Chapter 3: The Geometry of Linear Programming

(cp. Bertsimas & Tsitsiklis, Chapter 2)

M. Skutella ADM I (winter 2019/20) 4

Linear, Conic, Affine, and Convex Combinations and Hulls

Definition 3.1.

Let
$$x^1, \ldots, x^k \in \mathbb{R}^n$$
, $\lambda = (\lambda_1, \ldots, \lambda_k) \in \mathbb{R}^k$, and $x := \sum_{i=1}^k \lambda_i x^i$.

- a x is a linear combination of x^1, \ldots, x^k .
- **b** If $\lambda \geq 0$, then x is a conic combination of x^1, \ldots, x^k .
- If $\sum_{i=1}^k \lambda_i = 1$, then x is an affine combination of x^1, \ldots, x^k .
- If $\lambda \geq 0$ and $\sum_{i=1}^k \lambda_i = 1$, x is a convex combination of x^1, \ldots, x^k . If neither $\lambda = 0$ nor $\lambda = e_i$ for some $i \in \{1, \ldots, n\}$, then x is a proper linear / conic / affine /convex combination.

Definition 3.2.

For a non-empty subset $S \subseteq \mathbb{R}^n$, the linear / conic / affine / convex hull of S, denoted by $\operatorname{lin}(S)$ / $\operatorname{cone}(S)$ / $\operatorname{aff}(S)$ / $\operatorname{conv}(S)$, is the set of all vectors that can be written as a linear / conic / affine / convex combination of finitely many vectors from S.

Moreover, let $lin(\emptyset) := cone(\emptyset) := \{0\}$ and $aff(\emptyset) := conv(\emptyset) := \emptyset$.

M. Skutella ADM I (winter 2019/20) 44

Linear Subspace, Cone, Affine Subspace, Convex Subset

Definition 3.3.

- $S \subseteq \mathbb{R}^n$ is a linear subspace of \mathbb{R}^n , if S = lin(S).
- **b** $S \subseteq \mathbb{R}^n$ is a (convex) cone, if S = cone(S).
- $S \subseteq \mathbb{R}^n$ is an affine subspace of \mathbb{R}^n , if S = aff(S).
- **d** $S \subseteq \mathbb{R}^n$ is called convex, if S = conv(S) (cp. Definition 1.1).

Lemma 3.4.

- Let $S \subseteq \mathbb{R}^n$. Then lin(S) / cone(S) / aff(S) / conv(S) is the inclusion-wise smallest linear subspace / cone / affine subspace / convex subset containing S.
- The sets of linear subspaces / cones / affine subspaces / convex sets in \mathbb{R}^n are closed under taking intersections.
- **E** Every linear subspace and every cone in \mathbb{R}^n contains the zero-vector 0.

M Skutella

ADM I (winter 2019/20)

45

Proof of Lemma 3.4

- a) conv(S) is a convex set since <math>conv(conv(S)) = conv(S). (Why?) For any convex set $X \supseteq S$, it holds that $X = conv(X) \supseteq conv(S)$. Similar for lin(S), cone(S), and aff(S).
- b) For $j \in J$, let $C_j \subseteq \mathbb{R}^n$ with $C_j = \text{cone}(C_j)$; (family of cones) then, $\text{cone}\Big(\bigcap_{j \in J} C_j\Big) = \bigcap_{j \in J} C_j$ because:

'
$$\supseteq$$
': clear; ' \subseteq ': cone $\left(\bigcap_{j\in J}C_j\right)\subseteq\bigcap_{j\in J}\operatorname{cone}(C_j)=\bigcap_{j\in J}C_j$

Similar for linear subspaces, affine subspaces, and convex sets.

c) A linear subspace or cone X is non-empty, as $lin(\emptyset) = cone(\emptyset) = \{0\}$. Thus there is an element $x \in X$ and therefore also $0 = 0 \cdot x \in X$.

Linear and Affine Independence, Dimension

Definition 3.5.

A finite non-empty subset $S \subseteq \mathbb{R}^n$ is linearly (affinely) independent, if no element of S can be written as a proper linear (affine) combination of elements from S.

Definition 3.6.

The dimension $\dim(S)$ of a subset $S \subseteq \mathbb{R}^n$ is the largest cardinality of an affinely independent subset of S minus 1.

Remark.

- ▶ If $S \subseteq \mathbb{R}^n$ is a linear subspace, dim(S) according to Definition 3.6 is equal to the maximal number of linearly independent vectors in S.
- Adding the zero-vector to a linearly independent set of vectors yields an affinely independent set.

M. Skutella ADM I (winter 2019/20) 47

Hyperplanes and Halfspaces

Definition 3.7.

Let $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$:

- a set $\{x \in \mathbb{R}^n \mid a^T \cdot x = b\}$ is called hyperplane;
- **b** set $\{x \in \mathbb{R}^n \mid a^T \cdot x \ge b\}$ is called halfspace.

Remarks.

- ▶ A hyperplane is an affine subspace of dimension n-1.
- \triangleright A hyperplane with right-hand side b=0 is a linear subspace.
- \blacktriangleright Hyperplanes and halfspaces are cones if and only if b=0.
- ► Hyperplanes and halfspaces are convex sets.

Separating Hyperplane Theorem for Convex Sets

Theorem 3.8.

Let $S \subseteq \mathbb{R}^n$ closed and convex, and let $x^* \in \mathbb{R}^n \setminus S$. There exists a vector $c \in \mathbb{R}^n$ such that $c^T \cdot x^* < c^T \cdot x$ for all $x \in S$.

Illustration:

Corollary 3.9.

Every closed and convex set is the intersection of a family of halfspaces.

Proof of Theorem 3.8

For arbitrary $w \in S$ let $B := \{x \mid ||x - x^*|| \le ||w - x^*||\}$ (Euclidean norm)

 \implies $D := S \cap B$ closed, bounded, non-empty

 $\implies \exists x' \in D: \|x' - x^*\| \le \|x - x^*\| \quad \forall x \in D$

 $\implies ||x'-x^*|| \le ||x-x^*|| \quad \forall \, x \in S \qquad (*)$

Let $c := x' - x^* \neq 0$.

Proof of Theorem 3.8

For arbitrary $w \in S$ let $B := \{x \, \big| \, \|x - x^*\| \leq \|w - x^*\| \}$ (Euclidean norm)

 \implies $D := S \cap B$ closed, bounded, non-empty

 $\implies \exists x' \in D: \|x' - x^*\| \le \|x - x^*\| \quad \forall x \in D$

 $\implies ||x' - x^*|| \le ||x - x^*|| \quad \forall x \in S \qquad (*)$

Let $c := x' - x^* \neq 0$. Claim: $c^T x > c^T x^* \ \forall x \in S$.

Proof:

For all $x \in S$ and $\lambda \in (0,1]$: $x' + \lambda (x - x') \in S$ $\implies ||x' - x^*||^2 \le ||x' + \lambda (x - x') - x^*||^2$

$$\implies \|x' - x^*\|^2 \leq \|x' + \lambda(x - x') - x^*\|^2$$
$$= \|x' - x^*\|^2 + 2\lambda(x' - x^*)^T (x - x') + \lambda^2 \|x\|^2$$

 $\implies 0 \le (x' - x^*)^T (x - x') + \frac{1}{2} \lambda ||x - x'||^2$

$$\stackrel{\lambda \to 0}{\Longrightarrow} \quad 0 \le (x' - x^*)^T (x - x') = c^T (x - x')$$

$$\implies c^T x \ge c^T x' = c^T x^* + c^T (x' - x^*) = c^T x^* + \|c\|^2 > c^T x^*$$

M. Skutella

ADM I (winter 2019/20)

Polyhedra and Polytopes

Definition 3.10.

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$:

- a set $\{x \in \mathbb{R}^n \mid A \cdot x \ge b\}$ is called polyhedron;
- **b** $\{x \mid A \cdot x = b, x \ge 0\}$ is polyhedron in standard form representation.

That is, a polyhedron is an intersection of finitely many halfspaces.

Definition 3.11.

Set $S \subseteq \mathbb{R}^n$ is bounded if there is $K \in \mathbb{R}$ such that

$$||x||_{\infty} \le K$$
 for all $x \in S$.

b A bounded polyhedron is called polytope.

Remark: The convex hull of finitely many points in \mathbb{R}^n is a polytope (later).

Polyhedral Cones and Recession Cones

Definition 3.12.

For $A \in \mathbb{R}^{m \times n}$ the polyhedron $\{x \in \mathbb{R}^n \mid A \cdot x \ge 0\}$ is a polyhedral cone.

Remark. Cone $\{0\}$ is the only polyhedral cone in \mathbb{R}^n that is a polytope.

Definition 3.13.

For a non-empty polyhedron $P = \{x \in \mathbb{R}^n \mid A \cdot x \ge b\}$, the recession cone $\operatorname{rec}(P)$ is the polyhedral cone $\{x \in \mathbb{R}^n \mid A \cdot x \ge 0\}$. The non-zero elements of the recession cone are the rays of P.

Example in \mathbb{R}^2 :

Characterization of Recession Cones

Lemma 3.14.

For a non-empty polyhedron $P = \{x \in \mathbb{R}^n \mid A \cdot x \ge b\}$ and $y \in P$,

$$\operatorname{rec}(P) = \{ x \in \mathbb{R}^n \mid y + \lambda \cdot x \in P \text{ for all } \lambda \ge 0 \}$$
.

In particular, if P is a polytope, $rec(P) = \{0\}$.

Proof:

For a non-empty polyhedron $P = \{x \in \mathbb{R}^n \mid A \cdot x \geq b\}$ and $y \in P$,

$$\{x \in \mathbb{R}^n \mid y + \lambda \cdot x \in P \ \forall \lambda \ge 0\} = \{x \in \mathbb{R}^n \mid A \cdot (y + \lambda \cdot x) \ge b \ \forall \lambda \ge 0\}$$
$$= \{x \in \mathbb{R}^n \mid A \cdot x \ge 0\}.$$

Observation. The recession cone of $P = \{x \in \mathbb{R}^n \mid A \cdot x = b, x \geq 0\}$ is $\{x \in \mathbb{R}^n \mid A \cdot x = 0, x \geq 0\}.$

Extreme Points and Vertices of Polyhedra

Definition 3.15.

Let $P \subseteq \mathbb{R}^n$ be a polyhedron.

 $x \in P$ is an extreme point of P if

$$x \neq \lambda \cdot y + (1 - \lambda) \cdot z$$
 for all $y, z \in P \setminus \{x\}, 0 \le \lambda \le 1$,

i.e., x is not a convex combination of two other points in P.

b $x \in P$ is a vertex of P if there is some $c \in \mathbb{R}^n$ such that

$$c^T \cdot x < c^T \cdot y$$
 for all $y \in P \setminus \{x\}$,

i.e., x is the unique optimal solution to the LP min $\{c^T \cdot z \mid z \in P\}$.

Remark.

The only possible extreme point or vertex of a polyhedral cone C is $0 \in C$.

M. Skutella ADM I (winter 2019/20) 54

Active and Binding Constraints

In the following, let $P\subseteq\mathbb{R}^n$ be a polyhedron defined by

$$a_i^T \cdot x \ge b_i$$
 for $i \in M$,
 $a_i^T \cdot x = b_i$ for $i \in N$,

with $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$, for all i.

Definition 3.16.

If $x^* \in \mathbb{R}^n$ satisfies $a_i^T \cdot x^* = b_i$ for some i, then the corresponding constraint is active (or binding) at x^* .

Lemma 3.17.

If $P \neq \emptyset$ and none of the constraints $a_i^T \cdot x \geq b_i$ for $i \in M$ is active for all $x \in P$, then $\dim(P) = k := n - \operatorname{rank}\{a_i \mid i \in N\}$.

Proof of Lemma 3.17

'\(\leq'\): dim(P) \(\leq k\) since
$$\emptyset \neq P \subseteq \underbrace{\left\{x \in \mathbb{R}^n \mid {a_i}^T \cdot x = b_i \ \forall \ i \in N\right\}}_{\text{dim}(\cdots) = k}$$
.

'
$$\geq$$
': Let $d_j \in \mathbb{R}^n$, $j = 1, ..., k$, linearly indep. with $a_i^T \cdot d_j = 0 \ \forall \ i \in N$. For $i \in M$, let $x^i \in P$ with $a_i^T \cdot x^i > b_i$; let $y := \frac{1}{|M|} \sum_{i \in M} x^i \in P$.

Notice that $a_i^T \cdot y > b_i$ for all $i \in M$. Thus, for $\varepsilon > 0$ small enough,

$$a_i^T \cdot (y + \varepsilon d_j) \ge b_i$$
 for all $i \in M, j = 1, \dots, k$.

Thus, $y + \varepsilon d_j \in P$ for j = 1, ..., k, and

$$\{y\} \cup \{y + \varepsilon \, d_j \mid j \in \{1, \dots, k\}\}$$
 affinely independent.

Therefore $\dim(P) \ge k$.

M. Skutella ADM I (winter 2019/20) 56

Reminder: Basic Facts from Linear Algebra

Theorem 3.18.

Let $x^* \in \mathbb{R}^n$ and $I = \{i \mid a_i^T \cdot x^* = b_i\}$. The following are equivalent:

- there are n vectors in $\{a_i \mid i \in I\}$ which are linearly independent;
- ii the vectors in $\{a_i \mid i \in I\}$ span \mathbb{R}^n ;
- x^* is the unique solution to the system of equations $a_i^T \cdot x = b_i$, $i \in I$.

Vertices, Extreme Points, and Basic Feasible Solutions

Definition 3.19.

- $x^* \in \mathbb{R}^n$ is a basic solution of P if
 - ▶ all equality constraints are active and
 - ▶ there are *n* linearly independent constraints that are active.
- **b** A basic solution satisfying all constraints is a basic feasible solution.

Example:

M. Skutella ADM I (winter 2019/20) 5

Vertices, Extreme Points, and Basic Feasible Solutions

Definition 3.19.

- $\mathbf{z}^* \in \mathbb{R}^n$ is a basic solution of P if
 - all equality constraints are active and
 - ▶ there are *n* linearly independent constraints that are active.
- **b** A basic solution satisfying all constraints is a basic feasible solution.

Theorem 3.20.

For $x^* \in P$, the following are equivalent:

- x^* is a vertex of P;
- x^* is an extreme point of P;
- x^* is a basic feasible solution of P.

Proof of Theorem 3.20

$$(iii) \Longrightarrow (i)': x^*$$
 basic feasible solution, $I := \{i \in M \cup N \mid a_i^T \cdot x^* = b_i\}$

$$c := \sum_{i \in I} a_i, \qquad c^T \cdot x^* = \sum_{i \in I} a_i^T \cdot x^* = \sum_{i \in I} b_i.$$

For
$$x \in P$$
: $c^T \cdot x = \sum_{i \in I} \underbrace{a_i^T \cdot x}_{>b_i} \ge \sum_{i \in I} b_i$ and

$$c^T \cdot x = \sum_{i \in I} b_i \iff a_i^T \cdot x = b_i \ \forall i \in I \iff x = x^*$$

since there are n linearly independent vectors in $\{a_i \mid i \in I\}$.

$$(i) \Longrightarrow (ii)': x^* \text{ vertex} \Longrightarrow \exists c \in \mathbb{R}^n: c^T \cdot x^* < c^T \cdot y \quad \forall y \in P \setminus \{x^*\}$$

By contradiction assume that x^* is *not* an extreme point, i.e.,

$$x^* = \lambda y + (1 - \lambda)z$$
 with $y, z \in P \setminus \{x^*\}, \ \lambda \in [0, 1].$

Then,
$$c^T \cdot x^* = \lambda \underbrace{c^T \cdot y}_{>c^T \cdot x^*} + (1 - \lambda) \underbrace{c^T \cdot z}_{>c^T \cdot x^*} > c^T \cdot x^*.$$

M. Skutella

ADM I (winter 2019/20)

Proof of Theorem 3.20 (Cont.)

 $(ii) \Longrightarrow (iii)'$: Let x^* extreme point, $I := \{i \in M \cup N \mid a_i^T \cdot x^* = b_i\}$.

Assume by contradiction that $rank\{a_i \mid i \in I\} < n$.

Then, there exists $d \in \mathbb{R}^n \setminus \{0\}$ with $a_i^T \cdot d = 0$ for all $i \in I$.

Let $x := x^* + \varepsilon d$ and $y := x^* - \varepsilon d$ for some $\varepsilon > 0$.

Claim: $x, y \in P$ for $\varepsilon > 0$ small enough. (\Longrightarrow contradiction!)

Proof: For
$$i \in I$$
, $a_i^T \cdot x = \underbrace{a_i^T \cdot x^*}_{=b_i} + \varepsilon \underbrace{a_i^T \cdot d}_{=0} = b_i$;

for $i \notin I$, $a_i^T \cdot x = \underbrace{a_i^T \cdot x^*}_{>b_i} + \varepsilon a_i^T \cdot d \ge b_i$ for $\varepsilon > 0$ small enough.

The same holds for y instead of x.

Existence of Extreme Points

Definition 3.21.

A polyhedron *P* is called pointed if it contains at least one vertex.

Definition 3.22.

A polyhedron $P \subseteq \mathbb{R}^n$ contains a line if there is $x \in P$ and a direction $d \in \mathbb{R}^n \setminus \{0\}$ such that

$$x + \lambda \cdot d \in P$$
 for all $\lambda \in \mathbb{R}$.

Theorem 3.23.

Consider non-empty $P \subseteq \mathbb{R}^n$ as on Slide 55. The following are equivalent:

- P is pointed.
- Find P does not contain a line.
- $\min \text{ rank}\{a_i \mid i \in M \cup N\} = n.$

M Skutella

ADM I (winter 2019/20)

61

Proof of Theorem 3.23

- $(i) \Longrightarrow (iii)': x^* \in P \text{ vertex } \Longrightarrow x^* \text{ basic feasible solution}$
 - \implies There are *n* linearly independent constraints that are active at x^* .
 - \implies There are *n* linearly independent vectors in $\{a_i \mid i \in M \cup N\}$.
- $(iii) \Longrightarrow (ii)'$: By contradiction assume that P contains a line.

That is, there are $x \in P$, $d \in \mathbb{R}^n \setminus \{0\}$ with

$$x + \lambda d \in P$$
 for all $\lambda \in \mathbb{R}$.

$$\implies a_i^T \cdot (x + \lambda d) = a_i^T \cdot x + \lambda a_i^T \cdot d \ge b_i \ \forall i \in M \cup N, \lambda \in \mathbb{R}$$

$$\implies a_i^T \cdot d = 0 \ \forall i \in M \cup N.$$

$$\implies$$
 rank $\{a_i \mid i \in M \cup N\} < n.$

Proof of Theorem 3.23 (Cont.)

'(ii)
$$\Longrightarrow$$
(i)': Choose $x \in P$ maximizing $\left|\underbrace{\left\{i \in M \cup N \mid a_i^T \cdot x = b_i\right\}}_{N \subseteq I :=}\right|$.

If $rank\{a_i \mid i \in I\} = n$, then x is a vertex and we are done.

Otherwise, there is $d \in \mathbb{R}^n \setminus \{0\}$ with $a_i^T \cdot d = 0$ for all $i \in I$.

$$\implies a_i^T \cdot (x + \lambda d) = a_i^T \cdot x = b_i \text{ for all } i \in I, \ \lambda \in \mathbb{R}.$$

Since P does not contain a line, $x + \lambda' d \notin P$ for some $\lambda' \in \mathbb{R}$.

$$\implies a_i^T \cdot (x + \lambda' d) < b_i \text{ for some } i \in M \setminus I.$$

Assume w.l.o.g. $\lambda' > 0$ (otherwise replace d with -d) and let

$$\lambda_0 := \max\{\lambda \mid {a_i}^T \cdot (x + \lambda d) \ge b_i \ \forall i \in M \cup N\} < \lambda'.$$

Notice: $\lambda_0 > 0$ since $a_i^T \cdot d = 0 \ \forall \ i \in I$ and $a_i^T \cdot x > b_i \ \forall \ i \in M \setminus I$.

Moreover, there is an $i \in M \setminus I$ with $a_i^T \cdot (x + \lambda_0 d) = b_i$.

$$\implies$$
 At least $|I|+1$ constraints active at $x+\lambda_0$ $d\in P$.

M. Skutella

ADM I (winter 2019/20)

63

Existence of Extreme Points (Cont.)

Corollary 3.24.

- A non-empty polytope contains an extreme point.
- **b** A non-empty polyhedron in standard form contains an extreme point.
- **c** Polyhedron $P \neq \emptyset$ is pointed if and only if rec(P) is pointed.

Proof of b:

$$\begin{array}{ccc}
A \cdot x &= b \\
x &\geq 0
\end{array}
\iff
\begin{pmatrix}
A \\
-A \\
I
\end{pmatrix}
\cdot x \geq
\begin{pmatrix}
b \\
-b \\
0
\end{pmatrix}$$

Example:

$$P = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \,\middle|\, \begin{array}{ccc} x_1 & + & x_2 & \geq 1 \\ x_1 & + & 2x_2 & \geq 0 \end{array} \right\}$$

contains a line since
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in P$$
 for all $\lambda \in \mathbb{R}$.

Characterization of Polytopes

Theorem 3.25.

A polytope is equal to the convex hull of its vertices.

Proof: Follows from Theorem 3.20 (see exercise).

Theorem 3.26.

A set $P \subseteq \mathbb{R}^n$ is a polytope if and only if there exists a finite set $V \subseteq \mathbb{R}^n$ such that P is the convex hull of V.

Proof: '⇒': Follows from Theorem 3.25 since a polytope has only finitely many basic feasible solutions (vertices).

'← ': See exercise session.

M. Skutella ADM I (winter 2019/20) 69

Valid Inequalities, Supporting Hyperplanes, Faces, Facets

Definition 3.27.

Let $c \in \mathbb{R}^n \setminus \{0\}$ and $\gamma \in \mathbb{R}$.

- The linear inequality $c^T \cdot x \ge \gamma$ is valid for P if $P \subseteq \{x \mid c^T \cdot x \ge \gamma\}$.
- The hyperplane $H = \{x \in \mathbb{R}^n \mid c^T \cdot x = \gamma\}$ is a supporting hyperplane of P if $c^T \cdot x \geq \gamma$ is valid for P and $P \cap H \neq \emptyset$.
- The intersection of P with a supporting hyperplane is a face of P. Also P and \emptyset are faces of P; the others are called proper faces.
- d The inclusion-wise maximal proper faces are called facets.

Remarks.

- Every face of P is itself a polyhedron.
- ► Every vertex of *P* is a 0-dimensional face of *P*.
- ▶ The optimal LP solutions form a face of the underlying polyhedron.

Characterization of Faces

Theorem 3.28.

Consider a polyhedron $P \subseteq \mathbb{R}^n$ be defined by

$$a_i^T \cdot x \ge b_i$$
 for $i \in M$,
 $a_i^T \cdot x = b_i$ for $i \in N$,

and let $F \neq \emptyset$ be a face of P.

- There exists $K \subseteq M$ with $F = \{x \in P \mid a_i^T \cdot x = b_i \text{ for } i \in K\}$.
- **b** For $K \subseteq M$, the subset $\{x \in P \mid a_i^T \cdot x = b_i \text{ for } i \in K\}$ is a face of P.
- $G \subseteq F$ is a face of F if and only if it is a face of P.
- There is a chain of faces $F = F_0 \subset F_1 \subset \cdots \subset F_q = P$ such that $\dim(F_{i+1}) = \dim(F_i) + 1$, for $i = 0, \dots, q-1$.

M Skutella

ADM I (winter 2019/20

__

Proof of Theorem 3.28 a

Let $K := \{i \in M \mid a_i^T \cdot x = b_i \text{ for all } x \in F\}.$

Claim: $F = \{x \in P \mid a_i^T \cdot x = b_i \text{ for } i \in K\}$

 \subseteq : Clear by definition of K.

'⊇': Assume by contradiction that $y \in P \setminus F$ with $a_i^T \cdot y = b_i \ \forall i \in K$.

Let $c^T \cdot x \ge \gamma$ valid for P such that $F = \{x \in P \mid c^T \cdot x = \gamma\}$.

In particular, $c^T \cdot y > \gamma$ as $y \in P \setminus F$.

For each $i \in M \setminus K$ there is an $x^i \in F$ with $a_i^T \cdot x^i > b_i$.

Let $x_0 := \frac{1}{|M \setminus K|} \sum_{i \in M \setminus K} x^i \in F$ (convex), thus $c^T \cdot x_0 = \gamma$.

Notice that $a_i^T \cdot x_0 = b_i \ \forall \ i \in K \ \text{and} \ a_i^T \cdot x_0 > b_i \ \forall \ i \in M \setminus K$.

For $\varepsilon > 0$ small enough, $z := x_0 + \varepsilon(x_0 - y) \in P$ because:

$$a_i^T \cdot z = (1 + \varepsilon) a_i^T \cdot x_0 - \varepsilon a_i^T \cdot y \begin{cases} = b_i & \text{for } i \in N \cup K, \\ \geq b_i & \text{for } i \in M \setminus K \end{cases}$$

But
$$c^T \cdot z = (1 + \varepsilon) c^T \cdot x_0 - \varepsilon c^T \cdot y < \gamma$$
.

M. Skutella ADM I (winter 2019/20)

Proof of Theorem 3.28 b-d

- b) Let $c := \sum_{i \in K} a_i$ and $\gamma := \sum_{i \in K} b_i$. Then, $c^T \cdot x \ge \gamma$ is a valid inequality for P and for $x \in P$ $c^T \cdot x = \gamma \qquad \iff \qquad a_i^T \cdot x = b_i \text{ for all } i \in K.$
- c) ' \Leftarrow ': If $G = \{x \in P \mid c^T \cdot x = \gamma\} \subseteq F$ with $c^T \cdot x \ge \gamma$ valid for P, then $G = \{x \in F \mid c^T \cdot x = \gamma\}$ and $c^T \cdot x \ge \gamma$ valid for F.
 - ' \Longrightarrow ': $F = \{x \mid a_i^T \cdot x \ge b_i \ \forall i \in M \setminus K, \ a_i^T \cdot x = b_i \ \forall i \in K \cup N \}$ for some $K \subseteq M$ due to a). Since G is a face of F, again due to a), $G = \{x \mid a_i^T \cdot x \ge b_i \ \forall i \in M \setminus L, \ a_i^T \cdot x = b_i \ \forall i \in L \cup N \}$ for some $K \subseteq L \subseteq M$. Thus, due to b), G is a face of P.
- d) Follows from a-c and Lemma 3.17.

M. Skutella ADM I (winter 2019/20) 69

Characterization of Faces (Cont.)

Corollary 3.29.

Consider a polyhedron $P \subseteq \mathbb{R}^n$ be defined by

$$a_i^T \cdot x \ge b_i$$
 for $i \in M$,
 $a_i^T \cdot x = b_i$ for $i \in N$.

- P has finitely many distinct faces.
- If F is a facet of P, then dim(F) = dim(P) 1.
- An inclusion-wise minimal proper face F of P can be written as $F = \{x \in \mathbb{R}^n \mid {a_i}^T \cdot x = b_i \text{ for all } i \in K \cup N\}$ for some $K \subseteq M$ with $\text{rank}\{a_i \mid i \in K \cup N\} = \text{rank}\{a_i \mid i \in M \cup N\}$.
- \blacksquare If P is pointed, every minimal nonempty face of P is a vertex.

Proof: Exercise.

Edges, Extreme Rays, Extreme Lines

Definition 3.30.

A one-dimensional face F of polyhedron P is

- an edge if F has two vertices, i.e., $F = \text{conv}(\{x,y\})$ with $x,y \in \mathbb{R}^n$, $x \neq y$;
- **b** an extreme ray if F has one vertex, i.e., $F = x + \text{cone}(\{z\})$ with $x \in \mathbb{R}^n$, $z \in \mathbb{R}^n \setminus \{0\}$;
- an extreme line if F has no vertex, i.e., $F = x + \text{lin}(\{z\})$ with $x \in \mathbb{R}^n$, $z \in \mathbb{R}^n \setminus \{0\}$.

M. Skutella ADM I (winter 2019/20) 7

Optimality of Extreme Points

Theorem 3.31.

Let $P \subseteq \mathbb{R}^n$ a pointed polyhedron and $c \in \mathbb{R}^n$. If $\min\{c^T \cdot x \mid x \in P\}$ is bounded, there is a vertex that is optimal.

Proof:...

Corollary 3.32.

Every linear programming problem is either infeasible or unbounded or there exists an optimal solution.

Proof: Every linear program is equivalent to an LP in standard form. The claim thus follows from Corollary 3.24 and Theorem 3.31.

Number of Vertices

Corollary 3.33.

- a A polyhedron has a finite number of vertices and basic solutions.
- For a polyhedron in \mathbb{R}^n given by m linear inequalities, this number is at most $\binom{m}{n}$.

Example:

 $P := \{x \in \mathbb{R}^n \mid 0 \le x_i \le 1, i = 1, ..., n\}$ (n-dimensional unit cube)

- ▶ number of constraints: m = 2n
- number of vertices: 2ⁿ

M. Skutella ADM I (winter 2019/20) 73

Adjacent Basic Solutions and Edges

Definition 3.34.

Let $P \subseteq \mathbb{R}^n$ be a polyhedron.

- Two distinct basic solutions are adjacent if there are n-1 linearly independent constraints that are active at both of them.
- If both solutions are feasible, the line segment that joins them is an edge of *P*.

Polyhedra in Standard Form

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $P = \{x \in \mathbb{R}^n \mid A \cdot x = b, x \ge 0\}$ a polyhedron in standard form representation.

Observation.

One can assume without loss of generality that rank(A) = m.

Proof: Let $a_1, \ldots, a_m \in \mathbb{R}^n$ rows of A. Assume that $a_i = \sum_{j \neq i} \lambda_j \cdot a_j$.

Case 1: $b_i = \sum_{j \neq i} \lambda_j b_j$. Then,

$$a_j^T \cdot x = b_j \quad \forall j \neq i \quad \Longrightarrow \quad a_i^T \cdot x = \sum_{j \neq i} \lambda_j \cdot (a_j^T \cdot x) = \sum_{j \neq i} \lambda_j b_j = b_i.$$

Thus the *i*th constraint is redundant and can be deleted.

Case 2:
$$b_i \neq \sum_{j \neq i} \lambda_j b_j \implies A \cdot x = b$$
 has no solution.

M. Skutella

ADM I (winter 2019/20)

75

Basic Solutions of Polyhedra in Standard Form

Let $A \in \mathbb{R}^{m \times n}$ with rank(A) = m, $b \in \mathbb{R}^m$, and

$$P = \{ x \in \mathbb{R}^n \mid A \cdot x = b, \ x \ge 0 \}$$

Theorem 3.35.

A point $x \in \mathbb{R}^n$ is a basic solution of P if and only if $A \cdot x = b$ and there are indices $B(1), \ldots, B(m) \in \{1, \ldots, n\}$ such that

- ightharpoonup columns $A_{B(1)},\ldots,A_{B(m)}$ of matrix A are linearly independent, and
- ► $x_i = 0$ for all $i \notin \{B(1), ..., B(m)\}.$

Proof: ...

- \triangleright $x_{B(1)}, \ldots, x_{B(m)}$ are basic variables, the remaining variables non-basic.
- ▶ The vector of basic variables is denoted by $x_B := (x_{B(1)}, \dots, x_{B(m)})^T$.
- $ightharpoonup A_{B(1)}, \ldots, A_{B(m)}$ are basic columns of A and form a basis of \mathbb{R}^m .
- ▶ The matrix $B := (A_{B(1)}, \dots, A_{B(m)}) \in \mathbb{R}^{m \times m}$ is called basis matrix.

Corollary: Carathéodory's Theorem

Theorem 3.36 (Carathéodory 1911).

For $S \subseteq \mathbb{R}^n$, every element of conv(S) can be written as a convex combination of at most n+1 points in S.

Proof: Consider $x \in \text{conv}(S)$. Then x can be written as

$$x = \sum_{i=1}^k \lambda_i' y_i$$
 with $y_1, \dots, y_k \in S$ and $\sum_{i=1}^k \lambda_i' = 1$, $\lambda' \ge 0$.

Consider the following polyhedron in standard form:

$$P = \left\{ \lambda \in \mathbb{R}^k \, \Big| \, \underbrace{\sum_{i=1}^k \lambda_i \, y_i = x, \, \sum_{i=1}^k \lambda_i = 1, \, \lambda \geq 0}_{n+1 \, \text{ equality constraints}}, \, \lambda \geq 0 \right\}.$$

A basic feasible solution $\lambda^* \in P$ yields the desired representation of x.

M. Skutella

ADM I (winter 2019/20)

Basic Columns and Basic Solutions

Observation 3.37.

Let $x \in \mathbb{R}^n$ be a basic solution, then:

- \triangleright $B \cdot x_B = b$ and thus $x_B = B^{-1} \cdot b$;
- x is a basic feasible solution if and only if $x_B = B^{-1} \cdot b \ge 0$.

Example: m = 2 A_3 A_1 A_2

- \triangleright A_1, A_3 or A_2, A_3 form bases with corresp. basic feasible solutions.
- \triangleright A_1, A_4 do not form a basis.
- \triangleright A_1, A_2 and A_2, A_4 and A_3, A_4 form bases with infeasible basic solution.

Bases and Basic Solutions

Corollary 3.38.

- ▶ Every basis $A_{B(1)}, \ldots, A_{B(m)}$ determines a unique basic solution.
- ► Thus, different basic solutions correspond to different bases.
- ▶ But: two different bases might yield the same basic solution.

Example: If b = 0, then x = 0 is the only basic solution.

M. Skutella

ADM I (winter 2019/20

70

Adjacent Bases

Definition 3.39.

Two bases $A_{B(1)}, \ldots, A_{B(m)}$ and $A_{B'(1)}, \ldots, A_{B'(m)}$ are adjacent if they share all but one column.

Observation 3.40.

- a Two adjacent basic solutions can always be obtained from two adjacent bases.
- If two adjacent bases lead to distinct basic solutions, then the latter are adjacent.

Degeneracy

Definition 3.41.

A basic solution x of a polyhedron $P \subseteq \mathbb{R}^n$ is degenerate if more than n constraints are active at x.

Observation 3.42.

Let $P = \{x \in \mathbb{R}^n \mid A \cdot x = b, \ x \ge 0\}$ be a polyhedron in standard form with $A \in \mathbb{R}^{m \times n}$, rank(A) = m, and $b \in \mathbb{R}^m$.

- a A basic solution $x \in P$ is degenerate if and only if more than n m components of x are zero.
- **b** For a non-degenerate basic solution $x \in P$, there is a unique basis.

M. Skutella ADM I (winter 2019/20) 8

Three Different Reasons for Degeneracy

redundant variables

Example:
$$x_1 + x_2 = 1$$

$$x_3 = 0 \longleftrightarrow A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$x_1, x_2, x_3 \ge 0$$

ii redundant constraints

Example:
$$x_1 + 2x_2 \le 3$$

 $2x_1 + x_2 \le 3$
 $x_1 + x_2 \le 2$
 $x_1, x_2 \ge 0$

geometric reasons (non-simple polyhedra)

Example: Octahedron

Observation 3.43.

Perturbing the right hand side vector b may remove degeneracy.