Telecommunication Networks Access Networks

Libor Michalek

© 2020

Access Network

- Part of the communication network that directly connects the customer with the service provider (e.g. Internet).
- Can be built using
 - 1. Metallic symmetric or asymmetrical lines
 - 2. Optical fibers
 - 3. Wireless technology

xDSL

- called as DSL (Digital Subscriber Line) family
- include several variations, the lower case **x** in front of DSL include:
 - Asymmetric Digital Subscriber Line (ADSL)
 - ISDN (like) Digital Subscriber Digital Line (IDSL)
 - Consumer Digital Subscriber Line (CDSL)
 - Single High Speed DSL (SHDSL)
 - Rate-adaptive Subscriber Digital Line (RADSL)
 - Very High-bit Rate Digital Subscriber Line (VDSL)
 - Symmetric Digital Subscriber Line (SDSL)

ADSL (Asymmetric Digital Subscriber Line)

- asymmetric = data flow is greater in one direction than the other, 8 Mbps
- ITU-T G.992.1
- using the <u>existing twisted pair telephone lines</u> into the high-speed communications access
- communication is full duplex using most the FDD (Frequency Division Duplex)
- ADSL2 (ITU-T G.992.3 and G.992.4)
 - dynamic data rate adaptation, flexible structure of frame
 - reduces the initialization time to less than 3 seconds
 - max. 12 Mbps downlink

ADSL – frequency allocation

DSL and POTS (Plain Old Telephone Service) band is splitted by so called **splitter** – low pass filter

ADSL architecture

DSLAM (DSL Access Multiplexer)

- located in the telephony exchanges of the service providers
- intermixes voice traffic and DSL traffic on the customer's DSL line
- acts like a massive network switch since its functionality is <u>only</u> on L2
- each DSLAM has multiple aggregation cards, and each such card can have multiple ports to which the customers lines are connected

ADSL standards overview

Standard name	Common name	Downstream rate	Upstream rate	Approved in
ANSI T1.413-1998 Issue 2	ADSL	8 Mbit/s	1.0 Mbit/s	1998
ITU G.992.1	ADSL (G.DMT)	12 Mbit/s	1.3 Mbit/s	1999-07
ITU G.992.1 Annex A	ADSL over POTS	12 Mbit/s	1.3 MBit/s	
ITU G.992.1 Annex B	ADSL over ISDN	12 Mbit/s	1.8 MBit/s	
ITU G.992.2	ADSL Lite (G.Lite)	1.5 Mbit/s	0.5 Mbit/s	1999-07
ITU G.992.3	ADSL2	12 Mbit/s	1.0 Mbit/s	2002-07
ITU G.992.3 Annex J	ADSL2	12 Mbit/s	3.5 Mbit/s	
ITU G.992.3 Annex L	RE-ADSL2	5 Mbit/s	0.8 Mbit/s	
ITU G.992.4	splitterless ADSL2	1.5 Mbit/s	0.5 Mbit/s	2002-07
ITU G.992.5	ADSL2+	24 Mbit/s	1.0 Mbit/s	2003-05
ITU G.992.5 Annex M	ADSL2+M	24 Mbit/s	3.5 Mbit/s	

G.DMT - Discrete Multitone Modulation

- separates the ADSL signal into carriers (bins/tones) centered on multiples of
 4.3125 kHz
- the number of bits encoded on each bin depending on the **attenuation** and **signal to noise ratio for that bin,** tones are <u>independent</u> of one another
- when the modem is initialized, the number of bits is assigned to a tone

ADSL2+

- increased frequency band to 2,208 MHz
- DMT has 511 downstream frequency bins and up to 36 upstream bins (tones)
- up to 24 Mbit/s for downstream
- local loop >3km problem with attenuation and crosstalk

SNR is responsible for performance

VDSL/VDSL2

- Very-High-Data-Rate Digital Subscriber Line
- same philosophy as ADSL, up to 35 MHz
- VDSL2 profiles (G.993.2): 8a, 8b, 8c, 8d, 12a, 12b, 17a, 30a, 35b

Туре	ADSL2	ADSL2+	VDSL2 (8a)	VDSL2(17a)	VDSL2 (30a)	VDSL2 (35b)
Margin of subchannels [Hz]	4312,5	4312,5	4312,5	4312,5	8625	4312,5
Number of Subchannels	256	512	1972	4096	3479	8192
Bandwidth [MHz]	1,1	2,2	8,5	17,7	30	35
Downrate [Mbps]	12	24	50	100	200	300

sometimes confuses with "VDSL3"

VDSL2 bandwidth (Annex B - Plan 997 for Europe)

VDSL2 Vectoring (ITU-T G.993.5)

- FEXT in VDSL2 is more serious than other traditional DSL technologies and becomes the main factor that affects its performance
- FEXT leads to signal-to-noise ratio (SNR) decrease, which reduces the line data rate or increases the bit error rate (BER)
- a) CPE sends back the FEXT information and then the CO uses the FEXT pre-coder to pre-code the FEXT to cancel it
- **b)** FEXT decoder is used to extract the FEXT information and then removes the FEXT information from the original Rx signals.

G.Fast

- under G.9701, approved in 2014
- up to 106 MHz (212 MHz profile in a future)
- TDD instead of FDD used → Can easily vary download/upload asymmetry ratio
- discrete multi-tone (DMT) only 2048 subchannels for 106 MHz, 4096 subchannels for 212 MHz
- margin of subchannels 51,75 kHz (contrary to 8,625 kHz for VDSL2)
- mandatory support for vectoring
- only for short loops (up to 250m)
- <100m ~ 1 Gbps, 200m ~ 500Mbps, 300m ~ 300Mbps
- successor XG.FAST as 5th generation broadband (5GBB) technology, 10Gbps up to 130 m, 500-800 MHz

"Giga Access" on Copper

source: Huawei.com

Installation – rDSLAM cabinets

DOCSIS (Data Over Cable Service Interface Specification)

- defines interface requirements for cable modems involved in high-speed data distribution <u>over CATV systems</u>
- developed by CableLabs
- frequency allocation band plans differ between U.S. and European CATV → EuroDOCSIS
- 3 versions of standard (1.0, 2.0, 3.0)
- version 3.1 ratified in 2014

DOCSIS architecture

- CPE (Customer Premises Equipment) most often the PC
- **CM** (Cable Modem) located at the customer premises
- CMTS (Cable Modem Termination System) located at the CATV headend
- HFC (Hybrid Fibre-Coax) is a network which is based on a combination of optical fibre and coaxial cable

Schematic diagram of the cable TV network

DOCSIS – Protocol Stack

Higher layers	Applications	NMS Provisioning System		
Transport	TCP / UDP			
Network	IP			
Data Link	IEEE 802.2			
	DOCSIS MAC			
Physical	upstream TDMA, OFDMA	downstream TDM, OFDM		
	QPSK, nQAM	nQAM		
	coaxial cable / HFC			

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

DEPARTMENT
OF TELECOMMUNICATIONS

1794 MHz

1218 MHz

258 MHz

108 MHz

DOCSIS 3.1 layers

Physical Layer

- 5-85 MHz for upstream
- 258-1218 MHZ for downstream
- OFDM/OFDMA use up to 8000 subcarriers
- up to 4096QAM, in future up to 16384QAM

Example of arrangement

MAC layer

- DOCSIS frame is defined
- QoS and capacity assignment

DOCSIS 3.1

DOCSIS 3.0

5 MHz

5 MHz

UPSTREAM

IPTV

- Internet Protocol Television
- service for the delivery of broadcast TV
- IPTV system may also include Internet services such as Web access and VOIP where it may be called **Triple Play** and is typically supplied by a broadband operator using the same infrastructure
- describes a system where a digital television service is delivered using the Internet Protocol (IP) over a network infrastructure
- it's not Internet Video
- contains EPG (Electronic Program Guide) that allows easy navigation, quick program information
- last mile to the subscriber can be based on:
 - ADSL2+, VDSL, VDSL2
 - FTTx based on PON (Passive Optical Network)
 - Ethernet (metallic cables distribution)
 - WLAN IEEE 802.11

IPTV Architecture

- Head-end TV channels are encoded, encrypted and delivered in the form of IP multicast streams.
- Core Network primarily provides interconnection and transfer between edge networks (based on optic fibres)
 - multicast a single source sends data to multiple destinations at a single time. Each broadcast TV channel would have a unique IP multicast group.
 - unicast For each unicast VOD session, there is a separate content stream on the network for each user
- Access Network portion of a communication network that allows individual subscribers or devices to connect the core network, it can be xDSL based, cable, wireless broadband or metallic.
- User's set-top box equipment at the user's home that decodes and decrypts TV and VOD content and displays it on the TV screen.

Passive Optical Networks

 A PON is a optical fiber network that only uses fibers and <u>passive</u> components like splitters and combiners instead of active components like amplifiers

PON Architecture

PON Topologies

PON nodes

- Optical Line Terminal (OLT) Central Office node
- Optical Network Units (ONU) one or more user node
- Optical Distribution Network (ODN) optical fibers and splitters between ONU and OLT

FTTx – Fiber to the ...?

- Fibre to the x (FTTX) is a generic term for network architecture using optical fiber to provide **all** or **part** of the local loop used for last mile.
- We distinguish:
 - FTTB (Fiber-to-the-building) fiber reaches the boundary of the building.
 - FTTC (Fiber-to-the-curb / Fiber to the cabinet) this is very similar to FTTN, but the street cabinet or pole is closer to the user's premises; typically within 300m.
 - FTTD (Fiber-to-the-desk) fiber connection is installed from the main computer room to an outlet near the user's desk.
 - FTTH (Fiber-to-the-home) fiber reaches the boundary of the living space, such as a box on the outside wall of a home.
 - FTTN (Fiber-to-the-node) fiber is terminated in a street cabinet up to several kilometers away from the customer premises.

Evolution of PON

- Gigabit Passive Optical Networks
- defined by ITU uses the general PON architecture
- Optical Splitter merely divides the optical power into N separate paths to the users. The optical paths can vary between 2 to 128.
- basic parameters:
 - downlink and uplink bitrate up to 2,488 Gbit/s
 - range up to 20 km
 - dividing ratio up to 1:64
- new protocol GEM (GPON Encapsulation Method) is defined

♦ IEEE EPON (802.3ah)

- Gigabit Ethernet Passive Optical Networks
- defined by IEEE 802.3ah
- uses the general PON architecture
- basic parameters:
 - downlink and uplink bitrate up to 1,25 Gbit/s
- a standard **Ethernet** frames are used
- basic parameters:
 - downlink and uplink bitrate up to 1,25 Gbit/s
 - range up to 20 km
 - dividing ratio up to 1:32

XG-PON (G.987)

asymetric 10/2,5 Gb/s

NG-PON2 (G.989.2)

- max 40 km, 1:64
- TWDM-PON downstream and upstream is divided into 8 channels (wavelengths) → 8x10 Gb/s
- up to 80 Gb/s symmetrically per one fibre!
- flexible transition from GPON → NG-PON2

IEEE 10G-EPON (802.3av)

- 10Gbit/s symetric
- back compatible with 802.3ah
- 10/1GBASE-PRX
- 10GBASE-PR 10 Gbit/s symmetrically
- flexible transition from EPON
 → 10G-EPON
- Next Generation PON 100G-EPON (IEEE 802.3ca) – not approved

WDM-PON

- aim: combine more optical channels to one fibre by Wavelength Division Multiplex
- use of a completely separate downstream wavelength for each of the subscribers.
- this separate wavelength provides more bandwidth to each subscriber

Capacity Trend for PON

PON installation

FTTH Architecture & Technology trends

source: : IDATE for FTTH Council EUROPE

References I.

- ITU-T G.992.1: Asymmetric digital subscriber line (ADSL) transceivers. ITU-T, 1999.
- ITU-T G.992.3: Asymmetric digital subscriber line transceivers 2 (ADSL2). ITU-T, 1999.
- ITU-T G.992.4: Splitterless asymmetric digital subscriber line transceivers 2 (splitterless ADSL2). ITU-T, 2002.
- ITU-T G.992.5: Asymmetric digital subscriber line 2 transceivers (ADSL2)- Extended bandwidth ADSL2 (ADSL2plus). ITU-T, 2009.
- ITU-T G.993.1: Very high speed digital subscriber line transceivers (VDSL). ITU-T, 2004.
- ITU-T G.993.2: Very high speed digital subscriber line transceivers 2 (VDSL2). ITU-T, 2011.
- Vectoring Technology White Pager. Huawei Technologies Co., Ltd, 2012.
- Vanhastel, Dr. Stefaan. The numbers are in: Vectoring 2.0 makes g.fast faster, July 2013.
- Laboratories, Cable Television. Data-Over-Cable Service Interface Specifications DOCSIS 3.1. Physical Layer Specification CM-SP-PHYv3.1-I02-140320. Cable Television Laboratories, 2014.
- Laboratories, Cable Television. Data-Over-Cable Service Interface Specifications DOCSIS 3.1. MAC and Upper Layer Protocols Interface Specification. CM-SP--MULPIv3.1-I02-140320. Cable Television Laboratories, 2014.
- ITU-T J.112: Transmission systems for interactive cable television services. ITU-T, 1998.
- ITU-T J.122: Second-generation transmission systems for interactive cable television services IP cable modems. ITU-T, 2007.

References II.

- Laboratories, Cable Television. Data-Over-Cable Service Interface Specifications DOCSIS 3.1. Physical Layer Specification CM-SP-PHYv3.1-I02-140320. Cable Television Laboratories, 2014.
- Laboratories, Cable Television. Data-Over-Cable Service Interface Specifications DOCSIS 3.1. MAC and Upper Layer Protocols Interface Specification. CM-SP-MULPIv3.1-I02-140320. Cable Television Laboratories, 2014.
- ITU-T J.112: Transmission systems for interactive cable television services. ITU-T, 1998.
- ITU-T J.122: Second-generation transmission systems for interactive cable television services IP cable modems. ITU-T, 2007.
- Weinstein, S.B., Luo, Y., and Wang, T. The ComSoc Guide to Passive Optical Networks: Enhancing the Last Mile Access. The ComSoc Guides to Communications Technologies. Wiley, 2012. ISBN 9781118250532.
- ITU-T G.984.1: Gigabit-capable passive optical networks (GPON): General characteristics. ITU-T, 2008.
- ITU-T G.987: 10-Gigabit-capable passive optical network (XG-PON) systems: Definitions, abbreviations and acronyms. ITU-T, 2012.
- ITU-T G.989.1 40-Gigabit-capable passive optical networks (NG-PON2): General requirements. ITU-T, 2013.