Reinforcement learning (RL) & other ML models

SUMMARY

1. Reinforcement learning	1
2. RL related research topics	
3. Other learning models	

1. Reinforcement learning

- learning through interaction with the environment
- the RL problem is the general problem of improving the behavior of an artificial agent, based on a feedback to its performance
- RL addresses the problem of how an autonomous agent (that senses and acts in its environment) can learn to choose optimal actions to achieve its goals
- Applications
 - o learning to control autonomous and mobile robots
 - o learning to optimize processes in factories
 - learning to play games
- RL combines **supervised learning** and **dynamic programming** (field of mathematics that has traditionally been used to solve problems of optimization and control)

• Idea

- o in RL, the agent is simply given the goal to achieve
 - the agent then learns how to achieve the goal by trial-and-error interactions with its environment
- o each time the agent performs an action in its environment, it receives a *reward* (or *reinforcement*) to indicate the desirability of the resulting state (e.g. + if the game was won, if the game was lost, 0 in all other states)
- o the task of the agent is to learn from this indirect, delayed reward, to choose sequences of actions that produce the greatest cumulative reward

$$s_0 \stackrel{a_0}{\longrightarrow} s_1 \stackrel{a_1}{\longrightarrow} s_2 \stackrel{a_2}{\longrightarrow} \dots$$

Goal: Learn to choose actions that maximize

$$r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$$
, where $0 \le \gamma < 1$

[1]

o γ is a **discount factor** indicating the importance of future rewards

- $\gamma=0 \Rightarrow$ only the current rewards matter Greedy approach
- γ is usually chosen as 0.95
- a RL task can be viewed as a tuple $\langle S, A, \delta, r \rangle$, where
 - o S is the space of states
 - can be **discrete** or **continuous**
 - RL in continuous state spaces \Rightarrow Gaussian Processes
 - o A is the action space
 - \circ δ is the transitions function between the states
 - o r is the reinforcement function
 - interaction between the agent and the environment
 - at time the agent observes state $s_t \in S$ and chooses action $a_t \in A$
 - then receive the reward r_t
 - and state changes to $s_{t+1} \in S$

• Markov assumption

- o the environment in a RL task is a Markov Decision Process (MDP)
- o s_{t+1} and r_t depend only on current state and action, and not on the entire (state, action) history of the agent in the environment
 - $s_{t+1} = \delta(s_t, a_t)$
 - $r_t = r(s_t, a_t)$
- o functions δ and r may be nondeterministic
- o functions δ and r not necessarily known by the agent
 - POMDP (Partial Observable Markov Decision Processes)

• agent's learning task

• learn action policy $\pi: S \to A$ that maximizes

$$E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots]$$

from any starting state in S

• here $0 \le \gamma < 1$ is the discount factor for future rewards

Note something new:

- Target function is $\pi: S \to A$
- but we have no training examples of form $\langle s, a \rangle$
- training examples are of form $\langle \langle s, a \rangle, r \rangle$

[1]

• two designs to consider

- o to learn a **utility function** on states (or state histories) and use it to select actions that maximize the expected utility of their outcomes
 - is model based
 - the agent must have a model of the environment
 - it must know the states to which its action will lead
- o to learn an **action-value** function giving the expected utility of taking a given action in a given state
 - is called **Q-learning**
 - is model free
 - the agent must not have a model of the environment
- the learning task can very
 - o the environment can be accessible or inaccessible
 - in an accessible environment, states can be identified with percepts
 - in an inaccessible environment, the agent must maintain some internal state to try to keep track of the environment
 - o the agent can begin with a knowledge of the environment and the effects of its actions, or it will have to learn this model as well as utility information
 - o rewards can be received only in terminal states, or in any state
 - learning is faster if rewards are received in any state
 - o rewards can be components of the actual utility (e.g. points for a ping-pong agent or dollars for a betting agent) or they can be hints as to the actual utility (e.g. "nice move")
 - o the agent can be a (1) passive learner or an (2) active learner.
 - passive learner simply watches the environment and tries to learn the utility of being in various states
 - active learner use its problem generator to suggest explorations of unknown portions of the environment
 - trade-off between **exploration** and **exploitation**

applications

o automation of industry with RL

- robotics
- o RL in NLP
- o RL in video games
- o Enhancing applications with RL
 - Horizon
 - Open source RL platform Google

Evaluation of RL algorithms

- 1. how good is the policy the agent finds
 - a standard approach to evaluate a policy in an episodic MDP with discounted long term reward is to run multiple independent trials with the agent using the policy under evaluation.
- 2. how much reward the agent receives while acting and learning
 - one way to show the performance of a reinforcement learning algorithm is to plot the cumulative reward (the sum of all rewards received so far) as a function of the number of steps.

o one algorithm dominates another if its plot is consistently above the other.

2. RL related research topics

- Fuzzy RL
- Bayesian RL
- Hybrid ML models
 - o RL+HMM (Hidden Markov Models)
 - o RL+clustering (adaptive clustering)
- SVMs/DTs/ANNs for approximating the Q function in Q-learning

- Deep Reinforcement Learning
- Actor-critic methods

3. Other learning models

- Association Rules (AR) mining
 - Classification based on ARs
- o Inductive Logic Programming
- Hidden Markov Models (HMMs)
 - o statistical model
 - o connection to Bayesian networks
- o Few shot learning
 - o feeding a learning model with a very small amount of training data, contrary to the normal practice of using a large amount of data.
 - o One-shot learning
 - object categorization in computer vision
 - learn information about object categories from one, or only a few, training samples/images.
 - Siamese neural networks
 - o Less than one shot-learning
 - o Zero-shot learning
 - predict the category for classes that were not observed during training
 - computer vision, natural language processing

Semi-supervised learning

- o SS classification, SS regression
- o one-stage SSL (1) vs multi-stage SSL (2)
 - (1) integrating both labeled and unlabeled data in a single learning stage by composing both supervised and unsupervised objective functions
 - (2) an initial phase of learning from unlabeled data, followed by one or more learning stages during which both labeled and unlabeled data could be used.
- o SSL taxonomy (<u>Yang et al, 2023</u>)
 - generative methods (GANs, VAEs), consistency regularization methods, graphbased methods, pseudo-labeling methods and hybrid methods
 - Generative, graph-based models
- o Deep SSL
 - Vision <u>Transformers</u> (ViT) for SS image classification
- Contrastive learning
 - Form of SSL
 - deep learning technique for unsupervised representation learning
 - learn a representation of data such that
 - similar instances are close together in the representation space, while
 - dissimilar instances are far apart
- o applications
 - search engines (e.g., Google) use SSL to label and rank web pages in their search results
 - image and audio analysis

[SLIDES]

- RL slides (T. Mitchell) [1]

[READING]

- Reinforcement learning (T. Mitchell) [1]
- Reinforcement learning (Sutton and Barto) [2]
- Reinforcement learning (Russel and Norvig) [3]

Bibliography

- [1] Mitchell, T., *Machine Learning*, McGraw Hill, 1997 (available at www.cs.ubbcluj.ro/~gabis/ml/ml-books)
- [2] Sutton, R.S., Barto, A.G., *Reinforcement learning*, The MIT Press Cambridge, Massachusetts, London, England, 1998 (http://incompleteideas.net/book/the-book.html)
- [3] Stuart J. Russell and Peter Norvig, Artificial Intelligence A Modern Approach, Prentice Hall, 1995