Drugsformer: Transformer for drug repurposing

Adam Kania Mateusz Pach Michał Wronka

Recap

https://en.wikipedia.org/wiki/Ligand_%28biochemistry%29 Relative Molecule Attention Transformer (Maziarka et al. 2021)

Problem formulation

Ligand in SMILES + Protein with 3D representation and docking areas

Our model

Ligand activity and binding score for a given target protein

Architecture 1

We combine two RMATs and add cross-attentions between them.

Areas of bindings as inputs.

Variants:

- 1. Only in ligand
- 2. Only in protein
- 3. In both

Architecture 2

We use RMATs and add cross-attentions with protein latent representation.

Areas of bindings or whole proteins as inputs.

Multiple task head

Dataset

- ~11.5k ligands for 7 targets including:
 - Cytochrome P450: CYP3A4, CYP2D6, CYP2C8,CYP2C9
 - Serotonin: 5ht7, 5ht1a
 - o Dopamine: d2
- Activity (Ki/IC50) and docking scores
- Pockets coordinates

Implementation goals

Done

Milestone 1: Docking dataset Extract docking areas Build protein graph representation for SchNET From whole protein From docking area Milestone 2: Architecture **Build cross attending RMAT Bidirectional** Directional into ligand Directional into protein Produce latent from SchNET Build RMAT attending latent from SchNET

Postponed

Milestone 3: Big datasets
☐ Build 3D representations with AlphaFold
Find docking areas (fpocket or Unet)
Apply to the created models

H1: Model produces satisfying results on our dataset

Yes

Model	Binding score		K	i	IC50	
Model	MSE ↓	Acc ↑	$MSE \downarrow$	Acc ↑	MSE ↓	Acc ↑
RMat-RMat	0.41	0.79	0.94	0.58	0.33	0.69
RMat-SchNet	0.43	0.79	0.86	0.69	0.51	0.66

H2: Cross-attention outperforms a representations merge

No

Model	Cross-attention	Binding score		Ki		IC50	
		$MSE \downarrow$	Acc ↑	$MSE \downarrow$	Acc ↑	$MSE \downarrow$	Acc ↑
RMat-RMat		0.41	0.79	0.94	0.58	0.33	0.69
	√	0.75	0.66	0.95	0.81	0.39	0.49

H3: Self-attention layers outperform graph layers

Inconclusive

Model	Binding score		K	i	IC50	
Model	MSE ↓	Acc ↑	$MSE \downarrow$	Acc ↑	$MSE \downarrow$	Acc ↑
RMat-RMat	0.41	0.79	0.94	0.58	0.33	0.69
RMat-SchNet	0.43	0.79	0.86	0.69	0.51	0.66

H4: General models are better than protein-specific ones

Inconclusive, but general are better when low on data

Model	Protein	Binding score		Ki		IC50	
Model	1 Totem	$MSE \downarrow$	Acc ↑	$MSE \downarrow$	Acc ↑	$MSE \downarrow$	Acc ↑
RMat D2	D2	0.32	0.71	0.63	0.64	-	-
RMat 5HT1A	5HT1A	0.22	0.82	0.83	0.79	-	-
RMat CYP2C8	CYP2C8	0.41	0.84	-	-	2.18	0.94
	D2	0.41	0.68	0.61	0.59	-	-
RMat-RMat	5HT1A	0.41	0.79	0.70	0.56	-	_
	CYP2C8	0.41	0.82	-	-	0.35	0.69

H5: Restricting the input to a pocket neighbourhood helps

Yes

Model	Only pocket	Binding score		Ki		IC50	
		$MSE \downarrow$	Acc ↑	MSE ↓	Acc ↑	MSE ↓	Acc ↑
RMat-RMat	√	0.41	0.79	0.94	0.58	0.33	0.69
		-	-	-	-	-	-
RMat-SchNet	✓	0.43	0.79	0.86	0.69	0.51	0.66
		0.45	0.77	0.86	0.68	0.51	0.63

H6: Multiple tasks do not hurt the training

Yes

Binding score		K	i	IC50	
MSE ↓	Acc ↑	$MSE \downarrow$	Acc ↑	$MSE \downarrow$	Acc ↑
0.41	0.79	0.94	0.58	0.33	0.69
0.51	-	-	1	ı	1
_	0.74	-	-	I	1
0.44	0.76	-	0.65	-	0.64

Questions