Automaten und Berechenbarkeit - Übung 05

Felix Tischler, Martrikelnummer: 191498

Pumping Lemma (PL)

Sei $A \in REG$. $\exists n \in \mathbb{N} : \forall x \in A : |x| > n : x = uvw$:

- 1. $|v| \ge 1$
- $2. \mid uv \mid \leq n$
- 3. $\forall i \geq 0 : uv^i w \in A \Leftrightarrow \{u\}\{v\}^*\{w\} \subseteq A$

Aufgabe 1

Untersuchen Sie, ob die folgenden Sprachen regulär sind oder nicht:

(a)
$$A = \{w \mid w \in \{a, b\}^*, \#_a(w) = 2\#_b(w)\}$$

Beweis. Ann: $A \in REG \Rightarrow es gilt PL \Leftrightarrow Sei k Pumpingzahl$:

$$\label{eq:wahle} \mbox{\it W\"{a}hle} \ x = \underbrace{a^{j_1}}_{u} \underbrace{a^{j_2}}_{v} \underbrace{a^{2k-j}b^k}_{w}, j_1 + j_2 = j, \underbrace{j_2 \geq 1}_{*}, \mid x \mid \geq k$$

 $Sei\ x = uvw\ eine\ geiegnete\ Zerlegung\ gemäß\ PL:$

$$|v| \ge 1 \ und \ |uv| \le k \Rightarrow uv = a^j \ |j \le k$$

$$v^i = a^{j_2{}^i}$$

$$\stackrel{i=0}{\Longrightarrow} x = a^{j_1}a^{{j_2}^0}a^{2k-j}b^k = a^{j_1}\lambda a^{2k-j}b^k = \underbrace{a^{2k-j_2}b^k}_x \stackrel{*}{\Rightarrow} x \notin A \quad \not = \underbrace{a^{2k-j_2}b^k}_x \stackrel{*}{\Rightarrow} x \notin A$$

(b)
$$B = \{0^n 10^m \mid n > m\}$$

 $Beweis. \ Ann: \ B \in REG \Rightarrow \ es \ gilt \ PL \Leftrightarrow \ Sei \ k \ Pumpingzahl:$

Wähle
$$x = \underbrace{0^k}_{u} \underbrace{0^{k-m}}_{v} \underbrace{10^m}_{w}, |x| \ge k, k > m$$

Sei x=uvweine geiegnete Zerlegung gemäß $PL:\mid v\mid\geq 1,\mid uv\mid\leq k$

$$|v| = \underbrace{k - m \ge 1}_{k > m}$$
 und $|uv| = k \le k$

$$\overset{i=0}{\Longrightarrow} x = uv^0w = 0^m10^m \notin B \quad \sharp$$

(c)
$$C = \{x\$y \mid x, y \in \{a, b\}^*, \#_a(x) = \#_b(y)\}$$

 $Beweis. \ Ann: \ C \in REG \Rightarrow \ es \ gilt \ PL \Leftrightarrow \ Sei \ k \ Pumpingzahl:$

$$\label{eq:wanter} W\ddot{a}hle\; x = \underbrace{a^{k-m}}_{u}\underbrace{a^{m}}_{v}\underbrace{\$b^{k}}_{w}, \mid x\mid \geq k, m \geq 1$$

Sei x = uvw eine geiegnete Zerlegung gemäß $PL: \mid v \mid \geq 1, \mid uv \mid \leq k$

$$|v| = m \ge 1 \ und \ |uv| = k \le k$$

$$\stackrel{i=0}{\Longrightarrow} x = uv^0w = a^{k-m}\$b^k \notin C \quad \sharp$$

(d)
$$D = \{xy \mid x, y \in \{a, b\}^*, \#_a(x) = \#_b(y)\}$$

Jedes Wort gerader Länge ist in D. Wenn $w \in \{a,b\}^*$ gerade ist, dann gibt es eine Zahl $k \in \mathbb{N}$, so dass $|w| = 2k \Rightarrow w$ kann in zwei Teile der Länge k aufgeteilt werden: $x,y \in \{a,b\}^* : |x| = |y| = k \Rightarrow w \in D$

Jedes Wort in L ist gerader Länge. Für jedes Wort in D mit gerader Länge gilt: $Sei\ w \in D$ nach Definition von D folgt: $\exists x, y \in \{a, b\}^* : |x| = |y|$ und $w = xy \Rightarrow |w| = |x| + |y| = 2 |x| \Rightarrow w$ hat gerade Länge. □ $D \in REG$.

$$M = (\{a, b\}, \{q_0, q_1\}, \delta, \{q_0\}, \{q_0\})$$

$$a, b$$

$$\delta:$$

Zustand	a	b
Ø	Ø	Ø
q_0	$\{q_1\}$	$\{q_1\}$
q_1	$\{q_0\}$	$\{q_0\}$

(e)
$$E = \{w \mid w \in \{a, b\}^*, \#_a(w) - \#_b(w) \equiv 0 \mod 3\}$$

y Wir können einen DFA M
 konstruieren, der die Sprache E akzeptiert. Sei $M=(\{a,b\},\{\equiv_3=0,\equiv_3=1_a,\equiv_3=2_a,\equiv_3=1_b,\equiv_3=2_b,\delta,\{\equiv_3=0\},\{\equiv_3=0\})$

 δ :

Zustand	a	b
Ø	Ø	Ø
$\equiv_3 = 0$	$\{\equiv_3=1_a\}$	$\{\equiv_3=1_b\}$
$\equiv_3=1_a$	$\{\equiv_3=2_a\}$	$\{\equiv_3 = 0\}$
$\equiv_3 = 2_a$	$\{\equiv_3=0\}$	$\{\equiv_3=1_a\}$
$\equiv_3=1_b$	$\{\equiv_3 = 0\}$	$\{\equiv_3=2_b\}$
$\equiv_3=2_b$	$\{\equiv_3=1_b\}$	$\{\equiv_3 = 0\}$

(f) $F = \{0^{2^n} \mid n \in \mathbb{N}\}$ als Sprache über dem Alphabet $\{0\}$

Beweis. Ann : $F \in REG \Rightarrow es gilt PL \Leftrightarrow Sei k Pumpingzahl$:

$$\begin{split} W\ddot{a}hle \ x &= \underbrace{0^{k-m}}_{u}\underbrace{0^{m}}_{v}\underbrace{0^{k}}_{w}, \mid x \mid \geq k; k \geq m \geq 1 \\ Sei \ x &= uvw \ eine \ geiegnete \ Zerlegung \ gem\"{a} \ PL : \mid v \mid \geq 1, \mid uv \mid \leq k \\ \mid v \mid = k - m \geq 1 \ und \ \mid uv \mid = k \leq k \\ &\stackrel{i=2}{\Longrightarrow} x = 0^{k-2}0^{m^{2}}0^{k} = 0^{k}0^{m}0^{k} = 0^{2^{k}+m} \\ Betrachten \ wir \ die \ Exponenten : \\ 2^{k} < 2^{k} + m \leq 2^{k} + k, \quad da \ gilt : k \geq m \geq 1 \\ mit \ k < 2^{k} \ folgt \\ 2^{k} < 2^{k} + m < 2^{k+1} \\ &\Rightarrow uv^{2}w \notin F \quad f \end{split}$$

(g) Die Menge aller Wörter w über $\{0,1\}$, die als Binärzahl betrachtet durch 3 teilbar sind.

Beweis. Beh:

$$K_1 = [\lambda] = \{w \in \{0,1\}^* \mid \text{ w ist als Binärzahl betrachtet durch 3 teilbar mit Rest 0}\}$$

 $K_2 = [1] = \{w \in \{0,1\}^* \mid \text{ w ist als Binärzahl betrachtet durch 3 teilbar mit Rest 1}\}$
 $K_3 = [10] = \{w \in \{0,1\}^* \mid \text{ w ist als Binärzahl betrachtet durch 3 teilbar mit Rest 2}\}$

 $K_1 \cup K_2 \cup K_3 = \{a, b\}^*, K_i \text{ sind paarweise disjunkt.}$

 $M = (\{0, 1\}, \{\equiv_3 = 0, \equiv_3 = 1, \equiv_3 = 2\}, \delta, \{\equiv_3 = 0\}, \{\equiv_3 = 0\})$

Zustand	0	1
Ø	Ø	Ø
$\equiv_3 = 0$	$\{ \equiv_3 = 0 \}$	{≡₃= 1}
≡3=1	$\{ \equiv_3 = 2 \}$	$\{ \equiv_3 = 0 \}$
$\equiv_3 = 1$	$\{ \equiv_3 = 1 \}$	$\{\equiv_3=2\}$

Wenn eine Zahl durch 3 Teilbar ist gibt es nur drei Möglichkeiten. Der Rest kann 0,1 oder 2 sein. Im DFA M sind diese drei Zustände angegeben und in δ ihre Übergänge definiert. Man betrachtet die Wirkung der einzelnen Buchstaben auf das gesamte Wort und erkennt: wenn man in $\equiv_3=0$ ist ändert eine 0 nichts an der Teilbarkeit durch 3. Eine eins hingegen ehröht den Rest bei Division durch 3 auf 1. Deshalb landet man in $\equiv_3=1$. Wenn nun direkt eine 1 kommt wandert man wieder zurück, da dann $11_{bin}=3_{dez}$ angehängt wurde, was durch 3 mit Rest 0 teilbar ist. Fügt man hingegen eine 0 an und hat das Teilwort 10 angehängt, so landet man in $\equiv_3=2$, da $10_{bin}=2_{dez}$. Von hier aus kann man mit einer 0 zurück, da $101_{bin}=4_{dez}\equiv_3=1$. Sollte man eine 1 lesen bleibt man solange im Zustand bis eine 0 kommt. Dies liegt daran, dass $1011_{bin}=11_{dez}\equiv_3=2$, $10111_{bin}=23\equiv_3=2$, $\Rightarrow G \in REG$.

(h) $H = \{w \mid w \in \{a, b\}^*, w = w^R\}$ (Menge aller Palindorome über $\{a, b\}$)

Beweis. Ann: $H \in REG \Rightarrow es gilt PL \Leftrightarrow Sei k Pumpingzahl$:

Wähle
$$x = \underbrace{a^{k-m}}_{u} \underbrace{a^{m}}_{v} \underbrace{b^{k} a^{k}}_{w}, |x| \ge k, m \ge 1$$
Sei $x = uvw$ eine geiegnete Zerlegung gemäß PL

Sei x=uvw eine geiegnete Zerlegung gemäß $PL: \mid v \mid \geq 1, \mid uv \mid \leq k$ $\mid v \mid = m \geq 1, \mid uv \mid = k \leq k$

$$\stackrel{i=0}{\Longrightarrow} x = a^{k-m}b^ka^k \notin H \quad \not$$

Aufgabe 2

Geben Sie für die Sprache $A = \{0^i 1^j \mid i, j \ge 0\}$. Alle Äquivalenzklassen bezüglich der Relation R_A an und beweisen Sie ihre Behauptung.

Beweis. Beh:

$$K_1 = [0^i] = \{0^i 1^j \mid j = 0, i \ge 0\}$$

$$K_2 = [0^i 1^{j+1}] = \{0^i 1^{j+1} \mid i, j \ge 0\}$$

$$K_3 = [0^i 1^{j+1} 0] = \emptyset$$

 $K_1 \cup K_2 \cup K_3 = \{a, b\}^*, K_i \text{ sind paarweise disjunkt.}$

 K_1 beschreibt die Klasse, welche alle möglichen Worte hat, die ausschließlich aus Nullen bestehen. K_2 ist heirzu definitiv disjunkt, da wenn j=0 durch $1^{j+1}=1^1=1$ folgt und somit jedes Wort in K_2 mindestens eine eins hat. K_3 beschreibt alle nicht zu akzeptierenden Wörter. Da K_1, K_2 akzeptiert werden sind beide Klassen zu K_3 disjunkt. \Rightarrow von R_A ist $3. \Rightarrow A \in REG$.