STAT 380:

Classification Technique: Evaluating Performance of a Classification Technique

UAEU

Outlook of the unit

Prediction and Classification Approaches

- Classification Techniques
 - Logistic regression
 - Discriminant analysis
- Evaluating Performance of a Classification Technique
- Tree-based methods: Decision trees
 - Classification trees
 - Regression trees

Evaluating
Performance of a
Classification
Technique

A natural criterion for judging the performance of a classi-
fier is the probability of making a misclassification error.

- Misclassification means that the record belongs to one class but the model classifies it as a member of a different class..
- Is there a minimal probability of misclassification that we should require of a classifier?
- A classifier that makes no errors would be perfect unrealistic.

- Classification matrix summarizes the correct and incorrect classifications that a classifier produced.
- Rows and columns of the confusion matrix correspond to the predicted and true (actual) classes.

• Example:

-		Actual class		
		0	1	
Predicted class	0	2600	100	
	1	100	200	

- Diagonal cells give the number of correct classifications.
- Off-diagonal cells give counts of misclassification.
- Classification matrix gives estimates of the true classification and misclassification rates.

- Classification matrix summarizes the correct and incorrect classifications that a classifier produced.
- Rows and columns of the confusion matrix correspond to the predicted and true (actual) classes.

• Example:

-		Actual class		
		0	1	
Predicted class	0	2600	100	
	1	100	200	

- Diagonal cells give the number of correct classifications.
- Off-diagonal cells give counts of misclassification.
- Classification matrix gives estimates of the true classification and misclassification rates.

Accuracy measures - the classification matrix

- We summarize the classification for the validation data as follows.
- Classification matrix:

$$\begin{tabular}{c|cccc} & Actual class \\ \hline C_1 & C_2 \\ \hline Predicted & C_1 & $n_{1,1}$ & $n_{2,1}$ \\ class & C_2 & $n_{1,2}$ & $n_{2,2}$ \\ \hline \end{tabular}$$

Estimated misclassification rate:

$$err = \frac{n_{1,2} + n_{2,1}}{n_{V}},$$

where n_v is the total number of units in the validation data.

Estimated accuracy:

$$accuarcy = 1 - err = \frac{n_{1,1} + n_{1,1}}{n_v}.$$

Propensities and cut-off for classification

- First step in most classification algorithms is to estimate the probability π (propensity) that a unit belongs to each of the classes.
- If overall classification accuracy is of interest, the unit can be assigned to the class with the highest probability.
- In many records, a single class is of special interest, so we will focus on that particular class.
- It may make sense in such cases to consolidate classes so that you end up with two: the class of interest and all other classes.
- The default cutoff value in two-class classifiers is 0.5.
- It is possible, however, to use a cutoff that is either higher or lower than 0.5. Two examples:
 - unequal misclassification costs
 - unequal importance of classes.

Misclassification means that the record belongs to one class but the model classifies it as a member of a different class..

Evaluation Metrics (1)

General form of a 2 × 2 confusion matrix

		Actual value			
		C ₁	C_2	Row total	
	$C_1^{'}$	TruePositive	FalsePositive	Ρ′	
Predicted					
value	$C_2^{'}$	FalseNegative	TrueNegative	N′	
	Column total	Р	N		

Note: C_1 is assumed to correspond to a positive class

Evaluation Metrics (2)

A variety of predictive measures can be derived from a confusion matrix:

Accuracy
$$\frac{TP+TN}{TP+TN+FP+FN}$$

Error rate
$$1 - Accuracy$$

Sensitivity

(TP rate)
$$\frac{TP}{TP+FN}$$

Specificity

(TN rate)
$$\frac{TN}{TN+FP}$$

ROC Curve

The **R**eceiver **O**perating **C**haracteristic (ROC) curve is a way to visualize interrelationship between sensitivity and specificity

AUC (area under curve) indicates model goodness, 1 being a perfect model and below 0.5 (yellow line) a useless model (worse then a coin flip).