4 変数 $0 \le x < 1$ の関数 f(x) を次のように定義する .

$$f(x) = \begin{cases} 2x & 0 \le x < \frac{1}{2} \\ 2x - 1 & \frac{1}{2} \le x < 1 \end{cases}$$

さらに $f_1(x)=f(x)$ とおき, $f_n(x)$ を $f_n(x)=f(f_{n-1}(x))$ $(n=2,3,4,\cdots\cdots)$ と定義する.

- (1) $f_3(x)$ のグラフを描き, $f_3(x)$ を式で表せ.
- (2) k と m を $1 \le k \le 2^m-1$ を満たす自然数とし $p=\frac{k}{2^m}$ とおく.極限値 $\lim_{n \to \infty} \frac{f_1(p)+\dots\dots+f_n(p)}{n}$ を求めよ.