Fare Enough: Building ML Models for Predicting Uber Fare Amount

Muchen Zhong Brown University, Data Science Institute Oct 25/2024

Github link: https://github.com/muchenzhong/data1030_midterm.git (including the dataset been used)

Introduction

Intention: Predicting Uber Ride Fare Amount

Why This Matters:

- Passengers: anticipating the cost \rightarrow choose optimal times for rides \rightarrow cost savings
- Company: strategize its pricing models to maximize revenue during high-demand periods
- Drivers: earning forecasting & optimize trip selection

Type of Problem: Regression

Data Collection:

- Source: Kaggle Platform
- Collected through web scraping from the Uber API.

Dataset Overview

- Large dataset: **190k+** rows, covering the period from 2009 to 2015.
- 6 features + 1 target variable
- No missing values

Pickup _datetime	Pickup _longitude	Pickup _latitude	Dropoff _longitude	Dropoff _latitude	Passenger _count	Fare _amount
2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999512	40.723217	1	7.5
2009-07-17 20:04:56 UTC	-73.994355	40.728225	-73.994710	40.750325	1	7.7

Necessary Data Preprocessing Before EDA

Pick Up DateTime

- → Pickup_year
- → Pickup_month
- → Pickup_weekday
- → Pickup_day
- → Pickup_hour

A new column added: distance_km

- Calculate the distance between two geographic points (pickup and dropoff locations) using the Haversine formula.

Data Frame Now: 11 features

Pickup _datetime	Pickup _longitude	Pickup _latitude	Dropoff _longitude	Dropoff _latitude	Passenger _count	Fare _amount
2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999512	40.723217	1	7.5
2009-07-17 20:04:56 UTC	-73.994355	40.728225	-73.994710	40.750325	1	7.7

Pickup _year	Pickup _month	Pickup _weekday	Pickup _day	Pickup _hour	Pickup _longitude	Pickup _latitude	Dropoff _longitude	Dropoff_ latitude	Distance _km	Passenger _count	Fare _amount
2015	May	Thursday	7	19	-73.999817	40.738354	-73.999512	40.723217	1.683323	1	7.5
2019	July	Friday	17	20	-73.994355	40.728225	-73.994710	40.750325	2.457590	1	7.7

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis

Data Splitting

- Train 75%, Validation 15%, and Test 15%
- Shuffle and split out 15% for test set
- Perform a kfold cross validation to split train set and validation set

	Full dataset									
		Test								
Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5					
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5					
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5					
Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5					
Split 5	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5					

Test set size: 28806

Train and Val set size: 163230

Fold 1:

Train set size: 130584

Validation set size: 32646

Fold 2:

Train set size: 130584

Validation set size: 32646

Fold 3:

Train set size: 130584

Validation set size: 32646

Fold 4:

Train set size: 130584

Validation set size: 32646

Fold 5:

Train set size: 130584

Validation set size: 32646

Data Splitting

Train, validation, and test set have similar distribution for fare_amount

Data Preprocessing: Categorical Feature Encoding

One-Hot Encoding:

- Pickup_month
- Pickup_weekday
- Pickup_day
- Pickup_year

Data Preprocessing: Continuous Features Normalization

MinMax Scalar:

- Pickup_hour
- Pickup_longitutde
- Pickup_latitude
- Dropoff_longitude
- Dropoff_latitude

Standardized Scalar:

- Distance_km
- Passenger_count

11 features \rightarrow 60 features ready for the ML Model :)

References

Ranjan, S. (2020, May 4). K-fold cross-validation in Keras. Medium. Retrieved October 24, 2024, from https://medium.com/the-owl/k-fold-cross-validation-in-keras-3ec4a3a00538

Source: YasserH. (2020). Uber Fares Dataset. Kaggle. https://www.kaggle.com/datasets/yasserh/uber-fares-dataset.

Stack Overflow. (2011, March 1). Haversine formula in Python: Bearing and distance between two GPS points. Retrieved from

https://stackoverflow.com/questions/4913349/haversine-formula-in-python-bearing-and-distance-between-two-gps-points

Wikipedia. (2024, October 21). Haversine formula. Wikipedia. https://en.wikipedia.org/wiki/Haversine_formula

Freepik. (n.d.). Uber png. Retrieved October 24, 2024, from https://www.freepik.com/free-photos-vectors/uber-png

Freepik. (n.d.). Uber driver vector. Freepik. Retrieved October 24, 2024, from https://www.freepik.com/vectors/uber-driver

Thank you

