Rigidity of stable cylinders in three-manifolds

José M. Espinar*

* Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain; e-mail: jespinar@ugr.es

Abstract

In this paper we show how the existence of a certain stable cylinder determines (locally) the ambient manifold where it is immersed. This cylinder has to verify a *bifurcation phenomena*, we make this explicit in the introduction. In particular, the existence of such a stable cylinder implies that the ambient manifold has infinite volume.

2000 Mathematics Subject Classification: Primary 53A10; Secondary 49Q05, 53C42 **Keywords:** Stable surfaces, Bifurcation.

1 Introduction

A stable compact domain Σ on a minimal surface in a Riemannian three-manifold \mathcal{M} , is one whose area can not be decreased up to second order by a variation of the domain leaving the boundary fixed. Stable oriented domains Σ are characterized by the *stability inequality* for normal variations ψN [11]

$$\int_{\Sigma} \psi^{2} |A|^{2} + \int_{\Sigma} \psi^{2} \operatorname{Ric}_{\mathcal{M}}(N, N) \leq \int_{\Sigma} |\nabla \psi|^{2}$$

for all compactly supported functions $\psi \in H_0^{1,2}(\Sigma)$. Here $|A|^2$ denotes the square of the length of the second fundamental form of Σ , $\mathrm{Ric}_{\mathcal{M}}(N,N)$ is the Ricci curvature of \mathcal{M} in the direction of the normal N to Σ and ∇ is the gradient w.r.t. the induced metric.

One writes the stability inequality in the form

$$\frac{d^2}{dt^2}\Big|_{t=0} \operatorname{Area}(\Sigma(t)) = -\int_{\Sigma} \psi L \psi \ge 0,$$

where L is the linearized operator of the mean curvature

$$L = \Delta + |A|^2 + \mathrm{Ric}_{\mathcal{M}}.$$

In terms of L, stability means that -L is nonnegative, i.e., all its eigenvalues are nonnegative. Σ is said to have finite index if -L has only finitely many negative eigenvalues.

From the Gauss Equation, one can write the stability operator as $L = \Delta - K + V$, where Δ and K are the Laplacian and Gauss curvature associated to the metric g respectively, and $V := 1/2|A|^2 + S$, where S denotes the scalar curvature associated to the metric g.

The index form of these kind of operators is

$$I(f) = \int_{\Sigma} \{ \|\nabla f\|^2 - Vf^2 + Kf^2 \}$$

where ∇ and $\|\cdot\|$ are the gradient and norm associated to the metric g. Thus, if Σ is stable, we have

$$\int_{\Sigma} f L f = -I(f) \le 0,$$

or equivalently

$$\int_{\Sigma} f^2(1/2|A|^2 + S) \le \int_{\Sigma} \left\{ \|\nabla f\|^2 + Kf^2 \right\}. \tag{1.1}$$

In a seminar paper [5], D. Fischer-Colbrie and R. Schoen proved:

Theorem A: Let \mathcal{M} be a complete oriented three-manifold of non-negative scalar curvature. Let Σ be an oriented complete stable minimal surface in \mathcal{M} . If Σ is non-compact, conformally equivalent to the cylinder and the absolute total curvature of Σ is finite, then Σ is flat and totally geodesic.

And they state [5, Remark 2]: We feel that the assumption of finite total curvature should not be essential in proving that the cylinder is flat and totally geodesic.

Recently, this question was partially answered in [3] under the assumption that the positive part of the Gaussian curvature is integrable, i.e. $K^+ := \max\{0, K\} \in L^1(\Sigma)$, and totally answered by M. Reiris [10], he proved:

Theorem B: Let \mathcal{M} be a complete oriented three-manifold of non-negative scalar curvature. Let Σ be an oriented complete stable minimal surface in \mathcal{M} diffeomorphic to the cylinder, then Σ is flat and totally geodesic.

Besides, Bray, Brendle and Neves [1] were able of determining the structure of a three-manifold \mathcal{M} under the assumption of the existence of an area minimizing two-sphere. Specifically, they proved:

Theorem C: Let \mathcal{M} be a compact three-manifold with $\pi_2(\mathcal{M}) \neq 0$. Denote by \mathcal{F} the set of all smooth maps $f: \mathbb{S}^2 \to \mathcal{M}$ which represent a non-trivial element of $\pi_2(\mathcal{M})$. Set

$$\mathcal{A}(\mathcal{M}) := \inf \left\{ \operatorname{area}(f(\mathbb{S}^2)) : f \in \mathcal{F} \right\}.$$

Then,

$$\mathcal{A}(\mathcal{M})\inf_{\mathcal{M}}R < 8\pi$$
,

where R denotes the scalar curvature of M. Moreover, if the equality holds, then the universal cover of M is isometric to the standard cylinder $\mathbb{S}^2 \times \mathbb{R}$ up to scaling.

In this paper, we will go further. We will see how the existence of a stable cylinder verifying a *bifurcation phenomena* determines the ambient manifold \mathcal{M} . First, let us make clear what we mean by *bifurcation phenomena*:

Definition 1.1. We say that a complete minimal surface $\Sigma \subset \mathcal{M}$ bifurcates if there exist $\delta > 0$ and a smooth map $u : \Sigma \times (-\delta, \delta) \to \mathbb{R}$ so that

- For each $p \in \Sigma$, we have u(x,0) = 0 and $\frac{\partial}{\partial t}|_{t=0}u(p,t) = 1$. Moreover, $u(p,t) \geq 0$ if t > 0 and $u(p,t) \leq 0$ if t < 0.
- For each $t \in (-\delta, \delta)$, the surface

$$\Sigma_t := \left\{ \exp_p(u(p, t)N(p)) : p \in \Sigma \right\},\,$$

is a complete minimal surface. Here, \exp denotes the exponential map in \mathcal{M} .

Now, we can state:

Theorem 1.1. Let \mathcal{M} be a complete oriented Riemannian three-manifold with nonnegative scalar curvature. Assume there exists $\Sigma \subset \mathcal{M}$ a complete stable minimal surface conformally equivalent to a cylinder that bifurcates. Then, Σ is flat, totally geodesic and S vanishes along Σ . Moreover, there exists an open set $\mathcal{U} \subset \mathcal{M}$ so that \mathcal{U} is locally isometric to $C \times (-\delta, \delta)$, where C denotes the standard cylinder $\mathbb{S}^1 \times \mathbb{R}$. Also, if any complete stable cylinder in \mathcal{M} bifurcate for an uniform $\delta > 0$, then \mathcal{M} is locally isometric either to $\mathbb{S}^1 \times \mathbb{R}^2$ or $\mathbb{T}^2 \times \mathbb{R}$ (here \mathbb{T}^2 is the flat tori).

We should point out the condition that Σ bifurcates is necessary. In fact, one can construct the following example: Let C(-l,l) be the right cylinder of height 2l and radius 1 endowed with the flat metric. Close it up with two spherical caps S_i , i=1,2 (one on the top and another on the bottom). Now, smooth the surface $\mathcal{M}^2 = C(-l,l) \cup S_1 \cup S_2$ so that it is flat on $C(-l+\varepsilon,l-\varepsilon)$, for some $\varepsilon > 0$, and has nonnegative Gaussian curvature.

Consider the three-manifold $\mathcal{M}^3 = \mathcal{M}^2 \times \mathbb{R}$. One can see that, if we take a closed geodesic $\gamma(t) \subset \mathbf{C}(-l+\varepsilon,l-\varepsilon)$, $t \in (-l+\varepsilon,l-\varepsilon)$, the surface $\Sigma(t) := \gamma(t) \times \mathbb{R}$ is a complete stable minimal cylinder in \mathcal{M} that bifurcates, but, when we reach $t = l - \varepsilon$, this property it might disappear (it could bifurcate as constant mean curvature surfaces at one side, but not minimal).

One interesting consequence of Theorem 1.1 is the following:

Corollary 1.1. Let \mathcal{M} be a complete oriented Riemannian three-manifold with nonnegative scalar curvature. Assume there exists $\Sigma \subset \mathcal{M}$ a complete stable minimal surface conformally equivalent to a cylinder that bifurcates. Then,

$$Vol(\mathcal{M}) = +\infty.$$

Actually, the above conclusion (that is, the above Corollary 1.1) is also valid when the cylinder bifurcates only at one side.

2 Preliminaries

We denote by \mathcal{M} a complete connected orientable Riemannian three-manifold, with Riemannian metric g. Moreover, throughout this work, we will assume that its scalar curvature is nonnegative, i.e., $S \geq 0$. $\Sigma \subset \mathcal{M}$ will be assumed to be connected and oriented.

We denote by N the unit normal vector field along Σ . Let $p_0 \in \Sigma$ be a point of the surface and $D(p_0, s)$, for s > 0, denote the geodesic disk centered at p_0 of radius s. We assume that $\overline{D(p_0, s)} \cap \partial \Sigma = \emptyset$. Moreover, let r be the radial distance of a point p in $D(p_0, s)$ to p_0 . We write $D(s) = D(p_0, s)$.

We also denote

$$l(s) = \operatorname{Length}(\partial D(s))$$

 $a(s) = \operatorname{Area}(D(s))$
 $K(s) = \int_{D(s)} K$
 $\chi(s) = \operatorname{Euler}$ characteristic of $D(s)$.

Let $\Sigma \subset \mathcal{M}$ be a stable minimal surface diffeomorphic to the cylinder, then, from Theorem B [10], Σ is flat and totally geodesic. We will give a (more general) proof of this result in the abstract setting of Schrödinger-type operators:

Lemma 2.1. Let Σ be a complete Riemannian surface. Let $L = \Delta + V - aK$ be a differential operator on Σ acting on compactly supported $f \in H_0^{1,2}(\Sigma)$, where a > 1/4 is constant, $V \ge 0$, Δ and K are the Laplacian and Gauss curvature associated to the metric q respectively.

Assume that Σ is homeomorphic to the cylinder and -L is non-negative. Then, $V \equiv 0$ and $K \equiv 0$, therefore,

$$Ker L := \{1\},$$

i.e., its kernel is the constant functions. Here, L denotes the Jacobi operator.

Proof. Set $b \ge 1$ and let us consider the radial function

$$f(r) := \begin{cases} (1 - r/s)^b & r \le s \\ 0 & r > s \end{cases},$$

where r denotes the radial distance from a point $p_0 \in \Sigma$. Then, from [3, Lemma 3.1] (see also [9]), we have

$$\int_{D(s)} (1 - r/s)^{2b} V \le 2a\pi G(s) + \frac{b(b(1 - 4a) + 2a)}{s^2} \int_0^s (1 - r/s)^{2b - 2} l(r),$$

where

$$G(s) := -\int_0^s (f(r)^2)' \chi(r).$$

Therefore, since a > 1/4, we can find $b \ge 1$ so that $b(1-4a) + 2a \le 0$. So

$$\int_{D(s)} (1 - r/s)^{2b} V \le 2a\pi G(s).$$

• Step 1: V vanishes identically on Σ .

Suppose there exists a point $p_0 \in \Sigma$ so that $V(p_0) > 0$. From now on, we fix the point p_0 . Then, there exists $\epsilon > 0$ so that $V(q) \ge \delta$ for all $q \in D(\epsilon) = D(p_0, \epsilon)$. Since Σ is topollogically a cylinder, there exists $s_0 > 0$ so that for all $s > s_0$ we have $\chi(s) \le 0$ (see [2, Lemma 1.4]).

Now, from the above considerations, there exists $\beta > 0$ so that

$$0 < \beta \le 2a\pi G(s)$$
.

But, following [3], we can see that

$$G(s) = -\int_0^s (f(r)^2)' \chi(r) = -\int_0^{s_0} (f(r)^2)' \chi(r) - \int_{s_0}^s (f(r)^2)' \chi(r)$$

$$\leq -\int_0^{s_0} (f(r)^2)' = -(f(s_0)^2 - f(0)^2) = -f(s_0)^2 + 1$$

$$= -(1 - s_0/s)^{2b} + 1,$$

since $-\int_{s_0}^s (f(r)^2)' \chi(r) \ge 0$. Therefore,

$$G(s) \le 1 - (1 - s_0/s)^{2b} \to 0$$
, as $s \to +\infty$,

which is a contradiction. Thus, V vanishes identically along Σ .

• Step 2: K vanishes identically on Σ . In particular, Σ is parabolic.

First, note that $L:=\Delta-aK$. From [4], there is a smooth positive function u on Σ such that Lu=0. Set $\alpha:=1/a$. Then, from [9] (following ideas of [4]), the conformal metric $d\tilde{s}^2:=u^{2\alpha}ds^2$, where ds^2 is the metric on Σ , is complete and its Gaussian curvature \tilde{K} of is non-negative, i.e. $\tilde{K}\geq 0$.

On the one hand, the respective Gaussian curvatures are related by

$$\alpha \Delta \ln u = K - \tilde{K} u^{2\alpha}.$$

On the other hand, since Σ is topologically a cylinder, the Cohn-Vossen inequality says

$$\int_{\Sigma} \tilde{K} \le 0,$$

that is, \tilde{K} vanishes identically.

Thus, $K = \alpha \Delta \ln u$. From this last equation, we get:

$$aK = \frac{1}{u}\Delta u - \frac{\left|\nabla u\right|^2}{u^2},$$

that is,

$$\frac{\left|\nabla u\right|^2}{u} = \Delta u - aKu = 0.$$

This last equation implies that u is constant, and since u satisfies Lu=0, we have that K vanishes identically on Σ . In particular, Σ is parabolic (see [6, Lemma 5])

This implies that the Jacobi operator becomes $L := \Delta$, and so the constant functions are in the kernel. But, since Σ is parabolic, such a kernel has dimension one (see [8]), therefore

$$\operatorname{Ker} L := \{1\}$$
.

Set $C:=\mathbb{S}^1\times\mathbb{R}$ the flat cylinder, then we can parametrize Σ as the isometric immersion $\psi_0:C\to\mathcal{M}$ where $\Sigma:=\psi_0(C)$. Also, set $N_0:C\to N\Sigma$ the unit normal vector field along Σ . Assume Σ bifurcates (see Definition 1.1), then there exist $\delta>0$ and a smooth map $u:C\times(-\delta,\delta)\to\mathbb{R}$ so that the surface $\Sigma_t:=\psi_t(C), \psi_t:C\to\mathcal{M}$ where

$$\psi_t(p) := \exp_{\psi_0(p)}(u(p,t)N_0(p)), \ p \in \mathbb{C},$$

is a complete minimal surface.

For each $t \in (-\delta, \delta)$, the lapse function $\rho_t : \Sigma \to \mathbb{R}$ is defined by

$$\rho_t(p) = g\left(N_t(p), \frac{\partial}{\partial t}\psi_t(p)\right).$$

Clearly, $\rho_0(p) = 1$ for all $p \in \mathbb{C}$. Also, the lapse function satisfies the Jacobi equation

$$\Delta_t \rho_t + (\text{Ric}(N_t) + |A_t|^2)\rho_t = 0,$$
 (2.1)

since $\psi_t(\mathbf{C})$ is minimal for all $|t| < \delta$.

Lemma 2.2. There exists $0 < \delta' < \delta$ such that Σ_t is a stable minimal surface for each $t \in (-\delta, \delta)$. Thus, Σ_t is flat, totally geodesic and S vanishes along Σ_t for each $t \in (-\delta, \delta)$.

Proof. First, note that, the lapse function is not negative for all $|t| < \delta$ and therefore, by (2.1) and the Maximum Principle, either ρ_t vanishes identically or $\rho_t > 0$ for each $|t| < \delta$.

So, since

$$\rho_t \to \rho_0 \equiv 1$$
, as $t \to 0$,

thus, we can find a uniform constant $0 < \delta' < \delta$ such that $\rho_t > 0$ for all $|t| \le \delta'$.

Therefore, ρ_t , $|t| \leq \delta'$, is a positive function solving the Jacobi equation. This implies that Σ_t is stable for all $|t| \leq \delta'$ (see [4]).

The last assertion follows from Lemma 2.1 and Σ_t be stable.

3 Proof of Theorem 1.1

From Definition 1.1 and Lemma 2.2, there exists $\delta > 0$ so that Σ_t is a complete minimal stable surface, which is flat, totally geodesic and S = 0 along Σ_t , for each $|t| < \delta$.

Now, we follows ideas of [1]. Since $\mathrm{Ric}(N_t) + |A_t|^2 \equiv 0$ and H(t) = 0 for each $|t| < \delta$, from (2.1) and Σ_t being parabolic, we obtain that ρ_t is constant. Thus, since Σ_t is totally geodesic,

$$Y: \ \mathbf{C} \times (-\delta, \delta) \rightarrow \mathcal{M}$$

 $(p, t) \rightarrow Y(p, t) := N_t(p)$

is parallel. Also, the flow of N_t is a unit speed geodesic flow (see [7]). Moreover, the map

$$\Phi: \quad \Sigma \times (-\delta, \delta) \quad \to \quad \mathcal{M}$$

$$(p, t) \quad \to \quad \Phi(p, t) := \exp_{\psi_0(p)}(t \, N(p))$$

is a local isometry onto $\mathcal{U} = \bigcup_{|t| < \delta} \Sigma_t$. Therefore, Φ is a diffeomorphism onto \mathcal{U} , which implies that $Y : \mathbb{C} \times (-\delta, \delta) \to \mathcal{U}$ is a globally defined unit Killing vector field. This implies that \mathcal{U} is locally isometric to $\mathbb{C} \times (-\delta, \delta)$.

Now, assume that any stable minimal complete cylinder bifurcates for an uniform $\delta>0$. Then, we can start with a complete stable minimal cylinder Σ_0 that bifurcates, and then by the above considerations, Σ_t , for each $|t|<\delta$, is complete, flat, totally geodesic and S vanishes along Σ_t . Moreover, Σ_t is strongly stable for each $|t|<\delta$. Note that Σ_δ is a strongly stable minimal surfaces conformally equivalent to a cylinder, since it is limit of strongly stable minimal surfaces Σ_t which are flat and totally geodesic, then Σ_δ is totally geodesic, flat and S=0 along Σ_δ . Therefore, by Definition 1.1 and Lemma 2.2, there exists $\delta>0$ so that $\Sigma_t, -\delta < t < 2\delta$, is flat, totally geodesic and S vanishes along Σ_t . Continuing this argument, Σ_t is flat, totally geodesic and S vanishes along Σ_t for each $t\in \mathbb{I}$, where $\mathbb{I}=\mathbb{R}$ or $\mathbb{I}=\mathbb{S}^1$.

As we did above, since $\mathrm{Ric}(N_t) + |A_t|^2 \equiv 0$ and H(t) = 0 for each $t \in \mathbb{I}$, from (2.1) and Σ_t being parabolic, we obtain that ρ_t is constant. Thus, since Σ_t is totally geodesic,

$$Y: \ \mathbf{C} \times \mathbb{I} \to \mathcal{M}$$

 $(p,t) \to Y(p,t) := N_t(p)$

is parallel, where $\mathbb{I} = \mathbb{R}$ or $\mathbb{I} = \mathbb{S}^1$. Also, the flow of N_t is a unit speed geodesic flow (see [7]). Moreover, the map

$$\begin{array}{cccc} \Phi: & \Sigma \times \mathbb{I} & \to & \mathcal{M} \\ & (p,t) & \to & \Phi(p,t) := \exp_{\psi_0(p)}(t \, N(p)) \end{array}$$

is a local isometry, which implies that it is a covering map. Therefore, Φ is a diffeomorphism, which implies that $Y: \mathbb{C} \times \mathbb{I} \to \mathcal{M}$ is a globally defined unit Killing vector field. This implies that \mathcal{M} is locally isometric either to $\mathbb{S}^1 \times \mathbb{R}^2$ or $\mathbb{T}^2 \times \mathbb{R}$ (here \mathbb{T}^2 denotes the flat tori).

Acknowledge

The author is partially supported by Spanish MEC-FEDER Grant MTM2010-19821, and Regional J. Andalucia Grants P06-FQM-01642 and FQM325.

References

- [1] H. Bray, S. Brendle and A. Neves: Rigidity of Area-Minimizing two-spheres in three-manifolds. *To appear in Communications in Analysis and Geometry*.
- [2] P. Castillon, An inverse spectral problem on surfaces, Comment. Math. Helv. 81 (2006) nº 2, 271–286.
- [3] J.M. Espinar and H. Rosenberg: A Colding-Minicozzi stability inequality and its applications. *Trans. A.M.S.* **363** (2011), 2447–2465.
- [4] D. Fischer-Colbrie: On complete minimal surfaces with finite Morse index in three manifolds, *Invent. Math.* **82** (1985), 121–132.

- [5] D. Fischer-Colbrie and R. Schoen: The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature, *Comm. Pure Applied Math.* **33** (1980), 199–211.
- [6] T. Klotz and R. Osserman, Complete surfaces in E^3 with constant mean curvature, *Comment. Math. Helv.*, **41** (1966-67), 313–318.
- [7] S. Montiel: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds, *Indiana Univ. Math. J.*, **48** (1999), 711-748.
- [8] J. M. Manzano, J. Pérez and M. M. Rodríguez: Parabolic stable surfaces with constant mean curvature, *To appear in Calc. Var. Partial Differential Equations*.
- [9] W. Meeks, J. Pérez and A. Ros: Stable constant mean curvature hypersurfaces, *Handbook of Geometric Analisys*, volume 1 (2008), pages 381–380. International Press, edited by Lizhen Ji, Peter Li, Richard Schoen and Leon Simon, ISBN: 978-1-57146-130-8.
- [10] M. Reiris: Geometric relations of stable minimal surfaces and applications, *Preprint*.
- [11] R. Schoen and S.T. Yau: Harmonic maps and the topology of stable hypersurfaces and manifolds of nonnegative Ricci curvature, *Comm. Math. Helv.* **39** (1976), 333–341.