

Automatic Image Enhancement with Deep Learning Techniques

Caio Jordão Carvalho

VI Workshop Labrasoft & GPETEC caiojcarvalho@gmail.com

whoami

- Caio Jordão Carvalho
 - ADS-IFBA: 6° semestre
 - Escavador: Data Engineer (Microservices/Scraping)
 - KDE: marK, KPM, Calamares, SoK, GSoC...
 - Labrasoft: Machine Learning
 - http://github.com/cjlcarvalho

Agenda

- Deep Learning
- Image Enhancement
- Deep Autoencoder Approach to Enhance Low-Light Images during Minimally Invasive Procedures

Deep Learning

- Machine Learning
- Modelos Neurais
- Processo de Aprendizado
- CNNs, Autoencoders, GANs...
- PyTorch, Keras, Tensorflow

GANs

- Generative Adversarial Networks
- Ian Goodfellow et al, 2014
- Gerador contra Discriminador
- Game Theory

Autoencoders

- Aprendizado de uma função de identidade
- Encoding
- $y^{(i)} = x^{(i)}$
- Compressão de arquivos, image-to-image

Image Enhancement

- Processo de melhorar uma imagem X para um padrão Y
- Uso de filtros de imagem
- Procedimentos automáticos normalmente são realizados com modelos generativos
- Motion blur, fumaça, névoa, iluminação...

Deep Autoencoder Approach to Enhance Low-Light Images during Minimally Invasive Procedures

Contextualização

- Procedimentos Minimamente Invasivos (MIPs)
 - Vantagens em relação às cirurgias abertas
 - Laparoscopia
- Robôs Assistentes
 - Controle de câmeras
 - AutoLap (2015)

Contextualização

- Acompanhamento dos instrumentos laparoscópicos
 - Object tracking
 - Image segmentation
- Algoritmos atuais propensos a falhas
 - Fumaça, névoa, *motion blur*, oclusão e iluminação

Contextualização

Fonte: http://opencas.webarchiv.kit.edu/?q=node/30

Solução Proposta

- IR-MIP: Modelo generativo para aprimoramento de iluminação em imagens de MIPs
 - Baseado em *Autoencoders*
 - LLNet (Lore et al, 2017)
 - Suporte a imagens em RGB
- Construção de datasets

Solução Proposta

Fonte: http://opencas.webarchiv.kit.edu/?q=node/30

Experimentos

- Comparação do modelo neural proposto com um modelo estatístico
 - LIME (Guo et al, 2018)
- Métricas de avaliação
 - Entropy, Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Root Mean Square Error (RMSE), Structural Similarity Index (SSIM)

Experimentos

Automatic Image Enhancement with Deep Learning Techniques

perguntas?

Caio Jordão Carvalho caiojcarvalho@gmail.com