Network Layers

Internet Protocol Stack (5 Layers)

- 1. Application (HTTP, DNS, SMTP)
- 2. Transport (TCP, UDP)
- 3. Network (IP)
- 4. Link (Ethernet, WiFi)
- 5. Physical (Cables, signals)

Encapsulation

 $\mathrm{Data} \to \mathrm{Segment} \to \mathrm{Packet} \to \mathrm{Frame} \to \mathrm{Bits}$

Key Protocols

HTTP

- Request-response protocol
- Status codes: 200 OK, 404 Not Found, etc.

DNS

- Hierarchical: Root, TLD, Authoritative servers
- Resource Records: A, NS, CNAME, MX
- Caching for performance

TCP

- Reliable, ordered, connection-oriented
- Flow control, congestion control
- Three-way handshake: SYN, SYN-ACK, ACK

UDP

- Unreliable, unordered, connectionless
- Lightweight, low latency

Packet vs. Circuit Switching

Packet Switching

- Store-and-forward transmission
- Statistical multiplexing
- No call setup required

Circuit Switching

- Dedicated end-to-end resources
- Guaranteed performance
- Inefficient for bursty data

Performance Metrics

Delays

- Processing (d_{proc})
- Queuing (d_{queue})
- Transmission $(d_{trans} = \frac{L}{R})$
- Propagation $(d_{prop} = \frac{d}{s})$

Total Delay:

$$d_{\text{total}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

Throughput:

Throughput =
$$\min \left\{ R_s, R_c, \frac{R}{N} \right\}$$

Where R_s is server rate, R_c is client rate, R is bottleneck link rate, and N is number of flows. **Packet Loss:** Occurs when router buffers overflow

Web Technologies & CDNs

Web Technologies

- HTTP/1.1: Persistent connections
- HTTP/2: Multiplexing, server push
- HTTPS: HTTP over TLS/SSL
- Cookies: Client-side state management

CDNs (Content Delivery Networks)

- Replicate content on many servers
- DNS-based redirection
- Akamai example: uses DNS hierarchy

Video Streaming

DASH (Dynamic Adaptive Streaming over HTTP)

- Client determines:
 - When to request chunk
 - What encoding rate to request
 - Where to request chunk from
- Server:
 - Divides video into chunks
 - Encodes each chunk at multiple rates
 - Sends manifest file to client

Content Distribution Networks (CDNs)

- Netflix: Own CDN (Open Connect)
- YouTube: Uses Google's CDN

Additional Key Points

DNS Resolution Process:

- 1. Local DNS cache
- 2. Recursive query to local DNS server
- 3. Root DNS server
- 4. TLD DNS server
- 5. Authoritative DNS server

TCP Congestion Control:

- Slow start
- Congestion avoidance
- Fast recovery

Network Address Translation (NAT):

- Allows multiple devices to share one public IP
- Modifies IP addresses in packet headers

Socket Programming:

- API for network communication
- TCP sockets: connection-oriented
- UDP sockets: connectionless