Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійного пошуку в послідовностях»

Варіант 32

Виконав студент ІП-12 Федій Олександр Валерійович			
	(шифр, прізвище, ім'я, по батькові)		
Перевірив _			
	(прізвище, ім'я, по батькові)		

Лабораторна робота 7

Дослідження лінійного пошуку в послідовностях

Мета — дослідити методи послідовного пошуку у впорядкованих і невпорядкованих послідовностях та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 32

Задача 6.32. 1. Описати три змінні індексованого типу з 10 символьних значень.

- 2. Ініціювати дві змінні виразами:
- a. 74 i
- b. 65 + 2 * i
- 3. Ініціювати третю змінну рівними значеннями двох попередніх змінних.
 - 4. Знайти кількість елементів, коди яких менше 67.

Постановка задачі. Результатом розв'язку є кількість елементів з кодами менше 67 масиву, що складається з однакових елементів двох масивів, значення яких задаються формулами із умови. Ввідних даних не вимагається.

Математична побудова. Складемо таблицю змінних.

Змінна	Тип	Ім'я	Призначення
Перший масив	Символьний	A[10]	Проміжне дане
Другий масив	Символьний	B[10]	Проміжне дане
Масив спільних елементів	Символьний	C[10]	Проміжне дане
Кількість елементів у масиві С	Цілий	k	Проміжне дане
Кількість ел.	Цілий	n	Результат

Масив	Символьний	arr[]	Проміжне дане
Доданок із заданої формули	Цілий	add	Проміжне дане
Множник із заданої формули	Цілий	mult	Проміжне дане
Лічильники	Цілий	i, 1	Проміжне дане

Розв'язання:

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію визначення перших двох масивів.

Крок 3. Деталізуємо дію визначення третього масиву.

Крок 4. Деталізуємо дію визначення кількості елементів менше 67.

Псевдокод

крок 1

початок

Знаходження першого та другого масиву

Знаходження третього масиву

Знаходження кількості елементів

кінець

крок 2

початок

 $A = \operatorname{arrayInit}(A, 74, -1)$

B = arrayInit(B, 65, 2)

знаходження третього масиву

знаходження кількості елементів

кінець

```
крок 3
початок
           A = \operatorname{arrayInit}(A, 74, -1)
           B = arrayInit(B, 65, 2)
           C, k = arrayEqual(A, B, C)
           знаходження кількості елементів
кінець
крок 4
початок
           A = \operatorname{arrayInit}(A, 74, -1)
           B = arrayInit(B, 65, 2)
           C, k = arrayEqual(A, B, C)
           n = arrayCheck(C, k)
кінець
Псевдокод підпрограми
Функція arrayInit(arr[], add, mult):
```

Функція arrayInit(arr[], add, mult): повторити для i = 0; i < 10; i++ arr[i] = add + mult * i все повторити arrayOutput(arr, 10) повернути arr Кінець функції Функція arrayOutput(arr[], k): повторити для i = 0; i < k; i++ виведення arr[i]

все повторити

Кінець функції

```
Функція arrayEqual(A[], B[], C[]):
          \mathbf{k} = \mathbf{0}
          повторити для i = 0; i < k; i++
            повторити для l = 0; l < k; l++
                  якщо A[i] = B[1]
                  C[k]=A[i]
                  k++
                  все якщо
            все повторити
          все повторити
          arrayOutput(C, k)
          повернути C, k
Кінець функції
Функція arrayCheck(C[], k):
  n = 0
  повторити для i = 0; i < k; i++
    якщо C[i] < 67
       n++
       виведення С[і]
     все якщо
  все повторити
  повернути п
Кінець функції
```


Випробування алгоритму

Блок	
	Початок
1	Масив А:
	i = 0, $A[0] = 74 - 0 = 74$, $ASCII - J$
	Масив В:
	i = 0, $B[0] = 65 + 2 * 0 = 65$, $ASCII - A$
2	Масив А:
	i = 1, $A[1] = 74 - 1 = 73$, $ASCII - I$
	Масив В:
	i = 1, $B[0] = 65 + 2 * 1 = 67$, $ASCII - C$
3	Масив А:
	i = 2, $A[2] = 74 - 2 = 72$, $ASCII - H$
	i = 2, $B[0] = 65 + 2 * 2 = 69$, $ASCII - E$
4	•••
5	Масив А:
	i = 9, $A[9] = 74 - 9 = 65$, $ASCII - A$
	Масив В:
	•••
	Вивід: 1
	Кінець

Код програми

```
⊡#include <iostream>
#include <iomanip>
 using namespace std;
 char* arrayInit(char arr[], int add, int mult);
 int arrayEqual(char A[], char B[], char C[]);
 int arrayCheck(char C[], int k);
 void arrayOutput(char arr[], int k);
□int main() {
     char* A = new char[10];
     cout << "A: ";
     A = arrayInit(A, 74, -1);
     char* B = new char[10];
     cout << endl << "B: ";</pre>
     B = arrayInit(B, 65, 2);
     char C[10];
     cout << endl << "C: ";
     int k = arrayEqual(A, B, C);
     cout << endl << "Elements under 67: ";</pre>
     int n = arrayCheck(C, k);
cout << endl << "n: " << setw(3) << n << endl;</pre>
     system("pause");
□char* arrayInit(char arr[], int add, int mult)
       for (int i = 0; i < 10; i++)
           arr[i] = add + mult * i;
       arrayOutput(arr, 10);
       return arr;
□int arrayEqual(char A[], char B[], char C[])
       int k = 0;
       for (int i = 0; i < 10; i++)
           for (int l = 0; l < 10; l++)
               if (A[i] == B[1])
                    C[k] = A[i];
                    k++;
       arrayOutput(C, k);
       return k;
```

```
J
         Ι
                G
                   F
                       E
                          D
                                 В
                       K
                                     S
            Ε
                          Μ
В:
         C
                G
                   Ι
                              0
         G
            Ε
     Ι
                C
Elements under 67:
                        Α
Press any key to continue . . .
```

Висновок

Під час виконання лабораторної роботи було досліджено методи послідовного пошуку у впорядкованих і невпорядкованих послідовностях та набуто практичних навичок їх використання під час складання програмних специфікацій. При виконанні лабораторної роботи було використано лінійний пошук — послідовний пошук даних, який виконується за допомогою оператора повторення з укладеним умовним оператором. Даний пошук використовувався над послідовностями значень або масивами, що

розглядається як іменована сукупність значень одного типу, а кожне значення має свій індекс.