C3 : Évolution des quantités de matière lors d'une transformation

1. Avancement d'une transformation chimiques.

Lors d'une transformation chimique, les quantités des matière des espèces en présence varient:

- celles des réactifs augmentent
- celles des produits diminuent

Définition: L'avancement, noté x, est une quantité de matière permettant de suivre l'évolution d'une transformation chimique. À un instant donné, sa valeur est égale à la quantité de matière formée par un produit dont le coefficient stœchiométrique est égal à 1.

Exemple:

Dans la transformation $\ CH_4 + 2O_2
ightarrow CO_2 + 2H_2O$ s'il se forme x moles de CO2 alors :

- ullet il se forme en même temps 2x moles de H_2O
- x mol de CH_4 et 2x mol de O_2 ont été consommées.

2. Le tableau d'avancement.

Le tableau d'avancement est un outil permettant de décrire l'évolution d'un système chimique.

A. Construction du tableau.

Le tableau d'avancement présente généralement 4 lignes :

- 1ère ligne l'équation de la réaction.
- 2ème ligne : les quantités de matière mises en présence (c'est l'état initial).
- 3ème ligne : les quantités de matière pour un avancement x (en cours de réaction)
- 4ème ligne : les quantités de matière à l'état maximal.

Exemple : Construction du tableau lorsqu'on fait réagir 3,7 mol de CH_4 avec 9,3 mol de O_2 .

	CH_4	$+2O_2$	\rightarrow	CO_2	$+2H_2O$
Etat initial	3,7	9,3		0	0
En cours de réaction (pour un avancement x)	3,7- <i>x</i>	9,3 -x		x	x
Etat maximal ($x=x_{\it max}$)	3,7 - x_{max}	9,3 - x_{max}		x_{max}	x_{max}

B. Avancement maximum.

La valeur de l'avancement x augmente au cours de la réaction, jusqu'à ce que la quantité de matière de l'un des réactifs (au moins) arrive à 0. Celui-ci est appelé **le réactif limitant**.

À ce moment, la réaction est terminée et l'avancement a atteint sa valeur maximale notée x_{max}

Méthode pour calculer la valeur de x_{max}

- La quantité de matière de CH_4 ne peut pas être négative donc $3,7-x\geq 0$ donc $x\leq 3,7$ mol
- La quantité de matière de O_2 ne peut pas être négative donc 9,3-2x>0 donc $x\leq 4,7\ mol$
- Comme les deux conditions doivent être valables en même temps on a $x_{max}=3,7\ mol$ donc le réactif limitant est CH_4

Cas général pour une transformation chimique, d'équation:

$$aA + bB \rightarrow cC + dD$$

Où A et B sont les espèces chimiques de quantités de matière initiales ni(A) et ni(B), et a et b sont les coefficient stœchiométriques: l'avancement maximum x_{max} est la plus petite valeur entre $\frac{n_i(A)}{a}$ et $\frac{n_i(B)}{b}$

3. Application et utilisation du tableau d'avancement.

A. Transformation totale ou non.

Définition Une réaction qui s'arrête **avant** que l'avancement n'arrive à sa valeur maximale est appelée réaction **limitée** (ou non totale).

Si la réaction est limitée, il n'y a pas de réactif limitant. Cela signifie que l'avancement final noté x_f est inférieur à l'avancement maximal x_{max}

B. Mélanges stœchiométriques.

Définition: Un mélange est *stœchiométrique* si les réactifs sont mis en présence dans les proportions. des coefficients stœchiométriques.

Pour une transformation d'équation $aA+bB\to cC+dD$ le mélange est stœchiométrique si : $\frac{n_i(A)}{a}=\frac{n_i(B)}{b}$

Pour une réaction totale, tous les réactifs sont consommés à l'état maximal.

C. Courbes d'évolutions.

Définition : On représente graphiquement l'évolution des quantités de matières des différentes espèce chimiques en fonction de l'avancement.

Les courbes sont des fonctions affines pour les réactifs et linéaire pour les produits.

Exemple:

