ASSIGNMENT NO 3

<u>NAME: DANIYA</u>

Q1: Take 50 startups of any two countries and find out which country is going to provide best profit in future.

ACCURACY:

ACCURACY

FOR STATE NEWYORK: 0.8661717426627147
FOR STATE FLORIDA: 0.8263002425652147
FOR STATE CALIFORNIA: 0.9541247922495528

PREDICTION:

```
x_pred=np.array([[61994.48,115641.28,91131.24]])
ans_pred=coun_pro(x_pred)
ans_pred
```

	country	Max_Profit	
0	FLORIDA	104445.533849	

Q2: Annual temperature between two industries is given. Predict the temperature in 2016 and 2017 using the past data of both country.

ACCURACY:

```
ind1_acc=r2_score(y1_test,y1_pred)
print(r2_score(y1_test,y1_pred))
```

0.8221433641462763

```
ind2_acc=r2_score(y2_test,y2_pred)
print(r2_score(y2_test,y2_pred))
```

0.824968369371956

PREDICTION:

GRAPH:

INDUSTRY GISTEMP

ANNUAL TEMPERATURE OF GISTEMP

INDUSTRY GCAG

ANNUAL TEMPERATURE OF GCAG

Q3: Data of global production of CO2 of a place is given between 1970s to 2010. Predict the CO2 production for the years 2011, 2012 and 2013 using the old data set.

PREDICTION:

```
In [25]: PolyReg.predict(polynom.fit_transform([[2011]]))
Out[25]: array([9758.798169])
In [26]: PolyReg.predict(polynom.fit_transform([[2012]]))
Out[26]: array([9138.26772202])
In [27]: PolyReg.predict(polynom.fit_transform([[2013]]))
Out[27]: array([9338.69438989])
```

ACCURACY:

poly_acc=r2_score(y_test,y2_pred)
print(r2_score(y_test,y2_pred))

0.9869158417219419

GRAPH:

Global CO2 PREDICTION (Test set)

Q4: Housing price according to the ID is assigned to every-house. Perform future analysis where when ID is inserted the housing price is displayed.

ACCURACY:

```
DTR_reg_acc=r2_score(y_test,DTR_y_pred)
print(r2_score(y_test,DTR_y_pred))
```

1.0

GRAPH:

PREDICTION:

DTR.predict([[2900]])

array([183972.07105667])

Q5: Data of monthly experience and income distribution of different employs is given. Perform regression.

ACCURACY:

```
poly_reg_acc=r2_score(y_test,y_pred)
print(r2_score(y_test,y_pred))
```

0.9109767354422075

GRAPH:

Monthly_Experience_vs_Income.csv (Training set)

