

#6

SEQUENCE LISTING

<10> Allen, Keith D.
<11> Zhang, Qin

<120> TRANSGENIC MICE CONTAINING CX2 GENE
DISRUPTIONS

<130> R-716

<140> US 09/900,518
<141> 2001-07-06

<150> US 60/216,178
<151> 2000-07-06

<160> 4

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 2490
<212> DNA
<213> Mus musculus

<400> 1
aggctgtccc acccaccatc tgcacccgct gcagcgcccc cgccccctgtc ccgcgcggta 60
gtcgcatatt gtagcccgcc tgccgctccc ggggaccgcga tcctaccctg ggtgcggggc 120
agagcgggca tggcccgctc ggggaccgcgc tgccctgcgc tggcgctggc cctggactt 180
gtggcggtgg ccctggctgg agtcagagcc cagggcgcag cttcgagga gcctgactat 240
tacagccagg agctctggcg gcgcgggcgc tattatgggc atccggagcc tgagccggag 300
ccggagctct tctcgcccttc aatgcatgaa gaccttaggg tggaggagca ggaacacgc 360
gagccgcacc agcagggccca cagaactccc aagaaggcca tcaagccaa gaaggctccc 420
aagagggaga agtttagttgc agagacgcct ccaccaggtt aaaaatagcaa cagaaaaggc 480
agaagaagca agaatcttga gaaagctgcc agtgatgacc atggtgtccc tgtggctcat 540
gaggatgtca gagagagttt cccacctt ggtctggaaa cattaaaaat cacagacttc 600
cagctgcattt cctccacatc gaagcggtat ggcctggag cccaccgggg gagactcaac 660
atccaggcgag gcattaatga aaatgacttt tacgatgggg ctgggtgtgc tggtaggaac 720
gacttgcattc agtggtatcga agtggtatgcc cggcgccctga ccaagttcac aggggtcatt 780
acccaaggaa ggaactctct ctggctgagt gactgggtga catcctataa agtcatggtg 840
agcaatgaca gccacacatg ggttactgtg aagaatggat ctggcgacat gatatttcaa 900
ggaaacagtg agaaggagat tcctgtgctc aatgagctgc cagtcggccat ggtggccgc 960
tacattcgca taaaccctca gtcctgggtt gataacggga gcatctgcat gaggatggag 1020
atcttgggtt gcccactgccc ggatcctaatt aactattatc accgacgtaa tgagatgacc 1080
accacggatg acctggatt taagcaccac aactataagg aaatgcgcac gttgatgaag 1140
gttgtcaatg aaatgtgccc caatattacc aggatttaca acattggcaa aagccaccag 1200
ggcctgaaat tggatgcggt agagatctct gaccatctt gggAACATGA agttgggtgag 1260
cccgaggatcc actacatcgc agggggccac ggcaatgagg ttctgggacg agaactgctg 1320
ctgctgctgc tgcacttcct ctggcaggaa tactcgccgc agaacgcacg catcgccgc 1380
tttgtggagg agactcgaat ccacattcta ccctccctca atcctgatgg ctatgagaag 1440
gcctatgaag gaggttccga gttgggaggc tggccctgg gacgttggac ccatgatggc 1500
atcgatataca acaacaactt tccggattta aactcgctgc tctgggaggc agaggaccag 1560
cagaatggcc caaggaaggc ccccaaccac tacattggca tccctgagtg gtttctgtct 1620
gagaatgcca cagtggccac agagaccaga ggcgtcatcg cttggatggaa gaagatccc 1680
tttgtgctgg gaggcaacct acaggggggt gagctggtcg tggcataccc ctatgacatg 1740
gtgcggtccc tggatggac ccaggagcac acccccaacac ctgatgatca tggatggc 1800
tggctggcgt attcctacgc ctccactcac cgcctcatga cagatgccag gaggcgagtg 1860
tgccacacgg aagattttca gaaggaggag ggcaccgtca atggggcttc ctggcacaca 1920
gtggctggaa gtctaaacga tttcagctac ctccatataaa actgtttga gctgtccatc 1980
tacgtgggtt gtgataaata cccacacgag agcgagctgc cggaggaatgg 2040

cgggagtctc tgattgtgtt catggagcag gttcatcgag gcatcaaagg catagtgaga 2100
gatttacaag ggaaggat ttcaaatgct gtcatctctg tggaaagggtgt taaccatgac 2160
atccggacag ccagcgatgg ggattactgg cgtctactga accctggcga atatgtggtc 2220
acagccaagg cggaggctt tatacttcc accaagaact gcatggttgg ctatgatatg 2280
ggagctactc ggtgtgaccc caccctcaca aagaccaacc tggcttaggat aagagaaaatt 2340
atggagacat ttggaaagca gcctgtcagc ctaccctcca ggcgcctgaa gctgcgggaa 2400
cggaaaaaggc ggcagcgtgg gtgaccctgt cggacacttg agacataccc cagaccgtgc 2460
aaataaaaaat ccactccagt agtaaaaaaaaaa 2490

<210> 2
<211> 764
<212> PRT
<213> Mus musculus

<400> 2
Met Ala Arg Leu Gly Thr Ala Cys Pro Ala Leu Ala Leu Ala Leu Ala
1 5 10 15
Leu Val Ala Val Ala Leu Ala Gly Val Arg Ala Gln Gly Ala Ala Phe
20 25 30
Glu Glu Pro Asp Tyr Tyr Ser Gln Glu Leu Trp Arg Arg Gly Arg Tyr
35 40 45
Tyr Gly His Pro Glu Pro Glu Pro Glu Leu Phe Ser Pro Ser
50 55 60
Met His Glu Asp Leu Arg Val Glu Glu Gln Glu Gln Gln Glu Pro His
65 70 75 80
Gln Gln Gly His Arg Thr Pro Lys Lys Ala Ile Lys Pro Lys Lys Ala
85 90 95
Pro Lys Arg Glu Lys Leu Val Ala Glu Thr Pro Pro Pro Gly Lys Asn
100 105 110
Ser Asn Arg Lys Gly Arg Arg Ser Lys Asn Leu Glu Lys Ala Ala Ser
115 120 125
Asp Asp His Gly Val Pro Val Ala His Glu Asp Val Arg Glu Ser Cys
130 135 140
Pro Pro Leu Gly Leu Glu Thr Leu Lys Ile Thr Asp Phe Gln Leu His
145 150 155 160
Ala Ser Thr Ser Lys Arg Tyr Gly Leu Gly Ala His Arg Gly Arg Leu
165 170 175
Asn Ile Gln Ala Gly Ile Asn Glu Asn Asp Phe Tyr Asp Gly Ala Trp
180 185 190
Cys Ala Gly Arg Asn Asp Leu His Gln Trp Ile Glu Val Asp Ala Arg
195 200 205
Arg Leu Thr Lys Phe Thr Gly Val Ile Thr Gln Gly Arg Asn Ser Leu
210 215 220
Trp Leu Ser Asp Trp Val Thr Ser Tyr Lys Val Met Val Ser Asn Asp
225 230 235 240
Ser His Thr Trp Val Thr Val Lys Asn Gly Ser Gly Asp Met Ile Phe
245 250 255
Glu Gly Asn Ser Glu Lys Glu Ile Pro Val Leu Asn Glu Leu Pro Val
260 265 270
Pro Met Val Ala Arg Tyr Ile Arg Ile Asn Pro Gln Ser Trp Phe Asp
275 280 285
Asn Gly Ser Ile Cys Met Arg Met Glu Ile Leu Gly Cys Pro Leu Pro
290 295 300
Asp Pro Asn Asn Tyr Tyr His Arg Arg Asn Glu Met Thr Thr Thr Asp
305 310 315 320
Asp Leu Asp Phe Lys His His Asn Tyr Lys Glu Met Arg Gln Leu Met
325 330 335
Lys Val Val Asn Glu Met Cys Pro Asn Ile Thr Arg Ile Tyr Asn Ile
340 345 350
Gly Lys Ser His Gln Gly Leu Lys Leu Tyr Ala Val Glu Ile Ser Asp
355 360 365

His Pro Gly Glu His Glu Val Gly Glu Pro Glu Phe His Tyr Ile Ala
 370 375 380
 Gly Ala His Gly Asn Glu Val Leu Gly Arg Glu Leu Leu Leu Leu
 385 390 395 400
 Leu His Phe Leu Cys Gln Glu Tyr Ser Ala Gln Asn Ala Arg Ile Val
 405 410 415
 Arg Leu Val Glu Glu Thr Arg Ile His Ile Leu Pro Ser Leu Asn Pro
 420 425 430
 Asp Gly Tyr Glu Lys Ala Tyr Glu Gly Gly Ser Glu Leu Gly Gly Trp
 435 440 445
 Ser Leu Gly Arg Trp Thr His Asp Gly Ile Asp Ile Asn Asn Asn Phe
 450 455 460
 Pro Asp Leu Asn Ser Leu Leu Trp Glu Ala Glu Asp Gln Gln Asn Ala
 465 470 475 480
 Pro Arg Lys Val Pro Asn His Tyr Ile Ala Ile Pro Glu Trp Phe Leu
 485 490 495
 Ser Glu Asn Ala Thr Val Ala Thr Glu Thr Arg Ala Val Ile Ala Trp
 500 505 510
 Met Glu Lys Ile Pro Phe Val Leu Gly Gly Asn Leu Gln Gly Gly Glu
 515 520 525
 Leu Val Val Ala Tyr Pro Tyr Asp Met Val Arg Ser Leu Trp Lys Thr
 530 535 540
 Gln Glu His Thr Pro Thr Pro Asp Asp His Val Phe Arg Trp Leu Ala
 545 550 555 560
 Tyr Ser Tyr Ala Ser Thr His Arg Leu Met Thr Asp Ala Arg Arg Arg
 565 570 575
 Val Cys His Thr Glu Asp Phe Gln Lys Glu Glu Gly Thr Val Asn Gly
 580 585 590
 Ala Ser Trp His Thr Val Ala Gly Ser Leu Asn Asp Phe Ser Tyr Leu
 595 600 605
 His Thr Asn Cys Phe Glu Leu Ser Ile Tyr Val Gly Cys Asp Lys Tyr
 610 615 620
 Pro His Glu Ser Glu Leu Pro Glu Glu Trp Glu Asn Asn Arg Glu Ser
 625 630 635 640
 Leu Ile Val Phe Met Glu Gln Val His Arg Gly Ile Lys Gly Ile Val
 645 650 655
 Arg Asp Leu Gln Gly Lys Gly Ile Ser Asn Ala Val Ile Ser Val Glu
 660 665 670
 Gly Val Asn His Asp Ile Arg Thr Ala Ser Asp Gly Asp Tyr Trp Arg
 675 680 685
 Leu Leu Asn Pro Gly Glu Tyr Val Val Thr Ala Lys Ala Glu Gly Phe
 690 695 700
 Ile Thr Ser Thr Lys Asn Cys Met Val Gly Tyr Asp Met Gly Ala Thr
 705 710 715 720
 Arg Cys Asp Phe Thr Leu Thr Lys Thr Asn Leu Ala Arg Ile Arg Glu
 725 730 735
 Ile Met Glu Thr Phe Gly Lys Gln Pro Val Ser Leu Pro Ser Arg Arg
 740 745 750
 Leu Lys Leu Arg Gly Arg Lys Arg Arg Gln Arg Gly
 755 760

<210> 3
 <211> 200
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Targeting Vector

<400> 3

ggcatggccc gtctggggac cgccctgcct gcgcgtggcg tggccctggc acttgtggcg 60
gtggccctgg ctggagtcag agcccaggc gcagcctcg aggagcctga ctattacagc 120
caggagctct ggccgcgcgg ggcgtattat gggcatccgg agcctgagcc ggagccggag 180
ctttctcgc cttcaatgca 200

<210> 4

<211> 200

<212> DNA

<213> Artificial Sequence

<220>

<223> Targeting Vector

<400> 4

gagggagaag ttagttgcag agacgcctcc accaggtAAC ttttgcATCG ggcagcccgA 60
gggggcGCCA gcgatcgtgg cactccaggG gacacctGGC ttccAGTATG ttttCTTgAG 120
tgagccCAGC caaaAGTCCTG tggtgcCTGT gttattCCCT agagactaca tctgagctAA 180
gttcagctt ctctccctgc 200