

MANIPAL INSTITUTE OF TECHNOLOGY

(A Constituent unit of MAHE, Manipal)

I. use k means clustering algorithm to divide the following date into two clusters me Euclidean distance choose (2,1) and (2,3) and (2,3) and (2,3) as initial?

| Xi | 2 | 9 | 3 | 4 | 5 | centroids of (2,1) and (2,3) and (

Date	Distance from	Postaro ce Jeurs V2 (2,3)	Assigned
	1 8 8 8 8	2.24	VI
(1,1)	0	2	VI
(2,3)	2	0	V2
(3,2)	1.41	1.41	VI
(4,3)	2.83	2	v3
(5,5)	5	3.61	V.a

Step3:- cluster 1 g v 1: { a1, a2, a4} chstu 2 g v2: { a3, a5, a6} VI((1,1) (2,1) (3,2) => { 1+2+3 , 1+1+2 } => {2,1.33} V2: (2,3) (4,3) (5,5) => \(\frac{7}{2+4+5} \) \(\frac{3+3+5}{3} \) € 3.666, 3.666 }

Step 4: - Repeat from Step 2 until we get same Cluder center or same cluster elements as in the previous iteration.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL

(A Constituent unit of MAHE, Manipul)

D-4 L	Distance from	1 Distance from V2 (3.67, 3.67	Assigned
Data point	V1 (2,1.33)	3.78	V1
u(r,i)	0.33	3.15	VI
Q(2,1)		1-8	٧,
4(2,3)	1.67	1.8	VI
3(4,3)	2.605	0.75	V2
2(55)	A .74	1.88	Y2.

eteration 3

	m	
11	AL	1
	7	
	1	/

7	Pals points	Distance (2,1:75)	Distance from V2 (4-514)	Assignal center
aı	(1,1)	1.25	A-61	V1
a2	(2,1)	0.75	3.9	VI
63	(2,3)	1.25	2-69	V1
	(3,2)	1.03	2.5	V1
	(4,3)	2.36	1.12	V2
26	(575)	4.42	1.12	va.

Cluster 29 V2 = { as, a6 }.

coluster elements are some en in the previous dération

80 Oliva final clusters are

clister 1:- {(1) (2,1) (2,3) (3,2}

clister 1:- {(4,3) (5,5)}

Home work k-means

(1) use k means clustering algorithm to divide the following dela points into 3 clusters.

A1(3,10), A2(2,5), A3(8,4), B1(5,8)

B2(715) B3(6,4), C1(1,2), C2(4,9).

B2(715) B3(6,4), C1(1,2), C2(4,9).

The distance for is Eucledian distance. initial Jhe distance for is Eucledian distance. Respectively.