In Figure 7 straight setpoint manipulation is presented. With the \tilde{U}_y differential-drive rotating-moment control authority disabled a straight trajectory cannot be ensured, as numerous uncertain parameters (object-COM position, ground texture) are crucial to the evolution of a non-ideal conditions experiment. In the first sequence it is noteworthy that the obstacle encounters higher-friction areas (near $t \simeq 20$ s and $t \simeq 22.5$ s where the U_x command is increased), with no significant disturbance induced on the hovering attitude pose.

Fig. 8. Diagonal Setpoint Manipulation

In Figure 8 diagonal setpoint manipulation is presented, employing the \tilde{U}_y differential-drive and the U_y end-effector manipulation principles. In these sequences, the Supervisory FSM controller maintains the reference signal until the setpoint y^r -coordinate has been reached. This provides the intuitive visualization of the effectiveness of each principle: The differential-drive moment control authority is insufficient for larger required moments, which in the object setpoint manipulation case-study appears as a large x^r overshoot.

The utility of direct thrust-vectoring as a technical asset in applications that require the exertion of large forces is noteworthy. The UAV manipulates its rotor-tilting authority up to $\gamma_x \simeq 45^\circ$. At the same time, contrary to an underactuated system, it successfully remains near the hovering attitude pose where operational safety lies at maximum.

VI. CONCLUSIONS

An innovative implementation for the direct thrust-vectoring actuation authority of tiltrotor UAV types was

hovering pose. Additionally, two methodol oped in order to enact a rotating moment, differential rotor tilting, or a separate ac This strategy's increased efficiency, in term versus-operational safety, was analyzed in tion. Finally, the proposed approach wa validated on a mockup scenario, where an the mass of the aerial platform was success via docked maneuvering while pushing.

REFERENCES

- K. Alexis, G. Nikolakopoulos, and A. Tzes, "Motor control: attitude, altitude and position experitrol Theory Applications, IET, vol. 6, no. 12, pj
- [2] A. Lussier-Desbiens, A. T. Asbeck, and M. R. perching and taking off from vertical surfaces," pp. 335–370, 2011.
- [3] D. Mellingerm, Q. Lindsey, M. Shomin, and V. I eling, estimation and control for aerial grasping Intelligent Robots and Systems (IROS), 2011 II Conference on, 2011, pp. 2668–2673.
- [4] T. Justin, P. Joe, S. Koushil, and K. Vijay, "As for quadrotor micro uavs," in IDETC/CIE. AS
- [5] P. Pounds, D. Bersak, and A. Dollar, "Grasping 1 capture and load stability," in 2011 Internal Robotics and Automation (ICRA), 2011.
- [6] K. Kondak, K. Krieger, A. Albu-Schaeffer, M. iacker, I. Maza, A. Rodriguez-Castano, and A. behavior of an autonomous helicopter equipped aerial manipulation tasks," *International Journal Systems*, vol. 10, no. 145, 2013.
- [7] D. Mellinger, M. Shomin, N. Michael, and V. grasping and transport using multiple quadrotor tonomous Robotic Systems, ser. Springer Tracts i Springer Berlin Heidelberg, 2013, vol. 83, pp.
- [8] L. R. M. Manubens, D. Devaurs, and J. Cortes, 6d manipulation with aerial towedcable systems and Systems Conference (RSS), Berlin, German
- [9] M. Orsag, C. Korpela, and P. Oh, "Modeling ar Mobile manipulating unmanned aerial vehicle," & Robotic Systems, vol. 69, no. 1-4, pp. 227-2
- [10] K. Alexis, C. Huerzeler, and R. Siegwart, "Hybrol of a coaxial unmanned rotorcraft interacting through contact," in 2013 International Confer Automation (ICRA), Karlsruhe, Germany, May
- [11] B. L. Marconi, R. Naldi, and L. Gentili, "Mode a flying robot interacting with the environment," pp. 2571–2583, 2011.
 [12] C. Papachristos, K. Alexis, and A. Tzes, "Mode
- [12] C. Papachristos, K. Alexis, and A. Tzes, "Mode translation control of an unmanned tri-tiltrotor," Conference on Robotics and Automation (ICRA) May 2013, pp. 5404–5412.
- [13] C. Papachristos, and K. Alexis, and A. Tzes, "De attitude control of an unmanned tilt-rotor ae International Conference on Advanced Robotics,
- [14] C. Papachristos, K. Alexis, and A. Tzes, "Tow manned tri-tiltrotor: Design, modeling and hove ranean Conference on Control Automation (Mi 1584.
- [15] C. Papachristos and A. Tzes, "Large object longitudinally-actuated unmanned tri-tiltrotor," in ference on Control Automation (MED), 2013, p
- [16] K. J. Astrom, "Control of systems with frictio the Fourth International Conference on Motion of 1998, pp. 25–32.
- [17] S. B. Manohar, "Controlled manipulation usin systems," Thesis (Ph. D.)—Massachusetts Institut of Mechanical Engineering, 2013.
- [18] P. Tataryn, N. Sepehri, and D. Strong, "Experi-

1 of 1 3/5/18, 1:14 PM