Chapter 1

Algebraic integers

1.1 Integrality

Fix a domain A integrally closed in K := K(A). Let L|K be a finite extension, and B the integral closure of A in L. This is the AKLB *diagram*:

Integrality is stable under the ring operations: one would like the following to hold, and they do:

This is a corollary

Theorem 1.1.1 (Module-theoretic characterization of integrality). *A finite number of* b_i *are integral over* $A \iff the \ ring \ A[b_1, \ldots, b_n]$ *is finitely generated as an* A-module.

Corollary 1.1.2. *If* α *and* b *are integral over* A, *so are* $\alpha + b$ *and* αb .

Theorem 1.1.3 (Integrality is transitive). *Consider ring extensions* $A \subseteq B \subseteq C$. $A \subseteq B$ *integral and* $B \subseteq C$ *integral* $\iff A \subseteq C$ *integral.*

Theorem 1.1.4. Any element $l \in L$ is equal to b/a for $b \in B$ and $a \in A$.

Proof. Consider an element $l \in L$. The minimal polynomial m_l of l over K gives rise to a polynomial over A

$$a_n l^n + a_{n-1} l^{n-1} + \dots + a_0 = 0$$

by clearing denominators. Now observe that $\ell := a_n l$ is integral over A: multiplying by a_n^{n-1} gives an equation of the form

$$\ell^n + a'_{n-1}\ell^{n-1} + \cdots + a'_0 = 0.$$

This shows that taking $b/a = \ell/a_n$ works.

Remark 1.1.5. Notice that K(B) = L. Indeed, $B \subset L$ so $K(B) \subset L$, and the result above shows that $L \subset K(B)$ (set-theoretically, $L \subset B \times A \subset B \times B$).

Theorem 1.1.6. $l \in L$ is integral over A iff its minimal polynomial μ_l over K has coefficients in A.

Proof. If $\mu := \mu_l \in A[x]$ then we have integrality of l over A by definition. Consider now the case of an integral l with minimal polynomial $\mu \in K[x]$. From integrality over A we know that l is a root of some $g \in A[x]$. Then $\mu|g$ in K[x], so all zeros of μ are zeros of g and hence integral over A.

By Vietà, the coefficients a_i are given by elementary symmetric polynomials in the roots and are hence, by Corollary 1.1.2, integral over A themselves. The a_i are elements of K, so, in this case, integrality over A means that $a_i \in K$, and hence $\mu \in A[x]$.

1.2 The trace and the norm

Given $x \in L$, multiplication by x determines an endomorphism

$$T_x : \alpha \mapsto x\alpha$$

of the K-vector space L. We define the trace and norm maps

$$\operatorname{Tr}_{\mathsf{L}|\mathsf{K}}(z) = \operatorname{tr} \mathsf{T}_z$$

 $\operatorname{Nm}_{\mathsf{L}|\mathsf{K}}(z) = \det \mathsf{T}_z$

Theorem 1.2.7. *adsf in Corollary 1.1.2 k*

asdf