A proper algebraic group is abelian.

Pf. Consider $c: G \times G \longrightarrow G$ $c(g_3h) = ghg^{-1}$

Think of this as a family $e_n: G \longrightarrow G$. $g \longrightarrow ghg^{-1}$

Then he Z(G) (=> cn: h-> G is constant. Use

Lemma (Chevalley). Let X be proper and $\emptyset: X \times Y \longrightarrow Z$ be a regular map which we think of as a family of regular maps $\Phi_y: X \longrightarrow Z$. If $\Phi_y(X) \ge 20$ is constant, then $\Phi_y(X) = Z$ are constant maps $\forall y \in Y$.

Reference. Shafarevich.

Pf. Consider the graph of $\Phi: \Gamma = \Gamma(\Phi) = \{(x,y), \Phi(x,y)\}$ $C \times \times Y \times Z \}$.

 Γ is closed because 2 is separated. Consider $\pi: \Gamma \longrightarrow Y \times \overline{Z}$, $p: \pi(\Gamma) \longrightarrow Y$.

Goal. Show all fibers of IT all have dimension = dim X. Why? Take (3,2). IT'(y,2) = [(x,y,2)] \(\bar{D}_y(x) = 2\rangle . So fiber is portion of X sitting over 2. If fiber is closed and Goal is satisfied,

But. raxxy, so din radim X + dim Y.

RME. Since X is proper, ACM) cxx is closed

and irreducible, so it's a closed subvariety. Notice that $p(\pi(\Pi)) \rightarrow Y$ is surjective. So $dim(\pi(\Pi)) \gg dim Y$.

suffices to show dim(T(T)) = dim Y. For this, consider the map p: T(T) -> Y. Then p'(2y,)=(y, 30).

Also, (40,218 p'(40) iff 3x, \$(x, 40) = z, or hich can't happen.

Claim. dim(o(r)) = dim(r) by upper semi-continuity
of dim-

RME. Consider D: K × K -> x J. This violates conditions about the theorem.

we'll see.

Alg, gops are non-singular varieties.

Tex. (Projective Gp) Telliptic Curve

C= V(y2-x(x-1)(x-x))ct2

x7011

E= C = V(y22-x(x-2)(x->2))= Cu(0:1:0) e IPE

Claim. Eis an alg. grp w/ (011:0)= eCE,

P+7+r=e (=) P,9, r are collinear (in IP2)

i.e. p, q, r are the roots of a homogeneous embic polynomial obtained by restricting F to LCIPic.

J: P' ~ 1 C(P) 2

(5: 1) = (l(s,t):l2(s,t):l3(s,t))

F(s:t) = (l(s,t):l2(s,t):l3(s,t))

F(l1,l2,l3) = F(s,t) & cubit homog.

T(l1,l2,l3) = F(s,t) & 2 roots, counting mult.

The line at 00

$$2 = 27 = 6$$
 $C \cdot 1P_{k}^{2}$
 $\Phi(s:t) = (s:t:0)$
 $F(s:t:0) = -s^{3} = e + e + e = e$.

Define. -P (for PEE) by D+(-p)+e=e

i.e. if p=(x,y), then -p=(x,-y).

Define. ptq via ptq+r=e

3rd pt of

pq n E

Ruk. For $E: \mathbb{CP}^2$, can form $TTE: \mathbb{C(P^2)}^n$, and almost every algebraic group is a "deformation" of these.

Local Properties of Varieties

Consider the local rings $\forall x \in X$ $\mathcal{O}_{X,x} = \frac{2}{9} \mathcal{O}_{E}(X) | \mathcal{O}_{E}(X)$ is defined $\mathcal{O}_{E}(X) = \frac{2}{9} \mathcal{O}_{E}(X) | \mathcal{O}_{E}(X)$ is defined $\mathcal{O}_{E}(X) = \frac{2}{9} \mathcal{O}_{E}(X) | \mathcal{O}_{E}(X) | \mathcal{O}_{E}(X) = \frac{2}{9} \mathcal{O}_{E}(X) | \mathcal{O}_{E}(X) | \mathcal{O}_{E}(X) = \frac{2}{9} \mathcal{O}_{E}(X) | \mathcal{O}_{E$

For $Z \in X$ chosed subvariety, $O_{X,Z} = \bigcup_{x \in Z} O_{X,X} \in K(X)$. Max ideal $m_Z = 2 \oplus 1 \oplus (Z) = 63$. This is a local ring, but of smaller dimension, since res. field is $k(Z) = O_{X,Z}/m_Z.$

Now dim (Ox,2): dim (x)-dim (Z). For Z of codim lo...