HW4

Hanying Jiang

October 2019

Contents

L	3.3.12	1
2	3.3.13	1
3	3.3.15	2

$1 \quad 3.3.12$

- 1. $(i) \Rightarrow (iii)$
 - Assume x is the projection of y on C and there exists some $c \in C$ s.t. $\langle y-x, c-x \rangle > 0$. Now consider the point $x + \epsilon(c-x)$ where $\epsilon \in (0,1)$ and thus it's in C. $||x + \epsilon(c-x) y||^2 = ||x-y||^2 + \epsilon^2 ||c-x||^2 + 2\epsilon \langle x-y, c-x \rangle$. Its derivative w.r.t ϵ is $2(\epsilon||c-x||^2 + \langle x-y, c-x \rangle) < 0$ when ϵ is closed to 0. So there exists $epsilon \ s.t. \ x + \epsilon(c-x)$ is closer to y than x and is also in C. This contradicts our assumption. So (iii) must holds.
- 2. $(iii)\Rightarrow (i)$ Assume (iii) holds. For any $c\in C$, we have $||c-y||^2=||c-x+x-y||^2=||c-x||^2+||y-x||^2-2\ \langle y-x,c-x\rangle\geq ||x-y||^2.$ So (i) holds.
- 3. $(ii) \Rightarrow (i)$ Simply let τ be 1.
- 4. $(i) \Rightarrow (ii)$ By $(i) \Leftrightarrow (iii)$, it's equivalent to show that $y - x \in N_C(x) \Rightarrow x + \tau(y - x) - x = \tau(y - x) \in N_C(x)$. This equation just follows by the definition of normal cone.

2 3.3.13

 $N_K(k) \subset \{k^* \in K^o | \langle k^*, k \rangle = 0\}$

- 1. For any $k^* \in N_K(k)$, $\langle k^*, k \rangle = 0$. By definition, we have $\langle k^*, c - k \rangle \leq 0$, $\forall c \in K$. Since K is a cone, we can let c = 2k and $\frac{k}{2}$, then we have $\langle k^*, k \rangle = 0$.
- 2. For any $k^* \in N_K(k)$, $k^* \in K^o$. For any $c \in K$, we have $\langle k^*, c - k \rangle \leq 0$. We already known that $\langle k^*, k \rangle = 0$. So $\langle k^*, c \rangle \leq 0 \leq 1$. So $k^* \in K^o$.

Thus $N_K(k) \subset \{k^* \in K^o | \langle k^*, k \rangle = 0\}.$

$$\{k^* \in K^o | \langle k^*, k \rangle = 0\} \subset N_K(k)$$

For any $k^* \in \{k^* \in K^o | \langle k^*, k \rangle = 0\}$ and any $c \in K$, we have $\langle k^*, c \rangle \leq 0$ by Proposition 3.1.2. Then we have $\langle k^*, c - k \rangle = \langle k^*, c \rangle \leq 0$. Thus $\{k^* \in K^o | \langle k^*, k \rangle = 0\} \subset N_K(k)$.

3 3.3.15

It's sufficient to show that $N_C(x) \subset N_C(y)$. Then by symmetry, we also have $N_C(y) \subset N_C(x)$. So they are equivalent.

Assume there exists $z \in N_C(x)$ but $z \notin N_C(y)$. Then there is some $c \in C$ and $\langle z, c - y \rangle > 0$.

Now let's consider a point of the form $x + \epsilon(x - y) + \sigma(c - y)$, where $\epsilon, \sigma > 0$.

Then
$$\langle z, (x + \epsilon(x - y) + \sigma(c - y)) - x \rangle$$

$$= \langle z, \epsilon(x-y) + \sigma(c-y) \rangle$$

$$= -\epsilon \langle z, y - x \rangle + \sigma \langle z, c - y \rangle > 0.$$

Because $\langle z, y - x \rangle \leq 0$ by definition and $\langle z, c - y \rangle$ by assumption.

$$\begin{array}{l} x+\epsilon(x-y)+\sigma(c-y)\\ = (1-\sigma)x+(\epsilon+\sigma)(x-y)+\sigma c\\ = (1-\sigma)(x+\frac{\epsilon+\sigma}{1-\sigma}(x-y))+\sigma c \end{array}$$

Because $x, y \in S$ is relatively open and $x - y \in par S$, if we choose ϵ and σ small enough, $x + \frac{\epsilon + \sigma}{1 - \sigma}(x - y) \in S \subset C$. By the convexity of C, $(1 - \sigma)(x + \frac{\epsilon + \sigma}{1 - \sigma}(x - y)) + \sigma c \in C$.

This means that we found a point $c^{'} \in C$ satisfying $\langle z, c^{'} - x \rangle > 0$, which contradicts our assumption. So $N_{C}(x) \in N_{C}(y)$. We are done.