Extract from the user's guide PBSddesolve-UG.pdf found in the directory .../library/PBSddesolve/doc. For further information, please see the complete guide.

4.2 Blowflies – (DDE Example)

Figure 2. Nicholson's blowflies model demonstration (included in Simon Wood's Solv95 User Manual as an example of solving a DDE).

As an example with a delay, Wood (1999) suggested a blowfly population model for adults A(t) at time t:

$$\begin{split} \frac{dA}{dt} &= \begin{cases} -\delta A(t), & t < t_0 + \tau; \\ PA(t-\tau)e^{-\theta A(t-\tau)/A_0} - \delta A(t), & t \ge t_0 + \tau; \end{cases}, \\ A(t_0) &= A_0. \end{split}$$

Here τ is the development time from egg to adult, P is the net production rate determined by adult fecundity and egg survival to adulthood, θ is a parameter determining how quickly fecundity declines with an increasing adult population, δ is the adult death rate, and t_0 is the initial time when A(t) starts with the value A_0 . We assume that A(t) = 0 for $t < t_0$. In our

formulation, the differential equation also includes the parameter A_0 , so that θ becomes dimensionless. Essentially, A_0 sets the scale for A(t).

The GUI in Figure 2 allows the four parameters (τ,P,θ,δ) to be adjusted, along with the initial conditions (t_0,A_0) and the final time t_1 . The graph at the left shows three panels: A(t), dA(t)/dt, and $e^{-\theta A(t-\tau)/A_0}$. In this case, a key portion of the R code is: myGrad <- function(t, y) { if (t-t0 >= tau) ylag <- pastvalue(t-tau) else ylag <- 0 yexp <- exp(-theta*ylag[1]/A0)-delta*y[1] yp <- P*ylag[1]*yexp return(list(yp, c(dy=yp, exp=yexp))) }

where values of tau, P, theta, delta, t0, and A0 come from the GUI.