アルゴリズムとデータ構造入門

2.データによる抽象の構築

2.3 記号表現 2.4 抽象データの複数の表現法

奥乃 博

大学院情報学研究科知能情報学事

ハナルに自転ナザバウイスル配信報で、 http://winnie.kuis.kyoto-u.ac.jp/-okuno/Lecurry ac. による okuno@i.kyoto-u.ac.jp/-okuno/Lecurry ac. による 平山 直樹 if mod(学等をよります。。

山口 雄紀 if mod(学籍 = ラの下3桁, 3) ≡ 2

12月11日・本日のメニュー

- 2.3.2 Symbolic Differentiation
- 2.3.3 Representing Sets
- 2.4 Multiple Representations for Abstract Data
- 2.4.1 Representations for Complex Numbers'
- 2.4.2 Tagged data
- 2.4.3 Data-Directed Programming and **Additivity**
- 2.5 Genetic Operation System

No Student

記号微分の拡張(1)

1. 差、商に拡張

(deriv '(- x y) 'x)

(deriv '(/ 3 x) 'x)

2. 冪乗に拡張

(deriv '(** x 3) 'x)

3.2項演算子を多項演算子に拡張

(deriv '(+ (* 3 x) y (* x y)) 'x)(deriv '(* x y (+ x 3)) 'x)

(4)	記号微分の拡張(2) ® NoStudent def Behind		
4.	. 2項演算子を多項演算子に拡張		
	augend, multiplier の定義を変更するだけで		
	(deriv '(+ x (* x y) (** x 3)) 'x)		
	に対応できる。		
5 .	多項式の整理		
	- 多項式を降冪あるいは昇冪の順に整列		
	- 多項式を簡略化により整理		
	2.5.3 記号代数(Symbolic Algebra)		
6.	任意の関数が自由に付加できる微分システム		
2	2.5.3 Data-Directed Programming and Additivity		

2.3 Symbolic Data
2.3.2 Symbolic Differentiation
2.3.3 Representing Sets
2.4 Multiple Representations for Abstract Data
2.4.1 Representations for Complex Numbers
2.4.2 Tagged data
2.4.3 Data-Directed Programming and Additivity

集合(set)の表現 自然数の集合を定義してみよう {0,1,2,3,...} 外延的記法(extensional notation) S = {n/0, n+1 if n ∈ S} 内延的記法(intentional notation) 外延的記法での課題 次の定義のどちらがよいか? {0,2,4,6,8,10,12,14,16,18,20,...} {0,10,20,30,2,12,22,24,4,14,24,...}

2.5 Genetic Operation System

```
NoStudent
集合(set)の手続きと表現法
   集合の手続き
    1. union-set
                         SUT
    2. intersection-set
                         SIT
    3. element-of-set?
                         e∈T
    4. adjoin-set
                         [e] ∪ S
    集合の表現法の実装(implementation)
    1. 順序なし表現(unordered list)
        {30, 0, 20, 10, 22, 2, 12, 24, 34, ...}
        (30 0 20 10 22 2 12 24 34 ...)
    2. 順序付き表現(ordered list)
        {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, ...}
        (0 2 4 6 8 10 12 14 16 18 ... )
```

```
No Student
集合(set)のUnordered List衰現
(define (element-of-set? x set)
  (cond ((null? set) #f)
        ((equal? x (car set)) #t)
        (else (element-of-set? x (cdr set)) ))
(define (adjoin-set x set)
  (if (element-of-set? x set)
      set
      (cons x set) )))
(define (union-set s1 s2)
  (cond ((null? s1) s2)
        ((element-of-set? (car s1) s2)
         (union-set (cdr s1) s2) )
        (else (cons (car s1)
                    (union-set (cdr s1) s2) ))))
```

```
No Student
union-set の両者の違いは
(define (union-set s1 s2)
  (cond ((null? s1) s2)
        ((element-of-set? (car s1) s2)
         (union-set (cdr s1) s2) )
        (else (cons (car s1)
               (union-set (cdr s1) s2) )
       )))
(define (union-set s1 s2)
  (cond ((null? s1) s2)
        ((element-of-set? (car s1) s2)
         (union-set (cdr s1) s2) )
        (else (union-set (cdr s1)
                 (cons (car s1) s2)) )))
(union-set '(1 2 3) '(a b c))の結果は?
```

```
No Student
  集合手続きの計算量 (#set=n)
(define (element-of-set? x set)
  (cond ((null? set) #f)
       ((equal? x (car set)) #t)
       (else (element-of-set? x (cdr set))
(define (adjoin-set x set)
  (if (element-of-set? x set)
                               \Theta(n)
     (cons x set) )))
                                      \#s1=n
(define (union-set s1 s2)
                                      \#s2=m
 (cond ((null? s1) s2)
                                       ⊕(mn)
       ((element-of-set? (car s1) s2)
        (union-set (cdr s1) s2) )
        (else (cons (car s1)
                   (union-set (cdr s1) s2) ))))
```

集合の二進木(binary tree) 表現

No Student

- ・ リスト構造(木)で集合を表現
- 設計方針
 - 順序付きリストのように制御してしないと、木の高さをhとすると、◎(h²)の計算量がかかる
 - 左部分木のエントリーはノードのそれより大きくない
 - 右部分木のエントリーはノードのそれより大きい
- ・ノードの表現法
 - 次のリストでノードを表現 (エントリー 左部分木 右部分木)

| 二進木(binary free)表現の実装 | RoStudent | 構築子 | (define (make-tree entry left right) (list entry left right) | 選択子 | (define (entry tree) (car tree)) | (define (left-branch tree) (cadr tree)) | (define (right-branch tree) (cadr tree)) | エントリー


```
(define (tree->list-1 tree)
(if (null? tree)
(i)
(append (tree->list-1 (left-branch tree))
(cons (entry tree)
(tree->list-1 (right-branch tree))))))
(define (tree->list-2 tree)
(define (copy-to-list tree result-list)
(if (null? tree)
result-list
(copy-to-list (left-branch tree)
(cons (entry tree)
(copy-to-list (right-branch tree)
result-list (copy-to-list (right-branch tree)
result-list ())))
(copy-to-list tree '()))

両者の違いは?
前順走査・復順走査と走査順が違う(第2回)
```

```
| Comparison of the first part of the first part
```


it 225, not 164, in 154, he 136, a 136

複素数の演算	No Student Left Behind		
1. 虚数(imaginary part)			
$z = x + iy$ $i^2 = -1$ 2. 加算(addition)			
Real – part $(z_1 + z_2)$ = Real – part (z_1) + Real – part (z_2) Imaginary – part $(z_1 + z_2)$ = Imaginary – part (z_1) + Imaginary – part (z_2) 3. 乗算 (multiplication)			
$Re(z_1 \cdot z_2) = Re(z_1) \cdot Re(z_2) - Im(z_1) \cdot Im(z_2)$ $Im(z_1 \cdot z_2) = Re(z_1) \cdot Im(z_2) + Im(z_1) \cdot Re(z_2)$			
Magnitude $(z_1 \cdot z_2)$ = Magnitude (z_1) · Ma Angle $(z_1 \cdot z_2)$ = Angle (z_1) + Angle (z_2)	gnitude (z_2)		

```
(define (add-complex z1 z2)
(make-from-real-imag
    (+ (real-part z1) (real-part z2))
    (+ (imag-part z1) (imag-part z2))))
(define (sub-complex z1 z2)
    (make-from-real-imag
    (- (real-part z1) (real-part z2))
    (- (imag-part z1) (imag-part z2))))
(define (mul-complex z1 z2)
    (make-from-mag-ang
    (* (magnitude z1) (magnitude z2))
    (+ (angle z1) (angle z2))))
(define (div-complex z1 z2)
    (make-from-mag-ang
    (/ (magnitude z1) (magnitude z2))
    (- (angle z1) (angle z2))))
```


(4	複素数の2種類の	表現法の実装 ® No Student defined		
	z = x + iy = re	<i>iA</i>		
<pre>(make-from-real-imag (real-part z) (imag-part z)) (make-from-mag-ang (magnitude z) (angle z))</pre>				
	$y = r \sin A$	$A = \arctan(y, x)$		

2.3 Symbolic Data
2.3.2 Symbolic Differentiation
2.3.3 Representing Sets
2.4 Multiple Representations for Abstract Data
2.4.1 Representations for Complex Numbers
2.4.2 Tagged data
2.4.3 Data-Directed Programming and Additivity
2.5 Genetic Operation System
39

12月11日 本日のメニュー NoStudent (12.3.2 Symbolic Data 2.3.2 Symbolic Differentiation 2.3.3 Representing Sets 2.4 Multiple Representations for Abstract Data 2.4.1 Representations for Complex Numbers 2.4.2 Tagged data 2.4.3 Data-Directed Programming and Additivity 2.5 Genetic Operation System

