

Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

Nicholas K. Host¹, Chi-Chih Chen², John L. Volakis², and Félix A. Miranda³ Applied Physics Laboratory¹, Ohio State University², and NASA John H. Glenn Research Center³

Abstract: This poster introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of $-25^{\circ} \le \theta \le 25^{\circ}$. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.

Operation Principle

Maximum extent

- Array elements fed via propagation reconfigurable transmission line
- k_{eff} reconfigured via small mechanical movement
- Phase delivered to each element a function of k_{eff}
- Array scanned with only the small mechanical movement

Rectangular Cavity Backed Slot

- Cavity backed slot becomes detuned as the plunger is adjusted
- Resonant length of the cavity backed slot varies with plunger position

Non-Rectangular Cavity Backed Slot

- By angling the back of the cavity we lower the Q value • W_S is used to control the
- coupling to each element
- A large range of coupling achievable is desired

Iteratively Readjust Slot

Widths, Wi, to Account for

Inter-Element Coupling

(Targeting $B_i = A_i$)

Transmission Line Design

- Scan range a function of element spacing and TL k_{eff}
- $-30^{\circ} \le \theta \le 30^{\circ}$ scanning is achieved with $1.04 \leq \frac{k_{eff}}{l} \leq 2.04$ for and element spacing of 0.65λ
- Line achieves the necessary k_{eff}

agility at $H_2 = 270mil$

Array Design Procedure

- Choose the element widths along the TWA to achieve the desired Kaiser taper
- Iteratively adjust slot widths to account for element reflections and mutual coupling until desired pattern is achieved

Initial Design Performance

- S-Parameters generally less than -10dB except around boresight scan as expected
- Scanning of $-25^{\circ} \le \theta \le 25^{\circ}$
- Consistent realized gain level across scan range

Increased Manufacturability

Reduce fabrication complexity

- 10 Steps to approximate cavity back
- Reduced plunger height
- Alter TL geometry and element spacing to achieve desired scan range

Prototype Validation

- Measurements generally agree with simulation
- Realized gain is down compared to simulated due to differences in TL geometry
- Measured scan angle is more positive, also due to differences in TL geometry