Разработка параллельной версии программы сложения перемноженных матриц

Озерова Татьяна Александровна

19 декабря 2020 г.

Оглавление

1	Постановка задачи	2
2	Реализованный алгоритм	2
3	Результаты	3

Постановка задачи

Требуется реализовать программу с использованием MPI, реализующая сложение матриц, первая из которых является матрицей, умноженная на const β , вторая - результат перемножения матриц A и B, умноженный на const α .

Формула для вычисления:

$$Matrix = C^*\beta + A^*B^*\alpha$$
,

гле

$$\stackrel{\cong}{=} \begin{pmatrix} c_{1,1} & \cdots & c_{1,n} \\ c_{2,1} & \cdots & c_{2,n} \\ \vdots & \ddots & \vdots is \\ c_{n,1} & \cdots & c_{n,n} \end{pmatrix}, A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ a_{2,1} & \cdots & a_{2,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix}, B = \begin{pmatrix} b_{1,1} & \cdots & b_{1,n} \\ b_{2,1} & \cdots & b_{2,n} \\ \vdots & \ddots & \vdots \\ b_{k,1} & \cdots & b_{k,n} \end{pmatrix}$$

Реализованный алгоритм

В рамках реализованного алгоритма выполняются следущие этапы:

- На каждой итерации алгоритма каждый процесс получает одинаковое количество строк матриц A, B и C, которые представлены в виде массивов размера n^*n .
- Производится поелементное сложение массивов A и B, где каждый процесс в зависимости от своего номера и общего количества процессов получает определенный индекс (startIdx), начиная с которого производятся вычисления.
- По окончании второго вложенного цикла полученная сумма умножается на коэффициент α , соответствующий элемент массива С умножается на коэффициент β и прибавляется к полученной сумме * α . Полученный результат записывается в массив результата работы конкретного процесса.
- В конце каждой итерации при помощи функции MPI Reduce происходит поэлементное сложение получившихся массив, полученныая сум-

ма является итоговой матрицей, заданной в виде массиве размера n^*n .

 \bullet Для подсчета времени использовался вызов из библиотеки MPI – MPI $\operatorname{Wtime}()$

Результаты

Результаты измерений представлены в таблице, по которой был построен график. В первом столбце указано количество процессов при каждом запуске программы, каждый столбец соответствует размеру матриц, над которыми производились вычисления.

	64	128	256	512	1024	2048
4	0.000384485	0.0168771	0.134175	1.07203	8.53774	309.695
8	0.000197584	0.00848731	0.067121	0.53596	4.26882	155.456
16	0.000108214	0.00424143	0.0336281	0.268785	2.18194	77.7303
64	4.28729e-05	0.00108419	0.00854691	0.0674516	0.553936	20.0047
128	4.26494e-05	0.000546804	0.00428574	0.0342073	0.277617	9.88401
256	4.37294e-05	0.000547071	0.00215037	0.0171252	0.140187	4.98058

Данные результаты представлены на графике, где ось Z - время, затраченное на выполнение рассчетов, ось Y - количество процессов, ось X - размер матриц :

