

SC1015: GENRE-RATOR

SC12 - A Multilabel Classifier of Genres

- Nathaniel Chin Yi Xuan
- Marcus Soh Yi Qing
- Tan Yan Chi

TABLE OF CONTENTS

- 1. Problem Formulation
- 2. Data Pre-Processing & Cleaning
- 3. Exploratory Data Analysis
- 4. Train Test Split / Standardisation
- 5. Pipeline (Encoder + Classification Algorithms)
- 6. App Demonstration & Conclusions
- 7. Future Work

PROBLEM FORMULATION

Real-Life Problem:

- Over 900 genres on Goodreads website =>
 Unstandardized definition of different genres
- Confusing for user navigation

Project Resolution:

 Aims to produce an algorithm that is able to predict the combination of genres of a book given its plot description and features to create standardisation

10th-century	7,223 books
11th-century	8,739 books
12th-century	13,368 books
13th-century	11,838 books
14th-century	19,292 books
15th-century	22,449 books
16th-century	63,414 books
17th-century	78,865 books
1864-	37 books
shenandoah-	
campaign	
18th-century	138,519 books
1917	2,272 books
19th-century	531,321 books
1st-grade	86,092 books
20th-century	1,045,119
04	books 701.272 books
21st-century	
2nd-grade	86,558 books
40k	24,297 books
ableism	3,666 books
abuse	477,476 books
academia	214,259 books
academic	478,765 books
academics	84,704 books
accounting	7,880 books
accra	615 books
action	999,753 books
activism	101,814 books
adaptations	121,362 books
adaptations	68 books

adult-fiction	1,772,022
	books
adventure	2,345,871 books
adventurers	8,242 books
aeroplanes	906 books
africa	334,114 books
african-	199,808 books
american	
african-	31,547 books
american-	
literature	
african-	14,292 books
american-	
romance	
african-	38,781 books
literature	
agender	307 books
agriculture	28,077 books
ahistory	52 books
aircraft	3,747 books
airliners	22 books
airships	2,721 book
albanian-	2,163 books
literature	- 1
alchemy	35,105 books
alcohol	
alexandria	
algebra	3,207 books
algeria	11,107 books
algiers	1,308 bool

algorithms

american-	117,722 books
classics	
american-	201,858 books
fiction	
american-	414,817 books
history	
american-	54,505 books
novels	
american-	35,761 books
revolution	
american-	3,533 books
revolutionary-	
war	
americana	258,767 books
amish	72,916 books
amish-fiction	19,365 books
amish-	959 books
historical-	
romance-fiction	
	400 000 1

DATASET

The Zenodo Dataset we have chosen contains the following columns.

```
Data columns (total 25 columns):
    Column
                      Non-Null Count Dtype
    bookId
                      52478 non-null
                                      object
    title
                      52478 non-null
                                      object
     series
                                      object
                      23470 non-null
     author
                                      object
                      52478 non-null
    rating
                      52478 non-null float64
    description
                      51140 non-null object
                      48672 non-null object
    language
    isbn
                       524/8 non-null
                                      object
     genres
                      52478 non-null
                                      object
    characters
                      52478 non-null object
    bookFormat
                      51005 non-null object
    edition
                      4955 non-null
                                      object
                       วิตา31 non-null object
    pages
    publisher
                      48782 non-null
                                      object
    publishDate
                      51598 non-null
                                      object
    firstPublishDate
                      31152 non-null
                                      object
    awards
                      52478 non-null
                                      object
    numRatings
                      52478 non-null int64
    ratingsByStars
                      52478 non-null
                                      object
    likedPercent
                      51856 non-null float64
    setting
                                     object
                      52478 non-null
    coverImg
                      51873 non-null
                                      object
    bbeScore
                                      int64
                      52478 non-null
    bbeVotes
                      52478 non-null
                                      int64
 24 price
                      38113 pon-null
                                      object
```

PROJECT PROCESS OVERVIEW

Preparing Data Train Test Split Scale **All Pipelines** · Setting top 30 genres Iterative Stratification MinMax or Standard • Encoder + Clean Text Data Scaler Classification Method Followed by + Model · Hot Binary Encoding of · Dependent on Vectorisation of Categories textual data via TF-IDF classification model encoder used • Extract RGB Features & TF-IDF + Binary Relative Brightness of Relevance + Cover Images Logistic Regression TF-IDF + Label Power Set + Naïve Vectorise & Scale Bayes Train Data Input data TF-IDF + Clustered Label Power Set + Linear SVC Test Data **Evaluate Accuracy** & F1-Score

DATA CLEANING

Removing Non-English Books

- To ensure that the description of the books are purely English content
- Ensuring consistency when analysing textual data.

Dropping columns that are irrelevant

- Columns like 'price', 'publisher' contain too many NULL values to be useful for analysis
- Columns like 'language', 'bookFormat' are irrelevant to predicting 'genres'

PROCESSING COVER IMAGE

- To get additional features, we did image processing to extract the Red, Green, Blue
 Values of the cover images for all the books
- Luminance was then calculated using the formula:
 - O math.sqrt(0.241*(row.r**2) + 0.691*(row.g**2) + 0.068*(row.b**2))

MODIFIED GENRE LIST

Our team manually analysed the top 60 genres and reduced them to a "top 30 genre list"

Purpose

- Standardisation
- Combine overlapped genres

Example

- History, 11th Century, Historical → History
- Adult Fiction → Adult and Fiction

```
top30genrelist = ['fiction',
'fantasy',
romance',
'young adult',
contemporary',
'adult',
'nonfiction',
'history',
'novels',
mystery',
'historical fiction',
audiobook',
'science fiction',
paranormal',
'literature',
'adventure',
'classics',
'thriller',
'childrens'.
'magic',
'humor',
contemporary romance',
'crime',
suspense',
'middle grade',
'chick lit',
'biography'.
'teen',
horror',
philosophy'l
```

EXPLORATORY DATA ANALYSIS

EDA - NUMBER OF BOOKS PER GENRE

Key Observations

- Fiction has the highest number of books with 21590
- Followed by Romance which is less than half of fiction at 10862
- The genre with the least number of books is philosophy with 1582 books

EDA - NUMBER OF GENRE PER BOOK

Key Observations

- On average, books have5.28 genres.
- There are 3 books that is associated with 11 total different genres!

EDA - NUMBER OF GENRE PER BOOK

EDA - NUMBER OF GENRE PER BOOK

EXPLORATORY DATA ANALYSIS

Key Observations

Certain words such as "kill", "murder" appears in Crime, Mystery, Suspense and Thriller "world" and "life" seems to be the most common words that appear in book descriptions

EDA - BRIGHTNESS

Key Observations

 Book covers tend to have very high brightness or very low brightness

FEATURE RELEVANCE TO GENRE Distribution Distribution Number of Ratings Brightness (max 255) 00 01 \Box audiobook horror

CLASSIFYING & MACHINE LEARNING

TYPES OF CLASSIFICATION

Binary Classification

- Spam
- Not spam

Multiclass Classification

Labels (t)

[0 0 1] [1 0 0] [0 1 0]

- Dog
- Cat
- Horse
- Fish
- Bird

Multi-label Classification

Labels (t)

[1 0 1] [0 1 0] [1 1 1]

- Dog
- Cat
- Horse
- Fish
- Bird

PROJECT PROCESS OVERVIEW

Preparing Data

- · Setting top 30 genres
- Clean Text Data
- Hot Binary Encoding of Categories
- Extract RGB Features & Relative Brightness of Cover Images

Input data

Train Test Split

- Iterative Stratification
- Followed by Vectorisation of textual data via TF-IDF encoder

Train Data

Test Data

Scale

- MinMax or Standard Scaler
- Dependent on classification model used

Vectorise & Scale

All Pipelines

- Encoder + Classification Method
- + Model

TF-IDF + Binary Relevance + Logistic Regression

TF-IDF + Label Power Set + Naïve Bayes

TF-IDF + Clustered Label Power Set + Linear SVC

Evaluate Accuracy & F1-Score

STRATIFICATION

Stratification Based on Labelsets

instance	λ,	Å ₂	λ_3
i,	1	0	1
i ₂	0	0	1
i ₃	0	1	0
i ₄	1	0	0
i ₅	0	1	1
i _e	1	1	0
i,	1	0	1
i ₈	1	0	1
i ₉	0	0	1

		i,	1	0	1	5
labelset	7	i ₂	0	0	1	1
5		i ₃	0	1	0	2
1		10.000	2 nd Fo	lal.		
2			2 - 10	ıu		
4		i ₇	1	0	1	5
3		i _e	0	0	1	1
6		i ₄	1	0	0	4
5						
5			3 rd Fo	ld		
1	7	i _e	1	0	1	5
		i _s	0	1	1	3
		j.	1	1	0	6

One labelset

STRATIFICATION

Λ2 is distributed first

TRAIN/TEST SPLIT

Y		
Top 30 Genre	Standardised 30 Genres we decided on previously	

X			
Brightness	Use of R,G,B values to calculate perceived luminance		
Number of Ratings	Number of ratings the book has on GoodReads		
Description	The book description given by the author		

PROJECT PROCESS OVERVIEW

Preparing Data Train Test Split Scale **All Pipelines** Setting top 30 genres Iterative Stratification MinMax or Standard • Encoder + Clean Text Data Classification Method Scaler Followed by + Model · Hot Binary Encoding of Vectorisation of Dependent on Categories textual data via TF-IDF classification model • Extract RGB Features & encoder used TF-IDF + Binary Relative Brightness of Relevance + Cover Images **Logistic Regression** TF-IDF + Label Power Set + Naïve Vectorise & Scale Bayes Train Data Input data TF-IDF + Clustered Label Power Set + Linear SVC Test Data **Evaluate Accuracy**

& F1-Score

<u>VECTORIZATION</u>

Vectorization

- Similar concept to one hot encoding
- Convert text to numerical representation

Inverse Document
Frequency for the
search term *i* within the
corpus of documents

The number of documents in the corpus of documents that contain the term D

The number of documents that contain the search term

TF-IDF

- Term frequency-inverse document frequency
- Used to quantify the importance or relevance of string representation (words, phrases, etc)

MACHINE LEARNING

Scaling

- Our group decided to scale our data because ML algorithms are sensitive to data scales
- If the data is not scaled, the features with a higher value range starts dominating when calculating distances
- Our team choose MinMax Scalar because it scales from [0 to 1] which ensures that no negative values are returned when passing it into the different models

Machine Learning Algorithms

- Logistic Regression
- Naive Bayes
- Linear Support Vector Machine

PROJECT PROCESS OVERVIEW

Preparing Data

- Setting top 30 genres
- Clean Text Data
- Hot Binary Encoding of Categories
- Extract RGB Features & Relative Brightness of Cover Images

Input data

Train Test Split

- Iterative Stratification
- Followed by Vectorisation of textual data via TF-IDF encoder

Train Data

Test Data

Scale

- MinMax or Standard Scaler
- Dependent on classification model used

Vectorise & Scale

All Pipelines

- Encoder + Classification Method
- + Model

TF-IDF + Binary Relevance + Logistic Regression

TF-IDF + Label Power Set + Naïve Bayes

TF-IDF + Clustered Label Power Set + Linear SVC

Evaluate Accuracy & F1-Score

MULTI-LABEL CLASSIFICATION ALGORITHMS

Binary Relevance

- Treat each label as a separate class classification
- 30 genres => 30 binary classifiers

X	Y_1	Y_2	Y3	Y4
x ⁽¹⁾	0	1	1	0
x ⁽²⁾	1	0	0	0
x(3)	0	1	0	0
x ⁽⁴⁾	1	0	0	1
x ⁽⁵⁾	0	0	0	1

Label Powerset

- Treat each unique genre combination as a class
- 6436 unique combinations => 6436 classes

Label Powerset with Clustering

- Reduce the number of genre combinations by clustering from 6436 to 100
- k=100 (number of clusters) gave us the highest average F1-score

PIPELINE ANALYSIS

PROJECT PROCESS OVERVIEW

Preparing Data

- · Setting top 30 genres
- Clean Text Data
- Hot Binary Encoding of Categories
- Extract RGB Features & Relative Brightness of Cover Images

Input data

Train Test Split

- Iterative Stratification
- Followed by Vectorisation of textual data via TF-IDF encoder

Train Data

Test Data

Scale

- MinMax or Standard Scaler
- Dependent on classification model used

Vectorise & Scale

All Pipelines

- Encoder + Classification Method
- + Model

TF-IDF + Binary Relevance + Logistic Regression

TF-IDF + Label Power Set + Naïve Bayes

TF-IDF + Clustered Label Power Set + Linear SVC

> Evaluate Accuracy & F1-Score

EVALUATION OF MODELS

true negatives

retrieved elements

How many retrieved items are relevant?

How many relevant items are retrieved?

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1\text{-}score = rac{2 imes ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

EVALUATION OF MODELS

	Precision	Recall	F1-Score	Support
fiction	0.82	0.62	0.71	6477.0
fantasy	0.83	0.42	0.55	3208.0
romance	0.72	0.55	0.62	3298.0
young adult	0.70	0.43	0.53	2774.0
contemporary	0.67	0.27	0.39	2157.0
adult	0.32	0.47	0.38	2039.0
nonfiction	0.47	0.79	0.59	2176.0
biography	0.20	0.59	0.30	681.0
teen	0.56	0.11	0.18	1034.0
horror	0.44	0.08	0.14	575.0
philosophy	0.64	0.31	0.42	475.0
Avg/Total	0.58	0.42	0.43	48132.0

EVALUATION OF MODELS

Machine Learning Model	Precision	Recall	F1-Score
Binary Relevance + Logistic Regression	0.65	0.26	0.29
Label Powerset + Naive Bayes	0.58	0.42	0.43
Label Powerset Clustering + Linear Support Vector Machine	0.29	0.26	0.27

FUTURE WORK

Utilise different Text Encoder

Google Universal Sentence Encoder

Utilising other Machine Learning Models

- Neural Network
- Cosine Similarity
- Adjusting hyperparameters

Expand the list of genres

Increase from size 30 to cover a wider range of genres or make it more in depth

Utilising different Scaling techniques

Robust Scalar

NEW TECHNOLOGIES USED

THANK YOU!

https://github.com/natisaver/GoodReads-Multilabel-Genre-Prediction

References

- https://scikit-learn.org/stable/modules/multiclass.html
- https://realpython.com/image-processing-with-the-python-pillow-library/