Supplementary Information

1

2

biomass waste-derived porous carbons 3 Xiangzhou Yuan ^{a,b,§}, Manu Suvarna ^{c,§}, Sean Low ^c, Pavani Dulanja Dissanayake ^a, 4 Ki Bong Lee d, Jie Li c, Xiaonan Wang c,**, Yong Sik Ok a.* ^a Korea Biochar Research Center, APRU Sustainable Waste Management Program & 6 Division of Environmental Science and Ecological Engineering, Korea University, 7 8 Seoul 02841, Republic of Korea 9 ^b R&D Centre, Sun Brand Industrial Inc., Jeollanam-do, 57248, Republic of Korea ^c Department of Chemical and Biomolecular Engineering, National University of 10 11 Singapore, Singapore 117585, Singapore 12 ^d Department of Chemical & Biological Engineering, Korea University, Seoul 02841, 13 Republic of Korea 14 15 § These authors contributed equally to this work. 16 * Corresponding author: Email: yongsikok@korea.ac.kr (Y.S. Ok) 17 ** Corresponding author: Email: chewxia@nus.edu.sg (X. Wang) 18 19 20 **Summary:** 21 No. of pages: 67; No. of figures: 1; No. of tables: 4

Applied machine learning for prediction of CO₂ adsorption on

 Table S1. Biomass waste-derived porous carbons (BWDPCs) without heteroatom-doping treatment.

	Upcycling for por	ous carbons		Textural _l	properties		Ultima	te anal	ysis (%)	CO ₂ up		
Carbon precursors	Carbonization	Activation	Activation	S_{BET}^{a} (m^2/g)	V _{toal} b (cm ³ /g)	V _{micro} c (cm ³ /g)	С	н	N	O *	25 °C and 1 bar	0 °C and 1 bar	25 °C and 0.15 bar
	-	KOH activation at 850 °C for 2 h		1,281.6	0.71	0.32	69.22	3.99	0.08	26.30	2.63		
Wood chip ¹	10 kW fixed-bed,	KOH activation at 850 °C for 2 h	CO ₂ activation at 550 °C for 1 h	1,012.6	0.56	0.22	64.83	3.64	0.38	30.77	2.59		
700/	10 kW fixed-bed, downdraft	KOH activation at 850 °C for 2 h		1,408.8	0.83	0.36	72.41	3.63	0.01	23.59	2.92		
70% wood chips and 30% chicken manure	(800–1000 °C) K	KOH activation at 850 °C for 2 h	CO ₂ activation at 550 °C for 1 h	1,403.9	0.85	0.33	69.51	4.35	0.76	24.94	2.44		
40% food waste + 60% wood ²		KOH activation at 850 °C for 2 h		841.3	0.36						3.23		

		KOH activation at 850 °C for 2 h	CO ₂ activation at 550 °C for 1 h	667.4	0.29						2.73	
		K ₂ CO ₃ activation at 600 °C for 1 h		645	0.26	0.25	70.86	1.71	3.19	14.72	3.45	1.43
		K ₂ CO ₃ activation at 600 °C for 5 h		750	0.30	0.29	83.88	1.63	3.27	5.30	3.65	1.46
Spent coffee ground ³		K ₂ CO ₃ activation at 700 °C for 1 h		1,259	0.52	0.49	87.56	1.06	1.87	0.23	4.33	1.36
spent corree ground		K ₂ CO ₃ activation at 700 °C for 5 h		1,476	0.61	0.60	91.62	0.80	1.67	0.00	4.54	1.30
		K ₂ CO ₃ activation at 800 °C for 1 h		1,692	0.71	0.68	94.51	0.58	1.51	0.00	4.46	1.20
		K ₂ CO ₃ activation at 800 °C for 5 h		2,337	1.15	0.85	82.66	0.59	1.55	0.00	3.78	0.92
Potato starch ⁴	Hydrothermal carbonization at 180 °C for 12 h	600 °C for 1 h	1000 °C for 10 min with	1,409	0.69	0.51						0.70\$
	500 °C for 1 h		Air	5.4	0.00		<u> </u> 	<u> </u>	<u> </u> 	<u> </u>	0.74§	
	600 °C for 1 h			207	0.00		<u> </u>				1.43\$	
Onion peel ⁵	700 °C for 1 h			550	0.37						1.68§	
	800 °C for 1 h			692	0.43						1.59§	

	900 °C for 1 h		930	0.54						1.57§	
	700 °C for 2 h	KOH activation at 700 °C for 2 h	1,728.66	0.70	0.67	93.40	0.73	0.89	6.79	4.21	
Pine sawdust ⁶	700 °C for 2 h	KOH activation at 800 °C for 2 h	2,279.52	0.99	0.91	96.96	0.18	0.99	4.51	3.46	
	700 °C for 2 h	KOH activation at 900 °C for 2 h	2,330.89	1.91	0.98	87.57	0.17	1.30	7.35	2.45	
	500 °C for 2 h	KOH (2) activation at 800 °C for 1 h	2,112	0.94	0.86					4.18	
	500 °C for 2 h	KOH (4) activation at 800 °C for 1 h	3,255	1.65	1.29					3.35	
Date ⁷	500 °C for 2 h	KOH (6) activation at 800 °C for 1 h	3,337	2.05	0.54					2.90	
Date	800 °C for 2 h	KOH (2) activation at 800 °C for 1 h	1,634	0.76	0.56					4.14	
	800 °C for 2 h	KOH (4) activation at 800 °C for 1 h	2,367	1.15	0.83					4.36	
	800 °C for 2 h	KOH (6) activation at 800 °C for 1 h	2,844	1.63	0.89					3.65	
Bee-collected pollen	800 °C for 4 h	KOH (1:3) activation at 800 °C for 2 h	232	0.11	0.09	80.82		2.34	15.36	1.77	0.98

	800 °C for 4 h	KOH (1:2) activation at 800 °C for 2 h		332	0.16	0.12	76.25	1.89	21.86	2.10		1.04
	800 °C for 4 h	KOH (1:1) activation at 800 °C for 2 h		937	0.40	0.38	77.57	1.54	20.89	3.38		1.18
	800 °C for 4 h	KOH (2:1) activation at 800 °C for 2 h		1,214	0.53	0.48	79.37	1.18	19.45	3.40		0.85
	800 °C for 4 h	KOH (3:1) activation at 800 °C for 2 h		1,460	0.63	0.53	93.10	0.31	6.59	3.42		0.69
Carlia maal 9	360 °C for 2 h	KOH (1:1) activation at 700 °C for 1 h		1,049	0.69	0.43				3.80		
Garlic peel ⁹	360 °C for 2 h	KOH (2:1) activation at 700 °C for 1 h		1,248	0.68	0.52				4.10		
Biomass tar ¹⁰		CaO/KOH (1:1) activation at 300 °C for 1 h	CaO/KOH activation at 800 °C for 1 h	1,898	1.52	0.43				2.44	3.81	0.80

	CaO/KOH (1:2) activation at 300 °C for 1 h	CaO/KOH activation at 800 °C for 1 h	1,790	1.21	0.48				2.71	4.40	0.74
	CaO/KOH (1:3) activation at 300 °C for 1 h	CaO/KOH activation at 800 °C for 1 h	2,424	1.38	0.51				2.67	4.10	0.70
	CaO/KOH (2:2) activation at 300 °C for 1 h	CaO/KOH activation at 800 °C for 1 h	2,358	1.85	0.49				2.92	4.77	1.01
	CaO/KOH (2:3) activation at 300 °C for 1 h	CaO/KOH activation at 800 °C for 1 h	1,829	1.25	0.49				3.13	5.03	1.20
	CaO/KOH (2:4) activation at 300 °C for 1 h	CaO/KOH activation at 800 °C for 1 h	1,684	1.43	0.48				2.75	4.62	0.68
Biomass tar 11	KOH (0.5) activation at 300 °C for 0.5 h	KOH activation at 600 °C for 0.5 h	660	0.28	0.24	83.48	3.53	12.98	2.94	4.22	0.74

	KOH (0.5) activation at 300 °C for 0.5 h	KOH activation at 700 °C for 0.5 h	1,076	0.44	0.38	84.57	3.03	9.46	4.11	6.02	1.64
	KOH (0.5) activation at 300 °C for 0.5 h	KOH activation at 800 °C for 0.5 h	1,268	0.55	0.50	90.49	2.12	7.39	3.64	5.43	1.22
	KOH (0.5) activation at 300 °C for 0.5 h	KOH activation at 900 °C for 0.5 h	1,480	0.71	0.48	89.42	2.08	7.04	3.31	5.41	1.52
	KOH (0.25) activation at 300 °C for 0.5 h	KOH activation at 700 °C for 0.5 h	1,161	0.38	0.35	88.44	3.02	8.53	3.69	5.82	1.38
	KOH (1.0) activation at 300 °C for 0.5 h	KOH activation at 700 °C for 0.5 h	1,804	0.85	0.66	89.93	2.00	8.07	3.16	5.20	0.96
	KOH (2.0) activation at 300 °C for 0.5 h	KOH activation at 700 °C for 0.5 h	1,857	0.87	0.48	92.01	1.32	6.67	3.06	5.04	0.92

		KOH activation at 500 °C for 1 h	972	0.49	0.39				14.24	3.01	4.33	0.95
		KOH activation at 600 °C for 1 h	1,515	0.90	0.62				11.18	4.19	6.38	1.18
Glucose 12	180 °C for 10 h	KOH activation at 700 °C for 1 h	1,815	1.02	0.74				11.26	3.91	6.25	0.87
		KOH activation at 800 °C for 1 h	2,305	1.12	0.93				7.83	3.96	6.99	0.93
Banana stems ¹³	700.00 6 21		909	0.44	0.32	79.50	1.50		19.00	3.20	5.30	
Banana fiber 13	700 °C for 2 h		1,260	0.81	0.56	84.00	2.00		14.00	5.00	7.10	
Flesh from sunflower receptacle	500 °C for 2 h	KOH activation at 800 °C for 2 h	3,072	1.77	0.78	91.02	2.71	0.40	5.87	2.78	4.09	
Flesh from	500 °C for 2 h	KOH activation at 800 °C for 2 h	2,730	1.84	1.12	94.50	0.95	0.80	3.75	2.34	4.08	
sunflower stalk 14	1000 °C for 1 h		654	0.46	0.36	77.12	1.08	0.75	21.05	3.08	4.52	
		Steam activation at 650 °C for 2 h	473	0.20	0.17	88.40	2.20	0.00	9.40	1.72		0.70
Cellulose fibers ¹⁵		Steam activation at 700 °C for 2 h	593	0.25	0.21	83.70	0.60	0.00	15.70	2.33		0.90
P.nigra wood 15		Steam activation at 600 °C for 2 h	217	0.12	0.13	89.60	2.60	1.00	6.80	1.12		0.50
Camphor leaves 16	500 °C for 2 h	KOH activation at 500 °C for 1 h	721	0.35	0.29			3.00		2.77	4.50	

		KOH activation at 600 °C for 1 h	1,146	0.55	0.47			1.50	3.74	5.86	
		KOH activation at 700 °C for 1 h	1,446	0.68	0.49			0.80	2.81	5.26	
		KOH activation at 800 °C for 1 h	1,736	0.87	0.36			0.70	2.42	4.80	
		KOH (2:2) activation at 600 °C for 2 h	955	0.43	0.31	57.46	3.37	0.66		4.93	
		KOH (2:2) activation at 700 °C for 2 h	1,539	0.72	0.48	59.20	3.70	0.34		6.80	
Corn stover ¹⁷	250 °C for 10 h	KOH (2:2) activation at 800 °C for 2 h	2,442	1.56	0.86	60.41	3.91	0.24		7.14	
Corn stover 17	250 °C for 10 h	KOH (2:2) activation at 900 °C for 2 h	2,225	1.11	0.49	64.90	3.12	0.24		5.79	
		KOH (1:2) activation at 800 °C for 2 h	1,543	0.71	0.61	66.56	2.99	0.86		5.06	
		KOH (3:2) activation at 800 °C for 2 h	2,201	1.31	0.69	56.55	3.03	0.31		6.22	

		KOH (4:2) activation at 800 °C for 2 h	2,170	1.27	0.66	54.94	2.19	0.32		4.86	
		KOH (2:1) activation at 800 °C for 2 h	1,630	0.69	0.60	76.91	2.73	0.20		6.47	
		KOH (2:3) activation at 800 °C for 2 h	2,132	1.13	0.70	59.22	3.88	0.23		6.85	
		KOH (2:4) activation at 800 °C for 2 h	1,862	0.81	0.69	58.22	3.79	0.22		6.32	
		KOH (1) activation at 600 °C for 1 h	637	0.35	0.25					4.00	
Stem of Arundo donax ¹⁸		KOH (2) activation at 600 °C for 1 h	1,122	0.59	0.50					6.30	
		KOH (3) activation at 600 °C for 1 h	849	0.50	0.31					3.70	
	600 °C for 3 h		1,019	0.71	0.10				2.40		
Fresh cauliflower 19	800 °C for 3 h		1,107	0.79	0.13				2.70		
	1000 °C for 3 h		1,139	1.26	0.24				3.10		

L. 4	100 00 0 241	450 °C for 2 h	KOH activation at 800 °C for 1 h (char/KOH = 1:2)	2,091	0.87	0.65				3.85	6.17	
Lotus stem ²⁰	180 °C for 24 h	450 °C for 2 h	KOH activation at 800 °C for 1 h (char/KOH = 1:4)	2,893	1.59	0.70				2.84	4.61	
		KOH (2) activation at 600 °C for 1 h		1,511	0.65	0.54	78.20	1.90	19.90	4.30		1.20
Sawdust ²¹	400 9G C - 1 L	KOH (2) activation at 700 °C for 1 h		1,830	0.78	0.67	83.40	0.90	15.70	4.90		1.10
Sawdust 21	400 °C for 1 h	KOH (2) activation at 800 °C for 1 h		2,163	0.93	0.74	88.10	0.40	11.50	4.70		1.10
		KOH (4) activation at 800 °C for 1 h		2,610	1.15	0.74	88.70	0.40	10.90	4.00		0.90
		CO ₂ (0.1) activation at 600 °C		2.48							2.18	1.18♥
Vine shoot ²²	600 °C for 1 h	CO ₂ (1) activation at 600 °C		46.3							2.21	1.20♥
		CO ₂ (0.1) activation at 800 °C		374	0.19	0.11					3.45	1.68♥

		KOH (2) activation at 600 °C	538	0.24	0.18			3.19	1.76♥
		KOH (2) activation at 700 °C	1,032	0.49	0.35			4.38	1.92♥
		KOH (5) activation at 600 °C	864	0.41	0.28			3.74	1.78♥
		KOH (5) activation at 700 °C	1,439	0.67	0.49			6.08	2.27♥
		KOH (1) activation at 600 °C	704	0.29	0.24			4.16	2.16♥
		KOH (1) activation at 600 °C	1,101	0.54	0.38			5.36	2.42♥
		KOH (2) activation at 600 °C	1,305	0.53	0.45			6.04	2.25♥
		KOH (2) activation at 700 °C	1,671	0.67	0.59			5.40	2.25♥
Pomegranate peel ²³		WOII antiquation of	585	0.28	0.20		4.11	6.03	
Carrot peel ²³		KOH activation at 700 °C for 1 h	1,379	0.58	0.51		4.18	5.64	
Fern leaves ²³		700 C101111	1,593	0.74	0.54		4.12	4.52	
Jujun grass ²⁴	250 °C for 2 h	KOH (2) activation at 600 °C for 1 h	1,048	0.51	0.43		4.30		1.50
Jujun grass	230 € 101 2 11	KOH (2) activation at 700 °C for 1 h	1,512	0.74	0.62		4.90		1.50

		KOH (2) activation at 800 °C for 1 h	2,735	1.47	0.94			3.80	0.90
		KOH (4) activation at 600 °C for 1 h	2,396	1.15	0.96			3.50	0.90
		KOH (4) activation at 700 °C for 1 h	3,144	1.56	1.23			4.10	0.90
		KOH (4) activation at 800 °C for 1 h	2,957	1.72	0.75			2.80	0.60
		KOH (2) activation at 600 °C for 1 h	1,150	0.56	0.47			4.70	1.50
		KOH (2) activation at 700 °C for 1 h	1,353	0.67	0.56			5.00	1.50
Camellia japonica ²⁴		KOH (2) activation at 800 °C for 1 h	1,917	0.99	0.75			3.70	0.90
Сатеніа заропіса		KOH (4) activation at 600 °C for 1 h	2,345	1.20	0.89			3.10	0.80
		KOH (4) activation at 700 °C for 1 h	2,983	1.50	1.14			3.00	0.70
		KOH (4) activation at 800 °C for 1 h	3,537	1.85	1.21			2.80	0.60
Empty Smith unch 25	150 °C for 20 min	KOH activation at 600 °C for 0.5 h	1,163	0.23	0.10			0.66	
Empty fruit bunch ²⁵	250 °C for 20 min	KOH activation at 600 °C for 0.5 h	2,239	0.88	0.19			0.85	

	350 °C for 20 min	KOH activation at 600 °C for 0.5 h	1,720	0.56	0.15					2.81		
	150 °C for 20 min	KOH activation at 800 °C for 0.5 h	1,322	0.78	0.23					3.40		
	250 °C for 20 min	KOH activation at 800 °C for 0.5 h	2,510	1.05	0.55					3.71		
	350 °C for 20 min	KOH activation at 800 °C for 0.5 h	2,100	0.78	0.29					2.18		
DI 11 426	650,000 0 2.1	Steam activation at 830 °C	1,175	0.55	0.49	83.43	1.52	0	15.05	1.85	2.79	0.75
Black locust ²⁶	650 °C for 3 h	KOH activation at 830 °C for 1.5 h (Char: KOH =1:6)	2,064	0.98	0.87	74.36	1.15	0.00	24.49	3.75	5.86	1.21
	500 °C for 3 h		252	0.14							5.80	
	700 °C for 3 h		358	0.17							7.00	
Yellow mombin fruit stones ²⁷	400 °C for 4 h	KOH activation at 500 °C	1,384	0.63							8.60	
	400 °C for 4 h	KOH activation at 700 °C	2,290	1.19							10.50	
1 g Gelatin + 2 g Starch ²⁸	450 °C with	KOH activation at 700 °C for 10 min	1,714	0.83		75.90	2.17	0.65	12.76	3.28		
1 g Gelatin + 1 g Starch ²⁸	heating rate of 10 °C/min	(porous carbon/KOH = ½)	1,636	0.51		71.40	3.75	3.00	21.12	3.84		

2 g Gelatin + 1 g Starch ²⁸				1,957	0.79		71.20	1.97	2.75	19.57	3.45		
1 g Gelatin ²⁸				1,294	0.63		74.48	2.42	0.39	16.60	3.30		
1 g Starch ²⁸				714	0.40		70.85	2.43		18.90	2.81		
			KOH (1) activation at 640 °C for 1 h	774	0.41	0.30			0.75		3.53	4.88	1.51 (1.24)
Rice husk ²⁹	520 °C for 20	KOH activation at	KOH (1) activation at 710 °C for 1 h	1,041	0.53	0.42			0.48		4.16	5.63	1.55 (1.21)
Rice nusk 2	min	400 °C for 30 min	KOH (1) activation at 780 °C for 1 h	1,199	0.60	0.48			0.36		3.87	6.02	1.28 (1.01)
			KOH (3) activation at 780 °C for 1 h	2,695	1.14	1.11			0.45		3.71	6.24	0.92 (0.69)
Peanut shell 30	550 °C for 30 min	KOH activation at 680 °C for 1.5 h (KOH/ char =2:1)		1,713	0.73	0.73	88.00	1.10	0.98		4.41	7.25	

		KOH activation at	1 002	0.70	0.70	00.70	0.00	0.70		7.10	
		730 °C for 1.5 h (KOH/ char =2:1)	1,893	0.79	0.78	89.70	0.80	0.79	4.22	7.12	
		KOH activation at									
		780 °C for 1.5 h	1,871	0.80	0.79	90.50	0.60	0.60	3.92	6.79	
		(KOH/ char =2:1)									
	400 °C for 1 h	KOH (2) activation at 600 °C for 2 h	1,473	0.60	0.57			3.81	4.18		(0.91)
	500 °C for 1 h	KOH (2) activation at 600 °C for 2 h	1,913	0.78	0.74			2.32	4.02		(0.67)
	600 °C for 1 h	KOH (2) activation at 600 °C for 2 h	1,698	0.70	0.62			2.56	3.52		(0.73)
	400 °C for 1 h	KOH (2) activation at 500 °C for 2 h	1,123	0.47	0.43			4.01	4.12		(1.04)
Poplar anthers ³¹	400 °C for 1 h	KOH (2) activation at 700 °C for 2 h	1,976	0.86	0.77			3.11	3.93		(0.79)
	400 °C for 1 h	KOH (2) activation at 800 °C for 2 h	2,356	1.26	0.86			1.50	3.30		(0.53)
	400 °C for 1 h	KOH (1) activation at 600 °C for 2 h	837	0.38	0.32			4.84	3.61		(1.06)
	400 °C for 1 h	KOH (4) activation at 600 °C for 2 h	2,571	1.15	1.02			2.22	3.39		(0.57)
	500 °C for 1 h	KOH (4) activation at 800 °C for 2 h	3,322	2.31	0.89			1.26	2.04		(0.25)

		KOH (0.5) activation at 700 °C for 1.5 h	966	0.40			3.50	
		KOH (1) activation at 700 °C for 1.5 h	1,004	0.43			4.50	
		KOH (2) activation at 700 °C for 1.5 h	1,486	0.64			5.00	
		KOH (3) activation at 700 °C for 1.5 h	1,682	0.70			4.60	
Pine nut shell ³²	500 °C for 1.5 h	KOH (4) activation at 700 °C for 1.5 h	1,944	0.81			4.00	
		KOH (2) activation at 500 °C for 1.5 h	459	0.20			3.20	
		KOH (2) activation at 600 °C for 1.5 h	1,343	0.56			4.70	
		KOH (2) activation at 800 °C for 1.5 h	1,637	0.71			4.30	
		KOH (2) activation at 900 °C for 1.5 h	2,207	1.23			3.50	
Macadamia nut shells	400 °C for 1 h	CO ₂ activation at 900 °C for 15 min	469				3.07	
33	400 °C for 1 h	CO ₂ activation at 900 °C for 30 min	489				3.30	

	400 °C for 1 h	CO ₂ activation at 900 °C for 60 min	606					3.40		
	500 °C for 1 h	CO ₂ activation at 900 °C for 15 min	425					2.80		
	500 °C for 1 h	CO ₂ activation at 900 °C for 30 min	514					3.25		
	500 °C for 1 h	CO ₂ activation at 900 °C for 60 min	605					3.45		
	600 °C for 1 h	CO ₂ activation at 900 °C for 15 min	441					2.99		
	600 °C for 1 h	CO ₂ activation at 900 °C for 30 min	512					3.37		
	600 °C for 1 h	CO ₂ activation at 900 °C for 60 min	573					3.48		
	700 °C for 1 h	CO ₂ activation at 900 °C for 15 min	434					3.01		
	700 °C for 1 h	CO ₂ activation at 900 °C for 30 min	524					3.42		
	700 °C for 1 h	CO ₂ activation at 900 °C for 60 min	633					3.73		
Pineapple waste ³⁴	Hydrothermal carbonization at 210 °C for 10 h using Li ₂ C ₂ O ₄	500 °C for 2 h	124		84.82	1.56	1.30	1.16	1.39	

Hydrothe carboniza 210 °C fo using Na	ation at or 10 h		224.1		86.06	1.55	1.69	1.18	1.37	
Hydrothe carboniza 210 °C fo using K ₂ 0	ation at or 10 h		422.8		80.01	1.16	1.52	2.22	2.71	
Hydrothe carboniza 210 °C fo using Li ₂	ation at or 10 h		302.7		81.12	0.75	1.30	1.59	2.09	
Hydrothe carboniza 210 °C fo using Na	ation at or 10 h	500 °C for 2 h	328.2		84.98	0.20	1.59	1.33	1.65	
Hydrothe carboniza 210 °C for using K ₂ 0	ation at or 10 h		644.9		73.52	1.09	1.49	3.16	3.82	
Hydrothe carboniza 210 °C fo using Li ₂ :	ation at or 10 h	700 °C for 2 h	186		85.04	0.48	1.12	1.35	1.90	

Hydrothermal carbonization 210 °C for 10 using Na ₂ C ₂ O	at h	397.3		83.29	0.17	1.58	1.59	2.20	
Hydrothermal carbonization 210 °C for 10 using K ₂ C ₂ O ₄	at h	1,076.3		86.31	0.14	0.33	4.25	5.32	

^a S_{BET} stands for the specific surface area obtained by BET method; ^b V_{toal} stands for the total pore volume; ^c V_{micro} stands for the micropore volume.

26

^{*} Calculated by difference.

^{25 §} obtained at 30 °C; \forall obtained at 0 °C; () obtained at 0.10 bar.

 Table S2. BWDPCs with heteroatom-doping treatment.

	Upcycling into Por	rous Carbons		Textura	l Properti	es	Ultima	ite ana	lysis (%)	CO ₂ uptake	(mmol/g)	
Carbon Precursors	Carbonization	Activation or Surface Modification	Activation or Surface Modification	S _{BET} ^a (m ² /g)	V _{toal} b (cm ³ /g)	V _{micro} ^c (cm ³ /g)	С	Н	N	O *	25 °C and 1 bar	0 °C and 1 bar	25 °C and 0.15 bar
		Zn(NO ₃) ₂ (4) activation at 700 °C for 2 h		671	0.43				10.55		2.30		
		Zn(NO ₃) ₂ (2) activation at 800 °C for 2 h		886	0.57				10.02		2.60		
A 35	500 °C for 2 h	Zn(NO ₃) ₂ (4) activation at 800 °C for 2 h		1,033	0.69				9.71		2.40		
Agar ³⁵	Sou C for 2 h	Zn(NO ₃) ₂ (6) activation at 800 °C for 2 h		858	0.57				7.29		2.50		
		Zn(NO ₃) ₂ (4) activation at 900 °C for 2 h		1,142	0.85				6.65		2.50		
		Zn(NO ₃) ₂ (4) activation at 950 °C for 2 h		1,316	1.14				5.68		2.50		

	Urea (0.25) modification at 350 °C for 2 h	KOH activation at 600 °C for 1 h	1,005	0.49	0.40		5.11	3.70	6.00	
	Urea (0.5) modification at 350 °C for 2 h	KOH activation at 550 °C for 1 h	910	0.44	0.36		7.33	3.60	5.90	
Agar ³⁶	Urea (0.5) modification at 350 °C for 2 h	KOH activation at 600 °C for 1 h	1,239	0.61	0.48		6.08	3.70	6.50	
Agai 30	Urea (0.5) modification at 350 °C for 2 h	KOH activation at 650 °C for 1 h	1,500	0.74	0.53		5.56	3.10	5.90	
	Urea (0.25) modification at 350 °C for 2 h	KOH activation at 700 °C for 1 h	1,830	0.91	0.42		5.07	2.50	4.60	
	Urea (0.75) modification at 350 °C for 2 h	KOH activation at 600 °C for 1 h	1,448	0.71	0.55		7.23	3.20	6.10	

		Urea (1.0) modification at 350 °C for 2 h	KOH activation at 600 °C for 1 h	1,423	0.71	0.53			8.58	3.20	5.80	
		NaNH ₂ (1) at 500 °C for 1 h		502	0.22		85.21	5.87	2.74	2.24		
		NaNH ₂ (2) at 500 °C for 1 h		1,991	0.88		87.21	5.03	2.94	3.72		
		NaNH ₂ (3) at 500 °C for 1 h		1,833	0.80		86.24	5.31	3.21	3.39		
		NaNH ₂ (1) at 550 °C for 1 h		1,099	0.45		86.32	5.99	2.53	4.32		
Hazelnut shell	500 °C for 1 h	NaNH ₂ (2) at 550 °C for 1 h		1,821	0.79		86.74	5.87	2.75	3.50		
		NaNH ₂ (3) at 550 °C for 1 h		2,185	0.99		87.02	6.01	2.97	3.48		
		NaNH ₂ (1) at 600 °C for 1 h		1,343	0.55		87.65	5.24	1.98	3.94		
		NaNH ₂ (2) at 600 °C for 1 h		2,318	1.03		88.34	5.87	2.14	3.52		
		NaNH ₂ (3) at 600 °C for 1 h		2,321	1.11		88.21	5.21	2.30	3.38		

			KOH (1.5) activation at 650 °C for 1 h	759	0.44	0.33	51.21	1.96	4.45	2.32	3.30	
			KOH (2.5) activation at 650 °C for 1 h	1,606	0.97	0.78	71.19	2.88	4.02	1.92	2.90	
Walnut shell	hell H ₃ PO ₄ activation Urea modification at	KOH (3.5) activation at 650 °C for 1 h	1,741	0.86	0.80	64.43	3.21	2.20	2.74	4.73		
powders ³⁸	at 150 °C for 12 h	350 °C for 2 h	KOH (1.5) activation at 750 °C for 1 h	1,636	0.74	0.68	54.00	3.75	2.69	2.86	5.00	
			KOH (2.5) activation at 750 °C for 1 h	2,251	1.21	1.03	70.44	1.62	0.94	2.54	4.20	
			KOH (3.5) activation at 750 °C for 1 h	3,079	1.84	1.18	80.49	1.20	2.08	2.53	3.35	

			KOH (1.5) activation at 850 °C for 1 h	2,354	1.26	0.97	75.38	1.30	0.86		3.04	5.13	
			KOH (2.5) activation at 850 °C for 1 h	2,556	1.90	0.96	81.84	1.75	0.76		2.27	3.35	
			KOH (3.5) activation at 850 °C for 1 h	1,000	0.68	0.53	51.67	1.75	1.57		2.37	2.57	
			KOH activation at 750 °C for 1 h	1,636	0.74	0.68	54.00	3.75	2.69	39.56	2.86		0.67
Walnut shell	150 °C for 12 h	Urea modification at 350 °C for 2 h	KOH activation at 850 °C for 1 h	2,354	1.26	0.97	75.38	1.30	0.86	22.46	3.08		0.64
			K ₂ CO ₃ activation at 750 °C for 1 h	1,144	0.64	0.48	68.18	1.57	4.80	25.45	2.10		0.36

			K ₂ CO ₃ activation at 850 °C for 1 h	1,813	1.05	0.70	80.95	0.79	1.00	17.26	2.14		0.38
			ZnCl ₂ activation at 750 °C for 1 h	273	0.19	0.13	46.52	1.55	9.32	42.61	1.78		0.69
			ZnCl ₂ activation at 850 °C for 1 h	481	0.27	0.24	52.01	1.92	8.75	37.32	1.83		0.67
		NaNH ₂ (1.5) modification at 400 °C for 1 h		419	0.25	0.19	54.24	3.37	3.79		1.93	2.60	
Walnut shell	500.9G C 1 1	NaNH ₂ (1.5) modification at 450 °C for 1 h		589	0.34	0.27	63.53	4.38	7.24		2.53	4.17	
40	500 °C for 1 h	NaNH ₂ (1.5) modification at 500 °C for 1 h		802	0.47	0.37	57.60	3.45	1.52		1.96	3.88	
		NaNH ₂ (2.5) modification at 400 °C for 1 h		516	0.28	0.20	52.55	3.35	3.52		1.70	2.67	

		NaNH ₂ (2.5) modification at 450 °C for 1 h		1,687	0.94	0.77	72.63	3.18	1.89	3.06	5.22	
		NaNH ₂ (2.5) modification at 500 °C for 1 h		1,721	0.92	0.75	61.53	1.45	2.54	2.15	3.17	
			Melamine (1) modification at 700 °C for 2 h	1,065	0.47	0.39	59.43	1.24	2.43	2.69		
Tea seed shell	700 °C for 2 h	KOH activation	Melamine (2) modification at 700 °C for 2 h	1,188	0.52	0.44	66.21	0.94	3.41	2.75		
	700 C 101 2 II	at 700 °C for 2 h	Melamine (3) modification at 700 °C for 2 h	1,055	0.46	0.39	61.47	1.16	3.45	2.44		
			Melamine (4) modification at 700 °C for 2 h	706	0.33	0.25	48.26	1.77	3.39	1.95		

		NaNH ₂ (1) activation at 400 °C for 2 h	669	0.31	71.42	3.06	3.05	3.29	
		NaNH ₂ (2) activation at 400 °C for 2 h	1,450	0.61	73.24	2.99	3.26	3.63	
		NaNH ₂ (3) activation at 400 °C for 2 h	1,310	0.65	74.25	3.01	3.58	3.18	
Water	500.00 (NaNH ₂ (1) activation at 450 °C for 2 h	1,036	0.44	76.21	3.01	2.73	4.06	
chestnut shell	500 °C for 2 h	NaNH ₂ (2) activation at 450 °C for 2 h	2,412	1.14	75.20	2.75	3.14	4.04	
		NaNH ₂ (3) activation at 450 °C for 2 h	2,596	1.42	73.58	2.80	3.35	3.59	
		NaNH ₂ (1) activation at 500 °C for 2 h	1,416	0.58	77.43	2.42	2.42	4.50	
		NaNH ₂ (2) activation at 500 °C for 2 h	2,615	1.38	76.52	2.53	2.68	3.60	

		NaNH ₂ (3) activation at 500 °C for 2 h		2,446	1.59		76.03	2.86	3.12		3.39	
		Urea (3) modification at 600 °C for 1 h		852	0.38	0.31	85.90		3.03	10.87	4.39	
		Urea (3) modification at 700 °C for 1 h		1,185	0.52	0.43	90.97		3.35	5.54	4.80	
Palm kernel shell ⁴³	500 °C for 1 h	Urea (3) modification at 800 °C for 1 h		694	0.37	0.25	88.31		1.95	9.53	3.39	
		Urea (1) modification at 700 °C for 1 h		699	0.49	0.16	92.63		1.73	5.45	2.56	
		Urea (5) modification at 700 °C for 1 h		586	0.31	0.19	88.52		2.94	8.24	2.84	
Water chestnut ⁴⁴		Melamine modification at 500 °C for 2 h	KOH activation at 600 °C for 1 h	2,998	1.78	1.22			7.50		3.60	

			KOH activation at 650 °C for 1 h	3,277	1.94	1.37			5.50	4.10	
			KOH activation at 700 °C for 1 h	3,401	2.50	1.87			4.89	4.70	
			KOH activation at 800 °C for 1 h	3,138	2.43	1.33			2.73	3.20	
			K ₂ CO ₃ (2) activation at 600 °C for 1 h	947	0.35		86.59	0.94	2.76	3.45	
Coconut shell	500 °C for 2 h	Urea modification at 350 °C for 2 h	K ₂ CO ₃ (3) activation at 600 °C for 1 h	1,082	0.39		87.48	0.88	2.74	3.71	
			K ₂ CO ₃ (4) activation at 600 °C for 1 h	1,324	0.51		91.35	0.82	1.52	3.49	

			K ₂ CO ₃ (2) activation at 700 °C for 1 h	1,199	0.47	91.08	0.52	1.42	3.07	
			K ₂ CO ₃ (3) activation at 700 °C for 1 h	1,354	0.58	88.71	0.55	1.34	3.03	
			K ₂ CO ₃ (2) activation at 800 °C for 1 h	1,329	0.56	91.35	0.56	1.13	2.86	
			K ₂ CO ₃ (3) activation at 800 °C for 1 h	1,430	0.65	93.24	0.65	0.86	2.78	
Coconut shell	500 °C for 2 h	Urea modification at	KOH (2) activation at 600 °C for 1 h	1,023	0.38	84.20	1.52	1.35	4.10	
Coconut shell	500 °C for 2 h	350 °C for 2 h	KOH (3) activation at 600 °C for 1 h	1,383	0.56	83.30	1.32	1.08	4.00	

KOH (4) activation at 600 °C for 1 h	1,604	0.65	84.20	1.53	0.81	4.30	
KOH (2) activation at 650 °C for 1 h	1,178	0.49	82.00	1.34	1.23	4.10	
KOH (3) activation at 650 °C for 1 h	1,535	0.60	81.30	1.22	0.91	4.80	
KOH (4) activation at 650 °C for 1 h	1,687	0.67	83.00	1.29	0.70	4.30	
KOH (2) activation at 700 °C for 1 h	1,550	0.62	84.20	1.03	0.86	4.10	
KOH (3) activation at 700 °C for 1 h	1,596	0.64	86.30	0.92	0.73	4.70	

			KOH (4) activation at 700 °C for 1 h	1,937	0.78	86.50	0.84	0.61	4.44	
		KOH (3) activation at 650 °C for 1 h	Urea modification at 350 °C for 2 h	1,012	0.44	75.50	0.95	8.01	3.00	
			KOH (1) activation at 600 °C for 2 h	879	0.38	64.20	4.02	6.16	3.68	
Coconut shell	500 °C for 2 h	Ammonia	KOH (2) activation at 600 °C for 2 h	1,135	0.62	70.50	3.38	4.83	4.04	
	300 °C 10f 2 fi	modification at 350 °C for 5 h	KOH (3) activation at 600 °C for 2 h	1,850	0.87	69.80	3.00	4.31	4.16	
			KOH (4) activation at 600 °C for 2 h	1,562	0.75	69.00	2.69	3.84	3.79	

	KOH (1) activation at 650 °C for 2 h	1,483	0.66	70.00	2.67	4.56	4.26	
	KOH (2) activation at 650 °C for 2 h	1,487	0.79	71.20	2.45	3.59	4.22	
	KOH (3) activation at 650 °C for 2 h	2,322	1.06	74.10	2.80	3.19	4.10	
	KOH (4) activation at 650 °C for 2 h	2,521	1.34	75.80	2.48	2.40	3.72	
	KOH (1) activation at 700 °C for 2 h	2,349	0.99	77.30	2.03	2.22	4.22	
	KOH (2) activation at 700 °C for 2 h	1,967	0.94	79.20	2.22	1.81	4.09	

			KOH (3) activation at 700 °C for 2 h	2,690	1.19		78.30	2.46	1.70		3.96		
			KOH (4) activation at 700 °C for 2 h	2,599	1.33		80.70	2.11	1.21		3.44		
		KOH activation at 850 °C for 1 h (PM)		2,251	1.04	0.93	85.08		9.49	5.43	5.51		
Argan hard	700 °C for 1 h	KOH activation at 850 °C for 1 h (IM)		1,890	0.87	0.80	82.68		13.90	3.42	5.63		
shell ⁴⁸	700 C 101 1 II	NaOH activation at 850 °C for 1 h (PM)		1,463	0.74	0.58	67.74		9.07	23.19	3.64		
		NaOH activation at 850 °C for 1 h (IM)		1,827	0.96	0.73	82.14		12.61	5.25	3.73		
Longan shells	500 °C for 2 h under	KOH activation at 600 °C for 2 h		1,529	0.98							3.20	
49	N ₂ /carbamide atmosphere	KOH activation at 700 °C for 2 h		2,209	1.30							4.30	

		KOH activation at 800 °C for 2 h	3,260	2.60						5.60	
		KOH activation at 900 °C for 2 h	2,734	2.30						4.80	
		KOH (1) activation at 650 °C for 1 h	956	0.48	0.31	76.95	2.39	4.82	3.34	4.61	
		KOH (1) activation at 700 °C for 1 h	1,258	0.61	0.40	83.63	2.90	4.21	3.46	5.30	
Black gram ⁵⁰	200 % for 4 h	KOH (1) activation at 750 °C for 1 h	1,697	0.82	0.37	84.08	2.06	3.86	3.46	5.25	
	300 °C for 4 h	KOH (1) activation at 800 °C for 1 h	1,987	1.02	0.26	89.43	1.41	1.78	2.76	5.10	
		KOH (2) activation at 650 °C for 1 h	990	0.42	0.31	79.99	2.90	4.76	3.25	4.65	
		KOH (2) activation at 700 °C for 1 h	1,428	0.65	0.29	78.36	2.58	4.38	3.06	4.97	

		KOH (2) activation at 750 °C for 1 h	1,675	0.96	0.06	75.76	2.51	3.67	2.28	3.90	
		KOH (2) activation at 800 °C for 1 h	2,086	1.08	0.16	91.38	1.06	2.52	2.59	4.69	
		KOH (3) activation at 650 °C for 1 h	1,216	0.53	0.35	78.46	2.21	5.34	3.16	4.82	
		KOH (3) activation at 700 °C for 1 h	1,446	0.63	0.37	81.60	2.41	4.15	3.21	5.15	
		KOH (3) activation at 750 °C for 1 h	1,952	1.11	0.04	71.34	3.40	3.15	2.14	3.73	
		KOH (3) activation at 800 °C for 1 h	2,305	1.23	0.13	79.17	2.13	1.81	2.34	4.79	
Oil regidue 51	500 °C for 1 k	NaNH ₂ (1.5) activation at 450 °C for 2 h	660	0.42	0.33	57.89	2.71	4.31	2.04		
On residue 31	residue 51 500 °C for 1 h $\frac{\text{ac}}{\text{N}}$	NaNH ₂ (2.5) activation at 450 °C for 2 h	846	0.94	0.40	56.50	2.52	4.59	2.11		

		NaNH ₂ (1.5) activation at 500 °C for 2 h		1,176	0.72	0.57	60.87	3.01	5.83		2.19	
		NaNH ₂ (2.5) activation at 500 °C for 2 h		2,113	1.24	0.94	61.07	1.98	6.90		3.51	
		NaNH ₂ (1.5) activation at 550 °C for 2 h		1,508	0.94	0.68	62.98	2.10	6.02		3.42	
		NaNH ₂ (2.5) activation at 550 °C for 2 h		2,148	1.32	0.94	64.49	1.70	5.57		2.98	
		CO ₂ activation at 800 °C for 2 h		748	0.47	0.27	83.84	0.04	1.10	15.02	2.55	
Biomass glucose 52	80 °C for 24 h with CTAB	CO ₂ activation at 800 °C for 2 h	Urea modification at 350 °C for 2 h	697	0.46	0.25	75.15	0.05	6.50	18.30	2.92	
		Urea modification at 350 °C for 2 h	500 °C for 2 h (N ₂)	581	0.35	0.21	67.78	1.14	11.48	19.50	3.03	
Poplar catkins	400 °C for 3 h	ZnCl ₂ (4) activation at 700 °C for 2 h		1,361.9	0.58	0.46	87.23	1.62	1.89	9.26	3.55	

		ZnCl ₂ (2) activation at 800 °C for 2 h	1,005.4	0.41	0.34	87.42	1.32	2.37	8.89	3.75		
		ZnCl ₂ (4) activation at 800 °C for 2 h	1,455.1	0.68	0.47	88.57	0.89	2.89	7.65	4.05		
		ZnCl ₂ (6) activation at 800 °C for 2 h	1,248.7	0.50	0.41	89.74	0.78	2.16	7.32	2.62		
		ZnCl ₂ (4) activation at 900 °C for 2 h	1,272.4	0.55	0.43	89.23	0.82	2.09	7.86	3.35		
		KOH (1) activation at 600 °C for 1 h	821	0.42		65.54	2.14	12.17		3.99	5.33	
	-glucose ⁵⁴ 180 °C for 12 h	KOH (2) activation at 600 °C for 1 h	1,267	0.54		64.89	2.15	11.93		4.24	6.23	
d-glucose 34		KOH (3) activation at 600 °C for 1 h	1,398	0.60		63.54	2.16	11.67		4.02	6.11	
		KOH (4) activation at 600 °C for 1 h	1,412	0.63		62.21	2.12	11.23		3.93	5.90	

KOH (1) activation at 650 °C for 1 h	1,734	0.78	75.01	1.41	9.24	4.26	6.70	
KOH (2) activation at 650 °C for 1 h	1,960	0.90	74.32	1.35	8.56	4.23	6.14	
KOH (3) activation at 650 °C for 1 h	2,167	0.96	72.68	1.37	7.23	4.21	6.28	
KOH (4) activation at 650 °C for 1 h	2,016	0.94	75.35	1.17	6.85	4.07	6.11	
KOH (1) activation at 700 °C for 1 h	2,394	1.13	81.51	0.89	6.94	3.92	6.46	
KOH (2) activation at 700 °C for 1 h	2,659	1.32	79.12	0.75	6.72	3.71	5.73	
KOH (3) activation at 700 °C for 1 h	2,655	1.40	77.05	0.85	6.43	3.51	5.36	
KOH (4) activation at 700 °C for 1 h	2,470	1.30	76.92	0.96	6.20	3.42	5.24	

			KOH (2) activation at 700 °C for 2 h	1,210	0.69	74.30		9.80	4.18		
d-glucose ⁵⁵		Melamine modification at	KOH (2) activation at 800 °C for 2 h	1,780	1.35	82.50		6.94	4.66		
d-glucose 33		500 °C for 1 h	KOH (3) activation at 700 °C for 2 h	2,136	1.43	80.80		6.84	3.89		
			KOH (3) activation at 800 °C for 2 h	3,247	3.09	86.90		2.07	4.95		
d-glucose ⁵⁶	180 °C for 12 h	Urea modification at	K ₂ CO ₃ (2) activation at 600 °C for 1 h	933	0.45	66.51	2.33	12.27	3.43	4.80	
u-giucose	100 C 101 12 II	350 °C for 1 h	K ₂ CO ₃ (3) activation at 600 °C for 1 h	1,005	0.46	65.31	2.38	12.21	3.46	4.84	

		K ₂ CO ₃ (4) activation at 600 °C for 1 h	1,170	0.53	63.67	2.42	11.81	3.74	5.32	
		K ₂ CO ₃ (2) activation at 650 °C for 1 h	1,754	0.83	69.83	2.14	10.51	3.69	5.45	
		K ₂ CO ₃ (3) activation at 650 °C for 1 h	1,699	0.89	70.32	1.98	9.54	3.65	5.87	
		K ₂ CO ₃ (4) activation at 650 °C for 1 h	1,824	0.92	71.66	1.97	7.74	3.92	6.23	
	_	K ₂ CO ₃ (2) activation at 700 °C for 1 h	2,572	1.43	77.70	1.56	6.57	3.75	6.23	
		K ₂ CO ₃ (3) activation at 700 °C for 1 h	2,510	1.54	80.32	1.73	5.03	3.56	6.16	

			K ₂ CO ₃ (4) activation at 700 °C for 1 h	2,827	1.55		84.24	1.65	4.69		3.61	6.05	
		KOH (2) activation at 700 °C for 2 h		1,210	0.69		74.30		9.80		4.18	6.11	
d glygoga 55	500 °C for 1 h	KOH (2) activation at 800 °C for 2 h		1,780	1.35		82.50		6.94		4.66	7.77	
d-glucose	Hydrothermal carbonization at 180 °C for 10 h with Ethylenediamine	KOH (3) activation at 700 °C for 2 h		2,136	1.43		80.80		6.84		3.89	7.43	
		KOH (3) activation at 800 °C for 2 h		3,247	3.09		86.90		2.07		4.95	8.07	
		KOH activation at 500 °C for 1 h		1,082	0.58	0.44			9.44	12.65	3.78	5.36	1.29
Clusage 12		KOH activation at 600 °C for 1 h		1,793	0.87	0.73			8.02	10.86	5.01	7.60	1.38
Glucose		KOH activation at 700 °C for 1 h		2,328	1.11	0.94			5.05	10.04	4.32	7.18	0.93
	2 my ferrodiamine	KOH activation at 800 °C for 1 h		2,958	1.61	1.16			2.73	4.47	3.36	6.24	0.65

		KOH activation at 700 °C for 2 h	Urea (1) modification at 800 °C for 1 h	3,020	1.89		80.03	0.62	19.34	2.20		
Lignin 57	200 °C for 12 h	KOH activation at 700 °C for 2 h	Urea (2) modification at 800 °C for 1 h	3,064	1.56		87.10	0.64	12.26	2.50		
Lignin ⁵⁷ 200	200 C 101 12 11	KOH activation at 700 °C for 2 h	Urea (4) modification at 800 °C for 1 h	3,021	1.58		89.55	1.10	9.35	2.60		
		KOH activation at 700 °C for 2 h	Urea (8) modification at 800 °C for 1 h	2,473	1.26		87.81	1.17	11.02	2.70		
Lignin ⁵⁸	300 °C for 0.5 h	KOH/adenine activation at 700 °C for 1 h		1,788	0.91	0.49	40.40	5.60	54.00	4.80	8.20	
Liginii	300 € 101 0.3 11	KOH/adenine activation at 850 °C for 1 h		2,957	1.79	0.56	59.50	2.50	38.00	4.40	7.60	

	KOH/adenine activation at 1000 °C for 1 h		1,075	0.75	0.21	64.00		2.20	33.80	4.00	6.50	
	KOH (1) activation at 800 °C		2,922	1.36	1.22					5.12		
De-alkaline lignin ⁵⁹	KOH (2) activation at 800 °C	NH ₃ modification at 800 °C	2,779	1.39	1.10					5.48		
	KOH (3) activation at 800 °C		1,631	0.83	0.60					4.23		
	Urea modification at 600 °C for 0.5 h		32	0.02		83.16	1.74	3.81		1.94		
Sugarcane	Urea (5) modification at 600 °C for 0.5 h		851	0.44		87.00	0.97	0.83		4.52		
Sugarcane bagasse ⁶⁰	Urea (10) modification at 600 °C for 0.5 h	KOH (2) activation at 600 °C for 1	927	0.48		83.26	1.17	1.76		4.60		
	Urea (15) modification at 600 °C for 0.5 h	h	1,113	0.57		83.59	1.18	1.98		4.80		

		Urea (20) modification at 600 °C for 0.5 h	1,024	0.53	83.02	1.16	1.98	4.76	
_		Urea (25) modification at 600 °C for 0.5 h	945	0.49	84.19	1.12	1.99	4.71	
		NaNH ₂ (1) activation at 400 °C for 1 h	848	0.38	67.03	2.34	3.77	3.39	
		NaNH ₂ (2) activation at 400 °C for 1 h	1,164	0.54	68.32	2.55	4.01	3.67	
I () 11 61	500.00 0 21	NaNH ₂ (3) activation at 400 °C for 1 h	1,087	0.52	67.65	2.25	4.50	3.22	
Lotus staiks of	Lotus stalks ⁶¹ 500 °C for 2 h	NaNH ₂ (1) activation at 450 °C for 1 h	1,105	0.49	70.25	2.12	3.21	3.69	
		NaNH ₂ (2) activation at 450 °C for 1 h	2,053	0.97	71.37	2.04	3.64	3.47	
		NaNH ₂ (3) activation at 450 °C for 1 h	1,921	1.04	70.98	2.06	4.03	3.12	

		NaNH ₂ (1) activation at 500 °C for 1 h	1,113	0.48	73.56	2.09	2.61	3.88	
		NaNH ₂ (2) activation at 500 °C for 1 h	2,264	1.34	74.32	1.97	3.08	3.51	
		NaNH ₂ (3) activation at 500 °C for 1 h	1,824	1.03	74.98	1.88	3.45	3.45	
		NaNH ₂ (1) activation at 400 °C for 1 h	735	0.31	77.70	2.58	2.72	3.32	
		NaNH ₂ (2) activation at 400 °C for 1 h	936	0.39	78.36	2.29	4.56	4.12	
Commercial phenolic resins ⁶²	500 °C for 2 h	NaNH ₂ (3) activation at 400 °C for 1 h	1,115	0.46	79.36	2.43	5.36	4.14	
		NaNH ₂ (4) activation at 400 °C for 1 h	1,003	0.41	79.11	2.16	6.05	3.83	
		NaNH ₂ (1) activation at 450 °C for 1 h	787	0.33	80.60	2.42	1.56	3.86	

	NaNH ₂ (2) activation at 450 °C for 1 h	1,088	0.45	79.32	2.36	3.90		4.06	
	NaNH ₂ (3) activation at 450 °C for 1 h	1,432	0.59	78.62	1.76	4.25		4.64	
	NaNH ₂ (4) activation at 450 °C for 1 h	1,569	0.64	77.65	2.24	5.94		4.40	
	NaNH ₂ (1) activation at 500 °C for 1 h	932	0.39	85.36	1.95	1.39		4.03	
	NaNH ₂ (2) activation at 500 °C for 1 h	1,288	0.54	83.69	1.70	3.85		4.61	
	NaNH ₂ (3) activation at 500 °C for 1 h	1,924	0.79	81.34	1.64	4.09		4.57	
	NaNH ₂ (4) activation at 500 °C for 1 h	2,155	0.94	76.96	1.29	5.74		4.38	
Biomass canes ⁶³	Urea modification at 600 °C for 2 h	18	0.02	80.03		13.53	5.76	1.50	

		Urea/KOH modification at 600 °C for 2 h		982	0.62		79.26		8.12	11.89	2.20		
		Urea/ZnCl ₂ modification at 600 °C for 2 h		582	0.29		74.73		15.88	7.28	2.10		
		Ca(NO ₃) ₂ /K ₂ CO ₃ modification at 600 °C for 2 h		1,165	1.03		64.70	1.50	10.40	23.25	4.40	5.30	
Di 1.: 64		Ca(NO ₃) ₂ /K ₂ CO ₃ modification at 700 °C for 2 h		2,693	1.68		84.80	0.50	6.20	8.21	3.10	4.70	
Pigskin ⁶⁴		Ca(NO ₃) ₂ /K ₂ CO ₃ modification at 800 °C for 2 h		2,731	1.89		86.80	1.80	2.60	7.90	2.50	4.10	
		Ca(NO ₃) ₂ /K ₂ CO ₃ modification at 900 °C for 2 h		2,799	1.91		91.90	1.20	1.60	4.45	2.20	4.00	
Chitagan 65	550 °C for 0.5 h	KOH activation	600 °C for 1.5 h with 100 mL/min	667	0.29	0.28	63.30	2.40	6.50		3.74		1.46
Chitosan ⁶⁵	550 °C for 0.5 h at 400 °C for 0.5 h	600 °C for 1.5 h with 450 mL/min	716	0.32	0.31	61.50	2.50	6.60		4.04		1.57	

			600 °C for 1.5 h with 800 mL/min	718	0.33	0.31	59.10	2.30	6.80	4.17	1.86
			600 °C for 1.5 h with 1040 mL/min	907	0.40	0.39	57.90	2.60	6.70	4.26	1.77
		KOH (2) activation at 600 °C for 1 h		935	0.42		72.21	2.55	3.68	3.63	
		KOH (4) activation at 600 °C for 1 h		1,441	0.60		68.99	2.21	5.16	4.04	
Rotten	180°C for 12 h	KOH (2) activation at 650 °C for 1 h		1,117	0.52		78.02	2.44	5.38	4.49	
strawberries ⁶⁶	180 °C for 12 n	KOH (4) activation at 650 °C for 1 h		1,482	0.64		70.16	3.06	5.06	3.87	
		KOH (2) activation at 700 °C for 1 h		1,408	0.67		76.23	2.39	3.81	3.73	
		KOH (4) activation at 700 °C for 1 h		1,577	0.68		79.18	2.11	2.60	3.99	

Soya chunks	180 °C for 12 h	NaOH activation	900 °C for 2 h	607					4.30		2.70	
67	180 C 101 12 II	at 600 °C for 1 h	1000 °C for 2 h	1,072					5.30		3.20	
		ZnCl ₂ activation at 500 °C for 1 h		1,863	1.00				5.40		2.10	
Arundo donax		ZnCl ₂ activation at 600 °C for 1 h		1,340	0.68				4.05		1.70	
		ZnCl ₂ activation at 700 °C for 1 h		1,420	0.76				3.50		2.00	
		KOH (1) activation at 600 °C for 1 h		447	0.22	0.18	71.90	1.37	11.25	15.48	1.48	
Waste wool 69	300 °C for 2 h	KOH (3) activation at 600 °C for 1 h		1,010	0.57	0.37	70.73	1.64	4.57	23.06	2.33	
		KOH (5) activation at 600 °C for 1 h		1,352	0.78	0.54	69.65	1.42	4.14	24.79	2.78	
Fallen leaves	600 °C for 2 h	KOH (2) activation at 600 °C for 1 h		1,210	0.48	0.39	84.80		1.70		3.39	1.20

		KOH (1) activation at 700 °C for 1 h		1,360	0.51	0.40	81.30	1.00		4.09	1.55
		KOH (2) activation at 700 °C for 1 h		1,600	0.65	0.54	84.40	1.30		4.41	1.41
		KOH (2) activation at 700 °C for 1 h (H)		1,630	0.66	0.56	85.50	2.50		4.20	1.14
		KOH (3) activation at 700 °C for 1 h		2,230	1.03	0.89	86.50	0.40		3.93	0.98
		KOH (2) activation at 800 °C for 1 h		1,950	0.88	0.72	84.80	0.40		4.23	1.14
				0.8	0.01	< 0.01		0.41	0.8	0.41 §	
Coffee grounds (Nespresso) 71	400 °C for 1 h	APTES modification at 80 °C for 24 h	KOH activation at 600 °C for 1 h	1,684	0.94	0.45		2.04	1684	2.04 §	
		Aniline		22	0.12	< 0.01		0.46	22	0.46 §	

		modification at 0 °C for 6 h	KOH activation at 600 °C for 1 h	992	0.61	0.37			2.22	992	2.22 §		
				402	0.22	0.09			0.85	402	0.85 §		
		Melamine modification at 160 °C for 24 h	KOH activation at 600 °C for 1 h	990	0.55	0.45			2.67	990	2.67 §		
		KOH activation at 700 °C for 1 h		1,393	0.63	0.49	87.48		1.61	10.91	3.92		
Stem bark ⁷²	170 °C for 10 h	KOH activation at 800 °C for 1 h		1,759	0.92	0.60	89.48		1.43	9.09	4.45		
		KOH activation at 900 °C for 1 h		1,229	0.89	0.15	92.59		0.99	6.42	3.76		
Black locust	650 °C for 3 h	KOH activation at 830 °C for 1.5 h		2,511	1.35	1.16	76.38	1.48	7.21		5.05	7.19	1.59
Banana peel 73	800 °C for 1 h	CO ₂ activation at 800 °C for 1 h		1,426.1	0.83	0.56	43.50	2.20	4.20		2.70		
Coca cola ⁷⁴		ammonia/CTAB modification at 400 °C for 4 h	ZnCl ₂ (1) activation at 800 °C for 2 h	1,082	0.43		69.60		3.30	13.80	3.20		

		ZnCl ₂ (2) activation at 800 °C for 2 h	1,994	0.87	73.10	4.20	10.30	3.08		
		KOH (1) activation at 800 °C for 2 h	1,405	0.80	74.00	3.50	12.50	5.22		
	KOH activation at 550 °C for 1 h		1,230	0.90					5.14	
Human hair ⁷⁵	KOH activation at 650 °C for 1 h		2,380	1.64					5.45	
	KOH activation at 750 °C for 1 h		2,700	1.33					4.27	
Olive stones	700 °C for 5.5 h under 3 vol% O_2/N_2 atmosphere		514	0.21		0.40	7.40			0.88
	CO ₂ activation at 800 °C for 6 h		1,248	0.44		0.70	11.30			0.99
Coffee 76	CO ₂ activation at 700 °C for 8 h		534	0.25		4.10	12.20			1.11
Almond shells	CO ₂ activation at 800 °C for 4 h		847	0.34		1.30	16.80			0.98

Cromp and 76		CO ₂ activation at	535	0.23		1.80	12.90		0.91
Grape seed ⁷⁶	200 °C for 12 h	800 °C for 0.5 h	362	0.27		2.20	7.80		0.91

 $[^]a$ S_{BET} stands for the specific surface area obtained by BET method; b V_{toal} stands for the total pore volume; c V_{micro} stands for the micropore volume.

^{29 *} Calculated by difference.

^{30 §} obtained at 35 °C.

S1. Data Pre-processing

After data collection, as described in the section on Data Collection and Formatting in the main manuscript, it was observed that the CO₂ adsorbed on BWDPCs was reported either in mmol/g or mg/g units. To ensure unit consistency, we transformed all CO₂ adsorption data units into mmol/g. Similarly, it was observed that the pressures at which the adsorption experiments were performed were reported in different units including bar, atm, mmHg, and kPa. For this reason, all the pressure-related data were converted into bars to ensure unit consistency for further modeling applications.

S2. Missing Data Imputation

As described in the Data Pre-processing section of the main manuscript, during the data collection process, most publications have reported data on the surface area (SA), and they were complemented either with the total pore volume (TPV) or micropore volume (MPV); in several instances, all three variables were used. As a result, each unique row had missing data during the data collection process. Several rows of data had either SA or TPV, whereas MPV was missing, and in other cases, the data on SA and MPV were available, but TPV was missing. More specifically, of the 527 data points used in the study, 485 unique values were available for TPV (e.g., 7.8% missing data) and 296 data points for MPV (e.g., 44 % missing data). Table S3 provides descriptive statistics of the textural properties prior to data imputation.

Table S3. Descriptive statistics of the textural properties prior to data imputation.

Statistics	SA (m2/a)	TDV (om3/g)	MPV
Statistics	$SA (m^2/g)$	TPV (cm ³ /g)	(cm ³ /g)
Datapoints	527	485	296
Mean	1,436	0.795	0.525
Std. deviation	764	0.455	0.276

Min	0.15	0.010	0.040
25% percentile	849	0.470	0.310
50% percentile	1,393	0.690	0.480
75% percentile	1,952	1.030	0.700
Max	3,337	3.090	1.290
% Missing data	N/A	7.800	44.000

Pearson's correlation coefficient (PCC) was performed to determine the extent of correlation among the three textural properties. The PCC revealed a strong and positive correlation among the three textural properties (Figure S1), and the PCC values between SA and TPV, SA and MPV, and TPV and MPV were 0.91, 0.78, and 0.69, respectively.

Figure S1. PCC plot of the textural properties.

Based on the significant correlation among the textural properties, the missing values of TPV and MPV were imputed by mapping them as a function of SA using two ML algorithms (linear regression and random forest).

Table S4. Comparative evaluation of linear regression and random forest model to map TPV and MPV as a function of SA.

	Training R ²	Test R ²
Linear Regression	0.836	0.811
Random Forest	0.858	0.852

For each textural property, that is, TPV and MPV, the respective existing data points were split into an 80:20 ratio for training and testing. The corresponding SA value was used as the input feature. Linear regression and random forest models 77 were fitted to the training data using default hyperparameters. The mapping function devised on the training set for both models was then used to predict the values of TPV and MPV on the test set, in which the random forest model performed better than linear regression in terms of training and test R^2 . Table S4 presents the evaluation metrics for the training and test sets for both models. Given the excellent performance of the random forest model in mapping TPV and MPV as a function of SA, the random forest model was eventually used to impute 42 data points for the TPV and 231 data points for MPV to attain a uniform master dataset, where all the individual features used in the study had 527 unique data points each.

85 **REFERENCES**

- 1. Dissanayake, P. D.; Choi, S. W.; Igalavithana, A. D.; Yang, X.; Tsang, D. C. W.; Wang, C.-H.;
- Kua, H. W.; Lee, K. B.; Ok, Y. S., Sustainable gasification biochar as a high efficiency adsorbent
- for CO₂ capture: A facile method to designer biochar fabrication. *Renewable and Sustainable*
- 89 Energy Reviews **2020**, 124, 109785.
- 90 2. Igalavithana, A. D.; Choi, S. W.; Dissanayake, P. D.; Shang, J.; Wang, C. H.; Yang, X.; Kim, S.;
- Tsang, D. C. W.; Lee, K. B.; Ok, Y. S., Gasification biochar from biowaste (food waste and
- wood waste) for effective CO₂ adsorption. *Journal of Hazardous Materials* **2020**, *391*, 121147.
- 93 3. Kim, M.-J.; Choi, S. W.; Kim, H.; Mun, S.; Lee, K. B., Simple synthesis of spent coffee
- ground-based microporous carbons using K₂CO₃ as an activation agent and their application to
- 95 CO₂ capture. Chemical Engineering Journal **2020**, 397, 125404.
- 96 4. Wu, D.; Yang, Y.; Liu, J.; Zheng, Y., Plasma-modified N/O-doped porous carbon for CO₂
- capture: An experimental and theoretical study. *Energy & Fuels* **2020**, *34*, (5), 6077-6084.
- $98 \hspace{0.5cm} \text{5.} \hspace{0.5cm} \text{Sriram, G.; S, S.; Kurkuri, M.; Hegde, G., Efficient CO}_2 \hspace{0.1cm} \text{adsorption using mesoporous carbons}$
- 99 from biowastes. *Materials Research Express* **2019**, 7, (1), 015605.
- 100 6. Quan, C.; Su, R.; Gao, N., Preparation of activated biomass carbon from pine sawdust for
- supercapacitor and CO₂ capture. *International Journal of Energy Research* **2020**, 44, (6),
- 102 4335-4351.
- 103 7. Li, J.; Michalkiewicz, B.; Min, J.; Ma, C.; Chen, X.; Gong, J.; Mijowska, E.; Tang, T., Selective
- preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient
- 105 CO₂ capture. *Chemical Engineering Journal* **2019**, *360*, 250-259.
- 106 8. Choi, S. W.; Tang, J.; Pol, V. G.; Lee, K. B., Pollen-derived porous carbon by KOH activation:
- Effect of physicochemical structure on CO₂ adsorption. *Journal of CO₂ Utilization* **2019**, 29,
- 108 146-155.
- Huang, G.; Wu, X.; Hou, Y.; Cai, J., Sustainable porous carbons from garlic peel biowaste and
- 110 KOH activation with an excellent CO₂ adsorption performance. *Biomass Conversion &*
- 111 Biorefinery **2020**, 10, (2), 267-276.
- 112 10. Yuan, H.; Chen, J.; Li, D.; Chen, H.; Chen, Y., 5 Ultramicropore-rich renewable porous carbon
- from biomass tar with excellent adsorption capacity and selectivity for CO₂ capture. *Chemical*
- 114 Engineering Journal **2019**, 373, 171-178.
- 11. Li, D.; Chen, J.; Fan, Y.; Deng, L.; Shan, R.; Chen, H.; Yuan, H.; Chen, Y., Biomass-tar-enabled
- nitrogen-doped highly ultramicroporous carbon as an efficient absorbent for CO₂ capture. *Energy*
- 117 & Fuels **2019**, 33, (9), 8927-8936.
- 118 12. Ma, X.; Li, L.; Zeng, Z.; Chen, R.; Wang, C.; Zhou, K.; Li, H., Experimental and theoretical
- demonstration of the relative effects of O-doping and N-doping in porous carbons for CO₂
- 120 capture. *Applied Surface Science* **2019**, *481*, 1139-1147.
- 121 13. Sivadas, D. L.; Damodaran, A.; Raghavan, R., Microporous carbon monolith and fiber from
- freeze-dried banana stems for high efficiency carbon dioxide adsorption. ACS Sustainable
- 123 Chemistry & Engineering **2019**, 7, (15), 12807-12816.
- 124 14. Sun, H.; Yang, B.; Li, A., Biomass derived porous carbon for efficient capture of carbon dioxide,
- organic contaminants and volatile iodine with exceptionally high uptake. *Chemical Engineering*
- 126 *Journal* **2019**, *372*, 65-73.

- 127 15. Gargiulo, V.; Gomis-Berenguer, A.; Giudicianni, P.; Ania, C. O.; Ragucci, R.; Alfè, M.,
- Assessing the potential of biochars prepared by steam-assisted slow pyrolysis for CO₂ adsorption
- and separation. Energy & Fuels: An American Chemical Society Journal 2018, 32, (10),
- 130 10218-10227.
- 131 16. Xu, J.; Shi, J.; Cui, H.; Yan, N.; Liu, Y., Preparation of nitrogen doped carbon from tree leaves as
- efficient CO₂ adsorbent. *Chemical Physics Letters* **2018**, 711, 107-112.
- 133 17. Shen, F.; Wang, Y.; Li, L.; Zhang, K.; Smith, R. L.; Qi, X., Porous carbonaceous materials from
- hydrothermal carbonization and KOH activation of corn stover for highly efficient CO₂ capture.
- 135 *Chemical Engineering Communications* **2018**, 205, (4), 423-431.
- 136 18. Singh, G.; Kim, I. Y.; Lakhi, K. S.; Srivastava, P.; Naidu, R.; Vinu, A., Single step synthesis of
- activated bio-carbons with a high surface area and their excellent CO₂ adsorption capacity.
- 138 *Carbon* **2017**, *116*, 448-455.
- 139 19. Du, J.; Yu, Y.; Lv, H.; Chen, C.; Zhang, J.; Chen, A., Cauliflower-derived porous carbon without
- activation for electrochemical capacitor and CO₂ capture applications. *Journal of Nanoparticle*
- 141 Research 2018, 20, (15), https://doi.org/10.1007/s11051-017-4109-y.
- 142 20. Wu, X.-x.; Zhang, C.-y.; Tian, Z.-w.; Cai, J.-j., Large-surface-area carbons derived from lotus
- stem waste for efficient CO₂ capture. New Carbon Materials **2018**, 33, (3), 252-261.
- Hirst, E. A.; Taylor, A.; Mokaya, R., A simple flash carbonization route for conversion of
- biomass to porous carbons with high CO₂ storage capacity. Journal of Materials Chemistry A
- **2018**, *6*, (26), 12393-12403.
- 147 22. Manyà, J. J.; González, B.; Azuara, M.; Arner, G., Ultra-microporous adsorbents prepared from
- vine shoots-derived biochar with high CO₂ uptake and CO₂/N₂ selectivity. *Chemical Engineering*
- 149 *Journal* **2018**, *345*, 631-639.
- 150 23. Serafin, J.; Narkiewicz, U.; Morawski, A. W.; Wróbel, R. J.; Michalkiewicz, B., Highly
- microporous activated carbons from biomass for CO₂ capture and effective micropores at
- different conditions. *Journal of CO₂ Utilization* **2017**, *18*, 73-79.
- 153 24. Coromina, H. M.; Walsh, D. A.; Mokaya, R., Biomass-derived activated carbon with
- simultaneously enhanced CO₂ uptake for both pre and post combustion capture applications.
- 155 *Journal of Materials Chemistry A* **2016**, 4, (1), 280-289.
- 156 25. Parshetti, G. K.; Chowdhury, S.; Balasubramanian, R., Biomass derived low-cost microporous
- adsorbents for efficient CO₂ capture. Fuel **2015**, 148, 246-254.
- 26. Zhang, C.; Song, W.; Ma, Q.; Xie, L.; Zhang, X.; Guo, H., Enhancement of CO₂ capture on
- biomass-based carbon from black locust by KOH activation and ammonia modification. *Energy*
- 160 & Fuels **2016**, 30, (5), 4181-4190.
- 161 27. Fiuza- Jr, R. A.; Andrade, R. C.; Andrade, H. M. C., CO₂ capture on KOH-activated carbons
- derived from yellow mombin fruit stones. *Journal of Environmental Chemical Engineering* **2016**,
- *4*, (4), 4229-4236.
- 164 28. Alabadi, A.; Razzaque, S.; Yang, Y.; Chen, S.; Tan, B., Highly porous activated carbon materials
- from carbonized biomass with high CO₂ capturing capacity. *Chemical Engineering Journal* **2015**,
- *281*, 606-612.
- 167 29. Li, D.; Ma, T.; Zhang, R.; Tian, Y.; Qiao, Y., Preparation of porous carbons with high
- low-pressure CO₂ uptake by KOH activation of rice husk char. *Fuel* **2015**, *139*, 68-70.

- 169 30. Li, D.; Tian, Y.; Li, L.; Li, J.; Zhang, H., Production of highly microporous carbons with large
- 170 CO₂ uptakes at atmospheric pressure by KOH activation of peanut shell char. *Journal of Porous*
- 171 *Materials* **2015**, *22*, (6), 1581-1588.
- 172 31. Song, J.; Shen, W.; Wang, J.; Fan, W., Superior carbon-based CO₂ adsorbents prepared from
- poplar anthers. *Carbon* **2014**, *69*, 255-263.
- 174 32. Deng, S.; Wei, H.; Chen, T.; Wang, B.; Huang, J.; Yu, G., Superior CO₂ adsorption on pine nut
- shell-derived activated carbons and the effective micropores at different temperatures. *Chemical*
- 176 Engineering Journal **2014**, 253, 46-54.
- 177 33. Bae, J.-S.; Su, S., Macadamia nut shell-derived carbon composites for post combustion CO₂
- 178 capture. *International Journal of Greenhouse Gas Control* **2013**, *19*, 174-182.
- 179 34. Zhu, M. Y.; Cai, W. Q.; Verpoort, F.; Zhou, J. B., Preparation of pineapple waste-derived porous
- carbons with enhanced CO₂ capture performance by hydrothermal carbonation-alkali metal
- oxalates assisted thermal activation process. Chemical Engineering Research & Design 2019,
- 182 *146*, 130-140.
- 183 35. Cui, H.; Xu, J.; Shi, J.; Yan, N.; Liu, Y.; Zhang, S., Zinc nitrate as an activation agent for the
- synthesis of nitrogen-doped porous carbon and its application in CO₂ adsorption. *Energy & Fuels*
- **2020**, *34*, (5), 6069-6076.
- 186 36. Xu, J.; Cui, H.; Shi, J.; Yan, N.; Liu, Y.; Li, D., Agar-derived nitrogen-doped porous carbon for
- 187 CO₂ adsorption. *ChemistrySelect* **2018**, *3*, (39), 10977-10982.
- 188 37. Liu, S. F.; Ma, R.; Hu, X.; Wang, L. L.; Wang, X. Y.; Radosz, M.; Fan, M. H., CO₂ adsorption
- on hazelnut-shell-derived nitrogen-doped porous carbons synthesized by single-step sodium
- amide activation. *Industrial & Engineering Chemistry Research* **2020**, *59*, (15), 7046-7053.
- 191 38. Yang, Z.; Zhang, G.; Guo, X.; Xu, Y., Designing a novel N-doped adsorbent with ultrahigh
- selectivity for CO₂: Waste biomass pyrolysis and two-step activation. *Biomass Conversion &*
- 193 Biorefinery 2020. https://doi.org/10.1007/s13399-020-00633-0.
- 194 39. Xu, Y.; Yang, Z.; Zhang, G.; Zhao, P., Excellent CO₂ adsorption performance of nitrogen-doped
- waste biocarbon prepared with different activators. *Journal of Cleaner Production* **2020**, 264.
- 196 40. Yang, Z.; Zhang, G.; Xu, Y.; Zhao, P., One step N-doping and activation of biomass carbon at
- low temperature through NaNH₂: An effective approach to CO₂ adsorbents. *Journal of CO*₂
- 198 *Utilization* **2019**, *33*, 320-329.
- 199 41. Quan, C.; Jia, X.; Gao, N., Nitrogen-doping activated biomass carbon from tea seed shell for CO₂
- capture and supercapacitor. *International Journal of Energy Research* **2019**, 44, (2), 1218-1232.
- $201 \qquad 42. \quad \text{Rao, L.; Liu, S.; Wang, L.; Ma, C.; Wu, J.; An, L.; Hu, X., N-doped porous carbons from}$
- low-temperature and single-step sodium amide activation of carbonized water chestnut shell with
- excellent CO₂ capture performance. *Chemical Engineering Journal* **2019**, *359*, 428-435.
- 43. Ma, R.; Hao, J.; Chang, G.; Wang, Y.; Guo, Q., Nitrogen-doping microporous adsorbents
- prepared from palm kernel with excellent CO₂ capture property. Canadian Journal of Chemical
- 206 Engineering 2019, 98, (2), 503-512.
- Wei, H.; Chen, J.; Fu, N.; Chen, H.; Lin, H.; Han, S., Biomass-derived nitrogen-doped porous
- 208 carbon with superior capacitive performance and high CO₂ capture capacity. *Electrochimica Acta*
- **209 2018**, *266*, 161-169.

- 210 45. Yue, L.; Xia, Q.; Wang, L.; Wang, L.; DaCosta, H.; Yang, J.; Hu, X., CO₂ adsorption at
- 211 nitrogen-doped carbons prepared by K₂CO₃ activation of urea-modified coconut shell. *Journal of*
- 212 *Colloid & Interface Science* **2018**, *511*, 259-267.
- 213 46. Chen, J.; Yang, J.; Hu, G. S.; Hu, X.; Li, Z. M.; Shen, S. W.; Radosz, M.; Fan, M. H., Enhanced
- 214 CO₂ capture capacity of nitrogen-doped biomass-derived porous carbons. ACS Sustainable
- 215 Chemistry & Engineering **2016**, 4, (3), 1439-1445.
- 216 47. Yang, M.; Guo, L.; Hu, G.; Hu, X.; Xu, L.; Chen, J.; Dai, W.; Fan, M., Highly cost-effective
- 217 nitrogen-doped porous coconut shell-based CO₂ sorbent synthesized by combining ammoxidation
- with KOH activation. Environmental Science & Technology 2015, 49, (11), 7063-7070.
- 219 48. Boujibar, O.; Souikny, A.; Ghamouss, F.; Achak, O.; Dahbi, M.; Chafik, T., CO₂ capture using
- N-containing nanoporous activated carbon obtained from argan fruit shells. *Journal of*
- 221 Environmental Chemical Engineering **2018**, 6, (2), 1995-2002.
- 222 49. Wei, H.; Chen, H.; Fu, N.; Chen, J.; Lan, G.; Qian, W.; Liu, Y.; Lin, H.; Han, S., Excellent
- 223 electrochemical properties and large CO₂ capture of nitrogen-doped activated porous carbon
- synthesised from waste longan shells. *Electrochimica Acta* **2017**, *231*, 403-411.
- 225 50. Chithra, A.; Wilson, P.; Rajeev, R.; Prabhakaran, K., Nitrogen-doped microporous carbon with
- high CO₂ sorption by KOH activation of black gram. *Materials Research Express* **2018**, *5*, (11).
- 227 51. Yang, Z.; Guo, X.; Zhang, G.; Xu, Y., One-pot synthesis of high N-doped porous carbons derived
- from a N-rich oil palm biomass residue in low temperature for CO₂ capture. *International*
- *Journal of Energy Research* **2020**, *44*, (6), 4875-4887.
- 230 52. Li, Y.; Wang, S.; Wang, Y.; Wei, J., Sustainable biomass glucose-derived porous
- carbon spheres with high nitrogen doping: As a promising adsorbent for CO₂/CH₄/N₂ adsorptive
- 232 separation. *Nanomaterials* **2020**, *10*, (1), 174.
- 233 53. Chang, B.; Shi, W.; Yin, H.; Zhang, S.; Yang, B., Poplar catkin-derived self-templated synthesis
- of N-doped hierarchical porous carbon microtubes for effective CO₂ capture. *Chemical*
- 235 Engineering Journal **2019**, 358, 1507-1518.
- 236 54. Rao, L.; Ma, R.; Liu, S.; Wang, L.; Wu, Z.; Yang, J.; Hu, X., Nitrogen enriched porous carbons
- from d-glucose with excellent CO₂ capture performance. Chemical Engineering Journal 2019,
- 238 *362*, 794-801.
- 239 55. Rehman, A.; Park, S.-J., Tunable nitrogen-doped microporous carbons: Delineating the role of
- optimum pore size for enhanced CO₂ adsorption. Chemical Engineering Journal 2019, 362,
- 241 731-742.
- 242 56. Yue, L.; Rao, L.; Wang, L.; An, L.; Hou, C.; Ma, C.; DaCosta, H.; Hu, X., Efficient CO₂
- Adsorption on Nitrogen-Doped porous carbons Derived from d-glucose. *Energy & Fuels* **2018**,
- 244 32, (6), 6955-6963.
- 245 57. Park, S.; Choi, M. S.; Park, H. S., Nitrogen-doped nanoporous carbons derived from lignin for
- 246 high CO₂ capacity. Carbon Letters **2019**, 29, (3), 289-296.
- Demir, M.; Tessema, T.-D.; Farghaly, A. A.; Nyankson, E.; Saraswat, S. K.; Aksoy, B.;
- Islamoglu, T.; Collinson, M. M.; El-Kaderi, H. M.; Gupta, R. B., Lignin-derived
- heteroatom-doped porous carbons for supercapacitor and CO₂ capture applications. *International*
- *Journal of Energy Research* **2018**, *42*, (8), 2686-2700.

- 251 59. Saha, D.; Van Bramer, S. E.; Orkoulas, G.; Ho, H.-C.; Chen, J.; Henley, D. K., CO₂ capture in
- lignin-derived and nitrogen-doped hierarchical porous carbons. *Carbon* **2017**, *121*, 257-266.
- Han, J.; Zhang, L.; Zhao, B.; Qin, L.; Wang, Y.; Xing, F., The N-doped activated carbon derived
- from sugarcane bagasse for CO₂ adsorption. *Industrial Crops & Products* **2019**, *128*, 290-297.
- 255 61. Rao, L.; Yue, L.; Wang, L.; Wu, Z.; Ma, C.; An, L.; Hu, X., Low-temperature and single-step
- synthesis of N-doped porous carbons with a high CO₂ adsorption performance by sodium amide
- 257 activation. Energy & Fuels 2018, 32, (10), 10830-10837.
- Wang, L.; Rao, L.; Xia, B.; Wang, L.; Yue, L.; Liang, Y.; DaCosta, H.; Hu, X., Highly efficient
- 259 CO₂ adsorption by nitrogen-doped porous carbons synthesized with low-temperature sodium
- amide activation. *Carbon* **2018**, *130*, 31-40.
- 261 63. Singh, M. G.; Lakhi, K. S.; Park, D.-H.; Srivastava, P.; Naidu, R.; Vinu, A., Facile one-pot
- synthesis of activated porous biocarbons with a high nitrogen content for CO₂ capture.
- 263 *ChemNanoMat* **2018**, *4*, (3), 281-290.
- 64. Gao, A.; Guo, N.; Yan, M.; Li, M.; Wang, F.; Yang, R., Hierarchical porous carbon activated by
- 265 CaCO₃ from pigskin collagen for CO₂ and H₂ adsorption. *Microporous & Mesoporous Materials*
- **2018**, *260*, 172-179.
- 267 65. Li, D.; Zhou, J.; Zhang, Z.; Li, L.; Tian, Y.; Lu, Y.; Qiao, Y.; Li, J.; Wen, L., Improving
- low-pressure CO₂ capture performance of N-doped active carbons by adjusting flow rate of
- protective gas during alkali activation. *Carbon* **2017**, *114*, 496-503.
- 270 66. Yue, L.; Rao, L.; Wang, L.; Wu, J.; Hu, X.; DaCosta, H.; Yang, J.; Fan, M., Efficient
- 271 CO₂ capture by nitrogen-doped biocarbons derived from rotten strawberries. *Industrial &*
- 272 Engineering Chemistry Research 2017, 56, (47), 14115-14122.
- 273 67. Rana, M.; Subramani, K.; Sathish, M.; Gautam, U. K., Soya derived heteroatom doped carbon as
- a promising platform for oxygen reduction, supercapacitor and CO₂ capture. Carbon 2017, 114,
- 275 679-689.
- 276 68. Singh, G.; Kim, I. Y.; Lakhi, K. S.; Joseph, S.; Srivastava, P.; Naidu, R.; Vinu, A., Heteroatom
- functionalized activated porous biocarbons and their excellent performance for CO₂ capture at
- 278 high pressure. *Journal of Materials Chemistry A* **2017**, *5*, (40), 21196-21204.
- 279 69. Li, Y.; Xu, R.; Wang, X.; Wang, B.; Cao, J.; Yang, J.; Wei, J., Waste wool derived
- nitrogen-doped hierarchical porous carbon for selective CO₂ capture. RSC Advances 2018, 8,
- 281 (35), 19818-19826.
- 282 70. Zhu, B.; Qiu, K.; Shang, C.; Guo, Z., Naturally derived porous carbon with selective metal-
- and/or nitrogen-doping for efficient CO₂ capture and oxygen reduction. *Journal of Materials*
- 284 *Chemistry A* **2015**, *3*, (9), 5212-5222.
- 285 71. Liu, S. H.; Huang, Y. Y., Valorization of coffee grounds to biochar-derived adsorbents for CO₂
- adsorption. Journal of Cleaner Production 2018, 175, 354-360.
- Wei, T.; Zhang, Q.; Wei, X.; Gao, Y.; Li, H., A facile and low-cost route to heteroatom doped
- porous carbon derived from Broussonetia papyrifera Bark with excellent supercapacitance and
- 289 CO₂ capture performance. *Scientific Reports* **2016**, *6*, 22646.
- 290 73. Arami-Niya, A.; Rufford, T. E.; Zhu, Z.; Carbon, N.-D., Foams synthesized from banana peel
- and zinc complex template for adsorption of CO₂, CH₄, and N₂. Energy & Fuels **2016**, 30, (9),
- 292 7298-7309.

- $293 \qquad 74. \quad Boyjoo, Y.; Cheng, Y.; Zhong, H.; Tian, H.; Pan, J.; Pareek, V. K.; Jiang, S. P.; Lamonier, J.-F.; Pan, J.; Pan, J.$
- Jaroniec, M.; Liu, J., From waste Coca Cola® to activated carbons with impressive capabilities
- for CO₂ adsorption and supercapacitors. *Carbon* **2017**, *116*, 490-499.
- Zhao, Z.-Q.; Xiao, P.-W.; Zhao, L.; Liu, Y.; Han, B.-H., Human hair-derived nitrogen and sulfur
 co-doped porous carbon materials for gas adsorption. *RSC Advances* 2015, 5, (90), 73980-73988.
- 298 76. Querejeta, N.; Gil, M. V.; Pevida, C.; Centeno, T. A., Standing out the key role of
- 299 ultramicroporosity to tailor biomass-derived carbons for CO₂ capture. *Journal of CO₂ Utilization*
- **2018**, *26*, 1-7.

- The sum of the sum of
- Prediction and exploration with machine learning. *Applied Energy* **2020**, *269*, 115166.