CSAS.

Topic: Brief introduction into flight dynamics.

- flight dynamics equations for rigid aircraft
- linearization
- longitudinal and lateral equations
- state equations, modes, approximations

... will be accompanied / completed by case study and detailed info given by P.Hospodar

Standard aerospace coordinate systems (ISO)

- aircraft movements (pitch, ...) & coordinate systems (ground, ...)
- **■** control surfaces

Flight equations. Flight variables.

		Značení v obl	asti norem		
		ISO	GOST	Název	
	Souřadné osy	x	X	podélná	longitudinal
		у	Z	příčná	lateral
		z	-y	kolmá	normal
\succ	Polohové úhly	θ	9	podélný sklon	Pitch angle
LETOVÉ VELIČINY		ф	γ	příčný náklon	Roll/Bank ang- le
Œ		Ψ	Ψ	kurz	Yaw angle
, H	Úhlové rych-	$p=\omega_x \cong \phi^{\bullet}$	$\omega_x \cong \gamma^{\circ}$	klonění	Roll rate
I ≥	losti / derivace	$q=\omega_y \cong \theta^{\bullet}$	$\omega_z \cong \vartheta^*$	klopení	Pitch rate
ΙΞ		$r=\omega_z \cong \Psi^{\bullet}$	$\omega_v \cong \psi^{\bullet}$	zatáčení	Yaw rate
🗆	Úhly ofuková-	α	α	úhel náběhu	angle of atack
	ní	β	β	úhel vybočení	Sideslip angle
	Lineární	az	a _v	normálové	
	zrychlení	a _v	a_z	stranové	
-, °D		X, D=q.S.C _D	X=q.S.c _x	odporová síla	Drug
ŽZ	Síly	Z, L=q.S.C _L	Y=q.S.c _y	vztlaková síla	Lift
E D		$Y=q.S.C_Y$	Z=q.S.c _z	stranová síla	Sideforce
SLOŽKY AERODYNA- MIC. SIL A MOMENTŮ	Momenty	M_{x_i} $\overline{L} = q.S.b.C_i$	M _x =q.S.1.m _x	klonivý moment	Rolling mo- ment
X X		M _z ,	M _v =q.S.1.m _v	zatáčivý mo-	Yawing mo-
OŽK IC. SI		N=q.S.b.C _N		ment	ment
		M _y ,	Mz=q.S.bsAT.mz	klopivý moment	Pitching mo-
$\Sigma \Sigma$		M=q.S.c.C _M			ment
	Úhel sklonu	γ=θ-α	θ=9-α	ve vertikál. rov.	Flight path ang.
	trajektorie letu	$\gamma_S = \psi - \beta$	$\theta_S = \psi - \beta$	v horizont. rov.	
	Výchylky	$\delta_{e,} \eta$	$\delta_{\rm V}$	výškovka.	elevator
	kormidel	δ _a , ξ	δ_{K}	křidélka.	aileron
		δ _r , ς		směrovka	rudder
	1				

Flight equations. Assumptions

- rigid body
- constant weight
- inertial axes = aircraft axes
- thrust parallel to longitudinal axis
- g = const.
- equations for inertial system

Flight equations. Forces and moments. Kinematic equations.

$$F_{x} = X - mg \sin \theta = m(\dot{v}_{x} + \omega_{y}v_{z} - \omega_{z}v_{y})$$

$$F_{y} = Y + mg \cos \theta \sin \phi = m(\dot{v}_{y} + \omega_{z}v_{x} - \omega_{x}v_{z})$$

$$F_{z} = Z + mg \cos \theta \cos \phi = m(\dot{v}_{z} + \omega_{x}v_{y} - \omega_{y}v_{x})$$

$$\begin{split} M_{x} &= I_{x}\dot{p} - (I_{y} - I_{z})qr - I_{yz}(q^{2} - r^{2}) - I_{zx}(\dot{r} + pq) - I_{xy}(\dot{q} - rp) \\ M_{y} &= I_{y}\dot{q} - (I_{z} - I_{x})rp - I_{zx}(r^{2} - p^{2}) - I_{xy}(\dot{p} + qr) - I_{yz}(\dot{r} - pq) \\ M_{z} &= I_{z}\dot{r} - (I_{x} - I_{y})pq - I_{xy}(p^{2} - q^{2}) - I_{yz}(\dot{q} + rp) - I_{zx}(\dot{p} - qr) \end{split}$$

$$\omega_{x} = \dot{\phi} - \dot{\psi} \sin \theta$$

$$\omega_{y} = \dot{\theta} \cos \phi + \dot{\psi} \cos \theta \sin \phi$$

$$\omega_{z} = \dot{\psi} \cos \theta \cos \phi - \dot{\theta} \sin \phi$$

Flight equations. Incremental form.

$$u=u_0+\Delta u$$
 $v=v_0+\Delta v$ $w=w_0+\Delta w$

$$p=p_0+\Delta p$$
 $q=q_0+\Delta q$ $r=r_0+\Delta r$

$$X=X_0+\Delta X$$
 $Y=Y_0+\Delta Y$ $Z=Z_0+\Delta Z$

$$M_x = M_{x0} + \Delta M_x$$
 $M_v = M_{v0} + \Delta M_v$ $M_z = M_{z0} + \Delta M_z$

$$\theta = \theta_0 + \Delta \theta$$

$$\Delta X$$
- mg $\cos \theta_0 . \Delta \theta = m d/dt \Delta u$

$$\Delta Y + mg \cos\theta_0.\Delta\phi = m \left(d/dt \Delta v + u_0 \Delta r \right)$$

$$\Delta Z$$
- mg sin θ_0 . $\Delta \theta$ =m (d/dt Δw -u₀ Δq)

$$\Delta M_x = I_x d/dt(\Delta p) - I_{zx} d/dt(\Delta r)$$

$$\Delta M_v = I_v d/dt(\Delta q)$$

$$\Delta M_z = I_z d/dt(\Delta r) - I_{zx} d/dt(\Delta p)$$

Flight equations. Linearization.

$$\Delta X = \Delta X(\Delta u, \Delta w, \Delta \delta_{T}, \Delta \delta_{V}) = \frac{\partial X}{\partial u} \Delta u + \frac{\partial X}{\partial w} \Delta w + \frac{\partial X}{\partial \delta_{T}} \Delta \delta_{T} + \frac{\partial X}{\partial \delta_{v}} \Delta \delta_{v}$$

$$= X^{u} \Delta u + X^{w} \Delta w + X^{\delta_{T}} \Delta \delta_{T} + X^{\delta_{v}} \Delta \delta_{v}$$

$$\Delta Y = \Delta Y(\Delta v, \Delta p, \Delta r, \Delta \delta_{S})$$

$$\Delta Z = \Delta Z(\Delta u, \Delta w, \Delta w', \Delta q, \Delta \delta_{T}, \Delta \delta_{V})$$

$$\Delta M_x = \Delta M_x (\Delta v, \ \Delta p, \ \Delta r, \ \Delta \delta_K, \ \Delta \delta_S)$$

$$\Delta M_y = \Delta M_y (\Delta u, \ \Delta w, \ \Delta w', \ \Delta q, \ \Delta \delta_T, \ \Delta \delta_V)$$

$$\Delta M_z = \Delta M_z (\Delta v, \ \Delta p, \ \Delta r, \ \Delta \delta_K, \ \Delta \delta_S)$$

Separation: longitudinal and lateral equations.

$$\frac{\partial \Delta Y}{\partial u} = \frac{\partial \Delta M_x}{\partial u} = \frac{\partial \Delta M_z}{\partial u} = 0$$

$$F_x: m\Delta \dot{u} - X^u \Delta u - X^w \Delta w + mg \cos \theta_0 \Delta \theta = X^{\delta_T} \Delta \delta_T + X^{\delta_v} \Delta \delta_V$$

$$F_z: \begin{array}{l} -Z^u \Delta u - Z^w \Delta w - Z^{\dot{w}} \Delta \dot{w} + m \Delta \dot{w} - m u_0 \Delta q - Z^q \Delta q + mg \sin \theta_0 \Delta \theta = \\ = Z^{\delta_T} \Delta \delta_T + Z^{\delta_v} \Delta \delta_V \end{array}$$

$$M_{y}: -M_{v}^{u} \Delta u - M_{v}^{w} \Delta w - M_{v}^{\dot{w}} \Delta \dot{w} - M_{v}^{\dot{q}} \Delta q + I_{v} \Delta \dot{q} = M_{v}^{\delta_{T}} \Delta \delta_{T} + M_{v}^{\delta_{v}} \Delta \delta_{V}$$

$$F_{y:} \quad m\Delta \dot{v} - Y^{\nu} \Delta v - Y^{p} \Delta p + mu_{0} \Delta r - Y^{r} \Delta r - mg \cos \theta_{0} \Delta \phi = Y^{\delta_{s}} \Delta \delta_{s}$$

$$M_{x:} \quad -M_{x}^{\nu} \Delta v + I_{x} \Delta \dot{p} - M_{x}^{p} \Delta p - I_{zx} \Delta \dot{r} - M_{x}^{r} \Delta r = M_{x}^{\delta_{k}} \Delta \delta_{k} + M_{x}^{\delta s} \Delta \delta_{s}$$

$$M_{z:} \quad -M_{x}^{\nu} \Delta v - I_{zx} \Delta \dot{p} - M_{x}^{p} \Delta p + I_{z} \Delta \dot{r} + I_{z} \Delta \dot{r} - M_{z}^{r} \Delta r = M_{z}^{\delta_{k}} \Delta \delta_{k} + M_{z}^{\delta s} \Delta \delta_{s}$$

Non-dimensional equations: LONG equations.

$$\Delta v \!\!=\!\! \Delta u / u_0 \qquad \qquad \mathbf{y}^T = \left[y_1, \! y_2, \! y_3 \right] = \left[\Delta v, \, \Delta \alpha, \, \Delta \theta \right]$$

$c_x^{\nu} = \frac{u_0}{Sq} X^{\nu}$	$c_x^{\alpha} = \frac{1}{Sq} X^{\alpha}$	$c_x^{\theta} = \frac{mg}{Sq} \cos \theta_0$	$c_x^{\delta_T} = \frac{1}{Sq} X^{\delta_T}$	$c_x^{\delta_v} = \frac{1}{Sq} X^{\delta_v}$
$c_z^{\nu} = \frac{u_0}{Sq} Z^{\nu}$	$c_z^{\alpha} = \frac{1}{Sq} Z^{\alpha}$	$c_z^{\theta} = \frac{mg}{Sq} \sin \theta_0$		$c_z^{\delta_v} = \frac{1}{Sq} Z^{\delta_v}$
$m_{y}^{v} = \frac{u_{0}}{Sql_{SAT}} M_{y}^{v}$	$m_{y}^{\alpha} = \frac{1}{Sql_{SAT}} M_{y}^{\alpha}$	$m_{y}^{\dot{\theta}} = \frac{1}{Sql_{SAT}} \frac{1}{B} M_{y}^{\dot{\theta}}$		$m_y^v = \frac{1}{Sql_{SAT}} M_y^v$
	$m_{y}^{\dot{\alpha}} = \frac{1}{Sql_{SAT}} \frac{1}{B} M_{y}^{\dot{\alpha}}$			

S je plocha křídla a $q=1/2 \rho V^2$ je dynamický tlak.

Non-dimensional equations: LONG equations.

$$\begin{split} \dot{v} + a_{11}v + a_{12}\alpha + a_{13}\theta &= c_{11}\delta_T \\ a_{21}v + \dot{\alpha} + a_{22}\alpha - \dot{\theta} + a_{23}\theta &= c_{22}\delta_V \\ a_{31}v + a_{30}\dot{\alpha} + a_{32}\alpha + \ddot{\theta} + a_{33}\dot{\theta} &= c_{32}\delta_V \end{split}$$

	a_{ij}			C _{ij}	
i∖j	1	2	3	1	2
1	$-\frac{c_x^{\nu}}{A} = -\frac{1}{m}X^{\nu}$	$-\frac{c_x^{\alpha}}{A} = -\frac{1}{mu_0}X^{\alpha}$	$\frac{c_x^{\theta}}{A} = \frac{g}{u_0} \cos \theta_0$	$\frac{c_x^{\delta_T}}{A} = \frac{1}{mu_0} X^{\delta_T}$	$\frac{c_x^{\delta_v}}{A} = \frac{1}{mu_0} X^{\delta_v}$
2	$-\frac{c_z^{\nu}}{A} = -\frac{1}{m}Z^{\nu}$		$\frac{c_z^{\theta}}{A} = \frac{g}{u_0} \sin \theta_0$		$\frac{c_z^{\delta_v}}{A} = \frac{1}{mu_0} Z^{\delta_v}$
3	$-\frac{m_y^{\nu}}{C} = -\frac{u_0}{I_y} M_y^{\nu}$	$-\frac{m_y^{\alpha}}{C} = -\frac{1}{I_y} M_y^{\alpha}$	$-\frac{B}{C}m_{y}^{\dot{\theta}} = -\frac{1}{I_{y}}M_{y}^{\dot{\theta}}$		$\frac{m_y^{\delta_v}}{C} = \frac{1}{I_y} M_y^{\delta_v}$
a ₃₀		$-\frac{B}{C}m_{y}^{\dot{\alpha}}=-\frac{1}{I_{y}}M_{y}^{\dot{\alpha}}$			
	$A = \frac{mu_0}{Sq}, B = \frac{1}{2u_0}, C = \frac{I_y}{Sql_{SAT}}$				

Non-dimensional equations: LAT equations.

$$\mathbf{y}^{\mathrm{T}} = [\Delta \beta, \Delta \phi, \Delta \psi]$$

$c_y^{\beta} = \frac{1}{Sq} Y^{\beta}$	$c_y^{\phi} = \frac{mg}{Sq} \cos \theta_0$	$c_y^{\psi} = \frac{1}{Sq} \frac{2u_0}{l} Y^{\psi}$		$c_y^{\delta_{\mathfrak{s}}} = \frac{1}{Sq} Y^{\delta_{\mathfrak{s}}}$
	$c_{y}^{\dot{\phi}} = \frac{1}{Sq} \frac{2u_{0}}{l} Y^{\dot{\phi}}$			
$m_x^{\beta} = \frac{1}{Sql} M_x^{\beta}$	$m_x^{\dot{\phi}} = \frac{1}{Sql} \frac{2u_0}{l} M_x^{\dot{\phi}}$	$m_x^{\psi} = \frac{1}{Sql} \frac{2u_0}{l} M_x^{\psi}$	$m_x^{\delta_k} = \frac{1}{Sql} M_x^{\delta_k}$	$m_x^{\delta_s} = \frac{1}{Sql} M_x^{\delta_s}$
$m_z^{\beta} = \frac{1}{Sql} M_z^{\beta}$	$m_z^{\dot{\phi}} = \frac{1}{Sql} \frac{2u_0}{l} M_z^{\dot{\phi}}$	$m_z^{\psi} = \frac{1}{Sql} \frac{2u_0}{l} M_z^{\psi}$	$m_z^{\delta_k} = \frac{1}{Sql} M_z^{\delta_k}$	$m_z^{\delta_s} = \frac{1}{Sql} M_z^{\delta_s}$

Non-dimensional equations: LAT equations.

$$\begin{split} \dot{\beta} + b_{11}\beta + b_{12}\phi - \dot{\psi} &= d_{12}\delta_S \\ b_{21}\beta + \ddot{\phi} + b_{22}\dot{\phi} + b_{20}\ddot{\psi} + b_{23}\dot{\psi} &= d_{21}\delta_K + d_{22}\delta_S \\ b_{31}\beta + b_{30}\ddot{\phi} + b_{32}\dot{\phi} + \ddot{\psi} + b_{33}\dot{\psi} &= d_{31}\delta_K + d_{32}\delta_S \end{split}$$

		b_{ij}	d	ij		
i∖j	1	2	3	1	2	
1		$-\frac{c_y^{\phi}}{A} = -\frac{g}{u_0}\cos\theta_0$	$-\frac{B}{A}c_y^{\psi} = -\frac{1}{mu_0}Y^{\psi}$	$\frac{c_x^{\delta_T}}{A} = \frac{1}{mV} X^{\delta_T}$	$\frac{c_y^{\delta_s}}{A} = \frac{1}{mu_0} Y^{\delta_s}$	
b_{10}		$-\frac{Bc_y^{\phi}}{A} = -\frac{1}{mu_0}Y^{\phi'}$				
2	$-\frac{m_x^{\beta}}{D} = -\frac{1}{I_x} M_x^{\beta}$	$-\frac{B}{D}m_x^{\phi} = -\frac{1}{I_x}M_x^{\phi}$	$-\frac{B}{D}m_x^{\psi} = -\frac{1}{I_x}M_x^{\psi}$	$\frac{m_x^{\delta_k}}{D} = \frac{1}{I_x} M_x^{\delta_k}$	$\frac{m_x^{\delta_s}}{D} = \frac{1}{I_x} M_x^{\delta_s}$	
			$b_{20} = -\frac{E}{D} = \frac{-I_{zx}}{I_x}$			
3	$\frac{m_z^{\beta}}{F} = -\frac{1}{I_z} M_z^{\beta}$	$\frac{B}{F}m_z^{\phi} = -\frac{1}{I_z}M_z^{\phi}$	$-\frac{B}{F}m_z^{\psi} = \frac{-1}{I_z}M_z^{\psi}$	$\frac{m_z^{\delta_k}}{F} = \frac{1}{I_z} M_z^{\delta_k}$	$\frac{m_z^{\delta_s}}{F} = \frac{1}{I_z} M_z^{\delta_s}$	
		$a_{30} = -\frac{E}{F} = \frac{-I_{zx}}{I_z}$				
	$A = \frac{mu_0}{Sq}, B = \frac{1}{2u_0}, D = \frac{I_x}{Sql}, E = \frac{I_{xz}}{Sql}, F = \frac{I_z}{Sql}, b_{20} = -\frac{E}{D}, b_{30} = -\frac{E}{F}$					