Mixed Model PD

Data

```
Datos %>%
  ungroup() %>%
  dplyr::select(Subject,Level,PD) %>%
  group_by(Subject,Level) %>%
  mutate(mid = 1:n()) %>%
  pivot_wider(names_from=mid,values_from=PD) %>%
  arrange(Subject,Level) %>%
  kable("latex", booktabs = T) %>%
  kable_styling(latex_options = c("striped", "scale_down"))
```

Subject	Level	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
s01	low	0.4496	0.0653	0.1166	0.6223															
s01	medium	0.3584	0.4130	0.3847																
s01	high	0.5421	0.1539																	
s02	low	0.1375	0.2422	0.1753																
s02	medium	0.5767	0.2926	0.1124	0.3179	0.3406	0.4468	0.1536												
s02	high	0.8992	0.8181	0.3766	0.4657	0.7887	0.5755	0.4946	0.1660											
s03	low	0.3274	0.2651	0.1895																
s03	medium	0.2070	0.5483	0.4275	0.5211	0.6642	0.5534	0.4001												
s03	high	0.2680	0.6748	0.9287	0.5675	0.7745	0.4426	0.5110	0.6703											
s04	low	0.4243	0.1281	0.0229	0.2419															
s04	medium	0.7608	0.7245	0.4148	0.4470															
s04	high	0.6576	0.8581	0.7439	0.4498	0.4149	0.5666	0.6897												
s05	low	0.4997	0.6024	0.1461	0.3229															
s05	medium	0.3668	0.4207	0.5019	0.3238	0.5547 0.8210	0.6787	0.6535												
s05	high	0.6291	0.7662	0.7056	0.6060	0.8210	0.4763													
s06	low	0.4272	0.2644	0.2342	0.1891															
s06	medium	0.3336	0.3592	0.2426	0.4025	0.2681	0.3308	0.4009	0.2259	0.2440										
s06	high	0.5412	0.6253	0.4762	0.3785 0.3538	0.3341	0.5811													
s07 s07	low medium	0.2466 0.6131	0.2825 0.4265	0.5575 0.4856	0.3538	0.6161	0.5095	0.2921	0.9220	0.3530	0.5140									
								0.2921	0.9220	0.5550	0.3140									
s07	high	1.3118	0.8948	0.8379	0.7907	0.9658	0.6302													
s08	low	0.0127	0.3036	0.1198	0.0943	0.0010	0.0100	0.0505	0.1411											
s08 s08	medium high	0.3712 0.4052	0.0756 0.2488	0.2577 0.2770	0.0335	0.0918 0.1876	0.2190 0.3389	0.0707	0.1411											
s09	low	0.4052	0.3433		0.3505	0.1376	0.5569													
s09	medium	1.0027	0.8177	0.6120	0.4199	0.5492	0.4736	0.5398												
s09	high	1.0774 0.2907	0.9671	0.6386	0.8257	0.8564	0.6451													
s10 s10	low medium	0.3656	0.8584 0.6151	0.4327 0.8187	0.2908	0.5207	0.2697	1.6808	0.4972											
s10	high	0.7261	0.7660	0.5185	0.4041	0.9512	0.5087	1.0000	0.4972											
	_							0.0801	0.0004											
s11	low	0.2465	0.5653	0.3812	0.1219 0.2239	0.0865	0.1307	0.2564	0.6904	0.4505	0.0000	0.0001	0.0000	0.0500	0.5000	0.4077	0.0005	0.0001	0.5010	0.0170
s11 s11	medium high	0.7645 0.9968	0.3942 0.4234	0.4514 0.8572	0.2239	0.6400 0.3881	0.2855 0.1980	0.5246 0.4741	0.4775 0.1219	0.4725 0.9047	0.3922 0.5377	0.2891 0.7540	0.2262 0.4890	0.0508	0.5389	0.4377	0.2605	0.2831	0.5613	0.3176
s11	low	0.3228	0.4234	0.0353	0.1662	0.3001	0.1960	0.4741	0.1219	0.9047	0.5511	0.7540	0.4690							
s12	medium	0.4543	0.3824	0.3775	0.5358	0.2197	0.1832	0.0503	0.2417											
s12			0.8090	0.6212	0.6794	0.5191	0.4335	0.0000	0.2111											
s12 s13	high low	0.7105 0.0867	0.8090	0.6212	0.3688	0.5191	0.4555													
s13	medium	0.2045	0.1774	0.2310	0.0001	0.1976														
s13	high	0.2570	0.5019	0.4069	0.5886	0.2239														
s14	low	0.0452	0.2838	0.1000	0.0000	0.2200														
				0.5000	0.0007	0.1769	0.1207	0.4650												
s14 s14	medium high	0.2982 0.4335	0.2244 0.3672	0.5269 0.7113	0.2667 0.4965	0.1763 0.3929	0.1307 0.5695	0.4650												
s14 s15	low	0.4333	0.3847	0.1113	0.4903	0.1068		0.2141												
s15	medium	0.4068	0.3105	0.3933	0.2687	0.1000	0.2000	0.2141												
s15	high	0.6461	0.3909	0.3333	0.4355	0.6300	0.2350													
s16	low	0.2737	0.5030	0.2979	0.6020	1.0714														
s16	medium	0.2737	0.5030	0.2979	0.5540	0.5707	0.5771													
s16	high	0.9685	0.5295	1.2180	0.9016	0.8415	0.0026													
s17	low	0.7333	0.6168	0.6444	5.5010	5.0410	3.0020													
s17	medium	0.9135	0.3872	0.7261	0.4890	0.4003	0.2454													
s17	high	1.2019	1.0587	0.7393	0.9083															
817	ıngn	1.2019	1.0587	0.7393	0.9083															

Level	n	MD	SD
low	72	0.3046	0.2092
medium	124	0.4215	0.2314
high	106	0.6014	0.2541

Summary by group

```
Datos %>%
  group_by(Level) %>%
  summarise(n=n(),MD=mean(PD),SD=sd(PD)) %>%
  kable()%>%
  kable_styling(latex_options = c("striped"))
(q <-Datos %>% ggplot(aes(x=Level,y=PD)) +
    geom_point() + facet_wrap(~ Subject)+
    labs(x="Difficulty level")+theme_bw()+
    stat_summary(fun="mean", geom="point",color="red"))
             s01
                                s02
                                                    s03
                                                                       s04
                                                                                          s05
  1.5
  1.0
  0.5 -
  0.0
             s06
                                s07
                                                    s08
                                                                       s09
                                                                                          s10
  1.5
  1.0 -
  0.5
  0.0
             s11
                                s12
                                                    s13
                                                                       s14
  1.5
  1.0
  0.5
  0.0
                                              low medium high
                                                                                     low medium high
                                                                  low
                                                                     medium high
             s16
                                s17
  1.5
  1.0
  0.5 -
  0.0
           medium high
                           low medium high
```

Difficulty level

Random Intercept and Slope Model

The following model is used to investigate whether there are significant differences between the study variables:

$$y_{ij} = \mu + l_k + s_j + (sl)_{jk} + \epsilon_{ij}, \tag{1}$$

where y_{ij} is the response variable (PD) for the i-th observation from the j-th subject, μ is the intercept, l_k is the k-th difficulty level, s_j is the jth subject effect, $(sl)_{jk}$ is the subject-level effect, i.e., the k-th level effect at the j-th subject, ϵ_{ij} is the error term (residual) for the ith observation from the jth subject.

We called level l a fixed effect, and ϵ is our error term that represent deviations from our predictions due to random factors that we cannot control experimentally. However, several measurements were taken for each subject at each difficulty level and that violates the assumption of independence of a linear model. On the other hand, each individual has a different cognitive load capacity, and this will be a characteristic factor that will affect all the responses of the same subject, which will make these responses interdependent instead of independent, see figure ??. The way we approaches this situation is adding a random effect to the subject and to the subject-level interaction. This allows us to solve this lack of independence by assuming a different intercept and slope for each subject. And finally, we assume that the residual, subject and subject-level effects are all relations of separate distributions, all with zero means:

$$\begin{aligned} \epsilon_{ij} \sim N(0, \sigma^2), \\ s_j \sim N(0, \sigma_s^2), \\ (sl)_{jk} \sim N(0, \sigma_{sl}^2). \end{aligned}$$

Hence, s_j and $(sl)_{jk}$ are now random effects, and μ and l_k are fixed effects.

Using the \mathbf{R} notation the model is

##

Data: Datos

$$PD = (b_0 + u_{Subject}) + b_{Level}Level + \epsilon$$

In order to evaluate if there is an effect due to the difficulty level we will use the likelihood ratio test of the model with the *Level* effect against the model without the *Level* effect.

```
PD_mixed_reducido <- lme4::lmer(PD ~ 1 + (1+Level|Subject), data=Datos, REML=F)
PD_mixed_lme4 <- lme4::lmer(PD ~ Level + (1+Level|Subject), data=Datos, REML=F)
anova(PD_mixed_reducido, PD_mixed_lme4)
## Data: Datos
## Models:
## PD_mixed_reducido: PD ~ 1 + (1 + Level | Subject)
## PD mixed_lme4: PD ~ Level + (1 + Level | Subject)
##
                          AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## PD_mixed_reducido
                        8 -44.9 -15.2
                                         30.4
                                                 -60.9
                       10 -71.5 -34.4
                                         45.7
                                                 -91.5 30.6 2 0.00000023 ***
## PD_mixed_lme4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
The p-value of the ratio test is significant at a level of 0.001.
PD_mixed_lme4 <- lme4::lmer(PD ~ Level + (1+Level|Subject), data=Datos)
summary(PD_mixed_lme4)
## Linear mixed model fit by REML ['lmerMod']
## Formula: PD ~ Level + (1 + Level | Subject)
```

```
## REML criterion at convergence: -75.7
## Scaled residuals:
     Min
              1Q Median
                            3Q
## -3.950 -0.594 -0.100 0.464 5.776
## Random effects:
## Groups
            Name
                         Variance Std.Dev. Corr
## Subject (Intercept) 0.012463 0.1116
##
             Levelmedium 0.000653 0.0256
                                           1.00
##
                         0.002185 0.0467
                                           0.91 0.91
             Levelhigh
## Residual
                         0.038427 0.1960
## Number of obs: 302, groups: Subject, 17
## Fixed effects:
##
               Estimate Std. Error t value
                 0.3091
                            0.0357
                                      8.66
## (Intercept)
                 0.1081
                            0.0301
                                      3.59
## Levelmedium
## Levelhigh
                 0.2943
                            0.0323
                                      9.11
##
## Correlation of Fixed Effects:
##
               (Intr) Lvlmdm
## Levelmedium -0.346
## Levelhigh
             -0.225 0.630
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
p<-plot_model(PD_mixed_lme4, type = "diag")</pre>
({p[[1]]+theme(plot.title=element_blank(),plot.subtitle=element_blank())+scale_x_continuous(name="Theor
```



```
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme4::lmer(formula = PD ~ Level + (1 + Level | Subject), data = Datos)
##
## Quantile = 2.34
## 95% family-wise confidence level
##
##
## Linear Hypotheses:
                      Estimate lwr
                                       upr
## medium - low == 0 \cdot 0.1081
                               0.0377 0.1785
## high - low == 0
                      0.2943
                               0.2188 0.3699
## high - medium == 0 0.1862
                               0.1233 0.2492
plot(confint(contr))
```

95% family-wise confidence level


```
contr.cld <- cld(contr)
old.par <- par(mai=c(1,1,1.25,1), no.readonly = TRUE)
plot(contr.cld)</pre>
```

Subject	Name	Training	Nivel	BLPS	MPDC	APCPS	PD	Entropy	TTP	PDS	SequenceMemory	SMN	id	Level	res	fit
s10	SequenceMemory_r24	FALSE	3	2.744	1.1568	0.4215	1.6808	-1.974	7176806	0	r24	24	14	medium	1.1322	0.5486
s16	SequenceMemory_r25	FALSE	1	4.300	0.0147	0.0034	1.0714	-2.111	3907135	0	r25	25	13	low	0.6338	0.4376
s07	SequenceMemory_r09	FALSE	6	3.654	0.3562	0.0975	1.3118	-2.009	8532099	0	r09	9	6	high	0.5381	0.7738
s10	SequenceMemory_r05	FALSE	1	3.083	0.4308	0.1397	0.8584	-1.820	8153300	0	r05	5	5	low	0.4424	0.4160
s16	SequenceMemory_r19	FALSE	6	4.291	0.1714	0.0399	1.2180	-2.159	13296613	0	r19	19	10	high	0.4411	0.7769
s09	SequenceMemory_r02	FALSE	3	3.637	0.4854	0.1335	1.0027	-2.046	5641562	0	r02	2	1	medium	0.4331	0.5696

Subject	Name	Training	Nivel	BLPS	MPDC	APCPS	PD	Entropy	TTP	PDS	SequenceMemory	SMN	id	Level	res	fit
s02	SequenceMemory_r30	FALSE	6	4.359	-0.1703	-0.0391	0.1660	-2.067	7794586	0	r30	30	17	high	-0.3721	0.5380
s01	SequenceMemory_r17	FALSE	6	4.023	-0.2674	-0.0665	0.1539	-1.911	2292544	0	r17	17	7	high	-0.3748	0.5287
s11	SequenceMemory_r15	FALSE	6	3.522	0.0065	0.0018	0.1980	-1.819	6498755	0	r15	15	20	high	-0.3817	0.5797
s17	SequenceMemory_r26	FALSE	3	3.706	-0.0342	-0.0092	0.2454	-1.877	5601869	0	r26	26	11	medium	-0.3888	0.6342
s11	SequenceMemory_r18	FALSE	6	3.521	-0.0856	-0.0243	0.1219	-1.781	7136712	0	r18	18		high	-0.4578	0.5797
s16	SequenceMemory_r28	FALSE	6	4.849	-0.3060	-0.0631	0.0026	-2.184	14432973	0	r28	28	15	high	-0.7743	0.7769


```
par(old.par)
Datos2 = Datos
Datos2$res = residuals(PD_mixed_lme4,type="pearson")
Datos2$fit = fitted(PD_mixed_lme4,type="pearson")

Datos2 %>% arrange(desc(res)) %>% head() %>% kable()%>% kable_styling(latex_options = c("striped", "scale_down"))

Datos2 %>% arrange(desc(res)) %>% tail() %>% kable()%>% kable_styling(latex_options = c("striped", "scale_down"))
```

```
shapiro.test(Datos2$res)
##
##
   Shapiro-Wilk normality test
##
## data: Datos2$res
## W = 0.95, p-value = 0.0000001
goftest::ad.test(Datos2$res,null="pnorm",mean=mean(Datos2$res), sd=sd(Datos2$res), estimated=TRUE)
##
## Anderson-Darling test of goodness-of-fit
## Braun's adjustment using 17 groups
## Null hypothesis: Normal distribution
## 0.190494627388844
## Parameters assumed to have been estimated from data
##
## data: Datos2$res
## Anmax = 1.8, p-value = 0.9
rstatix::levene_test(data=ungroup(Datos2),res~Level)
## # A tibble: 1 x 4
      df1
          df2 statistic
    <int> <int>
                  <dbl> <dbl>
        2 299
                   1.41 0.245
## 1
The same model without the outliers
We repeat the analysis without the outlier
# we exclude the outlier
Datos <- Datos %>% filter(!(Subject=="s10" & SMN==24),
```

```
!(Subject=="s16" & SMN==28))
PD_mixed_lme4 <- lme4::lmer(PD ~ Level + (1+Level|Subject), data=Datos)
summary(PD_mixed_lme4)
## Linear mixed model fit by REML ['lmerMod']
## Formula: PD ~ Level + (1 + Level | Subject)
     Data: Datos
##
##
## REML criterion at convergence: -131.7
##
## Scaled residuals:
             1Q Median
                           3Q
## -2.635 -0.648 -0.095 0.516 3.337
##
## Random effects:
## Groups
           Name
                        Variance Std.Dev. Corr
## Subject (Intercept) 0.01344 0.1159
            Levelmedium 0.00185 0.0430
                                          0.17
                                          0.75 0.78
##
            Levelhigh 0.00469 0.0685
## Residual
                        0.03116 0.1765
```

```
## Number of obs: 300, groups: Subject, 17
##
## Fixed effects:
##
               Estimate Std. Error t value
## (Intercept)
                 0.3083
                            0.0351
                                      8.78
## Levelmedium
                 0.0997
                            0.0286
                                      3.48
## Levelhigh
                 0.3033
                            0.0321
                                      9.46
##
## Correlation of Fixed Effects:
##
               (Intr) Lvlmdm
## Levelmedium -0.391
             -0.083 0.640
## Levelhigh
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
anova(PD_mixed_lme4)
## Analysis of Variance Table
         npar Sum Sq Mean Sq F value
## Level
            2
                3.14
                        1.57
                                50.4
coef(PD_mixed_lme4)
## $Subject
##
       (Intercept) Levelmedium Levelhigh
## s01
           0.2559
                       0.08288
                                  0.2657
## s02
           0.2581
                       0.09798
                                  0.2827
## s03
           0.3101
                       0.11083
                                  0.3159
## s04
                       0.12595
           0.3120
                                  0.3329
## s05
           0.3629
                       0.10598
                                  0.3304
## s06
           0.2450
                       0.08194
                                  0.2605
## s07
           0.4276
                       0.12713
                                 0.3773
## s08
           0.1209
                                 0.1955
                       0.06452
## s09
           0.4147
                       0.14542
                                 0.3921
           0.3747
## s10
                       0.09203
                                 0.3198
## s11
           0.2945
                       0.09450
                                  0.2925
## s12
           0.2609
                       0.10095
                                  0.2869
## s13
           0.1761
                       0.06344
                                  0.2150
## s14
           0.2258
                       0.09008
                                  0.2622
## s15
           0.2075
                       0.09261
                                  0.2581
## s16
            0.4822
                       0.11589
                                  0.3856
## s17
            0.5128
                       0.10227
                                  0.3823
##
## attr(,"class")
## [1] "coef.mer"
p<-plot_model(PD_mixed_lme4, type = "diag")</pre>
(q<-{p[[1]]+theme(plot.title=element_blank(),plot.subtitle=element_blank())+scale_x_continuous(name="Th
```


Simultaneous Confidence Intervals

```
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme4::lmer(formula = PD ~ Level + (1 + Level | Subject), data = Datos)
## Quantile = 2.339
## 95% family-wise confidence level
##
##
## Linear Hypotheses:
                      Estimate lwr
                                       upr
## medium - low == 0 \cdot 0.0997
                               0.0327 0.1666
## high - low == 0
                      0.3033
                               0.2283 0.3782
## high - medium == 0 0.2036
                               0.1430 0.2642
plot(confint(contr))
```

95% family-wise confidence level


```
contr.cld <- cld(contr)
### use sufficiently large upper margin
old.par <- par(mai=c(1,1,1.25,1), no.readonly = TRUE)
### plot
plot(contr.cld)</pre>
```

```
С
      0.8
      9.0
linear predictor
                                               medium
                                                                          high
                         low
                                                 Level
par(old.par)
Datos2=Datos
Datos2$res = residuals(PD_mixed_lme4,type="pearson")
Datos2$fit = fitted(PD_mixed_lme4,type="pearson")
shapiro.test(Datos2$res)
##
##
    Shapiro-Wilk normality test
## data: Datos2$res
## W = 0.98, p-value = 0.002
goftest::ad.test(Datos2$res,null="pnorm",mean=mean(Datos2$res), sd=sd(Datos2$res), estimated=TRUE)
##
##
    Anderson-Darling test of goodness-of-fit
## Braun's adjustment using 17 groups
## Null hypothesis: Normal distribution
## with parameters mean = -0.00000000000000515008562371348, sd =
## 0.170981201138494
   Parameters assumed to have been estimated from data
##
```

b

а

```
## data: Datos2$res
## Anmax = 2.3, p-value = 0.7
rstatix::levene_test(data=ungroup(Datos2),res~Level)

## # A tibble: 1 x 4
## df1 df2 statistic p
## <int> <dbl> <dbl> <dbl>
## 1 2 297 1.60 0.203
```

Box-Cox transformation

```
(PD_lm <- lm(PD ~ Level ,data=Datos))

##
## Call:
## lm(formula = PD ~ Level, data = Datos)
##
## Coefficients:
## (Intercept) Levelmedium Levelhigh
## 0.305 0.107 0.303

boxcox.list <- EnvStats::boxcox(PD_lm)
plot(boxcox.list)</pre>
```

Box-Cox Transformation Results: PPCC vs. lambda for PD_Im

Level	n	MD	SD
low	72	-0.8833	0.3183
medium	123	-0.7148	0.2983
high	105	-0.4545	0.3075

```
(boxcox.list <- EnvStats::boxcox(PD_lm,optimize = TRUE))</pre>
```

```
## $lambda
## [1] 0.6171
##
## $objective
## [1] 0.9987
##
## $objective.name
## [1] "PPCC"
##
## $optimize
## [1] TRUE
##
## $optimize.bounds
## lower upper
      -2
##
##
## $eps
## [1] 0.00000000000000222
## $lm.obj
##
## Call:
## lm(formula = PD ~ Level, data = Datos, y = TRUE, qr = TRUE)
##
## Coefficients:
## (Intercept) Levelmedium
                               Levelhigh
         0.305
                                   0.303
##
                      0.107
##
##
## $sample.size
## [1] 300
##
## $data.name
## [1] "PD_lm"
##
## attr(,"class")
## [1] "boxcoxLm"
DatosPD = (DatosPD^{(0.6171)-1)/(0.6171)
Datos %>%
  group_by(Level) %>%
  summarise(n=n(),MD=mean(PD),SD=sd(PD)) %>%
  kable()%>%
  kable_styling(latex_options = c("striped"))
(q <-Datos %>% ggplot(aes(x=Level,y=PD)) +
```

```
geom_point() + facet_wrap(~ Subject)+
labs(x="Difficulty level")+theme_bw()+
stat_summary(fun="mean", geom="point",color="red"))
```


PD_mixed_lme4 <- lme4::lmer(PD ~ Level + (1+Level|Subject),data=Datos)
summary(PD_mixed_lme4)</pre>

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: PD ~ Level + (1 + Level | Subject)
##
      Data: Datos
##
## REML criterion at convergence: 62.1
##
## Scaled residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -2.9026 -0.6319 -0.0028 0.6138 2.7869
##
## Random effects:
##
    Groups
             Name
                         Variance Std.Dev. Corr
            (Intercept) 0.03419 0.1849
##
    Subject
##
             Levelmedium 0.00868 0.0932
                                           -0.05
                         0.00478 0.0691
                                            0.14 0.98
##
             Levelhigh
                         0.05930 0.2435
##
   Residual
## Number of obs: 300, groups: Subject, 17
```

```
##
## Fixed effects:
##
                                                    Estimate Std. Error t value
                                                       -0.8773
                                                                                                                            -16.39
##
          (Intercept)
                                                                                                0.0535
## Levelmedium
                                                           0.1574
                                                                                                 0.0435
                                                                                                                                   3.62
         Levelhigh
                                                           0.4272
                                                                                                 0.0414
                                                                                                                               10.32
##
##
## Correlation of Fixed Effects:
##
                                                    (Intr) Lvlmdm
## Levelmedium -0.388
## Levelhigh
                                                   -0.337 0.691
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
p<-plot_model(PD_mixed_lme4, type = "diag")</pre>
(\{p[[1]] + theme(plot.title=element_blank(), plot.subtitle=element_blank()) + scale_x_continuous(name="Theorem on the continuous of the 
                                                                                                                                                   (Intercept)
                                                                                                                                                                                                              Levelmedium
                                                                                                                                                                                                                                                                                 Levelhigh
                                                                                                                                                                                                                                                          0.2
                                                                                                                          0.50
                                                                                                                                                                                            0.2
                                                                                                                Random effect quantiles
           0.4
                                                                                                                                                                                                                                                          0.1
                                                                                                                           0.25
                                                                                                                                                                                            0.1
Residuals
          0.0
                                                                                                                                                                                                                                                          0.0
                                                                                                                                                                                            0.0
                                                                                                                           0.00
        -0.4
                                                                                                                        -0.25
                                                                                                                                                                                          -0.2
                                                                                                                                                                                                                                                          -0.2
                                                                                                                        -0.50
                                                  -0.75
                                                                   -0.50
                                                                                        -0.25
                                                                                                                                                                                          Standard normal quantiles
                                   Theoretical quantiles
           1.5
                                                                                                                                                                       0.4
                                                                                                                                                            Residuals
Density
          1.0
                                                                                                                                                                       0.0
          0.5
                                                                                                                                                                    -0.4
          0.0
                                                -0.4
                                                                                   0.0
                                                                                                                      0.4
                                                                                                                                                                                                       -1.00
                                                                                                                                                                                                                                   -0.75
                                                                                                                                                                                                                                                               -0.50
                                                                                                                                                                                                                                                                                           -0.25
                                                                        Residuals
                                                                                                                                                                                                                                 Fitted values
contr <- glht(PD_mixed_lme4,linfct=mcp(Level="Tukey"))</pre>
summary(contr, test = adjusted("holm"))
##
##
                 Simultaneous Tests for General Linear Hypotheses
## Multiple Comparisons of Means: Tukey Contrasts
```

```
##
##
## Fit: lme4::lmer(formula = PD ~ Level + (1 + Level | Subject), data = Datos)
## Linear Hypotheses:
                     Estimate Std. Error z value
                                                           Pr(>|z|)
##
## medium - low == 0
                      0.1574 0.0435 3.62
                                                            0.00029 ***
                                 ## high - low == 0
                      0.4272
## high - medium == 0 0.2698
                                 0.0334 8.07 0.000000000000013 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- holm method)
confint(contr)
##
    Simultaneous Confidence Intervals
##
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme4::lmer(formula = PD ~ Level + (1 + Level | Subject), data = Datos)
## Quantile = 2.337
## 95% family-wise confidence level
##
##
## Linear Hypotheses:
                     Estimate lwr
                                    upr
## medium - low == 0 \cdot 0.1574 \cdot 0.0558 \cdot 0.2590
## high - low == 0
                    0.4272 0.3304 0.5240
## high - medium == 0 0.2698  0.1917 0.3480
plot(confint(contr))
```

95% family-wise confidence level


```
contr.cld <- cld(contr)
old.par <- par(mai=c(1,1,1.25,1), no.readonly = TRUE)
plot(contr.cld)</pre>
```


Non parametric tests \mathbf{N}

```
kruskal.test(PD ~ Level, data=Datos)
##
##
   Kruskal-Wallis rank sum test
##
## data: PD by Level
PMCMR::posthoc.kruskal.nemenyi.test(data=Datos,PD~Level, dist="Tukey")
##
##
   Pairwise comparisons using Tukey and Kramer (Nemenyi) test
                  with Tukey-Dist approximation for independent samples
##
##
## data: PD by Level
##
##
        low
                       medium
## medium 0.0016
```