ANSWERS

PROBLEM 1 - LOGIC

```
a)
```

- 1. $P \wedge Q$ given (premise)
- 2. *P* (from 1, decomposing a conjunction)
- 3. Q (from 1)
- 4. $P \rightarrow \neg (Q \land R)$ given
- 5. $\neg (Q \land R)$ (from 2,4)
- 6. $\neg Q \lor \neg R$ (from 5)
- 7. $\neg R$ (from 3,6)
- 8. $S \rightarrow R$ given
- 9. $\neg S$ (from 7,8)
- b) Draw the truth table and see there is one row where 1,2, and 3 is true and \neg S is also true there.

c)

- d) First, we need to convert the definition of Green into CNF.
- $\forall x : Green(x) \leftrightarrow Bikes(x) \lor [\exists y : Drives(x, y) \land Electric(y)]$

Break the double-implication into 2 conjoined implications

• $\forall x : [Green(x) \rightarrow Bikes(x) \lor [\exists y : Drives(x, y) \land Electric(y)]] \land$

[[Bikes(x) \lor [\exists y : Drives(x, y) \land Electric(y)]] \rightarrow Green(x)]

Convert implications to disjunctions

∀x: [¬Green(x) ∨ Bikes(x) ∨ [∃y Drives(x, y) ∧Electric(y)]] ∧

 \neg [Bikes(x) \lor [\exists y Drives(x, y) \land Electric(y)] \lor Green(x)

Move negations inward

• $\forall x : [\neg Green(x) \lor Bikes(x) \lor [\exists y : Drives(x, y) \land Electric(y)]] \land$

 \neg Bikes(x) $\land \neg$ [\exists y Drives(x, y) \land Electric(y)] \lor Green(x)

Continue moving negations inward

∀x: [¬Green(x) ∨ Bikes(x) ∨ [∃y Drives(x, y) ∧ Electric(y)]] ∧

 \neg Bikes(x) \land [\forall y \neg Drives(x, y) \lor \neg Electric(y)] \lor Green(x)

Skolemizing produces an F(x) in place of the existential-quantified y:

∀x: [¬Green(x) ∨ Bikes(x) ∨ [Drives(x, F(x)) ∧ Electric(F(x))]] ∧
¬Bikes(x) ∧ [∀y: ¬Drives(x, y) ∨ ¬Electric(y)] ∨ Green(x)

Remove the universal quantifications, since all remaining variables are universally quantified.

[¬Green(x) ∨ Bikes(x) ∨ [Drives(x,F(x)) ∧Electric(F(x))]] ∧

 \neg Bikes(x) \land [\neg Drives(x, y) \lor \neg Electric(y)] \lor Green(x)

Distribute the disjunction in the first half

[¬Green(x) ∨Bikes(x) ∨Drives(x,F(x))] ∧
[¬Green(x) ∨ Bikes(x) ∨ Electric(F (x))] ∧
¬Bikes(x) ∧ [¬Drives(x, y) ∨ ¬Electric(y)] ∨ Green(x)

Distribute the disjunction in the second half to produce a conjunction of 4 disjuncts (CNF).

• [¬Green(x) ∨ Bikes(x) ∨Drives(x,F(x))] ∧

 $[\neg Green(x) \lor Bikes(x) \lor Electric(F(x))] \land$

[Green(x) ∨ ¬Bikes(x)] ∧ [¬Drives(x, y) ∨ ¬Electric(y) ∨ Green(x)]

Next, combine these 4 clauses with the other givens and add in the negation of the goal sentence: Green(Sophie). Then keep applying the resolution rule until θ = False is derived, indicating the contradiction.

- 1. ¬Green(x) VBikes(x) VDrives(x,F(x)) Given
- 2. ¬Green(x) VBikes(x) VElectric(F(x))] Given
- 3. Green(x) $V \neg Bikes(x)$] Given
- 4. ¬Drives(x, y) V ¬Electric(y) VGreen(x) Given
- 5. Electric(Tesla) Given
- 6. Drives(Sophie, Tesla) Given
- 7. ¬Green(Sophie) (Assuming negation of target sentence)
- 8. $\neg Drives(x, Tesla) \lor Green(x)$ (Resolving 4 and 5 with $\theta = \{y/Tesla\}$)
- 9. Green(Sophie) (Resolving 6 and 8 with $\theta = \{x/Sophie\}$)
- 10. (Resolving 7 and 9 with $\theta = \{\}$)

Notice that only 1 of the 4 clauses derived from the definition of Green was used to prove the target sentence.

PROBLEM 2 -- INFORMED AND UNINFORMED SEARCH

a) Uniform cost:

Expanded nodes: A B C D E G2

Solution path: S D C G2

Path cost: 13. Optimal path. Uniform cost search is optimal when there are no negative path costs.

b) Breadth first:

Expanded: S A G1. (goal check is when childs are generated)

S. Path: S A G1

Path cost: 14. Not optimal. BFS is cost optimal only when the steps costs are identical

c) Depth first

Expanded nodes: S A B C F D E G3

Solution cost: 27

d) A*

Expanded nodes: S A B D C E G2

Solution path: S D C G2 Path cost: 13. Optimal.

PROBLEM 3 ---CSP CROSS WORD PUZZLE

a)

- b) C1: V1 has 5 letters
- C2: V2 has 3 letters
- C3: V3 has 3 letters
- C4: V4 has 4 letters
- C5: 3^{rd} letter of V1 is the same letter as the first letter of V2
- C6: 5th letter of V1 is the same letter as the first letter of V3

C7: 2 nd letter of V4 is the same letter as 3 rd letter of V2
c) Domains, according to node consistency:
V1Domain1={ astar, happy, hello, hoses}
V2Domain2={ live, load, loam, peal, peel, save, talk, anon, nerd, tine }
V3Domain3={ ant, oak, old, run, ten}
V2Domain2={ live, load, loam, peal, peel, save, talk, anon, nerd, tine}
d)

Kommentar [j1]: I think these two seem fine as is

Kommentar [j2]:

e) Finds the solution below:

А	S	Т	А	R
		I		U
	А	N	0	N
		E		

PROBLEM 4 ---- ADVERSARIAL SEARCH

a) H=7,i<=6, d=7, j=11, e>=11, b= 7, c<=5, f<=5, l <=5, m<=4. solution=7

b) x4, k, x10, x12, and g are pruned

PROBLEM 5--- GAME THEORY

a) N={A1, A2}, Domains of A1=A2 ={0,10,20,30,40,50}, and the payoff fns are are specified by the following matrix

A1,	0	10	20	30	40	50
Agent2						
0	40, 0	0, 30	0, 30	0, 30	0, 30	0, 30
10	40, 0	30, 0	0,20	0, 20	0, 20	0, 20
20	40, 0	30, 0	20, 0	0, 10	0, 10	0, 10
30	40, 0	30, 0	20, 0	10, 0	0, 0	0, 0
40	40, 0	30, 0	20, 0	10, 0	0, 0	0, -10
50	40, 0	30, 0	20, 0	10, 0	0, 0	-10,0

- b) There is no weakly dominant strategy eq. as neither player has a weakly dominant action. Notice that for both players, actions 30 and 40 weakly dominate every other action. But not wach other.
- c) D) There is no strictly dominated action for either player and and hence all the action profiles survive IESD actions
- d) We can eliminate the weakly dominated actions in the following order:

A:0

A2:0

A1: 50

A2: 50 A1:10

A2: 10

A1: 20

Which leads to the following set of outcomes $\{30,40\}$ x $\{20,30,40\}$. However, tehre are other orders of elimination which lead to different outcomes. e) The game is not dominance solvable.