

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Variable Compleja I

 $Los\ Del\ DGIIM,\ {\tt losdeldgiim.github.io}$

Arturo Olivares Martos Juan Manuel Fernández García

Índice general

1.	Relaciones de Ejercicios		
	1.1.	Números complejos	5
	1.2.	Topología del plano complejo	15
	1.3.	Funciones holomorfas	21
	1.4.	Funciones analíticas	32
	1.5.	Funciones Elementales	43

1. Relaciones de Ejercicios

1.1. Números complejos

Ejercicio 1.1.1. Probar que el conjunto de matrices

$$M = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$

con las operaciones de suma y producto de matrices, es un cuerpo isomorfo a C.

Como ejercicio para el lector, se recomienda probar que M es un cuerpo.

Para comprobar ahora que M es isomorfo a \mathbb{C} , se debe probar que existe un isomorfismo entre ambos cuerpos. Sea la siguiente aplicación:

$$f: \ \mathbb{C} \longrightarrow M$$

$$z \longmapsto \begin{pmatrix} \operatorname{Re} z & -\operatorname{Im} z \\ \operatorname{Im} z & \operatorname{Re} z \end{pmatrix}$$

Para probar que f es un isomorfismo, hemos de probar que es un homomorfismo (entre anillos, puesto que los cuerpos son un caso particular), y que es biyectivo. En primer lugar, comprobamos que es un homomorfismo:

1.
$$f(z_1 + z_2) = f(z_1) + f(z_2)$$
.

$$f(z_1 + z_2) = \begin{pmatrix} \operatorname{Re} z_1 + \operatorname{Re} z_2 & -(\operatorname{Im} z_1 + \operatorname{Im} z_2) \\ \operatorname{Im} z_1 + \operatorname{Im} z_2 & \operatorname{Re} z_1 + \operatorname{Re} z_2 \end{pmatrix} = \begin{pmatrix} \operatorname{Re} z_1 & -\operatorname{Im} z_1 \\ \operatorname{Im} z_1 & \operatorname{Re} z_1 \end{pmatrix} + \begin{pmatrix} \operatorname{Re} z_2 & -\operatorname{Im} z_2 \\ \operatorname{Im} z_2 & \operatorname{Re} z_2 \end{pmatrix} = = f(z_1) + f(z_2).$$

2.
$$f(z_1 \cdot z_2) = f(z_1) \cdot f(z_2)$$
.

$$f(z_1 \cdot z_2) = \begin{pmatrix} \operatorname{Re} z_1 \cdot \operatorname{Re} z_2 - \operatorname{Im} z_1 \cdot \operatorname{Im} z_2 & -(\operatorname{Re} z_1 \cdot \operatorname{Im} z_2 + \operatorname{Im} z_1 \cdot \operatorname{Re} z_2) \\ \operatorname{Im} z_1 \cdot \operatorname{Re} z_2 + \operatorname{Re} z_1 \cdot \operatorname{Im} z_2 & \operatorname{Re} z_1 \cdot \operatorname{Re} z_2 - \operatorname{Im} z_1 \cdot \operatorname{Im} z_2 \end{pmatrix} = \begin{pmatrix} \operatorname{Re} z_1 & -\operatorname{Im} z_1 \\ \operatorname{Im} z_1 & \operatorname{Re} z_1 \end{pmatrix} \cdot \begin{pmatrix} \operatorname{Re} z_2 & -\operatorname{Im} z_2 \\ \operatorname{Im} z_2 & \operatorname{Re} z_2 \end{pmatrix} = f(z_1) \cdot f(z_2).$$

3.
$$f(1) = 1$$
.

Tenemos que
$$f(1) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = Id_2 = 1.$$

Por tanto, f es un homomorfismo. Ahora, comprobamos que es biyectivo. Para ello, comprobamos que es inyectivo y sobreyectivo.

 \bullet f es inyectiva.

Sean $z_1, z_2 \in \mathbb{C}$ de forma que $f(z_1) = f(z_2)$. Entonces, igualando componente a componente, tenemos que Re $z_1 = \text{Re } z_2$ y Im $z_1 = \text{Im } z_2$. Por lo tanto, $z_1 = z_2$ y f es inyectiva.

• f es sobreyectiva.

Sea $A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in M$. Entonces, sea $z = a + bi \in \mathbb{C}$, y tenemos que f(z) = A. Por tanto, f es sobreyectiva.

Por tanto, f también es biyectiva, y por tanto es un isomorfismo. Por tanto, M es isomorfo a \mathbb{C} .

Ejercicio 1.1.2. Calcular la parte real, la parte imaginaria y el módulo de los siguientes números complejos:

1.
$$z_1 = \frac{i - \sqrt{3}}{1 + i}$$
.

Tenemos que:

$$z_1 = (-\sqrt{3} + i) \cdot \frac{1}{1+i} = (-\sqrt{3} + i) \cdot \frac{1-i}{1+1} = \frac{-\sqrt{3} + i\sqrt{3} + i - i^2}{2} = \frac{1-\sqrt{3} + (1+\sqrt{3})i}{2}$$

Por tanto, tenemos que:

$$\operatorname{Re} z_1 = \frac{1 - \sqrt{3}}{2},$$

$$\operatorname{Im} z_1 = \frac{1 + \sqrt{3}}{2},$$

$$|z_1| = \sqrt{\left(\frac{1 - \sqrt{3}}{2}\right)^2 + \left(\frac{1 + \sqrt{3}}{2}\right)^2} = \sqrt{\frac{1 + 1 + 3 + 3}{4}} = \sqrt{2}.$$

2.
$$z_2 = \frac{1}{i\sqrt{3} - 1}$$
.

Tenemos que:

$$z_2 = \frac{1}{i\sqrt{3} - 1} = \frac{-1 - \sqrt{3}i}{1 + 3}$$

Por tanto, tenemos que:

$$\operatorname{Re} z_{2} = -\frac{1}{4},$$

$$\operatorname{Im} z_{2} = -\frac{\sqrt{3}}{4},$$

$$|z_{2}| = \sqrt{\left(-\frac{1}{4}\right)^{2} + \left(-\frac{\sqrt{3}}{4}\right)^{2}} = \sqrt{\frac{1+3}{16}} = \frac{1}{2}.$$

Ejercicio 1.1.3. Sea $U=\{z\in\mathbb{C}\mid |z|<1\}$. Fijado $a\in U,$ se considera la función $f:U\to\mathbb{C}$ dada por

$$f(z) = \frac{z - a}{1 - \overline{a}z}$$
 $\forall z \in U$.

Probar que f es una biyección de U sobre sí mismo y calcular su inversa.

En primer lugar, comprobamos que f es una aplicación de U sobre U. Dado $z \in U$, tenemos que:

$$|f(z)| = \left| \frac{z - a}{1 - \overline{a}z} \right| = \frac{|z - a|}{|1 - \overline{a}z|} < 1 \iff |z - a| < |1 - \overline{a}z| \iff |z - a|^2 < |1 - \overline{a}z|^2 \iff$$

$$\iff (z - a)(\overline{z} - \overline{a}) < (1 - \overline{a}z)(1 - a\overline{z}) \iff z\overline{z} - a\overline{z} - z\overline{a} + a\overline{a} < 1 - a\overline{z} - z\overline{a} + a\overline{a}z\overline{z} \iff$$

$$\iff |z|^2 + |a|^2 < 1 + |a|^2|z|^2 \iff |z|^2 - |a|^2|z|^2 < 1 - |a|^2 \iff$$

$$\iff |z|^2(1 - |a|^2) < 1 - |a|^2 \iff |z|^2 < 1.$$

donde hemos usado que, como |a| < 1, entonces $|a|^2 < 1$ y por tanto $1 - |a|^2 > 0$. Por tanto, f es una aplicación de U sobre U. A partir de ahora por tanto consideramos $f: U \to U$. Veamos que es biyectiva. Para ello, vamos a probar que es inyectiva y sobreyectiva.

■ Inyectividad:

Sean $z_1, z_2 \in U$ tales que $f(z_1) = f(z_2)$. Entonces, tenemos que:

$$\frac{z_1 - a}{1 - \overline{a}z_1} = \frac{z_2 - a}{1 - \overline{a}z_2} \Longrightarrow (z_1 - a)(1 - \overline{a}z_2) = (z_2 - a)(1 - \overline{a}z_1) \Longrightarrow
\Longrightarrow z_1 - \alpha - \overline{a}z_1z_2 + |a|^2 z_2 = z_2 - \alpha - \overline{a}z_2z_1 + |a|^2 z_1 \Longrightarrow
\Longrightarrow z_1 - |a|^2 z_1 = z_2 - |a|^2 z_2 \Longrightarrow (1 - |a|^2)z_1 = (1 - |a|^2)z_2 \Longrightarrow z_1 = z_2.$$

■ Sobreyectividad:

Sea $w \in U$. Vamos a buscar $z \in U$ tal que f(z) = w. Para ello, vamos a despejar z de la ecuación f(z) = w:

$$\frac{z-a}{1-\overline{a}z} = w \Longrightarrow z - a = w(1-\overline{a}z) \Longrightarrow z - a = w - w\overline{a}z \Longrightarrow z + w\overline{a}z = a + w \Longrightarrow$$
$$\Longrightarrow z(1+w\overline{a}) = a + w \Longrightarrow z = \frac{a+w}{1+w\overline{a}}.$$

donde, en el último paso, hemos hecho uso de que $1+w\overline{a}\neq 0$, ya que |wa|=|w||a|<1 y:

$$|1 + w\overline{a}| \ge |1 - |w||a|| = 1 - |w||a| > 0 \iff 1 > |w||a|$$

y por tanto $1+w\overline{a}\neq 0$. Por tanto, dado $w\in U$, consideramos $z=\frac{a+w}{1+w\overline{a}}$. Vamos a comprobar que $z\in U$:

$$|z| = \left| \frac{a+w}{1+w\overline{a}} \right| = \frac{|a+w|}{|1+w\overline{a}|} < 1 \iff |a+w| < |1+w\overline{a}| \iff |a+w|^2 < |1+w\overline{a}|^2 \iff$$

$$\iff (a+w)(\overline{a}+\overline{w}) < (1+w\overline{a})(1+\overline{w}a) \iff$$

$$\iff a\overline{a} + a\overline{w} + w\overline{a} + w\overline{w} < 1 + w\overline{a} + w\overline{a} + a\overline{a}w\overline{w} \iff$$

$$\iff |a|^2 + |w|^2 < 1 + |w|^2|a|^2 \iff |a|^2 - |w|^2|a|^2 < 1 - |w|^2 \iff$$

$$\iff |w|^2(1-|a|^2) < 1 - |a|^2 \iff |w|^2 < 1.$$

Por tanto, $z \in U$ y f(z) = w. Por tanto, f es sobreyectiva.

Por tanto, f es biyectiva. Además, hemos comprobado que su inversa es:

$$f^{-1}: U \longrightarrow U$$

$$w \longmapsto \frac{a+w}{1+w\overline{a}}$$

Ejercicio 1.1.4. Dados $z_1, z_2, \ldots, z_n \in \mathbb{C}^*$, encontrar una condición necesaria y suficiente para que se verifique la siguiente igualdad:

$$\left| \sum_{k=1}^{n} z_k \right| = \sum_{k=1}^{n} |z_k|.$$

Veamos que dicha condición es que, para cada $k \in \Delta_n$, se tenga que $\exists \lambda_k \in \mathbb{R}^+$ tal que $z_k = \lambda_k \ z_1$. Comprobaremos que dicha condición es necesaria y suficiente.

- \implies) Veamos que es una condición necesaria. Demostramos por inducción sobre n.
 - $\underline{n=1}$: La igualdad es trivialmente cierta, tomando $\lambda_1=1$.
 - n = 2: Hay dos opciones:

Opción Rutinaria Supongamos que se cumple para n=2. Entonces, tenemos que:

$$|z_{1} + z_{2}| = |z_{1}| + |z_{2}| \Longrightarrow |z_{1} + z_{2}|^{2} = (|z_{1}| + |z_{2}|)^{2} \Longrightarrow$$

$$\Longrightarrow z_{1}\overline{z_{1}} + z_{1}\overline{z_{2}} + z_{2}\overline{z_{1}} + z_{2}\overline{z_{2}} = |z_{1}|^{2} + 2|z_{1}||z_{2}| + |z_{2}|^{2} \Longrightarrow$$

$$\Longrightarrow z_{1}\overline{z_{2}} + z_{2}\overline{z_{1}} = 2|z_{1}||z_{2}| \Longrightarrow (z_{1}\overline{z_{2}})^{2} + 2|z_{1}||z_{2}| + (z_{2}\overline{z_{1}})^{2} = 4|z_{1}|^{2}|z_{2}|^{2} \Longrightarrow$$

$$\Longrightarrow (z_{1}\overline{z_{2}})^{2} - 2|z_{1}||z_{2}| + (z_{2}\overline{z_{1}})^{2} = 0 \Longrightarrow (z_{1}\overline{z_{2}} - z_{2}\overline{z_{1}})^{2} = 0 \Longrightarrow z_{1}\overline{z_{2}} = z_{2}\overline{z_{1}}$$

Tenemos ahora dos opciones:

Opción 1 Tenemos que:

$$z_1\overline{z_2} = z_2\overline{z_1} = \overline{z_1}\overline{z_2} \Longrightarrow z_1\overline{z_2} \in \mathbb{R}^*$$

Tomamos ahora $\lambda_2 = \frac{z_2\overline{z_2}}{z_1\overline{z_2}} \in \mathbb{R}$, por lo que:

$$\lambda_2 \ z_1 = \frac{z_2 \overline{z_2}}{z_1 \overline{z_2}} \ z_1 = z_2$$

Opción 2 Sea ahora $z_1 = a + bi$ y $z_2 = c + di$. Entonces, tenemos que:

$$z_1\overline{z_2} = (a+bi)(c-di) = ac+bd+(bc-ad)i,$$

$$z_2\overline{z_1} = (c+di)(a-bi) = ac+bd+(ad-bc)i.$$

Por tanto, tenemos que:

$$z_1\overline{z_2} = z_2\overline{z_1} \Longrightarrow bc - ad = ad - bc \Longrightarrow ad = bc.$$

Distinguimos en función del valor de b:

- Si b = 0, entonces ad = 0.
 - Si a=b=0, entonces $z_1=0\notin\mathbb{C}^*$, por lo que no es posible.
 - o Si $a \neq 0$, entonces d = b = 0, por lo que $z_1 = a$, $z_2 = c$, con $z_1, z_2 \in \mathbb{R}^*$. Por tanto, tomando $\lambda_2 = c/a$, se tiene que $z_2 = \lambda_2 \ z_1$.
- Si $b \neq 0$, entonces c = ad/b. Por tanto, tomando $\lambda_2 = d/b$, se tiene que $z_2 = \lambda_2 z_1$.

$$\lambda_2 \ z_1 = \frac{d}{b}(a+bi) = \frac{ad}{b} + di = c + di = z_2.$$

Por tanto, tenemos que $z_2 = \lambda_2 z_1$, con $\lambda_2 \in \mathbb{R}$. Para ver que $\lambda_2 \in \mathbb{R}^+$, tenemos que:

$$|z_1 + z_2| = |z_1(1 + \lambda_2)| = |z_1||1 + \lambda_2|$$

$$|z_1| + |z_2| = |z_1| + |\lambda_2||z_1| = |z_1| + |\lambda_2||z_1| = |z_1|(1 + |\lambda_2|).$$

Igualando, y como $|z_1| \neq 0$, tenemos que $|1 + \lambda_2| = 1 + |\lambda_2|$. Por tanto, como la igualdad de la desigualdad triangular en \mathbb{R} se da si los dos números tienen el mismo signo, tenemos que $\lambda_2 \in \mathbb{R}^+$.

- Otra Opción Vemos ahora los elementos de \mathbb{C} como elementos de \mathbb{R}^2 , con el producto escalar de \mathbb{R}^2 y la norma euclídea. En Análisis Matemático I se provó que, en \mathbb{R}^2 , se cumple la igualdad si y solo si:
 - 1. z_1 y z_2 son linealmente dependientes. Es decir, $\exists \lambda \in \mathbb{R}$ tal que $z_2 = \lambda \ z_1$.
 - 2. Su producto escalar es positivo. Es decir, $\langle z_1, z_2 \rangle > 0$. Esto se da si y solo si:

$$\langle z_1, z_2 \rangle = \langle z_1, \lambda | z_1 \rangle = \lambda \langle z_1, z_1 \rangle = \lambda ||z_1||^2 > 0 \iff \lambda > 0.$$

En cualquier caso se cumple para n=2.

• Supongamos que se cumple para n, demostrémolo para n + 1. Por hipótesis (no de inducción, sino por trabajar en esta implicación), tenemos que:

$$\left| \sum_{k=1}^{n+1} z_k \right| = \sum_{k=1}^{n+1} |z_k|.$$

Por tanto:

$$\left| \left(\sum_{k=1}^{n} z_k \right) + z_{n+1} \right| = \left(\sum_{k=1}^{n} |z_k| \right) + |z_{n+1}|$$

Usando ahora la hipótesis de inducción, tenemos que:

$$\left| \left(\sum_{k=1}^{n} \lambda_k \right) z_1 + z_{n+1} \right| = \left(\sum_{k=1}^{n} |\lambda_k| z_1 \right) + |z_{n+1}| \Longrightarrow$$

$$\Longrightarrow \left| \left(\sum_{k=1}^{n} \lambda_k \right) z_1 + z_{n+1} \right| = \left(\sum_{k=1}^{n} \lambda_k \right) |z_1| + |z_{n+1}| \Longrightarrow$$

$$\Longrightarrow \left| \left(\sum_{k=1}^{n} \lambda_k \right) z_1 + z_{n+1} \right| = \left| \left(\sum_{k=1}^{n} \lambda_k \right) z_1 \right| + |z_{n+1}|$$

Notando por $w = \left(\sum_{k=1}^{n} \lambda_k\right) z_1 \in \mathbb{C}^*$, y aplicando lo ya demostrado para n = 2, vemos que $\exists \rho \in \mathbb{R}^+$ tal que $z_{n+1} = \rho$ w. Por tanto:

$$z_{n+1} = \rho \ w = \rho \left(\sum_{k=1}^{n} \lambda_k\right) z_1$$

Tomando $\lambda_{n+1} = \rho\left(\sum_{k=1}^{n} \lambda_k\right) \in \mathbb{R}^+$, se tiene que $z_{n+1} = \lambda_{n+1} z_1$. Por tanto, se cumple para n+1.

Por tanto, por inducción se cumple para todo $n \in \mathbb{N}$.

 \Leftarrow) Veamos que es una condición suficiente. Supongamos que, para cada $k \in \Delta_n$, se tiene que $\exists \lambda_k \in \mathbb{R}^+$ tal que $z_k = \lambda_k \ z_1$. Entonces, tenemos que:

$$\left| \sum_{k=1}^{n} z_k \right| = \left| \sum_{k=1}^{n} \lambda_k \ z_1 \right| = \left| \left(\sum_{k=1}^{n} \lambda_k \right) z_1 \right| = \left(\sum_{k=1}^{n} \lambda_k \right) |z_1| = \sum_{k=1}^{n} \lambda_k |z_1| = \sum_{k=1}^{n} |\lambda_k \ z_1| = \sum_{k=1}^{n} |z_k|.$$

Ejercicio 1.1.5. Describir geométricamente los subconjuntos del plano dados por

1. $A = \{z \in \mathbb{C} \mid |z+i| = 2|z-i|\}.$

Sea $z = x + iy \in A \subset \mathbb{C}$. Entonces, tenemos que:

$$|x + iy + i| = 2|x + iy - i| \Longrightarrow |x + (y + 1)i| = 2|x + (y - 1)i| \Longrightarrow$$

$$\Longrightarrow \sqrt{x^2 + (y + 1)^2} = 2\sqrt{x^2 + (y - 1)^2} \Longrightarrow x^2 + (y + 1)^2 = 4(x^2 + (y - 1)^2) \Longrightarrow$$

$$\Longrightarrow x^2 + y^2 + 2y + 1 = 4x^2 + 4y^2 - 8y + 4 \Longrightarrow 3x^2 + 3y^2 - 10y + 3 = 0 \Longrightarrow$$

$$\Longrightarrow x^2 + y^2 - \frac{10}{3}y + 1 = 0 \Longrightarrow x^2 + \left(y - \frac{5}{3}\right)^2 - \frac{25}{9} + 1 = 0 \Longrightarrow$$

$$\Longrightarrow x^2 + \left(y - \frac{5}{3}\right)^2 = \frac{16}{9}$$

Por tanto, A es la circunferencia de centro $\left(0, \frac{5}{3}\right)$ y radio $\frac{4}{3}$.

2. $B = \{z \in \mathbb{C} \mid |z - i| + |z + i| = 4\}.$

Sea $z=x+iy\in B\subset \mathbb{C}.$ Entonces, tenemos que:

$$|x + iy - i| + |x + iy + i| = 4 \Longrightarrow |x + (y - 1)i| + |x + (y + 1)i| = 4 \Longrightarrow$$

$$\Longrightarrow \sqrt{x^2 + (y - 1)^2} + \sqrt{x^2 + (y + 1)^2} = 4 \Longrightarrow$$

$$\Longrightarrow x^2 + (y - 1)^2 = 16 + x^2 + (y + 1)^2 - 8\sqrt{x^2 + (y + 1)^2} \Longrightarrow$$

$$\Longrightarrow -2y = 16 + 2y - 8\sqrt{x^2 + (y + 1)^2} \Longrightarrow$$

$$\Longrightarrow 4 + y = 2\sqrt{x^2 + (y + 1)^2} \Longrightarrow 16 + 8y + y^2 = 4x^2 + 4y^2 + 4 + 8y \Longrightarrow$$

$$\Longrightarrow 4x^2 + 3y^2 = 12 \Longrightarrow \frac{x^2}{3} + \frac{y^2}{4} = 1$$

Por tanto, se trata de una elipse con centro en el origen. El semieje menor mide $\sqrt{3}$ y el semieje mayor mide 2. Por tanto, la distancia focal es $\sqrt{4-3}=1$. Es decir, se trata de una elipse con ejes en los puntos (0,i), (0,-i) y eje mayor de longitud 4. Esto se podría haber interpretado de forma directa al ver que la suma de las distancias de un punto a dos puntos fijos es constante.

Ejercicio 1.1.6. Probar que se cumple la siguiente igualdad para todo $z \in \mathbb{C}^* \setminus \mathbb{R}^-$:

$$\arg z = 2\arctan\left(\frac{\operatorname{Im} z}{\operatorname{Re} z + |z|}\right) \qquad z \in \mathbb{C}^* \setminus \mathbb{R}^-.$$

Fijado $z \in \mathbb{C}^* \setminus \mathbb{R}^-$, consideramos arg $z \in]-\pi,\pi[$. Entonces, como en particular se tiene arg $z \in \operatorname{Arg} z$, tenemos que:

$$\cos(\arg z) = \frac{\operatorname{Re} z}{|z|} \qquad \land \qquad \operatorname{sen}(\arg z) = \frac{\operatorname{Im} z}{|z|}.$$

De esta forma, como $z \notin \mathbb{R}^-$ (y por tanto $|z| \neq -\operatorname{Re} z$), tenemos que:

$$\frac{\operatorname{Im} z}{\operatorname{Re} z + |z|} = \frac{\operatorname{sen}(\operatorname{arg} z) \cdot |z|}{\operatorname{cos}(\operatorname{arg} z) \cdot |z| + |z|} = \frac{\operatorname{sen}(\operatorname{arg} z)}{\operatorname{cos}(\operatorname{arg} z) + 1}$$

Por ser ambas expresiones iguales, tenemos que:

$$2\arctan\left(\frac{\operatorname{Im} z}{\operatorname{Re} z + |z|}\right) = 2\arctan\left(\frac{\operatorname{sen}(\operatorname{arg} z)}{\cos(\operatorname{arg} z) + 1}\right)$$

La demostración se terminaría si vemos que las expresiones anteriores valen arg z. Para ello, Definimos ahora la función auxiliar siguiente:

$$f:]-\pi, \pi[\longrightarrow \mathbb{R}$$

$$\alpha \longmapsto \alpha - 2 \arctan\left(\frac{\sin \alpha}{\cos \alpha + 1}\right)$$

En primer lugar, tenemos que $f(0) = 0 - 2\arctan(0) = 0$. Por otro lado, como $f \in C^1(]-\pi, \pi[\,,\mathbb{R})$, consideramos la derivada de f:

$$f'(\alpha) = 1 - 2 \cdot \frac{1}{1 + \left(\frac{\sin \alpha}{\cos \alpha + 1}\right)^2} \cdot \frac{\cos \alpha(\cos \alpha + 1) + \sin \alpha \sin \alpha}{(\cos \alpha + 1)^2} =$$

$$= 1 - 2 \cdot \frac{\cos^2 \alpha + \cos \alpha + \sin^2 \alpha}{(\cos \alpha + 1)^2 + \sin^2 \alpha} = 1 - 2 \cdot \frac{1 + \cos \alpha}{\cos^2 \alpha + 1 + 2\cos \alpha + \sin^2 \alpha} =$$

$$= 1 - 2 \cdot \frac{1 + \cos \alpha}{2 + 2\cos \alpha} = 1 - \frac{1 + \cos \alpha}{1 + \cos \alpha} = 0 \qquad \forall \alpha \in]-\pi, \pi[.$$

Por tanto, f es constante, por lo que $f(\alpha) = 0$ para todo $\alpha \in]-\pi, \pi[$. Tomando como ángulo $\alpha = \arg z$, que por la elección hecha sabemos que $\arg z \in]-\pi, \pi[$, tenemos que:

$$\arg z = 2 \arctan \left(\frac{\operatorname{sen}(\arg z)}{\cos(\arg z) + 1} \right)$$

Por tanto, por lo anteriormente visto tenemos que:

$$\arg z = 2 \arctan \left(\frac{\operatorname{Im} z}{\operatorname{Re} z + |z|} \right) \qquad z \in \mathbb{C}^* \setminus \mathbb{R}^-.$$

como queríamos demostrar.

Ejercicio 1.1.7. Probar que, si $z = x + iy \in \mathbb{C}^*$, con $x, y \in \mathbb{R}$, se tiene:

$$\arg z = \begin{cases} \arctan(y/x) & \text{si } x > 0, \\ \arctan(y/x) + \pi & \text{si } x < 0, y > 0, \\ \arctan(y/x) - \pi & \text{si } x < 0, y < 0, \\ \frac{\pi}{2} & \text{si } x = 0, y > 0, \\ -\frac{\pi}{2} & \text{si } x = 0, y < 0. \end{cases}$$

Como arg $z \in \text{Arg } z$, tenemos que:

$$\cos(\arg z) = \frac{\operatorname{Re} z}{|z|} \qquad \land \qquad \operatorname{sen}(\arg z) = \frac{\operatorname{Im} z}{|z|}.$$

Por tanto, tenemos que $x = \text{Re } z = |z| \cos(\arg z)$ e $y = \text{Im } z = |z| \sin(\arg z)$. Por tanto, distinguimos en función de los valores de x e y, usando además que $\arg z \in]-\pi,\pi[$:

• Si x > 0:

En este caso, $x = |z| \cos(\arg z) > 0 \Longrightarrow \arg z \in]-\pi/2, \pi/2[$.

$$\arctan\left(\frac{y}{x}\right) = \arctan\left(\frac{\operatorname{sen}(\operatorname{arg} z)}{\operatorname{cos}(\operatorname{arg} z)}\right) = \arctan\left(\tan(\operatorname{arg} z)\right) = \operatorname{arg} z$$

donde, en la última igualdad, hemos usado que la arcotangente es la inversa de la tangente en el intervalo $]-\pi/2,\pi/2[$.

• Si x < 0, y > 0:

En este caso, $y = |z| \operatorname{sen}(\arg z) > 0 \Longrightarrow \arg z \in]0, \pi[$. Además, se tiene que $x = |z| \cos(\arg z) < 0$. Por tanto, $\arg z \in]^{\pi/2}, \pi[$. No obstante, como no pertenece a la rama principal, hemos de considerar $\theta = \arg z - \pi \in]^{-\pi/2}, 0[$, que por la periodicidad de la tangente sabemos que $\tan(\theta) = \tan(\arg z)$. Por tanto, tenemos que:

$$\arctan\left(\frac{y}{x}\right) = \arctan\left(\tan(\arg z)\right) = \arctan\left(\tan(\theta)\right) = \theta = \arg z - \pi \Longrightarrow$$

$$\Longrightarrow \arg z = \arctan\left(\frac{y}{x}\right) + \pi$$

• Si x < 0, y < 0:

En este caso, $y = |z| \operatorname{sen}(\operatorname{arg} z) < 0 \Longrightarrow \operatorname{arg} z \in]-\pi, 0[$. Además, se tiene que $x = |z| \operatorname{cos}(\operatorname{arg} z) < 0$. Por tanto, $\operatorname{arg} z \in]-\pi, -\pi/2[$. No obstante, como no pertenece a la rama principal, hemos de considerar $\theta = \operatorname{arg} z + \pi \in]0, \pi/2[$, que por la periodicidad de la tangente sabemos que $\operatorname{tan}(\theta) = \operatorname{tan}(\operatorname{arg} z)$. Por tanto, tenemos que:

$$\arctan\left(\frac{y}{x}\right) = \arctan\left(\tan(\arg z)\right) = \arctan\left(\tan(\theta)\right) = \theta = \arg z + \pi \Longrightarrow$$

$$\implies \arg z = \arctan\left(\frac{y}{x}\right) - \pi$$

• Si x = 0, y > 0:

En este caso, $y=|z|\sin(\arg z)>0 \Longrightarrow \arg z\in]0,\pi[$. Además, se tiene que $x=|z|\cos(\arg z)=0$. Por tanto, $\arg z=\pi/2$.

• Si x = 0, y < 0:

En este caso, $y = |z| \operatorname{sen}(\arg z) < 0 \Longrightarrow \arg z \in]-\pi, 0[$. Además, se tiene que $x = |z| \cos(\arg z) = 0$. Por tanto, $\arg z = -\pi/2$.

Ejercicio 1.1.8. Probar las fórmulas de De Moivre:

$$\cos(n\theta) + i \sin(n\theta) = (\cos\theta + i \sin\theta)^n \quad \forall \theta \in \mathbb{R}, \forall n \in \mathbb{N}.$$

Demostraremos las fórmulas de De Moivre por inducción sobre n.

- n=1: La igualdad es trivialmente cierta.
- Supongamos que se cumple para n, demostrémoslo para n+1:

$$(\cos \theta + i \sin \theta)^{n+1} = (\cos \theta + i \sin \theta)^n (\cos \theta + i \sin \theta) =$$

$$= (\cos(n\theta) + i \sin(n\theta))(\cos \theta + i \sin \theta) =$$

$$= \cos(n\theta) \cos \theta - \sin(n\theta) \sin \theta + i(\cos(n\theta) \sin \theta + \sin(n\theta) \cos \theta) =$$

$$= \cos((n+1)\theta) + i \sin((n+1)\theta).$$

Por tanto, por inducción se cumple para todo $n \in \mathbb{N}$. Como no hemos impuesto restricciones sobre θ , se cumple para todo $\theta \in \mathbb{R}$.

Ejercicio 1.1.9. Calcular las partes real e imaginaria del número complejo

$$z = \left(\frac{1 + i\sqrt{3}}{2}\right)^8.$$

Sea $z' = \frac{1 + i\sqrt{3}}{2}$. Entonces, tenemos que:

$$|z'| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1,$$

 $\arg(z') = \arctan\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3}$

donde, para calcular el argumento, hemos empleado que Rez' > 0. Por tanto, tenemos que:

$$z' = \cos\left(\frac{\pi}{3}\right) + i \operatorname{sen}\left(\frac{\pi}{3}\right)$$

$$z = (z')^8 = \left[\cos\left(\frac{\pi}{3}\right) + i \operatorname{sen}\left(\frac{\pi}{3}\right)\right]^8 \stackrel{(*)}{=} \cos\left(\frac{8\pi}{3}\right) + i \operatorname{sen}\left(\frac{8\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right) + i \operatorname{sen}\left(\frac{2\pi}{3}\right).$$

donde en (*) hemos usado las fórmulas de De Moivre. Por tanto, tenemos que:

Re
$$z = \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$$
,
Im $z = \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}$.

Ejercicio 1.1.10. Probar que, para todo $x \in \mathbb{R}$, se tiene:

$$\operatorname{sen}\left(\frac{x}{2}\right) \sum_{k=0}^{n} \cos(kx) = \cos\left(\frac{nx}{2}\right) \operatorname{sen}\left(\frac{(n+1)x}{2}\right), \tag{1.1}$$

$$\operatorname{sen}\left(\frac{x}{2}\right) \sum_{k=0}^{n} \operatorname{sen}(kx) = \operatorname{sen}\left(\frac{nx}{2}\right) \operatorname{sen}\left(\frac{(n+1)x}{2}\right) \tag{1.2}$$

Demostraremos ambas igualdades de forma simultánea. Para ello, multiplicaremos la segunda igualdad por i y sumaremos ambas:

$$\operatorname{sen}\left(\frac{x}{2}\right) \sum_{k=0}^{n} \left(\cos(kx) + i\operatorname{sen}\left(kx\right)\right) \stackrel{(*)}{=} \operatorname{sen}\left(\frac{x}{2}\right) \sum_{k=0}^{n} \left(\cos(x) + i\operatorname{sen}(x)\right)^{k}$$

donde en (*) hemos usado la fórmula de De Moivre. Considerando el número complejo $z = \cos(x) + i \sin(x)$, definimos $u = \cos\left(\frac{x}{2}\right) + i \sin\left(\frac{x}{2}\right)$, por lo que $u^2 = z$. Además, tenemos que:

$$1 - z^k = u^k \overline{u}^k - u^{2k} = u^k (\overline{u}^k - u^k) = -2i \operatorname{sen}\left(k \cdot \frac{x}{2}\right) \cdot u^k \qquad \forall k \in \mathbb{N}.$$

Por tanto, usando dicho valor de z, tenemos que:

$$\operatorname{sen}\left(\frac{x}{2}\right) \sum_{k=0}^{n} \left(\cos(kx) + i\operatorname{sen}\left(kx\right)\right) = \operatorname{sen}\left(\frac{x}{2}\right) \sum_{k=0}^{n} z^{k}$$

La suma de la derecha es la suma de una progresión geométrica, cuya suma parcial se calcula de igual forma que en \mathbb{R} :

$$\operatorname{sen}\left(\frac{x}{2}\right) \sum_{k=0}^{n} \left(\cos(kx) + i\operatorname{sen}\left(kx\right)\right) \stackrel{(*)}{=} \operatorname{sen}\left(\frac{x}{2}\right) \cdot \frac{1 - z^{n+1}}{1 - z} =$$

$$= \operatorname{sen}\left(\frac{x}{2}\right) \cdot \frac{-2i\operatorname{sen}\left(\left(n+1\right) \cdot \frac{x}{2}\right) \cdot u^{n+1}}{-2i\operatorname{sen}\left(\frac{x}{2}\right) \cdot u} =$$

$$= \operatorname{sen}\left(\frac{\left(n+1\right)x}{2}\right) \cdot u^{n} =$$

$$= \operatorname{sen}\left(\frac{\left(n+1\right)x}{2}\right) \left[\cos\left(\frac{nx}{2}\right) + i\operatorname{sen}\left(\frac{nx}{2}\right)\right]$$

donde en (*) hemos calculado la suma parcial, donde hemos supuesto que $z \neq 1$; es decir, que $x \notin 2\pi \mathbb{Z}$ (ya que, en dicho caso, ambas igualdades son triviales). Igualando las partes real e imaginaria, obtenemos las igualdades pedidas.

1.2. Topología del plano complejo

Ejercicio 1.2.1. Estudiar la continuidad de la función argumento principal; esta es, arg : $\mathbb{C}^* \to \mathbb{R}$.

Por el Ejercicio 1.1.6, sabemos que:

$$\arg z = 2 \arctan \left(\frac{\operatorname{Im} z}{\operatorname{Re} z + |z|} \right) \quad \forall z \in \mathbb{C}^* \setminus \mathbb{R}^-$$

Consideramos $\Omega = \mathbb{C}^* \setminus \mathbb{R}^-$. Como la función Id es continua, tenemos que Re z, Im z, |z| son continuas en \mathcal{C} . Además, como el denominador tan solo se anula en \mathbb{R}_0^- , el argumento de la arcotangente restringido a Ω es una función continua. Por ser la arcotangente continua en \mathbb{R} y serlo el producto de funciones continuas, concluimos que arg $_{|\Omega}$ es continua. Como Ω es abierto, por el carácter local de la continuidad, arg es continua en $\Omega = \mathbb{C}^* \setminus \mathbb{R}^-$.

Tan falta por estudiar la continuidad en \mathbb{R}^- . Para ello, sea $z \in \mathbb{R}^-$, del que sabemos que arg $z = \pi$. Sea la sucesión $\{\theta_n\}$ que recorre los ángulos desde 0 en sentido horario hasta $-\pi$, límite de la sucesión:

$$\{\theta_n\} = \left\{-\pi\left(1 + \frac{1}{n}\right)\right\} \to -\pi$$

A partir de dicha sucesión, definimos $\{z_n\}$ como los números complejos de módulo |z| y argumento θ_n ; que recorren los puntos de la circunferencia unitaria desde el eje positivo en sentido horario hasta el eje negativo.

$$\{z_n\} = \{|z|(\cos(\theta_n) + i\sin(\theta_n))\} \to |z|(\cos(-\pi) + i\sin(-\pi)) = -|z| = z$$

Por último, tenemos que:

$$\{\arg z_n\} = \{\theta_n\} \to -\pi \neq \pi = \arg z$$

Por tanto, hemos encontrado una sucesión $\{z_n\}$ con $z_n \in \mathbb{C}^* \ \forall n \in \mathbb{N}$, con $\{z_n\} \to z$ pero $\{\arg z_n\} \to \arg z$. Por tanto, arg no es continua en z. Como z era arbitrario, concluimos que arg no es continua en \mathbb{R}^- .

Por tanto, concluimos que arg es continua en $\mathbb{C}^* \setminus \mathbb{R}^-$, pero no lo es en \mathbb{R}^- .

Ejercicio 1.2.2. Dado $\theta \in \mathbb{R}$, se considera el conjunto $S_{\theta} = \{z \in \mathbb{C}^* \mid \theta \notin \operatorname{Arg} z\}$. Probar que existe una función $\varphi \in \mathcal{C}(S_{\theta})$ que verifica $\varphi(z) \in \operatorname{Arg}(z)$ para todo $z \in S_{\theta}$.

La elección del argumento principal de un número complejo realizada provoca que haya una discontinuidad en $\mathbb{R}^- = S_{\pi}$. Este ejercicio nos pide encontrar una función que, dado un argumento θ , sea continua en \mathbb{C}^* excepto en los puntos z para los cuales $\theta \in \operatorname{Arg} z$.

Dado $z \in S_{\theta}$, como arg es continua en $\mathbb{C}^* \setminus \mathbb{R}^-$, en primer lugar definiremos una función $g_{\theta}: S_{\theta} \to C^* \setminus \mathbb{R}^-$ que nos lleve z a un punto $w \notin \mathbb{R}^-$ (esto lo haremos

girando z un ángulo de $\pi - \theta$); para poder aplicar luego arg y modificar el valor de forma que $\varphi(z) \in \text{Arg } z$ (esto lo haremos restando $\pi - \theta$). Vamos a ello.

Definimos en primer lugar $w_{\theta} = \cos(\pi - \theta) + i\sin(\pi - \theta) \in \mathbb{C}$, de forma que $|w_{\theta}| = 1$ y $\pi - \theta \in \text{Arg } w_{\theta}$. Definimos g_{θ} como:

$$g_{\theta}: S_{\theta} \longrightarrow \mathbb{C}^* \setminus \mathbb{R}^ z \longmapsto zw_{\theta}$$

En primer lugar, como g_{θ} es polinómica, tenemos que $g_{\theta} \in \mathcal{C}(S_{\theta})$. Además, dado $z \in S_{\theta}$, tenemos que:

$$\operatorname{Arg} g_{\theta}(z) = \operatorname{Arg}(zw_{\theta}) = \operatorname{Arg} z + \operatorname{Arg} w_{\theta} = (\operatorname{arg} z + \pi - \theta) + 2\pi \mathbb{Z}$$

Veamos que $g_{\theta}(z) \notin \mathbb{R}^-$. Supongamos que $g_{\theta}(z) \in \mathbb{R}^-$. Entonces, $\exists k \in \mathbb{Z}$ tal que arg $z + \pi - \theta = 2k\pi$. Por tanto, arg $z = 2k\pi - \pi + \theta = (2k - 1)\pi + \theta$. Por tanto, $\theta \in \operatorname{Arg} z$, lo cual es una contradicción. Por tanto, $g_{\theta}(z) \notin \mathbb{R}^-$.

A continuación, definimos φ como sigue:

$$\varphi: S_{\theta} \longrightarrow \mathbb{R}$$

$$z \longmapsto \arg(g_{\theta}(z)) - (\pi - \theta)$$

De esta forma, tenemos que φ es continua en S_{θ} , puesto que arg es continua en $\mathbb{C}^* \setminus \mathbb{R}^-$ y g_{θ} es continua en S_{θ} . Además, dado $z \in S_{\theta}$, tenemos que:

$$\varphi(z) \in \operatorname{Arg} g_{\theta}(z) - \operatorname{Arg} w_{\theta} = \operatorname{Arg} g_{\theta}(z) + \operatorname{Arg} \frac{1}{w_{\theta}} = \operatorname{Arg} \left(\frac{g_{\theta}(z)}{w_{\theta}} \right) = \operatorname{Arg} \left(\frac{zw_{\theta}}{w_{\theta}} \right) = \operatorname{Arg} z$$

Ejercicio 1.2.3. Probar que no existe ninguna función $\varphi \in \mathcal{C}(\mathbb{C}^*)$ de forma que $\varphi(z) \in \operatorname{Arg} z$ para todo $z \in \mathbb{C}^*$, y que el mismo resultado es cierto, sustituyendo \mathbb{C}^* por $\mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}$.

Por reducción al absurdo, supongamos que existe una función $\varphi \in \mathcal{C}(\mathbb{C}^*)$ tal que $\varphi(z) \in \operatorname{Arg} z \ \forall z \in \mathbb{C}^*$. Definimos la siguiente función auxiliar:

$$f: \mathbb{C}^* \longrightarrow \mathbb{R}$$

$$z \longmapsto \varphi(z) - \varphi(-z)$$

Por ser φ continua, f es continua. Además, dado $z \in \mathbb{C}^*$, tenemos que:

$$f(z) = \varphi(z) - \varphi(-z)$$

$$f(-z) = \varphi(-z) - \varphi(z) = -(\varphi(z) - \varphi(-z)) = -f(z)$$

Por tanto, fijado $w \in \mathbb{C}^*$, hay dos opciones:

- Si f(w) = 0, entonces sea $z_0 = w$, y se tiene que $f(z_0) = 0$.
- Si $f(w) \neq 0$, entonces f(w)f(-w) < 0. Como \mathbb{C}^* es conexo, por el Teorema del Valor Intermedio $\exists z_0 \in \mathbb{C}^*$ tal que $f(z_0) = 0$.

En cualquier caso, $\exists z_0 \in \mathbb{C}^*$ tal que $f(z_0) = 0$. Por tanto, $\varphi(z_0) = \varphi(-z_0)$. Esto implica que $\operatorname{Arg} z_0 = \operatorname{Arg}(-z_0)$, lo cual es una contradicción ya que:

$$\operatorname{Arg} - z_0 = (\operatorname{arg} z_0 + \pi) + 2\pi \mathbb{Z}$$

Por tanto, no puede existir una función $\varphi \in \mathcal{C}(\mathbb{C}^*)$ tal que $\varphi(z) \in \operatorname{Arg} z \ \forall z \in \mathbb{C}^*$.

Por otro lado, consideramos el caso para T. Hay diversas formas de probarlo:

- De forma análoga, haciendo uso ahora de que T es conexo.
- Aplicando de forma directa el Teorema de Borsuk-Ulam a φ (esto es lo que en realidad hacemos en la opción anterior).
- Haciendo uso de lo anteriormente demostrado.

Desarrollaremos la tercera opción, por ser aquella que difiere de lo anterior. De nuevo, supongamos por reducción al absurdo que existe una función $\varphi \in \mathcal{C}(\mathbb{T})$ tal que $\varphi(z) \in \operatorname{Arg} z \ \forall z \in \mathbb{T}$. Definimos la siguiente función auxiliar:

$$f: \ \mathbb{C}^* \ \longrightarrow \ \mathbb{R}$$
$$z \ \longmapsto \ \varphi\left(\frac{z}{|z|}\right)$$

Tenemos que f es continua, y verifica que:

$$f(z) = \varphi\left(\frac{z}{|z|}\right) \in \operatorname{Arg}\left(\frac{z}{|z|}\right) = \operatorname{Arg}z - \operatorname{Arg}(|z|) = \operatorname{Arg}z - 2\pi\mathbb{Z} = \operatorname{Arg}z$$

No obstante, hemos demostrado que no puede existir una función $f \in \mathcal{C}(\mathbb{C}^*)$ tal que $f(z) \in \operatorname{Arg} z \ \forall z \in \mathbb{C}^*$. Por tanto, hemos llegado a una contradicción, y concluimos que no puede existir una función $\varphi \in \mathcal{C}(\mathbb{T})$ tal que $\varphi(z) \in \operatorname{Arg} z \ \forall z \in \mathbb{T}$.

Ejercicio 1.2.4. Probar que la función $\operatorname{Arg}: \mathbb{C}^* \to \mathbb{R}/2\pi\mathbb{Z}$ es continua, considerando en $\mathbb{R}/2\pi\mathbb{Z}$ la topología cociente. Más concretamente, se trata de probar que, si $\{z_n\}$ es una sucesión de números complejos no nulos, tal que $\{z_n\} \to z \in \mathbb{C}^*$ y $\theta \in \operatorname{Arg} z$, se puede elegir $\theta_n \in \operatorname{Arg} z_n$ para todo $n \in \mathbb{N}$, de forma que $\{\theta_n\} \to \theta$.

Usando sucesiones: Usaremos la caracterización que en el mismo enunciado describen. Dada una sucesión $\{z_n\}$ de números complejos no nulos, tal que $\{z_n\} \to z \in \mathbb{C}^*$ y $\theta \in \operatorname{Arg} z$, definimos θ_n como sigue:

• Si $z \notin \mathbb{R}^-$:

Como arg $z \in \text{Arg } z$, tenemos que $\exists k \in \mathbb{Z} \text{ tal que } \theta = 2k\pi + \text{arg } z$. Por tanto, definimos θ_n como:

$$\theta_n = \arg z_n + 2k\pi \in \operatorname{Arg} z_n \quad \forall n \in \mathbb{N}$$

Además, tenemos que:

$$\{\theta_n\} = \{\arg z_n + 2k\pi\} \to \arg z + 2k\pi = \theta$$

donde hemos usado que, al ser arg continua en $z \in \mathbb{C}^* \setminus \mathbb{R}^-$, como se tiene que $\{z_n\} \to z$, entonces $\{\arg z_n\} \to \arg z$.

• Si $z \in \mathbb{R}^-$:

Por el Ejercicio 1.2.2, $\exists \varphi \in \mathcal{C}(S_0)$ tal que $\varphi(w) \in \operatorname{Arg} w \ \forall w \in S_0$. En particular, $\varphi(z) \in \operatorname{Arg} z$, por lo que $\exists k \in \mathbb{Z}$ tal que $\varphi(z) = \theta + 2k\pi$.

Como $\{z_n\} \to z \in S_0 = S_0^{\circ}$ abierto, $\exists N \in \mathbb{N}$ tal que $\forall n \geq N$ se tiene que $z_n \in S_0$. Por tanto, definimos θ_n como:

$$\begin{cases} \theta_n = \arg z_n & \text{si } n < N \\ \theta_n = \varphi(z_n) - 2k\pi & \text{si } n \geqslant N \end{cases}$$

De esta forma, tenemos que $\theta_n \in \operatorname{Arg} z_n \ \forall n \in \mathbb{N}$, y además:

$$\{\theta_n\} \to \varphi(z) - 2k\pi = \theta$$

donde hemos usado que, al ser φ continua en $z \in S_0$, como $\{z_n\} \to z$, se tiene que $\{\varphi(z_n)\} \to \varphi(z)$.

Observación. Notemos que podríamos haber generalizado todo en el segundo caso, considerando $S_{\theta+\pi}$. No obstante, se ha optado por hacerlo de forma más explícita para facilitar la comprensión, ya que el primer caso seguramente sea más intuitivo.

Usando el punto de vista topoógico:

Definimos la función proyección:

$$\pi: \mathbb{R} \longrightarrow \mathbb{R}/2\pi\mathbb{Z}$$
 $x \longmapsto x + 2\pi\mathbb{Z}$

Tenemos la siguiente descomposición de \mathbb{C}^* :

$$\mathbb{C}^* = (\mathbb{C}^* \setminus \mathbb{R}^-) \cup (\mathbb{C}^* \setminus \mathbb{R}^+)$$

Tenemos que:

• En $\mathbb{C}^* \setminus \mathbb{R}^-$:

$$\operatorname{Arg}(z) = (\pi \circ \operatorname{arg})(z) \qquad \forall z \in \mathbb{C}^* \setminus \mathbb{R}^-$$

Por tanto, Arg es continua en $\mathbb{C}^* \setminus \mathbb{R}^-$.

■ $\underline{\operatorname{En} \, \mathbb{C}^* \setminus \mathbb{R}^+}$:
Por el Ejercicio 1.2.2, sabemos que $\exists \varphi \in \mathcal{C}(S_0)$ tal que:

$$\operatorname{Arg}(z) = (\pi \circ \varphi)(z) \qquad \forall z \in S_0 = \mathbb{C}^* \setminus \mathbb{R}^+$$

Por tanto, Arg es continua en $\mathbb{C}^* \setminus \mathbb{R}^+$.

Por el carácter local de la continuidad, Arg es continua en \mathbb{C}^* .

Ejercicio 1.2.5. Dado $z \in \mathbb{C}$, probar que la sucesión $\left\{ \left(1 + \frac{z}{n}\right)^n \right\}$ es convergente y calcular su límite.

Para facilitar la notación, sea:

$$z_n = \left(1 + \frac{z}{n}\right)^n \quad \forall n \in \mathbb{N}$$

En primer lugar, vamos a estudiar el límite de la sucesión $\{|z_n|\}$:

$$|z_n| = \left| \left(1 + \frac{z}{n} \right)^n \right| = \left| 1 + \frac{z}{n} \right|^n = \left(\sqrt{\left(1 + \frac{\operatorname{Re} z}{n} \right)^2 + \left(\frac{\operatorname{Im} z}{n} \right)^2} \right)^n =$$

$$= \sqrt{\left(1 + \frac{\operatorname{Re}^2 z}{n^2} + \frac{2 \operatorname{Re} z}{n} + \frac{\operatorname{Im}^2 z}{n^2} \right)^n} = \sqrt{\left(1 + \frac{\operatorname{Re}^2 z + \operatorname{Im}^2 z}{n} + 2 \operatorname{Re} z}{n} \right)^n}$$

Por tanto, tenemos que:

$$\lim_{n \to \infty} |z_n| = \sqrt{\lim_{n \to \infty} \left(1 + \frac{\operatorname{Re}^2 z + \operatorname{Im}^2 z}{n} + 2\operatorname{Re} z \right)^n} =$$

$$= \sqrt{\exp\left(\lim_{n \to \infty} \frac{\operatorname{Re}^2 z + \operatorname{Im}^2 z + 2n\operatorname{Re} z}{n} + 2\operatorname{Re} z\right)} = \sqrt{\exp(2\operatorname{Re} z)} = e^{\operatorname{Re} z}$$

donde en la primera igualdad hemos usado que la raíz es una función continua, y en la segunda igualdad hemos usado el Criterio de Euler. A continuación, estudiamos los argumentos de z_n . Para ello, definimos:

$$w_n = 1 + \frac{z}{n} \qquad \forall n \in \mathbb{N}$$

Como $\{w_n\} \to 1$, $\exists N \in \mathbb{N}$ tal que $\forall n \geq N$ se tiene que $\operatorname{Re} w_n > 0$. Por tanto, $\forall n \geq N$ se tiene que:

$$\arg w_n = \arctan\left(\frac{\operatorname{Im} w_n}{\operatorname{Re} w_n}\right) = \arctan\left(\frac{\operatorname{Im} z}{n + \operatorname{Re} z}\right)$$

Como $\operatorname{Arg}(zw) = \operatorname{Arg} z + \operatorname{Arg} w$ para todo $z, w \in \mathbb{C}^*$, tenemos que:

$$\operatorname{Arg} z_n = \operatorname{Arg} ((w_n)^n) = n \operatorname{Arg} w_n \Longrightarrow n \arctan \left(\frac{\operatorname{Im} z}{n + \operatorname{Re} z} \right) \in \operatorname{Arg} z_n \quad \forall n \geqslant N$$

Por tanto, definimos la sucesión $\{\theta_n\}$ como sigue:

$$\theta_n = \begin{cases} \arg z_n & \text{si } n < N \\ n \arctan\left(\frac{\operatorname{Im} z}{n + \operatorname{Re} z}\right) & \text{si } n \geqslant N \end{cases}$$

Por tanto, para todo $n \in \mathbb{N}$, tenemos que $\theta_n \in \operatorname{Arg} z_n$. Calculemos el límite de la sucesión $\{\theta_n\}$:

$$\lim_{n \to \infty} \theta_n = \lim_{n \to \infty} n \arctan\left(\frac{\operatorname{Im} z}{n + \operatorname{Re} z}\right) = \lim_{n \to \infty} \frac{\arctan\left(\frac{\operatorname{Im} z}{n + \operatorname{Re} z}\right)}{\frac{1}{n}} =$$

$$= \lim_{n \to \infty} \frac{-n^2}{1 + \left(\frac{\operatorname{Im} z}{n + \operatorname{Re} z}\right)^2} \cdot \frac{-\operatorname{Im} z}{(n + \operatorname{Re} z)^2} = \lim_{n \to \infty} \frac{n^2 \operatorname{Im} z}{(n + \operatorname{Re} z)^2 + \operatorname{Im}^2 z} = \operatorname{Im} z$$

Uniendo ambos resultados, tenemos que:

$$z_n = |z_n| (\cos(\theta_n) + i \sin(\theta_n)) \quad \forall n \in \mathbb{N}$$

Tomando límite, y como las funciones seno y coseno son continuas, tenemos que:

$$\lim_{n\to\infty} z_n = \lim_{n\to\infty} |z_n| \left(\cos\left(\lim_{n\to\infty} \theta_n\right) + i \operatorname{sen}\left(\lim_{n\to\infty} \theta_n\right)\right) = e^{\operatorname{Re} z} \left(\cos(\operatorname{Im} z) + i \operatorname{sen}(\operatorname{Im} z)\right)$$

1.3. Funciones holomorfas

Ejercicio 1.3.1. En cada uno de los siguientes casos, estudiar la derivabilidad de la función $f: \mathbb{C} \to \mathbb{C}$ definida como se indica:

1. $f(z) = z(\operatorname{Re} z)^2$ para todo $z \in \mathbb{C}$.

Sea $z = x + iy \in \mathbb{C}$, entonces:

$$f(z) = z(\operatorname{Re} z)^2 = (x + iy)x^2 = x^3 + ix^2y.$$

Consideramos ahora las funciones $u, v : \mathbb{R}^2 \to \mathbb{R}$ dadas por:

$$u(x,y) = \operatorname{Re} f(x+iy) = x^3,$$
 $\forall (x,y) \in \mathbb{R}^2,$
 $v(x,y) = \operatorname{Im} f(x+iy) = x^2y,$ $\forall (x,y) \in \mathbb{R}^2.$

Puesto que son polinómicas, es directo ver que u, v son diferenciables en \mathbb{R}^2 , por lo que f será derivable en z = x + iy si y solo si se verifican las ecuaciones de Cauchy-Riemann en el punto (x, y), es decir:

$$\frac{\partial u}{\partial x}(x,y) = \frac{\partial v}{\partial y}(x,y),$$
$$\frac{\partial u}{\partial y}(x,y) = -\frac{\partial v}{\partial x}(x,y).$$

Sustituyendo los valores de dichas derivadas parciales, las ecuaciones de Cauchy-Riemann quedan:

$$\left\{\begin{array}{ccc} 3x^2 & = & x^2, \\ 0 & = & -2xy. \end{array}\right\} \iff \left\{\begin{array}{ccc} x & = & 0, \\ xy & = & 0. \end{array}\right\}$$

Por tanto, las ecuaciones de Cauchy-Riemann solo se verifican en el siguiente conjunto $A \subset \mathbb{R}^2$:

$$A = \{(0, a) \in \mathbb{R}^2 \mid a \in \mathbb{R}\} \equiv \{ai \in \mathbb{C} \mid a \in \mathbb{R}\} \subset \mathbb{C}.$$

Por tanto, f es derivable en A, mientras que no lo es en ningún punto de $\mathbb{C} \backslash A$. Es decir, f es derivable en los números imaginarios puros, pero no en ningún otro punto del plano complejo. Podemos además definir la función derivada $f': A \to \mathbb{C}$ como:

$$f'(ai) = \frac{\partial u}{\partial x}(0, a) + i\frac{\partial v}{\partial x}(0, a) = 0 + i \cdot 2 \cdot 0 \cdot a = 0 \qquad \forall ai \in \mathbb{C}.$$

Por tanto, f es constante en A. De hecho, se tiene que:

$$f(ai) = 0 \quad \forall ai \in \mathbb{C}.$$

2.
$$f(x+iy) = x^3 - y + i\left(y^3 + \frac{x^2}{2}\right)$$
 para todo $x, y \in \mathbb{R}$.

Definimos las funciones $u, v : \mathbb{R}^2 \to \mathbb{R}$ dadas por:

$$u(x,y) = \operatorname{Re} f(x+iy) = x^3 - y, \qquad \forall (x,y) \in \mathbb{R}^2,$$

$$v(x,y) = \operatorname{Im} f(x+iy) = y^3 + \frac{x^2}{2}, \qquad \forall (x,y) \in \mathbb{R}^2.$$

Puesto que son polinómicas, es directo ver que u, v son diferenciables en \mathbb{R}^2 , por lo que f será derivable en z = x + iy si y solo si se verifican las ecuaciones de Cauchy-Riemann en el punto (x, y), es decir:

$$\begin{split} \frac{\partial u}{\partial x}(x,y) &= \frac{\partial v}{\partial y}(x,y), \\ \frac{\partial u}{\partial y}(x,y) &= -\frac{\partial v}{\partial x}(x,y). \end{split}$$

Sustituyendo los valores de dichas derivadas parciales, las ecuaciones de Cauchy-Riemann quedan:

$$\left\{\begin{array}{ccc} 3x^2 & = & 3y^2, \\ -1 & = & -x. \end{array}\right\} \iff \left\{\begin{array}{ccc} x & = & 1, \\ y & \in & \{-1, 1\}. \end{array}\right\}$$

Por tanto, fijado $z_0 = 1 + i \in \mathbb{C}$, tenemos que f es derivable en $\{z_0, \overline{z_0}\}$, mientras que no lo es en ningún otro punto del plano complejo. En estos puntos, tenemos que:

$$f'(z_0) = f'(1+i) = \frac{\partial u}{\partial x}(1,1) + i\frac{\partial v}{\partial x}(1,1) = 3+i,$$

$$f'(\overline{z_0}) = f'(1-i) = \frac{\partial u}{\partial x}(1,-1) + i\frac{\partial v}{\partial x}(1,-1) = 3+i.$$

3.
$$f(x+iy) = \frac{x^3 + iy^3}{x^2 + y^2}$$
 para todo $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \text{ con } f(0) = 0.$

Definimos las funciones $u, v : \mathbb{R}^2 \to \mathbb{R}$ dadas por:

$$u(x,y) = \text{Re } f(x+iy) = \frac{x^3}{x^2 + y^2}, \qquad \forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\},$$
$$v(x,y) = \text{Im } f(x+iy) = \frac{y^3}{x^2 + y^2}, \qquad \forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}.$$

donde, además, u(0,0) = v(0,0) = 0. Estudiamos la derivabilidad por partes:

• Estudiamos en $A = \mathbb{R}^2 \setminus \{(0,0)\}$:

Por el carácter local de la diferenciabilidad, sabemos que u, v con diferenciables en A, por lo que f será derivable en $z = x + iy \in A$ si y solo si se verifican las ecuaciones de Cauchy-Riemann en el punto (x, y), es decir:

$$\frac{\partial u}{\partial x}(x,y) = \frac{\partial v}{\partial y}(x,y),$$
$$\frac{\partial u}{\partial y}(x,y) = -\frac{\partial v}{\partial x}(x,y).$$

Sustituyendo los valores de dichas derivadas parciales, las ecuaciones de Cauchy-Riemann quedan:

$$\begin{cases}
\frac{3x^{2}(x^{2}+y^{2})-2x^{4}}{(x^{2}+y^{2})^{2}} &= \frac{3y^{2}(x^{2}+y^{2})-2y^{4}}{(x^{2}+y^{2})^{2}}, \\
\frac{3y^{2}(x^{2}+y^{2})-2y^{4}}{(x^{2}+y^{2})^{2}} &= -\frac{3x^{2}(x^{2}+y^{2})-2x^{4}}{(x^{2}+y^{2})^{2}}.
\end{cases}
\iff
\begin{cases}
\frac{3x^{2}(x^{2}+y^{2})-2x^{4}}{(x^{2}+y^{2})-2y^{4}} &= 3y^{2}(x^{2}+y^{2})-2y^{4}, \\
3y^{2}(x^{2}+y^{2})-2y^{4} &= -3x^{2}(x^{2}+y^{2})+2x^{4}.
\end{cases}
\iff
\begin{cases}
\frac{3(x^{2}+y^{2})(x^{2}-y^{2})}{3(x^{2}+y^{2})^{2}} &= 2(x^{4}-y^{4}), \\
3(x^{2}+y^{2})^{2} &= 2(x^{4}+y^{4}).
\end{cases}
\iff
\begin{cases}
\frac{3(x^{4}-y^{4})}{3(x^{2}+y^{2})^{2}} &= 2(x^{4}+y^{4}).
\end{cases}
\iff
\begin{cases}
\frac{x^{4}=y^{4}, \\
x^{4}+y^{4}+6x^{2}y^{2}=0.
\end{cases}$$

Debido a que la segunda ecuación tan solo se cumple si x = y = 0 (valor que no pertenece a A), tenemos que no se verifican las ecuaciones de Cauchy-Riemann en ningún punto de A. Por tanto, f no es derivable en ningún punto de A.

Estudiamos en el origen, z = 0 = (0, 0):

Lo estudiaremos a partir de la definición de derivada en un punto. Consiste en ver si el siguiente límite existe:

$$\lim_{z \to 0} \frac{f(z)}{z} = \lim_{(x,y) \to (0,0)} \frac{\frac{x^3}{x^2 + y^2} + i\frac{y^3}{x^2 + y^2}}{x + iy} = \lim_{(x,y) \to (0,0)} \frac{x^3 + iy^3}{(x^2 + y^2)(x + iy)}$$

Como sabemos, la existencia de este límite equivale a que exista el límite de las partes reales e imaginarias. Por tanto, trabajamos en primer lugar con la parte real:

$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^3 + xy^2} = \lim_{(x,y)\to(0,0)} \frac{x^2}{x^2 + y^2}$$

Para ver si dicho límite existe, calculamos los límites parciales:

$$\lim_{t \to 0} \frac{0^2}{0^2 + t^2} = \lim_{t \to 0} 0 = 0,$$

$$\lim_{t \to 0} \frac{t^2}{t^2 + 0^2} = \lim_{t \to 0} 1 = 1.$$

Como ambos límites parciales no coinciden, el límite no existe. Por tanto, como la parte real no tiene límite, dicho límite no existe y; por tanto, f no es derivable en el origen.

Por tanto, f no es derivable en ningún punto del plano complejo.

Ejercicio 1.3.2. Probar que existe una función entera f tal que:

Re
$$f(x+iy) = x^4 - 6x^2y^2 + y^4$$
 para todo $x, y \in \mathbb{R}$.

Si se exige además que f(0) = 0, entonces f es única.

Supongamos que existe una función entera f cumpliendo las condiciones dadas. Definimos las funciones $u, v : \mathbb{R}^2 \to \mathbb{R}$ dadas por:

$$u(x,y) = \operatorname{Re} f(x+iy) = x^4 - 6x^2y^2 + y^4, \qquad \forall (x,y) \in \mathbb{R}^2,$$

$$v(x,y) = \operatorname{Im} f(x+iy), \qquad \forall (x,y) \in \mathbb{R}^2.$$

Por ser una función entera, f es derivable en todo \mathbb{C} , por lo que u, v son diferenciables en \mathbb{R}^2 y, además, se verifican las ecuaciones de Cauchy-Riemann en todo \mathbb{R}^2 . Esto es:

$$\frac{\partial u}{\partial x}(x,y) = \frac{\partial v}{\partial y}(x,y),$$
$$\frac{\partial u}{\partial y}(x,y) = -\frac{\partial v}{\partial x}(x,y).$$

Sustituyendo los valores de las derivadas parciales de u, las ecuaciones de Cauchy-Riemann quedan:

$$\left\{ \begin{array}{rcl}
\frac{\partial v}{\partial y}(x,y) & = & 4x^3 - 12xy^2, \\
\frac{\partial v}{\partial x}(x,y) & = & 12x^2y - 4y^3.
\end{array} \right\}$$

Integrando con respecto a y la primera ecuación, tenemos que:

$$v(x,y) = 4x^3y - 4xy^3 + \varphi(x) \qquad \forall (x,y) \in \mathbb{R}^2,$$

donde $\varphi : \mathbb{R} \to \mathbb{R}$ es una función derivable que depende solo de x y representa la constante de integración. Derivando con respecto a x la expresión anterior, obtenemos:

$$\frac{\partial v}{\partial x}(x,y) = 12x^2y - 4y^3 + \varphi'(x)$$

Por tanto, como también tenemos las ecuaciones de Cauchy-Riemann, deducimos que $\varphi'(x) = 0$ para todo $x \in \mathbb{R}$. Por tanto, $\varphi(x) = C \in \mathbb{R}$ y, por tanto:

$$v(x,y) = 4x^3y - 4xy^3 + C \qquad \forall (x,y) \in \mathbb{R}^2.$$

Por tanto, la función f es de la forma:

$$f(x+iy) = u(x,y) + iv(x,y) = x^4 - 6x^2y^2 + y^4 + i(4x^3y - 4xy^3 + C) \qquad \forall (x,y) \in \mathbb{R}^2, \qquad C \in \mathbb{R}$$

Si imponemos la condición adicional f(0) = 0, tenemos que:

$$f(0) = 0 = 0 + Ci \iff C = 0.$$

Por tanto, la función f es única y viene dada por:

$$f(x+iy) = x^4 - 6x^2y^2 + y^4 + i(4x^3y - 4xy^3) \qquad \forall (x,y) \in \mathbb{R}^2.$$

Ejercicio 1.3.3. Encontrar la condición necesaria y suficiente que deben cumplir $a, b, c \in \mathbb{R}$ para que exista una función entera f tal que:

Re
$$f(x+iy) = ax^2 + bxy + cy^2$$
 para todo $x, y \in \mathbb{R}$.

Supongamos que existe una función entera f cumpliendo las condiciones dadas. Definimos las funciones $u, v : \mathbb{R}^2 \to \mathbb{R}$ dadas por:

$$u(x,y) = \operatorname{Re} f(x+iy) = ax^2 + bxy + cy^2,$$
 $\forall (x,y) \in \mathbb{R}^2,$ $v(x,y) = \operatorname{Im} f(x+iy),$ $\forall (x,y) \in \mathbb{R}^2.$

Por ser una función entera, f es derivable en todo \mathbb{C} , por lo que u, v son diferenciables en \mathbb{R}^2 y, además, se verifican las ecuaciones de Cauchy-Riemann en todo \mathbb{R}^2 . Esto es:

$$\frac{\partial u}{\partial x}(x,y) = \frac{\partial v}{\partial y}(x,y),$$
$$\frac{\partial u}{\partial y}(x,y) = -\frac{\partial v}{\partial x}(x,y).$$

Sustituyendo los valores de las derivadas parciales de u, las ecuaciones de Cauchy-Riemann quedan:

$$\left\{ \begin{array}{rcl}
\frac{\partial v}{\partial y}(x,y) & = & 2ax + by, \\
\frac{\partial v}{\partial x}(x,y) & = & -bx - 2cy.
\end{array} \right\}$$

Integrando con respecto a y la primera ecuación, tenemos que:

$$v(x,y) = 2axy + b \cdot \frac{y^2}{2} + \varphi(x) \qquad \forall (x,y) \in \mathbb{R}^2,$$

donde $\varphi : \mathbb{R} \to \mathbb{R}$ es una función derivable que depende solo de x y representa la constante de integración. Derivando con respecto a x la expresión anterior, obtenemos:

$$\frac{\partial v}{\partial x}(x,y) = 2ay + \varphi'(x)$$

Por tanto, como también tenemos las ecuaciones de Cauchy-Riemann, tenemos que:

$$2ay + \varphi'(x) = -bx - 2cy$$

$$\varphi'(x) = -bx - 2y(a+c) \qquad \forall (x,y) \in \mathbb{R}^2.$$

Como φ tan solo depende de x, la ecuación anterior se cumplirá si y solo si a+c=0; en cuyo caso:

$$\varphi(x) = -\frac{bx^2}{2} + C \qquad \forall x \in \mathbb{R}, \qquad C \in \mathbb{R}.$$

Por tanto, la función f será de la forma:

$$f(x+iy) = u(x,y) + iv(x,y) = ax^{2} + bxy + cy^{2} + i(2axy + C)$$

= $a(x^{2} - y^{2}) + bxy + i(2axy + C)$ $\forall (x,y) \in \mathbb{R}^{2}, C \in \mathbb{R}.$

Por tanto, y a modo de resumen, tenemos que:

$$\exists f \in \mathcal{H}(\mathbb{C}) \text{ tal que } \operatorname{Re} f(x+iy) = ax^2 + bxy + cy^2 \ \forall x,y \in \mathbb{R} \iff a+c=0.$$

- \Rightarrow) Si f cumple las condiciones dadas, hemos probado anteriormente que a+c=0.
- \Leftarrow) Si a+c=0, La función f descrita anteriormente cumple las condiciones dadas.

Ejercicio 1.3.4. Sea Ω un dominio y $f \in \mathcal{H}(\Omega)$. Supongamos que existen $a, b, c \in \mathbb{R}$ con $a^2 + b^2 > 0$, tales que:

$$a \operatorname{Re} f(z) + b \operatorname{Im} f(z) = c$$
 para todo $z \in \Omega$.

Probar que f es constante.

Definimos las funciones $u, v : \Omega \to \mathbb{R}$ dadas por:

$$u(x,y) = \operatorname{Re} f(x+iy),$$
 $\forall (x,y) \in \mathbb{R}^2,$
 $v(x,y) = \operatorname{Im} f(x+iy),$ $\forall (x,y) \in \mathbb{R}^2.$

Por ser una función holomorfa, f es derivable en todo Ω , por lo que u, v son diferenciables en Ω y, además, se verifican las ecuaciones de Cauchy-Riemann en todo Ω . Esto es:

$$\begin{split} \frac{\partial u}{\partial x}(x,y) &= \frac{\partial v}{\partial y}(x,y), \\ \frac{\partial u}{\partial y}(x,y) &= -\frac{\partial v}{\partial x}(x,y). \end{split}$$

Además, considerando $z=x+iy\in\Omega,$ la ecuación del enunciado se puede reescribir como:

$$au(x,y) + bv(x,y) = c \quad \forall (x,y) \in \Omega$$

Derivamos con respecto a x y y la ecuación anterior, obteniendo:

$$a\frac{\partial u}{\partial x}(x,y) + b\frac{\partial v}{\partial x}(x,y) = 0,$$

$$a\frac{\partial u}{\partial y}(x,y) + b\frac{\partial v}{\partial y}(x,y) = 0.$$

Usando las ecuaciones de Cauchy-Riemann, reescribimos las ecuaciones anteriores usando solo las derivadas parciales respecto de x:

$$a\frac{\partial u}{\partial x}(x,y) + b\frac{\partial v}{\partial x}(x,y) = 0,$$

$$b\frac{\partial u}{\partial x}(x,y) - a\frac{\partial v}{\partial x}(x,y) = 0.$$

Este se trata de un sistema de ecuaciones lineales homogéneo con matriz de coeficientes:

$$M = \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \Longrightarrow |M| = -(a^2 + b^2) \neq 0$$

Por tanto, sabemos que, para cada $(x,y) \in \Omega$, la única solución es la trivial. Es decir:

$$\frac{\partial u}{\partial x}(x,y) = \frac{\partial v}{\partial x}(x,y) = 0 \qquad \forall (x,y) \in \Omega.$$

Por tanto, tenemos que:

$$f'(x+iy) = \frac{\partial u}{\partial x}(x,y) + i\frac{\partial v}{\partial x}(x,y) = 0 \qquad \forall (x,y) \in \Omega.$$

Por tanto, como $f \in \mathcal{H}(\Omega)$ y Ω es un dominio, tenemos que f es constante en Ω .

Ejercicio 1.3.5. Sea Ω un dominio y $f \in \mathcal{H}(\Omega)$. Probar que si $\overline{f} \in \mathcal{H}(\Omega)$, entonces f es constante.

Usando las ecuaciones de Cauchy-Riemann: Definimos las funciones $u, v : \Omega \to \mathbb{R}$ dadas por:

$$u(x,y) = \operatorname{Re} f(x+iy), \qquad \forall (x,y) \in \Omega,$$

 $v(x,y) = \operatorname{Im} f(x+iy), \qquad \forall (x,y) \in \Omega.$

Como $f \in \mathcal{H}(\Omega)$, u, v son diferenciables en Ω y, además, se verifican las ecuaciones de Cauchy-Riemann en todo Ω . Esto es:

$$\frac{\partial u}{\partial x}(x,y) = \frac{\partial v}{\partial y}(x,y),$$
$$\frac{\partial u}{\partial y}(x,y) = -\frac{\partial v}{\partial x}(x,y).$$

Escribimos ahora la función conjugada de f:

$$\overline{f(x+iy)} = \overline{u(x,y) + iv(x,y)} = u(x,y) - iv(x,y) \qquad \forall (x,y) \in \Omega.$$

Por tanto, como $\overline{f} \in \mathcal{H}(\Omega)$, también se verifican las ecuaciones de Cauchy-Riemann en todo Ω (teniendo en cuenta ahora el cambio de signo):

$$\frac{\partial u}{\partial x}(x,y) = -\frac{\partial v}{\partial y}(x,y),$$
$$\frac{\partial u}{\partial y}(x,y) = \frac{\partial v}{\partial x}(x,y).$$

Uniendo las 4 ecuaciones, deducimos que:

$$\frac{\partial v}{\partial y}(x,y) = \frac{\partial u}{\partial x}(x,y) = -\frac{\partial u}{\partial x}(x,y)$$
$$\frac{\partial u}{\partial y}(x,y) = \frac{\partial v}{\partial x}(x,y) = -\frac{\partial v}{\partial x}(x,y)$$

Por tanto, tenemos para cada $(x, y) \in \Omega$:

$$\frac{\partial u}{\partial x}(x,y) = 0,$$
$$\frac{\partial v}{\partial x}(x,y) = 0$$

Por tanto, se tiene que:

$$f'(x+iy) = \frac{\partial u}{\partial x}(x,y) + i\frac{\partial v}{\partial x}(x,y) = 0 \qquad \forall (x,y) \in \Omega.$$

Por tanto, como $f \in \mathcal{H}(\Omega)$ y Ω es un dominio, tenemos que f es constante en Ω .

Usando un resultado teórico: Como $f, \overline{f} \in \mathcal{H}(\Omega)$, tenemos que:

$$\operatorname{Re} f = \frac{f + \overline{f}}{2} \in \mathcal{H}(\Omega)$$

Como además sabemos que $\operatorname{Im}(\operatorname{Re} f)=0$, en particular es constante y, por tanto, $\operatorname{Re} f$ es constante.

Como $f \in \mathcal{H}(\Omega)$ y Re f es constante, tenemos que f es constante (como queríamos demostrar).

Ejercicio 1.3.6. Sea Ω un dominio y $f \in \mathcal{H}(\Omega)$. Sea $\Omega^* = \{\overline{z} \mid z \in \Omega\}$ y $f^* : \Omega^* \to \mathbb{C}$ la función definida por:

$$f^*(z) = \overline{f(\overline{z})}$$
 para todo $z \in \Omega^*$.

Probar que $f^* \in \mathcal{H}(\Omega^*)$.

En primer lugar, hemos de ver que Ω^* es abierto. Definimos la siguiente aplicación:

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (x,-y)$

Vemos que T es un homeomorfismo entre espacios topológicos, y $T(\Omega) = \Omega^*$. Por tanto, Ω^* es abierto.

Usando las ecuaciones de Cauchy-Riemann: Definimos las funciones $u, v : \Omega \to \mathbb{R}$ dadas por:

$$u(x,y) = \operatorname{Re} f(x+iy), \qquad \forall (x,y) \in \Omega,$$

 $v(x,y) = \operatorname{Im} f(x+iy), \qquad \forall (x,y) \in \Omega.$

Tenemos por tanto:

$$\begin{split} f(x+iy) &= u(x,y) + iv(x,y), & \forall (x,y) \in \Omega, \\ f(\overline{x+iy}) &= f(x-iy) = u(x,-y) + iv(x,-y), & \forall (x,y) \in \Omega^*, \\ f^*(x+iy) &= \overline{f\left(\overline{x+iy}\right)} = \overline{u(x,-y) + iv(x,-y)} = u(x,-y) - iv(x,-y), & \forall (x,y) \in \Omega^*. \end{split}$$

Definimos ahora las funciones $u^*, v^* : \Omega^* \to \mathbb{R}$ dadas por:

$$u^*(x,y) = \text{Re } f^*(x+iy) = u(x,-y), \qquad \forall (x,y) \in \Omega^*, v^*(x,y) = \text{Im } f^*(x+iy) = -v(x,-y), \qquad \forall (x,y) \in \Omega^*.$$

Calculamos las derivadas parciales de u^*, v^* . Para cada $(x, y) \in \Omega^*$, tenemos:

$$\frac{\partial u^*}{\partial x}(x,y) = \frac{\partial u}{\partial x}(x,-y),$$

$$\frac{\partial u^*}{\partial y}(x,y) = -\frac{\partial u}{\partial y}(x,-y),$$

$$\frac{\partial v^*}{\partial x}(x,y) = -\frac{\partial v}{\partial x}(x,-y),$$

$$\frac{\partial v^*}{\partial y}(x,y) = \frac{\partial v}{\partial y}(x,-y).$$

Por un lado, como $f \in \mathcal{H}(\Omega)$, tenemos que las derivadas parciales de u, v son continuas en Ω y, además, se verifican las ecuaciones de Cauchy-Riemann en todo Ω . Sabiendo esto, comprobemos ahora que u^*, v^* son también diferenciables en Ω^* . Para ello, fijado $(x, y) \in \Omega^*$, tenemos que $(x, -y) \in \Omega$; y como las derivadas parciales de u, v son continuas en Ω , tenemos que las derivadas parciales de u^*, v^* son continuas en Ω^* ; por lo que u^*, v^* son diferenciables en Ω^* . Veamos ahora que se verifican las ecuaciones de Cauchy-Riemann en Ω^* . Para cada $(x, y) \in \Omega^*$, tenemos:

$$\begin{split} \frac{\partial u^*}{\partial x}(x,y) &= \frac{\partial u}{\partial x}(x,-y) = \frac{\partial v}{\partial y}(x,-y) = \frac{\partial v^*}{\partial y}(x,y), \\ \frac{\partial u^*}{\partial y}(x,y) &= -\frac{\partial u}{\partial y}(x,-y) = \frac{\partial v}{\partial x}(x,-y) = -\frac{\partial v^*}{\partial x}(x,y). \end{split}$$

Por tanto, se cumplen las ecuaciones de Cauchy-Riemann en Ω^* , por lo que $f^* \in \mathcal{H}(\Omega^*)$. De hecho, tenemos que:

$$(f^*)'(x+iy) = \frac{\partial u^*}{\partial x}(x,y) + i\frac{\partial v^*}{\partial x}(x,y) = \frac{\partial u}{\partial x}(x,-y) - i\frac{\partial v}{\partial x}(x,-y) = \overline{f'(x-iy)} \qquad \forall (x,y) \in \Omega^*.$$

Por tanto, se tiene que $f^* \in \mathcal{H}(\Omega^*)$, con:

$$(f^*)'(a) = \overline{f'(\overline{a})} \qquad \forall a \in \Omega^*.$$

A partir de la definición: Sea $a^* \in \Omega^*$, de forma que tenemos $a \in \Omega$ tal que $a^* = \overline{a}$. Calculamos el límite:

$$\lim_{z^* \to a^*} \frac{f^*(z^*) - f^*(a^*)}{z^* - a^*} = \lim_{z^* \to a^*} \frac{\overline{f(\overline{z^*})} - \overline{f(\overline{a^*})}}{z^* - a^*} = \lim_{z^* \to a^*} \frac{\overline{f(\overline{z^*})} - f(a)}{z^* - a^*} = \lim_{z^* \to a^*} \frac{\overline{f(\overline{z^*})} - f(a)}{z^* - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - \overline{a^*}} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a^*} = \lim_{z^* \to a^*} \frac{f(\overline{z^*}) - f(a)}$$

Para todo $z^* \in \Omega^*$, tenemos que $\overline{z^*} \in \Omega$. Además, usando que la conjugación es una función continua en \mathbb{C} , tenemos que:

$$\lim_{z^* \to a^*} \frac{f^*(z^*) - f^*(a^*)}{z^* - a^*} = \overline{\lim_{\overline{z^*} \to a} \frac{f(\overline{z^*}) - f(a)}{\overline{z^*} - a}} = \overline{f'(a)} = \overline{f'(\overline{a}^*)}.$$

donde la última igualdad se debe a que, si $z^* \in \Omega^*$, entonces $\overline{z^*} \in \Omega$. Por tanto, como dicho límite existe, tenemos que $f^* \in \mathcal{H}(\Omega^*)$, con:

$$(f^*)'(a^*) = \overline{f'(\overline{a}^*)} \qquad \forall a^* \in \Omega^*.$$

Ejercicio 1.3.7. Probar que la restricción de la función exponencial a un subconjunto abierto no vacío del plano, nunca es una función racional.

La función exponencial es la función siguiente:

$$f: \mathbb{C} \longrightarrow \mathbb{C}$$

 $z \longmapsto e^z := f(z) = e^{\operatorname{Re} z} (\cos(\operatorname{Im} z) + i \operatorname{sen}(\operatorname{Im} z))$

Supongamos que existe un subconjunto abierto no vacío $\Omega \subset \mathbb{C}$ tal que $f_{\mid \Omega}$ es una función racional. Por tanto, existen $p,q \in \mathcal{P}(\Omega)$, con $q(z) \neq 0$ para todo $z \in \Omega$, tales que:

$$f(z) = \frac{p(z)}{q(z)}$$
 $\forall z \in \Omega.$

Por un lado, sabemos que la derivada de la exponencial es ella misma, luego:

$$f'(z) = f(z) = \frac{p(z)}{q(z)}$$
 $\forall z \in \Omega.$

Por otro lado, empleando la regla de la derivada de un cociente, tenemos que:

$$f'(z) = \frac{p'(z)q(z) - p(z)q'(z)}{q^2(z)} \quad \forall z \in \Omega.$$

Igualando ambas expresiones obtenemos, para todo $z \in \Omega$:

$$\frac{p(z)}{q(z)} = \frac{p'(z)q(z) - p(z)q'(z)}{q^2(z)}$$
(1.3)

$$p(z)q(z) = p'(z)q(z) - p(z)q'(z)$$
 (1.4)

Usaremos ahora los siguientes conceptos. Dados dos polinomios cualesquiera $p,q\in\mathcal{P}(\mathbb{C}),$ se tiene que:

$$\deg pq = \deg p + \deg q,$$

$$\deg(p+q) \leqslant \max\{\deg p, \deg q\},$$

$$\deg(p-q) \leqslant \max\{\deg p, \deg q\},$$

$$\deg p' = \begin{cases} \deg p - 1 & \text{si } \deg p \geqslant 1, \\ 0 & \text{si } \deg p = 0. \end{cases}$$

Veamos ahora que p, q no son constantes.

• Supongamos que q es constante:

Entonces, $f \in \mathcal{P}(\Omega)$. Por tanto, $\exists n \in \mathbb{N}$ tal que $f^{(n)}(z) = 0$ para todo $z \in \Omega$. No obstante, sabemos que esto no es cierto, ya que $f^{(n)}(z) = f(z) \neq 0$ para todo $z \in \Omega$. Por tanto, q no puede ser constante.

\blacksquare Supongamos que p es constante:

Sabemos que p no es nulo, ya que $f(z) \neq 0$ para todo $z \in \Omega$. Además, p'(z) = 0 para todo $z \in \Omega$. Por tanto, la ecuación (1.4) se reduce a:

$$p(z)q(z) = -p(z)q'(z) \Longrightarrow q(z) = -q'(z) \quad \forall z \in \Omega$$

Por tanto, como deg $q = \deg q'$, tenemos que q es constante (algo que ya hemos visto que no puede ser). Por tanto, p no puede ser constante.

Por tanto, tenemos que:

$$\deg(pq) = \deg p + \deg q$$

$$\deg(p') = \deg p - 1$$

$$\deg(q') = \deg q - 1$$

$$\deg(p'q) = \deg p + \deg q - 1$$

$$\deg(pq') = \deg p + \deg q - 1$$

$$\deg(pq') = \deg p + \deg q - 1$$

$$\deg(pq' - pq') \leqslant \max\{\deg p'q, \deg pq'\} = \deg p + \deg q - 1$$

Por tanto, tenemos que:

$$\deg(p'q - pq') \leqslant \deg p + \deg q - 1 < \deg p + \deg q = \deg(pq)$$

Por tanto, la ecuación (1.4) no puede cumplirse para ningún par de polinomios $p, q \in \mathcal{P}(\Omega)$. Por tanto, la función exponencial no puede ser racional en ningún subconjunto abierto no vacío del plano.

1.4. Funciones analíticas

Ejercicio 1.4.1. Calcular el radio de convergencia de las siguientes series de potencias:

$$1. \sum_{n \ge 1} \frac{n!}{n^n} z^n$$

Para cada $n \in \mathbb{N}$, definimos:

$$\alpha_n = \frac{n!}{n^n}$$

Con vistas a aplicar el criterio del cociente para sucesiones, consideramos el siguiente cociente:

$$\frac{\alpha_{n+1}}{\alpha_n} = \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = \frac{(n+1)n^n}{(n+1)^{n+1}} = \left(\frac{n}{n+1}\right)^n$$

Como la base tiende a 1 y el exponente diverge positivamente, aplicamos el criterio de Euler, y tenemos:

$$\lim_{n \to \infty} \frac{\alpha_{n+1}}{\alpha_n} = \exp\left[\lim_{n \to \infty} n \left(\frac{n}{n+1} - 1\right)\right] = \exp\left[\lim_{n \to \infty} n \left(\frac{n-n-1}{n+1}\right)\right] = \exp\left[\lim_{n \to \infty} \frac{-n}{n+1}\right] = e^{-1} = \frac{1}{e}$$

Por tanto, por el criterio del cociente para sucesiones y por la Fórmula de Cauchy-Hadamard, tenemos que:

$$\{\sqrt[n]{\alpha_n}\} \to \frac{1}{e} \implies R = \frac{1}{1/e} = e$$

2.
$$\sum_{n>0} z^{2n}$$

En primer lugar, vemos que no se trata de forma directa de una serie de potencias. No obstante, definimos la siguiente sucesión $\{\alpha_n\}$:

$$\alpha_n = \begin{cases} 1 & \text{si } n \text{ es par} \\ 0 & \text{si } n \text{ es impar} \end{cases}$$

De esta forma, tenemos que:

$$\sum_{n\geqslant 0} z^{2n} = \sum_{n\geqslant 0} \alpha_n z^n$$

Estudiamos por tanto la sucesión $\{\sqrt[n]{\alpha_n}\}=\{\alpha_n\}$. Tenemos en primer lugar que no es convergente, por lo que no podemos considerar su límite. No obstante, tenemos que está acotada, por lo que consideramos su límite superior:

$$\limsup\{\sqrt[n]{\alpha_n}\}=\limsup\{\alpha_n\}=\lim_{n\to\infty}\sup\{\alpha_k\mid k\geqslant n\}=\lim_{n\to\infty}\sup\{1,0\}=\sup\{1,0\}=1$$

$$R = \frac{1}{\limsup\{\sqrt[n]{\alpha_n}\}} = \frac{1}{1} = 1$$

3.
$$\sum_{n\geq 0} 2^n z^{n!}$$

De nuevo, no está en la forma de una serie de potencias. No obstante, definimos en primer lugar el siguiente conjunto M:

$$M = \{n! \mid n \in \mathbb{N}\} = \{0, 1, 2, 6, 24, \ldots\}$$

que claramente es infinito.

De esta forma, definimos la sucesión $\{\alpha_n\}$:

$$\alpha_n = \begin{cases} 2^n & \text{si } n \in M \\ 0 & \text{si } n \notin M \end{cases}$$

Por tanto, tenemos que:

$$\sqrt[n]{\alpha_n} = \begin{cases} 2 & \text{si } n \in M \\ 0 & \text{si } n \notin M \end{cases}$$

Por tanto, para cada $n \in \mathbb{N}$, tenemos:

$$\sup\{\sqrt[k]{\alpha_k} \mid k \geqslant n\} = \sup\{0, 2\} = 2 \qquad \forall n \in \mathbb{N}$$

Por tanto, el límite superior de la sucesión $\{\sqrt[n]{\alpha_n}\}$ es:

$$\limsup \{\sqrt[n]{\alpha_n}\} = \lim_{n \to \infty} \sup \{\sqrt[k]{\alpha_k} \mid k \geqslant n\} = \lim_{n \to \infty} 2 = 2$$

Por tanto, por la Fórmula de Cauchy-Hadamard, tenemos que:

$$R = \frac{1}{\limsup\{\sqrt[n]{\alpha_n}\}} = \frac{1}{2}$$

4.
$$\sum_{n\geq 0} (3+(-1)^n)^n z^n$$

Definimos la sucesión $\{\alpha_n\}$:

$$\alpha_n = \left(3 + (-1)^n\right)^n$$

Por tanto, la sucesión $\{\sqrt[n]{\alpha_n}\}$ es:

$$\sqrt[n]{\alpha_n} = \sqrt[n]{(3 + (-1)^n)^n} = 3 + (-1)^n \quad \forall n \in \mathbb{N}$$

Vemos que no es convergente, pero sí está acotada, puesto que:

$$\sqrt[n]{\alpha_n} = \begin{cases} 4 & \text{si } n \text{ es par} \\ 2 & \text{si } n \text{ es impar} \end{cases}$$

Por tanto, podemos considerar el límite superior de la sucesión $\{\sqrt[n]{\alpha_n}\}$:

$$\limsup\{\sqrt[n]{\alpha_n}\} = \lim_{n \to \infty} \sup\{\sqrt[k]{\alpha_k} \mid k \geqslant n\} = \lim_{n \to \infty} \sup\{2, 4\} = 4$$

$$R = \frac{1}{\limsup\{\sqrt[n]{\alpha_n}\}} = \frac{1}{4}$$

5.
$$\sum_{n>0} (n+a^n) z^n \text{ con } a \in \mathbb{R}^+$$

Definimos la sucesión $\{\alpha_n\}$:

$$\alpha_n = n + a^n$$

Es directo ver que $|\alpha_n| = \alpha_n$ para todo $n \in \mathbb{N}$. Para estudiar la sucesión $\{\sqrt[n]{\alpha_n}\}$ empleamos el criterio del cociente para sucesiones:

$$\frac{\alpha_{n+1}}{\alpha_n} = \frac{n+1+a^{n+1}}{n+a^n} = \frac{n+a\cdot a^n}{n+a^n} + \frac{1}{n+a^n} \qquad \forall n \in \mathbb{N}$$

Independientemente del valor de $a \in \mathbb{R}^+$, tenemos que:

$$\left\{\frac{1}{n+a^n}\right\} \to 0$$

Para el otro sumando, distinguimos en función de los valores de a:

• Si a = 1, tenemos que:

$$\left\{\frac{n+a\cdot a^n}{n+a^n}\right\} = \left\{\frac{n+1}{n+1}\right\} = \{1\} \to 1$$

Por tanto, por el Criterio del Cociente para sucesiones, tenemos que:

$$\frac{\alpha_{n+1}}{\alpha_n} \to 1 + 0 = 1 \Longrightarrow \{\sqrt[n]{\alpha_n}\} \to 1$$

Por tanto, por la Fórmula de Cauchy-Hadamard, tenemos que:

$$R = \frac{1}{\limsup\{\sqrt[n]{\alpha_n}\}} = \frac{1}{1} = 1$$

• Si a < 1, tenemos que:

$$\left\{\frac{n+a\cdot a^n}{n+a^n}\right\} = \left\{\frac{1+a\cdot \frac{a^n}{n}}{1+\frac{a^n}{n}}\right\} \to 1$$

Por tanto, por el Criterio del Cociente para sucesiones, tenemos que:

$$\left\{\frac{\alpha_{n+1}}{\alpha_n}\right\} \to 1 \Longrightarrow \left\{\sqrt[n]{\alpha_n}\right\} \to 1$$

$$R = \frac{1}{\limsup\{\sqrt[n]{\alpha_n}\}} = 1$$

• Si a > 1, tenemos que:

$$\left\{\frac{n+a\cdot a^n}{n+a^n}\right\} = \left\{\frac{\frac{n}{a^n}+a}{\frac{n}{a^n}+1}\right\} \to a$$

puesto que $\left\{\frac{n}{a^n}\right\} \to 0$. Por tanto, por el Criterio del Cociente para sucesiones, tenemos que:

$$\left\{\frac{\alpha_{n+1}}{\alpha_n}\right\} \to a \Longrightarrow \left\{\sqrt[n]{\alpha_n}\right\} \to a$$

Por tanto, por la Fórmula de Cauchy-Hadamard, tenemos que:

$$R = \frac{1}{\limsup\{\sqrt[n]{\alpha_n}\}} = \frac{1}{a}$$

6. $\sum_{n>0} a^{n^2} z^n \text{ con } a \in \mathbb{C}$

Definimos la sucesión $\{\alpha_n\}$:

$$\alpha_n = a^{n^2}$$

Tenemos que:

$$\sqrt[n]{|\alpha_n|} = \sqrt[n]{|a|^{n^2}} = |a|^n \qquad \forall n \in \mathbb{N}$$

Por tanto, distinguimos en función de los valores de |a|:

• Si |a| < 1, tenemos que:

$$\lim_{n \to \infty} \sqrt[n]{|\alpha_n|} = \lim_{n \to \infty} |a|^n = 0$$

Por tanto, por la Fórmula de Cauchy-Hadamard, tenemos que:

$$R = \infty$$

• Si |a| = 1, tenemos que:

$$\lim_{n \to \infty} \sqrt[n]{|\alpha_n|} = \lim_{n \to \infty} 1 = 1$$

Por tanto, por la Fórmula de Cauchy-Hadamard, tenemos que:

$$R = 1$$

• Si |a| > 1, tenemos que:

$$\left\{\sqrt[n]{|\alpha_n|}\right\} = \{|a|^n\}$$

Supongamos que dicha sucesión está mayorada; es decir, que existe $M \in \mathbb{R}^+$ tal que $|a|^n \leq M$ para todo $n \in \mathbb{N}$. Entonces:

$$|a|^n \leqslant \iff n \ln |a| \leqslant \ln M \iff n \leqslant \frac{\ln M}{\ln |a|}$$

Tomando $N=\left\lceil\frac{\ln M}{\ln |a|}+1\right\rceil$, tenemos que $|a|^N\geqslant M$, lo que contradice la suposición. Por tanto, la sucesión no está mayorada.

Por tanto, por la Fórmula de Cauchy-Hadamard, tenemos que:

$$R = 0$$

Ejercicio 1.4.2. Conocido el radio de convergencia R de la serie $\sum_{n\geqslant 0} \alpha_n z^n$, calcular el de las siguientes:

1. $\sum_{n\geq 0} n^k \alpha_n z^n \text{ con } k \in \mathbb{N} \text{ fijo.}$

Opción 1. Distinguir casos

Definimos la sucesión $\{\beta_n\}$:

$$\beta_n = n^k \alpha_n \qquad \forall n \in \mathbb{N}$$

Sea \widetilde{R} el radio de convergencia de la serie a estudiar. Distinguimos en función de los valores de R:

■ Si R = 0, tenemos que la sucesión $\left\{ \sqrt[n]{|\alpha_n|} \right\}$ no está mayorada. Por tanto, la sucesión:

$$\left\{\sqrt[n]{|\beta_n|}\right\} = \left\{\sqrt[n]{n^k |\alpha_n|}\right\} = \left\{\sqrt[n]{n^k}\sqrt[n]{|\alpha_n|}\right\}$$

Supongamos ahora que la sucesión $\left\{\sqrt[n]{|\beta_n|}\right\}$ está mayorada; es decir, que existe $M \in \mathbb{R}^+$ tal que $\sqrt[n]{n^k|\alpha_n|} \leqslant M$ para todo $n \in \mathbb{N}$. Entonces, para todo $n \geqslant 1$:

$$\sqrt[n]{n^k |\alpha_n|} \leqslant M \iff \sqrt[n]{|\alpha_n|} \leqslant \frac{M}{\sqrt[n]{n^k}} \leqslant M \iff \sqrt[n]{n^k} \geqslant 1 \iff n^k \geqslant 1$$

Por tanto, llegamos a que la sucesión $\left\{\sqrt[n]{|\alpha_n|}\right\}$ está mayorada, lo que contradice la hipótesis. Por tanto, la sucesión $\left\{\sqrt[n]{|\beta_n|}\right\}$ no está mayorada, por lo que:

$$\widetilde{R} = R = 0$$

■ Si $R = \infty$, tenemos que $\left\{\sqrt[n]{|\alpha_n|}\right\} \to 0$. Calculemos en primer lugar el límite de la sucesión $\left\{\sqrt[n]{n^k}\right\}$ usando el criterio del cociente para sucesiones:

$$\left\{\frac{(n+1)^k}{n^k}\right\} = \left\{\left(1 + \frac{1}{n}\right)^k\right\} \to 1^k = 1$$

Por tanto, tenemos que $\left\{\sqrt[n]{n^k}\right\} \to 1$. Por tanto, la sucesión $\left\{\sqrt[n]{|\beta_n|}\right\}$ es:

 $\left\{\sqrt[n]{|\beta_n|}\right\} = \left\{\sqrt[n]{n^k}\sqrt[n]{|\alpha_n|}\right\} \to 1 \cdot 0 = 0$

$$\widetilde{R} = \infty = R$$

■ Si $R \in \mathbb{R}^+$, tenemos que lím sup $\left\{ \sqrt[n]{|\alpha_n|} \right\} = 1/R$. Aunque sí bien es cierto que el límite superior del producto de dos sucesiones acotadas no tiene por qué ser el producto de los límites superiores, si una de las sucesiones es convergente, entonces sí se cumple¹. Por tanto, tenemos que:

$$\lim \sup \left\{ \sqrt[n]{|\beta_n|} \right\} = \lim \sup \left\{ \sqrt[n]{n^k} \sqrt[n]{|\alpha_n|} \right\} =$$

$$= \lim_{n \to \infty} \sqrt[n]{n^k} \cdot \lim \sup \left\{ \sqrt[n]{|\alpha_n|} \right\} = 1 \cdot \frac{1}{R} = \frac{1}{R}$$

Por tanto, por la Fórmula de Cauchy-Hadamard, tenemos que:

$$\widetilde{R} = \frac{1}{\limsup\left\{\sqrt[n]{|\beta_n|}\right\}} = R$$

Opción 2. Emplear un lema teórico

Mediante inducción, demostraremos que, para cada $k \in \mathbb{N} \cup \{0\}$, la siguiente serie tiene radio de convergencia R:

$$\sum_{n\geqslant 1} n^k \alpha_n z^n$$

Comprobemos entonces dicha inducción:

- Caso base: k = 0. La serie a estudiar es la de partida (a excepción del primer término), por lo que el radio de convergencia es R.
- Hipótesis de inducción: Supongamos que la siguiente serie tiene radio de convergencia R:

$$\sum_{n\geq 1} n^k \alpha_n z^n$$

■ Paso inductivo: Demostrémoslo para k+1. Por el Lema del Radio de Convergencia de la Serie derivada término a término, tenemos que el radio de la serie siguiente es R:

$$\sum_{n\geqslant 1} n \cdot n^k \alpha_n z^{n-1} = \sum_{n\geqslant 1} n^{k+1} \alpha_n z^{n-1}$$

Al multiplicar el término general de una serie por un número $z \in \mathbb{C}^*$, el radio de convergencia se mantiene, puesto que:

$$\{\rho \in \mathbb{R}^+ : \{|\alpha_n|\rho^n\} \text{ está acotada}\} = \{\rho \in \mathbb{R}^+ : \{|z||\alpha_n|\rho^n\} \text{ está acotada}\}$$

Por tanto, el radio de convergencia de la siguiente serie es R:

$$\sum_{n\geq 1} n^{k+1} \alpha_n z^n$$

¹Concepto que no demostramos por ser materia de Cálculo I.

Por tanto, por inducción, tenemos que el radio de convergencia de la serie a estudiar es R para todo $k \in \mathbb{N} \cup \{0\}$.

$$2. \sum_{n \ge 0} \frac{\alpha_n}{n!} z^n$$

Definimos la sucesión $\{\beta_n\}$:

$$\beta_n = \frac{\alpha_n}{n!} \qquad \forall n \in \mathbb{N}$$

Sea \widetilde{R} el radio de convergencia de la serie a estudiar. Distinguimos en función de los valores de R:

■ Si $R \in \mathbb{R}^+ \cup \{\infty\}$, tenemos que la sucesión $\left\{\sqrt[n]{|\alpha_n|}\right\}$ está mayorada. Calculamos ahora el siguiente límite:

$$\lim_{n \to \infty} \frac{1/(n+1)!}{1/n!} = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0$$

Por tanto, por el Criterio del Cociente para sucesiones, tenemos que:

$$\left\{\sqrt[n]{\frac{1}{n!}}\right\} \to 0$$

Por tanto, tenemos que:

$$\left\{\sqrt[n]{|\beta_n|}\right\} = \left\{\sqrt[n]{\frac{|\alpha_n|}{n!}}\right\} = \left\{\sqrt[n]{|\alpha_n|}\sqrt[n]{\frac{1}{n!}}\right\} \to 0$$

Por tanto, por la Fórmula de Cauchy-Hadamard, tenemos que:

$$\widetilde{R} = \infty$$

- Si R = 0, tenemos que la sucesión $\left\{ \sqrt[n]{|\alpha_n|} \right\}$ no está mayorada. Por tanto, no podemos garantizar nada sobre \widetilde{R} , puesto que pueden darse las tres casuísticas. Veámoslo:
 - Si $\alpha_n = (n!)^2$, tenemos que:

$$\sqrt[n]{|\beta_n|} = \sqrt[n]{\frac{(n!)^2}{n!}} = \sqrt[n]{n!}$$

Empleamos ahora el criterio del cociente para sucesiones:

$$\left\{ \frac{(n+1)!}{n!} \right\} = \{(n+1)\}$$

Como la sucesión $\{(n+1)\}$ diverge positivamente, entonces la sucesión $\{\sqrt[n]{\beta_n}\}=\{\sqrt[n]{n!}\}$ también diverge positivamente. Por tanto, por la Fórmula de Cauchy-Hadamard, tenemos que:

$$\widetilde{R} = 0$$

• Fijado $\lambda \in \mathbb{R}^+$, si $\alpha_n = \lambda^n n!$, tenemos que:

$$\left\{\sqrt[n]{|\beta_n|}\right\} = \left\{\sqrt[n]{\frac{\lambda^n n!}{n!}}\right\} = \left\{\sqrt[n]{\lambda^n}\right\} = \{\lambda\} \to \lambda$$

Por tanto, por la Fórmula de Cauchy-Hadamard, tenemos que:

$$\widetilde{R} = \frac{1}{\lambda}$$

• Si $\alpha_n = \sqrt{n!}$, tenemos que:

$$\left\{\sqrt[n]{|\beta_n|}\right\} = \left\{\sqrt[n]{\frac{\sqrt{n!}}{n!}}\right\} = \left\{\sqrt[n]{\frac{1}{\sqrt{n!}}}\right\} = \left\{\frac{1}{\sqrt[2n]{n!}}\right\} \to 0$$

Por tanto, por la Fórmula de Cauchy-Hadamard, tenemos que:

$$\widetilde{R} = \infty$$

Ejercicio 1.4.3. Caracterizar las series de potencias que convergen uniformemente en todo el plano.

Fijado $a \in \mathbb{C}$, definimos la siguiente función para cada $n \in \mathbb{N} \cup \{0\}$:

$$f_n: \mathbb{C} \longrightarrow \mathbb{C}$$

 $z \longmapsto \alpha_n (z-a)^n$

Consideramos ahora la serie de potencias $\sum_{n\geq 0} f_n$. Definimos el siguiente conjunto:

$$A = \{ n \in \mathbb{N} \cup \{0\} \mid \alpha_n \neq 0 \}$$

Veamos que la serie converge uniformemente en todo el plano si y solo si A es finito.

⇒) Por el recíproco, supongamos que A es infinito; y veamos que la serie no converge uniformemente en todo el plano. Para ello, comprobaremos que el término general de la serie no converge uniformemente a la función nula en todo el plano.

Por reducción al absurdo, supongamos que el término general de la serie converge uniformemente a la función f nula en todo el plano. Consideramos la siguiente sucesión:

$$\begin{cases} z_n = 0 & \text{si } n \notin A \\ z_n = a + \left(\frac{1}{\alpha_n}\right)^{1/n} & \text{si } n \in A \end{cases}$$

Por tanto, tenemos que:

$$f_n(z_n) = \alpha_n(z_n - a)^n = \alpha_n \left(\left(\frac{1}{\alpha_n} \right)^{1/n} \right)^n = \alpha_n \left(\frac{1}{\alpha_n} \right) = 1 \quad \forall n \in A$$

Por tanto, para todo $n \in A$, tenemos que:

$$f_n(z_n) - f(z_n) = 1 - 0 = 1$$

Como A es infinito, entonces tenemos que $\{f_n(z_n) - f(z_n)\}$ no converge puntualmente a la función nula en todo el plano, por lo que hemos llegado a una contradicción y el término general de la serie no converge uniformemente a la función nula en todo el plano. Por tanto, la serie no converge uniformemente en todo el plano.

 \iff) Supongamos ahora que A es finito. Si $A=\emptyset$, entonces se tiene trivialmente la convergencia uniforme de la serie en todo el plano (a la función nula). Supongamos ahora que $A \neq \emptyset$. Sea entonces $m=1+\max A$ (podemos considerar el máximo, puesto que es finito). Por tanto:

$$\forall \varepsilon \in \mathbb{R}^+ \qquad n \geqslant m \Longrightarrow \left| \sum_{k=n}^{\infty} f_k(z) \right| = \left| \sum_{k=n}^{\infty} 0 \cdot (z-a)^k \right| = 0 < \varepsilon \qquad \forall z \in \mathbb{C}$$

Por tanto, la serie converge uniformemente en todo el plano.

Ejercicio 1.4.4. Estudiar la convergencia puntual, absoluta y uniforme, de la serie $\sum_{n} f_n$ donde:

$$f_n(z) = \left(\frac{z-1}{z+1}\right)^n$$
 para todo $z \in \mathbb{C} \setminus \{-1\}$

Definimos la siguiente función auxiliar:

$$\varphi: \ \mathbb{C} \setminus \{-1\} \ \longrightarrow \ \mathbb{C}$$

$$z \ \longmapsto \ \frac{z-1}{z+1}$$

Por tanto, tenemos que nuestra serie a estudiar es:

$$\sum_{n \geq 0} \left(\varphi(z) \right)^n$$

Estudiamos en primer lugar la convergencia absoluta de la serie geométrica de razón $\varphi(z)$. Sabemos que converge absolutamente (y por tanto puntualmente) en cualquier $z \in \mathbb{C}$ tal que $\varphi(z) \in D(0,1)$, mientras que no converge (ni puntualmente) en cualquier $z \in \mathbb{C}$ tal que $\varphi(z) \notin D(0,1)$. Tenemos que:

$$\varphi(z) \in D(0,1) \iff |\varphi(z)| < 1 \iff |z-1| < |z+1| \iff |z-1|^2 < |z+1|^2 \iff (z-1)(\overline{z}-1) < (z+1)(\overline{z}+1) \iff |z|^2 + 1 - 2\operatorname{Re}(z) < |z|^2 + 1 + 2\operatorname{Re}(z) \iff \operatorname{Re}(z) > 0$$

Por tanto, definimos el siguiente conjunto:

$$H = \{ z \in \mathbb{C} \mid \text{Re}(z) > 0 \}$$

Por tanto, la serie converge absolutamente (y por tanto puntualmente) en H, y no converge (ni puntualmente) en $\mathbb{C} \setminus H$.

Estudiamos ahora la convergencia uniforme de la serie. Razonemos en primer lugar sobre compactos. Sea $K \subset H$ compacto. Por ser φ continua, tenemos que $\varphi(K) \subset D(0,1)$ es compacto, por lo que la serie converge uniformemente en K.

Supongamos ahora $\emptyset \neq A \subset H$ no necesariamente compacto, y supongamos que la serie converge uniformemente en A. Por ser condición necesaria, tenemos que la sucesión $\{(\varphi(z))^n\}$ converge uniformemente a la función nula en A. Por los conocimientos sobre el término general de una serie geométrica, como esta converge uniformemente a la función nula en A tenemos que r < 1, donde r se define como:

$$r = \sup\{|\varphi(z)| \mid z \in A\} < 1$$

Por tanto, $\varphi(A) \subset \overline{D}(0,r)$. Veamos ahora que φ es inyectiva en H. Para ello, consideramos dos elementos $z_1, z_2 \in H$ tales que $\varphi(z_1) = \varphi(z_2)$. Entonces:

$$\varphi(z_1) = \varphi(z_2) \iff \frac{z_1 - 1}{z_1 + 1} = \frac{z_2 - 1}{z_2 + 1} \iff (z_1 - 1)(z_2 + 1) = (z_2 - 1)(z_1 + 1) \iff z_1 z_2 + z_1 - z_2 - 1 = z_1 z_2 + z_2 - z_1 - 1 \iff z_1 - z_2 = z_2 - z_1 \iff z_1 = z_2$$

Por tanto, tomámos imágenes inversas, y llegamos a que:

$$A \subset \varphi^{-1}\left(\overline{D}(0,r)\right) = \{z \in \mathbb{C} \mid |\varphi(z)| \leqslant r\}$$

Veamos cómo es este conjunto. Tenemos que:

$$|\varphi(z)| \leqslant r \iff \left|\frac{z-1}{z+1}\right| \leqslant r \iff |z-1|^2 \leqslant r^2|z+1|^2 \iff$$

$$\iff |z|^2 + 1 - 2\operatorname{Re}(z) \leqslant r^2(|z|^2 + 1 + 2\operatorname{Re}(z)) \iff$$

$$\iff (1-r^2)|z|^2 + (1-r^2) - 2\operatorname{Re}(z)(1+r^2) \leqslant 0 \iff$$

$$\iff |z|^2 + 1 - 2\operatorname{Re}(z) \cdot \frac{1+r^2}{1-r^2} \leqslant 0$$

Consideramos ahora $z = x + iy \in \mathbb{C}$, y tenemos que:

$$\begin{split} |\varphi(x+iy)| \leqslant r \iff x^2 + y^2 + 1 - 2x \cdot \frac{1+r^2}{1-r^2} \leqslant 0 \iff \\ \iff x^2 - 2x \cdot \frac{1+r^2}{1-r^2} + \left(\frac{1+r^2}{1-r^2}\right)^2 - \left(\frac{1+r^2}{1-r^2}\right)^2 + y^2 + 1 \leqslant 0 \iff \\ \iff \left(x - \frac{1+r^2}{1-r^2}\right)^2 + y^2 \leqslant \left(\frac{1+r^2}{1-r^2}\right)^2 - 1 \end{split}$$

Por tanto, tenemos que:

$$A \subset D := \overline{D}\left(\frac{1+r^2}{1-r^2}, \sqrt{\left(\frac{1+r^2}{1-r^2}\right)^2 - 1}\right)$$

Este conjunto está bien definido puesto que:

$$\left(\frac{1+r^2}{1-r^2}\right)^2 - 1 > 0 \iff 1+r^2 > 1-r^2 \iff r > 0$$

Veamos ahora que $D \subset H$. Para ello, consideramos $z \in D$, y tenemos que:

$$z \in D \Longrightarrow \left| z - \frac{1+r^2}{1-r^2} \right| < \sqrt{\left(\frac{1+r^2}{1-r^2}\right)^2 - 1} \Longrightarrow$$

$$\Longrightarrow |z|^2 + \left(\frac{1+r^2}{1-r^2}\right)^2 - 2 \cdot \frac{1+r^2}{1-r^2} \cdot \operatorname{Re}(z) < \left(\frac{1+r^2}{1-r^2}\right)^2 - 1 \Longrightarrow$$

$$\Longrightarrow \operatorname{Re}(z) > \left(|z|^2 + 1\right) \cdot \frac{1-r^2}{1+r^2} \cdot \frac{1}{2} > 0 \Longrightarrow z \in H$$

Por tanto, hemos llegado a que $A \subset D \subset H$, siendo D compacto. Por tanto, supuesto que la serie converge uniformemente en A, hemos llegado a que A está contenido en un compacto (en el cual ya sabíamos que la serie converge uniformemente). Por tanto, tenemos que, dado $A \subset H$:

$$\sum_{n\geq 0} f_n$$
 converge uniformemente en $A \iff \exists K \subset H$ compacto tal que $A \subset K$

1.5. Funciones Elementales

Ejercicio 1.5.1. Sea $f: \mathbb{C} \to \mathbb{C}$ una función verificando que

$$f(z+w) = f(z)f(w) \quad \forall z, w \in \mathbb{C}$$

Probar que, si f es derivable en algún punto del plano, entonces f es entera. Encontrar todas las funciones enteras que verifiquen la condición anterior. Dar un ejemplo de una función que verifique dicha condición y no sea entera.

Ejercicio 1.5.2. Calcular la imagen por la función exponencial de una banda horizontal o vertical y del dominio cuya frontera es un rectángulo de lados paralelos a los ejes.

Ejercicio 1.5.3. Dado $\theta \in]-\pi,\pi]$, estudiar la existencia del límite en $+\infty$ de la función siguiente:

$$\varphi: \mathbb{R}^+ \longrightarrow \mathbb{C}$$

$$r \longmapsto e^{re^{i\theta}}$$

Ejercicio 1.5.4. Probar que si $\{z_n\}$ y $\{w_n\}$ son sucesiones de números complejos, con $z_n \neq 0$ para todo $n \in \mathbb{N}$ y $\{z_n\} \to 1$, entonces

$$\{w_n(z_n-1)\} \to \lambda \in \mathbb{C} \implies \{z_n^{w_n}\} \to e^{\lambda}$$

Ejercicio 1.5.5. Estudiar la convergencia puntual, absoluta y uniforme de la serie de funciones

$$\sum_{n>0} e^{-nz^2}$$

Ejercicio 1.5.6. Probar que si $a, b, c \in \mathbb{T}$ son vértices de un triángulo equilátero si, y sólo si, a + b + c = 0.

Ejercicio 1.5.7. Sea Ω un subconjunto abierto no vacío de \mathbb{C}^* y $\varphi \in \mathcal{C}(\Omega)$ tal que $\varphi(z)^2 = z$ para todo $z \in \Omega$. Probar que $\varphi \in \mathcal{H}(\Omega)$ y calcular su derivada.

Ejercicio 1.5.8. Probar que, para todo $z \in D(0,1)$ se tiene:

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^n = \log(1+z)$$

2.
$$\sum_{n=1}^{\infty} \frac{z^{2n+1}}{n(2n+1)} = 2z - (1+z)\log(1+z) + (1-z)\log(1-z)$$

Ejercicio 1.5.9. Sea la siguiente función:

$$f: \ \mathbb{C} \setminus \{1, -1\} \ \longrightarrow \ \mathbb{C}$$
$$z \ \longmapsto \ \log\left(\frac{1+z}{1-z}\right)$$

Probar que f es holomorfa en el dominio $W=\mathbb{C}\setminus\{x\in\mathbb{R}:|x|\geqslant 1\}$ y calcular su derivada. Probar también que

$$f(z) = 2\sum_{n=0}^{\infty} \frac{z^{2n+1}}{2n+1} \quad \forall z \in D(0,1)$$

Ejercicio 1.5.10. Sean $\alpha, \beta \in [-\pi, \pi]$ con $\alpha < \beta$, y $\rho \in \mathbb{R}^+$ tal que $\rho\alpha, \rho\beta \in [-\pi, \pi]$. Consideramos los siguientes dominios:

$$\Omega = \{ z \in \mathbb{C}^* : \alpha < \arg z < \beta \}$$

$$\Omega_{\rho} = \{ z \in \mathbb{C}^* : \rho \alpha < \arg z < \rho \beta \}$$

Probar que la siguiente función define una biyección de Ω sobre el dominio Ω_{ρ} :

$$\begin{array}{ccc} f: & \Omega & \longrightarrow & \Omega_{\rho} \\ & z & \longmapsto & z^{\rho} \end{array}$$

Ejercicio 1.5.11. Probar que el seno, el coseno y la tangente son funciones simplemente periódicas.

Ejercicio 1.5.12. Estudiar la convergencia de la serie

$$\sum_{n>0} \frac{\operatorname{sen}(nz)}{2^n}$$

Ejercicio 1.5.13. Sea $\Omega = \mathbb{C} \setminus \{x \in \mathbb{R} : |x| \geq 1\}$. Probar que existe $f \in \mathcal{H}(\Omega)$ tal que $\cos f(z) = z$ para todo $z \in \Omega$ y $f(x) = \arccos x$ para todo $x \in]-1,1[$. Calcular la derivada de f.

Ejercicio 1.5.14. Para $z \in D(0,1)$ con Re $z \neq 0$, probar que

$$\arctan\left(\frac{1}{z}\right) + \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} z^{2n+1} = \begin{cases} \pi/2 & \text{si } \text{Re } z > 0\\ -\pi/2 & \text{si } \text{Re } z < 0 \end{cases}$$