5.1	Limits of sums, products, and quotients
	Theorem: Assume that $a_n \to L$ and $b_n \to M$, as $n \to \infty$
	- Linearity Theorem: ran + sbn → rl + sM, for any r.5 € R
	- Product Theorem: an.bn → L.M
	- Quotient Theorem: $\frac{k_n}{\alpha_n} \rightarrow \frac{M}{L}$, any $L \neq 0$
	- the limit theorems actually give the limit L of the sequence
	- the limit theorems give a quick way of proving convergence without using E-N arguments
	Theorem: Algebraic Operations for Infinite Limits
	$- a_n \to \infty \qquad \begin{cases} b_n \to \infty &, \ b_n \to L > 0 \\ b_n & \text{bounded} & \text{below} \end{cases} \Rightarrow a_n + b_n \to \infty$
	$-A_{n} \rightarrow \infty \qquad \begin{cases} b_{n} \rightarrow \infty &, b_{n} \rightarrow L > 0 \\ b_{n} & b c c c c c c c c c c c c c c c c c c$
	$-a_n \rightarrow \infty \implies \frac{1}{a_n} \rightarrow 0$
	- $a_n \Rightarrow 0$ and $a_n \Rightarrow 0$ for all $n \Rightarrow \frac{1}{\alpha_n} \Rightarrow \infty$
5.2	Comparison Theorems
	Theorem: Squeeze Theorem for Limits of Sequences
	- We are given three sequences $\{a_n\}$, $\{b_n\}$, and $\{C_n\}$, such that $a_n \leq b_n \leq C_n$ for $n \gg 1$.
	Suppose that $an \neq L$ and $Cn \Rightarrow L$, then $b_n \neq L$
	Theorem: Squeeze Theorem for Infinite Limits
	$-a_n \rightarrow \infty$, $b_n \geq a_n \Rightarrow b_n \rightarrow \infty$
5.3	Location Theorems
	- tell how the location of the terms of a convergent sequence are related to the location of their limit
	Theorem: Limit Location Theorem
	$- \alpha_n \leq M \text{for} n \gg 1 \Rightarrow \sum_{n \neq \infty} \alpha_n \leq M$
	- an 2M for N71 => 1 an 2 M
	Theorem: Sequence Location Theorem
	- Assuming $\{a_n\}$ converges, $\{a_n < M \Rightarrow a_n < M \text{ for } n > 1\}$ $\{a_n > m > M \Rightarrow a_n > M \text{ for } n > 1\}$
	$\left \begin{array}{c} L \\ n \to \infty \end{array} \right \Rightarrow An \to M \text{for} n \gg 1$

5.4	Subsequences, Non-existance of Limits
	Definition:
	- A subsequence of [an] is a sequence composed of terms of [an] and having the form
	$a_{n1}, a_{n2}, \ldots, a_{ni}, \ldots$, where $n_1 < n_2 < \cdots$
	Theorem: Subsequence Theorem
	- If [an] converges, every subsequence also converges, and to the same limit
	$\lim_{n \to \infty} a_n = L \implies \lim_{n \to \infty} a_{n_1} = L \text{for every subsequence } \{a_n\}$
	- Subsequences play an important role in showing limits do not exist
5.5	Two Common Mistakes