06 Induction and Recursion

CS201 Discrete Mathematics

Instructor: Shan Chen

Mathematical Induction

Mathematical Induction

Principle of Mathematical Induction

- Let P(n) be a propositional function, i.e., P(n) is either true or false when n is a specific number.
- Principle of mathematical induction: To prove that P(n) is true for all positive integers n, we complete two steps:
 - Basis step: prove P(1) is true
 - Inductive step: prove $\forall k \in \mathbb{Z}^+$, $P(k) \to P(k+1)$ is true * the assumption "P(k) is true" is called the inductive hypothesis
- Q: Why is this principle valid?
- Proof by contradiction: Assume P(n) is false for some integer n ≥ 1, then the set S of all positive integer n such that P(n) is false is non-empty. Let m be the smallest integer in S. * why m exists? We have m ≥ 2 as P(1) is true. However, since P(m 1) is true and P(m 1) → P(m) is true, P(m) must be true, contradiction!

Principle of Mathematical Induction

- \circ **Principle of mathematical induction:** To prove that P(n) is true for all positive integers n, we complete two steps:
 - Basis step: prove P(1) is true
 - Inductive step: prove $\forall k \in \mathbb{Z}^+$, $P(k) \rightarrow P(k+1)$ is true
- o Proof by contradiction: Assume P(n) is false for some integer $n \ge 1$, then the set S of all positive integer n such that P(n) is false is non-empty. Let m be the smallest integer in S. * why m exists? We have $m \ge 2$ as P(1) is true. However, since P(m 1) is true and $P(m 1) \rightarrow P(m)$ is true, P(m) must be true, contradiction!
- Well-ordering principle (axiom): every nonempty subset of the set of positive integers has a least/minimum element.
 - this principle is equivalent to principle of mathematical induction
 * proof left as an exercise

- Show that $1 + 2 + \cdots + n = n(n + 1)/2$ for any positive integer n.
- Proof by induction:
 - Let P(n) be the proposition that the sum of the first n positive integers is equal to n(n + 1)/2.
 - Basis step: P(1) is true, because 1 = 1(1 + 1)/2.
 - **Inductive step:** From the inductive hypothesis, i.e., P(k) is true for an arbitrary positive integer k, we need to show that P(k + 1) is true, i.e., $1 + 2 + \cdots + k + 1 = (k + 1)((k + 1) + 1)/2$.

$$1 + 2 + \dots + k + (k + 1) = k(k + 1)/2 + k + 1$$

= $(k(k + 1) + 2(k + 1))/2 = (k + 1)(k + 2)/2 = (k + 1)((k + 1) + 1)/2$

• By mathematical induction, we know that P(n) is true for all positive integers n. That is, we have proven that $1 + 2 + \cdots + n = n(n + 1)/2$ holds for all positive integers n.

Exercise (5 mins)

- For any positive integer n, $1 + 3 + 5 + \cdots + (2n 1) = ?$ Prove it.
 - Show that $1 + 2 + \cdots + n = n(n + 1)/2$ for any positive integer n.
 - Proof by induction:
 - Let P(n) be the proposition that the sum of the first n positive integers is equal to n(n + 1)/2.
 - Basis step: P(1) is true, because 1 = 1(1 + 1)/2.
 - **Inductive step:** From the inductive hypothesis, i.e., P(k) is true for an arbitrary positive integer k, we need to show that P(k + 1) is true, i.e., $1 + 2 + \cdots + k + 1 = (k + 1)((k + 1) + 1)/2$.

$$1 + 2 + \dots + k + (k + 1) = k(k + 1)/2 + k + 1$$

= $(k(k + 1) + 2(k + 1))/2 = (k + 1)(k + 2)/2 = (k + 1)((k + 1) + 1)/2$

• By mathematical induction, we know that P(n) is true for all positive integers n. That is, we have proven that $1 + 2 + \cdots + n = n(n + 1)/2$ holds for all positive integers n.

Exercise (5 mins)

- O Prove that for any integer $n \ge 2$, $2^{n+1} \ge n^2 + 3$
 - Show that $1 + 2 + \cdots + n = n(n + 1)/2$ for any positive integer n.
 - Proof by induction:
 - Let P(n) be the proposition that the sum of the first n positive integers is equal to n(n + 1)/2.
 - Basis step: P(1) is true, because 1 = 1(1 + 1)/2.
 - **Inductive step:** From the inductive hypothesis, i.e., P(k) is true for an arbitrary positive integer k, we need to show that P(k + 1) is true, i.e., $1 + 2 + \cdots + k + 1 = (k + 1)((k + 1) + 1)/2$.

$$1 + 2 + \dots + k + (k+1) = k(k+1)/2 + k + 1$$

= $(k(k+1) + 2(k+1))/2 = (k+1)(k+2)/2 = (k+1)((k+1) + 1)/2$

• By mathematical induction, we know that P(n) is true for all positive integers n. That is, we have proven that $1 + 2 + \cdots + n = n(n + 1)/2$ holds for all positive integers n.

Another Form of Induction

- We may have another form of mathematical induction as follows:
 - First suppose that we have a proof that P(1) is true.
 - Next suppose that we have a proof that

$$\forall k \geq 1, P(1) \land P(2) \land \cdots \land P(k) \rightarrow P(k+1)$$

• Then,

$$P(1) \rightarrow P(2)$$

 $P(1) \land P(2) \rightarrow P(3)$
 $P(1) \land P(2) \land P(3) \rightarrow P(4)$

Iterating gives us a proof of P(n) for all n

Strong Induction

- \circ Second principle of mathematical induction: To prove that P(n) is true for all positive integers n, we complete two steps:
 - Basis step: prove P(1) is true
 - Inductive step: prove ∀k ∈ Z+, P(1) ∧ ··· ∧ P(k) → P(k + 1) is true
 * the assumption "P(1) ∧ P(2) ∧ ··· ∧ P(k) is true" is called the inductive hypothesis
- This is called strong induction or complete induction, while the previous principle is called weak or incomplete induction.
- In practice, strong induction is often easier to apply than its weak form, because the inductive hypothesis is stronger.
- However, these two forms of induction are actually equivalent.
 - proof left as an exercise

 Prove that every positive integer is a power of a prime or the product of powers of primes.

• Proof:

- Basis step: 1 is a power of a prime number, $1 = 2^{\circ}$.
- Inductive step:

Inductive hypothesis: every positive integer that is less than k + 1 is a power of a prime or a product of powers of primes.

If k + 1 is a prime power, P(k + 1) is true. Otherwise, k + 1 must be a composite, i.e., a product of two smaller positive integers, each of which is, by the inductive hypothesis, a power of a prime or the product of powers of primes. Therefore, P(k + 1) is true.

 Finally, by strong induction, every positive integer is a power of a prime or a product of powers of primes.

Mathematical Induction Summary

- A typical proof by induction, showing that P(n) is true for all integers n ≥ b, consists of three steps:
 - Basis step: prove P(b) is true
 - Inductive step: prove one of the following

$$\forall k > b, P(k) \rightarrow P(k+1)$$
 is true **OR**
 $\forall k > b, P(b) \land \cdots \land P(k) \rightarrow P(k+1)$ is true

- Conclusion: based on the (second) principle of mathematical induction, we conclude that P(n) is true for all $n \ge b$.
- The assumption "P(k) is true" **OR** " $P(1) \land P(2) \land \cdots \land P(k)$ is true" is called the inductive hypothesis (IH).
 - IH is used to prove "P(k + 1) is true".

Recursion

Recursion

- Recursion: a method of solving a computational problem where its solution depends on solutions to smaller instances of the same problem.
- Recursive computer programs or algorithms often lead to inductive analysis.
- A classical example of recursion is the Towers of Hanoi Problem.

- Problem: Find an efficient way to move all of the disks from one peg to another.
 - 3 pegs and n disks of different sizes
 - A legal move takes a disk from one peg and moves it onto another peg so that it is not on top of a smaller disk.

- Problem: Find an efficient way to move all of the disks from one peg to another.
 - 3 pegs and n disks of different sizes
 - A legal move takes a disk from one peg and moves it onto another peg so that it is not on top of a smaller disk.

 Problem: Find an efficient way to move all of the disks from one peg to another, using only legal moves.

- Problem: Find an efficient way to move all of the disks from one peg to another, using only legal moves.
- Solution by recursion:
 - Basis step: If n = 1, moving one disk from one to another is easy.

• Recursive step: If n > 1, we need three steps:

- Problem: Find an efficient way to move all of the disks from one peg to another, using only legal moves.
- Solution by recursion:

```
public class Hanoi
 3
4
5
6
7
8
9
                           move n disks from peg a to peg c using peg b
       public void move(int n, char a, char b, char c)
           if (n == 1)
                System. out. println("plate " + n + " from " + a + " to " + c);
           else
11
12
13
               move(n-1,a,c,b);
                System. out. println("plate " + n + " from " + a + " to " + c);
14
                move(n-1,b,a,c);
15
16
17
       }
18
```

- Problem: Find an efficient way to move all of the disks from one peg to another, using only legal moves.
- Proof of correctness by induction:
 - Let P(n) be the proposition that the solution is correct for n.
 - **Basis step:** *P*(1) is obviously true, i.e., the solution is correct when there is only one disk.
 - **Inductive step:** From the inductive hypothesis, i.e., P(k) is true for an arbitrary positive integer k, we need to show that P(k + 1) is true. That is, if our solution works for k disks, then we can build a correct solution for k + 1 disks, which is true by the recursive step:

• By mathematical induction, P(n) is true for all positive integer n.

- Problem: Find an efficient way to move all of the disks from one peg to another, using only legal moves.
- Solution by recursion: running time: # disk moves M(n) = ?
 - Basis step: If n = 1, moving one disk from one to another is easy.

• **Recursive step:** If n > 1, we need three steps:

$$M(n) = 2M(n-1) + 1 \text{ for } n > 1$$

- Problem: Find an efficient way to move all of the disks from one peg to another, using only legal moves.
- Solving the running time:

$$M(1) = 1$$
 $M(n) = 2M(n - 1) + 1$ for $n > 1$

Iterating the above function gives:

$$M(1) = 1$$
, $M(2) = 3$, $M(3) = 7$, $M(4) = 15$, $M(5) = 31$, ...

• We can guess that $M(n) = 2^n - 1$ and prove it by induction: Let P(n) denote the above equation.

Basis step: P(1) is true, because $M(1) = 1 = 2^{1} - 1$.

Inductive step: Assume P(k) is true for $k \ge 1$, i.e., $M(k) = 2^k - 1$.

Then
$$P(k + 1)$$
 is true: $M(k + 1) = 2M(k) + 1 = 2(2^k - 1) + 1 = 2^{k+1} - 1$

By mathematical induction, P(n) is true for all positive n.

- Problem: Find an efficient way to move all of the disks from one peg to another, using only legal moves.
- Note that we applied induction twice:
 - first to prove correctness of the solution
 - second to derive the **closed-form running time** $M(n) = 2^n 1$

Recurrences

Recurrences

- A recurrence equation or recurrence for a function defined on the set of integers ≥ b tells us how to compute the n-th value from some or all the first n - 1 values.
- To completely specify a function defined by a recurrence, we have to give the initial condition(s) (as known as the base case(s)) for the recurrence.
- Example: running time for Towers of Hanoi

$$M(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2M(n-1) + 1 & \text{otherwise} \end{cases}$$

- Let S(n) be the number of subsets of a set of size n. We already learned that $S(n) = 2^n$, but now let us think about this recursively:
 - Consider the 8 subsets of {1, 2, 3}:

- The top 4 subsets are exactly the subsets of {1, 2}, while the bottom 4 subsets are the subsets of {1, 2} with 3 added into each.
- So, we get a subset of {1, 2, 3} either by taking a subset of {1, 2} or by adding 3 to a subset of {1, 2}.
- This suggests that the recurrence for the number of subsets of an n-element set {1, 2, ..., n} is

$$S(n) = \begin{cases} 1 & \text{if } n = 0 \\ 2S(n-1) & \text{if } n \geq 1 \end{cases}$$

- Let S(n) be the number of subsets of a set of size n. We already learned that $S(n) = 2^n$, but now let us think about this recursively:
- Proof of correctness of the recurrence:

$$S(n) = \begin{cases} 1 & \text{if } n = 0 \\ 2S(n-1) & \text{if } n \geq 1 \end{cases}$$

• The subsets of {1, 2, . . . , n} can be partitioned according to whether or not they contain the element n.

Each subset S containing n can be constructed in a unique fashion by adding n to the subset $S - \{n\}$ that does not contain n.

Each subset S not containing n can be constructed by removing n from the unique set $S \cup \{n\}$ that contains n.

So, the number of subsets containing *n* is exactly the same as the number of subsets not containing n.

• Therefore, if $n \ge 1$, then S(n) = 2S(n - 1).

- Let S(n) be the number of subsets of a set of size n. We already learned that $S(n) = 2^n$, but now let us think about this recursively:
- Proof of the closed form $S(n) = 2^n$ for recurrence:

$$S(n) = \begin{cases} 1 & \text{if } n = 0 \\ 2S(n-1) & \text{if } n \geq 1 \end{cases}$$

• the proof (by induction) is left as an exercise

Iterating a Recurrence

- Let T(n) = rT(n-1) + a, where r and a are constants.
- Find a recurrence that expresses

```
T(n) in terms of T(n-2)

T(n) in terms of T(n-3)

T(n) in terms of T(n-4)
```

Can we generalize this to find a closed-form solution?

Iterating a Recurrence

- Note that T(n) = rT(n 1) + a implies that
 - $\forall i < n, T(n-i) = rT((n-i)-1)) + a$
- Then, we have

$$T(n) = rT(n-1) + a$$

$$= r(rT(n-2) + a) + a$$

$$= r^2T(n-2) + ra + a$$

$$= r^2(rT(n-3) + a) + ra + a$$

$$= r^3T(n-3) + r^2a + ra + a$$

$$= r^3(rT(n-4) + a) + r^2a + ra + a$$

$$= r^4T(n-4) + r^3a + r^2a + ra + a.$$

• Guess:
$$T(n) = r^n T(0) + a \sum_{i=0}^{n-1} r^i$$

Iterating a Recurrence

- The method we used to guess the solution is called iterating the recurrence, because we iteratively use the recurrence.
- Another approach is to iterate from the "bottom-up" instead of "top-down".
 - E.g., T(n) = rT(n-1) + a, where r and a are constants.

$$T(0) = b$$

 $T(1) = rT(0) + a = rb + a$
 $T(2) = rT(1) + a = r(rb + a) + a = r^2b + ra + a$
 $T(3) = rT(2) + a = r^3b + r^2a + ra + a$

• This would lead to the same guess: $T(n) = r^n T(0) + a \sum_{i=0}^{n-1} r^i$

Formula of Recurrences

• **Theorem:** If T(n) = rT(n - 1) + a, T(0) = b, and $r \neq 1$, then for all non-negative integers n, we have:

$$T(n) = r^n b + a \frac{1 - r^n}{1 - r}$$

- Proof by induction:
 - Basis Step: The formula is true for n = 0. Why?

$$T(0) = r^0b + a\frac{1-r^0}{1-r} = b.$$

• Inductive Step: ?

Formula of Recurrences

• **Theorem:** If T(n) = rT(n - 1) + a, T(0) = b, and $r \neq 1$, then for all non-negative integers n, we have:

$$T(n) = r^n b + a \frac{1 - r^n}{1 - r}$$

- Proof by induction:
 - Basis Step: The formula is true for n = 0: $T(0) = r^0b + a\frac{1-r^0}{1-r} = b$.

• Inductive Step:
$$T(n) = rT(n-1) + a$$

$$= r\left(r^{n-1}b + a\frac{1-r^{n-1}}{1-r}\right) + a$$

$$= r^nb + \frac{ar-ar^n}{1-r} + a$$

$$= r^nb + \frac{ar-ar^n+a-ar}{1-r}$$

$$= r^nb + a\frac{1-r^n}{1-r}.$$

Formula of Recurrences

• **Theorem:** If T(n) = rT(n - 1) + a, T(0) = b, and $r \neq 1$, then for all non-negative integers n, we have:

$$T(n) = r^n b + a \frac{1 - r^n}{1 - r}$$

- Example: T(n) = 3T(n 1) + 2, T(0) = 5
 - Plugging r = 3, a = 2, b = 5 in the formula, we have:

$$T(n) = 3^n \cdot 5 + 2\frac{1-3^n}{1-3} = 3^n \cdot 6 - 1$$

First-Order Linear Recurrences

- A recurrence of the form T(n) = f(n)T(n-1) + g(n) is called a first-order linear recurrence.
 - First order: T(n) depends upon going back one step, i.e., T(n-1) e.g., T(n) = T(n-1) + 2T(n-2) is a second-order recurrence
 - Linear: the T(n-1) only appears to the first power. e.g., $T(n) = (T(n-1))^2 + 3$ is a non-linear first-order recurrence
- When f(n) is a constant, say r, the general solution is almost as easy as we derived before. Iterating the recurrence gives

$$T(n) = rT(n-1) + g(n)$$

$$= r(rT(n-2) + g(n-1)) + g(n)$$

$$= r^2T(n-2) + rg(n-1) + g(n)$$

$$\vdots$$

$$= r^nT(0) + \sum_{i=0}^{n-1} r^i g(n-i)$$

First-Order Linear Recurrences

 Theorem: For any positive constants a and r, and any function g defined on nonnegative integers, the solution to the first-order linear recurrence

$$T(n) = \begin{cases} rT(n-1) + g(n) & \text{if } n > 0 \\ a & \text{if } n = 0 \end{cases}$$

is

$$T(n) = r^n a + \sum_{i=1}^n r^{n-i} g(i).$$

Exercise (5 mins)

- O Solve $T(n) = 4T(n 1) + 2^n (n > 0)$ with T(0) = 6Hint: express T(n) in terms of 4^n and 2^n
 - Theorem: For any positive constants a and r, and any function g defined on nonnegative integers, the solution to the first-order linear recurrence

$$T(n) = \begin{cases} rT(n-1) + g(n) & \text{if } n > 0 \\ a & \text{if } n = 0 \end{cases}$$

is

$$T(n) = r^n a + \sum_{i=1}^n r^{n-i} g(i).$$

Divide-and-Conquer Recurrences

Divide and Conquer

- A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem.
- Divide-and-conquer recurrences are usually of the form:

$$T(n) = \begin{cases} \text{something given} & \text{if } n \leq n_0 \\ r \cdot T(n/m) + g(n) & \text{if } n > n_0 \end{cases}$$

Binary Search

- Someone has chosen a number x between 1 and n. We need to discover x.
- We only need to ask two types of questions:
 - Is x greater than k?
 - Is x equal to k?
- Our strategy will be to always ask greater than questions, at each step halving our search range, until the range only contains one number, when we ask a final equal to question.

Binary Search

Binary Search

- Method: Each guess reduces the problem to one in which the range is only half as big.
- This divides the original problem into one that is only half as big;
 we can now (recursively) conquer this smaller problem.
- When n is a power of 2, T(n), the number of comparisons in a binary search on [1, n], satisfies

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n/2) + 1 & \text{if } n \ge 2 \end{cases}$$

- The inductive correctness proof is similar to the tower of Hanoi:
 - Basis Step (n = 1): only one "equal to" comparison is needed
 - Inductive Step (n > 1): one "great than" comparison + time to perform binary search on the remaining n/2 terms

• Example 1:

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n/2) + 1 & \text{if } n \ge 2 \end{cases}$$

$$T(n) = T(\frac{n}{2}) + 1 = (T(\frac{n}{2^{2}}) + 1) + 1$$

$$= T(\frac{n}{2^{2}}) + 2 = (T(\frac{n}{2^{3}}) + 1) + 2$$

$$= T(\frac{n}{2^{3}}) + 3$$

$$\vdots \qquad \vdots$$

$$= T(\frac{n}{2^{i}}) + i \qquad \text{End when } i = \log_{2} n$$

$$\vdots \qquad \vdots$$

$$= T(\frac{n}{2^{\log_{2} n}}) + \log_{2} n = 1 + \log_{2} n$$

• Example 1:

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n/2) + 1 & \text{if } n \ge 2 \end{cases}$$

- We just showed by algebraically iterating the recurrence that the solution is $T(n) = 1 + \log_2 n$.
- Note: Technically, we still need to use induction to prove that our solution is correct. Practically, we never explicitly perform this step, since it is obvious how the induction would work.

• Example 2:

$$T(n) = \begin{cases} T(1) & \text{if } n = 1 \\ 2T(n/2) + n & \text{if } n \ge 2 \end{cases}$$

- This corresponds to solving a problem of size n, by
 - (i) solving 2 subproblems of size n/2
 - (ii) doing n units of additional work or using T(1) work for "bottom" case of n = 1
- This is exactly how merge sort (from an algorithm course) works.
- Our How to solve it by algebraically iterating the recurrence?

• Example 2:

$$T(n) = \begin{cases} T(1) & \text{if } n = 1 \\ 2T(n/2) + n & \text{if } n \ge 2 \end{cases}$$

$$T(n) = 2T(\frac{n}{2}) + n = 2(2T(\frac{n}{4}) + \frac{n}{2}) + n$$

$$= 4T(\frac{n}{4}) + 2n = 4(2T(\frac{n}{8}) + \frac{n}{4}) + 2n$$

$$= 8T(\frac{n}{8}) + 3n$$

$$\vdots \qquad \vdots$$

$$= 2^{i}T(\frac{n}{2^{i}}) + in$$

$$\vdots \qquad \vdots$$

$$= 2^{\log_{2} n}T(\frac{n}{2^{\log_{2} n}}) + (\log_{2} n)n = nT(1) + n\log_{2} n$$

• Example 3:

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n/2) + n & \text{if } n \ge 2 \end{cases}$$

$$T(n) = T\left(\frac{n}{2}\right) + n$$

$$= T\left(\frac{n}{2^{2}}\right) + \frac{n}{2} + n$$

$$= T\left(\frac{n}{2^{3}}\right) + \frac{n}{2^{2}} + \frac{n}{2} + n$$

$$\vdots \qquad \vdots$$

$$= T\left(\frac{n}{2^{i}}\right) + \frac{n}{2^{i-1}} + \dots + \frac{n}{2^{2}} + \frac{n}{2} + n$$

$$\vdots \qquad \vdots$$

$$= T\left(\frac{n}{2^{\log_{2} n}}\right) + \frac{n}{2^{\log_{2} n-1}} + \dots + \frac{n}{2^{2}} + \frac{n}{2} + n$$

$$= 1 + 2 + 2^{2} + \dots + \frac{n}{2^{2}} + \frac{n}{2} + n = 2n - 1$$

Exercise (5 mins)

Solve this recurrence by algebraically iterating the recurrence:

$$T(n) = \begin{cases} 1 & \text{if } n < 3 \\ 3T(n/3) + n & \text{if } n \ge 3 \end{cases}$$

• Example 4:

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 4T(n/2) + n & \text{if } n \ge 2 \end{cases}$$

$$T(n) = 4T \left(\frac{n}{2}\right) + n = 4 \left(4T \left(\frac{n}{2^{2}}\right) + \frac{n}{2}\right) + n$$

$$= 4^{2}T \left(\frac{n}{2^{2}}\right) + \frac{4}{2}n + n = 4^{2}\left(4T \left(\frac{n}{2^{3}}\right) + \frac{n}{2^{2}}\right) + \frac{4}{2}n + n$$

$$= 4^{3}T \left(\frac{n}{2^{3}}\right) + \frac{4^{2}}{2^{2}}n + \frac{4}{2}n + n$$

$$\vdots \qquad \vdots$$

$$= 4^{i}T \left(\frac{n}{2^{i}}\right) + \frac{4^{i-1}}{2^{i-1}}n + \dots + \frac{4^{2}}{2^{2}}n + n$$

$$\vdots \qquad \vdots$$

$$= 4^{\log_{2}n}T \left(\frac{n}{2^{\log_{2}n}}\right) + \frac{4^{\log_{2}n-1}}{2^{\log_{2}n-1}}n + \dots + \frac{4}{2}n + n = 2n^{2} - n$$

 \circ Compare the iteration for the following recurrences (T(1) = 1):

```
• T(n) = T(n/2) + n T(n) = 2n - 1 = \Theta(n)

• T(n) = 2T(n/2) + n T(n) = n + n \log_2 n = \Theta(n \log n)

• T(n) = 4T(n/2) + n T(n) = 2n^2 - n = \Theta(n^2)
```

- All three recurrences iterate log₂ n times. The size of subproblem in next iteration is half the size in the preceding iteration level.
- **Theorem:** Suppose that we have a recurrence T(n) = aT(n/2) + n, where $a \ge 1$ and T(1) = Θ(1). Then we have the following big Θ bounds on the solution:
 - If a < 2, then $T(n) = \Theta(n)$. * the proof is left as an exercise
 - If a = 2, then $T(n) = \Theta(n \log n)$. * already proved in Example 2
 - If a > 2, then $T(n) = \Theta(n^{\log_2 a})$. * now let us prove this

- O Let $n = 2^i$. Prove that if a > 2, then $T(n) = \Theta(n^{\log_2 a})$.
- Iterating T(n) = aT(n/2) + n as in Example 4 gives:

$$T(n) = a^{i} T\left(\frac{n}{2^{i}}\right) + \left(\frac{a^{i-1}}{2^{i-1}} + \frac{a^{i-2}}{2^{i-2}} + \cdots + \frac{a}{2} + 1\right) n$$

$$T(n) = a^{\log_{2} n} T(1) + n \sum_{i=0}^{\log_{2} n-1} \left(\frac{a}{2}\right)^{i}$$

Work at "bottom"

Iterated Work

 \circ Since a > 2, the geometric series is Θ of the largest term:

$$n \sum_{i=0}^{\log_2 n-1} \left(\frac{a}{2}\right)^i = n \frac{1 - (a/2)^{\log_2 n}}{1 - a/2} = n \Theta((a/2)^{\log_2 n-1})$$

- O Let $n = 2^i$. Prove the third case: If a > 2, then $T(n) = \Theta(n^{\log_2 a})$.
- Iterating T(n) = aT(n/2) + n as in Example 4 gives:

$$T(n) = a^{\log_2 n} T(1) + n \sum_{i=0}^{\log_2 n-1} (\frac{a}{2})^i$$

 \circ Since a > 2, the geometric series is Θ of the largest term:

$$n \sum_{i=0}^{\log_2 n - 1} \left(\frac{a}{2}\right)^i = n \frac{1 - (a/2)^{\log_2 n}}{1 - a/2} = n \Theta((a/2)^{\log_2 n - 1})$$

$$n \left(\frac{a}{2}\right)^{\log_2 n - 1} = \frac{2}{a} \cdot \frac{n \cdot a^{\log_2 n}}{2^{\log_2 n}} = \frac{2}{a} \cdot \frac{n \cdot a^{\log_2 n}}{n} = \frac{2}{a} \cdot a^{\log_2 n}$$

$$a^{\log_2 n} = \left(2^{\log_2 a}\right)^{\log_2 n} = \left(2^{\log_2 n}\right)^{\log_2 a} = n^{\log_2 a}$$

$$a^{\log_2 n} T(1) + n \sum_{i=0}^{\log_2 n - 1} \left(\frac{a}{2}\right)^i = \Theta(n^{\log_2 a})$$

- **Theorem:** Suppose that we have a recurrence T(n) = aT(n/2) + n, where $a \ge 1$ and $T(1) = \Theta(1)$. Then we have the following big Θ bounds on the solution:
 - If a < 2, then $T(n) = \Theta(n)$. * proof is left as an exercise
 - If a = 2, then $T(n) = \Theta(n \log n)$. * already proved in Example 2
 - If a > 2, then $T(n) = \Theta(n^{\log_2 a})$. * just proved
- **Master Theorem:** Consider a recurrence $T(n) = aT(n/b) + cn^d$, where $a \ge 1$, c > 0, $d \ge 0$, integer $b \ge 2$, and $T(1) = \Theta(1)$. Then we have the following big Θ bounds on the solution:
 - If $a < b^d$, then $T(n) = \Theta(n^d)$.
 - If $a = b^d$, then $T(n) = \Theta(n^d \log n)$.
 - If $a > b^d$, then $T(n) = \Theta(n^{\log_b a})$.

07 Counting

To be continued...