}, \left\{\mid-1\right\}, \\ \left\{0,1\mid\right\}, \left\{0\mid1\right\}, \left\{\mid0,1\right\}, \\ \left\{-1,0\mid\right\}, \left\{-1\mid0\right\}, \left\{\mid-1,0\right\}, \\ \left\{-1,1\mid\right\}, \left\{-1\mid1\right\}, \left\{\mid-1,1\right\}, \\ \left\{-1,0,1\mid\right\}, \left\{-1,0\mid1\right\}, \left\{-1\mid0,1\right\}, \left\{\mid-1,0,1\right\}, \\ \left\{-1,0,1\mid\right\}, \left\{-1,0\mid1\right\}, \left\{-1\mid0,1\right\}, \left\{\mid-1,0,1\right\}, \\ \left\{-1,0,1\mid\right\}, \left\{-1,0\mid1\right\}, \left\{-1,0,1\right\}, \\ \left\{-1,0,1\mid\right\}, \left\{-1,0,1\right\}, \left\{\mid-1,0,1\right\}, \\ \left\{-1,0,1\mid\right\}, \left\{-1,0,1\right\}, \\ \left\{-1,0,1\mid\right\}, \\ \left\{-1,0,1\mid\right
```

y podemos seguir haciendo más números con estos nuevos números.

Como convención, si tenemos un número surreal $x \equiv \{L|R\}$, entonces llamaremos x^L a los elementos de L y al conjunto L lo llamaremos X^L en mayúscula; también llamaremos x^R a los elementos de R y al conjunto R lo llamaremos X^R en mayúscula. Además, llamaremos ancestro de X a cualquier elemento de X^L o de X^R .

Hasta ahora hemos hablado de una relación de orden sin definirla, lo hemos hecho para que se pueda ver primero el carácter recursivo de los números surreales. El orden también tiene una definición igualmente recursiva, lo que hacemos es intentar definir el orden a partir de los ancestros del número, es decir, para los x^L y x^R .

Para motivar las definiciones formales, tanto de números surreales como de orden, intentemos pensar en un número surreal $x = \{L \mid R\}$. Queremos que este orden sea un orden total, igual que en los números reales, entonces cuando decimos que

$$x^L < x^R$$

para todos los elementos de los conjuntos X^L y X^R respectivamente, estamos diciendo equivalentemente que

$$x^R \not \leq x^L$$
.

De esta forma, usando solamente la relación de orden \leq podemos expresar que todos los elementos de X^L deben ser menores que los elementos de X^R .

Definición 3.1 (Número surreal). Sea $x = \{L \mid R\}$ una pareja de conjuntos de números surreales. Se dice que x es un **número surreal**, si y solamente si, se tiene que ningún x^R es menor o igual (\leq) que algún x^L .

Si tenemos dos números surreales x y y, y queremos definir la relación de orden $x \le y$ en base a sus ancestros, podemos tener en cuenta las desigualdades

$$x^L < x < x^R$$
, $y^L < y < y^R$,

que queremos que se cumplan para todos los números surereales. Estas desigualdades juntas con el hecho de que $x \le y$ generan las desigualdades

$$x < y^R, \quad x^L < y,$$

que están basadas en elementos más 'simples', es decir, los ancestros de x y y. Si queremos escribirlo todo con respecto a la relación \leq tenemos que

$$x \not\geq y^R$$
, $x^L \not\geq y$.

Definición 3.2 (Orden en números surreales). Sean x y y dos números surreales. Se dice que $x \le y$, si y solamente si, se tiene que ningún x^L es mayor o igual (\ge) que y y ningún y^R es menor o igual (\le) a x.

Vamos a utilizar la misma convención que se utiliza para las relaciónes de orden. Tenemos que $x \le y$ es equivalente a decir que $y \ge x$, además, si tenemos que $x \le y$ y $y \le x$ se dice que x = y. También, si tenemos que $x \le y$ pero $x \ne y$, entonces se escribe x < y, de la misma manera se define para x > y.

Fíjese que esta es la primera vez que en nuestro texto aparece el signo = y significa algo diferente a lo que significa nuestro otro signo \equiv , en nuestro caso \equiv lo vamos a utilizar para referirnos a igualdad de conjuntos mientras que = lo vamos a utilizar como nuestra igualdad de números surreales.

Vamos a mostrar un ejemplo de cómo se utilizan estas definiciones intentando demostrar que las parejas que conocemos son números surreales.

Ejemplo 1. Vamos a mostrar que $0 \equiv \{ \mid \}, 1 \equiv \{0 \mid \} \text{ y } -1 \equiv \{ \mid 0 \}$ son efectivamente números surreales.

Primero mostremoslo para 0. Tenemos que probar que ningún elemento 0^L es mayor o igual que algún elemento de 0^R , pero ya que tanto L como R son vacíos entonces esto se cumple por vacuidad, por lo tanto, el 0 sí es efectivamente un número.

Los ejemplos de 1 y -1 se parecen. Probemos primero para $1 = \{0 \mid \}$. Tenemos que probar que ningún elemento 1^L es mayor o igual que algún elemento de 1^R , pero fíjese que no hay ningún elemento en R, por lo tanto tendremos que también se cumple por vacuidad.

Para -1 es algo parecido. Tenemos que probar que ningún elemento $(-1)^L$ es mayor o igual que algún elemento de $(-1)^R$, pero tenemos que L es vacío, por lo tanto tendremos que también se cumple por vacuidad. Concluimos que tanto 1 como -1 son efectivamente números surreales.

Ejemplo 2. Un ejemplo más de como se puede usar esta definición de orden es probar las desigualdades esperadas -1 < 0 y 0 < 1.

Probemos 0 < 1, para probar esta desigualdad tendremos que probar que $0 \le 1$ y además que $0 \ne 1$. Primero probemos que $0 \le 1$. Tenemos que probar que no hay elementos en L y R de los respectivos números tales que

$$0 \ge 1^R, \quad 0^L \ge 1,$$

pero fíjese que no hay ningún elemento 1^R , ni tampoco ningún elemento 0^L , por lo tanto la propiedad se cumple por vacuidad.

Ahora probemos que $0 \neq 1$, como ya sabemos que $0 \leq 1$ entonces esto es equivalente a mostrar que $0 \geq 1$. Luego, queremos probar que existe algún elemento tal que

$$1^L \not\geq 0$$
.

Fíjese que en 1^L está el elemento 0, y efectivamente $0 \equiv 1^L \geq 0$, por lo que tenemos que 0 < 1.

La demostración de que (-1) < 0 es análoga, es la misma por la simetría de las definiciones.

Algo que aún no hemos probado pero hemos inferido es que \leq es una relación de orden, es decir, que es reflexiva, transitiva y antisimétrica. La antisimetría la obtenemos por nuestra definición de igualdad (=) en los números surreales. Las pruebas de las otras dos propiedades utilizan fuertmente la naturaleza recursiva de la definición de orden. Las pruebas son por inducción, pero la hipótesis de inducción supondrá que la propiedad se cumple cuando se cambia alguna de las variables por algun ancestro de la misma, así, nuestro caso base será cuando todas las variables sean 0 porque si alguna no es 0 entonces se puede reducir la pregunta a preguntas sobre los ancestros de las variables.

Teorema 3.1 (Reflexividad). Para todo número surreal x, se tiene que $x \le x$.

Demostración. Fíjese que para 0 se tiene la propiedad porque los conjuntos L y R de 0 son vacíos.

Sea x un número surreal y supongamos como hipótesis de inducción que la propiedad se cumple para todos los ancestros de x. Tenemos que probar que $x \le x$, es decir, para ningún elemento de X^L y X^R se tiene que

$$x \le x^L, \quad x^R \le x.$$

Veamos la primera parte, es decir, sea $x^L \in X^L$ mostremos que $x \not \leq x^L$. Por definición queremos mostrar que existe un elemento $z \in (X^L)^R$ tal que $x \geq z$, o que existe un elemento $y \in X^L$ tal que $y \geq x^L$. Si tomamos $y = x^L \in X^L$ entonces tenemos que $y = x^L \geq x^L$ por la hipótesis te inducción, por lo tanto, $x \not \leq x^L$.

²Acá usamos la notación $(X^L)^R$ para referirnos al conjunto R del elemento x^L que habíamos descrito.

Para la segunda parte, es decir, que $x^R \not\leq x$, se hace un análisis parecido. Sea $x^R \in X^R$, queremos mostrar que existe un elemento $z \in (X^R)^L$ tal que $z \geq x$, o que existe un elemento $y \in X^R$ tal que $y \leq x^R$. Si tomamos $y = x^R \in X^R$ entonces tenemos que $y = x^R \leq x^R$ por la hipótesis de inducción, por lo tanto, $x^R \not\leq x$.

Corolario 3.1.1. Para todo número surreal x, x = x.

Demostración. Utilizamos la reflexividad de la relación de orden.

Para demostrar la transitividad necesitaremos utilizar la inducción pero en triplas de números surreales, es decir, vamos a demostrar la transitividad para (x, y, z) pero usando la hipótesis para las triplas que contengan alguno de los ancestros de x, y o z. Como siempre estaremos preguntando sobre la propiedad en alguno de los ancestros, al final llegaremos a preguntarlo en el conjunto (0,0,0) que será nuestro caso base.

Teorema 3.2 (Transitividad). Sean x, y, z números surreales. Si tenemos que $x \le y$ y $y \le z$, entonces se tiene que $x \le z$.

Demostración. Utilicemos inducción sobre las triplas (x, y, z). Fíjese que para la tripla (0, 0, 0) la propiedad se cumple gracias a la reflexividad.

Ahora, supongamos por inducción que se cumple para todas las triplas que contengan algún ancestro de x, y o z, por ejemplo, para la tripla (z^R, x, y) se vería como

$$(z^R \le x) \text{ y } (x \le y) \implies z^R \le y.$$

Supongamos además que $x \le y$ y $y \le z$. Demostremoslo por contradicción, supongamos que $x \le z$, esto es, existe un elemento $z^R \le x$ o existe un elemento $x^L \ge z$.

Veamos el primer caso, es decir, cuando existe un $z^R \in Z^R$ tal que $z^R \le x$. Como $x \le y$, usando la hipótesis de inducción tenemos que $z^R \le y$, por lo tanto, por la definición de orden tendremos que $y \not \le z$, contradicción.

Ahora veamos el segundo caso, supongamos que existe un $x^L \in X^L$ tal que $x^L \ge z$. Como $z \ge y$, usando la hipótesis de inducción tenemos que $x^L \ge y$, por lo tanto, por la definición de orden tendremos que $x \not \le y$.

En cualquier caso es una contradicción, entonces la relación \leq es transitiva.

Corolario 3.2.1. Sean x, y, z números surreales. Tenemos las siguientes implicaciones:

- $Si \ x = y, y = z, \ entonces \ x = z.$
- $Si \ x < y, y < z, \ entonces \ x < z.$
- $Si \ x \leq y, y < z, \ entonces \ x < z.$
- $Si \ x < y, y \le z$, entonces x < z.

Con esto ya podemos decir que la relación (\leq) es de orden, y además también tenemos una relación de equivalencia (=) entre números surreales. Además, gracias a la transitividad

le podemos dar sentido a expresiones del tipo $x \le y \le z$, que significan $x \le y$ y $y \le z$ pero que también implican que $x \le z$.

Una pregunta que nos podríamos hacer en este momento es si existen distintas representaciones de un mismo número, es decir: ¿Existen dos números surreales x y y tales que x = y pero que sus conjuntos L y R sean diferentes? En otras palabras ¿Existen x y y números surreales tales que $x \not\equiv y$ pero x = y?

La respuesta la tenemos en varias de los ejemplos que ya tenemos sobre números surreales, es más, tenemos que

$$\left\{ \mid -1 \right\} = \left\{ \mid -1, 0 \right\} = \left\{ \mid -1, 1 \right\} = \left\{ \mid -1, 0, 1 \right\},$$

$$-1 = \left\{ \mid 0, 1 \right\},$$

$$\left\{ -1 \mid 1 \right\} = \left\{ -1 \mid 1, 0 \right\},$$

$$0 = \left\{ -1 \mid 1 \right\} = \left\{ -1 \mid \right\} = \left\{ \mid 1 \right\},$$

$$\left\{ -1, 0 \mid 1 \right\} = \left\{ 0 \mid 1 \right\},$$

$$1 = \left\{ -1, 0 \mid \right\},$$

$$\left\{ 1 \mid \right\} = \left\{ 0, 1 \mid \right\} = \left\{ -1, 1 \mid \right\} = \left\{ -1, 0, 1 \mid \right\}.$$

Veamos la justificación de algunos de estos ejemplos

Ejemplo 3. Mostremos que $1 \equiv \{0 \mid \} = \{-1, 0 \mid \}$. Notemos $x \equiv \{-1, 0 \mid \}$, queremos mostrar que $1 \le x$ y que $x \le 1$. Para mostrar que $1 \le x$ tenemos que mostrar que

$$1 \ngeq x^R \text{ y } 1^L \ngeq x.$$

Por un lado tenemos que $X^R = \emptyset$ entonces la desigualdad $1 \not\geq x^R$ se cumple por vacuidad. Para la otra desigualdad tenemos que $1^L = \{0\}$, por lo tanto lo que tenemos que mostrar es que $0 \not\geq x$ y fíjese que en $0 \in X^L$ por lo que podemos afirmar que $0 \leq 0 = x^L \in X^L$ y tenemos que $0 \not\geq x$ por definicón. Con esto concluimos que $1 \leq x$.

Ahora mostremos que $x \leq 1$. Tenemos que mostrar que

$$x \not\geq 1^R \text{ y } x^L \not\geq 1.$$

Para la desigualdad $x \not\geq 1^R$ tenemos que $1^R = \emptyset$, por lo tanto la desigualdad se cumple por vacuidad. Ahora, queremos mostrar que $x^L \not\geq 1$. Fíjese que $X^L = \{-1,0\}$, pero en el ejemplo 2 mostramos que -1 < 0 < 1 entonces por definición de < tenemos que para todo $x^L \in X^L$ se cumple que $x^L \not\geq 1$. Con esto podemos concluir que x = 1.

Si nos ponemos a ver los demás ejemplos con relación a este podemos ver que algunos tienen cierta similitud. En este, lo que le hicimos al 1 fue añadirle un elemento a 1^L que fuera menor que alguno de los elementos que ya estuviera, en este caso, añadimos el -1 que era menor al 0 que ya pertenecía a 1^L , y esto hizo que no cambiara su valor. Un argumento parecido podemos utilizarlo por ejemplo para probar que $-1 = \{ \mid 0, 1 \}$, e incluso, si lo

analizamos mejor, podemos utilizar el mismo argumento para probar otras igualdades como $\{-1,0\mid 1\}=\{0\mid 1\}.$

En conclusión, agregar a L algún número que sea menor a algún otro elemento del conjunto L, o agregar a R algún número que sea mayor a algún elemento del conjunto R, genera un número igual.

Ejemplo 4. En nuestros ejemplos hay varios que no se pueden demostrar con el mismo lente del anterior ejemplo. Más específicamente, las igualdades

$$0 = \{-1 \mid 1\} = \{-1 \mid \} = \{\mid 1\}.$$

Sabemos que $0 \equiv \{ \mid \}$, por lo tanto la relación $0 \leq x$ significa que $x^R \not\leq 0$ para todo $x^R \in X^R$, y por otro lado, la relación $x \leq 0$ significa que $x^L \not\geq 0$ para todo $x^L \in X^L$. Por lo tanto, para verificar estas igualdades lo único que tenemos que revisar es que sus respectivos ancestros cumplan que

$$x^L \not\geq 0$$
 y $x^R \not\leq 0$,

que se cumplen ya que -1 < 0 < 1.

Una propiedad que referenciamos en las motivación de las definiciones pero aún no hemos demostrado es la idea de que el número siempre está entre los elementos de L y los elementos de R, más específicamente

Teorema 3.3. Sea x un número surreal. Tenemos que $x^L < x < x^R$.

Demostración. Basta revisar la prueba para la parte izquierda de la desigualdad puesto que la parte derecha se hace de manera análoga. Probemos primero que $x^L \leq x$ y luego verificamos que la desigualdad es estricta.

Veamos que $x^L \leq x$ por inducción. La propiedad es verdadera para 0 por vacuidad.

Ahora, supongamos que es verdad para los ancestros de x y probemos que es verdad para x. Fijemos un $x^L \in X^L$. Para probar que $x^L \le x$ tenemos que probar que $x^R \not \le x^L$ para todos los elementos $x^R \in X^R$, y también, que para todo elemento elemento $y \in (X^L)^L$ tenemos que $y \not \ge x$.

La primera parte la tenemos porque x es un número surreal, entonces ningún elemento de X^L es mayor o igual que ningún elemento de X^R . Para la segunda parte, $y \not\geq x$ significa que o existe $z \in X^L$ tal que $y \leq z$, o existe $y^R \in Y^R$ tal que $y^R \leq x$. Fíjese que si tomamos $z = x^L$ entonces, como $y \in (X^L)^L$, tendremos por hipótesis de inducción que $y \leq x^L = z$, con lo que concluimos que $x^L \leq x$.

Ahora, mostremos que $x^L \not\geq x$. Tenemos que mostrar que existe $y \in X^L$ tal que $y \geq x^L$, o que existe $z \in (X^L)^R$ tal que $z \leq x$. Si tomamos $y = x^L$ tendremos por reflexividad que $x^L \leq x^L = y$, por lo tanto $x^L \not\geq x$ y podemos concluir que $x^L < x$.

Corolario 3.3.1 (Orden total). Sean x, y números surreales. Si $x \not\leq y$ entonces tenemos que x > y.

Demostración. Supongamos que $x \not \leq y$. Esto quiere decir que, o existe $x^L \geq y$, o existe $y^R \leq x$. Si existe $x^L \geq y$ tenemos que $y \leq x^L < x$ y por transitividad y < x. En el otro caso, si existe $y^R \leq x$ tenemos que $y < y^R \leq x$ y por transitividad y < x.

Fíjese que este corolario, combinado con la definición de orden estricto, nos da la equivalencia

$$x < y \Leftrightarrow x \not\geq y$$
.

Otra conclusión que podemos sacar de este corolario es que en los números surreales se cumple la ley de la tricotomía, esto es, si tenemos dos números surreales x, y se tiene que cumplir que x < y, x = y o x > y, y se cumple solamente una de éstas.

Los números surreales, entonces, se definen como clases de equivalencia de la relación (=). Un problema natural que se nos va a presentar de ahora en adelante cuando intentemos definir operaciones en números surreales es que debemos ver si estas operaciones son compatibles con la relación de equivalencia (=).

Incluso algo que nos podemos preguntar es si nuestra relación de orden es 'compatible' con nuestra definición de número surreal. Más precisamente, si cambiamos los elementos del L y el R por elementos iguales (=), ¿Se cambia la clase de equivalencia del número?

Pongamos un ejemplo para ilustrar este problema. Tenemos que $0 \equiv \{ \mid \} = \{ \mid 1 \}$. Como $1 \equiv \{0 \mid \}$ entonces, ¿Será que $1 = \{ \{ \mid 1\} \mid \}$? Es decir, ¿Será que podemos cambiar el número 0 por otro número que sea igual (=) a 0 sin cambiar el valor del número 1?

Definición 3.3. Sean X y Y dos conjuntos de números surreales. Se dice que X = Y cuando para todo $x \in X$ existe un $y \in Y$ tal que x = y, y además, para todo $y' \in Y$ existe un $x' \in X$ tal que y' = x'.

Teorema 3.4. Sean L, L', R, R' conjuntos de números surreales tales que L = L' y R = R'. Además, supongamos que $\{L \mid R\}$ es un número surreal. Luego, tenemos que $\{L' \mid R'\}$ es un número surreal y $\{L \mid R\} = \{L' \mid R'\}$.

Demostración. Primero mostremos que $\{L' \mid R'\}$ es un número surreal, esto es, mostremos que para todo $r' \in R'$ y todo $l' \in L'$ se tiene que $r' \not\leq l'$, o equivalentemente, l' < r'. Por la hipótesis, existen $l \in L$ y $r \in R$ tales que l' = l y r' = r, además, como $\{L \mid R\}$ es un número surreal tenemos que l < r, con lo que tenemos las desigualdades

$$l' = l < r = r',$$

con lo que podemos concluir que $\{L' \mid R'\}$ es un número surreal.

Ahora, mostremos que en efecto $\{L \mid R\} = \{L' \mid R'\}$. Para esto es suficiente mostrar que $\{L \mid R\} \le \{L' \mid R'\}$, la otra desigualdad se sigue por simetría.

Llamemos $x = \{L \mid R\}$ y $x' = \{L' \mid R'\}$. Tenemos que probar que $x^L < x'$ y $x < (x')^R$, luego fijemos $x^L \in X^L$ y $(x')^R \in (X')^R$. como L = L', existe $y \in L'$ tal que $x^L = y$, entonces

tenemos que $x^L = y < x'$. Por otro lado, como R = R', existe $z \in R$ tal que $(x')^R = z$, por lo tanto tenemos que $x < z = (x')^R$, y como es para cualquier x^L y $(x')^R$ tendríamos que $\{L \mid R\} \le \{L' \mid R'\}$ y concluiríamos que $\{L \mid R\} = \{L' \mid R'\}$.

3.2. Suma de números surreales

La suma de los números surreales también se define recursivamente basandose en la suma de sus ancestros.

Definición 3.4 (Definición de suma). Dados dos números surreales x,y definimos su suma como

$$x + y \equiv \{x^{L} + y, x + y^{L} \mid x^{R} + y, x + y^{R}\}.$$

Esta definición hace que la suma sea automáticamente conmutativa ya que es lo mismo en definición hacer x + y que y + x.

Una cosa que no queda muy clara con la definición de suma es si la suma de dos números surreales genera un nuevo número surreal, esto es, si dados x, y números surreales, los elementos del conjunto $(X + Y)^L$ son todos menores a los elementos del conjunto $(X + Y)^R$. Este tema lo volveremos a tocar cuando demostremos las propiedades que tiene la suma con respecto al orden de números surreales (\leq).

Como todas las definiciones recursivas que hemos hecho, la suma se define eventualmente con base en el número 0, por eso es bueno ver qué pasa cuando se suma 0 + 0.

Ejemplo 5. ¿Qué pasa cuando se suma 0+0? Sabemos que $0 \equiv \{ \mid \}$, por lo tanto, no existe ni 0^L ni 0^R . Lo que tendremos entonces es

$$0 + 0 \equiv \{0^L + 0, 0 + 0^L \mid 0^R + 0, 0 + 0^R\} \equiv \{\mid\} \equiv 0,$$

por lo tanto tendremos que $0 + 0 \equiv 0$.

Ejemplo 6. Más aún, si el 0 de los números surreales "se parece" al 0 de los números reales entonces tendríamos que el 0 es módulo de la suma, esto es, $x + 0 \equiv x$ para todo x número surreal.

Mostremos esto por inducción. Nuestro caso base es cuando $x \equiv 0$, es decir 0 + 0 y ya probamos que $0 + 0 \equiv 0 \equiv x$ luego en el caso base se cumple.

Supongamos que se cumple para todos los elementos en los conjuntos X^L y X^R . Tenemos entonces que

$$x + 0 \equiv \{x^L + 0, x + 0^L \mid x^R + 0, x + 0^L\} \equiv \{x^L + 0 \mid x^R + 0\}$$

y por hipótesis de inducción tenemos que $x^L+0\equiv x^L$ y $x^R+0\equiv x^R,$ por lo tanto

$$x + 0 \equiv \left\{ x^L \mid x^R \right\} \equiv x.$$

Ejemplo 7. También hemos definido los números 1 y -1. Miremos qué pasa cuando se suman entre ellos.

Primero,

$$1 + (-1) \equiv \{1^L + (-1) \mid 1 + (-1)^R\} \equiv \{0 + (-1) \mid 1 + 0\} \equiv \{-1 \mid 1\} = 0.$$

También tenemos que

$$1 + 1 \equiv \{1^L + 1, 1 + 1^L \mid \} \equiv \{0 + 1, 1 + 0 \mid \} \equiv \{1 \mid \},$$

por lo tanto, llamamos 2 al número surreal $\{1 \mid \}$. Un análisis similar se puede hacer para decir que $(-1) + (-1) \equiv \{ \mid -1 \}$, por lo tanto $-2 \equiv \{ \mid -1 \}$.

Tanto en estos ejemplos como en la definición hemos estado usando el símbolo (\equiv) para denotar la igualdad entre conjuntos. Nuestro objetivo en esta sección, además de mostrar las propiedades típicas de la suma, es mostrar que esta suma es en efecto compatible con la relación de equivalencia (=). En cierto sentido, queremos poder reemplazar el símbolo (\equiv) por el símbolo (=) asegurándonos que aquello no trae ningún problema.

La operación de suma en los números reales genera un grupo conmutativo, en nuestro caso queremos mostrar lo mismo para los números surreales. Ya hemos mostrado que la suma es conmutativa y que además tiene un módulo, lo que nos falta para mostrar que la suma en los números surreales genera un grupo conmutativo es mostrar que todos los elementos tienen inversos aditivos y además que la suma es asociativa.

Teorema 3.5 (Asociatividad de la suma). Sean x, y, z números surreales. Tenemos que

$$(x+y) + z \equiv x + (y+z).$$

Demostración. Mostremos el teorema por inducción. Nuestro caso base es cuando todos los elementos son 0, en este caso tenemos

$$(0+0)+0 \equiv 0+0 \equiv 0+(0+0).$$

Ahora, nuestra hipótesis de inducción es que la asociatividad se cumple para las triplas con al menos un ancestro de x, y, z, por ejemplo, de los elementos de los conjuntos L de cada número se tiene que

$$(x^{L} + y) + z \equiv x^{L} + (y + z),$$

 $(x + y^{L}) + z \equiv x + (y^{L} + z),$
 $(x + y) + z^{L} \equiv x + (y + z^{L}),$

igualmente para los elementos de los conjuntos R.

Tenemos que

$$(x+y) + z \equiv \{(x+y)^{L} + z, (x+y) + z^{L} \mid \dots \}$$

$$\equiv \{(x^{L} + y) + z, (x+y^{L}) + z, (x+y) + z^{L} \mid \dots \}$$

$$\equiv \{x^{L} + (y+z), x + (y^{L} + z), x + (y+z^{L}) \mid \dots \}$$

$$\equiv \{x^{L} + (y+z), x + (y+z)^{L} \mid \dots \}$$

$$\equiv x + (y+z).$$
(h. de inducción)
$$\equiv x + (y+z).$$

La demostración para el conjunto R se hace de la misma manera, está indicado con los puntos suspensivos.

Los inversos aditivos se definen también recursivamente con base en los inversos aditivos de los ancestros del número.

Definición 3.5 (Inversos aditivos). Sea x un número surreal. Definimos su inverso aditivo como

$$-x \equiv \left\{ -(x^L) \mid -(x^R) \right\}.$$

Ejemplo 8. Veamos los inversos de algunos de los números que ya nombramos. Por un lado tenemos que

$$(-0) \equiv \{-(0^R) \mid -(0^L)\} \equiv \{\mid\} \equiv 0,$$

puesto que sus conjuntos L y R son vacíos.

Veamos también que efectivamente aquel que llamamos -1 en la sección anterior es en efecto el inverso aditivo de 1,

$$(-1) \equiv \{-(1^R) \mid -(1^L)\} \equiv \{\mid -0\} \equiv \{\mid 0\} \equiv -1.$$

También podemos hacer el mismo chequeo para 2 y -2.

Teorema 3.6. Sea x un número surreal. Tenemos que x + (-x) = 0.

Demostración. Mostremos el teorema por inducción. Primero veamos el caso base cuando $x \equiv 0$. Tenemos que

$$x + (-x) \equiv 0 + (-0) \equiv 0 + 0 \equiv 0,$$

por lo tanto se cumple para 0.

Ahora, supongamos por inducción que la propiedad se cumple para los ancestros de x. Mostremos primero que $x + (-x) \le 0$. Por contradicción supongamos que x + (-x) > 0, luego existe algún elemento $(x + (-x))^L \ge 0$. El elemento $(x + (-x))^L$ puede ser de la forma $x^L + (-x)$ o de la forma $x + (-x)^L$, veamos los dos casos.

Supongamos primero que $(x + (-x))^L \equiv x^L + (-x)$. Como en el conjunto R de -x se encuentra el elemento $-(x^L)$, entonces tenemos que en el conjunto R del número $x^L + (-x)$ se encuentra el elemento $y \equiv x^L + (-(x^L))$ que es igual a 0 por hipótesis de inducción, por lo tanto, se tiene que $(x^L + (-x)) < 0$, lo que contradice que $(x^L + (-x)) \equiv (x + (-x))^L \ge 0$.

Ahora, supongamos que $(x + (-x))^L \equiv x + (-x)^L$. Los elementos de $(-X)^L$ son de la forma $-(x^R)$, por lo tanto tenemos que $(x + (-x))^L \equiv x + (-(x^R))$. En el conjunto R del número $x + (-(x^R))$ se encuentra el elemento $x^R + (-(x^R))$ que es igual a 0 por hipótesis de inducción, por lo tanto, se tiene que $x + (-(x^R)) < 0$, lo que contradice que $x + (-(x^R)) \equiv (x + (-x))^L \geq 0$.

Con lo que podemos concluir que $x+(-x)\leq 0$. La demostración de $x+(-x)\geq 0$ es análoga. \Box

Fíjese que en los ejemplos tenemos que 1 + (-1) = 0 pero $1 + (-1) \not\equiv 0$ ya que $0 \equiv \{ \mid \}$ mientras que $1 + (-1) \equiv \{-1 \mid 1\}$. En este sentido, aún no hemos mostrado que la suma genera un grupo conmutativo sobre los números surreales ya que, aunque ya tenemos las propiedades para las clases de equivalencia de la relación (=), no hemos mostrado que la suma es compatible con la relación (=).

¿Qué significa que la suma sea compatible con la relación (=)? Queremos mostrar que si x = x' entonces x + y = x' + y para todo número surreal y, de modo que no importa cual representante de la clase de equivalencia se utilice en las suma, el resultado siempre va a ser igual (=). Primero probaremos esto para la relación de orden (\leq) lo que implica que también se tiene para la relación de equivalencia (=).

Teorema 3.7 (Cancelación). Sean x, y, z números surreales. Si tenemos que x + y < x + z entonces y < z y si tenemos que $x + y \le x + z$ entonces $y \le z$.

Demostración. Vamos a demostrar estas dos proposiciones con la misma inducción, es decir, cuando hagamos la hipótesis de inducción vamos a suponer que las dos son ciertas para todas las triplas con ancestros.

El caso base de nuestra inducción es cuando $x \equiv y \equiv z \equiv 0$. En este caso nuestra propiedad es verdadera por las propiedades del número 0.

Ahora, supongamos por inducción que las propiedades se cumplen para todas las triplas que contienen al menos un ancestro de x, y, z, probemos entonces que la propiedad se cumple para x, y, z.

Primero supongamos que $x+y \leq x+z$. Con esta desigualdad podemos obtener las dos desigualdades

$$x + y^{L} \equiv (x + y)^{L} < x + y \le x + z,$$

 $x + y \le x + z < (x + z)^{R} \equiv x + z^{R},$

de la primera tenemos $x+y^L < x+z$ con la que al aplicar la hipótesis de inducción obtenemos $y^L < z$, y de la segunda tenemos $x+y < x+z^R$ con la que al aplicar la hipótesis de inducción

obtenemos $y < z^R$. Como $y^L < z$ y $y < z^R$, entonces, por la definición de orden, podemos concluir que $y \le z$.

Ahora, supongamos que x + y < x + z. Esto significa que, o existe algun elemento tal que $(x + y)^R \le x + z$ o existe algun elemento tal que $x + y \le (x + z)^L$. Supongamos que existe un elemento tal que $(x + y)^R \le x + z$, el otro caso se hace análogamente.

Nuestro elemento $(x+y)^R$ puede ser de dos formas, puede ser de la forma x^R+y o de la forma $x+y^R$, veamos los dos casos. Supongamos que $(x+y)^R\equiv x^R+y$, en este caso tenemos que

$$x^R + y \equiv (x+y)^R \le x + z < (x+z)^R \equiv x^R + z$$

y usando la hipótesis de inducción en la desigualdad $x^R + y < x^R + z$ tendremos que y < z. Supongamos ahora que $(x+y)^R \equiv x+y^R$. En este caso tenemos podemos usar la hipótesis de inducción en la desigualdad $x+y^R \equiv (x+y)^R \le x+z$ para obtener $y^R \le z$ y esto implica que y < z. En ambos casos tenemos que y < z, por lo tanto podemos concluir que la

Fíjese que en el anterior teorema las dos propiedades son recíprocas puesto que la negación de < es \geq , en este sentido, el anterior teorema se puede reescribir como

$$y \le z \Leftrightarrow x + y \le x + z$$
.

propiedad es cierta.

Corolario 3.7.1. Sean x, y, z núemeros surreales. Tenemos que y = z si y solamente si y + x = z + x.

Este corolario nos dice que la suma es compatible con la relación de equivalencia (=), por lo tanto, podemos concluir que los números surreales (definidos como clases de equivalencia) son un grupo conmutativo con la operación de suma (+). En lo que sigue de la sección podemos usar exclusivamente el símbolo (=).

Otra consecuencia de este teorema es que la suma de dos números surreales es de nuevo otro número surreal.

Corolario 3.7.2. Sean x, y números surreales. Entonces x + y es un número surreal.

Demostración. Considere las desigualdades $x^L < x < x^R$ y $y^L < y < y^R$, y sume en estas desigualdades los números x y y para obtener

$$x^{L} + y, x + y^{L} < x + y < x^{R} + y, x + y^{R},$$

y por transitividad se tiene que $(x+y)^L < (x+y)^R$, por lo tanto, si usamos inducción para suponer que los ancestros de x+y son números surreales, tendremos que x+y es también número surreal.

Algo que ya podemos hacer es intentar ponerle nombre a todos los números que podemos crear con sumas de los números que ya conocemos, es decir, podemos saber cuáles serían los números naturales en el conjunto de los números surreales.

Ejemplo 9. Llamemos

$$n = \underbrace{1 + 1 + \dots + 1}_{\text{n veces}}.$$

Vamos a mostrar por inducción que $n + 1 = \{n \mid \}$. Fíjese que para el número 0 tenemos que $0+1=1=\{0 \mid \}$. Ahora, supongamos que es verdad para n, demostremos que es verdad para n+1. Queremos mostrar que $n+2=(n+1)+1=\{n+1 \mid \}$, sabemos por hipótesis de inducción que $n+1=\{n \mid \}$, por lo tanto,

$$n+2 = (n+1)+1 = \{n \mid \} + \{0 \mid \} = \{(n+1)+0, n+1 \mid \} = \{n+1 \mid 0\}.$$

Si tomamos en cuenta los números negativos tendremos que $-n-1=\{\ |\ -n\}$, por ejemplo, $-2=\{\ |\ -1\}$. Con esto podemos entender completamente la estructura de los números enteros en los números surreales.

Ejemplo 10. De los números que se crearon en la sección anterior a partir del 0 y el 1, hay unos cuantos a los cuales no les pusimos nombre.

En específico, vamos a intentar nombrar al número $x = \{0 \mid 1\}$. Lo que sabemos de este número es que $0 < x = \{0 \mid 1\} < 1$, entonces definitivamente no es un número entero. Si sumamos a si mismo dos veces tendremos que

$$x + x = \{0 \mid 1\} + \{0 \mid 1\} = \{x \mid x + 1\},\$$

fíjese que si sumamos 1 a la desigualdad anterior obtenemos 1 < x+1 < 2 por lo tanto puede ser interesante comparar x+x con 1. Veamos que $1 \le x+x$, esto es equivalente a ver que $(x+x)^R > 1$ y $1^L < (x+x)$, y en efecto, $(x+x)^R = x+1 > 1$ y $1^L = 0 < x = (x+x)^L < x+x$, luego $1 \le x+x$. También tenemos que $x+x \le 1$, esto es equivalente a decir que $(x+x)^L < 1$ puesto que 1^R es vacío, y también se cumple ya que $(x+x)^L = x < 1$. Concluimos que x+x=1 por lo tanto x se lleva el nombre de $\frac{1}{2}$.

Nótese que ya podemos representar todos los múltiplos enteros de $\frac{1}{2}$, los multiplos pares son enteros y para los múltiplos impares tenemos que

$$\frac{2n+1}{2} = n + \frac{1}{2} = \{n-1 \mid \} + \{0 \mid 1\} = \left\{n - \frac{1}{2}, n \mid n+1\right\},\,$$

así que $n - \frac{1}{2} < n$ y por lo discutido en el ejemplo 3 tendremos que $n + \frac{1}{2} = \{n \mid n+1\}$.

Ejemplo 11 (Números diádicos). Los números racionales diádicos son aquellos de la forma $\frac{n}{2^k}$ con n, k enteros y $k \ge 0$. Con lo que hemos estudiado, ya podemos encontrar ejemplos de estos números en los números surreales.

Basta encontrar aquellos de la forma $\frac{1}{2^k}$ puesto que los demás serán sumas de estos, o de sus inversos aditivos.

Nuestro "sospechoso" para ser $\frac{1}{2^{k+1}}$ va a ser el número surreal $\{0 \mid \frac{1}{2^k}\}$. Lo que queremos mostrar más formalmente es que

$$\left\{0 \mid \frac{1}{2^k}\right\} + \left\{0 \mid \frac{1}{2^k}\right\} = \frac{1}{2^{k+1}} + \frac{1}{2^{k+1}} = \frac{1}{2^k},$$

y así poder argumentar que efectivamente este número es $\frac{1}{2^{k+1}}$. Por inducción, ya tenemos el caso base cuando k=0, ahora supongamoslo que es verdad para todos las potencias menores a k.

Llamemos $x = \frac{1}{2^{k+1}}$. Tenemos que

$$x + x = \frac{1}{2^{k+1}} + \frac{1}{2^{k+1}} = \left\{ \frac{1}{2^{k+1}} \mid \frac{1}{2^k} + \frac{1}{2^{k+1}} \right\} = \left\{ x \mid \frac{1}{2^k} + x \right\},$$

y siguiendo un argumento parecido al del ejemplo anterior tenemos que $0 < x < \frac{1}{2^k}$ y $\frac{1}{2^k} < \frac{1}{2^k} + x < \frac{1}{2^{k-1}}$. Queremos ver que $x + x = \frac{1}{2^k}$.

Veamos que $x + x \leq \frac{1}{2^k}$. Para esto primero tenemos que ver que $(x+x)^L < \frac{1}{2^k}$ y en efecto, $(x+x)^L = x < \frac{1}{2^k}$. También tenemos que ver que $(\frac{1}{2^k})^R > x + x$ y también se cumple puesto que $(\frac{1}{2^k})^R = \frac{1}{2^{k-1}} > \frac{1}{2^k} + x = (x+x)^R > x + x$. Por lo tanto tenemos que $x + x \leq \frac{1}{2^k}$.

Ahora, veamos que $x+x \geq \frac{1}{2^k}$. Para esto tenemos que ver primero que $(\frac{1}{2^k})^L < x+x$, y esto se tiene ya que $(\frac{1}{2^k})^L = 0 < x = (x+x)^L < x+x$. Por último, tenemos que ver que $(x+x)^R > \frac{1}{2^k}$, que es verdad ya que $(x+x)^R = \frac{1}{2^k} + x > \frac{1}{2^k}$. Por lo tanto tenemos que $x+x \geq \frac{1}{2^k}$, y más aún, $x+x = \frac{1}{2^k}$.

3.3. Multiplicación de números surreales

La definición de la multiplicación es mucho más compleja que la definición de la suma. Queremos, igual que en las anteriores definiciones, hacer una definición recursiva a partir de las multiplicaciones de ancestros, y además, queremos que se respete el orden de los conjuntos $L \ y \ R$.

Una forma de motivarlo es pensar en las propiedades de la multiplicación real con respecto al orden, siendo la más importante que la multiplicación de números positivos es positiva. Si pensamos en dos números surreales x, y, tenemos los números positivos

$$(x - x^L) > 0, \quad (x^R - x) > 0,$$

 $(y - y^L) > 0, \quad (y^R - y) > 0.$

Si multiplicamos cada uno de los que corresponden a x con cada uno de los que corresponden a y tendremos 4 números positivos; tomemos como ejemplo dos de ellos, los productos

$$(x - x^{L})(y - y^{L}) = xy + x^{L}y^{L} - xy^{L} - x^{L}y > 0,$$

$$(x - x^{L})(y^{R} - y) = -xy - x^{L}y^{R} + xy^{R} + x^{L}y > 0,$$

con los que podemos generar las desigualdades

$$-x^{L}y^{L} + xy^{L} + x^{L}y < xy < -x^{L}y^{R} + xy^{R} + x^{L}y.$$

Al hacer lo mismo con las otras dos posibles multiplicaciones motivamos la siguiente definición.

Definición 3.6 (Multiplicación). Sean x, y dos números surreales. Definimos la multiplicación de números surreales como

$$xy = \{x^{L}y + xy^{L} - x^{L}y^{L}, x^{R}y + xy^{R} - x^{R}y^{R} | x^{L}y + xy^{R} - x^{L}y^{R}, x^{R}y + xy^{L} - x^{R}y^{L} \}.$$

Igualmente que en la suma, usaremos las propiedades que tiene esta multiplicación con el orden para mostrar que efectivamente el producto de dos números surreales genera un número surreal.

Ejemplo 12. Para entender cómo funciona la definición, primero vamos a ver como funciona para los elementos más sencillos, es decir, para 0, 1 y -1.

Fíjese que todos los ancestros de xy están hechos a partir de ancestros tanto de x como de y, por lo tanto, como 0 no tiene ancestros entonces se cumple que $0x \equiv x0 \equiv \{ \mid \} \equiv 0$, que es lo mismo que pasa en los números naturales.

Ahora, mostraremos que $1x\equiv x$. Procederemos por inducción, tenemos que $1\cdot 0\equiv 0$, por lo tanto para 0 se cumple. Ahora, supongamos que se cumple para los ancestros de x. Tenemos que

$$1x \equiv \{1^L x + 1x^L - 1^L x^L \mid 1^L x + 1x^R - 1^L x^R\} \equiv \{1x^L \mid 1x^R\} \equiv \{x^L \mid x^R\} \equiv x.$$

Por último, mostremos que $-1x \equiv -x$. Demostraremos este hecho por inducción, para 0 tenemos que $-1 \cdot 0 \equiv 0 \equiv -0$ por lo tanto se cumple. Ahora, supongamos que se cumple para los ancestros de x. Tenemos que

$$-1x \equiv \left\{ (-1)^R x + (-1)x^R - (-1)^R x^R \mid (-1)^R x + (-1)x^L - (-1)^R x^L \right\}$$

$$\equiv \left\{ (-1)x^R \mid (-1)x^L \right\} \equiv \left\{ -x^R \mid -x^L \right\} \equiv -x.$$

Teorema 3.8 (Propiedades de la multiplicación). Sean x, y, z números surreales. Se cumplen las siquientes propiedades

- 1. $xy \equiv yx$,
- 2. x(y+z) = xy + xz,
- 3. x(yz) = (xy)z.

Demostración. En el ejemplo anterior se puede ver que cada propiedad se cumplen en el casos base, así que solo nos vamos a concentrar en el paso inductivo.

1. Para la conmutatividad tenemos que

$$xy \equiv \left\{ x^L y + xy^L - x^L y^L, x^R y + xy^R - x^R y^R \mid \dots \right\}$$
 (definición)

$$\equiv \left\{ yx^L + y^L x - y^L x^L, yx^R + y^R x - y^R x^R \mid \dots \right\}$$
 (h. de inducción)

$$\equiv \left\{ y^L x + yx^L - y^L x^L, y^R x + yx^R - y^R x^R \mid \dots \right\}$$
 (conmutatividad +)

$$\equiv yx.$$

2. Para la propiedad distributiva sobre la suma concentremonos en los términos de $((x + y)z)^L$ que son de la forma $(x + y)^L z + (x + y)z^L - (x + y)^L z^L$, los demás términos tendrán sus desarrollos análogos. En este término, el número $(x + y)^L$ puede ser de dos formas, puede ser o $x + y^L$ o $x^L + y$. Teniendo esto en cuenta tenemos que

$$((x+y)z) \equiv \{(x+y)^L z + (x+y)z^L - (x+y)^L z^L, \dots \mid \dots \}$$

$$\equiv \{(x+y^L)z + (x+y)z^L - (x+y^L)z^L, \\ (x^L + y)z + (x+y)z^L - (x^L + y)z^L, \dots \mid \dots \}$$

$$= \{xz + (y^L z + yz^L - y^L z^L), (x^L z + xz^L - x^L z^L) + yz \mid \}$$

$$\equiv xz + yz.$$

Aquí no podemos reemplazar la igualdad (=) por la equivalencia (\equiv) puesto que estamos utilizando la propiedad x + (-x) = 0 para todo número surreal x.

Ahora que probamos la propiedad distributiva, tenemos que la definición de multiplicación se puede reescribir como

$$xy = \{xy - (x - x^{L})(y - y^{L}), xy - (x^{R} - x)(y^{R} - y) \mid xy + (x - x^{L})(y^{R} - y), xy + (x^{R} - x)(y - y^{L})\},$$

que es más expresiva y tal vez más fácil de recordar. Si además combinamos esto con lo que probamos para el número -1, podemos "distribuir" los signos en las sumas, es decir,

$$-(x+y) = -1(x+y) = -1x - 1y = -x - y,$$

sin embargo, esto ya se podía demostrar con las propiedades de la suma.

3. Utilizando la definición discutida en el punto anterior, podemos ver que la multiplicación de tres elementos es de la forma

$$(xy)z = \{(xy)z - [(x - x^L)(y - y^L)](z - z^L), \dots \},$$

fíjese que el elemento de L que tenemos escrito se puede escribir solamente en términos de ancestros de $x,\,y,\,y\,z$ de la forma

$$(x^{L}y)z + (xy^{L})z + (xy)z^{L} - (x^{L}y^{L})z - (x^{L}y)z^{L} - (xy^{L})z^{L} + (x^{L}y^{L})z^{L},$$

y usando la hipótesis te inducción tenemos que el término es igual a

$$x^{L}(yz) + x(y^{L}z) + x(yz^{L}) - x^{L}(y^{L}z) - x^{L}(yz^{L}) - x(y^{L}z^{L}) + x^{L}(y^{L}z^{L})$$

que reagrupandolo de la misma manera que lo desagrupamos arriba nos queda como

$$(xy)z = \{x(yz) - (x - x^L) [(y - y^L)(z - z^L)], \dots \} = x(yz).$$

Ejemplo 13. Otra forma de mostrar lo que mostramos en el ejemplo 11 es multiplicando por $\frac{1}{2}$; como sabemos que $\frac{1}{2} + \frac{1}{2} = 1$ entonces podemos multiplicar $\frac{1}{2^k}$ a ambos lados de la ecuación y utilizar la propiedad distributiva para obtener lo que demostramos en ese ejemplo.

Lo que entonces queremos ver es la forma surreal de las potencias de $\frac{1}{2}$. Veamoslo para la primera potencia, esto es

$$\frac{1}{2} \cdot \frac{1}{2} \equiv \left\{ 0 \cdot \frac{1}{2} + \frac{1}{2} \cdot 0 - 0 \cdot 0, 1 \cdot \frac{1}{2} + \frac{1}{2} \cdot 1 - 1 \cdot 1 \mid 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} - 0 \cdot 1 \right\} \equiv \left\{ 0 \mid \frac{1}{2} \right\},$$

por lo tanto tiene sentido llamar $\frac{1}{4} \equiv \{0 \mid \frac{1}{2}\}.$

Ahora veamos que el mismo argumento funciona para las siguientes potencias. Multipliquemos $\frac{1}{2^k} \cdot \frac{1}{2}$, tenemos que

$$\frac{1}{2^k} \cdot \frac{1}{2} \equiv \left\{ 0 \mid \frac{1}{2^{k-1}} \right\} \left\{ 0 \mid 1 \right\} \equiv \left\{ 0, \frac{1}{2^k} + \frac{1}{2^k} - \frac{1}{2^{k-1}} \mid \frac{1}{2^k} \right\} \equiv \left\{ 0 \mid \frac{1}{2^k} \right\} \equiv \frac{1}{2^{k+1}},$$

por lo tanto, se cumple que $\frac{1}{2^k} \cdot \frac{1}{2} = \frac{1}{2^{k+1}}$ y tenemos una demostración más de lo propuesto en el ejemplo 11.

Para hablar de la multiplicación sin ningún problema, tenemos que, igual que en la suma, mostrar que la multiplicación es compatible con la relación de equivalencia de la igualdad (=), para esto, tendremos que probar las propiedades que tiene la multiplicación con el orden. La propiedad más importante es que la multiplicación de dos números positivos es positiva, de esta se pueden deducir las demás. Para probar esta primero tendremos que probar un lema.

Lema 3.1. Sea x un número surreal tal que x > 0. Existen L y R conjuntos de números surreales que cumplen que $0 \in L$, para todo $l \in L$ se tiene que $l \ge 0$ y además $x = \{L \mid R\}$.

Demostración. Si tenemos que x>0 esto significa que existe $x^L\in X^L$ tal que $x^L\geq 0$, por lo tanto, teniendo en cuenta lo discutido en el ejemplo 3 tendremos que $x=\left\{X^L\cup\{0\}\mid X^R\right\}\equiv x'$. Ahora, como $0\in (X')^L$, entonces se pueden quitar todos los elementos de este conjunto que sean menores estrictos (<) a 0 y va a quedar el número con el mismo valor, es decir, $x=x'=\left\{(X^L\cup\{0\})\setminus\{l\in X^L\mid l<0\}\mid X^R\right\}$, con lo que demostramos el lema.

Teorema 3.9. Sea x, y números surreales tales que x, y > 0. Tenemos entonces que xy > 0.

Demostración. Por el lema anterior, podemos suponer sin pérdida de generalidad que $0 \in X^L \cap Y^L$. Si verificamos el elemento de $(XY)^L$ generado por los ceros que están en los respectivos conjuntos L's de x y y, tenemos que en $(XY)^L$ está el elemento

$$0y + x0 - 0 \cdot 0 = 0,$$

por lo tanto, tenemos que $0 = (xy)^L < xy$, es decir, xy > 0.

Fíjese que esta desigualdad es estricta, por lo tanto falta ver qué pasa cuando alguno de los números es igual a 0.

Teorema 3.10. Sean x, y números surreales tales que x = 0. Tenemos que xy = 0.

Demostración. Vamos a mostrar esta proposición por inducción. Supongamos que la proposición es verdad para todos los ancestros de y, luego veamos que pasa con el producto de xy

$$\begin{split} xy &\equiv \left\{ x^L y + x y^L - x^L y^L, \dots \mid \dots \right\} \\ &= \left\{ x^L y - x^L y^L, \dots \mid \dots \right\} \\ &\equiv \left\{ x^L (y - y^L), \dots \mid \dots \right\}, \end{split} \tag{h. de inducción}$$

fíjese que $x^L < x = 0$, por lo tanto, $-x^L > 0$, y por otro lado, como $y > y^L$ entonces $y - y^L > 0$, lo que quiere decir, por el teorema anterior, que $-(y - y^L)x^L > 0$, que equivale a $(y - y^L)x^L < 0$.

Si hacemos el mismo procedimiento para todos los elementos de la multiplicación, entonces al final podemos concluir que $(xy)^L < 0$ y $(xy)^R > 0$, lo que implica, por lo discutido en el 4, que xy = 0.

Corolario 3.10.1 (Compatibilidad con =). Sea x, x', y números surreales tal que x = x'. Tenemos que xy = x'y.

Demostración. Tenemos que (x-x')=0, luego (x-x')y=0 y esto implica que xy=x'y.

Corolario 3.10.2 (Buena definición de la multiplicación). Sean x, y números surreales, entonces xy es un número surreal.

Demostración. Si tomamos la definición de multiplicación

$$xy = \{xy - (x - x^{L})(y - y^{L}), xy - (x^{R} - x)(y^{R} - y) \mid xy + (x - x^{L})(y^{R} - y), xy + (x^{R} - x)(y - y^{L})\},$$

entonces podemos ver que $(xy)^L < xy < (xy)^R$, puesto que estamos restando y sumando números positivos respectivamente, lo que significa que en efecto xy es un número surreal. \Box

Corolario 3.10.3. Los números surreales son un anillo ordenado.

La promesa que hicimos al principio de este capítulo es que los números surreales son un cuerpo ordenado, lo que falta entonces para ser un cuerpo ordenado es la existencia de los inversos multiplicativos.

Los ejemplos que hemos dado de números surreales han caído todos, hasta ahora, en los racionales diádicos. Si bien en estos existen todos los inversos de todas las potencias de 2, estos no son cerrados para inversos, el 3 es un ejemplo de un racional diádico cuyo inverso no lo es.

Ejemplo 14 (El inverso de 3). Considere la serie dada por

$$\frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{2}\right)^n = \frac{1}{3},$$

que se puede evaluar teniendo en cuenta que es una serie geométrica. Como es una serie alternante, tenemos que las sumas parciales pares son menores a $\frac{1}{3}$ y las sumas parciales impares son mayores a $\frac{1}{3}$. Considere entonces el número surreal

$$x \equiv \{s_{2n-1} \mid s_{2n}\}, \text{ para } n \text{ natural con } s_n = \sum_{k=1}^n (-1)^{k+1} \left(\frac{1}{2}\right)^k.$$

Nuestra hipótesis, que debemos probar, es que efectivamente $x = \frac{1}{3}$. Para probar esto vamos a probar que 3x - 1 = 0. Como $3 \equiv \{2 \mid \}$ entonces tenemos que

$$3x - 1 = \{2x + s_{2n-1} - 1 \mid 2x + s_{2n} - 1, 3x\},\$$

lo único que tenemos que probar para mostrar que 3x-1=0 es que $(3x-1)^L<0$ y $(3x-1)^R>0$, y como 3x>0, esto se traduce en

$$x < \frac{1 - s_{2n-1}}{2}, \quad x > \frac{1 - s_{2n}}{2},$$

pero fíjese que $\frac{1-s_n}{2} = s_{n+1}$, entonces las condiciones que teníamos se vuelven

$$x < s_{2n}, \quad x > s_{2n+1},$$

que son verdaderas por la definición puesto que $s_{2n+1} = x^L < x < x^R = s_{2n}$, lo que significa entonces que 3x - 1 = 0, por lo tanto se puede decir que $x = \frac{1}{3}$.

En la introducción hablamos de cómo los números surreales son más grandes que los números reales pero hasta ahora no hemos mostrado un número surreal que no sea también un número real, mostremos entonces un par de ejemplos y cómo operarlos.

Ejemplo 15 (Infinitos e infinitesimales). Consideremos el número surreal

$$\omega \equiv \{0, 1, 2, \dots \mid \}$$

donde ω^L consiste de todos los números naturales, y consideremos el número surreal

$$\varepsilon \equiv \left\{ 0 \mid \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots \right\}$$

donde ε^R consiste de todas las potencias de $\frac{1}{2}$. Queremos ver qué pasa cuando multiplicamos estos dos números, tenemos que

$$\omega\epsilon \equiv \left\{0, n\epsilon \mid \frac{\omega}{2^m} + n\epsilon - \frac{n}{2^m}\right\} = \left\{0, n\epsilon \mid \frac{\omega - n}{2^m} + n\epsilon\right\}, \quad \text{para todo } n, m \text{ natural.}$$

De la definición $\omega \epsilon > 0$. Veamos más de cerca los ancestros de $\omega \epsilon$. Tenemos que $\epsilon < \frac{1}{2^k}$ para todo k natural, luego tenemos que $2^k \epsilon < 1$ y como las potencias de 2 crecen hasta el infinito entonces tenemos que $n\epsilon < 1$ para todo n natural, por lo tanto $(\omega \epsilon)^L < 1$.

Ahora veamos los del conjunto R. Tenemos que $\omega > k$ para todo k natural. Por lo tanto, tenemos que $n+2^m < \omega$ para todo n,m natural, lo que implica que $1 < \frac{\omega-n}{2^m} < \frac{\omega-n}{2^m} + n\epsilon$, por lo tanto tenemos que $(\omega\epsilon)^R > 1$.

Con esto en mente, podemos conjeturar que $\omega \epsilon = 1$ y para probar esto tomemos

$$\omega \epsilon - 1 = \left\{ (\omega \epsilon)^L - 1 \mid (\omega \epsilon)^R - 1, \omega \epsilon \right\},\,$$

del que podemos concluir que $(\omega \epsilon - 1)^L < 0$ y $(\omega \epsilon - 1)^R > 0$, por lo tanto, $\omega \epsilon - 1 = 0$, con lo que podemos decir además que $\epsilon = \frac{1}{\omega}$.

Lo único que le falta a los números surreales para que sean un cuerpo ordenado es la definición de inverso multiplicativo. Si bien ya lo hicimos con un par de ejemplos, necesitamos definirlo para todos los números surreales.

Definición 3.7 (Inversos multiplicativos). Sea x > 0 un número surreal con la forma del lema 3.1, es decir, $x^L \ge 0$ y $0 \in X^L$. Vamos a definir el número y de la forma

$$y \equiv \left\{0, \frac{1 + (x^R - x)y^L}{x^R}, \frac{1 + (x^L - x)y^R}{x^L} \mid \frac{1 + (x^L - x)y^L}{x^L}, \frac{1 + (x^R - x)y^R}{x^R}\right\},\,$$

lo llamaremos el inverso multiplicativo de x y luego mostraremos que en efecto se tiene que yx = 1. Tenemos acá que el número y se define con respecto a los ancestros del mismo y, en este caso se refiere a que los ancestros se crean a partir de los ancestros que ya conocíamos, empezando desde 0 que siempre es elemento de y^L .

Ejemplo 16. Vamos a demostrar cómo funcionaría la definición en concreto con el ejemplo del $x=3=\{0,2\mid\}$. Vamos a llamar y_n a los distintos pasos de la definición recursiva de inverso multiplicativo. Esto es, $y_0\equiv\{0\mid\}$, y

$$y_{n+1} \equiv \left\{ y_n^L, \frac{1 + (x^R - x)y_n^L}{x^R}, \frac{1 + (x^L - x)y_n^R}{x^L} \mid y_n^R, \frac{1 + (x^L - x)y_n^L}{x^L}, \frac{1 + (x^R - x)y_n^R}{x^R} \right\},$$

con lo que tenemos que $y = \{ \bigcup_n Y_n^L \mid \bigcup_n Y_n^R \}.$

Veamos entonces los pasos de la recursión. Tenemos que $x=3=\{0,2\mid\}$, por lo tanto nuestra fórmula recursiva se transformaría en

$$y_{n+1} \equiv \left\{ y_n^L, \frac{1 - y_n^R}{2} \mid y_n^R, \frac{1 - y_n^L}{2} \right\},$$

con lo que tendríamos que el inverso multiplicativo de 3 estaría definido como

$$y \equiv \left\{0, \frac{1}{4}, \frac{5}{16}, \dots \mid \frac{1}{2}, \frac{3}{8}, \frac{11}{32}, \dots \right\},$$

fíjese que este número es el mismo que encontramos en el ejemplo 14 y que además la fórmula recursiva que sacamos en este ejemplo es la misma que llamabamos allá como

$$s_{n+1} = \frac{1 - s_n}{2}.$$

Teorema 3.11 (Propiedades del inverso multiplicativo). Sea x > 0 un número surreal y sea y el número definido como el inverso multiplicativo. Tenemos entonces que

- 1. $xy^L < 1 < xy^R$ para todo y^L, y^R .
- 2. y es un número.
- 3. $(xy)^L < 1 < (xy)^R$ para todo $(xy)^L, (xy)^R$
- 4. xy = 1.

Demostración. En esta prueba llamemos x' a los ancestros del número x, igualmente para y y para y'.

1. Los ancestros de y están definidos por la fórmula

$$y'' = \frac{1 + (x' - x)y'}{x'},$$

esta fórmula implica la fórmula

$$1 - xy'' = (1 - xy')\frac{x' - x}{x'}.$$

El signo del factor (x'-x)/x' depende solamente de si x' pertenece a X^L o a X^R . Fíjese que para $0 \in y^L$ se cumple la condición, entonces supongamos por inducción que (1-xy') es positivo si $y' \in Y^L$ y negativo si $y' \in Y^R$. En este sentido, 1-xy'' será negativo cuando $y' \in Y^L$ y $x' \in X^L$ o cuando $y' \in Y^R$ y $x' \in X^R$, y 1-xy'' será positivo en los otros dos casos, reflejando así que 1-xy'' es negativo cuando $y'' \in Y^R$ y positivo cuando $y'' \in Y^L$, lo que significa por inducción que $xy^L < 1 < xy^R$ para todo y^L, y^R .

2. Si tomamos en cuenta el numeral (1) de la prueba, esto implica que $y^L < y^R$ para todo y^L, y^R , lo que significa que y es un número.

3. Los ancestros de xy tienen la forma de x'y + xy' - x'y'. Esto se puede reordenar como

$$(xy)' = x'y + xy' - x'y' = x'y - [1 + y'(x' - x)] + 1$$
$$= x'y - \frac{x'(1 + y'(x - x'))}{x'} + 1$$
$$= x'(y - y'') + 1,$$

que es mayor que 1 si (y-y'') es positivo y menor que 1 si (y-y'') es negativo, dando así el teorema. Para ver esto podemos verlo por casos, veamos por ejemplo cuando el factor es mayor que 1, en este caso $y'' \in Y^L$ y esto pasa cuando x' y y' pertenecen a diferentes conjuntos, por ejemplo, $x' \in X^R$ y $y' \in Y^L$, en este caso $(xy)' \in (xy)^R$.

4. Para mostrar que xy = 1 tenemos que mostrar que xy > 0 y que $(xy)^L < 1 < (xy)^R$, la segunda parte ya la tenemos. Para la primera parte, fíjese que $0 \in X^L$ y $0 \in Y^L$, por lo tanto, el factor dado por estos dos ancestros se encuentra en $(XY)^L$ y es igual a 0, es decir, 0 < xy.

Con esto ya podemos concluir que los números surreales son un cuerpo ordenado, y podemos llamar a y=1/x.

Bibliografía

- [1] Rational Animations. epic conway's game of life. Youtube. 2011. URL: https://www.youtube.com/watch?v=C2vgICfQawE&t.
- [2] J. H. Conway. "FRACTRAN: A Simple Universal Programming Language for Arithmetic". En: Open Problems in Communication and Computation. Springer New York, 1987, págs. 4-26. DOI: 10.1007/978-1-4612-4808-8_2. URL: https://doi.org/10.1007/978-1-4612-4808-8_2.
- [3] John H. Conway. On Numbers and Games. A K Peters/CRC Press, dic. de 2000. DOI: 10.1201/9781439864159. URL: https://doi.org/10.1201/9781439864159.
- [4] Sukanta Das, Souvik Roy y Kamalika Bhattacharjee. *The Mathematical Artist: A Tribute To John Horton Conway*. Emergence, Complexity and Computation, 45. Springer, 2022. ISBN: 3031039858; 9783031039850.
- [5] Richard Dedekind. Essays on the theory of numbers. Dover Books on Mathematics. Mineola, NY: Dover Publications, jun. de 1963.
- [6] Martin Gardner. "Mathematical Games". En: Scientific American 223.4 (oct. de 1970), págs. 120-123. DOI: 10.1038/scientificamerican1070-120. URL: https://doi. org/10.1038/scientificamerican1070-120.
- [7] Harry Gonshor. An Introduction to the Theory of Surreal Numbers. Cambridge University Press, sep. de 1986. DOI: 10.1017/cbo9780511629143. URL: https://doi.org/10.1017/cbo9780511629143.
- [8] Tanya Khovanova y John Conway. *The Sexual Side of Life*. https://blog.tanyakhovanova.com/2010/07/the-sexual-side-of-life/. [Online; accessed 11-May-2023]. Jul. de 2010.
- [9] Numberphile 2. The Legendary John Conway (1937-2020) Numberphile Podcast. Youtube. 2020. URL: https://www.youtube.com/watch?v=WsecAiJDI8s.
- [10] Siobhan Roberts. *Genius at play*. en. New York, NY: Bloomsbury Publishing Plc, sep. de 2015.
- [11] C. E. Shannon y J. McCarthy, eds. Automata Studies. (AM-34). Princeton University Press, dic. de 1956. DOI: 10.1515/9781400882618. URL: https://doi.org/10.1515/9781400882618.

38 Bibliografía

[12] Claus Tøndering. Surreal Numbers - An Introduction. Ene. de 2019. URL: https://www.tondering.dk/claus/surreal.html.

- [13] John Von Neumann. *Theory of self-reproducing automata*. Baltimore, MD: University of Illinois Press, abr. de 1967.
- [14] Wikipedia. FRACTRAN Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=FRACTRAN&oldid=1147685514. [Online; accessed 12-May-2023]. 2023.
- [15] Wikipedia. John Horton Conway Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=John\%20Horton\%20Conway&oldid=1150494509. [Online; accessed 11-May-2023]. 2023.