Assignment -4

Assignment Date	06 November 2022
Student Name	S.THAMIZHINIYAN
Student Roll Number	812719104046
Maximum Marks	4 Marks

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression

df=pd.read_csv("/content/drive/NyDrive/Colab Notebooks/abalone.csv")

d-F['age'] = d-F['Rings']+1.5
df = df.drop('Rings', axis = 1)
```

Univariate Analysis

```
df.hist(figsize=(20,10), grid=False, layout=(2, 4), bins = 3B)
     array([[<matplotlib.axes._subplots.AxesSubplot object at 8x7f3dlb8fb698>, <matplotlib.axes._subplots.AxesSubplot object at 0x7f3dlade4d98>,
               <matplotlib.axes._subplots.AxesSubplot object at 0x7f3dladaa398>,
              (matplotlib.axes._subplots.AxesSubplot object at Bx7f3dlad60998>],
(matplotlib.axes._subplots.AxesSubplot object at 0x7f3dlad16f98>,
               <matplotlib.axes._subplots.AxesSubplot object at 8x7f3dlac53ld8>]],
             dtype=object)
                                                                                                                                                                    Whole weight
                         Length
                                                                        Diameter
                                                                                                                        Height
                                                                                                    1600
       400
                                                                                                                                                    300
                                                      350
                                                                                                    1400
       350
                                                                                                                                                    250
                                                      300
                                                                                                    1200
       300
                                                      250
                                                                                                                                                    200
                                                                                                    1000
       250
                                                      200
                                                                                                     800
                                                                                                                                                    150
                                                      150
                                                                                                     600
                                                                                                                                                    100
                                                      100
       100
                                                                                                     400
                                                       50
                                                                                                     200
        50
                                                                             0.4
                                                                                                                          0.6
                                                                                                                                0.8
                                                                                                                                                              0.5
                                                                                                                                                                    1.0
                                                                                                                                                                          1.5
                                                                        0.3
                                                                                                                     0.4
                                                                                                                                                                               2.0
                     Shucked weight
                                                                     Viscera weight
                                                                                                                     Shell weight
       350
                                                      350
                                                                                                     350
                                                                                                                                                    600
       300
                                                      300
                                                                                                     300
                                                                                                                                                    500
       250
                                                      250
                                                                                                     250
                                                                                                                                                    400
       200
                                                      200
                                                                                                     200
                                                                                                                                                    300
       150
                                                      150
                                                                                                     150
                                                                                                                                                    200
       100
                                                      100
                                                                                                     100
                                                                                                                                                    100
        50
                                                       50
                                                                                                      50
           0.00 0.25 0.50 0.75 1.00 1.25 1.50
                                                                   0.2
                                                                            0.4
                                                                                    0.6
                                                                                                                0.2
                                                                                                                       0.4
                                                                                                                             0.6
                                                                                                                                                                  10
```

Height whole weight Shucked weight Viscera weight Shell weight age Length Diameter Sex 0.431363 0.191035 0.092010 0.128182 9.390462 0.561391 0.439287 0.151381 0.991459 0.281969 12.205497 0.432946 0.215545 0.579093 0.454732 0.158011 1.046532 0.446188 0.230689 0.302010 12.629304

Bivariate Analysis

numerical_features = df.select_dtypes(include = [np.number]).columns
sns.pairplot(df[numerical_features])

Descriptive statistics

df.describe(df.describe()								
	Length	Diameter	Height	whole weight	Shucked weight	viscera weight	Shell weight	age	(
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	11.433684	
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169	
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	2.500000	
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	9.500000	
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	10.500000	
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	12.500000	
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	30.500000	

Check for missing values

df.isnull().sum()

Outlier handling

```
df-pd.get dummies(df)
dummy_da ta = df . copy()
var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
# outliers removal
d-F. drop(df[ (d-F[ ' VI scera weight ' ] \gt 0. 5) & (df-[ ' age ' ] \lt 20) ] . Index, inp1ace=True)
df.drop(df[(df['Uiscera weight']<0.5) & (df['age'] > 25)].index, inplace=True)
var - 'Shell weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
#Outliers removal
\label{eq:dfdf} $$ df.drop(df[(df['Shell weight'] > 0.6) & (df['age'] < 25)].index, inplace=True) $$
var = 'Shucked weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
#Outlier removal
\label{eq:df.drop} $$ df.drop(df[(df['Shucked weight'] >= 1) & (df['age'] < 28)].index, inplace=True) $$
df.drop(df[(df['Shuckedweight']<1) & (df['age'] > 28)].iudex, inplace=True)
var = ' Nhole weight '
pit . scatter (x = df-[var], y = df['age'])
p1t . grid(True)
df.drop(df[(df['Whole weight'] >= 2.5) &
          (df['age'] \leftarrow 25)].index, inplace = True)
df. drop(df-[(df['Nhole weight']<2.5) & (
d-F['age'] \rightarrow 25)]. Index, 1nplace = True)
var = ' Diameter '
pit . scatter (x = df-[var] , y = df[ 'age '])
p1t . grid(True)
df.drop (df-[(df['Diazeten'] < 8.1) &
          (df['age'] < 5)].index, inplace = True)</pre>
df. drop(df-[ (df[ ' Diameter ' ] <0. 6) & (
d-F['age'] > 25)]. Index, 1nplace = True)
d-F-. drop(df-[ (d1°[ ' Diameter ' ] >= 0. 6) & (
df-['age'] < 25)] . Index, 1nplace = True)
var = 'Height'
p1t . scatter (x - df[var], y - df['age'])
p1t.arid(True)
d-F. drop(d-I- [ (df-[ ' Height ' ] \rightarrow 6 . 4) &
          (df[ ' age ' ] < 15) ] . Index, Inplace = True)
d-F. drop(df-[ (d-F[ ' Height ' ] <0. 4) & (
d-I°['age'] > 25)] . index, 1nplace = True)
var = 'Length'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Leugth'] < 8.1) &
          (df['age'] < 5)].index, inplace = True)</pre>
dfdropd[df['Leugth]<0.8) & (
df['age'] > 25)].index, inplace = True)
df.dropd[df['Length]>=8.8) & (
df['age'] < 25)].iudex, inplace = True)
```


Categorical columns

 $numerical_features = df.select_dtypes(include = [np.number]).columns \\ categorica1_features = df.select_dtypes(include = [np.object]).columns$

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: Deprecationwarning: 'up.object' is a deprecated alias for the builtin 'object' To siler Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.8-notes.html#deprecations

numerical_features

categonica I_featunes

Index(['Sex'], dtype='object')

ENCODING

from sklearn.preprocessing import LabelEncoder le=LabelEncoder() print(df.Sex.value_counts())

M 1525 1 1341 F 1301

Name: Sex, dtype: int64

x=df.iloc[:,:5]

	Sex	Length	Diameter	Helght	Nhole we1ght	10-
0	М	0.455	0.365	0.095	0.5140	
1	М	0.350	0.265	0.090	0.2255	
2	F	0.530	0.420	0.135	0.6770	
3	М	0.440	0.365	0.125	0.5160	
4		0.330	0.255	0.080	0.2050	
4172	F	0.565	0.450	0.165	0.8870	
4173	М	0.590	0.440	0.135	0.9660	
4174	М	0.600	0.475	0.205	1.1760	
4175	5 F	0.625	0.485	0.150	1.0945	
4176	б М	0.710	0.555	0.195	1.9485	
4167	rows • 5	5 columns				

y=df.iloc[:,5:]

	Shucked weight	VIscera weight	Shell weight	age	2
0	0.2245	0.1010	0.1500	16.5	
1	0.0995	0.0485	0.0700	8.5	
2	0.2565	0.1415	0.2100	10.5	
3	0.2155	0.1140	0.1550	11.5	
4	0.0895	0.0395	0.0550	8.5	
4172	0.3700	0.2390	0.2490	12.5	
4173	0.4390	0.2145	0.2605	11.5	
4174	0.5255	0.2875	0.3080	10.5	
4175	0.5310	0.2610	0.2960	11.5	
4176	0.9455	0.3765	0.4950	13.5	
4167 ro	ws 4 columns				

 $from \ sk1earn.model_selection \ import \ train_test_split \\ x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)$

Model Building

 $from \ sklearn.linear_model \ import \ LinearRegression \\ mlr=LinearRegression() \\ mlr.fit(x_train,y_train)$

Train and Test model

x_test [6:5]

	Sex	Length	Diameter	Height	Nhole we1ght
661		0.535	0.450	0.170	0.781
370	F	0.650	0.545	0.165	1.566
2272	М	0.635	0.510	0.210	1.598
1003	М	0.595	0.455	0.150	1.044
1145	М	0.580	0.455	0.195	1.859

y_test[0:5]

	Shucked we1ght	vlscera we1ght	Shell we1ght	age
661	0.3055	0.1555	0.295	12.5
370	0.6645	0.3455	0.415	17.5
2272	0.6535	0.2835	0.580	16.5
1003	0.5180	0.2205	0.270	10.5
1145	0.9450	0.4260	0.441	10.5

Feature Scaling

from sklearn.preprocessing import StandardScaler ss=StandardScaler()
x_train=ss.fit_transform(x_train)
mlrpred=mlr.predict(x_test[B:9])
mlrpred

Performance measure

I-rom sklearn .metric s Import r2_score r2_s core(m1r . predict (x_test) , y_test)

0.5597133867640833