Solution 1

(a) $m\ddot{X}_n = S(X_{n+1} - X_n) - S(X_n - X_{n-1}).$	0.7
(b) Let $X_n = A \sin nka \cos (\omega t + \alpha)$, which has a harmonic time dependence.	
By analogy with the spring, the acceleration is $\ddot{X}_n = -\omega^2 X_n$.	
Substitute into (a): $-mA\omega^2 \sin nka = AS \{\sin (n+1)ka - 2\sin nka + \sin (n-1)ka\}$	
$= -4SA \sin nka \sin^2 ka.$	0.6
Hence $\omega^2 = (4S/m) \sin^2 \underline{ka}$.	0.2
To determine the allowed values of k , use the boundary condition $\sin (N+1) ka = \sin kL = 0$.	0.7
The allowed wave numbers are given by $kL = \pi, 2\pi, 3\pi,, N\pi$ (N in all),	0.3
and their corresponding frequencies can be computed from $\omega = \omega_0 \sin _ka$,	
in which $\omega_{\text{max}} = \omega_0 = 2(S/m)$ is the maximum allowed frequency.	0.4
(c) $\langle E(\omega) \rangle = \frac{\sum_{p=0}^{\infty} p\hbar \omega P_p(\omega)}{\sum_{p=0}^{\infty} P_p(\omega)}$	
First method: $\frac{\displaystyle\sum_{n=0}^{\infty} n\hbar \omega e^{-n\hbar \omega/k_BT}}{\displaystyle\sum_{n=0}^{\infty} e^{-n\hbar \omega/k_BT}} = k_B T^2 \frac{\partial}{\partial T} \ln \sum_{n=0}^{\infty} e^{-n\hbar \omega/k_BT}$	1.5
The sum is a geometric series and is $\{1 - e^{-\hbar\omega/k_BT}\}^{-1}$	0.5
We find $\langle E(\omega) \rangle = \frac{\hbar \omega}{e^{\hbar \omega / k_B T} - 1}$.	
Alternatively: denominator is a geometric series = $\{1 - e^{-\hbar\omega/k_BT}\}^{-1}$	(0.5)
Numerator is $k_B T^2$ (d/dT) (denominator) = $e^{-\hbar\omega/k_B T} \{1 - e^{-\hbar\omega/k_B T}\}^{-2}$ and result follows.	(1.5)

A non-calculus method: Let $D = 1 + e^{-x} + e^{-2x} + e^{-3x} +$, where $x = \hbar \omega / k_B T$. This is a geometric series and equals $D = 1/(1 - e^{-x})$. Let $N = e^{-x} + 2 e^{-2x} + 3 e^{-3x} +$ The result we want is N/D . Observe $D - 1 = e^{-x} + e^{-2x} + e^{-3x} + e^{-4x} + e^{-5x} +$ $(D - 1)e^{-x} = e^{-2x} + e^{-3x} + e^{-4x} + e^{-5x} +$ $(D - 1)e^{-2x} = e^{-3x} + e^{-4x} + e^{-5x} +$	(2.0)
Hence $N = (D - 1)D$ or $N/D = D - 1 = \frac{e^{-x}}{1 - e^{-x}} = \frac{1}{e^x - 1}$.	
(d) From part (b), the allowed k values are π/L , $2\pi/L$,, $N\pi/L$.	
Hence the spacing between allowed k values is π/L , so there are $(L/\pi)\Delta k$ allowed modes in the	1.0
wave-number interval Δk (assuming $\Delta k >> \pi/L$).	
(e) Since the allowed k are π/L ,, $N\pi/L$, there are N modes.	0.5
Follow the problem: $d\omega/dk = a\omega_0 \cos ka$ from part (a) & (b) $= \frac{1}{2}a\sqrt{\omega_{\max}^2 - \omega^2}$, $\omega_{\max} = \omega_0$. This second form is more convenient for integration. The number of modes dn in the interval $d\omega$ is	0.5
$dn = (L/\pi)\Delta k = (L/\pi) (dk/d\omega) d\omega$	0.5 for eitl
$= (L/\pi) \{ a\omega_0 \cos ka \}^{-1} d\omega$	
$= \frac{L}{\pi} \frac{2}{a} \frac{1}{\sqrt{\omega_{\text{max}}^2 - \omega^2}} d\omega$	This part is necessary for E_T below,
$= \frac{2(N+1)}{\pi} \frac{1}{\sqrt{\omega_{\max}^2 - \omega^2}} d\omega$	but not for number of modes
Total number of modes = $\int dn = \int_{0}^{\omega_{\text{max}}} \frac{2(N+1)}{\pi} \frac{d\omega}{\sqrt{\omega_{\text{max}}^2 - \omega^2}} = N + 1 \approx N \text{ for large } N.$	(0.5)
Total crystal energy from (c) and dn of part (e) is given by $E_T = \frac{2N}{\pi} \int_0^{\omega_{\text{max}}} \frac{\hbar \omega}{e^{\hbar \omega/k_B T} - 1} \frac{d\omega}{\sqrt{\omega_{\text{max}}^2 - \omega^2}}.$	0.7

(f) Observe first from the last formula that E_T increases monotonically with temperature since

$${e^{\hbar\omega/kT} - 1}^{-1}$$
 is increasing with T .

0.2

When $T \to 0$, the term – 1 in the last result may be neglected in the denominator so

0.2

$$E_{T} \approx {}_{T \to 0} \frac{2N}{\pi} \int \hbar \omega \ e^{-\hbar \omega / k_{B}T} \frac{1}{\sqrt{\omega_{\max}^{2} - \omega^{2}}} d\omega$$

0.3

$$= \frac{2N}{\hbar\pi\omega_{\text{max}}} (k_B T)^2 \int_0^\infty \frac{xe^{-x}}{\sqrt{1 - (k_B Tx/\hbar\omega_{\text{max}})^2}} dx$$

0.2

which is quadratic in T (denominator in integral is effectively unity) hence C_V is linear in T near absolute zero.

0.2

Alternatively, if the summation is retained, we have

$$E_{T} = \frac{2N}{\pi} \sum_{\omega} \frac{\hbar \omega}{e^{\hbar \omega / k_{B}T} - 1} \frac{\Delta \omega}{\sqrt{\omega_{\text{max}}^{2} - \omega^{2}}} \rightarrow_{T \to 0} \frac{2N}{\pi} \sum_{\omega} \hbar \omega e^{-\hbar \omega / k_{B}T} \frac{\Delta \omega}{\sqrt{\omega_{\text{max}}^{2} - \omega^{2}}}$$

$$= \frac{2N}{\pi} \frac{(k_{B}T)^{2}}{\hbar \omega} \sum_{y} e^{-y} y \Delta y$$

$$(0.5)$$

When $T \rightarrow \infty$, use $e^x \approx 1 + x$ in the denominator,

0.2

$$E_T \approx \sum_{T \to \infty} \frac{2N}{\pi} \int_0^{\omega_{\text{max}}} \frac{\hbar \omega}{\hbar \omega / k_B T} \frac{1}{\sqrt{\omega_{\text{max}}^2 - \omega^2}} d\omega = \frac{2N}{\pi} k_B T \frac{\pi}{2},$$

0.1

which is linear; hence $C_V \to Nk_B = R$, the universal gas constant. This is the Dulong-Petit rule.

Alternatively, if the summation is retained, write denominator as $e^{\hbar\omega/k_BT} - 1 \approx \hbar\omega/k_BT$ and

(0.2)

$$E_T \to_{T \to \infty} \frac{2N}{\pi} k_B T \sum_{\omega} \frac{\Delta \omega}{\sqrt{\omega_{\max}^2 - \omega^2}}$$
 which is linear in T , so C_V is constant.

Sketch of C_V versus T:

0.5

Answer sheet: Question 1

(a) Equation of motion of the n^{th} mass is:

$$m\ddot{X}_{n} = S(X_{n+1} - X_{n}) - S(X_{n} - X_{n-1}).$$

(b) Angular frequencies $\boldsymbol{\omega}$ of the chain's vibration modes are given by the equation:

$$\omega^2 = (4S/m)\sin^2 _ka.$$

Maximum value of ω is: $\omega_{\text{max}} = \omega_0 = 2(S/m)$

The allowed values of the wave number k are given by:

$$\pi/L$$
, $2\pi/L$, ..., $N\pi/L$.

How many such values of k are there? N

(f) The average energy per frequency mode ω of the crystal is given by:

$$\langle E(\omega) \rangle = \frac{\hbar \omega}{e^{\hbar \omega/k_B T} - 1}$$

(g) There are how many allowed modes in a wave number interval Δk ?

$$(L/\pi)\Delta k$$
.

(e) The total number of modes in the lattice is: N

Total energy $E_{\rm T}$ of crystal is given by the formula:

$$E_T = \frac{2N}{\pi} \int_0^{\omega_{\text{max}}} \frac{\hbar \omega}{e^{\hbar \omega / k_B T} - 1} \frac{d\omega}{\sqrt{\omega_{\text{max}}^2 - \omega^2}}.$$

(h) A sketch (graph) of C_V versus absolute temperature T is shown below.

For $T \ll 1$, C_V displays the following behaviour: C_V is linear in T.

As $T \to \infty$, C_V displays the following behaviour: $C_V \to Nk_B = R$, the universal gas constant.