ANALYSIS-I

Chaitanya G K

Indian Statistical Institute, Bangalore

Recall

▶ Definition. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers.

An expression of the form $\sum_{n=1}^{\infty} a_n$ is called an infinite series.

For each $n \in \mathbb{N}$, the finite sum $s_n = \sum_{k=1}^n a_k$ is called the n^{th} partial sum of $\sum_{n=1}^{\infty} a_n$.

The infinite series $\sum_{n=1}^{\infty} a_n$ is said to be convergent if $\{s_n\}_{n\in\mathbb{N}}$ is convergent.

In such a case, the limit $s:=\lim_{n\to\infty}s_n$ is called the sum of the series, and we denote this fact by the symbol $\sum_{n=1}^{\infty}a_n=s$.

The infinite series $\sum_{n=1}^{\infty} a_n$ is said to be divergent if $\{s_n\}_{n\in\mathbb{N}}$ is divergent.

Recall

▶ Definition. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers.

An expression of the form $\sum_{n=1}^{\infty} a_n$ is called an infinite series.

For each $n \in \mathbb{N}$, the finite sum $s_n = \sum_{k=1}^n a_k$ is called the n^{th} partial sum of $\sum_{n=1}^{\infty} a_n$.

The infinite series $\sum_{n=1}^{\infty} a_n$ is said to be convergent if $\{s_n\}_{n\in\mathbb{N}}$ is convergent.

In such a case, the limit $s:=\lim_{n\to\infty}s_n$ is called the sum of the series, and we denote this fact by the symbol $\sum_{n=1}^{\infty}a_n=s$.

The infinite series $\sum_{n=1}^{\infty} a_n$ is said to be divergent if $\{s_n\}_{n\in\mathbb{N}}$ is divergent.

Theorem (Cauchy criterion). An infinite series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if for every $\epsilon > 0$ there exists $K \in \mathbb{N}$ such that $|a_{n+1} + a_{n+2} + \cdots + a_m| < \epsilon$, $\forall m > n \geq K$.

▶ Theorem (n^{th} term test). If a series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

- ► Theorem (n^{th} term test). If a series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.
- ▶ Theorem. A series $\sum_{n=1}^{\infty} a_n$ of non-negative reals is convergent if and only if its sequence of partial sums $\{s_n\}_{n\in\mathbb{N}}$ is bounded above. In this case $\sum_{n=1}^{\infty} a_n = \sup\{s_n : n \in \mathbb{N}\}$.

- ► Theorem (n^{th} term test). If a series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.
- ▶ Theorem. A series $\sum_{n=1}^{\infty} a_n$ of non-negative reals is convergent if and only if its sequence of partial sums $\{s_n\}_{n\in\mathbb{N}}$ is bounded above. In this case $\sum_{n=1}^{\infty} a_n = \sup\{s_n : n \in \mathbb{N}\}$.
- ▶ Theorem (Comparison test). Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be real sequences, and suppose that there exists $N\in\mathbb{N}$ such that

$$0 \le a_n \le b_n, \ \forall n \ge N.$$

- (i) If $\sum_{n=1}^{\infty} b_n$ is convergent, then so is $\sum_{n=1}^{\infty} a_n$.
- (ii) If $\sum_{n=1}^{\infty} a_n$ is divergent, then so is $\sum_{n=1}^{\infty} b_n$.

- ► Theorem (n^{th} term test). If a series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.
- ▶ Theorem. A series $\sum_{n=1}^{\infty} a_n$ of non-negative reals is convergent if and only if its sequence of partial sums $\{s_n\}_{n\in\mathbb{N}}$ is bounded above. In this case $\sum_{n=1}^{\infty} a_n = \sup\{s_n : n \in \mathbb{N}\}$.
- ▶ Theorem (Comparison test). Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be real sequences, and suppose that there exists $N\in\mathbb{N}$ such that

$$0 \le a_n \le b_n, \ \forall n \ge N.$$

- (i) If $\sum_{n=1}^{\infty} b_n$ is convergent, then so is $\sum_{n=1}^{\infty} a_n$.
- (ii) If $\sum_{n=1}^{\infty} a_n$ is divergent, then so is $\sum_{n=1}^{\infty} b_n$.
- ▶ Theorem 6 (Limit comparison test): Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be strictly positive sequences.
 - (i) If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ and c > 0, then $\sum_{n=1}^{\infty} b_n$ is convergent if and only if $\sum_{n=1}^{\infty} a_n$ is convergent.
 - (ii) If $\lim_{n\to\infty} \frac{\overline{a_n}}{b_n} = 0$ and $\sum_{n=1}^{\infty} b_n$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
 - (iii) If $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$ and $\sum_{n=1}^\infty b_n$ is divergent, then $\sum_{n=1}^\infty a_n$ is divergent.

We have seen that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent whereas $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

- We have seen that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent whereas $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- ▶ Thus, a series $\sum_{n=1}^{\infty} a_n$ may be convergent, but the series $\sum_{n=1}^{\infty} |a_n|$ obtained by taking the absolute values of the terms may be divergent.

- We have seen that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent whereas $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- ▶ Thus, a series $\sum_{n=1}^{\infty} a_n$ may be convergent, but the series $\sum_{n=1}^{\infty} |a_n|$ obtained by taking the absolute values of the terms may be divergent.
- ▶ This observation leads to the following definition.

- We have seen that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent whereas $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- ▶ Thus, a series $\sum_{n=1}^{\infty} a_n$ may be convergent, but the series $\sum_{n=1}^{\infty} |a_n|$ obtained by taking the absolute values of the terms may be divergent.
- ▶ This observation leads to the following definition.
- ▶ Definition. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. We say that $\sum_{n=1}^{\infty} a_n$ is
 - (i) absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ is convergent;

- We have seen that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent whereas $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- ▶ Thus, a series $\sum_{n=1}^{\infty} a_n$ may be convergent, but the series $\sum_{n=1}^{\infty} |a_n|$ obtained by taking the absolute values of the terms may be divergent.
- ▶ This observation leads to the following definition.
- ▶ Definition. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. We say that $\sum_{n=1}^{\infty} a_n$ is
 - (i) absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ is convergent;
 - (ii) conditionally convergent if it is convergent, but not absolutely convergent.

- We have seen that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent whereas $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- ▶ Thus, a series $\sum_{n=1}^{\infty} a_n$ may be convergent, but the series $\sum_{n=1}^{\infty} |a_n|$ obtained by taking the absolute values of the terms may be divergent.
- ▶ This observation leads to the following definition.
- ▶ Definition. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. We say that $\sum_{n=1}^{\infty} a_n$ is
 - (i) absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ is convergent;
 - (ii) conditionally convergent if it is convergent, but not absolutely convergent.
- Examples:
 - (i) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ is absolutely convergent.

- We have seen that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent whereas $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- ▶ Thus, a series $\sum_{n=1}^{\infty} a_n$ may be convergent, but the series $\sum_{n=1}^{\infty} |a_n|$ obtained by taking the absolute values of the terms may be divergent.
- ▶ This observation leads to the following definition.
- ▶ Definition. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. We say that $\sum_{n=1}^{\infty} a_n$ is
 - (i) absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ is convergent;
 - (ii) conditionally convergent if it is convergent, but not absolutely convergent.
- Examples:
 - (i) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ is absolutely convergent.
 - (ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is conditionally convergent.

- We have seen that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent whereas $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- ▶ Thus, a series $\sum_{n=1}^{\infty} a_n$ may be convergent, but the series $\sum_{n=1}^{\infty} |a_n|$ obtained by taking the absolute values of the terms may be divergent.
- ▶ This observation leads to the following definition.
- ▶ Definition. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. We say that $\sum_{n=1}^{\infty} a_n$ is
 - (i) absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ is convergent;
 - (ii) conditionally convergent if it is convergent, but not absolutely convergent.
- Examples:
 - (i) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ is absolutely convergent.
 - (ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is conditionally convergent.
 - (iii) $\sum_{n=1}^{\infty} (-1)^{n+1}$ is neither absolutely convergent nor conditionally convergent.

► Immediate observation: A series of non-negative reals is convergent if and only if it is absolutely convergent.

- ► Immediate observation: A series of non-negative reals is convergent if and only if it is absolutely convergent.
- ▶ Theorem. Every absolutely convergent series is convergent.

- ► Immediate observation: A series of non-negative reals is convergent if and only if it is absolutely convergent.
- ▶ Theorem. Every absolutely convergent series is convergent.

Proof: Let $\sum_{n=1}^{\infty} a_n$ be absolutely convergent. Them, by definition, $\sum_{n=1}^{\infty} |a_n|$ is convergent.

- ► Immediate observation: A series of non-negative reals is convergent if and only if it is absolutely convergent.
- ▶ Theorem. Every absolutely convergent series is convergent.

Proof: Let $\sum_{n=1}^{\infty} a_n$ be absolutely convergent. Them, by definition, $\sum_{n=1}^{\infty} |a_n|$ is convergent. To prove the convergence of $\sum_{n=1}^{\infty} a_n$, we make use of Cauchy criterion.

- ▶ Immediate observation: A series of non-negative reals is convergent if and only if it is absolutely convergent.
- ▶ Theorem. Every absolutely convergent series is convergent.

Them, by definition, $\sum_{n=1}^{\infty} |a_n|$ is convergent.

To prove the convergence of $\sum_{n=1}^{\infty} a_n$, we make use of Cauchy criterion.

Let $\epsilon > 0$ be given.

- ▶ Immediate observation: A series of non-negative reals is convergent if and only if it is absolutely convergent.
- ▶ Theorem. Every absolutely convergent series is convergent.

Them, by definition, $\sum_{n=1}^{\infty} |a_n|$ is convergent.

To prove the convergence of $\sum_{n=1}^{\infty} a_n$, we make use of Cauchy criterion.

Let $\epsilon > 0$ be given.

Since $\sum_{n=1}^{\infty} |a_n|$ is convergent, by Cauchy criterion, there exists $K \in \mathbb{N}$ such that

$$||a_{n+1}| + |a_{n+2}| + \cdots + |a_m|| < \epsilon, \quad \forall m > n \ge K.$$

- ▶ Immediate observation: A series of non-negative reals is convergent if and only if it is absolutely convergent.
- ▶ Theorem. Every absolutely convergent series is convergent.

Them, by definition, $\sum_{n=1}^{\infty} |a_n|$ is convergent.

To prove the convergence of $\sum_{n=1}^{\infty} a_n$, we make use of Cauchy criterion.

Let $\epsilon > 0$ be given.

Since $\sum_{n=1}^{\infty} |a_n|$ is convergent, by Cauchy criterion, there exists $K \in \mathbb{N}$ such that

$$||a_{n+1}| + |a_{n+2}| + \cdots + |a_m|| < \epsilon, \quad \forall m > n \ge K.$$

Then for all $m > n \le K$, we have

$$|a_{n+1} + a_{n+2} + \cdots + a_m| \le |a_{n+1}| + |a_{n+2}| + \cdots + |a_m|$$

- ► Immediate observation: A series of non-negative reals is convergent if and only if it is absolutely convergent.
- ▶ Theorem. Every absolutely convergent series is convergent.

Them, by definition, $\sum_{n=1}^{\infty} |a_n|$ is convergent.

To prove the convergence of $\sum_{n=1}^{\infty} a_n$, we make use of Cauchy criterion.

Let $\epsilon > 0$ be given.

Since $\sum_{n=1}^{\infty} |a_n|$ is convergent, by Cauchy criterion, there exists $K \in \mathbb{N}$ such that

$$||a_{n+1}| + |a_{n+2}| + \cdots + |a_m|| < \epsilon, \quad \forall m > n \ge K.$$

Then for all $m > n \le K$, we have

$$|a_{n+1} + a_{n+2} + \dots + a_m| \le |a_{n+1}| + |a_{n+2}| + \dots + |a_m|$$

= $||a_{n+1}| + |a_{n+2}| + \dots + |a_m|| < \epsilon$.

- ► Immediate observation: A series of non-negative reals is convergent if and only if it is absolutely convergent.
- ▶ Theorem. Every absolutely convergent series is convergent.

Them, by definition, $\sum_{n=1}^{\infty} |a_n|$ is convergent.

To prove the convergence of $\sum_{n=1}^{\infty} a_n$, we make use of Cauchy criterion.

Let $\epsilon > 0$ be given.

Since $\sum_{n=1}^{\infty} |a_n|$ is convergent, by Cauchy criterion, there exists $K \in \mathbb{N}$ such that

$$||a_{n+1}| + |a_{n+2}| + \cdots + |a_m|| < \epsilon, \quad \forall m > n \ge K.$$

Then for all $m > n \le K$, we have

$$|a_{n+1} + a_{n+2} + \dots + a_m| \le |a_{n+1}| + |a_{n+2}| + \dots + |a_m|$$

= $||a_{n+1}| + |a_{n+2}| + \dots + |a_m|| < \epsilon$.

Since $\epsilon > 0$ is arbitrary, Cauchy criterion implies that $\sum_{n=1}^{\infty} a_n$ is convergent.

- ▶ Theorem (Cauchy's Root Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a real sequence.
 - (i) If there exist $r \in \mathbb{R}$ with r < 1 and $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \le r, \ \forall n \ge K, \tag{1}$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

- ▶ Theorem (Cauchy's Root Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a real sequence.
 - (i) If there exist $r \in \mathbb{R}$ with r < 1 and $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \le r, \ \forall n \ge K, \tag{1}$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \ge 1, \ \forall n \ge K, \tag{2}$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

- ▶ Theorem (Cauchy's Root Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a real sequence.
 - (i) If there exist $r \in \mathbb{R}$ with r < 1 and $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \le r, \ \forall n \ge K, \tag{1}$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \ge 1, \ \forall n \ge K, \tag{2}$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (1) holds, we have $|a_n| \le r^n$, $\forall n \ge K$.

- ▶ Theorem (Cauchy's Root Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a real sequence.
 - (i) If there exist $r \in \mathbb{R}$ with r < 1 and $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \le r, \ \forall n \ge K, \tag{1}$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \ge 1, \ \forall n \ge K, \tag{2}$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (1) holds, we have $|a_n| \le r^n$, $\forall n \ge K$. Now, since r < 1, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent.

- ► Theorem (Cauchy's Root Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a real sequence.
 - (i) If there exist $r \in \mathbb{R}$ with r < 1 and $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \le r, \ \forall n \ge K, \tag{1}$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \ge 1, \ \forall n \ge K, \tag{2}$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (1) holds, we have $|a_n| \le r^n$, $\forall n \ge K$. Now, since r < 1, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent. Therefore, by comparison test, the series $\sum_{n=1}^{\infty} |a_n|$ is convergent.

- ► Theorem (Cauchy's Root Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a real sequence.
 - (i) If there exist $r \in \mathbb{R}$ with r < 1 and $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \le r, \ \forall n \ge K, \tag{1}$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \ge 1, \ \forall n \ge K, \tag{2}$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (1) holds, we have $|a_n| \le r^n$, $\forall n \ge K$. Now, since r < 1, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent. Therefore, by comparison test, the series $\sum_{n=1}^{\infty} |a_n|$ is convergent.

(ii) Since (2) holds, we have $|a_n| \ge 1^n = 1$, $\forall n \ge K$.

- ► Theorem (Cauchy's Root Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a real sequence.
 - (i) If there exist $r \in \mathbb{R}$ with r < 1 and $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \le r, \ \forall n \ge K, \tag{1}$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \ge 1, \ \forall n \ge K, \tag{2}$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (1) holds, we have $|a_n| \le r^n$, $\forall n \ge K$. Now, since r < 1, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent. Therefore, by comparison test, the series $\sum_{n=1}^{\infty} |a_n|$ is convergent.

(ii) Since (2) holds, we have $|a_n| \ge 1^n = 1$, $\forall n \ge K$. This implies that $a_n \to 0$ as $n \to \infty$.

- ▶ Theorem (Cauchy's Root Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a real sequence.
 - (i) If there exist $r \in \mathbb{R}$ with r < 1 and $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \le r, \ \forall n \ge K, \tag{1}$$

then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) If there exists $K \in \mathbb{N}$ such that

$$|a_n|^{\frac{1}{n}} \ge 1, \ \forall n \ge K, \tag{2}$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (1) holds, we have $|a_n| \le r^n$, $\forall n \ge K$.

Now, since r < 1, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent.

Therefore, by comparison test, the series $\sum_{n=1}^{\infty} |a_n|$ is convergent.

(ii) Since (2) holds, we have $|a_n| \ge 1^n = 1$, $\forall n > K$.

This implies that $a_n \to 0$ as $n \to \infty$.

Therefore, by n^{th} term test, the series $\sum_{n=1}^{\infty} a_n$ is divergent.

$$r := \lim_{n \to \infty} |a_n|^{\frac{1}{n}} \tag{3}$$

exists in \mathbb{R} .

(i) If r < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

$$r := \lim_{n \to \infty} |a_n|^{\frac{1}{n}} \tag{3}$$

exists in \mathbb{R} .

- (i) If r < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. (ii) If r > 1, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

$$r := \lim_{n \to \infty} |a_n|^{\frac{1}{n}} \tag{3}$$

exists in \mathbb{R} .

- (i) If r < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. (ii) If r > 1, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since r < 1, we can choose $s \in \mathbb{R}$ such that r < s < 1.

$$r := \lim_{n \to \infty} |a_n|^{\frac{1}{n}} \tag{3}$$

exists in \mathbb{R} .

- (i) If r < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. (ii) If r > 1, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since r < 1, we can choose $s \in \mathbb{R}$ such that r < s < 1.

Since (3) holds, there exists $K \in \mathbb{N}$ such that

$$\left|\left|a_{n}\right|^{\frac{1}{n}}-r\right|< s-r, \ \forall n\geq K.$$

Corollary (Cauchy's Root Test-another version). Let $\{a_n\}_{n\in\mathbb{N}}$ be a real sequence and suppose that

$$r := \lim_{n \to \infty} |a_n|^{\frac{1}{n}} \tag{3}$$

exists in \mathbb{R} .

- (i) If r < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. (ii) If r > 1, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since r < 1, we can choose $s \in \mathbb{R}$ such that r < s < 1.

Since (3) holds, there exists $K \in \mathbb{N}$ such that

$$\left|\left|a_{n}\right|^{\frac{1}{n}}-r\right|< s-r, \ \forall n\geq K.$$

$$\implies |a_n|^{\frac{1}{n}} - r < s - r, \ \forall n \ge K.$$

Corollary (Cauchy's Root Test-another version). Let $\{a_n\}_{n\in\mathbb{N}}$ be a real sequence and suppose that

$$r := \lim_{n \to \infty} |a_n|^{\frac{1}{n}} \tag{3}$$

exists in \mathbb{R} .

- (i) If r < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. (ii) If r > 1, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since r < 1, we can choose $s \in \mathbb{R}$ such that r < s < 1.

Since (3) holds, there exists $K \in \mathbb{N}$ such that

$$\left|\left|a_{n}\right|^{\frac{1}{n}}-r\right|< s-r, \ \forall n\geq K.$$

$$\implies |a_n|^{\frac{1}{n}} - r < s - r, \ \forall n \ge K.$$

$$\implies |a_n|^{\frac{1}{n}} < s, \ \forall n \ge K.$$

Corollary (Cauchy's Root Test-another version). Let $\{a_n\}_{n\in\mathbb{N}}$ be a real sequence and suppose that

$$r := \lim_{n \to \infty} |a_n|^{\frac{1}{n}} \tag{3}$$

exists in \mathbb{R} .

- (i) If r < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. (ii) If r > 1, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since r < 1, we can choose $s \in \mathbb{R}$ such that r < s < 1.

Since (3) holds, there exists $K \in \mathbb{N}$ such that

$$\left|\left|a_{n}\right|^{\frac{1}{n}}-r\right|< s-r, \ \forall n\geq K.$$

$$\implies |a_n|^{\frac{1}{n}} - r < s - r, \ \forall n \ge K.$$

$$\implies |a_n|^{\frac{1}{n}} < s, \ \forall n > K.$$

Since s < 1, by (i) of the previous theorem, it follows that $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

(ii) Since r > 1, we can choose $s \in \mathbb{R}$ such that r > s > 1.

(ii) Since r > 1, we can choose $s \in \mathbb{R}$ such that r > s > 1. Since (3) holds, there exists $K \in \mathbb{N}$ such that

$$\left| |a_n|^{\frac{1}{n}} - r \right| < r - s, \ \forall n \geq K.$$

(ii) Since r > 1, we can choose $s \in \mathbb{R}$ such that r > s > 1. Since (3) holds, there exists $K \in \mathbb{N}$ such that

$$\left| |a_n|^{\frac{1}{n}} - r \right| < r - s, \ \forall n \geq K.$$

$$\implies -(r-s)<|a_n|^{\frac{1}{n}}-r, \ \forall n\geq K.$$

(ii) Since r > 1, we can choose $s \in \mathbb{R}$ such that r > s > 1. Since (3) holds, there exists $K \in \mathbb{N}$ such that

$$\left| |a_n|^{\frac{1}{n}} - r \right| < r - s, \ \forall n \ge K.$$

$$\implies -(r-s) < |a_n|^{\frac{1}{n}} - r, \ \forall n \ge K.$$

$$\implies s < |a_n|^{\frac{1}{n}}, \ \forall n \ge K.$$

$$\implies s < |a_n|^{\frac{1}{n}}, \ \forall n \geq K.$$

(ii) Since r>1, we can choose $s\in\mathbb{R}$ such that r>s>1. Since (3) holds, there exists $K\in\mathbb{N}$ such that

$$\left| |a_n|^{\frac{1}{n}} - r \right| < r - s, \ \forall n \ge K.$$

$$\implies -(r-s) < |a_n|^{\frac{1}{n}} - r, \ \forall n \geq K.$$

$$\implies s < |a_n|^{\frac{1}{n}}, \ \forall n \geq K.$$

Since s > 1, by (ii) of the previous theorem, we get that $\sum_{n=1}^{\infty} a_n$ is divergent.

- ► Example: Test the absolute convergence of the following series.
 - (i) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ (ii) $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$

- ► Example: Test the absolute convergence of the following series.
 - (i) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ (ii) $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$
 - Solution: (i) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges absolutely by root test,

- ► Example: Test the absolute convergence of the following series.
 - (i) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ (ii) $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$
 - Solution: (i) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges absolutely by root test, because $\sqrt[n]{\frac{n^2}{2^n}} = \frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n}} = \frac{(\sqrt[n]{n})^2}{2} \to \frac{1^2}{2} = \frac{1}{2} < 1$.

- ► Example: Test the absolute convergence of the following series.
 - (i) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ (ii) $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$
 - Solution: (i) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges absolutely by root test, because $\sqrt[n]{\frac{n^2}{2^n}} = \frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n}} = \frac{(\sqrt[n]{n})^2}{2} \to \frac{1^2}{2} = \frac{1}{2} < 1$.
 - (ii) $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$ is divergent by root test,

(i)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
 (ii) $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$

Solution: (i) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges absolutely by root test, because $\sqrt[n]{\frac{n^2}{2^n}} = \frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n}} = \frac{(\sqrt[n]{n})^2}{2} \to \frac{1^2}{2} = \frac{1}{2} < 1$.

(ii)
$$\sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$$
 is divergent by root test, because $\sqrt[n]{\left|\frac{(-3)^n}{n^{2021}}\right|} = \sqrt[n]{\frac{3^n}{n^{2021}}} = \frac{\sqrt[n]{3^n}}{\sqrt[n]{n^{2021}}} = \frac{3}{(\sqrt[n]{n})^{2021}} \to \frac{3}{1^{2021}} = 3 > 1.$

ightharpoonup Remark: The test is inconclusive if r=1.

(i)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
 (ii) $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$

Solution: (i) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges absolutely by root test, because $\sqrt[n]{\frac{n^2}{2^n}} = \frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n}} = \frac{(\sqrt[n]{n})^2}{2} \to \frac{1^2}{2} = \frac{1}{2} < 1$.

- (ii) $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$ is divergent by root test, because $\sqrt[n]{\left|\frac{(-3)^n}{n^{2021}}\right|} = \sqrt[n]{\frac{3^n}{n^{2021}}} = \frac{\sqrt[n]{3^n}}{\sqrt[n]{n^{2021}}} = \frac{3}{(\sqrt[n]{n})^{2021}} \to \frac{3}{1^{2021}} = 3 > 1.$
- ightharpoonup Remark: The test is inconclusive if r=1.

For
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
: $\sqrt[n]{\frac{1}{n}} = \frac{1}{\sqrt[n]{n}} \to \frac{1}{1} = 1$

(i)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
 (ii) $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$

Solution: (i) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges absolutely by root test, because $\sqrt[n]{\frac{n^2}{2^n}} = \frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n}} = \frac{(\sqrt[n]{n})^2}{2} \to \frac{1^2}{2} = \frac{1}{2} < 1$.

- (ii) $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^{2021}}$ is divergent by root test, because $\sqrt[n]{\left|\frac{(-3)^n}{n^{2021}}\right|} = \sqrt[n]{\frac{3^n}{n^{2021}}} = \frac{\sqrt[n]{3^n}}{\sqrt[n]{n^{2021}}} = \frac{3}{(\sqrt[n]{n})^{2021}} \to \frac{3}{1^{2021}} = 3 > 1.$
- **Remark**: The test is inconclusive if r = 1.

For
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
: $\sqrt[n]{\frac{1}{n}} = \frac{1}{\sqrt[n]{n}} \to \frac{1}{1} = 1$

For
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
: $\sqrt[n]{\frac{1}{n^2}} = \frac{1}{\sqrt[n]{n^2}} = \frac{1}{(\sqrt[n]{n})^2} \to \frac{1}{1^2} = 1$

- ► Theorem (D'Alembert Ratio Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of nonzero real numbers.
 - (i) If there exist $r \in \mathbb{R}$ with 0 < r < 1 and $K \in \mathbb{N}$ such that

$$\left|\frac{a_{n+1}}{a_n}\right| \le r, \ \forall n \ge K,\tag{4}$$

- ▶ Theorem (D'Alembert Ratio Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of nonzero real numbers.
 - (i) If there exist $r \in \mathbb{R}$ with 0 < r < 1 and $K \in \mathbb{N}$ such that

$$\left|\frac{a_{n+1}}{a_n}\right| \le r, \ \forall n \ge K,\tag{4}$$

(ii) If there exists $K \in \mathbb{N}$ such that

$$\left|\frac{a_{n+1}}{a_n}\right| \ge 1, \ \forall n \ge K,\tag{5}$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

- ▶ Theorem (D'Alembert Ratio Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of nonzero real numbers.
 - (i) If there exist $r \in \mathbb{R}$ with 0 < r < 1 and $K \in \mathbb{N}$ such that

$$\left|\frac{a_{n+1}}{a_n}\right| \le r, \ \forall n \ge K,\tag{4}$$

(ii) If there exists $K \in \mathbb{N}$ such that

$$\left|\frac{a_{n+1}}{a_n}\right| \ge 1, \ \forall n \ge K,\tag{5}$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (4) holds, we have $|a_{n+1}| \le r|a_n|, \ \forall n \ge K$.

- ► Theorem (D'Alembert Ratio Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of nonzero real numbers.
 - (i) If there exist $r \in \mathbb{R}$ with 0 < r < 1 and $K \in \mathbb{N}$ such that

$$\left|\frac{a_{n+1}}{a_n}\right| \le r, \ \forall n \ge K,\tag{4}$$

(ii) If there exists $K \in \mathbb{N}$ such that

$$\left|\frac{a_{n+1}}{a_n}\right| \ge 1, \ \forall n \ge K,\tag{5}$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (4) holds, we have $|a_{n+1}| \le r|a_n|, \ \forall n \ge K$.

$$\implies |a_{n+K}| \le |a_K| r^n = \frac{|a_K|}{r^K} r^{n+K}, \ \forall n \in \mathbb{N}.$$

- ► Theorem (D'Alembert Ratio Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of nonzero real numbers.
 - (i) If there exist $r \in \mathbb{R}$ with 0 < r < 1 and $K \in \mathbb{N}$ such that

$$\left|\frac{a_{n+1}}{a_n}\right| \le r, \ \forall n \ge K,\tag{4}$$

(ii) If there exists $K \in \mathbb{N}$ such that

$$\left|\frac{a_{n+1}}{a_n}\right| \ge 1, \ \forall n \ge K,\tag{5}$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (4) holds, we have $|a_{n+1}| \le r|a_n|, \ \forall n \ge K$.

$$\implies |a_{n+K}| \le |a_K| r^n = \frac{|a_K|}{r^K} r^{n+K}, \ \forall n \in \mathbb{N}.$$

$$\implies |a_n| \le \frac{|a_K|}{r^K} r^n, \ \forall n \ge K + 1.$$

- ▶ Theorem (D'Alembert Ratio Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of nonzero real numbers.
 - (i) If there exist $r \in \mathbb{R}$ with 0 < r < 1 and $K \in \mathbb{N}$ such that

$$\left|\frac{a_{n+1}}{a_n}\right| \le r, \ \forall n \ge K,\tag{4}$$

(ii) If there exists $K \in \mathbb{N}$ such that

$$\left|\frac{a_{n+1}}{a_n}\right| \ge 1, \ \forall n \ge K,\tag{5}$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (4) holds, we have $|a_{n+1}| \le r|a_n|, \ \forall n \ge K$.

$$\implies |a_{n+K}| \le |a_K| r^n = \frac{|a_K|}{r^K} r^{n+K}, \ \forall n \in \mathbb{N}.$$

$$\implies |a_n| \le \frac{|a_K|}{r^K} r^n, \ \forall n \ge K+1.$$

Now, since r < 1, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent.

- ▶ Theorem (D'Alembert Ratio Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of nonzero real numbers.
 - (i) If there exist $r \in \mathbb{R}$ with 0 < r < 1 and $K \in \mathbb{N}$ such that

$$\left|\frac{a_{n+1}}{a_n}\right| \le r, \ \forall n \ge K,\tag{4}$$

(ii) If there exists $K \in \mathbb{N}$ such that

$$\left|\frac{a_{n+1}}{a_n}\right| \ge 1, \ \forall n \ge K,\tag{5}$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (4) holds, we have $|a_{n+1}| \le r|a_n|, \ \forall n \ge K$.

$$\implies |a_{n+K}| \le |a_K| r^n = \frac{|a_K|}{r^K} r^{n+K}, \ \forall n \in \mathbb{N}.$$

$$\implies |a_n| \le \frac{|a_K|}{r^K} r^n, \ \forall n \ge K+1.$$

Now, since r < 1, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent. This implies that the series $\sum_{n=1}^{\infty} \frac{|a_K|}{r^K} r^n$ is convergent.

- ▶ Theorem (D'Alembert Ratio Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of nonzero real numbers.
 - (i) If there exist $r \in \mathbb{R}$ with 0 < r < 1 and $K \in \mathbb{N}$ such that

$$\left|\frac{a_{n+1}}{a_n}\right| \le r, \ \forall n \ge K,\tag{4}$$

(ii) If there exists $K \in \mathbb{N}$ such that

$$\left|\frac{a_{n+1}}{a_n}\right| \ge 1, \ \forall n \ge K,\tag{5}$$

then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: (i) Since (4) holds, we have $|a_{n+1}| \le r|a_n|, \ \forall n \ge K$.

$$\implies |a_{n+K}| \leq |a_K| r^n = \frac{|a_K|}{r^K} r^{n+K}, \ \forall n \in \mathbb{N}.$$

$$\implies |a_n| \leq \frac{|a_K|}{rK} r^n, \ \forall n \geq K+1.$$

Now, since r < 1, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent.

This implies that the series $\sum_{n=1}^{\infty} \frac{|a_K|}{r^K} r^n$ is convergent.

Therefore, by comparison test, $\sum_{n=1}^{\infty} |a_n|$ is convergent.

$$\implies |a_{n+K}| \ge |a_K|, \ \forall n \in \mathbb{N}.$$

- ▶ (ii) Since (5) holds, we have $|a_{n+1}| \ge |a_n|$, $\forall n \ge K$.
 - $\implies |a_{n+K}| \ge |a_K|, \ \forall n \in \mathbb{N}.$
 - $\implies |a_n| \ge |a_K|, \ \forall n \ge K+1.$

$$\implies |a_{n+K}| \ge |a_K|, \ \forall n \in \mathbb{N}.$$
$$\implies |a_n| \ge |a_K|, \ \forall n \ge K+1.$$

This implies that $a_n \to 0$ as $n \to \infty$, since $|a_K| > 0$.

$$\implies |a_{n+K}| \ge |a_K|, \ \forall n \in \mathbb{N}.$$
$$\implies |a_n| \ge |a_K|, \ \forall n \ge K+1.$$

This implies that $a_n \to 0$ as $n \to \infty$, since $|a_K| > 0$. Therefore, by n^{th} term test, the series $\sum_{n=1}^{\infty} a_n$ is divergent.

$$\implies |a_{n+K}| \ge |a_K|, \ \forall n \in \mathbb{N}.$$
$$\implies |a_n| \ge |a_K|, \ \forall n \ge K + 1.$$

This implies that $a_n \to 0$ as $n \to \infty$, since $|a_K| > 0$. Therefore, by n^{th} term test, the series $\sum_{n=1}^{\infty} a_n$ is divergent.

▶ Corollary (D'Alembert Ratio Test–another version). Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of nonzero real numbers and suppose that

$$r := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \tag{6}$$

exists in \mathbb{R} .

(i) If r < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

ightharpoonup (ii) Since (5) holds, we have $|a_{n+1}| \geq |a_n|, \ \forall n \geq K$.

$$\implies |a_{n+K}| \ge |a_K|, \ \forall n \in \mathbb{N}.$$
$$\implies |a_n| \ge |a_K|, \ \forall n \ge K + 1.$$

This implies that $a_n \to 0$ as $n \to \infty$, since $|a_K| > 0$. Therefore, by n^{th} term test, the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Corollary (D'Alembert Ratio Test-another version). Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of nonzero real numbers and suppose that

$$r := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \tag{6}$$

exists in \mathbb{R} .

- (i) If r < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. (ii) If r > 1, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

ightharpoonup (ii) Since (5) holds, we have $|a_{n+1}| \geq |a_n|, \ \forall n \geq K$.

$$\implies |a_{n+K}| \ge |a_K|, \ \forall n \in \mathbb{N}.$$
$$\implies |a_n| \ge |a_K|, \ \forall n \ge K + 1.$$

This implies that $a_n \to 0$ as $n \to \infty$, since $|a_K| > 0$. Therefore, by n^{th} term test, the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Corollary (D'Alembert Ratio Test-another version). Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of nonzero real numbers and suppose that

$$r := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \tag{6}$$

exists in \mathbb{R} .

- (i) If r < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. (ii) If r > 1, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof: Exercise.

- ► Example: Test the absolute convergence of the following series.
 - (i) $\sum_{n=1}^{\infty} \frac{2^n+7}{5^n}$ (ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$

(i)
$$\sum_{n=1}^{\infty} \frac{2^n + 7}{5^n}$$
 (ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$

Solution: (i) $\sum_{n=1}^{\infty} \frac{2^n+7}{5^n}$ converges absolutely by ratio test, because

(i)
$$\sum_{n=1}^{\infty} \frac{2^n+7}{5^n}$$
 (ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$

Solution: (i) $\sum_{n=1}^{\infty} \frac{2^n+7}{5^n}$ converges absolutely by ratio test, because

$$\frac{\frac{2^{n+1}+7}{5^{n+1}}}{\frac{2^n+7}{5^n}} = \frac{1}{5} \cdot \frac{2^{n+1}+7}{2^n+7} = \frac{1}{5} \cdot \frac{2+\frac{7}{2^n}}{1+\frac{7}{2^n}} \to \frac{1}{5} \cdot \frac{2}{1} = \frac{2}{5} < 1.$$

(ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$ is divergent by ratio test, because

(i)
$$\sum_{n=1}^{\infty} \frac{2^n+7}{5^n}$$
 (ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$

Solution: (i) $\sum_{n=1}^{\infty} \frac{2^n+7}{5^n}$ converges absolutely by ratio test, because

$$\frac{\frac{2^{n+1}+7}{5^{n+1}}}{\frac{2^n+7}{5^n}} = \frac{1}{5} \cdot \frac{2^{n+1}+7}{2^n+7} = \frac{1}{5} \cdot \frac{2+\frac{7}{2^n}}{1+\frac{7}{2^n}} \to \frac{1}{5} \cdot \frac{2}{1} = \frac{2}{5} < 1.$$

(ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$ is divergent by ratio test, because

$$\frac{\frac{(2n+2)!}{(n+1)!(n+1)!}}{\frac{(2n)!}{n!n!}} = \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = \frac{4n+2}{n+1} = \frac{4+\frac{2}{n}}{1+\frac{1}{n}} \to 4 > 1.$$

(i)
$$\sum_{n=1}^{\infty} \frac{2^n+7}{5^n}$$
 (ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$

Solution: (i) $\sum_{n=1}^{\infty} \frac{2^n+7}{5^n}$ converges absolutely by ratio test, because

$$\frac{\frac{2^{n+1}+7}{5^{n+1}}}{\frac{2^n+7}{5^n}} = \frac{1}{5} \cdot \frac{2^{n+1}+7}{2^n+7} = \frac{1}{5} \cdot \frac{2+\frac{7}{2^n}}{1+\frac{7}{2^n}} \to \frac{1}{5} \cdot \frac{2}{1} = \frac{2}{5} < 1.$$

(ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$ is divergent by ratio test, because

$$\frac{\frac{(2n+2)!}{(n+1)!(n+1)!}}{\frac{(2n)!}{n!n!}} = \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = \frac{4n+2}{n+1} = \frac{4+\frac{2}{n}}{1+\frac{1}{n}} \to 4 > 1.$$

ightharpoonup Remark: The test is inconclusive if r=1.

► Example: Test the absolute convergence of the following series.

(i)
$$\sum_{n=1}^{\infty} \frac{2^n+7}{5^n}$$
 (ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$

Solution: (i) $\sum_{n=1}^{\infty} \frac{2^n+7}{5^n}$ converges absolutely by ratio test, because

$$\frac{\frac{2^{n+1}+7}{5^{n+1}}}{\frac{2^n+7}{5^n}} = \frac{1}{5} \cdot \frac{2^{n+1}+7}{2^n+7} = \frac{1}{5} \cdot \frac{2+\frac{7}{2^n}}{1+\frac{7}{2^n}} \to \frac{1}{5} \cdot \frac{2}{1} = \frac{2}{5} < 1.$$

(ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$ is divergent by ratio test, because

$$\frac{\frac{(2n+2)!}{(n+1)!(n+1)!}}{\frac{(2n)!}{n!n!}} = \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = \frac{4n+2}{n+1} = \frac{4+\frac{2}{n}}{1+\frac{1}{n}} \to 4 > 1.$$

Remark: The test is inconclusive if r = 1.

For
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
: $\frac{\frac{1}{n+1}}{\frac{1}{n}} = \frac{n}{n+1} \to 1$

► Example: Test the absolute convergence of the following series.

(i)
$$\sum_{n=1}^{\infty} \frac{2^n+7}{5^n}$$
 (ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$

Solution: (i) $\sum_{n=1}^{\infty} \frac{2^n+7}{5^n}$ converges absolutely by ratio test, because

$$\frac{\frac{2^{n+1}+7}{5^{n+1}}}{\frac{2^n+7}{5^n}} = \frac{1}{5} \cdot \frac{2^{n+1}+7}{2^n+7} = \frac{1}{5} \cdot \frac{2+\frac{7}{2^n}}{1+\frac{7}{2^n}} \to \frac{1}{5} \cdot \frac{2}{1} = \frac{2}{5} < 1.$$

(ii) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$ is divergent by ratio test, because

$$\frac{\frac{(2n+2)!}{(n+1)!(n+1)!}}{\frac{(2n)!}{n!n!}} = \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = \frac{4n+2}{n+1} = \frac{4+\frac{2}{n}}{1+\frac{1}{n}} \to 4 > 1.$$

Remark: The test is inconclusive if r = 1.

For
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
: $\frac{\frac{n+1}{1}}{\frac{1}{n}} = \frac{n}{n+1} \to 1$
For $\sum_{n=1}^{\infty} \frac{1}{n^2}$: $\frac{\frac{n}{(n+1)^2}}{\frac{1}{2}} = \left(\frac{n}{n+1}\right)^2 \to 1^2 = 1$

Definition. Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their Cauchy product is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^{n} a_k b_{n-k}$.

Definition. Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their Cauchy product is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^{n} a_k b_{n-k}$.

- ▶ Definition. Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their Cauchy product is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^{n} a_k b_{n-k}$.
- ► Remark. The Cauchy product of two convergent series need not be convergent.

- ▶ Definition. Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their Cauchy product is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^{n} a_k b_{n-k}$.
- ► Remark. The Cauchy product of two convergent series need not be convergent.

- ▶ Definition. Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their Cauchy product is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^{n} a_k b_{n-k}$.
- ▶ Remark. The Cauchy product of two convergent series need not be convergent.

Example.

Consider the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, where

$$a_n=b_n=rac{(-1)^n}{\sqrt{n+1}}, \ \ \forall n\in\mathbb{N}\cup\{0\}.$$

- ▶ Definition. Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their Cauchy product is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^{n} a_k b_{n-k}$.
- ▶ Remark. The Cauchy product of two convergent series need not be convergent.

Example.

Consider the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, where

$$a_n=b_n=rac{(-1)^n}{\sqrt{n+1}}, \ \forall n\in\mathbb{N}\cup\{0\}.$$

Then their Cauchy product is not convergent.

- ▶ Definition. Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their Cauchy product is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^{n} a_k b_{n-k}$.
- ▶ Remark. The Cauchy product of two convergent series need not be convergent.

Example.

Consider the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, where

$$a_n=b_n=rac{(-1)^n}{\sqrt{n+1}}, \ \forall n\in\mathbb{N}\cup\{0\}.$$

Then their Cauchy product is not convergent.

▶ Observe that both $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are not absolutely convergent.

- ▶ Definition. Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their Cauchy product is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^{n} a_k b_{n-k}$.
- ▶ Remark. The Cauchy product of two convergent series need not be convergent.

Example.

Consider the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, where

$$a_n=b_n=rac{(-1)^n}{\sqrt{n+1}}, \ \ orall n\in\mathbb{N}\cup\{0\}.$$

Then their Cauchy product is not convergent.

- ▶ Observe that both $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are not absolutely convergent.
- ▶ Question: Can we have a similar example where one of the series is absolutely convergent?

- ▶ Definition. Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their Cauchy product is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^{n} a_k b_{n-k}$.
- ▶ Remark. The Cauchy product of two convergent series need not be convergent.

Example.

Consider the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, where

$$a_n=b_n=rac{(-1)^n}{\sqrt{n+1}}, \ \ orall n\in\mathbb{N}\cup\{0\}.$$

Then their Cauchy product is not convergent.

- ▶ Observe that both $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are not absolutely convergent.
- ▶ Question: Can we have a similar example where one of the series is absolutely convergent?
- ► The answer is NO, as seen from the next result.

Convergence of Cauchy product

▶ Theorem (Mertens' Theorem). Let $\sum_{n=0}^{\infty} a_n$ be absolutely convergent and $\sum_{n=0}^{\infty} b_n$ be convergent. If $\sum_{n=0}^{\infty} a_n = a$ and $\sum_{n=0}^{\infty} b_n = b$, then their Cauchy product $\sum_{n=0}^{\infty} c_n$ is convergent and $\sum_{n=0}^{\infty} c_n = ab$.

Convergence of Cauchy product

▶ Theorem (Mertens' Theorem). Let $\sum_{n=0}^{\infty} a_n$ be absolutely convergent and $\sum_{n=0}^{\infty} b_n$ be convergent. If $\sum_{n=0}^{\infty} a_n = a$ and $\sum_{n=0}^{\infty} b_n = b$, then their Cauchy product $\sum_{n=0}^{\infty} c_n$ is convergent and $\sum_{n=0}^{\infty} c_n = ab$.

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$, $\{t_n\}_{n\in\mathbb{N}}$ and $\{u_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=0}^{\infty}a_n$, $\sum_{n=0}^{\infty}b_n$, and $\sum_{n=0}^{\infty}c_n$, respectively.

Convergence of Cauchy product

▶ Theorem (Mertens' Theorem). Let $\sum_{n=0}^{\infty} a_n$ be absolutely convergent and $\sum_{n=0}^{\infty} b_n$ be convergent. If $\sum_{n=0}^{\infty} a_n = a$ and $\sum_{n=0}^{\infty} b_n = b$, then their Cauchy product $\sum_{n=0}^{\infty} c_n$ is convergent and $\sum_{n=0}^{\infty} c_n = ab$.

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$, $\{t_n\}_{n\in\mathbb{N}}$ and $\{u_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$, and $\sum_{n=0}^{\infty} c_n$, respectively. Then for all $n \in \mathbb{N} \cup \{0\}$, we have

$$u_{n} = c_{0} + c_{1} + \dots + c_{n}$$

$$= (a_{0}b_{0}) + (a_{0}b_{1} + a_{1}b_{0}) + \dots + (a_{0}b_{n} + a_{1}b_{n-1} + \dots + a_{n}b_{0})$$

$$= a_{0}(b_{0} + \dots + b_{n}) + a_{1}(b_{0} + \dots + b_{n-1}) + \dots + a_{n}b_{0}$$

$$= a_{0}t_{n} + a_{1}t_{n-1} + \dots + a_{n}t_{0}$$

$$= a_{0}t_{n} + a_{1}t_{n-1} + \dots + a_{n}t_{0} - \left(\sum_{k=0}^{n} a_{k}\right)b + s_{n}b$$

$$= a_{0}(t_{n} - b) + a_{1}(t_{n-1} - b) + \dots + a_{n}(t_{0} - b) + s_{n}b,$$

$$c_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \dots + a_n(t_0 - b) + s_n b$$

= $v_n + s_n b$, (7)

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

$$c_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \dots + a_n(t_0 - b) + s_n b$$

= $v_n + s_n b$, (7)

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{\substack{n\to\infty\\n\to\infty}} s_n b = ab$, in view of (7), to prove that $\lim_{\substack{n\to\infty\\n\to\infty}} c_n = ab$, it suffices to prove that $\lim_{\substack{n\to\infty}} v_n = 0$.

$$c_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \dots + a_n(t_0 - b) + s_n b$$

= $v_n + s_n b$, (7)

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{n\to\infty} s_n b = ab$, in view of (7), to prove that $\lim_{n\to\infty} c_n = ab$, it suffices to prove that $\lim_{n\to\infty} v_n = 0$.

Proof of the claim that $\lim_{n \to \infty} v_n = 0$:

$$c_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \dots + a_n(t_0 - b) + s_n b$$

= $v_n + s_n b$, (7)

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{\substack{n\to\infty\\n\to\infty}} s_n b = ab$, in view of (7), to prove that $\lim_{\substack{n\to\infty\\n\to\infty}} c_n = ab$, it suffices to prove that $\lim_{\substack{n\to\infty\\n\to\infty}} v_n = 0$.

Proof of the claim that $\lim_{n\to\infty} v_n = 0$: Let $\epsilon > 0$ be arbitrary.

$$c_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \dots + a_n(t_0 - b) + s_n b$$

= $v_n + s_n b$, (7)

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{\substack{n\to\infty\\n\to\infty}} s_n b = ab$, in view of (7), to prove that $\lim_{\substack{n\to\infty\\n\to\infty}} c_n = ab$, it suffices to prove that $\lim_{\substack{n\to\infty\\n\to\infty}} v_n = 0$.

Proof of the claim that $\lim_{n\to\infty} v_n = 0$: Let $\epsilon > 0$ be arbitrary.

Since $\lim_{n\to\infty}(t_n-b)=0$, there exists $K_1\in\mathbb{N}$ such that

$$|t_n-b|<\epsilon, \ \forall n\geq K_1.$$

$$c_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \dots + a_n(t_0 - b) + s_n b$$

= $v_n + s_n b$, (7)

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{\substack{n\to\infty\\n\to\infty}} s_n b = ab$, in view of (7), to prove that $\lim_{\substack{n\to\infty\\n\to\infty}} c_n = ab$, it suffices to prove that $\lim_{\substack{n\to\infty\\n\to\infty}} v_n = 0$.

Proof of the claim that $\lim_{n\to\infty} v_n = 0$: Let $\epsilon > 0$ be arbitrary.

Since $\lim_{n \to \infty} (t_n - b) = 0$, there exists $K_1 \in \mathbb{N}$ such that

$$|t_n-b|<\epsilon, \ \forall n\geq K_1.$$

Since $\{t_n - b\}_{n \in \mathbb{N} \cup \{0\}}$ is bounded, there exists M > 0 such that

$$|t_n - b| \le M, \ \forall n \in \mathbb{N}.$$

Since $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, say $\sum_{n=1}^{\infty} |a_n| = \alpha$, by Cauchy criterion there exists $K_2 \in \mathbb{N}$ such that

$$|a_{n+1}| + |a_{n+2}| + \cdots + |a_m| < \epsilon, \ \forall m > n \ge K_2.$$

Since $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, say $\sum_{n=1}^{\infty} |a_n| = \alpha$, by Cauchy criterion there exists $K_2 \in \mathbb{N}$ such that

$$|a_{n+1}| + |a_{n+2}| + \cdots |a_m| < \epsilon, \ \forall m > n \ge K_2.$$

Let $K := \max\{K_1, K_2\}.$

Since $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, say $\sum_{n=1}^{\infty} |a_n| = \alpha$, by Cauchy criterion there exists $K_2 \in \mathbb{N}$ such that

$$|a_{n+1}|+|a_{n+2}|+\cdots|a_m|<\epsilon, \ \forall m>n\geq K_2.$$

Let $K := \max\{K_1, K_2\}$. Then for all $n \ge 2K$, we have

$$|v_{n}| = |a_{0}(t_{n} - b) + a_{1}(t_{n-1} - b) + \dots + a_{n}(t_{0} - b)|$$

$$\leq |a_{0}||t_{n} - b| + |a_{1}||t_{n-1} - b| + \dots + |a_{n}||t_{0} - b|$$

$$= |a_{0}||t_{n} - b| + |a_{1}||t_{n-1} - b| + \dots + |a_{n-K}||t_{n+K} - b|$$

$$+ |a_{n-K+1}||t_{n+K-1} - b| + \dots + |a_{n}||t_{0} - b|$$

$$\leq (|a_{0}| + |a_{1}| + \dots + |a_{n-K}|)\epsilon$$

$$+ (|a_{n-K+1}| + \dots + |a_{n}|)M$$

$$\leq \alpha\epsilon + \epsilon M$$

$$= (\alpha + M)\epsilon.$$

Since $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, say $\sum_{n=1}^{\infty} |a_n| = \alpha$, by Cauchy criterion there exists $K_2 \in \mathbb{N}$ such that

$$|a_{n+1}|+|a_{n+2}|+\cdots|a_m|<\epsilon, \ \forall m>n\geq K_2.$$

Let $K := \max\{K_1, K_2\}$. Then for all $n \ge 2K$, we have

$$|v_{n}| = |a_{0}(t_{n} - b) + a_{1}(t_{n-1} - b) + \dots + a_{n}(t_{0} - b)|$$

$$\leq |a_{0}||t_{n} - b| + |a_{1}||t_{n-1} - b| + \dots + |a_{n}||t_{0} - b|$$

$$= |a_{0}||t_{n} - b| + |a_{1}||t_{n-1} - b| + \dots + |a_{n-K}||t_{n+K} - b|$$

$$+ |a_{n-K+1}||t_{n+K-1} - b| + \dots + |a_{n}||t_{0} - b|$$

$$\leq (|a_{0}| + |a_{1}| + \dots + |a_{n-K}|)\epsilon$$

$$+ (|a_{n-K+1}| + \dots + |a_{n}|)M$$

$$\leq \alpha\epsilon + \epsilon M$$

$$= (\alpha + M)\epsilon.$$

Since $\epsilon > 0$ is arbitrary, it follows that $\lim v_n = 0$. This completes the proof.