La Loi de mouvement en trapèze de vitesse (figure 1)

Cette loi présente l'avantage de limiter l'accélération ;

Le tableau ci-dessous présente les équations du mouvement dans les différentes zones :

- mouvement uniformément accéléré en zone (1),
- mouvement uniforme en zone (2),
- mouvement uniformément retardé en zone (3).

La loi de vitesse est obtenue par intégration de l'accélération ;

La loi de position est obtenue par intégration de la loi de vitesse.

Equations	zone (1)	zone (2)	zone (3)
Accélération Translation Rotation	$a_1(t) = a_m$ $\omega'_1(t) = \omega'_m$	$a_2(t) = 0$ $\omega'_2(t) = 0$	$a_3(t) = -a_m$ $\omega'_3(t) = -\omega'_m$
Vitesse: Translation Rotation	$V_1(t) = a_m \cdot t$ $\omega_1(t) = \omega'_m \cdot t$	$V_2(t) = V_m$ $\omega_2(t) = \omega_m$	$V_3(t) = -a_m \cdot (t - t_2) + V_m$ $\omega_3(t) = -\omega'_m \cdot (t - t_2) + \omega_m$
Position Translation Rotation	<u> </u>		$X_3(t) = -\frac{1}{2}a_m \cdot (t - t_2)^2 + V_m \cdot (t - t_2) + X(t_2)$ $\theta_3(t) = -\frac{1}{2}\omega'_m \cdot (t - t_2)^2 + \omega_m \cdot (t - t_2) + \theta(t_2)$

Conseil pratique:

Dans beaucoup de problèmes il n'est pas nécessaire d'écrire ces équations en utilisant une origine commune des temps et des espaces ; on obtient des équations beaucoup plus simples en effectuant un changement de l'origine des temps et des espaces sur chaque zone du mouvement :

le tableau ci-dessous reprend les équations des différentes zones, avec des origines des temps et des espaces différentes pour chaque zone.

Equations	zone (1)	zone (2)	zone (3)
	Position $X(t)$ ou $\theta(t)$ t_1 t_2 t_3	Position $X(t)$ ou $\theta(t)$ t_1 t_2 t_3	Position $X(t)$ ou $\theta(t)$ t_1 t_2 t_3
Accélération			
Translation	$a_1(t) = a_m$	$a_2(t) = 0$	$a_3(t) = -a_m$
Rotation	$\omega'_{1}(t) = \omega'_{m}$	$\omega'_{2}(t) = 0$	$\omega'_{3}(t) = -\omega'_{m}$
Vitesse:			
Translation	$V_1(t) = a_m \cdot t$	$V_2(t) = V_m$	$V_3(t) = -a_m \cdot t + V_m$
Rotation	$\omega_1(t) = \omega'_m \cdot t$	$\omega_2(t) = \omega_m$	$\omega_3(t) = -\omega'_m \cdot t + \omega_m$
Position			
Translation	$X_1(t) = \frac{1}{2}a_m \cdot t^2$	$X_{2}(t) = V_{m} \cdot t$ $\theta_{2}(t) = \omega_{m} \cdot t$	$X_3(t) = -\frac{1}{2}a_m \cdot t^2 + V_m \cdot t$
Rotation	$\theta_1(t) = \frac{1}{2} \omega'_m \cdot t^2$	$\theta_2(t) = \omega_m \cdot t$	$\theta_3(t) = -\frac{1}{2}\omega'_m \cdot t^2 + \omega_m \cdot t$

TPline.fr loi en trapèze de vitesse page 1/2

Application:

Ce conseil permet par exemple de résoudre rapidement le problème suivant (appliqué au cas d'un mouvement de translation) :

L'accélération (a_m) et la vitesse (V_m) étant fixées ;

la distance à parcourir (X_m) étant fixée ;

déterminer le temps total (T) du mouvement.

Démarche:

1 - calcul du temps T1 mis pour parcourir la zone 1 : avec l'équation de vitesse de la zone 1 exprimée en T1 où $V_3(t) = V_m$

$$\rightarrow T1 = V_m / a_m$$

2- calcul de la distance X1 parcourue en zone 1 : avec l'équation de position de la zone 1 exprimée en $T1 = V_m / a_m$

→
$$X1 = V_m^2/2.a_m$$

3 - calcul du temps T3 mis pour parcourir la zone 3 : avec l'équation de vitesse de la zone 3 exprimée en T3 où $V_3(t) = 0$

$$\rightarrow T3 = V_m / a_m$$

4 - calcul de la distance X3 parcourue en zone 3 : avec l'équation de position de la zone 3 exprimée en $T3 = V_m / a_m$

→
$$X3 = V_m^2/2.a_m$$

5 – calcul de la distance X2 parcourue en zone 2 : X2 = X_m – X1 – X3

$$\rightarrow$$
 X2 = X_m - V_m²/a_m

6 – calcul du temps T2 mis pour parcourir la zone 2 : avec l'équation de position de la zone 2 exprimée en T2 : $X2 = V_m$. T2

$$\rightarrow$$
 T2 = X_m/V_m - V_m/a_m

7 – calcul du temps T de parcours total : T = T1 + T2 + T3

$$\rightarrow T = X_m/V_m + V_m/a_m$$

TPline.fr loi en trapèze de vitesse page 2/2