4x4 Matix Multiplication

ELEC 522, Juan Garza, Fall 2022

High Level Method

A * B where A is loaded from the left side with each row and B is loaded from the right with the columns loaded in, this takes four cycles for the 4 coefficients for the first column

Control cycles - every 5th (clock cycle after last coefficient is loaded) which will act as a buffer between two matrices

$$Ex: a_{11}a_{12}a_{13}a_{14} \ 0 \ a_{11}a_{12}a_{13}a_{14} \ 0 \ a_{11}a_{12}a_{13}a_{14} \ 0$$

$$\mathsf{Ex} : \mathsf{b}_{11} \mathsf{b}_{21} \mathsf{b}_{31} \mathsf{b}_{41} \, \mathsf{0} \ \, \mathsf{b}_{11} \mathsf{b}_{21} \mathsf{b}_{31} \mathsf{b}_{41} \, \mathsf{0} \, \, \mathsf{b}_{11} \mathsf{b}_{21} \mathsf{b}_{31} \mathsf{b}_{41} \, \mathsf{0}$$

Ex:0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Processing element

Data is loaded with A having its rows fed to the right and B having its columns fed down

Processing element

You add and accumulate for each coefficient a_i and b_j . This accumulated sum is kept in a register. The control signal (goes high after every 4 coefficients) would reset the component and store the result for output

Processing Element Waveforms

The a and b coefficient are passed along with a delay of 1 cycle.

The sum is seen to latch to a new value once it has been calculated

Total timing

The a and b coefficient are passed along with a delay of 1 cycle.

The sum is seen to latch to a new value once it has been calculated

Delivering Output to workspace

Uses A Mux and a counter which iterates through each selection. The control signal would indicate when it would iterate to the next matrix resultant row

Testing Matrix Multiplications

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 10 & 20 & 30 & 40 \\ 10 & 20 & 30 & 40 \\ 10 & 20 & 30 & 40 \\ 10 & 20 & 30 & 40 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 & 4 & 5 \\ 4 & 5 & 9 & 6 \\ 24 & 5 & 7 & 8 \\ 0 & 8 & 6 & 5 \end{pmatrix} \begin{pmatrix} 4 & 1 & 8 & 2 \\ 2 & 9 & 5 & 4 \\ 1 & 0 & 4 & 6 \\ 4 & 6 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 40 & 51 & 65 & 58 \\ 59 & 85 & 111 & 106 \\ 145 & 117 & 269 & 142 \\ 42 & 102 & 79 & 88 \end{pmatrix}$$

>> c_var_out_disp																									
	0	10	20	30	40	0	40	50	60	70	0	30	40	50	60	0	70	166	127	119	0	40	51	65	58
	0	10	20	30	40	0	40	50	60	70	0	30	40	50	60	0	45	109	88	76	0	59	85	111	106
	0	10	20	30	40	0	40	50	60	70	0	30	40	50	60	0	49	121	102	82	0	145	117	269	142
	0	10	20	30	40	0	40	50	60	70	0	30	40	50	60	0	46	138	104	77	0	42	102	79	88

...

Vectors Multiplications

Only four p these will to similar to to columns be

Testing vectors Multiplications

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 10 \\ 10 \\ 10 \\ 10 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 & 4 & 5 \\ 4 & 5 & 9 & 6 \\ 24 & 5 & 7 & 8 \\ 0 & 8 & 6 & 5 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 40 \\ 59 \\ 145 \\ 42 \end{pmatrix}$$

>> c_va	r_out_d	isp																				
0	10	0	0	0	0	40	0	0	0	0	30	0	0	0	0	70	0	0	0	0	40	
0	10	0	0	0	0	40	0	0	0	0	30	0	0	0	0	45	0	0	0	0	59	
0	10	0	0	0	0	40	0	0	0	0	30	0	0	0	0	49	0	0	0	0	145	
0	10	0	0	0	0	40	0	0	0	0	30	0	0	0	0	46	0	0	0	0	42	

Scalability

Tested at first as a 2 x 2 matrix