Exercice 1.

Soit $f:\mathbb{R}\to\mathbb{R}$ une fonction continue T-périodique telle que $\int_0^T f(t)dt=0$. Montrer que :

$$\forall a, b \in \mathbb{R}, \int_a^b f(\lambda t) dt \underset{\lambda \to +\infty}{\longrightarrow} 0.$$

Que devient le résultat si $\int_0^T f(t)dt \neq 0$?

EXERCICE 2.

Soient f une fonction continue sur $\mathbb R$ admettant une limite finie $\mathfrak l$ en $+\infty$ et $\mathfrak a$ un réel strictement positif.

- 1. Montrer que $\lim_{y\to +\infty} \int_y^{y+\alpha} f(t) \, dt = \alpha l$.
- $\mbox{2. Montrer que} \lim_{X \to +\infty} \int_0^X \left(f(t+\alpha) f(t) \right) dt = \int_0^\alpha f(t) \, dt + \alpha l.$
- 3. Calculer $\lim_{X\to +\infty} \int_0^X (\arctan(t+1) \arctan t) dt$.

EXERCICE 3.

Soit $f : [a, b] \to \mathbb{R}_+$ continue.

- 1. Justifier l'existence de $M = \max_{x \in [\mathfrak{a},\mathfrak{b}]} f(x)$.
- 2. Montrer que $\lim_{n \to +\infty} \left(\int_a^b f(x)^n dx \right)^{\frac{1}{n}} = M.$

EXERCICE 4.

Soit f continue sur [a,b] à valeurs réelles. Montrer que $\left| \int_{[a,b]} f \right| = \int_{[a,b]} |f| \ si \ et$ seulement si f est de signe constant sur [a,b].

EXERCICE 5.

Soient f et g deux fonctions continues sur [a,b] à valeurs réelles. On suppose de plus g positive sur [a,b]. Montrer qu'il existe $c \in [a,b]$ tel que

$$\int_{\alpha}^{b} f(t)g(t) dt = f(c) \int_{\alpha}^{b} g(t) dt$$

Exercice 6.

Soit $f:[0,\pi]\to\mathbb{R}$ une application continue.

- 1. On suppose que $\int_0^{\pi} f(t) \sin t \, dt = 0$. Montrer que f s'annule en un réel $\alpha \in]0, \pi[$.
- 2. On suppose que $\int_0^{\pi} f(t) \sin t \, dt = \int_0^{\pi} f(t) \cos t \, dt = 0$. Montrer que f s'annule deux fois sur $]0, \pi[$.

 On pourra considérer $\int_0^{\pi} f(t) \sin(t-a) \, dt$.

Exercice 7.

Soit $f:[a,b]\to\mathbb{R}$ continue. Montrer qu'il existe $c\in]a,b[$ tel que $f(c)=\frac{1}{b-a}\int_a^b f(t)\,dt.$

EXERCICE 8.

Soient $n \in \mathbb{N}$ f une fonction continue sur [a,b] (a < b) telle que $\int_a^b t^k f(t) \, dt = 0$ pour tout $k \in [0,n]$. Montrer que f s'annule au moins n+1 fois sur [a,b].

EXERCICE 9.

Soient $n \in \mathbb{N}^*$ et f la fonction définie sur [0,1] par $f(t) = \lfloor nt \rfloor$. Montrer que f est en escalier sur [0,1] et calculer son intégrale.

Exercice 10.★

On note

$$I = \int_0^{\pi} \frac{t}{2 + \sin(t)} dt \text{ et } J = \int_0^{\pi} \frac{dt}{2 + \sin(t)}.$$

- 1. Trouver une relation simple entre I et J en effectuant le changement de variable $t=\pi-\mathfrak{u}$.
- **2.** Pour tout réel x , on pose

$$F(x) = \int_0^x \frac{dt}{2 + \sin(t)}.$$

- a. Montrer que F est continue sur \mathbb{R} .
- **b.** Calculer F(x) en fonction de x pour tout $x \in]-\pi,\pi[$.
- c. En déduire la valeur de J puis celle de I.

Exercice 11.

Calculer les primitives suivantes

$$1. \int \frac{\mathrm{d}x}{x^2 + 5} \quad ;$$

4.
$$\int \tan^3(x) dx$$
;

$$\mathfrak{m}\in\mathbb{N}$$

$$2. \int \frac{\mathrm{d}x}{\sqrt{x^2 + 5}}$$

1.
$$\int \frac{dx}{x^2 + 5} ;$$
2.
$$\int \frac{dx}{\sqrt{x^2 + 5}} ;$$
3.
$$\int \frac{1}{\tan^3(x)} dx ;$$
4.
$$\int \tan^3(x) dx ;$$
5.
$$\int \frac{1}{\tan^3(x)} dx ;$$
7.
$$\int \frac{\ln(x)}{x} dx ;$$

7.
$$\int \frac{\ln(x)}{x} dx$$
;

3.
$$\int e^x \sin(e^x) dx \quad ;$$

3.
$$\int e^x \sin(e^x) dx$$
 ; 6. $\int \frac{2x+3}{(x^2+3x+7)^m} dx$, 8. $\int \frac{ch(x) dx}{sh^5(x)}$.

$$8. \int \frac{\operatorname{ch}(x) dx}{\operatorname{sh}^5(x)}$$

Exercice 12.

Soit $\alpha \in \mathbb{R}$ et H la fonction définie par :

$$\forall x \in \mathbb{R}, H(x) = \alpha \cos x + \sin x + 2$$

- 1. Donner une condition nécessaire et suffisante sur α pour que H ne s'annule pas.
- 2. On suppose la condtion précédente satisfaite et on pose pour $x \in \mathbb{R}$, F(x) = $\int_0^x \frac{dt}{H(t)}$. Justifier que F est bien définie et continue sur $\mathbb R$ et donner une expression de F(x) pour $x \in]-\pi,\pi[$.
- 3. Calculer l'intégrale $F(2\pi)$.

EXERCICE 13.

Soient α et β deux réels strictement positifs. On définit une fonction f par :

$$\forall x \in \mathbb{R}, \ f(x) = \frac{1}{\alpha + \beta \cos^2 x}$$

- **1.** Justifier que f admet des primitives sur \mathbb{R} . On note F celle qui s'annule en \mathbb{O} .
- **2.** Montrer que F(x) tend vers $+\infty$ quand x tend vers $+\infty$.
- **3.** Déterminer une expression de F(x) pour $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.
- 4. Calculer $I = \int_{0}^{2\pi} \frac{dt}{49 45 \sin^2 t}$.

Exercice 14.

Calculer I =
$$\int_{\alpha^2}^{b^2} x \sqrt{(x - \alpha^2)(b^2 - x)} dx.$$

EXERCICE 15.

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose

$$I_n(x) = \int_0^x \frac{dt}{(1+t^2)^{n+1}}$$

- **1.** Déterminer une relation entre $I_{n+1}(x)$ et $I_n(x)$.
- **2.** En déduire l'existence et une expression simple de $\lim_{x\to+\infty} I_n(x)$.

Exercice 16.★★

Soit f de classe C^1 sur [0,1], telle que f(0) = f(1) = 0.

- **1.** Vérifier que la fonction $x \mapsto f(x) \cot n(\pi x)$ admet une limite (finie) en 0 et en 1. On notera q, le prolongement continu sur [0, 1] de cette fonction.
- 2. On considère la fonction h = fg.
 - **a.** Démontrer que h est dérivable sur]0,1[et que, pour tout 0 < x < 1,

$$h'(x) = 2f'(x)g(x) - \pi(f(x)^2 + g(x)^2).$$

En déduire que h est de classe \mathcal{C}^1 sur [0, 1].

b. Démontrer que

$$\forall x \in [0, 1], \quad h'(x) \leqslant \frac{1}{\pi} f'(x)^2 - \pi f(x)^2.$$

c. En déduire enfin que

$$\int_{0}^{1} f'(x)^{2} dx \geqslant \pi^{2} \int_{0}^{1} f(x)^{2} dx.$$

Exercice 17.

Soit f une fonction de classe C^1 strictement croissante de [a,b]. D'après le théorème de la bijection, f induit une bijection de [a, b] sur [f(a), f(b)] et f^{-1} est continue sur [f(a), f(b)].

1. Montrer que

$$\int_{a}^{b} f(x) \, dx + \int_{f(a)}^{f(b)} f^{-1}(y) \, dy = bf(b) - af(a)$$

2. Donner une interprétation géométrique de cette formule.

Exercice 18.

Etablir la dérivabilité puis calculer la dérivée de la fonction ψ définie par

$$x \longmapsto \int_{e^{-x}}^{e^x} \sqrt{1 + \ln^2(t)} dt.$$

Exercice 19.

Pour $x \in \mathbb{R}$, on pose $f(x) = \int_0^x 3^{-\lfloor t \rfloor} dt$ où $\lfloor t \rfloor$ représente la partie entière du réel t.

- 1. Justifier que f est bien définie.
- **2.** Montrer que la suite (f(n)) converge et donner sa limite.
- 3. En déduire que f admet une limite en $+\infty$ et préciser celle-ci.

EXERCICE 20.

Pour
$$x \in \mathbb{R}$$
, on pose $f(x) = \int_{x}^{x^2} \frac{dt}{\ln t}$.

- 1. Déterminer le domaine de définition de f.
- **2.** Quel est le signe de f ?
- 3. Prolonger f par continuité partout où cela est possible.
- **4.** Montrer que f est dérivable et étudier les variations de f. On déterminera également la limite de f en $+\infty$.
- 5. Étudier la concavité de f.
- 6. Tracer le graphe de f.

Exercice 21.

Soit $g : \mathbb{R} \to \mathbb{R}$ continue. Pour $x \in \mathbb{R}$, on pose $f(x) = \int_0^x \sin(x - t)g(t) dt$.

- **1.** Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} et que pour tout $x \in \mathbb{R}$, $f'(x) = \int_0^x \cos(t x)g(t) dt$.
- 2. Montrer que f est de classe \mathcal{C}^2 et que f est solution de l'équation différentielle y''+y=g.
- **3.** En déduire toutes les solutions de l'équation différentielle y'' + y = g.

EXERCICE 22.

Déterminer
$$\lim_{x\to 0} \int_{x}^{2x} \frac{\cos t}{t} dt$$
.

EXERCICE 23.

Soit f une fonction continue sur [a, b].

Montrer que la fonction $g: x \mapsto \int_a^b f(t) \sin(tx) dt$ est lipschitzienne.

Exercice 24.★

Étudier le comportement asymptotique de la suite définie par,

$$t_n = \sum_{k=1}^n \frac{n}{k^2 + n^2}.$$

Exercice 25.★

Étudier le comportement asymptotique de la suite définie par,

$$v_n = \frac{1}{n} \sqrt[n]{(n+1)(n+2)\dots(n+n)}.$$

EXERCICE 26.

Etudier la suite $(u_n)_{n\geqslant 1}$ définie par

$$u_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n}.$$

Exercice 27.★★

Soit f une fonction continue sur l'intervalle [0,1]. Pour tout entier $n\geqslant 1$, on pose,

$$u_n = \prod_{k=1}^n \left(1 + \frac{1}{n} f\left(\frac{k}{n}\right) \right)$$

Montrer que la suite $(\mathfrak{u}_n)_{n\geqslant 1}$ converge vers $e^{\int_0^1 f(t)dt}$

Exercice 28.

Déterminer un équivalent de $\mathfrak{u}_n=\sqrt{1}\sqrt{n-1}+\sqrt{2}\sqrt{n-2}+\cdots+\sqrt{n-2}\sqrt{2}+\sqrt{n-1}\sqrt{1}$ quand \mathfrak{n} tend vers $+\infty$.

Exercice 29.

Montrer que

$$X^{2n} - 1 = (X^2 - 1) \prod_{k=1}^{n-1} \left(X^2 - 2X \cos \frac{k\pi}{n} + 1 \right)$$

En déduire pour r > 1

$$\int_{-\pi}^{\pi} \ln \left| 1 - r e^{i\theta} \right| d\theta$$

EXERCICE 30.

Soit $\lambda \in [-1,1]$. Trouver les fonctions $f \in \mathcal{C}^0(\mathbb{R},\mathbb{R})$ telles que

$$\forall x \in \mathbb{R}, \quad f(x) = \int_0^{\lambda x} f(t) dt.$$

Exercice 31.★★

On pose pour tout $n \ge 0$,

$$I_n = \int_0^{\pi/2} \sin^n(x) dx.$$

- 1. Calculer I₀ et I₁.
- 2. En intégrant par parties, trouver une relation de récurrence entre I_n et $I_{n+2}.$
- 3. En déduire une expression de I_{2n} et I_{2n+1} pour tout $n\in\mathbb{N}$ à l'aide de factorielles.
- 4. Vérifier que $(I_n)_{n\geqslant 0}$ est décroissante. En déduire que $\frac{n+1}{n+2}I_n\leqslant I_{n+1}\leqslant I_n$.
- 5. Démontrer que $I_{n+1} \underset{n \to +\infty}{\sim} I_n$.
- **6.** Établir que $\forall n \in \mathbb{N}, \ (n+1)I_{n+1}I_n = \frac{\pi}{2}$.
- 7. En déduire que

$$I_n \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}.$$

Exercice 32.

Pour $n \in \mathbb{N}^*$, $\lambda \in \mathbb{R}_+^*$ et $x \in [0, \frac{\pi}{2}]$, on pose $f_{n,\lambda}(x) = \sin(2nx) \ln(\lambda \cos x)$.

- **1.** Etudier la limite de $f_{n,\lambda}(x)$ lorsque x tend vers $\frac{\pi}{2}$.
- 2. On pose $I_n = \int_0^{\frac{\pi}{2}} f_{n,1}(x) dx$. Montrer que

$$\int_0^{\frac{\pi}{2}} f_{n,\lambda}(x) \, dx = \frac{1 + (-1)^{n+1}}{2n} \ln \lambda + I_n$$

- 3. Calculer I₁ et I₂.
- **4.** Etablir que

$$I_{n} = (-1)^{n+1} \int_{0}^{\frac{\pi}{2}} \sin(2nx) \ln(\sin x) dx$$

et

$$nI_n = (-1)^n J_n$$
 où $J_n = \int_0^{\frac{\pi}{2}} \sin^2(nx) \cot x \, dx$

5. Calculer $J_n - J_{n-1}$ et en déduire I_n selon la parité de n.

Exercice 33.★★

On note, pour tout $n \in \mathbb{N}$,

$$I_n = \int_0^{\pi} \frac{\cos(nt)}{2 - \cos(t)} dt.$$

- 1. Montrer que $\forall n \in \mathbb{N}$, $I_{n+2} = 4I_{n+1} I_n$.
- 2. En déduire une expression de I_n en fonction de n.

Exercice 34.★★

Soit $n \in \mathbb{N}^*$.

1. Prouver que, sur un ensemble à déterminer,

$$\frac{\sin^2(nt)}{\sin(t)} = \sin(t) + \sin(3t) + \dots + \sin((2n-1)t).$$

2. En déduire une expression de

$$I_n = \int_0^{\pi/2} \frac{\sin^2(nt)}{\sin(t)} dt$$

sous la forme d'une somme.

3. Vérifier que

$$\forall k \in \mathbb{N}^*, \ \frac{1}{2k+1} \leqslant \int_{k}^{k+1} \frac{dx}{2x-1} \leqslant \frac{1}{2k-1}.$$

4. En déduire que

$$\int_0^{\pi/2} \frac{\sin^2(nt)}{\sin(t)} dt \sim \frac{1}{2} \ln(n).$$

Exercice 35.

Soit $f:[0,1] \longrightarrow \mathbb{R}$ une fonction continue. Prouver que la suite de terme général

$$I_n = \int_0^1 t^n f(t) dt$$

converge vers 0.