线性代数期中考试参考题

李弢

Q1. (线性空间)

(a) 给定集合 $\mathbb{R}_{++} = \{x > 0 | x \in \mathbb{R}\}$ 及其上面的加法运算与数乘运算:

$$x + y = xy$$
 , $\lambda x = x^{\lambda}$.

问 \mathbb{R}_{++} 在上述加法与数乘的意义下是否构成一线性空间?若不是,请说明理由;若是,请验证,并求出维数,并进一步给出它到 $\mathbb{R}^{\dim \mathbb{R}_{++}}$ 的一个可逆线性映射。

(b) 任给一线性空间 V,我们把 $\mathcal{L}(V;\mathbb{F})$ 称为 V 的对偶空间,可记作 V^* . 设 V 是有限维的, $\{v_1, v_2, \cdots, v_n\}$ 是一组基,定义 $v_i^* \in V^*$,

$$v_i^*: V \to \mathbb{F}, v_i^*(v_j) = \delta_{ij}, \quad \forall i, j = 1, 2, \cdots, n,$$

其中 δ_{ij} 当且仅当 i=j 时为 1,否则为 0. 求证 $\{v_1^*, v_2^*, \cdots, v_n^*\}$ 是 V^* 的一组基。

(c) 对于 V 的对偶空间 V^* ,我们还可以考虑它的对偶空间 V^{**} . 证明,V 是 V^{**} 子空间。特别地,当 V 为有限维空间时, $V = V^{**}$.

Solution.

(a) 根据定义可以验证这是一个线性空间,其加法单位元为 1,维数为 1。对数映射 $\log: \mathbb{R}_{++} \to \mathbb{R}$ 是一可逆线性映射:

$$\log(\lambda x + \mu y) = \log(x^{\lambda} y^{\mu}) = \lambda \log(x) + \mu \log(y).$$

其逆为 $\exp: \mathbb{R} \to \mathbb{R}_{++}$.

(b) 首先注意到若 $v = \sum_{j=1}^{n} \lambda_j v_j$, 那么

$$v_i^*(v) = v_i^*(\sum_{j=1}^n \lambda_j v_j) = \sum_{j=1}^n \lambda_j v_i^*(v_j) = \lambda_i.$$

我们先说明 $\{v_1^*, v_2^*, \cdots, v_n^*\}$ 是 V^* 的张成组。任意 $l \in V^*, v \in V$,有

$$l(v) = l(\sum_{i=1}^{n} \lambda_i v_i) = \sum_{i=1}^{n} \lambda_i l(v_i) = \sum_{i=1}^{n} l(v_i) v_i^*(v),$$

这就说明了任意 $l \in V^*$ 都可以由 $\{v_1^*, v_2^*, \dots, v_n^*\}$ 线性表示。

再来说明 $\{v_1^*, v_2^*, \dots, v_n^*\}$ 是线性无关的。设存在 $\lambda_1, \lambda_2, \dots, \lambda_n$ 使得 $\sum_{i=1}^n \lambda_i v_i^* = 0$,那么作用在 $v_i, j = 1, 2, \dots, n$ 上可知 $\lambda_i = 0$,进而说明了它们线性无关。

因此 $\{v_1^*, v_2^*, \dots, v_n^*\}$ 是 V^* 的一组基。特别地,若 V 是有限维线性空间, V^* 也是有限维线性空间,且维数与 V 相等。

(c) 任取 $v \in V$,可以将其视为 V^* 上的线性函数: v(l) = l(v). 这样定义的函数确实是线性的:

$$v(\lambda l_1 + \mu l_2) = (\lambda l_1 + \mu l_2)(v) = \lambda l_1(v) + \mu l_2(v) = \lambda v(l_1) + \mu v(l_2).$$

这就说明了 V 是 V^{**} 的子空间。若 V 是有限维的,那么由 (b) 可知, $\dim V^{*}$ = $\dim V$,再一次利用 (b) 可知 $\dim V^{**}$ = $\dim V$,由此可知 V^{**} = V.

Q2. (维数公式)

- (a) 设 V 是有限维线性空间, U_1, U_2 是 V 的子空间,那么有怎样的维数公式(不用证明)?
- (b) 设 V, W 是有限维线性空间, $T \in \mathcal{L}(V; W)$ 是从 V 到 W 的线性映射,记 T 的像与核分别为 range T 与 null T,那么有怎样的维数公式(不用证明)?
- (c) 给定两个线性空间 U_1, U_2 ,我们定义它们的笛卡尔积 $U_1 \times U_2 = \{(u_1, u_2), u_1 \in U_1, u_2 \in U_2\}$,定义加法运算和数乘运算为

$$(u_1, u_2) + (u'_1, u'_2) = (u_1 + u'_1, u_2 + u'_2)$$
, $\lambda(u_1, u_2) = (\lambda u_1, \lambda u_2)$.

请验证 $U_1 \times U_2$ 是一个线性空间。若 U_1, U_2 均是有限维,再求 $U_1 \times U_2$ 的维数。

- (d) 设 V 是有限维线性空间, U_1, U_2 是 V 的子空间,考虑 $T: U_1 \times U_2 \to V, T((u_1, u_2)) = u_1 + u_2$. 证明 $T \in \mathcal{L}(U_1 \times U_2; V)$,并利用该 T 和 (b) 对 (a) 中的结果给出证明。
- (e) 考虑一个齐次线性方程组

$$\begin{cases} a_{11}x_1 + & a_{12}x_2 + \dots + a_{1n}x_n = & 0 \\ a_{21}x_1 + & a_{22}x_2 + \dots + a_{2n}x_n = & 0 \\ \dots & & \dots & \dots \\ a_{m1}x_1 + & a_{m2}x_2 + \dots + a_{mn}x_n = & 0 \end{cases}$$

记该线性方程组的系数矩阵为 $A \in \mathbb{R}^{m \times n}$, $[A]_{ij} = a_{ij}$, A 的第 j 列为 A_j , $j = 1, 2, \dots, n$, 解空间为 U, 则 $\dim U$ 与系数矩阵 A 有何关系?

Solution.

- (a) $\dim U_1 + U_2 = \dim U_1 + \dim U_2 \dim U_1 \cap U_2$.
- (b) $\dim V = \dim \operatorname{range} T + \dim \operatorname{null} T$.
- (c) 逐一验证线性空间的性质即可。取 U_1 一组基 $\{e_1, e_2, \cdots, e_{\dim U_1}\}, U_2$ 一组基 $\{f_1, f_2, \cdots, f_{\dim U_2}\}$,那么说明

$$\{(e_1,0),(e_2,0),\cdots,(e_{\dim U_1},0)\}\cup\{(0,f_1),(0,f_2),\cdots,(0,f_{\dim U_2})\}$$

是 $U_1 \times U_2$ 的一组基即可知,

$$\dim U_1 \times U_2 = \dim U_1 + \dim U_2.$$

(d) 容易验证 T 是线性映射,下面考虑其像与核:

range
$$T = \{u_1 + u_2 | u_1 \in U_1, u_2 \in U_2\} = U_1 + U_2,$$

$$\operatorname{null} T = \{ u_1 + u_2 = 0 | u_1 \in U_1, u_2 \in U_2 \}.$$

实际上, $\operatorname{null} T = \{(u, -u) | u \in U_1 \cap U_2\}$. 这是因为任意 $(u_1, u_2) \in \operatorname{null} T$,都有 $-u_1 \in U_2$,从而 $u_1 \in U_2$,因此可以写成 $(u_1, -u_1)$,其中 $u_1 \in U_1 \cap U_2$. 另一方面,对于任意 $u \in U_1 \cap U_2$,T((u, -u)) = 0. 由 (b) 可知,

 $\dim U_1 + \dim U_2 = \dim (U_1 \times U_2) = \dim \operatorname{range} T + \dim \operatorname{null} T = \dim U_1 + \dim U_2 + \dim U_1 \cap U_2.$

(e) 考虑线性映射 $T: \mathbb{F}^n \to \mathbb{F}^m, T(x) = Ax$, 那么

$$\operatorname{null} T = U$$
, $\operatorname{range} T = \operatorname{span} \{A_1, A_2, \cdots, A_n\}.$

由(b)可知,

$$\dim U = \dim \operatorname{null} T = m - \dim \operatorname{span} \{A_1, A_2, \cdots, A_n\}.$$

Q3 (投影算子) 设 V 是有限维线性空间, $P \in \mathcal{L}(V)$,如果 P 满足 $P^2 = P$,那么我们称其为投影算子。

(a) 设 $V = U \oplus W$, 证明 P_{UW} 是投影算子。

- (b) 证明: 若 $P \in \mathcal{L}(V)$ 是一投影算子, λ 是 P 的特征值, 则 $\lambda = 0$ 或 1.
- (c) 证明: 若 $P \in \mathcal{L}(V)$ 是一投影算子,则 P 可对角化。
- (d) 证明 V 上所有的投影算子都可以写成 (a) 中的形式。

Solution

- (a) $P_{UW}^2 = P_{U,W}$ 课上已经证明过。
- (b) 设 λ 为 P 的特征值,v 是对应的(非零)特征向量,那么 $Pv = \lambda v$. 由于 P 是投影算子,两边同时用 P 作用,得到 $Pv = P^2v = \lambda Pv$,即 $(1 \lambda)Pv = 0$. 由某道作业题,可知 $1 \lambda = 0$ 或 Pv = 0. 如果 $1 \lambda = 0$,就是 $\lambda = 1$; 如果 Pv = 0,由于 v 是对应于 λ 的特征向量,可知 $\lambda = 0$.
- (c) 由于 P 是投影算子, P(P-I)=0,也就是说 range $(P-I)\subset \operatorname{null} P$. 由维数公式,

$$\dim V = \dim \operatorname{range}(P - I) + \dim \operatorname{null}(P - I) \leq \dim \operatorname{null}(P + \dim \operatorname{null}(P - I).$$

若 P 只有 0 特征值或 1 特征值,由上式可以看出 $\operatorname{null} P = V$ 或 $\operatorname{null} (P - I) = V$, P 显然可以对角化。否则,由于 0 和 1 都是 P 的特征值, $\operatorname{null} P \oplus \operatorname{null} (P - I)$ 是 V 的子空间,故

$$\dim \operatorname{null} P + \dim \operatorname{null} (P - I) \leq \dim V.$$

结合上两式可知

$$\dim \operatorname{null} P + \dim \operatorname{null} (P - I) = \dim V.$$

这就说明了 P 可以对角化。

(d) 由 (c) 中的结论, $V = \text{null}(P - I) \oplus \text{null}P$. 对于任意 $v \in V, v = v_1 + v_2, v_1 \in \text{null}(P - I), v_2 \in \text{null}P$, 那么 $P(v) = P(v_1) + P(v_2) = v_1$. 这就说明了 $P = P_{\text{null}(P - I), \text{null}P}$.