

Parcours Data Scientist | projet 3

Rim Bahroun

Novembre 2022

DPENCLASSROOMS

• L'agence "Santé publique France" a lancé un appel à projets pour trouver des idées innovantes d'applications en lien avec l'alimentation.

• Mission: Proposer une idée d'application en liens avec l'alimentation à partir de l'analyse exploratoire des données de OpenFOODfacts.

DPENCLASSROOMS

- Idée d'application
- Partie 1: Inspection et nettoyage des données
 - Analyse de la forme des données
 - Nettoyage sur les variables
 - Nettoyage sur les individus
 - Traitement des valeurs manquantes
- Partie 2: Exploration des données
 - Analyse univariée
 - Analyse bivariée
 - Analyse multivariée
 - Application proposée
- Santé publique Conclusion

Idée d'application: RGO-scan

Nous avons tous ressenti au moins une fois dans notre vie une remontée de liquide acide de l'estomac dans l'œsophage et parfois dans la bouche surtout après un repas copieux. C'est un reflux gastro-œsophagien (RGO).

Au moins 20 % des adultes ont des symptômes occasionnels de reflux gastro-œsophagien. 10 % ont des symptômes de RGO chaque jour. Source: https://www.ameli.fr

<u>OPENCLASSROOMS</u>

Idée d'application: RGO-scan

L'idée principale de l'application serait donc d'afficher le **RGO-score** et **RGO-grade** d'un produit en fonction des indications nutritionnelles disponibles sur l'étiquette.

RGO-scan

A: Nutriment à favoriser (diminue le reflux gastro-œsophagien)

D: Nutriment à éviter (augmente le reflux gastro-œsophagien)

RGO: Reflux gastro-œsophagien.

- Idée d'application
- Partie 1: Inspection et nettoyage des données
 - Analyse de la forme des données
 - Nettoyage sur les variables
 - Nettoyage sur les individus
 - Traitement des valeurs manquantes
- Partie 2: Exploration des données
 - Analyse univariée
 - Analyse bivariée
 - Analyse multivariée
 - Application proposée
- Santé publique Conclusion

1. Analyse de la forme des données

Données à disposition : 1 fichiers .csv

Il donne les valeurs des caractéristiques de chaque produit alimentaire.

106 variables de type réel et 56 de type chaine de caractères.

1 data_Food.sample(4)									
	code	url	creator	created_t	created_datetime	last_modified_t	last_modified_datetime	product_name	
213332	3258561011424	http://world- fr.openfoodfacts.org/produit/3258	aristoi	1465503014	2016-06- 09T20:10:14Z	1486491078	2017-02-07T18:11:18Z	Popcorn micro- ondable sucré	
39937	0041220517282	http://world- fr.openfoodfacts.org/produit/0041	usda- ndb- import	1489071444	2017-03- 09T14:57:24Z	1489071444	2017-03-09T14:57:24Z	Original Cola	

1. Analyse de la forme des données

• Données à disposition

Nature-Lay's-150 g

Certaines informations de ce produit ont été fournies directement par son fabricant PEPSICO FRANCE.

Code-barres: 3168930008958 (EAN / EAN-13)

Nom générique : Chips de pommes de terre

Quantité: 150 g

Conditionnement: Plastique, Sachet

Marques: Lay's

Catégories: Aliments et boissons à base de végétaux, Aliments d'origine végétale, Snacks, Céréales et pommes de terre, Snacks salés, Amuse-gueules, Chips et frites, Chips, Chips de pommes de terre, en:aliments-d-origine-vegetale, en:aliments-et-boissons-a-base-de-vegetaux, en:amuse-gueules, en:cereales-et-pommes-de-terre, en:chips, en:chips-de-pommes-de-terre, en:chips-et-frites, en:snacks-sales

Labels, certifications, récompenses : Sans conservateurs, Nutriscore, Nutriscore C, en:Point Vert, en:Sans colorants artificiels, en:Sans conservateurs, en:Sans huile de palme

Origine des ingrédients : France, en:Allemagne, en:Belgique

Lieux de fabrication ou de transformation : France

Magasins: Leclerc, Magasins U, Monoprix, carrefour.fr, Vival

Pays de vente : France, en:Allemagne, en:Belgique, en:Espagne, en:Royaume-Uni Matching with your preferences

Aliments transformés

1. Analyse de la forme des données

• Données à disposition

Santé

Ingrédients

5 ingrédients

Pommes de terre, huiles végétales (tournesol, colza, maïs en proportion variable), sel.

Transformation des aliments

Aliments transformés

Tableau nutritionnel	Tel que vendu pour 100 g / 100 ml	Tel que vendu par portion (30g)	Comparé à: en:chips-de-pommes-de-terre
Énergie	2 305 kj (551 kcal)	692 kj (165 kcal)	+4 %
Matières grasses	34 g	10,2 g	+4 %
Acides gras saturés	4,2 g	1,26 g	+40 %
Glucides	53 g	15,9 g	+3 %
Sucres	0,5 g	0,15 g	-62 %
Fibres alimentaires	4,2 g	1,26 g	-5 %
Protéines	6,3 g	1,89 g	+6 %
Sel	1,1 g	0,33 g	-13 %
Fruits, légumes, noix et huiles de colza, noix et olive (estimation par analyse de la liste des ingrédients)	0 %	0 %	

- Idée d'application
- Partie 1: Inspection et nettoyage des données
 - Analyse de la forme des données
 - Nettoyage sur les variables
 - Nettoyage sur les individus
 - Traitement des valeurs manquantes
- Partie 2: Exploration des données
 - Analyse univariée
 - Analyse bivariée
 - Analyse multivariée
 - Application proposée
- Santé publique Conclusion

2. Nettoyage sur les variables

DPENCLASSROOMS

2. Nettoyage sur les variables

Suppression des variables avec plus de 90% de valeurs manquantes.

On passe de 162 variables à 62 variables.

Suppression des variables redondantes ou non utiles

On passe de **62** variables à **31** variables.

DPENCLASSROOMS

- Idée d'application
- Partie 1: Inspection et nettoyage des données
 - Analyse de la forme des données
 - Nettoyage sur les variables
 - Nettoyage sur les individus
 - Traitement des valeurs manquantes
- Partie 2: Exploration des données
 - Analyse univariée
 - Analyse bivariée
 - Analyse multivariée
 - Application proposée
- Santé publique Conclusion

3. Nettoyage sur les individus

Suppression des doublons selon le code produit.

22 lignes supprimées.

```
data = data_3.copy()

# Suppression des doublons en fonction du code
data.drop_duplicates(subset ="code", keep = 'last', inplace=True)

(320750, 31)
```


Suppression des produits non vendus en France

222030 lignes supprimées.

```
data_fr = data.loc[data["countries_fr"].str.contains('France'),:]
data_fr.shape

(98440, 31)
```


Suppression des lignes totalement vides sur les variables quantitatives

24072 lignes supprimées.

```
1 df_num = df.select_dtypes('float')
2 df_num.dropna(axis=0, how ='all', inplace = True) #eliminer les lignes avec 100% de valeurs manquantes
(74368, 31)
```


3. Nettoyage sur les individus

Suppression des lignes à valeurs aberrantes.

13 lignes supprimées.

1 data_100g.describe()

	fat_100g	saturated- fat_100g	trans- fat_100g	cholesterol_100g	carbohydrates_100g	sugars_100g	fiber_100g	proteins_100g	salt_100g	sodium_100g	vitamin- a_100g	vitamin- c_100g	calcium_100g	iron_100g	
count	47642.000000	62375.000000	386.000000	415.000000	47211.000000	62515.000000	45723.000000	64318.000000	62574.000000	62571.000000	589.000000	1297.000000	2257.000000	1185.000000	
mean	13.332232	5.423696	0.209285	0.041158	27.759277	13.432792	2.559271	7.754531	1.160535	0.456924	0.000627	0.125570	0.325133	0.044379	
std	16.926708	8.531083	0.984866	0.535806	27.413340	19.087618	4.634788	7.887373	4.309815	1.696759	0.005574	2.800254	1.739698	0.757976	
min	0.000000	0.000000	0.000000	0.000000	0.000000	-0.100000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	ľ
25%	1.300000	0.300000	0.000000	0.000000	4.000000	1.000000	0.000000	1.800000	0.080000	0.031496	0.000058	0.012000	0.120000	0.002400	
50%	6.800000	2.000000	0.000000	0.000000	14.500000	4.100000	1.380000	6.000000	0.558800	0.220000	0.000120	0.020000	0.130000	0.005000	1
75%	21.000000	7.400000	0.115000	0.005440	53.000000	17.800000	3.200000	11.000000	1.244600	0.490000	0.000464	0.030000	0.330000	0.008000	
max	380.000000	210.000000	17.200000	10.900000	190.000000	105.000000	178.000000	100.000000	211.000000	83.000000	0.120000	100.000000	69.500000	25.000000	

³ data_fr_100.shape

(74355, 31)

3. Nettoyage sur les individus

Traitement des lignes à valeurs atypiques

Correction (si possible) ou **suppression** des lignes à valeurs nutritionnelles mal renseignées en se basant sur l'analyse des boites à moustache des variables.

133 lignes supprimées.


```
print(data.shape)
print(data.shape)
print(data.shape)
print(data.shape)
print(data.shape)

# On supprimera les produits avec ['sodium_100g']>30 et qui n'ont pas le mot clès 'sel' ou 'salt' dans 'product_name'.
mask = (data['sodium_100g']>30) & (data['product_name'].str.contains("salt|sel", case=False)==False)
data = data.loc[~mask,:]
print(data.shape)
```

(74266, 31) (74252, 31) **OPENCLASSROOMS**

- Idée d'application
- Partie 1: Inspection et nettoyage des données
 - Analyse de la forme des données
 - Nettoyage sur les variables
 - Nettoyage sur les individus
 - Traitement des valeurs manquantes
- Partie 2: Exploration des données
 - Analyse univariée
 - Analyse bivariée
 - Analyse multivariée
 - Application proposée
- Santé publique Conclusion

4. Traitement des valeurs manquantes et erreurs de type

Les variables qualitatives

→ Les variables: 'created_datetime' et 'last_modified_datetime'

Correction du type

```
# convertir les colonnes 'created_datetime' et 'last_modified_datetime' en type datetime

df['created_datetime'] = pd.to_datetime(df['created_datetime'])

df['last_modified_datetime'] = pd.to_datetime(df['last_modified_datetime'])
```


1 valeur manquante 'created_datetime' remplacée par 'last_modified_datetime'

4. Traitement des valeurs manquantes

Les variables qualitatives

→ Les variables: 'pnn_group'

Les valeurs manquantes des variables pnn_group_1 et pnn_group_2 remplacées par **'unknown'.**

```
# remplacement de pnn_group vide par 'unknown'
df['pnns_groups_1'].fillna(value='unknown', inplace=True)
df['pnns_groups_2'].fillna(value='unknown', inplace=True)
```


4. Traitement des valeurs manquantes

Les variables quantitatives

La variable: 'additives_n'

Les valeurs manquantes de la variable 'additives_n' ont été remplacées par **zéro**. On fera l'hypothèse que si la valeur est manquante cela veut dire qu'il n y'a pas d'additives.

```
# Remplacement des valeurs manquantes par zéro
df['additives_n'].fillna(value= 0 , inplace=True)
```


4. Traitement des valeurs manquantes

Les variables quantitatives

Les variables nutritionnelles

Avant imputation KNN

Les valeurs manquantes des variables nutritionnelles ' 100g' sont remplacées avec

l'algorithme KNN

On entraine le modèle d'imputation sur un échantillon de données 2 df sample = df num.sample(frac=0.5, random state=1) 3 imputer = KNNImputer(n neighbors=5) imputer.fit(df sample) KNNImputer() 1 # Puis on applique le modèle sur l'ensemble des données df num imputed = imputer.transform(df num) ddf_num_imputed = pd.DataFrame(df_num_imputed, columns=df_num.columns) Après imputation KNN

Après imputation de toutes les valeurs manquantes des variables nutritionnelles, les distributions n'ont pas été modifiées comparées aux données d'origine.

DPENCLASSROOMS

1. Inspection et nettoyage des données 🍎 open 😥 facts

Synthèse

Dans cette première partie, nous avons:

- Supprimé les variables à plus de 90% de valeurs manquantes
- Supprimé les variables redondantes ou non utiles
- Supprimé les **doublons** selon le code produit
- Supprimé les produits non vendus en France
- Supprimé les lignes totalement vides sur les variables quantitatives
- Supprimé les lignes à valeurs **aberrantes** pour les nutriments
- Traité les lignes à valeurs atypiques : correction ou suppression
- Corrigé le type des variables dates
- Imputé les valeurs manquantes par une constante ou par l'algorithme KNN
- Vérifié les distributions des variables

Ces opérations ont permis de réduire, nettoyer et imputer notre jeu de données.

 $(320772 \text{ lignes}, 162 \text{ colonnes}) \rightarrow (74235 \text{ lignes}, 31 \text{ colonnes})$

- Idée d'application
- Partie 1: Inspection et nettoyage des données
 - Analyse de la forme des données
 - Nettoyage sur les variables
 - Nettoyage sur les individus
 - Traitement des valeurs manquantes
- Partie 2: Exploration des données
 - Analyse univariée
 - Analyse bivariée
 - Analyse multivariée
 - Application proposée
- Santé publique Conclusion

1. Analyse univariée

Les variables qualitatives

→ La variable : qualité nutritionnelle

Toutes les classes nutritionnelles sont bien représentées dans ce jeu de données.

1. Analyse univariée

Les variables qualitatives

→ La variable : « main_category_fr »

Les groupes les plus représentés dans ce jeu de données sont:

- Boissons,
- · Conserves,
- Epicerie,
- · Chocolats,
- · Plats préparés,
- Biscuits.

<u>OPENCLASSROOMS</u>

1. Analyse univariée

Les variables quantitatives

Les variables: date de création et date de modification

- Le règlement européen EU n°1169/2011, dit INCO, établit les règles quant à l'information des consommateurs, tel que la déclaration nutritionnelle ou la liste des ingrédients. La création de la base de données à commencer en 2012 juste après ce règlement.
- Le Nutri-Score a été mis en place pour la première fois en France en **2017**. A partir de cette date, la base de données a été le plus modifié.

1. Analyse univariée

Les variables quantitatives pertinentes pour le RGO-score

Quelles variables favorisent le RGO : ...?

Quelles variables atténuent le RGO :...?

DPENCLASSROOM

1. Analyse univariée

Les variables quantitatives pertinentes pour le RGO-score

Favorisent le RGO : ...?

Les recommandations pour la gestion du RGO par l'alimentation :

• Limiter les **aliments gras**. Ils retardent la vidange gastrique et réduisent la pression du sphincter œsophagien inférieur SOI, prolongeant ainsi la durée d'exposition de l'œsophage à l'acide gastrique et augmentant le volume d'acide qui peut remonter.

saturated-fat_100g, trans-fat_100g, cholesterol_100g: augment le RGO.

RGO: Reflux gastro-œsophagien.

Source: https://www.passeportsante.net

OPENCLASSROOMS

Favorisent le RGO

saturated-fat_100g,

trans-fat_100g,

cholesterol_100g

28

1. Analyse univariée

Les variables quantitatives pertinentes pour le RGO-score

Favorisent le RGO: ...?

Les recommandations pour la gestion du RGO par l'alimentation :

 Les ballonnements peuvent être causés par une fermentation excessive dans l'intestin. Ils aggravent le reflux gastro-œsophagien en augmentant la pression dans l'abdomen. La fermentation est générée par certains types de glucides dits fermentescibles. La consommation de **glucides** modifie le pH de l'estomac qui devient trop acide.

carbohydrates_100g : augment le RGO.

RGO: Reflux gastro-œsophagien.

Favorisent le RGO

saturated-fat 100g,

trans-fat_100g,

cholesterol 100q.

carbohydrates_100g

OPENCLASSROOMS

1. Analyse univariée

Les variables quantitatives pertinentes pour le RGO-score

Favorisent le RGO: ...?

Les recommandations pour la gestion du RGO par l'alimentation :

• L'excès de sel, c'est bien connu, favorise l'hypertension et les maladies cardiovasculaires. Il diminue aussi la pression du sphincter de l'œsophage et augmente donc le risque de reflux.

salt_100g : augment le RGO.

• Autres aliments déconseillés: Produits sucrés

■ sugars_100g : augment le RGO.

rance

RGO: Reflux gastro-œsophagien.

Favorisent le RGO saturated-fat_100g, trans-fat_100g, cholesterol_100g, carbohydrates_100g salt_100g sugars_100g

Source: https://www.passeportsante.net

OPENCLASSROOMS

1. Analyse univariée

Les variables quantitatives pertinentes pour le RGO-score

Atténuent le RGO: ...?

Les recommandations pour la gestion du RGO par l'alimentation :

• Assurer une consommation adéquate de protéines. Les protéines augmentent la pression du SOI, ce qui permet ainsi la fermeture du sphincter et réduit le reflux.

proteins_100g: diminue le RGO.

DPENCLASSROOMS

1. Analyse univariée

Les variables quantitatives pertinentes pour le RGO-score

Atténuent le RGO: ...?

Les recommandations pour la gestion du RGO par l'alimentation :

• Pour prévenir la constipation et les ballonnements liés à la pression abdominale, il faudrait consommer des fibres alimentaires tous les jours.

fiber_100g : diminue le RGO.

• Ce sont des sels (aluminium, calcium, magnésium) qui neutralisent localement l'acidité du contenu de l'estomac.

calcium_100g : diminue le RGO.

Pensez à consommer suffisamment d'aliments riches en vitamine C
 vitamin-c_100g : diminue le RGO.

RGO: Reflux gastro-œsophagien.

Atténuent le RGO proteins_100g fiber_100g calcium_100g vitamin-c_100g

Source: https://www.passeportsante.net

DPENCLASSROOMS

1. Analyse univariée

Les variables quantitatives pertinentes pour le RGO-score

Quels ingrédients?

Favorisent le RGO saturated-fat_100g trans-fat_100g cholesterol_100g carbohydrates_100g salt_100g sugars_100g

Atténuent le RGO proteins_100g fiber_100g calcium_100g vitamin-c_100g

RGO: Reflux gastro-œsophagien.

1. Analyse univariée

Les variables quantitatives pertinentes pour le RGO-score

Augmentent
RGO
saturated-fat_100g
trans-fat_100g
cholesterol_100g
carbohydrates_100g
salt_100g
sugars_100g

Augmentent le

	saturated-fat_100g	trans-fat_100g	cholesterol_100g	carbohydrates_100g	sugars_100g	salt_100g
count	74235.000000	74235.000000	74235.000000	74235.000000	74235.000000	74235.000000
mean	5.381542	0.060425	0.016925	25.824153	15.171771	1.205256
std	7.856967	0.109938	0.019789	23.160358	18.443746	3.935159
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.400000	0.000000	0.000200	6.600000	1.500000	0.100000
50%	2.600000	0.014000	0.009400	19.000000	6.700000	0.476000
75%	6.300000	0.100000	0.033822	36.580000	24.100000	1.200000
max	100.000000	1.780000	0.378000	100.000000	100.000000	100.000000

RGO: Reflux gastro-œsophagien.

OPENCLASSROOMS

1. Analyse univariée

Les variables quantitatives pertinentes pour le RGO-score

	proteins_100g	fiber_100g	calcium_100g	vitamin-c_100g
count	74235.000000	74235.000000	74235.000000	74235.000000
mean	8.120374	2.069124	0.059334	0.022473
std	7.318101	3.473455	0.079199	0.017137
min	0.000000	0.000000	0.000000	0.000000
25%	2.500000	0.100000	0.031720	0.008400
50%	6.670000	1.362000	0.038760	0.020600
75%	12.000000	2.340000	0.057820	0.029320
max	90.000000	80.000000	1.534000	0.582000

Diminuent
le RGO
proteins_100g
fiber_100g
calcium_100g
vitamin-c_100g

RGO: Reflux gastro-œsophagien.

OPENCLASSROOMS

- Idée d'application
- Partie 1: Inspection et nettoyage des données
 - Analyse de la forme des données
 - Nettoyage sur les variables
 - Nettoyage sur les individus
 - Traitement des valeurs manquantes
- Partie 2: Exploration des données
 - Analyse univariée
 - Analyse bivariée
 - Analyse multivariée
 - Application proposée
- Santé publique Conclusion

2. Analyse bivariée

Pour analyser les corrélations linéaires entre nos variables quantitatives, nous allons réaliser un test de corrélation de Pearson et afficher ses résultats dans un heatmap:

	saturated- fat_100g	trans- fat_100g	cholesterol_100g	carbohydrates_100g	sugars_100g	salt_100g	proteins_100g	fiber_100g	calcium_100g	vitamin c_100g
saturated-fat_100g	1.00	0.36	0.33	-0.02	0.07	0.00	0.15	-0.00	0.08	-0.0
trans-fat_100g	0.36	1.00	0.13	0.11	0.08	0.04	0.03	0.08	0.08	0.0
cholesterol_100g	0.33	0.13	1.00	0.22	0.17	-0.02	0.23	0.07	0.09	0.0
arbohydrates_100g	-0.02	0.11	0.22	1.00	0.53	-0.07	-0.11	0.22	-0.00	0.3
sugars_100g	0.07	0.06	0.17	0.53	1.00	-0.04	-0.19	0.03	0.03	0.2
salt_100g	0.00	0.04	-0.02	-0.07	-0.04	1.00	0.08	-0.02	0.04	-0.0
proteins_100g	0.15	0.03	0.23	-0.11	-0.19	0.08	1.00	0.14	0.16	0.0
fiber_100g	-0.00	0.06	0.07	0.22	0.03	-0.02	0.14	1.00	-0.01	0.0
calcium_100g	0.08	0.08	0.09	-0.00	0.03	0.04	0.16	-0.01	1.00	0.0
vitamin-c_100g	-0.08	0.03	0.07	0.34	0.28	-0.04	0.00	0.06	0.04	1.0

Matrice de corrélation des variables

- Il y a une corrélation entre les glucides 'carbohydrates_100g' et sucre 'sugars_100'. Ce résultat est attendu vu que le glucide est un sucre transformé ou simple.
- Le reste des variables semblent ne pas être corrélées entre elles.

OPENCLASSROOMS

Santé

France

- Idée d'application
- Partie 1: Inspection et nettoyage des données
 - Analyse de la forme des données
 - Nettoyage sur les variables
 - Nettoyage sur les individus
 - Traitement des valeurs manquantes
- Partie 2: Exploration des données
 - Analyse univariée
 - Analyse bivariée
 - Analyse multivariée
 - Application proposée
- Santé publique Conclusion

3. Analyse multivariée

Réduction de dimension: Analyse en composantes Principales ACP

Peut-on réduire la dimension de l'étude de **10 variables** à moins en utilisant l'ACP sans perdre beaucoup d'information?

Le premier plan factoriel (axes 1 et 2) couvre une inertie de 36%.

On obtient une inertie de 80% à partir de 7 composantes sur 10. Une réduction de dimension n'est pas très intéressantes dans notre cas d'étude.

- Idée d'application
- Partie 1: Inspection et nettoyage des données
 - Analyse de la forme des données
 - Nettoyage sur les variables
 - Nettoyage sur les individus
 - Traitement des valeurs manquantes
- Partie 2: Exploration des données
 - Analyse univariée
 - Analyse bivariée
 - Analyse multivariée
 - Application proposée
- Santé publique Conclusion

4. Calcul du RGO-score/RGO-grade

Normalisation des variables: Min-Max Scaler

	saturated- fat_100g	trans- fat_100g	cholesterol_100g	carbohydrates_100g	sugars_100g	salt_100g
count	74235.000000	74235.000000	74235.000000	74235.000000	74235.000000	74235.000000
mean	0.053815	0.033946	0.044776	0.258242	0.151718	0.012053
std	0.078570	0.061763	0.052351	0.231604	0.184437	0.039352
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.004000	0.000000	0.000529	0.066000	0.015000	0.001000
50%	0.026000	0.007865	0.024868	0.190000	0.067000	0.004760
75%	0.063000	0.056180	0.089476	0.365800	0.241000	0.012000
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

ı	proteins_100g	fiber_100g	calcium_100g	vitamin- c_100g
)	74235.000000	74235.000000	74235.000000	74235.000000
3	0.090226	0.025864	0.038680	0.038613
2	0.081312	0.043418	0.051629	0.029445
)	0.000000	0.000000	0.000000	0.000000
)	0.027778	0.001250	0.020678	0.014433
)	0.074111	0.017025	0.025267	0.035395
)	0.133333	0.029250	0.037692	0.050378
)	1.000000	1.000000	1.000000	1.000000

data RGO scaled['Score RGO'] = (- data RGO scaled[Favorise RGO].mean(axis=1) + data RGO scaled[Diminue RGO].mean(axis=1))

1 | data Food["RGO grade"] = pd.qcut(data Food['Score RGO'],4,labels=['RGO D','RGO C','RGO B','RGO A'])

<u>OPENCLASSROOMS</u>

4. Etude RGO-score/RGO-grade

data_Food["Score_RGO"].describe() 74235.000000 count mean -0.044079 std 0.071648 min -0.366367 25% -0.081280 50% -0.032904 75% 0.004836 0.370401 max Score RGO, dtype: float64

<u>OPENCLASSROOMS</u>

4. Etude du RGO-score/RGO-grade

A: Nutriment à favoriser (diminue le reflux)

D: Nutriment à éviter (augmente le reflux)

Plus le RGO-score est grand plus le produit est bon et donc classé en RGO_A.

PENCLASSROOMS

4. Etude du RGO-score/RGO-grade VS Nutri-score/Nutri-grade

Rappel: Nutrition-score/Nutrition-grade?!

Le calcul du nutri-score se base sur les variables suivantes:

- Energy
- Sucre
- Gras saturé
- Sel
- Protéines
- + Fibres
- + Fruits et légumes

Plus le Nutri-score est faible plus le produit est bon et donc classé en nutri-grade A.

4. Etude du RGO-score/RGO-grade VS Nutrition-score/Nutrition-grade

<u>OPENCLASSROOMS</u>

0.3

Le RGO-score et le nutri-score sont corrélées négativement

	nutrition-score-fr_100g	Score_RGO
nutrition-score-fr_100g	1.00	-0.46
Score_RGO	-0.46	1.00

data_Food.loc[:,["nutrition-score-fr_100g","Score_RGO"]].corr().round(2)

DPENCLASSROOMS

4. Etude du RGO-grade VS les catégories

La catégorie du produit semble avoir un impact sur la distribution des RGO-scores.

-rance

RGO grade

4. Etude du RGO-score VS les catégories : ANOVA (Analyse de la Variance)

Hypothèse:

H0: La distribution des échantillons est similaire (et donc la catégorie n'a aucune influence sur le RGO-score).

	sum_sq	df	F	PR(>F)
main_category_fr	77.495204	18.0	1730.350206	0.0
Residual	69.241412	27829.0	NaN	NaN

Les résultats du **test de Fisher** nous indiquent ici une p-value de 0 pour les catégories sélectionnées, donc inferieur au niveau de test de 5%. Nous rejetons donc l'hypothèse H0 selon laquelle les distributions sont identiques.

La catégorie de produit a donc bien une influence sur le RGO-score.

DPENCLASSROOMS

Synthèse

Dans cette deuxième partie, nous avons effectué:

- des analyses univariées pour des variables quantitatives et qualitatives
- l'analyse de la corrélation entre les variables pertinentes (analyse bivariée)
- une analyse multivariée pour étudier la possibilité de réduire les dimensions du problème avec l'ACP SCO RE
- le calcul d'un RGO-score/RGO-grade
- une étude du RGO-score/RGO-grade VS le nutri-score/nutri-grade
- une étude du RGO-score VS la catégorie du produit (ANOVA)

Ces opérations ont permis de conclure sur la faisabilité de notre projet

Le jeu de données est bien varié.

Les différentes catégories nutritionnels de produit sont présentes. Peu de variables suffisent pour calculer le RGO-score/RGO-grade. Selon la catégorie du produit, le RGO-score peut être plus ou moins important.

- Idée d'application
- Partie 1: Inspection et nettoyage des données
 - Analyse de la forme des données
 - Nettoyage sur les variables
 - Nettoyage sur les individus
 - Traitement des valeurs manquantes
- Partie 2: Exploration des données
 - Analyse univariée
 - Analyse bivariée
 - Analyse multivariée
 - Application proposée
- Santé publique Conclusion

Conclusion

Application: RGO-scan: RGO-score/RGO-grade

Inspection et nettoyage des données de l'OpenFoodFacts

traitement des valeurs manquantes, aberrantes et atypiques

Analyses statistiques univariée, bivariée et multivariée

une base de données riche et variée

score l'application est faisable

Amélioration: étude plus poussée des facteurs du reflux

RGO: Reflux gastro-œsophagien.

