第8章b: 平面及其方程

数学系 梁卓滨

2018-2019 学年 II

提要

- 平面的法向量
- 平面方程
- 平面夹角
- 点到平面的距离

定义垂直于平面的向量称为该平面的法向量。

定义 垂直于平面的向量称为该平面的法向量。如: \overrightarrow{n} ,

定义 垂直于平面的向量称为该平面的法向量。如: \overrightarrow{n} , $\overrightarrow{n_1}$,

定义 垂直于平面的向量称为该平面的法向量。如: \overrightarrow{n} , $\overrightarrow{n_1}$, $\overrightarrow{n_2}$

定义 垂直于平面的向量称为该平面的法向量。如: \overrightarrow{n} , $\overrightarrow{n_1}$, $\overrightarrow{n_2}$ 注 1 任意两个法向量是平行的。

定义 垂直于平面的向量称为该平面的法向量。如: \overrightarrow{n} , $\overrightarrow{n_1}$, $\overrightarrow{n_2}$ 注 1 任意两个法向量是平行的。

定义 垂直于平面的向量称为该平面的法向量。如: \overrightarrow{n} , $\overrightarrow{n_1}$, $\overrightarrow{n_2}$

注1任意两个法向量是平行的。

 $M \in \Pi$ $\downarrow \uparrow$ $M_0 M \perp \overrightarrow{n}$

$$M \in \Pi$$

$$\overrightarrow{M_0M} \perp \overrightarrow{n}$$

$$\overrightarrow{M_0M} \cdot \overrightarrow{n} = 0$$

$$M \in \Pi$$

$$\downarrow \downarrow$$

$$M_0 M \perp \overrightarrow{n}$$

$$\downarrow \downarrow$$

$$M_0 M \cdot \overrightarrow{n} = 0$$

$$\downarrow \uparrow$$

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

$$\downarrow \uparrow$$

$$Ax + By + Cz + D = 0, \quad D = -(Ax_0 + By_0 + Cz_0)$$

注 计算法向量 \overrightarrow{n} 的通常方法:

$$M \in \Pi$$

$$\downarrow \downarrow$$

$$M_0 M \perp \overrightarrow{n}$$

$$\downarrow \downarrow$$

$$M_0 M \cdot \overrightarrow{n} = 0$$

$$\downarrow \uparrow$$

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

$$\downarrow \uparrow$$

$$Ax + By + Cz + D = 0, \quad D = -(Ax_0 + By_0 + Cz_0)$$

注 计算法向量 \overrightarrow{n} 的通常方法:

$$M \in \Pi$$

$$\downarrow \downarrow$$

$$M_0 M \perp \overrightarrow{n}$$

$$\downarrow \downarrow$$

$$M_0 M \cdot \overrightarrow{n} = 0$$

$$\downarrow \uparrow$$

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

$$\downarrow \uparrow$$

$$Ax + By + Cz + D = 0, \quad D = -(Ax_0 + By_0 + Cz_0)$$

注 计算法向量 \overrightarrow{n} 的通常方法:

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} =$$

$$\overrightarrow{i}$$
 \overrightarrow{j} \overrightarrow{k}

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \\ -2 & 3 & -1 \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \\ -2 & 3 & -1 \end{vmatrix}$$

$$= \begin{vmatrix} \overrightarrow{i} - \end{vmatrix} \qquad \begin{vmatrix} \overrightarrow{j} + \end{vmatrix} \qquad \begin{vmatrix} \overrightarrow{k} \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \\ -2 & 3 & -1 \end{vmatrix}$$
$$= \begin{vmatrix} 4 & -6 \\ 3 & -1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} \overrightarrow{j} + \end{vmatrix} \qquad \begin{vmatrix} \overrightarrow{k} \end{vmatrix}$$

解1. 泉一个法同重: 取
$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \\ -2 & 3 & -1 \end{vmatrix}$$

$$= \begin{vmatrix} 4 & -6 \\ 3 & -1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -3 & -6 \\ -2 & -1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} \overrightarrow{k} \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \\ -2 & 3 & -1 \end{vmatrix}$$
$$= \begin{vmatrix} 4 & -6 \\ 3 & -1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -3 & -6 \\ -2 & -1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -3 & 4 \\ -2 & 3 \end{vmatrix} \overrightarrow{k}$$

例 1 设平面
$$\Pi$$
 过点 M_1 (2, -1 , 4), M_2 (-1 , 3, -2), M_3 (0, 2, 3), 求 Π 方程。

解 1. 宋一个法问重: 取
$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \\ -2 & 3 & -1 \end{vmatrix}$$

$$= \begin{vmatrix} 4 & -6 \\ 3 & -1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -3 & -6 \\ -2 & -1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -3 & 4 \\ -2 & 3 \end{vmatrix} \overrightarrow{k} = 14 \overrightarrow{i} + 9 \overrightarrow{j} - \overrightarrow{k}$$

例 1 设平面 Π 过点
$$M_1$$
 (2, -1, 4), M_2 (-1, 3, -2), M_3 (0, 2, 3),

求∏方程。

解 1. 求一个法向量: 取

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \\ -2 & 3 & -1 \end{vmatrix}$$

$$= \begin{vmatrix} 4 & -6 \\ 3 & -1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -3 & -6 \\ -2 & -1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -3 & 4 \\ -2 & 3 \end{vmatrix} \overrightarrow{k} = 14 \overrightarrow{i} + 9 \overrightarrow{j} - \overrightarrow{k}$$

2. 平面方程:

$$14(x-0)+9(y-2)-(z-3)=0$$

例1设平面 [] 过点 $M_1(2,-1,4),$

$$M_1(2, -1, 4),$$

 $M_2(-1, 3, -2),$
 $M_3(0, 2, 3),$

 $M_1(2,-1,4)$

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 4 & -6 \\ -2 & 3 & -1 \end{vmatrix}$$

$$= \begin{vmatrix} 4 & -6 \\ 3 & -1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -3 & -6 \\ -2 & -1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -3 & 4 \\ -2 & 3 \end{vmatrix} \overrightarrow{k} = 14 \overrightarrow{i} + 9 \overrightarrow{j} - \overrightarrow{k}$$

$$14(x-0) + 9(y-2) - (z-3) = 0 \Rightarrow 14x + 9y - z - 15 = 0$$

 $\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3}$

第 8 章 b: 平面及其方程

例 2 设平面 $\Pi \parallel x$ 轴,且过 M_1 (4, 0, -2), M_2 (5, 1, 7), 求 Π 方程。

例 2 设平面 $\Pi \parallel x$ 轴,且过 M_1 (4, 0, -2), M_2 (5, 1, 7), 求 Π 方程。

例 2 设平面 $\Pi \parallel x$ 轴,且过 M_1 (4, 0, -2), M_2 (5, 1, 7), 求 Π 方程。

例 2 设平面 $\Pi \parallel x$ 轴,且过 $M_1(4, 0, -2)$,

*M*₂ (5, 1, 7), 求 ∏ 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \end{vmatrix}$$

例 2 设平面 $\Pi \parallel x$ 轴,且过 $M_1(4, 0, -2)$,

*M*₂ (5, 1, 7), 求 ∏ 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \end{vmatrix}$$

例 2 设平面 ∏ || x 轴, 且过 $M_1(4, 0, -2),$

 $M_2(5, 1, 7),$

求∏方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \\ 1 & 0 & 0 \end{vmatrix}$$

例 2 设平面 $\Pi \parallel x$ 轴,且过 $M_1(4, 0, -2)$,

*M*₂ (5, 1, 7), 求 ∏ 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} |\overrightarrow{i} - | & |\overrightarrow{j} + | & |\overrightarrow{k} \end{vmatrix}$$

例 2 设平面 ∏ || x 轴,且过 M₁ (4, 0, -2),

*M*₂ (5, 1, 7), 求 ∏ 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 9 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} \overrightarrow{j} + \end{vmatrix} \qquad \begin{vmatrix} \overrightarrow{k} \end{vmatrix}$$

例 2 设平面 $\Pi \parallel x$ 轴,且过 $M_1(4, 0, -2)$, $M_2(5, 1, 7)$,

解 1. 求一个法向量: 取

求∏方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 9 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 1 & 9 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} \overline{k} \\ 0 & 0 \end{vmatrix}$$

例 2 设平面 $\Pi \parallel x$ 轴,且过 $M_1(4, 0, -2)$, $M_2(5, 1, 7)$

M₁(4, 0, -2), M₂(5, 1, 7), 求Π方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 9 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 1 & 9 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} \overrightarrow{k}$$

例 2 设平面 $\Pi \parallel x$ 轴,且过 $M_1(4, 0, -2)$, $M_2(5, 1, 7)$,

解 1. 求一个法向量: 取

求∏方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 9 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 1 & 9 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} \overrightarrow{k} = 9 \overrightarrow{j} - \overrightarrow{k}$$

例 2 设平面 $\Pi \parallel x$ 轴,且过 M_1 (4, 0, -2),

*M*₂ (5, 1, 7), 求∏方程。

 $\vec{n} = \overline{M_1 M_2}$ $M_2(5, 1, 7) \Pi$ $M_1(4, 0, -2)$

解 1. 求一个法向量: 取

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \\ 1 & 0 & 0 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 9 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 1 & 9 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} \overrightarrow{k} = 9 \overrightarrow{j} - \overrightarrow{k}$$

2. 平面方程:

$$0(x-4)+9(y-0)-(z+2)=0$$

例 2 设平面 $\Pi \parallel x$ 轴,且过 $M_1(4, 0, -2)$, $M_2(5, 1, 7)$,

解 1. 求一个法向量: 取

求∏方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 9 \\ 1 & 0 & 0 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 9 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 1 & 9 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} \overrightarrow{k} = 9 \overrightarrow{j} - \overrightarrow{k}$$

2. 平面方程

$$0(x-4)+9(y-0)-(z+2)=0 \Rightarrow 9y-z-2=0$$

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \\ 1 & 0 & 0 \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} \overrightarrow{i} - \end{vmatrix} \qquad \begin{vmatrix} \overrightarrow{j} + \end{vmatrix}$$

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} -3 & -1 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} \overrightarrow{j} + \end{vmatrix}$$

例 3 设平面 Π包含 x 轴,且过 M_0 (4, -3, -1),求 Π 方程。

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} -3 & -1 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 4 & -1 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 4 & -1 \\ 1 & 0 \end{vmatrix}$$

<mark>例 3 设平面 Π 包含 x 轴,且过</mark> M₀ (4, -3, -1), 求 Π 方程。

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} -3 & -1 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 4 & -1 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 4 & -3 \\ 1 & 0 \end{vmatrix} \overrightarrow{k}$$

<mark>例 3 设平面 Π 包含 x 轴,且过</mark> M₀ (4, -3, -1), 求 Π 方程。

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} -3 & -1 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 4 & -1 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 4 & -3 \\ 1 & 0 \end{vmatrix} \overrightarrow{k} = -\overrightarrow{j} + 3\overrightarrow{k}$$

解 1. 求一个法向量: 取

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} -3 & -1 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 4 & -1 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 4 & -3 \\ 1 & 0 \end{vmatrix} \overrightarrow{k} = -\overrightarrow{j} + 3\overrightarrow{k}$$

2. 平面方程:

$$0(x-0)-1\cdot(y-0)+3(z-0)=0$$

$$\overrightarrow{n} = \overrightarrow{OM_0} \times \overrightarrow{i} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -3 & -1 \\ 1 & 0 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} -3 & -1 \\ 0 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 4 & -1 \\ 1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 4 & -3 \\ 1 & 0 \end{vmatrix} \overrightarrow{k} = -\overrightarrow{j} + 3\overrightarrow{k}$$

2. 平面方程:

$$0(x-0)-1\cdot(y-0)+3(z-0)=0 \Rightarrow y-3z=0$$

▲ 壁而大

解 1. 求一个法向量: 取 $\overrightarrow{n} = (0, 1, 0)$

解 1. 求一个法向量: 取
$$\overrightarrow{n} = (0, 1, 0)$$

2. 平面方程:

$$0(x-2) + 1 \cdot (y+5) + 0(z-3) = 0$$

解 1. 求一个法向量: 取
$$\overrightarrow{n} = (0, 1, 0)$$

2. 平面方程:

$$0(x-2) + 1 \cdot (y+5) + 0(z-3) = 0$$

$$\Rightarrow y+5 = 0$$

解 1. 求一个法向量: 取
$$\overrightarrow{n} = (0, 1, 0)$$

2. 平面方程:

$$0(x-2) + 1 \cdot (y+5) + 0(z-3) = 0$$

$$\Rightarrow y+5 = 0$$

例 5 问平面 Π : Ax + By = 1 平行于哪个 坐标轴?

解 1. 求一个法向量: 取
$$\overrightarrow{n} = (0, 1, 0)$$

2. 平面方程:

$$0(x-2) + 1 \cdot (y+5) + 0(z-3) = 0$$

$$\Rightarrow y+5 = 0$$

例 5 问平面 Π : Ax + By = 1 平行于哪个 坐标轴?

解 1. 求一个法向量: 取
$$\overrightarrow{n} = (0, 1, 0)$$

2. 平面方程:

$$0(x-2) + 1 \cdot (y+5) + 0(z-3) = 0$$

$$\Rightarrow y+5 = 0$$

例 5 问平面 Π: Ax + By = 1 平行于哪个 坐标轴?

解平行于 z 轴。

解 1. 求一个法向量: 取
$$\overrightarrow{n} = (0, 1, 0)$$

2. 平面方程:

$$0(x-2) + 1 \cdot (y+5) + 0(z-3) = 0$$

$$\Rightarrow y+5 = 0$$

例 5 问平面 Π: Ax + By = 1 平行于哪个 坐标轴?

解平行于 z 轴。

这是因为: Π 的一个法向量为 (A, B, 0),与 z 轴垂直

例 4 设平面 Π 平行于 *xoz* 坐标面,且过 (2, −5, 3),求平面 Π 方程。

解 1. 求一个法向量: 取
$$\overrightarrow{n} = (0, 1, 0)$$

2. 平面方程:

$$0(x-2) + 1 \cdot (y+5) + 0(z-3) = 0$$

$$\Rightarrow y+5 = 0$$

解平行于 z 轴。

这是因为: Π 的一个法向量为 (A, B, 0), 与 z 轴垂直 $((A, B, 0) \cdot (0, 0, 1) = 0)$

解 1. 求一个法向量: 取
$$\overrightarrow{n} = (0, 1, 0)$$

2. 平面方程:

$$0(x-2) + 1 \cdot (y+5) + 0(z-3) = 0$$

$$\Rightarrow y+5 = 0$$

解平行于 z 轴。

这是因为: Π 的一个法向量为 (A, B, 0), 与 z 轴垂直 $((A, B, 0) \cdot (0, 0, 1) = 0)$

平面夹角

$$\cos\theta=\cos\left(\angle(\overrightarrow{n_1},\,\overrightarrow{n_2})\right)$$

$$\cos\theta=\cos\left(\angle(\overrightarrow{n_1},\,\overrightarrow{n_2})\right)$$

$$\cos\theta=\cos\left(\angle(\overrightarrow{n_1},\,\overrightarrow{n_2})\right)$$

$$\cos\theta = \left|\cos\left(\angle(\overrightarrow{n_1}, \overrightarrow{n_2})\right)\right|$$

$$\cos \theta = \left| \cos \left(\angle (\overrightarrow{n_1}, \overrightarrow{n_2}) \right) \right|$$
$$= \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \right|$$

$$\cos \theta = \left| \cos \left(\angle (\overrightarrow{n_1}, \overrightarrow{n_2}) \right) \right|$$
$$= \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \right|$$

例 1 求平面 x-y+2z-6=0 和 2x+y+z-5=0 的夹角

$$\cos \theta = \left| \cos \left(\angle (\overrightarrow{n_1}, \overrightarrow{n_2}) \right) \right|$$
$$= \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \right|$$

例 1 求平面
$$x-y+2z-6=0$$
 和 $2x+y+z-5=0$ 的夹角

$$\overrightarrow{n_1} = (), \overrightarrow{n_2} = ($$

$$\cos \theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|}$$

$$\theta =$$

$$\cos \theta = \left| \cos \left(\angle (\overrightarrow{n_1}, \overrightarrow{n_2}) \right) \right|$$
$$= \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \right|$$

例 1 求平面
$$x-y+2z-6=0$$
 和 $2x+y+z-5=0$ 的夹角

$$\overrightarrow{n_1} = (1, -1, 2), \quad \overrightarrow{n_2} = ($$

$$\cos \theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|}$$

$$\theta =$$

$$\cos \theta = \left| \cos \left(\angle (\overrightarrow{n_1}, \overrightarrow{n_2}) \right) \right|$$
$$= \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \right|$$

例 1 求平面
$$x-y+2z-6=0$$
 和 $2x+y+z-5=0$ 的夹角

$$\overrightarrow{n_1} = (1, -1, 2), \qquad \overrightarrow{n_2} = (2, 1, 1)$$

$$\cos \theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|}$$

$$\theta =$$

$$\cos \theta = \left| \cos \left(\angle (\overrightarrow{n_1}, \overrightarrow{n_2}) \right) \right|$$
$$= \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \right|$$

例 1 求平面
$$x-y+2z-6=0$$
 和 $2x+y+z-5=0$ 的夹角

$$\overrightarrow{n_1} = (1, -1, 2), \qquad \overrightarrow{n_2} = (2, 1, 1)$$

$$\cos \theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} = \frac{|1 \cdot 2 + (-1) \cdot 1 + 2 \cdot 1|}{\sqrt{1^2 + (-1)^2 + 2^2} \cdot \sqrt{2^2 + 1^2 + 1^2}}$$

$$\theta =$$

$$\cos \theta = \left| \cos \left(\angle (\overrightarrow{n_1}, \overrightarrow{n_2}) \right) \right|$$
$$= \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \right|$$

例 1 求平面
$$x-y+2z-6=0$$
 和 $2x+y+z-5=0$ 的夹角

$$\overrightarrow{n_1} = (1, -1, 2), \quad \overrightarrow{n_2} = (2, 1, 1)$$

$$\cos \theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} = \frac{|1 \cdot 2 + (-1) \cdot 1 + 2 \cdot 1|}{\sqrt{1^2 + (-1)^2 + 2^2} \cdot \sqrt{2^2 + 1^2 + 1^2}} = \frac{1}{2}$$

$$\theta =$$

$$\cos \theta = \left| \cos \left(\angle (\overrightarrow{n_1}, \overrightarrow{n_2}) \right) \right|$$
$$= \left| \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \right|$$

例 1 求平面
$$x-y+2z-6=0$$
 和 $2x+y+z-5=0$ 的夹角

$$\overrightarrow{n_1} = (1, -1, 2), \qquad \overrightarrow{n_2} = (2, 1, 1)$$

$$\cos\theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} = \frac{|1 \cdot 2 + (-1) \cdot 1 + 2 \cdot 1|}{\sqrt{1^2 + (-1)^2 + 2^2} \cdot \sqrt{2^2 + 1^2 + 1^2}} = \frac{1}{2}$$

$$\theta = \frac{\pi}{2}$$

例 2 设平面 Π 过点 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x+y+z=0$ 垂直,求 Π 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & -2 \\ 1 & 1 & 1 \end{vmatrix}$$

例2设平面∏过点

 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & -2 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} |\overrightarrow{i} - | & |\overrightarrow{j} + | \end{vmatrix}$$

例 2 设平面 IT 过点

 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & -2 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} 0 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} \overrightarrow{j} + \end{vmatrix}$$

 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & -2 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} 0 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -1 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & -2 \end{vmatrix}$$

 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & -2 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} 0 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -1 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -1 & 0 \\ 1 & 1 \end{vmatrix} \overrightarrow{k}$$

 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & -2 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} 0 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -1 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -1 & 0 \\ 1 & 1 \end{vmatrix} \overrightarrow{k} = 2 \overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$$

$$M_1(1, 1, 1), M_2(0, 1, -1)$$
,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

解 1. 求一个法向量:

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & -2 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} 0 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -1 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -1 & 0 \\ 1 & 1 \end{vmatrix} \overrightarrow{k} = 2 \overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$$

2. 平面方程:

$$2(x-1)-1\cdot(y-1)-1\cdot(z-1)=0$$

 $M_1(1, 1, 1), M_2(0, 1, -1)$,且与平面 $\Pi': x + y + z = 0$ 垂直,求 Π 方程。

解 1. 求一个法向量:

$$\overrightarrow{n} = \overrightarrow{M_1 M_2} \times \overrightarrow{n'} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 0 & -2 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} 0 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -1 & -2 \\ 1 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -1 & 0 \\ 1 & 1 \end{vmatrix} \overrightarrow{k} = 2 \overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$$

2. 平面方程:

$$2(x-1)-1\cdot(y-1)-1\cdot(z-1)=0 \Rightarrow 2x-y-z=0$$

$$\boldsymbol{\cdot} P_0\left(x_0,\,y_0,\,z_0\right)$$

例 求点 $P_0(2, 1, 1)$ 到平面 Π: x + y - z = 1 的距离。

例 求点 $P_0(2, 1, 1)$ 到平面 Π: x + y - z = 1 的距离。

解取P1(1,0,0),则

例 求点 P_0 (2, 1, 1) 到平面 Π: x + y - z = 1 的距离。

解取
$$P_1(1,0,0)$$
,则 $\overrightarrow{P_1P_0} = ($), $\overrightarrow{n} = ($ P_0 到 Π 的距离 $=$ $\left| \overrightarrow{P_1P_0} \cdot \overrightarrow{n} \right|$

例 求点 P_0 (2, 1, 1) 到平面 Π: x + y - z = 1 的距离。

解取
$$P_1(1, 0, 0)$$
,则 $\overrightarrow{P_1P_0} = (1, 1, 1)$, $\overrightarrow{n} = ($)

$$P_0$$
 到 Π 的距离 =
$$\frac{|\overrightarrow{P_1P_0} \cdot \overrightarrow{n}|}{|\overrightarrow{n}|}$$

例 求点 P_0 (2, 1, 1) 到平面 Π: x + y - z = 1 的距离。

解取
$$P_1(1, 0, 0)$$
,则 $\overrightarrow{P_1P_0} = (1, 1, 1)$, $\overrightarrow{n} = (1, 1, -1)$ $|\overrightarrow{P_1P_0} \cdot \overrightarrow{n}|$

例 求点
$$P_0(2, 1, 1)$$
 到平面 Π: $x + y - z = 1$ 的距离。

$$\mathbb{R} \mathbb{R} P_1(1, 0, 0), \ \mathbb{M} \overrightarrow{P_1 P_0} = (1, 1, 1), \qquad \overrightarrow{n} = (1, 1, -1)$$

$$P_0$$
 到 Π 的距离 = $\frac{\left|\overrightarrow{P_1P_0}\cdot\overrightarrow{n}\right|}{\left|\overrightarrow{n}\right|} = \frac{1}{\sqrt{3}}$

例 求点
$$P_0(2, 1, 1)$$
 到平面 Π: $x + y - z = 1$ 的距离。

解取
$$P_1(1, 0, 0)$$
,则 $\overrightarrow{P_1P_0} = (1, 1, 1)$, $\overrightarrow{n} = (1, 1, -1)$

$$P_0$$
 到 Π 的距离 = $\frac{\left|\overrightarrow{P_1P_0}\cdot\overrightarrow{n}\right|}{\left|\overrightarrow{n}\right|} = \frac{1}{\sqrt{3}} = \sqrt{3}$

