

INSTITUTE REPORT NO. 97

THE MUTAGENIC POTENTIAL OF: n-(n-octyl)-glutarimide

LEONARD J. SAUERS, BA, SP5
FREDDICA R. PULLIAM, BS, SSG
and
JOHN T. FRUIN, DVM, PhD, LTC VC

AUG 2 0 1981 H

TOXICOLOGY SERVICES GROUP, DIVISION OF RESEARCH SUPPORT

DISTRIBUTION STATEMENT A
Approved for public relocac;
Distribution Universed

JULY 1981

Toxicology Series: 1

LETTERMAN ARMY INSTITUTE OF RESEARCH PRESIDIO OF SAN FRANCISCO CALIFORNIA 94129

81 8 20 002

Toxicology Series: 1

Reproduction of this document in whole or in part is prohibited except with the permission of the Commander, Letterman Army Institute of Research, Presidio of San Francisco, California 94129. However, the Defense Technical Information Center is authorized to reproduce the document for United States Government purposes.

Destroy this report when it is no longer needed. Do not return it to the originator.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

This material has been reviewed by Letterman Army Institute of Research and there is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense. (AR 360-5)

MAN Muskeli 9 1) July 81

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

	READ INSTRUCTIONS BEFORE COMPLETING FORM
	3. RECIPIENT'S CATALOG NUMBER
LAIR Institute Report No. 97 $AD-A/O3$	137
4. TITLE (and Subtitle) The Mutagenic Potential of:	June 1999 to December 1980
N-(n-octyl)-glutarimide.	6. PERFORMING ORG. REPORT NUMBER
7. AuThor(e)	8. CONTRACT OR GRANT NUMBER(a)
Leonard J./Sauers, BA, SP5; Freddica R./Pulliam, BS, SSG; John T./Fruin(DVM, PhD, LTC VC	(16)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Toxicology Services Group, Div. of Research Support	10. PROGRAM ELEMENT, PROJECT, TASK
Letterman Army Institute of Research	Project/3M16770A871/ Prevention of Military
Presidio of San Francisco, CA 94129	Disease Hazards WU 201
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
U.S. Army Medical Research and Development Command	July 1981 ///
Fort Detrick Frederick, MD 21701	29
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
I	
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different fe	om Report)
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from the supplementary notes	om Report)
	om Report)
18. SUPPLEMENTARY NOTES)
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number	imide, Insect Repellent
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number LAIR, Mutagenicity, Ames Assay, N-(n-octyl)-glutary	imide, Insect Repellent (n-octyl)-glutarimide is not

DD 1 JAN 73 1473 EDITION OF ! NOV 65 IS OBSOLETE

4 1112 UNCLASSIFIED

ABSTRACT

It has been shown that with the Ames Assay, N-(n-octyl)-glutarimide is not mutagenic. The assay was conducted using tester strains TA 98, TA 100, TA 1535, TA 1537 and TA 1538 at dilutions of 0.0001 ml/plate to 3.2×10^{-8} ml/plate.

PREFACE

AMES ASSAY REPORT: N-(n-octyl)-glutarimide

TESTING FACILITY: Letterman Army Institute of Research

Presidio of San Francisco, CA 94129

SPONSOR: Division of Cutaneous Hazards

Letterman Army Institute of Research

PROJECT: More Effective Topical Repellents Against Disease Bearing

Mosquitoes 3M62272A810

GLP STUDY NUMBER: 80007

STUDY DIRECTOR: LTC John T. Fruin, D.V.M., PhD PRINCIPAL INVESTIGATOR: SSG Freddica R. Pulliam, BS

RAW DATA: A copy of the final report, study protocol, and retired

SOPs will be retained in the LAIR Archives. Test compounds

were provided by the sponsor. Chemical, analytical,

stability, purity, etc. data are available

from sponsor.

PURPOSE: To determine the mutagenic potential of N-(n-octyl)-

glutarimide by using the Ames Salmonella/Mammalian Microsome Mutagenicity Test. Tester strains TA 98, TA 100, TA 1535, TA 1537 and TA 1538 were used.

ACKNOWLEDGMENTS

The authors wish to thank Ms. Carolyn Lewis, SP5 Robert Summers, and SP4 Thomas Kellner for their assistance in performing the research.

Signatures of Principal Scientists Involved In The Study

We, the undersigned, believe the study described in this report to be scientifically sound and the results and interpretation to be valid. The study was conducted to comply to the best of our ability with the Good Laboratory Practice Regulations outlined by the Environmental Protection Agency.

FREDDICA R. PULLIAM

SEG, BS

Principal Investigator

JOHN T. FRUIN, DVM, PhD

LTC, VC

Study Director

DEPARTMENT OF THE ARMY

LETTERMAN ARMY INSTITUTE OF RESEARCH PRESIDIO OF SAN FRANCISCO, CALIFORNIA 94129

REPLY TO ATTENTION OF:

SGRD-ULZ-QA

8 January 1981

MEMORANDUM FOR RECORD

SUBJECT: Report of GLP Compliance

I hereby certify that in relation to LAIR GLP study 80007 the following inspections were made:

9 June 1980

7 July 1980

Findings were reported to the Study Director and laboratory management on 7 August 1980. Routine inspections with no adverse findings are reported quarterly, thus these ir spections are also included in the July 1980 and October 1980 reports to management and the Study Director.

JOHN L. SZUREK

MAJ, MS

Quality Assurance Officer

Jelen L Symb

TABLE OF CONTENTS

Abstracti
Prefaceiii
Acknowledgmentsiv
Signatures of Principal Scientistsv
Report of Quality Assurance Unitvi
Table of Contentsvii
BODY OF REPORT
INTRODUCTION
Rationale for using the Ames Assayl
Description of Test, Rationale for strain selection1
Description of Strains, History, Methods, and Data2
METHODS
Rationale for Dosage Levels and Response Tabulations3
Test Format3
Statistical Analysis4
RESULTS4
DISCUSSION5
CONCLUSION5
RECOMMENDATION5
REFERENCES6
APPENDIX (Tables 1 through 6)
DISTRIBUTION LIST

Rationale for using the Ames Assay

The Ames Salmonella/Mammalian Microsome Mutagenicity Test is one of a standard bank of tests used by our laboratory for the assessment of the mutagenic potential of a test substance. It is a short-term screening assay for the prediction of potential mutagenic agents in mammals. It is inexpensive when compared to in vivo tests, yet is highly predictive and reliable in its ability to detect mutagenic activity and therefore carcinogenic probability (1). It relies on basic genetic principles and allows for the incorporation of a mammalian microsome enzyme system to increase sensitivity through enzymatically altering the test substance into an active metabolite. It has proven highly effective in assessing human risk (1).

Description of Test (Rationale for the selection of strains)

The test was developed by Bruce Ames, Ph.D. from the University of California-Berkeley. The test involves the use of several different genetically altered strains of Salmonella typhimurium, each with a specific mutation in the histidine operon (2). The test substance demonstrates mutagenic potential if it is able to revert the mutation in the bacterial histidine operon back to the wild type and thus reestablish prototrophic growth within the test strain. This reversion also can occur spontaneously due to a random mutational event. If, after adding a test substance, the number of revertants is significantly greater than the spontaneous reversion rate, then the test substance physically altered the locus involved in the operon's mutation and is able to induce point mutations and genetic damage (2).

In order to increase the sensitivity of the test system, two other mutations in the Salmonella are used (2). To insure a higher probability of uptake of test substance, the genome for the lipopolysacchride layer (LP) is mutated and allows larger molecules to enter the bacteria. Each strain has another induced mutation which causes loss of excision repair mechanisms. Since many chemicals are not by themselves mutagenic but have to be activated by an enzymatic process, a mammalian microsome system is incorporated. These microsomal enzymes are obtained from livers of rats induced with Aroclor 1254; the enzymes allow for the expression of the metabolites in the mammalian system. This activated rat liver microsomal enzyme homogenate is termed S-9.

Description of Strains (History of the strains used, methods to monitor the integrity of the organisms, and data pertaining to current and historical controls and spontaneous reversion reces)

The test consists of using five different strains of Salmonell. typhimurium that are unable to grow in absence of histidine because of a specific mutation in the histidice operor. This his filling requirement is verified by attempting to grow the tester extrains on minimal glucose agar (MGA) plates, both with the withhear Misridire. The dependence on this amino acid is shown when prowth occurs only in its presence. The plasmids in stroips It 90 and it and contain an ampicillin resistant R factor. Strains defic at in this plasmid demonstrate a zone of growth inhibition around as empiriblin impregnated disc. The alteration of the LP liver allows apriake by the Salmonella of larger molecules. If a cryst I vistar impromated disc is placed onto a plate containing and one of the bacterial strains, a zone of growth inhibition will occur because the LP lever is altered. The absence of excision repair mechanisms can be by using ultraviolet (UV) light. These merbanisms function primarily by repairing photodimers between pyrimidine bases: exposure of bacteria to UV light will activate the formation of these dimers and cause cell lethality, since excision of these photodimers can not be made. The genetic mutation resulting in IV sensitivity also induces a dependence by the Salmonella to biotin. Therefore, this vitamin must be added. In order to prove that the bacteria are responsive to the mutation process, positive controls are run with known mutagens. If after exposure to the positive control substance, a larger number of revertants are obtained, then the bacteria are adequately responsive. Sterility controls are performed to determine the presence of contamination. Sterility of the test compound is also confirmed in each first dilution. Verification of the tester strains occurs spontaneously with the running of each assay. value of the spontaneous reversion rate is obtained using the same inoculum of bacteria that is used in the assay (3).

Strains were obtained directly from Dr. Ames, University of California, Berkeley, propagated and then maintained at -80 C in our laboratory. Before any substance was tested, quality controls were run on the bacterial strains to establish the validity of their special features and also to determine the spontaneous reversion rate (2). Records are maintained of all the data, to determine if deviations from the set trends have occurred.

We compared the spontaneous reversion values with our own historical values and those cited by Ames et al (2). Our conclusions are based on the spontaneous reversion rate compared to the experimentally induced rate of mutation. When operating effectively, these strains detect substances that cause base pair

mutations (TA 1535, TA 100) and frameshift mutations (TA 1537, TA 1538 and TA 98) (2).

METHODS (3)

Rationale for Dosage Levels and Dose Response Tabulations

readable insure and reliable results, a sublethal concentration of the test substance had to be determined. toxicity level was found by using MGA plates, various concentrations of the substance, and approximately 10° cells of TA 100° per plate, unless otherwise specified. Top agar containing trace amounts of histidine and biotin were placed on MGA plates. TA 100 is used because it is the most sensitive strain. Strain verification was on the bacteria, along with a determination of the spontaneous reversion rate. After incubation, the growth was observed on the plates. (The auxotrophic Salmonella will replicate times and potentially express a mutation. When the histidine and biotin supplies are exhausted, only those bacteria that reverted the prototrophic phenotype will continue to reproduce and form macrocolonies; the remainder of the bacteria comprises the background lawn. The minimum toxic level is defined as the lowest serial dilution which decreased macrocolony formation, below that of the spontaneous revertant rate, and an observable reduction in the density of the background lawn occurs.) A maximum dose of 1 mg/plate is used when no toxicity is observed. The densities were recorded as normal slight, and no growth.

Test Format

After we validated our bacterial strains and determined the optimal dosage of the test substance, we began the Ames Assay. the actual experiment, 0.1ml of the particular strain of Salmonella (10° cclls) and the specific dilutions of the test substance were added to 2 ml of molten top agar, which contained trace amounts of histidine and biotin. Since survival is better from cultures which have just passed the log phase, the Salmonella strains were used 16 hours (maximum) after initial inoculation into nutrient broth. The dose of the test substance spanned more than a 1000-fold, decreasing from the minimum toxic level by a dilution factor of 5. All the substances were tested with and without S-9 microsome fraction. S-9 mixture which was previously titered at an optimal strength was added to the molten top agar. After all the ingredients were added, the top agar was vortexed, then overlayered on minimum glucose agar plates. These plates contained 2% glucose and Vogel Bonner Concentrate (4). The water used in this medium and all reagents came from a polymetric system. Plates were incubated, upside down in the dark at 37 C for 48 hours. Plates were prepared in triplicate and the average revertant counts were recorded. The corresponding number of revertants obtained was compared to the number of spontaneous

revertants; the conclusions were recorded statistically. A correlated dose response is considered necessary to declare a substance as unutagen. Commoner (5), in his report, "Reliablilly of Bacterial Mutagenesis Techniques to Distinguish Carcinogenic and Non-Carcinogenic Chemical," and McCann et al (1) in their paper, "Detection of Carcinogens as Mutagen: Assay of over 300 Chemicals," have concurred on the test's ability to detect mutagenic potential.

Statistical Analysis

Quantitative evaluation was ascertained by two independent methods. Ames et al (2) assumed that a compound which caused twice the spontaneous reversion rate is mutagenic. Commoner (5), developed the MUTAR Ratio, which is stated in the following equation:

MUTAR =
$$(E - C)/C_{AV}$$

llere, C is the number of spontaneous revertant colonics on control plates obtained on the same day and with the same treatment and strains. E is the number of revertants in response to the compound; C_{AV} is the number of spontaneous revertants on control plates calculated from historical records. The explanation of the results of this equation can be determined by the method of Commoner (5). This variation determines the probability of correctly classifying substances as carcinogens on the basis of their mutagenic activity. The E values were recorded by strain, with and without S-9. Values for C and C_{AV} were recorded separately.

We used the formula and logged all values for our permanent records.

RESULTS

On 10 June 1980, our laboratory conducted an Ames Assay on N-(n-octyl) - glutarimide and observed toxicity in the initial dilutions of 1×10^{-3} and 2×10^{-4} ml/plate. We also observe isolated incidences of toxicity at the 1.6×10^{-6} ml/plate concentration. Consequently, we decided to run another assay using 1×10^{-4} ml/plate as the initial dose. This assay was run on 7 July 1980. We could not draw conclusive results from this second assay because there were several scattered incidences of mutagenic activity. To verify our results, we performed the test again on 11 December 1980.

In the experiment performed on 10 June 1980, spontaneous reversion values were below those suggested by Ames et al (2) for activated TA 98, TA 100 and TA 1535 and nonactivated TA 98, TA 100, TA 1535 and TA 1538 (Table 1A). On 7 July 1980, the spontaneous reversion values were below those suggested by Ames et al (2) for TA 1535 and TA 100 when activated. The results were the same for nonactivated TA 98, TA 100, and TA 1535, and TA 1538 (Table 1B). On

ll December 1980 the reversion values were below suggested levels for activated and nonactivated TA 98 and TA 100 and nonactivated TA 1538 The spontaneous reversion values below those suggested (Table 1C). by Ames et al (2) are indicative of high quality water, materials, techniques, etc; whereas, levels above the suggested range are indicators of serious assay performance problems. All the sterility and quality controls were normal for all the assays (Table 1A-1C). The positive controls were normal on 10 June 1980 and 7 July 1980 (Table 2A-B). TA 98 and TA 1538 did not respond as expected to positive control chemical dimethyl benzanthracene (DMBA) on 11 December 1980 (Table 2C). Our data are still valid because these two strains responded to aminofluorene (AF) and benzo(<)pyrene (BP) which function similarly (Table 2C). The toxicity test was performed on 2 May 1980 (Table 3). In that assay, the sublethal dose was determined to be 1×10^{-4} ml/plate (Table 4).

DISCUSSION

While surveying the mutagenic potential N-(n-octyl)-glutarimide, the initial results were inconclusive. The assay of 10 June 1980 and 7 July 1980 demonstrated isolated incidences of mutagenic activity. On 11 December 1980, we decided to perform the assay again. On 10 June 1980, twice the number of revertants were yielded experimentally, as were demonstrated spontaneously for activated TA 1538 at the 1.6×10^{-6} dose (Table 5A). For the assay of 7 July 1980, mutagenic activity for the nonactivated TA 1535 was determined to be 1.6x10 ml/plate level and activated TA 1535 at the 4×10^{-6} and 3.2×10^{-6} ml/plate dosc levels. The same was observed for nonactivated TA 1538 at the 2x10⁻⁴ ml/plate doses (Table On 11 Dec 80, only a_pumerical suggestion of mutagencity for activated TA 1535 at the 2×10^{-5} and 3.2×10^{-6} ml/plate dose levels was observed (Table 5C). Our MUTAR values (Table 6A-6C) are well below the necessary 1.5 level needed to declare a substance mutagenic. Only activated TA 1538 at the 1.6x10 ml/plate dose on 10 June 1980 demonstrated a value greater than 1.5.

CONCLUSION

In order for a substance to be mutagenic according to the Ames Test, two criteria must be met. There must be two times the number of experimental revertants as spontaneous revertants; and, an obvious dose response must be evident. There only two isolated incidences of twice the spontaneous reversion rate, therefore, N-(n-octyl)-glutarimide does not appear to function as a mutagen.

RECOMMENDATION

We recommend that N-(n-octyl)-glutarimide be tested using other test systems if efficacy tests show this chemical to be a promising repellent.

REFERENCES

- 1. McCANN, J., E. CHOI, E. YAMASAKI, and B. N. AMES. Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals. Proc Nat Acad Sci, USA 72:5135-5139, 1975
- 2. AMES, B. N., J. McCANN and E. YAMASAKI. Methods for detection carcinogens and mutagens with Salmonella/mammalian microsome mutagenicity test. Mutation Res 31: 347-364, 1975
- 3. LAIR SOP OP-STX-1, Ames Salmonella/mammalian microsome mutagenicity test, 1 March 1981
- 4. VOGEL, H. J. and D. M. BONNER. Acetylornithinase of E. coli: Partial purification and same properties. J Biol Chem 218: 97-106, 1956
- 5. COMMONER, B. Reliability of the bacterial mutagenesis techniques to distinguish carcinogenic and non-carcinogenic chemicals. EPA 600/1 76-022, 1976

LIST OF TABLES

	n.	
Table	1A Quality Control of Tester Strains Worksheet 10 June 1980	age 8
Table	1B Quality Control of Tester Strains Worksheet 7 July 1980	9
Table	1C Quality Control of Tester Strains Worksheet 11 Dec 1980	10
Table	2A Positive Control Revertant Rate 10 June 1980	11
Table	2B Positive Control Revertant Rate 7 July 1980	12
Table	2C Positive Control Revertant Rate 11 December 1980	13
Table	3 Strain Verification for Toxicity Level Determination 2 May 1980	14
Table	4 Toxicity Level Determination 2 May 1980	15
Table	5A Salmonella/Microsome Assay Worksheet 10 June 1980	16
Table	5B Salmonella/Microsome Assay Worksheet 7 July 1980	17
Table	5C Salmonella/Microsome Assay Worksheet 11 December 1980	18
Table	6A Mutagenic Activity Ratio 10 June 1980	19
Table	6B Mutagenic Activity Ratio 7 July 1980	20
Table	6C Mutagenic Activity Ratio 11 December 1980	21

APPENDIX

TABLE - 1 A

QUALITY CONTROL OF TESTER STRAINS WORKSHEET Salmonella/Microsome Assay

10 June 80	•	Sa 1#	one l'	la/Mic	rosome	Assay				
Strain No.		tidine (a) i		icilli istanc		uvr-l	B (c)	rta C Viole	rystal t	Stantaty Control (
TA 98		+		+		+		13.35	5	NТ
TA 100		+		+		+		14.72		NT
TA 1535		+		NA		+		15.35	5	NT
TA 1537		+	2	23.75		+		14.12	2	NT
TA 1538		+		NA		+		14.58	3	NT
WT	GI	ROWTH		NA	,]	GRON	тн_	NA		NA
		QU	IAL I T	r CONT	ROL (e)				
His-Bio mix	In	itial: NT		End:	NT		Te	est Com	cound 1	:'16
Top Agar	In	itial: NT	_	End:	NT					: VA
S - 9		itial: NT			NT					: NA
		+					•			: NA
MGA Plate w/										
(a) + = no gr - = zone of i side of plate growth (growt	onth nhibi	(requires ni tion of appr) + = zone c icates conta	stid exima of in mina	ine for ately nibitition);	r grow 16mm; on app NT=no	tn); (c) + roxima: t teste	(b) + = no (tely le ed; No	= no zai growth d 4mm dia	ne of integration in the second in the secon	nn:Dition, diated (e) + = ro
		Spo	intane	eous R	eventa	nts (1)			
Strain (1)	Avg	Range	No	S-9		Avg		S-9		Avg
TA 98	40	30-50	21	23	17	20	19	26	25	23
TA 100	160	120-200	99	121	116	112	120	67	76	83 .
TA 1575	20	10-35	10	9	6	8	6	4	4	5
TA 1537	7	3- 15	9	5	3	8	5	11	10_	9
TA 1539	25	15-35	8	11	6	8	18	21	15	18
Ames, B.H.,	J. McC	ann and E.	'amas	aki.	Mutat.	Res.	31:347			
Test Inocula	ted By	: White, S	umner	s, Pul	lliam_		Date:	10_	June 80	·

Test Read By: Pulliam Date: 11 June 90

TABLE - 1 B

QUALITY CONTROL OF TESTER STRAINS WORKSHEET Salmonella/Microsome Assay

7 July 80		_								_
Strain No.		idine (a) i irements		cillir stance		uvr-b Delet	(c) ion	rfa Cr Violet	stal	Starility Control (e
TA 98		+		+		+_		13.6	8	ar
TA 100		+		+		+		14.5	8	nt
TA 1535 *	}	+		NA		+		13.4	4	nt
TA 1537		+ .		25.89		+		19.3	2	NT
TA 1538		+		NA		+		14.2	0	117
NT	GRO)WTH		NA		GROST	н	MA		NA
		<u> </u>	ALITY	CONT	POL (e)				
His-Bio mix	Ini	tial: NT		End:	NT		Te	est Comp	cund 1	: <u>NG</u>
Top Agar	Iní	tial: NT		End:	_NT		Te	est Comp	ound 2	: <u>MA</u>
S - 9	Ini	tial: NT		End:	NT		. Te	est Comp	cound 3	: <u>NA</u>
Diluent:		+		Nutrie	ent Br	oth:	Te	est Cpmp	ound 4	: <u>'\A</u>
MGA Plate w/	bacter	ía:+		MGA P	late:_	+	Te	est Comp	ound 5	: <u>. NA</u>
(a) + = no gr - = zone of i side of plate growth (growt	nhibit ; (d)	ion of appr + ≈ zone o cates conta	roxima of int uminat	itely ibition);	16mm; on app NT=no	(c) + roximat t teste nts (1	= no q tely 14 ed; NG:) * gr	growth o Amm diam and grow	on irra meter; wth; WT TA 15:	diated (e) + = no
	Avg	Range	No	5-9	·	Avg	1	5-9	er cuit	Avg
(1) TA 93	40	30-50	16	15	24	18	30	35	31	32
TA 100	160	120-200	99	44	52	65	122	98	112	1111
TA 1535	20	10-35	12	10	1	8	4	10	8	7
TA 1537	7	3-15	4	7_	0	4	7	9	8	8
TA 1533	25	15-35	7	6	4	6	16	15	15	15
Ames, B.N.,	J. McCa	nn and E.	Yaması	aki.	Mutat.	Res.	3 1 : 347			
Test Inocula	ted By	: <u>F. Pul</u>	liam				Date:	7_Ju	1 80	
Test Read By	:	F. Pul	liam				_Date:	8 Ju	1 <u>v 80</u>	

TABLE - 1C

QUALITY CONTROL OF TESTER STRAINS WORKSHEET Salmonella/Microsome Assay

11 Dec 80				•		•				
Strain No.		idine (a)		cillir stans		uvr-t	(c)	rfa Cr Violet		Sterility Control (e
TA 98	1	+		+		+		15.74	1	NG
TA 100	4 co	lonies +		+		+		15.42mm		NG
TA 1535		+		NA		+		16.19	חציו	NG
TA 1537	1 co	lony.+		25.41		+		15.58	רוות	NG
TA 1538	4 co	lonies +		NA		+		15.69	וייייוו	NG
.VT	GRO	WTH		NA		GROW	тн	NA		NA
		QUA	ALITY	CONTR	<u> </u>	e)				
His-Bio mix	Ini	tial:+	_	End:	+		Te	est Comp	ound 1	: <u>46</u>
Top Agar	Ini	tial:+	_	End:	+		Te	est Comp	ound 2	: NG
s - 9	Ini	tial:+	_	End:	+		. Те	est Comp	round 3	: NA
Diluent: ETO	1 +	DMSO +		Nutrie	ent Bro	oth: <u>+</u>	те	est Cpmp	ound 4	: NA
MGA Plate w/ I	bacter	ia:+		MGA P	late:_	+	те	est Comp	ound 5	: <u>NA</u>
(a) + = no gr - = zone of is side of plate growth (growt	nhibit : (d)	ion of appro + = zone o cates contai	oxima f inh minat	itely inition in the state of t	l6mm; on app NT=no	(c) + roximat	= no g tely 14 ed; NG:	growth o	on irra meter:	diated (e) + = no
Strain (1)	Avg	Range	No	\$-9		Avg		S-9		Ávg
TA 98	40	30-50	19	16	15	17	26	22	16	2:1
TA 100	160	120-200	111	98	123	111	101	111	116	109
TA 1535	20	10-35	24	20	10	18	11	13	9	11
TA 1537	7	3-15	5	7	8_	7	6	7	8	7
TA 1538	25	15-35	5	16	14	12	12	17	17	15
Ames, B.N., J	I. McC	ann and E. Y	amasa	aki.	Mutat.	Res.	31:347			
Test Inocula	ted By	Sauers, Summers,					Date:	11 De	ec 80	- Anna de la compansa
Test Read By:	:	Sauers				- 1 - 1 - 1	Date:	11 De	ec 80	

TABLE 2-A

POSITIVE CONTROL REVERTANT RATE

Date	Strain	Strain Spontaneous Rev		AF	MNNG	BP	LUBA	Re-	Init
pate	30241	S-9	No S-9	S-9	No S-9	S-9	S- 9	sponse (a)	
10 June	TA 98	23	20	TNTC		95	102	+	
u	TA 100	88	112	TNTC	титс*	252	TNTC	+	
	TA 1535	5	8		TNTC**			+	
11	TA 1537	9	8			108	78_	+ _	
11	TA 1538	18	8	TNTC		125	41	+	
* dose	of MMN	for TA	100 was	2uq				<u> </u>	
** dos	of MMN	for TA	1535 wa	s 20ug					
							<u> </u>		
							<u> </u>	<u> </u>	
								<u> </u>	
							<u> </u>		
		<u> </u>							
		1							

(a) + = expected result, - = unexpected result (see discipline note)

TABLE 2-B
FOSITIVE CONTROL REVERTANT RATE

Date	Strain	Spontan	eous Rev	AF	MNNG	BF	LUBA	Re -	Init
Late	ate Strain		No S-9	S- 9	No S-9	S-9	S-9	sponse (a)	11:10
7 July	TA 93	32	18	THTC		39	130	+	
	TA 100	111	65	THTC	<u> </u>	TNTC	THTC	+	
	TA 1535	7	8		TNTC:			+	
	TA 1537	8	4			89	44	+	
<u>"</u>	TA 1538	15	6	TNTC		65	46	+	
					<u> </u>				
						<u></u>			
	}								
		1							
								1	ļ
							[
		1							!
			Ţ- -				İ		
	1						!		

(a) + = expected result, - = unexpected result (see discipling note)

TABLE 2- C

POSITIVE CONTROL REVERTANT RATE

Date	Strain	Spontan	eous Rev	AF	MNNG	BP	DIBA	Re-	Trit
Late	3013111	S-9	S-9 No S-9		No S-9	S- 9	S-9	Re- sponse (a)	
11 Dec	TA 98	21	17	665		94	24	<u> </u> -	
	TA 100	109	111	538	4,107	415	220	-	
**	TA 1535	11	18		2,222		<u> </u>	+	
"	TA 1537	7	7			30	17	+	
"	TA 1538	15	12	823		60	13		
	<u> </u>								
								1	
	1]			1			1	
								1	
								T	1
								i	
								İ	
									
		1					 	-	i
(2)	<u> </u>	<u> </u>	<u> </u>	<u>'</u>	<u>' </u>	<u> </u>	<u> </u>	!	

(a) += expected result, -= unexpected result (see discipling note)
TA 93, TA 100, and TA 1533 showed an unexpected low response to DMBA.

TABLE - 3

STRAIN VERIFICATION FOR TOXICITY LEVEL DETERMINATION Salmonella/Microsome Assay

Strain No.	Histidine (a) Requirements	Ampicillian (b) Resist <mark>ance</mark>	uvr=B (c) Deletion	rfa Crysta Violet (d)	Sterility Control (e)
TA 100	+	+	+	16mm	+
TA 1537	+	21mm	+	16mm	+
WT	NT	NT	NT	NT	NT
Diluent	NT	ντ - τ	NT	NT	NT
Test Compound (s)				
#1N-Hexy1-		NT	NT	NT	+
oxazolid #2N-octyl- glutarim	NT	ит	NT	NT	+
#3		NT	NT	NT	
#4	NT	NT	NT	NT	
#5	NT	TN	NT	NT	
<pre>- = zone of side of plate</pre>	inhibition of ape; (d) + = zone	histidine for gr pproximately 16mm of inhibition ap contamination); N	; (c) + = no proximately 1	growth on i Amm diameter	rratiated ; (e) + =
	Sį	oontaneous Revert	ants		
Strain	Average Ra	inge			Average
TA 100	160 120	S-9)-200 NOS-9	99	81 77 77 94	86 88

Test Inoculated By:	F. Pulliam	Date: 2 May 1980
Test Read By:	F. Pulliam	Date: 4 May 1980

TABLE - 4

TOXICITY LEVEL DETERMINATION Salmonella/Microsome Assay

Substance a	issayed:	(1) N-octyl	-glutarimi	<u>de</u> (2)	 	
(3)		(4)		(5)	
Date: 2 M	lay 1930	Perfor	med by:	Pulliam	· · · · · · · · · · · · · · · · · · ·	
Substance o	dissolved	in: (1) <u>E</u> T	TOH (2)		(3)	
(4)	(5)		Visua	l estimatio ent Agar Pl	n of background ates: NG = no ST = sli	i lawn on growth ight growth rmal growth
Test Compos		Plate #1	Reverta	TA 100 nt Plate Co		Background
0.1		Toxic	Toxic	Toxic	7,70, 490	Lumi
0.01		Toxic	Toxic	Toxic		
0.001		Toxic	Toxic	Toxic		
0.0001		1	Toxic	Toxic		
0.1	NOS-9	Toxic	Toxic	Toxic		
0.01		Toxic	Toxic	Toxic		
0.001		uneven lawn l	Toxic	Toxic		
0.0001		76	89	85	83	
						
	·					

TABLE - 5A SALMONELLA/MICROSOME ASSAY WORKSHEET (POSITIVE CONTROLS/TEST COMPOUND)

	Substance Assa	ayed: (1) <u>oct</u>	yl glu	tarimic	te	(2)				
	(3)		(4	1)			(5)				
	Date: 10 June	80	 	Perf	ormed E	By: <u>Pull</u>	liam, Sau	uers. Sur	mers_		
	Substance diss	solved	in: ([1]	ETOH		(2))			
	(3)		(4)			(5)				
			•	# R	<u>evertar</u>	nt/Plate	<u>-</u>				
Sub	Conc	98	98A	100	100A		1535A	1537	1537A	1538	1538A
1	0.001	Toxic	12	Toxic	47		Toxic	Toxic	Toxic	Toxic_	J
1	2 X 10-4	Toxid	15	Toxic	41	Toxic	1 .	6	3	9	10
1	4 x 10-5	8	14	31	41	2	7	9	4	10	12
1	8 x 10-6	20	28	94	85	7	3	8	2	9	_10
1	1.6 x 10 -6	Toxid	17_	17	43	Toxic	3	5	6	Toxic	51
1	3.2 X 10-7	32	31	97	99	7	Toxic	- 11	11	9	_13
			-								
								— 4——			
		1									
		11									
		1									
		11									
		1									
		1									
	 	1								†	
		1									
	<u> </u>										

TABLE - 5B

SALMONELLA/MICROSOME ASSAY WORKSHEET
(POSITIVE CONTROLS/TEST COMPOUND)

	Substance Assay	yed: (1) <u>oc</u>	tyl-glu	utarimi	<u>de</u> (2)				
	(3)		(4)			(5) _				
	Date: 7 July 1	1980		_ Perf	ormed B	y: Pull	iam, Sau	ers, Kel	lner, Su	ummers	
	Substance disso	olved	in: (1)	ЕТОН		(2)				
	(3)		(4)			(5)		<u></u>		
			•	# R	evertan	t/Plate	<u>.</u>				
Sub	Conc	98	98A	100	100A	1535	1535A	1537	1537A	1538	1538A
1	0.0001	19	33	86	89	13	8	4	6	7	8
1_	2 x 10 ⁻⁵	32	38	102	98	8	12	3	10	13	15
_ 1	4 x 10 ⁻⁶	29	32	100	147	8	19	6	7	10	18
1	8 x 10 ⁻⁷	28	24	109	92	8	_11	8	6	6	17
1	1.6 x 10 ⁻⁷	22	32	101	127	20	10	66	5	9	19
1	3.2 x 10 ⁻⁸	23	22	101	110	9	19	7	7	44	14
											_
			-								· · · ·
	T										
	}	1]			j i		1		11		

TABLE - 5C

SALMONELLA/MICROSOME ASSAY WORKSHEET (POSITIVE CONTROLS/TEST COMPOUND)

Substance Assayed: (1) octyl glutarimide (2)

	(3)		(4)			(5) _				
	Date: 11 Dec 8	30		_ Perf	ormed B	y: <u>Saue</u>	rs, Pull	iam, Kel	lner. S	ummers	
	Substance disse	olved	in: (1)	ЕТОН		(2)				
	(3)		(4)			(5)		· · · · · · · · · · · · · · · · · · ·		
				# R	evertan	t/Plate	<u>!_</u>				
Sub	Conc	98	98A	100_	100A	1535	: 1535A	1537	1537A	1539	1538A
1_1	0.0001	20	22	107_	87	18	20	3	5	9	7
1	2 x 10 ⁻⁵	20	23	89	125	28	23	5	6		12
1	4 x 10 ⁻⁶	21	26	117	115	21	21	6	44	8	15
1	8 x 10 ⁻⁷	19	15	120	105	_17_	21	5	2	9	_10
1	1.6 x 10 ⁻⁷	11	23	97	95	24	18	3	8	10	15
1	3.2 x 10 ⁻⁸	22	21	105	93	20	23	4	6	8	19
ļ	ļ										
	·							·			
		ļ									
ļ											
	ļ										
ļ. .											
! -											,
				-							
 	<u></u>										
	1						ļ		j		

TABLE - 6A

MUTAGENIC ACTIVITY RATIO Salmonella/Microsome Assay

Substan	nce Assayed: N-octyl-	glutarimide	Dissolved	in: ETOH
Date:_	10 June 1980	Performed by:	Pulliam	

Concentration	Strain	MUTAR	MUTAR act	Concentration	Strain	MUTAR	MUTAR act
0.001	TA 98	*	*	8 x 10 ⁻⁶	TA 1535	*	*
2 x 10 ⁻⁴	TA 98	*	*	1.6 x 10 ⁻⁶	TA 1535	*	*
4 x 10 ⁻⁵	TA 98	*	*	3.2 x 10 ⁻⁷	TA 1535	*	*
8 x 10 ⁻⁶	TA 98	*	0.19				
1.6 x 10 ⁻⁶	TA 98	*	*	0.001	TA 1537	*	*
3.2 x 10 ⁻⁷	TA 98	0.52	0.31	2 x 10 ⁻⁴	TA 1537	*	*
				2 x 19 ⁻⁵	TA 1537	0.16	*
0.001	TA 100	*	*	8 x 10 ⁻⁶	TA 1537	*	*
2 x 10 ⁻⁴	TA 100	*	*	1.6 x 10 ⁻⁶	TA 1537	*	*
4 x 10 ⁻⁵	TA 100	*	*	3.2 x 10 ⁻⁷	TA 1537	0.49	0.27
8 x 10 ⁻⁶	TA 100	*	*				
1.6 x 10 ⁻⁶	TA 100	*	*	0.001	TA 1538	*	*
3.2 x 10 ⁻⁷	TA 100	*	0.10	2x 10 ⁻⁴	TA 1538	*	*
				4 x 10 ⁻⁵	TA 1538	0.12	*
0.001	TA 1535	*	*	8 x 10 ⁻⁶	TA 1538	*	*
2 x 10 ⁻⁴	TA 1539		*	1.6 × 10 ⁻⁶	TA 1538	*	1.93
4 x 10 ⁻⁵	TA 1539		0.21	3.2 x 10 ⁻⁷	TA 1538	0.24	*

 $[\]star$ Calculated value resultes in a negative MUTAR

TABLE - 6B

MUTAGENIC ACTIVITY RATIO
Salmonella/Microsome Assay

Substance Assayed: N-octyl-	glutarimide	Dissolved in:	НОТЗ
Date: 7 July 1980	Performed by:	Pulliam	

Concentration	Strain	MUTAR	MUTAR act	Concentration	Strain	MUTAR	MUTAR ac†
0.0001	TA 98	0.04	0.04	8 x 10 ⁻⁷	TA 1535	*	0.43
2 x 10 ⁻⁵	TA 98	0.61	0.23	1.6 x 10 ⁻⁷	TA 1535	0.9	0.37
4 x 10 ⁻⁶	TA 98	0.48	*	3.2 x 10 ⁻⁸	TA 1535	0.08	1.28
8 x 10 ⁻⁷	TA 98	0.43	*				
1.6 x 10 ⁻⁷	TA 98	0.17	*	0.0001	TA 1537	*	*
3.2 x 10 ⁻³	TA 98	0.22	*	2 x 10 ⁻⁵	TA 1537	*	0.27
				4 x 10 ⁻⁶	TA 1537	o.33	*
0.0001	TA 100	0.20		8 x 10 ⁻⁷	TA 1537	0.66	*
2 x 10 ⁻⁵	TA 100	0.35	*	1.6 x 10 ⁻⁷	TA 1537	0.33	*
4 X 10 ⁻⁶	TA 100	0.33	0.32	3.2 x 10 ⁻⁸	TA 1537	0.49	*
8 x 10 ⁻⁷	TA 100	0.41	*				
1.6 x 10 ⁻⁷	TA 100	0.34	0.14	0.0001	TA 1538	0.12	0.17
3.2 x 10 ⁻⁸	TA 100	0.34	*	2 x 10 ⁻⁵	TA 1538	0.84	*
				4 x 10 ⁻⁶	TA 1538	0.48	0.17
0.0001	TA 1539	0.38	0.11	8 x 10 ⁻⁷	TA 1538	*	0.12
2 x 10 ⁻⁵	TA 1535	*	0.53	1.6 x 10 ⁻⁷	TA 1538	0.36	0.23
4 x 10 ⁻⁶	TA 1535	*	1.28	3.2 x 10 ⁻⁸	TA 1538	*	*

^{*} Calculated value resulted in a negative MUTAR

TABLE - 6C

MUTAGENIC ACTIVITY RATIO
Salmone Na/Microsome Assay

Substance Assayed: octyl gl	utarimide	Dissolved in:	ETOH
Date: 11 Dec 80	Performed by:	Sauers, Pulliam	

Concentration	Strain	MUTAR	MUTAR act	Concentratio:	Strain	MUTAR	MUTAF act
0.0001	TA 98	0.13	0.04	8 x 10 ⁻⁷	TA 1535	*	1.06
2 x 10 ⁻⁵	TA 98	0.13	0.08	1.6 x 10 ⁻⁷	TA 1535	0.45	0.74
4 x 10 ⁻⁶	TA 98	0.17	0.19	3.2 x 10 ⁻⁸	TA 1535	0.15	1.28
8 x 10 ⁻⁷	TA 98	*					
1.6 x 10 ⁻⁷	TA 98	*	0.08	0.0001	TA 1537	*	*
3.2 x 10 ⁻⁸	TA 98	0.22	*	2 x 10 ⁻⁵	TA 1537	•	*
				2 x 10-6	TA 1537	*	*
0.0001	TA 100	*	<u>*</u>	8 x 10 ⁻⁷	TA 1537	*	*
2 x 10 ⁻⁵	TA 100	*	0.14	1.6 x 10 ⁻⁷	TA_1537	*	0.13
4 x 10 ⁻⁶	TA 100	0.07	0.05	3.2 x 10 ⁻⁸	TA_1537	*	*
8 x 10 ⁻⁷	TA 100	80.0	*				
1.6 x 10 ⁻⁷	TA_100	*	<u>.</u>	0.0001	TA 1538		<u>.</u>
3.2 x 10-8	TA_100	*	*	2 x 10 ⁻⁵	TA_1538_	*	*
				4 x 10 ⁻⁶	TA 1538	*	
0.0001	TA 1535	*	0.95	8.x.10 ⁻⁷	IA_1538	*	0.06
2 x 10-5	TA 1535	0.68	1.28	1.6 x 10 ⁻⁷	TA 1538	8	*
4 x 10 ⁻⁶	TA 1535	0.23	1.06	3.2×10^{-8}	TA 1538	*	0.23

^{*}Calculated value resulted in a negative MUTAR

OFFICIAL DISTRIBUTION LIST

(12 copies)

Comander

US Army Medical Research and Development Command

ATTN: SGRD-SI/ Mrs. Madigan Fort Detrick, Frederick MD 21701

Defense Technical Information Center

ATTN: DTIC-DDA Cameron Station Alexandria VA 22314

Director of Defense Research and Engineering ATTN: Assistant Director, Environmental and

Life Sciences
Washington DC 20301
The Surgeon General

ATTN: DASG-TLO Washington DC 20314

HQ DA (DASG-ZXA) WASH DC 20310

Superintendent Academy of Health Sciences

ATTN: AHS-COM

Fort Sam Houston TX 78234

Assistant Dean Institute and Research Support

Uniformed Services University of Health Sciences

6917 Arlington Road Bethesda MD 20014

Commander

US Army Environmental Hygiene Agency Aberdeen Proving Ground MD 21070

US Army Research Office

ATTN: Chemical and Biological Sciences Division

P.O. Box 1221

Research Triangle Park NC 27709

Biological Sciences Division Office of Naval Research Arlington VA 22217

Director of Life Sciences

USAF Office of Scientific Research (AFSC)

Bolling AFB

Washington DC 20332

Director

Walter Reed Army Institute of Research

Washington DC 20012

Commander

US Army Medical Research Institute of Infectious

Diseases

Fort Detrick, Frederick MD 21701

Commander

US Army Research Institute of Environmental

Medicine

Natick MA 01760

Commander
US Army Institute of Surgical Research

Brooke Army Medical Center Fort Sam Houston TX 78234

Commander

US Army Institute of Dental Research

Washington DC 20012

Commander

US Army Medical Bioengineering Research and Development Laboratory

Fort Detrick, Frederick MD 21701

Commander

US Army Aeromedical Research Laboratory

Fort Rucker AL 36362

Commander

US Army Biomedical Laboratory

Aberdeen Proving Ground

Edgewood Arsenal MD 21010

Commander

Naval Medical Research Institute

National Naval Medical Center

Bethesda MD 20014

Commander

USAF School of Aerospace Medicine

Aerospace Medical Division

Brooks Air Force Base TX 78235

