Estatística

10 -Testes de hipóteses acerca dos parâmetros

Página da FEG: www.feg.unesp.br/~marcela

Teste de Parâmetros

 H_0 : Hipótese a ser testada - Básica H_1 : Hipótese Alternativa (negação de H_0)

Resultados de Teste de Hipóteses acerca de Parâmetros e suas probabilidades (α e β) condicionadas à realidade:

		REALIDADE		
		H ₀ Verdadeira	H ₀ Falsa	
D E C I S Ã O	Aceitar H ₀	Decisão Correta (1-α)	Erro Tipo II (β)	
	Rejeitar H ₀	Erro Tipo I (α)	Decisão Correta (1-β)	

α: Probabilidade cometer Erro Tipo I Rejeitar H₀, sendo H₀ Verdadeira Risco do Vendedor (Produtor)

β: Probabilidade cometer Erro Tipo II Aceitar H₀, sendo H₀ Falsa Risco do Comprador (Consumidor)

Problema de aceitação de lote de parafusos, submetido à inspeção por amostragem (CEQ).

Indústria compra parafusos com carga média de ruptura por tração especificada em 50 kg e desvio-padrão de 4 kg. Desejase testar a hipótese de que a carga média de ruptura seja de fato 50 kg, contra a alternativa de que ela seja inferior a 50 kg.

Assim:
$$\begin{cases} H_0: \mu = 50kg \\ H_1: \mu < 50kg \end{cases}$$

$$\mu = 50 kg$$

$$\overline{X} < x_c \Rightarrow rejeito \ H_0$$

Problema de aceitação de lote de parafusos, submetido à inspeção por amostragem (CEQ).

Indústria compra parafusos com carga média de ruptura por tração especificada em 50 kg e desvio-padrão de 4 kg. Desejase testar a hipótese de que a carga média de ruptura seja de fato 50 kg, contra a alternativa de que ela seja inferior a 50 kg.

Assim:
$$\begin{cases} H_0: \mu = 50kg \\ H_1: \mu < 50kg \end{cases}$$

Problema de aceitação de lote de parafusos, submetido à inspeção por amostragem (CEQ).

Indústria compra parafusos com carga média de ruptura por tração especificada em 50 kg e desvio-padrão de 4 kg. Desejase testar a hipótese de que a carga média de ruptura seja de fato 50 kg, contra a alternativa de que ela seja inferior a 50 kg.

Assim: $\begin{cases} H_0: \mu = 50kg \\ H_1: \mu < 50kg \end{cases}$

Problema de aceitação de lote de parafusos, submetido à inspeção por amostragem (CEQ).

Indústria compra parafusos com carga média de ruptura por tração especificada em 50 kg e desvio-padrão de 4 kg. Desejase testar a hipótese de que a carga média de ruptura seja de fato 50 kg, contra a alternativa de que ela seja inferior a 50 kg.

Assim:
$$\begin{cases} H_0: \mu = 50kg \\ H_1: \mu < 50kg \end{cases}$$

$$\alpha = 5\%$$

$$\mu = 50 kg$$

$$1,645\sigma_{\overline{X}}$$

Distribuição normal — valores de $P(0 \le Z \le z_0)$

z_0	0	1	2	3	4	5	6
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,023
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,063
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,102
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,440
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,451
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,460
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,468
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,475
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,480
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,484
3,8	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,499
3,9	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,500

Problema de aceitação de lote de parafusos, submetido à inspeção por amostragem (CEQ).

Indústria compra parafusos com carga média de ruptura por tração especificada em 50 kg e desvio-padrão de 4 kg. Desejase testar a hipótese de que a carga média de ruptura seja de fato 50 kg, contra a alternativa de que ela seja inferior a 50 kg.

Assim:
$$\begin{cases} H_0: \mu = 50kg \\ H_1: \mu < 50kg \end{cases}$$

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

$$\mu = 50kg$$

$$\overline{X}$$

$$x_c = 50 - 1,645 \frac{4}{\sqrt{25}} = 48,68$$

 $\alpha = P(Rejeitar H_0, sendo H_0 Verdadeira)$

Risco do Vendedor:

Rejeitar o lote, sendo que a carga média não é inferior a 50 kg

$\beta = P(Aceitar H_0, sendo H_0 Falso)$

Risco do Comprador:

Aceitar o lote, sendo que a carga média é inferior a 50 kg

$$n = \left(\frac{(z_{\alpha} + z_{\beta}) \cdot \sigma}{\mu_{0} - \mu'}\right)^{2}$$

Teste da Média $\,\mu\,$ com $\,\sigma\,$ conhecido

Hipóteses	Rejeitar H ₀	\overline{x}_c (crítico)
$H_0: \mu = \mu_0$	$\overline{x} < \overline{x}_c$	$\overline{x}_c = \mu_0 - z_\alpha \cdot \frac{\sigma}{\sqrt{n}}$
$H_1: \mu < \mu_0$		\sqrt{n}
$H_0: \mu = \mu_0$	$\overline{x} > \overline{x}_c$	$\bar{x}_c = \mu_0 + z_\alpha \cdot \frac{\sigma}{\sqrt{n}}$
$H_1: \mu > \mu_0$, and the second	\sqrt{n}
$H_0: \mu = \mu_0$	$\overline{x} < \overline{x}_{C1}$ ou	$\overline{x}_{C1} = \mu_0 - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$
$H_1: \mu \neq \mu_0$	$\overline{x} > \overline{x}_{C2}$	$\overline{x}_{C2} = \mu_0 + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$

Teste da Média $\,\mu\,$ com $\,\sigma\,$ desconhecido

Hipóteses	Rejeitar H ₀	\overline{x}_c (crítico)
$H_0: \mu = \mu_0$	$\overline{x} < \overline{x}_c$	$\overline{x} = u_0 - t_{-1} \cdot \frac{s}{\sqrt{s}}$
$H_1: \mu < \mu_0$	Ü	$\overline{x}_c = \mu_0 - t_{n-1,\alpha} \cdot \frac{s}{\sqrt{n}}$
$H_0: \mu = \mu_0$	$\overline{x} > \overline{x}_c$	$\overline{x} = u_0 + t_{-1} \cdot \frac{s}{\sqrt{s}}$
$H_1: \mu > \mu_0$		$\overline{x}_c = \mu_0 + t_{n-1,\alpha} \cdot \frac{s}{\sqrt{n}}$
$H_0: \mu = \mu_0$	$\overline{x} < \overline{x}_{C1}$ ou	$\overline{x}_{C1} = \mu_0 - t_{n-1,\alpha/2} \cdot \frac{s}{\sqrt{n}}$
$H_1: \mu \neq \mu_0$	$\overline{x} > \overline{x}_{C2}$	$\overline{x}_{C2} = \mu_0 + t_{n-1,\alpha/2} \cdot \frac{s}{\sqrt{n}}$

Teste da Média μ com σ desconhecido

Exercício (p.123): Dados apresentam a resistência de 10 pedaços de um cabo de aço, ensaiados por tração até a ruptura. Pretende-se saber se esse cabo obedece a especificação, o qual exige que sua carga média de ruptura seja superior a 1500 kg. Qual a sua conclusão, ao nível de 2% de significância?

$$\begin{cases} H_{0} : \mu = 1500 \\ H_{1} : \mu > 1500 \end{cases}$$

<u>Critério</u>: Rejeitar H_0 se $\overline{x} > \overline{x}_c$

$$\overline{x}_{C} = \mu_{0} + t_{n-1, \alpha} \cdot \frac{s}{\sqrt{n}}$$

$$\vec{x} = 1505,4$$
 $s_x = 8,195$ $t_{9,2\%} = 2,448$ (interpolando)

$$\overline{x}_C = 1500 + 2,448 \cdot \frac{8,195}{\sqrt{10}} = 1506,34$$

Como
$$\overline{x} < \overline{x}_c \Rightarrow Aceita - se H_0$$

Comentário: Não se pode concluir que o cabo tem resistência maior que 1500 kg, considerando um nível de significância de 2%.

Distribuições t de Student - valores de $t_{v,P}$, onde $P = P(t_v \ge t_{v,P})$

VP	0,10	0,05	0,025	0,01	0,005
1	3,078	6,314	12,706	31,821	63,657
2	1,886	2,920	4,303	6,965	9,925
3	1,638	2,353	3,182	4,541	5,841
4	1,533	2,132	2,776	3,747	4,604
5	1,476	2,015	2,571	3,365	4,032
6	1,440	1,943	2,447	3,143	3,707
7	1,415	1,895	2,365	2,998	3,499
8	1,397	1,860	2,306	2,896	3,355
9	1,383	1,833	2,262	(2,82)	3,250
10	1,372	1,812	2,228	2,764	3,169
11	1,363	1,796	2,201	2,718	3,106
12	1,356	1,782	2,179	2,681	3,055
13	1,350	1,771	2,160	2,650	3,012
14	1,345	1,761	2,145	2,624	2,977
15	1,341	1,753	2,131	2,602	2,947
16	1,337	1,746	2,120	2,583	2,921
17	1,333	1,740	2,110	2,567	2,898
18	1,330	1,734	2,101	2,552	2,878
19	1,328	1,729	2,093	2,539	2,861
20	1,325	1,725	2,086	2,528	2,845
21	1,323	1,721	2,080	2,518	2,831
22	1,321	1,717	2,074	2,508	2,819
23	1,319	1,714	2,069	2,500	2,807
24	1,318	1,711	2,064	2,492	2,797
25	1,316	1,708	2,060	2,485	2,787
26	1,315	1,706	2,056	2,479	2,779
27	1,314	1,703	2,052	2,473	2,771
28	1,313	1,701	2,048	2,467	2,763
29	1,311	1,699	2,045	2,462	2,756
30	1,310	1,697	2,042	2,457	2,750
50	1,299	1,676	2,009	2,403	2,678
80	1,292	1,664	1,990	2,374	2,639
120	1,289	1,658	1,980	2,358	2,617

Teste da Média μ **com** σ **desconhecido**

Exemplo (p. 93): Em indivíduos sadios, o consumo renal de oxigênio distribui-se normalmente em torno de 12 cm³/min. Deseja-se investigar, com base em 5 indivíduos portadores de certa moléstia, se esta tem influência no consumo renal médio de oxigênio. Os consumos medidos foram: 14,4 ; 12,9 ; 15,0 ; 13,7; 13,5. Qual a conclusão, ao nível de 1% de significância?

Onde:
$$\overline{x}_{C1} = \mu_0 - t_{n-1, \frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}$$
 $\overline{x}_{C2} = \mu_0 + t_{n-1, \frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}$

$$\overline{x}_{C2} = \mu_0 + t_{n-1, \alpha/2} \cdot \frac{s}{\sqrt{n}}$$

$$\bar{x} = 13,9$$

$$s_x = 0.815$$

$$t_{4, 0,5\%} = 4,604 \text{ (tabela)}$$

Logo:

$$\overline{x}_{C1} = 12 - 4,604 \cdot \frac{0,815}{\sqrt{5}} = 10,32$$

$$\overline{x}_{C1} = 12 - 4,604 \cdot \frac{0,815}{\sqrt{5}} = 10,32$$
 $\overline{x}_{C2} = 12 + 4,604 \cdot \frac{0,815}{\sqrt{5}} = 13,68$

Como: $\overline{x} = 13.9 \Rightarrow \overline{x} > \overline{x}_{C2}$ Portanto: Rejeitar H₀

Comentário: Ao nível de significância de 1%, pode-se afirmar que existe evidência estatística que a moléstia tem influência no consumo renal de oxigênio

Teste da Média μ com σ conhecido

Exemplo (p.91): O desvio-padrão de uma população é conhecido e igual a 22 unidades. (a) Se uma amostra de 100 elementos forneceu uma média igual a 115,8, podemos afirmar que a média da população é menor que 120, ao nível de significância de 5%? (b) Qual o nível de significância associado a média amostral obtida?

$$\begin{cases} H_0: \mu = 120 \\ H_1: \mu < 120 \\ \text{Onde:} \end{cases} \quad \frac{\text{Crit\'erio:}}{\text{Crit\'erio:}} \text{ Rejeitar } H_0 \text{ se} \quad \overline{x} < x_c \\ \frac{1}{\sqrt{100}} = 120 - z_\alpha \cdot \frac{22}{\sqrt{100}} = 120 - z_$$

a) Para
$$\alpha$$
 = 5%, da Tabela: $z_{\alpha} = z_{5\%} = 1,645$
Logo: $x_{c} = 120 - 1,645 \cdot \frac{22}{\sqrt{100}} = 116,381$

Como:
$$\overline{x} = 115.8 < x_c$$
 Portanto: Rejeitar H₀

Comentário: Ao nível de significância de 5%, pode-se afirmar que μ < 120

b) Para
$$\bar{x} = 115.8$$
 tem-se:
$$z_{\alpha} = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{115.8 - 120}{22 / \sqrt{100}} = -1.91$$

Logo, da Tabela, tem-se: $\alpha = 0.5 - 0.4719 = 0.0281$

Comentário: nível de significância associado à média amostral ($\bar{x} = 115,8$) é igual a 2,81%

Teste da Variância σ^2

$$\begin{cases} H_0: \sigma^2 = \sigma_0^2 \\ H_1: \sigma^2 > \sigma_0^2 \end{cases}$$

Critério: Rejeitar H₀ se:

$$s_x^2 > s_c^2$$

onde:

$$s_{c}^{2} = \chi_{n-1, \alpha}^{2} \cdot \frac{\sigma_{0}^{2}}{(n-1)}$$

$$\begin{cases} H_0: \sigma^2 = \sigma_0^2 \\ H_1: \sigma^2 < \sigma_0^2 \end{cases}$$

Critério: Rejeitar H₀ se:

$$s_x^2 < s_c^2$$

onde:

$$s_c^2 = \chi_{n-1, 1-\alpha}^2 \cdot \frac{\sigma_0^2}{(n-1)}$$

$$\begin{cases} H_0 : \sigma^2 = \sigma_0^2 \\ H_1 : \sigma^2 \neq \sigma_0^2 \end{cases}$$

Critério: Rejeitar H₀ se:

$$s_x^2 < s_{c1}^2$$
 ou $s_x^2 > s_{c2}^2$

onde:

$$s_{c1}^{2} = \chi_{n-1,1-\alpha/2}^{2} \cdot \frac{\sigma_{0}^{2}}{(n-1)}$$

$$s_{c2}^{2} = \chi_{n-1,\alpha/2}^{2} \cdot \frac{\sigma_{0}^{2}}{(n-1)}$$

Teste da Variância σ^2

Exemplo (p. 105): Uma amostra de 10 elementos de uma população normal forneceu variância igual a 12,4. Este resultado é suficiente para se concluir, ao nível de 5% de significância, que a variância da população é menor que 25?

$$\begin{cases} H_0: \sigma^2 = 25 \\ H_1: \sigma^2 < 25 \end{cases}$$
 Critério: Rejeitar H_0 se: $S_x^2 < S_c^2$

$$s_{x}^{2} = 12,4$$
 $s_{c}^{2} = \chi_{n-1, 1-\alpha}^{2} \cdot \frac{\sigma_{0}^{2}}{(n-1)}$

$$s_{c}^{2} = \chi_{9,95\%}^{2} \cdot \frac{25}{9} = 3,325 \cdot \frac{25}{9} = 9,23$$

Como
$$s_x^2 > s_c^2 \Rightarrow Aceita - se H_0$$

Comentário:

Não podemos concluir, com um nível de significância α =5%, que a variância é menor que 25.

Teste da Proporção Populacional é análogo ao Teste da Média (µ)

Caso 1:

$$\begin{cases} H_0 : p = p_0 \\ H_1 : p < p_0 \end{cases} \Rightarrow rejeitar \ H_0 se p' < p_c$$

$$p' = \frac{f}{n}$$

p': proporção amostral f: freqüência observada n: tamanho da amostra

$$p_c = p_0 - z_\alpha \cdot \sqrt{p_0(1 - p_0)/n}$$

Caso 2:

$$\begin{cases} H_0 : p = p_0 \\ H_1 : p > p_0 \end{cases} \Rightarrow \text{rejeitar} \quad H_0 \text{ se } p' > p_c$$

$$p' = \frac{f}{n}$$

p': proporção amostral f: freqüência observada n: tamanho da amostra

$$p_c = p_0 + z_\alpha \cdot \sqrt{p_0(1-p_0)/n}$$

Caso 3:

$$\begin{cases} H_0 : p = p_0 \\ \Rightarrow \text{ rejeitar } H_0 \text{ se } p' < p_{c1} \text{ ou } p' > p_{c2} \\ H_1 : p \neq p_0 \end{cases}$$

$$p_{c1} = p_0 - z_{\alpha/2} \cdot \sqrt{p_0(1-p_0)/n}$$

$$p_{c2} = p_0 + z_{\alpha/2} \cdot \sqrt{p_0(1-p_0)/n}$$

Exemplo (p.106): Desconfiando-se de que uma moeda fosse viciada, lançou-a 100 vezes, obtendo-se 59 caras e 41 coroas. Ao nível de significância de 5%, pode-se afirmar existência de vício na moeda?

Solução: Seja p a proporção do resultado ser cara

X: no de caras em 100 lançamentos \rightarrow Binomial \rightarrow (aprox) Normal Sabe-se que p=0,5, numa moeda não viciada, logo:

$$\begin{cases} H_0 : p = 0.5 \\ H_1 : p \neq 0.5 \end{cases}$$

 $\begin{cases}
H_0: p = 0.5 \\
H_1: p \neq 0.5
\end{cases}$ Rejeitar H_0 se p'< p_{c1} ou p'> p_{c2}

$$p' = \frac{f}{n} = \frac{59}{100} = 0.59$$

$$z_{\alpha/2} = z_{2,5\%} = 1,960$$

$$p_{c1} = p_0 - z_{\alpha/2} \cdot \sqrt{p_0(1 - p_0) / n}$$

= 0.5 - 1.960 \cdot \sqrt{0.5(1 - 0.5) / 100} = 0.402

$$p_{c2} = p_0 + z_{\alpha/2} \cdot \sqrt{p_0(1 - p_0) / n}$$

= 0.5 + 1.960 \cdot \sqrt{0.5(1 - 0.5) / 100} = 0.598

Logo: $p_{c1} < p' < p_{c2} \Rightarrow Aceita - se H_0$

Comentário: Ao nível de significância de 5%, não ficou comprovado a existência de vício na moeda.

Correção de Continuidade

Binomial Aprox. Normal (Contínua)

Idéia: "evitar que a Rejeição de H₀ seja resultado da aproximação feita"

Caso 1:

$$p_c = p_0 - z_\alpha \cdot \sqrt{p_0(1-p_0)/n} - \frac{1}{2n}$$

Caso 2:

$$p_c = p_0 + z_\alpha \cdot \sqrt{p_0(1-p_0)/n} + \frac{1}{2n}$$

Caso 3:

 p_{c1} análogo ao Caso 1, com $\alpha/2$

 p_{c2} análogo ao Caso 2, com $\alpha/2$

Exemplo (p.126): Numa pesquisa de opinião eleitoral, dentre 80 entrevistados, o candidato João obteve 48 votos, contra apenas 32 do seu opositor. Admitindo-se a amostra como bem representativa do eleitorado, pode-se concluir, ao nível de 1% de significância, que João será o vencedor da eleição?

Seja p: **proporção** de votos dados ao candidato João

$$\begin{cases}
H_0 : p = p_0 = 0.5 \\
H_1 : p > p_0 = 0.5
\end{cases}
\Rightarrow rejeitar \quad H_0 \text{ se } p' > p_c$$

$$np_0 > 5$$
e
 $n(1-p_0) > 5$

Aprox. pela Normal

$$p_c = p_0 + z_\alpha \cdot \sqrt{p_0(1-p_0)/n} + \frac{1}{2n}$$

$$p_c = 0.5 + 2.33 \cdot \sqrt{0.5(1 - 0.5)/80} + \frac{1}{2 \times 80} = 0.636$$

$$p' = \frac{48}{80} = 0.6 < p_c \Rightarrow Aceita - se H_0$$

Comentário: Não se pode concluir que João será o vencedor, para um nível de significância de 1%.

Erro Tipo II: $\beta=P(\text{aceitar H}_0, \text{ sendo H}_0 \text{ falsa})$

Exemplo: $\sigma=5$ n=25 $\alpha=5\%$

$$\begin{cases} H_0: \mu = 20 \\ H_1: \mu > 20 \end{cases}$$

$$\beta = 0.74$$

$$\beta = 0.50$$

$$\beta = 0.08$$

Erro Tipo II: Cálculo de ß (Exemplo)

• Para $\mu' = 21$:

$$z_{\beta_1} = \frac{21,645 - 21}{5/\sqrt{25}} = 0,645$$

$$\beta_1 = 0.5 + 0.2405 = 0.7405$$

• Para $\mu' = 21,645$:

$$z_{\beta_2} = \frac{21,645 - 21,645}{1} = 0$$

$$\beta_2 = 0.5 - 0 = 0.5$$

• Para $\mu' = 23$:

$$z_{\beta_3} = \frac{21,645 - 23}{1} = -1,355$$

$$\therefore \beta_3 = 0.5 - 0.4123 = 0.0877$$

CCO: Curva Característica de Operação

Tamanho da Amostra para média: Erros tipo I e II

$$\begin{cases}
\mathsf{H}_0 : \mu = \mu_0 \\
\mathsf{H}_1 : \mu > \mu_0
\end{cases}$$

$$\overline{x}_{c} = \mu_{0} + z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

$$\overline{x}_{c} = \mu' - z_{\beta} \frac{\sigma}{\sqrt{n}}$$

$$\mu' - \mu_{0} = (z_{\alpha} + z_{\beta}) \frac{\sigma}{\sqrt{n}}$$

$$n = (\underline{(z_{\alpha} + z_{\beta}) \cdot \sigma})^{2}$$

$$\mu' - \mu_0 = (z_{\alpha} + z_{\beta}) \frac{\sigma}{\sqrt{n}}$$

$$n = \left(\frac{(z_{\alpha} + z_{\beta}) \cdot \sigma}{\mu' - \mu_0}\right)^2$$

Caso
$$\begin{cases} H_0 : \mu = \mu_0 \\ H_1 : \mu < \mu_0 \end{cases}$$

Caso
$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} \qquad n = \left(\frac{(z_{\alpha} + z_{\beta}) \cdot \sigma}{\mu_0 - \mu'}\right)^2$$

Caso
$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases} \implies \mu \leq \mu_1 \text{ ou } \mu \geq \mu_2$$

$$n = \max \left\{ \left(\frac{(z_{\alpha/2} + z_{\beta}) \cdot \sigma}{\mu_0 - \mu_1} \right)^2; \left(\frac{(z_{\alpha/2} + z_{\beta}) \cdot \sigma}{\mu_2 - \mu_0} \right)^2 \right\}$$

Tamanho da Amostra para média: Erros tipo I e II

Exemplo: Considere a resistência média de ruptura dos parafusos especificada em 50 kg, com σ = 4 kg.

Supor que o comprador especifique também:

- a) Se o lote satisfaz a especificação o comprador deseja limitar a 5% a probabilidade de concluir que o lote é insatisfatório.
- b) Se o lote tiver resistência média ligeiramente menor que 50 kg, isto não tem tanta importância; o que de fato se deseja é que se a verdadeira resistência média for menor que 48 kg, tal fato seja identificado com pelo menos 90% de probabilidade.

Achar tamanho da amostra e o limite da região crítica.

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} \Rightarrow n = \left(\frac{z_\beta + z_\alpha}{d}\right)^2 \qquad \qquad d' = \frac{\mu_0 - \mu'}{\sigma}$$

a)
$$\alpha = 5\%$$
 $\mu_0 = 50$

b)
$$\beta = 10\%$$
 $\mu' = 48$

$$d' = \frac{50 - 48}{4} = 0.5$$

$$\Rightarrow n = \left(\frac{z_{5\%} + z_{10\%}}{0.5}\right)^2 = \left(\frac{1.645 + 1.282}{0.5}\right)^2 = 34.3 \quad \boxed{n=35}$$

x₁:Limite da região crítica:

$$\overline{x}_1 = \mu_0 - z_{5\%} \frac{\sigma}{\sqrt{n}} = 50 - 1,645. \frac{4}{\sqrt{35}} = 49$$

Tamanho da Amostra para média: Erros tipo I e II

Exercício (p.123): O peso específico médio de um produto é especificado em 0,8 kg/cm³. Uma amostra de 12 itens forneceu média 0,81 kg/cm³ e desvio 0,02 kg/cm³. O fornecedor indica como sendo 0,01 kg/cm³ o desvio-padrão do peso específico.

- a) Aceitando como válido o desvio padrão dado pelo fornecedor, comente o tamanho da amostra retirada, caso de deseje aceitar que o peso específico é 0,8 kg/cm³, quando na verdade, ele é superior a 0,82 kg/cm³ com no máximo 1% de probabilidade (β=1%).
- b) Adotando o desvio-padrão da amostra como estimativa do verdadeiro desvio, realize o teste com base na amostra colhida. (α=5%).

a)
$$n = \left(\frac{z_{\alpha} + z_{\beta}}{d'}\right)^2$$
 $d' = \frac{\mu' - \mu_0}{\sigma} = \frac{0.82 - 0.8}{0.01} = 2$ $n = \left(\frac{1.645 + 2.33}{2}\right)^2 = 4$

Comentário: A amostra colhida (12) está superdimensionada.

b)
$$\begin{cases} H_0: \mu = 0.8 \\ H_1: \mu > 0.8 \end{cases}$$
 Critério: Rejeitar H_0 se $\overline{X} > \overline{X}_c$

$$\overline{x}_c = \mu_0 + t_{11,5\%} \frac{s}{\sqrt{n}} = 0.8 + 1.796 \frac{0.02}{\sqrt{12}} = 0.8104$$

Como $\bar{x} = 0.81 < \bar{x}_c$ aceita H_0 ao nível de significância de 5%.

Tamanho da Amostra para Proporção: Erros tipo I e II

Seja:

$$\begin{cases} H_0: p = p_0 \\ H_1: p > p_0 \end{cases}$$

$$n = \left(\frac{z_{\alpha}\sqrt{p_{o}(1-p_{0})} + z_{\beta}\sqrt{p'(1-p')}}{p'-p_{0}}\right)^{2}$$

Tamanho da Amostra para Proporção: Erros tipo I e II

Exemplo (p.125): Um industrial deseja certificar-se de que a fração do merca do que prefere seu produto ao de seu concorrente é superior a 70%. Para tanto, colheu uma amostra aleatória de 165 opiniões, das quais 122 lhe foram favoráveis.

(a) Pode o industrial ficar satisfeito com esse resultado, adotando o nível de 5% de sugnificância?

(a)
$$\begin{cases} H_0: p = 0,7 \\ H_1: p > 0,7 \end{cases}$$
 Rejeitar H0 se p1 > p_c p1=(f/n)=(122/165) = 0,74

Rejeitar H0 se p1 >
$$p_c$$

p1=(f/n)=(122/165) = 0,74

$$p_c = p_0 + z_\alpha \sqrt{p_0 (1 - p_0)/n} + \frac{1}{2n}$$

$$p_c = 0.7 + 1.645 \sqrt{(0.7)(0.3)/165} + \frac{1}{2x165} = 0.762$$

$$p1 = 0.74 < p_c = 0.762 \implies \text{Aceita} - \text{se } H_0$$

Conclusão: O industrial não deve ficar satisfeito.

Exemplo (p.125): Um industrial deseja certificar-se de que a fração do merca do que prefere seu produto ao de seu concorrente é superior a 70%. Para tanto, colheu uma amostra aleatória de 165 opiniões, das quais 122 lhe foram favoráveis.

- (a) Pode o industrial ficar satisfeito com esse resultado, adotando o nível de 5% de sugnificância?
- (b) Por outro lado, o industrial considera um erro grave de chegar a se desiludir (no caso, admitir que não tem mais de 70% do mercado) quando, na verdade, ele tem mais de 75%. Ele gostaria que a probabilidade de cometer esse erro não superasse 10%. Pergunta-se se a amostra utilizada seria suficiente para atender a essa exigência e ao nível de significância adotado.

(b)
$$n = \left(\frac{z_{\alpha} \sqrt{p_{0} (1 - p_{0})} + z_{\beta} \sqrt{p' (1 - p')}}{p' - p_{0}}\right)^{2}$$

$$p_{0} = 0.7 \qquad \alpha = 5\% \qquad z_{\alpha} = z_{5\%} = 1.645$$

$$p' = 0.75 \qquad \beta = 10\% \qquad z_{\beta} = z_{10\%} = 1.282$$

$$n = \left(\frac{1.645 \sqrt{0.7 (1 - 0.7)} + 1.282 \sqrt{0.75 (1 - 0.75)}}{0.75 - 0.7}\right)^{2} = 685$$

Conclusão: A amostra de 165 opiniões é insuficiente