Chapter 4 Model Adequacy Checking

Chapter 4 2 / 47

Patterns of Q-Q plot (Normal probability plot)

1. Gaussian distribution

Gaussian Distribution

Patterns of Q-Q plot (Normal probability plot) (cont.)

2. Light tailed distribution

Patterns of Q-Q plot (Normal probability plot) (cont.)

3. Heavy tailed distribution

Patterns of Q-Q plot (Normal probability plot) (cont.)

4. Positive skewed distribution

Positive Skewed Distribution

Chapter 4 6 / 47

Patterns of Q-Q plot (Normal probability plot) (cont.)

5. Negative skewed distribution

Chapter 4 7 / 47

Patterns of Q-Q plot (Normal probability plot) (cont.)

6. Three types of Q-Q plot

Patterns of residual plots

1. Non independent errors (negative autocorrelation)

Non independent errors(negative autocorrelation)

Patterns of residual plots (cont.)

2. Non independent errors (positive autocorrelation)

Non independent errors(positive autocorrelation)

Fitted value

Chapter 4 10 / 47

Patterns of residual plots (cont.)

3. Non constant variance (funnel)

Non constant variance(funnel)

Chapter 4 11 / 47

Patterns of residual plots (cont.)

4. Non constant variance (double bow)

Non constant variance(double bow)

Chapter 4 12 / 47

Patterns of residual plots (cont.)

5. Non linear

Chapter 4 13 / 47

Example 4.2 The Delivery Time Data

1. Various types of residuals

```
> url <- "https://raw.github.com/dongikjang/regression/master/"
> rfun <- getURL(paste(http, "scaled.R",sep=""))</pre>
> eval(parse(text=rfun))
>
> scaled
function(model, type="standardized")
 UseMethod("scaled")
>
> scaled.lm
function(model, type="standardized"){
  switch(type,
         studentized = rstandard(model),
         rstudent = rstudent(model),
         standardized = residuals(model)/summary(model)$sigma
```

Chapter 4 14 / 47

```
> # Data download
> rfun <- getURL(paste(http, "read.xls2.r",sep=""))</pre>
> eval(parse(text=rfun))
> # If OS is Windows then install "xlsReadWrite" package
> # If OS is Mac or Linux then install "gdata" package
>
> library(RCurl)
> tf <- paste(tempfile(), "xls", sep = ".")</pre>
> download.file(paste(url, "Dataset/data-ex-3-1.xls", sep=""), tf, met
 % Total % Received % Xferd Average Speed Time
                                                        Time
                                                                 Time
                                Dload Upload Total Spent Left
                                    0 0 --:--:--:
                  0
                       0
                             0
> data_3.1 <- read.xls2(tf, header=TRUE)</pre>
> View(data_3.1)
> colnames(data_3.1) <- c("obs", "d_time", "n_case", "dista")</pre>
```

Chapter 4 15 / 47

```
> # Linear fit
> lmfit <- lm(d_time~n_case+dista)</pre>
> # standardized residuals
> scaled(lmfit)
          1
-1.54260631 0.35170879 -0.01527661
                                     1.51078203 -0.13634053 -0.0888408
                      10
                                  11
                                              12
                                                           13
2.27635117 0.72907878 0.68645843 -0.18194377
                                                  0.31508443
                                                               0.3275178
         17
                      18
                                  19
                                              20
                                                           21
0.13387449 1.05803019 0.55014821 -1.77573772 -0.80202492 -1.1310194
         25
-0.06522033
```

Chapter 4 16 / 47

```
> # standardized. studentized and rstudentized residuals
> residual_mat <- cbind(residuals(lmfit), scaled(lmfit),
                        scaled(lmfit, "studentized"),
                        scaled(lmfit, "rstudent"))
> colnames(residual_mat) <- c("residual", "stadardized",
                              "studentized". "rstudent")
> head(residual mat)
   residual stadardized studentized rstudent
1 -5.0280843 -1.54260631 -1.62767993 -1.69562881
2 1.1463854 0.35170879 0.36484267 0.35753764
3 -0.0497937 -0.01527661 -0.01609165 -0.01572177
4 4.9243539 1.51078203 1.57972040 1.63916491
5 -0.4443983 -0.13634053 -0.14176094 -0.13856493
6 -0.2895743 -0.08884082 -0.09080847 -0.08873728
```

Chapter 4 17 / 47

Example 4.2 The Delivery Time Data (cont.)

2. Q-Q plots of residuals

Chapter 4 18 / 47

```
> par(mfrow=c(1,2), cex.main=1.2, pch=19, cex=1.5)
>
> qqnorm(residuals(lmfit), main='Ordinary least-squares residuals')
> qqline(residuals(lmfit), col=2, lwd=2)
>
> qqnorm(scaled(lmfit, "studentized"), main='Studentized residuals')
> qqline(scaled(lmfit, "studentized"), col=2, lwd=2)
> title(main='Q-Q plots of residuals',line=-1,outer=T)
```

Chapter 4 19 / 47

Example 4.2 The Delivery Time Data (cont.)

2. Residuals vs Predicted

φ

10

Fitted value

70

7

10 20

Residuals vs predicted for the delivery time data

Fitted value

70

Chapter 4 20 / 47

```
> par(mfrow=c(1,2), cex.main=1.2, pch=19, cex=1.5)
> fit_val <- fitted(lmfit)</pre>
> plot(fit_val, residuals(lmfit), xlab="Fitted value",
        vlab="Residual", main="Original residuals")
> abline(h=0, lty=1, col="grey")
> plot(fit_val, scaled(lmfit, "rstudent"), xlab="Fitted value",
       ylab="Studentized residual", main="Studentized residuals")
> abline(h=c(0,-2,2), lty=c(1,2,2), col="grey")
> title(main='Residuals vs predicted for the delivery time data',
        line=-1,outer=T)
```

Chapter 4 21 / 47

Example 4.2 The Delivery Time Data (cont.)

3. Residuals vs Regressors

Chapter 4 22 / 47

```
> par(mfrow=c(1,2), cex.main=1.2, pch=19, cex=1.5)
> fit_val <- fitted(lmfit)</pre>
> plot(n_case, residuals(lmfit), xlab="Cases",
       vlab="Residual", main="Residuals vs cases")
> abline(h=0, lty=1, col="grey")
> plot(dista, residuals(lmfit), xlab="Distance",
       ylab="Residual", main="Residuals vs distance")
> abline(h=0, lty=1, col="grey")
> title(main='Residuals vs regressors for the delivery time data',
        line=-1,outer=T)
```

Chapter 4 23 / 47

Example 4.2 The Delivery Time Data (cont.)

4. Partial regression plots

- Model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

- Partial residual 1:

$$\hat{y}_i(x_2) = \hat{\theta}_0 + \hat{\theta}_1 x_{i2}$$

 $e_i(y|x_2) = y_i - \hat{y}_i(x_2), \quad i = 1, 2, ..., n$

- Partial regressor 2:

$$\hat{x}_{i1}(x_2) = \hat{\alpha}_0 + \hat{\alpha}_1 x_{i2}
e_i(x_1|x_2) = x_{i1} - \hat{x}_{i1}(x_2), \quad i = 1, 2, \dots, n$$

- Partial regression plots: plotting $e_i(y|x_2)$ against $e_i(x_1|x_2)$.

Chapter 4 24 / 47

Chapter 4 25 / 47

Chapter 4 26 / 47

Example 4.2 The Delivery Time Data (cont.)

5. Partial residual plots

- The partial residual for regressor x_i :

$$e_i^*(y|x_i) = e_i + \hat{\beta}_i x_{ii}, \quad i = 1, 2, ..., n$$

where the e_i are the residuals from the model with all k regressors included.

- Partial residual plots: plotting $e_i^*(y|x_i)$ against x_i .

Chapter 4 27 / 47

Chapter 4 28 / 47

```
> partial <- function(model, part)</pre>
+ UseMethod("partial")
>
> partial <- function(model, part){</pre>
          x <- model$model[, part]
+
          coeff <- model$coefficients[part]</pre>
+
          resi <- c(residuals(model) + x*coeff)</pre>
          return(resi)
+ }
>
> par(mfrow=c(1,2), cex.main=1.2, pch=19, cex=1.5)
> plot(n_case, partial(lmfit, "n_case"), pch=16,cex=1.3,
       xlab='Cases', ylab='Time', main='Time vs Cases')
> plot(dista, partial(lmfit, "dista"), pch=16, cex=1.3,
+ xlab='Distance', ylab='Time', main='Time vs Distance')
> title(main='Partial residual plots for the delivery time data',
        line=-1,outer=T)
```

Chapter 4 29 / 47

Example 4.2 The Delivery Time Data (cont.)

6. Regressor vs Regressor

Regressor vs regressor for the delivery time data Cases vs Distance

Chapter 4 30 / 47

Chapter 4 31 / 47

Example 4.2 The Delivery Time Data (cont.)

7. R-student values by site(city)

R-student values by site(city) for the delivery time data

Chapter 4 32 / 47

Example 4.2 The Delivery Time Data (cont.)

8. PRESS statistics

$$PRESS = \sum_{i=1}^{n} [y_i - \hat{y}_{(i)}]^2 = \sum_{i=1}^{n} \left(\frac{e_i}{1 - h_{ii}}\right)^2$$

```
> press <- function(obj){
+ sum((resid(obj)/(1-hatvalues(obj)))^2)
</pre>
```

Chapter 4 34 / 47

Example 4.2 The Delivery Time Data (cont.)

- R^2 for prediction based on PRESS

$$R_{prediction}^2 = \frac{1 - PRESS}{SS_T}$$

```
> 1-press(lmfit)/sum((d_time-mean(d_time))^2)
[1] 0.9206438
```

- Using PRESS to compare Models

```
> press(lm(d_time ~ n_case))
[1] 733.55
> press(lm(d_time ~ n_case + dista))
[1] 459.0393
```

Chapter 4 35 / 47

Example 4.7 The Rocket Propellant Data

1. Data and Plots

obs	yi	xi
1	2158.70	15.50
2	1678.15	23.75
3	2316.00	8.00
4	2061.30	17.00
5	2207.50	5.50
:	:	:
19	2654.20	2.00
20	1753.70	21.50

Chapter 4 36 / 47

Example 4.7 The Rocket Propellant Data (cont.)

Chapter 4 37 / 47

Example 4.7 The Rocket Propellant Data (cont.)

```
> tf <- paste(tempfile(), "xls", sep = ".")</pre>
> download.file(paste(url, "Dataset/data-ex-2-1.xls", sep=""), tf, met
 % Total % Received % Xferd Average Speed Time
                                                       Time
                                                                Time
                                Dload Upload Total
                                                       Spent Left
                       0
                             0
                                    0 0 --:--:
> data_2.1 <- read.xls2(tf, header=TRUE)</pre>
> colnames(data_2.1) <- c("obs", "yi", "xi")</pre>
> attach(data 2.1)
>
> par(mfrow=c(1,1), pch=16, cex=1.4)
> plot(xi, yi, pch=19, xlab="Age of Propellant(weeks)",
      vlab="Shear Strength(psi)")
```

Chapter 4 38 / 47

Example 4.7 The Rocket Propellant Data (cont.)

2. Detection and treatment of outliers

Chapter 4 39 / 47

Example 4.7 The Rocket Propellant Data (cont.)

```
> lmfit <- lm(yi~xi)</pre>
> par(mfrow=c(1,2), cex.main=1.2, pch=19, cex=1.5)
> qqnorm(residuals(lmfit), datax=TRUE, main="Q-Q plot")
> qqline(residuals(lmfit), datax=TRUE, col=2, lwd=2)
> identify(sort(residuals(lmfit)), qnorm(1:length(xi)/length(xi)),
           (1:length(xi))[order(residuals(lmfit))])
> fit_val <- fitted(lmfit)</pre>
> plot(fit_val, scaled(lmfit, "rstudent"), xlab="Fitted value",
       vlab="Residual", main="Residuals vs Fitted values")
> identify(fit_val, scaled(lmfit, "rstudent"), 1:length(xi))
> abline(h=0, lty=1, col="grey")
> title(main="Residual plots for the rocket propellant data",
        line=-1,outer=T)
```

Chapter 4 40 / 47

Example 4.7 The Rocket Propellant Data (cont.)

Observations 5 and 6 are removed

Chapter 4 41 / 47

Example 4.7 The Rocket Propellant Data (cont.)

```
> lmfit <- lm(vi[-c(5,6)]~xi[-c(5,6)])
> par(mfrow=c(1,2), cex.main=1.2, pch=19, cex=1.5)
> qqnorm(residuals(lmfit), datax=TRUE, main="Q-Q plot")
> gqline(residuals(lmfit), datax=TRUE, col=2, lwd=2)
> identify(sort(residuals(lmfit)), qnorm(1:length(xi)/length(xi)),
           (1:length(xi))[order(residuals(lmfit))])
> fit_val <- fitted(lmfit)</pre>
> plot(fit_val, scaled(lmfit, "rstudent"), xlab="Fitted value",
       vlab="Residual", main="Residuals vs Fitted values")
> abline(h=0, lty=1, col="grey")
> title(main="Residual plots for the rocket propellant data",
        line=-1.outer=T)
```

Chapter 4 42 / 47

Example 4.7 The Rocket Propellant Data (cont.)

5

10

15

Age of Propellant(weeks)

20

Treatment of outliers

Chapter 4 43 / 47

Example 4.7 The Rocket Propellant Data (cont.)

```
> par(mfrow=c(1,1), pch=16, cex=1.4)
> lmfit <- lm(vi~xi)</pre>
> plot(xi, yi, xlab="Age of Propellant(weeks)",
       vlab="Shear Strength(psi)")
> abline(lmfit, col=2, lwd=2)
> points(xi[5:6], yi[5:6], col="grey", cex=1.5, pch=19)
> lmfit <- lm(yi[-c(5,6)]~xi[-c(5,6)])
> abline(lmfit, col=2, lwd=2, lty=2)
> legend("topright", legend=c("Full", "Obs 5, 6th are removed"),
        col=2, lty=1:2, lwd=2)
```

Chapter 4 44 / 47

Lack of Fit of the Regression Model

$$\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \hat{y}_i)^2 = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2 + \sum_{i=1}^{m} \sum_{j=1}^{n_i} (\bar{y}_i - \hat{y}_i)^2$$

$$SS_{RES} = SS_{PE} + SS_{LOF}$$

$$F_0 = \frac{SS_{LOF}/(m-2)}{SS_{PE}/(n-m)} = \frac{MS_{LOF}}{MS_{PE}} \sim F_{(m-2,n-m)}$$

Chapter 4 45 / 47

Lack of Fit of the Regression Model (cont.)

```
SSpe <- function(model, lof){ #SSpe function
        lmfit <- lm(model)</pre>
        y <- model.response(lmfit$model)</pre>
        x <- factor(lof)
        SSpe <- sum(xtabs(y^2x)-xtabs(y^x)^2/table(x))
        SSres <- sum(residuals(lmfit)^2)
        SSlof <- SSres- SSpe
        out <- matrix(NA, 3, 5)
        colnames(out) <- c("Sum Sq", "Df", "Mean Sq", "F value", "Pr(>F)")
        rownames(out) <- c("SSlof", "SSpe", "SSres")</pre>
        out[,1] <- c(SSlof, SSpe, SSres)</pre>
        out[,2] <- c(length(levels(x))-2, length(x)-length(levels(x)),
                      length(x)-2)
        out[1:2,3] <- out[1:2,1]/out[1:2,2]
        out[1,4] <- out[1,3]/out[2,3]
        out[1,5] <- pf(out[1,4], out[1,2], out[2,2], lower.tail=F)
        printCoefmat(out, digits=4, na.print="")
```

Chapter 4 46 / 47

Lack of Fit of the Regression Model (cont.)

1. Using SSpe function

```
> x < c(1,1,2,3.3,3.3,4,4,4,4.7,5,5.6,5.6,5.6,6,6,6,6.5,6.9)
> y < c(10.84, 9.30, 16.35, 22.88, 24.35, 24.56, 25.86, 29.16, 24.59,
         22.25,25.90,27.2,25.61,25.45,26.56,21.03,21.46)
>
> SSpe(y~x, x)
                   Df Mean Sq F value Pr(>F)
       Sum Sq
SSlof 234.571 8.000
                      29.321
                               13.19 0.00139 **
SSpe
    15.563 7.000
                       2.223
SSres 250.134
               15.000
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
>
```

Chapter 4 47 / 47

Lack of Fit of the Regression Model (cont.)

2. Using anova function (restricted method)

> f1 <- lm(y ~x)