

Tactile Sensing with a Tendon-Driven Soft Robotic Finger

Chang Cheng¹², Yadong Yan¹, Mingjun Guan¹, Jianan Zhang¹, and Yu Wang¹

School of Bio. Sci and Med. Engr, Beihang University¹

Dept. of Math. And Comp. Sci., Colorado College²

Speaker: Chang "Davidson" Cheng d cheng@coloradocollege.edu

Background

Sensory feedback in Soft Robotics

Previous work

Motivation

 What are some other ways to embed the sensors?

Proprioception Framework

© 2011 Pearson Education, Inc.

Golgi Tendon Organ: Senses load on tendon

Tendon-Driven Soft Finger

Yan et al., 2020

Palpation System

Procedure

The Finger bends to palpate the tested object

Feature Extraction

Texture Groups

Stiffness Groups

Classification Results

Four types of classifiers:

- Support Vector Machine (Linear Kernel)
- Support Vector Machine (RBF Kernel)
- K-Nearest Neighbor
- Decision Tree

Cross-Validation was used to calculate the accuracy

Post hoc Analysis

To understand what features contributed the most to the texture/stiffness recognition

Conclusion

 Novel bio-inspired mechanism to sensory feedback on soft robotic fingers

Texture & Stiffness Detection Slippage & Rolling Detection

