Politecnico di Milano – Facoltà di Ingegneria Industriale e dell'Informazione – A.A. 2018/2019 Corso di Laurea in Ingegneria Fisica

Seconda prova e preappello di Analisi III, 14 gennaio 2019 - Prof. I. FRAGALÀ

SECONDA PROVA ES.1 (8 punti) [fornire le risposte con una breve giustificazione]

Stabilire se l'equazione differenziale $-u'' + u = \cos(6x)$, $x \in \mathbb{R}$, ammette soluzioni di periodo $\pi/3$, e in caso affermativo determinarle.

Soluzione. Utilizzando il metodo di ricerca di soluzioni periodiche tramite serie di Fourier, posto $\xi_k = k \frac{2\pi}{T} = 6k$ e indicato con $P(\lambda) = -\lambda^2 + 1$ il polinomio caratteristico dell'equazione, osserviamo che si ha

$$P(i\xi_k) = -(6ik)^2 + 1 = 36k^2 + 1 \neq 0$$
 $\forall k \in \mathbb{Z}$

Quindi l'equazione assegnata ammette una e una sola soluzione di periodo $\pi/3$, data dalla funzione con coefficienti di Fourier

$$\hat{u}_k = \frac{\hat{f}_k}{36k^2 + 1} \,,$$

dove \hat{f}_k sono i coefficienti di Fourier del termine noto $\cos(6x)$, ovvero

$$\hat{f}_k = \begin{cases} 0 & \text{se } k \neq \pm 1\\ \frac{1}{2} & \text{se } k = \pm 1 \,. \end{cases}$$

Pertanto,

$$u(x) = \frac{1}{2(36+1)}(e^{6x} + e^{-6x}) = \frac{1}{37}\cos(6x).$$

SECONDA PROVA ES. 2. (8 punti) [fornire le risposte con una breve giustificazione]

Sia $u(x) = e^{-x^2 + 8x} \chi_{[0,1]}$, e sia \hat{u} la sua trasformata di Fourier. Stabilire quali delle seguenti affermazioni sono vere:

- (a) $\hat{u} \in L^{\infty}(\mathbb{R})$
- (b) $\hat{u} \in L^2(\mathbb{R})$
- (c) $\hat{u} \in C^{\infty}(\mathbb{R})$
- (d) $\hat{u} \in \mathcal{S}'(\mathbb{R})$.

Soluzione.

- (a) vero, perché $u \in L^1(\mathbb{R})$
- (b) vero, perché $u \in L^2(\mathbb{R})$
- (c) vero, perché $x^n u \in L^1(\mathbb{R})$ per ogni $n \in \mathbb{N}$
- (d) vero, perché $u \in \mathcal{S}'(\mathbb{R})$.

SECONDA PROVA ES. 3. (8 punti) [fornire le risposte con una giustificazione dettagliata]

(a) Scrivere la formulazione variazionale del problema

$$\begin{cases} -u'' + (x+1)^2 u' + \arctan(x) u = e^{-x^2} & 0 < x < 1 \\ u(0) = 0, \ u'(1) - u(1) = 0. \end{cases}$$

- (b) Mostrare che tale formulazione ammette una e una sola soluzione u.
- (c) Determinare poi una limitazione superiore per $||u||_{L^2(0,1)}$.

Soluzione. (a) Posto $V = \{v \in H^1(0,1) : v(0) = 0\}$, sappiamo che per le funzioni di V valgono le maggiorazioni

$$(*): \|v\|_{L^2(0,1)} \le \frac{2}{\pi} \|v'\|_{L^2(0,1)}, \qquad (**): |v(1)| \le \|v'\|_{L^2(0,1)};$$

grazie alla prima possiamo porre $||v||_V = ||v'||_{L^2(0,1)}$. Da ora in avanti, per brevità, scriviamo L^2 anziché $L^2(0,1)$. Moltiplichiamo l'equazione per una funzione test $v \in V$ e integriamo: osservato che u'(1) = u(1), si ottiene

$$\underbrace{\int_0^1 u'v' \ dx + \int_0^1 (x+1)^2 u'v \ dx + \int_0^1 \arctan(x)uv \ dx - u(1)v(1)}_{B(u,v)} = \underbrace{\int_0^1 e^{-x^2}v \ dx}_{F(v)}.$$

La formulazione cercata è allora: Trovare $u \in V$ tale che B(u, v) = F(v) per ogni $v \in V$.

(b) Applichiamo il Teorema di Lax Milgram. La linearità di B e di F è immediata; per la limitatezza di F osserviamo che, grazie a (*):

$$|F(v)| \le \int_0^1 e^{-x^2} |v| \ dx \le \left\| e^{-x^2} \right\|_{L^2} \cdot \|v\|_{L^2} \le 1 \cdot \frac{2}{\pi} \|v'\|_{L^2} = \frac{2}{\pi} \|v\|_V;$$

analogamente, per la limitatezza di B, maggiorando ciascuna delle funzioni $(x + 1)^2$ e arctan x con il corrispondente massimo su [0,1] e facendo uso di (*) e (**), abbiamo

$$\begin{split} |B(u,v)| &\leq \int_{0}^{1} |u'v'| \, dx + 4 \int_{0}^{1} |u'v| \, dx + \frac{\pi}{4} \int_{0}^{1} |uv| \, dx + |u(1)v(1)| \\ &\leq \|u'\|_{L^{2}} \|v'\|_{L^{2}} + 4 \|u'\|_{L^{2}} \|v\|_{L^{2}} + \frac{\pi}{4} \|u\|_{L^{2}} \|v\|_{L^{2}} + \|u'\|_{L^{2}} \|v'\|_{L^{2}} \\ &\leq \|u'\|_{L^{2}} \|v'\|_{L^{2}} + 4 \|u'\|_{L^{2}} \frac{2}{\pi} \|v'\|_{L^{2}} + \frac{\pi}{4} \cdot \frac{2}{\pi} \|u'\|_{L^{2}} \frac{2}{\pi} \|v'\|_{L^{2}} + \|u'\|_{L^{2}} \|v'\|_{L^{2}} \\ &= \left(2 + \frac{9}{\pi}\right) \|u\|_{V} \|v\|_{V} \,. \end{split}$$

Infine, per la coercività di B, osserviamo in via preliminare che

$$\int_0^1 (x+1)^2 u'u \ dx = \int_0^1 \frac{(x+1)^2}{2} \cdot \frac{d}{dx}(u^2) \ dx = \left[\frac{(x+1)^2}{2}u^2\right]_0^1 - \int_0^1 (x+1)u^2 \ dx = 2u^2(1) - \int_0^1 (x+1)u^2 \ dx$$

e dunque

$$B(u,u) = \int_0^1 (u')^2 dx + 2u^2(1) - \int_0^1 (x+1)u^2 dx + \int_0^1 [\arctan(x)]u^2 dx - u^2(1)$$

$$\geq \int_0^1 (u')^2 dx + \int_0^1 [\arctan(x) - (x+1)]u^2 dx.$$

Osserviamo ora che $g(x) = \arctan(x) - (x+1)$ è decrescente, e il suo minimo su [0,1] è $g(1) = \frac{\pi}{4} - 2 < 0$ e quindi

$$\int_0^1 \left[\arctan(x) - (x+1)\right] u^2 dx \ge \frac{\pi - 8}{4} \int_0^1 u^2 dx = \frac{\pi - 8}{4} \left\|u\right\|_{L^2}^2 \ge \frac{\pi - 8}{4} \cdot \left(\frac{2}{\pi}\right)^2 \left\|u'\right\|_{L^2}^2,$$

da cui

$$B(u,u) \ge \|u'\|_{L^2}^2 + \frac{\pi - 8}{\pi^2} \|u'\|_{L^2}^2 = \left(\underbrace{1 + \frac{\pi - 8}{\pi^2}}_{>0}\right) \|u\|_V^2.$$

(c) Infine, da

$$\frac{\pi^2 + \pi - 8}{\pi^2} \|u\|_V^2 \le B(u, u) = F(u) \le |F(u)| \le \frac{2}{\pi} \|u\|_V,$$

dividendo per $||u||_V$ si ottiene la stima a priori

$$||u||_V \le \frac{2\pi}{\pi^2 + \pi - 8}.$$

SECONDA PROVA TEORIA. (7 punti) [fornire le rispondere in modo coinciso e rigoroso]

(a) Sia Ω un aperto limitato e regolare di \mathbb{R}^n con normale esterna ν , e sia $f \in L^2(\Omega)$. Fornire la formulazione variazionale del seguente problema di Neumann e dimostrare che una soluzione variazionale di classe C^2 è anche soluzione classica:

$$\begin{cases} -\Delta u + u = f & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{su } \partial \Omega \end{cases}$$

(b) Fornire la definizione dello spazio $\mathcal{S}'(\mathbb{R})$ delle distibuzioni temperate in \mathbb{R} , e dimostrare che $e^x \notin \mathcal{S}'(\mathbb{R})$.

Soluzione. Per (a) e la definizione di $\mathcal{S}'(\mathbb{R})$, si veda uno dei testi consigliati. Per dimostrare che $e^x \notin \mathcal{S}'(\mathbb{R})$, si ragiona per assurdo. Posto $u = e^x$, si ha u' = u. Applicando la trasformata di Fourier in $\mathcal{S}'(\mathbb{R})$, e le note regole di trasformazione, si ottiene $i\xi\hat{u}=\hat{u}$, ovvero $(i\xi-1)\hat{u}=0$, da cui $\hat{u}=0$ in $\mathcal{S}'(\mathbb{R})$. Siccome in $\mathcal{S}'(\mathbb{R})$ vale la formula di inversione, segue u=0, contraddizione.

PREAPPELLO ES.1 (8 punti) [fornire le risposte con una breve giustificazione]

- (a) Sia X lo spazio vettoriale delle funzioni $C^1([0,1])$ munito della norma $||f||_1 := \sup |f| + \sup |f'|$, e Y lo spazio vettoriale delle funzioni $C^0([0,1])$ munito della norma $||f||_0 := \sup |f|$. Sia $T: X \to Y$ l'operatore lineare definito da T(f) = f'. Mostrare che T è continuo e calcolarne la norma.
- (b) Sia $p \in (1, +\infty)$. Sia $X = L^p([0, 1])$ e sia $g \in L^{p'}([0, 1])$, dove p' è l'esponente coniugato di p. Sia $T : X \to R$ l'operatore definito da $T(f) = \int_0^1 fg$. Mostrare che T è continuo e calcolarne la norma.

Soluzione. (a) L'operatore T è continuo con $||T|| \le 1$ poiché $||f'||_0 \le ||f||_1$.

Si ha ||T|| = 1 perché non si può migliorare la disuguaglianza sopra come si vede prendendo la successione di funzioni $f_n(x) = \frac{1}{n}\sin(nx)$.

(b) L'operatore T è continuo con $||T|| \le ||g||_{L^{p'}}$ poiché per la disuguaglianza di Holder $|T(f)| \le ||g||_{L^{p'}} ||f||_{L^p}$. Si ha $||T|| = ||g||_{L^{p'}}$ perché non si può migliorare la disuguaglianza sopra come si vede prendendo la funzione $f = |g|^{1/(p-1)} \operatorname{sign}(g)$.

PREAPPELLO ES. 2. (8 punti) [fornire le risposte con una breve giustificazione]

Per ogni $n \in \mathbb{N}$, determinare la soluzione del seguente problema di Dirichlet sul disco $B_r = \{x \in \mathbb{R}^2 : |x| < r\}$:

$$\begin{cases} \Delta u = 0 & \text{in } B_r \\ u(\theta) = \cos(n\theta) & \text{su } \partial B_r \,. \end{cases}$$

Soluzione. Ricercando la soluzione sotto forma di serie di Fourier, si trova che la funzione $u_{\sharp}(\rho,\theta) := u(\rho\cos\theta,\rho\sin\theta)$ è data da

$$u_{\sharp}(\rho,\theta) = \sum_{k} \hat{g}_{k} \left(\frac{\rho}{r}\right)^{|k|} e^{ik\theta},$$

dove \hat{g}_k sono i coefficienti di Fourier del dato $\cos(n\theta)$.

Poiché, per $g(\theta) = \cos(n\theta)$ si ha $\hat{g}_k = \pm 1/2$ per $k = \pm n$ e 0 altrimenti, si ottiene

$$u_{\sharp}(\rho,\theta) = \left(\frac{\rho}{r}\right)^n \cos(n\theta).$$

PREAPPELLO ES. 3. (8 punti) [fornire le risposte con una giustificazione dettagliata]

Mostrare che, per ogni $\alpha \in \mathbb{R}$, si ha

$$\int_{\mathbb{R}} \frac{\cos(\alpha x)}{x^4 + x^2 + 1} \, dx = \frac{2\pi}{\sqrt{3}} e^{-|\alpha|\sqrt{3}/2} \cos(|\alpha|/2 - \pi/3) \,.$$

Soluzione. Sia $F(\alpha) := \int_{\mathbb{R}} \frac{\cos(\alpha x)}{x^4 + x^2 + 1} dx$, e $G(\alpha) = \frac{2\pi}{\sqrt{3}} e^{-|\alpha|\sqrt{3}/2} \cos(|\alpha|/2 - \pi/3)$. Poiché F e G sono funzioni pari, per

mostrare che coincidono per ogni α in \mathbb{R} , basta mostrare che coincidono per $\alpha > 0$. Supponiamo quindi che sia $\alpha > 0$. Si ha che $F(\alpha)$ è la parte reale dell'integrale su \mathbb{R} della funzione $f_{\alpha}(z) := \frac{\cos(\alpha z)}{z^4 + z^2 + 1}$. Tale funzione ha 4 singolarità, tutte date da poli semplici, nei punti

$$z_1 = e^{i\pi/3}$$
, $z_2 = -e^{i\pi/3}$, $z_3 = e^{-i\pi/3}$, $z_4 = -e^{-i\pi/3}$.

Tra questi, hanno parte immaginaria positiva i punti

$$z_1 = \frac{1}{2}(1 + i\sqrt{3}), \qquad z_4 = \frac{1}{2}(-1 + i\sqrt{3}),$$

con residui

$$\operatorname{Res}(f_{\alpha}, z_1) = \frac{e^{-\alpha\sqrt{3}/2}e^{i\alpha/2}}{-3 + i\sqrt{3}}, \qquad \operatorname{Res}(f_{\alpha}, z_4) = \frac{e^{-\alpha\sqrt{3}/2}e^{-i\alpha/2}}{3 + i\sqrt{3}}.$$

Pertanto applicando il lemma di Jordan si ha:

$$\begin{split} \int_{\mathbb{R}} f_{\alpha}(z) dz &= 2\pi i \Big(\frac{e^{-\alpha\sqrt{3}/2} e^{i\alpha/2}}{-3 + i\sqrt{3}} + \frac{e^{-\alpha\sqrt{3}/2} e^{-i\alpha/2}}{3 + i\sqrt{3}} \Big) \\ &= 2\pi e^{-\alpha\sqrt{3}/2} \Big(\frac{e^{i\alpha/2}}{\sqrt{3} + 3i} + \frac{e^{-i\alpha/2}}{\sqrt{3} - 3i} \Big) \\ &= 2\pi e^{-\alpha\sqrt{3}/2} \frac{1}{2\sqrt{3}} \Big(e^{i(\alpha/2 - \pi/3)} + e^{-i(\alpha/2 - \pi/3)} \Big) \\ &= \frac{2\pi}{\sqrt{3}} e^{-\alpha\sqrt{3}/2} \cos(\alpha/2 - \pi/3) \,. \end{split}$$

Dunque si ha $F(\alpha) = G(\alpha)$ per ogni $\alpha > 0$, e, per parità, per ogni $\alpha \in \mathbb{R}$.

PREAPPELLO TEORIA. (7 punti) [fornire le rispondere in modo coinciso e rigoroso]

- (a) Enunciare il teorema di proiezione su un convesso chiuso in uno spazio di Hilbert.
- (b) Dimostrare che la trasformata di Fourier di una funzione $u \in L^1(\mathbb{R})$ è una funzione continua. Stabilire, giustificando la risposta, se la stessa proprietà vale per $u \in L^2(\mathbb{R})$.

Soluzione. Per (a) e la prima parte di (b), si veda uno dei testi consigliati.

In generale la trasformata di Fourier di una funzione di $L^2(\mathbb{R})$ non è una funzione continua, come si vede prendendo ad esempio la funzione $u(x) = \sin x/x \in L^2(\mathbb{R}) \setminus L^1(\mathbb{R})$, la cui trasformata è la funzione $\pi \chi_{[-1,1]} \notin C^0(\mathbb{R})$.