

Machine Learning

Dr. Mehran Safayani safayani@iut.ac.ir safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/machine_learning_course

Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

Underfitting and Overfitting

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

خطای زمان آموزش بسیار زیاد

خطای زمان آزمون بسیار زیاد

underfit

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

خطای آموزش بسیار کم خطای آزمون بسیار زیاد overfit

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

Just right

Right :
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

Overfit:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Regularization

Minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2 + 1000 \theta_3^2 + 1000 \theta_4^2$$

Features: $\varkappa_1, \varkappa_2, \dots, \varkappa_{100}$

Parameters: θ_0 , θ_1 , θ_2 , ..., θ_{100}

$$\operatorname{Min}_{\theta} \mathsf{J}(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$
Regularization ضريب

If
$$\lambda$$
 is very big (λ = 10^{10}) —— underfit , θ_1 , θ_2 , ... , θ_n = 0 , $h_{\theta}(x_i)$ = θ_0 If λ is very small (λ = 0) —— overfit

GD:

Repeat until convergence{

$$\theta_0 = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)$$
 ($x_0^i = 1$)

$$\theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_{\theta}(x_i) - y_i) x_j^i + \lambda \theta_j \right]$$

$$J = 1, 2, ..., n$$

$$(x^1, y^1), (x^2, y^2), ..., (x^M, y^M)$$

Cross validation set: 20%

$$(x_{cv}^1, y_{cv}^1), (x_{cv}^2, y_{cv}^2), \dots, (x_{cv}^M, y_{cv}^M)$$

Test set: 20%

$$(x_{test}^{1}, y_{test}^{1}), (x_{test}^{2}, y_{test}^{2}), \dots, (x_{test}^{M}, y_{test}^{M})$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

$$J_{cv}(\theta) = \frac{1}{2m} \sum_{i=1}^{M_{cv}} (h_{\theta}(x_{cv}^{i}) - y_{i})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m} \sum_{i=1}^{M_{test}} (h_{\theta}(x_{test}^{i}) - y_{i})^{2}$$

Model Selection

$$h_{\theta_{1}}(x) = \theta_{0} + \theta_{1}x$$

$$J_{cv}(\theta^{1})$$

$$h_{\theta_{2}}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2}$$

$$\vdots$$

$$h_{\theta_{10}}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10}$$

$$J_{cv}(\theta^{10})$$

$$i^{*} = \operatorname{argmin} J_{cv}(\theta^{1})$$

$$\vdots$$

$$J_{test}(\theta^{1})$$

Underfit High bias

خطای زیاد آموزش خطای زیاد CV

 $\theta_0 + \theta_1 x + \theta_2 x^2$ Right

خطای آموزش کم خطای CV کم نزدیک به یکدیگر

 $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$

Overfit High variance خطای آموزشی خیلی کم خطای CV زیاد

پار امتر های مدل

Regularization

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2$$

If λ is too large ---> λ = 10000 ---> underfit ---> high bias ---> $\theta_1 = \theta_2 = ... = \theta_5 = 0$ ---> h(x) = θ_0

Appropriate λ ---> appropriate result

If λ is too small ---> λ = 0 ---> overfit ---> high variance

Regularization

$$\lambda = 0 - - > J_{train}(m^1) - - > J_{cv}(m^1)$$
 $\lambda = 0.01 - - > J_{train}(m^2) - - > J_{cv}(m^2)$
 $\lambda = 0.02 - - > J_{train}(m^3) - - > J_{cv}(m^3)$
 \cdot
 \cdot
 $\lambda = 10 - - > J_{train}(m^{10}) - - > J_{cv}(m^{10})$
 $i^* = \underset{i}{\operatorname{argmin}} J_{cv}(m^i)$

تعریف تئوری بایاس _ واریانس

مدل مولد داده: f(x) **

 $Y = f(x) + \varepsilon$

نویز با توزیع D_{ε} که مستقل از داده ها است. داده های آموزشی: S_{train}

D: فضای داده ها

محاسبه رابطه خطا

$$\mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[(f(\mathbf{x}) + \varepsilon - f_{S_{\text{train}}}(\mathbf{x}))^2]$$

برای یک نقطه x_0 خطا به صورت زیر است:

$$(f(\mathbf{x}_0) + \varepsilon - f_{S_{\text{train}}}(\mathbf{x}_0))^2$$
.

فرض کنید که با داده های آموزشی مختلفی که از فضای داده ${\mathbb D}$ نمونه گیری شده اند آزمایش را تکرار میکنیم. در این حالت خطای داده ${\mathfrak x}_0$ به صورت زیر محاسبه می شود:

$$\mathbb{E}_{S_{\text{train}} \sim \mathcal{D}, \varepsilon \sim \mathcal{D}_{\varepsilon}}[(f(\mathbf{x}_0) + \varepsilon - f_{S_{\text{train}}}(\mathbf{x}_0))^2].$$

مي توانيم رابطه بالا را به صورت زير به دست آوريم:

$$\mathbb{E}_{S_{\text{train}} \sim \mathcal{D}, \varepsilon \sim \mathcal{D}_{\varepsilon}} [(f(\mathbf{x}_{0}) + \varepsilon - f_{S_{\text{train}}}(\mathbf{x}_{0}))^{2}]$$

$$\stackrel{(a)}{=} \mathbb{E}_{\varepsilon \sim \mathcal{D}_{\varepsilon}} [\varepsilon^{2}] + \mathbb{E}_{S_{\text{train}} \sim \mathcal{D}} [(f(\mathbf{x}_{0}) - f_{S_{\text{train}}}(\mathbf{x}_{0}))^{2}]$$

$$\stackrel{(b)}{=} \text{Var}_{\varepsilon \sim \mathcal{D}_{\varepsilon}} [\varepsilon] + \mathbb{E}_{S_{\text{train}} \sim \mathcal{D}} [(f(\mathbf{x}_{0}) - f_{S_{\text{train}}}(\mathbf{x}_{0}))^{2}]$$

$$\stackrel{(c)}{=} \underbrace{\text{Var}_{\varepsilon \sim \mathcal{D}_{\varepsilon}} [\varepsilon]}_{\text{noise variance}}$$

$$+ \underbrace{(f(\mathbf{x}_{0}) - \mathbb{E}_{S'_{\text{train}} \sim \mathcal{D}} [f_{S'_{\text{train}}}(\mathbf{x}_{0})])^{2}}_{\text{bias}}$$

$$+ \mathbb{E}_{S_{\text{train}} \sim \mathcal{D}} [\underbrace{(\mathbb{E}_{S'_{\text{train}} \sim \mathcal{D}} [f_{S'_{\text{train}}}(\mathbf{x}_{0})] - f_{S_{\text{train}}}(\mathbf{x}_{0}))^{2}}_{\text{variance}}].$$

توجه کنید در بخش (a) عبارت زیر حذف شده است. چرا؟؟

$$\mathbb{E}_{S_{\text{train}} \sim \mathcal{D}, \varepsilon \sim \mathcal{D}_{\varepsilon}} \left[2\varepsilon (f(\mathbf{x}_0) - f_{S_{\text{train}}}(\mathbf{x}_0)) \right].$$

در بخش (b):

$$E_{\varepsilon \sim D_\varepsilon}[\varepsilon^2] = var_{\varepsilon \sim D_\varepsilon}[\varepsilon]$$

در بخش (c):

عبارت $D[f_{S'_{\text{train}}}(\mathbf{x}_0)]$ که S' که رکم می کنیم مجموعه داده از \mathbf{D} است) را به رابطه اضافه و کم می کنیم و سپس توان ۲ را اعمال می کنیم. در این رابطه یک ترم سوم هم وجود دارد که نشان می دهیم که به صورت زیر برابر با صفر است:

$$\mathbb{E}_{S \sim \mathcal{D}} \Big[\big(f(\mathbf{x}_0) - \mathbb{E}_{S' \sim \mathcal{D}} [f_{S'}(\mathbf{x}_0)] \big) \cdot \big(\mathbb{E}_{S' \sim \mathcal{D}} [f_{S'}(\mathbf{x}_0)] - f_{S}(\mathbf{x}_0) \big) \Big]$$

$$= \big(f(\mathbf{x}_0) - \mathbb{E}_{S' \sim \mathcal{D}} [f_{S'}(\mathbf{x}_0)] \big) \cdot \mathbb{E}_{S \sim \mathcal{D}} \Big[\big(\mathbb{E}_{S' \sim \mathcal{D}} [f_{S'}(\mathbf{x}_0)] - f_{S}(\mathbf{x}_0) \big) \Big]$$

$$= \big(f(\mathbf{x}_0) - \mathbb{E}_{S' \sim \mathcal{D}} [f_{S'}(\mathbf{x}_0)] \big) \cdot \big(\mathbb{E}_{S' \sim \mathcal{D}} [f_{S'}(\mathbf{x}_0)] - \mathbb{E}_{S \sim \mathcal{D}} [f_{S}(\mathbf{x}_0)] \big)$$

$$= 0.$$

تعبير رابطه (c):

از سه ترم مثبت تشکیل شده است. ترم اول ربطی به نحوه آموزش مدل ندارد و ناشی از عدم قطعیت ذاتی در داده ها است.

بایاس تفاضل مابین مقدار واقعی $f(x_0)$ و متوسط مدل های مختلفی است که بر روی داده ها آموزش دیده اند. (مدل های ساده نمی توانند خوب بر روی داده ها تطبیق یابند. در نتیجه بایاس زیاد می شود.)

ترم واریانس در واقع واریانس مدل های مختلفی است که آموزش دیده اند. اگر مدل ما خیلی پیچیده باشد با تغییر اندکی در داده ها شکل مدل عوض می شود و پیش بینی بر روی χ_0 به میزان زیادی متغیر می شود.

FIGURE 2.9. Left: Data simulated from f, shown in black. Three estimates of f are shown: the linear regression line (orange curve), and two smoothing spline fits (blue and green curves). Right: Training MSE (grey curve), test MSE (red curve), and minimum possible test MSE over all methods (dashed line). Squares represent the training and test MSEs for the three fits shown in the left-hand panel.

FIGURE 2.10. Details are as in Figure 2.9, using a different true f that is much closer to linear. In this setting, linear regression provides a very good fit to the data.

FIGURE 2.11. Details are as in Figure 2.9, using a different f that is far from linear. In this setting, linear regression provides a very poor fit to the data.

FIGURE 2.12. Squared bias (blue curve), variance (orange curve), $Var(\epsilon)$ (dashed line), and test MSE (red curve) for the three data sets in Figures 2.9–2.11. The vertical dotted line indicates the flexibility level corresponding to the smallest test MSE.

K fold CV

