자료분석특론 기말 프로젝트

212STG18 예지혜

Levels Fyi Salary data

데이터 소개

Levels fyi Salary data

	부								
timestamp	company	level	title	totalye	earlycompens	ation	location	yearsofexp	erience
6/7/2017 11:33:27	Oracle	L3	Product Manager		12	7000	Redwood City, CA		1.5
6/10/2017 17:11:29	еВау	SE 2	Software Engineer		10	0000	San Francisco, CA		5.0
6/11/2017 14:53:57	Amazon	L7	Product Manager		31	0000	Seattle, WA		8.0
6/17/2017 0:23:14	Apple	M1	Software Engineering Manager		37	2000	Sunnyvale, CA		7.0
6/20/2017 10:58:51	Microsoft	60	Software Engineer		15	7000	Mountain View, CA		5.0
basesalary	stockgra	ntvalue	Doctorate_D	egree)	Highschool	Some	e_College	Race_Asian	Race_W
107000.0	:	20000.0		0	0		0	0	
0.0		0.0		0	0		0	0	
155000.0		0.0		0	0		0	0	
157000.0	1	80000.0		0	0		0	0	
107000.0									
0.0		0.0		0	0		0	0	

데이터 설명

Data Science와 STEM 분야의 연봉 데이터 Levels.fyi 사이트에서 스크래핑한 데이터

주요 변수

회사	1631개 종류, 관측치가 적은 회사가 매우 많음
경력, 회사 내 경력	연속형 변수
성별	여성, 남성, 기타 3가지 범주, 30%의 결측치
학력	고등학교 졸업, 박사 학위 등 5가지 범주, 50%의 결측치
인종	아시안, 백인, 흑인 등 5가지 범주, 50%의 결측치
직급	비정제된 경우 많음, 일부 결측치
직무	15가지 범주이나 65%가 소프트웨어 엔지니어

분석 목표

관측치 Top 5 회사의 연간 보상 예측 [아마존, 마이크로소프트, 구글, 페이스북, 애플]

Part A 주요 EDA 및 전처리

Levels fyi Salary data

타겟 변수 설정

	연간 전체 보상	기준 연봉	스톡 그랜트	보너스
Mean	216,300	136,687	51,486	1,9335
Std	138,034	61,369	81,874	26,781
Min	10,000	0	0	0
Median	188,000	140,000	25,000	14,000
Max	4,980,000	1,659,870	2,800,000	1,000,000

- 기준 연봉에 0이라는 관측치 존재
- '연간 전체 보상'이 나머지 세 정보의 합산인 경 우 80%, 아닌 경우 20%
- → '연간 전체 보상'을 타겟 변수로 설정

Part A 주요 EDA 및 전처리

Levels fyi Salary data

직급 변수 전처리

X Apple	X (Amazon)	X Google	X Facebook	X Microsoft
ICT2 Junior Software Engineer	SDE I	L3	E3	SDE 59
	L4	SWE II		60
ICT3 Software Engineer				SDE II
	SDE III SDE III Senior SDE L6	L4 SWE III	E4	62
ICT4				Senior SDE
Senior Software Engineer		L5 Senior SWE	E5	64
				Principal SDE
ICT5	Principal SDE	L6 Staff SWE	E6	66
	L7	L7 Senior Staff SWE	E7	67 Partner
ICT6	Senior Principal SDE L8	L8 Principal Engineer	E8	⁶⁸ 69
Distinguished Engineer	Distinguished Engineer L10	L9 Distinguished Engineer	E9	70 Distinguished Engineer
Senior Distinguished Engineer Engineering Fellow		L10 Google Fellow		80 Technical Fellow

전처리 과정

- 1. 딕셔너리를 사용해 숫자가 포함된 직급 정보로 수정
- 2. 숫자 정보만 뽑음
- 3. 마이크로소프트의 경우, 59부터 2로 간주하여 수정
- 4. 결측치는 가장 많은 직급인 5단계로 imputation

출처 : Levels fyi

Part A 주요 EDA 및 전처리

Levels fyi Salary data

전처리

회사	원핫인코딩
성별	결측치는 '기타' 범주로 간주, 원핫인코딩
학력	원핫인코딩된 변수 사용
인종	원핫인코딩된 변수 사용
지역	관측치 1000개 이상인 8개만 살리고, 나머지는 '기타'로 간주, 원핫인코딩

최종 데이터

22,690개의 관측치와 46개의 설명변수 년도, 직급, 경력, 회사내 경력, 학력, 인종, 회사, 지역, 직무, 성별 총 10가지 정보

모형 탐색 과정

Levels fyi Salary data

9가지 후보 모델

- 선형 회귀, 릿지, 라쏘, 의사결정트리, 랜덤포레스트, 로지스틱 회귀, svm, svr, 그래디언트 부스팅
- 성능이 좋은 모델 그리드 서치

주로 트리 기반 모델의 성능이 좋아 최근 개발된 캣부스트 추가

모형

■ 범주형 변수 원핫 인코딩 vs. 라벨 인코딩

추가 모델 - 캣부스트

9가지 후보 모델 – 로그 변환

- 선형 회귀, 릿지, 라쏘, 의사결정트리, 랜덤포레스트, 로지스틱 회귀, svm, svr, 그래디언트 부스팅
 - 성능이 좋은 모델 그리드 서치

- 직급 정보 사용 여부
- 학력 정보 원핫 인코딩 vs. 순서 인코딩

그외 고려사항

모형 탐색 과정 - 9가지 후보 모델

Levels fyi Salary data

모델 종류	파라미터	Test RMSE	Test MAE
선형 모델		101,100	62,688
릿지 회귀	(디폴트) α = 1	101,100	62,681
	$\alpha = 10$	101,102	62,630
라쏘 회귀	(디폴트, 그리드서치) α = 0.1	101,100	62,687
의사결정트리		93,731	56,005
	(디폴트) max_depth = None, min_samples_leaf = 1, n_estimators = 100	75,483	44,168
랜덤포레스트	max_depth = 50, max_features = 8, min_samples_leaf = 2, n_estimators = 30	76,330	44,178
	max_depth = 50, max_features = 10, min_samples_leaf = 2	76,382	44,007
로지스틱 회귀		135,661	80,428
SVM		128,195	76,066
SVR	Kernel="poly", degree = 2, C=100, epsilon = 0.1, gamma="scale"	148,814	91,829
	max_depth=2, n_estimators=100, learning_rate=1.0	82,753	48,384
그래디언트 부스팅	max_depth=10, n_estimators=50, learning_rate=0.2	74,263	43,042
	max_depth=10, n_estimators=40, learning_rate=0.2	74,216	43,031

모형 탐색 과정 - 9가지 후보 모델 (로그 변환)

Levels fyi Salary data

모델 종류	파라미터	Test RMSE	Test MAE
선형 모델		98,835	57,164
릿지 회귀	(디폴트) α = 1	98,841	57,163
라쏘 회귀	(디폴트) α = 0.1	129,074	78,119
의사결정트리		93,463	56,530
	(디폴트) max_depth = None, min_samples_leaf = 1, n_estimators = 100	76,705	44,308
랜덤포레스트	max_depth = 20, max_features = 8, min_samples_leaf = 10, n_estimators = 30	85,149	46,947
SVM		106,841	63,584
SVR	Kernel="poly", degree = 2, C=100, epsilon = 0.1, gamma="scale"	118,274	68,727
그래디언트 부스팅	max_depth=2, n_estimators=100,learning_rate=1.0	94,604	45,777
- 네니라	max_depth=5, n_estimators=50, learning_rate=0.5	77,689	43,598

모형 탐색 과정 – 최종 모델 후보

Levels fyi Salary data

최종 모델

Levels fyi Salary data

모델 설명

- 캣부스트는 범주형 변수를 자체적 인 알고리즘에 기반해 효과적으로 처리
- 경력 정보 2개를 제외하고 모두 범 주형 변수이기 때문에 부스팅 모형 에서 좋은 성능을 보이고, 특히 캣 부스트를 사용하기 좋은 데이터임

중요 변수

- 전처리된 직급
- 경력
- 회사
- 직무

Part B Mobilephone Image data

데이터 소개

Mobile phone Image data

데이터 일부

Model	Brand	Condition	lmage_File
iPhone 7	Apple	Used	mobile_images/1635051927882_Apple iPhone 7 Por
iPhone 6S	Apple	Used	mobile_images/1635051928230_Apple iPhone 6S 12
Galaxy M02	Samsung	Used	mobile_images/1635051928415_Samsung Galaxy M02
iPhone 7	Apple	Used	mobile_images/1635051928818_Apple iPhone 7 128
Galaxy M02	Samsung	New	mobile_images/1635051929034_Samsung Galaxy M02

데이터 설명

스마트폰 외관 사진 데이터 거래 사이트 lkman.lk에서 스크래핑한 데이터

데이터 형태

모델	462 종류
브랜드	32 종류

이미지 파일 경로가 path 형태로 csv에 저장

분석 목표

애플, 삼성 두 가지 브랜드로 분류

전처리 Mobile phone Image data

csv 파일의 이미지 경로 중 실제 이미지 파일이 없는 경우 삭제

애플과 삼성 두 폴더로 이미지 이동

train, val, test 데 이터셋 분리

디렉토리 형태

	train	Apple
	liaiii	Samsung
Data for one	val	Apple
Data_for_cnn	val	Samsung
	toct	Apple
	test	Samsung

모델 탐색 과정

Mobile phone Image data

간단한 합성망과 이미지 보강

간단	한 합성망 (인풋 150 × 1!	50)	간단한 합성망 (인풋 255 × 255)			
Layer type	Output Shape	Param #	Layer type	Output Shape	Param #	
Conv2D	(None, 148, 148, 32)	896	Conv2D	(None, 253, 253, 32)	896	
MaxPooling2D	(None, 74, 74, 32)	0	MaxPooling2D	(None, 126, 126, 32)	0	
Conv2D	(None, 72, 72, 64)	18496	Conv2D	(None, 124, 124, 64)	18496	
MaxPooling2D	(None, 36, 36, 64)	0	MaxPooling2D	(None, 62, 62, 64)	0	
Conv2D	(None, 34, 34, 128)	73856	Conv2D	(None, 60, 60, 128)	73856	
MaxPooling2D	(None, 17, 17, 128)	0	MaxPooling2D	(None, 30, 30, 128)	0	
Conv2D	(None, 15, 15, 128)	147584	Conv2D	(None, 28, 28, 128)	147584	
MaxPooling2D	(None, 7, 7, 128)	0	MaxPooling2D	(None, 14, 14, 128)	0	
Flatten	(None, 6272)	0	Flatten	(None, 25088)	0	
Dense	(None, 512)	3211776	Dense	(None, 512)	12845568	
Dense	(None, 1)	513	Dense	(None, 1)	513	
Total params: 3,453,121			Total params: 13,086,913			
Test acc:	Test acc : 0.730 / 이미지 보강시 0.665			Test acc : 0.736		

모델 탐색 과정

Mobile phone Image data

VGG 사전 학습망과 이미지 보강

	0 1 1 1	D //		0 1 1 6	t Change H	
Layer type	Output Shape	Param #	Layer type	Output Shape	Param #	
Conv2D	(None, 150, 150, 64)	1792	Conv2D	(None, 255, 255, 64)	1792	
Conv2D	(None, 150, 150, 64)	36928	Conv2D	(None, 255, 255, 64)	36928	
MaxPooling2D	(None, 75, 75, 64)	0	MaxPooling2D	(None, 127, 127, 64)	0	
Conv2D	(None, 75, 75, 128)	73856	Conv2D	(None, 127, 127, 128)	73856	
Conv2D	(None, 75, 75, 128)	147584	Conv2D	(None, 127, 127, 128)	147584	
MaxPooling2D	(None, 37, 37, 128)	0	MaxPooling2D	(None, 63, 63, 128)	0	
Conv2D	(None, 37, 37, 256)	295168	Conv2D	(None, 63, 63, 256)	295168	
Conv2D	(None, 37, 37, 256)	590080	Conv2D	(None, 63, 63, 256)	590080	
Conv2D	(None, 37, 37, 256)	590080	Conv2D	(None, 63, 63, 256)	590080	
MaxPooling2D	(None, 18, 18, 256)	0	MaxPooling2D	(None, 31, 31, 256)	0	
Conv2D	(None, 18, 18, 512)	1180160	Conv2D	(None, 31, 31, 512)	1180160	
Conv2D	(None, 18, 18, 512)	2359808	Conv2D	(None, 31, 31, 512)	2359808	
Conv2D	(None, 18, 18, 512)	2359808	Conv2D	(None, 31, 31, 512)	2359808	
MaxPooling2D	(None, 9, 9, 512)	0	MaxPooling2D	(None, 15, 15, 512)	0	
Conv2D	(None, 9, 9, 512)	2359808	Conv2D	(None, 15, 15, 512)	2359808	
Conv2D	(None, 9, 9, 512)	2359808	Conv2D	(None, 15, 15, 512)	2359808	
Conv2D	(None, 9, 9, 512)	2359808	Conv2D	(None, 15, 15, 512)	2359808	
MaxPooling2D	(None, 4, 4, 512)	0	MaxPooling2D	(None, 7, 7, 512)	0	
Flatten	(None, 8192)	14714688	Flatten	(None, 25088)	14714688	
Dense	(None, 256)	2097408	Dense	(None, 256)	6422784	
Dense	(None, 1)	257	Dense	(None, 1)	257	

Drop out 추가시 test acc : 0.848

최종모델 Mobile phone Image data

간단 합성망 VGG VGG **VGG 255** 간단 합성망 간단 합성망 **VGG 150 +** 사전학습망 사전학습망 150 + 이미지 보강 255 150 이미지 보강 dropout 150 255 Test acc 0.730 0.736 0.665 0.851 0.850 0.848 0.842 Epoch당 33초 166초 70초 265초 847초 757초 281초 평균 시간

감사합니다

