IN THE SPECIFICATION:

chosen to minimize the trace of R_{ee min}.

Please replace the paragraph beginning at page 6, line 18 with: As indicated above, $\overline{\mathbf{R}}$ is affected by the delay parameter Δ . Unless dictated by the designer, the delay parameter Δ , which can range between 0 and $(N_f + v - N_b - 1)$, is chosen to minimize the trace of $\mathbf{R}_{\text{ee,min}}^{TC}$. Similarly, the index parameter m, which ranges between 0 and N_b , and which that affects Φ , is

Please replace the two paragraphs that begin at page 8, line 16 with:

Following step 100, step 110 determines the matrices, \mathbf{R}_{nn} , \mathbf{R}_{xx} , \mathbf{R}_{xy} , and \mathbf{R}_{yy} . The matrix \mathbf{R}_{nn} is computed by first computing $\mathbf{n} = \mathbf{y} - \mathbf{H}\mathbf{x}$ and then computing the expected value $E[\mathbf{n}^{\dagger}\mathbf{n}]$ -- see equation (8) above. The matrix \mathbf{R}_{xx} is computed from the known training sequences -- see equation (7) above -- (or is pre-computed and installed in processor 220). [[In]] It may be noted that for uncorrelated inputs, \mathbf{R}_{xx} =I. The matrices \mathbf{R}_{xy} and \mathbf{R}_{yy} are computed from the known training sequences and the received signal or directly from H and \mathbf{R}_{nn} --see equations (5) and (6) above.

Following step 110, step 120 computes $\mathbf{R}^{\perp} = \mathbf{R}_{xx} - \mathbf{R}_{xy} \mathbf{R}_{yy}^{-1} \mathbf{R}_{yx}$, and the submatrix $\mathbf{\bar{R}}$. From equation (10) [[is]] it can be seen that $\mathbf{\bar{R}}$ is obtained by dropping the first $n_i \Delta$ rows and the last $n_i s$ rows of \mathbf{R}^{\perp} .

Please replace the paragraph beginning at page 9, line 4 with:

In accordance with the ONC approach, step 130 computes the matrix $\bf U$ in a conventional manner, identifies the unit vectors e_i , and thus obtains the matrix $\bf B$. Step As with the ITC approach, step 140 develops the coefficients of matrix $\bf W$ in accordance with equation (12), and installs the developed coefficients within filter 210.