IIC1253 Matemáticas Discretas

Sasha Kozachinskiy

DCC UC

01.09.2025

Hoy...

Teoría de conjuntos: principio de axiomática, notación {}, paradoja de Russell, fundación.

▶ Una teoría (de primer orden) – todas las matemáticas.

- ▶ Una teoría (de primer orden) todas las matemáticas.
- todas teoremas consecuencias.

- ▶ Una teoría (de primer orden) todas las matemáticas.
- todas teoremas consecuencias.
- Zermelo, Frenkel;

- ▶ Una teoría (de primer orden) todas las matemáticas.
- ▶ todas teoremas consecuencias.
- Zermelo, Frenkel;
- todos objetos son conjuntos.

- ▶ Una teoría (de primer orden) todas las matemáticas.
- todas teoremas consecuencias.
- Zermelo, Frenkel;
- todos objetos son conjuntos.

Nociones indefinibles:

- ▶ Una teoría (de primer orden) todas las matemáticas.
- todas teoremas consecuencias.
- Zermelo, Frenkel;
- todos objetos son conjuntos.

Nociones indefinibles:

Conjunto

 $Predicado \in (ser elemento)$

Axioma (de conjunto vació)

Existe un conjunto sin elementos.

Axioma (de conjunto vació)

- Existe un conjunto sin elementos.

Axioma (de conjunto vació)

- Existe un conjunto sin elementos.

Axioma (de extensionalidad)

Si dos conjuntos tienen los mismos elementos, entonces son iguales.

Axioma (de conjunto vació)

- Existe un conjunto sin elementos.

Axioma (de extensionalidad)

- Si dos conjuntos tienen los mismos elementos, entonces son iguales.

Corolario

El conjunto vacío es único.

Axioma (de k conjuntos)

Para cualquier k conjuntos a_1, \ldots, a_k existe un conjunto b cuyos elementos son exactamente a_1, \ldots, a_k .

Axioma (de k conjuntos)

Para cualquier k conjuntos a_1, \ldots, a_k existe un conjunto b cuyos elementos son exactamente a_1, \ldots, a_k .

Axioma (de k conjuntos)

- Para cualquier k conjuntos a_1, \ldots, a_k existe un conjunto b cuyos elementos son exactamente a_1, \ldots, a_k .

Notación:
$$b = \{a_1, \ldots, a_k\}$$
.

Axioma (de k conjuntos)

- Para cualquier k conjuntos a_1, \ldots, a_k existe un conjunto b cuyos elementos son exactamente a_1, \ldots, a_k .

Notación:
$$b = \{a_1, \ldots, a_k\}$$
.

Ejemplos:

Elementos y subconjuntos

Definición

► Un conjunto a es un subconjunto de un conjunto b si todos los elementos de a son elementos de b;

Elementos y subconjuntos

Definición

- ► Un conjunto a es un subconjunto de un conjunto b si todos los elementos de a son elementos de b;
- ightharpoonup $a \subseteq b =$

Elementos y subconjuntos

Definición

- Un conjunto a es un subconjunto de un conjunto b si todos los elementos de a son elementos de b;
- ightharpoonup $a \subseteq b =$

Proposición

 $\varnothing \subseteq$ a para cualquier conjunto a.

▶ $a \notin b$, $a \not\subseteq b$

▶ $a \notin b$, $a \not\subseteq b$

▶ $a \in b$, $a \nsubseteq b$

▶
$$a \notin b$$
, $a \not\subseteq b$

▶
$$a \in b$$
, $a \nsubseteq b$

▶
$$a \notin b$$
, $a \subseteq b$

$$ightharpoonup$$
 $a \notin b$, $a \not\subseteq b$

▶
$$a \in b$$
, $a \nsubseteq b$

$$ightharpoonup a \notin b, \quad a \subseteq b$$

▶
$$a \in b$$
, $a \subseteq b$

Subconjuntos e igualdad

Ejemplo
$$\{x, x\} = \{x\}.$$

Proposición

Sean a, b dos conjuntos. Entonces a = b si y sólo si $a \subseteq b$ y $b \subseteq a$.

Paradoja de Russel

Teorema (Russell)

No existe un conjunto r tal que sus elementos son exactamente todos los conjuntos a tal que $a \notin a$.

Paradoja de Russel

Teorema (Russell)

No existe un conjunto r tal que sus elementos son exactamente todos los conjuntos a tal que $a \notin a$.

► En teoría de conjuntos *informal* (1870-1900, Cantor) eso había considerado como una paradoja.

Paradoja de Russel

Teorema (Russell)

No existe un conjunto r tal que sus elementos son exactamente todos los conjuntos a tal que $a \notin a$.

- ► En teoría de conjuntos *informal* (1870-1900, Cantor) eso había considerado como una paradoja.
- En teoría formal: no se puede juntar conjuntos según cualquier propiedad.

No queremos tener $x \in x$ (círculo vicioso);

- No queremos tener $x \in x$ (círculo vicioso);
- ▶ Igual, no queremos cadenas $x_1 = x_k \in ... \in x_2 \in x_1$.

- No queremos tener $x \in x$ (círculo vicioso);
- ▶ Igual, no queremos cadenas $x_1 = x_k \in ... \in x_2 \in x_1$.
- Mas encima, tomar un elemento de un conjunto se puede hacer solo finito número de veces, a partir de cualquier conjunto.

- No queremos tener $x \in x$ (círculo vicioso);
- ▶ Igual, no queremos cadenas $x_1 = x_k \in ... \in x_2 \in x_1$.
- Mas encima, tomar un elemento de un conjunto se puede hacer solo finito número de veces, a partir de cualquier conjunto.

Axioma (de fundación)

Cada conjunto $x \neq \emptyset$ tiene un elemento que no tiene elementos en común con x.

Corolario

No existe k conjuntos x_1, \ldots, x_k tal que $x_1 = x_k \in \ldots \in x_2 \in x_1$.

Corolarios de fundación

Corolario

No existe un conjunto universo u tal que todos los conjuntos son sus elementos.

Corolarios de fundación

Corolario

No existe un conjunto universo u tal que todos los conjuntos son sus elementos.

Un conjunto b se llama singleton si $b = \{a\}$ para algún conjunto a.

Corolario

No existe un conjunto de todos los singletones.

iGracias!