

Mark Scheme (Results) January 2007

GCE

GCE Mathematics

Core Mathematics C3 (6665)

January 2007 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme	Marks	
1.	(a) $\sin 3\theta = \sin (2\theta + \theta) = \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$ $= 2\sin \theta \cos^2 \theta + (1 - 2\sin^2 \theta)\sin \theta$ $= 2\sin \theta - 2\sin^3 \theta + \sin \theta - 2\sin^3 \theta$ $= 3\sin \theta - 4\sin^3 \theta$ * cso	B1 B1 B1 M1 A1 (5	6)
	(b) $\sin 3\theta = 3 \times \frac{\sqrt{3}}{4} - 4\left(\frac{\sqrt{3}}{4}\right)^3 = \frac{3\sqrt{3}}{4} - \frac{3\sqrt{3}}{16} = \frac{9\sqrt{3}}{16}$ or exact equivalent	M1 A1 (2)	
2.	(a) $f(x) = \frac{(x+2)^2, -3(x+2)+3}{(x+2)^2}$ $= \frac{x^2 + 4x + 4 - 3x - 6 + 3}{(x+2)^2} = \frac{x^2 + x + 1}{(x+2)^2} $ cso	M1 A1, A1 A1 (4	
	(b) $x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4}$, > 0 for all values of x.	M1 A1, A1 (3	5)
	(c) $f(x) = \frac{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}}{\left(x + 2\right)^2}$ Numerator is positive from (b) $x \neq -2 \implies \left(x + 2\right)^2 > 0$ (Denominator is positive)		
	Hence $f(x) > 0$	B1 (1 [8]	
	Alternative to (b) $\frac{d}{dx}(x^2+x+1) = 2x+1 = 0 \implies x = -\frac{1}{2} \implies x^2+x+1 = \frac{3}{4}$ A parabola with positive coefficient of x^2 has a minimum $\implies x^2+x+1>0$ Accept equivalent arguments	M1 A1 A1 (3	•)

Question Number	Scheme	Marks	
3.	(a) $y = \frac{\pi}{4} \implies x = 2\sin\frac{\pi}{4} = 2 \times \frac{1}{\sqrt{2}} = \sqrt{2} \implies P \in C$ Accept equivalent (reversed) arguments. In any method it must be clear that $\sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}$ or exact equivalent is used.	B1 ((1)
	(b) $\frac{dx}{dy} = 2\cos y \qquad or \qquad 1 = 2\cos y \frac{dy}{dx}$ $\frac{dy}{dx} = \frac{1}{2\cos y}$ May be awarded after substitution	M1 A1	
	$y = \frac{\pi}{4} \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{2}} \bigstar $ cso	A1 ((4)
	(c) $m' = -\sqrt{2}$ $y - \frac{\pi}{4} = -\sqrt{2}(x - \sqrt{2})$	B1 M1 A1	
	$y = -\sqrt{2x + 2 + \frac{\pi}{4}}$		(4) [9]
4.	(i) $\frac{dy}{dx} = \frac{(9+x^2)-x(2x)}{(9+x^2)^2} \left(= \frac{9-x^2}{(9+x^2)^2} \right)$	M1 A1	
	$\frac{dy}{dx} = 0 \implies 9 - x^2 = 0 \implies x = \pm 3$ $\left(3, \frac{1}{6}\right), \left(-3, -\frac{1}{6}\right) \qquad \text{Final two A marks depend on second M only}$	M1 A1 A1, A1 ((6)
	(ii) $\frac{dy}{dx} = \frac{3}{2} (1 + e^{2x})^{\frac{1}{2}} \times 2e^{2x}$	M1 A1 A1	
	$x = \frac{1}{2} \ln 3 \implies \frac{dy}{dx} = \frac{3}{2} \left(1 + e^{\ln 3} \right)^{\frac{1}{2}} \times 2 e^{\ln 3} = 3 \times 4^{\frac{1}{2}} \times 3 = 18$		(5) [1]

Question Number	Scheme	Marks
5.	(a) $R^2 = (\sqrt{3})^2 + 1^2 \implies R = 2$ $\tan \alpha = \sqrt{3} \implies \alpha = \frac{\pi}{3}$ accept awrt 1.05	M1 A1 (4)
	(b) $\sin(x + \text{their } \alpha) = \frac{1}{2}$ $x + \text{their } \alpha = \frac{\pi}{6} \left(\frac{5\pi}{6}, \frac{13\pi}{6} \right)$	M1 A1
	$x = \frac{\pi}{2}, \frac{11\pi}{6}$ accept awrt 1.57, 5.76 The use of degrees loses only one mark in this question. Penalise the first time it occurs in an answer and then ignore.	M1 A1 (4) [8]

Question Number	Scheme	Marl	cs
6.	(a) $y = \ln\left(4 - 2x\right)$		
	$e^y = 4 - 2x$ leading to $x = 2 - \frac{1}{2}e^y$ Changing subject and removing ln	M1 A1	
	$y = 2 - \frac{1}{2}e^x \implies f^{-1} \mapsto 2 - \frac{1}{2}e^x + $ cso	A1	
	Domain of f ⁻¹ is	B1	(4)
	(b) Range of f^{-1} is $f^{-1}(x) < 2$ (and $f^{-1}(x) \in I$)	B1	(1)
	(c) $f^{-1}(x)$		
	Shape 1.5 $\ln 4$ $y = 2$	B1 B1 B1	(4)
	(d) $x_1 \approx -0.3704$, $x_2 \approx -0.3452$ cao If more than 4 dp given in this part a maximum on one mark is lost. Penalise on the first occasion.	B1, B1	(2)
	(e) $x_3 = -0.35403019\dots$ $x_4 = -0.35092688\dots$ $x_5 = -0.35201761\dots$ $x_6 = -0.35163386\dots$ Calculating to at least x_6 to at least four dp $k \approx -0.352$ cao	M1 A1	(2) [13]
	Alternative to (e) $k \approx -0.352$ Found in any way Let $g(x) = x + \frac{1}{2}e^x$		
	$g(-0.3515) \approx +0.0003, g(-0.3525) \approx -0.001$	M1	
	Change of sign (and continuity) $\Rightarrow k \in (-0.3525, -0.3515)$		
	$\Rightarrow k = -0.352 \text{ (to 3 dp)}$	A1	(2)

Question Number	Scheme	Marks
7.	(a) $f(-2)=16+8-8(=16)>0$ f(-1)=1+4-8(=-3)<0 Change of sign (and continuity) \Rightarrow root in interval $(-2,-1)$ ft their calculation as long as there is a sign change (b) $\frac{dy}{dx} = 4x^3 - 4 = 0 \Rightarrow x = 1$ Turning point is $(1,-11)$ (c) $a=2, b=4, c=4$	B1 B1 B1ft (3) M1 A1 A1 (3) B1 B1 B1 (3)
	(d) Shape ft their turning point in correct quadrant only 2 and -8	B1 B1 B1 (3) B1 B1 ft B1 (3)
	Shape	B1 (1) [13]

Question Number	Scheme	Marks
8.	(i) $\sec^2 x - \csc^2 x = (1 + \tan^2 x) - (1 + \cot^2 x)$ $= \tan^2 x - \cot^2 x *$ cso	M1 A1 A1 (3)
	(ii)(a) $y = \arccos x \Rightarrow x = \cos y$ $x = \sin\left(\frac{\pi}{2} - y\right) \Rightarrow \arcsin x = \frac{\pi}{2} - y$ Accept	B1 B1 (2)
	arcsin $x = \arcsin \cos y$ (b) $\arccos x + \arcsin x = y + \frac{\pi}{2} - y = \frac{\pi}{2}$	B1 (1) [6]
	Alternatives for (i) $\sec^{2}x - \tan^{2}x = 1 = \csc^{2}x - \cot^{2}x$ Rearranging $\sec^{2}x - \csc^{2}x = \tan^{2}x - \cot^{2}x *$ cso	M1 A1 A1 (3)
	$\left(LHS = \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x} = \frac{\sin^2 x - \cos^2 x}{\cos^2 x \sin^2 x}\right)$ $RHS = \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\sin^2 x} = \frac{\sin^4 x - \cos^4 x}{\cos^2 x \sin^2 x} = \frac{\left(\sin^2 x - \cos^2 x\right)\left(\sin^2 x + \cos^2 x\right)}{\cos^2 x \sin^2 x}$ $= \frac{\sin^2 x - \cos^2 x}{\cos^2 x \sin^2 x}$ $= \frac{\sin^2 x - \cos^2 x}{\cos^2 x \sin^2 x}$ $= LHS $	M1 A1 A1 (3)