

Brasília, 3 de agosto de 2017 [Seguidor de Linha] Leonardo Brandão – Gerente de Projeto

Controle por PWM

Modulação por largura de pulso, mais conhecido pela sigla em inglês PWM (Pulse Width Modulation) é um método de transmissão de **Sinais** ou controle de **Alimentação** que envolve a modulação da razão cíclica da onda (duty cicle) para o transporte de qualquer informação sobre um canal de comunicação ou controlar o valor de alimentação entregue à carga.

Figura 1.0 – PWM (duty cicles variados)

Utilizaremos o sinal PWM, o qual será gerado por um microcontrolador, para controle de alimentação dos motores que realizam a movimentação do robô seguidor de linha. Para tanto, um drive é necessário para interpretar esse sinal e chavear o acionamento dos motores, ou seja, com a variação do duty cicle do PWM determinamos quando e por quanto tempo o motor receberá corrente, e assim, conseguimos administrar a velocidade de rotação dos motores sem perda no torque.

Circuito de Ponte H

A ponte H é um circuito baseado na lógica de chaveamento cuja função é determinar o sentido de propagação da corrente elétrica sobre uma cargar. Circuito esse muito utilizado para o controle do sentido de rotação de motores DC.

Lote 14, Central, CEP: 72.405-610 E-mail: contato.titansteam@gmail.com

Resultados e Discussão

Somando o controle por **PWM** e o circuito de **Ponte H** obtemos um drive de motor completo para aplicações em robótica e automação. Portanto, podemos construir esse aparato a partir de transistores arranjados em ponte H e controlados por um sinal PWM gerado por um microcontrolador. No entanto, um projeto desse não exige apenas o conhecimento da lógica de chaveamento e controle de pulsos, mas também todo um estudo sobre o funcionamento dos transistores, bem como uma pesquisa de mercado sobre seus diversos modelos e inúmeros teste para adaptação em nosso projeto. Por sorte, existem muitos CI's no mercados que funcionam como drive para motores utilizando essa lógica, economizando tempo na construção e evitando mal funcionamento do projeto.

Componente	Corrente Máxima de Saída	Tensão Máxima de Saída	Observação
L293	1A	36V	Não possui diodos
L293D	0,6A	36V	Já possui diodos contra FCEM internos
L298N	2A	46V	Não possui diodos
L9110	0,8A	12V	SMD

Tabela 1.0 – CI's de driveamento de motor

Todos os componentes da tabela 1.0 possuem dupla ponte H, ou seja conseguem controlar até dois motores simultaneamente, e podem ser controlados via PWM o que se encaixa nos parâmetros de construção do robô seguidor de linha. Além disso, os dois últimos componentes da tabela acima (L298N e L9110) já possuem módulos prontos para aplicação.

Módulo drive de Motor L298N

Módulo Ponte H HG7881

Titans

Universidade de Brasília, Área Especial 02

Lote 14, Central, CEP: 72.405-610 E-mail: contato.titansteam@gmail.com

Componente	Loja	Preço (R\$)
L293D	HU infinito	8,10
L298N	HU infinito	10,50
Módulo Drive de Motor (L298N)	HU infinito	22,90
Módulo Drive Ponte H (HG7881)	Vida de Silício	14,90

Tabela 2.0 – Preços e lojas

Conclusão

Para escolher qual CI utilizaremos como drive do robô seguidor de linha precisamos primeiramente dimensionar os valores de corrente e tensão dos motores. Todos os componentes listados nesse relatório possuem ampla disponibilidade na internet e logo de fácil obtenção.