
Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2009; month=8; day=7; hr=8; min=1; sec=42; ms=458;]

Reviewer Comments:

<210> 15

<211> 3933

<212> DNA

<213> Pseudomonas sp. HJ-2 (phb locus)

<400> 15

gageteaatg egegeeagga etggtgtgeg aggaeaacee ggegteaeee ggggaeattg 60

ttcacatccg caaagcgcca gagacttgcc cgctgttcca aggtcttaat taacgaggaa 120

tggttaatgg gtactgcgag caatgcggca cgtatagctc tggtcaccgg tggtatgggc 180

ggtatcggta cggcgatcag ccagcgcctg catcgggatg gcttcaccgt ggtggtgggc 240

tgtaatccct actccagecg caaggettee tggattgeea egeaactega ggegggettt 300

cacttccact gcatcgactg cgacatcacc gactgggata gcacccgcca ggccttcgac 360

atggtgcacg agactgtcgg cccgatcgat gtattggtca acaatgccgg catcacccgc 420

gacggcactt teegeaagat gteeceggaa aactggaagg eggtgatega taccaatete 480

accggcctgt tcaacacaac caagcaggtc atcgagggca tgctggccaa gggctgggga 540

cgcgtcatca acateteete aateaatgge cagcgaggee agttegggea gaccaactae 600

tccgcggnca aggctggcat tcatggcttc agcatggcct tggcccgcga ggtgagtggc 660

aagggcgtga ccgtcaatac ggtttcccct ggctacatca agaccgacat gaccgcggcg 720

attcgcccgg acatectcga agacatgatt actggcattc ccgtgggccg tctcggccag 780

cccgaggaga tcgcctcgat cgtggcctgg ctggcctccg atcagtctgc ctatgccacc 840

ggcgccgact tctcggtgaa tggcggcatg aacatgcagt gatgcgccat tcgcgccctc 900

gctcagccat gacatgaggt gttccagatg atcgaagtcg ttatcgtcgc cgccactcgc 960

accgccatcg gcgctttcca ggggagcctg gccggcactc ccgccgttga actgggcgcc 1020

acggtgatcc gccgcctgct cgaacagacc gctctggata gcagtcaggt ggatgaagtg 1080

atacteggee aegtacteae egeeggtget ggeagaatae egetegeeag geanenggte 1140

Regarding the above <213> response; per 1.823 of the Sequence Rules, the only valid responses are the Genus species of the organism, "Artificial Sequence", or "Unknown". "Artificial Sequence" and "Unknown" require explanation in the <220>-<223> section; please give the source of the genetic material. Please just list the Genus species as the <213> response; put explanatory matter in the <220>-<223> section; please correct all similar sequences.

The n's at locations 608, 1134, and 1136 are not explained above.

<210> 16

<211> 251

<212> PRT

<213> Pseudomonas sp. HJ-2 (NADPH-dependent acetoacetyl-CoA reductase
(phbB))

<400> 16

Met Gly Thr Ala Ser Asn Ala Ala Arg Ile Ala Leu Val Thr Gly Gly

1 5 10 15

Met Gly Gly Ile Gly Thr Ala Ile Ser Gln Arg Leu His Arg Asp Gly
20 25 30

Phe Thr Val Val Gly Cys Asn Pro Tyr Ser Ser Arg Lys Ala Ser 35 40 45

Trp Ile Ala Thr Gln Leu Glu Ala Gly Phe His Phe His Cys Ile Asp
50 55 60

Cys Asp Ile Thr Asp Trp Asp Ser Thr Arg Gln Ala Phe Asp Met Val 65 70 75 80

His Glu Thr Val Gly Pro Ile Asp Val Leu Val Asn Asn Ala Gly Ile
85 90 95

Thr Arg Asp Gly Thr Phe Arg Lys Met Ser Pro Glu Asn Trp Lys Ala
100 105 110

Val Ile Asp Thr Asn Leu Thr Gly Leu Phe Asn Thr Thr Lys Gln Val
115 120 125

Ile Glu Gly Met Leu Ala Lys Gly Trp Gly Arg Val Ile Asn Ile Ser 130 135 140

Ser Ile Asn Gly Gln Arg Gly Gln Phe Gly Gln Thr Asn Tyr Ser Ala 145 150 155 160

Xaa Lys Ala Gly Ile His Gly Phe Ser Met Ala Leu Ala Arg Glu Val 165 170 175 Please correct the above <213> response to just indicate the Genus species of the organism; place explanatory matter in the <220>-<223> section. Also, the above <213> response exceeds the Sequence Rules' required 72-character line limit. The "Xaa" at location 161 is not explained above.

<210> 17

<211> 392

<212> PRT

<213> Pseudomonas sp. HJ-2 (beta-ketothiolase (phbA))

<400> 17

Met Ile Glu Val Val Ile Val Ala Ala Thr Arg Thr Ala Ile Gly Ala 1 5 10 15

Phe Gln Gly Ser Leu Ala Gly Thr Pro Ala Val Glu Leu Gly Ala Thr
20 25 30

Val Ile Arg Arg Leu Leu Glu Gln Thr Ala Leu Asp Ser Ser Gln Val
35 40 45

Asp Glu Val Ile Leu Gly His Val Leu Thr Ala Gly Ala Gly Arg Ile
50 55 60

Pro Leu Ala Arg Xaa Xaa Val Ile Ala Gly Leu Pro His Ala Val Pro 65 70 75 80

Please correct the above <213> response. Also, the "Xaa's" at locations 69-70 are not explained above.

Validated By CRFValidator v 1.0.3

Application No: 10583840 Version No: 2.0

Input Set:

Output Set:

Started: 2009-07-22 14:17:12.979

Finished: 2009-07-22 14:17:15.807

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 828 ms

Total Warnings: 18

Total Errors: 6

No. of SeqIDs Defined: 18

Actual SeqID Count: 18

Error c	ode	Error Description
W 21	.3	Artificial or Unknown found in <213> in SEQ ID (1)
W 21	.3	Artificial or Unknown found in <213> in SEQ ID (2)
W 21	.3	Artificial or Unknown found in <213> in SEQ ID (3)
W 21	.3	Artificial or Unknown found in <213> in SEQ ID (4)
W 21	.3	Artificial or Unknown found in <213> in SEQ ID (5)
W 21	.3	Artificial or Unknown found in <213> in SEQ ID (6)
W 21	.3	Artificial or Unknown found in <213> in SEQ ID (7)
W 21	.3	Artificial or Unknown found in <213> in SEQ ID (8)
W 21	.3	Artificial or Unknown found in <213> in SEQ ID (9)
W 21	.3	Artificial or Unknown found in <213> in SEQ ID (10)
W 21	.3	Artificial or Unknown found in <213> in SEQ ID (11)
W 40)2	Undefined organism found in <213> in SEQ ID (12)
W 4()2	Undefined organism found in <213> in SEQ ID (13)
W 40)2	Undefined organism found in <213> in SEQ ID (14)
W 40)2	Undefined organism found in <213> in SEQ ID (15)
E 34	12	'n' position not defined found at POS: 608 SEQID(15)
E 34	12	'n' position not defined found at POS: 1134 SEQID(15)
E 34	12	'n' position not defined found at POS: 1136 SEQID(15)
W 40)2	Undefined organism found in <213> in SEQ ID (16)
E 34	11	'Xaa' position not defined SEQID (16) POS (161)

Input Set:

Output Set:

Started: 2009-07-22 14:17:12.979

Finished: 2009-07-22 14:17:15.807

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 828 ms

Total Warnings: 18

Total Errors: 6

No. of SeqIDs Defined: 18

Actual SeqID Count: 18

Error code		Error Description	
W	402	Undefined organism found in <213> in SEQ ID (17	7)
E	341	'Xaa' position not defined SEQID (17) POS (69))
E	341	'Xaa' position not defined SEQID (17) POS (70))
W	402	Undefined organism found in <213> in SEQ ID (18	3)

<110>	LG CHEM, LTD.	
<120>	Poly(3-hydroxyalkanoate) Block Copolymer Having Shape Memory Effect	
<130>	LC05PCT042	
<140>	10583840	
<141>	2009-07-22	
<150>	KR 10-2005-0059907	
<151>	2005-07-04	
<160>	18	
<170>	KopatentIn 1.71	
<210>	1	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Choi3 (PCR Primer)	
<400>	1	
		1 0
eegeesi	tgsa tcaagtac	18
<210>	2	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Choi4 (PCR Primer)	
<400>	2	
gytsgt	gsyg tcyycgttcc	20
<210>	3	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<220> <223>	HJ-PHB-N (PCR Primer)	
	HJ-PHB-N (PCR Primer)	
	HJ-PHB-N (PCR Primer)	

<210> 4

```
<212>
      DNA
<213>
       Artificial Sequence
<220>
<223>
       HJ-PHB-C (PCR Primer)
<400>
tcadmsytty acrtarcgkc ctggygc
                                                                       27
<210>
        5
<211>
       20
<212>
        DNA
<213>
      Artificial Sequence
<220>
<223>
      SCL-1 (PCR Primer)
<400>
        5
                                                                       20
gatcgatacc aatctcaccg
<210>
        6
<211>
       21
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223>
      SCL-2 (PCR Primer)
<400>
caaagccagt ggttcgacgt a
                                                                       21
<210>
        7
<211>
       19
<212>
<213>
       Artificial Sequence
<220>
<223>
        SCL-3 (PCR Primer)
<400>
       7
ctgctgaaac tgttggagc
                                                                       19
<210>
        8
<211>
        47
<212>
        DNA
<213>
        Artificial Sequence
```

<211>

<220>

27

```
<400>
                                                                      47
gggggtacca ataaggagat atacatatgg gtactgcgag caatgcg
<210>
        9
<211>
       28
<212>
        DNA
<213>
      Artificial Sequence
<220>
<223>
      BA-C (PCR Primer)
<400>
        9
                                                                      28
cccactagtt cagcgctcga tggccagc
<210>
       10
<211>
      28
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223>
       SD-phbC-N (PCR Primer)
<400>
        10
                                                                      28
gggcatatga cccagaagaa caacagcg
<210>
       11
<211>
<212>
      DNA
<213>
       Artificial Sequence
<220>
<223>
        phbC-C (PCR Primer)
<400>
        11
                                                                      39
cccactagtt cadmscttya crtaacgtcc tggcgcygc
<210>
       12
<211>
      756
<212>
      DNA
<213>
       Pseudomonas sp. HJ-2
<220>
<221>
       variation
<222>
       (482)
       n=A, C, G or T
<223>
```

<223>

<400>

12

SD-BA-N (PCR Primer)

atgggtactg	cgagcaatgc	ggcacgtata	gctctggtca	ccggtggtat	gggcggtatc	60
ggtacggcga	tcagccagcg	cctgcatcgg	gatggcttca	ccgtggtggt	gggctgtaat	120
ccctactcca	gccgcaaggc	ttcctggatt	gccacgcaac	tcgaggcggg	ctttcacttc	180
cactgcatcg	actgcgacat	caccgactgg	gatagcaccc	gccaggcctt	cgacatggtg	240
cacgagactg	teggeeegat	cgatgtattg	gtcaacaatg	ccggcatcac	ccgcgacggc	300
actttccgca	agatgtcccc	ggaaaactgg	aaggcggtga	tcgataccaa	tctcaccggc	360
ctgttcaaca	caaccaagca	ggtcatcgag	ggcatgctgg	ccaagggctg	gggacgcgtc	420
atcaacatct	cctcaatcaa	tggccagcga	ggccagttcg	ggcagaccaa	ctactccgcg	480
gncaaggctg	gcattcatgg	cttcagcatg	gaattggaac	gcgaggtgag	tggcaagggc	540
gtgaccgtca	atacggtttc	ccctggctac	atcaagaccg	acatgaccgc	ggcgattcgc	600
ccggacatcc	tcgaagacat	gattactggc	attcccgtgg	gccgtctcgg	ccagcccgag	660
gagategeet	cgatcgtggc	ctggctggcc	teegateagt	ctgcctatgc	caccggcgcc	720
gacttctcgg	tgaatggcgg	catgaacatg	cagtga			756

<210> 13 <211> 1179 <212> DNA <213> Pseudomonas sp. HJ-2 <220> <221> variation <222> (207) <223> n=A, C, G or T <220> <221> variation <222> (209) <223> n=A, C, G or T

<400>

13

atgategaag tegttategt egeegeact egeacegeca teggegettt eeaggggage 60
ctggeeggea eteeegeegt tgaaetggge geeacggtga teegeegeet getegaacag 120
acegetetgg atageagtea ggtggatgaa gtgataeteg geeacgtaet eacegeeggt 180
getggeagaa tacegetege eaggeaneng gteategeeg geetgeeaca egeegtaeeg 240
gegatgaeee tgaacaaggt etgtggetee ggeetgaaag eeetgeacet gggegeecag 300
geeateeget gtggegatge egaggtggtg attgeeggtg geatggagaa eatgageetg 360
tegteetatg teetgeeeaa ggeeegeace ggeetgeea tgggeeaege geagetggte 420

gacagcatga	tcgtcgacgg	cctgtgggac	gccttcaacg	actaccacat	ggggatcact	480
gccgagaacc	tggtagacaa	gtacggcatc	agccgcgaag	cccaggacga	attcgccgcc	540
gcctcgcagc	agaaagccgt	ggccgccatc	gagaccggtc	gcttccgcga	cgagatcgtc	600
ccggtgagca	ttccgcagcg	caagggcgag	gcgctgagct	tcgacaccga	cgaacagcca	660
cgcgccggca	ccaccgccga	gtcgctgggc	aagctgaaac	cggccttcaa	gaacgacggc	720
agegttactg	ccggcaacgc	ttccagtctc	aacgacggcg	ccgccgcggt	actgctgatg	780
agt gcggcaa	aggccgcagc	gcttggtctg	ccagtgctgg	cgaagatcgc	cgcctacgcc	840
aatgccggcg	tegaeeegge	gatcatgggt	atcggaccgg	tgtcggccac	ccgcagttgc	900
ctggagaagg	cgggctggag	tctggcagag	ctggatctga	tcgaggccaa	tgaageette	960
gcggcccagg	ccctggccgt	gggtcaggag	ctgggctggg	atgctggcag	ggttaacgtc	1020
aacggcggcg	ccatcgccct	cggccacccc	attggcgcct	ccggctgccg	cgtactggtc	1080
agcctgctgc	atgaaatgct	caggcgcgac	gcgaaaaaag	gcctcgctac	cctgtgtatc	1140
ggtggcggcc	agggcgtggc	gctggccatc	gagcgctga			1179

<210> 14

<211> 1701

<212> DNA

<213> Pseudomonas sp. HJ-2 (SCL-PHA synthase (phaC))

<400> 14

atggacaacg gacacacctt tgctcactac tggtcgggtc aggcgccctt catcgccagc 60 ttcgtcctgc agcaactgcg cttatacgtg gcgcaaaata cttggttcag cgggcacgac 120 180 caaagccagt ggttcgacgt acctgtcgag gcgttggagc aactgcaggc ggactaccaa 240 caacagtggg ccgaacttgg ccagcaattg ctgagctgcc agccgttcgc attcagcgat cgtcgcttcg ccagtggcaa ctggagcgaa ccgctgttcg gttccctggc tgccttctac 300 ctgctgaatt ccggtttcct gctgaaactg ttggagcttc tccccatcga tgagcagaag 360 ccccgccage gettgegtta ettgategag caagegattg ccgcaagege cccaagtaac 420 480 tttctgctga gcaaccctga tgccctgcaa cgcctagtgg aaacccaggg cgccagccta ctaagtggcc tgttgcatct tgccagtgac ctgcaggcag gcaagttgcg ccaatgtgac 540 ttgggcgatt tcgaagtcgg cgtgaatctg gccaccaccc ctggtgccgt ggtactggaa 600 acceptetgt tecagetgat ceagtatteg eegeteageg aaaegeaata eeageggeeg 660 720 atattcatgg tecegecetg gateaacaag tactacatee ttgacetegg geeegaaaac

tctctaatcc	gtcatctact	ggagcgaggc	catcaagttt	ttctgatgtc	ctggcgcaac	780
ttcactcagg	aacaggccga	catcacctgg	gagcagat ca	tccaggacgg	agtgatcagc	840
gccctgcgca	ctacccgggc	catcagtggt	gagcgccacc	tgaactgttt	gggtttctgc	900
atcggcggca	ccatgctgag	ttgcgctcta	gcggtgctgg	cagcgcgtgg	cgaccaggac	960
attgccagcc	tgagtctatt	cgccactttt	cttgactacc	ttgataccgg	gccgatcagc	1020
gtcttcgtcg	atgagcaact	ggtggcctac	cgtgagcgca	ccatcggtgg	ccatggtggc	1080
aaatgtggcc	tgttccgcgg	tgaggacatg	ggcaatacct	tctccctgct	gcggcccaac	1140
gagctgtggt	ggaactacaa	cgtagacaaa	tatctcaagg	ggcagaagcc	gctggctctg	1200
ggtctactgt	tctggaacaa	cgacagcacc	aatctgccgg	ggcccctgta	ttgctggtat	1260
ctgcgccaca	cctacctgca	gaacgacctc	aaatcggggg	agttggatct	gtgeggegte	1320
aagttggatc	tgcgggccat	agacgcacca	gcctacatct	tgggaaccca	tgacgaccac	1380
atcgtgccct	ggcgaagcgc	ctatgccagc	acggaattgc	tgggaggtcc	aaagcgcttt	1440
gtcctcggcg	cctccggcca	categeeggg	gtgatcaacc	cgccagatag	gaacaagcgc	1500
cattactggg	tcaatgaaca	catagegeeg	gtagctgacg	actggctgca	gggagctcag	1560
cagcattccg	gcagttggtg	gggtgactgg	ttcgcctggt	tgaccggcta	tgccggccca	1620
cgcaagcctg	ccatcactat	gctgggcagt	gccgagtacc	ccccgcttga	acatgcgcca	1680
ggacgttatg	tgaagctatg	а				1701

<210> 15

<211> 3933

<212> DNA

<213> Pseudomonas sp. HJ-2 (phb locus)

<400> 15

60 gageteaatg egegeeagga etggtgtgeg aggaeaacce ggegteaece ggggaeattg ttcacatccg caaagcgcca gagacttgcc cgctgttcca aggtcttaat taacgaggaa 120 tggttaatgg gtactgcgag caatgcggca cgtatagctc tggtcaccgg tggtatgggc 180 240 ggtatcggta cggcgatcag ccagcgcctg catcgggatg gcttcaccgt ggtggtgggc 300 tgtaatccct actccagccg caaggcttcc tggattgcca cgcaactcga ggcgggcttt cacttccact gcatcgactg cgacatcacc gactgggata gcacccgcca ggccttcgac 360 420 atggtgcacg agactgtcgg cccgatcgat gtattggtca acaatgccgg catcacccgc 480 gacggcactt tccgcaagat gtccccggaa aactggaagg cggtgatcga taccaatctc

accggcctgt	tcaacacaac	caagcaggtc	atcgagggca	tgctggccaa	gggctgggga	540
cgcgtcatca	acatctcctc	aatcaatggc	cagcgaggcc	agttcgggca	gaccaactac	600
teegeggnea	aggctggcat	tcatggcttc	agcatggcct	tggcccgcga	ggtgagtggc	660
aagggcgtga	ccgtcaatac	ggtttcccct	ggctacatca	agaccgacat	gaccgcggcg	720
attegeeegg	acatcctcga	agacatgatt	actggcattc	ccgtgggccg	tctcggccag	780
cccgaggaga	tegeetegat	cgtggcctgg	ctggcctccg	atcagtctgc	ctatgccacc	840
ggcgccgact	tctcggtgaa	tggcggcatg	aacatgcagt	gatgcgccat	tegegeeete	900
gctcagccat	gacatgaggt	gttccagatg	atcgaagtcg	ttatcgtcgc	cgccactcgc	960
accgccatcg	gcgctttcca	ggggageetg	gccggcactc	ccgccgttga	actgggcgcc	1020
acggtgatcc	geegeetget	cgaacagacc	gctctggata	gcagtcaggt	ggatgaagtg	1080
atactcggcc	acgtactcac	cgccggtgct	ggcagaatac	cgctcgccag	gcancnggtc	1140
atcgccggcc	tgccacacgc	cgtaccggcg	atgaccctga	acaaggtctg	tggctccggc	1200
ctgaaagccc	tgcacctggg	cgcccaggcc	atccgctgtg	gcgatgccga	ggtggtgatt	1260
gccggtggca	tggagaacat	gageetgteg	tcctatgtcc	tgcccaaggc	ccgcaccggc	1320
ctgcgcatgg	gccacgcgca	gctggtcgac	agcatgatcg	tcgacggcct	gtgggacgcc	1380
ttcaacgact	accacatggg	gatcactgcc	gagaacctgg	tagacaagta	cggcatcagc	1440
cgcgaagccc	aggacgaatt	cgccgccgcc	tegeageaga	aagccgtggc	cgccatcgag	1500
accggtcgct	teegegaega	gategteeeg	gtgagcattc	cgcagcgcaa	gggcgaggcg	1560
ctgagcttcg	acaccgacga	acagccacgc	gccggcacca	ccgccgagtc	gctgggcaag	1620
ctgaaaccgg	ccttcaagaa	cgacggcagc	gttactgccg	gcaacgcttc	cagtctcaac	1680
gacggcgccg	ccgcggtact	gctgatgagt	gcggcaaagg	ccgcagcgct	tggtctgcca	1740
gtgctggcga	agategeege	ctacgccaat	gccggcgtcg	acccggcgat	catgggtatc	1800
ggaccggtgt	cggccacccg	cagttgcctg	gagaaggcgg	gctggagtct	ggcagagctg	1860
gatctgatcg	aggccaatga	agcettegeg	gcccaggccc	tggccgtggg	tcaggagctg	1920
ggctgggatg	ctggcagggt	taacgtcaac	ggcggcgcca	tcgccctcgg	ccaccccatt	1980
ggcgcctccg	gctgccgcgt	actggtcagc	ctgctgcatg	aaatgctcag	gcgcgacgcg	2040
aaaaaaggcc	tcgctaccct	gtgtatcggt	ggcggccagg	gcgtggcgct	ggccatcgag	2100
cgctgagtga	cgctttcgcg	actctgccgg	acgtgccccc	ctgcacccgc	accgccaggc	2160

tggccgtgcg cttacgt	ctc gacatgatcg	caccgcgggc	gcggcttttg	ttttcatatt	2220
cctggagacg ccatgga	.caa cggacacacc	: tttgctcact	actggtcggg	tcaggcgccc	2280
ttcatcgcca gcttcgt	cct gcagcaactg	cgcttatacg	tggcgcaaaa	tacttggttc	2340
agcgggcacg accaaag	cca gtggttcgac	gtacctgtcg	aggcgttgga	gcaactgcag	2400
gcggactacc aacaaca	gtg ggccgaactt	ggccagcaat	tgctgagctg	ccagccgttc	2460
gcattcagcg atcgtcg	ctt cgccagtggc	aactggagcg	aaccgctgtt	cggttccctg	2520
gctgccttct acctgct	gaa ttccggtttc	: ctgctgaaac	tgttggagct	tctccccatc	2580
gatgagcaga agccccg	cca gegettgegt	tacttgatcg	agcaagcgat	tgccgcaagc	2640
gccccaagta actttct	gct gagcaaccct	gatgeeetge	aacgcctagt	ggaaacccag	2700
ggcgccagcc tactaag	tgg cctgttgcat	cttgccagtg	acctgcaggc	aggcaagttg	2760
cgccaatgtg acttggg	cga tttcgaagtc	ggegtgaate	tggccaccac	ccctggtgcc	2820
gtggtactgg aaacccc	tct gttccagctg	atccagtatt	cgccgctcag	cgaaacgcaa	2880
taccagcggc cgatatt	cat ggtcccgccc	: tggatcaaca	agtactacat	ccttgacctc	2940
gggcccgaaa actctct	aat ccgtcatcta	ı ctggagcgag	gccatcaagt	ttttctgatg	3000
teetggegea actteac	tca ggaacaggcc	gacatcacct	gggagcagat	catccaggac	3060
ggagtgatca gcgccct	gcg cactacccgg	gccatcagtg	gtgagcgcca	cctgaactgt	3120
ttgggtttct gcatcgg	cgg caccatgctg	agttgcgctc	tageggtget	ggcagcgcgt	3180
ggcgaccagg acattgc	cag cctgagtcta	ttegecaett	ttcttgacta	ccttgatacc	3240
gggccgatca gcgtctt	cgt cgatgagcaa	ı ctggtggcct	accgtgagcg	caccatcggt	3300
ggccatggtg gcaaatg	tgg cctgttccgc	ggtgaggaca	tgggcaatac	cttctccctg	3360
ctgcggccca acgagct	gtg gtggaactac	aacgtagaca	aatatctcaa	ggggcagaag	3420
ccgctggctc tgggtct	act gttctggaac	aacgacagca	ccaatctgcc	ggggcccctg	3480
tattgctggt atctgcg	cca cacctacctg	cagaacgacc	tcaaatcggg	ggagttggat	3540
ctgtgcggcg tcaagtt	gga tetgegggee	atagacgcac	cagcctacat	cttgggaacc	3600
catgacgacc acatcgt	gcc ctggcgaagc	gcctatgcca	gcacggaatt	gctgggaggt	3660
ccaaagcgct ttgtcct	egg egeeteegge	cacategeeg	gggtgatcaa	cccgccagat	3720
aggaacaagc gccatta	ctg ggtcaatgaa	ı cacatagege	cggtagctga	cgactggctg	3780
cagggagete ageagea	ttc eggeagttgg	tggggtgact	ggttcgcctg	gttgaccggc	3840
tatgccggcc cacgcaa	gcc tgccatcact	atgctgggca	gtgccgagta	cccccgctt	3900

<210> 16 <211> 251 <212> PRT <213> Pseudomonas sp. HJ-2 (NADPH-dependent acetoacetyl-CoA reductase (phbB)) <400> 16 Met Gly Thr Ala Ser Asn Ala Ala Arg Ile Ala Leu Val Thr Gly Gly 5 10 Met Gly Gly Ile Gly Thr Ala Ile Ser Gln Arg Leu His Arg Asp Gly 25 Phe Thr Val Val Gly Cys Asn Pro Tyr Ser Ser Arg Lys Ala Ser 35 40 45 Trp Ile Ala Thr Gln Leu Glu Ala Gly Phe His Phe His Cys Ile Asp 50 55 Cys Asp Ile Thr Asp Trp Asp Ser Thr Arg Gln Ala Phe Asp Met Val 70 His Glu Thr Val Gly Pro Ile Asp Val Leu Val Asn Asn Ala Gly Ile 90 8.5 Thr Arg Asp Gly Thr Phe Arg Lys Met Ser Pro Glu Asn Trp Lys Ala 105 Val Ile Asp Thr Asn Leu Thr Gly Leu Phe Asn Thr Thr Lys Gln Val 115 120 Ile Glu Gly Met Leu Ala Lys Gly Trp Gly Arg Val Ile Asn Ile Ser 130 135 140 Ser Ile Asn Gly Gln Arg Gly Gln Phe Gly Gln Thr Asn Tyr Ser Ala 145 150 155 Xaa Lys Ala Gly Ile His Gly Phe Ser Met Ala Leu Ala Arg Glu Val 165 170 Ser Gly Lys Gly Val Thr Val Asn Thr Val Ser Pro Gly Tyr Ile Lys 185 Thr Asp Met Thr Ala Ala Ile Arg Pro Asp Ile Leu Glu Asp Met Ile 200 195 Thr Gly Ile Pro Val Gly Arg Leu Gly Gln Pro Glu Glu Ile Ala Ser 210 215 220 Ile Val Ala Trp Leu Ala Ser Asp Gln Ser Ala Tyr Ala Thr Gly Ala

235

Asp Phe Ser Val Asn Gly Gly Met Asn Met Gln 245 250

230

225

<210)>	Ι/													
<211	L>	392	2												
<212	2.	PRT	r												
<213	3>	Pse	eudor	nonas	s sp	. HJ-	-2 (k	oeta-	-keto	othic	olase	e (pl	nbA);)	
< 400)>	17													
Mot	т1.		77-7	V-1	т1.	77-1	71-	71-	Th∽	7.200	Thr	71.	T10	C1	71-
	TTG	GIU	Val		тте	Val	Ala	Ald		AIG	TILL	Ата	TTE	Gly	AIA
1				5					10					15	
Phe	Gln	Glv	Ser	Leu	Ala	Glv	Thr	Pro	Ala	Val	Glu	Leu	Glv	Ala	Thr
		1				1							_		
			20					25					30		
Val	Ile	Arg	Arg	Leu	Leu	Glu	Gln	Thr	Ala	Leu	Asp	Ser	Ser	Gln	Val
		35					40					45			
				_											
Asp	Glu	Val	Ile	Leu	Gly	His	Val	Leu	Thr	Ala	Gly	Ala	Gly	Arg	Ile
	50					55					60				
Dres	T 011	71-	7 70 00	Vaa	Vaa	77-7	т1.	71-	C1	T 011	Dago	II i a	71-	77-7	Dwo
	Leu	Ala	AIG	Ada		Val	116	Ald	СТУ		PIO	HIS	Ala	Val	
65					70					75					80
Ala	Met	Thr	Leu	Asn	Lvs	Val	Cvs	Glv	Ser	Glv	Leu	Lvs	Ala	Leu	His
				85	4		2	2	90			_		95	
				0.5					90					93	
Leu	Gly	Ala	Gln	Ala	Ile	Arg	Cys	Gly	Asp	Ala	Glu	Val	Val	Ile	Ala
			100					105					110		
_	_		_								_				_
Gly	Gly	Met	Glu	Asn	Met	Ser	Leu	Ser	Ser	Tyr	Val	Leu	Pro	Lys	Ala
		115					120					125			
Δνα	Thr	Glv	T 🖂 11	Δrα	Mo+	Clv	Нia	212	Gln	T All	₹7.5 T	Aan	Sar	Met	Tlo
my		GLY	шец	my	riec	_	1112	nia	CIII	шец		пър	Der	riec	110
	130					135					140				
Val	Asp	Gly	Leu	Trp	Asp	Ala	Phe	Asn	Asp	Tyr	His	Met	Gly	Ile	Thr
145	-	-		-	150				-	155			_		160
145					100					100					100
Ala	Glu	Asn	Leu	Val	Asp	Lys	Tyr	Gly	Ile	Ser	Arg	Glu	Ala	Gln	Asp
				165					170					175	
a 1	D.1	- 1		- 1	~	~ 1	a 1	-	- 1	7	- 1	- 1	- 1	~ 1	m1
GLu	Phe	Ala	Ата	Ala	Ser	GIn	GIn	гла	Ala	Val	Ala	Ala	TTE	Glu	Thr
			180					185					190		
Glv	Δrα	Dhe	Δrα	Aan	Glu	Τl۵	Val	Dro	Val	Sor	τl۵	Pro	Gln	Arg	T.17 C
OLy	1119		1119	1150	Olu	110		110	vai	DCI	110		OIII	1119	шуз
		195					200					205			
Gly	Glu	Ala	Leu	Ser	Phe	Asp	Thr	Asp	Glu	Gln	Pro	Arq	Ala	Gly	Thr
_	210					215		-			220	_		-	
						-17									
Thr	Ala	Glu	Ser	Leu	Gly	Lys	Leu	Lys	Pro	Ala	Phe	Lys	Asn	Asp	Gly
225					230					235					240
a		m1		a -			a		-			a -			7. 7
ser	val	ınr	Ala	GTA	Asn	АІа	ser	ser	ьeu	Asn	Asp	GTA	Ala	Ala	АІа
				245					250					255	

Val Leu Leu Met Ser Ala Ala Lys Ala Ala Ala Leu Gly Leu Pro Val