Nome N^o

☐ ENGFIS

Instruções: responda e justifique brevemente as suas respostas nesta folha; se necessário, utilize uma folha de exame para apresentar mais cálculos.

1. (1 valor) Calcule $\sqrt{1+i}$.

$$\sqrt[4]{2}e^{(\pi/8+k\pi)}$$
 com $k=0,1$

2. (1 valor) Resolva $e^{-z} = i$.

$$z = -i\pi/2 + 2\pi i\mathbb{Z}$$

3. (1 valor) Verifique se a função $f(x+iy)=e^{-y}$ $(i\cos x-\sin x)$ é holomorfa. A função f(z) é holomorfa, sendo $f(z)=ie^{iz}$.

4. $(1 \ valor)$ Determine e esboce a imagem f(R) do retângulo

$$R = \{x + iy \in \mathbb{C} : 0 < x < 1, 0 < y < \pi/2\}$$

pela função holomorfa $f(z) = e^{-z}$.

A imagem f(R) é o conjunto do plano definido em coordenadas polares por 1/e < r < 1 e $-\pi/2 < \theta < 0$.

5. (2 valores) Determine o disco de convergência da seguinte série de potências, e, se possível, uma expressão compacta para a função holomorfa que define:

$$\sum_{n=0}^{\infty} \frac{z^{2n}}{2^n}$$

$$\sum_{n=0}^{\infty} \frac{z^{2n}}{2^n} = \frac{2}{2-z^2} \quad \text{no disco} \quad |z| < \sqrt{2}.$$

6. (2 valores) Calcule o seguinte integral de contorno, onde γ é a curva definida por $z(t)=e^{it}$ com $t\in[0,\pi/2]$.

$$\int_{\gamma} \frac{1}{\overline{z}} dz.$$

$$\int_{\gamma} \frac{1}{\overline{z}} dz = -1.$$

7. (2 valores) Determine a série de Taylor em torno de p = i, e o seu disco de convergência, de

$$f(z) = \frac{1}{z}$$

$$\frac{1}{z} = -\sum_{n=0}^{\infty} i^{n+1} (z-i)^n = -i + (z-i) + i(z-i)^2 - (z-i)^3 - i(z-i)^4 + \dots$$
 se $|z-i| < 1$.

$$f(z) = \frac{1}{z^2 - z^4} \,.$$

$$f(z)=\frac{1}{z^2}+1+z^2+z^4+\dots \qquad \text{se } 0<|z|<1\,.$$
 e
$$f(z)=-\frac{1}{z^4}-\frac{1}{z^6}-\frac{1}{z^8}-\frac{1}{z^{10}}-\dots \qquad \text{se } |z|>1\,.$$

9. (2 valores) Determine e classifique as singularidade isoladas da função

$$f(z) = \frac{z^2 \sin(1/z)}{z^2 - 2} \,.$$

As singularidades isoladas são dois pólos simples em $\pm\sqrt{2}$, e uma singularidade essencial em 0.

10. (2 valores) Calcule o integral de contorno

$$\oint_{|z|=1} \frac{z^2 \sin(1/z)}{z^2 - 2} \ dz.$$

$$\oint_{|z|=1} \frac{z^2 \sin(1/z)}{z^2 - 2} dz = 2\pi i \left(1 - \sqrt{2} \sin\left(1/\sqrt{2}\right) \right).$$

11. (2 valores) Calcule o integral

$$\int_0^{2\pi} \frac{1}{2 + \cos(\theta)} \, d\theta \, .$$

$$\int_0^{2\pi} \frac{1}{2 + \cos(\theta)} \, d\theta = \frac{2\pi}{\sqrt{3}}$$

12. (2 valores) Calcule o integral

$$\int_{-\infty}^{\infty} \frac{1}{(x^2+2)^2} dx.$$

$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^2} \, dx = \frac{\pi}{4\sqrt{2}} \, .$$

Nome N^o

☐ ENGFIS

Instruções: responda e justifique brevemente as suas respostas nesta folha; se necessário, utilize uma folha de exame para apresentar mais cálculos.

1. $(1\ valor)$ A série de Fourier de uma função integrável, periódica de período 2π e ímpar é uma série de cosenos.

O Verdadeiro O Falso

2. (1 valor) As soluções estacionárias da equação do calor são funções harmónicas.

○ Verdadeiro ○ Falso

3. (1 valor) A parte imaginária de uma função holomorfa é uma função harmónica.

○ Verdadeiro ○ Falso

4. (1 valor) A função

$$f(z) = \frac{z - i}{z + i}$$

define uma equivalência conforme entre o semi-plano superior $\mathbb{H} = \{z \in \mathbb{C} : \Im(z) > 0\}$ e o disco unitário $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$.

○ Verdadeiro ○ Falso

5. (2 valores) Determine as soluções separáveis e limitadas da equação de Laplace

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

para um campo escalar u(x,y) definido na região $[0,\pi]\times[0,\infty)$ com condições de fronteira $u(0,y)=u(\pi,y)=0$ para todo $y\geq 0$.

$$u(x,t) = e^{-ny} \sin(nx).$$

6. (2 valores) Calcule a série de Fourier de senos da função definida, no intervalo $[0,\pi]$, por

$$\varphi(x) = \begin{cases}
0 & \text{se } |x - \alpha| \ge \varepsilon \\
1 & \text{se } |x - \alpha| < \varepsilon
\end{cases}.$$

onde $\alpha \in (0, \pi)$ e $\varepsilon > 0$ é suficientemente pequeno.

$$\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(n\alpha) \sin(n\varepsilon)}{n} \sin(nx).$$

7. (2 valores) Determine a solução formal do problema da propagação de calor

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0$$

no intervalo $x \in [0, \pi]$, com condições de fronteira nulas $u(0, t) = u(\pi, t) = 0$, e condição inicial $u(x, 0) = \varphi(x)$ (definida no exercício 6).

$$u(x,t) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(n\alpha) \sin(n\varepsilon)}{n} e^{-n^2 t} \sin(nx).$$

8. (2 valores) Calcule a transformada de Fourier inversa $f(x) = \int_{-\infty}^{\infty} F(\xi) e^{2\pi i \xi x} d\xi$ da função

$$F(\xi) = e^{-4\pi^2 \xi^2 t}$$

com t > 0.

 $e^{-4\pi^2\xi^2t}$ é a transformada de Fourier do núcleo do calor

$$H_t(x) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/4t}$$

9. (2 valores) Use a transformada de Fourier para determinar a solução formal da equação

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial x}$$

na reta real $x \in \mathbb{R}$, com condição inicial $u(x,0) = e^{-x^2}$.

Se $u(x,t)=\int_{-\infty}^{\infty}e^{2\pi i\xi t}~\widehat{u}(\xi,t)\,d\xi$, então

$$\frac{\partial}{\partial t}\widehat{u}(\xi,t) = -(4\pi^2\xi^2 - 2\pi i\xi)\widehat{u}(\xi,t)$$

e portanto

$$\widehat{u}(\xi, t) = e^{2\pi i \xi t} e^{-4\pi^2 \xi^2 t} \widehat{u}(\xi, 0).$$

Mas $e^{-4\pi^2\xi^2t}$ é a transformada de Fourier do núcleo do calor

$$H_t(x) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/4t}$$

e portanto $e^{-4\pi^2\xi^2t+2\pi i\xi t}$ é a transformada de Fourier de $H_{4\pi t}$ (x+t). Finalmente,

$$u(x,t) = \int_{-\infty} e^{-y^2} H_{4\pi t}(x+t-y) dy$$
.

10. (2 valores) Calcule a transformada de Fourier da função

$$f(x) = \begin{cases} e^{i2\pi x} & \text{se } |x| \le 1/2 \\ 0 & \text{se } |x| > 1/2 \end{cases}.$$

$$\widehat{f}(\xi) = \frac{\sin(\pi(\xi+1))}{\pi(\xi+1)}.$$

11. (2 valores) Determine uma função harmónica conjugada de $u(x,y) = e^y \sin(x)$.

$$v(x,y) = e^y \cos(x).$$

12. (2 valores) Determine uma equivalência conforme $f:Q_3\to\mathbb{D}$ entre terceiro quadrante, a região $Q_3=\{z\in\mathbb{C}:\Re(z)<0\,,\,\Im(z)<0\}$, e o disco unitário $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$.

$$f(z) = \frac{z^2 - i}{z^2 - i}$$
.