AMPLIACIÓN DE MATEMÁTICAS TRABAJO PRÁCTICO 1: Sucesiones y series de funciones

Sea $f_n(x) = n^{-x}$. Prueba que para todo a > 0 la sucesión anterior converge uniformemente

Sea
$$f_n(x) = n^{-x}$$
. Prueba que para todo $a > 0$ la sucesión anterior converge uniformemente en $[a, \infty)$, pero no así en $[0, \infty)$.

In $f(x) = \lim_{n \to \infty} \frac{1}{n^x} = \int_{-\infty}^{\infty} \int_{-\infty}^$

(Examen de septiembre de 2014) Estudia la convergencia uniforme de $f_n(x)$ $\lg \left[\left(\frac{1}{1 + (x-1)^2} \right)^n \right]$ en un intervalo [a, b] con $a \in (0, 1)$ y $b \in (1, 2)$. In $f_n(x) = \lim_{n \to \infty} \log \left[\left(\frac{1}{1+(x-1)^n} \right)^n \right] = \lim_{n \to \infty} \log 1 = 0 \text{ in } x = 1$ => A convergencia e [a, h]-111 => => } conv. mif.

Escribe en forma de serie la integral $\int_{-\infty}^{x} e^{-t^2} dt$ e = \(\frac{1}{2} \left(-\frac{1}{2} \right)^m \) \(\frac{1}{2} \right)^m \) \(\fr $\int_{0}^{\infty} e^{-t} dt = \sum_{n=0}^{\infty} \int_{0}^{\infty} \frac{1}{n!} dt = \sum_{n=1}^{\infty} \frac{\arctan(n^{2}x^{3} - nx + \pi)}{2^{n}}$ Estudia la convergencia puntual y uniforme de $\sum_{n=1}^{\infty} \frac{\arctan(n^{2}x^{3} - nx + \pi)}{2^{n}}$ $\frac{\sum |\operatorname{antan}(m)|}{2^m} \leq \frac{1}{2^{m+1}} = \frac{1}{2^m} = \frac{1}{2}$ Por el virterio M de Weierstrans la serve converge missonmemente