

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.0304 и 09.0404 ПРОГРАММНАЯ ИНЖЕНЕРИЯ

ОТЧЕТ

по лабораторной работе № 4____

Название: Исследование мультиплексоров

Дисциплина: Архитектура ЭВМ

Студент	_ИУ7-44Б_		А.А.Андреев
	(Группа)	(Подпись, дата) (И.О. Фамилия)
Преподаватель		—————————————————————————————————————) (И.О. Фамилия)

Оглавление

Оглавление	1
Цель работы.	2
Ход выполнения работы.	3
1. Исследование ИС ADG408 или ADG508 в качестве коммутатора MUX 8 – 1 цифровых сигналов:	3
а) на информационные входы D0D7 мультиплексора подать комбинацию сигналов, заданную преподавателем из табл. 2. Логические уровни 0 и 1 задавать источниками напряжения U=5 В и 0 В (общая);	3
б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоично счетчика (младший разряд – Q0). На вход счетчика подать импульсы генератора с частотой 500 кГц.	ого 3
в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов	
выполнить на логическом анализаторе.	3
2. Исследование ИС ADG408 или ADG508 в качестве коммутатора MUX 8 – 1 аналоговых сигналов: а) на информационные входы D0D7 мультиплексора подать дискретные уровни напряжений с источников напряжения UCC (приложение Multisim): 0 В; 0.7 В; 1.4 В; 2.1 В; 2.8 В; 3.5 В; 4.2 В; 5.0 В; б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4- разрядного двоичного счетчика (младший разряд – Q0). На вход счетчика подать импульсы генератора с частотой 500 кГ в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить в логическом анализаторе, выходного сигнала мультиплексора – на логическом анализаторе и осциллографе. Совместить развертки сигналов, регистрируемых логическим анализатором и осциллографом. 3. Исследование ИС ADG408 или ADG508 как коммутатора MUX 8 – 1 цифровых сигналов в качестве формирователя ФАЛ четырех переменных. - ФАЛ задается преподавателем. - Проверить работу формирователя в статическом и динамическом режимах.	
- Снять временную диаграмму сигналов формирователя ФАЛ и провести ее анализ. ФАЛ : 0011 1110 1010 1100	7
4. Построить схему мультиплексора MUX 16 – 1 на основе простого мультиплексора MUX 4 – 1 и дешифратора DC 2-4. Исследовать мультиплексора MUX 16 – 1 в динамическом режиме. На адресные входы подать сигналы с 4-разрядного двоичного счетчика, на информационные входы D0D15 – из табл. 2. Провести анализ временной диаграммы сигналов мультиплексора MUX 16 – 1. мультиплексор MUX 16 – 1.	•
Вывод	9

Цель работы.

Цель работы — изучение принципов построения, практического применения и экспериментального исследования мультиплексоров.

Ход выполнения работы.

- 1. Исследование ИС ADG408 или ADG508 в качестве коммутатора MUX
- 8 1 цифровых сигналов:
- а) на информационные входы D0 ...D7 мультиплексора подать комбинацию сигналов, заданную преподавателем из табл. 2. Логические уровни 0 и 1 задавать источниками напряжения U=5 В и 0 В (общая);
- б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд Q0). На вход счетчика подать импульсы генератора с частотой 500 кГц.
- в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе.

1 - t-	0	12				115	17.2	- 1	
	9	1	1	0	0	1	1	1	0
	10	1	0	0	0	I	1	I	0
	11	I	0	0	1	1	1	0	0
	12	0	0	1	1	I	0	1	0
	13	1	1	0	1	1	0	4	4
	14	1	0	1	0	0	1	0	1
	15	1	0	0	4	1	0	0	7
	16	0	0	4	7	7	0		0
1	17	10	4	7	0	0		0	0
	18	1	0	0		b	1	1	1
	19	1		0	1	0	0	1	0
		12	1	0	0	0	1)	1	0
	50	10	1	1	0	0	1	1	1
	15	I	1	0	0	1	1	1	0
	22	1	T	*		^			-

Рис. 1, Вариант 17-й

Рис. 2, Схема с логическим анализатором Сигналы совпадают с входными данными.

- 2. Исследование ИС ADG408 или ADG508 в качестве коммутатора MUX 8 1 аналоговых сигналов:
- а) на информационные входы D0 ...D7 мультиплексора подать дискретные уровни напряжений с источников напряжения UCC (приложение Multisim): 0 B; 0.7 B; 1.4 B; 2.1 B; 2.8 B; 3.5 B; 4.2 B; 5.0 B;
- б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4- разрядного двоичного счетчика (младший разряд Q0). На вход счетчика подать импульсы генератора с частотой 500 кГц;
- в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе, выходного сигнала мультиплексора на логическом анализаторе и осциллографе. Совместить развертки сигналов, регистрируемых логическим анализатором и осциллографом.

Рис. 3, Схема с осцилографом

Рис. 4, Логический анализатор по схеме и осцилограф

В результате гонки сигналов возникают помехи, значение истины на мультиплексоре - когда напряжение на нем становится больше стробирующего сигнала EN.

- 3. Исследование ИС ADG408 или ADG508 как коммутатора MUX 8 1 цифровых сигналов в качестве формирователя ФАЛ четырех переменных.
- ФАЛ задается преподавателем.
- Проверить работу формирователя в статическом и динамическом режимах.
- Снять временную диаграмму сигналов формирователя ФАЛ и провести ее анализ.
- Φ АЛ: 1101 1001 0011 0010, 17-й вариант

Рис. 5, Схема с анализатором

x4	x3	x2	x1	f	D_{i}
0	0	0	0	0	$\mathbf{D}_0 = \boldsymbol{x_1}$
0	0	0	1	1	
0	0	1	0	1	$D_1 = \neg x_1$
0	0	1	1	0	
0	1	0	0	1	$D_2 = 1$
0	1	0	1	1	
0	1	1	0	0	$D_3 = 0$
0	1	1	1	0	
1	0	0	0	1	$D_4 = \neg x_1$
1	0	0	1	0	
1	0	1	0	0	$D_5 = x_1$
1	0	1	1	1	
1	1	0	0	1	$D_6 = \neg x_1$
1	1	0	1	0	
1	1	1	0	0	$D_7 = x_1$
1	1	1	1	1	

Табл. 1, Синтезированная таблица

4. Построить схему мультиплексора MUX 16 – 1 на основе простого мультиплексора MUX 4 – 1 и дешифратора DC 2-4. Исследовать мультиплексора MUX 16 – 1 в динамическом режиме. На адресные входы подать сигналы с 4-разрядного двоичного счетчика, на информационные входы D0 ...D15 – из табл. 2. Провести анализ временной диаграммы сигналов мультиплексора MUX 16 – 1. мультиплексора MUX 16 – 1.

Набор значений: 0011 1110 1010 1100

Рис. 6, Схема с анализатором

Вывод

При выполнении лабораторной работы познакомились с работой и структурой мультиплексоров, поняли и изучили их отличительные особенности. Макетировали и исследовали их свойства.

Контрольные вопросы

1. Что такое мультиплексор?

Мультиплексор – это функциональный узел, имеющий п адресных входов и

N = 2n информационных входов и выполняющий коммутацию на выход того информационного сигнала, адрес (т.е. номер) которого установлен на адресных входах. Иначе мультиплексор — это адресный коммутатор.

2. Какую логическую функцию выполняет мультиплексор?

$$Y = V2n - 1Dm(A, A, ..., A, ..., A, A) j = 0 j j n - 1 n - 2 j 1 0$$

Где, Ai – Адресные входы и сигналы, Dj – информационные входы и сигналы, mj – конституента единицы (конъюнкция всех переменных Ai), номер которой равен числу, образованному двоичным кодом сигналов на адресных входах

3. Каково назначение и использование входа разрешения?

Вход разрешения EN используется: - собственно для разрешения работы мультиплексора, -для стробирования, - для наращивания числа информационных входов. При EN=1 разрешается работа мультиплексора и выполнение им своей функции, при EN=0 работа мультиплексора запрещена и на его выходах устанавливаются неактивные уровни сигналов.

4. Какие функции может выполнять мультиплексор?

Функции Алгебры Логики (ФАЛ)

Мультиплексоры широко применяются для построения: - коммутаторовселекторов, - постоянных запоминающих устройств емкостью $2n \times 1$ бит, - комбинационных схем, реализующих функции алгебры логики, - преобразователей кодов (например, параллельного кода в последовательный) и других узлов

5. Какие способы наращивания мультиплексоров?

Наращивание числа коммутируемых каналов выполняется двумя способами: - по пирамидальной схеме соединения мультиплексоров меньшей размерности, - путем выбора мультиплексора группы информационных входов по адресу (т.е. номеру) мультиплексора с помощью дешифратора адреса мультиплексора группы, а затем выбором информационного сигнала мультиплексором группы по адресу информационного сигнала в группе.

6. Поясните методику синтеза формирователя ФАЛ на мультиплексоре?

На основе мультиплексора, имеющего п адресных входов, можно реализовать ФАЛ (n+1) переменных. Примечание. Реализация ФАЛ п переменных на мультиплексоре с п адресными входами тривиальна: на адресные входы подаются переменные, на информационные входы — значения ФАЛ на соответствующих наборах переменных. На выходе мультиплексора образуются значения ФАЛ в соответствии с наборами переменных. В этом случае мультиплексор выполняет функцию ПЗУ. Для реализации ФАЛ n+1 переменных на адресные входы мультиплексора подаются п переменных, на

информационные входы – (n+1)-я переменная или ее инверсия, константы 0 или 1 в соответствии со значениями $\Phi A \Pi$.

7. Почему возникают ложные сигналы на выходе мультиплексора? Как их устранить?

Возникают из-за потенциала на входах (подвешенное состояние).

Во избежание появления ложного сигнала на выходе мультиплексора строб-импульс на время переключения адреса должен отключать выход от входов.