Aula 12 – Mineração de Dados Regras de Associação

Profa. Elaine Faria UFU

Material

- Este material foi construído por meio de traduções dos slides do do prof. Tan, disponíveis em:
 - https://www-users.cse.umn.edu/~kumar001/dmbook/index.php
 - Todas as figuras usadas foram retiradas dos slides do prof. Tan
- O material é baseado no livro
 - Tan P., SteinBack M. e Kumar V. Introduction to Data Mining, Pearson, 2006.
 - Faceli, K., Lorena, A. C., Gama, J., Carvalho, A. C. P. L. F., Inteligência Artificial: Uma abordagem de Aprendizado de Máquina, LTC, 2011.

Regra de Associação - Motivação

- Suponha que um gerente de supermercado esteja interessado em saber os hábitos de compra de seus clientes
 - Quais produtos os clientes costumam comprar ao mesmo tempo?
 - Planejar os catálogos de supermercado
 - Planejar os folhetos de promoção de produto
 - Promover Campanhas de publicidade
 - Organizar a localização dos produtos
 - Fonte de Dados para responder tais perguntas
 - Banco de dados de transações efetuadas pelos clientes

Regras de Associação

 Dado um conjunto de transações, encontrar regras que irão predizer a ocorrência de um item baseado na ocorrência dos outros itens da transação

Transações Carrinho do Supermercado

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Exemplo de Regra de Associação

```
{Diaper} \rightarrow {Beer},
{Milk, Bread} \rightarrow {Eggs,Coke},
{Beer, Bread} \rightarrow {Milk},
```

Implicações significam coocorrências, não causalidade!

Definição: Itemset frequente

Itemset

- Uma coleção de um ou muitos itens
 - Exemplo: {Milk, Bread, Diaper}
- k-itemset
 - Um itemset que contém k itens

Contagem do Suporte (σ)

- Frequência de ocorrência de um itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Suporte

- Fração de transações que contém um itemset
- E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$

Itemset Frequente

 Um itemset cujo suporte é maior ou igual a um limiar *minsup*

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definição: Regra de Associação

- Regra de Associação
 - Uma expressão de implicação na forma X → Y, onde X e Y são itemsets
 - Exemplo:{Milk, Diaper} → {Beer}
- Métrica para avaliação de regras
 - Supporte(s)
 - Fração de transações que contém X e
 Y
 - Confiança (c)
 - Medida de quão frequente items em Y aparecem na transação que contém X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Exemplo:

$$\{Milk, Diaper\} \Rightarrow \{Beer\}$$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk,Diaper,Beer})}{\sigma(\text{Milk,Diaper})} = \frac{2}{3} = 0.67$$

Definição: Regra de Associação

- Regra de Associação Atenção
 - Exemplo{Milk, Diaper} → {Beer}
 - Significa que quem compra Milk e
 Diaper compra também Beer
 - Isso é diferente de {Beer} → {Milk, Diaper}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Tarefa de Mineração de Regra de Associação

- Dado um conjunto de transações T, objetivo da regra de associação é encontrar todas as regras tendo
 - suporte ≥ limiar minsup
 - confiança ≥ limiar minconf
- Proposta de força-bruta:
 - Liste todas as possíveis regras de associação
 - Calcule o suporte e a confiança de cada regra
 - Pode as regras que n\u00e3o alcancem os limiares de minsup and minconf
 - ⇒ Computacionamente proibitivo!

Minerando regras de associação

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Exemplos de regras:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)
{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)
{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)
{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)
{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)
{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observações

- Todas as regras acima são partições binárias do mesmo itemset: {Milk, Diaper, Beer}
- Regras originárias do mesmo itemset tem suporte idêntico, mas podem ter diferentes confianças
- Assim, nós podemos separar os requisitos de suporte e confiança

Minerando regras de associação

Proposta em 2 passos:

1. Geração de itemsets frequentes

Gerar todos os itemsets frequentes cujo suporte ≥ minsup

2. Geração de regras

 Gerar regras de alta confiança a partir de cada itemset frequente, onde cada regra é uma partição binária de um itemset frequente

Geração de itemsets frequentes é ainda computacionalmente cara

Geração de itemsets frequentes

Dados

- um conjunto $A = \{a_1, ...a_m\}$ de itens
- uma tabela $T = (t_1, ..., t_n)$ de transações sobre A

Objetivo

 encontrar o conjunto de itens frequentes (itemset), tais que o suporte relativo de cada conjunto de itens é maior ou igual ao mínimo definido pelo usuário

Geração de itemsets frequentes

Geração de itemsets frequentes

- Proposta de força-bruta:
 - Cada itemset na grade é um candidato a itemset frequente
 - Contar o suporte de cada candidato escaneando a base de dados

- Combinar cada transação contra cada candidato
- Complexidade ~ O(NMw) => Caro porque M = 2d !!!

Estratégias para geração de itemsets frequentes

- Reduzir o número de candidatos (M)
 - Pesquisa completa: M=2^d
 - Usar técnicas de poda para reduzir M
- Reduzir o número de transações (N)
 - Reduzir o tamanho de N à medida que o tamanho do itemset aumenta
 - Usado por algoritmos de mineração DHP e vertical-based
- Reduzir o número de comparações (NM)
 - Uso eficiente de estruturas de dados para armazenar os candidatos ou transações
 - Não é necessário combinar cada candidato contra cada transação

Reduzindo o nro de candidatos

- Princípio do Apriori:
 - Se um itemset é frequente, então todos os seus subconjuntos são também frequentes
- O princípio a Priori é válido devido à seguinte propriedade da medida de suporte:
 - O suporte de um itemset nunca excede o suporte dos seus subconjuntos
 - Isto é conhecido como a propriedade do suporte anti-monótona

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Suporte mínimo = 3

Se cada subconjunto é considerado

$${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3}$$

6 + 15 + 20 = 41

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Minimum Support = 3

Se cada subconjunto é considerado ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41 Com a poda baseada no suporte,

$$6 + 6 + 4 = 16$$

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1


```
Itemset

{Bread, Milk}
{Bread, Beer }
{Bread, Diaper}
{Beer, Milk}
{Diaper, Milk}
{Beer, Diaper}
```

Pares (2-itemsets)

(Não é necessário gerar candidatos envolvendo Coke ou Eggs)

Suporte mínimo = 3

Se cada subconjunto é considerado ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41Com a poda baseada no suporte, 6 + 6 + 4 = 16

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Itemset	Count
{Bread,Milk}	3
{Beer, Bread}	2
{Bread,Diaper}	3
{Beer,Milk}	2
{Diaper,Milk}	3
{Beer,Diaper}	3

Pares (2-itemsets)

(Não é necessário gerar candidatos envolvendo Coke ou Eggs)

Suporte mínimo = 3

Se cada subconjunto é considerado ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41 Com a poda baseada no suporte, 6 + 6 + 4 = 16

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Itemset
{Bread,Milk}
{Bread, Beer }
{Bread,Diaper}
{Beer, Milk}
{Diaper, Milk}
{Beer,Diaper}

Pares (2-itemsets)

(Não é necessário gerar candidatos envolvendo Coke ou Eggs)

Suporte mínimo = 3

omeet

Triplas (3-itemsets)

Se cada subconjunto é considerado ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41 Com a poda baseada no suporte, 6 + 6 + 4 = 16

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Pares (2-itemsets)

(Não é necessário gerar candidatos envolvendo Coke ou Eggs)

Suporte mínimo = 3

$$6 + 15 + 20 = 41$$

Com a poda baseada no suporte,

$$6 + 6 + 4 = 16$$

Triplets (3-itemsets)

Itemset	Count
{ Beer, Diaper, Milk}	2
{ Beer,Bread, Diaper}	2
{Bread, Diaper, Milk}	2
{Beer, Bread, Milk}	1

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Itemset
{Bread,Milk}
{Bread, Beer }
{Bread,Diaper}
{Beer, Milk}
{Diaper, Milk}
{Beer,Diaper}

Pares (2-itemsets)

(Não é necessário gerar candidatos envolvendo Coke ou Eggs)

Suporte mínimo = 3

Se cada subconjunto é considerado ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41Com a poda baseada no suporte, 6 + 6 + 4 = 166 + 6 + 1 = 13 Triplets (3-itemsets)

Algoritmo Apriori

- F_k: k-itemsets frequentes
- L_k: k-itemsets candidatos

Algoritmo

- Seja k=1
- Gere F₁ = {1-itemsets frequentes}
- Repita até que F_k seja vazio
 - Geração de Candidatos: Gere L_{k+1} a partir de F_k
 - **Poda dos Candidatos**: Pode os itemsets candidatos em L_{k+1} contendo subconjuntos de tamanho k que são infrequentes
 - Contagem do Suporte: Conte o suporte de cada candidato em L_{k+1} escaneando a base
 - Eliminação de Candidatos: Elimine candidatos em L_{k+1} que são infrequentes, deixando somente aqueles que são frequentes => F_{k+1}

Geração de candidatos: Método da força bruta

Figure 5.6. A brute-force method for generating candidate 3-itemsets.

Geração dos Candidatos: Unir os itemsets F_{k-1} e F₁

Figure 5.7. Generating and pruning candidate k-itemsets by merging a frequent (k-1)-itemset with a frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

Geração de Candidatos: Método F_{k-1} x F_{k-1}

- Unir dois (k-1)-itemsets frequentes se os seus (k-2) primeiros items são idênticos
- F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
 - Unir $(\underline{AB}C, \underline{AB}D) = \underline{AB}CD$
 - Unir (ABC, ABE) = ABCE
 - Unir (ABD, ABE) = ABDE
 - Não unir (<u>ABD,ACD</u>) porque eles dividem o mesmo prefixo de tamanho 1 ao invés de tamanho 2
- Método usado pelo algoritmo apriori

Poda dos Candidatos

- Seja F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} o conjunto de 3-itemsets frequentes
- L_4 = {ABCD,ABCE,ABDE} é o conjunto de 4-itemsets candidatos gerados (ver slide anterior)
- Poda dos candidatos
 - Podar ABCE porque ACE e BCE são infrequentes
 - Podar ABDE porque ADE é infrequente
- Após podar os candidatos: $L_4 = \{ABCD\}$

Geração dos Candidatos: Unir os itemsets $F_{k-1} \times F_{k-1}$

Figure 5.8. Generating and pruning candidate k-itemsets by merging pairs of frequent (k-1)-itemsets.

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread, Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pares (2-itemsets)

(Não é necessário gerar candidatos envolvendo Coke ou Eggs)

Minimum Support = 3

If every subset is considered, ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 1 = 13 Triplets (3-itemsets)

Uso do método F_{k-1}xF_{k-1} para geração dos candidatos resulta em somente um 3itemset. Este é eliminado depois do passo de contagem do suporte

Método alternativo para F_{k-1} x F_{k-1}

• Unir (k-1)-itemsets frequentes se os últimos (k-2) items do primeiro são idênticos aos primeiros (k-2) items do segundo.

- F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
 - Unir (ABC, BCD) = ABCD
 - Unir (ABD, BDE) = ABDE
 - Unir (ACD, CDE) = ACDE
 - Unir (B<u>CD</u>, <u>CD</u>E) = B<u>CD</u>E

Poda dos candidatos para o método Alternativo F_{k-1} x F_{k-1}

- Seja F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} o conjunto de 3-itemsets frequentes
- L_4 = {ABCD,ABDE,ACDE,BCDE} é o conjunto de 4-itemsets candidatos gerados (ver slide anterior)
- Poda dos candidatos
 - Podar ABDE porque ADE é infrequente
 - Podar ACDE porque ACE e ADE são infrequentes
 - Podar BCDE porque BCE
- Após a poda dos candidatos: L₄ = {ABCD}

Contagem do Suporte dos Itemsets Candidatos

- Percorrer a base de dados de transações para determinar o suporte de cada itemset candidato
 - Deve-se combinar cada itemset candidato contra cada transação, o que é uma operação cara

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

```
Itemset
{ Beer, Diaper, Milk}
{ Beer, Bread, Diaper}
{Bread, Diaper, Milk}
{ Beer, Bread, Milk}
```

 Para reduzir o nro de comparações, pode-se armazenar os itemsets candidatos em uma estrutura hash

Geração de Regras

- Dado um itemset frequente L, encontre todos os subconjuntos nãovazios f ⊂ L tal que f → L − f satisfaça o requisito de confiança mínima
 - Se {A,B,C,D} é um itemset frequente, regras candidatas:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

• Se |L| = k, então há $2^k - 2$ regras de associação candidatas (ignorar L $\rightarrow \varnothing$ and $\varnothing \rightarrow L$)

Fatores afetando a Complexidade do Apriori

- Escolha do limiar do suporte mínimo
 - reduzir o limite de suporte resulta em mais conjuntos de itemsets frequentes
 - isso pode aumentar o número de candidatos e o comprimento máximo dos itemsets frequentes
- Dimensionalidade (número de items) da base de dados
 - É necessário mais espaço para armazenar a contagem do suporte
 - Se o número de conjuntos de itens frequentes também aumentar, os custos de computação e E / S também podem aumentar
- Tamanho da base de dados
 - o tempo de execução do algoritmo aumenta com o número de transações
- Largura média das transações
 - a largura da transação aumenta o comprimento máximo de conjuntos de itens
 - o número de subconjuntos em uma transação aumenta com sua largura, aumentando o tempo de computação para contagem de suporte

Leitura Recomendada

- Leitura do
 - Capítulo 6 (até a seção 6.3) do livro Tan et al, 2006.