PH 712 Probability and Statistical Inference

Part II: Transformation Between RVs

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

2024/09/15 16:17:02

Find the pmf of Y = q(X), given the pmf of X

- 1. Figure out supp $(Y) = \{y : y = g(x), x \in \text{supp}(X)\}$
- 2. Calculate $p_Y(y) = \Pr(Y = y) = \Pr(X \in \{x \in \text{supp}(X) : y = g(x)\})$

Example Lec2.1

Let X have the pmf $p_X(x) = 2^x \mathbf{1}_{\{-1,-2,\ldots\}}(x)$. Find the pmf of $Y = X^2$.

Find the cdf of Y = q(X), given the distribution of X

- 1. Figure out supp $(Y) = \{y : y = g(x), x \in \text{supp}(X)\}$
- 2. Calculate $F_Y(y) = \Pr\{g(X) \le y\} = \Pr\{X \in \{x : g(x) \le y\}\}$

Example Lec2.2

Suppose $X \sim U([-\pi/2, \pi/2])$, i.e., its pdf is $f_X(x) = \pi^{-1} \mathbf{1}_{[-\pi/2, \pi/2]}(x)$. Find the cdf of $Y = X^2$.

$Y = F_X(X) \sim U([0,1])$ (CB Thm. 2.1.10)

- If $X \sim F_X$ and $Y = F_X(X)$
- Then $Y \sim U(\operatorname{supp}(Y))$
 - Specifically $Y \sim U([0,1])$ if X is continuous
- Application: inverse transform sampling
 - Goal: generate an independent and identically distributed (iid) sample following F_X
 - Implementation
 - 1. Draw $U_1, \ldots, U_n \stackrel{\text{iid}}{\sim} U(\text{supp}(Y))$ with $Y = F_X(X)$
 - 2. Then $F_X^{-1}(U_1), \dots, F_X^{-1}(U_n) \stackrel{\text{iid}}{\sim} F_X$ * $F_X^{-1}(y) = \inf\{x : F_X(x) \ge y\}$
 - Pros & cons
 - * (Theoretically) applicable to arbitrary F_X
 - * The closed form of F_X^{-1} NOT always available

Find the pdf of Y = g(X), given the pdf of X

1. Figure out $\operatorname{supp}(Y) = \{y : y = g(x), x \in \operatorname{supp}(X)\}$

$$f_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} \int_{\{x: q(x) \le y\}} f_X(x) \mathrm{d}x$$

• The integration of f_X at the right-hand side is often avoidable by employing the Leibniz Rule (CB Thm. 2.4.1):

$$\frac{\mathrm{d}}{\mathrm{d}y} \int_{a(y)}^{b(y)} f(x) \mathrm{d}x = f\{b(y)\} \frac{\mathrm{d}}{\mathrm{d}y} b(y) - f\{a(y)\} \frac{\mathrm{d}}{\mathrm{d}y} a(y)$$

with a(y) and b(y) both differentiable with respect to y.

Example Lec2.2'

Let X have the uniform pdf $f_X(x) = \pi^{-1} \mathbf{1}_{[-\pi/2,\pi/2]}(x)$. Find the pdf of $Y = X^2$.

Example Lec2.3

 $X \sim \text{Weibull}(\text{shape} = \alpha, \text{scale} = \beta), \text{ i.e., } f_X(x) = (\alpha/\beta)(x/\beta)^{\alpha-1} \exp\{-(x/\beta)^{\alpha}\} \mathbf{1}_{(0,\infty)}(x).$ Find the pdf of $Y = \ln(X)$.

Example Lec2.4

Let X have the pdf $f_X(x) = 2^{-1} \mathbf{1}_{(0,2)}(x)$. Find the pdf of $Y = X^2$.

Example Lec2.5

Suppose $f_X(x) = 3^{-1} \mathbf{1}_{(-1,2)}(x)$. Find the pdf of $Y = X^2$.

Example Lec2.6

Suppose $X \sim \mathcal{N}(\mu, \sigma^2)$, i.e., $f_X(x) = \sigma \sqrt{2\pi} \exp\{-(x-\mu)^2/(2\sigma^2)\}$. Find the pdf of Y = aX + b with $a \neq 0$.