Pairwise Relatively Prime Integers:

The Positive integers a_1 , a_2 , a_3 ,..., an are pairwise relatively prime if Every pair of integers is relatively prime; that is, (ai, aj) = 1, whenever i \neq j.

Corollary:

If the positive integers a_1, a_2, a_3, \ldots , an are pairwise relatively prime, then the gcd $(a_1, a_2, a_3, \ldots, a_n) = 1$.

For Example:

Let the numbers be 4,27,35 as they are relatively prime (there is no any common divisors for the above three numbers) their gcd is 1.

Theorem:

Let the numbers be a_1, a_2, a_3, \ldots , an be positive integers, where n>=3. Then gcd $(a_1, a_2, a_3, \ldots, a_1) = gcd (gcd <math>(a_1, a_2, a_3, \ldots, a_n)$.

Proof:

Let the gcd $(a_1, a_2, a_3, ..., a_n) = d$, gcd $(a_1, a_2, a_3, ..., a_n) = d$ and let d'' = gcd (d', a_n) .

We need to show that d = d''; $d \mid d''$ and $d'' \mid d$.

Since d = gcd (a_1 , a_2 , a_3 , , an) , d | ai for $1 \le i \le n-1$ and d | d' which also holds

 $d \mid gcd(d', an) = d \mid d'' \cdot d'' = m * d == \rightarrow for some m belongs to Z$

We also need to show that $d \mid d''$.

Since $d'' = \gcd(d', an)$ which means $d'' \mid d'$ and $d'' \mid an$; $d'' \mid d'$ - holds for $1 \le i \le n-1$. Thus d'' must divide d'' too. Hence $d'' \mid d'$.

Hence we got $d \mid d''$ and $d'' \mid d$. Therefore d = d''Then $gcd(a_1, a_2, a_3, ..., a_n) = gcd(gcd(a_1, a_2, a_3, ..., a_n))$ Hence Showed.