Типовой расчёт №1 по функциональному анализу, 5 семестр

Задача 1

Можно ли задать метрику на вещественной прямой с помощью функции $\rho(x,y)$? Если да, то будет ли получившееся метрическое пространство полным?

1.
$$\rho(x,y) = |e^x - e^y|$$

2.
$$\rho(x,y) = |x^3 - y^3|$$

3.
$$\rho(x,y) = \arctan|x-y|$$

4.
$$\rho(x,y) = |x - y|^3$$

5.
$$\rho(x,y) = \sqrt{|x-y|}$$

6.
$$\rho(x,y) = |x^2 - y^2|$$

7.
$$\rho(x,y) = |\arctan x - \arctan y|$$

8.
$$\rho(x,y) = \ln|x-y|$$

9.
$$\rho(x,y) = 1 - e^{-|x-y|}$$

10.
$$\rho(x,y) = \ln(1+|x-y|)$$

11.
$$\rho(x,y) = e^{|x-y|} - 1$$

12.
$$\rho(x,y) = |\sqrt[3]{x} - \sqrt[3]{y}|$$

13.
$$\rho(x,y) = \frac{|x-y|}{1+|x-y|^2}$$

14.
$$\rho(x,y) = e^{|x-y|}$$

15.
$$\rho(x, y) = \sin|x - y|$$

16.
$$\rho(x,y) = \frac{|x-y|}{1+|x-y|}$$

17.
$$\rho(x,y) = |e^x - e^y|$$

18.
$$\rho(x,y) = \sqrt[3]{|x-y|}$$

19.
$$\rho(x,y) = \left| \frac{x}{1+x} - \frac{y}{1+y} \right|$$

20.
$$\rho(x,y) = |\sin x - \sin y|$$

21.
$$\rho(x,y) = \sqrt{|x|} - \sqrt{|y|}$$

22.
$$\rho(x,y) = |e^{-x} - e^{-y}|$$

23.
$$\rho(x,y) = |\lg x - \lg y|$$

24.
$$\rho(x,y) = \frac{|x-y|}{1+\sqrt{|x-y|}}$$

Задача 2

Компактны ли следующие множества в пространстве C[0,1]? Ответ обосновать.

1.
$$x_n(t) = e^{-nt}, n \in \mathbf{N}$$

2.
$$x_n(t) = t^n(1-t), n \in \mathbf{N}$$

3.
$$x_{\alpha}(t) = \frac{1}{1+\alpha^2}e^{-\alpha t}, \ \alpha \in \mathbf{R}$$

4.
$$x_n(t) = \sin nt, n \in \mathbf{N}$$

5.
$$x_n(t) = n^{-(t+\frac{1}{2})}, n \in \mathbf{N}$$

6.
$$x_{\alpha}(t) = \sin \alpha t, \ \alpha \in \mathbf{R}$$

7.
$$x_{\alpha}(t) = e^{-\alpha t}, \ \alpha \in [-2, 2]$$

8.
$$x_n(t) = n^{-t}, n \in \mathbf{N}$$

9.
$$x_{\alpha}(t) = \operatorname{arctg} \alpha t, \ \alpha \in \mathbf{R}$$

10.
$$x_n(t) = \frac{1}{1+t^n}, n \in \mathbf{N}$$

11.
$$x_{\alpha}(t) = e^{t-\alpha}, \ \alpha \in \mathbf{R}$$

12.
$$x_n(t) = t^n, n \in \mathbf{N}$$

13.
$$x_n(t) = e^{-n\left(t - \frac{1}{2}\right)}, n \in \mathbb{N}$$

14.
$$x_{\alpha}(t) = \operatorname{arctg}(t - \alpha), \ \alpha \in \mathbf{R}$$

15.
$$x_n(t) = \frac{1}{n^2}(t+1)^n, n \in \mathbf{N}$$

16.
$$x_{\alpha}(t) = e^{t-\alpha}, \ \alpha \in [0, +\infty)$$

17.
$$x_n(t) = n^{-\left(t - \frac{1}{2}\right)}, n \in \mathbf{N}$$

18.
$$x_{\alpha}(t) = \sin \alpha t, \ \alpha \in [1, 2]$$

19.
$$x_n(t) = \frac{1}{n}t^n, n \in \mathbf{N}$$

20.
$$x_n(t) = \frac{1}{n}e^{n(t-1)}, n \in \mathbf{N}$$

21.
$$x_n(t) = \left(t - \frac{1}{2}\right)^n, n \in \mathbb{N}$$

22.
$$x_n(t) = e^{n(1-t)}, n \in \mathbf{N}$$

23.
$$x_n(t) = \sin(t+n), n \in \mathbf{N}$$

24.
$$x_{\alpha}(t) = \frac{1}{1+\alpha^2} e^{\alpha-t}, \ \alpha \in \mathbf{R}$$

Задача 3

Доказать, что следующие функционалы в пространстве C[-1,1] являются линейными непрерывными, и найти их нормы:

1.
$$\int_{-1}^{1} |t| x(t) dt$$

2.
$$x(-1) - 2x(0) + x(1)$$

3.
$$x(-1) - \int_{-1}^{1} x(1-t^2) dt$$

4.
$$-x(-1) + 2x(0) + 2\int_0^1 x(t) dt$$

5.
$$\int_{-1}^{0} (t^2 + t)x(t) dt + 2x(0)$$

6.
$$x(-1) - 2x(0) + \int_0^1 x(t) dt$$

7.
$$\int_{-1}^{1} t^2 x(t) dt$$

8.
$$\frac{1}{3}[x(-1) + x(1)]$$

9.
$$x(-1) + x(1) - \int_0^1 x(t^2/2) dt$$

10.
$$2[x(1) - x(0)]$$

11.
$$\int_{-1}^{1} tx(t) dt$$

12.
$$\int_0^1 tx(t) dt - x(1)$$

13.
$$\int_{-1}^{0} (t^2 + t)x(t) dt + x(1)$$

14.
$$\int_0^1 x(t^2) dt$$

15.
$$\int_{-1}^{0} tx(1+t) dt + 3x(1)$$

16.
$$\int_{-1}^{1} (t^2 - 1)x(t) dt$$

17.
$$3\int_{-1}^{1} t^2 x(t) dt + x(0)$$

18.
$$\int_0^1 (2t-1)x(t) dt$$

19.
$$\frac{1}{2} \int_0^1 (1-t)x(t) dt$$

20.
$$x(1) - \int_0^1 x(t) dt$$

21.
$$\int_{-1}^{1} x(t) dt - x(0)$$

22.
$$\int_{-1}^{0} tx(t) dt + 2x(1)$$

23.
$$\int_0^1 tx(t) dt - x(-1)$$

24.
$$\int_0^1 (t^2-1)x(1-t) dt$$

Задача 4

Доказать, что следующие операторы являются линейными ограниченными, и найти их нормы. Достигается ли норма оператора на единичном шаре?

1.
$$A: D_1[0,1] \to C_{L_1[0,2]}, Ax(t) = t^2x(0)$$

2.
$$A: C[0,1] \to C_{L_1[0,1]}, Ax(t) = x(t^2)$$

3.
$$A: D_1[0,1] \to C[0,1], Ax(t) = x(t)$$

$$4.\ A:C[-1,1]\to C[0,1],\, Ax(t)=x(t)$$

5.
$$A: C[0,1] \to C_{L_1[0,1]}, Ax(t) = t^2x(t)$$

6.
$$A: C_{L_2[0,1]} \to C_{L_2[0,1]}, Ax(t) = t \int_0^1 x(\tau) d\tau$$

7.
$$A: C[0,1] \to C[0,1], Ax(t) = \int_0^t x(\tau) d\tau$$

8.
$$A: C_{L_2[0,1]} \to C[0,1], Ax(t) = t^2 \int_0^1 \tau x(\tau) d\tau$$

9.
$$A: C_{L_2[0,1]} \to C[0,1], Ax(t) = t^3 \int_0^1 x(\tau) d\tau$$

10.
$$A: C_{L_2[0,1]} \to C_{L_1[0,1]}, Ax(t) = t \int_0^1 x(\tau) d\tau$$

11.
$$A: C_{L_1[0,1]} \to C[0,1], Ax(t) = t^3 \int_0^1 x(\tau) d\tau$$

12.
$$A: C_{L_2[0,1]} \to C_{L_1[0,1]}, Ax(t) = t^2x(t)$$

13.
$$A: C[0,1] \to C_{L_1[0,1]}, Ax(t) = t^2 \int_0^1 \tau x(\tau) d\tau$$

14.
$$A: C[0,1] \to C[0,1], Ax(t) = t^2x(0)$$

15.
$$A: C[0,1] \to C_{L_1[0,1]}, Ax(t) = t \int_0^1 x(\tau^2) d\tau$$

16.
$$A: C_{L_1[0,1]} \to C_{L_1[0,1]}, Ax(t) = t \int_0^1 x(\tau) d\tau$$

17.
$$A: C[0,1] \to C[0,1], Ax(t) = x(t^2)$$

18.
$$A: C_{L_1[0,1]} \to C_{L_2[0,1]}, \, Ax(t) = t^3 \int_0^1 x(\tau) \, d\tau$$

19.
$$A: D_1[0,1] \to C_{L_1[0,2]}, Ax(t) = t \int_0^1 x(\tau^2) d\tau$$

20.
$$A: C_{L_1[0,1]} \to C_{L_2[0,1]}, Ax(t) = t \int_0^1 x(\tau) d\tau$$

21.
$$A: C_{L_1[0,2]} \to C_{L_1[0,1]}, Ax(t) = t^3 \int_0^1 x(\tau) d\tau$$

22.
$$A: D_1[0,1] \to C_{L_2[0,1]}, Ax(t) = x(t)$$

23.
$$A: C[-1,1] \to C_{L_2[0,1]}, Ax(t) = tx(t)$$

24.
$$A: C[0,1] \to D_1[0,1], Ax(t) = \int_0^t x(\tau) d\tau$$