Statistical Foundations of Learning

Debarghya Ghoshdastidar

School of Computation, Information and Technology Technical University of Munich k-Nearest Neighbour Classification

Outline

- k-nearest neighbour classification
 - Generalisation error of k-NN for finite k as $m \to \infty$
- Consistency / Universal consistency: Asymptotically achieving Bayes risk
- Plug-in classifiers
 - Stone's theorem: Universal consistency of plug-in classifiers
 - Universal consistency of k-NN rule
 - Proof of Stone's thoerem

Nearest neighbour rule

- Assume $\mathcal{X} \subset \mathbb{R}^p$ and we use Euclidean distance ||x x'||
- Given $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$
- Nearest neighbour and k-nearest neighbour rules:
 - For test data $x \in \mathcal{X}$, sort x_1, \ldots, x_m according to $||x x_i||$
 - $\pi_k(x) \in [m]$ such that $x_{\pi_k(x)}$ is k-th nearest neighbour of x

$$||x - x_{\pi_1(x)}|| \le ||x - x_{\pi_2(x)}|| \dots \le ||x - x_{\pi_m(x)}||$$

• $h_S^{NN}(x) = y_{\pi_1(x)}$ and $h_S^{kNN}(x) = \text{majority vote of } y_{\pi_1(x)}, \dots, y_{\pi_k(x)}$

There can be ties (not discussed here)

Nearest neighbour rule

- \bullet Finite m: Decision boundary depends significantly on S
- Large m: Can learn very complex decision boundaries (more complex for k > 1)

Recap: Bayes risk

Learning problem characterised by:

$$\mathcal{D} = \mathcal{D}_{\mathcal{X}} \times \underbrace{\mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y|x)}_{\text{marginal of features}} \times \underbrace{\mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y|x)}_{\text{conditional probability of label}}$$

- $\bullet \ \eta(x) = \mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y=1|x)$
- Bayes risk $L_{\mathcal{D}}^* = \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} \left[\min \{ \eta(x), 1 \eta(x) \} \right]$
- Bayes risk is smallest possible risk / generalisation error for a learning problem
- \bullet Bayes risk achieved by Bayes classifier (needs knowledge of $\eta)$

Example: Performance of k-NN rule

• Predicting software crash:

$$\mathcal{D}_{\mathcal{X}} = \text{Uniform}[0, 1]$$
 and 0.425
 0.400
 0.375
 0.350
 0.325
 0.300
 0.275
 0.250
 0.250
 0.250
 0.300
 0.275
 0.250
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300
 0.300

and
$$\eta(x) = |1 - 2x|$$

- Test error of k-NN for different values of m and k
 - Test data has 5000 samples
 - \bullet Errors averaged over 25 trials
- We will try to explain these results mathematically

Expected generalisation error for NN rule

Theorem kNN.1 (Asymptotic expected risk of NN rule)

- Define $L_{\mathcal{D}}^{NN} = \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} \left[2\eta(x) (1 \eta(x)) \right]$ $As \ m \to \infty, \ \mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}} \left(h_S^{NN} \right) \right] \longrightarrow L_{\mathcal{D}}^{NN}$
- Comparison with Bayes risk: $L_{\mathcal{D}}^* \leq L_{\mathcal{D}}^{NN} \leq 2L_{\mathcal{D}}^*$

- Easy to verify 2^{nd} statement (exercise)
- We will prove the 1^{st} statement (under some assumptions)

Expected generalisation error of k-NN

Theorem kNN.2 (Asymptotic expected risk of k-NN rule)

- Assume k is fixed
- Define $L_{\mathcal{D}}^{kNN} = \lim_{m \to \infty} \mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}} \left(h_S^{kNN} \right) \right]$ (limit exists)

$$L_{\mathcal{D}}^* \leq L_{\mathcal{D}}^{kNN} \leq \left(1 + \frac{2}{\sqrt{k}}\right) L_{\mathcal{D}}^*$$

- Proof skipped. Similar to proof for k = 1 (more involved)
- Result suggests that we need $k \to \infty$ to get close to Bayes risk

Intuition why NN (or k-NN) works

- Let $x_1, x_2, \ldots, x_m \sim_{iid} \mathcal{D}_{\mathcal{X}}$. Consider some x.
- Intuition: For large m, $x_{\pi_1(x)}, \dots x_{\pi_k(x)}$ are arbitrarily close to x. Hence, the label of x is likely to be same as $y_{\pi_1(x)}, \dots, y_{\pi_k(x)}$.
- Bit more formal:

If
$$\frac{k}{m} \to 0$$
 as $m \to \infty$, then $x_{\pi_1(x)}, \ldots, x_{\pi_k(x)} \to x$ in probability

• Convergence in probability: A sequence of random variables z_1, z_2, \ldots is said to converge to random variable x in probability if, for every $\epsilon > 0$, $\lim_{m \to \infty} \mathbb{P}(\|z_m - x\| > \epsilon) = 0$.

Formal proof of Theorem kNN.1 (under assumptions)

- Goal: Show $\mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}} \left(h_S^{\text{NN}} \right) \right] \to \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} [2\eta(x)(1 \eta(x))] \text{ as } m \to \infty$
- $\ell = 0\text{-}1 \text{ loss} \implies L_{\mathcal{D}}(h_S^{NN}) = \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\mathbf{1} \left\{ y \neq y_{\pi_1(x)} \right\} \right]$
- $S = \{(x_1, y_1), \dots, (x_m, y_m)\} \sim \mathcal{D}^m$, and test data $(x, y) \sim \mathcal{D}$
 - View as $x, x_1, \ldots, x_m \sim_{iid} \mathcal{D}_{\mathcal{X}}$ generated first
 - Then labels generated according to $\eta(\cdot)$

$$\mathbb{E}_{S \sim \mathcal{D}^{m}} \left[L_{\mathcal{D}} \left(h_{S}^{\text{NN}} \right) \right] = \mathbb{E}_{S,(x,y) \sim \mathcal{D}^{m+1}} \left[\mathbf{1} \left\{ y \neq y_{\pi_{1}(x)} \right\} \right]$$

$$= \mathbb{E}_{x,x_{1},\dots,x_{m}} \left[\mathbb{E}_{y,y_{1},\dots,y_{m}} \left[\mathbf{1} \left\{ y \neq y_{\pi_{1}(x)} \right\} \mid x,x_{1},\dots,x_{m} \right] \right]$$

Proof of Theorem kNN.1 (continued)

• Conditioned on $x, x_{\pi_1(x)}$, labels y and $y_{\pi_1(x)}$ are independent

$$\mathbb{E}_{y,y_1,\dots,y_m} \left[\mathbf{1} \left\{ y \neq y_{\pi_1(x)} \right\} \mid x, x_1,\dots,x_m \right] = \eta(x) (1 - \eta(x_{\pi_1(x)})) + (1 - \eta(x)) \eta(x_{\pi_1(x)})$$

• Need to show: As $m \to \infty$,

$$\mathbb{E}_{x,x_1,...,x_m} \left[\eta(x) (1 - \eta(x_{\pi_1(x)})) + (1 - \eta(x)) \eta(x_{\pi_1(x)}) \right] - \mathbb{E}_x \left[2\eta(x) (1 - \eta(x)) \right] \to 0$$
 Equivalently,

$$\left| \mathbb{E}_{x,x_1,\dots,x_m} \left[\eta(x) (1 - \eta(x_{\pi_1(x)})) + (1 - \eta(x)) \eta(x_{\pi_1(x)}) - 2\eta(x) (1 - \eta(x)) \right] \right| \to 0$$

• Jensen's inequality: If f(z) is a convex function, then $f(\mathbb{E}[z]) \leq \mathbb{E}[f(z)]$ Example: $|\mathbb{E}[z]| \leq \mathbb{E}[|z|]$

Proof of Theorem kNN.1 (continued)

$$\begin{split} \left| \eta(x)(1 - \eta(x_{\pi_1(x)})) + (1 - \eta(x))\eta(x_{\pi_1(x)}) - 2\eta(x)(1 - \eta(x)) \right| \\ &= \left| (1 - 2\eta(x))(\eta(x_{\pi_1(x)}) - \eta(x)) \right| \\ &= \left| 1 - 2\eta(x) \right| \cdot \left| \eta(x_{\pi_1(x)}) - \eta(x) \right| \\ &\leq \left| \eta(x_{\pi_1(x)}) - \eta(x) \right| \qquad \text{since } |1 - 2\eta(x)| \leq 1 \text{ for all } x \end{split}$$

• Hence, suffices to show that: $\mathbb{E}_{x,x_1,\dots,x_m}\left[|\eta(x_{\pi_1(x)})-\eta(x)|\right]\to 0$

Proof of Theorem kNN.1 (adding assumptions on $\mathcal{D}_{\mathcal{X}}, \eta$)

- (A1) $\eta: \mathcal{X} \to [0,1]$ is uniformly continuous
 - Uniform continuity: η is uniformly continuous if for every $\delta > 0$, there exists $\epsilon_{\delta} > 0$ such that for every $x, x' \in \mathcal{X}$ with $||x x'|| \le \epsilon_{\delta}$, $|\eta(x) \eta(x')| \le \delta$
 - Equivalently, there exists $\epsilon_{\delta} > 0$ such that $|\eta(x) \eta(x')| > \delta \implies ||x x'|| > \epsilon_{\delta}$
- (A2) support($\mathcal{D}_{\mathcal{X}}$) = \mathcal{X}
 - Define $\mathcal{D}_{\mathcal{X}}(x;\epsilon) = \mathbb{P}_{x' \sim \mathcal{D}_{\mathcal{X}}}(\|x' x\| \leq \epsilon)$, probability mass in ϵ -neighbourhood of x
 - support($\mathcal{D}_{\mathcal{X}}$) = set of all $x \in \mathcal{X}$ for which $\mathcal{D}_{\mathcal{X}}(x; \epsilon) > 0$ for every $\epsilon > 0$
 - These assumptions are not necessary, but lead to a simpler proof

Proof of Theorem kNN.1 (continued)

• Choose any $\delta \in (0,1)$. We can write

$$\mathbb{E}\left[\left|\eta(x_{\pi_{1}(x)}) - \eta(x)\right|\right] = \mathbb{E}\left[\left|\eta(x_{\pi_{1}(x)}) - \eta(x)\right| \cdot \mathbf{1}\left\{\left|\eta(x_{\pi_{1}(x)}) - \eta(x)\right| > \delta\right\}\right] + \mathbb{E}\left[\left|\eta(x_{\pi_{1}(x)}) - \eta(x)\right| \cdot \mathbf{1}\left\{\left|\eta(x_{\pi_{1}(x)}) - \eta(x)\right| \le \delta\right\}\right] \\ \leq \mathbb{P}\left(\left|\eta(x_{\pi_{1}(x)}) - \eta(x)\right| > \delta\right) + \delta$$

• From uniform continuity of η : $|\eta(x_{\pi_1(x)}) - \eta(x)| > \delta \implies ||x_{\pi_1(x)} - x|| > \epsilon_\delta$

$$\begin{split} \mathbb{P}_{x,x_{1},...,x_{m}} \left(|\eta(x_{\pi_{1}(x)}) - \eta(x)| > \delta \right) & \leq \mathbb{P}_{x,x_{1},...,x_{m}} \left(||x_{\pi_{1}(x)} - x|| > \epsilon_{\delta} \right) \\ & = \mathbb{P}_{x,x_{1},...,x_{m}} \left(\min_{i \in \{1,...,m\}} ||x_{i} - x|| > \epsilon_{\delta} \right) \\ & = \mathbb{E}_{x} \left[\mathbb{P}_{x_{1},...,x_{m}} \left(\min_{i \in \{1,...,m\}} ||x_{i} - x|| > \epsilon_{\delta} \, \middle| \, x \right) \right] \end{split}$$

Proof of Theorem kNN.1 (continued)

• Recall x_1, \ldots, x_m are independent

$$\mathbb{P}_{x_1,\dots,x_m} \left(\min_{i \in \{1,\dots,m\}} \|x_i - x\| > \epsilon_\delta \mid x \right) = \prod_{i=1}^m \mathbb{P}_{x_i} \left(\|x_i - x\| > \epsilon_\delta \mid x \right)$$

$$= \prod_{i=1}^m \left(1 - \mathbb{P}_{x_i} \left(\|x_i - x\| \le \epsilon_\delta \mid x \right) \right)$$

$$= \left(1 - \mathcal{D}_{\mathcal{X}}(x; \epsilon_\delta) \right)^m$$

• For every $x \in \text{support}(\mathcal{D}_{\mathcal{X}}), \, \mathcal{D}_{\mathcal{X}}(x; \epsilon_{\delta}) > 0$ and so

$$(1 - \mathcal{D}_{\mathcal{X}}(x; \epsilon_{\delta}))^m \to 0 \text{ as } m \to \infty$$

• By assumption (A2), this is true for evert $x \in \mathcal{X}$. So for every $\epsilon_{\delta} > 0$

$$\mathbb{E}_{x} \left[\mathbb{P}_{x_{1},...,x_{m}} \left(\min_{i \in \{1,...,m\}} \|x_{i} - x\| > \epsilon_{\delta} \, | \, x \right) \right] \to 0 \text{ as } m \to \infty$$

Proof of Theorem kNN.1 (conclusion)

Combining everything

$$\begin{aligned} &\left| \mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}} \left(h_S^{\text{NN}} \right) \right] - L_{\mathcal{D}}^* \right| \\ &= \left| \mathbb{E}_{x, x_1, \dots, x_m} \left[\eta(x) (1 - \eta(x_{\pi_1(x)})) + (1 - \eta(x)) \eta(x_{\pi_1(x)}) - 2\eta(x) (1 - \eta(x)) \right] \right| \\ &\leq \mathbb{E}_{x, x_1, \dots, x_m} \left[|\eta(x_{\pi_1(x)}) - \eta(x)| \right] \\ &\leq \mathbb{P}_{x, x_1, \dots, x_m} \left(|\eta(x_{\pi_1(x)}) - \eta(x)| > \delta \right) + \delta \quad \text{for any chosen } \delta > 0 \end{aligned}$$

For any
$$\delta > 0$$
, $\lim_{m \to \infty} \left| \mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}} \left(h_S^{\text{NN}} \right) \right] - L_{\mathcal{D}}^* \right| \leq \delta$

Hence, limit must be zero. Concludes the proof.

Proof idea of Theorem kNN.1, kNN.2 (without assumptions)

- Use above proof till you get $\mathbb{E}_{x,x_1,...,x_m} \left[|\eta(x_{\pi_1(x)}) \eta(x)| \right]$
- Then one applies 2nd statement below with k=1, which has no assumption on $\eta, \mathcal{D}_{\mathcal{X}}$
- Proof skipped. If interested, see Lemmas 5.3-5.4 in Devroye's book

Lemma kNN.3 (Convergence of function computed on k-NN)

Let $f: \mathcal{X} \to \mathbb{R}$ be an integrable function. If $\frac{k}{m} \to 0$, then

(i)
$$\frac{1}{k} \sum_{i=1}^{k} \mathbb{E}\left[\left|f(x_{\pi_i(x)})\right|\right] \le \left(\left(1 + \frac{2}{\sqrt{2-\sqrt{3}}}\right)^p - 1\right) \mathbb{E}[\left|f(x)\right|]$$
 (Stone's lemma)

(ii)
$$\mathbb{E}_{x,x_1,\dots,x_m \sim \mathcal{D}_{\mathcal{X}}^{m+1}} \left[\frac{1}{k} \sum_{i=1}^k \left| f(x_{\pi_i(x)}) - f(x) \right| \right] \to 0 \quad \text{as } m \to \infty$$

Consistency and Universal consistency

- $\mathcal{D} = \text{distribution on } \mathcal{X} \times \mathcal{Y}$
- h_S = predictor learned by algorithm \mathcal{A} given sample $S \sim \mathcal{D}^m$
- \mathcal{A} is consistent with respect to \mathcal{D} and specified loss if

$$\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(h_S)] \to L_{\mathcal{D}}^*$$
 as $m \to \infty$

ullet A is universally consistent if it is consistent for every $\mathcal D$

Practical approach to Bayes classification

- Bayes binary classifier
 - $h^*(x) = \mathbf{1} \left\{ \eta(x) \ge \frac{1}{2} \right\}$

or,
$$h^*(x) = \text{sign}\left(\eta(x) - \frac{1}{2}\right) \in \{-1, +1\}$$

- Main challenge: $\eta(\cdot)$ not known
- Plug-in classifier:
 - $\widehat{\eta}(\cdot) = \text{estimate } \eta(\cdot) \text{ from labelled examples } S$
 - Predictor

$$\widehat{h}(x) = \begin{cases} 1 & \text{if } \widehat{\eta}(x) \ge \frac{1}{2} \\ 0 & \text{otherwise} \end{cases} \quad \text{OR} \quad \widehat{h}(x) = \begin{cases} 1 & \text{if } \widehat{\eta}(x) \ge \frac{1}{2} \\ -1 & \text{otherwise} \end{cases}$$

Example of plug-in classifier: Naïve Bayes

• From Bayes theorem:

$$\eta(x) = \mathbb{P}(y=1|x) = \frac{\mathbb{P}(y=1)\mathbb{P}(x|y=1)}{\mathbb{P}(x)} \qquad 1 - \eta(x) = \frac{\mathbb{P}(y=0)\mathbb{P}(x|y=0)}{\mathbb{P}(x)}$$

- Rewriting Bayes classifier: $h^*(x) = \mathbf{1} \{ \mathbb{P}(y=1) \mathbb{P}(x|y=1) > \mathbb{P}(y=0) \mathbb{P}(x|y=0) \}$
- A plug-in classifier: $\widehat{h}(x) = \mathbf{1} \left\{ \widehat{p}_1 \widehat{b}_1(x) > \widehat{p}_0 \widehat{b}_0(x) \right\}$
 - Easy to estimate $\mathbb{P}(y=i)$; \widehat{p}_i = fraction of training data with label-i
 - Difficult to estimate class-conditional probability/density $\mathbb{P}(x|y)$ if x is high dimensional
 - Naïve Bayes: For $x = (x^{(1)}, \dots, x^{(p)}) \in \mathbb{R}^p$, assume $\mathbb{P}(x|y=i) = \underbrace{\prod_{j=1}^p \mathbb{P}\left(x^{(j)}|y=i\right)}_{\widehat{b}_i(x) \text{ estimates this}}$

Example of plug-in classifier: NN rule

- $\widehat{\eta}(\cdot)$ as weighted average:
 - Given $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$
 - For test data x, define weights $w_1(x), \ldots, w_m(x) \in [0,1]$ with $\sum_{i=1}^m w_i(x) = 1$

$$\widehat{\eta}(x) = \sum_{i=1}^{m} \mathbf{1} \{y_i = 1\} w_i(x)$$

• NN rule: $w_i(x) = 1$ for $i = \pi_1(x)$, and 0 otherwise

$$\widehat{\eta}(x) = \mathbf{1} \left\{ y_{\pi_1(x)} = 1 \right\} \qquad \Longrightarrow \qquad \widehat{h}(x) = y_{\pi_1(x)}$$

• Questions: What are $w_1(\cdot), \ldots, w_m(\cdot)$ for kNN? Can we write Naïve Bayes in terms of weighted average?

Universal consistency of plug-in classifiers

Theorem kNN.4 (Stone's consistency theorem)

- \widehat{h} is universally consistent if weights for estimating $\widehat{\eta}$ satisfy:
- (i) $\exists c \text{ such that, for every non-negative integrable function } f \text{ with } \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}}[f(x)] < \infty,$

$$\mathbb{E}_{x,x_1,\dots,x_m \sim \mathcal{D}^{m+1}} \left[\sum_{i=1}^m w_i(x) \cdot f(x_i) \right] \le c \, \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} [f(x)]$$

(ii) For all
$$a > 0$$
, $\lim_{m \to \infty} \mathbb{E}_{x, x_1, \dots, x_m \sim \mathcal{D}^{m+1}} \left[\sum_{i=1}^m w_i(x) \cdot \mathbf{1} \left\{ \|x_i - x\| > a \right\} \right] = 0$

(iii)
$$\lim_{m \to \infty} \mathbb{E}_{x, x_1, \dots, x_m \sim \mathcal{D}^{m+1}} \left[\max_{i \in [m]} w_i(x) \right] = 0$$

k-nearest neighbour rule

- Assume $\mathcal{X} \subset \mathbb{R}^p$ and we use Euclidean distance ||x x'||
- Given $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$
- \bullet *k*-nearest neighbour rule:
 - For test data $x \in \mathcal{X}$, sort x_1, \ldots, x_m according to $||x x_i||$
 - $\pi_k(x) = \text{index for is } k\text{-th nearest neighbour of } x$
 - Predict $h_S^{kNN}(x) = \text{majority vote of } y_{\pi_1(x)}, \dots, y_{\pi_k(x)}$

OR for
$$\pm 1$$
 labels, $h_S^{kNN}(x) = \text{sign}\left(\frac{1}{k}\sum_{i=1}^k y_{\pi_i(x)}\right)$

Universal consistency of k-NN

Theorem kNN.5 (Universal consistency of k-NN)

If
$$k \to \infty$$
 and $\frac{k}{m} \to 0$ as $m \to \infty$, then for all distributions \mathcal{D} ,

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}} \left(h_S^{kNN} \right) \right] \to L_{\mathcal{D}}^* \quad as \ m \to \infty$$

Proved by verifying conditions of Stone's theorem

Proof: Universal consistency of k-NN

 \bullet k-NN as plug-in classifier

$$\widehat{\eta}(x) = \frac{1}{k} \sum_{i=1}^{k} \mathbf{1} \left\{ y_{\pi_i(x)} = 1 \right\} = \sum_{i=1}^{m} \mathbf{1} \left\{ y_i = 1 \right\} \underbrace{\frac{\mathbf{1} \left\{ \pi_i(x) \le k \right\}}{k}}_{=w_i(x)}$$

- $\sum_{i=1}^{m} w_i(x) \cdot f(x) = \frac{1}{k} \sum_{i=1}^{k} f(x_{\pi_i(x)}) \implies \text{Condition (i) holds due to Stone's lemma}$
- Condition (ii) holds since $x_{\pi_k(x)} \to x$ in probability if $\frac{k}{m} \to 0$
- Condition (iii) holds since $\max_{i \in [m]} w_i(x) = \frac{1}{k} \to 0$ as $k \to \infty$

Recap Stone's theorem

Theorem kNN.6 (Stone's consistency theorem)

Let
$$\widehat{\eta}(x) = \sum_{i=1}^{m} \mathbf{1} \{ y_i = 1 \} w_i(x), \text{ and } \widehat{h}(x) = \mathbf{1} \{ \widehat{\eta}(x) \ge \frac{1}{2} \}.$$

- \widehat{h} is universally consistent if weights $w_i(x)$ satisfy:
- (i) $\exists c \text{ such that, for every non-negative integrable function } f \text{ with } \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}}[f(x)] < \infty,$

$$\mathbb{E}_{x,x_1,\dots,x_m \sim \mathcal{D}^{m+1}} \left[\sum_{i=1}^m w_i(x) \cdot f(x_i) \right] \le c \, \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}}[f(x)]$$

(ii) For all
$$a > 0$$
, $\lim_{m \to \infty} \mathbb{E}_{x, x_1, \dots, x_m \sim \mathcal{D}^{m+1}} \left[\sum_{i=1}^m w_i(x) \cdot \mathbf{1} \{ \|x_i - x\| > a \} \right] = 0$

(iii)
$$\lim_{m \to \infty} \mathbb{E}_{x, x_1, \dots, x_m \sim \mathcal{D}^{m+1}} \left[\max_{i \in [m]} w_i(x) \right] = 0$$

Proof of Stone's theorem: Main idea

Lemma kNN.7 (Risk bound for plug-in classifier)

Consider 0-1 loss, and let $\widehat{h}(x) = \mathbf{1} \left\{ \widehat{\eta}(x) \geq \frac{1}{2} \right\}$ be a plug-in classifier. Then

$$L_{\mathcal{D}}(\widehat{h}) - L_{\mathcal{D}}^* \leq 2\mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} \left[|\widehat{\eta}(x) - \eta(x)| \right] \leq 2\sqrt{\mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} \left[(\widehat{\eta}(x) - \eta(x))^2 \right]}$$

Proof idea: (complete the steps)

- 2nd inequality uses Jensen's inequality: For a convex function $f, f(\mathbb{E}[z]) \leq \mathbb{E}[f(z)]$
- 1st inequality: First show that $L_{\mathcal{D}}(\widehat{h}) L_{\mathcal{D}}^* = 2\mathbb{E}_x \left[\left| \eta(x) \frac{1}{2} \right| \cdot \mathbf{1} \left\{ h^*(x) \neq \widehat{h}(x) \right\} \right]$ Then find upper bound for the term inside observing that, whenever $h^*(x) \neq \widehat{h}(x)$, $\left| \eta(x) - \frac{1}{2} \right| \leq |\eta(x) - \widehat{\eta}(x)|$

Proof of Stone's theorem: Main idea

• Taking expectation w.r.t S, we can write

$$\mathbb{E}_{S}[L_{\mathcal{D}}(\widehat{h}) - L_{\mathcal{D}}^{*}] \leq 2\mathbb{E}_{S,x} \Big[|\widehat{\eta}(x) - \eta(x)| \Big] \leq 2\sqrt{\mathbb{E}_{S,x} \Big[(\widehat{\eta}(x) - \eta(x))^{2} \Big]}$$

• Due to above, suffices to show

$$\mathbb{E}_{S,x}\left[\left(\widehat{\eta}(x) - \eta(x)\right)^2\right] \to 0$$
 as $m \to \infty$

- Assumption: $\eta: \mathcal{X} \to [0,1]$ is uniformly continuous
 - The assumption is not necessary, but simplifies parts of the proof

Proof of Stone's theorem: Main idea

• Recall
$$\widehat{\eta}(x) = \sum_{i=1}^{m} \mathbf{1} \{y_i = 1\} w_i(x)$$
 and define $\widetilde{\eta}(x) = \sum_{i=1}^{m} \eta(x_i) w_i(x)$
Then $(\widehat{\eta}(x) - \eta(x))^2 = (\widehat{\eta}(x) - \widetilde{\eta}(x) + \widetilde{\eta}(x) - \eta(x))^2$
 $\leq 2 \Big((\widehat{\eta}(x) - \widetilde{\eta}(x))^2 + (\widetilde{\eta}(x) - \eta(x))^2 \Big)$

• Separately show expectation of each squared term goes to 0

• Note:
$$\widehat{\eta}(x) - \widetilde{\eta}(x) = \sum_{i=1}^{m} (\mathbf{1}\{y_i = 1\} - \eta(x_i))w_i(x)$$

and $\widetilde{\eta}(x) - \eta(x) = \sum_{i=1}^{m} (\eta(x_i) - \eta(x))w_i(x)$

Proof: $(\widehat{\eta}(x) - \widetilde{\eta}(x))^2 \to 0$ in expectation

$$\mathbb{E}_{S,x} \left[(\widehat{\eta}(x) - \widetilde{\eta}(x))^2 \right] = \mathbb{E} \left[\sum_{i=1}^m \sum_{j=1}^m (\mathbf{1} \{ y_i = 1 \} - \eta(x_i)) w_i(x) \cdot (\mathbf{1} \{ y_j = 1 \} - \eta(x_j)) w_j(x) \right]$$

$$= \mathbb{E} \left[\sum_{i=1}^m (\mathbf{1} \{ y_i = 1 \} - \eta(x_i))^2 (w_i(x))^2 \right]$$

$$\leq \mathbb{E} \left[\sum_{i=1}^m (w_i(x))^2 \right]$$

$$\leq \mathbb{E} \left[\sum_{i=1}^m (w_i(x))^2 \right]$$

$$\leq \mathbb{E} \left[\max_{i \in [m]} w_i(x) \cdot \sum_{i=1}^m w_i(x) \right] = \mathbb{E} \left[\max_{i \in [m]} w_i(x) \right] \rightarrow 0 \quad \text{(condition (iii))}$$

Proof: $(\widetilde{\eta}(x) - \eta(x))^2 \to 0$ in expectation

$$\mathbb{E}_{S,x} \left[(\widetilde{\eta}(x) - \eta(x))^2 \right] = \mathbb{E} \left[\left(\sum_{i=1}^m w_i(x) \cdot (\eta(x_i) - \eta(x)) \right)^2 \right]$$

$$\leq \mathbb{E} \left[\sum_{i=1}^m w_i(x) \cdot (\eta(x_i) - \eta(x))^2 \right]$$
 (Jensen's inequality)

• Jensen's inequality: For convex f and weights w_1, \ldots, w_m such that $\sum_i w_i = 1$,

$$f\left(\sum_{i} w_{i} z_{i}\right) \leq \sum_{i} w_{i} f(z_{i})$$

• Fix some $\epsilon > 0$. Since η is uniformly continuous,

$$\exists a_{\epsilon} > 0 \text{ such that } ||x_i - x|| \leq a_{\epsilon} \implies |\eta(x_i) - \eta(x)| \leq \epsilon$$

Proof: $(\widetilde{\eta}(x) - \eta(x))^2 \to 0$ in expectation

$$\mathbb{E}\left[\sum_{i=1}^{m} w_i(x) \cdot (\eta(x_i) - \eta(x))^2\right]$$

$$\leq \mathbb{E}\left[\sum_{i=1}^{m} w_i(x) \cdot \epsilon^2 \cdot \mathbf{1} \left\{ \|x_i - x\| \leq a_{\epsilon} \right\} \right] + \mathbb{E}\left[\sum_{i=1}^{m} w_i(x) \cdot 1 \cdot \mathbf{1} \left\{ \|x_i - x\| > a_{\epsilon} \right\} \right] \xrightarrow{\to 0 \text{ due to condition (ii)}}$$

• From above, for any $\epsilon > 0$,

$$\lim_{m \to \infty} \mathbb{E}_{S,x} \left[(\widetilde{\eta}(x) - \eta(x))^2 \right] \le \epsilon^2$$

• Hence, limit is 0

Proof: Need for condition (i)

- Above proof, assuming η is uniformly continuous, does not need condition (i)
- If uniform continuity is not assumed
 - $\eta(\cdot)$ is bounded \implies Can be approximated by a uniformly continuous function η^*

for any
$$\epsilon > 0$$
, \exists unif. cont. η^* such that $\mathbb{E}_x \left[(\eta(x) - \eta^*(x))^2 \right] < \epsilon$

- Use previous slide to prove $\mathbb{E}_{S,x}\left[\left(\widetilde{\eta}^*(x) \eta^*(x)\right)^2\right] \to 0$
- Need condition (i) to bound $\mathbb{E}_{S,x}\left[\left(\widetilde{\eta}(x)-\widetilde{\eta}^*(x)\right)^2\right]$ and $\mathbb{E}_{S,x}\left[\left(\eta^*(x)-\eta(x)\right)^2\right]$

Conclusion / Up Next

- Given infinite training data $(m \to \infty)$, NN (or kNN) is good compared with optimal (Bayes) predictor, $L_D^{NN} \le 2L_D^*$
- With $k \to \infty$ and $k/m \to 0$, kNN is universally consistent ... optimal for any \mathcal{D} if it has infinite training data, $m \to \infty$
- Next: What happens for finite m?
 - \bullet For finite m, complex models can easily overfit
 - We restrict ERM to certain classes of models (say linear classifier)
 - For ERM solution \hat{h} , we bound $L_{\mathcal{D}}(\hat{h})$ in terms of complexity of model class