Дискретная математика 1 семестр ПИ, Лекция, 10/30/21

Собрано 1 ноября 2021 г. в 15:42

Содержание

1. Случайные величины

1

Пусть $\Omega = \{\omega_1, \omega_2, ..., \omega_k, ...\}$

Def. 1.0.1. Функция, заданная на Ω – случайная величина.

$$x = X(\Omega)$$

Def. 1.0.2. Соответствие, которое каждому x_i сопоставляет вероятность p_i – распределение (закон распределения)

3амечание 1.0.3. Если X – дискретная случайная величина, то Y=g(X) – тоже дискретная случайная величина и

$$y_i = g(x_i), p_i = P(X = x_i)$$

Def. 1.0.4. Определим случайную величину в более общим случае. Пусть у нас есть (Ω, \mathscr{A}, P) . Тогда случайная величина это

$$X = X(\omega), \omega \in \Omega : \{X < x\} = \{\omega : X(\omega) < x\} \in \mathscr{A} \ \forall x$$

Def. 1.0.5. $F(x) = P(X < x), x \in (-\infty, +\infty)$ – функция распределения случайной величины.

Свойства:

- 1. $F(x_1) \leqslant F(x_2)$ если $x_1 < x_2$
- 2. $F(-\infty) = 0, F(+\infty) = 1$
- 3. $P(a \le X < b) = F(b) F(a)$

Def. 1.0.6. Пусть P(y) – неотрицательная функция. Если $F(x) = \int_{-\infty}^{x} f(y) dy$, то P(y) – плотность распределения. В частности, P(x) = F'(x)

Def. 1.0.7. Есть $P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$, где P(A, B) – вероятность одновременного наступления событий A и B, то X, Y – независимые случайные величины.

Def. 1.0.8. Пусть X – дискретная случайная величина. Тогда матожиданием называется

$$E(X) = \sum_{i=1}^{n} x_i p_i$$

 $a \ E(|X|) = \sum_{i=1}^{n} |x_i| p_i$ – абсолютный момент.

Свойства:

- 1. E(aX + b) = aE(x) + b
- 2. E(X + Y) = E(X) + E(Y)
- 3. Если X,Y независимые случайные величины, то $E(XY)=E(X)\cdot E(Y)$