Sample Midterm 2A, Math 1554

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

First Name	Last Name				
GTID Number:					
Student GT Email Address:	@gate	ech.edu			
Section Number (e.g. A4, QH3, etc.)	TA Name				

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- Any work done on scratch paper will not be collected and will not be graded.

Math 1554, Sample Midterm 2	2A. Y	Your initials:	
-----------------------------	-------	----------------	--

You do not need to justify your reasoning for questions on this page.

1. (10 points) Indicate **true** if the statement is true, otherwise, indicate **false**.

a) If a square matrix is not invertible, then it does not have an LU factorization.	0	0
ractorization.		

true

false

b)
$$H = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid x_1 + x_2 = 1 \right\}$$
 is a subspace.

c) If
$$A\vec{x} = A\vec{y}$$
 for some $\vec{x} \neq \vec{y} \in \mathbb{R}^n$, then A cannot be invertible.

d) If A is non-singular, then
$$A^n$$
 must be non-singular, for any integer \bigcirc $n > 1$.

e) If A and B are square
$$n \times n$$
 matrices and $AB = I$, then A is \bigcirc invertible.

g) If
$$T_A: \mathbb{R}^3 \to \mathbb{R}^4$$
 is one-to-one, then $\operatorname{rank}(A) = 3$ and $\dim(\operatorname{Null}(A))$ \bigcirc is 0.

h) A
$$5 \times 5$$
 matrix A with rank 3 has an eigenvalue $\lambda = 0$.

i) The algebraic multiplicity of an eigenvalue
$$\lambda$$
 can be zero.

j) If A is square and row equivalent to an identity matrix, then
$$\bigcirc$$
 \bigcirc $\det(A) \neq 0$.

- 2. (2 points) Fill in the blanks.
 - (a) $T_A = A\vec{x}$, where $A \in \mathbb{R}^{2\times 2}$, is a linear transform that rotates vectors in \mathbb{R}^2 clockwise by θ radians about the origin, then reflects them through the line $x_1 = 0$, then projects them onto the x_1 -axis. Compute $\det(A)$.

Math 1554,	Sample	Midterm	2A.	Your in	itials	3:			_
You do not	need to	justify you	ur red	asoning	for	questions	on	this	page.

- 3. (10 points) If possible, write down an example of a matrix with the following properties. If it is not possible to do so, write *not possible*. You do not need to justify your reasoning.
 - (a) If possible, give an example of a 2×2 matrix whose column space is the line $x_1 = -2x_2$, and whose null space is the line $x_1 = 4x_2$.
 - (b) A 3×7 matrix, A, in RREF, such that $\dim(\operatorname{Col}(A)) = 4$, and $\dim(\operatorname{Null}(A)) = 3$.
 - (c) A 3×5 matrix, A, in RREF, such that $\dim(\text{Col}(A)) = 3$.
 - (d) A 4×4 lower triangular matrix A, such that det(A) = -1 and rank(A) = 4.
 - (e) A 3×3 matrix whose determinant is equal to zero, and whose null space is the plane $x_1 + 2x_2 + 3x_3 = 0$.

4. (3 points) Let A and B be $n \times n$ matrices such that $A^2 = B^2 = I_n$, $BA = I_n$, and

$$C = \begin{bmatrix} A & B \\ B & -A \end{bmatrix}$$

Express C^2 in terms of A and B. Simplify as much as possible. Show your work.

5. (5 points) If a square matrix A has eigenvalue 2 with eigenvector \vec{x} and eigenvalue -1/2 with eigenvector \vec{y} , express the the following in terms of \vec{x} and \vec{y} . It is not necessary to show your work here.

(a)
$$A^3\vec{x} =$$

(b)
$$A^3\vec{y} =$$

(c)
$$A(\vec{x} + \vec{y}) =$$

(d)
$$A^2(\vec{x} + \vec{y}) =$$

(e)
$$A^{-1}(\vec{x} + \vec{y}) =$$

6. (3 points) The vector $\vec{x} = (1, 12, 3)^T$ is in the span of $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$, where $\vec{v}_1 = (1, 0, -1)^T$ and $\vec{v}_2 = (-1, 3, 2)^T$. Compute $[\vec{x}]_{\mathcal{B}}$.

7. (3 points) Compute the inverse of the matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ -3 & 0 & 3 \end{pmatrix}$.

8. (4 points) Suppose the determinant $\begin{vmatrix} a & b & c \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix} = 5$, where a, b and c are real numbers. What is the determinant below equal to? $\begin{vmatrix} 1 & 2 & 3 \\ 2a & 2b & 2c \\ 5 & 7 & 0 \end{vmatrix}$

9. (4 points) Consider the sequence of row operations that reduce matrix A to echelon form, U.

$$A = \underbrace{\begin{pmatrix} 1 & 2 & 2 \\ -2 & 2 & 0 \\ 1 & 14 & 3 \end{pmatrix}}_{A} \sim \underbrace{\begin{pmatrix} 1 & 2 & 2 \\ 0 & 6 & 4 \\ 1 & 14 & 3 \end{pmatrix}}_{E_{1}A} \sim \underbrace{\begin{pmatrix} 1 & 2 & 2 \\ 0 & 6 & 4 \\ 0 & 12 & 1 \end{pmatrix}}_{E_{2}E_{1}A} \sim \underbrace{\begin{pmatrix} 1 & 2 & 2 \\ 0 & 6 & 4 \\ 0 & 0 & -7 \end{pmatrix}}_{E_{3}E_{2}E_{1}A} = U$$

(a) Construct the elementary matrices E_1 , E_2 , E_3 .

$$E_1 = E_2 = E_3 =$$

- (b) Consider the matrix products listed below. Which (if any) represents A?
 - I) $E_3E_2E_1U$
 - II) $E_1E_2E_3U$

 - III) $E_1^{-1}E_2^{-1}E_3^{-1}U$ IV) $E_3^{-1}E_2^{-1}E_1^{-1}U$
- 10. (4 points) Construct a basis for the eigenspace of A associated with the eigenvalue $\lambda = 3$.

$$A = \begin{pmatrix} 5 & -1 & 2 \\ 2 & 2 & 2 \\ 2 & -1 & 5 \end{pmatrix}$$