Building an ASR system for Indic Languages - Indian English

Mirishkar S Ganesh, IIIT Hyderabad (Mentor)

Flow of Presentation

- Problem Statement: Challenge with Indian English transcription
- Dataset Description
- ASR Pipeline
- Experiments
- Results Comparison
- Future Work

Problem Statement: Challenge with Indian English transcription

Native language influence

 L2 English speakers may have a huge L1 language influence in their English speaking language. For eg. If a person A, whose L1 is Malayalam, and there is another person B whose L1 is Telugu then the accent produced while they speak English could be completely different due to their L1 influence.

Problem Statement

In this project, an Indian English ASR system based on Hidden Markov Models (HMM)
has been designed using Kaldi(Povey et al., 2011). We used available continuous
English speech transcribed data obtained from non-native Indian English speakers in
order to build an ASR system robust to across accent lines.

Dataset Description(1/2)

- NPTEL lecture videos delivered in English.
- Consists of 39341 .wav audio files.
- Files are 16-khz, mono channel.
- Each file being considered as having one utterance.

count	39341.000000
mean	24.184388
std	8.520111
min	4.000000
25%	18.000000
50%	23.000000
75%	30.000000
max	67.000000

Per utterance word count

Frequency distribution for words per occurrence

Dataset Description(2/2)

Frequency distribution of Part of Speech

Frequency distribution of vocabulary in corpus

ASR Pipeline

Text preprocessing: lowercasing, substituting punctuations with space.

Lexicon generation: Through g2p library(Park, 2019). For eg. the phoneme for 'thank you' would be 'TH AE NG K Y UW'.

Train/Test split: An 80:20 split was performed on dataset.

Feature extract: MFCC features extracted from wav files, CMVN applied to perform normalization.

Training: HMM modeling is performed on normalized MFCCs.

Language Model: n-gram (n=1, 2, 4) using SRILM (Stolcke, 2002).

Decoding: Calculates likelihood of words forming a sequence, **finally utterance.**

Experiments - Scenario 1

- Utterance of three speakers of different native languages (Hindi, Telugu, Malayalam)
- Captured across 4 sentences (total of 12 unique sentences).
- **Parameters:** ngram=2

	speaker_name	accent	actual_text	transcribed_text	wd_in_actual_text	wd_in_corpus	wd_correctly_uttered
0	siddharth	hindi_eng	we have been discussing about newton's laws of motion	we have been discussing about new audience they'll ask cost margin	9	8	5
1	siddharth	hindi_eng	if you want a rainbow you gotta put up with the rain	i guess you've want to funding will do what are adopted the same	12	11	2
2	siddharth	hindi_eng	eagles do not take flight lessons from chickens	biggest the markets like the essence some statements	8	6	0
3	siddharth	hindi_eng	i will do my homework on time everyday	it's high single platform will contain every day	8	8	1
4	rohit	telugu_eng	conversational ai has large scope for research	and litigation and being fast last call persistence	7	6	0
5	rohit	telugu_eng	data science engineers always have a decent income	the data science begin is always have a decent income	8	8	7
6	rohit	telugu_eng	mistakes are always forgivable if one has the courage to admit them	a mistake stock on based on you know that is one has that primate selected	12	11	2
7	rohit	telugu_eng	i will do my homework on time everyday	i to michael will content every day	8	8	2
8	deepu	malayalam_eng	nlp stands for natural language processing	and increased transform actually manage costs	6	5	0
9	deepu	malayalam_eng	trust no one be the only one	i just low oil be that we've won	7	7	1
10	deepu	malayalam_eng	summer school has been great experience	the summer support faster main page 6 patients	6	6	1
11	deepu	malayalam_eng	i will do my homework on time everyday	private label will perform activity	8	8	1

Experiments - Scenario 2

- Utterance of three speakers of different native languages (Hindi, Telugu, Malayalam)
- Captured across 3 unique sentences.
- **Parameters:** ngram=2
- Sentences: "we will study computer science",
- "math is an important subject",
- "I will discuss the key topics for exam over the next few hours"

s	oeaker_name	accent	actual_text	transcribed_text	word_count_actual	word_in_corpus	wd_correctly_uttered
0	siddharth	hindi_eng	we will study computer science	i mean is steady on u s banks	5	5	0
1	siddharth	hindi_eng	math is an important subject	i know that this is an important subject	5	5	4
2	siddharth	hindi_eng	i will discuss the key topics for exam over th	i believe will discuss our team topics so i th	13	13	8
3	rohit	telugu_eng	we will study computer science	we remain steady compugen since	5	5	1
4	rohit	telugu_eng	math is an important subject	that east and important subject	5	5	2
5	rohit	telugu_eng	i will discuss the key topics for exam over th	i mean then discuss the key topics plot again	13	13	8
6	deepu	malayalam_eng	we will study computer science	we remain very steady contour of science	5	5	2
7	deepu	malayalam_eng	math is an important subject	and throughout the east and is often such as	5	5	1
8	deepu	malayalam_eng	i will discuss the key topics for exam over th	high to discuss key topics forex some forward	13	13	5

rohit2.wav

Experiments - Result Comparison

	wd_in_actual_text	wd_in_corpus	wd_correctly_uttered
accent			
hindi_eng	37	33	8
malayalam_eng	27	26	3
telugu_eng	35	33	11

Speaker accent-wise accuracy distribution for Scenario 1

	word_count_actual	word_in_corpus	wd_correctly_uttered
accent			
hindi_eng	23	23	12
malayalam_eng	23	23	8
telugu_eng	23	23	11

Speaker accent-wise accuracy distribution for Scenario 2

Future Work

- There continues to be scope for further improvement in accuracy and Word Error Rate.
- In the future, we hope to apply various combinations of architectures and parameters.
- For the current model different possible parameters in form of n-gram values can be tested.
- Besides other architectures such as Gaussian Mixed Models (GMMs) and Time Delay Neural
 Networks (T-DNNs) may be attempted for the Indian accented English case.
- Work with different accent lines.

Setup the project in your system, convert your voice to text github.com/sidgupta234/Indian_English_ASR

References

Babu, L. B., George, A., Sreelakshmi, K. R., & Mary, L. (2018). Continuous Speech Recognition System for Malayalam Language Using Kaldi. 2018 International Conference on Emerging Trends and Innovations In Engineering And Technological Research (ICETIETR), 1–4. https://doi.org/10.1109/ICETIETR.2018.8529045

Honnibal, M., & Montani, I. (2017). spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing.

Park, J., Kyubyong &. Kim. (2019). G2pE. In GitHub repository. GitHub. https://github.com/Kyubyong/g2p

Povey, D., Ghoshal, A., Boulianne, G., Goel, N., Hannemann, M., Qian, Y., Schwarz, P., & Stemmer, G. (2011). The kaldi speech recognition toolkit. In IEEE 2011 Workshop.

Stolcke, A. (2002). SRILM - an extensible language modeling toolkit. INTERSPEECH.

THANK YOU /'θæŋk ju/ TH AE NG K Y UW

SOMETIMES I WONDER WHAT IT WOULD BE LIKE TO BE ABLE TO UNDERSTAND SONG LYRICS WITHOUT LOOKING THEM UP