Lecture 29

Foundation and Uses of Deep Learning

Mohammad Sabik Irbaz

Data Scientist, Leadbook Pte. Ltd.

Former Lead ML Engineer, Omdena & Pioneer Alpha

sabikirbaz@iut-dhaka.edu

Dokkho Data Science Career Program

By MasterCourse

Traditional Programming vs. Machine Learning

Machine Learning

Traditional Programming

Types of ML Algorithms

- → Supervised Learning
- → Unsupervised Learning
- → Semi-Supervised Learning
- → Self-Supervised Learning (SSL)
- → Reinforcement Learning (RL)
- → Active Learning

)3

Supervised vs Unsupervised Learning

Training ML Models

Generally loss = difference between targets and results

During Inference

Traditional Programming

Machine Learning

06

Hypothesis

Representation of a line: y = mx + c

Let's redefine it

$$h_{ heta}(x) = heta_0 + heta_1 * x$$

Mean Squared Error (MSE)

- => Imagine you have 'm' data points
- => You drew a line
- => MSE calculates how far is that line from data points in average.
- => Mean is for the average
- => Square is for the Euclidean Distance

Cost Function

Cost Function in case of Linear Regression is nothing but MSE

$$J(heta_0, heta_1) = rac{1}{2m} * \sum_{i=1}^m (h_ heta(x_i) - y_i)^2$$

m = #samples

$$h_{ heta}(x) = heta_0 + heta_1 * x$$

Our Objective is to minimize the cost.

How do we do that?

Cost Function

Cost Function in case of Linear Regression is nothing but MSE

$$J(heta_0, heta_1) = rac{1}{2m} * \sum_{i=1}^m (h_ heta(x_i) - y_i)^2$$

m = #samples

$$h_{ heta}(x) = heta_0 + heta_1 * x$$

Our Objective is to minimize the cost.

How do we do that?

Gradient Descent

Repeat until Convergence

$$heta_j = heta_j - lpha * rac{\partial}{\partial heta_j} J(heta_0, heta_1)$$

Repeat until Convergence

$$heta_j = heta_j - lpha_j rac{\partial}{\partial heta_j} J(heta_0, heta_1)$$
Learning Rate

Repeat until Convergence

Where To Use Deep Learning

Natural Computer Language Medicine Vision **Processing** Text to Text to Image **Biology** Speech Time Series RecSys **Robotics Forecasting**

Most of the objective tasks that does not require critical thinking

Where We Cannot Use DL

If we do not have enough data.

Data is the raw material for Deep Learning Models.

Where the decisions are subjective. For example: Court Rulings in different countries

We should not use DL in applications that are straightforward. DL should be explored after we exhaust traditional programming