ANN - Lab 4 Hopfield Networks

Tianxiao Zhao Suping Shi

Feb 22nd, 2017

How it works...

Attractors and convergence

```
x1 = vm([0\ 0\ 1\ 0\ 1\ 0\ 0\ 1]); iteration times:

x2 = vm([0\ 0\ 0\ 0\ 0\ 1\ 0\ 0]); a =

x3 = vm([0\ 1\ 1\ 0\ 0\ 1\ 0\ 1]); 3

patterns can converge towards stored patterns
```

Change the starting pattern even more dissimilar (more than half are wrong)

- Output pattern converges but not to the stored patterns
- Not any input can converge to stored patterns, only that have some similarities.

Attractors and convergence

	attracto	rs =						
Find all attractors								
	0	0	0	0	0	1	0	0
	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	1
	0	0	1	0	0	1	0	1
	0	0	1	0	1	0	0	1
	0	1	1	0	0	1	0	1
	1	0	0	1	0	1	1	0
	1	0	0	1	1	0	1	0
	1	0	1	1	1	0	1	1
	1	1	0	1	0	0	1	0
	1	1	0	1	0	1	1	0
	1	1	0	1	1	0	1	0
	1	1	1	1	0	1	1	1
	1	1	1	1	1	0	1	1

14 attractors in total with 8 units

Sequential update

Only update one unit per iteration

Using p1, p2, p3 to train Weight matrix; Input: p11 (degraded version of p1)

The output has the same pattern as the stored pattern P1

Sequential update

Using p1, p2, p3 to train Weight matrix; Input: p22 (a mixture of p2 and p3)

• The output pattern converge to the stored pattern p3

Energy

$$E = -\sum_{i} \sum_{j} w_{ij} x_{i} x_{j}$$
$$E = -x * w * x'$$

In MATLAB, we have

Energy for p11 with iterations

Energy for p22 with iterations

- With output converging, the energy also tends to converge to a lower level.
- Lower energy level, easier to reach the local minimal (attractors)
- Higher the input energy, more iterations needed
 (p22 has higher energy, more than 7000 iterations)

Energy

$$E = -\sum_{i} \sum_{j} w_{ij} x_i x_j$$

normally distributed random weight matrix:

With Random input

Hard to converge

Energy

$$E = -\sum_{i} \sum_{j} w_{ij} x_i x_j$$

normally distributed random but still symmetric weight matrix:

With Random input

Energy converges

• Weight element wij indicates the connection between xi and xj, wji indicates the connection between xj and xi So wij = wji weight matrix must be symmetric

Distortion Resistance

Train with p1-p3, also add noise to p1-p3

- Good restoration when noise ratio < 0.5
- Retrive inverse patterns when noise ratio > 0.5

Distortion Resistance Train with p1-p3, also add noise to p1-p3

Capacity

Train with p1-p4, no noise added

- Three patterns could be safely stored
- Abrupt increase in errors

Capacity

Train with random patterns - error test

- Around 150 patterns could be safely stored (0.138N = 0.138*1024 = 141)
- Much more uncorrelated patterns, increased capacity

- Increase patterns -> decayed stability
- No self-connections -> hard to remain at current state -> even worse stability

- Introduce bias -> worse capacity
- Bias -> patterns more correlated -> closer attractors -> easier to fall into spurious state -> worse capacity

- Small rho -> small optimal theta (positive link)
- Capacity first increases and then drops to zero as theta increases