Homework 5, Section 1.6: 3, 4, 5, 7

Alex Gordon

September 10, 2013

Homework

3. A)

The line of reasoning is invalid because of the converse fallacy

3. B)

The line of reasoning is valid because of Modus Tollens

3. C)

The line of reasoning is valid because of Modus Ponens

4. A)

If you read the book, then you will pass the course.

4. B)

If you will pass the course, then you must read the book.

4. C)

If you will pass the course, then you must read the book.

5. A)

If you want a refund, then you need a receipt.

5. B)

If you can pronounce "Euler", then you can grasp someone's mathematics background.

5. C)

If you are 16 years old, then you are legally driving in Pennsylvania.

5. D)

If you study Descartes, then you understand the history of calculus

5. E)

If you want to stay dry outside, then you need to carry an umbrella

5. F)

If you like horror stories, then Stephen King is fun to read.

7. A)

p	q	r	$\mid (p \to (q \land r)) \lor ((p \land q) \to r) \mid$
Т	Т	T	T
\mathbf{T}	Т	F	F
${\rm T}$	F	$\mid T \mid$	T
${\rm T}$	F	F	
\mathbf{F}	${ m T}$	$\mid T \mid$	
\mathbf{F}	${ m T}$	F	
\mathbf{F}	F	$\mid T \mid$	Γ
\mathbf{F}	F	F	T

This expression is neither a tautology or a contradiction.

7. B)

p	$ \mathbf{q} $	r	$ \mid ((p \to q) \land (q \to \neg p)) \to \neg p \mid $
Τ	T	$\mid T \mid$	
\mathbf{T}	F	T T T	
\mathbf{F}	$\mid T \mid$	$\mid T \mid$	
\mathbf{F}	F	$\mid T \mid$	

This expression is a tautology.

7. C)

p	q	r	$ \mid ((p \to q) \land (\neg p \to r)) \to (q \lor r) \mid $
Τ	Τ	T	T
Τ	Т	F	T
\mathbf{T}	F	T	T
${\rm T}$	F	F	T
F	${ m T}$	T	T
F	${ m T}$	F	T
\mathbf{F}	F	T	T
\mathbf{F}	F	F	Γ

This expression is a tautology.