```
import numpy as np
import pandas as pd
import re
import matplotlib.pyplot as plt
# Uploading csv file
df = pd.read csv("bank.csv")
df
age; "job"; "marital"; "education"; "default"; "balance"; "housing"; "loan"; "
contact";"day";"month";"duration";"campaign";"pdays";"previous";"poutc
ome";"v"
      30; "unemployed"; "married"; "primary"; "no"; 1787; ...
1
      33; "services"; "married"; "secondary"; "no"; 4789; ...
2
      35; "management"; "single"; "tertiary"; "no"; 1350; ...
3
      30; "management"; "married"; "tertiary"; "no"; 1476...
4
      59; "blue-collar"; "married"; "secondary"; "no"; 0; ...
. . .
4516
      33; "services"; "married"; "secondary"; "no"; -333; ...
4517
      57; "self-employed"; "married"; "tertiary"; "yes"; ...
      57; "technician"; "married"; "secondary"; "no"; 295...
4518
      28; "blue-collar"; "married"; "secondary"; "no"; 11...
4519
      44; "entrepreneur"; "single"; "tertiary"; "no"; 113...
4520
[4521 rows x 1 columns]
Preprocessing of data
#Converting list of column names into column bariables
colmns = re.sub(";", " ", df.columns[0])
colmns = re.sub("\"", "", colmns)
colmns = colmns.split()
# Data cleaning for each row
def clean data(row):
    row = re.sub(";", " ", row)
    row = re.sub("\"", "", row)
```

```
row = row.split()
    return row
data = df.copy()
data.iloc[:,0] = data.iloc[:,0].map(lambda x: clean data(x))
data
age; "job"; "marital"; "education"; "default"; "balance"; "housing"; "loan"; "
contact";"day";"month";"duration";"campaign";"pdays";"previous";"poutc
ome";"y"
      [30, unemployed, married, primary, no, 1787, n...
1
      [33, services, married, secondary, no, 4789, y...
2
      [35, management, single, tertiary, no, 1350, y...
3
      [30, management, married, tertiary, no, 1476, ...
4
      [59, blue-collar, married, secondary, no, 0, y...
. . .
      [33, services, married, secondary, no, -333, y...
4516
      [57, self-employed, married, tertiary, yes, -3...
4517
      [57, technician, married, secondary, no, 295, ...
4518
      [28, blue-collar, married, secondary, no, 1137...
4519
      [44, entrepreneur, single, tertiary, no, 1136,...
4520
[4521 rows x 1 columns]
# Filling the values from row list and creating the column from the
column list which we created earlier
idx = 0
for row in data.iloc[:,0]:
    if len(row) == 17:
        i = 0
        for col in colmns:
            data.loc[idx,col] = row[i]
            i += 1
    idx += 1
data.drop(data.columns[0], axis=1, inplace=True)
```

df1 = data.copy()
df1

1	age			job	marital	education	default	balance	housing	
loan 0	30	ur	nemp ⁻	loyed	married	primary	no	1787	no	
no 1	33		serv	vices	married	secondary	no	4789	yes	
yes 2	35	ma	anage	ement	single	tertiary	no	1350	yes	
no 3	30	ma	anage	ement	married	tertiary	no	1476	yes	
yes 4	59	blı	ie-co	ollar	married	secondary	no	0	yes	
no 										
4516	33		serv	vices	married	secondary	no	-333	yes	
no 4517	57	self-	-emp	loyed	married	tertiary	yes	-3313	yes	
yes 4518	57	te	echn:	ician	married	secondary	no	295	no	
no 4519	28	B blue-collar		married	secondary	no	1137	no		
no 4520 yes	44	44 entrepreneur		single	tertiary	no	1136	yes		
	CO	ntact	day	month	duration	campaign	pdays pr	evious p	outcome	у
0	cel	lular	19	oct	79	1	-1	0	unknown	no
1	cel	lular	11	may	220	1	339	4	failure	no
2	cel	lular	16	apr	185	1	330	1	failure	no
3	un	known	3	jun	199	4	-1	0	unknown	no
4	un	known	5	may	226	1	-1	0	unknown	no
4516	cel	lular	30	jul	329	5	-1	0	unknown	no
4517	un	known	9	may	153	1	-1	0	unknown	no
4518	cel	lular	19	aug	151	11	-1	0	unknown	no
4519	cel	lular	6	feb	129	4	211	3	other	no

[4521 rows x 17 columns]

Column

```
Converting categorical variables into numerical variables
```

Non-Null Count Dtyne

```
convert_dtype = {"age":int, "balance":int, "day":int, "duration":int,
"campaign":int, "pdays":int, "previous":int}
df1 = df1.astype(convert_dtype)
df1.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4521 entries, 0 to 4520
Data columns (total 17 columns):

#	Cocuiiii	Non-Nuce Counc	Drype
0	age	4521 non-null	int32
1	job	4521 non-null	object
2	marital	4521 non-null	object
3	education	4521 non-null	object
4	default	4521 non-null	object
5	balance	4521 non-null	int32
6	housing	4521 non-null	object
7	loan	4521 non-null	object
8	contact	4521 non-null	object
9	day	4521 non-null	int32
10	month	4521 non-null	object
11	duration	4521 non-null	int32
12	campaign	4521 non-null	int32
13	pdays	4521 non-null	int32
14	previous	4521 non-null	int32
15	poutcome	4521 non-null	object
16	у	4521 non-null	object
_0	j	.seesii iidee	227000

dtypes: int32(7), object(10)
memory usage: 476.9+ KB

memory dauge: 470.51 Ki

df1.head()

`	age	job	marital	education	default	balance	housing	loan
0	30	unemployed	married	primary	no	1787	no	no
1	33	services	married	secondary	no	4789	yes	yes
2	35	management	single	tertiary	no	1350	yes	no
3	30	management	married	tertiary	no	1476	yes	yes

	contact	day	month	duration	campaign	pdays	previous	poutcome
y 0 no	cellular	19	oct	79	1	-1	0	unknown
1	cellular	11	may	220	1	339	4	failure
no 2 no	cellular	16	apr	185	1	330	1	failure
3	unknown	3	jun	199	4	-1	0	unknown
no 4 no	unknown	5	may	226	1	-1	0	unknown

#Disintegrating list of categorical column and numerical column
categorical_cols = [col for col in dfl.columns if dfl[col].dtype ==
"0"]

numerical_cols = [col for col in df1.columns if df1[col].dtype != "0"]

EDA of numerical columns

df1.loc[:,numerical_cols].describe()

	age	balance	day	duration
campaign				
	521.000000	4521.000000	4521.000000	4521.000000
4521.0000				
mean	41.170095	1422.657819	15.915284	263.961292
2.793630				
std	10.576211	3009.638142	8.247667	259.856633
3.109807				
min	19.000000	-3313.000000	1.000000	4.000000
1.000000				
25%	33.000000	69.000000	9.000000	104.000000
1.000000				
50%	39.000000	444.000000	16.000000	185.000000
2.000000				
75%	49.000000	1480.000000	21.000000	329.000000
3.000000				
max	87.000000	71188.000000	31.000000	3025.000000
50.000000)			
	pdays	previous		
count 45	21.000000	•		
mean	39.766645	0.542579		
std 1	100.121124	1.693562		
	-1.000000	0.000000		
25%	-1.000000	0.000000		
50%	-1.000000	0.000000		
75% 3.0000000 max 50.0000000 count 45 mean std 1 min 25%	pdays 521.000000 39.766645 100.121124 -1.000000 -1.000000	71188.000000 previous 4521.000000 0.542579 1.693562 0.000000 0.000000		

```
75%
            -1.000000
                              0.000000
          871.000000
                             25.000000
max
# Value distribution in numeric column
for col in numerical cols:
     plt.figure(figsize=(15,5))
     right = plt.subplot(1,2,1)
     plt.hist(df1[col])
     right.set_ylabel("Frequency")
     right.set_xlabel(col)
     right.set title(f"Distribution of {col}")
     left = plt.subplot(1,2,2)
     plt.scatter(df1["y"],df1[col])
     left.set_ylabel(col)
     left.set xlabel("y")
     left.set title(f"Distribution of {col} with y")
     plt.show()
                   Distribution of age
                                                            Distribution of age with y
   1200
                                                80
   1000
                                                70
                                                60
                                              9g 20
    600
                                                40
    400
                                                30
    200
                                                20
             30
                  40
                       50
                           60
                  Distribution of balance
                                                           Distribution of balance with y
                                              70000
    4000
                                              60000
    3500
    3000
                                              50000
  ਨੂ 2500
                                              40000
  2000
                                             <u>B</u> 30000
   1500
                                              20000
                                              10000
    500
            10000
                 20000
                     30000 40000
                              50000 60000
                                       70000
```


#Categorical column-Unique value count

```
for col in categorical_cols:
    uni_values = df1[col].value_counts()
    plt.figure(figsize=(15, 4))
    plt.barh(uni_values.index , uni_values, height=0.4)
    plt.title(f"Total {col} values")
    plt.show()
```



```
Total y values
  yes
  no
                  1000
                         1500
                                 2000
                                         2500
                                                3000
# Convert y (target value) to numeric - as one hot encoding can't be
used
df1["v"] = df1["v"].map(lambda x: 1 if x=="ves" else 0)
# Day and Month columns combined to show day of the year as both
represent last contact
# Previous month days combined together with current month as we are
combining days with month
months = {"jan":0, "feb":31, "mar":59, "apr":90, "may":120, "jun":151,
"jul":181, "aug":212, "sep":243, "oct":273, "nov":304, "dec":334}
df1["month"] = df1["month"].map(lambda x: months[x])
df1["day of year"] = df1["day"] + df1["month"]
df1.drop(["month","day"], axis=1, inplace=True)
# Converting the duration column from second to minutes
df1["duration"] = df1["duration"] / 60
# Change the order of columns
df1 = df1.iloc[:,[0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,14]]
df1.head()
   age
                iob
                      marital
                               education default
                                                   balance housing loan
0
    30
         unemployed
                      married
                                 primary
                                               no
                                                      1787
                                                                 no
                                                                      no
1
    33
           services
                      married
                               secondary
                                                      4789
                                               no
                                                                yes
                                                                     yes
2
    35
         management
                       single
                                tertiary
                                                      1350
                                               no
                                                                yes
                                                                      no
3
    30
         management
                      married
                                tertiary
                                                      1476
                                               no
                                                                yes
                                                                     yes
4
        blue-collar
    59
                      married
                               secondary
                                                         0
                                               no
                                                                ves
                                                                      no
    contact
             duration campaign pdays previous poutcome
                                                             day of year
0
   cellular
             1.316667
                               1
                                                    unknown
                                                                      292
                                     - 1
0
1
   cellular 3.666667
                               1
                                    339
                                                    failure
                                                                      131
```

У

```
2
   cellular 3.083333
                                   330
                                               1 failure
                                                                   106
                              1
0
3
    unknown 3.316667
                              4
                                    - 1
                                               0 unknown
                                                                   154
0
4
    unknown 3.766667
                              1
                                    -1
                                               0 unknown
                                                                   125
0
#!pip install category encoders
Requirement already satisfied: category encoders in c:\users\hp\
anaconda3\lib\site-packages (2.6.0)
Requirement already satisfied: pandas>=1.0.5 in c:\users\hp\anaconda3\
lib\site-packages (from category encoders) (1.3.4)
Requirement already satisfied: patsy>=0.5.1 in c:\users\hp\anaconda3\
lib\site-packages (from category encoders) (0.5.2)
Requirement already satisfied: numpy>=1.14.0 in c:\users\hp\anaconda3\
lib\site-packages (from category encoders) (1.20.3)
Reguirement already satisfied: scipy>=1.0.0 in c:\users\hp\anaconda3\
lib\site-packages (from category encoders) (1.7.1)
Requirement already satisfied: statsmodels>=0.9.0 in c:\users\hp\
anaconda3\lib\site-packages (from category encoders) (0.12.2)
Requirement already satisfied: scikit-learn>=0.20.0 in c:\users\hp\
anaconda3\lib\site-packages (from category_encoders) (0.24.2)
Requirement already satisfied: pytz>=2017.3 in c:\users\hp\anaconda3\
lib\site-packages (from pandas>=1.0.5->category encoders) (2021.3)
Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\hp\
anaconda3\lib\site-packages (from pandas>=1.0.5->category encoders)
(2.8.2)
Requirement already satisfied: six in c:\users\hp\anaconda3\lib\site-
packages (from patsy>=0.5.1->category encoders) (1.16.0)
Requirement already satisfied: joblib>=0.11 in c:\users\hp\anaconda3\
lib\site-packages (from scikit-learn>=0.20.0->category encoders)
(1.1.0)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\hp\
anaconda3\lib\site-packages (from scikit-learn>=0.20.0-
>category encoders) (2.2.0)
# We will use count encoder to transform the categorical variable into
frequency of subcategory
from category encoders.count import CountEncoder
categorical cols.remove("month")
categorical cols.remove("y")
col_to_transform = [col for col in categorical cols if col !=
"day_of_year" and col != "y"]
CEnc = CountEncoder(cols=col to transform, normalize=True)
trans_data = CEnc.fit_transform(X=df1)
```

trans_data

haaia	age		job	mar	ital	educ	ation	def	ault	baland	ce	
housin 0	30 \	0.028	8312	0.61	8668	0.1	49967	0.9	8319	178	37	0.433975
1	33	0.092	2236	0.61	8668	0.5	10064	0.9	8319	478	39	0.566025
2	35	0.21	4333	0.26	4543	0.2	98607	0.9	8319	135	50	0.566025
3	30	0.21	4333	0.61	8668	0.2	98607	0.9	8319	147	76	0.566025
4	59	0.20	9246	0.61	8668	0.5	10064	0.9	8319		0	0.566025
4516	33	0.092	2236	0.61	8668	0.5	10064	0.9	8319	- 33	33	0.566025
4517	57	0.040	9478	0.61	8668	0.2	98607	0.0	1681	-331	L3	0.566025
4518	57	0.169	9874	0.61	8668	0.5	10064	0.9	8319	29	95	0.433975
4519	28	0.20	9246	0.61	8668	0.5	10064	0.9	8319	113	37	0.433975
4520	44	0.03	7160	0.26	4543	0.2	98607	0.9	8319	113	36	0.566025
noutco		loan	con	tact	dura	tion	campa	ign	pdays	s prev	/io	us
poutco 0 0.8195	0.84	-	0.64	9566	1.31	6667		1	- 1	-		0
	0.15	2842	0.64	9566	3.66	6667		1	339)		4
	0.84	7158	0.64	9566	3.08	3333		1	330)		1
3 0.8195	0.15	2842	0.29	2856	3.31	6667		4	- 1	-		0
	0.84	7158	0.29	2856	3.76	6667		1	- 1	-		0
4516 0.8195		7158	0.64	9566	5.48	3333		5	- 1	-		0
4517 0.8195	0.15	2842	0.29	2856	2.55	0000		1	- 1	-		0
	0.84	7158	0.64	9566	2.51	6667		11	- 1	<u>-</u>		0
4519		7158	0.64	9566	2.15	0000		4	211	_		3

```
0.043574
4520 0.152842 0.640566 5.750000
                                            2
                                                  249
                                                              7
0.043574
      day_of_year
                   У
0
                   0
              292
1
              131
                   0
2
              106
                   0
3
              154
                   0
4
              125
                   0
4516
              211
                   0
4517
              129
                   0
4518
              231
                   0
4519
               37
                   0
4520
               93
                   0
[4521 rows x 16 columns]
Train test split
from sklearn.model selection import train test split
X train, X test, Y train, Y test =
train test split(trans data.iloc[:,:-1], trans data.iloc[:,-1],
                                                      test size=0.2,
stratify=trans data.iloc[:,-1])
Fine tuning the model by different parameters or technique to
improve performance
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification report
RF = RandomForestClassifier()
RF.fit(X_train, Y_train)
res = RF.predict(\overline{X} test)
print(classification report(Y test, res))
              precision
                            recall f1-score
                                                support
           0
                              0.96
                                        0.94
                   0.91
                                                    801
                              0.29
                   0.49
           1
                                        0.36
                                                    104
                                        0.88
                                                    905
    accuracy
                   0.70
                              0.62
                                        0.65
                                                    905
   macro avg
```

0.87

905

0.88

weighted avg

0.86

Feature Engineering

```
plt.figure(figsize=(15,5))
plt.bar(X_train.columns, RF.feature_importances_)
plt.title("Feature Importance of columns")
```

Text(0.5, 1.0, 'Feature Importance of columns')

X_train.drop(["default"], axis=1, inplace=True)
X_train.head()

,	age	job	marital	education	balance	housing	loan
\ 786	51	0.214333	0.116788	0.298607	0	0.433975	0.847158
1753	56	0.092236	0.618668	0.510064	83	0.433975	0.847158
1695	43	0.105729	0.618668	0.510064	132	0.433975	0.847158
2367	40	0.214333	0.264543	0.041363	838	0.566025	0.847158
200	34	0.169874	0.264543	0.298607	992	0.566025	0.847158

	contact	duration	campaign	pdays	previous	poutcome
day_o	f_year					
786	0.640566	1.000000	2	-1	0	0.819509
225						
1753	0.640566	0.433333	11	-1	0	0.819509
239						
1695	0.640566	9.566667	1	84	3	0.028534
231						
2367	0.292856	10.316667	3	-1	0	0.819509
132						
200	0.640566	5.016667	1	88	2	0.028534
124						

```
Random Forest
```

```
from sklearn.model selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification report
RFC = RandomForestClassifier()
parameters = {"n_estimators":[70,80,90,100,110,120],
              "max_depth":[4,5,6,7]}
GB RF = GridSearchCV(estimator=RFC, param grid=parameters)
GB RF.fit(X train, Y train)
print(f"Best Score for Random forest is {GB_RF.best score }")
Best Score for Random forest is 0.9026581233809404
# Model Evaluation
X_test.drop(["default"], axis=1, inplace=True)
ypred RF = GB RF.predict(X test)
print(f"Classification Report of Random forest \
n{classification report(Y test, ypred RF)}")
Classification Report of Random forest
              precision
                        recall f1-score
                                              support
           0
                   0.90
                             0.98
                                       0.94
                                                  801
                   0.51
                             0.19
                                       0.28
           1
                                                   104
                                       0.89
                                                  905
    accuracy
                   0.71
                             0.58
                                       0.61
                                                  905
   macro avg
                   0.86
weighted avg
                             0.89
                                       0.86
                                                  905
import sklearn.metrics as metrics
from sklearn.metrics import classification report, confusion matrix,
ConfusionMatrixDisplay
# AUC ROC - DT
# calculate the fpr and tpr for all thresholds of the classification
fpr, tpr, threshold = metrics.roc curve(Y_test, ypred_RF)
roc auc = metrics.auc(fpr, tpr)
plt.title('ROC - DT')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```

```
# AUC ROC - RF
# calculate the fpr and tpr for all thresholds of the classification
fpr, tpr, threshold = metrics.roc_curve(Y_test, ypred_RF)
roc_auc = metrics.auc(fpr, tpr)
plt.title('ROC - RF')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


Gradient Boosting

```
from sklearn.ensemble import AdaBoostClassifier,
GradientBoostingClassifier
parameters = {"n_estimators":[70,80,90,100,110,120],
              "learning rate": [0.05,0.07,0.1,0.13,0.15,0.2],
              "max dept\overline{h}":[4,5,6,7]}
GBC = GradientBoostingClassifier()
Grid GB = GridSearchCV(estimator=GBC, param grid=parameters, cv=4)
Grid GB.fit(X train, Y train)
print(f"Best Score for Random forest is {Grid GB.best score }")
Best Score for Random forest is 0.9065265486725664
ypred GB = Grid GB.predict(X test)
print(f"Classification Report of Gradient Boosting Classifier \n\
n{classification report(Y test, ypred GB)}")
Classification Report of Gradient Boosting Classifier
              precision
                            recall
                                   f1-score
                                               support
                   0.92
                              0.95
                                        0.93
                                                   801
           0
```

```
1
                   0.47
                             0.34
                                       0.39
                                                   104
                                        0.88
                                                   905
    accuracy
                                        0.66
                                                   905
                   0.69
                             0.64
   macro avq
weighted avg
                   0.87
                             0.88
                                       0.87
                                                   905
# AUC ROC - DT
# calculate the fpr and tpr for all thresholds of the classification
fpr, tpr, threshold = metrics.roc curve(Y test,ypred GB)
roc auc = metrics.auc(fpr, tpr)
plt.title('ROC - DT')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
# AUC ROC - RF
# calculate the fpr and tpr for all thresholds of the classification
fpr, tpr, threshold = metrics.roc curve(Y test, ypred GB)
roc auc = metrics.auc(fpr, tpr)
plt.title('ROC - RF')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


Logistic Regression from sklearn.linear_model import LogisticRegression LR = LogisticRegression()

```
LR.fit(X train, Y train)
ypred LR = LR.predict(X test)
print(f"Classification Report of Logistic Regression Classifier \n\
n{classification report(Y test, ypred LR)}")
Classification Report of Logistic Regression Classifier
              precision
                           recall f1-score
                                              support
           0
                   0.90
                             0.97
                                       0.94
                                                   801
           1
                   0.45
                             0.16
                                       0.24
                                                   104
                                       0.88
                                                  905
    accuracy
                                       0.59
                                                  905
   macro avq
                   0.67
                             0.57
weighted avg
                   0.85
                             0.88
                                       0.86
                                                   905
C:\Users\hp\anaconda3\lib\site-packages\sklearn\linear model\
logistic.py:763: ConvergenceWarning: lbfgs failed to converge
(status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as
shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear model.html#logistic-
regression
  n iter i = check optimize result(
# AUC ROC - DT
# calculate the fpr and tpr for all thresholds of the classification
fpr, tpr, threshold = metrics.roc curve(Y test, ypred LR)
roc auc = metrics.auc(fpr, tpr)
plt.title('ROC - DT')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
# AUC ROC - RF
# calculate the fpr and tpr for all thresholds of the classification
fpr, tpr, threshold = metrics.roc curve(Y test, ypred LR)
roc auc = metrics.auc(fpr, tpr)
plt.title('ROC - RF')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc auc)
```

```
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


Limitation -

1.Logistic regression is cannot be used with continous value 2.Gradient boost is prone to over fitting 3.Large number of trees can make the algorithm too slow.

Future work-

- 1. Logistic regression is best used for prediction and classification problem
- 2. Gradient boost is used in classification and regression task
- 3. Random forest is used to solve regression and classification problem.