8/6/25, 6:24 PM Lab7



### **Data Mining**

Lab - 7 (Part 2)

Name: Harmik Rathod

**Enrollment No: 24010101680** 

#### Step 1: Load the Dataset

Load the Tdata.csv file and display the first few rows.

| In [2]: | im                                     | <b>port</b> pandas | as pd |        |        |      |     |      |
|---------|----------------------------------------|--------------------|-------|--------|--------|------|-----|------|
| In [5]: | <pre>df=pd.read_csv("Tdata.csv")</pre> |                    |       |        |        |      |     |      |
| In [8]: | df                                     | df                 |       |        |        |      |     |      |
| Out[8]: |                                        | Transaction        | bread | butter | coffee | eggs | jam | milk |
|         | 0                                      | T1                 | 1     | 1      | 0      | 0    | 0   | 1    |
|         | 1                                      | T2                 | 1     | 1      | 0      | 0    | 1   | 0    |
|         | 2                                      | Т3                 | 1     | 0      | 0      | 1    | 0   | 1    |
|         | 3                                      | T4                 | 1     | 1      | 0      | 0    | 0   | 1    |
|         | 4                                      | T5                 | 1     | 0      | 1      | 0    | 0   | 0    |
|         | 5                                      | Т6                 | 0     | 0      | 1      | 1    | 1   | 0    |

#### Step 2: Drop the 'Transaction' Column

We're only interested in the items (not the transaction IDs).

```
In [12]: df_items=df.drop(columns=['Transaction'])
    df_items
```

8/6/25, 6:24 PM Lab7

| Out[12]: |   | bread | butter | coffee | eggs | jam | milk |
|----------|---|-------|--------|--------|------|-----|------|
|          | 0 | 1     | 1      | 0      | 0    | 0   | 1    |
|          | 1 | 1     | 1      | 0      | 0    | 1   | 0    |
|          | 2 | 1     | 0      | 0      | 1    | 0   | 1    |
|          | 3 | 1     | 1      | 0      | 0    | 0   | 1    |
|          | 4 | 1     | 0      | 1      | 0    | 0   | 0    |
|          | 5 | 0     | 0      | 1      | 1    | 1   | 0    |

#### **Step 3: Count Single Items**

See how many transactions include each item.

```
In [14]: df_items.sum()

Out[14]: bread 5
    butter 3
    coffee 2
    eggs 2
    jam 2
    milk 3
    dtype: int64
```

#### **Step 4: Define Apriori Function**

This function finds frequent itemsets of size 1, 2, and 3 with minimum support.

#### Step 5: Run Apriori

Set min\_support = 0.6 and display the frequent itemsets.

8/6/25, 6:24 PM Lab7

```
In [19]: frequent_itemsets=find_frequent_itemsets(df_items, min_support=0.5)
    for itemset, support in frequent_itemsets:
        print(f"{set(itemset)} -> support: {support}")

        {'bread'} -> support: 0.83
        {'butter'} -> support: 0.5
        {'milk'} -> support: 0.5
        {'bread', 'butter'} -> support: 0.5
        {'bread', 'milk'} -> support: 0.5
```

#### Step 6 Display as a DataFrame

```
In [21]: result_df=pd.DataFrame(frequent_itemsets, columns=['Itemset','Support'])
    result_df
```

| Out[21]: |   | ltemset         | Support |
|----------|---|-----------------|---------|
|          | 0 | (bread)         | 0.83    |
|          | 1 | (butter)        | 0.50    |
|          | 2 | (milk)          | 0.50    |
|          | 3 | (bread, butter) | 0.50    |
|          | 4 | (bread, milk)   | 0.50    |

```
In [ ]:
```

# Orange Tool : - > Generate Same Frequent Patterns in Orange tools

```
In [ ]:
```

## Extra: - > Define Apriori Function without itertools

```
In []:
In []:
```