

Физика на полупроводниците

"Големите открития и подобрения неизменно включват сътрудничеството на много умове." Александър Греъм Бел

Физика на полупроводниците

Цел разглеждането:

да може да отговаряте на тези или подобни въпроси:

- ✓ Какво е полупроводник (ПП);
- ✓ Каква е структурата на един ПП;
- ✓ Каква е връзката между метали, неметали и ПП;
- √ Какъв е механизмът за протичане на ток в металите и полупроводниците;

Място на полупроводниците

Специфично съпротивление на различни материали в Ω mm²

Изолатори Полупроводници Проводници

Електрически ток

- Какво представлява електрическият ток?
 - Насочено движение на токоносители

- Какви видове токоносители има?
 - Електрони (в твърди тела, вкл. полупроводници) (-)
 - Йони (в електролити) (+) или (-)
 - Дупки (в полупроводници) (+)

Как са изградени атомите?

Строеж на атомите

- Атомите са изградени от:
 - > протони (заредени положително);
 - > електрони (заредени отрицателно);
 - неутрони (електрически неутрални).

- □ Атомът е електрически неутрален, тъй като:
 - броят на протоните и електроните е еднакъв;
 - имат еднакъв заряд.

Строеж на атомите (Si)

- 14 протона + 14 неутрона образуват ядрото
- 14 електрона обикалят ядрото
- Само по разрешени орбити
- > наречени електронни обвивки

□ Отвътре навън K, L, M,....

Електронни обвивки

Максималния брой електрони на една обвивка е:

$$N_{max} = 2 \times n^2$$

(но най-много 8 на най-външната обвивка)

Обвивка	K	L	М	N	0	Р	Q	
n	1	2	3	4	5	6	7	
N _{max}	2	8	18	32	(50)	(72)	(98)	Вътрешни обвивки
N _{max}	2	8	8	8	8	8	8	Най-външна обв. (на инертните газове)

Свързване на атоми

- □ Атомите се свързват помежду си за да постигнат максимален брой електрони на най-външната си обвивка (8), както е при устойчивата обвивка на инертните (благородните) газове
- □ Това може да се постигне по няколко начина:
 - Приемане на чужди валентни електрони в обвивката - ако липсват само няколко (до 8)
 - Отдаване на валентните електрони от обвивката - ако са само няколко
 - > Общо използване на електроните от два атома

Свързване на атоми при металите

- □ Валентните електрони се отделят от техните атоми
- Движат се свободно между атомите на кристалната решетка (т.н. "електронен газ")
- □ При добрите проводници на електрически ток броят на електроните достига 5х10²²/сm3

Свързване на атоми при ПП

- Свързването на два атома става чрез ковалентна връзка на два електрона
- Според теорията на ковалентните връзки:

Теорията за ковалентната връзка е дадена от Люис(1916). Според нея атомите се съединяват, като от валентните им електрони се образуват една или няколко общи електронни двойки.

- Електронната двойка се състои от по един електрон от двата атома
- □ Двата електрона са свързани към атомите

Опростено представяне на ПП атом

Ковалентни връзки (Si)

Собствена проводимост

- □ Под собствена проводимост се разбира възможността за протичане на ток в чист полупроводник.
- Собствената проводимост зависи силно от температурата:
- □ при T = 0 K ⇒ Всички валентни електрони са свързани чрез ковалентни връзки; Няма свободни електрони
- □ при Т > 0 К ⇒ Вкарва се допълнителна енергия към атомите и техните валентни електрони;
- Електроните с най-голяма енергия разкъсват ковалентните връзки

Собствена проводимост

Полупроводниците се държат като изолатори при T = 0 K

Генериране на електрон и дупка

Концентрацията n на свободните електрони е равна на концентрацията p на дупките (n = p)

Генериране на електрон и дупка

За йонизиране на Si необходимата енергия е ΔW ≈ 1,1 eV

Рекомбиниране

- □ Рекомбинирането е обратния процес на генерирането
- > Свободен електрон заема свободното място в дупката
- □ Концентрацията (броят) на дупки и електрони е температурно зависим
- \rightarrow n = p = n_i = f(T),
- n_i е собствената концентрация в чист ПП 3a Si $n_i = 1.5 \text{ x} 10^{10}/\text{cm}^3$ при T = 300 K

Собствената концентрация се удвоява при повишаване на температурата с $\Delta T = 10 \text{ K}$

Дотиране

- □ Проводимостта на ПП може значително да се повиши чрез добавяне (дотиране) на чужди (примесни) атоми в кристала
- □ За дотиране се използват атоми от 3-а или 5-а валентност, т.е. всеки атом дава по един токоносител (електрон или дупка)
 - > 5-а валентност (донатори): P, As, Sb
 - > 3-а валентност (акцептори): B, Al, In
- Дотират се сравнително малки количества чужди атоми
 - (чужди атоми : ПП атоми = 1:1000 до 1:10¹⁰)

Методи за дотиране

- Легиране
- Дифузия
- □ Епитаксия (израстване на кристала в газова среда)
- □ Йонна имплантация

Дотиране с атоми от 5-а валентност

В първия момент, или при ниска температура

Дотиране с атоми от 5-а валентност

N-тип ПП (токоносителите са свободните електрони)

Дотиране с атоми от 3-а валентност

В първия момент, или при ниска температура

Йонизиране при вкарване на енергия

Р-тип ПП (токоносителите са дупките, те се преместват, когато валентен електрон заеме празното място)

Примесна проводимост

- □ Концентрацията на свободните токоносители се определя от концентрацията на примесите (n_A,n_D) и собствената проводимост (n_i)
- □ Ако примесната концентрация се избере много поголяма от собствената, то свойствата на ПП се определят от примесите
- Концентрацията на електрони и дупки в дотирания ПП не е еднаква

Примесна проводимост

- □ Токоносителите, които преобладават се наричат "основни токоносители"
- □ Токоносителите, които са по-малко се наричат "неосновни токоносители"
- Концентрация на основните токоносители влияе върху концентрацията на неосновните токоносители
- □ При по-голяма концентрация на основните токоносители се увеличава вероятността за рекомбинация, при което ще намаляват неосновните токоносители

Електрическа проводимост

- Специфичната електрическа проводимост σ се определя от плътността на тока и интензитета на електрическото поле σ = J/E. Като се вземе пред вид:
- ▶ Елементарен заряд e; Заряд Q; Брой електрони N;
- ightharpoonup Плътност на тока J = I/A; Сила на тока I = dQ/dt = e.dN/dt;
- ightharpoonup Концентрация n = dN/dV; Обем dV = A.dx;
- ightharpoonup Скорост v = dx/dt; Подвижност на токоносителите $\mu = v/E$;

се получава: σ= е.п.µ

За ПП с електрони и дупки: $\sigma = e.(n.\mu_n + p.\mu_p)$

Радиусите на орбитите на електроните служат като мярка за тяхната енергия

■ Всяка от орбитите на отделния атом представлява линия от енергийната диаграма

- Електроните на много атоми, както е в един кристал си влияят взаимно.
- Отделните линии не могат да се различават и се получават зони
- Между отделните енергийни зони има забранени зони

- □ Енергийната зона на найвъншната електронна обвивка се нарича валентна зона.
- Над нея се намира зоната на проводимостта.
- □ В тази зона се намират
 отделените от атомите свободни
 електрони, които осигуряват
 проводимостта на ПП.

Зона на проводимостта Валентна зона

- Взаимодействието между атоми се осъществява само от електрони, които се намират във валентната зона или зоната на проводимостта.
- □ Затова обикновено се показват само тези две зони и намиращата се между тях забранена зона.

Зона на проводимостта

Забранена зона

Валентна зона

- \square W_C W_V = ΔW се нарича ширина на забранената зона
- Ако електрон придобие поголяма енергия от W_{max}, той може да напусне кристала

Енергиен модел при метали

 При металите валентната зона и зоната на проводимостта се припокриват

 □ По този начин валентните електрони могат да минават в зоната на проводимост без да им е необходима допълнителна енергия

Енергиен модел при чист ПП

- При полупроводницитесъществува забранена зона
- □ При различните ПП тя е с различна ширина:
- > 3a Ge: DW » 0,7 eV
- > 3a Si: DW » 1,1 eV
- □ при T = 0 K всичките електрони са във валентната зона
- ПП се държи като изолатор

Енергиен модел при чист ПП

- □ При **T > 0 К** електроните придобиват допълнителна Енергия
- Ако тази енергия е >= ΔW, то електронът напуска валентната зона и преминава в зоната на проводимостта
- Генерират се един свободен електрон и една дупка

Енергиен модел при изолатори

- □ Не е възможно да се вкара на валентните електрони енергия по-голяма от 2,5 eV
- □ Следователно материали с
 △W >= 2,5 eV са изолатори и
 не могат да провеждат ток
- □ Напр. за диаманта ΔW ≈7 eV

