Numpy. Broadcasting. Векторизация

Гончаров Павел <u>kaliostogoblin3@gmail.com</u> Нестереня Игорь <u>nesterione@gmail.com</u>

Numpy

NumPy

NumPy

NumPy is the fundamental package for scientific computing with Python. It contains among other things:

- · a powerful N-dimensional array object
- · sophisticated (broadcasting) functions
- · tools for integrating C/C++ and Fortran code
- useful linear algebra, Fourier transform, and random number capabilities

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

NumPy is licensed under the BSD license, enabling reuse with few restrictions.

Getting Started

- Getting NumPy
- Installing the SciPy Stack
- NumPy and SciPy documentation page
- NumPy Tutorial
- NumPy for MATLAB© Users
- · NumPy functions by category
- NumPy Mailing List

For more information on the SciPy Stack (for which NumPy provides the fundamental array data structure), see scipy.org.

Модуль numerical python (Numpy http://www.numpy.org) для работы с матрицами. Векторизация вместо циклов. Индексация и срезы в массивах. Чтение и запись файлов с помощью

Numpy.

Установка SciPy

pip3 install numpy scipy matplotlib ipython jupyter pandas sympy nose

Для windows проще всего взять готовые пакеты:

http://www.lfd.uci.edu/~gohlke/pythonlibs/

Создание вектора/матрицы

```
import numpy as np
a = np.array([1,2,3,4])
b = np.array([[1,2,3],[4,5,6]])
E = np.eye(5)
d = np.diag([1,2,3,4])
z=np.zeros((2,3))
```

Операции

Numpy массивы - объект, для которого переопределены многие операции и он содержит методы для работы с матрицами.

Некоторые из них:

а.Т - транспонирование

a.sum - вернуть сумму элементов

a.shape - размерность

Broadcasting

Способность NumPy работать с массивами разных размерностей во время арифметических операций. Операции над массивами обычно выполняются для соответствующего элемента.

Векторизация

Замена циклов в коде операциями над матрицами векторами.

Пример вычисления MSE

$$MSE = \frac{1}{m} \sum_{i} (y^{pred} - y)^{2} = \frac{1}{m} ||y^{pred} - y||_{2}^{2} = \frac{1}{m} (y^{pred} - y)(y^{pred} - y)^{T}$$

```
def mse(y_pred, y):
    return (y pred-y).T.dot(y pred-y)/len(y pred)
```

Постановка задачи машинного обучения

Формальное определение

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." (Mitchell 1997)

Примеры:

Т - регрессия, классификация, ...

Е - примеры для обучения (для обучения с учителем)

P - MSE, RMSE...

Регрессия

задача регрессии построить зависимость между вектором \boldsymbol{x} и некоторым значением \boldsymbol{y} .

Например:

Предсказание цены дома

https://www.kaggle.com/c/house-prices-advanced-regression-techniques

Часть набора данных для обучения

OpenPorchSF	EnclosedPorch	3SsnPorch	ScreenPorch	PoolArea	PoolQC	Fence	MiscFeature	MiscVal	MoSold	YrSold	SaleType	SaleCondition	SalePrice
61	0	0	C	0	NA	NA	NA	0	2	2008	WD	Normal	208500
0	0	0	C	0	NA	NA	NA	0	5	2007	WD	Normal	181500
42	0	0	C	0	NA	NA	NA	0	9	2008	WD	Normal	223500
35	272	0	C	0	NA	NA	NA	0	2	2006	WD	Abnorml	140000
84	. 0	0	C	0	NA	NA	NA	0	12	2008	WD	Normal	250000
30	0	320	C	0	NA	MnPrv	Shed	700	10	2009	WD	Normal	143000
57	0	0	C	0	NA	NA	NA	0	8	2007	WD	Normal	307000
204	228	0	C	0	NA	NA	Shed	350	11	2009	WD	Normal	200000
0	205	0	C	0	NA	NA	NA	0	4	2008	WD	Abnorml	129900
4	. 0	0	C	0	NA	NA	NA	0	1	2008	WD	Normal	118000
0	0	0	C	0	NA	NA	NA	0	2	2008	WD	Normal	129500
21	0	0	C	0	NA	NA	NA	0	7	2006	New	Partial	345000
0	0	0	176	0	NA	NA	NA	0	9	2008	WD	Normal	144000
33	0	0	C	0	NA	NA	NA	0	8	2007	New	Partial	279500
213	176	0	C	0	NA	GdWo	NA	0	5	2008	WD	Normal	157000
112	0	0	C	0	NA	GdPrv	NA	0	7	2007	WD	Normal	132000
0	0	0	C	0	NA	NA	Shed	700	3	2010	WD	Normal	149000

Задача машинного обучения

обобщение (generalization)

Задача минимизировать ошибку на тестовых данных (не на тех, которых производилось обучение)

Цель алгоритма предсказывать значения на новых данных (из того же распределения)

Линейная регрессия

$$y^{pred} = w^T x$$

Для задачи регрессии в качестве оценки производительности используется средняя квадратичная ошибка (mean squared error) (MSE):

$$MSE = \frac{1}{m} \sum_{i} (y^{pred} - y)^2$$

или можно записать через норму:

$$MSE = \frac{1}{m} ||y^{pred} - y||_2^2$$

MSE = 1.86410833333

Обучение без обучения

Для данной задачи можно решить аналитически.

$$\nabla_{\boldsymbol{w}} MSE_{train} = 0$$

http://www.deeplearningbook.org/ (106-107)

MSE = 0.15