UNIVERSITY OF CANTERBURY TE Whare Wānanga o Waitaha

Department of Mathematics and Statistics

CSE Exercises – Week 11

- 1. Let X be an exponential random variable with mean 2. Use Monte Carlo integration to estimate $E(\log X)$, with $n = 10^2$, 10^4 and 10^6 . For each n, compute the estimate, the 0.95 confidence bound and approximate 0.95 confidence interval.
- 2. Let X be a Laplacian(0,1) random variable. Use Monte Carlo integration to estimate P(X > 2), with $n = 10^3$, 10^4 , 10^5 and 10^6 . For each n, compute the estimate, the 0.95 confidence bound and approximate 0.95 confidence interval.
- 3. Consider the integral,

$$\int_{0}^{1} [\cos(50x) + \sin(20x)]^{2} dx.$$

- (a) Find the exact answer analytically.
- (b) Estimate the integral using Monte Carlo integration with $n = 10^2$, 10^4 and 10^6 . For each n, compute the estimate, the 0.95 confidence bound and approximate 0.95 confidence interval.
- 4. Estimate the following integrals using Monte Carlo integration with $n = 10^2$, 10^4 and 10^6 . For each n, compute the estimate, the 0.95 confidence bound and approximate 0.95 confidence interval.

(a)
$$\int_{0}^{1} \frac{\ln x}{1-x} dx$$
.

(b)
$$\int_{0}^{\infty} \frac{1}{x^2 + 25} dx$$
.

(c)
$$\int_{-\infty}^{\infty} \frac{\cos 2x}{\cosh 3x} dx.$$

5. Let *X* be a Cauchy random variable whose density is

$$f(x) = \frac{1}{\pi(1+x^2)}.$$

We wish to estimate

$$P(X > 2) = \int_{2}^{\infty} f(x)dx, \qquad (1)$$

which can be shown to be equivalent to

$$P(X > 2) = \int_{0}^{1/2} \frac{f(1/y)}{y^{2}} dy.$$
 (2)

Compare the estimates of P(X > 2) using

- (a) direct Monte Carlo integration with equation (1),
- (b) Monte Carlo integration with equation (2);

for = 10^2 , 10^4 and 10^6 . For each n, compute the estimate, the 0.95 confidence bound and approximate 0.95 confidence interval.

6. Let X be an exponential random variable with mean 1, i.e. the density of x is

$$f(x) = e^{-x},$$

for $x \ge 0$. We wish to estimate

$$P(X > 4) = \int_{4}^{\infty} f(x)dx.$$
 (3)

(a) Show that

$$P(X > 4) = \int_{0}^{1/4} \frac{f(1/y)}{y^2} dy.$$
 (4)

Hint: Use the substitution, y = 1/x.

- (b) Compare the estimates of P(X > 4) using
 - (i) direct Monte Carlo integration with equation (3),
 - (ii) Monte Carlo integration with equation (4),
 - (iii) importance sampling with a Cauchy distribution (defined in exercise 5) that is left-truncated at 4 as the importance distribution;

for = 10^2 , 10^4 and 10^6 . For each n, compute the estimate, the 0.95 confidence bound and approximate 0.95 confidence interval.

Solutions

1.

n	10^{2}	10^{4}	10^{6}
$E(\log X)$	0.0767	0.1148	0.1172
95% CB	0.2603	0.0248	0.0025
95% CI	(-0.1836, 0.3370)	(0.0900, 0.1397)	(0.1147, 0.1197)

2.

n

$$10^3$$
 10^4
 10^5
 10^6
 $P(X > 2)$
 0.0640
 0.0665
 0.0665
 0.0665

 95% CB
 0.0152
 0.0049
 0.0015
 0.0005

 95% CI
 $(0.0488, 0.0792)$
 $(0.0616, 0.0714)$
 $(0.0650, 0.0681)$
 $(0.0674, 0.0684)$

3.

(a)
$$\int_{0}^{1} \left[\cos 50x + \sin 20x \right]^{2} dx$$

= $\int_{0}^{1} \cos^{2} 50x + \sin^{2} 20x + 2\sin 20x \cos 50x dx$
= $\left[\frac{x}{2} + \frac{\sin 100x}{200} + \frac{x}{2} - \frac{\sin 40x}{80} + \frac{\cos (-30x)}{70} \right]_{0}^{1}$
= $\left[1 + \frac{\sin 100}{200} - \frac{\sin 40}{80} + \frac{\cos (-30)}{30} - \frac{\cos 70}{70} \right]$
 $\left[\frac{1}{30} - \frac{1}{70} \right]$

(b)

n	10^{2}	10^4	10^{6}
Integral	1.0128	0.9554	0.9664
95% CB	0.1873	0.0203	0.0021
95% CI	(0.8255, 1.2001)	(0.9351, 0.9757)	(0.9643, 0.9685)

4.				
(a)				
	n Integral 95% CB 95% CI	10 ² -1.6916 0.1732 (-1.8648, -1.5185)	10 ⁴ -1.6420 0.0148 (-1.6569, -1.6272)	10 ⁶ -1.6455 0.0015 (-1.6470, -1.6440)
(b)				
	n Integral 95% CB 95% CI	10 ² 0.3256 0.0661 (0.2595, 0.3917)	10 ⁴ 0.3131 0.0063 (0.3067, 0.3194)	10 ⁶ 0.3147 0.0006 (0.3140, 0.3153)
(c)				
	n Integral 95% CB 95% CI	10 ² 0.7152 0.2037 (0.5115, 0.9189)	10 ⁴ 0.6613 0.0194 (0.6419, 0.6807)	10 ⁶ 0.6539 0.0019 (0.6520, 0.6559)
5.				
(a)				
	n Integral 95% CB 95% CI	10 ² 0.1800 0.0753 (0.1047, 0.2553)	10 ⁴ 0.1478 0.0070 (0.1408, 0.1548)	$ \begin{array}{r} 10^6 \\ 0.1472 \\ 0.0007 \\ (0.1465, 0.1479) \end{array} $
(b)				
	n Integral 95% CB 95% CI	10 ² 0.1477 0.0018 (0.1459, 0.1496)	10 ⁴ 0.1476 0.0002 (0.1474, 0.1478)	10 ⁶ 0.14759 0.00002 (0.14757, 0.14761)

(a)
$$P(x>4) = \int_{4}^{\infty} f(x) dx$$

$$y = \frac{1}{2}x \iff x = \frac{1}{y}$$

$$dx = -\frac{1}{y^{2}} dy$$

$$\therefore P(x>4) = -\int_{1/4}^{\infty} \frac{f(1/y)}{y^{2}} dy$$

$$= \int_{0}^{1/4} \frac{f(1/y)}{y^{2}} dy$$

(b) - (i)

n	10^{2}	10^{4}	10^{6}
Integral	0.0300	0.0176	0.0182
95% CB	0.0334	0.0026	0.0003
95% CI	(-0.0034, 0.0634)	(0.0150, 0.0202)	(0.0179, 0.0185)

(b) - (ii)

$$n$$
 10^2 10^4 10^6 Integral 0.0177 0.0183 0.0183 95% CB 0.0214 0.0023 0.0002 95% CI $(-0.0037, 0.0391)$ $(0.0160, 0.0206)$ $(0.0181, 0.0185)$

(b)-(iii) Importance density
$$\phi(x)$$
 is Cauchy (0,1) left truncated at 4, so

$$\phi(x) = \frac{2}{\pi \left[1 + (x-4)^2 \right]}, \quad x > 4$$

$$\frac{f(x)}{\phi(n)} = \frac{1}{2} \pi e^{-x} \left[1 + (x - 4)^{2}\right].$$

n	10^{2}	10^{4}	10^{6}
Integral	0.0183	0.0182	0.01831
95% CB	0.0016	0.0002	0.00002
95% CI	(0.0167, 0.0199)	(0.0180, 0.0184)	(0.01829, 0.01833)