Building Photonic and Analog Circuits with

GD5FACTURY

Self Introduction

Troy Tamas

Challenges in Photonics

- PDKs are not great
 - Most companies are designing starting at the device level
 - Many companies start even at the *process* level
 - Often difficult to fully validate a circuit

- Little standardization in packaging, test
 - Companies often waste time re-inventing
 - Requirements can vary by application

- Requirements are different from electronics
 - Often can't use "industry standard" tools as-is
 - Time is wasted building new tools or badgering vendors

Software strategies

In-House Development

Limited by your engineers time and abilities.

Buy

Bound by vendor **limitations**.

Open Source

- **Open:** Software is maintained and tested by a large community. Code is transparent. Bugs are not mysterious.
- Extensible: Customize and enhance with home-built features tailored to your needs.

\$ Cost	staff	licenses + (support + services)	(staff + support)
Time	developing + training + using	learning + interacting + waiting + using	learning + contributing + using

GD5FACTURY

- Highlights
 - 2M+ downloads
 - 60+ contributors
 - 10+ PDKs
- 100% Open source, Python based
 - Works on Linux, Windows and MacOs
- Extensible Plugins

Total Downloads - gdsfactory

Programmatic layout

c = nmos(gate_length=0.15, gate_width=0.42)
c.show()

<u>Layout → simulation</u>

Components to circuits

Hierarchical layout and simulation

1. run python code 🛛 💢


```
@gf.cell
def nxn_to_nxn() -> gf.Component:
      c = gf.Component()
      c1 = c.add_ref(gf.components.nxn(east=3, ysize=20))
      c2 = c.add_ref(gf.components.nxn(west=3))
      c2.move((40, 10))
      routes = gf.routing.get_bundle(
        c1.get_ports_list(orientation=0),
        c2.get_ports_list(orientation=180),
        with_sbend=True,
        enforce_port_ordering=False,
      for route in routes:
         c.add(route.references)
      return c
c = nxn_to_nxn()
c.show()
```

2. Visualize GDS

1. YAML

```
name: nxn_to_nxn
instances:
  c1:
       component: nxn
       settings:
       east: 3
       ysize: 20
  c2:
       component: nxn
       settings:
       west: 3
placements:
  c2:
       y: 10
routes:
  optical:
    routing_strategy: get_bundle
    settings:
      with_sbend: True
    links:
      c1,o4: c2,o1
      c1,o3: c2,o2
      c1,o2: c2,o3
```

2. See GDS in klayout

Key Advantages

- Free and open source
 - Extensible
 - Community support
 - No vendor lock-in
- Python-based
 - Powerful
 - Easy to learn
- Fast, C++ backend

Benchmark	gdspy	gdsfactory	Gain
10k_rectangles	80.2 ms	4.87 ms	16.5
boolean-offset	187 μs	44.7 μs	4.19
bounding_box	36.7 ms	170 μs	216
flatten	465 μs	8.17 μs	56.9
read_gds	2.68 ms	94 μs	28.5

gdsfactory 100 MZI variations in 1.4 seconds

SRI International®

Massachusetts Institute of Technology

University of BRISTOL PRINCETON UNIVERSITY

Hands-on introduction

- 1. Building devices and PDKs
- 2. Building a photonic circuit
- 3. Building an analog circuit