

Diplôme de Qualification en Physique Radiologique et Médicale

Faisceaux d'électrons de haute énergie : étude de la variation relative de la dose absorbée

Fiche n°4

Alexandre RINTAUD

Encadrant:

Thomas Marsac

Physicien médical, CENTRE RENÉ GAUDUCHEAU ICO, SAINT HERBLAIN

Table des matières

1 Introduction			on	2
2	Matériels et méthodes			
	2.1	Profils	de dose	2
	Rés	ultats		3
	3.1	Rende	ments en profondeur	3
		3.1.1	Influence de l'énergie	3
		3.1.2	Influence de la taille de champ	3
		3.1.3	Inlfuence de la DSP	4
		3.1.4	Influence du détecteur	4
	3.2	Profils	de dose	4
		3.2.1	Inlfuence de l'énergie	4
		3.2.2	Inlfuence de la taille de champ	4
		3.2.3	Inlfuence de la DSP	4
		3.2.4	Influence du détecteur	4
	3.3	Facteu	rs d'ouvertur du collimateur	5
Ré	Références			

1 Introduction

2 Matériels et méthodes

2.1 Profils de dose

Les profils de dose permettent d'évaluer la répartition de la dose suivant les axes perpendiculaires à l'axe du faisceau. Les profils sont composés de trois régions principales (voir figure 1) :

- zone centrale
- pénombre
- dose hors champ

Pour évaluer les différents profils, plusieurs métriques sont à notre disposition :

• L'homogénéité permet d'évaluer la planéité de la zone centrale du profil. Cette métrique se calcule comme suit :

$$H = \frac{D_{max} - D_{min}}{D_{max} + D_{min}} \tag{1}$$

• La symétrie est définie de la manière suivante :

$$S = \max\left(\frac{D(-x)}{D(+x)}; \frac{D(+x)}{D(-x)}\right)$$
(2)

• La pénombre est la distance séparant le point à 20 % de la dose maximale et celui à 80 %. Il y a donc une valeur pour chacun des côtés du faisceau.

FIGURE 1 – Différentes régions d'un profil de dose

3 Résultats

3.1 Rendements en profondeur

3.1.1 Influence de l'énergie

FIGURE 2 – Inlfuence de l'énergie du faisceau d'électrons sur le rendement en profondeur

3.1.2 Influence de la taille de champ

FIGURE 3 – Inlfuence de la taille de champ du faisceau d'électrons sur le rendement en profondeur

3.2 Profils de dose 3 RÉSULTATS

FIGURE 4 – Influence de la DSP sur le rendement en profondeur

FIGURE 5 – Influence du détecteur sur le rendement en profondeur

- 3.1.3 Inlfuence de la DSP
- 3.1.4 Influence du détecteur
- 3.2 Profils de dose
- 3.2.1 Inlfuence de l'énergie
- 3.2.2 Inlfuence de la taille de champ
- 3.2.3 Inlfuence de la DSP
- 3.2.4 Influence du détecteur

 $\label{eq:Figure 6-Influence} Figure 6-Influence de l'énergie du faisceau d'électrons sur le profil de dose$

3.3 Facteurs d'ouvertur du collimateur

 $\label{eq:figure 7-Inluence} Figure 7-Inluence de la taille de champ du faisceau d'électrons sur le profil de dose$

Figure 8 – Influence de la DSP sur le profil de dose

FIGURE 9 – Influence du détecteur sur le profil de dose

Figure 10 – Facteurs d'ouverture du collimateur

RÉFÉRENCES RÉFÉRENCES

Références

[1] Absorbed Dose Determination in External Beam Radiotherapy. Number 398 in Technical Reports Series. INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2001.

[2] Charlotte Robert. Distribution de la dose absorbée dans un milieu : faisceau d'électrons de haute énergie. Cours Master 2 Paris.