TUTORIAL SHEET NO. 3

(Rectifier: Half wave, Centre-tap, Bridge Rectifier and Voltage Regulator)

Q1.	The forward	resistance	R _F of a	diode is	s 20 Ω.	This	s used	in a	half	wave	rectifier	circuit.	The	applied
inpu	it voltage is v	rward resistance R _F of a diode is 20 Ω . This is used in a half wave rectifier circuit. The applied the is $v = 50 \sin wt$ and the load resistance R _L is 800 Ω . Determine:												

- a) Im, Idc, Irms
- b) ac power input and dc power output
- c) Output dc voltage
- d) Rectification Efficiency.
- Ans- a) $I_{m=}$ 60.97 mA , I_{dc} = 19.41 mA, I_{rms} = 30.48 mA b) P_{ac} = 0.7618 W, P_{dc} = 0.3016 W
 - c) $V_0 = 15.53 \text{ V}$
- d) $\eta = 39.59 \%$

Q2. In a centre tap full wave rectifier the load resistance is 7500 Ω . Each diode has an ac plate resistance of 50Ω . If the ac voltage applied to each diode has a peak amplitude of 400 V and frequency 50 Hz. Calculate:

- (a) I_{m} , I_{dc} , I_{rms}
- (b) P_{dc}
- (c) Pac
- (d) η
- (e) ripple factor

- (f) Output frequency
- Ans-a) I_m = 52.98 mA, I_{dc} = 33.73 mA, I_{rms} = 37.46 mA
 - d) n = 80.54 %
- b) $P_{dc} = 8.53 \text{ W}$ e) r = 0.483
- f) $f_0 = 100 \text{ Hz}$

Q3. A 230 V, 60 Hz voltage is applied to the primary of a 5:1 step-down, centre tap transformer used in a full wave rectifier having a load of
$$900\Omega$$
. If the diode resistance is of 100Ω . Determine:

(a) Dc voltage across the load

c) $P_{ac} = 10.594 \text{ W}$

- (b) Dc current flowing through the load
- (c) PIV

- (d) Dc power delivered to the load
 - (e) Ripple voltage

(f) Output frequency

- Ans- a) $V =_0 18.63 \text{ V}$
- b) $I_{dc} = 20.70 \text{ mA}$
- c) PIV = 65.05 V

- d) $P_{dc} = 0.386 \text{ W}$
- e) $V_{r(rms)} = 10V$
- f) $f_0=120Hz$

Q4. A centre tap full wave rectifier has $R_L=1000\Omega$, $R_F=20\Omega$. Voltage across half of the secondary winding is given by the equation $v = 200 \sin 314 t$. Determine:

- (a) Peak value of current
- (b) average or dc value of current
- (c) the rms value of current
- (d) ripple factor

e) η

d) r=0.488

e) $\eta = 79.4\%$

- Ans- a) $I_m = 0.196A$
- b) $I_{dc}=0.124A$
- c) $I_{rms}=0.138A$

Q5. AC voltage of 200 V is applied to half wave rectifier circuit through transformer of turn ratio 4:1, $R_L=300\Omega$. Assuming diode as ideal one. Determine the following:

(a) dc output voltage

- (b) PIV
- (c) Maximum value of power delivered to load
- (d) Average value of power delivered to load

- Ans- a) $V_{dc} = 22.44 \text{ V}$
- b) PIV= 70.71 V
- c) $P_m = 16.66 \text{ W}$
- $d)P_{dc} = 1.68 \text{ W}$

O5. A bridge rectifier is applied with input from a step down transformer having turns ratio 8:1 and input 230 V, 50 Hz. If the forward resistance of diode is 1Ω , secondary winding resistance is 10Ω and load resistance is $2k\Omega$. Find

- (a) DC power output
- (b) PIV across each diode

(c) Efficiency

- (d) percentage regulation at full load
- Ans- a) $P_{dc} = 0.3307 \text{ W}$
- b) PIV= 40.6586 V
- c) $\eta = 80.56\%$
- d) % Regulation = 0.645%

Q6. (a) For the Zener diode network of, determine V_L , V_R , I_Z , and P_Z . (b) Repeat part (a) with $R_L = 3$ k Ω .

Ans: (a)
$$V_L = 8.73 \text{ V}$$
, $V_R = 7.27 \text{ V}$, $I_Z = 0 \text{ A}$, $P_Z = 0 \text{ W}$
(b) $V_L = 10 \text{ V}$, $V_R = 6 \text{ V}$, $I_L = 3.33 \text{ mA}$, $I_R = 6 \text{ mA}$, $I_Z = 2.67 \text{ mA}$.

- **Q7.** (a) For the network determine the range of R_L and I_L that will result in V_{RL} being maintained at 10 V.
 - (b) Determine the maximum wattage rating of the diode.

Ans: (a) $R_{L\min} = 250 \,\Omega$, $R_{L\max} = 1.25 \,\mathrm{k}\Omega$, $I_{L\max} = 40 \,\mathrm{mA}$, $I_{L\min} = 8 \,\mathrm{mA}$.

- (b) $P_{\text{max}} = 320 \text{ mW}$
- **Q8.** Determine the range of values of V_i that will maintain the Zener diode in the "on" state.

Ans: $V_{i \text{ min}} = 23.67 \text{ V}$, $V_{i \text{ max}} = 36.87 \text{ V}$

- **Q 9.** (a) Determine V_L , I_L , I_Z , and I_R for the network if $R_L = 180 \,\Omega$ (b) Repeat part (a) if $R_L = 470 \,\Omega$
 - (c) Determine the value of R_L that will establish maximum power conditions for the Zener diode.
 - (d) Determine the minimum value of R_L to ensure that the Zener diode is in the "on" state.

Ans: (a) $I_L = I_R = 50 \text{ mA}$, $I_Z = 0 \text{ mA}$, $V_L = 9 \text{ V}$ (b) $V_L = 10 \text{ V}$, $I_R = 45.45 \text{ mA}$, $I_L = 21.28 \text{ mA}$, $I_Z = 24.17 \text{ mA}$ (c) $R_L = 1,834.86 \Omega$ (d) $R_L = 220 \Omega$

10. (a) Design the network of Fig. 2.166 to maintain V_L at 12 V for a load variation (I_L) from 0 to 200 mA. That is, determine R_s and V_Z . (b) Determine $P_{Z_{\text{max}}}$ for the Zener diode of part (a).

Ans: (a) $V_Z = 12 \text{ V}, R_L = 60 \Omega, R_s = 20 \Omega$

(b) $P_{Z\max} = 2.4 \text{ W}$