Jeda Krisnell Dionisio

PHILOS 12A / DIS 102

GSI: Mathias Boehm

Problem Set #7

Exercise 8.1

- 1. Affirming the Consequent: From $A \rightarrow B$ and B, infer A. Invalid
- 2. Modus Tollens: From A \rightarrow B and \neg B, infer \neg A. Valid
- 3. Strengthening the Antecedent: From B \rightarrow C, infer (A \land B) \rightarrow C. Valid
- 4. Weakening the Antecedent: From B \rightarrow C, infer (A \vee B) \rightarrow C. Invalid
- 5. Strengthening the Consequent: From A \rightarrow B, infer A \rightarrow (B \land C). **Invalid**
- 6. Weakening the Consequent: From A \rightarrow B, infer A \rightarrow (B \vee C). Valid
- 7. Constructive Dilemma: From AVB, $A \rightarrow C$, and $B \rightarrow D$, infer C \vee D. Valid
- 8. Transitivity of the Biconditional: From A \leftrightarrow B and B \leftrightarrow C, infer A \leftrightarrow C. Valid

Exercise 8.6

The proof starts with A being either a Large Tetrahedron or a Small Cube. There are only two possible shapes and two possible sizes for A. In the second statement, B being Small is an eliminated choice, so B will either be Medium or Large. The third statement is an "if... then" statement explaining that if A is a Tetrahedron or a Cube, then B is Large or Small. From modus ponens, it can be established that B is Large because A will either be a Tetrahedron or a Cube based on the first statement. This information is crucial because of the last statement before the conclusion. It states that A is a Tetrahedron only if B is Medium. Since B is Large and not Medium, then A is not a Tetrahedron via biconditional elimination. As a result, it can be stated

that A is a Small Cube and B is Large. The conclusion is A is Small and B is Large. The proof ends.

Exercise 8.14

To get to Irrational(x) \rightarrow Irrational(\sqrt{x}), the proof will start with using the proof of contrapositive. If $(\sqrt{x} \text{ is rational, then that would also mean that x is rational. As a result of that, <math>(\sqrt{x} = \frac{m}{n})$ can be obtained. M can be any number, and N can be any number except for zero. Squaring both sides would result in $(x = \frac{m^2}{n^2})$. This is rational because m^2 is an integer and n^2 is also an integer. Every square of a number is rational, so this would also prove through the contrapositive proof that if Irrational(x) \rightarrow Irrational(\sqrt{x}).