Universidad Nacional del Altiplano

Facultad de Ingeniería Estadística e Informática

Docente: Fred Torres Cruz

Autor: Luz Magaly Turpo Mamani

Código: 227325

Link github: https://github.com/luz897/ACTIVIDAD-03

Trabajo Encargado - Nº 003

Actividad N° 003 - Complejidad computacional

Ejercicio 3.2

Demuestre que $x^2 + x + 1$ is $O(x^2)$ pero no O(x).

■ Demostración de que $x^2 + x + 1$ es $O(x^2)$ pero no es O(x)

Para demostrar que $x^2 + x + 1$ es $O(x^2)$, debemos encontrar una constante c > 0 y un valor x_0 tal que:

$$|x^2 + x + 1| \le c \cdot |x^2|$$
 para todo $x \ge x_0$.

Tomamos $x \ge 1$. Para estos valores de x, el término dominante en $x^2 + x + 1$ es x^2 . Podemos ver que:

$$x^2 + x + 1 \le x^2 + x^2 + x^2 = 3x^2$$

Por lo tanto, podemos tomar c=3 y $x_0=1$. Así, la función x^2+x+1 es $O(x^2)$, ya que para $x\geq 1$, se cumple la desigualdad:

$$x^2 + x + 1 \le 3x^2.$$

Ahora, probemos que x^2+x+1 no es O(x). Si lo fuera, entonces existiría una constante c' tal que:

$$x^2 + x + 1 \le c' \cdot x$$
 para todo $x \ge x_0$.

Pero para valores grandes de x, el término x^2 crece mucho más rápido que x. De hecho, la desigualdad no se cumple para valores grandes de x. Esto significa que $x^2 + x + 1$ no es O(x).

• Resolución del Sistema de Ecuaciones

Consideramos el sistema de ecuaciones dado por la matriz aumentada:

$$\begin{pmatrix} -2 & 3 & 5 & 7 \\ 4 & -3 & -8 & -14 \\ 6 & 0 & -7 & -15 \end{pmatrix}$$

Realizamos las operaciones de fila necesarias para triangularizar la matriz.

1. Primera operación:

$$R_2 \leftarrow R_2 + 2R_1$$

Esto nos da la nueva matriz:

$$\begin{pmatrix}
-2 & 3 & 5 & 7 \\
0 & 3 & 2 & 0 \\
6 & 0 & -7 & -15
\end{pmatrix}$$

2. Segunda operación:

$$R_3 \leftarrow R_3 + 3R_1$$

Esto nos da la matriz:

$$\begin{pmatrix}
-2 & 3 & 5 & 7 \\
0 & 3 & 2 & 0 \\
0 & 9 & 8 & 6
\end{pmatrix}$$

3. Tercera operación:

$$R_3 \leftarrow R_3 - 3R_2$$

Esto nos da la matriz:

$$\begin{pmatrix}
-2 & 3 & 5 & 7 \\
0 & 3 & 2 & 0 \\
0 & 0 & 2 & 6
\end{pmatrix}$$

Ahora que tenemos la matriz triangular superior, usamos sustitución hacia atrás para encontrar los valores de las incógnitas.

Sustitución hacia atrás

1. De la última ecuación obtenemos:

$$2x_3 = 6 \implies x_3 = \frac{6}{2} = 3.$$

2. Sustituimos $x_3 = 3$ en la segunda ecuación:

$$3x_2 + 2(3) = 0$$
 \Rightarrow $3x_2 + 6 = 0$ \Rightarrow $x_2 = \frac{-6}{3} = -2.$

3. Sustituimos $x_2 = -2$ y $x_3 = 3$ en la primera ecuación:

$$-2x_1 + 3(-2) + 5(3) = 7$$

$$-2x_1 - 6 + 15 = 7$$

$$-2x_1 + 9 = 7$$

$$-2x_1 = -2$$

$$x_1 = 1.$$

Respuesta

La solución del sistema de ecuaciones es:

$$x_1 = 1, \quad x_2 = -2, \quad x_3 = 3.$$

Prueba de escritorio de Complejidad $f(x) = x^2 + x + 1$

En la expresión $f(x) = x^2 + x + 1$, tenemos:

Paso	Multiplicaciones	Sumas	
1	$1(\text{para } x^2)$	$2(\text{para } x^2 + x + 1)$	

La función $f(x) = x^2 + x + 1$ requiere una multiplicación y dos sumas. Para grandes valores de x, el término x^2 domina, por lo que f(x) es $O(x^2)$.

$$\frac{x^2 + x + 1}{x^2} = 1 + \frac{1}{x} + \frac{1}{x^2}.$$

Para grandes x, $f(x) = x^2$. El error relativo es:

Error relativo =
$$\frac{x+1}{x^2}$$
.

El error tiende a 0 a medida que $x \to \infty$.

x	# operaciones	$\frac{x^2 + x + 1}{x^2}$	% error
1	3	$\frac{x^2}{3}$	200%
2	3	1,75	75%
3	3	1,5555	$55{,}55\%$
4	3	$1,\!375$	$37{,}5\%$
5	3	1,24	24%
10	3	1,11	11%
100	3	1,01	1%
1000	3	1,001	0,1%
10000	3	1,0001	$0{,}01\%$

```
Codigo.py > ...
       import matplotlib.pyplot as plt
       A = np.array([
           [-2, 3, 5],
[0, 3, 2],
           [0, 0, 2]
      b = np.array([7, 0, 6])
      def back_substitution(A, b):
           n = len(b)
           x = np.zeros(n)
                 sum_ax = 0
                 for j in range(i+1, n):
                     sum_ax += A[i, j] * x[j]
                 x[i] = (b[i] - sum_ax) / A[i, i]
       x_values = back_substitution(A, b)
      st.write(f"Solución del sistema:")
      st.write(f"x1 = {x_values[0]:.2f}")
st.write(f"x2 = {x_values[1]:.2f}")
st.write(f"x3 = {x_values[2]:.2f}")
      x = np.linspace(0, 10, 400)
      y2 = f2(x)
      plt.figure(figsize=(8, 6))
      plt.plot(x, y1, label=r'$x^2 + x + 1$', color='purple')
plt.plot(x, y2, label=r'$x^2$', color='green', linestyle='--')
      plt.xlabel('x')
plt.ylabel('f(x)')
      plt.title('Comparación entre $x^2 + x + 1$ y $x^2$')
      plt.legend()
      st.pyplot(plt)
```

Figura 1: Código en python

Figura 2: Gráfico