28. Una compañía de alimentos tiene un suministro limitado de dos hierbas que se utilizan en la producción de aderezos. Se usan los dos ingredientes, HBO1 o HBO2, para producir ya sea curry o pimentón. El departamento de mercadotecnia informa que, aunque la empresa puede vender todo el pimentón que pueda producir, sólo puede vender hasta un máximo de 1500 botellas de curry. En la tabla se presentan los datos adicionales. Elabore un modelo de programación lineal que maximice los ingresos.

	INGREDIENTES (ONZA/BOTELLA)			PRECIO DE VENTA POR
ADEREZO	HBO1	HB02	DEMANDA	BOTELLA
CURRY	5	3	1500	\$3.50
PIMENTÓN	2	3	NO LIMITADA	\$2.50
DISPONIBILIDAD (ONZAS)	10 000	8 500		

$$\begin{aligned} \mathit{Max} \ Z &= 3.50x_1 + 2.50x_2 \\ s. \ a. \\ & 5x_1 + 2x_2 \le 10000 \\ & 3x_1 + 3x_2 \le 8500 \\ & x_1 & \le 1500 \\ & x_1, x_2 \ge 0 \end{aligned}$$

Agregamos las variables de holgura

5 X1 + 2 X2 + s1 = 10000

3 X1 + 3 X2 + s2 = 8500

X1 + s3 = 1500

Con x mayor a cero

Con la tabla queda:

	X1	X2	S1	S2	S3	Solución
Z	-3.5	-2.5	0	0	0	0
S1	5	2	1	0	0	10000
S2	3	3	0	1	0	8500
S3	1	0	0	0	1	1500

Entra x1 y sale s3

Para Z multiplicamos el renglón pivote por 3.5 y sumamos Z+x1

Para s1 multiplicamos el renglón pivote por 5 y restamos s1-x1

Para s2 multiplicamos el renglón pivote por 3 y restamos s2-x1

Para s3 multiplicamos el renglón pivote por 1 y restamos s3-x1

	X1	X2	S1	S2	S3	Solución
Z	0	-2.5	0	0	3.5	5250
S1	0	2	1	0	-5	2500
S2	0	3	0	1	-3	4000
X1	1	-3	0	-2	1	1500

Entra x2 y sale s1

Para Z multiplicamos el renglón pivote por 2.5 y sumamos Z+x2

Para s1 multiplicamos el renglón pivote por 2 y restamos s1-x2

Para s2 multiplicamos el renglón pivote por 3 y restamos s2-x2

Para x1 multiplicamos el renglón pivote por 3 y restamos s3-x2

	X1	X2	S1	S2	S3	Solución
Z	0	0	1.25	0	-2.75	8375
X2	0	1	0.5	0	-2.5	1250
S2	0	0	-1.5	1	4.5	250
X1	1	0	0	0	1	1500

Entra s3 y sale s2

Para Z multiplicamos el renglón pivote por 2.75 y sumamos Z+s3

Para x2 multiplicamos el renglón pivote por 2.5 y restamos s1-s3

Para s2 multiplicamos el renglón pivote por 4.5 y restamos s2-s3

Para s3 multiplicamos el renglón pivote por 1 y restamos s3-s3

	X1	X2	S1	S2	S3	Solución
Z	0	0	0.333	0.611	0	8527.77
X2	0	1	-0.333	0.555	0	1388.88
S3	0	0	-0.333	0.22	1	55.555
X1	1	0	0.333	-0.22	0	1444.44

Llegamos a la solución óptima con z=8527.77, x1=1444.44 y x2= 1388.88