Worksheet #1; date: 01/18/2018 MATH 53 Multivariable Calculus

1. $(Stewart\ 10.1.5)$ Sketch the curve; indicate with an arrow the direction in which t increases; eliminate the parameter to find a Cartesian equation of the curve:

x = 2t - 1; $y = \frac{1}{2}t + 1.$

2. (Stewart 10.1.9) Sketch the curve; indicate with an arrow the direction in which t increases; eliminate the parameter to find a Cartesian equation of the curve:

 $x = \sqrt{t}; \quad y = 1 - t.$

3. (Stewart 10.1.11) Sketch the curve; indicate with an arrow the direction in which t increases; eliminate the parameter to find a Cartesian equation of the curve:

 $x = \sin \frac{1}{2}\theta; \quad y = \cos \frac{1}{2}\theta; \quad -\pi \le \theta \le \pi.$

4. (Stewart 10.1.21) Describe the motion of a particle with position (x, y) as t varies in the given interval.

 $x = 5\sin t;$ $y = 2\cos t.$

- 5. (Stewart 10.1.37) Compare the curves represented by the parametric equations. How do they differ?
 - (a) $x = t^3; \quad y = t^2;$
 - (b) $x = t^6; \quad y = t^4;$
 - (c) $x = e^{-3t}$; $y = e^{-2t}$.