Math 300 - Final Exam Study Guide

Reece McMillin

May 12, 2021

Contents

- 1. Cramer's Rule
- 2. Determinants as Area
- 3. Eigenvalues & Eigenvectors
- 4. The Diagonalization Theorem
 - 5. Invertible Matrix Theorem
- 6. Complex Eigenvalue Decomposition
 - 7. Inner/Dot Products
 - 8. Distance
 - 9. Orthogonality
 - 10. Orthogonal Sets
 - 11. Orthogonal Projections
 - 12. Best-Approximation Theorem
 - 13. The Gram-Schmidt Process
 - 14. Least-Squares Problems

Cramer's Rule

$$\mathbf{A}_i(b) = [a_1, \dots, b, \dots, a_2]$$

Let **A** be an invertible $n \times n$ matrix. For any $b \in \mathbb{R}^n$, the unique solution \vec{x} of $\mathbf{A}\vec{x} = b$ has entries given by

$$\vec{x}_i = \frac{\det \mathbf{A}_i(b)}{\det \mathbf{A}}$$

An inverse formula extending from Cramer's Rule is

$$\mathbf{A}^{-1} = \frac{1}{\det A} \cdot \operatorname{adj}(\mathbf{A})$$

Determinants as Area

If **A** is a 2×2 matrix, the area of the parallelogram determined by the columns of **A** is $|\det A|$. If **A** is a 3×3 matrix, the volume of the parallelopiped determined by the columns of **A** is $|\det A|$.

Eigenvalues & Eigenvectors

An eigenvector of A (corresponding to λ) is a nonzero vector x such that

$$\mathbf{A}x = \lambda x$$

A scalar λ is an **eigenvalue** of **A** if there exists a nonzero vector x such that

$$\mathbf{A}x = \lambda x$$

More formally, let **V** be a vector space. An **eigenvector** of a linear transformation $\mathbf{T}: \mathbf{V} \to \mathbf{V}$ is a nonzero vector $x \in \mathbf{V}$ such that $\mathbf{T}(x) = \lambda x$ for some scalar λ . This scalar λ is called an **eigenvalue** of **T** if there is a nontrivial solution x of $\mathbf{T}(x) = \lambda x$; ssuch an x is called an **eigenvector** corresponding to λ .

The Diagonalization Theorem

An $n \times n$ matrix **A** is diagonalizable if and only if **A** has n linearly independent eigenvectors.

In fact, $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$, with diagonal matrix \mathbf{D} , if and only if the columns of \mathbf{P} are n linearly independent eigenvectors of A. In this case, the diagonal entries of \mathbf{D} are eigenvalues of \mathbf{A} that correspond respectively to the eigenvectors in \mathbf{P} .

Theorem: An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Invertible Matrix Theorem

- 1. **A** is row-equivalent to the $n \times n$ identity matrix \mathbf{I}_n .
- 2. **A** has n pivot positions.
- 3. The equation $\mathbf{A}x = 0$ has only the trivial solution x = 0.
- 4. The columns of **A** form a linearly independent set.
- 5. The linear transformation $x \mapsto \mathbf{A}x$ is one-to-one.
- 6. For each column vector $b \in \mathbb{R}^n$, the equation $\mathbf{A}x = b$ has a unique solution.
- 7. The columns of **A** span \mathbb{R}^n .
- 8. The linear transformation $x \mapsto \mathbf{A}x$ is a surjection (onto).
- 9. There is an $n \times n$ matrix **C** such that $\mathbf{CA} = \mathbf{I}_n$.
- 10. There is an $n \times n$ matrix **D** such that $AD = I_n$.
- 11. The transpose matrix \mathbf{A}^{T} is invertible.
- 12. The columns of **A** form a basis for \mathbb{R}^n .
- 13. The column space of **A** is equal to \mathbb{R}^n .
- 14. The dimension of the column space of \mathbf{A} is n.
- 15. The rank of \mathbf{A} is n.
- 16. The null space of \mathbf{A} is 0.
- 17. The dimension of the null space of \mathbf{A} is 0.
- 18. 0 fails to be an eigenvalue of \mathbf{A} .
- 19. The determinant of \mathbf{A} is not 0.
- 20. The orthogonal complement of the column space of $\mathbf{A} = \mathbf{A}^{\perp}$ is 0.
- 21. The orthogonal complement of the null space of **A** is \mathbb{R}^n .
- 22. The row space of **A** is \mathbb{R}^n .
- 23. The matrix **A** has n non-zero singular values (not studied in MATH-300).

Complex Eigenvalue Decomposition -

Let **A** be a real 2×2 matrix with a complex eigenvalue $\lambda = a - bi$ $(b \neq 0)$ and an associated eigenvector $v \in \mathbb{C}^2$. Then

$$\mathbf{A} = \mathbf{P}\mathbf{C}\mathbf{P}^{-1}$$
, where $\mathbf{P} = \begin{bmatrix} \operatorname{Re} v & \operatorname{Im} v \end{bmatrix}$ and $\mathbf{C} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

Inner Product -

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^{\mathbf{T}} \mathbf{v}$$

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^n and let c be a scalar. Then

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- 3. $(c\mathbf{u}) \cdot \mathbf{v} = (c\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$
- 4. $\mathbf{u} \cdot \mathbf{u} \ge 0$, and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = 0$.

Distance

For **u** and $\mathbf{u} \in \mathbb{R}^n$, the **distance between u and v**, written as $\operatorname{dist}(\mathbf{u}, \mathbf{v})$, is the length of the vector $\mathbf{u} - \mathbf{v}$. That is,

$$dist(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$$

Orthogonality -

Two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are **orthogonal** to each other if $\mathbf{u} \cdot \mathbf{v} = 0$.

Two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are **orthogonal** to each other if $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$.

Orthogonal Complements

- 1. A vector x is in \mathbf{W}^{\perp} if and only if x is orthogonal to every vector in a set that spans \mathbf{W} .
- 2. **W** is a subspace of \mathbb{R}^n .

Theorem: Let **A** be an $m \times n$ matrix. The orthogonal complement of the row space of **A** is the null space of **A**, and the orthogonal complement of the column space of **A** is the null space of \mathbf{A}^T :

$$(\text{Row } \mathbf{A})^{\perp} = \text{Null } \mathbf{A} \quad \text{and} \quad (\text{Col } \mathbf{A})^{\perp} = \text{Null } \mathbf{A}^{\perp}$$

To find the angle between two nonzero vectors in either \mathbb{R}^2 or \mathbb{R}^3 , the inner product can be used:

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}||||\mathbf{v}|| \cos \theta$$

4

Orthogonal Sets

Theorem: If $S = u_1, \ldots, u_p$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S.

An **orthogonal basis** for a subspace **W** of \mathbb{R}^n is a basis for **W** that is also an orthogonal set.

Theorem: Let $S = u_1, \ldots, u_p$ be an orthogonal basis for a subspace **W** of \mathbb{R}^n . For each $y \in \mathbf{W}$, the weights in the linear combination

$$y = c_1 u_1 + \dots + c_p u_p$$

are given by

$$c_j = \frac{y \cdot u_j}{u_j \cdot u_j} \quad (j = 1, \dots, p)$$

Orthogonal Projection -

Given some nonzero vector u in \mathbb{R}^n , consider the problem of decomposing a vector $y \in \mathbb{R}^n$ into the sum of two vectors, one a multiple of u and the other orthogonal to u. We want to write

$$y = \hat{y} + z, \quad z \perp u$$

We can consider \hat{y} to be the shadow of y onto W ($\hat{y} = \text{proj}_W y$) and z to be the remaining vertical component of y. This projection is determined by the subspace L spanned by u (the line through u and u). \hat{y} is denoted by $\text{proj}_L y$ and is called the **orthogonal projection of** y **onto** y. That is,

$$\hat{y} = \operatorname{proj}_L y = \frac{y \cdot u}{u \cdot u} u$$

The Best Approximation Theorem

Let **W** be a subspace of \mathbb{R}^n , let y be any vector in \mathbb{R}^n , and let \hat{y} be the orthogonal projection of y onto **W**. Then \hat{y} is the closest point in **W** to y, in the sense that

$$||y - \hat{y}|| < ||y - v||$$

for all $v \in \mathbf{W}$ distinct from \hat{y} .

The Gram-Schmidt Process

Given a basis x_1, \ldots, x_p for a nonzero subspace **W** of \mathbb{R}^n , define

$$v_{1} = x_{1}$$

$$v_{2} = x_{2} - \frac{x_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$$

$$v_{3} = x_{3} - \frac{x_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} - \frac{x_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}$$

$$\vdots$$

$$v_{p} = x_{p} - \frac{x_{p} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} - \frac{x_{p} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2} - \dots - \frac{x_{p} \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1}$$

Then v_1, \ldots, v_p is an orthogonal basis for **W**. In addition,

$$\operatorname{Span}\{v_1,\ldots,v_k\} = \operatorname{Span}\{x_1,\ldots,x_k\} \quad \text{for } 1 \le k \le p$$

Least-Squares Problems

If **A** is $m \times n$ and $b \in \mathbb{R}^n$, a **least-squares solution** of $\mathbf{A}x = b$ is some $\hat{X} \in \mathbb{R}^n$ such that

$$||b - \mathbf{A}\hat{x}|| \le ||b - \mathbf{A}x||$$

for all $x \in \mathbb{R}^n$.

Theorem: The set of least-squares solutions of $\mathbf{A}x = b$ coincides with the nonempty set of solutions of the normal equations $\mathbf{A}^{\mathbf{T}}\mathbf{A}x = \mathbf{A}^{\mathbf{T}}b$.

Definitions

- **Adjugate**: The matrix adj **A** formed from a square matrix **A** by replacing the (i, j)-entry by the (i, j)-cofactor, for all i and j, and then transposing the resulting matrix.
- **Basis**: An indexed set $\beta = \{v_1, \dots, v_p\}$ in V such that β is a linearly independent set and the subspaced spanned by β coincides with $H = \operatorname{Span}\{v_1, \dots, v_p\}$.
- Best Approximation: The closest point in a given subspace to a given vector.
- Characteristic Equation: $det(\mathbf{A} \lambda \mathbf{I}) = 0$
- Column Space: The set Col A of all linear combinations of the columns of A. If $A = [a_1, \ldots, a_n]$, then Col $A = \operatorname{Span}(a_1, \ldots, a_n)$.
- **Diagonalizable**: A matrix that can be written in factored form as PDP^{-1} , where D is a diagonal matrix and P is an invertible matrix.
- **Eigenspace**: The set of all solutions of $Ax = \lambda x$, where λ is an eigenvalue of A.
- Elementary Matrix: An invertible matrix that results by performing exactly one elementary row operation on an identity matrix.
- Linear Combination: A sum of scalar multiples of vectors. The scalars are called the weights.
- Linear Dependence Relation: A homogeneous vector equation where the weights are all specified and at least one weight is nonzero.
- **Linearly Dependent**: An indexed set $\{v_1, \ldots, v_p\}$ with the property that there exist weights c_1, \ldots, c_p , not all zero, such that $c_1v_1 + \cdots + c_pv_p = 0$. That is, the vector equation $c_1v_1 + \cdots + c_pv_p = 0$ has a *nontrivial* solution.
- Linearly Independent: An indexed set $\{v_1, \ldots, v_p\}$ with the property that the vector equation $c_1v_1 + \cdots + c_pv_p = 0$ has only the trivial solution.
- LU Factorization: The representation of a matrix A in the form A = LU where L is a square lower triangular matrix with ones on the diagonal (a unit lower triangular matrix) and U is an echelon form of A.
- Matrix Transformation: A mapping $x \mapsto \mathbf{A}x$ where \mathbf{A} is an $m \times n$ matrix and x represents any vector in \mathbb{R}^n .
- Norm: The length of vector v, or $||v|| = \sqrt{v \cdot v}$.
- Normal Vector: A vector $n \in \mathbb{R}^n$ such that $n \cdot x = 0$ for all $x \in V$.
- Null Space: The set Nul A of all solutions to the homogeneous equation $\mathbf{A}x = 0$.
- One-to-One: A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ such that each $b \in \mathbb{R}^m$ is the image of at most one $x \in \mathbb{R}^n$.
- Onto: A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ such that each $b \in \mathbb{R}^m$ is the image of at least one $x \in \mathbb{R}^n$.

- Orthogonal Basis: A basis that is also an orthogonal set.
- Orthogonal Complement: The set W^{\perp} of all vectors orthogonal to W.
- Orthogonal Decomposition: The representation of a vector y as the sum of two vectors, one in a specified subspace W and the other in W^{\perp} .
- Orthonormal Basis: A basis that is an orthogonal set of unit vectors.
- Plane through u, v, and the origin: A set whose parametric equation is x = su + tv $(s, t \in \mathbb{R})$, with u and v linearly independent.
- Proper Subspace: Any subspace of a vector space V other than V itself.
- Range: The set of all vectors of the form T(x) for some x in the domain of T.
- Reduced Echelon Matrix: A rectangular matrix in echelon form that has these additional properties: The leading entry in each nonzero row is 1, and each leading 1 is the only nonzero entry in its column.
- Row Equivalent: Two matrices for which there exists a finite sequence of row operations that transforms one matrix into the other.
- Row Space: The set Row A of all linear combinations of the vectors formed from the rows of A; also denoted Col A^T .
- **Span**: The set of all linear combinations of v_1, \ldots, v_p . Also, the subspace generated by v_1, \ldots, v_p .
- Subspace: A subset H of some vector space V such that H has these properties:
 - 1. The zero vector of V is in H.
 - 2. H is closed under vector addition.
 - $3.\ H$ is closed under multiplication by scalars.
- Linear System: A collection of one or more linear equations involving the same set of variables, say x_1, \ldots, x_n .
- **Vector Space**: A set of objects, called vectors, on which two operations are defined: addition and multiplication by scalars.