Let V be a normed space.
let {\langle \langle \
converges. In is absolutely summable of Silvill converges.
Thun. $\sum_{n} V_{n}$ is abs. summable $\Rightarrow \sum_{n=1}^{\infty} V_{n} \int_{m=1}^{\infty} is Cauchy in V.$
pf: Ex, same on V=R.
Assume $\sum_{k=1}^{m} V_{k} \rightarrow S$. as $m \Rightarrow 00$. $\forall E > 0$, $\exists M \text{ s.t.}$ $\forall m > M$, $\left \sum_{k=1}^{m} V_{k} - S \right < \frac{\epsilon}{2}$.
Pick $n > M$ $\left \sum_{k=1}^{n} W - S \right < \frac{\varepsilon}{2}$
$ S_{m}-S_{n} = S_{m}-S_{n}-(S_{m}-S_{n}) \leq S_{m}-S_{n} + S_{n}-S_{n} = \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$
Home (Sm) is Canchy.
J
Thm. V is a Bsp. \Longrightarrow Every abs summable series is summable
Pf: (=>) V is a Bsp.
I'm is abs. summable >> [Vm] is Canday. hence converges. in
=> summable
(E) Suppose Every as summable series is summable. Let \$\forall n\forall \text{ be a Canchy seg in \$V\$. We are going to show that this seg has a convergent subseq. Then \$\forall n\forall \text{ converges.}
That this sey , as

Flors is Cauchy > YKEN INEW s.t. Vn, m > Nk | Nh- Vm | < 2th summable, $n_k = \sum_{m=1}^k N_m$. $n_1 < n_2 < \cdots$ and $\forall k_1, n_k > N_k$. mel-chosen. Thus YKEN, IVnkH-Vnk <2* Thus. $\sum_{k} (V_{nkm} - V_{nk})$ is abs summable. By our assumption, E (Vney-Vnk) is summable $\left\{\sum_{k=1}^{m}\left[V_{n_{kn}}-V_{n_{k}}\right]\right\}_{m=1}^{\infty}$ wonverges in V. as $m > \infty$. $V_{N_{m+1}} - V_{n_1}$ $\Rightarrow V_{m} = converges$ as $m \to \infty$ $\Rightarrow V_{m} = converges$ as $m \to \infty$ Operators & Functionals. Jones product when fixed I element? Ex. in mind : (continuous) Let $K: [0,1] \times [0,1] \rightarrow \mathbb{C}$. be conts. for $f \in C([0,1])$ $T = \int_0^1 k(x,y) f(y) dy$. $f = \int_0^1 k(x,y) f(y) dy$. Then If E C([0:1]) and linear writing. $T(\sum_{i=1}^{n}\lambda_{i}f_{i}) = \sum_{i=1}^{n}\lambda_{i}T_{i}$

Defn. Let V, W be V.S.P. We say T: V > W is linear if

Yh, \(\lambda\) \in \(\text{K}\) (field of scalars), \(\forall V_1, \lambda\) \in V_1, \(\lambda\) \in V_1, \(\lambda\) \in V_2 \(\text{V}\). \(\text{T(L,V) + L_2 V_2}\)

We are interested in Some 'class' of linear ops.

Pecall that T: V > W (\text{\alpha} map)

is units on V if FVEV, A EVAT with Vn -> V => TVn -> TV. or equiverity, Form UEW, the set T-I(U) = EveV | TVEUT is open in V. Thm. A linear op. T: V > W is worts off ZC>0, s.t. AVEV, ITVII w = CIIVIV (*)

Lin op: Rounded (*) Conts.

Line say T is a bounded lin of] A bounded I'm of takes a bd subset of V to a bd subset of W. Pf: (E) Assume (*). Let Vn > V e V. Then by (x) 0 < | Tvn-Tv||_ = | Tcvn-v>||_W < C||vn-v||_V -> 0. Set $S = \frac{\mathcal{E}}{C}$. Then $TVn \to Tv$ is obvious. (by sandwich thm). (>) Here we adopt form set def of conts. Assume T is worts. Then $T^{-1}(B_{w}(o, 1)) = \{v \in V : T(v) \in B_{w}(o, 1)\}$ is open in V. tiz 0<1E ← ((10) v4)+T = 0 . 0 = oT ImiZ By (0, r) < [-1 (Bw(0,1)). Let $V \in V \setminus \{0\}$. Then $\left\| \frac{r}{2|V|V} \cdot V \right\|_{V} = \frac{r}{2} < r$. $\Rightarrow \frac{r}{2|V|V} \cdot V \in \mathcal{B}_{V}(0,r)$ $\Rightarrow T(\frac{r}{2||v|||_{V}}, V) \in \beta_{w}(0,1)$ By homo of norm, $\|T(v)\|_{W} \leq \frac{2}{r} \|v\|_{V}$. \Rightarrow $| T(\frac{r}{2||v||}, v) |_{W} \leq |$

Eq. $T: C([0,1]) \rightarrow C([0,1])$ given by T(x) = [0, k(x,y), f(y), fLet's prove T is a Tod I'm of where K: [O,1] >] .

F: Ez: Tis lim. V.

for $f \in C(\overline{D}, \overline{I})$. If $||a| = \sup_{x \in T_0, \overline{I}} |f(x)|$.

Then $|Tf(x)| = |\int_0^1 |F(x,y)| f(y) dy| \le \int_0^1 |F(x,y)| |f(y)| dy \le ||f||_{\mathfrak{D}} \int_0^1 |F(x,y)| dy$ \[
\left\| \text{\text{M}} \text{\text{N}} \text{\text{\text{o}}} \text{\text{\text{o}}} \text{\text{\text{o}}} \text{\text{\text{N}}} \text{\text{\text{o}}} \text{\text{o}} \text{\text{\text{o}}} \text{\text{o}} \text{\text{o}} \text{\text{\text{o}}} \text{\text{\text{o}}} \text{\text{\text{o}}} \text{\text{\text{o}}} \text{\text{\text{o}}} \text{\text{\text{o}}} \text{\text{\text{o}}} \text{\text{o}} \text{\text{o}} \text{\text{o}} \text{\text{o}} \text{\text{o}} \text{\text{o}} \text{\text{o}} \text{\text{o}} \text{

=> | Tf|| = = | K|| = | f|| =.

 $\Rightarrow || | | = || | | | | | |$

K: [tarnel.] of lin of T.

Dfn. B(V,W) = {T: V > W: Tis a bd lin of }.

Clearly, B(V, W) is a v.s.p. (sum, sca mult closedness).

the operator norm via

 $\|T\| := \sup_{\|v\|=1} \|Tv\|.$

Ruk: For VeV. Since IT = ITIM by def. 17v1 = 17 11v1.

The operator norm is a norm. So $\beta(V,W)$ is a normed space. 1) Prove 11 =0 \$\leftarrow T=0.

(⇒) ||T||=0 ⇒ ∀V s-t, ||V||=1, ||Tv||=0. Since W is a normed USP. $T_{V} = 0$, $\forall V \in V$, $T_{V} = ||V|| \cdot T(\frac{V}{||M|}) = ||V|| \cdot 0 = 0$. ⇒ T=0.

(6) T=0 => AVEV. ||TV||=0 => ||T|| = cw ||TV||=0.

2) Homo. Easy to follow the homo of 11.11 w.

≥) Triange.

```
If S,T \in B(V, W). VeV, \|V\| = 1, \|(S+T)_V\| = \|S_V\| + \|T_V\| + \|T_V
```

Thm: W is a $Bsp \Rightarrow B(V_1W)$ is a Bsp. (no matter V)

Suppose $f T_n = B(V_1 W)$. Sit. $C = \sum_{n} ||T_n|| = \infty$. (i.e. $\sum_{n} T_n = \infty$) abs. summable) We now to show $\sum_{n} T_n = \sum_{n} ||T_n|| = \infty$.

Let ve V. Let me \mathbb{N} $\lim_{n\to\infty} ||T_n v|| \leq \lim_{n\to\infty} ||T_n|||v|| = ||v|| \lim_{n\to\infty} ||T_n|| = C||v||.$

 $\Rightarrow \int_{n=1}^{\infty} ||T_n v|||^2 \in \mathbb{R}$ is bounded $\Rightarrow \sum_{n} ||T_n v||$ converges. in \mathbb{R} .

Thus $\sum_{n} ||T_n v||^2 = \sum_{n} ||T$

· W is Bsp : IThV is summable I lim exists.

Define T: V > W via Tv := lim \(\frac{m}{m} \) Tn \(\tau \) ... Our com didate.

First, Tis lin. Willey, VIIVZEV,

 $\frac{1}{12} \left(\frac{1}{12} \sqrt{1 + 1} \right) = \lim_{N \to \infty} \frac{1}{N^2} \left[\frac{1}{12} \sqrt{1 + 1} \sqrt{1 + 1} \right] = \lim_{N \to \infty} \frac{1}{N^2} \left[\frac{1}{12} \sqrt{1 + 1} \sqrt{1 + 1} \right] = \lim_{N \to \infty} \frac{1}{N^2} \left[\frac{1}{12} \sqrt{1 + 1} \sqrt{1 + 1} \sqrt{1 + 1} \right] = \lim_{N \to \infty} \frac{1}{N^2} \left[\frac{1}{12} \sqrt{1 + 1} \sqrt{1 + 1} \sqrt{1 + 1} \right] = \lim_{N \to \infty} \frac{1}{N^2} \left[\frac{1}{12} \sqrt{1 + 1} \sqrt{1 + 1} \sqrt{1 + 1} \right] = \lim_{N \to \infty} \frac{1}{N^2} \left[\frac{1}{12} \sqrt{1 + 1} \sqrt{1 + 1} \sqrt{1 + 1} \sqrt{1 + 1} \right] = \lim_{N \to \infty} \frac{1}{N^2} \left[\frac{1}{12} \sqrt{1 + 1} \sqrt{1 + 1}$

Hene, Te B(V, W). Now we claim, T= lim = In. in BLV,W). Let vev s.t. $\|v\| = 1$. $\|\left(-\sum_{n=1}^{m} \overline{y_n} \right) v \|$ Then ITV - I'm The VI $= \lim_{m \to \infty} \frac{m!}{n-mt!} || || \leq \lim_{m \to \infty} \frac{m!}{n-mt!} || || || \leq \sum_{n = mt} || || || || ||$ YVEV S.F. //1/1=1 $\left\| \left(-\sum_{n=1}^{m} \left| n \right| \right) \right\| = \sum_{n=1}^{m} \left\| \left(-\sum_{n=1}^{m} \left| n \right| \right) \right\| = \sum_{n=1}^{m} \left\| \left(-\sum_{n=1}^{m} \left| n \right| \right) \right\|$ as $\sum_{n=1}^{\infty} ||T_n|| = C$ Sand $\Rightarrow \|T - \sum_{n=1}^{m} T_n\| \rightarrow 0$ as $m \rightarrow a$. (In The als swample as we assumed) $\sqrt{n} = \frac{m}{1 - m} = \frac{m}{m \cdot m} = T$ Hence BLV, w) is implying In To is summable. a Bsp.

Basic steps:

- 1. find a condidate.
- 2. Show it in the 4.
- 3. Show convergence in the space.

If V is a normed space. is the dual spale of V.

Normally speaking. K = R or C, which are complete. (BSP). Then by above than, V is always BSP.