1. Что такое проблема долговременной зависимости в рекуррентных сетях?

Одним из главных свойств рекуррентных нейронных сетей является способность связывать предыдущую информацию с текущей. Так, взяв например языковую модель, если нам надо предсказать последнее слово в предложении "солнце светит на небе", вполне легко понять, что это слово "небо". Однако при наличии долговременных зависимостей, когда между искомым словом и словом, указывающим на него, имеется довольно длинный контекст, наша сеть теряет свою способность связывать информацию (мы не можем связать информацию из прошлого с тем, что происходит сейчас). Это и является проблемой долговременной зависимости в рекуррентных сетях.В теории рекуррентной сети не должно быть никаких проблем с обработкой долговременных зависимостей, практике НО на ЭТО становится невозможным.

Эта проблема решается с помощью использования модификации рекуррентной сети LSTM (Long Short-Term Memory).

2. Применяется ли слой Dropout, если вызывается метод predict? Ответ обоснуйте

Нет, так как слой Dropout исключает часть нейронов для избежания переобучения, соответственно и используется только во время обучения.

3. В каком виде ИНС выдает результат в задачах семантической сегментации?

Нейросеть возвращает маску с сегментированным изображением, где каждый пиксель имеет свою метку. Пиксели одного сегмента помечены одинаковой меткой.

4. Какая максимальная точность была получена? Как ее можно повысить?

При обучении на 10 эпохах максимально полученная точность равна 0.7830. Чтобы ее повысить, можно попробовать:

- поменять архитектуру (добавить/удалить слои)
- попробовать различные гиперпараметры, чтобы найти оптимальные для данной сети
 - увеличить количество эпох

5. Как можно сделать, чтобы производилась расширенная свертка?

Использовать параметр dilation_rate слоя Convolution2D. Параметр принимает значение целого числа или кортежа из двух целых чисел, указывающие степень расширения ядра.