Nathan Beebe

Professor Holtman

STAT 201 - 940

September 5th, 2020

Intro to Statistics Final Project

Summary

For the project, Kaggle was a great resource to find some data regarding college tuition and salary out of college. The goal was to understand the relation between STEM major percentage at a university and salary out of college in early and mid-career.

The dataset I found was from a website called tuitiontracker.org, on Kaggle some users were looking to practice their data science skills on a set of data that was on that website. I decided that I wanted to do some analysis on some of the data. The CSV files that I worked with had two different sets of data. The salary potential CSV features 936 observations of 7 variables of salary potential data from United States universities. The tuition cost CSV has 2974 observations of 10 variables of tuition cost data. A random sample of 10 observations was taken from each file.

I decided to use Python 3.8 with some data science libraries such as Pandas, Numpy, and Matplotlib. I have worked with Python before, and the project gave me an opportunity to get used to these popular data science libraries that are used by a lot of people. It was challenging to get used to the syntax for some of the functions, but I managed to get the hang of it by looking at some examples.

Some of the visualizations are hard to see in the document, but they are also included as separate PNG files in the submission.

Descriptive Statistics

Tuition Description

Tuition description:			
	in_state_tuition	out_of_state_tuition	
count	10.000000	10.000000	
mean	23068.400000	24472.000000	
std	17202.438653	15884.435226	
min	2356.000000	8116.000000	
25%	11350.750000	12151.000000	
50%	16820.000000	19288.000000	
75%	32297.750000	32297.750000	
max	56382.000000	56382.000000	

Salary Potential Description

Salary	description:	
	early_career_pay	mid_career_pay
count	10.000000	10.000000
mean	52950.000000	96240.000000
std	9389.030242	18853.305045
min	42300.000000	74500.000000
25%	46500.000000	83025.000000
50%	51100.000000	92800.000000
75%	56650.000000	103200.000000
max	75200.0000000	139400.000000

Data Visualization

Included all visualizations as PNG images with my submission, so they can be viewed at higher resolution.

Out of State Tuition Bar Graph

In State Tuition Bar Graph

STEM Percentage Versus Early Salary Amount Scatter Plot

