BUILD YOUR OWN BRAINWAVES.

Erik Peterson

1924

mm.mm.mm.mm

~86 billion neurons

> 100 types

Trillions of connections

(neuron)

~86 billion neurons

> 100 types

Trillions of connections

BULD YOUR OWN BRAINWAVES?

Math

Implementation

"Dynamical systems are fun!"

Our 1st function.

(A differential equation)

$$J_{ie} = 0.9$$

$$J_{ie} = 0.7 - 0.9$$

Bifurcation

$$J_{ie} = 0.7 - 0.9$$

$$J_{ie} = 0.7$$
, $J_{ei} = 0.1$

$$J_{ie} = 0.7$$
, $J_{ei} = 0.3$

$$J_{ie} = 0.5$$
, $J_{ei} = 1.0$

Jee Jie Jei

Damped oscillator

$$J_{ie} = 0.4$$
, $J_{ei} = 1.0$

$$J_{ie} = 0.4$$
, $J_{ei} = 1.0$

Jee Jie Jei

Oscillation!

How many ways to make a

$$J_{ee} = 0.3 - 0.4$$

 $J_{ie} = 0.3 - 0.7$
 $J_{ei} = 0.5 - 1.2$

(Stable, Unstable, & Waves)

EIGENVALUES!

EIGENVALUES...

What The F***!!?!?!?

What The F***:

...a set of values of a parameter for which a differential equation has a nonzero solution (an eigenfunction) under given conditions.

Matrix form

	E	
E	$(J_{ m ee}$ - 1) / $ au_{ m e}$	J_{ei} / $ au_{\mathrm{e}}$
	J_{ie} / $ au_i$	(J _{ii} - 1) / τ _i

Dayan P & Abbott LF, Theoretical Neuroscience, MIT Press, 2005, p266.

	E	
E	(Jee - 1) / $ au_{ ext{e}}$	J_{ei} / $ au_{\mathrm{e}}$
	J_{ie} / $ au_{i}$	(J _{ii} - 1) / τ _i

$$\lambda = 0.5(\frac{Jee - 1}{\tau_e} + \frac{Jii - 1}{\tau_i} \pm \sqrt{(\frac{Jee - 1}{\tau_e} - \frac{Jii - 1}{\tau_i}) + \frac{4JeiJie}{\tau_i \tau_e}})$$

ONLY THREE THINGS MATTER

1.
$$\lambda = 0.5((\ldots) \pm \sqrt{-1?})$$

$$2$$
 $\lambda > 0$

$$\beta$$
 $\lambda < 0$

$$\lambda \neq i$$
$$\lambda < 0$$

$$\lambda \neq i$$
$$\lambda > 0$$

$$\lambda = i$$

$$\lambda < 0$$

$$\lambda = 2$$

$$\lambda = i$$
$$\lambda > 0$$

EGEN-

A BRAINWAVE RECIPE:

- At least two cells,
- reciprocally connected.
- One imaginary eigenvalue.

- Neuroscience
- Data science
- Statistics
- Programming

robotpuggle.com