

Part 6: Policy gradients

EL 2805 - Reinforcement Learning

Alexandre Proutiere

KTH, The Royal Institute of Technology

Objectives of this part

- An example: learning to play the rock-scissors-paper game
- Stochastic gradient descent algorithm
- Generic policy gradient algorithm
- REINFORCE algorithm: Monte Carlo policy gradient

Outline

- 1. The rock-scissors-paper game
- 2. Stochastic gradient descent algorithm
- 3. Policy gradients in episodic RL problems
- 4. Policy gradients in discounted RL problems

References

- Barto-Sutton's book chapter 13
- Stochastic gradient lecture notes: https://stanford.edu/~jduchi/PCMIConvex/Duchi16.pdf
- REINFORCE algorithm: R.J. Williams, Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning (1992)

Part 6: Outline

- 1. Rock-scissors-paper game
- 2. Stochastic gradient descent algorithm
- 3. Finite time horizon RL problems
 - a. The policy gradient theorem
 - b. REINFORCE algorithm
 - c. Variance reduction techniques
- 4. Infinite horizon discounted RL problems

1. The rock-scissors-paper game

You and your opponent simultaneously select R, S, or P. R wins over S, S wins over P, and P wins over R.

In each round, your opponent selects R, S, P in an i.i.d. manner according to an **unknown** distribution $\mu=(\mu_R,\mu_S,\mu_P)$. How can you sequentially select your action to learn the optimal policy?

MDP model

- Time horizon: T=1
- No state, no transition probabilities
- Set of actions: $\{R, S, P\}$
- ullet Rewards: given the selected action a, the reward is random variable r(a) such that:
 - If a=R, r(a)=1 with probability μ_S and r(a)=0 with probability $1-\mu_S$
 - If a=S, r(a)=1 with probability μ_P and r(a)=0 with probability $1-\mu_P$
 - If a=P, r(a)=1 with probability μ_R and r(a)=0 with probability $1-\mu_R$
- Randomized policies: a policy is defined by a distribution $\theta = (\theta_R, \theta_S, \theta_P)$ over actions $(\theta_R + \theta_S + \theta_P = 1)$
- Objective: find a policy θ maximizing $\mathbb{E}_{\theta}[r(a)] = \mathbb{E}_{a \sim \theta}[r(a)]$

Randomized policies and their return

• Return under the policy θ :

$$J(\theta) = \mathbb{E}_{a \sim \theta}[r(a)] = (\theta_R \mu_S + \theta_S \mu_P + \theta_P \mu_R)$$

• Optimal policy:

Learning the optimal policy

- ullet The random strategy μ of the opponent is unknown
- How can we learn the optimal policy by sequentially interacting with the opponent?
- A solution: the Stochastic Gradient Descent algorithm

2. The stochastic gradient descent algorithm

• Projected Gradient Descent (PGD) algorithm:

Let \mathcal{C} be a convex subset of \mathbb{R}^n , and let $f:\mathcal{C}\to\mathbb{R}$ be a convex function.

Objective: find $x^* \in \mathcal{C}$ such that $f(x^*) \leq f(x)$ for all $x \in \mathcal{C}$.

PGD Algorithm:

- 1. Initialization: $x^{(0)} \in \mathcal{C}$
- 2. **Iterations:** for k > 0,

$$x^{(k+1)} = P_{\mathcal{C}}(x^{(k)} - \alpha_k \nabla f(x^{(k)}))$$

where $P_{\mathcal{C}}$ is the projection on \mathcal{C} : $P_{\mathcal{C}}(y) = \inf_{x \in \mathcal{C}} \|y - x\|_2$.

Projected gradient descent algorithm

Convergence of the PGD algorithm

Let
$$f_{\min}^{(k)} = \min_{i=0,...,k} f(x^{(i)}).$$

Theorem. Assume that for all x, $\|\nabla f(x)\|_2 \leq G$.

We have for all $k \geq 1$:

$$f_{\min}^{(k)} - f(x^*) \le \frac{\|x^{(0)} - x^*\|_2^2 + G^2 \sum_{i=0}^k \alpha_i^2}{2 \sum_{i=0}^k \alpha_i}$$

- Constant step sizes: $\alpha_i = \alpha$. $f_{\min}^{(k)}$ converges within $G^2\alpha/2$ of the optimal as $k \to \infty$.
- Square summable but not summable step sizes: $\sum_{i=0}^{\infty} \alpha_i = \infty$, $\sum_{i=0}^{\infty} \alpha_i^2 < \infty$. $f_{\min}^{(k)}$ converges to the optimal value as $k \to \infty$.

Proof

Convexity. for all x, y, $f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$.

Projection. By projection we get closer to all points inside C:

$$||P_{\mathcal{C}}(z) - x||_2 \le ||z - x||_2$$
 for all $x \in \mathcal{C}$, and all z

$$||x^{(k+1)} - x^*||_2^2 \le ||x^{(k)} - \alpha_k \nabla f(x^{(k)}) - x^*||_2^2$$

$$= ||x^{(k)} - x^*||_2^2 - 2\alpha_k \nabla f(x^{(k)}) \cdot (x^{(k)} - x^*) + \alpha_k^2 ||\nabla f(x^{(k)})||_2^2$$

$$\le ||x^{(k)} - x^*||_2^2 - 2\alpha_k (f(x^{(k)}) - f(x^*)) + \alpha_k^2 G^2$$

Applying the above recursively, we get:

$$\|x^{(k+1)} - x^{\star}\|_{2}^{2} \le \|x^{(0)} - x^{\star}\|_{2}^{2} - 2\sum_{i=0}^{k} \alpha_{i}(f(x^{(i)}) - f(x^{\star})) + \sum_{i=0}^{k} \alpha_{i}^{2}G^{2}$$

Hence:
$$f_{\min}^{(k)} - f(x^\star) \le \frac{\|x^{(0)} - x^\star\|_2^2 + G^2 \sum_{i=0}^k \alpha_i^2}{2 \sum_{i=0}^k \alpha_i}$$

Cost of the policy $\theta = (\theta_R, \theta_S, 1 - \theta_R - \theta_S)$:

$$f(\theta) = -J(\theta) = -(\theta_R(\mu_S - \mu_R) + \theta_S(\mu_P - \mu_R) + \mu_R)$$

It is linear and hence convex.

$$\nabla f(\theta) = \left(\begin{array}{c} (\mu_R - \mu_S) \\ (\mu_R - \mu_P) \end{array} \right)$$

We do not know μ , so the gradient is unknown! We cannot apply the PGD algorithm.

However we have an unbiased estimator: at the k-th round of the game, for $a \in \{R, S, P\}$

$$\mu_a = \mathbb{E}\left[\frac{\text{nb_times_opp_played a}}{k}\right]$$

The estimator can be used in a Stochastic PDG algorithm ...

Stochastic Gradient Descent algorithm

- Let $f: \mathcal{C} \to \mathbb{R}$ be a convex function.
- \bullet Unbiased estimator of the gradient: g(x) is a r.v. such that $\nabla f(x) = \mathbb{E}[g(x)]$

SGD Algorithm:

- 1. Initialization: $x^{(0)}$
- 2. **Iterations:** for $k \geq 0$,

$$x^{(k+1)} = x^{(k)} - \alpha_k g(x^{(k)})$$

Convergence of the SGD algorithm

Let
$$f_{\min}^{(k)} = \min_{i=0,...,k} f(x^{(i)}).$$

Theorem. Assume that for all x, $\mathbb{E}[\|\nabla f(x)\|_2^2] \leq G^2$. We have for all k > 1:

$$\mathbb{E}[f_{\min}^{(k)} - f(x^*)] \le \frac{\|x^{(0)} - x^*\|_2^2 + G^2 \sum_{i=0}^k \alpha_i^2}{2 \sum_{i=0}^k \alpha_i}$$

 Same convergence results as those for the non-stochastic GD algorithm but in expectation.

Proof

Using the same arguments (in expectation) as before, we get:

$$\mathbb{E}[\|x^{(k+1)} - x^\star\|_2^2] \leq \|x^{(0)} - x^\star\|_2^2 - 2\sum_{i=0}^k \alpha_i \mathbb{E}[f(x^{(i)}) - f(x^\star)] + \sum_{i=0}^k \alpha_i^2 G^2$$

Hence:
$$\min_{i=0,...,k} \mathbb{E}[f(x^{(i)} - f(x^\star)] \le \frac{\|x^{(0)} - x^\star\|_2^2 + G^2 \sum_{i=0}^k \alpha_i^2}{2 \sum_{i=0}^k \alpha_i}$$

Jensen inequality: For any convex function $f: \mathbb{R}^n \to \mathbb{R}$, for any r.v. X, $\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])$.

We conclude that:

$$\mathbb{E}[f_{\min}^{(k)} - f(x^*)] \le \min_{i=0,\dots,k} \mathbb{E}[f(x^{(i)} - f(x^*)] \le \frac{\|x^{(0)} - x^*\|_2^2 + G^2 \sum_{i=0}^k \alpha_i^2}{2 \sum_{i=0}^k \alpha_i}$$

Cost of the policy $\theta = (\theta_R, \theta_S, 1 - \theta_R - \theta_S)$:

$$f(\theta) = -J(\theta) = -\left(\theta_R(\mu_S - \mu_R) + \theta_S(\mu_P - \mu_R) + \mu_R\right)$$
$$\nabla f(\theta) = \begin{pmatrix} (\mu_R - \mu_S) \\ (\mu_R - \mu_P) \end{pmatrix}$$

Unbiased gradient estimators: For $a \in \{R, S, P\}$, $\hat{\mu}_a = \frac{\text{nb_times_opp_played a}}{k}$ (empirical estimator)

or $\hat{\mu}_a = 1_{\{ \text{opp.plays a at time k} \}}$ (instantaneous estimator)

$$g(\theta) = \begin{pmatrix} (\hat{\mu}_R - \hat{\mu}_S) \\ (\hat{\mu}_R - \hat{\mu}_P) \end{pmatrix}$$

Projected SGD algorithm: $\theta^{(k+1)} = P_{\mathcal{C}} \left(\theta^{(k)} - \alpha_k g(\theta^{(k)}) \right)$.

True gradient available: PGD algorithm, step sizes = 0.07

Empirical gradient estimator: SGD algorithm, step sizes = 0.07

Instantaneous gradient estimator: SGD algorithm, step sizes = 0.07

3. Finite time horizon RL problems

- Finite time horizon MDP:
 - Time horizon T
 - State space: S
 - Actions available in state $s \in S$, A_s $(A = \bigcup_{s \in S} A_s)$
 - Initial state $s_1 \sim p(\cdot)$
 - Stationary transition probabilities $p(s^\prime|s,a)$ and deterministic rewards r(a,s)
 - Objective: for an initial state s, find a policy π maximizing (over all possible policies)

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=1}^{T} r(s_t^{\pi}, a_t^{\pi}) | s_1^{\pi} = s\right] = \mathbb{E}_{\pi}\left[\sum_{t=1}^{T} r(s_t, a_t) | s_1 = s\right]$$

Parametrized randomized policies

- Parameter $\theta \in \mathbb{R}^n$, policy π_{θ} defined by $\pi_{\theta}(s, a)$ the probability to take action a in state s
- Example: softmax policies. Encode a preference in taking action a in state s as $h(s,a,\theta)$ and define

$$\pi_{\theta}(s, a) = \frac{e^{h(s, a, \theta)}}{\sum_{b} e^{h(s, b, \theta)}}$$

- Main advantage: compared to deterministic policy, smoothly varying policies w.r.t. θ. The optimal policy can be learnt using gradient descent as shown below.
- Value function of π_{θ} :

$$V^{\pi_{\theta}}(s) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=1}^{T} r(s_t, a_t) | s_1 = s \right]$$

Objective function and its gradient

Objective: maximize $J(\theta) = \mathbb{E}_{s_1 \sim p}[V^{\pi_{\theta}}(s_1)]$

Trajectory: $\tau = (s_1, a_1, \dots, s_T, a_T)$

Total reward of τ : $R(\tau) = \sum_{t=1}^{T} r(s_t, a_t)$ Probability of observing τ under π_{θ} :

$$\pi_{\theta}(\tau) = p(s_1)\pi_{\theta}(s_1, a_1)p(s_2|s_1, a_1)\dots p(s_T|s_{T-1}, a_{T-1})\pi_{\theta}(s_T, a_T)$$

Computing the gradient of $J(\theta)$

$$J(\theta) = \sum_{\tau} \pi_{\theta}(\tau) R(\tau)$$

Hence:

$$\nabla J(\theta) = \sum_{\tau} (\nabla \pi_{\theta}(\tau)) R(\tau)$$
$$= \sum_{\tau} \pi_{\theta}(\tau) \times (\nabla \log \pi_{\theta}(\tau) R(\tau))$$
$$= \mathbb{E}_{\pi_{\theta}} [\nabla \log \pi_{\theta}(\tau) R(\tau)]$$

with

$$\nabla \log \pi_{\theta}(\tau) = \sum_{t=1}^{T} \nabla \log \pi_{\theta}(s_t, a_t)$$

The policy gradient theorem

Theorem. The gradient of the objective function w.r.t. the policy is:

$$\nabla J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\left(\sum_{t=1}^{T} \nabla \log \pi_{\theta}(s_{t}, a_{t}) \right) \left(\sum_{t=1}^{T} r(s_{t}, a_{t}) \right) \right]$$

 $\nabla_{\theta}\pi_{\theta}(s,a)$ is referred to as the *score function*

REINFORCE algorithm

If we generate an episode following π_{θ} : $(s_1 = s, a_1, r_1 \dots s_T, a_T, r_T)$ where $r_t = r(s_t, a_t)$ is the observed reward, the quantity $\left(\sum_{t=1}^T \nabla \log \pi_{\theta}(s_t, a_t)\right) \left(\sum_{t=1}^T r_t\right)$ is an unbiased estimator of $\nabla J(\theta)$.

REINFORCE Algorithm:

- 1. **Initialization:** select $\theta^{(0)}$ arbitrarily
- 2. **Iterations:** For all $k\geq 0$, for episode k, generate a trajectory under $\pi_{\theta^{(k)}}$: $(s_{1,k}=s,a_{1,k},r_{1,k},\ldots s_{T,k},a_{T,k},r_{T,k})$ Update the parameter

$$\theta^{(k+1)} = \theta^{(k)} + \alpha_k \left(\sum_{t=1}^T \nabla \log \pi_{\theta}(s_{t,k}, a_{t,k}) \right) \left(\sum_{t=1}^T r_{t,k} \right)$$

Gradient variance reduction # 1

Let $X = \left(\sum_{t=1}^{T} \nabla \log \pi_{\theta}(s_t, a_t)\right) \left(\sum_{t=1}^{T} r_t\right)$ be the estimated gradient observing one trajectory under π_{θ} .

Instead, generate n trajectories in an i.i.d. manner under π_{θ} before updating the policy: X_1, \ldots, X_n and compute the estimated gradient as $\frac{1}{n} \sum_{i=1}^n X_i$. Then

$$\operatorname{Var}(\frac{1}{n}\sum_{i=1}^{n}X_{i}) = \frac{1}{n}\operatorname{Var}(X)$$

Gradient variance reduction # 2

Exercise 1. (See Exercise session) Let u < t. Then we have:

$$\mathbb{E}_{\pi_{\theta}}[\nabla \log \pi_{\theta}(s_t, a_t)r_u] = 0.$$

We deduce that:

$$\nabla J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=1}^{T} \nabla \log \pi_{\theta}(s_{t}, a_{t}) \underbrace{\sum_{u=t}^{T} r(s_{u}, a_{u})}_{R_{t}: \text{reward to go}} \right]$$

Update with reduced variance:

$$\theta \leftarrow \theta + \alpha \sum_{t=1}^{T} \nabla \log \pi_{\theta}(s_t, a_t) \sum_{u=t}^{T} r(s_u, a_u)$$

Baseline. Adding a baseline helps.

$$X = \underbrace{\left(\sum_{t=1}^{T} \nabla \log \pi_{\theta}(s_t, a_t)\right)}_{\nabla (\text{log-likelihood of the traj.})} \underbrace{\left(\sum_{t=1}^{T} r_t\right)}_{\text{return}}$$

If returns are always positive, the likelihood of the corresponding trajectories are increased ... and it will take a long time before the most desirable actions are favoured.

Solution: center the returns on a baseline b.

$$X = \left(\sum_{t=1}^{T} \nabla \log \pi_{\theta}(s_t, a_t)\right) \left(\sum_{t=1}^{T} r_t - b\right)$$

Gradient variance reduction # 3

With a baseline, the gradient estimator remains unbiased:

$$\mathbb{E}_{\pi_{\theta}}[\nabla_{\theta}\log \pi_{\theta}(\tau)b] = 0.$$

Natural baseline: b is the empirical mean of the return of the n generated episodes (if n epsiodes are used per policy update):

$$b = \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{T} r(s_{t,i}, a_{t,i})$$

Variance-optimal constant baseline: b minimizing Var(X) is

$$b = \frac{\mathbb{E}_{\pi_{\theta}}[(\nabla_{\theta} \log \pi_{\theta}(\tau))^{2} R(\tau)]}{\mathbb{E}_{\pi_{\theta}}[(\nabla_{\theta} \log \pi_{\theta}(\tau))^{2}]}$$

Gradient variance reduction # 3

Time-dependent baseline: when n episodes are used per policy update, and the reward-to-go is used,

$$b_t = \frac{1}{n} \sum_{i=1}^{n} \sum_{u=t}^{T} r(s_{u,i}, a_{u,i})$$

Update:

$$\theta \leftarrow \theta + \alpha \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{T} \nabla \log \pi_{\theta}(s_{t,i}, a_{t,i}) \left(\sum_{u=t}^{T} r_{u,i} - b_{u} \right)$$

Examples using Deep Learning

```
Pong game: https://www.youtube.com/watch?v=YOW8m2YGtRg
```

```
TRPO + GAE (Mujoco simulator)
https://sites.google.com/site/gaepapersupp/
```

4. Infinite horizon discounted RL problems

Discounted RL problems:

- **Unknown** stationary transition probabilities p(s'|s,a) and rewards r(s,a), uniformly bounded: $\forall a,s,\ |r(s,a)| \leq 1$
- Objective: for a given discount factor $\lambda \in [0,1)$, from the data, find a policy $\pi^* \in MD$ maximizing (over all possible policies)

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=1}^{T} \lambda^{t-1} r(s_t^{\pi}, a_t^{\pi},) | s_1^{\pi} = s\right]$$

Objective function and its gradient

Objective: maximize $J(\theta) = \mathbb{E}_{s_1 \sim p}[V^{\pi_{\theta}}(s_1)]$

Discounted stationary distribution ρ_{θ} under π_{θ} :

$$\forall s \in \mathcal{S}, \quad \rho_{\theta}(s) = (1 - \lambda) \sum_{s'} p(s') \sum_{k=0}^{\infty} \lambda^k \mathbb{P}_{\pi_{\theta}}[s_k = s | s_1 = s']$$

Theorem. The gradient of the objective function w.r.t. the policy is:

$$\nabla J(\theta) = \frac{1}{1 - \lambda} \mathbb{E}_{s \sim \rho_{\theta}, a \sim \pi_{\theta}(s, \cdot)} \left[\nabla \log \pi_{\theta}(s, a) Q^{\pi_{\theta}}(s, a) \right]$$

We need a critic to estimate $Q^{\pi_{\theta}}$... see the lecture on actor-critic algorithms.

Summary

Policy gradient algorithms assume that:

- Policies are parametrized: $\pi \in \{\pi_{\theta} : \theta \in \Theta\}$
- Maximize $J(\theta) = \mathbb{E}_{s_1 \sim p}[V^{\pi_{\theta}}(s_1)]$
- $J(\theta)$ must be smooth in θ , and preferably concave!
- ullet PG algorithms are SGD algorithms to find a maximizer of J

Policy gradient theorems:

- Episodic RL: $\nabla J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\left(\sum_{t=1}^{T} \nabla \log \pi_{\theta}(s_{t}, a_{t}) \right) \left(\sum_{t=1}^{T} r(s_{t}, a_{t}) \right) \right]$
- ∞ -horizon RL: $\nabla J(\theta) = \frac{1}{1-\lambda} \mathbb{E}_{s \sim \rho_{\theta}, a \sim \pi_{\theta}(s, \cdot)} \left[\nabla \log \pi_{\theta}(s, a) Q^{\pi_{\theta}}(s, a) \right]$