Álgebra Linear: AD1 - CEDERJ Mauro Rincon & Márcia Fampa - 2019/1

- 1.(5.0) Considere o conjunto $B = \{v_1, v_2, v_3\}$, onde $v_1 = (1, -1, 2, 0)$, $v_2 = (4, 1, 3, 0)$ e $v_3 = (0, 0, 1, 0)$.
 - (a) (0.5) Calcule o módulo (comprimento) de cada vetor de B.
 - (b) (0.5) Calcule a distância $d(v_1, v_2) = |v_1 v_2|$
 - (c) (0.5) Verifique se existem vetores de B, dois a dois, que são ortogonais ou paralelos.
 - (d) (0.5) Calcule o ângulo entre os vetores $\{v_1, v_2\}$ formado pelos vetores de B.
 - (e) (0.5) Verifique se o conjunto B é uma base de $S \subset \mathbb{R}^4$.
 - (f) (0.5) Usando o processo de Gram-Schmidt, determine a partir da base B, uma base ortogonal do $S \subset \mathbb{R}^4$.
 - (g) (0.5) Determine o espaço gerado pelos vetores $B = \{v_1, v_2, v_3\}$
 - (h) Seja \hat{B} o conjunto formado pelos vetores v_1 e v_2 de B substituindo-se o vetor v_3 pelo vetor $\hat{v}_3 = (a_1, a_2, a_3, a_4)$, com pelo menos um i talque $a_i \neq 0$.
 - i. (0.5) Mostren que se $a_4 \neq 0$ então o conjunto de \hat{B} é L.I.
 - ii. (0.5) Mostre que se $a_1 = a_2 + a_3$, com $a_2 \neq 0$ ou $a_3 \neq 0$ e $a_4 = 0$ então o conjunto \hat{B} é L.D.
 - (i) (0.5) Mostre que $\hat{v}_3=(0,1,-1,0)$ é uma combinação linear dos vetores v_1 e v_2 de B.
- 2.(1.0) Seja $S = \{(x,y) \in \mathbb{R}^2 / -x + 3y = 0\}$. Verifique se S é uma subespaço vetorial do \mathbb{R}^2 , relativamente às operações usuais de adição e multiplicação por escalar e em caso afirmativo determine uma base para S.
- 3.(1.0) Seja $S = \{(x,y,z) \in \mathbb{R}^3/x 2y + z = 1\}$. Verifique se S é uma subespaço vetorial do \mathbb{R}^3 , relativamente às operações usuais de adição e multiplicação por escalar e em caso afirmativo determine uma base para S.
- 4.(3.0) Considere as matrizes:

$$A = \begin{bmatrix} 1 & 9 \\ -6 & 2 \\ -2 & 5 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 4 & 1 \end{bmatrix},, \qquad C = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

- (a) Determine, se possível, a matriz $M=A^T-2B,$ onde A^T é matriz transposta de A.
- (b) Determine, se possível, a matriz produto: N = BC
- (c) Determine, se possível, a matriz produto: L = M.N