Introduction to the Work-Span Model

Introduction

- 1. Dynamic Multithreading Model
 - Computation can be represented by a directed acyclic graph
 - Node is a task
 - Edge is a dependency between tasks
 - Good DAG has relatively few dependencies compared to the number of tasks
- 2. Psuedocode notation or programming model for writing down the algorithm
 - Notation is defined to generate a computational DAG
 - Give a DAG, some runtime system figures out how to map it to cores and execute it

The Multithreaded DAG Model

- 1. Each vertex is an operation
 - Addition, function call, branch, etc.
- 2. Each edge shows how operations depend on each other
 - Sink depends on source
- 3. Parallel RAM machine used to run the application
 - PRAM is the parallel-computing analogy to the random-access machine used by sequential algorithm designers
 - Scheduling: Assigning operations to processors
- 4. How long will it take to execute the DAG?
 - Need a cost model to evalutate
 - Assumptions:
 - Each operation executes at the same speed
 - -1 operation =1 unit of time
 - No edge costs

Directed Acyclic Graph

Sequential Reduction Example

1. Consider the basic reduction example:

```
int n;
int A[n];
int s = 0;
for(int i = 0; i < n; i++) {
    s = s + A[i];
}</pre>
```

2. The DAG looks like this:

Reduction Example

- 3. The total cost (P is the number of processors)
 - Tp(n) >= ceil(n/P) for loads
 - Tp(n) >= n for additions
 - Because P >= 1, we can simplify to Tp(n) >= n

A Reduction Tree

- 1. Assume + is associative (a + (b + c) == (a + b) + c)
- 2. What is the minimum time on a PRAM with P = n processors?
 - O(log(n)
 - Each level takes constant time, so the question is how many levels exist?

Directed Acyclic Graph Quiz 1

Work and Span

- 1. Which DAG is better, sequential or tree-based?
 - Typically, you would prefer the implementation that can exploit more parallelism (tree-based)
- 2. Given a DAG, there are two questions to answer:
 - Work W(n): How many total vertices are there?
 - Span D(n): How many vertices are on the longest path?
 - Also called the critical path
 - Historically was called depth
- 3. What can we say about the total cost Tp(n)?
 - If all operations have unit cost and P=1, T(n) = W(n)
 - If all operations have unit cost and $P=\inf$, T(n) = D(n)

Work and Span Quiz

- 1. What are the work and span of this DAG?
 - W(n) = 16
 - D(n) = 7

Directed Acyclic Graph Quiz 2

Work and Span for Reduction

- 1. What is the span of the sequential vs tree-based reduction example?
 - Sequential: D(n) = O(n)
 - Tree-based: $D(n) = O(\log(n))$

Basic Work Span Laws

- 1. The ratio of work to span measures the amount of work per critical path vertex
 - W(n)/D(n) tells you the average available parallelism in the DAG
- 2. On a PRAM system, we want at least W/D processors to keep them busy
- 3. Span law: Tp(n) >= D(n)
- 4. Work law: Tp(n) >= ceil(W(n)/P)
- 5. Both laws must be true simultaneously, so we can combine them
- 6. Work-span law: Tp(n) >= max(D(n), ceil(W(n)/P))

Brent's Theorem - Part 1

- 1. Is there an upper-bound on the total cost?
 - Yes; Brent's theorem proves it
- 2. Deriving Brent's theorem

- Break execution into phases:
 - Each phase has 1 critical path vertex
 - All non-critical path vertices in each phase are independent
 - Every vertex must appear in some phase
- Each phase k has Wk vertices
 - Sum(Wk) over all k = W
- How long will it take to execute phase k?
 - Tk = ceil(Wk/P) => Tp = sum(Tk)

Brent's Theorem Aside

- 1. Let a and b be integers where a, b > 0
- 2. Which of these identities are true?
 - $\operatorname{ceil}(a/b) = \operatorname{floor}((a + b 1)/b)$
 - floor(a/b) = floor((a + b + 1)/b)
 - ceil(a/b) = floor((a 1)/b) + 1
 - floor(a/b) = floor((a + 1)/b) 1
- 3. All are true

Brent's Theorem - Part 2

- 1. Using the floor/ceiling quotient identities:
 - Tp = sum(ceil(Wk/P))
 - Tp = sum(floor((Wk-1)/P)) + 1
 - Tp $\leq sum((Wk-1)/P) + 1$
 - $Tp \le (W-D)/P + D$
- 2. Because we're solving for the upper bound, we can eliminate the floor
 - $floor(x) \le x$
- 3. Brent's theorem sets a goal for any scheduler
- 4. $\max(D, \text{ceil}(W/P)) \le \text{Tp} \le (W-D)/P + D$
 - Upper and lower bound are within a factor of 2 of each other
 - May be able to execute faster than Brent's theorem predicts

Applying Brent's Theorem

- 1. What is the upper bound for this DAG executed on a 2-processor PRAM computer?
 - W = 6, D = 4, P = 2
- 2. Tp \leq (W-D)/P + D
 - Tp <= 5

Directed Acyclic Graph Quiz 3

The Slack in Brent's Bound - Part 1

- 1. The lower bound in the previous example is 4
- 2. Can you relabel the DAG such that it takes 5 time units?
 - By scheduling both non-critical path nodes in the same phase, we must take two units to execute them since P=2
 - This is what makes scheduling a tricky subject

Directed Acyclic Graph Quiz 4

Desiderata Speedup - Work Optimality - and Weak Scaling

- 1. Speedup: Best sequential time / parallel time
 - Sp(n) = Ts(n) / Tp(n)
 - Ideal speedup: Linear in P
 - Want P speedup when using P processors to parallelize an algorithm
- 2. Can use Brent's theorem to get an upper bound on time and therefore a lower bound on speedup
 - Sp(n) >= Ws / ((W-D)/P + D)
 - Sp(n) >= P / ((W/Ws) + (P-1)/(Ws/D))
 - This says that if we want linear scaling, the denominator must be a constant
 - Work-optimality: W = Ws (If we get a very parallel algorithm by dramatically increasing the work relative to the best sequential algorithm, it's actually bad for speedup)
 - Weak-scalability: P should be proportional to Ws/D (Work per processor must grow proportional to the span, which depends on problem size)

Which Parallel Algorithm is Better

- 1. Consider two parallel algorithms for solving the same problem:
 - Algorithm 1: $W1(n) = n^2 \log(n)$, $D1(n) = \log(n)$
 - Algorithm 2: $W2(n) = n^2$, D2(n) = n

Basic Concurrency Primitives

1. Spawn: Signal to the compiler or runtime system that the target is an independent unit of work

- Target of a spawn is always either a function or procedure call
- 2. Sync: Signal to the compiler or runtime system that there are dependent units
- 3. Sync waits for any spawn that has occurred so far within the same stack frame
- 4. There's always an implicit sync at the return
 - This results in nested parallelism within the DAGs produced by this model

A Subtle Point about Spawn

1. Consider the following program:

```
reduce(A[0:n-1])
if n >= 2
{
    a <- spawn reduce(A[0:n/2-1])
    b <- spawn reduce(A[n/2-1:n-1])
    sync
    return a+b
}
else
{
    return A[0]
}</pre>
```

- 2. Which spawn may be eliminated without increasing the span (asymptotically)?
 - A but not B
 - B but not A (true)
 - If we eliminate A, it increases the length of the critical path because B must wait for A to finish. If we eliminate B, we're only affecting the middle path, which isn't critical
 - A or B, but not both
 - Neither must keep both

Basic Analysis of Work and Span

1. Analyze the complexity for the recursive reduction:

```
• We can write a recurrence relation and solve it:  -T(n)=2*T(n/2)+O(1) \ if \ n>=2\\ -T(n)=O(1) \ if \ n<=1
```

• Solve using the Master Theorem: O(n)

```
reduce(A[0:n-1])
if n >= 2
{
    a <- spawn reduce(A[0:n/2-1])
    b <- spawn reduce(A[n/2-1:n-1])
    sync
    return a+b
}
else
{
    return A[0]
}</pre>
```

- 2. Assume spawn and sync are constant time (O(1))
 - Recurrence for work is therefore the same as the sequential algorithm
- 3. Span is slightly different; D = max(Da, Db) + O(1) because span is the length of the critical path in the DAG

```
• D(n) = D(n/2) + O(1) if n >= 2
```

- D(n) = O(1) if n <= 1
- $D(n) = O(\log(n))$

Solve a Recurrence

- 1. What is the solution to this recurrence?
 - D(n) = D(n/2) + O(1) if n >= 2
 - D(n) = O(1) if n <= 1
- $2. O(\log(n))$

Desiderata for Work and Span

- 1. Work and span goals when developing a parallel algorithm:
 - Achieve a degree of work that matches the best sequential algorithm
 - Achieving work-optimality (O(n) if humanly possible)
 - Goal for span is polylogarithmic ("low" span)
 - $D(n) = O(\log^k(n))$
 - Ensures that the average available parallelism grows with n
 - Motivation: $W/D = O(n/\log^k(n))$ grows with n, "close" to linearly
- 2. Always have to use judgment to decide if a parallel algorithm has good work and span

Concurrency Primitive Parallel For

- 1. A parfor loop indicates that all iterations are independent of one another
 - Iterations can be executed in any order
 - In terms of a DAG, this creates n independent subpaths
- 2. By convention, the end of a parfor loop includes an implicit sync point
 - Work of parfor W(n) = O(n)
 - Span of parfor D(n) = O(1), but only in theory

Implementing Par For - Part 1

1. Consider a parfor loop implemented as follows:

```
for i <- 1 to n do
    spawn foo(i)
sync</pre>
```

- 2. Assuming the cost of "foo" is O(1), what is the span of this implementation?
 - O(1)
 - O(logn)
 - O(n) (true)
 - The threads are spawn in series which causes the critical path of our DAG to be n
 - O(nlogn)

Implementing Par For - Part 2

1. Instead of the above implementation, consider implementing a parfor as follows:

```
ParForT(foo, a, b)
{
    let n = b - a + 1
    if n = 1
    {
        foo(a)
```

```
}
else
{
    let m = a + floor(n/2)
    spawn ParForT(foo, a, m-1)
    ParForT(foo, a, m-1)
    sync
}
```

- 2. The span of this implementation is:
 - $D(n) = O(\log(n))$ assuming foo = O(1)
- 3. Assume this implementation when considering parfor loops

Matrix Vector Multiply

 $1. \ \, {\rm Consider} \,\, {\rm the} \,\, {\rm following} \,\, {\rm matrix\text{-}vector} \,\, {\rm multiply} \,\, {\rm implementation} \colon$

```
for i <- 1 to n do
    for j <- 1 to n do
        y[i] <- y[i] + A[i,j] * x[j]</pre>
```

- 2. The work is $W(n) = O(n^2)$
- 3. Which for loops may be safely converted into parallel for loops?
 - Only loop 1 (true)
 - Only loop 2
 - Both loops 1 and 2
 - Neither loop 1 nor 2

Data Races and Race Conditions

- 1. Data race: At least one read and one write may happen at the same memory location, at the same time
- 2. Race condition: A data race causes an error

Putting it all Together - Part 1

- 1. For the matrix-vector multiply example, the work is $W(n) = O(n^2)$
- 2. What is the span?
 - O(1)
 - $O(\log(n))$
 - O(n) (true)
 - Technically, the span is $\log(n) + n (\log(n))$ from the outer loop, n from the inner loop) but this is still O(n)
 - O(nlog(n))
 - O(n^2)

Putting it all Together - Part 2

1. Modify the matrix-vector multiply algorithm as follows:

```
parfor i <- 1 to n do
{
    let t[1:n] be a temporary array
    parfor j <- 1 to n do
    {
        t[j] = A[i,j] * x[j]</pre>
```

```
}
    y[i] <- y[i] + reduce(t)
}

2. What is the span?
    O(log(n)) (true)
    O(log^2(n))
    O(log^3(n))</pre>
```

Vector Notation

1. Can use vector notation in pseudo-code to make the notation more compact

```
parfor i <- 1 to n do
{
    let t[1:n] be a temporary array
    t[:] <- A[i,:] * x[:] // implicit parfor
    y[i] <- y[i] + reduce(t)
}</pre>
```

- 2. Element-wise operations have linear work and logarithmic span
- 3. This can further be simplified by eliminating the temporary array
 - Important to remember when considering storage costs

```
parfor i <- 1 to n do
{
    y[i] <- y[i] + reduce(A[i,:] * x[:])
}</pre>
```

Conclusion

- 1. Good algorithms are work-optimal and have low span
- 2. Divide-and-conquer is an excellent paradigm in parallel algorithm development as well
- 3. Separate how you express concurrency from how you execute it
 - This model ignores communication costs, which are important once the size of the computation gets big enough