

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE		ATTORNEY'S DOCKET NUMBER KATO=21
TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371		U.S. APPLICATION NO. (If known, see 37 CFR 1.5) 10 / 049957
INTERNATIONAL APPLICATION NO. PCT/JP00/05590	INTERNATIONAL FILING DATE 21 August 2000	PRIORITY CLAIMED 19 August 1999
TITLE OF INVENTION CHONDROGENESIS PROMOTERS		
APPLICANT(S) FOR DO/EO/US Yukio KATO et al.		
<p>Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information.</p> <ol style="list-style-type: none"> 1. <input checked="" type="checkbox"/> This is a FIRST submission of items concerning a filing under 35 U.S.C. 371. 2. <input type="checkbox"/> This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371. 3. <input checked="" type="checkbox"/> This is an express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1). 4. <input checked="" type="checkbox"/> The US has been elected in a Demand by the expiration of 19 months from the priority date (PCT Article 31). 5. <input checked="" type="checkbox"/> A copy of the International Application as filed (35 U.S.C. 371(c)(2)) <ul style="list-style-type: none"> a. <input type="checkbox"/> is attached hereto (required only if not transmitted by the International Bureau) b. <input checked="" type="checkbox"/> has been communicated by the International Bureau. c. <input type="checkbox"/> is not required, as the application was filed in the United States Receiving Office (RO/US) 6. <input checked="" type="checkbox"/> An English language translation of the International Application as filed (35 U.S.C. 371(c)(2)) 7. <input checked="" type="checkbox"/> Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)) <ul style="list-style-type: none"> a. <input type="checkbox"/> are transmitted herewith (required only if not transmitted by the International Bureau). b. <input type="checkbox"/> have been communicated by the International Bureau. c. <input type="checkbox"/> have not been made; however, the time limit for making such amendments has NOT expired. d. <input checked="" type="checkbox"/> have not been made and will not be made. 8. <input type="checkbox"/> An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)) 9. <input checked="" type="checkbox"/> An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)) 10. <input type="checkbox"/> An English language translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)). 		
<p>Items 11. to 16. below concern document(s) or information included:</p> <ol style="list-style-type: none"> 11. <input type="checkbox"/> An Information Disclosure Statement under 37 CFR 1.97 and 1.98 12. <input type="checkbox"/> An Assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included. 13. <input type="checkbox"/> A FIRST preliminary amendment. <input type="checkbox"/> A SECOND or SUBSEQUENT preliminary amendment. 14. <input type="checkbox"/> A substitute specification 15. <input type="checkbox"/> A change of power of attorney and/or address letter 16. <input checked="" type="checkbox"/> Other items or information <ul style="list-style-type: none"> <input checked="" type="checkbox"/> Courtesy copy of the first page of the International Publication (WO 01/13951) <input checked="" type="checkbox"/> Courtesy copy of the International Preliminary Examination Report (In Japanese). <input checked="" type="checkbox"/> Formal drawings, 6 sheets, Figures 1-7 <input checked="" type="checkbox"/> Courtesy Copy of the International Search Report <p><input checked="" type="checkbox"/> The application is (or will be) assigned to CHUGAI SEIYAKU KABUSHIKI KAISHA, whose address is 5-1, Ukima 5-chome, Kita-ku, Tokyo 115-8543, Japan</p>		

U.S. APPLICATION NO (if known, see 37 CFR 1.5)	International Application No	Attorney's Docket No
10/049957	PCT/JP00/05590	KATO=21

17. [xx] The following fees are submitted
BASIC NATIONAL FEE (37 CFR 1.492 (a)(1) –(5):
Neither international preliminary examination fee (37 CFR 1.482)
nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO
and International Search Report not prepared by the EPO or JPO. **\$1040.00**

International preliminary examination fee (37 CFR 1.482) not paid to
USPTO but International Search Report prepared by the EPO or JPO .. **\$890.00**

International preliminary examination fee (37 CFR 1.482) not paid to USPTO but
international search fee (37 CFR 1.445(a)(2)) paid to USPTO. **\$740.00**

International preliminary examination fee paid to USPTO (37 CFR 1.482)
but all claims did not satisfy provisions of PCT Article 33(1)-(4) **\$710.00**

International preliminary examination fee paid to USPTO (37 CFR 1.482)
and all claims satisfied provisions of PCT Article 33(1)-(4)... **\$100.00**

ENTER APPROPRIATE BASIC FEE AMOUNT =

Surcharge of **\$130.00** for furnishing the oath or declaration later than [] 20 [] 30
months from the earliest claimed priority date (37 CFR 1.492(e)).

Claims as Originally Presented	Number Filed	Number Extra	Rate	
Total Claims	24 - 20	04	X \$18.00	\$ 72.00
Independent Claims	6 - 3	03	X \$84.00	\$ 252.00
Multiple Dependent Claims (if applicable)			+\$280.00	\$ 280.00

TOTAL OF ABOVE CALCULATIONS =

Claims After Post Filing Prel Amend	Number Filed	Number Extra	Rate	
Total Claims	- 20		X \$18.00	\$
Independent Claims	- 3		X \$84.00	\$

TOTAL OF ABOVE CALCULATIONS =

Reduction of $\frac{1}{2}$ for filing by small entity, if applicable. Applicant claims small entity status. See 37 CFR 1.27	\$
---	----

SUBTOTAL =

Processing fee of \$130.00 for furnishing the English translation later than [] 20 [] 30 months from the earliest claimed priority date (37 CFR 1.492(f)).	\$
---	----

TOTAL NATIONAL FEE =

Fee for recording the enclosed assignment (37 CFR 1.21(h)) The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31) \$40.00 per property +	\$
---	----

TOTAL FEES ENCLOSED =

	Amount to be:	\$
	refunded	

	charged	\$
--	----------------	----

a. [] A check in the amount of \$ _____ to cover the above fees is enclosed.
b. [X] Credit Card Payment Form (PTO-2038), authorizing payment in the amount of \$ 1,494.00, is attached.
c. [] Please charge my Deposit Account No. **02-4035** in the amount of \$ _____ to cover the above fees.
A duplicate copy of this sheet is enclosed.

d. [XX] The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. **02-4035** A duplicate copy of this sheet is enclosed.

NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO:

BROWDY AND NEIMARK, P.L.L.C.
624 NINTH STREET, N.W., SUITE 300
WASHINGTON, D.C. 20001
TEL: (202) 628-5197
FAX: (202) 737-3528

Date of this submission: **February 19, 2002**

Form PTO-1390 (as slightly revised by Browdy and Neimark)

SIGNATURE

Sheridan Neimark

NAME

20,520

REGISTRATION NUMBER

10/049957

6/Prls

SPECIFICATION

CHONDROGENESIS STIMULATORTECHNICAL FIELD

This invention relates to a novel chondrogenesis stimulator. More specifically, the invention relates to a chondrogenesis stimulator containing a membrane-bound transferrin-like protein (hereunder sometimes referred to as MTf).

PRIOR ART

The cartilage tissue of animals is composed of chondrocytes and matrix. The cartilage tissue accounts for the greater part of the skeleton at the prenatal stage and it is postnatally replaced with bone tissue due to endochondral ossification. When endochondral ossification starts, chondrocytes change from the resting to proliferating phase and the proliferating chondrocytes are then differentiated into hypertrophic chondrocytes [Reference; "Hone no kagaku (Science of Bone)", ed. by Tsuda et al., pp. 11-29, Tokyo Ishiyaku Shuppan, 1982].

Thus, it has been well known that chondrocytes are essential cells for the formation of bone tissue, particularly at the growth stage. However, the differentiation of chondrocytes and the endochondral ossification remain unknown in many aspects.

The cell membrane of chondrocytes has characteristic glycoproteins and their membrane proteins might contribute to the unique features of chondrocytes that distinguish them from the cells of other connective tissues (as

exemplified by spherical cell morphology, massive secretion of cartilage matrix, survival and proliferation in soft agar). Based on this hypothesis, Yan et al. (Yan et al.; J. Biol. Chem., vol. 265, pp. 10125-10131, 1990) and Kato 5 et al. (Kato et al., Journal of the Society of Bone Metabolism of Japan, vol. 10, No. 2, pp. 187-192, 1992) investigated the effects of various lectins on the differentiation and proliferation of chondrocytes and, among other things, they have shown that concanavalin A 10 (hereunder sometimes referred to as Con A) which is Jack bean lectin and which has affinity for α -D-mannose residue and α -D-glucose residue is a potent stimulator of chondrogenic differentiation, with the increase in proteoglycan synthesis being one of the criteria for the 15 Con A activity. Chondrocytes treated with Con A change their shape from the immature flat morphology to the differentiated spherical form, inducing the production of proteoglycan and type II collagen which are markers of chondrogenic differentiation, the expression of alkaline 20 phosphatase, etc., and even the calcification. Other lectins do not exert such differentiation inducing action.

In an attempt to search for a receptor mediating the action of Con A, Kawamoto et al. (Kawamoto et al., Eur. J. Biochem. vol. 256, pp. 503-509, 1998) paid particular 25 attention to a protein of 76 kDa (p76) which was one of the about 20 kinds of Con A-binding proteins on chondrocytes and which would be expressed at lower levels in retinoic acid treated chondrocytes (upon treatment with retinoic

acid, chondrocytes are dedifferentiated to lose reactivity with Con A). After purifying p76 from the plasma membrane fraction of rabbit chondrocytes by Con A affinity column chromatography, the N-terminal amino acid sequence was 5 determined and the gene was cloned. In view of the determined amino acid sequence and the nucleic acid sequence of its cDNA, p76 showed 86% amino acid identity with melanotransferrin (p97) and was considered its counterpart; p97 is known as a tumor-associated antigen 10 expressed at high levels in human tumors such as melanoma. The physiological functions of p97 are yet to be known and its expression has been reported to be high in only tumor cells, with very low detectability in normal tissue.

In view of its ability to bind with Con A, p76 is 15 presumably involved in the differentiation of chondrocytes or in the development of their function; however, nothing has been confirmed about the effects this protein would actually impose on chondrocytes or their precursors.

An object, therefore, of the present invention is to 20 identify a substance that will be involved in the differentiation of chondrocytes and provide a novel chondrogenesis stimulator using the substance. The present invention will lead to the invention of a substance that can control the function of chondrocytes and which 25 eventually enables promoted osteogenesis. The substance can potentially lead to the treatment, prevention and diagnosis of new types of diseases associated with the cartilage and bone metabolism.

DISCLOSURE OF THE INVENTION

In order to attain the stated object, the present inventors made intensive studies and found that differentiation to cartilage could be markedly induced by 5 overexpressing a membrane-bound transferrin-like protein (MTf) gene in mouse cell line ATDC5 which retained the ability to differentiate to chondrocytes but which would hardly differentiate in the absence of stimulation.

Thus, the present invention provides a chondrogenesis 10 stimulator containing a membrane-bound transferrin-like protein (MTf).

The MTf is preferably rabbit p76 protein, human p97 protein, mouse MTf protein, as well as a protein demonstrating the MTf activity that has an amino acid 15 sequence encoded by DNA which hybridizes, under stringent conditions, with a DNA that encodes p76 protein or p97 protein or mouse MTf, and human p97 protein is particularly preferred.

The MTf is most preferably selected from the 20 following:

- 1) a protein having the amino acid sequence of SEQ ID NO: 2;
- 2) a protein having the amino acid sequence of SEQ ID NO: 4;
- 25 3) a protein having the amino acid sequence of SEQ ID NO: 15; and
- 4) a protein demonstrating the MTf activity that has an amino acid sequence encoded by DNA which hybridizes, under

stringent conditions, with a DNA encoding the protein of SEQ ID NO: 2, 4 or 15.

The present invention also provides said chondrogenesis stimulator in which the MTf lacks the GPI anchor region.
5

The chondrogenesis stimulator of the invention becomes more effective when used in combination with an MTf activating agent and/or insulin.

The chondrogenesis stimulator of the invention is
10 useful with the following diseases: OA (osteoarthritis); RA (rheumatoid arthritis); injury of articular cartilage due to trauma; maintenance of chondrocyte phenotype in autologous transplantation of chondrocytes; reconstruction of cartilage in the ear, trachea or nose; osteochondritis dissecans; regeneration of intervertebral disk or meniscus;
15 fractured bone; and osteogenesis from cartilage.

The invention further provides an agent for gene therapy to promote chondrogenesis which contains as an active ingredient an expression vector incorporating a DNA
20 coding for any one of the following proteins:

- 1) a protein having the amino acid sequence of SEQ ID NO:
2;
- 2) a protein having the amino acid sequence of SEQ ID NO:
4;
- 25 3) a protein having the amino acid sequence of SEQ ID NO:
15; 4) a protein demonstrating the MTf activity that has an amino acid sequence encoded by DNA which hybridizes, under stringent conditions, with a DNA encoding the protein of

SEQ ID NO: 2, 4 or 15; and

5) a protein which is the same as protein 1), 2), 3) or 4),
except that it lacks the GPI anchor region.

The present invention further provides a chondrogenic
5 differentiation suppressing agent containing an MTf
antagonist.

The MTf antagonist is preferably an anti-MTf
antibody or an oligonucleotide or an oligonucleotide analog
that are hybridizable with a nucleic acid encoding MTf.

10 The present invention further provides a method for
screening an MTf activating agent which comprises the steps
of:

- 15 1) preparing a cell line in which MTf is overexpressed,
wherein said cell line retains the ability to differentiate
to chondrocytes but hardly differentiate without
stimulation;
- 2) adding candidate substances to the cell line prepared in
step 1) and culturing it for a specified period of time;
and
- 20 3) examining the cell line for induced chondrogenic
differentiation and selecting an MTf activating agent from
the candidate substances.

The present invention also provides an MTf activating
agent as obtained by the method described above.

25 The present invention also provides a chondrogenesis
stimulator containing an MTf activating agent as obtained
by the method described above.

The present invention further provides MTf which

lacks the GPI anchor region.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows a scheme of the procedure of preparing an MTf overexpressing ATDC5 variant cells;

5 Fig. 2 shows the expression of the MTf gene in the variant of ATDC5 cells as analyzed by Northern blotting (photographs of electrophoresis);

10 Fig. 3 shows the expression of the MTf protein in the variant of ATDC5 cells as analyzed by Western blotting (photographs of electrophoresis);

15 Fig. 4 is a set of photographs showing that MTf overexpressing cell lines (Full-1 and Full-5) demonstrate the morphology of differentiated chondrocytes in comparison with control cells (pC-1), all of which are cultured for 29 days in the absence of insulin (biological morphology is shown);

20 Fig. 5 is a set of photographs showing that MTf overexpressing cell lines (Full-1 and Full-5) demonstrate the morphology of differentiated chondrocytes in comparison with control cells (pC-1), all of which are cultured for 29 days in the presence of insulin (biological morphology is shown);

25 Fig. 6 is a set of photographs showing the effects of the addition of the conditioned medium of rabbit chondrocytes on the induction of chondrogenic differentiation (biological morphology is shown); and

Fig. 7 shows the result of RT-PCR Southern blotting which demonstrates the overexpression of antisense MTf RNA

and the suppression of aggrecan synthesis in the presence and absence of insulin.

BEST MODE FOR CARRYING OUT THE INVENTION

The term "membrane-bound transferrin-like protein 5 (MTf)" as used in the invention means a protein on the cell membrane of chondrocytes that binds to Con A and which has iron-binding sites as transferrin does. Preferably, the term means a protein having the ability to mediate the induction of chondrogenic differentiation by Con A.

10 The term MTf has conventionally been used as the abbreviation for melanotransferrin (p97) known as a tumor antigen expressed at high levels in melanoma and other tumors. As it turned out, however, p97 is also expressed at high levels in tissues other than cancer, particularly 15 in cartilage. Since p97 is by no means specific to cancer tissue, the present inventors redefined the term MTf as meaning "membrane-bound transferrin-like protein".

The term "MTf activity" as used herein means an activity that induces undifferentiated cells to 20 differentiate to cartilage and which promotes chondrocytes to develop their function.

Examples of MTf include but are not limited to 25 rabbit p76 protein, p97 protein which is a human protein homologous to rabbit p76 protein, mouse MTf protein, as well as proteins having MTf activity that contain alterations such as deletion, substitution or addition of one or more of the amino acids of these proteins, and proteins having MTf activity amino acid sequences encoded

by DNA which hybridizes with DNA encoding p76 protein or p97 protein or mouse MTf protein under stringent conditions [a typical method is described in Molecular Cloning: A Laboratory Manual, Sambrook et al., Cold Spring Harbor 5 Laboratory Press, 1989 and consists, for example, of hybridization at 68°C in a solution containing 6 x SSC, 0.5% SDS, 10 mM EDTA, 5 x Denhardt's solution and 10 mg/ml of denatured salmon sperm DNA].

Rabbit p76 protein is homologous to human p97 protein 10 and sometimes called rabbit p97 (Kawamoto et al., Eur. J. Biochem. vol. 256, pp. 503-509, 1998). The nucleotide and amino acid sequences of rabbit p76 protein are identified by SEQ ID NO: 1 and SEQ ID NO: 2, respectively. The nucleotide and amino acid sequences of human p97 protein 15 are also known (Rose, T.M. et al., Proc. NAS 83, 1261-1265, 1986). The nucleotide and amino acid sequences of human p97 protein are identified by SEQ ID NO: 3 and SEQ ID NO: 4, respectively. Mouse MTf protein is described in Biochim. Biophys. Acta, 1447:258-264, 1999 and its 20 nucleotide and amino sequences are identified by SEQ ID NO: 14 and SEQ ID NO: 15, respectively. The homology between the MTf proteins over animal species are high and the amino acid identity is 83% between mouse and human, 82% between mouse and rabbit, and 86% between human and rabbit.

25 p76/p97 proteins are GPI anchored proteins which have glycolipid GPI (glycosylphosphatidylinositol) bound to the carboxyl group in C-terminal amino acid so that they are bound to membranes using GPI as an anchor (for p76, see Ryo

Oda, Journal of Dentistry, Hiroshima University, vol. 29, No. 1, pp. 40-57, 1997; for p97, see Alemany, R. et al., J. Cell Science, 104, 1155-1162, 1993). As will be shown later in the Examples, it was verified that not only 5 full-length MTf but also GPI anchor lacking MTf or soluble MTf have a chondrogenic differentiation inducing activity when they were expressed in non-MTf-expressing cells. Therefore, such soluble MTf, preferably the GPI anchor lacking MTf, can also be used as a chondrogenesis 10 regulating agent. The GPI anchor lacking MTf as used herein means a soluble MTf which lacks all or part of the GPI anchor moiety; in the case of rabbit MTf, it may be exemplified by MTf in which the 28 residues at C-terminal necessary for GPI anchor binding are deleted and in the 15 case of human MTf and mouse MTf, it may be exemplified by MTf in which the 30 residues at C-terminal necessary for GPI anchor binding are deleted.

The MTf to be used in the invention may be of a native or recombinant form and either form can be obtained 20 by methods known in the art. The respective types of MTf are illustrated below.

Native form

MTf can be prepared by the method described in JP 7- 25 82297A using chondrocytes. Briefly, cartilage tissues of various animals can be used as chondrocyte source; for example, a rabbit costal growth plate cartilage as the source is treated with protease and collagenase in accordance with the method of Kato et al. (Kato et al.; J.

Cell Biol., vol. 100, pp. 477-485, 1985) to obtain chondrocytes. The isolated chondrocytes can be incubated in a medium containing fetal calf serum (FCS) on a culture dish at 37°C in an atmosphere of 5% CO₂ and 95% air. The 5 cultured chondrocytes are recovered, homogenized with a homogenizer and subjected to sedimentation equilibrium centrifugation by 17%/40% sucrose equilibrium density gradient to separate membrane proteins. The obtained membrane protein fraction is directly subjected on a 10 concanavalin A affinity column; alternatively, in order to remove membrane proteins that bind to lectins other than concanavalin A, the membrane protein fraction is first subjected on an affinity column of wheat germ lectin which is a typical lectin and then subjected on a concanavalin A 15 affinity column. By these and other techniques, more of the concanavalin A binding protein fraction can be separated. The specificity of the obtained concanavalin A bound protein fractions for chondrocytes can be evaluated by comparing these fractions through SDS-polyacrylamide gel 20 electrophoresis (SDS-PAGE). After identifying the desired chondrocyte specific glycoproteins, bands of interest are excised from the gel, extracted and purified by electroelution or other suitable techniques. The resulting glycoproteins can be analyzed for the sugar chains after 25 excising by endoglicosidase.

Recombinant form

Recombinant MTf can be prepared by the methods described in the Examples of the invention or modifications

thereof; by these methods, plasmids incorporating the MTf gene are transfected to host cells for expressing the MTf protein.

However, these are not the only methods that can be used and various methods of transformation and various host cells that are known in the art can also be used. For example, a gene encoding MTf may be inserted into a suitable vector to transform prokaryotic or eukaryotic host cells.

Further, suitable stimulators or sequences that are involved gene expression may be introduced into the vectors to enable gene expression in the transformed host cells. If desired, a gene of interest may be linked to genes encoding other polypeptides to express it as a fused protein so that it can be purified with greater ease or expressed at higher level. The desired protein can also be excised by applying suitable treatments in the purification step.

It is generally held that eukaryotic genes show polymorphism as is known for the human interferon gene. The polymorphism may cause substitution by one or more amino acids or it may cause changes in base sequences with no change occurring in amino acids.

Even polypeptides having deletion or addition of one or more amino acids within the amino acid sequence of SEQ ID NO: 2, 4 or 15 or having substitution of one or more amino acids may have a cell cycle regulating activity. For example, it is already known that a polypeptide having

substitution of cysteine for serine in the human interleukin 2 (IL-2) which is derived from nucleotide alterations has exerted an IL-2 activity (Wang et al., Science 224:1431, 1984). These techniques for preparing 5 modified genes encoding MTf protein are known to the skilled artisan.

In many cases of expression in eukaryotic cells, sugar chains may be added to the protein and the addition of sugar chains can be regulated by substituting one or 10 more amino acids of the protein and even in this case, the chondrogenic differentiation inducing activity may be exhibited. Therefore, genes encoding such polypeptides obtained by using artificial modifications of the gene encoding MTf gene can all be used in the invention, as long 15 as such polypeptides have the chondrogenic differentiation inducing activity.

Expression vectors that can be used include replication origins, selection markers, promoters, RNA splicing sites, polyadenylation signals and so on.

20 Prokaryotic organisms that can be used as host cells in the expressing system include, for example, *Escherichia coli* and *Bacillus subtilis*. Eukaryotic microorganisms that can be used as host cells include, for example, yeasts and myxomycetes. If desired, insect cells such as Sf9 may be 25 used as host cells. Host cells derived from animal cells include, for example, COS cells and CHO cells.

Transformants thus obtained by transforming with the gene encoding MTf protein are cultured to produce proteins.

The proteins can be recovered from the transformants or from the cultured medium and be purified. Not only the proteins which are obtained with genes containing nucleotide sequences encoding the amino acid sequences of SEQ ID NO: 2, 4 and 15 but also proteins which are obtained using genes containing altered nucleotide sequences encoding the amino acid sequences having substitution, deletion or addition of one or more amino acids within the amino acid sequences of SEQ ID NO: 2, 4 and 15, or proteins which are obtained using nucleotide sequences that hybridize those altered nucleotide sequences can be used as the chondrogenesis promoter of the invention as long as they have the biological function of MTf protein, namely, the chondrogenic differentiation inducing activity.

Conventional methods for separating and purifying proteins can be employed to separate and purify the MTf protein. For example, various techniques of chromatography, ultrafiltration, salting-out, dialysis, etc. can appropriately be selected and used in combination.

To use the chondrogenesis stimulator of the invention, the MTf described above may be administered in the form of a protein or it may be used an agent for gene therapy.

Insulin or an insulin-like growth factor has conventionally been known as a chondrocyte differentiating substance. It is interesting to note that the chondrogenesis stimulator of the invention induces chondrogenic differentiation even in the absence of

insulin. However, it was found that the effect of the chondrogenesis stimulator is further enhanced in the presence of insulin. Therefore, the desired cartilage repairing action could be further enhanced by using MTf in combination with MTf activating agents such as insulin and an insulin-like growth factor.

When the superntant of a chondrocyte culture was added, marked differentiation of chondrocytes was observed in MTf overexpressing cell lines, suggesting that an MTf activating agent may exist in the conditioned medium of a chondrocyte culture. Therefore, the desired cartilage repairing action could be further potentiated by using MTf in combination with an MTf activating agent.

The MTf activating agent may be obtained by the following methods:

- 1) purifying from the conditioned medium of a chondrocyte culture system;
- 2) cloning the cDNA for protein binding to an MTf from a chondrocyte cDNA library; and
- 3) cloning the cDNA of protein binding to an MTf by the yeast two-hybrid method.

To screen various candidate substances for an MTf activating agent, a method including the following steps can be used:

- 1) preparing a cell line in which MTf is overexpressed, wherein said cell line retains the ability to differentiate to chondrocytes but hardly differentiate without stimulation;

2) adding candidate substances to the cell line prepared in step 1) and culturing it for a specified period of time; and

3) examining the cell line for induced chondrogenic differentiation and selecting an MTf activating agent from the candidate substances

Thus obtained MTf activating agent can be used as a chondrogenesis stimulator on its own.

It should also be mentioned that chondrogenic differentiation was induced when the soluble MTf, preferably an MTf lacking the GPI anchor region, was expressed in non-MTf-expressing cells. Therefore, the soluble MTf, preferably an MTf lacking the GPI anchor region, can be used as the chondrogenesis regulator.

The chondrogenesis stimulator of the invention can be applied to the following diseases:

- 1) OA (osteoarthritis);
- 2) RA (rheumatoid arthritis);
- 3) injury of articular cartilage due to trauma;
- 4) maintenance of chondrocyte phenotypes in autologous chondrocyte transplantation;
- 5) reconstruction of cartilage in the ear, trachea or nose;
- 6) osteochondritis dissecans;
- 7) regeneration of intervertebral disk or meniscus;
- 8) bone fracture;
- 9) osteogenesis from cartilage.

The chondrogenesis stimulator of the invention is generally useful as an agent for gene therapy having the

MTf protein or an MTf mutant (variant) introduced in it. The agent for gene therapy of the invention contains as an active ingredient an expression vector incorporating a DNA coding for any one of the following proteins:

- 5 1) a protein having the amino acid sequence of SEQ ID NO: 2;
- 2) a protein having the amino acid sequence of SEQ ID NO: 4;
- 3) a protein having the amino acid sequence of SEQ ID NO: 15; 4) a protein demonstrating the MTf activity that has an amino acid sequence encoded by DNA which hybridizes, under stringent conditions, with a DNA encoding the protein of SEQ ID NO: 2, 4 or 15; and
- 10 5) a protein which is the same as protein 1), 2), 3) or 4), except that it lacks the GPI anchor region.

DNAs encoding MTf variants can be easily prepared by the skilled artisan using known techniques such as site-directed mutagenesis and PCR [Molecular Cloning: A Laboratory Manual, 2nd ed., Chapter 15, Cold Spring Harbor 20 Laboratory Press (1989), and PCR - A Practical Approach, IRL Press, 200-210 (1991)].

In the present invention, an MTf- or MTf variant expression vector is provided as a DNA to be introduced into cells. These expression vectors can be prepared by linking DNA encoding an MTf- or MTf variant to an expression vector such as pSG5 (Stratagene). In the next step, the prepared DNA mixture is introduced into cells. Exemplary cells may include bone marrow interstitial cells,

fibroblasts, periosteal cells, perichondral cells, synovial cells and dedifferentiated chondrocytes. DNA can be introduced into cells by the calcium phosphate method [Idenshi donyu to hatsugen kaisekiho (Gene Introduction and Methods of Expression and Analysis), ed. by Takashi Yokota and Kenichi Arai, Yodosha, 1994]. Hence, by using the introduced DNA as a medicinal active ingredient, one can prepare an agent for gene therapy which has the chondrogenesis promoting action. It is thought that, upon 10 administering such agent for gene therapy, MTf or its variant would be expressed at high levels in cells, promoting the action of inducing chondrogenic differentiation in the cells. Therefore, the MTf containing agent of the invention for gene therapy can be 15 used as a therapeutic or preventive of the various diseases listed above.

The agent of the invention for gene therapy can be introduced into cells by either a virus vector based method of gene introduction or a non-viral method of gene 20 introduction [Nikkei Science, April 1994, pp. 20-45, Jikken igaku zokan (Extra Issue of Experimental Medicine), 12(15)(1994), and Jikken igaku bessatsu (Supplement to Experimental Medicine), "Idenshi chiryo no kiso gjutsu (Basic Technology in Gene Therapy)", Yodosha (1996)].

25 In an example of the viral vector based method of gene introduction, DNA encoding an MTf or a variant MTf is inserted into DNA or RNA viruses such as retrovirus, adenovirus, adeno-associated virus, herpes virus, vaccinia

virus, poxvirus, poliovirus and Sindbis virus. Non-viral methods of gene introduction include direct intramuscular administration of an expression plasmid (DNA vaccination), liposome method, lipofectin method, microinjection, calcium phosphate method, and electroporation.

In order to ensure that the agent for gene therapy of the invention acts as a practical medicine, two methods may be used, that is, an *in vivo* method where DNA is directly introduced into the body and an *ex vivo* method where a certain kind of cells are taken out of a human and DNA is introduced into the cell, which is then put back into the body [Nikkei Science, April 1994, pp. 20-45, Gekkan yakuji (Monthly Yakuji), 36(1), 23-48 (1994), and Jikken igaku zokan (Extra Issue of Experimental Medicine), 12(15)(1994)]. The *in vivo* method is more preferred.

When administering the agent for gene therapy by the *in vivo* method, the route of administration should depend on the disease, its severity and other factors. Exemplary methods of administration include intra-articular injection, direct application to a missing part of articular cartilage, implantation (with putty, polylactic acid, etc.) and intra-articular sustained-release agent. Intravenous injection is also possible. For administration by the *in vivo* method, injections are generally used, with conventional carriers being added as required. Liposomes or membrane fused liposomes may be formulated as suspensions, frozen vesicles, centrifugally concentrated frozen vesicles.

In the case of the GPI anchor free soluble protein (GPI anchor lacking MTf) or the aforementioned MTf activating agent, the above-listed administrating methods may of course be used but the protein per se can be 5 administered by various other methods. Differentiation could also be induced by adding those proteins directly to cartilage precursor cells.

The dose of the chondrogenesis stimulator of the invention is determined specifically by a doctor 10 considering various factors such as the type of the disease to be treated, its severity, the age and body weight of the patient. The GPI anchor free soluble protein (GPI anchor lacking MTf) or the aforementioned MTf activating agent may be administered typically at a dose ranging 1 ng - 1000 15 mg/day, preferably 1 µg - 100 mg/day.

The present invention further provides a chondrogenic differentiation suppressing agent containing an MTf antagonist. MTf antagonists include an anti-MTf antibody, antisense DNA based on the nucleotide sequence of MTf, etc.

20 Antisense DNA is an oligonucleotide or an oligonucleotide analog that are capable of hybridizing with an MTf coding nucleic acid.

Antisense DNA has a nucleotide sequence complementary to mRNA and forms a base pair with mRNA, thereby blocking 25 the flow of genetic information to suppress the synthesis of MTf as the final product. The antisense DNA that can be used in the invention is an oligonucleotide capable of specifically hybridizing with a base sequence encoding the

amino acid sequence identified by SEQ ID NO: 2, 4 or 15.

The term "oligonucleotide" as used herein means oligonucleotides generated from naturally occurring bases and sugar portions bound by intrinsic phosphodiester bonds, as well as analogs thereof. Therefore, the first group encompassed by this term comprises naturally occurring species or synthetic species that are generated from naturally occurring subunits or homologs thereof. The term "subunit" means a base-sugar combination which links to adjacent subunit by phosphodiester bond or other bond. The second group of oligonucleotides are their analogs that function similar to oligonucleotides but which are composed of residues having non-naturally-occurring moieties. These include oligonucleotides having chemical modifications applied to phosphate groups, sugar portions and 3'- and 5'-ends in order to provide increased stability. Examples are oligophosphorothioate and oligomethylphosphonate in which one of the oxygen atoms in the phosphodiester group between nucleotides is substituted by sulfur and -CH₃, respectively. Phosphodiester bonds may be replaced by other structures which are non-ionic and achiral. Additional oligonucleotide analogs that can be used are species containing modified base forms, that is, purine and pyrimidine in non-naturally-occurring form.

25 The oligonucleotides to be used in the invention have
preferably 5 - 40 subunits in length, more preferably 8 -
30 subunits, most preferably 12 - 30 subunits.

In the present invention, the target portion of mRNA

with which oligonucleotides hybridize is preferably a transcription initiation site, a translation initiation site, an intron/exon junction site or a 5'-cap site; considering the secondary structure of mRNA, a site having 5 no steric hindrance should be selected.

In the present invention, peptide nucleic acids (see, for example, Bioconjugate Chem., Vol. 5, No. 1, 1994) may be used in place of oligonucleotides.

In a particularly preferred embodiment of the 10 invention, oligonucleotides or peptide nucleic acids that hybridize with a nucleotide sequence encoding the amino acid sequence identified by SEQ ID NO: 2 and which can inhibit MTf expression is employed.

In the present invention, oligonucleotides can be 15 produced by synthesis methods known in the art, for example, the solid-phase synthesis method using a synthesizer as manufactured by Applied Biosystems. Similar methods can be used to produce oligonucleotide analogs such as phosphorothioate and alkylated derivatives [Akira 20 Murakami et al., "Kinosei antisense DNA no gosei (Chemical Synthesis of Functional Antisense DNA)", Organic Synthesis Chemistry, 48(3):180-193, 1990].

The MTf antagonist that can be used in the invention is not limited to oligonucleotides of the above-defined 25 antisense DNA providing length. To the extent that production of intrinsic MTf can be suppressed, a longer antisense, preferably an antisense of 500 - 600 nucleotides in length, may be inserted into a genome to be used for

suppressing chondrogenic differentiation (see Example 3).

The anti-MTf antibody to be used in the invention is one that recognizes a peptide having at least five consecutive amino acids in the amino acid sequence 5 identified by SEQ ID NO: 2, 4 or 15; this can be produced using a conventional procedure [see, for example, Shin-seikagaku jikken koza 1 (New Course in Biochemical Experiments 1), Protein I, pp. 389-397, 1992], which comprises immunizing an animal with an antigenic peptide 10 having at least five consecutive amino acids in the amino acid sequence of SEQ ID NO: 2, 4 or 15, isolating the antibody produced in the animal body, and purifying the isolated antibody. The antibody may include a polyclonal and a monoclonal antibody and methods of preparing these 15 antibodies are also known to the skilled artisan.

The following examples are provided to further illustrate the present invention but are in no way to be taken as limiting the invention. Various alterations and modifications can be made by the skilled artisan and are 20 included within the scope of the invention.

Examples

Materials and Methods of Experiment

Rabbit chondrocyte culture

Chondrocytes were isolated from rabbit costal 25 cartilage using, with necessary modifications, the method of Kato et al. (Kato et al.: J. Cell Biol., vol. 100, pp. 477-485, 1985). Specifically, the resting cartilage of ribs in 4-week old male Japanese albino rabbits (Hiroshima

Laboratory Animals) was separated, shredded with a surgical knife and incubated in a Dulbecco's modified Eagle's medium (DMEM, Flow Laboratories) containing 8 mg/mL of actinase E (Kaken Seiyaku) and 5% fetal calf serum for 1 hour and in 5 DMEM containing 0.15% collagenase (Worthington Biochemical) for 3 hours. Cells passing through a 120- μ m nyron filter were recovered, seeded in plastic culture dishes (Corning) and grown in an alpha-modified Eagle's medium (α -MEM, Sanko Junyaku) containing 10% fetal calf serum (Mitsubishi Kasei), 50 μ g/mL of ascorbic acid, 50 U/mL of G potassium, 10 60 μ g/mL of kanamycin (all being from Meiji Seika) and 250 μ g/mL of amphotericin B (ICN Biochemical) (medium A) or in a serum-free DMEM (medium B) at 37°C in the atmosphere of 5% CO₂ gas.

15 Mouse chondrogenic cell line ATDC5 culture

ATDC5 was purchased from Riken Cell Bank (Tsukuba, Japan). The cells were cultured in a 1:1 mixture of Ham F-12 medium (Flow Laboratories) and a Dulbecco's modified Eagle's medium (DMEM, Flow Laboratories) containing 5% fetal calf serum (FCS, Mitsubishi Kasei), 10 μ g/mL of human transferrin (Boehringer Mannheim) and 0.3 nmol/mL of sodium selenite (Wako Junyaku) (maintenance medium) at 37°C in the atmosphere of 5% CO₂ gas. To induce cartilage differentiation, ATDC5 cells were cultured in a medium 20 (differentiation medium) prepared by adding 10 μ g/mL of sodium selenite (Wako Junyaku) (maintenance medium) at 37°C in the atmosphere of 5% CO₂ gas. To induce cartilage differentiation, ATDC5 cells were cultured in a medium 25 (differentiation medium) prepared by adding 10 μ g/mL of bovine insulin (Sigma) to the maintenance medium.

cDNA Cloning of rabbit MTf and nucleotide sequencing

Three days after reaching confluence, the rabbit

chondrocytes were treated by the guanidine thiocyanate method to extract total RNA. On the basis of the nucleotide sequence of human MTf (Rose, T.M. et al., Proc NAS, 83, 1261-1265, 1986), a primer pair of 5'-
5 GGCTGGAACGTGCCGTGGGCTA-3' (forward) (SEQ ID NO: 5) and 5'-
GTCCTGGGCCTTGTCCAGCAGTC-3' (reverse) (SEQ ID NO: 6) was
designed and 1.5 kb MTf cDNA fragments were amplified from
the total RNA (1 µg) by a reverse transcription polymerase
chain reaction (RT-PCR) method. The obtained cDNA
10 fragments were cloned into the SmaI site of pBluescript II
SK vectors (Stratagene) and their nucleotide sequence was
determined using Sequenase 7-deaza-dGTP DNA sequencing kit
(USB). To obtain a full-length cDNA, rapid amplification
of cDNA end (RACE) was performed using Marathon cDNA
15 amplification kit (Clontech). Specifically, Marathon cDNA
adapters were ligated to the both ends of the double-
stranded total cDNA of rabbit chondrocytes and RACE was
performed using adapter primers described above and
specific primers (5'-AGAGGGACTCCGAGTATCTGGTCTC-3' (forward)
20 (SEQ ID NO: 7) and 5'-GTCCGGCCCGACACCAACATCTTC-3' (reverse)
(SEQ ID NO: 8) designed from the MTf nucleotide sequence.
The amplified cDNA samples were separated in a 4.5%
acrylamide gel and the principal cDNA bands were extracted
from the gel and the bands were cloned into pBluescript II
25 SK vectors. With the clones used as templates, the
nucleotide sequence of full length MTf was determined using
Sequenase 7-deaza-dGTP DNA sequencing kit and ABI
autosequencer (ABI).

Creating MTf overexpressing ATDC5 variant cells

Rabbit MTf cDNA (Kawamoto T. et al., EJB, 1988) of either full length or a truncated form which had the 28 residues from C-terminal necessary for GPI anchor binding 5 deleted was inserted into pcDNA3.1/Zeo(+) plasmid expression vector (containing a cytomegalovirus very early promoter/enhancer; Invitrogen, San Diego, CA). Specifically, an EcoRI-NotI fragment including the full length was excised from a vector and inserted at the EcoRI- 10 NotI site of pcDNA3.1/Zeo(+). To create a variant which lacks the GPI anchor binding site, a fragment was prepared having a stop codon inserted 28 amino acids upstream of the C-terminal and after confirming its sequence, the fragment was inserted at the EcoRI-NotI site of pcDNA3.1/Zeo(+).

15 In these ways, there were prepared a plasmid having a full length MTf cDNA (MTf Full) as an insert and a plasmid having GPI anchor-lacking MTf cDNA (MTf(-)GPI) as an insert; the two plasmids (pMTf Full and pMTf(-)GPI) were each transfected to ATDC5 cells (Riken, Tsukuba, Japan) 20 using SuperFect Transfection Reagent (QIAGEN). By selection with Zeocin (Invitrogen), stable transformants were prepared.

Specifically, 2×10^5 ATDC5 cells were seeded in 10-cm culture dishes. On the next day, 2 µg each of the 25 plasmid DNAs to be introduced (pMTf Full and pMTf(-)GPI) and about 40 µL of SuperFect Transfection Reagent in solution were individually dissolved in a serum-free medium and stored until use, when they were rapidly mixed together

and added to ATDC5 cells washed with a serum-free medium. After incubation at 37°C for 1 hour in the atmosphere of 5% CO₂ gas, a serum-supplemented medium was added and cultivation was conducted for an additional day. A control 5 group was prepared by transfecting only the vector.

One day after the transfection, selection was started in a serum-supplemented medium containing 50 µg/mL of Zeocin and cell culture was continued for 2 weeks with medium change effected on every third day. As a result, 10 there were obtained ATDC5 variant cell lines that would assure stable expression of MTf Full and MTf(-)GPI and these variant cell lines were subcultured in a serum-supplemented medium containing 50 µg/mL of Zeocin.

A scheme of the procedure of creating MTf 15 overexpressing ATDC5 variant cells is shown in Fig. 1.

Expression of rabbit MTf gene in ATDC5 variant cell lines

Expression of rabbit MTf gene in ATDC5 variant cell lines was confirmed by Northern blotting. Specifically, total RNA was prepared from the ATDC5 variant cell lines by 20 the guanidine thiocyanate method; 10 µg of the total RNA was electrophoresed on a 1% agarose gel containing 2.2 mol/L of formaldehyde and transferred onto Hybond-N membrane (Amersham). The membrane was hybridized with a ³²P labeled 2.2 kb rabbit MTf cDNA probe at 42°C for 16 hours. 25 After washing the membrane, a BioMax X-ray film (Kodak) was exposed to the membrane at -80°C to detect signals. The result is shown in Fig. 2.

In the MTf Full cell line, it was found that the

rabbit MTf gene have been expressed strongly in clone Nos. 1, 4 and 5.

In the MTf(-)GPI cell line, it was found that the rabbit MTf gene have been expressed strongly in clone Nos. 5 3, 3N, 8, 9 and 10. In the Examples, (-)GPI-3 was used.

Expression of rabbit MTf protein in ATDC5 variant cell lines

Expression of rabbit MTf protein in ATDC5 variant cell lines was confirmed by Western blotting.

10 Specifically, membrane fraction protein was prepared from the ATDC5 variant cell lines, subjected to SDS-PAGE at 10 µg/lane, and transferred to a polyvinylidene difluoride membrane (Millipore). After the transfer, the membrane was blocked with 4% skimmed milk and reacted with anti-MTf 15 serum [1:500 dilution; Eur. J. Biochem, 256, 503-509 (1988)] at 4°C for 14 hours, then reacted with ¹²⁵I sheep anti-mouse IgG(Fab')2 fragment (Amersham) at room temperature for 2 hours. The membrane was washed and a BioMax X-ray film was exposed to the membrane at -80°C for 20 analysis. The result is shown in Fig. 3.

In the MTf Full cell line, it was found that the rabbit MTf protein have been expressed strongly in clone Nos. 1 and 5. These clones were named MTf overexpressing cell lines (Full-1 and Full-5).

25 Example 1: Chondrogenic differentiation in MTf overexpressing cell lines

The MTf overexpressed cell lines (4.0×10^4 cells) were seeded in 6-multiwell plates and cultured in a

maintenance medium at 37°C in a 5% CO₂ gas phase.

The MTf overexpressing cell lines to be investigated were Full-1 and Full-5 which were found to have expressed both the MTf gene and protein. The MTf(-)GPI cell line to 5 be investigated was GPI-3 which was found to have expressed the MTf gene.

As control cells, ATDC5 cells and pC-1 (vector alone) were prepared in the same manner as described above and their morphological features were examined under a 10 microscope. Cell morphology was examined with an Olympus phase-contrast microscope. Two microscopic fields were taken for each culture system and at least 200 cells were counted to calculate the proportion of round cells.

In the absence of insulin, the control cells (pC-1) 15 did not differentiate to chondrocytes; on the other hand, the MTf overexpressing cell lines (Full-1 and Full-5) and the MTf(-)GPI cell line [(-)GPI-3] started to differentiate within 20 days and 29 days after seeding, almost all regions of the cells had differentiated to chondrocytes 20 (Fig. 4).

The similar test was conducted in the presence of insulin (10 µg/mL) (insulin was added at day 0). The result was the same as in the absence of insulin (Fig. 5), except that, in the presence of insulin, further 25 differentiation was induced in the MTf overexpressing cell lines, namely, more cells "rounded" like chondrocytes than in the absence of insulin.

The above results show the effectiveness of MTf in

inducing chondrogenic differentiation, which was exhibited even in the absence of insulin.

Example 2: Effect of Adding the Conditioned Medium of Rabbit Chondrocyte Culture

5 Resting rabbit chondrocytes (1×10^6 cells) were seeded in 10-cm culture dishes and cultured in medium A (10 mL) at 37°C in the atmosphere of 5% CO₂ gas. Two days after confluence, medium A was replaced by serum-free medium B (5 mL). After 24 hours of cell culture, the conditioned
10 medium (CM) was recovered and subjected to an experiment. After the recovery, CM was supplemented with fetal calf serum at a concentration of 5%.

MTf overexpressing cell line (Full-5) and the control cell line (pC-1) were seeded at 8.0×10^4 cells in 6-
15 multiwell plates and cultured in a maintenance medium at 37°C in the atmosphere of 5% CO₂ gas. Three days after confluence (day 7), the previously recovered CM was added to give a concentration of 60% in the overall liquid culture; at the same time, 10 µg/mL of bovine insulin was
20 added. Cultivation was continued for additional 48 hours at 37°C in a 5% CO₂ gas phase.

Forty-eight hours after the addition of CM, almost all cells of the MTf overexpressing cell line to which CM was added [Full-5(+)CM] differentiated to chondrocytes
25 which synthesized active substrate and which resembled paving stones. The cells of the MTf expressing cell line to which no CM was added [Full-5(-)CM] had almost the same morphology as the control cell lines in which only a vector

was expressed [pC-2(+)CM and (-)CM]. The cell lines in which only a vector was expressed had no visible induced differentiation to chondrocytes due to the addition of CM (Fig. 6).

5 These results show the presence of an MTf activating agent in CM.

Example 3: Chondrogenic differentiation due to
Overexpression of Antisense MTf RNA

ATDC5 variant cell lines (A-01, A-05, A-08, A-09, A-
10 11, A-12, A-23 and A-24) in which mouse antisense MTf RNA
was overexpressed were prepared by the similar method used
in preparing the ATDC5 variant cell lines in which MTf was
forcibly expressed. The mouse antisense MTf RNA was
prepared as follows: cDNA fragments of mouse MTf were
15 amplified by PCR (using primers 5'-
GGTGTGTTGAGGGCGTGGACTCT-3' (SEQ ID NO: 9) and 5'-
TCACCAACGGCTTGAGCACATCAC-3' (SEQ ID NO: 10), inserted into
pGEM-T Easy Vector (Promega), excised with ApaI-NotI and
inserted into pcDNA3.1/Zeo(+) at ApaI-NotI site (i.e.,
20 inserted in reverse direction). The sequence of the
inserted portion is identified by SEQ ID NO: 11.

A control group was also prepared by transfecting
only the vector (pC-1).

The expression of mouse MTf antisense was examined by
25 Northern blotting using the above-mentioned ApaI-NotI
fragment as a probe.

A criterion for the suppression of chondrogenic
differentiation was the suppression of synthesis of a

cartilage proteoglycan, aggrecan, and a test was conducted by RT-PCR Southern blotting both in the presence of insulin (added in an amount of 10 µg/mL after day 4) and in its absence. Specifically, total RNA was extracted from the 5 cells of each clone by the guanidine thiocyanate method; single-stranded cDNA was synthesized from the extracted total RNA (1 µg) using SUPERSCRIPT pre-amplification system kit (Life Technologies); using the cDNA as a template, PCR was performed on the aggrecan gene with a pair of primers 10 5'-TGCTACTTCATCGACCC-3' (forward) (SEQ ID NO: 12) and 5'-AAAGACCTCCCCATCT-3' (reverse) (SEQ ID NO: 13); the PCR reaction mixture was electrophoresed on a 1% agarose gel and transferred onto Hybond-N membrane (Amersham). The membrane was hybridized with a ³²P labeled antisense MTf 15 probe and mouse aggrecan cDNA probe at 42°C for 16 hours. The membrane was washed with 0.2 x SSC whih contains 0.5% SDA and a BioMax X-ray film (Kodak) was exposed to the membrane at -80°C to detect signals.

The result is shown in Fig. 7. Antisense MTf RNA was 20 expressed most strongly in variant cell line A-12 (lane 6), followed by A-11 (lane 5) in strength. Correspondingly, expression of the aggrecan gene was suppressed most effectively in variant cell line A-12 (lane 6), followed by A-11 (lane 5) in effectiveness. While expression of the 25 aggrecan gene was suppressed in the absence of insulin, it was more effectively suppressed in the presence of insulin.

CLAIMS

1. A cartridge formation stimulator containing a membrane-bound transferrin-like protein (MTf).
2. The chondrogenesis stimulator according to claim 1, wherein MTf is selected from the group consisting of rabbit p76 protein, human p97 protein, and a protein demonstrating the MTf activity that has an amino acid sequence encoded by DNA which hybridizes, under stringent conditions, with a DNA coding for p76 protein or p97 protein.
3. The chondrogenesis stimulator according to claim 1, wherein the MTf is selected from the following:
 - 1) a protein having the amino acid sequence of SEQ ID NO: 2;
 - 2) a protein having the amino acid sequence of SEQ ID NO: 4;
 - 3) a protein having the amino acid sequence of SEQ ID NO: 15; and
 - 4) a protein demonstrating the MTf activity that has an amino acid sequence encoded by DNA which hybridizes, under stringent conditions, with a DNA encoding the protein of SEQ ID NO: 2, 4 or 15.
4. The chondrogenesis stimulator according to claim 2, wherein the MTf is human p97 protein.
5. A chondrogenesis stimulator containing soluble MTf.
6. The chondrogenesis stimulator according to claim 5, wherein the soluble MTf lacks the GPI anchor region.
7. An agent for gene therapy to promote chondrogenesis which contains as an active ingredient an expression vector

incorporating a DNA encoding any one of the following proteins:

- 1) a protein having the amino acid sequence of SEQ ID NO: 2;
- 2) a protein having the amino acid sequence of SEQ ID NO: 4;
- 3) a protein having the amino acid sequence of SEQ ID NO: 15; 4) a protein demonstrating the MTf activity that has an amino acid sequence encoded by DNA which hybridizes, under stringent conditions, with a DNA coding for the protein of SEQ ID NO: 2, 4 or 15; and
- 5) a protein which is the same as protein 1), 2), 3) or 4), except that it lacks the GPI anchor region.

8. The chondrogenesis stimulator according to claim 1 which is used in combination with an MTf activating agent.

9. The chondrogenesis stimulator according to claim 1 which is used in combination with insulin or an insulin-like growth factor.

10. The chondrogenesis stimulator according to any one of claims 1 - 9 for treating at least one bone disease selected from the following diseases in which chondrogenic differentiation is involved: OA (osteoarthritis); RA (rheumatoid arthritis); injury of articular cartilage due to trauma; maintenance of chondrocyte phenotypes in autologous chondrocyte transplantation; reconstruction of cartilage in the ear, trachea or nose; osteochondritis dissecans; regeneration of intervertebral disk or meniscus; bone fracture; and osteogenesis from cartilage.

11. A chondrogenic differentiation suppressing agent containing an MTf antagonist.

12. The chondrogenic differentiation suppressing agent according to claim 11, wherein the MTf antagonist is an anti-MTf antibody or an oligonucleotide or an oligonucleotide analog that are hybridizable with a nucleic acid encoding MTf.

13. A method for screening an MTf activating agent which comprises the steps of:

1) preparing a cell line in which MTf is overexpressed, wherein said cell line retains the ability to differentiate to chondrocytes but hardly differentiate without stimulation;

2) adding candidate substances to the cell line prepared in step 1) and culturing it for a specified period of time; and

3) examining the cell line for induced chondrogenic differentiation and selecting an MTf activating agent from the candidate substances.

14. An MTf activating agent obtained by the method according to claim 13.

15. A chondrogenesis stimulator containing an MTf activating agent obtained by the method according to claim 13.

16. MTf which lacks the GPI anchor region.

ABSTRACT

There are provided a chondrogenesis stimulator containing MTf, a chondrogenic differentiation suppressing agent containing an MTf antagonist, a screening method for 5 obtaining an MTf activating agent, an MTf activating agent obtained by the screening method, a chondrogenesis stimulator containing an MTf activating agent as obtained by the screening method, and MTf which lacks the GPI anchor region.

Fig. 1

Construction of expression vector (pc-DNA 3.1 (+) plasmid

Fig.2

Fig.3

Fig. 4

Fig.5

Fig.6

*Fig. 7***Antisense**

1 2 3 4 5 6 7 8

MTf mRNA**day 23 (-) insulin****Aggrecan****day 17 (+) insulin****Aggrecan**

1 2 3 4 5 6 7 8 9

- 1 = A-01
- 2 = A-05
- 3 = A-08
- 4 = A-09
- 5 = A-11
- 6 = A-12
- 7 = A-23
- 8 = A-24
- 9 = pC-1

2002-10-02 10:00:00
10/049957
Rec'd PCT/PTO 05 JUL 2002

SEQUENCE LISTING

<110> KATO, Yukio
FUJIMOTO, Katsumi

<120> CHONDROGENESIS PROMOTERS

<130> KATO=21

<140> 10/049,957

<141> 2002-02-19

<150> PCT/JS00/05590

<151> 2000-08-21

<150> JP 232966/1999

<151> 1999-08-19

<160> 15

<170> PatentIn version 3.1

<210> 1

<211> 2388

<212> DNA

<213> Oryctolagus cuniculus

<400> 1
gcccggctc actcgttcgc actcggactc agacccagtc cgaccggctg gactgcgccta 60
tgcgggtgccg aagcgccgct atgtggatct tcctggccct gcgcaccgca ctggcagcg 120
tggagggtgcg gtgggtgcacc gcgtccgagc ccgagcagca gaagtgcgag gacatgagcc 180
aggccttccg cgaagccggc ctccagcccc ccctgctgtg cgtgcagggc acctcgcccg 240
accactgcgt ccagctcatc gcggcccaacg aggccgacgc catcactctg gacggaggag 300
ccattttacga ggcggggaaag gaacacggcc tgaagccgt ggtggggcaa gtgtatgacc 360
aagaggtggg cacctcctac tacgctgtgg ccgtggtcaa gaggagctcc aacgtgacca 420
tcaacaccct gagaggcgtg aagtccctgcc acacggcat caaccgcacg gtgggctgga 480
acgtgcctgt gggctacccgt gtggacacgcg gcccgccttc agtgatgggc tgtgacgtgc 540
tcaaagcggt cagcgagtac ttccggggca gctgcgtccc tggggcagga gagaccagat 600
actcggagtc cctctgtcgc ctctggccgg ggcacaccc tcggggagggg gtgtgtgaca 660
agagccccc ggagcggtac tacgactaca gcggggcctt ccgggtgcctg gcagaaggcg 720
caggggacgt ggcctttgtg aagcacagca cggtgctgga gaacacggat gggagaacac 780
tgccttcctg gggccacatg ctgatgtcac gggactttga gctgctgtgc cgggacggca 840
gccggggccag cgtcaccgag tggcagcact gccacctggc ccgggtgccc gcccacggcg 900

tgttgtccg ggccgacacc gacgcaggcc tcatcttccg	960
gctgttcag ccacgagggc agcagcttcc agatgttcag	1020
agaaacctgct gttcaaagac tccacgctgg agctggtgcc	1080
catcgccaca cagacctacg aggccctggct gggccccgag	1140
tacctgcacg ccatgaaggg tctgctctgt gaccccaacc	
ggctgcccccc atacctgcgc tggtgctgtc tgtccacccc	1200
cgagatccag aagtgtggag acatggccgt ggccttcagc	1260
cggcagagggc tcaagccgga gatccagtgt gtctcggcgg	
agtcccccca gcactgcatt gagcagatcc aggctggca	1320
catcgatgct gtgaccctga acggggagga cattcacaca	1380
gcggggaaaga cttatggct gatccggct gccccggagc	
tgtatgccgc ggacgacagg agtaactcgt acttcgttgt	1440
ggccgtggta aagcgagaca ggcctacgc cttcaccgtg	1500
gacgagctgc gcggaagcg ctccctccac cccggcttcg	
gcagccggc cggctggac gtcccggtgg gcccctcat	1560
ccactggggc tacatccggc ccaggaactg cgacgtcctc	1620
acagcggtgg gtcagttctt caacgcccgc tgtgtgccgg	
tgaacaaccc caagaagtac ccctcctcgc tgtgcgcact	1680
ctgcgtgggt gacgagcagg gccgcaacaa gtgcactggc	1740
aacagccagg agcgtacta tggcgacagt ggcgccttca	
ggtgcctggt ggagggtgca gggacgtgg cttcgtaa	1800
gcacacgacc atcttgaca acacaaatgg ccacaatccc	1860
gagccgtggg ctgcccattt gaggagccag gactacgagc	
tgctgtgccca aacggcgcg cgagctgagg cgaccaggat	1920
tgccgcctgc aacccatccc atggtgccgc ccgacaccaa	1980
catcttcacc gtttacggac tgctggacaa ggcccaggac	2040
ctgtttggag acgaccacaa caagaacggg ttcaagatgt	
tcgactcctc cagctaccac ggccgagacc tgctttcaa	2100
ggacgcccacg gtgcgcgtcg tgccgtgg cgagaggacc	2160
acctaccagg actggctggg gcccggactac tgccgggctc	
ttggat gcagtcacag cggtgctcag gggcagccgt	2220
cgccgcctc gggccccc gggcgcctg ttctgctgtc	2280
ttcgctctga gaggccccc gggcagcctc ggccggccca	
ggccggccca gggcgcctg cgccgaagct ttctgaacga	2340
gccccggccc ttcccccggctggat tggttacctc	
ggcgagccgc gggccggcgc ttccccccg	2388

<210> 2

<211> 736

<212> PRT

<213> Oryctolagus cuniculus

<400> 2

LIGAND SEQUENCE OVERVIEW

Met Arg Cys Arg Ser Ala Ala Met Trp Ile Phe Leu Ala Leu Arg Thr
 1 5 10 15

Ala Leu Gly Ser Val Glu Val Arg Trp Cys Thr Ala Ser Glu Pro Glu
 20 25 30

Gln Gln Lys Cys Glu Asp Met Ser Gln Ala Phe Arg Glu Ala Gly Leu
 35 40 45

Gln Pro Ala Leu Leu Cys Val Gln Gly Thr Ser Ala Asp His Cys Val
 50 55 60

Gln Leu Ile Ala Ala His Glu Ala Asp Ala Ile Thr Leu Asp Gly Gly
 65 70 75 80

Ala Ile Tyr Glu Ala Gly Lys Glu His Gly Leu Lys Pro Val Val Gly
 85 90 95

Glu Val Tyr Asp Gln Glu Val Gly Thr Ser Tyr Tyr Ala Val Ala Val
 100 105 110

Val Lys Arg Ser Ser Asn Val Thr Ile Asn Thr Leu Arg Gly Val Lys
 115 120 125

Ser Cys His Thr Gly Ile Asn Arg Thr Val Gly Trp Asn Val Pro Val
 130 135 140

Gly Tyr Leu Val Asp Ser Gly Arg Leu Ser Val Met Gly Cys Asp Val
 145 150 155 160

Leu Lys Ala Val Ser Glu Tyr Phe Gly Gly Ser Cys Val Pro Gly Ala
 165 170 175

Gly Glu Thr Arg Tyr Ser Glu Ser Leu Cys Arg Leu Cys Arg Gly Asp
 180 185 190

Thr Ser Gly Glu Gly Val Cys Asp Lys Ser Pro Leu Glu Arg Tyr Tyr
 195 200 205

Asp Tyr Ser Gly Ala Phe Arg Cys Leu Ala Glu Gly Ala Gly Asp Val
 210 215 220

Ala Phe Val Lys His Ser Thr Val Leu Glu Asn Thr Asp Gly Arg Thr
 225 230 235 240

Leu Pro Ser Trp Gly His Met Leu Met Ser Arg Asp Phe Glu Leu Leu
 245 250 255

Cys Arg Asp Gly Ser Arg Ala Ser Val Thr Glu Trp Gln His Cys His
 260 265 270

Leu Ala Arg Val Pro Ala His Ala Val Val Val Arg Ala Asp Thr Asp
 275 280 285

Ala Gly Leu Ile Phe Arg Leu Leu Asn Glu Gly Gln Arg Leu Phe Ser
 290 295 300

His Glu Gly Ser Ser Phe Gln Met Phe Ser Ser Glu Ala Tyr Gly Gln

305	310	315	320
Lys Asn Leu Leu Phe Lys Asp Ser Thr	Leu Glu Leu Val Pro Ile Ala		
325	330	335	
Thr Gln Thr Tyr Glu Ala Trp Leu Gly Pro Glu Tyr Leu His Ala Met			
340	345	350	
Lys Gly Leu Leu Cys Asp Pro Asn Arg Leu Pro Pro Tyr Leu Arg Trp			
355	360	365	
Cys Val Leu Ser Thr Pro Glu Ile Gln Lys Cys Gly Asp Met Ala Val			
370	375	380	
Ala Phe Ser Arg Gln Arg Leu Lys Pro Glu Ile Gln Cys Val Ser Ala			
385	390	395	400
Glu Ser Pro Gln His Cys Met Glu Gln Ile Gln Ala Gly His Ile Asp			
405	410	415	
Ala Val Thr Leu Asn Gly Glu Asp Ile His Thr Ala Gly Lys Thr Tyr			
420	425	430	
Gly Leu Ile Pro Ala Ala Gly Glu Leu Tyr Ala Ala Asp Asp Arg Ser			
435	440	445	
Asn Ser Tyr Phe Val Val Ala Val Val Lys Arg Asp Ser Ala Tyr Ala			
450	455	460	
Phe Thr Val Asp Glu Leu Arg Gly Lys Arg Ser Cys His Pro Gly Phe			
465	470	475	480
Gly Ser Pro Ala Gly Trp Asp Val Pro Val Gly Ala Leu Ile His Trp			
485	490	495	
Gly Tyr Ile Arg Pro Arg Asn Cys Asp Val Leu Thr Ala Val Gly Gln			
500	505	510	
Phe Phe Asn Ala Ser Cys Val Pro Val Asn Asn Pro Lys Lys Tyr Pro			
515	520	525	
Ser Ser Leu Cys Ala Leu Cys Val Gly Asp Glu Gln Gly Arg Asn Lys			
530	535	540	
Cys Thr Gly Asn Ser Gln Glu Arg Tyr Tyr Gly Asp Ser Gly Ala Phe			
545	550	555	560
Arg Cys Leu Val Glu Gly Ala Gly Asp Val Ala Phe Val Lys His Thr			
565	570	575	
Thr Ile Phe Asp Asn Thr Asn Gly His Asn Pro Glu Pro Trp Ala Ala			
580	585	590	
His Leu Arg Ser Gln Asp Tyr Glu Leu Leu Cys Pro Asn Gly Ala Arg			
595	600	605	
Ala Glu Ala His Gln Phe Ala Ala Cys Asn Leu Ala Gln Ile Pro Ser			
610	615	620	

His Ala Val Met Val Arg Pro Asp Thr Asn Ile Phe Thr Val Tyr Gly
 625 630 635 640

Leu Leu Asp Lys Ala Gln Asp Leu Phe Gly Asp Asp His Asn Lys Asn
 645 650 655

Gly Phe Lys Met Phe Asp Ser Ser Tyr His Gly Arg Asp Leu Leu
 660 665 670

Phe Lys Asp Ala Thr Val Arg Ala Val Pro Val Gly Glu Arg Thr Thr
 675 680 685

Tyr Gln Asp Trp Leu Gly Pro Asp Tyr Val Ala Ala Leu Glu Gly Met
 690 695 700

Gln Ser Gln Arg Cys Ser Gly Ala Ala Val Gly Ala Pro Gly Ala Ser
 705 710 715 720

Leu Leu Pro Leu Leu Pro Leu Ala Ala Gly Leu Leu Leu Ser Ser Leu
 725 730 735

<210> 3
 <211> 2368
 <212> DNA
 <213> Homo sapiens

<400> 3
 gcggaacttcc tcggacccgg acccagcccc agccggcccc cagccagccc cgacggcgcc 60
 atgcggggtc cgagcggggc tctgtggctg ctccctggctc tgcgcacccgt gctcgaggc 120
 atggaggtgc ggtggtgcbc cacctcgac ccagagcagc acaagtgcgg caacatgagc 180
 gaggcattcc gggaaacggg catccagccc tccctcctct gcgtccgggg cacctccgccc 240
 gaccactgcg tccagctcat cgccggcccg gaggttgacg ccatcactct ggatggagga 300
 gccatctatg aggccggaaa ggagcacggc ctgaagccgg tggtggcga agtgtacgat 360
 caagaggtcg gtacctcta ttacggcgta gctgtggta ggaggagctc ccatgtgacc 420
 attgacaccc tgaaaggcgt gaagtctgc cacacggca tcaatcgac agtgggctgg 480
 aacgtccccg tgggttaccc ggtggagacg ggccgcctct cgggtatggg ctgcgtgtta 540
 ctc当地 gacta ttttggggc agctgcgtcc cggggcagg agagaccagt 600
 tactctgagt ccctctgtcg cctctgcagg ggtgacagct ctggggagg ggtgtgtgac 660
 aagagcccc tggagagata ctacgactac agcggggcct tccgggtgcct ggccgaaggg 720
 gcaggggacg tggctttgt gaagcacacgc acggtaactgg agaacacgga tggaaagacg 780
 cttccctctt gggccaggc cctgctgtca caggacttcg agctgctgtg cggggatgg 840
 agccggggccg atgtcaccga gtggaggcag tgccatctgg cccgggtgcc tgctcacgccc 900

gtggtgttcc	ggcccgacac	agatggggc	ctcatcttcc	ggctgctcaa	cgaaggccag	960
cgtctgttca	gccacgaggg	cagcagcttc	cagatgttca	gctctgaggc	ctatggccag	1020
aaggatctac	tcttcaaaga	ctctacctcg	gagcttgtgc	ccatcgccac	acagacctat	1080
gagggcgtggc	tggccatga	gtacctgcac	gccatgaagg	gtctgctctg	tgaccccaac	1140
cggctgcccc	cctacctgcg	ctggtgtgtg	ctctccactc	ccgagatcca	gaagtgtgga	1200
gacatggccg	tggccttccg	ccggcagcgc	ctcaagccag	agatccagtg	cgtgtcagcc	1260
aagtcccccc	aacactgcat	ggagcggatc	caggctgagc	aggtcgacgc	tgtgacccta	1320
agtggcgagg	acatttacac	ggcggggaaag	aagtacggcc	tggttcccgc	agccggcgag	1380
cactatgccc	cggaaagacag	cagcaactcg	tactacgtgg	tggccgtgg	gagacgggac	1440
agctcccacg	cttcacctt	ggatgagctt	cggggcaagc	gctcctgcca	cggcggttc	1500
ggcagccctg	caggctggga	tgtccccgtg	ggtgccctta	ttcagagagg	cttcatccgg	1560
cccaaggact	gtgacgtct	cacagcagt	agcgagttct	tcaatgccag	ctgcgtgccc	1620
gtgaacaacc	ccaagaacta	cccctcctcg	ctgtgtgcac	tgtgcgtgg	ggacgagcag	1680
ggccgcaaca	agtgtgtggg	caacagccag	gagcggatt	acggctaccg	cggcgccctc	1740
aggtgcctgg	tggagaatgc	gggtgacgtt	gccttcgtca	ggcacacaac	cgtctttgac	1800
aacacaaacg	gccacaattc	cgagccctgg	gctgctgagc	tcaaggcaga	ggactatgaa	1860
ctgctgtgcc	ccaacggggc	ccgagccgag	gtgtcccagt	ttgcagccctg	caacctggca	1920
cagataaccac	cccacgccgt	gatggtccgg	cccgacacca	acatcttcac	cgtgtatgga	1980
ctgctggaca	aggcccagga	cctgtttgga	gacgaccaca	ataagaacgg	gttcaaaatg	2040
ttcgactcct	ccaactatca	tggccaagac	ctgctttca	aggatgccac	cgtccggcgc	2100
gtgcctgtcg	gagagaaaac	cacctaccgc	ggctggctgg	ggctggacta	cgtggcggcgc	2160
ctggaaggga	tgtcgctca	gcagtgctcg	ggcgcagcgg	ccccggcgcc	cggggcgccc	2220
ctgctcccg	tgctgctgcc	cgcctcgcc	gcccgcctgc	tcccgcccg	cctctgagcc	2280
cggccgcccc	gccccagagc	tccgatgcc	gccccgggag	tttccgcggc	ggcctctcg	2340
gctgcggaat	ccagaaggaa	gctcgcg				2368

<210> 4
<211> 738
<212> PRT
<213> Homo sapiens

<400> 4

Met Arg Gly Pro Ser Gly Ala Leu Trp Leu Leu Leu Ala Leu Arg Thr
 1 5 10 15

Val Leu Gly Gly Met Glu Val Arg Trp Cys Ala Thr Ser Asp Pro Glu
 20 25 30

Gln His Lys Cys Gly Asn Met Ser Glu Ala Phe Arg Glu Ala Gly Ile
 35 40 45

Gln Pro Ser Leu Leu Cys Val Arg Gly Thr Ser Ala Asp His Cys Val
 50 55 60

Gln Leu Ile Ala Ala Gln Glu Ala Asp Ala Ile Thr Leu Asp Gly Gly
 65 70 75 80

Ala Ile Tyr Glu Ala Gly Lys Glu His Gly Leu Lys Pro Val Val Gly
 85 90 95

Glu Val Tyr Asp Gln Glu Val Gly Thr Ser Tyr Tyr Ala Val Ala Val
 100 105 110

Val Arg Arg Ser Ser His Val Thr Ile Asp Thr Leu Lys Gly Val Lys
 115 120 125

Ser Cys His Thr Gly Ile Asn Arg Thr Val Gly Trp Asn Val Pro Val
 130 135 140

Gly Tyr Leu Val Glu Ser Gly Arg Leu Ser Val Met Gly Cys Asp Val
 145 150 155 160

Leu Lys Ala Val Ser Asp Tyr Phe Gly Gly Ser Cys Val Pro Gly Ala
 165 170 175

Gly Glu Thr Ser Tyr Ser Glu Ser Leu Cys Arg Leu Cys Arg Gly Asp
 180 185 190

Ser Ser Gly Glu Gly Val Cys Asp Lys Ser Pro Leu Glu Arg Tyr Tyr
 195 200 205

Asp Tyr Ser Gly Ala Phe Arg Cys Leu Ala Glu Gly Ala Gly Asp Val
 210 215 220

Ala Phe Val Lys His Ser Thr Val Leu Glu Asn Thr Asp Gly Lys Thr
 225 230 235 240

Leu Pro Ser Trp Gly Gln Ala Leu Leu Ser Gln Asp Phe Glu Leu Leu
 245 250 255

Cys Arg Asp Gly Ser Arg Ala Asp Val Thr Glu Trp Arg Gln Cys His
 260 265 270

Leu Ala Arg Val Pro Ala His Ala Val Val Val Arg Ala Asp Thr Asp
 275 280 285

Gly Gly Leu Ile Phe Arg Leu Leu Asn Glu Gly Gln Arg Leu Phe Ser
 290 295 300

His Glu Gly Ser Ser Phe Gln Met Phe Ser Ser Glu Ala Tyr Gly Gln
 305 310 315 320
 Lys Asp Leu Leu Phe Lys Asp Ser Thr Ser Glu Leu Val Pro Ile Ala
 325 330 335
 Thr Gln Thr Tyr Glu Ala Trp Leu Gly His Glu Tyr Leu His Ala Met
 340 345 350
 Lys Gly Leu Leu Cys Asp Pro Asn Arg Leu Pro Pro Tyr Leu Arg Trp
 355 360 365
 Cys Val Leu Ser Thr Pro Glu Ile Gln Lys Cys Gly Asp Met Ala Val
 370 375 380
 Ala Phe Arg Arg Gln Arg Leu Lys Pro Glu Ile Gln Cys Val Ser Ala
 385 390 395 400
 Lys Ser Pro Gln His Cys Met Glu Arg Ile Gln Ala Glu Gln Val Asp
 405 410 415
 Ala Val Thr Leu Ser Gly Glu Asp Ile Tyr Thr Ala Gly Lys Lys Tyr
 420 425 430
 Gly Leu Val Pro Ala Ala Gly Glu His Tyr Ala Pro Glu Asp Ser Ser
 435 440 445
 Asn Ser Tyr Tyr Val Val Ala Val Val Arg Arg Asp Ser Ser His Ala
 450 455 460
 Phe Thr Leu Asp Glu Leu Arg Gly Lys Arg Ser Cys His Ala Gly Phe
 465 470 475 480
 Gly Ser Pro Ala Gly Trp Asp Val Pro Val Gly Ala Leu Ile Gln Arg
 485 490 495
 Gly Phe Ile Arg Pro Lys Asp Cys Asp Val Leu Thr Ala Val Ser Glu
 500 505 510
 Phe Phe Asn Ala Ser Cys Val Pro Val Asn Asn Pro Lys Asn Tyr Pro
 515 520 525
 Ser Ser Leu Cys Ala Leu Cys Val Gly Asp Glu Gln Gly Arg Asn Lys
 530 535 540
 Cys Val Gly Asn Ser Gln Glu Arg Tyr Tyr Gly Tyr Arg Gly Ala Phe
 545 550 555 560
 Arg Cys Leu Val Glu Asn Ala Gly Asp Val Ala Phe Val Arg His Thr
 565 570 575
 Thr Val Phe Asp Asn Thr Asn Gly His Asn Ser Glu Pro Trp Ala Ala
 580 585 590
 Glu Leu Arg Ser Glu Asp Tyr Glu Leu Leu Cys Pro Asn Gly Ala Arg
 595 600 605
 Ala Glu Val Ser Gln Phe Ala Ala Cys Asn Leu Ala Gln Ile Pro Pro

610	615	620
His Ala Val Met Val Arg Pro Asp Thr Asn Ile Phe Thr Val Tyr Gly		
625	630	635
Leu Leu Asp Lys Ala Gln Asp Leu Phe Gly Asp Asp His Asn Lys Asn		
645	650	655
Gly Phe Lys Met Phe Asp Ser Ser Asn Tyr His Gly Gln Asp Leu Leu		
660	665	670
Phe Lys Asp Ala Thr Val Arg Ala Val Pro Val Gly Glu Lys Thr Thr		
675	680	685
Tyr Arg Gly Trp Leu Gly Leu Asp Tyr Val Ala Ala Leu Glu Gly Met		
690	695	700
Ser Ser Gln Gln Cys Ser Gly Ala Ala Ala Pro Ala Pro Gly Ala Pro		
705	710	715
Leu Leu Pro Leu Leu Pro Ala Leu Ala Ala Arg Leu Leu Pro Pro		
725	730	735
Ala Leu		

<210> 5
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 5
ggcttggAACG tgcccgTGGG cta

23

<210> 6
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 6
gtcctggggc ttgtccagca gtc

23

<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 7		
agagggactc cgagtatctg gtctc		25
<210> 8		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> synthetic		
<400> 8		
gtccggcccc acaccaacat cttc		24
<210> 9		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> synthetic		
<400> 9		
ggtgtgttga ggggcgtgga ctct		24
<210> 10		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> synthetic		
<400> 10		
tcaccaacgg ctttgagcac atcac		25
<210> 11		
<211> 614		
<212> DNA		
<213> Mus sp.		
<400> 11		
tcaccaacgg ctttgagcac atcacagccc atcaactgaca gatggccgct ctctacgagg		60
taaccgacag gcacgttcca gcccacagtc cggtaatgc ctgtgtggca ggacttgacg		120
cccttcaggg tggatggt aacattggaa ttccctcctga ccacagccac ggcataatag		180
gaagtcccaa tgtcttggtc atagacttcc cccaccactg gcttcaggcc gtgctccttc		240
cctgcctcat agatggcccc tccatccagg gtgatggcat ctgcttttg ttcccttgatg		300
agctggacac agtggtcagc ggagttgccc tggacgcaga gaagggaaagg acgaatgcca		360

gctccctgga	aggcctcgct	catgtcttg	cacttctgct	gctctgcgtc	tgagatggta	420
caccactgca	cctccatcac	acagacgaca	gtgcgcaggg	acaggagtag	ccaaaaagtc	480
acgctcagga	gcctcatggc	aacgttgggt	tggctgggt	gctggcggt	ctgtcctggc	540
ttcctttcc	ctggctctc	tggcattcac	tattaagcg	cagccgggg	agagtccacg	600
ccccctaaca	cacc					614
<210>	12					
<211>	17					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	synthetic					
<400>	12					17
tgctacttca	tcgaccc					
<210>	13					
<211>	19					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	synthetic					
<400>	13					19
aaagacctcc	cctccatct					
<210>	14					
<211>	4158					
<212>	DNA					
<213>	Mus sp.					
<400>	14					60
ggtgtgttga	ggggcgtgga	ctctccccgg	gctgcgttta	aatagtgaag	gccagagaga	
ccagggaaaga	ggaagccagg	acagacccgc	cagcacccca	gccaacccaa	cgttgccatg	120
aggctcctga	gcgtgacttt	ttggctactc	ctgtcctgc	gcactgtcgt	ctgtgtgatg	180
gaggtgcagt	ggtgtaccat	ctcagacgca	gagcagcaga	agtgcaaaga	catgagcag	240
gccttccagg	gagctggcat	tcgtccttcc	cttctctgcg	tccagggcaa	ctccgctgac	300
cactgtgtcc	agctcatcaa	ggaacaaaaa	gcagatgcca	tcaccctgga	tggaggggcc	360
atctatgagg	cagggaaagga	gcacggcctg	aagccagtgg	tggggaaagt	ctatgaccaa	420
gacattggga	cttccttatta	tgccgtggct	gtggtcagga	ggaattccaa	tgttaccatc	480

aacaccctga	agggcgtcaa	gtcctgccac	acaggcatta	accggactgt	gggctggAAC	540
gtgcctgtcg	gttacctcgt	agagagcggc	catctgttag	tgtatggctg	tgtatgtgctc	600
aaagccgttg	gtgattattt	tggaggcagc	tgtgtccctg	gaacaggaga	aaccagccat	660
tccgagtcctt	tctgtcgctt	ctgcccgtggc	gactttctg	ggcacaatgt	gtgtgacaag	720
agtccccctag	agagatacta	cgactacagt	ggagcccttc	ggtgcctggc	ggaaggagcc	780
ggtgacgtgg	ctttcgtgaa	gcacagcaca	gtgctggaaa	atactgatgg	aaacaccctg	840
ccttcctggg	gcaagtccct	gatgtcagag	gacttccagc	tactatgcag	ggatggcagc	900
cgagccgaca	tcactgagtg	gagacgttgc	cacctggcca	aggtgcctgc	tcatgctgtg	960
gtggtcaggg	gtgacatgga	tggcggtctc	atattccaac	tgctcaacga	aggccagctt	1020
ctgttcagcc	acgaagacag	cagcttccag	atgttcagct	ccaaaggccta	cagccagaag	1080
aacttgctgt	tcaaagactc	caccttggag	cttgcgtccca	ttgccacaca	gaactacgag	1140
gcctggctgg	gccaggaata	cctgcaggcc	atgaaggggc	tcctctgtga	tcccaaccgg	1200
ctgccccact	acctgcgcgt	gtgtgtgtcg	tcagcgcccc	agatccagaa	gtgtggagat	1260
atggctgtgg	ctttcagccg	ccagaatctc	aagccggaaa	ttcagtgtgt	gtcggccgag	1320
tcccctgagc	actgcatgga	gcagatccag	gctgggcaca	ctgacgcgt	gactctgagg	1380
ggcgaggaca	tttacagggc	aggaaaggtg	tacggctgg	ttccggccggc	cggggagctg	1440
tatgctgagg	aggacaggag	caattcctac	tttgtggtg	ctgtggcaag	aagggacagc	1500
tcctactcct	tcaccctgga	cgagcttcgc	ggcaagcggt	cctgccaccc	ctacttgggc	1560
agcccagccgg	gctgggaggt	gcccatcgcc	tccctcatcc	agcggggctt	catccggccc	1620
aaggactgtg	atgtcctcac	agcggtgagc	cagttctca	atgccagctg	cgtgcctgtc	1680
aacaacccta	agaactaccc	ttccgcacta	tgtgcgtct	gcgtgggaga	cgagaaggc	1740
cgcaacaaat	gtgtggggag	cagccaggag	agatactacg	gctacagcgg	ggccttcagg	1800
tgccttgtgg	agcatgcagg	ggacgtggct	ttcgtcaagc	acacgactgt	ctttgagaac	1860
acaaatggtc	acaatcctga	gccttggct	tctcacctca	ggtggcaaga	ctatgaacta	1920
ctgtgccccca	atggggcacg	ggctgaggt	gaccagttcc	aagcttgcaa	cctggcacaa	1980
atgccatccc	acgctgtcat	ggtccgtcca	gacaccaaca	tcttcactgt	gtatggactt	2040
ctggacaaagg	cccaggacct	gtttggagac	gaccataaca	agaacggttt	ccaaatgttt	2100
gactcctcca	aatatcacag	ccaagacctg	cttttcaaag	atgctacagt	ccgagcggtg	2160
ccagtcgggg	agaaaaccac	atacctggac	tggctgggtc	ctgactatgt	ggttgcgtg	2220

gaggggatgt tgtctcagca gtgctccgt gcagggggcg cgggtgcacgc agtccccctg 2280
 ctggccctgc tctctgctgac cctggctgca ggcctccttc ctcgcgttct ctgaagaccg 2340
 ctgcttcagg ccacgcccag agcagggaaa gctacagagc tcaaccggaa gaaaccagga 2400
 catcagctaa ccctgcagga gagcgcgggg cgggatgagg agaggcaagg tgagaactca 2460
 cacacacaca caagcctccg aggtgcgatt ctaacccaaa gagaatttc tagaatcagg 2520
 atgattgtta aggccaagtc ttcccacttg ctggagccct caatacctga ggcgactggc 2580
 gagtagccca gtcactcctc ccacaccgtt ggcgccagca gcgaacctgt gcctccacc 2640
 tggagcctcc tggctggctg gggtggtaa gggggggggg gggagagtga agatgctgg 2700
 tgccatggca accgtggagc agcttccagc ctctgtaccg gccacctggt gagatgccaa 2760
 ggaaggagca caccaccaac ctagggaaacc tgtgcgacac actaccaccc agcagcccc 2820
 gctctcgctg ccccaccgct ctctcctatg ggcacttgtc caccaaggcc acaccgtcgg 2880
 aggggcaagg ctgctgagca catcagcctt ctgatgtgac accaaccaag gagcccagcc 2940
 ctctggacag caagattttg ctagactggg atgggaggaa ggccagagct gtactgtggg 3000
 gatgaagtcc tccaaaaccc tcagaggaag gaagtgc(cc) caccttccca ttaagaatgt 3060
 tagtgtgtga gaaacttgat gcagggtgga aactatcctg tttaacggct cccgtggcaa 3120
 gcaggacttg cgctgtctgc gctgcctgga cctcactgca caatgaaact gttgccgaga 3180
 ttctattgtt tgctctcctg gtctcagttt caacattgtt ttctccctg ccttcatata 3240
 ccccttccca catcaccacg caagcacgca cgccacacg cacacgcaca caccttatcc 3300
 gtgtgaacat atctgaacat atctgctgtt ctgaagaagt aggagctaacc cccaaataac 3360
 ttccctgtcat gagctggcc ttggatata ccacgagcca ggggattggg gagagccctg 3420
 tcttcccttc accctgcacc tggtggcag ttgcattttt cgagaggatc cctggttctc 3480
 tcgaactgtg agagccagg cctaggctgc cattttgcca ttgttctctc gagaaccaga 3540
 aaaagttttc caaagctacc agcttacc ccagatcttg ttcccttaaa aaaaagtaat 3600
 aaataaaaag gagaagaaac aggagcaaacc agccatcgac agcacactgg aagcagcgtg 3660
 ggcggggagc tatttgtgtc ttggctgtg tggggggctt cagatccaa tgacaggcca 3720
 gttcccaagt ggctgc(cc) cacctgtggg cgacgacggg acagatcctt tccatggctc 3780
 accagtagag aaggtcctgg cagtgtccca gccagagtca cacaatcctg agaaaaatcg 3840
 gtcaccatgg tgcttggag agcaagcccc tcctcctccc agtacacagc catccattct 3900
 tctctgagct gggacttca cagtgagaag tgtactctgt gtggggact gtgctgcccc 3960

aagtgtgatg tctgtgccgt gtgccttca ggtgtgactt tgaagagcgt tggtaaatg	4020
acgtctgatt gccatgggcc actgctgtgt ttgtgctaaa gaaagacatt ggtttctttt	4080
taaaataaaag ccatatatcc ctgcatacgc agaggcttgg atcctggtgg aaaaaaaaaa	4140
aaaaaaaaaa aaaaaaaaaa	4158

<210> 15
<211> 738
<212> PRT
<213> Mus sp.

<400> 15

Met Arg Leu Leu Ser Val Thr Phe Trp Leu Leu Leu Ser Leu Arg Thr	
1	5 10 15
Val Val Cys Val Met Glu Val Gln Trp Cys Thr Ile Ser Asp Ala Glu	
20 25 30	
Gln Gln Lys Cys Lys Asp Met Ser Glu Ala Phe Gln Gly Ala Gly Ile	
35 40 45	
Arg Pro Ser Leu Leu Cys Val Gln Gly Asn Ser Ala Asp His Cys Val	
50 55 60	
Gln Leu Ile Lys Glu Gln Lys Ala Asp Ala Ile Thr Leu Asp Gly Gly	
65 70 75 80	
Ala Ile Tyr Glu Ala Gly Lys Glu His Gly Leu Lys Pro Val Val Gly	
85 90 95	
Glu Val Tyr Asp Gln Asp Ile Gly Thr Ser Tyr Tyr Ala Val Ala Val	
100 105 110	
Val Arg Arg Asn Ser Asn Val Thr Ile Asn Thr Leu Lys Gly Val Lys	
115 120 125	
Ser Cys His Thr Gly Ile Asn Arg Thr Val Gly Trp Asn Val Pro Val	
130 135 140	
Gly Tyr Leu Val Glu Ser Gly His Leu Ser Val Met Gly Cys Asp Val	
145 150 155 160	
Leu Lys Ala Val Gly Asp Tyr Phe Gly Gly Ser Cys Val Pro Gly Thr	
165 170 175	
Gly Glu Thr Ser His Ser Glu Ser Leu Cys Arg Leu Cys Arg Gly Asp	
180 185 190	
Ser Ser Gly His Asn Val Cys Asp Lys Ser Pro Leu Glu Arg Tyr Tyr	
195 200 205	
Asp Tyr Ser Gly Ala Phe Arg Cys Leu Ala Glu Gly Ala Gly Asp Val	
210 215 220	

Ala Phe Val Lys His Ser Thr Val Leu Glu Asn Thr Asp Gly Asn Thr
 225 230 235 240
 Leu Pro Ser Trp Gly Lys Ser Leu Met Ser Glu Asp Phe Gln Leu Leu
 245 250 255
 Cys Arg Asp Gly Ser Arg Ala Asp Ile Thr Glu Trp Arg Arg Cys His
 260 265 270
 Leu Ala Lys Val Pro Ala His Ala Val Val Val Arg Gly Asp Met Asp
 275 280 285
 Gly Gly Leu Ile Phe Gln Leu Leu Asn Glu Gly Gln Leu Leu Phe Ser
 290 295 300
 His Glu Asp Ser Ser Phe Gln Met Phe Ser Ser Lys Ala Tyr Ser Gln
 305 310 315 320
 Lys Asn Leu Leu Phe Lys Asp Ser Thr Leu Glu Leu Val Pro Ile Ala
 325 330 335
 Thr Gln Asn Tyr Glu Ala Trp Leu Gly Gln Glu Tyr Leu Gln Ala Met
 340 345 350
 Lys Gly Leu Leu Cys Asp Pro Asn Arg Leu Pro His Tyr Leu Arg Trp
 355 360 365
 Cys Val Leu Ser Ala Pro Glu Ile Gln Lys Cys Gly Asp Met Ala Val
 370 375 380
 Ala Phe Ser Arg Gln Asn Leu Lys Pro Glu Ile Gln Cys Val Ser Ala
 385 390 395 400
 Glu Ser Pro Glu His Cys Met Glu Gln Ile Gln Ala Gly His Thr Asp
 405 410 415
 Ala Val Thr Leu Arg Gly Glu Asp Ile Tyr Arg Ala Gly Lys Val Tyr
 420 425 430
 Gly Leu Val Pro Ala Ala Gly Glu Leu Tyr Ala Glu Glu Asp Arg Ser
 435 440 445
 Asn Ser Tyr Phe Val Val Ala Val Ala Arg Arg Asp Ser Ser Tyr Ser
 450 455 460
 Phe Thr Leu Asp Glu Leu Arg Gly Lys Arg Ser Cys His Pro Tyr Leu
 465 470 475 480
 Gly Ser Pro Ala Gly Trp Glu Val Pro Ile Gly Ser Leu Ile Gln Arg
 485 490 495
 Gly Phe Ile Arg Pro Lys Asp Cys Asp Val Leu Thr Ala Val Ser Gln
 500 505 510
 Phe Phe Asn Ala Ser Cys Val Pro Val Asn Asn Pro Lys Asn Tyr Pro
 515 520 525

Ser Ala Leu Cys Ala Leu Cys Val Gly Asp Glu Lys Gly Arg Asn Lys
 530 535 540
 Cys Val Gly Ser Ser Gln Glu Arg Tyr Tyr Gly Tyr Ser Gly Ala Phe
 545 550 555 560
 Arg Cys Leu Val Glu His Ala Gly Asp Val Ala Phe Val Lys His Thr
 565 570 575
 Thr Val Phe Glu Asn Thr Asn Gly His Asn Pro Glu Pro Trp Ala Ser
 580 585 590
 His Leu Arg Trp Gln Asp Tyr Glu Leu Leu Cys Pro Asn Gly Ala Arg
 595 600 605
 Ala Glu Val Asp Gln Phe Gln Ala Cys Asn Leu Ala Gln Met Pro Ser
 610 615 620
 His Ala Val Met Val Arg Pro Asp Thr Asn Ile Phe Thr Val Tyr Gly
 625 630 635 640
 Leu Leu Asp Lys Ala Gln Asp Leu Phe Gly Asp Asp His Asn Lys Asn
 645 650 655
 Gly Phe Gln Met Phe Asp Ser Ser Lys Tyr His Ser Gln Asp Leu Leu
 660 665 670
 Phe Lys Asp Ala Thr Val Arg Ala Val Pro Val Arg Glu Lys Thr Thr
 675 680 685
 Tyr Leu Asp Trp Leu Gly Pro Asp Tyr Val Val Ala Leu Glu Gly Met
 690 695 700
 Leu Ser Gln Gln Cys Ser Gly Ala Gly Ala Ala Val Gln Arg Val Pro
 705 710 715 720
 Leu Leu Ala Leu Leu Leu Leu Thr Leu Ala Ala Gly Leu Leu Pro Arg
 725 730 735
 Val Leu

Sequence Listing

<110> CHUGAI SEIYAKU KABUSHIKI KAISHA
<120> CHONDROGENESIS STIMULATOR
5 <130> YCT-501
<160> 15

<210> 1
<211> 2388
10 <212> cDNA
<213> Rabbit
<400> 1
ggccgcgctc actcggtcg actcgactc agacccagtc cgaccccctg gactgcgc 60
tgcggtgccg aagcgccgct atgtggatct tcctggccct gcgcaccgca ctcggcagcg 120
15 tggaggtgcg gtggtgcacc gcgtccgagc ccgagcagca gaagtgcgag gacatgagcc 180
aggccttccg cgaagccggc ctccagcccg ccctgctgtg cgtgcagggc acctcgcccg 240
accactgcgt ccagctcatc gggccccacg aggccgacgc catcaactctg gacggaggag 300
ccatttacga ggcgggaaag gaacacggcc tgaagcccggt ggtggcgaa gtgtatgacc 360
aagaggtggg cacctcctac tacgctgtgg ccgtggtaa gaggagctcc aacgtgacca 420
20 tcaacaccct gagaggcgtg aagtccctgcc acacggcat caaccgcacg gtgggctgga 480
acgtgcctgt gggctacctg gtggacagcg gccgcctctc agtgatggc tgtgacgtgc 540
tcaaagcggt cagcgagtac ttccccccca gctgcgtccc tggggcagga gagaccagat 600
actcgagtc cctctgtcg ctctgccggg gcgcacaccc cggggagggg gtgtgtgaca 660
agagcccccgt ggagcggtac tacgactaca gcggggcctt ccgggtgcctg gcagaaggcg 720
25 caggggacgt ggcctttgtg aagcacagca cggtgctgga gaacacggat gggagaacac 780
tgccctcctg gggccacatg ctgatgtcac gggactttga gctgctgtgc cgggacggca 840
gccggggccag cgtcaccgag tggcagcact gccacctggc ccgggtgcctc gcccacgccc 900
tggtggtccg ggccgacacc gacgcaggcc tcatcttccg gcttctcaat gaggggccagc 960
ggctgttcag ccacgaggc agcagcttcc agatgttcag ctcggaggcc tacggccaga 1020

J. Clin. Microbiol., Vol. 39, No. 10, October 2001, p. 3932-3935
0893-8512/01/3923-3932\$15.00/0

agaacctgct gttcaaagac tccacgctgg agctgggcc catcgccaca cagacacctacg 1080
aggcctggct gggccccgag tacctgcacg ccatgaaggg tctgctctgt gaccccaacc 1140
ggctgcccccc atacctgcgc tggtgctgtc tgtccacccc cgagatccag aagtgtggag 1200
acatggccgt ggccttcagc cggcagaggg tcaagccgga gatccagtgt gtctcggcgg 1260
5 agtcccccca gcactgcacg gacgacatcc aggctggca catcgatgt gtgaccctga 1320
acggggagga cattcacaca gcggggaaaga ctatggct gatcccggt gccggggagc 1380
tgtatgccgc ggacgacagg agtaacttgt acttcgtgtt ggccgtggg aagcgagaca 1440
gcgcctacgc cttcaccgtg gacgagctgc gcgggaagcg ctccctgccac cccggcttcg 1500
gcagcccccgc cggctgggac gtcccggtgg gcgcctcat ccactggggc tacatccggc 1560
10 ccaggaactg cgacgtcctc acagcgggtgg gtcagttctt caacgccagc tgtgtgccgg 1620
tgaacaaccc caagaagtac ccctcctcgc tgtgcgcact ctgcgtgggt gacgagcagg 1680
gccgcaacaa gtgcactggc aacagccagg agcggtaacta tggcgacagt ggcccttca 1740
gggcctgtgtt ggagggtgca ggggacgtgg cttcgtcaa gcacacgacc atcttgaca 1800
acacaaatgg ccacaatccc gagccgtggg ctgcccattt gaggagccag gactacgagc 1860
15 tgctgtgccc caacggcgcg cgagctgagg cgaccagg ttgcgcctgc aacctggccc 1920
agattccgtc ccacgcccgtc atggtgccgc ccgacaccaa catttcacc gtttacggac 1980
tgctggacaa ggcggaggac ctgtttggag acgaccacaa caagaacggg ttcaagatgt 2040
tcgactcctc cagctaccac ggccgagacc tgctttcaa ggacgccacg gtgcgcgtc 2100
tgccctgtggg cgagaggacc acctaccagg actggctggg gccggactac gtggcggctc 2160
20 tggaaaggat gcagtcacag cggtgcttag gggcagccgt cggcgcccccc gggccctcgc 2220
tgctgcccgt gctgcccctg gctgcggggcc tcctgctgtc ttgcgtctga gaggcagcccc 2280
ggcagccctc ggcccccggca ggggagccctg cgcggaaagct tcctgaacga gcccgcgc 2340
tggctggatg tggttacctc ggcgagccgc gggccgcgc ttcccccg 2388

25 <210> 2
<211> 736
<212> PRT
<213> Rabbit
<400> 2

Met Arg Cys Arg Ser Ala Ala Met Trp Ile Phe Leu Ala Leu Arg Thr
 1 5 10 15
 Ala Leu Gly Ser Val Glu Val Arg Trp Cys Thr Ala Ser Glu Pro Glu
 20 25 30
 5 Gln Gln Lys Cys Glu Asp Met Ser Gln Ala Phe Arg Glu Ala Gly Leu
 35 40 45
 Gln Pro Ala Leu Leu Cys Val Gln Gly Thr Ser Ala Asp His Cys Val
 50 55 60
 Gln Leu Ile Ala Ala His Glu Ala Asp Ala Ile Thr Leu Asp Gly Gly
 10 65 70 75 80
 Ala Ile Tyr Glu Ala Gly Lys Glu His Gly Leu Lys Pro Val Val Gly
 85 90 95
 Glu Val Tyr Asp Gln Glu Val Gly Thr Ser Tyr Tyr Ala Val Ala Val
 100 105 110
 15 Val Lys Arg Ser Ser Asn Val Thr Ile Asn Thr Leu Arg Gly Val Lys
 115 120 125
 Ser Cys His Thr Gly Ile Asn Arg Thr Val Gly Trp Asn Val Pro Val
 130 135 140
 Gly Tyr Leu Val Asp Ser Gly Arg Leu Ser Val Met Gly Cys Asp Val
 20 145 150 155 160
 Leu Lys Ala Val Ser Glu Tyr Phe Gly Gly Ser Cys Val Pro Gly Ala
 165 170 175
 Gly Glu Thr Arg Tyr Ser Glu Ser Leu Cys Arg Leu Cys Arg Gly Asp
 180 185 190
 25 Thr Ser Gly Glu Gly Val Cys Asp Lys Ser Pro Leu Glu Arg Tyr Tyr
 195 200 205
 Asp Tyr Ser Gly Ala Phe Arg Cys Leu Ala Glu Gly Ala Gly Asp Val
 210 215 220
 Ala Phe Val Lys His Ser Thr Val Leu Glu Asn Thr Asp Gly Arg Thr

	225	230	235	240
	Leu Pro Ser Trp Gly His Met Leu Met Ser Arg Asp Phe Glu Leu Leu			
	245	250	255	
	Cys Arg Asp Gly Ser Arg Ala Ser Val Thr Glu Trp Gln His Cys His			
5	260	265	270	
	Leu Ala Arg Val Pro Ala His Ala Val Val Val Arg Ala Asp Thr Asp			
	275	280	285	
	Ala Gly Leu Ile Phe Arg Leu Leu Asn Glu Gly Gln Arg Leu Phe Ser			
	290	295	300	
10	His Glu Gly Ser Ser Phe Gln Met Phe Ser Ser Glu Ala Tyr Gly Gln			
	305	310	315	320
	Lys Asn Leu Leu Phe Lys Asp Ser Thr Leu Glu Leu Val Pro Ile Ala			
	325	330	335	
	Thr Gln Thr Tyr Glu Ala Trp Leu Gly Pro Glu Tyr Leu His Ala Met			
15	340	345	350	
	Lys Gly Leu Leu Cys Asp Pro Asn Arg Leu Pro Pro Tyr Leu Arg Trp			
	355	360	365	
	Cys Val Leu Ser Thr Pro Glu Ile Gln Lys Cys Gly Asp Met Ala Val			
	370	375	380	
20	Ala Phe Ser Arg Gln Arg Leu Lys Pro Glu Ile Gln Cys Val Ser Ala			
	385	390	395	400
	Glu Ser Pro Gln His Cys Met Glu Gln Ile Gln Ala Gly His Ile Asp			
	405	410	415	
	Ala Val Thr Leu Asn Gly Glu Asp Ile His Thr Ala Gly Lys Thr Tyr			
25	420	425	430	
	Gly Leu Ile Pro Ala Ala Gly Glu Leu Tyr Ala Ala Asp Asp Arg Ser			
	435	440	445	
	Asn Ser Tyr Phe Val Val Ala Val Val Lys Arg Asp Ser Ala Tyr Ala			
	450	455	460	

Phe Thr Val Asp Glu Leu Arg Gly Lys Arg Ser Cys His Pro Gly Phe
 465 470 475 480
 Gly Ser Pro Ala Gly Trp Asp Val Pro Val Gly Ala Leu Ile His Trp
 485 490 495
 5 Gly Tyr Ile Arg Pro Arg Asn Cys Asp Val Leu Thr Ala Val Gly Gln
 500 505 510
 Phe Phe Asn Ala Ser Cys Val Pro Val Asn Asn Pro Lys Lys Tyr Pro
 515 520 525
 Ser Ser Leu Cys Ala Leu Cys Val Gly Asp Glu Gln Gly Arg Asn Lys
 10 530 535 540
 Cys Thr Gly Asn Ser Gln Glu Arg Tyr Tyr Gly Asp Ser Gly Ala Phe
 545 550 555 560
 Arg Cys Leu Val Glu Gly Ala Gly Asp Val Ala Phe Val Lys His Thr
 565 570 575
 15 Thr Ile Phe Asp Asn Thr Asn Gly His Asn Pro Glu Pro Trp Ala Ala
 580 585 590
 His Leu Arg Ser Gln Asp Tyr Glu Leu Leu Cys Pro Asn Gly Ala Arg
 595 600 605
 Ala Glu Ala His Gln Phe Ala Ala Cys Asn Leu Ala Gln Ile Pro Ser
 20 610 615 620
 His Ala Val Met Val Arg Pro Asp Thr Asn Ile Phe Thr Val Tyr Gly
 625 630 635 640
 Leu Leu Asp Lys Ala Gln Asp Leu Phe Gly Asp Asp His Asn Lys Asn
 645 650 655
 25 Gly Phe Lys Met Phe Asp Ser Ser Ser Tyr His Gly Arg Asp Leu Leu
 660 665 670
 Phe Lys Asp Ala Thr Val Arg Ala Val Pro Val Gly Glu Arg Thr Thr
 675 680 685
 Tyr Gln Asp Trp Leu Gly Pro Asp Tyr Val Ala Ala Leu Glu Gly Met

J. Clin. Endocrinol. 1997, 146, 131-137

690 695 700

Gln Ser Gln Arg Cys Ser Gly Ala Ala Val Gly Ala Pro Gly Ala Ser

705 710 715 720

Leu Leu Pro Leu Leu Pro Leu Ala Ala Gly Leu Leu Leu Ser Ser Leu

5 725 730 735

<210> 3

<211> 2341

<212> cDNA

10 <213> Human

<400> 3

gcggacttcc	tcggaccggg	acccagcccc	agcccgcccc	cagccagccc	cgacggcgcc	60
atgcgggtc	cgagcggggc	tctgtggctg	ctccctggctc	tgccgcacccgt	gctcgaggc	120
atggaggtgc	ggtgggtgcgc	cacctcggac	ccagagcagc	acaagtgcgg	caacatgagc	180
15 gaggcttcc	gggaagcggg	catccagccc	tccctcctct	gcgtccgggg	cacctccgccc	240
gaccactgcg	tccagctcat	cgcggcccaag	gaggctgacg	ccatcactct	ggatggagga	300
gccatctatg	aggcgggaaa	ggagcacggc	ctgaagccgg	tggtgggcga	agtgtacgat	360
caagaggtcg	gtaccccta	ttacgcccgt	gctgtggtca	ggaggagctc	ccatgtgacc	420
attgacaccc	tgaaaggcgt	gaagtccctgc	cacacggca	tcaatgcac	agtgggctgg	480
20 aacgtgccc	tgggctacct	ggtggagagc	ggccgcctct	cggtgatggg	ctgcgatgt	540
ctcaaagctg	tcagcgacta	ttttgggggc	agctgcgtcc	cggggcagg	agagaccagt	600
tactctgagt	ccctctgtcg	cctctgcagg	ggtgacagct	ctggggagg	ggtgtgtgac	660
aagagccccc	tggagagata	ctacgactac	agcggggcct	tccggtgcc	ggcggaaagg	720
gcaggggacg	tggctttgt	gaagcacagc	acggtaactgg	agaacacgga	tgggaagacg	780
25 ctcccctcct	ggggccaggc	cctgctgtca	caggacttcg	agctgctgt	ccgggatgg	840
agccggcccg	atgtcaccga	gtggaggcag	tgccatctgg	cccggtgccc	tgctcacgcc	900
gtggtggtcc	ggggccacac	agatggggc	ctcatcttcc	ggctgctcaa	cgaaggccag	960
cgtctgttca	gccacgaggg	cagcagcttc	cagatgttca	gctctgaggg	ctatggccag	1020
aaggatctac	tcttcaaaga	ctctacctcg	gagcttgtc	ccatcgccac	acagacctat	1080

gaggcgtggc tggccatga gtacctgcac gccatgaagg gtctgctctg tgaccccaac 1140
cggtgcggcc cctacctgcg ctggtgtgtg ctctccactc ccgagatcca gaagtgtgga 1200
gacatggccg tggccttccg cccgcagcgc ctcaagccag agatccagtg cgtgtcagcc 1260
aagtcccccc aacactgcat ggagcggatc caggctgagc aggtcgacgc tgtgacccta 1320
5 agtggcgagg acatttacac ggcgggaaag aagtacggcc tggttccgc agccggcgag 1380
cactatgccc cgaaagacag cagcaactcg tactacgtgg tggccgtggt gagacggac 1440
agctcccacg cttcacctt ggatgagctt cggggcaagc gctcctgccs cgccggtttc 1500
ggcagccctg caggctgggta tgtcccggtg ggtgccctta ttcagagagg cttcatccgg 1560
cccaaggact gtgacgtcct cacagcagtg agcgagttct tcaatgcacag ctgcgtgccc 1620
10 gtgaacaacc ccaagaacta cccctcctcg ctgtgtgcac tgtgcgtggg ggacgagcag 1680
ggccgcaaca agtgtgtggg caacagccag gagcggattt acggctaccg cggcgcccttc 1740
aggtgcctgg tggagaatgc gggtgacgtt gcctcgtca ggcacacaac cgtctttgac 1800
aacacaaacg gccacaattc cgagccctgg gctgctgagc tcaggtcaga ggactatgaa 1860
ctgctgtgcc ccaacggggc cccagccag gtgtccagt ttgcagccctg caacctggca 1920
15 cagataaccac cccacggcgat gatggtccgg cccgacacca acatttcac cgtgtatgga 1980
ctgctggaca aggcccagga cctgtttggg gacgaccaca ataagaacgg gttcaaaatg 2040
ttcgacttcc ccaactatca tggccaagac ctgctttca agatgccac cgtccggcg 2100
gtgcctgtcg gagagaaaac cacctaccgc ggctggctgg ggctggacta cgtggcggcg 2160
ctgaaaggaa tgtcgctca gcagtgcctg ggccgcaggcc cccggcgcc cggggcgccc 2220
20 ctgctccgc tgctgctgcc cccctcgcc gcccgcctgc tcccgccgc cctctgagcc 2280
cggccgcccc gccccagagc tccgatgccc gccccgggag ttccgcggc ggcctctcgc 2340
gctgcggaat ccagaaggaa gctcgca 2368

<210> 4

25 <211> 738

<212> PRT

<213> Human

<400> 4

Met Arg Gly Pro Ser Gly Ala Leu Trp Leu Leu Leu Ala Leu Arg Thr

1	5	10	15	
Val Leu Gly Gly Met Glu Val Arg Trp Cys Ala Thr Ser Asp Pro Glu				
	20	25	30	
Gln His Lys Cys Gly Asn Met Ser Glu Ala Phe Arg Glu Ala Gly Ile				
5	35	40	45	
Gln Pro Ser Leu Leu Cys Val Arg Gly Thr Ser Ala Asp His Cys Val				
	50	55	60	
Gln Leu Ile Ala Ala Gln Glu Ala Asp Ala Ile Thr Leu Asp Gly Gly				
	65	70	75	80
10	Ala Ile Tyr Glu Ala Gly Lys Glu His Gly Leu Lys Pro Val Val Gly			
	85	90	95	
Glu Val Tyr Asp Gln Glu Val Gly Thr Ser Tyr Tyr Ala Val Ala Val				
	100	105	110	
Val Arg Arg Ser Ser His Val Thr Ile Asp Thr Leu Lys Gly Val Lys				
15	115	120	125	
Ser Cys His Thr Gly Ile Asn Arg Thr Val Gly Trp Asn Val Pro Val				
	130	135	140	
Gly Tyr Leu Val Glu Ser Gly Arg Leu Ser Val Met Gly Cys Asp Val				
	145	150	155	160
20	Leu Lys Ala Val Ser Asp Tyr Phe Gly Gly Ser Cys Val Pro Gly Ala			
	165	170	175	
Gly Glu Thr Ser Tyr Ser Glu Ser Leu Cys Arg Leu Cys Arg Gly Asp				
	180	185	190	
Ser Ser Gly Glu Gly Val Cys Asp Lys Ser Pro Leu Glu Arg Tyr Tyr				
25	195	200	205	
Asp Tyr Ser Gly Ala Phe Arg Cys Leu Ala Glu Gly Ala Gly Asp Val				
	210	215	220	
Ala Phe Val Lys His Ser Thr Val Leu Glu Asn Thr Asp Gly Lys Thr				
	225	230	235	240

Leu Pro Ser Trp Gly Gln Ala Leu Leu Ser Gln Asp Phe Glu Leu Leu
 245 250 255
 Cys Arg Asp Gly Ser Arg Ala Asp Val Thr Glu Trp Arg Gln Cys His
 260 265 270
 5 Leu Ala Arg Val Pro Ala His Ala Val Val Val Arg Ala Asp Thr Asp
 275 280 285
 Gly Gly Leu Ile Phe Arg Leu Leu Asn Glu Gly Gln Arg Leu Phe Ser
 290 295 300
 His Glu Gly Ser Ser Phe Gln Met Phe Ser Ser Glu Ala Tyr Gly Gln
 10 305 310 315 320
 Lys Asp Leu Leu Phe Lys Asp Ser Thr Ser Glu Leu Val Pro Ile Ala
 325 330 335
 Thr Gln Thr Tyr Glu Ala Trp Leu Gly His Glu Tyr Leu His Ala Met
 340 345 350
 15 Lys Gly Leu Leu Cys Asp Pro Asn Arg Leu Pro Pro Tyr Leu Arg Trp
 355 360 365
 Cys Val Leu Ser Thr Pro Glu Ile Gln Lys Cys Gly Asp Met Ala Val
 370 375 380
 Ala Phe Arg Arg Gln Arg Leu Lys Pro Glu Ile Gln Cys Val Ser Ala
 20 385 390 395 400
 Lys Ser Pro Gln His Cys Met Glu Arg Ile Gln Ala Glu Gln Val Asp
 405 410 415
 Ala Val Thr Leu Ser Gly Glu Asp Ile Tyr Thr Ala Gly Lys Lys Tyr
 420 425 430
 25 Gly Leu Val Pro Ala Ala Gly Glu His Tyr Ala Pro Glu Asp Ser Ser
 435 440 445
 Asn Ser Tyr Tyr Val Val Ala Val Val Arg Arg Asp Ser Ser His Ala
 450 455 460
 Phe Thr Leu Asp Glu Leu Arg Gly Lys Arg Ser Cys His Ala Gly Phe

E D C H G S A C F R D P Q E

465	470	475	480
Gly Ser Pro Ala Gly Trp Asp Val Pro Val Gly Ala Leu Ile Gln Arg			
485	490	495	
Gly Phe Ile Arg Pro Lys Asp Cys Asp Val Leu Thr Ala Val Ser Glu			
5	500	505	510
Phe Phe Asn Ala Ser Cys Val Pro Val Asn Asn Pro Lys Asn Tyr Pro			
515	520	525	
Ser Ser Leu Cys Ala Leu Cys Val Gly Asp Glu Gln Gly Arg Asn Lys			
530	535	540	
10	Cys Val Gly Asn Ser Gln Glu Arg Tyr Tyr Gly Tyr Arg Gly Ala Phe		
545	550	555	560
Arg Cys Leu Val Glu Asn Ala Gly Asp Val Ala Phe Val Arg His Thr			
565	570	575	
Thr Val Phe Asp Asn Thr Asn Gly His Asn Ser Glu Pro Trp Ala Ala			
15	580	585	590
Glu Leu Arg Ser Glu Asp Tyr Glu Leu Leu Cys Pro Asn Gly Ala Arg			
595	600	605	
Ala Glu Val Ser Gln Phe Ala Ala Cys Asn Leu Ala Gln Ile Pro Pro			
610	615	620	
20	His Ala Val Met Val Arg Pro Asp Thr Asn Ile Phe Thr Val Tyr Gly		
625	630	635	640
Leu Leu Asp Lys Ala Gln Asp Leu Phe Gly Asp Asp His Asn Lys Asn			
645	650	655	
Gly Phe Lys Met Phe Asp Ser Ser Asn Tyr His Gly Gln Asp Leu Leu			
25	660	665	670
Phe Lys Asp Ala Thr Val Arg Ala Val Pro Val Gly Glu Lys Thr Thr			
675	680	685	
Tyr Arg Gly Trp Leu Gly Leu Asp Tyr Val Ala Ala Leu Glu Gly Met			
690	695	700	

Ser Ser Gln Gln Cys Ser Gly Ala Ala Ala Pro Ala Pro Gly Ala Pro
705 710 715 720
Leu Leu Pro Leu Leu Leu Pro Ala Leu Ala Ala Arg Leu Leu Pro Pro
725 730 735

5 Ala Leu

<210> 5

<211> 23

<212> DNA

10 <213> Artificial Sequence

<400> 5

ggcttggaaacg tgcccggtggg cta

<210> 6

15 <211> 23

<212> DNA

<213> Artificial Sequence

<400> 6

gtcctgggcc ttgtccagca gtc

20

<210> 7

<211> 25

<212> DNA

<213> Artificial Sequence

25 <400> 7

agagggactc cgagtatctg gtctc

<210> 8

<211> 24

2. 100% homology to 5' ... CGATCTCGGTC

<212> DNA

<213> Artificial Sequence

<400> 8

gtccggccccg acaccaacat cttc

5

<210> 9

<211> 24

<212> DNA

<213> Artificial Sequence

10 <400> 9

ggtgtgttga ggggcgtgga ctct

<210> 10

<211> 25

15 <212> DNA

<213> Artificial Sequence

<400> 10

tcaccaacgg ctttgagcac atcac

20 <210> 11

<211> 614

<212> RNA

<213> Mouse

<400> 11

25 tcaccaacgg ctttgagcac atcacagccc atcactgaca gatggccgct ctctacgagg 60
taaccgacag gcacgttcca gcccacagtc cggttaatgc ctgtgtggca ggacttgacg 120
cccttcaggg tggatgggt aacattggaa ttccctcctga ccacagccac ggcataatag 180
gaagtcccaa tgtcttggtc atagacttcc cccaccactg gcttcaggcc gtgctccttc 240
cctgcctcat agatggcccc tccatccagg gtgatggcat ctgcttttg ttcccttgatg 300

agctggacac agtggtcagc ggagttgccccc tggacgcaga gaagggaagg acgaatgc 360
gctccctgga aggccctcgct catgtctttg cacttctgct gctctgcgtc tgagatggta 420
caccactgca cctccatcac acagacgaca gtgcgcaggg acaggagtag caaaaaaagtc 480
acgctcagga gcctcatggc aacgttgggt tggctgggt gctggcgggt ctgtcctggc 540
5 ttcctcttcc ctggtctctc tggccttcac tatttaagcg cagccccggg agagtccacg 600
ccccctcaaca cacc 614

<210> 12
<211> 17
10 <212> DNA
<213> Artificial Sequence
<400> 12
tgctacttca tcgaccc

15 <210> 13
<211> 19
<212> DNA
<213> Artificial Sequence
<400> 13
20 aaagacctcc cctccatct

<210> 14
<211> 4158
<212> cDNA
25 <213> Mouse
<400> 14
ggtgtgttga ggggcgtgga ctctccccgg gctgcgccta aatagtgaag gccagagaga 60
ccagggaaaga ggaaggccagg acagacccgc cagcacccca gccaacccaa cgttgccatg 120
aggctcctga gcgtgacttt ttggctactc ctgtcctgc gcactgtcgt ctgtgtgatg 180

gaggtgcagt ggtgtaccat ctcagacgca gagcagcaga agtgcaaaga catgagcgag 240
 gccttccagg gagctggcat tcgtccttcc cttctctgcg tccagggcaa ctccgctgac 300
 cactgtgtcc agctcatcaa ggaacaaaaaa gcagatgcca tcaccctgga tggaggggcc 360
 atctatgagg cagggaaagga gcacggcctg aagccagtgg tgggggaagt ctatgaccaa 420
 5 gacattggga ctccctatta tgccgtggct gtggtcagga ggaattccaa tgttaccatc 480
 aacaccctga agggcgtcaa gtcctgccac acaggcatta accggactgt gggctggaac 540
 gtgcctgtcg gttacctcgt agagagcggc catctgtcag tcatggctg tgatgtgctc 600
 aaagccgttg gtgattattt tggaggcagc tgcgtccctg gaacaggaga aaccagccat 660
 tccgagtccc tctgtcgccct ctgcccgtggc gactcttctg ggcacaatgt gtgtgacaag 720
 10 agtcccctag agagatacta cgactacagt ggagccttcc ggtgcctggc ggaaggagcc 780
 ggtgacgtgg cttcgtgaa gcacagcaca gtgctggaaa atactgtatgg aaacaccctg 840
 cttccctggg gcaagtccct gatgtcagag gacttccagc tactatgcag ggtggcagc 900
 cgagccgaca tcactgagtg gagacgttgc cacctggcca aggtgcctgc tcatgctgtg 960
 gtggtcaggg gtgacatgga tggcggtctc atattccaac tgctcaacga aggccagctt 1020
 15 ctgttcagcc acgaagacag cagttccag atgttcagct ccaaaggccta cagccagaag 1080
 aacttgctgt tcaaagactc caccttggag cttgtgcccc ttgccacaca gaactacgag 1140
 gcctggctgg gccaggaata cctgcagggc atgaaggggc tcctctgtga tcccaaccgg 1200
 ctgccccact acctgcgctg gtgtgtgctg tcagcgcccc agatccagaa gtgtggagat 1260
 atggctgtgg cttcagccg ccagaatctc aagccggaaa ttcaagtgtgt gtggccgag 1320
 20 tcccctgagc actgcataatgga gcagatccag gctgggcaca ctgacgctgt gactctgagg 1380
 ggcgaggaca tttacagggc agggaaaggtg tacggcctgg ttccggcgcc cggggagctg 1440
 tatgctgagg aggacaggag caattcctac tttgtgggtgg ctgtggcaag aagggacagc 1500
 tcctactcct tcaccctgga cgagcttgcg ggcaagcggt cctgccaccc ctacttgggc 1560
 agcccagccgg gctgggaggt gcccattggc tccctcatcc agcggggctt catccggccc 1620
 25 aaggactgtg atgtcctcac agcggtgagc cagttttca atgcccagctg cgtgcctgtc 1680
 aacaacccta agaactaccc ttccgcacta tgcgtgcgtct gcgtgggaga cgagaagggc 1740
 cgcaacaaat gtgtgggag cagccaggag agatactacg gctacagcgg ggccttcagg 1800
 tgccttggc agcatgcagg ggacgtggct ttcgtcaagc acacgactgt ctttgagaac 1860
 acaaatggtc acaatcctga gccttgggct tctcacctca ggtggcaaga ctatgaacta 1920

ctgtccccca atggggcacg ggctgaggtt gaccagtcc aagcttgaa cctggcacaa 1980
atgcacatccc acgctgtcat ggtccgtcca gacaccaaca tcttcactgt gtatggactt 2040
ctggacaagg cccaggacct gtttggagac gaccataaca agaacggttt ccaaatgttt 2100
gactcctcca aatatcacag ccaagacctg ctttcaaag atgctacagt ccgagcggtg 2160
5 ccagtccggg agaaaaccac atacctggac tggctggtc ctgactatgt ggttgcgctg 2220
gaggggatgt tgtctcagca gtgctccggt gcaggggccc cggtgcagcg agtccccctg 2280
ctggccctgc tcctgctgac cctggctgca ggcctccttc ctcgcgttct ctgaagaccg 2340
ctgcttcagg ccacgcccag agcagggaaa gctacagagc tcaaccggaa gaaaccagga 2400
catcagctaa ccctgcagga gagcgcgggg cgggatgagg agaggcaagg tgagaactca 2460
10 cacacacaca caagcctccg aggtgcgatt ctaacccaaa gagaaatttc tagaatcagg 2520
atgattgtta aggccaagtc ttcccacttg ctggagccct caatacctga ggcgactggc 2580
gagtagccca gtcactcctc ccacaccggt ggcgccagca gcgaacctgt gcctcccacc 2640
tggagcctcc tggctggctg gggtggttaa gggggggggg gggagagtga agatgctgg 2700
tgccatggca accgtggagc agcttccagc ctctgtaccg gccacctggt gagatgccaa 2760
15 ggaaggagca caccaccaac ctagggAACCTC tgcgcacac actaccaccc agcagcccc 2820
gctctcgctg ccccaccgct ctctcctatg ggcacttgac caccaaggcc acaccgtcgg 2880
aggggcaagg ctgctgagca catcagcctt ctgatgtgac accaaccaag gagcccagcc 2940
ctctggacag caagattttg ctagactggg atgggaggaa ggccagagct gtactgtggg 3000
gatgaagtcc tccaaaaccc tcagaggaag gaagtgcggc caccttccca ttaagaatgt 3060
20 tagtgtgtga gaaacttgat gcagggtgga aactatcctg tttaacggct cccgtggcaa 3120
gcaggacttgc cgctgtctgc gctgcctgga cctcaactgca caatgaaact gttgccgaga 3180
ttctattgtt tgctctcctg gtctcagttt caacattttt tttctccctg cttcatata 3240
ccccttccca catcaccacg caagcacgca cgcgcacacg cacacgcaca caccttatcc 3300
gtgtgaacat atctgaacat atctgcttgt ctgaagaagt aggagctaac cccaaaataac 3360
25 ttccgtcat gagctggcc ttggatata ccacgagcca ggggattttttt ggggatggg gagagccctg 3420
tctcccttc accctgcacc tggggcag ttgcattttt cgagaggatc cctgggtctc 3480
tcgaactgtg agagccaagg cctaggctgc cattttgcca ttgttctctc gagaaccaga 3540
aaaaagtttc caaagctacc agctcttacc ccagatcttgc ttcccttaaa aaaaagtaat 3600
aaataaaaag gagaagaaac aggagcaaac agccatgtc agcacactgg aagcagcgtg 3660

ggccgggagc tatttgtgtc ttgggtctgtg tggggggcct cagatccaa tgacaggcca 3720
ggttcccagt ggctcgcccc cacctgtggg cgacgacggg acagatcctt tccatggctc 3780
accagtagag aaggtcctgg cagtgtccca gccagagtca cacaatcctg agaaaaatcg 3840
gtcaccatgg tgcttggag agcaagcccc tcctcctccc agtacacagc catccattct 3900
5 tctctgagct ggggacttca cagtgagaag tgtactctgt gtgggcact gtgctgccc 3960
aagtgtgatg tctgtgccgt gtgcctttca ggtgtgactt tgaagagcgt tgtgtaaatg 4020
acgtctgatt gccatgggcc actgctgtgt ttgtgctaaa gaaagacatt gtttcttt 4080
taaaaataaag ccatatatcc ctgcatacgc agaggcttgg atcctggtgg aaaaaaaaaa 4140
aaaaaaaaaa aaaaaaaaaa 4158

10

<210> 15

<211> 737

<212> PRT

<213> Mouse

15 <400> 15

Met Arg Leu Leu Ser Val Thr Phe Trp Leu Leu Leu Ser Leu Arg Thr

1 5 10 15

Val Val Cys Val Met Glu Val Gln Trp Cys Thr Ile Ser Asp Ala Glu

20 25 30

20 Gln Gln Lys Cys Lys Asp Met Ser Glu Ala Phe Gln Gly Ala Gly Ile

35 40 45

Arg Pro Ser Leu Leu Cys Val Gln Gly Asn Ser Ala Asp His Cys Val

50 55 60

Gln Leu Ile Lys Glu Gln Lys Ala Asp Ala Ile Thr Leu Asp Gly Gly

25 65 70 75 80

Ala Ile Tyr Glu Ala Gly Lys Glu His Gly Leu Lys Pro Val Val Gly

85 90 95

Glu Val Tyr Asp Gln Asp Ile Gly Thr Ser Tyr Tyr Ala Val Ala Val

100 105 110

Val Arg Arg Asn Ser Asn Val Thr Ile Asn Thr Leu Lys Gly Val Lys
 115 120 125
 Ser Cys His Thr Gly Ile Asn Arg Thr Val Gly Trp Asn Val Pro Val
 130 135 140
 5 Gly Tyr Leu Val Glu Ser Gly His Leu Ser Val Met Gly Cys Asp Val
 145 150 155 160
 Leu Lys Ala Val Gly Asp Tyr Phe Gly Gly Ser Cys Val Pro Gly Thr
 165 170 175
 Gly Glu Thr Ser His Ser Glu Ser Leu Cys Arg Leu Cys Arg Gly Asp
 10 180 185 190
 Ser Ser Gly His Asn Val Cys Asp Lys Ser Pro Leu Glu Arg Tyr Tyr
 195 200 205
 Asp Tyr Ser Gly Ala Phe Arg Cys Leu Ala Glu Gly Ala Gly Asp Val
 210 215 220
 15 Ala Phe Val Lys His Ser Thr Val Leu Glu Asn Thr Asp Gly Asn Thr
 225 230 235 240
 Leu Pro Ser Trp Gly Lys Ser Leu Met Ser Glu Asp Phe Gln Leu Leu
 245 250 255
 Cys Arg Asp Gly Ser Arg Ala Asp Ile Thr Glu Trp Arg Arg Cys His
 20 260 265 270
 Leu Ala Lys Val Pro Ala His Ala Val Val Val Arg Gly Asp Met Asp
 275 280 285
 Gly Gly Leu Ile Phe Gln Leu Leu Asn Glu Gly Gln Leu Leu Phe Ser
 290 295 300
 25 His Glu Asp Ser Ser Phe Gln Met Phe Ser Ser Lys Ala Tyr Ser Gln
 305 310 315 320
 Lys Asn Leu Leu Phe Lys Asp Ser Thr Leu Glu Leu Val Pro Ile Ala
 325 330 335
 Thr Gln Asn Tyr Glu Ala Trp Leu Gly Gln Glu Tyr Leu Gln Ala Met

	340	345	350
	Lys Gly Leu Leu Cys Asp Pro Asn Arg Leu Pro His Tyr Leu Arg Trp		
	355	360	365
	Cys Val Leu Ser Ala Pro Glu Ile Gln Lys Cys Gly Asp Met Ala Val		
5	370	375	380
	Ala Phe Ser Arg Gln Asn Leu Lys Pro Glu Ile Gln Cys Val Ser Ala		
	385	390	395
	Glu Ser Pro Glu His Cys Met Glu Gln Ile Gln Ala Gly His Thr Asp		
	405	410	415
10	Ala Val Thr Leu Arg Gly Glu Asp Ile Tyr Arg Ala Gly Lys Val Tyr		
	420	425	430
	Gly Leu Val Pro Ala Ala Gly Glu Leu Tyr Ala Glu Glu Asp Arg Ser		
	435	440	445
	Asn Ser Tyr Phe Val Val Ala Val Ala Arg Arg Asp Ser Ser Tyr Ser		
15	450	455	460
	Phe Thr Leu Asp Glu Leu Arg Gly Lys Arg Ser Cys His Pro Tyr Leu		
	465	470	475
	Gly Ser Pro Ala Gly Trp Glu Val Pro Ile Gly Ser Leu Ile Gln Arg		
	485	490	495
20	Gly Phe Ile Arg Pro Lys Asp Cys Asp Val Leu Thr Ala Val Ser Gln		
	500	505	510
	Phe Phe Asn Ala Ser Cys Val Pro Val Asn Asn Pro Lys Asn Tyr Pro		
	515	520	525
	Ser Ala Leu Cys Ala Leu Cys Val Gly Asp Glu Lys Gly Arg Asn Lys		
25	530	535	540
	Cys Val Gly Ser Ser Gln Glu Arg Tyr Tyr Gly Tyr Ser Gly Ala Phe		
	545	550	555
	Arg Cys Leu Val Glu His Ala Gly Asp Val Ala Phe Val Lys His Thr		
	565	570	575

803
SERIALS
PRINTED
JULY 1974

Thr Val Phe Glu Asn Thr Asn Gly His Asn Pro Glu Pro Trp Ala Ser
580 585 590

His Leu Arg Trp Gln Asp Tyr Glu Leu Leu Cys Pro Asn Gly Ala Arg
595 600 605

5 Ala Glu Val Asp Gln Phe Gln Ala Cys Asn Leu Ala Gln Met Pro Ser
610 615 620

His Ala Val Met Val Arg Pro Asp Thr Asn Ile Phe Thr Val Tyr Gly
625 630 635 640

Leu Leu Asp Lys Ala Gln Asp Leu Phe Gly Asp Asp His Asn Lys Asn
10 645 650 655

Gly Phe Gln Met Phe Asp Ser Ser Lys Tyr His Ser Gln Asp Leu Leu
660 665 670

Phe Lys Asp Ala Thr Val Arg Ala Val Pro Val Arg Glu Lys Thr Thr
675 680 685

15 Tyr Leu Asp Trp Leu Gly Pro Asp Tyr Val Val Ala Leu Glu Gly Met
690 695 700

Leu Ser Gln Gln Cys Ser Gly Ala Gly Ala Ala Val Gln Arg Val Pro
705 710 715 720

Leu Leu Ala Leu Leu Leu Thr Leu Ala Ala Gly Leu Leu Pro Arg
20 725 730 735

Val Leu

Combined Declaration for Patent Application and Power of Attorney

As a below-named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name; and that I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

CHONDROGENESIS STIMULATOR

the specification of which (check one)

[] is attached hereto;

[] was filed in the United States under 35 U.S.C. §111 on _____, as
U.S. Appln. No. _____ *; or

[X] was/will be filed in the U.S. under 35 U.S.C. §371 by entry into the U.S. national stage of an international (PCT) application, PCT/JPO0/05590 filed Aug. 21, 2000, entry requested on _____ *; national stage application received U.S. Appln. No. _____ *, §371/§102(e) date _____ * (* if known)

and was amended on _____ (if applicable).
(include dates of amendments under PCT Art. 19 and 34 if PCT)

I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above; and I acknowledge the duty to disclose to the Patent and Trademark Office (PTO) all information known by me to be material to patentability as defined in 37 C.F.R. §1.56.

I hereby claim foreign priority benefits under 35 U.S.C. §§ 119 and 365 of any prior foreign application(s) for patent or inventor's certificate, or prior PCT application(s) designating a country other than the U.S., listed below with the "Yes" box checked and have also identified below any such application having a filing date before that of the application on which priority is claimed:

<u>232966/1999</u>	<u>Japan</u>	<u>19/8/1999</u>	<input checked="" type="checkbox"/> YES	<input type="checkbox"/> NO
(Number)	(Country)	(Day Month Year Filed)	()	()

I hereby claim the benefit under 35 U.S.C. §120 of any prior U.S. non-provisional application(s) or prior PCT application(s) designating the U.S. listed below, or under §119(e) of any prior U.S. provisional applications listed below, and, insofar as the subject matter of each of the claims of this application is not disclosed in such U.S. or PCT application in the manner provided by the first paragraph of 35 U.S.C. §112, I acknowledge the duty to disclose to the PTO all information as defined in 37 C.F.R. §1.56(a) which occurred between the filing date of the prior application and the national filing date of this application:

<u>(Application No.)</u>	<u>(Day Month Year Filed)</u>	<u>(Status: patented, pending, abandoned)</u>
<u>(Application No.)</u>	<u>(Day Month Year Filed)</u>	<u>(Status: patented, pending, abandoned)</u>
<u>(Application No.)</u>	<u>(Day Month Year Filed)</u>	<u>(Status: patented, pending, abandoned)</u>

As a named inventor, I hereby appoint the following registered practitioners to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

All of the practitioners associated with Customer Number 001444

Direct all correspondence to the address associated with Customer Number 001444; i.e.,

BROWDY AND NEIMARK, P.L.L.C.

624 Ninth Street, N.W.

Washington, D.C. 20001-5303

(202) 628-5197

The undersigned hereby authorizes the U.S. Attorneys or Agents appointed herein to accept and follow instructions from YUASA AND HARA as to any action to be taken in the U.S. Patent and Trademark Office regarding this application without direct communication between the U.S. Attorneys or Agents and the undersigned. In the event of a change of the persons from whom instructions may be taken, the U.S. Attorneys or Agents appointed herein will be so notified by the undersigned.

SEARCHED

INDEXED

FILED

Page 2 of 2 Pages

Atty. Docket:

Title: CHONDROGENESIS STIMULATOR

U.S. Application filed , Serial No.

PCT Application filed August 21, 2000 , Serial No PCT/IP00/05590

I hereby further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. §1001 and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

1-80 FULL NAME OF FIRST INVENTOR <u>Yukio KATO</u>		INVENTOR'S SIGNATURE <u>Yukio Kato</u>	DATE Feb. 1, 2002
RESIDENT <u>Hiroshima, Japan</u>			CITIZENSHIP Japanese
POST OFFICE ADDRESS 3-6-9-501, Ushitawaseda, Higashi-ku, Hiroshima-shi, Hiroshima 732-0062 Japan			
2-10 FULL NAME OF SECOND JOINT INVENTOR <u>Katsumi FUJIMOTO</u>		INVENTOR'S SIGNATURE <u>Katsumi Fujimoto</u>	DATE Feb. 1, 2002
RESIDENT <u>Hiroshima, Japan</u>			CITIZENSHIP Japanese
POST OFFICE ADDRESS 1-3-11-202, Asahi, Minami-ku, Hiroshima-shi, Hiroshima 734-0036 Japan			
FULL NAME OF THIRD JOINT INVENTOR		INVENTOR'S SIGNATURE	DATE
RESIDENT		CITIZENSHIP	
POST OFFICE ADDRESS			
FULL NAME OF FOURTH JOINT INVENTOR		INVENTOR'S SIGNATURE	DATE
RESIDENT		CITIZENSHIP	
POST OFFICE ADDRESS			
FULL NAME OF FIFTH JOINT INVENTOR		INVENTOR'S SIGNATURE	DATE
RESIDENT		CITIZENSHIP	
POST OFFICE ADDRESS			
FULL NAME OF SIXTH JOINT INVENTOR		INVENTOR'S SIGNATURE	DATE
RESIDENT		CITIZENSHIP	
POST OFFICE ADDRESS			
FULL NAME OF SEVENTH JOINT INVENTOR		INVENTOR'S SIGNATURE	DATE
RESIDENT		CITIZENSHIP	
POST OFFICE ADDRESS			

ALL INVENTORS MUST REVIEW APPLICATION AND DECLARATION BEFORE SIGNING. ALL ALTERATIONS MUST BE INITIALED AND DATED BY ALL INVENTORS PRIOR TO EXECUTION. NO ALTERATIONS CAN BE MADE AFTER THE DECLARATION IS SIGNED. ALL PAGES OF DECLARATION MUST BE SEEN BY ALL INVENTORS.

INVENTOR INFORMATION

104049957
JC13 Rec'd PCT/PTO 19 FEB 2002

Inventor One Given Name:: Yukio
Family Name:: KATO
Postal Address Line One:: 3-6-9-501, Ushitawaseda, Higashi-ku
Postal Address Line Two:: Hiroshima-shi
City:: Hiroshima
Country:: Japan
Postal or Zip Code:: 732-0062
Citizenship Country:: Japan
Inventor Two Given Name:: Katsumi
Family Name:: FUJIMOTO
Postal Address Line One:: 1-3-11-202, Asahi, Minami-ku
Postal Address Line Two:: Hiroshima-shi
City:: Hiroshima
Country:: Japan
Postal or Zip Code:: 734-0036
Citizenship Country:: Japan

CORRESPONDENCE INFORMATION

Correspondence Customer Number:: 001444
Fax One:: 202-737-3528
Electronic Mail One:: Mail@BrowdyNeimark.com

APPLICATION INFORMATION

Title Line One:: CHONDROGENESIS STIMULATOR
Total Drawing Sheets:: 6
Formal Drawings?:: Yes
Docket Number:: KATO=2
Secrecy Order in Parent Appl.?:: No

REPRESENTATIVE INFORMATION

Representative Customer Number:: 1444

CONTINUITY INFORMATION

This application is a:: 371 OF
> Application One:: PCT/JP00/05590
Filing Date:: 08-21-2000

PRIOR FOREIGN APPLICATIONS

Foreign Application One:: 232966/1999
Filing Date:: 08-19-1999
Country:: Japan

Priority Claimed:: Yes

U.S. GOVERNMENT OWNED

Source:: PrintEFS Version 1.0.1