電磁波工学A中間試験

(全て持ち込み不可)

問14つの Maxwell の方程式を記せ.	また Maxwell の方程式の物理的意味を説明せよ.	(8)
------------------------	-----------------------------	-----

		20071 2 2. (0)			
Maxwell の方程式	物理的意味				

問2	誘電率 ε か	$\epsilon(\mathbf{r},f)$ で与えられ	るとき,	どのような媒	質であるのか分	う類せよ.	分類の種類に	t 4
	The second secon	$\sum C \tilde{\mathbf{r}} = (x, y, z)$						

周波数 : _______媒質 電界の強さ : ______媒質 場所 : ______媒質 電界の向き : _____媒質

問3 境界での境界条件を記せ、また、境界条件を利用して以下の問いに答えよ、

比誘電率 2 の無損失媒質を媒質 I , 比誘電率 4 の無損失媒質を媒質 I とする. 領域 I と I の境界は x=0 で与えられる. 領域 I の電界は境界上で E_2 = (3,2,1) と与えられるとき,境界面上での媒質 I 中の電東密度 D_1 を求めよ.導出過程を記述すること.(10)

- 問4 3GHz の電磁波の真空中の速度 $c_0(cm/s)$ と<u>波長 λ_0 の近似値(cm)</u>を記せ. また, 比誘電率 9 の媒質中の<u>電磁波の速度 v(cm/ns)と波長 λ の近似値(cm)と媒質中の周波数</u>を記せ. (5)
- 問5時間調和依存の電磁波とはどのような電磁波か説明せよ. (5)
- 問6ポインティングベクトルの定義式と単位を記し、その大きさと方向はそれぞれ何を表 すのか記せ. (5)
- 問7<u>時間調和振動</u>のとき誘電率 ϵ , 透磁率 μ の無損失媒質中の電界の波動方程式を Maxwell の方程式から導出せよ. ただし、波源はないものとする. (8)
- 問8 真空中の波動方程式 $\nabla^2 \mathbf{E} = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \mathbf{E}$ を<u>時間調和振動</u>で、x 方向に電磁波が伝搬していると仮定して解き、電界ベクトル $\mathbf{E}(x,y,z,t)$ を求めよ. ただし、電界は \mathbf{z} 成分だけを持つものとする. (10)
- 問9電界が $\mathbf{E}(z,t) = E_0 e^{j(al+bz)} \mathbf{i}_x$ で与えられるとき、電磁波の伝搬方向と伝搬速度を求めよ、ただし、a,b は正の実数である。(6)
- 問10 電界が $\mathbf{E}(z,t) = E_0 e^{j(\omega t kz)} \mathbf{i}_x$, $k = \omega / c$ で与えられるとき, Maxwell の方程式を利用して磁界を求めよ. (10)
- 問11 平面波,円筒波,球面波の定義を示し、それらの特徴を知るだけ述べよ。(10)
- 問12 表皮の厚さとは何か説明せよ. また, 導電率 $80 \times 10^6 \, \mathrm{S/m}$ の導体に周波数 $5 \, \mathrm{GHz}$ の電磁 波が入射したときの表皮の深さを求めよ. $\mu_o = 4\pi \times 10^{-7}$ (10)
- 問13 電波の発生原理と伝搬の原理を説明せよ。(9)