Estimation of σ^2 , the variance of ϵ

- The variance of the errors σ^2 indicates how much observations deviate from the fitted surface.
- If σ^2 is small, parameters $\beta_0, \beta_1, ..., \beta_k$ will be reliably estimated and predictions \hat{y} will also be reliable.
- Since σ^2 is typically unknown, we estimate it from the sample as:

$$\hat{\sigma}^2 = S^2 = \frac{SSE}{n - \text{ number of parameters in model}} = \frac{SSE}{n - (k+1)}.$$

Estimation of σ^2 (cont'd)

• As in the case of simple linear regression:

$$SSE = \sum_{i} (y_i - \hat{y}_i)^2$$

ullet Also as before, the predicted value of y for a given set of x's is:

$$\hat{y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_k x_{ki}.$$

Estimation of σ^2 (cont'd)

- ullet As in simple regression, SAS and JMP call S^2 the **MSE** and S the **RMSE**.
- See example on page 169 of text. We have:
 - Three predictors of home sale price, so k=3.
 - Sample size n = 20.
 - From SAS output, MSE = 62,718,204 and RMSE = 7,919.
- If we had wished to compute MSE by hand, we would have done so as:

$$MSE = \frac{SSE}{n - (k+1)} = \frac{1003491259}{20 - (3+1)}.$$

Inferences about β parameters

• A $(1-\alpha)\%$ confidence interval for β_j is given by:

$$b_j \pm t_{\frac{\alpha}{2},n-(k+1)}$$
 standard error of b_j

- We use $\hat{\sigma}_{b_j}$ or S_{b_j} to denote the standard error of b_j , and obtain its value from SAS or JMP output.
- The standard errors of the regression estimates are given in the column labeled Standard Error, both in SAS and in JMP.
- We can obtain confidence intervals for any of the regression coefficients in the model (and also for the intercept).

Inferences about β parameters

• Example: see example on page 169. We wish to obtain a 90% CI for β_2 :

$$b_2 \pm t_{0.05,16} \hat{\sigma}_{b_2}$$
 $0.82 \pm 1.746(0.21),$

or (0.45, 1.19).

• As before, we say that the interval has a 90% probability of covering the true value of β_2 .

Stat 328 - Fall 2004

Inferences about β parameters (cont'd)

- We can also test hypotheses about the β 's following the usual steps:
 - 1. Set up the hypotheses to be tested, either one or two-tailed.
 - 2. Choose level α , determine critical value and set up rejection region.
 - 3. Compute test statistic.
 - 4. Compare test statistic to critical value and reach conclusion.
 - 5. Interpret results.
- Hypotheses: The null is always $H_0: \beta_j = 0$.
 - Alternative for a two-tailed test: $H_a: \beta_j \neq 0$.
 - Alternative for a one-tailed test: $H_a: \beta_j < 0$ or $H_a: \beta_j > 0$.

Inferences about β parameters (cont'd)

• <u>Critical value</u>: For a two-tailed test, the critical values are $\pm t_{\alpha/2,n-k-1}$. For a one-tailed test, the critical value is $-t_{\alpha,n-k-1}$ (if $H_a:\beta_j<0$) or $+t_{\alpha,n-k-1}$ (if $H_a:\beta_j>0$).

Critical or rejection region:

- For a two-tailed test: Reject H_0 if test statistic $t<-t_{\alpha/2,n-k-1}$ or $t>t_{\alpha/2,n-k-1}.$
- For a one-tailed test: Reject H_0 if $t<-t_{\alpha,n-k-1}$ [or $t>+t_{\alpha,n-k-1}$ for a "'bigger-than"' alternative.]
- Test statistic: As in simple linear regression:

$$t = \frac{b_j}{\hat{\sigma}_{b_j}}$$

Inferences about β parameters (cont'd)

- How do we interpret results of hypotheses tests?
- Suppose we reject $H_0: \beta_j = 0$ while conducting a two-tailed test. Conclusion: Data suggest that the response y and the jth predictor x_j are linearly associated when other predictors are held constant.
- If we fail to reject H_0 , then reasons might be:
 - 1. There is no association between y and x_j .
 - 2. A linear association exists (when other x's are held constant) but a Type II error occurred (defined as concluding H_0 when H_a is true).
 - 3. The association between y and x_j exists, but it is more complex than linear.

Stat 328 - Fall 2004 8

Multiple coefficient of determination \mathbb{R}^2

- The multiple coefficient of determination \mathbb{R}^2 is a measure of how well the linear model fits the data.
- As in simple linear regression, \mathbb{R}^2 is defined as:

$$R^2 = \frac{SS_{yy} - SSE}{SS_{yy}} = 1 - \frac{SSE}{SS_{yy}},$$

and $0 \le R^2 \le 1$.

- The closer \mathbb{R}^2 is to one, the better the model fits the data.
- If R^2 is equal to 0.65 (for example) we say that about 65% of the sample variability observed in the response can be attributed to (or explained by) the predictors in the model.

The adjusted R^2

- As it happens, we can artifially increase \mathbb{R}^2 simply by adding predictors to the model.
- ullet For example, if we have n=2 observations, a simple linear regression of y on x will result in $R^2=1$ even if x and y are not associated.
- To get \mathbb{R}^2 to be equal to 1 all we need to do is fit a model with n parameters to a dataset of size n.
- Then, \mathbb{R}^2 makes sense as a measure of goodness of fit only if n is a lot larger than k.
- We can "'penalize"' the R^2 every time we add a new predictor to the model. The penalized R^2 is called the $adjusted R^2$ and it is sometimes more useful than the plain R^2 .

Stat 328 - Fall 2004

The $adjusted R^2$ (cont'd)

• The adjusted \mathbb{R}^2 is denoted \mathbb{R}^2_a and is computed as:

$$R_a^2 = 1 - \left[\frac{(n-1)}{n-(k+1)}\right] \left(\frac{SSE}{SS_{yy}}\right)$$
$$= 1 - \left[\frac{(n-1)}{n-(k+1)}\right] (1-R^2).$$

The $adjusted R^2$ (cont'd)

- Note that
 - As k increases, n-(k+1) increases and SSE decreases.
 - If new predictor contributes information about $y,\,SSE$ will decrease faster than the increase in n-(k+1), so R_a^2 will increase. Else, R_a^2 will decrease when we add a new predictor to the model. [The ordinary R^2 always increases with added predictors even if new predictors contribute no information about y.]
- R_a^2 "'adjusts"' for sample size and number of predictors k and cannot be forced to be equal to 1.
- $R_a^2 < R^2$ always.