Example 3

In $\triangle ABC$, the angle bisectors of $\angle B, \angle C$ meet at T, and the exterior angle bisectors of $\angle B$, $\angle C$ meet at P. Show that $\angle BPC = \frac{1}{2}(\angle ABC + \angle ACB)$. Solution: Label $\angle TBC = \angle TBA = \alpha$, $\angle TCB = \angle TCA = \beta$, $\angle CBP = \Box TCA = \beta$.

Since $2\alpha + 2\gamma = 180^{\circ}, \alpha + \gamma = 90^{\circ}.$ Thus $\angle TBP = 90^{\circ}.$ Similarly, $\angle TCP = 90^{\circ}.$

So points B, P, C, and T are concyclic and TP is the diameter of the circle. Therefore, $\angle BPT = \angle TCB = \beta, \angle CPT = \angle TBC = \alpha$.

 $\angle BPC = \alpha + \beta = \angle TBC + \angle TCB$ $= \frac{1}{2}(\angle ABC + \angle ACB).$