EDP: Método de Separación de Variables Una Introducción

Mario I. Caicedo

7 de junio de 2024

EL PROBLEMA

Pretendemos resolver.

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0, \quad \phi = \phi(x, y). \tag{1}$$

La técnica de Separación de Variables consiste en proponer una solución factorizada

$$\phi(x,y) = X(x)Y(y), \qquad (2)$$

y seguir una secuencia natural de pasos que llevan a la solución final.

Primer paso: Sustituir la solución propuesta en la ecuación, para obtener

$$\frac{d^2X}{dx^2}Y + X\frac{d^2Y}{dy^2} = 0, \quad 6 \quad \frac{d^2X}{dx^2}Y = -X\frac{d^2Y}{dy^2}, \quad (3)$$

donde tenemos que hacer énfasis en que ahora no tenemos derivadas parciales sino derivadas ordinarias de una variable.

Segundo paso: Dividir por ϕ (multiplicar $[X(x)Y(y)]^{-1}$). Este paso transforma la igualdad en

$$\frac{1}{XY}\frac{d^2X}{dx^2}Y = -\frac{1}{XY}X\frac{d^2Y}{dy^2}\,, (4)$$

es decir,

$$\frac{1}{X}\frac{d^2X}{dx^2} = -\frac{1}{Y}\frac{d^2Y}{dy^2}\,, (5)$$

El lado izquierdo de esta igualdad solo depende de x mientras que el derecho solo depende de y lo que solo es posible si existe una constante (que llamaremos κ^2) tal que

$$\frac{1}{X}\frac{d^2X}{dx^2} = \kappa^2$$

$$\frac{1}{Y}\frac{d^2Y}{dy^2} = -\kappa^2.$$
(6)

En efecto, podemos usar la ec 5 para poner

$$\frac{d}{dx} \left[\frac{1}{X} \frac{d^2 X}{dx^2} \right] = -\frac{d}{dx} \left[\frac{1}{Y} \frac{d^2 Y}{dy^2} \right], \tag{7}$$

como el lado derecho de esta igualdad es independiente de x queda,

$$\frac{d}{dx}\left[\frac{1}{X}\frac{d^2X}{dx^2}\right] = 0, (8)$$

es decir.

$$\frac{1}{X}\frac{d^2X}{dx^2} = \text{constante} = \kappa^2, \tag{9}$$

En la literatura matemática se suele llamar λ a la constante, pero en la literatura de física, suele usarse una cantidad al cuadrado (por eso pusimos κ^2).

¡EUREKA!, el origen de las dos igualdades

$$\frac{1}{X}\frac{d^2X}{dx^2} = \kappa^2$$

$$\frac{1}{Y}\frac{d^2Y}{dy^2} = -\kappa^2,$$
(10)

ahora es evidente. Más aún, hemos mostrado que, la ecuación de Laplace ha sido separada en dos ecuaciones ordinarias acopladas por κ^2

Cuarto paso: Del valor de κ^2 puede asegurarse que solo hay tres posibilidades:

$$\kappa^2 = 0$$

$$\kappa^2 < 0$$

$$\kappa^2 > 0$$

Ahora bien, las ecuaciones diferenciales que tenemos planteadas son a ecuaciones a coeficientes constantes que conocemos bastante bien.

y las tres posibilidades que tenemos en función de las constantes de integración son

$$\kappa^{2} = 0$$

$$X(x) = Ax + B,$$

$$Y(y) = Cy + D.$$
(11)

$$\kappa^{2} < 0$$

$$X(x) = E\cos(\kappa x) + F\sin(\kappa x),$$

$$Y(y) = G e^{\kappa y} + H e^{-\kappa y}.$$

$$\kappa^{2} > 0$$
(12)

$$X(x) = K e^{\kappa x} + L e^{-\kappa x}, \qquad (13)$$

$$Y(y) = M\cos(\kappa y) + N\sin(\kappa y)$$
.

Consecuentemente

$$\kappa^2 = 0$$

$$\phi(x, y) = [Ax + B] [Cy + D]$$
(14)

$$\kappa^{2} > 0$$

$$\phi(x, y) = \left[E e^{\kappa x} + F e^{-\kappa x} \right] \left[G\cos(\kappa y) + H \sin(\kappa y) \right].$$
(15)

$$\kappa^{2} < 0$$

$$\phi(x, y) = [K \operatorname{sen}(\kappa x) + L \operatorname{cosh}(\kappa x)][M^{\kappa y} + Ne^{\kappa y}].$$
(16)

Y esto completa el algoritmo de búsqueda de soluciones separadas.

Problema

¿Como escogemos entre estas soluciones? ó equivalentemente ¿Como sabemos cuál es el valor de κ ?

$$\kappa^{2} = 0 \qquad [Ax + B] [Cy + D]$$

$$\kappa^{2} < 0 \quad [E \operatorname{sen}(\kappa x) + F \operatorname{cos}(\kappa x)] [\operatorname{Gcosh}(\kappa y) + \operatorname{Hsenh}(\kappa y)]$$

$$\kappa^{2} > 0 \quad [K \operatorname{senh}(\kappa x) + L \operatorname{cosh}(\kappa x)] [\operatorname{Mcos}(\kappa y) + \operatorname{Nsen}(\kappa y)]$$

RESPUESTA: Las condiciones de frontera determinan la solución del problema

Condensador de Placas Paralelas

El problema se plantea como: Resuelva la ecuación de Laplace en una región rectangular limitada por x = 0, x = a, y = 0, y = b, sometiendo al potencial $\phi(x, y)$ a las condiciones:

$$\phi(x,0) = 0, \quad \phi(x,b) = V_0 = constante$$

$$\frac{\partial \phi(x,y)}{\partial x}|_{x=0} = 0, \quad \frac{\partial \phi(x,y)}{\partial x}|_{x=a} = 0$$
(17)

Obs: Las dos últimas condiciones son equivalentes a pedir que no haya líneas de campo eléctrico saliendo de la región delimitada por las plancas (lo que usualmente denominamos ausencia de efectos de borde)

CONDENSADOR DE PLACAS PARALELAS

Probemos resolver con la la denominada solución trivial ($\kappa^2 = 0$),

$$\phi(x,y) = [Ax + B] [Cy + D],$$

al evaluar las condiciones para y = 0 y y = b resulta

$$\phi(x,0) = [Ax + B][D] = 0,$$

$$\phi(x,b) = [Ax + B][Cb + D] = V_0$$

Condensador de Placas Paralelas

Las condiciones para la derivada

$$\frac{\partial \phi(x,y)}{\partial x}|_{x=0} = A[Cy+D], \quad \frac{\partial \phi(x,y)}{\partial x}|_{x=a} = A[Cy+D]$$

implican

$$A[Cy + D] = 0, \quad A[Cy + D] = 0,$$

de acá sigue A = 0, lo que nos deja con

$$B[D] = 0$$
, $B[Cb + D] = V_0$

de este sistema deducimos que D = 0, de donde:

$$BCb = V_0, (18)$$

es decir, $BC = V_0/b$.

CONDENSADOR DE PLACAS PARALELAS

Ahora podemos sustituir estos valores en la solución, que ahora queda como

$$\phi(x,y)=BCy\,,$$

es decir,

$$\phi(x,y) = \frac{V_0}{b} y$$

Un detallito ...

Teorema

Para ciertas condiciones (de borde), la solución de la ecuación de Laplace es única

Consideremos una región plana rectangular bordeada en tres lados por un conductor y por el restante por un dispositivo que permite distribuir una señal espacial de voltaje (figura de la izquierda)

En la figura de la derecha tenemos las equipotenciales y lineas de campo eléctrico que se esperan en tal situación

DETALLE DEL PROBLEMA

Desde el punto de vista matemático, el problema que nos interesa consiste en encontrar una función armónica en la región descrita y sometiendo a tal función a a las condiciones de Borde de Dirichlet

$$\phi(0, y) = 0$$
, $\phi(a, y) = 0$
 $\phi(x, 0) = 0$
 $\phi(x, b) = V_0 \operatorname{sen}\left(\frac{\pi x}{2}\right)$

Si intentáramos satisfacer las condiciones de borde en x=0 y x=a usando la solución trivial $(\kappa^2=0)$ obtendríamos $\phi(x,y)=0$ que evidentemente no satisface la condición de borde en y=b. La condición $\phi(0,y)=\phi(a)=0$ sugiere intentar con algo que pueda tener periodicidad en x, por eso, probamos con

$$\phi(x,y) = [Asen(\kappa x) + Bcos(\kappa y)][Csenh(\kappa y) + Bcosh(\kappa y)]$$

las condiciones de borde en x = 0 y x = a implican

$$[Asen(\kappa 0) + Bcos(\kappa 0)][Csenh(\kappa y) + Bcosh(\kappa y)] = 0$$
$$[Asen(\kappa a) + Bcos(\kappa a)][Csenh(\kappa y) + Bcosh(\kappa y)] = 0,$$

que obliga a satisfacer el sistema algebráico

$$\begin{pmatrix} 0 & 1 \\ sen(\kappa a) & cos(\kappa a) \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (19)

El sistema 19 tiene soluciones no triviales si y solo si el determinante de la matriz de coeficientes es nulo, es decir, sii

$$sen(\kappa a)=0$$
,

lo que implica las condiciones:

$$\kappa = \frac{n\pi}{a} \quad n = \pm 1, \pm 2, \dots$$

y B = 0. De esto se deduce que funciones de la forma

$$\phi(x,y) = sen\left(\frac{n\pi x}{a}\right) \left[Csenh\left(\frac{n\pi}{a}y\right) + Bcosh\left(\frac{n\pi}{a}y\right) \right], \quad (20)$$

son soluciones de la ecuación de Laplace que satisfacen un subconjunto de las condiciones de borde del problema.

Al evaluar 20 en y = 0 y y = b

$$sen\left(\frac{n\pi x}{a}\right)\left[Csenh\left(\frac{n\pi}{a}0\right) + Bcosh\left(\frac{n\pi}{a}0\right)\right] = 0$$

$$sen\left(\frac{n\pi x}{a}\right)\left[Csenh\left(\frac{n\pi}{a}b\right) + Bcosh\left(\frac{n\pi}{a}b\right)\right] = V_0 sen\left(\frac{\pi x}{a}\right)$$

es decir

$$sen\left(\frac{n\pi x}{a}\right)B = 0$$

$$sen\left(\frac{n\pi x}{a}\right)\left[Csenh(\frac{n\pi}{a}b) + Bcosh\frac{n\pi}{a}b\right] = V_0 sen(\frac{\pi x}{a})$$

 $sen\left(\frac{n\pi x}{2}\right)B=0$ fija el valor de B en 0, de allí deducimos que

$$\phi(x,y) = sen\left(\frac{n\pi x}{a}\right) C senh\left(\frac{n\pi}{a}b\right) = V_0 sen\left(\frac{\pi x}{a}\right).$$

Es evidente que n tiene que ser 1 y por lo tanto, las condiciones de borde se satisfacen con

$$\phi(x,y) = \frac{V_0}{\operatorname{senh}(\frac{\pi}{a}b)} \operatorname{sen}\left(\frac{\pi x}{a}\right) \operatorname{senh}\left(\frac{\pi y}{a}\right)$$

Un problema mucho más interesante se obtiene considerando la misma geometría de antes, pero aplicando una excitación uniforme $(\phi(x,b)=V_0)$

En este caso, encontraremos que tres de las condiciones de borde se satisfacen con las "autofunciones"

$$\phi_n(x,y) = \operatorname{sen}\left(\frac{n\pi x}{a}\right)\operatorname{senh}\left(\frac{n\pi y}{a}\right)$$

Sin embargo, ninguna de las autofunciones puede satisfacer la condición $\phi(x,b)=V_0$

Aún nos queda el recurso de intentar el principio de superposición, esto es, poner

$$\phi(x,y) = \sum_{n} C_{n} \operatorname{sen}\left(\frac{n\pi x}{a}\right) \operatorname{senh}\left(\frac{n\pi y}{a}\right)$$

pero en este caso, la solución (de existir), no es en variables separadas (¿por qué?)

Colocando y=b y considerando la extensión impar de la excitación podemos llevar a cabo un ejercicio estándar de series de Fourier que determina la solución

$$\phi(x,y) = \frac{4V_0}{\pi} \sum_{n=1,3,5,\dots} \frac{\operatorname{sen}\left(\frac{n\pi x}{a}\right) \operatorname{senh}\left(\frac{n\pi y}{a}\right)}{\operatorname{n} \operatorname{senh}\left(\frac{n\pi b}{a}\right)}$$

