Arjan Cornelissen¹, Nikhil S. Mande², Subhasree Patro^{3,4}

¹CNRS, IRIF, Paris, France
²University of Liverpool, United Kingdom
³Eindhoven University of Technology (TU/e), Netherlands
⁴Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands

August 27th, 2024

• Let $f: \{0,1\}^n \to \{0,1\}$.

- **1** Let $f: \{0,1\}^n \to \{0,1\}$.
- Central question: How complex is f?

- **1** Let $f: \{0,1\}^n \to \{0,1\}$.
- Central question: How complex is f?
- Omplexity measures: They quantify complexity.

- Let $f: \{0,1\}^n \to \{0,1\}$.
- Central question: How complex is f?
- Complexity measures: They quantify complexity. Examples:
 - **o** D(f): Deterministic q.c.

 - Q(f): Quantum q.c.

- Let $f: \{0,1\}^n \to \{0,1\}$.
- Central question: How complex is f?
- Complexity measures: They quantify complexity. Examples:
 - \bullet D(f): Deterministic q.c.

 - Q(f): Quantum q.c.
- Follow-up question: How do these measures relate?
 - Hasse diagram

2/10

- **1** Let $f: \{0,1\}^n \to \{0,1\}$.
- Central question: How complex is f?
- Complexity measures: They quantify complexity. Examples:
 - **1** $\mathsf{D}(f)$: Deterministic q.c.

 - Q(f): Quantum q.c.
- Follow-up question: How do these measures relate?
 - Hasse diagram

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

1 Let $x \in f^{-1}(0)$, $y \in f^{-1}(1)$.

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

1 Let
$$x \in f^{-1}(0)$$
, $y \in f^{-1}(1)$.

X	0	0	1	 1	
У	0	1	0	 1	

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

1 Let $x \in f^{-1}(0)$, $y \in f^{-1}(1)$.

j	1	2	3	• • • • • • • • • • • • • • • • • • • •	n	
Х	0	0	1		1	
У	0	1	0		1	
$Z_{X,y,*}$ $Z_{X,y,\dagger}$						
$Z_{X,Y,*}$	0	*	*	• • •	1	
$Z_{X,y,\dagger}$	0	†	†	• • •	1	

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- **1** Let $x \in f^{-1}(0)$, $y \in f^{-1}(1)$.
- ② Let $z_{x,y,*}, z_{x,y,\dagger} \in \{0,1,*,\dagger\}^n$:

$$(z_{x,y,*/\dagger})_j = \begin{cases} x_j, & \text{if } x_j = y_j, \\ */\dagger, & \text{if } x_j \neq y_j. \end{cases}$$

j	1	2	3		n	
X	0	0	1		1	
У	0	1	0	• • •	1	
$ \downarrow $ $ z_{x,y,*} $ $ z_{x,y,\dagger} $						
$Z_{X,Y,*}$	0	*	*	• • •	1	
$Z_{X,Y,\dagger}$	0	†	†		1	

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- **1** Let $x \in f^{-1}(0)$, $y \in f^{-1}(1)$.
- **2** Let $z_{x,y,*}, z_{x,y,\dagger} \in \{0,1,*,\dagger\}^n$:

$$(z_{x,y,*/\dagger})_j = \begin{cases} x_j, & \text{if } x_j = y_j, \\ */\dagger, & \text{if } x_j \neq y_j. \end{cases}$$

j	1	2	3		n	
X	0	0	1		1	
У	0	1	0		1	
$Z_{x,y,*}$ $Z_{x,y,\dagger}$						
$Z_{X,Y,*}$	0	*	*	• • •	1	$\mapsto *$
$Z_{X,y,\dagger}$	0	†	†	• • •	1	$\mapsto \dagger$

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- **1** Let $x \in f^{-1}(0)$, $y \in f^{-1}(1)$.
- **2** Let $z_{x,y,*}, z_{x,y,\dagger} \in \{0,1,*,\dagger\}^n$:

$$(z_{x,y,*/\dagger})_j = \begin{cases} x_j, & \text{if } x_j = y_j, \\ */\dagger, & \text{if } x_j \neq y_j. \end{cases}$$

- **o** $DS(f) := D(f_{sab}), RS(f) := R_0(f_{sab}).$

j	1	2	3	• • • •	n	
X	0	0	1		1	
У	0	1	0	• • •	1	
$Z_{x,y,*}$ $Z_{x,y,\dagger}$						
$Z_{X,Y,*}$	0	*	*	• • •	1	$\mapsto *$
$Z_{X,Y,\dagger}$	0	†	†		1	$\mapsto \dagger$

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- **1** Let $x \in f^{-1}(0)$, $y \in f^{-1}(1)$.
- **2** Let $z_{x,y,*}, z_{x,y,\dagger} \in \{0,1,*,\dagger\}^n$:

$$(z_{x,y,*/\dagger})_j = \begin{cases} x_j, & \text{if } x_j = y_j, \\ */\dagger, & \text{if } x_j \neq y_j. \end{cases}$$

- **4** $DS(f) := D(f_{sab}), RS(f) := R_0(f_{sab}).$

Their observations:

- **1** DS(f) = D(f). [BK16; Theorem 33]

j	1	2	3	• • • • • • • • • • • • • • • • • • • •	n	
X	0	0	1		1	
У	0	1	0	• • •	1	
$Z_{x,y,*}$ $Z_{x,y,\dagger}$						
$z_{x,y,*}$	0	*	*	• • •	1	$\mapsto *$
$Z_{X,Y,\dagger}$	0	†	†		1	$\mapsto \dagger$

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- **1** Let $x \in f^{-1}(0)$, $y \in f^{-1}(1)$.
- **2** Let $z_{x,y,*}, z_{x,y,\dagger} \in \{0,1,*,\dagger\}^n$:

$$(z_{x,y,*/\dagger})_j = \begin{cases} x_j, & \text{if } x_j = y_j, \\ */\dagger, & \text{if } x_j \neq y_j. \end{cases}$$

- **o** $DS(f) := D(f_{sab}), RS(f) := R_0(f_{sab}).$

Their observations:

- **1** DS(f) = D(f). [BK16; Theorem 33]

Open question:

1 Quantum analog: QS(f) = O(Q(f))?

j	1	2	3		n	
X	0	0	1	• • •	1	
У	0	1	0	• • •	1	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $						
$Z_{X,Y,*}$	0	*	*	• • •	1	$\mapsto *$
$Z_{X,y,\dagger}$	0	†	†	• • •	1	$\mapsto \dagger$

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- **1** Let $x \in f^{-1}(0)$, $y \in f^{-1}(1)$.
- 2 Let z be a sabotaged input.
- **3** Let $J_z = \{j : z_j \in \{*, \dagger\}\}.$

4 / 10

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- **1** Let $x \in f^{-1}(0)$, $y \in f^{-1}(1)$.
- 2 Let z be a sabotaged input.
- **3** Let $J_z = \{j : z_j \in \{*, \dagger\}\}.$

		J	I_z	• • • • • • • • • • • • • • • • • • • •	
j	1	2	3		n
X	0	0	1		1
У	0	1	0		1
Z	0	*	*		1

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- **1** Let $x \in f^{-1}(0)$, $y \in f^{-1}(1)$.
- 2 Let z be a sabotaged input.
- **3** Let $J_z = \{j : z_j \in \{*, \dagger\}\}.$

Complexity measure definitions:

 $\mathsf{D}(\cdot)$

 $R(\cdot)$

 $\mathsf{Q}(\cdot)$

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- **1** Let $x \in f^{-1}(0)$, $y \in f^{-1}(1)$.
- 2 Let z be a sabotaged input.
- **3** Let $J_z = \{j : z_j \in \{*, \dagger\}\}.$

	$D(\cdot)$	$R(\cdot)$	$Q(\cdot)$
$f_{sab,weak}: z \mapsto */\dagger$	DS_{weak}	RS_{weak}	QS_{weak}

		J	l _z		
j	1	2	3	 n	
Z	0	*	*	 1	$\mapsto */\dagger$

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- **1** Let $x \in f^{-1}(0)$, $y \in f^{-1}(1)$.
- 2 Let z be a sabotaged input.
- **3** Let $J_z = \{j : z_j \in \{*, \dagger\}\}.$

	$D(\cdot)$	$R(\cdot)$	$Q(\cdot)$
$f_{sab,weak}: z \mapsto */\dagger \ f_{sab,weak}^{ind}(z) \in J_z$	DS _{weak}	RS _{weak}	QS _{weak}
	DS ^{ind}	RS ^{ind}	QS ^{ind}
	weak	weak	weak

		J	I_z		
j	1	2	3	 n	
Z	0	*	* T	 1	

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- **1** Let $x \in f^{-1}(0)$, $y \in f^{-1}(1)$.
- ② Let z be a sabotaged input.
- **3** Let $J_z = \{j : z_j \in \{*, \dagger\}\}.$

	$D(\cdot)$	$R(\cdot)$	$Q(\cdot)$
$f_{sab,weak}: z \mapsto */\dagger$		RS_{weak}	
$f_{sab,weak}^{ind}(z) \in J_z$	DS^ind_weak	RS^ind_weak	QS^ind_weak
$f_{sab,str}:(x,y,z)\mapsto */\dagger$		RS_str	QS_{str}

		J	I_z		→ */†
j	1	2	3	 n	
X	0	0	1	 1	
У	0	1	0	 1	
Z	0	*	*	 1	$\mapsto */\dagger$

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- **1** Let $x \in f^{-1}(0)$, $y \in f^{-1}(1)$.
- ② Let z be a sabotaged input.
- **3** Let $J_z = \{j : z_j \in \{*, \dagger\}\}.$

	$D(\cdot)$	$R(\cdot)$	$Q(\cdot)$
$f_{sab,weak}: z \mapsto */\dagger$	DS_{weak}	RS_{weak}	QS_{weak}
$f_{sab,weak}^ind(z) \in J_z$	DS^ind_weak	RS^ind_weak	QS^ind_weak
$f_{sab,str}: (x,y,z) \mapsto */\dagger$	DS_{str}	RS_{str}	QS_{str}
$f_{sab,str}^ind(x,y,z) \in J_z$	DS^{ind}_{str}	RS^ind_str	QS^ind_str

		J	I_z		
j	1	2	3	 n	
X	0	0	1	 1	
У	0	1	0	 1	
Z	0	*	*	 1	
			Ţ		
			j		

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- **1** Let $x \in f^{-1}(0)$, $y \in f^{-1}(1)$.
- ② Let z be a sabotaged input.
- **3** Let $J_z = \{j : z_j \in \{*, \dagger\}\}.$

Complexity measure definitions:

	$D(\cdot)$	$R(\cdot)$	$Q(\cdot)$
$f_{sab,weak}: z \mapsto */\dagger$	DS _{weak}	RS_{weak}	QS _{weak}
$f_{sab,weak}^{ind}(z) \in J_z$	DS^{ind}_{weak}	RS^ind_weak	QS^ind_weak
$f_{sab,str}:(x,y,z)\mapsto */\dagger$	DS_{str}	RS_str	QS_str
$f_{sab,str}^{ind}(x,y,z) \in J_z$	DS^{ind}_{str}	RS^ind_str	QS^ind_str

		J			
j	1	2	3	 n	
X	0	0	1	 1	
У	0	1	0	 1	
Z	0	*	*	 1	

Observations:

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- **1** Let $x \in f^{-1}(0)$, $y \in f^{-1}(1)$.
- ② Let z be a sabotaged input.
- **3** Let $J_z = \{j : z_j \in \{*, \dagger\}\}.$

Complexity measure definitions:

	$D(\cdot)$	$R(\cdot)$	$Q(\cdot)$
$f_{sab,weak}: z \mapsto */\dagger$	DS_{weak}	RS_{weak}	QS_{weak}
$f_{sab,weak}^{ind}(z) \in J_z$	DS^ind_weak	RS^ind_weak	QS^ind_weak
$f_{sab,str}: (x,y,z) \mapsto */\dagger$	DS_{str}	RS_str	QS_str
$f_{sab,str}^{ind}(x,y,z) \in J_z$	DS^ind_str	RS^ind_str	QS^ind_str

		J	I_z	
j	1	2	3	 n
X	0	0	1	 1
У	0	1	0	 1
Z	0	*	*	 1

Observations:

$$\textbf{ 2} \ \ \mathsf{RS} = \Theta(\mathsf{RS}_{\mathsf{weak}}) = \Theta(\mathsf{RS}_{\mathsf{weak}}^{\mathsf{ind}}) = \Theta(\mathsf{RS}_{\mathsf{str}}) = \Theta(\mathsf{RS}_{\mathsf{str}}^{\mathsf{ind}}).$$

Question: How about the quantum versions?

Direct inclusions:

1 QS_{str} =
$$O(QS_{str}^{ind}) = O(QS_{weak}^{ind}) = O(RS)$$
.
2 QS_{str} = $O(QS_{weak}) = O(QS_{weak}^{ind})$.

$$QS_{\mathsf{str}} = O(\mathsf{QS}_{\mathsf{weak}}) = O(\mathsf{QS}_{\mathsf{weak}}^{\mathsf{ind}}).$$

Direct inclusions:

$$\begin{array}{l} \bullet \quad \mathsf{QS}_{\mathsf{str}} = O(\mathsf{QS}_{\mathsf{str}}^{\mathsf{ind}}) = O(\mathsf{QS}_{\mathsf{weak}}^{\mathsf{ind}}) = O(\mathsf{RS}). \\ \bullet \quad \mathsf{QS}_{\mathsf{str}} = O(\mathsf{QS}_{\mathsf{weak}}^{\mathsf{ind}}) = O(\mathsf{QS}_{\mathsf{weak}}^{\mathsf{ind}}). \end{array}$$

$$QS_{str} = O(QS_{weak}) = O(QS_{weak}^{sind}).$$

2 Search upper bound: $QS_{weak}^{ind} = O(\sqrt{n})$.

Direct inclusions:

1 QS_{str} =
$$O(QS_{str}^{ind}) = O(QS_{weak}^{ind}) = O(RS)$$
.
2 QS_{str} = $O(QS_{weak}^{ind}) = O(QS_{weak}^{ind})$.

$$QS_{\mathsf{str}} = O(QS_{\mathsf{weak}}) = O(QS_{\mathsf{weak}}^{\mathsf{ind}}).$$

- **Search upper bound:** $QS_{weak}^{ind} = O(\sqrt{n}).$
- **3** Lower bound: $QS_{str} = \Omega(\sqrt{fbs})$.

Direct inclusions:

$$QS_{str} = O(QS_{str}^{ind}) = O(QS_{weak}^{ind}) = O(RS).$$

$$QS_{str} = O(QS_{weak}) = O(QS_{weak}^{ind}).$$

- **2** Search upper bound: $QS_{\text{weak}}^{\text{ind}} = O(\sqrt{n})$.
- **3** Lower bound: $QS_{str} = \Omega(\sqrt{fbs})$.
- 4 Algorithmic relations:
 - QS_{str} = O(Q).
 Desired property from [BK16].
 - **Q** $QS_{str}^{ind} = O(QD^{3/2}).$

- Direct inclusions:
 - $QS_{str} = O(QS_{str}^{ind}) = O(QS_{weak}^{ind}) = O(RS).$
 - $QS_{str} = O(QS_{weak}) = O(QS_{weak}^{ind}).$
- **2** Search upper bound: $QS_{weak}^{ind} = O(\sqrt{n})$.
- **3** Lower bound: $QS_{str} = \Omega(\sqrt{fbs})$.
- Algorithmic relations:
 - $QS_{str} = O(Q)$. Desired property from [BK16].
 - **Q** $QS_{str}^{ind} = O(QD^{3/2}).$
- **5** Separation: $\exists f : QS_{str}(f) = \Omega(fbs(f)).$

Algorithmic relation I: $QS_{str} = O(Q)$

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Algorithmic relation I: $QS_{str} = O(Q)$

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- Algorithm for f: A
 - **1** makes oracle calls $O_x: j \mapsto x_j$,
 - of for any $x \in \{0,1\}^n$, $\mathcal{A}(x) = f(x)$ whp.

$$\begin{vmatrix} j \rangle & - \\ |b \rangle & - \end{vmatrix} O_x \begin{vmatrix} j \rangle \\ - |b \oplus x_j \rangle$$

- **1** Algorithm for f: A
 - makes oracle calls $O_x: j \mapsto x_j$,
 - of for any $x \in \{0,1\}^n$, $\mathcal{A}(x) = f(x)$ whp.
- **2** Strong model: $f_{\mathsf{sab},\mathsf{str}}: (x,y,z_{\mathsf{x},\mathsf{v},*/\dagger}) \mapsto */\dagger$.

$$\begin{array}{c|c}
|j\rangle & \hline \\
|b\rangle & \hline
\end{array}$$

$$\begin{array}{c|c}
O_x & |j\rangle \\
|b \oplus x_j\rangle$$

$$|j\rangle$$
 O_y $|b \oplus y_j\rangle$

$$|j\rangle$$
 $|s\rangle$ $|s\rangle$ $|s\oplus z_j\rangle$

- **1** Algorithm for f: A
 - **1** makes oracle calls $O_x: j \mapsto x_j$,
 - of for any $x \in \{0,1\}^n$, $\mathcal{A}(x) = f(x)$ whp.
- **2** Strong model: $f_{\mathsf{sab},\mathsf{str}}: (x,y,z_{\mathsf{x},\mathsf{v},*/\dagger}) \mapsto */\dagger$.
- **3** Algorithm for $f_{sab,str}$: \mathcal{B} : Replace oracles in \mathcal{A} with:
 - $\mathbf{0}$ Query z_i .
 - ② If $z_j \in \{0,1\}$, return $z_j \ (= x_j = y_j)$.
 - **3** Else if $z_i = *$, return x_i .
 - Else if $z_i = \dagger$, return y_i .

- **1** Algorithm for f: A
 - makes oracle calls $O_x: j \mapsto x_i$,
 - ② for any $x \in \{0,1\}^n$, A(x) = f(x) whp.
- **2** Strong model: $f_{\text{sab,str}}: (x, y, z_{x,v,*/\dagger}) \mapsto */\dagger$.
- **1** Algorithm for $f_{\text{sab.str}}$: \mathcal{B} : Replace oracles in \mathcal{A} with:
 - \bigcirc Query z_i .
 - ② If $z_i \in \{0,1\}$, return z_i (= $x_i = y_i$).
 - **3** Else if $z_i = *$, return x_i .
 - **1** Else if $z_i = \dagger$, return y_i .
- Observation:
 - If z is a *-input, \mathcal{B} feeds x into $\mathcal{A} \Rightarrow \mathcal{B}(\cdot) = \mathcal{A}(x) = 0$ whp.
 - ② If z is a †-input, \mathcal{B} feeds y into $\mathcal{A} \Rightarrow \mathcal{B}(\cdot) = \mathcal{A}(y) = 1$ whp.

- **1** Algorithm for f: A
 - makes oracle calls $O_x: j \mapsto x_i$,
 - ② for any $x \in \{0,1\}^n$, A(x) = f(x) whp.
- **2** Strong model: $f_{\text{sab,str}}: (x, y, z_{x,v,*/\dagger}) \mapsto */\dagger$.
- **1** Algorithm for $f_{\text{sab.str}}$: \mathcal{B} : Replace oracles in \mathcal{A} with:
 - \bigcirc Query z_i .
 - ② If $z_i \in \{0,1\}$, return z_i (= $x_i = y_i$).
 - **3** Else if $z_i = *$, return x_i .
 - **1** Else if $z_i = \dagger$, return y_i .
- Observation:
 - If z is a *-input, \mathcal{B} feeds x into $\mathcal{A} \Rightarrow \mathcal{B}(\cdot) = \mathcal{A}(x) = 0$ whp.
 - ② If z is a †-input, \mathcal{B} feeds y into $\mathcal{A} \Rightarrow \mathcal{B}(\cdot) = \mathcal{A}(y) = 1$ whp.
- \bullet New algorithm computes $f_{\text{sab.str}}$.

$$|j\rangle$$
 — $|j\rangle$

$$|J
angle \ |s
angle \ |s \oplus z_j
angle$$

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- **1** Algorithm for f: A
 - makes oracle calls $O_x: j \mapsto x_i$,
 - ② for any $x \in \{0,1\}^n$, A(x) = f(x) whp.
- **2** Strong model: $f_{\text{sab,str}}: (x, y, z_{x,v,*/\dagger}) \mapsto */\dagger$.
- **1** Algorithm for $f_{\text{sab.str}}$: \mathcal{B} : Replace oracles in \mathcal{A} with:
 - \bigcirc Query z_i .
 - ② If $z_i \in \{0,1\}$, return z_i (= $x_i = y_i$).
 - Solution Else if $z_i = *$, return x_i .
 - **1** Else if $z_i = \dagger$, return y_i .
- Observation:
 - If z is a *-input, \mathcal{B} feeds x into $\mathcal{A} \Rightarrow \mathcal{B}(\cdot) = \mathcal{A}(x) = 0$ whp.
 - ② If z is a †-input, \mathcal{B} feeds y into $\mathcal{A} \Rightarrow \mathcal{B}(\cdot) = \mathcal{A}(y) = 1$ whp.
- \bullet New algorithm computes $f_{\text{sab.str}}$.

Conclusion: $QS_{str} = O(Q)$.

$$|j\rangle$$
 O_y $|b\rangle$ $|b\oplus y_j\rangle$

$$|j\rangle$$
 — $|j\rangle$

$$|J\rangle$$
 O_z $|J\rangle$ $|S \oplus z_j\rangle$

Boolean function:
$$f: \{0,1\}^n \rightarrow \{0,1\}$$
.

Definition: Algorithm \mathcal{A} distinguishes f:

- lacktriangledown makes T queries.
- on input x outputs $|\psi_x^{T+1}\rangle$ s.t. $f(x) \neq f(y) \Rightarrow |\langle \psi_x^{T+1} | \psi_y^{T+1} \rangle| \leq 1/6$.

Quantum distinguishing complexity: min. T.

$$|j\rangle$$
 — O_x — $(-1)^{x_j}$ $|j\rangle$

7/10

Boolean function:
$$f: \{0,1\}^n \rightarrow \{0,1\}$$
.

Definition: Algorithm \mathcal{A} distinguishes f:

- makes T queries.
- on input x outputs $|\psi_x^{T+1}\rangle$ s.t. $f(x) \neq f(y) \Rightarrow |\langle \psi_x^{T+1} | \psi_y^{T+1} \rangle| \leq 1/6$.

Quantum distinguishing complexity: min. T.

Strong model: $f_{\mathsf{sab},\mathsf{str}}^{\mathsf{ind}}(x,y,z) \in J_z$.

$$|j
angle - O_x - (-1)^{x_j} |j
angle$$

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Definition: Algorithm A distinguishes f:

- makes T queries.
- on input x outputs $|\psi_x^{T+1}\rangle$ s.t. $f(x) \neq f(y) \Rightarrow |\langle \psi_x^{T+1} | \psi_y^{T+1} \rangle| \leq 1/6$.

Quantum distinguishing complexity: min. T.

Strong model: $f_{\mathsf{sab},\mathsf{str}}^{\mathsf{ind}}(x,y,z) \in J_z$.

① Let $|\psi_x^t\rangle$ be the state before the t^{th} query.

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Definition: Algorithm \mathcal{A} distinguishes f:

- makes T queries.
- on input x outputs $|\psi_x^{T+1}\rangle$ s.t. $f(x) \neq f(y) \Rightarrow |\langle \psi_x^{T+1} | \psi_y^{T+1} \rangle| \leq 1/6$.

Quantum distinguishing complexity: min. T.

Strong model: $f_{\text{sab,str}}^{\text{ind}}(x, y, z) \in J_z$.

- **①** Let $|\psi_{x}^{t}\rangle$ be the state before the t^{th} query.
- 2 Let $\Pi_{x \neq y} = \sum_{j: x_i \neq y_i} |j\rangle\langle j| \otimes I$.

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Definition: Algorithm \mathcal{A} distinguishes f:

- makes T queries.
- on input x outputs $|\psi_x^{T+1}\rangle$ s.t. $f(x) \neq f(y) \Rightarrow |\langle \psi_x^{T+1} | \psi_y^{T+1} \rangle| \leq 1/6$.

Quantum distinguishing complexity: min. T.

Strong model: $f_{\text{sab,str}}^{\text{ind}}(x, y, z) \in J_z$.

- **1** Let $|\psi_{\mathsf{x}}^t\rangle$ be the state before the t^{th} query.
- 2 Let $\Pi_{x\neq y} = \sum_{i:x_i\neq y_i} |j\rangle\langle j| \otimes I$.
- **3** Let $p_{x,t} := \| \Pi_{x \neq y} | \psi_x^t \rangle \|^2$.

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Definition: Algorithm A distinguishes f:

- makes T queries.
- on input x outputs $|\psi_x^{T+1}\rangle$ s.t. $f(x) \neq f(y) \Rightarrow |\langle \psi_x^{T+1} | \psi_y^{T+1} \rangle| \leq 1/6$.

Quantum distinguishing complexity: min. T.

Strong model: $f_{\text{sab,str}}^{\text{ind}}(x, y, z) \in J_z$.

- Let $|\psi_{\mathsf{x}}^t\rangle$ be the state before the t^{th} query.
- 2 Let $\Pi_{x\neq y} = \sum_{i:x_i\neq y_i} |j\rangle\langle j| \otimes I$.
- **3** Let $p_{x,t} := \|\Pi_{x \neq y} |\psi_x^t\rangle\|^2$.

Intuition: if we run A on x and stop just before the t^{th} query, measuring gives $j \in J_z$ w.p. $p_{x,t}$.

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Definition: Algorithm \mathcal{A} distinguishes f:

- makes T queries.
- 2 on input x outputs $|\psi_{x}^{T+1}\rangle$ s.t. $f(x) \neq f(y) \Rightarrow |\langle \psi_x^{T+1} | \psi_y^{T+1} \rangle| \leq 1/6.$

Quantum distinguishing complexity: min. T.

Strong model: $f_{\text{sab str}}^{\text{ind}}(x, y, z) \in J_z$.

- Let $|\psi_{\mathbf{v}}^t\rangle$ be the state before the t^{th} query. Lemma: $\sum_{t=1}^T p_{\mathbf{x},t} + p_{\mathbf{v},t} = \Omega(1)$.
- 2 Let $\Pi_{x \neq y} = \sum_{i: x_i \neq y_i} |j\rangle\langle j| \otimes I$.
- **3** Let $p_{x,t} := \| \Pi_{x \neq y} | \psi_y^t \rangle \|^2$.

Intuition: if we run A on x and stop just before the t^{th} query, measuring gives $i \in J_z$ w.p. $p_{x,t}$.

$$\ket{j}-O_x-(-1)^{x_j}\ket{j}$$
 $\ket{\psi_x^1}$
 $\ket{\psi_x^2}$
 $\ket{U_0}$
 $\ket{U_0}$
 $\ket{U_1}$
 $\ket{U_2}$
 $\ket{U_2}$
 $\ket{\psi_x^{T+1}}$

Lemma:
$$\sum_{t=1}^{T} p_{\mathsf{x},t} + p_{\mathsf{y},t} = \Omega(1)$$
.

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Definition: Algorithm \mathcal{A} distinguishes f:

- makes T queries.
- on input x outputs $|\psi_x^{T+1}\rangle$ s.t. $f(x) \neq f(y) \Rightarrow |\langle \psi_x^{T+1} | \psi_y^{T+1} \rangle| \leq 1/6$.

Quantum distinguishing complexity: min. T. Strong model: $f_{\mathsf{sah}\,\mathsf{str}}^{\mathsf{ind}}(x,y,z) \in J_z$.

- Let $|\psi_{\star}^{t}\rangle$ be the state before the t^{th} query.
 - 2 Let $\Pi_{x\neq y} = \sum_{j:x_i\neq y_i} |j\rangle\langle j| \otimes I$.

Intuition: if we run A on x and stop just before the t^{th} query, measuring gives $j \in J_z$ w.p. $p_{x,t}$.

$$|j\rangle$$
 O_x $(-1)^{x_j}$ $|j\rangle$

$$|\psi_x^1\rangle$$

$$|\psi_x^2\rangle$$

$$|0\rangle$$

$$U_0$$

$$|\psi_x^1\rangle$$

$$U_1$$

$$|\psi_x^2\rangle$$

$$|\psi_x^{T+1}\rangle$$

Lemma:
$$\sum_{t=1}^{T} p_{x,t} + p_{y,t} = \Omega(1).$$
Proof:
$$\left| \left\langle \psi_x^t \middle| \psi_y^t \right\rangle \middle| - \left| \left\langle \psi_x^{t+1} \middle| \psi_y^{t+1} \right\rangle \middle| \right.$$

$$\leq \left| \left\langle \psi_x^t \middle| (I - O_x^\dagger O_y) \middle| \psi_y^t \right\rangle \middle| \text{ (triangle ineq.)}$$

$$= 2 \left| \left\langle \psi_x^t \middle| \Pi_{x \neq y} \middle| \psi_y^t \right\rangle \middle|$$

$$\leq 2 \left\| \Pi_{x \neq y} \middle| \psi_x^t \right\rangle \left\| \cdot \left\| \Pi_{x \neq y} \middle| \psi_y^t \right\rangle \right\|$$

$$\leq p_{x,t} + p_{y,t}.$$
(AM-GM)

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$. Lemma: $\sum_{t=1}^T p_{x,t} + p_{y,t} = \Omega(1)$.

August 27th, 2024

Boolean function: $f: \{0,1\}^n \to \{0,1\}$. Lemma: $\sum_{t=1}^T p_{x,t} + p_{y,t} = \Omega(1)$. Algorithm: \mathcal{B} :

- Select $t \in \{1, \ldots, T\}$ u.a.r.
- ② Select $x' \in \{x, y\}$ u.a.r.
- **3** Run \mathcal{A} on x' up to the t^{th} query.
- **4** Measure the index register $\mapsto j$.
- **o** Check if $z_j \in \{*, \dagger\}$.

Boolean function: $f: \{0,1\}^n \to \{0,1\}$.

Lemma: $\sum_{t=1}^{T} p_{x,t} + p_{y,t} = \Omega(1)$.

Algorithm: \mathcal{B} :

- Select $t \in \{1, \ldots, T\}$ u.a.r.
- 2 Select $x' \in \{x, y\}$ u.a.r.
- **3** Run \mathcal{A} on x' up to the t^{th} query.
- **9** Measure the index register $\mapsto j$.
- **5** Check if $z_j \in \{*, \dagger\}$.

Cost: O(T) queries.

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Lemma: $\sum_{t=1}^{T} p_{x,t} + p_{y,t} = \Omega(1)$.

Algorithm: \mathcal{B} :

- Select $t \in \{1, \ldots, T\}$ u.a.r.
- ② Select $x' \in \{x, y\}$ u.a.r.
- **3** Run \mathcal{A} on x' up to the t^{th} query.
- **9** Measure the index register $\mapsto j$.
- **6** Check if $z_j \in \{*, \dagger\}$.

Cost: O(T) queries.

Success prob.: $\frac{1}{2T} \sum_{t=1}^{T} p_{x,t} + p_{y,t} = \Omega(\frac{1}{T})$.

Boolean function: $f: \{0,1\}^n \to \{0,1\}$. Lemma: $\sum_{t=1}^T p_{x,t} + p_{y,t} = \Omega(1)$. Algorithm: \mathcal{B} :

- Algoritiini: B
- Select $t \in \{1, \ldots, T\}$ u.a.r.
- ② Select $x' \in \{x, y\}$ u.a.r.
- **3** Run \mathcal{A} on x' up to the t^{th} query.
- **9** Measure the index register $\mapsto j$.
- **6** Check if $z_j \in \{*, \dagger\}$.

Cost: O(T) queries.

Success prob.: $\frac{1}{2T} \sum_{t=1}^{T} p_{x,t} + p_{y,t} = \Omega(\frac{1}{T})$.

Amplitude amplification: $O(T^{3/2})$ queries.

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$. Lemma: $\sum_{t=1}^T p_{x,t} + p_{y,t} = \Omega(1)$.

Algorithm: \mathcal{B} :

- Select $t \in \{1, \ldots, T\}$ u.a.r.
- 2 Select $x' \in \{x, y\}$ u.a.r.
- **3** Run \mathcal{A} on x' up to the t^{th} query.
- **9** Measure the index register $\mapsto j$.
- **6** Check if $z_j \in \{*, \dagger\}$.

Cost: O(T) queries.

Success prob.: $\frac{1}{2T}\sum_{t=1}^{T}p_{x,t}+p_{y,t}=\Omega(\frac{1}{T})$.

Amplitude amplification: $O(T^{3/2})$ queries.

Conclusion: $QS_{str}^{ind} = O(QD^{3/2})$.

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$. Lemma: $\sum_{t=1}^{T} p_{x,t} + p_{y,t} = \Omega(1)$.

Algorithm: \mathcal{B} :

• Select $t \in \{1, \ldots, T\}$ u.a.r.

② Select $x' \in \{x, y\}$ u.a.r.

3 Run \mathcal{A} on x' up to the t^{th} query.

9 Measure the index register $\mapsto j$.

6 Check if $z_j \in \{*, \dagger\}$.

Cost: O(T) queries.

Success prob.: $\frac{1}{2T}\sum_{t=1}^{T} p_{x,t} + p_{y,t} = \Omega(\frac{1}{T})$.

Amplitude amplification: $O(T^{3/2})$ queries.

Conclusion: $QS_{str}^{ind} = O(QD^{3/2})$.

Separation: $\exists f : \mathsf{QS}_{\mathsf{str}}(f) = \Omega(\mathsf{fbs}(f))$

- Indexing function:

 - $f(\ell,d)=d_{\ell}.$

- Indexing function:

 - $f(\ell,d)=d_{\ell}.$
- Proof sketch:
 - $\begin{array}{l}
 \mathbf{0} \quad n \leq \mathsf{s}(f) \leq \mathsf{fbs}(f) \leq \mathsf{D}(f) \leq n+1. \\
 \Rightarrow \mathsf{fbs}(f) = \Theta(n).
 \end{array}$

- Indexing function:

 - $f(\ell,d) = d_{\ell}.$
- Proof sketch:
 - $\mathbf{0} \quad n \leq \mathsf{s}(f) \leq \mathsf{fbs}(f) \leq \mathsf{D}(f) \leq n+1. \\
 \Rightarrow \mathsf{fbs}(f) = \Theta(n).$
 - **2** Lemma: For $R \subseteq X \times Y$, with

 - $m_X = \max_{x \in X} |\{y : (x, y) \in R\}|$
 - $m_Y = \max_{y \in Y} |\{x : (x, y) \in R\}|$
 - $\begin{aligned}
 &\emptyset \quad \ell_{\max} = \max_{x \in X, y \in Y, j \in [n+2^n]} \\
 &|\{y' : (x, y') \in R, x_j \neq y_j\}| \\
 &\cdot |\{x' : (x', y) \in R, x_i \neq y_i\}|
 \end{aligned}$
 - $\Rightarrow \mathsf{QS}_{\mathsf{str}} = \Omega\left(\sqrt{rac{m_{\mathsf{X}}m_{\mathsf{Y}}}{\ell_{\mathsf{max}}}}\right)$. [Amb02]

- Indexing function:

 - $f(\ell,d) = d_{\ell}.$
- Proof sketch:
 - $\mathbf{0} \quad n \leq \mathsf{s}(f) \leq \mathsf{fbs}(f) \leq \mathsf{D}(f) \leq n+1. \\
 \Rightarrow \mathsf{fbs}(f) = \Theta(n).$
 - 2 Lemma: For $R \subseteq X \times Y$, with

 - $m_X = \max_{x \in X} |\{y : (x, y) \in R\}|$
 - $m_Y = \max_{y \in Y} |\{x : (x, y) \in R\}|$
 - $\begin{array}{l}
 \emptyset \quad \ell_{\max} = \max_{x \in X, y \in Y, j \in [n+2^n]} \\
 |\{y' : (x, y') \in R, x_j \neq y_j\}| \\
 \cdot |\{x' : (x', y) \in R, x_i \neq y_i\}|
 \end{array}$

$$\Rightarrow \mathsf{QS}_{\mathsf{str}} = \Omega\left(\sqrt{rac{m_{\mathsf{X}}m_{\mathsf{Y}}}{\ell_{\mathsf{max}}}}\right)$$
. [Amb02]

- Indexing function:

 - **2** $f(\ell, d) = d_{\ell}$.
- Proof sketch:
 - $\mathbf{0} \quad n \leq \mathsf{s}(f) \leq \mathsf{fbs}(f) \leq \mathsf{D}(f) \leq n+1. \\
 \Rightarrow \mathsf{fbs}(f) = \Theta(n).$
 - **2** Lemma: For $R \subseteq X \times Y$, with

 - $m_X = \max_{x \in X} |\{y : (x, y) \in R\}| = \binom{n}{2}$
 - $m_Y = \max_{y \in Y} |\{x : (x, y) \in R\}| = \binom{n}{2}$
 - $\ell_{\max} = \max_{x \in X, y \in Y, j \in [n+2^n]} \\ |\{y' : (x, y') \in R, x_j \neq y_j\}| \\ \cdot |\{x' : (x', y) \in R, x_j \neq y_j\}| = \max\{\binom{n}{2}, (n-1)^2\}$

$$\Rightarrow \mathsf{QS}_{\mathsf{str}} = \Omega\left(\sqrt{rac{m_X m_Y}{\ell_{\mathsf{max}}}}\right)$$
. [Amb02]

- Indexing function:

 - $f(\ell,d) = d_{\ell}.$
- Proof sketch:
 - $\mathbf{0} \quad n \leq \mathsf{s}(f) \leq \mathsf{fbs}(f) \leq \mathsf{D}(f) \leq n+1. \\
 \Rightarrow \mathsf{fbs}(f) = \Theta(n).$
 - 2 Lemma: For $R \subseteq X \times Y$, with

 - $m_X = \max_{x \in X} |\{y : (x, y) \in R\}| = \binom{n}{2}$
 - $m_Y = \max_{y \in Y} |\{x : (x, y) \in R\}| = \binom{n}{2}$
 - $\begin{array}{l}
 \bullet \quad \ell_{\max} = \max_{x \in X, y \in Y, j \in [n+2^n]} \\
 |\{y' : (x, y') \in R, x_j \neq y_j\}| \\
 \cdot |\{x' : (x', y) \in R, x_j \neq y_j\}| = \max\{\binom{n}{2}, (n-1)^2\}
 \end{array}$
 - $\Rightarrow \mathsf{QS}_{\mathsf{str}} = \Omega\left(\sqrt{\frac{m_X m_Y}{\ell_{\mathsf{max}}}}\right)$. [Amb02]
 - $\Rightarrow QS_{str} = \Omega(n) = \Omega(fbs(f)).$

$$X \subseteq f_{\mathsf{sab},\mathsf{str}}^{-1}(*) \qquad Y \subseteq f_{\mathsf{sab},\mathsf{str}}^{-1}(\dagger)$$

$$100\ 000*0000$$
 $100\ 0000†0000$
 $101\ 0000*000$ $101\ 0000†000$
 \vdots $|\ell \oplus \ell'| = 2$ \vdots

Definitions:

Definitions:

Main results:

- $QS_{\mathsf{str}}^{\mathsf{ind}} = O(\mathsf{QD}^{3/2}).$

Definitions:

Main results:

- **2** $QS_{str}^{ind} = O(QD^{3/2}).$

Definitions:

Main results:

- $QS_{\rm str}^{\rm ind} = O(QD^{3/2}).$
- $\exists f : \mathsf{QS}_{\mathsf{str}}(f) = \Omega(\mathsf{fbs}(f)).$

Open questions:

- $\textbf{ 9 Separations between } QS_{str}, \ QS_{str}^{ind}, \ QS_{weak}, \ QS_{weak}^{ind}?$
- Quantum upper bounds on QS_{weak} or QS^{ind}_{weak}?
- 3 Composition properties?

Definitions:

QS_{str}, QS_{ind}, QS_{weak}, QS_{weak}.

Main results:

- $QS_{\rm str}^{\rm ind} = O(QD^{3/2}).$
- $\exists f : \mathsf{QS}_{\mathsf{str}}(f) = \Omega(\mathsf{fbs}(f)).$

Open questions:

- $\textbf{ 0} \textbf{ Separations between } QS_{str}, \ QS_{str}^{ind}, \ QS_{weak}, \ QS_{weak}^{ind}?$
- Quantum upper bounds on QS_{weak} or QS^{ind}_{weak}?
- Omposition properties?

Thanks for your attention! ajcornelissen@outlook.com

