Dimensionality Reduction

Lecture 12

The Curse of Dimensionality

Challenge 1

In high dimensions, data become sparse

(increasing the risk of overfitting)

Random data points in a unit hypercube...

- Data point is a distance < 0.01 units from the edge of a unit hypercube
- All other data

Fraction of edge data

0.016

0.030

0.064

In high dimensions...

...nearly all of the high dimensional space is far away from the center

Note: figures constructed using 1,000 random points

In high dimensions...

...data become sparse

Note: figures constructed using 1,000 random points

Challenge 2

Much more data are needed for sampling higher dimensional spaces

Sample a unit hypercube on a grid spaced at intervals of 0.5

...it takes more data to learn in high dimensional spaces

Kyle Bradbury Dimensionality Reduction Lecture 12

Dimensionality Reduction

Benefits:

Simplified computation
Reduced redundancy of features
Improved numerical stability due to removed correlations

Popular approach:

Principal Components Analysis (PCA)

PCA

Before you begin: Normalize the data!

For each feature, subtract the mean and divide by the standard deviation

$$\mathbf{X} = \begin{bmatrix} x_{11} & \cdots & x_{1D} \\ \vdots & \ddots & \vdots \\ x_{N1} & \cdots & x_{ND} \end{bmatrix} \text{ rows = observations}$$

We normalize each of the columns

columns = features

Principal components analysis

Karhunen-Loève Transform
Proper orthogonal decomposition
Hotelling transform

Transform the data from a high dimensional space to a lower dimensional subspace, while minimizing the projection error

linear
transformation
matrix
(this is what we want to find through PCA)

sample of data in original D-dimensional space (this is one of N observations)

Transformed data in M-dimensional (lower dimensional) subspace

Principal components analysis

$$\begin{bmatrix} u_{11} & \cdots & u_{1D} \\ \vdots & \ddots & \vdots \\ u_{M1} & \cdots & u_{MD} \end{bmatrix} = \begin{bmatrix} -\mathbf{u}_1^T - \\ \vdots \\ -\mathbf{u}_M^T - \end{bmatrix}$$

linear transformation represents a matrix

Each \mathbf{u}_i unit vector The i^{th} principal component:

$$z_i = \mathbf{u}_i^T \mathbf{x}$$

† the scalar and the scalar are unit vector

Since only direction matters, we assume the \mathbf{u}_i are unit vectors

$$\mathbf{u}_i^T \mathbf{u}_i = 1$$

Principal Components

Maximum variance formulation

$$\mathbf{x}_i = \begin{bmatrix} x_{i1} \\ x_{i2} \end{bmatrix}$$

Reprojected Data onto Principal Components

Any point x_i can be represented as a combination of the principle components

$$\mathbf{x}_i = \sum_{i=1}^D \mathbf{z}_{ij} \mathbf{u}_j$$

The \mathbf{u}_j 's are an orthogonal basis for the space \mathbb{R}^D

Approximating data with principal components

PCA

We want to maximize the variance of the projected data

Let's start by finding the unit vector in the direction of greatest variation in the dataset

Here the magnitude is unimportant, but the direction matters

We seek to project each point x_i onto a unit PC vector. $z_i = u_1^T x_i$

PCA: Compute the variance of the transformed data

Mean of the data:

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \qquad \mathbf{x}_{i} [D]$$

The projected mean of the data:

$$\bar{z} = \mathbf{u}_1^T \bar{\mathbf{x}}$$

We can compute the sample variance as:
$$\sigma_z^2 = \frac{1}{N} \sum_{i=1}^{N} (z_i - \bar{z})^2$$

The magnitude z_i of our data \mathbf{x}_i projected onto the unit vector $\mathbf{u_1}$ is:

$$z_i = \mathbf{u}_1^T \mathbf{x}_i$$

$$\sigma_z^2 = \frac{1}{N} \sum_{i=1}^N (\mathbf{u}_1^T \mathbf{x}_i - \mathbf{u}_1^T \overline{\mathbf{x}})^2$$

PCA: Compute the variance of the transformed data

We can compute the sample variance as:

$$\sigma_z^2 = \frac{1}{N} \sum_{i=1}^N (\mathbf{u}_1^T \mathbf{x}_i - \mathbf{u}_1^T \overline{\mathbf{x}})^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} \mathbf{u}_{1}^{T} (\mathbf{x}_{i} - \overline{\mathbf{x}}) (\mathbf{x}_{i} - \overline{\mathbf{x}})^{T} \mathbf{u}_{1}$$

Define:

$$\mathbf{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^T$$

Covariance matrix of our data

$$=\mathbf{u}_1^T \mathbf{\Sigma} \mathbf{u}_1$$
 Variance of the projected data

Covariance matrix

$$\mathbf{X}_{i} = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{iD} \end{bmatrix}$$
Vector of bservation i

$$\mathbf{X}_{ij}$$
Observation Predictor index index index
$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1D} \\ x_{21} & x_{22} & \cdots & x_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix}$$

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_{i} - \overline{\mathbf{x}}) (\mathbf{x}_{i} - \overline{\mathbf{x}})^{T} \rightarrow [D \times D]$$

$$[D \times 1][1 \times D]$$

$$[D \times 1][1 \times D]$$

$$\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} & \cdots & \boldsymbol{\Sigma}_{1D} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} & \cdots & \boldsymbol{\Sigma}_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{\Sigma}_{D1} & \boldsymbol{\Sigma}_{D2} & \cdots & \boldsymbol{\Sigma}_{DD} \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} & \cdots & \Sigma_{1D} \\ \Sigma_{21} & \Sigma_{22} & \cdots & \Sigma_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma_{D1} & \Sigma_{D2} & \cdots & \Sigma_{DD} \end{bmatrix} \qquad \Sigma_{jk} = \frac{1}{N} \sum_{i=1}^{N} (x_{ij} - \bar{x}_j)(x_{ik} - \bar{x}_k)$$

$$= \operatorname{cov}(X_j, X_k)$$

$$= E[(X_j - \mu_j)(X_k - \mu_k)]$$

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \Sigma_{12} & \cdots & \Sigma_{1D} \\ \Sigma_{21} & \sigma_2^2 & \cdots & \Sigma_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma_{D1} & \Sigma_{D2} & \cdots & \sigma_D^2 \end{bmatrix} \qquad \sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{ij} - \bar{x}_j)^2 \\ = E[(X_j - \mu_j)^2]$$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{ij} - \bar{x}_j)^2$$
$$= E[(X_i - \mu_i)^2]$$

Mean of each predictor If $\mu_i = 0$ for all j

This will be the case IF the data are standardized

$$\Sigma_{jk} = \frac{1}{N} \sum_{i=1}^{N} x_{ij} x_{ik}$$
$$= \frac{1}{N} \mathbf{x}_{j}^{T} \mathbf{x}_{k}$$
$$= E[X_{j} X_{k}]$$

$$\mathbf{\Sigma} = \frac{1}{N} \mathbf{X}^{\mathrm{T}} \mathbf{X}$$

Covariance matrix properties

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & \boldsymbol{\Sigma}_{12} & \cdots & \boldsymbol{\Sigma}_{1D} \\ \boldsymbol{\Sigma}_{21} & \sigma_2^2 & \cdots & \boldsymbol{\Sigma}_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{\Sigma}_{D1} & \boldsymbol{\Sigma}_{D2} & \cdots & \sigma_D^2 \end{bmatrix}$$

Positive semidefinite ($\mathbf{v}^T \mathbf{\Sigma} \mathbf{v} \geq 0$ for all \mathbf{v}) and symmetric ($\mathbf{\Sigma} = \mathbf{\Sigma}^T$)

All eigenvalues are positive

Eigenvectors are orthogonal

If the features (predictors), $x_1, x_2, ..., x_D$ are independent, Σ is diagonal because $cov(X_j, X_k) = 0$ if $j \neq k$

PCA: Maximize the variance

We want to **maximize variance**
$$\sigma_z^2 = \mathbf{u}_1^T \mathbf{\Sigma} \mathbf{u}_1$$
 subject to $\mathbf{u}_1^T \mathbf{u}_1 = 1$ (unit vectors)

We can use Lagrange multipliers:

Maximize f(x) $f(\mathbf{x}, \mathbf{u}_i) = \mathbf{u}_1^T \mathbf{\Sigma} \mathbf{u}_1$ subject to the constraint g(x) $g(\mathbf{x}, \mathbf{u}_i) = \mathbf{u}_1^T \mathbf{u}_1 - 1 = 0$

For our case: $L(\mathbf{x}, \mathbf{u_1}, \lambda) = \mathbf{u}_1^T \mathbf{\Sigma} \mathbf{u}_1 - \lambda (\mathbf{u}_1^T \mathbf{u}_1 - 1)$

We maximize this: $L(x,\lambda) = f(x) - \lambda g(x)$

We take the derivative and set it equal to zero

PCA

$$L(\mathbf{x}, \mathbf{u_1}, \lambda) = \mathbf{u}_1^T \mathbf{\Sigma} \mathbf{u}_1 - \lambda (\mathbf{u}_1^T \mathbf{u}_1 - 1)$$

We take the derivative with respect to \mathbf{u}_1 and set it equal to zero

$$\frac{\partial L}{\partial \mathbf{u}_1} = \frac{\partial}{\partial \mathbf{u}_1} \mathbf{u}_1^T \mathbf{\Sigma} \mathbf{u}_1 - \frac{\partial}{\partial \mathbf{u}_1} \lambda (\mathbf{u}_1^T \mathbf{u}_1 - 1)$$

$$=2\Sigma \mathbf{u}_1-2\lambda \mathbf{u}_1=0$$
 (since Σ is symmetric)

$$\Sigma \mathbf{u}_1 = \lambda \mathbf{u}_1$$
 \rightarrow \mathbf{u}_1 is an eigenvector of the covariance matrix Σ , and λ is an eigenvalue

How do we know which eigenvector to use as the first principal component?

Eigenanalysis and PCA

Eigenvector Demo:

http://setosa.io/ev/eigenvectors-and-eigenvalues/

PCA Demo:

http://setosa.io/ev/principal-component-analysis/

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \mathbf{A}\mathbf{v} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \mathbf{A}\mathbf{u} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\mathbf{u_1} = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix} \qquad \lambda_1 = 3$$

$$\mathbf{A}\mathbf{u}_{1} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}$$
$$= \begin{bmatrix} 2.12 \\ 2.12 \end{bmatrix}$$
$$= \lambda_{1}\mathbf{u}_{1} = 3 \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}$$

PCA

Since we want to maximize the variance in the projected features:

We want to maximize:

$$\sigma_z^2 = \mathbf{u}_1^T \mathbf{\Sigma} \mathbf{u}_1$$

To do that this must be true:

$$\Sigma \mathbf{u}_1 = \lambda \mathbf{u}_1$$

(shown on last slide)

So we can write:

$$\sigma_z^2 = \mathbf{u}_1^T \lambda \mathbf{u}_1 = \lambda \mathbf{u}_1^T \mathbf{u}_1 = \lambda$$

Variance corresponding to our first principle component

Therefore we choose as our first principle component the eigenvector that corresponds to the **largest eigenvalue**

The first PC will account for the most variance, the second PC to the second most, etc.

PCA: Variance explained

The fraction of variance explained
$$= rac{\sum_{i=1}^{M} \lambda_i}{\sum_{i=1}^{D} \lambda_i}$$

M =dimensionality of the subspace

D = dimensionality of the original data space

The more principle components included, the more of the variance will be represented in the projected data

Eigenvalues by principal component i

Example: translated digits

- **Types of translation**: 1. Horizontal translation
 - 2. Vertical translation
 - 3. Rotation

Original digits: 64 x 64 pixels

New size: 100 x 100 pixels

Example: translated digits

Examples of first four principle component eigenvectors and eigenvalues:

Mean

$$\lambda_1 = 3.4 \cdot 10^5$$

$$\lambda_1 = 3.4 \cdot 10^5$$
 $\lambda_2 = 2.8 \cdot 10^5$ $\lambda_3 = 2.4 \cdot 10^5$ $\lambda_4 = 1.6 \cdot 10^5$

$$\lambda_3 = 2.4 \cdot 10^5$$

$$\lambda_4 = 1.6 \cdot 10^5$$

Example: translated digits

Reconstructed examples using different numbers of principal components:

Original

$$M = 1$$

$$M = 10$$

$$M = 50$$

$$M = 250$$

Relationship between the objective for least squares and PCA

Extracting principal components

- **Goal**: reduce the dimensionality of our data from D to M, where M < D
- Normalize each feature to mean zero and a standard deviation of 1
- Determine the principal components

Calculate the eigenvectors and eigenvalues of the data covariance matrix, Σ

Eigenvectors in descending order of their eigenvalues are the principal components

- Project the data features on the principal components
- Keep the top *M* principal components to reduce into a lower dimension

size

example

columns = features
$$(D)$$

 $x_{11} \cdots x_{1D}$ row

$$\mathbf{X} = \begin{bmatrix} x_{11} & \cdots & x_{1D} \\ \vdots & \ddots & \vdots \\ x_{N1} & \cdots & x_{ND} \end{bmatrix} \begin{array}{l} \text{rows} = \\ \text{observations} \\ (N) \end{array}$$

Each observation as a vector:
$$\mathbf{X}_i$$
 $i = 1, ..., D$

eigenvectors /

components

principal

 $[D \times 1]$

 $[D \times 1]$

[scalar]

[scalar]

 $[D \times M]$

 $[N \times D]$

Each pixel represents

a feature

eigenvalues (how much of the variance is explained)

$$i=1,\dots,D$$

$$z_{ij} = \mathbf{u}_j^T \mathbf{x}_i$$
 $j = 1, \dots, D$
 $i = 1, \dots, N$

$$\mathbf{A} = [\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_M]$$

$$\mathbf{z}_i = \mathbf{A}^T \mathbf{x}_i \qquad i = 1, ..., N$$

 $\mathbf{u}_1 \cdot \mathbf{x}_1 = z_{11}$

 $[D \times 1]$ $[D \times 1]$ [scalar]

Images from Bishop, Pattern Recognition, 2006

Reconstructing our data from principal components

Sum the product of our projected data, \mathbf{z}_i , and our principle components

$$\hat{\mathbf{x}}_i = \sum_{j=1}^M z_{ij} \mathbf{u}_j$$

Example: the ith observation: $\mathbf{x}_i =$

$$\bar{\mathbf{x}} = \mathbf{3}$$

$$M = 1$$

$$\hat{\mathbf{x}}_i = \begin{bmatrix} \mathbf{x} \\ \mathbf{x} \end{bmatrix}$$

$$+z_{i1}$$

PCA-projected data: $\mathbf{z}_i = [z_{i1}, z_{i2}, \dots, z_{iM}]$

$$M = 250$$

$$\hat{\mathbf{x}}_i =$$

 $|+z_{i1}|$

 $+z_{i2}$

 $+\sum_{j=3}^{250} z_{ij}\mathbf{u}_j$

$$M = 10,000 \ \hat{\mathbf{x}}_i =$$

 $+z_{i1}$

 $+z_{i2}$

 $+\sum_{i=3}^{10,000} z$

Images from Bishop, Pattern Recognition, 2006

(perfect reconstruction)

36

Why PCA?

- Dimensionality reduction
- Feature extraction
- Data visualization
- Reducing feature correlation
- Lossy data compression

Other dimensionality reduction techniques

- Kernel PCA
- Random projections
- Multidimensional scaling
- Locality sensitive hashing
- Autoencoders
- Isomap

e.g. Manifold Learning

38