

Vectorization

Silvio Stanzani, Raphael Cóbe, Rogério Iope
UNESP - Núcleo de Computação Científica
silvio@ncc.unesp.br, rmcobe@ncc.unesp.br, rogerio@ncc.unesp.br

Agenda

- Vector Processing Units;
- Profiling;
- Optimizing Memory Access;
- Auto Vectorization;
- Guided Vectorization.

Agenda

- Vector Processing Units;
- Profiling;
- Optimizing Memory Access;
- Auto Vectorization;
- Guided Vectorization.

Past, present, and future of Intel SIMD types

Intel® AVX2/IMCI/AVX-512 differences

	Intel® Initial Many Core Instructions IMCI	Intel® Advanced Vector Extensions 2 AVX2	Intel® Advanced Vector Extensions 512 AVX-512
Introduction	2012	2013	2015
Products	Knights Corner	Haswell, Broadwell	Knights Landing, future Intel® Xeon® and Xeon® Phi™ products
Register file	SP/DP/int32/int64 data types 32 x 512-bit SIMD registers 8 x 16-bit mask registers	SP/DP/int32/int64 data types 16 x 256-bit SIMD registers No mask registers (instr. blending)	SP/DP/int32/int64 data types 32 x 512-bit SIMD registers 8 x (up to) 64-bit mask
ISA features	Not compatible with AVX*/SSE* No unaligned data support Embedded broadcast/cvt/swizzle MVEX encoding	Fully compatible with AVX/SSE* Unaligned data support (penalty) VEX encoding	Fully compatible with AVX*/SSE* Unaligned data support (penalty) Embedded broadcast/rounding EVEX encoding
Instruction features	Fused multiply-and-add (FMA) Partial gather/scatter Transcendental support	Fused multiply-and-add (FMA) Full gather	Fused multiply-and-add (FMA) Full gather/scatter Transcendental support (ERI only) Conflict detection instructions PFI/BWI/DQI/VLE (if applies)

Agenda

- Vector Processing Units;
- Profiling;
- Optimizing Memory Access;
- Auto Vectorization;
- Guided Vectorization.

Intel Advisor

- Evaluate multi-threading parallelization
- Intel[®] Advisor XE
 - □ Performance modeling using several frameworks for multi-threading in processors and co-processors:
 - OpenMP, Intel[®] Cilk ™ Plus, Intel[®] Threading Bulding Blocks
 - C, C++, Fortran (OpenMP only) and C# (Microsoft TPL)
 - Identify parallel opportunities
 - Detailed information about vectorization;
 - Check loop dependencies;
 - □ Scalability prediction: amount of threads/performance gains
 - □ Correctness (deadlocks, race conditions)

Intel® Advisor

Intel Advisor

Survey Target;

- Vectorization of loops: detailed information about vectorization;
- Total Time: elapsed time on each loop considering the time involved in internal loops;
- Self Time: elapsed time on each loop not considering the time involved in internal loops;
- Find Trip Counts;
 - Analysis to identify how many time particular loops run;
- Check Dependencies;
 - Analysis it there are many loop-carried dependencies;
- Check Memory Access Patterns.
 - Analysis to identify how your code is iterating with memory.

Advisor – New Project

Advisor - Analysis

Advisor – Survey Target

Advisor – Survey Target

Traits	Data Types	Number of Vector Registers	Vector Widths	Instruction Sets
Extracts; Type Conversions	Float32; Float64; Int32; UIn	15	128/256	AVX; AVX2
Extracts; Inserts; Type Conversions	Float32; Float64	14; 15	128; 256	AVX
Extracts; Inserts; Type Conversions	Float32; Float64; Int32; UIn	16	256	AVX; AVX2

Advanced 🔇					>>
Transformations	Unroll Factor	Vectorization Details	Optimization Details	Location	
	1			vec.c:50	
Fused; Unrolled	4		LOOP WAS DISTRIBUTED, CHUNK 1; LOOP WAS DISTRIBUTED, C	vec.c:63	
				vec.c:55	

Advisor – Memory Access Patterns

Agenda

- Vector Processing Units;
- Profiling;
- Optimizing Memory Access;
- Auto Vectorization;
- Guided Vectorization.

Stride (array elements)

- Stride:
 - Step size between consecutive access of array elements;
- Strided access with stride k means touching every kth memory element
 - Unit Stride:
 □ Sequential access (0, 1, 2, 3, 4, 5, 6, ...)
 Non-unit stride
 □ Constant Stride =
 2 is (0, 2, 4, 6, 8, ...)
 □ k is (0, k, 2k, 3k, 4k, ...)
 □ Random Access;
- Strides > 1 commonly found in multidimensional data
 - Row accesses (stride=N) & diagonal accesses (stride=N+1)
 - Scientific computing (e.g., matrix multiplication)

Padding

- Data structures may have members with different sizes.
- To maintain proper alignment the translator normally inserts additional unnamed data members so that each member is properly aligned.
- Example:

```
struct stu_a {
   int i;
   char c;
};
```

Actual size 4+1 (5)

• After Padding size 4+4 (5)

• ...

Padding

- Vectorization more efficient with unit strides
 - Non-unit strides will generate gather/scatter
 - Unit strides also better for data locality

Demo: padd.c

Icc padd.c –o padd

./padd

Data layout

- AoS vs SoA (Array of Structures vs Structure of Arrays)
 - Layout your data as Structure of Arrays (SoA)

```
// Array of Structures (AoS)
struct coordinate {
    float x, y, z;
} crd[N];
    ...
for (int i = 0; i < N; i++)
    ... = ... f(crd[i].x, crd[i],y, crd[i].z);</pre>
```

Consecutive elements in memory

```
x0 y0 z0 x1 y1 z1 ... x(n-1) y(n-1) z(n-1)
```

```
// Structure of Arrays (SoA)
struct coordinate {
    float x[N], y[N], z[N];
} crd;
...
for (int i = 0; i < N; i++)
... = ... f(crd.x[i], crd.y[i], crd.z[i]);</pre>
```

Consecutive elements in memory

Data Alignment

How to	Syntax	Semantics
	<pre>void* _mm_malloc(int size, int n) void* _mm_free(int size)</pre>	Allocate memory on heap aligned
align data	<pre>int posix_memalign (void **p, size_t n, size_t size)</pre>	to <i>n</i> byte boundary.
	declspec(align(n)) array	Alignment for variable declarations.
tell the compiler	<pre>#pragma vector aligned</pre>	Vectorize assuming all array data accessed are aligned (may cause fault otherwise).
about it	assume_aligned(array, n)	Compiler may assume array is aligned to <i>n</i> byte boundary.

Loop Splitting

Loop Splitting

- Set of techniques to breaking the loop into multiple loops which have the same body, but iterate over different contiguous portions of the index range.
 - Body
 - ☐ Peel Loop: beginning of loop
 - ☐ Remainder Loop: end of loop

Loop Unrolling

Execute a set of iterations as a single iteration;

Vectorization with multi-version loops

Peel loop Alignment purposes Might be vectorized

Main loop
Vectorized
Unrolled by x2 or x4

Remainder loop Remainder iterations Might be vectorized

```
LOOP BEGIN at gas dyn2.f90(2330,26)
<Peeled>
   remark #15389: vectorization support: reference AMAC1U has unaligned
access
   remark #15381: vectorization support: unaligned access used inside loop
bodv
   remark #15301: PEEL LOOP WAS VECTORIZED
LOOP END
LOOP BEGIN at gas dyn2.f90(2330,26)
   remark #25084: Preprocess Loopnests: Moving Out Store
   remark #15388: vectorization support: reference AMAC1U has aligned access
   remark #15399: vectorization support: unroll factor set to 2
   remark #15300: LOOP WAS VECTORIZED
   remark #15475: --- begin vector loop cost summary ---
   remark #15476: scalar loop cost: 8
   remark #15477: vector loop cost: 0.620
   remark #15478: estimated potential speedup: 15.890
   remark #15479: lightweight vector operations: 5
   remark #15488: --- end vector loop cost summary ---
   remark #25018: Total number of lines prefetched=4
   remark #25019: Number of spatial prefetches=4, dist=8
   remark #25021: Number of initial-value prefetches=6
LOOP END
LOOP BEGIN at gas dyn2.f90(2330,26)
<Remainder>
   remark #15388: vectorization support: reference AMAC1U has aligned access
   remark #15388: vectorization support: reference AMAC1U has aligned access
   remark #15301: REMAINDER LOOP WAS VECTORIZED
LOOP END
```

Agenda

- Vector Processing Units;
- Profiling;
- Optimizing Memory Access;
- Auto Vectorization;
- Guided Vectorization.

Vectorization on Intel® compilers

Easy of use

Auto Vectorization

Compiler knobs

Guided Vectorization

- Compiler hints/pragmas
- Array notation
- Elemental Functions

Low level Vectorization

- C/C++ vector classes
- Intrinsics/Assembly

Fine control

Auto vectorization

- Relies on the compiler for vectorization
 - No source code changes
 - Enabled with -vec compiler knob (default in -02 and -03 modes)
- Compiler smart enough to apply loop transformations
 - It will allow to vectorize more loops

Option	Description
-00	Disables all optimizations.
-01	Enables optimizations for speed which are know to not cause code size increase.
-02/-0 (default)	 Enables intra-file interprocedural optimizations for speed, including: Vectorization Loop unrolling
-03	 Performs O2 optimizations and enables more aggressive loop transformations such as: Loop fusion Block unroll-and-jam Collapsing IF statements This option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets. However, it might incur in slower code, numerical stability issues, and compilation time increase.

Vectorization: target architecture options

Option	Description
-mmic	Builds an application that runs natively on Intel® MIC Architecture.
-xfeature -xHost	Tells the compiler which processor features it may target, referring to which instruction sets and optimizations it may generate (not available for Intel® Xeon Phi TM architecture). Values for feature are: • COMMON-AVX512 (includes AVX512 FI and CDI instructions) • MIC-AVX512 (includes AVX512 FI, CDI, PFI, and ERI instructions) • CORE-AVX512 (includes AVX512 FI, CDI, BWI, DQI, and VLE instructions) • CORE-AVX2 • CORE-AVX-I (including RDRND instruction) • AVX • SSE4.2, SSE4.1 • ATOM_SSE4.2, ATOM_SSSE3 (including MOVBE instruction) • SSSE3, SSE3, SSE2 When using -xHost, the compiler will generate instructions for the highest instruction set available on the compilation host processor.
-axfeature	Tells the compiler to generate multiple, feature-specific auto-dispatch code paths for Intel® processors if there is a performance benefit. Values for <i>feature</i> are the same described for <code>-xfeature</code> option. Multiple features/paths possible, e.g.: <code>-axsse2, Avx.</code> It also generates a baseline code path for the default case.

Auto vectorization: not all loops will vectorize

- Data dependencies between iterations
 - Proven Read-after-Write data (i.e., loop carried) dependencies
 - Assumed data dependencies
 - Aggressive optimizations

RaW dependency

```
for (int i = 0; i < N; i++)
a[i] = a[i-1] + b[i];
```

- Vectorization won't be efficient
 - Compiler estimates how better the vectorized version will be
 - Affected by data alignment, data layout, etc.

Inefficient vectorization

```
for (int i = 0; i < N; i++)
    a[c[i]] = b[d[i]];</pre>
```

- Unsupported loop structure
 - While-loop, for-loop with unknown number of iterations
 - Complex loops, unsupported data types, etc.

Function call within loop body

(Some) function calls within loop bodies

```
for (int i = 0; i < N; i++)
    a[i] = foo(b[i]);</pre>
```

Validating vectorization

Generate compiler report about optimizations

```
-qopt-report [=n] Generate report (level [1..6], default 2)
```

```
LOOP BEGIN at gas_dyn2.f90(193,11) inlined into gas_dyn2.f90(4326,31)

remark #15300: LOOP WAS VECTORIZED

remark #15448: unmasked aligned unit stride loads: 1

remark #15450: unmasked unaligned unit stride loads: 1

remark #15475: --- begin vector loop cost summary ---

remark #15476: scalar loop cost: 53

remark #15477: vector loop cost: 14.870

remark #15478: estimated potential speedup: 2.520

remark #15479: lightweight vector operations: 19

remark #15481: heavy-overhead vector operations: 1

remark #15488: --- end vector loop cost summary ---

remark #25456: Number of Array Refs Scalar Replaced In Loop: 1

remark #25015: Estimate of max trip count of loop=4

LOOP END
```

Vectorized loop

```
LOOP BEGIN at gas_dyn2.f90(2346,15)

remark #15344: loop was not vectorized: vector dependence prevents vectorization

remark #15346: vector dependence: assumed OUTPUT dependence between IOLD line 376 and IOLD line 354

remark #25015: Estimate of max trip count of loop=3000001

LOOP END
```

Agenda

- Vector Processing Units;
- Profiling;
- Optimizing Memory Access;
- Auto Vectorization;
- Guided Vectorization.

Intel® compiler directives for vectorization

Directive	Clause	Description
ivdep		Instructs the compiler to ignore assumed vector dependencies.
	always	Force vectorization even when it might be not efficient.
	[un]aligned	Use [un]aligned data movement instructions for all array vector references.
vector	<pre>[non]temporal(var1[,])</pre>	Do or do not generate non-temporal (streaming) stores for the given array variables. On Intel® MIC architecture, generates a cache-line-evict instruction when the store is known to be aligned.
	[no]vecreminder	Do (not) vectorize the remainder loop when the main loop is vectorized.
	[no]mask_readwrite	Enables/disables memory speculation causing the generation of [non-]masked loads and stores within conditions.
	<pre>vectorlength(n1[,]) vectorlengthfor(dtype)</pre>	Assume safe vectorization for the given vector length values or data type.
	<pre>private(var1[,]) firstprivate(var1[,]) lastprivate(var1[,])</pre>	Which variables are private to each iteration; <i>firstprivate</i> , initial value is broadcasted to all private instances; <i>lastprivate</i> , last value is copied out from the last instance.
simd	<pre>linear(var1:step1[,])</pre>	Letting know the compiler that <i>var1</i> is incremented by <i>step1</i> on every iteration of the original loop.
	reduction(oper:var1[,])	Which variables are reduction variables with a given operator.
	[no]assert	Warning or error when vectorization fails.
	[no]vecremainder	Do (not) vectorize the remainder loop when the mail loop is vectorized.

Guided vectorization: disambiguation hints

- Assume function arguments won't be aliased
 - C/C++: Compile with -fargument-noalias
- C99 "restrict" keyword for pointers
 - Compile with -restrict otherwise

Guided vectorization:

- #pragma simd or #pragma ivdep
 - Force loop vectorization ignoring all dependencies
 - □ Additional <u>clauses</u> for specify reductions, etc.

```
void v_add(float *c, float *a, float *b)
{
    #pragma simd
        for (int i = 0; i < N; i++)
            c[i] = a[i] + b[i];
}</pre>
SIMD loop
```

```
__declspec(vector)
void v_add(float c, float a, float b)
{
    c = a + b;
}
...
for (int i = 0; i < N; i++)
    v_add(C[i], A[i], B[i]);
    SIMD function</pre>
```

Matrix Multiplication - Serial

```
void multiply(int msize, int tidx, int numt, TYPE a[][NUM], TYPE
b[][NUM], TYPE c[][NUM], TYPE t[][NUM])
int i,j,k;
   for(i=0; i<msize; i++) {
       for(k=0; k<msize; k++) {
           for(j=0; j<msize; j++) {
              c[i][j] = c[i][j] + a[i][k] * b[k][j];
```

Matrix Multiplication

```
Function Call Sites and Loops
                                                                                                                        Vector Issues
                                                                                                                                                       Self Time▼
                                                                                                                                                                                 Total Time
                                                                                                                                                                                                                                           Why No Vectorization?
                                                                                                                                                                                                            Туре

\[
\sum_{\infty} \square{5} \] [loop in multiply3 at multiply.c:228]
\]

                                                                                                                         2 Assume ...
                                                                                                                                                              0.170s
                                                                                                                                                                                        0.170s Scalar
                                                                                                                                                                                                                                            vector dependence prevents vectorization

☑ U [loop in libc csu init]
                                                                                                                                                                                                            Scalar
                                                                                                                                                              0.000s (
                                                                                                                                                                                        0.000s (
고 🖰 [loop in INTERNAL 16 offload host cpp ad92...
                                                                                                                                                              0.000s (
                                                                                                                                                                                        0.000s[
                                                                                                                                                                                                            Scalar

☑ (5 [loop in func@0x5b810]

                                                                                                                                                              0.000s[
                                                                                                                                                                                        0.000s (
                                                                                                                                                                                                            Scalar
                                                                                                                         💡 2 Data typ..
[Variable of the control of the c
                                                                                                                         2 Data typ..
                                                                                                                                                              0.000s[
                                                                                                                                                                                        0.000s[
                                                                                                                                                                                                            Scalar
                                                                                                                                                                                                                                            inner loop was already vectorized
[Variable] [loop in multiply3 at multiply.c:227]
                                                                                                                                                                                        0.170s Scalar
                                                                                                                                                                                                                                            vector dependence prevents vectorization
                                                                                                                         2 Assume ...
                                                                                                                                                              0.000s[
[Ioop in multiply3 at multiply.c:226]
                                                                                                                         2 Assume ...
                                                                                                                                                             0.000s (
                                                                                                                                                                                        0.170s Scalar
                                                                                                                                                                                                                                            vector dependence prevents vectorization
+ (5 [loop in main at matrix.c:144]
                                                                                                                                                                                        0.000s [ Vectorized (B...
                                                                                                                         1 Data tvp...
                                                                                                                                                              0.000s[
                        Top Down
                                                 Loop Analytics
                                                                                    Loop Assembly
                                                                                                                        Recommendations

    Compiler Diagnostic Details

  Source
File: multiply.c:228 multiply3
  Line
                                                                                                                                                                                                                                                                         Source
218
                   void multiply3(int msize, int tidx, int numt, TYPE a[][NUM], TYPE b[][NUM], TYPE c[][NUM], TYPE t[][NUM])
219
220
221
                  //#pragma omp target device(0) map(a[0:NUM][0:NUM]) \
222
                       //map(b[0:NUM][0:NUM]) map(c[0:NUM][0:NUM])
223
                      //{
224
                            int i.i.k:
225
                                #pragma omp parallel for collapse (2) //num threads(60)
                            for(i=0; i<msize; i++) {
                          [loop in multiply3 at multiply.c:226]
                                    Scalar loop. Not vectorized: vector dependence prevents vectorization
                                    No loop transformations applied
227
                                     for(k=0: k<msize: k++) {
                          \bigcup [loop in multiply3 at multiply.c:227]
                                    Scalar loop. Not vectorized: vector dependence prevents vectorization
                                    Remainder loop
228
                                              for(j=0; j<msize; j++) {
              [loop in multiply3 at multiply.c:228]
                                    Scalar loop. Not vectorized: vector dependence prevents vectorization
                                    Loop was unrolled by 2
                                                        c[i][i] = c[i][i] + a[i][k] * b[k][i];
229
230
231
232
                      //}
233
234
235
```

Matrix Multiplication

 Check dependency analysis shows that it is safe to enforce the vectorization of this loop

Matrix Multiplication - vectorized

```
void multiply(int msize, int tidx, int numt, TYPE a[][NUM], TYPE
b[][NUM], TYPE c[][NUM], TYPE t[][NUM])
int i,j,k;
   for(i=0; i<msize; i++) {
       for(k=0; k<msize; k++) {
            #pragma simd
           for(j=0; j<msize; j++) {
               c[i][j] = c[i][j] + a[i][k] * b[k][j];
```

Matrix Multiplication

Function (Function Call Sites and Loops			Vertex leaves Self Times Tabul Times	_	Why No	Vectorized Loops				
runction Call Sites and Loops		•	b Vector Issues Self Time▼		Total Time Type		Vectorization?	Vec	Efficiency	Gain E.	
+ (5 [loop	in multiply4 at	: multiply.c:245]			0.460s	0.460s	Vectorized (B		AVX2	~100%	4.24×
□ (Toop	in multiply4 at	: multiply.c:243]			0.010s[0.470s	Scalar			_	
□ (loop	o inlibc_csu_ii	nit]			0.000s (0.000s (Scalar				
□ (pook	in_INTERNAL	_16_offload_host_cpp_	ad92		0.000s (0.000s (Scalar				
	o in func@0×5b			💡 3 Data typ.		0.000s (Scalar				
□ (pook	in func@0×54	bf0]		💡 1 System	0.000s (0.000s (Scalar				
Source	Top Down	Loop Analytics L	oop Assembly	Recommend	dations 📮 0	Compiler Diagn	ostic Details				
File: mul	ltiply.c:245 m	nultiply4									
Line								Sou	rce		
230		}	1111 . 0[7][2]	PIKILII.							
231	}	r									
232	} '										
233	//}										
234	}										
235											
236 237	void multip	.y4(int msize, int	tidx, int num	nt, TYPE a[][N	IUM], TYPE 6	[][NUM], TYP	E c[][NUM], T	(PE t[][NUM])			
238		torization with p	raama omp sima	1							
239	//coop vec	.comizacion with p	raqiila Olip Silic	•							
240	int i.j.k:										
241	// #pradma	77 7 6	collapse (2) /	//num threads(60)						
_ :-	// mpragma	omp parallel for (
	for(i=0; :	i <msize; i++)="" td="" {<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></msize;>									
	for(i=0; :	i <msize; i++)="" {<br="">in multiply4 at mu</msize;>	ltiply.c:242]								
	for(i=0; : () [loop Scal	i <msize; i++)="" {<br="">in multiply4 at mu ar loop. Not vecto</msize;>	ltiply.c:242] prized: inner	loop was alre		ted					
242	for(i=0; : () [loop Scal No l	i <msize; i++)="" {<br="">in multiply4 at mu ar loop. Not vecto oop transformation</msize;>	ltiply.c:242] prized: inner	loop was alre		ted					
	for(i=0; : () [loop Scal No l for(k=0;	i <msize; ar="" at="" i++)="" in="" k++)="" k<msize;="" loop.="" mu="" multiply4="" not="" oop="" td="" transformatior="" vecto="" {="" {<=""><td>ltiply.c:242] prized: inner ns applied</td><td>loop was alre</td><td></td><td>zed</td><td></td><td></td><td></td><td></td><td></td></msize;>	ltiply.c:242] prized: inner ns applied	loop was alre		zed					
242	for(i=0; () [loop Scal No l for(k=0;	i <msize; ar="" at="" i++)="" in="" k++)="" k<msize;="" loop.="" mu="" mu<="" multiply4="" not="" oop="" td="" transformatior="" vecto="" {=""><td>ltiply.c:242] prized: inner ns applied</td><td>loop was alre</td><td></td><td>zed</td><td></td><td></td><td></td><td></td><td></td></msize;>	ltiply.c:242] prized: inner ns applied	loop was alre		zed					
242	for(i=0; : () [loop Scal No l for(k=0;	i <msize; ar="" at="" i++)="" in="" k++)="" k<msize;="" loop.="" loop<="" mu="" multiply4="" not="" oop="" td="" transformatiof="" vecto="" {=""><td>ltiply.c:242] prized: inner ns applied ltiply.c:243]</td><td>loop was alre</td><td></td><td>ted</td><td></td><td></td><td></td><td></td><td></td></msize;>	ltiply.c:242] prized: inner ns applied ltiply.c:243]	loop was alre		ted					
242 E	for(i=0; () [loop Scal No l for(k=0; () [loop Scal No l	i <msize; ar="" at="" i++)="" in="" k++)="" k<msize;="" loop.="" mu="" mu<="" multiply4="" not="" oop="" td="" transformatior="" vecto="" {=""><td>ltiply.c:242] prized: inner ns applied ltiply.c:243]</td><td>loop was alre</td><td></td><td>sed</td><td></td><td></td><td></td><td></td><td></td></msize;>	ltiply.c:242] prized: inner ns applied ltiply.c:243]	loop was alre		sed					
242	for(i=0; Cloop Scal No l for(k=0) Cloop Scal No l Forop Scal No l	<pre>i<msize; ar="" at="" i++)="" in="" k++)="" k<msize;="" loop="" loop.="" mu="" multiply4="" na="" not="" omp="" oop="" pre="" simd<="" transformatior="" vecto="" {=""></msize;></pre>	oltiply.c:242] prized: inner ns applied Oltiply.c:243] ns applied	loop was alre		zed					
242 E	for(i=0; : () [loop Scal No l for(k=0; () [loop Scal No l #pragr	<pre>i<msize; ,="" 10;="" ar="" at="" i++)="" in="" j++)="" j<msize;="" k++)="" k<msize;="" loop="" loop.="" mu="" mu<="" multiply4="" na="" not="" omp="" oop="" pre="" simd="" transformatior="" vecto="" {=""></msize;></pre>	oltiply.c:242] prized: inner ns applied Itiply.c:243] ns applied { ltiply.c:245]		ady vectoriz						
242 E	for(i=0; : () [loop Scal No l () [loop Scal No l #pragr for(j= () [loop Vect	<pre>i<msize; 0;="" ar="" at="" avx;="" fma="" i++)="" in="" j++)="" j<msize;="" k++)="" k<msize;="" lo<="" loop="" loop.="" mu="" multiply4="" no="" not="" omp="" oop="" orized="" pre="" simd="" transformation="" vecto="" {=""></msize;></pre>	oltiply.c:242] prized: inner us applied Oltiply.c:243] us applied (Oltiply.c:245] opp processes		ady vectoriz		1				
242 E	for(i=0; Cloop Scal No l for(k=0; Cloop Scal No l #pragr for(j= Cloop Vect Loop	<pre>I<msize; 4<="" ar="" at="" avx;="" by="" cop="" fma="" i++)="" in="" k++)="" k<msize;="" loop="" loop.="" mu="" multiply4="" na="" not="" omp="" oop="" orized="" pre="" simd="" transformation="" unrolled="" vecto="" was="" {=""></msize;></pre>	oltiply.c:242] prized: inner ns applied Oltiply.c:243] ns applied { Oltiply.c:245] pop processes		ady vectoriz		1				
242 E	for(i=0; [loop Scal No l #pragr for(j= [loop Vect Loop	<pre>i<msize; 4="" <="" ar="" at="" avx;="" by="" fma="" i++)="" in="" lo="" loop="" loop.="" mu="" multiply4="" na="" not="" omp="" oop="" ovized="" pre="" simd="" transformation="" unrolled="" vecto="" was="" {=""></msize;></pre>	oltiply.c:242] prized: inner ns applied Oltiply.c:243] ns applied { Oltiply.c:245] processes cltiply.c:245]		ady vectoriz						
242 E	for(i=0; [loop Scal No l for(k=0) Scal No l #praqr for(j= (loop Vect Loop Scal	<pre>i<msize; .="" 4="" [no="" [no<="" ar="" at="" by="" i++)="" in="" io;="" j++)="" j<msize;="" k++)="" k<msize;="" loop="" loop.="" ma="" mu="" multiply4="" not="" omp="" oop="" ow="" peeled="" pre="" simd="" transformation="" unrolled="" vector="" was="" {=""></msize;></pre>	oltiply.c:242] prized: inner ns applied Oltiply.c:243] ns applied ({ Oltiply.c:245] processes t oltiply.c:245] bt executed]		ady vectoriz						
242 E	for(i=0; () [loop Scal No l for(k=0); () [loop Scal No l #pragr for(j= () [loop Vect Loop () [loop Scal	<pre>I<msize; 4="" 4<="" [no="" ar="" at="" avx;="" by="" d="" fma="" i++)="" in="" io;="" j++)="" j<msize;="" k++)="" k<msize;="" lo="" loop="" loop.="" ma="" mu="" multiply4="" not="" omp="" oop="" orized="" peeled="" pre="" simd="" transformation="" unrolled="" vecto="" was="" {=""></msize;></pre>	oltiply.c:242] prized: inner ns applied Oltiply.c:243] ns applied (litiply.c:245] op processes of litiply.c:245] the executed]		ady vectoriz						
242 E	for(i=0; () [loop Scal No l for(k=0); () [loop Scal No l #pragr for(j= () [loop Vect Loop [loop Scal Loop	<pre>I<msize; (no="" 4="" <="" ar="" at="" avx;="" by="" fma="" i++)="" in="" j++)="" j<msize;="" k++)="" k<msize;="" loop="" loop.="" ma="" mu="" multiply4="" not="" omp="" oop="" orized="" peeled="" pre="" simd="" transformation="" unrolled="" vector="" was="" {=""></msize;></pre>	oltiply.c:242] prized: inner ns applied Oltiply.c:243] ns applied { Oltiply.c:245] pop processes thiply.c:245] thiply.c:245] thiply.c:245] thiply.c:245]	Float64 data	ady vectoriz type(s) and	includes FM#		includes FMA			
242 E	for(i=0; [loop Scal No l for(k=0; [loop Scal No l #pragr for(j= [loop Vect Loop [loop Scal Vect Vect	<pre>I<msize; 4="" 4<="" [no="" ar="" at="" avx;="" by="" d="" fma="" i++)="" in="" io;="" j++)="" j<msize;="" k++)="" k<msize;="" lo="" loop="" loop.="" ma="" mu="" multiply4="" not="" omp="" oop="" orized="" peeled="" pre="" simd="" transformation="" unrolled="" vecto="" was="" {=""></msize;></pre>	orized: inner is applied Orized: inner is applied Orized: inner is applied Orized: ins app	Float64 data	ady vectoriz type(s) and	includes FM#		includes FMA			
242 E	for(i=0; Cloop Scal No l For(k=0; Cloop Scal No l For(j=0; Cloop Vect Loop Scal Loop Vect No l	<pre>i<msize; 4="" [not="" ar="" at="" at<="" avx;="" by="" cop="" fma="" i++)="" in="" io;="" j++)="" j<msize;="" k++)="" k<msize;="" loop="" loop.="" mu="" multiply4="" na="" not="" omp="" oop="" orized="" peeled="" simd="" td="" transformation="" unrolled="" vector="" was="" {=""><td>orized: inner os applied Otiply.c:243] os applied (ltiply.c:245] opp processes (ltiply.c:245] ot executed] (ltiply.c:245] ot executed] (ltiply.c:245] omainder loop os applied</td><td>Float64 data</td><td>ady vectoriz type(s) and</td><td>includes FM#</td><td></td><td>includes FMA</td><td></td><td></td><td></td></msize;></pre>	orized: inner os applied Otiply.c:243] os applied (ltiply.c:245] opp processes (ltiply.c:245] ot executed] (ltiply.c:245] ot executed] (ltiply.c:245] omainder loop os applied	Float64 data	ady vectoriz type(s) and	includes FM#		includes FMA			

Example

Particle Binning Problem[1]

- Optimizations:
 - Automatic Vectorization
 - Data Alignment

[1] http://colfaxresearch.com/optimization-techniques-for-the-intel-mic-architecture-part-2-of-3-strip-mining-for-vectorization/

Particle Binning - Serial

```
for (int i = 0; i < inputData.numDataPoints; i++) {
   // Transforming from cylindrical to Cartesian coordinates:
   const FTYPE x = inputData.r[i]*COS(inputData.phi[i]);
   const FTYPE y = inputData.r[i]*SIN(inputData.phi[i]);
   // Calculating the bin numbers for these coordinates:
   const int iX = int((x - xMin)*binsPerUnitX);
   const int iY = int((y - yMin)*binsPerUnitY);
```

Particle Binning - Serial

Particle Binning - Vectorized

```
for (int ii = 0; ii < inputData.numDataPoints; ii += STRIP WIDTH) {
   int iX[STRIP WIDTH];
   int iY[STRIP WIDTH];
   const FTYPE* r = &(inputData.r[ii]);
   const FTYPE* phi = &(inputData.phi[ii]);
   // Vector loop
   for (int c = 0; c < STRIP WIDTH; c++) {
      // Transforming from cylindrical to Cartesian coordinates:
      const FTYPE x = r[c]*COS(phi[c]);
     const FTYPE y = r[c]*SIN(phi[c]);
      // Calculating the bin numbers for these coordinates:
      iX[c] = int((x - xMin)*binsPerUnitX);
      iY[c] = int((y - yMin)*binsPerUnitY);
```

Particle Binning - Vectorized

Function Call Sites and Loops		0.157	T. 17			Vectorized L	oops			Instruction Set Analy				
	Vector Issues	Self Time	Total Time	lype	Why No Vectorization?	Vector ISA	Efficiency	Gain Estimate	VL	Traits	Data	Num.	Advanced L	Location
☑ (5 [loop in main at Binning.cc:68]	② 3 Assumed dependency present	0.880s	0.880s	Scalar	vector dependence pre					FMA; Type Conversi	Float32	7		Binning.cc:68
☑ 💍 [loop in BinParticles_3 at Binning.cc:173]	♀ 1 Potential underutilization of FMA instructions	0.850s	1.420s	Scalar	inner loop was already							9		Binning.cc:173
☑ 💍 [loop in BinParticles_3 at Binning.cc:182]	♀ 1 Data type conversions present	0.570s	0.570s	Vectorized (Body)		AVX2	~100%	17.64×	8	FMA; Type Conversi	Float3	. 9		Binning.cc:182
+ 🖰 [loop in main\$omp\$parallel_for@519 at Binning.cc:520]		0.359s	0.359s	Vectorized+Threaded (Body)		AVX	~100%	9.00x	8	NT-stores	Float32	1		Binning.cc:520
☑ 🖔 [loop in operator new]		0.010s[0.010s[Scalar			10000					0		
☑ [loop in memcmp]		0.010s[0.010s[Scalar								0		
☑ 💍 [loop in main at Binning.cc:591]		0.000s (1.420s	Scalar	exception handling for					Divisions	Float64	8		Binning.cc:591
☑ 🕼 [loop in main at Binning.cc:528]	□ 1 Ineffective peeled/remainder loop(s) present	n/a	n/a	Remainder Completely Un	vectorization possible b								Contains Co	Binning.cc:528

-100/2010	Top Down Loop Analytics Loop Assembly ♀ Recommendations □ Compiler Diagnostic Details			
	ng.cc:68 main			
ine	Source	Total Time %	Loop Time %	Trail
	threadPrivateBins[i][i] = 0;			
) L	// Loop through all bunches of particles			
1	#pragma omp for			
3 ⊕ 4	for (int ii = 0; ii < inputData.numDataPoints; ii += STRIP WIDTH) {	0.050s [4.250s	
5 5 7	int iX[STRIP WIDTH];			
5	int iY[STRIP WIDTH];			
7				
3	<pre>const FTYPE* r = 6(inputData.r[ii]);</pre>	50000000		
9	<pre>const FTYPE* phi = &(inputData.phi[ii]);</pre>	0.010s (
	// Vector loop			
	for (int c = 0; c < STRIP_NIDTH; c++) {			
	♥[loop in BinParticles_3 at Binning.cc:182] Vectorized AVX, FMA loop processes Float32; Int32 data type(s) and includes FMA; Type Conversions			
3	Loop stmts were reordered			
	// Transforming from cylindrical to Cartesian coordinates:			
	<pre>const FTYPE x = r[c]*COS(phi[c]);</pre>	55000000000000000000000000000000000000		
	const FTYPE $y = r[c]*SIN(phi[c]);$	3.040s		

Particle Binning - Data Alignment

```
for (int ii = 0; ii < inputData.numDataPoints; ii += STRIP WIDTH) {
   int iX[STRIP WIDTH] attribute ((aligned(64)));
   int iY[STRIP WIDTH] attribute ((aligned(64)));
   const FTYPE* r = &(inputData.r[ii]);
   const FTYPE* phi = &(inputData.phi[ii]);
   // Vector loop
#pragma vector aligned
   for (int c = 0; c < STRIP WIDTH; c++) {
      // Transforming from cylindrical to Cartesian coordinates:
      const FTYPE x = r[c]*COS(phi[c]);
     const FTYPE y = r[c]*SIN(phi[c]);
      // Calculating the bin numbers for these coordinates:
      iX[c] = int((x - xMin)*binsPerUnitX);
      iY[c] = int((y - yMin)*binsPerUnitY);
```

Particle Binning - Data Alignment

Function Call Sites and Loops		Vector Issues	Self Time▼	Takal Times	Type	Why No Vectorization?	Vectorized Coops (2) Instruction Set Arterysis		Advanced	Location					
		vector issues	Sell Time▼	local time	type	Why No vectorization?	Vector ISA	Efficiency	Gain Estimate	VL	. Traits	Data	Num.	Advanced	Location
(5 [loop in BinParticles_4 at Binning.cc:226]		♀ 1 Potential underutilization of FMA instructions	0.940s	1.470s	Scalar	inner loop was already							9		Binning.cc:22
(5 [loop in main at Binning.cc:68]		3 Assumed dependency present	0.900s	0.900s	Scalar	vector dependence pre					FMA; Type Conve	si Float32	1 7		Binning.cc:68
[5] [loop in BinParticles_4 at Binning.cc:236]		1 Data type conversions present	0.530s	0.530s	Vectorized (Body)		AVX2	~100%	18.50×	8	FMA; Type Conve	si Float3.	9		Binning.cc:23
[5] [loop in main\$omp\$parallel_for@519 at Binning.cc:520]			0.370s	0.370s	Vectorized+Threaded (Body)		AVX	~100%	9.00x	8	NT-stores	Float32	1 1		Binning.cc:52
(5 [loop in memcmp]			0.010s[0.010s[Scalar								0		
(5 [loop in main at Binning.cc:591]			0.000s (1.470s	Scalar	exception handling for					Divisions	Float64	4 8		Binning.cc:59
டு [loop in main at Binning.cc:528]		② 1 Ineffective peeled/remainder loop(s) present	n/a	n/a	Remainder Completely Un	vectorization possible b								Contains Co.	. Binning.cc:52
ource Top Down Loop Analytics Loop Assembly e: Binning, cc: 226 BinParticles_4														-	
e: Binning.cc:226 BinParticles 4															
ine				Source								lotal Time	% L	oop Time %	Traits
2 const FIYPE* phi = &(inputData.phi[ii]	D:			29200000000								0.010s t	-		
3															
4 // Vector loop															
5 #pragma vector aligned	Ca.														
for (int c = 0; c < STRIP_WIDTH; c++) [loop in BinParticles 4 at Binning.cc:														3.250s	
		Int32 data type(s) and includes FMA; Type	Conversion	·e											
No loop transformations applied															
7 // Transforming from cylindrical to Cart	esian o	pordinates:													
<pre>sell const FTYPE x = r[c]*COS(phi[c]);</pre>												0.090s (
9 const FTYPE y = r[c]*SIN(phi[c]);												2.740s	4		
10															
41 // Calculating the bin numbers for these	e coordi	inates:													
<pre>iX[c] = int((x - xMin)*binsPerUnitX);</pre>												0.110s (FMA; Type C
43 iY[c] = int((y - yMin)*binsPerUnitY);												0.310s l			FMA; Type C
14															

for (int c = 0; c < STRIP WIDTH; c++)
 threadPrivateBins[iX[c]][iY[c]]++;</pre>

Diffusion - Serial

Function Call Sites and Loops	• Vector Issues	Self Time	Total Time	Туре	Why No Vectorization?
☑ (5 [loop in diffusion_baseline at diffusion_base.c:103]	💡 1 Potential	0.000s (10.530s	Scalar	outer loop was not auto-vectorized: consider using SIMD
☑ (5 [loop in diffusion_baseline at diffusion_base.c:104]	🔒 1 Potential	0.010s(10.450s	Scalar	uter loop was not auto-vectorized: consider using SIMD
☑ (5 [loop in diffusion_baseline at diffusion_base.c:105]	2 Assume	0.130s[10.370s	Scalar	vector dependence: assumed dependence between lines
+ 🖔 [loop in diffusion_baseline at diffusion_base.c:105]	2 Assume	0.000s (0.080s (Scalar Versions	1 vector dependence: assumed dependence between lines
☑ 🖔 [loop in diffusion_baseline at diffusion_base.c:107]	2 Assume	10.240s	10.240s	Scalar	vector dependence: assumed dependence between lines
+ 🖔 [loop in diffusion_baseline at diffusion_base.c:107]	2 Assume	0.070s (0.070s[Scalar Versions	1 vector dependence: assumed dependence between lines
☑ 🖔 [loop in diffusion_baseline at diffusion_base.c:107]	2 Assume	0.060s (0.060s (Scalar	vector dependence: assumed dependence between lines
Source Top Down Loop Analytics Loop Assembly	Recommendation	s 🗖 Comp	oiler Diagnostic	Details	
	8 Vecommendation	is Corrig	nier Diagnostic	Decails	
File: diffusion_base.c:107 diffusion_baseline					
Line				Source	
diffusion baseline(REAL *f1, REAL *f2, in REAL ce, REAL cw, REAL loo REAL cb, REAL cc, REAL loo int count) { lint i; lint i; lint i; lint i for (i = 0; i < count; ++i) { loo int z = 0; z < nz; z++) { loo int y = 0; y < ny; y++) { loo int x = 0; x < nx; x++) { loo int x = 0; x < nx; x++) { loo in diffusion_baseline at diffuscalar loop. Vector dependence: a No loop transformations applied loop in diffusion_baseline at diffuscalar loop. Vector dependence: a No loop transformations applied loop in diffusion_baseline at diffuscalar loop. Vector dependence: a No loop transformations applied loop in diffusion_baseline at diffuscalar loop. Vector dependence: a No loop transformations applied loop in diffusion_baseline at diffuscalar loop. Vector dependence: a No loop transformations applied loop in diffusion_baseline at diffuscalar loop. Vector dependence: a No loop transformations applied loop in diffusion_baseline at diffuscalar loop. Vector dependence: a No loop transformations applied	usion_base.c:107] ssumed dependence be usion_base.c:107] ssumed dependence be usion_base.c:107] ssumed dependence be usion_base.c:107] ssumed dependence be usion_base.c:107]	etween lines etween lines etween lines	5		

Diffusion - Vectorized

Potential inefficient memory access;

Diffusion - alignment

Interpolation

```
declspec(vector)
int FindPosition(double x) {
  return (int)(log(exp(x*steps)));
  declspec(vector)
double Interpolate(double x, const point*
vals)
  int ind = FindPosition(x);
  return res;
```

```
int main ( int argc , char argv [] )
{
    ...
    for ( i=0; i <ARRAY_SIZE;++ i ) {
        dst[i] = Interpolate( src[i], vals );
    }
    ...
}</pre>
```

George M. Raskulinec, Evgeny Fiksman "Chapter 22 - SIMD functions via OpenMP", In High Performance Parallelism Pearls, edited by James Reinders and Jim Jeffers, Morgan Kaufmann, Boston, 2015, Pages 171-190, ISBN 9780128038192

Vectorization report - Interpolate

```
Begin optimization report for: Interpolate.. simdsimd3 H2n v1 s1.P(double, const point *)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [ main.c(74,48) ]
Begin optimization report for: Interpolate.._simdsimd3__H2m_v1_s1.P(double, const point *)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [ main.c(74,48) ]
Begin optimization report for: Interpolate.. simdsimd3 L4n v1 s1.V(double, const point *)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(74,48)]
remark #15415: vectorization support: gather was generated for the variable pnt: indirect access, 64bit indexed [main.c(78,26)]
remark #15415: vectorization support: gather was generated for the variable pnt: indirect access, 64bit indexed [main.c(78,36)]
Begin optimization report for: Interpolate.. simdsimd3 L4m v1 s1.V(double, const point *)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(74,48)]
remark #15415: vectorization support: gather was generated for the variable pnt: masked, indirect access, 64bit indexed [main.c(78,26)]
remark #15415: vectorization support: gather was generated for the variable pnt: masked, indirect access, 64bit indexed [main.c(78,36)]
```

Vectorization report - FindPosition

```
egin optimization report for: FindPosition.. simdsimd3 H2n v1.P(double)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(70,28)]
Begin optimization report for: FindPosition.._simdsimd3__H2m_v1.P(double)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(70,28)]
Begin optimization report for: FindPosition.._simdsimd3__L4n_v1.V(double)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(70,28)]
Begin optimization report for: FindPosition.. simdsimd3 L4m v1.V(double)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(70,28)]
```

Lattice Boltzmann

	-41	A 1,		Self Time	T-4-1 T	T	Why No	Vecto	Vectorized Loops					
Function Call Sites ar	nd Loops.	• Vecto	or Issues	Self Time	Total Time	Type	Vectorization?	Vec	Efficiency	Gai	VL			
☑ 🖔 [loop in fCalcInt	eraction_ShanChen_Boundary at lbpFORCE.c	· 2/	Assume	0.130s[0.210s[Scalar	vector depende							
🗵 🍊 [loop in fCalcInt	eraction_ShanChen_Boundary at lbpFORCE.c	· 2/	Assume	0.080s (0.080s (Scalar	vector depende							
🗵 🍊 [loop in fCalcPo	tential_ShanChen at lbpF0RCE.cpp:36]			0.000s (5.742s	Scalar	loop control vari							
	tential_ShanChen at lbpF0RCE.cpp:49]	₽ 1 F	Potential	0.000s (5.742s	Threaded (OpenMP)	ded (OpenMP) 📮 inner loop was al							
	nBGK\$omp\$parallel@338 at lbpBGK.cpp:351]	₽ 11	Ineffecti	0.160s (0.160s(Vectorized (Remainder)		AVX2	~67%	2.69×				
	quilibriumF at lbpSUB.cpp:615]		Data t		3.910s	Vectorized (Body;		AVX.	~91%	3.6				
	EquilibriumF at lbpSUB.cpp:615]		Data typ		3.120s	Vectorized (Body)		AVX2			4			
□ 🖰 [loop in fGet	EquilibriumF at lbpSUB.cpp:6151	□ 10	Data tvp	0.790s l	0.790s ſ	Remainder				_	_			
			50											
Source Top Dov	vn Loop Analytics Loop Assembly 🂡 R	ecommendatio	ons 📮 C	Compiler Diagr	nostic Details									
File: lbpSUB.cpp:6	15 fGetEquilibriumF													
Line	ne Source													
001 002														
603														
504 int fGetE	EquilibriumF(double *feq, double *v, do	uble rho)												
505 {														
506														
	ulate equilibrium distribution function / suitable for square lattices. not sui													
008 // ont/	/ sultable for square lattices, not sul	table for ind	compress:	ible fluid										
	modv = v[0]*v[0] + v[1]*v[1] + v[2]*v[1]	21.												
511 double		-1.												
512														
	agma loop count(20)													
	r(int i=0; i <lbsy.nq +1;="" i++)<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lbsy.nq>													
	int i=0; i <lbsy.nq; i++)<br="">op in fGetEquilibriumF at lbpSUB.cpp:61</lbsy.nq;>	<u>-1</u>												
	op in foetEquilibriumF at lopsob.cpp:61 calar loop. Not vectorized: vector depe		onte vest	onization										
	o loop transformations applied	endence preve	encs vecc	.0112401011										
	op in fGetEquilibriumF at lbpSUB.cpp:61	.51												
	ectorized AVX; FMA loop processes Float		JInt32 da	ata type(s)	and include	s FMA; Type Conversion	ns; Unpacks							
	o loop transformations applied													
	op_in fGetEquilibriumF at lbpSUB.cpp:61	.5]												
	calar remainder loop													
N	o loop transformations applied													

Lattice Boltzmann

Questions?

Silvio Stanzani, Raphael Cóbe, Rogério Iope Núcleo de Computação Científica – UNESP

silvio@ncc.unesp.br
rmcobe@ncc.unesp.br
rogerio@ncc.unesp.br