F₁ score

Problem

In some classification experiment the confusion matrix CM was obtained, where CM[c,t] is the number of objects of class c that were classified as class t.

For each class compute *Precision*, *Recall* and F_1 -score. Also compute weighted average *Precision*, *Recall*, *macro* F_1 -score and *micro* F_1 -score for all classes, where weight is a class distribution.

Examples

		class	Precision	Recall	F₁-score
CM = 0	1	1	0.0	0.0	0.0
1	3	2	0.75	0.75	0.75

The classes are distributed as 1:4

- weighted average *Precision* = 0.6
- weighted average Recall = 0.6
- weighted *macro F*₁-score = 0.6
- weighted average *micro F*₁-score = 0.6

				class	Precision	Recall	F₁-score
	3	1	1	1	0.6	0.429	0.5
CM =	3	1	1	2	0.2	0.2	0.2
	1	3	1	3	0.2	0.333	0.25

The classes are equally distributed.

- weighted average *Precision* = 0.333
- weighted average Recall = 0.321
- weighted macro F_1 -score = 0.327
- weighted average micro F₁-score = 0.317