

Katholieke Universiteit Leuven

Department of Computer Science

Shared Internet Of Things Infrastructure Platform:

Domain Analysis Software Architecture (H09B5a and H07Z9a) – Part 1

FILIPCIKOVA-HALILOVIC

Contents

L	Dor	main analysis
	1.1	Domain models
	1.2	Domain constraints
	1.3	Glossary
	Fun	actional requirements
	2.1	Use case overview
	2.2	Detailed use cases
		2.2.1 <i>UC1</i> : Name
	Nor	n-functional requirements
	3.1	Availability
		3.1.1 Av1: Database is down and a replica is used \dots
		3.1.2 Av2: Sensor breaks
	3.2	Performance
		3.2.1 P1: Name of the quality attribute scenario
	3.3	Modifiability
		3.3.1 M1: Name of the quality attribute scenario
	3.4	Usability
		3.4.1 $U1$: Name of the quality attribute scenario

1. Domain analysis

1.1 Domain models

This section shows the domain model(s).

Figure 1.1: The domain model for the system.

1.2 Domain constraints

In this section we provide additional domain constraints.

- This is a first constraint.
- $\bullet\,$ This is a second constraint.

1.3 Glossary

In this section, we provide a glossary of the most important terminology used in this analysis.

- Term1: definition
- Term2: definition

2. Functional requirements

Use case model

Figure 2.1: Use case diagram for the system.

2.1 Use case overview

UC1: Name Short summary of this use case scenario

2.2 Detailed use cases

2.2.1 *UC1*: Name

- Name: Name of use case 1
- Primary actor: primary actor
- Secondary actor(s): secondary actor(s)
- Interested parties:
 - Name of interested party: reason why party is interested

• Preconditions:

- First precondition.
- Second precondition.

• Postconditions:

- First postcondition.
- Second postcondition.

• Main scenario:

- 1. Step 1
- 2. Step 2
- 3. Step 3
- 4. ...

• Alternative scenarios:

3b. Alternative at step 3

• Remarks:

- First remark

3. Non-functional requirements

In this section, we model the non-functional requirements for the system in the form of *quality attribute scenarios*. We provide for each type (availability, performance and modifiability) one requirement.

3.1 Availability

3.1.1 Av1: Database is down and a replica is used

A database in our system does not send any data.

• Source: External: Database server

- Stimulus:
 - The database crashed.
 - The database does not send any response.
 - The database returns invalid data or response.
 - ...
- Artifact: Persistent storage
- Environment: Normal operation
- Response:
 - Use a working replica until the server can be used again.
 - If the server cannot fix the by itself, send a technician to fix the problem with the database.
- Response measure:
 - A working replica should be used within a range of 1s to 5s.

3.1.2 Av2: Sensor breaks

A sensor breaks. Another sensor is used for the responsibility of the broken one.

- Source: External: sensor
- Stimulus:
 - No data received anymore from sensor
- Artifact: Communication channel between sensor and gateway
- Environment: Any state of operation, At run-time, ...
- Response:
 - The gateway uses another sensor to be used for the same responsibility as the broken one.
- Response measure:
 - A new sensor should be chosen within the range of 1ms to 10s

3.2 Performance

3.2.1 P1: Name of the quality attribute scenario

Shortly describe the context of the scenario.

- Source: source
- Stimulus:
 - Description of a first stimulus.
 - Description of a second stimulus.
- Artifact: the stimulated artifact
- Environment: the condition under which the stimulus occurs
- Response:
 - Describe how the system should respond to the stimulus.
- Response measure:
 - Describe how the satisfaction of a response is measured.

3.3 Modifiability

3.3.1 M1: Name of the quality attribute scenario

Shortly describe the context of the scenario.

- Source: source
- Stimulus:
 - Description of a first stimulus.
 - Description of a second stimulus.
- Artifact: the stimulated artifact
- Environment: the condition under which the stimulus occurs
- Response:
 - Describe how the system should respond to the stimulus.
- Response measure:
 - Describe how the satisfaction of a response is measured.

3.4 Usability

3.4.1 *U1*: Name of the quality attribute scenario

Shortly describe the context of the scenario.

- Source: source
- Stimulus:
 - Description of a first stimulus.
 - Description of a second stimulus.
- Artifact: the stimulated artifact
- Environment: the condition under which the stimulus occurs
- Response:
 - Describe how the system should respond to the stimulus.
- Response measure:
 - Describe how the satisfaction of a response is measured.