MIMO Skript - Wintersemester 2013 Kapitel 2

Inhaltsverzeichnis

2	Poi	t-to-Point MIMO Systems
	2.1	MIMO Channel Capacity
	2.2	SIMO Systems
		2.2.1 Preliminaries
		2.2.2 MRC (Maximum Ratio Combining)
		2.2.3 EGC (Equal Gain Combining)
		2.2.4 SC (Selection Combining)
		2.2.5 Comparison
	2.3	MISO Systems
		2.3.1 Naive Approach
		2.3.2 Full CSI Available at the Transmitter
		2.3.3 No CSI at Transmitter - Space - Time - Coding
		2.3.4 Partial or Imperfect CSI at the Transmitter
	2.4	MIMO Systems without CSI at the transmitter
		2.4.1 Optimum Detection
		2.4.2 Linear Receivers
		2.4.3 Decision - Feadback Equalization (Detection)
		2.4.4 Sphere Decoding

2 Point - to - Point MIMO Systems

2.1 MIMO Channel Capacity

Inhalt: s. Skript in VL ausgeteilt

2.2 SIMO Systems

Remarks

- In SIMO Systems only <u>coding</u> and <u>diversity</u> <u>gains</u> can be exploited (no multiplexing gains)
- To realize these gains diversity combining has to be performed

- Diversity combining schemes vary in complexity and performance
- There are many diversity combining schemes. Here we consider:
 - Maximal ratio combining (MRC)
 - Equal gain combining (EGC)
 - Selection combining (SC)
- Diversity combining problem

Abbildung 1: Block Diagramm for SIMO

- how to choose combining weights w_n ?
- what performance (e.g. error rate, outage probability) is achieved?
- what diversity and coding/combining gain is achieved?

2.2.1 Preliminaries

Consider an equivalent system:

$$y = hx + n;$$

$$\mathcal{E}\{|x^2|\} = \mathcal{E}_s; \qquad \qquad \mathcal{E}\{|n^2|\} = \sigma_n^2; \qquad \qquad \mathcal{E}\{|h|^2\} = 1$$

Abbildung 2: Exemplary BER for SIMO

G_c: Coding gain
G_d: Diversity gain

• Instantaneous SNR: $\gamma_t = \frac{\mathcal{E}_s}{\sigma_z^2} \cdot |h|^2$

• Average SNR: $\bar{\gamma}_t = \mathcal{E}\{\gamma_t\} = \frac{\mathcal{E}_s}{\sigma_s^2}$

Bit and Symbol Error Rate

• The Bit and Symbol Error Rate of many modulation schemes can be expressed for given γ_t as:

$$P_e(\gamma_t) = aQ(\sqrt{b\gamma_t})$$

where:

• $Q(x) = \frac{1}{\sqrt{2\pi}} \cdot \int_{x}^{\infty} e^{-\frac{t^2}{2}} dt$

• $P_e(\gamma_t)$ may be exact result or approximation

• BPSK: exact with a = 1, b = 2

• M-ary QAM: tight approximation with $a = 4\left(1 - \frac{1}{\sqrt{M}}\right), b = \frac{3}{M-1}$

 $\left(Einschub:Gray-Code:BER=\frac{1}{\log_2 M}\cdot SER\right)$

• Alternative representation of Q - function:

$$Q(x) = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} e^{-\frac{x^2}{2\sin^2\theta}} \ d\theta$$

 \rightarrow Integral limits are fixed and do not depend on integration variables!

• Average error probability

$$P_e = \mathcal{E}\{P_e(\gamma_t)\} = \int_0^\infty aQ(\sqrt{bx})p_{\gamma_t}(x) dx$$

- Integral may be difficult to solve analytically

- Integral has infinite support \rightarrow numerical evaluation difficult

• Using alternative representation of Q-function we get:

$$P_{e} = \int_{0}^{\infty} \frac{a}{\pi} \int_{0}^{\frac{\pi}{2}} e^{-\frac{bx}{2\sin^{2}\theta}} p_{\gamma_{t}}(x) d\theta dx$$

$$= \frac{a}{\pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} p_{\gamma_{t}}(x) e^{-\frac{b}{2\sin^{2}\theta}x} dx d\theta \qquad = \frac{a}{\pi} \int_{0}^{\frac{\pi}{2}} M_{\gamma_{t}}(\frac{b}{2\sin^{2}\theta}) d\theta$$

where:

– $M_{\gamma_t}(s) = \int_0^\infty p_{\gamma_t}(x) e^{-sx} \ dx$ is the Laplace transform of $p_{\gamma_t}(s)$

– $M_{\gamma_t}(-s)$ is the so called Moment Generation Function (MGF) of p_{γ_t}

- Here, we will also refer to $M_{\gamma_t}(s)$ as MGF

- $M_{\gamma_t}(s)$ is sometimes easier to obtain than p_{γ_t}

 The above integral can be easily evaluated numerically because of the finite integral limits

Outage probability

• The outage probability is the probability that the channel cannot support a certain rate, R, i.e. (where γ_T is the threshold SNR):

$$C = \log_2(1 + \gamma_t) < R \quad \leftrightarrow \quad \gamma_t < 2^R - 1 \hat{=} \gamma_T$$

Thus, the outage probability is given by:

$$P_{out} = P_0\{\gamma_t < \gamma_T\} = \int_0^{\gamma_T} p_{\gamma_t}(x) \ dx$$

• Using the inverse Laplace Transform

$$p_{\gamma_t}(x) = \frac{1}{2\pi j} \int_{c-j\omega}^{c+j\omega} M_{\gamma_t}(s) e^{sx} dx$$

where c > 0 is a small constant that lies in the region of convergence of the integral, we obtain:

- 1.

$$P_{out} = \frac{1}{2\pi j} \int_{c-j\omega}^{c+j\omega} M_{\gamma_t}(s) \int_0^{\gamma_T} e^{sx} dx ds = \frac{1}{2\pi j} \int_{c-j\omega}^{c+j\omega} M_{\gamma_t}(s) e^{\gamma_T s} \frac{ds}{s}$$

(lower integral limit is 0 since $p_{\gamma_t}(0) = 0$)

- and 2.:

$$\begin{split} p_{\gamma_t}(x) &= \int_0^x p_{\gamma_t}(t) \ dt = 0 \\ \text{for } x &= 0 \text{ note: } p_{\gamma_t}(x) \xleftarrow{Laplace}_{transform} \frac{1}{s} M_{\gamma_t}(s) \end{split}$$

General combining scheme

$$y = \left(\sum_{n=1}^{N_R} h_n w_n\right) x + \sum_{n=1}^{N_R} w_n n_n$$
$$\gamma_t = \frac{\mathcal{E}_s \left| \sum_{n=1}^{N_R} h_n w_n \right|^2}{\sigma_n^2 \sum_{n=1}^{N_R} |w_n|^2}$$

where w_n depends on the particular combining scheme.

2.2.2 MRC (Maximum Ratio Combining)

• what weight w_n maximize γ_t ?

- Cauchy-Schwarz inequality

$$\left| \sum_{n=1}^{N_R} h_n w_n \right|^2 \le \sum_{n=1}^{N_R} |h_n|^2 \cdot \sum_{n=1}^{N_R} |w_n|^2$$

where equality holds if and only if $w_n = c \cdot h_n^*$ for some non-zero constant c.

- for $w_n = h_n^*$, we obtain

$$\gamma_t = \frac{\mathcal{E}_s}{\sigma_n^2} \cdot \frac{\left(\sum_{n=1}^{N_R} |h_n|^2\right)^2}{\sum_{n=1}^{N_R} |h_n|^2} = \frac{\mathcal{E}_s}{\sigma_n^2} \sum_{n=1}^{N_R} |h_n|^2$$

- $w_n = h_n^* \, \forall \, n$ are the MRC combining weights.
- For performance analysis we assume independent identically distributed (IID) Rayleigh fading

• Error rate

$$\gamma_t = \sum_{n=1}^{N_R} \gamma_n$$

 \rightarrow sum of IID random variables (r.v.s.)

$$M_{\gamma_t}(s) = \left(M_{\gamma}(s)\right)^{N_R} = \frac{1}{(1+s\bar{\gamma})^{N_R}} = \frac{1}{\bar{\gamma}^{N_R}} \cdot \frac{1}{(s+\frac{1}{\bar{\kappa}})^{N_R}}$$

inverse Laplace-transform (from tables)

$$p_{\gamma_t}(x) = \frac{1}{\bar{\gamma}^{N_R}} \cdot \frac{x^{N_R - 1}}{(N_R - 1)!} e^{-\frac{x}{\bar{\gamma}}}; \quad x \ge 0$$

• Direct approach

$$P_e = \int_0^\infty a \cdot Q(\sqrt{ax}) p_{\gamma_t}(x) \ dx = a \left(\frac{1-\mu}{2}\right)^{N_R} \cdot \sum_{n=0}^{N_R-1} \binom{N_R-1+n}{n} \left(\frac{1+\mu}{2}\right)^n$$
 where $\mu = \sqrt{\frac{b\bar{\gamma}}{2+b\bar{\gamma}}}$

• MGF approach

$$P_e = \frac{a}{\pi} \int_0^{\frac{\pi}{2}} M_{\gamma_t} \left(\frac{b}{2 \sin^2 \theta} \right) d\theta$$

$$= \frac{a}{\pi} \int_0^{\frac{\pi}{2}} \frac{1}{\bar{\gamma}^{N_R} \left(\frac{b}{2 \sin^2 \theta} + \frac{1}{\bar{\gamma}} \right)^{N_R}} d\theta \quad \text{(numerisch berechnen!)}$$

• with high SNR: $\bar{\gamma} \to \infty \iff \frac{1}{\bar{\gamma}} \to 0$ and with MGF approach this leads to Average Error Probability P_e :

$$\begin{split} P_e &= \frac{a}{\pi} \cdot \frac{1}{\bar{\gamma}^{N_R}} \cdot \left(\frac{2}{b}\right)^{N_R} \int_0^{\frac{\pi}{2}} \sin^{2N_R} \theta \ d\theta \\ &= \frac{a}{2^{N_R+1} \cdot b^{N_R}} \left(\frac{2N_R}{N_R}\right) \frac{1}{\bar{\gamma}^{N_R}} \quad \text{as } \bar{\gamma} \to \infty \\ &\stackrel{!}{=} \left(\frac{1}{G_c \bar{\gamma}}\right) \end{split}$$

where:

$$-\int_0^{\frac{\pi}{2}} \sin^{2N_R} \theta \ d\theta = \frac{\pi}{2^{N_R+1}} \cdot \binom{2N_R}{N_R}$$

– Diversity gain: $G_d = N_R$

- Combining/Coding gain:
$$G_c = 2b \left(\frac{a}{2} {2N_R \choose N_R}\right)^{-\frac{1}{N_R}}$$

Abbildung 3: BER for average SNR $\bar{\gamma}_t$

- MRC exploits the maximal possible diversity
- Diversity gain is not affected by correlation as the branches are not fully correlated
- Diversity gain depends on fading distribution

Outage probability

$$P_{out} = \int_0^{\gamma_T} p_{\gamma_t}(x) \ dx = \frac{1}{\bar{\gamma}^{N_R}} \int_0^{\gamma_T} \frac{x^{N_R - 1}}{(N_R - 1)!} e^{-\frac{x}{\bar{\gamma}}} \ dx$$
$$= 1 - e^{-\frac{\gamma_T}{\bar{\gamma}}} \cdot \sum_{n=1}^{N_R} \frac{\left(\frac{\gamma_T}{\bar{\gamma}}\right)^n}{(n-1)!}$$

• Approximation (Taylor series): $\bar{\gamma} \to \infty$: $-e^{-\frac{x}{\bar{\gamma}}} = 1 - \frac{x}{\bar{\gamma}} + O(\frac{1}{\bar{\gamma}})$ where a function f(x) is O(x) if $\lim_{x \to \infty} \frac{f(x)}{x} = 0$.

$$\Rightarrow P_{out} = \frac{1}{\gamma^{N_R}} \int\limits_{0}^{\gamma_T} \frac{x^{N_R - 1}}{(N_R - 1)!} \left(1 - \frac{x}{\bar{\gamma}} + O\left(\frac{1}{\bar{\gamma}}\right) \right)$$

• Diversity and coding gain can also be defined for P_{out}

2.2.3 EGC (Equal Gain Combining)

Combining Weights

- For MRC, both, the amplitudes and phases of the channel gains $h_n = |h_n|e^{j\varphi_n}$ have to be known (or estimated in practice)
- In EGC it is assumed that only the phases are known and weights $w_n = e^{-j\varphi_n}$ are used.

$$\Rightarrow \gamma_t = \frac{\mathcal{E}_s}{\sigma_n^2} \frac{\left| \sum_{n=1}^{N_R} |h_n| e^{j\varphi_n} e^{-j\varphi_n} \right|^2}{\sum_{n=1}^{N_R} |e^{-j\varphi_n}|^2} = \frac{\mathcal{E}_s}{\sigma_n^2} \frac{1}{N_R} \left(\sum_{n=1}^{N_R} |h_n| \right)^2$$
$$= \frac{1}{N_R} \left(\sum_{n=1}^{N_R} \sqrt{\gamma_n} \right)^2; \text{ with } \gamma_n = \frac{\mathcal{E}_s}{\sigma_n^2} |h_n|^2$$

Performance Analysis

- IID case
 - $\Rightarrow \sqrt{\gamma_n}$ is Rayleigh distributed
 - \Rightarrow Exact analysis is much more difficult than for MRC \Rightarrow see book by Simon & Alouini p.341
- Approximate result

$$P_{e} = \frac{a}{2} \left[1 - \sqrt{\frac{2b\bar{\gamma}}{5 + 2b\bar{\gamma}}} \sum_{n=0}^{N_{R}-1} \frac{\binom{2n}{n}}{4^{n} (1 + \frac{2}{5}b\bar{\gamma})^{n}} \right]$$

- high SNR
 - \Rightarrow use high SNR analysis of Wang & Giannakis, 2003
 - \Rightarrow at high SNR, only pdf of γ_n around 0 is relevant for performance

$$\Rightarrow \begin{array}{l} \text{Rayleigh} \\ p_{\gamma}(x) = \frac{1}{\bar{\gamma}} e^{-\frac{x}{\bar{\gamma}}} \stackrel{\text{Taylor Serie}}{=} \frac{1}{\bar{\gamma}} + O\left(\frac{1}{\bar{\gamma}}\right) \text{ as } x \to 0 \end{array}$$

• need pdf γ_t : (γ_n bekannt, \rightarrow ges.: Wurzel, etc.) (cumulative distribution function of $\sqrt{\gamma}$ (cdf))

$$P_{\sqrt{\gamma}}(x) = \Pr\{\sqrt{\gamma} \le x\} = \Pr\{\gamma \le x^2\} = P_{\gamma}(x^2) = \text{cdf of } \gamma$$
$$\to p_{\sqrt{\gamma}}(x) = \frac{d}{dx} P_{\sqrt{\gamma}}(x) = 2x \cdot p_{\gamma}(x^2) = \frac{2x}{\bar{\gamma}} + O\left(\frac{1}{\bar{\gamma}}\right)$$

• Laplace Transformation to MGF

• inverse Laplace Transform

$$\begin{split} p_{\sqrt{\gamma_{t}}}(x) &= \mathcal{L}^{-1}\Big\{M_{\sqrt{\gamma_{t}}}(s)\Big\} = \left(\frac{2N_{R}}{\bar{\gamma}}\right)^{N_{R}} \cdot \frac{x^{2N_{R}-1}}{(2N_{R}-1)!} + O\left(\frac{1}{\bar{\gamma}^{N_{R}}}\right) \\ P_{\gamma_{t}}(x) &= \Pr\{\gamma_{t} \leq x\} = \Pr\{\sqrt{\gamma_{t}} \leq \sqrt{x}\} = P_{\sqrt{\gamma_{t}}}(\sqrt{x}) \to \operatorname{cdf of } \sqrt{\gamma_{t}} \\ p_{\gamma_{t}}(x) &= \frac{d}{dx}P_{\gamma_{t}}(x) = \frac{1}{2\sqrt{x}} \cdot p_{\gamma_{t}}(\sqrt{x}) = \frac{1}{2}\left(\frac{2N_{R}}{\bar{\gamma}}\right)^{N_{R}} \cdot \frac{x^{N_{R}-1}}{(2N_{R}-1)!} + O\left(\bar{\gamma}^{-N_{R}}\right) \\ \to M_{\gamma_{t}}(s) &= \mathcal{L}\{p_{\gamma_{t}}(x)\} = \frac{1}{2}\left(\frac{2N_{R}}{\bar{\gamma}}\right)^{N_{R}} \cdot \frac{(N_{R}-1)!}{(2N_{R}-1)!} \cdot b^{N_{R}} + O\left(\bar{\gamma}^{-N_{R}}\right) \end{split}$$

• Error Probability:

$$P_{e} = \frac{a}{\pi} \int_{0}^{\frac{\pi}{2}} M_{\gamma_{t}} \left(\frac{b}{2 \sin^{2}(\theta)} \right) d\theta$$

$$= \frac{a}{\pi} \frac{1}{2} \left(\frac{2N_{R}}{\bar{\gamma}} \right)^{N_{R}} \frac{(N_{R} - 1)!}{(2N_{R} - 1)!} \frac{2^{N_{R}}}{b^{N_{R}}} \int_{0}^{\frac{\pi}{2}} \sin^{2N_{R}}(\theta) d\theta + O\left(\frac{1}{\bar{\gamma}^{N_{R}}} \right)$$

$$= \frac{aN_{R}^{N_{R}}}{2b^{N_{R}}N_{R}!} \frac{1}{\bar{\gamma}^{N_{R}}} + O\left(\frac{1}{\bar{\gamma}^{N_{R}}} \right) \stackrel{!}{=} \left(\frac{1}{G_{c} \cdot \bar{\gamma}} \right)^{G_{d}}$$

$$\Rightarrow \text{Diversity gains } G = N$$

 \implies Diversity gain: $G_d = N_R$

$$\implies$$
 Combining gain: $G_c = \frac{b}{N_R} \left(\frac{2N_R!}{a}\right)^{\frac{1}{N_R}}$

vergleiche auch Blatt mit Kurven III und IV

A similar asymptotic analysis can be conducted for the outage probability.

2.2.4 SC (Selection Combining)

Combining weights

- only the strongest branch is chosen
- strongest branch: $\hat{n} = \underset{n}{\operatorname{argmax}} \gamma_n \longrightarrow \gamma_t = \gamma_{\hat{n}}$
- ullet only on RF receiver chain required o saves hardware complexity

Performance analysis

• cdf of: γ_t

$$P_{\gamma_t}(x) = \Pr\{\gamma_{\hat{n}} \le x\} = \Pr\{\gamma_1 \le x \cap \gamma_2 \le x \cap \dots \gamma_{N_R} \le x\}$$

$$\stackrel{(IID)}{=} \left(\Pr\{\gamma_n \le x\}\right)^{N_R} = \left(P_{\gamma}(x)\right)^{N_R}$$

• pdf:

$$p_{\gamma_t}(x) = \frac{d}{dx} P_{\gamma_t}(x) = N_R \left(P_{\gamma}(x) \right)^{N_R - 1} \cdot p_{\gamma}(x)$$
 where:
$$p_{\gamma}(x) = \frac{1}{\bar{\gamma}} e^{-\frac{x}{\bar{\gamma}}}; \quad x \ge 0$$

$$P_{\gamma}(x) = \int_0^x p_{\gamma}(x) \ dx = 1 - e^{-\frac{x}{\bar{\gamma}}}; \quad x \ge 0$$

$$\to p_{\gamma_t}(x) = \frac{N_R}{\bar{\gamma}} \left(1 - e^{-\frac{x}{\bar{\gamma}}} \right)^{N_R - 1} e^{-\frac{x}{\bar{\gamma}}}; \quad x \ge 0$$

Error probability

• direct approach \rightarrow closed-form solution possible

• MGF approach (with Binomial expansion):

$$p_{\gamma_t}(x) = \frac{N_R}{\bar{\gamma}} e^{-\frac{x}{\bar{\gamma}}} \sum_{n=0}^{N_R - 1} {N_R - 1 \choose n} 1^{N_R - 1 - n} \left(-e^{-\frac{x}{\bar{\gamma}}} \right)^n$$
$$= \frac{N_R}{\bar{\gamma}} \sum_{n=0}^{N_R - 1} {N_R - 1 \choose n} \cdot (-1)^n e^{-\frac{x(n+1)}{\bar{\gamma}}}; \quad x \ge 0$$

$$M_{\gamma_t}(s) = \frac{N_R}{\bar{\gamma}} \sum_{n=0}^{N_R - 1} \binom{N_R - 1}{n} (-1)^n \frac{1}{s + \frac{n+1}{\bar{\gamma}}}$$

$$P_e = \frac{a}{\pi} \int_0^{\frac{\pi}{2}} M_{\gamma_t} \left(\frac{b}{2 \sin^2 \theta} \right) d\theta = \frac{a N_R}{\pi \bar{\gamma}} \sum_{n=0}^{N_R - 1} \binom{N_R - 1}{n} (-1)^n \int_0^{\frac{\pi}{2}} \frac{d\theta}{\frac{b}{2 \sin^2 \theta} + \frac{n+1}{\bar{\gamma}}}$$

 \rightarrow can be evaluated numerically

• high SNR approach $\Rightarrow \bar{\gamma} \to \infty$

$$\begin{split} p_{\gamma_t} &= \frac{N_R}{\bar{\gamma}} \left[1 - \exp\left(-\frac{x}{\bar{\gamma}}\right) \right]^{N_R - 1} \exp\left(-\frac{x}{\bar{\gamma}}\right) \\ &\stackrel{\bar{\gamma} \to \infty}{=} \frac{N_R}{\bar{\gamma}} \left[1 - \left(1 - \frac{x}{\bar{\gamma}} + O\left(\bar{\gamma}^{-1}\right)\right) \right]^{N_R - 1} \left(1 - \frac{x}{\bar{\gamma}} + O\left(\bar{\gamma}^{-1}\right)\right) \\ &= \frac{N_R}{\bar{\gamma}^{N_R}} x^{N_R - 1} + o\left(\bar{\gamma}^{-N_R}\right) \end{split}$$

$$M_{\gamma_t}(s) = \frac{N_R}{\bar{\gamma}^{N_R}} \frac{(N_R - 1)!}{s^{N_R}} + O\left(\bar{\gamma}^{-N_R}\right)$$
$$\left[\to P_e = \frac{a}{\pi} \int_0^{\frac{\pi}{2}} M_{\gamma_t} \left(\frac{b}{2\sin^2(\theta)}\right) d\theta \right]$$
$$= \frac{a(2N_R)!}{b^{N_R} 2^{N_R + 1} N_R!} \frac{1}{\bar{\gamma}^{N_R}} + O(\bar{\gamma}^{-N_R})$$

 \Longrightarrow Diversity gain: $G_d = N_R$

 \implies Combining gain: $G_c = 2b \left(\frac{2N_R!}{a(2N_R)!}\right)^{\frac{1}{N_R}}$

Outage Probability

$$\begin{split} P_{out} &= \Pr\{\gamma_{\hat{n}} \leq \gamma_T\} = P_{\gamma_{\hat{n}}}(\gamma_T) = \left[1 - \exp\left(-\frac{\gamma_T}{\bar{\gamma}}\right)\right]^{N_R} \\ \text{high SNR: } P_{out} &= \left(\frac{\gamma_T}{\bar{\gamma}}\right)^{N_R} + O\left(\bar{\gamma}^{-N_R}\right) \end{split}$$

2.2.5 Comparison

- Diversity Gain: MRC, EGC and SC all achieve the maximum possible diversity gain of $G_d = N_R$
- Combining Gain: The combining gains of MRC, EGC and SC are different
 - MRC/EGC:

$$\frac{G_C^{EGC}}{G_C^{MRC}} = \frac{\frac{1}{2b} \left(\frac{a}{2} {2N_R \choose N_R}\right)^{\frac{1}{N_R}}}{\frac{N_R}{b} \left(\frac{a}{2} \frac{1}{N_R!}\right)^{\frac{1}{N_R}}} = \frac{\left[(2N_R)!\right]^{\frac{1}{N_R}}}{2N_R (N_R)^{\frac{1}{N_R}}} \le 1$$

(independent of a or b which are modulation parameters, only depends on number of antennas)

$$N_R \gg 1$$
: $N_R! \approx \sqrt{2\pi}e^{-N_R}N_R^{N_R+\frac{1}{2}}$ (Stirling)

$$\frac{G_c^{EGC}}{G_c^{MRC}}\bigg|_{N_R\gg 1} = \frac{\left(\sqrt{2\pi}e^{-2N_R}(2N_R)^{2N_R+\frac{1}{2}}\right)^{\frac{1}{N_R}}}{2N_R\left(\sqrt{2\pi}e^{-N_R}N_R^{N_R+\frac{1}{2}}\right)^{\frac{1}{N_R}}} = \frac{2\cdot 2^{\frac{1}{2N_R}}}{2} \stackrel{N_R\to\infty}{\to} \frac{2}{e} \equiv -1.3\text{dB}$$

- MRC/SC:

$$\begin{split} \frac{G_c^{SC}}{G_c^{MRC}} &= \frac{2b \left(\frac{a}{2} \binom{2N_R}{N_R}\right)^{\frac{1}{N_R}}}{2b \left(\frac{a}{2} \frac{(2N_R)!}{N_R!}\right)^{\frac{1}{N_R}}} = \frac{1}{\left(N_R!\right)^{\frac{1}{N_R}}} \leq 1 \\ \frac{G_c^{SC}}{G_c^{MRC}} \bigg|_{N_R \gg 1} &= \frac{1}{\sqrt{2\pi^{\frac{1}{N_R}}}e^{-1}N_R^{1+\frac{1}{2N_R}}} N_R \overset{\rightarrow}{\to} \infty \frac{e}{N_R} \end{split}$$

 \rightarrow loss increases with N_R

- Ergebnis:
 - unterschiedliche Kurven in Diagramm "Combiner Performance Comparison, BPSK" ergeben sich durch G_c
 - alle Kurven haben die gleiche Steigung $\Rightarrow G_d$ ist überall gleich
 - nur Abstände sind unterschiedlich $\Rightarrow G_c$ wird in MRC besser "genutzt" als in EGC und SC

2.3 MISO Systems

Remarks

- Similar to SIMO systems, in MISO systems only coding and diversity gains can be obtained.
- To realize these gains, a careful transmitter design is necessary
- ullet System design depends on whether or not channel state information (CSI) is available at transmitter

2.3.1 Naive Approach

• Assume we simply send the same signal over all N_T transmit antennas

Abbildung 4: Block Diagramm of naive MISO

- Transmit power: $\mathcal{E}\left\{\left|\frac{1}{\sqrt{N_T}}x\right|^2 + \dots, \left|\frac{1}{\sqrt{N_T}}x\right|^2\right\} = \mathcal{E}\left\{N_T \frac{1}{N_T}|x|^2\right\} = \mathcal{E}_s$
- Received signal: $y = \frac{1}{\sqrt{N_T}} \sum_{n=1}^{N_T} h_n \cdot x + n$
- Rayleigh fading: h_n are zero mean complex gaussian random variables $\to h$ is also zero mean complex gaussian
- i.i.d.:

$$- \mathcal{E}\{|h_n|^2\} = 1 \ \forall n$$

$$- \mathcal{E}\{|h|^2\} = \frac{1}{N_T} \mathcal{E}\left\{ \left| \sum_{n=1}^{N_T} h_n \right|^2 \right\} = \frac{1}{N_T} \mathcal{E}\left\{ \sum_{n=1}^{N_T} |h_n|^2 \right\} = 1$$

- statistical properties of h are independent of N_T
- the multiple transmit antennas have no benefit at all
- more sophisticated transmitter designs necessary

2.3.2 Full CSI Available at the Transmitter

- $h_n, n \in \{1, \dots, N_T\}$ is known at the transmitter
- Perform "precoding" (beamforming) with coefficients w_n

Abbildung 5: Block Diagramm of MISO with CSI

- Transmit Power: Two constraints maybe considered
 - Average transmit power constraint

$$P_{av} = \mathcal{E}\left\{\sum_{n=1}^{N_T} |w_n^* x|^2\right\} = \sum_{n=1}^{N_T} |w_n|^2 \underbrace{\mathcal{E}\{|x|^2\}}_{\mathcal{E}} = \mathcal{E}_s \Rightarrow \sum_{n=1}^{N_T} |w_n|^2 = 1$$

- Power constraint for each transmit antenna

$$\rightarrow |w_n| = \frac{1}{\sqrt{N_T}} \longrightarrow P_{av} = \mathcal{E}_s$$

• Recveived signal: $y = \sum_{n=1}^{N_T} w_n^* h_n x + n$ (equivalent SISO channel)

Maximum Ratio Transmission (MRT)

- \bullet we have only the average power constraint: $\sum_{n=1}^{N_T} |w_n|^2 = 1$
- SNR: $\gamma_t = \frac{\mathcal{E}_s |h|^2}{\sigma_n^2} = \frac{\mathcal{E}_s \left|\sum_{n=1}^{N_T} w_n^* \cdot h_n\right|^2}{\sigma_n^2}$
- Maximize SNR under constraint $\sum_{n=1}^{N_T} |w_n|^2 = 1$
- \bullet constraint optimization problem \to Lagrange method

$$L = \frac{\mathcal{E}_s}{\sigma_n^2} \left| \sum_{n=1}^{N_T} w_n^* \cdot h_n \right|^2 + \lambda \left(\sum_{n=1}^{N_T} |w_n|^2 - 1 \right); \quad \text{where: } \lambda = \text{Lagrange Multiplier}$$

 \Rightarrow Wirtinger Kalkül: treat z and z^* as independent variables for differentiation:

$$\begin{split} \frac{\partial z^*}{\partial z} &= 0; \quad \frac{\partial |z|^2}{\partial z} = \frac{\partial z \cdot z^*}{\partial z} = z^* \\ \frac{\partial x^2}{\partial x} &= 2x; \quad \frac{\partial (z^*)^2}{\partial z^*} = 2 \cdot z^*; \frac{\partial |z|^2}{\partial z} = z^* \end{split}$$

$$\frac{\partial L}{\partial w_m^*} = \frac{\mathcal{E}_s}{\sigma_n^2} \left(\sum_{n=1}^{N_T} w_n^* \cdot h_n \right)^* h_m + \lambda w_m$$

$$ightarrow w_m = rac{\mathcal{E}_s}{\sigma_n^2 \cdot \lambda} \Big(\sum_{n=1}^{N_T} w_n^* h_n \Big)^* h_m$$
 const., independent of $m := c$

$$\rightarrow w_m = c \cdot h_m$$

$$\rightarrow \sum_{n=1}^{N_T} |w_n|^2 = 1 \rightarrow c^2 = \frac{1}{\sum_{n=1}^{N_T} |h_n|^2}$$

$$\rightarrow w_n = \frac{h_n}{\sqrt{\sum_{n=1}^{N_T} |h_n|^2}} \equiv MRT \text{ gains}$$

$$\to \text{SNR} = \frac{\mathcal{E}_s}{\sigma_n^2} \left| \sum_{n=1}^{N_T} \frac{|h_n|^2}{\sqrt{\sum_{n=1}^{N_T} |h_n|^2}} \right|^2 = \frac{\mathcal{E}_s}{\sigma_n^2} \sum_{n=1}^{N_T} |h_n|^2$$

- ⇒ same SNR as for maximum ration combining (MRC)
- \Rightarrow MRT with N_T transmit antennas achieves the same performance as MRC with N_T receive antennas
- \Rightarrow MRT/MRC can be extended to $N_T \times N_R$ MIMO systems
 - \rightarrow has the same performance as MRC with $N_T \cdot N_R$ receive antennas and one transmit antenna

Equal Gain Transmission (EGT)

- we employ gains: $w_n = \frac{1}{\sqrt{N_T}} \cdot \frac{h_n}{|h_n|} \to |w_n| = \frac{1}{\sqrt{N_T}}$
- SNR:

$$\gamma_t = \frac{\mathcal{E}_s}{\sigma_n^2} \left| \sum_{n=1}^{N_T} w_n^* h_n \right|^2$$

$$= \frac{\mathcal{E}_s}{\sigma_n^2} \left| \sum_{n=1}^{N_T} \frac{1}{\sqrt{N_T}} \cdot \frac{|h_n|^2}{|h_n|} \right|^2 = \frac{1}{N_T} \cdot \frac{\mathcal{E}_s}{\sigma_n^2} \left| \sum_{n=1}^{N_T} |h_n| \right|^2$$

$$\gamma_n = \frac{\mathcal{E}_s}{\sigma_n^2} |h_n|^2$$

same SNR as for EGC
$$\rightarrow \gamma_t = \frac{1}{N_T} \left| \sum_{n=1} N_T \sqrt{\gamma_n} \right|^2$$

 \rightarrow EGC with N_T transmit antennas achieves the same performance as EGC with N_T receive antennas

Transmit Antennas Selection

• select antenna with maximum channel gain for transmission:

$$w_n = \begin{cases} \frac{h_n}{|h_n|}, & \text{if } n = \hat{n} \\ 0, & \text{otherwise} \end{cases} \text{ where } \hat{n} = \underset{n}{\operatorname{argmax}} |h_n|$$

• antenna selection with N_T transmit antennas achieves the same performance as Selection Combining with N_T receive antennas

2.3.3 No CSI at Transmitter - Space - Time - Coding

- $h_n, n \in \{1, \ldots, N_T\}$, is only known at the receiver
- "Space-time-coding" has to be employed to realize diversity gain
- $T \times N_T$ matrics **X** are transmitted in T symbol intervals over N_T antennas
- X is drawn from a matrix alphabet \mathcal{X}
- Example:

$$\mathbf{X} = \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,N_T} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,N_T} \\ \vdots & \vdots & \ddots & \vdots \\ x_{T,1} & x_{T,2} & \cdots & x_{T,N_T} \end{pmatrix}$$

- We distinguish:
 - Space-time-block-codes (STBCs)
 - $\to \mathbf{X}$ is obtained by mapping K scalar symbols s_k , k = 1, ..., K from a scalar alphabet \mathcal{A} to matrix \mathbf{X}
 - Space-time-trellis-codes (STTCs)
 - \rightarrow **X** is obtained from scalar symbols s_k through a trellis encoding process. [see: Tarokh, Seshadri, Calderbank: Space-time-codes for high datarate wireless communication: Performance criterions and coder construction; IEEE Trans. Inf. Theory 1998]
 - here: We concentrate on space-time-block-codes (STBCs), but many results can be easily extended to space-time-trellis-codes
- STBCs:
 - K M-ary scalar symbols (e.g. M-PSK symbols) are mapped to STBC matrices \mathbf{X} $\mathbf{S} = [s_1, \dots, s_K] \to \mathbf{X}$ $s_k \in \mathcal{A} \to x \in \mathcal{X}$ with $|\mathcal{X}| = M^K$
 - Example: "Alamouti"-Code

$$\mathbf{X} = \frac{1}{\sqrt{2}} \begin{pmatrix} s_1 & s_2 \\ -s_2^* & s_1^* \end{pmatrix}$$

[Alamouti: A simple transmit diversity technique for wireless communication, IEEE JSAC 1998]

Optimal Detection

• Signal model:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_T \end{pmatrix} = \mathbf{X} \begin{pmatrix} h_1 \\ \vdots \\ h_{N_T} \end{pmatrix} + \begin{pmatrix} n_1 \\ \vdots \\ n_T \end{pmatrix}$$
$$\mathbf{y} = \mathbf{X} \cdot \mathbf{h} + \mathbf{n}$$

- Optimal detection ML-detection
 - h is known at receiver
 - **n** is AWGN with $\mathcal{E}\{\mathbf{n} \cdot \mathbf{n^H}\} = \sigma_{\mathbf{n}}^2 \cdots \mathbf{I}_{T \times T}$

$$p(\mathbf{y}|\mathbf{X}) = \frac{1}{\pi^T |\sigma_n^2 \mathbf{I}_{T \times T}|} \exp\left(-(\mathbf{y} - \mathbf{X}\mathbf{h})^H (\sigma_n^2 \mathbf{I}_{T \times T})^{-1} (\mathbf{y} - \mathbf{X}\mathbf{h})\right)$$
$$= \frac{1}{\pi^T \sigma_n^{2T}} \exp\left(-\frac{1}{\sigma_n^2} (\mathbf{y} - \mathbf{X}\mathbf{h})^H (\mathbf{y} - \mathbf{X}\mathbf{h})\right) = \frac{1}{\pi^T \sigma_n^{2T}} \exp\left(||\mathbf{y} - \mathbf{X}\mathbf{h}||^2\right)$$

 \rightarrow the optimal estimate $\hat{\mathbf{X}}$ or equivalently the optimal estimate $\hat{\mathbf{s}}$ can be obtained as

$$\hat{\mathbf{s}} = \underset{\mathbf{s} \in \mathcal{A}^K}{\operatorname{argmax}} \ p(\mathbf{y}|\mathbf{X}) = \underset{\mathbf{s} \in \mathcal{A}^K}{\operatorname{argmin}} ||\mathbf{y} - \mathbf{X}\mathbf{h}||^2$$

– Disadvantage: In general, metric $||\mathbf{y} - \mathbf{X}\mathbf{h}||^2$ has to be calculated M^K times \rightarrow complexity increases exponentially with K

Types of STBCs

- Orthogonal STBCs (OSTBCs)
 - OSTBCs are a special class of STBCs which allow independent detection of each $s_k \to \text{only } K \cdot M$ metrics have to be evaluated
 - Rate STBCs: $R_{STBC} = \frac{K}{T}$
 - Examples:
 - * Alamouti Code $(K=2,T=2) \rightarrow R_{STBC}=1$

$$\mathbf{X} = \frac{1}{\sqrt{2}} \begin{pmatrix} s_1 & s_2 \\ -s_2^* & s_1^* \end{pmatrix} \updownarrow T$$

$$\longleftrightarrow N_T$$

 \rightarrow only "full rate" OSTBC for complex s_k

*
$$N_T = 3, K = 3, T = 4$$

$$\mathbf{X} = \frac{1}{\sqrt{3}} \begin{pmatrix} s_1 & s_2 & s_3 \\ -s_2^* & s_1^* & 0 \\ s_3^* & 0 & -s_3^* \\ 0 & -s_3^* & s_2^* \end{pmatrix} \to R_{STBC} = \frac{K}{T} = \frac{3}{4}$$

- Orthogonality: $\mathbf{X}^H \mathbf{X} = const \cdot \mathbf{I}_{N_T \times N_T}$
- Independent detection of $s_1 \ \& \ s_2$ for Alamouti Code

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} s_1 & s_2 \\ -s_2^* & s_1^* \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} + \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}$$

$$\rightarrow \underbrace{\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}}_{\tilde{p}} = \frac{1}{\sqrt{2}} \underbrace{\begin{pmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{pmatrix}}_{\tilde{p}} \underbrace{\begin{pmatrix} s_1 \\ s_2 \end{pmatrix}}_{\tilde{p}} + \underbrace{\begin{pmatrix} n_1 \\ n_2^* \end{pmatrix}}_{\tilde{p}}$$

(Anmerkung:
 $\underline{\text{nur}}_{-}\binom{s_1}{s_2}$ gewünscht, nicht: $s_1^*, s_2^*)$

$$\mathbf{F}^{H}\mathbf{F} = \frac{1}{2} \begin{pmatrix} h_{1}^{*} & h_{2} \\ h_{2}^{*} & -h_{1} \end{pmatrix} \begin{pmatrix} h_{1} & h_{2} \\ h_{2}^{*} & -h_{1}^{*} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} |h_{1}|^{2} + |h_{2}|^{2} & 0 \\ 0 & |h_{1}|^{2} + |h_{2}|^{2} \end{pmatrix}$$

- $\rightarrow \frac{\sqrt{2}}{\sqrt{|h_1|^2+|h_2|^2}} \cdot \mathbf{F}$ is unitary matrix
- $\rightarrow \text{ ML decision: } \hat{\mathbf{s}} = \underset{\mathbf{s}}{\operatorname{argmin}} \left| \left| \frac{2}{|h_1|^2 + |h_2|^2} \cdot \mathbf{F}^H \cdot \tilde{\mathbf{y}} \mathbf{s} \right| \right|^2$
- \rightarrow independent ML decoding

$$\hat{s}_1 = \underset{s_1}{\operatorname{argmin}} \left| s_1 - \frac{h_1^* y_1 + h_2 y_2^*}{\frac{1}{\sqrt{2}} (|h_1|^2 + |h_2|^2)} \right|$$

$$\hat{s}_2 = \underset{s_2}{\operatorname{argmin}} \left| s_2 - \frac{h_1^* y_1 - h_2 y_2^*}{\frac{1}{\sqrt{2}} (|h_1|^2 + |h_2|^2)} \right|$$

- independent decoding property can be proved for all OSTBCs
- low complexity is at the expense of a rate-loss compared to other STBCs for $N_T > 2$
 - \rightarrow Frequenzhopping
 - \rightarrow keine Kanalinformation aus vorher empfangenen Symbolen möglich \Rightarrow Kanal ändert sich ständig: nur Entscheidung, ob Rauschen oder Signal + Rauschen
- Performance Analysis of Alamouti Code
 - Decision-variables after combining

$$r_1 = \sqrt{2} \frac{h_1^* y_1 + h_2 y_2^*}{|h_1|^2 + |h_2|^2}$$

$$r_2 = \sqrt{2} \frac{h_1^* y_1 - h_2 y_2^*}{|h_1|^2 + |h_2|^2}$$

because of symmetry it suffices to consider r_1

$$r_{1} = \sqrt{2} \frac{h_{1}^{*} \left(\frac{1}{\sqrt{2}} s_{1} h_{1} + \frac{1}{\sqrt{2}} h_{2} s_{2} + n_{1}\right) + h_{2} \left(-\frac{1}{\sqrt{2}} h_{2} s_{1}^{*} + \frac{1}{\sqrt{2}} h_{1} s_{2}^{*} + n_{2}\right)^{*}}{|h_{1}|^{2} + |h_{2}|^{2}}$$

$$= \sqrt{2} \frac{\frac{1}{\sqrt{2}} \left(|h_{1}|^{2} + |h_{2}|^{2}\right) s_{1} + h_{1}^{*} n_{1} + h_{2} n_{2}^{*}}{|h_{1}|^{2} + |h_{2}|^{2}}$$

$$= 1 \cdot s_{1} + n_{eq}$$

where

$$n_{eq} = \sqrt{2} \frac{h_1^* n_1 + h_2 n_2^*}{|h_1|^2 + |h_2|^2}$$

$$SNR \to \gamma_t = \frac{\mathcal{E}_s \cdot 1^2}{\sigma_{eq}^2} \quad \text{with} \quad \mathcal{E}\{|s_1|^2\} = \mathcal{E}_s$$

$$\sigma_{eq}^2 = 2 \frac{|h_1|^2 \sigma_n^2 + |h_2|^2 \sigma_n^2}{\left(|h_1|^2 + |h_2|^2\right)^2} = \frac{2\sigma_n^2}{|h_1|^2 + |h_2|^2}$$

$$\rightarrow \gamma_t = \frac{1}{2} \frac{\mathcal{E}_s}{\sigma^2} (|h_1|^2 + |h_2|^2)$$

- $\rightarrow SNR_{Alamouti} = \frac{1}{2}SNR_{MRC} = \frac{1}{2}SNR_{MRT}$
- \rightarrow Alamouti code has diversity gain $G_d = 2$
- \to Transmission with Alamouti STBC requires 3dB higher SNR to achieve same performance as MRT \to 3dB loss in coding gain G_c
- → Lack of CSI knowledge at transmitter "costs" 3dB in power efficiency
- \rightarrow General
 - · OSTBCs achieve a diversity gain of $G_d = N_T$ if only one receive antenna is available
 - · if N_R receive antennas are available, MRC can be used at the receiver to yield a diversity gain of $G_d=N_TN_R$

• Other STBCs:

- Quasi orthogonal STBCs
 - * higher rate than OSTBCs
 - * only subset of symbols have to be decoded jointly
 - * Example: $K = N_T = T = 4$

$$\mathbf{X} = \frac{1}{2} \begin{pmatrix} s_1 & s_2 & s_3 & s_4 \\ -s_2^* & s_1^* & -s_4^* & s_3^* \\ -s_3^* & -s_4^* & s_1^* & s_2^* \\ s_4 & -s_3 & -s_2 & s_1 \end{pmatrix}$$

- * Anmerkung 1: X ist ähnlich zu Alamouti Code
- * Anmerkung 2: $\mathbf{X}^H \mathbf{X}$: viele Nicht-diagonal Elemente sind Null; die, die ungleich Null sind, zeigen, welche Symbole gemeinsam entschlüsselt werden müssen

- Golden Code for $N_T=N_R=2$: achieves a rate of $R_{STBC}=2$ and full diversity of $G_d=N_T,N_R=4$
- Differential STBCs: $\mathbf{X}_k = \mathbf{X}_{k-1} \cdot \mathbf{D}_k$. \mathbf{X}_k is transmitted, \mathbf{D}_k is transmitted
- Linear dispersion codes: designed to achieve high mutual information
- noncoherent STBCs (On-Off-Keying)

Space Time Code Design Given:

- Code $\mathscr{X} = \{\mathbf{X}_1, \dots, \mathbf{X}_{|\mathscr{X}|}\}$
- Channel: IID Rayleigh-fading:
 - $-h_n \sim \mathcal{CN}(0,1); \quad n \in \{1, 2, \dots, N_T\}$
 - AWGN $n \sim \mathcal{CN}(0, \sigma_n^2)$

Problem: How should we design codebook \mathcal{X} ?

- Need to derive error rate for general codebooks $\mathcal{X}!$
 - Codeword error rate

$$P_e = \frac{1}{|\mathcal{X}|} \sum_{i=1}^{|\mathcal{X}|} \Pr{\{\mathbf{x}_i \neq \hat{\mathbf{x}}_i\}}$$

where $\hat{\mathbf{x}}_i$ is the detected codeword and we assume that all codewords are equally likely

Problem: $\Pr{\mathbf{x}_i \neq \hat{\mathbf{x}}_i}$ is not tractable in general

• Use union bound to upper bound $\Pr\{\mathbf{x}_i \neq \hat{\mathbf{x}}_i\}$ as upper sum over <u>pairwise error probabilities</u>(PEP) $\Pr\{\mathbf{x}_i \to \mathbf{x}_j\}$ where it is assumed that \mathbf{x}_i was transmitted and $\overline{\mathbf{x}}_i$ and $\overline{\mathbf{x}}_j$ are the only codewords in the codebook

$$P_e \leq \frac{1}{|\mathcal{X}|} \sum_{i=1}^{|\mathcal{X}|} \sum_{j=1}^{|\mathcal{X}|} \Pr{\{\mathbf{x}_i \to \mathbf{x}_j\} \text{ where } j \neq i}$$

Calculation of PEPs

Recall: $\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmin}} ||\mathbf{y} - \mathbf{x}\mathbf{h}||^2$

Now, \mathbf{x}_i and \mathbf{x}_j are the only alternatives and an error is made if $||\mathbf{y} - \mathbf{x}_i \mathbf{h}||^2 > ||\mathbf{y} - \mathbf{x}_j \mathbf{h}||^2$ since \mathbf{x}_i was sent but \mathbf{x}_j was detected

$$\begin{aligned} & \rightarrow ||\mathbf{x}_{i}\mathbf{h} + \mathbf{n} - \mathbf{x}_{i}\mathbf{h}||^{2} > ||\mathbf{x}_{i}\mathbf{h} + \mathbf{n} - \mathbf{x}_{j}\mathbf{h}||^{2} \\ & \quad ||\mathbf{n}||^{2} > ||(\mathbf{x}_{i} - \mathbf{x}_{j})\mathbf{h} + \mathbf{n}||^{2} \\ & \rightarrow ||\mathbf{n}||^{2} > \underbrace{\mathbf{h}^{H}(\mathbf{x}_{i} - \mathbf{x}_{j})^{H}(\mathbf{x}_{i} - \mathbf{x}_{j})\mathbf{h}}_{\Delta} + \mathbf{h}^{H}(\mathbf{x}_{i} - \mathbf{x}_{j})\mathbf{n} + \mathbf{n}^{H}(\mathbf{x}_{i} - \mathbf{x}_{j})\mathbf{h} + ||\mathbf{n}||^{2} \end{aligned}$$

$$\rightarrow \underbrace{-\mathbf{h}^{H}(\mathbf{x}_{i} - \mathbf{x}_{j})^{H}\mathbf{n} - \mathbf{n}^{H}(\mathbf{x}_{i} - \mathbf{x}_{j})\mathbf{h}}_{z} > \Delta$$

for given \mathbf{h} , z is a gaussian random variable

$$\sigma_z^2 = \mathcal{E}\{|z|^2\} = \mathcal{E}\{2\mathbf{h}^H(\mathbf{x}_i - \mathbf{x}_j) \mathbf{n} \mathbf{n}^H(\mathbf{x}_i - \mathbf{x}_j) \mathbf{h} + 2\mathbf{h}^H(\mathbf{x}_i - \mathbf{x}_j)^H \mathbf{n} \mathbf{n}^T(\mathbf{x}_i - \mathbf{x}_j)^* \mathbf{h}^*\}$$

$$= 2\sigma_n^2 \Delta + 0$$

$$\Pr\{\mathbf{x}_i \to \mathbf{x}_j\} = \int_{\Delta}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_z} \exp\left(-\frac{z^2}{2\sigma_z^2}\right) dz, \ t = \frac{z}{\sigma_z}$$
$$= \frac{1}{\sqrt{2\pi}} \int_{\frac{\Delta}{\sigma_z}}^{\infty} e^{-\frac{t^2}{2}} dt = Q\left(\frac{\Delta}{\sigma_z}\right) = Q\left(\frac{\Delta}{\sqrt{2\sigma_n^2 \Delta}}\right)$$
$$= Q\left(\sqrt{\frac{\Delta}{2\sigma_n^2}}\right)$$

- $\Pr{\mathbf{x}_i \to \mathbf{x}_j} = \mathcal{E}\left{Q\left(\sqrt{\frac{\Delta}{2\sigma_n^2}}\right)\right}$
 - to avoid cumbersome Q-function we use Chernoff bound:

$$Q(x) \le \frac{1}{2}e^{-\frac{x^2}{2}}$$

$$\Pr{\mathbf{x}_i \to \mathbf{x}_j} \le \frac{1}{2} \mathcal{E}_h \left\{ \exp\left(-\frac{\mathbf{h}^H \mathbf{Q} \mathbf{h}}{4\sigma_n^2}\right) \right\}$$
where $\mathbf{Q} = (\mathbf{x}_i - \mathbf{x}_j)^H (\mathbf{x}_i - \mathbf{x}_j)$

- Eigendecomposition: $\mathbf{Q} = \mathbf{U}^H \mathbf{\Lambda} \mathbf{U}$ with $\mathbf{\Lambda} = \text{diag}\{\lambda_1, \dots, \lambda_r, 0, \dots, 0\}$ $r = \text{rank}\{\mathbf{Q}\}$
- \bullet Elements **h** are i.i.d. Gaussian
 - $-\underline{\beta} = \mathbf{U}\mathbf{h}$ has also i.i.d. Gaussian random variables as elements since \mathbf{U} is unitary matrix

$$- \mathbf{h}^H \mathbf{Q} \mathbf{h} = \underbrace{\mathbf{h}^H \mathbf{U}^H}_{\beta^*} \mathbf{\Lambda} \underbrace{\mathbf{U} \mathbf{h}}_{\beta} = \sum_{i=1}^r \lambda_i |\beta_i|^2 \text{ with } \underline{\beta} = [\beta_1, \dots, \beta_{N_T}]$$

$$\Pr\{\mathbf{x}_{i} \to \mathbf{x}_{j}\} = \frac{1}{2} \mathcal{E}_{\underline{\beta}} \left\{ \exp\left(-\frac{\sum_{i=1}^{r} \lambda_{i} |\beta_{i}|^{2}}{4\sigma_{n}^{2}}\right) \right\}$$

$$= \frac{1}{2} \mathcal{E}_{\underline{\beta}} \left\{ \prod_{i=1}^{r} e^{-\frac{\lambda_{i}}{4\sigma_{n}^{2}} |\beta_{i}|^{2}} \right\}$$

$$= \frac{1}{2} \prod_{i=1}^{r} \mathcal{E}_{\beta_{i}} \left\{ e^{-\frac{\lambda_{i}}{4\sigma_{n}^{2}} |\beta_{i}|^{2}} \right\}$$

$$= \frac{1}{2} \prod_{i=1}^{r} \mathcal{E}_{|\beta_{i}|^{2}} \left\{ e^{-\frac{\lambda_{i}}{4\sigma_{n}^{2}} |\beta_{i}|^{2}} \right\} \stackrel{\triangle}{=} \text{MGF of exponentially distributed variable } \alpha_{i} = |\beta_{i}|^{2}$$

$$\begin{split} & \to P_{\alpha_i}(x) = e^{-x}, \ x \ge 0 \\ & \to \Pr\{\mathbf{x}_i \to \mathbf{x}_j\} \le \frac{1}{2} \prod_{i=1}^r \frac{1}{1 + \frac{\lambda_i}{4\sigma_n^2}} \\ & \le \prod_{i=1}^r \frac{1}{\frac{\lambda_i}{4\sigma_n^2}} = 2^{2r-1} \frac{1}{\prod_{i=1}^r \lambda_i} \left(\underbrace{\frac{1}{\sigma_n^2}}_{\infty_n} \right)^{-r} \end{split}$$

• upper bound on P_e :

$$\lambda_n(i,j) = n \text{th eigenvalue of } (\mathbf{x}_i - \mathbf{x}_j)^H (\mathbf{x}_i - \mathbf{x}_j)$$
$$r(i,j) = \text{ rank of } (\mathbf{x}_i - \mathbf{x}_j)^H (\mathbf{x}_i - \mathbf{x}_j)$$

$$\rightarrow P_e \leq \frac{1}{|\mathcal{X}|} \sum_{i=1}^{|\mathcal{X}|} \sum_{j=1}^{|\mathcal{X}|} 2^{2r(i,j)-1} \frac{1}{\prod\limits_{n=1}^{r(i,j)} \lambda_n(i,j)} \left(\frac{1}{\sigma_n^2}\right)^{-r(i,j)}$$

• generally loose bound but offers significant insight for code design

Two criteria:

Rank criterion: The diversity gain of a ST code is given by

$$G_d = \min_{i,j}(r(i,j)) = \min_{i,j} \operatorname{rank} \left((\mathbf{x}_i - \mathbf{x}_j)^H (\mathbf{x}_i - \mathbf{x}_j) \right)$$

 \rightarrow Design code such that minimum rank of all possible matrices $(\mathbf{x}_i - \mathbf{x}_j)^H (\mathbf{x}_i - \mathbf{x}_j)$ is maximized

$$T \updownarrow \overset{\stackrel{N_T}{\longleftrightarrow}}{\mathbf{X}_i} \Rightarrow r(i,j) = N_T \qquad \forall i \neq j$$

<u>Determinant criterion:</u> To maximize the coding gain among all codes with $r(i, j) = N_T$, we need to maximize $\max \min_{i,j} \prod_{n=1}^{N_T} \lambda_n(i,j) = \max \min_{i,j} \left| (\mathbf{x}_i - \mathbf{x}_j)^H (\mathbf{x}_i - \mathbf{x}_j) \right| \quad \forall i \neq j$

- Rank and determinant criterion can be used for the search for good space-time block codes and space-time trellis codes. These two criteria were first derived by Tarokh, et. al. 1998.
- ullet diversity increases to $N_T N_R$ if N_K receive antennas are available
- Example: see Bäro, Bauch, Hansmann: Improved codes for space-time trellis coded modulation. IEEE Comm. Letters, 2000.

2.3.4 Partial or Imperfect CSI at the Transmitter

- In practice, the CSI cannot be perfect. Channel estimation, quantization and noisy feedback channels introduce errors.
- If the system is optimized for perfect CSI (e.g. using MRT or EGT), the performance for imperfect CSI may be worse than for a system designed for no CSI(e.g. space-time coding)
- In this case, it is advantageous to use a hybrid approach and combine beamforming and space-time coding.

Abbildung 6: Block Diagramm of MISO with Beamforming

- W is the beamforming matrix which depends on the reliability of the CSI
- \bullet CSI is modeled as

$$\hat{h}_i = \rho h_i + \sqrt{1 - \rho^2} e_i$$

where:

- $-\hat{h}_i$ is the CSI estimate
- $-\rho$ is the correlation between \hat{h}_i and h_i
- $-e_i$ is the CSI error modeled as AWGN

extreme cases:

- $-\rho = 0: \hat{h}_i \text{ independent of } h_i \to \text{no CSI } (\mathbf{W} = \mathbf{I})$
- $-\rho = 1: \hat{h}_i = h_i \rightarrow \text{perfect CSI } (\mathbf{W} \text{ performs MRT})$
- W can be optimized under the assumptions for given ρ and \hat{h}_i \rightarrow see for details: Jöngren, Skorglund and Ottersten: "Combining Beamforming and Orthogonal Space-time Block Coding", IEEE on IT, 2002.

2.4 MIMO Systems without CSI at the transmitter

- We consider $N_T \times N_R$ MIMO system and assume that the channel matrix **H** is not known at the transmitter
 - \rightarrow no CSI at the transmitter (CSIT)
- signal model:

$$N_R \updownarrow \mathbf{y} = N_R \updownarrow \overset{N_T}{\longleftrightarrow} \mathbf{x} \updownarrow N_T + \mathbf{n} \updownarrow N_R$$

Abbildung 7: Block Diagramm of MISO without CSI

- x_n are M-ary i.i.d. scalar symbols taken e.g from an M-PSK or M-QAM symbol alphabet $\mathscr A$
- This scheme is often called "spatial multiplexing"
- We transmit N_T symbols per symbol interval \rightarrow rate $R = \log_2(M) \cdot N_T$ for uncoded transmission
- ullet Problem: How to detect ${f x}$ at the receiver considering
 - performance and
 - complexity?

2.4.1 Optimum Detection

- Elements of **n** are gaussian random variables with variance σ_n^2
- ullet H is known at the receiver

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{\pi^{N_R} \sigma_n^2 \mathbf{I}_{N_R \times N_R}} \exp\left(-(\mathbf{y} - \mathbf{H}\mathbf{x})^H (\sigma_n^2 \mathbf{I}_{N_R \times N_R})^{-1} (\mathbf{y} - \mathbf{H}\mathbf{x})\right)$$
$$= \frac{1}{\pi^{N_R} \sigma_n^{2N_R}} \exp\left(-\frac{1}{\sigma_n^2} ||\mathbf{y} - \mathbf{x}\mathbf{H}||^2\right)$$

• ML-Detection

$$\hat{x} = \underset{\mathbf{x} \in \mathscr{A}^{N_T}}{\operatorname{argmin}} ||\mathbf{y} - \mathbf{x}\mathbf{H}||^2 = \underset{\mathbf{x} \in \mathscr{A}^{N_T}}{\operatorname{argmax}} \quad p(\mathbf{y}|\mathbf{x})$$

- $\rightarrow M^{N_T}$ metric calculations \rightarrow complexity is exponential in $N_T!!$
- \rightarrow in general too complex in practice

• Performance

- consider worst case pairwise error probability (PEP) to evaluate diversity gain
- PEP $\rightarrow x_i$ is transmitted but $x_j \neq x_i$ is detected this happens if $||\mathbf{y} - \mathbf{H}\mathbf{x}_i||^2 > ||\mathbf{y} - \mathbf{H}\mathbf{x}_j||^2$ $\rightarrow ||\mathbf{n}||^2 > ||\mathbf{H}(\mathbf{x}_i - \mathbf{x}_j) + \mathbf{n}||^2$
- the "worst case" is if $\mathbf{x}_i \& \mathbf{x}_j$ differ only in one element *i.e.*,

$$\mathbf{x}_{i} - \mathbf{x}_{j} = (x_{ni} - x_{nj}) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \\ 0 \end{bmatrix} \leftarrow \text{``1'' in position } n$$

where $\mathbf{x}_i = [x_{1i}, x_{2i}, \dots, x_{N_T i}]$

$$- ||\mathbf{n}||^2 > || \underbrace{\mathbf{h}_n}_{\text{nth column of } \mathbf{H}} \underbrace{(x_{ni} - x_{nj})}_{\Delta x_n(i,j)} + \mathbf{n}||^2$$

$$- ||\mathbf{n}||^2 > \mathbf{h}_n^H \mathbf{n} \Delta x_n^*(i,j) + \mathbf{n}^H \mathbf{h}_n \Delta x_n(i,j) + ||\mathbf{n}||^2 + ||\mathbf{h}_n||^2 - |\Delta x_n(i,j)|^2$$

$$||\mathbf{h}_n||^2 |\Delta x_n(i,j)|^2 < \underbrace{-\mathbf{h}_n^H \mathbf{n} \Delta x_n(i,j) - \mathbf{n}^H \mathbf{h}_n \Delta x_n(i,j)}_{\text{Gaussian random variable with variance } \sigma_{eq}^2 = 2\sigma_n^2 |\Delta x_n(i,j)|^2 ||\mathbf{h}_n||^2}$$

$$-\Pr\{\mathbf{x}_i \to \mathbf{x}_j || \mathbf{H}\} = Q\left(\sqrt{\frac{||\mathbf{h}_n||^2 |\Delta x_n(i,j)|^2}{2\sigma_n^2}}\right)$$

$$-\Pr\{\mathbf{x}_i \to \mathbf{x}_j\} = \mathcal{E}\left\{Q\left(\sqrt{\frac{||\mathbf{h}_n||^2|\Delta x_n(i,j)|^2}{2\sigma_n^2}}\right)\right\}$$

→ use same approach as for space-time code design to get diversity order

$$\gamma_t = \frac{||\mathbf{h}_n||^2 |\Delta x_n(i,j)|^2}{2\sigma_n^2} = \frac{|\Delta x_n(i,j)|^2}{2\sigma_n^2} (|h_{1n}|^2 + |h_{2n}^2 + \dots + |h_{N_R n}|^2)$$

- same form as SNR of MRC with N_R receive antennas
- diversity gain of spatial multiplexing wit ML-decoding is

$$G_d = N_R$$

- diversity of N_T transmit antennas is not exploited with spatial multiplexing
- to exploit this additional gain, coding across space is required (at the expense of rate)

(Hier gehören die detection performance kurven für BPSK hin)

2.4.2 Linear Receivers

- How can we avoid the complexity associated wit the joint detection of the elements of x?
- \bullet Idea: Employ linear filter (matrix) to separate the elements of ${\bf x}$
- Requires: $N_T \leq N_R$
- We form

$$\mathbf{r} = N_T \updownarrow \overset{\stackrel{N_R}{\longleftrightarrow}}{\mathbf{F}} \mathbf{y} = [r_1, \dots, r_{N_T}]^T$$

where \mathbf{F} is the filter matrix and \mathbf{y} is the received vector

such that x_n can be obtained from

$$\hat{x}_n = \underset{x_n \in \mathscr{A}}{\operatorname{argmin}} |r_i - x_n|^2$$
 where $\mathbf{F} \in \mathbb{C}^{N_T \times N_R}$

- ullet Two popular design criteria for ${f F}$
 - Zero-forcing (ZF) criterion
 - minimum mean squared error (MMSE) crtiterion

ZF Detection

$$r = Fy = F(Hx + n) = FHx + Fn$$

 $ZF \leftrightarrow we require \mathbf{FH} = \mathbf{I}_{N_T \times N_T}$

• noise covariance matrix

$$\Phi_{ee} = \mathcal{E}\{\mathbf{F}\mathbf{n}(\mathbf{F}\mathbf{n})^H\} = \sigma_n^2 \mathbf{F} \mathbf{F}^H$$

- $N_T = N_R \to \mathbf{F}\mathbf{H} = \mathbf{I}_{N_T \times N_T} \to \mathbf{F} = \mathbf{H}^{-1}$ assuming \mathbf{H} is invertible
- $\rightarrow N_T \leq N_R \rightarrow$ which one of the many **F** that yield **FH** = $\mathbf{I}_{N_T \times N_T}$?
- ullet choose ${f F}$ that leads to the smallest noise enhancement
- \bullet optimal ${\bf F}$ is the solution to the following problem:

$$\min_{\mathbf{F}} \operatorname{tr} \{ \sigma_n^2 \mathbf{F} \mathbf{F}^H \}$$

s.t
$$\mathbf{FH} = \mathbf{I}_{N_T \times N_T}$$

the constraint is equivalent to $\operatorname{tr}\{(\mathbf{FH} - \mathbf{I})(\mathbf{FH} - \mathbf{I})^H\} = 0$

Lagrangian:

$$L(\mathbf{F}) = \operatorname{tr}\{\sigma_n^2 \mathbf{F} \mathbf{F}^H\} + \lambda \operatorname{tr}\{\mathbf{F} \mathbf{H} \mathbf{H}^H \mathbf{F} - \mathbf{F} \mathbf{H} - \mathbf{H}^H \mathbf{F}^H + \mathbf{I}\}$$
$$= \sigma_n^2 \operatorname{tr}\{\mathbf{F} \mathbf{F}^H\} + \lambda \operatorname{tr}\{\mathbf{F} \mathbf{H} \mathbf{H}^H \mathbf{F}^H\} - \lambda \operatorname{tr}\{\mathbf{F} \mathbf{H}\} - \lambda \operatorname{tr}\{\mathbf{H}^H \mathbf{F}^H\} + \lambda N_T$$

• use rules for complex matrix differentiation in Table IV in paper by Hjörunges & Gesbert

$$\begin{split} \frac{\delta L(\mathbf{F})}{\delta \mathbf{F}^*} &= \sigma_n^2 \mathbf{F} + \lambda \mathbf{F} \mathbf{H} \mathbf{H}^H - \lambda \mathbf{H}^H = 0 \\ &\rightarrow \mathbf{F} (\sigma_n^2 \mathbf{I} + \lambda \mathbf{H} \mathbf{H}^H) = \lambda \mathbf{H}^H \\ &\rightarrow \mathbf{F} = \lambda \mathbf{H}^H (\sigma_n^2 \mathbf{I} + \lambda \mathbf{H} \mathbf{H}^H)^{-1} \end{split}$$

use matrix inversion lemma

$$(A + UBV)^{-1} = A^{-1} - A^{-1}U(B^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

$$\begin{split} & \rightarrow \mathbf{F} = \lambda \mathbf{H}^H \left[\frac{1}{\sigma_n^2} \mathbf{I} - \frac{1}{\sigma_n^2} \mathbf{H} \left[\frac{1}{\lambda} \mathbf{I} + \frac{1}{\sigma_n^2} \mathbf{H}^H \mathbf{H} \right]^{-1} \mathbf{H}^H \frac{1}{\sigma_n^2} \right] \\ & = \frac{\lambda}{\sigma_n^2} \left[\underbrace{\mathbf{I}}_{\left(\frac{1}{\lambda} \mathbf{I} + \frac{1}{\sigma_n^2} \mathbf{H}^H \mathbf{H}\right) \left(\frac{1}{\lambda} \mathbf{I} + \frac{1}{\sigma_n^2} \mathbf{H}^H \mathbf{H}\right)^{-1} - \frac{1}{\sigma_n^2} \mathbf{H}^H \mathbf{H} \left[\frac{1}{\lambda} \mathbf{I} + \frac{1}{\sigma_n^2} \mathbf{H}^H \mathbf{H} \right] \right] \mathbf{H}^H \\ & = \frac{\lambda}{\sigma_n^2} \left[\frac{1}{\lambda} \mathbf{I} + \frac{1}{\lambda} \mathbf{H}^H \mathbf{H} - \frac{1}{\sigma_n^2} \mathbf{H}^H \mathbf{H} \right] \left(\frac{1}{\lambda} \mathbf{I} + \frac{1}{\sigma_n^2} \mathbf{H}^H \mathbf{H} \right)^{-1} \mathbf{H}^H \\ & = \frac{1}{\sigma_n^2} \left(\frac{1}{\lambda} \mathbf{I} + \frac{1}{\sigma_n^2} \mathbf{H}^H \mathbf{H} \right) \mathbf{H}^H \end{split}$$

• How to choose λ

$$\mathbf{F}\mathbf{H} = \frac{1}{\sigma_n^2} \left(\frac{1}{\lambda} \mathbf{I} + \frac{1}{\sigma_n^2} \mathbf{H}^H \mathbf{H} \right)^{-1} \mathbf{H}^H \mathbf{H} = \mathbf{I}$$
$$\frac{1}{\sigma_n^2} \mathbf{H}^H \mathbf{H} = \frac{1}{\lambda} \mathbf{I} + \frac{1}{\sigma_n^2} \mathbf{H}^H \mathbf{H}$$
$$\Rightarrow \lambda \to \infty$$

$$\Rightarrow$$
 $\mathbf{F} = (\mathbf{H}^H \mathbf{H})^{-1}$ $\hat{=}$ Moore-Penrose pseudoinverse

noise covariance:

$$\Phi_{ee} = \sigma_n^2 \mathbf{F} \mathbf{F}^H = \sigma_n^2 (\mathbf{H}^H \mathbf{H})^{-1} \underbrace{\mathbf{H}^H \mathbf{H} (\mathbf{H} \mathbf{H})^{-1}}_{\mathbf{T}} = \sigma_n^2 (\mathbf{H}^H \mathbf{H})^{-1}$$

 Φ_{ee} is not in general a diagonal matrix

- effective noise ${f Fn}$ is spatially correlated

- "equalization of channel leads to coloring of noise
- Interpretation:

we have

$$\mathbf{FHx} = egin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \\ \vdots \\ \mathbf{f}_{N_T} \end{bmatrix} egin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 & \dots & \mathbf{h}_{N_T} \end{bmatrix} \mathbf{x} = \mathbf{x}$$

- $-\mathbf{f}_i\mathbf{h}_i = 1 \quad \mathbf{f}_i\mathbf{h}_j = 0 \quad \forall i \neq j$
- \mathbf{f}_i^T is orthogonal to $\begin{bmatrix} \mathbf{h}_1 & \dots \mathbf{h}_{i-1} & \mathbf{h}_{i+1} & \dots & \mathbf{h}_{N_T} \end{bmatrix} \updownarrow N_R$
- \mathbf{f}_i^T is confined to an $N_R (N_T 1)$ dimensional subspace of the N_R dimensional space spanned by \mathbf{H}
- Diversity gain
 - e.g. SISO model: $r_i = \mathbf{f}_i \cdot \mathbf{h}_i \mathbf{x}_i + \mathbf{f}_i \cdot \mathbf{n}_i$

$$\rightarrow \text{SNR}_{eq} = \frac{\mathcal{E}_s |\mathbf{f}_i \mathbf{h}_i|^2}{\sigma_n^2 \|\mathbf{f}_i\|^2} = \frac{\mathcal{E}_s}{\sigma_n^2} \left| \tilde{\mathbf{f}}_i \cdot \mathbf{h}_i \right|, \text{ where } \mathbf{f}_i = \alpha \mathbf{f}_i \text{ with } \|\tilde{\mathbf{f}}_i\|^2 = 1$$

we can represent \mathbf{f}_i as: $\tilde{\mathbf{f}}_i^T = \alpha \mathbf{M} \boldsymbol{\beta}$,

where: $\mathbf{M} \in \mathbb{C}^{N_R \times (N_R - N_T + 1)}$ and $\boldsymbol{\beta} \in \mathbb{C}^{(N_R - N_T + 1) \times 1}$ $\widehat{=}$ basis of subspace

$$\rightarrow \tilde{\mathbf{f}}_i \mathbf{M}_i = \boldsymbol{\beta}^T \mathbf{M}_i^T \mathbf{M}_i,$$

where: $\mathbf{M}^H \mathbf{M} = \tilde{\mathbf{M}}_i = \mathbf{I}$ and $\tilde{\mathbf{M}}_i \to \mathcal{CN}(0, \sigma_n^2 \mathbf{I}_{(N_R - N_T + 1)})$

(since rows of \mathbf{M}^T are orthogonal)

$$SNR_{eq} = \frac{\mathcal{E}_s}{\sigma_n^2} \alpha^2 \left| \sum_{j=1}^{N_R - N_T + 1} \boldsymbol{\beta}_{ji} \tilde{\mathbf{h}}_{ji} \right|^2; \tilde{\mathbf{h}}_i = \begin{pmatrix} \tilde{h}_{1i}, & \tilde{h}_{2i}, & \dots, & \tilde{h}_{N_R - N_T + 1} \end{pmatrix}^T$$
$$\boldsymbol{\beta}_i = \begin{pmatrix} \beta_{1i}, & \dots, & \beta_{N_R - N_T + 1, i} \end{pmatrix}^T$$

- \rightarrow SNR_{eq} includes only $N_R N_T + 1$ independent Gaussian RV
- \rightarrow diversity gain is limited to: $G_d = N_R N_T + 1$

Example:

$$\begin{split} N_T &= N_R = 3 \\ G_d^{ZF} &= 1 \text{ but } G_d^{ML} = N_R = 3 \end{split}$$

 \rightarrow huge performance loss because of linear ZF

MMSE detection

- ZF criterion may be too strict and leads to noise enhancement
 - \rightarrow may be it is better to allow some interferences between signals but reduce noise enhancement

- \rightarrow What is the optimal trade-off between interference and noise?
- \rightarrow MMSE criterion
- MMSE criterion
 - error signal: $\mathbf{e} = \mathbf{F}\mathbf{y} \mathbf{x}$
 - $\text{ total error variance: } \sigma_e^2 = \mathcal{E}\big\{\|\mathbf{e}\|^2\big\} = \mathcal{E}\big\{\mathrm{tr}\{\mathbf{e}\mathbf{e}^H\}\big\} = \mathrm{tr}\big\{\mathcal{E}\{\mathbf{e}\mathbf{e}^H\}\big\} = \mathrm{tr}\big\{\Phi_{ee}\big\}$
 - $-\Phi_{ee}$: error covariance matrix
 - optimal filter: $\mathbf{F}_{\mathrm{opt}} = \underset{\mathbf{F}}{\operatorname{argmin}} \operatorname{tr} \{ \Phi_{ee} \}$
- Deviation of $\mathbf{F}_{\mathrm{opt}}$

$$-\Phi_{ee} = \mathcal{E}\{\mathbf{e}\mathbf{e}^H\} = \mathcal{E}\{(\mathbf{F}\mathbf{y} - \mathbf{x})(\mathbf{F}\mathbf{y} - \mathbf{x})^H\} = \mathbf{F} \cdot \mathbf{\Phi}_{yy} \cdot \mathbf{F}^H - \mathbf{F} \cdot \mathbf{\Phi}_{yx} - \mathbf{\Phi}_{xx} \cdot \mathbf{\Phi}_{xy} \cdot \mathbf{F}^H + \mathbf{\Phi}_{xx}$$
 with:

$$\begin{split} & \boldsymbol{\Phi}_{yy} = \mathcal{E}\{\mathbf{y}\mathbf{y}^H\} = \mathcal{E}\{(\mathbf{H}\mathbf{x} + \mathbf{n})(\mathbf{H}\mathbf{x} + \mathbf{n})^H\} = \mathcal{E}_s \cdot \mathbf{H}\mathbf{H}^H + \sigma_n^2 \cdot \mathbf{I}_{N_R \times N_T} \\ & \boldsymbol{\Phi}_{yx} = \mathcal{E}\{\mathbf{y}\mathbf{x}^H\} = \mathcal{E}\{(\mathbf{H}\mathbf{x} + \mathbf{n}) \cdot \mathbf{x}^H\} = \mathcal{E}_s \cdot \mathbf{H}^H = \boldsymbol{\Phi}_{xy}^H \\ & \boldsymbol{\Phi}_{xx} = \mathcal{E}_s \cdot \mathbf{I}_{N_T \times N_R} \end{split}$$

$$-\mathbf{F}_{\mathrm{opt}} \rightarrow \frac{d}{d\mathbf{F}^*} \left(\mathrm{tr} \{ \mathbf{F} \mathbf{\Phi}_{yy} \mathbf{F}^H \} - \mathrm{tr} \{ \mathbf{F} \mathbf{\Phi}_{yx} \} - \mathrm{tr} \{ \mathbf{\Phi}_{xy} \mathbf{F}^H \} + \mathrm{tr} \{ \mathbf{\Phi}_{xx} \} \right) \stackrel{!}{=} 0$$

with Table IV in paper by Hjoranges & Gesbert:

$$\Rightarrow \mathbf{F} \cdot \mathbf{\Phi}_{yy} - \mathbf{\Phi}_{xy} = 0$$

$$\Rightarrow \mathbf{F}_{opt} = \mathbf{\Phi}_{xy} \cdot \mathbf{\Phi}_{yy}^{-1} = \mathcal{E}_s \mathbf{H}^H (\mathcal{E}_s \mathbf{H} \mathbf{H}^H + \sigma_n^2 \mathbf{I})^{-1}$$

$$= (\text{Matrix inversion Lemma}) =$$

$$= \left(\mathbf{H}^H \mathbf{H} + \frac{\sigma_n^2}{\varepsilon} \mathbf{I}\right)^{-1} \cdot \mathbf{H}^H$$

- Comparison:

$$\begin{split} \mathbf{F}_{\mathrm{MMSE}} &= \left(\mathbf{H}^H \mathbf{H} + \frac{\sigma_n^2}{\mathcal{E}_s} \mathbf{I}\right)^{-1} \cdot \mathbf{H}^H \xrightarrow{\frac{\sigma_n^2}{\mathcal{E}_s} \to 0} \left(\mathbf{H}^H \cdot \mathbf{H}\right)^{-1} \mathbf{H}^H = \mathbf{F}_{ZF} \\ &\xrightarrow{\frac{\sigma_n^2}{\mathcal{E}_s} \to \infty} \frac{\mathcal{E}_s}{\sigma_n^2} \cdot \mathbf{H}^H = \mathbf{F}_{MF} \quad \widehat{=} \text{matched filter} \end{split}$$

- \Rightarrow For high SNR, $\frac{\mathcal{E}_s}{\sigma_n^2}$, the MMSE filter approaches the ZF-Filter, for low SNR, it approaches the matched filter.
 - \rightarrow MMSE receiver yields the same diversity gain as the ZF receiver

$$G_d^{MMSE} = G_d^{ZF} = N_R - N_T + 1 \leq G_d^{ML} = N_R$$

- End-to-End Channel: $\mathbf{K} = \mathbf{F}\mathbf{H} = \left(\mathbf{H}^H\mathbf{H} + \frac{\sigma_n^2}{\mathcal{E}_s} \cdot \mathbf{I}\right)^{-1} \cdot \mathbf{H}^H \cdot \mathbf{H} \neq \text{diagonal matrix}$
 - \Rightarrow crosstalk/interference between elements \mathbf{x} in received signal after filtering \mathbf{r} . elements of $\mathbf{K}:K_{l,n}$

- Covariance for $\mathbf{F}_{\mathrm{opt}}$

$$\begin{split} & \boldsymbol{\Phi}_{ee} = \boldsymbol{\Phi}_{xy} \cdot \overbrace{\boldsymbol{\Phi}_{yy}^{-1} \cdot \boldsymbol{\Phi}_{yy} \cdot \boldsymbol{\Phi}_{yy}^{-1}}^{\boldsymbol{\Phi}_{yy}^{-1}} \cdot \boldsymbol{\Phi}_{xy}^{H} - \boldsymbol{\Phi}_{xy} \cdot \boldsymbol{\Phi}_{yy}^{-1} \cdot \boldsymbol{\Phi}_{yx} - \boldsymbol{\Phi}_{xy} \cdot \boldsymbol{\Phi}_{yy}^{-1} \cdot \boldsymbol{\Phi}_{xy}^{H} + \boldsymbol{\Phi}_{xx} \\ & = \boldsymbol{\Phi}_{xx} - \overbrace{\boldsymbol{\Phi}_{xy} \cdot \boldsymbol{\Phi}_{yy}^{-1}}^{\mathbf{F}_{opt}} \cdot \boldsymbol{\Phi}_{yx} \\ & = \mathcal{E}_{s} \mathbf{I} - \mathcal{E}_{s} \left(\mathbf{H}^{H} \mathbf{H} + \frac{\sigma_{n}^{2}}{\mathcal{E}_{s}} \cdot \mathbf{I} \right)^{-1} \cdot \mathbf{H}^{H} \mathbf{H} = (\text{Matrix inversion Lemma}) \\ & = \sigma_{n}^{2} \left(\mathbf{H}^{H} \mathbf{H} + \frac{\sigma_{n}^{2}}{\mathcal{E}_{s}} \cdot \mathbf{I} \right)^{-1} \\ & \boldsymbol{\Phi}_{ee} = \mathcal{E}_{s} (\mathbf{I} - \mathbf{K}) \end{split}$$

 $\rightarrow 0 \le K_{m,m} \le 1$ since main diagonal elements of Φ_{ee} are $0 \le [\Phi_{ee}]_{m,m} \le \mathcal{E}_s$ siehe auch Abbildung ??

Abbildung 8: MMSE

SNR (biased vs. unbiased)

a) biased SNR

$$SNR_{bias,m} = \frac{\mathcal{E}_s}{[\boldsymbol{\Phi}_{ee}]_{mm}} = \frac{\mathcal{E}_s}{\mathcal{E}_s(1 - K_{mm})} = \frac{1}{1 - K_{mm}}, \quad 1 \le m \le 4$$

Anmerkung: $\mathbf{K} = \mathbf{F}_{\mathrm{opt}} \cdot \mathbf{H} \to \mathrm{SNR} = 1 \; \text{falls} \; \; \mathbf{K} = \mathrm{zeros}() \Rightarrow \text{woher SNR} = 1 \; \text{bei keiner}$ $Uebertragung? \Rightarrow nicht vorteilhaft: siehe: b) unbiased SNR but:$

 \bullet SNR_{bias,m} does not represent the actual SNR since the main diagonal elements of **K** are smaller than 1

$$\bullet \ \mathbf{r} = \mathbf{F}\mathbf{H}\mathbf{x} + \mathbf{F}\mathbf{n} = \mathbf{K}\mathbf{x} + \underbrace{\mathbf{F}\mathbf{n}}_{\tilde{\mathbf{n}} = [\tilde{n}_1, \dots, \tilde{n}_{N_T}]^T}$$

•
$$r_m = \underbrace{K_{mm}}_{<1} x_m + \sum_{\substack{n=1\\n \neq m}}^{N_T} K_{mn} x_n + \tilde{n}_m$$

b) unbiased SNR

• remove bias:
$$r'_m = \frac{r_m}{K_{mm}} = x_m + \underbrace{\frac{\tilde{e}_m}{K_{mm}}}_{e'_m}$$

- scaling matrix: $\mathbf{C} = \operatorname{diag}\left\{\frac{1}{K_{11}}, \frac{1}{K_{22}}, \dots, \frac{1}{K_{N_m N_m}}\right\}$

•
$$\mathbf{r}' = \mathbf{Cr} \rightarrow \mathbf{e}' = [e'_1, \dots, e'_{N_T}]^T = \mathbf{r}' - \mathbf{x} = \mathbf{Cr} - \mathbf{x} = \mathbf{CFy} - \mathbf{x}$$

$$\bullet \ \ \boldsymbol{\Phi}_{e'e'} = \mathcal{E}\Big\{ \big(\mathbf{CFy} - \mathbf{x}\big) \big(\mathbf{CFy} - \mathbf{x}\big)^H \Big\} = \mathbf{CF}\boldsymbol{\Phi}_{yy}\mathbf{F}^H\mathbf{C}^H - \mathbf{CF}\boldsymbol{\Phi}_{yx} - \boldsymbol{\Phi}_{xy}\mathbf{F}^H\mathbf{C}^H + \boldsymbol{\Phi}_{xx}\mathbf{F}^H\mathbf{C}^H + \mathbf{CF}\mathbf{C}^H\mathbf{C}^H + \mathbf{CF}\mathbf{C}^H\mathbf{C}^H\mathbf{C}^H + \mathbf{CF}\mathbf{C}^H\mathbf{C}^$$

•
$$\mathbf{F} = \mathbf{F}_{\text{opt}} \to \mathbf{F}_{\text{opt}} \mathbf{\Phi}_{uu} = \mathbf{\Phi}_{xu} = \mathcal{E}_s \cdot \mathbf{H}^H$$

$$\begin{split} \bullet & \ \mathbf{F} = \mathbf{F}_{\mathrm{opt}} \to \mathbf{F}_{\mathrm{opt}} \mathbf{\Phi}_{yy} = \mathbf{\Phi}_{xy} = \mathcal{E}_s \cdot \mathbf{H}^H \\ & \to \ \mathbf{\Phi}_{e'e'} = \mathcal{E}_s \mathbf{C} \underbrace{\mathbf{H}^H \mathbf{F}^H}_{\mathbf{K}^H} \mathbf{C}^H - \mathcal{E}_s \mathbf{C} \underbrace{\mathbf{F} \mathbf{H}}_{\mathbf{K}} - \mathcal{E}_s \underbrace{\mathbf{H}^H \mathbf{F}^H}_{\mathbf{K}^H} \mathbf{C} + \mathcal{E}_s \mathbf{I} \\ & = \mathcal{E}_s \big[\mathbf{I} + (\mathbf{C} - \mathbf{I}) \mathbf{K}^H \mathbf{C}^H - \mathbf{C} \mathbf{K} \big] \end{split}$$

Anmerkung: nur Hauptdiagonalelemente interessieren, da diese die Varianz darstellen

$$\rightarrow$$
 maindiagonal elements of $\Phi_{e'e'}$ = variances of $e'_m = \mathcal{E}_s \left(1 + \left(\frac{1}{K_{mm}} - 1\right)K_{mm}\frac{1}{K_{mm}} - \frac{1}{K_{mm}}K_{mm}\right) = \frac{1 - K_{mm}}{K_{mm}}$

 \rightarrow vgl. Abbildung ??

$$\rightarrow SNR_{unbiased} = \frac{\mathcal{E}_s}{[\Phi_{e'e'}]_{mm}} = \frac{\mathcal{E}_s}{\mathcal{E}_s \frac{1 - K_{mm}}{K_{mm}}} = \frac{K_{mm}}{1 - K_{mm}}, \quad 1 \le m \le N_T$$

 \rightarrow the SNR after bias removal is by "1" smaller than the biased SNR \rightarrow general result valid for any type of MMSE estimation

2.4.3 Decision - Feadback Equalization (Detection)

- Also known as:
 - BLAST (Bell Laboratories space-time system)
 - successive interference cancellation
- \bullet Problem of linear receiver: Noise enhancement because of linear filtering \to nonlinear filtering processing necessary

Basic Idea

- Recall (linear filter): $\mathbf{FH} = \mathbf{I}$ for linear ZF receiver $\to i$ th row of \mathbf{F}, \mathbf{f}_i , is orthogonal to the jth column of \mathbf{H}, \mathbf{h}_j , if $i \neq j$ (if i = j: inner product = 1)
- we can detect x_i , based on $r_i = \mathbf{f}_i \mathbf{y}$
- Once we have detected x_i , we can substract its contribution from \mathbf{y} : $\mathbf{y}_1 = \mathbf{y} \mathbf{h}_i \hat{x}_i$ (\hat{x}_i is detected symbol, we assume for now, $\hat{x}_i = x_i$)
- \mathbf{y}_1 can be expressed as $\mathbf{y}_1 = \mathbf{H}_i \mathbf{x}_i + \mathbf{n}$ where

$$\mathbf{H}_i = \begin{bmatrix} \mathbf{h}_1, \dots, \mathbf{h}_{i-1}, \mathbf{h}_{i+1}, \dots, \mathbf{h}_{N_T} \end{bmatrix}$$

$$\mathbf{x}_i = \begin{bmatrix} x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{N_T} \end{bmatrix}$$

- \rightarrow we have reduced the number of signal streams to $N_T 1$ (N_R bleibt gleich)
- apply now linear ZF filter for symbol to detected next, e.g. x_j , where $j \in \{1, ..., i 1, i + 1, ..., N_T\}$
- \rightarrow $\mathbf{r}_j = \mathbf{f}_j \mathbf{y}_1$ where \mathbf{f}_j is the ZF filter for \mathbf{H}_1
- substract contribution of x_j from \mathbf{y}_1 : $\mathbf{y}_2 = \mathbf{y}_1 \mathbf{h}_j x_j$
- substract until last symbol is detected
- Blockdiagram see figure??
- Observations:
 - The order in which the x_1 are detected can be freely chosen and effects the performance $\to N_T!$ possible orders \to cannot explore all of them
 - Practical approach: Select in each step that x_i for which the noise variance enhancement is minimum, i.e. which has the smallest $\mathcal{E}\{|\mathbf{f}_i\mathbf{n}|^2\} = \sigma_n^2 ||\mathbf{f}_i||^2$
- Diversity order:

- stage 1:
$$G_d^1 = N_R - N_T + 1$$

- stage 2:
$$G_d^2 = G_d^1 + 1 = N_R - N_T + 2$$

:

- stage
$$N_T$$
: $G_d^{N_T} = N_R$

- overall:
$$G_d = N_R - N_T + 1$$

Abbildung 9: DFE Blockdiagram

- (Anmerkung: der schlechteste Fall dominiert (Stage 1), weitere koennen nur schwer beeinflussen)

ZF - DFE - Matrix Model

- Signal model: $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n} = \underbrace{\mathbf{H}\mathbf{P}}_{\tilde{\mathbf{H}}} \cdot \underbrace{\mathbf{P}^{-1}\mathbf{x}}_{\tilde{\mathbf{x}}} + \mathbf{n}$ with permutation matrix \mathbf{P}
- \bullet **P** has one "1" per column and row, all other elements are "0"
- \rightarrow can change the detection order to maximize performance
- note: $\mathbf{P}^T = \mathbf{P}^{-1}$
- Example:

$$\mathbf{P} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} [r] \to \mathbf{P}^{-1} = \mathbf{P}^{T} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
$$\tilde{\mathbf{x}} = \mathbf{P}^{T} \cdot \mathbf{x} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} x_{2} \\ x_{3} \\ x_{1} \end{pmatrix}$$

- Blockdiagram see figure ??
- DFE Filters:
 - \mathbf{F} feedworward filter
 - **B** feedback filter
- Filter calculation

Abbildung 10: ZF-DFE Matrix Model

– Cholesky factorization: $\tilde{\mathbf{H}}^H \tilde{\mathbf{H}} = \mathbf{L}^H \mathbf{D} \mathbf{L}$ with diagonal matrix \mathbf{D} and lower triangular matrix \mathbf{L} (maindiagonal elements of \mathbf{L} are "1")

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ l_{21} & 1 & \ddots & \ddots & \vdots \\ l_{31} & l_{32} & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \cdots & \cdots & \cdots & 1 \end{bmatrix}$$

 $-\mathbf{F} = \mathbf{D}^{-1}\mathbf{L}^{-H}\tilde{\mathbf{H}}^{H}$

$$\rightarrow \mathbf{r} = \mathbf{F} \mathbf{y} = \underbrace{\mathbf{D}^{-1} \mathbf{L}^{-H} \underbrace{\tilde{\mathbf{H}}^{H} \tilde{\mathbf{H}}}_{\mathbf{L}^{H} \mathbf{D} \mathbf{L}} \tilde{\mathbf{x}} + \underbrace{\mathbf{D}^{-1} \mathbf{L}^{-H} \tilde{\mathbf{H}}^{H} \mathbf{n}}_{\tilde{\mathbf{n}}}}_{\mathbf{n}}$$

– $\mathbf{B} = \mathbf{L} - \mathbf{I} = \text{lower triangular matrix with main$ diagonal elements "0"

$$\mathbf{B} = \begin{bmatrix} 0 & 0 & \cdots & \cdots & 0 \\ l_{21} & 0 & \ddots & \ddots & \vdots \\ l_{31} & l_{32} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \cdots & \cdots & \cdots & 0 \end{bmatrix}$$

- Interpretation:
 - after feedforward filter

$$\mathbf{r} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ l_{21} & 1 & \ddots & \ddots & \vdots \\ l_{31} & l_{32} & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \cdots & \cdots & \cdots & 1 \end{bmatrix} \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \\ \vdots \\ \tilde{x}_{N_T} \end{bmatrix} + \tilde{\mathbf{n}}$$

• from feedback filter

$$\tilde{\mathbf{r}} = \begin{bmatrix} 0 & 0 & \cdots & \cdots & 0 \\ l_{21} & 0 & \ddots & \ddots & \vdots \\ l_{31} & l_{32} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \cdots & \cdots & \cdots & 0 \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \\ \vdots \\ \hat{x}_{N_T} \end{bmatrix} \hat{x}_n : \text{decision on } \tilde{x}_n$$

$$\rightarrow \mathbf{r} - \tilde{\mathbf{r}} = \begin{bmatrix} \tilde{x}_1 + 0 \\ l_{21}(\tilde{x}_1 - \hat{x}_1) + \tilde{x}_2 + 0 \\ l_{31}(\tilde{x}_1 - \hat{x}_2) + l_{32}(\tilde{x}_2 - \hat{x}_2) + \tilde{x}_3 + 0 \end{bmatrix} + \tilde{\mathbf{n}}$$

Abbildung 11: MMSE-DFE Blockdiagram

MMSE-DFE

• $\mathbf{B} = \mathbf{L} - \mathbf{I}$ has to be lower triangular matrx with all-zero main diagonal elements because of causality.

$$\bullet \ \mathbf{d} = \mathbf{F}\mathbf{y} - \mathbf{B}\hat{\hat{\mathbf{x}}} \quad \to \mathbf{e} = \mathbf{d} - \hat{\mathbf{x}} = \mathbf{F}\mathbf{y} - \underbrace{\left(\mathbf{B} + \mathbf{I}\right)}_{\mathbf{I}} \tilde{\mathbf{x}}$$

where we assume $\hat{\tilde{\mathbf{x}}} = \tilde{\mathbf{x}}$ for filter optimization

• Optimal F for given L

$$\sigma_e^2 = \operatorname{tr}\left\{\underbrace{\mathcal{E}\{\mathbf{e}\mathbf{e}^H\}}_{\Phi_{ee}}\right\} = \operatorname{tr}\left\{\mathbf{F}\mathbf{\Phi}_{yy}\mathbf{F}^H\right\} - \operatorname{tr}\left\{\mathbf{F}\mathbf{\Phi}_{y\tilde{x}}\mathbf{L}^H\right\} - \operatorname{tr}\left\{\mathbf{L}\mathbf{\Phi}_{\tilde{x}y}\mathbf{F}^H\right\} + \operatorname{tr}\left\{\mathbf{L}\mathbf{\Phi}_{\tilde{x}\tilde{x}}\mathbf{L}^H\right\}$$

$$\frac{\delta}{\delta \mathbf{F}^*} \sigma_e^2 = \mathbf{F} \mathbf{\Phi}_{yy} - \mathbf{L} \mathbf{\Phi}_{\tilde{x}y} = 0 \quad \to \mathbf{F} = \mathbf{L} \mathbf{\Phi}_{\tilde{x}y} \mathbf{\Phi}_{yy}^{-1}$$

where

$$egin{aligned} & \Phi_{yy} = \mathcal{E}_s ilde{\mathbf{H}} ilde{\mathbf{H}}^H + \sigma_n^2 \mathbf{I} \ & \\ & \Phi_{ ilde{x}y} = \mathcal{E}_s ilde{\mathbf{H}}^H \end{aligned}$$

$$\rightarrow \mathbf{F} = \mathbf{L}\tilde{\mathbf{H}}^{H}(\tilde{\mathbf{H}}\tilde{\mathbf{H}}^{h} + \frac{\sigma_{n}^{2}}{\mathcal{E}_{s}}\mathbf{I})^{-1} = \mathbf{L}\underbrace{(\tilde{\mathbf{H}}^{H}\tilde{\mathbf{H}} + \frac{\sigma_{n}^{2}}{\mathcal{E}_{s}}\mathbf{I})^{-1}\tilde{\mathbf{H}}^{H}}^{\text{MMSE Linear Equalizer}}$$

Abbildung 12: MMSE-DFE Equivalence

• Optimal L:

$$\begin{split} \boldsymbol{\Phi}_{ee} &= \mathbf{L}\boldsymbol{\Phi}_{\tilde{x}y}\boldsymbol{\Phi}_{yy}^{-1}\boldsymbol{\Phi}_{yy}\boldsymbol{\Phi}_{yy}^{-1}\boldsymbol{\Phi}_{\tilde{x}y}^{H}\mathbf{L}^{H} - \mathbf{L}\boldsymbol{\Phi}_{\tilde{x}y}\boldsymbol{\Phi}_{yy}^{-1}\boldsymbol{\Phi}_{y\tilde{x}}\mathbf{L}^{H} - \mathbf{L}\boldsymbol{\Phi}_{\tilde{x}y}\boldsymbol{\Phi}_{yy}^{-1}\boldsymbol{\Phi}_{\tilde{x}y}^{H}\mathbf{H}^{H} + \mathbf{L}\boldsymbol{\Phi}_{\tilde{x}\tilde{x}}\mathbf{L}^{H} \\ &= \mathbf{L}(\boldsymbol{\Phi}_{\tilde{x}\tilde{x}} - \boldsymbol{\Phi}_{\tilde{x}y}\boldsymbol{\Phi}_{yy}^{-1}\boldsymbol{\Phi}_{\tilde{x}y}^{H})\mathbf{L}^{H} \end{split}$$

= MMSE covariance matrix for a linear MMSE filter

$$ightarrow \Phi_{ee} = \sigma_n^2 \mathbf{L} (\tilde{\mathbf{H}}^H \tilde{\mathbf{H}} + \frac{\sigma_n^2}{\mathcal{E}_o} \mathbf{I})^{-1} \mathbf{L}^H$$

- \rightarrow need lower triangular matrix **L** which minimizes $\operatorname{tr}\{\Phi_{ee}\}$
- \rightarrow the optimum **L** whitenes $\Phi_{ee} \rightarrow \Phi_{ee}$ becomes diagonal matrix i.e. **L** exploits the correlation after linear MMSE filtering to reduce noise variance!
- ightarrow L is obtained via Cholesky factorization

$$ilde{\mathbf{H}}^H ilde{\mathbf{H}} + rac{\sigma_n^2}{\mathcal{E}_s} \mathbf{I} = \mathbf{L} \mathbf{D} \mathbf{L}^H$$

$$\rightarrow \; \boldsymbol{\Phi}_{ee} = \sigma_n^2 \mathbf{L} (\mathbf{L} \mathbf{D} \mathbf{L}^H)^{-1} \mathbf{L} = \sigma_n^2 \mathbf{L} \mathbf{L}^{-1} \mathbf{D}^{-1} \mathbf{L}^{-H} \mathbf{L} = \sigma_n^2 \mathbf{D}^{-1} \widehat{=} \; \mathrm{diagonal \; matrix}$$

• Summary of MMSE calculation

-
$$\mathbf{B} = \mathbf{L} - \mathbf{I}$$
 where $\mathbf{H}^H \mathbf{H} + \frac{\sigma_n^2}{\mathcal{E}_s} \mathbf{I} = \mathbf{L} \mathbf{D} \mathbf{L}^H$

$$-\mathbf{F} = \mathbf{L} \underbrace{(\mathbf{H}^H \mathbf{H} + \frac{\sigma_n^2}{\mathcal{E}_s} \mathbf{I})^{-1} \tilde{\mathbf{H}}}_{\mathbf{F}_{Linear}}$$

- L is a prediction error filter, which whitenes the error signal e
- SNR:

$$\mathbf{D} = \operatorname{diag}\{\xi_1, \dots, \xi_{N_T}\}\$$

$$\sigma^2 \qquad \sigma^2$$

$$oldsymbol{\Phi}_{ee} = ext{diag}\{rac{\sigma_n^2}{\xi_1}, \dots, rac{\sigma_n^2}{\xi_{N_T}}\}$$

- end-to-end channel

$$\begin{split} \mathbf{K} &= \mathbf{F}\tilde{\mathbf{H}} \\ &= \underbrace{\mathbf{L}(\tilde{\mathbf{H}}^H \tilde{\mathbf{H}} + \frac{\sigma_n^2}{\mathcal{E}_s} \mathbf{I})^{-1} \mathbf{L}^H}_{\mathbf{L}^{-H} \tilde{\mathbf{H}}^H \tilde{\mathbf{H}}} \mathbf{L}^{-H} \tilde{\mathbf{H}}^H \tilde{\mathbf{H}} \\ &= \underbrace{\frac{1}{\sigma_n^2} \mathbf{\Phi}_{ee}}_{\mathbf{L}^{-H}} (\tilde{\mathbf{H}}^H \tilde{\mathbf{H}} + \frac{\sigma_n^2}{\mathcal{E}_s} \mathbf{I} - \frac{\sigma_n^2}{\mathcal{E}_s} \mathbf{I}) \mathbf{L}^{-1} \mathbf{L} \\ &= \underbrace{\frac{1}{\sigma_n^2} [\mathbf{L}^{-H} (\tilde{\mathbf{H}}^H \tilde{\mathbf{H}} + \frac{\sigma_n^2}{\mathcal{E}_s} \mathbf{I}) \mathbf{L}^{-1} \mathbf{L} - \frac{\sigma_n^2}{\mathcal{E}_s} \mathbf{L}^{-H}]}_{\sigma_n^2 \mathbf{\Phi}_{ee}^{-1}} \\ &= \mathbf{L} - \underbrace{\frac{1}{\mathcal{E}_s} \mathbf{\Phi}_{ee}} \mathbf{L}^{-H} \end{split}$$

 \rightarrow main diagonal of **K**:

$$K_{mm} = 1 - \frac{\sigma_n^2}{\mathcal{E}_s \xi_m} < 1$$

- biased SNR

$$SNR_{m,bias} = \frac{\mathcal{E}_S}{[\mathbf{\Phi}_{ee}]_{mm}} = \frac{\mathcal{E}_s}{\sigma_n^2} \xi_m = \frac{1}{1 - K_{mm}}, \quad 1 \le m \le N_T$$

- unbiased SNR

$$SNR_{m,unbiased} = SNR_{m,bias} - 1 = \frac{1}{1 - K_{mm}} - 1 = \frac{K_{mm}}{1 - K_{mm}}, \quad 1 \le m \le N_T$$

2.4.4 Sphere Decoding

- Linear and DFE receivers cannot approach performance of ML-detector
- ML detector: $\hat{\mathbf{x}} = \underset{\mathbf{x} \in A^{N_T}}{\operatorname{argmin}} ||\mathbf{y} \mathbf{H}\mathbf{x}||^2$
- \rightarrow high complexity for brute force search

Main Idea

- can we search ML metric in a "smarter" way, akin to the smart search of the viterbi algorithm for problems with a trellis structure
- we need to find a way to prune/dismiss non-ML sequences/vectores early on
- $\rightarrow\,$ this is accomplished by sphere decoding

Step 1 Bring metric into a suitable form:

- real representation: $||\mathbf{y} \mathbf{H}\mathbf{x}||^2 = ||\tilde{\mathbf{y}} \tilde{\mathbf{H}}\tilde{\mathbf{x}}||^2$
- where:

$$\begin{split} \tilde{\mathbf{y}} &= \begin{bmatrix} \operatorname{Re}\{\mathbf{y}^T\} & \operatorname{Im}\{\mathbf{y}^T\} \end{bmatrix}^T \\ \tilde{\mathbf{x}} &= \begin{bmatrix} \operatorname{Re}\{\mathbf{x}^T\} & \operatorname{Im}\{\mathbf{x}^T\} \end{bmatrix}^T \\ \tilde{\mathbf{H}} &= \begin{bmatrix} \operatorname{Re}\{\mathbf{H}\} & -\operatorname{Im}\{\mathbf{H}\} \\ \operatorname{Im}\{\mathbf{H}\} & \operatorname{Re}\{\mathbf{H}\} \end{bmatrix}^T \end{split}$$

- \rightarrow QAM: $\tilde{\mathbf{x}}$ defines points in an $2N_T$ dimensional lattice
- QL decomposition: $\tilde{\mathbf{H}} = \mathbf{QL}$ with
 - orthogonal matrix $\mathbf{Q} \in \mathbb{R}^{2N_T \times 2N_T}$; $\mathbf{Q}\mathbf{Q}^T = \mathbf{I}$
 - and lower triangular matrix $\mathbf{L} \in \mathbb{R}^{2N_T \times 2N_T}$

$$\begin{aligned} ||\tilde{\mathbf{y}} - \mathbf{Q}\mathbf{L}\tilde{\mathbf{x}}||^2 &= ||\mathbf{Q}\mathbf{Q}^T(\tilde{\mathbf{y}} - \mathbf{Q}\mathbf{L}\tilde{\mathbf{x}})||^2 + ||(\mathbf{I} - \mathbf{Q}\mathbf{Q}^T)(\tilde{\mathbf{y}} - \mathbf{Q}\mathbf{L}\tilde{\mathbf{x}})||^2 \\ &= ||\mathbf{Q}(\mathbf{Q}^T\tilde{\mathbf{y}} - \mathbf{L}\tilde{\mathbf{x}})||^2 + ||(\mathbf{I} - \mathbf{Q}\mathbf{Q}^T)\tilde{\mathbf{y}} - \underbrace{(\mathbf{Q} - \mathbf{Q})}_{=0}\mathbf{L}\tilde{\mathbf{x}}||^2 \\ &= ||\mathbf{Q}^T\tilde{\mathbf{y}} - \mathbf{L}\tilde{\mathbf{x}}||^2 + \underbrace{||(\mathbf{I} - \mathbf{Q}\mathbf{Q}^T)\tilde{\mathbf{y}}||^2}_{\text{unabhängig von }\tilde{\mathbf{x}}} \end{aligned}$$

$$\begin{split} &\Rightarrow \underset{\tilde{\mathbf{x}} \in A^{2N_T}}{\operatorname{argmin}} ||\tilde{\mathbf{y}} - \tilde{\mathbf{H}} \tilde{\mathbf{x}}||^2 = \underset{\tilde{\mathbf{x}} \in A^{2N_T}}{\operatorname{argmin}} ||\underbrace{\mathbf{Q}^T \tilde{\mathbf{y}}}_{\tilde{\mathbf{y}}} - \mathbf{L} \tilde{\mathbf{x}}||^2 \\ &\text{where } A^{2N_T} \text{ contains all } M^{N_T} \text{ possible vectors } \tilde{\mathbf{x}} \end{split}$$

- Observation:
 - with

$$\mathbf{L} = \begin{bmatrix} l_{11} & 0 & \cdots & 0 \\ l_{21} & l_{22} & \ddots & \vdots \\ \vdots & \ddots & 0 \\ l_{2N_T 1} & \cdots & l_{2N_T 2N_T} \end{bmatrix}$$
$$\bar{\mathbf{y}} = \begin{bmatrix} \bar{y}_1 & \cdots & \bar{y}_{2N_T} \end{bmatrix}^T ; \quad \tilde{\mathbf{x}} = \begin{bmatrix} \tilde{x}_1 & \cdots & \tilde{x}_{2N_T} \end{bmatrix}$$

- we have

$$||\bar{\mathbf{y}} - \mathbf{L}\tilde{\mathbf{x}}||^2 = (\bar{y} - l_{11}\tilde{x}_1)^2 + (\bar{y}_2 - l_{21}\tilde{x}_1 - l_{22}\tilde{x}_2)^2 + (\bar{y}_3 - l_{31}\tilde{x}_1 - l_{32}\tilde{x}_2 - l_{33}\tilde{x}_3)^2 + \dots$$
(1)

 \rightarrow the *n*-th term in the above sum contains only $\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_n$

Step 2 Sphere decoding algorithm

Define:

$$d(\tilde{\mathbf{x}}) = \sum_{n=1}^{2N_T} f_n(\tilde{\mathbf{x}}_n) \; ; \quad \text{with } f_n(\tilde{\mathbf{x}}_n) = \left(\bar{y}_n - \sum_{i=1}^n l_{ni}\tilde{x}_i\right)^2 \; ; \quad \tilde{\mathbf{x}}_n = \begin{bmatrix} \tilde{x}_1 & \dots & \tilde{x}_n \end{bmatrix}^T$$
$$d_n(\tilde{x}_n) = \sum_{m=1}^n f_n(\tilde{\mathbf{x}}_m)$$

Main Idea:

- Assume we know that $d(\tilde{\mathbf{x}}) \leq R$ holds for some $\tilde{\mathbf{x}}$, where R is the so called "sphere radius" \to any $\tilde{\mathbf{x}}$ with $d(\tilde{\mathbf{x}}) \geq R$ cannot be the ML solution and can be discarded
- since $d_{n+1}(\tilde{\mathbf{x}}'_n, \tilde{x}_{n+1}) \geq d_n(\tilde{\mathbf{x}}'_n)$, we can easily discard \mathbf{x}'_n and all possible $\tilde{\mathbf{x}} = \begin{bmatrix} \tilde{\mathbf{x}}'_n & \tilde{x}_{n+1} & \tilde{x}_{n+2} & \dots & \tilde{x}_{2N_T} \end{bmatrix}^T$ if we find $d_n(\tilde{\mathbf{x}}'_n) > R$ \Rightarrow we can exclude many possible vectors $\tilde{\mathbf{x}}$ without evaluating any metrics for them
- How to find a suitable R?
 - Initial $R: R = d(\tilde{\mathbf{x}}_{\text{subopt}})$ where $\tilde{\mathbf{x}}_{\text{subopt}}$ was obtained with some suboptimum receiver
 - R is updated as $R = R_{\text{new}} = d(\tilde{\mathbf{x}}_{\text{cand}})$ where $\tilde{\mathbf{x}}_{\text{cand}}$ is an $\tilde{\mathbf{x}}$ which yields $d(\tilde{\mathbf{x}}_{\text{cand}}) < R_{\text{old}} = R$
- \bullet Use tree structure to represent all possible $\tilde{\mathbf{x}}$

Example:

- Siehe dazu Abbildung 13 auf S. 39
- Assume $\tilde{\mathbf{x}}_{\text{subopt}} = \begin{bmatrix} -1 & -1 & -1 & 1 \end{bmatrix}^T$ $\Rightarrow d(\tilde{x}_{\text{subopt}} = 1 + 2 + 2 + 2 = 7 = R$
- For $\tilde{x}_1 = 1$ we find $d_2(1,1) = 5 + 3 = 8 > R$ and d(1,-1) = 5 + 4 > R \Rightarrow we don't have to calculate metrics for remaining branches, i.e., for nodes $19, \ldots, 31$
- For $\tilde{x}_1 = -1$ and $\tilde{x}_2 = 1$, we find that $d_3(-1, 1, -1) = 8 > R$ and $d_3(-1, 1, 1) = 9 > R$ \Rightarrow remaining branches emerging from nodes 6 and 7 can be discarded
- For the ML solution we find d(-1, -1, 1, -1) = 5 < R
- Different strategies exist, regarding in which order the nodes in the tree (points in the lattice) are investigated
 - Pohst strategy
 - Schnoir Enchner strategy
 - rich literature on lattice decoding algorithms
- Complexity of sphere decoding
 - worst-case complexity is still exponential in N_T
 - (for practical case:) for sufficiently high SNR, the average complexity is only polynomial in $N_T \Rightarrow$ efficient ML decoding

Abbildung 13: BPSK = 2, $N_T = 2$

- $\bullet\,$ sphere decoding has found application in many fields:
 - ML detection in MIMO and multiuser systems
 - precoding
 - source coding
 - multiple symbol differential detection