*LETS GROW MORE (VIRTUAL INTERNSHIP MAY-2023) *

Name- Arushi

Data Science Intern

Task 2- Prediction using Decision Tree Algorithm

Importing important libraries

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

Reading data

data=pd.read_csv('/content/Iris.csv',index_col=0)

Getting information about the data

data.head()

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	1
Id						
1	5.1	3.5	1.4	0.2	Iris-setosa	
2	4.9	3.0	1.4	0.2	Iris-setosa	
3	4.7	3.2	1.3	0.2	Iris-setosa	
4	4.6	3.1	1.5	0.2	Iris-setosa	
5	5.0	3.6	1.4	0.2	Iris-setosa	

#Checking null values
data.isnull().sum()

SepalLengthCm	0
SepalWidthCm	0
PetalLengthCm	0
PetalWidthCm	0
C	^

✓ 0s completed at 9:06 AM ×

#Checking number of rows and columns in dataset data.shape

(150, 5)

#Overall stats of the dataset data.describe()

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Here Target variable is Species

#Checking the unique values in target variable data.Species.unique()

```
array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
```

#Splitting data into training and testing from sklearn import tree from sklearn.model_selection import train_test_split X=data[['SepalLengthCm','SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']] Y=data.Species.values

Χ

1

SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Ιd 5.1 0.2 3.5 1.4

2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
4	4.6	3.1	1.5	0.2
5	5.0	3.6	1.4	0.2
146	6.7	3.0	5.2	2.3
147	6.3	2.5	5.0	1.9
148	6.5	3.0	5.2	2.0
149	6.2	3.4	5.4	2.3
150	5.9	3.0	5.1	1.8

150 rows × 4 columns

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
Id				
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
4	4.6	3.1	1.5	0.2
5	5.0	3.6	1.4	0.2
146	6.7	3.0	5.2	2.3
147	6.3	2.5	5.0	1.9
148	6.5	3.0	5.2	2.0
149	6.2	3.4	5.4	2.3
150	5.9	3.0	5.1	1.8

150 rows × 4 columns

Υ

```
array(['Iris-setosa', 'Iris-setosa', 'Iris-setosa',
```

```
'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
             'Iris-setosa', 'Iris-setosa', 'Iris-versicolor', 'Iris-versicolor',
             'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
             'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
             'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
             'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
             'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
             'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
             'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
             'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
             'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
             'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
             'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
             'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
             'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
             'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
             'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
             'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
             'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
             'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
             'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
             'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
             'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
             'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
             'Iris-virginica', 'Iris-virginica'], dtype=object)
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.25,random_state=0)
Creating the model
model=tree.DecisionTreeClassifier(criterion='entropy')
#Training our classifier
model.fit(X_train,Y_train)
                  DecisionTreeClassifier
```

1113 3CC030 , 1113 3CC030 , 1113 3CC030 , 1113 3CC030 ,

4/23/2023, 9:25 AM

DecisionTreeClassifier(criterion='entropy')

```
#Prediction
Y_pred=model.predict(X_test)

model.score(X_test,Y_test)
0.9736842105263158
```

Evaluation

```
from sklearn.metrics import accuracy_score,classification_report
accuracy_score(Y_test,Y_pred)
```

0.9736842105263158

#Evaluation Summary
print(classification_report(Y_test,Y_pred))

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	13
Iris-versicolor	1.00	0.94	0.97	16
Iris-virginica	0.90	1.00	0.95	9
accuracy			0.97	38
macro avg	0.97	0.98	0.97	38
weighted avg	0.98	0.97	0.97	38

Visualization of Decision Tree

versicolor').

```
cn=data["Species"].unique().tolist()
fig = plt.figure(figsize=(25,20))
tree.plot_tree(model, feature_names=data.columns[:-1],class_names=cn,filled=True)

[Text(0.4, 0.9, 'PetalLengthCm <= 2.35\nentropy = 1.581\nsamples = 112\nvalue = [37, 34, 41]\nclass = Iris-virginica'),
    Text(0.3, 0.7, 'entropy = 0.0\nsamples = 37\nvalue = [37, 0, 0]\nclass = Iris-setosa'),
    Text(0.5, 0.7, 'PetalLengthCm <= 4.95\nentropy = 0.994\nsamples = 75\nvalue = [0, 34, 41]\nclass = Iris-virginica'),
    Text(0.2, 0.5, 'PetalWidthCm <= 1.65\nentropy = 0.414\nsamples = 36\nvalue = [0, 33, 3]\nclass = Iris-versicolor'),
    Text(0.1, 0.3, 'entropy = 0.0\nsamples = 32\nvalue = [0, 32, 0]\nclass = Iris-</pre>
```

```
Text(0.3, 0.3, 'SepalWidthCm \leftarrow 3.1\nentropy = 0.811\nsamples = 4\nvalue = [0, 1,
3]\nclass = Iris-virginica'),
Text(0.2, 0.1, 'entropy = 0.0\nsamples = 3\nvalue = [0, 0, 3]\nclass = Iris-
virginica'),
 Text(0.4, 0.1, 'entropy = 0.0\nsamples = 1\nvalue = [0, 1, 0]\nclass = Iris-
versicolor'),
Text(0.8, 0.5, 'PetalLengthCm <= 5.05\nentropy = 0.172\nsamples = 39\nvalue = [0, 172]\nsamples
1, 38]\nclass = Iris-virginica'),
Text(0.7, 0.3, 'SepalLengthCm <= 6.5\nentropy = 0.811\nsamples = 4\nvalue = [0, 1, 1]
3]\nclass = Iris-virginica'),
 Text(0.6, 0.1, 'entropy = 0.0\nsamples = 3\nvalue = [0, 0, 3]\nclass = Iris-
virginica'),
 Text(0.8, 0.1, 'entropy = 0.0\nsamples = 1\nvalue = [0, 1, 0]\nclass = Iris-
versicolor'),
 Text(0.9, 0.3, 'entropy = 0.0\nsamples = 35\nvalue = [0, 0, 35]\nclass = Iris-
virginica')]
```

Pet

٧

entropy = 1 samples = value = [37, class = Iris-se

Prediction

THANKYOU

Colab paid products - Cancel contracts here