Лекция 5

Базовые понятия в теории систем

Система – это множество элементов, находящихся в отношениях и связях между собой.

Элемент — часть системы, представление о которой нецелесообразно подвергать дальнейшему членению.

Сложная система — это система, характеризующаяся большим числом элементов (2 или более) и, что наиболее важно, большим числом взаимосвязей элементов. Сложность системы определяется также видом взаимосвязей элементов, свойствами целенаправленности, целостности, членимости, *иерархичности*, многоаспекстности.

Подсистема — часть системы (подмножество элементов и их взаимосвязи), которая имеет свойства системы.

Надсистема — система, по отношению к которой рассматриваемая система является подсистемой.

Структура – отображение совокупности элементов системы и их взаимосвязи. Понятие структуры отличается от понятия системы также тем, что при описании структуры принимают во внимание лишь типы элементов и их связи без конкретизации значений их параметров.

Параметр – величина, выражающая свойства или системы, или ее части, или влияющие на систему среды.

Характеристики сложной системы

1. Целенаправленность — свойство искусственной системы, выражающее назначение системы (необходима для оценки эффективности вариантов системы).

- 2. Целостность свойство системы, характеризующее взаимосвязанность элементов и наличие зависимости выходных параметров от параметров элементов. При этом большинство выходных параметров не являются простым повторением или суммой параметров элементов.
- 3. Иерархичность свойство сложной системы, выражающее возможность и целесообразность ее иерархичного описания, то есть представление в виде нескольких уровней, между компонентами которых имеются отношения "целые часть".

Задачи сложной системы

- 1. Modeling создание моделей сложных систем.
- 2. Simulation анализ свойств систем на основе исследования их моделей.

Основы теории моделирования

Модель объекта можно представить как совокупность множества величин, описывающих процесс функционирования реальной системы и образующие в общем случае следующие подмножества:

- ullet совокупность входных воздействий $(x_i \in X, i = \overline{1, n_X})$
- ullet совокупность воздействий внешней среды $(v_i \in V, i = \overline{1, n_V})$
- совокупность собственных (внутренних параметров системы) $(h_i \in H, i = \overline{1, n_H})$
- ullet совокупность выходных характеристик системы $(y_i \in X, i = \overline{1, n_Y})$

В общем случае x_i , v_i , h_i , y_i являются элементами непересекающихся подмножеств и содержат как недетерминированные, так и стохастические составляющие. При моделировании системы S входные воздействия, воздействия внешней среды и внутренние параметры являются независимыми — экзогенными, которые в общем случае имеют вид:

$$\overrightarrow{x(t)} = (x_1(t), x_2(t), \ldots, x_{n_x}(t)) \ \overrightarrow{v(t)} = (v_1(t), v_2(t), \ldots, v_{n_v}(t)) \ \overrightarrow{h(t)} = (h_1(t), h_2(t), \ldots, h_{n_h}(t))$$

А выходные характеристики системы являются зависимыми, то есть эндогенными элементами:

$$\overrightarrow{y(t)} = (y_1(t), y_2(t), \dots, y_{n_y}(t))$$

Процесс функционирования системы описывается во времени некоторым оператором, который в общем случае преобразует независимые переменные в зависимые:

$$\overrightarrow{y(t)} = F_S(\overrightarrow{x}, \overrightarrow{v}, \overrightarrow{h}, \ t)$$

Эта зависимость является **законом функционирования сложной системы S**. В общем виде он может быть задан в виде функции, функционала, логических условий в алгоритмическом или табличном виде.

Под алгоритмом функционирования сложной системы подразумевается метод получения выходных характеристик с учетом входных воздействий x(t), воздействий внешней среды v(t) и внутренних параметров системы h(t).

Отношение может быть получено и через понятие состояния системы (через свойства системы конкретной модели). Эти же состояния характеризуются вектором состояний:

$$\overrightarrow{z} = (z_1, z_2, \dots, z_k), \ k = \overline{1, n_Z}$$

Если рассматривать процесс функционирования системы S как последовательную смену состояний, то они могут быть интерпретированы как координаты точки в k-мерном фазовом пространстве, причем каждой реализации процесса будет соответствовать некоторая фазовая траектория. Совокупность всех

возможных состояний системы называется пространством состояний объекта моделирования.

Состояние системы (момент времени от t_0 до t_k) полностью определяется начальными условиями z^0 :

$$\overset{
ightarrow}{z^0}=(z^0_1,z^0_2,\ldots,z^0_k),$$

где z_1^0 — свойство системы в момент времени $t_0.$

Состояние системы S в момент времени t_0 определяется входными воздействиями, внутренними параметрами и воздействиями внешней среды, которые имели место за промежуток времени $t-t_0$ с помощью векторных уравнений:

$$\overrightarrow{Z} = \Phi(\overrightarrow{z^0}, \overrightarrow{x}, \overrightarrow{v}, \overrightarrow{h}, t) \ \overrightarrow{y(t)} = F(\overrightarrow{z}, t) \ \overrightarrow{y(t)} = F(\Phi(\overrightarrow{z^0}, \overrightarrow{x}, \overrightarrow{v}, \overrightarrow{h}, t))$$

В общем случае время модели может быть непрерывным на интервале, а может быть дискретным. Отсюда появляется понятие интервала числа интервалов (это тоже параметр системы).

Следовательно, под **математической моделью** реальной сложной системы принимают конечное множество элементов вместе с математическими связями $\stackrel{\longrightarrow}{\longrightarrow}$ между ними и характеристиками y(t). Это математическая схема общего вида.

Типовая математическая схема

В практике моделирования на первоначальных этапах формализации объектов используют так называемые **типовые математические схемы**, к которым относят такие хорошо проработанные (разработанные) математические объекты, как дифференциальные алгебраические уравнения, конечные вероятностные автоматы и т.д.

Процесс функционирования системы	Типовая математическая схема	Обозначение
Непрерывно-детерминированный подход	Стандартные ДУ	D-схема

Процесс функционирования системы	Типовая математическая схема	Обозначение
Дискретно-детерминированный подход	Конечные автоматы	F-схема
Дискретно-стохастический подход	Вероятностные автоматы	Р-схема
Непрерывно-стохастический подход	Система массового обслуживания	Q-схема
Обобщенные (универсальный)	Агрегативная система	А-схема