

Fast Robustness Quantification with Variational Bayes

Tamara Broderick

ITT Career Development Assistant Professor, MIT

With: Ryan Giordano, Rachael Meager, Jonathan Huggins, Michael I. Jordan

• Bayesian inference

- Bayesian inference
 - Complex, modular models

- Bayesian inference
 - Complex, modular models; posterior distribution

- Bayesian inference $p(\theta)$
 - Complex, modular models; posterior distribution

Bayesian inference

$$p(x|\theta)p(\theta)$$

• Complex, modular models; posterior distribution

- Bayesian inference $p(\theta|x) \propto_{\theta} p(x|\theta)p(\theta)$
 - Complex, modular models; posterior distribution

- Bayesian inference $p(\theta|x) \propto_{\theta} p(x|\theta)p(\theta)$
 - Complex, modular models; posterior distribution
- Have to express prior beliefs in a distribution: challenges

- Bayesian inference $p(\theta|x) \propto_{\theta} p(x|\theta)p(\theta)$
 - Complex, modular models; posterior distribution
- Have to express prior beliefs in a distribution: challenges
 - Time-consuming

- Bayesian inference $p(\theta|x) \propto_{\theta} p(x|\theta)p(\theta)$
 - Complex, modular models; posterior distribution
- Have to express prior beliefs in a distribution: challenges
 - Time-consuming; subjective

- Bayesian inference $p(\theta|x) \propto_{\theta} p(x|\theta)p(\theta)$
 - Complex, modular models; posterior distribution
- Have to express prior beliefs in a distribution: challenges
 - Time-consuming; subjective

- Bayesian inference $p(\theta|x) \propto_{\theta} p(x|\theta)p(\theta)$
 - Complex, modular models; posterior distribution
- Have to express prior beliefs in a distribution: challenges
 - Time-consuming; subjective

- Bayesian inference $p(\theta|x) \propto_{\theta} p(x|\theta)p(\theta)$
 - Complex, modular models; posterior distribution
- Have to express prior beliefs in a distribution: challenges
 - Time-consuming; subjective

- Bayesian inference $p(\theta|x) \propto_{\theta} p(x|\theta)p(\theta)$
 - Complex, modular models; posterior distribution
- Have to express prior beliefs in a distribution: challenges
 - Time-consuming; subjective; complex models

- Bayesian inference $p(\theta|x) \propto_{\theta} p(x|\theta)p(\theta)$
 - Complex, modular models; posterior distribution
- Have to express prior beliefs in a distribution: challenges
 - Time-consuming; subjective; complex models

- Bayesian inference $p(\theta|x) \propto_{\theta} p(x|\theta)p(\theta)$
 - Complex, modular models; posterior distribution
- Have to express prior beliefs in a distribution: challenges
 - Time-consuming; subjective; complex models
- Robustness

- Bayesian inference $p(\theta|x) \propto_{\theta} p(x|\theta)p(\theta)$
 - Complex, modular models; posterior distribution
- Have to express prior beliefs in a distribution: challenges
 - Time-consuming; subjective; complex models
- Robustness
 - Global & local

- Bayesian inference $p(\theta|x) \propto_{\theta} p(x|\theta)p(\theta)$
 - Complex, modular models; posterior distribution
- Have to express prior beliefs in a distribution: challenges
 - Time-consuming; subjective; complex models
- Robustness
 - Global & local
 - Rarely used

- Bayesian inference $p(\theta|x) \propto_{\theta} p(x|\theta)p(\theta)$
 - Complex, modular models; posterior distribution
- Have to express prior beliefs in a distribution: challenges
 - Time-consuming; subjective; complex models
- Robustness
 - Global & local
 - Rarely used
 - Approximation

- Bayesian inference $p(\theta|x) \propto_{\theta} p(x|\theta)p(\theta)$
 - Complex, modular models; posterior distribution
- Have to express prior beliefs in a distribution: challenges
 - Time-consuming; subjective; complex models
- Robustness
 - Global & local
 - Rarely used
 - Approximation, MCMC

- Bayesian inference $p(\theta|x) \propto_{\theta} p(x|\theta)p(\theta)$
 - Complex, modular models; posterior distribution
- Have to express prior beliefs in a distribution: challenges
 - Time-consuming; subjective; complex models
- Robustness
 - Global & local
 - Rarely used
 - Approximation, MCMC
- Our solution:

- Bayesian inference $p(\theta|x) \propto_{\theta} p(x|\theta)p(\theta)$
 - Complex, modular models; posterior distribution
- Have to express prior beliefs in a distribution: challenges
 - Time-consuming; subjective; complex models
- Robustness
 - Global & local
 - Rarely used
 - Approximation, MCMC
- Our solution: linear response variational Bayes

Variational Bayes as an alternative to MCMC

- Variational Bayes as an alternative to MCMC
- Challenges of VB

- Variational Bayes as an alternative to MCMC
- Challenges of VB
- Accurate uncertainties from VB

- Variational Bayes as an alternative to MCMC
- Challenges of VB
- Accurate uncertainties from VB
- Accurate robustness quantification from VB

- Variational Bayes as an alternative to MCMC
- Challenges of VB
- Accurate uncertainties from VB
- Accurate robustness quantification from VB
- Big idea: derivatives/perturbations are easy in VB

Variational Bayes (VB)

Variational Bayes (VB)

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
 - Minimize Kullback-Liebler (KL) divergence:

$$KL(q||p(\cdot|x))$$

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
 - Minimize Kullback-Liebler (KL) divergence:

$$KL(q||p(\cdot|x))$$

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
 - Minimize Kullback-Liebler (KL) divergence:

$$KL(q||p(\cdot|x))$$

VB practical success

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
 - Minimize Kullback-Liebler (KL) divergence:

$$KL(q||p(\cdot|x))$$

- VB practical success
 - point estimates and prediction

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
 - Minimize Kullback-Liebler (KL) divergence:

$$KL(q||p(\cdot|x))$$

- VB practical success
 - point estimates and prediction
 - fast

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
 - Minimize Kullback-Liebler (KL) divergence:

$$KL(q||p(\cdot|x))$$

- VB practical success
 - point estimates and prediction
 - fast, streaming, distributed

$$KL(q||p(\cdot|x)) = \int_{\theta} q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta$$

Variational Bayes

$$KL(q||p(\cdot|x)) = \int_{\theta} q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta$$

Mean-field variational Bayes (MFVB)

$$q(\theta) = \prod_{j=1}^{J} q(\theta_j)$$

Variational Bayes

$$KL(q||p(\cdot|x)) = \int_{\theta} q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta$$

Mean-field variational Bayes (MFVB)

$$q(\theta) = \prod_{j=1}^{J} q(\theta_j)$$

Variational Bayes

$$KL(q||p(\cdot|x)) = \int_{\theta} q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta$$

Mean-field variational Bayes (MFVB)

$$q(\theta) = \prod_{j=1}^{J} q(\theta_j)$$

Underestimates variance (sometimes severely)

Variational Bayes

$$KL(q||p(\cdot|x)) = \int_{\theta} q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta$$

Mean-field variational Bayes (MFVB)

$$q(\theta) = \prod_{j=1}^{J} q(\theta_j)$$

Underestimates variance (sometimes severely)

 $q^*(\theta)$

No covariance estimates

Variational Bayes

$$KL(q||p(\cdot|x)) = \int_{\theta} q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta$$

Mean-field variational Bayes (MFVB)

$$q(\theta) = \prod_{j=1}^{J} q(\theta_j)$$

Underestimates variance (sometimes severely)

No covariance estimates

Variational Bayes

$$KL(q||p(\cdot|x)) = \int_{\theta} q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta$$

Mean-field variational Bayes (MFVB)

$$q(\theta) = \prod_{j=1}^{J} q(\theta_j)$$

Underestimates variance (sometimes severely)

No covariance estimates

 θ_1

Cumulant-generating function

Cumulant-generating function

$$C(t) := \log \mathbb{E}e^{t^T\theta}$$

Cumulant-generating function

$$C(t) := \log \mathbb{E}e^{t^T\theta}$$

$$mean = \left. \frac{d}{dt} C(t) \right|_{t=0}$$

Cumulant-generating function

$$C(t) := \log \mathbb{E}e^{t^T\theta}$$

$$mean = \left. \frac{d}{dt} C(t) \right|_{t=0}$$

True posterior covariance

Cumulant-generating function

$$C(t) := \log \mathbb{E}e^{t^T\theta}$$

$$mean = \left. \frac{d}{dt} C(t) \right|_{t=0}$$

True posterior covariance

$$\Sigma := \left. \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \right|_{t=0}$$

Cumulant-generating function

True posterior covariance vs MFVB covariance

$$\Sigma := \left. \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \right|_{t=0}$$

Cumulant-generating function

True posterior covariance vs MFVB covariance

$$\Sigma := \left. \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \right|_{t=0} \qquad V := \left. \frac{d^2}{dt^T dt} C_{q^*}(t) \right|_{t=0}$$

$$V := \left. \frac{d^2}{dt^T dt} C_{q^*}(t) \right|_{t=0}$$

Cumulant-generating function

$$C(t) := \log \mathbb{E}e^{t^T\theta}$$
 $\text{mean} = \left. \frac{d}{dt}C(t) \right|_{t=0}$

True posterior covariance vs MFVB covariance

$$\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \qquad V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0}$$

Cumulant-generating function

True posterior covariance vs MFVB covariance

$$\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \qquad V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0}$$

$$V := \left. \frac{d^2}{dt^T dt} C_{q^*}(t) \right|_{t=0}$$

$$\log p(\theta|x)$$

Cumulant-generating function

$$C(t) := \log \mathbb{E}e^{t^T\theta}$$
 $mean = \frac{d}{dt}C(t)\Big|_{t=0}$

True posterior covariance vs MFVB covariance

$$\Sigma := \left. \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \right|_{t=0} \qquad V := \left. \frac{d^2}{dt^T dt} C_{q^*}(t) \right|_{t=0}$$

$$V := \left. \frac{d^2}{dt^T dt} C_{q^*}(t) \right|_{t=0}$$

$$\log p(\theta|x) + t^T \theta$$

Cumulant-generating function

$$C(t) := \log \mathbb{E}e^{t^T\theta}$$
 $mean = \frac{d}{dt}C(t)\Big|_{t=0}$

True posterior covariance vs MFVB covariance

$$\Sigma := \left. \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \right|_{t=0} \qquad V := \left. \frac{d^2}{dt^T dt} C_{q^*}(t) \right|_{t=0}$$

$$V := \left. \frac{d^2}{dt^T dt} C_{q^*}(t) \right|_{t=0}$$

$$\log p_t(\theta) := \log p(\theta|x) + t^T \theta$$

Cumulant-generating function

$$C(t) := \log \mathbb{E}e^{t^T\theta}$$
 $mean = \frac{d}{dt}C(t)\Big|_{t=0}$

True posterior covariance vs MFVB covariance

$$\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \qquad V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0}$$

$$\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t)$$

Cumulant-generating function

True posterior covariance vs MFVB covariance

$$\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \qquad V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0}$$

$$\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t), \text{ MFVB } q_t^*$$

Cumulant-generating function

True posterior covariance vs MFVB covariance

$$\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \qquad V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0}$$

"Linear response"

$$\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t)$$
, MFVB q_t^*

Cumulant-generating function

$$C(t) := \log \mathbb{E}e^{t^T\theta}$$
 $\text{mean} = \left. \frac{d}{dt}C(t) \right|_{t=0}$

True posterior covariance vs MFVB covariance

$$\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \qquad V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0}$$

"Linear response"

$$\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t), \text{ MFVB } q_t^*$$

$$\Sigma = \frac{d}{dt^T} \left[\frac{d}{dt} C_{p(\cdot|x)}(t) \right]_{t=0}$$

Cumulant-generating function

$$C(t) := \log \mathbb{E}e^{t^T\theta}$$
 $\text{mean} = \left. \frac{d}{dt}C(t) \right|_{t=0}$

True posterior covariance vs MFVB covariance

$$\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \qquad V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0}$$

"Linear response"

$$\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t)$$
, MFVB q_t^*

$$\Sigma = \left. \frac{d}{dt^T} \mathbb{E}_{p_t} \theta \right|_{t=0}$$

Cumulant-generating function

True posterior covariance vs MFVB covariance

$$\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \qquad V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0}$$

"Linear response"

$$\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t)$$
, MFVB q_t^*

$$\Sigma = \left. \frac{d}{dt^T} \mathbb{E}_{p_t} \theta \right|_{t=0}$$

Cumulant-generating function

True posterior covariance vs MFVB covariance

$$\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \qquad V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0}$$

"Linear response"

$$\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t)$$
, MFVB q_t^*

$$\Sigma = \left. \frac{d}{dt^T} \mathbb{E}_{p_t} \theta \right|_{t=0}$$

Cumulant-generating function

$$C(t) := \log \mathbb{E}e^{t^T\theta}$$
 $mean = \frac{d}{dt}C(t)\Big|_{t=0}$

True posterior covariance vs MFVB covariance

$$\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \qquad V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0}$$

"Linear response"

$$\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t), \text{ MFVB } q_t^*$$

$$\Sigma = \left. \frac{d}{dt^T} \mathbb{E}_{p_t} \theta \right|_{t=0} \approx \left. \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \right|_{t=0}$$

Cumulant-generating function

$$C(t) := \log \mathbb{E}e^{t^T\theta}$$
 $\text{mean} = \left. \frac{d}{dt}C(t) \right|_{t=0}$

True posterior covariance vs MFVB covariance

$$\Sigma := \frac{d^2}{dt^T dt} C_{p(\cdot|x)}(t) \bigg|_{t=0} \qquad V := \frac{d^2}{dt^T dt} C_{q^*}(t) \bigg|_{t=0}$$

"Linear response"

$$\log p_t(\theta) := \log p(\theta|x) + t^T \theta - C(t)$$
, MFVB q_t^*

$$\Sigma = \left. \frac{d}{dt^T} \mathbb{E}_{p_t} \theta \right|_{t=0} \approx \left. \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \right|_{t=0} =: \hat{\Sigma}$$

• LRVB covariance estimate $\hat{\Sigma} := \left. \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \right|_{t=0}$

- LRVB covariance estimate $\hat{\Sigma} := \left. \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \right|_{t=0}$
- Suppose q_t exponential family

- LRVB covariance estimate $\left. \hat{\Sigma} := \left. \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \right|_{t=0}$
- Suppose q_t exponential family with mean parametrization m_t

- LRVB covariance estimate $\left. \hat{\Sigma} := \left. \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \right|_{t=0}$
- Suppose q_t exponential family with mean parametrization m_t

$$\hat{\Sigma} =$$

- LRVB covariance estimate $\hat{\Sigma} := \left. \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \right|_{t=0}$
- Suppose q_t exponential family with mean parametrization m_t

$$\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1}$$

- LRVB covariance estimate $\ \hat{\Sigma} := \left. \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \right|_{t=0}$
- Suppose q_t exponential family with mean parametrization m_t

$$\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1} = (I - VH)^{-1}V$$

- LRVB covariance estimate $\hat{\Sigma} := \left. \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \right|_{t=0}$
- Suppose q_t exponential family with mean parametrization m_t

$$\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1} = (I - VH)^{-1}V$$

Symmetric and positive definite at local min of KL

- LRVB covariance estimate $\hat{\Sigma} := \left. \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \right|_{t=0}$
- Suppose q_t exponential family with mean parametrization m_t

$$\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1} = (I - VH)^{-1}V$$

- Symmetric and positive definite at local min of KL
- The LRVB assumption: $\mathbb{E}_{p_t}\theta \approx \mathbb{E}_{q_t^*}\theta$

- LRVB covariance estimate $\hat{\Sigma} := \left. \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \right|_{t=0}$
- Suppose q_t exponential family with mean parametrization m_t

$$\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1} = (I - VH)^{-1}V$$

- Symmetric and positive definite at local min of KL
- The LRVB assumption: $\mathbb{E}_{p_t} \theta pprox \mathbb{E}_{q_t^*} \theta$

- LRVB covariance estimate $\hat{\Sigma} := \left. \frac{d}{dt^T} \mathbb{E}_{q_t^*} \theta \right|_{t=0}$
- Suppose q_t exponential family with mean parametrization m_t

$$\hat{\Sigma} = \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m-m^*} \right)^{-1} = (I - VH)^{-1}V$$

- Symmetric and positive definite at local min of KL
- The LRVB assumption: $\mathbb{E}_{p_t} \theta pprox \mathbb{E}_{q_t^*} \theta$
- LRVB estimate is exact when MFVB gives exact mean (e.g. multivariate normal)

Simplified from Meager (2015)

- Simplified from Meager (2015)
- K microcredit trials (Mexico, Mongolia, Bosnia, India, Morocco, Philippines, Ethiopia)

- Simplified from Meager (2015)
- K microcredit trials (Mexico, Mongolia, Bosnia, India, Morocco, Philippines, Ethiopia)
- N_k businesses in kth site (~900 to ~17K)

- Simplified from Meager (2015)
- K microcredit trials (Mexico, Mongolia, Bosnia, India, Morocco, Philippines, Ethiopia)
- N_k businesses in kth site (~900 to ~17K)
- Profit of nth business at kth site:

- Simplified from Meager (2015)
- K microcredit trials (Mexico, Mongolia, Bosnia, India, Morocco, Philippines, Ethiopia)
- N_k businesses in kth site (~900 to ~17K)
- Profit of nth business at kth site:

- Simplified from Meager (2015)
- K microcredit trials (Mexico, Mongolia, Bosnia, India, Morocco, Philippines, Ethiopia)
- N_k businesses in kth site (~900 to ~17K)
- Profit of nth business at kth site:

```
profit y_{kn} \overset{indep}{\sim} \mathcal{N}(
```

- Simplified from Meager (2015)
- K microcredit trials (Mexico, Mongolia, Bosnia, India, Morocco, Philippines, Ethiopia)
- N_k businesses in kth site (~900 to ~17K)
- Profit of nth business at kth site:

```
profit y_{kn} \stackrel{indep}{\sim} \mathcal{N}(\mu_k) ,
```

- Simplified from Meager (2015)
- K microcredit trials (Mexico, Mongolia, Bosnia, India, Morocco, Philippines, Ethiopia)
- N_k businesses in kth site (~900 to ~17K)
- Profit of nth business at kth site:

```
profit y_{kn} \stackrel{indep}{\sim} \mathcal{N}(\mu_k + T_{kn}\tau_k, )
```

- Simplified from Meager (2015)
- K microcredit trials (Mexico, Mongolia, Bosnia, India, Morocco, Philippines, Ethiopia)

1 if microcredit

- N_k businesses in kth site (~900 to ~17K)
- Profit of *n*th business at *k*th site:

profit $y_{kn} \stackrel{indep}{\sim} \mathcal{N}(\mu_k + T_{kn}\tau_k,)$

- Simplified from Meager (2015)
- K microcredit trials (Mexico, Mongolia, Bosnia, India, Morocco, Philippines, Ethiopia)

1 if microcredit

- N_k businesses in kth site (~900 to ~17K)
- Profit of *n*th business at *k*th site:

profit $y_{kn} \stackrel{indep}{\sim} \mathcal{N}(\mu_k + T_{kn} \tau_k, \quad)$

- Simplified from Meager (2015)
- K microcredit trials (Mexico, Mongolia, Bosnia, India, Morocco, Philippines, Ethiopia)

1 if microcredit

- N_k businesses in kth site (~900 to ~17K)
- Profit of *n*th business at *k*th site:

profit $y_{kn} \stackrel{indep}{\sim} \mathcal{N}(\mu_k + T_{kn}\tau_k, \sigma_k^2)$

- Simplified from Meager (2015)
- K microcredit trials (Mexico, Mongolia, Bosnia, India, Morocco, Philippines, Ethiopia)

1 if microcredit

- N_k businesses in kth site (~900 to ~17K)
- Profit of *n*th business at *k*th site:

profit $y_{kn} \stackrel{indep}{\sim} \mathcal{N}(\mu_k + T_{kn}\tau_k, \sigma_k^2)$

- Simplified from Meager (2015)
- K microcredit trials (Mexico, Mongolia, Bosnia, India, Morocco, Philippines, Ethiopia)

1 if microcredit

- N_k businesses in kth site (~900 to ~17K)
- Profit of *n*th business at *k*th site:

profit $y_{kn} \overset{indep}{\sim} \mathcal{N}(\mu_k + T_{kn}\tau_k, \sigma_k^2)$

Priors and hyperpriors:

- Simplified from Meager (2015)
- K microcredit trials (Mexico, Mongolia, Bosnia, India, Morocco, Philippines, Ethiopia)

√1 if microcredit

- N_k businesses in kth site (~900 to ~17K)
- Profit of *n*th business at *k*th site:

profit
$$y_{kn} \stackrel{indep}{\sim} \mathcal{N}(\mu_k + T_{kn}\tau_k, \sigma_k^2)$$

Priors and hyperpriors:

$$\left(\begin{array}{c} \mu_k \\ \tau_k \end{array}\right) \stackrel{iid}{\sim} \mathcal{N}\left(\left(\begin{array}{c} \mu \\ \tau \end{array}\right), C\right)$$

- Simplified from Meager (2015)
- K microcredit trials (Mexico, Mongolia, Bosnia, India, Morocco, Philippines, Ethiopia)

→1 if microcredit

- N_k businesses in kth site (~900 to ~17K)
- Profit of *n*th business at *k*th site:

profit
$$y_{kn} \stackrel{indep}{\sim} \mathcal{N}(\mu_k + T_{kn}\tau_k, \sigma_k^2)$$

Priors and hyperpriors:

$$\left(\begin{array}{c} \mu_k \\ \tau_k \end{array}\right) \stackrel{iid}{\sim} \mathcal{N}\left(\left(\begin{array}{c} \mu \\ \tau \end{array}\right), C\right)$$

$$\sigma_k^{-2} \stackrel{iid}{\sim} \Gamma(a,b)$$

- Simplified from Meager (2015)
- K microcredit trials (Mexico, Mongolia, Bosnia, India, Morocco, Philippines, Ethiopia)
- N_k businesses in kth site (~900 to ~17K)
- Profit of nth business at kth site:

profit
$$y_{kn} \stackrel{indep}{\sim} \mathcal{N}(\mu_k + T_{kn}\tau_k, \sigma_k^2)$$

Priors and hyperpriors:

$$\begin{pmatrix} \mu_k \\ \tau_k \end{pmatrix} \stackrel{iid}{\sim} \mathcal{N} \left(\begin{pmatrix} \mu \\ \tau \end{pmatrix}, C \right) \qquad \begin{pmatrix} \mu \\ \tau \end{pmatrix} \stackrel{iid}{\sim} \mathcal{N} \left(\begin{pmatrix} \mu_0 \\ \tau_0 \end{pmatrix}, \Lambda^{-1} \right)$$

$$\sigma_k^{-2} \stackrel{iid}{\sim} \Gamma(a, b)$$
 $C \sim \text{Sep&LKJ}(\eta, c, d)$

√1 if microcredit

One set of 2500
 MCMC draws: 45
 minutes

One set of 2500
 MCMC draws: 45
 minutes

 All of MFVB optimization, LRVB uncertainties, all sensitivity

measures: **58**

seconds

One set of 2500
 MCMC draws: 45
 minutes

 All of MFVB optimization, LRVB uncertainties, all sensitivity

measures: 58

seconds

One set of 2500
 MCMC draws: 45
 minutes

 All of MFVB optimization, LRVB uncertainties, all sensitivity measures: 58

seconds

 Many other models and data sets: Mixture models, generalized linear mixed models, etc

Robustness quantification

- Variational Bayes as an alternative to MCMC
- Challenges of VB
- Accurate uncertainties from VB
- Accurate robustness quantification from VB
- Big idea: derivatives/perturbations are easy in VB

Robustness quantification

- Variational Bayes as an alternative to MCMC
- Challenges of VB
- Accurate uncertainties from VB
- Accurate robustness quantification from VB
- Big idea: derivatives/perturbations are easy in VB

Bayes Theorem

$$p(\theta|x)$$

$$\propto_{\theta} p(x|\theta)p(\theta)$$

Bayes Theorem

$$p(\theta|x,\alpha)$$

$$\propto_{\theta} p(x|\theta)p(\theta|\alpha)$$

Bayes Theorem

$$p_{\alpha}(\theta) := p(\theta|x, \alpha)$$
$$\propto_{\theta} p(x|\theta)p(\theta|\alpha)$$

Bayes Theorem

$$p_{\alpha}(\theta) := p(\theta|x,\alpha)$$
$$\propto_{\theta} p(x|\theta)p(\theta|\alpha)$$

Bayes Theorem

$$p_{\alpha}(\theta) := p(\theta|x,\alpha)$$
$$\propto_{\theta} p(x|\theta)p(\theta|\alpha)$$

Bayes Theorem

$$p_{\alpha}(\theta) := p(\theta|x,\alpha)$$
$$\propto_{\theta} p(x|\theta)p(\theta|\alpha)$$

$$\mathbb{E}_{p_{\alpha}}[g(\theta)]$$

Bayes Theorem

$$p_{\alpha}(\theta) := p(\theta|x, \alpha)$$
$$\propto_{\theta} p(x|\theta)p(\theta|\alpha)$$

$$\mathbb{E}_{p_{\alpha}}[g(\theta)]$$

Bayes Theorem

$$p_{\alpha}(\theta) := p(\theta|x,\alpha)$$
$$\propto_{\theta} p(x|\theta)p(\theta|\alpha)$$

$$\mathbb{E}_{p_{\alpha}}[g(\theta)]$$

Bayes Theorem

$$p_{\alpha}(\theta) := p(\theta|x, \alpha)$$
$$\propto_{\theta} p(x|\theta)p(\theta|\alpha)$$

$$S := \left. \frac{d\mathbb{E}_{p_{\alpha}}[g(\theta)]}{d\alpha} \right|_{\alpha} \Delta \alpha$$

Bayes Theorem

$$p_{\alpha}(\theta) := p(\theta|x,\alpha)$$
$$\propto_{\theta} p(x|\theta)p(\theta|\alpha)$$

$$S := \left. \frac{d\mathbb{E}_{p_{\alpha}}[g(\theta)]}{d\alpha} \right|_{\alpha} \Delta \alpha$$

$$pprox \left. rac{d\mathbb{E}_{q_{lpha}^*}[g(heta)]}{dlpha} \right|_{lpha} \Deltalpha =: \hat{S}$$

Bayes Theorem

$$p_{\alpha}(\theta) := p(\theta|x,\alpha)$$
$$\propto_{\theta} p(x|\theta)p(\theta|\alpha)$$

$$S := \left. \frac{d\mathbb{E}_{p_{\alpha}}[g(\theta)]}{d\alpha} \right|_{\alpha} \Delta \alpha$$

Bayes Theorem

$$p_{\alpha}(\theta) := p(\theta|x,\alpha)$$
$$\propto_{\theta} p(x|\theta)p(\theta|\alpha)$$

Sensitivity

$$S:=\left.rac{d\mathbb{E}_{p_{lpha}}[g(heta)]}{dlpha}
ight|_{lpha}\Deltalpha$$
 on $\Deltalpha=:\hat{S}$ LRVB estimator

• When q_{α}^* in exponential family

Bayes Theorem

$$p_{\alpha}(\theta) := p(\theta|x,\alpha)$$

$$\propto_{\theta} p(x|\theta)p(\theta|\alpha)$$

$$\underset{\scriptscriptstyle{0.15}}{\bullet}$$

Sensitivity

$$S := \left. \frac{d\mathbb{E}_{p_{\alpha}}[g(\theta)]}{d\alpha} \right|_{\alpha} \Delta \alpha$$

• When q_{α}^* in exponential family

$$\hat{S} = A \left(\frac{\partial^2 KL}{\partial m \partial m^T} \bigg|_{m=m^*} \right)^{-1} B$$

- Simplified from Meager (2015)
- K microcredit trials (Mexico, Mongolia, Bosnia, India, Morocco, Philippines, Ethiopia)
- N_k businesses in kth site (~900 to ~17K)
- Profit of nth business at kth site:

profit
$$y_{kn} \stackrel{indep}{\sim} \mathcal{N}(\mu_k + T_{kn}\tau_k, \sigma_k^2)$$

Priors and hyperpriors:

$$\begin{pmatrix} \mu_k \\ \tau_k \end{pmatrix} \stackrel{iid}{\sim} \mathcal{N} \left(\begin{pmatrix} \mu \\ \tau \end{pmatrix}, C \right) \qquad \begin{pmatrix} \mu \\ \tau \end{pmatrix} \stackrel{iid}{\sim} \mathcal{N} \left(\begin{pmatrix} \mu_0 \\ \tau_0 \end{pmatrix}, \Lambda^{-1} \right)$$

$$\sigma_k^{-2} \stackrel{iid}{\sim} \Gamma(a, b)$$
 $C \sim \text{Sep&LKJ}(\eta, c, d)$

30

Means

Parameter

• Perturb Λ_{11} : 0.03 \rightarrow 0.04

• Perturb Λ_{11} : 0.03 \rightarrow 0.04

 Sensitivity of the expected microcredit effect (τ)

- Sensitivity of the expected microcredit effect (τ)
- Normalized to be on scale of standard deviations in τ

- Sensitivity of the expected microcredit effect (τ)
- Normalized to be on scale of standard deviations in T

- Sensitivity of the expected microcredit effect (τ)
- Normalized to be on scale of standard deviations in τ

- Sensitivity of the expected microcredit effect (τ)
- Normalized to be on scale of standard deviations in τ
- E.g.

- Sensitivity of the expected microcredit effect (τ)
- Normalized to be on scale of standard deviations in τ
- E.g. $\operatorname{StdDev}_q \tau = 1.8$

- Sensitivity of the expected microcredit effect (τ)
- Normalized to be on scale of standard deviations in τ
- E.g. $\operatorname{StdDev}_q au = 1.8$ $\mathbb{E}_q au = 3.7$

- Sensitivity of the expected microcredit effect (τ)
- Normalized to be on scale of standard deviations in τ
- E.g. $\operatorname{StdDev}_q \tau = 1.8$ $\mathbb{E}_q \tau = 3.7$ $= 2.06 * \operatorname{StdDev}_q \tau$

- Sensitivity of the expected microcredit effect (τ)
- Normalized to be on scale of standard deviations in τ
- E.g. $\operatorname{StdDev}_q \tau = 1.8$ $\mathbb{E}_q \tau = 3.7$ $= 2.06 * \operatorname{StdDev}_q \tau$ $\Lambda_{12} + = 0.03$

- Sensitivity of the expected microcredit effect (τ)
- Normalized to be on scale of standard deviations in τ
- E.g. $\operatorname{StdDev}_q au = 1.8$ $\operatorname{\mathbb{E}}_q au = 3.7$ $= 2.06 * \operatorname{StdDev}_q au$ $\Lambda_{12} + = 0.03$ $\operatorname{\mathbb{E}}_q au < 1.0 * \operatorname{StdDev}_q au$

Conclusion

- We provide linear response variational Bayes: supplements MFVB for fast & accurate covariance estimate
- More from LRVB: fast & accurate robustness quantification
- Interested in your data and models:
 - Sensitivity to prior perturbations
 - Sensitivity to data perturbations

References

T. Broderick, N. Boyd, A. Wibisono, A. C. Wilson, and M. I. Jordan. Streaming variational Bayes. *NIPS*, 2013.

R Giordano, T Broderick, and MI Jordan. Linear response methods for accurate covariance estimates from mean field variational Bayes. *NIPS*, 2015.

R Giordano, T Broderick, and MI Jordan. Robust Inference with Variational Bayes. *NIPS AABI Workshop*, 2015. ArXiv: 1512.02578.

https://github.com/rgiordan/MicrocreditLRVB

J. Huggins, T. Campbell, and T. Broderick. Core sets for scalable Bayesian logistic regression. *Under review*. ArXiv:1605.06423.

References

R Bardenet, A Doucet, and C Holmes. On Markov chain Monte Carlo methods for tall data. arXiv, 2015.

CM Bishop. Pattern Recognition and Machine Learning.

D Dunson. Robust and scalable approach to Bayesian inference. Talk at ISBA 2014.

DJC MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.

R Meager. Understanding the impact of microcredit expansions: A Bayesian hierarchical analysis of 7 randomised experiments. ArXiv:1506.06669, 2015.

RE Turner and M Sahani. Two problems with variational expectation maximisation for time-series models. In D Barber, AT Cemgil, and S Chiappa, editors, *Bayesian Time Series Models*, 2011.

B Wang and M Titterington. Inadequacy of interval estimates corresponding to variational Bayesian approximations. In *AISTATS*, 2004.