ANALISI MATEMATICA - F. FIDALEO

(DAL PROGRAMMA DI FIDALEO PRESO SUL GRUPPO GRANDE I DUE CAPITOLI SEGUENTI CORRISPONDONO AL CAPITOLO 1 DEL LIBRO Analisi Matematica – "Bertsch")

CAPITOLO 1: numeri reali

- Numeri naturali, interi, razionali, costruzione dei numeri reali (cenni); principio di induzione. Richiami su semplici disequazioni irrazionali e con la presenza del modulo.
- Estremo superiore ed inferiore e loro proprietà.
- Potenze, radici e logaritmi; formula di cambiamento di base. Richiamo al Binomio di Newton.
 - Numeri naturali, interi, razionali, costruzione dei numeri reali (cenni); principio di induzione.
 Richiami su semplici disequazioni irrazionali e con la presenza del modulo.

Z= Numeri interi \mathbb{Z} :={0, ±1, ±2, ±3,...} **Q**= Numeri razionali \mathbb{Q} := { p/q con $p,q \in \mathbb{Z}$, $q \neq 0$ }

Proprietà di *Q Addizione*

- $\forall x, y : x + y = y + x$ «commutativa»
- $\forall x, y, z : (x+y) + z = x + (y+z)$ «Associativa»
- \exists ! Elemento, detto zero e indicato con 0, tale che \forall x : x + 0 = x
- $\forall x \exists !$ Elemento, detto opposto e indicato con -x, tale che x + (-x) = 0

Proprietà di *Q Moltiplicazione*

- $\forall x, y : x * y = y * x «commutativa»$
- $\forall x, y, z : (x * y) * z = x * (y * z)$ «Associativa»
- \exists ! Elemento \neq 0, detto unità e indicato con 1, tale che \forall x : x 1 = x
- $\forall x \exists !$ Elemento, detto reciproco e indicato con x^{-1} oppure 1/x, tale che $x * x^{-1} = 1$
- $\forall x, y, z : (x + y) * z = x * z + y * z «Distributiva»$

Proprietá di densitá: $\forall x, y, x < y$, \exists infiniti elementi z tali che x < z < y. **Proprietá di Archimede**: $\forall x, y > 0 \ \exists n \in \mathbb{N}$ tale che nx >= y.

1.1Numeri reali

Lemma 1.1: Non esiste $x \in Q$ tale che $x^2 = 2$

Si ragiona per assurdo; cioè si assume che la tesi sia falsa e si procede per arrivare a una contraddizione. Supponiamo quindi che esista $x \in Q$, x > 0 tale che $x^2 = 2$.

Un numero reale è un allineamento decimale proprio. L' insieme dei numeri reali si indica con R

Teorema 1.3 Proprietá di Densitá

Siano $x, y \in R$ tali che x < y. Allora:

- \exists infinit numeri razionali z : x < z < y;
- \exists infiniti numeri irrazionali z: x < z < y;

Principio di induzione

Estremo superiore ed inferiore e loro proprietà

Dato un insieme A, non vuoto, composto da numeri reali

- il **maggiorante** è un numero che, se esiste, è \geq di tutti gli elementi di A \rightarrow in questo caso A si dice **limitato superiormente**
- il **minorante** è un numero che, se esiste, è ≤ di tutti gli elementi di A → in questo caso A si dice **limitato inferiormente**

Un insieme non può avere più di un **massimo** e un **minimo** \rightarrow *Lemma:* se esiste un massimo o un minimo di A questo è unico

Dimostrazione:

M1, M2 sono massimi. Per la definizione M1 è maggiorante di A. Essendo che m2 \in A \Longrightarrow M2 \le M1. Scambiando i ruoli di M1e M2 si ottiene M1 \le M2. Quindi M2 \le M1 \le M2 e risulta M1 = M2

- **L'estremo superiore** è il minimo dell'insieme dei maggioranti di $A \rightarrow \inf = -\infty$
- **L'estremo inferiore** è il massimo dell'insieme dei maggioranti di $A \rightarrow \sup = + \infty$

Proprietà di Completezza di $R \to Sia A \subseteq R$, $A \ne 0$. Se $A \in I$ limitato superiormente (inferiormente), allora esiste sup $A \in R$ (inf $A \in R$).

• Potenze, radici e logaritmi; formula di cambiamento di base. Richiamo al Binomio di Newton.

Per definizione, la radice n-esima di un numero non negativo è un numero negativo $\to \sqrt{x^2} = |x| \quad \forall x \in R$ Se x è minore di 0 avremo $\sqrt{x^2} \neq x \to \text{esempio}$: $\sqrt{(-3)^2} = \sqrt{9} = 3 = |-3| \neq -3$ Per definizione

 $\sqrt{2}$ è la soluzione non negativa di $x^2 = 2$

LOGARITMI

Definizione: $\log_a b = \mathbf{x} \rightarrow a^{\mathbf{x}} = \mathbf{b}$

Quindi possiamo definire il logaritmo come l'esponente che bisogna dare alla base a per ottenere l'argomento b

ESEMPIO → Calcola il seguente logaritmo: log₇ 49

Poniamo il logaritmo uguale ad x e per la definizione andremo ad ottenere $7^X = 49$, essendo $49 = 7^2$ otterremo $7^x = 7^2$ quindi otterremo x = 2

NB: se b non è una potenza ad esponente razionale di a allora $\log_a b$ è un numero irrazionale.

ESEMPIO \rightarrow Calcolare il seguente logaritmo: $\log_2 3$

In questo caso il 3 non è "imparentato" con il 2, questo logaritmo verrà sviluppato con una calcolatrice e verrà un numero irrazionale (1,58...)

- <u>Proprietà dei logaritmi</u>

$$\log_a(xy) = \log_a x + \log_a y$$

Dimostrazione \rightarrow poniamo $\log_a x = m$ e $\log_a y = n$. Per la definizione di logaritmo otteniamo che $x = a^m$ e $y = a^n$. Moltiplichiamo le due uguaglianze membro a membro e otteniamo $xy = a^m * a^n = a^{m+n}$. Quindi avremo $m + n = \log_a(xy)$

$$\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$$

Dimostrazione \rightarrow poniamo $\log_a x = m$ e $\log_a y = n$. Per la definizione di logaritmo otteniamo che $x = a^m$ e $y = a^n$. Dividiamo le due uguaglianze membro a membro e otteniamo $\frac{x}{y} = a^m$: $a^n = a^{m-n}$. Quindi avremo m - n = $\log_a \left(\frac{x}{y}\right)$

$$\log_a x^y = y * \log_a x$$

Dimostrazione \rightarrow poniamo $\log_a x = m$. Per la definizione di logaritmo otteniamo che $x = a^m$. Elevo alla y le due uguaglianze e otteniamo $x^y = (a^m)^y$. Quindi avremo $x^y = (\log_a x)^y \rightarrow \log_a x^y = y * \log_a x$

- Altre proprietà:

$$\log_a \frac{1}{x} = -\log_a x \rightarrow \operatorname{perch\acute{e}} \frac{1}{x} \operatorname{corrisponde} a x^{-1}$$

 $\log_a \mathbf{1} = \mathbf{0} \rightarrow \text{per la definizione di logaritmo verrebbe } 0^a = 1$

 $\boldsymbol{\log_a a} \ = \ \boldsymbol{1} \rightarrow \operatorname{per}$ la definizione di logaritmo verrebbe $1^a = a$

 $\log_a \frac{1}{a} = -1 \rightarrow \text{per la definizione di logaritmo verrebbe } -1^a = \frac{1}{a}$

 $\log_a b = \frac{\log_c b}{\log_c a}$ \rightarrow formula per il **cambiamento di base** \rightarrow **ESEMPIO:** abbiamo

 $\log_2 3$ trasformiamolo in base $10 \rightarrow \log_2 3 = \frac{\log_{10} 3}{\log_{10} 2}$