Hidden Environmental Footprints of Al Training:

Evidence from Google's Gemini 1.0

Junho Choi

Columbia University, PhD in Sustainable Development

Key Takeaway

Context: During Google's Gemini 1.0 Training (Council Bluffs, Iowa; 2023)

Method: Compare electrically proximate vs. distant fossil-fuel plants using a **difference-in-differences** design

Finding: Natural gas plants ~322 tons (0.2SD) in CO₂/day (Jan-Apr '23) Coal plants ~4.81 kilotons (0.5SD) in CO₂/day (May-Sep '23) (p<0.05), and similar for **local emissions** (SO₂ and NO_x)

Scale: With SCC of \$51/CO₂, extra emissions are worth about 113% of Google's \$35 million pledge for carbon removal credits

Implication: Without aligning training with **renewable** availability, scaling Al models risks amplifying local and global emissions burdens

Data

CEMS	Hourly power plant emissions (CO ₂ , SO ₂ , NO _x)
MISO	Locational marginal prices and congestion component
ERA5 + ECWMF	Weather variables
IA DNR	Monthly operating reports of water supply

Labor outcomes (to be added) Homebase

FERC-715 For resistance-based electrical proximity (under CEII)

Methodology

A. Calculate pre-training electrical proximity

- Identify loading zone (LZ) for Council Bluffs DC
- Identify power plants associated with gennodes
- Using congestion component of pre-training period, calculate corr(LZ, gennode) → "electrical proximity"

B. Define treated vs. control units (plants)

Treated

Fossil-fuel plants most likely to respond to DC demand

= electrically proximate (top 10%)

Control

Comparable FF plants less likely to respond to DC

= electrically distant (bottom 60%*)

*For sensitivity checks, other definitions (from bottom 10% to 60%) are also tested.

C. Difference-in-differences (DiD)

Key idea: comparing treated vs. control plants (difference) during and outside of Gemini 1.0 training period (in differences)

$$Y_{it} = \sum_{k=1}^{5} \beta_k T_i \times C_{k,t} + \rho_i + \iota_{ym(t)} + X_{it} \gamma + \epsilon_{it}$$

- T_i : binary, =1 if treated (electrically proximate)
- $C_{k,t}$: binary, =1 if during training
 - k = 1: early, suspected training (Jan-Apr '23)
 - k = 2: confirmed heavy training (May-Jul '23)
 - k = 3: testing and fine-tuning (Aug-Sep '23)
 - k = 4,5: latter periods for Gemini 1.5 training (auxiliary tests)

Background

Estimated number of FLOPs (from Epoch AI)

Back-of-the-envelope calculation: "Power a small city for a year" (6-10K HH)

Candidates for "training ground"

- Council Bluffs, IA: largest single-site water use (3.71 million m³ in '23)
- Mayes County, OK: TPU deployment (to be further explored!)

Council Bluffs, IA

Electrically proximate and far fossil fuel power plants

Presence of FF generation among proximate plants

Electrically close to renewable sources, but also to fossil-fuel plants with substantially larger per-plant generating capacity

Results

DiD effects (with 95% CI) by fuel, emission, and training period

Note: SE clustered two-way at the plant and year-by-month levels.

Emissions summary statistics for reference

	<u> </u>					
	Natural gas			Coal		
	CO ₂ (kT)	SO ₂ (ton)	NO _x (ton)	CO ₂ (kT)	SO ₂ (ton)	NO_x (ton)
Mean	0.78	1.00	0.24	10.49	4.98	7.20
SD	1.49	0.16	0.60	9.62	7.15	7.81

Data center demand spikes trigger a systemic fallback to fossil fuels.

Discussion and Next Steps

- CO₂: ~774 kilotons rise over the training period (SCC of \$51: USD 39 million; SCC of \$190: USD 147 million)
- Quantifying local effects (SO₂ and NO_x): Homebase and AERMOD
- Preliminary evidence on water usage: deriving compute intensity?
- Expanding beyond lowa and Gemini 1.0: Oklahoma and newer models