Assignment 3

Ruofei HUANG(z5141448) Anqi ZHU(z5141541) May 29, 2018

1 Task 1

1.1 Some useful symbol definitions about manipulating words

A word, as mentioned in the assignment specification, is defined as a finite sequence of letters over L = 'a', ..., 'z'. The specification already defines the relationship of ' \leq ' between a word v and a word w (which means v is a prefix of w or w itself if $v \leq w$).

So we would like to further this definition and define a relationship of '<' when v is a proper prefix of w which cannot be w itself if v < w. That means:

$$v < w \Leftrightarrow v \le w \land v \ne w$$

We also would like to define a symbol |w| that represents the length of a word w. We formally define this by:

$$|w| = \begin{cases} 0 & \text{if } w = \epsilon \\ 1 + |w'| & \text{else} \end{cases}$$

where $\exists l \in L \{w = w' \ l\}$

1.2 Syntactic(Abstract) Data Type Dict

Inspired by the program sketch and the assignment statement, we could describe the syntactic data type Dict as below (the encapsulated state would be a dictionary word set W).

$$Dict = (W = \phi,$$

$$\begin{pmatrix} \mathbf{proc} \ addword^{Dict}(\mathbf{word} \ w) \cdot b, W : [\mathtt{TRUE}, b = b_0 \land W = W_0 \cup \{w\}] \\ \mathbf{func} \ checkword^{Dict}(\mathbf{word} \ w) : \\ \mathbb{B} \cdot \mathbf{var} \ b \cdot b, W : [\mathtt{TRUE}, b = (w \in W) \land W = W_0]; \ \mathbf{return} \ b \\ \mathbf{proc} \ delword^{Dict}(\mathbf{word} \ w) \cdot b, W : [w \in W, b = b_0 \land W = W_0 \setminus \{w\}] \end{pmatrix})$$

2 Task 2

2.1 Data Type Refinement

Now we would like to refine Dict to a second data type DictA where we replace W with a trie t. We would also like to define the domain of a t as $\mathbf{dom}(t)$. We shall use this definition later in our refinement.

2.1.1 Inductive Relation Predicate

The correspondence between the two state space W and t is captured by the inductively defined predicate.

$$r = (W = \{w \in \mathbf{dom}(t) | t(w) = 1\})$$

which we can translate into a relation function that transfers a concrete state space t to an abstract state space W:

$$f(t) = \{ w \in \mathbf{dom}(t) | t(w) = 1 \}$$

With that in mind, we can propose the initialisation predicate and corresponding operations of Dict A.

2.1.2 Initialisation Predicate

We would like to define the initialisation predicate of DictA as follows:

$$init^{DictA} = (t := \{\epsilon \mapsto 0\})$$

2.1.3 Operations

We would like to define the operations of DictA as follows:

```
\begin{aligned} &\mathbf{proc}\ addword^{DictA}(\mathbf{word}\ w) \cdot b, t: \\ &[\mathsf{TRUE}, b = b_0 \wedge t = t_0 \backslash \{w \mapsto 0\} \cup \{w \mapsto 1\} \cup \{w' < w \wedge w' \notin \mathbf{dom}(t) | w' \mapsto 0\}] \\ &\mathbf{func}\ checkword^{DictA}(\mathbf{word}\ w) : \mathbb{B} \cdot \mathbf{var}\ b \cdot b, t: \\ &[\mathsf{TRUE}, t = t_0 \wedge b = (\forall w' \leq w \ (w' \in \mathbf{dom}(t)) \wedge t(w) = 1)];\ \mathbf{return}\ b \\ &\mathbf{proc}\ delword^{DictA}(\mathbf{word}\ w) \cdot b, t: \\ &[\mathsf{TRUE}, b = b_0 \wedge (w \notin \mathbf{dom}(t) \vee t = t_0 : w \mapsto 0)] \end{aligned}
```

2.2 Proof of Refinement

Now we would like to start proving the refinements of the initialization and each operation from t to W.

We start from proving the refinement between $init^{DictA}$ and $init^{Dict}$.

$$init^{DictA} \Rightarrow init^{Dict}[f^{(t)}/W]$$

 $\Leftrightarrow \quad \langle \text{Definition of } init^{DictA} \text{ and } init^{Dict} \rangle$
 $\forall w \in \mathbf{dom}(t) (t(w) = 0) \Rightarrow W = \phi$

Since all our precondition of concrete is trivial which all of them are TRUE, we don't need to proof the condition (3_f) . But condition (4_f) must be checked for all three operations. For the addword we proof:

$$pre_{addword^{Dict}}[f^{(t_0)}/w] \wedge post_{addword^{DictA}}$$

$$\Leftrightarrow \quad \langle \text{Definition of } addword^{Dict} \text{ and } addword^{DictA} \rangle$$

$$\text{TRUE}[f^{(t_0)}/w] \wedge b = b_0 \wedge t = t_0 \cup \{w \mapsto 1\} \cup \{w' < w \wedge w' \notin \mathbf{dom}(t) | w' \mapsto 0\}$$

$$\Rightarrow \quad \langle \text{Definition of } f \rangle$$

$$f(t) = f(t_0 \cup \{w \mapsto 1\} \cup \{w' < w \wedge w' \notin \mathbf{dom}(t) | w' \mapsto 0\})$$

$$\Leftrightarrow \quad \langle \text{Logic} \rangle$$

$$f(t) = f(t_0) \cup \{w\}$$

$$\Leftrightarrow \quad \langle \text{Definition of } addword^{Dict} \text{ and } addword^{DictA} \rangle$$

$$post_{addword^{Dict}}[f^{(t_0),f(t)}/w_{0,W}]$$

For the *checkword* we proof:

$$pre_{checkword^{Dict}}[f^{(t_0)}/w] \wedge post_{checkword^{DictA}}$$

$$\Leftrightarrow \quad \langle \text{Definition of } checkword^{DictA} \text{ and } checkword^{Dict} \rangle$$

$$\text{TRUE}[f^{(t_0)}/w] \wedge t = t_0 \wedge b = (\forall w' \leq w \, (w' \in \mathbf{dom}(t)) \wedge t(w) = 1)$$

$$\Rightarrow \quad \langle \text{Definition of } f \rangle$$

$$b = (w \in f(t) \wedge t(w) = 1) \wedge t = t_0$$

$$\Leftrightarrow \quad \langle \text{Definition of } checkword^{DictA} \text{ and } checkword^{Dict} \rangle$$

$$post_{checkword^{Dict}}[f^{(t_0)},f^{(t)}/w_0,w]$$

For the *delword* we proof:

$$pre_{delword^{Dict}}[f^{(t_0)}/w] \wedge post_{delword^{DictA}}$$

$$\Leftrightarrow \quad \langle \text{Definition of } delword^{DictA} \text{ and } delword^{Dict} \rangle$$

$$w \in f(t_0) \wedge b = b_0 \wedge (w \notin \mathbf{dom}(t) \vee t = t_0 : w \mapsto 0)$$

$$\Rightarrow \quad \langle \text{Definition of } f \rangle$$

$$f(t) = f(t_0) \backslash \{w\}$$

$$\Leftrightarrow \quad \langle \text{Definition of } delword^{DictA} \text{ and } delword^{Dict} \rangle$$

$$post_{delword^{Dict}}[f^{(t_0),f(t)}/w_{0,W}]$$

3 Task 3

We derive our code in to five parts by *init*, data type's operations and a *popWord* for recursive calls.

3.1 init

From the spec we have:

$$\mathbf{dom}(t) = \{\epsilon\} \land f(t) = \phi$$

$$\sqsubseteq \quad \langle \text{ass} \rangle$$

$$t := \{\epsilon \mapsto 0\}$$

3.2 popWord

We would like to define a semantic function $popWord(var\ word, var\ index)$ that returns a substring of the word w starting from the first letter to the index'th letter. A popWord is for us to have a easily use recursive calls, it is also a bridge between C and our Toy language¹. The purpose of this function is to pop the first given letters of a given word.

3.2.1 Math Function

$$POPWORD(w, i) = w'$$

where $w, w' \in \mathbf{word} \ \land i \in \mathbb{N} \land w' \leq w \land |w'| = i$

3.2.2 Toy Language Function

```
func popWord(\mathbf{value}\ w, \mathbf{value}\ i)·
\mathbf{var}\ w' \cdot w' : [i \le |w|, w' \le w \land |w'| = i]; \mathbf{return}\ w' \sqcup_{(P1)}
```

3.3 addword

From the $spec^2$ we have:

¹This function would not appear in our C code, the pointer to the node would be solve this problem. And pointer is a difficult part for Toy Language to express and proof.

²Definition of this is in the Assignment 3 requirements of cs2111.

3.4 checkword

From the spec we have:

```
func checkword^{DictA}(\mathbf{value}\ w): \mathbb{B} \cdot 
\mathbf{var}\ b \cdot \llcorner b, t : [\mathsf{TRUE}, b = (\forall w' \leq w\ (w' \in \mathbf{dom}(t)) \land t(w) = 1)]; \lrcorner_{(C1)} \ \mathbf{return}\ b
(C1) \sqsubseteq \qquad \langle \mathsf{c-frame} \rangle 
b : [\mathsf{TRUE}, b = (\forall w' \leq w\ (w' \in \mathbf{dom}(t)) \land t(w) = 1)];
\sqsubseteq \qquad \langle \mathsf{proc}, \ 0 \leq |w| \ \mathrm{and}\ \epsilon \in \mathbf{dom}(t) \ \mathrm{since}\ init^{DictA} \rangle 
b := doCheckword(w, 0);
```

doCheckword() is a recursive function call that does the major checking work through the whole trie t with a variable i to locate which sub-trie it is checking in. The definition of the function and the refinement of its linking procedure is as follows.

3.4.1 Definition of doCheckword

func $doCheckword(value\ w, value\ index: \mathbb{N}): \mathbb{B}$.

$$\mathbf{var}\ b \cdot \mathbf{b} : \left[\begin{array}{l} 0 \leq index \leq |w| \wedge \\ \forall w' \leq w \wedge |w'| \leq index \, (w' \in \mathbf{dom}(t)) \, , \\ b = (\forall w' \leq w \, (w' \in \mathbf{dom}(t)) \wedge t(w) = 1) \end{array} \right] \mathbf{\begin{subarray}{c} -(C2); \mathbf{return} \ b \ \end{subarray}}$$

3.4.2 Refinement of the procedure in doCheckword

```
\langle if \rangle
         (C2) \sqsubseteq
                  if index < |w|
                  then b : [index < |w| \land pre(C2), post(C2)] \rfloor_{(C3-1)}
                  else_b : [index \ge |w| \land pre(C2), post(C2)] \rfloor_{(C3-2)}
                  fi
    (C3-1) \sqsubseteq
                       \langle if \rangle
                  \mathbf{if}\;(POPWORD(w,index+1)\in\mathbf{dom}(t))
                 fi
(C3 - 1 - 1) \sqsubseteq
                      (ass, func)
                 b := doCheckword(w, index + 1);
(C3-1-2) \sqsubseteq (Ass and POPWORD(w, index + 1) \notin \mathbf{dom}(t) \Rightarrow b = FALSE)
                 b := \text{False}
    (C3-2) \sqsubseteq \langle index \geq |w| \land index \leq |w| \Rightarrow index = |w| \text{ and definition of } post(C2) \rangle
                  b := (t(w) = 1)
```

3.5 delword

From the spec we have:

3.5.1 Definition of doDelword

3.5.2 Refinement of the procedure in doDelword

```
(D2) \sqsubseteq
                        \langle if \rangle
                   if index < |w|
                   then b: [index < |w| \land pre(D2), post(D2)] \rfloor_{(D3-1)}
                   \mathbf{else}_{\mathbf{L}}b: [index \geq |w| \land pre(D2), post(D2)]_{\mathbf{L}(C3-2)}
                   fi
    (D3-1) \sqsubseteq
                         \langle if \rangle
                   \mathbf{if}\;(POPWORD(w,index+1)\in\mathbf{dom}(t))
                   fi
(D3-1-1) \sqsubseteq
                         (ass, func)
                   doDelword(w, index + 1);
                         \langle \text{Ass and } POPWORD(w, index + 1) \notin \mathbf{dom}(t) \Rightarrow post(D2) = \text{TRUE } \rangle
(D3-1-2) \sqsubseteq
                   skip;
    (C3-2) \sqsubseteq \langle index \geq |w| \land index \leq |w| \Rightarrow index = |w| \text{ and definition of } post(D2) \rangle
                   t := t : w \mapsto 0;
```