第I部分计算智能简介

第1章 计算智能简介

卜晨阳

邮箱: chenyangbu@hfut.edu.cn 计算机科学与技术学院 合肥工业大学

目录:

- 与人工智能的区别和联系
- 计算智能简介
- 典型方法
 - ▶人工神经网络
 - 进化计算
 - ■群体智能
 - ■模糊计算

课程简介

■课程目的和基本要求

- 1. 掌握进化计算、神经计算、模糊计算的基本原理、方法和应用技术,了解计算智能的最新发展动向。
- 2. 按时完成作业,体会有关模型的性能与用法,加深对课程内容的理解。

■ 课程特点

▶ 内容多,交叉性强。

计算智能部分推荐参考书

- Andries P. Engelbrecht. Computational Intelligence: An Introduction (2 Edition). Wiley Publishing, Inc, 2009.
 - 谭营等译。计算智能导论(第2版)。清华大学出版社, 2010年。
- 注: 仅推荐学有余力的同学课下阅读

目录:

- ■与人工智能的区别和联系
- 计算智能简介
- 典型方法
 - ▶人工神经网络
 - 进化计算
 - ■群体智能
 - ■模糊计算

计算智能与人工智能的区别和联系

■ 回顾: 什么是人工智能?

回顾:人工智能的含义

- 有不同的定义:
 - Wikipedia: a system's ability to correctly interpret external data, to learn from such data, and to use those learnings to achieve specific goals and tasks through flexible adaptation
 - 斯坦福大学尼尔逊教授: "人工智能是关于知识的学科 ——怎样表示知识以及怎样获得知识并使用知识的科学"
 - 百科百科:模拟、延伸和扩展人的智能的理论、方法、技术及应用系统
 - 百科百科:模拟人的某些思维过程和智能行为(如学习、 推理、思考、规划等)的学科

...

计算智能(computational intelligence, CI)的含义

- 目前没有统一的定义,维基百科的定义为:
- CI is a set of nature-inspired computational methodologies and approaches to address complex real-world problems to which mathematical or <u>traditional modelling can be useless</u> for a few reasons: the processes might be too complex for mathematical reasoning, it might contain some uncertainties during the process, or the process might simply be stochastic in nature. Indeed, many real-life problems cannot be translated into binary language (unique values of 0 and 1) for computers to process it. Computational Intelligence therefore provides solutions for such problems.
- 百度: 借鉴仿生学的思想,基于人们对生物体智能机理的认识,采用数值计算的 方法去模拟和实现人类的智能。
- 百度百科:是人工智能的一个分支——以生物进化的观点认识和模拟智能。

计算智能各分支简介

- <u>fuzzy logic</u>: enables the computer to understand natural language,
- <u>artificial neural networks</u>: permits the system to learn experiential data by operating like the biological one
- **evolutionary computing:** based on the process of natural selection

(以上内容后续课程会详细介绍)

■ 问题:

人工智能与计算智能的区别?

计算智能(Computational Intelligence, CI)

- 92年,美国学者James C. Bezdek首次提出: 计算智能 (CI)是依靠生产者提供的数字、数据材料进行加工处理, 而不是依赖于知识; 人工智能 (Artificial Intelligence, AI)则是须用知识进行处理。
- 94年,James在Florida, Orlando, IEEE WCCI会议上又 阐述他的观点,智能有三个层次:
 - * 生物智能 (Biological Intelligence, BI)

由人脑的物理化学过程反映出来的,人脑是有机物,它是智能的基础。

- ❖ 人工智能(Artificial Intelligence, AI) 是非生物的,人造的,常用符号来表示,AI的来源是人类知识的精华。
 - ❖ 计算智能(Computational Intelligence, CI) 是由数学方法和计算机实现的, CI的来源数值 计算的传感器。

❖ <u>关系</u>:

从复杂性来看: BI > AI > CI;

从所属关系来看:

AI是CI到BI的过渡,因为AI中除计算算法之外,还包括符号表示及数值信息处理。模糊集合和模糊逻辑是AI到CI的过渡。

关于A,B,C智能

- James C. Bezdek提出一种表示ABC与神经网络 (NN)、模式识别(PR)和智能(I)之间的关系,见下页图示:
 - A—Artificial,表示人工的、 符号的(非生物的)
 - B-Biological, 表示生物的
 - C-Computational,表示计算的
- 计算智能是一种智力方式的低层认知,它与人工智能的区别只是认知层次从中层下降至低层而已。中层系统含有知识,低层系统则没有。

计算智能与人工智能的区别和关系

计算智能系统与人工智能系统

- **当一个系统**只涉及数值(低层)数据,含有模式识别部分,不应用人工智能意义上的知识,而且能够呈现出:
 - (1) 计算适应性;
 - (2) 计算容错性;
 - (3) 接近人的计算速度;
 - (4) 计算误差率与人相近。

则该系统就是计算智能系统。

当一个智能计算系统以非数值方式加上知识,即 成为人工智能系统。

计算智能方法

计算智能算法是人代表,又称为仿生

人工智能

是联结主义的典型

逻辑主义

又称为符号主义 (Symbolicism)、心理》 学派(Psychlogism)或 计算机学派 (Computerism),其 原理主要为物理符号 系统假设和有限理性 原理。 行为主义

联结主义

又称为仿生学派 (Bionicsism)或生理 学派(Physiologism) ,其原理主要为神经 网络及神经网络间的 连接机制与学习算法 ,包括进化计算等计 算智能算法。

- 也有些人认为CI不属于AI,仅有部分重合。
- AI: 符号主义,知识、规则、推理。 左脑
- CI: 连接主义,数据、学习、记忆。 右脑

目录:

- 与人工智能的区别和联系
- 计算智能简介
- 典型方法
 - ▶人工神经网络
 - 进化计算
 - ■群体智能
 - ■模糊计算

计算智能所包含的领域

- ※1994年,关于进化计算(EA)、神经网络(NN)、模糊系统(FS)的三个IEEE国际学术会议在美国佛罗里达奥兰多市联合举行了首届"<u>计算智能世界大会(WCCI'94)</u>",进行了题为"计算智能模仿生命"的主题讨论会,首次提出了"计算智能(CI)"这一名词,并取得了关于计算智能的共识:
 - ▶人工神经网络(Artificial Neural Network, ANN)
 - ▶进化计算(Evolution Computing, EC)
 - ▶模糊系统(Fuzzy System, FS)

计算智能的典型方法

- ▶人工神经网络
- 进化计算
- 群体智能
- ■模糊系统
-

计算智能方法

随着技术的进步、工程实践问题变得 越来越复杂,传统的计算方法面临着 计算复杂度高、计算时间长等问题

计算智能方法采用启发式的随机搜索 策略,在问题的全局空间中进行搜索 寻优,能在可接受的时间内找到全局 最优解或者可接受解

计算智能算法在处理优化问题的时候, 对求解问题不需要严格的数学推导,而 且有很好的全局搜索能力,具有普遍的 适应性和求解的鲁棒性

计算智能方法

计算智能是人工智能的重要领域, 也是近几十年来研究的热点问题。 计算智能的兴起和快速发展,为 人工智能提供了新的出路

计算智能技术在国内得到了广泛的 重视。由于这个领域的研究涉及到 的硬件要求不高,国内的研究已经 达到国际认可的水平

计算智能技术的进一步发展和完善, 以及应用的进一步拓展,都将对计 算机技术和各个相关的应用领域带 来深刻的变革

计算智能的分类与理论

神经计算:人工神经网络算法

模糊计算: 模糊逻辑

遗传算法(进化策略,进化规划)

蚁群优化算法

粒子群优化算法

进化计算免疫算法

分布估计算法

Memetic算法

计算智能

模拟退火算法 单点搜索禁忌搜索算法

计算智能的分类与理论

计算智能主要研究方向及其特点

研究领域	主要特点
人工神经网络	模仿人脑的生理构造和信息处理的过程,模 拟人类的智慧
模糊逻辑 (模糊系统)	模仿人类语言和思维中的模糊性概念,模拟 人类的智慧
进化计算	模仿生物进化过程和群体智能过程,模拟大自然的智慧

计算智能的分类与理论

计算智能有关理论基础

数学基础

- •马尔可夫过程
- •统计学习过程
- •随机过程
- ●模式定理
- ●稳定性
- •收敛性
- •.....

生物学基础

- •优胜劣汰
- •适者生存
- ●自然选择
- •生物进化
- ●遗传规律
- •人脑模拟
- •生物觅食
- •.....

群体智能

- •个体认识
- ●群体智慧
- •个体竞争
- •群体协作
- •.....

计算智能的研究与发展

20世纪 50-60年代 遗传算法(GA) Genetic Algorithm

进化策略(ES) Evolution Strategy

进化规划(EP) Evolutionary Programming

> 神经网络(NN) (感知器)

1950s 美国学者Holland

1960s 德国人Rechenberg Schwefel

> 1960s 美国学者Fogel

1950s Rosenblatt等人

模糊逻辑理论(FL)
Fuzzy Logic

1960s 美国学者Zadeh

计算机与信息学院

计算智能的研究与发展

遗传算法、进化策略、进化规划 的理论基础不断完善(模式定理) 算法之间的区别越来越不明显

禁忌搜索算法(1986年) 模拟退火算法(1983年) 的提出提供了新的优化手段

20世纪 70-80年代

Hopfield前馈型神经网络结构(1982年) Rumelhart后向传播学习算法(1986年) 的提出将神经网络的研究推向一个新的高潮

计算智能的研究与发展

蚁群算法

1992年,Derigo 等人提出了蚁群 算法(ACO), 为解决离散组合 优化问题提供了 重要的工具。

粒子群优化算法

1995年,由 Eberhart和 Kennedy提出的 粒子群优化算法 (PSO) 在连续 优化问题上得到 了广泛的应用。

遗传算法

遗传算法(GA) 、进化策略(ES)和进化规 划(EP)算法 也在不断地发展 和完善。

20世纪 90年代至今

进化计算 Evolutionary Computation

计算机与信息学院

计算智能领域相关期刊和会议

相关期刊:

- **IEEE Transactions on Evolutionary Computation**
- IEEE Transactions on Neural Networks and Learning Systems
- IEEE Transactions on Fuzzy Systems
- IEEE Transactions on Cybernetics
- IEEE Computational Intelligence Magazine
- Evolutionary Computation

相关会议:

- **International Conference on Parallel Problem Solving from Nature (PPSN)**
- Genetic and Evolutionary Computation Conference (GECCO)
- IEEE World Congress on Computational Intelligence (IEEE WCCI)
 - **IEEE Congress on Evolutionary Computation (CEC)**
 - International Joint Conference on Neural Networks (IJCNN)
 - IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)

计算智能的特征与应用

主要特征	具体特点
智能性	包括算法的自适应性,自组织性,算法不依赖于问题本身的特点,具有通用性
并行性	算法基本上是群体协作的方式对问题进行优化求解,非 常适合大规模并行处理
鲁棒性	算法具有很好的容错性,同时对初始条件不敏感,能在 不同条件下寻找最优解

计算智能的特征与应用

计算智能的应用

国防

科技

经济

工业

农业

- •雷达天线设计
- •卫星轨道 参数优化
- •战场模拟
- •军事物流 优化
- •干扰抑制

•.....

- •机器学习
- •数据挖掘
- •图像处理
- •模式识别
- •蛋白质结构 预测
- •多目标优化
- •多播路由
- •....

- •金融数据分析
- •证券投资组合
- •企业现金 流管理
- •企业财务 分析与预警
- •.....

- •功率电子电路优化
- •电磁过滤
- •输电网规划
- •工作流调度管理
- •车辆路由
- •交通控制
- •....

- •排灌工程
- •水利水电工程
- •农业用地结构优化
- •温室控制
- •水库防洪
- •农业工程
-

目录:

- 与人工智能的区别和联系
- 计算智能简介
- ■典型方法
 - ▶人工神经网络
 - 进化计算
 - ■群体智能
 - ■模糊计算

Cell Body: 细胞体

Dendrite: 树突

Axon: 轴突

Synapse: 突触

Axon terminal: 轴突终端

Axon hillock: 轴丘

计算机与信息学院

- 1956~1969年:大量研究工作对生物神经元进行建模。
 - 最著名的工作: Rosenblatt的感知器, Widrow和Hoff的自适应线性神经网络。
- 1969年: Minsky和Papert的言论使人们对人工神经网络的研究 遭到了重大挫折。
 - 在《感知器》一书中,他们断言,根据他们的"直觉判断",由单个感知器扩充到多个感知器"是毫无结果的"。
 - 此后,神经网络的研究处于停滞状态,但极少数人仍然坚持相关研究工作。
- 20世纪80年代的早期和中期:神经网络研究开始复苏,80年代后期则经历了爆炸式发展,现在已成为计算机科学中最大的研究领域之一。

20世纪80年代早期和中期的一些重要工作

- John Hopfield, 1982
 - 提出了Hopfield网络。1984年,Hopfield设计了实现 Hopfield网络的电路,成功用Hopfield网络解决了TSP问题 (重要进展)
- Teuvo Kohonen, 1982
 - 提出了Self Organizing Maps (SOM),
- David H. Ackley, Geoffrey E. Hinton, Terrence J. Sejnowski, 1985
 - 提出了基于模拟退火的Boltzmann Machine 模型
- D. Rumelhart, Hinton and Williams, 1986
 - 提出了著名的 反向传播算法(Back Propagation algorithm),解决了多层感知机学习方法,回答了Minskey的质疑

· 进化算法是模拟优胜劣汰,适者生 存的生物进化过程的计算模型。

■ 进化算法是一种新的全局优化搜索 算法。GA搜索不依赖梯度信息, 简单通用、鲁棒性强,适合并行分 布处理,应用范围广,尤其适用于 解决传统方法难以解决的复杂和非 线性问题。

- 進化规划 (EP: Evolutionary Programming)
 - L.J. Fogel, A.J. Owens, M.J. Walsh (美国, 1966)
 - 完善工作: D.B. Fogel (1991)
- 进化策略 (ESs: Evolution Strategies)
 - I. Rechenberg, H.-P. Schwefel (德国, 1965)
- 遗传算法(GAs: Genetic Algorithms)
 - J. Holland (美国, 1975)
 - 完善工作: K. De Jong (1975), J. Grefenstette (1986), D. Goldberg (1989)
- 差分进化 (DE: Differential Evolution)
 - R. Stone, K. Price (德国、美国, 1995)
- 遗传编程,文化进化,协同进化,交互式进化算法<mark>等</mark>

- 全局优化
- ■约束优化
- 多目标优化
- 动态优化

群体智能

■ 群体智能(Swarm intelligence)源于对成群社会生物体的研究。

群体智能

蚁群算法

群体智能典型算法

- 粒子群优化 (PSO: Particle Swarm Optimization)
 - J. Kennedy, R.C. Eberhart (美国, 1995)
 - 源于对一个简化社会模型的模拟,主要用于连续空间上的问题优化
- 蚁群算法(ACO: Ant Colony Optimization)
 - M. Dorigo (意大利, 1992)
 - ■用来在图中寻找优化路径的机率型技术

人的思维或推理有精确的一面,更有不确定的一面。

人类习惯于用自然语言进行思维,思维的结果往往 是可能如何、大概如何的定性结论。

中青年

若衣服较多,则多放些洗衣粉

- 传统集合论:元素属于集合或者不属于集合。
- 二值逻辑:参数的值是0或1,其推理结果也是0或1。
- ▶ 人的推理往往不是这样精确的。
 - ▶ 例如,"某些计算机专业的学生能够用多种语言编程序"
 - ▶ 又如,"小明是身高比较高"。
 - 如何描述这些事实? 如何进行推理?

模糊集合和模糊逻辑允许进行近似推理。

■ 在模糊集中,一个元素以一定程度属于与一个 集合。

■ 模糊逻辑允许用这些不确定事实进行推理以推 出新的事实,并给每个事实赋予一定程度。

- 模糊系统中的不确定性称作"非统计不确定性 ,不应与"统计不确定性"相混淆。
 - 统计不确定性是基于概率论的,而非统计不确定性 却是基于含糊的、不精确的和不明确的。

■ 发展历程

- 亚里士多德:二值逻辑
- Lukasiewicz: 1920年首次发表三值逻辑,后来推广 到任意值逻辑。
- Max Black: 首次引入伪模糊集,集合的隶属度被指派到各个元素。
- Lotfi Zadeh: 模糊集之父。
- Zdzisław I. Pawlak: 1991年提出了粗糙集理论。

部分开源框架:

- geatyp (Python): http://geatpy.com/
- EvoloPy: https://github.com/7ossam81/EvoloPy
- Pyeasyga: https://pypi.org/project/pyeasyga/
- Opytimizer: https://github.com/gugarosa/opytimizer
- **...**

相关主页(开源了部分代码):

- http://www.ntu.edu.sg/home/EPNSugan/
- http://www.egr.msu.edu/~kdeb/index.shtml
- https://www.cs.bham.ac.uk/~xin/
- http://www.tech.dmu.ac.uk/~syang/
- http://www.soft-computing.de/
- https://cs.adelaide.edu.au/~zbyszek/papers.html
- https://titan.csit.rmit.edu.au/~e46507/
- http://www.adaptivebox.net/CILib/code/psocodes_link.html
- http://www.mat.univie.ac.at/~neum/glopt/software_g.html
- http://delta.cs.cinvestav.mx/~ccoello/EMOO/EMOOsoftware.html
- http://www.escience.cn/people/yongwang1
- . . .

计算智能领域部分社区

- IEEE动态优化社区主页: http://www.tech.dmu.ac.uk/~syang/IEEE ECiDUE.html
- IEEE计算智能社区: <u>https://cis.ieee.org/about</u>
- IEEE差分进化社区主页: <u>http://labraj.feri.um.si/tf-cis-de/</u>
- IEEE多目标优化社区主页:

 http://www.is.ovgu.de/is media/Research/IEEE CIS EMO TF-p-1126.html

...

小结:人工智能与计算智能

- 人工智能包括:逻辑,演绎推理,专家系统,基于案例的推理,符号机器学习系统,以及计算智能。
- 计算智能(Computational Intelligence: CI)是人工智能的一个 分支——以生物进化的观点认识和模拟智能。
- Computational Intelligence
 - Nature Inspired Computation
 - Natural Computation
 - Soft Computing
 - Bio-inspired Computation

小结

个绍了计算智能的典型方法,以及发展简史。

■ 计算智能是信息科学与生命科学相互交叉的前沿领域, 是现代科学技术发展的一个重要体现。

计算智能涉及神经网络、模糊逻辑、进化计算等领域, 它的研究和发展正反映了当代科学技术**多学科交叉与集** 成的重要发展趋势

谢谢大家