XML/JSON Analysis Template

14 December, 2014

Results for Automated Information System (AIS) Use Case

Plaintext Comparisons

A. How do JSON and XML compare when plaintext-encoded?

B. How do JSON and XML compare when compressed with conventional compression algorithms?

JSON-Specific Exploratory

C. Which binary encoding of JSON is most compact?

 ${\bf D}.$ For binary JSON formats, does post-compression with conventional compression algorithms improve compactness?

EXI Exploratory

E. How do the primary EXI modes compare for schemaless encodings?

F. How do the primary EXI 'modes' compare for schema-informed encodings?

G. Does the 'strict' option significantly improve compaction for schema-informed encodings?

H. Do any of the tested conventional compression algorithms perform better on a schemaless, precompress EXI document than the standard DEFLATE?

I. Do any of the tested conventional compression algorithms perform better on a schema-informed, precompress $\rm EXI$ document than the standard DEFLATE?

Binary-comparisons

J. Which binary format is the most compact?

K. Do any of the binary formats offer improvement for a network already using gzip?

