

Kurs:Mathematik für Anwender/Teil I/52/Klausur

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \(\sum_{\text{1}}\)

Punkte 3322523253 4 2 5 0 1 5 1 3 5 56

 \equiv Inhaltsverzeichnis \vee

Aufgabe * (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

1. Eine streng wachsende Funktion $f: \mathbb{R} \to \mathbb{R}$.

- 2. Eine Reihe $\sum_{k=0}^{\infty} a_k$ von reellen Zahlen a_k .
- 3. Der natürliche Logarithmus

$$\ln : \mathbb{R}_+ \longrightarrow \mathbb{R}.$$

- 4. Eine stetig differenzierbare Funktion $f: \mathbb{R} \to \mathbb{R}$.
- 5. Das Oberintegral einer nach oben beschränkten Funktion

$$f:I\longrightarrow \mathbb{R}$$

auf einem beschränkten Intervall $I \subseteq \mathbb{R}$.

6. Die Determinante eines Endomorphismus

$$\varphi : V \longrightarrow V$$

auf einem endlichdimensionalen Vektorraum V.

Aufgabe * (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Der Satz über die algebraische Struktur der komplexen Zahlen.
- 2. Die *Kettenregel* für differenzierbare Funktionen $f,g:\mathbb{R}
 ightarrow \mathbb{R}$.
- 3. Der Satz über die mathematische Struktur der Lösungsmenge eines homogenen linearen Gleichungssystems.

Aufgabe (2 Punkte)

Ein Flugzeug soll von Osnabrück aus zu einem Zielort auf der Südhalbkugel fliegen. Kann es kürzer sein, in Richtung Norden zu fliegen?

Aufgabe * (2 (1+1) Punkte)

Wir betrachten auf der Menge

$$M = \{a,b,c,d\}$$

die durch die Tabelle

 $\star abcd$

abaca

bdabb

cabcc

db ddd

gegebene Verknüpfung ★.

1. Berechne

$$b \star (a \star (d \star a)).$$

2. Besitzt die Verknüpfung ★ ein neutrales Element?

Aufgabe * (5 Punkte)

Vergleiche

$$\sqrt{3} + \sqrt{10}$$
 und $\sqrt{5} + \sqrt{7}$.

Aufgabe * (2 Punkte)

Es sei $z=a+b\mathbf{i}$ eine komplexe Zahl mit b<0. Zeige, dass

$$v=rac{1}{\sqrt{2}}\Bigl(-\sqrt{|z|+a}+\mathrm{i}\sqrt{|z|-a}\Bigr)$$

eine Quadratwurzel von z ist.

Aufgabe * (3 (1+2) Punkte)

1. Berechne das Produkt

$$\left(2-3X+X^2\right)\cdot\left(-5+4X-3X^2\right)$$

im Polynomring $\mathbb{Q}[X]$.

2. Berechne das Produkt

$$\left(2-3\sqrt{2}+\sqrt{2}^2
ight)\cdot\left(-5+4\sqrt{2}-3\sqrt{2}^2
ight)$$

in \mathbb{R} auf zwei verschiedene Arten.

Aufgabe * (2 Punkte)

Bestimme eine Symmetrieachse für den Graphen der Funktion

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \ x \longmapsto x^2 - 5x - 9.$$

Aufgabe * (5 Punkte)

Es seien $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ drei reelle Folgen. Es gelte $x_n\leq y_n\leq z_n$ für alle $n\in\mathbb{N}$ und $(x_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ und $(z_n)_{n\in\mathbb{N}}$ drei reelle Folgen. Es gelte $x_n\leq y_n\leq z_n$ für alle $n\in\mathbb{N}$ und $(x_n)_{n\in\mathbb{N}}$ und (

Aufgabe * (3 Punkte)

Eine reelle Folge $(x_n)_{n\in\mathbb{N}}$ sei durch einen Anfangswert $x_0\in\mathbb{R}$ und durch die Rekursionsvorschrift

$$x_{n+1} = -x_n$$

gegeben. Bestimme die Anfangswerte, für die diese Folge konvergiert.

Aufgabe * (4 Punkte)

Man gebe ein quadratisches Polynom an, dessen Graph die Diagonale und die Gegendiagonale bei y=1 jeweils tangential schneidet.

Aufgabe * (2 Punkte)

Bestimme die Ableitung der Funktion

$$\mathbb{R} \longrightarrow \mathbb{R}, \, x \longmapsto \sin^2(\cos x).$$

Aufgabe * (5 Punkte)

Beweise den Satz über die Ableitung in einem Extremum.

Aufgabe (0 Punkte)

Aufgabe * (1 Punkt)

Bestimme (ohne Begründung), welche der folgenden skizzierten geometrischen Objekte im \mathbb{R}^2 als Lösungsmenge eines linearen (inhomogenen) Gleichungssystems auftreten können (man denke sich die Objekte ins Unendliche fortgesetzt).

1.

2.

3.

4.

5.

•

Aufgabe * (5 (1+1+1+1+1) Punkte)

Es sei $\mathfrak{v}=v_1,v_2,v_3$ eine Basis eines dreidimensionalen K-Vektorraumes V.

- a) Zeige, dass $\mathfrak{w}=v_1,v_1+v_2,v_2+v_3$ ebenfalls eine Basis von V ist.
- b) Bestimme die Übergangsmatrix $M_{\mathfrak{v}}^{\mathfrak{w}}$.
- c) Bestimme die Übergangsmatrix $M_{\mathfrak{w}}^{\mathfrak{v}}$.
- d) Berechne die Koordinaten bezüglich der Basis $\mathfrak v$ für denjenigen Vektor, der bezüglich der Basis $\mathfrak v$ die Koordinaten $\begin{pmatrix} 1 \\ 8 \\ -9 \end{pmatrix}$ besitzt.
- e) Berechne die Koordinaten bezüglich der Basis $\mathfrak w$ für denjenigen Vektor, der bezüglich der Basis $\mathfrak v$ die Koordinaten $\begin{pmatrix} 3 \\ -7 \\ 5 \end{pmatrix}$ besitzt.

Aufgabe * (1 Punkt)

Bestimme den Rang der Matrix

$$\left(egin{array}{ccc} 1 & x & x^2 \ x & x^2 & x^3 \ x^2 & x^3 & x^4 \end{array}
ight)$$

zu $\pmb{x} \in \pmb{K}$.

Aufgabe * (3 Punkte)

Bestimme die inverse Matrix zu

$$\begin{pmatrix} 1 & 12 & 0 \\ 3 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

Aufgabe * (5 (4+1) Punkte)

Es seien M,N quadratische Matrizen über einem Körper K, die zueinander in der Beziehung

$$N = BMB^{-1}$$

mit einer invertierbaren Matrix $m{B}$ stehen. Zeige, dass die Eigenwerte von $m{M}$ mit den Eigenwerten zu $m{N}$ übereinstimmen, und zwar

- 1. direkt,
- 2. mit Hilfe des charakteristischen Polynoms.

Zuletzt bearbeitet vor einem Monat von Bocardodarapti

Wikiversity

Der Inhalt ist verfügbar unter CC BY-SA 3.0 ☑, sofern nicht anders angegeben.

Datenschutz • Klassische Ansicht