7. Реляционные языки манипулирования данными

Язык манипулирования данными (ЯМД)

Набор средств описания запросов на выборку или обновление данных в БД.

Виды ЯМД

Навигационный ЯМД

Средства описания **пути доступа** к запрашиваемым экземплярам записей.

Ненавигационный ЯМД

Средства описания *свойств* запрашиваемого набора данных.

Реляционные ЯМД ненавигационные

Реляционные ЯМД обеспечивают манипулирование данными на уровне множеств кортежей отношений. Результатом исполнения запроса на реляционном ЯМД является производное отношение.

7.1 Варианты реляционных ЯМД

Реляционная алгебра

Специальный вариант алгебры множеств.

Набор операций над отношениями.

Реляционное исчисление

Исчисление предикатов первого порядка.

РА и РИ эквивалентны.

Все реализации реляционных ЯМД используют ОБА механизма

Выражение РА

Описание процедуры вычисления

значения производного отношения по значениям отношений-операндов.

Предикат РИ

Логическое выражение, описывающее

свойства кортежей источника данных, из которых должны формироваться кортежи производного отношения.

Реляционная полнота языка

<u>Любой</u> запрос к РБД можно сформулировать в виде <u>одного</u> выражения РА или <u>одного</u> предиката РИ.

7.2. Реляционная алгебра

Набор операций, определённых на множестве отношений.

Замкнута относительно множества отношений.

Операция РА

Пара правил построения (вычисления)

- схемы производного отношения из атрибутов схем операндов и
- тела производного отношения из кортежей операндов.

Выражение РА

Формулировка запроса к реляционной БД.

Составляется из

- имён отношений,
- символов операций и
- круглых скобок.

Производит безымянное отношение.

Обозначения

```
R, R1, R2,... – отношения;
X, Y, Z,... – множества атрибутов;
X:x – кортеж из X (набор значений всех атрибутов из X);
R(X) – схема отношения R.
```

Определение 1

Говорят, что отношения со схемами **R1(X)** и **R2(Y)** *совместимы по объединению*, если их схемы эквивалентны.

Примеры

R1(A, B, C) и R2(B, C, A) совместимы по объединению.
R1(A, B, C) и R2(B, C, D) не совместимы по объединению.
R1(A, B, C) и R2(B, C) не совместимы по объединению.

UNION - Объединение отношений

R1 и R2 **совместимы по объединению**, если их схемы эквивалентны

Пусть **R1** и **R2** отношения, совместимые по объединению.

Операция **R1 UNION R2** порождает отношение со схемой

$$R(X) = R1(X) = R2(X),$$

содержащее все кортежи $X:x \in R1$ или $X:x \in R2$.

	R1	UNION	R2	производ	цит	R	
Α	В		В	Α		A	В
a1	b4		b4	a2		a1	b4
a2	b2		b2	a2		a3	b7
a3	b7					a2	b4
						a2	b2

Разность отношений

Пусть **R1** и **R2** отношения, совместимые по объединению.

Операция **R1 MINUS R2** порождает отношение со схемой

$$R(X) = R1(X) = R2(X),$$

содержащее все кортежи **X:x** ∈ **R1 и X:x** ∉ **R2**.

R1	MINU	S R2	произ	води	T R	
В		Α	В		A	В
b4		a2	b4		a1	b4
b2		a2	b2		a3	b7
b7						
	B b4 b2	B b4 b2	B A b4 a2 b2 a2	B A B b4 a2 b4 b2 a2 b2	B A B b4 a2 b4 b2 a2 b2	B A B A b4 a2 b4 a1 b2 a2 b2 a3

Пересечение отношений

Пусть **R1** и **R2** отношения, совместимые по объединению.

Операция R1 INTERSECT R2 порождает отношение со схемой R(X) = R1(X) = R2(X),

содержащее только кортежи $X:x \in R1$ и $X:x \in R2$.

R1 INTERSECT R2 производит R

A	В
a1	b4
a2	b2
a3	b7

Α	В
a2	b4
a2	b2

Α	В
a2	b2

Декартово произведение отношений

Говорят, что отношения со схемами **R1(X)** и **R2(Y)** совместимы по декартову произведению, если $X \cap Y = \emptyset$.

Примеры

R1(A, B) и **R2(C)** совместимы по декартову произведению.

R1(A, B) и **R2(B)** не совместимы по декартову произведению.

R1(A, B) и R2(D, C) совместимы по декартову произведению.

Пусть R1(X) и R2(Y) схемы отношений,

совместимых по декартову произведению.

Операция **R1 TIMES R2** порождает отношение со схемой **R(X ∪ Y),**

содержащее все *попарные конкатенации* кортежей **X:x** ∈ **R1** и **Y:y** ∈ **R2**.

Пример декартова произведения

R1	TIMES	R2	производит	R
----	-------	----	------------	---

Α	В
a1	b4
a2	b2
a3	b7

С
b4
b2

Селекция или ограничение по условию

Пусть R отношение со схемой R(X),

0 – бескванторный предикат, ссылающийся на атрибуты из **X**.

Операция **R** WHERE θ порождает отношение со схемой **R**(X), содержащее все кортежи X:x \in **R**, на которых θ = .TRUE.

Пример

D
П

R WHERE (A = a2 AND NOT B = b4)

Α	В
a1	b4
a2	b2
a2	b7
a2	b4

A	В
a2	b2
a2	b7

Проекция

Пусть \mathbf{R} отношение со схемой $\mathbf{R}(\mathbf{X}, \mathbf{Y})$.

Операция **R PROJECT [Y]** порождает отношение со схемой

Rp(Y), содержащее все подкортежи **Y**: **y** кортежей отношения **R**.

R			R	R PROJECT [A] R		PROJECT [B]	
	Α	В		Α		В	
	a1	b4		a1		b4	
	a2	b2		a2		b2	
	a2	b7				b7	
	a2	b4					
			'				

Естественное соединение

Пусть **R1(X, Y)** и **R2(Y, Z)** схемы отношений.

Операция **R1 JOIN R2** порождает отношение со схемой **R(X, Y, Z)**, содержащее все объединения кортежей (**X:x, Y:y)** и (**Y:y, Z:z**), удовлетворяющих условиям **R1.y = R2.y**

R1 JOIN R2 производит R									
Α	В		A	С		A	В	С	
a1	b4		a2	c4		a1	b4	c2	
a2	b2		a1	c2		a2	b2	c4	
a3	b7		a4	c1		a2	b2	c2	
			a2	c2					_
			az	C2					

Реляционное деление (взятие реляционного частного)

Пусть **R1(X, Y)** и **R2(Y)** схемы отношений.

Операция **R1 DIVIDE BY R2** порождает отношение со схемой **R(X)**, содержащее только такие подкортежи **X:x** кортежей отношения **R1**, которые встречаются в **R1** *в объединении с каждым* кортежем **R2**.

	R1 D	IVIDE BY	R2	производит	R	
Α	С		С		Α	
a2	c4		c2		a1	
a1	c2		c4		a2	
a4	c4			·		
a2	c2					
a1	c4					

Переименование атрибутов

Пусть **R** отношение со схемой **R(X, A)**, где **A** <u>одиночный</u> атрибут.

Операция R RENAME A AS B

порождает отношение со схемой R(X, B).

Тело отношения **R** остаётся <u>неизменным</u>.

Структура РБД ПОСТАВКИ

Атрибуты

Snum номер поставщика

Pnum номер детали

Jnum номер изделия

Snam наименование поставщика

Pnam наименование детали

Jnam наименование изделия

St статус поставщика

We вес детали

Со цвет детали

Сі город размещения (поставщика/детали/изделия)

Qt количество деталей в поставке

Порядок построения запроса на языке РА

- Шаг 1. Определить источник данных.
- Шаг 2. Определить подмножество кортежей источника, содержащих требуемую информацию.
- Шаг 3. Определить подмножество атрибутов источника, значения которых запрашиваются.

Примеры запросов на языке РА

1) Получить полные сведения обо всех изделиях.

Источник J Формулировка запроса:
Все кортежи J J;
Все атрибуты J

2) Получить номера и названия изделий, производимых в Томске.

```
Источник Ј
Кортежи Ј, в которых Сі = 'Томск' (селекция)

Ј WHERE Ci = 'Томск'

Только атрибуты Јпит и Јпат (проекция)
Формулировка запроса:
```

(J WHERE Ci = 'Τομςκ') [Jnum, Jnam];

3) Получить значения номеров поставщиков, выполняющих поставки для изделия J1.

```
(SPJ WHERE Jnum = 'J1')[Snum];
```

4) Получить значения номеров поставщиков, поставляющих деталь P1 для изделия J1.

```
(SPJ WHERE Jnum = 'J1' AND Pnum = 'P1')[Snum];
```

5) Получить значения цветов деталей поставляемых поставщиком S1.

Шаг 1. Определим источник данных

P: {Pnum, Pnam, We, Co, Ci} (цвета деталей),

SPJ: {Snum, Pnum, Jnum, Qt} (поставки, выполненные **S1**).

Отношение **P JOIN SPJ** — информация о поставках деталей

ВМЕСТЕ СО СВОЙСТВАМИ ПОСТАВЛЕННЫХ ДЕТАЛЕЙ.

Окончательно источник данных: P JOIN SPJ

Cxema {Snum, Pnum, Jnum, Qt, Pnam, We, Co, Ci}

Тело – все объединения пар кортежей Р и **SPJ** таких, что

P.Pnum = SPJ.Pnum.

Шаг 2. <u>Требуются</u> все кортежи соединения, в которых **Snum** = 'S1' (P JOIN SPJ) WHERE Snum = 'S1'

Шаг 3. Из них следует выбрать только значения атрибута **Со**:

((P JOIN SPJ) WHERE Snum = 'S1') [Co];

Замечание

Операция **JOIN** - это <u>не элементарная</u> операция.

Пусть **R1(A, B), R2(A, C)** отношения.

Отношение **R1 JOIN R2** эквивалентно отношению

((R1 RENAME A AS R1_A TIMES R2) WHERE R1_A = A) [A, B, C]

Естественное соединение — это комбинация операций

RENAME (переименование атрибутов),

TIMES (прямое произведение),

WHERE (селекция), PROJECT (проекция).

```
Эквивалентные формулировки запроса 5)

(P JOIN ( SPJ WHERE Snum = 'S1' ) )[Co];

(P[Pnum, Co] JOIN

(SPJ[Snum, Pnum] WHERE Snum = 'S1'))[Co];
```

6) Получить значения наименований изделий, для которых выполняет поставки поставщик \$1.

<u>Источник данных: SPJ и J</u>

1. Получить множество поставок, выполненных поставщиком S1:

2. Получить соединение этого отношения с отношением J:

3. Выполнить проекцию соединения на атрибут **J n a m**.

```
(J JOIN (SPJ WHERE Snum = 'S1'))[Jnam];
```

Другой возможный вариант формулировки:

```
(J JOIN (SPJ WHERE Snum = 'S1')[Jnum])[Jnam];
```