

If $R(m,n) \leq R(m-1,n) + R(m,n-1)$ A

B -) look at enylete graph of A+ B various. Pick vertexX Cet R be the ret of vortion connected to X by fell Breen Thu A+1 = 1R1+ 1G1+2. =) |R| > A or |G| > B. Similaly, for 16/2B we have either a Red Km or Green Kn-1+1= Kn (nith X) So R(M,n) < R(n-1,n) + R(m,n-1) as claimed.

base core M= n= ? (already pured last hime) Suppose the for 45 mon & h. To pore: here for the m+n = hell Try molection lypothesis, $R(m-1, 1) \leq (m+n-3)$ $R(m, n-1) \in \binom{m+n-3}{m-1}$ $R(m,n) \leq R(m=1,n) + f(m,n-1) \geq {m+n-3 \choose m-2}$ ley 12 + (m + u - 3) (a) if no as y \in M s.t. Her is no monochrunte K_N Ken $\forall K_M$, then we have that there is no purposhorus K_N anywhe in K_M , so R(u,n) $M_M > \# molk_M - m$

 $R(u, n) \gg m$

(1) If average (1, then over all colonlys of Km, there is at least 2 coloning which results in Kn int numberands for my N (This is abrium?)

This implies P(n,n) > m becare

	Hun re con think of it as 4
Þ	This average (1 the the poblition that the a mount of the poblitity is a finish means
	that their is a leby odon; that gives no none domatic KN, and so K(m,n) > m.
(c)	Mono $(c, N) = 1$ N monochame: $K \in \mathcal{B} \cap C$ else. Franka: $\# \text{ coloning } \cap 1 K_{GN} = 2$
	Agerage = $\sum_{\substack{C \text{ of } K_{\text{in}} \text{ subrot}}} \sum_{\substack{C \text{ of } K_{\text{in}} \text{ subbol}}} \sum_{\substack{C \text{ of } K_{$
Ø	Average = = NE MONO (CIN)
	2 mays of making st 2 mays of making st 2 mays of making st
-	2 Total # vays to color km
	$= \left[2\binom{m}{n}2^{-\binom{m}{2}}\right]$
િ) $R(n,n) > m$ it this arrays is ≤ 1 is: $\binom{m}{n} \leq 2^{\binom{n}{2}-1}$
£3	May (8) next page

(g) From (f) we have b(4,4) > 1/1/2(2)-1 $\binom{n}{2} = \frac{n(n-1)}{2}$ goes like $\frac{n^2}{2}$. get [VIII ne / 1/2) 7 'n $\left(\begin{array}{c} \infty & n \to \infty \end{array}\right) \left(\sqrt{\nu \pi n}\right)^{n} \to 1$ $\left(\frac{1}{2}\right)^{\frac{1}{2}} \rightarrow 1$ we set $\sim \left(\frac{n}{\epsilon}\right) \cdot (\sqrt{z})^n > (\sqrt{z})^n$. So $R(n,n) > (\sqrt{z})$ as desired. Sy = 25 p-1. Solution to Rir is Sy = 2 K lere K But by seffy So= 2°K=7 -9 K=1 \Rightarrow only $s_n = 2^n$ solves $\begin{cases} s_n = 2s_{n-1} \\ s_n = \end{cases}$ (90) (a) 1st order reconstructs: (2-1), (2.2), (2.3), (2.4), 1) Suppore 1st order recurrence of an = 5(n) 911-1 + g(n) with a = a stall Synt down flow amen of (m) amen & g(m)

Sypone we share a top we as by he which hypose we have anthr sequence on he which ly = f(n) by + g(n) , bo = a that the Garden then $B_{n} = \left[f(n) \right]^{n} b_{0} + g(n) \sum_{i=0}^{n-1} f'(n)$ $= \left[f(1)\right]^n a + g(n) \stackrel{n-1}{\geq} f'(n)$ an the EN* {b, } = 4 an}. "semi- alon" an 4 80000 8000 2 300 cm an = an-1 + 3000 g ao = 50000 n = 50000 (m+1) 1=0 +3000 (Zi) 50000 (n+1) + 3000 n(n+1)

46
$$S_{N} = a_{0} + \cdots + a_{N}$$

where $\begin{cases} a_{N} = a_{N-1} + C \Rightarrow a_{N} = a_{0} + C \cdot n \\ a_{0} = a_{0} \end{cases}$
 $S_{N} = \sum_{t=0}^{N} a_{t} = \sum_{i=0}^{N} a_{0} + C \cdot i = \left| a_{0}(n+1) + \frac{c(n)(n+1)}{2} \right|$
 $S_{N} = \sum_{t=0}^{N} a_{t} = \sum_{i=0}^{N} a_{0} + C \cdot i = \left| a_{0}(n+1) + \frac{c(n)(n+1)}{2} \right|$
 $S_{N} = \sum_{t=0}^{N} a_{0} = \sum_{i=0}^{N} a_{0} + C \cdot i = \left| a_{0}(n+1) + \frac{c(n)(n+1)}{2} \right|$
 $S_{N} = \sum_{t=0}^{N} a_{0} = \sum_{i=0}^{N} a_{0} + C \cdot i = a_{0} + C \cdot n$
 $S_{N} = \sum_{t=0}^{N} a_{0} = \sum_{i=0}^{N} a_{0} + C \cdot i = a_{0} + C \cdot n$
 $S_{N} = \sum_{t=0}^{N} a_{0} + C \cdot i = a_{0} + C \cdot n$
 $S_{N} = \sum_{t=0}^{N} a_{0} + C \cdot i = a_{0} + C \cdot n$
 $S_{N} = \sum_{t=0}^{N} a_{0} + C \cdot i = a_{0} + C \cdot n$
 $S_{N} = \sum_{t=0}^{N} a_{0} + C \cdot i = a_{0} + C \cdot i = a_{0} + C \cdot n$
 $S_{N} = \sum_{t=0}^{N} a_{0} + C \cdot i = a_{0} + C \cdot i = a_{0} + C \cdot n$
 $S_{N} = \sum_{t=0}^{N} a_{0} + C \cdot i = a_{0} + C \cdot i = a_{0} + C \cdot n$
 $S_{N} = \sum_{t=0}^{N} a_{0} + C \cdot i = a_{0} + C \cdot i = a_{0} + C \cdot n$
 $S_{N} = \sum_{t=0}^{N} a_{0} + C \cdot i = a_{0} + C \cdot i = a_{0} + C \cdot n$
 $S_{N} = \sum_{t=0}^{N} a_{0} + C \cdot i = a_{0} + C \cdot i = a_{0} + C \cdot n$
 $S_{N} = \sum_{t=0}^{N} a_{0} + C \cdot i = a_{0} + C \cdot i = a_{0} + C \cdot n$
 $S_{N} = \sum_{t=0}^{N} a_{0} + C \cdot i = a_{0} + C \cdot i = a_{0} + C \cdot n$
 $S_{N} = \sum_{t=0}^{N} a_{0} + C \cdot i = a_{0} + C \cdot n$
 $S_{N} = \sum_{t=0}^{N} a_{0} + C \cdot i = a_{0} +$

(i) I vertex:

13C alling me edge = adds 2 degrees V

TH hypose hum for n vertices. Now add I vertex to graph.

Suppose thre are be edges to this vertex then

Non $-\sqrt{\sum \log (v')}' = \sum \log (v) + 2k = 2 \# old \# older + 2k$ Sum $-\sqrt{\sum \log (v')}' = \sum \log (v) + 2k = 2 \# old \# older + k$ = 2 # old # older + kNow edges) (1) No intendion ...

Each edge connects exactly 2 vertices

= each edge contributes enactly 2 to the

run of degrees...

(103) [# Festion of old degree is even]

K

 $\sum_{V \in G} deg(V) = \sum_{V \in G} deg(V) + \sum_{V \in G} deg(V)$ $\sum_{v \in G} deg(V) \qquad deg(V)$ $\sum_{v \in G} deg(V) \qquad deg(V)$ $\sum_{v \in G} deg(V) \qquad deg(V)$

d 2.E (even) desse even I deg (v) is
beine deg (v) is
deg (v) even sels even.

This is the only

if there is an even

number of terms

here

He within of odd

day is even.

Supp 3 pg 5> (a) | 7n+2 Induction: CHy bre come V IH: Formula is Gn Hzn+z for n & k look at n= h+1. An adlitimal C breaks 2 C-H bonds and creates 3 =) - nen homelen = Ch+1 Hzn+z+z = (h+1) Hz(n+1)+2

(Rutare)

(Iso butane)

(4) (a) 2n - sets 1 2 h tennis ...

Supp 4

$$a_n = \frac{1}{n!} \begin{pmatrix} 2n \\ z \end{pmatrix}, q_{n-1}$$

 $a_n = \frac{1}{n!} \binom{2n}{2} \binom{2(n-1)}{2} - \binom{2}{2}$

" permite"

fick teams for 2/n-1)

for the

$$a_{h}^{2} = \frac{2^{n}}{2} \binom{2n}{2} \binom{2(n-1)}{2} \cdots \binom{2}{2}$$
 (server)

$$\Rightarrow \left(\frac{2}{n}\right)\left(\frac{2n}{2}\right) \cdot a_{n-1}^{2}$$