Nam	e: Huiyu H	u						
7.2								
	Ho:	λ = 0.	045	VS.	Ha:	λ > 0.00	15	
①	One S		Log -	Rant				
***	{r}							
help	p("alloauto")	ata from section						
delf	ta <- alloauto\$6	delta[alloauto\$f						
sur	vdiff(Surv(time	var, delta) ~ of) #Expected survi ffset(null_surv))	vai probabilit	cy			
***	(timevar, delta	, nutr_surv)						
Sui			delta) ~ offset(null_surv))				
28		1.6782 0.09		1	1	1	1 1	_
	Therefore,	M ₃ =	2.816	, 7	Z = 1.67	8		
	_		two sided :					
			rt reject		Je candud	o that J	= 0.045	
<u> </u>			_					
<u>2</u>)			function			nt to d	epartures	early
	in time	trom	this haz	eard nate	2.)			
•	lke	Fleming	& Harr	ing ton	(1 <i>9</i> 81)			
su	`{r} rvdiff(Surv(timevar, del	ta) ~ offset(n	ull_surv),	rho=2) # rho	=2 should we	ght earlier	heavier
c	all:							
		ula = Surv(ti	imevar, delta)	~ offset(n	null_surv),			
0		cted 2						
	. The t	= امیلم	0.4 > 0	.5 / Tu	hahia or	ر ماهاده		
			ant reject			•) = 0.04vi	-]
	•		- Peto					
	C IT IS	ing pecc	7 pe 10	, (12	I KSMLL	NUS TY L	crunged	
			reject				9	

```
7.3
          a). Ho: ho(x) = h, (x) (0: Routine bath; 1: Body cleaning)
                      Ha: ho(x) + h (x)
                   ```{r}
 data(burn)
 help(burn)
 survdiff(Surv(T3,D3)~Z1,data=burn)
 survdiff(formula = Surv(T3, D3) ~ Z1, data = burn)
 N Observed Expected (0-E)^2/E (0-E)^2/V
 Z1=0 70
 28 21.4
 2.07
 3.79
 Z1=1 84
 20
 26.6
 1.66
 3.79
 Chisq= 3.8 on 1 degrees of freedom, p= 0.0515
 \chi^2 = 3.8 with df = 1 , P-value = 0.0515 > 0.05
 Therefore, we don't have enough evidence to reject the
 we conclude that ho(x)=h(x), which means there's
 no difference.
 b) + c): Gehards test & Tarone & Ware weights
 library(survMisc)
 fit <- ten(Surv(T3,D3)~Z1,data=burn)
 comp(fit)
 -6.6433e+00 1.1695e+01 -1.9426 0.052066
 -6.9100e+02 1.6781e+05 -1.6868 0.091642 .
 -6.4099e+01 1.3122e+03 -1.7695 0.076811 .
 sgrtN
 -5.2057e+00 7.9984e+00 -1.8407 0.065667 .
 S2 -5.1121e+00 7.8261e+00 -1.8274 0.067643 .
FH_p=1_q=1 -9.4385e-01 2.3082e-01 -1.9646 0.049463 *
 6.6433e+00 1.1695e+01 1.9426 0.104132
 7.8300e+02 1.6781e+05 1.9114 0.111911
 sartN
 6.9566e+01 1.3122e+03 1.9204 0.109615
 5.2203e+00 7.9984e+00 1.8458 0.129829
 S2 5.1791e+00 7.8261e+00 1.8513 0.128245
FH_p=1_q=1 9.4385e-01 2.3082e-01 1.9646 0.098925 .
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 * From top to bottom we have the test statistics, Q, and the p-values, pNorm for the log-rank, Gehan-Breslow, Tarone-Ware, Peto-Peto, modified Peto-Peto, and Fleming-Harrington weights.
 · Gehan's test: 2 = -1.68 , P-value = 0.09 > 0.05. Fail to reject.
 Therefore, there's no difference between two treatment.
 Tarone & Wave Weights: Z=-1.77, pablue=0.076>0.05.
 Fail to reject. There's no difference between two treatment.
```

```
7.4
 1: Aneuploid tumor; 2: Diploid tumor.
 H_0: h_1(t) = h_1(t)
 a)
 Ha: hi(t) # hz(t)
     ```{r}
     data(tongue)
     help(tongue)
     survdiff(formula = Surv(time, delta) ~ type, data = tongue)
      survdiff(formula = Surv(time, delta) ~ type, data = tongue)
            N Observed Expected (0-E)^2/E (0-E)^2/V
      type=1 52 31 36.6 0.843
                                            2.79
      type=2 28
                           16.4
                                   1.873
                                             2.79
      Chisq= 2.8 on 1 degrees of freedom, p= 0.0949
     \chi^2 = 2.8 , P-value = 0.0949 > 0.05. Fail to reject Ho.
      Therefore, the survival rootes of patients with cancer of the tongue
       are the same for patients with aneuploid & diploid tumors.
      We need a weight method that gives a heavier weight on earlier
       time, so the Peto & Peto test.
     survdiff(formula = Surv(time, delta) ~ type, data = tongue, rho = 1)
     # rho = 1 it is equivalent to the Peto & Peto modification of the Gehan-Wilcoxon test.
      survdiff(formula = Surv(time, delta) ~ type, data = tongue, rho = 1)
            N Observed Expected (0-E)^2/E (0-E)^2/V
      type=1 52 20.2 24.4 0.731 3.3
               15.1
                      10.9
                              1.643
      type=2 28
      Chisq= 3.3 on 1 degrees of freedom, p= 0.0694
   · The p-value = 0.0694 > 9.05 , so still fail to reject Ho
      Therefore, the survival rates of patients with cancer of the tonque
      are the same for patients with aneuploid & diploid tumors.
```