

Marp

Markdown Presentation Ecosystem

https://marp.app/

Syntax - Formulas

Given Φ_0 the set of *atomic formulas*, for any $\phi,\psi\in\Phi_0$

- $ullet \ \phi \in \mathrm{Form}(\Phi_0)$
- $\neg \phi \in \operatorname{Form}(\Phi_0)$
- $\phi \lor \psi \in \mathrm{Form}(\Phi_0)$
- $[\alpha]\phi \in \mathrm{Form}(\Phi_0)$

where $lpha\in\operatorname{Prog}(\Pi_0)$

Syntax - Programs

Given Π_0 the set of *atomic programs*, for any $lpha,eta\in\Pi_0$

- $ullet \ lpha \in \operatorname{Prog}(\Pi_0)$
- $(\alpha; \beta) \in \operatorname{Prog}(\Pi_0)$
- $(\alpha \cup \beta) \in \operatorname{Prog}(\Pi_0)$
- $\alpha^* \in \operatorname{Prog}(\Pi_0)$
- ϕ ? $\in \operatorname{Prog}(\Pi_0)$

where $\phi \in \mathrm{Form}(\Phi_0)$

Syntax - Relations

$$(x,y)\in R(\pi)\iff x\stackrel{\pi}{
ightarrow} y$$

- $ullet (x,y) \in R(lpha;eta) \iff \exists z \in W \quad (x,z) \in R(lpha) \wedge (z,y) \in R(eta)$
- $ullet (x,y) \in R(lpha \cup eta) \iff (x,y) \in R(lpha) \lor (x,y) \in R(eta)$

$$egin{aligned} ullet (x,y) \in R(lpha^*) \iff \exists z_0,\ldots,z_n \in W & egin{cases} z_0 = x \ z_n = y \ (z_{k-1},z_k) \in R(lpha) \end{cases} \end{aligned}$$

$$ullet (x,y) \in R(\phi?) \iff x=y \wedge y \in V(\phi)$$

Syntax - Valuations

$$x \in V(p) \iff p ext{ is true at } x$$

- $V(\perp) = \varnothing$
- $\bullet \ V(\top) = W$
- $V(\neg \phi) = W V(\phi)$
- $V(\phi \lor \psi) = V(\phi) \cup V(\psi)$
- $ullet V([lpha]\phi)=\{x\mid orall y\in W \mid (x,y)\in R(lpha)\implies y\in V(\phi)\}$

LTS

- $ullet W = \{y_1, y_2, y_3, y_4\}$
- $ullet R(\pi_1) = \{(y_1,y_2), (y_2,y_2)\}$
- $ullet R(\pi_2) = \{(y_1,y_3), (y_2,y_4)\}$
- $\bullet \ V(p) = \{y_1, y_2\}$
- $\bullet \ V(q) = \{y_3, y_4\}$

LTS

- $ullet \mathfrak{M}, y_1 \models \langle \pi_1^*; \pi_2
 angle q$
- $ullet\; \mathfrak{M}, y_2 \models [\pi_1^*] p$
- $ullet \ \mathfrak{M}, y_1 \models [\pi_1 \cup \pi_2] (p \lor q)$
- ullet $\mathfrak{M},y_3\models [\pi_1\cup\pi_2]ot$

Axiomatization - Validity

We write $\mathfrak{M}, w \models \phi$ if and only if $w \in V(\phi)$

 ϕ is *valid* in \mathfrak{M} , written as $\mathfrak{M} \models \phi$, if and only if

$$\mathfrak{M} \models \phi \iff \forall w \in W \quad \mathfrak{M}, w \models \phi$$

 ϕ is **valid**, written as $\models \phi$, if and only if

$$\models \phi \iff \forall \mathfrak{M} \quad \mathfrak{M} \models \phi$$

Axiomatization - Goal

The goal is to define a **decudibility predicate** \vdash such that \vdash -deductions are both *sound* and *complete* in terms of validity, i.e. for any ϕ it holds that

$$\vdash \phi \iff \models \phi$$

Axiomatization - K and N axioms

$$\begin{array}{ll} (\mathrm{K}) & [\alpha](\phi \to \psi) \to ([\alpha]\phi \to [\alpha]\psi) \\ (\mathrm{N}) & \frac{\phi}{[\pi]\phi} \end{array}$$

A modal logic is **normal** if it obeys (K) and (N)

Axiomatization - PDL axioms

PDL is the *least normal* modal logic containing every instance of

$$\begin{array}{ll} (\mathrm{A1}) & [\alpha;\beta]\phi \leftrightarrow [\alpha][\beta]\phi \\ (\mathrm{A2}) & [\alpha \cup \beta]\phi \leftrightarrow [\alpha]\phi \wedge [\beta]\phi \\ (\mathrm{A3}) & [\alpha^*]\phi \leftrightarrow \phi \wedge [\alpha][\alpha^*]\phi \\ (\mathrm{A4}) & [\phi?]\psi \leftrightarrow (\phi \rightarrow \psi) \end{array}$$

and closed under the loop invariance rule of inference

$$ext{(I)} \qquad rac{\phi
ightarrow [lpha] \phi}{\phi
ightarrow [lpha^*] \phi}$$

Axiomatization - \(\text{--deducibility} \)

A formula ϕ is \vdash -deducible from $\Sigma \subseteq \mathrm{Form}(\Phi_0)$ if there exists a sequence ϕ_0, \ldots, ϕ_n such that $\phi_n = \phi$, and for all $i \in [n]$

- ϕ_i is an instance of an axiom schema
- ϕ_i is an instance of a formula of Σ
- ullet ϕ_i comes from earlier formulas of the sequence by inference

Are ⊢-deductions sound and complete?

Completeness - Segerberg's axioms

In 1977 Segerberg proposed to replace

$$(\mathrm{I}) \qquad \frac{\phi \to [\alpha] \phi}{\phi \to [\alpha^*] \phi}$$

with the following fifth axiom

(A5)
$$\phi \wedge [\alpha^*](\phi \to [\alpha]\phi) \to [\alpha^*]\phi$$

in order to prove that such axiomatization was sound and complete

Completeness - Segerberg's axioms

Indeed, it is easy to prove that (I) can be replaced with (A5)

```
\begin{array}{ll} 1. \vdash \phi \to [\alpha] \phi & \text{(premise)} \\ 2. \vdash [\alpha^*] (\phi \to [\alpha] \phi) & \text{(from 1 using (N) with } \pi = \alpha^*) \\ 3. \vdash \phi \land [\alpha^*] (\phi \to [\alpha] \phi) \to [\alpha^*] \phi & \text{(A5)} \\ 4. \vdash [\alpha^*] (\phi \to [\alpha] \phi) \to (\phi \to [\alpha^*] \phi) & \text{(from 3 through prop. reasoning)} \\ 5. \vdash \phi \to [\alpha^*] \phi & \text{(from 2 and 4 using } \textit{Modus Ponens)} \end{array}
```

Completeness

To prove that \vdash is sound w.r.t. \models , i.e. that

$$\vdash \phi \implies \models \phi$$

a proof by induction on the length of ϕ 's deduction in \vdash suffices.

So, what about completeness? It requires to prove that

$$\models \phi \implies \vdash \phi$$

Completeness

Segerberg's work was the first attempt to prove the completeness of \vdash , however in 1978 he found a flaw in his argument.

Then in the same year Parikh published what is now considered the first proof of the completeness of ⊢.

Completeness - Goldblatt

Since then, different alternative proof theories of PDL have also been sought after. For example, in 1992 Goldblatt proposed the \vdash '-deducibility predicate, which is based on the same first four axiom schemas along with this *infinitary* rule of inference

$$(\mathrm{I}') \qquad rac{\{[eta][lpha^n]\phi \mid n \in \mathbb{N}\}}{[eta][lpha^*]\phi}$$

Goldblatt was able to prove that \vdash' is both sound and complete.

Complexity - PDL satisfiability

 ϕ is $\mathit{satisfiable}$ in $\mathfrak M$ if there is a world $w \in W$ such that $\mathfrak M, w \models \phi$

 ϕ is **satisfiable** if there is a model ${\mathfrak M}$ such that ϕ is satisfiable in ${\mathfrak M}$

PDL-SAT := $\{\langle \phi \rangle \mid \phi \text{ is a satisfiable PDL formula}\}$

Complexity - Unsatisfiable formulas

 ϕ is *unsatisfiable* if and only if $\neg \phi$ is *valid*

Therefore, we can use the recursive definition of valid PDL formulas and build a procedure P that enumerates all the \vdash -deducible formulas

Hence, given enough time if $\neg \phi$ is \vdash -deducible P will eventually find it and determine that ϕ is *unsatisfiable*

This proves that $PDL\text{-}SAT \in \mathsf{coREC}$

Complexity - Satisfiable formulas

However, if ϕ is satisfiable P never terminates.

Nonetheless, we can leverage the finite model property of PDL

$$\forall \phi \in \mathrm{Form}(\Phi_0) \quad \langle \phi \rangle \in \mathrm{PDL}\text{-SAT} \implies \exists \mathfrak{M}_{fin} \text{ finite} \quad \phi \text{ satisfiable in } \mathfrak{M}_{fin}$$

Therefore, there is a procedure P' that enumerates all the finite models \mathfrak{M}_{fin} and checks for each model if ϕ is satisfiable in \mathfrak{M}_{fin} .

Thus, P and P' can be run in parallel to decide $\operatorname{PDL-SAT}$. However, this is very inefficient, can we do any better?

Complexity

Kozen and Parikh proved that PDL has also the small model property

$$orall \phi \in \mathrm{Form}(\Phi_0) \quad \langle \phi \rangle \in \mathrm{PDL ext{-}SAT} \implies \exists \mathfrak{M}_{fin} ext{ finite} \quad egin{cases} |\mathfrak{M}_{fin}| < \exp(|\phi|) \ \phi ext{ satisfiable in } \mathfrak{M}_{fin} \end{cases}$$

This property implies that we can stop P' as soon as all the "small" models have been exhausted, to conclude that ϕ is not satisfiable.

This concludes that PDL- $SAT \in NEXP$. In 1980 Pratt was able to prove that PDL- $SAT \in EXP$ -complete.

Variants

Over the years multiple versions of PDL have been studied

We will discuss the following

- Test-free PDL
- CPDL
- IPDL

Variants - Test-free PDL

The "?" operator seems *different* with respect to the other programs, can we remove this operator from PDL?

Let PDL_0 be the test-free version of PDL. In 1981 Berman and Paterson proved that this PDL formula

$$\langle (\phi?;\pi)^*;\neg\phi?;\pi;\phi?\rangle \top$$

has no PDL_0 equivalent formula. This formula can be rewritten as

(while
$$\phi$$
 do π) $\langle \pi \rangle \phi$

CPDL is a variant which adds the converse operator to PDL programs

$$(x,y)\in R(lpha^{-1})\iff (y,x)\in R(lpha)$$

To get a sound a complete system, two additional axioms are needed

$$(\mathbf{A6}) \qquad \phi \to [\alpha] \left<\alpha^{-1}\right> \phi$$

$$(A7) \qquad \phi \to \left[\alpha^{-1}\right] \langle \alpha \rangle \phi$$

As for PDL, CPDL has the **small model property**, hence it holds that $CPDL-SAT \in EXP-complete$

What about the expressive power? Consider these two models:

$\mathfrak{M}=(M,R,V)$	$\mathfrak{M}'=(W',R',V')$
$W=\{x,y\}$	$W'=\{y'\}$
$R(\pi) = \{(x,y)\}$	$R'(\pi)=arnothing$
$V(x) = V(y) = \varnothing$	V'(y')=arnothing

$\mathfrak{M}=(M,R,V)$	$\mathfrak{M}'=(W',R',V')$
$W = \{x,y\}$	$W' = \{y'\}$
$R(\pi) = \{(x,y)\}$	$R'(\pi)=arnothing$
$V(x) = V(y) = \varnothing$	V'(y')=arnothing

From the perspective of PDL y and y' are *indistinguishable*, in fact

$$\mathfrak{M}, y \models \phi \iff \mathfrak{M}', y' \models \phi$$

$\mathfrak{M}=(M,R,V)$	$\mathfrak{M}'=(W',R',V')$
$W = \{x, y\}$	$W' = \{y'\}$
$R(\pi) = \{(x,y)\}$	$R'(\pi)=arnothing$
$V(x) = V(y) = \varnothing$	V'(y')=arnothing

However CPDL can distinguish y and y' because

$$\mathfrak{M},y\models\left\langle \pi^{-1}
ight
angle op \mathfrak{M}^{\prime},y^{\prime}
ot\models\left\langle \pi^{-1}
ight
angle op$$

meaning that CPDL has more expressive power than PDL