12 Solutions

- 1. TB
- 2. Observe that T=6X+1, since the last step of the algorithm has only one operation. If, i=i+1 is computed first in step 3, note that T=5X+1. Then $E[T]=6\lambda+1, Var(X)=25\lambda$.
- 3. Observe that

$$F(x) = P\{X \le x\} = \frac{\int_0^x \sqrt{1 - u^2} du}{\int_0^1 \sqrt{1 - u^2} du}$$

The denominator is the area of the quarter circle, $\pi/4$. For the numerator, use the substitution $u = \sin \theta$, to get:

$$F(x) = \frac{2}{\pi} \left(\arcsin x + x\sqrt{1 - x^2} \right)$$

An alternative solution uses geometry. Let C be the circular region, and D be the triangle. Then, the area of the triangle is: $x\sqrt{1-x^2}/2$, and the area of the circular part is $\theta/2=(\arcsin x)/2$. Dividing the sum of the areas by $\pi/4$ gives the desired answer. The probability of acceptance, i.e., "success" is $\pi/4$.Since the number of iterations a geometric random variable with $p=\pi/4$, the average number of times Step 1 is repeated is $4/\pi$.

- 4. Observe that $c = \max(p_i/q_i) = 1.4$. Then the algorithm is:
 - (a) Generate u_1 from U(0,1). Set $y = Floor(4u_1) + 1$.
 - (b) Generate u_2 from U(0,1)
 - (c) If $u_2 < \frac{4p_y}{1.4} = p_y/0.35$, set X = y and stop. Otherwise return to step 1.

The average complexity is: $E[T] = 1.4 \times 11 = 15.4$

- 5. TB
- 6. TB

7. Put
$$1 - e^{-\alpha x^{\beta}} = y \Rightarrow 1 - y = e^{-\alpha x^{\beta}} \Rightarrow \alpha x^{\beta} = -\log(1 - y) \Rightarrow$$

$$x = \left(-\frac{\log(1-y)}{\alpha}\right)^{1/\beta}$$

Then, we have:

- (a) Generate u
- (b) Set $X = \left(-\frac{\log u}{\alpha}\right)^{1/\beta}$