



#### Overcoming Shortcut Problem in VLM for Robust Out-of-Distribution Detection

Zhuo Xu<sup>1</sup>, Xiang Xiang<sup>1,2,\*</sup>, Yifan Liang<sup>1</sup>

<sup>1</sup> National Key Lab of Multi-Spectral Information Intelligent Processing Technology School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, China <sup>2</sup> Peng Cheng National Laboratory, Shenzhen, China

# CVPR//as/will JUNE 11-15, 2025

## **Background Datasets**

- Removing corresponding ID-relevant regions from samples in the ImageNet validation set to evaluate the robustness of the model against background inteference.
- ImageNet-Bg, with 48,285 background images.
- ImageNet-Bg(S), sampling from ImageNet-Bg, with 24,863 cleaner background images.





VLMs (e.g CLIP) suffers from serious shortcut problem, may

output rediculous higher logits on background interference.

Existing methods neglect this critical problem.

- > Decoupling images into foreground and background, removing the foreground with ID information to generate background-only images. Inpainting the removed ID region with background information to generate natural background samples.
- > Repeat the local regions and replace the background of ID samples with diverse background for data augmentation.
- Mask-guided region regularization to constrain ID-irrelevant areas and reduce the model's response to these regions.

# Quantitative Results

| Method                                         | iNaturalist    |        | SUN            |            | Places    |        | Texture        |        | Avg            |        | 70 T     |
|------------------------------------------------|----------------|--------|----------------|------------|-----------|--------|----------------|--------|----------------|--------|----------|
|                                                | <b>AUROC</b> ↑ | FPR95↓ | <b>AUROC</b> ↑ | FPR95↓     | AUROC↑    | FPR95↓ | <b>AUROC</b> ↑ | FPR95↓ | <b>AUROC</b> ↑ | FPR95↓ |          |
| Training-free methods                          |                |        |                |            |           |        |                |        |                |        |          |
| ZOC [10]                                       | 86.09          | 87.30  | 81.20          | 81.51      | 83.39     | 73.06  | 76.46          | 98.90  | 81.79          | 85.19  |          |
| MCM [33]                                       | 94.61          | 30.94  | 92.56          | 37.67      | 89.76     | 44.76  | 86.10          | 57.91  | 90.76          | 42.82  | 60 -     |
| GL-MCM [39]                                    | 96.71          | 15.18  | 93.09          | 30.42      | 89.90     | 38.85  | 83.63          | 57.93  | 90.83          | 35.47  | 00       |
| CLIPN-A [49]                                   | 95.27          | 23.94  | 93.93          | 26.17      | 90.93     | 40.83  | 92.28          | 33.45  | 93.10          | 31.10  |          |
| DPM-F [57] †                                   | 96.84          | 15.26  | 91.78          | 42.58      | 89.60     | 45.99  | 85.74          | 57.55  | 90.99          | 40.35  | <u></u>  |
|                                                |                |        | Outli          | er-label e | xposure m | ethods |                |        |                |        | FPR95(%) |
| NegLabel [21]                                  | 99.48          | 1.99   | 95.43          | 21.05      | 91.95     | 34.95  | 90.90          | 44.79  | 94.25          | 25.69  | 6 50 -   |
| LAPT [55]                                      | 99.63          | 1.16   | 96.01          | 19.12      | 92.01     | 33.01  | 91.06          | 40.32  | 94.68          | 23.40  | PR       |
| EOE [4]                                        | 97.52          | 12.29  | 95.73          | 20.40      | 92.94     | 30.16  | 85.64          | 57.53  | 92.96          | 30.09  | T        |
| OLE [8]                                        | 98.33          | 7.61   | 94.87          | 22.44      | 92.45     | 31.73  | 92.40          | 34.70  | 94.51          | 24.12  |          |
| Requires few-shot training (or w/ fine-tuning) |                |        |                |            |           |        |                | 40     |                |        |          |
| CoOp [60]                                      | 96.62          | 14.60  | 92.65          | 28.48      | 89.98     | 36.49  | 88.03          | 43.13  | 91.82          | 30.67  | 40 -     |
| LoCoOp [35]                                    | 96.86          | 16.05  | 95.07          | 23.44      | 91.98     | 32.87  | 90.19          | 42.28  | 93.52          | 28.66  |          |
| SCT [51]                                       | 95.86          | 13.94  | 95.33          | 20.55      | 92.24     | 29.86  | 89.06          | 41.51  | 93.37          | 26.47  |          |
| DPM-T [57] †                                   | 97.04          | 14.47  | 93.19          | 33.06      | 89.78     | 39.46  | 87.49          | 49.73  | 91.88          | 34.18  |          |
| ID-like [2]                                    | 98.19          | 8.98   | 91.64          | 42.03      | 91.15     | 41.74  | 94.38          | 26.77  | 93.84          | 29.88  | 30       |
| NegPrompt [27] †                               | 90.69          | 45.97  | 92.18          | 39.43      | 91.65     | 37.49  | 90.01          | 44.84  | 91.13          | 41.93  | 80       |
| OSPCoOp (Ours)                                 | 97.13          | 15.25  | 96.74          | 18.26      | 94.01     | 25.74  | 91.13          | 41.26  | 94.75          | 25.13  |          |



### Analysis

- The pseudo-OOD data partly show a clustering trend, with a small portion distributed around the ID samples, which are easy to take shortcuts.
- Constrain both regional and global logits for backgrounds can mitigate shortcuts.

| $\lambda^r_{ood}$ | $\lambda_{ood}^g$ | AUROC↑ | FPR95↓ |
|-------------------|-------------------|--------|--------|
| ×                 | ×                 | 92.05  | 32.78  |
| $\checkmark$      | $\times$          | 93.94  | 28.45  |
| $\times$          | $\checkmark$      | 94.14  | 25.35  |
| ✓                 | $\checkmark$      | 94.75  | 25.13  |



#### Conclusions

- We observe that VLMs (e.g CLIP) often relies on background information, which can lead to failures in OOD detection, especially for background interference.
- we present ImageNet-Bg, a novel OOD evaluation benchmark designed to facilitate a comprehensive assessment of model robustness against background interference.
- Decoupling background information to generate pseudo-OOD supervision, constraining the model's responses to ID-irrelevant regions, can effectively mitigate the shortcut problem.
- \* Correspondence to xex@hust.edu.cn