

LFTC - Aula 05

AFND: com e sem movimentos vazios

Celso Olivete Júnior celso.olivete@unesp.br

- · Reconhecedores genéricos
- · Autômatos finitos determinísticos

• Estrutura de um reconhecedor genérico

- Reconhecedor autômato finito- particularidades:
 - Inexistência de memória auxiliar;
 - 2. Utilização do cursor da fita de entrada apenas para leitura de símbolos, não havendo operações de escrita sobre a fita;
 - Movimentação do cursor de leitura em apenas um sentido, da esquerda para a direita;
 - 4. A fita de entrada possui comprimento limitado, suficiente apenas para acomodar a cadeia a ser analisada

· Autômato finito determinístico

• Para cada entrada (símbolo) existe um e somente um estado ao qual o autômato pode transitar a partir de seu estado atual e do símbolo lido

Na aula de hoje...

- Autômato finito não-determinístico com e sem movimentos vazios
 - O autômato tem o poder de estar em vários estados ao mesmo tempo

No estado **p** ao ler o símbolo **a** assume **q1** e **q2** como novos estados atuais

AFND: aceitação e rejeição

- Diz-se que um autômato finito não-determinístico aceita uma cadeia de entrada quando houver alguma sequência de movimentos que o leve da configuração inicial para uma configuração final.
- •Diferentemente do autômato finito determinístico, em que essa sequência, se existir, é única para cada cadeia de entrada, no caso do autômato finito não-determinístico é possível que exista mais de uma sequência que satisfaça a essa condição para uma dada cadeia de entrada.
- •Sempre que o AFND se deparar com mais de uma possibilidade de movimentação, é feita a escolha (arbitrária) de uma das alternativas; em caso de insucesso no reconhecimento, deve-se considerar sucessivamente cada uma das demais alternativas ainda não consideradas, até o seu esgotamento; persistindo o insucesso, e esgotadas as alternativas, diz-se que o autômato rejeita a cadeia.

Aceitação e rejeição de cadeias em AF's

	Dada uma cadeia de entrada, ele:	Aceita a cadeia de entrada se:	Rejeita a cadeia de entrada se:
AFD	Executa uma única sequência de movimentos.	Parar em uma configuração final.	Parar em uma configuração não-final.
AFND	Pode executar várias sequências distintas de movimentos.	Parar em uma configuração final.	Parar sem conseguir atingir nenhuma configuração final.

Exemplo de AFND

Reconhece a linguagem ab*c*

AFD versus AFND

• os autômatos finitos não-determinísticos, em certos casos, podem mostrar-se mais simples de serem analisados do que as correspondentes versões determinísticas

AFD versus AFND

AFD: Reconhece a linguagem (a|b|c|d)*abcd (a|b|c|d)*

AFD versus AFND

AFND: Reconhece a mesma linguagem
 (a|b|c|d)*abcd (a|b|c|d)*

Mais simples de ser analisado

AFND: notação tabular (tabela de transição)

• Cada linha da tabela representa um estado distinto q do autômato, e cada coluna é associada a um elemento distinto de seu alfabeto Σ de entrada. As células correspondentes à intersecção de cada linha com cada coluna são preenchidas com o elemento (conjunto) determinado pela função de transição

notação tabular

δ	а	b	С
→ q0	{q1,q2}	Ø	Ø
*q1	Ø	{q1,q2}	Ø
*q2	Ø	Ø	{q2}

AFND com movimentos vazios (transições

em vazio) → AFNDE

AFND com movimentos vazios (transições em vazio) → AFNDE

•AFND que apresentam transições em vazio são aqueles que admitem transições de um estado para outro com ε ou λ , além das transições normais, que utilizam os símbolos do alfabeto de entrada.

•Transições em vazio são executadas sem que seja necessário consultar o símbolo corrente da fita de entrada, e sua execução nem sequer causa o deslocamento do cursor de leitura.

AFNDE

 Quando um autômato transita em vazio, isso significa que ele muda de estado sem consultar a cadeia de entrada.

•Sempre que ocorrer a simultaneidade entre alguma transição em vazio e outras transições (vazias ou não) com origem em um mesmo estado, isso acarreta a necessidade de uma escolha arbitrária da transição a ser aplicada na respectiva configuração, e isso, por sua vez, caracteriza a manifestação de um não-determinismo.

AFNDE

Reconhece a cadeia a*b*

• Simule para a entrada ab

Uso de transições em vazio

• Assim como ocorre no caso dos AFD's e AFND's, alguns AFNDE se mostram mais simples de serem analisados do que as correspondentes versões isentas de transições em vazio.

AF que reconhece a linguagem a*b*c*a*.

• sem movimento vazio

AF que reconhece a linguagem a*b*c*a*.

com movimento vazio

AF com e sem movimento vazio - Linguagem

 Todo autômato com transições em vazio gera uma linguagem que é aceita por algum autômato finito que não contém transições em vazio

Eliminação de transições em vazio

Eliminação de transições em vazio

• Algoritmo: "Obtenção de um autômato finito N, sem transições em vazio, a partir de um autômato finito M, com transições em vazio."

- Entrada: um autômato finito com transições em vazio
 M;
- Saída: um autômato finito sem transições em vazio N, tal que L(N) = L(M);
- · Método:

1. Eliminação das transições em vazio

- Considere-se um estado qualquer $qi \in Q$. Se houver uma transição em vazio de qi para qj, deve-se eliminá-la, copiando-se para a linha que representa o estado qi todas as transições que partem dos estados qj para os quais é feita a transição em vazio.
- Esse procedimento corresponde, em notação tabular, à realização de uma fusão ("merge") entre a linha do estado qi que contém a transição em vazio para o estado-destino qj e a própria linha do estado qj, armazenando-se o resultado novamente na linha correspondente ao estado qi.
- Havendo mais de uma transição em vazio indicadas, deve-se repetir cumulativamente o procedimento para todas elas.
- Se δ (qi, λ) \in F, então F' \leftarrow F' \cup {qi}, sendo que inicialmente F' \leftarrow F.

2. Iteração

 Repetir o passo anterior para os demais estados do autômato, até que todos eles tenham sido considerados (ou seja, até que a última linha tenha sido atingida).

• Nos casos em que houver transições em vazio para estados que por sua vez também transitam em vazio para outros estados, será necessário iterar o procedimento várias vezes sobre a tabela, até que todas as transições em vazio tenham sido eliminadas.

Exemplo: eliminação da transição em vazio

notação tabular

δ	а	b	λ
→ q0	{q0,q1}	{q1}	{q1}
*q1		{q1}	

Como há uma transição em vazio de q0 para q1, deve-se copiar as transições de q1 para q0 (δ (q1,b) apenas, neste caso) e, além disso, considerar q0 como estado final, uma vez que q1 é estado final. Abaixo, a tabela e o AF sem movimento vazio.

notação tabular

δ	а	b
→ *q0	{q0}	{q1}
*q1		{q1}

Exercício: Obter um AF sem movimento vazio

Exercícios

1. Construir 2 AFND's usando diagrama de transições (1 com movimento vazio e 1 sem movimento vazio), 1 ER e 1 GR que reconheça cada uma das as linguagens sobre o alfabeto {a,b} e cujas sentenças estão descritas a seguir.

a.	Com	eçam	com	aa;
----	-----	------	-----	-----

- b. Não começam com aa;
- c. Terminam com bbb;
- d. Não terminam com bbb;
- e. Contém a subcadeia aabbb;
- f. Possuem comprimento maior ou igual a 3;
- g. Possuem comprimento menor ou igual a 3;

- h. Possuem comprimento diferente de 3;
- i. Possuem comprimento par;
- j. Possuem comprimento impar;
- k. Possuem comprimento múltiplo de 4;
- 1. Possuem quantidade par de símbolos a;
- m. Possuem quantidade impar de símbolos b.
- 2. Escolha três sentenças qualquer e aplique o algoritmo de conversão de AFNDE para AFND
- 3. Escolha três sentenças (exceto a e b) e construa o AFND (com ou sem ϵ) na forma de tabela de transições

Exercícios: Construa AFND's com ou sem movimentos vazios para as linguagens abaixo. Para os que apresentarem movimentos vazios, aplique o algoritmo de eliminação de movimentos vazios.

L1 = Aceita cadeias ∈ {1,2}* tal que o último símbolo na cadeia tenha aparecido anteriormente. Em seguida, construa a Tabela de Transição de Estados e a Função de Transição de Estados

L2 = Aceita cadeias ∈ {1,2,3}* tal que o último símbolo na cadeia tenha aparecido anteriormente. Por exemplo, 121 é aceita; 31312 não é aceita. Em seguida, construa a Tabela de Transição de Estados e a Função de Transição de Estados

L3 = { $w|w \in \{a,b,c\}^*$, as ou bb é subpalavra e cccc é sufixo de w}

L4 = { $w \mid w \in \{a,b\}^*$ e o quarto símbolo da direita para a esquerda de $w \in a$ }

 $L5 = \{ w1w2w1 \mid w1, w2 \in \{0,1\}^* e \mid w1 \mid =2 \}$

L6 - o conjunto de strings sobre o alfabeto {0,1,...,9} tal que o dígito final não tenha aparecido antes

L7 - o conjunto de strings de 0's e 1's tais que não existam dois 0's separados por um número de posições que seja múltiplo de 4. Observe que 0 é um múltiplo permitido de 4.

L8 - Defina um AFND que tenha no máximo cinco estados e cuja linguagem seja o conjunto das sequências de x's, y's e z's do tipo $\alpha z\beta$ ou $\gamma x\beta$ onde $\alpha\beta\gamma \in \{x,y,z\}^*$, α é não vazia e não contém y's, β é não vazia e não contém z's e γ tem pelo menos um y e não contém z's.

• Verifique se a sequência xzx pertence a L8.

L1

A = ($\{q0,q1,q2,q3\},\{1,2\},\delta,q_0,\{q2\}$)

· L2

A = ($\{q0,q1,q2,q3,q4\},\{1,2,3\},\delta,q_0,\{q2\}$)

L3

A = ($\{q0,q1,q2,q3,q4,q5,q6,q7\}$, $\{a,b,c\}$, δ , $q_0,\{q7\}$)

· L4

A = ($\{q0,q1,q2,q3,q4\}, \{a,b\}, \delta, q_0,\{q4\}$)

L5

A = ($\{q0,q1,q2,q3,q4,q5,q6,q7,q8,q9\},\{0,1\},\delta,q_0,\{q9\}$)