Лабораторная работа №3

«Исследование резонансных цепей»

Вариант №1

Задание 1

 $L=49 \text{M}\Gamma \text{H}$

C=0,0075мк Φ

R=2150 O_M

Волновое сопротивление:

$$\rho = \sqrt{\frac{L}{c}} = \sqrt{\frac{49*10^{-3}}{0,0075*10^{-6}}} = \sqrt{65333333} = \mathbf{2556} \ \mathbf{Om}$$

Резонансная частота:

$$F_p = rac{1}{2\pi\sqrt{LC}} = rac{1}{6.28*\sqrt{49*10^{-3}*0,0075*10^{-6}}} = \mathbf{8306} \; \Gamma$$
ц

Добротность контура:

$$Q = \frac{\rho}{R} = \frac{2556}{2150} = 1,19$$

Относительная полоса пропускания:

$$d = \frac{1}{Q} = \frac{F_B - F_H}{F_p} = \frac{1}{1,19} = \mathbf{0,84}$$

Частота, на которой действующее значение напряжения U_L достигает максимума

$$F_L = F_p \sqrt{\frac{1}{1 - R/2\rho}} = 8306 * \sqrt{\frac{1}{1 - 2150/(2*2556)}} = 8306 * \sqrt{\frac{1}{0.58}} =$$

10906,31 Гц

Частота, на которой действующее значение напряжения U_C достигает максимума

$$F_C = \frac{F_p^2}{F_L} = \frac{8306^2}{10906,31} =$$
 6325, **66** Гц

Задание 2

Параметры		Значения параметров								
		Частота, Гц								
		F p Гц	0,1Fp Гц	0,3Fp Гц	0,5Fp Гц	0,7Fp Гц	2Ғр, Гц	3Fp, Гц	FL, Гц	FC, Гц
F, Гц	расч.	8306	830,6	2491,8	4153	5814,2	16612	24918	10906,31	6325,66
I, mA	расч.	4,6	0,394	1,243	2,28	3,5	2,27	1,4	3,9	3,9
	эксп.	4,648	0,394	1,246	2,292	3,566	2,236	1,378	3,831	3,95
UR, B	расч.	10	0,847	2,67	4,9	7,6	4,9	3	8,4	8,4
	эксп.	9,994	0,847	2,68	4,929	7,669	4,809	2,963	8,235	8,489
UL, B	расч.	11,89	0,1007	0,954	2,9	6,3	11,6	10,7	13	7,6
	эксп.	12,043	0,1008	0,958	2,948	6,457	11,588	10,709	13,029	7,791
UC, B	расч.	11,88	10,07	10,59	11,65	12,8	2,9	1,2	7,6	13
	эксп.	11,723	10,065	10,59	11,649	12,874	2,82	1,158	7,357	13,075
ј, град	расч.	0,064	-85,1	-74,5	-60,7	-40,9	60,7	72,5	33,3	-33,2
	эксп.	-0,152	-84,97	-75,39	-58,83	-39,94	59,614	71,925	32,197	

Частота

$$F_p = 8306$$
 Гц

Угловая частота

$$\omega = 2\pi F_p = \frac{1}{\sqrt{LC}} = 52188$$

Сопротивление на катушке

$$\omega L = 52188 * 49 * 10^{-3} = 2557, 2 \text{ Om}$$

Сопротивление на конденсаторе

$$1/\omega C = 1/(52188 * 0.0075 * 10^{-6}) =$$
2554,8 OM

Полное сопротивление

$$\sqrt{R^2 + (\omega L - 1/\omega C)^2} = \sqrt{2150^2 + (2557, 2 - 2554, 8)^2} = 2150 \text{ Om}$$

Действующее значение тока

$$I = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = \frac{10}{2150} = \mathbf{0}, \mathbf{0046} \,\mathbf{A}$$

Напряжение на резисторе

$$U_R = I * R = \frac{UR}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = 0,0046*2150 = 10 \text{ B}$$

Напряжение на катушке

$$U_L = I * \omega L = \frac{U\omega L}{\sqrt{R^2 + (\varpi L - 1/\omega C)^2}} = 0,0046*2557,2 = 11,89 \text{ B}$$

Напряжение на конденсаторе

$$U_C = I * 1/\omega C = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} * \frac{1}{\omega C} = 0,0046*2554,8 = 11,88 \text{ B}$$

$$\phi = arctg \frac{\omega L - 1/\omega C}{R} = arctg \frac{2557,2 - 2554,8}{2150} = arctg(0,00112) = 0,064^{\circ}$$

$$F_p = 830, 6 \Gamma$$
ц

Угловая частота

$$\omega = 2\pi F_p = \frac{1}{\sqrt{LC}} = 5219$$

Сопротивление на катушке

$$\omega L = 5219 * 49 * 10^{-3} =$$
255, **7 O**M

Сопротивление на конденсаторе

$$1/\omega C = 1/(5219 * 0.0075 * 10^{-6}) = 25547.7 \text{ Om}$$

Полное сопротивление

$$\sqrt{R^2 + (\omega L - 1/\omega C)^2} = \sqrt{2150^2 + (255,7 - 25547,7)^2} =$$
25383,2 OM

Действующее значение тока

$$I = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = \frac{10}{25383,2} = 394 * 10^{(-6)} A$$

Напряжение на резисторе

$$U_R = I * R = \frac{UR}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = 394*10^{(-6)}*2150 = 0.847B$$

Напряжение на катушке

$$U_L = I * \omega L = \frac{U\omega L}{\sqrt{R^2 + (\varpi L - 1/\omega C)^2}} = 394 * 10^{(-6)*255,7} = 100.7 \text{ mB}$$

$$U_C = I * 1/\omega C = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} * \frac{1}{\omega C} = 394 * 10^{(-6)} * 25547,7 = 10,07 B$$

$$\phi = arctg \frac{\omega L - 1/\omega C}{R} = arctg \frac{255,7 - 25547,7}{2150} = arctg(-11.7) =$$
= -85.1°

$$F_p =$$
2491, **8** Γ ц

Угловая частота

$$\omega = 2\pi F_p = \frac{1}{\sqrt{LC}} = 15656, 4$$

Сопротивление на катушке

$$\omega L = 15656,4 * 49 * 10^{-3} = 767,2 \text{ Om}$$

Сопротивление на конденсаторе

$$1/\omega C = 1/(15656,4 * 0,0075 * 10^{-6}) = 8516,2 \text{ Om}$$

Полное сопротивление

$$\sqrt{R^2 + (\omega L - 1/\omega C)^2} = \sqrt{2150^2 + (767,2 - 8516,2)^2} = 8041,7 \text{ Om}$$

Действующее значение тока

$$I = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = \frac{10}{8041.7} = 1243.5 * 10^{(-6)} A$$

Напряжение на резисторе

$$U_R = I * R = \frac{UR}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = 1243,5*10^{(-6)}*2150 = 2,67B$$

Напряжение на катушке

$$U_L = I * \omega L = \frac{U\omega L}{\sqrt{R^2 + (\varpi L - 1/\omega C)^2}} = 1243,5*10^{(-6)*767,2} = 0.954 \,\mathrm{B}$$

$$U_C = I * 1/\omega C = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} * \frac{1}{\omega C} = 1243,5*10^{(-6)}*8516,2=10,59 B$$

$$\phi = arctg \frac{\omega L - 1/\omega C}{R} = arctg \frac{767,2 - 8516,2}{2150} = arctg(-3,6) = -74.5^{\circ}$$

$$F_p = 4153 \ \Gamma$$
ц

Угловая частота

$$\omega = 2\pi F_p = \frac{1}{\sqrt{LC}} = 26094$$

Сопротивление на катушке

$$\omega L = 26094 * 49 * 10^{-3} = 1278,6 \text{ Om}$$

Сопротивление на конденсаторе

$$1/\omega C = 1/(26094 * 0.0075 * 10^{-6}) = 5109.7 \text{ Om}$$

Полное сопротивление

$$\sqrt{R^2 + (\omega L - 1/\omega C)^2} = \sqrt{2150^2 + (1278,6 - 5109,7)^2} = 4393,2 \text{ Om}$$

Действующее значение тока

$$I = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = \frac{10}{4393,2} = 2,28*10^{(-3)} A$$

Напряжение на резисторе

$$U_R = I * R = \frac{UR}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = 2,28*10^{(-3)*2150} = 4.9B$$

Напряжение на катушке

$$U_L = I * \omega L = \frac{U\omega L}{\sqrt{R^2 + (\varpi L - 1/\omega C)^2}} = 2,28*10^{(-3)}*1278,6=2,9B$$

$$U_C = I * 1/\omega C = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} * \frac{1}{\omega C} = 2,28*10^{(-3)*5109},7 = 11,65 \text{ B}$$

$$\phi = arctg \frac{\omega L - 1/\omega C}{R} = arctg \frac{1278,6 - 5109,7}{2150} = arctg(-1,78) =$$
= -60,7°

$$F_{p} = 5814, 2 \Gamma$$
ц

Угловая частота

$$\omega = 2\pi F_p = \frac{1}{\sqrt{LC}} = 36531,7$$

Сопротивление на катушке

$$\omega L = 36531.7 * 49 * 10^{-3} = 1790 \text{ Om}$$

Сопротивление на конденсаторе

$$1/\omega C = 1/(36531,7 * 0.0075 * 10^{-6}) =$$
3649,8 OM

Полное сопротивление

$$\sqrt{R^2 + (\omega L - 1/\omega C)^2} = \sqrt{2150^2 + (1790 - 3649,8)^2} = 2842,8 \text{ Om}$$

Действующее значение тока

$$I = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = \frac{10}{2842.8} = 3,5 * 10^{(-3)} A$$

Напряжение на резисторе

$$U_R = I * R = \frac{UR}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = 3.5*10^{(-3)}*2150 = 7.6 \text{ B}$$

Напряжение на катушке

$$U_L = I * \omega L = \frac{U\omega L}{\sqrt{R^2 + (\varpi L - 1/\omega C)^2}} = 3.5*10^{(-3)}*1790 = 6.3 \text{ B}$$

$$U_C = I * 1/\omega C = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} * \frac{1}{\omega C} = 3.5*10^{(-3)}*3649,8 = 12.8 \text{ B}$$

$$\phi = arctg \frac{\omega L - 1/\omega C}{R} = arctg \frac{1790 - 3649,8}{2150} = arctg(-0,87) =$$
= -40,9°

$$F_p = 16612 \ \Gamma$$
ц

Угловая частота

$$\omega = 2\pi F_p = \frac{1}{\sqrt{LC}} = 104376,3$$

Сопротивление на катушке

$$\omega L = 104376,3 * 49 * 10^{-3} =$$
5114, **4 O**M

Сопротивление на конденсаторе

$$1/\omega C = 1/(104376,3 * 0,0075 * 10^{-6}) = 1277,4 \text{ Om}$$

Полное сопротивление

$$\sqrt{R^2 + (\omega L - 1/\omega C)^2} = \sqrt{2150^2 + (5114,4 - 1277,4)^2} =$$
4398,3 Om

Действующее значение тока

$$I = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = \frac{10}{4398,3} = 2,27 * 10^{(-3)} A$$

Напряжение на резисторе

$$U_R = I * R = \frac{UR}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = 2,27*10^{(-3)}*2150 = 4,9B$$

Напряжение на катушке

$$U_L = I * \omega L = \frac{U\omega L}{\sqrt{R^2 + (\varpi L - 1/\omega C)^2}} = 2,27*10^{(-3)}*5114,4=11,6 \text{ B}$$

$$U_C = I * 1/\omega C = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} * \frac{1}{\omega C} = 2,27*10^{(-3)}*1277,4=2,9 B$$

$$\phi = arctg \frac{\omega L - 1/\omega C}{R} = arctg \frac{5114,4 - 1277,4}{2150} = arctg(1,78) = 60,7^{\circ}$$

$$F_p = \mathbf{24918} \; \Gamma$$
ц

Угловая частота

$$\omega = 2\pi F_p = \frac{1}{\sqrt{LC}} = 156564, 4$$

Сопротивление на катушке

$$\omega L = 156564,4 * 49 * 10^{-3} =$$
7671,7 Ом

Сопротивление на конденсаторе

$$1/\omega C = 1/(15654.4 * 0.0075 * 10^{-6}) = 851.6 \text{ Om}$$

Полное сопротивление

$$\sqrt{R^2 + (\omega L - 1/\omega C)^2} = \sqrt{2150^2 + (7671.7 - 851.6)^2} =$$
7150, **9** Om

Действующее значение тока

$$I = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = \frac{10}{7150.9} = 1.4 * 10^{(-3)} A$$

Напряжение на резисторе

$$U_R = I * R = \frac{UR}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = 1,4*10^{(-3)*2150} = 3 B$$

Напряжение на катушке

$$U_L = I * \omega L = \frac{U\omega L}{\sqrt{R^2 + (\varpi L - 1/\omega C)^2}} = 1,4*10^{(-3)*7671,7} = 10,7 \text{ B}$$

$$U_C = I * 1/\omega C = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} * \frac{1}{\omega C} = 1,4*10^{(-3)*851,6} = 1,2 \text{ B}$$

$$\phi = arctg \frac{\omega L - 1/\omega C}{R} = arctg \frac{7671,7 - 851,6}{2150} = arctg(3.17) =$$
= **72,5**°

$$F_p = 10906, 31 \Gamma$$
ц

Угловая частота

$$\omega = 2\pi F_p = \frac{1}{\sqrt{LC}} = 68526, 4.$$

Сопротивление на катушке

$$\omega L = 68526.4 * 49 * 10^{-3} = 3357.8 \text{ Om}$$

Сопротивление на конденсаторе

$$1/\omega C = 1/(68526,4 * 0,0075 * 10^{-6}) =$$
1945,7 OM

Полное сопротивление

$$\sqrt{R^2 + (\omega L - 1/\omega C)^2} = \sqrt{2150^2 + (3357.8 - 1945.7)^2} = 2572.3 \text{ Om}$$

Действующее значение тока

$$I = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = \frac{10}{2572,3} = 3,9 * 10^{(-3)} A$$

Напряжение на резисторе

$$U_R = I * R = \frac{UR}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = 3.9*10^{(-3)}*2150 = 8.4 \text{ B}$$

Напряжение на катушке

$$U_L = I * \omega L = \frac{U\omega L}{\sqrt{R^2 + (\varpi L - 1/\omega C)^2}} = 3,9*10^{(-3)}3357,8=13 \text{ B}$$

$$U_C = I * 1/\omega C = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} * \frac{1}{\omega C} = 3.9*10^{(-3)}*1945,7 = 7.6 \text{ B}$$

$$\phi = arctg \frac{\omega L - 1/\omega C}{R} = arctg \frac{3357,8 - 1945,7}{2150} = arctg(0,66) =$$
= 33,3°

$$F_p = 6325,66 \Gamma$$
ц

Угловая частота

$$\omega = 2\pi F_p = \frac{1}{\sqrt{LC}} = 39745,3$$

Сопротивление на катушке

$$\omega L = 39745,3 * 49 * 10^{-3} =$$
1947, **5 O**M

Сопротивление на конденсаторе

$$1/\omega C = 1/(39745,3 * 0,0075 * 10^{-6}) = 3354,7 \text{ Om}$$

Полное сопротивление

$$\sqrt{R^2 + (\omega L - 1/\omega C)^2} = \sqrt{2150^2 + (1947.5 - 3354.7)^2} =$$
2569, **6** Om

Действующее значение тока

$$I = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = \frac{10}{2569.6} = 3.9 * 10^{(-3)} A$$

Напряжение на резисторе

$$U_R = I * R = \frac{UR}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} = 3.9*10^{(-3)}*2150 = 8.4B$$

Напряжение на катушке

$$U_L = I * \omega L = \frac{U\omega L}{\sqrt{R^2 + (\varpi L - 1/\omega C)^2}} = 3.9*10^{(-3)}*1947,5 = 7.6 \text{ B}$$

$$U_C = I * 1/\omega C = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} * \frac{1}{\omega C} = 3.9*10^{(-3)}3354,7 = 13 \text{ B}$$

$$\phi = arctg \frac{\omega L - 1/\omega C}{R} = arctg \frac{1947,5 - 3354,7}{2150} = arctg(-0,65) =$$
= -33,2°

Лабораторное задание

Включив в схему рис.1 амперметр и три вольтметров определите экспериментальные значения токов и напряжений, заданных в табл. 2.

Получите АЧХ и ФЧХ с помощью Боде-плоттера.

Определите экспериментально относительную полосу пропускания, считая выходным элементом резистор R.

$$d_{\Im} = (F_B - F_H)/F_{P} = (11,623 - 5,143) / 8.306 = \textbf{0.78}$$

$$d_T = \textbf{0.84}$$

Уменьшите величину сопротивления R в 4 раза. Определите снова полосу пропускания.

$$\begin{split} &d_{\Im}\!=(F_{B}\text{-}F_{H})\!/F_{P}\!=(9,\!286\text{-}7,\!48)\!/8,\!306=\!\textbf{0,217}\\ &d_{T}=\textbf{0,84} \end{split}$$

Уменьшите в два раза резонансную частоту:

$$\omega/2 = 1/\sqrt{4LC}$$

- За счет величины индуктивности L. Увеличим L в 4 раза. L = 196мГн

- За счет величины емкости С. Увеличим С в 4 раза. C = 0.03 пк Φ

Добротность $Q = (1/R) \sqrt{L/C}$

Если L увеличится в 4 раза, то добротность увеличится в 2 раза. Если C увеличится в 4 раза, то добротность уменьшится в 2 раза.