NOTES 21: CLT-BASED INFERENCE FOR

Stat 120 | Fall 2025 Prof Amanda Luby

1 CLT Recap

CLT for 1 Proportion

$$\hat{p} \sim N(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$$

$$SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

$$SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

But, we don't know p, so plug in _____ (CI's), _____ (HT's), _____ (conservative)

CLT for 1 Mean

$$\bar{X} \sim N(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$$

where $SE_{\bar{X}} =$ ______. But, we don't know σ , so we plug in s. Then,

$$\frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}} \sim t_{n-1}$$

Example We want to build a 99% confidence interval for μ , where $\bar{X}=290$, n=120 and s=87.6. The correct form for the CI is:

2 CLT for a difference in proportions

Idea:

Population parameter:

Sample statistic:

CLT:

$$\hat{p}_1 - \hat{p}_2 \sim N(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$$

How big is "big enough?"

•
$$n_1 p_1 >$$

•
$$n_1 p_1 >$$

• $n_2 p_2 >$ _______

What is the SE?

$$SE_{\hat{p}_1-\hat{p}_2} = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

but, we don't know p_1 or p_2 . Three options:

- 1. "Plug-in" \hat{p}_1 and \hat{p}_2
- 2. Use $\hat{p}_{pooled} =$ ______
- 3. "Conservative" SE: assume p =

CLT-based confidence interval for a difference in proportions:

$$\hat{p}_1 - \hat{p}_2 \pm z^* \times SE_{plug-in}$$

CLT-based test for a difference in proportions:

$$H_0: p_1 - p_2 = 0$$

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{SE_{pooled}}$$

3 CLT for a difference in means

Idea:

Population parameter:

Sample statistic:

CLT:

$$\bar{x}_1 - \bar{x}_2 \sim N(\mu_1 - \mu_2, SE_{\bar{x}_1 - \bar{x}_2})$$

How big is "big enough?"

•
$$n_2 >$$

$$\bullet \ n_1 \leq \underline{\hspace{1cm}} \text{ or } n_2 \leq \underline{\hspace{1cm}}$$

What is the SE?

$$SE_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

but, we don't know σ_1 or $\sigma_2,$ so we plug in s_1 and s_2 instead:

$$SE_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

the sampling distribution is no longer a normal distribution, but becomes a _____

CLT-based confidence interval for a difference in means:

$$\bar{x}_1 - \bar{x}_2 \pm t_{df}^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

CLT-based test for a difference in means: $H_0: \mu_1 - \mu_2 = 0$

$$t_{df} = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

where df = _____

4 CLT for Matched Pairs

Idea:

Population parameter:

Sample statistic:

CLT:

How big is "big enough"?

What is the SE?

CLT-based confidence interval for a matched pairs difference:	
CLT-based test for a matched pairs difference: $H_0:\mu_d=0$	
CLT-based test for a matched pairs difference: $H_0:\mu_d=0$	
CLT-based test for a matched pairs difference: $H_0:\mu_d=0$	
CLT-based test for a matched pairs difference: $H_0:\mu_d=0$	