Generalized Linear Regression: An Overview

- Binary data response regression
- Count data response regression
- Exponential family data response regression

Outline

Example

- Binary Response Regression Model
- 3 Logistic regressin model

Estimation of logistic regression coefficiens

Generalized linear models

- All models we have seen so far:
 - outcome variable is continuous with no restriction on their expectation
 - the mean and variance for the outcome is unrelated (i.e. variance is a constant)
- Many outcomes of interest do not satisfy this.
- Example: binary outcomes, poisson count outcomes.
- A Generalized Linear Model (GLM) is a model with two ingredients: a link function and a variance function.
 - The link function relates the mean of the observations to predictors
 - The variance function relates the means to the variances.

Example: disease outbreak

- A health study aims to investigate an epidemic outbreak of a disease. We collect 98 random individuals within two sectors in a city.
- The response variable Y was coded 1 for individual with disease, and 0 if not.
- Three predictors were included: age, socioeconomic status of household, and sector within city.
 - \bigcirc Age (X_1) is a quantitative variable.
 - Socioeconomic status (X₂, X₃) is a categorical variable with three levels ('Upper', 'Middle', 'Lower'). (how to code them?)
 - 3 City sector X_4 is also a categorical variable: $X_4 = 0$ for sector 1 and $X_4 = 1$ for sector 2.

Example: disease outbreak

```
> mydata = read.table("disease.txt", header=T); attach(mydata)
> head(mydata)
 Case X1 X2 X3 X4 Y
  1 33 0 0 0 0
 2 35 0 0 0 0
 3 6 0 0 0 0
4 4 60 0 0 0 0
5 5 18 0 1 0 1
6 6 2 6 0 1 0 0
> table(Y)
  1
67 31
> table(Y)/length(Y)
Υ
0.6836735 0.3163265
```

Outline

Example

- 2 Binary Response Regression Model
- 3 Logistic regressin model

Estimation of logistic regression coefficiens

Binary Response Model

- Consider a binary response variable Y_i , taking on the values 0 and 1.
- Let $\pi_i = \mathbb{E}(Y_i) = \mathbb{P}(Y_i = 1)$ denote the "success" probability.
- Variance function

$$Var(Y_i) = \pi_i(1 - \pi_i).$$

Variance is related to mean!

• A convenient way to model the dependence of $\mathbb{E}(Y_i)$ on covariates $X_{i,1}, \ldots, X_{i,p-1}$ is through the logit transformation:

$$\operatorname{logit}(\pi_i) = \beta_0 + \sum_{i=1}^{p-1} \beta_i X_{ij}$$

Logit transform

Logit transform:

$$logit(\pi) = log\left(\frac{\pi}{1-\pi}\right) \in (-\infty, +\infty)$$

Inverse:

$$\mathsf{logit}^{-1}(x) = \frac{e^x}{1 + e^x} \in (0, 1).$$

Derivative:

$$\frac{d}{d\pi} \operatorname{logit}(\pi) = \frac{1}{\pi(1-\pi)} \equiv \frac{1}{V(\pi)},$$

where $V(\pi) = \pi(1 - \pi)$ is called the variance function for Bernoulli r.v.

 Note that the special relation between derivative and variance function — more on this next lecture.

Binary regression model set-up

Specify the type of distribution: assume Y_i are independent Bernoulli r.v. with mean π_i ; i.e.

$$Y_i \sim \text{Ber}(\pi_i)$$
, independent;y.

- ② Specify the model on the $\pi_i = \mathbb{E}(Y_i)$:
 - Logistic regression:

$$\operatorname{logit}(\pi_i) = \beta_0 + \sum_{j=1}^{p-1} \beta_j X_{ij}.$$

Probit regression:

$$Probit(\pi_i) = \beta_0 + \sum_{j=1}^{p-1} \beta_j X_{ij},$$

where Probit is the inverse CDF for N(0, 1), i.e. Probit(z) = qnorm(z).

In each case, the variance model satisfies $Var(Y_i) = \pi_i(1 - \pi_i)$, but the mean model is different.

Link & variance function of a GLM

If

$$g(\mathbb{E}(Y_i)) = g(\pi_i) = \beta_0 + \sum_{j=1}^{p-1} \beta_j X_{ij}$$

then $g(\cdot)$ is called the link function for the model.

If

$$Var(Y_i) = \phi V(\mathbb{E}(Y_i)) = \phi V(\pi_i)$$

for $\phi > 0$ and some function V. Then $V(\cdot)$ is called variance function and ϕ is the dispersion parameter.

 Standard reference: Generalized linear models, McCullagh and Nelder.

Binary (again)

For a logistic model,

$$g(\mu) = \operatorname{logit}(\mu), \quad V(\mu) = \mu(1 - \mu)$$

For a probit model,

$$g(\mu) = \Phi^{-1}(\mu), \quad V(\mu) = \mu(1 - \mu)$$

where Φ is the CDF for N(0, 1).

Other common example of GLMs

- Standard multiple linear regression: $g(\mu) = \mu$, $Var(\mu) = 1$.
- Linear regression with variance tied to mean, for example: $g(\mu) = \mu$, $Var(\mu) = \mu^2$.
- Poisson log-linear models: $g(\mu) = \log(\mu)$, $Var(\mu) = \mu$.

Outline

Example

- Binary Response Regression Model
- 3 Logistic regressin model

Estimation of logistic regression coefficiens

Logistic regression model

Model specification:

$$Y_i \sim \mathsf{Ber}(\pi_i)$$
, independently, where $\pi_i = \mathbb{E}(Y_i) = \frac{\exp(\boldsymbol{X}_i'eta)}{1 + \exp(\boldsymbol{X}_i'eta)}$.

- $X_i = (1, X_{i,1}, \dots, X_{i,p-1})^i$ is the $p \times 1$ vector of explanatory variables of the *i*th observation.
- Let $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_{p-1})'$ denote the MLE of β .
- Given $\hat{\beta}$, compute the **fitted logistic response function**

$$\hat{\pi}_i = \widehat{\mathbb{E}(Y_i)} = \frac{\exp(\boldsymbol{X}_i'\beta)}{1 + \exp(\boldsymbol{X}_i'\hat{\beta})}.$$

Also the fitted logit response function

$$\log\left(\frac{\hat{\pi}_i}{1-\hat{\pi}_i}\right) = \boldsymbol{X}_i'\hat{\boldsymbol{\beta}}.$$

Odds rations & logistic regression

Definition

For any event A and any probability \mathbb{P} ,

$$\mathsf{Odds}(A) = \frac{\mathbb{P}(A)}{1 - \mathbb{P}(A)}.$$

In the logistic regression model with outcome Y

$$\frac{\mathsf{Odds}(Y=1|\ldots,X_j=x_j+1,\ldots)}{\mathsf{Odds}(Y=1|\ldots,X_j=x_j,\ldots,)}=e^{\beta_j},$$

is the multiplicative change in odds if variable X_j increases by 1.

- e^{β_j} is known as the odds ratio for X_j .
- β_i is also known as the log odds ratio for X_i .

Binge drinker example

- The response variable Y_i was coded 1 if the ith student is a frequent binge drinker and 0 if not.
- We express gender numerically using an indicator variable,

$$X_i = \left\{ egin{array}{ll} 1 & ; & ext{if the } i ext{th student is a man} \ 0 & ; & ext{if the } i ext{th student is a woman} \end{array}
ight.$$

- $Y_i \sim Ber(\pi_i)$ and $\pi_i = \frac{\exp(\beta_0 + \beta_1 X_i)}{1 + \exp(\beta_0 + \beta_1 X_i)}$.
- There are two possible values for π . For men

$$\frac{\exp(\beta_0 + \beta_1)}{1 + \exp(\beta_0 + \beta_1)} \tag{1}$$

and for women

$$\frac{\exp(\beta_0)}{1 + \exp(\beta_0)} \tag{2}$$

Binge drinker example

- β_1 : the difference between the log(odds) for men and the log(odds) for women.
- $\exp(\beta_1)$: the ratio of the odds that a man is a frequent binge drinker to the odds that a woman is a frequent binge drinker.
- R command glm gives the estimated odds for women 0.2045; For men, the estimated odds are 0.2937; The odds that a man is a frequent drinker are 1.43 times the odds for women.
- Thus, the MLEs of β_0 and β_1 are $\hat{\beta}_0 = -1.59$ and $\hat{\beta}_1 = 0.36$. [Why?]

Outline

Example

- Binary Response Regression Model
- 3 Logistic regressin model

4 Estimation of logistic regression coefficiens

Logistic Regression

 Recall that the logistic regression specifies the model for a binary response variable Y_i as

$$Y_i \sim Ber(\pi_i)$$
, independently.

- $\beta = (\beta_0, \beta_1, \dots, \beta_{p-1})'$ is the $p \times 1$ vector of logistic regression coefficients.
- $X_i = (1, X_{i,1}, \dots, X_{i,p-1})^i$ is the $p \times 1$ vector of explanatory variables of the *i*th observation.
- The mean model for logistic regression is

$$\mathbb{E}(Y_i) = \pi_i = \frac{\exp(\mathbf{X}_i'\beta)}{1 + \exp(\mathbf{X}_i'\beta)}.$$

We use maximum likelihood for parameter estimation.

Likelihood Function

• Since $Y_i \sim Ber(\pi_i)$, the probability density function is

$$f_i(Y_i) = \pi_i^{Y_i} (1 - \pi_i)^{1 - Y_i},$$

where $Y_i = 0$ or 1, i = 1, ..., n.

 Since Y_i's are independent, the joint probability density function is

$$f(Y_1,\ldots,Y_n)=\prod_{i=1}^n f_i(Y_i)=\prod_{i=1}^n \pi_i^{Y_i}(1-\pi_i)^{1-Y_i}.$$

Likelihood Function

• Take logarithm of $f(Y_1, ..., Y_n)$ and obtain

$$I(\beta) = \log f(Y_1, ..., Y_n)$$

$$= \sum_{i=1}^n \{ Y_i \log(\pi_i) + (1 - Y_i) \log(1 - \pi_i) \}$$

$$= \sum_{i=1}^n \{ Y_i \log\left(\frac{\pi_i}{1 - \pi_i}\right) + \log(1 - \pi_i) \}$$

$$= \sum_{i=1}^n \left[Y_i(X_i'\beta) - \log\{1 + \exp(X_i'\beta)\} \right].$$

• Let $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_{p-1})'$ denote the MLE of β .

Fitting a binary regression GLM: IRLS

- Algorithm:
 - Initialize: set $\hat{\mu}_i = 0.999$ or 0.001 depending on whether $Y_i = 1$ or 0.
 - Compute $Z_i \rightarrow g(\hat{\mu}_i) + g'(\hat{\mu}_i)(Y_i \hat{\mu}_i)$.
 - Obtain $\hat{\beta}$ by regressing **Z** onto **X** using WLS with weights $W_i^{-1} = g'(\hat{\mu}_i)^2 V(\hat{\mu}_i)$ to
 - Ompute $\hat{\mu}_i = g^{-1}(\boldsymbol{X}_i'\hat{\boldsymbol{\beta}}).$
 - Repeat steps 2–4 until convergence.
- If ϕ has to be estimated, a simple choice is Pearson's X^2 :

$$\hat{\phi} = \frac{1}{n-p} \sum_{i=1}^{n} \frac{(Y_i - \hat{\mu}_i)^2}{V(\hat{\mu}_i)}.$$

• Approximate distribution of $\hat{\beta}$:

$$\hat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, \phi(\boldsymbol{X}^T \hat{W} \boldsymbol{X})^{-1}).$$

Large-Sample (Asymptotic) Properties of MLEs

- Inference about the logistic regression coefficients relies on asymptotic normality of the MLEs.
- Let β^0 denote the $p \times 1$ vector of true regression parameters.
- Let **H** denote the $p \times p$ Hessian matrix $H(\beta) = \frac{\partial^2 \ell(\beta)}{\partial \beta \partial \beta'}$.
- Let $\mathcal{I}(\beta^0)$ denote the $p \times p$ Fisher information matrix $\mathcal{I}(\beta) = -\mathbb{E}(\mathbf{H}(\beta))$ evaluated at β^0 .

Approximate distribution of $\hat{\beta}$

Under suitable regularity conditions, as $n \to \infty$,

$$\hat{eta} pprox N\left(eta^0, \mathcal{I}(eta^0)^{-1}
ight), \quad \text{or} \quad \hat{eta} pprox N\left(eta^0, -oldsymbol{H}(\hat{eta})^{-1}
ight)$$