ECON 899b: Problem Set 1

Katherine Kwok*

November 2021

Overview: For this assignment, the goal is to apply different methods of optimization for discrete choice models. In particular, we use the public use microdata on mortgages to study the log-likelihood of the loan being pre-paid within the first-year.

Findings: The attached code ("main_program.jl" and "helper_functions.jl") produces the results described below. In the first step, I wrote functions to evaluate log-likelihood, the score of the log-likelihood function (approximation of the FOC), and the Hessian matrix (approximation of SOC) given some β vector. Specifically, $\beta_0 = -1$ and all other β values in the vector are 0. Then, I use the numerical derivative method in Julia to calculate the FOC and SOC of the log-likelihood function at the same β values. The comparison between the score and Hessian, and the numerical derivatives, are summarized in Tables 1, 3, 4. It appears that the approximations and numerical derivatives are very similar and/or identical.

Then, I wrote a Newton algorithm that solves for maximum likelihood, and compared the resulting coefficients to that of the BFGS (Quasi-Newton) and Simplex algorithms. Using the initial guess, the Newton algorithm converged in 37 iterations and approximately 12 seconds. The results of the algorithm are summarized in Table 2 below.

The implementation of the BFGS algorithm was slightly more complicated. Without providing a gradient function, the algorithm took a very long time to converge. When I input the score of the log-likelihood as the gradient and used the resulting β values from the Newton algorithm as the initial guess, the algorithm converged in 3 iterations and approximately 1 second. I used an educated guess for the initial value, because the simple initial values result in nonsensical results.

Similar to the BFGS algorithm, I was only able to get the Simplex algorithm to converge when I used the Newton algorithm results as the initial values. When I attempted to run the optimization without a refined initial guess, the optimization package returned a "failed line search" message. With an educated guess, the Simplex algorithm converged in 694 iterations, and approximately 140 seconds. Comparing the β results from all 3 algorithms, the coefficients appear to be very similar.

^{*}I collaborated with Anya Tarascina and Claire Kim on this assignment.

 ${\it Table 1: Comparison of Log Likelihood Score and Numerical First Derivative}$

Score of Log Likelihood	Numerical First Derivative
-2605.91	-2605.91
-556.32	-556.32
-1156.86	-1156.86
-222.82	-222.82
-933.04	-933.04
-1215.13	-1215.13
-2109.63	-2109.63
-948.07	-948.07
-5049.88	-5049.88
-4534.79	-4534.79
-19401.9	-19401.9
-19164.66	-19164.66
-918.86	-918.86
-351.75	-351.75
-466.69	-466.69
-582.47	-582.47
-546.41	-546.41

Table 2: Comparison of Coefficients

β_{newton}	β_{bfgs}	$\beta_{simplex}$
-6.06	-6.06	-6.06
0.87	0.87	0.87
0.53	0.53	0.53
0.6	0.6	0.6
0.16	0.16	0.16
0.87	0.87	0.87
-0.06	-0.06	-0.06
0.22	0.22	0.22
1.01	1.01	1.01
0.34	0.34	0.34
-0.28	-0.28	-0.28
0.19	0.19	0.19
0.76	0.76	0.76
1.15	1.15	1.15
0.77	0.77	0.77
0.38	0.38	0.38
0.24	0.24	0.24

△

Table 3: Hessian Matrix for Log Likelihood Function

-3224.6	-880.4	-1428.4	-387.6	-1305.7	-1546.8	-2619.4	-1210.7	-6304.6	-5761.3	-23783.2	-23599.2	-1405.0	-664.4	-681.9	-674.4	-583.0
-880.4	-880.4	-0.0	-10.1	-404.2	-421.3	-686.3	-332.0	-1720.7	-1655.1	-6608.0	-6563.0	-390.1	-163.8	-189.3	-211.6	-170.1
-1428.4	-0.0	-1428.4	-165.2	-560.3	-676.0	-1192.1	-544.7	-2796.0	-2551.2	-10512.7	-10428.5	-586.9	-283.7	-308.9	-299.4	-266.6
-387.6	-10.1	-165.2	-715.6	-185.7	-187.9	-325.0	-152.3	-783.9	-694.0	-2739.2	-2721.0	43.9	-59.8	-104.7	-92.4	-77.3
-1305.7	-404.2	-560.3	-185.7	-1305.7	-693.5	-973.1	-501.4	-2556.3	-2592.7	-9553.5	-9586.9	-502.0	-214.5	-291.0	-299.4	-192.9
-1546.8	-421.3	-676.0	-187.9	-693.5	-806.4	-1231.5	-585.3	-3024.7	-2841.4	-11435.2	-11359.5	-660.5	-312.1	-326.3	-325.5	-283.0
-2619.4	-686.3	-1192.1	-325.0	-973.1	-1231.5	-2224.7	-992.5	-5125.9	-4620.8	-19218.6	-19050.9	-1228.3	-545.1	-551.4	-540.1	-477.4
-1210.7	-332.0	-544.7	-152.3	-501.4	-585.3	-992.5	-528.6	-2369.9	-2169.3	-8869.9	-8798.6	-557.5	-248.1	-257.3	-253.3	-220.4
-6304.6	-1720.7	-2796.0	-783.9	-2556.3	-3024.7	-5125.9	-2369.9	-12464.4	-11264.9	-46482.7	-46118.4	-2718.9	-1297.8	-1333.2	-1318.9	-1134.6
-5761.3	-1655.1	-2551.2	-694.0	-2592.7	-2841.4	-4620.8	-2169.3	-11264.9	-10834.7	-42612.4	-42303.3	-2419.5	-1169.8	-1223.7	-1213.9	-1033.6
-23783.2	-6608.0	-10512.7	-2739.2	-9553.5	-11435.2	-19218.6	-8869.9	-46482.7	-42612.4	-176722.1	-175070.8	-10062.1	-4908.2	-5017.5	-4970.1	-4271.6
-23599.2	-6563.0	-10428.5	-2721.0	-9586.9	-11359.5	-19050.9	-8798.6	-46118.4	-42303.3	-175070.8	-174101.2	-9978.7	-4851.0	-4978.9	-4944.8	-4247.1
-1405.0	-390.1	-586.9	43.9	-502.0	-660.5	-1228.3	-557.5	-2718.9	-2419.5	-10062.1	-9978.7	-1405.0	-293.0	-306.9	-305.7	-268.4
-664.4	-163.8	-283.7	-59.8	-214.5	-312.1	-545.1	-248.1	-1297.8	-1169.8	-4908.2	-4851.0	-293.0	-664.4	-0.0	-0.0	-0.0
-681.9	-189.3	-308.9	-104.7	-291.0	-326.3	-551.4	-257.3	-1333.2	-1223.7	-5017.5	-4978.9	-306.9	-0.0	-681.9	-0.0	-0.0
-674.4	-211.6	-299.4	-92.4	-299.4	-325.5	-540.1	-253.3	-1318.9	-1213.9	-4970.1	-4944.8	-305.7	-0.0	-0.0	-674.4	-0.0
-583.0	-170.1	-266.6	-77.3	-192.9	-283.0	-477.4	-220.4	-1134.6	-1033.6	-4271.6	-4247.1	-268.4	-0.0	-0.0	-0.0	-583.0

Table 4: Numerical Second Derivative

-3224.4	-880.4	-1428.4	-387.6	-1305.7	-1546.8	-2619.4	-1210.7	-6304.6	-5761.3	-23783.2	-23599.2	-1405.0	-664.4	-681.9	-674.4	-582.9
-880.4	-880.4	0.0	-10.1	-404.2	-421.3	-686.3	-332.0	-1720.8	-1655.1	-6608.0	-6563.0	-390.1	-163.8	-189.3	-211.6	-170.1
-1428.4	0.0	-1428.3	-165.2	-560.3	-676.0	-1192.1	-544.7	-2796.0	-2551.2	-10512.7	-10428.5	-586.9	-283.7	-308.9	-299.4	-266.6
-387.6	-10.1	-165.2	-715.6	-185.7	-187.9	-325.0	-152.4	-783.9	-694.0	-2739.2	-2721.0	43.9	-59.8	-104.7	-92.4	-77.3
-1305.7	-404.2	-560.3	-185.7	-1305.6	-693.5	-973.1	-501.4	-2556.4	-2592.7	-9553.5	-9586.9	-502.0	-214.5	-291.0	-299.4	-192.9
-1546.8	-421.3	-676.0	-187.9	-693.5	-806.5	-1231.5	-585.3	-3024.7	-2841.4	-11435.2	-11359.5	-660.5	-312.1	-326.3	-325.5	-283.0
-2619.4	-686.3	-1192.1	-325.0	-973.1	-1231.5	-2224.7	-992.5	-5125.9	-4620.7	-19218.6	-19050.9	-1228.3	-545.1	-551.4	-540.1	-477.4
-1210.7	-332.0	-544.7	-152.4	-501.4	-585.3	-992.5	-528.5	-2369.9	-2169.3	-8869.9	-8798.6	-557.5	-248.1	-257.3	-253.3	-220.4
-6304.6	-1720.8	-2796.0	-783.9	-2556.4	-3024.7	-5125.9	-2369.9	-12464.4	-11264.8	-46482.7	-46118.4	-2719.0	-1297.9	-1333.3	-1318.9	-1134.6
-5761.3	-1655.1	-2551.2	-694.0	-2592.7	-2841.4	-4620.7	-2169.3	-11264.8	-10834.7	-42612.4	-42303.3	-2419.5	-1169.9	-1223.7	-1213.9	-1033.6
-23783.2	-6608.0	-10512.7	-2739.2	-9553.5	-11435.2	-19218.6	-8869.9	-46482.7	-42612.4	-176722.2	-175070.8	-10062.1	-4908.2	-5017.5	-4970.1	-4271.6
-23599.2	-6563.0	-10428.5	-2721.0	-9586.9	-11359.5	-19050.9	-8798.6	-46118.4	-42303.3	-175070.8	-174101.2	-9978.7	-4851.0	-4978.9	-4944.8	-4247.1
-1405.0	-390.1	-586.9	43.9	-502.0	-660.5	-1228.3	-557.5	-2719.0	-2419.5	-10062.1	-9978.7	-1404.9	-293.0	-306.9	-305.7	-268.4
-664.4	-163.8	-283.7	-59.8	-214.5	-312.1	-545.1	-248.1	-1297.9	-1169.9	-4908.2	-4851.0	-293.0	-664.3	0.0	0.0	0.0
-681.9	-189.3	-308.9	-104.7	-291.0	-326.3	-551.4	-257.3	-1333.3	-1223.7	-5017.5	-4978.9	-306.9	0.0	-681.8	0.0	0.0
-674.4	-211.6	-299.4	-92.4	-299.4	-325.5	-540.1	-253.3	-1318.9	-1213.9	-4970.1	-4944.8	-305.7	0.0	0.0	-674.3	0.0
-582.9	-170.1	-266.6	-77.3	-192.9	-283.0	-477.4	-220.4	-1134.6	-1033.6	-4271.6	-4247.1	-268.4	0.0	0.0	0.0	-582.9