Kolmogorov Complexity and How it Illuminates our Limitations to Let Machines Learn Simple Functions

Lukas Rüttgers

IIIS, Tsinghua University

July 3, 2024

1 Introduction

Introduction

0000

- 2 Preliminarie
- Models and Algorithms Lack a Simplicity Bia
- 4 Learnability with a Simplicity Bias
- 6 Conclusion

2 / 36

Motivation

Introduction ○●○○

How humans learn arithmetic:

Kolmogorov Complexity and How it Illuminates our Limitations to Let Machines Learn Simple Functions

IIIS, Tsinghua University

Motivation

How humans learn arithmetic:

Motivation

How humans learn arithmetic:

Motivation

Introduction

How humans learn arithmetic:

Expedient insights:

1. Recursive algorithmic descriptions generalize to unseen instances

Motivation

Introduction

How humans learn arithmetic:

Expedient insights:

- 1. Recursive algorithmic descriptions generalize to unseen instances
- 2. Generalization ability relies on some inductive simplicity bias

Highlights

Introduction

0000

Kolmogorov Complexity naturally quantifies the *simplicity* of a function.

In light of this complexity measure we will see that

Introduction

Kolmogorov Complexity naturally quantifies the *simplicity* of a function.

In light of this complexity measure we will see that

 feed-forward neural networks (and any another non-recursive models) cannot express some simple functions

Highlights

Introduction

Kolmogorov Complexity naturally quantifies the *simplicity* of a function.

In light of this complexity measure we will see that

- feed-forward neural networks (and any another non-recursive models) cannot express some simple functions
- incorporating Kolmogorov complexity as a simplicity bias into learning algorithms allows to
 - learn any computable function (e.g. prime numbers) with finite resources
 - learn some functions with *less* samples than usual (e.g. parity functions).

IIIS, Tsinghua University

Outline

Introduction

- 1 Introduction
- 2 Preliminaries
- Models and Algorithms Lack a Simplicity Bias
- 4 Learnability with a Simplicity Bias
- 6 Conclusion

- Introduction
- Preliminaries

Supervised Learning

Objective: Learn $f: \mathcal{X} \to \mathcal{Y}$.

Given information: samples
$$(x_1,y_1),\ldots,(x_n,y_n)\in\mathcal{X}\times\mathcal{Y},y_i=f(x_i)$$

IIIS, Tsinghua University

Supervised Learning

Objective: Learn $f: \mathcal{X} \to \mathcal{Y}$.

Given information: samples $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}, y_i = f(x_i)$

$$\hat{R}(f') := \frac{1}{n} \sum_{i=1}^{n} \ell(f'(x_i), f(x_i)).$$

Supervised Learning

Objective: Learn $f: \mathcal{X} \to \mathcal{Y}$.

Given information: samples $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}, y_i = f(x_i), x_i \overset{i.i.d.}{\sim} P_{tr}$.

$$\hat{R}(f') := \frac{1}{n} \sum_{i=1}^n \ell(f'(x_i), f(x_i)).$$

$$\begin{array}{ccc}
 & \text{fit } f \text{ inside} \\
 & \text{instance distribution}
\end{array}$$

$$R(f') := \mathbb{E}_{x \sim P_{tr}} \left[\ell(f'(x), f(x)) \right].$$

Objective: Learn $f: \mathcal{X} \to \mathcal{Y}$.

Given information: samples $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}, y_i = f(x_i), x_i \overset{i.i.d.}{\sim} P_{tr}$.

$$\hat{R}(f') := \frac{1}{n} \sum_{i=1}^{n} \ell(f'(x_i), f(x_i)).$$

$$\stackrel{\text{fit } f \text{ inside}}{\underset{\text{instance distribution}}{\text{instance distribution}}}$$

$$R(f') := \mathbb{E}_{\mathbf{x} \sim P_{tr}} \left[\ell(f'(\mathbf{x}), f(\mathbf{x})) \right].$$

How does f' generalize out-of-distribution?

 \int fit f entirely

How shall we determine f'(x')?

Domain Generalization

Ahuja et al.: OOD generalization is impossible How shall we determine f'(x')? \leftarrow in such a case [ACZ+21, Theorem 2]

Domain Generalization

Ahuja et al.: OOD generalization is impossible How shall we determine f'(x')? in such a case [ACZ+21, Theorem 2] true features • x' impose overlap condition $\overline{\mathcal{X}}$ spurious noise

4 D > 4 D > 4 E > 4 E > E 9 Q C

How shall we determine f'(x')? \leftarrow Ahuja et al.: OOD generalization is impossible in such a case [ACZ+21, Theorem 2]

But aren't we posing too high demands on "OOD generalization"?

Inferring the simplest consistent function

Our maximum demand on OOD generalization should follow Ockham's razor:

Infer the simplest function that remains consistent with the data.

Our maximum demand on OOD generalization should follow Ockham's razor:

Infer the simplest function that remains consistent with the data.

How to define the simplicity of a function?

IIIS, Tsinghua University

Kolmogorov Complexity and How it Illuminates our Limitations to Let Machines Learn Simple Functions

Inferring the simplest consistent function

Our maximum demand on OOD generalization should follow Ockham's razor:

Infer the simplest function that remains consistent with the data.

How to define the simplicity of a function?

Kolmogorov: the shortest description length of a program that produces this function.

Turing Machine

A Turing Machine \mathcal{T} :

A Turing Machine \mathcal{T} :

Example: Modulo function mod₂

A Turing Machine \mathcal{T} computes a *partial* computable function

$$f: D_f \to \{0,1\}^*, D_f \subseteq \{0,1\}^*,$$

$$f_{\mathcal{T}}(x) := egin{cases} y, & \mathcal{T} \text{ halts and outputs } y, \\ \bot, & \mathcal{T} \text{ does not halt.} \end{cases}$$

f is total computable if $D_f = \{0,1\}^*$.

A Turing Machine \mathcal{T} computes a partial computable function

$$f: D_f \to \{0,1\}^*, D_f \subseteq \{0,1\}^*,$$

$$f_{\mathcal{T}}(x) := egin{cases} y, & \mathcal{T} \text{ halts and outputs } y, \ ot, & \mathcal{T} \text{ does not halt.} \end{cases}$$

f is total computable if $D_f = \{0, 1\}^*$.

input z

Universal Turing Machine U

$$f_U(x) = egin{cases} f_{\mathcal{T}}(z), & x = \operatorname{enc}(\mathcal{T})z \ \bot, & ext{otherwise.} \end{cases}$$

 q_n

How many bits are needed to describe the encoding of a Turing Machine that computes f?

Equivalence: We write $U(p) \equiv f$ if

- U(px) = f(x) for all $x \in D_f$, and
- U does not halt on px for all $x \in \{0,1\}^* \setminus D_f$.

How many bits are needed to describe the encoding of a Turing Machine that computes f?

Equivalence: We write $U(p) \equiv f$ if

- U(px) = f(x) for all $x \in D_f$, and
- U does not halt on px for all $x \in \{0,1\}^* \setminus D_f$.

We formalise this as the *Kolmogorov complexity* of a computable function f (cf. [LV+08]):

$$K_U(f) := \min_{p \in \{0,1\}^*} \{ I(p) \mid U(p) \equiv f \}$$

IIIS, Tsinghua University

Kolmogorov Complexity

Introduction

How many bits are needed to describe the encoding of a Turing Machine that computes f?

Equivalence: We write $U(p) \equiv f$ if

- U(px) = f(x) for all $x \in D_f$, and
- *U* does not halt on px for all $x \in \{0,1\}^* \setminus D_f$.

We formalise this as the *Kolmogorov complexity* of a computable function f (cf. [LV+08]):

$$K_U(f) := \min_{p \in \{0,1\}^*} \{I(p) \mid U(p) \equiv f\}$$

Accordingly, the *conditional Kolmogorov complexity* given z is defined as:

$$K_U(f \mid z) := \min_{p,p' \in \{0,1\}^*} \{I(p) + I(p') \mid U(p[z]p') \equiv f\}$$

self-delimiting encoding

- 1 Introduction
- 2 Preliminaries
- 3 Models and Algorithms Lack a Simplicity Bias
- 4 Learnability with a Simplicity Bias
- Conclusion

have access to

Our Limitations to Learn Simple Functions in Practice

Models

Simplicity

Algorithms

Learnability with a Simplicity Bias

$$\begin{matrix} \text{function set} \\ \tau = \{f_1, \dots, f_j\} \end{matrix}$$

e.g. constants, activation functions. arithmetic operations. logical expressions

Models

Simplicity

Algorithms

have access to
$$\tau$$
 function set $au = \{f_1, \ldots, f_j\}$

non-recursive functions $\mathcal{F}_{ au}$

Models

Simplicity

Algorithms

have access to

$$\tau = \{f_1, \ldots, f_j\}$$

non-recursive functions $\mathcal{F}_{ au}$

non-recursive models over τ

Simplicity Models have access to recursive completion f_{-}^{\diamondsuit} function set $\tau = \{f_1, \ldots, f_i\}$ cannot express all finite con catenations non-recursive functions $\mathcal{F}_{ au}$ representation class within non-recursive models over τ

Algorithms

Simplicity Models have access to recursive completion f_{-}^{\diamondsuit} function set $\tau = \{f_1, \ldots, f_i\}$ constantly low cannot given auexpress all finite concatenations Kolmogorov complexity non-recursive functions $\mathcal{F}_{ au}$ representation class within non-recursive models over τ

Algorithms

Our Limitations to Learn Simple Functions in Practice

Our Limitations to Learn Simple Functions in Practice

Inductive definition of non-recursive functions \mathcal{F}_{τ}

Given:
$$\tau := \{f_1, \dots, f_j\}, f_i : \mathbb{N}^k \to \mathbb{N}$$

Base case: Identity function
$$I \in \mathcal{F}_{\tau}$$
, $I(n_i) = n_i, n_i \in \mathbb{N}$

Inductive definition of non-recursive functions \mathcal{F}_{τ}

Given:
$$\tau := \{f_1, \dots, f_i\}, f_i : \mathbb{N}^k \to \mathbb{N}$$

Base case: Identity function
$$I \in \mathcal{F}_{\tau}$$
, $I(n_i) = n_i, n_i \in \mathbb{N}$

Induction step: If
$$g_1, \ldots, g_k \in \mathcal{F}_{\tau}$$
, and $f_i \in \tau$ is k -ary,

then
$$h:=f_i\circ (g_1,\ldots,g_k)\in \mathcal{F}_{ au}$$
.

Models and Algorithms Lack a Simplicity Bias

$$\mathbf{n}_{m} = (n_{i_{1}}, \dots, n_{i_{\operatorname{ar}(g_{m})}})$$

$$g_{1}(\mathbf{n}_{1}), \dots, g_{k}(\mathbf{n}_{k})$$

$$\downarrow \qquad \qquad \swarrow$$

$$h(\mathbf{n}) = f_{i}(g_{1}(\mathbf{n}_{1}), \dots, g_{k}(\mathbf{n}_{k}))$$

Given: $\tau := \{f_1, \dots, f_i\}, f_i : \mathbb{N}^k \to \mathbb{N}$

Base case: Identity function
$$I \in \mathcal{F}_{\tau}$$
, $I(n_i) = n_i, n_i \in \mathbb{N}$

Induction step: If $g_1, \ldots, g_k \in \mathcal{F}_{\tau}$, and $f_i \in \tau$ is k-ary,

then
$$h:=f_i\circ (g_1,\ldots,g_k)\in \mathcal{F}_{ au}$$
 .

Models and Algorithms Lack a Simplicity Bias

$$\mathbf{n}_{m} = (n_{i_{1}}, \dots, n_{i_{\operatorname{ar}(g_{m})}})$$

$$g_{1}(\mathbf{n}_{1}), \dots, g_{k}(\mathbf{n}_{k})$$

$$h(\mathbf{n}) = f_i(g_1(\mathbf{n}_1), \dots, g_k(\mathbf{n}_k))$$

Example (Linear Functions):
$$\tau = \{f_0, f_1, f_+\}, f_0(n_i) = 0, f_1(n_i) = 1, f_+(n_i, n_j) = n_i + n_j.$$

Then,
$$\mathcal{F}_{\tau} = \{f : f(n) = an + b \mid a, b \in \mathbb{N}\}.$$

Introduction

Roadmap

Recursive concatenation

Recursive concatenation of k-ary f:

$$f^{(0)}(n) := n,$$

$$f^{(m+1)}(n) := f(f^{(m)}(n), \ldots, f^{(m)}(n)),$$

$$n \in \mathbb{N}$$
 (1)

Learnability with a Simplicity Bias

$$n, m \in \mathbb{N}.$$
 (2)

Recursive concatenation

Recursive concatenation of k-ary f:

$$f^{(0)}(n) := n,$$

$$f^{(m+1)}(n) := f(\underbrace{f^{(m)}(n), \ldots, f^{(m)}(n)}_{k \text{ times}}),$$

$$n \in \mathbb{N}$$
 (1)

$$n, m \in \mathbb{N}.$$
 (2)

Example for 2-ary f:

$$f^{(1)}(n)$$
:

$$f^{(2)}(n): f(\cdot, \cdot)$$
 $f(\cdot, \cdot) f(\cdot, \cdot)$

Recursive Completion

Function set
$$\tau = \{f_1, \ldots, f_j\}$$

Recursive concatenation $f^{(m)}(n)$

Recursive Completion

Function set
$$au = \{f_1, \ldots, f_j\}$$
 sum up $f_ au := \sum_{i=1}^j f_i$

Recursive concatenation $f^{(m)}(n)$

Function set
$$au = \{f_1, \ldots, f_j\}$$
 $f_ au := \sum_{i=1}^j f_i$

Recursive concatenation
$$f^{(m)}(n)$$
 special case $\int_{-\infty}^{\infty} f^{(n)}(n) = f^{(n)}(n)$

Learnability with a Simplicity Bias

Recursive Completion

Function set
$$au = \{f_1, \ldots, f_j\}$$
 sum up
$$f_{ au} := \sum_{i=1}^j f_i - \cdots$$
 combine

Recursive concatenation $f^{(m)}(n)$ special case

Recursive completion $f^{\Diamond}(n) := f^{(n)}(n)$

Recursive completion over au

$$f_{\tau}^{\Diamond}(n) := \sum_{i=1}^{j} f_{i}(f_{\tau}^{(n-1)}(n))$$

$$f_{\tau}^{\Diamond}(n) = \sum_{i=1}^{2} f_{i}^{\Diamond}(n) - - - - \int_{f_{2} \text{ str. mon. incr. 3-ary}} f_{1} \cos \theta, \qquad f = 1$$

$$f=f_2(f_1,f_2(\ldots),f_2(\ldots))$$

IIIS, Tsinghua University

$$f_{ au}^{\diamondsuit}(n) = \sum_{i=1}^2 f_i^{\diamondsuit}(n)$$
 ---- f_2 str. mon. incr. 3-ary $f = f_2(f_1, f_2(\dots), f_2(\dots))$

$$f_{ au}^{\diamondsuit}(n) = \sum_{i=1}^2 f_i^{\diamondsuit}(n)$$
 ----- f_2 str. mon. incr. 3-ary $f_1 = f_2(f_1, f_2(\dots), f_2(\dots))$

000000000000

Models and Algorithms Lack a Simplicity Bias

Non-recursion functions do not capture recursive completion

Fix an arbitrary function set $\tau = \{f_1, \dots, f_j\}, f_i : \mathbb{N}^k \to \mathbb{N}$, where

- \bullet each f_i is strictly monotonously increasing or bounded,
- some strictly monotonously increasing f_i has arity $ar(f_i) > 1$ (e.g. f_+).

For any non-recursive function $f \in \mathcal{F}_{\tau}$, there is an $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, $f_{\tau}^{\Diamond}(n) > f(n)$.

Non-recursion functions do not capture recursive completion

Fix an arbitrary function set $\tau = \{f_1, \dots, f_j\}, f_i : \mathbb{N}^k \to \mathbb{N}$, where

- \bullet each f_i is strictly monotonously increasing or bounded,
- some strictly monotonously increasing f_i has arity $ar(f_i) > 1$ (e.g. f_+).

For any non-recursive function $f \in \mathcal{F}_{\tau}$, there is an $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, $f_{\tau}^{\Diamond}(n) > f(n)$.

This result can be extended to $f_i: \mathbb{Z}^k \to \mathbb{Z}$ with realistic assumptions.

Roadmap

Uniform TM $\mathcal{T}_{\diamondsuit}$:

. . .

. . .

loop tape

. . .

. . .

computation tape

output tape

accumulation tape

4 D > 4 D > 4 E > 4 E > E = 900

. . .

Uniform Simplicity of Recursive Completion

Uniform Simplicity of Recursive Completion

Uniform Simplicity of Recursive Completion

For any $f' \in \mathcal{F}_{\tau}$, there exists an n_0 such that $f_{\tau}^{\lozenge}(n) > f'(n)$ for all $n \geq n_0$.

00000000000

For any $f' \in \mathcal{F}_{\tau}$, there exists an n_0 such that $f_{\tau}^{\Diamond}(n) > f'(n)$ for all $n > n_0$. But non-recursive functions can still memorize the training data.

Models and Algorithms Lack a Simplicity Bias

For any $f' \in \mathcal{F}_{\tau}$, there exists an n_0 such that $f_{\tau}^{\lozenge}(n) > f'(n)$ for all $n \geq n_0$.

Kolmogorov complexity

1 = 1 1 = 1 Y) (O

For any $f' \in \mathcal{F}_{\tau}$, there exists an n_0 such that $f_{\tau}^{\Diamond}(n) > f'(n)$ for all $n > n_0$. \rightarrow Include large enough sample $(m, f_{\tau}^{\Diamond}(m))$ into dataset D.

Lukas Rüttgers

For any $f' \in \mathcal{F}_{\tau}$, there exists an n_0 such that $f_{\tau}^{\Diamond}(n) > f'(n)$ for all $n > n_0$. \rightarrow Include large enough sample $(m, f_{\tau}^{\Diamond}(m))$ into dataset D.

Lukas Rüttgers

For any $f' \in \mathcal{F}_{\tau}$, there exists an n_0 such that $f_{\tau}^{\Diamond}(n) > f'(n)$ for all $n > n_0$. \rightarrow Include large enough sample $(m, f_{\tau}^{\Diamond}(m))$ into dataset D.

•000000000

- Introduction

- 4 Learnability with a Simplicity Bias

24 / 36

Learnability with a Simplicity Bias

000000000

Teaser

PAC learning computable functions

PAC learnable

Introduction

 \mathcal{H} is PAC learnable if there is

- a learning algorithm A (ERM)
- a sample number threshold $n_0(\varepsilon, \delta)$

such that for

- any error and failure probabilities $\varepsilon, \delta \in [0, 1)$.
- ullet any hypothesis $h \in \mathcal{H}$.

hypothesis conditions

- any marginal distribution $P: \mathcal{X} \to [0,1]$, and
- any dataset $D = \{(X_i, h(X_i)) \mid i = 1, ..., n\}, X_i \stackrel{i.i.d}{\sim} P$, with $n > n_0(\varepsilon, \delta)$.

data conditions

$$\Pr[R(A(D)) \leq \varepsilon] \geq 1 - \delta.$$

VC dimension

PAC learnable Rademacher complexity

H finite? H bounded?

 \mathcal{H} is PAC learnable if there is

- a learning algorithm A (ERM)
- ullet a sample number threshold $n_0(arepsilon,\delta)$

such that for

$$ullet$$
 any hypothesis $h \in \mathcal{H}$,

hypothesis conditions

- ullet any marginal distribution $P:\mathcal{X} \to [0,1]$, and
- any dataset $D = \{(X_i, h(X_i)) \mid i = 1, \dots, n\}, X_i \overset{i.i.d}{\sim} P$, with $n \geq n_0(\varepsilon, \delta)$,

$$\Pr[R(A(D)) \leq \varepsilon] \geq 1 - \delta.$$

data conditions

PAC learning computable functions

PAC learnable

Introduction

 ${\cal H}$ is PAC learnable if there is

- a learning algorithm A (ERM + Simplicity Bias)
- ullet a sample number threshold $n_0(\delta,k)$

such that for

Kolmogorov complexity

- ullet any failure probability $\delta \in (0,1)$,
- ullet any hypothesis $h\in \mathcal{H}$ with Kolmogorov complexity $k=\mathcal{K}(h)$, ullet hypothesis conditions
- ullet any marginal distribution $P:\mathcal{X}
 ightarrow [0,1]$, and

ullet any dataset $D=ig\{(X_i,h(X_i))\mid i=1,\ldots,nig\}, X_i\stackrel{i.i.d}{\sim}P$, with $n\geq n_0(\pmb{\delta},\pmb{k})$,

$$Pr[A(D) = h] \ge 1 - \delta.$$

perfect learnability

Learnability with a Simplicity Bias

▶ Example 1: Unbounded Kolmogorov Complexity, but one sample suffices

Example 2: Low Kolmogorov Complexity, but infinite dataset insufficient

IIIS, Tsinghua University

Why conditioning learnability on the sample size is impossible in general

Example 1: Unbounded Kolmogorov Complexity, but one sample suffices

Models and Algorithms Lack a Simplicity Bias

$$D_y := \{(0, y)\}, y \in \{0, 1\}^*.$$

For each v, there is a different simplest consistent function.

But any infinite function class is unbounded in terms of Kolmogorov complexity.

> Example 2: Low Kolmogorov Complexity, but infinite dataset insufficient

Why conditioning learnability on the sample size is impossible in general

> Example 1: Unbounded Kolmogorov Complexity, but one sample suffices

Models and Algorithms Lack a Simplicity Bias

Example 2: Low Kolmogorov Complexity, but infinite dataset insufficient

We want to learn the modulo function $mod_2(x) = x \mod 2$.

But the infinite dataset $D = \{(2n,0) \mid n \in \mathbb{N}\}$ leaves the (simpler) constant function $f_0(x) = 0$ consistent.

Alternative conditions on the data

Learnability

 \mathcal{H} is learnable if there is

- a learning algorithm A (ERM + Simplicity Bias)
- a sample number threshold $n_0(\delta, k)$

• any failure probability $\delta \in (0,1)$.

such that for

- any hypothesis $h \in \mathcal{H}$ with Kolmogorov complexity k = K(h).

What conditions do D and P need to fulfil?

data conditions

hypothesis conditions

$$Pr[A(D) = h] \ge 1 - \delta.$$

h is the simplest consistent function

Conditioning learnability on functional information

Define the functional information in D as

$$K_F(D) := \min_{p \in \{0,1\}^*} \{I(p) \mid U(px_i) = y_i \text{ for all } (x_i, y_i) \in D\}.$$

Conditioning learnability on functional information

Define the functional information in D as

$$K_F(D) := \min_{p \in \{0,1\}^*} \{I(p) \mid U(px_i) = y_i \text{ for all } (x_i, y_i) \in D\}.$$

Models and Algorithms Lack a Simplicity Bias

This quantifies the information that datasets convey about the functions that could have generated them.

Look at the prior examples anew.

	True function	Dataset	Sample Size	$K_F(D)$
Ex. 1	f_{y}	D_y	1	$K_F(D_y) = K(f_y)$
Ex. 2	mod_2	D_0	∞	$K_F(D_0) \leq K(f_0) < K(mod_2)$

Teaching prime numbers by enumerating them

Consider the prime number decision function $\mathbb{1}_{\mathbb{P}}(n) = \mathbb{1}\{n \in \mathbb{P}\}.$ There exists an m_0 such that any dataset D that contains $(n, \mathbb{1}_{\mathbb{P}}(n))$ for all $n \leq m_0$ renders $\mathbb{1}_{\mathbb{P}}$ the simplest consistent function with D among all computable decision functions over \mathbb{N} .

Teaching prime numbers by enumerating them

Consider the prime number decision function $\mathbb{1}_{\mathbb{P}}(n) = \mathbb{1}\{n \in \mathbb{P}\}.$ There exists an m_0 such that any dataset D that contains $(n, \mathbb{1}_{\mathbb{P}}(n))$ for all $n \leq m_0$ renders $\mathbb{1}_{\mathbb{P}}$ the simplest consistent function with D among all computable decision functions over \mathbb{N} .

Teaching prime numbers by enumerating them

Consider the prime number decision function $\mathbb{1}_{\mathbb{P}}(n) = \mathbb{1}\{n \in \mathbb{P}\}.$ There exists an m_0 such that any dataset D that contains $(n, \mathbb{1}_{\mathbb{P}}(n))$ for all $n \leq m_0$ renders $\mathbb{1}_{\mathbb{P}}$ the simplest consistent function with D among all computable decision functions over \mathbb{N} .

Let $\mathcal{H} = \{ f_{\beta} : \{0,1\}^d \to \{0,1\}, f(x) = \langle \beta, x \rangle \mod 2 \mid \beta \in \{0,1\}^d \}$ be the class of parity functions over d-dimensional binary inputs.

Let $P = \text{Ber}(\frac{1}{2})^{\otimes d}$ be the uniform distribution over strings in $\{0,1\}^d$.

$$\Pr_{x \sim P} \big[f_{\beta}'(x) = f_{\beta}(x) \big] = \frac{1}{2}.$$

Let $\mathcal{H} = \{ f_{\beta} : \{0,1\}^d \to \{0,1\}, f(x) = \langle \beta, x \rangle \mod 2 \mid \beta \in \{0,1\}^d \}$ be the class of parity functions over d-dimensional binary inputs.

Let $P = \text{Ber}(\frac{1}{2})^{\otimes d}$ be the uniform distribution over strings in $\{0,1\}^d$.

$$\Pr_{x\sim P}[f_{eta}'(x)=f_{eta}(x)]=rac{1}{2}.$$
 At least d samples necessary to render f_{eta} the only consistent function.

Let $\mathcal{H} = \{f_{\beta} : \{0,1\}^d \to \{0,1\}, f(x) = \langle \beta, x \rangle \text{ mod } 2 \mid \beta \in \{0,1\}^d \}$ be the class of parity functions over d-dimensional binary inputs.

Let $P = \text{Ber}(\frac{1}{2})^{\otimes d}$ be the uniform distribution over strings in $\{0,1\}^d$.

$$\Pr_{x \sim P} \big[f_\beta'(x) = f_\beta(x) \big] = \frac{1}{2}.$$

4 D > 4 B > 4 B > 4 B > 6 C

Let $\mathcal{H} = \{f_{\beta} : \{0,1\}^d \to \{0,1\}, f(x) = \langle \beta, x \rangle \text{ mod } 2 \mid \beta \in \{0,1\}^d \}$ be the class of parity functions over d-dimensional binary inputs.

Let $P = \text{Ber}(\frac{1}{2})^{\otimes d}$ be the uniform distribution over strings in $\{0,1\}^d$.

$$\Pr_{\mathbf{x} \sim \mathcal{P}} \big[f_{\beta}'(\mathbf{x}) = f_{\beta}(\mathbf{x}) \big] = \frac{1}{2}.$$

$$0 \le i \le 2^d - 1 - -i \text{ other } f_{\beta}' \in \mathcal{H} \text{ with } K(f_{\beta}') \le K(f_{\beta})$$

$$K(f_{\beta}')$$

$$K(f_{\beta}')$$

$$K(f_{\beta}')$$

$$K(f_{\beta}')$$

$$K(f_{\beta}')$$

Kolmogorov complexity

4 D > 4 D > 4 E > 4 E > E 9040

Could we weaken the constraint-based formulation of $K_F(D)$?

$$K_F(D) = \min_{p \in \{0,1\}^*} \{I(p) \mid U(px_i) = y_i \text{ for all } (x_i, y_i) \in D\}$$
 concatenate samples $K_{JF}(D) = K([y_1, \dots, y_n] \mid [x_1, \dots, x_n])$

	$K_F(D)$	$K_{JF}(D)$
▷ Inconsistency implies lower bound		
▷ Invariance under sample permutation		

Could we weaken the constraint-based formulation of $K_F(D)$?

$$K_F(D) = \min_{p \in \{0,1\}^*} \{I(p) \mid U(px_i) = y_i \text{ for all } (x_i, y_i) \in D\}$$
 concatenate samples $\mathcal{K}_{JF}(D) = \mathcal{K}([y_1, \dots, y_n] \mid [x_1, \dots, x_n])$

	$K_F(D)$	$K_{JF}(D)$
∇ Consistency implies upper bound	If f is consistent with D ,	
	then $K_{\!F}(D) \leq K(f)$.	
▷ Inconsistency implies lower bound		
▷ Invariance under sample permutation		

Could we weaken the constraint-based formulation of $K_F(D)$?

$$K_F(D) = \min_{p \in \{0,1\}^*} \{I(p) \mid U(px_i) = y_i \text{ for all } (x_i, y_i) \in D\}$$
 concatenate samples $\mathcal{K}_{JF}(D) = \mathcal{K}([y_1, \dots, y_n] \mid [x_1, \dots, x_n])$

	$K_F(D)$	$K_{JF}(D)$
Consistency implies upper bound	✓	
▽ Inconsistency implies lower bound	If any f with $K(f) < k$	
	is inconsistent with $\it D$,	
	then $\mathit{K}_{\mathit{F}}(D) \geq \mathit{k}$.	
▷ Invariance under sample permutation		

Could we weaken the constraint-based formulation of $K_F(D)$?

$$\mathcal{K}_F(D) = \min_{p \in \{0,1\}^*} \{I(p) \mid U(px_i) = y_i \text{ for all } (x_i,y_i) \in D\}$$
 concatenate samples $\mathcal{K}_{JF}(D) = \mathcal{K}([y_1,\ldots,y_n] \mid [x_1,\ldots,x_n])$

	$K_F(D)$	$K_{JF}(D)$
Consistency implies upper bound	✓	
▷ Inconsistency implies lower bound	✓	
∇ Monotonicity for supersets	Any $D'\supset D$ adds constraints,	
	hence $K_F(D) \leq K_F(D')$.	
▷ Invariance under sample permutation		

Could we weaken the constraint-based formulation of $K_F(D)$?

$$K_F(D) = \min_{p \in \{0,1\}^*} \{I(p) \mid U(px_i) = y_i \text{ for all } (x_i, y_i) \in D\}$$
 concatenate samples $K_{JF}(D) = K([y_1, \dots, y_n] \mid [x_1, \dots, x_n])$

	$K_F(D)$	$K_{JF}(D)$
▷ Consistency implies upper bound	✓	
▷ Inconsistency implies lower bound	✓	
	✓	
▽ Invariance under sample permutation	Constraints are unordered.	

Could we weaken the constraint-based formulation of $K_F(D)$?

$$\mathcal{K}_F(D) = \min_{p \in \{0,1\}^*} \{I(p) \mid U(px_i) = y_i \text{ for all } (x_i,y_i) \in D\}$$
 concatenate samples $\mathcal{K}_{JF}(D) = \mathcal{K}([y_1,\ldots,y_n] \mid [x_1,\ldots,x_n])$

	$K_F(D)$	$K_{JF}(D)$
▷ Consistency implies upper bound	✓	
▷ Inconsistency implies lower bound	✓	
	✓	
▷ Invariance under sample permutation	✓	

Could we weaken the constraint-based formulation of $K_F(D)$?

$$K_F(D) = \min_{p \in \{0,1\}^*} \{I(p) \mid U(px_i) = y_i \text{ for all } (x_i, y_i) \in D\}$$
 concatenate samples $\mathcal{K}_{JF}(D) = \mathcal{K}([y_1, \dots, y_n] \mid [x_1, \dots, x_n])$

	$K_F(D)$	$K_{JF}(D)$
▽ Consistency implies upper bound	/	If f is consistent with D ,
		then $K_{F}(D) \leq K(f) + c$.
▷ Inconsistency implies lower bound	✓	
	✓	
▷ Invariance under sample permutation	✓	

Could we weaken the constraint-based formulation of $K_F(D)$?

$$K_F(D) = \min_{p \in \{0,1\}^*} \{I(p) \mid U(px_i) = y_i \text{ for all } (x_i, y_i) \in D\}$$
 concatenate samples $K_{JF}(D) = K([y_1, \dots, y_n] \mid [x_1, \dots, x_n])$

Models and Algorithms Lack a Simplicity Bias

	$K_F(D)$	$K_{JF}(D)$
▷ Consistency implies upper bound	✓	$K_F(D) \leq K(f) + c$
∇ Inconsistency implies lower bound	✓	Notwithstanding $f(x_i) \neq y_i$,
		potentially $fig([x_1,\ldots,x_n]ig)=[y_1,\ldots,y_n].$
	✓	
▷ Invariance under sample permutation	✓	

Could we weaken the constraint-based formulation of $K_F(D)$?

$$K_F(D) = \min_{p \in \{0,1\}^*} \{I(p) \mid U(px_i) = y_i \text{ for all } (x_i, y_i) \in D\}$$
 concatenate samples $K_{JF}(D) = K([y_1, \dots, y_n] \mid [x_1, \dots, x_n])$

	$K_F(D)$	$K_{JF}(D)$
▷ Consistency implies upper bound	✓	$K_F(D) \leq K(f) + c$
▷ Inconsistency implies lower bound	✓	X
∇ Monotonicity for supersets	✓ ·	add label as another instance $D = \{(x,y)\} \qquad D' = \{(x,y),(y,0)\}$
▷ Invariance under sample permutation	✓	

Could we weaken the constraint-based formulation of $K_F(D)$?

$$K_F(D) = \min_{p \in \{0,1\}^*} \{I(p) \mid U(px_i) = y_i \text{ for all } (x_i, y_i) \in D\}$$
 concatenate samples $K_{JF}(D) = K([y_1, \dots, y_n] \mid [x_1, \dots, x_n])$

$V(D) \times V(t) + \varepsilon$
$K_F(D) \leq K(f) + c$
X
X
$\underbrace{01101\dots111011}_{\text{in compressible}} \xrightarrow{-\pi} \underbrace{00\dots011\dots1}_{\text{compressible}}$

Could we weaken the constraint-based formulation of $K_F(D)$?

$$K_F(D) = \min_{p \in \{0,1\}^*} \{I(p) \mid U(px_i) = y_i \text{ for all } (x_i, y_i) \in D\}$$
 concatenate samples $K_{JF}(D) = K([y_1, \dots, y_n] \mid [x_1, \dots, x_n])$

	$K_F(D)$	$K_{JF}(D)$
▷ Consistency implies upper bound	✓	$K_F(D) \leq K(f) + c$
▷ Inconsistency implies lower bound	✓	X
	✓	X
▷ Invariance under sample permutation	/	X

Learnability with a Simplicity Bias

Compression algorithms cannot approximate Kolmogorov complexity

Kolmogorov Complexity is incomputable. But is there at least a viable approximation A that satisfies

$$A(v) \ge \exp_2^{(k)} (a \cdot A(w) + b) \Rightarrow K(v) \ge K(w)$$
 for some a, b, k ?

Compression algorithms cannot approximate Kolmogorov complexity

Models and Algorithms Lack a Simplicity Bias

Kolmogorov Complexity is incomputable. But is there at least a viable approximation Athat satisfies

$$A(v) \ge \exp_2^{(k)} (a \cdot A(w) + b) \Rightarrow K(v) \ge K(w)$$
 for some a, b, k ?

Compression algorithms were employed in practice [LV⁺08, p. 696]. But their compression ratio is limited.

Compression algorithms cannot approximate Kolmogorov complexity

Models and Algorithms Lack a Simplicity Bias

Kolmogorov Complexity is incomputable. But is there at least a viable approximation Athat satisfies

$$A(v) \ge \exp_2^{(k)} (a \cdot A(w) + b) \Rightarrow K(v) \ge K(w)$$
 for some a, b, k ?

Compression algorithms were employed in practice [LV+08, p. 696]. But their compression ratio is limited.

- 1 Introduction
- 2 Preliminarie
- Models and Algorithms Lack a Simplicity Bias
- 4 Learnability with a Simplicity Bias
- 6 Conclusion

34 / 36

Key takeaways:

 Recursion is a powerful yet simple mechanism that feed-forward neural networks alone cannot express.

Learnability with a Simplicity Bias

Key takeaways and future research

Key takeaways:

- Recursion is a powerful yet simple mechanism that feed-forward neural networks alone cannot express.
- Out-of-distribution generalization guarantees could draw upon a simplicity bias.

Kev takeawavs:

- Recursion is a powerful yet simple mechanism that feed-forward neural networks alone cannot express.
- Out-of-distribution generalization guarantees could draw upon a simplicity bias.
- Yet compression algorithms can not yield approximate guarantees on Kolmogorov complexity.

Key takeaways:

- Recursion is a powerful yet simple mechanism that feed-forward neural networks alone cannot express.
- Out-of-distribution generalization guarantees could draw upon a simplicity bias.
- Yet compression algorithms can not yield approximate guarantees on Kolmogorov complexity.

Future research:

Bestow learning algorithms with viable simplicity heuristics.

Kev takeawavs:

- Recursion is a powerful yet simple mechanism that feed-forward neural networks alone cannot express.
- Out-of-distribution generalization guarantees could draw upon a simplicity bias.
- Yet compression algorithms can not yield approximate guarantees on Kolmogorov complexity.

Future research:

- Bestow learning algorithms with viable simplicity heuristics.
- How to efficiently learn recursive algorithms over discrete inputs?

References 1

[ACZ+21] Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-Christophe Gagnon-Audet, Yoshua Bengio, Ioannis Mitliagkas, and Irina Rish. Invariance principle meets information bottleneck for out-of-distribution generalization.

Advances in Neural Information Processing Systems, 34:3438–3450, 2021.

[LV⁺08] Ming Li, Paul Vitányi, et al.

An introduction to Kolmogorov complexity and its applications, volume 3.

Springer, 2008.