Assignment Lecture 7: Resolution

https://tutorcs.com

Propositional resolution

Tableau proofs \leftrightarrow DNF

Resolution proofs \leftrightarrow CNF Project Example on the disjunction of its branches

Trees are not convenient for resolution: We use the standard representation (DSI., LULGO liquidation of the line.

Resolution expansion

In each step, select a disjunction and a non-literal formula ${\it N}$ in it.

If $N=\neg\top$, then append a new disjunction where N is replaced by \square . If $N=\neg Z$, then append a new disjunction where N is replaced by Z. If N is an α -formula, then append two new disjunctions, one in which N is replaced by α_1 , and one in which it is replaced by α_2 (α -expansion). If N is a β -formula, then append a new disjunction where N is replaced by β_1,β_2 (β -expansion).

Resolution
$$\frac{1}{T}$$
 $\frac{1}{T}$ $\frac{1}{Z}$ $\frac{1}{Z}$ $\frac{1}{\beta_1}$ $\frac{1}{\alpha_1 \mid \alpha_2}$ $\frac{1}{\alpha_1 \mid \alpha_2}$

```
1. [p \downarrow (q \land r)]
```

Assignment Project Exam Help

https://tutorcs.com

Strict resolution

A sequence of resolution expansion applications is **strict**, if every disjunction has at most one resolution expansion rule applied to it.

Assignment Project Exam Help

As with tableau, strict version suits itself for implementation: Remove formula from list after applying an expansion rule to it.

With thin temperature of the conjunctive normal form expansion

Resolution rule

For resolution, we need yet another rule of a different nature, the **resolution rule**.

Aussignmento distribute of the following:

- delete all occurences of X from D_1
- · deletations of the deletations of the deletations of the deletations of the deletation of the deleta
- combine the resulting disjunctions

Special case: If a disjunction contains \bot , delete all occurences of \bot , and call the rewrite lisin that the contains \bot

Resolution rule

D is the result of resolving D_1 and D_2 on X. D is the resolvent of D_1 and D_2 , and X is the formula being resolved on. If X is atomic, then this Assignment Project Exam Help

- 1. $[p, q \rightarrow r]$ 1. $[a \land b]$ 1. $[p, q \uparrow r, \bot]$ 2. $[a \land p]$ 1. $[b, q \uparrow r, \bot]$

Justification of the resolution rule:

Resolution proof

A resolution expansion is **closed**, if it contains the empty clause [].

A resolution proof for X is a closed resolution expansion for THelp

https://tutorcs.com

```
Resolution proof for ((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))):
```

 $\overset{1.}{\underset{s}{\text{--}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{---}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}} \overset{[\neg(((p \land q) \lor (r \to s)) \to ((p \lor (r \to s)) \land (q \lor (r \to s))))]}{\underset{s}{\text{----}}}$

- 4. $[p \land q, r \rightarrow s]$
- 5. $[\neg(p\lor(r\to s)),\neg(q\lor(r\to s))]$
- 6. [p,r] ttps://tutorcs.com
- 8. $[\neg p, \neg (q \lor (r \xrightarrow{\bullet} s))]$
- 9. $[\neg(r \rightarrow s), \neg(q \lor (r \rightarrow s))]$
- 10. [¬p,¬WeChat: cstutorcs
- 12. $[\neg(r \rightarrow s), \neg q]$
- 13. $[\neg(r \rightarrow s), \neg(r \rightarrow s)]$
- 14. $[r \rightarrow s, \neg p]$
- 15. $[r \rightarrow s, r \rightarrow s]$
- 16. []

Proof steps:

• α -expansion on 1. creates 2.+3.

Assignmentat Paroject Exam Help B-expansion on 3. creates 5.

- α -expansion on 4. creates 6.+7.
- α-exattps://tutemrcs.com
- α -expansion on 8. creates 10.+11.
- α -expansion on 9. creates 12.+13.
- · resolved in hat 10 C Stall OTCS
- resolving on p in 6. and 14. creates 15.
- resolving on $r \rightarrow s$ in 13. and 15. creates 16.

Resolution properties

Resolution method extends to first order logic (quantifiers)

Resolution can be generalized to establish propositional consequences ASSI GINAGINES PROJECT EXAM Help
Resolution rules are non-deterministic: We have freedom in applying them.

Different rules may produce proofs of different length.

https://tutorcs.com

Soundness and completeness

Theorem: The resolution proof system is **sound**, i.e., if X has a resolution proof, then X is a tautology.

tautology, then the resolution system will terminate with a proof for it, even if if all resolution rule applications are atomic or trivial, and come after all resolution expansion the system of the

Equivalently, $\vdash_r X$ if and only if $\models X$.

First theology for the constitute produces a semantically equivalent formula.

Proof of second theorem not given here; requires more advanced tools.

Propositional consequence

Recall the definition of propositional consequence $S \models X$.

S-introduction rule for tableau. Any formula $Y \in S$ can be a lided to the end of any tableau branch. We write $S + \chi$ if there is a closed P tableau for $\neg X$ allowing the S-introduction rule for tableau.

S-introduction rule for resolution. For any formula $Y \in S$, the line [Y] can be added as a line to a resolution expansion. We write $S \vdash_r X$ if there is a closed resolution expansion for $\neg X$, allowing the S-introduction rule for resolution.

Theorem (Strong soundness and completeness): For any set S of propositional formulas and any formula X, we have $S \models X$ if and only if $S \vdash_t X$ if and only if $S \vdash_r X$.

Prove $\{p \to q, q \to r\} \models \neg(\neg r \land p)$ via tableau and resolution.

Assignment Project Exam Help

https://tutorcs.com